NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Kenny Sng, Lau Tze Siong

MA3201 Algebra II AY 2008/2009 Semester 2

Question 1

- (a) True. Suppose that J is an ideal of S. Let $x, y \in \phi^{-1}(J)$. Then, $\phi(x y) = \phi(x) \phi(y) \in J$ since both $\phi(x)$ and $\phi(y)$ are in J and J is an ideal of S. Thus, $x y \in \phi^{-1}(J)$. For all $r \in R$, $\phi(rx) = \phi(r)\phi(x) \in J$ since $\phi(r) \in S$, $\phi(x) \in J$ and J is an ideal of S. Hence, $\phi^{-1}(J)$ is an ideal of R.
- (b) True. First we check that $\phi^{-1}(J) \neq R$. If $1_S \in J$, then for all $s \in S$, $s = 1_S s \in J$, and thus J = S, which is a contradiction to the fact that J is a prime ideal of S. Hence, $1_S \notin J$, and since $\phi(1_S) = 1_R$, we conclude that $1_R \notin \phi^{-1}(J)$, and that $\phi^{-1}(J) \neq R$.

Suppose that $xy \in \phi^{-1}(J)$. Then, $\phi(xy) = \phi(x)\phi(y) \in J$, which implies that either $\phi(x) \in J$ or $\phi(y) \in J$, which means that either $x \in \phi^{-1}(J)$ or $y \in \phi^{-1}(J)$. Hence, $\phi^{-1}(J)$ is a prime ideal of R.

(c) False. Consider the inclusion map $\phi : \mathbb{Z} \to \mathbb{Q}$. In \mathbb{Q} , the zero ideal $\{0\}$ is the maximal ideal, but $\phi^{-1}(\{0\}) = \{0\} \in \mathbb{Z}$ is not a maximal ideal, as $2\mathbb{Z}$ is also an ideal of \mathbb{Z} , but $\{0\} \subset 2\mathbb{Z} \subsetneq \mathbb{Z}$.

Question 2

(a) (i) (Note: A mistake was spotted in the question during the examination. The correct question should read: "Show that I is a non-zero maximal ideal of R if and only if I = (a) for some irreducible $a \in R$.")

Let I be a non-zero maximal ideal of R. Since R is a principal ideal domain (PID), I = (a) for some $a \in R$. Suppose that a = st for some $s, t \in R$. Then, s|a, and thus $(a) \subseteq (s) \subseteq R$. Since I is maximal, either (r) = (s) or (s) = R. If (s) = R, then there exists an $s' \in R$ such that $ss' = 1_R$, which implies that s is a unit. If (r) = (s), then s and s are associates, which implies that s is a unit. Hence, we conclude that either s or s is a unit, and thus s is irreducible in s.

Suppose now that I=(a) for some irreducible $a \in R$. Then, a is non-zero and a non-unit, and hence $\{0\} \subsetneq (a) \subsetneq R$. Suppose for a contradiction that there exists an $s \in R$ such that $(a) \subsetneq (s) \subsetneq R$. Similarly, s is also non-zero and a non-unit. Thus, a=st for some $t \in R$, and since a is irreducible and s is a non-unit, it follows that t is a unit of R. This implies that a and s are associates, and that (r)=(s), which is a contradiction. Hence, I is a non-zero maximal ideal of R.

(ii) Let I be a non-zero prime ideal of R. Then, I = (a) for some a which is prime in R. Since a is prime in a PID, a is irreducible, and we conclude that I is a non-zero maximal ideal of R by (i). Hence, the only prime ideal which is not maximal is the zero ideal.

(b) (i) Let $h = \gcd(r_1, r_2)$ in S. Since $g = \gcd(r_1, r_2)$ in R, $g|r_1$ and $g|r_2$ in R, and hence $g|r_1$ and $g|r_2$ in S. Thus, g|h in S since $h = \gcd(r_1, r_2)$ in S.

 $h|r_1$ and $h|r_2$ in S implies that $r_1 = hs_1$ and $r_2 = hs_2$ for some $s_1, s_2 \in S$. Hence,

$$g = ar_1 + br_2$$
$$= ahs_1 + bhs_2$$
$$= h(as_1 + bs_2),$$

which implies that h|g in S. Thus, h and g are associates in S, and $g = \gcd(r, s)$ in s.

(ii) No. Let $R = \mathbb{Z}[X]$, S be the subring of $\mathbb{Q}[X]$ consisting of polynomials with integer constants. Let $r_1 = X^2$, $r_2 = 2X$. Then, in R, $gcd(r_1, r_2) = X$. Suppose that X is the greatest common divisor of r_1 and r_2 in S. Since $X^2 = (2X)(\frac{X}{2})$, 2X divides both X^2 and 2X in S, but 2X does not divide X in S since $\frac{1}{2} \notin S$, which is a contradiction.

Question 3

(a) Let $\sum r_i X^i \in R[X]$. If Φ is a ring homomorphism such that $\Phi(r) = \phi(r)$ for all $r \in R$ and $\Phi(X) = X$,

$$\Phi(\sum r_i X^i) = \sum \Phi(r_i) \Phi(X^i)
= \sum \phi(r_i) \Phi(X)^i
= \sum \phi(r_i) X^i.$$

Thus, the required ring homomorphism $\Phi: R[X] \to S[X]$ is defined by $\Phi(\sum r_i X^i) = \sum \phi(r_i) X^i$, and by the above discussion, Φ is unique.

(b) (i) The map ψ is a unital ring homomorphism, and by (a), there exists a unique ring homomorphism $\Psi: \mathbb{Z}[X] \to \mathbb{Z}_p[X]$ defined by $\Psi(\sum_{i=0}^n a_i X^i) = \sum_{i=0}^n \overline{a_i} X^i$ for all $\sum_{i=0}^n a_i X^i \in \mathbb{Z}[X]$ such that $\Psi(r) = \psi(r) = \overline{r}$ for all $r \in \mathbb{Z}$ and $\Psi(X) = X$.

Suppose that $\sum_{i=0}^{n} \overline{a_i} X^i$ is irreducible in $\mathbb{Z}_p[X]$, and suppose for a contradiction that $f(X) = \sum_{i=0}^{n} a_i X^i$ is reducible in $\mathbb{Q}[X]$. If $\sum_{i=0}^{n} a_i X^i$ is reducible in $\mathbb{Q}[X]$, then it is reducible in $\mathbb{Z}[X]$, and thus there exists polynomials $g(X) = \sum_{i=0}^{m} b_i X_i$ and $h(X) = \sum_{i=0}^{k} c_i X_i$ in $\mathbb{Z}[X]$, 0 < m < n, 0 < k < n such that f(X) = g(X)h(X). Hence,

$$\Psi(f(X)) = \sum_{i=0}^{n} \overline{a_i} X^i$$
$$= (\sum_{i=0}^{m} \overline{b_i} X_i) (\sum_{i=0}^{k} \overline{c_i} X_i).$$

Since p does not divide a_n in \mathbb{Z} , $\overline{a_n} \neq \overline{0}$ in \mathbb{Z}_p , and thus $\overline{b_m}\overline{c_k} \neq \overline{0}$. Thus, p does not divide $b_m c_k$ in \mathbb{Z} , which implies that p does not divide b_m and p does not divide c_k . Consequently, both $\sum_{i=0}^m \overline{b_i} X_i$ and $\sum_{i=0}^k \overline{c_i} X_i$ are nonconstant polynomials in $\mathbb{Z}_p[X]$. For an integral domain R, the set of units of R[X] coincide with the set of units of R. Hence, the set of units of $\mathbb{Z}_p[X]$ are the units of \mathbb{Z}_p , which are the non-zero elements of \mathbb{Z}_p since \mathbb{Z}_p is a field. Hence, both $\sum_{i=0}^m \overline{b_i} X_i$ and $\sum_{i=0}^k \overline{c_i} X_i$ are non-units in $\mathbb{Z}_p[X]$, which contradicts the fact that $\sum_{i=0}^n \overline{a_i} X^i$ is irreducible in $\mathbb{Z}_p[X]$.

Page: 2 of 4

(ii) No. Consider $f(X) = 2X^2 + 2 \in \mathbb{Z}[X]$, and consider p = 3. Then, we first show that $\overline{f(X)}$ is irreducible in $\mathbb{Z}_3[X]$. Suppose on the contrary that $\overline{f(X)} = \overline{g(X)}h(X)$ where $\overline{g(X)} = \overline{a}X + \overline{b}$ and $\overline{h(X)} = \overline{c}X + \overline{d}$ are non-constant polynomials of degree 1. Hence, by comparing the powers of X^2 , $\overline{ac} = \overline{2}$, and hence $\{\overline{a}, \overline{c}\} = \{\overline{1}, \overline{2}\}$. Without loss of generality, assume that $\overline{a} = 1$ and $\overline{c} = 2$. By comparing the coefficients of the other powers of X, we arrive at

$$\overline{d} + \overline{2}\overline{b} = 0$$

$$\overline{b}\overline{d} = 2.$$

Hence, by a similar reasoning, $\{\overline{b}, \overline{d}\} = \{\overline{1}, \overline{2}\}$, which is a contradiction to $\overline{d} + \overline{2b} = 0$. Hence, $\overline{f(X)}$ is irreducible in $\mathbb{Z}_3[X]$. However, $2X^2 + 2 = 2(X^2 + 1)$, and hence is not irreducible in $\mathbb{Z}[X]$.

(iii) No. Let $f(X) = X^2 + 1 \in \mathbb{Z}[X]$, which is irreducible in $\mathbb{Z}[X]$, but $X^2 + \overline{1} = (X + \overline{1})(X + \overline{1})$ in $\mathbb{Z}_2[X]$, and thus $\overline{f(X)}$ is not irreducible in $\mathbb{Z}_2[X]$.

Question 4

(i) Suppose that N and M/N are finitely generated. Hence, there exists $k, l \in \mathbb{Z}^+$, $n_1, n_2, ..., n_k \in N$, $m_1 + N, m_2 + N, ..., m_l + N \in M/N$ such that $N = Rn_1 + ... + Rn_k$ and $M/N = R(m_1 + N) + ... + R(m_l + N)$.

Hence, for all $\alpha \in M$,

$$\alpha + N = \sum_{i=1}^{l} r_i(m_i + N) \quad \text{for some } r_i \in R, i = 1, 2, ..., l$$

$$\Rightarrow \quad \alpha + N = (\sum_{i=1}^{l} r_i m_i) + N$$

$$\Rightarrow \quad \alpha - \sum_{i=1}^{l} r_i m_i \in N$$

$$\Rightarrow \quad \alpha - \sum_{i=1}^{l} r_i m_i = \sum_{j=1}^{k} s_j n_j \quad \text{for some } s_j \in R, j = 1, 2, ..., k$$

$$\Rightarrow \quad \alpha = \sum_{i=1}^{l} r_i m_i + \sum_{j=1}^{k} s_j n_j,$$

which implies that M is finitely generated.

(ii) Let $R = M = \{a_0 + a_1X + ... + a_nX^n | a_0 \in \mathbb{Z}, a_1, a_2, ..., a_n \in \mathbb{Q}, n \in \mathbb{Z}_{\geq 0}\}$. and $N = \{a_1X + ... + a_nX^n | a_1, a_2, ..., a_n \in \mathbb{Q}, n \in \mathbb{Z}_{\geq 0}\}$. Then, N is an ideal of M, and thus can be viewed as a R-submodule of M. Suppose that N is finitely generated as an R- module. Hence, $N = Rf_1 + Rf_2 + ... + Rf_k$, where $f_1, f_2, ..., f_k \in N$. Hence, the coefficient of X of any polynomial from N, which is a rational number, will have to be of the form $n_1a_1 + ... + n_ka_k$, where $n_1, ..., n_k \in \mathbb{Z}$, a_i is the coefficient of X in f_i for i = 1, 2, ..., k. Hence, such coefficients of X can only have denominators dividing the lowest common multiple of the denominators of the a_i 's, but obviously not all rational numbers are of this form. Hence, N cannot be finitely generated.

(iii) True. Since M is a finitely generated R-module, there exists a surjective R-module homomorphism $\phi: F \to M$ where F is free of finite rank. Then, $q \circ \phi: F \to M/N$ is also a surjective R-module homomorphism, where $q: M \to M/N$ is the quotient module homomorphism. Hence, M/N is also finitely generated.

Page: 4 of 4