Wartość pieniądza w czasie

Seweryn Turula

Kraków, 18.10.2022

Spis treści

- Wartość pieniądza w czasie
 - Złota zasada
 - Obligacje
- Czym jest kredyt?
 - Podstawowe założenia
 - Zasada równoważności długu i rat
 - Dług bieżący
- Kredyty o stałej stopie procentowej
 - Stałe raty kapitałowe
 - Stałe raty łączne
 - Stałe raty odsetkowe
- 4 Kredyty o zmiennej stopie procentowej
 - WIBOR

Złota zasada

Złotówka otrzymana dzisiaj (w t=0) jest warta więcej niż złotówka otrzymana w przyszłości

Present/Future value

- PV- Present Value
- FV- Future Value
- r- stopa procentowa
- n- liczba okresów

$$PV = \frac{FV}{(1+r)^n}$$

Obligacie

Obligacja- dłużny papier wartościowy, w którym emitent pożycza od nabywcy obligacji określoną sumę pieniędzy i zobowiązuje się ją zwrócić wraz z należnymi odsetkami (wykupić obligacje) w określonym czasie.

Obligacje można podzielić ze względu na:

- rodzaj emitenta
- okres do wykupu
- 3 ze względu na wartość nominalną i oprocentowanie obligacji

Obligacje- wycena

- K- wartość nominalna obligacji
- N- liczba okresów do wykupu
- m- liczba kuponów w ciągu roku

$$PV = \sum_{t=1}^{N*m} \frac{\frac{r}{m} * K}{(1 + \frac{YTM}{m})^t} + \frac{K}{(1 + \frac{YTM}{m})^{N*m}}$$

Co to jest ten kredyt?

Zawarcie umowy kredytowej, w ramach której bank zobowiązuje się przekazać kredytobiorcy środki, a kredytobiorca spłacić je wraz z ustalonymi odsetkami i prowizją.

Oznaczenia

Kredyt bierzemy na okres [0:T] na określoną liczbe rat

- S- kapitał
- A_i- rata łączna
- T_j- rata kapitałowa
- *l_i* rata odsetkowa
- t_j- okres podstawowy/odsetkowy
- r- oprocentowanie kredytu w skali okresu podstawowego
- N- liczba rat

Podstawowe założenia

Na początek zakładamy, że oprocentowanie kredytu jest stałe, tzn.

$$r_{[0:1]} = r_{[1:2]} = r_{[2:3]} = \dots = r_{[n-1:n]} = r$$

oraz, że

$$S > 0$$
, $A_j \geqslant 0$, dla $j \in \{1, 2..., n\}$

Podstawowe założenia

Na początek zakładamy, że oprocentowanie kredytu jest stałe, tzn.

$$r_{[0:1]} = r_{[1:2]} = r_{[2:3]} = \dots = r_{[n-1:n]} = r$$

oraz, że

$$S > 0$$
, $A_j \geqslant 0$, dla $j \in \{1, 2..., n\}$

Zasada równoważności długu i rat

Dług o wartości S w momencie $t_0=0$ jest równoważny ciągowi rat o wartości A_j płatnych w momentach $t_j=j\in\{1,2...,n\}$, jeśli kapitały wzajemnie sobie przekazane przez wierzyciela i przez dłużnika są równoważne.

dla $t_0 = 0$ otrzymujemy

$$S = \sum_{j=1}^{n} A_j (1+r)^{-j}$$

dla $t_n = n$ otrzymujemy

$$S(1+r)^n = \sum_{j=1}^n A_j (1+r)^{n-j}$$

Zasada równoważności długu i rat

Dług o wartości S w momencie $t_0=0$ jest równoważny ciągowi rat o wartości A_j płatnych w momentach $t_j=j\in\{1,2...,n\}$, jeśli kapitały wzajemnie sobie przekazane przez wierzyciela i przez dłużnika są równoważne.

dla $t_0 = 0$ otrzymujemy

$$S = \sum_{j=1}^{n} A_j (1+r)^{-j}$$

dla $t_n = n$ otrzymujemy

$$S(1+r)^n = \sum_{j=1}^n A_j (1+r)^{n-j}$$

Zasada równoważności długu i rat

Dług o wartości S w momencie $t_0=0$ jest równoważny ciągowi rat o wartości A_j płatnych w momentach $t_j=j\in\{1,2...,n\}$, jeśli kapitały wzajemnie sobie przekazane przez wierzyciela i przez dłużnika są równoważne.

dla $t_0 = 0$ otrzymujemy

$$S = \sum_{j=1}^{n} A_j (1+r)^{-j}$$

dla $t_n = n$ otrzymujemy

$$S(1+r)^n = \sum_{j=1}^n A_j (1+r)^{n-j}$$

Aby 'zaktualizować' poczatkowa wartość długu oraz wartość wszystkich rat na dowolny moment j, przemnożymy pierwszy warunek równoważności przez czynnik kumulujący $(1+r)^{j}$, przy czym zamienimy wskaźnik sumowania.

$$S(1+r)^{j} = \sum_{k=1}^{n} A_{k}(1+r)^{j-k}$$

Prawa strone tej równości podzielimy na sume wartości rat już zapłaconych i jeszcze nie zapłaconych (w momencie j).

$$S(1+r)^{j} = \sum_{k=1}^{j} A_{k}(1+r)^{j-k} + \sum_{k=j+1}^{n} A_{k}(1+r)^{j-k}$$

Aby 'zaktualizować' poczatkowa wartość długu oraz wartość wszystkich rat na dowolny moment j, przemnożymy pierwszy warunek równoważności przez czynnik kumulujący $(1+r)^{j}$, przy czym zamienimy wskaźnik sumowania.

$$S(1+r)^{j} = \sum_{k=1}^{n} A_{k}(1+r)^{j-k}$$

Prawa strone tej równości podzielimy na sume wartości rat już zapłaconych i jeszcze nie zapłaconych (w momencie j).

$$S(1+r)^{j} = \sum_{k=1}^{j} A_{k}(1+r)^{j-k} + \sum_{k=j+1}^{n} A_{k}(1+r)^{j-k}$$

Aby 'zaktualizować' poczatkowa wartość długu oraz wartość wszystkich rat na dowolny moment j, przemnożymy pierwszy warunek równoważności przez czynnik kumulujący $(1+r)^{j}$, przy czym zamienimy wskaźnik sumowania.

$$S(1+r)^{j} = \sum_{k=1}^{n} A_{k}(1+r)^{j-k}$$

Prawa strone tej równości podzielimy na sume wartości rat już zapłaconych i jeszcze nie zapłaconych (w momencie j).

$$S(1+r)^{j} = \sum_{k=1}^{j} A_{k}(1+r)^{j-k} + \sum_{k=j+1}^{n} A_{k}(1+r)^{j-k}$$

Długiem bieżącym nazywa się wartość kapitału pozostałego do spłacenia w momencie $t_j=j$ i oznacza przez S_j

Przekształcając poprzednie równanie, otrzymujemy, że S_j możemy zapisać w postaci

$$S_j = \sum_{k=j+1}^n A_k (1+r)^{j-k}$$

lub równoważnie

$$S_j = S(1+r)^j - \sum_{k=1}^j A_k (1+r)^{j-k}$$

Te dwie zależności nazywają się odpowiednio zależnością prospektywną oraz zależnością retrospektywną.

Długiem bieżącym nazywa się wartość kapitału pozostałego do spłacenia w momencie $t_j=j$ i oznacza przez S_j

Przekształcając poprzednie równanie, otrzymujemy, że S_j możemy zapisać w postaci

$$S_j = \sum_{k=j+1}^n A_k (1+r)^{j-k}$$

lub równoważnie

$$S_j = S(1+r)^j - \sum_{k=1}^j A_k (1+r)^{j-k}$$

Te dwie zależności nazywają się odpowiednio zależnością prospektywną oraz zależnością retrospektywną.

4 D > 4 D > 4 E > 4 E > E 9 Q P

Długiem bieżącym nazywa się wartość kapitału pozostałego do spłacenia w momencie $t_j=j$ i oznacza przez S_j

Przekształcając poprzednie równanie, otrzymujemy, że S_j możemy zapisać w postaci

$$S_j = \sum_{k=j+1}^n A_k (1+r)^{j-k}$$

lub równoważnie

$$S_j = S(1+r)^j - \sum_{k=1}^j A_k (1+r)^{j-k}$$

Te dwie zależności nazywają się odpowiednio zależnością prospektywną oraz zależnością retrospektywną.

40 40 40 40 40 40 40 40

Stałe raty kapitałowe

Rata o stałej części kapitałowej jest pierwszym rodzajem schematów spłaty kredytu. Główne założenia to:

$$T_j = \frac{S}{N}$$
 oraz $A_j = I_j + \frac{S}{N}$

Jaki jest schemat wyliczenia rat odsetkowych? Rozpatrzmy wysokość raty odsetkowej w i-tym okresie:

- ① Dług na początku okresu i: $S_i = S(1 \frac{i-1}{N})$
- ② Odsetki na końcu okresu i: $I_i = rS(1 \frac{i-1}{N})$
- 3 Rata całkowita: $A_i = \frac{S}{N}(1 + r(N i + 1))$

Dodatkowa uwaga: Raty całkowite maleją z upływem czasu.

Stałe raty kapitałowe

Rata o stałej części kapitałowej jest pierwszym rodzajem schematów spłaty kredytu. Główne założenia to:

$$T_j = \frac{S}{N}$$
 oraz $A_j = I_j + \frac{S}{N}$

Jaki jest schemat wyliczenia rat odsetkowych? Rozpatrzmy wysokość raty odsetkowej w i-tym okresie:

- **1** Dług na początku okresu i: $S_i = S(1 \frac{i-1}{N})$
- ② Odsetki na końcu okresu i: $I_i = rS(1 \frac{i-1}{N})$
- 3 Rata całkowita: $A_i = \frac{S}{N}(1 + r(N i + 1))$

Dodatkowa uwaga: Raty całkowite maleją z upływem czasu.

Stałe raty kapitałowe

Rata o stałej części kapitałowej jest pierwszym rodzajem schematów spłaty kredytu. Główne założenia to:

$$T_j = \frac{S}{N}$$
 oraz $A_j = I_j + \frac{S}{N}$

Jaki jest schemat wyliczenia rat odsetkowych? Rozpatrzmy wysokość raty odsetkowej w i-tym okresie:

- **1** Dług na początku okresu i: $S_i = S(1 \frac{i-1}{N})$
- ② Odsetki na końcu okresu i: $I_i = rS(1 \frac{i-1}{N})$
- 3 Rata całkowita: $A_i = \frac{S}{N}(1 + r(N i + 1))$

Dodatkowa uwaga: Raty całkowite maleją z upływem czasu.

Drugim rodzajem schematów spład kredytu będą stałe raty łączne.

 $A_j = A$, kredyt spłacamy w N stałych ratach całkowitych.

Jak wyliczyć wysokość tych rat? Z warunku równoważności długu i rat wnioskujemy, że:

$$S = A \sum_{j=1}^{n} \frac{1}{(1+r)^{j}}$$

Oznaczając sumę po prawej przez PV_{ann} , otrzymujemy, że

$$A = \frac{S}{PV_{ann}}$$

Drugim rodzajem schematów spład kredytu będą stałe raty łączne.

 $A_j = A$, kredyt spłacamy w N stałych ratach całkowitych.

Jak wyliczyć wysokość tych rat? Z warunku równoważności długu i rat wnioskujemy, że:

$$S = A \sum_{j=1}^{n} \frac{1}{(1+r)^{j}}$$

Oznaczając sumę po prawej przez PV_{ann} , otrzymujemy, że

$$A = \frac{S}{PV_{ann}}$$

Drugim rodzajem schematów spład kredytu będą stałe raty łączne.

 $A_j = A$, kredyt spłacamy w N stałych ratach całkowitych.

Jak wyliczyć wysokość tych rat? Z warunku równoważności długu i rat wnioskujemy, że:

$$S = A \sum_{j=1}^{n} \frac{1}{(1+r)^{j}}$$

Oznaczając sumę po prawej przez PV_{ann} , otrzymujemy, że

$$A = \frac{S}{PV_{ann}}$$

Czym jest PV ann? Jest to wartość bieżąca renty okresowej (płatnej z dołu), która wynosi:

$$\frac{1}{1+r} + \frac{1}{(1+r)^2} + \dots + \frac{1}{(1+r)^n} = \frac{1-(1+r)^{-n}}{r}$$

Zatem podstawiając to wszystko, końcowo otrzymujemy:

$$A = \frac{Sr}{1 - \frac{1}{(1+r)^n}}$$

Raty odsetkowe standardowo wyrażają się wzorem kapitał pomnożony przez stopę procentową, a raty kapitałowe są różnicą dwóch powyższych.

Stałe raty odsetkowe

Trzecim rodzajem schematów spłat kredytu są spłaty w równych ratach odsetkowych. Założenie tego schematu jest bardzo proste,

$$I_j = const \ dla \ j \in \{1, 2, ..., n\}$$

Wynikają z tego następujące implikacje pozwalające dokończyć resztę "modelu":

Dług musi być stały, ponieważ rata odsetkowa
$$I_j = r * S$$

Rata kapitałowa musi być równa 0 w chwilach od t_1 do t_{N-1} ,

$$T_j = 0, I_j = r * S, A_j = I_j$$

Rata kapitałowa w chwili t_N musi wynosić S, $T_N = S$. $I_N = r * S$, $A_N = S(1+r)$

Stałe raty odsetkowe

Trzecim rodzajem schematów spłat kredytu są spłaty w równych ratach odsetkowych. Założenie tego schematu jest bardzo proste,

$$I_j = const \ dla \ j \in \{1, 2, ..., n\}$$

Wynikają z tego następujące implikacje pozwalające dokończyć resztę "modelu":

Dług musi być stały, ponieważ rata odsetkowa
$$I_j = r * S$$

Rata kapitałowa musi być równa 0 w chwilach od t_1 do t_{N-1} ,

$$T_j = 0, I_j = r * S, A_j = I_j$$

Rata kapitałowa w chwili t_N musi wynosić S, $T_N = S, I_N = r * S, A_N = S(1 + r)$

4□ > 4□ > 4≡ > 4≡ > □ × 90 €

Kredyty o zmiennej stopie procentowej

Oprocentowanie zmienne to drugi ze sposobów naliczania odsetek kredytowych. Uzależnione jest od zmieniających się w czasie stóp procentowych. Na zmienną stopę procentową ma bezpośredni wpływ wskaźnik WIBOR - jeden z dwóch parametrów, na podstawie których naliczany jest koszt kredytowania. Drugim z nich jest marża kredytowania ustalana przez bank (najczęściej jest możliwa negocjacją jej wysokości).

WIBOR

WIBOR to skrót od Warsaw Interbank Offered Rate. Wskaźnik ten odpowiada za regulowanie pożyczek między bankami komercyjnymi. Specyfika WIBOR-u oraz naszego rynku finansowego wymaga, aby wskaźnik ten ustalany był na dany okres, w taki sposób można spotkać się z WIBOR:

- ON- overnight
- TN- tomorrow
- SW- spot week
- 1M- miesiąc
- 3M- 3 miesiące
- 6M- 6 miesięcy
- 1Y- 1 rok

Dziękuję za uwagę!