

Feature

- Logic Operating Voltage: $2.4V \sim 3.6V$
- Analog Power Supply Voltage: 2.4V ~ 3.6V
- · Output channel with three level voltage switching
 - ◆ 120 segments × 1 COM × 1 BG
 - 4 common/background combo pins can be set as common or background
- Output voltage setting: 0V, V_{DL} , V_{DH}
- · Integrated LUT
- Integrated Charge pump controller
- Integrated Temperature sensor
- Data comparison function
- · Device cascading function
- Integrated 3-wire SPI serial interface
- · Package Type: COG

Applications

- · Smart cards
- · Industrial gauges
- · Electronic shelf labels
- · Consumer electronics

General Description

The HT16E07 is an electronic paper display (EPD) driver IC. It consists of 120 segments and 4 background or common selectable outputs. The output drivers have a three level driving voltage to match the EPD characteristic. The driving voltage is generated by a charge pump circuit.

The HT16E07 device communicates with external microcontrollers using its internal 3-wire SPI serial interface.

Block Diagram

Rev. 1.00 June 19, 2017

Pad Assignment

Pad Dimensions

Item	Pad Number	Si	ze	Unit	
item	Pau Number	Х	Υ	Ullit	
Chip size	_	4228	850	μm	
Chip thickness	_	508	μm		
Dad nitah	1, 38 ~ 166	2	7	μm	
Pad pitch	3 ~ 35, 37	> 8	μm		
Dumn size	1, 38 ~ 166	15	126	μm	
Bump size	3 ~ 35, 37	5, 37 68 68			
Bump height	All pad	18	± 3	μm	

Alignment Mark Dimensions

Pad Coordinates

No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ
1	DUMMY	-1999.870	296.000	57	S17	1029.120	296.000	113	S69	-482.880	296.000
2	ALIGN_A	-1926.500	113.280	58	S18	1002.120	296.000	114	S70	-509.880	296.000
3	VDH	-2015.000	-315.615	59	S19	975.120	296.000	115	S71	-536.880	296.000
4	VDH	-1929.000	-315.615	60	S20	948.120	296.000	116	S72	-563.880	296.000
5	VDH	-1843.000	-315.615	61	S21	921.120	296.000	117	S73	-590.880	296.000
6	VDL	-1757.000	-315.615	62	S22	894.120	296.000	118	S74	-617.880	296.000
7	VDL	-1671.000	-315.615	63	S23	867.120	296.000	119	S75	-644.880	296.000
8	VDL	-1585.000	-315.615	64	S24	840.120	296.000	120	S76	-671.880	296.000
9	AVSS	-1305.285	-315.615	65	S25	813.120	296.000	121	S77	-698.880	296.000
10	AVSS	-1219.285	-315.615	66	S26	786.120	296.000	122	S78	-725.880	296.000
11	AVSS	-1133.285	-315.615	67	S27	759.120	296.000	123	S79	-752.880	296.000
12	AVSS	-950.285	-315.615	68	S28	732.120	296.000	124	S80	-779.880	296.000
13	VSS	-864.285	-315.615	69	S29	705.120	296.000	125	S81	-806.880	296.000
14	VSS	-778.285	-315.615	70	S30	678.120	296.000	126	S82	-833.880	296.000
15	AVDD	-595.285	-315.615	71	S31	651.120	296.000	127	S83	-860.880	296.000
16	AVDD	-509.285	-315.615	72	S32	624.120	296.000	128	S84	-887.880	296.000
17	AVDD	-423.285	-315.615	73	S33	597.120	296.000	129	S85	-914.880	296.000
18	VDD	-164.285	-315.615	74	S34	570.120	296.000	130	S86	-941.880	296.000
19	VDD	-78.285	-315.615	75	S35	543.120	296.000	131	S87	-968.880	296.000
20	VDD	7.715	-315.615	76	S36	516.120	296.000	132	S88	-995.880	296.000
21	NC	93.715	-315.615	77	S37	489.120	296.000	133	S89	-1022.880	296.000
22	NC	353.355	-315.615	78	S38	462.120	296.000	134	S90	-1049.880	296.000
23	NC	444.715	-315.615	79	S39	435.120	296.000	135	S91	-1076.880	296.000
24	NC	530.715	-315.615	80	S40	408.120	296.000	136	S92	-1103.880	296.000
25	SHD_N	885.715	-315.615	81	S41	381.120	296.000	137	S93	-1130.880	296.000
26	RST_N	971.715	-315.615	82	S42	354.120	296.000	138	S94	-1157.880	296.000
27	SDA	1057.715	-315.615	83	S43	327.120	296.000	139	S95	-1184.880	296.000
28	SCL	1143.715	-315.615	84	S44	300.120	296.000	140	S96	-1211.880	296.000
29	CSB	1229.715	-315.615	85	S45	273.120	296.000	141	S97	-1238.880	296.000
30	BUSY_N	1315.715	-315.615	86	S46	246.120	296.000	142	S98	-1265.880	296.000
31	MS	1401.715	-315.615	87	S47	219.120	296.000	143	S99	-1292.880	296.000
32	CL	1487.715	-315.615	88	S48	192.120	296.000	144	S100	-1319.880	296.000
33	TEST_N	1573.715	-315.615	89	S49	165.120	296.000	145	S101	-1346.880	296.000
34	VSYNC	1659.715	-315.615	90	S50	138.120	296.000	146	S102	-1373.880	296.000
35	DUMMY	2000.800	-315.615	91	S51	111.120	296.000	147	S103	-1400.880	296.000
36	ALIGN_B	2002.000	113.280	92	S52	84.120	296.000	148	S104	-1427.880	296.000
37	DUMMY	2000.800	305.300	93	S53	57.120	296.000	149	S105	-1454.880	296.000
38	DUMMY	1595.870	296.000	94	S54	30.120	296.000	150	S106	-1481.880	296.000
39	COMBG0	1515.120	296.000	95	S55	3.120	296.000	151	S107	-1508.880	296.000
40	COMBG0	1488.120	296.000	96	S56	-23.880	296.000	152	S108	-1535.880	296.000
41	S1	1461.120	296.000	97	S57	-50.880	296.000	153	S109	-1562.880	296.000
42	S2	1434.120	296.000	98	S58	-77.880	296.000	154	S110	-1589.880	296.000
43	S3	1407.120	296.000	99	S59	-104.880	296.000	155	S111	-1616.880	296.000
44	S4	1380.120	296.000	100	S60	-131.880	296.000	156	S112	-1643.880	296.000
45	S5	1353.120	296.000	101	COMBG1	-158.880	296.000	157	S113	-1670.880	296.000
46	S6	1326.120	296.000	102	COMBG1	-185.880	296.000	158	S114	-1697.880	296.000
47	S7	1299.120	296.000	103	COMBG2	-212.880	296.000	159	S115	-1724.880	296.000
48	S8	1272.120	296.000	104	COMBG2	-239.880	296.000	160	S116	-1751.880	296.000
49	S9	1245.120	296.000	105	S61	-266.880	296.000	161	S117	-1778.880	296.000

No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ
50	S10	1218.120	296.000	106	S62	-293.880	296.000	162	S118	-1805.880	296.000
51	S11	1191.120	296.000	107	S63	-320.880	296.000	163	S119	-1832.880	296.000
52	S12	1164.120	296.000	108	S64	-347.880	296.000	164	S120	-1859.880	296.000
53	S13	1137.120	296.000	109	S65	-374.880	296.000	165	COMBG3	-1886.880	296.000
54	S14	1110.120	296.000	110	S66	-401.880	296.000	166	COMBG3	-1913.880	296.000
55	S15	1083.120	296.000	111	S67	-428.880	296.000				
56	S16	1056.120	296.000	112	S68	-455.880	296.000				

Pad Description

Pad Name	Туре	Description
Power Supply Pins		
VDD	_	Logic power supply
GND	_	Logic ground
AVDD	_	Analog power supply
AGND	_	Analog ground
Charge Pump Contr	oller Pi	ns
VDL	0	Driver low supply voltage – bypass to GND with 1µF capacitor
VDH	0	Driver high supply voltage – bypass to GND with 1µF capacitor
Serial Communication	on Inte	rface Pins
CSB	ı	Chip select CSB="0" – device is active
SDA	I/O	Serial data input/output pin
SCL	ı	Serial clock input pin
Control Interface Pir	าร	
RST_N	I	Reset pin – active low
SHD_N	I	Charge pump enable pin – low shutdown
BUSY_N	0	Busy flag output pin BUSY_N="0" – driver is busy, driver is refreshing the display BUSY_N="1" – driver is idle, host can send command/data to driver
MS	I	Master or slave IC select pin MS="1" – device set as master MS="0" – device set as slave
CL	I/O	System clock pin In the cascade mode, the master IC generates a clock signal for the slave IC via the CL pin when the cascade setting command is executed. In the single chip mode, this pin remains at a high level and is not used.
VSYNC	I/O	Frame synchronization signal pin In the cascade mode, the master IC generates a vsync signal for the slave IC through the VSYNC pin when the cascade setting command is executed. In the single chip mode, this pin remains at a high level and is not used.
TEST_N	I	Test pin, remains floating in normal mode
Driver Output Pins		
S1~S120	0	Segment driver output pins
COMBG0~COMBG3	0	Common or Background driver output pin These pins can be set as COM or BG pin separately by a CBS command

Approximate Internal Connections

Absolute Maximum Ratings

Logic Supply Voltage Vss-0.3V to Vss+6.5V	Storage Temperature55°C to 150°C
Driver Supply Voltage V_{SS} -0.3V to V_{SS} +13.2V	Operating Temperature 0°C to 70°C
Input Voltage V_{SS} -0.3V to V_{DD} +0.3V	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Rev. 1.00 6 June 19, 2017

D.C. Characteristics

 V_{SS} =0V; V_{DD} =2.4V~3.6V; Ta=0°C~70°C

Comple al	Domenator		Test condition	NA:	T	Mari	I I mit
Symbol	Parameter	V _{DD}	Condition	Min.	Тур.	Max.	Unit
V_{DD}	Logic Power Supply Voltage	_	_	2.4	_	3.6	V
AV _{DD}	Analog Power Supply Voltage	_	_	2.4	_	3.6	V
V _{DH}	EPD High Driving Voltage	_	VDH_LV[5:0]=010100b	5.75	6	6.25	V
V_{DL}	EPD Low Driving Voltage	_	VDL_LV[5:0]=010100b	2.75	3	3.25	V
VIH	Input High Voltage	_	All input pins	0.7×V _{DD}	_	V _{DD}	V
VIL	Input Low Voltage	_	All input pins	0	_	0.3×V _{DD}	V
IIL	Input leakage Current	_	V _{IN} =V _{DD} , V _{SS} . All input pins except CSB, RST_N	-1	_	1	μΑ
Іон	High Level Output Current	3.3V	V _{OH} =0.9×V _{DD} , SDA, BUSY_N, CL, VSYNC	-6	_	_	mA
loL	Low Level Output Current	3.3V	V _{OL} =0.1×V _{DD} , SDA, BUSY_N, CL, VSYNC	6	_	_	mA
I _{STB}	Logic Standby Current	3.3V	No load, charge pump Off status	_	_	1	μΑ
I _{STB1}	Analog Standby Current	3.3V	no load, charge pump on status	_	_	1	μΑ
I _{DD}	Logic Operating Current	3.3V	No load sharge nump On status	_	80	120	μΑ
I _{DD1}	Analog Operating Current	3.3V	No load, charge pump On status	_	80	120	μΑ
I _{OL1}	COMBG Sink Current	3.3V	V ₀ =12V, V ₀ L=1.2V	3.0	6.0	_	mA
I _{ОН1}	COMBG Source Current	3.3V	V ₀ =12V, V _{0H} =10.8V	-2.2	-4.5	_	mA
I _{OL2}	Segment Sink Current	3.3V	V _O =12V, V _{OL} =1.2V	1.0	2.0	_	mA
I _{OH2}	Segment Source Current	3.3V	V ₀ =12V, V _{0H} =10.8V	-0.7	-1.5	_	mA
R _{PH}	Pull-high Resistance	3.3V	CSB, RST_N, TEST_N	_	50	100	kΩ

Rev. 1.00 7 June 19, 2017

A.C. Characteristics

 V_{SS} =0V; V_{DD} =2.4V~3.6V; Ta=0°C~70°C

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{CSS}	Chip Select Setup Time	_	60	_	_	ns
tcsH	Chip Select Hold Time	_	100	_	_	ns
tscc	Chip Select Hold Time in Read Mode	_	60	_	_	ns
tchw	Chip Select Pulse Width	_	60	_	_	ns
tscycw	SCL Clock Cycle Time in Write Mode	_	100	_	_	ns
tshw	SCL High Pulse Width in Write Mode	_	35	_	_	ns
t _{SLW}	SCL Low Pulse Width in Write Mode	_	35	_	_	ns
t _{SCYCR}	SCL Clock Cycle Time in Read Mode	_	150	_	_	ns
t _{SHR}	SCL High Pulse Width in Read Mode	_	60	_	_	ns
t _{SLR}	SCL Low Pulse Width in Read Mode	_	60	_	_	ns
t _{SDS}	Data Setup Time	_	50	_	_	ns
t _{SDH}	Data Hold Time	_	50	_	_	ns
t _{ACC}	Access Time	_	_	25	35	ns
tон	Output Disable Time	_	_	25	35	ns
t _{OF}	Output Floating Time	_	50	_	_	ns
t _{RSEG}	Segment Driver Rise Time	99% final value, C_{L_S} =30pF, R_{L_S} =10k Ω^*	_	1.0	1.5	μs
t _{FSEG}	Segment Driver Fall Time	1% final value, C_{L_S} =30pF, R_{L_S} =10k Ω^*	_	0.8	1.2	μs
trcombg	COMBG Driver Rise Time	99% final value, C _L _{COMBG} =2nF, R _{L_COMBG} =1kΩ*	_	8	12	μs
t _{FCOMBG}	COMBG Driver Fall Time	1% final value, C_{L_COMBG} =2nF, R_{L_COMBG} =1k Ω^*	_	6	9	μs
V _{POR}	VDD Start Voltage to Ensure Power-on Reset	_	_	_	100	mV
RR _{VDD}	V _{DD} Rise Rate to Ensure Power-on Reset	_	0.05	_	_	V/ms
t _{POR}	Minimum Time for V_{DD} to Remain at V_{POR} to Ensure Power-on Reset	_	10			ms

Note: * driver output RC loading.

Timing Diagrams

SPI 3-Wire Interface Timing

Power on Reset Timing

Note: 1. If the conditions of Reset timing are not satisfied during the power ON/OFF sequence, the internal Power on Reset (POR) circuit will not operate normally.

2. Data transfers on the serial bus should at least be delayed for 1ms after the power-on sequence to ensure that the reset operation is complete.

Command Table

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Danal Catting (DCD)	0	0	0	0	0	0	0	0	0	0	00h
Panel Setting (PSR)	0	1	BWR	_	_	_	VDLH_EN	DDX	SHD_N	RST_N	8Fh
	0	0	0	0	0	0	0	0	0	1	01h
Power Setting (PWR)	0	1	_	_			VDH	I_LV[5:0]		1Eh
	0	1	_	_			VDL	_LV[5:0]		1Eh
Charge Pump OFF (CPOF)	0	0	0	0	0	0	0	0	1	0	02h
Charge Fullip Of 1 (CFOI)	0	1	_	_		_	_	_	SGM_FL	VCOM_FL	03h
Charge Pump ON (CPON)	0	0	0	0	0	0	0	1	0	0	04h
COMBG Set (CBS)	0	0	0	0	0	0	0	1	0	1	05h
COMBO Set (CBS)	0	1	_	_	_	_	CBS3	CBS2	CBS1	CBS0	0Bh
	0	0	0	0	0	1	0	0	0	0	10h
	0	1	S1	S2	S3	S4	S5	S6	S7	S8	00h
Data Start	0	1	S9	S10	S11	S12	S13	S14	S15	S16	00h
Transmission (DTM)	0	1	S17	S18	S19	S20	S21	S22	S23	S24	00h
(17-byte command)	0	1								•••	00h
	0	1	S113	S114	S115	S116	S117	S118	S119	S120	00h
	0	1	BG	_	_	_	_	-	_	_	00h
Data Stop (DSP)	0	0	0	0	0	1	0	0	0	1	11h
Data Stop (DSF)	1	1	data_flag	_	_	_	_	-	_	_	_
Display Refresh (DRF)	0	0	0	0	0	1	0	0	1	0	12h
	0	0	0	0	1	0	0	0	0	0	20h
V _{COM} LUT (LUTV) (16-byte command,	0	1	LVL_V1	[1:0]			FRM	1_V1[5:0]		00h
bytes 2~4 repeated 5 times)	0	1	LVL_V2	[1:0]	FRM_V2[5:0]						
,	0	1				F	PHS_V[7:0]				00h
	0	0	0	0	1	0	0	0	0	1	21h
BlackBlack LUT (LUT_KK) (16-byte command,	0	1	LVL_KK	1[1:0]			FRM	_KK1[5:	0]		00h
bytes 2~4 repeated 5 times)	0	1	LVL_KK2	2[1:0]			FRM	_KK2[5:	0]		00h
, ,	0	1				Р	HS_KK[7:0]				00h
	0	0	0	0	1	0	0	0	1	0	22h
BlackWhite LUT (LUT_KW) (16-byte command,	0	1	LVL_KW	1[1:0]			FRM	_KW1[5:	0]		00h
bytes 2~4 repeated 5 times)	0	1	LVL_KW	2[1:0]			FRM	_KW2[5:	0]		00h
,,,,,,	0	1				Р	HS_KW[7:0]				00h
	0	0	0	0	1	0	0	0	1	1	23h
WhiteBlack LUT (LUT_WK)	0	1	LVL_WK	1[1:0]	FRM_WK1[5:0]						00h
(16-byte command, bytes 2~4 repeated 5 times)	0	1	LVL_WK	2[1:0]			FRM	_WK2[5:	0]		00h
	0	1				Р	HS_WK[7:0]				00h

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0	1	0	0	1	0	0	24h
WhiteWhite LUT (LUT_WW) (16-byte command,	0	1	LVL_WW	1[1:0]			00h				
bytes 2~4 repeated 5 times)	0	1	LVL_WW	2[1:0]			FRM_	WW2[5:	0]		00h
, , , , ,	0	1				Pl	HS_WW[7:0]]			00h
Frame Rate Control (FRC)	0	0	0	0	1	1	0	0	0	0	30h
Frame Rate Control (FRC)	0	1	SF[1]	SF[0]	NF[1]	NF[0]	_	P2	P1	P0	83h
Temperature Sensor (TSC)	0	0	0	1	0	0	0	0	0	0	40h
Temperature Sensor (130)	1	1	Busy_N	_	_	_	TS3	TS2	TS1	TS0	_
Devision (DEV)	0	0	0	1	1	1	0	0	0	0	70h
Revision (REV)	1	1	0	0	0	0	0	0	0	0	00h
Cot Status (FLC)	0	0	0	1	1	1	0	0	0	1	71h
Get Status (FLG)	1	1	0	0	0	TS_ON	data_flag	PON	POF	Busy_N	02h
Casanda Cattina	0	0	1	1	1	0	0	0	0	0	E0h
Cascade Setting	0	1	_	_	_	_	_	_	_	CAS_EN	00h
Test mode	0	0	1	1	1	1	1	1	1	0	FEh

Command Description

Panel Setting (PSR) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Panel Setting	0	0	0	0	0	0	0	0	0	0	00h
(PSR)	0	1	BWR	_	_	_	VDLH_EN	DDX	SHD_N	RST_N	8Fh

"-": Don't care

The command descriptions are as follows:

BWR: Black/white or red color select

0: Select red. V_{DH} and V_{DL} are set by PWR command

1: Select black/white (default). V_{DH} is fixed to 12V and V_{DL} is set by the PWR command

VDLH_EN: V_{DL}/V_{DH} source select

0: External $V_{\text{DL}}/V_{\text{DH}}$ power from $V_{\text{DL}}/V_{\text{DH}}$ pin

1: Generate V_{DL}/V_{DH} using internal charge pump (default)

DDX: Data index control

0: "0: white, 1: black/red"

1: "0: black/red, 1: white" (default)

SHD_N: Charge pump control

0: Charge pump OFF

1: Charge pump ON (default)

When SHD_N is set to "0", the charge pump will be switched OFF, and when VDLH_EN="1" the driver output will be tied to VSS

RST_N: Reset control

0: Reset all registers to their default value

1: Normal operation (default)

When RST_N is set to "0", the driver will be reset and all register will be reset to their default value.

Power Setting (PWR) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Power Setting (PWR)	0	0	0	0	0	0	0	0	0	1	01h
	0	1	_	_		VDH_LV[5:0]					
	0	1	_	_			VDL_I	_V[5:0]			1Eh

"—": Don't care

The command descriptions are as follows:

 $\boldsymbol{VDH_LV[5:0]}$: The default value is 011110b, $V_{DH}\!\!=\!\!7.00V$

VDH_LV[5:0]	V _{DH}	VDH_LV[5:0]	V _{DH}	VDH_LV[5:0]	V _{DH}
000000	4.00	010000	5.60	100000	7.20
000001	4.10	010001	5.70	100001	7.30
000010	4.20	010010	5.80	100010	7.40
000011	4.30	010011	5.90	100011	7.50
000100	4.40	010100	6.00	100100	7.60
000101	4.50	010101	6.10	100101	7.70
000110	4.60	010110	6.20	100110	7.80
000111	4.70	010111	6.30	100111	7.90
001000	4.80	011000	6.40	101000	8.00
001001	4.90	011001	6.50	Others	8.00
001010	5.00	011010	6.60		
001011	5.10	011011	6.70		
001100	5.20	011100	6.80		
001101	5.30	011101	6.90		
001110	5.40	011110	7.00	←default	
001111	5.50	011111	7.10		

VDL_LV[5:0]: The default value is 011110b, V_{DL} =3.50V

			_		_
VDL_LV[5:0]	V _{DL}	VDL_LV[5:0]	V _{DL}	VDL_LV[5:0]	V _{DL}
000000	2.00	010000	2.80	100000	3.60
000001	2.05	010001	2.85	100001	3.65
000010	2.10	010010	2.90	100010	3.70
000011	2.15	010011	2.95	100011	3.75
000100	2.20	010100	3.00	100100	3.80
000101	2.25	010101	3.05	100101	3.85
000110	2.30	010110	3.10	100110	3.90
000111	2.35	010111	3.15	100111	3.95
001000	2.40	011000	3.20	101000	4.00
001001	2.45	011001	3.25	Others	4.00
001010	2.50	011010	3.30		
001011	2.55	011011	3.35		
001100	2.60	011100	3.40		
001101	2.65	011101	3.45		
001110	2.70	011110	3.50	←default	
001111	2.75	011111	3.55		

Rev. 1.00 12 June 19, 2017

Charge Pump OFF (CPOF) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Charge Pump	0	0	0	0	0	0	0	0	1	0	02h
OFF (CPOF)	0	1	_		_			_	SGM_FL	VCOM_FL	03h

"-": Don't care

After executing a charge pump OFF command, BUSY_N will be set to "0". This command will turn off the charge pump, driver output and temperature sensor but the register data will be kept until VDD OFF. The charge pump OFF sequence is shown below.

The command descriptions are as follows:

SGM_FL: Segment and BG level selection when charge pump OFF

0: Segment and BG - floating when charge pump OFF

1: Segment and BG – ground when charge pump OFF (default)

VCOM_FL: COM level selection when charge pump OFF

0: COM - floating when charge pump OFF

1: COM – ground when charge pump OFF (default)

Note that this action could not change the data flag status.

This command is only active when BUSY N = "1".

After finishing a power-on reset, the driver is in the charge pump OFF stage.

Rev. 1.00 June 19, 2017

Charge Pump ON (CPON) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Charge Pump ON (CPON)	0	0	0	0	0	0	0	1	0	0	04h

After executing the charge pump ON command, the charge pump will be active. The charge pump ON sequence is shown below.

After the charge pump ON command and all power sequences are ready, BUSY_N will be set to "1".

The user must execute a charge pump ON command before accessing the driver IC.

Charge Pump ON Sequence

COMBG Set (CBS) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
COMBG Set	0	0	0	0	0	0	0	1	0	1	05h
(CBS)	0	1	_	_	_	_	CBS3	CBS2	CBS1	CBS0	0Bh

The command descriptions are as follows.

CBS3:

0: COMBG3 pin is set as COM pin

1: COMBG3 pin is set as BG pin

CBS2:

0: COMBG2 pin is set as COM pin

1: COMBG2 pin is set as BG pin

CBS1:

0: COMBG1 pin is set as COM pin

1: COMBG1 pin is set as BG pin

CBS0:

0: COMBG0 pin is set as COM pin

1: COMBG0 pin is set as BG pin

This command is used to set the COMBG0~COMBG3 pins as COM or BG pins separately for various applications.

When CBS[3:0]=Bh, the COMBG3~COMBG0 pins are set as shown in the table.

Pin Name	(COMBG3) BG (COMBG3) S120	7 =	 S62	S61 COM (COMBG2)	ا _ 25	(COMBG1) BG (COMBG1)	Se0 S59	 S2	S1 BG (COMBG0)	BG (COMBG0)
----------	----------------------------	-------	---------	------------------------	-----------	----------------------	------------	--------	----------------------	----------------

Data Start Transmission (DTM) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0	0	1	0	0	0	0	10h
	0	1	S1	S2	S3	S4	S5	S6	S7	S8	00h
	0	1	S9	S10	S11	S12	S13	S14	S15	S16	00h
	0	1	S17	S18	S19	S20	S21	S22	S23	S24	00h
	0	1	S25	S26	S27	S28	S29	S30	S31	S32	00h
	0	1	S33	S34	S35	S36	S37	S38	S39	S40	00h
	0	1	S41	S42	S43	S44	S45	S46	S47	S48	00h
Data Start	0	1	S49	S50	S51	S52	S53	S54	S55	S56	00h
Transmission (DTM)	0	1	S57	S58	S59	S60	S61	S62	S63	S64	00h
(17-byte command)	0	1	S65	S66	S67	S68	S69	S70	S71	S72	00h
	0	1	S73	S74	S75	S76	S77	S78	S79	S80	00h
	0	1	S81	S82	S83	S84	S85	S86	S87	S88	00h
	0	1	S89	S90	S91	S92	S93	S94	S95	S96	00h
	0	1	S97	S98	S99	S100	S101	S102	S103	S104	00h
	0	1	S105	S106	S107	S108	S109	S110	S111	S112	00h
	0	1	S113	S114	S115	S116	S117	S118	S119	S120	00h
	0	1	BG		_		_	_	_	_	00h

"-": Don't care

The command starts to transmit data and write to the new_data register. The original data will be moved to the previous_data register at the same time for the data comparison function.

Note that users must send the full 17-byte command at once. If less than a 17-byte command is sent, the contents of the previous_data register will be incorrect. In this case the outcome will be that the result of the data comparison between the new data register and the previous data register will be incorrect.

After transmitting all data completely (17-bytes command), the data_flag will be set to "1".

This command is only active when BUSY_N = "1".

Rev. 1.00 15 June 19, 2017

Data Stop (DSP) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Data Stan (DSD)	0	0	0	0	0	1	0	0	0	1	11h
Data Stop (DSP)	1	1	data_flag	_	_	_	_	_	_	_	_

"—": Don't care

The command descriptions are as follows.

Data_flag:

0: The driver IC did not receive all the data

1: The driver IC has received all the data completely

This command is used to read the data transmission status. When the driver IC has received all the 16 bytes data through the DTM command, the data flag will be set to "1".

When this command is executed and the data_flag is "1", the IC will refresh the display according to the new_data register, previous data register and LUT.

After executing a DTM command and a DSP command, BUSY N will be set to "0".

After finishing a display refresh, BUSY_N will be set to "1" and the data_flag wil be set to "0".

The data transmission waveform is shown below:

Display Refresh (DRF) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Display Refresh (DRF)	0	0	0	0	0	1	0	0	1	0	12h

After executing a DRF command, BUSY_N will be set to "0". Then the driver IC will refresh the display according to the new_data register, the previous_data register and LUT.

After finishing display fresh, BUSY_N will be set to "1" automatically.

This command only active when BUSY N = "1".

The display refresh waveform is shown below:

Rev. 1.00 June 19, 2017

VCOM LUT (LUTV) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0	1	0	0	0	0	0	20h
V _{COM} LUT (LUTV) (16-byte command,	0	1	LVL_\	/1[1:0]		•	FRM_\	V1[5:0]			00h
bytes 2~4 repeated 5 times)	0	1	LVL_\	/2[1:0]			FRM_\	V2[5:0]			00h
	0	1				PHS_	V[7:0]				00h

The command descriptions are as follows:

LVL_V1[1:0]: (bytes 2, 5, 8, 11, 14): Level selection (1) LVL_V2[1:0]: (bytes 3, 6, 9, 12, 15): Level selection (2)

LVL_Vx[1:0]	Level(x)
00	V_{DL}
01	V _{DH}
10	0V
11	Floating

FRM_V1[5:0]: (bytes 2, 5, 8, 11, 14): Number of Frames (1) **FRM_V2[5:0]**: (bytes 3, 6, 9, 12, 15): Number of Frames (2)

FRM_Vx[5:0]	Number of Frames(x)
000000	0
000001	1
000010	2
000011	3
:	:
111111	63

The frame rate is set by the FRC command.

PHS_V[7:0]: (bytes 4, 7, 10, 13, 16): Number of Phases to repeat

PHS_V[7:0]	Number of Phase
00000000	0
0000001	1
00000010	2
00000011	3
:	:
11111111	255

This command stores V_{COM} LUT using 5 groups of data with each group containing information for one phase and being stored with 3 bytes.

This command is only active when BUSY_N = "1".

BlackBlack LUT (LUT_KK) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0	1	0	0	0	0	1	21h
BlackBlack LUT (LUT_KK)	0	1	LVL_KK1[1:0]			FRM_KK1[5:0]					
(16-byte command, bytes 2~4 repeated 5 times)	0	1	LVL_KK2[1:0] FRM_KK2[5:0]					00h			
	0	1				PHS_k	K[7:0]				00h

The command descriptions are as follows:

LVL_KK1[1:0]: (bytes 2, 5, 8, 11, 14): Level selection (1) **LVL_KK2[1:0]**: (bytes 3, 6, 9, 12, 15): Level selection (2)

LVL_KKx[1:0]	Level(x)
00	V _{DL}
01	V _{DH}
10	0V
11	Floating

FRM_KK1[5:0]: (bytes 2, 5, 8, 11, 14): Number of Frames (1) **FRM_KK2[5:0**]: (bytes 3, 6, 9, 12, 15): Number of Frames (2)

FRM_KKx[5:0]	Number of Frames(x)
000000	0
000001	1
000010	2
000011	3
:	:
111111	63

The frame rate is set by the FRC command.

Rev. 1.00 18 June 19, 2017

PHS_KK[7:0]: (bytes 4, 7, 10, 13, 16): Number of Phases to repeat

PHS_KK[7:0]	Number of Phase
00000000	0
0000001	1
00000010	2
00000011	3
:	:
11111111	255

This command stores BlackBlack LUT using 5 groups of data with each group containing information for one phase and being stored with 3 bytes.

BlackBlack means that the previous color is black and the new color is black.

This command is only active when BUSY_N = "1".

BlackWhite LUT (LUT_KW) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0	1	0	0	0	1	0	22h
BlackWhite LUT (LUT_KW)	0	1	LVL_K\	N1[1:0]			FRM_K	W1[5:0]			00h
(16-byte command, bytes 2~4 repeated 5 times)	0	1	LVL_K\	N2[1:0]			FRM_K	W2[5:0]			00h
System = Troposition of minocy	0	1				PHS_K	W[7:0]				00h

The command descriptions are as follows:

LVL_KW1[1:0]: (bytes 2, 5, 8, 11, 14): Level selection (1) **LVL_KW2[1:0]**: (bytes 3, 6, 9, 12, 15): Level selection (2)

LVL_KWx[1:0]	Level(x)
00	V _{DL}
01	V _{DH}
10	0V
11	Floating

FRM_KW1[5:0]: (bytes 2, 5, 8, 11, 14): Number of Frames (1) **FRM_KW2[5:0]**: (bytes 3, 6, 9, 12, 15): Number of Frames (2)

FRM_KWx[5:0]	Number of Frames(x)
000000	0
000001	1
000010	2
000011	3
:	:
111111	63

The frame rate is set by the FRC command.

Rev. 1.00 June 19, 2017

PHS_KW[7:0]: (bytes 4, 7, 10, 13, 16): Number of Phases to repeat

PHS_KW[7:0]	Number of Phases
00000000	0
0000001	1
00000010	2
00000011	3
:	:
11111111	255

This command stores BlackWhite LUT using 5 groups of data with each group containing information for one phase and being stored with 3 bytes.

BlackWhite means that the previous color is black and the new color is white.

This command only active when BUSY_N = "1".

WhiteBlack LUT (LUT_WK) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0	1	0	0	0	1	1	23h
WhiteBlack LUT (LUT WK)	0	1	LVL_W	K1[1:0]	FRM_WK1[5:0]						00h
(16-byte command,	0	1	LVL_W	K2[1:0]		FRM_WK2[5:0]					00h
bytes 2~4 repeated 5 times)	0	1	PHS_WK[7:0]					00h			
	0	1				PHS_V	VK[7:0]				00h

The command descriptions are as follows:

LVL_WK1[1:0]: (bytes 2, 5, 8, 11, 14): Level selection (1) LVL_WK2[1:0]: (bytes 3, 6, 9, 12, 15): Level selection (2)

LVL_WKx[1:0]	Level(x)
00	V_{DL}
01	V_{DH}
10	0V
11	Floating

FRM_WK1[5:0]: (bytes 2, 5, 8, 11, 14): Number of Frames (1) **FRM_WK2[5:0]**: (bytes 3, 6, 9, 12, 15): Number of Frames (2)

FRM_WKx[5:0]	Number of Frames(x)
000000	0
000001	1
000010	2
000011	3
:	:
111111	63

The frame rate is set by the FRC command.

Rev. 1.00 June 19, 2017

PHS_WK[7:0]: (bytes 4, 7, 10, 13, 16): Number of Phases to repeat

PHS_WK[7:0]	Number of Phase
00000000	0
0000001	1
00000010	2
00000011	3
:	:
11111111	255

This command stores WhiteBlack LUT using 5 groups of data with each group containing information for one phase and being stored with 3 bytes.

WhiteBlack means that the previous color is white and the new color is black.

This command only active when BUSY_N = "1".

WhiteWhite LUT (LUT_WW) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
	0	0	0	0 0 1 0 0 1 0 0					0	24h	
WhiteWhite LUT (LUT_WW)	0	1	LVL_W	W1[1:0]	FRM_WW1[5:0]						00h
(16-byte command, bytes 2~4 repeated 5 times)	0	1	LVL_W	LVL_WW2[1:0] FRM_WW2[5:0]						00h	
	0	1	PHS_WW[7:0]							00h	

The command descriptions are as follows:

LVL_WW1[1:0]: (bytes 2, 5, 8, 11, 14): Level selection (1) **LVL_WW2[1:0]**: (bytes 3, 6, 9, 12, 15): Level selection (2)

LVL_WWx[1:0]	Level(x)
00	V _{DL}
01	V _{DH}
10	0V
11	Floating

FRM_WW1[5:0]: (bytes 2, 5, 8, 11, 14): Number of Frames (1) FRM_WW2[5:0]: (bytes 3, 6, 9, 12, 15): Number of Frames (2)

FRM_WWx[5:0]	Number of Frames(x)
000000	0
000001	1
000010	2
000011	3
:	:
111111	63

The frame rate is set by the FRC command.

Rev. 1.00 21 June 19, 2017

PHS_WW[7:0]: (bytes 4, 7, 10, 13, 16): Number of Phases to repeat

PHS_WW[7:0]	Number of Phase
00000000	0
0000001	1
00000010	2
00000011	3
:	:
11111111	255

This command stores WhiteWhite LUT using 5 groups of data with each group containing information for one phase and being stored with 3 bytes.

WhiteWhite means that the previous color is white and the new color is white.

This command only active when BUSY_N = "1".

Frame Rate Control (FRC) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Frame Rate	0	0	0	0	1	1	0	0	0	0	30h
Control (FRC)	0	1	SF[1]	SF[0]	NF[1]	NF[0]		P2	P1	P0	83h

"—": Don't care

The command descriptions are as follows:

SF[1:0]: Switching frequency control during the charge-pump start-up stage.

SF[1]	SF[0]	Frequency
0	0	2MHz
0	1	4MHz
1	0	8MHz (default)
1	1	12MHz

NF[1:0]: Switching frequency control during the charge-pump normal stage.

NF[1]	NF[0]	Frequency
0	0	2MHz (default)
0	1	4MHz
1	0	8MHz
1	1	12MHz

P[2:0]: The frame rate control.

P[2:0]	Frame rate	Frame rate P[2:0]	
000	10Hz	100	57Hz
001	20Hz	101	67Hz
010	40Hz	110	80Hz
011	50Hz(default)	111	100Hz

SF[1:0] and NF[1:0] are used to control the charge pump switching frequency. During the start-up stage, the default frequency is set to 8MHz and the rise time is about 40ms at V_{DD} =3V. In the normal stage, the default frequency is set to 2MHz to reduce power consumption.

The user can control the switching frequency for different applications to reduce the power consumption, noise, cost and capacitor value.

Rev. 1.00 22 June 19, 2017

Note: The $V_{\text{DH}}/V_{\text{DL}}$ charge stage definition.

Temperature sensor (TSC) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Temperature	0	0	0	1	0	0	0	0	0	0	40h
Sensor (TSC)	1	1	Busy_N	_	_	_	TS3	TS2	TS1	TS0	_

"-": Don't care

The command descriptions are as follows:

Busy_N:

When the TSC command is executed, the Busy_N flag will be active and the temperature sensor will also be active. It will then sense and convert the temperature.

After finishing conversion, the Busy N flag will be idle.

The user can poll the Busy N status to detect the temperature sensor status.

Busy_N flag definition:

Busy_N Status	CPON Stage	CPOF Stage			
Active	0	1			
Idle	1	0			

TS[3:0]: Temperature values.

TS[3:0]	Temperature	TS[3:0]	Temperature
0000	<-10°C	1000	25°C
0001	<-10°C	1001	30°C
0010	-5°C	1010	35°C
0011	0°C	1011	40°C
0100	5°C	1100	45°C
0101	10°C	1101	50°C
0110	15°C	1110	55°C
0111	20°C	1111	>60°C

After the TSC command has been sent, BUSY_N will active and the temperature sensor will be active. It will then sense and convert the temperature. After finishing conversion, the BUSY_N flag will be idle. The host can then read the temperature value.

Revision Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Devision (DEV)	0	0	0	1	1	1	0	0	0	0	70h
Revision (REV)	1	1	0	0	0	0	0	0	0	0	00h

The command is used to read the IC revision. The default value is 00h.

Get status (FLG) Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Get Status (FLG)	0	0	0	1	1	1	0	0	0	1	71h
	1	1	0	0	0	TS_ON	Data_Flag	PON	POF	Busy_N	02h

The command descriptions are as follows:

TS_ON:

0: Temperature Senor OFF (default)

1: Temperature Sensor ON

Data_Flag:

0: All data has not been received

1: All data completely received

PON:

0: —

1: Power is ON

POFF:

0:—

1: Power is OFF

BUSY_N:

0: Busy

1: Idle

Cascade Setting Command

Command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Default
Cascade Setting	0	0	1	1	1	0	0	0	0	0	E0h
	0	1	_	_	_	_	_	_	_	CAS_EN	00h

"-": Don't care

The command descriptions are as follows:

CAS_EN: Cascade function control

0: Cascade function disabled - CL and VSYNC set to "1" (default)

1: Cascade function enabled – CL and VSYNC output clock and VSYNC signal connected to the slave IC

This command is valid when the MS pin is set to "1". To enable the cascade function the user has to set the MS pin for the master IC and slave IC selection.

In the slave mode the charge pump and oscillator are disabled and V_{DH} and V_{DL} are supplied from the master IC. It is not allowed to change the VDLH_EN and SHD_N status in the PSR command.

This command is only active when BUSY_N = "1".

Example for LUT setting and output waveform

The LUT register structure is shown below.

LUT Registers		Phase 1			Phase 2			Phase 3			Phase 4			Phase 5		
LUTV	20h	05h	05h	01h	0Ah	0Ah	01h	85h	45h	03h	05h	05h	01h	05h	05h	01h
LUT_KK	21h	05h	05h	01h	8Ah	0Ah	01h	45h	85h	03h	45h	45h	01h	05h	05h	01h
LUT_KW	22h	45h	45h	01h	0Ah	0Ah	01h	45h	85h	03h	05h	05h	01h	05h	05h	01h
LUT_WK	23h	85h	85h	01h	8Ah	0Ah	01h	45h	85h	03h	45h	45h	01h	45h	45h	01h
LUT_WW	24h	85h	85h	01h	0Ah	8Ah	01h	45h	85h	03h	45h	45h	01h	85h	85h	01h

According to the LUT register setup the output waveforms are shown below.

Note: T=1/f, the parameter is setup using the FRC command.

BUSY_N Signal Flow Chart

Cascade Operation Flow Chart

Power Supply Sequence

If the V_{DH} and V_{DL} power is supplied from external power, it is strongly recommended to follow the Holtek power supply sequence requirement.

If the power supply sequence requirement is not followed, it may result in malfunction.

Holtek Power Supply Sequence Requirement:

- Power-on sequence $Turn \ on \ the \ power \ of \ V_{DD} \ and \ AV_{DD} \ first \ and \ then \ turn \ on \ the \ power \ of \ V_{DH} \ and \ V_{DL}.$
- Power-off sequence $\label{eq:VDD} \text{Turn off the power of V_{DH} and V_{DL} first and then turn off the power of V_{DD} and AV_{DD}.}$

Rev. 1.00 28 June 19, 2017

Application Circuits

Single Chip Application

Cascade Mode Application

V_{DH} and V_{DL} are Supplied from External Power

Copyright[©] 2017 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw/en/home.