ЛАБОРАТОРНАЯ РАБОТА № 4

ЗАКОНЫ ПОСТОЯННОГО ТОКА

Цель работы

Изучение законов постоянного тока и простейших приемов расчета разветвленных электрических цепей с помощью правил Кирхгофа.

Оборудование:

Стенд со сменной панелью НТЦ-22.03/02; цифровой мультиметр.

Краткая теория

Обобщенный закон Ома, выраженный формулой:

$$I = \frac{U_1 - U_2 + \varepsilon}{R} \tag{1}$$

позволяет рассчитать любую сложную цепь. Однако непосредственный расчет разветвленных цепей представляется сложным. Эта сложность в значительной степени устраняется, если пользоваться двумя системами уравнений, данными Кирхгофом.

Разветвленная цепь характеризуется силой токов, идущих по ее участкам, сопротивлениями участков и э.д.с., включенными в эти участки. Эти величины связаны между собой, и по одним из них *могут* быть найдены другие. Например, по заданным сопротивлениям и э.д.с. можно найти направления и силы токов, текущих в каждом из участков цепи.

Первая система уравнений Кирхгофа

Назовем в разветвленной цепи узлом (рис. 1), точку, в которой сходятся не меньше трех проводников. Первая система уравнений Кирхгофа относится к узлам. Так как мы рассматриваем случай постоянных токов, то в любой точке цепи, в том числе и в любом узле, имеющийся заряд должен оставаться постоянным. Следовательно, сколько приносится зарядов, столько должно и уноситься. Если мы условимся токи, подходящие к узлу, считать положительными, а токи, исходящие из узла — отрицательными, то можем сказать:

Алгебраическая сумма сил токов, сходящихся в узле, равна нулю.

Аналитически это запишется так:

$$\sum_{k=1}^{N} I_k = 0, (2)$$

где N - число токов, сходящихся в данном узле; такое уравнение имеет место для каждого узла цепи.

Совокупность уравнений (2), написанных для различных узлов данной цепи, представляет собой первую систему уравнений Кирхгофа.

Вторая система уравнений Кирхгофа

Вторая система уравнений Кирхгофа относится к произвольным замкнутым контурам, которые можно выделить в данной разветвленной цепи. Рассмотрим произвольный замкнутый контур (рис. 2), состоящий из неоднородных участков AB, BC и CA.

Условимся, обходя контур в определенном направлении, например по часовой стрелке, считать положительными те токи, направление которых совпадает с направлением обхода, и отрицательными – те, направление которых противоположно направлению обхода. Также положительными будем считать те э.д.с., которые повышают потенциал в направлении обхода, и отрицательными – те, которые понижают потенциал в направлении обхода. К каждому неоднородному участку контура AB, BC и CA применим закон Ома в том виде, как он дается формулой (1).

Обозначим сопротивление участков AB, BC, CA соответственно через R_1 , R_2 , R_3 ; силы текущих по ним токов – через I_1 , I_2 , I_3 и встречающиеся в них э.д.с. – через ε_1 , ε_2 , ε_3 . Потенциалы точек A, B, C обозначим через U_1 , U_2 , U_3 .

Тогда по закону Ома, написанному для каждого из АВ, ВС и СА в отдельности, получим:

$$\begin{split} I_1 R_1 &= U_1 - U_2 + \varepsilon_1, \\ I_2 R_2 &= U_2 - U_3 + \varepsilon_2, \\ I_3 R_3 &= U_3 - U_1 + \varepsilon_3. \end{split}$$

Складывая эти три равенства почленно, получим:

$$I_1R_1+I_2R_2+I_3R_3=\varepsilon_1+\varepsilon_2+\varepsilon_3.$$

Как видно, в результате потенциалы U_1 , U_2 , U_3 точек A, B, C выпали. Так как такое рассуждение может быть применено к любому замкнутому контуру, то в общем виде можно написать для всякого замкнутого контура:

$$\sum_{k=1}^{n} I_k R_k = \sum_{k=1}^{n} \varepsilon_k \text{ или } \sum_{k=1}^{n} U_k = \sum_{k=1}^{n} \varepsilon_k$$
 (3)

Здесь n означает число участков в замкнутом контуре, а k — номер, характеризующий участок. Таким образом:

В любом замкнутом контуре, произвольно выбранном в разветвленной цепи проводников сумма произведений сил токов на сопротивления соответствующих участков цепи равна сумме э.д.с., встречающихся в этом контуре.

Совокупность уравнений (3), написанных для различных контуров, выделенных в данной разветвленной цепи, образует вторую систему уравнений Кирхгофа.

Уравнения Кирхгофа (2) и (3), составленные для узлов и контуров, позволяют рассчитать цепи разветвленных токов. Уравнений (2) и (3) надо составить столько, чтобы число их равнялось числу искомых величин, при этом необходимо следить, чтобы одни уравнения не являлись следствием других. Если в цепи имеется m узлов, то в первой системе уравнений Кирхгофа можно составить независимые уравнения лишь для (m-1) узлов. Уравнение для последнего узла будет следствием предыдущих. Если в цепи можно выделить несколько замкнутых контуров, то независимые уравнения второй системы Кирхгофа можно составить только для тех контуров, которые не получаются в результате наложения уже рассмотренных.

При составлении второй системы Кирхгофа необходимо аккуратно пользоваться указанными выше правилами знаков для токов и э.д.с.

Описание установки

Для проверки законов Кирхгофа составляют разветвленную электрическую цепь, изображенную на рис. 3, где выведены следующие обозначения:

 ε_1 - батареи аккумуляторов; R_1 , R_4 , R_5 - сопротивления участков цепи; r_1 и r_2 - внутренние сопротивления батарей аккумуляторов; I_1 , I_4 , I_5 - токи участков цепи; I, 2 – номера узлов разветвлений.

Напряжение на участках цепи измеряется мультиметром в режиме вольтметра.

Следует иметь в виду, что стрелки на рис 3 указывают условные направления токов через сопротивления. Поэтому схему рис. 3 студенты вычерчивают перед выполнением работы без указания направления токов стрелками.

Порядок выполнения лабораторной работы:

1. Установить сменную панель НТЦ-22.03/02 в разъем стенда.

Рис. 4.

2. С помощью цифрового мультиметра (в режиме измерения сопротивлений) установить следующие сопротивления R_1 и R_4 (в пределах 350-500 Ом), сопротивление R_5 измерить и занести в таблицу 1.

Примечание: Измерение сопротивлений

Соедините **на панели мультиметра** один провод с гнездом СОМ, а другой – с гнездом V/W. Полярность гнезда V/W будет положительной (+). Переключателем выберите желаемый предел измерения W и подсоедините щупы к исследуемому сопротивлению.

3. Собрать схему, как показано на рис. 3 используя монтажную схему (рис. 4). При сборке схемы используйте рис. 5.

Рис. 5.

- 4. Питание схемы подается с модуля стенда SA3.
- 5. После проверки схемы преподавателем или лаборантом убедитесь, что на панели стенда присутствуют только необходимые для проведения данного опыта перемычки, все тумблеры и выключатели находятся в нижнем положении («ВЫ-КЛЮЧЕНО»), а все галетные переключатели и потенциометры в крайнем левом положении.
- 6. Включить питание стенда (три автоматических выключателя «СЕТЬ»).
- 7. Цифровым мультиметром (в режиме измерения напряжения) измерить падение напряжения на всех сопротивлениях. При этом определить и указать направления токов на рис. З через эти сопротивления, пользуясь обозначением полюсов на вольтметре.

Примечание: Измерение напряжения

Соедините **на панели мультиметра** один провод с гнездом **COM**, а другой – с гнездом **V/W**. Поворотным переключателем выберите желаемый предел измерения постоянного (V=) или переменного ($V\sim$) напряжения и подсоедините свободные концы проводов к источнику напряжения или исследуемой нагрузке. Включите кнопку **ON/OFF**. Прочтите показания на дисплее. При измерении постоянного напряжения дисплей покажет полярность сигнала на щупе, подключённом к гнезду **V/W**. Если дисплей показывает «1», то это указывает на перегрузку (слишком большой измеряемый сигнал), тогда нужно выбрать больший предел измерения.

8. Результаты измерений заносят в таблицу 1.

	Измерения		Величины, вычисленные по формулам									
Номера	R±AR	$\Omega \overline{+} \Omega$	$I \leftarrow I$	Узел	11+14+15	ΣI, (2a)	ΣΔU/R, (26)	Контур	Σε	ΣΩ	Σε-ΣU, (36)	Σε+ΣU, (36)
1	2	3	4	5	6	7	8	9	10	11	12	13
1												
2												
3												

9. По значениям напряжений, действующих на сопротивлениях, и величинам самих сопротивлений по закону Ома определяют силы токов на каждом участке цепи и результаты заносят в таблицу 1.

Обработка результатов измерений

1. Зная направление токов и их величины, проверяют справедливость формулы (2) для углов 1, 2. В графу 5 заносятся номера узлов; в графу 6 таблицы записывается алгебраическая сумма сил токов соответственно для каждого узла (в общем виде).

Например, для узлов, изображенных на рис. 3, с учетом указанных на схеме направлений токов должно быть:

для узла 1: $I_1 - I_4 + I_5 = 0$;

для узла 2: $I_4 - I_1 - I_5 = 0$.

Результаты опыта проверяются так.

Если учесть, что на основании первого закона Кирхгофа (например, для узла 2):

$$\sum I = \sum \frac{U}{R} = \frac{U_4}{R_4} - \frac{U_1}{R_1} - \frac{U_5}{R_5}$$
 (2a)

и величины U и R измеряются с абсолютной погрешностью ΔU и ΔR , то, следовательно, $\sum I$ может отличаться от нуля не более, чем на величину суммарной погрешности, допущенной при измерении, т.е. на величину

$$\Delta \frac{U}{R} = \frac{R_4 \Delta U_4 + U_4 \Delta R_4}{R_4^2} + \frac{R_1 \Delta U_1 + U_1 \Delta R_1}{R_1^2} + \frac{R_5 \Delta U_5 + U_5 \Delta R_5}{R_5^2}$$
(26)

В графу 7 таблицы записывается сумма токов $\sum I$, сходящихся в данном узле, вычисленная по формуле (2a), а в графу 8 - суммарная погрешность, допущенная при измерении данных токов и вычисленная по формуле (2б).

2. Далее проверяют справедливость формулы (3).

В графу 9 заносят обозначенный контур, для которого производится проверка второго закона Кирхгофа. В графу 10 записывают сумму э.д.с., включенных в данный контур, и в графу 11 – сумму падений напряжений на нем.

Так, например, для контура *АВ1СD2A* должно быть получено:

$$\varepsilon_1 = U_1 + U_5 + I_1 r_1 \tag{3}$$

Так как r_1 и r_2 значительно меньше внешнего сопротивления, то в расчетах величинами $I \cdot r$ можно пренебречь.

Поэтому
$$\sum \varepsilon - \sum U = 0$$
 (3a)

Результат вычисления, полученный по формуле (3а), заносится в графу 12 таблицы.

Так как ε и U измеряются с абсолютной погрешностью $\Delta \varepsilon$ и ΔU , то результат вычисления, полученный по формуле (3a), может отличаться от нуля не более, чем суммарную погрешность, допущенную при их измерении, т.е. на величину

$$\sum \varepsilon + \sum U$$
, (36)

которая записывается в графу 13 таблицы.

Контрольные вопросы

- 1. Записать основные характеристики постоянного электрического тока.
- 2. Сформулировать закон Ома для однородного участка цепи в интегральной и дифференциальной формах..
- 3. Что такое электродвижущая сила?
- 4. Принцип действия химических источников ЭДС.
- 5. Чем отличается ЭДС от напряжения на клеммах источника энергии?
- 6. Как определить полезную и полную мощность источника ЭДС?
- 7. Сформулировать первое правило Кирхгофа.
- 8. Сформулировать второе правило Кирхгофа. Для чего необходимо выбирать направление обхода контура?

Литература ОСНОВНАЯ ЛИТЕРАТУРА

- 1. И.В. Савельев Общий курс физики. Т. 3. Электричество. учеб. пособие для втузов-М.: Астрель: ACT, 2003.- 336c
- 2. А.Н. Матвеев Электричество и магнетизм. Учеб. пособие для студ. вузов.- М. : ОНИКС 21 век: Мир и Образование , 2005.- 463с
- 3. Д.В. Сивухин Общий курс физики. Электричество. : учеб. пособие для студ. физических спец. вузов- 4-е изд., стереотип.- М. : Физматлит: МФТИ, 2002.- 656с.
- 4. С.Г. Калашников Электричество. M. : Hayкa , 1985.- 576c.
- 5. А.С. Мікуліч Курс агульнай фізікі. Электрычнасць і магнетызм. Мінск: Вышэйшая школа, 1995.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- 1. И.Е. Иродов Электромагнетизм. Основные законы. М., ЛБЗ, 2001.
- 2. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике, вып. 5,6. Электричество и магнетизм. М., Мир, 1966.
- 3. Общий физический практикум. Под ред. А.М. Матвеева МГУ, 1991.
- 4. Физический практикум. Под ред Кембровского. Из-во Университетское. Минск, 1988.