Probability and Statistics Assessed Coursework 6

Solution 1

To verify that $f_{\theta}(x)$ is a valid probability density function, we need to show that for all values of x, $f_{\theta}(x) \geq 0$ and $\int_{-\infty}^{\infty} f_{\theta}(x) dx = 1$, under the condition that $\theta \in (1, \infty)$

The value of $f_{\theta}(x)$ is indeed always greater or equal to 0. Since $\theta > 1$, we know that $\theta - 1 > 0$. Since $x^{-\theta}$ is always positive and $f_{\theta}(x) = 0$ when x < 1, we have proved that $f_{\theta}(x) \ge 0$.

We now show that $\int_{-\infty}^{\infty} f_{ heta}(x) dx = 1$

$$\int_{-\infty}^{\infty} f_{\theta}(x) dx = \int_{-\infty}^{1} f_{\theta}(x) dx + \int_{1}^{\infty} f_{\theta}(x) dx$$
$$= 0 + \int_{1}^{\infty} x^{-\theta} (\theta - 1) dx$$
$$= (-x^{1-\theta})|_{1}^{\infty}$$
$$= 0 - (-x^{0})$$
$$= 1$$

We now use the maximum likelihood estimate $\hat{\theta}$ to get the fittest value of θ . We first find the log-likelihood function and then take its derivative

$$egin{aligned} l(heta|ar{x}) &= \sum_{i=1}^n \ln(f_{ heta|X}(x_i)) \ &= \sum_{i=1}^n \ln(x_i^{- heta}(heta-1)) \ &= \sum_{i=1}^n \ln(x_i^{- heta}) + \sum_{i=1}^n \ln(heta-1) \ &= - heta \sum_{i=1}^n \ln(x_i) + n \ln(heta-1) \ l'(heta|ar{x}) &= -\sum_{i=1}^n \ln(x_i) + rac{n}{ heta-1} \end{aligned}$$

We then let the derivative equalt to 0 in order to solve for $\hat{ heta}$

$$egin{aligned} -\sum_{i=1}^n \ln(x_i) + rac{n}{\hat{ heta}-1} &= 0 \ rac{n}{\hat{ heta}-1} &= \sum_{i=1}^n \ln(x_i) \ \hat{ heta} &= rac{n}{\sum_{i=1}^n \ln(x_i)} + 1 \end{aligned}$$

Solution 3

a) We now perform a maximum likelihood estimate \hat{p} for the parameter p. We first find the log-likelihood function and then take its derivative

$$egin{aligned} l(p|ar{x}) &= \sum_{i=1}^{1469} \ln(p_{p|X}(x)) \ &= \sum_{i=1}^{1469} \ln(p(1-p)^{x_i-1}) \ &= \sum_{i=1}^{1469} \ln(p) + \sum_{i=1}^{1469} \ln((1-p)^{x_i-1}) \ &= 1469 \ln(p) + \ln(1-p) \sum_{i=1}^{1469} (x_i-1) \ &= 1469 \ln(p) + \ln(1-p) \sum_{i=1}^{1469} x_i - 1469 \ln(1-p) \ l'(p|ar{x}) &= rac{1469}{p} - rac{\sum_{i=1}^{1469} x_i}{1-p} + rac{1469}{1-p} \end{aligned}$$

We then let the derivative equal to 0 so that we can obtain the value of \hat{p}

$$egin{aligned} rac{1469}{\hat{p}} - rac{\sum_{i=1}^{1469} x_i}{1-\hat{p}} + rac{1469}{1-\hat{p}} &= 0 \ 1469(1-\hat{p}) + 1469\hat{p} &= \hat{p} \sum_{i=1}^{1469} x_i \ 1469 - 1469\hat{p} + 1469\hat{p} &= \hat{p} \sum_{i=1}^{1469} x_i \ \hat{p} &= rac{1469}{\sum_{i=1}^{1469} x_i} &= rac{1469}{2282} &= 0.644 \end{aligned}$$

We then check the second derivative to see if the value of \hat{p} is indeed the maximum

$$l''(p|ar{x}) = -rac{1469}{p^2} - rac{\sum_{i=1}^{1469} x_i}{(1-p)^2} + rac{1469}{(1-p)^2} = -rac{1469}{p^2} - rac{813}{(1-p)^2}$$

where both terms in the equation are negative, which means that $l''(p|\bar{x}) < 0$ and \hat{p} is indeed the maximum value.

b) A goodness of fit test, particularly a chi-square analysis, can be carried out to see if the underlying population distribution is geometric. We can first construct an observed random variabel $O=(O_1,O_2,\ldots,O_n)$ where the value of O_i corresponds to the number of occurance of the value x_i of random variable X, the number of occupants in private cars on a certain road. Then we can use the chi-square statistic

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

We can then populate the table using the geometric distribution as the expected value for each count, and then calculate the value of χ^2 . Then we can use the chi-square statistic table with degree of freedom 4 and two-tailed confidence level 0.99 to see the score we can obtain. If χ^2 is greater than the score, then we will reject the null hypothesis that the underlying distribution is geometric.