CS 302: Implementation of Programming Languages TUTORIAL 1 (Lexical Analysis); Jan 16, 2017

P0. Identify manually the first 20 lexemes that make up the tokens in the following program. Give reasonable attribute values for the tokens.

```
int hashpjw(string s)
{
  unsigned h =0, g;
  for ( int i = 0; i < s.length(); i++ )
  { cout << " before " << h << endl;
    h = ( h << 4 ) + ( s[i] );
    if ( g = h&0xf0000000 )
    {
       h = h ^ ( g << 24 );
       h = h ^ g;
    }
  }
  return h % PRIME;
}</pre>
```

P1. Find the errors in the following Lex specification for floating point numbers, where digit denotes the ten decimal digits 0 through 9.

```
{digit}^*\setminus {digit}^*(e-{digit}^+)?
```

Give a correct specification for floating point numbers.

- **P2.** Write lex specification for recognizing single line comments in C/C++. The action required is to count the number of single line comments in a file.
- **P3**. Lex specification for comments is given below.

```
"/*" [^*]* (\*( [^/ ] [^*]* )? )* "*/"
```

Is the specification correct for all cases? If your answer is yes, justify why it is so. Otherwise provide an instance(s) of a comment that is/are not captured by this specification. Make minimal changes in the given specification (with justification) to make it work for all cases.

- **P4.** Strings are characters enclosed within " and ". A " enclosed in a string is represented as "". Write a regular expression for strings. You must produce argument to show why your regular expression is correct.
- **P5.** Consider the following Lex-like specification of three distinct tokens :

```
(aba)+ Token 1
(a(b)*a) Token 2
a(a | b) Token 3
```

Manually construct a dfa that is able to recognize all the tokens. Indicate the token(s) found against each accepting state. Are there any clashes?

P6. Consider the Lex-like specification of three distinct tokens of P5,

(aba)+ Token 1 (a(b)*a) Token 2 a(a | b) Token 3

- (a) Draw the syntax tree and find nullable(), firstpos() and lastpos() sets
- (b) Compute followpos() and then construct the DFA
- **P7.** Consider the following lex-like description of the following two tokens :

a b Token 1 (a b)* c Token 2

- (a) Construct a DFA, using any method of your choice, that recognizes both the tokens.
- (b) Find the cost for complete tokenization (finding all tokens in the string) of the input string (ab)¹⁰, assuming that each edge transition in the DFA incurs unit cost.
- **P8.** This question concerns the four array representation scheme for a DFA. The function used is reproduced below. The minimal number of array accesses to find nextstate (s,a) for a state s appears to be 2 (assuming such a transition exists), which is required for accessing arrays CHECK and NEXT.

```
function nextstate (s, a)
{ if CHECK[BASE[s] + a] = s
  then NEXT[BASE[s] + a]
  else return (nextstate( DEFAULT[s], a))
}
```

Construct a minimal DFA for which determination of nextstate(s,a) for some state s, requires at least 6 array accesses, if such is possible, else justify why such a DFA can not exist.

P9. Construct manually the 4 array based representation for the following DFA in terms of Default, Base, Next and Check such that array sizes are as low as possible.

States	a	b	С	d
0	5	4	_	-
1	1	-	-	1
2	-	-	6	5
3	-	_	-	2
4	5	4	-	1
5	2	3	4	4
6	5	4	-	-

P10. Construct its minimal dfa for the dfa of P9. The states {1, 2} are given to be final states.

Support Material from Course Notes

1. Extended Regular Expressions

Expression	Describes	Example
С	Any non-metalinguistic character c	a
\c	Character c literally	*
"s"	String s literally	"**"
•	Any character but newline	a.*b
٨	Beginning of a line	^abc
\$	End of line	abc\$
[s]	Any character in s	[abc]
[^s]	Any character not in s	[^abc]
[A-E]	Any character A through E	[a-c]
r*	Zero or more r's	a*
r+	One or more r's	a+
r?	Zero or one r	a?
r1 r2	r1 then r2	ab
r1 r2	r1 or r2	a b
(r)	r	(a b)
r1 / r2	r1 when followed by r2	abc/123

2. Minimizing states of a dfa

Outline of an algorithm that minimizes the states of a given dfa is given below.

- 1. Construct an initial partition $\prod = \{ S F, F_1, F_2, ..., F_n \}$, where $F = F_1 \cup F_2 \cup ... \cup F_n$ and each F_i is the set of final states for some token i.
- 2. for each set G in \prod do partition G into subsets such that two states s and t of G are in the same subset if and only if
 - for all input symbols a, states s and t have transitions onto states in the same set of \prod ; replace G in $\pi \prod_{new}$ by the set of all subsets formed;
- 3. If $\pi \prod_{\text{new}} = \prod \pi$, let $\pi \prod_{\text{final}} := \prod$ and continue with step 4. Otherwise repeat step 2 with $\pi \prod := \pi \prod_{\text{new}}$.
- 4. Merge states in the same set of the partition.
- 5. Remove any dead (unreachable) states.

3. Four Arrays representation scheme for dfas

If s is a state and a is the numeric representation of a symbol, then

- 1. BASE[s] gives the base location for the information stored about state s.
- 2. NEXT[BASE[s] + a] gives the next state for s and symbol a, only if CHECK[BASE[s] + a] = s.
- 3. If CHECK[BASE[s] + a] \neq s, then the next state information is associated with DEFAULT[s].

```
function nextstate (s, a)
{ if CHECK[BASE[s] + a] = s
  then NEXT[BASE[s] + a]
  else
      return (nextstate( DEFAULT[s], a))
}
```

A heuristic, which works well in practice, to fill up the four arrays, is to find for a given state, the lowest BASE, so that the special entries of the state can be filled without conflicting with the existing entries.

4. Direct construction of deterministic finite automata from a regular expression

Let Σ be the underlying alphabet. The rules for construction of the sets firstpos, lastpos and followpos is summarized in the following table. It is assumed that followpos(i) is initialized to \emptyset , \forall is

node n	nullable(n)	firstpos(n)	lastpos(n)	followpos(i)
Leaf labeled ϵ	true	Ø	Ø	
Leaf labeled with $a \in \sum$ at position i	false	{i}	{i}	
C ₁ C ₂	nullable(c ₁) or nullable (c ₂)	firstpos(c ₁) U firstpos(c ₂)	$\begin{array}{c} lastpos(c_1) \ \cup \\ lastpos(c_2) \end{array}$	
c ₁ • c ₂	nullable(c ₁) and nullable (c ₂)	if nullable(c₁)then firstpos(c₁)U firstpos(c₂)else firstpos(c₁)	if nullable(c ₂) then lastpos(c ₁) U lastpos(c ₂) else lastpos(c ₂)	if $i \in lastpos(c_1)$ then followpos(i) += firstpos(c_2)
C*	true	firstpos()	lastpos(c)	if i ∈ lastpos(c) then followpos(i) += firstpos(c)
C ⁺	nullable(c)	firstpos(c)	lastpos(c)	if i ∈ lastpos(c) then followpos(i) += firstpos(c)

Algorithm

1. Construct the tree for r# for the given regular expression r

2. Construct functions *nullable()*, *firstpos()*, *lastpos()* and *followpos()*

```
3. Let firstpos(root) be the start state. Push it on top of a stack. While (stack not empty) do begin pop the top state U off the stack; mark it; for each input symbol a do begin let p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>, ... p<sub>k</sub> be the positions in U corresponding to symbol a; Let V = followpos(p<sub>1</sub>) U followpos(p<sub>2</sub>) U ..... U followpos(p<sub>k</sub>); place V on stack if not marked and not already in stack; make a transition from U to V labeled a; end end
```

4. Final states are the states containing the positions corresponding to #.