Доказательство. Пусть даны векторы $\bar{a}, \bar{b}, \bar{c}$. Выберем базис $\bar{i}, \bar{j}, \bar{k}$ так, чтобы $\bar{i} \parallel \bar{b}, \bar{j}$ находится в плоскости векторов \bar{b} и \bar{c} (рис. 19). Тогда:

Для последующих вычислений будем использовать формулы скалярного произведения и однодетерминантную формулу векторного произведения в базисе $\bar{i}, \bar{j}, \bar{k}$ (из списка на стр. 28). Тогда:

$$[\bar{b}, \bar{c}] = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \beta_1 & 0 & 0 \\ \gamma_1 & \gamma_2 & 0 \end{vmatrix} = \beta_1 \gamma_2 \bar{k} \Rightarrow [\bar{b}, \bar{c}] = \{0, 0, \beta_1 \gamma_2\}.$$

$$\begin{array}{c} \begin{bmatrix} \bar{b} \\ \bar{p}uc. \ 19 \end{bmatrix} & [\bar{b}, \bar{c}] = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \beta_1 & 0 & 0 \\ \gamma_1 & \gamma_2 & 0 \end{vmatrix} = \beta_1 \gamma_2 \bar{k} \Rightarrow [\bar{b}, \bar{c}] = \{0, 0, \beta_1 \gamma_2\}. \\ \\ \text{Тогда: } [\bar{a}, [\bar{b}, \bar{c}]] = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \alpha_1 & \alpha_2 & \alpha_3 \\ 0 & 0 & \beta_1 \gamma_2 \end{vmatrix} = \alpha_2 \beta_1 \gamma_2 \bar{i} - \alpha_1 \beta_1 \gamma_2 \bar{j} \Rightarrow [\bar{a}, [\bar{b}, \bar{c}]] = \{\alpha_2 \beta_1 \gamma_2; -\alpha_1 \beta_1 \gamma_2; 0\} \end{array} \quad (*)$$

 $(\bar{a},\bar{c})=\alpha_1\gamma_1+\alpha_2\gamma_2\Rightarrow \bar{b}(\bar{a},\bar{c})=$ из координатной записи операции $(II)=\{\alpha_1\beta_1\gamma_1+\alpha_2\beta_1\gamma_2;0;0\}$

 $(\bar{a},\bar{b})=lpha_1eta_1\Rightarrow \bar{c}(\bar{a},\bar{b})=$ из координатной записи операции $(II)=\{lpha_1eta_1\gamma_1;lpha_1eta_1\gamma_2;0\}$

Вычитаем из предпоследнего равенства последнее:

$$\bar{b}(\bar{a},\bar{c}) - \bar{c}(\bar{a},\bar{b}) = \{\alpha_2\beta_1\gamma_2; -\alpha_1\beta_1\gamma_2; 0\} \quad (**).$$

Сравнивая (*) и (**), получаем доказательство свойства.

(VI.2) Тождество Якоби: $[\bar{a}, [\bar{b}, \bar{c}]] + [\bar{b}, [\bar{c}, \bar{a}]] + [\bar{c}, [\bar{a}, \bar{b}]] = \bar{0}.$

Доказательство. Согласно предыдущему свойству:

$$\begin{bmatrix} \bar{a}, [\bar{b}, \bar{c}] \end{bmatrix} = \bar{b}(\bar{a}, \bar{c}) - \bar{c}(\bar{a}, \bar{b}) \\ \bar{b}, [\bar{c}, \bar{a}] \end{bmatrix} = \bar{c}(\bar{b}, \bar{a}) - \bar{a}(\bar{b}, \bar{c}) + \\ [\bar{c}, [\bar{a}, \bar{b}]] = \bar{a}(\bar{c}, \bar{b}) - \bar{b}(\bar{c}, \bar{a})$$
 складываем все три слагаемых

 $\left[\bar{a}, \left[\bar{b}, \bar{c}\right]\right] + \left[\bar{b}, \left[\bar{c}, \bar{a}\right]\right] + \left[\bar{c}, \left[\bar{a}, \bar{b}\right]\right] = \bar{0}$

1.9 Изменение базиса

Вопрос изменения базиса подробно рассмотрен для случая пространства V^2 (плоскости) и более конспективно для пространства V^3 (стереометрия).

Случай плоскости

Базис на плоскости это система $E = \{\bar{e}_1, \bar{e}_2\}$ состоящая из двух неколлинеарных

векторов $\bar{e}_1 \not\parallel \bar{e}_2$ (см. определение на стр. 9). Очевидно, что различных базисов (различных пар неколлинеарных векторов) можно образовать сколь угодно много. Рассмотрим два каких-либо базиса: $E = \{\bar{e}_1, \bar{e}_2\}$, который будем называть СТАРЫЙ базис и $E' = \{\bar{e}'_1, \bar{e}'_2\}$ – НОВЫЙ базис (рис. 20).

Согласно теореме 1.3 (стр. 9) каждый вектор можно разложить по базису и это разложение ОДНОЗНАЧНО, Разложим векторы нового базиса E' по старому:

$$\left. \begin{array}{l} \bar{e}'_1 = c_{11}\bar{e}_1 + c_{21}\bar{e}_2 \\ \bar{e}'_2 = c_{12}\bar{e}_1 + c_{22}\bar{e}_2 \end{array} \right\}, \qquad (*)$$

где коэффициенты разложения индексируем двумя индексами: c_{11} , c_{21} и c_{12} , c_{22} . По определению координат вектора (стр. 10) векторы \bar{e}'_1 и \bar{e}'_2 в базисе $E = \{\bar{e}_1, \bar{e}_2\}$ имеют координаты:

$$\bar{e}'_1 = \{c_{11}, c_{21}\}, \quad \bar{e}'_2 = \{c_{12}, c_{22}\}.$$

Введем матрицу $C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$ структура которой есть:

1-ый столбец – координаты базисного вектора \bar{e}_1' в старом базисе;

2-ой <u>столбец</u> – координаты базисного вектора \vec{e}_2' в старом базисе.

Определение 1.29. Введенная матрица C называется матрицей перехода от старого базиса E к новому E'.

Замечание 1.18. Иногда говорят, что C переводит старый базис в новый и пишут $E \xrightarrow{C} E'$ или $C \colon E \to E'$.

Имеет место (важнейший!) факт:

Утверждение 1.6. Матрица C НЕВЫРОЖДЕННАЯ, т.е. ее детерминант ненулевой: $\det C = |C| \neq 0$.

Доказательство. Предположим противное: $|C|=0 \Rightarrow \begin{vmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{vmatrix} = 0 \Rightarrow c_{11}c_{22} = c_{12}c_{21}$ $\Rightarrow \frac{c_{11}}{c_{12}} = \frac{c_{21}}{c_{22}}$, т.е. координаты векторов $\bar{e}'_1 = \{c_{11}, c_{21}\}$ и $\bar{e}'_2 = \{c_{12}, c_{22}\}$ пропорциональны. По критерию коллинеарности векторов в координатной форме (см. стр. 10) это будет равно-

По критерию коллинеарности векторов в координатной форме (см. стр. 10) это будет равносильно $\bar{e}'_1 \parallel \bar{e}'_2$, что противоречит определению базиса $E' = \{\bar{e}'_1, \bar{e}'_2\}$.

Рассмотрим произвольный вектор $\bar{a} \in V^2$. Пусть:

 $\bar{a} = \{\alpha_1, \alpha_2\}$ – есть координаты вектора \bar{a} в базисе E: $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2$;

 $\bar{a}=\{\alpha_1',\alpha_2'\}$ – есть координаты вектора \bar{a} в базисе E': $\bar{a}=\alpha_1'\bar{e}_1'+\alpha_2'\bar{e}_2'$.

Установим связь между координатам вектора в старом и новом базисе. Пусть C – матрица перехода от старого базиса к новому $C \colon E \to E'$. Тогда:

$$\bar{a} = \alpha'_1 \bar{e}'_1 + \alpha'_2 \bar{e}'_2 =$$
 по формуле (*) на стр. $29 = \alpha'_1 (c_{11} \bar{e}_1 + c_{21} \bar{e}_2) + \alpha'_2 (c_{12} \bar{e}_1 + c_{22} \bar{e}_2) =$
 $= (c_{11} \alpha'_1 + c_{12} \alpha'_2) \bar{e}_1 + (c_{21} \alpha'_1 + c_{22} \alpha'_2) \bar{e}_2.$

Правая часть – разложение вектора \bar{a} по базису $E = \{\bar{e}_1, \bar{e}_2\}$. Поэтому из однозначности разложения вектора по базису и из равенства $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2$ следует

$$\alpha_1 = c_{11}\alpha_1' + c_{12}\alpha_2' \alpha_2 = c_{21}\alpha_1' + c_{22}\alpha_2'$$
 (**)

Формула (**) есть связь координат вектора в различных базисах или формула перерасчёта координат вектора при изменении базиса.

В пространстве V^3 мы вводим ДВА ортонормированных базиса (рис. 18 на стр. 27). Один был назван ПРАВЫМ, а второй ЛЕВЫМ. В векторном пространстве возникает аналогичная ситуация.

Определение 1.30. Ортонормированный базис $E = \{\bar{e}_1, \bar{e}_2\}$ есть ПРАВЫЙ базис, если мы видим вращение первого вектора \bar{e}_1 ко второму \bar{e}_2 КРАТЧАЙШИМ путем ПРОТИВ часовой стрелки. Для правого ортонормированного базиса вводят обозначения: $\bar{e}_1 = \bar{i}$ и $\bar{e}_2 = \bar{j}$, т.е. $E = \{\bar{i}, \bar{j}\}$ означает правый ортонормированный базис (рис. 21 (a)).

$$ar{e}_2 = ar{j}$$
 $ar{f}_2$ $ar{f}_2$ $ar{e}_1 = ar{i}$ $ar{f}_1$ $ar{f}_1$ $ar{f}_2$ $ar{f}_1$ $ar{f}_2$ $ar{f}_1$ $ar{f}_2$ $ar{f}_1$ $ar{f}_2$ $ar{f}_1$ $ar{f}_2$ $ar{f}_3$ $ar{f}_2$ $ar{f}_3$ $$

Определение 1.31. Ортонормированный базис $F = \{\bar{f}_1, \bar{f}_2\}$ называем ЛЕВЫМ, если мы видим вращение первого вектора $ar{f}_1$ ко второму вектору $ar{f}_2$ кратчайшим путем ПО часовой стрелке (рис. 20 (6)).

Рассмотрим сейчас частный, но очень важный случай преобразования (*) – поворот плоскости на угол φ . Предварительно введем СОГЛАШЕНИЕ:

Угол arphi называем положительным если вращение происходит против часовой стрелки. В противном случае угол отрицательный (как в школьной тригонометрии!).

Ha рис. 22 изображен поворот базиса $E = \{\bar{i}, \bar{j}\}.$ Из рисунка следует:

Из определения матрицы перехода следует, что

$$C_1 \colon E o E'$$
 имеет вид: $C_1 = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$

Отметим, что
$$|C_1| = \begin{vmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{vmatrix} = \cos^2 \varphi + \sin^2 \varphi = 1 \Rightarrow |C_1| = +1.$$

Т.к. $E=\{\bar{i},\bar{j}\}$ – ПРАВЫЙ ортонормированный базис, то после поворота $E'=\{\bar{i}',\bar{j}'\}$ также будет правым ортонормированным базисом.

Все рассуждения проведенные для правого ортонормированного базиса будут справедливы и для <u>левого</u> ортонормированного базиса $F = \{\bar{f}_1, \bar{f}_2\}$ (рис. 21 (в)): после вращения $C_1\colon F o F'$ получающийся базис остается <u>левым</u> ортонормированным базисом F'.

Рассмотрим переход к разноименным базисам: правый — левый и, аналогично, левый в правый. В пространстве V^2 кроме $E = \{\bar{i}, \bar{j}\}$ и $E' = \{\bar{i}', \bar{j}'\}$

(см. рис. 22) введем еще один ортонормированный базис

по закону:
$$\bar{i}'' = \bar{i}'$$
 $\bar{j}'' = -\bar{j}'$

Из рис. 23 понятно, что поскольку $E' = \{\bar{i}', \bar{j}'\}$ – правый, то $E'' = \{\bar{i}'', \bar{j}''\}$ – левый базис. Переход $E' \to E''$ можно интерпретировать как отражение относительно прямой, проходящей через вектор \bar{i}' (или \bar{i}'').

Далее:
$$\bar{i}'' = \bar{i}' = \cos \varphi \bar{i} + \sin \varphi \bar{j}$$

 $\bar{j}'' = -\bar{j}' = \sin \varphi \bar{i} - \cos \varphi \bar{j}$

puc. 22

puc. 23

Из определения матрицы перехода следует, что если $C_2 \colon E \to E''$, то $C_2 = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$.

Отметим, что
$$|C_2| = \begin{vmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{vmatrix} = -\cos^2 \varphi - \sin^2 \varphi = -1 \Rightarrow |C_2| = -1.$$

Иногда запись матриц
$$C_1$$
 и C_2 объединяют в одну матрицу $C = \begin{pmatrix} \cos \varphi & -\varepsilon \sin \varphi \\ \sin \varphi & \varepsilon \cos \varphi \end{pmatrix}$, где $\varepsilon = \pm 1$.

Если $\varepsilon = +1$, то переход осуществляется между одноименными базисами (поворот). И $\varepsilon = -1$ в противном случае (в преобразовании присутствует отражение).

Случай пространства

Если $E=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}$ и $E'=\{\bar{e}'_1,\bar{e}'_2,\bar{e}'_3\}$ – два базиса в V^3 , то определение матрицы перехода $C \colon E \to E'$ и закон изменения координат вектора при изменении базиса полностью копируют случай плоскости V^2 .

Разложим векторы нового базиса по старому:

По определению координат вектора в базисе (стр. 10) векторы $\bar{e}'_1, \bar{e}'_2, \bar{e}'_3$ в старом базисе $E = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ имеют координаты:

$$\vec{e}'_1 = \{c_{11}, c_{21}, c_{31}\}, \quad \vec{e}'_2 = \{c_{12}, c_{22}, c_{32}\}, \quad \vec{e}'_3 = \{c_{13}, c_{23}, c_{33}\}.$$

Введем Матрицу
$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$
, структура которой есть:

1-ый столбец – координаты 1-го базисного вектора \bar{e}_1' в старом базисе;

2-ой столбец – координаты 2-го базисного вектора \bar{e}_2' в старом базисе;

3-ий столбец – координаты 3-го базисного вектора \bar{e}_3' в старом базисе.

Определение 1.32. Матрица C называется матрицей перехода от старого базиса E к новому E'. Запись: $E \xrightarrow{C} E'$ или $C : E \to E'$.

Утверждение 1.7. Матрица C невырожденная, т.е. $|C| \neq 0$.

Доказательство. (от противного)

Предположим, что |C| = 0. Столбцы матрицы C – координаты векторов $\bar{e}'_1, \bar{e}'_2, \bar{e}'_3$. Из критерия компланарности векторов (свойство (V.2) смешанного произведения, стр. 21) следует, что $ec{e}'_1, ec{e}'_2, ec{e}'_3$ есть компланарная тройка векторов. Противоречие с определением базиса E' в V^3 .

Рассмотрим произвольный вектор $\bar{a} \in V^3$. Пусть:

 $ar{a} = \{ lpha_1, lpha_2, lpha_3 \}$ – есть координаты вектора $ar{a}$ в базисе E: $ar{a} = lpha_1 ar{e}_1 + lpha_2 ar{e}_2 + lpha_3 ar{e}_3;$ $ar{a} = \{ lpha_1', lpha_2', lpha_3' \}$ – есть координаты вектора $ar{a}$ в базисе E': $ar{a} = lpha_1' ar{e}_1' + lpha_2' ar{e}_2' + lpha_3' ar{e}_3'.$

 ${
m Vc}$ тановим связь между координатам вектора в старом и новом базисе. Пусть C – матрица перехода от старого базиса к новому $C\colon E o E'$. Тогда:

$$\bar{a} = \alpha_1' \bar{e}_1' + \alpha_2' \bar{e}_2' + \alpha_3' \bar{e}_3' = \text{по формуле } (*) = \alpha_1' (c_{11} \bar{e}_1 + c_{21} \bar{e}_2 + c_{31} \bar{e}_3) + \alpha_2' (c_{12} \bar{e}_1 + c_{22} \bar{e}_2 + c_{32} \bar{e}_3) + \alpha_3' (c_{13} \bar{e}_1 + c_{23} \bar{e}_2 + c_{33} \bar{e}_3) = (c_{11} \alpha_1' + c_{12} \alpha_2' + c_{13} \alpha_3') \bar{e}_1 + (c_{21} \alpha_1' + c_{22} \alpha_2' + c_{23} \alpha_3') \bar{e}_2 + (c_{31} \alpha_1' + c_{32} \alpha_2' + c_{33} \alpha_3') \bar{e}_3.$$

Правая часть – разложение вектора \bar{a} по базису $E = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$. Поэтому из однозначности разложения вектора по базису и из равенства $\bar{a} = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \alpha_3 \bar{e}_3$ следует

$$\alpha_{1} = c_{11}\alpha'_{1} + c_{12}\alpha'_{2} + c_{13}\alpha'_{3}
\alpha_{2} = c_{21}\alpha'_{1} + c_{22}\alpha'_{2} + c_{23}\alpha'_{3}
\alpha_{3} = c_{31}\alpha'_{1} + c_{32}\alpha'_{2} + c_{33}\alpha'_{3}$$
(**)

Формула (**) есть связь координат вектора в различных базисах или формула перерасчёта координат вектора при изменении базиса.

Eсли ставить вопрос о виде матрицы C в случае перехода от одного ортонормированного базиса к другому (как это было проделано для случая плоскости V^2), то этого мы здесь проводить не будем. Эта задача в общем виде будет решена в курсе АЛГЕБРА.