Course: 3 UNIT

Solutions	Marks	Comments
Question1		
(a) $ton = \frac{1}{\sqrt{3}}$		
: = E, T+E for217≥ 2x ≥0		:
: General solution		
x = TtanT, T+TtanT		
$= \frac{\pi}{6} + n\pi$	1	Accept
for all integral n		正±nT
.; ~ ~ ~		6 - 1111
(b) $3 \propto^3 + 5 \propto^2 - 7 \propto + 4 = 0$:
OB + OX + BY =	1	
X+B+8=-5	4	
5		
(c) Sec2x +tonx -7 =0		
1+tantx+tanx-7=0		
tan=x+tanx -6=0		
$(\tan x + 3)(\tan x - 2) = 0$		
$\therefore tan = -3, 2$		
.°. x = 10826′, 288°26′,	*	
63°26′, 243°26′	į	

Course: 3UNIT

Page No: 2.

Solutions	Marks	Constitution
Question (continued)	IVINIKS	Comments
(al) $x = \cos \theta + 1$		
: x-1=coo - 0		
4=5in0-2		
4+2=51NO-0		
① + ② ~ · · · · · · · · · · · · · · · · · ·		
(DC-1)2+(4+2)= sin0+cos0		
(x-1)2+(y+2)=1 is the		
required equation		
· •		
(e) $\frac{2x}{x-3} \le 1$ $x = 3$		
1f >c-3>0		Someman
∞ >3		use another
20c ≤ 0c-3 ∞ ≤ -3		method. If solution
No solution		is correct
		give full
1F 2c-3<0		marks
∴ 2 > 2 × 3		
$\approx 3-3$		
Solution is 3>x>-3	1	
		;
		;

Course: 3 UNIT

Solutions	Marks	Comments
Question2 (a) (i) x^2+9) x^3+3x^2+9x-1 x^3 $+9x$ $3x^2$ -1		
$\frac{3x^{2} + 27}{-28}$ $\therefore (ii) \int \frac{x^{3} + 3x^{2} + 9x - 1}{x^{2} + 9} dx$	2	
$= \int (\infty + 3 - \frac{28}{5c^2 + 9}) d\infty$ $= \frac{1}{5} - \frac{2}{3} + \frac{2}{3}$	2	Do wot worry about
True for $n=1$ Assume true for $n=k$ if $(k) = 7^k - 5^k = 2A$ where A is an integer when $n = k+1$ $f(k+1) = 7^{k+1} - 5^{k+1}$	1	Some may
= $7x7^{K} - 5x5^{K}$ = $7(7^{K} - 5^{K}) + 2x5^{K}$ = $7x2A + 2x5^{K}$ = $2(7A + 5^{K})$ = $3(7A + 5^{K})$ True as $7A + 5^{K}$ is an integer		test F(K+1)-F(K) even
if true for n=1 theotrue n=2 "" n=2 " n=3 edc. True for all n >0 integers	Î	

Course: 3 UNIT

Solutions	Marks	Comment
Question2 (continued)	1,1461,863	Comments
(C)(i) Number of arrangements		
= (8-1)!		
= 5040	/	
(1) Number of couple		
arrangements = 2tx(4-1)!		
= 96		
. Probability of pairs together		
= 96		
5040		
= <u>2</u> 105		
(d). Quadrilateral is cyclic		
opposite angles are		
Supplementary		
: LC = 180° - LA	1	
LD = 180°-LB	1-	
· TanA + TanB+TanC+TanD		
= TanA+TanB+Tan(180-A)+Tan(180-B)		
= TanA+TanB-TanA-TanB	.,	
= 0	/	

Course : 3 UNITT

Page No : ____5

Solutions	Marks	Comments
Question 3		
(a) $\int_{0}^{1} \frac{2x}{(2x+1)^2} dx \qquad u = 2x+1$		
$\frac{du}{dx} = 2$ $\frac{dx}{dx} = \frac{2}{3}$		# #
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\int \frac{u-1}{u^2} du$	Contraction of the Contraction o	
$=\frac{1}{2}\int_{0}^{\infty}\left(\frac{1}{u}-\frac{1}{u^{2}}\right)du$		
$=\pm \left[\left[nu+ta\right] \right] $	T-Commando	
$=\frac{1}{2}(\ln 3 + \frac{1}{3}) - \frac{1}{2}(\ln 1 + 1)$		
$=\frac{1}{2}(\ln 3 - \frac{2}{3})$	**************************************	
(b) COSA+B)=COSACOSB-SINASINB		
COS75°=COS(45°+30°) COS75°=COS45°CO530°-SINH5°SIN30°		
$= \frac{1}{12} \cdot \frac{13}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$		
2/2	- Angelonia	
(C) V3 COOX - SINX = RCOSOCCOSX - RSINXSINX		
= RCOSOCCOSX - NSINXSINX RCOSX = 13, RSINX=1	-	
RSIND = 1 RZINZ+RCOSX=1+3 RCOSX V3 R2 = 4		
tand = 13 2 = 30° = R = 2	2	leach

Course: 34NIT

Solutions	Marks	Comments
Question 3 (continued)		Comments
(d) General Term = 20(2)(-13)		
Ignoring coefficient to find r		
$\frac{20-4r}{2}$		
- 4c = 20		
r = 5		
.: Term is 200.215 (-1) 5		
= 20 (5 2)		
(e) $f(\infty) = \sin^2 \infty + \cos \infty$		
$=\frac{1}{2}$		
$(i) f(\infty) = 0$		
,		
(ii) foodx = [Talz		
$= \left \frac{\prod'_{a} \propto}{a} \right $		
= 10-0		
$= \left[\frac{\Gamma}{a}\right]_{0}$ $= \frac{\Gamma}{a}$ $= \frac{\Gamma}{a}$		
2	ď	

Course: 3unit

Page No: _______

Solutions	Marks	Comments
Question 4		
(a)(i) Let P(s) = 0.4 and P(F) = 0.6		
: P(S=6) = (C(0.6) (0.4)		
=0-111 (3sig Figs)	2	
(11) Let there be n grafts	_	
P(F=n) = (0.6)		
" P(S≥1) = 1-(0-6) >0.999	1	
0.001>(0-6)	i.	
$\frac{\ln(0.001)}{\ln(0.6)} \le n$	1	
In(0-6)	,	
13.523 < n		
: 14 or more grafts are	1	
required.		
(b) Xi) Given V= \$TTr3 el = 1000		
dr = 4TT	,	
of dr = dv = dv		
at at ar		
= 1000 4TPr2		
= 250 TPr2		
• • • • • • • • • • • • • • • • • • • •		
Radius is changing at		
250 cm s-1		

Course: 3 unit

Solutions	Marks	Comments
Question 4 (continued)		
(b) (ii) Given A=4TTr2		
dr=8Mr		
i. dA dA dr at ar at		
= 8Tr x 250 Trr2		
= 2000		
when r=10 at = 2000 = 200		
Area is changing at 200 cm² s'		
(c) $\int_{0}^{\frac{\pi}{2}} \cos^{2}x dx = \int_{0}^{\frac{\pi}{2}} (1 + \cos 2x) dx$		
(c) $ \cos^2 x dx = \frac{1}{2} (1 + \cos 2x) dx$		
= よって+よらいコマ		
2 2 3 3 3	·	
· [m , 7		
$=\frac{1}{2}\left[\frac{11}{2}+0\right)-0$		

= \(\tau_{\frac{1}{4}} \)		
7	•	

Course: 3UNIT

Solutions	Marks	Comments
Question 5		
$(a) \propto_2 = x_1 - \frac{1}{1/(x_1)}$		
f(x)= \(\frac{1}{2} \) \(\frac{1}{2} \))	
1(x)====================================		
$3c = 2$ $3c = 2 - 2 \cdot 2 - 5 \cdot N^2$		
½-cos 2 = 1.90		·
(b) NOGradient of tangent = P LPMX = 90-00;		
:: Gradient of MN = tangord)		, i
:. p=tan(10-d)		
= cotx		
to = tand		
(1) LPLM + LLPM = LPMX		
(Exterior L & PLM)	1	
: LPLM + d = 90-d		
LPLM = 90-2d	1	
:. Gradient LP = tan (90-20)		·
= cot 2 x	1	
$= \frac{1 - \tan^2 x}{2 \tan x}$		
2 tona		
= - - - -		
2. 1	g	
$= p^2 - 1$	- Comment	
$= \frac{1 - \frac{1}{p^2}}{2 \cdot \frac{1}{p}}$ $= \frac{p^2 - 1}{2p}$		

Course: 3 CADIT

Solutions Puestion 5 (Continued) (b) (iii) Coords. of Sare (O, a) Gradient PS = ap2-a 2ap = p2-1 Ap Gradient PS = Gradient PP : LP passes through S (c) DC = 36t y = 15t - 2qt2 dx = 36 dy, 15 - qt du dy dt doc dt da = 15 - qt If 0 is the angle of projection Tano = 15 - qt when t = 0 15
(c) $3c = 36t$ $y = 15t - \frac{1}{2}qt^2$ Conditional Coords of Sare (0, a) Gradient PS = ap2-a $2ap$ Cradient PS = Gradient IP LP passes through S (c) $3c = 36t$ $y = 15t - \frac{1}{2}qt^2$ out = 36 dy 15- gt dy dy dt olso out da $15 - qt$ The angle of projection Tane = $15 - qt$ when $t = 0$ $15 - qt$ Tane = $15 - qt$ when $t = 0$
$\frac{36}{36}$ = $22^{\circ}37^{\circ}$

Course: 3 Unit

Page No : ____\

Solutions	Marks	Comments
Question 6.		
(a)(i) $y = 2 \sin^{-1}(3x)$.		
1 > 3x > -1		
: Domain = x > - =		
Range T > Y > -T	\	
(11)		
3 3		
$(b)(i) T = S + Bekt O$ $\frac{dT}{dt} = Bke^{kt}$		
Now Bekt = T - S from 1		
Bkekt = k(T-5)		
It is a solution.		

Course: <u>SUNIT</u>

Solutions	Marks	Comments
Question6 (continued) (ii) T= S+Bekt S=30°, T=150° when t=0		
150°=30°+Be° 120°= B When t=3 T=90°3K	2	
90 = 30+120e3k 60 = 120e3k 0.5 = e		
:. $K = \frac{1}{3} ln 0.5$ = -0.23 (3dp) (iii) When $t = 6$	2	
$T = 30^{\circ} + 120 \times e^{-0.231 \times 6}$ $= 60^{\circ}$		
Temperature is 60°		
(C) DC = KX2+1DC, y= ky2+1y, k+1		
$= \frac{3 \times 5 + 2 \times -1}{3 + 2}$ $= \frac{3 \times 5 + 2 \times -1}{3 + 2}$ $= \frac{3 \times 5 + 2 \times -1}{3 + 2}$		
··. Coordinates of Pare		
(2 ³ / ₇ ,-1)		

1998 Western Region Trial HSC Marking Sch Course : 3 UNIT		o: <u>1</u> 3
Solutions	Marks	Comments
Question 7 (a)(i) B A C N	The state of the s	
(11) Draw tangent MN through Pas shown LACP = LAPM (Angle in alternate seg ment.) LBDP = LBPM (""") LBPM = LAPM (Same angle) LACP = LBDP (=LAPM) LACP = LBDP (=LAPM) BD //CA corresponding angles equal	1	
(b) $\frac{d}{dx}(\frac{1}{2}v^2) = \frac{d}{dx}(\frac{1}{2}v^2) \cdot \frac{dy}{dx}$ $= V \cdot \frac{dy}{dx}$ $= \frac{dx}{dx} \times \frac{dy}{dx}$ $= \frac{dx}{dx}$		

1998 Western Region Trial HSC Marking Scheme Course: 3 UNIT Page No: 14		
Solutions	Marks	Comments
Question 7 (Continued) (C) i) $d (\pm v^2) = -e^{-2\alpha}$ observed		
Given $V=1$ when $x=0$ $\frac{1}{2}=\frac{1}{2}e^{0}+C$		
$\frac{1}{2} = \frac{1}{2}e^{-2x}$		
$V^{2}=e^{-2x}$ $V=e^{-3x}$	***************************************	strictly speaking
(ii) dx = e-2	1 december	
$t = e^{7} + D$ when $t = 0$ $x = 0$		
$t = e^{x}$ $t + 1 = e^{x}$	Characteristics of the Control of th	
$i \cdot x = ln(t+1)$ $ii) V = \frac{l}{at} = \frac{l}{t+1}$		