```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
```

Uploading the dataset

```
In [3]: data = pd.read_csv("student_data.csv")
data
```

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

1000 rows × 8 columns

1. Understanding the data

In [4]: data.head()

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	aroup C	some college	standard	none	76	78	75

```
In [5]: data.tail()
```

Out[5]:

```
parental level of
                                                                                                          reading
                                                                        test preparation
                                                                                               math
                                                                                                                         writing
     gender race/ethnicity
                                                            lunch
                                          education
                                                                                                            score
                                                                                 course
                                                                                              score
                                                                                                                          score
995
     female
                                     master's degree
                                                          standard
                                                                               completed
                                                                                                 88
                                                                                                                99
                                                                                                                             95
                    group E
996
       male
                                         high school free/reduced
                                                                                                 62
                                                                                                                55
                                                                                                                             55
                    group C
                                                                                   none
997
     female
                    group C
                                         high school
                                                     free/reduced
                                                                               completed
                                                                                                 59
                                                                                                                71
                                                                                                                             65
                                                                                                                78
                                                                                                                             77
998
      female
                    group D
                                        some college
                                                          standard
                                                                               completed
                                                                                                 68
999
      female
                    group D
                                        some college free/reduced
                                                                                   none
                                                                                                 77
                                                                                                                86
                                                                                                                             86
```

```
In [6]: data.shape
```

Out[6]: (1000, 8)

In [7]: data.describe()

Out[7]:

```
math score reading score writing score
count 1000.00000
                    1000.000000
                                  1000.000000
mean
         66.08900
                       69.169000
                                     68.054000
                       14.600192
  std
         15.16308
                                     15.195657
 min
          0.00000
                       17,000000
                                     10,000000
 25%
         57.00000
                       59.000000
                                     57.750000
 50%
         66.00000
                       70.000000
                                     69.000000
         77.00000
 75%
                       79.000000
                                     79.000000
        100.00000
 max
                      100.000000
                                    100.000000
```

```
In [8]: data.columns
```

```
In [9]: data.nunique()
```

```
Out[9]: gender
                                          2
                                          5
        race/ethnicity
        parental level of education
                                          6
        lunch
                                          2
                                          2
        test preparation course
        math score
                                         81
        reading score
                                         72
                                         77
        writing score
        dtype: int64
```

```
In [10]: data['gender'].unique()
```

```
Out[10]: array(['female', 'male'], dtype=object)
```

```
In [11]: data['lunch'].unique()
```

```
Out[11]: array(['standard', 'free/reduced'], dtype=object)
```

2. Cleaning the data

In [13]: data.isnull()

Out[13]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
995	False	False	False	False	False	False	False	False
996	False	False	False	False	False	False	False	False
997	False	False	False	False	False	False	False	False
998	False	False	False	False	False	False	False	False
999	False	False	False	False	False	False	False	False

1000 rows × 8 columns

```
In [14]: data.isnull().sum()
```

Out[14]: gender 0 race/ethnicity 0 parental level of education 0 lunch 0 0 test preparation course 0 math score reading score 0 writing score 0

dtype: int64

```
In [15]: | student = data.drop(['race/ethnicity', 'parental level of education'], axis = 1)
```

In [16]: student.head()

Out[16]:

	gender	lunch	test preparation course	math score	reading score	writing score
0	female	standard	none	72	72	74
1	female	standard	completed	69	90	88
2	female	standard	none	90	95	93
3	male	free/reduced	none	47	57	44
4	male	standard	none	76	78	75

3. Relationship analysis

In [18]: corelation = student.corr()

In [19]: sns.heatmap(corelation, xticklabels=corelation.columns, yticklabels=corelation.columns, annot=True

Out[19]: <AxesSubplot:>

In [20]: sns.pairplot(student)

Out[20]: <seaborn.axisgrid.PairGrid at 0x15ea98e7130>


```
In [21]: sns.relplot(x = 'math score', y = 'reading score', hue = 'gender', data = student)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x15eaa893850>


```
In [22]: sns.relplot(x = 'math score', y = 'reading score', hue = 'lunch', data = student)
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x15eaa90d790>

In [23]: sns.distplot(student['math score'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplo
t` is a deprecated function and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-leve
l function for histograms).
 warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='math score', ylabel='Density'>

In [24]: sns.distplot(student['reading score'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplo
t` is a deprecated function and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-leve
l function for histograms).
 warnings.warn(msg, FutureWarning)

Out[24]: <AxesSubplot:xlabel='reading score', ylabel='Density'>

In [25]: sns.distplot(student['writing score'], bins=5)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplo
t` is a deprecated function and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-leve
l function for histograms).
 warnings.warn(msg, FutureWarning)

Out[25]: <AxesSubplot:xlabel='writing score', ylabel='Density'>

In [26]: sns.catplot(x = 'math score', kind= 'box', data = student)

Out[26]: <seaborn.axisgrid.FacetGrid at 0x15eaa876a30>


```
In [27]: sns.catplot(x = 'writing score', kind= 'box', data = student)
```

Out[27]: <seaborn.axisgrid.FacetGrid at 0x15eaa8769d0>

