+ Name -: Adke Prasad Sukder.

+ DIV-; A.

ROII NO .-: 01.

+ class -: SYMCA

Batch -: A1.

+ Theory Assignment - II.

+ subject -: Machine Learning.

e.1. Using k-means dustering duster following data into two dusters.

(2,3), (3,4), (5,6), (8,7), (7,3), (4,6). show each of the steps.

solution -:

consider,

CI = (213) as a first centroid.

c2 = (4,6) as a second controid.

1			
1 2 2 2 2 2	C1(2,3)	C2(4,6)	class
(2,3)	0	3.61	c1
(3,4)	1.41	2.23	01
(5,6)	4.24	1	C2
(8,7)	7.21	4.12	C2
(7,3)	9005	4.24	C2
(4,6)	3.66	0	C2

: cluster 1 =
$$[(2,3), (3,4)]$$

Cluster 2 = $[(5,6), (8,7), (7,3), (4,6)]$

Now, new centroids will be,

$$C_i = \left(\frac{2+3}{2}, \frac{3+4}{2}\right) = \left(2.5, 3.5\right)$$

$$C_i' = (2.5, 3.5)$$

$$c_2' = \left(\frac{5+8+7+4}{4}, \frac{6+7+8+6}{4}\right)$$

$$\left[c_2' = \left(6, 5.5\right)\right]$$

Now,

	C1 (2.5, 3.5)	C2(6, 5.5)	dass
(2,3)	0.7071	4.7169	01
(3,4)	0-7071	8-354	CI
(5,6)	3 5355	1.11	C2
(8,7)	6.5	2.5	C2
(7,3)	4.5	2.69	C2
(4.6)	2.9	2.06	C2

dusters. As there is no changes in previous & new

$$\Rightarrow$$
 C1 [(2,3), (3,4)] & C2[(5,6), (8,7), (7,3), (4,6)] are the final dusters

e.2. Find all association rules using apriori algorithm in the following database with minimum of support = 2 and minimum confidence = 65%.

1=	contidence = 65%.
Transactions	Data Items.
T1 T2	Pen, Pencil, Notebook.
T3	Pencil, File.
	Pen, Pencil, Notebook, File.
T4	Pen, Notebook,
T5	Pencil, Scale, File.
T6	Pencil, Scale.
T7	
	Pen, Pencil, Scale.

solution -:

Now, We have to calculate support & confidence for one data item. (K=1).

Item	no support
Pen	4
Pencil	6
Notebook	3
File	3
scale.	3

Now, for k=2.

1101 12.	
Item	support
Pen, Pencil	3
Pen, Notebook	3
Pen, File	
Pen, Scale	
Pencil, Notebook	2

Pencil,	File	3
Pencil,	scale	3.
File,	scale	2.

Now, for to minimum support = 2,

Item	min_support=2
Pen, Penci°	3
Pen, Notebook	3
Pencil, Notebook	2
Pencil, File	3
Pencil, Scale	3
File, scale	2

Now, generate 3-itemsets

3-Itemsets	Fregney
Pen, Pencil, Notebook}	2
[Pencil, Notebook, file]	1 - 122
? Pencil, File, Scale?	1

itemset with minimum_support > 2
i.e. { Pen, Pencil, Notebook}

Generating Association Rules.

Rules from {Pen, Pencil} {support = 3}

• Pen → Pencil: Confidence = (3/4) + 100 = 75% (Pass)

• Pencil → Pen: Confidence = (3/6) + 100 = 50/. (fail)

```
Rules from { Pen, Notebook} (support = 3)
   · Pen => Notebook: confidence = (3/4)+100= 75% (Pass)
   · Notebook > Pen: confidence = (3/3) + 100 = 100% (Pass)
Rules from { Pencil, Notebook} (support = 2)
  · Pencil → Notebook: confidence = (2/6) *100 = 33.33-1.
   · Notebook > Pencil: confidence = (2/3) +100
                                  = 66. 67% (Pass)
 Rules from { Pencil, File } (support = 2)
   · Pencil > file: confidence = (2/6) + 100 = 33.33./. (fail)
  · File > Pencil: confidence = (2/3) +100 = 66.67/. (tass)
 Rules from { Pencil, Scale } (support = 3)
  · Pencil = scale: confidence = (3/6) + 100 = 50% (fail)
  · Scale => Pencil. confidence = (3/3) +100 = 100-1 (pass)
  Pules from {file, scale} (support = 2)
  · File > scale; confidence = (2/3)+100 = 66.67/. (Pass)
  · Scale => File: confidence = (2/3)4100 = 66.671. (Pass)
 Rules from {Pen, Pencil, Notebook} (support = 2)
  · Pen, Pencil > Notebook: confidence
             = (2/3) + 100 = 66.67% (Pass)
 · Pen, Notebook >> Pencil, confidence
          = (2/3) + 100 = 66.67.1. (Pass)
 · Pencil, Notebook >> Pen: confidence
       = (2/2) + 100 = 1001. Pass.
 so, Finally, (Minimum Confidence > 65%)
   1. Pen => Pencil (75%)
  2. Pen ⇒ Notebook (75%)
  3. Notebook => Pen (100%)
```

- 4. Notebook => Pencil (66.67%)
- 5. File => Pencil (66.67%)
- 6. Scale > Pencil (100%)
- 7. File => scale (66.67%)
- 8. Scale > File (66.67.1.)
- 9. Pen, Pencil → Notebook (66.67%)
- 10. Pen, Notebook > Pencil (66.67%)
- 11. Pencil, Notebook > Pen (100%)

These are association rules with min-support = 2 and minimum confidence = 65%.