Curs recapitulativ

Cuprins

- Logica propoziţională (recap.)
 - Deducția naturală
 - Clauze propoziționale definite
- Logica de ordinul I (recap.)
- 3 Algoritmul de unificare
- 4 Forme prenex și Skolem. Modele Herbrand
- Formă clauzală. Rezoluție
 - Rezoluția în logica propozițională (recap.)
 - Rezoluția în logica de ordinul I
- 6 Logica Horn
- Introducere în semantică (implementare în Prolog)

Logica propozițională (recap.)

Semantica logicii propoziționale

■ Mulţimea valorilor de adevăr este {0,1} pe care considerăm următoarele operaţii:

$$\begin{array}{c|c} x & \neg x \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

$$x \lor y := max\{x, y\}$$

$$x \land y := min\{x, y\}$$

Semantica logicii propoziționale

- \square o funcție $e: Var \rightarrow \{0,1\}$ se numește evaluare (interpretare)
- □ pentru orice evaluare $e: Var \rightarrow \{0, 1\}$ există o unică funcție $e^+: Form \rightarrow \{0, 1\}$ care verifică următoarele proprietăți:

 - lacksquare $e^+(arphi
 ightarrow \psi) = e^+(arphi)
 ightarrow e^+(\psi)$
 - $lacksquare e^+(arphi\wedge\psi)=e^+(arphi)\wedge e^+(\psi)$

oricare ar fi $v \in Var$ și φ , $\psi \in Form$.

Semantica logicii propoziționale

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Fiecare evaluare corespunde unei linii din tabel!

 \square $\models arphi$ dacă și numai dacă $e_1^+(arphi) = \dots = e_{2^n}^+(arphi) = 1$

Sistemul Hilbert

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție **este** modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}$ MP
- □ O demonstrație din ipotezele Γ (sau Γ-demonstrație) pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,
 - \square $\gamma_i \in \Gamma$
 - \square γ_i se obţine din formulele anterioare prin MP: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$
- □ O formulă φ este Γ -teoremă dacă are o Γ -demonstrație. Notăm prin $\Gamma \vdash \varphi$ faptul că φ este o Γ -teoremă

Sistemul Hilbert

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \rightarrow \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Sistemul Hilbert

Exercițiu

Fie φ și ψ formule în logica propozițională. Să se arate sintactic că $\vdash \varphi \to (\neg \varphi \to \psi).$

Soluție

Avem următoarea demonstrație:

(1)	$\{\varphi, \neg \varphi\}$	$\vdash \neg \varphi \to (\neg \psi \to \neg \varphi)$	(A1)
(2)	$\{\varphi, \neg \varphi\}$	$\vdash \neg \varphi$	(ipoteză)
(3)	$\{\varphi, \neg \varphi\}$	$\vdash \neg \psi \rightarrow \neg \varphi$	(1), (2), MP
(4)	$\{\varphi, \neg \varphi\}$	$\vdash (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$	(A3)
(5)	$\{\varphi, \neg \varphi\}$	$\vdash \varphi \rightarrow \psi$	(3), (4), MP
(6)	$\{\varphi, \neg \varphi\}$	$\vdash \varphi$	(ipoteză)
(7)	$\{\varphi, \neg \varphi\}$	$\vdash \psi$	(5), (6), MP
(8)	$\{arphi\}$	$\vdash \neg \varphi \rightarrow \psi$	(7) Teorema Deducției
(9)		$\vdash \varphi \to (\neg \varphi \to \psi)$	(8) Teorema Deducției

de eliminare.

□ Numim secvent o expresie de forma

'
$\varphi_1,\ldots,\varphi_n \vdash \psi$
Formulele $\varphi_1,\ldots,\varphi_n$ se numesc premise, iar ψ se numește concluzie.
Un secvent este valid dacă există o demonstrație folosind regulile de deducție.
O teoremă este o formulă ψ astfel încât $\vdash \psi$ (adică ψ poate fi demonstrată din mulțimea vidă de ipoteze).

☐ Pentru fiecare conector logic vom avea reguli de introducere și reguli

Regulile deducției naturale

Exercițiu

Demonstrați că următorul secvent este valid:

$$p \land q \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

Soluție

Exercițiu

Demonstrați că următorul secvent este valid:

$$p \to q, p \to \neg q \vdash \neg p$$

Soluție

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$p \rightarrow q$	premiza
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$p \rightarrow \neg q$	premiza
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	р	ipoteza
6 \perp (¬e),4,	4	q	$(\to e),1,3$
= (10),1,	5	$\neg q$	(→e),2,3
$7 \qquad \neg p \qquad (\neg i).3$	6	上	$(\neg e),4,5$
('),-	7	$\neg p$	(¬ <i>i</i>),3−6

Exercițiu

Echivalența logică este definită prin $\varphi \leftrightarrow \psi = (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. Găsiți reguli de introducere și eliminare pentru \leftrightarrow .

Soluție

Observăm că \leftrightarrow este o combinație între \rightarrow și \land . Regulile pentru \leftrightarrow se obțin combinând regulile pentru \rightarrow și \land .

Introducerea $(\leftrightarrow i)$: pentru a introduce $\varphi \leftrightarrow \psi$ trebuie să introducem $\varphi \rightarrow \psi$ și $\psi \rightarrow \varphi$, apoi să introducem \wedge .

Soluție (cont.)

Eliminarea $(\leftrightarrow i)$: pentru a elimina $\varphi \leftrightarrow \psi$ trebuie să eliminăm \wedge apoi să eliminăm o \rightarrow ; vom avea două variante:

$$\frac{\varphi \leftrightarrow \psi \quad \psi}{\varphi} \ (\leftrightarrow e_1) \qquad \frac{\varphi \leftrightarrow \psi \quad \varphi}{\psi} \ (\leftrightarrow e_2)$$

Clauze propoziționale definit

Clauze propoziționale definite

O clauză definită este o formulă care poate avea una din formele:

- q (clauză unitate)
- $p_1 \wedge \ldots \wedge p_k \rightarrow q$

unde q, p_1, \ldots, p_n sunt variabile propoziționale.

Sistem de deducție pentru clauze definite propoziționale

Pentru o mulțime S de clauze definite propoziționale, avem

- \square Axiome (premise): orice clauză din S
- □ Reguli de deducție:

$$\frac{P \quad P \to Q}{Q} \; (MP) \qquad \qquad \frac{P \quad Q}{P \land Q} \; (\textit{andl})$$

Mulțimi parțial ordonate

- □ O mulțime parțial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relație de ordine.
 - relație de ordine: reflexivă, antisimetrică, tranzitivă
- □ O mpo (L, \leq) se numește lanț dacă este total ordonată, adică $x \leq y$ sau $y \leq x$ pentru orice $x, y \in L$. Vom considera lanțuri numărabile, i.e.

$$x_1 \le x_2 \le x_3 \le \dots$$

- \square O mpo (C, \leq) este completă (CPO) dacă:
 - \square C are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\bigvee_n x_n$ există pentru orice lanț $x_1 \le x_2 \le x_3 \le \dots$

Funcții monotone și continue

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate.
 - O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.
- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n)$ pentru orice lanț $\{a_n\}_n$ din A.
- □ Observăm că orice funcție continuă este crescătoare.

Teorema de punct fix

Un element $a \in C$ este punct fix al unei funcții $f: C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției F.

Puncte fixe

Exercițiu

Care sunt punctele fixe ale următoarei funcții? Dar cel mai punct fix?

$$f_1: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), \quad f_1(Y) = Y \cup \{1\}$$

Soluție

Se observă că punctele fixe ale lui f_1 sunt submulțimile Y ale lui $\{1,2,3\}$ care îl conțin pe 1 (dacă $1 \notin Y$, atunci $f_1(Y) = Y \cup \{1\}$ și evident $Y \neq Y \cup \{1\}$).

Deci punctele fixe ale lui f_1 sunt $\{1\}$, $\{1, 2\}$, $\{1, 3\}$, $\{1, 2, 3\}$.

Evident, cel mai mic punct fix este {1}.

Puncte fixe

Exercițiu

Care sunt punctele fixe ale următoarei funcții? Dar cel mai punct fix?

$$f_2: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\}), \quad f_2(Y) = \begin{cases} \{1\} & \text{dacă } 1 \in Y \\ \emptyset & \text{altfel} \end{cases}$$

Soluție

Se observă că singurele puncte fixe ale lui f_2 sunt \emptyset și $\{1\}$. Evident \emptyset este cel mai mic punct fix.

Clauze definite și funcții monotone

Fie A mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in S\}$ mulțimea atomilor care apar în clauzele unitate din S.

Definim funcția $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$ prin

$$f_S(Y) = Y \cup Baza$$

$$\cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S,$$

$$s_1 \in Y, \ldots, s_n \in Y\}$$

Clauze definite și funcții monotone

Exercițiu

Arătați că funcția f_S este monotonă.

Soluție

Fie $Y_1, Y_2 \subseteq A$ astfel încât $Y_1 \subseteq Y_2$. Trebuie să arătăm că $f_S(Y_1) \subseteq f_S(Y_2)$. Fie următoarele mulțimi:

$$Z_1 = \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y_1, \ldots, s_n \in Y_1\},$$

$$Z_2 = \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S, s_1 \in Y_2, \ldots, s_n \in Y_2\}.$$

Deci $f_S(Y_1) = Y_1 \cup Baza \cup Z_1$ și $f_S(Y_2) = Y_2 \cup Baza \cup Z_2$. Cum $Y_1 \subseteq Y_2$, rămâne să arătăm doar că $Z_1 \subseteq Z_2$. Fie $a \in Z_1$. Atunci există $s_1 \wedge \ldots \wedge s_n \to a \in S$ și $s_1, \ldots, s_n \in Y_1$. Deci $s_1, \ldots, s_n \in Y_2$, de unde rezultă că $a \in Z_2$.

Clauze definite și funcții monotone

Pentru funcția continuă $f_S: \mathcal{P}(A) \to \mathcal{P}(A)$

$$f_S(Y) = Y \cup Baza$$

$$\cup \{a \in A \mid (s_1 \wedge \ldots \wedge s_n \to a) \text{ este în } S,$$

$$s_1 \in Y, \ldots, s_n \in Y\}$$

aplicând Teorema Knaster-Tarski pentru CPO, obținem că

$$\bigcup_n f_S^n(\emptyset)$$

este cel mai mic punct fix al lui f_S .

Cel mai mic punct fix

Exercițiu

Calculați cel mai mic punct fix pentru functia f_{S_1} unde

$$S_1 = \{x_1 \land x_2 \to x_3, x_4 \land x_2 \to x_5, x_2, x_6, x_6 \to x_1\}$$

Soluție

Observăm că $A = \{x_1, x_2, ..., x_6\}$ și $Baza = \{x_2, x_6\}$.

Cum f_S este continuă, aplicăm Teorema Knaster-Tarski pentru a calcula cel mai mic punct fix:

$$f_{S_1}(\emptyset) = Baza = \{x_2, x_6\}$$

$$f_{S_1}(\{x_2, x_6\}) = \{x_2, x_6, x_1\}$$

$$f_{S_1}(\{x_2, x_6, x_1\}) = \{x_2, x_6, x_1, x_3\}$$

$$f_{S_1}(\{x_2, x_6, x_1, x_3\}) = \{x_2, x_6, x_1, x_3\}$$

În concluzie, cel mai mic punct fix căutam este $\{x_2, x_6, x_1, x_3\}$.

Programe logice și cel mai mic punct fix

Teoremă

Fie X este cel mai mic punct fix al funcției f_S . Atunci $q \in X$ ddacă $S \models q$.

Intuiție: Cel mai mic punct fix al funcției f_S este mulțimea tuturor atomilor care sunt consecințe logice ale programului.

Avem o metodă de decizie (decision procedure) pentru a verifica $S \vdash q$. Metoda constă în:

- \square calcularea celui mai mic punct fix X al funcției f_S
- \square dacă $q \in X$ atunci returnăm **true**, altfel returnăm **false**

Această metodă se termină.

Logica de ordinul I (recap.)

Logica de ordinul I - sintaxa

Limbaj de ordinul I ${\cal L}$
\square unic determinat de $ au = (R,F,C,\mathit{ari})$
Termenii lui \mathcal{L} , notați $\mathit{Trm}_{\mathcal{L}}$, sunt definiți inductiv astfel:
orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.
Formulele atomice ale lui ${\mathcal L}$ sunt definite astfel:
□ dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi, \ \varphi \land \psi, \ \varphi \to \psi$ sunt formule
dacă (a este o formulă și v este o variabilă atunci Vv (a Ev (a sunt formule

Logica de ordinul I - semantică

- O structură este de forma $\mathcal{A} = (A, \mathbf{F}^{\mathcal{A}}, \mathbf{R}^{\mathcal{A}}, \mathbf{C}^{\mathcal{A}})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulţime de relaţii pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \quad \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui \mathcal{L} în \mathcal{A} (\mathcal{A} -interpretare) este o funcție $I: V \to A$.

Inductiv, definim interpretarea termenului t în \mathcal{A} sub I notat $t_I^{\mathcal{A}}$.

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \models \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură $\mathcal A$, notat $\mathcal A \models \varphi$, dacă este adevărată în $\mathcal A$ sub orice interpretare. Spunem că $\mathcal A$ este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\models \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\models \varphi$.
- O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare I astfel încât $\mathcal A$, $I \models \varphi$.

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Algoritmul de unificare

Unificare

 \square O subtituție σ este o funcție (parțială) de la variabile la termeni,

$$\sigma: V \to Trm_{\mathcal{L}}$$

 \square Doi termeni t_1 și t_2 se unifică dacă există o substituție θ astfel încât

$$\theta(t_1)=\theta(t_2).$$

- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- Un unificator ν pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru t_1 și t_2 , există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

Algoritmul de unificare

 \square Pentru o mulțime finită de termeni $\{t_1,\ldots,t_n\},\ n\geq 2$, algoritmul de unificare stabilește dacă există un cgu. Algoritmul lucrează cu două liste: ☐ Lista soluție: *S* ☐ Lista de rezolvat: *R* Iniţial: \square Lista solutie: $S = \emptyset$ ■ Lista de rezolvat: $R = \{t_1 = t_2, \dots, t_{n-1} = t_n\}$ □ = este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

Algoritmul de unificare

Algoritmul constă în aplicarea regulilor de mai jos:

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul de unificare

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

■ În R există o ecuație de forma

$$f(t_1,\ldots,t_n)\stackrel{\cdot}{=} g(t'_1,\ldots,t'_k)$$
 cu $f\neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1=t_1',\ldots,t_n=t_n'$	
SCOATE	S	R', t = t	
	S	R'	
DESCOMPUNE	S	$R', f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$	
	S	$R', t_1 = t'_1, \ldots t_n = t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	x = t, $S[x/t]$	R'[x/t]	
Final	S	0	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au gcu?

S	R	
Ø	g(y) = x, $f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y)=f(g(z),w,z)	DESCOMPUNE
x = g(y)	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ
w = h(g(y)),	g(y) = g(z), y = z	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
y = z, x = g(z),	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
w = h(g(z))		
y = z, x = g(z),	0	
w = h(g(z))		

 \square $v = \{y/z, x/g(z), w/h(g(z))\}$ este cgu.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(y), y) = f(g(z), b, z)\}$ au gcu?

S	R	
Ø	g(y) = x, $f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y), h(y), y) = f(g(z), b, z)	DESCOMPUNE
x = g(y)	g(y) = g(z), h(y) = b, y = z	- EŞEC -

- ☐ *h* și *b* sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(y, w, z)$	REZOLVĂ
x = g(y)	f(g(y), h(g(y)), y) = f(y, w, z)	DESCOMPUNE
x = g(y)	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- □ Nu există unificator pentru ecuațiile din *U*.

Forme prenex și Skolem. Modele Herbrand

Variabile libere. Variabile legate. Enunțuri

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.
- □ Pentru orice structură \mathcal{A} și orice enunț φ , o \mathcal{A} -interpretare I nu joacă niciun rol în a determina dacă \mathcal{A} , $I \models \varphi$.

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}.$

Propozitie

Pentru orice structură $\mathcal A$ avem

 $\mathcal{A} \models \varphi$ dacă și numai dacă $\mathcal{A} \models \forall x_1 \cdots \forall x_n \varphi$.

A verifica validitatea unei formule revine la a verifica validitatea enunțului asociat.

Substituții și formule echivalente

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.
- □ Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm $\varphi[x_1/t_1, \ldots, x_n/t_n]$ formula obținută din φ substituind toate aparițiile libere ale lui x_1, \ldots, x_n cu t_1, \ldots, t_n .

$$\varphi[x_1/t_1,\ldots,x_n/t_n] = \{x_1 \leftarrow t_1,\ldots,x_n \leftarrow t_n\}\varphi$$

 \square Notăm prin $\varphi \bowtie \psi$ faptul că $\bowtie \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Forma rectificată

- \square O formulă φ este în formă rectificată dacă:
 - II nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- Dentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

În continuare vom presupune că toate formulele sunt în formă rectificată.

Forma prenex

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}, x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

Cum calculăm forma prenex?

 \square Se înlocuiesc \rightarrow și \leftrightarrow :

$$\begin{array}{cccc} \varphi \to \psi & \text{ H} & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \text{ H} & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

☐ Se aplică următoarele echivalențe:

$$\neg\exists x\neg\varphi \quad \mathsf{H} \quad \forall x\varphi \qquad \qquad \forall x\varphi \land \forall x\psi \quad \mathsf{H} \quad \forall x(\varphi \land \psi)$$

$$\neg\forall x\neg\varphi \quad \mathsf{H} \quad \exists x\varphi \qquad \qquad \exists x\varphi \lor \exists x\psi \quad \mathsf{H} \quad \exists x(\varphi \lor \psi)$$

$$\neg\exists x\varphi \quad \mathsf{H} \quad \forall x\neg\varphi \qquad \qquad \forall x\forall y\varphi \quad \mathsf{H} \quad \forall y\forall x\varphi$$

$$\neg\forall x\varphi \quad \mathsf{H} \quad \exists x\neg\varphi \qquad \qquad \exists x\exists y\varphi \quad \mathsf{H} \quad \exists y\exists x\varphi$$

$$\forall x\varphi \lor \psi \quad \mathsf{H} \quad \forall x(\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$

$$\forall x\varphi \land \psi \quad \mathsf{H} \quad \forall x(\varphi \land \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x\varphi \lor \psi \quad \mathsf{H} \quad \exists x(\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x\varphi \land \psi \quad \mathsf{H} \quad \exists x(\varphi \land \psi) \text{ dacă } x \notin FV(\psi)$$

Forma prenex

Exercițiu

Considerăm un limbaj de ordinul I cu $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 și ari(R) = ari(Q) = 2.

Găsiți forma echivalentă prenex pentru următoarea formulă:

$$\forall x \exists y (R(x, y) \rightarrow R(y, x)) \rightarrow \exists x R(x, x)$$

Soluție

Forma Skolem

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk}=\varphi$ și $\mathcal{L}^{sk}(\varphi)=\mathcal{L}$,
- \square dacă arphi este universală, atunci $arphi^{\mathit{sk}} = arphi$ și $\mathcal{L}^{\mathit{sk}}(arphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c]$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la o formulă universală si aceasta este φ^{sk} .

Definiție

 φ^{sk} este o formă Skolem a lui φ .

Forma Skolem

Exercițiu

Considerăm un limbaj de ordinul I cu $\mathbf{C} = \{b\}$ și $\mathbf{R} = \{P, R, Q\}$ cu ari(P) = 1 și ari(R) = ari(Q) = 2.

Găsiți forma Skolem pentru următoarea formulă în formă prenex

$$\varphi = \forall x \exists y \forall z \exists w (R(x, y) \land (R(y, z) \rightarrow (R(z, w) \land R(w, w))))$$

Soluție

$$\varphi_{1} = \forall x \forall z \exists w (R(x, f(x)) \land (R(f(x), z) \rightarrow (R(z, w) \land R(w, w))))$$

$$(y \mapsto f(x))$$

$$\varphi_{2} = \forall x \forall z (R(x, f(x)) \land (R(f(x), z) \rightarrow (R(z, g(x, z)) \land R(g(x, z), g(x, z)))))$$

$$(w \mapsto g(x, z))$$

$$\varphi^{sk} = \varphi_{2}$$

Model Herbrand

- Fie $\mathcal L$ un limbaj de ordinul I.
 - □ Presupunem că are cel puţin un simbol de constantă!
 - □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea T_L a tututor termenilor fără variabile.

- O structură Herbrand este o structură $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$, unde
 - \Box pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
 - \square pentru orice simbol de funcție f de aritate n,

$$f^{\mathcal{H}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

Atenție! Într-o structură Herbrand nu fixăm o definiție pentru relații: pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1, \ldots, t_n) \subseteq (\mathcal{T}_{\mathcal{L}})^n$

O interpretare Herbrand este o interpretare $H: V \rightarrow T_{\mathcal{L}}$

O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \models \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Teorema lui Herbrand

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand reduce problema satisfiabilității la găsirea unui model Herbrand.

Universul Herbrand al unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Definim $T(\varphi)$, universul Herbrand al formulei φ , astfel:

- \square dacă c este o constantă care apare în φ atunci $c \in T(\varphi)$,
- □ dacă φ nu conține nicio constantă atunci alegem o constantă arbitrară c și considerăm că $c \in T(\varphi)$,
- □ dacă f este un simbol de funcție care apare în φ cu ari(f) = n și $t_1, \ldots, t_n \in T(\varphi)$ atunci $f(t_1, \ldots, t_n) \in T(\varphi)$.

Intuitiv, $T(\varphi)$ este mulțimea termenilor care se pot construi folosind simbolurile de funcții care apar în φ .

Definim extensia Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}$$

Extensia Herbrand a unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq \mathcal{T}(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,
- \square mulțimea de formule $\mathcal{H}(\varphi)$ este satisfiabilă.

Extensia Herbrand a unei formule

Exercițiu

Considerăm un limbaj de ordinul I cu $\mathbf{F} = \{f, g\}$ cu ari(f) = 2 și ari(g) = 1,

 $\mathbf{C} = \{b, c\}$ și $\mathbf{R} = \{P, Q\}$ cu ari(P) = 3, ari(Q) = 2. Descrieți termenii din universul Herbrand și formulele din expansiunea

$$\varphi := \forall x \forall y P(c, f(x, b), g(y))$$

Solutie

Universul Herbrand

Herbrand a următoarei formule:

$$T(\varphi) = \{b, c, g(b), g(c), g(g(b)), g(g(c)), \dots, f(b, c), f(b, g(b)), f(b, g(c)), f(g(c), b), f(g(c), g(c)), \dots\}$$

Expansiunea Herbrand

$$\mathcal{H}(\varphi) = \{ P(c, f(b, b), g(b)), P(c, f(b, b), g(c)), P(c, f(c, b), g(b)), P(c, f(g(b), b), g(g(g(b)))), \ldots \}$$

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- ☐ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.
- □ Teorema lui Herbrand reduce verificarea satisfiabilitătii unui enunț în forma Skolem la verificarea satisfiabilității în universul Herbrand.
- ☐ În situații particulare Teorema lui Herbrand ne dă o procedură de decizie a satisfiabilității, dar acest fapt nu este adevărat în general:
 - dacă limbajul \mathcal{L} conține cel putin o constantă și cel puțin un simbol de funcție f cu $ari(f) \geq 1$ atunci universul Herbrand $\mathcal{T}_{\mathcal{L}}$ este infinit.

Logica de ordinul I

Problema validității

- □ nu este decidabilă.
- □ este semi-decidabilă.

Problema satisfiabilității

- □ nu este decidabilă.
- □ nu este semi-decidabilă.

Formă clauzală. Rezoluție

Literali. FNC

În logica propozițională un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, ..., t_n) \mid \neg P(t_1, ..., t_n)$$

unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.

- \square Pentru un literal L vom nota cu L^c literalul complement.
 - O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.

Forma clauzală în logica propozițională

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din logica propozițională determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \text{ H} & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \text{ H} & \left(\neg \varphi \lor \psi\right) \land \left(\neg \psi \lor \varphi\right) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

principiului dublei negaţii

$$\neg\neg\psi$$
 \forall

4 distributivitatea

$$\varphi \vee (\psi \wedge \chi) \quad \mathsf{H} \quad (\varphi \vee \psi) \wedge (\varphi \vee \chi) \\ (\psi \wedge \chi) \vee \varphi \quad \mathsf{H} \quad (\psi \vee \varphi) \wedge (\chi \vee \varphi)$$

Forma clauzală în logica de ordinul l

```
□ O formulă este formă normală conjunctivă prenex (FNCP) dacă
      \square este în formă prenex Q_1 \times_1 \dots Q_n \times_n \psi (Q_i \in \{\forall, \exists\}) oricare i
      □ ψ este FNC
   O formulă este formă clauzală dacă este enunț universal și FNCP:
                            \forall x_1 \dots \forall x_n \psi unde \psi este FNC
   Pentru orice formulă \varphi din logica de ordinul I există o formă clauzală
   \varphi^{fc} astfel încât
           \varphi este satisfiabilă dacă și numai dacă \varphi^{fc} este satisfiabilă
\square Pentru o formulă \varphi, forma clauzală \varphi^{fc} se poate calcula astfel:
      se determină forma rectificată
      se cuantifică universal variabilele libere
         se determină forma prenex
         se determină forma Skolem
         în acest moment am obținut o formă Skolem \forall x_1 \dots \forall x_n \psi
      5 se determină o FNC \psi' astfel încât \psi \bowtie \psi'
      6 \omega^{fc} este \forall x_1 \dots \forall x_n \psi'
```

Clauze

- □ O clauză este o disjuncție de literali.
- □ Dacă $L_1, ..., L_n$ sunt literali atunci clauza $L_1 \lor ... \lor L_n$ o vom scrie ca mulțimea $\{L_1, ..., L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n = 0 obţinem clauza vidă, care se notează \square
- □ Prin definiție, clauza □ nu este satisfiabilă.

Forma clauzală

- □ Observăm că o FNC este o conjuncție de clauze.
- □ Dacă $C_1, ..., C_k$ sunt clauze atunci $C_1 \land ... \land C_k$ o vom scrie ca mulțimea $\{C_1, ..., C_k\}$

FNC = mulțime de clauze

- □ O mulțime de clauze $C = \{C_1, ..., C_k\}$ este satisfiabilă dacă $C_1 \land ... \land C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.
 - {} este satisfiabilă, dar {□} nu este satisfiabilă

Forma clauzală

- Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{\mathsf{fc}} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

 φ este satisfiabilă dacă și numai dacă $\varphi^{fc} \text{ este satisfiabilă dacă și numai dacă } \{ \{L_{11}, \ldots, L_{1n_1}\}, \ldots, \{L_{k1}, \ldots, L_{kn_k}\} \} \text{ este satisfiabilă}$

Rezoluția în logica propozițională (recap.)

Regula rezoluției

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

Fie C o mulțime de clauze. O derivare prin rezoluție din C este o secvență finită de clauze astfel încât fiecare clauză este din C sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Procedura Davis-Putnam DPP (informal)

Intrare: o mulțime ${\cal C}$ de clauze

Se repetă următorii pași:

- □ se elimină clauzele triviale
- □ se alege o variabilă p
- se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
- \square se șterg toate clauzele care conțin p sau $\neg p$

leșire: dacă la un pas s-a obținut \square , mulțimea C nu este satisfiabilă; altfel C este satisfiabilă.

Procedura Davis-Putnam DPP

Exercițiu

Folosind algoritmul Davis-Putnam, cercetați dacă următoarea mulțime de clauze din calculul propozițional este satisfiabilă:

$$C = \{\{v_0\}, \{\neg v_0, v_1\}, \{\neg v_1, v_2, v_3\}, \{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}\}$$

Soluție

Pasul 1.

Alegem variabila v_0 și selectăm $C_0^{v_0} := \{\{v_0\}\}, C_0^{\neg v_0} = \{\{\neg v_0, v_1\}\}.$

Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{v_1\}\}.$

Se elimină clauzele în care apare v_0 , adăugăm rezolvenții și obținem:

$$C_1 := \{ \{ \neg v_1, v_2, v_3 \}, \{ \neg v_3, v_4 \}, \{ \neg v_4 \}, \{ \neg v_2 \}, \{ v_1 \} \}$$

Procedura Davis-Putnam DPP

Soluție (cont.)

Pasul 2.

Alegem variabila v_1 și selectăm $C_1^{v_1}:=\{\{v_1\}\}$ și $C_1^{\neg v_1}:=\{\{\neg v_1,v_2,v_3\}\}$. Mulțimea rezolvenților posibili este $\mathcal{R}_1:=\{\{v_2,v_3\}\}$.

Se elimină clauzele în care apare v_1 , adăugăm rezolvenții și obținem: $C_2 := \{\{\neg v_3, v_4\}, \{\neg v_2\}, \{v_2, v_3\}\}.$

Pasul 3.

Alegem variabila v_2 și selectăm $C_2^{v_2} := \{\{v_2, v_3\}\}, C_2^{\neg v_2} := \{\{\neg v_2\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_2 := \{\{v_3\}\}.$

Se elimină clauzele în care apare v_2 , adăugăm rezolvenții și obținem:

$$C_3 := \{\{\neg v_3, v_4\}, \{\neg v_4\}, \{v_3\}\}.$$

Procedura Davis-Putnam DPP

Soluție (cont.)

Pasul 4.

Alegem variabila v_3 și selectăm $C_3^{v_3} := \{\{v_3\}\}, \ C_3^{\neg v_3} := \{\{\neg v_3, v_4\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_3 := \{\{v_4\}\}.$

Se elimină clauzele în care apare v_3 , adăugăm rezolvenții și obținem:

$$C_4 := \{\{\neg v_4\}, \{v_4\}\}.$$

Pasul 5.

Alegem variabila v_4 și selectăm $C_4^{v_4} := \{\{v_4\}\}, \ C_4^{\neg v_4} := \{\{\neg v_4\}\}.$

Mulţimea rezolvenţilor posibili este $\mathcal{R}_4 := \{\Box\}.$

Se elimină clauzele în care apare v_4 , adăugăm rezolvenții și obținem:

 $C_5 := \{\square\}.$

Deoarece $C_5 = \{\Box\}$, obținem că mulțimea de clauze C nu este satisfiabilă.

Rezoluția în logica de ordinul

Clauze închise

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_f$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie C o mulțime de clauze. Definim

$$\mathcal{H}(C) := \{ \theta(C) \mid C \in C, \theta : V \to T_{\mathcal{L}} \}$$

 $\mathcal{H}(C)$ este mulțimea instanțelor închise ale clauzelor din C.

Rezoluția pe clauze închise

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Teoremă

Fie φ o formulă arbitrară în logica de ordinul I. Atunci $\models \varphi$ dacă și numai dacă există o derivare pentru \square din $\mathcal{H}(C)$ folosind Rez, unde C este mulțimea de clauze asociată lui $(\neg \varphi)^{fc}$.

Rezoluția pe clauze închise

Exercițiu

Considerăm următoarea mulțime de clauze în logica de ordinul I:

$$C = \{ \{ \neg P(f(a)), Q(y) \}, \{ P(y) \}, \{ \neg Q(b) \} \}$$

Arătați că C nu este satisfiabilă prin următoarele metode:

- 1) Găsiți o submulțime finită nesatisfiabilă lui $\mathcal{H}(C)$.
- 2) Găsiți o derivare pentru 🗆 folosind rezoluția pe clauze închise.

Rezoluția pe clauze închise

Soluție

- 1) $\mathcal{H}(C) = \{ \{ \neg Q(b) \}, \{ \neg P(f(a)), Q(a) \}, \{ \neg P(f(a)), Q(b) \}, \{ P(a) \}, \{ P(b) \}, \{ P(f(a)) \}, \dots \}$
 - O submulţime nesatisfiabilă este $\{\{\neg P(f(a)), Q(b)\}, \{P(f(a))\}, \{\neg Q(b)\}\}$
- 2) Derivare pentru □:
 - 1. $\{\neg P(f(a)), Q(b)\}$
 - 2. $\{P(f(a))\}$
 - 3. $\{Q(b)\}$
 - 4. $\{\neg Q(b)\}$
 - 5. □

Rezoluția pe clauze arbitrare

Regula rezoluției pentru clauze arbitrare

$$\textit{Rez } \frac{\textit{C}_{1},\textit{C}_{2}}{\left(\sigma\textit{C}_{1} \setminus \sigma\textit{Lit}_{1}\right) \cup \left(\sigma\textit{C}_{2} \setminus \sigma\textit{Lit}_{2}\right)}$$

dacă următoarele condiții sunt satisfăcute:

- C_1 , C_2 clauze care nu au variabile comune,
- \supseteq $Lit_1 \subseteq C_1$ și $Lit_2 \subseteq C_2$ sunt mulțimi de literali,
- σ este un cgu pentru Lit_1 și Lit_2^c , adică σ unifică toți literalii din Lit_1 și Lit_2^c .

O clauză C se numește rezolvent pentru C_1 și C_2 dacă există o redenumire de variabile $\theta: V \to V$ astfel încât C_1 și θC_2 nu au variabile comune și C se obține din C_1 și θC_2 prin Rez.

Rezoluția în logica de ordinul I

Exercițiu

Găsiți o derivare prin rezoluție a □ pentru următoarea mulțime de clauze:

$$C_1 = \{ \neg P(x), R(x, f(x)) \}$$

$$C_2 = \{ \neg R(a, x), Q(x) \}$$

$$C_3 = \{ P(a) \}$$

$$C_4 = \{ \neg Q(f(x)) \}$$

unde P, Q, R sunt simboluri de relații, f e simbol de funție, a este o constantă, x, y sunt variabile.

Soluție

$$C_5 = \{R(a, f(a))\} \text{ din } Rez, C_1, C_3, \theta = \{x \leftarrow a\}$$

$$C_4 = \{\neg Q(f(z))\} \text{ redenumire }$$

$$C_6 = \{\neg R(a, f(z))\} \text{ din } Rez, C_4, C_2, \theta = \{y \leftarrow f(z)\}$$

$$\Box \text{ din } Rez, C_6, C_5, \theta = \{z \leftarrow a\}$$

Logica Horn

Clauze definite. Programe logice. Clauze Horn

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \to P_1 \vee \dots \vee P_k$
unde $n, k \ge 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- \square scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop $(k \le 1)$

Programare logica

☐ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn \square formule atomice: $P(t_1, \ldots, t_n)$ \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ unde toate Q_i , P sunt formule atomice, \top sau \bot ☐ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice $KB \models Q_1 \land \ldots \land Q_n$ □ Variabilele din KB sunt cuantificate universal.

Limbajul PROLOG are la bază logica clauzelor Horn.

 \square Variabilele din Q_1, \ldots, Q_n sunt cuantificate existential.

Modele Herbrand

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Semantica unui program logic definit KB este dată de cel mai mic model Herbrand al lui KB!

- \square Definim $\mathcal{LH}_{KB} := \bigcap \{\mathcal{H} \mid \mathcal{H} \text{ model Herbrand pentru } KB\}$
- $\square \mathcal{LH}_{KB} \models KB$.
- □ Vom caracteriza cel mai mic model Herbrand £H_{KB} printr-o construcție de punct fix.

Cel mai mic model Herbrand

- □ O instanță de bază a unei clauze $Q_1(x_1) \land ... \land Q_n(x_n) \rightarrow P(y)$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- \square Pentru o mulțime de clauze definite KB, o formulă atomică P și o mulțime de formule atomice X,

$$oneStep_{KB}(P, X)$$
 este adevărat

dacă există o instanță de bază a unei clauze $Q_1(x_1) \wedge \ldots \wedge Q_n(x_n) \rightarrow P(y)$ din KB astfel încât P este instanța lui P(y) și instanța lui $Q_i(x_i)$ este în X, pentru orice $i=1,\ldots,n$.

- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice fără variabile.
- ☐ Pentru o mulțime de clauze definite KB, definim

$$f_{KB}: \mathcal{P}(B_{\mathcal{L}}) \to \mathcal{P}(B_{\mathcal{L}})$$

 $f_{KB}(X) = \{P \in B_{\mathcal{L}} \mid oneStep_{KB}(P, X)\}$

Cel mai mic model Herbrand

Fie KB un program logic definit.

- □ f_{KB} este continuă
- \square Din teorema Knaster-Tarski, f_{KB} are un cel mai mic punct fix FP_{KB} .
- □ *FP_{KB}* este reuniunea tuturor mulțimilor

$$f_{KB}(\{\}), f_{KB}(f_{KB}(\{\})), f_{KB}(f_{KB}(\{\}))), \dots$$

Propoziție (caracterizarea \mathcal{LH}_{KB})

Pentru orice $R \in \mathbf{R}$ cu ari(R) = n și pentru orice t_1, \ldots, t_n termeni, avem

$$(t_1,\ldots,t_n)\in R^{\mathcal{LH}_T}$$
 ddacă $R(t_1,\ldots,t_n)\in FP_{KB}$

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru un program logic definit KB avem

- □ Axiome: orice clauză din KB
- ☐ Regula de deducție: regula backchain

$$\frac{\theta(Q_1) \quad \theta(Q_2) \quad \dots \quad \theta(Q_n) \quad (Q_1 \land Q_2 \land \dots \land Q_n \to P)}{\theta(Q)}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in KB$, iar θ este cgu pentru Q și P.

Rezoluția SLD

Fie *T* o mulţime de clauze definite.

$$\mathsf{SLD} \left[\begin{array}{c} \neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n \\ \hline \theta (\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n) \end{array} \right]$$

unde

- \square $Q \lor \neg P_1 \lor \cdots \lor \neg P_m$ este o clauză definită din KB (în care toate variabilele au fost redenumite) și
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q

Rezoluția SLD

Fie KB o mulțime de clauze definite și $Q_1 \wedge ... \wedge Q_m$ o întrebare, unde Q_i sunt formule atomice.

□ O derivare din KB prin rezoluție SLD este o secvență

$$G_0 := \neg Q_1 \lor \ldots \lor \neg Q_m, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

□ Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Rezoluția SLD

Exercițiu

Găsiți o SLD-respingere pentru următorul program Prolog și ținta:

```
1. p(X) := q(X,f(Y)), r(a). ?- p(X), q(Y,Z).
```

- 2. p(X) := r(X).
- 3. q(X,Y) := p(Y).
- 4. r(X) := q(X,Y).
- 5. r(f(b)).

Soluție

$$G_{0} = \neg p(X) \lor \neg q(Y, Z)$$

$$G_{1} = \neg r(X_{1}) \lor \neg q(Y, Z)$$

$$G_{2} = \neg q(Y, Z)$$

$$G_{3} = \neg p(Z_{1})$$

$$G_{4} = \neg r(X)$$

$$G_{5} = \square$$

$$(2 \text{ cu } \theta(X) = X_{1})$$

$$(5 \text{ cu } \theta(X_{1}) = f(b))$$

$$(3 \text{ cu } \theta(X) = Y_{1} \text{ și } \theta(Y) = Z_{1})$$

$$(2 \text{ cu } \theta(Z_{1}) = X)$$

$$(5 \text{ cu } \theta(X_{1}) = f(b))$$

Rezoluția SLD - arbori de căutare

Arbori SLD

- □ Presupunem că avem o mulțime de clauze definite KB și o țintă $G_0 = \neg Q_1 \lor ... \lor \neg Q_m$
- ☐ Construim un arbore de căutare (arbore SLD) astfel:
 - ☐ Fiecare nod al arborelui este o țintă (posibil vidă)
 - \square Rădăcina este G_0
 - Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in KB$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- □ Dacă un arbore SLD cu rădăcina G_0 are o frunză □ (clauza vidă), atunci există o SLD-respingere a lui G_0 din KB.

Rezoluția SLD - arbori de căutare

Exercițiu

Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?-p(X,X).

```
1. p(X,Y) := q(X,Z), r(Z,Y). 7. s(X) := t(X,a). 2. p(X,X) := s(X). 8. s(X) := t(X,b). 9. s(X) := t(X,X). 4. q(b,a). 10. t(a,b). 5. q(X,a) := r(a,X). 11. t(b,a). 6. r(b,a).
```

Rezoluția SLD - arbori de căutare

Soluție

Introducere în semantică

Tipuri de semantică

Limbaj natural – descriere textuală a efectelor
Axiomatică – descrierea folosind logică a efectelor unei instrucțiun $\Box \vdash \{\varphi\} cod\{\psi\}$ \Box modelează un program prin formulele logice pe care le satisface \Box utilă pentru demonstrarea corectitunii
Denotațională — asocierea unui obiect matematic (denotație) □ [cod] □ modelează un program ca obiecte matematice □ utilă pentru fundamente matematice
Operațională — asocierea unei demonstrații pentru execuție
Vom defini un limbai si semantica lui operatională în PROLOGI

Semantica small-step

- ☐ Introdusă de Gordon Plotkin (1981)
 - Denumiri alternative:
 - Semantică Operațională Structurală
 - semantică prin tranziții
 - semantică prin reducere
- Definește cel mai mic pas de execuție ca o relație "de tranziție" între configurații:

$$\langle cod, \sigma \rangle \rightarrow \langle cod, \sigma' \rangle$$

☐ Execuția se obține ca o succesiune de astfel de tranziții:

$$\langle \operatorname{int} x = 0 ; x = x + 1 ; , \perp \rangle \rightarrow \langle x = x + 1 ; , x \mapsto 0 \rangle$$

$$\rightarrow \langle x = 0 + 1 ; , x \mapsto 0 \rangle$$

$$\rightarrow \langle x = 1 ; , x \mapsto 0 \rangle$$

$$\rightarrow \langle \{\}, x \mapsto 1 \rangle$$

Limbajul IMP

Vom implementa un limbaj care conține:

```
□ Expresii
    Aritmetice
                                                             x + 3
    Booleene
                                                            x >= 7
Instrucţiuni
    De atribuire
                                                             x = 5
                                          if(x >= 7, x = 5, x = 0)
    Condiționale
    De ciclare
                                          while(x >= 7, x = x - 1)
☐ Compunerea instruţiunilor
                                          x=7; while (x>=0, x=x-1)
                                        \{x=7; while(x>=0, x=x-1)\}
☐ Blocuri de instrucțiuni
```

Limbajul IMP

Exemplu

Un program în limbajul IMP

□ Semantica

după execuția programului, se evaluează sum

Sintaxa BNF a limbajului IMP

```
E ::= n \mid x
   |E+E|E-E|E*E
B := true \mid false
   \mid E = \langle E \mid E \rangle = E \mid E = E
   \mid not(B) \mid and(B, B) \mid or(B, B)
St ::= skip
    | x = E
    | if(B, St, St)
    while (B, St)
    |\{St\}| St: St
P := \{ St \}, E
```

Implementarea limbajului IMP în Prolog

```
☐ {} și ; sunt operatori
  :- op(100, xf, {}).
  :- op(1100, yf, ;).
□ definim un predicat pentru fiecare categorie sintactică
  stmt(while(BE,St)) :- bexp(BE), stmt(St).
□ while, if, and, etc sunt functori în Prolog
   while(true, skip) este un termen compus
are semnificația obișnuită
pentru valori numerice folosim întregii din Prolog
  aexp(I) :- integer(I).
pentru identificatori folosim atomii din Prolog
  aexp(X) := atom(X).
```

Expresiile aritmetice

```
E ::= n \mid x\mid E + E \mid E - E \mid E * E
```

Prolog

```
aexp(I) :- integer(I).
aexp(X) :- atom(X).
aexp(A1 + A2) :- aexp(A1), aexp(A2).
aexp(A1 - A2) :- aexp(A1), aexp(A2).
aexp(A1 * A2) :- aexp(A1), aexp(A2).
```

Expresiile aritmetice

Exemplu

```
?- aexp(1000).
true.
?- aexp(id).
true.
?- aexp(id + 1000).
true.
?- aexp(2 + 1000).
true.
?- aexp(x * y).
true.
?- aexp(-x).
false.
```

Expresiile booleene

```
B := \text{true} \mid \text{false}

\mid E = \langle E \mid E \rangle = E \mid E = E

\mid \text{not}(B) \mid \text{and}(B, B) \mid \text{or}(B, B)
```

Prolog

```
bexp(true). bexp(false).
bexp(and(BE1,BE2)) :- bexp(BE1), bexp(BE2).
bexp(or(BE1,BE2)) :- bexp(BE1), bexp(BE2).
bexp(not(BE)) :- bexp(BE).

bexp(A1 =< A2) :- aexp(A1), aexp(A2).
bexp(A1 >= A2) :- aexp(A1), aexp(A2).
bexp(A1 == A2) :- aexp(A1), aexp(A2).
```

Expresiile booleene

Exempli

```
?- bexp(true).
true.
?- bexp(id).
false.
?- bexp(not(1 = < 2)).
true.
?- bexp(or(1 =< 2,true)).
true.
?- bexp(or(a = < b,true)).
true.
?- bexp(not(a)).
false.
?- bexp(!(a)).
false.
```

Instrucțiunile

```
St ::= skip
| x = E;
| if(B) St else St
| while(B) St
| { St } | St ; St
```

Prolog

```
stmt(skip).
stmt(X = AE) :- atom(X), aexp(AE).
stmt(St1;St2) :- stmt(St1), stmt(St2).
stmt((St1;St2)) :- stmt(St1), stmt(St2).
stmt({St}) :- stmt(St).
stmt(if(BE,St1,St2)) :- bexp(BE), stmt(St1), stmt(St2).
stmt(while(BE,St)) :- bexp(BE), stmt(St).
```

Instrucțiunile

Exempli

```
?- stmt(id = 5).
true.
?- stmt(id = a).
true.
?- stmt(3 = 6).
false.
?- stmt(if(true, x=2;y=3, x=1;y=0)).
true.
?- stmt(while(x = < 0, skip)).
true.
?- stmt(while(x = < 0,)).
false.
?- stmt(while(x = < 0, skip)).
true .
```

Programele

```
P ::= \{ St \}, E
```

Prolog

```
program(St,AE) :- stmt(St), aexp(AE).
```

Exemplu

?- test0. true.

Semantica small-step

☐ Definește cel mai mic pas de execuție ca o relație de tranziție între configurații:

```
\langle cod, \sigma \rangle \rightarrow \langle cod', \sigma' \rangle smallstep(Cod,S1,Cod',S2)
```

- ☐ Execuția se obține ca o succesiune de astfel de tranziții.
- □ Starea executiei unui program IMP la un moment dat este o funcție parțială: $\sigma = n \mapsto 10, sum \mapsto 0$, etc.

Reprezentarea stărilor în Prolog

```
get(S,X,I) :- member(vi(X,I),S).
get(_,_,0).
set(S,X,I,[vi(X,I)|S1]) :- del(S,X,S1).

del([vi(X,_)|S],X,S).
del([H|S],X,[H|S1]) :- del(S,X,S1) .
del([],_,[]).
```

Semantica expresiilor aritmetice

☐ Semantica unei variabile

$$\langle x, \sigma \rangle \rightarrow \langle i, \sigma \rangle$$
 dacă $i = \sigma(x)$

Prolog

```
smallstepA(X,S,I,S) :-
atom(X),
get(S,X,I).
```

Semantica expresiilor aritmetice

☐ Semantica adunării a două expresii aritmetice

$$\begin{split} \langle \emph{i}_1 + \emph{i}_2 \;,\; \sigma \rangle &\rightarrow \langle \emph{i} \;,\; \sigma \rangle \quad \textit{dacă} \; \emph{i} = \emph{i}_1 + \emph{i}_2 \\ \frac{\langle \emph{a}_1 \;,\; \sigma \rangle \rightarrow \langle \emph{a}_1' \;,\; \sigma \rangle}{\langle \emph{a}_1 + \emph{a}_2 \;,\; \sigma \rangle \rightarrow \langle \emph{a}_1' + \emph{a}_2 \;,\; \sigma \rangle} & \frac{\langle \emph{a}_2 \;,\; \sigma \rangle \rightarrow \langle \emph{a}_2' \;,\; \sigma \rangle}{\langle \emph{a}_1 + \emph{a}_2 \;,\; \sigma \rangle \rightarrow \langle \emph{a}_1 + \emph{a}_2' \;,\; \sigma \rangle} \end{split}$$

Prolog

Semantica expresiilor aritmetice

Exemplu

$$\begin{array}{l} \text{?- small stepA}(a+b,\,[vi(a,1),vi(b,2)],AE,\,S).} \\ \text{AE} = 1+b, \\ \text{S} = [vi(a,\,1),\,vi(b,\,2)] \;. \\ \text{?- small stepA}(1+b,\,[vi(a,1),vi(b,2)],AE,\,S).} \\ \text{AE} = 1+2, \\ \text{S} = [vi(a,\,1),\,vi(b,\,2)] \;. \\ \text{?- small stepA}(1+2,\,[vi(a,1),vi(b,2)],AE,\,S).} \\ \text{AE} = 3, \\ \text{S} = [vi(a,\,1),\,vi(b,\,2)] \\ \end{array}$$

☐ Semantica * și - se definesc similar.

Semantica expresiilor booleene

☐ Semantica operatorului de comparație

$$\begin{split} &\langle i_1 = < i_2 \;,\; \sigma \rangle \to \langle \text{false} \;,\; \sigma \rangle \quad \textit{daca} \; i_1 > i_2 \\ &\langle i_1 = < i_2 \;,\; \sigma \rangle \to \langle \text{true} \;,\; \sigma \rangle \quad \textit{daca} \; i_1 \leq i_2 \\ &\underbrace{\langle a_1 \;,\; \sigma \rangle \to \langle a_1' \;,\; \sigma \rangle}_{\langle a_1 = < a_2 \;,\; \sigma \rangle \to \langle a_1' = < a_2 \;,\; \sigma \rangle}_{\langle a_1 = < a_2 \;,\; \sigma \rangle \to \langle a_1 = < a_2' \;,\; \sigma \rangle} \\ &\underbrace{\langle a_2 \;,\; \sigma \rangle \to \langle a_2' \;,\; \sigma \rangle}_{\langle a_1 = < a_2 \;,\; \sigma \rangle \to \langle a_1 = < a_2' \;,\; \sigma \rangle}_{\langle a_1 = < a_2 \;,\; \sigma \rangle \to \langle a_1 = < a_2' \;,\; \sigma \rangle}$$

Semantica expresiilor Booleene

□ Semantica negației

```
\langle \text{not(true)} , \sigma \rangle \rightarrow \langle \text{false}, \sigma \rangle
\langle \text{not(false)} , \sigma \rangle \rightarrow \langle \text{true}, \sigma \rangle
\frac{\langle a, \sigma \rangle \rightarrow \langle a', \sigma \rangle}{\langle \text{not}(a), \sigma \rangle \rightarrow \langle \text{not}(a'), \sigma \rangle}
```

Semantica compunerii și a blocurilor

- ☐ Semantica blocurilor
 - $\langle \{ s \}, \sigma \rangle \rightarrow \langle s, \sigma \rangle$
- ☐ Semantica compunerii secvențiale

$$\langle \{\} \ s_2 \ , \ \sigma \rangle \rightarrow \langle s_2 \ , \ \sigma \rangle \qquad \frac{\langle s_1 \ , \ \sigma \rangle \rightarrow \langle s'_1 \ , \ \sigma' \rangle}{\langle s_1 \ s_2 \ , \ \sigma \rangle \rightarrow \langle s'_1 \ s_2 \ , \ \sigma' \rangle}$$

```
\label{eq:smallsteps} $$ smallstepS(\{E\},S,E,S).$$ smallstepS((skip;St2),S,St2,S).$$ smallstepS((St1;St),S1,(St2;St),S2):-$$ smallstepS(St1,S1,St2,S2).
```

Semantica atribuirii

☐ Semantica atribuirii

$$\langle x = i, \sigma \rangle \rightarrow \langle \{\}, \sigma' \rangle \quad dac\check{a}\sigma' = \sigma[i/x]$$

$$\frac{\langle a, \sigma \rangle \rightarrow \langle a', \sigma \rangle}{\langle x = a, \sigma \rangle \rightarrow \langle x = a'; \sigma \rangle}$$

Semantica lui if

☐ Semantica lui if

$$\begin{split} & \langle \text{if (true}, bl_1, bl_2) \;,\; \sigma \rangle \rightarrow \langle bl_1 \;,\; \sigma \rangle \\ & \langle \text{if (false}, bl_1, bl_2) \;,\; \sigma \rangle \rightarrow \langle bl_2 \;,\; \sigma \rangle \\ & \frac{\langle b \;,\; \sigma \rangle \rightarrow \langle b' \;,\; \sigma \rangle}{\langle \text{if } (b, bl_1, bl_2) \;,\; \sigma \rangle \rightarrow \langle \text{if } (b', bl_1, bl_2) \;,\; \sigma \rangle} \end{split}$$

Semantica lui while

☐ Semantica lui while

$$\langle \text{while } (b, bl), \sigma \rangle \rightarrow \langle \text{if } (b, bl; \text{while } (b, bl), \text{skip}), \sigma \rangle$$

Prolog

 ${\tt smallstepS(while(BE,St),S,if(BE,(St;while(BE,St)),skip),S)}$.

Semantica programelor

□ Semantica programelor

$$\begin{split} &\frac{\langle a_1 \;,\; \sigma_1 \rangle \to \langle a_2 \;,\; \sigma_2 \rangle}{\langle \left(\texttt{skip}, a_1 \right) \;,\; \sigma_1 \rangle \to \langle \left(\texttt{skip}, a_2 \right) \;,\; \sigma_2 \rangle} \\ &\frac{\langle s_1 \;,\; \sigma_1 \rangle \to \langle s_2 \;,\; \sigma_2 \rangle}{\langle \left(s_1, a \right) \;,\; \sigma_1 \rangle \to \langle \left(s_2, a \right) \;,\; \sigma_2 \rangle} \end{split}$$

Execuția programelor

Prolog

Exemplu

```
defpg(pg2, {x = 10 ; sum = 0; while(0 =< x, { sum = sum + x; x = x - 1}), sum)
```

?- run_program(pg2). 55

true

Execuția programelor: trace

Putem defini o funcție care ne permite să urmărim execuția unui program în implementarea noastră?

Execuția programelor: trace_program

Exemplu

```
?- trace program(pg2).
. . .
[vi(x,-1),vi(sum,55)]
if(0=<x,(sum=sum+x;x=x-1;while(0=<x,sum=sum+x;x=x-1)),skip)
sum
[vi(x,-1),vi(sum,55)]
if(0=<-1,(sum=sum+x;x=x-1;while(0=<x,sum=sum+x;x=x-1)),skip)
sum
[vi(x,-1),vi(sum,55)]
if(false,(sum=sum+x;x=x-1;while(0=<x,sum=sum+x;x=x-1)),skip)
sum
[vi(x,-1),vi(sum,55)]
skip
sum
[vi(x,-1),vi(sum,55)]
skip
55
[vi(x,-1),vi(sum,55)]
true .
```

Succes la examen!