5004 Homework 2

RONG Shuo

November 10, 2024

Question 1:

1. For each of the following functions $f(x_1, x_2)$, find all critical points (i.e, all x_1, x_2 such that $\nabla f(x_1, x_2) = \mathbf{0}).$

(a)
$$f(x_1, x_2) = (4x_1^2 - x_2)^2$$

(b)
$$f(x_1, x_2) = 2x_2^3 - 6x_2^2 + 3x_1^2x_2$$

(c)
$$f(x_1, x_2) = (x_1 - 2x_2)^4 + 64x_1x_2$$

(a)
$$f(x_1, x_2) = (4x_1^2 - x_2)^2$$

(b) $f(x_1, x_2) = 2x_2^3 - 6x_2^2 + 3x_1^2x_2$
(c) $f(x_1, x_2) = (x_1 - 2x_2)^4 + 64x_1x_2$
(d) $f(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2 + x_1 - x_2$

Answer:

(a)

$$\frac{\partial f}{\partial x_1} = 2(4x_1^2 - x_2)(8x_1) = 16x_1(4x_1^2 - x_2)$$
$$\frac{\partial f}{\partial x_2} = 2(4x_1^2 - x_2)(-1) = -2(4x_1^2 - x_2)$$

set the gradient to 0:

$$16x_1(4x_1^2 - x_2) = 0 (1)$$

$$-2(4x_1^2 - x_2) = 0 (2)$$

if $x_1 = 0$, from (2) we can get that $x_2 = 0$ if $x_1 \neq 0$, from equation (1), we know:

$$4x_1^2 = x_2$$

this satisfied $(x_1, x_2) = (0, 0)$ Thus, we can conclude that the critical points are:

$$(x_1, x_2) = (x_1, 4x_1^2), \forall x_1 \in \mathbb{R}.$$

(b)

$$\frac{\partial f}{\partial x_1} = 6x_1x_2$$

$$\frac{\partial f}{\partial x_2} = 6x_2^2 - 12x_2 + 3x_1^2$$

set the gradient to 0:

$$6x_1x_2 = 0$$
$$6x_2^2 - 12x_2 + 3x_1^2 = 0$$

if $x_1 = 0$,

$$6x_2^2 - 12x_2 = 0$$
$$6x_2(x_2 - 2) = 0$$

we can conclude that $(x_1, x_2) = (0, 0)$, or $(x_1, x_2) = (0, 2)$. if $x_2 = 0$,

$$3x_1^2 = 0x_1 = 0$$

This gives $(x_1, x_2) = (0, 0)$

In conclusion, the critical points is (0,0) and (0,2)

(c)

$$\frac{f}{\partial x_1} = 4(x_1 - 2x_2)^3 + 64x_2$$
$$\frac{f}{\partial x_2} = -8(x_1 - 2x_2)^3 + 64x_1$$

set the gradient to 0:

$$4(x_1 - 2x_2)^3 + 64x_2 = 0$$
$$(x_1 - 2x_2)^2 = -16x_2$$
$$-8(x_1 - 2x_2)^3 + 64x_1 = 0$$
$$(x_1 - 2x_2)^3 = 8x_1$$

$$(x_1 - 2x_2)^3 = -16x_2$$
$$(x_1 - 2x_2)^3 = 8x_1$$
$$-16x_2 = 8x_1$$
$$-2x_2 = x_1$$

Substituting $-2x_2 = x_1$ to $(x_1 - 2x_2)^2 = -16x_2$, we can get:

$$64x_2^3 + 16x_2 = 0$$
$$x_2^2 = \frac{1}{4}$$

Thus, the result is

$$(x_1, x_2) = (-1, \frac{1}{2})$$

 $(x_1, x_2) = (1, -\frac{1}{2})$

$$\frac{\partial f}{\partial x_1} = 2x_1 + 4x_1 + 1$$
$$\frac{\partial f}{\partial x_2} = 4x_2 + 2x_2 - 1$$

set the gradient to 0:

$$2x_1 + 4x_2 + 1 = 0$$
$$4x_2 + 2x_2 - 1 = 0$$

$$x_1 = -\frac{1}{2} - 2x_2$$

Substituting this to second equation.

$$4(-\frac{1}{2} - 2x_2) + 2x_2 - 1 = 0$$

$$-2 - 8x_2 + 2x_2 - 1 = 0$$

$$x_2 = -\frac{1}{2}$$

$$x_1 = -\frac{1}{2} + 1 = \frac{1}{2}$$

Thus, the critical point is $(\frac{1}{2}, -\frac{1}{2})$

Question 2:

- 2. Find the gradient of the following functions, where the space \mathbb{R} and $\mathbb{R}^{n\times n}$ are equipped with the standard inner product.
- (a) $f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2 + \lambda \|\boldsymbol{x}\|_2^2$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $(\lambda > 0)$ are given.
- (b) $f(X) = \mathbf{b}^T X \mathbf{c}$, where $X \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$
- (c) $f(\mathbf{X}) = \mathbf{b} \mathbf{X}^T \mathbf{X} c$, where $\mathbf{X} \in \mathbf{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$

Answer:

(a)

$$f(y) = \frac{1}{2} ||Ay - b||_{2}^{2} + \lambda ||y||_{2}^{2}$$

$$f(y) = \frac{1}{2} ||Ay - Ax + Ax - b||_{2}^{2} + \lambda ||y - x + x||_{2}^{2}$$

$$f(y) = \frac{1}{2} ||A(y - x) + Ax - b||_{2}^{2} + \lambda ||(y - x) + x||_{2}^{2}$$

$$f(y) = \frac{1}{2} ||A(y - x)||^{2} + \langle A(y - x), Ax - b \rangle + \frac{1}{2} ||Ax - b||_{2}^{2} + \lambda ||y - x||^{2} + \lambda \langle y - x, x \rangle + \lambda ||x||_{2}^{2}$$

$$f(y) = \frac{1}{2} ||A(y - x)||^{2} + \langle (y - x), A^{T}(Ax - b) \rangle + \frac{1}{2} ||Ax - b||_{2}^{2} + \lambda ||y - x||^{2} + \lambda \langle y - x, x \rangle + \lambda ||x||_{2}^{2}$$

$$f(y) = \frac{1}{2} ||A(y - x)||^{2} + \langle (y - x), A^{T}(Ax - b) \rangle + f(x) + \lambda ||y - x||^{2} + \lambda \langle y - x, x \rangle$$

$$\lim_{\|\mathbf{y} - \mathbf{x}\|_{2} \to 0} \frac{|f(\mathbf{y}) - (f(\mathbf{x}) + \langle \mathbf{A}^{T}(\mathbf{A}\mathbf{x} - \mathbf{b}), \mathbf{y} - \mathbf{x} \rangle + \lambda \langle \mathbf{y} - \mathbf{x}, \mathbf{x} \rangle)|}{\|\mathbf{y} - \mathbf{x}\|_{2}}$$

$$= \lim_{\|\mathbf{y} - \mathbf{x}\|_{2} \to 0} \frac{\frac{1}{2} \|\mathbf{A}(\mathbf{y} - \mathbf{x})\|^{2} + \lambda \|\mathbf{y} - \mathbf{x}\|^{2}}{\|\mathbf{y} - \mathbf{x}\|_{2}}$$

$$\leq \lim_{\|\mathbf{y} - \mathbf{x}\|_{2} \to 0} \frac{\frac{1}{2} \|\mathbf{A}\|_{2}^{2} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \|\mathbf{y} - \mathbf{x}\|^{2}}{\|\mathbf{y} - \mathbf{x}\|_{2}}$$

$$= \lim_{\|\mathbf{y} - \mathbf{x}\|_{2} \to 0} \frac{1}{2} \|\mathbf{A}\|_{2}^{2} \|\mathbf{y} - \mathbf{x}\| + \lambda \|\mathbf{y} - \mathbf{x}\|$$

$$= 0$$

In conclusion, the gradient for(a) is $\nabla f(\mathbf{x}) = \mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) + 2\lambda \mathbf{x}$

(b) We know the definition of the $(\nabla_{\mathbf{X}} f(\mathbf{X}))_{ij} = \frac{\partial f}{\partial \mathbf{X}_{ij}}$ And we know that $f(\mathbf{X})$

$$f(\boldsymbol{X}) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i X_{ij} c_j$$

$$\frac{\partial f}{\partial X_{ij}} = b_i c_j$$

$$\nabla_{\boldsymbol{X}} f(\boldsymbol{X}) = \begin{bmatrix} b_1 c_1 & b_1 c_2 & \cdots & b_1 c_n \\ b_2 c_1 & b_2 c_2 & \cdots & b_2 c_n \\ \vdots & \vdots & \vdots & \vdots \\ b_n c_1 & b_n c_2 & \cdots & b_n c_n \end{bmatrix}$$

$$\nabla_{\boldsymbol{X}} f(\boldsymbol{X}) = \boldsymbol{b} \boldsymbol{c}^T$$

In conclusion, the gradient of $f(X) = b^T X c$ is $\nabla_X f(X) = b c^T$

(c) We consider

$$f(\boldsymbol{X}) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i X_{ji} X_{ij} c_j$$

$$\frac{\partial f}{\partial X_{ij}} = b_i X_{ji} c_j + b_i X_{ji} c_j = 2b_i X_{ji} c_j$$

$$\nabla_{\boldsymbol{X}} f(\boldsymbol{X}) = \begin{bmatrix} 2b_1 \boldsymbol{X}_{11} c_1 & 2b_1 \boldsymbol{X}_{21} c_2 & \cdots & 2b_1 \boldsymbol{X}_{n1} c_n \\ 2b_2 \boldsymbol{X}_{12} c_1 & 2b_2 \boldsymbol{X}_{22} c_2 & \cdots & 2b_2 \boldsymbol{X}_{n2} c_n \\ \vdots & \vdots & \vdots & \vdots \\ 2b_n \boldsymbol{X}_{1n} c_1 & 2b_n \boldsymbol{X}_{2n} c_2 & \cdots & 2b_n \boldsymbol{X}_{nn} c_n \end{bmatrix}$$

$$\nabla_{\boldsymbol{X}} f(\boldsymbol{X}) = 2\boldsymbol{b} \boldsymbol{X} \boldsymbol{c}^T$$

Question 3:

3. Let $\{x_i, y_i\}_{i=1}^N$ be given with $x_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$. Assume N < n. Consider the ridge regression

$$\text{minimize}_{\boldsymbol{a} \in \mathbb{R}^N} \sum_{i=1}^N (\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle - y_i)^2 + \lambda \|\boldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter, and we set the bias b=0 for simplicity.

(a) Prove that the solution must be in the form of $\boldsymbol{a} = \sum_{i=1}^{N} c_i \boldsymbol{x}_i$ for some $\boldsymbol{c} = [c_1, c_2, \cdots, c_N]^T \in \mathbb{R}^N$.

(hint: similar to the proof of the representer theorem.)

(b) Re-express the minimization in terms of $c \in \mathbb{R}^N$, which has fewer unknowns than the original formulation as N < n.

Answer:

(a) We can denote $\boldsymbol{a} = \boldsymbol{a}_s + \sum_{i=1}^N c_i \boldsymbol{x}_i$, where $\boldsymbol{c} = [c_1, c_2, \cdots, c_N]^T \in \mathbb{R}^N$, and $\langle \boldsymbol{a}_s, \boldsymbol{x}_i \rangle = 0$.

$$\begin{split} \sum_{i=1}^{N} (\langle \boldsymbol{a}, \boldsymbol{x}_{i} \rangle - y_{i})^{2} + \lambda \|\boldsymbol{a}\|_{2}^{2} &= \sum_{i=1}^{N} (\langle \boldsymbol{a}_{s} + \sum_{j=1}^{N} c_{j} \boldsymbol{x}_{j}, \boldsymbol{x}_{i} \rangle - y_{i})^{2} + \lambda \|\boldsymbol{a}_{s} + \sum_{j=1}^{N} c_{j} \boldsymbol{x}_{j}\|_{2}^{2} \\ &= \sum_{i=1}^{N} (\langle \boldsymbol{a}_{s} + \sum_{j=1}^{N} c_{j} \boldsymbol{x}_{j}, \boldsymbol{x}_{i} \rangle - y_{i})^{2} + \lambda \|\boldsymbol{a}_{s} + \sum_{j=1}^{N} c_{j} \boldsymbol{x}_{j}\|_{2}^{2} \\ &= \sum_{i=1}^{N} (\sum_{j=1}^{N} c_{j} \langle \boldsymbol{x}_{j}, \boldsymbol{x}_{i} \rangle - y_{i})^{2} + \lambda \sum_{j=1}^{N} \sum_{i=1}^{N} c_{j_{1}} c_{j_{2}} \langle \boldsymbol{x}_{j_{1}} \boldsymbol{x}_{j_{2}} \rangle + \lambda \|\boldsymbol{a}_{s}\|^{2} \end{split}$$

Introduce $\boldsymbol{K} = [\langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle]_{i,j=1}^N \in \mathbb{R}^{N \times N}$.

$$\sum_{i=1}^{N} (\sum_{j=1}^{N} c_j \langle \boldsymbol{x}_j, \boldsymbol{x}_i \rangle - y_i)^2 + \lambda \sum_{j_1=1}^{N} \sum_{j_2=1}^{N} c_{j_1} c_{j_2} \langle \boldsymbol{x}_{j_1} \boldsymbol{x}_{j_2} \rangle + \lambda \|\boldsymbol{a}_s\|^2$$

$$= \sum_{i=1}^{N} ((\boldsymbol{K}^T \boldsymbol{c})_i - y_i)^2 + \lambda \boldsymbol{c}^T \boldsymbol{K} \boldsymbol{c} + \lambda \|\boldsymbol{a}_s\|^2$$

We know:

$$\begin{aligned} & \text{minimize}_{\boldsymbol{a} \in \mathbb{R}^n} \sum_{i=1}^N ((\boldsymbol{K}^T \boldsymbol{c})_i - y_i)^2 + \lambda \boldsymbol{c}^T \boldsymbol{K} \boldsymbol{c} + \lambda \|\boldsymbol{a}_s\|^2 \\ & \iff & \text{minimize}_{\boldsymbol{a} \in \mathbb{R}^n} \sum_{i=1}^N ((\boldsymbol{K}^T \boldsymbol{c})_i - y_i)^2 + \lambda \boldsymbol{c}^T \boldsymbol{K} \boldsymbol{c} \\ & \text{and minimize}_{\boldsymbol{a} \in \mathbb{R}^n} \lambda \|\boldsymbol{a}_s\|^2 \\ & \iff \boldsymbol{a}_s^* = \mathbf{0} \\ & \text{and } \boldsymbol{c}^* = & \text{argmin}_{\boldsymbol{c} \in \mathbb{R}^n} \sum_{i=1}^N ((\boldsymbol{K}^T \boldsymbol{c})_i - y_i)^2 + \lambda \boldsymbol{c}^T \boldsymbol{K} \boldsymbol{c} \end{aligned}$$

In conclusion, the optimal $\boldsymbol{a}^* = \sum_{i=1}^N c_i^* \boldsymbol{x}_i$

Question 4:

- 4. Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.
- (a) Prove that x is a global minimizer of f if and only if Ax = -b.
- (b) Prove that f is bounded below over \mathbb{R}^n if and only if $\mathbf{b} \in \{A\mathbf{y} : \mathbf{y} \in \mathbb{R}^n\}$.

Answer:

Question 5:

5. We consider the following optimization problem:

$$\text{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) = \log \left(\sum_{i=1}^m \exp(\boldsymbol{a}_i^T \boldsymbol{x} + b_i) \right)$$
(3)

where $\mathbf{a}_1, \dots \mathbf{a}_m \in \mathbb{R}^n$ and $b_1, \dots b_m \in \mathbb{R}$ are given.

- (a) Find the gradient of f(x).
- (b) If we use gradient descent to solve Problem (1), will it converge to the global minimizer? Please justify your answer.

Answer