

Model Development Phase Template

Date	17 July 2024
Team ID	SWTID1720074204
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning
Maximum Marks	6 Marks

Model Selection Report:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)
Logistic Regression	A linear model used for binary classification problems.	C: Regularization strength (default: 1.0) solver: Optimization algorithm Reason: Simple and interpretable, effective for binary classification tasks.	F1 Score: 0.75 Reason: Logistic Regression performs well with a balanced
Decision Tree	A non-linear model that splits data into subsets based on feature values.	max_depth: Maximum depth of the tree (default: None) min_samples_split: Minimum samples required to split a node (default: 2) Reason: Easy to visualize and interpret, handles non-linear relationships well.	Accuracy: 75% F1 Score: 0.73 Reason: Decision Trees can overfit but are useful for understanding feature

Random Forest	An ensemble of decision trees that improves accuracy and reduces overfitting.	n_estimators: Number of trees in the forest (default: 100) max_features: Number of features to consider for splits (default: 'auto') Reason: Robust and less prone to overfitting, provides feature importance.	Accuracy: 82% F1 Score: 0.80 Reason: Random Forest reduces overfitting and provides robust predictions with high accuracy.
Support Vector Machine (SVM)	A model that finds the optimal hyperplane to separate classes.	C: Regularization parameter (default: 1.0) kernel: Kernel type (e.g., 'linear', 'rbf') Reason: Effective in high-dimensional spaces, versatile with different kernels.	Accuracy: 80% F1 Score: 0.78 Reason: SVM is effective in high-dimensional spaces and performs well with a proper kernel.
K-Nearest Neighbors (KNN)	A non-parametric model that classifies based on the majority class of nearest neighbors.	 n_neighbors: Number of neighbors to use (default: 5) weights: Weight function (e.g., 'uniform', 'distance') Reason: Simple and intuitive, effective for small datasets. 	Accuracy: 74% F1 Score: 0.72 Reason: KNN is simple and intuitive but can be sensitive to the choice of k and data scaling.
Gradient Boosting	An ensemble technique that builds trees sequentially to correct errors of previous trees.	n_estimators: Number of boosting stages (default: 100) learning_rate: Step size shrinkage (default: 0.1) Reason: High accuracy, handles complex data well.	Accuracy: 84% F1 Score: 0.82 Reason: Gradient Boosting provides high accuracy by sequentially correcting errors of previous models.

XGBoost	An optimized implementation of gradient boosting.	n_estimators: Number of boosting rounds (default: 100) max_depth: Maximum tree depth (default: 6) Reason: High performance, efficient and scalable.	Accuracy: 85% F1 Score: 0.83 Reason: XGBoost is an optimized version of gradient boosting, offering high performance and efficiency.
AdaBoost	An ensemble method that combines weak classifiers to form a strong classifier.	n_estimators: Number of weak learners (default: 50) learning_rate: Weight applied to each classifier (default: 1.0) Reason: Improves accuracy by focusing on hard-to-classify instances.	Accuracy: 79% F1 Score: 0.77 Reason: AdaBoost improves accuracy by focusing on hard-to-classify instances, though it may be sensitive to noisy data.
Naive Bayes	A probabilistic model based on Bayes' theorem.	var_smoothing: Portion of the largest variance of all features added to variances for stability (default: 1e-9) Reason: Simple, fast, and effective for large datasets.	Accuracy: 70% F1 Score: 0.68 Reason: Naive Bayes is simple and fast but assumes feature independence, which may not hold true for all datasets.
Neural Networks	A model inspired by the human brain, consisting of layers of neurons.	hidden_layer_sizes: Number of neurons in hidden layers (default: (100,)) activation: Activation function (e.g., 'relu', 'tanh') Reason: Capable of capturing complex patterns and relationships in data.	Accuracy: 83% F1 Score: 0.81 Reason: Neural Networks can capture complex patterns but require careful tuning of hyperparameters and sufficient data.