



# DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

**Module IV & Lecture 4** 





### **Problem 1:**

Compute the resistivity of the given material whose resistance is  $2\Omega$ ; area of cross-section and length are  $25\text{cm}^2$  and 15cm respectively? Answer:

Given

 $R = 2\Omega$ 

I = 15cm = 0.15m

 $A = 25cm^2 = 0.25m^2$ 

Resistivity formula is

$$\rho = \frac{RA}{l}$$
  $\rho = \frac{2 \times 0.25}{0.15} = 3.333\Omega m$ 

## **Problem 2:**

The length and area of wire are given as 0.2 m and 0.5 m<sup>2</sup> respectively. The resistance of that wire is 3  $\Omega$ , Calculate the resistivity?

Ans: 7.5 Ωm





#### **Problem 3:**

Calculate the resistivity of a rectangular Germanium crystal of area S= 100 cm<sup>2</sup> connected through Four probe if a current of 2 mA passed through it generates a voltage of 180 mV at 35 °C.

```
\rho =(V/I) X 2πS
=(180/2)X 2X3.14X 10<sup>-2</sup>
=565.2X10<sup>-2</sup> =5.652 Ω·m
```





4. A silicon plate of thickness 1 mm, breath 10mm and length 100mm is placed in a magnetic field of 0.5 Wb/m<sup>2</sup> acting perpendicular to its thickness. If 10<sup>-2</sup> A current flows along its length, calculate the Hall voltage developed if the Hall coefficient is 3.66x 10<sup>-4</sup> m<sup>3</sup> / coulomb.

#### Given Data:

t= 1mm; w= 10mm; L = 100 mm; B = 0.5 Wb/m<sup>2</sup>; I =  $10^{-2}$  A; R<sub>H</sub> =  $3.66x 10^{-4} m^3$  / coulomb.

#### Solution:

Hall coefficient  $R = V_H t / IB$ 

$$V_H = R_H IB/t$$

$$= 3.66 \times 10^{-4} \times 10^{-2} \times 0.5 / 1 \times 10^{3}$$

$$= 1.83 \times 10^{-3} \text{ V} = 1.83 \text{ mV}$$





# Exercise:

1. A semiconducting crystal 12mm long, 5mm wide and 1mm thick has a magnetic flux density of 0.5 Wb/m2 applied from front to back perpendicular to largest faces. When a current of 20mA flows lengthwise through the specimen , the voltage measured across its width is found to be 37  $\mu$ V . What is the Hall coefficient of this semiconductor? Ans:  $R_H = 3.7 \times 10^{-6} \, \text{C}^{-1} \text{m}^3$ 





2. A n-type semiconductor has Hall coefficient =  $4.16 \times 10^{-4} \, \text{m}^3\text{c}^{-1}$ . The conductivity is  $10^8 \, \text{ohm}^{-1}\text{m}^{-1}$ . Calculate its charge carrier density ne and electron mobility at room temperature.

Ans:  $n_e = 1.77 \times 10^{-22} \text{ m}^{-3}$ ;  $\mu_e = 0.0038 \text{m}^2 \text{v}^{-1} \text{s}^{-1}$