DESCRIBING DATA: FREQUENCY DISTRIBUTIONS AND GRAPHIC PRESENTATION

Name _			Sect	ion	Score
Part I	Sele	ct the correct answer and w	rite the appro	priate letter in t	the space provided
1.	Α	grouping of data into classe	es giving the r	umber of obse	rvations in each class is called a(an)
	a	bar chart.			a(an)
	b.	frequency distribution.			
		pie chart.			
	d.	cumulative frequency dis	tribution.		
2		e distance between consecu	utive lower cla	ass limits is cal	led the
		class interval.			
		frequency distribution.			
		class midpoint.			
	đ.	class frequency.			
3		e class midpoint is			
		equal to the number of ob			
	D.	found by adding the upper	r and lower cl	ass limit and di	viding by 2.
		equal to the class interval.	•		
	a.	all of the above.			
4	. The	e number of observations in	n a particular o	class is called t	he
		class interval.			•
		class frequency.			
		frequency distribution.			
	d.	none of the above.			
5		oar chart is used most often			
	a.	you want to show frequen	cies as compa	red to total obs	ervations.
	b.	you want to show frequen	cies by class i	ntervals.	
	C.	you want to display freque	encies by cate	gory,	
	. d.	you want to organize data	along certain	time interval.	
6.	In a	relative frequency distribu	ition		
	a.	the class frequencies are d	ivided by 100		
	b.	the data are related to each	other rather	han mutually e	exclusive.
	c.	the class frequency is divid	ded by the tota	al number of ol	oservations.
	d.	the frequencies are added	together to giv	e a relative set	of numbers.
=	T 7 = -	a Buratan (1)	•		
7.	707 1921	a line chart involving time d to represent	in years and	dollar values, tl	he horizontal or X-axis would be
		the dollar variable.	b.	the time varia	abia
		the class interval,	d.	the class freq	
	٠,	TOWNS SERVER TWI;	u.	die elass 1164	uchcy.

8.	The suggested interval size of the class intervals for a histogram can be estimated by:
	a. consecutive lower class limits divided by 2.
•	b. consecutive lower class limits divided by the total number of observations.
	c. using the formulas: $i \ge \frac{H - L}{k}$
	d. consecutive lower class limits divided by the number of frequencies in each class.
9.	A nie chart requires at least what level of data?

- - a. nominal
 - b. ordinal
 - c. interval
 - d. ratio
- 10. A graphic representation of a frequency distribution constructed by connecting the class midpoints with lines is called a
 - a. histogram.
 - b. line chart.
 - c. pie chart.
 - d. frequency polygon.

Part II Show all of your work. Write the answer in the space provided.

11. Shown below are the net sales for the J. M. Smucker Company, a leading marketer of jams and jellies. Use the data to construct a line graph.

Smu	ıcker's Net Sales
	Sales
Year	(millions)
1989	345
1990	399
1991	425
1992	454
1993	462
1994	478
1995	511
1996	529
1997	524
1998	565
1999	602
2000	632
2001	651

12. The following is a breakdown of the expenditures of the Ohio Division of Wildlife for 2001. Construct a pie chart.

Category	Amount (millions)
Administration	2.5
Education	4.5
Law enforcement	3,4
Wildlife officers	6.5
Fish management	7.7
Wildlife management	9.5
Operations	6.3
Capital improvements	2.1

13. Listed are the weights of the 2002 Super Bowl Champion New England Patriots starting lineup, including the place kicker and the punter. Organize the data into

a. a frequency distribution

228	209	195	305	324	215
241	291	181	242	234	320
190	210	230	263	194	205
326	333	186	225	279	255

b Draw a histogram for the data.

€.Develop a frequency polygon.

Draw a cumulative frequency polygon

14. The following stem and leaf plot shows the scores on a recent test of Pre-Calculus students.

STEM	LEAF
5	68
6	12248
7	0466
8	04466666
9	026
10	0

a. How many students took the test?

a.

b. What were the highest and lowest scores?

b.

c. How many students scored 70 or higher?

c.

d. What percent of the students scored lower than 70?

d.

6	12	7	12	8	4	5		
a. Compute t	he sampl	e mean.					a.	
	,							
b. What is th	e median	?					b.	
e. What is th	e mode?						c.	
								·
d. Describe	the skew	ness.					d.	· \=
	·						<u> </u>	

		15		17	23	26	27	35	72	88	91	98	102
	a.	Co	mp	ute th	e range.								a.
	b.	Co	mp	ute th	ie mean (deviatio	n.						b .
			+			<u> </u>	·						
			<u> </u>										
			-							•			
			-										
			_										
			+										
•			+		· · · · · ·								
		-					ation						
		Co	omp	oute tl	ne standa	ard devi	ation.		1				c.
		Co	omp	oute tl	ne standa	ard devi	ation.						c.
		Co	omp	oute tl	ne standa	ard devi	ation.						c.
		Co	omp	oute tl		ard devi	ation.						c.
		Co	omp	oute tl		ard devi	ation.						c.
		Co	omp	oute tl		ard devi	ation.						c.
		Co	omp	oute tl		ard devi	ation.						c.
		Co	omp	oute tl		ard devi	ation.						c.
	c.												c.
	c.												c.
	c.												