Lab 2

YOUR NAME HERE

2023-08-30

You should edit this .Rmd using RStudio, then click *Render* in the menu bar of the Source window (above the text of this .Rmd). Remember, you must submit *both* your .Rmd and the compiled .html in order to receive full credit!

Collaborators

INSERT NAMES OF ANY COLLABORATORS

A. Functions and Vectors

In this problem, we will revisit the sample function to simulate the birthday problem. The birthday problem asks for the probability that in a set of n randomly chosen people, at least two will share a birthday. For the purpose of this problem, suppose that we live in a universe where there are exactly 365 days in a year (sorry to those of you with leap day birthdays!) and each individual has an equal probability of being born on any given day.

1. Write code to create a vector birthdays of the numbers 1:365.

```
"``r
# Make a vector containing 1 to 365 numbers
birthday <- 1:365
```

2. Use the sample() function to sample n=5 birthdays (with replacement) from birthdays and save it as a vector sample_5. Repeat this with n=10, 20, 30, 50, 100. You may want to use set.seed() to set a random seed.

```
# Set seed to have reproducible results.

# Make 6 vectors containing random samples of the birthday vector, the vectors' sizes are 5, 10, 20, 30

set.seed(42)

sample_5 <- sample(birthday, size = 5, replace = TRUE)

sample_10 <- sample(birthday, size = 10, replace = TRUE)

sample_20 <- sample(birthday, size = 20, replace = TRUE)

sample_30 <- sample(birthday, size = 30, replace = TRUE)

sample_50 <- sample(birthday, size = 50, replace = TRUE)

sample_100 <- sample(birthday, size = 100, replace = TRUE)

sample_5

sample_5
```

```
## [1] 49 321 153 74 228
```r
sample_10
[1] 146 122 49 128 303 24 327 356 89 165
```r
sample_20
            20 297 89 283 109
                               5 212 348 360 259 314 298 24 158 299 314 136 292
## [1] 110
## [20] 324
```r
sample_30
[1] 146 109 348 197
 4 226 355 215 245 114 262 130
 3 258 358 186 138 40
 5
[20] 33 103 228 109 329 157 76 265 35 221 16
```r
sample_50
## [1] 357 220 248 325 118 130 82 325 110 360 296 149 57 100 298 91 269 181 54
## [20] 339 288 208 246 60 285 337 108 341 126 112 72 285
                                                          1 141 206 311 299 42
## [39] 42 248 353 251 157 25 191 32 337 238
```r
sample_100
 [1] 262 299 208 246 242 287 350 224 262 214 294
 95
 6 340 252 271 34 188
 [19] 254 268 128 41 193 66 312 152
 98
 25 348 107 317 14 162 124 194
 95
##
 [37]
 32 185 284 118 37 138 261
 35
 78 14 156
 97 229 182 127 287
 43 180
 30 180 356 212 75 201
 62 269 124
 2
 [55] 337
 27
 63
 49
 [73] 159 136 127 208 259 229 269
 12 193 158
 51 351 165 47 312 198
 10 255
 [91] 201 233
 3 338 181 239 284 252
 93 313
```

3. Did you sample the same birthday twice in sample\_5? What about for the other samples? Write code that can be used to test whether any of the days appears twice in each of your samples. There are many

```
ways to do this and you can use any functions. In particular, length() and unique() may be useful.
```r
# creating vectors of duplicate days for each sample sets.
repeat_5 <- unique(sample_5[duplicated(sample_5)])</pre>
repeat_10 <- unique(sample_10[duplicated(sample_10)])</pre>
repeat_20 <- unique(sample_20[duplicated(sample_20)])</pre>
repeat_30 <- unique(sample_30[duplicated(sample_30)])</pre>
repeat_50 <- unique(sample_50[duplicated(sample_50)])</pre>
repeat_100 <- unique(sample_100[duplicated(sample_100)])</pre>
repeat_5
## integer(0)
```r
repeat_10
integer(0)
```r
repeat_20
## [1] 314
```r
repeat_30
[1] 109
```r
repeat_50
## [1] 325 285 42 248 337
```r
repeat_100
```

```
[1] 262 95 14 287 180 124 127 208 229 269 193 312 201 284 252
```

4. What do you observe? Discuss any patterns or surprising findings.

For the smaller sets, sample\_5 and sample\_10, there were no two birthdays that were the same. It is observed that there is a higher likelihood of a day appearing more than once in a larger sized sample sets.

# B. Working with Data Frames

Use the following code to load the penguins data.

```
load palmer penguins package
library(palmerpenguins)

open penguins data as a data frame
data(penguins)
penguins <- as.data.frame(penguins)</pre>
```

5. Using the mean() function, compute the mean body mass of penguins in the dataset, dropping any missing values.

```
"``r
omitting any rows in the body mass column that have NA value before taking the mean of the body mass(clean_mass <- na.omit(penguins$body_mass_g)
mean_mass <- mean(clean_mass)
```

The average body mass of the penguins is 4201.754386g.

**6.** Using the max function, compute the maximum flipper length of penguins in the dataset, dropping any missing values.

```
""

omitting any rows in the flipper length column before finding the max flipper length(mm)

flipper_clean <- na.omit(penguins$flipper_length_mm)

max_length <- max(flipper_clean)
```

The maximum flipper length is 231mm.

```r

7. Using the hist function, create a histogram of the ratio of the penguins' bill length to bill depth, dropping any missing values. What is the shape of the resulting distribution?

remove all of the NA values from both the bill length and bill depth columns

```
# then find the ratio of the penguins' bill length to bill depth by dividing the length by the depth
# plot the ratio using the histogram.

L_clean <- na.omit(penguins$bill_length_mm)
D_clean <- na.omit(penguins$bill_depth_mm)

ratio_ld <- L_clean/D_clean

hist(ratio_ld, main = "Ratio of bill length to bill depth")

![](02 lab files/figure-latex/unnamed-chunk-7-1.pdf)<!-- -->
```