Gröbner-Fächer für lineare Codes

Daniel Rembold

Technische Universität Hamburg Harburg daniel.rembold@tuhh.de

August 27, 2014

Inhaltsverzeichnis

- Einleitung
- Mathematische Grundlagen
- Aufzählen von Gröbner-Fächern
- © Ergebnisse
- Fazit
- Vorführung

Motivation

Gröbnerbasen

•

Monome

Monom

- Produkt von Variablen über ein endliches Feld $\mathbb{K}[X_1, X_2, \dots, X_n]$
- Schreibweise $m = X_1^{u_1} X_2^{u_2} \cdots X_n^{u_n}$ und $u_i \in \mathbb{N}_0$

Grad eines Monoms: $deg(m) = \sum_{i=1}^{n} u_i$.

Termordnung

Termordnung >

ullet Relation > zu der Menge von allen Monomen in $\mathbb{K}\left[X_1,X_2,\ldots,X_n
ight]$

Termordnung

- Lexikographische Ordnung >_{lex}
- grad $>_{grlex}$
- ullet Ordnung mit Gewichtsvektor $c=(c_1,\ldots,c_n)\in\mathbb{R}^n_+$

Leitterm

Leitterm LT(f)

• Polynom $p \in \mathbb{K}\left[X_1, X_2, \dots, X_n\right]$ besitzt Term höchster Ordnung in Bezug auf >

Beispiel

Sei
$$f = x^2 + 3xyz + y^3$$

- lex-Order : $f = \underline{x^2} + 3xyz + y^3$
- grlex-Order : $f = 3xyz + y^3 + x^2$
- (1,2,1): $f = y^3 + 3xyz + x^2$

Ideale

Ideal

• Kollektion von Polynomen f_1, \ldots, f_s :

$$\langle f_1,\ldots,f_s\rangle = \left\{\sum_{i=1}^s h_i f_i \mid h_1,\ldots,h_s \in \mathbb{K}\left[X_1,\ldots,X_n\right]\right\}.$$

Beispiel

Sei $I = \langle f_1, f_2 \rangle = \langle x^2 + y, x + y + 1 \rangle$ und $f = x^2y + x^2 + y^2 + xy + x$ Dann gilt $f = y \cdot f_1 + x \cdot f_2$, $f \in I$.

Divisionsalgorithmus (1)

• Notwendig zum Lösen des Idealzugehörigkeitsproblems

Ziel des Algorithmus

Polynom g durch Ideal
$$I = \langle f_1, \dots, f_s \rangle$$
 teilen, so dass $g = a_1 f_1 + \dots + a_s f_s + r$, $a_i, g, I, r \in \mathbb{K}[X_1, \dots, X_n]$

Sei Polynom p und Ideal I

• Wenn p % I = 0, dann gilt $p \in I$

Divisionsalgorithmus (2)

Algorithm 1 Divisionsalgorithmus (Header)

Require: Basis $I = \langle f_1, \dots, f_m \rangle$ of nonzero polynomials and fixed termorder LT

Ensure: r=0 **or** none of the terms in r are divisible by $LT_{\leq}(f_1),\ldots,LT_{\leq}(f_m)$

- Reihenfolge der Polynome in / beeinflusst Ergebnis
- $r \neq 0$ möglich, obwohl $p \in I$

Gröbnerbasis (1)

Gröbnerbasis

Sei Termordnung > und Ideal I, dann hat Gröbnerbasis $G = \{f_1, \ldots, f_m\}$ (in Bezug auf >) von I die Eigenschaft:

• Von jedem Polynom $p \in I$ ist $LT_{>}(p)$ teilbar durch $LT_{>}(f_{i})$

- Divisionsrest eindeutig bestimmt und unabhängig von Reihenfolge
- Gröberbasis aus jedem Ideal mit Hilfe des Buchberger-Algorithmus und einer festen Termordnung

Gröbnerbasis (2)

- Gröbernbasen sind nicht eindeutig
- Reduzierte Gröbnerbasen jedoch eindeutig für Ideale

Reduzierte Gröbnerbasis

Alle Leitterme von Gröbnerbasis G in Bezug auf Termordnung > monisch und relativ prim zueinander

Gröbner-Fächer

Unendlich viele Termordnungen, endlich viele reduzierte Gröbnerbasen

Gröbner-Fächer

- ullet Vielflächiges Komplex welches Kegel im \mathbb{R}^n_+ enthält
- Flächen werden durch Ebenenungleichungen der Polynome bestimmt

Beispiel Gröbner-Fächer (1)

Sei

- ② $G_{>_{lex}} = \{y^2 z, \ \underline{x} y\}$
- **3** $\mathbf{w} = (a, b, c) \in \mathbb{R}^3_+$
 - $w \in G_{>_{lex}}$ genau dann, wenn
 - $(0,2,0) \cdot (a,b,c) \geq (0,0,1) \cdot (a,b,c) \vee 2b \geq c$
 - ② $(1,0,0)\cdot(a,b,c)\geq(0,1,0)\cdot(a,b,c)\vee a\geq b$

Beispiel Gröbner-Fächer (2)

Figure: Gröbner-Kegel für $G_{>_{\mathit{lex}}}$

Beispiel Gröbner-Fächer (3)

Figure: Kompletter Gröbner-Fächer

Torische Ideale

- Obermenge von Code-Idealen
- Besteht nur aus Binomen

Torisches Ideal

Gegeben seien $A = [a_1, \dots, a_n] \in \mathbb{Z}^{d \times n}$ und $u \in \mathbb{Z}^n$ zerlegbar in u^+ und u^- , dann ist das torische Ideal I_A definiert durch

$$\mathbf{I}_A = \langle \mathbf{x}^{u^+} - \mathbf{x}^{u^-} \mid u \in \ker(A) \rangle.$$

BLABLA

Performancemessung auf ATI und NVIDIA

Vergleich

Mögliche Verbesserungen

Quellen

University of Bristol

Optimizing OpenCL performance

http://www.cs.bris.ac.uk/home/simonm/workshops/OpenCL_lecture3.pdf

NVIDIA

OpenCL SDK Code Samples

https://developer.nvidia.com/opencl

Vasily Volkov (UC Berkeley , September 22, 2010)

Better Performance at Lower Occupancy

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

Vielen Dank für eure Aufmerksamkeit!