

Capstone Project – IIICardiovascular Risk Prediction

NAVED MANSURI
Data Science Trainee, Almabetter

Point of Discussion

- ☐ Problem statement
- Data summary
- ☐ EDA
- ☐ Feature engineering
- ☐ Machine learning model
 - ☐ Logistics Regression
 - ☐ Random Forest
 - ☐ Support Vector Machine(SVM)
 - ☐ K-Nearest Neighbor(KNN)
 - ☐ XGBoost
- Model comparison
- Conclusion

Problem statement

- ☐ Cardiovascular diseases (CVDs) are the leading cause of death globally.
- ☐ An estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to heart attack and stroke.
- ☐ The dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts.
- ☐ The classification goal is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD). The dataset provides the patients' information. It includes over 3,000 records and 15 attributes. Each attribute is a potential risk factor. There are both demographic, behavioural, and medical risk factors.

Data summary

There are 3000+ rows and 17 columns in the data set and 15 are numeric features and
2 categorical.
TenYearCHD is dependent variable.
Data information
☐ Demographic:
Sex: male or female("M" or "F")
Age: Age of the patients (Continuous - Although the recorded ages have been truncated to whole numbers, the concept of age is continuous)
Education: The level of education of the patient (categorical values - 1,2,3,4)
☐ Behavioural:
is_smoking: whether or not the patient is a current smoker ("YES" or "NO")
Cigs Per Day: the number of cigarettes that the person smoked on average in
one day.(can be considered continuous as one can have any number of
cigarettes, even half a cigarette.)

Data summary

■ Medical(history):

BP Meds: whether or not the patient was on blood pressure medication (Nominal)

Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)

Prevalent Hyp: whether or not the patient was hypertensive (Nominal)

Diabetes: whether or not the patient had diabetes (Nominal) Medical(current)

Tot Chol: total cholesterol level (Continuous)

Sys BP: systolic blood pressure (Continuous)

Dia BP: diastolic blood pressure (Continuous)

BMI: Body Mass Index (Continuous)

Heart Rate: heart rate (Continuous - In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.)

Glucose: glucose level (Continuous) Predict variable (desired target)

10-year risk of coronary heart disease CHD (binary: "1", means "Yes", "0" means "No")

Exploratory Data Analysis

Analyzing Dependent Variable

- ☐ Dependent variable(Ten year CHD) is binary, its only consist two values 0 or 1.
- Ten year CHD is imbalanced with 15% of risk CHD.

Analyzing Independent Variable

- ☐ Female are more compare to male's.
- ☐ Equally number of smackers.
- ☐ Most people are education level 1.

Analyzing Independent Variable

☐ Very less number of people having past blood pressure and hark stoke.

diabetes

Analyzing Independent Variable

- □ 1000+ people having hypertension.
- ☐ A few peoples suffering from diabetes.

Analyzing Relationship Between Dependent And Independent Variables

☐ Ages of 45 and 65 have the highest risk of acquiring heart disease

Analyzing Relationship Between Dependent And Independent Variables

☐ Cardiovascular heart disease affects slightly more men than women.

Analyzing Relationship Between Dependent And Independent Variables

☐ Cardiovascular heart disease affects nearly equal numbers of smokers and non-smokers.

- 0.4

- 0.2

Correlation map

- Highest correlation between systolic BP and diastolic BP.
- Systolic BP and Diastolic BP shows a high correlation with hypertension.
- cigarette smoking and the number of cigarettes smoked per day.
- ☐ Systolic BP and age have a positive correlation.

Heatmap of Attributes Correlation

Feature engineering

There is a high correlation between sysBP (Systolic **BP)** and **diaBP** (**Diastolic BP**), and both of them influence our target variable to a greater extent, so we cannot drop them directly, but rather must find a parameter that can formulate these parameters together in such a way that we can add a single feature without experiencing multicollinearity or **pulse pressure**.

Pulse Pressure = Systolic BP - Diastolic BP

Feature engineering

- ☐ **Feature selection** is the process of reducing the number of input variables when developing a predictive model.
- ☐ It is desirable to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.
- In this model we using **Chi-Square** test for selecting the features that influence the most.

	Independent Feature	Chi_Score
13	pulse_pressure	465.851744
4	cigsPerDay	248.923142
0	age	242.764664
9	totChol	233.874879
7	prevalentHyp	61.108586
8	diabetes	31.173738
12	glucose	28.861376
5	BPMeds	25.821088
2	sex	14.179124
6	prevalentStroke	9.932176
10	ВМІ	8.012142
1	education	4.061418
11	heartRate	2.653191
3	is_smoking	2.025276

Feature engineering

we observe **BMI**, **education**, **heartrate**, **sex** and **is smoking** very less chi2 score. hence remove those columns.

Handling Imbalanced Data

- ☐ Since our dataset is imbalanced, with more negative cases than positive cases, we may end up with a classifier that is biased towards the negative cases. The classifier may have high accuracy, but poor precision and recall.
- ☐ We have successfully oversampled the minority class using SMOTE. Now, the model we build will be able to learn from both classes without any bias.

Machine learning model

Logistics Regression

Performance of Logistics regressions

Accuracy: 0.67 Precision: 0.6694 Recall: 0.6702 F1 Score: 0.6698

Random Forest

 $\label{performance} \mbox{ Performance of Random forest classifiers }$

Accuracy: 0.6961 Precision: 0.7042 Recall: 0.6929 F1 Score: 0.6985

Support Vector Machine(SVM)

Performance of Support Vector Machine Classifier

Accuracy: 0.6833
Precision: 0.6972
Recall: 0.6783
F1 Score: 0.6876

KNN

Performance of KNN Classifier

Accuracy: 0.8063 Precision: 0.891 Recall: 0.7619 F1 Score: 0.8214

XGBoost

Performance of XGBoost Classifier

Accuracy: 0.6885
Precision: 0.7042
Recall: 0.6828
F1 Score: 0.6933

Model comparison

Model	Accuracy	Precision	Recall	F1 Score
K Nearest Neighbour	0.806265	0.890951	0.761905	0.821390
Random Forest	0.696636	0.722738	0.686880	0.704353
XGBoost	0.688515	0.704176	0.682790	0.693318
Support Vector Machines	0.683295	0.697216	0.678330	0.687643
Logistic Regression	0.669954	0.669374	0.670151	0.669762

[☐] The K Nearest Neighbour is proved to be best accuracy (80%), it can be used for risk prediction of Cardiovascular heart disease.

Conclusion

- we trained 5 Machine Learning models, and hyperparameter adjustment was utilised models to increase model performance.
- ☐ The training dataset was oversampled using SMOTE to reduce bias on one outcome, missing values were handled, feature engineering, and feature selection were performed.
- ☐ Cardiovascular heart disease affects a similar number of smokers and non-smokers.
- □ Age, total cholesterol, systolic blood and diastolic blood pressure, BMI, heart rate, and glucose are the main factors in determining a person's 10-year chance of having cardiovascular heart disease.
- ☐ The K Nearest Neighbour is proved to be best algorithms can be used for the risk prediction of Cardiovascular heart disease.
- We chose the oversampling technique because the data provided to us had fewer records. But since there will be a lot of unbalanced and large amounts of health data, we can try to work on cost-sensitive learning, which, rather than changing the data records, only gives more weight to the minority and focuses on the individuals at high risk for heart disease.

QnA

Thank you