CSC28 Fall 2020 (Jagan Chidella) [Note Complement notation Ac has been typed A^c]

1. Are these sets equal? (Is A=B=C). Explain your answer.

The 3 sets ARE equal because the members of each set are the same.

$$A = \{1,2,3\} B = \{3,1,2\} C = \{3,2,2,1\}$$

So, A is a subset of B: $A \subseteq B$, and $B \subseteq A$ so A = B. Also, $B \subseteq C$ and $C \subseteq B$ so B=C. If A=B and B=C, then A=B=C.

2. List all the partitions (subsets) of $A \cap B$

$$A \cap B = \{12,13\} \text{ so } P(A \cap B) = \{\{\emptyset\}, \{12\}, \{13\}, \{12,13\}\}\}$$

3. Show relationship of N, Z, Q, R using example and Venn Diagram.

Example: N is the smallest circle of the diagram, it contains natural numbers "1,2,3, ...". Z is the set of all integers and it contains N as well as negative numbers "..., -1, 0, 1, ...". Q is rational numbers are including Z and N, as well as terminating fractions "..., -1, - $\frac{1}{2}$, 0, $\frac{1}{2}$, 1, ...". R is real numbers and include Z, N, and Q as well as irrational numbers such as " π ". N $\subseteq Z \subseteq Q \subseteq R \subseteq C$

4. Examples:

- a. Empty Set: $A = \emptyset$ or $A = \{\}$. Example: The set of students at Sac State with 10 arms is empty.
- b. Disjoint Set: A= {1,2,3} B= {4,5,6}, A is disjoint with B because there are no common elements. A ⊄ B and B ⊄A. Example: the set of students attending Sac State is disjoint with the set of students attending Harvard.
- c. Universal Set: A universal set is the largest fixed set that contains all other sets. $\emptyset \subseteq \{\text{Set}\} \subseteq \mathbf{u}$.
- d. Subset:

Example: If $A=\{1,2\}$ and $B=\{2,1\}$, then $A\subseteq B$ and $B\subseteq A$.

The difference between a subset and a proper subset is that a proper subset has at least one element in a set that doesn't belong to the other set.

Example:

$$A=\{1,2\}$$
 $B=\{2,1\}$ $C=\{1,2,3\}$

 $A \subseteq B$ but $A \subseteq C$, A is a proper subset of C.

e. Equal: You say 2 sets are equal when set A and B are $A \subseteq B$, and $B \subseteq A$, then A=B. Example:

$$A=\{1\}$$
 $B=\{1\}$, $A\subseteq B$, and $B\subseteq A$, so $A=B$.

- 5. Venn Diagrams:
 - a. $A \cap B \cap C = \{3\}$

b.
$$(B \cap C) - A = \{4\}$$

c. $A - (B \cup C) = \{5\}$

d. $(A \cap B)^c \cup C = \{2,3,4,5,6,7,9\}$

e. A \cup (B \cap C)^c = {1,2,3,5,6,7,9}

- 6. If A is "students who wear masks" then A complement (A^c) would be the # of students at Sac State who don't wear masks. So, the answer would be **B**.
- 7. Prove $X * Y \neq Y * X$

Example: $X = \{2,4\} Y = \{1,3\}$

 $X * Y = \{(2,1), (2,3), (4,1), (4,3)\}$

 $Y * X = \{(1,2), (3,2), (1,4), (3,4)\}$

This proves that $X * Y \neq Y * X$

- 8. What is $A \oplus B$?
 - a. $A \oplus B = \{7,10,11\}$ (for detail explanation of 8a see last page)
 - b. Also Prove:

 $A \cap B \subseteq A$: $\{8,9\} \subseteq \{7,8,9\}$, true so $A \cap B$ is in fact a subset of A

- ii. $A \subseteq A \cup B$: $\{\underline{7,8,9}\} \subseteq \{\underline{7,8,9},10,11\}$, true so A is in fact a subset of A U B
- iii. A \cap B \subseteq B: $\{8.9\}$ \subseteq $\{8.9,10,11\}$, true so A \cap B is in fact a subset of B
- iv. $B \subseteq A \cup B$: $\{8.9.10.11\} \subseteq \{7.8.9.10.11\}$, true so B is in fact a subset of A \cup B
- c. From this, we have two properties. Property 1: $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Property 2: $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By combining these two properties together, we can deduce that:

 $A \cap B \subseteq A \subseteq A \cup B$

 $A \cap B \subseteq B \subseteq A \cup B$

9.

a. Total number of students: To find the total number of students, we add the number of students who play each game then we subtract the number of students who play multiple different games. 30+30+30-20-15-15+10 = 50. So, the total number of students is **50**.

Only Tennis: 30 - (10 + 5 + 5) = 10 students only played tennis.

Only Rugby: 30 - (10 + 10 + 5) = 5 students only played rugby.

Only Volleyball: 30 - (10 + 10 + 5) = 5 students only played v-ball.

b. Suppose there were 70 students how many played none of the 3 games? If the original information stayed the same, then the number of students who played the game would stay the same. In the previous part, I found that the total number of students playing at least 1 game is 50 so if there are 70 students. Then 70 – 50 gives us 20 students who didn't play a single game.

10.

a. Prove De Morgan's Law: (A \cup B) $^c = A^c \cap B^c$

 $\{x \mid x \notin (A \text{ or } B)\} = \{x \mid x \notin A \text{ and } x \notin B\}$

Example: say that $x \in (A \cup B) \land c$, this also means that $x \notin A \cup B$, and if it doesn't belong to either A or B, then it also belongs to both A $\land c$ and B $\land c$. So $(A \cup B) \land c = A \land c \cap B \land c$ becomes true.

Say that $x \in A^c \cap B^c$, this also means that $x \notin (A \cup B)$, and if it doesn't belong to either A or B, then it also belongs to $x \in (A \cup B)^c$. So $(A \cup B)^c = A^c \cap B^c$ becomes true.

 $(A \cap B) \cdot c = A \cdot c \cup B \cdot c$

$$\{x \mid x \notin (A \text{ and } B)\} = \{x \mid x \notin A \text{ or } x \notin B\}$$

Example: say that $x \in (A \cap B) ^c$, this also means that $x \notin A \cap B$, and if it doesn't belong to both A and B, then it must belong to either A^c or B^c . So $(A \cap B) ^c = A^c \cup B^c$ becomes true.

Say that $x \in A^c \cup B^c$, this also means that $x \notin (A \cap B)$, and if it doesn't belong to A and B, then it also belongs to $x \in (A \cap B)^c$. So $(A \cap B)^c = A^c \cup B^c$ becomes true.

10 (b).

a.
$$A-B = A \cap B c$$

Example: say that $x \in A$ - B, this also means that $x \in A$ and $x \notin B$ ($x \in B^c$), Since $x \in A$ and $x \in B^c$. Then, this proves that $x \in A \cap B^c$; therefore, $A \cap B^c \subseteq A - B$ is true.

Example 2:
$$A = \{a,b,c,d\} B = \{c,d,e,f\}$$

Then A-B = A
$$\cap$$
 B^c = {a,b}

b.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Example: $n(A \cup B)$ can also be written as $n(A-B) + n(A \cap B) + n(B-A)$

So we have

- $n(A \cup B) = n(A-B) + n(A \cap B) + n(B-A)$
 - $n(A-B) = n(A) n(A \cap B)$
 - $n(B-A) = n(B) n(A \cap B)$
- $n(A \cup B) = n(A) n(A \cap B) + n(A \cap B) + n(B) n(A \cap B)$

Which leaves us with: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

Example 2: $A = \{a,b,c,d\} B = \{c,d,e,f\}$

$$n(A)=4$$
 $n(B)=4$ $n(A \cap B)=2$
 $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 4 + 4 - 2$
 $= 6$

c.
$$n(A \cup B) = n(A-B) + n(A \cap B) + n(B-A)$$

Example: A \cup B can be split into 3 parts which are added together, the three parts are: only unique to A, both A and B, and only unique to B. The respective parts can be written as A-B, A \cap B, and B-A. Adding each section together gives us the total $n(A \cup B) = n(A-B) + n(A\cap B) + n(B-A)$.

Example 2:
$$A = \{a,b,c,d\}$$
 $B = \{c,d,e,f\}$
$$n(A-B) = 2 \quad n(B-A) = 2 \quad n(A \cap B) = 2$$

$$n(A \cup B) = n(A-B) + n(A \cap B) + n(B-A) = 2 + 2 + 2$$

$$= 6$$

d. $n(A \cup B \cup C) = n(A)+n(B)+n(C)-n(A \cap B)-n(A \cap C)-n(B \cap C)+n(A \cap B \cap C)$

Venn Diagram Key:

- 1. Only A
- 2. Only B
- 3. Only C
- 4. A and C not B
- 5. A and B not C
- 6. B and C not A
- 7. A and B and C

Example: n(A U B U C) can be written as n[(A U B) U C]. We can take this a step further and say that C is also n(C) - the intersection of A or B with C. So we get

$$n[(A \cup B) \cup C] = n(A \cup B) + n(C) - n[(A \cup B) \cap C].$$

As we found in the previous problem, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$. We end up with:

$$n(A) + n(B) - n(A \cap B) + n(C) - n[(A \cap C) \cup (B \cap C)]$$

We'll treat $(A \cap C) \cup (B \cap C)$ like it was $A \cup B$ which gives us:

$$n(A) + n(B) + n(C) - n(A \cap B) - [n(A \cap C) + n(B \cap C) - n[(A \cap C) \cap (B \cap C)]]$$

$$n(A)+n(B)+n(C)-n(A\cap B)-n(A\cap C)-n(B\cap C)+n(A\cap B\cap C)$$

So n(A U B U C) = n(A)+n(B)+n(C)-n(A \cap B)-n(A \cap C)-n(B \cap C)+n(A \cap B \cap C) is true.

Example 2:
$$A = \{a,b,c,d\}$$
 $B = \{c,d,e,f\}$ $C = \{e,f,g,h\}$
$$n(A) = 4 \quad n(B) = 4 \quad n(C) = 4$$

$$n(A \cap B) = 2 \quad n(A \cap C) = 0 \quad n(B \cap C) = 2 \quad n(A \cap B \cap C) = 0$$

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C) = 4 + 4 + 4 - 2 - 0 - 2 - 0 = 8$$

e.
$$(A \cup B)-C = (A-C) \cup (B-C)$$

Detail answer to 8a.

8)
$$A = \{7,8,9\}$$
 $B = \{8,9,10,11\}$
a) $A \oplus B = (A-B) \cup (B-A)$
 $= \{7,3\} \cup \{10,11\}$
 $= \{7,10,11\}$