ANÁLISIS DE CANALES CON MAYOR DAÑO ESTRUCTURAL CON HERRAMIENTA DE POSTPROCESCAMIENTO AUTOMATIZADA

Joel Rodarte Rivera

OBJETIVO

REALIZAR UN
POSTPROCESO DE
LOS RESULTADOS DE
LAS PRUEBAS DE
CAMPO Y OBTENER
INSIGHTS
RELEVANTES PARA
TOMAR DECISIONES
DE DISEÑO,
ÚNICAMENTE PARA
LOS 5 CANALES DE
MAYOR INTERÉS.

PARA TODA LA
INFORMACIÓN
REPORTADA
ENCONTRAR UN
SENTIDO DE PORQUE
SE COMPORTÓ
COMO SUCEDIÓ EN
LOS SENSORES EN LA
VIDA REAL.

PRESENTAR
PROPUESTA DE
CÓMO PROCEDER
CON EL REDISEÑO
DE LAS PIEZAS DE
CAMPO PARA
CUMPLIR CON LOS
ESTÁNDARES DE LA
INDUSTRIA.

REPORTAR DE MANERA GRÁFICA Y POR TABLA LOS RESULTADOS.

REALIZAR UN POSTER DONDE SE EXPLIQUE LA METODOLOGÍA PARA LIMPIEZA DE DATOS.

LOS CANALES DE INTERÉS DE LA PRUEBA SON 4,5,14,21,38

CONTENIDO

- 1. Valores máximos y mínimos Gráfica y tabla
 - 1. Canales (+) de interés en una (1) corrida de interés.
 - Todas (+) las corridas para un (1) canal de interés.
- Valores simultáneos para (1) tiempo deseado para canales (+) de interés.
- 3. Valores iniciales y finales de corrida Tabla
 - 1. De un (1) canal de interés a través de todas las corridas.
 - 2. De todos los canales en un (1) caso de carga de interés.
- 4. Estadística descriptiva
 - 1. Todos los canales (+) para un (1) caso en específico.
 - 2. Todos los casos (+) para un canal (1) en específico.

- Encontrar eventos más dañinos de la corrida
 - 1. Eventos más dañinos corrida para los 5 sensores de interés.
- 2. Correlación
 - 1. Correlación de canales (+) con el resto de los canales de la prueba.
 - Mapa de calor de correlación.
 - 3. Experimento si normalizar la información afecta en algo.

3. Outliers

 Identificar outliers del conjunto de datos para los canales de interés (+) en las pruebas de mayor interés y eliminarlos.

MÁXIMOS Y MÍNIMOS

run	_09	_14

	Channel	Min Value	Min Time	Max Value	Max Time
0	4	-2559.00	23.270	-439.1	30.050
1	5	-32.84	23.775	2470.0	28.525
2	14	408.00	23.775	3115.0	27.570
3	21	-5232.00	28.535	-1652.0	23.775
4	38	-565.70	29.855	2596.0	25.060

run_11_14

	Channel	Min Value	Min Time	Max Value	Max Time
0	4	-3683.0	38.005	-994.800	36.930
1	5	-1310.0	40.705	1954.000	34.465
2	14	-312.7	34.295	3289.000	43.565
3	21	-5338.0	34.470	-3.159	34.295
4	38	240.0	46.695	1453.000	40.980

run_06_14

	Channel	Min Value	Min Time	Max Value	Max Time
0	4	-2982.00	592.515	473.9	469.350
1	5	-321.30	231.950	2562.0	1005.545
2	14	-65.65	469.575	3281.0	592.520
3	21	-5095.00	1005.555	-1187.0	469.580
4	38	-1030.00	528.525	1266.0	505.865

en especifico

en de un canal sus corridas Valores iniciales y finales especifico en todas

-2000

-3000

Initial Value

× Final Value

mn_01_27

mn_02_27

mn_02_27

mn_02_27

mn_02_27

mn_11_27

mn_11_27

mn_11_27

mn_11_27

mn_11_27

mn_11_27

mn_11_27

mn_12_27

corrida de interés

Y-value for 4 at X=30.0: -606.0 Y-value for 5 at X=30.0: 293.9 Y-value for 14 at X=30.0: 714.9 Y-value for 21 at X=30.0: -2347 Y-value for 38 at X=30.0: 298.5

X-Y Plot of Selected Channels

Y-value for 4 at X=30.0: -2080.0 Y-value for 5 at X=30.0: 325.0 Y-value for 14 at X=30.0: 1326.0 Y-value for 21 at X=30.0: -3317.0 Y-value for 38 at X=30.0: 584.9

run_09_ run_06_ run

	4	5	14	21	38
count	12235.000000	12235.000000	12235.000000	12235.000000	12235.000000
mean	-2213.174156	376.361234	1443.410936	-3083.168621	741.976976
std	352.494543	396.335019	479.916060	709.807390	158.864590
min	-3683.000000	-1310.000000	-312.700000	-5338.000000	240.000000
25%	-2258.000000	258.200000	1341.000000	-3406.500000	684.100000
50%	-2173.000000	336.900000	1384.000000	-3300.000000	775.300000
75%	-2115.000000	452.200000	1502.000000	-2564.000000	806.200000
max	-994.800000	1954.000000	3289.000000	-3.159000	1453.000000

	4	5	14	21	38
count	263385.000000	263385.000000	263385.000000	263385.000000	263385.000000
mean	-989.004739	614.493336	1155.421520	-2585.229554	76.278682
std	496.853776	287.810554	460.826102	500.319894	292.865050
min	-2982.000000	-321.300000	-65.650000	-5095.000000	-1030.000000
25%	-1221.000000	422.800000	857.200000	-2707.000000	-122.500000
50%	-889.700000	565.400000	1005.000000	-2421.000000	-7.340000
75%	-650.800000	748.800000	1290.000000	-2264.000000	228.200000
max	473.900000	2562.000000	3281.000000	-1187.000000	1266.000000

	4	5	14	21	38
count	10655.000000	10655.000000	10655.000000	10655.000000	10655.000000
mean	-1823.371703	1030.132779	1984.884993	-3672.323698	593.707406
std	323.203409	363.080420	413.558928	493.654402	353.178111
min	-2559.000000	-32.840000	408.000000	-5232.000000	-565.700000
25%	-1956.000000	895.800000	1920.000000	-3775.000000	486.800000
50%	-1872.000000	991.400000	1994.000000	-3680.000000	584.900000
75%	-1805.000000	1068.000000	2090.000000	-3536.000000	712.400000
max	-439.100000	2470.000000	3115.000000	-1652.000000	2596.000000

Diagramas de violín

6133

1204.325 1204.040

0.000000

Confidential with no Personal Information