PDS-FIB

PRÀCTICA 3. Transformada Discreta de Fourier, DFT.

Usant el MATLAB, responeu a les següents qüestions. Feu un script o funció (.m) per a cada exercici. Creeu un únic fitxer .zip amb tots els fitxers .m i lliureu-lo pel Racó.

Part 1.

Exercici 1. Determineu la DFT de $x(n)=(0.5)^n u(n)$. Agafeu 501 punts equiespaiats entre [-pi,pi]. Mostreu la seva magnitud, fase i parts real i imaginària. Nota: proveu de dividir l'eix w per pi abans de mostrar el gràfic, així estarà en unitats de pi, per a la seva millor comprensió.

Exercici 2. Calculeu numèricament la DFT de la sequència $x(n) = \{1, 2, 3, 4, 5\}$ (on x(0) = 2) per 501 frequències equiespaiades entre [-pi,pi]. Mostreu la seva magnitud, fase i parts real i imaginària.

Exercici 3. Sigui $x(n) = (0.9exp(j\pi/3))^n$, $0 \le n \le 10$. Determineu $X(e^{jw})$ i investigueu la seva periodicitat. Escolliu un interval de frequències escaient.

Exercici 4. Sigui $x(n) = (0.9)^n$, $0 \le n \le 10$. Determineu $X(e^{jw})$ i investigueu la propietat de la simetria conjugada en la seva DFT.

Exercici 5. Verifiqueu la propietat del desplaçament en frequència de la DFT representant els següents senyals:

$$x(n) = \cos(\pi n/2), 0 \le n \le 100$$
 i $y(n) = e^{j\pi n/4}x(n)$.

Exercici 6. Un sistema LTI s'especifica per l'equació en diferències y(n) = 0.8y(n-1) + x(n)

Determineu $H(e^{jw})$. Calculeu i representeu la resposta estacionària $y_{ss}(n)$ per $x(n) = cos(0.05\pi n)u(n)$

Exercici 7. Un filtre de tercer ordre passa baixos es descriu mitjançant la seva equació en diferències:

$$y(n) = 0.0181x(n) + 0.0543x(n-1) + 0.0543x(n-2) + 0.0181x(n-3) + 1.76y(n-1) - 1.1829y(n-2) + 0.2781y(n-3)$$

Representeu la magnitud i la resposta de fase del filtre i verifiqueu que es tracta d'un filtre passa baixos.

Exercici 8. OPCIONAL. Verifiqueu els problemes fets a classe sobre la DFT i IDFT.