01.

මිශුණ

මිශුණ වර්ග

- පදාර්ථ සංශුද්ධ පදාර්ථ හා මිශුණ
 ලෙස කොටස් දෙකකට බෙදිය
 හැකිය.
- ස්වාභාවික පරිසරයේ සංශුද්ධ දවා ඉතා අල්ප වන අතර සුලභව පවතින්නේ මිශුණ ලෙස ඇති දවා යි.

මිශුණ යනු

සංඝටක දෙකක් හෝ වැඩි ගණනක් රසායනිකව වෙනස් නොවී මිශු වී පවතින්නා වූ ද සංඝටක භෞතික කුම මගින් වෙන් කරගත හැකි වූ ද පදාර්ථ මිශුණ ලෙස හැඳින්වේ.

මිශුණ කිහිපයක ඇති සංඝටක

මිශුණය	සංෂටක
සිමෙන්ති බදුම	වැලි, සිමෙන්ති, ජලය
කේක්	සීනි. පිටි, ජලය, වර්ණක, බටර්
ළිං ජලය	ජලය, දුාවා ඔක්සිජන්, දුාවා කාබන් ඩයොක්සයිඩ්, විවිධ ලවණ
සාගර ජලය.	ජලය, දාවා ඔක්සිජන්, සෝඩියම් ක්ලෝරයිඩ්, මැග්නීසියම් ක්ලෝරයිඩ්, මැග්නීසියම් සල්ෆේට්, කැල්සියම් සල්ෆේට් ආදී ලවණ

මිශුණය තුළ සංඝටක වනාප්ත වීමේ ස්වභාවය අනුව ඒවා බෙදිය හැකි වර්ග.

- 1. සමජාතීය මිශුණ
- 2. විෂමජාතීය මිශුණ

1. සමජාතීය මිශුණ

- මිශුණය පුරා එකම සංයුතියක් සහිත මිශුණ සමජාතීය මිශුණ ලෙස හැඳින්වේ.
- සමජාතීය මිශුණයක වර්ණය, විතිවිද පෙතෙත බව, ඝතත්වය වැති භෞතික ලක්ෂණ සෑම තැනකම එක සමාන වේ.
- සමජාතීය මිශුණ දාවණ ලෙස ද හැඳින්වේ.
- උදා :-ලුණු දුාවණය, සීනි දුාවණය

2. විෂමජාතීය මිශුණ

- මිශුණය පුරාම සංයුතිය ඒකාකාර නොවන මිශුණ විෂමජාතීය මිශුණ ලෙස හැඳින්වේ.
- විෂමජාතීය මිශුණයක, මිශුණය පුරා තැනින් තැනට සංඝටක අංශු වල පැතිරීම වෙනස් වන බැවින් මිශුණයේ වර්ණය, විනිවිද පෙනෙන බව, ඝනත්වය ආදී භෞතික ලක්ෂණ තැනින් තැනට වෙනස් වේ.
- උදා :-මැටි දිය කළ ජලය, සිමෙන්ති බදාම

මිශුණය සැදුම් ලත් සංඝටකවල භෞතික ස්වභාවය අනුව සමජාතීය හෝ විෂමජාතීය මිශුණ නැවත වර්ග කිරීම

පළමු සංකටකය	දෙවෙනි සංකටකය	ම්ශුණයේ ස්වභාවය	ම්ශුණය හඳුන්වන ආකාරය
නිරිඟු පිටි (ඝන)	(ලිට්) කට්ටු	විෂමජාතීය	ඝන - දුව විෂමජාතීය
ලුණු (ඝන)	(ලිනි) කරනි	සමජාතීය	ඝන - දුව සමජානීය
පොල්තෙල් (දුව)	ජලය (දුව)	විෂමජාතීය	දුව - දුව විෂමජාතීය
එකිල් මදාසයර (දුව)	(ලිනි) තටින	සමජාතීය	දුව – දුව සමජාතීය
සීනි (ඝන)	 ලුණු (ඝන)	විෂමජාතීය	සන - සන විෂමජාතීය
* කොපර් (සන)	සින්ක් (ඝන)	සමජාතීය	ඝන - ඝන සමජානීය
කාබන් ඩයොක්සයිඩ් (වායු)	රක් වන ජලය (දුව)	විෂමජාතීය	වායු – දව විෂමජාතීය
කාබන් ඩයොක්සයිඩ් (වායු)	සිසිල් ජලය (දුව)	සමජාතීය	වායු - දුව සමජානීය

දාවණයක දාවපය හා දාවකය

- සමජාතීය මිශුණයක් දාවණයක් යනුවෙන් ද හැඳින්වේ.
- දාවණයක් දාවකයකින් හා දාවා එකකින් හෝ කිහිපයකින් සමන්විත වේ.
- දාවණය සෑදීමට මිශුකළ සංඝටක අතුරින් වැඩිපුර ඇති සංඝටකය දුාවකය ලෙස හැඳින්වේ.
- සෙසු සංඝටක දුාවානු නම් වේ.
- ♦ මේ අනුව,

උදා :-

කොපර් සල්ෆේට් + ජලය = කොපර් සල්ෆේට් දුාවණය

දාවපයක දාවපතාව

යම් උෂ්ණත්වයක දී යම් දුාවකයක 100g ක් තුළ දියවෙන කිසියම් දුාවාපයක

උපරිම ස්කන්ධය එම උෂ්ණත්වයේ දී, එම දාවකය තුළ දාවායේ දාවානාව ලෙස හැඳින්වේ.

දාවපතාව කෙරෙහි බලපාන සාධක

- 🔷 උෂ්ණත්වය
- දාවාගේ ස්වභාවය
- දාවකයේ ස්වභාවය

දාවක හා දාවප වර්ග කළ හැකි ආකාර

- නිර්ධැවීය කාබනික දාවක / දාවා
- ධැවීය අකාබනික දාවක / දාවා
- නිර්ධැවීය අකාබනික දාවක / දාවා

වායුවක ජල දාවපතාව තීරණය කරන සාධක

- උෂ්ණත්වය
- පීඩනය

මිශුණයක සංයුතිය පුකාශ කළ හැකි ආකාර

1. ම්ශුණයක සංයුතිය ස්කන්ධ භාගයක් ලෙස. (m / m)

A හා B වශයෙන් සංඝටක දෙකකින් සමන්විත මිශුණයක A වල ස්කන්ධ භාගය වන්නේ,

A ස්කන්ධය

A ස්කන්ධය + B ස්කන්ධය

2. මිශුණයක සංයුතිය පරිමා භාගයක් ලෙස. $(v \ / \ v)$

A හා B සංඝටක ලෙස ඇති මිශුණයක A පරිමා භාගය වන්නේ,

A පරිමාව

A හා B මිශුණයේ මුළු පරිමාව

 මිශුණයක සංයුතිය මවුල භාගයක් ලෙස.

A හා B සංඝටක දෙකක් පමණක් ඇති මිශුණයක එක් එක් සංඝටකයේ මවුල භාගය වන්නේ,

 ${
m A}$ හි මවුල භාගය = ${
m A}$ මවුල පුමාණය

A මවුල පුමාණය + B මවුල පුමාණය

B හි මවුල භාගය = B මවුල පුමාණය

A මවුල පුමාණය + B මවුල පුමාණය

- 4. ම්ශුණයක සංයුතිය ස්කන්ධය / පරිමාව ඇසුරින් පුකාශ කිරීම. (m / v)
- යම් මිශුණයක ඒකක පරිමාවක් තුළ අඩංගු දුාවා ස්කන්ධය මින් පුකාශ කෙරේ.

උදා: - ජිවතී දාවණයක 1dm³ තුළ සෝඩියම් ක්ලෝරයිඩ් 5 g ක් අඩංගු වේ. එය සෝඩියම් ක්ලෝරයිඩ් සංයුතිය m / v ඇසුරෙන් සොයන්න.

සෝඩියම් ක්ලෝරයිඩ් සංයුතිය
$$(m \, / \, v)$$
 $\bigg\} =$ සංයුතිය $(m \, / \, v)$ සෝඩියම් ක්ලෝරයිඩ් ස්කන්ධය දාවණ පරිමාව $= \frac{5 \ g}{1 dm^3} = 5 g \ dm^3$

5. මිශුණයක සංයුතිය මවුල පුමාණය / පරිමාව $(n \ / \ v)$ ඇසුරින් පුකාශ කිරීම.

- සමජාතීය මිශුණයක (දුාවණයක)
 සංයුතිය පුකාශ කිරීමට මෙම කුමය
 භාවිතා කෙරේ.
- දවා පුමාණය මනිනු ලබන අන්තර්ජාතික ඒකකය වනුයේ මවුලය යි.
- දාවණයක ඒකක පරිමාවක අන්තර්ගත දාවා මවුල පුමාණය ඇසුරින් මෙහි දි සංයුතිය පුකාශ කෙරේ.
- මේ ආකාරයට සංයුතිය පුකාශ කරන විට එය සාන්දුණය (c) ලෙස හැඳින්වේ.

රසායන විදහාවේ දී දාවණයක සාන්දුණය පුකාශ කිරීම බහුලව සිදුවන්නේ දාවණ ඝන ඩෙසිමීටරයක අඩංගු දාවා මවුල පුමාණය ඇසුරෙනි. (mol dm⁻³⁾

පුාමාණික දාවණ පිළියෙල කිරීම

 ඉතා නිවැරදි සාන්දුණයක් ඇති දාවණ පිළියෙල කිරීමට වැදගත් වන, ඒකක අතර සම්බන්ධතාව.

 $1 ext{ dm}^3 = 1l ({\cite{200}})$ $1 ext{ dm}^3 = 1000 ext{ cm}^3$ $1 ext{ dm}^3 = 1000 ext{ ml}$ $1 ext{ cm}^3 = 1 ext{ ml}$

- නිශ්විත සාන්දුණයක් ඇති
 දාවණයක් පිළියෙල කිරීමට අවශා
 වන විදාහගාර උපකරණ.
 - දාවණයේ පරිමාවට අනුරූප පරිමාමිතික ප්ලාස්කු.
 - දෙවුම් බෝතලය
 - ඔරලෝසු තැටීය
 - '- පුනීලය

නිශ්චිත සාන්දුණයක් ඇති දාවණයක් පිළියෙල කිරීමේ දී අවධානය යොමු කළ යුතු කරුණු

- භාවිතා කරන සියලු ම උපකරණ පිරිසිදුව තිබීම.
- දවා ස්කන්ධය නිවැරදිව කිරා ගැනිම.
- ඔරලෝසු වීදුරුවේ හා පුතීලයේ තැවරුණු දුවා හොඳින් ප්ලාස්කුව තුළට සෝදා හැරීම.
- නිවැරදි කුමවේදයට මිශු කිරීම.
- අවසන් පරිමාව නිවැරදිව සකස් කිරීම.
- දාවණයට අපදුවා එක්වීම වැළැක්වීම.

මිශුණවල සංඝටක වෙන් කිරීම

ම්ශුණයක තිබෙන සංඝටක වෙන්කර ගැනීමට සිදුවන අවස්ථා

සහල්වලින් ගල්වැලි ඉවත් කිරීම.

- මුහුදු ජලයෙන් පුණු වෙන්කර ගැනීම.
- බොරතෙල් පිරිපහදුව මගින් විවිධ ඉන්ධන වෙන්කර ගැනීම.
- වායුගෝලීය වාතයෙන් ඔක්සිජන්, නයිටුජන්, ආගන් වැනි වායු
 වෙන්කර ගැනීම.
- සාමානා ළිං ජලයෙන් හෝ ගංගා ජලයෙන් ආසූත ජලය ලබා ගැනීම.

මිශුණවල සංඝටක වෙන්කර ගන්නා කුම

- ◆ යාන්තික වෙන් කිරීම (පෙළීම, හැලීම, ගැරීම)
- වාෂ්පීකරණය / වෘෂ්පීභවනය (ලුණු නිස්සරණය)
- පෙරීම (පොල්වලින් කිරි මිරිකා ගැනිම)
- ස්ඵටිකීකරණය (සීනි නිෂ්පාදනය)
- පුනස්ඵටිකීකරණය (ස්ඵටිකරූපී ඝන දුවෳයක් දාවණගත කර යළිත් ස්ඵටික බවට පත් කිරීමේ කි්යාවලිය යි.

- දාවක නිස්සාරණය (තරලසාර, අරිෂ්ඨ නිපදවීම)
- සරල ආසවනය, භාගික ආසවනය හා හුමාල ආසවනය (දාවණයක් හෝ මිශුණයක් නැටවීමට සලස්වා ලැබෙන වාෂ්පය සනීභවනයට ලක්කර සංසටක වෙන් කිරීම)
- වර්ණ ලේඛ ශිල්පය (වාෂ්පශීලී නොවන සංඝටක අඩංගු මිශුණයක ඇති සංඝටක එකිනෙකින් වෙන්කර හඳුනා ගැනීම)

වෙන් කිරීමේ ශිල්පකුමවල භාවිත

- මුහුදු ජලයෙන් ලුණු නිස්සාරණයේ දී වාෂ්පීභවනය හා ස්ඵටිකීකරණය යන වෙන් කිරීමේ කුම ශිල්ප භාවිත කරයි.
- සගන්ධ තෙල් නිස්සාරණය සඳහා හුමාල ආසවනය භාවිත කරයි.

