

SN74AXC8T245

SCES875 - MARCH 2018

SN74AXC8T245 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs

Features

- Fully Configurable Dual-Rail Design Allows Each Port to Operate With a Power Supply Range From 0.65 V to 3.6 V
- Operating Temperature From -40°C to +125°C
- Multiple Direction Control Pins to Allow Simultaneous Up and Down Translation
- Up to 380 Mbps Support When Both V_{CCA} and V_{CCB} are at Least 1.8 V
- $\ensuremath{V_{\text{CC}}}$ Isolation Feature to Effectively Isolate Both Buses in a Power-Down Scenario
- Partial Power-Down Mode to Limit Backflow Current in a Power-Down Scenario
- Compatible With SN74AVC8T245 and 74AVC8T245 Level Shifters
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 8000-V Human-Body Model
 - 1000-V Charged-Device Model

2 Applications

- **Enterprise and Communications**
- Industrial
- Personal Electronics
- Wireless Infrastructure
- **Building Automation**
- Point of Sale

3 Description

The SN74AXC8T245 device is an 8-bit non-inverting bus transceiver that resolves voltage level mismatch between devices operating at the latest voltage nodes (0.7 V, 0.8 V, and 0.9 V) and devices operating at industry standard voltage nodes (1.8 V, 2.5 V, 3.3 V) and vice versa.

The device operates by using two independent power-supply rails (V_{CCA} and V_{CCB}) that operate as low as 0.65 V. Data pins A1 through A8 are designed to track V_{CCA}, which accepts any supply voltage from 0.65 V to 3.6 V. Data pins B1 through B8 are designed to track V_{CCB}, which accepts any supply voltage from 0.65 V to 3.6 V.

SN74AXC8T245 device designed is asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level of the direction-control inputs (DIR1 and DIR2). The output-enable (OE) input is used to disable the outputs so the buses are effectively isolated.

The SN74AXC8T245 device is designed so the control pins (DIR and \overline{OE}) are referenced to V_{CCA} .

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs when the device is powered down. This inhibits current backflow into the device which prevents damage to the device.

The V_{CC} isolation feature ensures that if either V_{CC} input supply is below 100 mV, all level shifter outputs are disabled and placed into a high-impedance state.

To ensure the high-impedance state of the level shifter I/Os during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CCA} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74AXC8T245PW	TSSOP (24)	4.40 mm × 7.80 mm
SN74AXC8T245RHL	VQFN (24)	3.50 mm × 5.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

Table of Contents

1	Features 1	8	Detailed Description	19
2	Applications 1		8.1 Overview	19
3	Description 1		8.2 Functional Block Diagram	19
4	Revision History2		8.3 Feature Description	20
5	Pin Configuration and Functions3		8.4 Device Functional Modes	20
6	Specifications4	9	Application and Implementation	21
•	6.1 Absolute Maximum Ratings		9.1 Application Information	21
	6.2 ESD Ratings		9.2 Typical Application	21
	6.3 Recommended Operating Conditions	10	Power Supply Recommendations	23
	6.4 Thermal Information	11	Layout	
	6.5 Electrical Characteristics		11.1 Layout Guidelines	23
	6.6 Switching Characteristics, V _{CCA} = 0.7 V		11.2 Layout Example	
	6.7 Switching Characteristics, V _{CCA} = 0.8 V	12	Device and Documentation Support	24
	6.8 Switching Characteristics, $V_{CCA} = 0.9 \text{ V} \dots 9$		12.1 Documentation Support	
	6.9 Switching Characteristics, $V_{CCA} = 1.2 \text{ V} \dots 10$		12.2 Receiving Notification of Documentation Update	es <mark>2</mark> 4
	6.10 Switching Characteristics, V _{CCA} = 1.5 V 11		12.3 Community Resources	24
	6.11 Switching Characteristics, V _{CCA} = 1.8 V 12		12.4 Trademarks	24
	6.12 Switching Characteristics, V _{CCA} = 2.5 V		12.5 Electrostatic Discharge Caution	24
	6.13 Switching Characteristics, V _{CCA} = 3.3 V		12.6 Glossary	24
	6.14 Operating Characteristics: T _A = 25°C	13	Mechanical, Packaging, and Orderable	
7	Parameter Measurement Information 17		Information	24

4 Revision History

DATE	REVISION	NOTES
March 2018	*	Initial Release.

www.ti.com SCES875 – MARCH 2018

5 Pin Configuration and Functions

(1) PAD - may be grounded (recommended) or left floating.

Pin Functions

	PIN		DECODIOTION
NAME	PW, RHL	I/O	DESCRIPTION
A1	3	I/O	Input/output A1. Referenced to V _{CCA} .
A2	4	I/O	Input/output A2. Referenced to V _{CCA} .
A3	5	I/O	Input/output A3. Referenced to V _{CCA} .
A4	6	I/O	Input/output A4. Referenced to V _{CCA} .
A5	7	I/O	Input/output A5. Referenced to V _{CCA} .
A6	8	I/O	Input/output A6. Referenced to V _{CCA} .
A7	9	I/O	Input/output A7. Referenced to V _{CCA} .
A8	10	I/O	Input/output A8. Referenced to V _{CCA} .
B1	21	I/O	Input/output B1. Referenced to V _{CCB} .
B2	20	I/O	Input/output B2. Referenced to V _{CCB} .
В3	19	I/O	Input/output B3. Referenced to V _{CCB} .
B4	18	I/O	Input/output B4. Referenced to V _{CCB} .
B5	17	I/O	Input/output B5. Referenced to V _{CCB} .
B6	16	I/O	Input/output B6. Referenced to V _{CCB} .
B7	15	I/O	Input/output B7. Referenced to V _{CCB} .
B8	14	I/O	Input/output B8. Referenced to V _{CCB} .
DIR1	2	I	Direction-control signal. Referenced to V _{CCA} .
DIR2	11	I	Direction-control signal when both V_{CCA} and $V_{CCB} \ge 1.4 \text{ V}$. Referenced to V_{CCA} . Tie to GND to maintain backward compatibility with SN74AVC8T245 device.
OND	12	_	Ground
GND	13	_	Ground
ŌĒ	22	1	Output Enable. Pull to GND to enable all outputs. Pull to V_{CCA} to place all outputs in high-impedance mode. Referenced to V_{CCA} .
V _{CCA}	1	_	A-port supply voltage. 0.65 V ≤ V _{CCA} ≤ 3.6 V
V	23	_	B-port supply voltage. 0.65 V ≤ V _{CCB} ≤ 3.6 V
V_{CCB}	24	_	B-port supply voltage. 0.65 V ≤ V _{CCB} ≤ 3.6 V

Copyright © 2018, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT			
Supply voltage, V _{CCA}		-0.5	4.2	V			
Supply voltage, V _{CCB}		-0.5	4.2	V			
	I/O ports (A port)	-0.5	4.2				
Input voltage, V _I ⁽²⁾	I/O ports (B port)	-0.5	4.2	V			
	Control inputs	-0.5	4.2				
Voltage applied to any output	A port	-0.5	-0.5 4.2				
in the high-impedance or power-off state, V _O ⁽²⁾	B port	-0.5	4.2	V			
Voltage applied to any output in the high or low state, V _O ⁽²⁾ ⁽³⁾	A port	-0.5	V _{CCA} + 0.2	V			
Voltage applied to any output in the high or low state, v_0	B port	-0.5	V _{CCB} + 0.2	V			
Input clamp current, I _{IK}	V _I < 0	-50		mA			
Output clamp current, I _{OK}	V _O < 0	-50		mA			
Continuous output current, I _O		-50	50	mA			
Continuous current through V _{CCA} , V _{CCB} , or GND	1						
Junction Temperature, T _J		150	°C				
Storage temperature, T _{stg}		-65	150	°C			

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Flootusetetis disaberra	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±8000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Product Folder Links: SN74AXC8T245

ISTRUMENTS

⁽²⁾ The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

www.ti.com SCES875 - MARCH 2018

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) $^{(1)(2)(3)}$

				MIN	MAX	UNIT	
V _{CCA}	Supply voltage			0.65	3.6	V	
V _{CCB}	Supply voltage			0.65	3.6	V	
			V _{CCI} = 0.65 V - 0.75 V	V _{CCI} × 0.70			
			V _{CCI} = 0.76 V - 1 V	V _{CCI} × 0.70			
		Data inputs	$V_{CCI} = 1.1 \text{ V} - 1.95 \text{ V}$	V _{CCI} × 0.65			
			$V_{CCI} = 2.3 \text{ V} - 2.7 \text{ V}$	1.6			
	High-level input voltage		$V_{CCI} = 3 \text{ V} - 3.6 \text{ V}$	2		V	
IH	r light-lever lilput voltage		$V_{CCA} = 0.65 \text{ V} - 0.75 \text{ V}$	$V_{CCA} \times 0.70$		v	
		Control inputs	$V_{CCA} = 0.76 \text{ V} - 1 \text{ V}$	$V_{CCA} \times 0.70$			
		(DIR, OE)	$V_{CCA} = 1.1 \text{ V} - 1.95 \text{ V}$	$V_{CCA} \times 0.65$			
		Referenced to V _{CCA}	$V_{CCA} = 2.3 \text{ V} - 2.7 \text{ V}$	1.6			
			$V_{CCA} = 3 \text{ V} - 3.6 \text{ V}$	2			
			V _{CCI} = 0.65 V - 0.75 V		$V_{CCI} \times 0.30$		
			$V_{CCI} = 0.76 \text{ V} - 1 \text{ V}$		$V_{CCI} \times 0.30$		
		Data inputs	$V_{CCI} = 1.1 \text{ V} - 1.95 \text{ V}$		$V_{CCI} \times 0.35$		
			$V_{CCI} = 2.3 \text{ V} - 2.7 \text{ V}$		0.7		
	Low-level input voltage		$V_{CCI} = 3 \text{ V} - 3.6 \text{ V}$		8.0	V	
IL	Low-level input voltage		$V_{CCA} = 0.65 \text{ V} - 0.75 \text{ V}$		$V_{CCA} \times 0.30$	V	
		Control inputs	$V_{CCA} = 0.76 \text{ V} - 1 \text{ V}$		$V_{CCA} \times 0.30$		
		(DIR, OE)	$V_{CCA} = 1.1 \text{ V} - 1.95 \text{ V}$		$V_{CCA} \times 0.35$		
		Referenced to V _{CCA}	$V_{CCA} = 2.3 \text{ V} - 2.7 \text{ V}$		0.7		
			$V_{CCA} = 3 \text{ V} - 3.6 \text{ V}$		8.0		
'I	Input voltage (3)			0	3.6	V	
, o	Output voltage	Active state		0	V _{CCO} (2)	V	
0	Output voltage	Tri-state		0	3.6	V	
t/∆v	Input transition rise or fall rate				10	ns/V	
A	Operating free-air temperature	е		-40	125	°C	

6.4 Thermal Information

			SN74A	XC8T245		
	THERMAL METRIC ⁽¹⁾	PW	(TSSOP)	RHL (VQFN)	UNIT	
		2	4 PINS	24 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance		92.0	35	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance		29.3	39.9	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance		46.7	13.8	°C/W	
ΨЈТ	Junction-to-top characterization parameter		1.5	0.3	°C/W	
ΨЈВ	Junction-to-board characterization parameter		46.2	13.8	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance		N/A	1.4	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. See the *Implications of Slow or Floating CMOS Inputs* application report.

NSTRUMENTS

6.5 Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted)(1)

_	AD AMETED	TEOT	CONDITIONS	.,	v	–40°C	to 85°C		-40°C	to 125°C		UNIT
Ρ/	ARAMETER	IESI	CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNI
			I _{OH} = -100 μA	0.7 V - 3.6 V	0.7 V - 3.6 V	V _{CCO} - 0.1			V _{CCO} - 0.1			
			I _{OH} = -50 μA	0.65 V	0.65 V	0.55			0.55			
			I _{OH} = -200 μA	0.76 V	0.76 V	0.58			0.58			
	High-level		I _{OH} = -500 μA	0.85 V	0.85 V	0.65			0.65			
V_{OH}		$V_I = V_{IH}$	I _{OH} = -3 mA	1.1 V	1.1 V	0.85			0.85			V
	voltage		I _{OH} = -6 mA	1.4 V	1.4 V	1.05			1.05			
			I _{OH} = -8 mA	1.65 V	1.65 V	1.2			1.2			
			I _{OH} = -9 mA	2.3 V	2.3 V	1.75			1.75			
			I _{OH} = -12 mA	3 V	3 V	2.3			2.3			
			I _{OL} = 100 μA	0.7 V - 3.6 V	0.7 V - 3.6 V			0.1			0.1	
			I _{OL} = 50 μA	0.65 V	0.65 V			0.1			0.1	
			I _{OL} = 200 μA	0.76 V	0.76 V			0.18			0.18	
			I _{OL} = 500 μA	0.85 V	0.85 V			0.2			0.2	
Vol	Low-level output	$V_I = V_{IL}$	I _{OL} = 3 mA	1.1 V	1.1 V			0.25			0.25	V
0.2	voltage		I _{OL} = 6 mA	1.4 V	1.4 V			0.35			0.35	
			I _{OL} = 8 mA	1.65 V	1.65 V			0.45			0.45	
			I _{OL} = 9 mA	2.3 V	2.3 V			0.55			0.55	
			I _{OL} = 12 mA	3 V	3 V			0.7			0.7	
I _I	Input leakage current	Control In	puts (DIR, OE):	0.65 V - 3.6 V	0.65 V - 3.6 V	-0.5		0.5	-1		1	μA
	Partial power	A Port:	0 V - 3.6 V	0 V	0 V - 3.6 V	-4		4	-8		8	
l _{off}	down current	B Port:	0 V - 3.6 V	0 V - 3.6 V	0 V	-4		4	-8		8	μA
	High- impedance	A Port: $V_O = V_{CCO}$ or GND, $V_I = V_{CCI}$ or GND, $\overline{OE} = V_{IH}$		3.6 V	3.6 V	-4		4	-8		8	
l _{OZ}	state output current	B Port: V _O = V _{CCO} or GND, C	or GND, $V_I = V_{CCI}$ $\overline{DE} = V_{IH}$	3.6 V	3.6 V	-4		4	-8		8	μA
				0.65 V - 3.6 V	0.65 V - 3.6 V			19			40	
I _{CCA}	V _{CCA} supply current	$V_I = V_{CCI}$	or GND, $I_0 = 0 \text{ mA}$	0 V	3.6 V	-2			-12			μA
	current			3.6 V	0 V			12			25	
				0.65 V - 3.6 V	0.65 V - 3.6 V			18			38	
I _{CCB}	V _{CCB} supply	$V_I = V_{CCI}$	or GND, $I_0 = 0 \text{ mA}$	0 V	3.6 V			12			25	μΑ
	current			3.6 V	0 V	-2			-12			
I _{CCA} + I _{CCB}	Combined supply current	V _I = V _{CCI} or GND, I _O = 0 mA		0.65 V - 3.6 V	0.65 V - 3.6 V			25			55	μA
Ci	Input capacitance	Control Inputs (DIR, $\overline{\text{OE}}$): V _I = 3.3 V or GND	3.3 V	3.3 V		4.5			4.5		pF	
C _{io}	Data I/O capacitance	Ports A ar OE = V _{CC} 1 MHz -16	nd B: A, V _O = 1.65V DC + B dBm sine wave	3.3 V	3.3 V		5.7			5.7		pF

 V_{CCO} is the V_{CC} associated with the output port. All typical values are for $T_A=25^{\circ}C$

www.ti.com SCES875 - MARCH 2018

6.6 Switching Characteristics, $V_{CCA} = 0.7 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply Vo	oltage (V	ссв)				
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.7 V ± 0.05 V		0.8 V ± 0.04 V		0.9 V ± 0.045 V		1.2 V ± 0.1 V		
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
		Α	В	-40°C to 85°C	0.5	172	0.5	114	0.5	82	0.5	49		
	Propagation	A	ь	-40°C to 125°C	0.5	172	0.5	114	0.5	82	0.5	49		
t _{pd}	delay	В	۸	-40°C to 85°C	0.5	172	0.5	153	0.5	126	0.5	88	ns	
		В	Α	-40°C to 125°C	0.5	172	0.5	153	0.5	126	0.5	88		
		ŌĒ	Α	-40°C to 85°C	0.5	192	0.5	192	0.5	192	0.5	192		
	Disable time		A	-40°C to 125°C	0.5	195	0.5	195	0.5	195	0.5	195	ns	
t _{dis}	Disable time	ŌĒ	<u> </u>	-40°C to 85°C	0.5	156	0.5	129	0.5	118	0.5	120		
		OE	В	-40°C to 125°C	0.5	157	0.5	129	0.5	120	0.5	122		
		ŌĒ	^	-40°C to 85°C	0.5	237	0.5	237	0.5	237	0.5	237		
	Caabla tima	OE	Α	-40°C to 125°C	0.5	237	0.5	237	0.5	237	0.5	237		
t _{en}	Enable time	<u> </u>	<u></u>	ŌE B	-40°C to 85°C	0.5	223	0.5	145	0.5	106	0.5	74	ns
		OE	В	-40°C to 125°C	0.5	223	0.5	145	0.5	106	0.5	74		

							B-Port	Supply V	oltage (V	ссв)					
PARAMETER		FROM	то	Test Conditions	1.5 V	1.5 V ± 0.1 V		1.8 V ± 0.15 V		2.5 V ± 0.2 V		3.3 V ± 0.3 V			
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
		Α	В	-40°C to 85°C	0.5	46	0.5	49	0.5	61	0.5	142			
	Propagation	А	ь	-40°C to 125°C	0.5	46	0.5	49	0.5	61	0.5	142			
t _{pd}	delay	В	^	-40°C to 85°C	0.5	83	0.5	82	0.5	81	0.5	81	ns		
		В	Α	-40°C to 125°C	0.5	83	0.5	82	0.5	81	0.5	81			
	Disable	ŌĒ		<u> </u>	Α	-40°C to 85°C	0.5	192	0.5	192	0.5	192	0.5	192	
			A	-40°C to 125°C	0.5	195	0.5	195	0.5	195	0.5	195	ns		
t _{dis}	time	ŌĒ		-40°C to 85°C	0.5	69	0.5	66	0.5	67	0.5	150			
		OE	В	-40°C to 125°C	0.5	70	0.5	67	0.5	67	0.5	150			
		ŌĒ	^	-40°C to 85°C	0.5	237	0.5	237	0.5	237	0.5	237			
	Enable time	OE	Α	-40°C to 125°C	0.5	237	0.5	237	0.5	237	0.5	237			
t _{en}		ŌĒ	В	-40°C to 85°C	0.5	68	0.5	69	0.5	84	0.5	552	ns		
		UE	В	-40°C to 125°C	0.5	68	0.5	69	0.5	84	0.5	552			

6.7 Switching Characteristics, $V_{CCA} = 0.8 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply Vo	oltage (V	ссв)					
P	ARAMETER	FROM	то	Test Conditions	0.7 V ± 0.05 V		0.8 V ± 0.04 V		0.9 V ± 0.045 V		1.2 V ± 0.1 V		UNIT		
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
		Α	В	-40°C to 85°C	0.5	153	0.5	95	0.5	62	0.5	32			
	Propagation	A	ь	-40°C to 125°C	0.5	153	0.5	95	0.5	62	0.5	32			
t _{pd}	delay	В	^	-40°C to 85°C	0.5	114	0.5	95	0.5	78	0.5	52	ns		
		В	Α	-40°C to 125°C	0.5	114	0.5	95	0.5	78	0.5	52			
		ŌĒ	Α	-40°C to 85°C	0.5	101	0.5	101	0.5	101	0.5	101			
	Disable time		A	-40°C to 125°C	0.5	103	0.5	103	0.5	103	0.5	103	ns		
t _{dis}	Disable time	ŌĒ	<u></u>	-40°C to 85°C	0.5	141	0.5	114	0.5	104	0.5	106			
		OE	В	-40°C to 125°C	0.5	142	0.5	115	0.5	106	0.5	109			
		ŌĒ	^	-40°C to 85°C	0.5	102	0.5	102	0.5	102	0.5	102			
	Caabla tima	OE	Α	-40°C to 125°C	0.5	102	0.5	102	0.5	102	0.5	102			
t _{en}	Enable time	<u> </u>	<u></u>	ŌE B	<u> </u>	-40°C to 85°C	0.5	202	0.5	124	0.5	86	0.5	52	ns
		OE	В	-40°C to 125°C	0.5	202	0.5	124	0.5	86	0.5	52			

							B-Port	Supply V	oltage (V	ссв)			
PA	RAMETER	FROM	то	Test Conditions	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	26	0.5	25	0.5	25	0.5	35	
	Propagation	A	Ь	-40°C to 125°C	0.5	26	0.5	25	0.5	25	0.5	35	
ι _{pd}	t _{pd} delay	1	۸	-40°C to 85°C	0.5	42	0.5	41	0.5	40	0.5	40	ns
		В	Α	-40°C to 125°C	0.5	42	0.5	41	0.5	40	0.5	40	
		ŌĒ	۸	-40°C to 85°C	0.5	101	0.5	101	0.5	101	0.5	101	
	Disable	OE	Α	-40°C to 125°C	0.5	103	0.5	103	0.5	103	0.5	103	
Disable	ŌĒ	_	-40°C to 85°C	0.5	55	0.5	51	0.5	49	0.5	51	ns	
		OE	В	-40°C to 125°C	0.5	57	0.5	53	0.5	50	0.5	52	
		ŌĒ	۸	-40°C to 85°C	0.5	102	0.5	102	0.5	102	0.5	102	
	Caabla tima	OE	Α	-40°C to 125°C	0.5	102	0.5	102	0.5	102	0.5	102	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	44	0.5	43	0.5	45	0.5	58	ns
		UE	В	-40°C to 125°C	0.5	44	0.5	43	0.5	45	0.5	58	

Product Folder Links: SN74AXC8T245

www.ti.com SCES875 - MARCH 2018

6.8 Switching Characteristics, $V_{CCA} = 0.9 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply V	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.05 V	0.8 V ±	± 0.04 V	0.9 V ±	0.045 V	1.2 V	± 0.1 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	127	0.5	78	0.5	52	0.5	23	
	Propagation	A	ь	-40°C to 125°C	0.5	127	0.5	78	0.5	52	0.5	23	
t _{pd}	^{lpd} delay	В	^	-40°C to 85°C	0.5	82	0.5	63	0.5	52	0.5	39	ns
		В	Α	-40°C to 125°C	0.5	82	0.5	63	0.5	52	0.5	39	
		<u>OE</u>	Α	-40°C to 85°C	0.5	125	0.5	125	0.5	125	0.5	125	
	Disable time	OE	А	-40°C to 125°C	0.5	128	0.5	128	0.5	128	0.5	128	
t _{dis}	Disable time	ŌĒ	2	-40°C to 85°C	0.5	131	0.5	105	0.5	96	0.5	99	ns
	t _{dis} Disable time	OE	В	-40°C to 125°C	0.5	133	0.5	107	0.5	98	0.5	101	
		ŌĒ	^	-40°C to 85°C	0.5	124	0.5	124	0.5	124	0.5	124	
	Enable time	OE	Α	-40°C to 125°C	0.5	128	0.5	128	0.5	128	0.5	128	
t _{en}	Enable time	ŌĒ	,	-40°C to 85°C	0.5	191	0.5	113	0.5	75	0.5	41	ns
		OE	В	-40°C to 125°C	0.5	191	0.5	113	0.5	75	0.5	41	

							B-Port	Supply V	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	17	0.5	15	0.5	14	0.5	17	
	Propagation	A	Ь	-40°C to 125°C	0.5	17	0.5	15	0.5	14	0.5	17	
^{lpd} delay	В	^	-40°C to 85°C	0.5	28	0.5	24	0.5	22	0.5	22	ns	
		В	Α	-40°C to 125°C	0.5	28	0.5	24	0.5	22	0.5	22	
		OE	Α	–40°C to 85°C	0.5	125	0.5	125	0.5	125	0.5	125	
	Disable	OE	А	-40°C to 125°C	0.5	128	0.5	128	0.5	128	0.5	128	
t _{dis}	time	<u>OE</u>	В	-40°C to 85°C	0.5	47	0.5	44	0.5	40	0.5	73	115
		OE	ь	-40°C to 125°C	0.5	50	0.5	46	0.5	42	0.5	73	
		OE	Α	-40°C to 85°C	0.5	124	0.5	124	0.5	124	0.5	124	
	en Enable time	OE	А	-40°C to 125°C	0.5	128	0.5	128	0.5	128	0.5	128	
t _{en}	Enable time	<u>OE</u>	В	-40°C to 85°C	0.5	34	0.5	32	0.5	31	0.5	35	115
		OE	В	-40°C to 125°C	0.5	34	0.5	32	0.5	31	0.5 17 0.5 17 0.5 22 0.5 22 0.5 125 0.5 128 0.5 73 0.5 73 0.5 124 0.5 128		

6.9 Switching Characteristics, $V_{CCA} = 1.2 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply Vo	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.05 V	0.8 V ±	0.04 V	0.9 V ±	0.045 V	1.2 V :	± 0.1 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	88	0.5	52	0.5	39	0.5	15	
	Propagation	A	ь	-40°C to 125°C	0.5	88	0.5	52	0.5	39	0.5	15	20
t _{pd}	delay delay	В	Α	-40°C to 85°C	0.5	49	0.5	32	0.5	23	0.5	15	ns
		В	А	-40°C to 125°C	0.5	49	0.5	32	0.5	23	0.5	15	
		ŌĒ	Α	-40°C to 85°C	0.5	87	0.5	87	0.5	87	0.5	87	
	Disable time	OE	A	-40°C to 125°C	0.5	91	0.5	91	0.5	91	0.5	91	20
t _{dis}	Disable time	ŌĒ	В	-40°C to 85°C	0.5	119	0.5	94	0.5	85	0.5	89	ns
		OE	ь	-40°C to 125°C	0.5	121	0.5	96	0.5	88	0.5	93	
		ŌĒ	Α	-40°C to 85°C	0.5	34	0.5	34	0.5	34	0.5	34	
	en Enable time	OE	A	-40°C to 125°C	0.5	36	0.5	36	0.5	36	0.5	36	no
t _{en}	Enable lime	ŌĒ	В	-40°C to 85°C	0.5	168	0.5	98	0.5	61	0.5	29	ns
		OE	В	-40°C to 125°C	0.5	168	0.5	98	0.5	61	0.5	30	

							B-Port	Supply V	oltage (V	ссв)			
P	RAMETER	FROM	то	Test Conditions	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	10	0.5	9	0.5	7	0.5	7	
	Propagation	A	Ь	-40°C to 125°C	0.5	10	0.5	9	0.5	7	0.5	8	20
t _{pd}	^{tpd} delay	В	^	-40°C to 85°C	0.5	13	0.5	11	0.5	8	0.5	7	ns
		В	Α	-40°C to 125°C	0.5	13	0.5	11	0.5	8	0.5	7	
		<u>OE</u>	^	-40°C to 85°C	0.5	87	0.5	87	0.5	87	0.5	87	
	Disable t _{dis} time	OE	Α	-40°C to 125°C	0.5	91	0.5	91	0.5	91	0.5	91	20
^L dis		OF	В	-40°C to 85°C	0.5	38	0.5	35	0.5	31	0.5	29	ns
		OE	В	-40°C to 125°C	0.5	41	0.5	38	0.5	33	0.5	31	
		ŌĒ	^	-40°C to 85°C	0.5	34	0.5	34	0.5	34	0.5	34	
	Caabla tima	OE	Α	-40°C to 125°C	0.5	36	0.5	36	0.5	36	0.5	36	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	22	0.5	19	0.5	17	0.5	17	ns
		UE	В	-40°C to 125°C	0.5	23	0.5	20	0.5	18	0.5	18	

www.ti.com SCES875 - MARCH 2018

6.10 Switching Characteristics, $V_{CCA} = 1.5 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply V	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.05 V	0.8 V ±	± 0.04 V	0.9 V ±	0.045 V	1.2 V	± 0.1 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	84	0.5	42	0.5	28	0.5	13	
	Propagation	A	В	-40°C to 125°C	0.5	84	0.5	42	0.5	28	0.5	13	20
^l pd	t _{pd} delay	В	Α	-40°C to 85°C	0.5	46	0.5	26	0.5	17	0.5	10	ns
		В	A	-40°C to 125°C	0.5	46	0.5	26	0.5	17	0.5	10	
		ŌĒ	Α	-40°C to 85°C	0.5	34	0.5	34	0.5	34	0.5	34	
	Disable time	OE	A	-40°C to 125°C	0.5	37	0.5	37	0.5	37	0.5	37	20
^l dis	t _{dis} Disable time	ŌĒ	В	-40°C to 85°C	0.5	115	0.5	89	0.5	80	0.5	85	ns
		OE	В	-40°C to 125°C	0.5	117	0.5	91	0.5	83	0.5	89	
		ŌĒ	Α	-40°C to 85°C	0.5	21	0.5	21	0.5	21	0.5	21	
		OE	A	-40°C to 125°C	0.5	23	0.5	23	0.5	23	0.5	23	20
t _{en}	Enable little	ŌĒ	В	-40°C to 85°C	0.5	159	0.5	90	0.5	55	0.5	24	ns
		OE	В	-40°C to 125°C	0.5	159	0.5	90	0.5	55	0.5	25	

							B-Port	Supply V	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	9	0.5	7	0.5	6	0.5	5	
	Propagation	A	ь	-40°C to 125°C	0.5	9	0.5	7	0.5	6	0.5	6	
τ _{pd}	^{lpd} delay	В	^	-40°C to 85°C	0.5	9	0.5	7	0.5	6	0.5	5	ns
		В	Α	-40°C to 125°C	0.5	9	0.5	8	0.5	6	0.5	5	
		ŌĒ	^	-40°C to 85°C	0.5	34	0.5	34	0.5	34	0.5	34	
	t _{dis} Disable	OE	Α	-40°C to 125°C	0.5	37	0.5	37	0.5	37	0.5	37	
^l dis		ŌĒ	_	-40°C to 85°C	0.5	35	0.5	31	0.5	28	0.5	25	ns
		OE	В	-40°C to 125°C	0.5	38	0.5	34	0.5	31	0.5	27	
		ŌĒ	^	-40°C to 85°C	0.5	21	0.5	21	0.5	21	0.5	21	
	Frakla tira	OE	Α	-40°C to 125°C	0.5	23	0.5	23	0.5	23	0.5	23	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	17	0.5	15	0.5	12	0.5	11	ns
		UE	В	-40°C to 125°C	0.5	18	0.5	15	0.5	13	0.5	12	

6.11 Switching Characteristics, $V_{CCA} = 1.8 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply Vo	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.05 V	0.8 V ±	0.04 V	0.9 V ±	0.045 V	1.2 V :	± 0.1 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	82	0.5	41	0.5	24	0.5	11	
	Propagation	A	Ь	-40°C to 125°C	0.5	82	0.5	41	0.5	24	0.5	11	20
^l pd	t _{pd} delay	В	Α	-40°C to 85°C	0.5	49	0.5	25	0.5	15	0.5	9	ns
		В	A	-40°C to 125°C	0.5	49	0.5	25	0.5	15	0.5	9	
		ŌĒ	Α	-40°C to 85°C	0.5	37	0.5	37	0.5	37	0.5	37	
	Disable time	OE	A	-40°C to 125°C	0.5	40	0.5	40	0.5	40	0.5	40	20
^l dis	t _{dis} Disable time	ŌĒ	В	-40°C to 85°C	0.5	113	0.5	87	0.5	78	0.5	83	ns
		OE	Ь	-40°C to 125°C	0.5	115	0.5	89	0.5	81	0.5	87	
		ŌĒ	Α	-40°C to 85°C	0.5	17	0.5	17	0.5	17	0.5	17	
		OE	A	-40°C to 125°C	0.5	19	0.5	19	0.5	19	0.5	19	20
t _{en}	Enable little	ŌĒ	В	-40°C to 85°C	0.5	157	0.5	88	0.5	54	0.5	23	ns
		OE	В	-40°C to 125°C	0.5	157	0.5	88	0.5	54	0.5	23	

							B-Port	Supply V	oltage (V	ссв)			
PA	RAMETER	FROM	то	Test Conditions	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	–40°C to 85°C	0.5	8	0.5	6	0.5	5	0.5	5	
	Propagation	A	Ь	-40°C to 125°C	0.5	8	0.5	7	0.5	6	0.5	5	20
t _{pd}	^{lpd} delay	В	۸	-40°C to 85°C	0.5	7	0.5	6	0.5	5	0.5	4	ns
		В	Α	-40°C to 125°C	0.5	7	0.5	7	0.5	5	0.5	4	
		ŌĒ	۸	-40°C to 85°C	0.5	37	0.5	37	0.5	37	0.5	37	
	t _{dis} Disable	OE	Α	-40°C to 125°C	0.5	40	0.5	40	0.5	40	0.5	40	
^L dis		OF	_	-40°C to 85°C	0.5	33	0.5	30	0.5	27	0.5	57	ns
		OE	В	-40°C to 125°C	0.5	36	0.5	33	0.5	29	0.5	60	
		ŌĒ	۸	-40°C to 85°C	0.5	17	0.5	17	0.5	17	0.5	17	
	Caabla tima	OE	Α	-40°C to 125°C	0.5	19	0.5	19	0.5	19	0.5	19	
l _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	15	0.5	13	0.5	10	0.5	9	ns
T	UE	В	-40°C to 125°C	0.5	16	0.5	14	0.5	11	0.5	10		

www.ti.com

6.12 Switching Characteristics, $V_{CCA} = 2.5 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply V	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.05 V	0.8 V ±	0.04 V	0.9 V ±	0.045 V	1.2 V :	± 0.1 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	81	0.5	40	0.5	22	0.5	8	
	Propagation	A	ь	-40°C to 125°C	0.5	81	0.5	40	0.5	22	0.5	8	20
t _{pd}	delay	В	^	-40°C to 85°C	0.5	61	0.5	25	0.5	14	0.5	7	ns
	tdis Disable time -	В	Α	-40°C to 125°C	0.5	61	0.5	25	0.5	14	0.5	7	
		ŌĒ	Α	-40°C to 85°C	0.5	25	0.5	25	0.5	25	0.5	25	
		OE	А	-40°C to 125°C	0.5	28	0.5	28	0.5	28	0.5	28	
t _{dis}	Disable time	ŌĒ	_	-40°C to 85°C	0.5	111	0.5	85	0.5	76	0.5	81	ns
		OE	В	-40°C to 125°C	0.5	113	0.5	87	0.5	78	0.5	84	
	en Enable time	ŌĒ	^	-40°C to 85°C	0.5	11	0.5	11	0.5	11	0.5	11	
		OE	Α	-40°C to 125°C	0.5	12	0.5	12	0.5	12	0.5	12	
t _{en}		ŌĒ	_	-40°C to 85°C	0.5	155	0.5	86	0.5	52	0.5	21	ns
		OE	В	-40°C to 125°C	0.5	155	0.5	86	0.5	52	0.5	21	

							B-Port	Supply V	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	-40°C to 85°C	0.5	6	0.5	5	0.5	4	0.5	4	
	Propagation	А	ь	-40°C to 125°C	0.5	6	0.5	5	0.5	5	0.5	4	
τ _{pd}	t _{pd} delay	В	^	-40°C to 85°C	0.5	6	0.5	5	0.5	4	0.5	4	ns
	,	В	Α	-40°C to 125°C	0.5	6	0.5	5	0.5	5	0.5	4	
	, Disable	OE	Α	–40°C to 85°C	0.5	25	0.5	25	0.5	25	0.5	25	
	Disable discontinuity	OE	А	-40°C to 125°C	0.5	28	0.5	28	0.5	28	0.5	28	20
^l dis	T	ŌF	В	-40°C to 85°C	0.5	31	0.5	28	0.5	25	0.5	23	ns
		OE	В	-40°C to 125°C	0.5	34	0.5	31	0.5	28	0.5	25	
		ŌĒ	^	-40°C to 85°C	0.5	11	0.5	11	0.5	11	0.5	11	
	Frable time	OE	Α	-40°C to 125°C	0.5	12	0.5	12	0.5	12	0.5	12	
t _{en}	Enable time	ŌĒ	В	-40°C to 85°C	0.5	14	0.5	11	0.5	9	0.5	7	ns
		UE	В	-40°C to 125°C	0.5	14	0.5	12	0.5	9	0.5	8	

6.13 Switching Characteristics, $V_{CCA} = 3.3 \text{ V}$

See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.

							B-Port	Supply Vo	oltage (V	ссв)			
P	ARAMETER	FROM	то	Test Conditions	0.7 V ±	0.05 V	0.8 V ±	0.04 V	0.9 V ±	0.045 V	1.2 V :	± 0.1 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			В	-40°C to 85°C	0.5	81	0.5	40	0.5	22	0.5	7	
_	Propagation	Α	В	-40°C to 125°C	0.5	81	0.5	40	0.5	22	0.5	7	20
ι _{pd}	t _{pd} delay	В	^	-40°C to 85°C	0.5	142	0.5	35	0.5	17	0.5	7	ns
		В	Α	-40°C to 125°C	0.5	142	0.5	35	0.5	17	0.5	8	
		ŌĒ	Α	-40°C to 85°C	0.5	22	0.5	22	0.5	22	0.5	22	
_	Diochla tima	OE	А	-40°C to 125°C	0.5	24	0.5	24	0.5	24	0.5	24	20
^l dis	t _{dis} Disable time –	ŌĒ	В	-40°C to 85°C	0.5	111	0.5	84	0.5	75	0.5	80	ns
		OE	ь	-40°C to 125°C	0.5	113	0.5	86	0.5	78	0.5	83	
		ŌĒ	Α	-40°C to 85°C	0.5	9	0.5	9	0.5	9	0.5	9	
		OE	А	-40°C to 125°C	0.5	10	0.5	10	0.5	10	0.5	10	20
t _{en}	Enable lime	ŌĒ	В	-40°C to 85°C	0.5	154	0.5	86	0.5	51	0.5	20	ns
		OE	В	-40°C to 125°C	0.5	154	0.5	86	0.5	51	0.5	20	

							B-Port	Supply V	oltage (V	ссв)					
P	ARAMETER	FROM	то	Test Conditions	1.5 V ± 0.1 V		1.8 V ±	1.8 V ± 0.15 V		2.5 V ± 0.2 V		± 0.3 V	UNIT		
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
		Α	В	-40°C to 85°C	0.5	5	0.5	4	0.5	4	0.5	4			
	Propagation	А	ь	-40°C to 125°C	0.5	5	0.5	4	0.5	4	0.5	4			
t _{pd}	^{od} delay	В	^	-40°C to 85°C	0.5	5	0.5	5	0.5	4	0.5	4	ns		
			Α	-40°C to 125°C	0.5	6	0.5	5	0.5	4	0.5	4			
	Disable	ŌĒ	Α	–40°C to 85°C	0.5	22	0.5	22	0.5	22	0.5	22			
			А	-40°C to 125°C	0.5	24	0.5	24	0.5	24	0.5	24	20		
t _{dis}	time		OE	OF	В	-40°C to 85°C	0.5	30	0.5	27	0.5	25	0.5	23	ns
		OE	В	-40°C to 125°C	0.5	33	0.5	30	0.5	27	0.5	25			
	Elie d'	ŌĒ	^	-40°C to 85°C	0.5	9	0.5	9	0.5	9	0.5	9			
		For the Con-	OE	Α	-40°C to 125°C	0.5	10	0.5	10	0.5	10	0.5	10		
t _{en}	Enable time	ŌĒ	<u> </u>	-40°C to 85°C	0.5	13	0.5	10	0.5	8	0.5	7	ns		
		UE	В	-40°C to 125°C	0.5	14	0.5	11	0.5	8	0.5	7			

www.ti.com

6.14 Operating Characteristics: T_A = 25°C

	PARAMETER	TES	T CONDITIONS	MIN TYP MAX	UNIT			
			V _{CCA} = V _{CCB} = 0.7 V	1.2				
			$V_{CCA} = V_{CCB} = 0.8 \text{ V}$					
	Power dissipation		V _{CCA} = V _{CCB} = 0.9 V	1.8	5 <u>F</u>			
_		$C_L = 0$, $R_L = Open$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	1.7				
C_{pdA}	capacitance per transceiver (A to B: outputs enabled)	$f = 1 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	V _{CCA} = V _{CCB} = 1.5 V	1.7	pF			
	,		V _{CCA} = V _{CCB} = 1.8 V	1.7				
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	2				
			V _{CCA} = V _{CCB} = 3.3 V	2.5				
			V _{CCA} = V _{CCB} = 0.7 V	1.1				
			$V_{CCA} = V_{CCB} = 0.8 \text{ V}$	1.8				
			V _{CCA} = V _{CCB} = 0.9 V	1.8				
	Power dissipation	$C_L = 0$, $R_L = Open$	V _{CCA} = V _{CCB} = 1.2 V	1.7	pF			
C_{pdA}	capacitance per transceiver (A to B: outputs disabled)	$f = 1 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	V _{CCA} = V _{CCB} = 1.5 V	1.7				
			V _{CCA} = V _{CCB} = 1.8 V	1.7				
			V _{CCA} = V _{CCB} = 2.5 V	2				
			V _{CCA} = V _{CCB} = 3.3 V	2.1				
			$V_{CCA} = V_{CCB} = 0.7 \text{ V}$	9.3				
			V _{CCA} = V _{CCB} = 0.8 V	11.8				
			V _{CCA} = V _{CCB} = 0.9 V	11.8				
_	Power dissipation	$C_L = 0$, $R_L = Open$	V _{CCA} = V _{CCB} = 1.2 V	12				
C_{pdA}	capacitance per transceiver (B to A: outputs enabled)	$f = 1 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	V _{CCA} = V _{CCB} = 1.5 V	12.2	pF			
	,		V _{CCA} = V _{CCB} = 1.8 V	13				
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$					
			V _{CCA} = V _{CCB} = 3.3 V	18.1				
			V _{CCA} = V _{CCB} = 0.7 V	2.6				
			$V_{CCA} = V_{CCB} = 0.8 \text{ V}$	1.2				
			$V_{CCA} = V_{CCB} = 0.9 \text{ V}$	1.1				
0	Power dissipation	$C_L = 0$, $R_L = Open$	V _{CCA} = V _{CCB} = 1.2 V	1.2				
C_{pdA}	capacitance per transceiver (B to A: outputs disabled)	$f = 1 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	V _{CCA} = V _{CCB} = 1.5 V	1.2	pF			
	, , , , , , , , , , , , , , , , , , , ,		V _{CCA} = V _{CCB} = 1.8 V	1.3				
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	1.6	1			
			$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	3.9				

TEXAS INSTRUMENTS

Operating Characteristics: $T_A = 25^{\circ}C$ (continued)

	PARAMETER	TES	T CONDITIONS	MIN TYP MAX	UNIT	
			$V_{CCA} = V_{CCB} = 0.7 \text{ V}$	9.3		
	Power dissipation		$V_{CCA} = V_{CCB} = 0.8 \text{ V}$	11.7		
			$V_{CCA} = V_{CCB} = 0.9 \text{ V}$	11.8		
_		$C_L = 0$, $R_L = Open$ $f = 1$ MHz, $t_r = t_f = 1$ ns	V _{CCA} = V _{CCB} = 1.2 V	11.9		
C_{pdB}	capacitance per transceiver (A to B: outputs enabled)		V _{CCA} = V _{CCB} = 1.5 V	12.2	pF	
	,		V _{CCA} = V _{CCB} = 1.8 V	12.9		
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	16.3		
			$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	18		
			$V_{CCA} = V_{CCB} = 0.7 \text{ V}$	2.6		
			$V_{CCA} = V_{CCB} = 0.8 \text{ V}$	11.7		
			$V_{CCA} = V_{CCB} = 0.9 \text{ V}$	11.8		
_	Power dissipation	$C_L = 0$, $R_L = Open$ $f = 1$ MHz, $t_r = t_f = 1$ ns	V _{CCA} = V _{CCB} = 1.2 V	11.9		
C_{pdB}	capacitance per transceiver (A to B: outputs disabled)		V _{CCA} = V _{CCB} = 1.5 V	12.2	pF	
			$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	12.9		
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	16.3		
			$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	3.9		
			$V_{CCA} = V_{CCB} = 0.7 \text{ V}$	1.2		
			$V_{CCA} = V_{CCB} = 0.8 \text{ V}$	1.8		
			$V_{CCA} = V_{CCB} = 0.9 \text{ V}$	1.8	pF	
_	Power dissipation	$C_L = 0$, $R_L = Open$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	1.7		
C_{pdB}	capacitance per transceiver (B to A: outputs enabled)	$f = 1 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	1.7		
	,		$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	1.7		
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	2		
			$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	2.5		
			$V_{CCA} = V_{CCB} = 0.7 \text{ V}$	1.1		
			$V_{CCA} = V_{CCB} = 0.8 \text{ V}$	1.8		
			$V_{CCA} = V_{CCB} = 0.9 \text{ V}$	1.8		
C	Power dissipation capacitance per transceiver	$C_L = 0$, $R_L = Open$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	1.7		
C _{pdB}	(B to A: outputs disabled)	$f = 1 \text{ MHz}, t_r = t_f = 1 \text{ ns}$	$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	1.7	pF	
			$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	1.7		
			$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	2		
			$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	2.1		

www.ti.com SCES875 – MARCH 2018

7 Parameter Measurement Information

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- f =1 MHz
- $Z_0 = 50 \ \Omega$
- dv / dt ≤ 1 ns/V

(1) C_L includes probe and jig capacitance.

Figure 1. Load Circuit

Parameter	V _{cco}	R_L	CL	S1	V_{TP}
t _{pd}	1.1 V - 3.6 V	2 kΩ	15 pF	Open	N/A
φα	0.65 V - 0.95 V	20 kΩ	15 pF	Open	N/A
	3 V - 3.6 V	2 kΩ	15 pF	2 X V _{CCO}	0.3 V
. (1) . (1)	1.65 V - 2.7 V	2 kΩ	15 pF	2 X V _{CCO}	0.15 V
t _{en} ⁽¹⁾ , t _{dis} ⁽¹⁾	1.1 V - 1.6 V	2 kΩ	15 pF	2 X V _{CCO}	0.1 V
	0.65 V - 0.95 V	20 kΩ	15 pF	2 X V _{CCO}	0.1 V
	3 V - 3.6 V	2 kΩ	15 pF	GND	0.3 V
t _{en} ⁽²⁾ , t _{dis} ⁽²⁾	1.65V - 2.7 V	2 kΩ	15 pF	GND	0.15 V
on / us	1.1 V - 1.6 V	2 kΩ	15 pF	GND	0.1 V
	0.65 V - 0.95 V	20 kΩ	15 pF	GND	0.1 V

- (1) Output waveform on the conditions that input is driven to a valid Logic Low.
- (2) Output waveform on the condition that input is driven to a valid Logic High.

Figure 2. Load Circuit Conditions

- (1) V_{CCI} is the supply pin associated with the input port.
- (2) V_{OH} and V_{OL} are typical output voltage levels with specified R_L , C_L , and S_1 .

Figure 3. Propagation Delay

TEXAS INSTRUMENTS

Parameter Measurement Information (continued)

- (1) Output waveform on the condition that input is driven to a valid Logic Low.
- (2) Output waveform on the condition that input is driven to a valid Logic High.
- (3) V_{CCO} is the supply pin associated with the output port.
- (4) V_{OH} and V_{OL} are typical output voltage levels with specified R_L , C_L , and S_1 .

Figure 4. Enable Time And Disable Time

8 Detailed Description

8.1 Overview

www.ti.com

The SN74AXC8T245 device is an 8-bit, dual-supply non-inverting transceiver with bidirectional voltage level translation. The I/O pins labeled with A and the control pins (DIR1, DIR2, and $\overline{\text{OE}}$) are supported by V_{CCA} , and the I/O pins labeled with B are supported by V_{CCB} . Both the A port and the B port are able to accept I/O voltages ranging from 0.65 V to 3.6 V.

8.2 Functional Block Diagram

Copyright © 2018, Texas Instruments Incorporated

TEXAS INSTRUMENTS

8.3 Feature Description

8.3.1 Up-Translation and Down-Translation From 0.65 V to 3.6 V

Both supply pins are configured from 0.65 V to 3.6 V, which makes the device suitable for translating between any of the low voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V).

8.3.2 Multiple Direction Control Pins

Two control pins are used to configure the 8 data I/Os. I/O channels 1 through 4 are grouped together and I/O channels 5 through 8 are banked together. The benefit of this is to permit simultaneous up-translation and down-translation within one device. This eliminates the need for multiple devices, where each device can only provide up-translation or down-translation sequentially. Simultaneous up and down translation is supported when both V_{CCA} and V_{CCB} are at least 1.40 V.

8.3.3 I_{off} Supports Partial-Power-Down Mode Operation

This feature is to limit the leakage current of an I/O pin being driven to a voltage as large as 3.6 V while having its corresponding power supply rail powered down. This is represented by the I_{off} parameter in the *Electrical Characteristics* table.

8.4 Device Functional Modes

All control inputs are referenced to V_{CCA} and must be driven to a valid Logic High or Logic Low (that is, not floating) to assure proper device operation and to prevent excessive power consumption. Table 1 summarizes the possible modes of device operation based on the configuration of the control inputs.

	CONTROL INPUTS		Signal Direction				
ŌĒ	DIR1	DIR2	Bits 1:4 Bits 5:8				
Н	X	X	Disabled (Hi-Z)				
L	L	L	B to A				
L	L	Н	B to A A to B				
L	Н	L	A to B				
L	Н	Н	A to B B to A				

Table 1. Function Table⁽¹⁾

20

⁽¹⁾ Input circuits of the data I/Os are always active and must be driven to a valid logic level.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AXC8T245 device can be used in level-translation applications for interfacing devices or systems operating at different voltage nodes. Figure 5 depicts an application in which the SN74AXC8T245 device is uptranslating a 0.7 V input to a 3.3 V output to interface between a system controller and a peripheral device.

9.2 Typical Application

Figure 5. Typical Application Schematic

Typical Application (continued)

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 2.

Table 2. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUE
Input voltage range	0.65 V to 3.6 V
Output voltage range	0.65 V to 3.6 V

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AXC8T245 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AXC8T245 device is driving to determine the output voltage range.

9.2.3 Application Curve

Figure 6. Translation Up (0.7 V to 3.3 V) at 2.5 MHz

Product Folder Links: SN74AXC8T245

www.ti.com SCES875 – MARCH 2018

10 Power Supply Recommendations

Always apply a ground reference to the GND pins first. However, there are no additional requirements for power supply sequencing.

This device was designed with various power supply sequencing methods in mind to help prevent unintended triggering of downstream devices. For more information regarding the power up glitch performance of the AXC family of level translators, see the Power Sequencing for AXC Family of Devices application report.

11 Layout

11.1 Layout Guidelines

To assure reliability of the device, follow common printed-circuit board layout guidelines.

- Use bypass capacitors on power supplies.
- Use short trace lengths to avoid excessive loading.
- Place pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

11.2 Layout Example

Figure 7. SN74AXC8T245 Device Layout Example

TEXAS INSTRUMENTS

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Texas Instruments, *Implications of Slow or Floating CMOS Inputs* application report Texas Instruments, *Power Sequencing for AXC Family of Devices* application report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

13-Mar-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
PSN74AXC8T245PWR	ACTIVE	TSSOP	PW	24	2000	TBD	Call TI	Call TI	-40 to 125		Samples
SN74AXC8T245PWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AX8T245	Samples
SN74AXC8T245RHLR	ACTIVE	VQFN	RHL	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	AX8T245	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

13-Mar-2018

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2018

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AXC8T245PWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2018

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AXC8T245PWR	TSSOP	PW	24	2000	367.0	367.0	38.0

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

RHL (R-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. JEDEC MO-241 package registration pending.

RHL (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206363-4/N 07/14

NOTE: All linear dimensions are in millimeters

- NOTES:
- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.