WinLink E850-96 CE Board Hardware User Manual

Version 0.9, Aug. 2021

Table of Contents

Table of Contents	2
Introduction	3
What's in the Box	5
Board Overview	6
Key Components	7
System Block Diagram	8
Getting Started	8
Prerequisites	8
Starting the board for the first time	8
Component Details	9
Processor	9
PMIC	9
Memory (DRAM)	9
Storage	9
Micro SDHC	9
Boot ROM	9
Networking	9
WiFi	9
Bluetooth	10
HDMI	10
MIPI-DSI	10
Camera Interface	10
USB Ports	10
USB Host ports	11
USB Device ports	11
Audio	11
DC Power	11
Power Measurement	11
UART	11
Buttons	11
LED Indicators	13
Additional Functionality	14
Expansion Connectors	15
Low Speed Expansion Connector	15
High Speed Expansion Connector	18
Audio Connector	20
Power Management Overview	21
Block Diagram	21
DC Power Input	21
Voltage Rails	22
Mechanical specification	23

Introduction

The WinLink E850 Development Board is a 96Boards compliant community board based on Samsung Exynos 850 platform. The following table lists its key features:

	,
Processor	Samsung Exynos 850, \$5E3830 Octa-core ARM@Cortex-A55 operating at up to 2.0GHz • 32/32KB I/D Cache, 512KB+512KB L3 Cache • 128 generic interrupt sources supported in legacy interrupt mode • Coresight subsystem and Secure JTAG ARM Mail G52MP1, operating at up to 700MHz (Mali-G52 GPU with wide range of APIs such as OpneGL ES1.1/2.0/3.2, OpenCL 2.0 Full Profile and Vulkan 1.0/1.1.)
Memory/ Storage	4GB LPDDR4x, 2CH, 16 bits up to 2133MHz (LPDDR4-4266) 64GB on board MCP, eMMC5.1 SD 3.0(Micro SD card slot)
Video	Multi-format Hardware Codec V10.21 Decoding up to 1920x1080@60 fps for H.264/HEVC Decoding up to 1920x1080@30 fps for MPEG4/H.263/MPEG2/VC-1/VP8 20 Mbps for H.264/HEVC/MPEG4/H.263/MPEG2/VC-1/VP8 Encoding up to 1920x1080@60 fps for H.264/HEVC Encoding up to 1920x1080@30 fps for MPEG4/H.263/VP8 20 Mbps for H.264/HEVC/MPEG4/H.263/VP8
Camera Support	2 MIPI CSI-2 ports available on board. (Main CSI0 : 4-lane, CSI1 : 2-lane 4-lane.) Main camera IO supports 21.7MP @30fps. Moving picture performance of FHD@30fps. • Low-power Zero Shutter Lag(ZSL) • Sensor defect compensation 3A-Statistics/Demosaicing/Denoising. • Bayer down scaler • Dynamic Range Compression • Optical Distortion Correction
Connectivity	Samsung SoC, S5N5C12A01-6630(aka. S612) WLAN 802.11a/b/g/n 2.4GHz and 5GHz(On-board BT and WLAN antenna) Bluetooth BR/EDR and Low Energy v5.0 One USB 2.0 micro B (device mode only) Two USB 2.0 (host mode only) One 10/100Mbps Ethernet RJ-45 Connector
I/O Interfaces	One 40-pin Low Speed (LS) expansion connector • UART, SPI, I2S, I2C x2, GPIO x12, DC power One 60-pin High Speed (HS) expansion connector • 4L-MIPI DSI, USB, I2C x2, 2L+4L-MIPI CSI One 16-pin analog expansion connector for stereo headset/ line-out, speaker and analog line-in
External Storage	Micro SD card slot (SD3.0)
User Interface	4 Buttons :Power/Reset/Volume Up/down 6 LED indicators • 4 -user controllable • 2 -for radios (BT and WLAN activity)
OS-support	AOSP based on Android 10.0 k4.14
Power	Power: +12V to +18V
Mechanical	Dimensions: 54mm by 100mm of 96Boards [™] Consumer Edition extended dimensions specifications.
Environmental	Operating Temp: 0°C to +65°C RoHS and Reach compliant

What's in the Box

The box contains one WinLink E850 Development Board and a quick start guide.

UART debug cable for E850 board and Power Adaptor also provided.

E850-96

Development Board

Board Overview

Key Components

Position	Reference	Description
1	U1	Samsung Exynos 850 SoC(Bottom Side)
2	U10	8GB/64GB eMCP(Bottom side)
3	U12	WIFI/Bluetooth S612
4	U2	PMIC (S2MPU12)
5	J5	Low Speed Expansion Connector
6	J4	High Speed Connector
7	CN7	Bluetooth/WLAN Antenna
8	J3	Micro SD Card Socket
9	CN3	HDMI Type A Port
10	T1	RJ-45
11	J1	Micro USB Type B Connector
12	LED7	Hearbeat LED(Yellow)
	LED8	eMMC LED(Yellow)
	LED9	SD LED(White)
	LED10	WiFi LED(Yellow)
	LED11	Bluetooth LED(Blue)
13	P2	USB Host1 Connector
14	Р3	USB Host2 Connector
15	SW1	Boot&USB Host mode switch
16	U16	USB-Ethernet Combo Hub IC
17	U9	HDMI IC (Bottom side component)
18	U18	GTI NPU
19	U7	MIPI MUX switch
20	CN2	Power Outlet
21	SW4	Power Key
22	K1	Reset Key
23	SW2	VOL UP(+)
24	SW3	VOL DN(-)

System Block Diagram

Getting Started

Prerequisites

Before you power up your WinLink E850 Development Board for the first time you will need the following:

- ✓ WinLink E850 Development Board
- ✓ A 96Boards compliant power supply (included in box).
- ✓ A LCD Monitor that supports a HDMI/DVI interface with resolution of 1080P/60Hz.
- ✔ HDMI-HDMI cable or HDMI-DVI cable to connect the board to the Monitor.
- A computer keyboard with USB interface. A computer mouse with USB interface.

Starting the board for the first time

To start the board, follow these simple steps:

- Step1) Connect the HDMI cable to the WinLink E850 Development Board HDMI connector and to the LCD Monitor.
- **Step2)** Set the second & third pin of switch SW1 to the position ON and connect the keyboard to USB connector marked P2 and the mouse to the USB connector marked P3.(It doesn't matter which order you connect them in.)
- **Step3)** Plug the power supply into the power outlet.

step4) Press down the button (marked SW2), and keep more than 3 seconds, the Android system will start.

Component Details

Processor

Exynos 850 is a System-on-Chip(SoC) based on 64-bit RISC cost-effective, low-power, high-performance optimized Little Cortex-A55 Octa micro-processor for smart phone, tablet and also embedded applications

Exynos 850 supports 64-bit code with Cortex-A55 octa-core with LPDDR4x 2-channels, provides the Mali-G52 MP1 GPU with wide range of APIs as OpenGL ES 1.1/2/0/3.2, OpenCL 2.0 Full Profile and Vulkan 1.0/1/1. This processor supports FHD+(1080x2520) resolution.

Exynos 850 has an integrated Image Signal Processor(ISP). Dual camera scenario supports with single 21.7mega pixel@30fps and dual 16+5 mega pixels @30fps preview w/BDS. ISP provides zero-shutter lag of camera shooting. Sensor defect compensation, Dynamic range compression and Geometric distortion correction can be also supported.

PMIC

There are a PMIC and two dedicated DC - DC converters for Exynos 850 platform.

S2MPU12 is a power management system chip, containing 5 buck converters, 1 high efficient boost converter and 36 LDOs(22 PMOS LDOs, 14 NMOS LDOs).

S2MPU12 supports following Audio CODEC:

- Audio performance
 - 84/89 dB SNR: Stereo audio ADC output for MIC input with 20dB/0dB gain setting
 - 120/120/99/97 dB SNR: DAC to Stereo Headphone/Mono line & Earpiece & Speaker
 - AVC (Adaptive Volume control) for a DAC to HP path for increases dynamic range
- Audio interface

Memory (DRAM)

The WinLink E850 Development Board provides 4GB LPDDR4-SDRAM which is a 2-channel and 32bit width bus implementation interfacing directly to the Exynos 850 build-in LPDDR controller. The DDR clock is up to 2133MHz. It is mounted on E850 96Board.

Storage

The WinLink E850 Development Board provides an 64GB flash memory which is compliant with eMMC 5.1.

Micro SDHC

The WinLink E850 Development Board SD slot signals are routed directly to the Exynos 850's XMMC_CARD interface. It meets the SD3.0 standard.

Boot ROM

The WinLink E850 Development Board boots up from the eMMC.

Networking

WiFi

- Supports dual-band (2.4/5GHz) single stream 802.11 ac mode. (20/40/80MHz bandwidth)
- Highly integrated front-end eliminates external PA and LNA matching.
- Concurrent WLAN + BT reception.
- Integrated power detector to support per packet Tx power control

The WinLink E850 Development Board also has a RF connector to connect the external antenna or other RF device. If you want to use this function, you should put the cable to CN7 connector(MS-156C2:Hirose). It will automatically switch RF input from chip antenna(ANT1) to connected device(CN7).

Bluetooth

- Include RF transceiver, mixed ADC/DAC and baseband modem for BT5.0
- Support for BT-WLAN coexistence operation, including concurrent receive via shared LAN with WLAN.
- Support for class 1 and class 2 power-level transmissions without requiring an external PA.

HDMI

The 96Boards specification calls for an HDMI port to be present on the board. The Exynos 850 doesn't include a built-in HDMI interface. The WinLink E850 Development Board deploys the built-in DPI interface as the source for the HDMI output. A peripheral Bridge IC (U9, LT8912B) performs this task and it supports a resolution from 480i to 1080p at 60Hz.

MIPI-DSI

The 96Boards specification calls for a MIPI-DSI implementation via the High Speed Expansion Connector.

The WinLink E850 Development Board implements a 4-lane MIPI_DSI interface meeting this requirement. It can support up to FHD(1080p@60fps). The WinLink E850 Development Board routes the MIPI_DSI interface signals to the XMIPI_DSI4L interface of the Exynos 850.

Camera Interface

The 96Boards specification calls for two camera interfaces.

The WinLink E850 Development Board supports two camera interfaces, one with a 4-lane MIPI_CSI interface and one with 2-lane MIPI_CSI interface, meeting this requirement. The 4-lane MIPI_CSI interface can support 25M camera and the 2-lane MIPI_CSI interface can support 8M camera.

* CN4 connector is also provided for 2-lane MIPI_CSI with I2C4 control signals.

Pin #	Pin Name	Pin name in E850 SoC
1	GND	GND(1,4,7,10)
2	MIPI_CSI4LB_D0_N	XMIPI_CSI4LB_D0_N
3	MIPI_CSI4LB_D0_P	XMIPI_CSI4LB_D0_P
4	GND	GND
5	MIPI_CSI4LB_D1_N	XMIPI_CSI4LB_D1_N
6	MIPI_CSI4LB_D1_P	XMIPI_CSI4LB_D1_P
7	GND	GND
8	MIPI_CSI4LB_CLK_N	XMIPI_CSI4LB_CLK_N
9	MIPI_CSI4LB_CLK_P	XMIPI_CSI4LB_CLK_P
10	GND	GND
11	CAM_GPIO	XGPIO5/GPG1[5]
12	CLK2/CSI2_MCLK	XCAM_MCLK2/GPC0[2]
13	I2C4_SCL	XHSI2C2_SCL/GPC1[5]
14	I2C4_SDA	XHSI2C2_SDA/GPC1[4
15	CAM_VDD_33	VLDO32_PMIC(3.3V,300mA)

MIPI_CSI interface of E850 SoC XMIPI_CSI4LB signals are mapped.

Connector Part #: 10031HR-H15G(15-pin 1.0mm pitch FFC receptacle.

(Compatible with RPi camera V2.)

USB Ports

The WinLink E850 Development Board supports a USB device port and three USB host ports via a USB MUX(U6). The input channel (D+/D-) of USB MUX is connected to the P0 port of the SOC Exynos 850, and the two output channels (1D+/1D-,2D+/2D-) are connected to micro USB port and USB hub respectively. The three USB host ports are connected to the downstream ports of the USB hub. The control of U6(TS3USB221A) is done via a SW1's 1st pin (HOST_SEL).

When this signal is logic low, '0', the USB data lines are routed to the Micro USB connector and XEINT4 pin of Exynos 850 is set to low, '0', an external interrupt for Exynos 850 SoC as device mode. When 'HOST_SEL' is logic level high, '1', the USB data lines are routed to U16 (a 4-port USB HUB) and the Exynos 850 is set to host mode.

USB Host ports

The WinLink E850 Development Board supports three USB host port via a USB2.0 hub (U16 LAN9514). Its upstream signal is connected to USB P0 interface of Exynos 850.

Port 1 of the USB HUB is routed to P2, a Type 'A' USB Host connector

Port 2 of the USB HUB is routed to P3, a Type 'A' USB Host connector

Port 3 of the USB HUB is routed to the High Speed Expansion connector.

USB Device ports

The WinLink E850 Development Board implements a device port. The port is located at J1, a Micro USB type B. It is routed to USB_P0 interface of Exynos 850.

Note: the board can work in one mode at a time, Host mode or Device mode, not both.

Audio

The WinLink E850 Development Board has four audio ports: BT, HDMI, PCM and analog port. The analog port which connected to PMIC(U2:S2MPU12) includes a stereo handset IO outputs.

DC Power

The WinLink E850 Development Board can be powered by two ways:

- 12V to 18V supply from a dedicated DC jack(CN2)
- 12V to 18V supply from the DC_IN pins on the Low Speed Expansion Connector(J5)

Power Measurement

The WinLink E850 Development Board has current sense resistors R42.

Reference	Net	Description
R42	V_SYS	To measure the current of V_SYS(5V) power

UART

The WinLink E850 Development Board has two UART ports (UART1 / UART0), both present on the Low Speed Expansion connector. They are routed to the UART1 and UART0 interface of Exynos 850 separately.

Buttons

The WinLink E850 Development Board presents four buttons. They are Power key, VOL up key, VOL down key and Reset key. The power ON/OFF and RESET signals are also routed to the Low Speed Expansion connector.

Power Button

The push-button SW2 serves as the power-on/sleep button. Upon applying power to the board, press the power button for more than 3 seconds, the board will boot up. Once the board is running you can turn power-off by pressing the power button for more than 3 seconds. If the board is in a sleep mode, pressing the power bottom will wake up the board. Oppositely, if the board is in an active mode, pressing the power bottom will change the board into sleep mode.

Volume up/down

The Volume UP button(SW4) and Volume Down button(SW5) can be used to control the output speaker volume of the WinLink E850 Development Board.

Reset Button

The push-button SW3 serves as the hardware reset button. Press the button, the system will be rebooted

DIP-switch

There is a four-channel dip-switch(SW1) on the board.(Default position is "OFF".) The Table below is for boot mode.

SW1:4	SW1:3	SW1:2	First Boot Device	
XOM[2]	XOM[1]	XOM[0]		
off	off	off	1 st : eMMC, 2 nd : USB	
0	0	1	1 st : USB	
0	1	0	Reserved	
0	1	1	1st: eMMC(on board memory)	
3'b100~3'b111		1	Reserved	

LED Indicators

The WinLink E850 Development Board has five LEDs.

Two activity LEDs: LED9, LED10

- WiFi activity LED –The WinLink E850 Development Board drives this Yellow LED(LED10) via X4, an IO from Exynos 850.
- BT activity LED –The WinLink E850 Development Board drives this Blue LED(LED11) via X3, an IO from Exynos 850.

Three LEDs:

The three user LEDs are surface mount Green in 0603 size located next to the micro-USB connector. The WinLink E850 Development Board drives the three LEDs from the Exynos 850 XGPIOs;

X1: XGPIO10/GPG2[2] - Heart beat LED

X2: XGPIO11/GPG2[3] - eMMC access/write LED

X3: XGPIO12/GPG2[4] - SD access/write LED

Additional Debug Functionality

The WinLink E850 Development Board also has JTAG interface (CN1) for user debugging.

CN1 is 0.05" 10-pin angle-type pin header populated.

UARTO for debug console connector (CN5). The CN5 is 12507WR-03L SMD 1.25mm 3-pin SMD Connector. The UARTO Tx/Rx pins are also available in LS 40-pin expansion connector for 96Boards interface SPEC.

10-pin JTAG header

 Pin #
 Pin name

 1
 VTref

 2
 TMS

 4
 TCK

 6
 TDO

 7
 NC

 8
 TDI

 10
 nRESET

 3,5,9
 GND

Expansion Connectors

Low Speed Expansion Connector

The following tables show the Low Speed Expansion Connector pin out:

PIN	96Boards Signals	WinLink E850 Development Board Signals	Note(Exynos 850 pin)
1	GND	GND	GND
3	UARTO_CTS	LS_UARTO_CTS	XUSI_CMGPO_CTSN_CSN
5	UARTO_TxD	LS_UARTO_TxD	XUSI_CMGP0_TXD_DO_SDA0
7	UARTO_RxD	LS_UARTO_RxD	XUSI_CMGP0_RXD_CLK_SCL0
9	UARTO_RTS	LS_UARTO_RTS	XUSI_CMGP0_RTSN_DI
11	UART1_TxD	UART1_TxD	UART_DEBUG_1_TxD
13	UART1_RxD	UART1_RxD	UART_DEBUG_1_RxD
15	I2C0_SCL	12C0_SCL	XI2CO_SCL
17	I2C0_SDA	12C0_SDA	XI2CO_SDA
19	I2C1_SCL	I2C1_SCL	XI2C1_SCL
21	I2C1_SDA	I2C1_SDA	XI2C1_SDA
23	GPIO-A	GPIO-A	XEINT9/GPA1[1]
25	GPIO-C	GPIO-C	XEINT10/GPA1[2]
27	GPIO-E	GPIO-E	XEINT11/GPA1[3]
29	GPIO-G	GPIO-G	XEINT22/GPA2[6]
31	GPIO-I	GPIO-I	XEINT24/GPA3[0]
33	GPIO-K	GPIO-K	XEINT26/GPA3[2]
35	+1V8	VLDO14_PMIC	VLDO14_PMIC
37	+5V	V_SYS	
39	GND	GND	GND
2	GND	GND	GND
4	PWR_BTN_N	PWRKEY	PWRON(U2, PMIC)
6	RST_BTN_N	SYSRSTB	
8	SPIO_SCLK	SPIO_CK	
10	SPIO_DIN	SPI0_MI	
12	SPIO_CS	SPIO_CS	
14	SPI0_DOUT	SPI0_MO	
		ļ	

16	PCM_FS	PM_I2SO_SYNC	
18	PCM_CLK	PM_I2SO_B CLK	
20	PCM_DO	PM_I2S0_DO	
22	PCM_DI	PM_I2S0_DI	
24	GPIO-B	GPIO-B	XEINT17/GPA2[1]
26	GPIO-D	GPIO-D	XEINT19/GPA2[3]
28	GPIO-F	GPIO-F	XEINT21/GPA2[5]
30	GPIO-H	GPIO-H	XEINT23/GPA2[7]
32	GPIO-J	GPIO-J	XEINT25/GPA3[1]
34	GPIO-L	GPIO-L	XEINT27/GPA3[3]
36	SYS_DCIN	DC_IN	
38	SYC_DCIN	DC_IN	
40	GND	GND	

UART {0/1}

The 96Boards specifications calls for a 4-wire UART implementation, UARTO and an optimal second 2wire UART, UART1 on the Low-Speed Expansion Connector.

The WinLink E850 Development Board implements UART0 as a 4-wire UART that connects directly to the Exynos 850 SoC. These signals are driven at 1.8V.

The WinLink E850 Development Board implements UART1 as a 2-wire UART that connects directly to the Exynos 850 SoC. These signals are driven at 1.8V.

I2C {0/1}

The 96Boards specification calls for two I2C interfaces to be implemented on the Low-Speed Expansion Connector. The WinLink E850 Development Board implements both interfaces named I2C4 and I2C5. They connect directly to the Exynos 850 SoC. Each of the I2C lines is pulled up to VIO18_PMU via 4.7K resistor.

GPIO {A-L}

E850 96 Board GPIO Signals	Exynos 850 pin	Remarks
GPIO-A	XEINT9/GPA1[1]	VDDQ18_ALIVE(1.8V) signal
GPIO-C	XEINT10/GPA1[2]	VDDQ18_ALIVE(1.8V) signal
GPIO-E	XEINT11/GPA1[3]	VDDQ18_ALIVE(1.8V) signal
GPIO-G	XEINT22/GPA2[6]	VDDQ18_ALIVE(1.8V) signal
GPIO-I	XEINT24/GPA3[0]	VDDQ18_ALIVE(1.8V) signal
GPIO-K	XEINT26/GPA3[2]	VDDQ18_ALIVE(1.8V) signal
GPIO-B	XEINT17/GPA2[1]	VDDQ18_ALIVE(1.8V) signal
GPIO-D	XEINT19/GPA2[3]	VDDQ18_ALIVE(1.8V) signal
GPIO-F	XEINT21/GPA2[5]	VDDQ18_ALIVE(1.8V) signal
GPIO-H	XEINT23/GPA2[7]	VDDQ18_ALIVE(1.8V) signal
GPIO-J	XEINT25/GPA3[1]	VDDQ18_ALIVE(1.8V) signal
GPIO-L	XEINT27/GPA3[3]	VDDQ18_ALIVE(1.8V) signal

The 96Boards specification calls for 12 GPIO lines to be implemented on the Low Speed Expansion Connector. All GPIO pins could be used as external interrupt sources. GPIO A \sim L are routed to the Exynos 850 SoC.

Note 1) When a port is used as an output function, DISABLE the pull-up/down.

Note 2) All GPIOA~L Pull Down with 50k internally by default

SPI 0

The 96Boards specification calls for one SPI bus master to be provided on the Low Speed Expansion Connector. The WinLink E850 Development Board implements a full SPI master with 4 wires, CLK, CS, MOSI and MISO. The signals are connected directly to the Exynos 850 SoC and driven at 1.8V.

PCM/I2S

The 96Boards specification calls for one PCM/I2S bus to be provided on the Low Speed Expansion Connector. The CLK, FS and DO signals are required while the DI is optional.

The WinLink E850 Development Board implements a PCM/I2S interface with 4 wires, CLK, FS, DO and DI. The signals are connected directly to the Exynos 850 SoC and driven at 1.8V.

Power and Reset

The 96Boards specification calls for a signal on the Low Speed Expansion Connector that can power on/off the board and a signal that serves as a board reset signal.

The WinLink E850 Development Board routes the PWR_BTN_N (named POWERKEY on schematic) signal to the PWRON pin of the PMIC S2MPU12. This signal is driven by SW4 as well, the on-board power on push-button switch. A mezzanine implementation of this signals should not drive it with any voltage, the only allowed operation is to force it to GND to start the board from a sleep mode.

The WinLink E850 Development Board routes the RST_BTN_N (named XNWRESET on schematic) signal to the WRSTBO pin of the PMIC S2MPU12.

Power Supplies

The WinLink E850-96Boards specification calls for three power rails to be present on the Low Speed Expansion Connector:

- +1.8V Max of 100mA
- +5V Provide a minimum of 7.5W of power (2.5A).
- SYS_DCIN 12-18V input with enough current to support all the board functions.

The WinLink E850 Development Board supports these requirements as follows:

+1.8V: Driven by PMIC S2MPU12 up to 450mA. It is the system IO power (VLDO14_PMIC), and it can supply power up to 450mA to the Low Speed Expansion Connector.

+5V : Driven by

a 8A System DC-DC buck converter (U4). It also provides the VBUS power to the two USB host connectors (P2, P3) and the HDMI 5V power to the HDMI connector (CN3). The remaining capacity provides a max current of 2A to the Low Speed Expansion Connector, for a total of 10W which meets the 96Boards requirements.

SYS_DCIN Can serves as the board's main power source or can receive power from the board.

High Speed Expansion Connector

PI N	96Boards Signals	WinLink E850 Development Board Signals	Note
1	SD_DAT0/SPI1_DOUT	SPI1_MO	
3	SD_DAT1	NC	
5	SD_DAT2	NC	
7	SD_DAT3/SPI1_CS	SPI1_CS	
9	SD_SCLK/SPI1_SCL K	SPI1_CK	
11	SD_CMD/SPI1_DIN	SPI1_MI	
13	GND	GND	

15	CLKO/CSIO_MCLK	CAM_CLK0	
17	CLK1/CSI1_MCLK	CAM_CLK1	
19	GND	GND	
21	DSI_CLK+	ТСР	
23	DSI_CLK-	TCN	
25	GND	GND	
27	DSI_D0+	TDP0	
29	DSI_D0-	TDN0	
31	GND	GND	
33	DSI_D1+	TDP1	
35	DSI_D1-	TDN1	
37	GND	GND	
39	DSI_D2+	TDP2	
41	DSI_D2-	TDN2	
43	GND	GND	
45	DSI_D3+	TDP3	
47	DSI_D3-	TDN3	
49	GND	GND	
51	USB_D+	USB_DP_P1_EXP	
53	USB_D-	USB_DM_P1_EXP	
55	GND	GND	
57	HSIC_STR	NC	
59	HSIC_DATA	NC	

High Speed Expansion Connector(Cont'd)

opec	speca Expansion connector(cont a)			
PI	96Boards Signals	WinLink E850 Development Board Signals	Note	
N				
2	CSIO_C+	RCP		
4	CSIO_C-	RCN		
6	GND	GND		
8	CSI0_D0+	RDP0		
10	CSI0_D0-	RDN0		
12	GND	GND		

14	CSI0_D1+	RDP1	
16	CCSI0_D1-	RDN1	
18	GND	GND	
20	CSI0_D2+	RDP2	
22	CSI0_D2-	RDN2	
24	GND	GND	
26	CSI0_D3+	RDP3	
28	CSI0_D3-	RDN3	
30	GND	GND	
32	I2C2_SCL	SCL2	
34	I2C2_SDA	SDA2	
36	I2C3_SCL	SCL3	
38	I2C3_SDA	SDA3	
40	GND	GND	
42	CSI1_D0+	RDPO_A	
44	CSI1_D0-	RDNO_A	
46	GND	GND	
48	CSI1_D1+	RDP1_A	
50	CSI1_D1-	RDN1_A	
52	GND	GND	
54	CSI1_C+	RCP_A	
56	CSI1_C-	RCN_A	
58	GND	GND	
60	RESERVED	Pull-up to VIO18_PMU via 100K resistor	

MIPI DSI 0

The 96Boards specification calls for a MIPI-DSI to be present on the High Speed Expansion Connector. A minimum of one lane is required and up to four lanes can be accommodated on the connector.

The WinLink E850 Development Board implementation supports a full four lane (1.2Gbps/lane) MIPIDSI interface that is routed to the High Speed Expansion Connector. The MIPI-DSI signals are directly connected to DSI-0 of Exynos 850.

MIPI CSI {0/1}

The 96Boards specification calls for two MIPI-CSI interfaces to be present on the High Speed Expansion Connector. Both interfaces are optional. CSIO interface can be up to four lanes while CSI1 is up to two lanes.

The WinLink E850 Development Board implementation supports a full four lane MIPI-CSI interface on

CSIO and two lanes of MIPI-CSI on CSI1. All MIPI-CSI signals are routed directly to/from the Exynos 850 SoC. CSIO can support up to 25M@30fps and CSI1 can support up to 8M@30fps. The max data rate of each lane is 2.5Gbps.

I2C {2/3}

The 96Boards specification calls for two I2C interfaces to be present on the High Speed Expansion Connector. Both interfaces are optional unless a MIPI-CSI interface has been implemented. Then an I2C interface shall be implemented.

The WinLink E850 Development Board implementation supports two MIPI-CSI interfaces and therefore must support two I2C interfaces. For MIPI-CSI0 the companion I2C2 is routed directly from the EXYNOS 850SoC. For MIPI-CSI1, the companion I2C is I2C3.

SD/SPI

The 96Boards specification calls for an SD interface or a SPI port to be part of the High Speed Expansion Connector. The WinLink E850 Development Board implements a full SPI master with 4 wires (96Boards SPI Configuration), CLK, CS, MOSI and MISO. All the signals are connected directly to the Exynos 850 SoC.

These signals are driven at 1.8V.

Clocks

The 96Boards specification calls for one or two programmable clock interfaces to be provided on the High Speed Expansion Connector. These clocks may have a secondary function of being CSI0_MCLK and CSI1_MCLK. If these clocks can't be supported by the SoC than an alternative GPIO or No Connect is allowed by the specifications.

The WinLink E850 Development Board implements two CSI clocks which are connected directly to the Exynos 850 SoC. These signals are driven at 1.8V.

USB

The 96Boards specification calls for a USB Data line interface to be present on the High Speed Expansion Connector. The WinLink E850 Development Board implements this requirement by routing USB channel 3 from the USB HUB to the High Speed Expansion Connector.

Reserved

The pin 60 of the High Speed Expansion Connector is pulled up to AVDD18_HSCON via R179 100K resistor.

Audio Connector

PIN	3.5mm Audio Receptacle (P1)	Note: CTIA 3.5 Plug (Part #: APJ3-089S64)
1	EAR_MIC_P	Microphone positive input of PMIC's Audio Front-end (U2, S2MPU12)
2	PM_HPOUTL	Audio left output from PMIC's Audio Front-end (U2, S2MPU12)
3	PM_HPOUTR	Audio right output from PMIC's Audio Front-end (U2, S2MPU12)
4	GND	Ground
10	PM_HPL_DET	Audio left-channel detection signal of PMIC(U2, S2MPU12)
11	PM_HPG_DET	Audio GND detection signal of PMIC(U2, S2MPU12)

Power Management Overview

Block Diagram

DC Power Input

- An 12V to 18V power from a dedicated DC jack CN2.
- An 12V to 18V power from the SYS_DCIN pins on the Low Speed Expansion Connector J5.

Note: Please refer to the mechanical size of the DC plug below. The inside diameter of the plug is 1.7mm, the outer diameter of the plug is 4.75mm. The positive electrode of the DC plug is in the inside, and the negative pole is outside.

SCHEMATIC	-1 -3 -3 -2
Model	PJ-041H
Center Pin	Ø1.65 mm

Auxiliary 5V power supply available on CN6.

Voltage Rails

Circuit Type	Net Name	Default ON Voltage(V)	lout Max (mA)	Connected Net(s)
Sys.BUCK	V_SYS	5	8000	System Power : 5V (MP2386 output)
	BUCK1_PMIC	0.75	1500	VDD_CPU of Exynos 850
	BUCK2_PMIC	0.75	4000	VDD_INT of Exynos 850
	BUCK3_PMIC	0.75	3000	VDD_CP of Exynos 850, VDD_WBG(WLBT : VDDQ18_WBG)
	VLDO1_PMIC	0.75	300	VDD075_ALIVE, VDD075_TCXO, VDD_ALV_CP, VDD075_USB20
	VLDO2_PMIC	1.8	450	VDDQ18_EXT , VDDQ18_ALIVE, VDDQ18_MMC_EMBD, AVDD18_GPADC, VDDQ18_WBG, AVDD18_TCXO, VDDP18_MMC_CARD, VDD1_MEM, VDD_EMMC_1P8, VDD18_I2C, VDDQ18_PERI, VDD18_IO_WLBT, AVDD18_USB20
	VLDO3_PMIC	0.85	300	VDD085_OTP, VDD085_PLL_CPUCL0, VDD085_PLL_CPUCL1, VDD085_PLL_SHARED, VDD085_PLL_AUD, VDD085_PLL_DDRPHY0/1, VDD085_PLL_G3D, VDD085D_PLL_SHARED, VDD085D_PLL_AUD, AVDD085_MIPI_CSI_DPHY, AVDD085_MIPI_DSI_DPHY
	VLDO4_PMIC	1.8	150	AVDD18_PLL_CPUCLO/1, AVDD18_PLL_AUD, AVDD18_PLL_SHARED, AVDD18_PLL_G3D, AVDD18_MIPI_CSI_DPHY, AVDD18_MIPI_DSI_DPHY, AVDD18_PLL_DDRPHYO/1, AVDD18_OTP, AVDD18_AUD_DET
_CLK PMIC	VLDO5_PMIC	1.1	800	VDD2_MEM, VDDQ11_DRAM0_CKE, VDDQ11_DRAM1_CKE
	VLDO6_PMIC	0.6	600	VDDQ_MEM, VDDQ06_DRAM0, VDDQ06_DRAM1, VDDQ06_DRAM0_CLK, VDDQ06_DRAM1_CLK
	VLDO10_PMIC	1.8	150	VDDQ1833_MMC_CARD
	VLDO11_PMIC	3.0	150	AVDD33_USB20
	VLDO14_PMIC	1.8	450	AVDD18_CP, AVDD18_WLBT, AVDD18_HSCON, AVDD18_MUSB AVDD18_HSCON@HS_CON(J4, #60), LSCON(J5, #35)
	VLDO24_PMIC	3.0	800	VDD_LAN
	VLDO25_PMIC	1.8	150	VDD_T_FLASH_3V0
	VLDO27_PMIC	3.0	180	MIPI_SWITCH_3V3
	VLDO28_PMIC	1.8	150	HDMI_CONV_1V8
	VLDO30_PMIC	1.8	150	NPU_VDD18
	VLDO32_PMIC	3.3	300	CAM_VDD
	VLDO35_PMIC	1.8	150	DLDO_CORE_1P8
	PWR2_D	5	500	USB host1 output power protection(P2)
	PWR3_D	5	500	USB host2 output power protection(P3)
Other	VLDO14_PMIC	1.8	450	1.8V on LS connector(#35)
	VOUT	5	8000	5V output of System BUCK(MP2386)
	SYS_DCIN	8-18	3000	8-18V DCIN on LS connector(#36, #38)

Mechanical specification

2D Reference Drawing

* WinLink E850 Development Board meets 96Boards™ Consumer Edition extended dimensions specifications.

