

The Big Mountain Pricing Strategy

LINA GAO

Introduction

- ☐ The Big Mountain Resort, a ski resort located in Montana, offers spectacular views of Glacier National Park and Flathead National Forest. ~ 350,000 people ski or snowboard at Big Mountain each year. It provides access to 105 trails for skiers and riders of all levels and abilities.
- ☐ It has recently installed a chair lift, which increases the operating costs by \$1,540,000 this season.
- ☐ The resort's executive team needs suggestions to develop a strategy to cover this cost, either by charging a premium fee, cutting underused facilities, or other scenarios.

Problem identification

- Is the current ticket price of Big Mountain Resort reasonable in the ski resort market with the facilities they provided for the customers?
- If it is lower than its peers, how much can we increase the ticket price without a significant effect on the customer numbers?
- Which facility is the most valuable one to attract customers to visit this resort?
- Is any facility of the resort underused and can be eliminated?

Dataset Overview

Dataset Overview

		Column
	Trams	Runs
>	fastEight	daysOpenLastYear
	fastSixes	yearsOpen
	fastQuads	AdultWeekday
	Triple	AdultWeekend
	Double	projectedDaysOpen
	Total chairs	

Project workflow

Data wrangling & feature engineering

- I. Is the dataset clean enough for exploratory data analysis
- II. Which feature is out best choice as the target variable?
- III. Are there enough proper features for the development of the pricing model?

Pandas, numpy, matplotlib, seaborn

- I. Cleaned the <u>missing data</u>, deleted negligible features, corrected suspicious data
- II. AdultWeekend is chosen as the proper target variable for the following analysis
- III. Added State summary for this project and finalized the data for EDA analysis

Data wrangling & feature engineering Missing Data Distribution

The Target Variable

AdultWeekend: 15.45% missing data

AdultWeekday: 16.36% missing data.

Data wrangling & feature engineering The novel state-summary data set

- The shape of the data set: (35 rows, 8 cols)
- The variables in this dataset:

The variables in state-summary dataset					
State	State_total_days_open	State_population			
Resorts_per_state	State_total_terrain_parks	State_area_sq_miles			
State_total_skiable_area_ac	State_total_nightskiing_ac				

Data wrangling & feature engineering The cleaned ski_data

- o The shape of the data set: (277 rows, 25 cols)
- The target variable: AdultWeekend
- The predictors:
 - Geography related variables: no change
 - Facility related variables: delete two variables, *AdultWeekday* and *fastEight*
 - Operation related variables: no change

Exploratory Data Analysis & feature engineering

- I. What does the ski-resort market for Montana look like compared with the other states?
- II. When we develop the pricing model, should we use all available data or divide the data into Montana and the other states?

* pandas * numpy * matplotlib * seaborn * sklearn

- I. Montana is among the top 5 state with the largest state area, skiable area, and the highest number of resorts per 100k capita
- II. We can use all available data to develop the pricing model after we add relevant statewide aggregated statistic predictors into ski_data

Exploratory Data Analysis

The top five states in each statewide variables

5	state	state_area_sq_miles	state	state_population	state	resorts_per_state	state	state_total_skiable_area_ac
1	Alaska	665384	California	39512223	New York	33	Colorado	43682
(California	163695	New York	19453561	Michigan	28	Utah	30508
> 1	Montana	147040	Pennsylvania	12801989	Colorado	22	California	25948
<u>]</u>	New Mexico	121590	Illinois	12671821	California	21	Montana	21410

state	state_total_nightskiing_ac	state	state_total_days_open	state	resorts_per_100kcapita	state	resorts_per_100ksq_mile
New York	2836	Colorado	3258	Vermont	2.40388853	New Hampshire	171.1412985
Washington	1997	California	2738	Wyoming	1.382267922	Vermont	155.9900166
Michigan	1946	Michigan	2389	New Hampshire	1.176720641	Massachusetts	104.2258859
Pennsylvania	1528	New York	2384	Montana	1.122777602	Connecticut	90.20386073

Exploratory Data Analysis & Feature Engineering Feature Engineering

Novel features in ski_data				
Resorts_per_state	Resort_night_skiing_state_ratio			
Resorts_per_100kcapita	Total_chairs_runs_ratio			
Resort_skiable_area_ac_state_ratio	Total_chairs_skiable_ratio			
Resort_days_open_state_ratio	FastQuads_runs_ratio			
Resort_terrain_park_state_ratio	FastQuads_skiable_ratio			

Exploratory Data Analysis & Feature Engineering Feature Importance

Exploratory Data Analysis & Feature Engineering Feature Importance

Exploratory Data Analysis & Feature Engineering Feature Importance

Final Dataset Overview

Data Pre-processing and Training

- - I. Primary question: How can we develop a good predictive pricing model?
 - II. Minor questions:
 - 1. Which imputation technique should we use for filling in the missing data, mean or median?
 - 2. How do we train the model?
 - 3. How can we find the best hyperparameters?
 - 4. How can we evaluate the model?

. . . .

* pandas * numpy * sklearn * matplotlib * seaborn * pickle

Data Pre-processing and Training sklearn pipeline

X: ski_data-y-demography variables Impute missing values y: 'AdultWeekend'

Scale the data

Optimization technique:

RandomSearchCV GridSearchCV Bayesian optimization

Regression model metrics:

R-squared Mean absolute error Mean squared error

Data Pre-processing and Training Random Forest vs. Linear Regression

MAE: 9.50

MAE: 11.79

	highly accurate and robust	slow in generating predictions	
	not suffer from the overfitting problem	difficult to interpret compared with linear regression	
L	Tolerate missing values		
	Display feature importance		
	Simple to implement, easy to interpret	Assume normal distribution in variables	
	Less complex compared with random forest	Assume the linear relationship exists	
	Susceptible to overfitting	Outlier can have a huge effect on the model	

Best random forest regressor feature importances

Modeling and Deployment

- I. What's the predicted ticket price for the Big Mountain ski-resort?
- II. Which features are the most important based on the modeling results?
- III. Does the model support other business scenarios besides increasing ticket price?

* pandas, numpy, matplotlib, seaborn, sklearn

Modeling and Deployment

- ☐ Model prediction result is \$94.22, and the actual ticket price is \$81.00.
- ☐ Important features in the model: vertical_drop, SnowMaking_ac, total_chairs, fastQuads, Runs, LongestRun_mi, trams and SkiableTerrain_ac
- ☐ The Big Mountain ticket price, \$80, is slightly higher than the medium of all the resorts in this study, \$60, although it is the most expensive resort in Montana.
- ☐ The Big Mountain Resort is the top resort with high SnowMaking_ac, total_chairs, fastQuads, number of runs, and the most considerable amount of skiable terrain

Modeling Scenarios Evaluation

- I. Permanently closing down up to 10 of the least used runs.
- II. Increase the vertical drop by adding a run to a point 150 feet lower down but requiring the installation of an additional chair lift to bring skiers back up, without additional snow making coverage
- III. Same as number 2, but adding 2 acres of snow making cover
- IV. Increase the longest run by 0.2 mile to boast 3.5 miles length, requiring an additional snow making coverage of 4 acres

Key findings

S1	S2	S3	S4	
Close up to 4 least used runs	Add a new run to increase the vertical drop by 150 feet, install a chair lift	Add two acres of snow making	Increase the ticket price from \$81 to \$94.	
It will barely have effect on the revenue.	It will increase support for ticket price by \$8.46. Over the season, this could be expected to amount to \$14,811,594.	It will increase support for ticket price by \$9.75. Over the season, this could be expected to amount to \$17,068,841	It will increase the revenue by 22,750,000 dollars this season. It can completely cover the cost of the new lift.	

- I. Combine customer information in the study
- II. Cluster analysis and market segmentation
- III.Collect social media data to improve marketing accuracy

suggestion