

PROCESSING

N87-16421

INK-JET PRINTING OF SILVER METALLIZATION
FOR PHOTOVOLTAICS

PURDUE UNIVERSITY

R. W. Vest

Nozzle Assembly (side view)

PRECEDING PAGE BLANK NOT FILMED

PROCESSING

Nozzle Assembly (front view)

Flow Diagram of Ink-Jet Printer System

PROCESSING

Computer Controlled Ink-Jet Printer

ORIGINAL PAGE IS
OF POOR QUALITY

Print Head and Substrate Mount

PROCESSING

Ink Requirements

1. No Particulates
2. Low Viscosity
3. High Surface Tension
4. High Inorganic Content
5. Non Clogging
6. Stable

Ink Chemistry

1. Silver Compound
Ag neodecanoate
2. Adhesion Agent
Bi 2-ethylhexanoate
3. Solvent
toluene or xylene
4. Stabilizer
neodecanoic acid

PROCESSING

Ink-Jet Printing Studies

Ink Parameters

1. viscosity
2. surface tension
3. metal content
4. solvent vapor pressure

Printer Parameters

1. pulse voltage
2. pulse frequency
3. ink pressure
4. nozzle diameter
5. nozzle-substrate separation

Substrate Parameters

1. velocity
2. temperature

Firing Parameters

1. heating rate
2. maximum temperature
3. time at maximum temperature

PROCESSING

Diagram of the Ink-Jet Model

PROCESSING

Ink-Jet Theory

$$Q_f = \pi T \frac{\sigma R^2 r_0^2 K}{8 \mu L} \left[1 - \frac{1}{2} \left(\frac{r_0}{R} \right)^2 \right] \left[C V^n - \frac{2 \sigma \cos \theta}{r_f} \right]$$

Ink Parameters

- σ = surface tension
- θ = contact angle
- μ = viscosity

Mechanical Parameters

- r' = nozzle radius
- $r_0 = 2r'$

Electrical Parameters

- V = pulse voltage
- T = pulse duration
- f = pulse frequency

R, K, L, C and n are constant for a given printer.

PROCESSING

Relationship of Ink-Flow Rate and Ink Viscosity

PROCESSING

Relationship of Ink-Flow Rate and Nozzle Diameter

PROCESSING

Relationship of Ink-Flow Rate and Pulse Voltage Applied
to the Piezoelectric Transducer

PROCESSING

Relationship of Ink-Flow Rate and Frequency of Pulses to the Piezoelectric Driver

Thermal Processing

Belt Furnace

$T_{max} = 280^{\circ}$ to 400°C

cycle time = 40 - 70 minutes

Thermal Spike

750° to 850°C

45 to 180 seconds

PROCESSING

Thermal Effects on Performance of Thin-Film (Control) Solar Cells

PROCESSING

Fired Film Properties

Composition

99% Ag - 1% Bi_2O_3

Adhesion

excellent (Scotch tape)

Solderability

excellent (100% acceptance)

Solder Leach Resistance

excellent (30 second dip)

PROCESSING

Height Versus Width of Metal Fingers

BEFORE FIRING

AFTER FIRING

PROCESSING

Measured Finger-to-Finger Resistances (R_{ff}) and Series Resistance (R_{SE})
Calculated from I-V Curves for Solar Cells with Different Processing

No. of Layers of Ag	Thermal Treatment Sequence (a)										JPL Control Cells	
	(1) B+60S		(2) B+60S+B		(3) B+60S+B ²		(4) B+60S+B ² +15S		(5) B+60S+B ² +15S ²			
	R_{ff}	R_{SE}	R_{ff}	R_{SE}	R_{ff}	R_{SE}	R_{ff}	R_{SE}	R_{ff}	R_{SE}	R_{ff}	R_{SE}
5	9.38 ± 1.22	10.05 ± 1.79	8.26 ± 0.13	-	8.13 ± 0.42	9.48 ± 1.33	8.76 ± 0.59	10.92 ± 0.67	8.57 ± 0.40	10.59 ± 1.57		
10			5.52 ± 0.35	-	5.13 ± 0.39	7.98 ± 0.89	3.43 ± 0.18	7.16 ± 0.48	3.41 ± 0.18	6.73 ± 0.43		
20							2.44 ± 0.12	4.35 ± 1.77	1.65 ± 0.05	5.40 ± 0.71		
											5.22 ± 1.32	1.49 ± 0.09 0.63(b) ± 0.12

(a) thermal treatments

B = belt furnace with 70 minute cycle and 300°C maximum temperature
60S = sixty seconds at 800°C
15S = fifteen seconds at 800°C

(b) calculated from the I-V curves supplied by JPL

Current-Voltage Curve for 20-Layer Cell 114-3 After
Thermal Treatment Step 4

Current-Voltage Curve for 20 Layer Cell 114-3 After
Thermal Treatment Step 4.

PROCESSING

Effect of Quality of the Metal Film on Solar Cell Quality

(a) Cell 227-15 Poor Metal Film and Poor Solar Cell

(b) Cell 227-14 Good Metal Film and Good Solar Cell

ORIGINAL PAGE IS
OF POOR QUALITY

PROCESSING

Comparison of Series Resistance (R_{SE}) and Fill Factor (FF) for Solar Cells Metallized with MOD Silver With and Without a Ti/Pd Underlayer

No. of Layers of Ag	Thermal Treatment Sequence (a)								JPL Control Cells			
	B + 60S				B + 6JS + B				Purdue Data		JPL Data	
	No Ti/Pd	With Ti/Pd	No Ti/Pd	With Ti/Pd	No Ti/Pd	With Ti/Pd	No Ti/Pd	With Ti/Pd	R_{SE}	FF	R_{SE}	FF
5	39.78 ±10.09	0.22 ±0.02	2.48 ±0.79	0.51 ±0.07	32.67 ±15.15	0.24 ±0.02	1.78 ±0.25	0.57 ±0.04				
10					20.04 ±3.12	0.24 ±0.01	1.75 ±0.41	0.58 ±0.03	1.70 ±0.36	0.56 ±0.04	0.69 ±0.04	0.65 ±0.03

(a) thermal treatments

B = belt furnace with 70 minute cycle and 300°C maximum temperature

60S = sixty seconds at 800°C

Seven Factors that Contribute to the Measured Series Resistance of a Solar Cell

- | | |
|------------------------|---------------------------|
| R_1 = Back Contact | R_5 = Grid Lines |
| R_2 = Bulk | R_6 = Bus Lines |
| R_3 = Diffused Layer | R_7 = Measuring Circuit |
| R_4 = Front Contact | |

PROCESSING

Summary

1. A computer controlled ink jet printing system was developed.
2. A theoretical model which adequately describes the ink jet printer was developed.
3. A MOD silver ink was developed for use with the printer.
4. Grid patterns with suitably low sheet resistance can be produced.
5. Line definition to 50 μm can be achieved.
6. Good adhesion and solder leach resistance was demonstrated.
7. The contact resistance must be reduced in order to produce high efficiency cells.