Структурна теорія цифрових автоматів Лабораторна робота N3

Тема: Проектування і дослідження регістрів

Куценко Євгеній, ІПС-31

Варіант: 11 (001011)

 $a_6 = 0, a_5 = 0, a_4 = 1, a_3 = 0, a_2 = 1, a_1 = 1$

1 CC

Елементи: 3І, 2АБО, НІ

Операції:

• зсув вліво на один розряд

- прийом слова паралельним кодом
- рівнозначність (еквівалентність)

Кодуємо операції:

s_1	s_2	операція
0	0	зсув вліво на один розряд
0	1	прийом слова паралельним кодом
1	0	рівнозначність (еквівалентність)
1	1	

s_1^S	s_2^S	D_i^S	Q_{i+1}^S	Q_i^S	Q_i^{S+1}	D'_i	R_i	S_i	J_i	K_i	T_i
0	0	0	0	0	0	0	*	0	0	*	0
0	0	0	0	1	0	0	1	0	*	1	1
0	0	0	1	0	1	1	0	1	1	*	1
0	0	0	1	1	1	1	0	*	*	0	0
0	0	1	0	0	0	0	*	0	0	*	0
0	0	1	0	1	0	0	1	0	*	1	1
0	0	1	1	0	1	1	0	1	1	*	1
0	0	1	1	1	1	1	0	*	*	0	0
0	1	0	0	0	0	0	*	0	0	*	0
0	1	0	0	1	0	0	1	0	*	1	1
0	1	0	1	0	0	0	*	0	0	*	0
0	1	0	1	1	0	0	1	0	*	1	1
0	1	1	0	0	1	1	0	1	1	*	1
0	1	1	0	1	1	1	0	*	*	0	0
0	1	1	1	0	1	1	0	1	1	*	1
0	1	1	1	1	1	1	0	*	*	0	0
1	0	0	0	0	1	1	0	1	1	*	1
1	0	0	0	1	0	0	1	0	*	1	1
1	0	0	1	0	1	1	0	1	1	*	1
1	0	0	1	1	0	0	1	0	*	1	1
1	0	1	0	0	0	0	*	0	0	*	0
1	0	1	0	1	1	1	0	*	*	0	0
1	0	1	1	0	0	0	*	0	0	*	0
1	0	1	1	1	1	1	0	*	*	0	0
1	1	0	0	0	*	*	*	*	*	*	*
1	1	0	0	1	*	*	*	*	*	*	*
1	1	0	1	0	*	*	*	*	*	*	*
1	1	0	1	1	*	*	*	*	*	*	*
1	1	1	0	0	*	*	*	*	*	*	*
1	1	1	0	1	*	*	*	*	*	*	*
1	1	1	1	0	*	*	*	*	*	*	*
1	1	1	1	1	*	*	*	*	*	*	*

Мінімізуємо функції $D'_i,\ R_i,\ S_i,\ J_i,\ K_i,\ T_i$ методом Карно-Вейча

Γ	D'_i		$D_i^S Q_{i+1}^S Q_i^S$									
		000	001	011	010	110	111	101	100			
	00	0	0	1	1	1	1	0	0			
$s_1^S s_2^S$	01	0	0	0	0	1	1	1	1			
S_1	11	*	*	*	*	*	*	*	*			
	10	1	0	0	1	0	1	1	0			

$$D'_i = s_2 D_i \vee \overline{s_1 s_2} Q_{i+1} \vee s_1 D_i Q_i \vee s_1 \overline{D_i Q_i}$$

	R_i		$D_i^S Q_{i+1}^S Q_i^S$									
	ι_i	000	001	011	010	110	111	101	100			
	00	*	1	0	0	0	0	1	*			
$s_1^S s_2^S$	01	*	1	1	*	0	0	0	0			
S	11	*	*	*	*	*	*	*	*			
	10	0	1	1	0	*	0	0	*			

$$R_i = s_2 \overline{D_1} \vee \overline{s_1 s_2 Q_{i+1}} \vee s_1 \overline{D_i} Q_i$$

C	S_{i}		$D_i^SQ_{i+1}^SQ_i^S$									
$ $ \mathcal{O}_i		000	001	011	010	110	111	101	100			
	00	0	0	*	1	1	*	0	0			
$s_1^S s_2^S$	01	0	0	0	0	1	*	*	1			
S_{1}^{2}	$\frac{3c}{s}$ 11		*	*	*	*	*	*	*			
	10	1	0	0	1	0	*	*	0			

$$S_i = s_2 D_i \vee \overline{s_1 s_2} Q_{i+1} \vee s_1 \overline{D_i Q_{i+1} Q_i} \vee s_1 \overline{D_i} Q_{i+1} \overline{Q_i}$$

j	т.		$D_i^S Q_{i+1}^S Q_i^S$									
	i	000	001	011	010	110	111	101	100			
	00	0	*	*	1	1	*	*	0			
$s_1^S s_2^S$	01	0	*	*	0	1	*	*	1			
35	11	*	*	*	*	*	*	*	*			
	10	1	*	*	1	0	*	*	0			

$$J_i = s_1 \overline{D_i} \vee s_2 D_i \vee \overline{s_1 s_2} Q_{i+1}$$

I.	K_i		$D_i^S Q_{i+1}^S Q_i^S$									
1,	L i	000	001	011	010	110	111	101	100			
	00	*	1	0	*	*	0	1	*			
$s_1^S s_2^S$	01	*	1	1	*	*	0	0	*			
30	11	*	*	*	*	*	*	*	*			
	10	*	1	1	*	*	0	0	*			

$$K_i = s_1 \overline{D_i} \vee s_2 \overline{D_i} \vee \overline{s_1 s_2 Q_{i+1}}$$

	T_{i}		$D_i^SQ_{i+1}^SQ_i^S$									
1 1		000	001	011	010	110	111	101	100			
	00	0	1	0	1	1	0	1	0			
$s_1^S s_2^S$	01	0	1	1	0	1	0	0	1			
S	11	*	*	*	*	*	*	*	*			
	10	1	1	1	1	0	0	0	0			

Функцію T_i можна не знаходити, оскільки очевидно, що вона буде складнішою за J_i та K_i

Обираємо функції J_i та K_i :

$$J_{i} = s_{1}\overline{D_{i}} \vee s_{2}D_{i} \vee \overline{s_{1}s_{2}}Q_{i+1} = (s_{1}s_{1}\overline{D_{i}} \vee s_{2}s_{2}D_{i}) \vee \overline{s_{1}s_{2}}Q_{i+1}$$
$$K_{i} = s_{1}\overline{D_{i}} \vee s_{2}\overline{D_{i}} \vee \overline{s_{1}s_{2}}Q_{i+1} = \overline{D_{i}D_{i}}(s_{1} \vee s_{2}) \vee \overline{s_{1}s_{2}}Q_{i+1}$$

Рис. 1

2 CA

Елементи: 2І-НІ

Операції:

• прийом слова паралельним кодом

• кон'юнкція

Кодуємо операції:

s	операція
0	прийом слова паралельним кодом
1	кон'юнкція

C	s	D_i^S	Q_i^S	Q_i^{S+1}	T_i	R_i	S_i
0	0	0	0	0	0	*	0
0	0	0	1	1	0	0	*
0	0	1	0	0	0	*	0
0	0	1	1	1	0	0	*
0	1	0	0	0	0	*	0
0	1	0	1	1	0	0	*
0	1	1	0	0	0	*	0
0	1	1	1	1	0	0	*
1	0	0	0	0	0	*	0
1	0	0	1	0	1	1	0
1	0	1	0	1	1	0	1
1	0	1	1	1	0	0	*
1	1	0	0	0	0	*	0
1	1	0	1	0	1	1	0
1	1	1	0	0	0	*	0
1	1	1	1	1	0	0	*

Мінімізуємо функції $T_i,\,R_i,\,S_i$ методом Карно-Вейча

,	Γ_i		$D_i^SQ_i^S$					
	1 i		01	11	10			
	00	0	0	0	0			
Cs	01	0	0	0	0			
	11 10		1	0	0			
			1	0	1			

$$T_i = C\overline{D_i}Q_i \vee C\overline{s}D_i\overline{Q_i}$$

,	R_i		$D_i^S Q_i^S$						
1	ι_i	00	01	11	10				
	00	*	0	0	*				
Cs	01	*	0	0	*				
	11	*	1	0	*				
	10	*	1	0	0				

$$R_i = C\overline{D_i}$$

	S_i	$D_i^S Q_i^S$						
	j_i	00	01	11	10			
	00	0	*	*	0			
C_s	01	0	*	*	0			
	11	0	0	*	0			
	10	0	0	*	1			

$$S_i = C\overline{s}D_i$$

Обираємо функції
$$R_i$$
 та S_i :
$$R_i = C\overline{D_i} = \overline{\overline{(\overline{C}\overline{D_i})}}, \qquad S_i = C\overline{s}D_i = \overline{\overline{(\overline{C}\overline{D_i})}\overline{s}}$$

Μοδυφίκαυίϊ:

1. Якщо використовувати RS-тригери без додаткових входів R та S з вищим приорітетом, але залишити входи регістра ;;, то функції R_i та S_i потребують деякої модифікації: (Позначимо як f відповідну функцію R_i чи S_i)

f	Set	Reset	S_i'	R'_i
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	*	*
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	*	*

Після мінімізації та перетворень функції R_i' та S_i' матимуть вигляд: $R_i' = \overline{(\overline{(f \cdot \overline{Set})} \cdot \overline{Reset})}, \qquad S_i' = \overline{(\overline{(f \cdot \overline{Reset})} \cdot \overline{Set})}$

$$R_i' = (\overline{(f \cdot \overline{Set})} \cdot \overline{Reset}), \qquad S_i' = (\overline{(f \cdot \overline{Reset})} \cdot \overline{Set})$$

2. Якщо використовувати RS-тригери з enable-входами, до яких приєднати сигнал регістра C, то функції R_i та S_i матимуть вигляд: $R_i=\overline{D_i}, \qquad S_i=\overline{s}D_i=\overline{\overline{(\overline{s}D_i)}}$

$$R_i = \overline{D_i}, \qquad S_i = \overline{s}D_i = \overline{\overline{(\overline{s}D_i)}}$$

Рис. 2

Рис. 3

Рис. 4

3 AA

Елементи: ЗАБО-НІ

Операції:

- зсув вправо на один розряд
- нерівнозначність (додавання по модулю 2)

Кодуємо операції:

s_1	s_2	операція
0	0	(без змін)
0	1	зсув вправо на один розряд
1	0	нерівнозначність (додавання по модулю 2)
1	1	

s_1^S	s_2^S	D_i^S	Q_{i-1}^S	Q_i^S	Q_i^{S+1}	T_i	R_i	S_i
0	0	0	0	0	0	0	*	0
0	0	0	0	1	1	0	0	*
0	0	0	1	0	0	0	*	0
0	0	0	1	1	1	0	0	*
0	0	1	0	0	0	0	*	0
0	0	1	0	1	1	0	0	*
0	0	1	1	0	0	0	*	0
0	0	1	1	1	1	0	0	*
0	1	0	0	0	0	0	*	0
0	1	0	0	1	0	1	1	0
0	1	0	1	0	1	1	0	1
0	1	0	1	1	1	0	0	*
0	1	1	0	0	0	0	*	0
0	1	1	0	1	0	1	1	0
0	1	1	1	0	1	1	0	1
0	1	1	1	1	1	0	0	*
1	0	0	0	0	0	0	*	0
1	0	0	0	1	1	0	0	*
1	0	0	1	0	0	0	*	0
1	0	0	1	1	1	0	0	*
1	0	1	0	0	1	1	0	1
1	0	1	0	1	0	1	1	0
1	0	1	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	0	0	*	*	*	*
1	1	0	0	1	*	*	*	*
1	1	0	1	0	*	*	*	*
1	1	0	1	1	*	*	*	*
1	1	1	0	0	*	*	*	*
1	1	1	0	1	*	*	*	*
1	1	1	1	0	*	*	*	*
1	1	1	1	1	*	*	*	*

Мінімізуємо функції $T_i,\,R_i,\,S_i$ методом Карно-Вейча

T_i		$D_i^S Q_{i-1}^S Q_i^S$									
	i	000	001	011	010	110	111	101	100		
	00	0	0	0	0	0	0	0	0		
$s_1^S s_2^S$	01	0	1	0	1	1	0	1	0		
.x.	11	*	*	*	*	*	*	*	*		
	10	0	0	0	0	1	1	1	1		

$$T_i = s_1 D_i \vee s_2 Q_{i-1} \overline{Q_i} \vee s_2 \overline{Q_{i-1}} Q_i$$

R_i		$D_i^SQ_{i-1}^SQ_i^S$								
		000	001	011	010	110	111	101	100	
	00	*	0	0	*	*	0	0	*	
$s_1^S s_2^S$	01	*	1	0	0	0	0	1	*	
3.0	11	*	*	*	*	*	*	*	*	
	10	*	0	0	*	0	1	1	0	

$$R_i = s_2 \overline{Q_{i-1}} \vee s_1 D_i Q_i$$

S_i		$D_i^S Q_{i-1}^S Q_i^S$									
	'i	000	001	011	010	110	111	101	100		
	00	0	*	*	0	0	*	*	0		
$s_1^S s_2^S$	01	0	0	*	1	1	*	0	0		
S_1^{ζ}	11	*	*	*	*	*	*	*	*		
	10	0	*	*	0	1	0	0	1		

$$S_i = s_2 Q_{i-1} \vee s_1 D_i \overline{Q_i}$$

Обираємо функції R_i та S_i :

$$R_{i} = s_{2}\overline{Q_{i-1}} \vee s_{1}D_{i}Q_{i} = \overline{\left(\overline{s_{2}}\overline{Q_{i-1}}\right)} \vee \overline{\left(\overline{s_{1}}D_{i}Q_{i}\right)} = \overline{\left(\overline{s_{2}}\vee Q_{i-1}\right)} \vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)} = \overline{\left(\overline{s_{2}}\vee Q_{i-1}\right)} \vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)} = \overline{\left(\overline{s_{2}}\vee \overline{S_{2}}\vee Q_{i-1}\right)} \vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)}$$

$$S_{i} = s_{2}Q_{i-1}\vee s_{1}D_{i}\overline{Q_{i}} = \overline{\left(\overline{s_{2}}Q_{i-1}\right)}\vee \overline{\left(\overline{s_{1}}D_{i}\overline{Q_{i}}\right)} = \overline{\left(\overline{s_{2}}\vee \overline{Q_{i-1}}\right)}\vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)} = \overline{\left(\overline{s_{2}}\vee \overline{Q_{i-1}}\right)}\vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)} = \overline{\left(\overline{s_{2}}\vee \overline{Q_{i-1}}\right)}\vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)} = \overline{\left(\overline{s_{2}}\vee \overline{Q_{i-1}}\right)}\vee \overline{\left(\overline{s_{1}}\vee \overline{D_{i}}\vee \overline{Q_{i}}\right)}$$

До даного завдання також актуальна модифікація 1 з попереднього завдання

Рис. 5