Soutenance de stage Analyse de suites d'accords de jazz

Romain VERSAEVEL

Encadré par Pr. David MEREDITH

ENS de Lyon, M1 Informatique fondamentale

26 août 2015

Plan

Motivation, modèle

Algorithmes de compression

Mesures de similarité

Résultats

Plan

Motivation, modèle

Motivation, modèle

Algorithmes de compression

Mesures de similarité

Résultats

Motivation

•00

A Child Is Born:

 $B \triangleright M7$; $E \triangleright m$; $B \triangleright M7$; $E \triangleright m6$; $B \triangleright M9$; $E \triangleright m$; A halfdim7; $D7 \# 9 \dots$

Motivation, modèle
●○○

4/27

Définition

Motivation, modèle ○●○

Un accord est un ensemble d'au moins trois notes.

Définition

Motivation, modèle ○●○

Un accord est un ensemble d'au moins trois notes.

Définition

000

Un accord est un ensemble d'au moins trois notes.

Définition

Motivation, modèle ○●○

Un accord est un ensemble d'au moins trois notes.

5/27

Les notes sont des nombres.

Motivation, modèle ○○●

Les notes sont des nombres.

	A #			<i>C</i> #		D#			F #		G#
A	=	<i>B</i>	C	=	D	=	<i>E</i>	F	=	G	=
	₿			D♭		E♭			$G\flat$		A♭
0	1	2	3	4	5	6	7	8	9	10	11

6/27

Les notes sont des nombres.

	A #			<i>C</i> #		D#			F #		G#
A	=	B	C	=	D	=	E	F	=	G	=
	B♭			$D\flat$		E♭			$G\flat$		$A\flat$
0	1	2	3	4	5	6	7	8	9	10	11

 B_{b}

*M*7

Les notes sont des nombres.

	A #			<i>C</i> #		D#			F #		G#
A	=	<i>B</i>	C	=	D	=	Ε	F	=	G	=
	₿			D♭		E♭			$G\flat$		A♭

$$B \Rightarrow M7$$

1 + $\{0; 4; 7; 10\}$

Plan

Motivation, modèle

Algorithmes de compression

Algorithmes de compression

Mesures de similarité

Résultats

Lempel-Ziv 77

8/27

Lempel-Ziv 77

Lempel-Ziv 77

LZ77 : un aperçu

Entrée

I = ABCABCABD

Sortie

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

Algorithme

- Lister les motifs
- Trouver une couverture

Entrée

I = B; D7; G; Bb7; Eb; Am7; D7; G; Bb7; Eb; F#7; B; Fm7; Bb7; Eb

Entrée

I = B; D7; G; Bb7; Eb; Am7; D7; G; Bb7; Eb; F#7; B; Fm7; Bb7; Eb

Motifs

- $\triangleright B \{0; 11\};$
- $\triangleright B \triangleright 7; E \triangleright \{3; 8; 13\};$
- ▷ D7; G; B▷7; E▷ {1; 6};

Entrée

I = B; D7; G; Bb7; Eb; Am7; D7; G; Bb7; Eb; F#7; B; Fm7; Bb7; Eb

Motifs

- $\triangleright B \{0; 11\};$
- $\triangleright B \triangleright 7; E \triangleright \{3; 8; 13\};$
- ▷ D7; G; B▷7; E▷ {1; 6};
- $\triangleright D7 \{1; 6\}, G \{2; 7\}...$

Entrée

I = B; D7; G; Bb7; Eb; Am7; D7; G; Bb7; Eb; F#7; B; Fm7; Bb7; Eb

Motifs

- $\triangleright B \{0; 11\};$
- \triangleright *B* \triangleright 7; *E* \triangleright {3; 8; 13};
- \triangleright D7; G; B \triangleright 7; E \triangleright {1;6};
- $\triangleright D7 \{1; 6\}, G \{2; 7\}...$

Couverture

- $\triangleright B \{0; 11\};$
- ▷ B♭7; E♭ {13};
- \triangleright D7; G; B \triangleright 7; E \triangleright {1; 6};
- \triangleright Am7 {5}, F#7 {10}, Fm7 {12}

Plan

Motivation, modèle

Algorithmes de compression

Mesures de similarité

Résultats

Vers une compression avec perte

$$C = C'$$

15/27

Vers une compression avec perte

$$C = C'$$
 \downarrow
 $C \sim C'$

- égalité de la note fondamentale;
- ▶ équivalence par transposition ;
- ▶ F1-score :

- mesure de Morris ;
- mesure de Rahn;
- mesure de Teitelbaum.

16/27

Mesures de similarité

- égalité de la note fondamentale ;
- équivalence par transposition;
- équivalence des *PCS-Prime*;
- ▶ F1-score:
- similarity index d'Isaacson;
- mesure de Lewin:
- mesure de Morris :
- mesure de Rahn:
- mesure de Teitelbaum.

Plan

Motivation, modèle

Algorithmes de compression

Mesures de similarité

Résultats

Évaluation

Facteur de compression

Facteur de conservation

Évaluation

Facteur de compression

|Entrée| |Sortie|

Facteur de conservation

|{i | DECOMPRESS(COMPRESS(Entrée))[i]=Entrée[i]}|
||Entrée|

Comparaison des mesures (1)

Comparaison des mesures (2)

Comparaison des mesures (2)

Comparaison des mesures (2)

Comparaison des algorithmes (1)

Comparaison des algorithmes (1)

Comparaison des algorithmes (1)

Comparaison des algorithmes (2)

Comparaison des algorithmes (2)

Comparaison des algorithmes (2)

26 août 2015

Comparaison des algorithmes (3)

Comparaison des algorithmes (3)

Comparaison des algorithmes (3)

LZ77: exemple

Entrée

I = ABCABCABD

Sortie

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

LZ77: exemple

Entrée

I = ABCABCABD

Étape	Buffer			Entrée (« Aperçu »)									
0					Α	В	С	Α	В	С	Α	В	D

Sortie

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

LZ77: exemple

Entrée

I = ABCABCABD

Étape	Buffer			Étape Buffer Entrée (« Aperçu »)										
0						Α	В	С	Α	В	С	Α	В	D
1					Α	В	С	Α	В	С	Α	В	D	

Sortie

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

25/27

LZ77: exemple

Entrée

I = ABCABCABD

Étape	Buffer						Ent	rée	(« A	oerçı	u »)			
0						Α	В	С	Α	В	С	Α	В	D
1					Α	В	С	Α	В	С	Α	В	D	
2				Α	В	С	Α	В	С	Α	В	D		

Sortie

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

LZ77: exemple

Entrée

I = ABCABCABD

Étape	Buffer						Ent	rée	(« A	oerçı	u »)			
0						Α	В	С	Α	В	С	Α	В	D
1					Α	В	С	Α	В	С	Α	В	D	
2				Α	В	С	Α	В	С	Α	В	D		
3			Α	В	С	Α	В	С	Α	В	D			

Sortie

(0,0,A), (0,0,B), (0,0,C), (3,5,D)

LZ77: décompression

Entrée

I = ABCABCABD

Compression Décompression

(0, 0, A)

(0, 0, B)

(0, 0, C)

LZ77: décompression

Entrée

I = ABCABCABD

Décompression Compression

(0,0,A)

(0, 0, B)

(0, 0, C)

Entrée

I = ABCABCABD

Décompression Compression

Α

(0,0,A)

(0, 0, B)

(0, 0, C)

LZ77: décompression

Entrée

I = ABCABCABD

Compression Décompression

Α (0,0,A)(0,0,B)

(0, 0, C)

LZ77: décompression

Entrée

Décompression	Compression
A	(0,0,A)
В	(0,0,B)
	(0, 0, C)
	(3.5 D)

LZ77: décompression

Entrée

Décompression	Compression
Α	(0,0,A)
В	(0,0,B)
	(0,0,C)
	(3.5 D)

LZ77: décompression

Entrée

Décompression	Compression
Α	(0,0,A)
В	(0,0,B)
C	(0,0,C)
	(3, 5, D)

LZ77: décompression

Entrée

Décompression	Compression
Α	(0,0,A)
В	(0, 0, B)
C	(0, 0, C)
	(3,5,D)

LZ77: décompression

Entrée

Décompression	Compression
Α	(0,0,A)
В	(0, 0, B)
C	(0, 0, C)
Α	(3,5,D)
В	
C	

LZ77: décompression

Entrée

Décompression	Compression
Α	(0,0,A)
В	(0,0,B)
C	(0, 0, C)
Α	(3,5,D)
В	
C	
Α	
В	

LZ77: décompression

Entrée

I = ABCABCABD

Décompression A B C A	Compression (0, 0, A) (0, 0, B) (0, 0, C) (3,5,D)
В	(, , ,
C	
Α	
В	

D

Matrices

27/27

Matrices

27/27

Matrices

Matrices

C M7 C m7 Bb m7 Eb 7 Ab M7 D m7 G 7b9 C M7 D m7 C m7 Bb m7 Ab M7 D m7 G 7b9 C M7 D m7 C M7 A 9 D m7 G 7 C M7 D m7

C M7 C m7 F 7 Bb M7 Bb m7 Eb 7 Ab M7 D m7 G 7b9 C M7 D m7