MBMT Geometry Round — Zermelo

May 21, 2022

Full Name			
	Student I	D Number	

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of **8** questions. You will have **30** minutes to complete the round. Each question is *not* worth the same number of points. Questions answered correctly by fewer competitors will be weighted more heavily. Please write your answers in a reasonably simplified form.

 1	Point E is on side AB of rectangle $ABCD$. Find the area of triangle ECD divided by the area of rectangle $ABCD$.
2	Garb and Grunt have two rectangular pastures of area 30. Garb notices that his has a side length of 3, while Grunt's has a side length of 5. What's the positive difference between the perimeters of their pastures?
 3	A scalene triangle (the 3 side lengths are all different) has integer angle measures (in degrees). What is the largest possible difference between two angles in the triangle?
 4	Let point E be on side \overline{AB} of square $ABCD$ with side length 2. Given $DE = BC + BE$, find BE .
5	The two diagonals of rectangle $ABCD$ meet at point E . If $\angle AEB = 2\angle BEC$, and $BC = 1$, find the area of rectangle $ABCD$.
 6	In $\triangle ABC$, let D be the foot of the altitude from A to BC . Additionally, let X be the intersection of the angle bisector of $\angle ACB$ and AD . If $BD = AC = 2AX = 6$, find the area of ABC .
7	Let $\triangle ABC$ have $\angle ABC = 40^\circ$. Let D and E be on \overline{AB} and \overline{AC} respectively such that \overline{DE} is parallel to \overline{BC} , and the circle passing through points D , E , and C is tangent to \overline{AB} . If the center of the circle is O , find $\angle DOE$.
 8	Consider $\triangle ABC$ with $AB=3$, $BC=4$, and $AC=5$. Let D be a point of AC other than A for which $BD=3$, and E be a point on BC such that $\angle BDE=90^\circ$. Find EC .