عمرميات حول الروال العروية

أنشكة

<u>أنشطة تذكيرية</u>

نشاط1

حدد مجموعة تعريف الدالة العددية f للمتغير الحقيقي في الحالات التالية:

$$f(x) = \sqrt{1 - 2x} / - f(x) = \frac{-2x + 3}{x^2 - x + 2} / \frac{1}{x^2 - x + 2}$$

$$f(x) = \frac{\sqrt{x^2 - x}}{2x - 1} / \frac{1}{2x - 1}$$

نشاط2

(C) و $\left[\frac{-5}{2}; \frac{7}{2}\right]$ و لتكن f دالة عددية معرفة على f

منحناها كما في الشكل التالِي:

حدد القيمة القصوى و القيمة الدنيا لدالة f على -1 المجال $\left[\frac{-5}{2}; \frac{7}{2} \right]$

$$\forall x \in \left[\frac{-5}{2}, \frac{7}{2}\right] \quad \frac{-17}{6} \le f(x) \le \frac{5}{3}$$
 استنتج أن -2

$$f(x) \ge 0$$
 -ب $f(x) = 0$ -5

$$f(x) = 1$$
 حدد مبيانيا عدد حلو المعادلة -4

نشاط3

لتكن f دالة عددية لمتغير حقيقي معرفة بـ /I $f(x) = x^2 - 2x$

و C_f منحنى الدالة f في المعلم المتعامد الممنظم $\left(O; \vec{i}\;; \vec{j}\;\right)$

$$orall x\in\mathbb{R}$$
 $f\left(x
ight)=\left(x-1
ight)^2-1$ تأكد أن أن المنحنى C_f صورة المنحنى $\vec{u}\left(1;-1
ight)$ معرفة ب $x o x^2$ بالإزاحة ذا المتجهة

ب/ حدد طبيعة $\,C_f\,$ و أنشئه /II لتكن $\,g\,$ دالة عددية لمتغير حقيقي معرفتين ب $\,g\,(x)=x|x|-2x\,$

$$rac{S\left(A
ight) - A\left| A
ight| }{f}$$
 بين أن f دالة فردية -1

$$f$$
 عدد جدول تغیرات الدالة f

$$\left(0;\vec{i}\;;\vec{j}\;
ight)$$
 في المعلم المتعامد الممنظم ح C_{g}

نشاط4

لتكن f دالة عددية لمتغير حقيقي معرفتين بـ $f(x) = \frac{-2x-1}{x-1}$

و منحنى الدالة f في المعلم المتعامد الممنظم $\left(O; \vec{i}\;; \vec{j}\;\right)$

$$D_f$$
 أ- حدد -1

$$D_f$$
 ب- تحقق أن $f(x) = -2 + \frac{-3}{x-1}$ لكل ب

الممثل للدالة (C) صورة المنحنى طورة الممثل الدالة -2

$$\vec{u}$$
 (1;–2) المعرفة ب $x \to \frac{-3}{x}$ بالإزاحة ذا المتجهة ر

$$g(x) = \frac{-2|x|-1}{|x|-1}$$
 -3 الدالة المعرفة ب g الدالة المعرفة -3

$$g$$
 أ- حدد D_{g} و أدرس زوجية C_{g} ب- أنشئ

نش لط5

لتكن f و g دالتين عدديتين لمتغير حقيقي معرفتين بـ

$$g(x) = \frac{-2x+1}{x+1}$$
 g $f(x) = \frac{3x-2}{2x-1}$

$$g$$
 و f أعط جدول تغيرات كل من f

عناصرها و
$$C_g$$
 ع C_f عناصرها -2

لمميزة

<u>أنشطة التقديم</u>

نشاط6 (دالة مكبورة- دالة مصغورة – دالة محدودة) لتكن f دالة عددية لمتغير حقيقي معرفة بـ f

$$f\left(x\right) = \frac{2x^2 + 1}{x^2 + 1}$$

$$\forall x \in \mathbb{R}$$
 $f(x) < 2$ بين بين أن -1

$$\forall x \in \mathbb{R}$$
 1 $\leq f(x)$ اً/ بین أن -2

$$x \in \mathbb{R}$$
 $1 = f(x)$ ب/ حل المعادلة

$$\forall x \in \mathbb{R} \quad 1 \le f(x) < 2$$
 استنتج أن -3

نشاط10(مرکب دالتین)

نعتبر f و g الدالتين العدديتين للمتغير الحقيقي

$$g(x) = -x + 2$$
 ; $f(x) = \sqrt{x}$ المعرفتين بـ

احسب
$$g(3)$$
 و $g(6)$ و $g(3)$ أحسب -1

$$f\left(g\left(\frac{7}{4}\right)\right)$$
 o $f\left(g\left(6\right)\right)$ o $f\left(g\left(3\right)\right)$

من I من x میکن عمد I من I میکن -2 Iحسابf(g(x)) حدد f(g(x)) حدد

 $(x \to \sqrt{x+a})$ نشاط11(التمثيل المبياني لدالة نعتبر f و g الدالتين العدديتين للمتغير الحقيقي

$$g(x) = \sqrt{x+1}$$
 ; $f(x) = \sqrt{x}$ المعرفتين بـ

g و f حدد مجموعة تعريف كل من الدالتين f

g و f أدرس تغيرات كل من f

3- أ/ أتمم الحدول التالم

	/ الممر الجدول الثاني			<i>/</i> I)		
X	0	1	1	2	9		4
		$\frac{\overline{4}}{4}$			$\frac{\overline{4}}{4}$		
f(x)							

 $\left(C_{f}
ight)$ ب/ مستعينا بالجدول أنشئ

 $(C_{_f})$ صورة المنحنى $(C_{_g})$ صورة المنحنى -4 $\vec{u}(-2;0)$ بالإزاحة ذات المتجهة $(C_{_{\sigma}})$ ب/ أنشئ

 $(x \rightarrow ax^3)$ نشاط (التمثيل المبياني لدالة لتكن f دالة عددية لمتغير حقيقي معرفة بـ $f(x) = 2x^3$

f- بين أن f فردية f- ادرس تغيرات f و أعط جدول تغيرات f- أدرس الجدول التالوب

	د- ۱۱ انظم الجدول الثاني					
x	0	1	1	5	3	2
		$\overline{2}$		$\overline{4}$	$\overline{2}$	
f(x)						

 (C_{ϵ}) ب/ أنشئ

بالإتباع نفس الخطوات مثل مبيانيا $g(x) = -x^3$ نشاط7 (مقارنة دالتين)

نعتبر f و g الدالتين العدديتين للمتغير الحقيقي

$$g(x) = \frac{-x+3}{x+2}$$
 ; $f(x) = x^2 - 3x$ المعرفتين بـ

و g و f المنحنيين الممثلين لـ C_{g} و C_{f}

التوالي في مستوى منسوب إلى معلم م.م.

- C_g و C_f حدد تقاطع -1
 - $.C_g$ و C_f انشى -2
- $f(x) \ge g(x)$ حل ميانيا المتراجحة -3
- $f(x) \ge g(x)$ تحقق جبريا من حلول المتراجحة نشاط8 (الدالة الدورية)

لتكن f دالة عددية لمتغير حقيقي معرفة بـ $f(x) = \cos(\pi x)$

- $\forall x \in \mathbb{R}$ f(x+2) = f(x) بين أن -1
- انشئ جزء المنحنى الدالة f على المجال-2f علما أن جزء جزء المنحنى الدالة [-6;6]

على المجال [-1;1] كما يلي

نشاط9 (صورة مجال)

الشكل التالي يمثل دالة عددية معرفة على المجال

 $\forall x \in [-3,2]$ 1 $\leq f(x) \leq 4$ أ/ بين أن -1 $y \in [1;4]$ ب/ ليكن

[-3;2]بين أن المعادلة f(x) = y تقبل حلا في

f([-3;2]) = [1;4] ج/ استنتج أن

 $\begin{bmatrix} 2;4 \end{bmatrix}$ ثم $\begin{bmatrix} -3;1 \end{bmatrix}$ ثم المجال $\begin{bmatrix} -3;1 \end{bmatrix}$

عمرميات حول الروال العروية

I – تذكير

-1/ A ما- الدالة النوجية- الدالة الفردية

أ- تعريف

لتكن f دالة عددية لمتغير حقيقي و D_f حيز تعريفها

 $-x\in D_f$ من x من x نقول ان f دالة زوجية اذا تحقق الشرطان التاليان x

f(-x) = f(x) ککل *

 $-x\in D_f$ من x من x نقول إن x دالة فردية إذا تحقق الشرطان التاليان x

f(-x) = -f(x) لکل * من D_f من x

ب- <u>التأويل الهندسي</u>

<u>حاصية</u>

 $\left(O;\vec{i}\;;\vec{j}\;
ight)$ منحناها في مستوى منسوب إلى معلم متعامد ممنظم لتكن f دالة عددية و

 C_f دالة زوجية إذا وفقط إذا كان محور الأراتيب محور تماثل للمنحنى -*

المعلم المعلم المنحنى المنحنى أf دالة فردية إذا وفقط إذا كان المنحنى المنحنى f - تكون المنحبة لأصل المعلم f

2- تغيرات دالة

a- تعرف

 $\overline{D_f}$ لتكن f دالة عددية لمتغير حقيقي و I مجال ضمن

- $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ تكون f تزايدية على الخاو فقط إذا كان لكل تاكل كان لكل تاك الخاص ال
 - $x_1 \prec x_2$ تكون f تزايدية قطعا على I إذا و فقط إذا كان لكل x_1 و x_2 من x_1 اذا كان x_2 خان x_2 فان x_2
- $f\left(x_{1}\right)\geq f\left(x_{2}\right)$ تناقصیة علی I إذا و فقط إذا کان لکل x_{1} و x_{2} من I اذا کان f تناقصیة علی I
 - $x_1 \prec x_2$ تكون f تناقصية قطعا علىI إذا و فقط إذا كان لكل x_1 و x_2 من x_1 خان x_2 على $x_1 \prec x_2$ تكون $x_1 \prec x_2$ على المائل ع

b**- معدل التغير**

أ- تعريف

 D_f التكن f دالة عددية لمتغير حقيقي و x_1 وي x_2 عنصرين مختلفين

 x_2 العدد $\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}$ يسمى معدل تغير الدالة $\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}$

ب-<u> معدل التغير و الرتاية</u>

<u>خاصىة</u>

f الدالة $T=rac{f\left(x_{2}
ight)-f\left(x_{1}
ight)}{x_{2}-x_{1}}$ و D_{f} معدل تغير الدالة D_{f} معدل تغير الدالة

x_1 بين x_1 و

- $T \geq 0$ I تزایدیة علی ایزا و فقط اذا کان لکل مختلفین من آf تزایدیة علی ا
- $T\succ 0$ Iتکون f تزایدیة قطعا علی ازا و فقط ازا کان لکل مختلفین من f
 - $T \le 0$ Iتكون f تناقصية على الإذا و فقط إذا كان لكل x_1 و x_2 مختلفين من -

c- الرتابة وزوجية دالة

<u>خاصية</u>

 $\overline{\left(J=\left\{-x\ /x\in I
ight\}
ight)\ 0}$ لتكن f دالة زوجية و 1 مجال ضمن $D_f\cap\mathbb{R}^+$ و 1 مجال مماثل لـ 1 بالنسبة لـ 1

- .] خانت f تزایدیهٔ علی افان f تناقصیهٔ علی ا
- . أذا كانت f تناقصية على I فان f تزايدية على I

خاصىة

 $ig(J=ig\{-x\ /x\in Iig\}ig)$ لتكن f دالة فردية و I مجال ضمن $D_f\cap\mathbb{R}^+$ لتكن التكن f

- . J ازا کانت f تزایدیة علی f فان f تزایدیة علی f
- . افات f تناقصیة علی I ناد کانت f تناقصیة علی I

ملاحظة: لدراسة تغيرات دالة فردية أو زوجية يكفي دراسة تغيراتها على $D_f \cap \mathbb{R}^+$ ثم استنتاج تغيراتها على $D_f \cap \mathbb{R}^-$

3- <u>مطّاريف دالة</u>

أ- تعريف

I لتكن f دالة عددية لمتغير حقيقي معرفة على مجال ا

- $f\left(a
 ight)=\mathop{Max}\limits_{x\in D_f}f\left(x
 ight)$ نكتب $\forall x\in I$ نقول إن $f\left(a
 ight)$ هو القيمة القصوى لـ $f\left(a
 ight)$ على مجال $f\left(a
 ight)$ إذا كان $f\left(a
 ight)$
- $f\left(a
 ight)= \min_{x\in D_f}f\left(x
 ight)$ نکتب $\forall x\in I$ نقول ان $f\left(a
 ight)= f\left(a
 ight)$ على مجال $f\left(a
 ight)$ إذا كان $f\left(a
 ight)$ على مجال المانيا لـ $f\left(a
 ight)$

ں- خاصىة

ليكن a و b و a أعداد حقيقية حيث $a \prec b \prec c$ و $a \prec b \prec c$ و أعداد حقيقي b عند b انت b تزايدية على $a \prec b \prec c$ و تناقصية على $a \prec b \prec c$ و تناقصية على $a \prec b \prec c$ و تناقصية على $a \prec b \prec c$ و تنايدية على $a \prec b \prec c$

B / - دراسة بعض الدوال الاعتبادية

<u>1- الدالة الحدودية من الدرجة الثانية</u>

خاصیات

 $a \neq 0$ و $(a;b;c) \in \mathbb{R}^3$ حيث $f(x) = ax^2 + bx + c$ و التكن $f(x) = ax^2 + bx + c$ على $f(x) = a(x-\alpha)^2 + \beta$ عدد الدرجة الثانية المعرفة على $f(x) = a(x-\alpha)^2 + \beta$ عدد عددان حقيقيان $f(x) = a(x-\alpha)^2 + \beta$ عددان حقيقيان $f(x) = a(x-\alpha)^2 + \beta$ عددان حقيقيان $f(x) = a(x-\alpha)^2 + \beta$ الشـكل القانوني للدالة $f(x) = ax^2 + bx + c$ عددان حقيقيان $f(x) = ax^2 + bx + c$

- $ec{u}(lpha;eta)$ الممثل للدالة $x o ax^2$ بالإزاحة ذا المتجهة (C) الممثل للدالة *
- x=lpha اختی معلم متعامد هو شلجم رأسه $\Omegaig(lpha;etaig)$ و محور تماثله المستقیم f منحنی f منحنی و شلجم رأسه متعامد هو شلجم رأسه و شلجم رأسه و محور تماثله المستقیم C_f

$$\beta = f(\alpha)$$
و $\alpha = -\frac{b}{2a}$ ملاحظة:

: اذا کان $a \prec 0$ فان

		a < 0	יי וְצוּ טוּ
X	+∞	$\frac{-b}{2a}$	8
f	f	$\left(-\frac{b}{2a}\right)$	

	:فان $a\succ 0$ فان	<u>*- إذا كان</u>
x	$-\infty$ $\frac{-b}{2a}$	**
f	$\int \left(-\frac{b}{2a}\right)$	—

2- <u>الدالة المتخاطة</u>

$$ad-bc
eq 0$$
 و $c
eq 0$ حيث $f(x) = \frac{ax+b}{cx+d}$ ب $\mathbb{R} - \left\{ \frac{-d}{c} \right\}$ و $c
eq 0$ و $c
eq 0$

$$\mathbb{R} - \left\{ \frac{-d}{c} \right\}$$
 توجد أعداد حقيقية α و β و λ حيث α عداد حقيقية α توجد أعداد حقيقية α

$$ec{u}(lpha;eta)$$
 هو صورة المنحنى C الممثل للدالة $x o rac{\lambda}{x}$ بالإزاحة ذا المتجهة *

منحنى f في معلم متعامد هو هدلول مركزه $\Omega(lpha;eta)$ و مقارباه هما المستقيمان المعرفان بـ C_f

$$y = \beta$$
 و $x = \alpha$

$$\beta = \frac{a}{c}$$
 و $\alpha = \frac{-d}{c}$

<u>II– الدالة المكبورة –الدالةالمصغورة – الدالة المحدودة</u>

2/ تعاریف

I دالة معرفة على مجال f

Iنقول إن f مكبورة على I اذا وجد عدد حقيقي Mحيث: $f(x) \leq M$ لكل x من x

Iنقول إن f مصغورة على I اذا وجد عدد حقيقي mحيث: $f(x) \geq m$ لكل x من $f(x) \geq m$

I من x لکل $m \le f(x) \le M$ و m حيث: $m \le f(x) \le M$ لکل $m \le f(x)$ من $m \le f(x)$

 \overline{I} لتكن f دالة معرفة على مجال

Iنقول إن $f(x) \leq s$ حيث: s من s اذا وجد عدد حقيقي موجب عدد حيث انقول إن s من ا

تمرين

 $f(x) = \frac{x + \sqrt{x^2 - 4}}{x}$ نعتبر f الدالة العددية للمتغير الحقيقي المعرفة ب

 D_f حدد -1

2- بين أن الدالة مكبورة على $\left[2,+\infty\right[$ بالعدد 2 و مصغورة على $\left[2,+\infty\right[$ بالعدد 1

<u>III مقارنة دالتين- التأويل الهندسي</u>

2/ أ/ تساوي دالتين

<u>- تعریف</u>

نعتبر f و g دالتین عددیتین و $D_{\scriptscriptstyle f}$ و $D_{\scriptscriptstyle g}$ مجموعتي تعریفهما علی التوالي

 D_f نقول إن f تساوي g و نكتب g اذا و فقط اذا كان: f = g و $D_g = D_f$ و اذا و فقط اذا كان:

ب/ مقارنة دالتين

 \overline{I} نعتبر f و g دالتين معرفتين مجال

نقول إن f أصغر أو تساوي g على I اذا كان: I مهما کانت x من X نکتب $f \leq g$ علی $f(x) \leq g(x)$

ج/ التأويل الهندسي

I على g على عني هندسيا أن منحنى الدالة f تحت منحنى g على $f \leq g$

د/ الدالة الموجبة- الدالة السالبة

I دالة معرفة على مجال f

 $(\forall x \in I ; f(x) \ge 0) \Leftrightarrow I$ دالة موجبة على f^*

 $(\forall x \in I ; f(x) \le 0) \Leftrightarrow I$ دالة سالبة على f *

<u>IV – الدالة الدورية</u>

1- نشاط8

نقول أن f دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث

 $\forall x \in D_f$ $x + T \in D_f$; $x - T \in D_f$ f(x+T)=f(x)

العدد T يسمى دور لدالة f .اصغر دور موجب قطعا يسمى دور الدالةf

أمثلة

 π الدالة $x \to \tan x$ دورية دورها * 2π الدالتان $x \to \sin x$ و $x \to \sin x$ دوریتان و دورهما *

 $\frac{2\pi}{|a|}$ الدالتان $x o \cos ax$ و $x o \sin ax$ و $x o \cos ax$ الدالتان *

 $\frac{\pi}{|a|}$ الدالة $x \to \tan ax$ (حيث $a \ne 0$ دورية دورها *

3- <u>خاصة</u> إذا كانت للدالة f دور T فان f(x+nT) = f(x) $\forall x \in D_f, \forall n \in \mathbb{Z}$

اذا كانت f دالة دورية و T دورا لها فانه:

 $D_f \cap \left| rac{-T}{2}, rac{T}{2}
ight|$ أو $D_f \cap \left[0, T
ight[$ على $O_f \cap \left[0, T
ight]$

یستنج جزء منحنی الـدالة f علی $n \in \mathbb{Z}$ حیث $D_f \cap \left| \frac{-T}{2} + nT; \frac{-T}{2} + (n+1)T \right|$ من جزئ منحنی •

عدد صحيح نسـبي. على $\vec{u}(nT;0)$ عدد الإزاحة ذات المتجهة $D_f \cap \left| \frac{-T}{2}, \frac{T}{2} \right|$ على

۷– صورة محال بدالة

1- نشاط9

2- تعریف

 $\overline{D_f}$ لتكن f دالة عددية للمتغير حقيقي و I مجال ضمن من

 $f\left(I
ight)$ صورة المجال I بالدالة f هي مجموعة جميع صور عناصر I بالدالة f نرمز له بـ

 $f(I) = \{ f(x) / x \in I \}$

ملحوظة:

$$y \in f(I) \Leftrightarrow \exists x \in I / f(x) = y$$

 $\mathbb R$ دالة عددية و I مجال ضمن من f *

$$f(I) \subset J \Leftrightarrow \forall x \in I \quad \exists y \in J \quad /f(x) = y$$

$$J \subset f(I) \Leftrightarrow \forall y \in J \quad \exists x \in I \quad /f(x) = y$$

VI– مرکب دالتین

1- نشاط10

2- تعریف

$$fig(D_fig)$$
ر دالتين حيث g و g دالتين حيث

 $x \in D_f$ مركبة الدالتين $f \circ g$ في هذا الترتيب هي الدالة التي نرمز لها بالرمز $g \circ f$ حيث لكل

 $g \circ f(x) = g(f(x))$

$:g\circ f$ مجموعة تعريف

$$D_{g \circ f} = \left\{ x \in D_f / f(x) \in D_g \right\}$$

<u>تمرین</u>

$$g(x) = 2x - 1$$
 و $f(x) = x^2 + x$ لتكن

حدد
$$g \circ f$$
 و $g \circ f$ ثم قارنهما

 $g \circ f \neq f \circ g$ على العموم : على على

$$h(x) = \frac{4x^2 - 4x - 1}{8x^2 - 8x + 1}$$

$$g(x) = 2x - 1$$
 ; $f(x) = 2x^2 + 3x + 1$

$$h \circ g$$
 ; $g \circ f$; $f \circ g$ حدد -1

$$h = t \circ g$$
 حدد دالة t حيث -2

$$f = l \circ g$$
 حدد دالة l حيث - 3

<u>3 - مركيب دالتين و الرتابة</u>

$$fig(Iig)$$
لتكن f و g دالتين و I مجالين ضمن D_g و D_f مجالين ضمن و I

$$I$$
 ازا کان f تزایدیة علی I و g تزایدیة علی J و تزایدیة علی f

$$I$$
 ازا کان $g\circ f$ تناقصیة علی g و g تناقصیة علی f نان

$$I$$
 ان $g\circ f$ تناقصیة علی I و g تناقصیة علی I خان f تناقصیة علی f

$$I$$
 د ایات $g\circ f$ ناقصیة علی I و g تزایدیة علی I ناقصیة علی f انا

تمرين

نعتبر
$$g$$
 و g الدالتين العدديتين للمتغير الحقيقي المعرفتين بـ

$$g(x) = x^2 + 1$$
; $f(x) = 3x - 1$

$$g\circ f$$
 و $f\circ g$ حدد تغیرات و f باستعمال تغیرات و م

$$x \to \sqrt{x+a}$$
 و $x \to ax^3$ تمثيل الدالتين –VI

$$x \to \sqrt{x+a}$$
 الدالة -1

نشاط11

 $[-a;+\infty[$ معرفة و تزايدية قطعا على $f:x\to \sqrt{x+a}$

a=-1 أمثلة : في نفس المعلم أنشئ $C_{_f}$ من أجل a=0 و

تمرين

$$g(x) = \sqrt{-x^2 + 1}$$
 و $f(x) = \sqrt{x + 1}$ و $f(x) = \sqrt{x + 1}$ لتكن $f(x) = \sqrt{x + 1}$

 $\left(C_f
ight)$ و أنشئ f عط جدول تغيرات أعط

الين مركب دالتين و عيرات الدالة و باستعمال مركب دالتين -2

 $x \rightarrow ax^3$ الدالة -2

نشاط12 خاصىة

 $a \in \mathbb{R}^*$ و $f(x) = ax^3$ لتكن f دالة عددية لمتغير حقيقي حيث