(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 8 July 2004 (08.07.2004)

PCT

(10) International Publication Number WO 2004/057306 A1

(51) International Patent Classification7: G01N 1/20, 15/02

(21) International Application Number:

PCT/NO2003/000431

(22) International Filing Date:

19 December 2003 (19.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 20026178

20 December 2002 (20.12.2002) NO

(71) Applicant and

(72) Inventor: FJERDINGSTAD, Sølve, J. [NO/NO]; c/o Fras AS, P.O. Box 222, N-1322 Høvik (NO).

(72) Inventors; and

(75) Inventors/Applicants (for US only): REINTJES, John, F. [US/US]; 6019 Craft Road, Alexandria, AK 22066 (US). TUCKER, John, E. [US/US]; 14905 Jaslow Street, Centreville, VA 22066 (US). TANKERSLEY, Lawrence, L.

[US/US]; 305 Carriage Run Road, Annapolis, MD 21403-1661 (US).

- (74) Agents: ONSAGERS AS et al.; P.O.Box 6963 St. Olavs plass, N-0130 OSLO (NO).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: IN SITU SAMPLING AND MONITORING A FLUID

(57) Abstract: A method for in situ sampling and monitoring of a fluid flowing in a flow path, whereby the fluid is to be directed to a chamber a first valve may provide a connection between an inlet to the chamber and the flow path and a second valve may provide a connection between an outlet from the chamber and the flow path, comprising the following steps:a)opening the first valve and the second valve to let the incoming fluid flow through the inlet to the chamber and from the chamber through the outlet into the continuation of the fluid path, thereby allowing fluid to circulate through the chamber for a certain time, b) trapping the fluid in the chamber by closing the second valve and thereafter closing the first valve, c)opening a valve 9 for reducing pressure, to obtain a pressure in the chamber suitable for monitoring the fluid, d)opening an access valve 11 and leading the fluid trapped in the chamber into a monitor system wherein the fluid is analyzed. and thereby providing the data representing the fluid characteristics,e)

providing exit for the fluid analyzed through a further fluid path possibly to a low pressure section of the system.

WO 2004/057306 A1

WO 2004/057306 A1

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

15

20

25

In situ sampling and monitoring a fluid

The present invention relates to a method for in situ sampling and monitoring of a fluid flowing in a flow path, in accordance with the preamble of claim 1. Furthermore the invention relates to an apparatus for in situ sampling and monitoring of a fluid flowing in a flow path, in accordance with the preamble of claim 6.

The present invention may be utilized for sampling and analyzing/monitoring the condition of any kind of fluid, but may be especially suitable for analysis of particulates in a flowing fluid. The term monitoring will be used in the following, this term is meant also to include analyzing.

Analysis of debris particles in lubricating oil is a well-known method of monitoring the condition of oil wetted machinery. Particulate monitoring is also an important maintenance procedure for hydraulic systems. One commonly used method for performing the analysis is to withdraw a sample of fluid from the equipment manually and physically transport it to a laboratory for analysis. Once at the laboratory, various tests are performed, including particle counting and microscopic analysis of debris particles. Various methods are used for sample preparation for microscope analysis, including centrifugal separation, filterpatch and ferroaraphy. Once prepared, the samples are examined by a human expert and machine condition at the time the sample was taken is identified by subjective evaluation of the sample.

While this procedure is effective in some circumstances, it has deficiencies that reduce its effectiveness and raise its cost in many applications. Among the deficiencies are the long delay from drawing of the sample to receipt of analysis report, the need for sample preparation, the subjective evaluation of samples and the inherent inaccuracy of sampling as it is currently done from drain ports or sumps. In addition, the mere need for drawing a sample manually contributes to the maintenance workload and expense. In addition, it can often miss transient debris production that can be indicative of certain mechanical malfunctions.

- 30 Some of these deficiencies are addressed in known technologies. The inaccuracy of sampling is addressed with the on line fluid sampler in NO 171430 in which particles from the full flow are captured in a sample bottle for transport and analysis.
- Sample preparation and subjective evaluation are addressed in LaserNet Fines (LNF) by NRL and in US patent No. 5,572,320 in which particles from a sample bottle are analyzed and classified automatically with computer classifiers, and quantitative measures of debris characteristics based on size and shape distributions are produced for evaluation of machine condition. LaserNet Fines also address the

10

15

30

35

deficiency of long delay times between sample draw and report by being installed on site (or on ship or platform, depending on the circumstances).

LaserNetFines is a technology for identification of mechanical wear in oil-wetted machinery, but could also be used to survey the conditions of other kinds of fluid: LaserNetFines determines fault type and severity by measurement of size distribution, concentration, rate of production and shape characteristics of wear particles. It also detects and measures free water and fiber content and is applicable for cleanliness determination in hydraulic systems. The LaserNet Fines technology is compatible with implementation as a benchtop bottle sample analyzer or with on line operation for particle analysis without drawing a sample. To data LaserNet Fines has been implemented for mechanical wear and hydraulic monitoring as a bottle sampler.

Accurate sampling of the particulate content of the circulating fluid is vital to effective mechanical-wear or hydraulic-contamination monitoring. Inaccuracies associated with sampling through drain ports or other diverted flow--paths can easily lead to erratic trending results. In NO 171430 a full flow on-line sampler is introduced to provide accurate bottle sampling of the particles in the full flow of an oil system.

Neither of these technologies alone address the deficiency of the requirement of manually drawn samples with their accompanying expense and demand on workload. However, these publications provide the basis for the current invention; the complete document of NO 171430, the complete document of US 5572320 and publication on LNF "On Line Operation of LasesNet Fines With Accurate Sampling", Reintjes et al, should therefore be considered included as a whole in this current patent application.

The present invention combines in one embodiment a monitor system such as the LaserNet Fines with the fluid sampler in NO 171430 for accurate particle monitoring or any other monitoring of the fluid. LaserNet Fines can be operated on line on a laboratory flow loop. Particle counting and imaging results can be utilized for a variety of flow conditions. On line results are compared to bottle sample results for the same conditions.

The new aspects of this invention are the method and apparatus of obtaining simultaneously automatic on line reliable sampling of debris particles in fluid systems and automatic quantitative assessment of equipment condition through analysis of size and shape characteristics of the particles. Prior art outside of the two technologies included here suffer from inaccuracies in manually drawn samples originating in non-repeatable aspects of sampling, and from non-quantitative assessment of debris particles. Existing on line debris monitors that count and size particles cannot identify the type of mechanical fault responsible for the wear, and

10

25

30

35

therefore cannot address the severity of the problem. The combination of the fluid sampler in NO 171430 and the LaserNet Fines debris monitor that the full power of on line sampling and debris analysis is realized. The invention covers method and apparatus for obtaining debris analysis based on size and shape characteristics with automatic on line operation and transmission of the analysis data to a remote site.

One object of this invention is to address the deficiency of the long delay and expense due to manual sample extraction and transport with method and apparatus by combining the sampling procedure in NO 171 430 with a monitor system such as the LNF in a manner that allows on line-automatic monitoring, eliminating the need for manual sampling and sample preparation for analysis.

It is a second object of this invention to provide for transmission of the analysis carried out in the monitor system, to a remote site, eliminating the need for travel to the equipment for data retrieval.

These objects are attained according to the inventions as by a method for in situ sampling and monitoring/analyzing a fluid flowing in a flow path where the fluid is to be directed to a chamber. A first valve may be provided to obtain a connection between an inlet to the chamber and the flow path. A second valve may provided to obtain a connection between an outlet from the chamber and the flow path.

The method comprises the following steps:

- a)opening the first valve and the second valve to let the incoming fluid flow through the inlet to the chamber and from the chamber through the outlet into the continuation of the fluid path, thereby allowing fluid to circulate through the chamber for a certain time,
 - b) trapping the fluid in the chamber by closing the second valve and thereafter closing the first valve,
 - c)opening a valve for reducing pressure, to obtain a pressure in the chamber suitable for monitoring the fluid,
 - d)opening an access valve and leading the fluid trapped in the chamber into a monitor system wherein the fluid is analyzed, and thereby providing data representing the fluid characteristics.
 - e) providing exit for the fluid analyzed through a further fluid path possibly to a low pressure section of the system.

In one embodiment of the method according to the invention the valve for reducing pressure is to be opened for the chamber to communicate with an expansion chamber or some other structure which is capable of containing fluid. A valve for relieving pressure is opened to allow air to enter the chamber to maintain the pressure in the chamber, as the fluid is withdrawn from the chamber. Furthermore the fluid may be led into the monitor system by the effect of an internal pump of the monitor system.

The monitor system according to the invention may comprise a various range of system accommodated to the fluid which is to be monitored. In one embodiment the monitor system for analyzing the fluid and the possible particles therein, may be an optical system comprising a light source, an optical detector, means for processing data in accordance with the system described in US 5572320. In another 5 embodiment of the invention the monitor system is applicable for fluid containing particles such as an oil system, in which the monitor system can be adapted to monitor mechanical wear or hydraulic contamination in the fluid. The monitor system may then comprise a system wherein the particles in the fluid are analyzed and classified automatically with computer classifiers. Furthermore this monitor 10 system includes quantitative measurements of debris characteristics based on size and shape distributions produced for evaluation of machine condition, concentration, measures of free water and fiber content. The system is applicable for cleanliness determination in hydraulic system.

- The data from the fluid analyzed in the monitor system can be stored locally, and/or transferred to a remote computer for evaluation or maintenance support, wherein the data can be transferred automatically after each analysis record, after an accumulation of a number of analyses record, or on a time sequence or on demand by a local or remote operator.
- The invention also concerns an apparatus for in situ sampling and monitoring a fluid flowing in a flow path comprising:
 - -an inlet and an outlet connected to a chamber

30

- -a first valve provided for connecting an inlet to the flow path,
- -a second valve provided for connecting an outlet to the flow path,
- 25 thereby allowing the fluid to fill the chamber, circulate the fluid through the chamber for a certain time, and capturing the fluid in the chamber,
 - an access valve provided for leading the fluid which is captured in the chamber into a monitor system where the fluid is to be analyzed,
 - a valve for reducing pressure is provided to obtain a pressure in the chamber suitable for the monitor system.

Furthermore the apparatus may comprise a valve for relieving pressure provided for allowing air to enter the chamber to maintain the pressure in the chamber as the fluid is withdrawn from the chamber.

The apparatus may also comprise an expansion chamber communicating with the chamber through the pressure reducing valve, which expansion chamber provides the conditions for reducing the pressure in the chamber.

Embodiments of the invention will now be described, by way of example only, by reference to the accompanying drawings, in which:

Figure 1 shows a view of the general arrangement of the invention.

Figure 2 shows a view of a system for transferring data from the test station to a remote site.

Figure 3 shows a view of one embodiment of the invention.

The apparatus illustrated in Fig. 1 comprises a fluid sampler 1 and monitor system 2, such as a LNF debris monitor system, with modifications to allow automatic on line operation. The fluid sampler 1 is connected into the fluid flow line as shown in figure 1. It should be mentioned that the fluid sampler can be connected to the fluid flow line in a parallel type connection or in series type connection. Within the fluid sampler 1 is the provision for directing incoming fluid 3 through a flow section 4 connected to a capture chamber 6, or through a line 5. The choice being made by the position of first and second valves 7 and 8.

When the first and second valves 7 and 8 are in position for normal flow, the full flow with full complement of debris particles flows through section 5. When the valves 7 and 8 are in position for diverted flow the full flow passes through 4. The fluid trapped in chamber 6 is now static and available for analysis. Valve 9 is then opened to reduce pressure in chamber 6 to a level suitable for the monitor system 2. An expansion chamber 10 can be provided for this purpose. An access valve 11 is then opened to allow access to the fluid in the chamber 6 by the monitor system 2. Fluid is drawn through the monitor system 2 by its internal pump and the fluid and/or its debris is analyzed.

Valve 12 is a pressure relief valve that opens to allow air to enter chamber 6 as the fluid is withdrawn from chamber 6 through the monitor system 2 in order to maintain the pressure in chamber 6 at about one atmosphere.

Fluid that has passed through the monitor system 2 is returned through flow path 13 to a low pressure section of the oil system. Fluid that flows through either the line 5 or the flow section 4 and chamber 6 is directed to the remainder of the equipment in flow path 14.

Valves 7, 8, 9 and 11 are preferably implemented as electrically controlled and operated valves. Their operation sequence is controlled by suitable programming to allow automatic operation, and can be implemented to operate either in a predetermined timing pattern or on demand by a local or remote operator. The data from the monitor system, such as a LNF analysis can be stored locally on suitable information media. In addition it can be transferred, for instance by electronic, optical means or by a modem, to a remote site for evaluation or maintenance support as determined by suitable computer commands. Transfer of data can be automatically done after each analysis record, after an

accumulation of a number of analysis records, on a timed sequence or on demand by a local or remote operator.

Figure 2 illustrates the fluid sampler, named "Dynasamp" and a monitor system, named "LNF-C" in a system where data is transferred from the monitor system to a computer and via a modem to a remote site.

Figure 3 illustrates an embodiment of the invention as shown in figure 1. A flow regulator 18 has been provided in the fluid flow line, and the valves 7, 8, 11 are automatic valves which may be electrically controlled. The chamber 6 comprises a sampling bottle, preferably made of glass. The monitor system 2 is constituted by a laser diode 2a, a lens 2c which may have a magnitude of 4x and a camera 2d (for instance CCD/CMOS camera, 2 Mpix). The wear debris are illustrated by 2b and the TV rate camera image processing shape classification by 2e. Within the scope of the invention other monitor systems may be utilized, for instance an infrared light for examining the properties of the fluid; such as water content and viscosity. Also a gas chromatograph for carrying out the analysis in the sample bottle may be used.

In the embodiment shown in figure 3 the expansion chamber shown in figure 1 is left out. The system in figure 3 is provided with a gas cavity 16, which function is to be described in the following:

When a hydraulic system is operating under high pressure, it is possible to use the pressure, already generated in the system to feed the monitoring system 2 with the oil from the sampling bottle 6. The gas cavity 16 is used to give an accumulator effect for the pressure needed to feed the monitor system 2 with oil.

During operation with the valves 7, 8 in fully open position, the pressure in the chamber 6 is working at system pressure. The gas cavity 16, which contains a separation membrane between the liquid fluid and gas, is loaded via an internal check valve 17, allowing the pressure to build up in the gas cavity 16.

The valves 7, 8 are then closed to capture a representative sample in the chamber 6, and the pressure is unloaded via the electrically operating access valve 11, which isolates the monitor system 2 from the chamber 6 in the fluid sampling device.

As the oil is practically incompressible, the pressure in the chamber 6 will very fast drop to atmospheric pressure. By utilising a solenoid 19 to operate the check valve 17, which is keeping the gas cavity 16 still loaded with system pressure, the gas will pressurise the inlet of the sampling bottle and force the fluid trough the monitor system trough the access valve 11 which is still in an open position. In this case no internal pump is needed in the monitor system 2. Particle analyses from the oil can now be analysed by the image analysis system of the monitor system 2, (such as the LaserNet monitor).

WO 2004/057306 PCT/NO2003/000431

7

Many alternative embodiments can be identified that fall within the purview of this disclosure. The expansion chamber can take the form of a short section of pipe or tubing. Alternatively it can be done away with altogether, and the high pressure can be reduced by expansion of flexible tubing between the fluid sampler and the monitor system. It will be obvious to the skilled person that the reduction of the pressure in the chamber 6 may be obtained in various ways within the scope of the invention. Conditions for normal and diverted flow can be reversed. Remote data transfer can be implemented or data can remain on board, if the test station is on board a vessel.

CLAIMS

5

10

15

20

25

30

- 1. A method for in situ sampling and monitoring of a fluid flowing in a flow path (3), whereby the fluid is to be directed to a chamber; a first valve (7) provides a connection between an inlet (4) to the chamber (6) and the flow path. a second valve (8) provides a connection between an outlet (4) from the chamber and the flow path. wherein the method comprises the following steps: a)opening the first valve (7) and the second valve (8) to let the fluid flow through the inlet (4) to the chamber (6) and from the chamber through the outlet (4) into the continuation of the fluid path (14), thereby allowing fluid to circulate through the chamber (6) for a certain time, characterized by b) trapping the fluid in the chamber (6) by closing the second valve (8) and thereafter closing the first valve (7), c)opening a valve (9) or an access valve (11) for reducing pressure, to obtain a pressure in the chamber (6) suitable for monitoring the fluid, d) and leading the fluid trapped in the chamber (6) into a monitor system (2) through the access valve (11) wherein the fluid is analyzed, and thereby providing data representing the fluid characteristics, e) providing exit for the fluid analyzed through a further fluid path (13)
- 2. A method according to claim 1, c h a r a c t e r i z e d b y t h a t in step c) opening the valve (9) for the chamber to communicate with an expansion chamber (10).

possibly to a low pressure section of the system.

- 3. A method according to claim 2, characterized by opening a valve (12) for maintaining pressure in the chamber (6).
- 4. A method according to claim 1, c h a r a c t e r i z e d b y performing step a) and loading a gas cavity (16), preferably via an internal check valve (17), allowing the pressure to build up in the gas cavity (16).
- 5. A method according to claim 4, c h a r a c t e r i z e d b y utilising the gas contained in the gas cavity (16) to pressurize the fluid to force the fluid through the chamber (6) and through the monitor system (2).

10

15

. 25

30

- 6. A method according to one of the claims 1-3, c h a r a c t e r i z e d b y leading the fluid into the monitor system by the effect of an internal pump of the monitor system.
- 7. A method according to one of the proceeding claims, c h a r a c t e r i z e d b y analyzing the fluid and the possible particles therein by a monitor system (2) such as an optical system comprising a light source, an optical detector and means for processing data.
- 8. A method according to one of the proceeding claims, c h a r a c t e r i z e d b y storing the data from the analyzed fluid, and/or transferring the data to a remote computer for evaluation or maintenance support, wherein the data can be transferred automatically after each analysis record, after an accumulation of a number of analyses record, or on a time sequence or on demand by a local or remote operator.
- 9. An apparatus for in situ sampling and monitoring a fluid flowing in a flow path comprising:
 - -an inlet (4) and an outlet (4) connected to a chamber (6),
 - -a first valve (7) provided for connecting the inlet (4) to the flow path (3),
 - -a second valve (8) provided for connecting the outlet (4) to the flow path (3),
- thereby allowing the fluid to fill the chamber (6), circulate the fluid through the chamber (6) for a certain time, and capturing the fluid in the chamber (6), c h a r a c t e r i z e d b y
 - providing an access valve (11) for leading the fluid which is captured in the chamber (6) into a monitor system (2) where the fluid is to be analyzed, wherein
 - reduction of the pressure to in the chamber (6) suitable for the monitor system (2) is taken care of by the access valve (11) or a valve (9).
 - 10. An apparatus according to claim 9,characterized bythe provision of a valve (12) for relieving pressure.
 - 11. An apparatus according to claim 9 or 10, z h a r a c t e r i z e d b y the provision of an expansion chamber (10) communicating with the chamber (6) through the valve (9) for reducing pressure.
- 12. An apparatus according to claim 9, characterized by the provision of a gas cavity (16), which prefereably contains a separation membrane between the liquid fluid and gas.

- 13. An apparatus according to claim 12, characterized in that the gas cavity (16) is provided with a check valve (17), which preferably is operated by a solenoid (19).
- 5
 14. An apparatus according to one of the claims 9-13,
 c h a r a c t e r i z e d i n t h a t the monitor system (2) is an optical
 system comprising a light source, an optical detector, means for processing
 data.
- 15. An apparatus according to one of the claims 9-14,

 c h a r a c t e r i z e d i n t h a t the monitor system is connected to a computer, for transferring the data of the analyzed fluid, possibly to a remote site for evaluation or maintenance support, wherein the data can be transferred automatically after each analysis record, after an accumulation of a number of analyses record, or on a time sequence or on demand by a local or remote operator.

BEST AVAILABLE COPY

2/3

Lockheed Martin/FRAS/NRL Joint Demonstration

Advanced Programs

- Market: Offshore Oil Rigs and Ships:
- New: Norway and UK 550 Rigs, Each with 2-5 Sampling Points
 - Retrofit: 500 Installations
- US Navy-Ship Retrofits
- Team Responsibilities:
- FRAS: DynaSamp, Eng'rg Drawings, Assistance
- NRL: Modify DynaSamp for Install on Test Station
- LM: Modify Interface Software
- Team: Demo to Customer

- Demo Project Tasks
- Interface DynaSamp online Sampling Head to Test Station and LNF-C
- Modify LNFUser Interface Software
- Process Images and Particle Counts
 - Transmit Data to FRAS HQ, Norway

Lockheed Martin Company Proprietary

2/28/02

3/3

Fig.3

INTERNATIONAL SEARCH REPORT

PCT/NO 03/00431

a. classification of subject matter IPC 7 G01N1/20 G01N15/02 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 GO1N F17D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х US 4 905 510 A (BRICKHOUSE PAUL E) 6 March 1990 (1990-03-06) 1,9,10 column 2, line 34 -column 3, line 26 EP 0 405 475 A (SARTORIUS GMBH) 2 January 1991 (1991-01-02) A 9,12,13 column 2, line 21 -column 3, line 17 Α WO 91 08467 A (UCC CORP) 1,6-9, 13 June 1991 (1991-06-13) 14,15 page 5, line 24 -page 6, line 32; figure 1 Α WO 99 00656 A (NESTE OY ; PIVLIOE OLLI 1,6,7,9 (FI); TOLVANEN ILKKA (FI); WALDVOGEL JUERG) 7 January 1999 (1999-01-07) page 5, line 8 -page 6, line 24 abstract; figure 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18.05.04 5 May 2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 BO GUSTAVSSON/MN

Information on patent family members

PCT/NO 03/00431

Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
US 4905510	· A	06-03-1990	NONE				
EP 0405475	, A	02-01-1991	DE EP	3920949 0405475		10-01-1991 02-01-1991	
WO 9108467	A	13-06-1991	AT AU CA DE DE EP ES WO JP US	139030 639967 6900691 2066052 69027331 69027331 0504215 2090295 9108467 5503150 5619333	B2 A A1 D1 T2 A1 T3 A1 T	15-06-1996 12-08-1993 26-06-1991 05-06-1991 11-07-1996 07-11-1996 23-09-1992 16-10-1996 13-06-1991 27-05-1993 08-04-1997	
WO 9900656	A	07-01-1999	FI AU EP WO JP		A A A1 A1 T	18-12-1998 19-01-1999 03-05-2000 07-01-1999 19-02-2002	