

Architecture & Design of Embedded Real-Time Systems (TI-AREM)

Architectural Design Patterns 1.

- Subsystem and Component Architecture Patterns

(BPD. Chapter 4.1-4.7, p. 141-184)

Version: 9-2-2015

Agenda

- 1. SOLID 5 OO design principles
- 2. Layered Pattern
- 3. Five-Layer Pattern
- 4. Microkernel Architectural Pattern
- 5. Channel Architecture Pattern
- Recursive Containment Pattern
- 7. Hierarchical Control Pattern
- 8. Virtual Machine Pattern

Architecture Patterns and guidelines

- A pattern is a general solution to an often occurring design problem
- An architectural patterns describes a solution on the highest system level
- SOLID 5 OO design principles
 - Can be used as guidelines also on the architecture level

1. SOLID – design principles

- S: Single responsibility principle (SRP)
- O: Open/Closed principle (OCP)
- L: Liskov's substitution principle (LSP)
- I: Interface segregation principle (ISP)
- D: Dependency inversion principle (DIP)

Ref. Five design principles defined by Robert C. Martin

2. Layered Pattern

The Layered Pattern organizes domains into a hierarchical organization based on their level of abstraction

Cardiology Conceptual Hierarchy (4-1)

Layered Pattern Structure

Layered Pattern Consequences

- In a Closed Layered Architecture
 - classes in one layer can only invoke operations of classes in the same layer or in the next layer down
 - may result in loss of performance
 - have better encapsulation
- In an Open Layered Architecture
 - classes in one layer may invoke operations of classes in the same layer or any layer below it
 - have better performance

Implementation Strategies

- Important relationship between layers:
 - one-way client-server associations among layers
 - it is crucial that these associations between layers are one way, allowing messages to be sent to the lower layers

Related Patterns

- The Five-Layered Architecture Pattern
 - is a particular adaptation of this pattern common to real-time and embedded systems
- The Recursive Containment Pattern
 - is to physical architecture what the layered pattern is to logical architecture

ECG Domain Model (4-3)

Slide 11

ECG Collaboration / Communication (4-4)

Typical Layered Subsystems

Layered architecture - OSI Model Example

	-	
«executable» 占	Iterative	«executable» 占
Hello World Prototype {revision=0.1}	Prototypes=	Data Format Prototype {revision=0.2}
Application layer	vertical	Application layer
	slices	
Presentation layer		Presentation layer
Session layer		Session layer
	«refine» ← — — — —	
Transport layer		Transport layer
Network layer		Network layer
Deta Link lawar		Deta Link lawar
Data Link layer		Data Link layer
	Slide 15	_

3. Five-Layer Architecture Pattern

The Five-Layer Architecture Pattern is a specific architecture useful for the general structuring of many embedded and real-time systems

Five-Layer Architecture Pattern Structure

Five-Layer Architecture Pattern Example

Slide 18

Ventilator Example Domains (4-6)

4. Microkernel Architectural Pattern

The Microkernel Architecture Pattern is a useful pattern when a system consist of a core set of services that may be augmented at build-time with a variety of additional services

Microkernel Architectural Pattern Structure

Example: nanoOS Model (4-8)

5. Channel Architecture Pattern

The Channel Architecture Pattern is useful in two different situations:

- 1. when data within a stream is sequentially transformed in a series of steps
- 2. at large scale the pattern offers architectural redundancy for high-reliability and safety-critical applications

Channel Architecture Pattern Structure

a kind of "Pipe and Filter Pattern"

ECG Monitor Channel Pattern Example (4-10)

6. Recursive Containment Pattern

The Recursive Containment Patterns is a valuable pattern for very complex systems that realize thousands of requirements

Recursive Containment Pattern Structure

High Level Use Case (4-12)

Spacecraft Subsystem Model (4-13)

Decomposed Use Case (4-14)

Mapping Decomposed Use Cases to Subsystems (4-15)

Spacecraft Subsystems Details (4-16)

7. Hierarchical Control Pattern

A specialized form of the Recursive Containment Pattern that distributes complex control algorithms among its various pieces

Abstract

- Two types of interfaces:
 - Control interface
 - set the quality of service (QOS) and selects policies
 - Functional interface
 - execute the desired behavior using the QoS and policies set via the control interface
- It is common to use a State Diagram to realize the control interface

Hierarchical Control Pattern Structure

Hierarchical Control Pattern Example

Implementation Strategies

- This pattern is often implemented bottomup
 - a set of leaf elements in a tightly coupled collaboration are found to be jointly configurable
 - is seems useful to add a superordinate controller and define a state diagram for this

Related Patterns

- A specialized form of the Recursive Containment Pattern
 - based on the GoF Composite Pattern and Whole-Part Pattern

Recursive Containment Pattern

8. Virtual Machine Pattern

The Virtual Machine Pattern optimizes application portability at the expense of run-time efficiency

Virtual Machine Pattern Structure

Summary

- SOLID 5 OO design principles
- Seven architectural patterns:
 - Layered Pattern
 - Five-Layer Pattern (Embedded Systems)
 - Microkernel Architectural Pattern
 - Channel Architecture Pattern
 - Recursive Containment Pattern
 - Hierarchical Control Pattern
 - Virtual Machine Pattern