# Turbo códigos

(Decodificación iterariva)

Práctica 4

A. Turbo Codificador

 $\mathbf{x}$ : mensaje (1152 d.b.)  $\mathbf{x}_{c}$ : palabra código enviada (3468 d.b. 1152x3+3x2+3x2)



B. Turbo Decodificador
B.1. El decodificador BCJR

Un turbo decodificador tienes 2 decodificadores.

El decodificador básico sin realimentación (BCJR en la práctica) calcula para cada instante *i* :

• 
$$LLR(x_i/y_c) = L^{(c)} + L^{(e)} + L^{(a)}$$

$$_{\circ}$$
 L<sup>(c)</sup> = 2.  $y_{is} / \sigma^{2}$ 

ο L<sup>(e)</sup> = In [ (
$$\sum \alpha_{i-1}$$
.exp( $y_{ip}$ .c<sub>ip</sub><sup>(1)</sup>/ $\sigma^2$ ). $\beta_i$ ) / ( $\sum \alpha_{i-1}$ .exp( $y_{ip}$ .c<sub>ip</sub><sup>(0)</sup>/ $\sigma^2$ ). $\beta_i$ ) ]
•  $\alpha_{i-1}$  y  $\beta_i$  dependen de 2.**y**<sub>s</sub>/ $\sigma^2$  y 2.**y**<sub>p</sub>/ $\sigma^2$ 

$$_{\circ}$$
 L<sup>(a)</sup> = In [ P(x<sub>i</sub>=1) / P(x<sub>i</sub>=0) ]

B. Turbo Decodificador B.1. El decodificador BCJR

#### El decodificador sin realimentación calcula:

- $LLR(x_i/y_c) = L^{(c)} + L^{(e)} + L^{(a)}$ 
  - $_{\circ}$  L<sup>(c)</sup>: Influencia del canal y las <u>coordenadas sistemáticas recibidas</u> en el instante *i* (en x<sub>i</sub>). <u>En este caso</u> y<sub>is</sub> (ο y<sub>ie</sub>).
    - L<sup>(c)</sup> = 2.  $y_{is} / \sigma^2$  y su versión entrelazada  $L^{(c)}_{e} = 2. y_{ie} / \sigma^2$
  - o L<sup>(e)</sup>: Influencia del canal y del histórico y del "futuro" recibido y las <u>coordenadas de paridad recibidas</u> en el instante i (en  $x_i$ ). En este caso  $y_{ip}$  (o  $y_{ipe}$ ).
    - $L^{(e)} = In \left[ \left( \sum \alpha_{i-1}^{(1)} . exp(\gamma_{ip} . c_{ip}^{(1)} / \sigma^2) . \beta_i^{(1)} \right) / \left( \sum \alpha_{i-1}^{(0)} . exp(\gamma_{ip} . c_{ip}^{(0)} / \sigma^2) . \beta_i^{(0)} \right) \right]$ o su versión entrelazada
    - $L^{(e)}_{e} = In \left[ \left( \sum \alpha_{i-1} e^{(1)} . exp(y_{iep}.c_{iep}^{(1)}/\sigma^{2}).\beta_{i} e^{(1)} \right) / \left( \sum \alpha_{i-1} e^{(0)} . exp(y_{iep}.c_{iep}^{(0)}/\sigma^{2}).\beta_{i} e^{(0)} \right) \right]$
  - $_{\circ}$  L<sup>(a)</sup>: Influencia de las probabilidades a priori (en  $x_i$ ).
    - $L^{(a)} = \ln \left[ P(x_i=1) / P(x_i=0) \right]$  (obviamente, también tiene versión entrelazada)

B. Turbo Decodificador B.1. El decodificador BCJR

Organización vectorial de LLR( $x_i/y_c$ ) =  $L^{(c)} + L^{(e)} + L^{(a)}$ 



B. Turbo Decodificador
B.1. El decodificador BCJR

Organización vectorial de  $LLR(x_i/y_c) = L^{(c)} + L^{(e)} + L^{(a)}$  en MATLAB



B.Turbo Decodificador
B.2. Turbo Decodificador

• La palabra recibida es  $y_c$  (3468 d.b. 1152x3+3x2+3x2)

$$\mathbf{y_c} = [\ \mathbf{y_{1s}}\ \mathbf{y_{1p}}\ \mathbf{y_{1ep}}\ \ \mathbf{y_{2s}}\ \mathbf{y_{2p}}\ \mathbf{y_{12pe}}\ ...\ \ \mathbf{y_{1152s}}\ \mathbf{y_{1152pe}}\ \mathbf{y_{1c}}\ \mathbf{y_{1cp}}\ \mathbf{y_{2c}}\ \mathbf{y_{2cp}}\ \mathbf{y_{3c}}\ \mathbf{y_{3cp}}\ \mathbf{y_{1ce}}\ \mathbf{y_{2cpe}}\ \mathbf{y_{2cpe}}\ \mathbf{y_{3ce}}\ \mathbf{y_{3cpe}}\ ]$$

- Se decodifica 2 veces la secuencia recibida
  - Decodificador 1: decodifica secuencia no entrelazada  $y_s = [y_{1s} y_{2s} ... y_{1152s}]$  a partir de:

$$\mathbf{y_{c1}} = [ \mathbf{y_{1s}} \mathbf{y_{1p}} \mathbf{y_{2s}} \mathbf{y_{2p}} ... \mathbf{y_{1152s}} \mathbf{y_{1152p}} \mathbf{y_{1c}} \mathbf{y_{1cp}} \mathbf{y_{2c}} \mathbf{y_{2cp}} \mathbf{y_{3c}} \mathbf{y_{3cp}} ]$$

• Decodificador 2: decodifica secuencia entrelazada  $\mathbf{y_e} = [ y_{1e} y_{2e} ... y_{1152e} ]$  a partir de:

```
y_{c2} = [y_{1e} y_{1ep} y_{2e} y_{2ep} ... y_{1152e} y_{1152ep} y_{1ce} y_{1cpe} y_{2ce} y_{2cpe} y_{3ce} y_{3cpe}]
```

- Cada codificador coge la influencia de la paridad ( $L^{(e)}$ ) como estimación de la influencia de las probabilidades a priori ( $L^{(a)}$ )
  - Justificación:
    - No se dispone de L(a) y es una entrada necesaria
    - La paridad de x, contribuye a decidir si x, es un 1 o un 0

B. Turbo Decodificador
B.2. Turbo decodificador

#### Decodificador en la práctica 4 de MATLAB

 $y_c$ : palabra recibida (3468 d.b. 1152x3+3x2+3x2)



Decodificador 2

B. Turbo Decodificador
B.2. Turbo decodificador

#### Decodificador en la práctica 4 de MATLAB

hDec=comm.APPDecoder('TrellisStructure'
,Enrejado,'TerminationMethod','Terminat
ed','Algorithm','Max');

