In [1]: #importing matplotlib

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

In [2]: #loading datset dataset=pd.read_csv('Salary_Data.csv') dataset

	dataset			
Out[2]:		YearsExperience	Salary	
	0	1.1	39343.0	
	1	1.3	46205.0	
	2	1.5	37731.0	
	3	2.0	43525.0	
	4	2.2	39891.0	
	5	2.9	56642.0	
	6	3.0	60150.0	
	7	3.2	54445.0	
	8	3.2	64445.0	
	9	3.7	57189.0	
	10	3.9	63218.0	
	11	4.0	55794.0	
	12	4.0	56957.0	
	13	4.1	57081.0	
	14	4.5	61111.0	
	15	4.9	67938.0	
	16	5.1	66029.0	
	17	5.3	83088.0	
	18	5.9	81363.0	
	19	6.0	93940.0	
	20	6.8	91738.0	
	21	7.1	98273.0	
	22	7.9	101302.0	
	23	8.2	113812.0	
	24	8.7	109431.0	
	25	9.0	105582.0	
	26	9.5	116969.0	
	27	9.6	112635.0	
	28	10.3	122391.0	

29

10.5 121872.0

```
In [3]: x=dataset.iloc[:,:1]
x
```

Out[3]:	YearsExperience	
_	0	1.1
	1	1.3
	2	1.5
	3	2.0
	4	2.2
	5	2.9
	6	3.0
	7	3.2
	8	3.2
	9	3.7
1	10	3.9
1	11	4.0
1	12	4.0
1	13	4.1
1	14	4.5
1	15	4.9
1	16	5.1
1	17	5.3
1	18	5.9
1	19	6.0
2	20	6.8
2	21	7.1
2	22	7.9
2	23	8.2
2	24	8.7
2	25	9.0
2	26	9.5
2	27	9.6
2	28	10.3
2	29	10.5

In [4]: dataset.isna().sum()

Out[4]: YearsExperience 0

Salary 0

dtype: int64

```
In [5]: y=dataset.iloc[:,-1:]
y
```

Out[5]:

[5]:		Salary
	0	39343.0
	1	46205.0
	2	37731.0
	3	43525.0
	4	39891.0
	5	56642.0
	6	60150.0
	7	54445.0
	8	64445.0
	9	57189.0
	10	63218.0
	11	55794.0
	12	56957.0
	13	57081.0
	14	61111.0
	15	67938.0
	16	66029.0
	17	83088.0
	18	81363.0
	19	93940.0
	20	91738.0
	21	98273.0
	22	101302.0
	23	113812.0
	24	109431.0
	25	105582.0
	26	116969.0
	27	112635.0
	28	122391.0
	00	404070.0

29 121872.0

```
In [6]: #Training and Testing
    from sklearn.model_selection import train_test_split
        x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
        x_train
```

Out[6]:	YearsExperience	
17	5.3	
22	7.9	
5	5 2.9	
16	5.1	
8	3.2	
14	4.5	
23	8.2	
20	6.8	
1	1.3	
29	10.5	
6	3.0	
4	2.2	
18	5.9	
19	6.0	
9	3.7	
7	3.2	
25	9.0	
3	2.0	
C	1.1	
21	7.1	
15	4.9	
12	2. 4.0	

```
In [7]: #Linear Regression
    from sklearn.linear_model import LinearRegression
    regressor=LinearRegression()
    regressor.fit(x_train,y_train)
```

Out[7]: LinearRegression()

```
In [8]: #predicting
        y_pred=regressor.predict(x_test)
        y_pred
Out[8]: array([[ 41056.25705466],
                [123597.70938378],
                [ 65443.50433372],
                [ 63567.56223533],
                [116093.94099022],
                [108590.17259667],
                [117031.91203942],
                [ 64505.53328452]])
In [9]: #plotting
        plt.scatter(x_train,y_train,color='red')
        plt.plot(x_train, regressor.predict(x_train), color='blue')
        plt.xlabel('Experience')
        plt.show
```

Out[9]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [12]: plt.scatter(x_test,y_test,color='red')
    plt.plot(x_test,regressor.predict(x_test),color='blue')
    plt.xlabel('Experience')
    plt.show
```

Out[12]: <function matplotlib.pyplot.show(close=None, block=None)>

