Imaging pipeline for cm-sized tissue slices using mesoscale light sheet microscopy

Dr Sharika Mohanan School of Physics and Astronomy University of Glasgow

(sharika.mohanan@glasgow.ac.uk)

Motivation – Structural imaging of cardiac tissue

- Structural differences in healthy and diseased rabbit hearts
- Imaging tissue slices using protocols such as CLARITY
- Lateral extent of tissue much larger than thickness

Simplify imaging protocol

Cardiac tissue – sample preparation

New Zealand
white rabbit
Left Ventricle

Vibratome
500 µm – 3 mm

Tissue
clearing
labelling

- Tissue expansion by 1.6x
- Tissue labelling
 Wheat Germ Agglutinin Alexa 488

Steven Moreno

Dr. Eline Huethorst

Dr. Erin Boland

Dr. Camilla Olianti

Light sheet microscopy

Advantages:

- Widefield imaging
- Reduced photobleaching
- Large samples

Considerations:

- Sample mounting
- Data Handling

Mesoscale Selective Plane Illumination Microscopy (MesoSPIM)

Excitation arm:

- Axially scanned light sheet (ASLM)
- Digitally scanned light sheet
- Excitation NA: 0.1

Detection arm:

- MVX10 Olympus zoom body
- Photometrics Kinetix camera (29.4 mm diagonal FOV)

Magnification	FOV (mm)
2x	14.7
4x	7.35
6.3 x	4.6

MesoSPIM

Tissue slice imaging – sample mounting

Tissue slice imaging – sample mounting

Steven Moreno

- Mounted on a x,y,z,θ stage
- Tissue placed between two quartz slide "sandwich"
- Outer and inner "sandwich" cuvette filled with refractive index matching solution

Tissue slice imaging

Oblique Scanning

Tissue slice imaging – oblique scanning

Scale bar = 500 µm

Tissue slice imaging – oblique scanning

Scale bar = 500 μm FOV: 9000 x 3000 x 300 μm

Tissue slice imaging – oblique scanning

Computational time for shearing

Lateral shift algorithm in MATLAB

Data size: 11 GB

3200x3200x500 pixels

Time: $312 \pm 79 \text{ s}$

Spatial resolution in sheared images

	xy FWHM, μm	z FWHM, µm
3D z-scan	5.07 ± 0.76	6.51 ± 0.46 μm
Sheared slice scan	7.22 ± 0.43	6.27 ± 1.08 μm

Mechanically Sheared Axially Swept Light-Sheet Microscopy

JINLONG LIN^{1,2}, DUSHYANT MEHRA^{1,2}, ZACH MARIN^{1,2}, XIAODING WANG^{1,2}, HAZEL M. BORGES^{1,2}, QIONGHUA SHEN^{1,2}, SEWERYN GAŁECKI^{1,2,3}, JOHN HAUG^{1,2}, AND KEVIN M. DEAN^{1,2,*}.

Lin et al, Bioarxiv, 2024

^{*}kevin.dean@utsouthwestern.edu

Cardiac Structural Imaging

Scale bar = $500 \mu m$

Scale bar = 250 μ m

Scale bar = $25 \mu m$

Conclusion

Advantages of oblique scanning:

- Reduced computational overhead
- Reduced tiling
- Maximum lateral extent (x') of tissue is determined by the working distance of objective
- No extra hardware or optics required for implementation

Acknowledgements

University of Glasgow

Physics and Astronomy:

Dr. Caroline Müllenbroich Steven Moreno Giedre Astrauskaite

Dr. Ryo Kinegawa

Lewis Williamson

Institute of Clinical Physiology – CNR, Florence, Italy

Dr. Leonardo Sacconi

European Laboratory for Non-Linear Spectroscopy, Florence, Italy

Dr. Camilla Olianti

Cardiovascular and Metabolic Health:

Prof. Godfrey Smith

Dr. Eline Huethorst

Dr. Erin Boland

MesoSPIM characterisation

Field of View

Resolution

Lateral resolution: $5.07 \pm 0.76 \,\mu\text{m}$ Axial resolution: $6.51 \pm 0.46 \,\mu\text{m}$ Mean of 70 beads across FOV

Cardiac tissue – sample preparation

Riddell et al, Cardiovascular research, 2020

Dr. Eline

Cardiac tissue – sample preparation

New Zealand
white rabbit
Left Ventricle

Vibratome
500 µm – 3 mm

Tissue
clearing

Iabelling

- Langendorff perfusion
- Tissue fixation in PFA
- Embedded in agar

Steven Moreno

Dr. Eline Huethorst

Dr. Erin Boland

Dr. Camilla Olianti

Header

