Przykład 1.

$$\begin{split} U_1 &= \left\{z \in \mathbb{C}, z = re^{i\varphi}, r > 0, -\frac{3\pi}{4} < \varphi < \frac{3\pi}{4}\right\}, \\ U_2 &= \left\{z \in \mathbb{C}, z = re^{i\varphi}, r > 0, \frac{\pi}{4} < \varphi < \frac{5\pi}{4}\right\}, \\ U_3 &= \left\{z \in \mathbb{C}, z = re^{i\varphi}, r > 0, -\frac{5\pi}{4} < \varphi < -\frac{\pi}{4}\right\}, \\ U_1 \cap U_2 &= \left\{z \in \mathbb{C}, z = re^{i\varphi}, \frac{\pi}{4} < \varphi < \frac{3\pi}{4}\right\}, \\ U_1 \cap U_3 &= \left\{z \in \mathbb{C}, z = re^{i\varphi}, -\frac{3\pi}{4} < \varphi < -\frac{\pi}{4}\right\}. \end{split}$$

$$(ln(z) = ln(re^{i\varphi}) = ln(r) + i\varphi)$$

Niech

$$f_1(z) = lnr + i\varphi, \quad z \in U_1$$

$$f_2(z) = lnr + i\varphi, \quad z \in U_2$$

$$f_3(z) = lnr + i\varphi, \quad z \in U_3$$

Zauważmy, że dla $z \in U_1 \cap U_2$ mamy

$$f_1(z) = f_2(z).$$

Mówimy zatem, że f_2 jest przedłużeniem analitycznym f_1 . Dla $z \in U_1 \cap U_3$ wychodzi

$$f_1(z) = f_3(z),$$

czyli f_3 jest przedłużeniem analitycznym f_1 . Ale

$$f_2(-1) = ln(e^{i\pi}) = i\pi$$

 $f_3(-1) = ln(e^{-i\pi}) = -i\pi$.

Rysunek 1: Tracimy jednoznaczność funkcji ale chyba worth it

0.1 Klasyfikacja

Niech f(z) - holomorficzna na pierścieniu $R(z_0, 0, r_1)$, (f(z) może nawet nie być określona w z_0). Wiemy, że (działa wzór Laurenta):

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n.$$

Wyróżniamy trzy przypadki:

1. (Δ) $a_n = 0, n < 0$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

Oznacza to, że przyjmując $f(z_0) = a_0$ otrzymamy funkcję holomorficzną na $K(r_0, r)$.

2. $(\Delta \Delta) \underset{k < 0}{\exists} a_n = 0, n < k$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{a_{-1}}{(z - z_0)} + \frac{a_{-2}}{(z - z_0)} + \dots + \frac{a_{-k}}{(z - z_0)}$$

O punkcie z_0 mówimy, że jest punktem osobliwym, izolowanym rzędu |k|. (albo, że jest biegunem rzędu |k|, np. $\frac{\cos(z)}{z}$ ma w $z_0 = 0$ biegun rzędu pierwszego).

3. $(\Delta\Delta\Delta\Delta)$

O punkcie z_0 powiemy, że jest punktem osobliwym (izolowanym) (albo, że f(z) ma w $z=z_0$ osobliwość istotną).

Przykład 2. (Δ)

$$f(z) = \frac{\sin(z)}{z}$$
$$f(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots$$

 $je\dot{z}eli\ przyjmiemy,\ \dot{z}e\ f(0)=1,\ to\ jest$

$$f(z) = \begin{cases} \frac{\sin(z)}{z} & z \neq 0\\ 1 & z = 0 \end{cases}$$

Przykład 3. $(\Delta \Delta)$

$$f(z) = \frac{\cos(z)}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{(z)^{2n-1}}{(2n)!} = \underbrace{\frac{1}{z}}_{n-1} - \frac{z}{2!} + \frac{z^3}{4!} + \dots$$

Przykład 4. $(\Delta\Delta\Delta)$

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n \cdot \frac{1}{n!}$$

Definicja 1. Liczbę a_{-1} z rozwinięcia funkcji f(z) w szerege Laurenta w pierścieniu $R(z_0, 0, r)$ nazywamy **residuum** funkcji f(z) w z_0 i oznaczamy

$$a_{-1} \equiv Res\{f(z)\} = \frac{1}{2\pi i} \int_{\substack{K(z_0,r),\\0 < r < r_1}} f(\xi)d\xi$$

Uwaga: mówimy (na razie) o osobliwościach izolowanych

Przykład 5.

$$f(z) = \frac{1}{\sin\left(\frac{\pi}{z}\right)}.$$

Zauważmy, $\dot{z}e\sin\left(\frac{\pi}{z}\right)=0\iff z_n=\frac{1}{n}$, więc

$$\lim_{z \to 0} |f(z)| \to \infty,$$

Więc $z_0 = 0$ nie jest osobliwością izolowaną, bo

$$\forall_{r>0} \quad \exists \quad z = \frac{1}{n} \in K(0, r).$$

Twierdzenie 1. Niech Ω - otwarty, $D \subset \Omega$, $z_1, \ldots, z_k \subset D$, $z_i \cap \partial D = \{\phi\}$, $i = 1, \ldots, k, f$ - holomorficzna na $\Omega - \{z_1, \ldots, z_k\}$ i z_i - bieguny funkcji f.

W'owczas

$$\int_{\partial D} f(z)dz = 2\pi i \sum_{n=0}^{k} Res_{z=z_n} \{f(z)\}$$

Dowód. Rozważmy zbiór P taki, jak na rys 13-3. Zauważmy, że f(z) jest na P holomorficzna. to znaczy, że

$$\int\limits_{\partial P} f(z)dz = 0 = \int \partial D f(z)dz + \sum_{n=1}^k \left[\int\limits_{\partial K(z_n,r_n)} f(z)dz \right],$$

czyli

$$\int_{\partial D} f(z)dz = 2\pi i \sum_{n=1}^{k} Res_{z=z_k} f(z).$$

Pytanie: czy umiemy znaleźć współczynnik a_{-1} bez roz funkcji f w szereg Laurenta?

Odpowiedź: Jeżeli f ma w z_0 biegun rzędu n, to znaczy, że

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{a_{-1}}{(z - z_0)} + \dots$$

$$Res_{z=z_k} f(z) = \lim_{z \to z_k} \frac{1}{(n+1)!} \frac{d^{n-1}}{dz} ((z-z_0)^n f(z))$$

Przykład 6. Policzyć całkę

$$J = \int_{0}^{2\pi} \frac{dx}{(1 - 2a\cos(x) + a^{2})}$$

Zauważmy, że

$$1 - 2a\cos(x) + a^2 = 1 - 2a\left(\frac{e^{ix} + e^{-ix}}{2}\right) + a^2 \stackrel{?}{=} \frac{1}{z}(z - a)(1 - az)$$