# MA2001 LINEAR ALGEBRA

# Diagonalization

# National University of Singapore Department of Mathematics

| Eigenvalues and Eigenvectors       | 2  |
|------------------------------------|----|
| Motivations                        |    |
| Definitions                        |    |
| Characteristic Equation            |    |
| Eigenspace                         |    |
| Diagonalization                    | 26 |
| Diagonalizable Matrices            | 27 |
| Criterion of Diagonalizability     |    |
| Diagonalization                    |    |
| Examples                           |    |
| Application                        |    |
| Orthogonal Diagonalization         | 53 |
| Introduction                       |    |
| Definition                         |    |
| Algorithm                          |    |
| Examples                           | 61 |
| Quadratic Forms and Conic Sections | 70 |
| Quadratic Form                     | 71 |
| Simplification                     |    |
| Quadratic Equation                 |    |
| Classification                     | 90 |

### **Motivations**

Let A be a square matrix. Then

$$\circ \quad A^m = \underbrace{AA\cdots AA}_{m \text{ times}}.$$

In general, the matrix multiplication is complicated.

- o Is there a shortcut?
- Suppose  $\boldsymbol{A}$  and  $\boldsymbol{B}$  are diagonal matrices of order n.

$$\circ \quad \mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix}$$

$$\circ \quad \mathbf{AB} = \begin{pmatrix} a_{11}b_{11} & 0 & \cdots & 0 \\ 0 & a_{22}b_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}b_{nn} \end{pmatrix}.$$

3/96

### **Motivations**

Let A be a square matrix. Then

$$\circ \quad \boldsymbol{A}^m = \underbrace{\boldsymbol{A} \boldsymbol{A} \cdots \boldsymbol{A} \boldsymbol{A}}_{m \text{ times}}.$$

In general, the matrix multiplication is complicated.

- o Is there a shortcut?
- Suppose  $\boldsymbol{A}$  is a diagonal matrix of order n.

### **Motivations**

- Let A be a square matrix.
  - $\circ$  Suppose there exists an invertible matrix  $m{P}$  such that
    - $P^{-1}AP = D$  is a diagonal matrix.

Then  $\boldsymbol{A} = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1}$ .

$$\begin{split} \boldsymbol{A}^{m} &= (\boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1})^{m} \\ &= \underbrace{(\boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1})(\boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1})\cdots(\boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1})}_{m \text{ times}} \\ &= \boldsymbol{P}\boldsymbol{D}(\boldsymbol{P}^{-1}\boldsymbol{P})\boldsymbol{D}(\boldsymbol{P}^{-1}\boldsymbol{P})\cdots(\boldsymbol{P}^{-1}\boldsymbol{P})\boldsymbol{D}\boldsymbol{P}^{-1} \\ &= \boldsymbol{P}\underbrace{\boldsymbol{D}\boldsymbol{D}\cdots\boldsymbol{D}\boldsymbol{D}}_{m \text{ times}} \boldsymbol{P}^{-1} \\ &= \boldsymbol{P}\boldsymbol{D}^{m}\boldsymbol{P}^{-1}. \end{split}$$

5/96

### **Motivations**

- Example. Suppose that each year
  - $\circ$  4% of the rural population moves to the urban district.
  - $\circ$  1% of the urban populations moves to the rural district.

After n years,

- $\circ$  Let  $a_n$  be the rural population;
- $\circ$  Let  $b_n$  be the urban population.

$$a_n = 0.96a_{n-1} + 0.01b_{n-1}, b_n = 0.04a_{n-1} + 0.99b_{n-1}.$$

$$\circ \quad \begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ b_{n-1} \end{pmatrix}.$$

Let 
$$m{x}_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$
 and  $m{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$ .

$$\circ \ \ \, m{x}_n = m{A} m{x}_{n-1} = m{A}^2 m{x}_{n-2} = \cdots = m{A}^n m{x}_0.$$

### **Motivations**

• Let 
$$\boldsymbol{x}_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$
 and  $\boldsymbol{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$ .

$$\circ \quad \boldsymbol{x}_n = \boldsymbol{A}\boldsymbol{x}_{n-1} = \boldsymbol{A}^2\boldsymbol{x}_{n-2} = \cdots = \boldsymbol{A}^n\boldsymbol{x}_0.$$

Let 
$$m{P}=egin{pmatrix} 1 & 1 \ 4 & -1 \end{pmatrix}$$
. Then  $m{P}^{-1}m{A}m{P}=m{D}=egin{pmatrix} 1 & 0 \ 0 & 0.95 \end{pmatrix}$ .

$$\circ \quad A^n = PD^nP^{-1}$$

$$A^{n} = \mathbf{P} \mathbf{D}^{n} \mathbf{P}^{-1}$$

$$A^{n} = \begin{pmatrix} 0.2 + 0.8 \cdot 0.95^{n} & 0.2 - 0.2 \cdot 0.95^{n} \\ 0.8 - 0.8 \cdot 0.95^{n} & 0.8 + 0.2 \cdot 0.95^{n} \end{pmatrix}$$

• 
$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \boldsymbol{x}_n = \boldsymbol{A}^n \boldsymbol{x}_0 = \boldsymbol{A}^n \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

• 
$$\binom{a_n}{b_n} = x_n = A^n x_0 = A^n \binom{a_0}{b_0}$$
.  
•  $\binom{a_n}{b_n} = \binom{0.2a_0 + 0.2b_0 + (0.8a - 0.2b) \cdot 0.95^n}{0.8a_0 + 0.8b_0 - (0.8a - 0.2b) \cdot 0.95^n}$ .

In particular, 
$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} \xrightarrow{n \to \infty} \begin{pmatrix} 0.2(a_0 + b_0) \\ 0.8(a_0 + b_0) \end{pmatrix}$$
.

7/96

### **Motivations**

- Let A be a square matrix of order 3.
  - $\circ$  Suppose  $oldsymbol{P} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & oldsymbol{v}_3 \end{pmatrix}$  is invertible such that

• 
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$
.

Then AP = PD.

$$\bullet \quad \boldsymbol{A} \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 \end{pmatrix} = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

$$\bullet \quad \left( \boldsymbol{A}\boldsymbol{v}_1 \quad \boldsymbol{A}\boldsymbol{v}_2 \quad \boldsymbol{A}\boldsymbol{v}_3 \right) = \left( \lambda_1 \boldsymbol{v}_1 \quad \lambda_2 \boldsymbol{v}_2 \quad \lambda_3 \boldsymbol{v}_3 \right).$$

$$\circ$$
 Hence,  $m{A}m{v}_1=\lambda_1m{v}_1$ ,  $m{A}m{v}_2=\lambda_2m{v}_2$ ,  $m{A}m{v}_3=\lambda_3m{v}_3$ .

### **Definitions**

- **Definition.** Let A be a square matrix of order n.
  - $\circ$  Suppose that for some  $\lambda \in \mathbb{R}$  and nonzero  $oldsymbol{v} \in \mathbb{R}^n$ 
    - $|Av = \lambda v|$

 $\lambda$  is called an **eigenvalue** of A.

v is called an **eigenvector** of A associated with  $\lambda$ .

- **Example.** Let  $A = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$ .
  - $\circ \quad \text{Let } \boldsymbol{u} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \text{. Then } \boldsymbol{A}\boldsymbol{u} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} = 1\boldsymbol{u}.$ 
    - u is an eigenvector of A associated to eigenvalue 1.
  - $\circ$  Let  $\boldsymbol{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ .  $\boldsymbol{A}\boldsymbol{v} = \begin{pmatrix} 0.95 \\ -0.95 \end{pmatrix} = 0.95\boldsymbol{v}$ .
    - $\boldsymbol{v}$  is an eigenvector associated to eigenvalue 0.95.

9 / 96

# **Example**

- Let  $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ .
  - $\circ$  Let  $m{u}=egin{pmatrix}1\\1\\1\end{pmatrix}$  . Then  $m{B}m{u}=egin{pmatrix}3\\3\\3\end{pmatrix}=3m{u}$  .
    - u is an eigenvector of B associated to eigenvalue 3.
  - $\circ \quad \text{Let } {\pmb v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \text{. Then } {\pmb B} {\pmb v} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 {\pmb v}.$ 
    - v is an eigenvector of B associated to eigenvalue 0.
  - $\circ$  Let  $m{w}=egin{pmatrix}1\\-2\\1\end{pmatrix}$  . Then  $m{B}m{w}=egin{pmatrix}0\\0\\0\end{pmatrix}=0m{w}.$ 
    - w is an eigenvector of B associated to eigenvalue 0.

### **Characteristic Equation**

- Let A be a square matrix. How to find its eigenvalues?
  - $\circ \quad \lambda \in \mathbb{R}$  is an eigenvalue of  $m{A}$ 
    - $\Leftrightarrow$   $Av = \lambda v$  for some nonzero column vector v
    - $\Leftrightarrow \ \lambda v Av = 0$  for some nonzero column vector v
    - $\Leftrightarrow$   $(\lambda \boldsymbol{I} \boldsymbol{A})\boldsymbol{v} = \boldsymbol{0}$  for some nonzero column vector  $\boldsymbol{v}$
    - $\Leftrightarrow (\lambda \boldsymbol{I} \boldsymbol{A})\boldsymbol{x} = \boldsymbol{0}$  has non-trivial solution
    - $\Leftrightarrow \lambda oldsymbol{I} oldsymbol{A}$  a singular matrix
    - $\Leftrightarrow \det(\lambda \boldsymbol{I} \boldsymbol{A}) = 0.$

If  $\boldsymbol{A}$  is of order n, then  $\det(\lambda \boldsymbol{I} - \boldsymbol{A})$  is a monic polynomial in  $\lambda$  of degree n:

$$\lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0.$$

- **Definition.** Let A be a square matrix.
  - $\circ \det(\lambda I A)$  is the characteristic polynomial of A.
  - $\det(\lambda I A) = 0$  is the characteristic equation of A.

11/96

### **Characteristic Equation**

- **Theorem.** Let *A* be a square matrix.
  - Then the eigenvalues of A are precisely all the roots to the characteristic equation  $\det(\lambda I A) = 0$ .
- Examples.
  - $\circ$  Let  $m{A} = egin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$ . Characteristic polynomial is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det\left(\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.09 \end{pmatrix}\right)$$

$$= \det\begin{pmatrix} \lambda - 0.96 & -0.01 \\ -0.04 & \lambda - 0.99 \end{pmatrix}$$

$$= (\lambda - 0.96)(\lambda - 0.99) - (-0.01)(-0.04)$$

$$= \lambda^2 - 1.95\lambda + 0.95$$

$$= (\lambda - 0.95)(\lambda - 1).$$

Hence,  $\boldsymbol{A}$  has two eigenvalues 0.95 and 1.

### **Characteristic Equation**

- Theorem. Let A be a square matrix.
  - Then the eigenvalues of A are precisely all the roots to the characteristic equation  $\det(\lambda I A) = 0$ .
- Examples.

$$\circ$$
 Let  $m{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ . Characteristic polynomial:

$$\det(\lambda \mathbf{I} - \mathbf{B}) = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ -1 & \lambda - 1 & -1 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
$$= \lambda^3 - 3\lambda^2$$
$$= \lambda^2(\lambda - 3).$$

Hence,  $\boldsymbol{B}$  has two eigenvalues 0 and 3.

13 / 96

# **Characteristic Equation**

- **Theorem.** Let *A* be a square matrix.
  - Then the eigenvalues of A are precisely all the roots to the characteristic equation  $\det(\lambda I A) = 0$ .
- Examples.

$$\circ \quad \text{Let } \boldsymbol{C} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \text{. Characteristic polynomial:}$$

$$\det(\lambda \mathbf{I} - \mathbf{C}) = \begin{vmatrix} \lambda & 1 & 0 \\ 0 & \lambda & -2 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
$$= \lambda^3 - \lambda^2 - 2\lambda + 2$$
$$= (\lambda - 1)(\lambda - \sqrt{2})(\lambda + \sqrt{2}).$$

Hence, C has three eigenvalues  $1, \sqrt{2}$  and  $-\sqrt{2}$ .

### **Main Theorem for Invertible Matrices**

- **Theorem.** Let A be a square matrix of order n. Then the following are equivalent:
  - 1. A is invertible.
  - 2. The reduced row-echelon form of A is  $I_n$ .
  - 3. The homogeneous linear system Ax=0 has only the trivial solution.
  - 4. The linear system Ax=b has exactly one solution.
  - 5. A is the product of elementary matrices.
  - 6.  $\det(A) \neq 0$ .
  - 7. The rows of A form a basis for  $\mathbb{R}^n$ .
  - 8. The columns of A form a basis for  $\mathbb{R}^n$ .
  - 9.  $\operatorname{rank}(\boldsymbol{A}) = n$ .
  - 10. 0 is not an eigenvalue of A.

15 / 96

### **Main Theorem for Invertible Matrices**

- **Proof.** It remains to show that "10" is equivalent to "6":
  - $\circ$  0 is not an eigenvalue of  $m{A}$ 
    - $\Leftrightarrow 0$  is not a root to  $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = 0$
    - $\Leftrightarrow \det(0\boldsymbol{I} \boldsymbol{A}) \neq 0$
    - $\Leftrightarrow \det(-\boldsymbol{A}) \neq 0$
    - $\Leftrightarrow (-1)^n \det(\mathbf{A}) \neq 0$
    - $\Leftrightarrow \det(\mathbf{A}) \neq 0.$

### **Upper Triangular Matrices**

• Let **A** be an **upper triangular** matrix of order n:

$$\circ \quad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

Its characteristic polynomial is  $\det(\lambda \boldsymbol{I} - \boldsymbol{A})$ :

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & \cdots & a_{1n} \\ 0 & \lambda - a_{22} & -a_{23} & \cdots & a_{2n} \\ 0 & 0 & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda - a_{nn} \\ = (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33}) \cdots (\lambda - a_{nn}). \end{vmatrix}$$

17/96

### **Upper Triangular Matrices**

- ullet Theorem. Let A be an upper (or lower) triangular matrix. Then its eigenvalues are all the diagonal entries of A.
  - o More precisely, if  $A=(a_{ij})_{n\times n}$  is upper triangular  $(a_{ij}=0)$  if i>j or lower triangular  $(a_{ij} = 0 \text{ if } i < j),$ 
    - then the eigenvalues of A are  $a_{11}, a_{22}, \ldots, a_{nn}$ .
- Examples.

$$\circ \begin{pmatrix} -1 & 3.5 & 14 \\ 0 & 5 & -26 \\ 0 & 0 & 2 \end{pmatrix}. \text{ Eigenvalues: } -1,5 \text{ and } 2.$$
 
$$\circ \begin{pmatrix} -2 & 0 & 0 \\ 99 & 0 & 0 \\ 10 & -4.5 & 10 \end{pmatrix}. \text{ Eigenvalues: } -2,0 \text{ and } 10.$$

$$\circ \quad \begin{pmatrix} -2 & 0 & 0 \\ 99 & 0 & 0 \\ 10 & -4.5 & 10 \end{pmatrix} . \quad \text{Eigenvalues: } -2, 0 \text{ and } 10$$

### **Eigenspace**

- Let A be a square matrix of order n.
  - Let  $\lambda$  be an eigenvalue of A.

Let  $\mathbf{0} 
eq \mathbf{v} \in \mathbb{R}^n$ . Then

 $\circ$  v is an eigenvector of A associated to  $\lambda$ 

$$\Leftrightarrow Av = \lambda v$$

$$\Leftrightarrow (\lambda \boldsymbol{I} - \boldsymbol{A})\boldsymbol{v} = \boldsymbol{0}$$

- $\Leftrightarrow v$  is a nonzero vector in the nullspace of  $\lambda I A$ .
- **Definition.** Let A be a square matrix and  $\lambda$  an eigenvalue of A. (Then  $\lambda I A$  is singular.)
  - $\circ$  The **eigenspace** of A associated to  $\lambda$  is the nullspace of  $\lambda I A$ , denoted by  $E_{\lambda}$  (or  $E_{A,\lambda}$ ).
    - $E_{\lambda}$  consists of all the eigenvectors of  ${\bf A}$  associated to  $\lambda$ , and the zero vector  ${\bf 0}$ . Note that  $\dim E_{\lambda} \geq 1$ .

19/96

### **Examples**

- $\mathbf{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix}$  has eigenvalues 1 and 0.95.
  - $\circ$  The eigenspace  $E_1$  is the nullspace of  $1 \boldsymbol{I} \boldsymbol{A}$ .

• 
$$1I - A = \begin{pmatrix} 0.04 & -0.01 \\ -0.04 & 0.01 \end{pmatrix}$$
.

• 
$$(1\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} 0.25 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

Then 
$$E_1 = \operatorname{span}\left\{egin{pmatrix} 0.25 \\ 1 \end{pmatrix}\right\}$$
 , and  $\dim(E_1) = 1$ .

 $\circ$  The eigenspace  $E_{0.95}$  is the nullspace of  $0.95 {m I} - {m A}$ .

• 
$$0.95\mathbf{I} - \mathbf{A} = \begin{pmatrix} -0.01 & -0.01 \\ -0.04 & -0.04 \end{pmatrix}$$
.

• 
$$(0.95\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} -1 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

Then 
$$E_{0.95}=\mathrm{span}\left\{inom{-1}{1}\right\}$$
, and  $\dim(E_{0.95})=1$ .

- $\bullet \quad \pmb{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ has eigenvalues } 3 \text{ and } 0.$ 
  - The eigenspace  $E_3$  is the nullspace of  $3\boldsymbol{I} \boldsymbol{B}$ .
    - $3I B = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ .
    - $(3I B)x = 0 \Leftrightarrow x = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$

Then  $E_3 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ , and  $\dim(E_3) = 1$ .

21 / 96

# **Examples**

- $\bullet \quad \boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ has eigenvalues } 3 \text{ and } 0.$ 
  - $\circ$  The eigenspace  $E_0$  is the nullspace of 0I B.

    - $(0\mathbf{I} \mathbf{B})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, s, t \in \mathbb{R}.$

$$E_0=\operatorname{span}\left\{egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}, egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}
ight\}$$
 , and  $\dim(E_0)=2$ .

- Note: If A is singular, then 0 is an eigenvalue of A.
  - $\circ$  The eigenspace  $E_0$  is the nullspace of A.

- $\bullet \quad \pmb{C} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \text{ has eigenvalues } 1, \sqrt{2} \text{ and } -\sqrt{2}.$ 
  - $\circ$  The eigenspace  $E_1$  is the nullspace of  $1\boldsymbol{I}-\boldsymbol{C}$ .
    - $1\mathbf{I} \mathbf{C} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -2 \\ -1 & -1 & 0 \end{pmatrix}.$
    - $(1\mathbf{I} \mathbf{C})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$
    - $E_1=\operatorname{span}\left\{egin{pmatrix} -2\ 2\ 1 \end{pmatrix}
      ight\}$  , and  $\dim(E_1)=1$ .

23 / 96

# **Examples**

- $\bullet \quad \pmb{C} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \text{ has eigenvalues } 1, \sqrt{2} \text{ and } -\sqrt{2}.$ 
  - $\circ$   $\;$  The eigenspace  $E_{\sqrt{2}}$  is the nullspace of  $\sqrt{2} {\pmb I} {\pmb C}.$ 
    - $\sqrt{2}\mathbf{I} \mathbf{C} = \begin{pmatrix} \sqrt{2} & 1 & 0 \\ 0 & \sqrt{2} & -2 \\ -1 & -1 & \sqrt{2} 1 \end{pmatrix}$ .
    - $(\sqrt{2}I C)x = \mathbf{0} \Leftrightarrow x = t \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}, t \in \mathbb{R}.$

$$E_{\sqrt{2}}=\operatorname{span}\left\{egin{pmatrix} -1 \ \sqrt{2} \ 1 \end{pmatrix}
ight\}$$
 , and  $\dim(E_{\sqrt{2}})=1.$ 

- $\bullet \quad C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \text{ has eigenvalues } 1, \sqrt{2} \text{ and } -\sqrt{2}.$ 
  - $\circ$   $\;$  The eigenspace  $E_{-\sqrt{2}}$  is the nullspace of  $-\sqrt{2} {\pmb I} {\pmb C}.$

• 
$$-\sqrt{2}I - C = \begin{pmatrix} -\sqrt{2} & 1 & 0 \\ 0 & -\sqrt{2} & -2 \\ -1 & -1 & -\sqrt{2} - 1 \end{pmatrix}$$
.

• 
$$(-\sqrt{2}I - C)x = 0 \Leftrightarrow x = t \begin{pmatrix} -1 \\ -\sqrt{2} \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

$$E_{-\sqrt{2}} = \operatorname{span}\left\{\begin{pmatrix} -1\\ -\sqrt{2}\\ 1 \end{pmatrix}\right\}, \text{ and } \dim(E_{-\sqrt{2}}) = 1.$$

25 / 96

# Diagonalization

26 / 96

### **Diagonalizable Matrices**

- **Definition.** Let *A* be a square matrix.
  - $\circ$  A is called **diagonalizable** if there exists an **invertible** matrix P such that  $P^{-1}AP$  is a **diagonal** matrix.
- Examples.

$$\circ \quad \pmb{A} = \begin{pmatrix} 0.96 & 0.01 \\ 0.04 & 0.99 \end{pmatrix} \text{ and } \pmb{P} = \begin{pmatrix} 0.25 & -1 \\ 1 & 1 \end{pmatrix}$$

• Then  $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 0.95 \end{pmatrix}$ .

Then  $\boldsymbol{A}$  is diagonalizable.

- $\circ$  Note that the diagonal entries of D are the eigenvalues of A.
  - The columns of P are eigenvectors of A associated to these eigenvalues.

### **Diagonalizable Matrices**

- **Definition.** Let A be a square matrix.
  - A is called diagonalizable if there exists an invertible matrix P such that  $P^{-1}AP$  is a diagonal matrix.
- Examples.

$$\circ \quad \boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } \boldsymbol{P} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- $P^{-1}BP = D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ . So B is diagonalizable.
- $\circ$  Note that the diagonal entries of D are the eigenvalues of B.
  - ullet The columns of P are eigenvectors of B associated to these eigenvalues.

28 / 96

### **Examples**

- ullet Prove that  $oldsymbol{M}=egin{pmatrix} 2 & 0 \ 1 & 2 \end{pmatrix}$  is not diagonalizable.
  - $\circ$   $\;$  Suppose there exists invertible  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  such that

• 
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
.  
i.e.,  $\begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ .

• 
$$\begin{pmatrix} 2a & 2b \\ a+2c & b+2d \end{pmatrix} = \begin{pmatrix} \lambda a & \mu b \\ \lambda c & \mu d \end{pmatrix}$$
.

If  $a \neq 0$ , then  $\lambda = 2$ , and  $a + 2c = 2c \Rightarrow a = 0$ ; so a = 0.

If  $b \neq 0$ , then  $\mu = 2$ , and  $b + 2d = 2d \Rightarrow b = 0$ ; so b = 0.

- $\bullet \quad \text{Then} \, \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \text{ is singular}.$
- $\circ$  Therefore, M is not diagonalizable.

### **Criterion of Diagonalizability**

- Let A be a square matrix of order n.
  - $\circ$  Suppose that A is diagonalizable.
    - There exist invertible matrices P such that  $P^{-1}AP$  is a diagonal matrix D, i.e., AP=PD.

Let 
$$m{P} = egin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix}$$
 and  $m{D} = egin{pmatrix} \lambda_1 & \cdots & 0 \ \vdots & \ddots & \vdots \ 0 & \cdots & \lambda_n \end{pmatrix}$ .

- $m{A} \begin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix} = \begin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}.$
- $\bullet \quad (\boldsymbol{A}\boldsymbol{v}_1 \quad \cdots \quad \boldsymbol{A}\boldsymbol{v}_n) = (\lambda_1\boldsymbol{v}_1 \quad \cdots \quad \lambda_n\boldsymbol{v}_n).$
- $\circ$  Then  $Av_i = \lambda_i v_i, i = 1, \dots, n.$

 $\lambda_i$  is an eigenvalue of A,  $v_i$  is an eigenvector associated to  $\lambda_i$ .

 $\circ$  P is invertible  $\Rightarrow v_1, \ldots, v_n$  are linearly independent.

30 / 96

### **Criterion of Diagonalizability**

- Let A be a square matrix of order n.
  - $\circ$  Suppose A has n linearly independent eigenvectors.
    - $A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2, \dots, A\mathbf{v}_n = \lambda_n \mathbf{v}_n$ 
      - $\circ$  where  $v_1, \ldots, v_n$  are linearly independent.

Let  $P = (v_1 \cdots v_n)$ . Then P is invertible.

• Let 
$$m{D} = egin{pmatrix} \lambda_1 & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \lambda_n \end{pmatrix}$$
. 
$$m{AP} = m{A} \begin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix} = \begin{pmatrix} m{A} m{v}_1 & \cdots & m{A} m{v}_n \end{pmatrix} \\ & = \begin{pmatrix} \lambda_1 m{v}_1 & \cdots & \lambda_n m{v}_n \end{pmatrix} \\ & = \begin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ dots & \ddots & dots \\ 0 & \cdots & \lambda_n \end{pmatrix} = m{PD}.$$

o  $P^{-1}AP = D$ ; so A is diagonalizable.

### Criterion of Diagonalizability

- **Theorem.** Let A be a square matrix of order n.
  - $\circ$  A is diagonalizable
    - $\Leftrightarrow$  **A** has n linearly independent eigenvectors.
- Remark. Suppose that  $P^{-1}AP = D$  is diagonal.
  - $\circ$  The diagonal entries of D are eigenvalues of A:
    - $\lambda_1, \ldots, \lambda_n$ , which may be repeated.

 $oldsymbol{D}$  is not unique unless  $oldsymbol{A}$  has only one eigenvalue.

- $\circ$  The columns of  $m{P}$  are eigenvectors of  $m{A}$ :
  - $v_1, \ldots, v_n$ , which are linearly independent.
  - $v_i$  is an eigenvector of A associated to  $\lambda_i$ .

 $\boldsymbol{P}$  is not unique. For instance,

•  $v_i$  can be replaced by a nonzero multiple of  $v_i$ .

32 / 96

# Diagonalization

- Algorithm of Diagonalization
  - $\circ$  Let A be a square matrix of order n.
    - 1. Solve  $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = 0$  to find eigenvalues of  $\boldsymbol{A}$ .
    - 2. For each eigenvalue  $\lambda_i$  of  $\boldsymbol{A}$ ,
      - find a basis  $S_i$  for the eigenspace  $E_{\lambda_i}$ .

$${m A}$$
 is diagonalizable  $\Leftrightarrow |S_1| + \cdots + |S_k| = n,$   ${m A}$  is not diagonalizable  $\Leftrightarrow |S_1| + \cdots + |S_k| < n.$ 

Suppose A is diagonalizable. Then

- $S_1 \cup \cdots \cup S_k = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \}$  is a basis for  $\mathbb{R}^n$ .
- ullet  $oldsymbol{A}$  is diagonalized by  $oldsymbol{P} = ig( oldsymbol{v}_1 \quad \cdots \quad oldsymbol{v}_n ig).$

### Remarks

- $\det(\lambda \boldsymbol{I} \boldsymbol{A})$  is a polynomial of  $\lambda$  in degree n.
  - o It can be completely factorized as

• 
$$(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n), \lambda_i \in \mathbb{C}.$$

But  $\lambda_1, \ldots, \lambda_n$  are not necessarily real numbers.

- If some  $\lambda_i$  is not real,
  - then A is not diagonalizable (over  $\mathbb{R}$ ).
- Example. Let  $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ .
  - $\circ \det(\lambda \mathbf{I} \mathbf{A}) = \lambda^2 + 1 = (\lambda i)(\lambda + i).$ 
    - $m{A}$  is not diagonalizable over  $\mathbb{R}.$
    - $\begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ .

34 / 96

### Remarks

- Suppose that  $\det(\lambda \boldsymbol{I} \boldsymbol{A})$  can be completely factorized:
  - $\circ (\lambda \lambda_1)^{r_1} (\lambda \lambda_2)^{r_2} \cdots (\lambda \lambda_k)^{r_k},$ 
    - where  $\lambda_1, \lambda_2, \dots, \lambda_k$  are all distinct.

Then  $r_i$  is the algebraic multiplicity  $a(\lambda_i)$  of  $\lambda_i$ .

- Let  $E_i$  be the eigenspace of A associated to  $\lambda_i$ .
  - $\dim E_i$  is the geometric multiplicity  $g(\lambda_i)$  of  $\lambda_i$ .
- One can prove (MA2101) that  $g(\lambda_i) \leq a(\lambda_i)$ .

Note that  $a(\lambda_1) + a(\lambda_2) + \cdots + a(\lambda_k) = n$ .

- If dim  $E_i < a(\lambda_i)$  for some i,
  - then  $\dim E_1 + \dim E_2 + \cdots + \dim E_k < n$ ;

consequently, A is not diagonalizable.

#### Remarks

- Let  $\lambda_1, \lambda_2, \dots, \lambda_k$  be distinct eigenvalues of  $\boldsymbol{A}$ .
  - $\circ$  and  $v_i$  be an eigenvector of A associated to  $\lambda_i$ .

Then  $v_1, v_2, \dots, v_k$  are linearly independent.

**Proof.** Let k = 2. Suppose  $c_1 v_1 + c_2 v_2 = 0$ .

$$\mathbf{0} = \mathbf{A}\mathbf{0} = \mathbf{A}(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2)$$

$$= c_1(\mathbf{A}\mathbf{v}_1) + c_2(\mathbf{A}\mathbf{v}_2)$$

$$= (c_1 \lambda_1)\mathbf{v}_1 + (c_2 \lambda_2)\mathbf{v}_2,$$

$$\mathbf{0} = \lambda_1 \mathbf{0} = \lambda_1(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2)$$

$$= (c_1 \lambda_1)\mathbf{v}_1 + (c_2 \lambda_1)\mathbf{v}_2.$$

- Then  $c_2\lambda_2\boldsymbol{v}_2=c_2\lambda_1\boldsymbol{v}_2$ , i.e.,  $c_2(\lambda_2-\lambda_1)\boldsymbol{v}_2=\boldsymbol{0}$ .
  - $v_2 \neq 0$ ,  $\lambda_1 \neq \lambda_2$ ; so  $c_2 = 0$  &  $c_1 = 0$ .

The general case can be proved by mathematical induction. (Exercise.)

36 / 96

# Diagonalization

- Algorithm of Diagonalization
  - $\circ$  Let A be a square matrix of order n.
- Case 1. If  $\det(\lambda \boldsymbol{I} \boldsymbol{A})$  cannot be completely factorized,
  - then A is not diagonalizable.
- Case 2. If  $\det(\lambda \boldsymbol{I} \boldsymbol{A})$  can be completely factorized,
  - for each  $\lambda_i$ , find a basis  $S_i$  for its eigenspace.
  - 2a. If  $|S_i| < a(\lambda_i)$  for some i,
    - then A is not diagonalizable.
  - 2b. If  $|S_i| = a(\lambda_i)$  for all i,
    - then A is diagonalizable.
    - $S_1\cup\cdots\cup S_k=\{m{v}_1,\ldots,m{v}_n\}$  is a basis for  $\mathbb{R}^n$ .  $m{P}=egin{pmatrix} m{v}_1&\cdots&m{v}_n \end{pmatrix}$  diagonalizes  $m{A}$ .

• Let  $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ .

Step 1.  $\det(\lambda \mathbf{I} - \mathbf{B}) = (\lambda - 3)\lambda^2$ .

 $\circ$  **B** has eigenvalues  $\lambda = 3$  and  $\lambda = 0$ .

Step 2. Find bases for eigenspaces:

 $\circ$   $E_3$ :  $\{(1,1,1)^{\mathrm{T}}\}.$ 

 $\circ$   $E_0$ :  $\{(-1,1,0)^{\mathrm{T}}, (-1,0,1)^{\mathrm{T}}\}.$ 

Step 3.  $P = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ . Then  $P^{-1}BP = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ .

38 / 96

# **Examples**

 $\bullet \quad \operatorname{Let} \boldsymbol{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$ 

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{B}) = (\lambda - 3)\lambda^2$ .

 $\circ$  **B** has eigenvalues  $\lambda = 3$  and  $\lambda = 0$ .

Step 2. Find bases for eigenspaces:

 $\circ$   $E_3$ :  $\{(1,1,1)^{\mathrm{T}}\}.$ 

 $\circ E_0: \{(-1,1,0)^{\mathrm{T}}, (-1,0,1)^{\mathrm{T}}\}.$ 

Step 3.  $P = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ . Then  $P^{-1}BP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ .

• The ith column of P is an eigenvector of B associated to the ith diagonal entry (eigenvalue) of  $P^{-1}BP$ .

 $\bullet \quad \text{Let } \boldsymbol{C} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}.$ 

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{C}) = (\lambda - 1)(\lambda - \sqrt{2})(\lambda + \sqrt{2}).$ 

• C has eigenvalues  $\lambda = 1$ ,  $\sqrt{2}$  and  $-\sqrt{2}$ .

Step 2. Find bases for eigenspaces:

 $\circ$   $E_1$ :  $\{(-2,2,1)^{\mathrm{T}}\}.$ 

 $\circ E_{\sqrt{2}}: \{(-1,\sqrt{2},1)^{\mathrm{T}}\}.$ 

 $\circ E_{-\sqrt{2}}: \{(-1, -\sqrt{2}, 1)^{\mathrm{T}}\}.$ 

Step 3.  $P = \begin{pmatrix} -2 & -1 & -1 \\ 2 & \sqrt{2} & -\sqrt{2} \\ 1 & 1 & 1 \end{pmatrix}, P^{-1}CP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix}.$ 

40 / 96

### **Examples**

• Let  $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{pmatrix}$ .

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = (\lambda - 1)(\lambda - 2)^2$ .

o  $\boldsymbol{A}$  has eigenvalues  $\lambda = 1$  and 2.

Step 2. Find bases for eigenspaces:

$$\circ 1\mathbf{I} - \mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ -1 & -1 & 0 \\ 3 & -5 & -1 \end{pmatrix}.$$

$$\circ (1\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} 1 \\ -1 \\ 8 \end{pmatrix}, t \in \mathbb{R}.$$

$$\circ E_1 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -1 \\ 8 \end{pmatrix} \right\}.$$

 $\bullet \quad \text{Let } \pmb{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{pmatrix}.$ 

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = (\lambda - 1)(\lambda - 2)^2$ .

 $\circ$  **A** has eigenvalues  $\lambda = 1$  and 2.

Step 2. Find bases for eigenspaces:

$$\circ \ 2\mathbf{I} - \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 3 & -5 & 0 \end{pmatrix}.$$

$$\circ (2\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

$$\circ \quad E_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

42 / 96

# **Examples**

 $\bullet \quad \text{Let } \pmb{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{pmatrix}.$ 

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = (\lambda - 1)(\lambda - 2)^2$ .

 $\circ$  **A** has eigenvalues  $\lambda = 1$  and 2.

Step 2. Find bases for eigenspaces:

$$\circ E_1 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -1 \\ 8 \end{pmatrix} \right\},\,$$

$$\circ \quad E_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Step 3. Since there are only two linearly independent eigenvectors, A is not diagonalizable.

• Let  $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ .

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = \lambda^2 - \lambda - 1$ .

 $\circ \quad A$  has eigenvalues  $rac{1+\sqrt{5}}{2}$  and  $rac{1-\sqrt{5}}{2}$  .

Step 2. Find eigenspaces:

$$\circ \quad \left(\frac{1+\sqrt{5}}{2}\boldsymbol{I}-\boldsymbol{A}\right)\boldsymbol{x}=\boldsymbol{0} \Leftrightarrow \boldsymbol{x}=t\left(\frac{1}{\frac{1+\sqrt{5}}{2}}\right), t\in\mathbb{R}.$$

• 
$$E_{\frac{1+\sqrt{5}}{2}} = \operatorname{span}\left\{\begin{pmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{pmatrix}\right\}.$$

$$\circ \quad \left(\frac{1-\sqrt{5}}{2}oldsymbol{I}-oldsymbol{A}
ight)oldsymbol{x}=oldsymbol{0} \Leftrightarrow oldsymbol{x}=t\left(rac{1}{1-\sqrt{5}}
ight), t\in\mathbb{R}.$$

• 
$$E_{\frac{1-\sqrt{5}}{2}} = \operatorname{span}\left\{ \begin{pmatrix} 1\\ \frac{1-\sqrt{5}}{2} \end{pmatrix} \right\}.$$

44 / 96

# **Examples**

• Let  $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ .

Step 1.  $\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = \lambda^2 - \lambda - 1$ .

 $\circ \quad \pmb{A}$  has eigenvalues  $rac{1+\sqrt{5}}{2}$  and  $rac{1-\sqrt{5}}{2}.$ 

Step 2. Find eigenspaces:

$$\begin{array}{ll} \circ & E_{\frac{1+\sqrt{5}}{2}} = \operatorname{span}\left\{\begin{pmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{pmatrix}\right\}. \\ \circ & E_{\frac{1-\sqrt{5}}{2}} = \operatorname{span}\left\{\begin{pmatrix} 1\\ \frac{1-\sqrt{5}}{2} \end{pmatrix}\right\}. \end{array}$$

Step 3. 
$$\mathbf{P}=\begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix}$$
.  $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}$ .

- **Theorem.** Let A be a square matrix of order n.
  - $\circ$  If  $\boldsymbol{A}$  has n distinct eigenvalues,
    - then A is diagonalizable.

**Proof.** Suppose A has distinct eigenvalues  $\lambda_1, \ldots, \lambda_n$ .

- Let  $v_i$  be an eigenvector of A associated to  $\lambda_i$ .
- $\circ$  It is known that  $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$  are linearly independent.

Therefore, A is diagonalizable.

• Example. Let 
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$
.

- $\boldsymbol{A}$  has eigenvalues 1, 2, 3, 4; so  $\boldsymbol{A}$  is diagonalizable.
- Can you diagonalize it? (Exercise.)

46 / 96

# **Application**

- Suppose that A is diagonalizable.
  - $\circ$  There exists an invertible matrix P such that

$$\bullet \quad \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \text{ is diagonal.}$$
 
$$\bullet \quad \boldsymbol{A} = \boldsymbol{P} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \boldsymbol{P}^{-1}.$$

• 
$$\mathbf{A} = \mathbf{P} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \mathbf{P}^{-1}$$
.

 $\circ$  Let m be a nonnegative integer. Then

• 
$$\mathbf{A}^m = \mathbf{P} \begin{pmatrix} \lambda_1^m & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^m \end{pmatrix} \mathbf{P}^{-1}$$
.

### **Application**

- Suppose that *A* is diagonalizable.
  - $\circ$  There exists an invertible matrix  $oldsymbol{P}$  such that

• 
$$m{P}^{-1}m{A}m{P} = egin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$
 is diagonal.

• 
$$\mathbf{A} = \mathbf{P} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \mathbf{P}^{-1}$$
.

- $\circ$  Suppose that A is invertible. Then for any integer m,
  - $\mathbf{A}^m = \mathbf{P} \begin{pmatrix} \lambda_1^m & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^m \end{pmatrix} \mathbf{P}^{-1}.$

48 / 96

### **Examples**

• Let 
$$\mathbf{A} = \begin{pmatrix} -4 & 0 & -6 \\ 2 & 1 & 2 \\ 3 & 0 & 5 \end{pmatrix}$$
.

$$\circ \det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda + 1)(\lambda - 1)(\lambda - 2).$$

• 
$$(-1\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

• 
$$(1\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, t \in \mathbb{R}.$$

• 
$$(2\mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, t \in \mathbb{R}.$$

$$\circ \quad \mathbf{P} = \begin{pmatrix} -2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}. \quad \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

• Let 
$$A = \begin{pmatrix} -4 & 0 & -6 \\ 2 & 1 & 2 \\ 3 & 0 & 5 \end{pmatrix}$$
.

•  $P = \begin{pmatrix} -2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ .  $P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ .

•  $A^m = P \begin{pmatrix} (-1)^m & 0 & 0 \\ 0 & 1^m & 0 \\ 0 & 0 & 2^m \end{pmatrix} P^{-1}$ .

$$A^{10} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1024 \end{pmatrix} P^{-1}$$

$$= \cdots = \begin{pmatrix} -1022 & 0 & -2046 \\ 0 & 1 & 0 \\ 1023 & 0 & 2047 \end{pmatrix}$$

50 / 96

# **Examples**

• The **Fibonacci numbers**  $a_n$  are defined by

$$\circ \ \ a_0 = 0, a_1 = 1 \text{ and } a_n = a_{n-1} + a_{n-2} \text{ for } n \ge 2.$$

Note that  $a_{n+1} = a_{n-1} + a_n$  for  $n \ge 1$ .

$$\circ \quad \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n-1} + a_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_n \end{pmatrix}.$$

Let 
$$x_n = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$$
 and  $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ .

$$\circ \quad oldsymbol{x}_n = oldsymbol{A} oldsymbol{x}_{n-1} = oldsymbol{A}^2 oldsymbol{x}_{n-2} = \cdots = oldsymbol{A}^n oldsymbol{x}_0, oldsymbol{x}_0 = egin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

We have diagonalized  $m{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ .

$$\circ \quad \boldsymbol{P} = \begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix}. \quad \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}.$$

• The Fibonacci numbers  $F_n$  are defined by

$$\circ \ \ a_0 = 0, a_1 = 1 \text{ and } a_n = a_{n-1} + a_{n-2} \text{ for } n \ge 2.$$

Let 
$$m{x}_n = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$$
 and  $m{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ .

$$x_n = A^n x_0 = P \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}^n P^{-1} x_0$$

$$= P \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n \end{pmatrix} P^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n \\ \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \end{pmatrix}$$

Therefore, 
$$a_n = \frac{1}{\sqrt{5}} \left( \frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left( \frac{1-\sqrt{5}}{2} \right)^n$$
.

52 / 96

# **Orthogonal Diagonalization**

53 / 96

### Introduction

• Recall that an  $n \times n$  matrix A is diagonalizable

 $\Leftrightarrow$  A has n linearly independent eigenvectors

$$oldsymbol{v}_1,\ldots,oldsymbol{v}_n$$
 (associated to  $\lambda_1,\ldots,\lambda_n$ ).

Then  $P^{-1}AP = D$ , where

$$\bullet \quad \boldsymbol{P} = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{pmatrix}, \, \boldsymbol{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

• In order to find  $P^{-1}$ , we may need:

 $\circ$  Gauss-Jordan elimination:  $(P \mid I) \dashrightarrow (I \mid P^{-1})$ .

 $\circ$  Adjoint matrix:  $m{P}^{-1} = rac{1}{\det(m{P})} \operatorname{adj}(m{P}).$ 

• Note: If P is orthogonal, then  $P^{-1} = P^{T}$ .

### Introduction

• Let  $m{B} = egin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$  . Then it can be diagonalized by

$$\circ \quad \mathbf{P} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}.$$

We can verify that the columns of P, which are eigenvectors of B, form an **orthogonal** basis for  $\mathbb{R}^3$ .

o Normalizing:

• 
$$R = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$$
.

 $\circ$  R is an orthogonal matrix, which also diagonalizes B.

55 / 96

### **Definition**

- **Definition**. A square matrix A is called **orthogonally diagonalizable** if it can be diagonalized by an **orthogonal** matrix. That is,
  - $\circ$  there exists an **orthogonal** matrix  $oldsymbol{P}$  such that
    - $P^{T}AP$  (=  $P^{-1}AP$ ) is a diagonal matrix.

P is said to orthogonally diagonalize A.

• Remarks. For any eigenvalue  $\lambda$  of A, we can always choose an orthonormal basis for the associated eigenspace  $E_{\lambda}$ .

Suppose further that A is orthogonally diagonalizable.

- $\circ$  Then  $\boldsymbol{A}$  is diagonalizable, and  $\boldsymbol{A}$  has n linearly independent eigenvectors.
- For distinct eigenvalues  $\lambda \neq \mu$ ,
  - Every eigenvector of  $\lambda$  is orthogonal to that of  $\mu$ .

### Classification

• Theorem. A square matrix is orthogonally diagonalizable

⇔ it is a **symmetric** matrix.

- **Proof**.  $(\Rightarrow)$  Suppose A is orthogonally diagonalizable.
  - $\circ$  There is an orthogonal matrix P & a diagonal matrix D
    - such that  $oldsymbol{D} = oldsymbol{P}^{\mathrm{T}} oldsymbol{A} oldsymbol{P}.$

Since  $oldsymbol{D}$  is diagonal, it is also symmetric.

•  $D = D^{\mathrm{T}} = (P^{\mathrm{T}}AP)^{\mathrm{T}} = P^{\mathrm{T}}A^{\mathrm{T}}P$ .

Therefore,  $oldsymbol{P}^{\mathrm{T}}oldsymbol{A}oldsymbol{P} = oldsymbol{P}^{\mathrm{T}}oldsymbol{A}^{\mathrm{T}}oldsymbol{P}.$ 

- $\circ$  Note that both  $oldsymbol{P}$  and  $oldsymbol{P}^{\mathrm{T}}$  are invertible.
  - ullet By Cancellation Law:  $oldsymbol{A} = oldsymbol{A}^{\mathrm{T}}.$

That is, A is symmetric.

 $(\Leftarrow)$  is left in MA2101 Linear Algebra II.

57 / 96

# **Algorithm**

• Algorithm. (Orthogonally diagonalize symmetric matrix).

Let A be a symmetric matrix of order n.

- 1. Find all distinct eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_k$ .
- 2. For each eigenvalue  $\lambda_i$ , find an **orthonormal** basis for the eigenspace  $E_{\lambda_i}$ .
  - (i) Find a basis  $S_{\lambda_i}$  for  $E_{\lambda_i}$ .
  - (ii) Use Gram-Schmidt process to transfer  $S_{\lambda_i}$  to an orthonormal basis  $T_{\lambda_i}$  for  $E_{\lambda_i}$ .
- 3. Let  $T = T_{\lambda_1} \cup T_{\lambda_2} \cup \cdots \cup T_{\lambda_k}$ ,
  - $\circ T = \{ v_1, \dots, v_n \}$  is an orthonormal basis for  $\mathbb{R}^n$ .

 $oldsymbol{P} = egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n \end{pmatrix}$  orthogonally diagonalizes  $oldsymbol{A}$ .

# **Algorithm**

• Compare with the algorithm for diagonalization:

Let A be a square matrix of order n.

- 1. Find all distinct eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_k$ .
- 2. For each eigenvalue  $\lambda_i$ , find a basis for the eigenspace  $E_{\lambda_i}$ .
- 3. Let  $S = S_{\lambda_1} \cup S_{\lambda_2} \cup \cdots \cup S_{\lambda_k}$ .
  - (i) If |S| < n, then  $\boldsymbol{A}$  is not diagonalizable.
  - (ii) If |S| = n, say  $S = \{v_1, v_2, \dots, v_n\}$ ,
    - $\circ$   $oldsymbol{P} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_n \end{pmatrix}$  diagonalizes  $oldsymbol{A}$ .

59 / 96

### **Algorithm**

- Remarks. Let A be a symmetric matrix of order n.
  - 1. Every eigenvalue of A is a real number.
  - 2. Write the characteristic polynomial

$$\circ \det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_k)^{r_k},$$

• where  $\lambda_1, \ldots, \lambda_k$  are distinct eigenvalues.

Then 
$$\dim E_{\lambda_1} = r_1, \ldots, \dim E_{\lambda_k} = r_k$$
.

$$\therefore \dim E_{\lambda_1} + \dots + \dim E_{\lambda_k} = r_1 + \dots + r_k = n.$$

- 3. If each basis  $S_{\lambda_i}$  for  $E_{\lambda_i}$  is orthonormal, then
  - $\circ\quad T=S_{\lambda_1}\cup\dots\cup S_{\lambda_k}=\{\boldsymbol{v}_1,\dots,\boldsymbol{v}_n\} \text{ is an orthonormal set. (Exercise.)}$
  - $\circ$   $~m{P} = egin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix}$  is an orthogonal matrix.

- $\bullet \quad \text{Let } \boldsymbol{A} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}.$ 
  - 1. Find eigenvalues: For  $2 \times 2$  matrix,

$$\circ \det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A}).$$

$$\delta = \lambda^2 - 2\lambda + \frac{3}{4} = (\lambda - \frac{1}{2})(\lambda - \frac{3}{2}).$$

$$\lambda = \frac{1}{2}$$
 and  $\lambda = \frac{3}{2}$ .

- 2. Find eigenvectors. For  $\lambda = \frac{1}{2}$ ,
  - $\circ$  Solve  $(\lambda {m I} {m A}) {m x} = {m 0}$ :

$$\bullet \quad \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\circ \quad \begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \overset{\text{normalizing}}{\Longrightarrow} \mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

61 / 96

# **Examples**

- $\bullet \quad \operatorname{Let} \boldsymbol{A} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}.$ 
  - 1. Find eigenvalues: For  $2 \times 2$  matrix,

$$\circ \det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A}).$$

$$\delta = \lambda^2 - 2\lambda + \frac{3}{4} = (\lambda - \frac{1}{2})(\lambda - \frac{3}{2}).$$

$$\lambda = \frac{1}{2}$$
 and  $\lambda = \frac{3}{2}$ .

- 2. Find eigenvectors. For  $\lambda = \frac{3}{2}$ ,
  - $\circ$  Solve  $(\lambda oldsymbol{I} oldsymbol{A}) oldsymbol{x} = oldsymbol{0}$ :

$$\bullet \quad \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\circ \quad \begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \end{pmatrix} \overset{\text{normalizing}}{\Longrightarrow} \mathbf{v}_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

$$\bullet \quad \text{Let } \boldsymbol{A} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}.$$

1. Find eigenvalues: For  $2 \times 2$  matrix,

$$\circ \det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A}).$$

$$\lambda^2 - 2\lambda + \frac{3}{4} = (\lambda - \frac{1}{2})(\lambda - \frac{3}{2}).$$

$$\therefore \quad \lambda = \frac{1}{2} \text{ and } \lambda = \frac{3}{2}.$$

3. Let 
$$m P=egin{pmatrix} m v_1 & m v_2 \end{pmatrix}=egin{pmatrix} rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \end{pmatrix}$$
 . Then

$$\circ \quad \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{P} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{3}{2} \end{pmatrix}.$$

63 / 96

# **Examples**

• Let 
$$B = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$
.

1. Find the eigenvalues. The characteristic polynomial

• The eigenvalues are  $\lambda = 0$  and  $\lambda = 4$ .

• Let 
$$B = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$
.

2. Find the eigenvectors. Let  $\lambda = 0$ . Solve

65 / 96

### **Examples**

• Let 
$$\mathbf{B} = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$
.

2. Find the eigenvectors. Let  $\lambda = 0$ . Set

$$\bullet$$
  $u_1 = (1, 1, 0, 0)$  and  $u_2 = (2, 0, -1, 1)$ .

$$egin{aligned} m{v}_1 &= m{u}_1 = (1, 1, 0, 0) \ m{v}_2 &= m{u}_2 - rac{m{u}_2 \cdot m{v}_1}{m{v}_1 \cdot m{v}_2} m{v}_1 = (1, -1, -1, 1). \end{aligned}$$

Normalizing:

$$egin{aligned} m{w}_1 &= rac{m{v}_1}{\|m{v}_1\|} = (rac{1}{\sqrt{2}}, rac{1}{\sqrt{2}}, 0, 0) \ m{w}_2 &= rac{m{v}_2}{\|m{v}_2\|} = (rac{1}{2}, -rac{1}{2}, -rac{1}{2}, rac{1}{2}). \end{aligned}$$

• Let 
$$m{B} = egin{pmatrix} 1 & -1 & 1 & -1 \ -1 & 1 & -1 & 1 \ 1 & -1 & 3 & 1 \ -1 & 1 & 1 & 3 \end{pmatrix}$$
.

2. Find the eigenvectors. Let  $\lambda = 4$ . Solve

67 / 96

### **Examples**

• Let 
$$B = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$
.

2. Find the eigenvectors. Let  $\lambda = 4$ . Set

$$oldsymbol{u}_3=(rac{1}{2},-rac{1}{2},1,0) \ ext{and} \ oldsymbol{u}_4=(-rac{1}{2},rac{1}{2},0,1).$$

$$v_3 = u_3 = (\frac{1}{2}, -\frac{1}{2}, 1, 0)$$
  
 $v_4 = u_4 - \frac{u_4 \cdot v_3}{v_3 \cdot v_3} v_3 = (-\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1).$ 

o Normalizing:

$$\mathbf{w}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = (\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0)$$
$$\mathbf{w}_{4} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = (-\frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{3}{\sqrt{12}}).$$

• Let 
$$B = \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$$
.

3. Let 
$$oldsymbol{P} = oldsymbol{(w_1 \ w_2 \ w_3 \ w_4)}$$
.

$$\bullet \quad \boldsymbol{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{12}} \\ 0 & -\frac{1}{2} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{12}} \\ 0 & \frac{1}{2} & 0 & \frac{3}{\sqrt{12}} \end{pmatrix}.$$

69 / 96

# **Quadratic Forms and Conic Sections**

70 / 96

### **Quadratic Form**

- A homogeneous polynomial in degree 2 in variables x, y:
  - $f(x,y) = ax^2 + bxy + cy^2$ , a,b,c are real constants.

It is known as a quadratic form in variables x, y.

• **Definition.** A quadratic form in n variables  $x_1, \ldots, x_n$  is

$$Q(x_1, \dots, x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{i < j} q_{ij} x_i x_j.$$

- Examples.
  - $Q(x,y) = x^2 + y^2 xy.$
  - $Q(x,y,z) = x^2 + 2y^2 + 3z^2 + 4xy + 5xz + 6yz.$
  - $Q(x_1, \dots, x_n) = x_1^2 + x_2^2 + \dots + x_n^2.$

### **Quadratic Form**

• Let  $m{x}=egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ ,  $m{A}=(a_{ij})_{n \times n}$  a symmetric matrix.

$$\bullet \quad \mathbf{A}\mathbf{x} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n a_{1j}x_j \\ \vdots \\ \sum_{j=1}^n a_{nj}x_j \end{pmatrix} .$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} = (x_1, \dots, x_n) \begin{pmatrix} \sum_{j=1}^n a_{1j}x_j \\ \vdots \\ \sum_{j=1}^n a_{nj}x_j \end{pmatrix}$$

$$= \sum_{i=1}^n x_i \left( \sum_{j=1}^n a_{ij}x_j \right)$$

 $=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_{i}x_{j}$ 

 $= \sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{i < j} 2a_{ij} x_i x_j.$ 

72 / 96

### **Quadratic Form**

- $Q(x_1, \ldots, x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{i < j} q_{ij} x_i x_j$  is a quadratic form.
  - $\circ$  Let  $\boldsymbol{x}=(x_1,\ldots,x_n)^{\mathrm{T}}$  and  $\boldsymbol{A}=(a_{ij})_{n\times n}$  be defined by
    - $a_{ii} = q_{ii}$  and  $a_{ij} = a_{ji} = \frac{1}{2}q_{ij}$  for i < j.

Then  $Q(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}, \, \boldsymbol{x} \in \mathbb{R}^n$ .

- Examples.
  - $\circ \quad Q(x,y) = 2x^2 + 3y^2 \text{ is a quadratic form in } x \text{ and } y.$ 
    - Let  $\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$  and  $\boldsymbol{A} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ .
    - Then  $Q(x,y) = x^{\mathrm{T}}Ax$
  - $\circ Q(x,y) = x^2 + y^2 xy$  is a quadratic form in x and y.
    - Let  $x=\begin{pmatrix} x \\ y \end{pmatrix}$  and  $A=\begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}$ .
    - Then  $Q(x, y) = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$ .

### **Quadratic Form**

- $Q(x_1, \ldots, x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{i < j} q_{ij} x_i x_j$  is a quadratic form.
  - $\circ$  Let  $oldsymbol{x}=(x_1,\ldots,x_n)^{\mathrm{T}}$  and  $oldsymbol{A}=(a_{ij})_{n imes n}$  be defined by
    - $a_{ii} = q_{ii}$  and  $a_{ij} = a_{ji} = \frac{1}{2}q_{ij}$  for i < j.

Then  $Q(x) = x^{\mathrm{T}} A x$ ,  $x \in \mathbb{R}^n$ .

- Examples.
  - $Q(x,y,z) = x^2 + 2y^2 + 3z^2 + 4xy + 5xz + 6yz.$ 

    - It is a quadratic form in variables x,y,z.
       Let  $x=\begin{pmatrix}x\\y\\z\end{pmatrix}$  and  $A=\begin{pmatrix}1&2&\frac{5}{2}\\2&2&3\\\frac{5}{2}&3&3\end{pmatrix}$ .

74 / 96

### **Simplification**

- Suppose the quadratic form is presented as
  - $\circ \ Q(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}, \ \boldsymbol{x} = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbb{R}^n,$

where  $\boldsymbol{A}$  is a symmetric matrix of order n.

- Recall that A is orthogonally diagonalizable.
  - $\circ$  There exists an orthogonal matrix  $m{P}$  such that

• 
$$P^{\mathrm{T}}AP = D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$
.

Let  ${m y} = {m P}^{\mathrm T} {m x} = (y_1, \dots, y_n)^{\mathrm T} \in \mathbb{R}^n$ . Then  ${m x} = {m P} {m y}$ .

$$Q(\boldsymbol{x}) = (\boldsymbol{P}\boldsymbol{y})^{\mathrm{T}}\boldsymbol{A}(\boldsymbol{P}\boldsymbol{y}) = \boldsymbol{y}^{\mathrm{T}}(\boldsymbol{P}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{P})\boldsymbol{y}$$

$$= (y_{1} \cdots y_{n}) \begin{pmatrix} \lambda_{1} \cdots 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{pmatrix} \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \lambda_{1}y_{1}^{2} + \cdots + \lambda_{n}y_{n}^{2}.$$

 $\bullet \quad \text{Let } Q(x,y) = x^2 - xy + y^2.$ 

$$\circ \quad Q(x,y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

 $\circ$  Orthogonally diagonalize  $\begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}$ .

$$\bullet \quad \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{3}{2} \end{pmatrix}.$$

$$\circ \quad \operatorname{Let} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^{\operatorname{T}} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}(x+y) \\ \frac{1}{\sqrt{2}}(-x+y) \end{pmatrix}.$$

$$Q(x,y) = \frac{1}{2}(x')^2 + \frac{3}{2}(y')^2$$
  
=  $\frac{1}{4}(x+y)^2 + \frac{3}{4}(-x+y)^2$ .

76 / 96

# **Examples**

• Let  $Q(x, y, z) = x^2 + 2y^2 + z^2 + 2xz$ .

$$\circ \quad Q(x,y,z) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$\circ \quad \text{Orthogonally diagonalize } \boldsymbol{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

• 
$$P^{T}AP = D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, P = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

$$\circ \ \ \operatorname{Let} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{x} = \begin{pmatrix} \frac{1}{\sqrt{2}}(x+z) \\ y \\ \frac{1}{\sqrt{2}}(-x+z) \end{pmatrix}.$$

• 
$$Q(x,y,z) = 2(x')^2 + 2(y')^2 + 0(z')^2 = (x+z)^2 + 2y^2$$
.

### **Quadratic Equation**

ullet A quadratic equation in variable x is of the form

$$\circ \quad ax^2 + bx = c.$$

ullet Definition. A quadratic equation in variables x and y is

$$\circ \quad ax^2 + bxy + cy^2 + dx + ey = f.$$

The graph of a quadratic equation is a conic section.

- Note. Let  $\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ ,  $\boldsymbol{A} = \begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} d \\ e \end{pmatrix}$ .
  - $\circ \quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x} = f.$
- **Definition.**  $ax^2 + bxy + cy^2 = x^T Ax$  is the quadratic form **associated** with the quadratic equation.
  - $\circ \quad ax^2 + bxy + cy^2 + dx + ey = f.$

78 / 96

### **Classification of Conics**

- Classification of conic sections.
  - o Degenerated conic sections.
    - The whole plane  $\mathbb{R}^2$ : 0=0.
      - Empty set:  $x^2 + y^2 = -1$ .
      - A point:  $x^2 + y^2 = 0$ .
      - A line: x = 0 or  $x^2 = 0$ .
    - A pair of distinct lines:  $x^2 y^2 = 0$ .
  - Non-degenerated conic sections.
    - Circle:  $x^2 + y^2 = 1$ .
    - Ellipse:  $x^2 + 2y^2 = 1$ .
    - Hyperbola:  $x^2 y^2 = 1$ .
    - Parabola:  $x^2 y = 0$ .

• Standard form of circle or ellipse:

$$\circ \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1, \quad \alpha > 0, \beta > 0.$$

• 
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \frac{1}{\alpha^2} & 0 \\ 0 & \frac{1}{\beta^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1.$$

If  $\alpha=\beta$ , it is a circle of radius  $r=\alpha=\beta$ .



80 / 96

### **Standard Forms**

• Standard form of circle or ellipse:

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1, \quad \alpha > 0, \beta > 0.$$

• 
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \frac{1}{\alpha^2} & 0 \\ 0 & \frac{1}{\beta^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1.$$

If  $\alpha > \beta$ , ellipse of major radius  $\alpha$ , minor radius  $\beta$ :



• Standard form of circle or ellipse:

$$\circ \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1, \quad \alpha > 0, \beta > 0.$$

• 
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \frac{1}{\alpha^2} & 0 \\ 0 & \frac{1}{\beta^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1.$$

If  $\alpha < \beta$ , ellipse of major radius  $\beta$ , minor radius  $\alpha$ :



82 / 96

### **Standard Forms**

• Standard form of hyperbola:

$$\circ \quad \text{Case 1:} \quad \frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1, \quad \alpha > 0, \beta > 0.$$

• 
$$(x \ y)$$
  $\begin{pmatrix} \frac{1}{\alpha^2} & 0 \\ 0 & -\frac{1}{\beta^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1.$ 

Semi-major axis  $\alpha$  and semi-minor axis  $\beta$ .



- Standard form of hyperbola:
  - $\circ \quad \text{Case 2:} \quad -\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1, \quad \alpha > 0, \beta > 0.$ 
    - $(x \ y) \begin{pmatrix} -\frac{1}{\alpha^2} & 0 \\ 0 & \frac{1}{\beta^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1.$

Semi-major axis  $\beta$  and semi-minor axis  $\alpha$ .



84 / 96

### **Standard Forms**

- Standard form of parabola:
  - $\circ \quad \text{Case 1:} \quad x^2 = \alpha y, \quad |\alpha|/4 \neq 0 \text{ is the focal length.}$ 
    - $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -\alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$

Suppose that  $\alpha > 0$ .



- Standard form of parabola:
  - $\circ \quad \text{Case 1:} \quad x^2 = \alpha y, \quad |\alpha|/4 \neq 0 \text{ is the focal length}.$

• 
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -\alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Suppose that  $\alpha < 0$ .



86 / 96

### **Standard Forms**

- Standard form of parabola:
  - $\circ$   $\;$  Case 2:  $\;y^2=\alpha x,\;\;|\alpha|/4\neq 0$  is the focal length.

• 
$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\alpha & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0.$$

Suppose that  $\alpha > 0$ .



- Standard form of parabola:
  - $\circ$  Case 2:  $y^2=\alpha x, \ |\alpha|/4\neq 0$  is the focal length.
    - $(x \ y) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + (-\alpha \ 0) \begin{pmatrix} x \\ y \end{pmatrix} = 0.$

Suppose that  $\alpha < 0$ .



88 / 96

### Classification

- Classify  $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}}\boldsymbol{x} = f, \, \boldsymbol{x} \in \mathbb{R}^2.$ 
  - 1. Orthogonally diagonalize A.
    - $\circ$   $m{P}^{\mathrm{T}}m{A}m{P}=egin{pmatrix} \lambda & 0 \ 0 & \mu \end{pmatrix}$ ,  $m{P}$  an orthogonal matrix.
  - 2. Let  $oldsymbol{y} = oldsymbol{P}^{\mathrm{T}} oldsymbol{x}$  . Then

$$\circ \quad \boldsymbol{y}^{\mathrm{T}} \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \boldsymbol{y} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{y} = f.$$

- 3. Complete the squares.
- Remark.  $\lambda$  and  $\mu$  are eigenvalues of A;  $\lambda \mu = \det(A)$ .
  - Suppose the conic section is non-degenerate.
    - $\det(\mathbf{A}) > 0 \Leftrightarrow \text{ellipse (or circle)}.$
    - $\det(\mathbf{A}) < 0 \Leftrightarrow \mathsf{hyperbola}$ .
    - $\det(\mathbf{A}) = 0 \Leftrightarrow \text{parabola}.$

•  $x^2 - xy + y^2 - x - y = 1$ .

Let 
$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
,  $\boldsymbol{A} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ .

- $\circ \quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x} = 1.$
- 1. Orthogonally diagonalize A.

$$\circ \quad \boldsymbol{P}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{3}{2} \end{pmatrix} \text{, where } \boldsymbol{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

2. Let 
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \boldsymbol{y} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{x} = \begin{pmatrix} \frac{1}{\sqrt{2}}(x+y) \\ \frac{1}{\sqrt{2}}(-x+y) \end{pmatrix}$$
.

$$\circ$$
  $oldsymbol{y}^{\mathrm{T}} \begin{pmatrix} rac{1}{2} & 0 \ 0 & rac{3}{2} \end{pmatrix} oldsymbol{y} + oldsymbol{b}^{\mathrm{T}} oldsymbol{P} oldsymbol{y} = 1.$ 

90 / 96

# **Examples**

•  $x^2 - xy + y^2 - x - y = 1$ .

Let 
$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
,  $\boldsymbol{A} = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ .

$$\circ \quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x} = 1.$$

3. 
$$\frac{1}{2}(x')^2 + \frac{3}{2}(y')^2 - \sqrt{2}(x') = 1$$
.

$$\circ \quad \frac{1}{2}(x' - \sqrt{2})^2 + \frac{3}{2}(y')^2 = 1 + \frac{1}{2}(\sqrt{2})^2 = 2.$$

$$\circ \frac{(x' - \sqrt{2})^2}{2^2} + \frac{(y')^2}{(2/\sqrt{3})^2} = 1.$$

Note that 
$$m{P} = egin{pmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} = m{P}^{\mathrm{T}} \begin{pmatrix} x \\ y \end{pmatrix}.$$

• The x'- and y'-axis is obtained by rotating the x- and y-axis about the origin O anticlockwise by  $\pi/4$ .

•  $x^2 - xy + y^2 - x - y = 1$ .

$$\circ \quad \frac{(x' - \sqrt{2})^2}{2^2} + \frac{(y')^2}{(2/\sqrt{3})^2} = 1.$$

The x'- and y'-axis is obtained by rotating the x- and y-axis about the origin O anticlockwise by  $\pi/4$ .



92/96

# **Examples**

 $2x^2 + 24xy + 9y^2 + 20x - 6y = 5.$ 

Let 
$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
,  $\boldsymbol{A} = \begin{pmatrix} 2 & 12 \\ 12 & 9 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} 20 \\ -6 \end{pmatrix}$ .

$$\circ \quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x} = 5.$$

1. Orthogonally diagonalize  $\boldsymbol{A}$  (Exercise).

$$\circ \quad \boldsymbol{P}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} 18 & 0 \\ 0 & -7 \end{pmatrix}, \text{ where } \boldsymbol{P} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}.$$

2. Let 
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \boldsymbol{y} = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{x} = \begin{pmatrix} \frac{3}{5}x + \frac{4}{5}y \\ -\frac{4}{5}x + \frac{3}{5}y \end{pmatrix}$$
.

$$\circ \quad \boldsymbol{y}^{\mathrm{T}} \begin{pmatrix} 18 & 0 \\ 0 & -7 \end{pmatrix} \boldsymbol{y} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{y} = 5.$$

 $2x^2 + 24xy + 9y^2 + 20x - 6y = 5.$ 

Let 
$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
,  $\boldsymbol{A} = \begin{pmatrix} 2 & 12 \\ 12 & 9 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} 20 \\ -6 \end{pmatrix}$ .

$$\circ \quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{x} = 5.$$

3. 
$$18(x')^2 - 7(y')^2 + \frac{36}{5}x' - \frac{98}{5}y' = 5$$
.

$$18(x' + \frac{1}{5})^2 - 7(y' + \frac{7}{5})^2 = -8.$$

$$\circ -\frac{(x'+\frac{1}{5})^2}{(2/3)^2} + \frac{(y'+\frac{7}{5})^2}{(\sqrt{8/7})^2} = 1.$$

Note that 
$$m{P} = egin{pmatrix} rac{3}{5} & -rac{4}{5} \ rac{4}{5} & rac{3}{5} \end{pmatrix}$$
 and  $m{y} = m{P}^{ ext{T}}m{x}$ .

• The x'- and y'-axis is obtained by rotating the x- and y-axis about the origin O anticlockwise by  $\cos^{-1}(\frac{3}{5})$ .

94 / 96

# **Examples**

 $2x^2 + 24xy + 9y^2 + 20x - 6y = 5.$ 

$$\circ -\frac{(x'+\frac{1}{5})^2}{(2/3)^2} + \frac{(y'+\frac{7}{5})^2}{(\sqrt{8/7})^2} = 1.$$

The x'- and y'-axis is obtained by rotating the x- and y-axis about the origin O anticlockwise by  $\cos^{-1}(\frac{3}{5})$ .



### Remark

• Let P be orthogonal of order 2. Then  $det(P) = \pm 1$ .

$$\circ \det(\mathbf{P}) = 1 \Rightarrow \mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

• Let  $y = P^T x$ . Then the new axes are obtained by rotating the original axes about Oanticlockwise by  $\theta$ .

$$\circ \det(\mathbf{P}) = -1 \Rightarrow \mathbf{P} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

• 
$$P = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

 $\bullet \quad \boldsymbol{P} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$   $\bullet \quad \text{Let } \boldsymbol{y} = \boldsymbol{P}^{\mathrm{T}}\boldsymbol{x}. \text{ Then the new axes are obtained by first rotating the original axes about } O$ anticlockwise by  $\theta$ , then reflecting w.r.t. the x'-axis.

By multiplying the 2nd column of  $m{P}$  by -1 if necessary, we can always diagonalize a symmetric  $m{A}$ by an orthogonal matrix with determinant 1.