МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

МЕТОДЫ ИЗМЕРЕНИЯ ЁМКОСТИ, ИНДУКТИВНОСТИ, ТАНГЕНСА УГЛА ПОТЕРЬ И ДОБРОТНОСТИ

Отчет по лабораторной работе №3 по дисциплине «Метрология, стандартизация и сертификация» Вариант 2

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил доцент кафедры ЭВМ	

1 Цель работы

Цель данной лабораторной работы – изучение основных методов измерения ёмкости, индуктивности, тангенса угла потерь и добротности.

2 Задание

- 1. Собрать схему рис. 1a: $E_{on}=12~B$, $R_A=10~Om$, $R_V=100~\kappa Om$. Подключить ко входу схемы источник опорного постоянного напряжения $E_{on}=12~B$. Записать показания вольтметра и амперметра и рассчитать значения $R_r=U/I$.
- 2. Вместо источника опорного напряжения подключить источник переменного синусоидального напряжения U=10B частотой f=100 к Γu . Записать показания приборов и рассчитать полное сопротивление $Z_L=\frac{U_{\sim}}{I}$.
 - 3. Рассчитать значение неизвестной индуктивности ${\pmb L}_{\pmb x}$ по формуле (2):

$$L_x = \frac{\sqrt{Z_L^2 - R_x^2}}{\omega},$$

где $\omega = 2\pi f$.

4. Рассчитать относительную погрешность измерения:

$$\gamma = \frac{L_{xp} - L_{xu}}{L_{xu}},$$

где L_{xp} - рассчитанное в п.4 значение индуктивности; L_{xu} - установленное по своему варианту значение индуктивности.

- 5. Собрать схему рис. 16. $E_{on} = 12~B$, $R_A = 10~O{\it M}$, $R_V = 100~\kappa O{\it M}$.
- 6. Повторить п.п. 2 4 для емкости. Рассчитать емкость и погрешность измерения (по аналогии с индуктивностью):

$$C_x = \frac{\sqrt{\frac{1}{Z_C^2} - \frac{1}{R_x^2}}}{\omega}$$

- 7. Собрать схему рис. 2a: $U_\sim = 10~B$, $f = 100~\kappa \Gamma u$, $R_1 = R_2 = 1~\kappa O m$. $C_0 = 3~\mu \Phi$, $R_0 = 30~O m$.
- 8. Уравновесить мостовую схему, изменяя C_0 и R_0 до достижения показаний вольтметра, равных либо существенно приближенных к нулю.
- 9. Определить C_x и R_x по показаниям C_0 и R_0 . Рассчитать погрешности измерения C_x , R_x и тангенс угла потерь.
- 10. Собрать схему рис. 26. $U_\sim=10~B$, $f=100~\kappa \Gamma u$, $R_1=R_2=1~\kappa O m$, $C_0=2~\kappa \kappa \Phi$, $R_0=2~\kappa O m$.

- 11. Уравновесить схему, изменяя C_0 и R_0 , и определить C_x и R_x по показаниям C_0 и R_0 .
 - 12. Рассчитать погрешности измерения C_x и R_x , тангенс угла потерь.
- 13. Собрать схему рис. 3a: $U_{\sim}=10~B$, $f=100~\kappa\Gamma u$, $R_1=R_2=1~\kappa O m$, $L_0=2~m{\rm H}$, $R_0=2~\kappa O m$.
- 14. Уравновесить мостовую схему, изменяя L_0 и R_0 . Записать значения R_x и L_x по показаниям L_0 и R_0 .
- 15. Рассчитать погрешность измерения ${\it R}_x$ и ${\it L}_x$, а также добротность катушки индуктивности.
- 16. Собрать схему рис. 36: $U_\sim=10~B$, $f=100~\kappa \Gamma \mu$, $R_0=1~\kappa O M$, $C_0=10~\mu \Phi$, $R_1=R_2=1~\kappa O M$.
- 17. Уравновесить мостовую схему. Рассчитать значения R_x , L_x и добротность катушки по формулам, приведенным в описании схемы, а также погрешность измерения R_x и L_x .
- 18. Собрать схему рис. 4 для измерения L_x резонансным методом. $U_\sim = 10~B$, $R_0 = 1~\kappa Om$, $C_0 = 1~\mu \Phi$.
- 19. Изменяя частоту генератора (начать можно с 50 кГц) найти резонансную частоту, соответствующую максимуму показаний вольтметра. Вычислить $\boldsymbol{L}_{\boldsymbol{x}}$ по формуле

$$L_x = \frac{1}{\left(2\pi f\right)^2 \cdot C_0}$$

20. Рассчитать относительную погрешность в определении \boldsymbol{L}_{x} .

3 Выполнение задания

3.1 Экспериментальная часть

Рисунок 1 — Схема метода амперметра — вольтметра для определения индуктивности при первом положении ключа

Рисунок 2 — Схема метода амперметра — вольтметра для определения индуктивности при втором положении ключа

Рисунок 3 — Схема метода амперметра — вольтметра для определения ёмкости при первом положении ключа

Рисунок 4 — Схема метода амперметра — вольтметра для определения ёмкости при втором положении ключа

Рисунок 5 — Мостовая схема измерения ёмкости с малыми потерями в диэлектрике

Рисунок 6 — Мостовая схема измерения ёмкости с большими потерями в диэлектрике

Рисунок 7 — Мостовая схема измерения индуктивности с использованием образцовой индуктивности

Рисунок 8 — Мостовая схема измерения индуктивности с использованием образцовой индуктивности

Рисунок 9 — Схема измерения резонансным методом и параметры Function Generator

3.2 Аналитическая часть

1) Вычисление ёмкости и индуктивности по схемам рисунков 1-4:

$$R_{x} = \frac{U_{V}}{I_{A}} = \frac{11.9}{0.01004} = 1185 \text{ Om};$$

$$Z = \frac{U_{\sim}}{I_{\sim}} = \frac{9.94}{0.00707} = 1405 \text{ Om};$$

$$\omega = 2\pi f$$

$$L_{x} = \frac{\sqrt{Z_{L}^{2} - R_{x}^{2}}}{\omega} = \frac{\sqrt{1405^{2} - 1185^{2}}}{6.28*10^{5}} = 1.202 \text{ M}\Gamma\text{H};$$

$$\gamma = \frac{L_{xp} - L_{xu}}{L_{xu}} = \frac{1.202 - 1.2}{1.2} = 0.2 \%;$$

$$R_x = \frac{U_V}{I_A} = \frac{12}{0.0092} = 1304 \text{ Om};$$

$$Z = \frac{U_{\sim}}{I_{\sim}} = \frac{10}{0.0112} = 892 \text{ Om};$$

$$C_x = \frac{\sqrt{\frac{1}{Z_C^2} - \frac{1}{R_x^2}}}{\omega} = \frac{\sqrt{\frac{1}{892^2} - \frac{1}{1304^2}}}{6.28 * 10^5} = 1.302 \text{ H}\Phi;$$

$$\gamma = \frac{C_{xp} - C_{xu}}{C_{xu}} = \frac{1.302 - 1.2}{1.2} = 8.5 \%;$$

2) Расчет ёмкости по схемам рисунков 5-6:

$$\begin{split} & R_{x} = R_{0} * 0.4 = 30 * 0.4 = 12 \text{ Om}; \\ & C_{x} = C_{0} * 0.4 = 3 * 0.4 = 1.2 \text{ HD}; \\ & \textit{tg} \delta = \omega \textit{R}_{x} \textit{C}_{x} = 6.28 * 10^{5} * 12 * 1.2 * 10^{-9} = 0.009; \\ & R_{x} = R_{0} * 0.51 = 2 * 0.51 = 1.02 \text{ kOm}; \\ & C_{x} = C_{0} * 0.51 = 2 * 0.51 = 1.02 \text{ mkD}; \\ & \textit{tg} \delta = \frac{1}{\omega \textit{R}_{x} \textit{C}_{x}} = \frac{1}{6.28 * 10^{5} * 1.02 * 10^{3} * 1.02 * 10^{-6}} = 0.0015; \\ & \gamma = \frac{\textit{C}_{xp} - \textit{C}_{xu}}{\textit{C}_{xu}} = \frac{1}{1.02 - 1.02} = 0; \end{split}$$

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} = \frac{1.02 - 1.02}{1.02} = 0;$$

3) Расчет индуктивности по схемам рисунков 7-8:

$$\begin{split} & \mathbf{L}_{\mathbf{X}} = \mathbf{L}_{0} * 0.51 = 2 * 0.51 = 1.02 \text{ MFH;} \\ & \mathbf{R}_{\mathbf{X}} = \mathbf{R}_{0} * 0.51 = 2 * 0.51 = 1.02 \text{ KOM;} \\ & \boldsymbol{\gamma} = \frac{L_{xp} - L_{xu}}{L_{xu}} = \frac{1.02 - 1.02}{1.02} = 0; \\ & \boldsymbol{\gamma} = \frac{R_{xp} - R_{xu}}{R_{xu}} = \frac{\frac{1.02 - 1.02}{1.02}}{1.02} = 0; \\ & \boldsymbol{Q}_{x} = \frac{\omega L_{x}}{R_{x}} = \frac{\frac{6.28 * 10^{5} * 1.02 * 10^{-3}}{1020} = 0.628; \\ & L_{x} = R_{1} \cdot R_{2} \cdot C_{0} = 1000 * 1000 * 10 * 10^{-9} * 0.22 = 2.2 \text{ MFH;} \\ & R_{x} = \frac{R_{1} \cdot R_{2}}{R_{0}} = \frac{\frac{1000 * 1000}{1000 * 0.45}}{1000 * 0.45} = 2.2 \text{ KOM;} \\ & \boldsymbol{\gamma} = \frac{L_{xp} - L_{xu}}{L_{xu}} = \frac{2.2 - 2.2}{2.2} = 0; \\ & \boldsymbol{\gamma} = \frac{R_{xp} - R_{xu}}{R_{xu}} = \frac{2.2 - 2.2}{2.2} = 0; \\ & \boldsymbol{Q}_{x} = \frac{\omega L_{x}}{R_{x}} = \frac{6.28 * 10^{5} * 2.2 * 10^{-3}}{2200} = 0.628; \end{split}$$

4) Расчеты по схеме рисунка 9:

$$f = 35$$
 кГц; $U = 10$ В; $L_x = \frac{1}{(2\pi f)^2 \cdot C_0} = \frac{1}{(6.28*35*10^3)^2*1*10^{-9}} = 20.7$ мГн; $\gamma = \frac{L_{xp} - L_{xu}}{L_{xu}} = \frac{20.7 - 20}{20} = 3.5$ %.

4 Вывод

В ходе данной лабораторной работы были изучены некоторые методы измерения емкости, индуктивности, добротности и тангенса угла потерь.

При выполнении работы было установлено, что наиболее точные значения были получены при измерении нулевым и мостовым методами, однако они достаточно сложны в реализации и требуют ручного подбора некоторых параметров. Схема резонансного метода имеет достаточно невысокую погрешность и очень проста в реализации, однако все также требует ручного подбора одного из параметров. Этот недостаток отсутствует в схемах косвенных методов (амперметра-вольтметра), однако эти схемы более сложны в реализации, имеют более высокую погрешность и требуют проведения измерения как по постоянному, так и по переменному току.