Введение по курсу

Данный курс - введение в различные разделы геометрии и топологии.

Пример задач, обсуждаемых на курсе: сжимание замкнутой кривой на сфере - можно сжать в точку. На торе, например, есть кривые, которые не получится сжать в точку без разрывов не деформируя непрерывности. В некотором смысле стягивание в точку это харакрестический показать: если на двумерной поверхности любая замкнутая кривая стягивается в точку, то это сфера.

Рис. 1: Примеры изучаемых объектов.

Графы

Впервые идея использовать графы пришла Эйлеру при решении задачи о Кёнигсбергских мостах.

Рис. 2: Задача о 7 Кёнигсбергских мостах.

Можно ли прогуляться по всем 7-ми мостам, начав с какой-то точки, пройдя по каждому мосту только один раз и вернуться в ту же точку.

Рис. 3: Граф Кёнигсбергсих мостов.

Перформулируя задачу в граф: получим 4 вершины и 7 ребер. Можем ли, стартуя в какой-то вершине, пройти по всем ребрам графа так, чтобы по каждому ребру пройтись один раз и вернуться в исходную точку? Ответ - нет. Чтобы это было возможно сделать, все вершины должны иметь четную степень (количество ребер подходящих к вершинам).

Комбинаторное описание графов

Чтобы описать граф, не обязательно рисовать картинку. Рассмотрим множества:

Опр: 1. Граф это набор множеств (V, E), где V - конечное непустое множество, элементы которого будем называть вершинами и E - набор неупорядоченных пар вершин, элементы которого будем называть ребрами.

Пример: $V = \{1, 2, 3, 4\}; E: (1, 2), (1, 2), (2, 3), (1, 3), (1, 4), (1, 4), (3, 4), (3, 3).$

Рис. 4: Комбинаторное описание графа.

Опр: 2. Если какое-то ребро встречается k раз, то говорят, что это ребро кратности k.

Опр: 3. Если ребро состоит из одинаковых элементов, то такое ребро называется петлей.

Пример: (3,3) - это петля.

Опр: 4. Степень вершины - число раз, сколько встречается эта вершина в наборе из ребер.

Пример: степень вершины 2 равна 3, степень вершины 3 равна 5.

Геометрическое описание графов

Почему это может интересовать? Например, есть желание положить граф на плоскость, возможно ли это?

Напоминание: f непрерывна в точке x_0 , если

$$\forall \varepsilon > 0, \exists \delta > 0 \colon |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Немного другими словами, функция f непрерывна в точке x_0 , если для любой окрестности W точки $y_0 = f(x_0)$ существует окрестность U точки x_0 , такая что $f(U) \subset W$.

В этой переформулировке нет упоминания о числах. В этом случае, при отображении каких-то пространств, в которых есть окрестности точек, мы получим определение непрерывности этого отображения.

Рис. 5: Непрерывность функции в точке x_0 .

На числовой прямой под отрезком понимается множество точек $\{x \mid a \leq x \leq b\}$. Когда будем говорить про отрезки - нам будет неважно, какие у него концы и если будем рассматривать несколько отрезков, можем представлять каждый отрезок на своей прямой.

Опр: 5. Граф это тройка объектов (V, E, ∂) :

- (1) V конечное непустое множество, элементы которого будем называть вершинами;
- (2) E конечный набор отрезков, которые будем называть ребрами;
- (3) ∂ : (множество концов отрезков из $E) \to V$, которое будем называть приклеиванием отрезков к вершинам;

Граф имеет два типа точек:

- (1) Вершины (элементы V);
- (2) Внутренние точки ребер (отрезков из E);

При этом:

- (1) окрестность внутренней точки ребра как в обычном отрезке (интервал);
- (2) окрестность вершины v есть объединение окрестностей всех точек из $\partial^{-1}(v)$ и самой вершины;

Рис. 6: Граф.

Rm: 1. Если $\partial^{-1}(v) = \emptyset$, то окрестность самой вершины будет состоять только из неё самой.

Rm: 2. При рассмотрении отрезка [a, b], окрестностью точки a будет полуинтервал $[a, a + \varepsilon)$.

Рис. 7: Окрестности точек в графе.

Рассмотрим пространство \mathbb{R}^2 . На нем, расстояние между точками определяется как обычное Евклидово расстояние:

 $\rho(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$

Рис. 8: Замкнутый шар в \mathbb{R}^2 .

Тогда в качестве окрестности точки P будем рассматривать шар.

Опр: 6. Множество точек $B_{P,\varepsilon} = \{ x \in \mathbb{R}^2 \mid \rho(P,x) < \varepsilon \}$ называется <u>открытым шаром</u> с центром в точке P и радиуса ε .

Опр: 7. Множество точек $\overline{B}_{P,\varepsilon} = \{ x \in \mathbb{R}^2 \mid \rho(P,x) \leq \varepsilon \}$ называется <u>замкнутым шаром</u> с центром в точке P и радиуса ε .

Rm: 3. На прямой открытый шар называют <u>интервалом</u>.

Опр: 8. Пусть в пространствах X и Y заданы окрестности точек, причем для любой точки пересечение двух её окрестностей тоже является её окрестностью. Тогда отображение $f: X \to Y$ непрерывно в точке $x_0 \in X$, если \forall окрестности W точки $y_0 = f(x_0)$, \exists окрестность U точки x_0 , такая что $f(U) \subset W$.

Опр: 9. Отображение $f: X \to Y$ называется <u>непрерывным</u>, если оно непрерывно в каждой точке.

Опр: 10. Подмножество $A \subset X$ (в котором заданы окрестности точек) называется открытым, если вместе с каждой точкой $a \in A$ оно содержит некоторую её окрестность. То есть:

$$\forall a \in A, \exists \mathcal{U}(a) \subset X : \mathcal{U}(a) \subset A$$

Опр: 11. Подмножество $A \subset X$ (в котором заданы окрестности точек) называется <u>замкнутым</u>, если его дополнение $X \setminus A$ - открыто (в X). То есть:

$$\forall b \notin A, \exists \mathcal{U}(b) \subset X : \mathcal{U}(b) \cap A = \varnothing$$

Рис. 9: Открытые (A) и замкнутые (B) подмножества X.

Rm: 4. Открытое или замкнутое - зависит от того, в каком пространстве мы его рассматриваем.

Пример: Пусть $X = \mathbb{R}$, A = [a, b] - не является открытым в X, но является замкнутым в X. Можно взять окрестность точки b и целиком она не попадет в A;

Рис. 10: A = [a, b] не является открытым подмножеством $X = \mathbb{R}$.

Пример: Пусть X = [a, b], A = [a, b] - является открытым в X. Можно взять окрестность точки b и целиком она попадет в A;

Рис. 11: A = [a, b] является открытым подмножеством X = [a, b].

Рассмотрим отображение отрезка в плоскость. Отрезок также можно рассматривать как "граф" (хотя это и очень простой граф).

Рис. 12: Непрерывная кривая на \mathbb{R}^2 .

Опр: 12. Непрерывная кривая (на плоскости) - это непрерывное отображение отрезка (в плоскость).

Rm: 5. Кривая = отображение, т.е. может быть точкой, или заполнить всю плоскость (кривая Пеано).

Упр. 1. На плоскости есть координаты, есть отображение $\gamma(t)$: $[a,b] \to \mathbb{R}^2$, $\gamma(t) = (x(t),y(t))$. Доказать, что кривая γ непрерывна \Leftrightarrow функции x(t),y(t) - непрерывны, как функции на [a,b].

Рис. 13: Непрерывная кривой $\gamma(t)$.

Утв. 1. Если $\gamma \colon [a,b] \to \mathbb{R}^2$ - непрерывная кривая, то её образ - замкнутое подмножество плоскости.

Рис. 14: Образ кривой - замкнутое подмножество плоскости.

 \square Надо доказать, что $\forall P$ не принадлежащей образу γ , существует окрестность $\mathcal{U}(P)$, которая не пересекается с образом γ .

Рассмотрим функцию f на [a,b]: $f(t)=\rho(P,\gamma(t))$ эта функция непрерывна на отрезке [a,b] (можно записать в координатах и убедиться, в этом), а значит достигает своего минимума и максимума на отрезке \Rightarrow пусть $c=\min_{[a,b]}f>0$, поскольку точка P не лежит на кривой. Можно взять в качестве $\mathcal{U}(P)=B_{P,\frac{c}{2}}\Rightarrow$ расстояние от любой точки кривой до точек этого шара будет положительное \Rightarrow шар не пересекается с образом кривой.

Лемма 1. (О первой точке) Пусть A - замкнутое подмножество плоскости, а $\gamma \colon [a,b] \to \mathbb{R}^2$ - непрерывная кривая, такая что $\gamma(a) = P \notin A \land \gamma(b) = Q \in A$. Тогда \exists "первая точка" на $\gamma \in A$, то есть $\exists t_0 \in [a,b] \colon \gamma(t_0) \in A, \ \gamma(t) \notin A, \ \forall t < t_0$.

Рис. 15: Лемма о первой точке.

 \mathbf{Rm} : 6. Очень важно условие замкнутости подмножества A, если это не так, то лемма не будет верной.

Рассмотрим множество $T = \{ t \mid \gamma(s) \notin A, \forall s \in [a, t] \}$. Оно обладает следующими свойствами:

- 1) $T \neq \emptyset$, так как $a \in T$ по условию;
- 2) Т ограниченное подмножество, так как лежит на отрезке;

Тогда $\exists \sup T = c \in [a,b]$. Ясно, что $c \neq b$, так как $\gamma(b) \in A$. Рассмотрим два случая:

(1) $\gamma(c) \notin A$, то поскольку A замкнутое, существует окрестность $\mathcal{U}(\gamma(c))$ точки $\gamma(c) \colon \mathcal{U}(\gamma(c)) \cap A = \emptyset$.

Рис. 16: $\gamma(c) \notin A$.

Так как, кривая γ - непрерывна, то $\exists V = (c - \varepsilon, c + \varepsilon) \in [a, b]: \gamma(V) \subset \mathcal{U}(\gamma(c))$, то есть

$$\forall t \in V = (c - \varepsilon, c + \varepsilon), \ \gamma(t) \notin A \Rightarrow c \neq \sup T$$

Получили противоречие $\Rightarrow \gamma(c) \in A$.

(2) $\gamma(c) \in A \Rightarrow$ по определению $\sup T$ для любой точки t < c её образ не будет принадлежать множеству A:

$$\forall t < c, t \in [a, b], \ \gamma(t) \notin A$$

Тогда возьмем в качестве t_0 точку c.