Lista 3

Arruti, Sergio, Jesús

Ej 29.

Ej 30. Sea $\{M_i\}_{i\in I}$ una familia en Mod(R). Entonces $\coprod_{i\in I} M_i$ es un submódulo de $\prod_{i\in I} M_i$.

Demostración. Sean $G:=\prod_{i\in I}M_i$ y $H:=\coprod_{i\in I}M_i.$ Si $I=\varnothing$ se tiene lo deseado, pues en tal caso $G=H=\{0\}.$

Supongamos que $I \neq \varnothing$. Por el Ej. 30 H es un subgrupo de G y así, en patícular, $\forall \ a,b \in H, \ a+b \in H$. Sea $r \in R$ y $a = (a_i)_{i \in I} \in H$. Dado que $r \bullet 0_i = 0_i, \ \forall \ i \in I$, se sigue que

$$\{i \in I \mid r \bullet a_i \neq 0\} \subseteq \{i \in i \mid a_i \neq 0\},$$

$$\implies supp(r \bullet a) \subseteq supp(a).$$

Con lo cual $r \bullet a$ tiene soporte finito, pues a lo tiene. De modo que $r \bullet a \in H$ y por lo tanto $H \in \mathcal{L}(G)$.

- - a) Para cada $i \in I$, las inclusiones i-ésimas

Ej 31. Sea $\{M_i\}_{i\in I}$ una familia no vacía en Mod(R). Pruebe que:

$$inc_i: M_i \to \coprod_{i \in I} M_i$$

 $x \mapsto (y_t)_{t \in I}$

con

$$y_{t} = \begin{cases} x & t = i \\ 0 & t \neq i \end{cases}$$
$$Inc_{i}: M_{i} \to \prod_{i \in I} M_{i}$$
$$x \mapsto inc_{i}(x),$$

son monomorfismos en Mod(R).

b) Para cada $i \in I$, las proyecciones i-ésimas

$$\begin{aligned} Proy_{i}: \prod_{i \in I} M_{i} \longrightarrow M_{i}, \ Proy_{i}\left(m\right) = m_{i} \\ proy_{i}: \coprod_{i \in I} M_{i} \longrightarrow M_{i}, \ proy_{i}\left(m\right) = m_{i} \end{aligned}$$

$$inc_i: M_i \to \coprod_{i \in I} M_i$$

 $x \mapsto (y_t)_{t \in I}$

con

$$y_t = \left\{ \begin{array}{ll} x & t = i \\ 0 & t \neq i \end{array} \right.$$

son epimorfismos en Mod(R).

Demostración. (a) Primero, sean $i \in I$ y $x \in Ker(inc_i)$, entonces $(inc_i(x))_t = (0)_t$. Es decir, en cada entrada $inc_i(x)$ es 0. En particular lo anterior se tiene para t = i. En consecuencia, x = 0. Por tanto, $inc_i(x)$ es monomorfismo.

Por otro lado, sean $i \in I$ y $x \in Ker(Inc_i)$. De esta forma, $x \in Ker(inc_i)$. Como inc_i es monomorfismo, x = 0. Por lo que Inc_i también lo es.

(b) Sea $i \in I$. $Proy_i$ es un epimorfismo. Dado $x \in M_i$, el elemento $m = (Inc_i(x))_t \in \prod_{i \in I} M_i$ satisface que $Proy_i(m) = x$.

De manera análoga, para cada $i \in I$, la proyección $proy_i$ es un epimorfismo, sustituyendo Inc_i por inc_i .

Ej 32.

Ej 33. Sea $\{M_i\}_{i\in I}$ una familia en Mod(R), $N\in Mod(R)$ y $\{g_i:N\to M_i\}_{i\in I}$ una familia de morfismos de R-módulos. Entonces $\exists !\ g:N\to\prod_{i\in I}M_i$ morfismo de R-módulos tal que $Proy_i\circ g=g_i, \ \forall \ i\in I.$

Demostración. Si $I = \emptyset$ entonces $\prod_{i \in I} M_i = \{0\}$ y el enunciado se reduce a verificar que existe un único morfismo de R-módulos de N en $\{0\}$, lo

cual es inmediato.

Supongamos que $I \neq \emptyset$. Notemos que la función

$$g: N \to \prod_{i \in I} M_i$$

 $n \mapsto (g_i(n))_{i \in I}$

es un morfismo de R-módulos, pues g_i lo es $\forall i \in I, (a_i)_{i \in I} + (b_i)_{i \in I} =$ $(a_i + b_i)_{i \in I}$ y $r \bullet (a_i)_{i \in I} = (r \bullet a_i)_{i \in I}$. Sea $j \in I$, entonces

$$Proy_{j}(g(n)) = Proy_{j}((g_{i}(n))_{i \in I})$$

$$= g_{j}(n).$$

$$\implies Proy_{j} \circ g = g_{j}, \forall j \in I.$$

Finalmente, verifiquemos la unicidad. Sea $h: N \to \prod_{i \in I} M_i$ tal que $Proy_j \circ h = g_j, \ \forall \ j \in I.$ Notemos que por lo anterior $Proy_j \circ h = Proy_j \circ g \ \forall \ j \in I.$ Sea $n \in N, \ (y_i)_{i \in I} = g(n) \ y \ (z_i)_{i \in I} = h(n),$ entonces

$$\begin{split} y_{j} &= Proy_{j}\left((y_{i})_{i \in I}\right) = Proy_{j}\left((g_{i}\left(n\right))_{i \in I}\right) = Proy_{j}\left(g\left(n\right)\right) \\ &= Proy_{j}\left(h\left(n\right)\right) = z_{j}, \ \forall \ j \in I. \\ &\implies g\left(n\right) = h\left(n\right) \ \forall \ n \in N. \\ &\implies g = h. \end{split}$$

Ej 34. Sea $\{M_i\}_{i\in I}$ en Mod(R), $P \in Mod(R)$ y $\{\pi_i : P \longrightarrow M_i\}_{i\in I}$. Pruebe que las siguientes condiciones son equivalentes.

- a) Existe $\varphi: \prod_{\in I} Mi \longrightarrow P$ en Mod(R) tal que para $i \in I$, $\pi_i \circ \varphi = Proy_i$ b) $P \neq \{\pi_i: P \longrightarrow M_i\}_{i \in I}$ son un producto para $\{M_i\}_{i \in I}$

Demostración. $|(a) \Rightarrow (b)|$ Sean $M \in Mod(R)$ y $\{f_i : M \longrightarrow M_i\}i \in I$ una familia de morfismos en Mod(R). Dado que $\prod M_i$ es un producto para $\{M_i\}_{i\in I},$ existe un único morfismo $f:M\longrightarrow \prod_{i\in I}M_i$ tal que, para cada $i \in I, \, Proy_i \circ f = f_i.$ Además, por hipótesis, existe $\varphi: \prod Mi \longrightarrow P$ en Mod(R) tal que para $i \in I$, $\pi_i \circ \varphi = Proy_i$. De modo que

$$\pi_i \circ \varphi \circ f = Proy_i \circ f = f_i$$

Más aún, esta f es única. En efecto, si $g: M \longrightarrow P$ un morfismo tal que, para $i \in I$, $\pi_i \circ \varphi \circ g = f_i$, entonces

$$Proy_i \circ g = \pi_i \circ \varphi \circ g = f_i$$

Como $\prod M_i$ es un producto para $\{M_i\}_{i\in I}$, f=g. En consecuencia, P y $\{\pi_i: P \xrightarrow{i \in I} M_i\}_{i \in I}$ son un producto para $\{M_i\}_{i \in I}$.

producto para $\{M_i\}_{i\in I}$, existe un único morfismo $\varphi:\prod M_i\longrightarrow P$ tal que, para cada $i \in I$, $\pi_i \circ \varphi = Proy_i$. En vista de ésto, se concluye el resultado.

Ej 35.

- **Ej 36.** Sea $\{\pi_i: M \to M_i\}_{i=1}^n \subseteq Mod(R)$. Las siguientes condiciones son equiva
 - a) $\{\pi_i: M \to M_i\}_{i=1}^n$ es un producto para $\{M_i\}_{i \in I}$;
 - b) $\exists \{\mu_i : M_i \to M\}_{i=1}^n \in Mod \{R\} \text{ tal que } \sum_{i=1}^n \mu_i \pi_i = Id_M \text{ y } \pi_i \mu_i = \delta_{ij}^M \ \forall \ i, j \in [1, n].$

Demostración. Sea I = [1, n].

□ La propiedad universal del producto aplicada a cada elemento de la familia (de familias en Mod(R)) $\left\{ \left\{ \delta_{ij}^{M} : M_{i} \to M_{i} \right\}_{i \in I} \right\}_{i \in I}$ garantiza que $\forall j \in I \exists \mu_i : \exists! \mu_i : M_i \to M$ tal que

$$\pi_i \mu_j = \delta_{ij}^M \quad \forall \ i \in I.$$

Así pues, consideremos $\{\mu_i\}_{i\in I}.$ Notemos que nuevamente por la propiedad universal del producto, $f: M \to M \in Mod(R)$ es tal que $\forall i' I \ \pi_i \circ f = \pi_i$ si, y sólo si, $f = Id_M$; y que

$$\pi_{i} \sum_{j=1}^{n} (\mu_{j} \pi_{j}) = \sum_{j=1}^{n} ((\pi_{i} \pi_{j}) \pi_{j}) = \sum_{j=1}^{n} ((\delta_{ij}^{M}) \pi_{j}) = \delta_{ii}^{M} \pi_{i} = Id_{M_{i}} \pi_{i}$$

$$= \pi_{i}.$$

$$\implies \sum_{j=1}^{n} (\mu_{j} \pi_{j}) = Id_{M}.$$

 \subseteq Sea $\{\eta: N \to M_i\}_{i \in I} \subseteq Mod(R)$ y

$$f: N \to M$$

$$n \mapsto \left(\sum_{i=1}^{n} \mu_i \eta_i\right)(n)$$

. Así $f: N \to M \in Mod(R)$ y, si $j \in I$,

$$\pi_j \circ f = \pi_j \left(\sum_{i=1}^n \mu_i \eta_i \right) = \left(\sum_{i=1}^n (\pi_j \mu_i) \eta_i \right) = \sum_{i=1}^n \delta_{ji} \eta_i = \eta_j.$$

$$\implies \pi_j f = \eta_j \ \forall \ j \in I.$$

Finalmente, sea $g: N \to M \in Mod(R)$ tal que $\pi_i g = \eta_i \ \forall \ i \in I$. Así

$$g = Id_M g = \left(\sum_{i=1}^n \mu_i \pi_i\right) g = \left(\sum_{i=1}^n \mu_i (\pi_i g)\right) = \left(\sum_{i=1}^n \mu_i \eta_i\right) = f.$$

$$\implies g = f.$$

Ej 37. Para $M \in f.l.(R)$, pruebe que:

- a) l(M) = 0 si y sólo si M = 0
- b) l(M) = 1 si y sólo si M es simple

Demostración. (a) Observe que si M=0, entonces $0=M_0=M$ es la única serie de composición de M, salvo repeticiones. De esta manera l(M)=0. Inversamente, si l(M)=0, entonces la única serie de composición de M, salvo repeticiones, es $0=M_0=M$. M=0.

(b) Para este inciso suponga que M es un R-módulo simple. En consecuencia, $L(M) = \{0, M\}$. Con lo cual, M tiene una serie de composición $0 = M_0 \le M_1 = M$. De modo que l(M) = 1. Por otro lado, suponga que l(M) = 1, y sea $0 = M_0 \le M_1 = M$ una serie de composición para M. $\therefore M \cong M/0 \cong M_1/M_0$ es simple.

Ej 38.

Ej 39. Sea

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

una sucesión exacta en $Mod\left(R\right)$ y $F:=\left\{ F_{i}\right\} _{i\in I}$ una filración en B. Entonces $f^{-1}\left(F\right):=\left\{ f^{-1}\left(F_{i}\right)\right\} _{i\in I}$ y $g\left(F\right):=\left\{ g\left(F_{i}\right)\right\} _{i\in I}$ son, respectivamente, filtraciones en A y en C.

Demostración. Se tiene que g es sobre y f es inyectiva, por ser exacta la sucesión.

g, al ser un morfismo de R-módulos, necesariamente es un morfismo de CPO de (B, \leq) en (C, \leq) , además $g(\langle 0_B \rangle_R) = \langle 0_C \rangle_R$ $g(B) = \langle C \rangle_R$. Por

lo anterior se tiene que $g\left(F\right)$ es una filtración de C. Por su parte, se tiene que, $\forall\,M,N\in\mathscr{L}\left(B\right),f^{-1}\left(M\right)\in\mathscr{L}\left(A\right)$ y $f^{-1}\left(M\right)\leq f^{-1}\left(N\right)$, y además $f^{-1}\left(\langle 0_{B}\rangle_{R}\right)=Ker\left(f\right)=\langle 0_{A}\rangle_{R}$ y $f^{-1}\left(B\right)=A$. Por lo tanto $f^{-1}\left(F\right)$ es una filtración de A.

Ej 40. Para una sucesión exacta $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ en Mod(R), pruebe que: $B \in f.l.(R)$ si y sólo si $A, C \in f.l.(R)$

Demostración. \Longrightarrow Suponga que $B \in f.l.(R)$. Entonces B tiene una serie de composición \mathfrak{F} . Por el **Lema 2.1.1.a**), tanto $f^{-1}(\mathfrak{F})$ como $g(\mathbb{F})$ son series de composición de A y de C respectivamente. En consecuencia, $A, C \in f.l.(R)$.

Ahora, dado que f es un monomorfismo, se tiene que $B_t \cong A_t$, para $t \leq n$. Y por otro lado, el teorema de la correspondencia y el tercer teorema de isomorfismo garantizan que $\frac{B_{t+1}}{B_t} = \frac{g^{-1}(C_{t+1})}{g^{-1}(C_t)} \cong \frac{C_{t-n+1}}{C_{t-n}}$ para cada $n+1 \leq t \leq n+m$. Más aún, tenemos que los cocientes $\frac{B_{t+1}}{B_t}$ son simples, toda vez que los cocientes $\frac{A_{i+1}}{A_i}$ y $\frac{C_{j+1}}{C_j}$ lo son. De esta forma $\mathfrak B$ es una serie de composición para $B_t : B \in f.l.(R)$

Ej 41.

Ej 42. Si $M \in Mod(R)$ entonces las siguientes condiciones son equivalentes:

- a) M es noetheriano,
- b) $\mathscr{L}(M) \subseteq mod(R)$,
- c) si $\mathcal{J}\subseteq \mathscr{L}(M)$, $\mathcal{J}\neq\varnothing$, entonces (\mathcal{J},\leq) posee por lo menos un elemento maximal.

Demostración. $a) \Longrightarrow b$ Sea $A \le M$. Si A es finito la proposición es inmediata, pues $A = \langle A \rangle_R$. Supongamos que A es infinito y sea $a_1 \in A \setminus \langle 0 \rangle_R$. Si $A = \langle a_1 \rangle_R$ se tiene lo deseado, en caso contrario sea $a_2 \in A \setminus \{0, a_1\}$. Si $A = \langle a_1, a_2 \rangle_R$, se tiene lo deseado, en caso contrario, consideremos $a_3 \in A \setminus \{0, a_1, a_2\}$. Notemos que este proceso se puede efectuar solo una cantidad finita, i.e. $\exists n \in \mathbb{N} \setminus \{0\}$ y $a_1, \ldots, a_n \in A$ tales que

 $A = \langle a_1, \dots, a_n \rangle_R$, y por lo tanto $A \in mod(R)$, ya que si no fuera el caso, por el axioma de elección dependiente, existiría una cadena ascendente

$$\langle a_1 \rangle_R \leq \langle a_1, a_2 \rangle_R \leq \langle a_1, a_2, a_3 \rangle_R \leq \dots$$

que no se estabilizaría y por lo tanto M no sería noetheriano.

 $b) \implies c)$ Procedamos por el contrapositivo. Supongamos que $\exists \mathcal{J}$ una familia no vacía de submódulos de M tal (\mathcal{J}, \leq) que no posee elementos maximales. Así sea $J_1 \in \mathcal{J}$, luego J_1 no es maximal en (\mathcal{J}, \leq) y por lo tanto $\exists J_2 \in \mathcal{J}$ tal que $J_1 \lneq J_2$. Por su parte, J_2 no es maximal en (\mathcal{J}, \leq) y por lo tanto $\exists J_3 \in \mathcal{J}$ tal que $J_2 \nleq J_3$. Aplicando el axioma de elección dependiente a este procedimiento se obtiene la cadena ascendente de submódulos $\{J_n\}_{n\in\mathbb{N}}$. $J:=\bigcup_{n\in\mathbb{N}}J_n\in\mathcal{L}(M)$, pues la unión de una cadena ascendente de submódulos es un submódulo. Supongamos que J es finitamente generado, luego $\exists j_1,\ldots,j_k \in J$ tales que $J=\langle j_1,\ldots,j_k \rangle_R$. Notemos que, $\forall i \in [1,k], \exists l_i \in \mathbb{N}$ tal que $j_i \in J_{l_i}$, y así, si $t:=\max\{l_i \mid i \in 1,k\}$ entonces $j_i \in J_t$, $\forall i \in 1,k$. De modo que

$$\langle j_1, \ldots, j_k \rangle_R \leq J_t \leq J = \langle j_1, \ldots, j_k \rangle_R$$

lo cual es absurdo $(J_t$ es un submódulo estricto de J pues $\{J_n\}_{n\in\mathbb{N}}$ es una cadena estrictamente ascendente) y por lo tanto J no es finitamente generado.

 $c) \Longrightarrow a)$ Sea $\{A_n\}_{n\in\mathbb{N}}$ una cadena ascendente de submódulos. Luego $\varnothing \neq \{A_n\}_{n\in\mathbb{N}} \subseteq \mathscr{L}(M)$ y por lo tanto $(\{A_n\}_{n\in\mathbb{N}},\leq)$ posee al menos un elemento maximal. De modo que $\exists \ k\in\mathbb{N}$ tal que A_k es maximal en $(\{A_n\}_{n\in\mathbb{N}},\leq)$. Si $\forall \ l>k$ $A_l=A_k$ se tiene lo deseado. Supongamos que $\exists \ l>k$ tal que $A_k \lneq A_l$, por ser maximal, se tiene que $A_l=M$ y por lo tanto $A_r=M$, $\forall \ r\geq l$. Así, en cualquier caso, se tiene que la cadena se estabiliza y por lo tanto M es noetheriano.

Ej 43. Para $M \in Mod(R)$, pruebe que las siguientes condiciones son equivalentes.

- a) M es artiniano
- b) Para toda $\mathfrak{F}\subseteq L\left(M\right),$ con $\mathfrak{F}\neq\emptyset,$ existe un elemento mínimo en en (\mathfrak{F},\leq)

Demostración. (a) \Rightarrow (b) Dada \mathfrak{F} una familia no vacía de submódulos de M, sea $N_1 \in \mathfrak{F}$. Suponga que N_1 no es un elemento mínimo de \mathfrak{F} , de este modo existe $N_2 \in \mathfrak{F}$ tal que $N_2 \not\subseteq N_1$. Repitiendo este argumento, obtenemos una cadena de submódulos $N_1 \geq N_2 \geq \cdots$ en \mathfrak{F} . En virtud de que M es artiniano, existe $k \in \mathbb{N}$ tal que para cada $t \in \mathbb{N}$, $N_k = N_{k+t}$. $\therefore N_k$ es un elemento mínimo de \mathfrak{F} .

(b) \Rightarrow (a) Sea $N_1 \not\geq N_2 \not\geq \cdots$ una cadena de submódulos de M. Considere $\mathfrak{F} = \{N_k\}_{k \in \mathbb{N}}$. Entonces, por hipótesis, \mathfrak{F} tiene elementos mínimos. Sea N_k uno de dichos mínimos. Dado que \mathfrak{F} es una cadena, $N_k = N_{k+t}$, para toda $t \in \mathbb{N}$. M es artiniano.

Ej 44.

Ej 45. Sea

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} N \longrightarrow 0$$

una sucesión exacta en Mod(R). Entonces M es noetheriano (respect. artiniano) si y sólo si K y N lo son.

Demostración. Verifiquemos primeramente la afirmación para el caso de módulos noetherianos.

 \Longrightarrow Sea $A \in \mathcal{L}(K)$, luego $f(A) \in \mathcal{L}(M)$ y, dado que M es noetheriano, $f(A) \in \mathcal{L}(M)$ es finitamente generado, con lo cual $\exists x_1, \ldots, x_l \in f(A)$ tales que $f(A) = \langle x_1, \ldots, x_l \rangle_R$; notemos que $\forall i \in [1, l] \exists k_i \in A$ tal que $x_i = f(k_i)$. Así si $Y := \{k_i\}_{i=1}^l$ y $a \in A$, entonces $f(a) \in f(K)$ y por lo tanto $\exists r_1, \ldots, r_l \in R$ tales que

$$f(a) = \sum_{i=1}^{l} r_i x_i = \sum_{i=1}^{l} r_i f(k_i) = f\left(\sum_{i=1}^{l} r_i k_i\right)$$

$$\implies a = \sum_{i=1}^{l} r_i k_i, \qquad Ker(f) = \langle 0_K \rangle_R$$

$$\implies A = \langle Y \rangle_R.$$

$$\implies A \text{ es finitamente generado.}$$

Por su parte sea $C \in \mathcal{L}(N)$, luego $g^{-1}(C) \in \mathcal{L}(M)$ y así $\exists m_1, \ldots, m_o \in g^{-1}(C)$ tales que $g^{-1}(C) = \langle m_1, \ldots, m_l \rangle_R$; notemos que $\forall i \in [1, o]$ $g(m_i) \in C$, con lo cual si $Z := \{c(m_i)\}_{i=1}^o$ y $c \in C$ entonces $Z \subseteq C$ y, dado que g es sobre, $\exists m \in M$ tal que g(m) = c. Luego $m \in g^{-1}(C)$, por lo cual $\exists r_i, \ldots, r_o \in R$ tales que $m = \sum_{i=1}^0 r_i m_i$ y así

$$c = \sum_{i=1}^{o} r_i f(m_i)$$

$$\implies C = \langle Z \rangle_R.$$

$$\implies C \text{ es finitamente generado.}$$

Por lo tanto K y N son noetherianos.

 \subseteq Sea $S \leq M$, entonces $f^{-1}(S) \leq K$ y $g(S) \leq N$. Como K y N son noetherianos $\exists a_1, \ldots, a_t \in f^{-1}(S)$ y $\exists c_1, \ldots, c_u \in g(S)$ tales que

 $f^{-1}(S) = \langle a_1, \ldots, a_t \rangle_R$ y $g(S) = \langle c_1, \ldots, c_u \rangle_R$. En partícular se tiene que $f(a_1), \ldots, f(a_t) \in S$ y $\exists b_1, \ldots, b_u \in S$ tales que $\forall i \in [1, u]$ $c_i = g(b_i)$, con lo cual $g(S) = \langle g(b_1), \ldots, g(b_u) \rangle_R$ y por lo tanto, si $X := \{f(a_1), \ldots, f(a_t), b_1, \ldots, b_u\}, X \subseteq S$. Sea $s \in S$, luego $g(s) \in g(S)$, por lo cual $\exists r_1, \ldots, r_u \in R$ tales que

$$g(s) = \sum_{i=1}^{u} r_i g(b_i) = g\left(\sum_{i=1}^{u} r_i b_i\right)$$

$$\implies g\left(s - \sum_{i=1}^{u} r_i b_i\right) = 0$$

$$\implies s - \sum_{i=1}^{u} r_i b_i \in Ker(g) = Im(f)$$

$$\implies \exists \ a \in K \text{ tal que } f(a) = s - \sum_{i=1}^{u} r_i b_i.$$

Notemos que $s-\sum_{i=1}^u r_ib_i\in S$ pues S es un submódulo de M, con lo cual $a\in f^{-1}\left(S\right)$ y así \exists $r_1',\ldots,r_t'\in R$ tales que

$$f\left(\sum_{j=1}^{t} r_{t}' a_{j}\right) = s - \sum_{i=1}^{u} r_{i} b_{i}$$

$$\implies s = f\left(\sum_{j=1}^{t} r_{t}' a_{j}\right) + \sum_{i=1}^{u} r_{i} b_{i}$$

$$\implies s \in \langle X \rangle_{R}$$

$$\implies S = \langle X \rangle_{R}.$$

$$\implies S \text{ es finitamente generado.}$$

Por lo tanto M es noetheriano.

Para el caso de módulos artianos:

 \Longrightarrow Sea $A_1 \geq A_2 \geq \ldots$ una cadena descendente en $\mathscr{L}(K)$, luego $f(A_1) \geq f(A_2) \geq \ldots$ es una cadena descendente en $\mathscr{L}(M)$ y, como M es artiniano, $\exists L \in \mathbb{N}$ tal que $\forall k \geq L$ $f(A_k) = f(A_L)$. Sea $k \geq L$ y notemos que dado que $A_L \geq A_k$ basta con probar que $A_L \leq A_k$. Sea $a \in A_L$, luego f(a) inf $(A_L) = (A_k)$ y por tanto $\exists b \in A_k$ tal que f(a) = f(b). Como f es inyectiva se sigue que a = b y por lo tanto $a \in A_k$, con lo cual se tiene que $A_L \leq A_k$. Así, K es artiniano.

Por su parte, sea $C_1 \geq C_2 \geq \ldots$ una cadena descendente en $\mathscr{L}(N)$, luego $g^{-1}(C_1) \geq g^{-1}(C_2) \geq \ldots$ es una cadena descendente en $\mathscr{L}(M)$ y, como M es artiniano, $\exists L' \in \mathbb{N}$ tal que $\forall k \geq L' \ g^{-1}(C_k) = g^{-1}(C_{L'})$. Sea $k \geq L'$ y notemos que dado que $C_{L'} \geq C_k$ basta con probar que $C_{L'} \geq C_k$ basta con probar que $C_{L'} \leq C_k$. Sea $c \in C_{L'}$, como g es sobre $\exists b \in M$ tal que g(b) = c, con lo cual $b \in g^{-1}(C_{L'})$, por tanto $b \in g^{-1}(C_k)$ y así

 $c = g(b) \in C_k$. Por lo anterior se sique que $C_{L'} \leq C_k$ y así se tiene lo deseado.

Each Sea $B_1 \geq B_2 \geq \ldots$ una cadena descendente en $\mathscr{L}(M)$, luego $f^{-1}(B_1) \geq f^{-1}(B_2) \geq \ldots$ y $g(B_1) \geq g(B_2) \geq \ldots$ son, respectivamente, cadenas descendientes en $\mathscr{L}(K)$ y en $\mathscr{L}(N)$ y por tanto $\exists r, s \in \mathbb{N}$ tales que

$$\forall k \ge r \ f^{-1}(B_k) = f^{-1}(B_r)$$
 (*)

у

$$\forall k \ge s \ g(B_k) = g(B_s). \tag{**}$$

Así, sea $t = \max\{r, s\}, k \ge t \text{ y } m \in B_t$. Luego $g(m) \in g(B_t) g(B_t) = g(B_k)$, por (**). Así $\exists b \in B_k$ tal que g(m) = g(b), con lo cual $m - b \in Ker(g) = Im(f)$, por lo cual $\exists a \in K$ tal que m - b = f(a). Notemos que, en partícular, $b \in C_t$, así que $m - b \in C_t$ y por lo tanto $a \in f^{-1}(C_t)$. Luego

$$a \in f^{-1}(C_k), \qquad (*)$$

$$\implies f(a) \in C_k$$

$$\implies m - b \in C_k$$

$$\implies m \in C_k, \qquad b \in C_k.$$

$$\implies C_t \le C_k.$$

Por lo tanto M es artiniano.

Ej 46. Para $M, N \in f.l.(R)$, pruebe que $M \coprod N \in f.l.(R)$ y que $l(M \coprod N) = l(M) + l(N)$.

$$l_{\mathfrak{F}}\left(M\coprod N\right) = l_{f^{-1}(\mathfrak{F})}\left(M\right) + l_{g(\mathfrak{F})}\left(N\right)$$
$$\therefore l\left(M\coprod N\right) = l\left(M\right) + l\left(N\right).$$

Ej 47.