Cálculo Avanzado - 2° Cuatrimestre 2020 Recuperatorio del 1° Parcial (14/12/2020)

1. Calcular el cardinal de

$$\mathcal{A} = \{(a_n)_{n \in \mathbb{N}} \subset \mathbb{R} : a_n \neq a_m \forall n \neq m \}.$$

- 2. Sea X un espacio métrico y $A, B \subset X$. Probar que las siguientes afirmaciones son equivalentes:
 - I) $A \cap \overline{B} = B \cap \overline{A} = \emptyset$,
 - II) existen U, V abiertos de X tales que $A \subset U, B \subset V$ y $U \cap V = \emptyset$.
- 3. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}_{\geq 1}$. Definimos en en ℓ_∞ la distancia

$$\tilde{d}(x,y) = \sup_{n \in \mathbb{N}} \frac{|x-y|}{a_n}.$$

- a) Probar que si $a_n = n$, $(\ell_{\infty}, \tilde{d})$ es separable.
- b) Probar que si $a_n = \frac{n+1}{n}$, $(\ell_{\infty}, \tilde{d})$ no es separable.
- 4. Definimos en \mathbb{R} la distancia $d_{\spadesuit}(x,y) = |e^x e^y|$. Probar que:
 - $a)\ d_{\spadesuit}$ es topológicamente equivalente a la distancia usual.
 - b) $(\mathbb{R}, d_{\spadesuit})$ no es completo.

Puede usar como ciertos los resultados de las guías prácticas o los vistos en la teórica.