Practica 1

#IMPORTS

import numpy as np

In [5]:

Daniel López Acero Antonio Luis Suraez Solis

1. Regresión lineal con una variable

En la primera parte de la practica hay que aplicar el método de regresión lineal sobre los datos del fichero ex1data1.csv

```
import matplotlib.pyplot as plt
         from pandas.io.parsers import read_csv
         import scipy as sp
         import time
         from mpl_toolkits.mplot3d import Axes3D
         from matplotlib import cm
         from matplotlib.ticker import LinearLocator, FormatStrFormatter
 In [8]: def carga_csv(file_name):
             """carga el fichero csv especificado y lo
          devuelve en un array de numpy
             valores = read_csv(file_name, header=None).to_numpy()
             # suponemos que siempre trabajaremos con float
             return valores.astype(float)
 In [5]: def costeFun(theta, X, Y): #entendamos 0 como theta
             # HO(x(i)) =
             H = np.dot(X, theta)
             \#HO(X(i) - Y(i)) ^2 = interior del sumatiorio
             temp = (H-Y) **2
             #1/2m * sumatiorio = J(0) --> coste a devolver
             return temp.sum() / (2*len(X))
In [10]: def descenso_grad(X, Y, alpha):
             theta0 = 0
             theta1 = 0
             thetaFinal = [theta0,theta1]
             costeaux = costeFun(thetaFinal, X, Y)
             print(costeaux)
             print("La de encima es la primera y deberia ser 32.07")
             for n in range (1500):
                 sumatiorioT0 = 0
                 sumatiorioT1 = 0
                 for i in range(len(X)):
                    sumatiorioT0 += (theta0 + theta1 * X[i,1]) - Y[i]
                    sumatiorioT1 += ((theta0+theta1 * X[i,1]) -Y[i]) * X[i,1]
                 theta0 = theta0 - (alpha/len(X)) * sumatiorioT0
                 theta1 = theta1 - (alpha/len(X)) * sumatiorioT1
                 thetaFinal = [theta0,theta1]
                 costes=costeFun(thetaFinal,X,Y)
             thetaFinal = [theta0,theta1]
             costes = costeFun(thetaFinal, X, Y)
             return thetaFinal, costes
         datos = carga_csv('c:/Users/Daniel/Desktop/AprendizajeAutomatico/AprendizajeAutomatico/P1/ex1data1.csv'
         X = datos[:, :-1]
         np.shape(X)
         Y = datos[:, -1]
         np.shape(Y)
         alpha = 0.01
         m = np.shape(X)[0]
         n = np.shape(X)[1]
         X = np.hstack([np.ones([m,1]), X])
         Theta, costes = descenso_grad(X,Y,alpha)
         plt.plot(X[:, 1:], Y, "x")
         min_x = min(X[:, 1:])
         max_x = max(X[:, 1:])
         min_y = Theta[0] + Theta[1] * min_x
```

Out[10]: [<matplotlib.lines.Line2D at 0x1ef0f9777c0>]

La de encima es la primera y deberia ser 32.07

max_y = Theta[0] + Theta[1] * max_x
plt.plot([min x, max x], [min y, max y])

32.072733877455676

1.1. Visualización de la función de coste

```
In [12]:
         def make_data2(t0_range , t1_range , X , Y ):
             step=0.1
             Theta0=np.arange(t0_range[0],t0_range[1],step)
             Theta1=np.arange(t1_range[0],t1_range[1],step)
             Theta0,Theta1 =np.meshgrid(Theta0,Theta1)
             Coste = np.empty like(Theta0)
             for ix,iy in np.ndindex(Theta0.shape):
                 Coste[ix,iy] = costeFun([Theta0[ix,iy], Theta1[ix,iy]], X, Y)
             return [Theta0, Theta1, Coste]
         aux = make_data2([-10,10],[-1,4], X, Y)
         eje3D = np.logspace(-2,3,20)
         fig=plt.figure()
         #ax=fig.gca(projection='3d')
         surf=fig.gca(projection = '3d').plot_surface(aux[0], aux[1],aux[2],cmap=cm.coolwarm,linewidth=0,antiali
         ased=False)
         #fig.colorbar(surf,shrink=0.5,aspect=5)
         fig2 = plt.figure()
         aux2 =fig2.gca()
         surf2 = aux2.contour(aux[0], aux[1], aux[2],eje3D ,colors = 'blue')
         #surf2 = plt.contour(aux[0],aux[1],aux[2],eje3D,colors='blue')
         #surf2.clabel(surf2, inline=1, fontsize=10)
         #ax.set title('Movidas')
         plt.show()
```

