Report: Hybrid vigor in response to Eimeria in the $\ensuremath{\mathsf{HMHZ}}$

Alice

27 September 2018

Contents

Eimeria detection oocysts flotation Improving Eimeria oocysts detection	2
Eimeria detection PCR	9
Eimeria detection qPCR	4
General stats on sampling	7
General informations on HMHZ	7
Prevalence of our 3 different methods Prevalence tables OPG-PCR OPG-qPCR OPG-qPCR-PCR	8 9 10 11
BCI vs OPG	12 12
Testing hybrid vigor along HMHZ	13
PART II for comparison: $qPCR$ detection threshold = -3.75	13
Eimeria detection oocysts flotation Improving Eimeria oocysts detection	13 13 13
Eimeria detection PCR	14
Eimeria detection qPCR	15
General stats on sampling	17
General informations on HMHZ	19
Prevalence of our 3 different methods Prevalence tables OPG-PCR OPG-qPCR OPG-qPCR-PCR	19 19 21 22 24
BCI PCI PC OPC	25

Eimeria detection oocysts flotation

Improving Eimeria oocysts detection

22 new samples were detected while diluting by $0.1 \mathrm{mL}$ PBS instead of $1 \mathrm{mL}$ before counting in Neubauer chamber.

Adjusted R-squared = 0.81 represents the amount of variation in y explained by x.

OPG that we keep

Number of Mus musculus caught with OPG values: 486

`geom_smooth()` using method = 'loess'

Eimeria detection PCR

PCR positive = one of the 3 other markers than AP5 sequenced (Ap5 was used for detection only, the other markers for confirmation)

Violin plots on PCR data

PCR positive = one of the 3 markers 18S, COI or ORF470) gave a sequence. Number of Mus musculus caught with PCR performed: 962

Eimeria detection qPCR $\,$

We keep only the values for mice having been tested for BOTH ileum and cecum!
`geom_smooth()` using method = 'loess'

Smooth on qPCR data (positive only (> -5)

Warning: Removed 168 rows containing missing values (geom_point).

Remark of J. Wolinska: some individuals here HAVE qPCR value, but no c

Number of Mus musculus caught with qPCR performed: 371

General stats on sampling

We keep mice with OPG, PCR or qPCR status, in North Germany.

- Number of Mus musculus caught with OPG counted: 485
- Number of Mus musculus caught with qPCR performed: 371
- Number of Mus musculus caught with either OPG counted or qPCR performed: 513
- Number of Mus musculus caught with OPG counted AND qPCR performed: 343
- Some information regarding latitude and longitude are missing for the following mice:

SK 3174

• We still miss info (HI) on the following mice (ask Jarda):

```
\begin{array}{l} \text{AA\_0411, AA\_0412, AA\_0420, SK\_2668, SK\_2669, SK\_2671, SK\_2674, SK\_2675, SK\_2676, SK\_2677, SK\_2678, SK\_2678, SK\_2681, SK\_2682, SK\_2684, SK\_2685, SK\_2687, SK\_2688, SK\_2690, SK\_2692, SK\_2693, SK\_2695, SK\_2696, SK\_2699, SK\_2700, SK\_2701, SK\_2702, SK\_2703, SK\_2704, SK\_2705, SK\_2710, SK\_2713, SK\_2715, SK\_2724, SK\_2727, SK\_2729, SK\_2733, SK\_2734, SK\_2736, SK\_2737, SK\_2738, SK\_2739, SK\_2745, SK\_2750, SK\_2751, SK\_2752, SK\_2754, SK\_2755, SK\_2756, SK\_2758, SK\_2759, SK\_2760, SK\_2761, SK\_2775, SK\_2778, SK\_2780, SK\_2782, SK\_2789, SK\_2792, SK\_2793, SK\_2794, SK\_2795, SK\_2798, SK\_2799, SK\_2799, SK\_2801, SK\_2802, SK\_2803, SK\_2804, SK\_2805, SK\_3174\\ SK\_2795, SK\_2798, SK\_2799, SK\_2800, SK\_2801, SK\_2802, SK\_2803, SK\_2804, SK\_2805, SK\_3174\\ \end{array}
```

General informations on HMHZ

• 655 mice were captured over three years, from 157 farms

- From these mice:
- 485 mice had Eimeria detected by feces flotation,
- 652 mice had Eimeria detected by colon content PCR (cf paper Victor),
- 371 mice had Eimeria detected by qPCR on intestinal tissues
- On average, 4.04 mice were caught per farm (95% CI 0.34)
- Hybrid indexes were calculated as ratio of M.m.d/M.m.m alleles (between 4 and 14, on average 13 loci)

Density of hybrids

Figure 1: Number of animals caught along the hybrid index

Prevalence of our 3 different methods

Prevalence tables

Table 1: Prevalence of Eimeria per year, based on oocyst flotation

	2014	2015	2016	2017
FALSE	0	92.0	126.00	167.00
TRUE	0	10.0	25.00	65.00
total	0	102.0	151.00	232.00
$\operatorname{prevalence}(\%)$	NaN	9.8	16.56	28.02

Table 2: Prevalence of Eimeria per year, based on PCR detection. A mouse was considered infected by Eimeria ifone of the 3 markers (COI, 18S or ORF470) gave a sequence

	2014	2015	2016	2017
negative	53.00	110.00	146.00	226.00
positive	23.00	12.00	20.00	62.00

	2014	2015	2016	2017
total	76.00	122.00	166.00	288.00
prevalence(%)	30.26	9.84	12.05	21.53

Table 3: Prevalence of Eimeria per year, based on qPCR

	2014	2015	2016	2017
FALSE	0	0	134.00	167.00
TRUE	0	0	30.00	40.00
total	0	0	164.00	207.00
$\operatorname{prevalence}(\%)$	NaN	NaN	18.29	19.32

Table 4: Prevalence of Eimeria per year, based on all detections methods. A mouse was considered infected by Eimeria if one of the 3 markers (COI, 18S or ORF470) gave a sequence, OR if it had a positive count of oocysts in its feces, OR if it was qPCR positive

	2014	2015	2016	2017
negative	53.00	105.00	122.00	195.00
positive	23.00	17.00	45.00	95.00
total	76.00	122.00	167.00	290.00
$\operatorname{prevalence}(\%)$	30.26	13.93	26.95	32.76

OPG-PCR

(polygon[GRID.polygon.805], polygon[GRID.polygon.806], polygon[GRID.polygon.807], polygon[GRID.polyg

OPG-qPCR

(polygon[GRID.polygon.814], polygon[GRID.polygon.815], polygon[GRID.polygon.816], polygon[GRID.polygon.816]

Call:

```
## lm(formula = data1$OPG ~ data1$delta_ct_MminusE)
##
## Residuals:
     \mathtt{Min}
              1Q Median
                            ЗQ
##
                                  Max
  -49104 -7092 -7092 -7092 594318
##
##
## Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                             28056
                                         7882
                                                3.559 0.000425 ***
## data1$delta_ct_MminusE
                             4193
                                         1662
                                                2.522 0.012119 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 49140 on 341 degrees of freedom
## Multiple R-squared: 0.01831,
                                    Adjusted R-squared: 0.01543
## F-statistic: 6.361 on 1 and 341 DF, p-value: 0.01212
```

OPG-qPCR-PCR

Figure 2: Comparison of detection: PCR vs flotation vs qPCŔ

(polygon[GRID.polygon.900], polygon[GRID.polygon.901], polygon[GRID.polygon.902], polygon[GRID.polyg

BCI

BCI vs OPG


```
##
## Call:
## lm(formula = myData$BCI ~ myData$OPG + myData$HI)
##
## Residuals:
       Min
##
                 1Q
                      Median
                                   3Q
                                           Max
## -0.20165 -0.02542 0.01057 0.03494 0.13137
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.304e-01 4.424e-03 142.490 < 2e-16 ***
## myData$OPG -2.061e-07 5.449e-08 -3.782 0.000176 ***
              -1.760e-02 6.779e-03 -2.596 0.009710 **
## myData$HI
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05359 on 476 degrees of freedom
     (176 observations deleted due to missingness)
## Multiple R-squared: 0.04528, Adjusted R-squared: 0.04127
## F-statistic: 11.29 on 2 and 476 DF, p-value: 1.625e-05
```

Testing hybrid vigor along HMHZ

PART II for comparison: qPCR detection threshold = -3.75

```
## Warning in makeMiceTable("../../Data_important/"): NAs introduced by
## coercion
## Warning in makeMiceTable("../../Data_important/"): NAs introduced by
## coercion
```

Eimeria detection oocysts flotation

Improving Eimeria oocysts detection

22 new samples were detected while diluting by $0.1 \mathrm{mL}$ PBS instead of $1 \mathrm{mL}$ before counting in Neubauer chamber.

Adjusted R-squared = 0.81 represents the amount of variation in y explained by x.

OPG that we keep

Number of Mus musculus caught with OPG values: 486

`geom_smooth()` using method = 'loess'

Eimeria detection PCR

PCR positive = one of the 3 other markers than AP5 sequenced (Ap5 was used for detection only, the other markers for confirmation)

Violin plots on PCR data

PCR positive = one of the 3 markers 18S, COI or ORF470) gave a sequence. Number of Mus musculus caught with PCR performed: 962

Eimeria detection qPCR $\,$

We keep only the values for mice having been tested for BOTH ileum and cecum!
`geom_smooth()` using method = 'loess'

Smooth on qPCR data (positive only (> -3.75)

Warning: Removed 168 rows containing missing values (geom_point).

Remark of J. Wolinska: some individuals here HAVE qPCR value, but no c

Number of Mus musculus caught with qPCR performed: 371

General stats on sampling

```
## Warning in file.remove(index[[url]]): cannot remove file
## '470a3353e013428057316f09bebc2634.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '38fbfc523793116165689a0313c890a2.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '77d569e91de72d296943f667074aa269.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '022b99a7810e5f121831862b7ae5585c.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '304d0f0a73e271eaf822f46811766f2c.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '0334f529ea54c1d0ccf1cd725091cad0.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '64129c1d3ac5deae5e8ed253206b774d.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '72f10416ae8d9fb0622179a5c939c1ff.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
```

```
## '226174bf385d58f14a113ec142144b62.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '3b753e162cfb58b4a26adc1d5b6851ec.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## '22009ff43e754b87b1de5c26c172be48.rds', reason 'No such file or directory'
## Warning in file.remove(index[[url]]): cannot remove file
## 'b7c4544b894e579df026e737678920d9.rds', reason 'No such file or directory'
```


We keep mice with OPG, PCR or qPCR status, in North Germany.

- Number of Mus musculus caught with OPG counted: 485
- Number of Mus musculus caught with qPCR performed: 371
- Number of Mus musculus caught with either OPG counted or qPCR performed: 513
- Number of Mus musculus caught with OPG counted AND qPCR performed: 343
- Some information regarding latitude and longitude are missing for the following mice:

SK_3174

• We still miss info (HI) on the following mice (ask Jarda):

```
\begin{array}{l} {\rm AA\_0411,\ AA\_0412,\ AA\_0420,\ SK\_2668,\ SK\_2669,\ SK\_2671,\ SK\_2674,\ SK\_2675,\ SK\_2676,\ SK\_2677,\ SK\_2678,\ SK\_2678,\ SK\_2681,\ SK\_2682,\ SK\_2684,\ SK\_2685,\ SK\_2687,\ SK\_2688,\ SK\_2690,\ SK\_2692,\ SK\_2693,\ SK\_2695,\ SK\_2696,\ SK\_2699,\ SK\_2700,\ SK\_2701,\ SK\_2702,\ SK\_2703,\ SK\_2704,\ SK\_2705,\ SK\_2710,\ SK\_2713,\ SK\_2715,\ SK\_2724,\ SK\_2727,\ SK\_2729,\ SK\_2733,\ SK\_2734,\ SK\_2736,\ SK\_2737,\ SK\_2738,\ SK\_2739,\ SK\_2745,\ SK\_2750,\ SK\_2751,\ SK\_2752,\ SK\_2754,\ SK\_2755,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2759,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2758,\ SK\_2758,\ SK\_2759,\ SK\_2756,\ SK\_2758,\ SK\_2758,\ SK\_2758,\ SK\_2758,\ SK\_2758,\ SK\_2759,\ SK\_2758,\ SK\_2758,\ SK\_2759,\ SK\_2758,\ SK\_27580,\ SK\_27580,\ SK\_27580,\ SK\_27580,\ SK\_27580,\ SK\_27580,\ SK\_275800,\ SK\_275800,\ SK\_275
```

SK_2760, SK_2761, SK_2775, SK_2778, SK_2780, SK_2782, SK_2789, SK_2792, SK_2793, SK_2794, SK_2795, SK_2798, SK_2799, SK_2800, SK_2801, SK_2802, SK_2803, SK_2804, SK_2805, SK_3174

General informations on HMHZ

- 655 mice were captured over three years, from 157 farms
- From these mice:
- 485 mice had Eimeria detected by feces flotation,
- 652 mice had Eimeria detected by colon content PCR (cf paper Victor),
- 371 mice had Eimeria detected by qPCR on intestinal tissues
- On average, 4.04 mice were caught per farm (95% CI 0.34)
- Hybrid indexes were calculated as ratio of M.m.d/M.m.m alleles (between 4 and 14, on average 13 loci)

Figure 3: Number of animals caught along the hybrid index

Prevalence of our 3 different methods

Prevalence tables

Table 5: Prevalence of Eimeria per year, based on oocyst flotation

	2014	2015	2016	2017
FALSE	0	92.0	126.00	167.00
TRUE	0	10.0	25.00	65.00
total	0	102.0	151.00	232.00
$\underline{\operatorname{prevalence}(\%)}$	NaN	9.8	16.56	28.02

Table 6: Prevalence of Eimeria per year, based on PCR detection. A mouse was considered infected by Eimeria ifone of the 3 markers (COI, 18S or ORF470) gave a sequence

	2014	2015	2016	2017
negative	53.00	110.00	146.00	226.00
positive	23.00	12.00	20.00	62.00
total	76.00	122.00	166.00	288.00
$\operatorname{prevalence}(\%)$	30.26	9.84	12.05	21.53

Table 7: Prevalence of Eimeria per year, based on qPCR

	2014	2015	2016	2017
FALSE	0	0	138.00	177.00
TRUE	0	0	26.00	30.00
total	0	0	164.00	207.00
$\operatorname{prevalence}(\%)$	NaN	NaN	15.85	14.49

Table 8: Prevalence of Eimeria per year, based on all detections methods. A mouse was considered infected by Eimeria if one of the 3 markers (COI, 18S or ORF470) gave a sequence, OR if it had a positive count of oocysts in its feces, OR if it was qPCR positive

	2014	2015	2016	2017
negative	53.00	105.00	124.00	198.00
positive	23.00	17.00	43.00	92.00
total	76.00	122.00	167.00	290.00
$\operatorname{prevalence}(\%)$	30.26	13.93	25.75	31.72

3 methods, threshold for qPCR = -5

OPG-qPCR

(polygon[GRID.polygon.1869], polygon[GRID.polygon.1870], polygon[GRID.polygon.1871], polygon[GRID.polygon.1871], polygon[GRID.polygon.1870]

##

```
## Call:
## lm(formula = data1$OPG ~ data1$delta_ct_MminusE)
## Residuals:
     \mathtt{Min}
             1Q Median
                           3Q
## -32526 -8357 -8357 -8357 600298
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            18692
                                        7645
                                               2.445
                                                        0.015 *
## data1$delta_ct_MminusE
                             2756
                                        2110
                                               1.306
                                                        0.192
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49480 on 341 degrees of freedom
## Multiple R-squared: 0.004979, Adjusted R-squared: 0.002061
## F-statistic: 1.706 on 1 and 341 DF, p-value: 0.1924
## Call:
## lm(formula = data2$OPG ~ data2$delta_ct_MminusE)
## Residuals:
##
      \mathtt{Min}
               1Q Median
                               3Q
                                      Max
## -114277 -62907 -46511
                            15482 522445
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                            43894
                                       26591 1.651 0.1092
## data2$delta_ct_MminusE -19601
                                       10955 -1.789 0.0837 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 132800 on 30 degrees of freedom
## Multiple R-squared: 0.09642,
                                  Adjusted R-squared:
## F-statistic: 3.201 on 1 and 30 DF, p-value: 0.08368
```

OPG-qPCR-PCR

Figure 4: Comparison of detection: PCR vs flotation vs qPCR $\,$

(polygon[GRID.polygon.1955], polygon[GRID.polygon.1956], polygon[GRID.polygon.1957], polygon[GRID.po

BCI

BCI vs OPG


```
##
## Call:
## lm(formula = myData$BCI ~ myData$OPG + myData$HI)
##
## Residuals:
       Min
##
                 1Q
                      Median
                                   3Q
                                           Max
## -0.20165 -0.02542 0.01057 0.03494 0.13137
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.304e-01 4.424e-03 142.490 < 2e-16 ***
## myData$OPG -2.061e-07 5.449e-08 -3.782 0.000176 ***
              -1.760e-02 6.779e-03 -2.596 0.009710 **
## myData$HI
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05359 on 476 degrees of freedom
     (176 observations deleted due to missingness)
## Multiple R-squared: 0.04528,
                                  Adjusted R-squared: 0.04127
## F-statistic: 11.29 on 2 and 476 DF, p-value: 1.625e-05
```

Testing hybrid vigor along HMHZ

Bonus part: genotyping of mice case/control

- 100 out of 483 are positive for flotation and have an hybrid index.
- 56 out of 369 are positive for qPCR and have an hybrid index.

Discussed with Stuart:

- Test distributions 0 or counts. Test all vs only infected ("intensity") distribution. We should be able to fit the distribution of infected on all. Zeros are data. Stochastic move.
- Separation of the zero class. balanced design case/control ~ 400 +/-70infectés SNPchip.
- H0: no differences are observed
- Separate <0.5 and >0.5 to see the species effect
- timing: WHEN (for my thesis?)