Área personal / Mis cursos / Grado / Ingeniería Industrial / Electrónica General y Aplicada-2020 / General / 29 JULIO-2021. EXAMEN PRACTICA. REGULAR 2020.

Comenzado el	jueves, 29 de julio de 2021, 08:09
Estado	Finalizado
Finalizado en	jueves, 29 de julio de 2021, 08:54
Tiempo	44 minutos 46 segundos
empleado	
Calificación	8,00 de 10,00 (80 %)
Comentario -	APROBADO

Pregunta 1

Correcta

Puntúa 1,00 sobre 1,00

Dado el circuito de la figura. Los datos son: R1=entre 0 ohms y 10 Kohms, R2=10 Kohms, R3= 10 Kohms, R4=4,7 Kohms, R5=4,7 Kohms.

(Nota. Si necesita, para los cálculos utilice solo 2 decimales)

A. Determinar la Tensión Mínima y Máxima (rango) en la Salida Vs1. RESPUESTA: entre 4 y 12V ✓

B. Determinar la Tensión en la Salida Vs2.

RESPUESTA: entre 2 y 6V ✓

Respuesta correcta

La respuesta correcta es:

Dado el circuito de la figura. Los datos son: R1=entre 0 ohms y 10 Kohms, R2=10 Kohms, R3= 10 Kohms, R4=4,7 Kohms, R5=4,7 Kohms.

(Nota. Si necesita, para los cálculos utilice solo 2 decimales)

A. Determinar la Tensión Mínima y Máxima (rango) en la Salida Vs1. RESPUESTA:[entre 4 y 12V]

B. Determinar la Tensión en la Salida Vs2. RESPUESTA: [entre 2 y 6V]

Pregunta **2**Correcta

Puntúa 1,00 sobre 1,00

A. Dado el Circuito de la figura donde el transistor traba en conmutación. Indique el estado del Led según la posición de las llaves L1 y L2. Responda en función de las Opciones Disponibles. Respuesta Opción 2

	V 1

ITEM	Llave L1	Llave L2	Estado Led
1	Abierta	Abierta	Apagado
2	Cerrada	Cerrada	Apagado
3	Cerrada	Abierta	Apagado
4	Ahierta	Cerrada	Encendido

OPCIÓN 2

ITEM	Llave L1	Llave L2	Estado Led
1	Abierta	Abierta	Apagado
2	Cerrada	Cerrada	Apagado
3	Cerrada	Abierta	Apagado
4	Abierta	Cerrada	Apagado

OPCIÓN 3

ITEM	Llave L1	Llave L2	Estado Led
1	Abierta	Abierta	Apagado
2	Cerrada	Cerrada	Encendido
3	Cerrada	Abierta	Encendido
4	Abierta	Cerrada	Apagado

OPCIÓN 4 NINGUNA OPCION

B. Software Proteus. Indique la Opción que permite seleccionar en el Menú el área de <u>Trabajo</u> (entrada del esquemático) para iniciar el diseño del circuito o esquema de simulación. Respuesta Opción 4

Opción 1 Opción 3 Opción 4

	Ninguna es la Opción Correcta	Opción 1	Opción 2
Opción 3	Opción 5	Opción 6	Opción 7
Opción 8	Opción 9		

Respuesta correcta

La respuesta correcta es:

A. Dado el Circuito de la figura donde el transistor traba en conmutación. Indique el estado del Led según la posición de las llaves L1 y L2. Responda en función de las Opciones Disponibles. Respuesta [Opción 2]

OPCIÓN 1

I	ITEM	Llave L1	Llave L2	Estado Led
	1	Abierta	Abierta	Apagado
I	2	Cerrada	Cerrada	Apagado
I	3	Cerrada	Abierta	Apagado
1	4	Abierta	Cerrada	Encendido

OPCIÓN 2

ITEM	Llave L1	Llave L2	Estado Led
1	Abierta	Abierta	Apagado
2	Cerrada	Cerrada	Apagado
3	Cerrada	Abierta	Apagado
4	Abierta	Cerrada	Apagado

OPCIÓN 3

ITEM	Llave L1	Llave L2	Estado Led
1	Abierta	Abierta	Apagado
2	Cerrada	Cerrada	Encendido
3	Cerrada	Abierta	Encendido
4	Abierta	Cerrada	Apagado

OPCIÓN 4 NINGUNA OPCION

B. Software Proteus. Indique la Opción que permite seleccionar en el Menú el área de Trabajo (entrada del esquemático) para iniciar el diseño del circuito o esquema de simulación. **Respuesta [Opción 4]**

Pregunta **3** Parcialmente correcta Puntúa 0,50 sobre 1,00

Indique cuál de las Opciones es la correcta.

¿Se corresponden los Valores Experimentales con el circuito del Regulador asociado?

RESPUESTA: Opción 2 x

OPCIÓN 4 NINGUNA

B. Software Proteus. Indique la Opción que da el Significado a la Letra "P" del Menú de Dispositivos (vea la imagen). Las Opciones se visualizan en la imagen. RESPUESTA: Opción 1

Respuesta parcialmente correcta.

Ha seleccionado correctamente 1.

La respuesta correcta es:

Indique cuál de las Opciones es la correcta.

¿Se corresponden los Valores Experimentales con el circuito del Regulador asociado?

RESPUESTA: [Opción 4]

B. Software Proteus. Indique la Opción que da el Significado a la Letra "P" del Menú de Dispositivos (vea la imagen). Las Opciones se visualizan en la imagen. RESPUESTA: [Opción 1]

9/2021	29 JULIO-2021. LAMILIN I MACTICA. NEUGLAN 2020 Nevision del intento	
Pregunta 4		
Correcta		
Puntúa 1,00 sobre 1,00		
digitalWrite(MS, HIGH);		
while (Se3==LOW)		
{		
Se3 =digitalRead(S3);		
}		
digitalWrite(MS,LOW);		
En el código mostrado al detenerse el	l motor en qué piso se encuentra el elevador?	
a. en el 2º		
○ b. en el 1º		
© c. en el 3º	•	/
d. Ninguna de las opciones mos	stradas	
Respuesta correcta		
La respuesta correcta es:		
en el 3º		
Pregunta 5		
Correcta		
Puntúa 1,00 sobre 1,00		
Trama de Interrogación v Resp	puesta Maestro-Esclavo (final de la trama CR=0D, LF=0A)	
5 7 1-		

:040400050005LRC0D0A (Interrogación) :04040AAF0101020100FFE410E4LRC0D0A (Respuesta)

A. Determinar el Código de Error de la Trama de Respuesta. Respuesta 63 🗸

B. Determinar el Código de Error de la Trama de Interrogación. Respuesta EE 🗸

Respuesta correcta

La respuesta correcta es:

Trama de Interrogación y Respuesta Maestro-Esclavo (final de la trama CR=0D, LF=0A)

:040400050005LRC0D0A (Interrogación) :04040AAF0101020100FFE410E4LRC0D0A (Respuesta)

A. Determinar el Código de Error de la Trama de Respuesta. Respuesta [63]

B. Determinar el Código de Error de la Trama de Interrogación. Respuesta [EE]

Pregunta **6**Correcta
Puntúa 1,00 sobre 1,00

La función que enciende el LED en el circuito de la figura es:

NOTA: a* significa a negado

- a. f(c,b,a) = b*a (c+b*)
- \bigcirc b. f(c,b,a) = ba + (cb*)
- c. $f(c,b,a) = ba (c+b^*)$
- od. Ninguna de las opciones mostradas

La respuesta correcta es:

f(c,b,a) = b*a (c+b*)

Pregunta **7**

Incorrecta

Puntúa 0,00 sobre 1,00

Se tiene un oscilador que proporciona 1Mhz y se quieren obtener aprox.7,81Khz. Si se lo resuelve con un contador, cuántos biestables tendría?

- a. Respuesta = 5
- b. Respuesta = 7
- c. Respuesta = 8
- od. Ninguna de las opciones mostradas

La respuesta correcta es:

Respuesta = 7

7/29	9/2021	29 JULIO-2021. EXAMEN PRACTICA. REGULAR 2020.: Revisión del intento	
	Pregunta 8		
	Correcta		
	Puntúa 1,00	sobre 1,00	
	Cuánta	s unidades de 2K x 8 bit's serán necesarias para construir una memoria de 32Kbytes?.	
	a.	Respuesta = 16	~
	O b.	Respuesta = 8	
	O c.	Respuesta = 32	
	O d.	Ninguna de las opciones mostradas	
	La respi	uesta correcta es:	
	Respue	sta = 16	

Pregunta **9**Parcialmente correcta

Puntúa 0,50 sobre 1,00

A. Con los Datos del Circuito Determinar el Ancho de Histéresis (H) en Volts.

Indique cuál de las Opciones es la Correcta. Respuesta 0,5∨ ✓

B. Considere los Datos del Circuito y un Sensor resistivo NTC variable con la temperatura, siendo el valor a 25°Celcius de 10Kohms y a 60°Celcius de 4,16 Kohms (considere variación lineal). El Valor de R3= 4,7 Kohms. Determine si el Rango de Variación de Vin (en Volts) se encuentra dentro del rango (VinH-VinL) del Ancho de Histéresis (H) determinado en el punto A (VinL=Mínimo valor de entrada de Vin, VinH= Máximo valor de entrada de Vin) . **Respuesta**

	1V	1,5 V	
2,5 V	Otro Valor es la Respuesta Correcta	2V	
El Rango Vin es Inferior al rango de VinH-VinL			
El Rango Vin Supera el rango de V	/inH-VinL Faltan Datos para deter	minar el rango VinH-VinL	

Respuesta parcialmente correcta.

Ha seleccionado correctamente 1.

A. Con los Datos del Circuito Determinar el Ancho de Histéresis (H) en Volts. Indique cuál de las Opciones es la Correcta. **Respuesta** [0,5V]

B. Considere los Datos del Circuito y un Sensor resistivo NTC variable con la temperatura, siendo el valor a 25°Celcius de 10Kohms y a 60°Celcius de 4,16 Kohms (considere variación lineal). El Valor de R3= 4,7 Kohms. Determine si el Rango de Variación de Vin (en Volts) se encuentra dentro del rango (VinH-VinL) del Ancho de Histéresis (H) determinado en el punto A (VinL=Mínimo valor de entrada de Vin, VinH= Máximo valor de entrada de Vin) . **Respuesta [El Rango Vin es Inferior al rango de VinH-VinL]**

Pregunta 10
Correcta
Puntúa 1,00 sobre 1,00
Si en una entrada analógica del Arduino UNO hay 3,5Vcc. y la tensión de referencia es 5Vcc, cuál será aproximadamente el valor binario resultante de la conversión?
○ a. Respuesta = 1110001010
● b. Respuesta = 1011001100
oc. Respuesta = 1000110111
d. Ninguna de las opciones mostradas
La respuesta correcta es:
Respuesta = 1011001100
■ 29 JULIO-2021. EXAMEN PRACTICA. LIBRE 2020.
Ir a

29 JULIO-2021. EXAMEN PRACTICA. REGULAR 2019. ►