Homework 3

March 29, 2021 TangLin

PROBLEM 1. Prove there is **PSPACE**-complete problem.

Solution:

We will consider the language \mathbf{TQBF} which is true quantified boolean formulae with form

$$Q_1x_1Q_2x_2\cdots Q_nx_n\varphi(x_1,x_2,\cdots,x_n)$$

where Q_i is \forall or \exists and φ is a boolean formulae with n variables. So,

TQBF = {
$$\psi = 1 | \psi = Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \varphi(x_1, x_2, \cdots, x_n)$$
}

First, we show that $\mathbf{TQBF} \in \mathbf{PSPACE}$. Let

$$\psi = Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \varphi(x_1, x_2, \cdots, x_n)$$

be a quantified boolean formulae with n variables and the size of φ is m. Obviously, if all the variables are assigned then we need only O(m) space to decide it. Now we will construct a recursive algorithm to decide ψ . We will use notation $\psi|_{x_i=b}$ to denote that replacing all the occurrences of variable x_i with $b \in \{0,1\}$ with dropping quantifier Q_i .

Algorithm will work as follows:

- 1. if $Q_i = \exists$ then output 1 if and only if at least one of $\psi|_{x_i=0}$ and $\psi|_{x_i=1}$ returns 1.
- 2. if $Q_i = \forall$ then output 1 if and only if $\psi|_{x_i=0}$ and $\psi|_{x_i=1}$ both return 1.

Obviously, the recursive algorithm conform to the definition of \exists and \forall , so it does indeed return the correct answer on any formula ψ .

Whenever we drop a quantifier, we need copy the formula φ once (we can reuse the space to decide $\psi|_{x_i=1}$ and $\psi|_{x_i=0}$).

Let $s_{n,m}$ denote the space of the recursive algorithm uses on ψ with n variables. We can reduce one variable when we drop a quantifier, so

$$s_{n,m} = s_{n-1,m} + O(m)$$

and we can get $s_{n,m} = O(n \cdot m)$, obviously, n < m and we can say that the QBF ψ can be decided in $O(m^2)$ space.

So $\mathbf{TQBF} \in \mathbf{PSPACE}$.

Now we will show that for every $L \in \mathbf{PSPACE}$, $L \leq_p \mathbf{TQBF}$. Let M be a TM that can decides L in S(n) space and let $x \in \{0,1\}^n$. First, we show that there is a Boolean formula $\varphi_{M,x}$ such that for every two strings C, C' which

encode the configuration of M, and $\varphi_{M,x}(C,C')=1$ if and only if C and C' are valid adjacent configurations in the configuration graph of $G_{M,x}$.

We can consider all the possibilities of configurations, the number if $2^{O(S(n))}$, it is too large to be express in CNF or DNF. We can group them by the head position, i.e. we can group them to O(S(n)) groups like

C	C'	$\varphi_{M,x}(C,C')$
*	*	0
*	*	1
:	<u>:</u>	:
*	*	0
*	*	1
:	i :	•
:	÷ :	:

Figure 1: Table of φ , "-" represents a work tape cell and "*" represents the head position.

The first two columns are all possible configurations of M and the third column is the result of φ . For every group we have to decide the all the possible cases, so the Table has $2^{2O(S(n))}$ rows. In every group there will be few rows such that $\varphi=1$, because M can only move at most 1 step and modify at most 1 cell. In fact, there are at most 6 rows such that $\varphi=1$, because the head will move to left or right or stay, and the cell can be modified or not, they are at most 6 different cases.

The 6 different cases involve only 1 variable for the work cell, constant number of variables for states which decided by M. So for every group we can build a CNF with constant size, and the for the whole configurations we can get a CNF φ with O(S(n)) size.

Assume that C need m space. Now we will use $\varphi_{M,x}$ to come up with a polynomial space quantified boolean formula ψ' such that for every $C, C' \in \{0,1\}^m$, $\psi'(C,C')=1 \Leftrightarrow$ there is a directed path from C to C' in $G_{M,x}$. Let $C=C_{start}$ and $C'=C_{accept}$, will get a quantified boolean formula $\psi=1 \Leftrightarrow M$ accepts x. We will define ψ inductively.

Let $\psi_i(C,C')$ be ture iff there is a path of length which does not exceed 2^i from C to C' in $G_{M,x}$. We have $\psi'=\psi_m$ and $\psi_0=\varphi_{M,x}$. We can know that if $\psi_i=1$ if and only if there is a configuration C'' such that $\psi_{i-1}=1$, so we get

$$\psi_i(C, C') = \exists C'' \psi_{i-1}(C, C') \land \psi_{i-1}(C'', C).$$

But there occur two ψ_{i-1} , and the size of ψ_m will be 2^m , it is not polynomial, so we have to transform it to an equivalent form. Consider

$$\psi_i = \exists C'' \forall D_1 \forall D_2 \big((D_1 = C \land D_2 = C') \lor (D_1 = C' \land D_2 = C'') \big) \to \psi_{i-1}(D_1, D_2).$$

We can easily transform \to to \land , \lor , \neg , so this form has only one ψ_{i-1} .

$$size(\psi_i) = size(\psi_{i-1}) + O(m)$$

and then

$$size(\psi) = size(\psi_m) = O(m \cdot m) = O(m^2).$$

So we get a QBF with size $O(m^2)$, and the original problem has been reduced to **TQBF**.

So \mathbf{TQBF} is \mathbf{PSPACE} -complete.

PROBLEM 2. Prove that the problem satisfiable formula in CNF can reduce by Karp to problem Integer Linear Programming (under a given system of linear inequalities with integer coefficients, find out whether it has a solution in integers).

Solution:

Assume that the CNF has form:

$$\varphi(x_1, x_2, \cdots, x_n) = \bigwedge_i \left(\bigvee_j v_{i_j}\right),$$

where v_{i_j} is some variable x_k or its negation $\neg x_k$. It is easily to express a CNF formula to an integer program:

- 1. First we add the constraints $0 \le x_i \le 1$ for every i to ensure that the variables can only be assigned with 0 or 1.
- 2. Then we will express every clause of CNF to an integer inequality. for any variables x_i and x_j

$$\begin{aligned} x_i \vee x_j &\Leftrightarrow x_i + x_j \geqslant 1. \\ \neg x_i \vee x_j &\Leftrightarrow (1 - x_i) + x_j \geqslant 1. \\ x_i \vee \neg x_j &\Leftrightarrow x_i + (1 - x_j) \geqslant 1. \\ \neg x_i \vee \neg x_j &\Leftrightarrow (1 - x_i) + (1 - x_j) \geqslant 1. \end{aligned}$$

So for any number of variables connected by \vee we can get the inequality inductively, because for any formula which are connected by \vee obey the same laws.

3. Then we collect all the clauses and get a system of inequalities, because all the clauses are connected by \wedge , and it means that the system has to satisfy all the clause.

We have reduced the SAT problem to Integer Programming.

Obviously, we can valid whether a given vector is a solution to the system in polynomial time, so Integer Programming is in **NP**. And the reduction indicates that SAT \leq_p IP, so IP is NP-complete.