Power in a Balanced Three-Phase System

- ☐ To find total power in a balanced system
 - Determine power in one phase
 - Multiply by three
- You can also use single-phase equivalent in power calculations
 - Power will be power for just one phase

Three-Phase Active (Average) Power

- \square Active power per phase = $V_{W}I_{W}$ x power factor
- \square Total active power = $3V_WI_W$ x power factor

$$P = 3V_{\rm W}I_{\rm W}\cos_{\rm W}$$

► If I_L and V_L are rms values for line current and line voltage respectively. Then for delta (Δ) connection: V_{ϕ}

=
$$V_L$$
 and $I_W = I_L/\sqrt{3}$. therefore: $P = \sqrt{3}V_LI_L \cos \pi$

For star connection (Y): $V_W = V_L / \sqrt{3}$ and $I_{\phi} = I_L$. therefore: $P = \sqrt{3}V_L I_L \cos y$

Instantaneous Phase Voltages

$$v_{an}(t) = V_m \sin(\check{S} t)$$

$$v_{bn}(t) = V_m \sin(\check{S} t - 120^\circ)$$

$$v_c(t) = V_m \sin(\check{S} t - 240^\circ)$$

$$v_{an}(t) = \sqrt{2}V \sin \check{S}t$$

$$v_{bn}(t) = \sqrt{2}V \sin(\check{S}t - 120^{0})$$

$$v_{cn}(t) = \sqrt{2}V \sin(\check{S}t - 240^{0})$$

Instantaneous Phase Currents

$$i_a(t) = I_m \sin(\check{S}t - \pi)$$

 $i_b(t) = I_m \sin(\check{S}t - \pi - 120^\circ)$
 $i_c(t) = I_m \sin(\check{S}t - \pi - 240^\circ)$

$$i_a(t) = \sqrt{2}I\sin(Št - \pi)$$

$$i_b(t) = \sqrt{2}I\sin(Št - 120^0 - \pi)$$

$$i_c(t) = \sqrt{2}I\sin(Št - 240^0 - \pi)$$

✓ Instantaneous Power

$$p(t) = v(t)i(t)$$

Therefore, the instantaneous power supplied to each phase is:

$$p_{a}(t) = v_{an}(t)i_{a}(t) = 2VI\sin(Št)\sin(Št - \pi)$$

$$p_{b}(t) = v_{bn}(t)i_{b}(t) = 2VI\sin(Št - 120^{0})\sin(Št - 120^{0} - \pi)$$

$$p_{c}(t) = v_{cn}(t)i_{c}(t) = 2VI\sin(Št - 240^{0})\sin(Št - 240^{0} - \pi)$$

Since

$$\sin r \sin s = \frac{1}{2} \left[\cos(r - s) - \cos(r + s) \right]$$

Therefore

$$p_{a}(t) = VI \left[\cos_{\pi} - \cos(2\check{S}t - \pi) \right]$$

$$p_{b}(t) = VI \left[\cos_{\pi} - \cos(2\check{S}t - 240^{0} - \pi) \right]$$

$$p_{c}(t) = VI \left[\cos_{\pi} - \cos(2\check{S}t - 480^{0} - \pi) \right]$$

The total instantaneous power

$$p_{tot}(t) = p_a(t) + p_b(t) + p_c(t) = 3VI \cos u$$

Note that: the pulsing components cancel each other because of 120° phase shifts.

✓ For a balanced three phase circuit the instantaneous power is constant

✓ power in phases is Time Variant

✓ The total power supplied to the load is constant

Power Relationships For a balanced Three-Phase load

For a balanced Y-connected load with the impedance $Z_w = Z \hat{e}_w^0$:

Power Relationships For a balanced Three-Phase load

☐ Using Phase quantities in each phase of a Y- or U-connection

✓ Real Power:

$$P = 3V_{\rm w}I_{\rm w}\cos_{\rm w} = 3I_{\rm w}^2Z\cos_{\rm w} = 3I_{\rm w}^2R$$

✓ Reactive Power:
$$Q = 3V_W I_W \sin_W = 3I_W^2 Z \sin_W$$

 $3I_{\rm W}^2X$

✓ Apparent Power:

$$S = 3V_{\rm w}I_{\rm w} = 3I_{\rm w}^2Z$$

Power Relationships For a Balanced Three-Phase load

☐ Using Line quantities of a Y-connected Load

✓ Real Power
$$P = 3V_{\rm w}I_{\rm w} \cos_{\rm w}$$

$$\triangleright$$
 Since for this load $I_L = I_W$ and $V_W = V_L / \sqrt{3}$

Therefore:
$$P = 3 \frac{V_L}{\sqrt{3}} I_L \cos \pi$$

Finally:
$$P = \sqrt{3}V_L I_L \cos \pi$$

Power Relationships For a Balanced Three-Phase load

- ☐ Using Line quantities of a U-connected Load

✓ Real Power
$$P = 3V_{\rm w}I_{\rm w} \cos_{\rm w}$$

- \triangleright Since for this load $V_L = V_W$ and $I_W = I_L/\sqrt{3}$
- Therefore: $P = 3 V_L \frac{I_L}{\sqrt{3}} \cos$
 - Finally: $P = \sqrt{3}V_L I_L \cos \pi$

The same as for a Y-connected load!

Power Relationships For a Balanced Three-Phase load

☐ Using Line quantities of Y- or U-connection

Reactive power:
$$Q = \sqrt{3}V_L I_L \sin \pi$$

$$S = \sqrt{3}V_L I_L$$

□ Note: " is the angle between the phase voltage and the phase current (the impedance angle).

✓ Power factor is:
$$F_p = \cos_w = P/S = P_w/S_w$$

