Gradient Conjugué. Li scalaire

Considérons A, une matrice symétrique defait positive.

- · (Axx,y) définit un produit scalaire.
- · Te cot la solution che système Az = b
- · La forctionelle $J(x) = \frac{1}{2}(Ax_1x) (b, x)$ Réalise son minimum en \overline{x} .

Il est équivalent de minimiser Jac) et le fonctionnelle E(x) définit par

 $E(x) = \|x - \overline{x}\|_A = (A(x - \overline{x}), x - \overline{x})$

car E(x) = (Ax,x) - 2(x,Ax) + (Ax,x)

 $= (A\overline{x}, x)$ = (b, x)

= (6,2

= $2J(x) + (A\bar{z}, \bar{z})$

Pour la méthode du grandient conjugué, on choisina comme enitère d'optimalité:

min $E(x^r)$ $x^r \in x^o + k_p(A,r^o)$

«> min | | xe - xe | 1A | xe & 20 + kp (A,10)

Pour définir la méthode, on doit construire ne base de Kp (A, 10). On note W(p) = (w¹ w² ... w^R) (avec (wⁱ); \(\varepsilon\) is \(\varepsilon\) is \(\varepsilon\) we have de \(\varepsilon\) (A15°)

avec \(\varepsilon\) is \(\varepsilon\). E Map (R) Dans cette base, le contière d'optimalité se réécrit: min $\|x^{p} - \overline{x}\|_{A} = \min \left(A(x^{p} - \overline{x}), x^{p} - \overline{x}\right)$ $x^{p} \in x^{p} + k_{p}(A_{p}^{p})$ $x^{q} \in x^{p} + k_{p}(A_{p}^{p})$ anec $x^{p} = x^{o} + \sum_{i=1}^{p} z_{i} w_{i}^{p}$ $= x^{o} + W(p) Z^{p} \text{ anec } Z^{p} = \begin{pmatrix} z_{1} \\ \vdots \\ z_{p} \end{pmatrix}$ min || x'-\(\times\) | | \(\times\) = min \(\A\(\pi\) + \(\pi\) | \(\pi\) = \(\pi\) \)

z'\(\pi\) + \(\pi\) | \(\pi\) = \(\pi\) | \(\pi\) \(\pi\) = \(\pi\) \(\pi\) = \(\pi\) | \(\pi\) = => min (A(x0-x) + AW(p) 2 , x0-x + W(p) 2) (AW(p) z , W(p) z) - (r °, W(p) z) + (r °, Ar °) - (Lo M(615;) = min (AW(p)z -2r°, W(p)z) + (r°, Ar°)
z'eR' (constante constante

constante

constante

z' ER' (W(p) AW(p) 2 - 2 W(p) (0) 2)

z' ER'

est minimum loseque

WT(p) A W(p)
$$Z^p - 2$$
 WT(p) Γ^o , Z^p)

est minimum loseque

WT(p) A W(p) $Z^p - 2$ WT(p) Γ^o = 0

WT(p) A W(p) $Z^p = 2$ WT(p) Γ^o *

Alin d'itale facilement Z^p , on tra cherchen à determine

W(p) de soate que

WT(p) A W(p) = D(p)

Où D(p) est une matrice diagonale disfinit positive

Remarque

Si on assive à trouver une telle base W(p) to

WT(p) A W(p) = D(p) alons

à l'étope p: $Z^p = 2$ D'(p) WT(p) Γ^o por T^o
 $Z^p = \begin{pmatrix} Z_1 \\ Z_2 \\ Z_p \end{pmatrix} = 2 \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} w^p \\ w^p \end{pmatrix} \begin{pmatrix} w^p \\ w^p$

A 1' etape
$$p+1$$
, by componentes 1 à p de z^p

Pestro in changé.

$$z^{p+1} = \begin{pmatrix} z^p \\ z_{p+1} \end{pmatrix}$$

$$z^{p+1} = 2 \begin{pmatrix} D(p) \\ \frac{d}{dp_1p_1} \end{pmatrix} \begin{pmatrix} W(p) \\ (w^{p_1})^T \end{pmatrix} \begin{pmatrix} p^{-1} \\ p \end{pmatrix}$$

De plus
$$z^{p+1} = z^o + W(p+1)^2$$

$$= z^o + (W(p) w^{p_1}) \begin{pmatrix} z^p \\ z_{p+1} \end{pmatrix}$$

$$= z^o + W(p)^2 + w^{p_1}$$

$$= z^p + w^{p_2} z_{p+1}$$

Construction de la bose WGP)

proposition

Le vectour $\Gamma^p = b - Ax^p$ est orthogonale à $K_p(A, \Gamma^o)$ et apportient à $K_{pri}(A, \Gamma^o)$. Il est donc Olinéaire à V^{p+1} (base orthonormale d'Arnoldi).

prevue

Par exemple pour $K_2(A,r^\circ) = (r^\circ, Ar^\circ)$ · orthogonalité pour le p.s (1)A. done xp E xo + Kp (A,ro) (AZ-AzP,4) =0 V 4 Ekp (A,1°) (rp,4) =0 +4 E Kp(A,10) que is T Kb (VIL.) $x^{\rho} \in \mathsf{Kp}(A,\Gamma^{\circ}) \iff \exists (a:|i\in 1...p \ bq)$ $x^{\rho} = \bigvee_{i=1}^{r} \mathsf{Ki} A^{i-1} \Gamma^{\circ}$

r = b - Ax = b - ξ x; Air ∈ Kp+1 (A1ro)

Rappelors que (v¹ v²... v^{p+1}) est le bosse

outhorogenie de Kp+1 (A, r°) formie par l'algorithme d'houldir

donc 3 (dilier.ph. tq r^p = ½ di v;

l'isque r^p 1 Kp (A, r°) alors

(r^p, vⁱ) = 0 V i ∈ 1...

donc r^p = xp+1 v^{p+1}

ce r^p colinéaire à v^{p+1}.

On a donc $\in M \cap P(\mathbb{R}) \Rightarrow G(P) = (f^{\circ} f^{1} - f^{\circ}) \quad f^{i} \in \mathbb{R}^{n}$ $\forall i \in \mathbb{R}^{n}$

Notons $H(p) = G^{T}(p) A G(p)$. $\in Mp(\mathbb{R})$ On a H(p) qui est - symétrique - définit positive - tridiagonale.

Preve

• $H^{T}(p) = (G_{(p)}^{T}AG(p))^{T} = G_{(p)}^{T}A^{T}G(p) = G_{(p)}^{T}AG(p)$ => $H_{(p)}$ symetrique.

Soit
$$x \in \mathbb{R}^{p} \neq 0$$

$$\Rightarrow (G^{T}(p) + G(p) \times x, x) = (AG(p) \times G(p) \times x) \times 0 \text{ cas } A$$

$$\Rightarrow (G^{T}(p) + G(p) \times x, x) = 0$$

$$\Rightarrow (AG(p) \times G(p) \times G(p) \times x) = 0$$

$$\Rightarrow (AG(p) \times G(p) \times$$

Done si
$$j \neq i \neq 2$$

$$(Ari,ri) = 0$$

$$d'où (H(p))ij = 0 \quad \forall j \Rightarrow i+2$$
et comme $H(p)$ est symithique
$$(H(p))ij = 0 \quad \forall [i-j] \Rightarrow 2$$

$$(H(p))ij = 0 \quad \forall [i-j] \Rightarrow 2$$

$$\text{Done} \quad H(p) \text{ est tridiagencle} \quad \square$$

On a donc
$$H(p) = G^{T}(p) AG(p)$$
 définit positive.
 \Rightarrow on peut décomposer $H(p)$ avec Cholesky.
 $H(p) = G^{T}(p) AG(p) = 22^{T}$
 $= LDL^{T}$

Comme H(p) est tridiagonale on a 1 triangulaire bidiagonale à diagonale unité.

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \ell_{22} & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_p(\mathcal{R})$$

et D = dag ([11 , ..., [Pp])

Finalement, on construit la base W(P) à l'aide de la relation:

$$W(\rho) = G(\rho)(L^{T})^{-1}$$

Remarque Leo (
$$\omega^{i}$$
) $i \in 1...p$ formant one base de $K_{p}($

et $W(p) \land W(p) = O(p)$

Leo ω^{i} Sont Ai -conjugué:

 $(A\omega^{i}, \omega^{i}) = \delta_{ij} d_{ii}$

Ainsi
$$(Ar^r, \omega^r) = (A\omega^{r+r} + l_{r+r,p}A\omega^r, \omega^r)$$

$$= (A\omega^{r+r}, \omega^r) + l_{r+r,p}(A\omega^r, \omega^r)$$

$$= \frac{(Ar^r, \omega^r)}{(A\omega^r, \omega^r)}$$

Ch
$$\chi^{p+1} = \chi^p + \omega^{p+1} \times Z_{p+1}$$

$$(A\chi^{p+1}, \omega^{f+1}) = (A\chi^f + Z_{p+1} A\omega^{p+1}, \omega^{p+1})$$

$$= (A\chi^p, \omega^{p+1}) + Z_{p+1} (A\omega^{p+1}, \omega^{p+1})$$

Or $\Gamma^p = b - A\chi^p \implies A\chi^p = b - \Gamma^p$

donc

$$(b - \Gamma^{p+1}, \omega^{f+1}) = (b - \Gamma^p, \omega^{p+1}) + Z_{p+1} (A\omega^{p+1}, \omega^{p+1})$$

$$(b - \Gamma^{p+1}, \omega^{f+1}) = (b - \Gamma^p, \omega^{p+1}) + Z_{p+1} (A\omega^{p+1}, \omega^{p+1})$$

$$(K_{p+1}(A_{1}^{p}) = C + \Gamma^{p+1} \times K_{p+1} (A\omega^{p+1}, \omega^{p+1})$$

$$(\Gamma^p, \omega^{p+1}) = Z_{p+1} (A\omega^{p+1}, \omega^{p+1})$$

$$Z_{p+1} = (\Gamma^p, \omega^{p+1})$$

$$= b - A\chi^p - Z_{p+1} A\omega^{p+1}$$

$$= \Gamma^p - Z_{p+1} A\omega^{p+1}$$

 $P_{\text{pti},p} = \frac{(A_{\text{cp}}, \omega^{\text{p}})}{(A_{\text{cm}}, \omega^{\text{p}})} = \frac{(A_{\text{cp}}, \omega^{\text{p}})}{(A_{\text{cm}}, \omega^{\text{p}})}$

= r - Zp+1 A w P+1

Algorithme

Tant que
$$\|\Gamma\| \leq \varepsilon \|\Gamma^{\circ}\|$$
 $Z \leftarrow \frac{(\Gamma, \omega)}{(A\omega, \omega)} \left(\leftarrow \frac{\|\Gamma^{\dagger}\|^{2}}{(A\omega^{\dagger})^{\omega}} \right)$
 $Z \leftarrow z \leftarrow z \leftarrow z \omega$
 $\Gamma \leftarrow \Gamma - z A \omega$
 $L \leftarrow \frac{(A\Gamma, \omega)}{(A\omega, \omega)} \left(\leftarrow \frac{\|\Gamma^{\dagger}\|^{2}}{(A\omega, \omega)} \right)$
 $\omega \leftarrow \Gamma - L \omega$

Fin Tant Que

$$\frac{1}{2} = \frac{(r^{\rho}, \omega^{\rho+1})}{(A\omega^{\rho+1}, \omega^{\rho+1})} = \frac{(r^{\rho}, r^{\rho}) - f_{\rho+1, \rho}(r^{\rho}, \omega^{\rho})}{(A\omega^{\rho+1}, \omega^{\rho+1})} = \frac{\|r^{\rho}\|^{2}}{(A\omega^{\rho+1}, \omega^{\rho+1})}$$

$$= \frac{(r^{\rho}, \omega^{\rho+1})}{(A\omega^{\rho+1}, \omega^{\rho+1})} = \frac{(r^{\rho}, r^{\rho}) - f_{\rho+1, \rho}(r^{\rho}, \omega^{\rho})}{(A\omega^{\rho+1}, \omega^{\rho+1})} = \frac{(r^{\rho}, r^{\rho})}{(A\omega^{\rho+1}, \omega^{\rho+1}, r^{\rho})}$$

$$= \frac{(r^{\rho})^{2} - 2_{\rho+1}(A\omega^{\rho+1}, \omega^{\rho+1}, r^{\rho})}{(A\omega^{\rho+1}, \omega^{\rho+1}, \omega^{\rho+1})} = \frac{(r^{\rho})^{2}}{(A\omega^{\rho+1}, \omega^{\rho+1})} = 0$$

$$= \frac{(r^{\rho})^{2}}{(A\omega^{\rho+1}, \omega^{\rho+1})} = 0$$

-) les résidus sont orthogonaux pour le p.s usual

Si on itère au maximum n fois, on aboutit à une complexité de l'ordre de $2n^3$

mais avec in bon conditionment la complexité devient in génieure à n.