Mapping Mixtures of Genotype-by-Weather Interactions in Switchgrass (Panicum virgatum)

Alice H. MacQueen a,1,2 , Li Zhang a,1 , Samuel A. Smith a,1 , Jason Bonnette a , Arvid R. Boe b , Phillip A. Fay c , Felix B. Fritschi d , David B. Lowry e , Robert B. Mitchell f , Francis M. Rouquette Jr g , Yanqi Wu h , Arbel Harpak a , and Thomas E. Juenger a,2

The timing of vegetative and reproductive growth in plants ("phenological timings") depends on both genetic variation and environmental cues; thus, phenological traits can have important genotype-by-environment (GxE) interactions. Identifying the mixture and prevalence of GxE primed by weather prior to the phenological event (GxWeather) should aid prediction and manipulation of phenological timings. Here, we map GxWeather effects on phenological timings in two highly divergent switchgrass (Panicum virgatum) populations using repeated plantings of cloned individuals from these populations at eight sites spanning the central United States. We distinguish GxWeather patterns covarying with interpretable weather-based cues from agnostic, site-based patterns. Most GxWeather effects belong to the latter category and do not covary with weather-based cues. However, 65% of effects on the timing of vegetative growth in the Gulf population covary with daylength 14 days prior to green-up date. 33% of effects on the timing of flowering in the Gulf population covary with cumulative rainfall in the seven days prior to flowering, while 22% of effects on flowering timing in the Midwest population covary with day length change two days prior to flowering. An independent pseudo-F2 cross of Gulf and Midwest individuals at the same sites mapped 10 additive QTLs for flowering and three for vegetative growth timing, all with significant associations and three with enrichment of highly significant associations in our model of GxWeather effects. We demonstrate that we can identify genetic variation with GxWeather and assign these loci to specific weather-based cues or other patterns. Breeding for particular alleles at these loci could change flowering responsiveness to photoperiod and rainfall cues in switchgrass. More broadly, this approach could be used to identify genetic marker-environment interactions in any species with related populations phenotyped in multiple environments.

allele-by-environment effect variation | antagonistic pleiotropy | photoperiod | cumulative rainfall | genetic variation

Plant phenological timings are major components of plant fitness affected by multiple external environmental cues (e.g. degree of winter chilling, day length, temperature, and water availability) that signal existing or upcoming growing conditions (1-3). Genetic responses to environmental cues determine the speed, timing, and energy apportioned to vegetative and reproductive growth and shape both the individual's lifespan and its lifetime production of viable seed. Day length (or photoperiod) is one of the most predictable environmental cues, and genetic sensitivity to photoperiod protects plants from potentially fatal consequences of phenological responses to temperature cues at the "wrong" time of year. However, the usefulness of specific environmental cues depends on both features of the environment, such as cue predictability and relevance, and the species' adaptive strategies (4). Species with wide natural distributions can have multiple distinct environmentally cued phenological responses: for example, populations of sunflower (Helianthus annus) exhibit day-neutral, facultative short day, and facultative long-day flowering responses, which vary with their environments (5, 6). Distinct genetic responses in different environments are known as genotype by environment interactions, or GxE.

Flowering time, or the transition from vegetative to reproductive growth, is a common subject of GxE research (5–11), a key output of selection driving adaptation to local environments (2, 12, 13), and a selection target for crop improvement to adapt crops to local or future environments (14). Changing flowering responsiveness to photoperiod cues has allowed geographic range expansion and increased yields in several cereal species (15–19) and other crops (20, 21). Recent statistical advances in studying phenological GxE have involved determining

Significance Statement

The timing of plant seasonal development (phenology) has maior impacts on fitness because of the steep fitness cost of plantenvironment mismatches. We infer the mixture of ways that genetic effects on phenological traits depend on plant environment, focusing on how effects covary with weather prior to the phenological event (GxWeather). Most effects do not have GxWeather, but a minority do. GxWeather is population-specific. The majority of effects on the timing of vegetative growth in the Gulf population have GxWeather: these effects differ in sign across environments and covary with a photoperiod cue two weeks prior. A minority of effects on flowering date in the Gulf and Midwest populations had GxWeather, covarying with a cumulative rainfall and a photoperiod cue, respectively.

Author affiliations: ^aUniversity of Texas at Austin, Department of Integrative Biology, Austin, 78712; ^bSouth Dakota State University, Department of Agronomy, Brookings, 57006; ^cUSDA-ARS, Grassland, Soil and Water Research Laboratory, Temple, 76502; ^dUniversity of Missouri, Division of Plant Sciences, Columbia, 65211; ^eMichigan State University, Department of Plant Biology, East Lansing, 48824; ^fUSDA-ARS, Wheat, Sorghum, and Forage Research Unit, Lincoln, 68583; ^eTexas A&M University, Texas A&M AgriLife Research and Extension Center, Overton, 75684; ^hOklahoma State University, Department of Plant and Soil Sciences, Stillwater, 74078

T.E.J. designed research. D.B.L. contributed plant material and resources. J.B., D.B.L., and T.E.J. designed and executed field experiments. A.R.B., P.A.F., F.B.F., D.B.L., R.B.M., F.M.R., Y.W., and T.E.J. hosted field experiments. A.H.M., L.Z., and S.A.S. conducted statistical and computational analyses. The manuscript was written by A.H.M. with contributions from all authors.

The authors declare no conflicts of interest.

¹ A.H.M. contributed equally to this work with L.Z. and S.A.S.

 ^2To whom correspondence should be addressed. Email: tjuenger@utexas.edu

critical environmental indices before the phenological event occurs, such as photothermal time within a critical growth window (10). However, most studies of flowering GxE focus on finding a single, best fitting form of genotype-environment covariance, despite the key expectation that different genetic subpopulations, and even different genomic regions, have likely evolved distinct patterns of GxE. Additionally, despite theoretical predictions that local adaptation should involve antagonistic pleiotropy, or sign-changing GxE, at the level of individual loci (22-25), previous work has found limited evidence of antagonistic pleiotropy (12, 26). However, this work has been limited by a known statistical bias that reduced detection of genetic effects that differ in sign (26-28). Thus, despite substantial interest in the frequencies of various forms of GxE, the prevalence of antagonistic pleiotropy relative to other forms of GxE remains unknown. Previous research suggests that switchgrass phenological timings should have GxWeather and that these timings could differ by genetic subpopulation. Switchgrass is considered a short-day plant with reproductive development strongly linked to day of the year (29). However, as part of its wide environmental adaptation across the eastern half of North America, its photoperiodicity has been predicted to differ by plant latitude of origin (30, 31). We previously found divergent Midwest and Gulf genetic subpopulations of switchgrass with distinct sets of environmental adaptations, in that both populations had distinct genetic variation associated with each of two fitness proxies, biomass and survival (32). The Midwest genetic subpopulation is primarily composed of individuals from the well-studied upland switchgrass ecotype (33, 34), while the Gulf subpopulation has individuals from the well-studied lowland ecotype and the phenotypically intermediate coastal ecotype (32).

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Here, we estimate GxWeather for two phenological timings in switchgrass by assigning patterns of genetic effects on phenology across gardens to many patterns of weather covariance at these gardens. To do this, we phenotype a diversity panel of hundreds of switchgrass genotypes from the Midwest and Gulf subpopulations for the timing of vegetative and reproductive development at eight common garden locations spanning 17 degrees of latitude. These gardens cover the majority of the latitudinal and climatic range of switchgrass and capture the most comprehensive picture to date of the environmental variation this species encounters. We define multiple ways phenological timings might covary with weather (@tbl-covar) and additional ways phenological timings might vary by site (@SI-info), then jointly re-estimate genetic effects on these timings at all eight sites using the set of these covariance matrices that significantly improved the modeled log-likelihood when included (@SI-info) (35). We use the Bayesian framework mash (multivariate adaptive shrinkage), developed by (35), to refine effect size estimates from genome-wide association (GWAS) conducted on individuals at each of the eight sites. mash allows us to identify and specify multiple covariance structures among genetic effect estimates across sites, including structures that represent covariance in weather variables of interest. Importantly, mash does not have a statistical bias in detecting genetic effects with the same or opposite signs (36). To confirm our genetic mapping of GxWeather, we compare our posterior genetic effect estimates from mash to mapping results from an outbred pseudo-F2 cross grown at the same sites. Our analyses allow us to describe the weather cues and genetic variation affecting phenology in two divergent natural populations of switchgrass. 311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

Results

Genotypes from the Gulf and Midwest subpopulations had distinct phenological timings and distinct patterns of phenological correlations across our eight common garden sites (Figure 1). At the three Texas common gardens (hereafter 'Texas' gardens), located within the natural range of the Gulf subpopulation, Gulf vegetative growth occurred before Midwestern vegetative growth, and Gulf flowering occurred after Midwestern flowering (Figure 1 A). At the four northernmost common gardens (hereafter 'North' gardens), located within the natural range of the Midwest subpopulation, both Gulf vegetative growth and flowering occurred after Midwest vegetative growth and flowering. At the Oklahoma common garden, located near the natural range limits of both the Gulf and the Midwest subpopulations, Gulf and Midwest vegetative growth occurred over the same period, and Gulf flowering occurred after Midwestern flowering (Figure 1 A). These patterns led to strong negative phenotypic correlations for the timing of vegetative growth between the North and Texas gardens, particularly in the Gulf and across all individuals (hereafter, 'Both' subpopulations), and contributed to positive phenotypic correlations for the timing of flowering that had larger magnitudes at more northern gardens (Figure 1 B).

Narrow-sense heritabilities (h^2) indicated that rank-changing GxE for these phenotypes was present across the common gardens (Figure 1 C). h^2 were typically high at individual gardens: 59% on average for green-up date, and 87% for flowering date. However, h^2 were variable across gardens, and green-up dates were uncorrelated $(r^2 < 0.2)$ or negatively correlated between pairs of gardens (Figure 1 B). These negative and small correlations undoubtedly contributed to the low h^2 values for green-up and flowering date when estimated jointly at all eight gardens: h^2 was 0.8% for green-up and 23.2% for flowering date.

Inference of GxWeather effects for vegetative and reproductive timing using mash. We next looked for evidence of GxWeather by jointly re-estimating genetic effects across all eight common gardens using the mash model, which allows effects to covary between gardens in many ways (Figure 1 D, SI Appendix, Datasets 1-6). To do this, we used GWAS on site-specific BLUPs for the timing of vegetative growth and flowering to determine preliminary single nucleotide polymorphism (SNP) effect estimates for both traits at each garden. We then jointly modeled genetic effect estimates, and the mixture of ways these effects might covary, across all eight common gardens, using a two-part procedure. We first modeled genetic effects with different combinations of covariance structures, using a subset of randomly selected SNPs used in the GWAS and their corresponding effect size estimates. In these models (hereafter referred to as "random"), we then specified a variety of potential covariance structures among genetic effect size estimates from each garden (as expanded on below) and used a greedy algorithm to iteratively select and add covariance structures that signif-

icantly improved the log likelihood of the mash model. Given the high correlation between some of the covariance patterns we tested, this approach allowed us to select only the subset of patterns of covariance that significantly improved the fit of the jointly inferred structure of genetic effect estimates present in the data. We then selected the set of SNPs and corresponding effect size estimates that had the largest effect estimates in univariate GWAS (hereafter "strong" effects) and jointly re-estimated these effect size estimates at all eight sites using the set of significant covariance matrices that most improved the model fit on the random effects. We specified three categories of covariance structures across

373

374

375

376

377

378

379

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

"canonical" covariance, with simple patterns gardens: of effect size covariance introduced in the initial mash manuscript; "data-driven" covariances derived from common patterns of SNP effects observed in the data, and "GxWeather" covariance, estimated from the covariance of empirical weather patterns at each garden at specific times before the phenological event (Table 1, SI Appendix, Section S2). For example, GxWeather covariance between gardens in MI and MO, for rainfall in the seven days prior to flowering, captures the covariance in the amount of rainfall genotypes A, B, and C receive in the seven days prior to their three flowering dates in MI and their three flowering dates in MO. If these six rainfall values are similar, covariance will be near one; if they are uncorrelated, covariance will be near zero; if there is sufficient rank changing in rainfall amounts between gardens for these genotypes, this covariance will be near negative one. We specified multiple covariance structures for the canonical, data-driven, and GxWeather categories, each of which represented a specific pattern of covariance in genetic effect size estimates that could be included in the model.

The GxWeather covariance structures allow hypothesis testing of specific weather variables as cues for the start of vegetative and reproductive growth. Say that a SNP in FLC controls flowering in a photoperiod-dependent manner. In that case, the joint estimate of effects for that SNP could have a high mixture proportion, or mass, on a covariance matrix created using a photoperiod-based environmental cue, such as day length two days prior to flowering. In our data, we would infer that the effect of that SNP on flowering was caused by a response to the environmental cue used to construct the GxWeather covariance structure with the largest mass. Overall, loadings of genetic effects on these GxWeather matrices in the model, along with the posterior effect size estimates provide information on genome-wide patterns of SNP-environment interaction.

The phenotypic correlations for the timing of vegetative growth had moderate negative correlations between the Texas and North gardens, particularly in the Gulf subpopulation and Both subpopulations (Figure 1 B). If these phenotypic correlations have a genetic component, then they may be controlled by SNP effects that differed in sign across these regions (effects with antagonistic pleiotropy), SNP effects that are large in one garden or region and non-significant in others (effects with amplification), or a combination of these patterns. Five GxWeather covariance structures were selected by the greedy algorithm, one to two per subpopulation. Of these five, three had mass on them in mash models of the strong effects (Figure 2 A-B). Two of

these three matrices had negative covariances between sites between Texas and North gardens (Figure 2 A), while one had all positive or near-zero covariances. SNP-associated phenotypic effects covaried with different weather-based cues in the Gulf & in Both subpopulations (Figure 2 B). In total, 65% of the posterior weight of strong SNP effects in the mash model of Gulf vegetative growth fell on a covariance matrix constructed using the covariance of daylength 14 days prior to the date of vegetative growth. The covariance matrix for this weather cue was very similar to the pattern of phenotypic correlation for the timing of vegetative growth in the Gulf subpopulation (Figure 1 B; Figure 2 A). Mash models of the timing of vegetative growth in the Midwest subpopulation and Both subpopulations did not include this GxWeather covariance; the Midwest had no weight on any GxWeather covariance, while Both subpopulations had nonzero weights on two additional GxWeather covariance types, average temperature one day prior to green-up, and the day length change in seconds in the day prior to green-up (Figure 2 B). The average temperature covariance matrix had negative covariances between Texas and North gardens, though not as strong as the negative phenotypic correlations seen in Both subpopulations (Figure 1 B; Figure 2 A). Only the Gulf subpopulation and Both subpopulations had mass on any GxWeather covariance matrices (Figure 2 C).

435

436

437

438

439

440

441

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

For flowering date, distinct GxWeather covariance structures captured covariance in effect sizes for SNPs in the Gulf and Midwest subpopulations. 33% of SNP effects on flowering in the Gulf subpopulation covaried with cumulative rainfall in the seven days prior to flowering (Figure 2 D). 22.6% of SNP effects on flowering in the Midwest subpopulation covaried with day length change in the two days prior to flowering (Figure 2 D), which had negative covariances between Texas and North gardens. Neither covariance matrix was selected as significantly improving the log-likelihood of the mash model of Both subpopulations, and no GxWeather covariance matrices had a non-zero mass in models of Both subpopulations (Figure 2 E). In five of the six mash models of strong effects, the GxWeather covariance matrices captured a minority of the posterior weights of the strong effects (Figure 2 C,E); the majority of this mass was on various canonical covariance matrices. These matrices included simple heterozygosity, with intermediate, positive covariances between all gardens, and garden-specific effects present only

We next characterized the pairwise patterns of effects where we were confident in the sign of the effect at both gardens. We used the local false sign rate (lfsr), an analogue of the lfdr that establishes confidence in the effect sign, not the effect's difference from zero, to determine significance. We required lfsr significance (p < 0.05) in both gardens to include effects. This means that our tests for antagonistic pleiotropy, or a sign change between conditions, carry an equal statistical burden to those for effects with the same sign. We also summarized the pairwise patterns of effect sign and magnitude within and between the Texas and North regions, within the natural ranges of the Gulf and Midwest subpopulations (@fig-effects).

For greenup date for the Gulf subpopulation, hundreds to thousands of pairwise effects exhibited antagonistic pleiotropy, or a difference in effect sign, between pairs of Texas and North gardens (@fig-effects A). 78.7% of pairwise comparisons between North and Texas gardens had a difference in sign, while only 28.6% and 0.2% of North-North or Texas-Texas comparisons had a difference in sign, respectively (@fig-effects). The majority of pairwise effects for greenup for the Midwest (>55%) and Both (>85%) subpopulations were the same sign, and effects frequently differed in magnitude between the MO and OK garden and other gardens (@fig-effects X).

497

498

499

500

501

502

503

504

505

506

507

508

500

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

551

552

553

554

555

556

557

558

For flowering date for the Gulf subpopulation, less than 2% of pairwise effects exhibited antagonistic pleiotropy, or a difference in effect sign, within or between regions (@figeffects). More effects differed in magnitude between the Texas and North regions than within these regions (42.7%)vs <20%; @fig-effects X). The Midwest population had relatively few significant effects for flowering, but a large proportion of these differed in sign between Texas and North regions (42.7%) or within the North region (65.4%). Finally, in Both subpopulations, less than 20% of pairwise effects differed in sign (@fig-effects). Most differences in sign were between TX1, the southernmost garden, and all other gardens (@fig-effects B). Similarly, more effects that differed in magnitude included gardens in the Texas region (52.3-55.9%), and most effect pairs in the North region were not distinguishable (91.5%).

Confirmation of effects on phenology using an independent mapping population. We sought additional experimental support for our joint re-estimates of SNP effects using an independent pseudo-F2 mapping population created from Gulf & Midwest individuals and grown at the same sites (@fig-qtl A,B). We conducted quantitative trait loci (QTL) mapping of flowering as functions of four environmental cues that we also used as covariance matrices in mash, and identified eight QTL for flowering date, six QTL for flowering GDD, ten QTL for flowering day length, and eight QTL flowering day length change, all of which showed QTL by environment interactions (SI Appendix, Fig. S3). All QTL for flowering overlapped one or more homologs from rice or A. thaliana with functionally validated roles in flowering (SI Appendix, Dataset 7). All flowering QTL intervals contained at least one SNP significant in at least one mash run at a log10-transformed Bayes Factor > 2, or in the 1% tail of significance, whichever was stricter (SI Appendix, Dataset 8). We also looked for enrichments of mash SNPs in the 1% tail of significance (the 'mash 1% tail') within each QTL interval. At the 5% level, five QTL had enrichments of SNPs in the mash 1% tail. Overall, there were eleven significant enrichments (p < 0.05, hypergeometric test) of SNPs in the mash 1% tail in the QTL intervals. Our QTL intervals had more enrichments of SNPs in the mash 1% tail than were found for all but eleven of these sets of random genomic intervals (@fig-qtl C, p = 0.011). Thus, we were able to experimentally support our joint re-estimates of SNP effects with a QTL mapping experiment using a separate mapping population.

Discussion

As the climate and the natural environment change, it is increasingly critical to understand how patterns of geneenvironment and plant-environment interactions will change in response. To do this, we must understand the current patterns of trait covariation across environments, the genetic underpinnings of these patterns, and the cases where this covariation can be altered. Here, we demonstrate that we can associate multiple patterns of GxWeather with specific genomic regions using a switchgrass diversity panel grown at eight common gardens. We can assign genetic effects to both GxWeather patterns with interpretable weather-based cues, and to agnostic, site-based patterns. We use this approach to study GxWeather for the timings of vegetative and reproductive development in the deeply genetically diverged Gulf and Midwest subpopulations of switchgrass.

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Our analysis of the timing of vegetative growth in the Gulf and in Both subpopulations revealed substantial antagonistic pleiotropy in effects between the Texas and North gardens (@fig-effects A). This result supports theoretical models that local adaptation should involve antagonistic pleiotropy at the level of individual loci (22–25), and is the first experimental work using QTL mapping and GWAS across common gardens to find antagonistic pleiotropy to be common in small genomic regions (12, 37, 38).

Our analysis of the timing of flowering showed that the Gulf and Midwest subpopulations have distinct GxWeather: flowering timing in the Midwest subpopulation has photoperiodrelated variation, in that flowering timing covaries with a day length change signal two days before flowering occurs. In contrast, the Gulf subpopulation does not have variation in flowering based on a photoperiod cue. Instead, the Gulf subpopulation has variation in flowering that covaries with the rainfall that occurs in the week prior to flowering. The genomic regions affecting flowering that we re-estimated across all eight sites were also supported by QTL from an independent mapping population at these sites (@fig-qtl C). Identifying the environmental cues that are predictive of, or even correlated with, plant phenotypic responses remains a major challenge to studies interrogating gene action across many natural environments. The GxWeather photoperiod and cumulative rainfall cues we identify here are functions of the genotypes measured and capture only a minority of SNP effects on flowering. We know still less about the overwintering parameters that cause variation in the start of vegetative. Though we could assign SNP effects to a GxWeather covariance structure in the Gulf subpopulation, we could not do this for the Midwest subpopulation. More generally, it is difficult to predict the time scales over which individuals may integrate environmental cues, particularly in perennial species which may integrate these cues over longer time scales. If this integration time itself varies between individuals, we cannot select a covariance structure that reflects this, though these structures would likely be highly correlated with GxWeather structures we did include. Mash offers an opportunity to specify multiple environmental cues and compete them to explain patterns of genetic effects, allowing us to detect how important these cues are genomewide, and how strongly each cue influences each SNP. This is a key development to further improve our understanding of genetic variation in GxE.

Figure 1. Characterization of green-up and flowering dates from the switchgrass diversity panel. (a) Map and trait histograms of green-up and flowering dates across two genetically distinct switchgrass subpopulations and eight common gardens. Purple represents individuals from the Midwest genetic subpopulation, and pink individuals from the Gulf subpopulation. Vertical dashed lines indicate the summer solstice. Common gardens are arranged in latitudinal order. (b) Phenotypic correlations between clonal replicates planted at eight common gardens, within and between two genetic subpopulations. (c) Narrow sense heritability of green-up and flowering within single common gardens (purple) and across all eight common gardens (green), within and between two genetic subpopulations. (d) Flow diagram of the methods applied to the green-up and flowering dates to jointly estimate SNP effects across all sites. Mash was fit to SNP effect data and used to find covariance matrices that improved the mash model likelihood using a large set of randomly selected, relatively unlinked SNP effects; this model was applied to a "strong" set of SNP effects with large effect sizes in the univariate GWAS

Table 1. Weather variables and time frames around the green up and flowering date used to construct the hypothesis-based covariance matrices. The correlations between values of these weather variables for genetically identical plants grown in different gardens were used to fill off-diagonal cells of the covariance Narrow-sense heritabilities for these values at each matrices. garden were used for the diagonal cells.

Weather variable	689
1. cumulative GDD at 12C in the time frame	690
2. cumulative rainfall in the time frame	691
3. day length (hours) on a specific day indicated by the time frame	692
4. day length change (seconds) on a specific day indicated by the time fr	ame
5. average temperature in the time frame	694
	695

(1-7)

Figures and Tables

Materials and Methods

Whenever possible, plant material will be shared upon request. Source data and code to replicate these analyses are available at: https://github.com/Alice-MacQueen/pvdivphenology-gxe.git. SNP data to replicate these analyses are available from the UT dataverse at https://doi.org/link.

Genotype-by-environment effects on green-up and flowering as functions of weather-based cues. In 2019, we scored two phenological events every two days in two mapping populations of switchgrass, a diversity panel and a pseudo-F2 cross, planted at eight common garden locations (32, 34, 37). We scored the start of vegetative growth as the day of the year when 50% of the tiller area of the crown of the plant cut the previous year had green growth. The start of reproductive growth, or flowering date, was the day of the year when 50% of the plant tillers had panicles undergoing anthesis. We scored green-up and flowering as day of the year, then linked these dates to multiple weather-based environmental factors measured daily at each common garden (SI Appendix, Section S1, Table S1).

The formation and resequencing of the diversity panel has been described previously (32). The diversity panel contained 134 sequenced, clonally propagated individuals from the Midwest genetic subpopulation, and 229 from the Gulf genetic subpopulation. To allow for the possibility that different subpopulations had different strengths of connection between our phenotypes and genotypes (38), we conducted three sets of genetic analyses: on Gulf and Midwest genotypes separately, and on both subpopulations together ('Both'). Analyses to determine narrow-sense heritability (h²) for green-up and flowering were done using linear mixed models and followed (32). Details on these models can be found in (SI Appendix, Section S3,S4).

Mapping major patterns of genotype-by-environment effects on green-up and flowering. To evaluate the prevalence and kinds of covariance patterns of SNP effects across our common gardens, we used multivariate adaptive shrinkage (mash) on SNP effect estimates from the diversity panel (35). Mash is a statistical method that allows estimation and comparison of many effects jointly across many different conditions; it improves on previous methods by allowing multiple, arbitrary correlations in effect sizes among conditions (SI Appendix, Section S5). To obtain SNP effect estimates, we

Figure 2. Example hypothesis-driven covariance matrices specified in mash and the posterior weights placed on all covariance matrices. (a) Left column: Five example hypothesized covariance matrices specified for the green-up date or flowering date phenotype; these matrices were created from environmentspecific correlations across eight common gardens, and are described in Table XXX. Common gardens are arranged in latitudinal order within the matrices. Right column: Five example canonical covariance matrices. Canonical matrices (purple) have simple interpretations, such as equal effects across all common gardens, or effects specific to a single common garden. (b,d) Total posterior weight placed on each covariance matrix type specified for (b) green-up date and (d) flowering date mash models, within and between two genetic subpopulations. Hypothesized covariance matrices (green). Covariance matrices included in mash that had zero posterior weight in all three mash runs on the genetic subpopulations, such as the identity matrix, are not shown. (c,e) Total posterior weight placed on covariance matrices that were hypothesized or canonical, for the (c) green-up date phenotype and (e) flowering date phenotype.

first conducted univariate genome-wide association at each common garden for green-up and flowering date. We then analyzed SNP effects for the top 19K relatively unlinked (r² < 0.2) SNPs per condition using mash, as in (32). Details on these models can be found in (SI Appendix, Section S6). We generated hypothesis-based covariance matrices derived from correlations in environmental cues in the green-up or flowering date windows for the three populations (SI Appendix, Table S1, Section S1). These covariance matrices represent correlations between identical genotypes drawn from a specific population at pairs of common gardens; covariances near one mean that the population has a strong, positive linear relationship in individual responses at that pair of gardens, while covariances near zero mean that there is no relationship within the population for individual responses at that pair of gardens. Mash SNP effects will undergo strong shrinkage towards one another in the first case, and little shrinkage in the second case. Mash also generates data-driven covariance matrices corresponding to major patterns of SNP effects present in the data. We generated six data-driven matrices per mash run, five produced by singular value decomposition (SVD) of an overall matrix.

Last, we characterized the overall patterns of antagonistic pleiotropy in the set of SNPs where there was pairwise significance of effects at pairs of gardens. To do this, we used the 'get_GxE' function of the switchgrassGWAS R package. First, this determines the set of SNPs with evidence of significant effects in both conditions for all pairs of conditions using local false sign rates (lfsr) as the significance criteria. Second, to determine antagonistic pleiotropy, this function

Figure 3. Comparisons of pairs of jointly re-estimated effects across eight gardens, for effects with Ifsr <0.05. AHM is considering moving this figure to the supplement and substantially simplifying the figure in the main text, perhaps just showing total effects in Texas, the North, and maybe Oklahoma. Essentially making Table 2 into a new, simplified figure. Effect patterns for restimated SNP effects that are significant at pairs of sites by the local false sign rate test (Ifsr), for (a) greenup date and (b) flowering date, within and between two genetic subpopulations. Common gardens are arranged in latitudinal order along the x- and y-axis. Effects in the first and fourth rows differ in sign at these pairs of gardens (p <0.05, Ifsr). Effects in the second, third, fifth and sixth rows are identical in sign (p <0.05, Ifsr). Effects in the second and fifth rows additionally differ in magnitude by a factor of >0.4, while effects in the effect

PNAS | February 21, 2024 | vol. XXX | no. XX | 7

Figure 4. SNP effects for SNPs within QTL. AHM to re-make this figure now LZ has re-run the QTL analysis, the assmption being the re-analysis will not change the figure or the text much. The bigger question for TEJ and AH is whether we want to keep this analysis in the paper, what does it add?

determines if effects significant in both conditions are of opposite sign.

Using the lfsr rather than the local false discovery rate (lfdr) is a critical change in our ability to detect antagonistic pleiotropy. The lfdr, like other measures of FDR, focuses on if we have enough evidence to reject the null hypothesis that an effect j is 0, or that there is a significant effect. Previous studies of antagonistic pleiotropy (e.g. (37)) have used the lfdr or equivalent statistical tests to detect antagonistic pleiotropy. These tests were conservative, in that they required two non-zero effects of different signs, while tests for differential sensitivity required only one non-zero effect. This previous work recognized that this testing bias could lead to undercounting occurrences of antagonistic pleiotropy (26, 27), and sought to reduce it by permutation (28). However, using the lfsr to test for antagonistic pleiotropy does not undercount occurrences of antagonistic pleiotropy, as this statistic answers a fundamentally different question. For each effect j, the lfsr; is defined as the probability that we make an error in the sign of effect j if we were forced to declare the effect positive or negative (36). Thus, rather than asking "Are these two effects different?" reasonably expect two effects to be, even if this difference cannot be measured - the local false sign rate answers a more

- W. L. Bauerle, et al., Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences 109, 8612–8617 (2012).
- 2. F. Andrés, G. Coupland, The genetic basis of flowering responses to seasonal cues. *Nature Reviews Genetics* **13**, 627–639 (2012).

meaningful question: Can we be confident in the sign of this effect?

In addition, the get_GxE function also sets an arbitrary threshold to count an effect as changing in magnitude between environments, commonly known as differential sensitivity or a change in amplitude of . For differential sensitivity, this function determines if effects significant in both conditions are of the same sign and of a magnitude (not tested for significance) that differs by a factor of 0.4 or more. The remaining effects that are significant in both conditions have the same effect sign and similar effect magnitudes and we denote these effects as having no GxE. The distinction between effects with different magnitudes is arbitrary but useful to fully characterize how effects vary across environments. and our use of the lfsr to determine significance and our specification that SNP effects must be significant in both conditions to be included means that our tests for antagonistic pleiotropy carry an equal statistical burden to those measuring differential sensitivity and effects without GxE.

Confirmation of genotype-by-environment effects using an independent mapping population. To confirm candidate genomic regions and patterns of allelic effects found in the diversity panel, we analyzed flowering in an outbred pseudo-F2 cross between four individuals, two Midwest and two Gulf individuals. The formation of this mapping population has been described previously (34); additional details on QTL mapping can be found in SI Appendix, Section S6. To be directly comparable to the diversity panel data, only 2019 phenology data from the pseudo-F2 cross from the same eight common garden sites were used. To compare our QTL enrichments of significant mash associations to the null expectation, we used permutation to choose 1000 sets of 23 genomic regions of the same size randomly distributed throughout the genome, then calculated enrichments of the mash 1% tail in these random intervals.

References

- C. Körner, D. Basler, Phenology under global warming. Science 327, 1461–1462 (2010).
- 4. C. A. Botero, F. J. Weissing, J. Wright, D. R. Rubenstein, Evolutionary tipping points in the capacity to adapt to environmental change. *Proceedings of the National Academy of Sciences* **112**, 184–189 (2015).
- 5. B. K. Blackman, Interacting duplications, fluctuating selection, and convergence: The complex dynamics of flowering time evolution during sunflower domestication. *Journal of experimental botany* **64**, 421–431 (2013).
- L. P. Henry, R. H. Watson, B. K. Blackman, Transitions in photoperiodic flowering are common and involve few loci in wild sunflowers (helianthus; asteraceae). American Journal of Botany 101, 1748–1758 (2014).

J. Ågren, C. G. Oakley, S. Lundemo, D. W. Schemske,
 Adaptive divergence in flowering time among natural
 populations of arabidopsis thaliana: Estimates of
 selection and QTL mapping. Evolution 71, 550–564
 (2017).

- 8. B. Brachi, et al., Linkage and association mapping of arabidopsis thaliana flowering time in nature. PLoS genetics 6, e1000940 (2010).
- 9. E. L. Dittmar, C. G. Oakley, J. Ågren, D. W. Schemske, Flowering time QTL in natural populations of arabidopsis thaliana and implications for their adaptive value. *Molecular ecology* **23**, 4291–4303 (2014).
- 1009 10. X. Li, T. Guo, Q. Mu, X. Li, J. Yu, Genomic 1010 and environmental determinants and their interplay 1011 underlying phenotypic plasticity. *Proceedings of the* 1012 National Academy of Sciences 115, 6679–6684 (2018).
- 1014 11. J. A. Romero Navarro, et al., A study of allelic di 1015 versity underlying flowering-time adaptation in maize
 1016 landraces. Nature genetics 49, 476–480 (2017).
 - 12. S. M. Wadgymar, et al., Identifying targets and agents of selection: Innovative methods to evaluate the processes that contribute to local adaptation. Methods in Ecology and Evolution 8, 738–749 (2017).
 - 13. M. Blümel, N. Dally, C. Jung, Flowering time regulation in crops—what did we learn from arabidopsis?

 Current opinion in biotechnology 32, 121–129 (2015).
- 1028 14. C. Jung, A. E. Müller, Flowering time control and applications in plant breeding. *Trends in plant science* 1030 14, 563–573 (2009).
 - A. Turner, J. Beales, S. Faure, R. P. Dunford, D. A. Laurie, The pseudo-response regulator ppd-H1 provides adaptation to photoperiod in barley. *Science* 310, 1031–1034 (2005).
 - 16. S. Faure, et al., Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (hordeum vulgare) to short growing seasons. Proceedings of the National Academy of Sciences 109, 8328–8333 (2012).
 - 17. H.-Y. Hung, et al., ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proceedings of the National Academy of Sciences 109, E1913–E1921 (2012).
 - S. Zakhrabekova, et al., Induced mutations in circadian clock regulator mat-a facilitated short-season adaptation and range extension in cultivated barley.
 Proceedings of the National Academy of Sciences 109, 4326–4331 (2012).

19. Y. Yang, Q. Peng, G.-X. Chen, X.-H. Li, C.-Y. Wu, OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. *Molecular Plant* **6**, 202–215 (2013).

- 20. P. Pin, O. Nilsson, The multifaceted roles of FLOW-ERING LOCUS t in plant development. *Plant, cell & environment* **35**, 1742–1755 (2012).
- 21. J. L. Weller, et al., Parallel origins of photoperiod adaptation following dual domestications of common bean. Journal of Experimental Botany 70, 1209–1219 (2019).
- H. Levene, Genetic equilibrium when more than one ecological niche is available. The American Naturalist 87, 331–333 (1953).
- 23. J. Felsenstein, The theoretical population genetics of variable selection and migration. *Annual review of genetics* **10**, 253–280 (1976).
- T. J. Kawecki, D. Ebert, Conceptual issues in local adaptation. *Ecology letters* 7, 1225–1241 (2004).
- P. W. Hedrick, Genetic polymorphism in heterogeneous environments: A decade later. Annual review of ecology and systematics 17, 535–566 (1986).
- 26. D. L. Des Marais, K. M. Hernandez, T. E. Juenger, Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment. *Annual Review of Ecology, Evolution, and Systematics* 44, 5–29 (2013).
- 27. J. T. Anderson, C.-R. Lee, C. A. Rushworth, R. I. Colautti, T. Mitchell-Olds, Genetic trade-offs and conditional neutrality contribute to local adaptation.

 Molecular ecology 22, 699–708 (2013).
- J. T. Anderson, J. H. Willis, T. Mitchell-Olds, Evolutionary genetics of plant adaptation. Trends in Genetics 27, 258–266 (2011).
- R. B. Mitchell, K. J. Moore, L. E. Moser, J. O. Fritz, D. D. Redfearn, Predicting developmental morphology in switchgrass and big bluestem. *Agronomy Journal* 89, 827–832 (1997).
- D. J. Parrish, J. H. Fike, The biology and agronomy of switchgrass for biofuels. BPTS 24, 423–459 (2005).
- 31. M. Casler, K. P. Vogel, C. Taliaferro, R. Wynia, Latitudinal adaptation of switchgrass populations. *Crop Science* 44, 293–303 (2004).
- 32. J. T. Lovell, *et al.*, Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. *Nature* **590**, 438–444 (2021).

PNAS | February 21, 2024 | vol. XXX | no. XX | 9

1117 33. C. L. Porter Jr, An analysis of variation between upland and lowland switchgrass, panicum virgatum l., in central oklahoma. *Ecology* 47, 980–992 (1966).

- 1121 34. E. R. Milano, D. B. Lowry, T. E. Juenger, The genetic basis of upland/lowland ecotype divergence in switchgrass (panicum virgatum). G3: Genes, Genomes, Genetics 6, 3561–3570 (2016).
- 1126 35. S. M. Urbut, G. Wang, P. Carbonetto, M. Stephens, Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nature genetics **51**, 187–195 (2019).
- 1131 36. M. Stephens, False discovery rates: a new deal. *Bio-statistics* **18**, 275–294 (2016).
- 1134 37. O. Savolainen, M. Lascoux, J. Merilä, Ecological genomics of local adaptation. *Nature Reviews Genetics* 14, 807–820 (2013).
- 1138 38. D. B. Lowry, et al., QTL \times environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences 116, 12933–12941 (2019).
 - ACKNOWLEDGMENTS. We thank the Brackenridge Field laboratory, the Ladybird Johnson Wildflower Center, and the Juenger laboratory for support with plant care and propagation. This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494, the US Department of Energy Awards DESC0014156 to T.E.J., DE-SC0017883 to D.B.L, National Science Foundation PGRP Awards IOS0922457 and IOS1444533 to T.E.J, and the Longterm Ecological Research Program (DEB 1832042) at the Kellogg Biological Station.