# Nomenclatura

| $\mathbf{Z}\left[\Omega\right]$ | Impedancia                           | <b>I</b> [A]                             | Corriente               |
|---------------------------------|--------------------------------------|------------------------------------------|-------------------------|
| $\mathbf{V}[V]$                 | Tensión                              | j                                        | Unidad imaginaria       |
| <i>t</i> [s]                    | Tiempo                               | P[W]                                     | Potencia activa         |
| Q [VAr]                         | Potencia reactiva                    | S [VA]                                   | Potencia aparente       |
| m                               | Relación de transformación           | $\mathbf{I}_{exc}$ o $\mathbf{I}_0$ [A]  | Corriente de excitación |
| $\mathbf{I}_{Fe}$ [A]           | Corriente debido a pérdidas en el Fe | $\mathbf{I}_{\mu}$ [A]                   | Corriente magnetizante  |
| $\mathbf{V}_0$ [V]              | Tensión en vacío                     | $\mathbf{V}_{pc}\left[\mathbf{V}\right]$ | Tensión a plena carga   |

Unidad 1 ACÁ QUIERO PONER LO DE LAS BOBINAS Y ESO... VER Unidad 2

# TRANSFORMADORES



### Transformador Ideal en vacío

### Transformador Ideal en carga

### SIN PÉRDIDAS EN EL NÚCLEO DE FE

Autoinducción  $L = \frac{\mu N^2 S}{l}$ 

CON PÉRDIDAS EN EL NÚCLEO DE FE

Fem  $\mathscr{F}=N_1\mathbf{I}_1=N_1\mathbf{I}_0$  Relación de transfor.  $m=\frac{E_1}{E_2}=\frac{N_1}{N_2}$   $\mathbf{I}_0=\mathbf{I}_\mu+\mathbf{I}_{Fe}$ 



# CON PÉRDIDAS EN EL NÚCLEO DE FE

$$\begin{split} \text{Fem} & \quad \mathscr{F} = N_1 \mathbf{I}_1 - N_2 \mathbf{I}_2 \\ \mathscr{F} = N_1 \mathbf{I}_0 \\ & \quad \mathbf{I}_0 = \mathbf{I}_1 - \frac{N_2}{N_1} \mathbf{I}_2 \\ \text{Corriente reducida} & \quad \mathbf{I'}_2 = \frac{\mathbf{I}_2}{m} \end{split}$$



Transformador Real en vacío

Transformador Real en carga

$$\mathbf{V}_1 = \mathbf{E}_1 + R_1 \mathbf{I}_0 + j X_1 \mathbf{I}_0$$
  $\mathbf{V}_{20} = \mathbf{E}_2$   
En trafos industriales  $m \approx \frac{V_1}{V_2}$ 

### Circuito equivalente aproximado

Se muestra el circuito referido al primario. Cuando es referido al secundario se hace un análisis similar. La *rama paralelo* siempre permanece del lado de alta tensión.



Resistencia de cortocircuito  $R_{cc} = R_1 + R_2'$ Reactancia de cortocircuito  $X_{cc} = X_1 + X_2'$ 

### Parámetros referidos al primario

Número de espiras  $N_2' = mN_2$ Tensión referida  $V_2' = mV_2$ Corriente referida  $I_2' = \frac{I_2}{m}$ Impedancia referida  $Z_2' = m^2 Z_2$   $Z_2 = R_2 + j X_2$ 

#### Ensavo de vacío

Permite determinar las pérdidas en el Fe y los parámetros de la rama paralelo,  $R_{Fe}$  y  $X_{\mu}$ .



Pérdidas en Fe  $P_0 = P_{Fe} = V_{1n} \cdot I_0 \cos \phi_0$ 

$$R_{fe} = \frac{V_{1n}}{I_0 \cos \phi_0} \qquad \qquad X_{\mu} = \frac{V_{1n}}{I_0 \sin \phi_0}$$

### Ensayo de cortocircuito

Permite determinar las pérdidas en el Cu y los parámetros de la rama de cortocircuito,  $R_{cc}$  y  $X_{cc}$ .  $I_0$  es despreciable.



$$P_{cc} = P_{Cu} = V_{cc} \cdot I_{1n} \cos \phi$$

$$R_{cc} = \frac{V_{1cc}}{I_{1n}} \cos \phi_{cc} \quad X_{cc} = \frac{V_{1cc}}{I_{1n}} \sin \phi_{cc}$$

En ambos ensayos, los factores de potencia  $\cos\phi_0$  y  $\cos\phi_{cc}$  son las incógnitas a determinar para calcular los pará-

metros.





Regulación de voltaje  $RV = \frac{V_{20} - V_{2po}}{V_{2po}}$ 

 $RV = \frac{\frac{V_{1n}}{m} - V_{2pc}}{\frac{V_{2pc}}{m}}$ 

RV ideal RV = 0%

Cargas resistivas e inductivas  $RV_L > RV_R > 0$ 

Cargas capacitivas  $RV_C < 0$ 

#### **Eficiencia**

$$\eta = \frac{P_{out}}{P_{in}} = \frac{S\cos(\phi)}{S\cos(\phi) + P_{fe} + P_{\mu}}$$

Potencia útil  $P_{out} = S\cos\phi$ Potencia demandada  $P_{in} = P_{out} + P_p$ Pérdidas en potencia  $P_p = P_{Fe} + P_\mu$ 

# Índice de Carga

$$C = \frac{I}{I_n} \quad C_{opt} = \sqrt{\frac{P_0}{P_{cc}}}$$

### Máximo maximorum

Cuando 
$$\cos \phi = 1$$
 y  $C_{opt} = \sqrt{\frac{P_0}{P_{cc}}}$ .

#### Transformadores trifásicos

| Índice   | Símbolo  | Diagrama fasorial     |                            | Índice    | Símbolo  | Diagrama fasorial     |                  |
|----------|----------|-----------------------|----------------------------|-----------|----------|-----------------------|------------------|
| horario  | acoplam. | A.T.                  | B.T.                       | horario   | acoplam. | A.T.                  | B.T.             |
| 0 (0°)   | Dd0      | C $A$ $B$             | $c$ $\sum_{b}^{a}$         | 6 (180°)  | Dd6      | C $A$ $B$             |                  |
| 0 (0°)   | Yy0      | $C \longrightarrow B$ | $\stackrel{a}{\swarrow}_b$ | 6 (180°)  | Yy5      | $C \longrightarrow B$ |                  |
| 5 (150°) | Dy5      | C $A$ $B$             | b' $c'$ $a'$               | 11 (330°) | Dy5      | C $A$ $B$             | $\sum_{c}^{a} b$ |
| 5 (150°) | Yd5      | $C \longrightarrow B$ | b' $a'$                    | 11 (330°) | Yd5      | $C \longrightarrow B$ | $a \searrow b$   |

# UNIDAD 3 MÁQUINAS ASÍNCRONAS

#### Aspectos básicos

 $e_{ind} = l\vec{v} \times \vec{B}$ Tension inducida  $F = i\vec{l} \times \vec{B}$ Fuerza en el devanado

l es la longitud del segmento y su dirección es la de la corriente

 $n_{sinc} = \frac{120}{P} f_e$ Velocidad campo rotante

 $s = \frac{n_{sinc} - n_m}{n_{sinc}} = \frac{\omega_{sinc} - \omega_m}{\omega_{sinc}}$  $f_r = sf_e$ Deslizamiento

Frecuencia eléctrica en el rotor

# Circuito equivalente



$$R_2 = a_{ef}^2 R_R$$

$$X_2 = a_{ef}^2 X_{R0}$$

$$E_2 = a_{ef} E_{R0}$$

$$I_2 = \frac{I_R}{a_{ef}}$$

Donde el subíndice R0 equivale a los parámetros a rotor bloqueado, es decir s=1

### Diagrama de potencias



Perdidas cobre estator  $P_{CE} = 3I_1^2 R_1$ 

Pérdidas en el núcleo  $P_{nucl} = 3E_1^2G_C$ 

Potencia en el entrehierro  $P_{EH} = P_{in} - P_{CE} - P_{nucl}$ 

Pérdidas cobre rotor  $P_{CR} = 3I_2^2 R_2$ 

Potencia convertida  $P_{conv} = P_{EH} - P_{CR}$ 

 $P_{CR} = sP_{EH}$   $P_{conv} = (1 - s)P_{EH}$ 

Potencia de salida  $P_{out} = P_{conv} - P_{FyR} - P_{misc}$ 

 $\tau_{ind} = \frac{P_{conv}}{\omega_m} = \frac{(1-s)P_{EH}}{(1-s)\omega_{sinc}}$ 

### Ensayo de vacío o rotor libre

Permite determinar las pérdidas en el Fe y mecánicas, los parámetros  $R_{Fe}$ .

"Si bien  $N_{rot} \neq N_{sinc}$ , el motor gira a una velocidad muy cercana ( $R_2$  elevada), y al no ejercer ningún par de carga el eje se considera potencia disipada  $P_{conv} = 0$ "

Primero hay que medir la resistencia del estator (CC, se agrega un 10~20% por efecto pelicular). Luego hacemos funcionar el motor sin carga, conectandolo a tensión nominal y descendiendo hasta le 50~30%, midiendo la potencia tomada de la red.

Al nosotros conocer la potencia de entrada y la perdida en *Fe* nos quedan dos incognitas las cuales se iteran.

$$\begin{split} P_0 &= P_{fe} + P_m + P_{cu1} \\ P_0 - P_{cu1} &= P_{fe} + P_m = P_0 - m_1 \ R_1 \ I_0^2 \end{split}$$

cuando la tensión  $V_1 = 0$  no existen perdidas en el hierro porque no hay flujo, "solo quedarán las pérdidas mecánicas"



$$Cos(\phi_0) = \frac{P_{fe}}{m_1 V_1 n I_0}$$

$$R_{fe} = \frac{V_{1n}}{I_0 \cos \phi_0}$$

$$X_{\mu} = \frac{V_{1n}}{I_0 \sin \phi_0}$$

#### Ensayo cortocircuito o rotor bloqueado

Se realiza impidiendo que el rotor gire  $(n=0 \rightarrow s=1 \rightarrow R_2=0)$ , se comporta como un transformador en cortocircuito.

Se realiza suministrando tensión desde 0 hasta llegar a la corriente nominal, midiendo a su vez la potencia.