

Chapter 1: Cybersecurity and the Security Operations Center

Cybersecurity Operations v1.1

Chapter 1 - Sections & Objectives

1.1 The Danger

- Explain why networks and data are attacked.
 - Outline features of examples of cybersecurity incidents.
 - Explain the motivations of the threat actors behind specific security incidents.
 - Explain the potential impact of network security attacks.
- 1.2 Fighters in the War Against Cybercrime
 - Explain how to prepare for a career in Cybersecurity operations.
 - Explain the mission of the security operations center (SOC).
 - Describe resources available to prepare for a career in Cybersecurity operations.

1.1 The Danger

War Stories

Hijacked People

- A hacker set up an open "rogue" wireless hotspot posing as a legitimate wireless network.
- A customer logged onto her bank's website.
- The hacker hijacked her session.
- The hacker gained access to her bank accounts.

War Stories

Ransomed Companies

- An employee receive an email from his CEO, containing an attached PDF.
- Ransomware is installed on the employee's computer.
- Ransomware gathers and encrypts corporate data.
- The attackers hold the company's data for ransom until they are paid.

War Stories

Targeted Nations

- Stuxnet Worm
 - Infiltrated Windows operating systems.
 - Targeted Step 7 software that controls programmable logic controllers (PLCs) to damage the centrifuges in nuclear facilities.
 - Transmitted from the infected USB drives into the PLCs eventually damaging many cetrifuges.

Amateurs

- Known as script kiddies.
- Have little or no skill.
- Use existing tools or instructions found on the Internet to launch attacks.

Hacktivists

- Protest against organizations or governments
 - · Post articles and videos.
 - Leak information.
 - Disrupt web services with DDoS attacks.

Financial Gain

- Much hacking activity is motivated by financial gain.
- Cybercriminals want to generate cash flow
 - Bank accounts
 - Personal data
 - Anything else they can leverage

Trade Secrets and Global Politics

- Nation states are also interested in using cyberspace
 - Hacking other countries
 - Interfering with internal politics
 - Industrial espionage
 - Gain significant advantage in international trade

How Secure is the Internet of Things

- The Internet of Things (IoT)
 - Connected things to improve quality of life.
 - Example: fitness trackers
- How secure are these devices?
 - Firmware
 - Security flaws
 - Updatable with patch
- DDoS attack against domain name provider, Dyn
 - Took down many websites.
 - Compromised webcams, DVRs, routers, and other IoT devices formed a botnet.
 - The hacker controlled botnet created the DDoS attack that disabled essential Internet services.

Threat Impact

PII and PHI

- Personally identifiable information (PII) is any information that can be used to positively identify an individual.
 - Examples of PII include: Name, Social security number, Birthdate, Credit card numbers, Bank account numbers, Government-issued ID, Address information (street, email, phone numbers)
 - This information is sold on the dark web.
 - Create fake accounts, such as credit cards and short-term loans.
- Protected Health Information (PHI) A subset of PII:
 - Creates and maintains electronic medical records (EMRs)
 - Regulated by Health Insurance Portability and Accountability Act (HIPAA)

Threat Impact

Lost Competitive Advantage

- Could result in lost competitive advantage.
 - Corporate espionage in cyberspace.
 - Loss of trust that comes when a company is unable to protect its customers' personal data.

Threat Impact

Political and National Security

- In 2016, a hacker published PII of 20,000 U.S. FBI employees and 9,000 U.S. DHS employees.
- Stuxnet worm was designed to impede Iran's progress in enriching uranium
 - Example of network attack motivated by national security concerns
- Cyberwarfare is a serious possibility.
- The Internet has become essential as a medium for commercial and financial activities.
 - Disruption can devastate a nation's economy and the safety of its citizens.

1.2 Fighters in the War Against Cybercrime

Elements of a SOC

- Security Operations Centers (SOCs) provide a broad range of services:
 - Monitoring
 - Management
 - Comprehensive threat solutions
 - Hosted security
- SOCs can be:
 - In-house, owned and operated by a business.
 - Elements can be contracted out to security vendors.
- The major elements of a SOC:
 - People
 - Processes
 - Technology

People in the SOC

- The SANS Institute (www.sans.org) classifies the roles people play in a SOC into four job titles:
 - Tier 1 Alert Analyst
 - Tier 2 Incident Responder
 - Tier 3 Subject Matter Expert (SME)/Hunter
 - SOC Manager
- Can you guess the responsibilities for each of the job titles?

The Modern Security Operations Center Process in the SOC

- Tier 1 Alert Analyst begins with monitoring security alert queues.
- Tier 1 Alert Analyst verifies if an alert triggered in the ticketing software represents a true security incident.
- The incident can be forwarded to investigators, or resolved as a false alarm.

Technologies in the SOC

- Security Information and Event Management (SIEM) systems:
 - Collect and filter data.
 - Detect and classify threats.
 - Analyze and investigate threats.
 - Implement preventive measures.
 - Address future threats.

Enterprise and Managed Security

- Organizations may implement an enterprise-level SOC.
- The SOC can be :
 - A complete in-house solution
 - Outsourced at least part of the SOC operations to a security solutions provider.

Security vs. Availability

- Most enterprise networks must be up and running at all times.
- Preferred uptime is often measured in the number of down minutes in a year. A "five nines" uptime means that the network is up 99.999% of the time (or down for no more than 5 minutes a year).
- Trade off between strong security and permitting business functions.

Availability %	Downtime
99.8%	17.52 hours
99.9% ("three nines")	8.76 hours
99.99% (" four nines")	52.56 minutes
99.999% ("five nines")	5.256 minutes
99.9999% (" six nines")	31.5 seconds
99.9999% ("seven nines")	3.15 seconds

Certifications

- A variety of cybersecurity certifications are available:
 - CCNA Cyber Ops
 - CompTIA Cybersecurity Analyst Certification (CSA+)
 - (ISC)² Information Security Certifications (including CISSP)
 - Global Information Assurance Certification (GIAC)

Further Education

- Consider pursuing a technical degree or bachelor's degree in computer science, electrical engineering, information technology, or information security.
- Computer programming is an essential skill in cybersecurity.
- Python is an object-oriented, open-source programing language. It is routinely used by cybersecurity analysts

Sources of Career Information

- A variety of websites and mobile applications advertise information technology jobs:
 - Indeed.com
 - CareerBuilder.com
 - USAJobs.gov
 - Glassdoor.com salary information
 - LinkedIn professional network

Getting Experience

- Ways to gain experience:
 - Internships
 - Cisco Cybersecurity Scholarship
 - Temporary Agencies
 - Your first job

