M2 Metro Line Timetable Optimization

Berker ERİŞ
150220315
erisb22@itu.edu.tr

Enes YEMENLi 150220311 yemenli22@itu.edu.tr

Introduction

Project Description

In this project, we aim to optimize the waiting time of passengers on M2 line in Istanbul.

Problem Definition

Istanbul's population has doubled in 25 years, straining transportation. To reduce passenger waiting times, dynamic, optimized planning is essential.

Preparing Datasets

1. Estimate destination with weighted probabilty

 To estimate the destination of passengers based on the usage density of the stops.

2. Estimate time with cubic interpolation

• Estimating when passengers enter from hourly data

Final Dataset

• 184080 passengers information with enterance time and final destination.

transition_date	transition_hour	line_name	station_poi_desc_cd
2024-09-04	0	M2	YENIKAPI

• 196 metro trips

transition_date	transition_hour	line_name	station_poi_desc_cd	destination	direction
2024-09-04	00:00:00 - 00:59:59	M2	YENIKAPI	VEZNECILER	1

950 capacity for each train

passenger_id	boarding_station	destination_station	enterance_time	boarding_station_id	destination_station_id
184040	YENIKAPI	DARUSSAFAKA	23:44:00	0	13

Method

Lineer Programming

Non-linear objective: Passenger waiting time depends on train arrival times and is not linear.

$$\min \sum_{l \in L} \sum_{t \in T} w_{l,t}(x_{l,t})$$

Genetic Algorithm

Handles non-linearity: GA can optimize irregular and discontinuous functions.

$$\min \sum_{i=1}^{N} \left(\text{departure_time}_{s(i)} - \text{arrival_time}_{i} \right)$$

Results

The genetic algorithm successfully reduced the average passenger waiting time compared to the original schedule, demonstrating its effectiveness in optimizing train departure times.

Avg. Waiting =3,23 Time

145	10.00.00
146	19:03:00
147	19:08:00
148	19:10:00
149	19:16:00
150	19:24:00
151	19:27:00
152	19:29:00
153	19:32:00
154	19:40:00
155	19:49:00

Comparision

The genetic algorithm reduced the average passenger waiting time from 3.65 minutes (real-world schedule) to 3.23 minutes, showing a clear improvement through optimization.

 By adjusting train departure times during peak and off-peak hours to reduce waiting times, the efficiency was improved by approximately
 11.5%.

	.03:00
159	19:07:00
160	19:11:00
161	19:15:00
162	19:19:00
163	19:23:00
164	19:27:00
165	19:35:00
166	19:43:00
167	19:50:00
168	10-58-00

Thank you