UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 4

- 1. Sea G una gráfica no trivial. Demuestre que G es una trayectoria si y sólo si G es un árbol con exactamente dos vértices de grado 1.
- 2. (a) Demuestre que cada árbol con grado máximo $\Delta > 1$ tiene al menos Δ hojas.
 - (b) Construya, para cada elección de n y Δ , con $2 \leq \Delta < n$, un árbol de orden n con exactamente Δ hojas.
- 3. Un centro en una gráfica es un vértice u tal que $\max_{v \in V} d(u, v)$ es mínima. Demuestre que un árbol tiene exactamente un centro o dos centros advacentes.
- 4. Demuestre o brinde un contraejemplo: Toda gráfica con menos aristas que vértices tiene una componente que es un árbol.
- 5. Un hidrocarburo saturado es una molécula C_mH_n en la que cada átomo de carbono tiene cuatro enlaces, cada átomo de hidrógeno tiene un enlace, y ninguna sucesión de enlaces forma un ciclo. Demuestre que para cualquier entero positivo m, la molécula C_mH_n existe sólo si n=2m+2.
- 6. Demuestre que una sucesión (d_1, \ldots, d_n) de enteros positivos es la sucesión de grados de un árbol si y sólo si $\sum_{i=1}^n d_i = 2(n-1)$.

Puntos Extra

- 1. Para una gráfica conexa G definimos la gráfica de árboles de G, \mathcal{T}_G , como la gráfica que tiene por vértices a todos los árboles generadores de G, y tal que, si $S, T \in V_{\mathcal{T}_G}$, entonces ST es una arista de \mathcal{T}_G si y sólo si existen aristas $e \in E_S E_T$ y $f \in E_T E_S$ tales que (S e) + f = T. Demuestre que \mathcal{T}_G es conexa.
- 2. Sea T un árbol arbitrario con k+1 vértices. Demuestre que si G es simple y $\delta \geq k$, entonces G tiene una subgráfica isomorfa a T.
- 3. Sea \mathcal{T} una familia de subárboles de un árbol T. Deduzca, por inducción sobre $|\mathcal{T}|$, que si cualesquiera dos elementos de \mathcal{T} tienen un vértice en común, entonces hay un vértice de T que está en todos los elementos de \mathcal{T} .
- 4. (a) Determine todos los arboles T tales que \overline{T} también es un árbol.
 - (b) Determine todas las gráficas de orden al menos cuatro tales que la subgráfica inducida por cualesquiera tres de sus vértices es un árbol.

Justifique detalladamente sus respuestas.