Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

- 1. Rispondere alle seguenti domande fornendo una giustificazione di una riga: a. E' vero che se E/F è un estensione e se $\alpha \in E$ è trascendente su F allora $\forall m \in \mathbf{Z}, m \neq 0, \alpha^m$ è trascendente su F?
 - b. E' vero che se E_1 e E_2 sono sottocampi di ${\bf C}$, entrambi di dimensione finita su ${\bf Q}$, allora il campo composto E_1E_2 è di dimensione finita su \mathbf{Q} ?
 - c. Determinare il grado del campo $\mathbf{Q}(2^{1/2},2^{1/3},2^{1/4},\cdots,2^{1/15})$ su \mathbf{Q} .
 - d. E' vero che $\mathbf{Q}(\pi)$ è isomorfo a $\mathbf{Q}(e)$ (dove e è il numero di Nepero)?
- 2. Sia $F[\alpha]/F$ un estensione algebrica semplice. Dimostrare che se $a,b,c,d\in F$ sono tali che $ad-bc\neq 0$, allora $F[\alpha]=$ $F[(a\alpha + b)/(c\alpha + d)].$
- 3. Dopo aver dimostrato che $2\cos(2\pi/15)$ è un numero algebrico, se ne calcoli il polinomio minimo su Q.
- 4. Dopo aver descritto tutti gli elementi di $\operatorname{Aut}(\mathbf{Q}(7^{1/4},i)/\mathbf{Q})$, si determini l'ordine di ciascuno di essi.
- 5. Determinare il campo di spezzamento su \mathbf{Q} di $f(X) = (X^4 3)(X^3 3)((X 3)^2 3) \in \mathbf{Q}[X]$ e calcolarne il grado su \mathbf{Q} .
- 6. Dopo aver definito la nozione di campo perfetto, si forniscano esempi di campi perfetti e di campi non perfetti.
- 7. Dopo aver mostrato che $x^3-2x-2\in \mathbf{Q}[x]$ è irriducibile, si consideri il campo $\mathbf{Q}[\theta], \theta^3=2\theta+2$. a. Determiniare $a,b,c\in \mathbf{Q}$ tali che $\theta^{-5}=a+b\theta+c\theta^2$; b. Calcolare il polinomio minimo su \mathbf{Q} di θ^2 .
- a. verificare che $\mathbf{Q}(\sqrt{3}) \subset \mathbf{Q}(\sqrt{15}, \sqrt{5});$ b. descrivere i $\mathbf{Q}(\sqrt{3})$ -omomorfismi del campo $\mathbf{Q}(\sqrt{15}, \sqrt{5})$ in \mathbf{C} ; c. calcolare il polinomio minimo di $\sqrt{3} + \sqrt{5}$ su $\mathbf{Q}[\sqrt{15}].$