Durée: 1h

1. (6pts) Soit (γ) l'helice définie par:

$$\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta), \ a, b > 0, \ a^2 + b^2 \neq 1 \text{ et } \theta \in \mathbb{R}$$

- (a) Vérifier que γ n'est pas à paramètre curviligne
- (b) Calculer la courbure K de (γ)
- (c) Trouver $s = s(\theta)$ le paramètre curviligne associé à γ et retrouver K, la courbure de γ
- (d) Donner le trièdre de Frenet $(\vec{T}, \vec{N}, \vec{B})$ où \vec{T} : est la tangente unitaire à (γ) au point $\gamma(s)$; \vec{N} : est la normale principale à (γ) en $\gamma(s)$, $\vec{B} = \vec{T} \wedge \vec{N}$ et calculer la torsion τ de γ
- (e) Donner une interprétation géométrique de vos résultats
- 2. (6pts) On donne la fonction lisse $K:[0,+\infty[\longrightarrow \mathbb{R}$ donnée par $K(s)=\frac{2}{1+s^2}$
 - (a) Donner l'équation de la courbe plane γ ayant pour courbure orientée K. (On rappelle que $\cos(2\alpha) = \frac{1-\tan^2\alpha}{1+\tan^2\alpha}$, $\sin 2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}$)
 - (b) Pourriez vous donner l'exemple d'une courbe $\tilde{\gamma}(s)$ autre que $\gamma(s)$, qui aurait pour courbure K
- 3. (8pts) On considère la projection stéréographique de $S^2=\{(x,y,z)\in\mathbb{R}^3\ /\ x^2+y^2+z^2=1\}$

$$\pi: S^2 - \{P\} \longrightarrow \mathbb{R}^2$$

de S^2 moins le pôle sud P(0,0,-1) à valeurs dans \mathbb{R}^2 qui à tout point M(x,y,z) associe le point m(u,v) intersection de la droite (PM) avec le plan xoy.

- (a) Montrer que π^{-1} définie une carte de S^2 et déterminer son domaine
- (b) construire une autre paramétrisation de S^2 de sorte que S^2 munie de ces deux cartes soit une surface régulière