BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 2

ntroduction to Fields and σ -fields													
Intro: More on Events	3												
Intro: On Measures and Probability	4												
Classes of Sets	5												
Fields	6												
Some Properties	7												
σ -Fields	8												
Example	ç												
σ -field Generated by a Class of Sets	10												
Borel σ -fields (\mathcal{B}).	11												
Events Again!	12												

Intro: More on Events

- Casella & Berger Definition: An event is any collection of possible outcomes of an experiment, that is, any subset of Ω (including Ω itself). \leftarrow not strictly true! Previously:
 - An event is necessarily a collection of possible outcomes of a random experiment (a set of elements in Ω , i.e. a subset of Ω)
 - For discrete (finite and countable) sample space, the set of possible events is the power set (2^{Ω}) , i.e. any subset of Ω .
 - For continuous sample spaces (uncountably infinite spaces), the set of possible events is NOT the power set, there are subsets that are not considered events.
- Strictly speaking, events are the subsets of the sample space for which a probability is defined.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 – 3 / 12

Intro: On Measures and Probability

A **measure** is a set function that assigns a number $\mu(A)$ to each set A in a certain class of sets.

Examples:

- Length
- Area
- Volume
- Probability

Some structure must be imposed on the class of sets in which the set function μ is defined (i.e. cannot take probability of any set in 2^{Ω}).

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 4 / 12

Classes of Sets

- **Definition:** A **class** is a collection of sets (set of sets) that satisfy some conditions. Usually denoted with script characters (S, X, A, etc.)
- **Definition:** A class of sets \mathcal{X} is closed under an operation (e.g. union, intersection, etc.) if when performed on any members of \mathcal{X} yields a set which also belongs to the class.
- Example: $\mathcal{X} = \{\emptyset, A, B, C, A \cup B, A \cup C, B \cup C, A \cup B \cup C\}$ is closed under Union operation.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 5 / 12

Fields

Definition: A class $\mathcal X$ of sets in Ω is called a **field** if

- 1. \mathcal{X} is non-empty
- 2. \mathcal{X} is closed under finite union
- 3. \mathcal{X} is closed under complementation.

Examples:

- $\mathcal{X} = \{\emptyset, \Omega\}$ (trivial class)
- \mathcal{X} = all subsets of Ω
- Let $\Omega = (-\infty, \infty)$, \mathcal{X}_3 = class of all finite intervals (a, b) where $a, b \in \mathbb{R}$.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 6 / 12

Some Properties

Properties of a field \mathcal{X} :

- 1. \mathcal{X} is also closed under finite intersection
- 2. $\emptyset \in \mathcal{X}$ and $\Omega \in \mathcal{X}$

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 7 / 12

σ -Fields

- **Definition:** A class \mathcal{X} of sets is a σ -field if
 - 1. \mathcal{X} is non-empty
 - 2. \mathcal{X} is closed under countable unions
 - 3. \mathcal{X} is closed under complementation
- Examples: (1) $\mathcal{X}=\{\emptyset,\Omega\}$ (2) \mathcal{X} = all subsets of Ω are σ -fields
- Obviously, a σ -field is necessarily a field, but the converse does not hold: Consider class of all finite sets and sets whose complement is finite.
- Theorem: \mathcal{X}_1 and \mathcal{X}_2 are σ -fields, then $\mathcal{X}_1 \cap \mathcal{X}_2 = \{A : A \in \mathcal{X}_1 \text{ and } \mathcal{X}_2\}$ is also a σ field.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 8 / 12

Example

Let $\Omega = \mathbb{R}$ and $\mathcal{A} = \{A : A \text{ or } A^c \text{ is finite}\}$. Show that \mathcal{A} is a field, but that \mathcal{A} is not a σ -field. Note that A is the finite-cofinite field.

- Let $A_1=\{1\}, A_2=\{2\}, A_3=\{3\}, \cdots$, Then $\bigcup_{n=1}^{\infty} A_n=\mathbb{N} \notin \Omega$.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 9 / 12

σ -field Generated by a Class of Sets

- **Theorem:** Given a class of sets, S, not necessarily a σ -field, there is a minimum σ -field (denoted $\sigma(S)$ containing) it, i.e. $\sigma(S)$ is a class of sets that:
 - is a σ -field
 - it contains S: if $A \in S$, then it is also in $\sigma(S)$.
 - if \mathcal{X} is another σ -field that contains \mathcal{S} , then \mathcal{X} contains $\sigma(\mathcal{S})$.

 $\sigma(S)$ is also called the σ -field generated by S.

- $\sigma(S)$ also defined as the intersection of all σ -fields that contain S
- Properties:
 - $\sigma(S)$ is itself a σ -field
 - $\mathcal{S} \subset \sigma(S)$
 - $S_1 \subset S_2$ implies $\sigma(S_1) \subset \sigma(S_2)$
 - if S is itself a σ -field, then $\sigma(S) = S$

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 10 / 12

Borel σ -fields (\mathcal{B})

- Let $\Omega = \mathbb{R} = (-\infty, \infty)$. We have 4 types of finite intervals:
 - 1. $S_1 = \{ [a, b) : a < b, a, b \in \mathbb{R} \},\$
 - 2. $S_2 = \{(a,b) : a < b, a, b \in \mathbb{R}\},\$
 - 3. $S_3 = \{(a, b] : a < b, a, b \in \mathbb{R}\},\$
 - 4. $S_4 = \{ [a, b] : a < b, a, b \in \mathbb{R} \}$
- Let $S = \bigcup_{i=1}^4 S_i$ = a class of all finite intervals. Note that S is neither a field nor a σ -field.
- We extend S to a σ -field through the following definition:

Definition: The σ -field generated by \mathcal{S} is called the **Borel** σ -field on \mathbb{R} and is denoted by $\mathcal{B} = \sigma(\mathcal{S})$. Any set in \mathcal{B} is called a **Borel Set**.

- Important: Do not try to characterize B.
- We will return to this σ -field when we start talking about Random Variables.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 11 / 12

Events... Again!

- Why do we care about σ -fields? They are key to understanding the definition of an event.
- **Definition:** A **measurable space** is a set Ω endowed with a σ -field \mathcal{F} of subsets of Ω denoted by the pair (Ω, \mathcal{F}) .
- Sets in \mathcal{F} are defined as **events**!
- In this class, we will often deal with the triplet (Ω, \mathcal{F}, P) where P is a probability measure on the space (Ω, \mathcal{F}) .
- For discrete (finite and countably infinite) Ω , $\mathcal{F} = 2^{\Omega}$, and for uncountable Ω , $\mathcal{F} = \mathcal{B}$.

BIOS 660/BIOS 672 (3 Credits)

Notes 2 - 12 / 12

BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits Notes 2.1

| Examples for | r Samp | le S | 3pa | ce a | and | σ - | fiel | ds |
 | |
 |
 |
 |
 |
 | . 2 | 2 |
|--------------|--------|------|-----|------|-----|------------|------|----|------|------|------|------|------|------|------|--|------|------|------|------|------|-----|---|
| Examples (co | ont.) | | | | | | | |
 | |
 |
 |
 |
 |
 | . 3 | 3 |

Examples for Sample Space and σ -fields

Definition: A σ -field on a set Ω is a collection of subsets of Ω that includes the empty subset, is closed under complement, and is closed under countable unions and countable intersections.

Examples for Sample Space and σ -fields:

- 1. **Experiment**: Toss a coin with a "Head" and a "Tail". **Sample space** Ω : {Head, Tail} σ -field on Ω : { \emptyset , {Head}, {Tail}, {Head, Tail}}.
- Experiment: In a health survey among cancer patients, we ask each patient to report their perceived quality of life, categorized as {Very Good, Good, Poor}.
 Sample space Ω: {Very Good, Good, Poor}

```
σ-field on \Omega: {∅, {Very Good}, {Good}, {Poor}, {Very Good, Good}, {Very Good, Poor}, {Good, Poor}, {Very Good, Good, Poor}}.
```

BIOS 660/BIOS 672 (3 Credits)

Notes 2.1 - 2 / 3

Examples (cont.)

- 3. **Experiment**: Toss 2 coins and record the results from both tosses.
 - Sample space Ω : {HH, HT, TH, TT} σ -field on Ω : { \emptyset , {HH}, {HT}, {TH},{HT}, {HH, HT}, {HH, TH}, {HH, TT}, {HT, TH}, {HT, TT},{TH, TT},{HH, HT, TH}, {HH, HT, TT}}, {HH, HT, TT}, {HH, HT, TT}}.
- 4. **Experiment**: Toss 2 coins and record the number of heads. **Sample Space** Ω :{0, 1, 2}

```
\sigma-field on Ω: { ∅, {0},{1},{2},{0,1},{0,2},{1,2},{0,1,2} }.
```

BIOS 660/BIOS 672 (3 Credits)

Notes 2.1 - 3 / 3