Reproduction of Analyses in Lohr (1999) using the **survey** package

Tobias Verbeke

2008-09-25

Contents

C	ontents	1
1	Introduction	2
2	Simple Probability Samples	2
3	Ratio and Regression Estimation3.1 Ratio Estimation3.2 Regression Estimation3.3 Estimation in Domains3.4 Models for Ratio and Regression Estimation	2 2 3 3 3
4	Stratified Sampling	6
5	Cluster Sampling with Equal Probabilities 5.1 Notation for Cluster Sampling	
6	Sampling with Unequal Probabilities	9
7	Complex Surveys 7.1 Estimating a Distribution Function	10 10 16

8	Nonresponse	22
9	Variance Estimation in Complex Surveys	22
	9.1 Linearization (Taylor Series) Methods	22
	9.2 Random Group Methods	
	9.3 Resampling and Replication Methods	22
	9.4 Generalized Variance Functions	22
	9.5 Confidence Intervals	22
10	Categorical Data Analysis in Complex Surveys	22
	10.1 Chi-Square Tests with Multinomial Sampling	22
	10.2 Effects of Survey Design on Chi-Square Tests	
	10.3 Corrections to Chi-Square Tests	24
11	Regression with Complex Survey Data	2 4
	11.1 Model-Based Regression in Simple Random Samples	24
	11.2 Regression in Complex Surveys	
12	Other Topics in Sampling	2 4

1 Introduction

The Introduction chapter does not contain any numerical examples demonstrating survey methodology. Before reproducing the analyses of the following chapters, we load the SDA package

> library(SDaA)

The survey package is loaded as well as it was specified as a dependency of the SDaA package.

2 Simple Probability Samples

3 Ratio and Regression Estimation

3.1 Ratio Estimation

```
> agsrsDesign <- svydesign(ids = ~1, weights = ~1,
+ data = agsrs)</pre>
```

3.2 Regression Estimation

```
> pf <- data.frame(photo = c(10, 12, 7, 13, 13, 6,
+ 17, 16, 15, 10, 14, 12, 10, 5, 12, 10, 10, 9,
+ 6, 11, 7, 9, 11, 10, 10), field = c(15, 14, 9,
+ 14, 8, 5, 18, 15, 13, 15, 11, 15, 12, 8, 13,
+ 9, 11, 12, 9, 12, 13, 11, 10, 9, 8))</pre>
```

3.3 Estimation in Domains

3.4 Models for Ratio and Regression Estimation

```
> plot(I(acres92/10^6) ~ I(acres87/10^6), xlab = "Millions of Acres Devoted to Farms + ylab = "Millions of Acres Devoted to Farms (1992)",
+ data = agsrs)
> abline(Im(I(acres92/10^6) ~ 0 + I(acres87/10^6),
+ data = agsrs), col = "red", lwd = 2)
```


Figure 1: Figure 3.1, p. 64

> plot(y ~ x, data = seedlings, xlab = "Seedlings Alive (March 1992)",
+ ylab = "Seedlings That Survived (February 1994)")

Figure 2: Figure 3.4, p. 73

Residuals:

Min 1Q Median 3Q Max -369.878 -22.090 -5.736 10.764 311.713

Coefficients:

Estimate Std. Error t value Pr(>|t|)
acres87 0.986565 0.004844 203.7 <2e-16 ***
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 46.1 on 298 degrees of freedom

```
> wtresid <- resid(model1)/sqrt(agsrs$acres87)
> plot(wtresid ~ I(agsrs$acres87/10^6), xlab = "Millions of Acres Devoted to Farms (19)
+ ylab = "Weighted Residuals")
```


Figure 3: Figure 3.6, p. 85

Multiple R-squared: 0.9929, Adjusted R-squared: 0.9928 F-statistic: 4.149e+04 on 1 and 298 DF, p-value: < 2.2e-16

4 Stratified Sampling

> boxplot(acres92/10^6 ~ region, xlab = "Region", ylab = "Millions of Acres",
+ data = agstrat)

Figure 4: Figure 4.1, p. 97

5 Cluster Sampling with Equal Probabilities

5.1 Notation for Cluster Sampling

No analyses contained in this section.

5.2 One-Stage Cluster Sampling

```
> GPA <- cbind(expand.grid(1:4, 1:5), gpa = c(3.08,
```

2.6, 3.44, 3.04, 2.36, 3.04, 3.28, 2.68, 2, 2.56,

+ 2.52, 1.88, 3, 2.88, 3.44, 3.64, 2.68, 1.92,

```
+ 3.28, 3.2))
> names(GPA)[1:2] <- c("person_num", "cluster")
> GPA$pwt <- 100/5
> clusterDesign <- svydesign(ids = ~cluster, weights = ~pwt,
+ data = GPA)
> svytotal(~gpa, design = clusterDesign)

total SE
gpa 1130.4 67.167
```

5.3 Two-Stage Cluster Sampling

```
> plot(volume ~ clutch, xlim = c(0, 200), pch = 19,
+ data = coots, xlab = "Clutch Number", ylab = "Egg Volume")
```



```
> plot(volume \tilde{} clutch, xlim = c(0, 200), pch = 19,
+ data = coots, xlab = "Clutch Number", ylab = "Egg Volume")
```


6 Sampling with Unequal Probabilities

7 Complex Surveys

7.1 Estimating a Distribution Function

```
> data(htpop)
```

- > popecdf <- ecdf(htpop\$height)</pre>
- > plot(popecdf, do.points = FALSE, ylab = "F(y)", xlab = "Height Value, y")

ecdf(htpop\$height)


```
> data(htsrs)
```

> hist(htsrs\$height, ylab = "Relative Frequency", xlab = "Height (cm)",

+ freq = FALSE)

13

Histogram of htsrs\$height


```
> data(htstrat)
```

- > hist(htstrat\$height, ylab = "Relative Frequency",
- + xlab = "Height (cm)", freq = FALSE)

Histogram of htstrat\$height

Histogram of htstrat\$height


```
> stratecdf <- ecdf(htstrat$height)
> plot(stratecdf, do.points = FALSE, ylab = expression(hat(F)(y)),
+ xlab = "Height Value, y")
```


7.2 Plotting Data from a Complex Survey

- > data(syc)
- > hist(syc\$age, freq = FALSE, xlab = "Age")

Note that in its current implementation, svyboxplot will only plot minimum and maximum as outliers if they are situated outside the whiskers. Other outliers are not plotted (see ?svyboxplot). This explains the minor difference with Figure 7.8 on p. 237 of Lohr (1999).

```
> sycdesign <- svydesign(ids = ~psu, strata = ~stratum,
+          data = syc, weights = ~finalwt)
> oo <- options(survey.lonely.psu = "certainty")
> svyboxplot(age ~ factor(stratum), design = sycdesign)
> options(oo)
```


This kind of plot is particularly easy to formulate in the grammar of graphics, i.e. using the <code>ggplot2</code> package :

Note that in its current implementation, svyboxplot will only plot minimum and maximum as outliers if they are situated outside the whiskers. Other outliers are not plotted (see ?svyboxplot). This explains the minor difference with Figure 7.10 on p. 238 of Lohr (1999).

```
> oo <- options(survey.lonely.psu = "certainty")
> sycstrat5 <- subset(sycdesign, stratum == 5)
> svyboxplot(age ~ factor(psu), design = sycstrat5)
> options(oo)
```


- 8 Nonresponse
- 9 Variance Estimation in Complex Surveys
- 9.1 Linearization (Taylor Series) Methods
- 9.2 Random Group Methods
- 9.3 Resampling and Replication Methods
- 9.4 Generalized Variance Functions
- 9.5 Confidence Intervals
- 10 Categorical Data Analysis in Complex Surveys
- 10.1 Chi-Square Tests with Multinomial Sampling

```
> hh \leftarrow rbind(c(119, 188), c(88, 105))
> rownames(hh) <- c("cableYes", "cableNo")</pre>
> colnames(hh) <- c("computerYes", "computerNo")</pre>
> addmargins(hh)
         computerYes computerNo Sum
                  119
                              188 307
cableYes
cableNo
                   88
                              105 193
Sum
                  207
                              293 500
> chisq.test(hh, correct = FALSE)
        Pearson's Chi-squared test
X-squared = 2.281, df = 1, p-value = 0.1310
> nst <- rbind(c(46, 222), c(41, 109), c(17, 40), c(8,
      26))
```

```
> colnames(nst) <- c("NR", "R")
> rownames(nst) <- c("generalStudent", "generalTutor",
      "psychiatricStudent", "psychiatricTutor")
> addmargins(nst)
                    NR
                         R Sum
                    46 222 268
generalStudent
generalTutor
                    41 109 150
psychiatricStudent 17 40 57
psychiatricTutor
                   8 26 34
Sum
                   112 397 509
> chisq.test(nst, correct = FALSE)
        Pearson's Chi-squared test
data: nst
X-squared = 8.2176, df = 3, p-value = 0.04172
> afp <- data.frame(nAccidents = 0:7, nPilots = c(12475,
      4117, 1016, 269, 53, 14, 6, 2))
> lambdahat <- sum(afp$nAccidents * afp$nPilots/sum(afp$nPilots))</pre>
> observed <- afp$nPilots
> expected <- dpois(0:7, lambda = lambdahat) * sum(afp$nPilots)</pre>
> sum((observed - expected)^2/expected)
[1] 1935.127
10.2
       Effects of Survey Design on Chi-Square Tests
> hh2 \leftarrow rbind(c(238, 376), c(176, 210))
```

> chisq.test(hh2, correct = FALSE)

Pearson's Chi-squared test

data: hh2

X-squared = 4.5621, df = 1, p-value = 0.03269

10.3 Corrections to Chi-Square Tests

- 11 Regression with Complex Survey Data
- 11.1 Model-Based Regression in Simple Random Samples
- 11.2 Regression in Complex Surveys
- 12 Other Topics in Sampling