Лабораторная работа 2.2.3 Определение теплопроводности воздуха при атмосферном давлении

Кагарманов Радмир Б01-106 19 марта 2022 г. **Цель работы:** измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используется: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр; эталонное сопротивление; источник постоянного напряжения; магазин сопротивлений.

Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\vec{q}[\frac{\mathrm{Br}}{\mathrm{M}^2}]$ пропорционально градиенту температуры ∇T .

$$\vec{q} = -\kappa \cdot \nabla T \tag{1}$$

где κ - коэффициент теплопроводности.

Пусть тонкая нить радиусом r_1 и длиной L помещена на оси цилиндра радиусом r_0 . Температура стенок цилиндра T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q. r - расстояние до оси. Полный поток тепла будет равен Q = qS:

$$Q = -2\pi r L \cdot \kappa \frac{dT}{dr} = const \tag{2}$$

Интегрируя от радиуса нити до радиуса колбы, получаем:

$$Q = \frac{2\pi L}{\ln(\frac{r_0}{r_1})} \kappa \cdot \Delta T \tag{3}$$

Экспериментальная установка

Схема установки приведена на рис. 1. На оси полой цилиндрической трубки с внутренним диаметром $2r_0$ размещена металлическая нить диаметром $2r_1$ и длиной L. Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля—Ленца:

$$Q = UI \tag{4}$$

Рис. 1: Экспериментальная установка

На Рис. 2 изображена схема, с помощью которой можно определить сопротивление нити.

Рис. 2: Схема цепи

Ход работы и обработка результатов

1. Параметры установки:

 $L = 365 \pm 2$ мм - длина нити

 $2r_1 = 0,055 \pm 0,0005$ мм - радиус нити

 $2r_2 = 10,0 \pm 0,1$ мм - радиус колбы

 $R_9 = 10,000 \text{Ом}$ - эталонное сопротивление

- Измерим несколько значений тока для различных температур и измерим нагрузочные кривые. В таблице 1 будут результаты этих измерений.
- **3.** Сопротивление нити находится по формуле: $R_{\rm H} = \frac{U_{\rm H}}{U_{\rm o}} R_{\rm o}$. Мощность $Q = U_{\rm H} \cdot \frac{U_{\rm s}}{R_{\rm o}}$.
 - 4. Оценим погрешности:

$$\sigma Q = Q\sqrt{\left(\frac{\sigma U_H}{U_H}\right)^2 + \left(\frac{\sigma U_0}{U_0}\right)^2}$$

$$\sigma R_{\scriptscriptstyle \rm H} = R_{\scriptscriptstyle \rm H} \sqrt{(\frac{\sigma U_H}{U_H})^2 + (\frac{\sigma U_0}{U_0})^2}$$

$$\varepsilon_Q = 0,005\%; \, \varepsilon_R = 0,005\%$$

5. Построим для каждой температуры графики зависимости Q от $R_{
m H}$ и определим по ним $\frac{dQ}{dR_{
m H}}$. Они будут изображены на рисунках 3, 4, 5,

0, 7. $T_1 = 22, 0^{\circ}C: \frac{dQ}{dR_{\rm H}} = 0,2991; \ R_0 = 14,548{\rm OM}$ $T_2 = 30, 0^{\circ}C: \frac{dQ}{dR_{\rm H}} = 0,3084; \ R_0 = 14,938{\rm OM}$ $T_3 = 40, 0^{\circ}C: \frac{dQ}{dR_{\rm H}} = 0,3075; \ R_0 = 15,344{\rm OM}$ $T_4 = 50, 0^{\circ}C: \frac{dQ}{dR_{\rm H}} = 0,3080; \ R_0 = 15,815{\rm OM}$ $T_5 = 60, 0^{\circ}C: \frac{dQ}{dR_{\rm H}} = 0,3128; \ R_0 = 16,272{\rm OM}$

6. Построим зависимость R от t и найдём температурный коэффициент молибдена.(Рис.8) $\alpha = (0,00332 \pm 0,00023)K^{-1}$ Видно, что значение, которое мы получили, не совпадает с табличным $0,004579K^{-1}$.

4

7. Найдём коэффициент теплопроводности для каждой температуры.

$$\kappa = \frac{dQ}{dR_{\rm H}} \frac{dR_{\rm H}}{dT} \frac{1}{2\pi L} ln \frac{r_2}{r_1}$$

$$T = 22^{\circ}\text{C}: \quad \kappa = 0.0305 \pm 0.002 \text{ Bt/m·C}$$

$$T = 30^{\circ}\text{C}: \quad \kappa = 0.0315 \pm 0.002 \text{ Bt/m·C}$$

$$T = 40^{\circ}\text{C}: \quad \kappa = 0.0315 \pm 0.002 \text{ Bt/m·C}$$

$$T = 50^{\circ}\text{C}: \quad \kappa = 0.0315 \pm 0.002 \text{ Bt/m·C}$$

$$T = 60^{\circ}\text{C}: \quad \kappa = 0.0320 \pm 0.002 \text{ Bt/m·C}$$

8. Предполагая, что зависимость коэффициента теплопроводности от температуры имеет вид $\kappa = AT^{\beta}$, определим показатель степени β . Для этого построим график зависимости $ln\kappa$ от lnT, тогда $ln\kappa = lnA + \beta lnT$.

 $\beta \approx 0.4$

Вывод: выполнив данную лабораторную работу, был найден коэффициент теплопроводности воздуха при атмосферном давлении и комнатной температуре $\kappa = (0,0305 \pm 0,002) \mathrm{Bt/m} \cdot {}^{\circ}C$, он немного отличается от табличного 0,0259, возможно это произошло из-за потерь тепла: конвекция, излучение, потери через концы проволоки. Был найден $\beta = \frac{2}{5}$, который тоже не совпал с табличным $\frac{1}{2}$. В описании работы было указано, что сопротивление нити лежит в диапозоне 10-14 Ом, мы же измерили 14,5-16,5 Ом.

Рис. 3: Зависимость Q от R при $t=22^{\circ}C$

Рис. 4: Зависимость Q от R при $t=30^{\circ}C$

Рис. 5: Зависимость Q от R при $t=40^{\circ}C$

Рис. 6: Зависимость Q от R при $t=50^{\circ}C$

Рис. 7: Зависимость Q от R при $t=60^{\circ}C$

$t, {^{\circ}C}$	No॒	$U_{\rm h}$, мВ	U_0 , мВ	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$	Q, м B т
22,0	1	100,89	69,308	14,557	0,6993
	2	176,11	120,90	14,567	2,1292
	3	256,42	175,90	14,578	4,5104
	4	453,32	310,31	14,609	14,0670
	5	517,31	353,78	14,622	18,3014
	6	601,65	411,04	14,637	24,7302
	7	702,34	478,71	14,672	33,6217
30,0	1	105,35	70,605	14,921	0,7438
	2	220,36	147,60	14,930	3,2525
	3	310,95	208,12	14,941	6,4715
	4	418,47	279,79	14,957	11,7084
	5	510,78	340,86	14,985	17,4104
	6	683,77	455,35	15,016	31,1355
	7	743,01	494,05	15,039	36,7084
40,0	1	107,15	69,703	15,372	0,7469
	2	206,35	134,21	15,375	2,7694
	3	308,48	200,48	15,387	6,1844
	4	426,53	276,86	15,406	11,8089
	5	536,89	348,01	15,427	18,6843
	6	649,00	419,87	15,457	27,2496
	7	820,41	528,99	15,509	43,3989
	8	945,39	607,80	15,554	57,4608
50,0	1	119,54	75,601	15,812	0,9037
	2	271,10	171,26	15,830	4,6429
	3	343,73	217,02	15,839	7,4596
	4	469,64	296,14	15,859	13,9079
	5	564,98	355,77	15,880	20,1003
	6	741,84	465,77	15,927	34,5527
	7	873,68	547,12	15,969	47,8008
	8	951,68	594,97	15,995	56,6221
60,0	1	222,13	136,46	16,278	3,0312
	2	352,79	216,49	16,296	7,6376
	3	448,77	275,15	16,310	12,3479
	4	563,99	345,32	16,332	19,4757
	5	680,56	415,97	16,361	28,3093
	6	759,12	463,34	16,384	35,1731
	7	858,06	522,83	16,412	44,8620

Таблица 1: Измерения

Рис. 8: Зависимость R от t

Рис. 9: Зависимость $\ln \kappa$ от $\ln T$