Name:_____ Matrikel-Nr:_____

Das dynamische Verhalten des Feder-Masse-Dämpfer-Systems im Bild soll analysiert werden. Die Modellbildung ist auf Basis der Bewegungsgleichungen für m_1

$$m_1 \cdot \ddot{z}_1 + c_2 \cdot (z_1 - z_2) + d_2 \cdot (\dot{z}_1 - \dot{z}_2) + c_1 \cdot (z_1 - z_h) + c_p \cdot (z_p - z_h) = 0$$
 (1)

und für m_2

$$m_2 \cdot \ddot{z}_2 - c_2 \cdot (z_1 - z_2) - d_2 \cdot (\dot{z}_1 - \dot{z}_2) = 0 \tag{2}$$

sowie mittels der Kräftebilanz im Punkt P

$$d_P \cdot (\dot{z}_p - \dot{z}_1) + c_p \cdot (z_p - z_h) = 0$$

(3) möglich.

m_1	= 30	kg	Masse
m_2	= 250	kg	Masse
c_1	= 120	N/mm	Federrate
c_2	= 20	N/mm	Federrate
c_{P}	= 0,5	N/mm	Federrate
d_2	= 0,25	Ns/mm	Dämpfungskonstante
d_{P}	= 0,5	Ns/mm	Dämpfungskonstante
\mathcal{Z}_{h}	= 10	cm	Amplitude

Eingangsgröße: die vertikale Position $z_h(t)$.

1. Eingabedaten in m-file mit Ihrem Nachname. Erstellen Sie nach den Systemgleichungen ein Modell mit Simulink im Zeitbereich, (beginnend vom unten angegebenen Bild):

b) Chirp Signal:

Initial frequency: 0.01; Target time: 20; Frequency at target time: 20

Wählen Sie die Amplitude $z_h(t)$ als Systemeingang jeweils a) und b) (mit Manual Switch), simulieren Sie die Federkraft $F_2 = c_2(z_1(t) - z_2(t))$ und den relativen Weg $z_1(t) - z_p(t)$.

Simulation time für a) 10 sec, für b) 20 sec mit Fixed-step 0.01.

Name:	
Matrikel-Nr:	

2. Leiten Sie anhand der mechanischen Systemgleichungen einen formelmäßigen Ausdruck in A, B, C, D Matrizen her.

Systemeingänge: $z_h(t)$;

Ausgänge: die Federkraft $F_2 = c_2(z_1(t) - z_2(t))$ und der relativer Weg $z_1(t) - z_p(t)$

Zustandsgrößen: $\begin{bmatrix} z_1 & z_2 & \dot{z}_1 & \dot{z}_2 & z_P \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}^T$

$$B = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{bmatrix}$$

$$B = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{bmatrix} \qquad C = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

$$D = \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$$

A =

В	=

C=

D=

3. Verwenden Sie dazu ein m-file, in das Sie die gegebenen Parameter eingegeben und ihre Matrizen A, B, C, D mit den Parameter erstellt haben. Berechnen Sie die Eigenwerte des Systems.

+	
±	
±	

Name:_____ Matrikel-Nr:_____

Tragen Sie die Eigenwerte des Systems in die komplexe Ebene ein.

Ist das mechanische System stabil? Begründung!

Berechnen Sie die ungedämpfte, gedämpfte Eigenfrequenzen und Dämpfungsgrad:

Ungedämpfte f_0 (Hz)	gedämpfte $f_{\rm d}$ (Hz)	Dämpfungsgrad ξ

- 4. Polten Sie die Übertragungsfunktion $\left|\frac{F_2}{z_h}\right|$ und Phasenwinkel bis $f=20~\mathrm{Hz}$ in einer Figure (Bodediagramm) mit dem Titel "Übertragungsfunktion".
- Speichern Sie m-File und mdl-File mit Ihrem Nachnamen plus Aufgabennummer ab!
 (Beispiel: wang_mfile.m und wang_modell.mdl)

<u>Anmerkung:</u> Senden Sie die Dateien per Email an: xiaofeng.wang@hs-rm.de Viel Erfolg!

Name:_____ Matrikel-Nr:_____

Musterlösung:

	Eigenwerte =	f_0 (Hz)	$f_{\rm d}({\rm Hz})$	ξ(-)
	-4.3016 ± 68.216i	1.3172	1.3159	0.0441
		10.88785	10.8569	0.0629
	-0.3650 ± 8.2681i			
	-1.0000 + 0i (in rad/s)			

Name:_____ Matrikel-Nr:


```
Amat = [0 0 1 0 0;

0 0 0 1 0;

-(c1+c2)/m1 c2/m1 -d2/m1 d2/m1 -cp/m1

c2/m2 -c2/m2 d2/m2 -d2/m2 0;

0 0 1 0 -cp/dp];

Bmat = [0; 0; (c1+cp)/m1; 0; cp/dp];

Cmat = [c2 -c2 0 0 0;

1 0 0 0 -1];

Dmat = [0;0];
```

	Eigenwerte =	f_0 (Hz)	$f_{\rm d}\left({\rm Hz}\right)$	ξ(-)
-4.3	-4.303 ± 68.338i	1.3176	1.3163	0.044183
		10.898	10.876	0.062842
	-0.36577 ± 8.2705i			
	-099586 + 0i (in rad/s)			

Name:_____

```
clear; clc;
m1=30; m2=250;
                %kq
c1=120*1000; c2=20*1000; cp=0.5*1000;
                                         %N/m
d2=0.25*1000; dp= 0.5*1000;
zh=0.01; % m
%A1 simulinkmodell und A4 Eigenwerte:
[A,B,C,D]=linmod('BT_Modell_WS1819');
Eigenwerte=eigs(A);
Eigenfrqcplx=eigs(A)/(2*pi);
ungedampfg=abs(Eigenfrqcplx);
gedampfg=imag(Eigenfrqcplx);
dampgrad=abs(real(Eigenfrqcplx)./ungedampfq);
%A3: A, B, C, D Matrizen herleiten
Amat= [0 0 1 0 0;
       0 0 0 1 0;
       -(c1+c2)/m1 c2/m1 -d2/m1 d2/m1 -cp/m1;
        c2/m2 - c2/m2 d2/m2 - d2/m2 0;
        0 0 1
               0 -cp/dp];
[Wn,xin,pn]=damp(Amat);
 %Wn/2/pi
 figure(1);
 plot(real(pn),imag(pn),'r*') % Plot real and imag_parts
 xlabel('Real'); ylabel('Imaginary'); grid;
 title('Eigenwerte der Systemmatrix A');
Bmat = [0; 0; (c1+cp)/m1; 0; cp/dp];
Cmat = [c2 -c2 0 0 0;
        1
            0
               0 0 -1];
Dmat= [0;0];
figure (2)
step(ss(Amat,Bmat,Cmat,Dmat));grid;
axis([0 8 -0.04 0.04]);
% A5: Plot der Übertragungsfunktion
[Zaehler, Nenner] = ss2tf(Amat, Bmat, Cmat, Dmat);
fhz=0:0.1:20*2*pi; % input frequenz
figure (3)
bode(Zaehler(1,:),Nenner,fhz);grid; % Bode Diagramm
```