Investigación Operativa

C.C. Lauritto & Ing. Casanova

Guia 04: Transporte y Asignación

Fecha de Entrega: 04 de Diciembre de 2016

Ravera P. & Rivera R.

$\mathbf{\acute{I}ndice}$

Ejercicios	3
Punto 01 - News Monthly	3
Punto 02 - Distribución de Frutas	4
Punto 03 - Vestidos	6
Punto 04 - Agricultor	8
Punto 05 - JoShop	9
Asignación <mark>Optima</mark>	9
Quinto Trabajador	11
Quinta Tarea	12
Punto 06 - Competencia Relevos	13
Punto 07 - Tomas y la Cerveza	15
Punto 08 - MKJ	15

Ejercicios

Punto 01 - News Monthly

Contamos con la siguiente información sobre los costos de envió:

Cuadro 1: Costos de Envió

	Chicago	Seattle	Washington	Biblioteca	Oferta
Los Angeles	0.07	0.05	0.1	-0.05	5000
New York	0.03	0.11	0.04	-0.08	5000
——————————————————————————————————————	4000	2000	2500	1500	

Entonces, nuestra variable de decisión X_{ij} representa la cantidad de ejemplares enviados desde el origen i al destino j. La función objetivo:

$$Max \ Z = 0.07 \left[\frac{\$}{c} \right] X_{11} [c] + 0.05 \left[\frac{\$}{c} \right] X_{12} [c] + 0.10 \left[\frac{\$}{c} \right] X_{13} [c] - 0.05 \left[\frac{\$}{c} \right] X_{14} [c] + 0.03 \left[\frac{\$}{c} \right] X_{21} [c] + 0.11 \left[\frac{\$}{c} \right] X_{22} [c] + 0.04 \left[\frac{\$}{c} \right] X_{23} [c] - 0.08 \left[\frac{\$}{c} \right] X_{24} [c]$$

sujeta a:

$$\begin{split} X_{11}\left[c\right] + X_{12}\left[c\right] + X_{13}\left[c\right] + X_{14}\left[c\right] &\leq 5000\left[c\right] \\ X_{21}\left[c\right] + X_{22}\left[c\right] + X_{23}\left[c\right] + X_{24}\left[c\right] &\leq 5000\left[c\right] \\ X_{11}\left[c\right] + X_{21}\left[c\right] &\geq 4000\left[c\right] \\ X_{12}\left[c\right] + X_{22}\left[c\right] &\geq 2000\left[c\right] \\ X_{13}\left[c\right] + X_{23}\left[c\right] &\geq 2500\left[c\right] \\ X_{14}\left[c\right] + X_{24}\left[c\right] &\geq 1500\left[c\right] \end{split}$$

Entonces, luego de resolver el problema llegamos a la siguiente solución:

Cuadro 2: Plan Optimo

	Chicago	Seattle	Washington
Los Angeles	1500	2000	0
New York	2500	0	2500

Quedando sin entregar 1500 copias de la imprenta de la ciudad de Los Ángeles.

Punto 02 - Distribución de Frutas

Contamos con la siguiente información sobre los costos de transporte de transporte de un kg de fruta entre cada huerta y cada mercado, ademas de sus respectivas producciones y requerimientos:

Cuadro 3: Ofertas y Demandas

	Mercado01	Mercado02	Mercado03	Mercado04	MercFict	Oferta	Costo Kg
Huerta01	0.3	0.7	0.5	0.3	0	200	10
Huerta02	1.2	1	0.9	0.1	0	300	9
Huerta03	2	0.4	0.1	0.5	0	500	10
Demanda	200	100	200	400	100		
$Venta\ Kg$	10	12	15	11	0		

En este caso la función objetivo es:

$$Max \ Z = 10600 \, [\$] - 9700 \, [\$] - \sum_{i=1}^{3} \sum_{j=1}^{5} C_{ij} X_{ij}$$

Sujeta a las siguientes restricciones pactadas con las huertas y los mercados respectivamente:

[Huerta01]
$$\sum_{j=1}^{5} X_{1j} [Kg] = 200 [Kg]$$
[Huerta02]
$$\sum_{j=1}^{5} X_{2j} [Kg] = 300 [Kg]$$
[Huerta03]
$$\sum_{j=1}^{5} X_{3j} [Kg] = 500 [Kg]$$
[Mercado01]
$$\sum_{i=1}^{3} X_{i1} [Kg] = 200 [Kg]$$
[Mercado02]
$$\sum_{i=1}^{3} X_{i2} [Kg] = 100 [Kg]$$
[Mercado03]
$$\sum_{i=1}^{3} X_{i3} [Kg] = 200 [Kg]$$
[Mercado04]
$$\sum_{i=1}^{3} X_{i4} [Kg] = 400 [Kg]$$
[MercadoFict]
$$\sum_{i=1}^{3} X_{i5} [Kg] = 100 [Kg]$$

$$\forall$$
 $i \in \{1, 2, 3\}$ $j \in \{1, 2, 3, 4, 5\}$ $X_{ij} \ge 0$

Primera solución por Vogel:

Esta primera solución tiene un beneficio (Z) igual a \$ 660. Luego de resolver el problema con LINGO llegamos a la conclusión que esta solución no es solo la primera SBF, sino que es la optima.

Esta solución entonces nos indica que el plan de distribución optimo consiste en:

- ullet Enviar 200 Kg de fruta desde la huerta 01 hacia el mercado 01
- ullet Enviar 100 Kg de fruta desde la huerta 03 hacia el mercado 02
- ullet Enviar 300 Kg de fruta desde la huerta 02 hacia el mercado 04
- \blacksquare Enviar 200 Kg de fruta desde la huerta 03 hacia el mercado 03
- \blacksquare Enviar 100 Kg de fruta desde la huerta 03 hacia el mercado 04
- Sobran 100 Kg de fruta adquiridos en la huerta 03 que se echan a perder

Punto 03 - Vestidos

Se busca minimizar los costos en los que se incurre para satisfacer la demanda de vestidos. A continuación se presenta un cuadro que contiene información sobre la cantidad máxima de vestidos que se puede comprar a cada proveedor, junto con el costo de cada tipo (notes que la ultima columna representan los vestidos que no se le compran a un proveedor y no un tipo extra):

Cuadro 4: Tabla de Costos

	A	В	С	D	E	Oferta
Perez	130	210	100	160	0	300
Quiroga	125	200	105	170	0	350
Ruiz	120	100	110	155	0	250
Suarez	110	175	90	145	0	200
Tonelli	140	215	95	165	0	300
Demanda	300	300	300	300	200	

La función objetivo es:

$$Min \ Z = \sum_{i=1}^{5} \sum_{j=1}^{5} C_{ij} X_{ij}$$

Sujeta a:

La siguiente tabla muestra el plan de compra optimo:

Cuadro 5: Solución Optima

	A	В	С	D	Е
Perez	0	0	0	300	0
Quiroga	150	0	0	0	200
Ruiz	0	250	0	0	0
Suarez	150	50	0	0	0
Tonelli	0	0	300	0	0

Punto 04 - Agricultor

A continuación se muestran la ganancia de destinar cada finca al monocultivo, expresado en miles de pesos.

Cuadro 6: Datos

	Tabaco	Melon	Trigo	Tomate
A	60	80	90	80
В	80	65	75	100
\mathbf{C}	68	100	60	75
D	56	90	69	95

Entonces aplicamos el método Húngaro:

Cuadro 7: Paso 1) Ajuste para maximizacion

40	20	10	20
20	35	25	0
32	0	40	25
44	10	31	5

Cuadro 8: Paso 2) Resta por filas

30	10	0	10
20	35	25	0
32	0	40	25
39	5	36	0

Cuadro 9: Paso 3) Resta por columnas

0	10	0	10
0	35	25	0
2	0	40	25
9	5	36	0

Cuadro 10: Paso 4) Asignación

0	10	0	10
0	35	25	0
2	0	40	25
9	5	36	0

El resultado final del mismo nos indica que lo conveniente es:

- Plantar Trigo en la finca A
- Plantar Tabaco en la finca B
- Plantar Melon en la finca C
- Plantar Tomate en la finca D

Si seguimos este plan, alcanzamos una ganancia de \$365000, lo que resulta mayor a lo que el agricultor estaba ganando antes de recurrir al monocultivo.

Punto 05 - JoShop

Asignación Optima

Cuadro 11: Situación Inicial

Cuadro 12: Resta por filas

Cuadro 13: Resta por columnas

Cuadro 14: Primer intento - Restar $X_{24}=10$

0	30	-	0
20	20	0	10
30	0	20	_
20	0	40	50

Cuadro 15: Segundo intento - Restar $X_{41}=10\,$

0	30	-	0
10	20	0	0
20	0	20	-
10	0	40	40

Cuadro 16: Asignación Optima

0	30	-	0
10	20	0	0
10	0	20	-
0	0	40	30

Gracias a la aplicación del método húngaro, llegamos a que la siguiente asignación del personal traerá acarreado los costos mínimos:

- Asignar al trabajador 01 a la tarea 04.
- Asignar al trabajador 02 a la tarea 03.
- Asignar al trabajador 03 a la tarea 02.
- Asignar al trabajador 04 a la tarea 01.

Dicho costo resulta ser de 140 unidades monetarias.

Quinto Trabajador

Cuadro 17: +1 Trabajador - Situación Inicial

Cuadro 18: +1 Trabajador - Resta por Filas

0	30	-	0	0
20	20	0	10	0
40	10	30	-	0
20	0	40	50	0
10	25	10	60	0

Cuadro 19: +1 Trabajador - Resta por Columnas

Cuadro 20: +1 Trabajador - Asignación Optima

0	40	-	0	10
10	20	0	0	0
30	10	40	40	0
10	0	40	40	0
0	25	10	50	0

En este caso la asignación optima es:

• Asignarle la tarea 01 al trabajador 05 (nuevo trabajador).

- Asignarle la tarea 02 al trabajador 04.
- Asignarle la tarea 03 al trabajador 02.
- Asignarle la tarea 04 al trabajador 01.

Dicho costo resulta ser de 120 unidades monetarias.

Quinta Tarea

Cuadro 21: +1 Tarea - Situación Inicial

50	50	-	20	20
70	40	20	30	10
90	30	50	-	20
70	20	60	70	80
0	0	0	0	0

Cuadro 22: +1 Tarea - Resta por Filas

Cuadro 23: +1 Tarea - Resta por Columnas

30	40	-	0	10
50	30	0	10	0
60	10	20	-	0
40	0	30	40	60
0	10	0	0	10

Cuadro 24: +1 Tarea - Asignación Optima

30	40	-	0	10
50	30	0	10	0
60	10	20	-	0
40	0	30	40	60
0	10	0	0	10

La asignación optima resulta:

- Asignar al trabajador 01 a la tarea 04.
- Asignar al trabajador 02 a la tarea 03.
- Asignar al trabajador 03 a la tarea 05 (nueva tarea).
- Asignar al trabajador 04 a la tarea 02.

Entonces la nueva tarea debe tener prioridad sobre la tarea 01 ya que caso contrario los costos se disparan. Con un costo de 80 unidades monetarias.

Punto 06 - Competencia Relevos

A continuación se presentan los tiempos estimados de cada nadador en cada estilo

Cuadro 25: Datos Iniciales

65	73	63	57	0	0
67	70	65	58	0	0
68	72	69	55	0	0
67	75	70	59	0	0
71	69	75	57	0	0
69	71	66	59	0	0

Luego, aplicando el método húngaro (se omiten las restas por filas debido a la existencia de dos columnas ficticias)

Cuadro 26: Resta por columnas

0	4	0	2	0	0
2	1	2	3	0	0
3	3	6	0	0	0
2	6	7	4	0	0
6	0	12	2	0	0
4	2	3	4	0	0

Cuadro 27: Primer intento de asignación - restamos $X_{22}=1\,$

0	4	0	2	0	0
2	1	2	3	0	0
3	3	6	0	0	0
2	6	7	4	0	0
6	0	12	2	0	0
4	2	3	4	0	0

Cuadro 28: Segundo intento de asignación restamos $X_{41}=1\,$

0	5	0	3	1	1
1	0	1	3	0	0
2	2	5	0	0	0
1	5	6	4	0	0
6	1	12	3	1	1
3	1	2	4	0	0

Cuadro 29: Asignación Optima

0	5	0	3	2	2
1	0	0	3	1	1
2	2	5	0	1	1
0	4	5	3	0	0
5	0	11	2	1	1
2	0	1	3	0	0

La asignación optima de nadadores consiste entonces en que el nadador 01 realice la etapa de dorso, el 02 la de Mariposa, el tercero en estilo libre y el quinto en Pecho. Los otros dos

nadadores nos conviene que no participan, y cabe destacar que los dos primeros nadadores pueden intercambiar sus asignaciones sin afectar el tiempo total estimado.

Punto 07 - Tomas y la Cerveza

Cuadro 30: Datos Iniciales

	Hoy	Mañana	Fict	Oferta
Ricardo	3	2.7	0	5
Enrique	2.9	2.8	0	4
Demanda	3	4	2	

La solución optima para este problema es comprar 3 litros hoy a Enrique y 4 a Ricardo mañana, alcanzando un costo mínimo de \$19.50.

Punto 08 - MKJ

Cuadro 31: Datos Iniciales

	M1-ART1	M1-ART2	M2-ART1	M2-ART2	M3-ART1	M3-ART2	FICT	Ofertas
M1-HN	15	16	16	18	18	19	0	10
$M1 ext{-HE}$	18	20	19	22	21	23	0	3
M2- HN	M	M	17	15	19	16	0	8
$M2 ext{-HE}$	M	${ m M}$	20	18	22	19	0	2
M3- HN	M	M	M	M	19	17	0	10
М3-НЕ	M	M	M	M	22	22	0	3
Demandas	5	3	3	5	4	4	12	

Luego de cargar este problema en LINGO, llegamos a que la solución optima consiste en vender 7 unidades del primer articulo y 3 del 02 en el primer mes; 14 y 7 de los dos artículos respectivamente en el segundo mes y por ultimo 4 unidades del articulo 01 y 2 del articulo 02 en el mes 3.