

درس : المرجح في المستوى درس رق

G

مرجح نقطتین متزنتین:

<u>A.</u> نقطة متزنة - المرجح لنقطتين متزنتين:

1 نشاط:

 $[\mathbf{A},\mathbf{B}]$ و $[\mathbf{B}$ نقطتان من (\mathcal{P}) حیث $[\mathbf{A},\mathbf{B}]$.

.
$$\overrightarrow{GA} + \overrightarrow{GB} = \overrightarrow{0}$$
 حدد G من (P) حدد (1

$$\overrightarrow{GA} + 2\overrightarrow{GB} = \overrightarrow{0}$$
: فشئ \overrightarrow{G} حيث (2

$$.2\overrightarrow{GA} - 3\overrightarrow{GB} = \overrightarrow{0}$$
 کم توجد من نقطة G کیث: (3

$$.3\overrightarrow{GA} - 3\overrightarrow{GB} = \overrightarrow{0}$$
 عيث: G هل توجد نقطة 4

<u>.2</u> مفردات:

 $\cdot a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$: في الكتابة

A العدد A معينة بالمعامل A أو نقول أن النقطة A معينة بالمعامل A

رر الزوج (A,a) يسمى نقطة متزنة .

المجموعة: $S = \{(A,a),(B,b)\}$ تسمى نظمة متزنة.

ير في حالة $G:a+b\neq 0$ تسمى مرجح النظمة المتزنة S.

 ${f B}$ و ${f A}$ تسمى مركز ثقل ${f A}$ و عالمة خاصة: ${f a}={f b}$

<u>3</u> خاصیة و تعریف:

. \mathbb{R} نقطتين متزنتين من المستوى (\mathcal{P}) حيث $\mathbf{A} \neq \mathbf{B}$ و (\mathbf{a}, \mathbf{b}) نقطتين متزنتين من المستوى

 $-\mathbf{a}\overline{\mathbf{G}}\mathbf{A} + \mathbf{b}\overline{\mathbf{G}}\mathbf{B} = \mathbf{0}$ مین (\mathcal{P}) حیث $\mathbf{a} + \mathbf{b} \neq \mathbf{0}$ اذا کان $\mathbf{a} + \mathbf{b} \neq \mathbf{0}$

(B,b) و (A,a) تسمى مرجح النظمة المتزنة $S = \{(A,a),(B,b)\}$ و $S = \{(A,a),(B,b)\}$ و $S = \{(A,a),(B,b)\}$

<u>4.</u> برهان:

$$(1)$$
: $(a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0} \quad a + b \neq 0)$: لاينا

$$(1) \Leftrightarrow a\overrightarrow{GA} + b\overrightarrow{GA} + b\overrightarrow{AB} = \overrightarrow{0} \quad \exists \quad a+b \neq 0$$

$$\Leftrightarrow (a+b)\overrightarrow{AG} = b\overrightarrow{AB} \quad \exists a+b \neq 0$$

$$\Leftrightarrow \overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB} \quad \mathfrak{g} \quad a+b \neq 0$$

 $oxed{G}$ وحيدة $oxed{A}$ وحيدة $oxed{A}$

$$. \overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB} \overrightarrow{a+b}$$

. $\overrightarrow{aGA} + \overrightarrow{bGB} = \overrightarrow{0}$ و $\overrightarrow{a+b} \neq 0$ و حيدة حيث \overrightarrow{G}

<u>B</u>. خاصیات مرجح نقطتین متزنتین:

1. صمود:

<u>a.</u> نشاط:

 $S = \{(A,a),(B,b)\}$ النقطة مرجح النظمة المتزنة

الخاصية. $\{(A,ka),(B,kb)\}$ هناك شرط على $\{(A,ka),(B,kb)\}$ عط الخاصية.

درس : المرجح في المستوى درس رق

<u>b.</u> خاصية:

 $\{(A,ka),(B,kb)\}$ مرجح النظمة المتزنة $\{(A,a),(B,b)\}$ فإن لكل $\{(A,a),(B,b)\}$ هي كذلك مرجح النظمة المتزنة $\{(A,ka),(B,b)\}$ مرجح نقطتين متزنتين لا يتغير بضرب وزنيهما في نفس العدد الحقيقي الغير المنعدم).

2. الخاصية المميزة:

a. نشاط:

(P) مرجح النظمة المتزنة (A,a),(B,b)] : (B,b) و (B,b) مرجح النظمة المتزنة (B,b) . (B,b) بدلالة (B,b) و (B,b) .

 $(1) \Leftrightarrow \forall \mathbf{M} \in (\mathcal{P}) : \overrightarrow{\mathbf{a} \cdots} + \overrightarrow{\mathbf{b} \cdots} = (\cdots) \overrightarrow{\mathbf{M} \mathbf{G}}$ ب: أتمم التكافؤ التالي:

 $\mathbf{a} = \mathbf{M}$ أو $\mathbf{B} = \mathbf{M}$ في العلاقة (1) ماذا تستنتج (2) نأخذ: $\mathbf{b} = \mathbf{M}$ أو الخاصية المميزة :

 $a+b \neq 0$ و $\forall M \in (\mathcal{P}): a\overline{MA} + b\overline{MB} = (a+b)\overline{MG}$ يكافئ $\{(A,a),(B,b)\}$ و G \mathscr{M}

 $\overrightarrow{AG} = \frac{\mathbf{b}}{\mathbf{a} + \mathbf{b}}$ و B و G نقط مستقیمیة حیث: \mathbf{A}

 $\{(A,a),(B,b)\}$ مرجح النظمة المتزنة موقع أو إنشاء G مرجح

الى |a+b| قطعة متساوية. [AB] الم

من خلال الكتابة $\overline{AG} = \frac{b}{a+b}$ نستنتج أن:

بتقسيم $\begin{bmatrix} AB \end{bmatrix}$ بتقسيم $\begin{bmatrix} a+b \end{bmatrix}$ بانى $\begin{vmatrix} a+b \end{vmatrix}$ قطعة متساوية طول كل قطعة هو $\begin{vmatrix} a+b \end{vmatrix}$ و $\begin{vmatrix} a+b \end{vmatrix}$ و $\begin{vmatrix} a+b \end{vmatrix}$ بتقسيم وقع النقطة $\begin{vmatrix} a+b \end{vmatrix}$

يكون على بعد $|\mathbf{b}|$ قطعة من جهة \mathbf{A}) و الاتجاه يحدد حسب الحالات التالية.

فإن $G \in [AB]$ فإن $\frac{b}{a+b} \in [0,1]$ ذلك داخل القطعة) $G \in [AB]$

و $G \in [AB]$ خارج القطعة في اتجاه $G : G \notin [AB]$ و $G \in [AB]$ خارج القطعة في اتجاه $G \in [AB]$).

 $G:G \in [AB]$ و $G:G \in [BA]$ فإن $G:G \in [BA]$ و $G:G \in [BA]$ و $G:G \in [BA]$

 $(G_{0}, (B, 2), (B, 2))$ ؛ (A, -10), (B, 2) ؛ و(أنشىء $(G_{0}, (B, 2), (B, 4))$ ؛ $(G_{0}, (B, 4))$ ؛ و(أنشىء $(G_{0}, (B, 4))$) ؛ $(G_{0}, (B, 4))$ ؛ (أنشىء $(G_{0}, (B, 4))$) (أنشىء $(G_{0}, (B, 4))$

الطريقة متوازي الأضلاع:

ناخذ نقطة M حيث: (AB) و أي خارج المستقيم (AB)).

ننشئ النقطتان 'A و 'B حيث \overline{MA} = \overline{aMA} و \overline{MB} = \overline{bMB} و \overline{MB} (1) ومنه ' \overline{MB} قطر لمتوازي \overline{MA} (3) أي [MC] قطر لمتوازي الأضلاع A'MB'C.

درس : المرجح في المستوى

. (4) $\overrightarrow{MA'} + \overrightarrow{MB'} = (a+b)\overrightarrow{MG}$ من خلال (1) و (2) نحصل على:

.
$$(a+b)\overrightarrow{MG} = \overrightarrow{MC}$$
 من خلال (3) و (4) نحصل على

و منه : M و G و C نقط مستقيمية إذن
$$G \in (MC)$$
 .

$$G \in (AB)$$
 و نظم بأن A و B و B و نظم بأن

.
$$(MC) \cap (AB) = \{G\}$$
 بالتالي $G \in (AB) \cap (MC)$.

4. تطبیقات؛

$$2\overline{MA} + 4\overline{MB} = 12$$
 حدد مجموعة النقط M من المستوى \mathcal{P} حيث: 12 $= 2\overline{MA} + 4\overline{MB}$

$$\|2\overrightarrow{MA} + 4\overrightarrow{MB}\| = \|4\overrightarrow{MA} + 2\overrightarrow{MB}\|$$
 حدد مجموعة النقط M من المستوى P حيث:

$$\|2\overline{MA} + 4\overline{MB}\| = 6 \Leftrightarrow \|6\overline{MG}\| = 12$$
 عرجح النظمة المتزنة $\{(A,2),(B,4)\}$.حسب الخاصية المميزة نحصل على: G مرجح النظمة المتزنة $\|\overline{MG}\| = 2$

$$\Leftrightarrow$$
 MG = 2

C(G,2) خلاصة: مجموعة النقط هي الدائرة

<u>b.</u> نحدد مجموعة النقط:

حسب الخاصية المميزة نحصل على:

$$\{(A,4),(B,2)\}$$
 و 'G مرجح النظمة المتزنة المتزنة $\{(A,2),(B,4)\}$ و 'G مرجح النظمة المتزنة

$$\|2\overrightarrow{MA} + 4\overrightarrow{MB}\| = \|4\overrightarrow{MA} + 2\overrightarrow{MB}\| \Leftrightarrow \|6\overrightarrow{MG}\| = \|6\overrightarrow{MG'}\|$$

$$\Leftrightarrow \|\overrightarrow{\mathbf{MG}}\| = \|\overrightarrow{\mathbf{MG'}}\| \Leftrightarrow \mathbf{MG} = \mathbf{MG'}$$

. $\lceil GG' \rceil$ خلاصة : مجموعة النقط هي واسط القطعة

 $S = \{(A,a),(B,b)\}$ مرجح النظمة متزنة G إحداثيتي G مرجح

$$\mathbf{G}ig(\mathbf{x}_{\mathrm{G}},\mathbf{y}_{\mathrm{G}}ig)$$
 و $\mathbf{B}ig(\mathbf{x}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}}ig)$ و $\mathbf{A}ig(\mathbf{x}_{\mathrm{A}},\mathbf{y}_{\mathrm{A}}ig)$ حيث $\mathbf{C}ig(\mathbf{x}_{\mathrm{A}},\mathbf{y}_{\mathrm{A}}ig)$ و $\mathbf{B}ig(\mathbf{x}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}}ig)$ و المستوى $\mathbf{B}ig(\mathbf{x}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}}ig)$

- $\overline{\mathbf{OB}}$ و $\overline{\mathbf{OA}}$ و $\overline{\mathbf{OB}}$.
- $\overline{\mathbf{O}}$. أكتب المتجهة $\overline{\mathbf{O}}$ بدلالة المتجهات: $\overline{\mathbf{O}}$ و $\overline{\mathbf{O}}$.
- 3. استنتج إحداثيتي G بدلالة إحداثيات النقط A و B.

$$.(\mathcal{P})$$
 المستوى $B(x_B,y_B)$ و $B(x_A,y_A)$. O,\vec{i},\vec{j} نقط من $B(x_G,y_G)$ المستوى $B(x_B,y_B)$

$$x_{G} = \frac{ax_{A} + bx_{B}}{a + b}$$
 و $y_{G} = \frac{ay_{A} + by_{B}}{a + b}$ فان: $\{(B,b); (A,a)\}$ فان G

درس : المرجح في المستوى درس رقه

الـ مرجح ثلاث نقط متزنة:

A. مرجح ثلاث نقط متزنة:

1. نشاط:

 $(\overline{GA}-3\overline{GB}+4\overline{GC}=\overline{0}$ نريد معرفة هل توجد نقطة وحيدة G من P بالنسبة لنقط المتزنة ليقط المتزنة وحيدة كا من عرفة هل توجد نقطة وحيدة كا من النسبة لنقط المتزنة وحيدة كا من النسبة كا من النسبة

- . \overrightarrow{G} بدلالة \overrightarrow{AB} و \overrightarrow{AC} . ثم استنتج وحدانية \overrightarrow{GA}
 - $: \{(B,-3);(A,1)\}$ مرجح (2
 - <u>أ-</u> بين : 3 <u>-2GK</u> 4GC <u>أ-</u>
 - <u>ب</u> ماذا يمكن أن نستنتج بالنسبة للنقطة G ?
 - \mathbf{C} ماذا يمكن أن نقول عن النقط \mathbf{G} و \mathbf{K} و \mathbf{C} ?
 - 2. تعریف و خاصیة:

$$a+b+c \neq 0$$
: ثلاث نقط متزنة من المستوى \mathcal{P} حيث $\{(C,c);(B,b);(A,a)\}$ نتكن

- $\overrightarrow{aGA} + \overrightarrow{bGB} + \overrightarrow{cGC} = \overrightarrow{0}$: توجد نقطة وحيدة G تحقق : $\cancel{aGA} + \overrightarrow{bGB} + \overrightarrow{cGC} = \overrightarrow{0}$
- $\{(C,c);(B,b);(A,a)\}$ النقطة G تسمى مرجح النظمة المتزنة \mathcal{J}
 - . ABC تسمى مركز ثقل المثلث a=b=c النقطة a=b=c

3. ملحوظة:

$$\overrightarrow{ABC}$$
 و \overrightarrow{AA} و \overrightarrow{AB} و \overrightarrow{AA} و \overrightarrow{AB} و \overrightarrow{AA} و \overrightarrow{AB} و \overrightarrow{AB} و \overrightarrow{ABC} و $\overrightarrow{AB$

$$\overrightarrow{GA} + \left(\overrightarrow{GA} + \overrightarrow{AB}\right) + \left(\overrightarrow{GA} + \overrightarrow{GC}\right) = \overrightarrow{0} \cdot \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$

$$\cdot \overrightarrow{CG} = \frac{1}{3}\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB} \quad \cancel{9} \quad \overrightarrow{BG} = \frac{1}{3}\overrightarrow{BA} + \frac{1}{3}\overrightarrow{BC} \quad \cancel{9} \quad \overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} \quad \cancel{//}$$

$$\cdot \overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AA'} : 4$$

$$\overrightarrow{BG} = \frac{2}{3}\overrightarrow{BA}$$
 و $\overrightarrow{CG} = \frac{2}{3}\overrightarrow{CA}$: بنفس الطريقة نحصل على :

<u>.B</u> خاصیات:

1. صمود:

<u>a.</u> خاصية:

مرجح النظمة المتزنة
$$\{(C,c);(B,b);(A,a)\}$$
 فإن لكل k من \mathbb{R}^* هي كذلك مرجح النظمة المتزنة (C,c)

(مرجح لثلاث نقط متزنة لا يتغير بضرب معاملاتها في نفس العدد الحقيقي الغير المنعدم). $\{(A,ka),(B,kb),(C,kc)\}$

2_ الخاصية المميزة:

<u>a.</u> خاصية:

$$a+b+c\neq 0$$
 : وفقط إذا كان $\{(C,c);(B,b);(A,a)\}$ مرجح النظمة المتزنة $\{(C,c);(B,b);(A,a)\}$ اذا وفقط إذا كان $\forall M \in (\mathcal{P}): a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a+b+c)\overrightarrow{MG}$

ي تجميعية المرجح: (المرجح الجزئي)

درس: المرجح في المستوى

خاصية:

مرجح ثلاث نقط متزنة لا يتغير إذا عوضنا نقطتين منها بمرجحهما بوزن يساوي مجموع وزنيهما .

او أيضا : G_2 مرجح $\{(C,c);(B,b);(A,a)\}$ فان G_2 مرجح $\{(A,a),(B,b)\}$ فان G_2 مرجح G_2 أو أيضا : $\{(C,c),(G_2,a+b)\}$ النظمة المتزنة

.($a+b\neq 0$ مرجح $\{(A,a),(B,b)\}$ مرجح G_2 . $\{(C,c);(B,b);(A,a)\}$ مرجح G_2

 $\{(C,c),(G_2,a+b)\}$ نبين أن: G مرجح النظمة المتزنة

لدينا:

$$(a+b)\overrightarrow{GG_2} + c\overrightarrow{GC} = a\overrightarrow{GG_2} + b\overrightarrow{GG_2} + c\overrightarrow{GC}$$

$$= a\overrightarrow{GA} + a\overrightarrow{AG_2} + b\overrightarrow{GB} + b\overrightarrow{BG_2} + c\overrightarrow{GC}$$

$$= a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} + a\overrightarrow{AG}_2 + b\overrightarrow{BG}_2$$

$$(\{(A,a),(B,b)\}\}$$
 و $\{(C,c);(B,b);(A,a)\}$ و $\{(C,c);(B,b);(A,a)\}$ و $\{(C,c);(B,b);(A,a)\}$ و $\{(C,c);(B,b);(A,a)\}$

 $\{(C,c),(G_2,a+b)\}$ خلاصة: G مرجح النظمة المتزنة

<u>c.</u> أمثلة: ي/ مثال 1: مركز ثقل مثلث:

مرجح النظمة المتزنة $\{(C,1);(B,1);(A,1)\}$ (أي مركز ثقل المثلث A' . ABC مرجح النظمة المتزنة $\{(C,1);(B,1);(A,1)\}$ $.\{(C,1);(B,1)\}$

 $\overrightarrow{AG} = \frac{\mathbf{b}}{\mathbf{AA'}} \overrightarrow{AA'} = \frac{2}{3} \overrightarrow{AA'}$ إذن: $\{(A',2); (A,1)\}$ مرجح النظمة المتزنة

رار مثال 2: // مثال 2:

 $\{(C,3);(B,-2);(A,-2)\}$ مرجح النظمة المتزنة G

. $[\mathbf{AB}]$ مرجح $\{(\mathbf{A}, -2), (\mathbf{B}, -2)\}$ إذن G_2 مرجح

 $\overrightarrow{CG} = \frac{\mathbf{b}}{\mathbf{a} + \mathbf{b}} \overrightarrow{CG_2} = \frac{-4}{-1} \overrightarrow{AB} = 4 \overrightarrow{AB} :$ ومنه $\mathbf{G} : \{(\mathbf{C}, 3), (\mathbf{G}_2, -4)\}$ مرجح النظمة المتزنة

<u>.C</u> إحداثيتي G مرجح النظمة متزنة:

 $\mathbf{G}(\mathbf{x}_{\mathrm{G}},\mathbf{y}_{\mathrm{G}})$ و $\mathbf{C}(\mathbf{x}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$ و $\mathbf{B}(\mathbf{x}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}})$ و $\mathbf{A}(\mathbf{x}_{\mathrm{A}},\mathbf{y}_{\mathrm{A}})$ حيث $\mathbf{A}(\mathbf{x}_{\mathrm{A}},\mathbf{y}_{\mathrm{A}})$ عنسوب إلى معلم $\mathbf{C}(\mathbf{x}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$ عنسوب إلى معلم $\mathbf{C}(\mathbf{x}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$

 \overrightarrow{OC} و \overrightarrow{OB} و \overrightarrow{OA} بدلالة المتجهات: \overrightarrow{OC} و \overrightarrow{OB} و \overrightarrow{OB} و \overrightarrow{OB} بدلالة المتجهات: \overrightarrow{OC}

f C استنتج إحداثيتي f G بدلالة إحداثيات النقط f A و f B و .

$$(\mathcal{P})$$
 المستوى (\mathcal{P}) منسوب إلى معلم $(\mathbf{X}_{\mathrm{G}},\mathbf{y}_{\mathrm{G}})$ و $(\mathbf{X}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$ و $(\mathbf{X}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}})$ و $(\mathbf{X}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}})$ و $(\mathbf{X}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$ و نقط من (\mathcal{P}) .

$$x_{G} = \frac{ax_{A} + bx_{B} + cx_{C}}{a + b + c}$$
 و $y_{G} = \frac{ay_{A} + by_{B} + cy_{C}}{a + b + c}$ فان: $\{(C,c); (B,b); (A,a)\}$ مرجح النظمة المتزنة

مثال 2

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس: المرجح في المستوى

3. إنشاء مرجح ثلاث نقط متزنة:

<u>a.</u> مثال:

مثال 1: أنشئ G مرجح (A,3); (A,3) مثال 1: أنشئ

 $\left(0,\vec{i},\vec{j}
ight)$ مثال 2: في المستوى $\left(\mathcal{P}
ight)$ منسوب إلى معلم

(C(-1,3);1) و (B(4,1);1) و (A(1,1);3)

حدد إحداثيتي G(a,b) مرجح النقط المتزنة

<u>III.</u> مرجح أربع نقط متزية:

A. مرجح أربع نقط متزنة:

(D,1) و (A,1)(C,1);(B,1) ليكن ABCD متوازي الاضلاع مركزه O. لتكن أربع نقط متزنة من (P).

- (B,1) عدد G_1 مرجح النقطتين المتزنتين (A,1) و G_1 عدد G_1
- . (D,1) و (C,1) حدد G_2 مرجح النقطتين المتزنتين
- (D,1) و (C,1) و (B,1) و (A,1) هل النقط المتزنة (A,1) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$: تقبل نقطة G من G من
 - 4) أعط استنتاج لذلك.

تعریف و خاصیة :

- $a+b+c+d \neq 0$: کیث (\mathcal{P}) حیث (\mathcal{C},c) و (\mathcal{D},d) أربع نقط متزنة من المستوى
 - $\cdot a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} + d\overrightarrow{GD} = \vec{0}$: توجد نقطة وحيدة G
 - $\{(D,d);(C,c);(B,b);(A,a)\}$ النقطة G تسمى مرجح النظمة المتزنة
 - . ABCD النقطة \mathbf{G} تسمى مركز ثقل الرباعى $\mathbf{a} = \mathbf{b} = \mathbf{c} = \mathbf{d}$
 - <u>B</u>. خاصیات:
 - <u>1.</u> صمود:

<u>a.</u> خاصية:

 $\{(D,d);(C,c);(B,b);(A,a)\}$ مرجح النظمة المتزنة

 $\{(D,kd),(C,kc),(B,kb),(A,ka)\}$ لكل $G:\mathbb{R}^*$ من $G:\mathbb{R}^*$ لكل من خير النظمة المتزنة

(مرجح لأربع نقط متزنة لا يتغير بضرب معاملاتها في نفس العدد الحقيقي الغير المنعدم).

- 2. الخاصية المميزة:
 - <u>a.</u> خاصية:

 (\mathcal{P}) مرجح النظمة المتزنة $\{(\mathrm{D,d});(\mathrm{C,c});(\mathrm{B,b});(\mathrm{A,a})\}$ إذا و فقط إذا كان a+b+c+d
eq 0 ولكل نقطة M من $\overrightarrow{aMA} + \overrightarrow{bMB} + \overrightarrow{cMC} + \overrightarrow{dMD} = (a+b+c+d)\overrightarrow{MG}$

درس رقم

درس : المرجح في المستوى

. تجميعية المرجح:

<u>a.</u> خاصية:

- G مرجح النظمة : {(D,d);(C,c);(B,b);(A,a)}
- . مرجح أربع نقط متزنة لا يتغير إذا عوضنا نقطتين منها بمرجحهما و بوزن يساوي مجموع وزنيهما (أو 3 نقط منها) . أو أيضا : $G(G_1,a+b),(C,c),(D,d)$ (مع $G(G_1,a+b)$) فإن $G(G_1,a+b)$ مرجح $G(G_1,a+b)$ (مع $G(G_1,a+b)$) فإن $G(G_1,a+b)$
 - 2. مرجح أربع نقط متزنة لا يتغير إذا عوضنا ثلاث منها بمرجحها و بوزن يساوي مجموع أوزانها الثلاثة.

 $\left\{ \left(G_3, a+b+c \right), \left(D,d \right) \right\}$ مرجح النظمة المتزنة $\left\{ (A,a), \left(B,b \right), \left(C,c \right) \right\}$ أو أيضا $\left\{ (G_3, a+b+c), \left(B,b \right), \left(C,c \right) \right\}$ مرجح

· إحداثيتي G مرجح نظمة متزنة:

1 نشاط: هل بإمكانك إعطاء إحداثيتي النقط G بدلالة

f C و f B و f C و f C و f C و f B و f A و f C

<u>.2</u> خاصية:

 (\mathcal{P}) المستوى (\mathcal{P}) منسوب إلى معلم $(\mathbf{X}_{\mathrm{D}},\mathbf{y}_{\mathrm{D}})$ و $(\mathbf{X}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$ و $(\mathbf{X}_{\mathrm{C}},\mathbf{y}_{\mathrm{C}})$ و $(\mathbf{X}_{\mathrm{B}},\mathbf{y}_{\mathrm{B}})$ و المستوى (\mathcal{P}) نقط من (\mathcal{P}) نقط من (\mathcal{P}) نقط من (\mathcal{P})

: فان $\{(D,d);(C,c);(B,b);(A,a)\}$ مرجح النظمة المتزنة و $G(x_G,y_G)$

$$y_{G} = \frac{ay_{A} + by_{B} + cy_{C} + dy_{D}}{a + b + c + d}$$
 $y_{G} = \frac{ax_{A} + bx_{B} + cx_{C} + dx_{D}}{a + b + c + d}$