

Статистическая обработка текстов

Коллокации, n-граммы, HMM.

Дмитрий Соловьев. Ведущий разработчик отдела рекомендаций

План

- Коллокации. Методы нахождения в текстах
- N граммы. Общие понятия
- Марковские модели для обработки текстов
- Скрытые Марковские модели. Тегирование

Словосочетание, имеющее признаки синтаксически и семантически целостной единицы, в котором выбор одного из компонентов осуществляется по смыслу, а выбор второго зависит от выбора первого

КОЛЛОКАЦИИ

Коллокации

- оказать влияние, внести изменения, идет дождь
- высокая температура, рост влияния
 не композиционные выражения.
- vs. идиомы, которые встречаются редко
 - подложить свинью, биться как рыба об лёд
 - белая ворона, голодный как волк
 еще более не композиционные.

Коллокации встречаются намного чаще.

Признаки коллокации

- Некомпозиционность
 - Смысл коллокации не является композицией смысла частей
- Незаменяемость
 - Нельзя заменять зависимое слово на другое подходящее по смыслу
- Немодифицируемость
 - Компоненты коллокации не получается свободно модифицировать по грамматическим правилам

Коллокации vs. Термины

Коллокации перекрываются с такими понятиями как:

- Термины
- Технические термины
- Терминологические фразы

Применение

- Генерация текстов.
- Вычислительная лексикография
- Парсинг
- Корпусные лингвистические исследования

Коллокации в поиске

- Учет устойчивых словосочетаний в поиске
- Ручной:
 - прирученный; с ручным управлением, неавтоматический; кустарный; лёгкий; послушный, послушливый, покорный, портативный, шелковый, наручный, смирный, мануальный, рукодельный, кроткий, безропотный, покорный
- 'ручная работа' = 'кустарный' но не 'лёгкий'
- 'ручное управление'

Частотность

- Самый простой способ
- Работает плохо
- Получили одну коллокацию из 20

 Получили 18 803 442 биграмм на 1 миллион документов.

	Частота
о это	41843
один из	41694
а также	35446
тот что	34048
2015 год	33628
в тот	32998
что в	32007
пресс служба	30468
ИВ	27138
в это	26101
не быть	24956
отметить что	24088
при это	22607
из за	22398
о тот	21240
	· -

Частотность + Эвристика

• Учитываем части речи

- AN учебный год
- NN пресс служба
- AAN дискретная случайная величина
- ANN эмпирическая функция распределения
- NAN -
- NNN -
- NPN -

	Частота
пресс служба	129071
тот число	69728
уголовный дело	57108
риа новость	54353
миллион рубль	52868
настоящее время	44442
миллиард рубль	44368
прошлое год	43679
владимир путин	41806
российский федерация	37965
такой образ	36246
премьер министр	33102
тысяча рубль	29209
санкт петербург	28120
данный момент	26737
главный тренер	26123

- Поиск по частотным вхождениям хорош для фиксированных фраз.
- 'постучаться в дверь', но
 - 'Она постучалась в дверь'
 - 'Они постучались в эту деревянную дверь'
 - 'Человек постучался в металлическую дверь'

- Используем окно 3-4 слова
 - Экономика балансирует на грани коллапса

Экономика балансирует / экономика на / экономика грани балансирует на / балансирует грани / балансирует коллапса на грани / на коллапса грани коллапса

Используем окно в 3 слова

- Пример: 'постучать ... дверь'
- $\mu = (2+4+3)/3 = 3$

•
$$\sigma^2 = \frac{\sum_{i=1}^n (d_i - \mu)^2}{n-1} = \frac{1}{2} (2-3)^2 + (4-3)^2 + (3-3)^2 = 1$$

- $\sigma = 1$
- Нулевая дисперсия говорит, что эти слова всегда встречаются на одном расстоянии.

Определяем правдоподобие коллокаций через среднее и дисперсию

	Частота	Mean	Std
пресс служба	129071	-1.064374	1.230774
тот число	69728	-0.813762	2.234214
уголовный дело	57108	-0.969454	2.317335
риа новость	54353	-1.001122	0.183002
миллион рубль	52868	-0.973434	2.168581
настоящее время	44442	-1.121742	1.469904
миллиард рубль	44368	-0.692835	3.690560
прошлое год	43679	-1.791702	4.549470
владимир путин	41806	-1.007878	2.046794
российский федерация	37965	-0.702253	2.904589
такой образ	36246	-0.914430	1.762869
премьер министр	33102	-1.344328	2.6369

- Можем ли мы сказать, что биграмма "новая компания" является коллокацией?
- Встречаются ли два слова со смыслом или случайно?
- Есть ли способ отделить случайное событие от неслучайного?

- Классическая задача из статистики:
 - Формулируем нулевую гипотезу H_0 :
 - Между словами нет никакой связи, только случайная встречаемость
 - Вычисляем вероятность p с учетом истинности H_0
 - Отвергаем H_0 если p ниже некоторого порога (0.01, 0.001...)
 - В противном случае принимаем гипотезу $H_{\mathbf{0}}$

- Как использовать метод для проверки коллокаций?
 - $-H_0 = true$ если два слова (w_1 ; w_2) не формируют коллокацию =>
 - Предполагаем что w_1 и w_2 генерируются независимо друг от друга
 - $-P(w_1, w_2) = P(w_1)P(w_2)$
 - Простая, не совсем точная модель подходит для решения задачи

Распределение Стьюдента

- Пусть $Y_0, Y_1, \dots Y_n$ независимые стандартные нормальные случайные величины
- $Y_i \sim N(0, 1) i = 0, ..., n$
- Распределение случайной величины t:
- $t = \frac{Y_0}{\sqrt{\frac{\sum_{i=1}^n Y_i^2}{n}}}$ распределение Стьюдента с n степенями свободы

Распределение Стьюдента

Плотность вероятности

Для этого распределения рассчитаны таблицы значений квантилей для разных степеней свобод.

- Критерий Стьюдента (t критерий)
- Допущение примеры отбираются из нормального распределения
- Нулевая гипотеза пример взят из выборки с мат ожиданием μ

•
$$t = \frac{\bar{x} - \mu}{\sqrt{\frac{s^2}{N}}}$$
 \bar{x} среднее выборки s^2 дисперсия выборки N количество примеров в выборке

t - критерий

- Если t достаточно велико, то H_0 отвергается
- Насколько большим должно быть t
 проверяется по таблицам t распределения

t – критерий. Пример

- H_0 гипотеза: средняя высота популяции мужчин 158 см
- Мы взяли выборку 200 человек :

$$-\bar{x} = 169$$
, $s^2 = 2600$

$$-t = \frac{169 - 158}{\sqrt{\frac{2600}{200}}} \approx 3,05$$

	P	0.05	0.025	0.01	0.005	0.001	0.0005
	C	90%	95%	98%	99%	99.8%	99.9%
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850
(z)	∞	1.645	1.960	2.326	2.576	3.091	3.291

- при уровне достоверности $\alpha = 0.005$ находим значение: 2,576.
- 3,05 > 2,576 с 99% вероятностью отвергаем гипотезу

t – критерий в коллокациях

- Проверим гипотезу:
 - "миллион рублей" не коллокация
 - частота слов: 'миллион' 215131 , 'рубль': 268089
 - всего слов: 186419524
 - Р(миллион) = 215131 / 186419524 = 0.0012
 - P(pyбль) = 268089 / 186419524 = 0.0014
 - $H_0: P($ миллион рублей) = P(миллион)P(рубль) = 0.0012*0.0014 = 0.0000017

(пример из тетрадки)

t – критерий. Пример №2

- Если $H_0 = true \Rightarrow$
 - процесс генерации биграммы имеет распределение бернулли
 - 1 'миллион рублей' присутствует
 - 0 'миллион рублей' отсутствует
 - С вероятностью Р = 0.0000017
 - $\mu = p = 0.0000017$; $\sigma^2 = p(1 p) = 0.00000166 \approx p$
 - это наше ожидаемое значение

(пример из тетрадки)

t – критерий. Пример №2

• Для биграммы получим реальное среднее

$$-\bar{x} = \frac{52868}{186419524} = 0.0002836$$

– Проводим t – тест:

$$-t = \frac{\bar{x} - \mu}{\sqrt{\frac{s^2}{N}}} = 228.58 \gg 2.576$$
 при $\alpha = 0.005$

 – мы можем отвергнуть гипотезу о независимости слов.

(пример из тетрадки)

t – критерий. Пример №3

- подсчитаем достоверность биграммы 'новая компания'
- см. тетрадку: t = 3.797 > 2.576 при достоверности 99%
- гипотеза может быть отвергнута

(пример из тетрадки)

- Критерий Пирсона. χ^2 критерий
 - Критерий Стьюдента подразумевает нормальное распределение
 - Критерий Пирсона не делает таких предположений.
 - Критерий сравнивает частоты наблюдаемые с ожидаемыми в случае независимости событий.

Критерий Пирсона

	$w_1 =$ новый	w ₁¬ новый
$w_2 =$ компания	335 (новая компания)	233264 (старая компания)
w ₂ ¬ компания	211541 (новая машина)	185974049 (старая машина)

- С(новый) 211876
- С(компания) 233599
- С(новая компания) 335
- Всего токенов 186419524

Критерий Пирсона

 Суммирует разницу между наблюдаемым и ожидаемым значением

•
$$X^2 = \sum_{ij} \frac{(o_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2$$
 ј итерация по строкам
 Е ожидаемое значение
 О наблюдаемое значение

• X^2 асимптотически сходится к χ^2

$$\chi_1^2 \leq X^2 \leq \chi_2^2$$
 - гипотеза H_0 выполняется $\chi_1^2 \geq X^2$ - $\chi_2^2 \geq X^2$ - гипотеза не выполняется

Критерий Пирсона. Пример

• Ожидаемая частота биграммы 'новая

компания':

•
$$\frac{335 + 233264}{N}$$
 x $\frac{335 + 211541}{N}$ x $N = 265.50$

• Для таблицы размеров 2х2:

$$-\frac{N(O_{11}O_{22}-O_{12}O_{21})^2}{(O_{11}+O_{12})(O_{11}+O_{21})(O_{12}+O_{22})(O_{21}+O_{22})}=18.2375$$

Критерий Пирсона. Пример

Вероятность отсечения

_	_								
ДЬ		P	0.99	0.95	0.10	0.05	0.01	0.005	0.001
свободь	d.f.	1	0.00016	0.0039	2.71	3.84	6.63	7.88	10.83
- 1		2	0.020	0.10	4.60	5.99	9.21	10.60	13.82
Ξ		3	0.115	0.35	6.25	7.81	11.34	12.84	16.27
епе		4	0.297	0.71	7.78	9.49	13.28	14.86	18.47
Сте	_ 10	00	70.06	77.93	118.5	124.3	135.8	140.2	149.4

• Имея одну степень свободы для таблицы 2x2, по всем уровням вероятности гипотеза H_0 не может быть отброшена

χ^2 для перевода

• Считаем таблички совместной встречаемости для двуязычных текстов

 Предполагаем, что vache хороший перевод слова cow

- Критерий отношения правдоподобия
- Лучше подходит для разряженных данных чем χ^2
- Дает более понятную интерпретацию результата, т.е. во сколько раз одна гипотеза лучше чем другая.

Отношение правдоподобия

• Проверяем:

• H1: $P(w_2 \mid w_1) = p = P(w_2 \mid \neg w_1)$ – гипотезу о независимости

• H2: $P(w_2 \mid w_1) = p_1 \neq p_2 = P(w_2 \mid \neg w_1)$ гипотезу о зависимости

Отношение правдоподобия

•
$$p = \frac{c_2}{N}$$
; $p_1 = \frac{c_{12}}{c_1}$; $p_2 = \frac{c_2 - c_{12}}{N - c_1}$

- р вероятность; с частота встречаемости слов
- Предполагаем биноминальное распределение:

$$-b(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Отношение правдоподобия

• Тогда для гипотез

$$-L(H_1) = b(c_{12}; c_1, p)b(c_2 - c_{12}; N - c_1, p)$$

$$-L(H_2) = b(c_{12}; c_1, p_1)b(c_2 - c_{12}; N - c_1, p_2)$$

Проверка гипотез

Отношение правдоподобия

• Выражаем отношение правдоподобия:

$$\log \lambda = \log \frac{L(H_1)}{L(H_2)}$$

$$= \log \frac{b(c_{12}, c_1, p)b(c_2 - c_{12}, N - c_1, p)}{b(c_{12}, c_1, p_1)b(c_2 - c_{12}, N - c_1, p_2)}$$

$$= \log L(c_{12}, c_1, p) + \log L(c_2 - c_{12}, N - c_1, p)$$

$$-\log L(c_{12}, c_1, p_1) - \log L(c_2 - c_{12}, N - c_1, p_2)$$

• $-2 \log \lambda \sim \chi^2 =>$ можно пользоваться таблицами для проверки гипотезы H_0 .

Проверка гипотез 38

Отношение правдоподобия

пример из тетрадки

	- 2log λ	C1	C2	C12	
мощный россия	66.800607	14709	513837	2	С достоверностью 0.001, можно
мощный землетрясение	58.521963	14709	5490	543	отвергнуть H_0
мощный взрыв	44.635622	14709	20928	930	
мощный работа	19.562579	14709	242103	4	
мощный город	15.886387	14709	212631	4	
мощный решение	15.403840	14709	185295	3	
мощный матч	14.409602	14709	222457	5	
мощный образ	4.061203	14709	69798	2	
мощный граница	3.767401	14709	67112	2	6
мощный орган	3.509477	14709	82553	3	С достоверносты 0.005, можно
мощный позиция	3.261025	14709	62387	2	принять H_0
мощный тайфун	3.239385	14709	3196	92	
мощный ливень	3.051796	14709	1551	62	•

Проверка гипотез 39

N-ГРАММЫ

N-грамм модель

• Вероятность появления следующего слова зависит от последовательности предшествующих: $p(w_n|w_1,w_2,...,w_{n-1})$

Не делаем предположения о порядке следования

```
N – грамма1 - униграмма (unigramm)2 - биграмма (bigramm)3 - триграмма ( - )
```


Как это работает:

Как это работает:

Словарь из 20К слов

Модель	Количество параметров
Биграммная	20 000 х 19 999 = 400 милл.
Триграммная	$20\ 000^2\ x\ 19\ 999 = 8\ трилл.$
4х граммная	$20\ 000^3\ \text{x}\ 19\ 999 = 1,6\ \text{x}\ 10^{17}$

Как быть:

- Уменьшать п
- Делать классы эквивалентности (стемминг, синонимы ...)

Статистическая оценка модели

• Оцениваем условную вероятность:

•
$$p(w_n|w_1, w_2 \dots w_{n-1}) = \frac{p(w_1, w_2, \dots, w_n)}{p(w_1, w_2, \dots, w_{n-1})}$$

• Нужно оценить: $p(w_1, w_2, ..., w_n)$

Пример: 3-gramm

(w_1, w_2)	(w_3)	$C(w_1, w_2, w_3)$	$P(w_1, w_2, w_3)$
большую зеленую		N= 10	-
большую зеленую	лягушку	8	0.8
большую зеленую	таблетку	1	0.1
большую зеленую	сумку	1	0.1

Maximum Likelihood Estimator

• Оценка через относительную частоту – MLE

$$p_{MLE}(w_1, w_2, \dots, w_n) = \frac{C(w_1, w_2, \dots, w_n)}{N}$$

- N количество встречаемости n-1 грамм
- тогда

$$p_{MLE}(w_n \mid w_1, w_2, \dots, w_{n-1}) = \frac{C(w_1, w_2, \dots, w_n)}{C(w_1, w_2, \dots, w_{n-1})}$$

Оценка фразы

• Оценим фразу

"Президент США Барак Обама решил сняться в телепередаче с Беар Гриллсом."

моделями:

- Unigram
- Bigram
- Trigram

Пример: Оценка модели unigram

	президент	сша	барак	обама	решить	СНЯТЬСЯ	В	телепередача	ບ	беар	гриллсом
idx	76	116	3395	1799	328	4657	0	15613	3	14581	21467
prob	0.001167	0.00084	0.000037	0.000081	0.000395	0.000024	0.043321	0.000004	0.011905	0.000004	0.000002

- Хорошие вероятности
- Плохая позиция

Топовые слова по вероятностям

в - 0.0433

и - 0.0245

на - 0.0194

пример из тетрадки

Пример: Оценка модели bigram

	президент сша	сша барак	барак обама	обама решить	решить сняться	сняться в	в телепередача	телепередача с	c беар	беар гриллсом
num	4	2	0	66	264	0	3735	16	2105	1
prob	0.034506	0.022638	0.931526	0.002606	0.000671	0.451685	0.000018	0.014085	0.000062	0.316456

Топ вероятностей биграм для слова президент

- президент россия 0.076685584563
- президент украина 0.0706923950057
- президент рф 0.0625652667423
- президент рфс 0.0429511918275

пример из тетрадки

Пример: Оценка модели 3-gram

• Выполните самостоятельно.

В итоге

- Unigram полностью игнорирует контекст, но это не бесполезно для общих слов
- Bigram использует предыдущее слово для оценки вероятности, получаем лучшую модель.
- 3-gram модель должна работать хорошо, но ... Появляется очень много дырок в оценке вероятности.

•

Как бороться с дырками

- В сложных моделях 3-gram и выше можно комбинировать эстиматоры:
 - Мало данных снижаем п
 - Много данных повышаем п
- Для случая с биграммами
 - Сглаживание
- Сглаживание можно использовать для ngram любых порядков

Сглаживание Лапласа (adding one)

• Самый простой вид сглаживания

•
$$p_{lap}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + 1}{C(w_1 \dots w_{n-1}) + B}$$

- В размер словаря
- Провоцирует сильную погрешность
- Иногда несглаженная модель показывает лучшие результаты

Пример

Неизвестное слово: Иннокентий

Применение

- Оценка вхождений в документ части поискового запроса (пассажи)
- Оценка части запроса на вхождение известных пассажей

[где приобрести бесплатно] [георгиевская ленточка]

```
р(где | <s>) = [2gram] 0.0276706
р(приобрести | где ...) = [3gram] 0.000907595
р(бесплатно | приобрести ...) = [3gram] 0.00042164
р(георгиевская | бесплатно ...) = [1gram] 6.14581e-07
р(ленточка | георгиевская ...) = [2gram] 0.568604
р(</s> | ленточка ...) = [3gram] 0.20317
```


Что дальше?

• Улучшаем сглаживание - следующая лекция

• Марковские цепи и Скрытые Марковские Модели.

МАРКОВСКИЕ МОДЕЛИ

Цепи Маркова

Марковская модель

• $X = (X_1, ..., X_T)$ - последовательность случайных величин

• $S = \{s_1, \dots, s_n\}$ - множество состояний этой случайной величины

Свойства

• Ограниченный горизонт

$$-P(X_{t+1} = s_k \mid X_1, ..., X_t) = P(X_{t+1} = s_k \mid X_t)$$

• Стационарность. Временная инвариантность

$$-P(X_{t+1} = s_k \mid X_t) = P(X_2 = s_k \mid X_1)$$

• А – стохастическая матрица переходов

$$-a_{ij} = P(X_{t+1} = s_j | X_t = s_i); a_{ij} > 0, \forall i, j$$
и $\sum_{j=1}^N a_{ij} = 1$

$$-\pi_i = P(X_1 = s_i)$$
 - начальное состояние $\sum_i \pi_i = 1$

Граф модели

Примеры

- Call center перенаправление звонков операторам
- Случайное блуждание по Интернету (PR)
- Модель кликов запрос документ.
- Последовательности слов в тексте

Последовательность состояний

Вероятность последовательности:

• $P(X_1, ..., X_T) =$ $P(X_1)P(X_2|X_1) ... P(X_T|X_1, ... X_{T-1}) =$ $P(X_1)P(X_2|X_1) ... P(X_T|X_{T-1}) =$ $\pi_{X_1} \prod_{t=1}^{T} a_{X_t X_{t+1}}$

0.4

Подсчитаем вероятность

пример из тетрадки

"Президент США Барак Обама решил сняться в телепередаче с Беар Гриллсом."

	рі (президент)	р_s(президент->сша)	р_s(сша->барак)	р_s(барак->обама)	р_s(обама->решить)	р_s(решить->сняться)	р_s(сняться->в)	р_s(в->телепередача)	р_s(телепередача->с)	p_s(c->6eap)	p_s(беар->гриллсом)	p(X1,, Xn)	log(p(X1,, Xn))
probs	0.002227	0.034506	0.022638	0.931526	0.002606	0.000671	0.451685	0.000018	0.014085	0.000062	0.316456	6.518518e- 24	-53.387395

Подсчитаем вероятность

пример из тетрадки

"<mark>Президент Китая Барак</mark> Обама решил сняться в телепередаче с Беар Гриллсом."

	рі (президент)	р_s(президент->китая)	р_s(китая->барак)	р_s(барак->обама)	р_s(обама->решить)	р_s(решить->сняться)	р_s(сняться->в)	р_s(в->телепередача)	р_s(телепередача->с)	p_s(c->6eap)	р_s(беар->гриллсом)	p(X1,, Xn)	log(p(X1,, Xn))
probs	0.002227	0.000004	0.000004	0.931526	0.002606	0.000671	0.451685	0.000018	0.014085	0.000062	0.316456	1.591735e- 31	-70.915313

Сравним вероятности фраз

Р1(Президент США Барак Обама решил сняться в телепередаче с Беар Гриллсом.)

И

Р2(Президент Китая Барак Обама решил сняться в телепередаче с Беар Гриллсом)

P1(6.518518e-24) > P2(1.591735e-31)

Первая фраза больше подходит под нашу модель

Примеры для текстов

- Оцениваем авторство человека. Каждый автор имеет свой стиль
- Оценка релевантности документа и запроса
- Классификация источников новостей (Д3)

Автомат прохладительных напитков

Два состояния	Кратко
Cola Prefect	СР
Ice Tea Pref	IP

Состояния	Разливаемые напитки							
	cola	Ice tea (ice_t)	Lemonade (lem)					
СР	0.6	0.1	0.3					
IP	0.1	0.7	0.2					

Скрытая Марковская модель

• Задача определить вероятность выпуска "символа" не имея информации о состоянии модели.

•
$$P(O_n = k | X_n = s_i, X_{n+1} = s_j) = b_{ijk}$$

Пример

	Состояния	Разливаемые напитки						
•		cola	Ice tea (ice_t)	Lemonade (lem)				
	СР	0.6	0.1	0.3				
	IP	0.1	0.7	0.2				

Какова вероятность увидеть последовательность {lem, ice_t} если машина стартует в СР состоянии?

 $0.3 \times 0.3 \times 0.7 + 0.3 \times 0.7 \times 0.1 = 0.084$

Основные термины

- $S = \{s_1, ..., s_N\} = \{1 ... N\}$ состояния модели
- $K = \{k_1, ..., M\}$ алфавит
- $\Pi = \{\pi_i\}, i \in S$ вероятности начальных состояний
- $A = \{a_{ij}\}, i, j \in S$ вероятности перехода
- $B = \{b_{jk}\}, \ j \in S, k \in K$ вероятность "символа"
- $X = (X_1 ... X_{T+1})$ последовательность состояний
- $O = (o_1 \dots o_T)$ выходная последовательность
- Аналогично Марковской модели:
 - $P(o_i | s_1, ... s_i, ... s_T, o_1, ... o_i, ... o_T) = P(o_i | s_i)$

Три задачи НММ

- 1. Дано: модель $\mu(A, B, \Pi)$ и наблюдения O.
 - Оценить насколько наши наблюдения под модель, т.е. оценить вероятность $P(O|\mu)$
- 2. Дано: модель μ и наблюдения O.
 - Выбрать последовательность $(X_1 \dots X_{T+1})$, которая лучше описывает наши наблюдения
- 3. Дано: последовательность наблюдений ${\it O}$ и словарь состояний ${\it K}$
 - Найти модель, лучше описывающую наши наблюдения $\mu(A,B,\Pi)$

Погода по мороженному

• Оценить вероятность появления последовательности 3-1-3

• Если мы наблюдаем последовательность hot – hot – cold – то сделать это просто

$$P(3 \ 1 \ 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$$

 Но мы не знаем какая реальная последовательность погоды была

- Поэтому нам нужна сумма совместных вероятностей событий погоды и последовательностей 3-1-3:
- $P(O,S) = P(O|S)P(S) = \prod_{i=1}^T P(o_i|s_i) \prod_{i=1}^T P(s_i|s_{i-1})$ совместная вероятность

$$P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$$

- Теперь посчитаем вероятность наших наблюдений
- $P(O) = \sum_{S} P(O,S) = \sum_{S} P(O|S)P(S)$

• Для нашей последовательности 3-1-3

```
P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \dots
```

- Сложность $O(N^T)$:
 - N количество скрытых состояний
 - Т количество наблюдений
- Выход динамическое программирование и алгоритм прямого прохода
 - Сложность $O(N^2T)$:

• $\alpha_t(j)$ - вероятность нахождения в узле j – после наблюдения первых t наблюдений задаваемых моделью μ

Каждый элемент сетки выражает следующую вероятность:

$$\alpha_t(j) = P(o_1 o_2 \dots o_t, s_t = j \mid \mu)_{s_2}$$

$$s_t = j \mid \mu$$

или $\alpha_t(j) = \sum a_{t-1}(i)a_{ij}b_{jo_t}$

Прямой проход алгоритм

• Инициализация:

$$-\alpha_t(j) = \pi_j b_{j1}, 1 \le i \le N$$

• Рекурсивно считаем:

$$-\alpha_t(j) = \sum_{i=1}^N a_{t-1}(i)a_{ij}b_{jo_t}, 1 \le t \le T, 1 \le j \le N$$

• Окончание

$$-P(O|\mu) = \sum_{i=1}^{N} \alpha_T(i)$$

Пример: выделение адресов

• Идея – выделяем ключевую точку по словарю (город), и оцениваем окрестность как вероятность $P(O|\mu)$

https://habrahabr.ru/company/mailru/blog/132762/

Задача 2 - Декодирование

- Дано
 - модель: $\mu(A, B)$
 - последовательность наблюдений $O = o_1, o_2, ... o_T$
- Найти последовательность наиболее вероятных скрытых состояний $S=s_1,s_2,\dots s_T$
- В случае погоды по мороженному нужно определить какая была погода по последовательности 3-1-3

- Наивный подход запустить прямой проход на перебор состояний:
 - hhh, hhc, hch ...

- Затем выбрать лучшую последовательность

Выход динамическое программирование и алгоритм Витерби.

Задача 2 - Алгоритм Витерби

• $v_t(j)$ - показывает вероятность того, что модель находится в наиболее вероятном состоянии j после наблюдения t

Каждый элемент сетки выражает следующую вероятность:

$$v_t(j) = \max_{s_1, s_2, \dots s_{t-1}} P(s_1, s_2, \dots s_{t-1}, o_1, o_2, \dots o_t, s_t = j \mid \mu)$$

или выразив
$$v_t(j)$$
 через предыдущее состояние:
$$v_t(j) = \max_{i=1-N} v_{t-1}(j) \ (i) a_{ij} b_{jo_t}$$

Алгоритм Витерби

• Инициализируем:

Обратный указатель

$$-v_1(j) = \pi_j b_{j1}, 1 \le j \le N; \psi_1(j) = []$$

- Рекурсивно считаем:
 - $-v_t(j) = \max_{1 \le i \le N} [v_{t-1}(i)a_{ij}]b_{jo_t}$, $1 \le j \le N$
 - Сохраняем состояние: $\psi_t(j) = argmax \ [\delta_{t-1}(i)a_{ij}]b_{jo_t}$, $1 \leq j \leq N$
- Заканчиваем, и считываем, что получилось:
 - $-\hat{X}_T = argmax \ v_T(i)$ -финал
 - $-\hat{X}_{t}=\psi_{t+1}(\hat{X}_{t+1})$ тут путь, который нам нужен
 - $-P(\hat{X}) = \max v_T(i)$
- Возвращаем список лучших состояний.

Пример: NER

Используем алгоритм Витерби для декодирования скрытой последовательности по нашим наблюдениям

Daniel M. Bikel 1997, Nymble: a High-Performance Learning Name-finder

Тегинг

Word Feature	Example Text
twoDigitNum	90
fourDigitNum	1990
containsDigitAndAlpha	A8956-67
containsDigitAndDash	09-96
containsDigitAndSlash	11/9/89
containsDigitAndComma	23,000.00
containsDigitAndPeriod	1.00
otherNum	456789
allCaps	BBN
capPeriod	M.
firstWord	first word of sentence
initCap	Sally
lowerCase	can
other	,

5-11- 5-1 HZ - 1 & - - - - - - - 1 - - - 1 + - - 5

Задача 3 - Обучение

- Дано
 - Последовательность наблюдений O=
 - $O_1, O_2, \dots O_T$
 - Словарь состояний S
- Ищем оптимальные значения модельных параметров: $\mu(A, B, \pi)$
- Используем итеративный алгоритм "Вперед Назад" или "Baum-Welch" или EM

- Рассмотри Марковскую модель:
 - Состояния известны
 - Примем, что вероятность b = 1
 - Тогда вероятность перехода из состояния *i* в *j*

$$a_{ij} = \frac{C(i \to j)}{\sum_{s \in Q} C(i \to s)} \, s_{j}$$

• В НММ- мы не можем знать об этих состояниях

Задача 3 – Идея 1

- Мы можем оценить вероятность перехода итеративно
 - Оцениваем вероятность перехода и наблюдений
 - Затем используем эти оценки для улучшения следующих оценок

Задача 3 – Идея 2

• Мы можем использовать **прямые** вероятности $\alpha_t(j)$

 Так же нам потребуется научится рассчитывать обратные вероятность. Это вероятность увидеть наши наблюдения с момента времени t+1 до Т

Задача 3. Обратный проход

• Принимаем, что:

$$-\beta_t(i) = P(o_t ... o_T, |s_t = i, \mu)$$

• Инициализация:

$$-\beta_t(i) = 1, 1 \le i \le N$$

• Рекурсивно:

$$-\beta_t(i) = \sum_{j=1}^N \beta_{t+1}(j) a_{ij} b_{jo_{t+1}}, 1 \le t \le T, 1 \le i \le N$$

•
$$P(O|\mu) = \sum_{i=1}^{N} \pi_i b_{io_1} \beta_1(i)$$

• Теперь нам нужно оцениваем вероятность перехода из состояния і в ј

$$-\,\widehat{a}_{ij}=rac{\mathrm{o}$$
жидаемое количество переходов из i в j ожидаемое количество переходов из i

• Введем вероятность $\varepsilon_t(i,j)$ — нахождения системы в состоянии і в момент t и в состоянии j в момент t+1

$$-\varepsilon_t(i,j) = P(s_t = i, s_{t+1} = j \mid O, \mu)$$

Введем доп вероятность:

$$nq\varepsilon_t(i,j) = P(s_t = i, s_{t+1} = j, O|\mu)$$

Задача 3 - $nq \varepsilon_t(i,j)$

$$nq\varepsilon_t(i,j) = \alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)$$

Задача 3 - $\varepsilon_t(i,j)$

Используем свойство:

$$P(X|Y,Z) = \frac{P(X,Y|Z)}{P(Y|Z)}$$

Имеем:

$$P(O|\mu) = \sum_{j=1}^{N} a_t(j)\beta_t(j)$$

Тогда

$$\varepsilon_t(i,j) = \frac{\alpha_t(i) a_{ij} b_{ijo_t} \beta_{t+1}(j)}{\sum_{m=1}^{N} \alpha_t(m) \beta_t(m)}$$

Задача 3 - \hat{a}_{ij}

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} \varepsilon_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k}^{N} \varepsilon_t(i,k)}$$

Задача 3 - \widehat{b}_{jk}

Вероятность выпуска символа k в состоянии j

$$\hat{b}_{jk} = \frac{$$
ожидаемое количество появлений в j с наблюдением k ожидаемое количество появлений в j

$$\begin{split} \gamma_t(i) &= P(s_t = i | O, \mu) \\ &= \frac{P(X_t = i, O | \mu)}{P(O | \mu)} \\ &= \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)} \end{split}$$

Задача 3 - \widehat{b}_{jk}

Вероятность выпуска символа k в состоянии j

$$\hat{b}_{jk} = \frac{\text{ожидаемое количество появлений в } j \text{ с наблюдением } k}{\text{ожидаемое количество появлений в } j}$$

$$\gamma_t(i) = P(s_t = i | O, \mu) = \frac{P(X_t = i, O | \mu)}{P(O | \mu)} = \frac{\alpha_t(j)\beta_t(j)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)}$$

$$\hat{b}_{jk} = \frac{\sum_{\{t:o_t = k, 1 \le t \le T\}} \gamma_t(j)}{\sum_{t=1}^T \gamma_t(j)}$$

Алгоритм "Вперед- назад"

- Начинаем с некоторой модели μ :
 - строим по нашим данным
 - инициализируем случайно

Шаги:

- E: Скармливаем модели наши наблюдения ${\it O}$ и оцениваем ожидание модельных параметров
- М: Затем переоцениваем параметры модели:
 - $\hat{\pi}_i$ = ожидаемая частота в состоянии i в момент t=1;

$$-$$
 . $= \gamma_1(i)$

$$\hat{a}_{ij}=rac{ ext{ожидаемое количество переходов из }i\text{ в }j}{ ext{ожидаемое количество переходов из }i}=rac{\sum_{t=1}^{T}arepsilon_{t}(i,j)}{\sum_{t=1}^{T}\gamma_{i}(t)}$$

$$- \hat{b}_{jk} = \frac{\text{ожидаемое количество появлений в } j \text{ с наблюдением } k}{\text{ожидаемое количество появлений в } j} = \frac{\sum_{\{t: o_t = k, 1 \leq t \leq T\}} \gamma_t(j)}{\sum_{t=1}^T \gamma_t(i)}$$

• Таким образом: $\mu(A,B,\Pi) => \hat{\mu} = \left(\hat{A} \; \hat{B} \; \widehat{\Pi}\right); \; P(O|\hat{\mu}) \geq P(O|\mu)$

Вопросы и ДЗ