

=> d his

(FILE 'HOME' ENTERED AT 10:00:36 ON 11 JAN 2005)

~~FILE 'HCAPLUS'~~ ENTERED AT 10:00:51 ON 11 JAN 2005
E PARKINSON/CT

L1 13070 "PARKINSON'S DISEASE"+OLD,NT/CT
E PARKINSONISM/CT
E E6+ALL
L2 53 PARKINSONISM/CT (L) (HEMI OR GUAMANIAN)
E ANTIPARKINSONIAN AGENTS/CT
E E3+ALL
L3 3933 ANTIPARKINSONIAN AGENTS/CT
E PARKINSON/CT
L4 24157 ?PARKIN?/BI
E TREMOR/CT
E E3+ALL
L5 1093 TREMOR+NT/CT
E SHAK/CT
E CELL DEATH/CT
E E3+ALL
L6 83278 CELL DEATH+OLD,NT/CT
E DEATH/CT
E E3+ALL
L7 44708 DEATH+NT/CT (L) CELL?
E NERVE/CT
L8 7963 L6-7 (L) NEURON?
E NERVE/CT
E E3+ALL
L9 170960 NERVE+OLD,NT/CT
E AXON/CT
E E3+ALL
L10 8301 AXON/CT
L11 14550 L9 (L) (AXON OR NEURIT?)
E MYELIN/CT
E E3+ALL
L12 6626 MYELIN+OLD/CT
L13 9111 L9-12 (L) (?APOPT?/BI OR DEATH? OR ?NECRO?/BI)

FILE 'REGISTRY' ENTERED AT 10:16:49 ON 11 JAN 2005

L14 79 MLK? OR KINASE (1A) PROTEIN (1A) (MLK? OR (MULTIPLE OR MIXED) (

FILE 'HCAPLUS' ENTERED AT 10:19:41 ON 11 JAN 2005

E NERVE, DISEASE/CT
E E3+ALL

L15 10477 "NERVE, DISEASE"+OLD,NT/CT (L) (DEATH OR (APOPT? OR NECRO?)/BI)
E NERVOUS SYSTEM/CT
E E3+ALL
L16 1017 L14 OR MLK? OR KINASE (1A) PROTEIN (1A) (MLK? OR (MULTIPLE OR M
L17 22160 NERVOUS SYSTEM+OLD,NT/CT (L) (DEATH OR DEGENERAT? OR (APOPT? OR
E LIU Y/AU
L18 1744 E3,E13
E LIU YA/AU
L19 70 E3,E10
L20 22 L1-5 AND L16
L21 0 L20 AND L18-19
L22 1 US20020006606/PN
L23 4 L16 AND L18-19
L24 10 L20 AND (L8 OR L13 OR L15 OR L17)
L25 QUE PY<=1998 OR AY<=1998 OR PRY<=1998 OR PD<19980514 OR AD<1998
L26 0 L24 AND L25
SEL AN 1-3 6 10 L24
L27 5 E1-10 AND L24
SEL AN L20 2-4 7-8 18
L28 6 E11-21 AND L20
L29 9 L27-28
L30 39 (L8 OR L13 OR L15 OR L17) AND L16
L31 3 L30 AND L18-19
L32 4 L23 OR L29
L33 36 L30 NOT L31

FILE 'REGISTRY' ENTERED AT 11:08:30 ON 11 JAN 2005
SAV TEM L14 HAR964S0/A

~~FILE 'HCAPLUS'~~ ENTERED AT 11:09:27 ON 11 JAN 2005

SAV TEM L16 HAR964S1/A

FILE 'HCAPLUS' ENTERED AT 11:15:36 ON 11 JAN 2005
 SEL AN 3-4 6 8 12 26 30-31 34 L33
 L34 9 E22-39 AND L33
 L35 16 L29 OR L34

> b hcap

FILE 'HCAPLUS' ENTERED AT 11:18:02 ON 11 JAN 2005
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 11 Jan 2005 VOL 142 ISS 3
 FILE LAST UPDATED: 10 Jan 2005 (20050110/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

> d all filtestr 132 tot

L32 ANSWER 1 OF 4 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2001:395049 HCAPLUS
 DN 135:102815
 ED Entered STN: 01 Jun 2001
 TI Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein 95
 AU Savinainen, Anneli; Garcia, Elizabeth P.; Dorow, Donna; Marshall, John; Liu, Ya Fang
 CS Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
 SO Journal of Biological Chemistry (2001), 276(14), 11382-11386
 CODEN: JBCHA3; ISSN: 0021-9258
 PB American Society for Biochemistry and Molecular Biology
 DT Journal
 LA English
 CC 2-8 (Mammalian Hormones)
 AB Kainate receptor glutamate receptor 6 (GluR6) subunit-deficient and c-Jun N-terminal kinase 3 (JNK3)-null mice share similar phenotypes including resistance to kainite-induced epileptic seizures and neuronal toxicity. This suggests that JNK activation may be involved in GluR6-mediated excitotoxicity. The authors provide evidence that post-synaptic d. protein (PSD-95) links GluR6 to JNK activation by anchoring mixed lineage kinase (MLK) 2 or MLK3, upstream activators of JNKs, to the receptor complex. Association of MLK2 and MLK3 with PSD-95 in HN33 cells and rat brain preps. is dependent upon the SH3 domain of PSD-95, and expression of GluR6 in HN33 cells activated JNKs and induced neuronal apoptosis . Deletion of the PSD-95-binding site of GluR6 reduced both JNK activation and neuronal toxicity. Co-expression of dominant neg. MLK2, MLK3, or mitogen-activated kinase kinase (MKK) 4 and MKK7 also significantly attenuated JNK activation and neuronal toxicity mediated by GluR6, and co-expression of PSD-95 with a deficient Src homol. 3 domain also inhibited GluR6-induced JNK activation and neuronal toxicity. The authors' results suggest that PSD-95 plays a critical role in GluR6-mediated JNK activation and excitotoxicity by anchoring MLK to the receptor complex.
 ST kainate receptor MLK kinase signaling PSD95 excitotoxicity brain
 IT Glutamate receptors
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (GluR6 subunit; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades

via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Proteins, specific or class
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (PSD-95 (postsynaptic d.-95); kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Protein motifs
 (SH3 domain; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Nerve, disease
 (death; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Brain
 (hippocampus; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Apoptosis
 Brain
 Signal transduction, biological
 (kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Glutamate receptors
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (kainate-binding; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Cell death
 (neuron; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Toxicity
 (neurotoxicity; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT Nerve
 (toxicity; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT 192230-91-4, protein kinase MKK 4
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (4 and 7; kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

IT 153190-46-6, mixed lineage kinase 3
 191808-07-8, mixed lineage kinase 2
 291756-39-3, JNK 3 kinase
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)

RE.CNT 29 THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS RECORD

- RE
- (1) Beal, M; Nature 1986, V321, P168 HCAPLUS
 - (2) Brenman, J; Cell 1996, V84, P757 HCAPLUS
 - (3) Cha, J; Philos Trans R Soc Lond B Biol Sci 1999, V354, P981 HCAPLUS
 - (4) Chittajallu, R; Trends Pharmacol Sci 2000, V20, P26
 - (5) Derijard, B; Science 1994, V267, P682

- (6) Frerking, M; Curr Opin Neurobiol 2000, V10, P342 HCAPLUS
 (7) Garcia, E; Neuron 1998, V21, P727 HCAPLUS
 (8) Hirai, S; J Biol Chem 1997, V272, P15167 HCAPLUS
 (9) Hollman, M; Annu Rev Neurosci 1994, V17, P31
 (10) Kawasaki, H; J Biol Chem 1997, V272, P18518 HCAPLUS
 (11) Kim, E; Neuron 1996, V17, P103 HCAPLUS
 (12) Kornau, H; Science 1995, V269, P1737 HCAPLUS
 (13) Kyriakis, J; Nature 1994, V369, P156 HCAPLUS
 (14) Liu, Y; J Biol Chem 1997, V272, P8121 HCAPLUS
 (15) Liu, Y; J Biol Chem 1998, V273, P28873 HCAPLUS
 (16) Liu, Y; J Biol Chem 2000, V275, P19035 HCAPLUS
 (17) Macdonald, M; Neurology 2000, V12, P1330
 (18) Migaud, M; Nature 1998, V396, P433 HCAPLUS
 (19) Mulle, C; Nature 1998, V392, P601 HCAPLUS
 (20) Nagata, K; EMBO J 1998, V17, P149 HCAPLUS
 (21) Niethammer, M; Neuron 1997, V16, P2157
 (22) Rubinsztein, D; Proc Natl Acad Sci U S A 1999, V94, P3872
 (23) Sattler, R; Science 1999, V284, P1845 HCAPLUS
 (24) Schauwecker, P; Brain Res 2000, V884, P116 HCAPLUS
 (25) Telfeian, A; Neurobiol Dis 2000, V7, P362 HCAPLUS
 (26) Tezuka, T; Proc Natl Acad Sci U S A 1999, V96, P435 HCAPLUS
 (27) Wagster, M; Exp Neurol 1994, V127, P70 HCAPLUS
 (28) Xia, Z; Science 1995, V270, P1326 HCAPLUS
 (29) Yang, D; Nature 1997, V389, P865 HCAPLUS
 IT 153190-46-6, mixed lineage kinase 3
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (kainate receptor activation induction of mixed lineage kinase-mediated cellular signaling cascades via PSD-95 in excitotoxicity in hippocampal neuronal cell line and brain)
 RN 153190-46-6 HCAPLUS
 CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

- L32 ANSWER 2 OF 4 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2001:394974 HCAPLUS
 DN 135:118347
 ED Entered STN: 01 Jun 2001
 TI Activated JNK phosphorylates the C-terminal domain of MLK2 that is required for MLK2-induced apoptosis
 AU Phelan, David R.; Price, Gareth; Liu, Ya Fang; Dorow, Donna S.
 CS Trescowthick Research Centre, Peter MacCallum Cancer Institute, Melbourne, 8006, Australia
 SO Journal of Biological Chemistry (2001), 276(14), 10801-10810
 CODEN: JBCHA3; ISSN: 0021-9258
 PB American Society for Biochemistry and Molecular Biology
 DT Journal
 LA English
 CC 6-1 (General Biochemistry)
 AB MAP kinase signaling pathways are important mediators of cellular responses to a wide variety of stimuli. Signals pass along these pathways via kinase cascades in which three protein kinases are sequentially phosphorylated and activated, initiating a range of cellular programs including cellular proliferation, immune and inflammatory responses, and apoptosis. One such cascade involves the mixed lineage kinase, MLK2, signaling through MAP kinase kinase 4 and/or MAP kinase kinase 7 to the SAPK/JNK, resulting in phosphorylation of transcription factors including the oncogene, c-jun. Recently we showed that MLK2 causes apoptosis in cultured neuronal cells and that this effect is dependent on activation of the JNK pathway. Furthermore, dominant-neg. MLK2 blocked apoptosis induced by polyglutamine-expanded huntingtin protein, the product of the mutant Huntington's disease gene. Here we show that as well as activating the stress-signaling pathway, MLK2 is a target for phosphorylation by activated JNK. Phosphopeptide mapping of MLK2 proteins revealed that activated JNK2 phosphorylates multiple sites mainly within the noncatalytic C-terminal region of MLK2 including the C-terminal 100 amino acid peptide. In addition, MLK2 is phosphorylated in vivo within several of the same C-terminal peptides phosphorylated by JNK2 in vitro, and this phosphorylation is increased by cotransfection of JNK2 and treatment with the JNK activator, anisomycin. Cotransfection of dominant-neg. JNK kinase inhibits phosphorylation of kinase-neg. MLK2 by anisomycin-activated JNK. Furthermore, we show that the N-terminal region of MLK2 is sufficient to

activate JNK but that removal of the C-terminal domain abrogates the apoptotic response. Taken together, these data indicate that the apoptotic activity of MLK2 is dependent on the C-terminal domain that is the main target for MLK2 phosphorylation by activated JNK.

ST MLK2 phosphorylation apoptosis JNK kinase signal transduction
 IT Proteins, specific or class
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study); PROC (Process)
 (MLK2; activated JNK phosphorylates the C-terminal domain of MLK2 that is required for MLK2-induced apoptosis)
 IT Apoptosis
 Signal transduction, biological
 (activated JNK phosphorylates the C-terminal domain of MLK2 that is required for MLK2-induced apoptosis)
 IT Phosphorylation, biological
 (protein; activated JNK phosphorylates the C-terminal domain of MLK2 that is required for MLK2-induced apoptosis)
 IT 155215-87-5, JNK kinase
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (activated; activated JNK phosphorylates the C-terminal domain of MLK2 that is required for MLK2-induced apoptosis)

RE.CNT 51 THERE ARE 51 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Avruch, J; Mol Cell Biochem 1998, V182, P31 HCPLUS
- (2) Boyle, W; Methods Enzymol 1991, V201, P110 HCPLUS
- (3) Brunet, A; Essays Biochem 1997, V32, P1 HCPLUS
- (4) Burbelo, P; J Biol Chem 1995, V270, P29071 HCPLUS
- (5) Cerezo, A; Cell Death Differ 1999, V6, P87 HCPLUS
- (6) Choi, K; Cell 1994, V78, P499 HCPLUS
- (7) Crews, C; Proc Natl Acad Sci U S A 1992, V89, P8205 HCPLUS
- (8) Cuenda, A; Biochem J 1998, V333, P11 HCPLUS
- (9) Derijard, B; Cell 1994, V76, P1025 HCPLUS
- (10) Derijard, B; Science 1995, V267, P682 HCPLUS
- (11) Dickens, M; Science 1997, V277, P693 HCPLUS
- (12) Dorow, D; Eur J Biochem 1993, V213, P701 HCPLUS
- (13) Dorow, D; Eur J Biochem 1995, V234, P492 HCPLUS
- (14) Errede, B; Philos Trans R Soc Lond-Biol Sci 1996, V351, P143 HCPLUS
- (15) Fan, G; J Biol Chem 1996, V271, P24788 HCPLUS
- (16) Fanger, G; Curr Opin Genet & Dev 1997, V7, P67 HCPLUS
- (17) Gupta, S; EMBO J 1996, V15, P2760 HCPLUS
- (18) Han, J; J Biol Chem 1996, V271, P2886 HCPLUS
- (19) Hirai, S; J Biol Chem 1997, V272, P15167 HCPLUS
- (20) Hirai, S; J Biol Chem 1998, V273, P7406 HCPLUS
- (21) Hirai, S; Oncogene 1996, V12, P641 HCPLUS
- (22) Holland, P; J Biol Chem 1997, V272, P24994 HCPLUS
- (23) Kallunki, T; Genes Dev 1994, V8, P2996 HCPLUS
- (24) Karin, M; Ann N Y Acad Sci 1998, V851, P139 HCPLUS
- (25) Krantz, J; Genes Dev 1994, V8, P313
- (26) Kyriakis, J; Nature 1992, V358, P417 HCPLUS
- (27) Lange-Carter, C; Science 1993, V260, P315 HCPLUS
- (28) Lin, A; Science 1995, V268, P286 HCPLUS
- (29) Liu, Y; J Biol Chem 2000, V275, P19035 HCPLUS
- (30) MacDonald, M; Curr Opin Neurobiol 1996, V5, P638
- (31) Madhani, H; Trends Genet 1998, V14, P151 HCPLUS
- (32) Mangiarini, L; Cell 1996, V87, P493 HCPLUS
- (33) Moriguchi, T; EMBO J 1997, V16, P7045 HCPLUS
- (34) Mukhopadhyay, N; J Biol Chem 1992, V267, P3325 HCPLUS
- (35) Nagata, K; EMBO J 1998, V17, P149 HCPLUS
- (36) Neiman, A; Proc Natl Acad Sci, U S A 1994, V91, P3398 HCPLUS
- (37) Potapova, O; Mol Cell Biol 2000, V20, P1713 HCPLUS
- (38) Rana, A; J Biol Chem 1996, V271, P19025 HCPLUS
- (39) Sanchez, I; Nature 1994, V372, P794 HCPLUS
- (40) Schaeffer, H; Science 1998, V281, P1668 HCPLUS
- (41) Smith, P; Anal Biochem 1985, V150, P76 HCPLUS
- (42) Stein, B; J Biol Chem 1996, V271, P11427 HCPLUS
- (43) Tournier, C; Proc Natl Acad Sci U S A 1997, V94, P7337 HCPLUS
- (44) Whitmarsh, A; Science 1998, V281, P1671 HCPLUS
- (45) Xing, H; EMBO J 2000, V19, P349 HCPLUS
- (46) Xu, S; J Biol Chem 1998, V272, P32056
- (47) Xu, S; Proc Natl Acad Sci U S A 1996, V93, P5291 HCPLUS
- (48) Yasuda, J; Mol Cell Biol 1999, V19, P7245 HCPLUS
- (49) Zhang, L; Proc Natl Acad Sci U S A 1999, V96, P8511 HCPLUS
- (50) Zheng, C; J Biol Chem 1993, V268, P11435 HCPLUS

(51) Zheng, J; Biochemistry 1993, V32, P2154 HCPLUS

L32 ANSWER 3 OF 4 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2000:445776 HCPLUS
 DN 133:175649
 ED Entered STN: 04 Jul 2000
 TI Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin
 AU Liu, Ya Fang; Dorow, Donna; Marshall, John
 CS Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
 SO Journal of Biological Chemistry (2000), 275(25), 19035-19040
 CODEN: JBCHA3; ISSN: 0021-9258
 PB American Society for Biochemistry and Molecular Biology
 DT Journal
 LA English
 CC 14-10 (Mammalian Pathological Biochemistry)
 AB We previously reported that expression of polyglutamine-expanded huntingtin induces apoptosis via c-Jun amino-terminal kinase (JNK) activation in HN33 cells. Extending this study, we now demonstrate a role of mixed-lineage kinase 2 (MLK2), a JNK activator, in polyglutamine-expanded huntingtin-mediated neuronal toxicity. We find that normal huntingtin interacts with MLK2, whereas the polyglutamine expansion interferes with this interaction. Similar to the expression of polyglutamine-expanded huntingtin, expression of MLK2 also induces JNK activation and apoptosis in HN33 cells. Co-expression of dominant neg. MLK2 significantly attenuates neuronal apoptosis induced by the mutated huntingtin. Furthermore, over-expression of the N terminus of normal huntingtin partially rescues the neuronal toxicity induced by MLK2. Our results suggest that activation of MLK2-mediated signaling cascades may be partially involved in neuronal death induced by polyglutamine-expanded huntingtin.
 ST huntingtin polyglutamine mixed lineage Jun
 kinapse Huntington disease
 IT Nervous system
 (Huntington's chorea; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Protein motifs
 (SH3 domain; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Brain
 (hippocampus; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Proteins, specific or class
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (huntingtin; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Toxicity
 (neurotoxicity; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Apoptosis
 Signal transduction, biological
 (polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Repeat motifs (protein)
 (polyglutamine; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)
 IT Nerve
 (toxicity; polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal

kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)

IT 191808-07-8, Mixed-lineage kinase 2
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)

IT 26700-71-0, Polyglutamine
 RL: ADV (Adverse effect, including toxicity); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)

IT 155215-87-5, JUN N-terminal kinase
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)

RE.CNT 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) DiFiglia, M; Science 1997, V277, P1990 HCPLUS
- (2) Dorow, D; Eur J Biochem 1995, V234, P492 HCPLUS
- (3) Eilers, A; J Neurosci 1998, V18, P1713 HCPLUS
- (4) Faber, P; Hum Mol Genet 1998, V7, P1463 HCPLUS
- (5) Ferrante, R; Science 1985, V230, P561 HCPLUS
- (6) Fusco, F; J Neurosci 1999, V19, P1189 HCPLUS
- (7) Go, Y; Am J Physiol 1999, V277, PH1647 HCPLUS
- (8) Gupta, S; Science 1995, V267, P389 HCPLUS
- (9) Gutekunst, C; Proc Natl Acad Sci U S A 1995, V92, P8710 HCPLUS
- (10) Hirai, S; J Biol Chem 1997, V272, P15167 HCPLUS
- (11) Hirai, S; J Biol Chem 1998, V273, P7406 HCPLUS
- (12) Huntington's Disease Collaborative Research Group; Cell 1993, V72, P971 HCPLUS
- (13) Liu, Y; J Biol Chem 1997, V272, P8121 HCPLUS
- (14) Liu, Y; J Biol Chem 1998, V273, P28873 HCPLUS
- (15) Martin, J; N Engl J Med 1986, V315, P1267 HCPLUS
- (16) Nagata, K; EMBO J 1998, V17, P149 HCPLUS
- (17) Phelan, D; Mol Reprod Dev 1999, V52, P135 HCPLUS
- (18) Sanchez, I; Nature 1994, V380, P75
- (19) Saudou, F; Cell 1998, V95, P55 HCPLUS
- (20) Scherzinger, E; Cell 1997, V90, P549 HCPLUS
- (21) Schwarzschild, M; J Neurosci 1997, V17, P3455 HCPLUS
- (22) Sitter, A; Mol Cell 1998, V2, P427
- (23) Stine, O; Hum Mol Genet 1993, V2, P1547 HCPLUS
- (24) Sudol, M; Oncogene 1998, V17, P1469 HCPLUS
- (25) Tournier, C; Proc Natl Acad Sci U S A 1997, V84, P7337
- (26) Trottier, Y; Nat Genet 1995, V10, P104 HCPLUS

IT 191808-07-8, Mixed-lineage kinase 2

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (polyglutamine-expanded huntingtin associated with activation of mixed-lineage kinase 2 and Jun N-terminal kinase in relation to neurotoxicity and apoptosis in human Huntington's disease)

RN 191808-07-8 HCPLUS

CN Kinase (phosphorylating), protein, MLK2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L32 ANSWER 4 OF 4 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 1999:737080 HCPLUS
 DN 131:346549
 ED Entered STN: 19 Nov 1999
 TI Method to identify JNK- and MLK-kinase inhibiting compounds for prevention of neuron death
 IN Liu, Ya Fang
 PA USA
 SO PCT Int. Appl., 62 pp.

CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM G01N033-68
 ICS G01N033-50; C12Q001-48
 CC 1-11 (Pharmacology)

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9958982	A1	19991118	WO 1999-US10416	19990512
	W: CA, JP, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	US 6811992	B1	20041102	US 1998-156367	19980917
	CA 2331680	AA	19991112	CA 1999-2331680	19990512
	EP 1078268	A1	20010228	EP 1999-922972	19990512
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
	JP 2002514767	T2	20020521	JP 2000-548734	19990512
	US 2002006606	A1	20020117	US 2001-886964	20010621
	US 2002058245	A1	20020516	US 2002-42614	20020109
	US 2003148395	A1	20030807	US 2003-360463	20030205
PRAI	US 1998-85439P	P	19980514		
	US 1998-156367	A1	19980917		
	WO 1999-US10416	W	19990512		

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
------------	-------	------------------------------------

WO 9958982	ICM	G01N033-68
	ICS	G01N033-50; C12Q001-48
WO 9958982	ECLA	G01N033/50D2; G01N033/68V2
US 6811992	ECLA	G01N033/50D2; G01N033/68V2
US 2002006606	ECLA	G01N033/50D2; G01N033/68V2
US 2002058245	ECLA	G01N033/50D2; G01N033/68V2
US 2003148395	ECLA	G01N033/50D2; G01N033/68V2

AB Methods are described for identifying compds. that inhibit JNK and MLK kinase activity as drugs for treating a mammal susceptible to or having a neurol. condition. Methods are also disclosed for preventing neuronal cell death and treating neurol. conditions that involve neuronal cell death, particularly neurodegenerative diseases characterized by glutamine- or kainate-mediated toxicity, e.g. Huntington's disease and Alzheimer's disease.

ST JNK MLK kinase inhibitor screening neuroprotectant; Alzheimer drug JNK MLK kinase inhibitor screening; Huntington drug JNK MLK kinase inhibitor screening; neurodegenerative disease JNK MLK kinase inhibitor screening

IT Animal cell line
 (HN33; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Nervous system
 (Huntington's chorea; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Anti-Alzheimer's agents
 Apoptosis
 Drug screening
 Nervous system agents
 Signal transduction, biological
 (JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Transcription factors
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (c-jun; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Amyloid precursor proteins
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (carboxyl-terminal fragment; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Nerve, disease
 (death; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Nervous system
 (degeneration; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Toxins

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (excitotoxins; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Mutation
 (mutated protein; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Proteins, general, biological studies
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (mutated; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Disease models
 (neurodegeneration; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Cell death
 (neuron; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Cytoprotective agents
 (neuroprotectants; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Toxins
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (neurotoxins; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Proteins, specific or class
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (polyglutamine stretch-expanded huntingtin; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT Phosphorylation, biological
 (protein; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT 56-86-0, L-Glutamic acid, biological studies 89-00-9, Quinolinic acid 487-79-6, Kainic acid
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT 153190-46-6, MLK3 kinase 155215-87-5, JNK3 kinase
 191808-07-8, MLK2 kinase 192230-91-4, SEK1 kinase
 250649-03-7, Protein kinase MLK1
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

IT 26700-71-0, Polyglutamine 69864-43-3, Polyglutamine
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (polyglutamine stretch-expanded huntingtin; JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

RE.CNT 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

(1) Dickens, M; Science 1997, V277, P693 HCAPLUS
 (2) University of Massachusetts; WO 9918193 A 1999 HCAPLUS

IT 153190-46-6, MLK3 kinase
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (JNK- and MLK-kinase inhibiting compound identification for prevention of neuron death)

RN 153190-46-6 HCAPLUS

CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

=> @ all hitstr 135 tot

L35 ANSWER 1 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2004:308510 HCAPLUS
 DN 140:316242
 ED Entered STN: 15 Apr 2004
 TI Method for regulating expression of genes by modulating the expression of H19 gene and use for finding out angiogenesis-controlling genes

IN Hochberg, Abraham; Ayesh, Suhail; Poradosu, Enrique
 PA Yissum Research and Development, Israel; McInnis, Patricia
 SO PCT Int. Appl., 24 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM C12N
 CC 3-4 (Biochemical Genetics)
 Section cross-reference(s): 13

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004031359	A2	20040415	WO 2003-US31306	20031003
	WO 2004031359	A3	20041202		
				W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG	

PRAI US 2002-415528P P 20021003

CLASS

PATENT NO. CLASS PATENT FAMILY CLASSIFICATION CODES

WO 2004031359 ICM C12N

AB The present invention relates to method for regulating expression of genes by modulating the expression of H19 gene and use for finding out clusters of angiogenesis-controlling genes and clusters of ischemic-stress induced genes. A bladder carcinoma cell line, which endogenously does not express H19 RNA, shows a marked difference in gene-expression patterns when transfected with H19 sense, as compared with the gene-expression patterns of the same cell line, when transfected with the H19 antisense. In particular, the expression pattern with cells transfected with the H19 sense, showed a marked increase in two unique groups of genes: one group that controls angiogenesis, and another group of genes which protects cells against ischemic stress.

ST regulation expression human H19 angiogenesis controlling ischemic stress gene

IT Angiogenesis

(-controlling gene; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(14-3-3-n protein ETA; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CD tyrosine 15-kinase weel hu; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CDC2-related protein kinase RISSLRE 3; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CDKN2A; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Transcription factors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CP2 (CCAAT box-binding protein 2); regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Transcription factors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CREB (cAMP-responsive element-binding); regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Transcription factors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (ETR101; regulating expression of genes by modulating expression of H19
 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
 (Uses)
 (H19, modulator; regulating expression of genes by modulating
 expression of H19 gene and use for finding out angiogenesis-controlling
 genes)

IT Cyclins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (H; regulating expression of genes by modulating expression of H19 gene
 and use for finding out angiogenesis-controlling genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (HIF-1 (hypoxia-inducible factor 1); regulating expression of genes by
 modulating expression of H19 gene and use for finding out
 angiogenesis-controlling genes)

IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (HK; regulating expression of genes by modulating expression of H19
 gene and use for finding out angiogenesis-controlling genes)

IT Heat-shock proteins
 RL: BSU (Biological study; unclassified); BIOL (Biological study)
 (HSP 70; regulating expression of genes by modulating expression of H19
 gene and use for finding out angiogenesis-controlling genes)

IT Cell adhesion molecules
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (ICAM-1 (intercellular adhesion mol. 1), SI-CAM-1; regulating
 expression of genes by modulating expression of H19 gene and use for
 finding out angiogenesis-controlling genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (ID3 (inhibitor of differentiation 3); regulating expression of genes
 by modulating expression of H19 gene and use for finding out
 angiogenesis-controlling genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (ISGF-2 (interferon-stimulated gene factor 2); regulating expression of
 genes by modulating expression of H19 gene and use for finding out
 angiogenesis-controlling genes)

IT Sarcoma
 (Kaposi's; regulating expression of genes by modulating expression of
 H19 gene and use for finding out angiogenesis-controlling genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (NF-.kappa.B (nuclear factor of .kappa. light chain gene enhancer in
 B-cells), P65 subunit; regulating expression of genes by modulating
 expression of H19 gene and use for finding out angiogenesis-controlling
 genes)

IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (P16-INK4; regulating expression of genes by modulating expression of
 H19 gene and use for finding out angiogenesis-controlling genes)

IT Elongation factors (protein formation)
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (RNA POLYMERASE II, SIII; regulating expression of genes by modulating
 expression of H19 gene and use for finding out angiogenesis-controlling
 genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (RelA; regulating expression of genes by modulating expression of H19
 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (SF; regulating expression of genes by modulating expression of H19
 gene and use for finding out angiogenesis-controlling genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (SREBP (steroid-responsive element-binding protein); regulating
 expression of genes by modulating expression of H19 gene and use for
 finding out angiogenesis-controlling genes)

IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (STAT6 (signal transducer and activator of transcription 6); regulating
 expression of genes by modulating expression of H19 gene and use for

- finding out angiogenesis-controlling genes)
- IT G proteins (guanine nucleotide-binding proteins)
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (TIM-1; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Tyrosine kinase receptors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Tie; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (VPF; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT AIDS (disease)
 (aids related hemangioma; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (c-src; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Artery, disease
 (coronary; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (cut [ccaaat displacement protein\]); regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Nervous system, disease
 (degeneration; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Glycoproteins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (desmoglein 2; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Eye, disease
 (diabetic retinopathy; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Blood vessel
 (endothelium, -specific mol.; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (gene ZFM1; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Growth factors, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (hepatoma-derived; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Gene, animal
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (human C-1; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Cell adhesion molecules
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (intra-, 1; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Stress, animal
 (ischemic; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Eye, disease
 (macula, senile degeneration; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Angiogenesis
 (neovascularization; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)
- IT Blood vessel, disease
 (peripheral, obstruction; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

genes)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(plasmic, .beta.-5; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Surgery
(plastic; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(platelet membrane glycoprotein IIIA; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(proliferating-cell nucleolar antigen p120; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Pleiotrophins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(prolifern; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(protein kinase Map1; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(protein kinase jnk2 stress-activated; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(receptor tyrosine kinase ligand lerk-4; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Anti-AIDS agents
Antiobesity agents
Antitumor agents
Circulation
Fracture (materials)
Genetic vectors
Human
Obesity
Psoriasis
RNA splicing
Rheumatoid arthritis
Tendon
Wound
Wound healing
(regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Ezrin
Hepatocyte growth factor
Interleukin 6
Interleukin 8
Midkines
Platelet-derived growth factors
Ribozymes
Transferrin receptors
Tumor necrosis factors
Urokinase-type plasminogen activator receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Artery, disease
(restenosis; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Double stranded RNA
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(small interfering; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Ischemia

(stress; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Brain, disease
(stroke; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Neoplasm
(treatment of; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(tyk2 non-receptor protein tyrosine kinase; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(tyrosine-protein kinase jaki; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Transforming growth factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.alpha.-; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Macrophage inflammatory protein 2
Vitronectin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.alpha.; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Transducins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.beta.-1; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Calcium channel
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.beta.-3; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT Transforming growth factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(.beta.-; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT 329900-75-6, COX-2
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(COX-2; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT 62031-54-3, Fibroblast growth factor
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(FGF alpha.; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT 50812-37-8, Glutathione s-transferase
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(microsomal; regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT 9001-26-7, COAGULATION FACTOR II 62229-50-9, EGF 67763-96-6, IGF-1
86090-08-6, Angiostatin 106096-92-8, FGF-1 127464-60-2, Vascular
endothelial growth factor 143011-72-7, G-CSF 144697-17-6, C-SRC-KINASE
153570-74-2 154531-34-7, HEPARIN BINDING EGF-LIKE GROWTH FACTOR
169494-85-3, Leptin 187888-07-9, Endostatin
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(regulating expression of genes by modulating expression of H19 gene and use for finding out angiogenesis-controlling genes)

IT 679058-77-6 679058-78-7 679058-79-8 679058-80-1
RL: PRP (Properties)
(unclaimed sequence; method for regulating expression of genes by modulating the expression of H19 gene and use for finding out angiogenesis-controlling genes)

L35 ANSWER 2 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN
AN 2004:226524 HCAPLUS
ED Entered STN: 21 Mar 2004
TI MLK1 SAR and structural studies of CEP-1347
AU Hudkins, Robert L.; Meyer, Sheryl L.
CS Medicinal Chemistry, Cephalon, Inc, West Chester, PA, 19380, USA
SO Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, 2004 (2004), MEDI-166 Publisher: American Chemical Society, Washington, D. C.
CODEN: 69FGKM
DT Conference; Meeting Abstract

LA English
 AB Our research has focused on developing inhibitors of mixed lineage kinases (MLKs) for the treatment of neurodegenerative diseases. The MLKs function at the MAPKKK level of the stress-activated protein kinase-signaling cascade regulating JNK activation and subsequent cJun phosphorylation leading to neuronal cell death. CEP-1347, active in Parkinson's disease preclin. models and currently in Phase III clin. trials, is an inhibitor of the JNK pathway via MLK inhibition and displays a broad neuroprotective profile. Discussed will be MLK1 SAR and structural studies of CEP-1347.

L35 ANSWER 3 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2004:216615 HCPLUS
 DN 140:367903
 ED Entered STN: 18 Mar 2004
 TI Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential
 AU Bogoyevitch, Marie A.; Boehm, Ingrid; Oakley, Aaron; Ketterman, Albert J.; Barr, Renae K.
 CS School of Biomedical and Chemical Sciences, Cell Signalling Laboratory, Biochemistry and Molecular Biology, University of Western Australia, Crawley, WA 6009, Australia
 SO Biochimica et Biophysica Acta (2004), 1697(1-2), 89-101
 CODEN: BBACAO; ISSN: 0006-3002
 PB Elsevier Science B.V.
 DT Journal; General Review
 LA English
 CC 1-0 (Pharmacology)
 AB A review. The c-Jun N-terminal protein kinases (JNKs) form one subfamily of the mitogen-activated protein kinase (MAPK) group of serine/threonine protein kinases. The JNKs were first identified by their activation in response to a variety of extracellular stresses and their ability to phosphorylate the N-terminal transactivation domain of the transcription factor c-Jun. One approach to study the function of the JNKs has included in vivo gene knockouts of each of the three JNK genes. While loss of either JNK1 or JNK2 alone appears to have no serious consequences, their combined knockout is embryonic lethal. In contrast, the loss of JNK3 is not embryonic lethal, but rather protects the adult brain from glutamate-induced excitotoxicity. This latter example has generated considerable enthusiasm with JNK3, considered an appropriate target for the treatment of diseases in which neuronal death should be prevented (e.g. stroke, Alzheimer's and Parkinson's diseases). More recently, these gene knockout animals have been used to demonstrate that JNK could provide a suitable target for the protection against obesity and diabetes and that JNKs may act as tumor suppressors. Considerable effort is being directed to the development of chemical inhibitors of the activators of JNKs (e.g. CEP-1347, an inhibitor of the MLK family of JNK pathway activators) or of the JNKs themselves (e.g. SP600125, a direct inhibitor of JNK activity). These most commonly used inhibitors have demonstrated efficacy for use in vivo, with the successful intervention to decrease brain damage in animal models (CEP-1347) or to ameliorate some of the symptoms of arthritis in other animal models (SP600125). Alternative peptide-based inhibitors of JNKs are now also in development. The possible identification of allosteric modifiers rather than direct ATP competitors could lead to inhibitors of unprecedented specificity and efficacy.
 ST review JNK kinase inhibitor CEP1347 SP600125 peptide
 IT Signal transduction, biological
 (JNK MAPK cascade inhibitors and their therapeutic potential)
 IT Peptides, biological studies
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (JNK MAPK cascade inhibitors and their therapeutic potential)
 IT 289898-51-7, JNK1 kinase 289899-93-0, JNK2 kinase 291756-39-3, JNK3 kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (JNK MAPK cascade inhibitors and their therapeutic potential)
 IT 129-56-6, SP600125 156177-65-0, CEP-1347
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (JNK MAPK cascade inhibitors and their therapeutic potential)
 RE.CNT 101 THERE ARE 101 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE
 (1) Barr, R; J Biol Chem 2002, V277, P10987 HCPLUS
 (2) Becker-Hapak, M; Methods 2001, V24, P247 HCPLUS

- (3) Behrens, A; Development 2003, V130, P103 HCAPLUS
 (4) Behrens, A; Oncogene 2000, V19, P2657 HCAPLUS
 (5) Bennett, B; Proc Natl Acad Sci U S A 2001, V98, P13681 HCAPLUS
 (6) Bogoyevitch, M; DNA Cell Biol 2002, V21, P879 HCAPLUS
 (7) Bonny, C; Diabetes 2001, V50, P77 HCAPLUS
 (8) Bonny, C; J Biol Chem 1998, V273, P1843 HCAPLUS
 (9) Botella, J; Insect Biochem Mol Biol 2001, V31, P839 HCAPLUS
 (10) Buschmann, T; Mol Cell Biol 2001, V21, P2743 HCAPLUS
 (11) Chae, K; Eur J Cancer 2002, V38, P2048 HCAPLUS
 (12) Chang, C; Mol Cell 2002, V9, P1241 HCAPLUS
 (13) Chang, L; Dev Cell 2003, V4 HCAPLUS
 (14) Chauhan, D; J Biol Chem 2003, V278, P17593 HCAPLUS
 (15) Chen, H; Mol Cell Biol 2002, V22, P1792 HCAPLUS
 (16) Chen, N; Cancer Res 2001, V61, P3908 HCAPLUS
 (17) Chen, N; Cancer Res 2002, V62, P1300 HCAPLUS
 (18) Chow, C; Science 1997, V278, P1638 HCAPLUS
 (19) Chu, W; Immunity 1999, V11, P721 HCAPLUS
 (20) Curran, B; Neuroscience 2003, V118, P347 HCAPLUS
 (21) David, J; J Cell Sci 2002, V115, P4317 HCAPLUS
 (22) Derijard, B; Cell 1994, V76, P1025 HCAPLUS
 (23) Dickens, M; Science 1997, V277, P693 HCAPLUS
 (24) Dong, C; Nature 2000, V405, P91 HCAPLUS
 (25) Dong, C; Science 1998, V282, P2092 HCAPLUS
 (26) Dunn, C; Cell Signal 2002, V14, P585 HCAPLUS
 (27) Fan, M; J Biol Chem 2000, V275, P29980 HCAPLUS
 (28) Favata, M; J Biol Chem 1998, V273, P18623 HCAPLUS
 (29) Feramisco, J; J Biol Chem 1978, V253, P8968 HCAPLUS
 (30) Galcheva-Gargova, Z; Science 1994, V265, P806 HCAPLUS
 (31) Grosch, S; FASEB J 2003, V17, P1316 HCAPLUS
 (32) Gum, R; J Biol Chem 1998, V273, P15605 HCAPLUS
 (33) Gupta, S; EMBO J 1996, V15, P2760 HCAPLUS
 (34) Gupta, S; Science 1995, V267, P389 HCAPLUS
 (35) Han, Z; Arthritis Rheum 2002, V46, P818 HCAPLUS
 (36) Han, Z; J Clin Invest 2001, V108, P73 HCAPLUS
 (37) Hashimoto, S; Am J Respir Crit Care Med 2001, V163, P152 MEDLINE
 (38) Hilberg, F; Nature 1993, V365, P179 HCAPLUS
 (39) Hirosumi, J; Nature 2002, V420, P333 HCAPLUS
 (40) Holzberg, D; J Biol Chem 2003, V278, P40213 HCAPLUS
 (41) Huang, C; Nature 2003, V424, P219 HCAPLUS
 (42) Ichijo, H; Oncogene 1999, V18, P6087 HCAPLUS
 (43) Igaki, T; EMBO J 2002, V21, P3009 HCAPLUS
 (44) Ito, M; Mol Cell Biol 1999, V19, P7539 HCAPLUS
 (45) Javelaud, D; J Biol Chem 2003, V278, P24624 HCAPLUS
 (46) Jimenez, B; Oncogene 2001, V20, P3443 HCAPLUS
 (47) Kaneko, M; J Med Chem 1997, V40, P1863 HCAPLUS
 (48) Kawasaki, M; EMBO J 1999, V18, P3604 HCAPLUS
 (49) Kelkar, N; Mol Cell Biol 2000, V20, P1030 HCAPLUS
 (50) Kennedy, N; Genes Dev 2003, V17, P629 HCAPLUS
 (51) Kim, H; Cancer Res 2001, V61, P2833 HCAPLUS
 (52) Kuan, C; Neuron 1999, V22, P667 HCAPLUS
 (53) Kujime, K; J Immunol 2000, P3222 HCAPLUS
 (54) Kyriakis, J; J Biol Chem 1990, V265, P17355 HCAPLUS
 (55) Kyriakis, J; Nature 1994, V369, P156 HCAPLUS
 (56) Le, S; J Biol Chem 2001, V276, P48332 HCAPLUS
 (57) Lee, J; Immunopharmacology 2000, V47, P185 HCAPLUS
 (58) Lei, K; Proc Natl Acad Sci U S A 2003, V100, P2432 HCAPLUS
 (59) Manning, A; Nat Rev. Drug Discov 2003, V2, P554 HCAPLUS
 (60) Manning, G; Science 2002, V298, P1912 HCAPLUS
 (61) Maroney, A; J Biol Chem 2001, V276, P25302 HCAPLUS
 (62) Maroney, A; J Neurosci 1998, V18, P104 HCAPLUS
 (63) Marques, C; J Biol Chem 2003, V278(30), P28294 HCAPLUS
 (64) Meguro, M; Cytokine 2003, V22, P107 HCAPLUS
 (65) Mooser, V; Genomics 1999, V55, P202 HCAPLUS
 (66) Palmada, M; J Cell Biol 2002, V158, P453 HCAPLUS
 (67) Passegue, E; Nat Genet 2002, V30, P158 HCAPLUS
 (68) Riesgo-Escovar, J; Genes Dev 1996, V10, P2759 HCAPLUS
 (69) Sabapathy, K; Curr Biol 1999, V9, P116 HCAPLUS
 (70) Salituro, F; Curr Med Chem 1999, V6, P807 HCAPLUS
 (71) Saporito, M; Prog Med Chem 2002, V40, P23 HCAPLUS
 (72) Schindler, T; Science 2000, V289, P1938 HCAPLUS
 (73) Schoorlemmer, J; J Biol Chem 2002, V277, P49111 HCAPLUS
 (74) She, Q; Cancer Res 2002, V62, P1343 HCAPLUS
 (75) Shin, M; Biochim Biophys Acta 2002, V1589, P311 HCAPLUS
 (76) Sluss, H; Genes Dev 1996, V10, P2745 HCAPLUS
 (77) Stronach, B; Genes Dev 2002, V16, P377 HCAPLUS
 (78) Stronach, B; Oncogene 1999, V18, P6172 HCAPLUS

- (79) Su, G; Cancer Res 1998, V58, P2339 HCAPLUS
 (80) Su, Y; Genes Dev 1998, V12, P2371 HCAPLUS
 (81) Tak, P; J Clin Invest 2001, V107, P7 HCAPLUS
 (82) Tanoue, T; Nat Cell Biol 2000, V2, P110 HCAPLUS
 (83) Teng, D; Cancer Res 1997, V57, P4177 HCAPLUS
 (84) Tibbles, L; EMBO J 1996, V15, P521
 (85) Tsuiki, H; Cancer Res 2003, V63, P250 HCAPLUS
 (86) Utsugi, M; Am J Respir Cell Mol Biol 2003, V28, P754 HCAPLUS
 (87) Utsugi, M; J Immunol 2003, V171, P628 HCAPLUS
 (88) Vincenti, M; J Clin Invest 2001, V108, P181 HCAPLUS
 (89) Wagner, A; Am J Physiol:Gasterointest Liver Physiol 2000, V278, PG165
 HCAPLUS
 (90) Walsh, D; Methods Enzymol 1991, V201, P304 HCAPLUS
 (91) Weston, C; Genes Dev 2003, V17, P1271 HCAPLUS
 (92) Whitmarsh, A; Science 1998, V281, P1671 HCAPLUS
 (93) Wisdom, R; EMBO J 1999, P188 HCAPLUS
 (94) Yamada, S; Cancer Res 2002, V62, P6717 HCAPLUS
 (95) Yang, D; Immunity 1998, V9, P575 HCAPLUS
 (96) Yang, D; Nature 1997, V389, P865 HCAPLUS
 (97) Yang, S; Mol Cell Biol 1998, V18, P710 HCAPLUS
 (98) Yasuda, J; Mol Cell Biol 1999, V19, P7245 HCAPLUS
 (99) Yoshida, B; Cancer Res 1999, V59, P5483 HCAPLUS
 (100) Yoshida, S; J Hum Genet 2001, V46, P182 HCAPLUS
 (101) Zenz, R; Dev Cell 2003, V4, P879 HCAPLUS

L35 ANSWER 4 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2004:192143 HCAPLUS

DN 140:419104

ED Entered STN: 10 Mar 2004

TI Inhibition of mixed lineage kinase 3
 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells

AU Mathiasen, Joanne R.; McKenna, Beth Ann W.; Saporito, Michael S.; Ghadge, Ghanashyam D.; Roos, Raymond P.; Holskin, Beverly P.; Wu, Zhi-Liang; Trusko, Stephen P.; Connors, Thomas C.; Maroney, Anna C.; Thomas, Beth Ann; Thomas, Jeffrey C.; Bozyczko-Coyne, Donna

CS Neurobiology, Cephalon, Inc., West Chester, PA, 19380, USA

SO Brain Research (2004), 1003(1,2), 86-97

CODEN: BRREAP; ISSN: 0006-8993

PB Elsevier Science B.V.

DT Journal

LA English

CC 4-3 (Toxicology)

Section cross-reference(s): 14

AB The neuropathol. of Parkinson's Disease has been modeled in exptl. animals following MPTP treatment and in dopaminergic cells in culture treated with the MPTP neurotoxic metabolite, MPP+. MPTP through MPP+ activates the stress-activated c-Jun N-terminal kinase (JNK) pathway in mice and SH-SY5Y neuroblastoma cells. Recently, it was demonstrated that CEP-1347/KT7515 attenuated MPTP-induced nigrostriatal dopaminergic neuron degeneration in mice, as well as MPTP-induced JNK phosphorylation. Presumably, CEP-1347 acts through inhibition of at least one upstream kinase within the mixed lineage kinase (

MLK) family since it has been shown to inhibit MLK 1, 2 and 3 in vitro. Activation of the MLK family leads to JNK activation. In this study, the potential role of MLK and the JNK pathway was examined in MPP+-induced cell death of differentiated SH-SY5Y cells using CEP-1347 as a pharmacol. probe and dominant neg. adenoviral constructs to MLKs. CEP-1347 inhibited MPP+-induced cell death and the morphol. features of apoptosis. CEP-1347 also prevented MPP+-induced JNK activation in SH-SY5Y cells. Endogenous MLK 3 expression was demonstrated in SH-SY5Y cells through protein levels and RT-PCR. Adenoviral infection of SH-SY5Y cells with a dominant neg. MLK 3 construct attenuated the MPP+-mediated increase in activated JNK levels and inhibited neuronal death following MPP+ addition compared to cultures infected with a control construct. Adenoviral dominant neg. constructs of two other MLK family members (MLK 2 and DLK) did not protect against MPP+-induced cell death. These studies show that inhibition of the MLK 3/JNK pathway attenuates MPP+-mediated SH-SY5Y cell death in culture and supports the mechanism of action of CEP-1347 as an MLK family inhibitor.

ST MLK kinase 3 MPP neurotoxicity SHSY5Y cell; nerve cell death MLK kinase signaling Parkinsons disease

IT Animal cell line

(SH-SY5Y; inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y

cells)
 IT Apoptosis
 Cell death
 Human
 Parkinson's disease
 Signal transduction, biological
 (inhibition of mixed lineage kinase 3
 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells)
 IT Nerve, neoplasm
 (neuroblastoma; inhibition of mixed lineage
 kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y
 cells)
 IT Nerve
 (toxicity; inhibition of mixed lineage
 kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y
 cells)
 IT 48134-75-4, MPP+
 RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (inhibition of mixed lineage kinase 3
 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells)
 IT 153190-46-6, Mixed lineage kinase 3
 155215-87-5, c-Jun N-terminal kinase 156177-65-0, CEP-1347
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (inhibition of mixed lineage kinase 3
 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells)

RE.CNT 63 THERE ARE 63 CITED REFERENCES AVAILABLE FOR THIS RECORD

- RE
- (1) Agid, Y; Lancet 1991, V337, P1
 - (2) Biedler, J; Cancer Res 1978, V38, P3751 HCPLUS
 - (3) Blanchet, P; Exp Neurol 1998, V153, P214 HCPLUS
 - (4) Bloem, L; J Mol Cell Cardiol 2001, V33, P1739 HCPLUS
 - (5) Borasio, G; NeuroReport 1998, V9, P1435 HCPLUS
 - (6) Cassarino, D; J Neurochem 2000, V74, P1384 HCPLUS
 - (7) Crocker, S; PNAS 2001, V98, P13385 HCPLUS
 - (8) Cuenda, A; Biochem J 1998, V333, P11 HCPLUS
 - (9) Davis, R; Cell 2000, V103, P239 HCPLUS
 - (10) Dipasquale, B; BBRC 1991, V181, P1442 HCPLUS
 - (11) Fall, C; J Neurosci Res 1999, V55, P620 HCPLUS
 - (12) Fan, G; J Biol Chem 1996, V271, P24788 HCPLUS
 - (13) Farooqui, S; Life Sci 1994, V55, P1887 MEDLINE
 - (14) Ferrer, I; J Neural Transm 2001, V108, P1383 HCPLUS
 - (15) Gerlach, M; Brain Res 1996, V741, P142 HCPLUS
 - (16) Ghadge, G; Gene Ther 1995, V2, P132 HCPLUS
 - (17) Glicksman, M; J Neurobiol 1998, V35, P361 HCPLUS
 - (18) Gomez-Santos, C; Brain Res 2002, V935, P32 HCPLUS
 - (19) Gotoh, I; J Biol Chem 2001, V276, P4276 HCPLUS
 - (20) Gupta, S; EMBO J 1996, V15, P2760 HCPLUS
 - (21) Hartley, A; J Neurochem 1994, V63, P1987 HCPLUS
 - (22) Hehner, S; Mol Cell Biol 2000, V20, P2556 HCPLUS
 - (23) Heikkila, R; Nature 1984, V311, P467 HCPLUS
 - (24) Heikkila, R; Science 1984, V224, P1451 HCPLUS
 - (25) Hirai, S; Oncogene 1996, V12, P641 HCPLUS
 - (26) Hirsch, E; Mov Disord 1999, V14, P383 MEDLINE
 - (27) Hockenberry, D; Nature 1990, V348, P334 HCPLUS
 - (28) Itano, Y; Brain Res 1995, V704, P240 HCPLUS
 - (29) Kaplan, D; Neuron 1993, V11, P321 HCPLUS
 - (30) Kitamura, Y; Mol Pharmacol 1998, V54, P1046 HCPLUS
 - (31) Langston, J; Neurology 1996, V47, PS153 MEDLINE
 - (32) Leung, I; J Biol Chem 1998, V273(49), P32408 HCPLUS
 - (33) Maroney, A; J Biol Chem 2001, V276, P25302 HCPLUS
 - (34) Maroney, A; J Neurochem 1999, V73, P1901 HCPLUS
 - (35) Maroney, A; J Neurosci 1998, V18, P104 HCPLUS
 - (36) Mielke, K; Mol Brain Res 2000, V75, P128 HCPLUS
 - (37) Mittereder, N; J Virol 1996, V70, P7498 HCPLUS
 - (38) Mochizuki, H; Neurosci Lett 1994, V170, P191 HCPLUS
 - (39) Mota, M; J Neurosci 2001, V21, P4949 HCPLUS
 - (40) Nicklas, W; Life Sci 1985, V36, P2503 HCPLUS
 - (41) Offen, D; Proc Natl Acad Sci U S A 1998, V95, P5789 HCPLUS
 - (42) Ofori, S; J Pharmacol Exper Ther 1989, V251, P258 HCPLUS
 - (43) Park, C; J Toxicol Sci 1998, V23(Suppl II), P184
 - (44) Sakuma, H; J Biol Chem 1997, V272, P28622 HCPLUS
 - (45) Saporito, M; J Neurochem 2000, V75, P1200 HCPLUS
 - (46) Saporito, M; J Pharmacol Exp Ther 1992, V260, P1400 HCPLUS
 - (47) Saporito, M; J Pharmacol Exp Ther 1999, V288, P421 HCPLUS
 - (48) Schaack, J; J Virol 1995, V69, P3920 HCPLUS
 - (49) Schapira, A; Mov Disord 1994, V9, P125 MEDLINE

(50) Sheehan, J; J Neurosci Res 1997, V48, P226 HCAPLUS
 (51) Swerdlow, R; Ann Neurol 1996, V40, P663 MEDLINE
 (52) Takahashi, T; J Neural Transm Gen Sect 1994, V98, P107 HCAPLUS
 (53) Tanaka, S; J Biol Chem 1998, V273(3), P1281 HCAPLUS
 (54) Tatton, N; Neuroscience 1991, V77, P1037
 (55) Teramoto, H; J Biol Chem 1996, V271, P27225 HCAPLUS
 (56) Tibbles, L; EMBO J 1996, V15, P7026 HCAPLUS
 (57) Tipton, K; J Neurochem 1993, V61, P1191 HCAPLUS
 (58) Tournier, C; Science 2000, V288, P870 HCAPLUS
 (59) Trimmer, P; Neurodegeneration 1996, V5, P233 MEDLINE
 (60) Vyas, I; J Neurochem 1986, V46, P1501 HCAPLUS
 (61) Xia, X; PNAS 2001, V98, P10433 HCAPLUS
 (62) Xu, Z; Mol Cell Biol 2001, V21, P4713 HCAPLUS
 (63) Yang, L; J Neurosci 1998, V18, P8145 HCAPLUS
 IT 153190-46-6, Mixed lineage kinase 3
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (inhibition of mixed lineage kinase 3
 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells)
 RN 153190-46-6 HCAPLUS
 CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 5 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2004:184769 HCAPLUS
 DN 140:301234
 ED Entered STN: 08 Mar 2004
 TI Mixed-lineage kinases: A target for the prevention of neurodegeneration
 AU Wang, Leo H.; Besirli, Cagri G.; Johnson, Eugene M., Jr.
 CS Departments of Neurology and Molecular Biology & Pharmacology, Washington University School of Medicine, Saint Louis, MO, 63110-1031, USA
 SO Annual Review of Pharmacology and Toxicology (2004), 44, 451-474
 CODEN: ARPTDI; ISSN: 0362-1642
 PB Annual Reviews Inc.
 DT Journal; General Review
 LA English
 CC 14-0 (Mammalian Pathological Biochemistry)
 AB A review. The activation of the c-Jun N-terminal kinase (JNK) pathway is critical for naturally occurring neuronal cell death during development and may be important for the pathol. neuronal cell death of neurodegenerative diseases. The small mol. inhibitor of the mixed-lineage kinase (MLK) family of kinases, CEP-1347, inhibits the activation of the JNK pathway and, consequently, the cell death in many cell culture and animal models of neuronal death. CEP-1347 has the ability not only to inhibit cell death but also to maintain the trophic status of neurons in culture. The possible importance of the JNK pathway in neurodegenerative diseases such as Alzheimer's and Parkinson 's diseases provides a rationale for the use of CEP-1347 for the treatment of these diseases. CEP-1347 has the potential of not only retarding disease progression but also reversing the severity of symptoms by improving the function of surviving neurons.
 ST review JNK kinase neurodegeneration
 IT Signal transduction, biological
 (JNK kinase pathway dysregulation in neurodegeneration)
 IT Nerve, disease
 (degeneration; JNK kinase pathway dysregulation in neurodegeneration)
 IT 155215-87-5, c-Jun N-terminal kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (JNK kinase pathway dysregulation in neurodegeneration)

RE.CNT 96 THERE ARE 96 CITED REFERENCES AVAILABLE FOR THIS RECORD

- RE
- (1) Anderson, A; Exp Neurol 1994, V125, P286 MEDLINE
 - (2) Anderson, A; J Neurochem 1995, V65, P1487 HCAPLUS
 - (3) Angeles, T; Arch Biochem Biophys 1998, V349, P267 HCAPLUS
 - (4) Bain, J; Biochem J 2003, V371, P199 HCAPLUS
 - (5) Behrens, A; Nat Genet 1999, V21, P326 HCAPLUS
 - (6) Bennett, B; Proc Natl Acad Sci USA 2001, V98, P13681 HCAPLUS
 - (7) Berg, M; J Biol Chem 1992, V267, P13 HCAPLUS
 - (8) Besirli, C; J Biol Chem 2003, V278, P22357 HCAPLUS
 - (9) Blouin, R; DNA Cell Biol 1996, V15, P631 HCAPLUS
 - (10) Bock, B; J Biol Chem 2000, V275, P14231 HCAPLUS
 - (11) Borasio, G; Neurosci Lett 1990, V108, P207 HCAPLUS
 - (12) Bozyczko-Coyne, D; J Neurochem 2001, V77, P849 HCAPLUS

- (13) Bruckner, S; J Neurochem 2001, V78, P298 HCAPLUS
 (14) Chang, L; Dev Cell 2003, V4, P521 HCAPLUS
 (15) Cremins, J; J Cell Biol 1986, V103, P887 HCAPLUS
 (16) Davis, R; Cell 2000, V103, P239 HCAPLUS
 (17) Dicamillo, A; Neuroscience 1998, V86, P473 HCAPLUS
 (18) Dorow, D; Eur J Biochem 1993, V213, P701 HCAPLUS
 (19) Dorow, D; Eur J Biochem 1995, V234, P492 HCAPLUS
 (20) Elliott, L; Biochem Biophys Res Commun 1990, V171, P148 HCAPLUS
 (21) Estus, S; J Cell Biol 1994, V127, P1717 HCAPLUS
 (22) Estus, S; J Neurosci 1997, V17, P7736 HCAPLUS
 (23) Ezoe, K; Oncogene 1994, V9, P935 HCAPLUS
 (24) Fanger, G; Curr Opin Genet Dev 1997, V7, P67 HCAPLUS
 (25) Ferrer, I; J Neural Transm 2001, V108, P1383 HCAPLUS
 (26) Ferrer, I; J Neural Transm 2001, V108, P1397 HCAPLUS
 (27) Gallo, K; J Biol Chem 1994, V269, P15092 HCAPLUS
 (28) Gallo, K; Nat Rev Mol Cell Biol 2002, V3, P663 HCAPLUS
 (29) Giasson, B; J Biol Chem 1996, V271, P30404 HCAPLUS
 (30) Glicksman, M; J Neurobiol 1998, V35, P361 HCAPLUS
 (31) Glicksman, M; J Neurochem 1993, V61, P210 HCAPLUS
 (32) Glicksman, M; J Neurochem 1995, V64, P1502 HCAPLUS
 (33) Goedert, M; FEBS Lett 1997, V409, P57 HCAPLUS
 (34) Gotoh, I; J Biol Chem 2001, V276, P4276 HCAPLUS
 (35) Gross, E; J Biol Chem 2002, V277, P13873 HCAPLUS
 (36) Haas, C; J Neurosci 1996, V16, P1894 HCAPLUS
 (37) Haas, C; Neuroscience 1998, V87, P831 HCAPLUS
 (38) Ham, J; Biochem Pharmacol 2000, V60, P1015 HCAPLUS
 (39) Ham, J; Neuron 1995, V14, P927 HCAPLUS
 (40) Hama, T; Proc Natl Acad Sci USA 1986, V83, P2353 HCAPLUS
 (41) Harper, S; Neuroreport 2000, V11, P2271 HCAPLUS
 (42) Harris, C; J Biol Chem 2001, V276, P37754 HCAPLUS
 (43) Harris, C; J Neurochem 2002, V83, P992 HCAPLUS
 (44) Harris, C; J Neurosci 2002, V22, P103 HCAPLUS
 (45) Hashimoto, S; J Cell Biol 1988, V107, P1531 HCAPLUS
 (46) Herdegen, T; Trends Neurosci 1997, V20, P227 HCAPLUS
 (47) Hirai, S; J Biol Chem 1997, V272, P15167 HCAPLUS
 (48) Holzman, L; J Biol Chem 1994, V269, P30808 HCAPLUS
 (49) Ing, Y; Oncogene 1994, V9, P1745 HCAPLUS
 (50) Kaneko, M; J Med Chem 1997, V40, P1863 HCAPLUS
 (51) Kase, H; Biochem Biophys Res Commun 1987, V142, P436 HCAPLUS
 (52) Kase, H; J Antibiot (Tokyo) 1986, V39, P1059 HCAPLUS
 (53) Katoch, M; Oncogene 1995, V10, P1447 HCAPLUS
 (54) Kelkar, N; Mol Cell Biol 2000, V20, P1030 HCAPLUS
 (55) Knusel, B; J Neurochem 1992, V59, P715 HCAPLUS
 (56) Koizumi, S; J Neurosci 1988, V8, P715 HCAPLUS
 (57) Konitsiotis, S; Annu Meet Soc Neurosci 1999
 (58) Laval, P; Nouv Presse Med 1977, V6, P1059 MEDLINE
 (59) Leung, I; J Biol Chem 1998, V273, P32408 HCAPLUS
 (60) Liu, T; Biochem Biophys Res Commun 2000, V274, P811 HCAPLUS
 (61) Macgibbon, G; Exp Neurol 1997, V147, P316 HCAPLUS
 (62) Marcus, D; Neurobiol Aging 1998, V19, P393 HCAPLUS
 (63) Maroney, A; J Biol Chem 2001, V276, P25302 HCAPLUS
 (64) Maroney, A; J Neurochem 1997, V68, P88 HCAPLUS
 (65) Maroney, A; J Neurochem 1999, V73, P1901 HCAPLUS
 (66) Maroney, A; J Neurosci 1998, V18, P104 HCAPLUS
 (67) Matsuda, Y; Biochem J 1988, V256, P75 HCAPLUS
 (68) Merritt, S; J Biol Chem 1999, V274, P10195 HCAPLUS
 (69) Mielke, K; Prog Neurobiol 2000, V61, P45 HCAPLUS
 (70) Murakata, C; Bioorg Med Chem Lett 2002, V12, P147 HCAPLUS
 (71) Nicotra, A; Neurotoxicol Teratol 2002, V24, P599 HCAPLUS
 (72) Nihalani, D; J Biol Chem 2000, V275, P7273 HCAPLUS
 (73) Nye, S; Mol Biol Cell 1992, V3, P677 HCAPLUS
 (74) Ohmichi, M; Biochemistry 1992, V31, P4034 HCAPLUS
 (75) Palmada, M; J Cell Biol 2002, V158, P453 HCAPLUS
 (76) Pirvola, U; J Neurosci 2000, V20, P43 HCAPLUS
 (77) Putcha, G; Neuron 2003, V38, P899 HCAPLUS
 (78) Reddy, U; Biochem Biophys Res Commun 1994, V205, P1494 HCAPLUS
 (79) Reynolds, C; J Neurochem 1997, V68, P1736 HCAPLUS
 (80) Roux, P; J Biol Chem 2002, V277, P49473 HCAPLUS
 (81) Sakuma, H; J Biol Chem 1997, V272, P28622 HCAPLUS
 (82) Saporito, M; J Neurochem 2000, V75, P1200 HCAPLUS
 (83) Saporito, M; J Pharmacol Exp Ther 1999, V288, P421 HCAPLUS
 (84) Saporito, M; Neuroscience 1998, V86, P461 HCAPLUS
 (85) Saporito, M; Prog Med Chem 2002, V40, P23 HCAPLUS
 (86) Shoji, M; Brain Res Mol Brain Res 2000, V85, P221 HCAPLUS
 (87) Tapley, P; Oncogene 1992, V7, P371 HCAPLUS
 (88) Teramoto, H; J Biol Chem 1996, V271, P27225 HCAPLUS

- (89) Wang, L; Soc Neurosci Annu Meet 2002
 (90) Whitfield, J; Neuron 2001, V29, P629 HCPLUS
 (91) Xu, Z; Mol Cell Biol 2001, V21, P4713 HCPLUS
 (92) Yang, J; Biochem Biophys Res Commun 2002, V297, P105 HCPLUS
 (93) Yasuda, J; Mol Cell Biol 1999, V19, P7245 HCPLUS
 (94) Ylikoski, J; Hear Res 2002, V163, P71 HCPLUS
 (95) Zhang, H; J Biol Chem 2001, V276, P45598 HCPLUS
 (96) Zhu, X; J Neurochem 2001, V76, P435 HCPLUS

L35 ANSWER 6 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2004:73106 HCPLUS
 DN 140:229244
 ED Entered STN: 29 Jan 2004
 TI CEP11004, a novel inhibitor of the mixed lineage kinases, suppresses apoptotic death in dopamine neurons of the substantia nigra induced by 6-hydroxydopamine
 AU Ganguly, Anindita; Oo, Tinmarla Frances; Rzhetskaya, Margarita; Pratt, Robert; Yarygina, Olga; Momoi, Takashi; Kholodilov, Nikolai; Burke, Robert E.
 CS Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, NY, USA
 SO Journal of Neurochemistry (2004), 88(2), 469-480
 CODEN: JONRA9; ISSN: 0022-3042
 PB Blackwell Publishing Ltd.
 DT Journal
 LA English
 CC 1-11 (Pharmacology)
 Section cross-reference(s): 7, 14
 AB There is much evidence that the kinase cascade which leads to the phosphorylation of c-jun plays an important signaling role in the mediation of programmed cell death. We have previously shown that c-jun is phosphorylated in a model of induced apoptotic death in dopamine neurons of the substantia nigra in vivo. To determine the generality and functional significance of this response, we have examined c-jun phosphorylation and the effect on cell death of a novel mixed lineage kinase inhibitor, CEP11004, in the 6-hydroxydopamine model of induced apoptotic death in dopamine neurons. We found that expression of total c-jun and Ser73-phosphorylated c-jun is increased in this model and both colocalize with apoptotic morphol. CEP11004 suppresses apoptotic death to levels of 44 and 58% of control values at doses of 1.0 and 3.0 mg/kg, resp. It also suppresses, to approx. equal levels, the number of profiles pos. for the activated form of caspase 9. CEP11004 markedly suppresses striatal dopaminergic fiber loss in these models, to only 22% of control levels. We conclude that c-jun phosphorylation is a general feature of apoptosis in living dopamine neurons and that the mixed lineage kinases play a functional role as up-stream mediators of cell death in these neurons.
 ST apoptosis cjun phosphorylation kinase signaling CEP11004 neuroprotectant; Parkinsons disease mixed lineage kinase inhibitor antiParkinsonian
 IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (c-jun; mixed lineage kinase inhibitor
 CEP11004 suppresses apoptotic death in dopamine neurons of substantia nigra)
 IT Brain
 (corpus striatum; mixed lineage kinase inhibitor CEP11004 suppresses apoptotic death in dopamine neurons of substantia nigra)
 IT Nerve, disease
 Nervous system, disease
 (degeneration; mixed lineage kinase inhibitor CEP11004 suppresses apoptotic death in dopamine neurons of substantia nigra)
 IT Brain
 (dopaminergic system; mixed lineage kinase inhibitor CEP11004 suppresses apoptotic death in dopamine neurons of substantia nigra)
 IT Antiparkinsonian agents
 Apoptosis
 Human
 Parkinson's disease
 Phosphorylation, biological
 Rattus

Signal transduction, biological
 (mixed lineage kinase inhibitor CEP11004
 suppresses apoptotic death in dopamine neurons of substantia
 nigra)

IT Brain
 (substantia nigra, dopaminergic system; mixed lineage
 kinase inhibitor CEP11004 suppresses apoptotic death in
 dopamine neurons of substantia nigra)

IT Brain
 (substantia nigra; mixed lineage kinase
 inhibitor CEP11004 suppresses apoptotic death in dopamine neurons of
 substantia nigra)

IT 153190-46-6, Mixed lineage kinase 3
 155215-87-5, c-Jun kinase 179241-70-4, Mixed
 lineage kinase DLK 180189-96-2, Caspase 9
 191808-07-8, Mixed lineage kinase 2
 250649-03-7, Mixed lineage kinase 1
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (mixed lineage kinase inhibitor CEP11004
 suppresses apoptotic death in dopamine neurons of substantia nigra)

IT 504640-06-6, Genbank AY240865 504640-07-7, Genbank AY240866
 504640-08-8, Genbank AY240867 504640-09-9, Genbank AY240868
 504640-14-6, Genbank AY240864
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
 (Biological study)
 (mixed lineage kinase inhibitor CEP11004
 suppresses apoptotic death in dopamine neurons of substantia nigra)

IT 178404-52-9, CEP 11004
 RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); THU
 (Therapeutic use); BIOL (Biological study); USES (Uses)
 (mixed lineage kinase inhibitor CEP11004
 suppresses apoptotic death in dopamine neurons of substantia nigra)

RE.CNT 54 THERE ARE 54 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Bazenet, C; Proc Natl Acad Sci USA 1998, V95, P3984 HCPLUS
- (2) Bozyczko-Coyne, D; J Neurochem 2001, V77, P849 HCPLUS
- (3) Budihardjo, I; Annu Rev Cell Dev Biol 1999, V15, P269 HCPLUS
- (4) Burke, R; J Neurochem 1994, V62, P1878 HCPLUS
- (5) Burke, R; J Neurosci Methods 1990, V35, P63 MEDLINE
- (6) Clarke, P; Methods in Cell Biology: Cell Death 1995, P277 MEDLINE
- (7) Coggeshall, R; J Comp Neurol 1996, V364, P6 MEDLINE
- (8) Crocker, S; Proc Natl Acad Sci USA 2001, V98, P13385 HCPLUS
- (9) El-Khodr, B; Brain Res Dev Brain Res 2001, V129, P47 HCPLUS
- (10) El-Khodr, B; J Comp Neurol 2002, V452, P65
- (11) Estus, S; J Cell Biol 1994, V127, P1717 HCPLUS
- (12) Fujita, E; Brain Res Dev Brain Res 2000, V122, P135 HCPLUS
- (13) Gallo, K; Nat Rev Mol Cell Biol 2002, V3, P663 HCPLUS
- (14) Glicksman, M; J Neurobiol 1998, V35, P361 HCPLUS
- (15) Gundersen, H; J Microscopy 1986, V143, P3
- (16) Ham, J; Neuron 1995, V14, P927 HCPLUS
- (17) Harlan, R; Brain Res 1995, V692, P1 HCPLUS
- (18) Harris, C; J Neurosci 2002, V22, P103 HCPLUS
- (19) Herdegen, T; J Neurosci 1998, V18, P5124 HCPLUS
- (20) Jackson-Lewis, V; Abstract Soc Neurosci 2000, V26, P754
- (21) Jackson-Lewis, V; J Comp Neurol 2000, V424, P476 HCPLUS
- (22) Jackson-Lewis, V; Neurodegeneration 1995, V4, P257 MEDLINE
- (23) Janec, E; Mol Cell Neurosci 1993, V4, P30
- (24) Jenkins, R; Neuroscience 1993, V53, P447 HCPLUS
- (25) Jeon, B; J Neurochem 1999, V73, P322 HCPLUS
- (26) Kish, S; N Engl J Med 1988, V318, P876 MEDLINE
- (27) Macaya, A; Proc Natl Acad Sci USA 1994, V91, P8117 HCPLUS
- (28) Maroney, A; J Biol Chem 2001, V276, P25302 HCPLUS
- (29) Maroney, A; J Neurochem 1999, V73, P1901 HCPLUS
- (30) Maroney, A; J Neurosci 1998, V18, P104 HCPLUS
- (31) Marti, M; Brain Res 2002, V958, P185 HCPLUS
- (32) Marti, M; J Neurosci 1997, V17, P2030 HCPLUS
- (33) Murakata, C; Bioorg Med Chem Lett 2002, V12, P147 HCPLUS
- (34) Nadler, J; Meth Enzymol 1983, V103, P393 HCPLUS
- (35) Oo, T; Dev Brain Res 1997, V98, P191 HCPLUS
- (36) Oo, T; Exp Neurol 2002, V175, P1 HCPLUS
- (37) Oo, T; J Neurochem 1999, V72, P557 HCPLUS
- (38) Oo, T; J Neurosci 1996, V16, P6134 HCPLUS
- (39) Park, D; J Biol Chem 1996, V271, P21898 HCPLUS
- (40) Paxinos, G; The Rat Brain in Stereotaxic Coordinates 1982
- (41) Pirvola, U; J Neurosci 2000, V20, P43 HCPLUS
- (42) Raff, M; Science 2002, V296, P868 HCPLUS

(43) Sambrook, J; Molecular Cloning 1989
 (44) Saper, C; J Comp Neurol 1996, V364, P5 MEDLINE
 (45) Saporito, M; J Neurochem 2000, V75, P1200 HCAPLUS
 (46) Saporito, M; J Pharmacol Exp Ther 1999, V288, P421 HCAPLUS
 (47) Saporito, M; Neuroscience 1998, V86, P461 HCAPLUS
 (48) Tatton, N; Neuroscience 1997, V77, P1037 HCAPLUS
 (49) Vaudano, E; Eur J Neurosci 2001, V13, P1 MEDLINE
 (50) Whitfield, J; Neuron 2001, V29, P629 HCAPLUS
 (51) Xia, X; Proc Natl Acad Sci USA 2001, V98, P10433 HCAPLUS
 (52) Xia, Z; Science 1995, V270, P1326 HCAPLUS
 (53) Xu, Z; Mol Cell Biol 2001, V21, P4713 HCAPLUS
 (54) Yuan, J; Nature 2000, V407, P802 HCAPLUS
 IT 153190-46-6, Mixed lineage kinase 3
 179241-70-4, Mixed lineage kinase
 DLK 191808-07-8, Mixed lineage
 kinase 2 250649-03-7, Mixed lineage
 kinase 1
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (mixed lineage kinase inhibitor CEP11004
 suppresses apoptotic death in dopamine neurons of substantia nigra)
 RN 153190-46-6 HCAPLUS
 CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 179241-70-4 HCAPLUS
 CN Kinase (phosphorylating), protein, DLK (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 191808-07-8 HCAPLUS
 CN Kinase (phosphorylating), protein, MLK2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 250649-03-7 HCAPLUS
 CN Kinase (phosphorylating), protein, MLK1 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 7 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2004:11004 HCAPLUS
 DN 141:82110
 ED Entered STN: 07 Jan 2004
 TI The safety and tolerability of a mixed lineage
 kinase inhibitor (CEP-1347) in PD
 AU Schwid, Steven; Shoulson, Ira; Marek, Ken; Oakes, David; Kieburtz, Karl;
 Gorbold, Emily; Fahn, Stanley; Goetz, Christopher; Rudolph, Alice;
 Shinaman, Aileen
 CS Parkinson Study Group, Department of Neurology, University of Rochester
 Medical Center, Rochester, NY, 14642, USA
 SO Neurology (2004), 62(2), 330-332
 CODEN: NEURAI; ISSN: 0028-3878
 PB Lippincott Williams & Wilkins
 DT Journal
 LA English
 CC 1-11 (Pharmacology)
 AB CEP-1347 is an inhibitor of members of the mixed lineage
 kinase family, key signals triggering apoptotic neuronal death.
 The authors performed a randomized, blinded, placebo-controlled study
 assessing the safety, tolerability, pharmacokinetics, and acute
 symptomatic effects of CEP-1347 in 30 patients with Parkinson's
 disease (PD). In this short-term study, CEP-1347 was safe and well
 tolerated. It had no acute effect on parkinsonian symptoms or
 levodopa pharmacokinetics, making it well suited for larger and longer
 studies of its potential to modify the course of PD.
 ST CEP 1347 safety tolerability levodopa pharmacokinetics Parkinson
 's disease
 IT Antiparkinsonian agents
 Drug tolerance
 Human
 Parkinson's disease
 (CEP-1347 safety, tolerability, and effect on levodopa pharmacokinetics
 in Parkinson's disease)
 IT Drug interactions
 (pharmacokinetic; CEP-1347 safety, tolerability, and effect on levodopa
 pharmacokinetics in Parkinson's disease)
 IT 156177-65-0, CEP-1347
 RL: ADV (Adverse effect, including toxicity); PAC (Pharmacological

activity); PKT (Pharmacokinetics); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (CEP-1347 safety, tolerability, and effect on levodopa pharmacokinetics
 in Parkinson's disease)

IT 59-92-7, Levodopa, biological studies

RL: PKT (Pharmacokinetics); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (CEP-1347 safety, tolerability, and effect on levodopa pharmacokinetics
 in Parkinson's disease)

RE.CNT 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Anglade, P; *Histol Histopathol* 1997, V12, P25 HCPLUS
- (2) Fahn, S; *Recent development in Parkinson's disease* 1987, V2, P153
- (3) Hartmann, A; *Proc Natl Acad Sci USA* 2000, V97, P2875 HCPLUS
- (4) Hirsch, E; *Mov Disord* 1999, V14, P383 MEDLINE
- (5) Maroney, A; *J Neurochem* 1999, V73, P1901 HCPLUS
- (6) Nutt, J; *Neurology* 1994, V44, P913 MEDLINE
- (7) Saporito, M; *J Neurochem* 2000, V75, P1200 HCPLUS
- (8) Saporito, M; *J Pharmacol Exp Ther* 1999, V288, P421 HCPLUS

L35 ANSWER 8 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN

AN 2003:982710 HCPLUS

DN 140:140035

ED Entered STN: 17 Dec 2003

TI GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway
 AU Yu, Li-ying; Jokitalo, Eija; Sun, Yun-fu; Mehlen, Patrick; Lindholm, Dan;

Sarma, Mart; Arumae, Urmas

CS Research Program in Molecular Neurobiology, University of Helsinki,
 Helsinki, FIN-00014, Finland

SO *Journal of Cell Biology* (2003), 163(5), 987-997

CODEN: JCLBA3; ISSN: 0021-9525

PB Rockefeller University Press

DT Journal

LA English

CC 2-10 (Mammalian Hormones)

AB The mitochondrial death pathway is triggered in cultured sympathetic neurons by deprivation of nerve growth factor (NGF), but the death mechanisms activated by deprivation of other neurotrophic factors are poorly studied. We compared sympathetic neurons deprived of NGF to those deprived of glial cell line-derived neurotrophic factor (GDNF). In contrast to NGF-deprived neurons, GDNF-deprived neurons did not die via the mitochondrial pathway. Indeed, cytochrome c was not released to the cytosol; Bax and caspase-9 and -3 were not involved; overexpressed Bcl-xL did not block the death; and the mitochondrial ultrastructure was not changed. Similarly to NGF-deprived neurons, the death induced by GDNF removal is associated with increased autophagy and requires multiple lineage kinases, c-Jun and caspase-2 and -7. Serine 73 of c-Jun was phosphorylated in both NGF- and GDNF-deprived neurons, whereas serine 63 was phosphorylated only in NGF-deprived neurons. In many NGF-deprived neurons, the ultrastructure of the mitochondria was changed. Thus, a novel nonmitochondrial caspase-dependent death pathway is activated in GDNF-deprived sympathetic neurons.

ST GDNF deprivation sympathetic neuron apoptosis cjun caspase mitochondria
 NGF

IT Proteins

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Bax; GDNF-deprived sympathetic neurons die via activation of caspase
 2, -7, c-jun and MLK, in comparison to NGF-deprivation-
 induced neuron apoptosis via mitochondrial pathway)

IT Mitochondria

Newborn

(GDNF-deprived sympathetic neurons die via activation of caspase 2, -7,
 c-jun and MLK, in comparison to NGF-deprivation-induced
 neuron apoptosis via mitochondrial pathway)

IT Transcription factors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (c-jun; GDNF-deprived sympathetic neurons die via activation of caspase
 2, -7, c-jun and MLK, in comparison to NGF-deprivation-
 induced neuron apoptosis via mitochondrial pathway)

IT Neurotrophic factors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (glial-derived; GDNF-deprived sympathetic neurons die via activation of
 caspase 2, -7, c-jun and MLK, in comparison to
 NGF-deprivation-induced neuron apoptosis via mitochondrial pathway)

IT Ganglion

(superior cervical; GDNF-deprived sympathetic neurons die via

activation of caspase 2, -7, c-jun and MLK, in comparison to NGF-deprivation-induced neuron apoptosis via mitochondrial pathway)

IT Nerve
 (sympathetic; GDNF-deprived sympathetic neurons die via activation of caspase 2, -7, c-jun and MLK, in comparison to NGF-deprivation-induced neuron apoptosis via mitochondrial pathway)

IT 9061-61-4, Nerve growth factor 182372-14-1, Caspase-2 189258-14-8, Caspase-7
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (GDNF-deprived sympathetic neurons die via activation of caspase 2, -7, c-jun and MLK, in comparison to NGF-deprivation-induced neuron apoptosis via mitochondrial pathway)

IT 651767-79-2, Mixed-lineage protein kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Mixed-lineage protein kinase;
 GDNF-deprived sympathetic neurons die via activation of caspase 2, -7, c-jun and MLK, in comparison to NGF-deprivation-induced neuron apoptosis via mitochondrial pathway)

RE.CNT 57 THERE ARE 57 CITED REFERENCES AVAILABLE FOR THIS RECORD

- RE
- (1) Airaksinen, M; Nat Rev Neurosci 2002, V3, P383 HCAPLUS
 - (2) Besirli, C; J Biol Chem 2003, V278, P22357 HCAPLUS
 - (3) Bordeaux, M; EMBO J 2000, V19, P4056 HCAPLUS
 - (4) Clarke, P; Anat Embryol (Berl) 1990, V181, P195 MEDLINE
 - (5) Deckwerth, T; Neuron 1996, V17, P401 MEDLINE
 - (6) Deshmukh, M; J Cell Biol 1996, V135, P1341 HCAPLUS
 - (7) Deshmukh, M; J Cell Biol 2000, V150, P131 HCAPLUS
 - (8) Deshmukh, M; J Neurosci 2002, V22, P8018 HCAPLUS
 - (9) Deshmukh, M; Neuron 1998, V21, P695 HCAPLUS
 - (10) Deveraux, Q; Nature 1997, V388, P300 MEDLINE
 - (11) Edwards, S; J Cell Biol 1994, V124, P537 HCAPLUS
 - (12) Eilers, A; J Neurosci 1998, V18, P1713 HCAPLUS
 - (13) Ellerby, L; J Neurochem 1999, V72, P185 HCAPLUS
 - (14) Estus, S; J Cell Biol 1994, V127, P1717 HCAPLUS
 - (15) Forcet, C; Proc Natl Acad Sci USA 2001, V98, P3416 HCAPLUS
 - (16) Frey, T; Biochim Biophys Acta 2002, V1555, P196 HCAPLUS
 - (17) Gonzalez-Garcia, M; Proc Natl Acad Sci USA 1995, V92, P4304 HCAPLUS
 - (18) Guo, Y; J Biol Chem 2002, V277, P13430 HCAPLUS
 - (19) Ham, J; Neuron 1995, V14, P927 HCAPLUS
 - (20) Hamner, S; Mol Cell Neurosci 2001, V17, P97 HCAPLUS
 - (21) Harris, C; J Neurosci 2002, V22, P103 HCAPLUS
 - (22) Huang, E; Annu Rev Neurosci 2001, V24, P677 HCAPLUS
 - (23) Karbowski, M; J Cell Biol 2002, V159, P931 HCAPLUS
 - (24) Kirkland, R; Neuroscience 2002, V115, P587 HCAPLUS
 - (25) Kotzbauer, P; Nature 1996, V384, P467 HCAPLUS
 - (26) Lassus, P; Science 2002, V297, P1352 HCAPLUS
 - (27) Leist, M; Nat Rev Mol Cell Biol 2001, V2, P589 HCAPLUS
 - (28) Lindahl, M; J Biol Chem 2001, V276, P9344 HCAPLUS
 - (29) Llambi, F; EMBO J 2001, V20, P2715 HCAPLUS
 - (30) Maroney, A; J Biol Chem 2001, V276, P25302 HCAPLUS
 - (31) Maroney, A; J Neurochem 1999, V73, P1901 HCAPLUS
 - (32) Marsden, V; Nature 2002, V419, P634 HCAPLUS
 - (33) Martin, D; J Cell Biol 1988, V106, P829 HCAPLUS
 - (34) Martinou, I; J Cell Biol 1999, V144, P883 HCAPLUS
 - (35) Neame, S; J Cell Biol 1998, V142, P1583 HCAPLUS
 - (36) Oppenheim, R; J Neurosci 2001, V21, P4752 HCAPLUS
 - (37) Pittman, R; J Neurosci 1993, V13, P3669 HCAPLUS
 - (38) Putcha, G; J Cell Biol 2002, V157, P441 HCAPLUS
 - (39) Putcha, G; J Neurosci 1999, V19, P7476 HCAPLUS
 - (40) Rabizadeh, S; Science 1993, V261, P345 HCAPLUS
 - (41) Read, S; J Cell Biol 2002, V159, P739 HCAPLUS
 - (42) Sawada, M; Nat Cell Biol 2003, V5, P320 HCAPLUS
 - (43) Sawada, M; Nat Cell Biol 2003, V5, P352 HCAPLUS
 - (44) Scorrano, L; Dev Cell 2002, V2, P55 HCAPLUS
 - (45) Sperandio, S; Proc Natl Acad Sci USA 2000, V97, P14376 HCAPLUS
 - (46) Strasser, A; Int J Biochem Cell Biol 1999, V31, P533 HCAPLUS
 - (47) Sun, Y; J Biol Chem 2001, V276, P16240 HCAPLUS
 - (48) Thibert, C; Science 2003, V301, P843 HCAPLUS
 - (49) Tolkovsky, A; Biochimie 2002, V84, P233 HCAPLUS
 - (50) Troy, C; J Neurosci 2001, V21, P5007 HCAPLUS
 - (51) Vincenz, C; Cardiol Clin 2001, V19, P31 MEDLINE
 - (52) Virdee, K; J Neurochem 1997, V69, P550 HCAPLUS
 - (53) Xue, L; Mol Cell Neurosci 1999, V14, P180 HCAPLUS

(54) Yaginuma, H; Mol Cell Neurosci 2001, V18, P168 HCPLUS
 (55) Yu, L; Mol Cell Neurosci 2003, V22, P308 HCPLUS
 (56) Zaidi, A; J Neurosci 2001, V21, P169 HCPLUS
 (57) Zimmermann, K; Pharmacol Ther 2001, V92, P57 HCPLUS
 IT 651767-79-2, Mixed-lineage protein kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Mixed-lineage protein kinase;
 GDNF-deprived sympathetic neurons die via activation of caspase 2, -7,
 c-jun and MLK, in comparison to NGF-deprivation-induced
 neuron apoptosis via mitochondrial pathway)
 RN 651767-79-2 HCPLUS
 CN Kinase (phosphorylating), mixed-lineage protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 9 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2003:89294 HCPLUS
 DN 139:20080
 ED Entered STN: 05 Feb 2003
 TI POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis
 AU Xu, Zhiheng; Kukekov, Nickolay V.; Greene, Lloyd A.
 CS Department of Pathology, Columbia University, College of Physicians and Surgeons, Center for Neurobiology and Behavior, New York, NY, 10032, USA
 SO EMBO Journal (2003), 22(2), 252-261
 CODEN: EMJODG; ISSN: 0261-4189
 PB Oxford University Press
 DT Journal
 LA English
 CC 13-6 (Mammalian Biochemistry)
 AB We report that the multidomain protein POSH (plenty of SH3s) acts as a scaffold for the JNK pathway of neuronal death. This pathway consists of a sequential cascade involving activated Rac1/Cdc42, mixed-lineage kinases (MLKs), MAP kinase kinases (MKKs) 4 and 7, c-Jun N-terminal kinases (JNKs) and c-Jun, and is required for neuronal death induced by various means including nerve growth factor (NGF) deprivation. In addition to binding GTP-Rac1 as described previously, we find that POSH binds MLKs both in vivo and in vitro, and complexes with MKKs 4 and 7 and with JNKs. POSH overexpression promotes apoptotic neuronal death and this is suppressed by dominant-neg. forms of MLKs, MKK4/7 and c-Jun, and by an MLK inhibitor. Moreover, a POSH antisense oligonucleotide and a POSH small interfering RNA (siRNA) suppress c-Jun phosphorylation and neuronal apoptosis induced by NGF withdrawal. Thus, POSH appears to function as a scaffold in a multiprotein complex that links activated Rac1 and downstream elements of the JNK apoptotic cascade.
 ST POSH JNK Jun MLK MKK7 kinase cell death neuron
 IT Proteins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (POSH (plenty of SH3s); POSH acts as scaffold for multiprotein complex that links activated Rac1 and downstream elements of JNK apoptotic cascade)
 IT G proteins (guanine nucleotide-binding proteins)
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (Rac1; POSH acts as scaffold for multiprotein complex that links activated Rac1 and downstream elements of JNK apoptotic cascade)
 IT Transcription factors
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (c-jun; POSH acts upstream of MLK family, MKK4/7 and c-Jun in neuronal death pathway)
 IT Nerve, disease
 (death; POSH acts as scaffold for multiprotein complex that links activated Rac1 and downstream elements of JNK neuronal apoptotic cascade)
 IT Cell death
 (neuron; POSH acts as scaffold for multiprotein complex that links activated Rac1 and downstream elements of JNK neuronal apoptotic cascade)
 IT 155215-87-5, JNK kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (POSH acts as scaffold for multiprotein complex that links activated Rac1 and downstream elements of JNK apoptotic cascade)
 IT 192230-91-4, MKK4 kinase 260447-83-4, Protein

kinase MLK 335605-46-4, MKK7 kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (POSH acts upstream of MLK family, MKK4/7 and c-Jun in
 neuronal death pathway)

RE.CNT 33 THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Angelastro, J; J Neurochem 1998, V70, P540 HCPLUS
- (2) Bazenet, C; Proc Natl Acad Sci USA 1998, V95, P3984 HCPLUS
- (3) Bock, B; J Biol Chem 2000, V275, P14231 HCPLUS
- (4) Bruckner, S; J Neurochem 2001, V78, P298 HCPLUS
- (5) Chuang, T; Mol Biol Cell 1997, V8, P1687 HCPLUS
- (6) Chung, K; Trends Neurosci 2001, V24, P57 HCPLUS
- (7) Deshmukh, M; J Cell Biol 1996, V135, P1341 HCPLUS
- (8) Eilers, A; J Neurosci 1998, V18, P1713 HCPLUS
- (9) Ham, J; Biochem Pharmacol 2000, V60, P1015 HCPLUS
- (10) Hu, G; Mol Cell Biol 1999, V19, P724 HCPLUS
- (11) Leung, I; J Biol Chem 1998, V273, P32408 HCPLUS
- (12) Maroney, A; J Biol Chem 2001, V276, P25302 HCPLUS
- (13) Maroney, A; J Neurochem 1999, V73, P1901 HCPLUS
- (14) Masaki, R; J Neurosci Res 2000, V62, P75 HCPLUS
- (15) McDonald, P; Science 2000, V290, P1574 HCPLUS
- (16) Mota, M; J Neurosci 2001, V21, P4949 HCPLUS
- (17) Nihalani, D; J Biol Chem 2000, V275, P7273 HCPLUS
- (18) Patterson, C; Sci STKE 2002, V2002, PPE4
- (19) Ridley, A; Dev Cell 2001, V1, P160 HCPLUS
- (20) Saporito, M; J Neurochem 2000, V75, P1200 HCPLUS
- (21) Tanaka, S; J Biol Chem 1998, V273, P1281 HCPLUS
- (22) Tapon, N; Curr Opin Cell Biol 1997, V9, P86 HCPLUS
- (23) Tapon, N; EMBO J 1998, V17, P1395 HCPLUS
- (24) Teramoto, H; J Biol Chem 1996, V271, P27225 HCPLUS
- (25) Tournier, C; Science 2000, V288, P870 HCPLUS
- (26) Trotter, L; Neurosci Lett 2002, V320, P29 HCPLUS
- (27) Troy, C; J Neurochem 2001, V77, P157 HCPLUS
- (28) Troy, C; J Neurosci 2001, V21, P5007 HCPLUS
- (29) Whitmarsh, A; Genes Dev 2001, V15, P2421 HCPLUS
- (30) Xia, Z; Science 1995, V270, P1326 HCPLUS
- (31) Xu, Z; Mol Cell Biol 2001, V21, P4713 HCPLUS
- (32) Yang, D; Nature 1997, V389, P865 HCPLUS
- (33) Yasuda, J; Mol Cell Biol 1999, V19, P7245 HCPLUS

IT 260447-83-4, Protein kinase MLK

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (POSH acts upstream of MLK family, MKK4/7 and c-Jun in
 neuronal death pathway)

RN 260447-83-4 HCPLUS

CN Kinase (phosphorylating), protein, CSAPK-2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 10 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2002:394536 HCPLUS
 DN 137:304091
 ED Entered STN: 28 May 2002
 TI Mixed lineage kinase family, potential
 targets for preventing neurodegeneration
 AU Maroney, Anna C.; Saporito, Michael S.; Hudkins, Robert L.
 CS Cephalon Inc., West Chester, PA, 19380, USA
 SO Current Medicinal Chemistry: Central Nervous System Agents (2002), 2(2),
 143-155
 CODEN: CMCCCO; ISSN: 1568-0150
 PB Bentham Science Publishers Ltd.
 DT Journal; General Review
 LA English
 CC 1-0 (Pharmacology)
 AB A review. The c-Jun amino terminal kinase (JNK) cascade leading to c-Jun phosphorylation has been implicated in the neuronal cellular response to a variety of external stimuli including free radical oxidative stress, trophic withdrawal, amyloid toxicity and activation by death domain receptor ligands. Although the exact causes of neuronal loss in neurodegenerative diseases remain unknown, it has been hypothesized that response to these environmental stresses may be contributing factors. Agents which block the JNK signaling cascade have been proposed as a therapeutic approach for preventing neuronal cell death observed in a variety of neurodegenerative diseases including Parkinson's, Huntington's, and Alzheimer's disease. The JNKs are regulated through a sequential signaling cascade by a series of upstream kinases including the mixed lineage kinases (MLKs).

Herein, we review the MLK family as a therapeutic target and provide evidence with CEP-1347, the most advanced MLK inhibitor currently in clin. trials for Parkinson's disease, that intervention at the MLK point in the JNK cascade may reduce the susceptibility of neurons to degenerate.

- ST review kinase inhibitor neuroprotectant oxidative stress neuron neurodegenerative disease
 IT Nervous system, disease
 (degeneration; mixed lineage kinase family, potential targets for preventing neurodegeneration)
 IT Drug delivery systems
 Human
 Oxidative stress, biological
 Signal transduction, biological
 (mixed lineage kinase family, potential targets for preventing neurodegeneration)
 IT Nerve
 (neuron; mixed lineage kinase family, potential targets for preventing neurodegeneration)
 IT Cytoprotective agents
 (neuroprotective; mixed lineage kinase family, potential targets for preventing neurodegeneration)
 IT 155215-87-5, JNK
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (mixed lineage kinase family, potential targets for preventing neurodegeneration)
 IT 156177-65-0, CEP-1347
 RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (mixed lineage kinase family, potential targets for preventing neurodegeneration)

RE.CNT 95 THERE ARE 95 CITED REFERENCES AVAILABLE FOR THIS RECORD

- RE
 (1) Andersen, J; Bioessays 2001, V23, P640 HCAPLUS
 (2) Angeles, T; Anal Biochem 1996, V236, P49 HCAPLUS
 (3) Bazenet, C; Proc Natl Acad Sci USA 1998, V95, P3984 HCAPLUS
 (4) Behl, C; J Neural Transm 2000, V107, P1325 MEDLINE
 (5) Behrens, A; Nat Genet 1999, V21, P326 HCAPLUS
 (6) Bergeron, P; Biochem Biophys Res Commun 1997, V231, P153 HCAPLUS
 (7) Bloem, L; J Mol Cell Cardiol 2001, V33, P1739 HCAPLUS
 (8) Blouin, R; DNA Cell Biol 1996, V15, P631 HCAPLUS
 (9) Bock, B; J Biol Chem 2000, V275, P14231 HCAPLUS
 (10) Borasio, G; Neurosci Lett 1990, V108, P207 HCAPLUS
 (11) Bozyczko-Coyne, D; Current Drug Targets - CNS and Neurological Disorders 2002, V1, P31 HCAPLUS
 (12) Bozyczko-Coyne, D; J Neurochem 2001, V77, P849 HCAPLUS
 (13) Burbelo, P; J Biol Chem 1995, V270, P29071 HCAPLUS
 (14) Cotman, C; Ann N Y Acad Sci 2000, V924, P112 MEDLINE
 (15) Cuenda, A; Biochem J 1998, V333, P11 HCAPLUS
 (16) DiCamillo, A; Neuroscience 1998, V86, P473 HCAPLUS
 (17) Dorow, D; Eur J Biochem 1993, V213, P701 HCAPLUS
 (18) Dorow, D; Eur J Biochem 1995, V234, P492 HCAPLUS
 (19) Douziech, M; Biochem Biophys Res Commun 1998, V249, P927 HCAPLUS
 (20) Eilers, A; J Neurosci 1998, V18, P1713 HCAPLUS
 (21) Estus, S; J Cell Biol 1994, V127, P1717 HCAPLUS
 (22) Ezoe, K; Oncogene 1994, V9, P935 HCAPLUS
 (23) Fan, G; J Biol Chem 1996, V271, P24788 HCAPLUS
 (24) Fleming, Y; Biochem J 2000, V352(Pt 1), P145
 (25) Fukuyama, K; J Biol Chem 2000, V275, P21247 HCAPLUS
 (26) Gallo, K; J Biol Chem 1994, V269, P15092 HCAPLUS
 (27) Germain, L; J Invest Dermatol 2000, V115, P860 HCAPLUS
 (28) Glicksman, M; J Neurobiol 1998, V35, P361 HCAPLUS
 (29) Gotoh, I; J Biol Chem 2001, V276, P4276 HCAPLUS
 (30) Gout, I; Cell 1993, V75, P25 HCAPLUS
 (31) Ham, J; Biochem Pharmacol 2000, V60, P1015 HCAPLUS
 (32) Ham, J; Neuron 1995, V14, P927 HCAPLUS
 (33) Harper, S; Neuroreport 2000, V11, P2271 HCAPLUS
 (34) Harris, C; J Neurosci 2002, V22, P103 HCAPLUS
 (35) Hartkamp, J; Cancer Res 1999, V59, P2195 HCAPLUS
 (36) Hebert, S; J Biol Chem 2000, V275, P32482 HCAPLUS
 (37) Hehner, S; Mol Cell Biol 2000, V20, P2556 HCAPLUS
 (38) Heikkila, R; Science 1984, V224, P1451 HCAPLUS
 (39) Hirai, S; J Biol Chem 1997, V272, P15167 HCAPLUS
 (40) Hirai, S; J Biol Chem 1998, V273, P7406 HCAPLUS
 (41) Hirai, S; Oncogene 1996, V12, P641 HCAPLUS

- (42) Holzman, L; J Biol Chem 1994, V269, P30808 HCPLUS
 (43) Hubbard, S; Nat Struct Biol 1999, V6, P711 HCPLUS
 (44) Ikeda, A; FEBS Lett 2001, V488, P190 HCPLUS
 (45) Ikeda, A; J Biochem (Tokyo) 2001, V130, P773 HCPLUS
 (46) Ing, Y; Oncogene 1994, V9, P1745 HCPLUS
 (47) Jackson-Lewis, V; Neurodegeneration 1995, V4, P257 MEDLINE
 (48) Kaneko, M; J Med Chem 1997, V40, P1863 HCPLUS
 (49) Kaneko, M; J Med Chem 1997, V40, P863
 (50) Katoh, M; Oncogene 1995, V10, P1447 HCPLUS
 (51) Kelkar, N; Mol Cell Biol 2000, V20, P1030 HCPLUS
 (52) Kiefer, F; EMBO J 1996, V15, P7013 HCPLUS
 (53) Knusel, B; J Neurochem 1992, V59, P1987 HCPLUS
 (54) Koch, C; Science 1991, V252, P668 HCPLUS
 (55) Langston, J; Neurology 1996, V47 MEDLINE
 (56) Leung, I; J Biol Chem 1998, V273, P32408 HCPLUS
 (57) Leung, I; J Biol Chem 2001, V276, P1961 HCPLUS
 (58) Liu, T; Biochem Biophys Res Commun 2000, V274, P811 HCPLUS
 (59) Liu, Y; J Biol Chem 2000, V275, P19035 HCPLUS
 (60) Maroney, A; J Biol Chem 2001, V276, P25302 HCPLUS
 (61) Maroney, A; J Neurochem 1999, V73, P1901 HCPLUS
 (62) Maroney, A; J Neurosci 1998, V18, P104 HCPLUS
 (63) Mata, M; J Biol Chem 1996, V271, P16888 HCPLUS
 (64) Mathiasen, J; J Neurochem. Submitted
 (65) Mattson, M; Nat Rev Mol Cell Biol 2000, V1, P120 HCPLUS
 (66) Merritt, S; J Biol Chem 1999, V274, P10195 HCPLUS
 (67) Mota, M; J Neurosci 2001, V21, P4949 HCPLUS
 (68) Murakata, C; Bioorg Med Chem Lett 2002, V12, P147 HCPLUS
 (69) Murakata, C; Bioorg Med Chem Lett 2002, V12, P147 HCPLUS
 (70) Nagata, K; EMBO J 1998, V17, P149 HCPLUS
 (71) Ng, P; Oncogene 2001, V20, P4484 HCPLUS
 (72) Nicklas, W; Life Sci 1985, V36, P2503 HCPLUS
 (73) Nihalani, D; EMBO J 2001, V20, P3447 HCPLUS
 (74) Nihalani, D; J Biol Chem 2000, V275, P7273 HCPLUS
 (75) Phelan, D; J Biol Chem 2001, V276, P10801 HCPLUS
 (76) Rasmussen, R; Biochem J 1998, V335, P119 HCPLUS
 (77) Rasmussen, R; Electrophoresis 1998, V19, P809 HCPLUS
 (78) Reddy, U; Biochem Biophys Res Commun 1994, V205, P1494 HCPLUS
 (79) Sakuma, H; J Biol Chem 1997, V272, P28622 HCPLUS
 (80) Saporito, M; J Neurochem 2000, V75, P1200 HCPLUS
 (81) Saporito, M; J Pharmacol Exp Ther 1999, V288, P421 HCPLUS
 (82) Saporito, M; Neuroscience 1998, V86, P461 HCPLUS
 (83) Savinainen, A; J Biol Chem 2001, V276, P11382 HCPLUS
 (84) Schapira, A; Ann Neurol 1998, P889 HCPLUS
 (85) Swerdlow, R; Ann Neurol 1996, V40, P663 MEDLINE
 (86) Tanaka, S; J Biol Chem 1998, V273, P1281 HCPLUS
 (87) Teramoto, H; J Biol Chem 1996, V271, P27225 HCPLUS
 (88) Troy, C; J Neurochem 2001, V77, P157 HCPLUS
 (89) Vacratsis, P; J Biol Chem 2000, V275, P27893 HCPLUS
 (90) Whitmarsh, A; Science 1998, V281, P1671 HCPLUS
 (91) Xia, Z; Science 1995, V270, P1326 HCPLUS
 (92) Xu, Z; Mol Cell Biol 2001, V21, P4713 HCPLUS
 (93) Yang, D; Nature 1997, V389, P865 HCPLUS
 (94) Yasuda, J; Mol Cell Biol 1999, V19, P7245 HCPLUS
 (95) Zhang, H; J Biol Chem 2001, V4, P4

L35 ANSWER 11 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2002:142907 HCPLUS
 DN 136:194260
 ED Entered STN: 22 Feb 2002
 TI Methods for modulating multiple lineage kinase
 proteins and screening compounds which modulate multiple lineage
 kinase proteins
 IN Maroney, Anna; Walton, Kevin M.; Dionne, Craig A.; Neff, Nicola; Knight,
 Ernest, Jr.; Glicksman, Marcie A.
 PA Cephalon, Inc., USA
 SO PCT Int. Appl., 114 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM C12Q001-00
 CC 1-11 (Pharmacology)
 Section cross-reference(s): 28
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI WO 2002014536	A2	20020221	WO 2001-US24822	20010808

WO 2002014536	A3	20030130	
WO 2002014536	C2	20031218	
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW			
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
CA 2419985	AA	20020221	CA 2001-2419985 20010808
AU 2001083179	A5	20020225	AU 2001-83179 20010808
EP 1309721	A2	20030514	EP 2001-961958 20010808
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR			
NO 2003000658	A	20030409	NO 2003-658 20030210
BG 107623	A	20031128	BG 2003-107623 20030310
PRAI US 2000-637054	A	20000811	
WO 2001-US24822	W	20010808	

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
------------	-------	------------------------------------

-----	-----	-----
WO 2002014536	ICM	C12Q001-00

OS	MARPAT 136:194260
----	-------------------

- AB Methods for identifying compds. which modulate activity of a multiple lineage kinase protein and promotes cell survival or cell death comprising the steps of contacting the cell containing the multiple lineage protein with the compound, determining whether the compound decreases activity of the multiple lineage protein, and determining whether the compound promotes cell survival are provided. Methods for identifying compds. which may be useful in the treatment of neurodegenerative disorders and/or inflammation are also provided. Methods for modulating the activity of a multiple lineage kinase protein comprising contacting the protein or a cell containing the protein with an indeno- or indolo-compound of the invention are also provided. Methods of treating neurodegenerative disorders and/or inflammation are also provided.
- ST multiple lineage kinase modulator
neuroprotectant inflammation inhibitor; neurodegenerative disorder treatment multiple lineage kinase modulator
- IT Proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study) (AEX-3, mammalian homolog, phosphorylation of; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)
- IT Transcription factors
RL: BSU (Biological study, unclassified); BIOL (Biological study) (AFT2, phosphorylation of; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)
- IT Transcription factors
RL: BSU (Biological study, unclassified); BIOL (Biological study) (ELK-1, phosphorylation of; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)
- IT Neurotransmission
(cholinergic; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)
- IT Interleukin 1
Tumor necrosis factors
RL: BSU (Biological study, unclassified); BIOL (Biological study) (induction; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)
- IT Anti-inflammatory agents
Drug screening
Molecular cloning
(methods for modulating multiple lineage

kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT mRNA
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (multiple lineage kinase substrate-encoding; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT Cytoprotective agents
 (neuroprotective; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT AIDS (disease)
 (peripheral neuropathy in; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT Nerve, disease
 (peripheral neuropathy, AIDS; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT Phosphorylation, biological
 (protein; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 153190-46-6P, Multiple lineage kinase
 3 179241-70-4P, Dual leucine zipper- bearing kinase
 191808-07-8P, Multiple lineage kinase
 2 250649-03-7P, Multiple lineage kinase 1
 RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified); BIOL (Biological study); PREP (Preparation)
 (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 201168-14-1, Leucine zipper bearing kinase 260396-80-3,
 Multiple lineage kinase 6
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 99533-80-9 121665-29-0 156177-64-9 156177-65-0 187810-82-8
 200633-48-3 200636-14-2 260388-67-8 260388-68-9 260388-70-3
 RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 563-47-3, Methallyl chloride 30418-59-8 35523-34-3,
 1,1-Diethoxy-2-hexanone 93282-67-8, 1,1-Diethoxy-2-pentanone
 251942-38-8 401573-62-4
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 174349-12-3P 174349-13-4P 251942-24-2P 251942-39-9P 251942-40-2DP,
 resin-bound 251942-41-3DP, resin-bound 401573-60-2DP, resin-bound
 401573-61-3P 401573-63-5P 401795-07-1P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 251942-28-6P 260388-72-5P 260388-73-6P 260388-76-9P 260388-81-6P
 260388-82-7P 401573-64-6P 401573-65-7P 401573-66-8P 401795-14-0P
 RL: SPN (Synthetic preparation); PREP (Preparation)

(methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 137632-07-6, ERK1 kinase 137632-08-7, ERK2 kinase 142805-58-1, MEK-1 kinase 150316-14-6, MEK2 kinase 155215-87-5, Jun kinase 192230-91-4, MKK4 kinase 194739-73-6, MKK6 kinase 260402-73-1, Protein kinase ATF2 260402-76-4, Kinase (phosphorylating), protein, ELK1 289898-51-7, JNK1 kinase 289899-93-0, JNK2 kinase 291756-39-3, JNK3 kinase 327046-95-7, MEK5 kinase 335605-46-4, MKK7 kinase

RL: BSU (Biological study, unclassified); BIOL (Biological study) (phosphorylation of; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 98849-88-8 197850-76-3 204513-73-5 401783-05-9 401783-06-0
 401783-07-1 401783-08-2 401783-09-3 401783-10-6 401783-11-7
 401783-12-8 401783-13-9 401783-14-0 401783-15-1 401783-16-2
 401783-17-3 401783-18-4

RL: PRP (Properties)
 (unclaimed sequence; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins)

IT 165245-96-5, p38 Kinase
 RL: BSU (Biological study, unclassified); BIOL (Biological study) (.alpha. and .beta. and .delta. and .gamma., phosphorylation of; methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

IT 153190-46-6P, Multiple lineage kinase
 3 179241-70-4P, Dual leucine zipper- bearing kinase
 191808-07-8P, Multiple lineage kinase
 2 250649-03-7P, Multiple lineage kinase 1
 RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified); BIOL (Biological study); PREP (Preparation)
 (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

RN 153190-46-6 HCPLUS
 CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 179241-70-4 HCPLUS
 CN Kinase (phosphorylating), protein, DLK (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 191808-07-8 HCPLUS
 CN Kinase (phosphorylating), protein, MLK2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 250649-03-7 HCPLUS
 CN Kinase (phosphorylating), protein, MLK1 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 IT 260396-80-3, Multiple lineage kinase 6
 RL: BSU (Biological study, unclassified); BIOL (Biological study) (methods for modulating multiple lineage kinase proteins and screening compds. which modulate multiple lineage kinase proteins and treatment of neurodegenerative disorders and inflammation)

RN 260396-80-3 HCPLUS
 CN Kinase (phosphorylating), protein, MLK6 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 12 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2002:1465 HCPLUS
 DN 136:363246
 ED Entered STN: 31 Dec 2001
 TI Mixed lineage kinase activity of indolocarbazole analogues
 AU Murakata, Chikara; Kaneko, Masami; Gessner, George; Angeles, Thelma S.;

Ator, Mark A.; O'Kane, Teresa M.; McKenna, Beth Ann W.; Thomas, Beth Ann; Mathiasen, Joanne R.; Saporito, Michael S.; Bozyczko-Coyne, Donna; Hudkins, Robert L.

CS Kyowa-Hakko Kogyo Co., Ltd., Tokyo, Japan

SO Bioorganic & Medicinal Chemistry Letters (2002), 12(2), 147-150

CODEN: BMCL8; ISSN: 0960-894X

PB Elsevier Science Ltd.

DT Journal

LA English

CC 1-3 (Pharmacology)

Section cross-reference(s): 7, 28

AB The MLK1-3 activity for a series of analogs of the indolocarbazole K-252a is reported. Addition of 3,9-bis-alkylthiomethyl groups to K-252a results in potent and selective MLK inhibitors. The in vitro and in vivo neuronal survival promoting activity of bis-isopropylthiomethyl-K-252a (CEP-11004/KT-8138) is reported. CEP-11004 demonstrated protection of the JNK kinase pathway following treatment of cells with MPP+ and demonstrated in vivo protection of dopaminergic terminals with the striatum projecting from neurons within the substantia nigra in mice following administration of MPTP. Thus, inhibition of MLKs may be an effective strategy for blocking neurodegeneration association with Parkinson's disease.

ST mixed lineage kinase inhibitor
indolocarbazole analog

IT Antiparkinsonian agents
Signal transduction, biological
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT Structure-activity relationship
(mixed lineage kinase-inhibiting;
mixed lineage kinase inhibitor activity of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT Cytoprotective agents
(neuroprotective; mixed lineage kinase inhibitor activity of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT Brain, disease
(nigrostriatal degeneration, inhibition of; mixed lineage kinase inhibitor activity of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT 153190-46-6, Mixed lineage kinase 3
191808-07-8, Mixed lineage kinase 2
250649-03-7, Mixed lineage kinase 1
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT 178404-52-9P
RL: DMA (Drug mechanism of action); PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT 178404-44-9P
RL: PAC (Pharmacological activity); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT 178404-45-0P 178404-53-0P 178404-54-1P 178404-55-2P 178404-56-3P
190319-45-0P 424788-51-2P 424788-52-3P
RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and treatment of Parkinson's disease)

IT 156177-65-0, CEP 1347
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and
treatment of Parkinson's disease)

IT 121664-78-6 178459-03-5
RL: RCT (Reactant); RACT (Reactant or reagent)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and
treatment of Parkinson's disease)

IT 200637-29-2P 260388-68-9P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
(Reactant or reagent)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and
treatment of Parkinson's disease)

IT 155215-87-5, JNK kinase
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(p46 and p54, inhibition of phosphorylation of; mixed
lineage kinase inhibitor activity of indolocarbazole
analog in relation to neuroprotectant activity and treatment of
Parkinson's disease)

IT 200637-31-6
RL: RCT (Reactant); RACT (Reactant or reagent)
(preparation of)

RE.CNT 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Angeles, T; Anal Biochem 1996, V236, P49 HCPLUS
- (2) Borasio, G; NeuroReport 1998, V9, P1435 HCPLUS
- (3) Bozyczko-Coyne, D; J Neurochem 2001, V77, P849 HCPLUS
- (4) Cobb, M; Prog Biophys Mol Biol 1999, V71, P479 HCPLUS
- (5) Estus, S; J Cell Biol 1999, V127, P1717
- (6) Fanger, G; Curr Opin Genet Dev 1997, V7, P67 HCPLUS
- (7) Glicksman, M; J Neurobiol 1998, V35, P361 HCPLUS
- (8) Hirai, S; J Biol Chem 1997, V272, P15167 HCPLUS
- (9) Johnson, E; Brain Pathol 1996, V6, P397
- (10) Kaneko, M; J Med Chem 1997, V40, P1863 HCPLUS
- (11) Kase, H; Biochem Biophys Res Commun 1987, V142, P436 HCPLUS
- (12) Konitsiotis, S; Soc Neurosci Abst 1999, V25, P1595
- (13) Kyriakis, J; Physiol Rev 2001, V81, P807 HCPLUS
- (14) Maroney, A; J Biol Chem 2001, V276, P25302 HCPLUS
- (15) Maroney, A; J Neurochem 1999, V73, P1901 HCPLUS
- (16) Maroney, A; J Neurosci 1998, V18, P104 HCPLUS
- (17) Mathiasen, J; Soc Neurosci Abst 1999, V25, P333
- (18) Merritt, S; J Biol Chem 1999, V274, P10195 HCPLUS
- (19) Mielke, K; Prog Neurobiol 2000, V61, P45 HCPLUS
- (20) Mota, M; J Neurosci 2001, V21, P4949 HCPLUS
- (21) Paul, A; Cell Signal 1997, V9, P403 HCPLUS
- (22) Saporito, M; J Neurochem 2000, V75, P1200 HCPLUS
- (23) Saporito, M; J Pharmacol Exp Ther 1999, V288, P421 HCPLUS
- (24) Schlingensiepen, K; Cell Mol Neurobiol 1994, V14, P487 HCPLUS
- (25) Thompson, C; Science 1995, V267, P1456 HCPLUS
- (26) Troy, C; J Neurochem 2001, V77, P157 HCPLUS

IT 153190-46-6, Mixed lineage kinase 3
191808-07-8, Mixed lineage kinase 2
250649-03-7, Mixed lineage kinase 1
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(mixed lineage kinase inhibitor activity
of indolocarbazole analogs in relation to neuroprotectant activity and
treatment of Parkinson's disease)

RN 153190-46-6 HCPLUS
CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
RN 191808-07-8 HCPLUS
CN Kinase (phosphorylating), protein, MLK2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
RN 250649-03-7 HCPLUS
CN Kinase (phosphorylating), protein, MLK1 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 13 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
AN 2001:833276 HCPLUS
DN 135:371989
ED Entered STN: 16 Nov 2001
TI Preparation of novel multicyclic compounds and their amino acid

derivatives as inhibitors of enzymes such as poly(ADP-ribose) polymerase
 IN Ator, Mark A.; Bihovsky, Ron; Chatterjee, Sankar; Dunn, Derek; Hudkins,
 Robert L.
 PA Cephalon, Inc., USA
 SO PCT Int. Appl., 209 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM C07D209-00
 CC 34-2 (Amino Acids, Peptides, and Proteins)
 Section cross-reference(s): 1, 7, 28

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001085686	A2	20011115	WO 2001-US14996	20010509
	WO 2001085686	A3	20020530		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
	RW:	GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG			
	US 2002028815	A1	20020307	US 2001-850858	20010508
	CA 2409758	AA	20011115	CA 2001-2409758	20010509
	EP 1294725	A2	20030326	EP 2001-935215	20010509
	R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR			
	BR 2001010993	A	20030624	BR 2001-10993	20010509
	JP 2004501097	T2	20040115	JP 2001-582287	20010509
	NZ 522539	A	20040528	NZ 2001-522539	20010509
	ZA 2002009065	A	20040209	ZA 2002-9065	20021107
	NO 2002005376	A	20030108	NO 2002-5376	20021108
	BG 107355	A	20030731	BG 2002-107355	20021205
PRAI	US 2000-202947P	P	20000509		
	US 2001-850858	A	20010508		
	WO 2001-US14996	W	20010509		

CLASS

	PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
	WO 2001085686	ICM	C07D209-00
	US 2002028815	ECLA	C07D487/04+209A+209A; C07D487/04+239A+209A; C07D487/04+235A+209A; C07D487/04+237A+209A
	JP 2004501097	FTERM	4C050/AA01; 4C050/AA07; 4C050/AA08; 4C050/BB04; 4C050/CC04; 4C050/DD10; 4C050/EE02; 4C050/FF01; 4C050/FF02; 4C050/FF05; 4C050/FF10; 4C050/GG03; 4C050/HH03; 4C050/HH04; 4C086/AA01; 4C086/AA02; 4C086/AA03; 4C086/CB03; 4C086/NA14; 4C086/ZA02; 4C086/ZA15; 4C086/ZA16; 4C086/ZA33; 4C086/ZA36; 4C086/ZA81; 4C086/ZA89; 4C086/ZB11; 4C086/ZB15; 4C086/ZB21; 4C086/ZB26; 4C086/ZC02; 4C086/ZC35

OS MARPAT 135:371989
 GI

AB The title compds. such as penta[a]pyrrolo[3,4-c]carbazole, hexano[a]pyrrolo[3,4-c]carbazole, pyrrolo[3,4-c]carbazole, and furano[a-3,2]pyrrolo[3,4-c]carbazole derivs. [I; A, B = CO, CH(OR3), CH(SR3), CH2, CHR3, CHR3CHR4, CR3R4, COR3, SO, SO2 (wherein R3, R4 = H, optionally substituted lower alkyl or aryl); Y and Z, together with the carbon to which they are attached, form an (un)substituted mono- or

bicyclic aryl or bicyclic heteroaryl, or C3-5 heteroaryl; E, F = lower alkyl or E and F, together with the carbon to which they are attached, form an (un)substituted C4-7 cycloalkyl, C3-6 heterocycloalkyl or heteroaryl, or an (un)substituted heterocycloalkyl endocyclically comprising at least one group G (wherein G = O, S, SO, SO₂, NR₂, NR₂CO, NR₂CONR₃, NR₂SO₂, NR₃SO₂; R₂ = H, optionally substituted lower alkyl or alkanoyl, CHO, acetyl, lower alkylsulfonyl, arylsulfonyl, an optionally protected amino acid) are prepared. These compds. are effective in the treatment of diseases or disease states related to the activity of enzymes such as poly(ADP-ribose) polymerase (PARP), vascular endothelial growth factor receptor kinase (VEGFR2 kinase), and MLK3 kinase (a member of the mixed lineage kinase family), including, for example, traumatic central nervous system injuries, neurodegenerative diseases (in particular Parkinson's, Huntington's, or Alzheimer's disease), inflammation, cerebral or cardiac ischemia, endotoxic shock, diabetes, or cellular proliferative disorders (in particular cancer, solid tumors, diabetic retinopathy, intraocular neovascular syndromes, macular degeneration, rheumatoid arthritis, psoriasis, or endometriosis). They also suppress the formation of blood vessels (angiogenesis) and prevent neuronal degradation associated with traumatic central nervous system injuries. Thus, 2H-1,3,4,5,6,7-hexahydrocyclopenta[a]pyrrolo[3,4-c]carbazole-1,3-dione (II; R = H) (preparation given) was treated with NaH in DMF at room temperature for 30 min and condensed with a stirred mixture of Boc-Lys(Boc)-OH dicyclohexylamine salt, TBUT, N-Methylmorpholine, and DMF at room temperature for 1 h, followed by treatment of the product with 4 N HCl in dioxane to give II (R = H-Lys). II (R = H-Lys) showed IC₅₀ of .mu.g/mL against of 22 nM against PARP.

ST clopentapyrrolocarbazole prepn inhibitor poly ADP ribose polymerase; PARP inhibitor multicyclic compd prep; pyrrolocarbazole prepn inhibitor VEGFR2 kinase; furanopyrrolocarbazole prepn inhibitor VEGFR2 kinase; neurodegenerative disease treatment multicyclic compd prep; inflammation treatment multicyclic compd prep; ischemia treatment multicyclic compd prep; MLK3 kinase inhibitor multicyclic compd prep

IT Nervous system

(Huntington's chorea; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Amides, preparation

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(amino; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Nervous system

(central, injury; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Nervous system

(degeneration; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Eye, disease

(diabetic retinopathy; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Cell proliferation

(disorders; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Uterus, disease

(endometriosis; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Eye, disease

(intraocular neovascular syndromes; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Brain, disease
 Heart, disease
 (ischemia; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Eye, disease
 (macula, degeneration; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Heterocyclic compounds
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (nitrogen, aromatic; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Alzheimer's disease
 Angiogenesis inhibitors
 Anti-inflammatory agents
 Antidiabetic agents
 Antitumor agents
 Parkinson's disease
 Psoriasis
 Rheumatoid arthritis
 (preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Amino acids, preparation
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT Shock (circulatory collapse)
 (septic; preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT 374069-00-8P 374069-03-1P 374069-12-2P 374069-14-4P 374069-19-9P
 374069-21-3P 374069-22-4P 374069-23-5P 374069-25-7P 374069-26-8P
 374069-31-5P 374069-33-7P 374069-35-9P 374069-36-0P 374069-43-9P
 374069-44-0P 374069-53-1P 374069-62-2P 374069-75-7P 374070-30-1P
 374070-33-4P 374070-38-9P 374070-39-0P 374070-57-2P 374070-59-4P
 374070-64-1P 374070-73-2P 374070-77-6P 374070-79-8P 374070-80-1P
 374070-83-4P 374070-95-8P 374070-96-9P 374071-01-9P 374071-12-2P
 374071-16-6P 374071-28-0P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
 (preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT 154114-97-3P 374068-99-2P 374069-01-9P 374069-02-0P 374069-04-2P
 374069-05-3P 374069-06-4P 374069-07-5P 374069-08-6P 374069-09-7P
 374069-10-0P 374069-11-1P 374069-13-3P 374069-15-5P 374069-16-6P
 374069-17-7P 374069-18-8P 374069-20-2P 374069-24-6P 374069-27-9P
 374069-28-0P 374069-29-1P 374069-30-4P 374069-32-6P 374069-34-8P
 374069-37-1P 374069-38-2P 374069-39-3P 374069-40-6P 374069-41-7P
 374069-42-8P 374069-45-1P 374069-46-2P 374069-47-3P 374069-48-4P
 374069-49-5P 374069-50-8P 374069-51-9P 374069-52-0P 374069-54-2P
 374069-55-3P 374069-56-4P 374069-57-5P 374069-58-6P 374069-59-7P
 374069-60-0P 374069-61-1P 374069-63-3P 374069-64-4P 374069-65-5P
 374069-66-6P 374069-67-7P 374069-68-8P 374069-69-9P 374069-70-2P
 374069-71-3P 374069-72-4P 374069-73-5P 374069-74-6P 374069-76-8P
 374069-77-9P 374069-78-0P 374069-79-1P 374069-80-4P 374069-81-5P
 374069-82-6P 374069-83-7P 374069-84-8P 374069-85-9P 374069-87-1P
 374069-88-2P 374069-89-3P 374069-90-6P 374069-91-7P 374069-92-8P
 374069-93-9P 374069-94-0P 374069-95-1P 374069-96-2P 374069-97-3P

374069-98-4P	374069-99-5P	374070-00-5P	374070-01-6P	374070-02-7P
374070-03-8P	374070-04-9P	374070-05-0P	374070-06-1P	374070-07-2P
374070-08-3P	374070-09-4P	374070-10-7P	374070-11-8P	374070-12-9P
374070-13-0P	374070-14-1P	374070-15-2P	374070-16-3P	374070-17-4P
374070-18-5P	374070-19-6P	374070-20-9P	374070-21-0P	374070-22-1P
374070-23-2P	374070-24-3P	374070-25-4P	374070-26-5P	374070-27-6P
374070-28-7P	374070-29-8P	374070-31-2P	374070-32-3P	374070-34-5P
374070-35-6P	374070-36-7P	374070-37-8P	374070-40-3P	374070-41-4P
374070-42-5P	374070-43-6P	374070-44-7P	374070-45-8P	374070-46-9P
374070-47-0P	374070-48-1P	374070-49-2P	374070-50-5P	374070-51-6P
374070-52-7P	374070-53-8P	374070-54-9P	374070-55-0P	374070-56-1P
374070-58-3P	374070-60-7P	374070-62-9P	374070-63-0P	374070-65-2P
374070-66-3P	374070-67-4P	374070-68-5P	374070-69-6P	374070-70-9P
374070-71-0P	374070-72-1P	374070-74-3P	374070-75-4P	374070-76-5P
374070-78-7P	374070-81-2P	374070-82-3P	374070-84-5P	374070-85-6P
374070-86-7P	374070-87-8P	374070-88-9P	374070-89-0P	374070-90-3P
374070-91-4P	374070-92-5P	374070-93-6P	374070-94-7P	374070-97-0P
374070-98-1P	374070-99-2P	374071-00-8P	374071-02-0P	374071-03-1P
374071-04-2P	374071-05-3P	374071-06-4P	374071-07-5P	374071-08-6P
374071-09-7P	374071-10-0P	374071-11-1P	374071-13-3P	374071-14-4P
374071-15-5P	374071-17-7P	374071-18-8P	374071-19-9P	374071-20-2P
374071-21-3P	374071-22-4P	374071-23-5P	374071-24-6P	374071-25-7P
374071-26-8P	374071-27-9P	374071-29-1P	374071-30-4P	374071-31-5P
374071-32-6P	374071-33-7P	374071-34-8P	374071-35-9P	374071-36-0P
374071-37-1P	374071-38-2P	374071-39-3P	374071-40-6P	374071-41-7P
374071-42-8P	374071-43-9P	374071-44-0P	374071-45-1P	374071-46-2P
374071-47-3P	374071-48-4P	374071-49-5P	374071-50-8P	374071-51-9P
374071-52-0P	374071-53-1P	374071-54-2P	374071-55-3P	374071-56-4P
374071-57-5P	374071-58-6P	374072-29-4P	374553-23-8P	374553-24-9P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT 9055-67-8, Poly(ADP-ribose) polymerase 150977-45-0, VEGFR2 kinase
153190-46-6, MLK3 kinase

RL: BPR (Biological process); BSU (Biological study, unclassified); MSC (Miscellaneous); BIOL (Biological study); PROC (Process)

(preparation of novel multicyclic compds. and their amino acid derivs. as inhibitors of enzymes for treatment of diseases related to enzymes such as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3 kinase)

IT 50-00-0, Formaldehyde, reactions 60-34-4 62-55-5, Thioacetamide
62-56-6, Thiourea, reactions 64-19-7, Acetic acid, reactions 68-12-2,
DMF, reactions 74-88-4, Methyl iodide, reactions 75-36-5, Acetyl
chloride 79-03-8, Propionyl chloride 79-09-4, Propionic acid,
reactions 79-30-1, Isobutyryl chloride 79-37-8, Oxalyl chloride
95-15-8, Benzothiophene 98-09-9, Phenylsulfonyl chloride 98-59-9,
p-Toluenesulfonyl chloride 100-39-0, Benzyl bromide 105-36-2, Ethyl
bromoacetate 107-13-1, Acrylonitrile, reactions 107-92-6, Butyric
acid, reactions 108-00-9, N,N-Dimethylethylenediamine 108-12-3,
Isovaleryl chloride 108-30-5, Succinic anhydride, reactions 108-55-4,
Glutaric anhydride 109-01-3, N-Methylpiperazine 109-86-4,
2-Methoxyethanol 109-89-7, Diethylamine, reactions 109-90-0, Ethyl
isocyanate 109-97-7, Pyrrole 110-89-4, Piperidine, reactions
110-91-8, Morpholine, reactions 120-72-9, Indole, reactions 120-92-3,
Cyclopentanone 123-75-1, Pyrrolidine, reactions 124-63-0,
Methanesulfonyl chloride 140-88-5, Ethyl acrylate 141-43-5,
Ethanolamine, reactions 141-75-3, Butyryl chloride 271-89-6,
Benzofuran 288-88-0, 1H-1,2,4-Triazole 399-52-0, 5-Fluoroindole
541-59-3, Maleimide 544-92-3, Copper(I) cyanide 557-21-1, Zinc cyanide
591-08-2, N-Acetylthiourea 594-27-4, Tetramethyltin 598-21-0,
Bromoacetyl bromide 598-52-7, N-Methylthiourea 614-96-0,
5-Methylindole 623-91-6, Diethyl fumarate 630-08-0, Carbon monoxide,
reactions 638-29-9, Valeryl chloride 690-76-6, 2-(tert-
Butoxycarbonyl)thioacetamide 762-42-5, Dimethyl acetylenedicarboxylate
933-67-5, 7-Methylindole 999-97-3, Hexamethyldisilazane 1121-92-2
1462-37-9, Benzyl 2-bromoethyl ether 1501-27-5, Glutamic acid monomethyl
ester 2038-03-1, 4-(2-Aminoethyl)morpholine 2114-02-5 2133-40-6,
L-Proline methyl ester hydrochloride 2812-46-6 3303-84-2,
N-tert-Butoxycarbonyl-.beta.-alanine 3878-55-5, Succinic acid monomethyl
ester 4023-34-1, Cyclopropanecarbonyl chloride 4377-33-7, 2-Picolyl
chloride 4524-93-0, Cyclopantanecarbonyl chloride 4530-20-5,
N-tert-Butoxycarbonyl-glycine 4744-50-7, Furo[3,4-b]pyrazine-5,7-dione

5070-13-3, Bis(4-nitrophenyl) carbonate 5332-06-9, 4-Bromobutylonitrile
 5332-26-3 5437-45-6, Benzyl bromoacetate 5699-40-1, N-Acetylguanidine
 6940-76-7, 1-Chloro-3-iodopropane 6971-44-4, 4-(N-Methylaminomethyl)pyridine 7148-07-4, 1-(Cyclopenten-1-yl)pyrrolidine
 7531-52-4, L-Prolinamide 13154-24-0, Triisopropylsilyl chloride
 15098-69-8 16503-22-3, N-Methylhistamine dihydrochloride 18107-18-1,
 Trimethylsilyldiazomethane 19099-93-5, Benzyl 4-oxo-1-piperidinecarboxylate 21035-59-6, 2-(N-Methylaminomethyl)pyridine
 24424-99-5, Di-tert-butyl dicarbonate 40594-97-6 49548-40-5
 53300-47-3, 2-(Methanesulfonyl)thioacetamide 53654-35-6, 2-Vinylindole
 54663-78-4, 2-(Tributylstannyl)thiophene 57260-71-6 57260-73-8,
 N-tert-Butoxycarbonyl ethylenediamine 57294-38-9, 4-(tert-Butoxycarbonylamino)butyric acid 76822-35-0 86864-60-0,
 (2-Bromoethoxy)-tert-butyldimethylsilane 89031-84-5,
 (3-Bromopropoxy)-tert-butyldimethylsilane 98518-10-6 118486-97-8,
 2-(Tributylstannyl)-1-methylpyrrole 124252-41-1, 4-(Tributylstannyl)pyridine 133565-49-8 136088-69-2 138585-09-8,
 p-(tert-Butyldimethylsilyloxy)benzyl chloride 155440-58-7,
 3-(Furan-3-yl)indole 175277-31-3, 2-(tert-Butanesulfonyl)thioacetamide
 175334-72-2, 5-Isoxazolecarbothioamide 374071-64-4, 5-(Triisopropylsilyloxy)-2-(1-hydroxycyclopentyl)indole 374071-66-6,
 5-Methoxy-2-(1-hydroxycyclopentyl)indole 374071-67-7,
 5-(2-Ethoxyethoxy)-2-(1-hydroxycyclopentyl)indole 374071-68-8,
 5-[2-(Diethylamino)ethoxy]-2-(1-hydroxycyclopentyl)indole 374071-69-9,
 5-[2-(Dimethylamino)ethoxy]-2-(1-hydroxycyclopentyl)indole 374071-70-2,
 5-[2-Morpholinoethoxy]-2-(1-hydroxycyclopentyl)indole 374071-71-3,
 2-(tert-Butoxycarbonyloxy)thioacetamide 374071-77-9,
 2-(2-Buten-2-yl)indole 374071-87-1 374071-90-6, 2-(3-Hepten-3-yl)indole 374071-91-7, 3-(Cyclohexen-1-yl)-1-methylindole 374071-92-8,
 2-(2,3-Dihydrofuran-4-yl)indole 374071-93-9 374071-94-0 374071-96-2,
 6-Methoxy-2-(1-hydroxycyclopentyl)indole 374071-97-3,
 4-Methoxy-2-(1-hydroxycyclopentyl)indole
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of novel multicyclic compds. and their amino acid derivs. as
 inhibitors of enzymes for treatment of diseases related to enzymes such
 as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3
 kinase)

IT 90971-74-7P, 3-(Cyclopenten-1-yl)-1-(triisopropylsilyl)pyrrole
 118959-02-7P, 2-(Cyclopenten-1-yl)benzofuran 374071-59-7P,
 2-(1-Hydroxycyclopentyl)indole 374071-60-0P, 2-(1-Cyclopentenyl)indole
 374071-61-1P 374071-62-2P 374071-63-3P 374071-65-5P 374071-72-4P
 374071-73-5P 374071-74-6P 374071-75-7P 374071-76-8P 374071-78-0P
 374071-79-1P, 2-(Cyclopenten-1-yl)pyrrole 374071-80-4P,
 3-(Cyclopenten-1-yl)pyrrole 374071-81-5P, 2-(Cyclopenten-1-yl)-1-(triisopropylsilyl)pyrrole 374071-82-6P 374071-83-7P 374071-84-8P
 374071-85-9P, 1,6,7,8-Tetrahydrcyclopenta[g]indole-4,5-dicarboxylic acid
 374071-86-0P 374071-88-2P 374071-89-3P 374071-95-1P 374071-98-4P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation of novel multicyclic compds. and their amino acid derivs. as
 inhibitors of enzymes for treatment of diseases related to enzymes such
 as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3
 kinase)

IT 153190-46-6, MLK3 kinase
 RL: BPR (Biological process); BSU (Biological study, unclassified); MSC (Miscellaneous); BIOL (Biological study); PROC (Process)
 (preparation of novel multicyclic compds. and their amino acid derivs. as
 inhibitors of enzymes for treatment of diseases related to enzymes such
 as poly(ADP-ribose) polymerase, VEGFR2 kinase, and MLK3
 kinase)

RN 153190-46-6 HCAPLUS
 CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 14 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2001:522414 HCAPLUS
 DN 135:327235
 ED Entered STN: 19 Jul 2001
 TI CEP-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family
 AU Maroney, Anna C.; Finn, James P.; Connors, Thomas J.; Durkin, John T.; Angeles, Thelma; Gessner, George; Xu, Zhiheng; Meyer, Sheryl L.; Savage, Mary J.; Greene, Lloyd A.; Scott, Richard W.; Vaught, Jeffry L.
 CS Cephalon Inc., West Chester, PA, 19380, USA
 SO Journal of Biological Chemistry (2001), 276(27), 25302-25308

PB CODEN: JBCHA3; ISSN: 0021-9258
 DT American Society for Biochemistry and Molecular Biology
 LA Journal
 English
 CC 1-11 (Pharmacology)
 AB CEP-1347 (KT7515) promotes neuronal survival at dosages that inhibit activation of the c-Jun amino-terminal kinases (JNKs) in primary embryonic cultures and differentiated PC12 cells after trophic withdrawal and in mice treated with 1-methyl-4-Ph tetrahydropyridine. In an effort to identify mol. target(s) of CEP-1347 in the JNK cascade, JNK1 and known upstream regulators of JNK1 were co-expressed in Cos-7 cells to determine whether CEP-1347 could modulate JNK1 activation. CEP-1347 blocked JNK1 activation induced by members of the mixed lineage kinase (MLK) family (MLK3, MLK2, MLK1, dual leucine zipper kinase, and leucine zipper kinase). The response was selective because CEP-1347 did not inhibit JNK1 activation in cells induced by kinases independent of the MLK cascade. CEP-1347 inhibition of recombinant MLK members in vitro was competitive with ATP, resulting in IC₅₀ values ranging from 23 to 51 nM, comparable to inhibitory potencies observed in intact cells. In addition, overexpression of MLK3 led to death in Chinese hamster ovary cells, and CEP-1347 blocked this death at doses comparable to those that inhibited MLK3 kinase activity. These results identify MLKs as targets of CEP-1347 in the JNK signaling cascade and demonstrate that CEP-1347 can block MLK-induced cell death.
 ST neuroprotectant CEP1347 mixed lineage kinase inhibitor; signal transduction MLK JNK1 neuron injury
 IT Signal transduction, biological (CEP-1347 (KT7515), a semisynthetic inhibitor of mixed lineage kinase family)
 IT Nerve, disease (injury; CEP-1347 (KT7515), a semisynthetic inhibitor of mixed lineage kinase family)
 IT Cytoprotective agents (neuroprotectants; CEP-1347 (KT7515), a semisynthetic inhibitor of mixed lineage kinase family)
 IT 156177-65-0, CEP-1347
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (CEP-1347 (KT7515), a semisynthetic inhibitor of mixed lineage kinase family)
 IT 9031-44-1D, Kinase, dual leucine zipper, leucine zipper 153190-46-6, Protein kinase MLK3 191808-07-8, Protein kinase MLK2 250649-03-7, Protein kinase MLK1 289898-51-7, JNK1
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process) (CEP-1347 (KT7515), a semisynthetic inhibitor of mixed lineage kinase family)
 RE.CNT 75 THERE ARE 75 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE
 (1) Bazenet, C; Proc Natl Acad Sci 1998, V95, P3984 HCPLUS
 (2) Behrens, A; Nat Genet 1999, V21, P326 HCPLUS
 (3) Bergeron, P; Biochem Biophys Res Commun 1997, V231, P153 HCPLUS
 (4) Bock, B; J Biol Chem 2000, V275, P14231 HCPLUS
 (5) Borasio, G; Neuroreport 1998, V9, P1435 HCPLUS
 (6) Cleland, W; Methods Enzymol 1979, V63, P103 HCPLUS
 (7) Cobb, M; Prog Biophys Mol Biol 1999, V71, P479 HCPLUS
 (8) Cuenda, A; J Biochem 1998, V333, P11 HCPLUS
 (9) de Azevedo, W; Proc Natl Acad Sci 1996, V93, P2735 HCPLUS
 (10) Deijard, B; Science 1995, V267, P682
 (11) Dorow, D; Eur J Biochem 1993, V213, P701 HCPLUS
 (12) Dorow, D; Eur J Biochem 1995, V234, P492 HCPLUS
 (13) Eilers, A; J Neurosci 1998, V18, P1713 HCPLUS
 (14) English, J; Exp Cell Res 1999, V253, P255 HCPLUS
 (15) Estus, S; J Cell Biol 1994, V127, P1717 HCPLUS
 (16) Ezoe, K; Oncogene 1994, V9, P935 HCPLUS
 (17) Foltz, I; J Biol Chem 1998, V273, P9344 HCPLUS
 (18) Gallo, K; J Biol Chem 1994, V269, P15092 HCPLUS
 (19) Glicksman, M; J Neurobiol 1998, V35, P361 HCPLUS
 (20) Ham, J; Neuron 1995, V14, P927 HCPLUS
 (21) Hartkamp, J; Cancer Res 1999, V59, P2195 HCPLUS
 (22) Hehner, S; Mol Cell Biol 2000, V20, P2556 HCPLUS

- (23) Hink, W; Nature 1970, V226, P466
 (24) Hirai, S; J Biol Chem 1997, V272, P15167 HCAPLUS
 (25) Hirai, S; Oncogene 1996, V12, P641 HCAPLUS
 (26) Ho, S; Gene 1989, V77, P51 HCAPLUS
 (27) Holzman, L; J Biol Chem 1994, V269, P30808 HCAPLUS
 (28) Hu, M; Genes Dev 1996, V10, P2251 HCAPLUS
 (29) Ichijo, H; Science 1997, V275, P90 HCAPLUS
 (30) Ing, Y; Oncogene 1994, V9, P1745 HCAPLUS
 (31) Kanamoto, T; Mol Cell Biol 2000, V20, P196 HCAPLUS
 (32) Kaneko, M; J Med Chem 1997, V40, P1863 HCAPLUS
 (33) Katoh, M; Oncogene 1995, V10, P1447 HCAPLUS
 (34) Kiefer, F; EMBO J 1996, V15, P7013 HCAPLUS
 (35) Koide, K; Chem Biol 1995, V2, P601 HCAPLUS
 (36) Kyriakis, J; J Biol Chem 1999, V274, P5259 HCAPLUS
 (37) Lawler, S; FEBS Lett 1997, V414, P153 HCAPLUS
 (38) Lee, F; Cell 1997, V88, P213 HCAPLUS
 (39) Leung, I; J Biol Chem 1998, V273, P32408 HCAPLUS
 (40) Lin, A; Science 1995, V268, P286 HCAPLUS
 (41) Ling, L; Proc Natl Acad Sci 1997, V95, P3792
 (42) Liu, Y; J Biol Chem 2000, V275, P19035 HCAPLUS
 (43) Lu, X; J Biol Chem 1997, V272, P24751 HCAPLUS
 (44) Malinin, N; Nature 1997, V385, P540 HCAPLUS
 (45) Maroney, A; J Neurochem 1995, V64, P540 HCAPLUS
 (46) Maroney, A; J Neurochem 1999, V73, P1901 HCAPLUS
 (47) Maroney, A; J Neurosci 1998, V18, P104 HCAPLUS
 (48) Merritt, S; J Biol Chem 1999, V274, P10195 HCAPLUS
 (49) Meyer, S; J Neurochem 1994, V62, P825 HCAPLUS
 (50) Michel, P; Clin Neuropharmacol 1999, V22, P137 HCAPLUS
 (51) Mielke, K; Prog Neurobiol 2000, V61, P45 HCAPLUS
 (52) Nagata, K; EMBO J 1998, V17, P149 HCAPLUS
 (53) Nihalani, D; J Biol Chem 2000, V275, P7273 HCAPLUS
 (54) Pitt, A; J Biomol Screening 1996, V1, P47 HCAPLUS
 (55) Rasmussen, R; Biochem J 1998, V335, P119 HCAPLUS
 (56) Rasmussen, R; Electrophoresis 1998, V19, P809 HCAPLUS
 (57) Reddy, U; Biochem Biophys Res Commun 1994, V202, P613 HCAPLUS
 (58) Robertson, G; Brain Pathol 2000, V10, P283 HCAPLUS
 (59) Sakuma, H; J Biol Chem 1997, V272, P28622 HCAPLUS
 (60) Sanchez, I; Nature 1994, V372, P794 HCAPLUS
 (61) Saporito, M; J Neurochem 2000, V75, P1
 (62) Saporito, M; J Pharmacol Exp Ther 1999, V288, P421 HCAPLUS
 (63) Saporito, M; Neuroscience 1998, V86, P461 HCAPLUS
 (64) Schlingensiepen, K; Cell Mol Neurobiol 1994, V14, P487 HCAPLUS
 (65) Smith, D; Gene 1988, V67, P31 HCAPLUS
 (66) Teramoto, H; J Biol Chem 1996, V271, P27225 HCAPLUS
 (67) Tibbles, L; Cell Mol Life Sci 1999, V55, P1230 HCAPLUS
 (68) Tong, L; Nat Struct Biol 1997, V4, P311 HCAPLUS
 (69) Tournier, C; Proc Natl Acad Sci 1997, V94, P7737
 (70) Vacratsis, P; J Biol Chem 2000, V275, P27893 HCAPLUS
 (71) Wagstaff, K; Lab Anim Sci 1999, V49, P358 MEDLINE
 (72) Wu, A; Mol Cell Biol 1997, V17, P7407
 (73) Xia, Z; Science 1995, V270, P1326 HCAPLUS
 (74) Yang, D; Nature 1997, V389, P865 HCAPLUS
 (75) Young, P; J Biol Chem 1997, V272, P12116 HCAPLUS
IT 153190-46-6, Protein kinase MLK3
 191808-07-8, Protein kinase MLK2
 250649-03-7, Protein kinase MLK1
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (CEP-1347 (KT7515), a semisynthetic inhibitor of mixed lineage kinase family)
RN 153190-46-6 HCAPLUS
CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
RN 191808-07-8 HCAPLUS
CN Kinase (phosphorylating), protein, MLK2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
RN 250649-03-7 HCAPLUS
CN Kinase (phosphorylating), protein, MLK1 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L35 ANSWER 15 OF 16 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2001:490787 HCAPLUS
 DN 135:208705

ED Entered STN: 08 Jul 2001
 TI Evidence for a role of mixed lineage kinases
 in neuronal apoptosis
 AU Mota, Monica; Reeder, Melissa; Chernoff, Jonathan; Bazenet, Chantal E.
 CS Eisai London Research Laboratories, University College London, London,
 WC1E 6BT, UK
 SO Journal of Neuroscience (2001), 21(14), 4949-4957
 CODEN: JNRSDS; ISSN: 0270-6474
 PB Society for Neuroscience
 DT Journal
 LA English
 CC 13-6 (Mammalian Biochemistry)
 AB Superior cervical ganglion (SCG) sympathetic neurons die by apoptosis when deprived of nerve growth factor (NGF). It has been shown previously that the induction of apoptosis in these neurons at NGF withdrawal requires both the activity of the small GTP-binding protein Cdc42 and the activation of the c-Jun N-terminal kinase (JNK) pathway. The mixed lineage kinase 3 (MLK3) belongs to a family of mitogen-activated protein (MAP) kinase kinase kinases. MLK3 contains a Cdc42/Rac interactive-binding (CRIB) domain and activates both the JNK and the p38 MAP kinase pathways. In this study the role of MLK3 in the induction of apoptosis in sympathetic neurons has been investigated. Overexpression of an active MLK3 induces activation of the JNK pathway and apoptosis in SCG neurons. In addition, overexpression of kinase dead mutants of MLK3 blocks apoptosis as well as c-Jun phosphorylation induced by NGF deprivation. More importantly, MLK3 activity seems to increase by 5 h after NGF withdrawal in both differentiated PC12 cells and SCG neurons. We also show that MLK3 lies downstream of Cdc42 in the neuronal death pathway. Regulation of MLK3 in neurons seems to be dependent on MLK3 activity and possibly on an addnl. cellular component, but not on its binding to Cdc42. These results suggest that MLK3, or a closely related kinase, is a physiol. element of NGF withdrawal-induced activation of the Cdc42-c-Jun pathway and neuronal death. MLK3 therefore could be an interesting therapeutic target in a number of neurodegenerative diseases involving neuronal apoptosis.
 ST MLK3 Jnk kinase Cdc42 sympathetic neuron apoptosis
 IT Signal transduction, biological
 (evidence for role of mixed lineage kinases
 in Cdc-42-c-Jun pathway in neuronal apoptosis)
 IT Apoptosis
 (evidence for role of mixed lineage kinases
 in neuronal apoptosis)
 IT G proteins (guanine nucleotide-binding proteins)
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (gene CDC42; evidence for role of mixed lineage kinases in Cdc-42-c-Jun pathway in neuronal apoptosis)
 IT Ganglion
 (superior cervical; evidence for role of mixed lineage kinases in neuronal apoptosis)
 IT Nerve
 (sympathetic; evidence for role of mixed lineage kinases in neuronal apoptosis)
 IT 155215-87-5, Jnk kinase
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (evidence for role of mixed lineage kinases in Cdc-42-c-Jun pathway in neuronal apoptosis)
 IT 153190-46-6, MLK3 kinase
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (evidence for role of mixed lineage kinases in neuronal apoptosis)
 RE.CNT 50 THERE ARE 50 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE
 (1) Abo, A; EMBO J 1998, V17, P6527 HCAPLUS
 (2) Bagrodia, S; J Biol Chem 1995, V270, P27995 HCAPLUS
 (3) Bazenet, C; Proc Natl Acad Sci USA 1998, V95, P3984 HCAPLUS
 (4) Bock, B; J Biol Chem 2000, V275, P14231 HCAPLUS
 (5) Brown, J; Curr Biol 1996, V6, P598 HCAPLUS
 (6) Burbelo, P; J Biol Chem 1995, V270, P29071 HCAPLUS
 (7) Dickens, M; Science 1997, V277, P693 HCAPLUS

- (8) Doherty, P; Neurosci Lett 1988, V92, P222 HCPLUS
 (9) Dorow, D; Eur J Biochem 1993, V213, P701 HCPLUS
 (10) Eilers, A; J Neurosci 1998, V18, P1713 HCPLUS
 (11) Estus, S; J Cell Biol 1994, V127, P1717 HCPLUS
 (12) Ezoe, K; Oncogene 1994, V9, P935 HCPLUS
 (13) Fan, G; J Biol Chem 1996, V271, P24788 HCPLUS
 (14) Fanger, G; EMBO J 1997, V16, P4961 HCPLUS
 (15) Gallo, K; J Biol Chem 1994, V269, P15092 HCPLUS
 (16) Gerwits, P; J Biol Chem 1997, V272, P8288 HCPLUS
 (17) Ham, J; Neuron 1995, V14, P927 HCPLUS
 (18) Hartkamp, J; Cancer Res 1999, V59, P2195 HCPLUS
 (19) Herdegen, T; J Neurosci 1998, V18, P5124 HCPLUS
 (20) Hirai, S; J Biol Chem 1997, V272, P15167 HCPLUS
 (21) Hirai, S; Oncogene 1996, V12, P641 HCPLUS
 (22) Holzman, L; J Biol Chem 1994, V269, P30808 HCPLUS
 (23) Ing, Y; Oncogene 1994, V9, P1745 HCPLUS
 (24) Johnson, D; Microbiol Mol Biol Rev 1999, V63, P54 HCPLUS
 (25) Kanamoto, T; Mol Cell Biol 2000, V20, P196 HCPLUS
 (26) Knaus, U; Science 1995, V269, P221 HCPLUS
 (27) Leung, I; J Biol Chem 1998, V273, P32408 HCPLUS
 (28) Lim, L; Eur J Biochem 1996, V242, P171 HCPLUS
 (29) Manser, E; J Biol Chem 1995, V270, P25070 HCPLUS
 (30) Maroney, A; J Neurosci 1998, V18, P104 HCPLUS
 (31) Martin, G; EMBO J 1995, V14, P1970 HCPLUS
 (32) McCarthy, M; J Cell Sci 1997, V110, P2165 HCPLUS
 (33) Merritt, S; J Biol Chem 1999, V274, P10195 HCPLUS
 (34) Mielke, K; Prog Neurobiol 2000, V61, P45 HCPLUS
 (35) Nagata, K; EMBO J 1998, V17, P149 HCPLUS
 (36) Pombo, C; Nature 1995, V377, P750 HCPLUS
 (37) Rana, A; J Biol Chem 1996, V271, P19025 HCPLUS
 (38) Reddy, U; Biochem Biophys Res Commun 1994, V205, P1494 HCPLUS
 (39) Sakuma, H; J Biol Chem 1997, V272, P28622 HCPLUS
 (40) Su, Y; EMBO J 1997, V16, P1279 HCPLUS
 (41) Tanaka, S; J Biol Chem 1998, V273, P1281 HCPLUS
 (42) Tappon, N; Curr Opin Cell Biol 1997, V9, P86 HCPLUS
 (43) Tappon, N; EMBO J 1998, V17, P1395 HCPLUS
 (44) Teramoto, H; J Biol Chem 1996, V271, P27225 HCPLUS
 (45) Tibbles, L; EMBO J 1996, V15, P7026 HCPLUS
 (46) van Aelst, L; Genes Dev 1997, V11, P2295 HCPLUS
 (47) Watson, A; J Neurosci 1998, V18, P751 HCPLUS
 (48) Whitmarsh, A; Science 1998, V281, P1671 HCPLUS
 (49) Xia, Z; Science 1995, V270, P1326 HCPLUS
 (50) Yasuda, J; Mol Cell Biol 1999, V19, P7245 HCPLUS
IT 153190-46-6, MLK3 kinase
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (evidence for role of mixed lineage kinases
 in neuronal apoptosis)
- RN 153190-46-6 HCPLUS**
CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

- L35 ANSWER 16 OF 16 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2000:161543 HCPLUS
 DN 132:217150
 ED Entered STN: 10 Mar 2000
 TI Methods for identification of compounds modulating multiple
 lineage kinase proteins, compound preparation,
 and therapeutic use
 IN Maroney, Anna; Walton, Kevin M.; Dionne, Craig A.; Neff, Nicola; Knight,
 Ernest, Jr.; Glicksman, Marcie A.
 PA Cephalon, Inc., USA
 SO PCT Int. Appl., 158 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM G01N033-50
 ICS C12Q001-68; G01N033-68; A61K031-40; A61K031-535; A61K031-55
 CC 1-12 (Pharmacology)
 Section cross-reference(s): 28
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI WO 2000013015	A1	20000309	WO 1999-US18864	19990818
W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,				

CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
 IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
 MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
 SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG,
 KZ, MD, RU, TJ, TM
 RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
 ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
 CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
 CA 2339539 AA 20000309 CA 1999-2339539 19990818
 AU 9956793 A1 20000321 AU 1999-56793 19990818
 AU 765637 B2 20030925
 EP 1105728 A1 20010613 EP 1999-943759 19990818
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO
 TR 200100589 T2 20010723 TR 2001-200100589 19990818
 BR 9913190 A 20011211 BR 1999-13190 19990818
 JP 2002523780 T2 20020730 JP 2000-567949 19990818
 NZ 509612 A 20031031 NZ 1999-509612 19990818
 NO 2001000389 A 20010402 NO 2001-389 20010123
 BG 105360 A 20011031 BG 2001-105360 20010319
 PRAI US 1998-97980P P 19980826
 WO 1999-US18864 W 19990818

CLASS

PATENT NO.	CLASS	PATENT FAMILY CLASSIFICATION CODES
WO 2000013015	ICM	G01N033-50
	ICS	C12Q001-68; G01N033-68; A61K031-40; A61K031-535; A61K031-55

OS MARPAT 132:217150

AB Methods for identifying compds. which modulate activity of a multiple lineage kinase protein and promotes cell survival or cell death comprise contacting the cell containing the multiple lineage kinase protein with the compound, determining whether the compound decreases activity of the multiple lineage kinase protein, and determining whether the compound promotes cell survival are provided. Methods for identifying compds. which may be useful in the treatment of neurodegenerative disorders and/or inflammation are also provided. Methods for modulating the activity of a multiple lineage kinase protein comprising contacting the protein or a cell containing the protein with an indeno- or indolo- compound of the invention are also provided. Methods of treating neurodegenerative disorders and/or inflammation are also provided.

ST indolo compd multiple lineage kinase modulator; indeno compd multiple lineage kinase modulator; MLK kinase modulator prepn neurodegenerative disease; antiinflammatory MLK kinase modulator prepn

IT Proteins, specific or class
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (AEX-3, mammalian homolog; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Animal cell line
 (PC12; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Tumor necrosis factors
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (TNF-.alpha.; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Brain
 (cerebral cortex, cortical neuron; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Nerve
 (cholinergic; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Ganglion
 (ciliary; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Nerve, disease
 (death; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

IT Nervous system
 (degeneration; multiple lineage

kinase modulator identification, compound preparation, and therapeutic use)
 IT Mutation
 (dominant neg. MLK3 mutant; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Embryo, animal
 (embryonic motoneuron cell; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Nerve
 (motor, embryonic motoneuron cell; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Anti-inflammatory agents
 Apoptosis
 Cell death
 Cytoprotective agents
 Drug screening
 Nervous system agents
 Signal transduction, biological
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Ciliary neurotrophic factor
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Interleukin 1
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Interleukin 2
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT mRNA
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Cell death
 Cell death
 Nerve
 (neuron; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Axon
 (outgrowth; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Proteins, specific or class
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (p38; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Myelin basic protein
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (phosphorylation; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Phosphorylation, biological
 (protein; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Ganglion
 (spinal; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT Ganglion
 (sympathetic; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
 IT 9012-78-6, Choline acetyltransferase
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)

- IT 9061-61-4, Nerve growth factor
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 251942-24-2P 260388-79-2P 260388-81-6P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 251942-28-6P 260388-72-5P 260388-73-6P 260388-74-7P 260388-75-8P
 260388-76-9P 260388-77-0P 260388-78-1P 260388-80-5P 260388-82-7P
 260388-83-8P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 99533-80-9 121665-29-0 156177-65-0 156177-67-2 156177-84-3
 156177-85-4 167370-93-6 187810-82-8 200632-54-8 200633-48-3
 200636-14-2 260388-67-8 260388-68-9 260388-69-0 260388-70-3
 260388-71-4
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 137632-07-6, ERK1 kinase 137632-08-7, ERK2 kinase
 142805-58-1, MEK5 protein kinase 142805-58-1
 150316-14-6, MEK2 protein kinase 153190-46-6
 , Multiple lineage kinase 3 155215-87-5,
 JNK1 kinase 155215-87-5 172308-13-3, MKK3 protein
 kinase 179241-70-4, Dual leucine zipper bearing
 kinase 191808-07-8, Multiple lineage
 kinase 2 192230-91-4, MKK4 protein kinase
 194739-73-6, MKK6 protein kinase 201168-14-1,
 Leucine zipper-bearing kinase 250649-03-7,
 Multiple lineage kinase 1 260396-80-3
 , Kinase (phosphorylating), protein, MLK6
 260402-73-1, Protein kinase ATF2 260402-76-4,
 Kinase (phosphorylating), protein, ELK1
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 251942-40-2DP, polystyrene-divinylbenzene copolymer reaction products
 251942-41-3DP, polystyrene-divinylbenzene copolymer reaction products
 251942-42-4DP, polystyrene-divinylbenzene copolymer reaction products
 251942-43-5P 251942-45-7P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation and reaction; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 621-63-6 925-90-6, Ethylmagnesium bromide 3658-95-5 9003-70-7D,
 Polystyrene-divinylbenzene copolymer, reaction products with
 diphenylmethanol derivative 18162-48-6, tert-Butyldimethylsilyl chloride
 30418-59-8, 3-Aminophenylboronic acid 35523-34-3, 1,1-Diethoxy-2-
 hexanone 93282-67-8, 1,1-Diethoxy-2-pentanone 115134-35-5D,
 polystyrene-divinylbenzene copolymer reaction products 174349-12-3
 174349-13-4 251942-38-8 251942-39-9
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction; multiple lineage kinase modulator identification, compound preparation, and therapeutic use)
- IT 260778-29-8, 1: PN: WO0013015 SEQID: 6 unclaimed DNA 260778-30-1, 2: PN:
 WO0013015 SEQID: 7 unclaimed DNA 260778-31-2, 3: PN: WO0013015 SEQID: 9
 unclaimed DNA 260778-32-3, 4: PN: WO0013015 SEQID: 10 unclaimed DNA
 260778-33-4, 5: PN: WO0013015 SEQID: 11 unclaimed DNA 260778-34-5, 6:
 PN: WO0013015 SEQID: 12 unclaimed DNA 260778-35-6, 7: PN: WO0013015
 SEQID: 14 unclaimed DNA 260778-36-7, 8: PN: WO0013015 SEQID: 15
 unclaimed DNA 260778-37-8, 9: PN: WO0013015 SEQID: 16 unclaimed DNA
 RL: PRP (Properties)
 (unclaimed nucleotide sequence; methods for identification of compds.
 modulating multiple lineage kinase

proteins, compound preparation, and therapeutic use)

IT 260778-38-9
 RL: PRP (Properties)
 (unclaimed protein sequence; methods for identification of compds.
 modulating multiple lineage kinase
 proteins, compound preparation, and therapeutic use)

IT 98849-88-8 197850-76-3 204513-73-5 260541-57-9 260541-58-0
 260541-59-1 260541-60-4
 RL: PRP (Properties)
 (unclaimed sequence; methods for identification of compds. modulating
 multiple lineage kinase proteins,
 compound preparation, and therapeutic use)

RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE

(1) Angeles, T; ANALYTICAL BIOCHEMISTRY 1996, V236, P49 HCPLUS
 (2) Fang, L; WO 9958982 A 1999 HCPLUS
 (3) Fanger, G; CURRENT OPINION IN GENETICS & DEVELOPMENT 1997, V7(1), P67
 HCPLUS
 (4) Glicksman, M; JOURNAL OF NEUROBIOLOGY 1998, V34(4), P361
 (5) Glicksman, M; JOURNAL OF NEUROCHEMISTRY 1993, V61(1), P210 HCPLUS
 (6) Hudkins, R; US 5475110 A 1995 HCPLUS
 (7) Kaneko, M; JOURNAL OF MEDICINAL CHEMISTRY 1997, V40(12), P1863 HCPLUS
 (8) Knight, E; ANALYTICAL BIOCHEMISTRY 1997, V247, P376 HCPLUS
 (9) Maroney, A; JOURNAL OF NEUROSCIENCE 1998, V18(1), P104 HCPLUS
 (10) Masami, K; US 5756494 A 1998 HCPLUS

IT 153190-46-6, Multiple lineage kinase
 3 179241-70-4, Dual leucine zipper bearing kinase
 191808-07-8, Multiple lineage kinase
 2 250649-03-7, Multiple lineage
 kinase 1 260396-80-3, Kinase
 (phosphorylating), protein, MLK6
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (multiple lineage kinase modulator
 identification, compound preparation, and therapeutic use)

RN 153190-46-6 HCPLUS
 CN Kinase (phosphorylating), gene PTK1 protein (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 179241-70-4 HCPLUS
 CN Kinase (phosphorylating), protein, DLK (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 191808-07-8 HCPLUS
 CN Kinase (phosphorylating), protein, MLK2 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 250649-03-7 HCPLUS
 CN Kinase (phosphorylating), protein, MLK1 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 RN 260396-80-3 HCPLUS
 CN Kinase (phosphorylating), protein, MLK6 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

=> b home
 FILE 'HOME' ENTERED AT 11:18:52 ON 11 JAN 2005

=> d his

(FILE 'HOME' ENTERED AT 13:08:03 ON 11 JAN 2005)

FILE 'REGISTRY' ENTERED AT 13:08:38 ON 11 JAN 2005
ACT HAR964S0/A

L1 79 SEA FILE=REGISTRY ABB=ON PLU=ON MLK? OR KINASE (1A) PROTEIN (

FILE 'HCAPLUS' ENTERED AT 13:09:02 ON 11 JAN 2005
L2 969 MLK? OR KINASE (1A) PROTEIN (1A) (MLK? OR (MULTIPLE OR MIXED) (1
L3 207 L1
L4 1017 L2-3

FILE 'BIOSIS' ENTERED AT 13:13:39 ON 11 JAN 2005

L5 506 L1-2
E LIU F/AU
E LIU Y/AU
L6 1846 E3,E11-12
L7 1 L5 AND L6
L8 85 ((CELL? OR NEURON?) (1A) DEATH OR APOPT? OR NECRO?) AND L6
L9 1 ?PARKIN? AND L8
L10 13 ?PARKIN? AND L6
L11 14 L7 OR L9 OR L10

FILE 'WPICK' ENTERED AT 13:49:46 ON 11 JAN 2005

L12 138073 (B11-C08? OR C11-C08? OR B11-C10? OR C11-C10? OR D05-H09 OR S03
L13 32287 (B12-K04A5 OR C12-K04A5 OR B14-J01 OR C14-J01 OR B14-J01A3 OR C
L14 2329 (B12-G01B OR C12-G01B OR B14-D03 OR C14-D03)/MC
L15 47 (MLK? OR KINASE (1A) PROTEIN (1A) (MLK? OR (MULTIPLE OR MIXED) (1
E LIU Y/AU
L16 3351 E3,E10
L17 2 L15 AND L16
L18 45 L15 NOT L17
E MLK/CN
E MLK/DRN
L19 25 L18 AND L12
L20 6 L19 AND L13-14
L21 1 ((MULTIPLE OR MIXED) (1A) LINKAGE (1A) KINASE)/BIX
L22 6 L20-21
SEL AN 5-6 L22
L23 2 E1-2 AND L22
L24 14 (L15 OR L21) AND L13
L25 1 L16 AND L24
SEL AN 12-14 L24
L26 3 E3-5 AND L24
L27 0 L26 AND L16
L28 4 L23 OR L26
L29 2 L17 OR L25
L30 45 L18 OR L21
L31 0 L30 AND L14
L32 19 L19 NOT L22
SEL AN 6
L33 1 E6 AND L32
L34 5 L33 OR L28

FILE "MEDLINE" ENTERED AT 14:31:34 ON 11 JAN 2005

L35 344 D1-2
L36 0 (MULTIPLE OR MIXED) (1A) LINKAGE (1A) KINASE
L37 24584 PARKINSON DISEASE/CT
L38 1 L35 AND L37

FILE 'EMBASE' ENTERED AT 14:48:55 ON 11 JAN 2005

L39 167654 (TREMOR+NT OR DEGENERATIVE DISEASE+NT OR EXTRAPYRAMIDAL SYMPTOM
L40 330 L1-2
L41 0 (MULTIPLE OR MIXED) (1A) LINKAGE (1A) KINASE
L42 151517 (G3.150 OR G3.120.)/CT
L43 16 L40 AND L39
L44 12 L43 AND L42
E LIU Y/AU
L45 3527 E3,E10
L46 2 L45 AND L40
L47 11 L44 NOT L46
SEL AN 1 3-5 9
L48 5 E1-5 AND L47

L49 56 L40 AND L42
 L50 2 L49 AND L45
 L51 1 L43 AND L45
 L52 2 L46 OR L50 OR L51
 L53 54 L49 NOT L52
 L54 15 L43 NOT L52
 L55 58 L53-54
 L56 7 L55 AND PY<=1998
 SEL AN 5
 L57 1 E6 AND L56
 L58 6 L57 OR L48

=> b biosis

FILE BIOSIS ENTERED AT 15:03:12 ON 11 JAN 2005
 Copyright (c) 2005 The Thomson Corporation.

FILE COVERS 1969 TO DATE.
 CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
 FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 5 January 2005 (20050105/ED)

FILE RELOADED: 19 October 2003.

=> d all ill woc

L11 ANSWER 1 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
 STN
 AN 2004:79412 BIOSIS
 DN PREV200400080343
 TI Cyclohexylbisphenol inhibits oxidative stress in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's.
 AU Chalimoniuk, M. [Reprint Author]; Liu, Y.; Kopczuk, D. [Reprint Author]; Strosznajder, J. [Reprint Author]
 CS Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
 SO Journal of Neurochemistry, (December 2003) Vol. 87, No. Supplement 1, pp. 93. print.
 Meeting Info.: Meeting of the International Society for Neurochemistry (ISN). Hong Kong, China. August 03-08, 2003. International Society for Neurochemistry.
 CODEN: JONRA9. ISSN: 0022-3042.
 DT Conference; (Meeting)
 Conference; Abstract; (Meeting Abstract)
 LA English
 ED Entered STN: 4 Feb 2004
 Last Updated on STN: 4 Feb 2004
 CC General biology - Symposia, transactions and proceedings 00520
 Biochemistry studies - General 10060
 Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
 Biochemistry studies - Proteins, peptides and amino acids 10064
 Pathology - General 12502
 Pathology - Therapy 12512
 Metabolism - General metabolism and metabolic pathways 13002
 Nervous system - Physiology and biochemistry 20504
 Nervous system - Pathology 20506
 Pharmacology - Neuropharmacology 22024
 Toxicology - General and methods 22501
 IT Major Concepts
 Metabolism; Nervous System (Neural Coordination)
 IT Parts, Structures, & Systems of Organisms
 brain cortex: nervous system; hippocampus: nervous system; midbrain: nervous system; striatum: nervous system
 IT Diseases
 Parkinson's disease: nervous system disease, chemically-induced, pathology
 Parkinson Disease (MeSH)
 IT Chemicals & Biochemicals
 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP]: toxin; cGMP [cyclic GMP]; cyclohexylbisphenol: antiparkinsonian-drug, efficacy; free radical: formation; glutathione
 IT Miscellaneous Descriptors
 lipid peroxidation; oxidative stress
 ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia

Organism Name
C57/BL mouse (common): animal model

Taxa Notes
Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates

RN 28289-54-5 (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)
28289-54-5 (MPTP)
7665-99-8 (cGMP)
7665-99-8 (cyclic GMP)
70-18-8 (glutathione)

L11 ANSWER 2 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN

AN 2003:304518 BIOSIS

DN PREV200300304518

TI SUBTHALAMIC GLUTAMIC ACID DECARBOXYLASE GENE TRANSFER INDUCES HETEROTRANSMISSION AND NEUROPROTECTION *in vivo*.

AU Luo, J. [Reprint Author]; Kaplitt, M. G.; Fitzsimons, H. L. [Reprint Author]; Zuzga, D. [Reprint Author]; Liu, Y. [Reprint Author]; Oshinsky, M. L. [Reprint Author]; During, M. J. [Reprint Author]

CS Neurosurgery, Thomas Jefferson Univ, Philadelphia, PA, USA

SO Society for Neuroscience Abstract Viewer and Itinerary Planner, (2002) Vol. 2002, pp. Abstract No. 461.2. <http://sfn.scholarone.com>. cd-rom. Meeting Info.: 32nd Annual Meeting of the Society for Neuroscience. Orlando, Florida, USA. November 02-07, 2002. Society for Neuroscience.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LA English

ED Entered STN: 2 Jul 2003
Last Updated on STN: 2 Jul 2003

AB Parkinsons disease (PD) leads to an alteration in basal ganglia network activity, including disinhibition of the subthalamic nucleus (STN). This leads to excessive activity of the major output nuclei, the substantia nigra pars reticulata (SNr) and internal segment of the globus pallidus (GPi), which impact on motor activity and lead to the cardinal symptoms. Here we describe a genetic approach to test the hypothesis that the glutamatergic neurons of the STN can be induced to express glutamic acid decarboxylase (GAD) via rAAV-mediated gene transfer, and thereby change from an excitatory nucleus to a predominantly inhibitory system. Combined microdialysis and electrophysiology were used to assess the phenotypic shift induced by STN gene transfer. Our data show these excitatory glutamatergic neurons, when driven via electrical stimulation, result in mixed inhibitory responses associated with an increase in GABA release in the SN. This phenotypic shift also results in strong neuroprotection of nigral dopamine neurons *in vivo* associated with rescue of the parkinsonian behavioral phenotype. The combination of vesicular GABA transporter (VGAT) gene transfer with GAD did not confer any additional benefit. Further studies are focused on dissecting the mechanisms whereby GAD with or without VGAT co-expression mediates the phenotypic shift of excitatory neurons at physiological and ultrastructural levels. These data support a novel approach to the treatment of PD and the concept of plasticity between excitatory/inhibitory signaling and heterotransmission in the mammalian brain.

CC General biology - Symposia, transactions and proceedings 00520
Genetics - General 03502
Biochemistry studies - Proteins, peptides and amino acids 10064
Enzymes - General and comparative studies: coenzymes 10802
Nervous system - Physiology and biochemistry 20504

IT Major Concepts
Molecular Genetics (Biochemistry and Molecular Biophysics); Nervous System (Neural Coordination)

IT Parts, Structures, & Systems of Organisms
brain: nervous system; glutamatergic neuron: nervous system; substantia nigra pars reticulata: nervous system; subthalamic nucleus: nervous system

IT Chemicals & Biochemicals
GABA [gamma-aminobutyric acid]: release; glutamic acid decarboxylase [GAD]: expression; vesicular GABA transport [VGAT]: expression

IT Methods & Equipment
electrical stimulation: laboratory techniques; gene transfer: genetic techniques, laboratory techniques

IT Miscellaneous Descriptors
parkinsonian; phenotype

RN 56-12-2 (GABA)
56-12-2 (gamma-aminobutyric acid)

9024-58-2 (glutamic acid decarboxylase)
 9024-58-2 (GAD)
 GEN VGAT gene [vesicular GABA transport gene]

L11 ANSWER 3 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
 STN
 AN 2003:295060 BIOSIS
 DN PREV200300295060
 TI APOMORPHINE - INDUCED ACUTE WITHDRAWAL IN RATS.
 AU White, W. [Reprint Author]; Mattingly, B. A. [Reprint Author]; Duke, A. [Reprint Author]; Liu, Y. [Reprint Author]; Dunkman, J. A. [Reprint Author]; Charles, D. [Reprint Author]; White, I. M. [Reprint Author]
 CS Psychol Dept, Morehead State Univ, Morehead, KY, USA
 SO Society for Neuroscience Abstract Viewer and Itinerary Planner, (2002) Vol. 2002, pp. Abstract No. 400.4. <http://sfn.scholarone.com>. cd-rom. Meeting Info.: 32nd Annual Meeting of the Society for Neuroscience. Orlando, Florida, USA. November 02-07, 2002. Society for Neuroscience.
 DT Conference; (Meeting)
 Conference; (Meeting Poster)
 Conference; Abstract; (Meeting Abstract)
 LA English
 ED Entered STN: 25 Jun 2003
 Last Updated on STN: 25 Jun 2003
 AB Moderate doses of amphetamine (AMPH) produce an immediate stimulant state (during the first several hours post-drug and indicated by excessive locomotion) and an acute withdrawal (around hour 20 post-drug and reflected in hypoactivity), followed by a recovery (beginning around hour 24 post-drug and reflected in a normalization of activity). The purpose of the study was to determine whether the selective dopamine agonist apomorphine (APO) could mimic these changes in activity. Male Wistar rats were housed in open fields (45 cm square) on a 12-12 hour light-dark cycle and with free access to food and water. The animals first were given AMPH (2.0 mg/kg, ip), and then they were given APO hydrochloride (2.0 mg/kg, sc). Control treatments were interspersed with drug administrations, and all treatments occurred at lights on. Distance traveled was quantified with arrays of infrared detectors. APO, like AMPH, produced both hyperactivity for several hours post-drug and hypoactivity around hour 20 post-drug, followed by normalization of activity beginning around hour 24 post-drug. Dopaminergic systems appear to be involved in acute withdrawal and recovery from AMPH administration.
 CC General biology - Symposia, transactions and proceedings 00520
 Behavioral biology - General and comparative behavior 07002
 Behavioral biology - Animal behavior 07003
 Biochemistry studies - General 10060
 Biochemistry studies - Proteins, peptides and amino acids 10064
 Pathology - Therapy 12512
 Nervous system - Physiology and biochemistry 20504
 Pharmacology - General 22002
 Pharmacology - Neuropharmacology 22024
 IT Major Concepts
 Behavior; Nervous System (Neural Coordination); Pharmacology
 IT Parts, Structures, & Systems of Organisms
 dopaminergic system: nervous system
 IT Chemicals & Biochemicals
 amphetamine: adrenergic antagonist-drug, autonomic-drug; apomorphine hydrochloride: antiparkinsonian-drug; dopamine
 IT Miscellaneous Descriptors
 apomorphine-induced acute withdrawal; hyperactivity; hypoactivity
 ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 Wistar rat (common): male
 rat (common)
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
 Rodents, Vertebrates
 RN 300-62-9 (amphetamine)
 314-19-2 (apomorphine hydrochloride)
 51-61-6 (dopamine)

L11 ANSWER 4 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
 STN
 AN 2003:294115 BIOSIS

DN PREV200300294115
 TI SYNAPTOPHYSIN ENHANCES THE NEUROPROTECTION OF VMAT2 IN THE MPP+ INDUCED TOXICITY IN Mn9D CELLS.
 AU Chen, C. X. [Reprint Author]; Huang, Y. [Reprint Author]; Leak, R. K. [Reprint Author]; Liu, Y. [Reprint Author]
 CS Neurology, Neurobiology, U. of Pittsburgh Sch of Med, Pittsburgh, PA, USA
 SO Society for Neuroscience Abstract Viewer and Itinerary Planner, (2002) Vol. 2002, pp. Abstract No. 343.11. <http://sfn.scholarone.com>. cd-rom.
 Meeting Info.: 32nd Annual Meeting of the Society for Neuroscience. Orlando, Florida, USA. November 02-07, 2002. Society for Neuroscience.
 DT Conference; (Meeting)
 Conference; Abstract; (Meeting Abstract)
 LA English
 ED Entered STN: 25 Jun 2003
 Last Updated on STN: 25 Jun 2003
 AB The neuroprotective role of vesicular monoamine transporters (VMATs) in MPTP induced toxicity, a model for Parkinsons disease study, has been indicated by its molecular cloning using CHO fibroblasts, overexpression in non-neuronal cells in vitro and the gene inactivation in mouse. However, there has been lack of direct evidence supporting the role of VMAT2 (neuronal isoform) in dopamine (DA) neuronal survival both in vitro and in vivo, and whether vesicular compartments such as synaptic vesicles (SVs) contribute to the detoxification of MPP+ are unknown. Using a DA cell line MN9D cells as an in vitro system, we have shown that the cells are very sensitive to MPP+ toxicity with a EC50 similar to that of the primary DA neuronal culture. Additionally, MN9D cells express lower levels of secretory vesicle markers such as synaptophysin and SV2, and display DA transporter (DAT) like activity that can be inhibited by mazindol. Overexpression of VMAT2 indeed protects the transformants from MPP+ toxicity, which can be abolished by reserpine. Interestingly, overexpression of synaptophysin alone can induce a resistance of transformants to the toxin compared to that of wild type cells. Furthermore, co-overexpression of VMAT2 and synaptophysin displays a synergistic protective effect in MPP+ toxicity which may result from the increased transport activity. This transformant has also shown more than five fold increase of SV2 expression. In conclusion, the neuroprotection of VMAT2 in DA cells in vitro might be regulated by its vesicular localization and vesicular detoxification capacity which might be enhanced by expression of synaptophysin.
 CC General biology - Symposia, transactions and proceedings 00520
 Cytology - Animal 02506
 Biochemistry studies - General 10060
 Biochemistry studies - Proteins, peptides and amino acids 10064
 Biophysics - Membrane phenomena 10508
 Nervous system - Physiology and biochemistry 20504
 Nervous system - Pathology 20506
 Pharmacology - Neuropharmacology 22024
 Toxicology - General and methods 22501
 IT Major Concepts
 Biochemistry and Molecular Biophysics; Membranes (Cell Biology);
 Nervous System (Neural Coordination)
 IT Parts, Structures, & Systems of Organisms
 dopaminergic neuron: nervous system
 IT Chemicals & Biochemicals
 MPP: toxicodynamics, neurotoxin; VMAT2 [vesicular monoamine transporter-2]: neuroprotectant; dopamine transporter; synaptophysin
 ORGN Classifier
 Animalia 33000
 Super Taxa
 Animalia
 Organism Name
 MN9D (cell line)
 Taxa Notes
 Animals
 L11 ANSWER 5 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN
 AN 2001:497495 BIOSIS
 DN PREV200100497495
 TI Generation of reactive oxygen species by mitochondrial electron transport chain.
 AU Liu, Y. [Reprint author]; Schubert, D. [Reprint author]
 CS Cell Neurobiol Lab, Salk Inst, San Diego, CA, USA
 SO Society for Neuroscience Abstracts, (2001) Vol. 27, No. 1, pp. 536. print.
 Meeting Info.: 31st Annual Meeting of the Society for Neuroscience. San Diego, California, USA. November 10-15, 2001.

ISSN: 0190-5295.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LA English

ED Entered STN: 24 Oct 2001
Last Updated on STN: 23 Feb 2002

AB The generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain (ETC), which is composed of four multi-protein complexes named complex I to IV, is believed to be important in the aging process and neurodegenerative diseases such as Parkinson's disease. It is commonly assumed that the ubiquinone of complex III is the major site of ROS generation in mitochondrial ETC. We show that the only known physiologically and pathologically relevant site of ROS generation in mitochondrial ETC is limited to the FMN group of complex I. These new insights clarify a widely believed, yet elusive target for delaying aging and for treating mitochondrial ROS-related diseases.

CC General biology - Symposia, transactions and proceedings 00520
Cytology - General 02502
Biochemistry studies - General 10060
Nervous system - Physiology and biochemistry 20504
Nervous system - Pathology 20506
Gerontology - 24500

IT Major Concepts
Aging; Cell Biology; Nervous System (Neural Coordination)

IT Parts, Structures, & Systems of Organisms
complex I, FMN group, mitochondrial electron transport chain protein; mitochondria

IT Diseases
neurodegenerative disease: nervous system disease
Neurodegenerative Diseases (MeSH)

IT Chemicals & Biochemicals
complex III: mitochondrial electron transport chain protein complex, ubiquinone; reactive oxygen species [ROS]: generation

IT Miscellaneous Descriptors
mitochondrial electron transport chain; Meeting Abstract

L11 ANSWER 6 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN

AN 2000:209634 BIOSIS

DN PREV200000209634

TI Effects of decreasing GSH levels in a model for Parkinson's disease.

AU Jha, N. [Reprint author]; Jurma, O. [Reprint author]; Lalli, G. [Reprint author]; Liu, Y. [Reprint author]; Andersen, J. K. [Reprint author]

CS Dept. of Molecular Biology and Neurosciences, Univ. of Southern California, Los Angeles, CA, 90089, USA

SO Society for Neuroscience Abstracts, (1999) Vol. 25, No. 1-2, pp. 1596. print.
Meeting Info.: 29th Annual Meeting of the Society for Neuroscience. Miami Beach, Florida, USA. October 23-28, 1999. Society for Neuroscience.

ISSN: 0190-5295.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LA English

ED Entered STN: 24 May 2000
Last Updated on STN: 5 Jan 2002

CC Nervous system - General and methods 20501
Cytology - Animal 02506
Metabolism - General metabolism and metabolic pathways 13002
General biology - Symposia, transactions and proceedings 00520

IT Major Concepts
Cell Biology; Metabolism; Nervous System (Neural Coordination)

IT Diseases
Parkinson's disease: nervous system disease, animal model
Parkinson Disease (MeSH)

IT Chemicals & Biochemicals
glutathione: antioxidant molecule

IT Miscellaneous Descriptors
dopaminergic cell death; Meeting Abstract

ORGN Classifier
Muridae 86375
Super Taxa
Rodentia; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
PC12 cell line: rat pheochromocytoma cells

Taxa Notes

Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
Rodents, Vertebrates

RN 70-18-8 (glutathione)

L11 ANSWER 7 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN

AN 1999:81668 BIOSIS

DN PREV199900081668

TI Increased neuronal cell counts in MAO-B-deficient mouse brain.

AU Liu, Y. [Reprint author]; Shih, J. C.; Anderson, J. K. [Reprint author]

CS Ethel Percy Andrus Gerontol. Cent., Univ. S.C., Los Angeles, CA
90089-0191, USA

SO Society for Neuroscience Abstracts, (1998) Vol. 24, No. 1-2, pp. 1946.
print.

Meeting Info.: 28th Annual Meeting of the Society for Neuroscience, Part
2. Los Angeles, California, USA. November 7-12, 1998. Society for
Neuroscience.

ISSN: 0190-5295.

DT Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)
Conference; (Meeting Poster)

LA English

ED Entered STN: 1 Mar 1999

Last Updated on STN: 1 Mar 1999

CC Nervous system - General and methods 20501

Cytology - General 02502

Genetics - General 03502

Biochemistry studies - General 10060

Enzymes - General and comparative studies: coenzymes 10802

General biology - Symposia, transactions and proceedings 00520

IT Major Concepts

Enzymology (Biochemistry and Molecular Biophysics); Molecular Genetics
(Biochemistry and Molecular Biophysics); Nervous System (Neural
Coordination)

IT Parts, Structures, & Systems of Organisms

brain: nervous system, aging, monoamine oxidase-B deficiency;
cerebellar cortex: nervous system; neuronal cell: nervous system,
increased count

IT Diseases

Parkinson's disease: nervous system disease

Parkinson Disease (MeSH)

IT Chemicals & Biochemicals

beta-phenylethylamine; monoamine oxidase-B: metabolism

IT Miscellaneous Descriptors

Meeting Abstract; Meeting Poster

ORGN Classifier

Muridae 86375

Super Taxa

Rodentia; Mammalia; Vertebrata; Chordata; Animalia

Organism Name

mouse: model

Taxa Notes

Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
Rodents, Vertebrates

RN 64-04-0 (beta-phenylethylamine)

9001-66-5 (MONOAMINE OXIDASE-B)

L11 ANSWER 8 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN

AN 1999:51960 BIOSIS

DN PREV199900051960

TI Analysis of molecular mechanisms of neuronal death induced by
polyglutamine repeat-expanded Huntington.

AU Liu, Y. F.; Deth, R. C.

CS Dep. Pharmacol., Northeast. Univ., Boston, MA 02115, USA

SO Society for Neuroscience Abstracts, (1998) Vol. 24, No. 1-2, pp. 515.
print.

Meeting Info.: 28th Annual Meeting of the Society for Neuroscience, Part
1. Los Angeles, California, USA. November 7-12, 1998. Society for
Neuroscience.

ISSN: 0190-5295.

DT Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

Conference; (Meeting Slide)

LA English
 ED Entered STN: 10 Feb 1999
 Last Updated on STN: 10 Feb 1999
 CC Nervous system - General and methods 20501
 General biology - Symposia, transactions and proceedings 00520
 IT Major Concepts
 Nervous System (Neural Coordination)
 IT Diseases
 Huntington's disease: nervous system disease
 Huntington Disease (MeSH)
 IT Chemicals & Biochemicals
 polyglutamine; MLK2; human huntingtin gene
 IT Miscellaneous Descriptors
 neuronal death; CAG repeat; Meeting Abstract; Meeting Slide
 ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 rat
 HN33 cell line: rat hippocampal neuronal cells
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
 Rodents, Vertebrates
 RN 26700-71-0Q (polyglutamine)
 69864-43-3Q (polyglutamine)

L11 ANSWER 9 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
 STN
 AN 1997:419338 BIOSIS
 DN PREV199799718541
 TI Vesicular monoamine transport, dopamine toxicity and Parkinson's
 disease.
 AU Edwards, R.; Fon, E.; Merickel, A.; Finn, P.; Krantz, D.; Liu, Y.
 CS UCSF Sch. Med., San Francisco, CA 94143-0435, USA
 SO FASEB Journal, (1997) Vol. 11, No. 9, pp. A869.
 Meeting Info.: 17th International Congress of Biochemistry and Molecular
 Biology in conjunction with the Annual Meeting of the American Society for
 Biochemistry and Molecular Biology. San Francisco, California, USA. August
 24-29, 1997.
 CODEN: FAJOEC. ISSN: 0892-6638.
 DT Conference; (Meeting)
 Conference; Abstract; (Meeting Abstract)
 LA English
 ED Entered STN: 8 Oct 1997
 Last Updated on STN: 8 Oct 1997
 CC General biology - Symposia, transactions and proceedings 00520
 Cytology - Animal 02506
 Biochemistry studies - Proteins, peptides and amino acids 10064
 Pathology - General 12502
 Metabolism - Proteins, peptides and amino acids 13012
 Endocrine - Neuroendocrinology 17020
 Nervous system - Anatomy 20502
 Nervous system - Physiology and biochemistry 20504
 Nervous system - Pathology 20506
 Toxicology - General and methods 22501
 IT Major Concepts
 Biochemistry and Molecular Biophysics; Cell Biology; Endocrine System
 (Chemical Coordination and Homeostasis); Metabolism; Nervous System
 (Neural Coordination); Pathology; Toxicology
 IT Chemicals & Biochemicals
 DOPAMINE
 IT Miscellaneous Descriptors
 DOPAMINE; DOPAMINE CELL DEGENERATION; DOPAMINE TOXICITY; MONOAMINES;
 NERVOUS SYSTEM; NERVOUS SYSTEM DISEASE; NEUROTRANSMITTERS;
 PARKINSON'S DISEASE; SECRETORY VESICLE; VESICULAR MONOAMINE
 TRANSPORT
 ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 mouse
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
 Rodents, Vertebrates

RN 51-61-6 (DOPAMINE)

L11 ANSWER 10 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN
AN 1997:417867 BIOSIS
DN PREV199799717070
TI Molecular analysis of neurotransmitter transport into secretory vesicles.
AU Liu, Y. [Reprint author]; Waites, C.; Krantz, D.; Tan, P.;
Edwards, R. H.
CS Dep. Neurol., Univ. Calif. at San Francisco, Sch. Med., San Francisco, CA
94143-0435, USA
SO COLD SPRING HARBOR LABORATORY. Cold Spring Harbor Symp. Quant. Biol.,
(1996) pp. 747-758. Cold Spring Harbor Symposia on Quantitative Biology;
Function and dysfunction in the nervous system.
Publisher: Cold Spring Harbor Laboratory Press, 10 Skyline Drive,
Plainview, New York 11803, USA. Series: Cold Spring Harbor Symposia on
Quantitative Biology.
Meeting Info.: Meeting.
CODEN: CSHSAZ. ISSN: 0091-7451. ISBN: 0-87969-072-0 (paper), 0-87969-071-2
(cloth).
DT Book; (Book Chapter)
Conference; (Meeting Paper)
LA English
ED Entered STN: 8 Oct 1997
Last Updated on STN: 8 Oct 1997
CC General biology - Symposia, transactions and proceedings 00520
Cytology - Animal 02506
Biochemistry studies - Proteins, peptides and amino acids 10064
Biophysics - Molecular properties and macromolecules 10506
Biophysics - Membrane phenomena 10508
Endocrine - Neuroendocrinology 17020
Nervous system - Physiology and biochemistry 20504
Nervous system - Pathology 20506
IT Major Concepts
 Biochemistry and Molecular Biophysics; Cell Biology; Endocrine System
 (Chemical Coordination and Homeostasis); Membranes (Cell Biology);
 Nervous System (Neural Coordination)
IT Chemicals & Biochemicals
 ACETYLCHOLINE; 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE; MPTP
IT Miscellaneous Descriptors
 ACETYLCHOLINE; BEHAVIOR; BIOCHEMISTRY AND BIOPHYSICS; MOLECULAR
 ANALYSIS; MONOAMINES; MPTP; NERVOUS SYSTEM; NERVOUS SYSTEM DISEASE;
 NEUROTOXINS; NEUROTRANSMITTER TRANSPORT; PARKINSON'S DISEASE;
 SECRETORY VESICLES; SYNAPTIC TRANSMISSION; VESICULAR MONOAMINE
 TRANSPORTERS; 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE

ORGN Classifier
 Cricetidae 86310
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 CHO: cell line
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
 Rodents, Vertebrates

ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 PC12: cell line
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
 Rodents, Vertebrates

RN 51-84-3 (ACETYLCHOLINE)
28289-54-5 (1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE)
28289-54-5 (MPTP)

L11 ANSWER 11 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
STN
AN 1995:147411 BIOSIS
DN PREV199598161711
TI A molecular analysis of neurotransmitter transport into synaptic vesicles.
AU Roghani, A.; Peter, D.; Liu, Y.; Merickel, A.; Feldman, J.;
Krantz, D.; Edwards, R. H.
SO Journal of Neurochemistry, (1995) Vol. 64, No. SUPPL. 1, pp. S40.
Meeting Info.: Twenty-sixth Meeting of the American Society for

Neurochemistry. Santa Monica, California, USA. March 5-9, 1995.
 CODEN: JONRA9. ISSN: 0022-3042.

DT Conference; (Meeting)
 Conference; Abstract; (Meeting Abstract)

LA English

ED Entered STN: 3 Apr 1995
 Last Updated on STN: 4 Apr 1995

CC General biology - Symposia, transactions and proceedings 00520
 Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
 Biochemistry studies - Proteins, peptides and amino acids 10064
 Biophysics - Molecular properties and macromolecules 10506
 Endocrine - Neuroendocrinology 17020
 Nervous system - Pathology 20506
 Psychiatry - Psychopathology, psychodynamics and therapy 21002
 Toxicology - General and methods 22501

IT Major Concepts
 Behavior; Endocrine System (Chemical Coordination and Homeostasis);
 Nervous System (Neural Coordination); Toxicology

IT Chemicals & Biochemicals
 DOPAMINE; ACETYLCHOLINE

IT Miscellaneous Descriptors
 ACETYLCHOLINE; COMPLEMENTARY DNA; DOPAMINE; MEETING ABSTRACT;
 NEUROPSYCHIATRIC DISEASE; NEUROTOXIN; PARKINSON'S DISEASE

ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 rat
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals,
 Rodents, Vertebrates

RN 51-61-6 (DOPAMINE)
 51-84-3 (ACETYLCHOLINE)

L11 ANSWER 12 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
 STN

AN 1993:65561 BIOSIS
 DN PREV199344031211

TI Computer-assisted test interpretation: Effects on diagnostic decision
 making.

AU Hillson, S. D.; Connelly, D. P.; Liu, Y.
 CS Ramsey Clin., Univ. Minn., Minneapolis, Minn, USA
 SO Clinical Research, (1992) Vol. 40, No. 3, pp. 769A.
 Meeting Info.: Annual Meeting of the Society of General Internal Medicine.
 Chicago, Illinois, USA. November 6-7, 1992.
 CODEN: CLREAS. ISSN: 0009-9279.

DT Conference; (Meeting)
 LA English
 ED Entered STN: 15 Jan 1993
 Last Updated on STN: 15 Jan 1993

CC General biology - Symposia, transactions and proceedings 00520
 Pathology - Diagnostic 12504
 Pathology - Therapy 12512
 Cardiovascular system - Heart pathology 14506
 Development and Embryology - Descriptive teratology and teratogenesis
 25552
 Public health - Health services and medical care 37012

IT Major Concepts
 Cardiovascular Medicine (Human Medicine, Medical Sciences);
 Development; Pathology; Public Health (Allied Medical Sciences)

IT Miscellaneous Descriptors
 ABSTRACT; DIAGNOSTIC METHOD; ELECTROCARDIOGRAPHY; PERICARDITIS;
 THERAPY; WOLFF- PARKINSON-WHITE SYNDROME

ORGN Classifier
 Hominidae 86215
 Super Taxa
 Primates; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 human
 Taxa Notes
 Animals, Chordates, Humans, Mammals, Primates, Vertebrates

L11 ANSWER 13 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on
 STN

AN 1993:6982 BIOSIS

DN PREV199395006982
 TI Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium.
 AU Liu, Y.; Roghani, A.; Edwards, R. H. [Reprint author]
 CS Dep. Neurology, University California Los Angeles School Medicine, 710 Westwood Plaza, Los Angeles, Calif. 90024-1769, USA
 SO Proceedings of the National Academy of Sciences of the United States of America, (1992) Vol. 89, No. 19, pp. 9074-9078.
 CODEN: PNASA6. ISSN: 0027-8424.
 DT Article
 LA English
 ED Entered STN: 10 Dec 1992
 Last Updated on STN: 13 Dec 1992
 AB The toxin N-methyl-1,2,3,6-tetrahydropyridine produces a model of neural degeneration very similar to idiopathic Parkinson disease. To understand the cellular mechanisms that modulate susceptibility to its active metabolite N-methyl-4-phenylpyridinium (MPP+), we have transfected a cDNA expression library from the relatively MPP+-resistant rat pheochromocytoma PC12 cells into MPP+-sensitive Chinese hamster ovary (CHO) fibroblasts. Selection of the stable transformants in high concentrations of MPP+ has yielded a clone extremely resistant to the toxin. Reserpine reverses the resistance to MPP+, suggesting that a transport activity protects against this form of toxicity, perhaps by sequestering the toxin within an intracellular compartment. In support of this hypothesis, dopamine loaded into the CHO transformant shows a localized distribution that is distinct from the pattern observed in wild-type cells and is also reversed by reserpine.
 CC Cytology - Animal 02506
 Genetics - Animal 03506
 Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
 Biochemistry studies - Proteins, peptides and amino acids 10064
 Metabolism - General metabolism and metabolic pathways 13002
 Metabolism - Proteins, peptides and amino acids 13012
 Endocrine - Neuroendocrinology 17020
 Nervous system - Pathology 20506
 Pharmacology - Neuropharmacology 22024
 Toxicology - General and methods 22501
 IT Major Concepts
 Cell Biology; Genetics; Metabolism; Nervous System (Neural Coordination); Pharmacology; Toxicology
 IT Chemicals & Biochemicals
 RESERPINE; DOPAMINE
 IT Miscellaneous Descriptors
 COMPLEMENTARY DNA; DOPAMINE; PARKINSON'S DISEASE MODEL; TOXIN SEQUESTRATION
 ORGN Classifier
 Cricetidae 86310
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 hamster
 CHO: cell line
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates
 ORGN Classifier
 Muridae 86375
 Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
 Organism Name
 rat
 PC12: cell line
 Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates
 RN 50-55-5 (RESERPINE)
 51-61-6 (DOPAMINE)
 L11 ANSWER 14 OF 14 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation. on STN
 AN 1992:504572 BIOSIS
 DN PREV199294123097; BA94:123097
 TI A CDNA THAT SUPPRESSES MPP POSITIVE TOXICITY ENCODES A VESICULAR AMINE TRANSPORTER.
 AU LIU Y [Reprint author]; PETER D; ROGHANI A; SCHULDINER S; PRIVE G G; EISENBERG D; BRECHA N; EDWARDS R H

CS DEP NEUROL, MOL BIOL INST, UNIV CALIF, LOS ANGELES, SCH MED, LOS ANGELES,
CALIF 90024-1769, USA
SO Cell, (1992) Vol. 70, No. 4, pp. 539-551.
CODEN: CELLB5. ISSN: 0092-8674.

DT Article
FS BA
LA ENGLISH
OS GENBANK-M97380; GENBANK-M97381
ED Entered STN: 9 Nov 1992
Last Updated on STN: 24 Dec 1992

AB Classical neurotransmitters are transported into synaptic vesicles so that their release can be regulated by neural activity. In addition, the vesicular transport of biogenic amines modulates susceptibility to N-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin N-methyl-1,2,3,6-tetrahydropyridine that produces a model of Parkinson's disease. Taking advantage of selection in MPP+, we have used gene transfer followed by plasmid rescue to identify a cDNA clone that encodes a vesicular amine transporter. The sequence predicts a novel mammalian protein with 12 transmembrane domains and homology to a class of bacterial drug resistance transporters. We have detected messenger RNA transcripts for this transporter only in the adrenal gland. Monoamine cell populations in the brain stem express a distinct but highly related protein.

CC Cytology - Animal 02506
Biochemistry studies - Nucleic acids, purines and pyrimidines 10062
Biochemistry studies - Proteins, peptides and amino acids 10064
Endocrine - Neuroendocrinology 17020
Nervous system - Pathology 20506
In vitro cellular and subcellular studies 32600

IT Major Concepts
Endocrine System (Chemical Coordination and Homeostasis); Nervous System (Neural Coordination)

IT Sequence Data
M97380: GENBANK; M97381: GENBANK

IT Miscellaneous Descriptors
CHINESE HAMSTER OVARY CELLS N METHYL-4-PHENYLPYRIDINIUM MOLECULAR SEQUENCE DATA AMINO ACID SEQUENCE NUCLEOTIDE SEQUENCE GENBANK-M97380
GENBANK-M97381 COMPLEMENTARY DNA NEUROTRANSMITTER RELEASE
PARKINSON'S DISEASE MODEL

ORGN Classifier
Cricetidae 86310
Super Taxa
Rodentia; Mammalia; Vertebrata; Chordata; Animalia
Taxa Notes
Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates

RN 143967-77-5 (GENBANK-M97380)
143967-79-7 (GENBANK-M97381)

=> b wpix
FILE "WPIX" ENTERED AT 15:03:30 ON 11 JAN 2005
COPYRIGHT (C) 2005 THE THOMSON CORPORATION

FILE LAST UPDATED: 7 JAN 2005 <20050107/UP>
MOST RECENT DERWENT UPDATE: 200502 <200502/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
PLEASE VISIT:
[<<<](http://www.stn-international.de/training_center/patents/stn_guide.pdf)

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE
<http://thomsonderwent.com/coverage/latestupdates/> <<<

>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
GUIDES, PLEASE VISIT:
<http://thomsonderwent.com/support/userguides/> <<<

>>> NEW! FAST-ALERTING ACCESS TO NEWLY-PUBLISHED PATENT
DOCUMENTATION NOW AVAILABLE IN DERWENT WORLD PATENTS INDEX
FIRST VIEW - FILE WPIFV.
FOR FURTHER DETAILS: <http://www.thomsonderwent.com/dwpifv> <<<

>>> NEW DISPLAY FORMAT HITSTR ADDED ALLOWING DISPLAY OF
HIT STRUCTURES WITHIN THE BIBLIOGRAPHIC DOCUMENT <<<

>>> SMILES and ISO-SMILES strings are no longer available as
Derwent Chemistry Resource display fields <<<
>>> THE CPI AND EPI MANUAL CODES HAVE BEEN REVISED FROM UPDATE 200501.
PLEASE CHECK:
<http://thomsonderwent.com/support/dwpiref/reftools/classification/code-revision/>
FOR DETAILS. <<<

=> d all 129 tot

L29 ANSWER 1 OF 2 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
AN 2002-187722 [24] WPIX
CR 2000-086442 [07]
DNC C2002-057884
TI Method of screening a compounds ability to prevent neuronal cell death in mammals, affected with neurological conditions such as Huntington's disease, Alzheimer's disease.
DC B03 B04 D16 S03
IN LIU, Y F
PA (LIUY-I) LIU Y F
CYC 1
PI US 2002006606 A1 20020117 (200224)* 29 C12Q001-00
ADT US 2002006606 A1 Provisional US 1998-85439P 19980514, Div ex US 1998-156367 19980917, US 2001-886964 20010621
PRAI US 1998-85439P 19980514; US 1998-156367 19980917;
US 2001-886964 20010621
IC ICM C12Q001-00
AB US2002006606 A UPAB: 20020610
NOVELTY - A compound found to have Mixed-lineage kinase (MLK) and/or c-Jun N-terminal kinase (JNK) inhibitor activity, is treated with mammalian neurons having activated MLK and/or JNK activity. A decrease in the number of dead neurons (in the presence of compound), in comparison to number of dead neurons (in the compounds absence), indicates the anti-neuronal apoptosis effect of the compound.
DETAILED DESCRIPTION - A compound is treated with MLK and/or JNK protein and a substrate. The level of JNK and/or MLK activity is measured, if the activity of the JNK and/or MLK is found to decrease in the presence of the compound (when compared to the activity in the absence of the compound), the compound is confirmed to be a JNK and/or MLK inhibitor. This compound is treated with mammalian neurons having activated Mixed-lineage kinase (MLK) and/or c-Jun N-terminal kinase (JNK) activity. The number of dead neurons is determined. A decrease in the number of dead neurons (in the presence of compound), in comparison to the normal number of dead neurons, indicates the ability of the compound to prevent neuronal death.
USE - For treating mammals with neurological diseases such as Huntington's disease or Alzheimer's disease, which involves nerve cell death by glutamate or kainic acid mediated excitotoxicity (claimed).
Dwg.0/14
FS CPI EPI
FA AB; DCN
MC CPI: B04-F0200E; B04-L04; B11-C08; B11-C08E1; B11-C10; B12-K04A; B12-K04A5; B14-D03; B14-H04; B14-J01; B14-J01A3; B14-J01A4; B14-J01B3; B14-J01B4; B14-J05; B14-J07; B14-N16; B14-N17B; B14-S01; D05-A02B; D05-H09; D05-H14B2

L29 ANSWER 2 OF 2 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
AN 2000-086442 [07] WPIX
CR 2002-187722 [21]
DNN N2000-067845 DNC C2000-024051
TI Method of screening a compounds ability to prevent neuronal cell death in mammals, affected with neurological conditions such as Huntington's disease, Alzheimer's disease.
DC B03 B04 D16 S03
IN LIU, Y F
PA (LIUY-I) LIU Y F
CYC 22
PI WO 9958982 A1 19991118 (200007)* EN 62 G01N033-68
RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
W: CA JP US
EP 1078268 A1 20010228 (200113) EN G01N033-68
R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
US 2002006606 A1 20020117 (200224) 29 C12Q001-00

JP 2002514767 W 20020521 (200236) 71 G01N033-50
 US 2002058245 A1 20020516 (200237) C12Q001-00
 US 2003148395 A1 20030807 (200358) G01N033-53
 US 6811992 B1 20041102 (200472) C12Q001-00

ADT WO 9958982 A1 WO 1999-US10416 19990512; EP 1078268 A1 EP 1999-922972
 19990512, WO 1999-US10416 19990512; US 2002006606 A1 Provisional US
 1998-85439P 19980514, Div ex US 1998-156367 19980917, US 2001-886964
 20010621; JP 2002514767 W WO 1999-US10416 19990512, JP 2000-548734
 19990512; US 2002058245 A1 Provisional US 1998-85439P 19980514, Cont of US
 1998-156367 19980917, US 2002-42614 20020109; US 2003148395 A1 Provisional
 US 1998-85439P 19980514, Cont of US 1998-156367 19980917, US 2003-360463
 20030205; US 6811992 B1 Provisional US 1998-85439P 19980514, US
 1998-156367 19980917

FDT EP 1078268 A1 Based on WO 9958982; JP 2002514767 W Based on WO 9958982

PRAI US 1998-156367 19980917; US 1998-85439P 19980514;
 US 2001-886964 20010621; US 2002-42614 20020109;
 US 2003-360463 20030205

IC ICM C12Q001-00; G01N033-50; G01N033-53; G01N033-68
 ICS C12P021-06; C12Q001-48; C12Q001-68; G01N033-15; G01N033-567

AB WO 9958982 A UPAB: 20020618

NOVELTY - A compound found to have Mixed-lineage kinase (MLK) and/or c-Jun N-terminal kinase (JNK) inhibitor activity, is treated with mammalian neurons having activated MLK and/or JNK activity. A decrease in the number of dead neurons (in the presence of compound), in comparison to number of dead neurons (in the compound's absence), indicates the anti-neuronal apoptosis effect of the compound.

DETAILED DESCRIPTION - A compound is treated with MLK and/or JNK protein and a substrate. The level of JNK and/or MLK activity is measured, if the activity of the JNK and/or MLK is found to decrease in the presence of the compound (when compared to the activity in the absence of the compound), the compound is confirmed to be a JNK and/or MLK inhibitor. This compound is treated with mammalian neurons having activated Mixed-lineage kinase (MLK) and/or c-Jun N-terminal kinase (JNK) activity. The number of dead neurons is determined. A decrease in the number of dead neurons (in the presence of compound), in comparison to the normal number of dead neurons, indicates the ability of the compound to prevent neuronal death.

USE - For treating mammals with neurological diseases such as Huntington's disease or Alzheimer's disease, which involves nerve cell death by glutamate or kainic acid mediated excitotoxicity (claimed).

Dwg.0/14

FS CPI EPI
 FA AB; DCN
 MC CPI: B04-F02; B04-N02; B11-C08E2; B12-K04A; D05-H09
 EPI: S03-E14H

=> d all 134 tot

L34 ANSWER 1 OF 5 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
 AN 2002-304059 [34] WPIX
 DNC C2002-088410

TI Identifying a compound useful in the treatment of AIDS peripheral neuropathy comprises contacting a cell containing a multiple linkage kinase protein with a compound and determining if the compound decreases protein activity.

DC B02 B04 D16

IN DIONNE, C A; GLICKSMAN, M A; KNIGHT, E; MARONEY, A; NEFF, N; WALTON, K M
 PA (CEPH-N) CEPHALON INC

CYC 96

PI WO 2002014536 A2 20020221 (200234)* EN 114 C12Q001-00
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
 NL OA PT SD SE SL SZ TR TZ UG ZW
 W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK
 DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR
 KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU
 SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW
 AU 2001083179 A 20020225 (200245) C12Q001-00
 EP 1309721 A2 20030514 (200333) EN C12Q001-48
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI TR
 NO 2003000658 A 20030409 (200333) C12Q000-00
 SK 2003000269 A3 20030805 (200360) C12Q001-48
 CZ 2003000680 A3 20031112 (200379) C12Q001-48

CN 1458979 A 20031126 (200413) C12Q001-48
 MX 2003001218 A1 20030501 (200415) C12Q001-00
 ZA 2003001109 A 20040929 (200468) 137 C12Q000-00

ADT WO 2002014536 A2 WO 2001-US24822 20010808; AU 2001083179 A AU 2001-83179
 20010808; EP 1309721 A2 EP 2001-961958 20010808, WO 2001-US24822 20010808;
 NO 2003000658 A WO 2001-US24822 20010808, NO 2003-658 20030210; SK
 2003000269 A3 WO 2001-US24822 20010808, SK 2003-269 20010808; CZ
 2003000680 A3 WO 2001-US24822 20010808, CZ 2003-680 20010808; CN 1458979 A
 CN 2001-814001 20010808; MX 2003001218 A1 WO 2001-US24822 20010808, MX
 2003-1218 20030210; ZA 2003001109 A ZA 2003-1109 20030210

FDT AU 2001083179 A Based on WO 2002014536; EP 1309721 A2 Based on WO
 2002014536; SK 2003000269 A3 Based on WO 2002014536; CZ 2003000680 A3
 Based on WO 2002014536; MX 2003001218 A1 Based on WO 2002014536

PRAI US 2000-637054 20000811

IC ICM C12Q000-00; C12Q001-00; C12Q001-48
 ICS G01N033-68

AB WO 200214536 A UPAB: 20030227
 NOVELTY - Identifying a compound (I), which is useful in the treatment of AIDS peripheral neuropathy, involves contacting a cell or cell extract containing a multiple linkage kinase (MLK) protein with (I) and determining whether (I) decreases or inhibits activity of the MLK protein.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for treating a human having AIDS peripheral neuropathy by administering (I).

ACTIVITY - Cytostatic; Gynecological; Ophthalmological; Antipsoriatic; Antiinflammatory; Analgesic; Antirheumatic; Antiarthritic; Vulnerary; Cardiant; Antiarteriosclerotic; Vasotropic; Antiparkinsonian; Nootropic; Neuroprotective; Antidiabetic; Anticonvulsant.

Cerebral cortices were dissected from embryonic day 18 rat fetuses and enzymatically digested to obtain a single cell suspension. Cells were seeded at a density of 1.56 multiply 105/cm² onto poly-ornithine/laminin coated 96 well tissue culture plates in serum-free neural basal medium containing B27 supplements. Plates were coated with a solution of poly-ornithine/laminin (8 micro g/ml each) made in PBS for at least 2 hours at 37 deg. C. On *in vitro* days 5-7, cortical neurons were exposed to Ab25-35 (20 micro M) either in the presence or absence of a compound of formula (Ic'). Ab25-35 (1 mM) were prepared in deionized-distilled sterile H₂O. Relative neuronal survival was determined at 48 hours post-peptide addition using lactate dehydrogenase (LDH) release as an indicator of plasma membrane integrity viability. Data was expressed as percent inhibition of LDH released relative to culture treated with AB25-35 alone. The results obtained were as follows: cortical neurons survival (%) control at 250 nm = 46, 56; motoneurons survival (%) control at 250 nm = 300; mononeurons (%) JNK inhibition at 500 nm = 65; Cos-7 cells DLK (%) JNK inhibition at 500 nm = 63, 73; Cos-7 cells MLK-3 (%) JNK inhibition at 500 nm = 98, 99; Cos-7 cells MLK-2 (%) JNK inhibition at 500 nm = 89, 67; and Cos-7 cells MLK1 (%) JNK inhibition at 500 nm = 97, 96.

MECHANISM OF ACTION - Multiple linkage kinase protein inhibitor; Multiple lineage kinase protein modulator.

USE - For identifying a compound useful in the treatment of AIDS peripheral neuropathy and for treatment of AIDS peripheral neuropathy, in a human (claimed), and for the treatment of diseases involving angiogenesis such as cancer of solid tumors, endometriosis, diabetic retinopathy, psoriasis, hemangioblastoma, as well as other ocular diseases and cancers, solid tumors, neoplasia, inflammatory pain, rheumatoid arthritis, pulmonary fibrosis, myelofibrosis, abnormal wound healing, diseases with cardiovascular end points such as atherosclerosis, restenosis, post-angioplasty restenosis and variety of neurological disorders such as Alzheimer's disease, motor neuron disorder (e.g. amyotrophic lateral sclerosis), Parkinson's disease, cerebrovascular disorder (e.g. stroke, ischemia), Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathies (e.g. those affecting DRG neurons in chemotherapy-associated peripheral neuropathy) including diabetic neuropathy and AIDS peripheral neuropathy; disorders induced by excitatory amino acids; and disorders associated with concessive or penetrating injuries of the brain or spinal cord.

ADVANTAGE - The compounds promotes either cell survival or cell death.

Dwg.0/23

FS CPI

FA AB; GI; DCN

MC CPI: B06-H; B11-C08E1; B12-K04E; B14-C01; B14-C09B; B14-F01G;
 B14-F02D; B14-F02F2; B14-F07; B14-H01B; B14-J01;
 B14-J01A3; B14-J01A4; B14-K01; B14-L06; B14-N03; B14-N14;

B14-N16; B14-N17B; B14-N17C; B14-S01; D05-A02B; D05-H09;
D05-H10

L34 ANSWER 2 OF 5 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
 AN 2001-389716 [41] WPIX
 DNC C2001-118750
 TI New heterocyclic substituted pyrazolone derivatives are kinase inhibitors, useful for treating or preventing angiogenic disorders, e.g. cancer, endometriosis, diabetic retinopathy, psoriasis.
 DC B02 B03
 IN SINGH, J; TRIPATHY, R
 PA (CEPH-N) CEPHALON INC
 CYC 95
 PI WO 2001032653 A1 20010510 (200141)* EN 138 C07D405-14
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
 NL OA PT SD SE SL SZ TR TZ UG ZW
 W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM
 DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC
 LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE
 SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW
 AU 2001015811 A 20010514 (200149) C07D405-14
 NO 2002002095 A 20020611 (200252) C07D000-00
 EP 1226141 A1 20020731 (200257) EN C07D405-14
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI TR
 US 6455525 B1 20020924 (200266) A61K031-53
 KR 2002063179 A 20020801 (200308) C07D405-14
 SK 2002000617 A3 20030109 (200309) C07D405-14
 CN 1387528 A 20021225 (200324) C07D405-14
 CZ 2002001569 A3 20030312 (200324) C07D405-14
 HU 2002003203 A2 20030228 (200330) C07D405-14
 JP 2003513091 W 20030408 (200333) 164 C07D405-14
 BR 2000015568 A 20030610 (200341) C07D405-14
 US 2003162775 A1 20030828 (200357) C07D417-02
 ZA 2002003492 A 20031029 (200381) 147 C07D000-00
 US 6831075 B2 20041214 (200501) A61K031-33
 ADT WO 2001032653 A1 WO 2000-US30226 20001101; AU 2001015811 A AU 2001-15811
 20001101; NO 2002002095 A WO 2000-US30226 20001101, NO 2002-2095 20020502;
 EP 1226141 A1 EP 2000-978338 20001101, WO 2000-US30226 20001101; US
 6455525 B1 Provisional US 1999-163377P 19991104, US 2000-702191 20001031;
 KR 2002063179 A KR 2002-705807 20020504; SK 2002000617 A3 WO 2000-US30226
 20001101, SK 2002-617 20001101; CN 1387528 A CN 2000-814898 20001101; CZ
 2002001569 A3 WO 2000-US30226 20001101, CZ 2002-1569 20001101; HU
 2002003203 A2 WO 2000-US30226 20001101, HU 2002-3203 20001101; JP
 2003513091 W WO 2000-US30226 20001101, JP 2001-534804 20001101; BR
 2000015568 A BR 2000-15568 20001101, WO 2000-US30226 20001101; US
 2003162775 A1 Provisional US 1999-163377P 19991104, Cont of US 2000-702191
 20001031, US 2002-225670 20020822; ZA 2002003492 A ZA 2002-3492 20020502;
 US 6831075 B2 Provisional US 1999-163377P 19991104, Cont of US 2000-702191
 20001031, US 2002-225670 20020822
 FDT AU 2001015811 A Based on WO 2001032653; EP 1226141 A1 Based on WO
 2001032653; SK 2002000617 A3 Based on WO 2001032653; CZ 2002001569 A3
 Based on WO 2001032653; HU 2002003203 A2 Based on WO 2001032653; JP
 2003513091 W Based on WO 2001032653; BR 2000015568 A Based on WO
 2001032653; US 2003162775 A1 Cont of US 6455525; US 6831075 B2 Cont of US
 6455525
 PRAI US 2000-702191 20001031; US 1999-163377P 19991104;
 US 2002-225670 20020822
 IC ICM A61K031-33; A61K031-53; C07D000-00; C07D405-14; C07D417-02
 ICS A61K031-415; A61K031-4152; A61K031-4155; A61K031-427; A61K031-433;
 A61K031-4375; A61K031-4439; A61K031-454; A61K031-496; A61K031-497;
 A61K031-506; A61K031-5377; A61K031-541; A61K031-555; A61P003-10;
 A61P007-00; A61P009-00; A61P009-08; A61P015-00; A61P017-06;
 A61P019-08; A61P019-10; A61P021-00; A61P025-00; A61P025-16;
 A61P025-28; A61P027-02; A61P029-00; A61P031-12; A61P031-18;
 A61P035-00; A61P037-02; A61P037-06; A61P043-00; C07D213-00;
 C07D231-00; C07D231-06; C07D239-00; C07D241-00; C07D251-00;
 C07D401-04; C07D401-14; C07D403-02; C07D403-04; C07D403-14;
 C07D405-04; C07D409-04; C07D409-14; C07D413-02; C07D413-04;
 C07D413-14; C07D417-04; C07D417-14; C07D421-14; C07D487-02;
 C07D491-056; C07D498-02; C07D513-02; C07D519-00
 AB WO 2001032653 A UPAB: 20010724
 NOVELTY - Heterocyclic substituted pyrazolone derivatives (I) are new.
 DETAILED DESCRIPTION - Heterocyclic substituted pyrazolone
 derivatives of formula (I) and their salts are new:
 Het = a heterocycle;

R₁ = H; 1-10C alkyl, 2-8C alkenyl, 2-8C alkynyl or heterocycle, each optionally substituted with 1-5 R₆; NR_aR_a, C(=O)R_b, C(=O)NR_a or CO₂R_c;

R₂, R₃ = H; 1-2C alkyl substituted with 1-5 R₆; 3-10C alkyl optionally substituted with 1-5 R_i; 2-6C alkynyl; Cl; Br; I; CN; (CH₂)rNR_aR_a; (CH₂)rORC; (CH₂)rSRC; (CH₂)rC(=O)R_b; (CH₂)rCO₂R_c; (CH₂)rOC(=O)R_b; (CH₂)rC(=O)NR_aR_a; (CH₂)rNR_aC(=O)R_b; (CH₂)rNR_aC(=O)OR_b; (CH₂)rOC(=O)NR_a; (CH₂)rNR_aS(=O)2R_b; (CH₂)rS(=O)2NR_aR_a; (CH₂)rS(O)pR_b; or (CH₂)r carbocycle or (CH₂)r heterocycle, each optionally substituted with 1-5 R₄; or

R₂+R₃ together may form = heterocycle optionally substituted with 1-4 R₄, provided that the heterocycle is other than 2-furanyl; or may form a heterocycle optionally substituted with 1-4 R₄, provided that the heterocycle is other than 2-thiazolidinyl or 5-methyl-2 oxazolidinyl;

R₄ = H, F, Cl, Br, I, CN, CF₃, CF₂CF₃, NO₂, OH, NR_aR_a, ORC, C(=O)R_b, CO₂R_c, OC(=O)R_b, NR_aC(=O)R_b, OC(=O)NR_aR_a, NR_aC(=O)OR_b, NR_aS(=O)2R_b, S(=O)2NR_aR_a, NR_aC(=S)R_b, C(=S)NR_aR_a, NR_aC(=O)NR_aR_a, NR_aC(=S)NR_aR_a, CH=NORC, CH=NR_a, CH=NNR_aR_a, (CH₂)rS(O)pR_b, O(CH₂)qNR_aR_a, O(CH₂)qORC, (CH₂)rORD, (CH₂)rC(=O)Rd', (CH₂)rNHRD, (CH₂)rS(O)pRd'; or 1-10C alkyl, 2-8C alkenyl, 2-8C alkynyl, carbocycle or heterocycle, each optionally substituted with 1-5 R₆;

R₅ = absent or H, 18C alkyl, 2-6C alkenyl, 2-6C alkynyl, (CH₂)r(3-6C cycloalkyl) or (CH₂)rphenyl;

R₆ = 2-8C alkenyl, 2-8C alkynyl, F, Cl, Br, I, CN, CF₃, CF₂CF₃, NO₂, CN, NR_fRf, ORf, C(=O)Rf, CO₂Rf, OC(=O)Rg, NR_fC(=O)Rf, C(=O)RfRf, OC(=O)NR_fRf, NReC(=O)ORG, NReS(=O)2Rg, S(=O)2NR_fRf, NR_aC(=S)Rg, C(=S)NR_fRf, NR_fC(=O)NR_fRf, NR_fC(=S)NR_fRf, CH=NOR_e, CH=NRe, CH=NNReRe, S(O)pRf, O(CH₂)pNR_fRf, O(CH₂)pORf, ORD, NHRD, C(-O)Rd', S(O)pRd', P(=O)(ORc)2; or 1-6C alkyl, carbocycle or heterocycle, each optionally substituted with 1-5 Rh; or a 5-7C monosaccharide where each hydroxyl of the monosaccharide is optionally replaced by H, 1-4C alkyl, 1-4C alkoxy or OC(=O)(1-4C alkyl);

R_a = H; or 1-6C alkyl, 2-6C alkenyl, 2-6C alkynyl, (CH₂)r(3-6C cycloalkyl) or (CH₂)rphenyl, each optionally substituted with 1-5 Rh; or 2 R_a together may form (CH₂)qO(CH₂)q, (CH₂)qS(CH₂)q or (CH₂)m, each optionally substituted with 1-5 Rh;

R_b = 1-6C alkyl, 2-6C alkenyl, 2-6C alkynyl, (CH₂)rphenyl or (CH₂)r heterocycle, each optionally substituted with 1-5 Rh;

R_c = H; or 1-6C alkyl, 2-6C alkenyl, 2-6C alkynyl, 3-6C cycloalkyl or (CH₂)rphenyl, each optionally substituted with 1-5 Rh;

R_d = the residue of an amino acid after the hydroxyl group of the carboxyl group is removed;

R_d' = the residue of an amino acid after the hydrogen of the amine is removed;

R_e = H or 1-6C alkyl;

R_g = 1-6C alkyl or (CH₂)rphenyl, each optionally substituted with 1-5 Rh;

R_f = R_g or H;

R_i = F, Cl, Br, I, OH, NO₂, CN, CF₃, CF₂CF₃, 1-4C alkyl, 2-6C alkenyl, 2-6C alkynyl, alkoxy, 3-7C cycloalkyl, carboxyl, formyl, acetyl, propanoyl, butyryl, valeryl, pivaloyl, hexanoyl, acetamido, acetate, carbamyl, carboxy, NH₂, mono- or dialkylamino, phenyl, benzyl or phenethyl;

R_h = R_i or naphthyl, heterocycle or keto;

m = 2-5;

n = 0-5;

p = 0-2;

q = 1-4; and

r = 0-4.

With the Proviso that:

(i) when R₁ and Het are both 2-pyridinyl, R₂ and R₃ are other than 4-diethylamino-2-phenyl;

(ii) when R₁ is 4-carboxy-phenethyl, Het and either R₂ or R₃ are not both dimethylamino-thiophene;

(iii) R₂ and R₃ are not both H or both SCH₃; and

(iv) when R₂ is H and R₃ is phenyl, Het is other than 2-furanyl.

ACTIVITY - Cytostatic; gynecological; antidiabetic; ophthalmological; antipsoriatic; nootropic; neuroprotective; antiparkinsonian; cerebroprotective; vasotropic; anticonvulsant; osteopathic; antiinflammatory; immunosuppressive; anti-HIV; virucide.

MECHANISM OF ACTION - Kinase inhibitor.

Tests were carried out to determine inhibition of activity of e.g.:

(a) vascular endothelial growth factor receptor-1 kinase;

(b) trkB tyrosine kinase;

(c) mixed lineage kinase-1; and

(d) fibroblast growth factor receptor kinase (FGFR).

Results for % inhibition for 4-(indol-3-ylmethylene)-3-(1,3-thiazol-2-

- yl)-2 pyrazolin-5-one (1 micro M) were:
- 66 %;
 - 65 %;
 - 11 %; and
 - 52 %.

USE - For treating or preventing angiogenic disorders, e.g. cancer of solid tumors, endometriosis, diabetic retinopathy, psoriasis, hemangioblastoma, ocular disorders or macular degeneration; also Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, stroke, ischemia, Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathy, injuries of the brain or spinal chord, cancer, restenosis, osteoporosis, inflammation, viral infections, bone or hematopoietic disease, autoimmune diseases or transplant rejection. (I) can be administered with other active agents.

Dwg.0/0

FS CPI
 FA AB; GI; DCN
 MC CPI: B06-H; B07-D08; B14-A02; B14-C03; B14-D06; B14-F02; B14-F02D;
 B14-G02C; B14-G02D; B14-H01B; B14-J01A3; B14-J01A4;
 B14-J07; B14-N01; B14-N16; B14-S01

L34 ANSWER 3 OF 5 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
 AN 2001-236883 [25] WPIX
 DNN N2001-169466 DNC C2001-071244
 TI New polynucleotides encoding c-Jun N-terminal kinase kinase kinases i.e.
 MLK4, PAK4, associated with skin damage for use in drug screening
 and development.

DC B04 D16 S03
 IN BLUMENBERG, M; GAZEL, A M
 PA (UYNY) UNIV NEW YORK STATE
 CYC 28
 PI EP 1085093 A2 20010321 (200125)* EN 51 C12N015-54
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI

CA 2318519 A1 20010320 (200130) EN C12N015-12
 JP 2001157590 A 20010612 (200139) 132 C12N015-09
 JP 2004290197 A 20041021 (200469) 36 C12N015-09
 JP 3597124 B2 20041202 (200480) 76 C12N015-09
 US 2004241739 A1 20041202 (200481) C12Q001-68
 ADT EP 1085093 A2 EP 2000-307866 20000912; CA 2318519 A1 CA 2000-2318519
 20000918; JP 2001157590 A JP 2000-284980 20000920; JP 2004290197 A Div ex
 JP 2000-284980 20000920, JP 2004-139636 20040510; JP 3597124 B2 JP
 2000-284980 20000920; US 2004241739 A1 Provisional US 1999-155029P
 19990920, Div ex US 2000-659737 20000911, US 2004-885921 20040707

FDT JP 3597124 B2 Previous Publ. JP 2001157590
 PRAI US 1999-155029P 19990920; US 2000-659737 20000911;
 US 2004-885921 20040707

IC ICM C12N015-09; C12N015-12; C12N015-54; C12Q001-68
 ICS C07H021-04; C07K014-47; C07K016-18; C07K016-40; C12N001-15;
 C12N001-19; C12N001-21; C12N005-10; C12N009-12; C12N015-63;
 C12N015-66; C12Q001-02; C12Q001-48; G01N033-15; G01N033-50;
 G01N033-68

AB EP 1085093 A UPAB: 20011129
 NOVELTY - The human polynucleotide sequence as defined by the amino acid
 (aa) sequence of the:
 (i) MLK4 gene comprising 54 aa, (I);
 (ii) PAK4 gene comprising 48 aa, (II);
 (iii) PAK5 gene comprising 48 aa, (III), a 311 aa, (IV) or a 681 aa,
 (V); and the
 (iv) YSK gene comprising 48 aa, (VI),
 as defined in the specification are new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the
 following:

- (1) a recombinant vector comprising (I-VI) or derivatives of (I-VI);
- (2) a host cell comprising (1);
- (3) a substantially purified or isolated polypeptide comprising an amino acid sequence selected from (I-VI);
- (4) the preparation of (3) comprising culturing host cells of (2) under conditions that allow the expression of the polypeptide or peptide fragment and the recovery of the polypeptide or peptide fragment;
- (5) an isolated antibody specific to a polypeptide comprising (I-VI);
- (6) the screening for compounds that affect the cellular levels of a c-Jun N-terminal kinase kinase (JNKKK) gene product;
- (7) the screening for compounds that affect the activity of a JNKKK;
- (8) the identification of a compound that binds to a PAK5 polypeptide comprising the sequence (III-V) or that binds to a YSK2

polypeptide comprising the sequence (VI);
 (9) the screening for compounds that affect the expression of a gene that encodes a JNKKK gene product;
 (10) the detection of an MLK4-, PAK4-, PAK5-, YSK2- related polynucleotide in a sample.

USE - The claimed JNKKK polynucleotide sequences of MLK4, PAK4, PAK5 or YSK2 are useful for elucidation of components involved in the cellular response to ultraviolet radiation. Methods for the isolation of antibodies specific to a polypeptide comprising (I-VI); the screening for compounds that affect the cellular levels of a c-Jun N-terminal kinase kinase kinase (JNKKK) gene product; the screening for compounds that affect the activity of a JNKKK; the identification of a compound that binds to a PAK5 polypeptide comprising the sequence (III-V) or that binds to a YSK2 polypeptide comprising the sequence (VI); the screening for compounds that affect the expression of a gene that encodes a JNKKK gene product and the detection of an MLK4-, PAK4-, PAK5-, YSK2-related polynucleotide in a sample (claimed) which allow such elucidation are outlined.

Dwg.0/3

FS CPI EPI
 FA AB; DCN
 MC CPI: B04-C01G; B04-E03E; B04-E06; B04-E08; B04-F01; B04-F02; B04-G03;
 B04-G21; B04-G22; B04-L01; B04-N02A; B11-C07A; B11-C07B2;
 B11-C08E; B12-K04A1; B12-K04F; D05-A02; D05-C03; D05-H08;
 D05-H09; D05-H11A; D05-H12A; D05-H12D1; D05-H12D2; D05-H12D4;
 D05-H12E; D05-H17; D05-H17A
 EPI: S03-E14H

L34 ANSWER 4 OF 5 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
 AN 2000-565279 [52] WPIX

DNC C2000-168346

TI Cyclic substituted fused pyrrolocarbazole and isoindolone derivatives as protein kinase inhibitors useful for treating and preventing e.g. prostate disorders, Alzheimer's disease, AIDS dementia or epilepsy.

DC B02

IN HUDKINS, R L; REDDY, D; SINGH, J; TRIPATHY, R; UNDERINER, T L; REDDY, D R;
 UNDERINER, T

PA (CEPH-N) CEPHALON INC

CYC 91

PI WO 2000047583 A1 20000817 (200052)* EN 131 C07D487-04
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
 OA PT SD SE SL SZ TZ UG ZW
 W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES
 FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS
 LT LU LV MA MD MG MK MN MW NO NZ PL PT RO RU SD SE SG SI SK SL
 TJ TM TR TT TZ UA UG VN YU ZA ZW
 AU 2000033604 A 20000829 (200062)
 NO 2001003887 A 20011011 (200174) C07D000-00
 EP 1165562 A1 20020102 (200209) EN C07D487-04
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI
 KR 2001102085 A 20011115 (200231) C07D487-04
 BR 2000008056 A 20020409 (200232) C07D487-04
 SK 2001001129 A3 20020404 (200232) C07D487-04
 HU 2001005363 A2 20020628 (200255) C07D487-04
 CN 1350537 A 20020522 (200258) C07D487-04
 CZ 2001002878 A3 20020814 (200263) C07D487-04
 MX 2001008114 A1 20020301 (200362) A61K031-40
 ZA 2001006364 A 20030923 (200368) 149 C07D000-00
 JP 2003529537 W 20031007 (200370) 145 C07D487-04
 NZ 513097 A 20040528 (200437) C07D487-04
 AU 773335 B2 20040520 (200462) C07D487-04
 US 2004186157 A1 20040923 (200463) A61K031-407

ADT WO 2000047583 A1 WO 2000-US3476 20000211; AU 2000033604 A AU 2000-33604
 20000211; NO 2001003887 A WO 2000-US3476 20000211, NO 2001-3887 20010809;
 EP 1165562 A1 EP 2000-911759 20000211, WO 2000-US3476 20000211; KR
 2001102085 A KR 2001-710212 20010811; BR 2000008056 A BR 2000-8056
 20000211, WO 2000-US3476 20000211; SK 2001001129 A3 WO 2000-US3476
 20000211, SK 2001-1129 20000211; HU 2001005363 A2 WO 2000-US3476 20000211,
 HU 2001-5363 20000211; CN 1350537 A CN 2000-803647 20000211; CZ 2001002878
 A3 WO 2000-US3476 20000211, CZ 2001-2878 20000211; MX 2001008114 A1 WO
 2000-US3476 20000211, MX 2001-8114 20010810; ZA 2001006364 A ZA 2001-6364
 20010802; JP 2003529537 W JP 2000-598503 20000211, WO 2000-US3476
 20000211; NZ 513097 A NZ 2000-513097 20000211, WO 2000-US3476 20000211; AU
 773335 B2 AU 2000-33604 20000211; US 2004186157 A1 Provisional US
 1999-119834P 19990212, Cont of US 2000-500849 20000210, US 2004-755505

20040112
 FDT AU 2000033604 A Based on WO 2000047583; EP 1165562 A1 Based on WO 2000047583; BR 2000008056 A Based on WO 2000047583; SK 2001001129 A3 Based on WO 2000047583; HU 2001005363 A2 Based on WO 2000047583; CZ 2001002878 A3 Based on WO 2000047583; MX 2001008114 A1 Based on WO 2000047583; JP 2003529537 W Based on WO 2000047583; NZ 513097 A Based on WO 2000047583; AU 773335 B2 Previous Publ. AU 2000033604, Based on WO 2000047583
 PRAI US 2000-500849 20000210; US 1999-119834P 19990212;
 US 2004-755505 20040112
 IC ICM A61K031-40; A61K031-407; C07D000-00; C07D487-04
 ICS A61K031-4745; A61K031-5025; A61P009-10; A61P011-00; A61P013-08;
 A61P015-00; A61P017-02; A61P017-06; A61P019-02; A61P025-00;
 A61P025-02; A61P025-08; A61P025-14; A61P025-16; A61P025-28;
 A61P027-02; A61P029-00; A61P031-18; A61P035-00; A61P037-06;
 A61P043-00; C07D209-56; C07D519-00
 AB WO 200047583 A UPAB: 20011129
 NOVELTY - Cyclic substituted fused pyrrolocarbazole and isoindolone derivatives (I) are new.
 DETAILED DESCRIPTION - Cyclic substituted fused pyrrolocarbazole and isoindolone derivatives of formula (I) are new.
 B', F' = a) an unsaturated 6-membered carbocyclic aromatic ring in which from 1 to 3 carbon atoms may be replaced by nitrogen atoms; b) an unsaturated 5-membered carbocyclic aromatic ring; and c) an unsaturated 5-membered carbocyclic aromatic ring in which either 1) one carbon atom is replaced with an oxygen, nitrogen, or sulfur atom; 2) two carbon atoms are replaced with a sulfur and a nitrogen atom, an oxygen and a nitrogen atom, or two nitrogen atoms; or 3) three carbon atoms are replaced with three nitrogen atoms;
 R1 = 1-4C alkyl, aryl, arylalkyl, heteroaryl or heteroarylalkyl (all optionally substituted), H, -C(O)R9, -OR10, C(O)NH2, -NR11R12, -(CH2)pNR11R12, -(CH2)pOR10, -O(CH2)pOR10 or -O(CH2)pNR11R12;
 R3-R6 = H, aryl, heteroaryl, halo, -CN, -CF3, -NO2, -OH, -OR9, -O(CH2)pNR11R12, -OC(O)R9, -OC(O)NR11R12, -O(CH2)pOR10, -CH2OR10, -NR11R12, -NR10S(O)2R9, -NR10C(O)R9, -CH2OR14, -NR10C(O)NR11R12, -CO2R2, -C(O)R2, -C(O)NR11R12, -CH=NOR2, -CH=NR9, -(CH2)pNR11R12, -(CH2)pNHR14, -CH=NNR2R2A, -S(O)yR2, -(CH2)pS(O)yR9, -CH2S(O)yR14; or 1-8C alkyl, 2-8C alkenyl, 2-8C alkynyl (all optionally substituted with 1-3 T)
 Q = O, S, NR13, NR7, CHR15, X3CH(R15), and CH(R15)X3; and
 W' = CR18R7 or CHR2;
 A1, B1 = H;
 A2, B2 = H, OR2, SR2 or N(R2)2; or
 A1 + A2, B1 + B2 = =O, =S or =NR2; provided that at least one of A1 + A2, or B1 + B2, form =O.
 The full definition is given in DEFINITION (Full Definition) field.
 ACTIVITY - Cytostatic; antirheumatic; antiarthritic; cerebroprotective; neuroprotective; vulnerary; antiarteriosclerotic; nootropic; antiparkinsonian; vasotropic; anticonvulsant; antiinflammatory; gynecological; antipsoriatic; ophthalmological; antidiabetic; osteopathic; virucidal; immunosuppressive. Compounds (I) have IC50 of 8-555 nM (% inhibition at 300 nM) as measured in an ELISA-based assay for determining the ability of (I) to inhibit the kinase activity of baculovirus-expressed human trkA cytoplasmic domain.
 MECHANISM OF ACTION - Kinase inhibitor such as tyrosine (trkA) kinase, vascular growth factor receptor (VEGFR) kinase, mixed lineage kinase (MLK) or fibroblast growth receptor (FGFR) kinase inhibitors.
 USE - (I) are useful for treating and preventing prostate disorders (e.g. prostate cancer or benign prostate hyperplasia), neoplasia, rheumatoid arthritis, pulmonary fibrosis, myelofibrosis, abnormal wound healing, atherosclerosis, Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, stroke, ischemia, Huntington's disease, AIDS dementia, epilepsy, multiple sclerosis, peripheral neuropathy, injuries of the brain or spinal cord, inflammation, cancer (e.g. solid tumors or a hematopoietic or lymphatic malignancy), endometriosis, psoriasis, hemangioblastoma or ocular disease (e.g. diabetic retinopathy), restenosis, osteoporosis, angiogenesis, viral infections, autoimmune diseases or transplant rejection.
 Dwg.0/0
 FS CPI
 FA AB; GI; DCN
 MC CPI: B06-D18; B14-A02; B14-C03; B14-C09; B14-D01; B14-D06; B14-F07;
 B14-F09; B14-G02; B14-H01; B14-J01A3; B14-J01A4; B14-J01B3;
 B14-J07; B14-N01; B14-N03; B14-N14; B14-N17C; B14-S04

L34 ANSWER 5 OF 5 WPIX COPYRIGHT 2005 THE THOMSON CORP on STN
 AN 2000-282953 [24] WPIX

DNN N2000-212986 DNC C2000-085313
 TI Identifying compounds that modulate multiple lineage kinase proteins, useful e.g. for treating neurodegeneration or cancer, from their effect on survival or death of kinase-expressing cells.
 DC B04 D16 S03
 IN DIONNE, C A; GLICKSMAN, M A; KNIGHT, E; MARONEY, A; NEFF, N; WALTON, K M;
 KNIGHT, E; DIONE, C A
 PA (CEPH-N) CEPHALON INC
 CYC 88
 PI WO 2000013015 A1 20000309 (200024)* EN 157 G01N033-50 <--
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
 OA PT SD SE SL SZ UG ZW
 W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES
 FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS
 LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ
 TM TR TT UA UG UZ VN YU ZA ZW
 AU 9956793 A 20000321 (200031)
 NO 2001000389 A 20010402 (200131) G01N000-00
 EP 1105728 A1 20010613 (200134) EN G01N033-50 <--
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI
 BR 9913190 A 20011211 (200203) G01N033-50 <--
 CN 1314999 A 20010926 (200206) G01N033-50 <--
 HU 2001003079 A2 20011228 (200216) G01N033-50 <--
 CZ 2001000701 A3 20020417 (200231) G01N033-50 <--
 KR 2001103573 A 20011123 (200232) C12Q001-48
 SK 2001000254 A3 20020604 (200247) G01N033-50 <--
 ZA 2001000835 A 20020626 (200251) 200 G01N000-00
 JP 2002523780 W 20020730 (200264) 194 G01N033-50 <--
 MX 2001002020 A1 20011101 (200279) A61K031-40
 AU 765637 B 20030925 (200373) G01N033-50 <--
 NZ 509612 A 20031031 (200380) G01N033-50 <--
 ADT WO 2000013015 A1 WO 1999-US18864 19990818; AU 9956793 A AU 1999-56793
 19990818; NO 2001000389 A WO 1999-US18864 19990818, NO 2001-389 20010123;
 EP 1105728 A1 EP 1999-943759 19990818, WO 1999-US18864 19990818; BR
 9913190 A BR 1999-13190 19990818, WO 1999-US18864 19990818; CN 1314999 A
 CN 1999-810135 19990818; HU 2001003079 A2 WO 1999-US18864 19990818, HU
 2001-3079 19990818; CZ 2001000701 A3 WO 1999-US18864 19990818, CZ 2001-701
 19990818; KR 2001103573 A KR 2001-702385 20010224; SK 2001000254 A3 WO
 1999-US18864 19990818, SK 2001-254 19990818; ZA 2001000835 A ZA 2001-835
 20010130; JP 2002523780 W WO 1999-US18864 19990818, JP 2000-567949
 19990818; MX 2001002020 A1 MX 2001-2020 20010226; AU 765637 B AU
 1999-56793 19990818; NZ 509612 A NZ 1999-509612 19990818, WO 1999-US18864
 19990818
 FDT AU 9956793 A Based on WO 2000013015; EP 1105728 A1 Based on WO 2000013015;
 BR 9913190 A Based on WO 2000013015; HU 2001003079 A2 Based on WO
 2000013015; CZ 2001000701 A3 Based on WO 2000013015; SK 2001000254 A3
 Based on WO 2000013015; JP 2002523780 W Based on WO 2000013015; AU 765637
 B Previous Publ. AU 9956793, Based on WO 2000013015; NZ 509612 A Based on
 WO 2000013015
 PRAI US 1998-97980P 19980826
 IC ICM A61K031-40; C12Q001-48; G01N000-00; G01N033-50
 ICS A61K031-407; A61K031-535; A61K031-5395; A61K031-55; A61P025-28;
 A61P029-00; C07D487-14; C07D491-22; C12N009-12; C12Q001-02;
 C12Q001-68; G01N033-15; G01N033-53; G01N033-566; G01N033-68
 AB WO 2000013015 A UPAB: 20021105
 NOVELTY - Method for identifying compounds (A) that modulate activity of a multiple lineage kinase protein (I)
 and promotes either cell survival or cell death comprises treating a cell that contains (I) with a test compound and determining if it (i) decreases or increases the activity of (I) and (ii) promotes cell survival or death.
 DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following: (a) method for modulating activity of (I) by treating it, or cells containing it, with a compound of formulae (II), (III) or (IV).
 In (II), rings B and F = carbocyclic or heterocyclic aromatic rings; unless otherwise stated, all R groups = H or various substituents;
 A1 and A2, B1 and B2 = are two H, or one H plus OR₂, SR₂, or N(R₂)₂, or together they form oxo, thioxo or =NR₂;
 R₂ = H, 1-4C alkyl or alkoxy, hydroxy, -OCOR₉, -OCONR₁₁R₁₂, -O(CH₂)_pNR₁₁R₁₂, -O(CH₂)_pOR₁₀, 6-10C aralkyl or heteroarylalkyl (both optionally substituted);
 R₉ = alkyl, aryl or heteroaryl;
 R₁₀ = hydrogen or 1-4C alkyl;
 R₁₁ and R₁₂ = R₁₀ or together complete (thio)morpholino or piperidino;

$p = 1-4;$
 m and $n = 0-2;$
 $Y = O, S, NR10, N(O-)R10, N(OR10)$ or methylene;
 $Z' =$ bond, oxygen, vinylene, sulfur, carbonyl, $CH(OR10)$, $NR10$,
 $CH(NR11R12)$, $CONR17$, $N(R17)CO$, $N(S(O)yR9)$, $N(S(O)yNR11R12)$, $NCOR17$,
 $CR15R16$, $N+(O-)R10$, $CH(OH)CH(OH)$ or $CH(OCOR9)CH(OCOR9)$;
 $Y = 0-2;$
 $R17 = H$ or $R9$;
 $R15, R16 = H, OH, COR10, OCOR9, hydroxyalkyl$ or $COOR10$;
 in (III), $Z1$ and $Z2 = H$ or together are oxo;
 $R1, R2$ and $X = H$ or various substituents;
 $R =$ hydroxy or methoxy;
 in (IV), $Z1$ and $Z2 = H$ or together are oxo;
 $R1 = H$ or Br ;
 $R3 = H, allyl, 3-hydroxypropyl$ or 3-morpholino-propyl;
 $R4 =$ as $R3$ but not morpholinopropyl.
 The full definitions are given in the DEFINITIONS (Full Definitions)
Field:
 (b) method for identifying a compound (A') for treatment of neurodegeneration or inflammation from its ability to decrease activity of (I); and
 (c) method for treating neurodegeneration or inflammation by administering (A').
 ACTIVITY - Anti-neurodegenerative; antiinflammatory; anticancer.
 MECHANISM OF ACTION - Multiple lineage kinase modulators.
 USE - (A) are potentially useful for treatment of neurodegenerative diseases (e.g. Alzheimer's, Huntington's and Parkinson's diseases, amyotrophic lateral sclerosis, ischemia etc.), also (not claimed) malignant cell growth.
 Dwg.0/23
FS CPI EPI
FA AB; GI; DCN
MC CPI: B05-B01E; B06-H; B11-C08E2; B12-K04; B14-C03; B14-D06;
 B14-F02D; B14-H01B; B14-J01; D05-H09
 EPI: S03-E14H

=> b medl
 FILE "MEDLINE" ENTERED AT 15:03:51 ON 11 JAN 2005

FILE LAST UPDATED: 8 JAN 2005 (20050108/UP). FILE COVERS 1950 TO DATE.

On December 19, 2004, the 2005 MeSH terms were loaded.

Warning: The search L-number/HUMAN limit is missing from records indexed with the new 2005 MeSH (records added since December 19, 2004). Until this is corrected, include HUMANS/CT and 20041219-20051231/ED in searches to limit results to humans for this time period.

OLDMEDLINE now back to 1950.

MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the MeSH 2005 vocabulary. See <http://www.nlm.nih.gov/mesh/> and http://www.nlm.nih.gov/pubs/techbull/nd03/nd03_mesh.html for a description of changes.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d all L38

L38 ANSWER 1 OF 1 MEDLINE on STN
 AN 2004043739 MEDLINE
 DN PubMed ID: 14744254
 TI Mixed-lineage kinases: a target for the prevention of neurodegeneration.
 AU Wang Leo H; Besirli Cagri G; Johnson Eugene M Jr
 CS Departments of Neurology and Molecular Biology & Pharmacology, Washington University School of Medicine, Saint Louis, Missouri 63110-1031, USA.
 SO Annual review of pharmacology and toxicology, (2004) 44 451-74. Ref: 94
 Journal code: 7607088. ISSN: 0362-1642.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 General Review; (REVIEW)
 (REVIEW, TUTORIAL)

LA English
 FS Priority Journals
 EM 200405
 ED Entered STN: 20040128
 Last Updated on STN: 20040514
 Entered Medline: 20040513
 AB The activation of the c-Jun N-terminal kinase (JNK) pathway is critical for naturally occurring neuronal cell death during development and may be important for the pathological neuronal cell death of neurodegenerative diseases. The small molecule inhibitor of the mixed-lineage kinase (MLK) family of kinases, CEP-1347, inhibits the activation of the JNK pathway and, consequently, the cell death in many cell culture and animal models of neuronal death. CEP-1347 has the ability not only to inhibit cell death but also to maintain the trophic status of neurons in culture. The possible importance of the JNK pathway in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases provides a rationale for the use of CEP-1347 for the treatment of these diseases. CEP-1347 has the potential of not only retarding disease progression but also reversing the severity of symptoms by improving the function of surviving neurons.
 CT Check Tags: Human
 Alzheimer Disease: EN, enzymology
 Alzheimer Disease: PP, physiopathology
 Alzheimer Disease: PC, prevention & control
 Animals
 Carbazoles: PD, pharmacology
 Hearing Loss: PP, physiopathology
 Indoles: PD, pharmacology
 MAP Kinase Kinase Kinases: AI, antagonists & inhibitors
 *MAP Kinase Kinase Kinases: ME, metabolism
 Mitogen-Activated Protein Kinases: AI, antagonists & inhibitors
 Mitogen-Activated Protein Kinases: ME, metabolism
 Models, Biological
 Neurodegenerative Diseases: DT, drug therapy
 *Neurodegenerative Diseases: EN, enzymology
 *Neurodegenerative Diseases: PC, prevention & control
 Neuroprotective Agents: PD, pharmacology
 Parkinson Disease: EN, enzymology
 Parkinson Disease: PP, physiopathology
 Parkinson Disease: PC, prevention & control
 RN 97161-97-2 (K 252)
 CN 0 (CEP 1347); 0 (Carbazoles); 0 (Indoles); 0 (Neuroprotective Agents); EC 2.7.1.37 (MAP Kinase Kinase Kinases); EC 2.7.1.37 (Mitogen-Activated Protein Kinases); EC 2.7.10.- (JNK mitogen-activated protein kinases)

=> b embase
 FILE 0'EMBASE' ENTERED AT 15:04:00 ON 11 JAN 2005
 COPYRIGHT (C) 2005 Elsevier Inc. All rights reserved.

FILE COVERS 1974 TO 6 Jan 2005 (20050106/ED)

EMBASE has been reloaded. Enter HELP RLOAD for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d all 152 tot
 LS2 ANSWER 1 OF 2 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
 on STN
 AN 2004032794 EMBASE
 TI Kainate Receptor Activation Induces Mixed Lineage Kinase-mediated Cellular Signaling Cascades via Post-synaptic Density Protein 95.
 AU Savinainen A.; Garcia E.P.; Dorow D.; Marshall J.; Liu Y.F.
 CS Y.F. Liu, Northeastern University, 312 Mugar Hall, 360 Huntington Ave., Boston, MA 02115, United States. yafliu@lynx.neu.edu
 SO Journal of Biological Chemistry, (6 Apr 2001) 276/14 (11382-11386).
 Refs: 29
 ISSN: 0021-9258 CODEN: JBCHA3
 CY United States
 DT Journal; Article
 FS 029 Clinical Biochemistry
 LA English
 SL English

AB Kainate receptor glutamate receptor 6 (GluR6) subunit-deficient and c-Jun N-terminal kinase 3 (JNK3)-null mice share similar phenotypes including resistance to kainite-induced epileptic seizures and neuronal toxicity (Yang, D. D., Kuan, C.-Y., Whitmarsh, A. J., Rincon, M., Zheng, T. S., Davis, R. J., Rakis, P., and Flavell, R. (1997) Nature 389, 865-869; Mulle, C., Seiler, A., Perez-Otano, I., Dickinson-Anson, H., Castillo, P. E., Bureau, I., Maron, C., Gage, F. H., Mann, J. R., Bettler, B., and Heinemann, S. F. (1998) Nature 392, 601-605). This suggests that JNK activation may be involved in GluR6-mediated excitotoxicity. We provide evidence that postsynaptic density protein (PSD-95) links GluR6 to JNK activation by anchoring mixed lineage kinase (MLK) 2 or MLK3, upstream activators of JNks, to the receptor complex. Association of MLK2 and MLK3 with PSD-95 in HN33 cells and rat brain preparations is dependent upon the SH3 domain of PSD-95, and expression of GluR6 in HN33 cells activated JNks and induced neuronal apoptosis. Deletion of the PSD-95-binding site of GluR6 reduced both JNK activation and neuronal toxicity. Co-expression of dominant negative MLK2, MLK3, or mitogen-activated kinase kinase (MKK) 4 and MKK7 also significantly attenuated JNK activation and neuronal toxicity mediated by GluR6, and co-expression of PSD-95 with a deficient Src homology 3 domain also inhibited GluR6-induced JNK activation and neuronal toxicity. Our results suggest that PSD-95 plays a critical role in GluR6-mediated JNK activation and excitotoxicity by anchoring MLK to the receptor complex.

CT Medical Descriptors:

*signal transduction

cell lineage

enzyme activation

cytotoxicity

protein binding

nerve cell necrosis

apoptosis

Src homology domain

nonhuman

rat

controlled study

animal cell

article

priority journal

Drug Descriptors:

*kainic acid receptor

*postsynaptic density protein 95

*phosphotransferase

*mixed lineage kinase

stress activated protein kinase

glutamate receptor

unclassified drug

RN (phosphotransferase) 9031-09-8, 9031-44-1; (stress activated protein kinase) 155215-87-5

L52 ANSWER 2 OF 2 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN

AN 2004032719 EMBASE

TI Activated JNK Phosphorylates the C-terminal Domain of MLK2 That is Required for MLK2-induced Apoptosis.

AU Phelan D.R.; Price G.; Liu Y.F.; Dorow D.S.

CS D.S. Dorow, Trescowthick Research Centre, Peter MacCallum Cancer Institute, Locked Bag #1 A'Beckett St., Melbourne, Vic. 8006, Australia.
d.dorow@pmci.unimelb.edu.au

SO Journal of Biological Chemistry, (6 Apr 2001) 276/14 (10801-10810).

Refs: 51

ISSN: 0021-9258 CODEN: JBCHA3

CY United States

DT Journal; Article

FS 029 Clinical Biochemistry

LA English

SL English

AB MAP kinase signaling pathways are important mediators of cellular responses to a wide variety of stimuli. Signals pass along these pathways via kinase cascades in which three protein kinases are sequentially phosphorylated and activated, initiating a range of cellular programs including cellular proliferation, immune and inflammatory responses, and apoptosis. One such cascade involves the mixed lineage kinase, MLK2, signaling through MAP kinase kinase 4 and/or MAP kinase kinase 7 to the SAPK/JNK, resulting in phosphorylation of transcription factors including the oncogene, c-jun. Recently we showed

that MLK2 causes apoptosis in cultured neuronal cells and that this effect is dependent on activation of the JNK pathway (Liu, Y. F., Dorow, D. S., and Marshall, J. (2000) *J. Biol. Chemical* 275, 19035-19040). Furthermore, dominant-negative MLK2 blocked apoptosis induced by polyglutamine-expanded huntingtin protein, the product of the mutant Huntington's disease gene. Here we show that as well as activating the stress-signaling pathway, MLK2 is a target for phosphorylation by activated JNK. Phosphopeptide mapping of MLK2 proteins revealed that activated JNK2 phosphorylates multiple sites mainly within the noncatalytic C-terminal region of MLK2 including the C-terminal 100 amino acid peptide. In addition, MLK2 is phosphorylated in vivo within several of the same C-terminal peptides phosphorylated by JNK2 in vitro, and this phosphorylation is increased by cotransfection of JNK2 and treatment with the JNK activator, anisomycin. Cotransfection of dominant-negative JNK kinase inhibits phosphorylation of kinase-negative MLK2 by anisomycin-activated JNK. Furthermore, we show that the N-terminal region of MLK2 is sufficient to activate JNK but that removal of the C-terminal domain abrogates the apoptotic response. Taken together, these data indicate that the apoptotic activity of MLK2 is dependent on the C-terminal domain that is the main target for MLK2 phosphorylation by activated JNK.

CT Medical Descriptors:

- *enzyme phosphorylation
- *apoptosis
- signal transduction
- cell proliferation
- immunity
- inflammation
- nerve cell
- protein phosphorylation
- Huntington chorea
- carboxy terminal sequence
- nonhuman

- controlled study

- animal cell

- article

- priority journal

Drug Descriptors:

- *Janus kinase
- *phosphotransferase
- *mixed lineage kinase 2

- *MLK2 protein

- mitogen activated protein kinase

- mitogen activated protein kinase kinase

- transcription factor

- huntingtin

- Polyglutamine

- phosphopeptide

- amino acid

- anisomycin

- unclassified drug

RN (Janus kinase) 161384-16-3; (phosphotransferase) 9031-09-8, 9031-44-1; (mitogen activated protein kinase) 142243-02-5; (mitogen activated protein kinase kinase) 142805-58-1; (huntingtin) 191683-04-2; (polyglutamine) 26700-71-0, 69864-43-3; (amino acid) 65072-01-7; (anisomycin) 22862-76-6

=> d all 158 tot

L58 ANSWER 1 OF 6 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN

AN 2004176740 EMBASE

TI CEP-1347.

AU Mealy N.E.; Bayes M.

CS N.E. Mealy, Prous Science, P.O. Box 540, 08080 Barcelona, Spain

SO Drugs of the Future, (2004) 29/3 (267).

Refs: 1

ISSN: 0377-8282 CODEN: DRFUD4

CY Spain

DT Journal; (Short Survey)

FS 008 Neurology and Neurosurgery

030 Pharmacology

037 Drug Literature Index

LA English

CT Medical Descriptors:

*Parkinson disease: DT, drug therapy

nerve cell
 cell survival
 enzyme inhibition
 human
 clinical trial
 short survey
 Drug Descriptors:
 *cep 1347: CT, clinical trial
 *cep 1347: DT, drug therapy
 *cep 1347: PD, pharmacology
 mixed lineage kinase: EC, endogenous compound
 phosphotransferase: EC, endogenous compound
 dopamine: EC, endogenous compound
 unclassified drug

RN (cep 1347) 156177-65-0, 170587-65-2; (phosphotransferase) 9031-09-8,
 9031-44-1; (dopamine) 51-61-6, 62-31-7
 CN (1) Cep 1347; (2) Cep 1347; Kt 7515
 CO (1) Lundbeck; (2) Cephalon; Kyowa Hakko Kogyo

L58 ANSWER 2 OF 6 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN

AN 2004059745 EMBASE

TI The safety and tolerability of a mixed lineage kinase inhibitor (CEP-1347) in PD.

AU Schwid S.R.

CS Dr. S.R. Schwid, Department of Neurology, Univ. of Rochester Medical Center, Box 605, 601 Elmwood Ave., Rochester, NY 14642, United States.
steven_schwid@urmc.rochester.edu

SO Neurology, (27 Jan 2004) 62/2 (330-332).

Refs: 8
ISSN: 0028-3878 CODEN: NEURAI

CY United States

DT Journal; Article

FS 008 Neurology and Neurosurgery
037 Drug Literature Index
038 Adverse Reactions Titles

LA English

SL English

AB CEP-1347 is an inhibitor of members of the mixed lineage kinase family, key signals triggering apoptotic neuronal death. The authors performed a randomized, blinded, placebo-controlled study assessing the safety, tolerability, pharmacokinetics, and acute symptomatic effects of CEP-1347 in 30 patients with Parkinson's disease (PD). In this short-term study, CEP-1347 was safe and well tolerated. It had no acute effect on parkinsonian symptoms or levodopa pharmacokinetics, making it well suited for larger and longer studies of its potential to modify the course of PD.

CT Medical Descriptors:

*Parkinson disease: DT, drug therapy
drug safety
drug tolerability

apoptosis

nerve cell necrosis

signal transduction

parkinsonism

diarrhea: SI, side effect

headache: SI, side effect

nausea: SI, side effect

vomiting: SI, side effect

human

clinical article

clinical trial

randomized controlled trial

double blind procedure

multicenter study

controlled study

aged

adult

article

priority journal

Drug Descriptors:

*cep 1347: AE, adverse drug reaction

*cep 1347: CT, clinical trial

*cep 1347: DO, drug dose

*cep 1347: DT, drug therapy

*cep 1347: PK, pharmacokinetics

*cep 1347: PD, pharmacology
 *cep 1347: PO, oral drug administration
 placebo
 levodopa: DT, drug therapy
 RN (cep 1347) 156177-65-0, 170587-65-2; (levodopa) 59-92-7
 CN Cep 1347

L58 ANSWER 3 OF 6 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
 on STN
 AN 2004053404 EMBASE
 TI Improvement of embryonic dopaminergic neurone survival in culture and after grafting into the striatum of hemiparkinsonian rats by CEP-1347.
 AU Boll J.B.; Geist M.A.; Kaminski Schierle G.S.; Petersen K.; Leist M.; Vaudano E.
 CS J.B. Boll, H. Lundbeck A/S, Dept. of Molecular Disease Biology, Ottiliavej 9, 2500 Valby, Denmark. jbbo@lundbeck.com
 SO Journal of Neurochemistry, (2004) 88/3 (698-707).
 Refs: 49
 ISSN: 0022-3042 CODEN: JONRA
 CY United Kingdom
 DT Journal; Article
 FS 008 Neurology and Neurosurgery
 037 Drug Literature Index
 LA English
 SL English
 AB Transplantation of embryonic nigral tissue ameliorates functional deficiencies in Parkinson's disease (PD). A main constraint of neural grafting is the poor survival of dopaminergic neurones grafted into patients. Studies in rats indicated that many grafted neurones die by apoptosis. CEP-1347 is a mixed-lineage-kinase (MLK) inhibitor with neuroprotective action in several in vitro and in vivo models of neuronal apoptosis. We studied the effect of CEP-1347 on the survival of embryonic rat dopaminergic neurones in culture, and after transplantation in hemiparkinsonian rats. CEP-1347 and the alternative MLK inhibitor CEP-11004 significantly increased the survival of dopaminergic neurones in primary cultures from rat ventral mesencephalon and in Mn (2+)-exposed PC12 cells, a surrogate model of dopaminergic lethal stress. Moreover, combined treatment of the grafting cell suspension and the host animal with CEP-1347 significantly improved the long-term survival of rat dopaminergic neurones transplanted into the striatum of hemiparkinsonian rats. Also, the protective effect of CEP-1347 resulted in an increase in total graft size and in enhanced fibre outgrowth. Thus, treatment with CEP-1347 improved dopaminergic cell survival under severe stress and might be useful to improve the positive outcome of transplantation therapy in PD and reduce the amount of human tissue required.

CT Medical Descriptors:
 *dopamine release
 *nerve cell
 *cell survival
 *corpus striatum
 *parkinsonism
 embryo cell
 tissue transplantation
 substantia nigra
 nerve graft
 dopaminergic nerve cell
 statistical significance
 mesencephalon
 stress
 cell suspension
 survival time
 disease severity
 outcomes research
 tissue specificity
 nonhuman
 rat
 animal experiment
 animal model
 controlled study
 animal cell
 article
 priority journal
 Drug Descriptors:
 *enzyme inhibitor: DV, drug development
 *enzyme inhibitor: PD, pharmacology

*mixed lineage kinase inhibitor: DV, drug development
 *mixed lineage kinase inhibitor: PD, pharmacology
 *cep 1347: DV, drug development
 *cep 1347: PD, pharmacology
 neuroprotective agent: DV, drug development
 neuroprotective agent: PD, pharmacology
 stress activated protein kinase inhibitor: PD, pharmacology
 anthra[1,9 cd]pyrazol 6(2h) one: PD, pharmacology
 cep 11004: PD, pharmacology
 unclassified drug
 RN (cep 1347) 156177-65-0, 170587-65-2; (anthra[1,9 cd]pyrazol 6(2h) one)
 129-56-6
 CN (1) Cep 1347; (2) Cep 11004; (3) Sp 600125
 CO (2) Cephalon (United States); (3) Calbiochem (Denmark)

L58 ANSWER 4 OF 6 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
 on STN

AN 2004030867 EMBASE
 TI CEP11004, a novel inhibitor of the mixed lineage kinases, suppresses apoptotic death in dopamine neurons of the substantia nigra induced by 6-hydroxydopamine.
 AU Ganguly A.; Oo T.F.; Rzhetskaya M.; Pratt R.; Yarygina O.; Momoi T.; Kholodilov N.; Burke R.E.
 CS R.E. Burke, Department of Neurology, Black Building, Columbia University, 650 West 168th Street, New York, NY 10032, United States.
 rb43@columbia.edu
 SO Journal of Neurochemistry, (2004) 88/2 (469-480).
 Refs: 54
 ISSN: 0022-3042 CODEN: JONRA
 CY United Kingdom
 DT Journal; Article
 FS 005 General Pathology and Pathological Anatomy
 008 Neurology and Neurosurgery
 030 Pharmacology
 037 Drug Literature Index
 LA English
 SL English
 AB There is much evidence that the kinase cascade which leads to the phosphorylation of c-jun plays an important signaling role in the mediation of programmed cell death. We have previously shown that c-jun is phosphorylated in a model of induced apoptotic death in dopamine neurons of the substantia nigra in vivo. To determine the generality and functional significance of this response, we have examined c-jun phosphorylation and the effect on cell death of a novel mixed lineage kinase inhibitor, CEP11004, in the 6-hydroxydopamine model of induced apoptotic death in dopamine neurons. We found that expression of total c-jun and Ser73-phosphorylated c-jun is increased in this model and both colocalize with apoptotic morphology. CEP11004 suppresses apoptotic death to levels of 44 and 58% of control values at doses of 1.0 and 3.0 mg/kg, respectively. It also suppresses, to approximately equal levels, the number of profiles positive for the activated form of capase 9. CEP11004 markedly suppresses striatal dopaminergic fiber loss in these models, to only 22% of control levels. We conclude that c-jun phosphorylation is a general feature of apoptosis in living dopamine neurons and that the mixed lineage kinases play a functional role as up-stream mediators of cell death in these neurons.
 CT Medical Descriptors:
 *apoptosis
 *dopaminergic nerve cell
 *substantia nigra
 signal transduction
 enzyme phosphorylation
 protein expression
 protein localization
 cell structure
 dose response
 enzyme activation
 Parkinson disease
 immunohistochemistry
 Northern blotting
 sequence homology
 nonhuman
 rat
 animal model
 controlled study

animal tissue
 article
 nucleotide sequence
 priority journal
 Drug Descriptors:
 *cep 11004: DO, drug dose
 *cep 11004: PD, pharmacology
 *cep 11004: SC, subcutaneous drug administration
 *enzyme inhibitor: DO, drug dose
 *enzyme inhibitor: PD, pharmacology
 *enzyme inhibitor: SC, subcutaneous drug administration
 *oxidopamine
 stress activated protein kinase
 caspase 9
 unclassified drug
 RN (oxidopamine) 1199-18-4, 28094-15-7, 636-00-0; (stress activated protein kinase) 155215-87-5; (caspase 9) 180189-96-2
 GEN GENBANK AY240864 referred number; GENBANK AY240865 referred number;
 GENBANK AY240866 referred number; GENBANK AY240867 referred number;
 GENBANK AY240868 referred number
 LS8 ANSWER 5 OF 6 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
 on STN
 AN 2002211955 EMBASE
 TI Mixed Lineage Kinase family, potential
 targets for preventing neurodegeneration.
 AU Maroney A.C.; Saporito M.S.; Hudkins R.L.
 CS A.C. Maroney, Cephalon Inc., 145 Brandywine Pkwy., West Chester, PA 19380,
 United States. AMARONEY@CEPHALON.COM
 SO Current Medicinal Chemistry - Central Nervous System Agents, (2002) 2/2
 (143-155).
 Refs: 95
 ISSN: 1568-0150 CODEN: CMCCCO
 CY Netherlands
 DT Journal; Article
 FS 008 Neurology and Neurosurgery
 029 Clinical Biochemistry
 030 Pharmacology
 037 Drug Literature Index
 LA English
 SL English
 AB The c-Jun amino terminal kinase (JNK) cascade leading to c-Jun phosphorylation has been implicated in the neuronal cellular response to a variety of external stimuli including free radical oxidative stress, trophic withdrawal, amyloid toxicity and activation by death domain receptor ligands. Although the exact causes of neuronal loss in neurodegenerative diseases remain unknown, it has been hypothesized that response to these environmental stresses may be contributing factors. Agents which block the JNK signaling cascade have been proposed as a therapeutic approach for preventing neuronal cell death observed in a variety of neurodegenerative diseases including Parkinson's, Huntington's, and Alzheimer's disease. The JNKs are regulated through a sequential signaling cascade by a series of upstream kinases including the mixed lineage kinases (MLKs). Herein, we review the MLK family as a therapeutic target and provide evidence with CEP-1347, the most advanced MLK inhibitor currently in clinical trials for Parkinson's disease, that intervention at the MLK point in the JNK cascade may reduce the susceptibility of neurons to degenerate.
 CT Medical Descriptors:
 *Parkinson disease: DT, drug therapy
 *Parkinson disease: ET, etiology
 *Parkinson disease: PC, prevention
 neurologic disease: DT, drug therapy
 neurologic disease: ET, etiology
 neurologic disease: PC, prevention
 degenerative disease: DT, drug therapy
 degenerative disease: ET, etiology
 degenerative disease: PC, prevention
 microtubule assembly
 enzyme activity
 enzyme phosphorylation
 gene overexpression
 apoptosis
 nerve cell necrosis
 chemical structure

enzyme inhibition
dopaminergic system
dimerization
structure activity relation
human
nonhuman
clinical trial
animal model
controlled study
animal cell
article

Drug Descriptors:

*stress activated protein kinase
*stress activated protein kinase inhibitor: CT, clinical trial
*stress activated protein kinase inhibitor: AD, drug administration
*stress activated protein kinase inhibitor: AN, drug analysis
*stress activated protein kinase inhibitor: DV, drug development
*stress activated protein kinase inhibitor: DO, drug dose
*stress activated protein kinase inhibitor: DT, drug therapy
*stress activated protein kinase inhibitor: PD, pharmacology
*stress activated protein kinase inhibitor: SC, subcutaneous drug administration
*mixed lineage kinase inhibitor: CT, clinical trial
*mixed lineage kinase inhibitor: AD, drug administration
*mixed lineage kinase inhibitor: AN, drug analysis
*mixed lineage kinase inhibitor: DV, drug development
*mixed lineage kinase inhibitor: DO, drug dose
*mixed lineage kinase inhibitor: DT, drug therapy
*mixed lineage kinase inhibitor: PD, pharmacology
*mixed lineage kinase inhibitor: SC, subcutaneous drug administration
*cep 1347: CT, clinical trial
*cep 1347: AD, drug administration
*cep 1347: AN, drug analysis
*cep 1347: DV, drug development
*cep 1347: DO, drug dose
*cep 1347: DT, drug therapy
*cep 1347: PD, pharmacology
*cep 1347: SC, subcutaneous drug administration
*k 252a: AN, drug analysis
*k 252a: DV, drug development
*k 252a: PD, pharmacology
*antiparkinson agent: CT, clinical trial
*antiparkinson agent: AD, drug administration
*antiparkinson agent: AN, drug analysis
*antiparkinson agent: DV, drug development
*antiparkinson agent: DO, drug dose
*antiparkinson agent: DT, drug therapy
*antiparkinson agent: PD, pharmacology
*antiparkinson agent: SC, subcutaneous drug administration
mitogen activated protein kinase
proline
neurotoxin: TO, drug toxicity
1,2,3,6 tetrahydro 1 methyl 4 phenylpyridine: TO, drug toxicity
unclassified drug

RN (stress activated protein kinase) 155215-87-5; (cep 1347) 156177-65-0,
170587-65-2; (k 252a) 97161-97-2; (mitogen activated protein kinase)
142243-02-5; (proline) 147-85-3, 7005-20-1; (neurotoxin) 39386-17-9;
(1,2,3,6 tetrahydro 1 methyl 4 phenylpyridine) 28289-54-5

CN Cep 1347

L58 ANSWER 6 OF 6 EMBASE COPYRIGHT 2005 ELSEVIER INC. ALL RIGHTS RESERVED.
on STN

AN 97065523 EMBASE

DN 1997065523

TI MEKks, GCKs, MLKs, PAKs, TAKs, and Tpls: Upstream regulators of
the c-Jun amino-terminal kinases?.

AU Fanger G.R.; Gerwins P.; Widmann C.; Jarpe M.B.; Johnson G.L.

CS G.L. Johnson, Division of Basic Sciences, National Jewish Center,
Immunology and Respiratory Medicine, 1400 Jackson Street, Denver, CO
80206, United States. johnsong@njc.org

SO Current Opinion in Genetics and Development, (1997) 7/1 (67-74).

Refs: 58

ISSN: 0959-437X CODEN: COGDET

CY United Kingdom

DT Journal; Article

FS 021 Developmental Biology and Teratology
022 Human Genetics

LA English

SL English

AB Regulation of the mitogen-activated protein kinase (MAPK) family members - which include the extracellular response kinases (ERKs), p38/HOG1, and the c-Jun amino-terminal kinases (JNKs) - plays a central role in mediating the effects of diverse stimuli encompassing cytokines, hormones, growth factors and stresses such as osmotic imbalance, heat shock, inhibition of protein synthesis and irradiation. A rapidly increasing number of kinases that activate the JNK pathways has been described recently, including the MAPK/ERK kinase kinases, p21-activated kinases, germinal center kinase, mixed lineage kinases, tumor progression locus 2, and TGF-.beta.-activated kinase. Thus, regulation of the JNK pathway provides an interesting example of how many different stimuli can converge into regulating pathways critical for the determination of cell fate.

CT Medical Descriptors:

*oncogene c jun
amino terminal sequence
apoptosis

article
cell differentiation
cell growth
developmental genetics

enzyme regulation

gene locus

germinal center

nonhuman

priority journal

tumor growth

Drug Descriptors:

*mitogen activated protein kinase: EC, endogenous compound

*phosphotransferase: EC, endogenous compound

*protein p21: EC, endogenous compound

*transforming growth factor beta: EC, endogenous compound

cytokine: EC, endogenous compound

growth factor: EC, endogenous compound

hormone: EC, endogenous compound

RN (mitogen activated protein kinase) 142243-02-5; (phosphotransferase)
9031-09-8, 9031-44-1; (protein p21) 85306-28-1

=> b home
FILE 'HOME' ENTERED AT 15:04:17 ON 11 JAN 2005

=>