(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 June 2003 (12.06.2003)

PCT

(10) International Publication Number WO 03/048185 A2

(51) International Patent Classification7:

C07K

- (21) International Application Number: PCT/US02/37660
- (22) International Filing Date:

21 November 2002 (21.11.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/334,488

30 November 2001 (30.11.2001) U

- (71) Applicant (for all designated States except US): GEN-VEC, INC. [US/US]; 65 West Watkins Mill Road, Gaithesburg, MID 20878 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KESSLER, Paul, D. [US/US]; 1716 Algonquin Road, Frederick, MD 21701 (US). KOVESDI, Imre [US/US]; 7713 Warbler Lane, Rockville, MD 20855 (US).
- (74) Agents: KISSLING, Heather, R._ et al.; Leydig, Voit & Mayer, Ltd., Two Prudential Plaza, Suite 4900, 180 North Stetson, Chicago, IL 60601-6780 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANGIOPIOETIN RELATED FACTORS

(57) Abstract: The invention provides fusion proteins comprising a fibrinogen-like domain comprising an amino acid sequence identical or homologous to the amino acid sequence of the fibrinogen-like domain of a first wild-type angiopoietin-related factor and a coiled-coil domain comprising an amino acid sequence identical or homologous to the coiled-coil domain of a second wild-type angiopoietin-related factor, where the first and second wild-type angiopoietin related factors are different. The invention further provides polynucleotides encoding such fusion proteins, vectors comprising such polynucleotides, and methods of making and administering such fusion proteins, polynucleotides, and vectors.

ANGIOPOIETIN RELATED FACTORS

FIELD OF THE INVENTION

[0001] This invention pertains to novel angiopoietin related factors, nucleic acids encoding such factors, vectors comprising such nucleic acids, and methods of producing and administering such factors, nucleic acids, and vectors.

BACKGROUND OF THE INVENTION

[0002] The angiopoietins are a recently discovered family of related proteins. Angiopoietins are characterized by their ability to bind Tie receptors (sometimes also referred to as "ork" or "tek" receptors) (described in, e.g., International Patent Application WO 98/05779, U.S. Patent 5,447,860, Jones et al., *Nat. Rev. Mol. Cell Biol.*, 2(4), 257-67 (2001), and references cited therein), and in having a structure that includes a N-terminal coiled-coil domain and C-terminal fibrinogen-like domain. The angiopoietins are further functionally characterized by their ability to modulate angiogenesis and related biological activities in the endothelium. Valenzuela et al., *Proc. Natl. Acad. Sci. USA*, 96(5), 1904-1909 (1999). For example, angiopoietin-1 (Ang-1) has been linked to embryonic vascular stabilization, branching morphogenesis, and post-natal angiogenesis. However, not all angiopoietins induce angiogenesis. For example, angiopoietin-2 (Ang-2) acts as an antagonist for Ang-1, disrupting angiogenesis *in vivo*. Maisonpierre et al., *Science*, 277, 55-60 (1997).

[0003] Several factors structurally and/or functionally related to the angiopoietins also have been identified. For example, U.S. Patents 5,972,338, 6,030,831, and 6,057,435 describe a number of protein factors homologous to the angiopoietins. These factors exhibit significant levels of amino acid sequence identity to Ang-1 and/or other angiopoietins and typically contain a fibrinogen-like domain, coiled-coil domain, or both. However, some of these factors may not bind a Tie receptor.

[0004] Fusion proteins containing portions of angiopoietins or angiopoietin homologs are known in the art. Most of these fusion proteins are limited to a protein comprising a single angiopoietin or angiopoietin homolog peptide portion and a heterologous portion typically added to promote protein stability, targeting, or purification. For example, U.S. Patent 6,074,873 discloses fusion proteins comprising an angiopoietin homolog portion where either the N-terminal region of the angiopoietin amino acid sequence is fused to a peptide portion that promotes secretion or the C-terminal portion of the angiopoietin amino acid sequence is fused to an immunogenic polypeptide. International Patent Application WO 00/37642 discloses fusion proteins comprising an angiopoietin peptide portion and a heterologous multimerizing portion derived from an immunoglobulin. International Patent

Application WO 00/75329 discloses fusion proteins comprising an angiogenic factor linked to a molecule that specifically binds the vascular endothelium.

[0005] International Patent Application WO 98/05779 discloses fusion proteins comprising two peptide portions derived from different angiopoietins. However, the fusion proteins of the '779 application are limited to generalized combinations of Ang-1, Ang-2, angiopoietin-3 (Ang-3), and angiopoietin-4 (Ang-4) peptide portions. Similarly, International Patent Applications WO 00/64946 and WO 01/03735 describe particular Ang-1/Ang-2 fusion proteins. International Patent Application WO 01/47951 describes angiopoietin homologs having at least two fibrinogen-like domains or coiled-coil domains. Thus, the fusion proteins of the '779, '946, '735, and '951 applications are limited in their characteristics.

[0006] There remains a need for novel angiopoietin-related factors that exhibit different biological properties than the angiopoietins, angiopoietin homologs, and angiopoietin fusion proteins previously known in the art. The present invention provides such angiopoietin-related factors, as well as polynucleotides encoding such angiopoietin-related factors, vectors comprising such polynucleotides and methods of producing and using such factors, polynucleotides, and vectors. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.

BRIEF SUMMARY OF THE INVENTION

[0007] The invention provides a fusion protein comprising (a) a fibrinogen-like domain that exhibits at least about 75% amino acid sequence identity to the fibrinogen-like domain of a first wild-type protein, which binds a receptor that, when activated, promotes or inhibits angiogenesis, and (b) a coiled-coil domain that exhibits at least about 75% amino acid sequence identity to the coiled-coil domain of a second wild-type protein, which increases the affinity of the fusion protein for the receptor, promotes formation of a multimer comprising the fusion protein, or both, wherein the first protein and second protein are different, the first protein and second protein exhibit at least about 30% overall amino acid sequence identity with Ang-1, and the first protein, the second protein, or both proteins, are not Ang-1, Ang-2, Ang-3, or Ang-4.

[0008] The invention further provides a fusion protein comprising (a) a fibrinogen-like domain that exhibits at least about 30% amino acid sequence identity to the fibrinogen-like domain of Ang-1, and (b) a coiled-coil domain that comprises (1) an amino acid sequence that exhibits at least about 60% amino acid sequence identity to the coiled-coil domain of zapo1, murine FDRG, or both, (2) an amino acid sequence that exhibits at least about 50% amino acid sequence identity to the coiled-coil domain of NL1, NL5, or both, (3) an amino

acid sequence that exhibits at least about 40% amino acid sequence identity to the coiled-coiled domain of NL8, (4) an amino acid sequence that exhibits at least about 25% amino acid sequence identity to the coiled-coiled domain of FLS 139, or (5) an amino acid sequence that fulfills any combination of (1)-(4), wherein *in vivo* administration or production of the fusion protein promotes or inhibits angiogenesis in a mammalian host.

[0009] The invention also provides a fusion protein comprising (a) a fibrinogen-like domain that comprises (1) an amino acid sequence that exhibits at least about 60% amino acid sequence identity to the fibrinogen-like domain of NL1, NL5, NL8, or any combination thereof, (2) an amino acid sequence that exhibits at least about 60% amino acid sequence identity to the fibrinogen-like domain of NL4, (3) an amino acid sequence that exhibits at least about 40% amino acid sequence identity to the fibrinogen-like domain of zapo1, murine FDRG, or both, (4) an amino acid sequence that exhibits at least about 45% amino acid sequence identity to the fibrinogen-like domain of NL3, (5) an amino acid sequence that exhibits at least about 30% amino acid sequence identity to the fibrinogen-like domain of FLS 139, or (6) an amino acid sequence which fulfills any combination of (1)-(5), and (b) a coiled-coil domain that exhibits at least about 35% amino acid sequence identity to the coiled-coil domain of Ang-1, Ang-2, Ang-2X, Ang-3, Ang-4, or any combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0010] Figure 1 is a Kyte & Doolittle hydropathy profile of a first exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0011] Figure 2 is a Kyte & Doolittle hydropathy profile of a second exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0012] Figure 3 is a Kyte & Doolittle hydropathy profile of a third exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0013] Figure 4 is a Kyte & Doolittle hydropathy profile of a fourth exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0014] Figure 5 is a Kyte & Doolittle hydropathy profile of a fifth exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0015] Figure 6 is a Kyte & Doolittle hydropathy profile of a sixth exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0016] Figure 7 is a Kyte & Doolittle hydropathy profile of a seventh exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0017] Figure 8 is a Kyte & Doolittle hydropathy profile of an eighth exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- [0018] Figure 9 is a Kyte & Doolittle hydropathy profile of a ninth exemplary coiled-coil domain suitable for incorporation in a fusion protein of the invention.

PCT/US02/37660 WO 03/048185

4

[0019] Figure 10 is a Kyte & Doolittle hydropathy profile of a tenth exemplary coiledcoil domain suitable for incorporation in a fusion protein of the invention.

- Figure 11 is a Kyte & Doolittle hydropathy profile of an eleventh exemplary [0020] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 12 is a Kyte & Doolittle hydropathy profile of a twelfth exemplary [0021] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 13 is a Kyte & Doolittle hydropathy profile of a thirteenth exemplary [0022] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 14 is a Kyte & Doolittle hydropathy profile of a fourteenth exemplary [0023] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 15 is a Kyte & Doolittle hydropathy profile of a fifteenth exemplary [0024] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 16 is a Kyte & Doolittle hydropathy profile of a sixteenth exemplary [0025]coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 17 is a Kyte & Doolittle hydropathy profile of a seventeenth exemplary [0026] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 18 is a Kyte & Doolittle hydropathy profile of an eighteenth exemplary [0027] coiled-coil domain suitable for incorporation in a fusion protein of the invention.
- Figure 19 is a Kyte & Doolittle hydropathy profile of a nineteenth exemplary [0028] coiled-coil domain suitable for incorporation in a fusion protein of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides novel angiopoietin-related factors, particularly novel [0029] fusion proteins, the novel ARF homolog Ang-2X, and synthetic homologs of known ARFs. The invention further provides polynucleotides encoding such ARFs, vectors comprising such polynucleotides, and methods of producing such fusion proteins, polynucleotides, and vectors. The invention additionally provides methods of using such novel ARFs, and new methods of using ARFs already known in the art.

An "angiopoietin related factor" (ARF) is any protein of at least about 100 [0030] amino acid residues, preferably at least about 200 amino acid residues, more preferably at least about 300 amino acid residues, and typically about 350-600 amino acid residues (most typically about 500 amino acid residues) that exhibits at least about 20% overall amino acid sequence identity, preferably at least about 25% amino acid sequence identity, and even more preferably at least about 30% amino acid sequence identity (e.g., at least about 35%, at least about 40%, or even at least about 50% amino acid sequence identity) to angiopoietin-1 (SEQ ID NO:1).

The fusion proteins of the invention comprise at least two peptide portions, each [0031] of which independently and separately (1) share an identical amino acid sequence with a naturally occurring ARF peptide portion, (2) comprise an amino acid sequence that exhibits a significant amount of sequence identity (at least about 25% amino acid sequence identity, preferably at least about 30% amino acid sequence identity) to the amino acid sequence of a wild-type ARF peptide portion, (3) comprise an amino acid sequence that exhibits a significant amount of sequence homology (at least about 30% sequence homology, preferably at least about 35% sequence homology) to a wild-type ARF peptide portion, (4) comprise an amino acid sequence that exhibits significant weight homology to and/or similar hydropathy profile with a wild-type ARF peptide portion, (5) are encoded by a polynucleotide that hybridizes, under at least moderate stringency conditions with the complement of a polynucleotide that, when transcribed and translated, produces (or otherwise results in the production of, e.g., after post-translational modification) a protein that is identical to a wild-type ARF peptide portion, or would so hybridize but for the degeneracy of the genetic code, (6) are bound by antibodies to a naturally occurring ARF peptide portion, or (7) exhibit any combination of characteristics (1)-(6). ARF fusion protein peptide portions that exhibit more than one of the six characteristics are preferred, and ARF fusion protein peptide portions that exhibit all of characteristics (4)-(6) and at least one of characteristics (1)-(3) (most preferably characteristic (1)) are particularly preferred. A "peptide portion" is any amino acid sequence contained within a larger

[0032] A "peptide portion" is any amino acid sequence contained within a larger peptide, polypeptide, or protein (which terms are used synonymously herein, unless otherwise indicated) of at least about 15, preferably at least about 20, more preferably at least about 25, and even more preferably at least about 30 amino acid residues (e.g., at least about 40, at least about 50, at least about 70, at least about 100, or even more amino acid residues).

[0033] "Identity" (sometimes referred to as "overall" identity) with respect to amino acid or polynucleotide sequences refers to the percentage of residues or bases that are identical in the two sequences when the sequences are optimally aligned. If, in the optimal alignment, a position in a first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, the sequences exhibit identity with respect to that position. The level of identity between two sequences (or "percent sequence identity") is measured as a ratio of the number of identical positions shared by the sequences with respect to the size of the sequences (i.e., percent sequence identity = (number of identical positions/total number of positions) x 100).

[0034] The "optimal alignment" is the alignment that provides the highest identity between the aligned sequences. In obtaining the optimal alignment, gaps can be introduced, and some amount of non-identical sequences and/or ambiguous sequences can be ignored.

Preferably, if a gap needs to be inserted into a first sequence to achieve the optimal alignment, the percent identity is calculated using only the residues that are paired with a corresponding amino acid residue (i.e., the calculation does not consider residues in the second sequences that are in the "gap" of the first sequence). However, it is often preferable that the introduction of gaps and/or the ignoring of non-homologous/ambiguous sequences are associated with a "gap penalty."

[0035] A number of mathematical algorithms for rapidly obtaining the optimal alignment and calculating identity between two or more sequences are known and incorporated into a number of available software programs. Examples of such programs include the MATCH-BOX, MULTAIN, GCG, FASTA, and ROBUST programs for amino acid sequence analysis, and the SIM, GAP, NAP, LAP2, GAP2, and PIPMAKER programs for nucleotide sequences. Preferred software analysis programs for both amino acid and polynucleotide sequence analysis include the ALIGN, CLUSTAL W (e.g., version 1.6 and later versions thereof), and BLAST programs (e.g., BLAST 2.1, BL2SEQ, and later versions thereof).

...

[0036] For amino acid sequence analysis, a weight matrix, such as the BLOSUM matrixes (e.g., the BLOSUM45, BLOSUM50, BLOSUM62, and BLOSUM80 matrixes), Gonnet matrixes (e.g., the Gonnet40, Gonnet80, Gonnet120, Gonnet160, Gonnet250, and Gonnet350 matrixes), or PAM matrixes (e.g., the PAM30, PAM70, PAM120, PAM160, PAM250, and PAM350 matrixes), are used in determining identity. BLOSUM matrixes are preferred. The BLOSUM50 and BLOSUM62 matrixes are typically most preferred. In the absence of availability of such weight matrixes (e.g., in nucleic acid sequence analysis and with some amino acid analysis programs), a scoring pattern for residue/nucleotide matches and mismatches can be used (e.g., a +5 for a match and -4 for a mismatch pattern).

[0037] The ALIGN program produces an optimal global alignment of the two chosen protein or nucleic acid sequences using a modification of the dynamic programming algorithm described by Myers and Miller, *CABIOS*, 4, 11-17 (1988). Preferably, if available, the ALIGN program is used with weighted end-gaps. If gap opening and gap extension penalties are available, they are preferably set between about -5 to -15 and 0 to -3, respectively, more preferably about -12 and -0.5 to -2, respectively, for amino acid sequence alignments, and -10 to -20 and -3 to -5, respectively, more preferably about -16 and -4, respectively, for nucleic acid sequence alignments. The ALIGN program and principles underlying it are further described in, e.g., Pearson et al., *Proc. Natl. Acad. Sci. USA*, 85, 2444-48 (1988), and Pearson et al., *Methods Enzymol.*, 183, 63-98 (1990).

[0038] The BLAST programs provide analysis of at least two amino acid or nucleotide sequences, either by aligning a selected sequence against multiple sequences in a database (e.g., GenSeq), or, with BL2SEO, between two selected sequences. BLAST programs are

preferably modified by low complexity filtering programs such as the DUST or SEG programs, which are preferably integrated into the BLAST program operations (see, e.g., Wooton et al., Compu. Chem., 17, 149-63 (1993), Altschul et al., Nat. Genet., 6, 119-29 (1994), Hancock et al., Comput. Appl. Biosci., 10, 67-70 (1994), and Wootton et al., Meth. in Enzym., 266, 554-71 (1996)). If a lambda ratio is used, preferred settings for the ratio are between 0.75 and 0.95, more preferably between 0.8 and 0.9. If gap existence costs (or gap scores) are used, the gap existence cost preferably is set between about -5 and -15, more preferably about -10, and the per residue gap cost preferably is set between about 0 to -5, more preferably between 0 and -3 (e.g., -0.5). Similar gap parameters can be used with other programs as appropriate. The BLAST programs and principles underlying them are further described in, e.g., Altschul et al., J. Mol. Biol., 215, 403-10 (1990), Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 87, 2264-68 (1990) (as modified by Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 90, 5873-77 (1993)), and Altschul et al., Nucl. Acids Res., 25, 3389-3402 (1997).

[0039] For multiple sequence analysis, the CULSTAL W program can be used. The CLUSTAL W program desirably is run using "dynamic" (versus "fast") settings. Preferably, nucleotide sequences are compared using the BESTFIT matrix, whereas amino acid sequences are evaluated using a variable set of BLOSUM matrixes depending on the level of identity between the sequences (e.g., as used by the CLUSTAL W version 1.6 program available through the San Diego Supercomputer Center (SDSC)). Preferably, the CLUSTAL W settings are set to the SDSC CLUSTAL W default settings (e.g., with respect to special hydrophilic gap penalties in amino acid sequence analysis). The CLUSTAL W program and underlying principles of operation are further described in, e.g., Higgins et al., CABIOS, 8(2), 189-91 (1992), Thompson et al., Nucleic Acids Res., 22, 4673-80 (1994), and Jeanmougin et al., Trends Biochem. Sci., 23, 403-07 (1998).

[0040] Several commercially available software suites incorporate the ALIGN, BLAST, and CLUSTAL W programs and similar functions, and may include significant improvements in settings and analysis. Examples of such programs include the GCG suite of programs and those available through DNASTAR, Inc. (Madison, Wisconsin). Particular preferred programs include the Lasergene and Protean programs sold by DNASTAR.

[0041] Because various algorithms, matrixes, and programs are commonly used to analyze sequences, amino acid and polynucleotide sequences are preferably characterized in terms of approximate identities by indicating a range of identity "about" a particular identity (e.g., +/- 10%, more preferably +/- 8%, and even more preferably +/- 5% of the particular identity). Alternatively, an exact identity can be measured by using only one of the aforementioned programs, preferably one of the BLAST programs, as described herein. An amino acid sequence of a fusion protein peptide portion can alternatively exhibit

significant (at least about 30%, preferably at least about 35%) sequence "homology" to a wild-type ARF peptide portion, while failing to exhibit a significant level of amino acid sequence identity. Homology is a function of the number of corresponding conserved and identical amino acid residues in the optimal homology alignment. The "optimal homology alignment" is the alignment that provides the highest level of homology between two amino acid sequences, using the principles described above with respect to the "optimal alignment." Conservative amino acid residue substitutions involve exchanging a member within one class of amino acid residues for a residue that belongs to the same class. Fusion protein peptide portions containing conservative substitutions are expected to substantially retain the biological properties and functions associated with their wild-type counterpart or wild-type counterpart portions. The classes of amino acids and the members of those classes are presented in Table 1.

Table 1 - Amino Acid Residue Classes

Amino Acid Class	Amino Acid Residues
Acidic Residues	ASP and GLU
Basic Residues	LYS, ARG, and HIS
Hydrophilic Uncharged Residues	SER, THR, ASN, and GLN
Aliphatic Uncharged Residues	GLY, ALA, VAL, LEU, and ILE
Non-polar Uncharged Residues	CYS, MET, and PRO
Aromatic Residues	PHE, TYR, and TRP

The fusion protein peptide portion preferably will exhibit high weight homology [0042] to a naturally occurring ARF peptide portion. "High weight homology" means that at least about 40%, preferably at least about 60%, and more preferably at least about 70% of the non-identical amino acid residues are members of the same weight-based "weak conservation group" or "strong conservation group" as the corresponding amino acid residue in the wild-type ARF peptide portion. Strong group conservation is preferred. Weight-based conservation is determined on the basis of whether the non-identical corresponding amino acid is associated with a positive score on one of the weight-based matrices described herein (e.g., the BLOSUM50 matrix and preferably the PAM250 matrix). Weight-based strong conservation groups include Ser Thr Ala, Asn Glu Gln Lys, Asn His Gln Lys, Asn Asp Glu Gln, Gln His Arg Lys, Met Ile Leu Val, Met Ile Leu Phe, His Tyr, and Phe Tyr Trp. Weight-based weak conservation groups include Cys Ser Ala, Ala Thr Val, Ser Ala Gly, Ser Thr Asn Lys, Ser Thr Pro Ala, Ser Gly Asn Asp, Ser Asn Asp Glu Gln Lys, Asn Asp Glu Gln His Lys, Asn Glu Gln His Arg Lys, Phe Val Leu Ile Met, and His Phe Tyr. The CLUSTAL W sequence analysis program provides analysis of.

PCT/US02/37660

weight-based strong conservation and weak conservation groups in its output, and offers the preferred technique for determining weight-based conservation, preferably using the CLUSTAL W default settings used by SDSC.

Additionally, the fusion protein peptide portion can be a peptide portion that [0043] exhibits a similar hydropathy profile (hydrophilicity) to a wild-type ARF protein peptide portion. A hydropathy profile can be determined using the Kyte & Doolittle index, the scores for each naturally occurring amino acid in the index being as follows: I (+4.5), V (+4.2), L (+3.8), F (+2.8), C (+2.5), M (+1.9); A (+1.8), G (-0.4), T (-0.7), S (-0.8), W (-0.9), Y (-1.3), P (-1.6), H (-3.2); E (-3.5), Q (-3.5), D (-3.5), N (-3.5), K (-3.9), and R (-4.5) (see, e.g., U.S. Patent 4,554,101 and Kyte & Doolittle, J. Molec. Biol., 157, 105-32 (1982) for further discussion). Preferably, at least about 45%, preferably at least about 60%, and more preferably at least about 75% (e.g., at least about 85%, at least about 90%, or at least about 95%) of the amino acid residues which differ from the naturally occurring ARF peptide portions exhibit less than a +/-2 change in hydrophilicity, more preferably less than a +/-1 change in hydrophilicity, and even more preferably less than a +/-0.5 change in hydrophilicity. Overall, the fusion protein peptide portions of the invention preferably exhibit a total change in hydrophilicity of less than about 150, more preferably less than about 100, and even more preferably less than about 50 (e.g., less than about 30, less than about 20, or less than about 10) from their wild-type counterparts. Examples of typical amino acid substitutions that retain similar or identical hydrophilicity include argininelysine substitutions, glutamate-aspartate substitutions, serine-threonine substitutions, glutamine-asparagine substitutions, and valine-leucine-isoleucine substitutions. The GREASE program, available through the SDSC, provides a convenient way for quickly assessing the hydropathy profile of a peptide portion. For example, a coiled-coil domain fusion protein peptide portion will desirably exhibit a predominately negative hydropathy profile (i.e., at least 50% of the GREASE program line output is less than 0, representing that at least 50% of the amino acid residues exhibit a Kyte-Doolittle index score of less than 0). The fusion protein coiled-coil domain will typically exhibit a hydropathy profile where all residues exhibit a hydropathy score equal or less than leucine and more preferably equal of less than alanine. Desirably, a majority of the residues in the coiled-coil domain will exhibit a hydropathy profile equal to or less than glycine. Typically and preferably, the coiled-coil domain will be substantially formed (e.g., at least about 70%, preferably at least about 80%, and more preferably at least about 90%) of residues having a Kyte & Doolittle score of between -4 and 2, and more preferably between -3 and 1. Desirably, all amino acid residues in the coiled-coil domain will have a score between -3 and 1. A fusion protein coiled-coil domain will preferably exhibit a GREASE program graphical line output comprising a pattern of several (typically about 10-15) peaks and valleys of residues scoring

between -3 to -2 and 0 to +1 respectively. GREASE program outputs of select examples of preferred coiled-coil domains are provided in Figs. 1-19. The fusion protein preferably comprises a coiled-coil domain having a hydropathy profile substantially identical (e.g., less than about a 10% difference from) or identical to one of the profiles shown in either Figs. 1-3 or 4-9.

[0044] In yet another alternative, the fusion protein peptide portion can comprise or consist of a peptide of at least about 40 amino acid residues, preferably at least about 75 amino acid residues, and more preferably at least about 150 (e.g., at least about 200, at least about 250, or more) amino acid residues encoded by a polynucleotide that hybridizes to (1) the complement of a polynucleotide that, when expressed, results in a naturally occurring ARF peptide portion, under at least moderate, preferably high, stringency conditions, or (2) a polynucleotide which would hybridize to the complement of such a sequence under such conditions but for the degeneracy of the genetic code. Alternatively, the peptide portion can comprise a sequence encoded by a polynucleotide that selectively hybridizes to a wild-type ARF peptide portion-encoding polynucleotide of at least about 60 nucleotides (preferably at least about 120 nucleotides, and more preferably at least about 150 nucleotides, or more) with respect to other wild-type ARF-encoding polynucleotide sequences, and, more preferably selectively with respect to other wild-type proteins of the same organism, species, family, and/or kingdom.

Exemplary moderate stringency conditions include overnight incubation at 37°C [0045] in a solution comprising 20% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 mg/mL denatured sheared salmon sperm DNA, followed by washing the filters in 1x SSC at about 37-50°C, or substantially similar conditions, e.g., the moderately stringent conditions described in Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor Press 1989). High stringency conditions are conditions that use, for example, (1) low ionic strength and high temperature for washing, such as 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate (SDS) at 50°C, (2) employ a denaturing agent during hybridization, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin (BSA)/0.1% Ficoll/0.1% polyvinylpyrrolidone (PVP)/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C, or (3) employ 50% formamide, 5x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5x Denhardt's solution, sonicated salmon sperm DNA (50µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at (i) 42°C in 0.2x SSC, (ii) at 55°C in 50% formamide and (iii) at 55°C in 0.1x SSC (preferably in combination with EDTA). Additional details and

explanation of stringency of hybridization reactions are provided in, e.g., Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Wiley Interscience Publishers 1995).

[0046] Another possibility is that the fusion protein peptide portion comprises or consists of an amino acid sequence that is bound by an antibody that also binds a wild-type ARF peptide portion. For example, the fusion protein peptide portion can be a peptide portion that is bound by the wild-type ARF antibodies described in, e.g., U.S. Patent 6,166,185, and/or International Patent Applications WO 00/18804, WO 00/18437, and WO 99/15653. Antibodies to Ang-1, Ang-2, Ang-3, and Ang-4 are commercially available through Research Diagnostics, Inc. (Flanders NJ). Other suitable wild-type ARF antibodies are described in the various patent documents and references directed to ARFs discussed

elsewhere herein.

[0047] The production of new antibodies to the wild-type ARFs, and to the novel ARFs of the invention, also can be facilitated using any suitable technique known in the art. Examples of suitable techniques for obtaining such antibodies are provided in, e.g., Gavilodono et al., *Biotechniques*, 29(1), 128-32, 134-6, and 138 (passim) (2000), Nelson et al., *Mol. Pathol.*, 53(3), 111-7 (2000), Laurino et al., *Ann. Clin. Lab. Sci.*, 29(3), 158-66 (1999), Rapley, *Mol. Biotechnol.*, 3(2), 139-54 (1995), Zaccolo et al., *Int. J. Clin. Lab. Res.*, 23(4), 192-8 (1993), Morrison, *Annu. Rev. Immunol.*, 10, 239-65 (1992), "Antibodies, Antigens, and Molecular Mimicry," *Meth. Enzymol.*, 178 (John J. Langone, Ed., Academic Press, November 1989), Moore, *Clin. Chem.*, 35(9), 1849-53 (1989), Rosalki et al., *Clin. Chim. Acta*, 183(1), 45-58 (1989), and Tami et al., *Am. J. Hosp. Pharm.*, 43(11), 2816-25 (1986), as well as U.S. Patents 4,022,878, 4,350,683, and 4,022,878. A preferred technique for producing antibodies is provided in Border et al., *Proc. Natl. Acad. Sci.*, USA, 97(20), 10701-05 (2000).

[0048] The fusion protein peptide portion alternatively, or, typically and preferably, additionally, can comprise or consist of a peptide portion that exhibits structural similarity to a wild-type ARF peptide portion. It is further desired that the fusion protein exhibits overall structural similarity to a wild-type ARF. Structural similarity can be determined by any suitable technique, preferably using a suitable software program for making such assessments. Examples of such programs include the MAPS program and the TOP program (described in Lu, *Protein Data Bank Quarterly Newsletter*, #78, 10-11 (1996), and Lu, *J. Appl. Cryst.*, 33, 176-183 (2000)). The fusion protein peptide portion, and preferably the fusion protein overall, will desirably exhibit a low structural diversity, topological diversity (e.g., a topical diversity of less than about 20, preferably less than about 15, and more preferably less than about 10), or both, with respect to a wild-type ARF counterpart. Alternatively, the structure of the fusion protein or fusion protein peptide portion can be compared to the desired ARF or ARF peptide portion using the PROCHECK program

12

(described in, e.g., Laskowski, J. Appl. Cryst., 26, 283-291 (1993)), the MODELLER program, or commercially available programs incorporating such features. Alternatively, a sequence comparison using a program such as the PredictProtein server (available at http://dodo.cpmc.columbia.edu/predictprotein/) can reveal similar structure for the fusion protein or fusion protein peptide portion and a wild-type ARF peptide portion counterpart. Additional techniques for analyzing protein structure that can be applied to determine structural similarity are described in, e.g., Yang and Honig, J. Mol. Biol., 301(3), 665-78 (2000), Aronson et al., Protein Sci., 3(10), 1706-11 (1994), Marti-Remon et al., Annu. Rev. Biophys. Biomol. Struct., 29, 291-325 (2000), Halaby et al., Protein Eng., 12(7), 563-71 (1999), Basham, Science, 283, 1132 (1999), Johnston et al., Crit. Rev. Biochem. Mol. Biol., 29(1), 1-68 (1994), Moult, Curr. Opin. Biotechnol., 10(6), 583-6 (1999), Benner et al., Science, 274, 1448-49 (1996), and Benner et al., Science, 273, 426-8 (1996).

[0049] The fusion protein of the invention desirably has an overall structural conformation such that the overall structure of the fusion protein does not interfere with the function of the individual ARF peptide portions. In addition to the techniques described above, conformation of the peptide portions can be assessed using conformation-dependent antibodies. If necessary, linker sequences, such as the linker sequences described further herein, can be used to separate peptide portions in order to avoid steric hindrance and/or undesired interactions at the tertiary or quaternary levels of structure. The fusion protein will advantageously be designed such that multimerization of a heterologous peptide portion, e.g., a VEGF peptide portion, is not interfered with by the multimerization of a second peptide portion, e.g., the multimerization domain of an ARF, such as the Ang-1 CCD. The fusion protein also will desirably be designed such that post-translational modification of the fusion protein is of a manner suitable for retaining the function of the peptide portions, typically by expression of the fusion protein with appropriate signal sequences, examples of which are discussed further herein.

[0050] The fusion protein can include any combination of peptide portions having any of the aforementioned qualities. Thus, for example, the fusion protein can include a first peptide portion comprising an amino acid sequence identical to the amino acid sequence of a first wild-type ARF peptide portion and a second peptide portion comprising a sequence exhibiting 100% sequence homology, but less than 100% sequence identity, but to a second ARF peptide portion. The fusion protein can include any suitable number of ARF peptide portions (peptide portions exhibiting one of the aforementioned seven qualities, preferably exhibiting significant sequence identity or sequence homology to a wild-type ARF peptide portion). For example, the fusion protein can include 3, 4, 5, or even more ARF peptide portions. Where the fusion protein comprises three or more ARF peptide portions, more

WO 03/048185

13

than one of the peptide portions can be identical, homologous, and/or otherwise similar to the same wild-type ARF peptide portion.

Where the fusion protein comprises only two ARF peptide portions each ARF [0051] peptide portion will desirably exhibit higher sequence identity and/or homology to a different wild-type ARF than the other ARF peptide portion. Preferably, at least one of the ARF fusion protein peptide portions in such a fusion protein will not be an angiopoietin and, more preferably, is not selected from Ang-1, Ang-2, Ang-3, and Ang-4.

The fusion protein exhibits less than 100% overall sequence identity to a wild-[0052] type ARF. For example, the fusion protein can exhibit about 95% or less, about 90% or less, about 80% or less, about 70% or less, about 60% or less, or even about 50% or less overall amino acid sequence identity to any wild-type ARF. The fusion protein also can lack any peptide portions that exhibit 100% local sequence identity to a wild-type ARF. For example, the fusion protein can lack any peptide portions that exhibit about 90% or more, about 80% or more, about 70% or more, or even about 60% or more local sequence identity to a wild-type ARF.

Local sequence identity can be determined using local sequence alignment [0053] software, e.g., the BLAST programs described above, the LFASTA program, or, more preferably, the LALIGN program. Preferably, the LALIGN program using a BLOSUM50 matrix analysis used for amino acid sequence analysis, and a +5 match/-4 mismatch analysis used for polynucleotide sequence analysis. Gap extension and opening penalties are preferably the same as those described above with respect to analysis with the ALIGN program. For LALIGN (or other program) analysis using k-tup value settings (also referred to as "k-tuple" or ktup values), a k-tup value of 0-3 for proteins, and 0-10 (e.g., about 6) for nucleotide sequences, is preferred.

[0054] The fusion protein will comprise a fibrinogen-like domain (FLD), a coiled-coil domain (CCD), or, typically and preferably, a FLD and a CCD. Desirably, the fusion protein fibrinogen-like domain exhibits at least about 25% amino acid sequence identity, preferably at least about 30% amino acid sequence identity, and more preferably at least about 35% amino acid sequence identity to the Ang-1 fibrinogen-like domain (SEQ ID NO: 2) and/or the KIA0003 associated protein (GenBank Accession No. NP 001137) (SEQ ID NO: 3) (hereinafter referred to as KAP). The fusion protein coiled-coil domain desirably will exhibit at least about 10% amino acid sequence identity, preferably at least about 15% amino acid sequence identity, more preferably at least about 20% amino acid sequence identity, and even more preferably at least about 30% amino acid sequence identity to the CCD of Ang-1 (SEQ ID NO: 4). Desirably, the fusion protein FLD, CCD, or both domains will exhibit a higher level of local sequence identity to a non-angiopoietin ARF than to angiopoietin ARFs, and more particularly exhibits a higher level of local sequence identity

to an ARF other than Ang-1, Ang-2, Ang-3, or Ang-4. While the fusion protein can comprise any suitable number of CCDs and FLDs (e.g., 2, 3, or more CCDs and/or FLDs), it will preferably comprise a single FLD and CCD.

14

[0055] A "fibrinogen-like domain" (FLD) is a peptide domain of at least about 75, more preferably at least about 150, and even more preferably at least about 210 (e.g., about 175-250, typically about 210-230) amino acid residues in length, that exhibits at least about 25%, preferably at least about 35%, and more preferably at least about 40% amino acid sequence identity to (e.g., 20-70% identity) or at least such levels of local sequence identity to the alpha, beta, or gamma chains (typically to the C-terminal globular domain thereof) of a naturally occurring mammalian fibrinogen (e.g., human fibrinogen alpha (1st example (SEQ ID NO: 4) and 2nd example (SEQ ID NO: 5)), human fibrinogen beta (1st example (SEQ ID NO: 6) and 2nd example (SEQ ID NO: 7)), and/or human fibrinogen gamma (1st example (SEQ ID NO: 8) and 2nd example (SEQ ID NO: 9))). As indicated above, the fusion protein FLD also desirably exhibits at least about 25% amino acid sequence identity to the Ang-1 FLD and/or KAP.

[0056] FLDs can be identified using any suitable technique, such as by applying any of the sequence alignment algorithms or programs discussed elsewhere herein to the subject sequence and the chain of a wild-type fibrinogen. Preferably, the subject fusion protein (or other ARF) will comprise an amino acid sequence, which, when submitted to Conserved Domain Database (CDD) analysis (e.g., by submission to the NCBI BLAST program with the CDD (sometimes indicated as CD) analysis option selected), will result in the program identifying the presence of a conserved "FBG" (fibrinogen related domain - CD=smart00186) and/or "Fibrinogen-C" domain (CD=pfam00147), or, most desirably, both types of domains, in the subject amino acid sequence.

[0057] The fusion protein FLD desirably will comprise at least two cysteine residues, preferably at least four cysteine residues, more preferably at least five cysteine residues, and even more preferably at least six cysteine residues, which desirably form internal disulfide bonds. Preferably, at least two, and more preferably at least four, of the FLD's cysteine residues are positioned in the C-terminal half of the FLD.

[0058] A "coiled-coil domain" (CCD) is a peptide domain comprising at least one alpha helix domain, wherein one side of the alpha helix domain comprises a predominantly hydrophobic portion (i.e., at least about 50% of the amino acid residues on a side of the alpha helix are hydrophobic, typically at least about 65% of the amino acid residues on a side of the alpha helix are hydrophobic (hydrophobic amino acid residues are listed in Table 1, supra)). The CCD can include any suitable number of alpha helix domains. Typically, the CCD will include 1-10 alpha helices (more typically 1-5), each of which are usually about 10 amino acid residues in length. The alpha helices can be antiparallel or parallel in

orientation. The alpha helix domain is well known in the art and, as such, is only briefly discussed here. Further description of the features associated with the alpha helix domain can be found in, e.g., Stryer, BIOCHEMISTRY, W.H. Freeman & Co. (New York), 3d Edition (1988), Scholtz et al., Annu. Rev. Biophys. Biomol. Struct., 21, 95-118 (1992), Sugeta et al., Biopolymers, 5, 673 - 679 (1967), and references cited therein. Analytical techniques, and computer programs incorporating such techniques for identifying alpha helixes, also are known in the art. See, e.g., Kumar et al., Biophys. J., 71, 1574-1586 (1996), Kumar et al., Biophys. J., 75, 1935-44 (1998), and Bansal et al., J. Biomolec. Struct. Dynamics, 17, 811-19 (2000). Examples of suitable programs for identifying alpha helices using an amino acid sequence include the GOR4 program, which uses the algorithm of Garnier et al., Meth. Enzym., 266, 97-120 (1996), the CHOFAS program, which uses the algorithms of Chou et al., Adv. Enzymol., 47,45-148 (1978), and Pearson et al., Proc. Natl. Acad. Sci. USA, 85, 2444-48 (1988), and the PELE program which combines multiple algorithms. All of these programs are accessible through the San Diego Supercomputer Center (SDSC). Typically and preferably, the coiled-coil domain will include at least one 100591 sequence of the heptad pattern ha-xb-xc-hd-xe-xf-xg, where "h" represents a hydrophobic amino acid residue, "x" represents any amino acid residue, and subscripted letters reference positions in the sequence. Typically, the amino acid residues at positions xe and xg will be polar residues. Often the CCD will include multiple heptad repeats of this pattern. The hydrophobic heptad repeat usually imparts greater stability to the CCD than over an otherwise identical multiple alpha helix domain, by adopting the Crick "knobs-into-holes" packing configuration, where the ha and hd hydrophobic residues interact with the internal (i.e., central) portions of a neighboring alpha helix (typically an alpha helix positioned in the CCD, but interactions with a peptide portion of a different polypeptide also are possible, particularly when the CCD is involved with forming multimers, which are further discussed

[0060] CCDs can be identified by any suitable technique. Conveniently, CCDs can usually be identified through direct amino acid sequence analysis. Several analytical techniques for identifying CCDs and computer programs incorporating these techniques are available. Any suitable sequence analysis technique or program can be used. Examples of suitable programs include the COILS program (available at http://www.ch.embnet.org/software/COILS_form.html) and the PARCOILS program (available at http://nightingale.lcs.mit.edu/cgi-bin/score). Other suitable programs include the PEPCOIL program, the COILSCAN program, and the coil analysis subprograms of commercially available sequence analysis software (e.g., the GCG program suite, or the PROTEAN program available through DNA Star Inc. (Madison, WI)). Alternatively, other protein structure techniques can be used to identify the presence of a CCD, such as X-ray

below).

diffraction analysis, crystallographic analysis, or three-dimensional imaging techniques. CCDs and the identification of CCDs are further described in Burkhard et al., *Trends Cell Bio.*, 11, 82-88 (2001), Beck et al., *J. Struct. Biol.*, 122, 17-29 (1998), Lupas, *Curr. Opin. Struct. Biol.*, 7(3), 388-93 (1997), Kammerer, *Matrix Biol.*, 15, 555-68 (1997), Nilges et al., *Proteins*, 15, 133-46 (1993), and Adamson et al., *Curr. Opin. Biotechnol.*, 4(4), 428-37 (1993).

[0061] The CCD typically and desirably will comprise an amino acid sequence of at least about 10 amino acid residues (preferably at least about 20 amino acid residues) which exhibit a score of at least about 0.5, more preferably at least about 0.65, and even more preferably at least about 0.75, in the 28 residue window, when the sequence is analyzed by the COILS program. Alternatively, or preferably additionally, the CCD will comprise a sequence of at least about 10 amino acid residues that exhibit a score of at least about 0.3, more preferably at least about 0.4, and even more preferably at least about 0.45 when the sequence is analyzed by the PARCOILS program.

The fusion protein FLD can comprise or consist of a peptide portion that exhibits 100% amino acid sequence identity to a wild-type ARF FLD. The fusion protein FLD can exhibit 100% sequence identity to any suitable ARF FLD. Preferred wild-type FLDs include the Ang-1 FLD, KAP, the Ang-2 FLD (SEQ ID NO: 10), the Ang-3 FLD (SEQ ID NO: 11), the Ang-4 FLD (SEQ ID NO: 12), the NL1 FLD (SEQ ID NO: 13), the NL3 FLD (SEQ ID NO: 14), the NL4 FLD (SEQ ID NO: 15), the NL5 FLD (SEQ ID NO: 16), the NL8 FLD (SEQ ID NO: 17), the FLS 139 FLD (SEQ ID NO: 18), the zapo1 FLD (SEQ ID NO: 19), and the murine FDRG FLD (SEQ ID NO: 20). Particularly preferred wild-type FLDs include the Ang-1 FLD and/or KAP, the NL1 FLD, and the NL5 FLD.

[0063] The fusion protein CCD can comprise or consist of a peptide portion that exhibits 100% amino acid sequence identity to a wild-type ARF CCD. The fusion protein CCD can exhibit 100% amino acid sequence identity to any suitable wild-type ARF CCD. Preferred wild-type CCDs include the Ang-1 CCD, the Ang-2 CCD, which is predicted to be sequence 1 (SEQ ID NO: 21), sequence 2 (SEQ ID NO: 22), sequence 3 (SEQ ID NO: 23), or sequence 4 (SEQ ID NO: 24), the Ang-3 CCD (SEQ ID NO: 25), the Ang-4 CCD (SEQ ID NO: 26), the NL1 CCD (SEQ ID NO: 27), the NL2 CCD (SEQ ID NO: 28), the NL4 CCD (SEQ ID NO: 29), the NL5 CCD (SEQ ID NO: 30), the NL8 CCD (SEQ ID NO: 31), the FLS 139 CCD (SEQ ID NO: 32), the zapo1 CCD (SEQ ID NO: 33), and the murine FDRG CCD (SEQ ID NO: 34). Particularly preferred wild-type CCDs include the Ang-1 CCD, the Ang-2 CCD, the NL1 CCD, and the NL5 CCD. Another preferred CCD (described further herein) is the CCD of the novel ARF, Ang-2X (predicted to be amino acid sequence 1 (SEQ ID NO: 35), sequence 2 (SEQ ID NO: 36), or sequence 3 (SEQ ID NO: 37)). The fusion protein also can comprise an Ang-2X FLD (SEQ ID NO: 38).

WO 03/048185

17

The above described wild-type ARF FLDs and CCDs can be combined in any [0064] suitable manner in the fusion protein, so long as the FLD and CCD do not exhibit 100% local sequence identity to the same wild-type ARF. In addition, the fusion protein can comprise a FLD or CCD that exhibits 100% identity to a wild-type ARF peptide portion and a FLD or CCD that is homologous to a wild-type ARF peptide portion, but does not exhibit 100% local sequence identity to a wild-type ARF. A "homologous peptide portion" or "homolog" refers to any peptide portion that exhibits any of qualities (2)-(6) described above. Preferably, the homologous ARF peptide portion will exhibit at least about 30% amino acid sequence identity, or at least about 35% amino acid sequence homology, to a wild-type ARF peptide portion.

A preferred fusion protein comprises a FLD that exhibits 100% amino acid 100651 sequence identity to KAP or the Ang-1 FLD and a CCD that exhibits 100% amino acid sequence identity to a wild-type ARF other than Ang-1, Ang-2, Ang-3, or Ang-4. Preferably, the fusion protein comprises a CCD that exhibits 100% amino acid sequence identity to a wild-type ARF that is not an angiopoietin. More preferably, the fusion protein comprises a CCD that exhibits 100% amino acid sequence identity to the NL1 CCD, NL4 CCD, the NL5 CCD, the NL8 CCD, the FLS 139 CCD, the zapo1 CCD, or the murine FDRG CCD. Most preferably, the fusion protein comprises a CCD that exhibits 100% amino acid sequence identity to the NL1 CCD or NL5 CCD.

Another preferred fusion protein comprises a FLD that exhibits 100% amino [0066] acid sequence identity to the FLD of a wild-type ARF other than the Ang-1, Ang-2, Ang-3, or Ang-4 FLD, and more preferably exhibits 100% amino acid sequence identity to a nonangiopoietin ARF FLD. Such a fusion protein desirably further comprises a CCD that exhibits 100% amino acid sequence to a wild-type ARF, most preferably to the CCD of Ang-1 or the CCD of Ang 2X.

Another preferred fusion protein comprises a FLD or CCD that exhibits 100% 100671 amino acid sequence identity to the FLD or CCD of NL1. Preferably, the fusion protein will comprise a non-NL1 CCD or FLD, which will exhibit at least about 45%, more preferably at least about 55%, and optimally about 100% sequence identity to the CCD or FLD of NL5, as applicable.

In yet another aspect, the invention provides a fusion protein comprising a FLD [0068] or CCD that exhibits about 100% amino acid sequence identity to the FLD or CCD of NL5, as applicable. Such fusion proteins desirably comprise a non-NL5 FLD or CCD that exhibits at least about 45%, more preferably at least about 55%, and optimally about 100% sequence identity to the CCD or FLD of NL1.

The fusion protein can comprise one, two, or more ARF peptide portions that [0069] exhibit less than 100% sequence identity to a wild-type ARF peptide portion (an ARF wild-

type CCD or FLD). In such fusion proteins, the biological properties of the ARF peptide portions can be changed in a therapeutically advantageous manner. For example, the removal, substitution, or addition of particular amino acids to the fusion protein FLD can reduce a host immune response to the fusion protein and/or increase the stability of the fusion protein, examples of which are discussed elsewhere herein.

[0070] A preferred fusion protein of the invention includes (1) a fibrinogen-like domain that exhibits at least about 65%, preferably at least about 75%, and more preferably at least about 85%, amino acid sequence identity to the fibrinogen-like domain of a first wild-type protein, which binds a receptor that, when activated, promotes or inhibits angiogenesis, and (2) a coiled-coil domain that exhibits at least about 50%, preferably at least about 75%, and even more preferably at least about 85% amino acid sequence identity to the coiled-coil domain of a second wild-type protein, which increases the affinity of the fusion protein for the receptor, promotes formation of a multimer comprising the fusion protein, or both, where the first protein and second protein are different, the first protein and second protein each exhibit at least about 30% overall amino acid sequence identity to Ang-1, and the first protein, the second protein, or both proteins are not Ang-1, Ang-2, Ang-3, or Ang-4.

[0071] The first wild-type protein binds a receptor, that, when activated, promotes or inhibits angiogenesis. The first wild-type protein is typically and preferably an ARF, and, most preferably, an ARF that binds and activates a receptor that promotes angiogenesis (e.g., Ang-1). A "receptor" is any protein that interacts with at least one ligand (e.g., a wild-type ARF) to initiate a biological response apart from the receptor-ligand interaction. Receptor activation occurs when the receptor-ligand interaction produces the biological response. Preferably, the receptor is a TIE receptor, and most preferable a TIE-2 receptor.

[0072] Receptor binding can be measured using any suitable technique. Simple techniques for determining receptor binding include saturation and competition assays performed with labeled (typically radiolabeled) ligands or putative ligands, which are briefly discussed elsewhere herein. Alternatively, a labeled receptor, or material containing the receptor, can be associated with a filter or a chromatography matrix, and a solution comprising the ligand or putative ligand can be permitted to associate with the receptor or receptor composition, to determine whether receptor binding occurs. Scintillation techniques also are useful for evaluating radiolabeled ligand-receptor interactions.

Alternatively, streptavidin/biotin labeling systems, or labeling with fluorescent dyes or peptide portions (e.g., a Green Fluorescent Protein portion), can be used to determine receptor binding. Phage display techniques (such as those described in Cwirla et al., *Proc. Natl. Acad. Sci. USA, 87*, 6378-6382 (1990) and *McCafferty et al., Nature, 384*, 552-554 (1990)) also can be used to identify ligands. Such techniques are known in the art, and, as such, are not discussed in detail herein. Principles and techniques related to ligand-receptor

PCT/US02/37660 WO 03/048185

assays are further described in, e.g., Smisterova et al., J. Pharm. Biomed. Anal., 12(6),723-45 (1994), Shaw et al., Curr. Opin. Biotechnol., 3(1), 55-58 (1992), Strosberg et al., Curr. Opin. Biotechnol., 2(1), 30-36 (1991), Zoon et al., J. Pharm. Biomed. Anal., 7(2), 147-54 (1989), and Smith et al., Clin. Chem., 26(5), 543-50 (1980), and references cited therein, as well as U.S. Patents 5,480,792 and 5,939,272 (and references cited therein). Commercially available receptor binding assays include, e.g., the HitHunter® assay system (available through DiscoveRx (Fremont CA)). Related techniques for measuring receptor binding are known in the art and discussed further herein.

19

When the first wild-type protein binds the receptor it also activates the receptor, [0073] resulting in a biological response that modulates (either increases or decreases) angiogenesis. "Angiogenesis," in the context of the invention, encompasses promoting the formation of new blood vessels (also referred to in the art as neovascularization), e.g., by attracting endothelial cells to promote blood vessel sprouting, promoting blood vessel growth from or within existing blood vessels (such as by increasing the size of existing blood vessels or inducing collateral blood vessel growth from existing blood vessels (also known as vasculogenesis and often referred to as angiogenesis)), promoting blood vessel remodeling, promoting blood vessel maturation, and reducing blood vessel permeability (leakage). Thus, an angiogenic peptide or peptide portion can be any sequence of amino acids that induces the initiation of blood vessel growth at a location not otherwise undergoing angiogenesis, enhances or heightens collateral blood vessel growth in a location already undergoing angiogenesis, or both.

The angiogenic activity of a protein can be determined by any suitable 100741 technique. Examples of techniques for measuring angiogenesis include administering the angiogenic protein or DNA encoding the angiogenic protein (preferably in a suitable vector) in the rabbit or rat hind limb models (using a protocol as described in, e.g., Poliakova et al., J. Thorac. Cardiovasc. Surg., 118(2), 339-47 (1999), Rosengart et al., J. Vasc. Surg., 26(2), 302-12 (1997), Walder et al., J. Cardiovasc. Pharmacol., 27, 91-98 (1996), Takeshita et al., J. Clin. Invest., 93(2), 662-70 (1994), and U.S. Patent 6,121,246), and/or the mouse ear model (using a protocol similar to that described in, e.g., Kjosleth et al., Microsurgery, 15(6), 390-98 (1994), or as discussed herein in Examples 1, 2, 4, and 5). Similar techniques are discussed in, e.g., Takeshita et al., J. Clin. Invest., 93(20), 662-70 (1994). Other assays for assessing the angiogenic potential of an angiogenic factor include performing exercise tolerance tests (as described in, e.g., Fujita et al., Circulation, 77(5), 1022-29 (1988), Kornowski et al., Am. J. Cardiol, 81(7A), 44E-48E (1998), and Rosengart et al., Circulation, 100(5), 468-74 (1999)), magnetic resonance imaging (MRI) testing for local perfusion, rest and stress (adenosine) 99m Tc-sestamibi SPECT tests, rest and stress (dobutamine) echocardiograms, gradient echo tests, intravascular ultrasound (IVUS) (as

described in, e.g., Oshima et al., Vasc. Med., 3(4), 281-90 (1998)), angiography tests, or any combinations thereof, after administration of the putative angiogenic factor to a tissue (preferably a potentially ischemic or ischemic tissue in a mammalian host). Other quantitative angiogenesis activity assays include the corneal pocket assay, capillary number assay, the matrigel angiogenesis/endothelial cell assay, endothelial cell chemotaxis assays, umbilical artery outgrowth assay, choriollantoic membrane development assay, and related assays described in, e.g., Dellian et al., Am. J. Path., 149, 59-72 (1996), Folkman, Cell, 79, 315-28 (1994), O'Reilly et al., Cell, 88, 277-84 (1997), and Ribatti et al., J. Vasc. Res., 34, 455-63 (1997). A more recent assay specifically designed for analytically comparing the angiogenic potential of different factors is described in Wang et al., Int. J. Mol. Med., 6(6), 645-53 (2000). The angiogenesis-inducing capability of a protein also can be determined by comparative measurement of the number of blood vessels, blood vessel density, total blood vessel volume, blood flow measurements, blood pressure ratios, or the like, in a particular tissue to which an angiogenic factor has been administered (as described in, e.g., Sands et al., Cancer Lett., 27(1), 15-21 (1985), Pu, et al., Circulation, 88, 208-15 (1993), Bauters et al., Am. J. Physiol., 267, H1263-71 (1994), Takeshita et al., supra, Bauters et al., Circulation, 91, 2802- 09 (1995), Bauters et al., J. Vasc. Surg., 21, 314-25 (1995), and Witzenbichler et al., Am. J. Pathol., 153(2), 381-94 (1998)). Other useful techniques for measuring angiogenesis include those described in U.S. Patents 5,976,782, 5,972,639, and 5.919,759, as well as the angiogenesis assays described in Brown et al., Nat. Med., 7(7), 864-68 (2001), LaForge et al., Breast J., 6(2), 103-107 (2000), Tolsma et al., J. Cell Biol., 122, 497 (1993), and Vogel et al., J. Cell. Biochem., 53, 74 (1993).

[0075] Although the first wild-type protein binds and activates a receptor, the fusion protein FLD does not have to activate the receptor. Thus, the fusion protein can comprise a FLD that binds the receptor that associates with the first wild-type protein, without activating the angiogenic or anti-angiogenic response upon binding. In this respect, the fusion protein can act as an antagonist for a wild-type ARF, competing for binding to at least one of its receptors. Preferably such fusion proteins comprise an FLD that exhibits at least about 90% amino acid sequence identity to Ang-2, and preferably which comprises 100% amino acid sequence identity to the Ang-2 FLD or the Ang-2X FLD. In some cases, the fusion protein can inhibit angiogenesis.

[0076] Where the fusion protein FLD does not exhibit 100% amino acid sequence identity to a wild-type ARF FLD, the FLD will desirably comprise a first amino acid sequence of the sequence pattern Glu Phe/Tyr/His Trp Leu Gly Leu/Asn Glu/Asp Xaa Val/Ile/Leu Xaa Xaa Ile/Leu Xaa(12-14) Asp Trp (SEQ ID NO: 39) ("Xaa" represents any amino acid, unless otherwise noted herein, and a "/" between residues indicates that any of the residues divided by the slash is suitable at that position in the sequence). The FLD

21

preferably comprises a second sequence of the sequence pattern Phe Ser Thr Xaa Asp Xaa Asp Asn/His Xaa₍₃₋₁₀₎ Cys Ala/Ser Xaa₍₄₎ Gly Gly Trp Trp Xaa₍₂₋₄₎ Cys (SEQ ID NO: 40) (subscripted numbers in parentheses herein refer to numbers of residues at a position, subscripted numbers without parentheses identify a particular residue for purposes of discussing preferred residues or residue types present at that position (e.g., "Xaa₍₄₋₅₎" represents that any four or five amino acids may occupy that position in the sequence)). Typically and preferably, the first FLD sequence is positioned N-terminal to the second FLD sequence.

The first FLD sequence and second FLD sequence are typically and preferably [0077]separated by at least about 20 amino acid residues, and more preferably at least about 30-65 amino acid residues. This sequence of amino acids between the first and second FLD sequences (FLD sequence 1 and FLD sequence 2, respectively) desirably comprises a sequence of the pattern Tyr Xaa1 Leu Arg Leu (SEQ ID NO: 41) or Tyr Xaa1 Leu Gln (SEQ ID NO:42), which can be referred to as the first intervening FLD sequence. Typically, the residue at position Xaa1 in the first intervening FLD sequence will be an Arg, Ser, Lys, Ala, or Gln residue. The fusion protein FLD further preferably includes a second intervening sequence, located N-terminal to the first intervening sequence but C-terminal to FLD sequence 1, of a sequence pattern such as Phe Xaa Xaa His Xaa₁ Gly Xaa₂ Glu Xaa₃ Xaa₄ (SEQ ID NO: 43), Tyr Xaa Xaa His Xaa1 Gly Xaa2 Glu Xaa3 Xaa4 (SEQ ID NO: 44), Phe Xaa Xaa Phe Xaa1 Gly Xaa2 Glu Xaa3 Xaa4 (SEQ ID NO: 45), Tyr Xaa Xaa Phe Xaa1 Gly Xaa₂ Glu Xaa₃ Xaa₄ (SEO ID NO: 46), Phe Xaa Xaa His Xaa₁ Glu Xaa₂ Glu Xaa₃ Xaa₄ (SEO ID NO: 47), Phe Xaa Xaa Phe Xaa1 Glu Xaa2 Glu Xaa3 Xaa4 (SEQ ID NO: 48), Phe Xaa Xaa Phe Xaa1 Glu Xaa2 Glu Xaa3 Xaa4 (SEQ ID NO: 49), Tyr Xaa Xaa His Xaa1 Glu Xaa2 Glu Xaa3 Xaa4 (SEQ ID NO: 50), and Tyr Xaa Xaa Phe Xaa1 Gly Xaa2 Glu Xaa3 Xaa4 (SEO ID NO: 51), where Xaa1, typically represents an Ile or Val residue, Xaa2 typically represents either an Ala, Asp, or Ser residue, Xaa3 represents a Gln, Glu, or Thr residue, and Xaa4 represents an Ala, Gly, or Tyr residue. The Glu residue between Xaa2 and Xaa3 can be replaced by any other amino acid, although Glu is preferred at this position. The intervening amino acids further preferably comprise a third intervening sequence, positioned N-terminal to the second intervening sequence, but C-terminal to FLD sequence 1, of the pattern Asp/Glu/Ser Asp/Gly Arg/Asn Xaa₁ Xaa₂ Leu/Phe/Tyr Ala/Ile/Leu Xaa₃, where Xaa₁ typically represents an Ala or Lys residue, Xaa₂ typically represents an Ala, Glu, or Val residue, and Xaa3 typically represents a Glu or Gln residue. The intervening amino acids typically comprise a fourth intervening sequence, positioned C-terminal to the first intervening sequence, but N-terminal to FLD sequence 2, of one of the following sequence patterns: Xaa₁ Xaa₂ Xaa₃ Thr Gly Xaa₍₀₋₃₎ Ala Gly (SEQ ID NO: 52), Xaa₁ Xaa₂ Xaa₃ Thr Gly Xaa₍₀₋₃₎ Leu Gly (SEQ ID NO: 53), Xaa₁ Xaa₂ Xaa₃ Thr Ala Xaa₍₀₋₃₎ Ala Gly

22

(SEO ID NO: 54), Xaa₁ Xaa₂ Xaa₃ Thr Ala Xaa₍₀₋₃₎ Leu Gly (SEQ ID NO: 55), Xaa₁ Xaa₂ Xaa₃ Val Gly Xaa₍₀₋₃₎ Ala Gly (SEQ ID NO: 56), Xaa₁ Xaa₂ Xaa₃ Val Gly Xaa₍₀₋₃₎ Leu Gly (SEO ID NO: 57), Xaa1 Xaa2 Xaa3 Val Ala Xaa(0-3) Ala Gly (SEQ ID NO: 58), Xaa1 Xaa2 Xaa₃ Val Ala Xaa₍₀₋₃₎ Leu Gly (SEO ID NO: 59), Xaa₁ Xaa₂ Xaa₃ His Gly Xaa₍₀₋₃₎ Ala Gly (SEQ ID NO: 60), Xaa1 Xaa2 Xaa3 His Gly Xaa(0-3) Leu Gly (SEQ ID NO: 61), Xaa1 Xaa2 Xaa3 His Ala Xaa(0-3) Ala Gly (SEQ ID NO: 62), Xaa1 Xaa2 Xaa3 His Ala Xaa(0-3) Leu Gly (SEO ID NO: 63), Xaa1 Xaa2 Xaa3 Glu Gly Xaa(0-3) Ala Gly (SEQ ID NO: 64), Xaa1 Xaa2 Xaa₃ Glu Gly Xaa₍₀₋₃₎ Leu Gly (SEQ ID NO: 65), Xaa₁ Xaa₂ Xaa₃ Glu Ala Xaa₍₀₋₃₎ Ala Gly (SEQ ID NO: 66), Xaa1 Xaa2 Xaa3 Glu Ala Xaa(0-3) Leu Gly (SEQ ID NO: 67), where Xaa1 typically represents a Gly, Lys, Ser, or Thr residue, Xaa2 represents an Ala or Gly residue, and Xaa3 represents a Phe or Tyr residue. The intervening amino acids will usually comprise a fifth intervening sequence of 9-22 residues of the pattern Xaa₍₀₋₁₃₎ Asp/Xaa Glu/Ser/Val Phe/Pro/Ser/Tyr Leu/Pro/Ser Ser/Trp/Xaa Gly/His/Xaa Asn/Gln/Leu Asn/Gly/Lys/Met Gln/Pro/Thr positioned C-terminal to the fourth intervening sequence but N-terminal to FLD sequence 2. Desirably the intervening sequence maintains the hydropathy characteristics commonly associated with wild-type ARFs, discussed elsewhere herein.

[0078] Preferably, the fusion protein comprises sequences of more than one, and preferably all, of above-described preferred sequence patterns, in their preferred orientation to one another. As such, the fusion protein FLD desirably comprises a sequence of the above-described sequence patterns in the following order (N-terminal to C-terminal): FLD sequence 1 - third intervening sequence - second intervening sequence - first intervening sequence - fourth intervening sequence - fifth intervening sequence - FLD sequence 2. FLD sequence 1 desirably comprises a sequence of the more particular sequence [0079] pattern Phe Ser Thr Xaa1 Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Xaa2 Xaa3 Xaa4 Xaas Xaa6 Gly Gly Trp Trp Phe Asp Ala Cys Gly Xaa7 Ser Asn Leu Gly (SEQ ID NO: 68), where Xaa1 preferably represents a Leu or Lys residue, Xaa2 preferably represents an Ala or Ser residue, Xaa₁ preferably represents a Gln or Leu residue, Xaa₄ preferably represents a Met or a Val residue, Xaa₅ preferably represents a Leu or a Met residue, Xaa₆ preferably represents a Ser or a Tyr residue, and Xaa₇ preferably represents a Leu or a Pro residue. Also preferably, FLD sequence 2 comprises a sequence of the more specific sequence pattern Glu Xaa1 Trp Leu Gly Asn Glu Xaa Xaa2 Xaa(2) Xaa3 Thr Xaa Xaa4 Xaa(2) Tyr Xaa Leu Xaas Xaas Glu Leu Xaa Asp Trp Glu Gly (SEQ ID NO: 69), where Xaa1 preferably represents a His or a Tyr residue, Xaa2 preferably represents an Ile or a Val residue, Xaa3 preferably represents an Ile or a Leu residue, Xaa4 preferably represents an Arg or a Gln residue, Xaas preferably represents an Arg or a Lys residue, and Xaa6 preferably represents an Ile or Val residue.

23

[0080] In some situations, a fusion protein comprising an FLD homologous to an angiopoietin FLD is preferred. Such an "angiopoietin-like FLD" desirably exhibits at least about 40%, preferably at least about 50%, and more preferably at least about 65% (e.g., at least about 70%, at least about 80%, at least about 90%, or even at least about 95%) amino acid sequence identity to at least one wild-type angiopoietin ARF. In such aspects, the fusion protein FLD desirably exhibits at least about 40%, preferably at least about 50%, more preferably at least about 60%, and even more preferably at least about 70% (e.g., at least about 80%, at least about 90%, or even at least about 95%) amino acid sequence identity to the Ang-1 FLD.

Another set of preferred fusion proteins comprise a fibrinogen-like domain that [0081] exhibits at least about 30% amino acid sequence identity to the fibrinogen-like domain of Ang-1, and a coiled-coil domain that comprises (1) an amino acid sequence that exhibits at least about 50%, preferably at least about 60%, and more preferably at least about 75% (e.g., at least about 85%, about 90%, or even 100%) amino acid sequence identity to the coiled-coil domain of zapo1, murine FDRG, or both, (2) an amino acid sequence that exhibits at least about 45%, preferably at least about 50%, more preferably at least about 60%, and even more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the coiled-coil domain of NL1, NL5, or both, (3) an amino acid sequence that exhibits at least about 35%, preferably at least about 40%, more preferably at least about 60%, and even more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the coiled-coiled domain of NL8, (4) an amino acid sequence that exhibits at least about 25%, preferably at least about 35%, and more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the coiled-coiled domain of FLS 139, or (5) an amino acid sequence that fulfills any combination of (1)-(4), wherein in vivo administration or production (typically by transcription and translation of a fusion protein-encoding polynucleotide) of the fusion protein desirably promotes or inhibits (most preferably promotes) angiogenesis in a mammalian host. Preferably, in such fusion proteins, the fusion protein FLD will exhibit at least about 50%, more preferably at least about 65%, and even more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the Ang-1 FLD or KAP. Desirably, the CCD of such a fusion protein will exhibit less than about 40%, preferably less than about 30%, and even more preferably less than about 20% amino acid sequence identity to the Ang-1 CCD, Ang-2 CCD, Ang-3 CCD, or Ang-4 CCD (except in some instances where it is preferred that the CCD is the Ang-2X CCD), and can even exhibit less than about 40%, less than about 30%, or even less than about 20% amino acid sequence identity to the CCD of any angiopoietin (e.g., Ang-6).

WO 03/048185

The angiopoietin-like FLD can be any suitable size, but preferably is about 200-250 amino acids in length, and more preferably about 210-230 amino acids in length. The angiopoietin-like FLD desirably includes a first FLD sequence that is of the more particular sequence pattern Glu His/Tyr Trp Leu Gly Asn Glu Xaa Ile/Val Xaa(2) Ile/Leu Thr Xaa Arg/Gln Xaa(2) (SEQ ID NO: 70) (ALFLD sequence 1) and a second FLD sequence is of the sequence pattern Phe Ser Thr Lys/Leu Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Ala/Ser Gln/Leu Met/Val Leu/Met Ser/Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Leu/Pro Ser Asn Leu Gly (SEQ ID NO: 71) (ALFLD sequence 2). ALFLD sequence 2 preferably is positioned C-terminal to ALFLD sequence 1. Preferably, ALFLD sequence 1 is positioned in the N-terminal-most half of the FLD and ALFLD sequence 2 is positioned in the C-terminal-most half (typically in the C-terminal-most third) of the FLD.

Usually, an intervening amino acid sequence of about 40-60 amino acid residues [0083] separate AFLD sequence 1 and ALFLD sequence 2. Also typically, the angiopoietin-like FLD will include a sequence of about 50-60 amino acid residues N-terminal to ALFLD sequence 1 and a sequence of about 30-50 amino acid residues C-terminal to ALFLD sequence 2. Preferably, the portion of the FLD N-terminal to ALFLD sequence 1 will include a sequence of the sequence pattern Gly Gly Xaa₁ Trp Thr Xaa₂ Ile Gln Xaa₃ Arg Glu Xaa4 Gly Xaa5 Xaa6 Xaa7 Phe Gln Arg Xaa Trp Xaa8 Xaa9 Tyr Lys Xaa Gly Phe Xaa10 Xaa₁₁ Xaa₁₂ Xaa₁₃ (SEO ID NO: 72) (ALFLD N-terminus sequence 1), where Xaa₁ preferably is an Arg or a Gly residue, Xaa₂ preferably is a Leu residue, Xaa₃ preferably is an Arg or His residue, Xaa4 preferably is an Asn or Asp residue, Xaa5 preferably is a Ser or Thr residue, Xaa₆ preferably is a Leu or Val residue, Xaa₇ preferably is an Asn or Asp residue, Xaa₂ preferably is a Glu or Lys residue, Xaa₂ preferably is an Asp or Glu residue, Xaa₁₀ preferably is an Asn or Asp residue, Xaa₁₁ preferably is a Pro or Val residue, Xaa₁₂ preferably is an Ala or Ser residue, and Xaa₁₃ preferably is an Arg or Gly residue. An example of a more particularly preferred sequence pattern of the ALFLD N-terminus sequence 1 pattern is Gly Gly Gly Trp Thr Leu Ile Gln Xaa Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Xaa Trp Lys Glu Tyr Lys Xaa Gly Phe Gly Asn Pro Ser Gly (SEQ ID NO: 73). The angiopoietin-like FLD alternatively, or preferably additionally, comprises a sequence N-terminal to ALFLD sequence 1, and more preferably N-terminal to ALFLD N-terminus sequence 1, of the pattern Phe Xaa₁ Asp Cys Ala Xaa₂ Xaa₃ Xaa₍₂₎ Xaa₄ Gly Xaa₍₃₎ Xaa₅ Gly Xaa6 Tyr Thr Xaa7 Xaa(3) Asn Xaa Xaa8 Xaa9 Xaa10 Xaa Lys Xaa11 Xaa12 Cys Xaa13 Xaa₁₄ Xaa₍₃₎ (SEQ ID NO: 74) (ALFLD N-terminus sequence 2), where Xaa₁ preferably is an Arg or a Gln residue, Xaa2 preferably is an Asp or Glu residue, Xaa3 preferably is an Ile or Val residue. Xaa4 preferably is an Ala or Ser residue. Xaa5 preferably is an Asn or Ser residue, Xaa6 preferably is an Ile or Val residue, Xaa7 preferably is an Ile or Val residue, Xaa₈ preferably is a Pro or Thr residue, Xaa₉ preferably is a Lys residue, Xaa₁₀ preferably is

a Glu or Pro residue, Xaa11 preferably is an Ala or Val residue, Xaa12 preferably is a Phe or Tyr residue, Xaa₁₃ preferably is an Asn or Asp residue, and Xaa₁₄ preferably is a Leu or Met residue. Examples of more particular preferred sequence patterns of the ALFLD Nterminus sequence 2 sequence pattern include Phe Arg Asp Cys Ala Gly Val Xaa Xaa Ser Gly Xaa Xaa Xaa Ser Gly Ile Tyr Thr Ile Xaa Xaa Xaa Asn Xaa Thr Lys Pro Xaa Lys Val Phe Cys Asp Met Xaa Xaa (SEO ID NO: 75) and Phe Arg Asp Cys Ala Asp Val Xaa Xaa Ala Gly Xaa Xaa Xaa Ser Gly Ile Tyr Thr Ile Xaa Xaa Xaa Asn Xaa Pro Lys Pro Xaa Lys Val Phe Cys Asn Met Xaa Xaa Xaa (SEO ID NO: 76).

The angiopoietin-like FLD desirably comprises a sequence positioned between [0084] ALFLD sequence 1 and ALFLD sequence 2 of the sequence pattern Tyr Xaa Leu Xaa₁ Xaa₂ Glu Leu Xaa Asp Trp Glu Gly Xaa Xaa Xaa₃ Xaa₄ Xaa Xaa₅ Tyr Xaa₆ Xaa Phe Xaa Xaa₇ Xaa₈ Xaa₉ Glu Xaa Xaa₁₀ Xaa Tyr Xaa₁₁ Xaa₁₂ Xaa₁₃ Xaa₁₄ Xaa Xaa₁₅ Xaa Xaa₁₆ Xaa₁₇ Xaa₁₈ Ala Gly Xaa₁₉ Xaa Xaa₂₀ Ser Xaa₂₁ Xaa Xaa Xaa₂₂ Xaa₂₃ Xaa Xaa (SEQ ID NO: 77) (ALFLD intervening sequence). Preferred residues for the selected variable residues in the ALFLD intervening sequence pattern are set forth in Table 2.

Table 2

Position	Preferred Residues	Position	Preferred Residues
Xaa ₁	Arg or Lys	Xaa ₂	Ile or Val
Xaa_3	Ala or Thr	Xaa₄	Ser or Tyr
Xaa ₅	Gln or Leu	Xaa ₆	Asp or Glu
Xaa ₇	Ile or Leu	Xaa ₈	Gly or Ser
Xaa ₉	Asn or Ser	Xaa ₁₀	Gln or Leu
Xaa11	Arg or Ser	Xaa ₁₂	Ile or Leu
Xaa ₁₃	Ser	Xaa ₁₄	Leu or Val
Xaa ₁₅	Asp or Gly	Xaa ₁₆	Ser or Thr
Xaa ₁₇	Gly or Ser	Xaa ₁₈	Ser or Thr
Xaa ₁₉	Arg or Lys	Xaa ₂₀	Asn or Ser
Xaa ₂₁	Ile or Leu	Xaa ₂₂	Gln
Xaa ₂₃	Asn or Gly		

[0085] Preferred examples of more particular sequence patterns of the AFLD intervening sequence pattern include Tyr Xaa Leu Arg Ile Glu Leu Xaa Asp Trp Glu Gly Xaa Xaa Ala Tyr Ser Gln Tyr Asp Xaa Phe Xaa Ile Gly Asn Glu Xaa Gln Xaa Tyr Arg Leu Ser Leu Xaa Gly Xaa Thr Ala Gly Lys Xaa Ser Ser Leu Xaa Xaa Gln Gly Xaa Xaa (SEQ ID NO: 78), Tyr Xaa Leu Arg Ile Glu Leu Xaa Asp Trp Glu Gly Xaa Xaa Ala Tyr Ser Gln Tyr Glu Xaa Phe Xaa Leu Gly Ser Glu Xaa Gln Xaa Tyr Arg Ile Ser Leu Xaa Gly Xaa Thr

Ala Gly Lys Xaa Ser Ser Leu Xaa Xaa Gln Gly Xaa Xaa (SEQ ID NO: 79), and Tyr Xaa Leu Arg Val Glu Leu Xaa Asp Trp Glu Gly Asn Xaa Ala Tyr Ser Gln Tyr Glu Xaa Phe Xaa Leu Gly Ser Glu Xaa Gln Asn Tyr Arg Ile Xaa Val Lys Gly Xaa Ser Gly Ser Ala Gly Arg Xaa Ser Ser Leu Xaa Xaa Xaa Gly Xaa Asp (SEQ ID NO: 80).

[0086] The angiopoietin-like FLD further desirably comprises a sequence positioned C-terminal to ALFLD sequence 2 of the sequence pattern Xaa Xaa₁ Tyr Xaa₍₃₎ Xaa₂ Xaa₃ Xaa₍₂₎ Lys Xaa Xaa₄ Gly Ile Xaa₅ Trp Xaa₆ Tyr Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ Xaa₁₂ Leu Xaa Xaa₁₃ Xaa Xaa₁₄ Met Met Xaa₁₅ Xaa₁₆ Pro Xaa Xaa₁₇ Xaa (SEQ ID NO: 81) (ALFLD C-terminus sequence 1). Preferred residues for the selected variable residues in ALFLD C-terminus sequence 1 are set forth in Table 3.

Table 3

Position	Preferred Residues	Position	Preferred Residues
Xaa ₁	Tyr or Phe	Xaa ₂	Asp or Gln
Xaa ₃	Asn or His	Xaa₄	Asn or Asp
Xaa ₅	Arg	Xaa ₆	His or Tyr
Xaa ₇	Phe or Trp	Xaa ₈	Arg or Lys
Xaa ₉	Gly or Phe	Xaa ₁₀	Pro or Ser
Xaa11	Ser	Xaa ₁₂	Ala or Ser
Xaa ₁₃	Ala or Gly	Xaa ₁₄	Arg or Thr
Xaa ₁₅	Ile or Leu	Xaa ₁₆	Arg or Phe
Xaa ₁₇	Asp or Gly		

Preferred examples of more particular ALFLD C-terminus sequence patterns of [0087] the broader ALFLD C-terminus sequence pattern include Xaa Phe Tyr Xaa Xaa Xaa Gln Asn Xaa Xaa Lys Xaa Asn Gly Ile Arg Trp His Tyr Phe Lys Phe Ser Ser Tyr Ala Leu Xaa Ala Xaa Arg Met Met Ile Glu Pro Xaa Asp Xaa (SEQ ID NO: 82), Xaa Tyr Tyr Xaa Xaa Xaa Gln Asn Xaa Xaa Lys Xaa Asn Gly Ile Arg Trp His Tyr Phe Lys Gly Pro Ser Tyr Ser Leu Xaa Ala Xaa Arg Met Met Ile Arg Pro Xaa Asp Xaa (SEQ ID NO: 83), and Met Tyr Tyr Xaa Xaa Xaa Gln Asn Xaa Xaa Lys Xaa Asn Gly Ile Xaa Trp His Tyr Phe Arg Gly Pro Xaa Tyr Ser Leu Xaa Ala Xaa Arg Met Met Ile Arg Pro Xaa Asp Phe (SEQ ID NO:84). The angiopoietin-like FLD can comprise any suitable combination of the above-[0088] described sequences, preferably within the pattern (from N-terminus to C-terminus) ALFLD N-terminus sequence 2, ALFLD N-terminus sequence 1, ALFLD sequence 1, ALFLD intervening sequence, ALFLD sequence 2, ALFLD C-terminus sequence. Thus, the angiopoietin-like FLD will desirably comprise a sequence of the overall pattern Phe Xaa Asp Cys Ala Xaa(5) Gly Xaa(4) Gly Xaa Tyr Thr Xaa(4) Asn Xaa(5) Lys Xaa(2) Cys Xaa(5) Gly

27

Gly Xaa Xaa Trp Thr Xaa Ile Gln Xaa Arg Glu Xaa Gly Xaa₍₃₎ Phe Gln Arg Xaa Trp Xaa Xaa Tyr Lys Xaa Gly Phe Gly Xaa₍₄₎ Glu Xaa Trp Leu Gly Asn Glu Xaa₍₅₎ Thr Xaa₍₄₎ Tyr Xaa Leu Xaa₍₂₎ Glu Leu Xaa Asp Trp Glu Gly Xaa₍₆₎ Phe Xaa₍₄₎ Glu Xaa₍₃₎ Tyr Xaa₍₁₀₎ Ala Gly Xaa₍₃₎ Ser Xaa₍₇₎ Phe Ser Thr Xaa Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Xaa₍₅₎ Gly Gly Trp Trp Phe Asp Ala Cys Gly Xaa Ser Asn Lys Asn Gly Xaa₍₂₎ Tyr Xaa₍₇₎ Lys Xaa₍₂₎ Gly Ile Xaa Trp Xaa Tyr Xaa₍₅₎ Tyr Xaa Leu Xaa₍₄₎ Met Met Xaa₍₂₎ Pro Xaa₍₃₎ (SEQ ID NO: 85).

In other aspects, the fusion protein FLD exhibits desirably exhibits less than 100891 about 65% amino acid sequence identity to the Ang-1 FLD, less than about 60% amino acid sequence identity to the Ang-1 FLD, or even less than about 45% amino acid sequence identity to the Ang-1 FLD (e.g., less than about 40% amino acid sequence identity to the Ang-1 FLD). For example, the fusion protein can comprise an FLD that exhibits at least about 60% amino acid sequence identity (e.g., at least about 70%, at least about 80%, or even at least about 90% amino acid sequence identity) to the fibrinogen-like domain of NL4. The fusion protein FLD alternatively can comprise a sequence that exhibits at least about 45% amino acid sequence identity (e.g., 50% amino acid sequence identity), more preferably at least about 60% amino acid sequence identity, even more preferably at least about 75% amino acid sequence identity (e.g., at least about 80% or even at least about 90% amino acid sequence identity) to the fibrinogen like domain of NL1, the fibrinogen-like domain of NL5, the fibrinogen-like domain of NL8, or any combination thereof. Alternatively, the fusion protein FLD can comprise an amino acid sequence that exhibits at least about 40% amino acid sequence identity (e.g., at least about 50%, at least about 70%, or even at least about 90% amino acid sequence identity) to the fibrinogen-like domain of zapol, the fibringen like domain of murine FDRG, or both. In another alternative, the fusion protein FLD can comprise a sequence that exhibits at least about 45% amino acid sequence identity (e.g., at least about 50%, about 60%, about 70%, about 80%, about 90%, or even 100%) to the fibrinogen-like domain of NL3 (SEQ ID NO: 86) or the Hakata antigen (SEQ ID NO: 87) (as described in, e.g., Sugimoto et al., J. Biol. Chem. 273 (33), 20721-20727 (1998) and Yae, Biochim. Biophys. Acta 1078 (3), 369-376 (1991)). In yet another alternative, the fusion protein FLD can comprise an amino acid sequence that exhibits at least about 30% amino acid sequence identity, preferably at least about 50% amino acid sequence identity, and more preferably at least about 70% amino acid sequence identity (e.g., at least about 80%, about 90%, or about 95% amino acid sequence identity) to the fibrinogen-like domain of FLS 139. The fusion protein FLD also can comprise a sequence that fulfills any combination of the above-described levels of identity to these nonangiopoietin ARF FLDS (e.g., in the case of a chimeric FLD peptide portion derived from two wild-type ARFs).

A preferred set of fusion proteins, having an angiopoietin-like FLD, comprise (1) [0090] an amino acid sequence that exhibits at least about 50%, preferably at least about 60%, and even more preferably at least about 75% (e.g., at least about 80%, about 90%, or even 100%) amino acid sequence identity to the fibrinogen-like domain of NL1, NL5, NL8, or any combination thereof, (2) an amino acid sequence that exhibits at least about 50%. preferably at least about 60%, and more preferably at least about 75% (e.g., at least about 80%, about 90%, or even 100%) amino acid sequence identity to the fibrinogen-like domain of NL4, (3) an amino acid sequence that exhibits at least about 35%, preferably at least about 40%, and more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the fibrinogen-like domain of zapo1, murine FDRG, or both, (4) an amino acid sequence that exhibits at least about 40%, preferably at least about 45%, and more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the fibrinogen-like domain of NL3 or the Hakata antigen, (5) an amino acid sequence that exhibits at least about 25%, preferably at least about 30%, and more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the fibrinogen-like domain of FLS 139, or (6) an amino acid sequence which fulfills any combination of (1)-(5), and a coiled-coil domain that exhibits at least about 30%, preferably at least about 35%, and more preferably at least about 75% (e.g., at least about 80%, at least about 90%, or even about 100%) amino acid sequence identity to the Ang-1 CCD, Ang-2 CCD, Ang-2X CCD, Ang-3 CCD, Ang-4 CCD, or any combination thereof. A particularly preferred subset of this set of fusion proteins comprise a coiled coil domain that exhibits at least about 65%, preferably at least about 75%, and more preferably at least about 85% amino acid sequence identity to the coiled-coil domain of at least one of Ang-1, Ang-2, or Ang-2X. An alternative preferred subset comprise a coiled-coil domain exhibits at least about 50%, more preferably at least about 75%, and even more preferably at least about 85% amino acid sequence identity to the coiled-coil domain of Ang-3, Ang-4, or both.

[0091] In aspects where the fusion protein includes an FLD that is homologous to the NL1 FLD, NL5 FLD, or both wild-type FLDs, the fusion protein FLD desirably contains at least four cysteine residues, which preferably can form inter-FLD disulfide bonds. The NL1/NL5-like FLD further desirably comprises a first sequence of the pattern Gly Gly Trp Xaa₍₃₎ Gln Xaa Arg Xaa₍₂₎ Gly Xaa Val Xaa Phe Xaa₍₃₎ Trp Xaa₍₂₎ Tyr Xaa₍₂₎ Gly Phe Gly Xaa₍₆₎ Trp Leu Gly Xaa Glu Xaa₍₄₎ Leu Xaa (SEQ ID NO: 88), which preferably is positioned in the N-terminal-most half of the FLD, and a sequence of the sequence pattern Tyr Xaa₍₂₎ Phe Xaa Leu Xaa₍₂₎ Glu Xaa₍₃₎ Tyr Xaa Leu Xaa Leu Gly Xaa₍₆₋₇₎ Asp Xaa₍₄₎ His Xaa₍₄₎ Phe Xaa Thr Xaa Asp Xaa Asp Xaa₍₅₎ Cys Ala Xaa₍₄₎ Gly Xaa₍₂₎ Trp Tyr Xaa₍₂₎ Cys

29

Xaa₍₂₎ Ser Asn Leu Asn Gly (SEQ ID NO: 89), positioned C-terminal to first sequence. More preferably, the NL1/NL5-like FLD will comprise an amino acid sequence of the pattern Xaa₁ Cys Xaa Gln Xaa₂ Xaa₃ His Xaa₍₂₎ Ser Xaa₄ Xaa₅ Tyr Xaa₍₂₎ Lys Pro Glu Asn Xaa₍₀₋₁₎ Asn Xaa₍₂₋₄₎ Met Gln Xaa₆ Xaa₇ Cys Xaa₈ Xaa₍₃₎ Asp Xaa₉ Gly Gly Trp Xaa₁₀ Xaa₁₁ Xaa₁₂ Gln Xaa₁₃ Arg Xaa Xaa₁₄ Gly Xaa₁₅ Val Asn Phe Xaa₁₆ Xaa₁₇ Asn Trp Glu Xaa Tyr Xaa₁₈ Xaa Gly Phe Gly Asn Ile Asp Xaa₁₉ Xaa₂₀ Xaa₂₁ Trp Leu Gly Xaa₂₂ Glu Asn Ile Tyr Xaa Leu Xaa₂₃ Asn Xaa₂₄ Xaa₍₀₋₁₎ Asn Tyr Lys Leu Xaa₂₅ Xaa₂₆ Xaa₂₇ Xaa₂₈ Glu Asp Xaa₂₉ Ser Xaa₃₀ Xaa Lys Val Xaa Ala Xaa₃₁ Tyr Xaa Ser Phe Arg Leu Glu Pro Glu Ser Glu Xaa Tyr Xaa₃₂ Leu Arg Leu Gly Xaa Tyr Xaa Tyr Xaa Xaa₃₃ Asn Ala Xaa₃₄ Xaa₍₀₋₁₎ Asp Xaa₃₅ Xaa₍₂₎ Trp His Xaa₃₆ Gly Lys Gln Phe Xaa₃₇ Thr Leu Asp Arg Asp Xaa Asp Xaa Tyr Xaa Gly Xaa₃₈ Cys Ala His Xaa₍₂₎ Lys Gly Xaa₃₉ Xaa₄₀ Trp Tyr Xaa₄₁ Ala Cys Ala His Ser Asn Leu Asn Gly Xaa₄₂ Xaa₄₃ Tyr Arg Gly Gly His Tyr Arg Ser Xaa Xaa₄₄ Gln Asp Gly Xaa₄₅ Xaa Trp Ala Glu Xaa Xaa₄₆ Gly Gly Ser Xaa₄₇ Xaa₄₈ Xaa₄₉ Xaa₅₀ Xaa Xaa₅₁ Xaa Met Met Xaa₅₂ (SEQ ID NO: 90). Preferred residues for the selected variable residues in this NL1/NL5 FLD are set forth in Table 4.

PCT/US02/37660

Table 4

Position	Preferred Residues	Position	Preferred Residues
Xaa ₁	Asn or Asp	Xaa ₂	Ala or Leu
Xaa ₃	Asn or Gly	Xaa₄	Gly or Ser
Xaa ₅	Ile or Val	Xaa ₆	Leu or Val
Xaa ₇	Phe or Trp	Xaa ₈	Asp or Glu
Xaa ₉	Gly or Pro	Xaa ₁₀	Leu or Thr
Xaa_{11}	Ile or Val	Xaa ₁₂	Ile or Phe
Xaa_{13}	Arg or Lys	Xaa ₁₄	Asp or Ser
Xaa ₁₅	Leu or Ser	Xaa ₁₆	Phe or Tyr
Xaa ₁₇	Arg or Thr	Xaa ₁₈	Arg or Lys
Xaa ₁₉	Gly or Ser	Xaa ₂₀	Asp or Glu
Xaa_{21}	Phe or Tyr	Xaa ₂₂	Asn or Leu
Xaa ₂₃	Ser or Thr	Xaa ₂₄	Arg or Gln
Xaa ₂₅	Arg or Leu	Xaa ₂₆	Ile or Val
Xaa ₂₇	Glu or Thr	Xaa ₂₈	Leu or Met
Xaa ₂₉	Phe or Trp	Xaa ₃₀	Asp or Gly
Xaa ₃₁	Glu or His	Xaa ₃₂	Arg or Lys
Xaa ₃₃	Glu or Gly	Xaa ₃₄	Ala or Gly
Xaa ₃₅	Ala or Ser	Xaa ₃₆	Asn or Ser
Xaa ₃₇	Ser or Thr	Xaa ₃₈	Asn or Lys
Xaa39	Ala or Gly	Xaa ₄₀	Trp or Tyr
Xaa ₄₁	Ala or Asn	Xaa ₄₂	Arg or Val
Xaa ₄₃	Trp or Tyr	Xaa ₄₄	His or Tyr
Xaa ₄₅	Ala or Asn	Xaa ₄₆	Arg or His
Xaa ₄₇	His or Tyr	Xaa ₄₈	Pro or Ser
Xaa49	Leu or Tyr	Xaa ₅₀	Arg or Lys
Xaa ₅₁	Ala or Val	Xaa ₅₂	Ile or Leu

[0092] Where the fusion protein comprises a FLD homologous to the zapo1 FLD, the fusion protein FLD will desirably comprise a sequence of the sequence pattern Arg Asp Cys Gln Glu Leu Phe Gln Xaa1 Gly Glu Arg Xaa2 Ser Gly Leu Phe Xaa3 Ile Gln Pro Xaa4 Gly Ser Pro Pro Phe Leu Val Asn Cys Xaa5 Met Thr Ser Asp Gly Gly Trp Thr Val Ile Gln Arg Arg Xaa6 Xaa7 Trp Glu Ala Tyr Lys Xaa8 Gly Phe Gly Asp Pro Xaa9 Gly Glu Phe Trp Leu Gly Leu Glu Lys Xaa10 His Ser Ile Xaa11 Gly Xaa12 Arg Xaa13 Ser Xaa14 Leu Ala Val Gln Leu Xaa15 Asp Trp Asp Gly Asn Ala Xaa16 Leu Leu Gln Phe Xaa17 Xaa18 His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu Thr Xaa19 Pro Xaa20 Ala Xaa21 Xaa22 Leu Gly Ala

Thr Thr Val Xaa₂₃ Pro Xaa₂₄ Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Xaa₂₅ Asp Xaa₂₆ Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Xaa₂₇ (SEQ ID NO: 91). Optionally, the zapol-like FLD sequence can include an additional sequence, N-terminal to this sequence, of the sequence pattern Ser Ile Pro Xaa₂₈ Gln Arg Gln Xaa₂₉ Xaa₃₀ Lys Lys Gly Ile Phe Trp Lys Thr Trp Xaa₃₁ Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Xaa₃₂ Leu Ile Gln (SEQ ID NO: 92). Preferred residues for the selected variable residues in these zapol-like FLD sequences are set forth in Table 5.

Table 5

Position	Preferred Residues	Position	Preferred Residues
Xaa ₁	Glu or Val	Xaa ₂	Gln or His
Xaa ₃	Gln or Glu	Xaa₄	Gln or Leu
Xaa ₅	Glu or Lys	Xaa ₆	His or Leu
Xaa ₇	Asn or Asp	Xaa ₈	Arg or Gln
Xaa ₉	Ala or Asp	Xaa ₁₀	Gln or His
Xaa ₁₁	Gln or His	Xaa ₁₂	Met or Val
Xaa ₁₃	Met or Thr	Xaa ₁₄	Asn or Asp
Xaa ₁₅	Asn or Gly	Xaa ₁₆	Arg or Gln
Xaa ₁₇	Arg or Gln	Xaa ₁₈	Glu or Lys
Xaa ₁₉	Pro or Ser	Xaa ₂₀	Ile or Val
Xaa ₂₁	Ala or Glu	Xaa ₂₂	Thr or Val
Xaa23	Asn or Gly	Xaa ₂₄	Gln or Glu
Xaa ₂₅	Asn or Ser	Xaa ₂₆	Asn or Ser
Xaa ₂₇	Arg or Gly	Xaa ₂₈	Leu or Lys
Xaa ₂₉	Arg or His	Xaa ₃₀	Arg or Gln
Xaa ₃₁	Glu or Lys	Xaa ₃₂	Leu or Met

[0093] The fusion protein FLD can contain any combination of the above-described sequence portions, or peptide portions of such sequence portions. Any of the preferred selected amino acids in the above-described sequences also can desirably be replaced with a functionally homologous and/or weight-based homologous residue (e.g., where a preferred residue at a particular variable (i.e., Xaa) position is an Trp or Phe residue, a Tyr residue at the indicated position, which also is aromatic, is more preferred than other residues, though less preferred than a Trp or Phe residue). This principle applies to all amino acid sequence patterns discussed herein, unless otherwise stated.

[0094] The fusion protein preferably also comprises a coiled-coil domain. The coiled-coil domain can be any suitable coiled-coil domain, preferred features of which, e.g., a substructure comprising an alpha helix comprising a primarily hydrophobic side, are discussed elsewhere herein. For example, the coiled-coil domain can be a parallel coiled-coil, a leucine zipper CCD, a TRAF2 CCD, an antiparallel coiled-coil, or an apoliproprotein A-I CCD. The CCD also can, for example, be a viral ecroprotein CCD or an epidermal growth factor CCD. ARF CCDs and homologs thereof are most preferred.

[0095] Preferably, the coiled-coil domain increases the affinity of the fusion protein for the receptor that the first wild-type protein binds. "Affinity" is a measure of the degree of attractiveness between a ligand and a receptor. Affinity can be measured by any suitable technique. Typically, affinity is characterized by the receptor-ligand equilibrium dissociation constant, K_d , and/or the maximal specific binding, B_{max} , which can be empirically determined for a particular ligand-receptor pair by saturation analysis or other analytical techniques.

[0096] The K_d for a receptor-ligand interaction is the concentration at which 50% of the receptor's ligand binding sites are occupied by a receptor-ligand interaction, and, as such, is a measure of affinity of receptor for a ligand. In general, the lower the K_d the higher the affinity, as only a small amount of ligand is required to fill half the receptor binding sites in such situations. The B_{max} is the maximum amount of ligand that can bind to the receptor, and can be used to indicate receptor concentration and/or number of receptors per cell.

[0097] Saturation analysis techniques typically used to determine affinity are known in the art, and as such only briefly discussed herein. In a simple saturation analysis, cell

100971 the art, and, as such, only briefly discussed herein. In a simple saturation analysis, cell membranes containing the receptor, or whole cells comprising the receptor, are incubated in a first set of assays with a range of concentrations of radioligand from a desired low point until an equilibrium or saturation point is reached. A second set of assays are performed under similar conditions except that a large excess of an unlabelled antagonist for the receptor (e.g., a wild-type ARF versus the fusion protein ligand) is added until an equilibrium is reached, such that the ligand is only permitted to bind to nonspecific sites (i.e., sites other than the receptor). The membranes or cells are then passed through a filter that retains the membranes and/or cells. The radioactivity (or other phenomena associated with the label, e.g., fluorescence intensity) is measured with a suitable detector. The bound radioactivity is then plotted as a function of concentration of the ligand to obtain two curves, representing total binding (obtained in the first set of assays), and nonspecific binding (obtained in the second set of assays), respectively. Nonspecific binding is subtracted from total binding to provide a saturation plot. The top of the saturation plot curve is experimentally equal to the number of binding sites in the system (the B_{max}), and the concentration at 50% of this maximum is the K_d. While this technique is effective for

WO 03/048185

determining the K_d and B_{max} for a ligand-receptor interaction, more typically a Scratchard plot (or Rosenthal plot), or even more typically a mathematical model consisting of a saturable hyperbolic component plus a linear non-saturable component, is used to provide an estimate of the K_d and B_{max} .

[0098] Alternatively or additionally, affinity can be measured by a competition assay. Briefly, in a competition assay, a single concentration of labeled ligand is used for every assay point (which typically are limited to concentrations below the ligand's K_d value if known). The level of specific binding of the radioligand is then determined in the presence of a range of concentrations of other competing non-radioactive compounds to measure the potency with which they compete for the binding of the radioligand. The results of the competition assay provide a measure of the relative affinity of competing ligands for a receptor. The data for each competing ligand is usually fitted to a hyperbolic equation from which the IC_{50} (i.e., the molar concentration of competing ligand (agonist or antagonist) that reduces the specific binding of a radioligand by 50%) can be determined. The IC_{50} can be correlated to K_d using the Cheng-Prusoff equation ($K_1 = IC_{50}$ divided by $1+[L]/K_d$, where L is the concentration of free ligand used in the assay) if the rate of ligand-receptor association (K_1) is known.

[0099] Other suitable techniques for measuring the affinity of receptor-ligand pairs are known in the art. Examples of such techniques and related principles are described in, e.g., Chang et al., Biochim Biophys Acta, 406(2), 294-303 (1976), Tallarida, Fed. Proc., 41(7), 2323-7 (1982), Levesque et al., Exp. Cell Res., 156(2), 558-62 (1985), Kenakin, Drugs, 40(5), 666-87 (1990), Smisterova et al., J. Pharm. Biomed. Anal., 12(6), 723-45 (1995), Van der Graaf et al., Int. J. Clin. Pharmacol. Ther., 35(10), 442-6 (1997), U.S. Patents 3,901,654, 4,251,360, and 5,639,5687, and references cited therein. Alternatively or additionally, the affinity of a ligand for a receptor can be measured by thermodynamic techniques, such as those described in Raffa, Life Sci., 44(4), 245-58 (1989), Pliska, J. Recept. Signal Transduct. Res., 17 (1-3), 495-510 (1999), and Pliska, J. Recept. Signal Transduct. Res., 17(4), 667 (1997). Additional related techniques are described in "Affinity Techniques Enzyme Purification," Meth. Enzymol., 34 (Jakoby and Wilcheck eds. 1974).

[0100] Alternatively, or preferably additionally, the fusion protein CCD promotes formation of a multimer comprising the fusion protein. The multimer can be any collection of two or more non-covalently linked peptides. Thus, the multimer can be a dimer, although typically and preferably the multimer is a trimer or a higher ordered multimer (i.e., a collection of four or more non-covalently linked peptides).

[0101] Multimer formation can be determined by any suitable technique. Several suitable approaches to determining multimer formation are known in the art. A simple technique for assessing multimerization comprises subjecting a first portion of a

WO 03/048185

34

composition comprising the putative multimer to size-exclusion chromatography, under conditions where the multimer will not be denatured, to determine the weight of the multimer. Another portion of the composition can be subjected to denaturing SDS-PAGE. If a multimer is formed the weights indicated in the two assays will be different, as the SDS-PAGE gel will exhibit a bond reflecting the weight of the monomeric fusion protein, rather than a multimer. Alternatively, two Western blots, one performed under denaturing conditions and the other under non-denaturing conditions can be performed on the multimer containing composition, if an antibody exhibits binding for both the multimer and the monomer. Recently, fluorescent microscopy, mass spectrometry, and light scattering techniques also have been used to determine multimerization. Alternatively, multimerspecific antibody binding assays can be used to assess multimerization.

The fusion protein CCD can be any suitable size. The CCD will usually be at least about 20, typically about 25-500, more typically about 30-300, even more typically about 30-220 (e.g., at least about 190-210) amino acid residues in length.

The fusion protein CCD desirably exhibits at least about 25% amino acid [0103] sequence identity, preferably at least about 50% sequence identity, more preferably at least about 75% amino acid sequence identity, and even more preferably at least about 90% amino acid sequence identity to the coiled-coil domain of a second wild-type protein, where the second wild-type protein is typically and preferably an ARF, and most preferably is an ARF that promotes angiogenesis in vivo.

In instances where the fusion protein comprises a CCD that is homologous to an [0104] angiopoietin, the fusion protein CCD will desirably comprise the sequence Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn (SEQ ID NO: 93). The angiopoietin-like CCD desirably further comprises an amino acid sequence of the sequence pattern Val Asp Gly Xaa Ile Val Xaa1 Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn Xaa Leu Glu Leu Ser Gln Leu Glu Asn Xaa2 Ile Leu Asn (SEQ ID NO: 94), where Xaa1 represents a hydrophobic residue and Xaa₂ represents a basic residue. More particularly still, the angiopoietin-like CCD desirably comprises a sequence of the sequence pattern Leu Glu Xaa Leu Xaa Xaa Xaa Leu Xaa Xaa Gln Lys Arg Xaa Ile Xaa Xaa Leu Gln Xaa Xaa Val Xaa Val Asp Gly Xaa Ile Val Xaa Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp Asn Xaa Leu Glu Leu Ser Gln Leu Glu Asn Xaa Ile Leu Asn Xaa Thr Xaa Xaa Met Leu Xaa Xaa Ala Xaa Xaa Tyr Xaa Xaa Leu Glu Xaa Lys Tyr Xaa Xaa Leu (SEQ ID NO: 95).

Alternatively, and desirably, where the fusion protein FLD exhibits higher [0105] identity to an ARF FLD other than the Ang-1 FLD, Ang-2 FLD, Ang-3 FLD, or Ang-4

FLD, and optionally higher identity to a non-angiopoietin ARF FLD than any angiopoietin FLD, the fusion protein CCD will desirably comprise a sequence of the sequence pattern Tyr Xaa Xaa Asn Ala Xaa Gln Arg Asp Ala Pro Xaa₍₁₋₂₎ Glu Xaa Asp Xaa Ser Xaa Gln Xaa Leu Gln Xaa Leu Glu Xaa Xaa Met Glu Asn Xaa Thr Gln Trp Leu Xaa Lys Leu Glu Asn Tyr Ile Xaa Xaa Asn Met Lys Xaa Glu Met Xaa Xaa Ile Gln Gln Asn Ala Val Gln Asn Xaa Thr Ala Xaa Met Xaa Glu Ile Gly Thr Xaa Leu Leu Xaa Gln Thr Ala Glu Gln (SEQ ID NO: 96).

[0106] In another aspect, and desirably where the fusion protein FLD exhibits higher identity to a wild-type ARF FLD other than the Ang-3 or Ang-4 FLD, preferably other than the Ang-1 FLD, Ang-2 FLD, Ang-3 FLD, and Ang-4 FLD, and optionally higher identity to any ARF other than to any angiopoietin, the fusion protein CCD will desirably include a sequence of the sequence pattern Thr Asn Lys Leu Glu Xaa Gln Xaa Leu Xaa Gln Xaa Xaa Xaa Leu Gln Xaa Leu Gln Gly Xaa Asn Xaa Ala Leu Glu Xaa Arg Leu Gln Ala Leu Glu Xaa Xaa Xaa Gln Xaa Xaa Leu Xaa Ser Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Leu (SEQ ID NO: 97). More preferably, such a fusion protein CCD will comprise a sequence of the sequence pattern Thr Asn Lys Leu Glu Xaa₁ Gln Xaa₂ Leu Xaa₃ Gln Xaa₄ Xaa₅ Xaa₆ Leu Gln Xaa₇ Leu Gln Gly Xaa₈ Asn Xaa₉ Ala Leu Glu Xaa₁₀ Arg Leu Gln Ala Leu Glu (SEO ID NO: 98), where Xaa₁ preferably represents an Asn or Arg residue, Xaa₂ preferably represents a Leu or Met residue, Xaa3 preferably represents a Leu or Met residue, Xaa4 preferably represents an Arg or a Ser residue, Xaa5 preferably represents an Arg or a Gln residue, Xaa₆ preferably represents a Glu or a Lys residue, Xaa₇ preferably represents an Arg or Gln residue, Xaa₈ preferably represents an Arg or a Gln residue, Xaa₉ preferably represents an Arg or a Ser residue, and Xaa₁₀ preferably represents a Lys or Thr residue. The first wild-type protein and second wild-type protein are different. [0107] Preferably, the first wild-type protein and second wild-type protein exhibit less than about 90% overall amino acid sequence identity, preferably less than about 70% overall amino acid sequence identity, even more preferably less than about 50% overall amino acid sequence identity, and optimally less than about 30% overall amino acid sequence identity to each other (e.g., less than about 20%, less than about 15%, or even less than about 10% amino acid sequence identity to each other). Advantageously, at least one, if not both, of the first wild-type protein and second wild-type protein exhibit a higher level of sequence identity to a wild-type ARF other than Ang-1, Ang-2, Ang-3, and Ang-4, or another angiopoietin. Thus, although the first protein and second protein typically exhibit at least about 30% overall amino acid sequence identity to Ang-1, the first wild-type protein, the second wild-type protein, or both proteins, are not Ang-1, Ang-2, Ang-3, or Ang-4. [0108]The first wild-type protein can be any suitable wild-type ARF. For example, the

first wild-type protein can be an angiopoietin (e.g., Ang-1, Ang-2 (SEQ ID NO: 99), Ang-3

(SEQ ID NO: 100), or Ang-4 (SEQ ID NO: 101)), or a non-angiopoietin ARF, such as a muscle ALGF (SEQ ID NO: 102) or liver ALGF (SEQ ID NO: 103) (as described in, e.g., International Patent Application WO 99/67382), NL1 (SEQ ID NO: 104), NL2 (SEQ ID NO: 105), NL3 (SEQ ID NO: 106), NL4 (SEQ ID NO: 107) (which appears to be the same as CDT6, described in International Patent Application WO 01/29085 (SEQ ID NO: 108)), NL5 (SEO ID NO: 109), NL6 (SEO ID NO: 110), NL8 (SEO ID NO: 111), zapo1 (SEO ID NO: 112), FARP (SEQ ID NO: 113) and HFARP (SEQ ID NO: 114) (as described in, e.g., Lee et al., Mol. Cells, 11(1), 100-04 (2001), and Kim et al., Biochem. J., 346 (part 3), 603-10 (2000)), the angiopoietin-like factors described by Peek et al., Invest. Opthalmol. Vis. Sci., 39(10), 1782-88 (1998) (e.g., Genbank Accession No. NP 066969), angiopoietinrelated protein 5 (SEQ ID NO: 115), angiopoietin related protein 2 (GenBank Accession No. NP 036053), angiopoietin-like 1 precursor (GenBank Accession No. NP 004664), the factors recorded at GenBank Accession Nos. BAB27951, XP 049490, BAB31076, AAK11499, P14448, NP 082609, AK018113, AF159049 1, AB056477, XP 041622, AF169312 1, AF278699 1, AAC97965, NP 065606, AAK83349, AF110520, AF278699, AF379604, and AK019860, fibrinogen/angiopoietin related protein (SEQ ID NO: 116) (as described in Kim et al., Biochem. J., 346, 603-10 (2000)), PPAR gamma (SEQ ID NO: 117) , Ang-2A (SEO ID NO: 118), Ang-2B (SEO ID NO: 119), and Ang-2C (SEO ID NO: 120) (as described in, e.g., Mezquita et al., Biochem. Biophys. Res. Commun., 275(2), 643-51 (2000)), Ang2(443) (SEO ID NO: 121) (as described in, e.g., Kim et al., J. Biol. Chem., 275(24), 18550-56 (2000)), Ang-6 (SEO ID NO: 122) (as described in, e.g., International Patent Application WO 01/02429), Ang-7 (SEQ ID NO: 123) (as described in, e.g., International Patent Application WO 01/02434), the angiopoietin related proteins described in Yoon et al., Mol. Cell. Biol., 20(14), 5343-9 (2000), a FAIF (as described in, e.g., Kerten et al., J. Biol. Chem., 275(37), 28488-93 (2000)), the angiopojetin related factors described in, or encoded by nucleotide sequences described in, International Patent Applications WO 98/05779, WO 99/15653, WO 99/32515, WO 99/32639, WO 99/40193, WO 99/45135, WO 99/54353 (e.g., sequences 16 and 125), WO 99/62956, WO 99/62925, WO 00/05369 (e.g., the Ang-3 described therein (SEO ID NO: 124)), WO 00/05241, WO 00/37642, WO 00/52167, WO 00/59938, WO 00/73452 (e.g., sequence 48), WO 01/04264 (e.g., sequence 27), WO 01/05825 (e.g., sequences 1, 3, 5, 11, 13, 14, 45, and 47), WO 01/05972 (e.g., PRO356 (SEQ ID NO: 125)), WO 01/14550 (e.g., PG-3 (SEQ ID NO: 126)), WO 01/36684 (e.g., sequence 40), and variants of such angiopoietins or ARFs (as described in, e.g., Kim et al., J. Biol. Chem., 274, 26523-28 (1999), U.S. Patents 5,521,073, 5,643,755, 5,877,289, 5,879,672, 5,972,338, 6,030,831, 6,057,435, and 6,074,873, and International Patent Applications WO 96/11269, WO 96/31598, WO 99/15653, WO 99/32515, WO 99/45135, WO 99/67382, and WO 01/05825). Other suitable ARFs include the Hakata antigen,

37

PRO1346 (also known as NL7) (SEQ ID NO: 127), PRO179 (SEQ ID NO: 128), PRO196 (SEQ ID NO: 129), SECP3 (SEQ ID NO: 130) (as described in International Patent Application WO 01/05971), z-alpha5 (as described in, e.g., International Patent Application WO 99/55869), and murine FDRG (SEQ ID NO: 131). In some situations, it is preferred that the first wild-type protein is NL1 or NL5. In other situations, it is preferred that the first wild-type protein is an angiopoietin, and, more preferably, Ang-1. Other preferred ARFs include the factors recorded under GenBank Accession Nos. AI972163 (SEQ ID NO: 132), AI341252 (SEQ NO: 133), and AW293408 (SEQ ID NO: 134). Factors encoded by the sequences recorded under GenBank Accession No. AA048880 also can be suitable, as can the factors recorded at GenBank Accession Nos. AA122061, AB056477, AC092300, AF153606, AF169312, M62290, T57280, T50719, T35448, T11442, and W77823.

[0109] The first wild-type protein alternatively can be a non-ARF protein. For example, the first wild-type protein could be a human fibrinogen chain, a tenascin (e.g., a human tenascin (SEQ ID NO: 135), or a ficolin (e.g., human ficolin (SEQ ID NO: 136)).

[0110] The second wild-type protein can be any suitable protein comprising a CCD (e.g., an epidermal growth factor receptor), but preferably is an ARF (such as any of the aforementioned first wild-type proteins), and most preferably an ARF that promotes angiogenesis in vivo. In some aspects, angiopoietin ARFs are preferred, and particularly Ang-1. In other aspects, the second wild-type protein is desirably NL1, FLS 139, NL3, the Hakata antigen, NL4, NL5, NL8, zapo1, or murine FDRG. Where the first wild-type protein is KAP or an angiopoietin, preferred second wild-type proteins include NL1 and NL5.

[0111] The first wild-type protein or second wild-type protein also can be the novel angiopoietin homolog Ang-2X (SEQ ID NO: 137), which is described further herein. Where Ang-2X is the first wild-type protein, the second wild-type protein preferably is Ang-1, Ang-2, Ang-3, or Ang-4, most preferably Ang-1. Alternatively, in such fusion proteins, the second wild-type protein desirably preferably is NL1 or NL5. Where Ang-2X is the second wild-type protein, the first wild-type protein preferably is Ang-1, Ang-2, NL1, or NL5, and most preferably Ang-1.

[0112] A desirable quality of the fusion proteins of the invention is their ability to reduce blood vessel leakage (permeability) when administered or produced *in vivo*. The reduction in blood vessel permeability can be measured relative to the level of permeability in selected blood vessels prior to administration or production of the fusion protein, or, more typically, at a time prior to some selected time after administration or sufficient production of the fusion protein (e.g., at least about 6 hours, about 12 hours, about 1 day, about 2 days, about 3 days, about one week, or longer (e.g., about 2 weeks) after administration of the fusion protein). Alternatively or additionally, the reduction in

WO 03/048185

permeability can be measured by comparing the level of blood vessel permeability exhibited in blood vessels receiving administration of a VEGF or a polynucleotide encoding a VEGF in the absence of the fusion protein, with blood vessels receiving a substantially identical amount of VEGF in the presence of an effective amount of fusion protein for a similar time period. Preferably, blood vessels affected by the administration or production of the fusion protein exhibit about 90% or less, more preferably about 75% or less, and even more preferably about 50% or less (e.g., about 25% or less) of the vascular permeability exhibited by blood vessels induced or promoted by administration of a VEGF or VEGF-encoding polynucleotide without administration or production of the fusion protein, at about 1 day, about 2 days, about 3 days, about one week, about two weeks, or longer, after administration or production of the fusion protein. The fusion protein of the invention will desirably exhibit such levels of reduced permeability even when co-administered with, or administered closely after (e.g., within about 6 hours, 12 hours, 1 day, or 3 days) administration of a VEGF or VEGF-encoding polynucleotide.

Blood vessel permeability is the rate at which macromolecules move through a [0113] blood vessel wall and outside of the blood vessel. Blood vessel permeability can be determined by any suitable technique, and several techniques are known in the art. One measure of permeability is the lack of force that resists the movement through the blood vessel wall and out of the blood vessel. A simple technique for determining blood vessel permeability involves the application of a labeled, typically radiolabeled, protein that is normally carried in the blood (e.g., FITC labeled, or I¹²⁵ labeled, human serum albumin (HSA)), to a blood vessel for a period of time followed by measuring the amount of the labeled protein that enters the tissue surrounding the blood vessel. More sophisticated techniques for assessing blood vessel formation involve MRI, Doppler imaging, and computed tomography. For example, first-pass perfusion imaging MRI can be suitable for assessing vascular perfusion in cardiac tissue in vivo. See, e.g., Dranga et al., J. Mag. Resonance Imaging, 7, 664-68 (1997) and Wilke et al., Radiology, 204, 373-84 (1997). Scanning electron microscopy and/or light microscopy techniques also can be used to assess permeability. See, e.g., Grunt et al., Scanning Electron Microscopy, part 2, 575-89 (1986). Other techniques known in the art for assessing blood vessel permeability and related principles are discussed in, e.g., Thurston et al., Nat. Med., 6(4), 460-63 (2000), Bates et al., Microcirculation, 6, 83-96 (1999), Thurston et al., Science, 286, 2511-14 (1999), Cox et al., J. Surg. Res., 83(1), 19-26 (1999), Carter et al., Biophys. J., 74(4), 2121-28 (1998), Mori et al., Neurol. Med. Chir., 38(11), 697-703 (1998), Kendall et al., Exp. Physiol., 80(3), 359-72 (1995), Adamson et al., Microcirculation, 1(4), 251-65 (1994), Yuan et al., Microvasc. Res., 45(3), 269-89 (1993), Olson et al., J. Appl. Physiol., 70(3), 1085-96 (1991), Shibata et al., Jpn. J. Physiol., 41(5), 725-34 (1991), Tompkins, Am. J. Physiol., 260, H1194-1204 (1991),

and Kern et al., Am. J. Physiol., 245(2), H229-36 (1983).

Typically and preferably, in vivo production or administration of the fusion protein also or alternatively is blood vessel maturity (e.g., results in more blood vessels which exhibit greater density and/or structural similarity to mature mammalian blood vessels). The promotion of blood vessel maturity can be determined by comparing selected blood vessels before and after a suitable time after administration or production of the fusion protein (e.g., about 1 day, 2 days, 3 days, one week, or longer) and/or by comparing selected blood vessels that result from the administration of a VEGF or a polynucleotide encoding a VEGF in the absence of the fusion protein versus substantially identical blood vessels that also receive an effective amount of fusion protein (either by production or administration). Particular examples of maturation events include pericyte coating of forming blood vessels and arterialization of newly formed vessels. Generally, immature blood vessels are poorly associated with underlying basement membranes and/or other vessels (as described in, e.g., Dumont et al., Genes Dev. 8, 1897-1909 (1994) and Sato et al., Nature, 376, 70-74 (1995)). Blood vessel maturation can be assessed using any suitable standard. For example, maturity can be observationally assessed by assessing vessel shape, density, luminal regularity, and vessel opening size (as described in, e.g., Bloch et al., FASEB J., 14(5), 2373-76 (2000)). Maturity also can be assessed by evaluating signal intensity changes in response to hyperoxia (elevated oxygen) and hypercapnia (elevated carbon dioxide), for example by measuring physiological vasodilatory response to carbon dioxide (as described in, e.g., Gilead and Neeman, Neoplasia, 1(3), 226-30 (1999)), smooth muscle plasticity, the association of blood vessels with basement membrane or each other, or smooth muscle and non-muscle vascular associated myosin isoform distribution (as described in, e.g., Pauletto et al., Am. J. Hypertens., 7, 661-74 (1994)). Preferably, maturation is determined by assessing recruitment of pericytes to the vasculature, pericyte coating of new vessels, association between the vascular tube and the mural cells, or any combination thereof (as discussed in, e.g., Darland et al., J. Clin. Invest., 103(2), 157-58 (1999), which can be quantified, e.g., by using the microvessel maturation index (MMI) (see, e.g., Goede et al., Lab. Invest., 78(11), 1385-94 (1998)). The in vivo administration of the angiogenic fusion protein to a mammalian host typically will result in a higher number or greater concentration of smooth muscle cells, pericytes, mural cells, total endothelial cells, or any combination thereof, than blood vessels resulting from administration of a protein limited essentially to the first peptide portion. The increase in number of such cells can be detected using techniques known in the art. Other techniques and principles related to assessing blood vessel maturation are discussed in Koffet et al., FASEB J., 15(2), 447-57 (2001), as well as several other references cited elsewhere herein.

[0115] In a related sense, administration or production of the fusion protein desirably

promotes blood vessel remodeling. "Blood vessel remodeling" includes any type of vascular restructuring not associated with maturation, although the events often typically overlap and/or occur simultaneously in living systems. Typical types of blood vessel remodeling events include increase in vascular mass, vessel wall thickening, vessel enlargement or dilation, alteration in capillary density, vascular bed modification, change in vessel tone, or combinations thereof. Blood vessel remodeling can be assessed through stress state and pressure testing, MRI (e.g., as described in Nikol et al., Angiology, 49(4), 251-58 (1998)), in vivo ultrasound imaging or histologic analysis (as described in, e.g., Fung et al., J. Biomech. Eng., 115(4B), 453-59 (1993)), and techniques otherwise used to assess angiogenesis (e.g., gradient echo testing). The promotion of blood vessel remodeling can be measured by applying such techniques to selected blood vessels some time before and after a suitable period (e.g., about 1 day, about 2 days, about 3 days, about 1 week, or longer) after administration or production of the fusion protein. ARF-associated blood vessel remodeling is further described in e.g., Goldman-Wohl et al., Mol. Hum. Reprod., 6(1), 81-87 (2000).

[0116] Administration or production of the fusion protein will preferably promote angiogenesis. Tests for assessing whether angiogenesis promoted are discussed above. The assessment of whether administration or production of the fusion protein promotes angiogenesis can be assessed with respect to the tissue, organ, or host of interest, by applying such techniques before and after a suitable time after administration or production of an effective amount of the fusion protein (e.g., about 1 day, about 2 days, about 3 days, about 1 week, or longer).

Preferably, the fusion protein, when administered or produced in a mammalian [0117] host, will exhibit an in vivo half-life which is at least about 110%, preferably at least about 125%, and more preferably at least about 150% (e.g., at least about 200%, about 250%, about 300%, about 500%, or more) as long as the half-life of Ang-1. Half-life marks a point where the total amount of fusion protein administered to, or produced in, the tissue or host exhibits a reduction in biological activity of about 50%. The biological activity can be any of the aforementioned biological activities associated with the fusion protein (e.g., promotion of angiogenesis, more particularly reduction of vessel leakage, promotion of vascular maturity, and/or promotion of vascular remodeling). Preferably, the fusion proteins will exhibit a half-life of at least three minutes, desirably at least about four minutes, more preferably at least five minutes, and even more preferably at least ten minutes (e.g., at least about 15, at least about 20, at least about 30, at least about 60, at least about 90, at least about 180, at least about 360, at least about 720 minutes, or even longer) in a mammalian host upon administration (or production). Extended half-life can be obtained by the removal of proteolytically susceptible residues from the ARF peptide

41

portions. For example, the conversion of Cys₂₆₅ in wild-type Ang-1 to Ser₂₆₅, can promote resistance to proteolytic degradation in a fusion protein comprising a modified Ang-1 peptide portion where the residue corresponding to Cys₂₆₅ is so modified. In Ang-1, this cysteine is of a 20-residue sequence positioned between the Ang-1 CCD and Ang-1 FLD. The exclusion of this sequence (or at least a portion containing Cys₂₆₅) from the fusion protein, or substitution of this sequence with an alternative "middle" domain sequence (e.g., Val Asn Leu Ser Thr Lys Glu Gly Val Leu Leu Lys Gly Lys Arg Glu Glu Glu Lys (SEQ ID NO: 138)) is expected to result in better half-life than that exhibited in Ang-1. Half-life also can be extended by the addition of a heterologous peptide portion to the fusion protein (e.g., an IgG domain) (as described in, e.g., International Patent Applications WO 98/22577 and WO 00/24782 and/or U.S. Patents 6,121,022 and 6,277,375), by the insertion of sequences that promote N-terminal glycosylation of the fusion protein (as described in, e.g., U.S. Patent 5,218,092), or by administering the fusion protein with a non-proteinaceous polymer, such as those described elsewhere herein.

The fusion protein peptide portions can be associated in any suitable manner. [0118]Typically and preferably, the first and second peptide portions will be covalently associated (e.g., by means of a peptide or disulfide bond). The peptide portions can be directly fused (e.g., the C-terminus of the fusion protein CCD can be fused to the N-terminus of the fusion protein FLD through a peptide bond between the two portions). The fusion protein can include any suitable number of modified bonds, e.g., isosteres, within or between the peptide portions. Alternatively, the fusion protein can include a peptide linker between the peptide portions that includes one or more amino acid sequences not forming part of the biologically active peptide portions. Any suitable peptide linker can be used. The linker can be any suitable size. Typically, the linker will be less than about 30 amino acid residues, preferably less than about 20 amino acid residues, and more preferably about 10 or less amino acid residues. Typically the linker will predominantly consist of neutral amino acid residues. Suitable linkers are generally described in, e.g., U.S. Patents 5,990,275, 6,010,883, 6,197,946, and European Patent Application 0 035 384. More particular examples of suitable linkers are provided further herein.

[0119] The linker can include one or more cleavage sites to promote separation of linked peptide portions under specific conditions (e.g., exposure to certain proteolytic enzymes) if desired. Examples of such cleavage sites include the Ile Glu Gly Arg linker sequence (SEQ ID NO: 139), which is cleaved by Factor X_a protease. Other sites can include sequences which are cleaved by, for example, trypsin, enterokinase, collagenase, and thrombin. Alternatively, the cleavage site in the linker sequence can be a site capable of being cleaved upon exposure to a selected chemical or chemical state, e.g., cyanogen bromide, hydroxylamine, or low pH. Additional examples of suitable cleavable linkers are

42

provided in U.S. Patent 4,719,326.

Typically and preferably, the first and second peptide portions will be directly [0120] fused, or separated by a non-cleavable linker of less than about 10 amino acid residues (e.g., 1-5 amino acid residues).

Linkers that reduce the immunogenicity of the fusion protein in a mammalian [0121] host, preferably a human host, are preferred. Any linker that reduces the immune response of the intended recipient of the fusion protein is suitable in this respect. Preferably, a flexible linker, which does not interfere with the tertiary structure of the fusion protein ARF peptide portions, and preferably which permits the fusion protein to exhibit an overall tertiary structure similar to at least the CCD FLD, and any intervening portions of a wildtype ARF, is used. By not interfering with the tertiary structure of the peptide portions and/or the fusion protein overall, the flexible linker will not configure the fusion protein in a manner such that foreign epitopes are presented to the target's immune system. The flexible linker is desirably immunologically inert in the host system, and addition of it to the fusion protein desirably does not produce epitopes resulting in a strong immunological host response against the fusion protein, and desirably eliminates any sequences that might result in such immune response from the otherwise direct fusion of the first and second peptide portions. Any flexible linker can be used. Typically and preferably the flexible Gly₄Ser₃ linker or derivative thereof (i.e., a linker comprising the sequence Gly Gly Gly Ser Ser Ser (SEO ID NO: 140) is used in such fusion proteins. The use of such flexible linkers is described in, e.g., McCafferty et al., Nature, 348, 552-554 (1990), Huston et al., Proc. Natl. Acad. Sci. USA, 85, 5879-5883 (1988), Glockshuber et al., Biochemistry, 29, 1362-1367 (1990), and Cheadle et al., Molecular Immunol., 29, 21-30 (1992). Other glycine-rich flexible linkers also can be suitable, such as the Pro Gly Ile Ser Gly Gly Gly Gly linker (SEO ID NO: 141), described in Guan et al., Anal. Biochem., 192(2), 262-67 (1991), the Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser linker (SEQ ID NO: 142), described in Huston et al., Proc. Natl. Acad. Sci. USA, 85, 5879-5883 (1988), and the Glu Gly Lys Ser Ser Gly Ser Glu Lys Glu Phe linker (SEQ ID NO: 143), described in Bird et al., Science, 242, 423-26 (1988). Other suitable flexible linkers include the immunoglobulin hinge linkers (as described in, e.g., U.S. Patents 5,672,683 and 6,165,476), and helical peptide linkers (as described in, e.g., U.S. Patent 6,132,992).

[0122] Alternatively, where the first and second peptide portions are directly fused, the fusion protein can be designed such that the intersection ("fusion point") of the FLD and CCD does not generate a sequence which results in a strong immune response against the fusion protein (e.g., as compared to the direct fusion of the corresponding (i.e., most homologous/identical) wild-type ARF peptide portions). Such determinations can be made by using algorithms that identify MHC class I and MHC class II epitope sequences

43

(preferably through the use of bioinformatics software incorporating such algorithms or through the use of databases which provide listings of such epitopes identified with such algorithms). Any suitable algorithm, database, or program can be used. Examples of such algorithms, programs, and databases include the EPIMER/EPIMAX algorithm developed at the Brown University School of Medicine, the BONSAI algorithm developed at Stanford University, the TEPITOPE algorithm, the Zycos, Inc. "EPIQUEST" database, the SYFPEITHI program (which applies the algorithm of Rammensee et al.), the MAPPP program (available at http://www.mpiib-berlin.mpg.de/MAPPP/addquery.html), and the BIMAS program (available at http://bimas.dcrt.nih.gov/molbio/hla bind/), which are variously described in, e.g., Altuvia et al., Mol. Immunol., 31, 1-19 (1994), Brusic et al., Nuc Acids Res., 22, 3663-3665 (1994), Hammer et al., J. Exp. Med., 180, 2353-2358 (1994), Parker et al., J. Immunol., 152, 163-175 (1994), Sturniolo et al., Adv. Immunol., 66, 67-100 (1997), and Cunha-Neto, Braz. J. Med. Biol. Res., 32(2), 199-205 (1999). The amino acid sequence which would result upon the production or production of the fusion protein of interest, particularly the area where the first and second peptide portions intersect and surrounding region (typically about 15 residues or less, more typically about 10 amino acid residues or less, in both directions from the fusion point), can be inputted into such a program, referenced against such databases, or analyzed by similar technique, to determine whether the sequence would result in an undesired host immune response (e.g., formation of a complex with an MHC class I molecule, MHC class II molecule, or both). The polynucleotide sequences encoding the termini of the CCD and/or FLD can be deleted or modified accordingly to obtain a fused sequence that will not induce such an immune response. The insertion of a linker also can prevent such a sequence from being formed. Thus, the invention provides a fusion protein wherein the CCD, FLD, or both [0123] lack one or more amino acid residues corresponding to residues in their wild-type counterparts near the fusion point (typically within about 20 amino acids or less, more typically within about 10 amino acids or less of the fusion point). Such that administration or production of the fusion protein results in a lower level of host immune response than occurs against an unmodified fusion protein (i.e., a fusion protein comprising a wild-type ARF FLD directly fused to a wild-type ARF CCD). The residues that would result in the immunologically-undesirable amino acid sequence can be removed either through deletion or through non-immunologically equivalent substitutions (which typically will be nonhomologous in nature). Typically and preferably, about 15 or less, at the polynucleotide level and more typically about 5 or less of the residues will require deletion or substitution. In some fusion proteins, even a single deletion addition, or substitution will result in the desired reduction in the immunogenicity of the sequence formed by the fusion of the first peptide portion and second peptide portion. By "corresponding" in this context, it is meant

44

that the deleted/substituted residue is homologous to, or more typically identical to, a sequence occurring in the wild-type peptide, and would align with the residue in the peptide portion's wild-type counterpart in an optimal alignment if present in the fusion protein. Similar techniques can be applied to fusion proteins that contain a linker, if necessary.

[0124] By using the above-described techniques to modify a wild-type FLD-encoding and/or CCD-encoding sequence, a fusion protein comprising a FLD directly fused to a CCD, where the amino acid sequence within about 10 residues, preferably within about 20 residues, and more preferably within about 30 amino acid residues of the FLD/CCD junction will not form a complex with an MHC Class I molecule, an MHC Class II molecule, or both, *in vivo*, can be obtained. Alternatively, using the above-described techniques, a fusion protein comprising a linker positioned between the fibrinogen-like domain and the coiled-coil domain can be prepared, such that the amino acid sequence within about 15 amino acid residues, preferably about 20 amino acid residues, and more preferably within about 30 amino acid residues of the linker does not form a complex with an MHC Class I molecule, an MHC Class II molecule, or both, when the fusion protein is produced in, or administered to, a mammalian host. "Within about 10 amino acid residues of the linker" refers to the sequence about 5 residues N-terminal of the center of the linker sequence and about 5 amino acid residues C-terminal to the center of the linker sequence.

[0125] Immunogenicity testing of the fusion protein or polynucleotides of the invention also can be assessed using any suitable immunogenicity model prior to administration to the target, particularly where the target of administration is a human, to determine whether the area of fusion will exhibit an acceptable level of immunogenicity upon *in vivo* administration or produced. Reducing exposure to epitope sequences identified by the above-described techniques also can reduce or eliminate the immune response to the fusion protein of the invention. For example, identified epitope sequences or adjacent sequences can be PEGylated (e.g., by insertion of lysine residues to promote PEG attachment) to shield identified epitopes from exposure. Other techniques for reducing immunogenicity of the fusion protein of the invention can be used in association with the administration of the fusion protein include the techniques provided in U.S. Patent 6,093,699.

[0126] Where a linker is incorporated into the fusion protein, the presence of the linker preferably does not impede the biological activity of the FLD, CCD, and more preferably of either domain, and more desirably enhances the biological activity of the separate peptide portions over a direct fusion of the peptide portions (e.g., the promotion of vascular maturation and/or reduction of plasma leakage). Examples of techniques used to assess the effect of linker sequences on the biological activities of fusion proteins are described in, e.g., Newton et al., *Biochemistry*, 35, 545-553 (1995), which can be modified as appropriate for the fusion proteins of the invention (e.g., using the biological assays described elsewhere

WO 03/048185

45

herein). It will typically be advantageous for the linker to permit the first ARF peptide portion, second ARF peptide portion, or both ARF peptide portions, to exhibit a secondary and/or tertiary structure similar to that of their native peptide counterparts, which can be assessed using techniques provided herein or similar techniques known in the art.

The *in vivo* administration or production of fusion protein of the invention [0127] desirably promotes angiogenesis, or any aspect thereof (e.g., reduces plasma leakage, promotes vessel maturity, and/or promotes vessel remodeling) more than the administration or production of a wild-type ARF corresponding to one of the ARF peptide portions, and more preferably than the administration or production of either (most preferably both) of the two wild-type ARFs most closely related to the fusion protein's ARF peptide portions under substantially identical conditions and doses. The determination that the fusion protein promotes angiogenesis more than a wild-type ARF can be made by applying any of the techniques described herein for measuring angiogenesis to substantially identical systems (e.g., tissues) separately receiving the wild-type ARF(s) and the fusion protein of the invention.

The fusion protein can include any suitable number of non-ARF peptide [0128] portions. The fusion protein portion can include any number of other elements (e.g., peptide portions) or modifications (e.g., additional amino acid sequences or other peptide fragments), as long as the biological functions (e.g., reduction of vascular permeability) of the fusion protein are not substantially diminished (i.e., not diminished by more than about 20%, preferably not more than about 10%, and even more preferably not at all) over a fusion protein lacking such additional elements. Examples of such elements include sequences encoding proteins for post-translational modification or for binding to a small molecule ligand.

[0129] The fusion protein can comprise any suitable post-translational modifications or modifications. Examples of common and suitable post-translational modifications include carboxylation, glycosylation, hydroxylation, lipid or lipid derivative-attachment, methylation, myristylation, phosphorylation, and sulfation. Other post-translational modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of phosphotidylinositol, crosslinking, cyclization, disulfide bond formation, demethylation, formylation, GPI anchor formation, iodination, oxidation, proteolytic processing, prenylation, racemization, selenovlation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. Similar modifications are described in, e.g., Creighton, supra, Seifteretal., Meth. Enzymol., 182, 626-646 (1990), and Rattan et al., Ann. N.Y. Acad. Sci., 663, 48-62 (1992). Moreover, the fusion protein can be either a methionine-containing

or methionineless N-terminal variant of any of the fusion proteins described herein. The nature and extent of post-translational modifications is largely determined by the host cell's posttranslational modification capacity and the modification signals present in the polypeptide amino acid sequence. For instance, glycosylation often does not occur in bacterial hosts such as *E. coli*. Accordingly, when glycosylation is desired, a polypeptide should be expressed (produced) in a glycosylating host, generally a eukaryotic cell (e.g., a mammalian cell or an insect cell). Post-translational modifications can be verified by any suitable technique, including, e.g., x-ray diffraction, NMR imaging, mass spectrometry, and/or chromatography (e.g., reverse phase chromatography, affinity chromatography, or GLC). The fusion protein or portion thereof also or additionally can comprise one or more modified amino acids, non-naturally occurring amino acids (e.g., β amino acids), alternative amino acids (e.g., selenocysteine), or amino acid analogs, such as those listed in the *Manual of Patent Examining Procedure* § 2422 (7th Revision – 2000), which can be incorporated by protein synthesis, such as through solid phase protein synthesis (described in, e.g., Merrifield, *Adv. Enzymol.*, *32*, 221-296 (1969)).

A common additional element present in the fusion protein is a signal sequence, which directs either organelle trafficking (e.g., an endoplasmic reticulum trafficking signal as described in, e.g., U.S. Patent 5,846,540) and/or cell secretion. Such sequences are typically present in the immature (i.e., not fully processed) form of the fusion protein, and are subsequently removed/degraded to arrive at the mature form of the protein. Both naturally occurring and heterologous signal sequences are suitable (e.g., a secretion sequence associated with the protein incorporated in the second peptide portion as discussed herein). For example, a VEGF-A secretion signal sequence Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu Val Leu His His Ala Lys Trp Ser Gln Ala (SEQ ID NO: 144) or a portion thereof, can be used, preferably bound to the N-terminus of the fusion protein CCD, or a sequence N-terminal to the CCD. Such sequences will necessarily vary with the host in which the fusion protein is produced. Examples of heterologous secretion sequences include STII or Ipp for E. coli, alpha factor for yeast, and viral signals such as herpes gD for mammalian cells. Further examples of signal sequences are described in, e.g., U.S. Patents 4,690,898, 5,284,768, 5,580,758, 5,652,139, and 5,932,445. Additional signal sequences can be identified using skill known in the art. For example, sequences identified by screening a library can be analyzed using the SignalP program (see, e.g., Nielsen et al., Protein Engineering, 10, 1-6 (1997)), or similar sequence analysis software capable of identifying signal-sequence-like domains, or by otherwise analyzing the sequences for features associated with signal sequences, as described in, e.g., European Patent Application 0 621 337.

[0131] Alternatively or, preferably additionally, the fusion protein can comprise a wild-

type ARF variable domain or homolog thereof. An "ARF variable domain" is any amino acid sequence of at least about 10 residues, preferably at least about 20 residues, positioned N-terminal to the wild-type ARF CCD. For example, the fusion protein can comprise the Ang-1 variable region (SEQ ID NO: 145). Such variable domains typically will comprise wild-type ARF signal sequences where the fusion protein comprises a homologous variable domain peptide portion, the homologous variable domain will desirably exhibit at least about 70%, preferably at least about 80%, and more preferably at least about 90% amino acid sequence identity to a wild-type ARF variable domain. The fusion protein variable domain desirably exhibits the highest level of local sequence identity to the same wild-type ARF as the fusion protein CCD or FLD.

[0132] In view of the above, it should be clear that the fusion proteins of the invention include both mature (fully processed) and immature (nascent) peptide portions, particularly where such fusion proteins are produced through the expression of a polynucleotide of the invention. In this respect, a peptide portion of the fusion protein can comprise one or more "propeptide" regions, which are removed during processing. Accordingly, nucleotide sequences encoding such propeptide portions along with the "mature" amino acid sequence associated with the peptide portion are within the scope of the invention.

[0133] Other non-ARF peptide portions that can be included in the fusion protein include binding regions, such as avidin or an epitope, which can be useful for purification and processing of the fusion protein. Examples of such sequences are described in, e.g., International Patent Application WO 00/15823. In addition, detectable markers can be attached to the fusion protein, so that the traffic of the fusion protein through a body or cell can be monitored conveniently. Such markers may include radionuclides, enzymes, fluorophores, small molecule ligands, and the like.

[0134] Recently, the production of fusion proteins comprising a prion-determining domain has been used to produce a protein vector capable of non-Mendelian transmission to progeny cells (see, e.g., Li et al., *J. Mol. Biol., 301(3), 567-73 (2000))*. The inclusion of such prion-determining sequences in the fusion protein is contemplated, ideally to provide a hereditable protein vector comprising the fusion protein that does not require a change in the host's genome.

[0135] The mature fusion protein also can include additional peptide portions which act to promote stability, purification, and/or detection of the fusion protein. For example, a reporter peptide portion (e.g., green fluorescent protein (GFP), β -galactosidase, or a detectable domain thereof) can be incorporated in the fusion protein. Purification facilitating peptide portions include those derived or obtained from maltose binding protein (MBP), glutathione-S-transferase (GST), or thioredoxin (TRX). The fusion protein also or alternatively can be tagged with an epitope which can be antibody purified (e.g., the Flag

epitope, which is commercially available from Kodak (New Haven, Connecticut)), a hexahistidine peptide, such as the tag provided in a pQE vector available from QIAGEN, Inc. (Chatsworth, California), or an HA tag (as described in, e.g., Wilson et al., *Cell*, 37, 767 (1984)).

The fusion protein can be further modified or derivatized in any suitable manner [0136] (e.g., by reaction with organic derivatizing agents). For example, the fusion protein can be linked to one or more nonproteinaceous polymers, typically a hydrophilic synthetic polymer, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylene, as described in, e.g., U.S. Patents 4,179,337, 4,301,144, 4,496,689, 4,640,835, 4,670,417, and 4,791,192, or a similar polymer such as polyvinylalcohol or polyvinylpyrrolidone (PVP). Mimetics of the fusion proteins are also contemplated. Suitable types of peptide mimetics are described in, e.g., U.S. Patent 5,668,110 and the references cited therein. Furthermore, the fusion protein can be modified by the addition of protecting groups to the side chains of one or more the amino acids of the fusion protein. Such protecting groups can facilitate transport of the fusion peptide through membranes, if desired, or through certain tissues, for example, by reducing the hydrophilicity and increasing the lipophilicity of the peptide. Examples of suitable protecting groups include ester protecting groups, amine protecting groups, acyl protecting groups, and carboxylic acid protecting groups, which are known in the art (see, e.g., U.S. Patent 6,121,236). Synthetic fusion proteins of the invention can take any suitable form. For example, the fusion protein can be structurally modified from its naturally occurring configuration to form a cyclic peptide or other structurally modified peptide.

[0137] The fusion protein also can include a non-CCD, or even a non-ARF multimerizing domain or multimerizing component (i.e., a peptide portion which facilitates multimer formation), which permits the fusion protein to form multimers (including dimers) in addition to, or more typically in place of a multimerizing CCD (e.g., in cases where a mutant ARF CCD is incorporated in the fusion protein, a non-multimer forming CCD is incorporated in the fusion protein, or no CCD is incorporated in the fusion protein, such as where the fusion protein is limited to an ARF FLD and some other ARF peptide portion). In such aspects, the fusion protein can comprise any suitable non-ARF multimerization domain. Examples of suitable non-ARF multimerization domains include the human immunoglobulin (IgG) multimerization domains (see, e.g., European Patent Application 0464533) and IgG-derived domains (e.g., the Fc domain as described in, e.g., Johanson et al., J. Biol. Chem., 270, 9459-71 (1995)). Additional modified IgG multimerizing domains and other multimerizing domains are described in International Patent Application WO 00/37642 and the references cited therein. The fusion protein (or polynucleotide encoding the fusion protein) can be administered with a peptide or agent that facilitates multimer

formation (e.g., through promoting formation of disulfide bonds), such as the peptides described in European Patent Application 1 074 563.

[0138] The fusion protein can include any suitable multimerization domain which results in the formation of any suitable multimer. The fusion protein multimer can be a heteromultimer (e.g., a heterodimer) or a homomultimer (e.g., a homodimer). Typically and preferably, the fusion protein will form multimers with other fusion proteins of the invention and/or with wild-type ARF peptides (e.g., Ang-1 peptides). Testing for the suitability of any particular multimer combination can be performed using the assays described herein as well as techniques described in, e.g., DiSalvo et al., *J. Biol. Chem.*, 270, 7717-23 (1995), Cao et al., *J. Biol. Chem.*, 271, 3154-62 (1996), and Olofsson et al., *Proc. Natl. Acad. Sci. USA*, 93, 2567-81 (1996)).

[0139] In some aspects, the fusion protein contains a multimerization domain which permits dimer formation without permitting formation of higher order multimers. For example, fusion proteins that include the dimerization domains of VEGF₁₂₁ or TGF- β can limit multimerization to dimmer formation.

[0140] The fusion protein can comprise one or more heterologous and/or artificial receptor sites, which preferably change the receptor binding profile of the peptide portion, and more preferably localize the fusion protein (or at least the peptide portion) to a specific cell, group of cells, tissue, or tissues. For example, the fusion protein can include an RGD domain or LDV domain of a hemostatic modifier (preferably from a decorsin or a homolog thereof), or other integrin binding domain, selectin binding domain, or similar binding domain (e.g., a lamanin, fibrinogen, and/or fibronectin binding domain), examples of which are described in U.S. Patent Application 09/832,355 and references cited therein.

[0141] The invention further provides polynucleotides including at least one nucleotide sequence which, when expressed in a cell permissive for expression of the nucleotide sequence, result in the production of the fusion protein. The polynucleotide sequence can be any suitable sequence (e.g., single stranded or double stranded RNA, DNA, or combinations thereof) and can include any suitable nucleotide base, base analog, and/or backbone (e.g., a backbone formed by, or including, a phosphothioate, rather than phosphodiester, linkage). Examples of suitable modified nucleotides which can be incorporated in the polynucleotide sequence are provided in the *Manual of Patent Examining Procedure* § 2422 (7th Revision – 2000). The polynucleotide sequence can be any suitable length (e.g., about 300 nt, about 600 nt, about 1200 nt, about 2000 nt or even larger). The polynucleotide sequence can be any sequence that results in the fusion protein being produced upon expression. As such, the polynucleotide sequence is not limited to sequences that directly code for production of the fusion protein. For example, the polynucleotide can comprise a sequence which results in the fusion protein through intein-

like expression (as described in, e.g., Colson and Davis, Mol. Microbiol., 12(3), 959-63 (1994), Duan et al., Cell, 89(4), 555-64 (1997), Perler, Cell, 92(1), 1-4 (1998), Evans et al., Biopolymers 51(5), 333-42 (1999), and de Grey, Trends Biotechnol., 18(9), 394-99 (2000)), or a sequence which contains self-splicing introns (or other self-spliced RNA transcripts) which form the peptide portions and/or the fusion protein (as described in, e.g., U.S. Patent 6,010,884). The polynucleotides also can comprise sequences which result in other splice modifications at the RNA level to produce an mRNA transcript encoding the fusion protein and/or at the DNA level by way of trans-splicing mechanisms prior to transcription (as described in, e.g., Chabot, Trends Genet., 12(11), 472-78 (1996), Cooper, Am. J. Hum. Genet., 61(2), 259-66 (1997), and Hertel et al., Curr. Opin. Cell. Biol., 9(3), 350-57 (1997)). RNA based vectors may include removal of regions which promote degradation in the absence of hypoxia, e.g., by removal of the mRNA 3' and/or 5' UTRs (see Dibbens et al., Mol. Biol. Cell., 10, 907-19 (1999)) or portion thereof, e.g., the AU rich hairpin structure region of the 3' UTR (see, e.g., Pages et al., J. Biol. Chem. (published on June 9, 2000 as manuscript M002104200 - American Society for Biochemistry and Molecular Biology, Inc.), and Levy, J. Biol. Chem., 271, 25492-25497 and 2746-2753 (1996)), particularly where RNA vectors are administered in the absence of hypoxic conditions. The polynucleotide can comprise one or more sequences encoding a fusion protein wherein the fusion protein-encoding sequence or a portion thereof is codon optimized, i.e., codon frequency optimized and/or codon pair (i.e., codon context) optimized for a particular species (e.g., humans, either by optimizing a non-human or human sequence by replacement of "rare" human codons based on codon frequency, such as by using techniques such as those described in Buckingham et al., Biochimie, 76(5), 351-54 (1994) and U.S. Patents 5,082,767, 5,786,464, and 6,114,148). For example, the polynucleotide encoding the fusion protein can comprise a codon optimized human Ang-1 FLD gene sequence (SEQ ID NO: 146) or a codon optimized human Ang-1 CCD gene sequence (SEQ ID NO: 147). Additionally, codon optimized sequences for particular peptides can be obtained by subjecting the amino acid sequences of such peptides to backtranslation using a suitable program, such as the Entelechon backtranslation tool (available at http://www.entelechon .com/eng/backtranslation.html). Partially codon optimized sequences also can be used, such as codon sequences where only some or all of the "rarest" sequences (for the particular organism of interest) are removed. For example, the polynucleotide can comprise an ARF peptide portion-encoding sequence (e.g., an Ang-1 CCD or FLD sequence) where at least one (preferably all) of the Ala-encoding GCA and/or GCT codons in the sequence are replaced with GCC (but GCG codons are retained), at least one (preferably all) of the Glyencoding GGC codons in the sequence is replaced with GGG, at least one (preferably all) of the Asn-encoding AAT codons in the sequence is replaced with AAC, at least one

51

(preferably all) of the Pro-encoding CCA codons in the sequence is replaced with CCG, at least one (preferably all) of the Arg-encoding AGA codons is replaced with CGG, and at least one (preferably all) of the Ser-encoding AGC codons is replaced with TCG.

Replacement of such rare codons can be accomplished using any more frequently expressed codons, as desired and appropriate.

[0142] Because the fusion protein will desirably comprise a FLD that is homologous to a first ARF and a CCD that is homologous to a second ARF, it is preferred that the fusion protein's FLD, CCD, or both are encoded by a nucleotide sequence having a complement that hybridizes to the ARF peptide portion's nearest (i.e., most related based on overall polynucleotide sequence identity, amino acid sequence identity, or both) wild-type ARF-encoding counterpart. For example, in a polynucleotide encoding a fusion protein comprising an Ang-1 homolog FLD portion and a NL2 homolog CCD portion, the Ang-1 FLD portion desirably is encoded by a nucleotide sequence having a complement which hybridizes with a wild-type Ang-1 gene under at least moderate stringency conditions (preferably high stringency conditions), the NL2 CCD portion desirably is encoded by a polynucleotide having a complement which hybridizes with a wild-type NL2 gene under at least moderate stringency conditions (preferably high stringency conditions), or, most desirably, the polynucleotide hybridizes to both wild-type Ang-1 and wild-type NL2 gene sequences under such conditions.

[0143] Where the polynucleotide encodes a fusion protein comprising a peptide portion that exhibits 100% amino acid sequence identity to a wild-type ARF peptide portion, the nucleic acid sequence encoding the peptide portion can comprise a portion of the naturally occurring gene encoding the wild-type ARF (a wild-type ARF gene fragment) encoding the wild-type peptide portion. The polynucleotide can comprise any suitable wild-type ARF gene fragment, or combinations of wild-type ARF gene fragments. Preferably, the polynucleotide comprises a wild-type gene fragment encoding a wild-type ARF FLD fused to a wild-type gene fragment encoding a wild-type ARF CCD. For example, the polynucleotide can comprise the Ang-1 FLD-encoding sequence (SEQ ID NO: 148), the Ang-1 CCD-encoding sequence (SEO ID NO: 149), the Ang-2 FLD-encoding sequence, the Ang-2 CCD-encoding sequence (SEO ID NO: 150), the NL1 FLD-encoding sequence (SEO ID NO: 151), or the NL5 FLD-encoding sequence (SEQ ID NO: 152). Sequences identical to those in the wild-type genes for Ang-3 (SEQ ID NO: 153), Ang-4 (SEQ ID NO: 154), Ang-6 (SEQ ID NO: 155), Ang-2A (SEQ ID NO: 156), Ang-2B (SEQ ID NO: 157), Ang-2C (SEQ ID NO: 158), Ang-2X (SEQ ID NO: 159), NL2 (SEQ ID NO: 160), NL3 (SEQ ID NO: 161), the Hakata antigen, NL4 (SEQ ID NO: 162), NL6 (SEQ ID NO: 163), NL8 (SEQ ID NO: 164), FLS 139 (SEQ ID NO: 165), zapo1 (SEQ ID NO: 166), or murine FDRG, can be suitable. Other ARF gene fragments in the patent documents and publications known in

52

the art, such as those incorporated herein by reference, also can be suitable.

Alternatively, the fusion protein-encoding polynucleotide can comprise a nucleic acid sequence that exhibits less than 100% polynucleotide sequence identity to such a wildtype gene fragment, but which still encodes a peptide portion that exhibits 100% amino acid sequence identity to the wild-type ARF peptide portion. For example, the polynucleotide sequence can comprise (1) a nucleic acid sequence that exhibits at least about 35%, desirably at least about 50%, preferably at least about 60%, and more preferably at least about 70% (e.g., at least about 80%, at least about 90%, or at least about 95%) polynucleotide sequence identity (either local or overall) to such a wild-type gene fragment, (2) a nucleic acid sequence which hybridizes under at least moderate stringency conditions (preferably high stringency conditions) to the wild-type gene fragment, or (3) a sequence that does not hybridize to and/or exhibit such levels of identity to the gene fragment due to the presence of other sequences that do not affect the produced protein product (e.g., degenerate sequences, sequences that are self-spliced out of the RNA transcript encoded by the nucleic acid sequence, or intein-like expression pattern sequences) but nonetheless when transcribed and translated results in the production of the protein product encoded by the wild-type gene fragment.

[0145] The polynucleotide also can comprise one or more nucleic acid sequences encoding any of the ARF peptide portion homologs described elsewhere herein. Polynucleotide sequences encoding such ARF peptide homologs can be obtained through constructing such sequences based on the desired ARF peptide homolog amino acid sequence.

Alternatively, ARF homologs or ARF peptide portion homologs (e.g., [0146] homologous CCDs and/or FLDs, even in non-ARF peptides) can be obtained by screening polynucleotide libraries (e.g., a genomic library, cDNA library, or sublibrary thereof). For example, the DNA of animal species can be screened to identify ARF homologs or ARF peptide portion homologs. Such screening can be performed by any suitable technique, including, e.g., screening the libraries with polynucleotide probes under conditions wherein hybridization to ARF homolog-encoding polynucleotides is likely to occur (e.g., under at least moderately stringent conditions). Such screening can be performed in a human DNA or cDNA library (e.g., to identify novel ARF splice variants or yet undiscovered ARF homologs), or in a polynucleotide library obtained from other species, preferably other mammalian species (e.g., Pan troglodytes, Gorilla gorilla, Pongo pygmaeus, Hvlobates concolor, Macaca mulatta, Papio papio, Papio hamadryns, Cercopithecus aethiops, Cebus capucinus, Aotus trivirgatus, Sanguinus oedipus, Microcebus murinus, Mus musculus, Rattus norvegicus, Cricetulus griseus, Felis catus, Mustela vison, Canis familiaris, Orystolagus cuniculus, Bos taurus, Ovis aries, Sus scrofa, and Equus caballus).

Fluorescence in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to perform chromosomal screening for ARF homolog-encoding genes. Pools of protein candidates can be similarly screened for ARF homologs using standard biochemical and proteomics-related techniques (e.g., the yeast two hybrid system as described in, e.g., Mendelsohn and Brat, Curr. Opin. Biotech., 5, 482-86 (1994), and/or affinity chromatography (e.g., using a TIE receptor or portion thereof)).

The fusion protein ARF peptide portions can be identical to, or homologous to, wild-type ARF peptide portions of any animal. The fusion protein's ARF peptide portions can be derived from, or most closely related to, wild-type ARF peptide portions of different animals (e.g., the fusion protein can include a CCD that exhibits 100% identity to a murine ARF CCD and a FLD that exhibits 100% identity to a human ARF FLD). The reference to any ARF (or peptide portion or related polynucleotide) herein encompasses both the human protein (or other particular animal, e.g., mice in the case of murine FDRG) and all orthologs thereof unless otherwise specified. Thus, for example, an "Ang-1 FLD" encompasses both the human Ang-1 FLD and the murine Ang-1 FLD.

Polynucleotides comprising sequences encoding novel ARF peptide portions, particularly sequences encoding peptide portions homologous to, but not identical with, wild-type ARF peptide portions also can be generated through inducing mutations in known ARF-encoding polynucleotides (e.g., a wild-type Ang-1, Ang-2, Ang-2X, NL1, or NL5 gene fragment). For example, ARF homolog peptide portion-encoding polynucleotides can be obtained through application of site-directed mutagenesis (as described in, e.g., Edelman et al., DNA, 2, 183 (1983), Zoller et al., Nucl. Acids Res., 10, 6487-5400 (1982), and Veira et al., Meth. Enzymol., 153, 3 (1987)), alanine scanning, or random mutagenesis, such as iterated random point mutagenesis induced by error-prone PCR, chemical mutagen exposure, or polynucleotide expression in mutator cells (see, e.g., Bornscheueret al., Biotechnol. Bioeng., 58, 554-59 (1998), Cadwell and Joyce, PCR Methods Appl., 3(6), \$136-40 (1994), Kunkel et al., Methods Enzymol., 204, 125-39 (1991), Low et al., J. Mol. Biol., 260, 359-68 (1996), Taguchi et al., Appl. Environ. Microbiol., 64(2), 492-95 (1998), and Zhao et al., Nat. Biotech., 16, 258-61 (1998)). Suitable primers for PCR-based sitedirected mutagenesis or related techniques can be prepared by the methods described in, e.g., Crea et al., Proc. Natl. Acad. Sci. USA, 75, 5765 (1978). The application of sitedirected mutagenesis to produce novel ARF peptide portion variants can be based on a modification of the techniques provided in, e.g., Shortle et al., Ann. Rev. Genet., 15, 288-94 (1981), Keyt et al., J. Biol. Chem., 271, 5638-46 (1996), and Ki et al., J. Biol. Chem., 275(38), 29823-28 (2000).

Other polynucleotide mutagenesis methods useful for producing novel ARF [0149] homolog peptide portions include PCR mutagenesis techniques (as described in, e.g., Kirsch

et al., Nucl. Acids Res., 26(7), 1848-50 (1998), Seraphin et al., Nucl. Acids Res., 24(16), 3276-7 (1996), Caldwell et al., PCR Methods Appl., 2(1), 28-33 (1992), Rice et al., Proc. Natl. Acad. Sci. USA. 89(12), 5467-71 (1992) and U.S. Patent 5,512,463), cassette mutagenesis techniques based on the methods described in Wells et al., Gene, 34, 315 (1985), phagemid display techniques (as described in, e.g., Soumillion et al., Appl. Biochem. Biotechnol., 47, 175-89 (1994), O'Neil et al., Curr. Opin. Struct. Biol., 5(4), 443-49 (1995), Dunn, Curr. Opin. Biotechnol., 7(5), 547-53 (1996), and Koivunen et al., J. Nucl. Med., 40(5), 883-88 (1999)), reverse translation evolution (as described in, e.g., U.S. Patent 6,194,550), saturation mutagenesis described in, e.g., U.S. Patent 6,171,820), PCR-based synthesis shuffling (as described in, e.g., U.S. Patent 5,965,408) and recursive ensemble mutagenesis (REM) (as described in, e.g., Arkin and Yourvan, Proc. Natl. Acad. Sci. USA, 89, 7811-15 (1992), and Delgrave et al., Protein Eng., 6(3), 327-331 (1993)). Alternatively, ARF peptide portion homolog-encoding polynucleotides can be pre-designed and synthetically produced using techniques such as those described in, e.g., Itakura et al., Annu. Rev. Biochem., 53, 323 (1984), Itakura et al., Science, 198, 1056 (1984), and Ike et al., Nucl. Acid Res., 11, 477 (1983). For example, sequence analysis of a number of related ARFs (e.g., a number of angiopoietins) can be subjected to sequence analysis (e.g., using CLUSTAL W) to identify an amino acid consensus sequence that can be used to design novel DNAs based on the genetic code (e.g., by subjecting the consensus sequence to reverse translation analysis). Further details regarding the above-described techniques are described in Sambrook et al., and Ausubel et al., supra.

[0150] Alternatively, ARF homolog peptide portion-encoding polynucleotides can be generated through directed evolution techniques (e.g., polynucleotide shuffling). Examples of such techniques are described in, e.g., Stemmer, Nature, 370, 389-91 (1994), Cherry et al., Nat. Biotechnol. 17, 379-84 (1999), and Schmidt-Dannert et al., Nat Biotechnol., 18(7), 750-53 (2000). Preferably, shuffling of the ARF-encoding sequence is performed in combination with staggered extension (StEP), random primer shuffling, backcrossing of improved variants, or any combination thereof, e.g., as described in Zhao et al., supra, Cherry et al., supra, Arnold et al., Biophys. J., 73, 1147-59 (1997), Zhao and Arnold, Nucl. Acids Res., 25(6), 1307-08 (1997), and Shao et al., Nucl. Acids Res., 26, 681-83 (1998). Alternatively, the incremental truncation for the creation of hybrid enzymes (ITCHY) method (see, e.g., Ostermeier et al., Nat. Biotechnol., 17(12), 1205-09 (1999)) can be applied to combinations of ARF-encoding genes or gene fragments to produce novel ARFencoding or ARF peptide portion-encoding polynucleotides. Another set of techniques for introducing diversity into a library of homologs are provided in U.S. Patents 6,159,687 and 6,228,639.

[0151] The biological activity of the products of molecular evolution are expected to

WO 03/048185

55

PCT/US02/37660

vary, and, accordingly, some screening for biological activity of the directed evolution product can be required to ensure the novel ARF homolog peptide portion-encoding polynucleotide is suitable for incorporation in the fusion protein and/or fusion protein-encoding polynucleotides of the present invention. Any suitable assay for measuring the desired biological activity of a molecule can be used, including the techniques described herein with respect to the fusion proteins of the invention (e.g., antibody reactivity, receptor binding, induction of angiogenesis or preferred aspects thereof (e.g., promoting vascular maturation and/or reducing plasma leakage)). In this manner, with a routine amount of experimentation, novel ARF homolog peptide portions can be generated which are suitable for incorporation in the fusion protein-encoding polynucleotide.

Preferably, in addition to the nucleic acid sequence which, when expressed, results in the fusion protein (the "fusion protein nucleic acid sequence"), the polynucleotide further includes one or more suitable "expression control sequences" operably linked to the sequence encoding the fusion protein. An expression control sequence is any nucleotide sequence that assists or modifies the expression (e.g., the transcription, translation, or both) of the nucleic acid encoding the angiogenic sequence. The expression control sequence can be naturally associated with a polynucleotide encoding any ARF peptide portion of the fusion protein (e.g., an Ang-1 promoter), or can comprise a heterologous element with respect to such polynucleotide sequences (e.g., a myocardin cardiac tissue regulator sequence or a desmin locus control region (LCR), both of which are associated with control of muscle gene expression). For example, the fusion protein nucleic acid sequence can be operably linked to a constitutive promoter (e.g., the Rous sarcoma virus long terminal repeat (RSV LTR) promoter/enhancer or the cytomegalovirus major immediate early gene (CMV IE) promoter, which is particularly preferred), an inducible promoter, (e.g., a growth hormone promoter, metallothionein promoter, heat shock protein promoter, E1B promoter, hypoxia induced promoter, radiation inducible promoter, or adenoviral MLP promoter and tripartite leader), an inducible-repressible promoter, a developmental stage-related promoter (e.g., a globin gene promoter), or a tissue specific promoter (e.g., a smooth muscle cell αactin promoter, VEGF receptor promoter, myosin light-chain 1A promoter, or vascular endothelial cadherin promoter). In some instances, host-native promoters are preferred over non-native promoters (e.g., a human beta actin promoter or EF1α promoter driving expression of the fusion protein nucleic acid sequence can be preferred in a human host), particularly where strict avoidance of gene expression silencing due to host immunological reactions is desirable. The polynucleotide can include expression control sequences wherein one or more regulatory elements have been deleted, modified, or inactivated. The polynucleotide also or alternatively can include a bi-directional promoter system (as described in, e.g., U.S. Patent 5,017,478) linked to multiple genes of interest (e.g., multiple

56

fusion protein encoding genes). Other suitable promoters and principles related to the selection, use, and construction of suitable promoters are provided in, e.g., Werner, Mamm. Genome, 10(2), 168-75 (1999), Walther et al., J. Mol. Med., 74(7), 379-92 (1996), Novina, Trends Genet., 12(9), 351-55 (1996), Hart, Semin. Oncol., 23(1), 154-58 (1996), Gralla, Curr. Opin. Genet. Dev., 6(5), 526-30 (1996), Fassler et al., Methods Enzymol., 273, 3-29 (1996), Ayoubi et al., 10(4), FASEB J., 10(4), 453-60 (1996), Goldsteine et al., Biotechnol. Annu. Rev., 1, 105-28 (1995), Azizkhan et al., Crit. Rev. Eukaryot. Gene Expr., 3(4), 229-54 (1993), Dynan, Cell, 58(1), 1-4 (1989), Levine, Cell, 59(3), 405-8 (1989), and Berk et al., Annu. Rev. Genet., 20, 45-79 (1986), as well as U.S. Patent 6,194,191. In some aspects, radiation-inducible promoters such as those described in described in U.S. Patents 5,571,797, 5,612,318, 5,770,581, 5,817,636, and 6,156,736 can be suitable. In other instances, ecdysone and ecdysone-analog-inducible promoters (ecdysone-analog-inducible promoters are commercially available through Stratagene (LaJolla CA)). Other suitable commercially available inducible promoter systems include the inducible Tet-Off or Tet-on systems (Clontech, Palo Alto, CA). As an alternative to a promoter, particularly in RNA vectors and constructs, the nucleic acid sequence and/or vector can comprise one or more internal ribosome entry sites (IRESs), IRES-encoding sequences, or RNA sequence enhancers (Kozak analogs), such as the tobacco mosaic virus omega prime sequence. The polynucleotide sequence also or alternatively can comprise an upstream [0153] activator sequence (UAS), such as a Gal4 activator sequence (as described in, e.g., U.S. Patent 6,133,028) or other suitable upstream regulatory sequence (as described in, e.g., U.S. 6,204,060). The polynucleotide can include any other expression control sequences (e.g., enhancers, termination sequences, initiation sequences, splicing control sequences, etc.). Typically, the polynucleotide will typically include a Kozak consensus sequence, which can be a naturally occurring or modified sequence such as the modified Kozak consensus sequences described in U.S. Patent 6,107,477. The polynucleotide can further comprise site-specific recombination sites, which can be used to modulate transcription of the polynucleotide, as described in, e.g., U.S. Patents 4,959,317, 5,801,030 and 6,063,627, European Patent Application 0 987 326 and International Patent Application WO 97/09439. [0154] The polynucleotide can include or consist of any suitable fusion protein nucleic acid sequence. Preferred fusion protein nucleic acid sequences include nucleotide sequences which, when expressed, result in the production of the above-described fusion proteins, the polynucleotide can comprise any number of transcriptionally inert sequences (e.g., an intron). The polynucleotide can contain any suitable number of copies of the fusion protein-incoding nucleic acid sequence.

[0155] Preferably, the polynucleotide comprises a second nucleotide sequence that, when expressed, produces a second protein which modulates, and preferably promotes,

angiogenesis, bone growth, wound healing, or any combination thereof, and most preferably promotes angiogenesis, particularly where the fusion protein also promotes angiogenesis. The second nucleotide sequence can encode, for example, a receptor that interacts, and preferably is activated by the fusion protein FLD (e.g., a TIE-2 receptor). In this respect, the polynucleotide can include any suitable number of protein-encoding sequences. Alternatively, the second nucleotide sequence can encode for a polynucleozyme (e.g., a ribozyme or DNAzyme) or for the production of an inhibitory (e.g., antisense) polynucleotide (suitable examples of which can be identified through standard gene walking procedures), which preferably facilitates one of the above-mentioned biological activities through inhibition of a biological activity inhibitor, examples of which are discussed further elsewhere herein. Polynucleotides, either encoding the ARFs of the invention or administered therewith, can take the form of aptamers (as described in, e.g., Famulok and Mayer - http://www.chemie.uni-bonn.de/oc/ak fa/publications/CTMI-paper.pdf), capable of binding to suitable targets. Triplex-forming inhibitory nucleotides also can be coadministered with the ARF-encoding polynucleotide, as can "decoys" comprising DNA binding domains specific for particular genes which are sought to be silenced but which encode a different factor.

Examples of suitable angiogenic factors that can be expressed (produced) with [0156] the fusion proteins of the invention (and, as such, can be encoded by the second nucleotide sequence) include, but are not limited to, fibroblast growth factors (FGFs) (e.g., aFGF (FGF-1) (also known as heparin binding factor 1), bFGF (FGF-2), HST, int-2, FGF-4, FGF-5. FGF-6, and KGF (as discussed in, e.g., Basilico and Moscatelli, "The FGF Family of Growth Factors and Oncogenes" in ADVANCES IN CANCER RESEARCH, 59, 115-65 (Woude and Klien eds., Academic Press 1992) and U.S. Patent 5,614,496) and their relatives (e.g., HDGFs, as described in, e.g., Klagsbrun et al., Proc. Natl. Acad. Sci. USA, 83, 2448 (1986)), angiogenins (e.g., angiogenin, angiogenin-2, and mAngiogenin-3, as described in, e.g., Strydom et al., Biochemistry, 24, 5486 (1985), Folkman et al., Science, 235, 442 (1987), Bond et al., Biochim. Biophys. Acta, 1162, 177 (1993), Hu et al., Biochem. Biophys. Res. Commun., 197, 682. (1993), Hu et al., Proc. Natl. Acad. Sci. USA, 91, 12096 (1994), and Moenner et al., Eur. J. Biochem., 226, 483 (1994)), pleiotrophin (PTN, also known as HBNF, HB-GAM, HBBM, p18, OSF-1, and HARP, among others, as described in, e.g., Kretschmer et al., Growth Factors, 5, 99 (1991), Kretschmer et al., Biochem. Biophys. Res. Commun., 192(2), 420-29 (1993), U.S. Patent 5,270,449, European Patent 0 441 763, and European Patent Application 0 474 979), midkine (MK) (as described in, e.g., Böhlen and Kovesdi, Prog. Growth Factor Res., 3, 143-57 (1991), Inui et al., J. Peptide Sci., 2, 28-39 (1996), Iwasaki et al., EMBO J., 16, 6936-46 (1997), and U.S. Patent 5,210,026), transforming growth factors (TGFs - e.g., TGF-β), gelatinases (as described in, e.g., Nguyen

PCT/US02/37660

et al., Int. J. Biochem. Cell. Biol. 33(10), 960-970 (2001)), placental growth factors, Kallistatins (as described in, e.g., Chao et al., Biol. Chem., 382(1), 15-21 (2001), plateletderived growth factors (e.g., platelet-derived endothelial cell growth factor and PDGF-BB (Regranex)), aniomotins (as described in, e.g., Troyanovsky et al., J. Cell Biol., 152(6), 1247-54 (2001)), ECGF (as described in, e.g., U.S. Patent 4,868,113), cyclooxylgenases (as described in, e.g., Dempke et al., J. Cancer Res. Clin. Oncol., 127(7), 411-7 (2001)), Del-1 (as described in, e.g., U.S. Patents 5,877,281 and 5,874,562), erythropoietin, follistatin, granulocyte colony-stimulating factor (G-CSF), GM-CSF, scatter factor/hepatocyte growth factor (HGF) (as described in, e.g., U.S. Patents 6,011,009 and 6,133,231), leptin, insulin like growth factors (IGFs, e.g., IGF-I and IGF-II), ORP150 (as described in, e.g., Ozawa et al., J. Clin. Invest., 108(1), 41-50 (2001)), endothelial growth factors (EGFs) (e.g., endothelial cell-derived growth factor (ECDGF) and PD-ECGF (as described in, e.g., Matsukawa et al., Biochim, Biophys, Acta, 1314(1-2), 71-82 (1996), Moghaddam et al., Biochemistry, 31, 12141-46 (1992), Miyazono et al., Biochemistry, 28, 1704-10 (1989), and Ishikawa, Nature, 338(6216), 557-62 (1989)), PP60 (C-Src) (as described in, e.g., Marx et al., Exp. Mol. Pathol., 70(3), 201-13 (2001)), HBEGFs (as described in, e.g., U.S. Patent 6.037.329), epidermal growth factors, connective tissue growth factors (CTGFs - as described in, e.g., U.S. Patent 6,149,916 and Moussad et al., Mol. Genet. Metab., 71(1-2), 276-92 (2000), preferably CTGF-2), ganglosides (as described in, e.g., Lang et al., Biochem. Biophys. Res. Common., 282(4), 1031-37 (2001)), matrix metalloproteinases (MMPs) (as described in, e.g., Murphy et al., Matrix Biol., 15(8-9), 511-8 (1997), Baramova et al., Cell Biol. Int., 19(3), 239-42 (1995), and Matrisian, Ann. N.Y. Acad. Sci., 732, 42-50 (1994)), tissue inhibitors of metalloproteinase (TIMPs, e.g., vasosten or TIMP-4) (as described in, e.g., Vallamo et al., Human Pathol., 30(7), 795-802 (1999) and Dollery et al., Circ. Res., 84(5), 498-504 (1999)), Survivins, Stat-3(as described in, e.g., Yamauchi-Takihara et al., Trends Cardiovasc. Med., 10(7), 298-303 (2000)), Delta-3 (as described in, e.g., U.S. Patent 6,121,045), COUP-TFIT, eNOS, iNOS, MCP-1, proliferin, syndecan-4 protiens (as described in, e.g., International Patent Application WO 01/45751), RAF and RAS protein kinases (as described in, e.g., International Patent Application WO 01/12210), E-selectin, platelet-activating factors (PAFs) VCAM1, COX-2, HIV-tat, ephrins (e.g., EphB1, EphB2, or EphB4) (as described in, e.g., Yancopoulos et al., Cell, 93, 661-64 (1998) and references cited therein), TWEAK (as described in, e.g., Lynch et al., J. Biol. Chem., 273(13), 8455-49 (1999)), CYR 61 (as described in, e.g., Babic et al., Proc. Natl. Acad. Sci. USA, 95, 6355 (1998)), VEGF-activating zinc finger protein (ZFP) transcription factors (as described in, e.g., International Patent Application WO 01/19981) Fibrin fragment E, PR39 (as described in, e.g., Li et al., Nat. Med., 6(1), 49-55 (2000), and modified by Nat. Med., 6(3), 356 (2000)), Mekk3 (as described in, e.g., Yang et al., Nat. Genet., 24(3), 309-13 (2000),

59

MEF2C (as described in, e.g., Bi et al., Dev. Biol., 211(2), 255-67 (1999), prostacycins (such as PGI2 described in e.g., Spisniet et al., Exp. Cell Res., 266(1), 31-43 (2001)), SDF-1 (as described in, e.g., Moore et al., Ann: N.Y. Acad. Sci., 938, 36-47 (2001)) progestins (as described in e.g., U.S. Patent 6,245,757) tissue plasminogen activator (tPA), urokinaseplasminogen activator (uPA), coagulation/clotting factors (e.g., tissue factor, plasma coagulation factor VIIa (FVIIa), cofactor FVa, Factor X (Xa), thrombin (prothrombin), and fibrinogen, as discussed in, e.g., Carmeliet, Science, 293, 1602-1604 (2001) and references cited therein), caveolin-1 and caveolin-1-modifying agents (e.g., agonists) (as described in, e.g., European Patent Application 1 076 091), nicotine (as described in, e.g., International Patent Application WO 01/08684), angiogenic C-x-C chemokines (as described in, e.g., Colville-Nash et al., Mol. Med. Today, 13-23 (1997)), other angiogenic factors described in International Patent Applications WO 01/05825 and WO 01/32926, and the AHRs (as described in U.S. Patent 6,121,236). Other angiogenic peptides include cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-3 (IL-3), interleukin-18 (IL-18), and interleukin-8 (IL-8), and transcription factors such as HIF-1 (or HIF-1 α and/or HIF-2 α), chimeric HIF factors (e.g., the HIF-1a/VP16 factor described in Vincent et al., Circulation, 18, 2255-61 (2000)), homologs thereof (e.g., EPAS as described in, e.g., Maemura et al., J. Biol. Chem., 274(44), 3165-70 (1999)), fragments thereof, or heterodimers thereof (e.g., a HIF-1α/HIF-2α heterodimer). Preferably, the angiogenic factor produced by expression with the fusion protein is an angiogenic factor that functions in a manner other than as a transcription factor. Desirably, the second nucleic acid sequence encodes an angiogenic VEGF or VEGF homolog, most desirably a non-heparin-binding VEGF (e.g., human VEGF₁₂₁), such as those VEGF and VEGF homologs described in U.S. Patent Application 09/832,355, and references cited therein. Other preferred angiogenic mediators include HBNFs, MKs, aFGFs, and Del-1. Non-peptide angiogenic mediators that can be associated with the fusion protein or co-administered therewith include hormones such as oestrogens and proliferin, alcohols such as glycerol, pyridine derivatives (e.g., nicotinamide), and oligosaccharides such as hyaluronan.

[0157] If the polynucleotide encodes multiple gene products, a combination of expression control sequences (e.g., promoters) can be used, preferably which correspond to a pre-planned pattern of activity with the desired pattern and level of expression of the encoded factors. Thus, nucleotide sequences in the polynucleotide can be under the control of separate promoters having different expression profiles, e.g., at least one nucleic acid sequence is operably linked to an RSV promoter and at least one other nucleic acid sequence is operably linked to a CMV promoter. Alternatively, a hybrid promoter can be constructed which combines the desirable aspects of multiple promoters. For example, a CMV-RSV hybrid promoter combining the CMV promoter's initial rush of activity with the

WO 03/048185

RSV promoter's high maintenance level of activity is especially preferred for use in many embodiments of the inventive method. Thus, the invention provides polynucleotides where the fusion protein sequence is operably linked to a first promoter and a second nucleotide sequence is operably linked to a second promoter, such that the initiation of expression of the first nucleotide sequence and second nucleotide occurs at different times, in response to different factors, or both. Preferably, such promoter systems are designed to mimic expression patterns associated with normal biological activities, e.g., pathways or cascades. For example, a first promoter can drive the early expression (or separately inducible expression) of a vascular endothelial growth factor (VEGF) (e.g., human VEGF₁₂₁, VEGF₁₆₅, or VEGF₁₈₉), and a second promoter can be later induced or otherwise later cause expression of a nucleic acid sequence encoding an ARF fusion protein of the invention. The polynucleotide can include multiple fusion protein genes and/or related [0158] genes to be serially expressed and/or co-expressed. Thus, for example, the invention contemplates administration of polynucleotides that encode at least 3, at least 4, at least 5, or more, fusion protein genes or combinations of fusion protein genes, and other angiogenic factor genes, bone growth promoting factor genes, or wound healing promoting factor genes, which preferably mimic an expression pattern of a normal biological cascade. Suitable bone growth, wound healing, and angiogenic factors are described in U.S. Patent Application 09/832,355, and references cited therein. For example, the polynucleotide can include sequences encoding (1) a matrix metalloproteinase or other factor that promotes matrix degradation, (2) a VEGF or VEGF homolog (which preferably attracts endothelial cells and induces blood vessel formation), (3) a fusion protein of the invention, which preferably induces vascular maturation and/or reduces plasma leakage in the VEGF-induced vessels, and (4) an ephrin (which preferably induces stabilization and maintenance of the blood vessel), which are preferably operably linked to promoters such that they are expressed in a manner that mimics the normal biological cascade in blood vessel development in the host. Alternatively or additionally, multiple polynucleotides (e.g., within multiple vectors) can be administered, wherein the polynucleotides encode one or multiple genes, including at least one polynucleotide encoding one of the ARF fusion proteins of the invention, to provide such a cascade effect. However, the administration of a single polynucleotide under control of the above-described expression control sequence systems is preferred.

[0159] Production of the recombinant polynucleotide encoding the fusion protein can be accomplished by any suitable technique. Recombinant polynucleotide production is well understood, and methods of producing such molecules are provided in, e.g., Mulligan, Science 260, 926-932 (1993), Friedman, Therapy For Genetic Diseases (Oxford University Press, 1991), Ibanez et al., EMBO J., 10, 2105-10 (1991), Ibanez et al., Cell, 69, 329-41

(1992), and U.S. Patents 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362, 4,710,463, 4,757,006, 4,766,075, and 4,810,648, and are more particularly described in Sambrook and Ausubel, supra.

61

The polynucleotide preferably is positioned in and/or administered in the form of [0160] a suitable delivery vehicle (i.e., a vector). The vector can be any suitable vector. For example, the nucleic acid can be administered as a naked DNA or RNA vector, including, for example, a linear expression element (as described in, e.g., Sykes and Johnston, Nat. Biotech., 17, 355-59 (1997)), a compacted nucleic acid vector (as described in, e.g., U.S. Patent 6,077,835 and/or International Patent Application WO 00/70087), a plasmid vector such as pBR322, pUC 19/18, or pUC 118/119, a "midge" minimal-sized vector (as described in, e.g., Schakowski et al., Mol. Ther., 3, 793-800 (2001)) or as a precipitated nucleic acid vector construct (e.g., a CaPO₄ precipitated construct). The vector also can be a shuttle vector, able to replicate and/or be expressed (desirably both) in both eukaryotic and prokaryotic hosts (e.g., a vector comprising an origin of replication recognized in both eukaryotes and prokaryotes). The nucleic acid vectors of the invention can be associated with salts, carriers (e.g., PEG), formulations which aid in transfection (e.g., sodium phosphate salts. Dextran carriers, iron oxide carriers, or gold bead carriers), and/or other pharmaceutically acceptable carriers, some of which are described herein. Alternatively or additionally, the polynucleotide vector can be associated with one or more transfectionfacilitating molecules such as a liposome (preferably a cationic liposome), a transfection facilitating peptide or protein-complex (e.g., a poly(ethylenimine), polylysine, or viral protein-nucleic acid complex), a virosome, a modified cell or cell-like structure (e.g., a fusion cell), or a viral vector. The polynucleotide also can be administered with a vector which catalyzes disulfide bond formation (as described in, e.g., International Patent Application WO 98/37208).

More preferably, the polynucleotide is positioned in, and administered to the [0161] host via, a viral vector. The viral vector can be any suitable viral vector. A viral vector in the context of the invention includes any combination of nucleotides and proteins that are derived from, obtained from, or based upon proteins and or nucleic acids that are present in a wild-type virus. For example, the viral vector can comprise a virus-like particle (VLP) or a vector similar to those described in U.S. Patent 5,849,586 and International Patent Application WO 97/04748. The viral vector can be a vector which requires the presence of another vector or wild-type virus for replication and/or expression (i.e., a helper-dependent virus), such as an adenoviral vector amplicon. The viral vector preferably consists of an intact virus particle. Typically, such viral vectors consist essentially of a wild-type viral particle, or a viral particle modified in its protein and/or nucleic acid content to increase transgene capacity or aid in transfection and/or expression of the nucleic acid (examples of

such vectors include the herpes virus/AAV amplicons). Such vectors are typically named for the type of virus they are obtained from, derived from, or based upon, as applicable. Examples of preferred viral vectors include herpes viral vectors, adeno-associated viral vectors, and adenoviral vectors. Suitable examples of such vectors and other suitable viral vectors are provided in, e.g., Mackett et al., J. Gen. Virol., 67, 2067-82 (1986), Beaud et al., Dev. Biol. Stand., 66, 49-54 (1987), Levine, Microbiol. Sci., 4(8), 245-50 (1987), Lebowski et al., Mol. Cell Biol., 8(10), 3988-96 (1988), Nicholas et al., Biotechnology, 10, 493-513 (1988), Moss et al., Curr. Top. Microbiol. Immunol., 158, 25-38 (1992), Berihoud et al., Curr. Opin. Biotechnol., 10(5), 440-47 (1999), Yonemitsu, Nat. Biotechnol., 18(9), 970-3 (2000), and Russell, J. Gen. Virol., 81, 2573-2604 (2000), as well as International Patent Application WO 00/32754. Desirably, the viral vector particle is a mammalian viral vector, a non-enveloped viral vector, and a vector that contains a DNA-based genome.

[0162] The construction of recombinant viral vectors is well understood in the art. For example, adenoviral vectors can be constructed and/or purified using the methods set forth, for example, in Graham et al., *Mol. Biotechol.*, 33(3), 207-220 (1995), U.S. Patents 5,922,576, 5,965,358 and 6,168,941 and International Patent Applications WO 98/22588, WO 98/56937, WO 99/15686, WO 99/54441, and WO 00/32754. Adeno-associated viral vectors can be constructed and/or purified using the methods set forth, for example, in U.S. Patent 4,797,368 and Laughlin et al., *Gene*, 23, 65-73 (1983). Similar techniques are known in the art with respect to other viral vectors, particularly with respect to herpes viral vectors (see e.g., Lachman et al., *Curr. Opin. Mol. Ther.*, 1(5), 622-32 (1999)), lentiviral vectors, and other retroviral vectors.

[0163] The viral vector can be a chimeric viral vector. Examples of suitable chimeric viral vectors are described in, e.g., Reynolds et al., *Mol. Med. Today*, 5(1), 25-31 (1999) and Boursnell et al., *Gene*, 13, 311-317 (1991).

[0164] Desirably, the viral vector is capable of expressing the polynucleotide for a sustained period (e.g., for a period of at least about 1 day, preferably about 1 week), without expressing the polynucleotide so long that undesired effects associated with prolonged expression, e.g., promiscuous angiogenesis, occurs (e.g., for a period of less than about 2 weeks). Thus, the viral vector preferably is capable of therapeutic, and transient, self-terminating expression of the polynucleotide (e.g., expression for a period of about 1 week or less). Preferably, the viral vector achieves gene transfer in both dividing and non-dividing, as well as terminally differentiated, cells, with high levels of expression in cardiovascular relevant sites such as the myocardium, vascular endothelium, and skeletal muscle. The viral vector desirably is safe for administration to the host. Advantageously, the viral vector operates in an epichromosomal manner without insertion of genetic material to the host. Adenoviral vectors, which possess all of these aforementioned qualities, are

63

particularly preferred delivery vectors for nucleic acid angiogenic mediators.

[0165] Any suitable adenoviral vector can be used as a delivery vehicle for the polynucleotide. For instance, an adenovirus can be of subgroup A (e.g., serotypes 12, 18, and 31), subgroup B (e.g., serotypes 3, 7, 11, 14, 16, 21, 34, and 35), subgroup C (e.g., serotypes 1, 2, 5, and 6), subgroup D (e.g., serotypes 8, 9, 10, 13, 15, 17, 19, 20, 22-30, 32, 33, 36-39, and 42-47), subgroup E (serotype 4), subgroup F (serotypes 40 and 41), or any other adenoviral serotype. Preferably, the adenoviral vector is based on, derived from, or consists of a serotype-2 or serotype-5 adenovirus. In some aspects, type 35 adenoviral vectors (as described in, e.g., International Patent Application WO 01/41814) can be advantageous, particularly where immune response to the vector is a concern.

[0166] Regions of the adenoviral genome (e.g., the E3 region) in the adenoviral vector can optionally and preferably will be deleted in order to provide space for insertion of the polynucleotide or other nucleic acid sequences. In addition, regions of the adenoviral genome can be deleted or altered in order to interfere with viral replication. The adenoviral vector used in the inventive method preferably is deficient in at least one gene function required for viral replication, thereby resulting in a "replication-deficient" adenoviral vector. Preferably the adenoviral vector will be deficient in at least one essential gene function of the E1, E2, and/or E4 regions of the adenoviral genome. More preferably, the adenoviral vector is deficient in at least one essential gene function of the E1 region (e.g., deficient in at least part of the E1a region and/or at least part of the E1b region) of the adenoviral genome. Other portions of the genome also can be deleted, e.g., typically the E3 region, which is non-essential for viral replication. Thus, the adenoviral vector can be lacking multiple adenoviral gene functions, e.g., at least one essential gene function of the E1 region and at least one essential gene function of the E4 region, in addition to at least part of the E3 region. Examples of E1-deleted and other replication deficient adenoviral vectors are disclosed in, for example, U.S. Patents 5,851,806, 5,985,655, and 5,994,106 and International Patent Applications WO 95/34671 and WO 97/21826. The adenoviral vector desirably retains at least one adenovirus inverted terminal repeat (ITR) (preferably the 5' and 3' ITRs). The adenoviral vector also desirably retains the adenovirus packaging sequence. Preferably, the recombinant adenovirus also comprises a mutation in the major late promoter (MLP), as discussed in International Patent Application WO 00/00628. Alternatively or additionally, the adenoviral vector can retain an E3-gp19K coding sequence, particularly where immune response to the adenoviral vector is a concern.

[0167] The vector, including the viral vector, can integrate into the host cell's genome or be a non-integrative vector. Non-integrative vectors, e.g., naked DNA plasmids, and particularly non-integrative viral vectors (e.g., adenoviral vectors), are typically preferred. Alternatively, a lentiviral vector, naked DNA vector comprising integration-promoting

64

sequences (as described in, e.g., International Patent Applications WO 98/41645 and WO 98/54345), or AAV viral vector that integrates into the host cell's genome can be used. Additionally, when using a non-integrating viral vector, control sequences that allow for retention of the delivered transgene in the host cell, either by integration into the target cell genome or by maintenance as an episomal nucleic acid can be utilized (as discussed in, e.g., International Patent Application WO 98/54345).

A particularly preferred adenoviral vector for use in the inventive method is [0168] deficient in the entire E1a region, at least part of the E1b region, and at least part of the E3 region of the adenoviral genome and contains a DNA encoding a fusion protein comprising an Ang-1, KAP, or angiopoietin-like FLD directly fused to a sequence encoding a NL1, NL5, or Ang-2X CCD, under the control of the CMV IE promoter in the E1 region of the adenoviral genome. Such a vector supports in vivo production of the fusion protein that is maximized at one day following administration and is not detectable above baseline levels as little as one week after administration.

The adenoviral vector can be subject to any number of additional or alternative [0169]modifications. For example, a particularly preferred vector comprises a replicationdeficient adenoviral vector which includes or produces (by expression) a modified adenoviral protein, non-adenoviral protein, or both, which increases the efficiency that the vector infects cells as compared to wild-type adenovirus, allows the vector to infect cells which are not normally infected by wild-type adenovirus, results in a reduced host immune response in a mammalian host as compared to wild-type adenovirus, or any combination thereof. Any suitable type of modification can be made to the vector, and several suitable modifications are known in the art. For example, the adenoviral vector coat protein can be modified. Examples of such modifications include modifying the adenoviral fiber, penton, pIX, pIIIa, or hexon proteins, and/or insertions of various native or non-native ligands into portions of such coat proteins. Manipulation of such coat proteins can broaden the range of cells infected by a viral vector or enable targeting of a viral vector to a specific cell type. One direct result of manipulation of the viral coat is that the adenovirus can bind to and enter a broader range of eukaryotic cells than a wild-type virus. Examples of adenoviruses including such modifications are described in International Patent Application WO 97/20051. Reduction of immune response against the adenoviral also or alternatively can be obtained through the methods described in U.S. Patents 6,093,699 and 6,211,160 and/or U.S. Patent Application 2001-0006947A1. In other embodiments, the viral coat is manipulated such that the virus is "targeted" to a particular cell type, e.g., those cells expressing unique receptors. Examples of such modified adenoviral vectors are described in Miller et al., FASEB J., 9, 190-99 (1995), Douglas et al., Nat. Biotechnol., 14(11), 1574-78 (1996), Wickham, Gene Ther., 7(2), 110-14 (2000), U.S. Patents 5,559,099, 5,731,190,

WO 03/048185

5,712,136, 5,770,442, 5,846,782, 5,962,311, 5,965,541, 5,985,655, 6,030,954, 6,057,155 and International Patent Applications WO 96/07734, WO 96/26281, WO 97/20051, WO 98/07865, WO 98/07877, WO 98/40509, WO 98/54346, WO 00/15823 and WO 00/31285. Other adenoviral vector protein modifications that decrease the potential for immunological recognition by the host and resultant coat-protein directed neutralizing antibody production, as described in, e.g., International Patent Applications WO 98/40509 and WO 00/34496. In non-viral vector systems, the use of targeting through targeted proteins (e.g., an asialoorosomucoide protein conjugate which promotes liver targeting (such as is described in Wu and Wu, *J. Biol. Chem., 263 (29),* 14621-24 (1988)) or the targeted cationic lipid compositions of U.S. Patent 6,120,799).

[0170] The adenoviral vector also can include a *trans*-acting factor, *cis*-acting factor, or both, which preferably increases the persistence of transgene expression from the adenoviral vector's genome. Any suitable *trans*-acting factor can be used, such as HSV ICPO, which prolongs transgene expression (e.g., expression of the fusion protein sequence). Such modifications are particularly preferred in E4-deleted adenoviral vectors. The use of *trans*-acting factors is further described in International Patent Application WO 00/34496. Additionally or alternatively, the adenoviral vector comprises a nucleic acid sequence encoding a *cis*-acting factor. For example, a matrix attachment region (MAR) sequence (e.g., an immunoglobulin heavy chain μ (as discussed in, e.g., Jenuwein et al., *Nature*, 385(16), 269 (1997)), locus control region (LCR) sequences, or apolipoprotein B sequence (as discussed in, e.g., Kalos et al., *Molec. Cell. Biol.*, 15(1) 198-207 (1995)) can be used to modify the persistence of expression from a transgene, such as a transgene inserted into an E4-deleted region of the adenoviral vector genome. LCR sequences are also believed to establish and/or maintain transcription of transgenes in a *cis* manner.

[0171] The polynucleotide can be positioned within any suitable location in the genome of the adenoviral vector. Typically, the polynucleotide will substitute for one or more of the aforementioned deleted regions of the adenoviral genome (e.g., the E1, E2, E3, and/or E4 region, most preferably replacing at least a portion of the E1 region). Alternatively, several polynucleotides encoding multiple fusion proteins, or fusion proteins and other proteins (e.g., a second angiogenic, bone growth promoting, or wound healing promoting peptide-encoding sequence) can be inserted as expression cassettes into multiple deleted regions (e.g., the ARF fusion protein encoding sequence can be inserted in a portion of the E1 region, and the polynucleotide encoding the second factor (e.g., a VEGF₁₂₁ gene) can be inserted in the deleted E3 region, or vice versa).

[0172] Production of such deficient adenoviral vectors can be accomplished by use of a complementation cell line, which is capable of providing the deleted necessary adenoviral gene functions *in trans*. Several examples of suitable cells are known. Examples of

suitable cells for producing such vectors include 293 cells (described in, e.g., Graham et al., *J. Gen. Virol.*, 36, 59-72 (1977)), HER cells, such as 911 cells (as described in, e.g., Fallaux et al., *Human Gene Therapy*, 7, 215-222 (1996)) or PER.C6 cells (commercially available through Crucell (Leiden, Netherlands)), and 293-ORF6 cells (as described in, e.g., International Patent Application WO 95/34671 and Brough et al., *J. Virol.*, 71, 9206-13 (1997)). The cell line can provide either no homologous overlapping regions with the adenoviral vector, ideally resulting in no replication competent adenovirus (RCA) or, alternatively, can partially overlap in one or more essential regions but lack homology in one or more essential regions (as exemplified by the cells in International Patent Application WO 95/34671). Desirably, the vector composition of the invention is formed from a purified stock of such vectors. A preferred method for purifying such vector stocks is provided in International Patent Application WO 99/54441. Methods for assessing the purity of such vector compositions are provided in International Patent Application WO 90/12765.

[0173] The polynucleotide encoding the fusion protein can be inserted in any of the above-described vectors in any suitable manner and in any suitable orientation. Whereas the polynucleotide can be inserted in any suitable orientation, preferably the orientation of the nucleic acid is from right to left. By the polynucleotide having an orientation "from right to left," it is meant that the direction of transcription of the nucleic acid is opposite that of the region of the vector into which the polynucleotide is inserted.

[0174] The invention further provides methods of administering the fusion proteins, polynucleotides, and vectors of the invention to a cell, tissue, or host (preferably a human), to modulate, preferably to promote angiogenesis. Thus, for example, the invention provides a method of promoting angiogenesis in an individual comprising administering to the individual an amount of a fusion protein that is effective to promote angiogenesis. Administration of the fusion protein can be performed by any suitable method, and the fusion protein can be administered in any suitable form (including by way of the polynucleotide or vector described herein). Preferably, the fusion protein (or polynucleotide or vector encoding the fusion protein) is administered in a composition, with a carrier, preferably in a pharmaceutically acceptable composition, e.g., by combination with a pharmaceutically acceptable carrier.

[0175] The term "pharmaceutically acceptable" means that the composition is a non-toxic material that does not interfere with the effectiveness of the biological activity of the fusion protein or other effective ingredients. Any suitable carrier can be used, and several carriers for administration of therapeutic proteins are known in the art. The characteristics of the carrier will depend on the route of administration.

[0176] The pharmaceutical composition and/or pharmaceutically acceptable carrier also

67

can include diluents, fillers, salts (preferably monovalent salts in a concentration of about 100-200 mM), buffers (preferably which retain a pH at about 7-8.5 at room temperature for vector compositions), detergents (preferably nonionic detergents, such as Tween-80), stabilizers, solubilizers, and/or other materials suitable for inclusion in a pharmaceutically composition. The pharmaceutical composition of the invention also can contain preservatives, antioxidants, or other additives known to those of skill in the art. When the fusion protein (or polynucleotide or vector encoding is fusion protein) is administered with other agents or ingredients the combined amounts of the agents can be administered in combination, serially or simultaneously. Examples of suitable components of the pharmaceutical composition in this respect are described in, e.g., Berge et al., J. Pharm. Sci., 66(1), 1-19 (1977), Wang and Hanson, J. Parenteral. Sci. Tech., 42, S4-S6 (1988), U.S. Patents 6,165,779 and 6,225,289, and elsewhere herein.

The pharmaceutical composition of the invention can be in the form of a [0177] liposome in which the fusion protein (or polynucleotide or vector encoding the fusion protein) is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is described in, e.g., U.S. Patents 4,837,028 and 4,737,323.

The pharmaceutical composition can be delivered to the individual by any [0178] suitable route of administration. Examples of suitable routes of administration include oral ingestion, inhalation, bucal application, rectal application, vaginal application, topical application, insufflation, implantation, transmucosal administration, or cutaneous, subcutaneous, intraperitoneal, parenteral, myocardial, pericardial (e.g., intrapericardial), or injection (e.g., intravenous injection). Intravenous administration and injection are preferred.

If the pharmaceutical composition is administered orally, the composition [0179] preferably is administered in the form of a tablet, capsule, powder, solution, elixir, or troches. Oral compositions can include any suitable carriers or other agents. For example, tablets will typically contain a solid carrier, such as a gelatin. Generally, oral compositions also can include binders (e.g., microcrystalline cellulose, gum tragacanth or gelatin), excipients (e.g., starch or lactose), disintegrating agents (e.g., alginic acid, Primogel, or com starch), lubricants (e.g., magnesium stearate or Sterotes), glidants (e.g., colloidal silicon dioxide), and/or sweetening/flavoring agents. Oral compositions preferably contain about 5-95%, preferably about 25-90%, fusion protein (or polynucleotide or vector encoding the fusion protein).

68

[0180] To administer the fusion protein (or polynucleotide or vector encoding the fusion protein) in a liquid form, such as in delivery by injection, a liquid carrier such as water, petroleum, physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ), phosphate buffered saline (PBS), or oils can be used as a carrier. Liquid pharmaceutical compositions can further contain physiological saline solution, dextrose (or other saccharide solution), polyols, or glycols, such as ethylene glycol, propylene glycol, PEG, coating agents which promote proper fluidity, such as lecithin, isotonic agents, such as manitol or sorbital, organic esters such as ethyleate, and absorption-delaying agents, such as aluminum monostearate and gelatins. When administered in liquid form, the pharmaceutical composition preferably contains about 0.5-90% by weight (wt.%) of fusion protein (or polynucleotide or vector encoding the fusion protein), more preferably about 1-50 wt.% fusion protein (or polynucleotide or vector encoding the fusion protein).

[0181] More particularly, when the pharmaceutical composition is administered by injection, the composition will preferably be in the form of a pyrogen-free, stable, parenterally acceptable aqueous solution. Preferably, the parenterally acceptable aqueous solution comprises an isotonic vehicle such as sodium chloride injection, Ringer's injection, dextrose injection, lactated Ringer's injection, or equivalent delivery vehicle (e.g., sodium chloride/dextrose injection).

[0182] In a particularly preferred aspect, the fusion protein polynucleotide, or vector is administered in or near the heart. Administration in or near the heart can be to any suitable heart-associated region or tissue, using any suitable technique. Examples of suitable types of administration include direct (needle or biolistic) intracoronary injection (e.g., of a vector composition) and/or intracoronary administration using implant devices (e.g., a fusion protein coated coronary stent). Pericardial, myocardial, and intracoronary administration are particularly preferred for angiogenic fusion proteins used to treat vascular occlusion in an individual's heart.

[0183] The fusion protein (and polynucleotide or vector, as applicable) can be desirably co-administered with another factor, preferably a factor that promotes angiogenesis, bone growth, or wound healing (most preferably angiogenesis). Where the fusion protein, polynucleotide, or vector is administered with a wound healing or bone growth-promoting factor, preferred methods of administration (e.g., topical administration systems, implants, and specialized compositions) preferably will be one set forth in U.S. Patent Application 09/832,355 and references cited therein. The second factor can be a separate protein, or a vector or polynucleotide that produces such a protein.

[0184] Preferably, the second factor is a non-heparin-binding VEGF, a polynucleotide comprising a nucleic acid sequence encoding a non-heparin-binding VEGF, or a vector comprising a polynucleotide encoding a non-heparin-binding VEGF. As discussed above,

the fusion protein also can comprise non-ARF peptide portions that assist in promoting angiogenesis or other desired biological activities. Furthermore, the polynucleotide of the invention can comprise one or more nucleic acid sequences encoding additional factors that promote angiogenesis or other desired biological activity as well as the fusion protein of the invention.

[0185] Administration devices for the fusion protein, polynucleotide, or vector can be formed of any suitable material. Examples of suitable matrix materials for producing non-biodegradable administration devices include hydroxapatite, bioglass, aluminates, or other ceramics. In some applications, a sequestering agent, such as carboxymethylcellulose (CMC), methylcellulose, hydroxypropylmethylcellulose (HPMC), or autologous blood clot, can be used to prevent the fusion protein complex from disassociating from the device and/or matrix. Thus, such sequestering agents are preferably present in an amount which prevents desorption of the fusion protein from the matrix/device and/or provides better handling of the composition. Typically, such sequestering agents will make up about 0.5-20 wt.%, preferably about 1-10 wt.%, of the composition, based on total formulation weight.

[0186] For administration by inhalation, the fusion protein (or polynucleotide or vector encoding the fusion protein) can be delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e. g., a gas such as carbon dioxide, or a nebulizer.

[0187] For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are preferably included in the composition. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be facilitated through the use of nasal sprays or suppositories.

[0188] The invention further provides compositions comprising the fusion protein (or polynucleotide or vector encoding the fusion protein) for the preparation of pharmaceuticals or other medicaments, e.g., for the preparation of sterile injectable solutions (desirably any of the other compositions described herein also are sterile). Such powder compositions can be prepared by, e.g., vacuum drying and freeze-drying, which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The compositions of the invention also or alternatively can be in provided in unit dose containers and devices, including ampoules, disposable syringes, or multiple dose vials.

[0189] Additional pharmaceutically acceptable carriers are known in the art. Examples of additional suitable carriers are described in, e.g., Urquhart et al., Lancet, 16, 367 (1980), Lieberman et al., Pharmaceutical Dosage Forms - Disperse Systems (2nd ed., vol. 3, 1998), Ansel et al., Pharmaceutical Dosage Forms & Drug Delivery Systems (7th ed.

PCT/US02/37660 WO 03/048185

70

2000), REMINGTON'S PHARMACEUTICAL SCIENCES, and U.S. Patents 5,708,025 and 5,994,106.

The specific amount of fusion protein (or polynucleotide or vector encoding the [0190] fusion protein) in a dosage of the composition administered to the individual will depend upon the biological effect desired in the individual, condition to be treated, and/or the specific characteristics of the fusion protein (or polynucleotide or vector encoding the fusion protein) and individual. Preferably, the pharmaceutical composition is administered in a therapeutically effective amount. A "therapeutically effective amount" means an amount sufficient to show a meaningful benefit in an individual, i.e., promoting at least one aspect of angiogenesis other desired biological effect (e.g., receptor binding), or treatment, healing, prevention, or amelioration of other relevant medical condition(s). Therapeutically effective amounts may vary depending on factors such as those described above. Thus, the attending physician (or other medical professional responsible for administering the composition) will typically decide the amount of fusion protein with which to treat each individual patient. Generalized guidance in making such determinations can be found, for example, in Platt, Clin. Lab Med., 7, 289-99 (1987), and in "Drug Dosage," J. Kans. Med. Soc., 70(1), 30-32 (1969).

Proper dosage can be determined by any suitable technique. In a simple dosage [0191] testing technique, low doses of the composition are administered to a test subject or system (e.g., an animal model, cell-free system, or whole cell assay system). Larger doses of the composition then can be administered until the desired therapeutic effect is obtained. For example, Doppler imaging can be used to detect blood flow and/or microscopy can be used to detect changes in blood vessel number or quality. Preferably, the dosage is within a range that includes the ED₅₀, with low average toxicity. Such dosages are expected to typically contain about 0.01 mg-100 mg, preferably about 0.1-10 mg, more preferably about 0.1-1 mg, of fusion protein per kg body weight. Dosages with respect to vectors containing polynucleotides encoding the fusion protein are described elsewhere herein; however, it should be understood that the discussion provided with respect to dosage and administration of the fusion protein and of such vectors are considered interchangeable unless explicitly stated otherwise or clearly contradicted by the text.

The invention further provides a method of producing the fusion protein by [0192] introducing a vector containing a polynucleotide, which, when expressed, results in the production of a fusion protein of the invention, into a suitable cell, such that the nucleotide sequence is expressed and the fusion protein is produced. The vector can be introduced into a suitable host cell for purpose of producing the fusion protein, which is then substantially isolated, preferably purified, which can be administered to an individual as described above. Any cell permissive for the uptake and maintenance of the vector and expression of the

71

polynucleotide can be suitable. Examples of suitable cells include bacterial cells, such as E. coli and mammalian cloned cells, such as HeLa cells, CHO cells, and VERO cells. Transformation and/or transfection of such cells can be accomplished using techniques described herein or in Sambrook and Ausubel, supra and U.S. Patent 5,371,017. The fusion protein produced in the host cell can be identified and substantially isolated (preferably completely isolated) using standard techniques, including genetic selection, cell surface display, phage and virus display, ribosome display, fluorescence-based cell sorting, and agar plate screening (preferably combined with automated colony picking). Where fewer candidates need to be screened, more sensitive and faster techniques such as HPLC, mass spectrometry, gas chromatography, or chromogenic techniques can be applied.

[0193] The invention also provides a cell comprising a polynucleotide encoding any of the fusion proteins or other novel ARFs described herein. The cell can be any suitable cell, including any of the aforementioned cells or cells described elsewhere herein. The invention further provides in this respect a non-human transgenic animal comprising such a polynucleotide. The production of such transgenic animals are known in the art.

[0194] Alternatively, and preferably, such a vector is administered to an individual (e.g., a mammalian host, such as a human), resulting in the *in vivo* production of the fusion protein. *In vivo* administration of the fusion protein by way of such vectors offers several advantages over direct protein administration, including, e.g., avoidance of the first pass effect and other metabolically-related processing problems, providing intracellular production and processing, and providing sustained administration over a period of time, thereby resulting in less need for repeated administration events. The vector containing the fusion protein-encoding polynucleotide will preferably be administered to an area of the individual's body such that it promotes angiogenesis.

[0195] The vector is desirably administered near one or more angiogenically functional locations (source locations) and at least one angiogenically dysfunctional location (target location). Desirably, the vector (or fusion protein) composition is administered in a gradient forming manner, as described in International Patent Application WO 01/34179, particularly where the vector comprises a polynucleotide sequence comprising a second nucleic acid sequence encoding an angiogenic factor (e.g., a VEGF). The source location can be any location in the individual (e.g., tissue or organ), which has physiologically normal levels of blood perfusion, such as an area near or imbued with existing blood vessels (e.g., a non-ischemic area). The target location preferably is an actual or potentially angiogenically dysfunctional location, e.g., a location in the host that is either undergoing or is at risk of undergoing ischemia or any other condition wherein the growth of new, or extension of existing, blood vessels is desirable. Thus, the target location typically will be suffering from or be at risk of suffering from ischemic damage, which results when the

tissue is deprived of an adequate supply of oxygenated blood. The interruption of the supply of oxygenated blood is often caused by a vascular occlusion. Such vascular occlusion can be caused by arteriosclerosis, trauma, surgical procedures, disease, and/or other indications. There are many ways to determine if a tissue is at risk of suffering ischemic damage from undesirable vascular occlusion including, e.g., ^{99m}Tc-sestamibi scanning, x-ray imaging, Doppler imaging, and MRI scanning. The target location also can comprise a tissue in which blood flow is attenuated by trauma, surgery, or other events. The alleviation of such attenuated blood supply, regardless of its origin, is contemplated by the invention. Thus, prevention or alleviation of damage from indications such as myocardial ischemia (particularly in patients suffering from insulin dependent diabetes), delayed wound healing, Buerger's disease, and stroke are contemplated.

[0196] Additionally, the planning of a surgical procedure can be predictive of the interruption of blood supply through a particular portion of a patient's vasculature. Prior treatment according to the method of the invention can substantially improve the desired outcome of these surgeries. In that case, treatment preferably occurs about one day to about six weeks before the surgery, and more preferably about two to about fourteen days prior to surgery. Other prophylactic uses of the vector also are contemplated.

The target and source locations can be in any suitable tissue susceptible to new [0197]blood vessel growth upon production of a therapeutic amount of the angiogenic fusion protein. For example, the target and source locations can be located in a discrete organ such as the brain, heart, pancreas, limbs, or generalized areas of the body, such as a leg or a foot. Preferably, the target location and source location comprise portions of an organ system that includes at least two arteries (e.g., a heart which comprises at least three major arteries). In such aspects, the target location typically comprises at least a portion of an angiogenically dysfunctional artery in the system (e.g., an artery suffering from vascular occlusion), and some, if not all, of the angiogenically functional arteries in the system serve as source locations. In such aspects, the angiogenic mediator preferably is administered in a distribution between the target artery and the source arteries. Where the target location is an artery suffering from vascular occlusion, the method can comprise administration of the vector upstream, downstream, or to the occluded region of the artery (i.e., with respect to normal blood flow), or any combination thereof, as desired, preferably such that induced collateral blood vessel development bypasses the occluded region. "Tissue" in this sense is thus meant to include interstitial spaces associated with solid tissue. The source and target locations also can comprise cavities or extracellular fluid next to a tissue.

[0198] The polynucleotide or vector can be administered in the form of a composition, e.g., with or in any suitable acceptable carrier, preferably a pharmaceutically acceptable carrier, such as those described elsewhere herein. Additional pharmaceutically acceptable

73

carriers particularly suitable for administration of vectors are described in, for example, International Patent Application WO 98/32859.

[0199] The desired dosage (i.e., total dosage to the host) of the vector composition is such that the amount of fusion protein produced by expression of the polynucleotide in the vector results in a therapeutic and/or prophylactic effect in the area where the vector is administered. The dosage will depend on the type of fusion protein to be produced. Because a wide range of suitable fusion proteins are provided by the invention, dosage is described generally, augmented by examples relating to specific vector compositions. It will be understood that this type of description is meant to further illustrate the invention without limiting it to any particular vector composition.

The dosage of an adenoviral vector containing a fusion protein-encoding polynucleotide will be at least about 1×10^6 particle forming units (pfu) (e.g., 1×10^6 - 1×10^{13} pfu) to an area near, at, or between the target and source locations. The dose preferably is at least about $1x10^7$ pfu (e.g., about $1x10^7$ - $1x10^{13}$ pfu), more preferably at least about $1x10^8$ pfu (e.g., about $1x10^8$ - $1x10^{11}$ pfu), and most preferably at least about $1x10^9$ pfu (e.g., about $1x10^9$ - $1x10^{10}$ pfu). The dose typically is for a volume of targeted tissue of about 0.5-15 cm³, but can be for larger tissue volumes of up to 100 cm³ or even about 150 cm³. The dose desirably is administered via multiple applications and, as such, is divided among the multiple applications. Thus, if the dose is administered via 10 administrations, each administration involves about 1x10⁵ - 1x10¹² pfu. Preferably, each application involves about $1x10^6$ - $1x10^{12}$ pfu, more preferably about $1x10^7$ - $1x10^{10}$ pfu, and most preferably about $1x10^8$ - $1x10^9$ pfu. For purposes of considering the dose in terms of particle units (pu), also referred to as viral particles, it can be assumed that there are 100 particles/pfu (e.g., 1x10¹² pfu is equivalent to 1x10¹⁴ pu). In a single round of vector administration, using, for example, an adenoviral vector deleted of the entire E1a region, part of the E1b region, and part of the E3 region of the adenoviral genome, wherein the vector comprises a nucleic acid encoding, e.g., an NL1 FLD/Ang-2X CCD fusion protein under the control of a standard CMV immediate early promoter, about 10⁷-10¹³ pfu, preferably about 10⁹-10¹¹ pfu, are administered to the host (e.g., to a discrete organ containing the source and/or target locations) with an estimated volume of about 150 cm³. Under these conditions, a substantial level of fusion protein production is achieved in the tissue of interest without producing detectable levels of fusion protein production in distal tissues.

[0201] The vector composition can be administered to the individual by any suitable technique, including those techniques described herein with respect to fusion protein-containing compositions or polynucleotides and vectors. Preferably, the vector is injected into the individual. Injection can be performed in any suitable tissue or body part (e.g., intravenously, myocardially, parenterally, intrathecally, intradermally, intraspinally,

intraocularly, subdermally, or into the interstitial space of a tissue/organ (e.g., of a muscle tissue)). By the term "injecting," it is meant that the vector containing solution is forcefully introduced into the target tissue. The vector composition can be microinjected, injected directly by a needle, or injected by biolistic injection. Injection can be performed using any suitable device, such as the device described in U.S. Patent 5,846,225. Alternatively, the vector containing composition can be delivered by means of percutaneous administration, typically by use of a device, such as a catheter (e.g., inserted into the femoral artery) or by a stent coated with a suitable vector containing composition (e.g., which is placed in a suitable artery, such as a coronary artery).

The vector alternatively or additionally can be administered to any suitable [0202] surface, either internal or external, at or near the source and/or target locations. For example, with respect to directly injecting a vector containing a polynucleotide encoding an angiogenic fusion protein into cardiac tissue, it is contemplated that such an injection can be administered from any suitable surface of the heart (i.e., the angiogenic mediator can be administered endocardially, epicardially, and/or pericardially). Typically and preferably, cardiac administration will be to or in the left free ventricular wall of the heart that is easily accessible by minimally invasive thoracotomy. Alternatively, administration to other areas of the heart (e.g., the septum and/or right ventricle) can be accomplished by use of a catheter or other percutaneous delivery device. Such alternate techniques can be desired where the target location is positioned in the heart but away from the left free ventricular wall (e.g., where the target location is a vascular occlusion in the right coronary artery). For wounds at or near the skin surface, topical and/or transdermal administration of vectors containing polynucleotides encoding wound healing fusion proteins are often preferred routes of administration.

Adenoviral vectors can be used for short-term or intermediate term expression of [0203] the fusion protein in dosages such as those described above. Where longer expression (e.g., about three months, about six months, about nine months or longer) is desired, retroviral vectors (e.g., lentivirus vectors) or adeno-associated viral (AAV) vectors can be advantageously used (as described in, e.g., Buschacher et al., Blood, 5(8), 2499-504, Carter, Contrib. Microbiol., 4, 85-86 (2000), Smith-Arica, Curr. Cardiol. Rep., 3(1), 41-49 (2001), Taj, J. Biomed. Sci., 7(4), 279-91 (2000), Vigna et al., J. Gene Med., 2(5), 308-16 (2000), Klimatcheva et al., Front. Biosci., 4, D481-96 (1999), Lever et al., Biochem. Soc. Trans., 27(6), 841-47 (1999), Snyder, J. Gene Med., 1(3), 166-75 (1999), Gerich et al., Knee Surg. Sports Traumatol. Arthrosc., 5(2), 118-23 (1998), and During, Adv. Drug Deliv. Review. 27(1), 83-94 (1997), and U.S. Patents 4,797,368, 5,139,941, 5,173,414, 5,614,404, 5.658.785, 5.858.775, and 5,994,136, as well as other references discussed elsewhere herein). Alternatively, polynucleotide vectors can be used, or host integrative techniques

75

can be employed.

[0204] Non-polynucleotide and non-protein factors that are useful for co-administration with the fusion protein, polynucleotide, and vector of the invention, particularly where a polynucleotide encoding a second factor that promotes angiogenesis, bone growth, or wound healing is administered, also can be administered to the cell, tissue or host. Preferred examples of such factors are set forth in U.S. Patent Application 09/832,355. The fusion protein, polynucleotide, or vector can be administered by or in [0205] association with ex vivo delivery of cells, tissues, or organs. Therefore, for example, a target tissue can be removed, contacted with the vector composition, and then reimplanted into the host (e.g., using techniques described in or similar to those provided in Crystal et al., Cancer Chemother. Pharmacol., 43(Suppl.), S90-S99 (1999)). Ex vivo administration of an angiogenic fusion protein, or preferably angiogenic vector composition, to the target tissue also helps to minimize undesirable induction of angiogenesis in non-targeted tissue. A specific example of such a technique is the administration of an angiogenic vector composition to a tissue flap in surgical procedures involving replacement and/or transfer of tissue flaps (e.g., in breast reconstruction). "Tissue flaps" thus can comprise portions of removed tissue from a living tissue, a tissue of the recently deceased, a tissue from a different species (e.g., a pig tissue, preferably a tissue that is modified to exhibit a reduced immune response upon application to a human), or a synthetically generated tissue. Examples of suitable tissues are described in, e.g., U.S. Patent 6,140,039. Cultures of cells, particularly three-dimensional cultures, which can be a suitable substitute, additive, or alternative to such tissues, also can be administered in association with the fusion protein, polynucleotide, or vector of the invention. Examples of suitable cultures in this respect are provided in U.S. Patents 6,039,760, 6,022,743, 5,902,741, 5,863,531, 5,858,721, 5,849,588, 5,843,766, 5,830,708, 5,785,964, 5,624,840, 5,580,781, 5,578,485, 5,541,107, 5,518,915, 5,516,681, 5,516,680, 5,512,475, and 5,510,254. Related methods and compositions are provided in, e.g., U.S. Patents 6,121,042, 6,060,306, 6,027,306, 6,008,049, 5,928,945, 5,842,477, 5,780,295, 5,714,588, and 5,559,022. Cells that are genetically transformed with the polynucleotides or a host genome integrative vector also can be administered in an ex vivo manner to the host (e.g., using the techniques described in, or similar to those described in, U.S. Patent 5,399,346). For example, keratinocytes or fibroblasts can be cultured in vitro, transformed so as to produce wound healing fusion protein at high levels, and subsequently administered to a wound site (typically re-administered), thereby effecting long term production of the wound healing fusion protein (via expression), which is particularly preferred in skin regeneration (e.g., in treating severe burns). In other aspects, the fusion protein, polynucleotide, or vector of the invention can be administered with a cell that is modified ex vivo, such as activated macrophages (particularly where the treatment of

spinal injuries is sought).

As previously mentioned, the fusion protein, polynucleotide, vector, together or [0206] separately can be co-administered with any suitable factor, preferably a factor which promotes angiogenesis, wound healing, bone growth, related biological activity, or enhances the activity of the fusion protein, polynucleotide or vector. Thus, in some situations, combinations of fusion protein, polynucleotide, or vector and another factor (e.g., bone growth promoting, angiogenic, or wound healing promoting protein), or coadministration of the vector and fusion protein can be desirable. Such co-administration can facilitate a multi-dimensional approach to the treatment of diseases. For example, in the context of angiogenesis-related disorders, such as vascular ischemia, the administration of the fusion protein, fusion protein-encoding polynucleotide, or vector comprising such a polynucleotide can be associated with the administration of a smooth muscle tension modifier (e.g., a vasodilator, such as a direct vasodilator (e.g., hydralazine, minoxidil, reserpine, or combinations thereof), an atrial natriuretic peptide, a vasoactive intestinal peptide, a histamine, an epinephrine or modified epinephrine (e.g., a β-2 receptor targeted epinephrine homolog or a naturally occurring epinephrine administered in a β-2 receptortargeting manner), a bradykinin, a paracrine which induces vasodilatation (e.g., adenosine, carbon dioxide, hydrogen ion, nitric oxide, or an endothelin), an ACE inhibitor (e.g., an ACE2 inhibitor), an adrenergic receptor blocker, a vascular-associated parasympathetic nervous system stimulator (e.g., acetylcholine), an angiotensin II-receptor blocker (ARB e.g., tasosartan), and/or a calcium channel blocker). Other suitable non-vasodilator compounds which lower vascular resistance can be administered, and/or the application of mechanical techniques for lowering resistance (and, thus, increasing blood flow) can be applied, near or at tissues associated with the administration of the angiogenic fusion protein, fusion protein-encoding polynucleotide, or vector, and/or at one or more distal/peripheral tissues. Additionally, one or more biologically active catecholamines can be co-administered in association with the fusion protein, polynucleotide, or vector, particularly in association with the administration of an angiogenic fusion protein, polynucleotide, or vector to or near the heart. When an angiogenic fusion protein, polynucleotide, or vector is administered as a prophylactic (e.g., to a tissue at risk of ischemia due to an imminent vascular occlusion), co-administration of a factor which reduces the risk of occlusion, e.g., an anti-coagulant (such as a heparin, antithrombin III, a plasminogen, a prostacyclin (e.g., prostaglandin I or PGI₂), Protein C, tissue plasminogen activator (t-PA), the anti-coagulants described in U.S. Patent 6,121,435, or homologs thereof), or an LDL cholesterol reducing factor (e.g., a bile acid sequestrant, such as cholestyramine, colestipol, and nicotinic acid (niacin), a statin (HMG CoA reductase inhibitor), such as, lovastatin, pravastatin, simvastatin, and atorvastatin (Lipitor),

rosuvastatin calcium (Crestor), an endothelin agonist (e.g., tezosentan), a gemfibrozil, a probucol, or a clofibrate) also is contemplated. Certain statins (e.g., simvastatin, atorvastatin, mevastatin) have also been reported to stimulate endothelial progenitor cells which may lead to vasculogenesis (Llevadot et al., *J. Clin Invest. 108*, 399-405 (2001) and Dimmeler et al., *J. Clin. Invest. 108*, 391-397 (2001)). Administration of the fusion protein, polynucleotide, or vector can be in conjunction with a surgical method where an occlusion is removed, or where lipids (e.g., LDL cholesterol) are removed from cells which then are re-administered (i.e., an autotransplant). Administration of the fusion protein, polynucleotide or vector with or in association with a fast-twitch protein (e.g., a prealbumin) can be advantageous, particularly where the treatment of congestive heart failure is desired.

In certain situations, it can be desirable to co-administer a factor that induces or [0207] promotes hematopoiesis with the fusion protein, polynucleotide, or vector of the invention. Any suitable hematopoietic factor can be co-administered in any suitable form. The hematopoietic factor can be any suitable type of hematopoietic factor. Examples of such factors include red blood cell growth promoting factors (e.g., erythropoietin (EPO)), megakaryocyte growth promoting factors (e.g., granulocyte-macrophage colony stimulating factor (GM-CSF)), eosinophil growth promoting factors (e.g., GM-CSF), neutrophil growth promoting factors (e.g., granulocyte colony-stimulating factor (G-CSF)), and monocytes growth promoting factors (e.g., macrophage colony-stimulating factor (M-CSF)). Such factors can be administered in association with an administration of stem cells or, more particularly, haematopoietic precursor cells or angioblasts, such as bone marrow derived angioblasts (as described in, e.g., Kocher et al., Nat. Med., 7(4), 430-36 (2001)), or alternatively, an administration of developed cells, such as cardiac myocytes (using techniques described in or similar to those provided in Li et al., J. Mol. Cell Cardiol., 31, 513-22 (1999)). Such cells can be obtained from a heterologous source or from a patient to which they are to be re-administered (e.g., through obtaining such cells from removed (and possibly cultured) bone marrow, blood, or fatty tissues of the individual). Similar coadministration of relevant cells can be performed for wound healing and bone growth promoting aspects of the invention (e.g., co-administration of keratinocytes in wound healing or of osteoblasts for promotion of bone growth). Co-administration of hematopoietic factors is particularly preferred in association with the administration of a wound healing fusion protein, polynucleotide, or vector of the invention.

[0208] Factors that block or enhance events in the angiogenic, wound healing, or bone growth promoting pathway also can be administered in association with the fusion protein, polynucleotide, or vector. Co-administration of factors that upregulate expression of a gene or genes encoding a desired angiogenic factor, bone growth promoting factor, or wound

PCT/US02/37660 WO 03/048185

78

healing promoting factor, where such a factor does not correspond or related to a peptide portion of the fusion protein also is within the scope of the invention (e.g., administration of a factor which upregulates expression of a VEGF). For example, co-administration of PLCy, Ras, Shc, Nck, PKC and/or PI3-kinase can be co-administered with the polynucleotide, vector, or fusion protein, to induce downstream signal pathways associated with VEGFR-2, as can factors which block such downstream interactions. Factors which induce VEGF gene expression, such as PDGF, keratinocyte growth factor, EGF, TNF-α, IGF-1, thyroidstimulating hormone, IL-1α, IL-4, IL-6, TGF-β, IL-1β, prostaglandin E2 (PGE₂), ACTH, v-Ha-ras, v-raf, and v-myc, also can be co-administered with the fusion protein, polynucleotide, or vector, as can chemical agents which upregulate VEGF gene expression, such as phorbol myristate acetate (as described in, e.g., Ilan et al., J. Cell Sci., 111, 3621-31 (1998)) or other phorbol esters. The fusion protein, polynucleotide, or vector can be advantageously administered after or during administration of such a phorbol ester compound, which may induce vascular tube formation in collagenous tissues, as administration of an angiogenic fusion protein may sustain the integrity of the newly formed vascular tube and prevent endothelial cell apoptosis thereafter which might otherwise result from phorbol ester-induced angiogenesis. Progesterone can similarly be co-administered with a fusion protein, polynucleotide, or vector to upregulate HBNF gene expression. The fusion protein, polynucleotide, or vector also or alternatively can be [0209] administered in association with a factor that affects a pathway associated with the biological activity of a wild-type ARF. For example, a Bmx tyrosine kinase (as described in, e.g., Rajantie et al., Mol. Cell Biol., 21(14), 4647-55 (2001)), or polynucleotide encoding a Bmx tyronsine kinase, which is a factor that acts "downstream" of Ang-1 and VEGF in arterial endothelial cell biological pathways, can be co-administered with the fusion protein, polynucleotide, or vector of the invention. Also or alternatively, the fusion protein, polynucleotide, or vector can be administered in association with a factor that induces expression of a wild-type ARF gene. For example, the fusion protein, polynucleotide, or vector of the invention can be co-administered with angiotensin II, Her 2, or leptin (which induce Ang-2 gene expression in adipose tissues), or thrombin (which induces Ang-1 release from platelets), or a polynucleotide encoding such factors or homologs thereof. In some situations, the fusion protein, polynucleotide, or vector is desirably [0210] administered with an integrin, polynucleotide encoding an integrin, or a protein or factor that blocks the activity of an integrin, preferably of an integrin that binds to a wild-type ARF. For example, the fusion protein, polynucleotide, or vector can be administered with an a5 integrin or a factor that blocks the expression/production of a5 integrin and/or its binding to Ang-1, Ang-2, and/or the fusion protein of the invention. Also or alternatively, the fusion protein, polynucleotide, or vector can be administered with a vitronectin, a

WO 03/048185

polynucleotide encoding a vitronectin, or a factor that blocks the expression/production of vitronectin or its binding to Ang-1, Ang-2, and/or the fusion protein of the invention. The fusion protein, polynucleotide, or vector also can be administered with a factor that upregulates the expression of a receptor for the fusion protein. For example, the fusion protein, polynucleotide, or vector can be co-administered with a thyroid stimulating hormone, TNF-α, or a combination of desferirioxamine and cobalt, which upregulate Tie-2 expression.

[0211] Factors that inhibit inflammation also or alternatively can be administered with the fusion protein, polynucleotide, or vector of the invention. The inflammation inhibitor can be any suitable inflammation inhibitor. Examples of suitable inflammation inhibitors are provided in, e.g., U.S. Patent 5,830,880. In some circumstances, co-administration of a suitable factor which inhibits thrombosis can be desirable, such as the factors described in U.S. Patent 5,955,576.

[0212] Factors which are co-administered with the fusion protein, polynucleotide, or vector of the invention can be co-administered in any suitable manner, and in any suitable order (i.e., concurrently or sequentially), such as administering a fusion protein, polynucleotide, or vector of the invention and separately administering a vector containing a polynucleotide encoding such a factor (or homolog thereof), or administering a vector containing a polynucleotide encoding such a factor which also encodes a fusion protein of the invention.

Factors which reduce naturally occurring anti-angiogenic factors (e.g., an [0213] endostatin (or fragment thereof, such as the collagen XVIII fragment), angiotensin (or fragment thereof, such as the plasminogen fragment), thrombospondins (e.g., thrombospondin-1), the 16 kDa fragment of prolactin, and vasostatin (or calreticulin)), Cartilage-derived inhibitor (CDI), CD59 complement fragment, Gro-beta, Heparinases, Heparin hexasaccharide fragment, human chorionic gonadotropin (hCG), IFNs, Interferon inducible protein (IP-10), IL-12, Kringle 5 (plasminogen fragment), 2-Methoxyestradiol, Placental ribonuclease inhibitor, Plasminogen activator inhibitor, Platelet factor-4 (PF4), Proliferin-related protein (PRP), Retinoids, Tetrahydrocortisol-S, other anti-angiogenic C-X-C chemokines, Yes and Src (as described in International Patent Application WO 01/45751), and/or vasculostatin also can be suitable for co-administration with the fusion protein, polynucleotide, or vector. For example, one or more factors which block one or more anti-angiogenic factors from binding with receptors required for activation, or which prevent cleavage or other conformational changes required for immature anti-angiogenic proteins to develop anti-angiogenic activity (e.g., blocking cleavage required for development of a mature, anti-angiogenic, endostatin, or preventing conversion of plasminogen to angiostatin), can be administered with the angiogenic fusion protein,

polynucleotide, or vector. Such factors can be administered in any suitable form (e.g., as a polynucleotide inserted into a separate vector or the same vector with a fusion protein-encoding polynucleotide). Alternatively, one or more antisense polynucleotides that prevent transcription and/or translation of an anti-angiogenic gene, or one or more monoclonal antibodies that deactivate the anti-angiogenic factor or block its activity. In some situations, the inventive method comprises blocking the expression or activity of native Ang-2, such that the angiogenic activity of the fusion protein is not impeded by it, particularly where the fusion protein contains an Ang-1 peptide portion.

[0214] Administration of anti-angiogenic factors or angiogenic factor antagonists in association with the administration of angiogenic fusion proteins, polynucleotides, and/or vectors can be desirable in some conditions. For example, administration of such factors can provide control over the level of blood vessel growth and/or vascular permeability to be achieved by administration of the fusion protein, polynucleotide, or vector. In a preferred aspect, the fusion protein, fusion protein-encoding polynucleotide, or fusion proteinproducing vector is administered with a PEDF anti-angiogenic protein, PEDF polynucleotide (or PEDF homolog polynucleotide), or vector comprising such a PEDF polynucleotide (such proteins, polynucleotides, and vectors are described in, e.g., U.S. Patent 5,840,686 and International Patent Applications WO 95/33480 and WO 01/58494). Alternatively or additionally, the second nucleic acid sequence can comprise a PEDF gene or homolog thereof. Such methods are particularly preferred wherein the fusion protein promotes blood vessel maturation. A particularly preferred combination of PEDF protein, PEDF polynucleotide (whether separate from the fusion protein or fusion protein-producing constructs of the invention or as the second nucleic acid sequence encoded by the fusion protein-encoding polynucleotide), or PEDF vector and a fusion protein, fusion protein polynucleotide, or fusion protein-encoding vector, comprises co-administration to the eye to treat or prevent macular degeneration.

[0215] The fusion protein of the invention can be used in any manner that is suitable for one of its constituent peptide portions (examples of such uses are described herein and/or in the references cited herein). Thus, a fusion protein comprising, for example, portions with significant homology to Ang-2, NL4, or CDT6 can be suitable for inhibition of angiogenesis. This includes the use of the fusion protein for treatment of ocular diseases dependent on angiogenesis, such as corneal graft neovascularization, retrolental fibroplasias, diabetic retinopathy, and neovascular diseases of the eye (as described in, e.g., International Patent Application WO 01/29085). Additionally, the fusion protein can be used to treat other diseases which are associated with angiogenesis, including angiofibroma, Osler-Weber syndrome, psoriasis, solid tumors, trachoma, hemophilic joints, vascular adhesions, and hypertrophic scars (as described in, e.g., International Patent Application

81

WO 01/29085). The fusion protein can also be used to treat immune related and inflammatory diseases (as described in, e.g., International Patent Application WO 00/73452). In contexts where the fusion protein, polynucleotide, or vector is used to treat cancer, for example by reducing angiogenesis, the fusion protein, polynucleotide, or vector can be co-administered with tumor reducing agents (e.g., chemotherapy, radiation therapy, or reoviruses).

In addition to the other administration techniques described herein, the vector [0216] composition or fusion protein composition can be administered by direct surgical implantation. Alternatively or additionally, the fusion protein and/or vector composition can be co-administered with a group of therapeutic cells, e.g., stem cells, macrophages, or neurophils. For example, an angiogenic vector composition of the invention can be coadministered with stem cells to an ischemic location in the heart. The use of the vector composition and fusion protein of the invention also can be useful in organ generation and organ transfer. Stem cell administration can be associated with administration of stem celldetermining factors, such as a Casanova gene homolog (as described in, e.g., Stainier, Genes Devel., 15, 1493-1505 (2001)) or other suitable determining factor. Cord blood also can be advantageously co-administered with the fusion protein, polynucleotide, or vector. The administration of the fusion protein, polynucleotide, or receptor also can be advantageously associated with percutaneous in situ coronary vernous arterialization (PICVA) (as described in e.g., Vesterle et al., Circulation, 103(21), 2539-43 (2001)). The angiogenic fusion protein and vector compositions of the invention can be used to treat a wide variety of ailments including, e.g., coronary artery disease, peripheral vascular disease, congestive heart failure (e.g., left ventricular dysfunction and left ventricular hypertrophy), neuropathy (peripheral or otherwise), avascular necrosis (e.g., bone or dental necrosis), mesenteric ischemia, impotence (or erectile dysfunction), incontinence, arterio-venous fistula, veno-venous fistula, stroke, cerebrovascular ischemia, muscle wasting, pulmonary hypertension, gastrointestinal ulcers, vasculitis, non-healing ischemic ulcers, retinopathies, restenosis, cancer, orthosclerosis, radiation-induced tissue injury (such as that common with cancer treatment), and other hypoxia-associated or low blood perfusion-associated disorders. In addition, the angiogenic fusion protein and vector compositions also find utility in the study and/or aid of wound healing (e.g., healing of ischemic ulcers), plastic surgery procedures (e.g., healing or reattachment of skin and/or muscle flaps), prosthetic implant healing, vascular graft patency, and transplant longevity. Thus, the invention provides methods of treating such ailments by administration of the

[0218] The fusion protein, fusion protein-encoding polynucleotide, and vector of the invention are believed to be useful in several medically related contexts. For example, in

fusion protein and/or vector compositions.

surgical contexts, the fusion protein, polynucleotide, and/or vector can be used to treat orthopedic surgery-associated avascular necrosis, treat mesenteric ischemia, provide prophylaxis against ischemia in association with ostomies, treat or provide prophylaxis for thoracic ischemia related spinal chord complications (aneurysm repairs), treat sexual dysfunction (e.g., urology-postprostatectomy associated sexual dysfunction – for example in association with radial prostatectomy), provide smooth muscle tone in tissues (e.g., treat incontinence), prevent radiation-induced vascular necrosis (e.g., prevent tooth loss associated with radiation use in dentistry), promote gum and/or tooth regeneration, create and/or promote veno-venous or arterio-venous anastamosis, and enhance cartilage, tendon, and/or ligament repair replacement (either through direct healing or by promoting angiogenesis in such tissues or tissues associated therewith).

[0219] The fusion protein, polynucleotide, and vector of the invention also can be useful in neurological applications, such as inducing angiogenesis in the treatment of cerebrovascular-associated vascular obstructive disease. Pulmonary and gastrointestinal applications of the fusion protein, polynucleotide, and vector include administration in association with liver regeneration, treatment of pulmonary hypertension, and providing/increasing blood supply to a transplanted lung. Rheumatological/renal applications of the fusion protein, polynucleotide, and vector include the treatment of vasculitis, modulation of renal permeability and function, modulation of peritoneal permeability and function, and promotion or prevention of growth factor delivery to such tissues through such permeability modulation.

[0220] The fusion protein, polynucleotide, or vector also can be used to reduce or prevent tumor growth. Fusion proteins comprising an Ang-2, Ang-2X, or Ang-2 homolog peptide portion (and corresponding polynucleotides and vectors) are preferred in this respect.

[0221] A preferred aspect of the invention comprises the administration of a vector comprising a nucleic acid encoding a fusion protein of the invention under one promoter and a second nucleic acid sequence encoding a second protein, desirably an angiogenic factor (e.g., a VEGF), under the control of a second promoter, where the first promoter and second promoter have different expression profiles and/or are differentially inducible. Desirably, after administration of the vector to a suitable cell, tissue, or mammal, the first nucleic acid sequence is permitted, induced, or upregulated to express the nucleic acid sequence encoding the fusion protein, and the second nucleic acid is permitted, induced, or upregulated to express the second factor, in a manner which mimics a biological cascade as described elsewhere herein. The method can be applied with more than two factors (e.g., 3, 4, or more factors) to mimic more complex cascades. Constructs for practicing such methods are described elsewhere herein.

83

[0222] The methods of this invention are closely related in function. Thus, it is to be understood that the disclosure with respect to any aspect of the invention can be applied to any other suitable aspect. For example, forms of administration and delivery techniques for fusion protein compositions can be used for polynucleotide or, more particularly, vector compositions, and vice versa. Similarly, a reference to administration of the fusion protein, polynucleotide, or vector of the invention encompasses the administration of a pharmaceutically acceptable composition containing the fusion protein, polynucleotide, or vector, as applicable.

[0223] The invention further provides Ang-2X, and polynucleotides encoding Ang-2X, as described in, e.g., Example 1, and modified by the techniques and principles applicable to the fusion proteins and fusion protein-encoding polynucleotides of the invention. The Ang-2X peptide provided by the invention can be administered and produced according to the methods described herein with respect to the fusion proteins of the invention. Ang-2X can be inserted into a vector using the techniques described herein with respect to fusion protein-encoding polynucleotides of the invention. As such, the invention provides vectors comprising Ang-2X-encoding polynucleotides, methods of producing Ang-2X peptides, and methods of using such Ang-2X peptides, polynucleotides, or vectors to treat disease, and, most preferably, to modulate angiogenesis.

[0224] The methods of using the fusion proteins of the invention, Ang-2X, and related polynucleotides and vectors described herein, can be applied to any suitable ARFs, such as Ang-1, Ang-2, Ang-3, Ang-4, NL1, NL2, NL3, NL4, NL5, FLS139, NL7, NL8, and murine FDRG. Thus, the invention provides novel methods of using such factors, and polynucleotides encoding them. For example, the invention provides a replication-deficient adenoviral vector comprising a gene encoding NL1, NL5, or a codon optimized angiopoietin, and a second gene encoding another angiogenic factor (e.g., a HBNF, MK, or VEGF (preferably a non-heparin-binding VEGF, such as VEGF₁₂₁)). Additionally, for example, the invention provides a method of promoting angiogenesis comprising infecting a cell with such a viral vector, preferably at the dosages described elsewhere herein. The invention also provides the application of the techniques described herein to obtain novel homologs of such wild-type ARFs and the novel homologs thereby obtained. For example, the invention provides codon optimized Ang-1 genes (SEQ ID NO: 167), and vectors comprising polynucleotides encoding such genes.

[0225] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

[0226]

[0227] EXAMPLE 1

[0228] This example describes the generation of the novel Angiopoietin-2 homolog

84

Ang-2X.

[0229] Ang-2X was derived from the results of a TNBLAST search of the high-through put sequence database for the human genome project for sequences exhibiting significant levels of identity to Ang-1. Hits were identified on BAC clone RP11-16g12 (GenBank accession number AC018398). Nine contigs were identified and assembled by joining (complement 335846...336136), (complement 265610...265440), (complement 133812...133693), (complement 302082...302315), (complement 52191...52060), (complement 238562...238455), (complement 47913...47746), (complement 141153...141079), and (complement 18606...18544) to derive the following polynucleotide sequence:

[0230]

ATGTGGCAGATTGTTTTCTTTACTCTGAGCTGTGATCTTGTCTTGGCCG [0231] CAGCCTATAACAACTTTCGGAAGAGCATGGACAGCATAGGAAAGAAGCAATATC AGGTCCAGCATGGGTCCTGCAGCTACACTTTCCTCCTGCCAGAGATGGACAACTG CCGCTCTTCCTCCAGCCCCTACGTGTCCAATGCTGTGCAGAGGGACGCGCCGCTC GAATACGATGACTCGGTGCAGAGGCTGCAAGTGCTGGAGAACATCATGGAAAAC AACACTCAGTGGCTAATGAAGGTAGAGAATATATCCCAGGACAACATGAAGAAA GAAATGGTAGAGATACAGCAGAATGCAGTACAGAACCAGACGGCTGTGATGATA GAAATAGGGACAAACCTGTTGAACCAAACAGCGGAGCAAACGCGGAAGTTAACT GATGTGGAAGCCCAAGTATTAAATCAGACCACGAGACTTGAACTTCAGCTCTTGG AACACTCCCTCTCGACAAACAAATTGGAAAAACAGATTTTGGACCAGACCAGTG TGGAAGACAAGCACATCATCCAACTACAGTCAATAAAAGAAGAAGAAGATCAGC TAGTGACTGCCACGGTGAATAATTCAGTTCTTCAGAAGCAGCAACATGATCTCAT GGAGACAGTTAATAACTTACTGACTATGATGTCCACATCAAACGCAGCTAAGGA CCCCACTGTTGCTAAAGAAGAACAAATCAGCTTCAGAGACTGTGCTGAAGTATTC AAATCAGGACACCACGAATGGCATCTACACGTTAACATTCCCTAATTCTACAG AAGAGATCAAGGCCTACTGTGACATGGAAGCTGGAGGAGGCGGGTGGACAATTA TTCAGCGACGTGAGGATGGCAGCGTTGCATTTCAGAGGACTTGGAAAGAATATA GCAACTGACTAATCAGCAACGCTATGTGCTTAAAATACACCTTAAAGACTGGGA AGGGAATGAGGCTTACTCATTGTATGAACATTTCTATCTCTCAAGTGAAGAACTC AATTATAGGNNNNNNNNNNNNNNNNNNNNGGCAATGATTTTAGCACAAGGGATG GAGCCACCGNCANATGTATTTGCAAATGTTCACAAATGCTAACAGNAGGTNNNN AAGGCCACAACCATGATGATCCGACCAGCAGATTTC [SEQ ID NO: 160]

[0232]

[0233] where N represents any polynucleotide. A polynucleotide having this sequence is generated using any standard polynucleotide synthesis.

[0234] The Ang-2X polynucleotide is predicted to encode a polypeptide having the following amino acid sequence:

[0235]

[0236] Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys Leu Glu Asn Ile Ser Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu Glu Leu Gln Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp Gln Thr Ser Glu Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu Lys Lys Val Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser Ile Lys Glu Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn Ser Ile Ile Glu Glu Leu Glu Lys Lys Ile Val Thr Ala Thr Val Asn Asn Ser Val Leu Gln Lys Gln Gln His Asp Leu Met Glu Thr Val Asn Asn Leu Leu Thr Met Met Ser Thr Ser Asn Cys Lys Xaa Xaa Xaa Xaa Val Ala Lys Glu Glu Gln Ile Ser Phe Arg Asp Cys Ala Glu Val Phe Lys Ser Gly His Thr Thr Asn Gly Ile Tyr Thr Leu Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr [SEQ ID NO: 174]

[0237]

[0238] where Xaa represents any amino acid residue. Ang-2X is believed to have angiogenesis modulating activities similar to angiopoietins, and particularly to Ang-2. [0239]

[0240] EXAMPLE 2

[0241] This example demonstrates the production of a polynucleotide encoding a fusion protein of the invention, the insertion of the polynucleotide into a suitable vector, and the expression of the fusion protein-encoding polynucleotide resulting in production of the fusion protein.

[0242] A first polynucleotide comprising a sequence encoding Ang-2X CCD1 is generated by standard polynucleotide synthesis techniques. A second polynucleotide comprising a sequence encoding the Ang-1 FLD is produced by standard polynucleotide synthesis techniques. The first polynucleotide and second polynucleotide are fused, using

standard techniques, to form a fused polynucleotide.

[0243] The oligonucleotide primers AGTAATGCAGTCCAAAGAGACG (SEQ ID NO: 168) and AAAGTCTAGTGGTTCGATCATCA (SEQ ID NO: 169) are used to amplify a PCR product encoding a fusion protein comprising a modified Ang-2X CCD1 variant, which lacks the N-terminal valine residue of Ang-2X CCD1 (SEQ ID NO: 170), directly fused to the Ang-1 FLD from the fused polynucleotide. The PCR product, first polynucleotide, or third polynucleotide optionally can be fused to an additional sequence encoding a wild-type ARF signal sequence and/or variable domain (such that the variable domain and/or signal sequence is positioned N-terminal to the Ang-2X CCD1 variant sequence).

The Ang-2X CCD1 variant/Ang-1 FLD fusion protein-encoding PCR product is cut with Xho I to obtain a sequence encoding a fusion protein comprising an Ang-2X CCD1-derived CCD, which lacks the ten N-terminal residues of Ang-2X CCD1 (hereinafter referred to as Ang-2X CCD4) (SEQ ID NO: 171) fused to the Ang-1 FLD. The fusion protein-encoding polynucleotide (SEQ ID NO: 172) is cloned into a pAd3511CMV transfer vector, which comprises nucleotides 1-4511 of the adenoviral serotype 5 genome, except nucleotides 353-3511 (which encompass the adenoviral E1A and E1B coding regions), the CMV promoter, a multiple cloning site (including Xho I), an SV40 poly A site, and a splice donor/acceptor site between Ad5 nucleotides 353 and 3511.

[0245] After insertion of the Xho I fragment, the recombinant transfer vector is used to generate a transfection plasmid capable of producing an E1-deleted adenoviral vector containing the Ang-2X CCD4/Ang-1 FLD fusion protein-encoding sequence positioned in the E1 deletion upon transfection into a suitable host cell. The transfection plasmid is generated by any suitable technique. Examples of such techniques include homologous recombination, or ligation to, one or more additional plasmids comprising the remainder of the adenoviral genome except the desired deleted regions (i.e., E1, E3, and optionally other regions, e.g., the E4 region). Any suitable homologous recombination technique can be used to generate the vector-producing plasmid. Examples of such techniques are provided in, e.g., Chinnadurai et al., J. Virol., 32, 623-28 (1979), Berkner et al., Biotechniques, 6, 616-28 (1998), Chartier et al., J. Virol., 70, 4805-10 (1996), and International Patent Application WO 96/25506. A preferred homologous recombination technique is described in International Patent Application WO 99/15686. Alternatively, any suitable ligation technique can be used, such as the techniques described in, e.g., Stow, J. Virol., 37(1), 171-80 (1981), Stow, Nucl. Acids Res., 10(17), 5105-19 (1982), and Berkner et al., Nucl. Acids Res., 11(17), 6003-20 (1983).

[0246] After a suitable transfection plasmid containing the Ang-2X CCD4/Ang-1 FLD fusion protein-encoding sequence is generated, the transfection plasmid is transfected into a

suitable E1 complementing cell line, such as a 293-ORF6 cell line (described in International Patent Application WO 95/34671), using standard techniques (e.g., calcium phosphate precipitated transfection), thereby resulting in the production of a stock of E1deleted, replication-deficient, adenoviral vectors. Preferably, the vector-cell line system selected is such that replication competent adenovirus (RCA) levels in the stock are confirmed to be less than about 1 x 10⁷ plaque forming units (pfu), preferably by using the techniques described in U.S. Patent 5,994,106. Levels of viral pfu can be determined using standard techniques (such as the techniques described in Chinnadurai et al., supra and Precious et al., "Purification and Titration of Adenoviruses" in VIROLOGY: A PRACTICAL APPROACH, 193-205 (Mahay et al., Eds., IRL Press 1985)).

The Ang-2X CCD4/Ang-1 FLD vector is administered by needle injection in an [0247] appropriate carrier to at least one target location in a mammalian host. Resultant Ang-2X CCD4/Ang-1 FLD fusion gene expression is confirmed by mRNA expression analysis, subsequent administration of an anti-Ang-1 and/or anti-Ang-2X antibodies to the site of vector administration after sufficient time for fusion protein expression, and/or observation of the angiogenic effects of administering the vector, for example, by using the mouse ear or rat hind limb models for testing the angiogenesis-inducing capacity of a molecule, as described in more detail here.

In the mouse ear model, 10^9 - 10^{10} particles units (pu) of the Ang-2X CCD4/Ang-[0248] 1 FLD vector and a similar dosage of AdVEGF₁₂₁, which contains the human VEGF₁₂₁ gene, are administered to Apo E^{-/-} mice. All injections are delivered subcutaneously at the base of the ears of anesthetized mice (12 mg/kg xylazine and 60 mg/kg ketamine, IP). Gross morphological changes to the target tissue are observed at various days post-injection. Serial laser Doppler perfusion measurements are taken at various time points post-injection. Changes in blood vessel number are identified using an Olympus BX40F microscope at 400X to examine harvested ears that are perfusion fixed and embedded in paraffin. Control groups receiving similarly administered AdVEGF₁₂₁ and/or null vectors are used for comparative testing.

It is expected that at about four days post-injection, administration of the Ang-[0249] 2X CCD4/Ang-1 FLD adenoviral vector with AdVEGF₁₂₁ and resulting production of the Ang-2X CCD4/Ang-1 FLD fusion protein and VEGF₁₂₁ will result in the formation of blood vessels in greater number and/or volume of blood vessels which exhibit a greater level of vessel maturation than vessels resulting from administration of only AdVEGF₁₂₁. It is expected that at about 14-28 days post-injection, animals receiving the Ang-[0250] 2X CCD4/Ang-1 FLD adenoviral vector and AdVEGF₁₂₁ in the hind limb model will exhibit tissue perfusion levels higher and/or less blood vessel leakage than in control groups

receiving administration of only AdVEGF₁₂₁ and or a null vector.

This Example provides a suitable vector comprising a polynucleotide encoding [0251]an ARF fusion protein, which, when produced by expression, promotes angiogenesis. The steps recited in the present Example (e.g., selection of appropriate primers for a wild-type ARF FLD and CCD, amplification thereof to form a fusion protein-encoding polynucleotide, insertion of the fusion protein-encoding polynucleotide into a suitable vector, and expression of the polynucleotide therein to produce the fusion protein) can be applied to any suitable combination of ARF-encoding polynucleotide sequences as a viable strategy for obtaining novel ARF fusion proteins by routine experimental techniques.

[0252]

All amino acid or nucleotide sequences of one of the aforementioned sequence [0253] patterns are to be considered individually disclosed herein. Thus, for example, an amino acid sequence pattern of three residues, where a "Xaa" represents one of the amino acid positions in the pattern represents a disclosure of at least twenty different sequences (i.e., one sequence for each naturally occurring amino acid residue that could be present in the Xaa position).

All references, including publications, patent applications, and patents, cited [0254] herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

The use of the terms "a" and "an" and "the" and similar referents in the context 102551 of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Terms such as "including," "having," "comprising," "containing," and the like are to be construed as open-ended terms (i.e., meaning "including, but not limited to") unless otherwise indicated, and as encompassing the phrases "consisting of" and "consisting essentially of." Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value of the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any nonclaimed element as essential to the practice of the invention.

Preferred embodiments of this invention are described herein, including the best [0256] mode known to the inventors for carrying out the invention. Variations of those preferred

89

embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

WHAT IS CLAIMED IS:

- 1. A fusion protein comprising:
- (a) a fibrinogen-like domain that exhibits at least about 75% amino acid sequence identity to the fibrinogen-like domain of a first wild-type protein, which binds a receptor that, when activated, promotes or inhibits angiogenesis, and
- (b) a coiled-coil domain that exhibits at least about 75% amino acid sequence identity to the coiled-coil domain of a second wild-type protein, which increases the affinity of the fusion protein for the receptor, promotes formation of a multimer comprising the fusion protein, or both,

wherein the first protein and second protein are different, the first protein and second protein exhibit at least about 30% overall amino acid sequence identity with Ang-1, and the first protein, the second protein, or both proteins, are not Ang-1, Ang-2, Ang-3, or Ang-4.

- 2. The fusion protein of claim 1, wherein the fibrinogen-like domain comprises a first sequence of the sequence pattern Glu Phe/Tyr/His Trp Leu Gly Leu/Asn Glu/Asp Xaa Val/Ile/Leu Xaa Xaa Ile/Leu Xaa₍₁₂₋₁₄₎ Asp Trp and a second sequence of the sequence pattern Phe Ser Thr Xaa Asp Xaa Asp Asn/His Xaa₃₋₁₀ Cys Ala/Ser Xaa₄ Gly Gly Trp Trp Xaa₍₂₋₄₎ Cys, wherein the first sequence is positioned N-terminal to the second sequence.
- 3. The fusion protein of claim 2, wherein the first sequence is of the sequence pattern Phe Ser Thr Lys/Leu Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Ala/Ser Gln/Leu Met/Val Leu/Met Tyr/Ser Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro/Leu Ser Asn Leu Gly and the second sequence is of the sequence pattern Glu Tyr/His Trp Leu Gly Asn Glu Xaa Val/Ile Xaa₍₂₎ Ile/Leu Thr Xaa Gln/Arg Xaa Xaa Tyr Xaa Leu Arg/Lys Ile/Val Glu Leu Xaa Asp Trp Glu Gly.
- 4. The fusion protein of claim 1, wherein the second protein is NL1, FLS 139, NL3, NL4, NL5, NL8, zapo1, or murine FDRG.
- 5. The fusion protein of claim 4, wherein the first protein is the KIA003-associated protein (KAP) or an angiopoietin.
- 6. The fusion protein of claim 1, wherein the first protein is NL1, FLS 139, NL3, NL4, NL5, NL8, zapo1, or murine FDRG.
 - 7. The fusion protein of claim 6, wherein the second protein is an angiopoietin.

- 91
- 8. The fusion protein of claim 1, wherein the first protein or the second protein is Ang-2X.
 - 9. The fusion protein of claim 1, wherein
- the fibrinogen-like domain and coiled-coil domain are directly fused and the (a) amino acid sequence within about 20 amino acid residues of the junction of the fibrinogenlike domain and coiled-coil domain does not form a complex with an MHC Class I molecule, an MHC Class II molecule, or both, when the fusion protein is produced in, or administered to, a mammalian host, or
- the fusion protein comprises a linker positioned between the fibrinogen-like (b) domain and the coiled-coil domain, such that the amino acid sequence within about 20 amino acid residues of the linker does not form a complex with an MHC Class I molecule, an MHC Class II molecule, or both, when the fusion protein is produced in, or administered to, a mammalian host.
- The fusion protein of any of claims 1-9, wherein the fusion protein reduces 10. blood vessel leakage when administered or produced in vivo, promotes blood vessel maturation when administered or produced in vivo, or both.
- The fusion protein of any of claims 1-9, wherein the fusion protein, when 11. administered or produced in a mammalian host, exhibits a half-life which is at least 125% as long as the half-life of Ang-1.
 - A fusion protein comprising: 12.
- a fibrinogen-like domain that exhibits at least about 30% amino acid (a) sequence identity to the fibrinogen-like domain of Ang-1, and
 - a coiled-coil domain that comprises (b)
 - an amino acid sequence that exhibits at least about 60% amino acid (1) sequence identity to the coiled-coil domain of zapo1, murine FDRG, or both,
 - an amino acid sequence that exhibits at least about 50% amino acid **(2)** sequence identity to the coiled-coil domain of NL1, NL5, or both,
 - an amino acid sequence that exhibits at least about 40% amino acid (3) sequence identity to the coiled-coiled domain of NL8,
 - an amino acid sequence that exhibits at least about 25% amino acid (4) sequence identity to the coiled-coiled domain of FLS 139, or
 - an amino acid sequence that fulfills any combination of (1)-(4), (5)

wherein *in vivo* administration or production of the fusion protein promotes or inhibits angiogenesis in a mammalian host.

- 13. The fusion protein of claim 12, wherein
- (a) the fibrinogen-like domain exhibits at least about 50% amino acid sequence identity to the fibrinogen-like domain of Ang-1,
- (b) the coiled-coil domain exhibits less than about 30% amino acid sequence identity to the coiled-coil domains of Ang-1, Ang-2, Ang-3, and Ang-4, or
 - (c) both (a) and (b).
 - 14. A fusion protein comprising:
 - (a) a fibrinogen-like domain that comprises
 - (1) an amino acid sequence that exhibits at least about 60% amino acid sequence identity to the fibrinogen-like domain of NL1, NL5, NL8, or any combination thereof,
 - (2) an amino acid sequence that exhibits at least about 60% amino acid sequence identity to the fibrinogen-like domain of NL4,
 - (3) an amino acid sequence that exhibits at least about 40% amino acid sequence identity to the fibrinogen-like domain of zapo1, murine FDRG, or both,
 - (4) an amino acid sequence that exhibits at least about 45% amino acid sequence identity to the fibrinogen-like domain of NL3,
 - (5) an amino acid sequence that exhibits at least about 30% amino acid sequence identity to the fibrinogen-like domain of FLS 139, or
 - (6) an amino acid sequence which fulfills any combination of (1)-(5), and
- (b) a coiled-coil domain that exhibits at least about 35% amino acid sequence identity to the coiled-coil domain of Ang-1, Ang-2, Ang-2X, Ang-3, Ang-4, or any combination thereof.
 - 15. The fusion protein of claim 14, wherein
- (a) the coiled-coil domain exhibits at least about 65% amino acid sequence identity to the coiled-coil domain of at least one of Ang-1, Ang-2, or Ang-2X, or
- (b) the coiled-coil domain exhibits at least about 50% amino acid sequence identity to the coiled-coil domain of Ang-3, Ang-4, or both.

- 16. The fusion protein of claim 15 or claim 16, wherein the fibrinogen-like domain exhibits less than about 45% amino acid sequence identity to the fibrinogen-like domains of Ang-1, Ang-2, Ang-3, and Ang-4.
- 17. A polynucleotide comprising a nucleic acid sequence encoding the fusion protein of any of claims 1-16.
- 18. A replication-deficient and non-integrating vector comprising the polynucleotide of claim 17.
- 19. The vector of claim 18, wherein the polynucleotide comprises a first nucleic acid sequence encoding the fusion protein and a second nucleic acid sequence encoding an angiogenic factor.
- 20. The vector of claim 19, wherein the first nucleic acid sequence is operably linked to a first expression control sequence, and the second nucleic acid sequence is operably linked to a second expression control sequence, such that the expression of the first and second nucleic acid sequences is initiated at different times, upregulated at different times, initiated in response to different factors, upregulated in response to different factors, or any combination thereof.
- 21. The vector of claim 19 or claim 20, wherein the second nucleic acid sequence encodes a non-heparin-binding VEGF.
- 22. A method of promoting angiogenesis in an individual comprising administering to the individual an amount of the fusion protein of any of claims 1-16 effective to promote angiogenesis.
- 23. The method of claim 22, wherein the method comprises co-administering at least one additional angiogenic factor.
- 24. The method of claim 22 or claim 23, wherein the method comprises coadministering a non-heparin-binding VEGF, a polynucleotide comprising a nucleic acid sequence encoding a non-heparin-binding VEGF, or a vector comprising a polynucleotide encoding a non-heparin-binding VEGF.

94

- 25. A method of producing a fusion protein comprising introducing the polynucleotide of claim 17 into a cell such that the nucleic acid sequence is expressed to produce a fusion protein.
 - 26. The method of claim 25, wherein the cell is in a mammal.
- 27. The method of claim 25 or claim 26, wherein the polynucleotide is introduced into the cell via the vector of any of claims 18-21.
- 28. A method of promoting angiogenesis in an individual comprising introducing the vector of claim 20 into a cell and permitting, inducing, or upregulating expression of the first nucleic acid sequence, the second nucleic acid sequence, or both.

FIG. 5

FIG. 6

CH₃
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
H₂O
10

FIG. 8

FIG. 9

PCT/US02/37660

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

SEQUENCE LISTING

GENVEC, INC. KESSLER, PAUL D KOVESDI, IMRE <120> ANGIOPOIETIN RELATED FACTORS <130> 220091 <150> US 60/334488 2001-11-30 <160> 174 <170> PatentIn version 3.1 <210> 498 <211> <212> PRT <213> Homo sapiens <400> Met Thr Val Phe Leu Ser Phe Ala Phe Leu Ala Ala Asp Leu Thr His 1 10 15 Asp Gly Cys Ser Asn Gln Arg Arg Ser Pro Glu Asn Ser Gly Arg Arg 25 Tyr Asn Arg Asp Gln His Gly Gln Cys Ala Tyr Thr Phe Asp Leu Pro $\frac{1}{40}$ Gln His Asp Gly Asn Cys Arg Glu Ser Thr Thr Asp Gln Tyr Asn Thr 50 60Asn Ala Leu Gln Arg Asp Ala Pro His Val Glu Pro Asp Phe Ser Ser Gln Lys Leu Gln His Leu Glu His Val Met Glu Asn Tyr Thr Gln Trp $90 \hspace{1.5cm} 95$ Leu Gln Lys Leu Glu Asn Tyr Asp Val Glu Asn Met Lys Ser Glu Met 100 105 110Ala Gln Asp Gln Gln Asn Ala Val Gln Asn His Thr Ala Thr Met Leu 115 120 125 Glu Asp Gly Thr Ser Leu Leu Ser Gln Thr Ala Glu Gln Thr Arg Lys 130 140Leu Thr Asp Val Glu Thr Gln Val Leu Asn Gln Thr Ser Arg Leu Glu 145 150 Asp Gln Leu Leu Glu Asn Ser Leu Ser Thr Tyr Lys Leu Glu Lys Gln 165 170 175 Leu Leu Gln Gln Thr Asn Glu Asp Leu Lys Asp His Glu Lys Asn Ser 180 185 190 Leu Leu Glu His Lys Asp Leu Glu Met Glu Gly Lys His Lys Glu Glu 195 200 205 Leu Asp Thr Leu Lys Glu Glu Lys Glu Asn Leu Gln Gly Leu Val Thr 210 220Arg Gln Thr Tyr Asp Asp Gln Gln Leu Glu Lys Gln Leu Asn Arg Ala 225 230 235 Thr Thr Asn Asn Ser Val Leu Gln Lys Gln Gln Leu Glu Leu Met Asp 245 250 255 Thr Val His Asn Leu Val Asn Leu Cys Thr Lys Glu Gly Val Leu Leu 260 270 Lys Gly Gly Lys Arg Glu Glu Glu Lys Pro Phe Arg Asp Cys Ala Asp 285Val Tyr Gln Ala Gly Phe Asn Lys Ser Gly Asp Tyr Thr Asp Tyr Asp 290 295 300 Asn Asn Met Pro Gly Pro Lys Lys Val Phe Cys Asn Met Asp Val Asn 305 315

Gly Gly Gly Trp Thr Val Asp Gln His Arg Glu Asp Gly Ser Leu Asp 325 330 335 Phe Gln Arg Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly Asn Pro Ser 340 345 350 Gly Glu Tyr Trp Leu Gly Asn Glu Phe Asp Phe Ala Asp Thr Ser Gln 355 360 Arg Gln Tyr Met Leu Arg Asp Glu Leu Met Asp Trp Glu Gly Asn Arg 370 380 Ala Tyr Ser Gln Tyr Asp Arg Phe His Asp Gly Asn Glu Lys Gln Asn 385 400 Tyr Arg Leu Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser 405 410 Ser Leu Asp Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn 420 430 Asp Asn Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp 435 440 445 Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala 450 450 Gly Gln Asn His Gly Lys Leu Asn Gly Asp Lys Trp His Tyr Phe Lys 465 470 480 Phe Pro Ala Tyr Ala Leu Glu Ala Arg Arg Met Met Asp Glu Pro Leu
485
490
495

Asp Phe

2 217 PRT

<213> Homo sapiens

Pro Phe Arg Asp Cys Ala Asp Val Tyr Gln Ala Gly Phe Asn Lys Ser Gly Asp Tyr Thr Asp Tyr Asp Asn Asn Met Pro Gly Pro Lys Lys Val 20 30Phe Cys Asn Met Asp Val Asn Gly Gly Gly Trp Thr Val Asp Gln His 35 45 Arg Glu Asp Gly Ser Leu Asp Phe Gln Arg Gly Trp Lys Glu Tyr Lys 50 60Met Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu Phe Asp Phe Ala Asp Thr Ser Gln Arg Gln Tyr Met Leu Arg Asp Glu Leu 85 90 95 Met Asp Trp Glu Gly Asn Arg Ala Tyr Ser Gln Tyr Asp Arg Phe His 100 \$105\$Asp Gly Asn Glu Lys Gln Asn Tyr Arg Leu Tyr Leu Lys Gly His Thr 115 120 125Gly Thr Ala Gly Lys Gln Ser Ser Leu Asp Leu His Gly Ala Asp Phe 130 140 Ser Thr Lys Asp Ala Asp Asn Asp Asn Cys Met Cys Lys Cys Ala Leu 145 155 160 Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro Ser Asn Leu 165 170 175 Asn Gly Met Phe Tyr Thr Ala Gly Gln Asn His Gly Lys Leu Asn Gly 180 185 190 Asp Lys Trp His Tyr Phe Lys Phe Pro Ala Tyr Ala Leu Glu Ala Arg Arg Met Met Asp Glu Pro Leu Asp Phe 210

192 <212> PRT Homo sapiens <400> Met Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp Val Asn Gly Gly Gly Trp Thr Val Asp Gln His Arg Glu Asp Gly Ser Leu Asp Phe Gln 20 25 30Arg Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly Asn Pro Ser Gly Glu 35 40 Tyr Trp Leu Gly Asn Glu Phe Asp Phe Ala Asp Thr Ser Gln Arg Gln 50 60Tyr Met Leu Arg Asp Glu Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr 65 70 80 Ser Gln Tyr Asp Arg Phe His Asp Gly Asn Glu Lys Gln Asn Tyr Arg 85 90 95 Leu Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu 100 110 Asp Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp Asn 115 120 125 Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp Phe Asp 130 $$140\$ Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln 145 $\,$ 150 $\,$ 155 $\,$ 160 Ser Tyr Ser Leu Arg Ser Thr Thr Met Met Asp Arg Pro Leu Asp Phe <210> 207 <211> PRT Homo sapiens <400> Arg Glu Ser Thr Thr Asp Gln Tyr Asn Thr Asn Ala Leu Gln Arg Asp 1 10 15 Ala Pro His Val Glu Pro Asp Phe Ser Ser Gln Lys Leu Gln His Leu 20 30Glu His Val Met Glu Asn Tyr Thr Gln Trp Leu Gln Lys Leu Glu Asn 35 40 45Tyr Asp Val Glu Asn Met Lys Ser Glu Met Ala Gln Asp Gln Gln Asn 50 60 Ala Val Gln Asn His Thr Ala Thr Met Leu Glu Asp Gly Thr Ser Leu 65 70 80Leu Ser Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp Val Glu Thr Gln Val Leu Asn Gln Thr Ser Arg Leu Glu Asp Gln Leu Leu Glu Asn 100 105 110Ser Leu Ser Thr Tyr Lys Leu Glu Lys Gln Leu Leu Gln Gln Thr Asn 115 120 125 Glu Asp Leu Lys Asp His Glu Lys Asn Ser Leu Leu Glu His Lys Asp 130 140 Leu Glu Met Glu Gly Lys His Lys Glu Glu Leu Asp Thr Leu Lys Glu 145 150 160 Glu Lys Glu Asn Leu Gln Gly Leu Val Thr Arg Gln Thr Tyr Asp Asp 165 170 175

Gln Gln Leu Glu Lys Gln Leu Asn Arg Ala Thr Thr Asn Asn Ser Val

Page 3.

180 185 190

Leu Gln Lys Gln Gln Leu Glu Leu Met Asp Thr Val His Asn Leu 195 205

<210> 5

<211> 64

<212> PRT <213> Homo sapiens

<400> 5 Met Phe Ser Met Arg Ile Val Cys Leu Val Leu Ser Val Val Gly Thr 1 10 15 Ala Trp Thr Ala Asp Ser Gly Glu Gly Asp Phe Leu Ala Glu Gly Gly 20 20Gly Val Arg Gly Pro Arg Val Val Glu Arg His Gln Ser Ala Cys Lys 35 40 45Asp Ser Asp Trp Pro Phe Cys Ser Asp Glu Asp Trp Asn Tyr Lys Cys Pro Ser Gly Cys Arg Met Lys Gly Leu Ile Asp Glu Val Asn Gln Asp 65 75 80 Phe Thr Asn Arg Ile Asn Lys Leu Lys Asn Ser Leu Phe Glu Tyr Gln 90 . 95 Lys Asn Asn Lys Asp Ser His Ser Leu Thr Thr Asn Ile Met Glu Ile 100 110 Leu Arg Gly Asp Phe Ser Ser Ala Asn Asn Arg Asp Asn Thr Tyr Asn 115 125Arg Val Ser Glu Asp Leu Arg Ser Arg Ile Glu Val Leu Lys Arg Lys Val Ile Glu Lys Val Gln His Ile Gln Leu Leu Gln Lys Asn Val Arg 145 150 155 160Ala Gln Leu Val Asp Met Lys Arg Leu Glu Val Asp Ile Asp Ile Lys 165 170 175 Ile Arg Ser Cys Arg Gly Ser Cys Ser Arg Ala Leu Ala Arg Glu Val 180 190 Asp Leu Lys Asp Tyr Glu Asp Gln Gln Lys Gln Leu Glu Gln Val Ile 195 200 205 Ala Lys Asp Leu Leu Pro Ser Arg Asp Arg Gln His Leu Pro Leu Ile 210 215 220Lys Met Lys Pro Val Pro Asp Leu Val Pro Gly Asn Phe Lys Ser Gln 225 235 240Leu Gln Lys Val Pro Pro Glu Trp Lys Ala Leu Thr Asp Met Pro Gln 245 250 250 Met Arg Met Glu Leu Glu Arg Pro Gly Gly Asn Glu Ile Thr Arg Gly 260 265 270 Gly Ser Thr Ser Tyr Gly Thr Gly Ser Glu Thr Glu Ser Pro Arg Asn 275 280 285 Pro Ser Ser Ala Gly Ser Trp Asn Ser Gly Ser Ser Gly Pro Gly Ser 290 295 300 Thr Gly Asn Arg Asn Pro Gly Ser Ser Gly Thr Gly Gly Thr Ala Thr 305 310 315 Trp Lys Pro Gly Ser Ser Gly Pro Gly Ser Thr Gly Ser Trp Asn Ser 325 Gly Ser Ser Gly Thr Gly Ser Thr Gly Asn Gln Asn Pro Gly Ser Pro 340 350 Arg Pro Gly Ser Thr Gly Thr Trp Asn Pro Gly Ser Ser Glu Arg Gly Ser Ala Gly His Trp Thr Ser Glu Ser Ser Val Ser Gly Ser Thr Gly 370 375 380

Gln Trp His Ser Glu Ser Gly Ser Phe Arg Pro Asp Ser Pro Gly Ser 385 390 395 400 Gly Asn Ala Arg Pro Asn Asn Pro Asp Trp Gly Thr Phe Glu Glu Val 405 410 415 Ser Gly Asn Val Ser Pro Gly Thr Arg Arg Glu Tyr His Thr Glu Lys 420 425 430 Leu Val Thr Ser Lys Gly Asp Lys Glu Leu Arg Thr Gly Lys Glu Lys 435 440 445Val Thr Ser Gly Ser Thr Thr Thr Thr Arg Arg Ser Cys Ser Lys Thr 450 460 Val Thr Lys Thr Val Ile Gly Pro Asp Gly His Lys Glu Val Thr Lys 465 470 475 480 Glu Val Val Thr Ser Glu Asp Gly Ser Asp Cys Pro Glu Ala Met Asp
485
490
495 Leu Gly Thr Leu Ser Gly Ile Gly Thr Leu Asp Gly Phe Arg His Arg 500 510 His Pro Asp Glu Ala Ala Phe Phe Asp Thr Ala Ser Thr Gly Lys Thr 515 520 525 Phe Pro Gly Phe Phe Ser Pro Met Leu Gly Glu Phe Val Ser Glu Thr 530 540 Glu Ser Arg Gly Ser Glu Ser Gly Ile Phe Thr Asn Thr Lys Glu Ser 545 550 560 Ser Ser His His Pro Gly Ile Ala Glu Phe Pro Ser Arg Gly Lys Ser 565 570 575 Ser Ser Tyr Ser Lys Gln Phe Thr Ser Ser Thr Ser Tyr Asn Arg Gly 580 585 Asp Ser Thr Phe Glu Ser Lys Ser Tyr Lys Met Ala Asp Glu Ala Gly 595 600 605 Ser Glu Ala Asp His Glu Gly Thr His Ser Thr Lys Arg Gly His Ala 610 620 Lys Ser Arg Pro Val Arg Gly Ile His Thr Ser Pro Leu Gly Lys Pro 625 635 640 Ser Leu Ser Pro <210> 866 PRT Homo sapiens <400> 6 Met Phe Ser Met Arg Asp Val Cys Leu Val Leu Ser Val Val Gly Thr 1 10 15 Ala Trp Thr Ala Asp Ser Gly Glu Gly Asp Phe Leu Ala Glu Gly Gly 20 25 30 Gly Val Arg Gly Pro Arg Val Val Glu Arg His Gln Ser Ala Cys Lys
45 Asp Ser Asp Trp Pro Phe Cys Ser Asp Glu Asp Trp Asn Tyr Lys Cys 50 60 Pro Ser Gly Cys Arg Met Lys Gly Leu Asp Asp Glu Val Asn Gln Asp 65 70 80 Phe Thr Asn Arg Asp Asn Lys Leu Lys Asn Ser Leu Phe Glu Tyr Gln 85 90 95 Lys Asn Asn Lys Asp Ser His Ser Leu Thr Thr Asn Asp Met Glu Asp 100 105 110 Leu Arg Gly Asp Phe Ser Ser Ala Asn Asn Arg Asp Asn Thr Tyr Asn 115 120 125 Arg Val Ser Glu Asp Leu Arg Ser Arg Asp Glu Val Leu Lys Arg Lys 130 140

Val Asp Glu Lys Val Gln His Asp Gln Leu Leu Gln Lys Asn Val Arg 145 150 155 160 Ala Gln Leu Val Asp Met Lys Arg Leu Glu Val Asp Asp Asp Lys 165 170 175 Asp Arg Ser Cys Arg Gly Ser Cys Ser Arg Ala Leu Ala Arg Glu Val Asp Leu Lys Asp Tyr Glu Asp Gln Gln Lys Gln Leu Glu Gln Val Asp 195 200 205 Ala Lys Asp Leu Leu Pro Ser Arg Asp Arg Gln His Leu Pro Leu Asp 210 215 220 Lys Met Lys Pro Val Pro Asp Leu Val Pro Gly Asn Phe Lys Ser Gln 225 235 Leu Gln Lys Val Pro Pro Glu Trp Lys Ala Leu Thr Asp Met Pro Gln 245 255 Met Arg Met Glu Leu Glu Arg Pro Gly Gly Asn Glu Asp Thr Arg Gly 260 270 Gly Ser Thr Ser Tyr Gly Thr Gly Ser Glu Thr Glu Ser Pro Arg Asn 275 280 285Pro Ser Ser Ala Gly Ser Trp Asn Ser Gly Ser Ser Gly Pro Gly Ser 290 295 300 Thr Gly Asn Arg Asn Pro Gly Ser Ser Gly Thr Gly Gly Thr Ala Thr 305 310 320 Trp Lys Pro Gly Ser Ser Gly Pro Gly Ser Thr Gly Ser Trp Asn Ser Gly Ser Ser Gly Thr Gly Ser Thr Gly Asn Gln Asn Pro Gly Ser Pro $340 \hspace{1cm} 345 \hspace{1cm} 350$ Ser Ala Gly His Trp Thr Ser Glu Ser Ser Val Ser Gly Ser Thr Gly 370 375 380 Gln Trp His Ser Glu Ser Gly Ser Phe Arg Pro Asp Ser Pro Gly Ser 385 390 395 400 Gly Asn Ala Arg Pro Asn Asn Pro Asp Trp Gly Thr Phe Glu Glu Val 405 415 Ser Gly Asn Val Ser Pro Gly Thr Arg Arg Glu Tyr His Thr Glu Lys
420
430 Leu Val Thr Ser Lys Gly Asp Lys Glu Leu Arg Thr Gly Lys Glu Lys 435 440 445 Val Thr Ser Gly Ser Thr Thr Thr Thr Arg Arg Ser Cys Ser Lys Thr 450 460Val Thr Lys Thr Val Asp Gly Pro Asp Gly His Lys Glu Val Thr Lys 470 475 480Glu Val Val Thr Ser Glu Asp Gly Ser Asp Cys Pro Glu Ala Met Asp 495 495 Leu Gly Thr Leu Ser Gly Asp Gly Thr Leu Asp Gly Phe Arg His Arg 500 510 His Pro Asp Glu Ala Ala Phe Phe Asp Thr Ala Ser Thr Gly Lys Thr 515 520 525 Phe Pro Gly Phe Phe Ser Pro Met Leu Gly Glu Phe Val Ser Glu Thr 530 540 Glu Ser Arg Gly Ser Glu Ser Gly Asp Phe Thr Asn Thr Lys Glu Ser 545 550 560 Ser Ser His His Pro Gly Asp Ala Glu Phe Pro Ser Arg Gly Lys Ser 565 570 575 Ser Ser Tyr Ser Lys Gln Phe Thr Ser Ser Thr Ser Tyr Asn Arg Gly 580 585 590

Asp Ser Thr Phe Glu Ser Lys Ser Tyr Lys Met Ala Asp Glu Ala Gly 595 600 605 Ser Glu Ala Asp His Glu Gly Thr His Ser Thr Lys Arg Gly His Ala 610 620Lys Ser Arg Pro Val Arg Asp Cys Asp Asp Val Leu Gln Thr His Pro 625 635 640 Ser Gly Thr Gln Ser Gly Asp Phe Asn Asp Lys Leu Pro Gly Ser Ser Lys Asp Phe Ser Val Tyr Cys Asp Gln Glu Thr Ser Leu Gly Gly Trp 660 670 Leu Leu Asp Gln Gln Arg Met Asp Gly Ser Leu Asn Phe Asn Arg Thr $675 \hspace{0.5cm} 685$ Trp Gln Asp Tyr Lys Arg Gly Phe Gly Ser Leu Asn Asp Glu Gly Glu 690 700 Gly Glu Phe Trp Leu Gly Asn Asp Tyr Leu His Leu Leu Thr Gln Arg Gly Ser Val Leu Arg Val Glu Leu Glu Asp Trp Ala Gly Asn Glu Ala Tyr Ala Glu Tyr His Phe Arg Val Gly Ser Glu Ala Glu Gly Tyr Ala 740 745 750Leu Gln Val Ser Ser Tyr Glu Gly Thr Ala Gly Asp Ala Leu Asp Glu 755 765Gly Ser Val Glu Glu Gly Ala Glu Tyr Thr Ser His Asn Asn Met Gln 770 780Phe Ser Thr Phe Asp Arg Asp Ala Asp Gln Trp Glu Glu Asn Cys Ala
785 790 795 800 Glu Val Tyr Gly Gly Gly Trp Trp Tyr Asn Asn Cys Gln Ala Ala Asn 805 810 815 Leu Asn Gly Asp Tyr Tyr Pro Gly Gly Ser Tyr Asp Pro Arg Asn Asn 820 830 Ser Pro Tyr Glu Asp Glu Asn Gly Val Val Trp Val Ser Phe Arg Gly Ala Asp Tyr Ser Leu Arg Ala Val Arg Met Lys Asp Arg Pro Leu Val 850 860 Thr Gln 865

491 PRT

Homo sapiens

Met Lys Arg Met Val Ser Trp Ser Phe His Lys Leu Lys Thr Met Lys

1 10 15 His Leu Leu Leu Leu Leu Cys Val Phe Leu Val Lys Ser Gln Gly 20 25 30 Val Asn Asp Asn Glu Glu Gly Phe Phe Ser Ala Arg Gly His Arg Pro 35 40 45Leu Asp Lys Lys Arg Glu Glu Ala Pro Ser Leu Arg Pro Ala Pro Pro 50 60Pro Asp Ser Gly Gly Gly Tyr Arg Ala Arg Pro Ala Lys Ala Ala Ala Thr Gln Lys Lys Val Glu Arg Lys Ala Pro Asp Ala Gly Gly Cys Leu 85 90 95 His Ala Asp Pro Asp Leu Gly Val Leu Cys Pro Thr Gly Cys Gln Leu 100 105 110Gln Glu Ala Leu Leu Gln Gln Glu Arg Pro Asp Arg Asn Ser Val Asp 115 120 125

```
Glu Leu Asn Asn Asn Val Glu Ala Val Ser Gln Thr Ser Ser Ser Ser 130
Phe Gln Tyr Met Tyr Leu Leu Lys Asp Leu Trp Gln Lys Arg Gln Lys 145 155 160
Gln Val Lys Asp Asn Glu Asn Val Val Asn Glu Tyr Ser Ser Glu Leu
Glu Lys His Gln Leu Tyr Asp Asp Glu Thr Val Asn Ser Asn Asp Pro
180 190
Thr Asn Leu Arg Val Leu Arg Ser Asp Leu Glu Asn Leu Arg Ser Lys
195 200 205
Asp Gln Lys Leu Glu Ser Asp Val Ser Ala Gln Met Glu Tyr Cys Arg 210 220
Thr Pro Cys Thr Val Ser Cys Asn Asp Pro Val Val Ser Gly Lys Glu 225 235
Cys Glu Glu Asp Asp Arg Lys Gly Glu Glu Thr Ser Glu Met Tyr Leu 245 250 255
Asp Gln Pro Asp Ser Ser Val Lys Pro Tyr Arg Val Tyr Cys Asp Met 260 270
Asn Thr Glu Asn Gly Gly Trp Thr Val Asp Gln Asn Arg Gln Asp Gly 275 280 285
Ser Val Asp Phe Gly Arg Lys Trp Asp Pro Tyr Lys Gln Gly Phe Gly 290 295 . 300
Asn Val Ala Thr Asn Thr Asp Gly Lys Asn Tyr Cys Gly Leu Pro Gly 305 310 315
Glu Tyr Trp Leu Gly Asn Asp Lys Asp Ser Gln Leu Thr Arg Met Gly 325 330 335
Pro Thr Glu Leu Leu Asp Glu Met Glu Asp Trp Lys Gly Asp Lys Val
Lys Ala His Tyr Gly Gly Phe Thr Val Gln Asn Glu Ala Asn Lys Tyr 355 365
Gln Asp Ser Val Asn Lys Tyr Arg Gly Thr Ala Gly Asn Ala Leu Met 370 380
Asp Gly Ala Ser Gln Leu Met Gly Glu Asn Arg Thr Met Thr Asp His 385 390 395
Asn Gly Met Phe Phe Ser Thr Tyr Asp Arg Asp Asn Asp Gly Trp Leu 405 415
Thr Ser Asp Pro Arg Lys Gln Cys Ser Lys Glu Asp Gly Gly Trp 420 425
Trp Tyr Asn Arg Cys His Ala Ala Asn Pro Asn Gly Arg Tyr Tyr Trp
435 440 445
Gly Gly Gln Tyr Thr Trp Asp Met Ala Lys His Gly Thr Asp Asp Gly 450 460
Val Val Trp Met Asn Trp Lys Gly Ser Trp Tyr Ser Met Arg Lys Met
Ser Met Lys Asp Arg Pro Phe Phe Pro Gln Gln 485
<210><211>
        491
        PRT
        Homo sapiens
```

Met Lys Arg Met Val Ser Trp Ser Phe His Lys Leu Lys Thr Met Lys Leu Leu Leu Leu Leu Cys Val Phe Leu Val Lys Ser Gln Gly Val Asn Asp Asn Glu Glu Gly Phe Phe Ser Ala Arg Gly His Arg Pro Page 8.

<400> 8

5 40 45

Leu Asp Lys Lys Arg Glu Glu Ala Pro Ser Leu Arg Pro Ala Pro Pro 50 60 Pro Asp Ser Gly Gly Gly Tyr Arg Ala Arg Pro Ala Lys Ala Ala Ala 65 75 80 Thr Gln Lys Lys Val Glu Arg Lys Ala Pro Asp Ala Gly Gly Cys Leu 85 90 95 His Ala Asp Pro Asp Leu Gly Val Leu Cys Pro Thr Gly Cys Gln Leu 100 105 Pro Thr Gly Cys Gln Leu 110Gln Glu Ala Leu Leu Gln Gln Glu Arg Pro Asp Arg Asn Ser Val Asp 115 120 125 Glu Leu Asn Asn Asn Val Glu Ala Val Ser Gln Thr Ser Ser Ser Ser 130 Phe Gln Tyr Met Tyr Leu Leu Lys Asp Leu Trp Gln Lys Arg Gln Lys 155 160 Gln Val Lys Asp Asn Glu Asn Val Val Asn Glu Tyr Ser Ser Glu Leu 165 170 175 Glu Lys His Gln Leu Tyr Asp Asp Glu Thr Val Asn Ser Asn Asp Pro 180 190 Thr Asn Leu Arg Val Leu Arg Ser Asp Leu Glu Asn Leu Arg Ser Lys 195 200 Asp Gln Lys Leu Glu Ser Asp Val Ser Ala Gln Met Glu Tyr Cys Arg 210 215 220 Thr Pro Cys Thr Val Ser Cys Asn Asp Pro Val Val Ser Gly Lys Glu 225 235 240 Cys Glu Glu Asp Asp Arg Lys Gly Gly Glu Thr Ser Glu Met Tyr Leu 245 255 Asp Gln Pro Asp Ser Ser Val Lys Pro Tyr Arg Val Tyr Cys Asp Met 260 270 Asn Thr Glu Asn Gly Gly Trp Thr Val Asp Gln Asn Arg Gln Asp Gly 275 280 285 Ser Val Asp Phe Gly Arg Lys Trp Asp Pro Tyr Lys Gln Gly Phe Gly 290 295 300 Asn Val Ala Thr Asn Thr Asp Gly Lys Asn Tyr Cys Gly Leu Pro Gly 305 310 315 Glu Tyr Trp Leu Gly Asn Asp Lys Asp Ser Gln Leu Thr Arg Met Gly 325 330 335 Pro Thr Glu Leu Leu Asp Glu Met Glu Asp Trp Lys Gly Asp Lys Val340 345 Trp Lys Gly Asp Lys Val Lys Ala His Tyr Gly Gly Phe Thr Val Gln Asn Glu Ala Asn Lys Tyr 355 360 365 Gln Asp Ser Val Asn Lys Tyr Arg Gly Thr Ala Gly Asn Ala Leu Met 370 380Asp Gly Ala Ser Gln Leu Met Gly Glu Asn Arg Thr Met Thr Asp His 385 390 395 Asn Gly Met Phe Phe Ser Thr Tyr Asp Arg Asp Asn Asp Gly Trp Leu 405 410 Thr Ser Asp Pro Arg Lys Gln Cys Ser Lys Glu Asp Gly Gly Trp 420 430 Trp Tyr Asn Arg Cys His Ala Ala Asn Pro Asn Gly Arg Tyr Tyr Trp 435 440 445 Gly Gly Gln Tyr Thr Trp Asp Met Ala Lys His Gly Thr Asp Asp Gly 450 460Val Val Trp Met Asn Trp Lys Gly Ser Trp Tyr Ser Met Arg Lys Met 465 470 475Ser Met Lys Asp Arg Pro Phe Pro Gln Gln

485 490

<210> 9 <211> 437

<212> PRT <213> Homo sapiens

<400> 9

Met Ser Trp Ser Leu His Pro Arg Asn Leu Asp Leu Tyr Phe Tyr Ala Leu Leu Phe Leu Ser Ser Thr Cys Val Ala Tyr Val Ala Thr Arg Asp 20 25 30 Cys Gly Asp Ala Asp Phe Leu Ser Thr Tyr Gln Thr Lys Val Asp Lys 50 60 Asp Leu Gln Ser Leu Glu Asp Asp Leu His Gln Val Glu Asn Lys Thr 65 70 80 Ser Glu Val Lys Gln Leu Asp Lys Ala Asp Gln Leu Thr Tyr Asn Pro 85 95 Asp Glu Ser Ser Lys Pro Asn Met Asp Asp Ala Ala Thr Leu Lys Ser 100 105 110Arg Asp Met Leu Glu Glu Asp Met Lys Tyr Glu Ala Ser Asp Leu Thr 115 120 125 His Asp Ser Ser Asp Arg Tyr Leu Gln Glu Asp Tyr Asn Ser Asn Asn 130 140Gln Lys Asp Val Asn Leu Lys Glu Lys Val Ala Gln Leu Glu Ala Gln 145 150 160 Cys Gln Glu Pro Cys Lys Asp Thr Val Gln Asp His Asp Asp Thr Gly 175 175 Lys Asp Cys Gln Asp Asp Ala Asn Lys Gly Ala Lys Gln Ser Gly Leu 180 $\,$ 190 $\,$ Tyr Phe Asp Lys Pro Leu Lys Ala Asn Gln Gln Phe Leu Val Tyr Cys 195 200 205 Glu Asp Asp Gly Ser Gly Asn Gly Trp Thr Val Phe Gln Lys Arg Leu 210 220Asp Gly Ser Val Asp Phe Lys Lys Asn Trp Asp Gln Tyr Lys Glu Gly 225 235 240Phe Gly His Leu Ser Pro Thr Gly Thr Thr Glu Phe Trp Leu Gly Asn 245 250 255 Glu Lys Asp His Leu Asp Ser Thr Gln Ser Ala Asp Pro Tyr Ala Leu 260 265 270Arg Val Glu Leu Glu Asp Trp Asn Gly Arg Thr Ser Thr Ala Asp Tyr 275 280 285Ala Met Phe Lys Val Gly Pro Glu Ala Asp Lys Tyr Arg Leu Thr Tyr 290 300 Ala Tyr Phe Ala Gly Gly Asp Ala Gly Asp Ala Phe Asp Gly Phe Asp 305 315 320 Phe Gly Asp Asp Pro Ser Asp Lys Phe Phe Thr Ser His Asn Gly Met 325 330 335Gln Phe Ser Thr Trp Asp Asn Asp Asn Asp Lys Phe Glu Gly Asn Cys 340 345 350Ala Glu Gln Asp Gly Ser Gly Trp Trp Met Asn Lys Cys His Ala Gly 355 360 365 His Leu Asn Gly Val Tyr Tyr Gln Gly Gly Thr Tyr Ser Lys Ala Ser 370 380 Thr Pro Asn Gly Tyr Asp Asn Gly Asp Asp Trp Ala Thr Trp Lys Thr

Arg Trp Tyr Ser Met Lys Lys Thr Thr Met Lys Asp Asp Pro Phe Asn 405 415 Arg Leu Thr Asp Gly Glu Gly Gln Gln His His Leu Gly Gly Ala Lys 420 430Gln Ala Gly Asp Val PRT Homo sapiens Met Ser Trp Ser Leu His Pro Arg Asn Leu Asp Leu Tyr Phe Tyr Ala 1 10 15 Leu Leu Phe Leu Ser Ser Thr Cys Val Ala Tyr Val Ala Thr Arg Asp 20 30 Asn Cys Cys Asp Leu Asp Glu Arg Phe Gly Ser Tyr Cys Pro Thr Thr $\frac{35}{40}$ Cys Gly Asp Ala Asp Phe Leu Ser Thr Tyr Gln Thr Lys Val Asp Lys
50 60 Asp Leu Gln Ser Leu Glu Asp Asp Leu His Gln Val Glu Asn Lys Thr 65 75 80 Ser Glu Val Lys Gln Leu Asp Lys Ala Asp Gln Leu Thr Tyr Asn Pro 85 90 95 Asp Glu Ser Ser Lys Pro Asn Met Asp Asp Ala Ala Thr Leu Lys Ser 100 105 110Arg Lys Met Leu Glu Glu Asp Met Lys Tyr Glu Ala Ser Asp Leu Thr 115 120 125 His Asp Ser Ser Asp Arg Tyr Leu Gln Glu Asp Tyr Asn Ser Asn Asn Gln Lys Asp Val Asn Leu Lys Glu Lys Val Ala Gln Leu Glu Ala Gln 145 150 160 Cys Gln Glu Pro Cys Lys Asp Thr Val Gln Asp His Asp Asp Thr Gly 175 Lys Asp Cys Gln Asp Asp Ala Asn Lys Gly Ala Lys Gln Ser Gly Leu 180 190 Tyr Phe Asp Lys Pro Leu Lys Ala Asn Gln Gln Phe Leu Val Tyr Cys 195 200 205 Glu Asp Asp Gly Ser Gly Asn Gly Trp Thr Val Phe Gln Lys Arg Leu 210 215 220 Asp Gly Ser Val Asp Phe Lys Lys Asn Trp Asp Gln Tyr Lys Glu Gly 225 235 240 Phe Gly His Leu Ser Pro Thr Gly Thr Thr Glu Phe Trp Leu Gly Asn 245 250 255 Glu Lys Asp His Leu Asp Ser Thr Gln Ser Ala Asp Pro Tyr Ala Leu 260 265 270 Arg Val Glu Leu Glu Asp Trp Asn Gly Arg Thr Ser Thr Ala Asp Tyr 275 280 285 Ala Met Phe Lys Val Gly Pro Glu Ala Asp Lys Tyr Arg Leu Thr Tyr 290 300 Ala Tyr Phe Ala Gly Gly Asp Ala Gly Asp Ala Phe Asp Gly Phe Asp 305 315Phe Gly Asp Asp Pro Ser Asp Lys Phe Phe Thr Ser His Asn Gly Met Gln Phe Ser Thr Trp Asp Asn Asp Asn Asp Lys Phe Glu Gly Asn Cys 340 345 350Ala Glu Gln Asp Gly Ser Gly Trp Trp Met Asn Lys Cys His Ala Gly 355 360 365 Page 11.

His Leu Asn Gly Val Tyr Tyr Gln Gly Gly Thr Tyr Ser Lys Ala Ser 370 380 Thr Pro Asn Gly Tyr Asp Asn Gly Asp Asp Trp Ala Thr Trp Lys Thr 385 395 400Arg Trp Tyr Ser Met Lys Lys Thr Thr Met Lys Asp Asp Pro Phe Asn 405 410 Arg Leu Thr Asp Gly Glu Gly Gln Gln His His Leu Gly Gly Ala Lys 420 425 430Gln Val Arg Pro Glu His Pro Ala Glu Thr Glu Tyr Asp Ser Leu Tyr 435 440 445 Pro Glu Asp Asp Leu <210> <211> 221 Homo sapiens <400> 11 Glu Glu Gln Asp Ser Phe Arg Asp Cys Ala Glu Val Phe Lys Ser Gly 1 10 15 His Thr Thr Asn Gly Asp Tyr Thr Leu Thr Phe Pro Asn Ser Thr Glu 20 30Glu Asp Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly Gly Gly Trp Thr ${35\atop45}$ Asp Asp Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Thr Trp 50 60 Lys Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu 65 75 80 Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu 85 90 95 Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Asp His Leu 115 120 125 Lys Gly Leu Thr Gly Thr Ala Gly Lys Asp Ser Ser Asp Ser Gln Pro 130Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys Cys Asp Cys 145 150 155 Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly 165 170 175 Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln Asn Thr Asn 180 185 190Lys Phe Asn Gly Asp Lys Trp Tyr Trp Lys Gly Ser Gly Tyr Ser 195 200 205 Leu Lys Ala Thr Thr Met Met Asp Arg Pro Ala Asp Phe 216 <211><212> PRT Homo sapiens <400> 12 Phe Gln Asp Cys Ala Glu Asp Lys Arg Ser Gly Val Asn Thr Ser Gly Val Tyr Thr Asp Tyr Glu Thr Asn Met Thr Lys Pro Leu Lys Val Phe 20 30

Cys Asp Met Glu Thr Asp Gly Gly Gly Trp Thr Leu Asp Gln His Arg

Page 12.

 Glu
 Asp 50 sp
 Gly
 Ser
 Val
 Asn 55 sp
 Gln
 Arg Thr
 Trp 60 sp
 Glu
 Tyr Lys
 Glu

 Gly
 Phe Gly
 Asn Val
 Ala Arg Glu
 His Trp Leu Gly
 Asn Glu
 Ala 80

 His
 Arg Leu
 Thr Ser Arg Thr Ala Tyr Leu Leu Gly
 Leu Arg Val
 Glu
 Leu Ps

 Asp Trp Glu
 Glu Gly
 Arg Gln
 Thr Ser Asp 105
 Gln
 Tyr Glu
 Asn Phe Gln
 Leu Ps

 Gly
 Ser Glu
 Arg Gln
 Thr Ser Asp 105
 Gln
 Tyr Glu
 Asn Phe Gln
 Leu Ps

 Gly
 Ser Glu
 Arg Gln
 Arg Tyr Leu Ser Leu Ala Pro Gln
 Gly
 Thr Lys Phe Ser Ser Ser Ser Ser Iss

 Thr Lys
 Asp Asp Met Asp Asp Asp Asp Asp Asp Asp Cys Met Cys Lys Cys Ala Glu Pro Glo
 Leu Ser Leu Ser Asp Leu Asp Asp Asp Asp Asp Asp Asp Tyr Iss
 From Typ His Typ Phe Arg Gly
 From Typ Ser Leu His Gly Thr Arg Arg Met Arg Pro Het Arg Ser Leu Pro Ser Leu His Gly
 From Typ Arg Ser Leu Pro Ser Leu His Cys Cys Rer Tyr Ser Leu Pro Ser Leu

<210> 13

<211> 216 <212> PRT

<213> Homo sapiens

<400> 13

<210> 14 <211> 224

<212> PRT <213> Homo sapiens

<400> 14

 Lys
 Pro
 Ser
 Gly
 Pro
 Trp
 Arg
 Asp
 Cys
 Leu
 Gln
 Ala
 Leu
 Glu
 Asp
 Pro
 Glu
 Asp
 Asp
 Arg

 Leu
 Met
 35
 Val
 Trp
 Cys
 Asp
 Gln
 Arg
 His
 Asp
 Pro
 Gly
 Gly
 Gly
 Trp

 Val
 Asp
 Gln
 Arg
 Leu
 Asp
 Gly
 Ser
 Val
 Asp
 Pro
 Gly
 Fro
 Arg

 Gly
 Try
 Lys
 Gln
 Gly
 Pro
 Gly
 Asp
 Asp
 Gly
 Asp
 Asp
 Gly
 Trp
 Leu
 Trp
 Asp
 Asp
 Asp
 Trp
 Leu
 Trp
 Asp
 Asp
 Asp
 Trp
 Leu
 Trp
 Asp
 Asp
 Asp
 Trp
 Leu
 Asp
 Asp
 Asp
 Trp
 Leu
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp

<210> 15

<211> 219 <212> PRT

<213> Homo sapiens

<400> 15

Ser Asn Ser Asn Cys Ala Val Asp Val His Gly Ala Trp Trp Tyr Ala 165 170 175 Ser Cys Tyr Arg Ser Asn Leu Asn Gly Arg Tyr Ala Val Ser Glu Ala Ala Ala His Lys Tyr Gly Asp Asp Trp Ala Ser Gly Arg Gly Val Gly 195 200 205 His Pro Tyr Arg Arg Val Arg Met Met Leu Arg 16 217 PRT <211> Homo sapiens <400> 16 Asp Cys Ser Ser Leu Tyr Gln Lys Asn Tyr Arg Asp Ser Gly Val Tyr Lys Leu Pro Pro Asp Asp Phe Leu Gly Ser Pro Glu Leu Glu Val Phe Cys Asp Met Glu Thr Ser Gly Gly Gly Trp Thr Asp Asp Gln Arg Arg Lys Ser Gly Leu Val Ser Phe Tyr Arg Asp Trp Lys Gln Tyr Lys Gln 50 60 Gly Phe Gly Ser Asp Arg Gly Asp Phe Trp Leu Gly Asn Glu His Asp 65 70 80His Arg Leu Ser Arg Gln Pro Thr Arg Leu Arg Val Glu Met Glu Asp 85 90 95 Trp Glu Gly Asn Leu Arg Tyr Ala Glu Tyr Ser His Phe Val Leu Gly Asn Glu Leu Asn Ser Tyr Arg Leu Phe Leu Gly Asn Tyr Thr Gly Asn 115 120 125 Val Gly Asn Asp Ala Leu Gln Tyr His Asn Asn Thr Ala Phe Ser Thr 130 \$135\$Lys Asp Lys Asp Asn Asp Asn Cys Leu Asp Lys Cys Ala Gln Leu Arg Lys Gly Gly Tyr Trp Tyr Asn Cys Cys Thr Asp Ser Asn Leu Asn Gly Val Tyr Tyr Arg Leu Gly Glu His Asn Lys His Leu Asp Gly Asp Thr 180 190 Trp Tyr Gly Trp His Gly Ser Thr Tyr Ser Leu Lys Arg Val Glu Met Lys Asp Arg Pro Glu Asp Phe Lys Pro 220 <212> PRT <213> Homo sapiens <400> 17 Asp Asn Glu Gly Pro Phe Lys Asp Cys Gln Gln Ala Lys Glu Ala Gly His Ser Val Ser Gly Asp Tyr Met Asp Lys Pro Glu Asn Ser Asn Gly 20 25 30 Pro Met Gln Leu Trp Cys Glu Asn Ser Leu Asp Pro Gly Gly Trp Thr $\frac{35}{40}$ Val Asp Gln Lys Arg Thr Asp Gly Ser Val Asn Phe Phe Arg Asn Trp 50 60Glu Asn Tyr Lys Lys Gly Phe Gly Asn Asp Asp Gly Glu Tyr Trp Leu

Gly Leu Glu Asn Asp Tyr Met Leu Ser Asn Gln Asp Asn Tyr Lys Leu

Page 15.

Leu Asp Glu Leu Glu Asp Trp Ser Asp Lys Lys Val Tyr Ala Glu Tyr 100 105 110Ser Ser Phe Arg Leu Glu Pro Glu Ser Glu Phe Tyr Arg Leu Arg Leu 115 120 125 Gly Thr Tyr Gln Gly Asn Ala Gly Asp Ser Met Met Trp His Asn Gly 130 140 Lys Gln Phe Thr Thr Leu Asp Arg Asp Lys Asp Met Tyr Ala Gly Asn 145 155 160 Cys Ala His Phe His Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Lys 180 185 190 His Gln Asp Gly Asp Phe Trp Ala Glu Tyr Arg Gly Gly Ser Tyr Ser Leu Arg Ala Val Gln Met Met Asp Lys Pro Asp Asp 210 220 <212> PRT <213> Homo sapiens Lys Pro Val Gly Pro Trp Gln Asp Cys Ala Glu Ala Arg Gln Ala Gly
1 10 15 His Glu Gln Ser Gly Val Tyr Glu Leu Arg Val Gly Arg His Val Val 20 30 Ser Val Trp Cys Glu Gln Gln Leu Glu Gly Gly Gly Trp Thr Val Asp 35 40 45 Gln Arg Arg Gln Asp Gly Ser Val Asn Phe Phe Thr Thr Trp Gln His 50 60 Tyr Lys Ala Gly Phe Gly Arg Pro Asp Gly Glu Tyr Trp Leu Gly Leu
65 75 80 Glu Pro Val Tyr Gln Leu Thr Ser Arg Gly Asp His Glu Leu Leu Val 85 90 95 Leu Leu Glu Asp Trp Gly Gly Arg Gly Ala Arg Ala His Tyr Asp Gly 100 105 110Phe Ser Leu Glu Pro Glu Ser Asp His Tyr Arg Leu Arg Leu Gly Gln 115 120 125Tyr His Gly Asp Ala Gly Asp Ser Leu Ser Trp His Asn Asp Lys Pro 130 135 140 Phe Ser Thr Val Asp Arg Asp Arg Asp Ser Tyr Ser Gly Asn Cys Ala 145 155 160 Leu Tyr Gln Arg Gly Gly Trp Trp Tyr His Ala Cys Ala His Ser Asn 165 170 175 Leu Asn Gly Val Trp His His Gly Gly His Tyr Arg Ser Arg Tyr Gln 180Asp Gly Val Tyr Trp Ala Glu Phe Arg Gly Gly Ala Tyr Ser Leu Arg 195 200 205 Lys Ala Ala Met Leu Asp Arg Pro Leu Lys Leu <210> 19 222 <211> PRT Homo sapiens <400>

His Asp Gly Asp Pro Ala Glu Cys Thr Thr Asp Tyr Asn Arg Gly Glu 1 10 15 Page 16.

 His
 Thr
 Ser
 Gly
 Met
 Tyr
 Ala
 Asp
 Pro
 Ser
 Asn
 Ser
 Gln
 Val
 Phe

 His
 Val
 Tyr
 Cys
 Asp
 Val
 Asp
 Gly
 Ser
 Pro
 Trp
 Trp
 Leu
 Asp
 Gln

 His
 Asp
 Asp
 Asp
 Ser
 Gln
 Asp
 Glu
 Trp
 Leu
 Asp
 Tyr

 Lys
 Tyr
 Gly
 Phe
 Gly
 Asp
 Leu
 Asp
 Gly
 Fro
 Trp
 Leu
 Glu
 Asp
 Glu
 Pro
 Glu
 Asp
 Glu
 Asp
 Asp
 Asp
 Lys
 Gly
 Fro
 Glu
 Trp
 Leu
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Trp
 Trp
 Asp
 Asp
 Asp
 Trp
 Trp
 Trp
 Asp
 Asp
 Trp
 Trp
 Trp
 Asp
 Trp

His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe Gln Val Gly Glu Arg 15 Cln Ser Gly Leu Phe Gln Val Gly Glu Arg 25 Gln Ser Gly Leu Phe Glu Asp Gln Pro Gln Gly Ser Pro Pro Phe Leu 30 Phe Glu Asp Gln Pro Gln Gly Ser Pro Pro Phe Leu 30 Phe Gly Asp Gly Gly Gly Trp Thr Val Asp Gln Arg 40 Phe Gly Asp Gln Arg 45 Phe Asn Arg Pro Trp Glu Ala Tyr Lys 65 Gly Phe Gly Asp Pro His Gly Glu Phe Trp Leu Gly Leu Glu Lys 80 Pro His Gly Asp Arg Asp Ser Arg Leu Ala Val Gln Leu Phe Gly Gly Gly Gly Gly Gly Fhe Gly Asp Pro His Gly Leu Gln Phe Ser Val His Leu Gly Gly Gly Gly Asp Arg Asp Ser Arg Leu Ala Val Gln Leu Gly Gly Gly Gly Gly Asp Trp Ala Tyr Ser Leu Gln Leu Thr Ala Pro Val Ala 135 Pro Val Ala 136 Gly Gln Leu Gly Gly Gln Leu Gly Asp His Asp Leu Arg Arg Arg Arg Arg Arg Asp Lys Asn Cys 145 Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Arg Arg Arg Asp Lys Asn Cys 160 Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr Cys Ser His Ser Asp Leu Asn Gly Gln Tyr Phe Arg

<210> 21

<210> 20

<211> 184 <212> PRT

<213> Homo sapiens

<400> 20

PRT Homo sapiens <400> Arg Asp Cys Gln Glu Leu Phe Gln Glu Gly Glu Arg His Ser Gly Leu Phe Gln Asp Gln Pro Leu Gly Ser Pro Pro Phe Leu Val Asn Cys Glu 20 25 30Met Thr Ser Asp Gly Gly Trp Thr Val Asp Gln Arg Arg Leu Asn Gly Ser Val Asp Phe Asn Gln Ser Trp Glu Ala Tyr Lys Asp Gly Phe Gly 50 60Asp Pro Gln Gly Glu Phe Trp Leu Gly Leu Glu Lys Met His Ser Asp 65 70 75 80 Thr Gly Asn Arg Gly Ser Gln Leu Ala Val Gln Leu Gln Asp Trp Asp Gly Asn Ala Lys Leu Gln Phe Pro Asp His Leu Gly Gly Glu Asp 100 105 110 Thr Ala Tyr Ser Leu Gln Leu Thr Glu Pro Thr Ala Asn Glu Leu Gly 115 120 125 Ala Thr Asn Val Ser Pro Asn Gly Leu Ser Leu Pro Phe Ser Thr Trp 130 140 Asp Gln Asp His Asp Leu Arg Gly Asp Leu Asn Cys Ala Lys Ser Leu 145 150 160 Ser Gly Gly Trp Trp Phe Gly Thr Cys Ser His Ser Asn Leu Asn Gly 165 170 170 Gln Tyr Phe His Ser Asp Pro Arg Gln Arg Gln Glu Arg Lys Lys Gly 180 185 190 Asp Phe Trp Lys Thr Trp Lys Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Leu Leu Asp Gln Pro <210> 22 151 <211> <212> PRT <213> Homo sapiens <400> Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala Val Gln Arg Asp Ala Pro $1 ag{15}$ Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Asp Met Glu Asn Asn Thr Gln Trp Leu Met Lys Leu Glu Asn Tyr Asp Gln 35 40 45Asp Asn Met Lys Lys Glu Met Val Glu Asp Gln Gln Asn Ala Val Gln 50 60 Asn Gln Thr Ala Val Met Asp Glu Asp Gly Thr Asn Leu Leu Asn Gln 65 70 80 Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp Val Glu Ala Gln Val Leu 85 95 Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu Leu Glu His Ser Leu Ser 100 105 110Thr Asn Lys Leu Glu Lys Gln Asp Leu Asp Gln Thr Ser Glu Asp Asn 115 120 125

Page 18.

Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu Lys Lys Val Leu Ala Met 130 135 140

Glu Asp Lys His Asp Asp Gln 145 150

<210> 23 PRT Homo sapiens <400> 23 Asn Tyr Asp Gln Asp Asn Met Lys Lys Glu Met Val Glu Asp Gln Gln 1 10 15 Asn Ala Val Gln Asn Gln Thr Ala Val Met Asp Glu Asp Gly Thr Asn 20 30 Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp Val Glu Ala Gln <210> 24 <211> 128 <212> PRT <213> Homo sapiens <400> 24 Cys Asp Leu Val Leu Ala Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met 1 5 10 Asp Ser Asp Gly Lys Lys Gln Tyr Gln Val Gln His Gly Ser Cys Ser 25 30 Tyr Thr Phe Leu Leu Pro Glu Met Asp Asn Cys Arg Ser Ser Ser Ser 35 Pro Tyr Val Ser Asn Ala Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp 50 60Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Asp Met Glu Asn Asn 65 70 80Thr Gln Trp Leu Met Lys Leu Glu Asn Tyr Asp Gln Asp Asn Met Lys Lys Glu Met Val Glu Asp Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Asp Glu Asp Gly Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln 115 120 125 <210> <211> 196 PRT Homo sapiens <400> 25 Pro Tyr Val Ser Asn Ala Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Asp Met Glu Asn Asn 25 30 Thr Gln Trp Leu Met Lys Leu Glu Asn Tyr Asp Gln Asp Asn Met Lys $\frac{1}{35}$ Lys Glu Met Val Glu Asp Gln Gln Asn Ala Val Gln Asn Gln Thr Ala 50 60 Val Met Asp Glu Asp Gly Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln 65 70 80Thr Arg Lys Leu Thr Asp Val Glu Ala Gln Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu Glu His Ser Leu Ser Thr Asn Lys Leu 100 105 110Glu Lys Gln Asp Leu Asp Gln Thr Ser Glu Asp Asn Lys Leu Gln Asp 115 125Lys Asn Ser Phe Leu Glu Lys Lys Val Leu Ala Met Glu Asp Lys His 130 135 140 Page 19.

```
Asp Asp Gln Leu Gln Ser Asp Lys Glu Glu Lys Asp Gln Leu Gln Val
145 150 155 160
Leu Val Ser Lys Gln Asn Ser Asp Asp Glu Glu Leu Glu Lys Lys Asp
Val Thr Ala Thr Val Asn Asn Ser Val Leu Gln Lys Gln Gln His Asp
180 185
Leu Met Glu Thr
<210>
<211>
       26
       PRT
      Homo sapiens
<400> 26
Thr Asn Lys Leu Glu Arg Gln Met Leu Met Gln Ser Arg Glu Leu Gln
Glu Ala Gln His Gln Ala Gln Leu Asn Ser Leu Gln Glu Lys Arg Glu 35 40 45
Gln Leu His Ser Leu Leu
<210>
<211>
       27
       55.
      Homo sapiens
<400> 27
Gln Gln Leu Gln Gly Gln Asn Ser Ala Leu Glu Lys Arg Leu Gln Ala 20 30
Leu Glu Thr Lys Gln Gln Glu Glu Leu Ala Ser Asp Leu Ser Lys Lys 35 40 45
Ala Lys Leu Leu Asn Thr Leu
50 55
<210>
<211>
       101
       PRT
      Homo sapiens
<400> 28
Glu Leu Glu Leu Leu Asn Asn Glu Leu Leu Lys Gln Lys Arg Gln Asp
Glu Thr Leu Gln Gln Leu Val Glu Val Asp Gly Gly Asp Val Ser Glu
25 30
Val Lys Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr 35 40 45
Gln Leu Tyr Met Gln Leu Leu His Glu Asp Asp Arg Lys Arg Asp Asn 50 60
Ala Leu Glu Leu Ser Gln Leu Glu Asn Arg Asp Leu Asn Gln Thr Ala
65 70 75 80
Asp Met Leu Gln Leu Ala Ser Lys Tyr Lys Asp Leu Glu His Lys Tyr
85 90 95
Gln His Leu Ala Thr
100
<210>
       29
       96
<212>
       PRT
      Homo sapiens
```

PCT/US02/37660 WO 03/048185

<400> 29

Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg Val Asp Pro

Glu Val Ala Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln Asn Ser 20 30

Arg Asp Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg His Leu 35 45

Glu Lys Gln His Leu Arg Asp Gln His Leu Gln Ser Gln Phe Gly Leu
50 60

Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala Arg Arg 65 70 70 80

Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn Val 85 90 95

30

<210><211><212> 84 PRT

Homo sapiens

<400> 30

Gln Leu Lys Ala Ala Asn Cys Cys Glu Glu Val Lys Glu Leu Lys Ala 1 10 15

Gln Val Ala Asn Leu Ser Ser Leu Leu Ser Glu Leu Asn Lys Lys Gln 20 30

Glu Arg Asp Trp Val Ser Val Val Met Gln Val Met Glu Leu Glu Ser 35 40 45

Asn Ser Lys Arg Met Glu Ser Arg Leu Thr Asp Ala Glu Ser Lys Tyr 50 60

Ser Glu Met Asn Asn Gln Asp Asp Asp Met Gln Leu Gln Ala Ala Gln 65 70 75 80

Thr Val Thr Gln

<210>

192 <211> <212> PRT

<213> Homo sapiens

<400> 31

Gly Pro Asp Cys Val Asn Thr Lys Gly Gln Asp Ala Ser Thr Asp Lys

Asp Met Asp Thr Arg Met Asp Leu Glu Asn Leu Lys Asp Val Leu Ser 20 30

Gly Asn Asp Val Asn Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn 50 60

Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Asp 65 75 80

Asp Arg Lys Arg Asp Asn Ser Leu Glu Leu Ser Gln Leu Glu Asn Lys

Asp Leu Asn Val Thr Thr Glu Met Leu Lys Met Ala Thr Arg Tyr Arg 100 105 110

Glu Leu Glu Val Lys Tyr Ala Ser Leu Thr Asp Leu Val Asn Asn Gln 115 120 125

Ser Val Met Asp Thr Leu Leu Glu Glu Gln Cys Leu Arg Asp Phe Ser 130 140

Arg Gln Asp Thr His Val Ser Pro Pro Leu Val Gln Val Val Pro Gln 145 150 160

His Asp Pro Asn Ser Gln Gln Tyr Thr Pro Gly Leu Leu Gly Gly Asn

```
Glu Asp Gln Arg Asp Pro Gly Tyr Pro Arg Asp Leu Met Pro Pro Pro
<210>
<211>
<212>
       64
       PRT
<213> Homo sapiens
<400>
       32
Ala Ala Asn Ala Ser Glu Leu Ala Ala Leu Arg Met Arg Val Gly Arg
His Glu Glu Leu Leu Arg Glu Leu Gln Arg Leu Ala Ala Ala Asp Gly 20 25 30
Ala Val Ala Gly Glu Val Arg Ala Leu Arg Lys Glu Ser Arg Gly Leu 35 45
Ser Ala Arg Leu Gly Gln Leu Arg Ala Gln Leu Gln His Glu Ala Gly 50 60
<210>
<211>
       71
<212>
       PRT
       Homo sapiens
<213>
<400> 33
Asp Leu Ser Leu Gln Thr Ser Glu Asp Lys Glu Glu Glu Lys Glu Leu 1 10 15
Arg Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu Val Lys Asn 20 30
Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu Glu Glu Lys 35 40 45
Asp Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Gln Gln Leu Thr Asn 50
Leu Asp Gln Asn Gln Pro Glu
<210>
<211>
       34
28
<212>
       PRT
<213> Homo sapiens
<400> 34
Leu Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg
Ser Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala
<210>
<211>
<212>
       49
       PRT
<213> Homo sapiens
<400> 35
Glu Thr Leu Gln Ser Leu Gln Thr Gln Leu Lys Ala Gln Asn Ser Lys 1 5 10 15
Asp Gln Gln Leu Phe Gln Lys Val Ala Gln Gln Gln Arg Tyr Leu Ser 20 25 30
Lys Gln Asn Leu Arg Asp Gln Asn Leu Gln Ser Gln Asp Asp Leu Leu 35 40 45
Ala
<210>
<211>
       120
<212>
<213>
       PRT
       Homo sapiens
<400>
Val Ser Asn Ala Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser
                                       10
                                  Page 22.
```

```
Val Gln Arg Leu Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln 20 25 30
Trp Leu Met Lys Leu Glu Asn Ile Ser Gln Asp Asn Met Lys Lys Glu 35 45
Met Val Glu Ile Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met
50 60
Ile Glu Ile Gly Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg
Lys Leu Thr Asp Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu
85 90 95
Glu Leu Gln Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys
Gln Ile Leu Asp Gln Thr Ser Glu
<210>
<211>
        79
        PRT
<212>
<213> Homo sapiens
<400> 37
Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys
1 10 15
Leu Glu Asn Ile Ser Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile 20 \hspace{1cm} 25 \hspace{1cm} 30
Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly
35 40 45
Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp 50 60
Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu Glu Leu Gln 65 75
<210>
<211>
        38
31
        PRT
<212>
      Homo sapiens
<400> 38
Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp 10 	 15
Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu Glu Leu Gln
<210>
<211> 120
<212> PRT
        Homo sapiens
<220>
       misc_feature
(78)..(78)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
      misc feature
(103)..(120)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<400> 39
Thr Phe Pro Asn Ser Thr Glu Glu Ile Lys Leu Gln Ala Tyr Cys Asp
1 10 15
Met Glu Ala Gly Gly Gly Trp Thr Ile Ile Gln Arg Arg Glu Asp 20 30
Gly Ser Val Ala Phe Gln Arg Thr Trp Lys Glu Tyr Lys Gln Gly Phe \frac{35}{40}
Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu Phe Val Ser Gln
                                    Page 23.
```

```
50
                         55
                                             60
Leu Thr Asn Gln Gln Arg Tyr Val Leu Lys Ile His Leu Xaa Asp Trp
Glu Gly Asn Glu Ala Tyr Ser Leu Tyr Glu His Phe Tyr Leu Ser Ser
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" is Phe, Tyr, or His residue.
<220>
<221> misc_feature
<222> (6)..(6)
<223> "Xaa" is Asn or Leu residue.
<220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" is Asp or Glu residue.
<220>
<221> misc_feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc feature
<222> (10)..(10)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (11)..(11)
<223> "Xaa" is Ile or Leu residue.
<220>
<400> 40
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asp Trp
<210> 41
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (4)..(4)
<223> "Xaa" may be any amino acid.
```

```
<220>
<220>
<221> misc feature
<222> (8)...(8)
<223> "Xaa" is Asn or His.
<220>
<221> misc_feature
<222> (9)..(18)
<223> "Xaa" may be from 3 to 10 of any amino acid.
<220>
<221> misc_feature
<222> (20)...(20)
<223> "Xaa" is Ala or Ser.
<220>
<221> misc_feature
<222> (26)...(29) <223> "Xaa" may be from 2 to 4 of any amino acid.
<400> 41
Phe Ser Thr Xaa Asp Xaa Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa I_{1} _{15}
Xaa Xaa Cys Xaa Xaa Gly Gly Trp Trp Xaa Xaa Xaa Xaa Cys 20 30
<210> 42
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<400> 42
Tyr Xaa Leu Arg Leu
1 5
<210> 43
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<400> 43
Tyr Xaa Leu Gln
<210> 44
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<221> misc_feature
```

```
<222> (2)..(3) 
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (5)..(5)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
Phe Xaa Xaa His Xaa Gly Xaa Glu Xaa Xaa
<210> 45
<211> 10
<212> PRT
<213> Artificial Sequence
 <223> Synthetic
<220>
<221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
 <220>
<221> misc feature
<222> (5)..(5)
<223> "Xaa" may be any amino acid.
 <220>
<221> misc feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
 <400> 45
 Tyr Xaa Xaa His Xaa Gly Xaa Glu Xaa Xaa
<210> 46
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
 <220>
 <221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
 <220>
 <221> misc_feature
<222> (5)..(5)
<223> "Xaa" may be any amino acid.
 <220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
 <220>
```

```
<400> 46
Phe Xaa Xaa Phe Xaa Gly Xaa Glu Xaa Xaa
<210> 47
<211> 10
<211> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (5)..(5)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222>
<222> (9)...(10)</br><223> "Xaa" may be any amino acid.
<400> 47
Tyr Xaa Xaa Phe Xaa Gly Xaa Glu Xaa Xaa
<210> 48
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (5)..(5)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
<400> 48
Phe Xaa Xaa His Xaa Glu Xaa Glu Xaa Xaa 1 5 10
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
```

```
<220>
<221> misc_feature
<222> (5). (5) (5) (223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
<220>
<400> 49
Phe Xaa Xaa Phe Xaa Glu Xaa Glu Xaa Xaa
1 5 10
<210> 50
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (5)...(5)</br>
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
<400> 50
Phe Xaa Xaa Phe Xaa Glu Xaa Glu Xaa Xaa 1
<210> 51
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (5)...(5)<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
<400> 51
Tyr Xaa Xaa His Xaa Glu Xaa Glu Xaa Xaa
                                          Page 28.
```

```
10
 <210> 52
<211> 10
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Synthetic
 <220>
 <221> misc_feature
<222> (2)..(3)
<223> "Xaa" may be any amino acid.
 <220>
          misc_feature
(5)..(5)
"Xaa" may be any amino acid.
 <221>
 <222>
 <223>
 <220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
 <220>
 <221> misc feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
 <400> 52
 Tyr Xaa Xaa Phe Xaa Gly Xaa Glu Xaa Xaa
1 5 10
 <210> 53
<211> 10
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Synthetic
 <220>
 <220>
 <220>
<221> misc_feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
between positions 6 and 8, inclusive.
 <400> 53
 Xaa Xaa Xaa Thr Gly Xaa Xaa Xaa Ala Gly
 <210> 54
<211> 10
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Synthetic
 <220>
 <220>

<220>
    misc_feature
<221>    (6)..(8)
<222>    (6)..(8)
<223>    "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.

 <400> 54
 Xaa Xaa Xaa Thr Gly Xaa Xaa Xaa Leu Gly
 <210> 55
```

```
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
        misc feature (6).\overline{\phantom{a}}(8) "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.
<221>
<222>
<400> 55
Xaa Xaa Xaa Thr Ala Xaa Xaa Xaa Ala Gly
<210> 56
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
        misc_feature (6)..(8) "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
<221>
<222>
<223>
         between positions 6 and 8, inclusive.
<400> 56
Xaa Xaa Xaa Thr Ala Xaa Xaa Xaa Leu Gly
<210>
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
        misc_feature (6)...(8) "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.
<221>
<222>
<400> 57
Xaa Xaa Xaa Val Gly Xaa Xaa Xaa Ala Gly
<210> 58
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
```

```
<220>
<220>
<221> misc_feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
between positions 6 and 8, inclusive.
<400> 58
Xaa Xaa Xaa Val Gly Xaa Xaa Xaa Leu Gly
<210>
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
          between positions 6 and 8, inclusive.
<400> 59
Xaa Xaa Xaa Val Ala Xaa Xaa Xaa Ala Gly
<210> 60
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
<220>
    misc_feature
<221>    (6)..(8)
<223>    "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
    between positions 6 and 8, inclusive.
Xaa Xaa Xaa Val Ala Xaa Xaa Xaa Leu Gly
<210> 61
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
         misc_feature
(1)...(3)
"Xaa" may be any amino acid.
<221>
 <222>
<223>
<220>
         misc feature (6). \overline{\phantom{a}}(8) "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.
<221>
<400> 61
Xaa Xaa Xaa His Gly Xaa Xaa Xaa Ala Gly
<210> 62
```

```
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
<22U>
<221> misc_feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
between positions 6 and 8, inclusive.
<400> 62
Xaa Xaa Xaa His Gly Xaa Xaa Xaa Leu Gly
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>

<221> misc feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
between positions 6 and 8, inclusive.
<400> 63
Xaa Xaa Xaa His Ala Xaa Xaa Xaa Ala Gly
<210> 64
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
         misc_feature (6)...(8) "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.
<221>
<222>
<400> 64
Xaa Xaa Xaa His Ala Xaa Xaa Xaa Leu Gly
<210> 65
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
```

```
<220>
         misc feature (6).\overline{\phantom{a}}(8) "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.
 <222>
<400> 65
Xaa Xaa Xaa Glu Gly Xaa Xaa Xaa Ala Gly
<210> 66
<211> 10
<212> PRT
<213> Artificial Sequence
<210>
<220>
<223> Synthetic
<220>
<220>
<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
          between positions 6 and 8, inclusive.
<400> 66
Xaa Xaa Xaa Glu Gly Xaa Xaa Xaa Leu Gly
<210> 67
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<220>
<221> misc_feature
<222> (6). (8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted
between positions 6 and 8, inclusive.
<400> 67
Xaa Xaa Xaa Glu Ala Xaa Xaa Ala Gly
<210> 68

<211> 10

<212> PRT

<213> Artificial Sequence
<220>
<223> Synthetic
<220>

<221> misc_feature
<222> (1)..(3)
<223> "Xaa" may be any amino acid.

<220>
<220>
<221> misc_feature
<222> (6)..(8)
<223> "Xaa" may be any amino acid. 1, 2, or 3 residues can be deleted between positions 6 and 8, inclusive.
<400> 68
Xaa Xaa Xaa Glu Ala Xaa Xaa Leu Gly
<210> 69
```

```
<211> 34
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (4)..(4)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (6)..(6)
<223> "Xaa" may be any amino acid.
<220>
<220>
<220>
<221> misc_feature
<222> (16)..(20)
<223> "Xaa" may be any amino acid.
<220>

<221> misc_feature
<222> (30)..(30)
<223> "Xaa" may be any amino acid.

<400> 69
Phe Ser Thr Xaa Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Xaa
Xaa Xaa Xaa Gly Gly Trp Trp Phe Asp Ala Cys Gly Xaa Ser Asn
Leu Gly
<210> 70
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (8)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (14)..(17)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (19)..(19)
<223> "Xaa" may be any amino acid.
<220>
<2205
<221> misc_feature
<222> (21)..(22)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (25)..(25)
<223> "Xaa" may be any amino acid.
                                             Page 34.
```

```
<400> 70
Glu Xaa Trp Leu Gly Asn Glu Xaa Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa 1 10 15
Xaa Tyr Xaa Leu Xaa Xaa Glu Leu Xaa Asp Trp Glu Gly 25
<210> 71
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<221> misc_feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (9)..(9)
<223> "Xaa" is Asp or Val residue.
<221> misc feature
<222> (10)..(11)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (12)..(12)
<223> "Xaa" is Asp or Leu residue.
<220>
<221> misc feature
<222> (14)...(14)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (15)..(15)
<223> "Xaa" is Arg or Gln residue.
<220>
<221> misc_feature
<222> (16)..(17)
<223> "Xaa" imay be any amino acid.
Glu Xaa Trp Leu Gly Asn Glu Xaa Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa
Xaa
<210> 72
<211> 34
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (4)..(4)
<223> "Xaa" is Leu or Lys residue.
<221> misc feature
<222> (6). (6)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
```

Page 35.

```
<222> (10)..(10)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (12)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (16)...(16)<br/><223> "Xaa" is Ala or Ser residue.
<220>
<221> misc_feature
<222> (17)..(17)
<223> "Xaa" is Gln or Leu residue.
<220>
<220>
<221> misc_feature
<222> (18)..(18)
<223> "Xaa" is Met or Val residue.
<220>
<221> misc_feature
<222> (19)..(19)
<223> "Xaa" is Leu or Met residue.
<221> misc_feature
<222> (20)...(20)
<223> "Xaa" is Ser or Thr residue.
<220>
<221> misc_feature
<222> (30)..(30)
<223> "Xaa" is Leu or Pro.
<400> 72
Phe Ser Thr Xaa Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Xaa
Xaa Xaa Xaa Gly Gly Trp Trp Phe Asp Ala Cys Gly Xaa Ser Asn 20 30
Leu Gly
<210> 73
<211> 32
<212> PRT
<213> Artificial Sequence
<223> Synthetic
<220>
<221> misc_feature
<222> (3)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (6)..(6)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (9)..(9)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (12)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (14)...(16)
<223> "Xaa" may be any amino acid.
<221> misc_feature <222> (20)..(20)
```

```
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (22)..(23)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (26)..(26)
<223> "Xaa" may be any amino acid.
<220>

<221> misc_feature
<222> (29)..(32)
<223> "Xaa" may be any amino acid.

<400> 73
Gly Gly Xaa Trp Thr Xaa Asp Gln Xaa Arg Glu Xaa Gly Xaa Xaa Xaa 1 10 15
Phe Gln Arg Xaa Trp Xaa Xaa Tyr Lys Xaa Gly Phe Xaa Xaa Xaa 20 30
<210>
<211> 33
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (9)..(9)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (20)..(20)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (26)..(26)
<223> "Xaa" may be any amino acid.
<400> 74
Gly Gly Gly Trp Thr Leu Asp Gln Xaa Arg Glu Asp Gly Ser Val Asp 1 10 15
Phe Gln Arg Xaa Trp Lys Glu Tyr Lys Xaa Gly Phe Gly Asn Pro Ser 20 30
Gly
<210>
          75
<211> 39
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (6)..(10)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (12)..(15)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (17)..(17)
```

Page 37.

```
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
        (20)...(23) "Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
<222> (25)..(29)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (31)..(32)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (34)..(39)
<223> "Xaa" may be any amino acid.
<400> 75
Phe Xaa Asp Cys Ala Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Gly
Xaa Tyr Thr Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30
Cys Xaa Xaa Xaa Xaa Xaa
<210>
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (8)..(9)
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(12)..(14)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221> misc_feature
<222> (21)..(23)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (25)..(25)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (29)..(29)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
        (36)..(38)
"Xaa" may be any amino acid.
<222>
<223>
<400> 76
Phe Arg Asp Cys Ala Gly Val Xaa Xaa Ser Gly Xaa Xaa Xaa Ser Gly
Asp Tyr Thr Asp Xaa Xaa Xaa Asn Xaa Thr Lys Pro Xaa Lys Val Phe 20 30
Cys Asp Met Xaa Xaa Xaa
<210> 77 <211> 38
```

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (8)..(9)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (12)...(14)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (21)...(23)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (25)...(25)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (29)..(29)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (36)..(38)
<223> "Xaa" may be any amino acid.
<400> 77
Phe Arg Asp Cys Ala Asp Val Xaa Xaa Ala Gly Xaa Xaa Xaa Ser Gly
Asp Tyr Thr Asp Xaa Xaa Xaa Asn Xaa Pro Lys Pro Xaa Lys Val Phe 20 30
Cys Asn Met Xaa Xaa Xaa
<210> 78
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (4)..(5)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (20)..(21)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature <222> (23)..(26)
        (23)..(26)
"Xaa" may be any amino acid.
                                            Page 39.
```

```
<220>
<221> misc_feature
<222> (28)..(30)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (32)..(41)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (44)...(46)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (48)..(54)
<223> "Xaa" may be any amino acid.
<400> 78
Tyr Xaa Leu Xaa Xaa Glu Leu Xaa Asp Trp Glu Gly Xaa Xaa Xaa Xaa 1 10 15
Xaa Xaa Tyr Xaa Xaa Phe Xaa Xaa Xaa Xaa Glu Xaa Xaa Tyr Xaa 20 25 30
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Gly Xaa Xaa Xaa Ser Xaa
Xaa Xaa Xaa Xaa Xaa
<210> 79
<211> 52
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
        (13)..(14)
"Xaa" may be any amino acid.
<220> <221> misc_feature (21)
        (21)..(21)
"Xaa" may be any amino acid.
<222>
<220>
<221> misc_feature
<222>
        (23)...(23)
"Xaa" may be any amino acid.
<223>
<221> misc_feature
<222> (28)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (30)..(30)
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(36)..(36)
"Xaa" may be any amino acid.
<221>
<222>
<223>
```

<220>

```
<221> misc_feature
<222> (38)..(38)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (43)...(43)<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (47)..(48)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (51)..(52)
<223> "Xaa" may be any amino acid.
<400> 79
Tyr Xaa Leu Arg Asp Glu Leu Xaa Asp Trp Glu Gly Xaa Xaa Ala Tyr
Ser Gln Tyr Asp Xaa Phe Xaa Asp Gly Asn Glu Xaa Gln Xaa Tyr Arg
Leu Ser Leu Xaa Gly Xaa Thr Ala Gly Lys Xaa Ser Ser Leu Xaa Xaa 40 45
Gln Gly Xaa Xaa
<210> 80
<211> 52
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (13)..(14)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (21)...(21)</br>
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (23)..(23)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (28)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (30)..(30)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (36)..(36)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature <222> (38)..(38)
```

```
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (43)..(43)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (47)..(48)
<223> "Xaa" may be any amino acid.
<220>
<220> misc_feature
<222> (51)..(52)
<223> "Xaa" may be any amino acid.
<400> 80
Tyr Xaa Leu Arg Asp Glu Leu Xaa Asp Trp Glu Gly Xaa Xaa Ala Tyr 1 
Ser Gln Tyr Glu Xaa Phe Xaa Leu Gly Ser Glu Xaa Gln Xaa Tyr Arg 20 30
Gln Gly Xaa Xaa
50
<210> 81
<211> 54
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (8)...(8)
<223> "Xaa" may be any amino acid.
<220>
221> misc feature
<222> (14)..(14)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (21)..(21)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222>
<222> (23)..(23)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (28)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (34)..(34)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (38)..(38)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (45)..(45)
<223> "Xaa" may be any amino acid.
```

```
<220>
<221> misc_feature
<222> (49)..(49)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (50)..(51)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (53)..(53)
<223> "Xaa" may be any amino acid.
<400> 81
Tyr Xaa Leu Arg Val Glu Leu Xaa Asp Trp Glu Gly Asn Xaa Ala Tyr 1 10 15
Ser Gln Tyr Glu Xaa Phe Xaa Leu Gly Ser Glu Xaa Gln Asn Tyr Arg
Asp Xaa Val Lys Gly Xaa Ser Gly Ser Ala Gly Arg Xaa Ser Ser Leu 35 45
Xaa Xaa Xaa Gly Xaa Asp
<210> 82
<211> 38
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(2)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222>
        (4). \(\bar{\cap}(10)\)
"Xaa" may be any amino acid.
<223>
<220>
<221> misc_feature
         (12)..(13)
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
<222> (16)..(16)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (18)..(18)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (27)..(30)
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(33)..(34)
"Xaa" may be any amino acid.
<221>
<220>
<221> misc_feature
<222> (36)..(38)
<223> "Xaa" may be any amino acid.
<400> 82
```

```
Xaa Xaa Tyr Xaa Xaa Xaa Xaa Xaa Xaa Lys Xaa Xaa Gly Asp Xaa
Trp Xaa Tyr Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Met Met 20
Xaa Xaa Pro Xaa Xaa Xaa
<210> 83
<211> 39
 <213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(1)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (4)..(6)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (12)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (28)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (30)..(30)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (37)..(37)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (39)..(39)
<223> "Xaa" may be any amino acid.
<400> 83
Xaa Phe Tyr Xaa Xaa Xaa Gln Asn Xaa Xaa Lys Xaa Asn Gly Asp Arg 1 10 15
Trp His Tyr Phe Lys Phe Ser Ser Tyr Ala Leu Xaa Ala Xaa Arg Met 20 30
Met Asp Glu Pro Xaa Asp Xaa
 <210> 84
 <211> 39
<212> PRT
<213> Artificial Sequence
 <220>
<223> Synthetic
 <220>
<221> misc_feature
<222> (4)..(6)
```

Page 44.

```
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(9)..(10)
"Xaa" may be any amino acid.
<221>
<222>
<220>
<221>
<222>
         misc_feature
<222> (12)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (28)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (30)..(30)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (37)..(37)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (39)..(39)
<223> "Xaa" may be any amino acid.
<400> 84
Xaa Tyr Tyr Xaa Xaa Xaa Gln Asn Xaa Xaa Lys Xaa Asn Gly Asp Arg
Trp His Tyr Phe Lys Gly Pro Ser Tyr Ser Leu Xaa Ala Xaa Arg Met
Met Asp Arg Pro Xaa Asp Xaa
<210> 85
<211> 39
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<221> misc feature
<222> (9)..(10)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (12)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
         (16)..(16)
"Xaa" may be any amino acid.
 <220>
<221> misc_feature
<222> (24)..(24)
<223> "Xaa" may be any amino acid.
 <221> misc_feature
<222> (28)...(28)
<223> "Xaa" may be any amino acid.
 <221> misc_feature
<222> (30)..(30)
```

```
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (37)..(37)
<223> "Xaa" may be any amino acid.
<400> 85
Met Tyr Tyr Xaa Xaa Xaa Gln Asn Xaa Xaa Lys Xaa Asn Gly Asp Xaa
1 15
Trp His Tyr Phe Arg Gly Pro Xaa Tyr Ser Leu Xaa Ala Xaa Arg Met \frac{25}{20}
Met Asp Arg Pro Xaa Asp Phe
<210> 86
<211> 214
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
        misc_feature
(2)..(2)
"Xaa" may be any amino acid.
<221>
<220>
<220>
<221> misc_feature
        (12)..(15)
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
        (17)...(17)
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
<222> (20)..(23)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (25)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (30)..(31)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (33)..(38)
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(41)..(42)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221> misc_feature
<222> (45)..(45)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (48)..(48)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (51)..(51)
```

```
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (53)..(55)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (59)..(59)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (61)..(62)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (65)..(65)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (69)..(69)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (70)..(72)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (74)..(74)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (80)..(84)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (86)..(89)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (91)..(91)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (93)...(94)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (97)..(97)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
          (102)..(107)
"Xaa" may be any amino acid.
<222>
<220>
<221> misc feature
<222> (109)..(112)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (114)..(116)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (118)..(127)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
```

Page 47.

```
<222> (130)..(132)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (1347..(140)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (1447..(144)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (146T..(146)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (150)..(150)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (152)...(152)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (156)..(160)
<223> "Xaa" may be any amino acid.
<220>
<220;
<221> misc_feature
<222> (170)..(170)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (176)..(177)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (179)..(185)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (187)..(188)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc feature
<222> (193)..(193)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (195)..(199)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (201)...(201)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (203)..(206)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (209)..(210)
<223> "Xaa" may be any amino acid.
<220>
```

<221> misc feature <222> (212)..(214) <223> "Xaa" may be any amino acid. <400> 86 Phe Xaa Asp Cys Ala Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Gly 1 10 15 Xaa Tyr Thr Xaa Xaa Xaa Xaa Asn Xaa Xaa Xaa Lys Xaa Xaa Cys 20 25 Xaa Xaa Xaa Xaa Xaa Gly Gly Xaa Xaa Trp Thr Xaa Asp Gln Xaa 35 40 Arg Glu Xaa Gly Xaa Xaa Xaa Phe Gln Arg Xaa Trp Xaa Xaa Tyr Lys 50 60 Xaa Gly Phe Gly Xaa Xaa Xaa Glu Xaa Trp Leu Gly Asn Glu Xaa 65 75 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Tyr Xaa Leu Xaa Xaa Glu Leu 85 90 95 Xaa Asp Trp Glu Gly Xaa Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Xaa 100 105 110 Glu Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala 115 120 125 Asp Xaa Asp Asn Asp Xaa Cys Xaa Cys Lys Cys Xaa Xaa Xaa Xaa 145 150 160 Gly Gly Trp Trp Phe Asp Ala Cys Gly Xaa Ser Asn Lys Asn Gly Xaa 165 170 175 Xaa Tyr Xaa Xaa Xaa Xaa Xaa Xaa Lys Xaa Xaa Gly Asp Xaa Trp 180 185 190 Xaa Tyr Xaa Xaa Xaa Xaa Xaa Tyr Xaa Leu Xaa Xaa Xaa Met Met 195 200 205 Xaa Xaa Pro Xaa Xaa Xaa 210 <210> 87 PRT Homo sapiens Lys Met Gly Pro Lys Gly Glu Pro Gly Pro Arg Asn Cys Arg Glu Leu 1 10 15 Leu Ser Gln Gly Ala Thr Leu Ser Gly Trp Tyr His Leu Cys Leu Pro Glu Gly Arg Ala Leu Pro Val Phe Cys Asp Met Asp Thr Glu Gly Gly 35 40 45Gly Trp Leu Val Phe Gln Arg Arg Gln Asp Gly Ser Val Asp Phe Phe 50 60 Arg Ser Trp Ser Ser Tyr Arg Ala Gly Phe Gly Asn Gln Glu Ser Glu 65 70 80Phe Trp Leu Gly Asn Glu Asn Leu His Gln Leu Thr Leu Gln Gly Asn 90 95 Trp Glu Leu Arg Val Glu Leu Glu Asp Phe Asn Gly Asn Arg Thr Phe 100 105 110Ala His Tyr Ala Thr Phe Arg Leu Leu Gly Glu Val Asp His Tyr Gln 115 125 Leu Ala Leu Gly Lys Phe Ser Glu Gly Thr Ala Gly Asp Ser Leu Ser 130 135 140 Leu His Ser Gly Arg Pro Phe Thr Thr Tyr Asp Ala Asp His Asp Ser 145 150 160 Page 49.

Ser Asn Ser Asn Cys Ala Val Ile Val His Gly Ala Trp Trp Tyr Ala 165 170 175 Ser Cys Tyr Arg Ser Asn Leu Asn Gly Arg Tyr Ala Val Ser Glu Ala Ala Ala His Lys Tyr Gly Ile Asp Trp Ala Ser Gly Arg Gly Val Gly 195 200 205 His Pro Tyr Arg Arg Val Arg Met Met Leu Arg 210 <210> PRT <213> Homo sapiens Met Asp Leu Leu Trp Ile Leu Pro Ser Leu Trp Leu Leu Leu Gly
1 5 10 15 Gly Pro Ala Cys Leu Lys Thr Gln Glu His Pro Ser Cys Pro Gly Pro 20 25 30 Arg Glu Leu Glu Ala Ser Lys Val Val Leu Leu Pro Ser Cys Pro Gly 35 40 Ala Pro Gly Ser Pro Gly Glu Lys Gly Ala Pro Gly Pro Gln Gly Pro 50 Pro Gly Pro Pro Gly Lys Met Gly Pro Lys Gly Glu Pro Gly Asp Pro Val Asn Leu Leu Arg Cys Gln Glu Gly Pro Arg Asn Cys Arg Glu Leu 85 90 95 Leu Ser Gln Gly Ala Thr Leu Ser Gly Trp Tyr His Leu Cys Leu Pro 100 105 110Glu Gly Arg Ala Leu Pro Val Phe Cys Asp Met Asp Thr Glu Gly Gly 115 120 125 Gly Trp Leu Val Phe Gln Arg Arg Gln Asp Gly Ser Val Asp Phe Phe 130 140 Arg Ser Trp Ser Ser Tyr Arg Ala Gly Phe Gly Asn Gln Glu Ser Glu 145 150 160 Phe Trp Leu Gly Asn Glu Asn Leu His Gln Leu Thr Leu Gln Gly Asn 165 170 175

Ala His Tyr Ala Thr Phe Arg Leu Leu Gly Glu Val Asp His Tyr Gln 205

Leu Ala Leu Gly Lys Phe Ser Glu Gly Thr Ala Gly Asp Ser Leu Ser 210

Leu His Ser Gly Arg Pro Phe Thr Thr Tyr Asp Ala Asp His Asp Ser 225 230 235

Trp Glu Leu Arg Val Glu Leu Glu Asp Phe Asn Gly Asn Arg Thr Phe 180 185 190

Ser Asn Ser Asn Cys Ala Val Ile Val His Gly Ala Trp Trp Tyr Ala 245 250 255

Ser Cys Tyr Arg Ser Asn Leu Asn Gly Arg Tyr Ala Val Ser Asp Ala 260 265 270

Ala Ala His Lys Tyr Gly Ile Asp Trp Ala Ser Gly Arg Gly Val Gly 275 280 285

His Pro Tyr Arg Arg Val Arg Met Met Leu Arg 290 295

<210> 89

<211> 45

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic

```
<220>
        misc_feature
(4)..(6)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221> misc_feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (10)..(11)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (13)..(13)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (15)..(15)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (17)..(19)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (21)..(22)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (24)..(25)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (29)..(34)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (38)..(38)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (40)..(43)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (45)..(45)
<223> "Xaa" may be any amino acid.
<400> 89
Gly Gly Trp Xaa Xaa Xaa Gln Xaa Arg Xaa Xaa Gly Xaa Val Xaa Phe
Xaa Xaa Xaa Tr<br/>p Xaa Xaa Tyr Xaa Xaa Gly Phe Gly Xaa Xaa Xaa 20 25 30 \phantom{0}
Xaa Xaa Trp Leu Gly Xaa Glu Xaa Xaa Xaa Leu Xaa
<210>
          90
<211> 68
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<220>
<221> misc_feature
<222> (2)..(2)
<223> "Xaa" may be any amino acid.
```

```
<220>
<221> misc feature
<222> (3)..(3)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (5)...(5)
<223> "Xaa" may be any amino acid.
 <220>
<221> misc_feature
<222> (7)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (10)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (14)..(14)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (16)..(16)
<223> "Xaa" may be any amino acid.
 <220>
<221> misc_feature
<222> (19)..(24)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
\langle 222 \rangle \langle 25 \rangle...\langle 25 \rangle \langle 223 \rangle "Xaa" may be any amino acid. This residue can be deleted.
<220>
<220>
<221> misc_feature
<222> (32)..(35)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (37)..(37)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (39)..(39)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (41)...(41)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (43)..(47)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (50)..(53)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (55)..(56)
<223> "Xaa" may be any amino acid.
<221> misc_feature <222> (59)..(60)
```

Page 52.

```
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (62)..(63)
<223> "Xaa" may be any amino acid.
<400> 90
Tyr Xaa Xaa Phe Xaa Leu Xaa Xaa Glu Xaa Xaa Xaa Tyr Xaa Leu Xaa
Leu Gly Xaa Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Xaa Kaa His Xaa 25 30
Xaa Xaa Xaa Phe Xaa Thr Xaa Asp Xaa Asp Xaa Xaa Xaa Xaa Cys
Ala Xaa Xaa Xaa Gly Xaa Xaa Trp Tyr Xaa Xaa Cys Xaa Xaa Ser
Asn Leu Asn Gly
<210> 91
<211> 211
<212> PRT
<213> Artificial Sequence
<223> Synthetic
<220>
<221> misc_feature
<222> (1)..(1)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (3)..(3)
<223> "Xaa" may be any amino acid.
<221> misc_feature
       (5).\overline{(5)}
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
<222> (6)..(6)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (8)..(9)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (11)..(12)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (14)..(15)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (20)..(20)
<223> "Xaa" may be any amino acid. This residue can be deleted.
<220>
<221> misc feature
<222> (22)..(25)
<223> "Xaa" may be any amino acid. Up to 2 of these residues can be del
         eted.
<220>
<221> misc_feature
<222> (28)..(29)
<223> "Xaa" may be any amino acid.
<220>
```

Page 53.

```
<221> misc_feature
<222> (31)..(34)
<223> "Xaa" may be any amino acid.
<220>
<2203
<221> misc_feature
<222> (36)..(36)
<223> "Xaa" may be any amino acid.
<220>

<221> misc_feature
<222> (40)..(42)
<223> "Xaa" may be any amino acid.

<221> misc_feature
<222> (44)..(44)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
\langle 222 \rangle (46)..(47) \langle 223 \rangle "Xaa" may be any amino acid.
<220>
          misc_feature
(49)..(49)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221> misc_feature
<222> (53)..(54)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (58)..(58)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (60)..(61)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (68)..(70)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (74)..(74)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (79)..(79)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (81)..(81)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (83)..(83)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (84)..(84)
<223> "Xaa" may be any amino acid. This residue can be deleted.
<220>
<220>
<221> misc_feature
<222> (95)..(95)
<223> "Xaa" may be any amino acid.
```

```
<220>
<221> misc_feature
<222> (97)..(98)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (101)..(101)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc feature
<222> (103)..(103)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (105)...(105)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (115)..(115)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (117)..(117)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (122)..(124)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (126)..(127)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (130)..(130)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (131)..(131)
<223> "Xaa" may be any amino acid. This residue can be deleted.
<220>
<221> misc_feature
<222> (133)...(135)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (138)..(138)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (143)..(143)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (149)..(149)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (1537..(153)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (1557..(155)
<223> "Xaa" may be any amino acid.
```

Page 55.

```
<220>
        misc feature
(159)..(160)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
       misc feature
(1637..(164)
"Xaa" may be any amino acid.
<221>
<220>
<221> misc_feature
        (167)..(167)
"Xaa" may be any amino acid.
<222>
<220>
<221>
       misc_feature
<222>
        (177)..(178)
"Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (187)..(188)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc feature
<222> (192)..(193)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
        (197)..(198)
"Xaa" may be any amino acid.
<223>
<220>
<221> misc feature
<222> (202)..(208)
<223> "Xaa" may be any amino acid.
<220>
       misc feature
(211)..(211)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<400> 91
Xaa Cys Xaa Gln Xaa Xaa His Xaa Xaa Ser Xaa Xaa Tyr Xaa Xaa Lys
Pro Glu Asn Xaa Asn Xaa Xaa Xaa Met Gln Xaa Xaa Cys Xaa Xaa 20 25 30
Xaa Xaa Asp Xaa Gly Gly Trp Xaa Xaa Xaa Gln Xaa Arg Xaa Xaa Gly
Xaa Val Asn Phe Xaa Xaa Asn Trp Glu Xaa Tyr Xaa Xaa Gly Phe Gly
Asn Asp Asp Xaa Xaa Xaa Trp Leu Gly Xaa Glu Asn Asp Tyr Xaa Leu
Xaa Asn Xaa Xaa Asn Tyr Lys Leu Xaa Xaa Xaa Xaa Glu Asp Xaa Ser
85 90 95
Xaa Xaa Lys Val Xaa Ala Xaa Tyr Xaa Ser Phe Arg Leu Glu Pro Glu 100 105 110
Ser Glu Xaa Tyr Xaa Leu Arg Leu Gly Xaa Tyr Xaa Tyr Xaa Xaa Asn 115 120 125
Ala Xaa Xaa Asp Xaa Xaa Xaa Trp His Xaa Gly Lys Gln Phe Xaa Thr 130 \phantom{\bigg|}135\phantom{\bigg|} 140
Leu Asp Arg Asp Xaa Asp Xaa Tyr Xaa Gly Xaa Cys Ala His Xaa Xaa 145 150 160
Lys Gly Xaa Xaa Trp Tyr Xaa Ala Cys Ala His Ser Asn Leu Asn Gly
165 170 175
Xaa Xaa Tyr Arg Gly Gly His Tyr Arg Ser Xaa Xaa Gln Asp Gly Xaa
180 185 190
```

```
Xaa Trp Ala Glu Xaa Xaa Gly Gly Ser Xaa Xaa Xaa Xaa Xaa Xaa Xaa 195 200 205
Met Met Xaa
      210
<210> 92
<211> 172
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (9)..(9)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (13)..(13)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (18)..(18)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (22)..(22)
<223> "Xaa" may be any amino acid.
<220>
<220>
<220>
<221> misc_feature
<222> (53)..(53)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (59)..(59)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (69)..(69)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (73)..(73)
<223> "Xaa" may be any amino acid.
<220>
221> misc_feature
<222> (75)..(75)
<223> "Xaa" may be any amino acid.
<220>
221> misc_feature
<222> (77)..(77)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (79)..(79)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (85)..(85)
<223> "Xaa" may be any amino acid.
```

```
<220>
<221>
<222>
        misc_feature
        (92)..(92)
"Xaa" may be any amino acid.
<220>
<221>
        misc_feature
         (97)..(98)
"Xaa" may be any amino acid.
<222>
<223>
<220>
        misc feature
(1137..(133)
"Xaa" may be any amino acid.
<221>
<223>
<220>
        misc feature (115)..(115) "Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
        misc feature (117)..(117) "Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221>
        misc feature
        (144)..(144)
"Xaa" may be any amino acid.
<222>
<220>
        misc feature
(1467..(146)
"Xaa" may be any amino acid.
<221>
<222>
<220>
        misc feature
(172)..(172)
"Xaa" may be any amino acid.
<221>
<222>
<400> 92
Arg Asp Cys Gln Glu Leu Phe Gln Xaa Gly Glu Arg Xaa Ser Gly Leu
1 10 15
Phe Xaa Asp Gln Pro Xaa Gly Ser Pro Pro Phe Leu Val Asn Cys Xaa 20 30
Met Thr Ser Asp Gly Gly Trp Thr Val Asp Gln Arg Arg Xaa Xaa Trp 35 40 45 .
Glu Ala Tyr Lys Xaa Gly Phe Gly Asp Pro Xaa Gly Glu Phe Trp Leu
50 60
Gly Leu Glu Lys Xaa His Ser Asp Xaa Gly Xaa Arg Xaa Ser Xaa Leu
65 70 75 80
Ala Val Gln Leu Xaa Asp Trp Asp Gly Asn Ala Xaa Leu Leu Gln Phe
85
90
Xaa Xaa His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu Thr 100 105 110
Xaa Pro Xaa Ala Xaa Xaa Leu Gly Ala Thr Thr Val Xaa Pro Xaa Gly 115 120 125
Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Xaa 130 140
Asp Xaa Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr
145 150 160
Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Xaa
165 170
<210>
        93
<211><212>
        33
        PRT
        Artificial Sequence
<220>
<223> Synthetic
<220>
```

Page 58.

```
<221> misc_feature
<222> (4)..(4)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (8)..(9)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (19)..(19)
<223> "Xaa" may be any amino acid.
<220>
<400> 93
Ser Asp Pro Xaa Gln Arg Gln Xaa Xaa Lys Lys Gly Asp Phe Trp Lys
Thr Trp Xaa Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Xaa Leu Asp 20 30
Gln
<210> 94
<211> 33
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 94
Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val
Asn
        95
<210>
<211>
        53
<212> PRT
      Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (4)..(4)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (7)..(7)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (41)..(41)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (50)..(50)
<223> "Xaa" may be any amino acid.
<400> 95
Val Asp Gly Xaa Asp Val Xaa Glu Val Lys Leu Leu Arg Lys Glu Ser
Arg Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His 20 25 30
Glu Asp Asp Arg Lys Arg Asp Asn Xaa Leu Glu Leu Ser Gln Leu Glu
                                    Page 59.
```

35 40 45

```
Asn Xaa Asp Leu Asn
<210> 96
<211> 98
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<222> (3)..(3)
<223> "Xaa" may be any amino acid.
<220>
         misc_feature
(5)..(7)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<220>
<221> misc_feature
<222> (14)..(14)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature <222> (16)..(17)
         (16)..(17)
"Xaa" may be any amino acid.
<223>
         misc_feature
<222>
         (20)..(21)
"Xaa" may be any amino acid.
<223>
<220>
<220>
<221> misc_feature
<222> (23)..(23)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (27)..(27)
<223> "Xaa" may be any amino acid.
<220>
         misc_feature
(30)..(30)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221> misc_feature
<222> (64)..(64)
<223> "Xaa" may be any amino acid.
<220>
         misc_feature
(73)..(73)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
         misc_feature
(77)..(77)
"Xaa" may be any amino acid.
<221>
<222>
<220>
         misc_feature
(79)..(80)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
          misc_feature
         (83)..(84)
"Xaa" may be any amino acid.
<222>
<223>
<220>
```

Page 60.

```
<221> misc_feature
<222> (86)..(87)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (89)..(90)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (93)..(93)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (96)..(97)
<223> "Xaa" may be any amino acid.
<400> 96
Leu Glu Xaa Leu Xaa Xaa Xaa Leu Xaa Xaa Gln Lys Arg Xaa Asp Xaa
Xaa Leu Gln Xaa Xaa Val Xaa Val Asp Gly Xaa Asp Val Xaa Glu Val 20 25 30
Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr Gln _{35}
Leu Tyr Met Gln Leu Leu His Glu Asp Asp Arg Lys Arg Asp Asn Xaa 50 60
Leu Glu Leu Ser Gln Leu Glu Asn Xaa Asp Leu Asn Xaa Thr Xaa Xaa
Met Leu Xaa Xaa Ala Xaa Xaa Tyr Xaa Xaa Leu Glu Xaa Lys Tyr Xaa
85 90
Xaa Leu
<210> 97
<211> 80
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
        misc_feature
(2)..(3)
"Xaa" may be any amino acid.
<221>
<222>
<220>
<221> misc_feature
<222> (6)..(6)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (12)..(13)
<222> (12)...(13)<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(15)..(15)
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc feature
<222> (17)..(17)
<223> "Xaa" may be any amino acid.
<220>
        misc_feature
(19)..(19)
"Xaa" may be any amino acid.
<221>
<222>
<223>
<220>
<221> misc_feature
<222> (21)..(21)
<223> "Xaa" may be any amino acid.
```

```
<220>
<221> misc feature
<222> (24)..(24)
<223> "Xaa" may be any amino acid.
<220>
<2205
<221> misc_feature
<222> (27)..(28)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (32)..(32)
<223> "Xaa" may be any amino acid.
<221> misc_feature
<222> (37)..(37)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc feature
<222> (44)..(45)
<223> "Xaa" may be any amino acid.
<220>

<221> misc_feature
<222> (49)..(49)
<223> "Xaa" may be any amino acid.

<220>
<220>
<221> misc feature
<222> (52)..(53)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (62)...(62)
<223> "Xaa" may be any amino acid.
<221> misc feature
<222> (65)..(65)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (67)..(67)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (72)..(72)
<223> "Xaa" may be any amino acid.
<220>
221> misc_feature
<222> (75)..(75)
<223> "Xaa" may be any amino acid.
<400> 97
Tyr Xaa Xaa Asn Ala Xaa Gln Arg Asp Ala Pro Xaa Xaa Glu Xaa Asp
Xaa Ser Xaa Gl<br/>n Xaa Leu Gl<br/>n Xaa Leu Glu Xaa Xaa Met Glu As<br/>n Xaa 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}
Thr Gln Trp Leu Xaa Lys Leu Glu Asn Tyr Asp Xaa Xaa Asn Met Lys
Xaa Glu Met Xaa Xaa Asp Gln Gln Asn Ala Val Gln Asn Xaa Thr Ala
Xaa Met Xaa Glu Asp Gly Thr Xaa Leu Leu Xaa Gln Thr Ala Glu Gln 65 70 75 80
<210> 98
<211> 54
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
```

Page 62.

```
<220>
<221> misc feature
<222> (6)..(6)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (8)..(8)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (10)..(10)
<223> "Xaa" may be any amino acid.
<220>
         misc_feature
(12)..(14)
"Xaa" may be any amino acid.
<221>
<222>
<220>
<221> misc feature
<222> (17)..(17)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (21)..(21)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
\langle 222 \rangle (23)...(23) \langle 223 \rangle "Xaa" may be any amino acid.
<220>
<221> misc_feature
          (27)..(27)
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
<222> (34)..(36)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (38)..(39)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (41)..(41)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (43)..(45)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (47)..(49)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (51)..(53)
<223> "Xaa" may be any amino acid.
<400> 98
Thr Asn Lys Leu Glu Xaa Gln Xaa Leu Xaa Gln Xaa Xaa Xaa Leu Gln
Xaa Leu Gl<br/>n Gly Xaa As<br/>n Xaa Ala Leu Glu Xaa Arg Leu Gl<br/>n Ala Leu 20 30 \phantom{\bigg|}
Glu Xaa Xaa Xaa Gln Xaa Xaa Leu Xaa Ser Xaa Xaa Lys Xaa Xaa 40 45
Xaa Leu Xaa Xaa Xaa Leu
      50
```

```
<210> 99
<211> 33
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<2203
<221> misc_feature
<222> (6)..(6)
<223> "Xaa" may be any amino acid.
<220>
<220>
<221> misc_feature
<222> (10)..(10)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
       (12)...(14)
"Xaa" may be any amino acid.
<222>
<223>
<220>
<221> misc_feature
<222> (17)..(17)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (21)..(21)
<223> "Xaa" may be any amino acid.
<220>
<221> misc feature
<222> (23)..(23)
<223> "Xaa" may be any amino acid.
<220>
<221> misc_feature
<222> (27)..(27)
<223> "Xaa" may be any amino acid.
<400> 99
Thr Asn Lys Leu Glu Xaa Gln Xaa Leu Xaa Gln Xaa Xaa Xaa Leu Gln
Xaa Leu Gl<br/>n Gly Xaa As<br/>n Xaa Ala Leu Glu Xaa Arg Leu Gl<br/>n Ala Leu 25 30 \phantom{\bigg|}
Glu
<210> 100
<211> 496
<212> PRT
<213> Homo sapiens
<400> 100
Met Trp Gln Asp Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala 1 \phantom{\Big|} 5 \phantom{\Big|} 15
Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Asp Gly Lys Lys 20 30
Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro 35 40 45
Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala
50 60
Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu
65 75 80
Gln Val Leu Glu Asn Asp Met Glu Asn Asn Thr Gln Trp Leu Met Lys 85 90 95
```

PCT/US02/37660 WO 03/048185

Leu Glu Asn Tyr Asp Gln Asp Asn Met Lys Lys Glu Met Val Glu Asp 100 105 110Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Asp Glu Asp Gly 115 120 125 Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp 130 140 Val Glu Ala Gln Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu 145 150 155 160 Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Asp Leu Asp 165 170 175 Gln Thr Ser Glu Asp Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu 180 185 190 Lys Lys Val Leu Ala Met Glu Asp Lys His Asp Asp Gln Leu Gln Ser 195 200 205 Ser Asp Asp Glu Glu Leu Glu Lys Lys Asp Val Thr Ala Thr Val Asn 225 230 240 Asn Ser Val Leu Gln Lys Gln Gln His Asp Leu Met Glu Thr Val Asn 245 250 255 Asn Leu Leu Thr Met Met Ser Thr Ser Asn Ser Ala Lys Asp Pro Thr 260 270Val Ala Lys Glu Glu Gln Asp Ser Phe Arg Asp Cys Ala Glu Val Phe 275 280 285 Lys Ser Gly His Thr Thr Asn Gly Asp Tyr Thr Leu Thr Phe Pro Asn 290 295 300 Ser Thr Glu Glu Asp Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly Gly 305 315 320 Gly Trp Thr Asp Asp Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln 325 335 Arg Thr Trp Lys Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu 340 345 350Tyr Trp Leu Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu Lys Asp His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr 370 380Ser Leu Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg 385 390 395 400 Asp His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Asp Ser Ser Asp 405 410 415 Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys 420 425 430Cys Asp Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp 435 445 Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln 450 460Asn Thr Asn Lys Phe Asn Gly Asp Lys Trp Tyr Tyr Trp Lys Gly Ser Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Asp Arg Pro Ala Asp Phe 485 490 495 <210> <211> 101 PRT

Homo sapiens

<400>

Met Leu Cys Gln Pro Ala Met Leu Leu Asp Gly Leu Leu Leu Leu Ala Page 65.

Thr Met Ala Ala Ala Gln His Arg Gly Pro Glu Ala Gly Gly His Arg 25 30 Gln Asp His Gln Val Arg Arg Gly Gln Cys Ser Tyr Thr Phe Val Val $\frac{35}{40}$ Pro Glu Pro Asp Asp Cys Gln Leu Ala Pro Thr Ala Ala Pro Glu Ala 50 55 60 Leu Gly Gly Ser Asn Ser Leu Gln Arg Asp Leu Pro Ala Ser Arg Leu 65 70 75 His Leu Thr Asp Trp Arg Ala Gln Arg Ala Gln Arg Val Ser Gln Leu Glu Lys Asp Leu Glu Asn Asn Thr Gln Trp Leu Leu Lys 100 105 110Leu Glu Gln Ser Asp Lys Val Asn Leu Arg Ser His Leu Val Gln Ala 115 120 125 Gln Gln Asp Thr Asp Gln Asn Gln Thr Thr Thr Met Leu Ala Leu Gly 130 140 Ala Asn Leu Met Asn Gln Thr Lys Ala Gln Thr His Lys Leu Thr Ala 145 150 160 Val Glu Ala Gln Val Leu Asn Gln Thr Leu His Met Lys Thr Gln Met 165 170 175 Leu Glu Asn Ser Leu Ser Thr Asn Lys Leu Glu Arg Gln Met Leu Met 180 190 Gln Ser Arg Glu Leu Gln Arg Leu Gln Gly Arg Asn Arg Ala Leu Glu 195 200 205 Thr Arg Leu Gln Ala Leu Glu Ala Gln His Gln Ala Gln Leu Asn Ser 210 220 Leu Gln Glu Lys Arg Glu Gln Leu His Ser Leu Leu Gly His Gln Thr 225 230 240 Gly Thr Leu Ala Asn Leu Lys His Asn Leu His Ala Leu Ser Ser Asp Ser Ser Ser Leu Gln Gln Gln Gln Gln Leu Thr Glu Phe Val Gln 260 265 270Arg Leu Val Arg Asp Val Ala Gln Asp Gln His Pro Val Ser Leu Lys 275 285 Thr Pro Lys Pro Val Phe Gln Asp Cys Ala Glu Asp Lys Arg Ser Gly 290 295 300 Val Asn Thr Ser Gly Val Tyr Thr Asp Tyr Glu Thr Asn Met Thr Lys Pro Leu Lys Val Phe Cys Asp Met Glu Thr Asp Gly Gly Gly Trp Thr 325 335 Leu Asp Gln His Arg Glu Asp Gly Ser Val Asn Phe Gln Arg Thr Trp 340 350 Glu Glu Tyr Lys Glu Gly Phe Gly Asn Val Ala Arg Glu His Trp Leu 355 360 365 Gly Asn Glu Ala Val His Arg Leu Thr Ser Arg Thr Ala Tyr Leu Leu 370 375 380 Arg Val Glu Leu His Asp Trp Glu Gly Arg Gln Thr Ser Asp Gln Tyr 385 390 395 400 Glu Asn Phe Gln Leu Gly Ser Glu Arg Gln Arg Tyr Ser Leu Ser Val 405 410 415 Asn Asp Ser Ser Ser Ser Ala Gly Arg Lys Asn Ser Leu Ala Pro Gln
420 425 430 Gly Thr Lys Phe Ser Thr Lys Asp Met Asp Asn Asp Asn Cys Met Cys 435 440 445Lys Cys Ala Gln Met Leu Ser Gly Gly Trp Trp Phe Asp Ala Cys Gly
450
460

PCT/US02/37660 WO 03/048185

Leu Ser Asn Leu Asn Gly Asp Tyr Tyr Ser Val His Gln His Leu His 465 470 475 480 Lys Asp Asn Gly Asp Arg Trp His Tyr Phe Arg Gly Pro Ser Tyr Ser 485 490 495 Leu His Gly Thr Arg Met Met Leu Arg Pro Met Gly Ala 500

<210> <211> 503

PRT

<213> Homo sapiens

<400> 102 Met Leu Ser Gln Leu Ala Met Leu Gln Gly Ser Leu Leu Leu Val Val Ala Thr Met Ser Val Ala Gln Gln Thr Arg Gln Glu Ala Asp Arg Gly 20 30 Cys Glu Thr Leu Val Val Gln His Gly His Cys Ser Tyr Thr Phe Leu 35 45 Leu Pro Lys Ser Glu Pro Cys Pro Pro Gly Pro Glu Val Ser Arg Asp 50 60 Ser Asn Thr Leu Gln Arg Glu Ser Leu Ala Asn Pro Leu His Leu Gly 65 70 75 Lys Leu Pro Thr Gln Gln Val Lys Gln Leu Glu Gln Ala Leu Gln Asn $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ Asn Thr Gln Trp Leu Lys Lys Leu Glu Arg Ala Asp Lys Thr Asp Leu 100 105 110 Arg Ser Lys Leu Glu Gln Val Gln Gln Gln Met Ala Gln Asn Gln Thr Ala Pro Met Leu Glu Leu Gly Thr Ser Leu Leu Asn Gln Thr Thr Ala 130 140 Gln Asp Arg Lys Leu Thr Asp Met Glu Ala Gln Leu Leu Asn Gln Thr 145 $\,$ 150 $\,$ 155 $\,$ 160 Ser Arg Met Asp Ala Gln Met Pro Glu Thr Phe Leu Ser Thr Asn Lys 165 170 175Leu Glu Asn Gln Leu Leu Gln Arg Gln Lys Leu Gln Gln Leu Gln 185 190 Gly Gln Asn Ser Ala Leu Glu Lys Arg Leu Gln Ala Leu Glu Thr Lys 195 200 205 Gln Gln Glu Glu Leu Ala Ser Asp Leu Ser Lys Lys Ala Lys Leu Leu 210 215 220 Asn Thr Leu Ser Arg Gln Ser Ala Ala Leu Thr Asn Asp Glu Arg Gly 225 230 235 Leu Arg Gly Val Arg His Asn Ser Ser Leu Leu Gln Asp Gln Gln His Ser Leu Arg Gln Leu Leu Val Leu Leu Arg His Leu Val Gln Glu Arg 260 265 270Ala Asn Ala Ser Ala Pro Ala Phe Asp Met Ala Gly Glu Gln Val Phe 275 280 285Gln Asp Cys Ala Glu Asp Gln Arg Ser Gly Ala Ser Ala Ser Gly Val 290 295 300 Tyr Thr Asp Gln Val Ser Asn Ala Thr Lys Pro Arg Lys Val Phe Cys 305 310 315 Asp Leu Gln Ser Ser Gly Gly Arg Trp Thr Leu Asp Gln Arg Arg Glu 325 330 Asn Gly Thr Val Asn Phe Gln Arg Asn Trp Lys Asp Tyr Lys Gln Gly 340 345Phe Gly Asp Pro Ala Gly Glu His Trp Leu Gly Asn Glu Val Val His Page 67.

355 360 365

Gln Leu 370 Thr Arg Arg Ala Ala 375 Tyr Ser Leu Arg Val Glu Leu Gln Asp 385 Glu Glu Gly His Glu Ala 375 Tyr Ala Gln Tyr Glu His Phe His Leu Gly 400 Ser Glu Asn Gln Leu 405 Tyr Arg Leu Ser Val Val Gly Tyr Ser Gly Ser Ala Gly Arg Gln Ser Ser Leu Val Leu Gln Asn Thr Ser Phe Ser Thr 430 Ser Gly Asp Asp Asp Asp Ala Gly Tyr Ser Gly Met Asp Gly Tyr Ser Gly Met Asp Gly Tyr Ser Gly Met Asp Gly Tyr Ser Gly Ser Thr Ala Gly Arg Gln Ser Ser Leu Val Leu Gln Asn Thr Ser Phe Ser Thr Aso Gly Asp Asp Ala Gln Val Met Asp Gly Gly Trp Trp Phe Asp Ala Cys Gly Leu Ser Asn Leu Asn Gly Val Tyr Tyr His Ala Pro Asp Asn Lys Tyr Lys Met Asp Gly Asp Arg Ala Gro Hei Asp Gly Asp Arg Ala Ser Arg Met Asp Asp Asp Asp Asp Asp Asp Asp Ala Ser Arg Ala Ser Arg Ala Ser Arg Met Asp Asp Asp Ala Ser Arg Ala Ser Ala Ser Arg Ala Ser Ala Se

<210> 103

<211> 406 <212> PRT

<212> PRT <213> Homo sapiens

<400> 103

Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala 1 10 15 Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser 20 25 30Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu 35 45 Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser 50Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys 65 70 75 80Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg Val Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln
100 105 110 Asn Ser Arg Asp Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg 115 120 125His Leu Glu Lys Gln His Leu Arg Asp Gln His Leu Gln Ser Gln Phe 130 140Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala 145 150 155 160 Arg Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His 165 170 175 Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe 180 185 190 Gln Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Asp Gln Pro Gln Gly Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp 210 220Thr Val Asp Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro 225 230 235 Trp Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp 245 250 255

 Leu
 Gly
 Leu
 Glu 260
 Lys
 Val
 His
 Ser
 Asp 265
 Thr
 Gly
 Asp Arg
 Asn Arg 270
 Ser
 Arg 270

 Leu
 Ala
 Val
 Gln
 Leu
 Arg Asp Asp Asp Gly
 Asn Ala Glu Leu
 Leu Gln

 Phe
 Ser
 Val
 His
 Leu
 Gly
 Glu Asp Thr
 Ala
 Tyr Ser
 Leu Gln
 Leu

 Thr
 Ala
 Pro
 Val
 Ala
 Gly
 Glu Asp Thr
 Ala
 Tyr Val
 Pro
 Pro
 Ser

 305
 Ala
 Pro
 Val
 Ala
 Gly
 Ala
 Thr
 Thr
 Ala
 Thr
 Thr
 Ala
 Thr
 Thr
 Ala
 Thr
 Thr
 Ala
 Ala

<210> 104

<211> 459 <212> PRT

<213> Homo sapiens

<400> 104

Met Phe Thr Asp Lys Leu Leu Phe Asp Val Pro Leu Val Asp Ser Ser Arg Asp Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Asp Leu Ala Asn 35 40 45 Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr 50 60 Lys Gly Gln Asp Asn Asp Asp Phe Gln Lys Leu Asn Asp Phe Asp Gln 65 70 75 80 Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser Glu Asp Lys Glu Glu Glu 90 95 Lys Glu Leu Arg Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu 115 120 125 Glu Glu Lys Asp Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Glu Gln 130 140Leu Thr Asn Leu Asp Gln Asn Gln Pro Glu Thr Pro Glu His Pro Glu 145 $$ 150 $$ 155 $$ 160 Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Asp Lys Asp Leu Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln 180 185 190His Ser Gln Asp Lys Glu Asp Glu Asn Gln Leu Arg Arg Thr Ser Asp 195 200 205Gln Glu Pro Thr Glu Asp Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg 210 220 Thr Thr Pro Phe Leu Gln Leu Asn Glu Asp Arg Asn Val Lys His Asp 225 230 235 Gly Asp Pro Ala Glu Cys Thr Thr Asp Tyr Asn Arg Gly Glu His Thr 245 250 255

 Ser
 Gly
 Met
 Tyr
 Ala
 Asp
 Arg
 Pro
 265
 Asn
 Ser
 Gln
 Val
 Pro
 Pro
 Trp
 Thr
 Leu
 Asp
 Gln
 His
 Arg

 Asp
 Asp
 Val
 Asp
 Ser
 Gly
 Ser
 Pro
 Trp
 Thr
 Leu
 Asp
 Gln
 His
 Arg

 Asp
 Asp
 Gly
 Ser
 Asp
 Phe
 Asp
 His
 Trp
 Asp
 Asp
 Gly
 Asp
 Asp

<210> 105 <211> 493 <212> PRT <213> Homo sapiens

<400> 105

PCT/US02/37660 WO 03/048185

Ser Ala Arg Pro Val Pro Gln Pro Pro Pro Ala Ala Pro Pro Arg Val 210 215 220 Tyr Gln Pro Pro Thr Tyr Asn Arg Asp Asp Asn Gln Asp Ser Thr Asn 225 230 235 240 Glu Asp Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu Pro 245 250 255Thr Met Pro Thr Leu Thr Ser Leu Pro Ser Ser Thr Asp Lys Pro Ser 260 270 Gly Pro Trp Arg Asp Cys Leu Gln Ala Leu Glu Asp Gly His Asp Thr 275 280 285Ser Ser Asp Tyr Leu Val Lys Pro Glu Asn Thr Asn Arg Leu Met Gln 290 295 300 Val Trp Cys Asp Gln Arg His Asp Pro Gly Gly Trp Thr Val Asp Gln 305 315 320 Arg Arg Leu Asp Gly Ser Val Asn Phe Phe Arg Asn Trp Glu Thr Tyr 325 330 335Lys Gln Gly Phe Gly Asn Asp Asp Gly Glu Tyr Trp Leu Gly Leu Glu 340 345 350Asn Asp Tyr Trp Leu Thr Asn Gln Gly Asn Tyr Lys Leu Leu Val Thr 355 360 365Met Glu Asp Trp Ser Gly Arg Lys Val Phe Ala Glu Tyr Ala Ser Phe 370 380Arg Leu Glu Pro Glu Ser Glu Tyr Tyr Lys Leu Arg Leu Gly Arg Tyr 385 395 Leu Gly Arg Tyr 400 His Gly Asn Ala Gly Asp Ser Phe Thr Trp His Asn Gly Lys Gln Phe
405
415 Thr Thr Leu Asp Arg Asp His Asp Val Tyr Thr Gly Asn Cys Ala His
420
430 Tyr Gln Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu 435 440 445 Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Arg Tyr Gln Asp 450 460Gly Val Tyr Trp Ala Glu Phe Arg Gly Gly Ser Tyr Ser Leu Lys Lys 465 470 475 480 Val Val Met Met Asp Arg Pro Asn Pro Asn Thr Phe His

Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser
50 60 Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg Page 71.

¹⁰⁶ <210>

<211><212> 407 PRT

Homo sapiens

<220>

<222>

misc feature (222)..(222)
"Xaa" may be any amino acid. <223>

<400>

or 90 os

Val Asp Pro Glu Val Ala Leu His Ser Leu Gln Thr Gln Leu Lys Ala 100 105 110 Gln Asn Ser Arg Asp Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln 115 125 Arg His Leu Glu Lys Gln His Leu Arg Asp Gln His Leu Gln Ser Gln 130 140 Phe Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro 145 155 160 Ala Arg Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala 165 170 175 His Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu 180 185 190 Phe Gln Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Asp Gln Pro Gln 195 200 205 Gly Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Xaa Gly Gly 210 215 220 Trp Thr Val Asp Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg 225 230 235 240 Pro Trp Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp Leu Gly Leu Glu Lys Val His Ser Asp Thr Gly Asp Arg Asn Ser 260 270 Arg Leu Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu 275 280 285 Gln Phe Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln 290 295 300 Leu Thr Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro 305 310 315Ser Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asn Leu 325 335 Arg Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe 340 345 350 Gly Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Asp 355 365Pro Gln Gln Arg Gln Lys Leu Lys Lys Gly Asp Phe Trp Lys Thr Trp 370 380 Arg Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Asp Gln Pro 385 390 395 Met Ala Ala Glu Ala Ala Ser 405

405

<210> 107

<211> 288 <212> PRT

<213> Homo sapiens

<400> 107

Met Asp Leu Leu Trp Asp Leu Pro Ser Leu Trp Leu Leu Leu Leu Gly 15

Gly Pro Ala Cys Leu Lys Thr Gln Glu His Pro Ser Cys Pro Gly Pro Arg Glu Leu Glu Ala Ser Lys Val Val Leu Leu Pro Ser Cys Pro Gly Ala Pro Gly Ser Pro Gly Glu Lys Gly Ala Pro Gly Pro Arg 65

Asn Cys Arg Glu Leu Leu Ser Gln Gly Ala Thr Leu Ser Gly Trp Tyr 95

His Leu Cys Leu Pro Glu Gly Arg Ala Leu Pro Val Phe Cys Asp Met 100

Asp Thr Glu Gly Gly Gly Trp Leu Val Phe Gln Arg Arg Gln Asp Gly 125

Ser Val Asp Phe Phe Arg Ser Trp Ser Ser Tyr Arg Ala Gly Phe Gly 135

Ass Gln Glu Ser Glu Phe Trp Leu Gly Asn Glu Asn Leu His Gln Leu His Gln Leu Gly Asn Arg Man Arg Arg Gln Asp Phe Gly 155

Asn Arg Thr Phe Ala His Tyr Ala Thr Phe Arg Leu Gly Asn Glu Leu Glu Asp Phe Asn 175

Gly Asn Arg Thr Phe Ala His Tyr Ala Thr Phe Arg Leu Leu Gly Gly Glu Val Asp His Tyr Gln Leu Ala Leu Gly Lys Phe Ser Glu Gly Thr Ala 200

Ala Asp His Asp Ser Leu Ser Leu His Ser Gly Arg Pro Phe Thr Thr Tyr Asp 215

Ala Asp His Asp Ser Ser Asn Ser Asn Cys Ala Val Asp Val His Gly 240

Ala Trp Trp Tyr Ala Ser Cys Tyr Arg Ser Asn Leu Asn Gly Arg Tyr Gly Arg Arg Tyr Gly Arg Pro Phe Tyr Ala Ser Gly Arg Arg Arg Val Arg Met Leu Arg 285

Gly Arg Gly Val Gly His Pro Tyr Arg Arg Val Arg Met Leu Arg 285

<400> 108

Page 73.

<210> 108

<211> 346 <212> PRT

<213> Homo sapiens

Asp His Arg Leu Ser Arg Gln Pro Thr Arg Leu Arg Val Glu Met Glu 210 220 Asp Trp Glu Gly Asn Leu Arg Tyr Ala Glu Tyr Ser His Phe Val Leu 225 230 240 Gly Asn Glu Leu Asn Ser Tyr Arg Leu Phe Leu Gly Asn Tyr Thr Gly 245 250 255 Asn Val Gly Asn Asp Ala Leu Gln Tyr His Asn Asn Thr Ala Phe Ser 260 270 Thr Lys Asp Lys Asp Asn Asp Asn Cys Leu Asp Lys Cys Ala Gln Leu 275 280 285 Arg Lys Gly Gly Tyr Trp Tyr Asn Cys Cys Thr Asp Ser Asn Leu Asn 290 295 300 Gly Val Tyr Tyr Arg Leu Gly Glu His Asn Lys His Leu Asp Gly Asp 305 315 320 Thr Trp Tyr Gly Trp His Gly Ser Thr Tyr Ser Leu Lys Arg Val Glu 325 330 335 Met Lys Asp Arg Pro Glu Asp Phe Lys Pro <210> <211> 109 346 PRT Homo sapiens <400> 109 Met Leu Lys Lys Pro Leu Ser Ala Val Thr Trp Leu Cys Ile Phe Ile 1 10 15 Val Ala Phe Val Ser His Pro Ala Trp Leu Gln Lys Leu Ser Lys His Lys Thr Pro Ala Gln Pro Gln Leu Lys Ala Ala Asn Cys Cys Glu Glu
35 40 45 Val Lys Glu Leu Lys Ala Gln Val Ala Asn Leu Ser Ser Leu Leu Ser 50 60 Glu Leu Asn Lys Lys Gln Glu Arg Asp Trp Val Ser Val Val Met Gln 65 70 80Val Met Glu Leu Glu Ser Asn Ser Lys Arg Met Glu Ser Arg Leu Thr 85 90 95 Asp Ala Glu Ser Lys Tyr Ser Glu Met Asn Asn Gln Ile Asp Ile Met 100 110 Gln Leu Gln Ala Ala Gln Thr Val Thr Gln Thr Ser Ala Asp Ala Ile 115 120 125 Tyr Asp Cys Ser Ser Leu Tyr Gln Lys Asn Tyr Arg Ile Ser Gly Val Tyr Lys Leu Pro Pro Asp Asp Phe Leu Gly Ser Pro Glu Leu Glu Val Phe Cys Asp Met Glu Thr Ser Gly Gly Gly Trp Thr Ile Ile Gln Arg 165 170 175Arg Lys Ser Gly Leu Val Ser Phe Tyr Arg Asp Trp Lys Gln Tyr Lys Gln Gly Phe Gly Ser Ile Arg Gly Asp Phe Trp Leu Gly Asn Glu His 195 200 205 Ile His Arg Leu Ser Arg Gln Pro Thr Arg Leu Arg Val Glu Met Glu 210 220Asp Trp Glu Gly Asn Leu Arg Tyr Ala Glu Tyr Ser His Phe Val Leu 225 230 235 Gly Asn Glu Leu Asn Ser Tyr Arg Leu Phe Leu Gly Asn Tyr Thr Gly 245 250 255

Asn Val Gly Asn Asp Ala Leu Gln Tyr His Asn Asn Thr Ala Phe Ser

PCT/US02/37660 WO 03/048185

Thr Lys Asp Lys Asp Asn Asp Asn Cys Leu Asp Lys Cys Ala Gln Leu 275 280 285 Arg Lys Gly Gly Tyr Trp Tyr Asn Cys Cys Thr Asp Ser Asn Leu Asn 290 300 Gly Val Tyr Tyr Arg Leu Gly Glu His Asn Lys His Leu Asp Gly Ile 305 310 315 Thr Trp Tyr Gly Trp His Gly Ser Thr Tyr Ser Leu Lys Arg Val Glu

Met Lys Ile Arg Pro Glu Asp Phe Lys Pro

PRT

Homo sapiens

<400> 110 Met Lys Thr Phe Thr Trp Thr Leu Gly Val Leu Phe Phe Leu Leu Val Asp Thr Gly His Cys Arg Gly Gly Gln Phe Lys Asp Lys Asp Asn 20 Gln Arg Arg Tyr Pro Arg Ala Thr Asp Gly Lys Glu Glu Ala Lys Lys 35 40 Cys Ala Tyr Thr Phe Leu Val Pro Glu Gln Arg Asp Thr Gly Pro Asp 50 60 Cys Val Asn Thr Lys Gly Gln Asp Ala Ser Thr Asp Lys Asp Met Asp 65 70 80Thr Arg Met Asp Leu Glu Asn Leu Lys Asp Val Leu Ser Arg Gln Lys 85 90 Arg Glu Asp Asp Val Leu Gln Leu Val Val Asp Val Asp Gly Asn Asp 100 105 Val Asn Glu Val Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser 115 120 125 Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu Asp Asp Arg Lys Arg Asp Asn Ser Leu Glu Leu Ser Gln Leu Glu Asn Lys Asp Leu Asn 145 150 160 Val Thr Thr Glu Met Leu Lys Met Ala Thr Arg Tyr Arg Glu Leu Glu 165 170 175 Val Lys Tyr Ala Ser Leu Thr Asp Leu Val Asn Asn Gln Ser Val Met 180 185 190 Asp Thr Leu Leu Glu Glu Gln Cys Leu Arg Asp Phe Ser Arg Gln Asp 195 200 205 Thr His Val Ser Pro Pro Leu Val Gln Val Val Pro Gln His Asp Pro 210 220 Asn Ser Gln Gln Tyr Thr Pro Gly Leu Leu Gly Gly Asn Glu Asp Gln 225 235 240 Arg Asp Pro Gly Tyr Pro Arg Asp Leu Met Pro Pro Pro Asp Leu Ala 245 250 255 Thr Ser Pro Thr Lys Ser Pro Phe Lys Asp Pro Pro Val Thr Phe Asp 260 270 Asn Glu Gly Pro Phe Lys Asp Cys Gln Gln Ala Lys Glu Ala Gly His 275 280 285

Ser Val Ser Gly Asp Tyr Met Asp Lys Pro Glu Asn Ser Asn Gly Pro 290 295 300

Met Gln Leu Trp Cys Glu Asn Ser Leu Asp Pro Gly Gly Trp Thr Val 305 310 315 320

Asp Gln Lys Arg Thr Asp Gly Ser Val Asn Phe Phe Arg Asn Trp Glu 325 330 335Asn Tyr Lys Lys Gly Phe Gly Asn Asp Asp Gly Glu Tyr Trp Leu Gly Leu Glu Asn Asp Tyr Met Leu Ser Asn Gln Asp Asn Tyr Lys Leu Leu 355 360 365 Asp Glu Leu Glu Asp Trp Ser Asp Lys Lys Val Tyr Ala Glu Tyr Ser 370 380 Ser Phe Arg Leu Glu Pro Glu Ser Glu Phe Tyr Arg Leu Arg Leu Gly 385 395 400 Thr Tyr Gln Gly Asn Ala Gly Asp Ser Met Met Trp His Asn Gly Lys 405 410 415Gln Phe Thr Thr Leu Asp Arg Asp Lys Asp Met Tyr Ala Gly Asn Cys 420 425 430Ala His Phe His Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Lys His $_{450}^{450}$ Gln Asp Gly Asp Phe Trp Ala Glu Tyr Arg Gly Gly Ser Tyr Ser Leu 465 470 475 Arg Ala Val Gln Met Met Asp Lys Pro Asp Asp 485 490

<210><211> 111

Homo sapiens

<400>

Met Phe Thr Asp Lys Leu Leu Phe Asp Val Pro Leu Val Asp Ser Ser Arg Asp Asp Gln Asp Asn Ser Ser Phe Asp Ser Leu Ser Pro Glu Pro Lys Ser Arg Phe Ala Met Leu Asp Asp Val Lys Asp Leu Ala Asn 35 40 45 Gly Leu Leu Gln Leu Gly His Gly Leu Lys Asp Phe Val His Lys Thr 50 60Lys Gly Gln Asp Asn Asp Asp Phe Gln Lys Leu Asn Asp Phe Asp Gln 65 70 75 80 Ser Phe Tyr Asp Leu Ser Leu Gln Thr Ser Glu Asp Lys Glu Glu Glu 95 Lys Glu Leu Arg Arg Thr Thr Tyr Lys Leu Gln Val Lys Asn Glu Glu 100 105 110Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu 115 120 125 Glu Glu Lys Asp Leu Leu Gln Gln Lys Val Lys Tyr Leu Glu Glu Gln 130 140 Leu Thr Asn Leu Asp Gln Asn Gln Pro Glu Thr Pro Glu His Pro Glu 145 150 160 Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Asp Lys 165 170 175 Asp Leu Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln 180 185His Ser Gln Asp Lys Glu Asp Glu Asn Gln Leu Arg Arg Thr Ser Asp Gln Glu Pro Thr Glu Asp Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg 210 215 220 Thr Thr Pro Phe Leu Gln Leu Asn Glu Asp Arg Asn Val Lys His Asp

Page 76.

Gly Asp Pro Ala Glu Cys Thr Thr Asp Tyr Asn Arg Gly Glu His Thr 245 255 Ser Gly Met Tyr Ala Asp Arg Pro Ser Asn Ser Gln Val Phe His Val 260 270 Tyr Cys Asp Val Asp Ser Gly Ser Pro Trp Thr Leu Asp Gln His Arg 275 280 285 Asp Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr 290 300 Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly Leu Glu Lys Asp 305 315 320 Tyr Ser Asp Val Lys Gln Ser Asn Tyr Val Leu Arg Asp Glu Leu Glu 325 330 335 Asp Trp Lys Asp Asn Lys His Tyr Asp Glu Tyr Ser Phe Tyr Leu Gly $340 \hspace{1cm} 345$ Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Asp Thr Gly Asn 355 365Val Pro Asn Ala Asp Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp 370 375 380 Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly 385 390 395 400 Gly Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys 405 410 415Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu 420 425 Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Asp Lys Ser Thr Lys ${435} \\ {440}$ Met Leu Asp His Pro Thr Asp Ser Glu Ser Phe Glu 450 460 PRT Homo sapiens Met Gly Lys Pro Trp Leu Arg Ala Leu Gln Leu Leu Leu Leu Gly
1 10 15 Ala Ser Trp Ala Arg Ala Gly Ala Pro Arg Cys Thr Tyr Thr Phe Val 20 30Leu Pro Pro Gln Lys Phe Thr Gly Ala Val Cys Trp Ser Gly Pro Ala 35Ser Thr Arg Ala Thr Pro Glu Ala Ala Asn Ala Ser Glu Leu Ala Ala 50 $\,$ Leu Arg Met Arg Val Gly Arg His Glu Glu Leu Leu Arg Glu Leu Gln 65 70 80 Arg Leu Ala Ala Asp Gly Ala Val Ala Gly Glu Val Arg Ala Leu 85 90 95 Arg Lys Glu Ser Arg Gly Leu Ser Ala Arg Leu Gly Gln Leu Arg Ala 100 105 110 Gln Leu Gln His Glu Ala Gly Pro Gly Ala Gly Pro Gly Ala Asp Leu 115 125 Gly Ala Glu Pro Ala Ala Ala Leu Ala Leu Leu Gly Glu Arg Val Leu 130 140 Asn Ala Ser Ala Glu Ala Gln Arg Ala Ala Ala Arg Phe His Gln Leu 145 150 155 160 Asp Val Lys Phe Arg Glu Leu Ala Gln Leu Val Thr Gln Gln Ser Ser Leu Asp Ala Arg Leu Glu Arg Leu Cys Pro Gly Gly Ala Gly Gln

Page 77.

Gln Gln Val Leu Pro Pro Pro Pro Leu Val Pro Val Val Pro Val Arg 195 200 205 Leu Val Gly Ser Thr Ser Asp Thr Ser Arg Met Leu Asp Pro Ala Pro 210 220 Glu Pro Gln Arg Asp Gln Thr Gln Arg Gln Glu Pro Met Ala Ser 225 230 235 Pro Met Pro Ala Gly His Pro Ala Val Pro Thr Lys Pro Val Gly Pro 245 250 255 Trp Gln Asp Cys Ala Glu Ala Arg Gln Ala Gly His Glu Gln Ser Gly 260 265 270 Val Tyr Glu Leu Arg Val Gly Arg His Val Val Ser Val Trp Cys Glu 275 285 Gln Gln Leu Glu Gly Gly Gly Trp Thr Val Asp Gln Arg Arg Gln Asp 290 300 Gly Ser Val Asn Phe Phe Thr Thr Trp Gln His Tyr Lys Ala Gly Phe 305 \$310\$Gly Arg Pro Asp Gly Glu Tyr Trp Leu Gly Leu Glu Pro Val Tyr Gln Leu Thr Ser Arg Gly Asp His Glu Leu Leu Val Leu Leu Glu Asp Trp 340 350Gly Gly Arg Gly Ala Arg Ala His Tyr Asp Gly Phe Ser Leu Glu Pro 355 365Glu Ser Asp His Tyr Arg Leu Arg Leu Gly Gln Tyr His Gly Asp Ala 370 380Gly Asp Ser Leu Ser Trp His Asn Asp Lys Pro Phe Ser Thr Val Asp 385 390 395 Gly Trp Trp Tyr His Ala Cys Ala His Ser Asn Leu Asn Gly Val Trp ${420} \hspace{1.5cm} 430$ His His Gly Gly His Tyr Arg Ser Arg Tyr Gln Asp Gly Val Tyr Trp 435 440 445Ala Glu Phe Arg Gly Gly Ala Tyr Ser Leu Arg Lys Ala Ala Met Leu 450 460Asp Arg Pro Leu Lys Leu 465 470 <210> 113 214 <211><212> <213> Homo sapiens <400> 113

Met Leu Cys Ala Ala Thr Ala Val Leu Leu Thr Ala Gln Gly Gly Pro
Val Gln Ser Lys Ser Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val
Leu Ala His Gly Leu Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala
Glu Arg Thr Arg Ser Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala
Cys Gly Ser Ala Cys Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu
Ala Pro Glu Thr Arg Val Asp Pro Glu Val Leu His Thr Leu Gln Thr
Gln Leu Lys Ala Gln Asn Thr Arg Ile Gln Gln Leu Phe His Lys Val

Ala Gln Gln Gln Arg His Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala Arg 150 Arg Lys Arg Leu Pro Glu Met Ala Gln Pro 160 Val Asp Pro Ala His Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp 175 Cys Gln Glu Leu Phe Gln Val Gly Glu Arg Gln Ser Gly Leu Phe Glu 180 Fro Gln Gly Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Gly Trp Thr

<210> 114 <211> 405 <212> PRT

<213> Homo sapiens

<400> 114

Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala 1 10 15 Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser 20 30 Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu 35 45 Leu Gln Leu Gly Gln Gly Cys Ala Asn Thr Gly Ala His Pro Gln Ser 50 60Ala Glu Arg Ala Gly Ala Arg Leu Ser Ala Cys Gly Ser Ala Cys Gln 65 70 80Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg Val Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln Asn 100 105 110Ser Arg Ile Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg His 115 120 125 Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe Gly 130 $\,$ 140 Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala Arg 145 150 160 Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn 165 170 175 Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe Gln 180 185 190 Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly Ser 195 200 205 Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp Thr Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro Trp 225 230 235 240 Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp Leu 245 250 255 Gly Leu Glu Lys Val His Ser Ile Thr Gly Asp Arg Asn Ser Arg Leu 260 265 270Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu Gln Phe 275 280 285 Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu Thr 290 300

Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro Ser Gly 320

Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg 335 Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr 355 Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro Gln Arg 370 Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg Gly Arg 377 Tyr Tyr Pro Leu Gln And Thr Thr Met Leu Ile Gln Pro Met Ala Glu Ala Ala Ser 405

<210> 115 <211> 410

<212> PRT

<213> Homo sapiens

<400> 115

Met Arg Cys Ala Pro Thr Ala Gly Ala Ala Leu Val Leu Cys Ala Ala 1 10 15 Thr Ala Gly Leu Leu Ser Ala Gln Gly Arg Pro Ala Gln Pro Glu Pro Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Leu Leu Ala His Gly Leu 35 40 45Leu Gln Leu Gly His Gly Leu Arg Glu His Val Glu Arg Thr Arg Gly 50 60 Gln Leu Gly Ala Leu Glu Arg Arg Met Ala Ala Cys Gly Asn Ala Cys
65 70 75 80 Gln Gly Pro Lys Gly Lys Asp Ala Pro Phe Lys Asp Ser Glu Asp Arg Val Pro Glu Gly Gln Thr Pro Glu Thr Leu Gln Ser Leu Gln Thr Gln 100 105 110Leu Lys Ala Gln Asn Ser Lys Ile Gln Gln Leu Phe Gln Lys Val Ala 115 120 125 Gln Gln Gln Arg Tyr Leu Ser Lys Gln Asn Leu Arg Ile Gln Asn Leu 130 140Gln Ser Gln Ile Asp Leu Leu Ala Pro Thr His Leu Asp Asn Gly Val 145 150 160 Asp Lys Thr Ser Arg Gly Lys Arg Leu Pro Lys Met Thr Gln Leu Ile 165 170 175 Gly Leu Thr Pro Asn Ala Thr His Leu His Arg Pro Pro Arg Asp Cys 180 185 190 Gln Glu Leu Phe Gln Glu Gly Glu Arg His Ser Gly Leu Phe Gln Ile 195 200 205 Gln Pro Leu Gly Ser Pro Pro Phe Leu Val Asn Cys Glu Met Thr Ser 210 215 220 Asp Gly Gly Trp Thr Val Ile Gln Arg Arg Leu Asn Gly Ser Val Asp 225 235 240 Phe Asn Gln Ser Trp Glu Ala Tyr Lys Asp Gly Phe Gly Asp Pro Gln
245 250 255 Gly Glu Phe Trp Leu Gly Leu Glu Lys Met His Ser Ile Thr Gly Asn 260 265 270 Arg Gly Ser Gln Leu Ala Val Gln Leu Gln Asp Trp Asp Gly Asn Ala 275 280 285 Lys Leu Clu Phe Pro Ile His Leu Gly Glu Asp Thr Ala Tyr Page 80.

295

Ser Leu Gln Leu Thr Glu Pro Thr Ala Asn Glu Leu Gly Ala Thr Asn 305 315 320 Val Ser Pro Asn Gly Leu Ser Leu Pro Phe Ser Thr Trp Asp Gln Asp 325 330 335His Asp Leu Arg Gly Asp Leu Asn Cys Ala Lys Ser Leu Ser Gly Gly 340 345 350Trp Trp Phe Gly Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe 355 360 365His Ser Ile Pro Arg Gln Arg Gln Glu Arg Lys Lys Gly Ile Phe Trp 370 375 380 Lys Thr Trp Lys Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Leu Leu 385 390 400 Ile Gln Pro Met Glu Ala Thr Ala Ala Ser

<210> <211> <212> 116 470 PRT

Homo sapiens

<400> 116

Met Gly Lys Pro Trp Leu Arg Ala Leu Gln Leu Leu Leu Leu Gly
1 10 15 Ala Ser Trp Ala Arg Ala Gly Ala Pro Arg Cys Thr Tyr Thr Phe Val $20 \hspace{1cm} 25 \hspace{1cm} 30$ Leu Pro Pro Gln Lys Phe Thr Gly Ala Val Cys Trp Ser Gly Pro Ala 35 40 45Ser Thr Arg Ala Thr Pro Glu Ala Ala Asn Ala Ser Glu Leu Ala Ala 50 55 60 Leu Arg Met Arg Val Gly Arg His Glu Glu Leu Leu Arg Glu Leu Glu 65 70 80 Arg Leu Ala Ala Asp Gly Ala Val Ala Gly Lys Val Arg Ala Leu 85 90 95 Arg Lys Glu Ser Arg Gly Leu Ser Ala Arg Leu Gly Gln Leu Arg Ala 100 105 110Gln Leu Gln His Glu Ala Gly Pro Gly Ala Gly Pro Gly Ala Asp Leu 115 120 Gly Ala Glu Pro Ala Ala Ala Leu Ala Leu Leu Gly Glu Arg Val Leu 130 140 Asn Ala Ser Ala Glu Ala Gln Arg Ala Ala Ala Arg Phe His Gln Leu Asp Val Lys Phe Arg Glu Leu Ala Gln Leu Val Thr Gln Gln Ser Ser 165 170 175Leu Ile Ala Arg Leu Glu Arg Leu Cys Pro Gly Gly Ala Gly Gln
180 185 190 Gln Gln Val Leu Pro Pro Pro Pro Leu Val Pro Val Val Pro Val Arg 195 200 205 Leu Val Gly Ser Thr Ser Asp Thr Ser Arg Met Leu Asp Pro Ala Pro 210 220 Glu Pro Gln Arg Asp Gln Thr Gln Arg Gln Gln Glu Pro Met Ala Ser 225 230 235 Pro Met Pro Ala Gly His Pro Ala Val Pro Thr Lys Pro Val Gly Pro 245 250 255 Trp Gln Asp Cys Ala Glu Ala Arg Gln Ala Gly His Glu Gln Ser Gly 260 270Val Tyr Glu Leu Arg Val Gly Arg His Val Val Ser Val Trp Cys Glu 275 280 285

 Gln
 Gln
 Glu
 Gly
 Gly
 Gly
 Trp
 Thr
 Val
 Ile
 Gln
 Arg
 Arg
 Gln
 Asp

 Gly
 Ser
 Val
 Asn
 Phe
 Thr
 Thr
 Trp
 Gln
 His
 Tyr
 Lyr
 Lyr
 Gln
 His
 Tyr
 Leu
 Glu
 Glu
 Tyr
 Trp
 Leu
 Gly
 Leu
 Glu
 Asp
 His
 Glu
 Asp
 His
 Glu
 Leu
 His
 Tyr
 Asp
 His
 Tyr
 Asp
 His
 Tyr
 Asp
 Gly
 Asp
 His
 Arg
 Ala
 His
 Arg
 Asp
 His
 Arg
 Arg

<210> 117 <211> 410

<212> PRT

<213> Homo sapiens

<400> 117

 Met 1
 Arg Cys
 Ala grage
 Pro 2
 Thr Ala Gly Leu Leu Ser
 Ala Gly Gly Arg Pro Ala Gln Gln Gly Gly Arg Pro Ala Gln Gln Gly Gly Arg Arg Arg Arg Glu Heu Ala His Gly Leu Arg Gln Leu Gln Leu Gly His Gly Leu Arg Glu His Val Glo Arg Thr Arg Gly Glo Gln Leu Gly Ala Leu Gly Arg Arg Arg Met Ala Ala Cys Gly Arg Arg Gly Arg Glo Arg Gly Arg Glo Gln Gly Pro Lys Gly Lys Asp Arg Arg Met Ala Ala Cys Gly Arg Sgo
 Ala Cys Gly Arg Gly Arg Arg Arg Met Ala Ala Cys Gly Arg Arg Gly Arg Glo Arg Glo

PCT/US02/37660 WO 03/048185

Asp Gly Gly Trp Thr Val Ile Gln Arg Arg Leu Asn Gly Ser Val Asp 225 230 235 240 Phe Asn Gln Ser Trp Glu Ala Tyr Lys Asp Gly Phe Gly Asp Pro Gln 245 250 255 Gly Glu Phe Trp Leu Gly Leu Glu Lys Met His Ser Ile Thr Gly Asp 260 265 270 Arg Gly Ser Gln Leu Ala Val Gln Leu Gln Asp Trp Asp Gly Asn Ala 275 280 285 Lys Leu Glu Phe Pro Ile His Leu Gly Gly Glu Asp Thr Ala Tyr 290 300 Ser Leu Gln Leu Thr Glu Pro Thr Ala Asn Glu Leu Gly Ala Thr Asn 305 310 315 320 Val Ser Pro Asn Gly Leu Ser Leu Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Gly Asp Leu Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe 355 365His Ser Ile Pro Arg Gln Arg Gln Glu Arg Lys Lys Gly Ile Phe Trp 370 380 Lys Thr Trp Lys Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Leu Leu 385 390 400 Ile Gln Pro Met Glu Ala Thr Ala Ala Ser 405 410

118 406

<212> PRT <213> Homo sapiens

<400> 118

Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala 1 15 Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser 20 30 Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu 35 40 45Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser 50 60 Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys 65 70 80 Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg 85 90 95 Val Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln 100 105 110Asn Ser Arg Ile Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg 115 120 125 His Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe 130 140 Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala 145 150 155 160 Arg Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe 180 190 Gln Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp

Page 83.

210 215 Thr Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro 225 230 235 Trp Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp
245 250 255 Leu Gly Leu Glu Lys Val His Ser Ile Thr Gly Asp Arg Asm Ser Arg 260 265 270 Leu Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu Gln 275 280 285 Phe Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu 290 295 300 Thr Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro Ser 310 310 315 320Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly 340 345 350Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro 355 360 Gln Gln Arg Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg 370 380 Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met 385 390 395 400 Ala Ala Glu Ala Ala Ser <210> 119 <211> PRT Homo sapiens <400> 119 Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala 1 5 10 15 Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys 20 30Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala 50 Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu
70 75 80 Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys <210> 120 13 PRT Gallus gallus <400> 120 Met Lys Lys Glu Met Val Glu Ile Gln Gln Asn Ala Val <211> 441 PRT <212> Gallus gallus <213> <400> 121 Met Arg Leu Ser Val Tyr Phe Thr Trp Gly Cys Ser Ile Val Leu Ala 1 10 15 Ala Gly Tyr Asn Ala Phe Gly Lys Gly Ala Glu Pro Ala Gly Lys Lys

Page 84.

Gln Tyr Gln Val Gln His Gly Pro Cys Ser Tyr Thr Phe Leu Leu Pro 35Glu Ala Asp Ser Cys Arg Pro Pro Tyr Val Pro Asn Ala Val Gln Arg 50 60 Asp Ala Pro Leu Asp Tyr Asp Asp Ser Val Gln Arg Leu Gln Leu Leu 65 70 75 80 Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Leu Lys Val Leu Asn 85 90 95 Gln Thr Thr Arg Leu Glu Leu Gln Leu Leu Glu His Ser Leu Ser Thr 100 105 110 Asn Lys Leu Glu Arg Gln Ile Ser Val Gln Thr Asn Glu Ile Thr Lys 115 120 125 Leu Gl
n Glu Lys Asn Ser Phe Leu Glu Lys Arg Val Leu Glu Met Glu
 $130 \hspace{1.5cm} 135 \hspace{1.5cm} 140 \hspace{1.5cm}$ Asp Lys His Thr Leu Gln Leu Lys Ser Ile Lys Asp Glu Lys Asp Gln 145 150 160 Leu Gln Val Leu Val Ala Arg Gln Asn Ser Ile Ile Glu Glu Leu Glu 165 170 175 Lys Gln Leu Val Thr Ala Thr Val Asn Asn Ser Val Leu Gln Lys Gln 180 185 190Gln His Asp Leu Met Glu Thr Val His Asn Leu Leu Thr Met Ile Ser 195 200 205 Thr Pro Asn Ser Ala Lys Lys Asn Phe Ile Ala Lys Glu Glu Gln Ile 210 220 Ser Phe Lys Asp Cys Ala Glu Ala Phe Lys Ser Gly Leu Thr Thr Ser 225 230 235 Gly Ile Tyr Thr Leu Thr Phe Pro Asn Ser Ala Gln Glu Lys Lys Ala 245 250 255 Tyr Cys Asp Met Glu Ser Asn Gly Gly Gly Trp Thr Val Leu Gln Arg 260 270 Arg Glu Asp Gly Ser Val Asp Phe His Arg Thr Trp Lys Glu Tyr Lys 275 280 285 Ile Gly Phe Gly Asp Pro Ala Gly Glu Tyr Trp Leu Gly Asn Glu Phe $290 \hspace{1cm} 295 \hspace{1cm} 300$ Val Ser Gln Leu Thr Asn Gln Lys Arg Tyr Val Leu Lys Ile Ile Leu 305 310 315Lys Asp Trp Glu Gly Asn Glu Ala Tyr Thr Leu Tyr Asp Gln Phe Tyr 325 330 335Leu Ala Asn Glu Glu Gln Lys Tyr Arg Ile His Leu Lys Gly Leu Thr 340 345 350 Ser Thr Lys Asp Ala Asp Asn Asp Lys Cys Ile Cys Lys Cys Ser Gln 370 380Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro Ser Asn Leu 385 395 400 Asn Gly Met Tyr Tyr Pro Leu Arg Gln Asn Asn Asn Lys Phe Asn Gly 415 Ile Lys Trp Tyr Trp Lys Gly Ser Gly Tyr Ser Leu Lys Ala Thr 420 430 Thr Met Met Ile Arg Pro Ala Asp Phe

<210> 122 <211> 444 <212> PRT

<213> Homo sapiens

<400> 122

Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala 1 10 15 Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys 20 30 Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro 35 45 Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala 50 55 Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys 85 90 95 Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp Gln Thr Ser Glu 115 120 125 Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu Lys Lys Val Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser Ile Lys Glu Glu 145 150 160 Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn Ser Ile Ile Glu 165 170 175 Glu Leu Glu Lys Lys Ile Val Thr Ala Thr Val Asn Asn Ser Val Leu 180 185 Gln Lys Gln Gln His Asp Leu Met Glu Thr Val Asn Asn Leu Leu Thr 195 200 205 Met Met Ser Thr Ser Asn Ser Ala Lys Asp Pro Thr Val Ala Lys Glu 210 215 220 Glu Gln Ile Ser Phe Arg Asp Cys Ala Glu Val Phe Lys Ser Gly His 225 235 240 Thr Thr Asn Gly Ile Tyr Thr Leu Thr Phe Pro Asn Ser Thr Glu Glu 245 250 255 Ile Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly Gly Gly Trp Thr Ile 260 265 270 Ile Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Thr Trp Lys 275 280 285Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu Lys 305 310 315 Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr Ser Leu Tyr Glu 325 330 335His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Ile His Leu Lys 340 345 350Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile Ser Gln Pro Gly 355 360 365 Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys Cys Ile Cys Lys 370 380 Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro 385 390 395 400 Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln Asn Thr Asn Lys 405 410 415Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser Gly Tyr Ser Leu 420 425

Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp Phe

<210> 123

<212> PRT

<213> Homo sapiens

<400> 123

Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala 1 10 15 Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser 20 30 Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu
35 40 45 Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys 65 75 80 Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg 85 90 95 Val Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln
100 105 110 Asn Asn Arg Ile Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg 115 120 125 His Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe 130 135 140 Gly Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala 145 150 160 Arg Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe 180 185 190 Gln Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp 210 215 Thr Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro 225 230 240 Trp Glu Thr Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp 245 250 255 Leu Gly Leu Glu Lys Val His Ser Ile Thr Gly Asp Arg Asn Ser Arg 260 270Leu Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu Gln 275 280 285 Phe Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu 290 300 Thr Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro Ser 305 310 315 320Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly 340 345 350Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro 355 365Gln Gln Arg Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg 370 380 Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met 385 390 395

Page 87.

Ala Ala Glu Ala Ala Ser 405

<210> 124

<211> 363 <212> PRT

<213> Homo sapiens

<400> 124

Met Arg Pro Leu Cys Val Thr Cys Trp Trp Leu Gly Leu Leu Ala Ala 1 5 10 15

Met Gly Ala Val Ala Gly Gln Glu Asp Gly Phe Glu Gly Thr Glu Glu 25

Gly Ser Pro Arg Glu Phe Ile Tyr Leu Asn Arg Tyr Lys Arg Ala Gly
35 45

Glu Ser Gln Asp Lys Cys Thr Tyr Thr Phe Ile Val Pro Gln Gln Arg 50 60

Val Thr Gly Ala Ile Cys Val Asn Ser Lys Glu Pro Glu Val Leu Leu 65 75 80

Glu Asn Arg Val His Lys Gln Glu Leu Glu Leu Leu Asn Asn Glu Leu 85 90 95

Leu Lys Gln Lys Arg Gln Ile Glu Thr Leu Gln Gln Leu Val Lys Val 100 100 100 110

Asp Gly Gly Ile Val Ser Glu Val Lys Leu Leu Arg Lys Glu Ser Arg 115 125

Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu 130 140

Ile Ile Arg Lys Arg Asp Asn Ala Leu Glu Leu Ser Gln Leu Glu Asn 145 150 155 160

Arg Ile Leu Asn Gln Thr Ala Asp Met Leu Gln Leu Ala Ser Lys Tyr 165 170 175

Lys Asp Leu Glu His Lys Tyr Gln His Leu Ala Thr Leu Ala His Asn 180 185 190

Gln Ser Glu Ile Ile Ala Gln Leu Glu Glu His Cys Gln Arg Val Pro $195 \hspace{1cm} 200 \hspace{1cm} 205$

Ser Ala Arg Pro Val Pro Gln Pro Pro Pro Ala Ala Pro Pro Arg Val 210 215 220

Tyr Gln Pro Pro Thr Tyr Asn Arg Ile Ile Asn Gln Ile Ser Thr Asn 225 230 235

Glu Ile Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu Pro 245 250 255

Thr Met Pro Thr Leu Thr Ser Leu Pro Ser Ser Thr Asp Lys Pro Ser 260 270

Glý Pro Trp Arg Asp Cys Leu Gln Ala Leu Glu Asp Gly His Asp Thr 275 280 285

Ser Ser Ile Tyr Leu Val Lys Pro Glu Asn Thr Asn Arg Leu Met Gln 290 295 300

Val Trp Cys Asp Gln Arg His Asp Pro Gly Gly Trp Thr Val Ile Gln

Arg Arg Leu Asp Gly Ser Val Asn Phe Phe Arg Asn Trp Glu Thr Tyr 325 330 335

Lys Gln Gly Phe Gly Asn Ile Asp Gly Glu Tyr Trp Leu Gly Leu Glu 340 345

Asn Ile Tyr Trp Leu Thr Asn Gln Gln Arg Ser

<210> 125

<211> 2336 <212> DNA

<213> Homo sapiens

Page 88.

PCT/US02/37660 WO 03/048185

<400> 125 atctgggtca gct	tgcagctg gttactgcat	ttctccatgt	ggcagacaga	gcaaagccac	60
aacgctttct ct	gctggatt aaagacggc	cacagaccag	aacttccact	atactactta	120
aaattacata ggt	tggcttgt caaattcaat	tgattagtat	tgtaaaagga	aaaagaagtt	180
ccttcttaca gct	ttggattc acggtccaaa	acaaaaatgc	agctgccatt	aaagtcacag	240
atgaacaaac tto	ctacactg atttttaaaa	tcaagaataa	gggcagcaag	tttctggatt	300
cactgaatca aca	agacacaa aaagacatca	tttacaacc	tcatttcaaa	atgaagactt	360
ttacctggac cct	taggtgtg ctattcttcc	tactagtgga	cactggacat	tgcagaggtg	420
gacaattcaa aat	ttaaaaaa ataaaccaga	gaagataccc	tcgtgccaca	gatggtaaag	480
aggaagcaaa gaa	aatgtgca tacacattco	tggtacctga	ccaaagaata	acagggccaa	540
tctgtgtcaa cad	ccaagggg caagatgcaa	gtaccattaa	agacatgatc	accaggatgg	600
accttgaaaa cct	tgaaggat gtgctctcca	ggcagaagcg	ggagatagat	gttctgcaac	660
tggtggtgga tgt	tagatgga aacattgtga	atgaggtaaa	gctgctgaga	aaggaaagcc	720
gtaacatgaa cto	ctcgtgtt actcaactct	atatgcaatt	attacatgag	attatccgta	780
agagggataa tto	cacttgaa ctttcccaac	: tggaaaacaa	aatcctcaat	gtcaccacag	840
aaatgttgaa gat	tggcaaca agatacaggg	aactagaggt	gaaatacgct	tccttgactg	900
atcttgtcaa taa	accaatct gtgatgatca	ctttgttgga	agaacagtgc	ttgaggatat	960
tttcccgaca aga	acacccat gtgtctcccc	cacttgtcca	ggtggtgcca	caacatattc	1020
ctaacagcca aca	agtatact cctggtctg	tgggaggtaa	cgagattcag	agggatccag	1080
gttatcccag aga	atttaatg ccaccacct	atctggcaac	ttctcccacc	aaaagccctt	1140
tcaagatacc acc	cggtaact ttcatcaato	aaggaccatt	caaagactgt	cagcaagcaa	1200
aagaagctgg gca	attcggtc agtggattta	tatgattaaa	cctgaaaaca	gcaatggacc	1260
aatgcagtta tgg	gtgtgaaa acagtttgga	ccctgggggt	tggactgtta	ttcagaaaag	1320
aacagacggc tct	tgtcaact tcttcagaaa	ttgggaaaat	tataagaaag	ggtttggaaa	1380
cattgacgga gaa	atactggc ttggactgga	aaatatctat	atcgttagca	atcaagataa	1440
ttacaagtta ttg	gattgaat tagaagactg	gagtgataaa	aaagtctatg	cagaatacag	1500
cagetttegt etg	ggaacctg aaagtgaatt	ctatagactg	cgcctgggaa	cttaccaggg	1560
aaatgcaggg gat	ttctatga tgtggcataa	tggtaaacga	cagagataaa	gatatgtatg	1620
caggaaactg cgo	cccacttt cataaaggag	gctggtggta	caatgcctgt	gcacattcta	1680
gcctaaatgg agt	tatggtac agaggaggco	attacagaag	caagcaccaa	gatggaattt	1740
tctgggccga ata	acagagge gggteatact	ccttaagagc	agttcagatg	atgatcaa g c	1800
ctattgactg aag	gagagaca ctcgccaatt	taaatgacac	agaactttgt	acttttcagc	1860
	aaatgtta catgtatatt				1920
	attttacc gtaactataa				1980
cgtcaattac tgo	cagaaaat tatgtgtato	cacaacctag	ttattttaaa	aattatgttg	2040
actaaataca aag	gtttggtt tctaaaatgt	aaatatttgc	cacaatgtaa	agcaaatctt	2100
agctatattt taa	aatcataa ataacatgtt	caagatactt	aacaatttat	ttaaaatcta	2160
agattgctct aad	cgtctagt gaaaaaaatt	tttaaaattt	cagccaaatg	atgcatttta	2220
	cagacaga aaattaggga	_			2280
ttcttccatt gaa	ataaaagt tatttcaaat	ccaaaaaaaa	aaaaaaaaa	aaaaaa	2336

<210> 126 <211> 2211 <212> DNA <213> Homo sapiens

<400> 126 gaaagctata g	gctacccat	tcagctcccc	tgtcagagac	tcaagctttg	agaaaggcta	60
gcaaagagca a	ggaaagaga	gaaaacaaca	aagtggcgag	gccctcagag	tgaaagcgta	120
aggttcagtc a	gcctgctgc	agctttgcag	acctcagctg	ggcatctcca	gactcccctg	180
aaggaagagc c	ttcctcacc	caaacccaca	aaagatgctg	aaaaagcctc	tctcagctgt	240
gacctggctc t	gcattttca	tcgtggcctt	tgtcagccac	ccagcgtggc	tgcagaagct	300
ctctaagcac a	agacaccag	cacagccaca	gctcaaagcg	gccaactgct	gtgaggaggt	360
gaaggagctc a	aggcccaag	ttgccaacct	tagcagcctg	ctgagtgaac	tgaacaagaa	420
gcaggagagg g	actgggtca	gcgtggtcat	gcaggtgatg	gagctggaga	gcaacagcaa	480
gcgcatggag t	cgcggctca	cagatgctga	gagcaagtac	tccgagatga	acaaccaaat	540
tgacatcatg c	agctgcagg	cagcacagac	ggtcactcag	acctccgcag	atgccatcta	600
cgactgctct t	ccctctacc	agaagaacta	ccgcatctct	ggagtgtata	agcttcctcc	660
tgatgacttc c	tgggcagcc	ctgaactgga	ggtgttctgt	gacatggaga	cttcaggcgg	720
aggctggacc a	tcatccaga	gacgaaaaag	tggccttgtc	tccttctacc	gggactggaa	780
gcagtacaag c	agggctttg	gcagcatccg	tggggacttc	tggctgggga	acgaacacat	840
ccaccggctc t	ccagacagc	caacccggct	gcgtgtagag	atggaggact	gggagggcaa	900
cctgcgctac g	ctgagtata	gccactttgt	tttgggcaat	gaactcaaca	gctatcgcct	960
cttcctgggg a	actacactg	gcaatgtggg	gaacacgccc	tccagtatca	taacaacaca	1020
gccttcagca c	caaggacaa	ggacaatgac	aactgcttgg	acaagtgtgc	acagctccgc	1080
aaaggtggct a	ctggtacaa	ctgctgcaca	gactccaacc	tcaatggagt	gtactaccgc	1140
· ctgggtgagc a	caataagca	cctggatggc	atcacctggt	atggctggca	tggatctacc	1200
tactccctca a	acgggtgga	gatgaaaatc	cgcccagaag	acttcaagcc	ttaaaaggag	1260
gctgccgtgg a	gcacggata	cagaaactga	gacacgtgga	gactggatga	gggcagatga	1320
ggacaggaag a	gagtgttag	aaagggtagg	actgagaaac	agcctataat	ctccaaagaa	1380
agaataagtc t	ccaaggagc	acaaaaaaat	catatgtacc	aaggatgtta	cagtaaacag	1440
gatgaactat t	taaacccac	tgggtcctgc	cacatccttc	tcaaggtggt	agactgagtg	1500
gggtetetet g	cccaagatc	cctgacatag	cagtagcttg	tcttttccac	atgatttgtc	1560
tgtgaaagaa a	ataattttg	agatcgtttt	atctattttc	tctacggctt	aggctatgtg	1620
agggcaaaac a	caaatccct	ttgctaaaaa	gaaccatatt	attttgattc	tcaaaggata	1680
ggcctttgag t	gttagagaa	aggagtgaag	gaggcaggtg	ggaaatggta	tttctatttt	1740
taaatccagt g	aaattatct	tgagtctaca	cattatttt	aaaacacaaa	aattgttcgg	1800
ctggaactga c	ccaggctgg	acttgcgggg	aggaaactcc	agggcactgc	atctggcgat	1860
cagactctga g	cactgcccc	tgctcgcctt	ggtcatgtac	agcactgaaa	ggaatgaagc	1920
accagcagga g	gtggacaga	gtctctcatg	gatgccggca	caaaactgcc	ttaaaatatt	1980
catagttaat a	caggtatat	ctatttttat	ttactttgta	agaaacaagc	tcaaggagct	2040
tccttttaaa t	tttgtctgt	aggaaatggt	tgaaaactga	aggtagatgg	tgttatagtt	2100
aataataaat g	ctgtaaata	agcatctcac	tttgtaaaaa	taaaatattg	tggttttgtt	2160
ttaaacattc a	acgtttctt	ttccttctac	aataaacact	ttcaaaatgt	g	2211
<210> 127 <211> 24082 <212> DNA <213> Homo				•		
<400> 127 tctccccaaa t	tcatctgta	gagtcaacac	aatctcaatc	aaaatcccag	cagtatttt	60

ttgtgcaaaa	tgagaagtcg	actctaagat	ttaaaatgaa	atctgaagaa	tctagaagat	120
acaaaataac	cttgaaaaat	aaagttgtag	gacataaact	atctgatttc	atcacttatt	180
tataagctac	aataatcaaa	acagcatggt	gctggcagca	aaaagacaaa	tagctcaatg	240
gaacacaata	ggaagcctaa	aatgaaacac	atacatatgc	aacacagatt	ttgatgtaag	300
cacaaaggaa	atgcagtaga	gacaaaaata	actttttaat	aaatgatgct	ggaacatttg	360
gatatgtata	catgcaaaaa	aatgaacttt	ggtccctatc	ccataccgta	tacaaaaatt	420
aattaaaagc	agatettate	ctttgagtcc	agtaggttga	ggctgcagtg	agctgtgatt	480
acaccactgc	attccagcct	gggcaacgga	gtgagaacct	gcctggagaa	aaaaaaaaa	540
aagtagaacc	tagacctgat	atacaaccta	aagcagtaat	atttctagaa	gaaatcctag	600
gagaaaatat	ttgtgatcgt	ggagatgaag	aatctatcaa	atactaaact	ttttttacca	660
ccttgaccaa	aagtaattgg	tttatatact	tcatcatatc	atttaattct	aaatctacag	720
agatcaatgt	cactttctca	gtaaaagtac	gtgagtcttc	aatgatgccc	tgaactcaca	780
ctcccaagta	aaccataaca	ccatatttcc	agagtagagt	ttattagaac	aataactggt	840
gataatgata	aatattgatc	aaagactgag	cctaggaagt	gggtttttg	aggctgcata	900
tactcaaggc	aattcttcag	aaccacagag	ggctcattgg	atcctattaa	aagctgagag	960
ttaatgaata	aacagataaa	acagagacct	gagtagacgg	tagtcgatat	tcttgtacat	1020
gtattctacc	tctagattcc	atagaaagaa	ctaaaagtac	atgaatttca	ctaccaacat	1080
ctccatcagt	taccagctgt	atcaccttgg	atcagtcagg	taacctcccg	cgaatttgct	1140
tccggggcag	gggatcgcgc	tgcaggtttg	agcctgggag	ccggcagggt	ggagcagttg	1200
gagggccaag	cctttgagct	ccaggggggg	tggccgggac	agtgggtagt	gccagccgat	1260
cggcgtcctg	gggattgcct	gaatgtgagg	tctgggttca	ccccgcggtg	acctgagtcc	1320
tgggatgccc	ctacagtgat	ttgctgcctc	agggatccga	agtctctttc	attcccttac	1380
tggggatttg	aggtctggag	gtactcctgc	gggggtctga	gatctcgggg	tcaccctgtg	1440
ggggtctgaa	gcctcgggtc	cccgctgggg	tctgaggtat	cagagtcccc	tccgttgggt	1500
ctgaggtctc	ggggtccccc	atccccggga	tcggaggtcc	ggctccccgg	agcaggcagg	1560
gcggtgcgtc	tggccctgac	agtaacgtgg	cgcgccagcc	ccaggtggtg	tcgggctagg	1620
ggggcataac	ggtgccgaaa	gtccgcacaa	agccgtccgc	tggggtcccg	ccgcgcccgc	1680
gaggcaatga	ctgtgccccc	tccccttcct	gatcctcagc	tcaggtgagc	ccagatgagg	1740
cgccgggtag	cttctaagtc	actaatggaa	atagaaggct	aattcagggg	ttaggggccg	1800
tcgtccttct	tactcgcagg	agaagagaaa	aacccacggc	ccagcagcca	gaggcgcggc	1860
gaggcggaat	cgggccccct	ccccgggggc	tcagctccct	ccagcctccc	gcctcaccta	1920
cagagaaatc	ccggaaacgc	ggattcagcg	gagcgcggtg	acggcggcgc	gctcaccccg	1980
cgcatgccca	gtgcccgcsc	gcgccgccag	gctcgcaagc	accgcgtagg	ccagctggcc	2040
ggatcccgcc	gtctgtcatg	gcggccccca	tcctgaaagg	tgaggtactt	cctgctgcct	2100
gctccagcag	cgggagtttg	aggaccggca	ccctcgtcg	cgggcgcact	cgggggatcc	2160
cgtgggagga	gccccgctcg	cccctccctc	gctgcctgtc	tcccccagac	cccctgccgc	2220
ctccttcctc	ccccgctgcc	tgtcccccca	aaacccccgg	ctgcctgctt	cgtctcccgt	2280
gctccctgtc	ccccaaacc	cccgactgcc	tgcttcctcc	cccgtactgc	ttgtgcccca	2340
acccccgtgc	tgctagttcc	cctcaatccc	ccgctgcctg	ctccctcccc	catgctgcct	2400
gtcccccaaa	tcccgccttt	cccctacct	gctttcaccc	ctgctgcctt	agtccctgga	2460
tctggggctc	actggcaggc	agagtcctgc	cctccggaag	ttggtgtggg	gccctcctgg	2520
gtctggtcct	gttcgacccc	ctctgaggcc	cacctggagg	agcggcagtt	gagtttctat	2580

gctaattgtt	ccaataatag	gagccgcctt	ttactgcgga	gtctttgtgt	gccaggcgct	2640
gtgcttaggc	tagtatggta	ttgtctgatt	tttttaaccg	ctctatcaac	tctcttatat	2700
cattgtacag	gcagaaacta	aggcattgga	cgtttaggtg	actctccctg	tgtgtggcta	2760
gtcagtgctg	acagggcctt	agaccggagc	tgctgtccta	accagtatat	gataccgcac	2820
gcagtcccac	cctctgtgca	cctggaagag	cccaggagag	gggaatagcg	gacacgtgtc	2880
ttgtagagtt	tgaccgtgag	aaaaaagggg	cctgtattgt	ggggcctgca	gtcataaaac	2940
ctcatagcca	aaagtaaaga	ctagaggctt	tatacaaagt	ctgtaatcag	atgtggctat	3000
ttttctaatg	ttagtatttt	gttaaattaa	cctggttttc	ttttagcgtt	acccccaatc	3060
attgaccaac	ggcacacctg	gaaaatgctt	ttaaacatca	ggttttgaga	agaggatatc	3120
cactagaaca	ggggtccact	cactatgccc	cccaggccat	atctagcctg	ctgcctgttt	3180
ttgtaagggt	ctacgagcta	agaatgtctt	ttacattttt	aagtgatttt	aaaaaaaggt	3240
caaatgaaaa	attatatcac	attcacattt	ccttctccat	aaataaagtt	ttattggaac	3300
acaggccggc	ccgttaatat	attacctatg	gttatgtttg	tgccacaacc	gtgaagttga	3360
gtagttgtgg	caaatactgt	attggccaca	aagcctgaaa	tatttaccat	ctgtctcttt	3420
acagaaaata	ggtttctgca	ctggaaaaat	taagcgtaag	aatttgggga	aagcaactaa	3480
ttttacaaat	gtaaactctc	atgtattgta	tgggtacagt	tgttctttgc	ttaaaatttt	3540
aataaattcc	actgaagcta	ttttgaaaag	gctttcagta	gaaatttatt	tatgagacag	3600
agtcttactc	tcttgcccag	gctggagcgc	agtgatgtga	tcacataata	gctcaagcaa	3660
ttctgcttca	gcctcctgag	taacttggga	ctacaggcac	taccatgccc	ggttattttt	3720
atttttattt	tttagtttat	tattttttg	tagagccagg	gtctcactat	gttgcctagg	3780
ctggtcttga	attcctagcc	tcaagcaatc	ctcccgcctc	caccttgcaa	aatgctggga	3840
ttacaggcat	gagctacttt	gttcagccag	tagaagaaac	ttcatttact	tttcttattt	3900
ttgaggcaag	gtctttctct	gctgcccagg	ctggagtgca	atggtgcgat	cataactcag	3960
cttctacctc	ctgggctcta	gggattctcc	cacctcagct	tctccaccct	acccaccccc	4020
atttcccacc	cagtagctgg	gactacagcc	actcgccacc	attcctggct	aattaaaaac	4080
aaaattttt	ttagagacag	ggtttcacta	tgttgcccag	gctggtctca	aactcctgtg	4140
cccaagtgat	cccactgcct	tggccttcca	gagtgctgca	attacagcat	gagccaccac	4200
acctggccag	tagagtaaat	ttttgtttta	ctttttctt	ttttttattt	ttgaaacggg	4260
tctcgccctg	tcacccaggc	tggagtgcaa	tggcgcaatc	tcggctcact	gcaacctctg	4320
cctcccgggt	tcaagtgatt	ctcctgcctc	agcctcccag	tagctgggat	tacaggtgcc	4380
cgccaccatg	ctcggctaat	tttttgtatc	ttttagtaga	gatggtttt	caccatgttg	4440
gcccggctgg	tctcaaaccc	ctgacttcgt	ggatccaccc	acttccgcct	cccacagtgc	4500
tgggattaca	ggcgtgagcc	actgtgccgg	cctcggttta	ctcttaaatg	taaatagaac	4560
aaaatctatt	gggcagggga	tgctggaatt	tcaaatgtat	rtttcatgtt	catatcttgt	4620
tttcagatgt	agtggcctat	gttgaagtgt	ggtcatccaa	tggaacagaa	aattattcaa	4680
agacatttac	aacacagctt	gtggatatgg	gggcaaaggt	aagacactta	ttttgctgtt	4740
gattcatatg	acagtcttct	gattggtaaa	aagttacatt	tgcattttct	tattttggga	4800
gtttttactt	agaatctgga	cgaagcaatg	ggtaagcggt	gggagaaaaa	agagccaaag	4860
tgtgaagaat	ttagaacagt	aggactttca	gaactcaatg	cctgtgggca	ttgagtgagg	4920
aggaggaacc	taggatgaaa	tgctggattc	ttacactggt	tacttgaatg	catagtgcta	4980
ttaagcaaag	tgaggaatac	aggaaaagga	acaggtttct	aagggaaaaa	ttgtaaattt	5040
gggcatactg	aaaatatctg	ttagatattt	ggatatacaa	gtctggagct	tggagtgttc	5100

aaggctagag	atgatgatct	agggggtcag	gaccataggg	gtcatgtgaa	gtcacaggtg	5160
tggacatcgt	cccatgtcag	gcatggttag	gatgaagagt	ggtgacagag	gagcgttgtt	5220
cagtattcaa	ggacaggcga	tgggagcagg	gacccagtga	cagagggaga	gaagaatgcc	5280
aggagaagga	gaaaggaagt	gtggaagtca	aagtagggag	taatttttt	tttttgagac	5340
ggagtttcgc	tctgtcgcta	ggctggagtg	cagtgacgcg	atctcagctc	actgcaatct	5400
ctgccttctg	ggttcaagcg	attgtcctgc	ctcagccttc	caagtatctg	ggactacagg	5460
cacatgccac	catgcctagc	taatttttt	ttttgtattt	ttagtaaaga	cggggtttca	5520
ccatgttggc	caggatggtc	tcaatctcct	gatctcgtga	tccgcccacc	teggeetece	5580
aaagtgctgg	gattacaggc	atgagccacc	gagcccggcc	aggagtaatt	ttttaattgc	5640
ctttcagaac	tagaatggag	taattttaaa	gatagaattt	ttaaaaacta	cagaaagttc	5700
aagaaaaata	ggatgggcaa	atgtactttg	gatttgaaca	ctgtaaggtc	attgctgaac	5760
ttagtgcagt	tttcagtgaa	atgggcagga	atcattgagc	tatgaggaaa	tggagatagc	5820
aaacaatttg	ccttattcaa	ggtttcttag	tatagccatc	tctgttatca	gatttactat	5880
cacgtactgc	ttgtgttcag	gtagcctcta	tttgacttaa	taatgtcctt	gataccaaat	5940
aggtatcttt	tgcccacgca	cactaaaccg	atcactttga	tgacgggttt	tacaaaaggg	6000
aaaagattca	ttcacaggga	agcccagcta	ggaggcagaa	gagtactcac	atcttcattc	6060
ccaaagataa	ggcttaggga	tatttatcag	ttagggaagt	agggtgatct	aagctgtggg	6120
gaaaaatgaa	gtacatgatc	tgcacaagca	tagttgggat	tcatggaatg	catgtttaga	6180
aaacaggcat	tattaggagg	ccaaggcagg	cggatcacct	gaggtcagga	gttcgagacc	6240
agcctggcca	acatagtgaa	accccatctc	tactaaaaat	acaaaaaaaa	gccaggtgtg	6300
gtggcacaca	cctgtagtct	cagtgattcg	ggaggctgag	gcaggagaat	cgtttgaacc	6360
tgggaggcgg	aggttgcatt	gagccgagat	tgcaccactg	cactccagcc	tgggcgacgg	6420
agtaagattc	tgtctccaaa	aaccaaaaaa	ataggcacta	gtaggatccg	atggtgaaga	6480
ttttggcctg	atgtcaaaag	gtcatttctt	gggcatttac	acaggcctgg	ttgaagagtt	6540
ggtggttgca	gcctgtttga	actgtacggg	tgctgcccca	agttcctgaa	aagtaactta	6600
agcaactgtt	accgtggtga	catatccacc	agaagttttt	atcttataag	gaagccagtg	6660
aaggttatag	catttagtag	tatgacttgc	agctatatag	aaataaataa	ataaataaca	6720
aaaagcaagt	gaccaaaagc	aagcaaggca	ggttaaattt	ggcagaacta	attttcagcc	6780
gtaaagtgca	agagtgatga	tgctggcaat	tcagatatgc	cagagaagcc	ttaaggtgct	6840
ttaagtgaaa	aggtgaaagt	tctccacttt	aaggaaagga	agaaaattgt	gtgttgaagt	6900
tgctaagatc	tacagtgaga	acaaatcttc	taatcttgaa	attgtgaaga	actatgctac	6960
tgttgcagtc	acaccaaact	gcaacagtta	cagccacagt	gcgtgatttt	tattataata	7020
cattgctaca	attaccctat	tttgttatca	ttattgttaa	tctgtgccta	atttgtaaat	7080
aaaacttcat	tgtatatgta	tgtataggaa	aaaacagtat	ataacctgtt	cagtactagc	7140
tcaggattca	ggcatccact	gggaggggtt	gggggcggga	cgcgggcatg	tcttagaact	7200
taacccccgt	ggataagggg	gaactaatgt	gctcttatag	ggagtttagt	tatgaacaaa	7260
tcctgtttat	gtccttgtct	ggcatttggg	aggggctgac	tgataggctg	agtgaaagag	7320
aaccattaaa	aatgggagaa	aagataatcg	aaggcagggc	taggttaggg	tggagcaaga	7380
gagctgctgt	gggtataaaa	cttaagaggc	gctcaccacc	aggcaaagag	tgggtgctac	7440
tgaataccct	aagagccttg	tttgacctcc	ctaatgcctg	tcttgagtaa	gaggtcagtg	7500
gagaggaatc	cgaatatagg	agcagggcct	gcactgcagg	aggggagaca	tgccccctgt	7560
aatacactgg	aatgtaggaa	cccgagggag	tctgcatgtt	gcacatgcct	aacatttact	7620

tgggatgagg aggaactac	gtgaataaga	aaaaagccgt	tagacaagtg	agttgacaag	7680
gtggtttgag ggtagcatt	a agatcttaga	tcttttagaa	ctttttggtt	tcacctttta	7740
tttcaaaaat tggcaaaca	ttcaaagaat	agtgaataca	gatcaatagt	cgttaacatc	7800
gtaagatttg gatatttgt	a gtactcgtaa	tccgggatta	tcttaagcca	atttcaggat	7860
ttgagatgat ttaaaacca	actacaggcc	tgtgagggtc	attataactt	ctgattcacc	7920
cttaatctag atgcagctc	ttgggtctca	gcgcaaggtg	taggggtttt	accaaacccc	7980
cttgtctctt tgaggcttc	caattttcgt	cctgtttagt	gtgtactaaa	tttgataaaa	8040
gccttgtggg aagatggtc	caaatgctag	actcatctct	ctaggtgtca	gtcttaatct	8100
agaatctcag cccggtaat	cttaattgcc	ttgatagctc	ccatggactt	gatgggggtg	8160
tggaaattga gagagagag	a gagttataaa	agtaatacat	atttattgtt	taaaaagact	8220
aacgggcagt gccatgaaa	tcacaatgaa	aagaaagaga	aaccagcaac	gctttgcagt	8280
acatttcctt ttccatttt	caaagacagc	tactttcaaa	tcatctgttt	cttttggtat	8340
ttaccttcat atttccaag	c attgtacata	tattacttca	gtataattga	atgctataaa	8400
aatcatgcag atgagttct	g cttctggaaa	ggatacataa	aaggtaaaat	ttttgacacc	8460
atgactgtct gagcatgcc	t ttattatact	gttacctttg	actaatattt	tagctgagtg	8520
taaaatgcta gcacaaata	t tatttttcct	tgaaggtatt	tcccattgtt	ttctcaattc	8580
cagactgctg ttgataaga	tgattcagtt	gtcacttatc	attgtttgca	tgtgatgtgt	8640
ctctatcctc ttcaccttg	a ttacccactc	ttttaatatt	tttccctttc	gccaaccatg	8700
ctggaattct gtgataagc	t tggtgtagtg	ctgttttcgt	tcttgtgccg	ggcctttgtg	8760
ggggattctt ttgatctag	a atgcatatcc	tttagtttga	gaaacttttc	tttgattatt	8820
tctttaataa tattttctc	c attttgtgta	ttcctgtatt	ctttaacttc	tgttgattgg	8880
ctgttggatc tcctggtct	g agctcctgat	gttcttgcct	tttgtctcct	gttgtccgtc	8940
ttctggttct tctcttcta	c taccagtgag	cttttctcaa	cttcattgtc	tgatatttct	9000
gtagaaaatt tttttactt	a tatcatcttt	tcttaatttc	caagagctct	ttaggatcct	9060
attaaaaaat aatcttctg	a tcatgttgca	tgaatacagt	atcttttgtt	tttttttt	9120
tggagatgga gtcttgctc	t gttacccagg	ctggagtgca	atggcacaat	cttggctcac	9180
tgtaaccgcc acctcccgg	g ttgaagtgat	tctcctgcct	cagcctcccg	agttgctgag	9240
actacaggca cgaacctcc	a cgcttggcta	atttttgtat	ttttagtaga	gacagggttt	9300
ttccatgttg gccaggcta	g tcttgaattt	ctgacctcat	gatccacctg	cctcggcctc	9360
ccaaagttct gggattaca	g gtgtgaacta	ccacacccag	tttcctttgg	ttttaattag	9420
ctgaattttt ccaactttt	t gaatgattgc	acttatttc	aaccttctta	ctttgtattt	9480
atgcatttaa gattacagg	c gtccgccacc	ttgcacccgg	ataatttttg	tatttttagt	9540
agagacaggg tttcacgag	g ttggctaggc	tggtctcaaa	ctgctgacct	caggtgatcc	9600
accegeeteg geeteecag	a gtgctgggat	tacaggcgtg	agccaccatg	cccagccatg	9660
gatacagtat cttaagata	t gaggtatttt	taattttggt	taaatatgtg	ttctgttttc	9720
totgttgcct ctgaatttc	a tttggtttta	tttttttgat	gtagaaagct	tttctgaaat	9780
gtccattatt atctgactc	t ttccatcttt	aaaaatgtgg	tgccttctca	tggccacatt	9840
ttetettetg teetettta					9900
gagggttttt agagggagt	a gatgtgaact	tgtgtgtatg	attcaccgtt	gtaactggaa	9960
cagatatgtt ttaagcago	g ttatacatto	ctttgagtgt	ttctctgtca	gattttgaga	10020
aacagaattg ctggggtag	a ggttttttga	tcagttgtag	ttaagttgtg	aatgaacagt	10080
aatgtacatt ttgttttct	g cattttgtct	acaggtttca	aaaactttta	acaaacaagt	10140

aactcacgtt	atcttcaaag	atggctacca	gagcacttgg	gacaaagctc	agaagagagg	10200
cgtaaagctc	gtttcggtgc	tctgggtkga	aaagtaagca	gtttctctct	tactttttt	10260
ccttaagtat	ctagtattga	aaatgkgtgg	agatatttt	cacaggtcgg	agaaccagat	10320
aaagtttgat	tttcatcttt	tetetgeete	ttacctcacc	aagtaattta	catcctccag	10380
cctcaatttc	tgtggttcaa	aaatggtcat	gctataatac	ctaactctgc	ctagggggaa	10440
aaggagcctg	caggtcctga	agctgggtat	gcaaggtgga	cttaggaagc	aagagggaat	10500
gtgatgaagc	agattgtgtt	agtcagcaag	cgctgctgta	acaaaggacc	acagaatggg	10560
tcgcttgagc	aacagaaaag	gactttctca	caactctgga	ggcaggaagt	ccagtatcaa	10620
gttgtccaca	gggttggtat	cttcttttt	tttttttga	gacaaagtct	tgctctgtca	10680
tccaagctag	agtgcagtag	ctggatcttg	ggtcactgca	gcctcagcct	cctaggctca	10740
agtgattctt	atgcctcagc	ctcccaagta	gctgggattc	atctcaacct	ttgcctcctg	10800
ggctcaagtg	attctcctgc	ttctgcctcc	cgagtagctg	ggattacagg	cacgcaccac	10860
catgcctggc	taatttttgc	atttttggta	gagacggggt	ttcatcatgt	tggccaggct	10920
ggtctcaaac	ttctgacctc	aggtgatcca	cctgcctcgg	cctcccaaag	tgctaggatt	10980
acaggtgtga	gccaccgtgc	gcggcccaca	cagttttgat	tacagtaaat	ttgtagtaag	11040
ttttgaaatt	gggaagtacg	agtcctgtaa	cttgtttttc	attttcaaga	ttgtttggct	11100
attttgattt	gagttccttg	ctaagattgt	ttggctgtct	tgattgggtt	ccttgcattt	11160
ctatatgaat	tttatgatca	gtgtgtcaat	ttattcaaaa	aacaaaaaag	gcagctggga	11220
tttggtagga	ttgtattgaa	tctctaatta	gggaagtgtt	cataatattt	aatcttccag	11280
tccatgaaaa	tgggatgtgt	ttcttttca	ggtctcaaat	ttccttcagt	gatactttct	11340
agttttcagt	gtacaagttt	tttaccccct	aggttaaatt	tattcctaac	ttttttgttc	11400
attttcatgt	gaatgaaatt	gttttcttaa	ttttttaag	ttgttagctg	ttagtgtata	11460
gaaatgcagg	tgattgttgt	atgttgatct	tataccctgc	aaatttgctg	aacttgttta	11520
ttagttctaa	atatatttgt	gggttcctta	gcattttcta	tatgcaatgt	tgtgtaattt	11580
tgtaaataga	gatagattta	cttcttcatt	tctagtctgg	ccgcatgtta	tgtcatgtca	11640
tgtcatgtca	tgttatttgt	tctggccaga	acctccagca	cagtgttgaa	tagaagtggt	11700
gagaatggac	gtccttgtgt	tgttgctcat	ctttggagaa	aagctttcag	tatttcatta	11760
tttcgtatga	tggtaactgt	ggtttgtgta	aatgtccttt	tttaggctga	ggacgttccc	11820
attcccttct	gttgcaggtg	gtttgtttgt	ttctgattat	taaaggaagt	tagatattgt	11880
tgtcagatgt	ttttctgcat	gactgatcat	catgtgattt	ttgtccttca	ttatattaat	11940
gtggtgtaat	tgaggggttt	tgtgtgttga	agcaaccttg	cagtcctagg	ataaatccta	12000
cttggtcatg	ttgtatacgt	tgtcatcttg	cctttttaat	tgttggaaca	ggccggatgc	12060
ggtggctcac	acctgtaatt	ccagcacttt	gggaggccga	ggggggtgga	tcacctgaga	12120
ttaggagttt	gagaccagcc	tgatcaatat	ggtaaaaccc	tatctattaa	aaatacaaaa	12180
attagccagt	catgttggcg	tgtgcctata	gtcccagcta	ctcgggagat	tgagacagga	12240
gaatcacttg	aacctgggag	acggaggttg	cagtgaacca	agaccacgcc	attgcacttc	12300
agcctgggtg	acaagagcgg	ggaaaaaaaa	aaaagagtaa	ggggtccttc	tctggctttt	12360
gtcaagattt	tctcattatc	tttcactttc	agaagtttaa	gtgtctcgat	atggttttt	12420
aaaatttatt	ttgtttagat	tttacagaac	ttgttgaatg	tgtagttgcc	tgtgttttct	12480
acatatgatt	cgtttttggc	cattatttct	tcatctatct	tttctgcccc	gtttcctcct	12540
cattttttct	gattagctgt	atatcttttt	ctaattagct	gtataccagg	gattggtaaa	12600
gttttctġta	aagggacaga	tagtcaatat	tttaggcttt	gcgggccata	tggtctctgc	12660

tcaacagctc	agctctcttg	tggtgtgaaa	ggcgtaatag	aaaataagta	aacaaatgct	12720
tgtgtctgtg	tggcagcaaa	cttataagtc	tggcaggaag	ccaggtagtt	tcccaatcct	12780
ttctgtgtaa	tacacctttt	aaacgtttgc	atttgtccat	agtgctctcc	ttcttcttca	12840
ttattgttca	gtctttttt	ttctcctcag	attgatcttt	tttcaagttc	attgactttt	12900
ttctccatca	aatccattct	gctacttagt	acctttattt	gagatatttt	tgatttctaa	12960
catttctagt	tggtttttgt	atacattctt	tttatttcgg	tttcatgtga	gatttctcac	13020
ctttggtttt	cctgtcttcg	gttatgagtg	tattttctat	tacctcgatg	agtgtagtta	13080
taaatagttg	tcttaatgac	cttgtctgat	aattttgagg	ttggtatctg	ttttgtttt	13140
gtttttcttt	gatagtgtgt	cacattttc	tggctcttca	tatggcaaat	aatttgaggt	13200
tgtattatgc	acgttgtaaa	tactatgtag	actctggatt	cttttctatt	gtcgcaaaga	13260
gcatgaggtt	tttgttttag	caagcagtta	acttgtcgtt	aaaatgaaac	gcacactgtc	13320
attatgtggg	cagttgctta	gatgcgccct	ttaagcctca	ggtgcaggct	gatttgtttg	13380
cctcaaacac	atgttgttca	ggggtcagcc	agagacttga	acttctatac	tcagaatttg	13440
gggtttctcc	tatggttctc	ttacttcctg	agtccttacc	tcatttctct	agtagcccta	13500
gctgcccagt	ctccttcccc	tggtctcttc	agcgagaaag	gaggccggag	cttctgcttg	13560
agtgcttgct	gcgccacacc	agctccctca	gagactgtgg	ctgcctttag	gggacagaca	13620
gaaaaagtgg	tgatgcccag	attcttttgc	ttccttttaa	aatttgcctg	ttctttcttt	13680
ttcttttatt	tccctccagc	tttcaaagct	ctcacatagt	tggtttattt	tattttattt	13740
ttcctgtatt	tccaggacgt	atagcttata	gttcacctat	atttgtatat	tggtttgtta	13800
ggcataaaca	gaaatggaac	ttagtatgtt	atttttgaag	catctgatgc	cagtctaatt	13860
cttcttccct	tcaaaattat	ttgatctttt	tggagactcc	ttagggatat	tttttatttt	13920
atcattttt	ttttgagacg	gagtctcgct	ctgtcgccag	gctggagtgc	agtggcgcga	13980
tctgtgctca	ctgcaacctc	ctactccctg	gttcagcgat	tctcctgcct	cagceteccg	14040
agtagctggg	atcacaggca	cgtgccacca	cgcccagcta	atttttgtat	ttttagtgga	14100
cacggggttt	caccatgttg	gccaggatga	tcccgatctt	ctgacctcgt	gatctgcctg	14160
cctcagcctc	ccaaagtact	gggattgtag	gcgtgagcca	cagtgcccgg	ccaggatttt	14220
ttttttaaga	ctcatggctt	tactgtaata	tgttttgaat	tgatcattcc	agttctggct	14280
tggccttttc	aacagattca	ggtctatatt	tctgcaaaag	tttctgggaa	ttatagtttt	14340
aaatattctg	cttcgttgtt	ttgcttttct	tctgggactc	caattatgtt	tacgttgggc	14400
ctgcttagct	atcttttatt	tcagtcactt	tgacttcaac	ccttttatat	ttatatacac	14460
atacacacac	acacacacac	acagacacac	acacacacac	acacacacac	acacacaatt	14520
tttaccccaa	atacttattt	gacagtattt	gtttttgttt	tttgaagaca	gggtcttgct	14580
ctgttgccga	ggctggaatg	caatgactca	gttgcagctt	actgcagcct	tgacctctaa	14640
ggctcaatca	gtcctctcac	cccagccctc	cctagtggct	gggactgtag	gcatgtgcca	14700
ccatgcccag	ccattaaaaa	gtttttttt	ttctttttc	tttgagatgg	agtcttgctc	14760
tgtggcctag	tgcagtggcg	caatctcggc	tcactgtaag	ctctgcctcc	caggttcatg	14820
ccattctctt	gcctcagcct	cccgagtagc	tgggactaca	ggcgcccacc	accacacctg	14880
gctaattttt	ttttttttg	tatttttgta	gtagagatgg	gattttaccg	tgttagccag	14940
gatggtcttg	atctcctgac	cttgtgatcc	acctgccttg	gcctcccaaa	gtgcaacccg	15000
gcattaaaga	attttttta	tagacatggg	atcttactat	gtaggccagg	ctgggctcaa	15060
gtgatccact	cactccagcc	tctcaaagtg	ctgggattac	tggtgtgagc	cactgcaccc	15120
agctgataat	atttgattca	agttcaaggg	ttttgttata	ttcttcagtt	ttgtgtttgc	15180

ttttatttta	gggagtgtga	tgggttttcc	tcagctgaaa	tgatttgctt	tttctttgtt	15240
tttttaaaat	agatttttaa	aatggatgta	gtctattcta	tttccattca	ttgcataggc	15300
caggcttgtg	gccagagcgt	cctcttctgt	cagttctgct	gtcttgcata	gtttctttta	15360
taggtgacgc	tggtgaggga	gggaggaggg	aggggctcgt	gtatctcgtt	tgcgttttgt	15420
ttctatagga	tccttaaatg	tttttctctt	agtttcttct	ttttttcact	gccattggtt	15480
caagggctgc	cactccccc	agaactgatg	tttttcagag	cctgcctgtc	ctagtcttgc	15540
tcccattcag	accccttccc	tggagtgggt	gctgtgagct	gtgtgggttc	tctgttgtgg	15600
cagttgtgct	gggtgtcctc	tttctgagac	ttcttttacc	tgtgcttcat	gtaagttctc	15660
caggctgtac	tactttttat	ggagtcttaa	gcgtattctc	cccgactttc	tgcatccata	15720
gacttgcagc	tgtgttggaa	tttgattatt	tttctactta	taggtcatct	gaatttgcgc	15780
tgttatctcc	gtgtcagtga	gaatgtaggt	catatgtgtc	ttttatttaa	gtttcttttt	15840
tattttctgc	tttttttcg	gggagggaat	ggggtaagac	tcagtatcag	ccagccatca	15900
ttgttttctc	tacctcatct	tcttatggag	tccattgaaa	tggcttattg	atttttatct	15960
caaaatcgat	ctctcataga	tctttatctc	tgctgttaca	gtcgagacaa	gtatcatgtc	16020
ttgcttcagt	tactgtagca	gcctcatgcc	tgtctgtttc	attttgtttc	ttatacataa	16080
gcaaatgtaa	ccccttttgt	taccagtgga	aggtatccaa	gttaccggca	gcaaacacgt	16140
atgggtttgc	agcaacttca	gttcttgctt	cctcaaaaga	aagaattcca	cggaggagca	16200
taaggcaaaa	gaagagcctg	acgcaagggt	cagagcagga	gcagaagttt	atttaaaagg	16260
cgtcagaaca	gaaagaaagg	aaagtacact	gggaagagtc	ccaggcgggc	atggaggtct	16320
aatttgatgt	ttaaccttga	tectgggatt	tgtaggctcg	cccttttccg	cagttcttcc	16380
cttagggtgg	gctgcccgca	tgcacagtgc	gggaattgag	cacaggcagc	ttgtttagga	16440
agttgtgtgg	gtgcccatct	gaagctttct	tcccgtttct	ccgccatttt	gtctcttaat	16500
gtgcatgccc	gggaaatggc	ctctccctgg	cgtctgcatt	cagttaacac	tttagcacaa	16560
caggtgtgga	ctgtcaggaa	atggcctctc	cctggctctg	gctgccaatt	tatcactttt	16620
agagaggcaa	tgtgataatt	gttgagctat	cacccaacat	tcctagtggg	tggtagaggc	16680
ctctcctgcc	gggcttatgc	ctaactacct	gtgatacttc	aacacatgga	tcagctttat	16740
ccttctgaca	aaatggctta	gagttcagtg	gtctatagca	gagaatggcc	aactatcatc	16800
ccccagccaa	atccaccctg	ccatactgtt	tattttttt	taatggccca	tgaggtaaga	16860
atggttaaga	gaaaaaaaaa	attcaaatgt	ttactatttc	atgatattta	cattatatga	16920
aattcaattt	tagtatccat	aaataccgtt	ttattggaac	acaggcatgt	tcatctgacg	16980
atgtagtcag	tggctgcctc	tgtactacag	ctgtagattt	ggatcctgtg	gcagagacct	17040
tacggcccat	gaagcctaag	gcattcacta	ctttcccctt	tacagaagtt	tgctgaccca	17100
ggtccagtgt	gctgcatgat	ggtccccttc	ccttccattg	tcagctgctc	ccctctccct	17160
tgtttgcgtc	ttccaaatgc	tctaggcttc	cacgtcccca	aggctacact	ctttctgcct	17220
ttagttcttg	gcctgtgctg	agaactctgc	cccgtcttcc	tgattctaaa	cccagttttg	17280
tagtcagctc	ctttatacat	gttgcattgc	aaggtcgctt	tatcagaaga	gcttcctctg	17340
tccccagttc	acagttcaag	ccctatttgt	tattctctgt	ctcagctcct	tttttcctgt	17400
gtgtactatt	aaaacttatt	ttgttcattt	gactgcttta	tctgtctgtg	tatctaatca	17460
tgcattttgt	ctttctattg	taatgtggat	tccaagagca	gctacctgtc	tgtcttattt	17520
atggttgtgt	ttctagtaag	tctaacattc	atctggctca	tagtagatgc	tcagtaaata	17580
tttgttctaa	caaattatga	acaaaggaaa	atttagttaa	gtggcgtaga	gatactagag	17640
aaaatatcat	gggggaaaat	gatttgaaaa	aaactacatt	ttaaaagtcg	tatagaaatg	17700

tggaggggag agtgcagaaa cagagacctt tactagaagc ttgaagtaaa tggagatgca 17820 tggacaaaat taaaatagta gccatttctg tacctaatag ggcctctcag ctaaccctac agtggggatg gtcactggta gtgtgttctg ctgagagtta gggattctta ctctgctttg etggcccage ceetgactea tietetatee cettietete tetetetati tetgeccaee 17940 18000 actaacccca gcctttctca aggggctcat gcagacccca taatacttgt aacttcgtta tccaaaagca aagttttctt tttcttttct ggagactgag tctcactctc ttgcccaagc 18060 tggagtgcag tggtgcgatc tcggcttact gcaacctccg cctcctgggt tcatgccatt 18120 ctcctgcctc agcctcccga gtagctggga ctaccggagc ccgccaccac gcccggctaa 18180 18240 ttttttgtgg ttttagtaga gacggggttt cactgtgtta gccaggatgg tctcgatctc ctgaccttqq gatccgccct cctcggtctc ccaaagtgct aggattacag gcgtgagcca 18300 etgtgcccgg ccaattttta tatttttagg agagacaggg tttcaccatg ttggccaggc 18360 tggtttaact cctgacctca ggtgatccgc ccaccttggc ctcccaaagt gctaggatta 18420 caggtaagag ccaccgtgcc tggcaaaagc aaacttttaa ggtcctcaga agctcaaaag tgaacttaat cttttggcat ttttcttttc ttttttttt tttttttt ttgaaactga 18540 18600 gtotogotot gtogoccagg otggagtgca gtggtgcaat ottggotoac tgcattotoc tgcctcagcc tcctgagtag ctgggactac aggcgcccgc caccacgcct ggctaatttt 18660 tttgtatttt tagtagagac ggggtttcac cgtgttagcc aggatggtct ccatctcctg 18720 atcttgtgat ccgcccgcct cggcctccca aagtgctggg attactggca tgagcccctg 18780 18840 cgcccggccc atacacttta gtcaactttt tattacaggt catttttttg cctgtacatg 18900 cagatacatc ccactttata tatataagaa tattttgtag tagctgtcca gtaatttatg 18960 taagcagtgt cctattggtg attgaagttt ttcatttctt agttattttt ttcaattaga 19020 aatattacag cattgagett etgtatgtat tacetttttg egggtgataa atettteeat 19080 aggtttaaat ccccaaagtg ggctgttcat ttctgagagt ttacacattt aaatatgata gatgctgcca aattatcttc tggaaggagt gtactggttt ccattctcac tggaattatc 19140 aaaaaaatgc atgtttccca atacctttgc taatgttgtg agttatcagt tcttttttct 19200 19260 aatttgtaga agaaaaataa tagtttttat ttgcatttct ctgactttta gtgagcttga attttcttca gcagagcata gagataagag ccaaactgac ctgcattttt tatgtcacgt 19320 19380 etgteettte ttggtgaact geetgeettt ceaatgeagt ageteatggt ttecaetgaa aatgtgaaca ttaacttcat aaggtcacta ggtgtcacta gaatcccatt ctgttgggtt ccttctggga gtgttcattt taagatcaga tggcaattga taaaattctg acatttcctt 19500 19560 tggatgtaga aatttttacc ttgaagaaag aatacataaa gttgaaataa aggtcagctt ggcccccact ctaagttctg ttgaagacaa tttatcattt ttaaacaact gcaaactaac 19620 agctaggtgg ggaatacggt tcacaggctt tgtccttgct aggctgagag ttggttgctg 19680 19740 accgaagcca tcaccccctg catttagtgt ttgctggaaa cagggacata ttcctgcata accacaacac aggccgacat taggggctta ccacggctcc tttcctcccg gaatcctcag 19800 19860 actocattco tatoctacca goagocagot coacttocog cotoctoago ottotoacco tgcagccatt ccttagtctt tcactggctt ttgtgacttt gacactgttt aaggtcactg 19920 19980 accagtgata ggaacgtccc tcagtttgga acggtctgat gtgtcctcct aatatcacat 20040 caatgtgtaa cagtggatgt gtagccattt aggactgggc aaattactca actgctgggc tctaggttcc tccagtagct cctgagttaa cttcctacgg ttatttagtg ctagaccaca 20100 20160 gaagtteget etetgetgge agageactgt tgtgeagaet tetetgagte teetgtgtte ttccttgtgt gtcagggaca cacgtgaagg atagcgtgct tcgcggctgg aatcttcaag 20220

gagatgccat tcactt	tttt acctcactaa	cacagtgccg	tttacaaaaa	agattaatgt	20280
acttttcctg aattga	ctta ctgactgggc	ctagagaata	agatactggt	gctgggcagt	20340
ttggcacaag agtagt	ataa agaatgcagg	attggcccag	gtgaaggcat	cgtcctaagg	20400
gtagaatggg agtcgg	tggt tcctggccga	cctagcaggt	gtactgtggg	aagtgctgga	20460
gtgaatcggc tctctg	ggga gaataagcto	atcacagcag	ggcttcccga	ggagaacgtt	20520
gctgctttga tttctg	ttgg ctctgaggca	gcagcaggtc	aaatagttgg	ttctctgttt	20580
agagacatct cttgaa	acac ttttcgtttt	gaccactaga	tggtgggata	atgttatcat	20640
tttacatttc tgaaga	aaaa tagaaatcta	actggaagct	tttttgtctg	ttcagtagat	20700
tttggttgga cccctg	gtaa acatgggttt	cagtgtagca	gctttaatgt	gttaccacgt	20760
gtgctaaagc atagct	gttg gcatgcagaa	cggcattacc	agcagtaagt	gccacttact	20820
tcttcatagt gagtga	tgat agttacacco	aggtagatga	aattcaggga	gagcatctct	20880
gtgcacctta catctt	atca ctctgaagga	tatgtggttg	ggaagcttct	cccaaaggaa	20940
cagaacacat cttcca	caac tgtataacct	atgtcaggca	cacgttttcc	tgggttgaat	21000
caagcccttc cttaaa	ctgc taacttaaag	aatacttact	ggttttgtaa	agtttggcaa	21060
atgatettet etgete	ctcg gttttctgtg	ttgtgcaata	ggaggcaatg	gtagtggctt	21120
ttccagcacg gttggt	gtga ggcttctcat	gagctgggtg	acctttgtcc	tgatgatggt	21180
ggtgatttta atactg	tgta tttgataaca	cgattatcta	gggtctcctc	tacgtctttc	21240
gtccagatgc atctca	gcca ccccctttt	gctgttccct	taggcataat	agtggtaaat	21300
cggtgacatt ttgctt	gagt aagaagaago	tgctaaaaac	ttctcatgct	taaaattggt	21360
aattaagggg actttt	taaa aagaagcaca	gttaaaaaac	atttccttcc	tcgttctctt	21420
ccacccgcct cccttt	ccca tcacttttat	tagatacagc	attctgctca	ccccattatt	21480
gcaggctcag atagtt	ggtt tgtttttta	aaatcagctt	tataaaaaca	tttacataaa	21540
ataaaatgga cccatt	ttaa gtgtacatto	acggatttt	tgtgtatacc	tgtgtcacca	21600
ccacaaccaa aataca	gagc attttcatca	ccccaaaatc	tccttcgtgt	ccatttgctg	21660
teggeeteee tgeece	ctcc tcccacccca	gggcagccac	agatctggtt	tctgtcatta	21720
aagattagtg tcacca	attc tggggcttca	gatcagtgga	atcatccagc	gtgtactatt	21780
ttgtgcctga catcac	tgaa ggtgatgttt	ttgcgatctg	tccgtgttgt	ttgtagcagt	21840
ggtttcactt cctttt	atag ctgagtagta	ttctattgta	ggcatgtagc	ttggtgccac	21900
cagttgatgg agattg	ggct agtttgccat	tttaggttat	tatgaataaa	gttacaatgg	21960
acatttacat ttgtgt	cttt gtatgctttc	atttctcttg	ggtcattacc	caaacttttc	22020
caaggtggtt atggca	ctgt atattcccac	cagcagtgtt	cctttcactc	cacgtcttca	22080
ccaatagttg aaattt	atcc atcttttgaa	ttttagccat	tcaagcagat	gtgtagtggt	22140
atttcatggt tttttt	tttc ccaacattgt	tttaagatct	aattcatatg	ctacacaatt	22200
tgtccaatta aagtat					22260
cagggatgcc ttctga	gaaa cgaataggtg	attttgttgt	tgtggagaca	tcacagtgtg	22320
tattaacaca cacctg	catg acatagetac	: tgcacaccta	ggctctgtgg	cacaacctgt	22380
tgctcctagg cataaa	cctc tacagcatgt	gcagttgtga	aacagtggta	agtatttgtg	22440
tctctgaaat acttaa	acat agaaaaggta	gagtaaaaat	atggtataaa	agataaaata	22500
tggtacacct acatag	ggcg tttactatga	attgagctcg	ctagactgga	agttgctgtg	22560
gttgagtcgt tgagtg	agtg gtgagcgaat	gtgaaggcct	aggacattac	tactatacag	22620
tactatggac tttata	cacg tcatacagtt	aggttacact	ggatgtatat	tttttggagc	22680
aactgtatta actgat	acta taacgttttt	ttaaagacaa	ggtcttgctt	tgtctcccag	22740

gctggagtga	agtggcacat	ttatggctca	ctgtagcctc	aacctcctag	gctcaagcaa	22800
tcctcctgcc	tcagcttcct	gaggagctgg	gactacaggc	gtgtgccact	atgcctgggt	22860
aatttattt	tatttttatt	tttgtagaga	cggcattctt	gctacgttgc	ccccactagt	22920
ctccaactcc	tgacctcaaa	cagtcctcct	acctccgcct	cccaaaatgt	tgggattaca	22980
catgggagtt	attgcacccg	gctcctccca	taagtaaata	atctatctct	ctgttacttg	23040
tggtgggagg	aaaagaaaaa	aaacacctag	gttatgtata	atacctaata	cgagtacttc	23100
gtaagtagtt	attatactgt	tttttttt	tgaaacggtg	tcgctctgtc	gcccaactgg	23160
agtgcagtgg	cgtgatctcg	gctcactgca	acctctgcct	cccaggttca	agcgattctc	23220
ctgactcagc	ctcctgagta	gctggaatta	caggcacgca	ccaccacgcc	cggctaattt	23280
ttgcattttt	agtagagacg	ggtttcccca	tgttagcctg	gatggccttg	aaccgctgac	23340
ctcccgcctc	aactcccaaa	gtgctgagat	tacaggtgtg	agccaccacg	cctcgcctat	23400
actgtatttt	tttttaattt	ggccttacta	tagcttttt	acatgataaa	ctttgtaatt	23460
ttttaaattt	ttttactctt	ttgtaatgcc	ttaaaataca	ttgtacaaca	gtataaaaat	23520
accttatatc	tttatcagct	ttttctatgt	tttaatttta	atttttactt	ttaaacttaa	23580
aactaggaca	caaagacaca	cattagcctg	ggcctacaca	gggttaggaa	catcagtatg	23640
tcgctaggcg	ataggaattt	ttcagctcca	ttataatctt	atgtgatcac	tgttgtgtat	23700
gtggtctgtc	attgaccaaa	aggttgttat	gcggcatata	actggattca	cagagttgtg	23760
caaccgtcac	cacaatttaa	aaacattttc	gtcacctcaa	aatgaaactt	gcacccctta	23820
gccctatccc	ctattctccc	gccagccaag	gcagcctcta	gtagtctact	ttctttctct	23880
gtggattttc	cttttctgga	catttccaat	aagcggaatc	atatgatata	cggccttcat	23940
gtctggcttc	tttctcttag	cataatgttt	tcaaggttca	gcatgttgtc	atctgtatta	24000
gaatttcatt	tctttttatg	gtggaatcat	gttccattgt	atggacacgt	gcgcacgcac	24060
acacacacac	acacacacac	agaagaacta	aatattacaa	ggcttatcat	gaaaaacaat	24120
ggtctctttc	ttgacccttt	tcaccctcaa	ttcctgttcc	ccagaggcag	ctcctttcac	24180
acttgtggct	gcttctgcag	ataagctgtt	cggtgacctc	catattttaa	atactgtggc	24240
cgtattgctg	tttcggtttt	tcagtttcag	gtattatcta	gtgactttct	gatagggaag	24300
tgagaatttc	gtttttaatc	cgcccctctg	agtgcacctc	actcccacat	acactcatct	24360
gctgtttgca	tggacacatt	catgtgcagg	ctctttccac	tcttgattgc	agtgtacatg	24420
atacattttg	gttaaatcgg	tagtttatgt	ttacatcatt	atgactgtgg	aagttgtgtg	24480
ttaggctgaa	tctcagagtg	aaccatgaat	atatttcctt	tcgtggaaaa	ctttttgttt	24540
tccctgagct	tggcctggtg	tcctttgagt	ccagagcttc	tcaggctcca	cttatgtgaa	24600
catggaccca	gtgcccccat	tggacacagg	gtggcagtga	gtgggcacag	gcaaggagag	24660
aaggagagtc	gctccctctt	ttcagccttc	caccctctgc	cctctgcact	ttgccccctg	24720
ccccacccca	gactgctgtg	gcttcacctg	cgcctcctgc	ccttgagggg	ttctgagctc	24780
caggttctga	gctccagatg	gactcctccc	ccgccccagc	tgccaggctt	gggtttccct	24840
tttttttt	atttgtttga	tttcatttcc	ccagacagct	cttatctact	ctttatttt	24900
gttggtttat	gtctttttgt	tttcctttac	tatcatttta	ttggggtttt	gggggtcaag	24960
agaaaagcat	gtgctaagtc	caccagattt	aaccagaggt	caaaaacctt	ccatttttat	25020
tgtctaaata	ttattcagtt	aaggattccc	cctccccatc	ttagtcccca	actgcctttg	25080
ctgaatcttt	agcgtctcct	gccacagtta	ttgcagtatt	ccctgactgg	cttcctcctc	25140
ctggaccagt	gatctgccca	cgacccctcc	ctcacacctg	tccccatgcc	ccagacccac	25200
aggacagggt	ccaagctcat	tagcttagaa	agtacaaccc	ttggaatcac	atgaattctt	25260

tttttgttgc	tagtctccta	agttgcattc	attcactcag	tcatacaaat	ggtgtatgtt	25320
ttccccacaa	tgtcaccctg	tttgctgcac	tgtgcttgag	tctatgctct	gcttccagat	25380
ggaagatctg	tgtcctccca	catctgcctc	cttgtcagag	ttgagtctgg	tgatcatctc	25440
tgacctgaag	ctttctctga	accatactcg	ttatgcaacc	tgttgctgct	tttctgcctg	25500
gttgtacttc	tcttgttaca	attactgcac	tgtgttcttt	tttaaatttg	tacatttttg	25560
cagatttctc	tgatgcctgg	cttaatagaa	gacagttgcc	ttctcatatc	tgcctctgca	25620
ttcagtgtat	tggggtggca	catgtcgttt	tgcttcggaa	aattccactg	cattgtatac	25680
tgaggggata	atgcgagatg	agaaaggaaa	atcacacgtt	agtgttgtta	taaagatagt	25740
attgacttta	cacaccctca	gaagggggtc	agggatgcca	ggatgacatt	cactacccta	25800
gtgtcactta	ccacattgca	tagaccatac	tgtgccgtac	agaggcacat	atttctgaaa	25860
cttcctttat	tcctaatata	ttttgtagaa	atttctatat	cagtatggat	atgtgttttt	25920
tattgcagtg	tactttattt	tttcaaataa	ctgttcgtgt	gttagatgtt	gaacggtgat	25980
aggcctgtga	gggatagttg	gagaggtgac	tagaggcctt	ataaaaacac	ttaaacagca	26040
gatgagtgag	aatatgctct	aaacatggga	gtgacagaag	gtttttatct	aggttgggaa	26100
gaaatttaag	attaatattt	caggaatgta	tgagtgaatt	agaagaggag	aaacaaatag	26160
tagggcagga	gatcatttag	aaaatcataa	ttatttagac	ttgagtgaca	gaatgctaag	26220
aaggagataa	gggtcacagg	aatccagaga	tacgaaggtg	gacaggagaa	atggcaggtg	26280
tgtccacagg	gcaggaggag	gaggcttggc	aatgcggagc	attggttgca	cacctgggcc	26340
ttggggctga	tcgtggtgtc	tggacagaaa	cacaaaaagg	acaacccaat	tttggaggaa	26400
agagatgtcc	tctgacttca	atttctttac	gtcccttcta	cctctgaatt	atctgtttta	26460
tggcctgttt	actattaaat	gatccattta	atagcattta	cccttagctt	tatgagtacc	26520
atgcactaat	aattttgaag	tatgctacaa	gtcaaaaatt	gttgtgtaaa	aattgtactt	26580
cctttacctg	cctcttgctt	ctgttatact	taaataccag	atagagatga	ttttgggaag	26640
tttgatttat	actgactttt	gtatttgctg	ttgtatttat	tttttaaaag	tctgttaaaa	26700
tgacctagct	atggatttct	taaattgcta	atacatgtgc	agatttagtg	ctgtgtcaat	26760
gtataataga	agcaaatact	cattagacta	ccttaattta	attatacaga	tgcaggacag	26820
ctggagcaca	cattgatgaa	tcattgttcc	ctgcagctaa	tatgaatgaa	cacttatcaa	26880
gcctaattaa	aaaaaaagta	agtacatgat	ttcaatgtag	ataatggcaa	ttaggaattt	26940
attcgttttt	atttttatt	tctagaaaat	aaaacttcta	gaaatatatt	caagagttgt	27000
cttaaatatg	ctattgatga	tattgttctt	ttcacatagc	atttttaagt	gaattacaga	27060
gattatttta	tcctatgact	tcttcgatag	catttgtatg	aaatggaaaa	gcctgtggtt	27120
ggccatggga	agactaaaag	gtgccaagag	acaagcaaac	atttaggtgc	tttggtaatt	27180
acttcagaat	gaagtttgtt	atatctgtag	tcaaaatacc	tgcattctgt	ttagccagat	27240
aaatctcaaa	agtccgatgg	acctacatcc	aagtgtgcaa	agtcatttat	taggaaaatc	27300
tgctgtacaa	atacagttgt	ccttcattat	ccacagagga	tcagttccgg	gacccccaca	27360
gataacaaaa	tccactgatg	ctcaagtccc	ttatataaaa	tgccatagta	tttgcatgta	27420
acctacacaa	atcctcccgt	atacctaaga	aagaatttt	tgtagagaca	gggtctttct	27480
atgttgccca	agctagtctc	aaactcctgg	ccccaagtga	ttctcctgcc	tcaacctccc	27540
aattgggatt	acaggcgtga	ccactgcacc	tggctcctcc	catgtacttt	aagtaatctc	27600
tggattattt	aaaataccta	atacaatgtg	aatgctttgt	aaatagttgt	tacactgtat	27660
tttttttaa	tttgtgttaa	atttttttc	ttttgaatat	ttccaatcgc	gactggttga	27720
atccacagat	ctggaacttg	cagatacaga	gggcaaactg	tagagttaaa	gacattgctt	27780

tcatttgaga	tagaattcac	attttaacca	caaccttttc	ggctttctat	ttatgtaaaa	27840
gttctaattg	tgatttcttt	atctgagggt	actttactct	gaaacatcac	agccagcttg	27900
ttttcacatg	agattctctg	ttagagggag	gatttgatga	ctttctccaa	actgaactac	27960
atttcctgta	gactagagga	gaaataactg	tgaacttcac	atttcctgaa	aatagtcaat	28020
gatatttctt	cgttacattt	catctcagac	aagccatagt	ttgcccatgc	agtgatagat	28080
gaacttcttc	agtcttacct	gattataggt	gaacaagtgt	tcagcagtct	ctggactccc	28140
tgtgacatgc	taaaatcaag	tgtttattgt	aaaaacacat	cagtagtaca	tgcatatttt	28200
ctttgtaaaa	catttagtaa	acacagactt	ctctttgatt	gccctccctc	aatgtaagca	28260
gctttcaatt	tgatgagtat	cctaggtggc	atttcttcag	tacattacac	acatgtacac	28320
actcacacat	gcatgcttga	cgtgaagggg	ctctgctatc	ttatgtgtat	catttggtga	28380
gttgccttct	cttccccaat	taacaatatg	gttttgacca	tttcatgtcg	gtagctttga	28440
ctctactcag	ttttctgtat	tgcattatac	attgtgactg	tttttccggt	attcatgtac	28500
ttttagtcac	tgtcagtttt	tgctaagtat	attacttaag	ccacatattt	gagtttattt	28560
ctccaagtca	gatatctaga	gataaaatta	ctgggtaaga	atacatacac	attttgattt	28620
taccagetee	accaatcata	tacaagatga	cctatttctt	ggccagatac	agtggctcac	28680
acctgtaatc	ccagcacttc	aggaggccaa	ggcgggcaaa	tcagttgagg	ccaggagttt	28740
gagagcagcc	tggccaacat	ggcgaaaccc	catctctact	aaaaatacaa	aaattagccc	28800
aacctggtgg	tgcacacctg	taatcccagc	tactcaggag	gctgaggcag	gagaattgct	28860
tgaacccagg	agatggaggt	tgcagtgagc	ccagatcatg	ccactgcact	ccagcctggg	28920
cgacagaagg	ctctgtctca	aaaaaaaaa	aaaaaaaaa	aaaacctatt	tcgtgatact	28980
ctgaccaata	ttggatgtta	ctaatctttt	taatttttcc	taatctgaag	cattaatgat	29040
tgcttgtaca	ctttaccact	ttaattttca	tgtctaaaaa	ccttcccttt	ccttctcttt	29100
tccaaatgta	attgcaaatt	aaacccgact	caaggcctta	ttcttttggg	tccttgagat	29160
ggttctgtgc	ctctgtctcc	cccctcaccc	tgtctgctgc	ctgcctgccc	agcttgctgt	29220
tcctcaagca	tgccaatcgt	atttctgttt	cagagccatt	gcgttatctg	tttcctctgt	29280
ctggaacatt	cttcccccaa	aatccttaca	cgtgacccgt	tttccagcct	ccctatggct	29340
ttgtgtagat	gttactttct	ctgtgagacc	tatcctgcca	cccgtttata	ccagcagttc	29400
cttcccactt	gtgccaacta	tgcaagtctc	ttttcatctg	cagtgctgac	tggctcctcc	29460
taacacactg	tagtaatgtg	ggcagtttga	tggaatacag	ttgctagaga	agattcacag	29520
gaccccaaaa	taacaatgtg	tccaacctgc	accgtacctg	agaaccagga	agcgcaagat	29580
ggagtgtctt	cttgtatact	gctggccctg	agtctatatg	aaccagcccc	actggcagag	29640
cctccaggca	aatccttcat	ctcactactc	ataaacaatg	ttgacaggcc	agcacaatct	29700
gtccccaaac	ttcccggacc	tg tgg ctata	aagcaccact	gtctaattag	tacattttgt	29760
gtcatgcagg	tactttagtg	aaagcagtgc	aggccggttc	caagcctgtt	gaaatgaacc	29820
tcccaagaca	catacaattt	acttatttat	tatgtttatt	tgctgtcatt	ccttaccagc	29880
atacaagctc	catgatgaca	aggatctttc	taggttgcaa	gaccagcgcc	tgacataaag	29940
tcatgttttt	tgtcaataaa	tgagtgaata	actaacagag	caagatcccc	agtataggca	30000
ttagccttga	gtagctaaaa	gaagttcttt	ctatgagact	ggagcaaaag	aagttagcgt	30060
ttacgtgggt	agctagctac	ccatgtaagc	aaatttgggc	tggtagcttc	gcgctgaaaa	30120
ccaaggaacc	tagacagatg	acttaaattt	ccctggggtc	ctataagaaa	gaagtcaggc	30180
ataaaagtgt	tataggtaaa	atcgatgtga	agttcagtat	gtgtatttgt	gctgatggct	30240
gggctaaaga	cgggaagtca	atgggcagtt	ccaagaacag	aaagtggggt	gggtaaggct	30300

gggaacgtga	ggtgtgtttc	aaaggaaaca	tttcccctgt	ctgaggatgg	ttaagagtag	30360
agttaaccca	agaccttcct	gtggatatca	gcctggggtt	tcatgtgttt	gtgagtgtag	30420
ttacagtttt	tgggttttac	tggctgattg	gagttactgt	gatttaatga	cggtagggca	30480
agcataatca	tggttctttt	ctttggtaat	tataaaatag	aaattgtttt	attactgtgt	30540
cgtggtcttg	cagggaggat	gacgtgagaa	tagtgctacc	aagcaggcag	tgggcgtgct	30600
gccaacccac	atagagtcca	agatcatgcc	acttgttttg	agaaaagaaa	ggctttattg	30660
caagttgcct	ggcaaggaga	caggaggaaa	ctctcaaatc	cgcctccctg	aggtgggggc	30720
tcaggcagtt	tcataggcag	agaaaacaaa	gtgtgatctg	attggatctt	gcaatggggt	30780
gatgctggga	ggtgtcatct	gactgggttg	tgtcacaagg	tgatgccagg	gctcaatctg	30840
attggatcat	ggattatgcc	atcaggtgtt	tactccttaa	tttggccccc	gttccttggt	30900
ctaagtgctt	aggttctgcc	cgtggttaca	tgcttggttc	acctgggcat	gctcaagtga	30960
cgtaacttgc	aacttcaggg	gccgtggcaa	ttaaacagtt	caccattttg	atacacaaag	31020
ttgaactaga	ttgggctggt	ttggtggtaa	gaacagcaaa	aaatcgaaag	agactggcta	31080
aaaactttca	tggaaactaa	gaatgctagg	atcatgaaaa	tgtctcacaa	agcataatac	31140
agagcctttt	atacagtctt	ttaaattctg	tccattttct	ttataactgc	acaaaaaaat	31200
aaatattgcc	agttcacata	cagtgcaaga	aacacctctt	ttagaatttt	ttattactga	31260
tgttataaaa	ggtatcagaa	atgtatgcga	aagggctttt	tctcctgcct	taagcagttg	31320
cagtacagca	ttaatttttg	tgttcttttt	gcacagcgta	aatgtatgca	gcccaaagat	31380
tttaatttta	aaacaccaga	aaatgataag	agatttcaga	agaaatttga	gaaaatggct	31440
aaagagctac	aaaggcaaaa	aacaaatcta	ggtaagctaa	gaaatataat	acagttcttt	31500
gcatttgtgt	ccatacacct	tgtttaattt	gcatgatgac	tagtggggtt	cagcatgaga	31560
gagctgatga	agactatgat	agctttactc	tatgaaggag	aaaacaaaat	gtcaggagcc	31620
tgcgggagac	ttggctggga	gccataatag	agccacgcag	cttgagctaa	tcgaccacag	31680
tcttaaccat	tcatcaaggt	ggtcgaactt	tttattttcg	ggaatgattt	cagaagaaaa	31740
gcaaactttg	gctaataagc	attattgaaa	taaataccta	tttatttctt	ctttatatat	31800
aactttgtat	ttttacctaa	ttggcatttt	tgttttgtta	ccctgaatag	gcaaatctta	31860
gatgatacat	tattttagtg	atttgggaaa	atactttaga	atattatgtt	ctataacaag	31920
atgtcttaga	aaaaaatata	tgtattctta	tgtatatata	ttgttaaata	atatttttat	31980
atataagaat	attatgggct	gggcacagtg	gctcacgcct	gtaatcccag	cactttggga	32040
ggcagaggcg	ggcggatcac	gaggtcagga	gatagagacc	atcctggcta	acatgttgaa	32100
accctgtctc	tactaaaaat	acaaaaaaat	tagctgggag	tggtggcagg	cgcctgtagt	32160
cccagctact	tgggaggctg	aggcaggaga	atggggtgaa	cctgggaggc	agagcttgca	32220
gtgagccgag	actgcaccac	tgcactccag	cctgggcaac	agagtgagac	tccaactcaa	32280
aaaaaaaga	atattatgaa	acattaagat	gctttgtacg	tttttggtat	ttctgttatg	32340
cctttttcac	tgtcgtctaa	agtcagtatt	tcctactaat	tctgacacag	cattgctaca	32400
gataagcaat	tatggtcact	agaaattcct	aggaagcatt	aattcctcta	gtttttgttt	32460
tctttgtttt	aatctatgtt	actatgtcac	agattctcta	ttctgtgttt	tgaaattatt	32520
caaatagaat	tgtcgagatt	tattttattt	attttttga	gatggagtct	ttctccatca	32580
ccaggctgga	gtgcagtggt	gcgatcttgg	ctcactacaa	cctccacctc	ccgggttcaa	32640
gcaattctcc	tggctcagcc	tcccgagaag	ctgggattat	aggggcgtac	caccacgccc	32700
agctgatttt	tgtattttta	gtagaaacag	ggtttcacca	tgttggccag	gatgatctca	32760
aactcttgac	ctcgtgatct	gcccgcttca	gcctcccaaa	gtgctgggat	tacaggcgtg	32820

accaccgcgc	ccggccaaga	tttattttaa	atctgtgacg	ataatgcgac	agaactgggt	32880
agaacactta	gcccacatag	tgctgccaca	taattttcca	gaaacatggc	ctgcatcatt	32940
tgtttcatgc	tcagccctcc	cgctgcctca	cctggtgcgt	gtccatcctt	ccttcacacc	33000
agctgtctcg	tcttcgtcaa	agctcaagcc	agaaacgtgc	aatcgtcctt	gacatctcct	33060
tcttcctgac	actaaccccc	atcaagacca	tggccctgct	tctgaaatag	ttgtttgact	33120
tcttctgttt	tctccttccc	tcctctcc	cctgatgcct	ggatcatccc	tcctgcacca	33180
ctgcagccac	tccttacgct	gccctccact	gtctccttac	agttcatctc	tgtgctgcag	33240
tcacaatggt	gaaaacttta	aaccagaagg	acatcccctc	cctggtttaa	aatttcctgg	33300
tgtcatccca	aggaaaaata	ttcaggataa	aatcctgtat	ttatcatatc	ctccaattta	33360
ctaggtgctt	tatgatctgg	cctctcttc	tagcctcata	gcaatattgc	acactctcct	33420
ataattcttt	atacttttgt	cactttggcc	ttctttccta	tgtcagtgac	agtgtatttg	33480
aaaatacttt	ggcaacatgg	taatgataga	tacaaaattt	tcttcttaga	ccaaatatgt	33540
atcgtaatta	aaaactatat	gtataaagta	ttaatgattc	aactaatgta	catttgtata	33600
ttgtcagaac	tacagtaagg	gtgattcagg	cttaagagtc	ccaaaggaga	atatattaaa	33660
tgattcttgg	tattttttg	ttgggggtga	gtatcaaagt	tctgaagggc	tctttgagca	33720
tatgcaaggt	agcattccag	aaaaaaacac	aactctgcac	ccacacaaaa	cgagctcata	33780
acttcatggt	tccgggacca	tgctgatccc	acttcatgca	gtcaagttca	tgtctgggtc	33840
tgtgagtgtg	tttgagggta	ggagtgatgg	ttaatggggg	cagtttctga	aacctgagac	33900
aagaaacaga	aactaaattg	cattccagct	ttacaacttt	taacttctgt	gtctcagtct	33960
ttgtcttcaa	gtggggatac	tgatttgggt	ttggatttga	ggttggatgc	actaatgcat	34020
atattgttct	tagcacagtg	cttggtgagg	gcagttgctc	agcagatgtg	agccagcagc	34080
tgtagcagca	acatcactgc	ctgtggaggt	ggtggaggta	gaatattagc	aggagtaggt	34140
aatgatgttg	aaagggaaga	aggaaaacgg	ggtgtggggg	gttgttcttt	aaaaggaatc	34200
acattcctga	agtatgaagg	cactttttgg	tcttaaagtg	gattttttgt	ttattttcag	34260
atgatgatgt	acctattctc	ttatttgaat	ctaatggttc	attaatatat	actcccacaa	34320
ttgaaattaa	tagtagtcac	cacagcgcaa	tggagaagag	attacaagag	atgaaggaga	34380
aaagggaaaa	tctttccccc	acctgtaagt	aattagtttg	taaaatgaaa	attatgcaaa	34440
tagccgattc	aattatggtg	gaaagcttct	tttttctttg	cctagatatt	ttaatgtttc	34500
ctggtagtaa	cacattttga	cttatttcat	ggctggcttt	gttttccaga	aaatcttatg	34560
catcattaag	atttttgaag	catatgttgg	gtgtatagta	ttcttcaagt	ttaaaatcct	34620
atttgttgta	gctcctttgt	aatttctatt	atctttggaa	ttttttcttt	cttttttt	34680
aaaaaaaaaa	tgaatcatgt	cttttttt	ttttctgaga	tggagttttg	catttgtcac	34740
ccaggctgga	gtgcagtggc	gcgatctggg	ctcactgcaa	cctccctagt	tcaagtgatt	34800
ctactgcctc	agcctcccga	gtagctggga	ttacaggcgc	ctgtcaccac	tcctggctaa	34860
ttttttttg	ttttttgta	tttttagtag	agacggggtt	tcaccatgtt	ggtcaggctg	34920
gtcttaaact	cttaacctca	ggtgatacac	ccgcctcggc	ctcccaaacg	gctgggactg	34980
taatccaggc	gtgagccacc	gctcctggcc	gtgaatcatg	tcttttgaag	gaatttgctt	35040
tagattaatg	tatctaagga	atcagtttgt	ttttcattat	ttcttttatc	tttaaaattt	35100
ttaattactg	aagtgtaatt	cacattttaa	taaaacattt	atcaaagtag	ctaatagtaa	35160
aagttcatct	tgatacccat	ctaattgtac	tcttctacct	gggggtaacc	tgtattttaa	35220
gtttaagtgt	tttcccagat	ctgtttcagt	gtatcagata	tctgtgtata	catgaaaaag	35280
atacgggttt	ggtttctgtg	tggaggtgta	atttctgttt	tacctaaatt	agataatgac	35340

atatgtatta	ttatccgctt	tatttactta	agagtatcct	ggagggtttg	tttgcagctt	35400
agttgttgta	gacctatttt	tgttttaaga	tgctcaaagt	agtctacagt	tttgatattg	35460
aaaatctatt	ggtgggtatt	tttttcccag	ttattagaaa	ttgtgttgca	gtttttattc	35520
tttttttaac	catatggttt	ggttgttctt	gtttttttgt	taagccattt	tcctttctct	35580
agacataagt	ctttccagct	tcccaccccg	actttttact	gttataaccc	ctgcatgtgc	35640
ctacgtgaat	ccttgtattt	ctgagtactt	cgtgtatttc	aataatacta	attcatacat	35700
gcagaatttg	attttttaaa	gacatagagt	ctccctgtgt	tgcgcaggca	ggacatgcac	35760
tcctgggctc	aagtacttct	gcctcaccct	ctcaagtagc	taggaataca	ggtgtgtgcc	35820
acgatccctg	gcttattgat	agatatagtc	aaattatcct	tcaaaaaatt	tgagtcatct	35880
tattgtcacc	agttgtttat	aagaatgccc	ctttctccat	acttggaaaa	ctgaatggca	35940
ttagcctgta	gcctttttca	gtcggaagct	tgaaaaactg	gatctgttct	tgaagttact	36000
tttgattaga	agcaggttta	agtgcctttt	catattactg	actgacttac	cgaatgcagc	36060
ttttaatgtg	atcaactatt	acctcgctta	attttatgtc	ctttgtccat	ctgtatcagt	36120
taaggttagt	ttcggctgca	tataacaaag	acaaaaacca	atgtgttaca	atcgatagaa	36180
ttgcctttct	ctgtcttgcc	tagttcagaa	gtaggcagcc	agggctggga	tgccattcca	36240
tggtgtcttt	aagaaactag	gttcccatct	ttctgttgta	cctgcctggc	ttttcttgca	36300
aaatgtgtgt	gcctcccagc	taagccatct	ccttttgaca	gccttaccag	acgtctatcc	36360
aatattcctg	tctaattcca	ttggctggaa	tgtggtcata	tggccacccc	ttttgcaagc	36420
aagactgaaa	tgtagtcttg	actgggatgc	attgctgtcc	tgataaaatc	aaagttctgt	36480
tgttaagaag	aagtgagaat	ggacattgag	gtagataact	agctgtgtcc	caggtggaca	36540
tccaaattgt	ttcagtgtgc	aattatgtgt	ataaactaat	ttgccttaaa	ctttactttt	36600
tctattactt	ggcagtgtta	attctgctac	tttactgcgt	ccagtacagt	ttaaaactta	36660
actgaaaatt	ttatgtgtgc	ttcccttcct	tatcttggtt	tattctcttt	tttttgctga	36720
agttttctca	gaaaagtatc	cttttgagtc	tctaaaaaat	atctttggat	ataagatcca	36780
aacatttctt	ttgtttcttg	actattgtat	gaaccgcctt	tgaagataat	acttacgatc	36840
ttatttgtta	agtcattgac	atcctaagtg	ttttctatga	aacctctagg	atttctcaac	36900
ccagcacagc	tgacatttgg	gtctgggtaa	ttctttgttg	ggggcactgc	cctgtgtgtg	36960
gtaggaagct	cagcagcatc	cctgcctctc	cccactaaca	ctagcagtgt	acctactgct	37020
ctccctcact	ggcgatatcc	aaaaatgtgt	ccagacatta	ccaaatatct	gctgggaccc	37080
caacgtcacc	tctggttggg	aagcagtgct	ctagttttag	aggtaactat	gatgagcatc	37140
cttgaagaaa	aatccatgat	tatcaaataa	gaagactaga	acagactgga	aatgttcact	37200
taattctgtt	gagcttctga	ttagattcag	gcaagttgac	tttaagatcc	cttctaactt	37260
tgtgattata	ggatttaata	gaatcaccta	tgattaatag	gaggacttcc	tgctggcttc	37320
gtctgctaag	aaatactgaa	actttatcta	atgcagtgtc	ttggtcctgt	ttttagcttc	37380
ccaaatgatt	cagcagtctc	atgataatcc	aagtaactct	ctgtgtgaag	cacctttgaa	37440
catttcacgt	gatactttgt	gttcaggtaa	aatttttatt	ttcctttctg	tgatatgttt	37500
aagttttgag	aataatatga	ttttctgatt	tagaatttca	tgtagcaact	tctgatgagt	37560
aaaataatta	gttaaaacta	gaacttctaa	atttccccct	gaaattaggt	attataataa	37620
aattaaggca	tgagttaaac	ttcctttttg	gttcctatag	gttttttt	cctaggcatt	37680
tgctttcttg	ctacagaatc	cattgctcta	tttaaaaaaat	tattgtgaac	gtatatgaac	37740
taatctgtat	gcagtttaaa	ctacatagaa	ctgaggtcag	agctaaggaa	atgttgtttc	37800
acacaatgta	taattaacac	aaggaacctg	ttattgaacg	gggtcagtga	agtatgtaaa	37860

gatcgtcaat tgaggag	ata aatagaggat	ttctaattag	aagcagaaag	aacactggta	37920
ggaattagtg cagttag	ttc catgttacgc	acatacatgt	ttgtaatgtg	ggagccctag	37980
ttccacttag gatggta	att tttcatggtc	atatcttctt	cgtaccaaat	ttcttacagt	38040
ttcttcacct agtcccc	agt ggggctcaag	taagtagcag	tgatccctga	aagtactatg	38100
ttcaaaagtg cttgaga	itgt tatggaaaat	ttatcatgaa	agccacagca	atgacaaagc	38160
gcaagatggc atcaaga	tat tagaagtttc	aaacaaagcc	tcctttcagc	gcagggttaa	38220
tccttgtact ctcacct	ctg tgtgctggaa	ttatttaccc	atttctctta	aacagtctcc	38280
atcttttat tttacac	ttg ttacatttat	ttcctagaag	ttggaaacaa	gtgataataa	38340
tagctaacat tgattto	att tttgttgttg	taggcactcc	tctaagtgtc	ttattcactg	38400
ttatctcatt tattctc	cca ttagccttaa	gaggtaggtt	ccatcaccat	cccattttgc	38460
cagtgaaaaa ccaggad	aca gaggtcaaac	agcttgtcca	aggtcatgtg	gtttgtgaat	38520
ggcaaaccca agcttct	aac ttaggcagtc	tgacatcaca	gattacactc	ttagtgacat	38580
gtcacattgc ttatcgg	gtt tttgaaaagt	gtgataaaac	ataaaacaat	tttagatgct	38640
gaataagata tattgag	cat ctaaaattaa	aagtgacctt	atttccaatt	actgccttga	38700
agacacctgg ggcacag	ttg gaagggaagc	tttggtggtt	acctgtgttc	ttccttttta	38760
aagtagaact tcagtga	ittt cagacagaga	gttctaacac	ttacgtgacc	tccagattga	38820
gtgatttcta caaaaca	cag gecetecace	agcaagtgct	gagcccctat	tgagggagcc	38880
agcacgggac tagagac	ttc ttcatattca	ttccagtagc	ttatagcaca	gtgacgggca	38940
gatgcccacg taaccat	ggg gcagtatgat	gcatgatggt	gtgtagcaga	gggggcaagg	39000
ccagggagag ctggcaa	iggg cagtgggagg	gtcccaggga	tgttgacaac	ccaggtgggt	39060
ttggaaggat gaattgt	att tacccagaat	aaagtgtgga	ggaaagggga	aggcccagag	39120
ggtacagagg agtatag	aat atttaggagg	tagcagcagc	ttagcattac	tctcaggaaa	39180
tgagtaatcc atataag	agt tgaaacatta	aagcctacca	aatggctcac	ttttgaatat	39240
cagtgtaata cgaggad	ttt agtggaagac	agggaaggta	agggtgagct	gtgttcattg	39300
agggaatgtt tcatgca	agt ctagaacttt	ccctagatct	tacaacagta	gttcttaggt	39360
tttagaatta ttgatct	cct ggaaaattta	gtgacaaact	atggatgctc	ttttggaaaa	39420
tgtgcacatg catatgg	aaa tttgcctaaa	atttttagaa	gtttgttaca	cctcttctct	39480
atccccactg ctatccc	ata cacccatcaa	agcccaggtt	ctctagttaa	aaatactggc	39540
ctaaaatgta cccttaa	igtg gaaatgagaa	gaactcaagt	gtggttaata	gtcttcttaa	39600
ctaatagctg tacttta	aaa gttgtttat	tggtcaactg	aaagttgaat	atagaataat	39660
ttaaaccact tttaaaa	gtt agctctccgt	taatgttttc	cagatgaata	ctttgctggt	39720
ggcttacact catcttt	tga tgatctttgt	ggaaactcag	gatgtggaaa	tcaggaaagg	39780
aagttggaag gatccat	taa tgacattaaa	agtgatgtgt	gtatttcttc	acttgtattg	39840
aaagcaaata atattca	ttc atcaccatct	ttcactcacc	tcgataaatc	aagtcctcag	39900
aaatttctga gtaatct	ttc aaaggaagaa	ataaacttgc	aaakaaatat	tgcaggtaaa	39960
gtagtcaccc ctsacca	aaa gcaggctgca	ggtatgtctc	aggagacgtt	tgaagagaag	40020
tatcgtttgt ctcctac	ctt atcttcaaca	aaaggccacc	ttttgataca	ttcaagaccc	40080
aggagttcct cagtaaa	igag aaaaagagta	tcacatggct	cccattcacc	tccgaaggaa	40140
aaatgcaaga gaaagag	gag caccaggaga	tctatcatgc	cgaggctgca	gctgtgcagg	40200
tcggaaggca ggctgca	igca cgtggcggga	cctgccctgg	aggctcttag	ctgtggggag	40260
tcttcatatg atgacta	ittt ttcacctgat	aatcttaagg	aaaggtattc	agagaatctt	40320
cctcctgaat ctcagct	gcc atcaagccct	gctcagttga	gctgcagaag	tctttctaag	40380

aaggagagaa caagcatat	t tgaaatgtct	gatttttcct	gcgttggcaa	aaaaaccaga	40440
acagttgaca ttaccaatt	t cacagcaaaa	accatctcca	gtcctcggaa	aactggaaat	40500
ggtgaaggcc gtgcaactt	c gagttgcgtg	acttctgccc	ctgaagaagc	cctaaggtgt	40560
tgtagacagg ctgggaaag	a agacgcatgc	ccagagggaa	atggcttttc	ttacaccatt	40620
gaggaccetg etettecaa	a aggacatgat	gatgatttaa	ctcctttgga	aggaagcctt	40680
gaagaaatga aagaagcgg	t tggtctgaaa	agcacacaga	acaaaggtac	cacttccaaa	40740
atatcaaact cctctgaag	g cgaagcccag	agtgaacatg	agccatgttt	tatagttgac	40800
tgtaacatgg agacgtcta	c agaagagaag	gaaaacttac	ccggaggata	cagtggaagt	40860
atgtgaatct ccttttcca	a gtcaccttcg	ctaaataaac	atgtaacagt	gcatccatat	40920
tttaaattta tcacaactt	t ttcataactt	atttccccat	ttactcctct	ttttacttaa	40980
agaatgtgca tttgatcat	t ccaatgataa	actctttagg	aatagatgac	ttgctgtctt	41040
gtggaacttc tagacttat	t ggttaagtct	gttaggaatc	tatttctcca	agacttttcc	41100
ttcttatagg tcaaaagga	t aagtagtcca	tagtatgaat	aactgagggg	agtgaagtct	41160
ttttccttat tccattgga	g tcttggcgct	gcagcgtgtg	taaagatgta	tacgatagag	41220
agtattttaa aacctaggt	t cttaatagtg	aggctattta	aagaaagaaa	ttaaggtaga	41280
ttaagccatc gattgtatc	a aagagaaagt	gtgaaaaact	acttttagaa	atctgttgtc	41340
aatattgatt tttgaagaa	a ctttggtcag	tgttaactat	gaagmaacat	ttaaacattt	41400
ttgmtcattt gtaacaago	c ttgtttaact	tgtacttatt	ttgcttgaag	catcacttga	41460
aaaggtttac tcctattca	t aatttaattg	taattataat	aaaccatatc	attttattaa	41520
aagtcaaaac aataaaaaa	t tttgcacttc	acagttataa	gcacaaatag	gttccagcaa	41580
ccaaaattga agaaatctt	g aactttgacc	gtctttacct	aaagattagg	ttaaaatttg	41640
agtgagaatg cattetete	t gcatgatttc	tctgctctac	aaatgtttta	actgcctctt	41700
tgaaggtgga gaagtcatg	g tagcgtttga	aatcatcaca	gacatgttac	ataccttttc	41760
cttgagtata cgctcccca	a aattgtttca	caaaaagaat	gaaaataatt	ttatgttttt	41820
ggcctgctat ttatatctt	g gctttctgaa	catatattaa	atttgacaag	aaactgtatt	41880
ttatgttcca ttagcctta	g tatgtgtttt	caaaatattt	attttaaaat	gttgactcaa	41940
aagttaatat aaaacaata	g atgtgtaaaa	ttctttggta	gttaagaata	tcctgttctg	42000
aggtttacat tetecatet	t tccagttttc	accttgtgta	ttttttaaac	ttttgaataa	42060
taatgacatg gaaatgtaa	a ttaagtagga	aaaagctggt	agcaaacagt	gtggcatggc	42120
ctaaaatccc cgtgttgtt	g ggagtgtgct	agtcctcgga	agcaggtgtg	ttatgttcta	42180
gaacactgcc cccctgcgt	c gacageetee	ggggttgggg	gtaagtagaa	gsgggtgagg	42240
ggccagcact agttgacto	a aggcaccctg	gtggggacgg	agaggttttt	tcgctcagtg	42300
gtgcaggcca tcaggcagg	g cccgggtgca	agaaaacatt	ctgtgtgcgc	tagtgcgaga	42360
ggatcttcta cagtcacct	g ccttcatgcc	attacagaca	gacgggaagt	cactgggttc	42420
taggacataa aaagaccta	c atgttggcta	gcctaaatcg	aacccttttg	tagtaataaa	42480
gattcatcaa tgttttaaa	c tgtcccctgt	cagccccctg	ggactcaggt	gaaccaactc	42540
tetttgggaa tetatetta	g aagatgaaac	cataaagcct	tcagtttcag	tgtcagggat	42600
gcacacteta tatetggtg	a aattatggag	gggtgaaaac	ttctgtacag	caaactgtac	42660
ctccaaatct ttaatgtcg	a aataaagggc	tttttgccat	ttctgttttc	agttcacttt	42720
tacttgttgc tgttgtcag	t atctaagata	cagtgtaaaa	aaggcttcaa	aaacaagtta	42780
caaagagctt caatacgct	g atagaacggg	aactgagcga	gaaacaattt	tggttttgtt	42840
ttgttttgtt ttttagttt	t ttttgagaca	tagtctcgct	cttgacgccc	aggttggagt	42900

gcagtggcac	aatctcagct	cactgcaacc	tecgectece	gagttcaagc	aagtctctgc	42960
ctccgcctcc	cgagtaactg	ggattacagg	cacccatcac	catgcccagc	taattttgtt	43020
gtatttttag	tagagatggg	gtttcacgtc	ttggccaggc	tggtcttgaa	ctcgcgacct	43080
catgatctac	cctcctcggc	ctcccaaagt	gttgggatta	caggcgtgag	taccgcgccc	43140
ggccaacaat	tttgttttct	aaaatcttta	aaatcattaa	ttttttttt	ttttactttt	43200
ttattctctt	aattttataa	acagtacaca	gatacattcc	cattgtaaca	aagattgcta	43260
agaagactag	aatttccatc	tcctcacttg	cctcttttca	ctaattcact	tcctaactaa	43320
tgaaagacat	gcacccgttg	tgtctcaggt	gctcttcaag	tttgtgggga	catagagaat	43380
gaagcagcgt	gcaccctcat	agaggaagac	aaatagtaaa	taagtgtata	acaatgtcag	43440
ctagcaagca	gttaatgata	aaaagaaaaa	caatactgca	ttggatagat	aaggtgacca	43500
acgaaggctt	ccctgagaag	gtgacatccg	atcacaggcc	tggggaggga	gagggagcct	43560
gtgactctgt	caaaatccat	gtttcagctg	gaggtaacag	caggaacaaa	tgtcctgatg	43620
gaggaaaatg	cttgcaggaa	caacggggag	gccagtacag	caaggacttc	ctgagctgca	43680
ggaaggaggt	tggagagggg	taagagccag	agctttggga	ccttcagtct	ctgacaaggc	43740
gggcagctgt	tttgttttga	agtgtgatga	gaagccattg	gggcttttga	acaggggaac	43800
aaccaaatct	gatttaggtt	ttaaatgtaa	ccatggacac	tgaagaacag	actgtgggtt	43860
ggagtgtttg	tctgcacgaa	gcagccactg	tccacagttt	aatatttcct	tccacacatt	43920
tcttgtgtgt	gtgtctacaa	gcatacaact	gcaaatagat	attttaagag	aattttttgc	43980
atgcatagaa	ttatattgcc	ttaaaaattg	ctttttacaa	aagcagtatg	tcatatattt	44040
acatattggt	accagtaaat	cttcattttc	taatagagcc	tataggtagg	gtcagcacac	44100
tttttctgta	acagatcaga	tagtaagttt	attacgcttc	atgggcaaag	agaccaaatc	44160
gaggtatgta	ggtactcatg	agatgattac	ataatgagaa	aaagacattt	tccacaaaat	44220
ttttattgac	actggaatac	attttttt	gtaatacagg	tctattaatg	agaaaaataa	44280
aataatttgt	ggtggggaa	taataacatt	tcatttaatt	ggagttcaga	ctgagtgttc	44340
ccatcaccaa	cattgattgc	aaatgtttat	taaggctgat	ttgtaataag	atagatttta	44400
cgtatttcac	ttttgaaaat	atcttttcac	acagacagat	actcctgatt	cgatgtcagt	44460
ccacagttag	ataatttgca	ttgagcatct	tcattgctta	gaagacgctg	atggaattct	44520
cttagattct	tctctcgatg	cctgcctctt	agcgtgtcct	tatattgcag	attcatcact	44580
tgcaattgaa	aaataggtgg	aagctcctca	actgtgcagt	taaatgggtt	ttgaaatagg	44640
aaattccggc	caggtgtgat	ggctcacgcc	tgtaatctca	gcactttggg	aggccgaggt	44700
aggtggatca	cttgaggtca	ggagttcaag	accaacctga	ccaacatagt	gaaaccccat	44760
ttctactaaa	attacaaaat	tagccaggcg	tggtggcaca	tgcctataat	ctcagctact	44820
tgggaggctg	aggcaggaga	atcacttgaa	cccaggagac	agaggttgcg	gtgagccgag	44880
atcatgccac	tgcactccat	cctggacaac	gagagtgaaa	ctccgtctca	aaaagaaaaa	44940
aaaaaaaga	aataggaaat	tccctttgct	cttgcactca	gtctgaaaag	tgctgctgta	45000
gtttgggctc	aggaagtatg	tccacagcca	gtttgcatgg	gaatggagat	cttcttgttt	45060
taacctctga	cagcacaaga	gagaatcgtt	gcttatttgt	ggaaatgcgt	cccacctgac	45120
ccttggcact	gccaatcaca	gctcttcaac	caccgaaagt	cagtttgaat	tgccaagtag	45180
ttaaagccga	ctggtcatcc	tgaactagtg	cacagettgg	cttctagttg	cttttcacga	45240
aggagacaca	gttgtcctat	aggtgccgtg	tgttcactag	caaaagcaga	aaagtccttc	45300
ctatacccca	cttgtccatg	ggtttgatac	agattttctt	ctttgctgtg	tgtgatggat	45360
ttttacatgt	cagcaccttg	tacatacgtg	ttgtgagctt	atctgagcaa	tttggtcatg	45420

tccaactacc	agggtcttgt	tcatcgataa	tagtcaccag	ttgttggagg	tcaatgatgg	45480
ttaactactc	ttctaccttc	tatctaccag	atcttgttga	aggcaagtat	cagaaagaca	45540
tttattaaac	atttattggc	aagcagttag	gaagtggtcc	acaaattgac	caatatgctg	45600
aaggcccagt	tctctgtcct	ttagtgcagt	gtccatactt	tatctgaaag	gtttgctgga	45660
ggcagacaac	attctatggg	caagtttctg	caaacttgca	ctcagcacca	gaccatcgtg	45720
tatcctttga	ccctgtggtt	tattataggg	tcatttaggg	attaagcctt	ggataccacc	45780
tccagggata	ccagccacaa	ctcatactag	atggttatgc	tctgttctgt	gtgggtattg	45840
ggttcccctg	caatatttaa	gccaattcag	tgttcttgaa	tccatgaatt	taaccaataa	45900
gaaactgttt	ctcacatcca	ttatgctgat	taacaagctg	atgatgtcac	caataaccac	45960
tcatttttgt	catccatttt	ggcttttaac	aaagcatcta	atattgggct	ggaggattta	46020
caggagttgg	ggttttttgt	tgttgttgtt	ttgagatagc	gtctcactct	gtcacccaaa	46080
ttggagtgca	gtgacatgat	cgcagctcaa	tgcagcctca	acttactggg	ctcaagtgat	46140
cctcccacct	cagcatcctg	agtagctggg	actacagacg	caggccacca	cactcggcta	46200
cgttccccag	gctggtctcc	aacttctgag	ctcatgcaat	ctgcccgcct	ctgcctccca	46260
aagtgctggg	attacagttg	tgagccactg	tgcccagcct	atggtatagt	acattttgca	46320
aattctgagc	attcaagagg	aactgtgaat	tactattgtt	gcaaataaat	agatagacat	46380
atattcatta	agtatgttaa	attgttgcac	ttttgactct	tcaaataatt	cacaagtgta	46440
ttaagaaccc	cctttcccat	agcctgccag	cctaactcac	tggggctgca	aaactaagca	46500
atcctagcaa	cttgatgtgg	gttagtcagt	cttaacagaa	ggctattgac	cacttaactg	46560
tttggttgat	tcattcattc	atttacatat	tcatttttta	tctgtcagat	gtttactccg	46620
tatctactat	gtccaatgta	taaacagtga	gagaggtaag	gttaatagaa	agctctgtcc	46680
cttgctttaa	agaacttagc	taagtaggga	aggtacagtc	aagatagttt	acacacaagt	46740
atcaggaaat	tcaaaagtca	gagcaattac	tttcagtggg	aattaaaatt	gatattggaa	46800
tgacctctac	aacgattaca	aaggataaaa	ttccgcatta	tctattgaag	agtgttttg	46860
tttttttcag	aatgaacaaa	gtgaacttga	tattttaata	gatgaatatg	aatacagtct	46920
cgttagcaga	gttttacttg	tgtagaaccc	gtataacttg	catatatacc	aaaggtatct	46980
ctggaaagga	atttttccta	ggtgtctttt	aagattcttt	ccagtcttaa	tattttgcat	47040
actacattgt	aaaataattt	catattcaaa	tttttgaagc	ttagaagaca	tttctcattg	47100
gataatgtta	agtgtatatt	tttacatgtt	aaaattatgg	attattcagc	cttcagaagc	47160
cttttcaacc	cttgactctt	gcatagtgca	ttgtaagagt	aaatactaat	tgtttaaatg	47220
tgttattaat	attagcattg	ttagtcttaa	ttctgtatct	tggaagtagg	aaagtaggat	47280
gtggaggaaa	ataaatgtta	aaaataagag	ttatttcttc	ggccttagct	ctagacaaaa	47340
tttgacacaa	gccaagtttc	tcctacagtc	ttttcatcgt	ccacttcttc	atctctccct	47400
ttcctagtat	ttaagttaca	tgtgtcctta	tactgtcttg	ccctggatct	ggctccaaag	47460
tgatcatatt	agtcattttc	ttctcttttc	cctcagtatc	aatacttttc	cttaatcttg	47520
cttatctctg	ttgagtagct	gaaggttgtg	atttaactaa	ttcacactga	gaggtgagtg	47580
agtgatcatt	tactagcttt	cattgatgtg	tttgcatttt	gatggtatta	ttaatccaaa	47640
ctaatttcca	aatggtgaaa	tttcagataa	ctgaaagata	aaaatgtggg	gtctgtcaga	47700
ttcatttccg	tatttgatca	tttcgtgaaa	acgaagtcaa	tgaattgtgt	gtgtaatgag	47760
gttgggagga	aaatgagagg	aagatatatg	gctttcacag	ggaaatgctg	tggaccaaat	47820
tgtgtccttt	gacccccaca	tttatttact	gaaggtctaa	ccctcaatgg	gataacattt	47880
ggatagggtg	atctttggaa	gataattagg	tttagatgag	gtcttgaaga	tgggggcttc	47940

atgatgagat	taggaccatt	ataaaaagac	cagagaactg	gcttcctctc	tctctgccat	48000
gtgaagacag	caagaaggta	gcctccttca	agccaggaag	aaagccttca	ccggaacccg	48060
accatggggg	caccgtgatc	tcggccttca	ggccaccaaa	tctgtggtat	tttgttatgg	48120
tagccccagc	cgaagaagac	agacattcat	ccaactgggg	tgtgttggag	gaagagcagc	48180
taaagggtgc	atgttcgttg	gaatttcttg	gagacattca	aaatagatgt	ccattaggta	48240
gttggatata	gccagccata	cctcagctgg	gaggtctaga	caaggtacag	agaattaggt	48300
ctcttcagta	atggacgact	ttatgggaag	tgatgaaatc	accttgggga	gtgagaaggg	48360
agctgatgac	aacccatgaa	aaaaccacac	ttaggagcaa	acacgaataa	agagtcatcc	48420
aagaagtggg	agagtcagga	agaggagggt	aggtgtttgt	ttacagacct	cctgccaaaa	48480
gtggagtcca	actaatcttt	ccacagatgt	tttcagaagt	actttgcact	ctcaactgct	48540
ttgggtttac	cgatgtcaat	gttaaaaccc	actggcaaat	tagtgtggca	gagtttatga	48600
aatgttttaa	ataaacaaat	catttactta	gatcattttt	tgacttcagg	atttgtgaaa	48660
ttgtgaaaac	atgttaacaa	tatcagtctt	tttttttt	taatatcagt	ctttcttaag	48720
ttttaaaaga	ttgtgttgca	tttcttagaa	ctttatgttt	ataaaatgct	ttacagcctg	48780
tttcgttgtt	cggcaagaac	tgaggcaagt	ggctattata	aaacttttat	tgaatacact	48840
aggaagctgc	aaatttattc	atgactcaat	aacagagcac	tacgtcccaa	attatatctc	48900
tagtccactg	cttttccgat	tttgacacac	tcatgcttca	agtaaatatt	tgttatttaa	48960
aaaggaaaat	aagtgcgtag	tagatataat	taataattct	aattatttt	aatcttaaag	49020
acgataggag	attgcattca	tgttctaccc	cgggggataa	agtgggcctg	ggagaaaagt	49080
cagtgcaagt	caaccataaa	agatacctga	ggaggtacgg	gatcagtcag	gatgtgactg	49140
gtttgagtct	cgagtggatt	cagtattagg	gattatggca	aagagtgtag	gttggtaggt	49200
ttgtggttta	gaactggacc	ttaaaatctg	tccagggccc	aggctgcaaa	taacaactag	49260
cttgaattca	ggaaagtatt	aacattttta	ttctacatcc	tttttcactg	agataggacc	49320
ctgtttttga	aaagagtgac	agtttttacc	ttagactctc	caaacttagt	tatagctggc	49380
tttatagcat	tttatctgca	aagaagtctt	tctcatgtta	tatgattttt	aatctctgag	49440
ggcactgatg	ttaatttcac	gttgcattat	atttattcat	ctgcatctac	attgtctatt	49500
gggttgtgag	ctccctaagt	gtgggactat	atcttgtgca	ttttgcatct	ccagtgggta	49560
gatgattagc	tatttgttaa	tcattaggta	atcaacagtg	cagtttggct	atcacctgcc	49620
tggcaggttc	tagtaccccc	taggctgcta	cataactttt	gcgtcaaagt	ttgcattata	49680
ccattgagac	catgttatgg	tccatgttag	ctcctccttc	aaaatcccat	gtaagtcata	49740
aagtaggcaa	actgtttgaa	ggaggaggaa	gggtgagagt	aagaggcacc	ctctgaggca	49800
gtagatgagt	caaatcaaag	tacacatttc	acatttcatc	gtgggttact	taggtctaca	49860
gaggttagca	tctaaggaaa	ccacatttca	cttgaatgag	tatccttttg	gtttgtgtgt	49920
cttcatggca	agacgctggt	ctaaggtgga	aacttggggg	gagtaaaatc	atcatccatc	49980
atttgtaggt	tgaagcctga	agctctgtac	tgaagactat	tttctagaaa	atctcaaact	50040
gaccccaaaa	cttagattaa	ttattgcctc	taatatggaa	ctgcctactc	tgaagagctg	50100
ttctttgtca	ttattttaaa	atctaagaat	ttaagtttga	cgagtgcgta	aggtatgggt	50160
atacattttc	ttacattatc	aaatggacgg	agttgatgct	gtagaacact	gtaacctgat	50220
tgttaccgac	cattgaatta	agtgaattgc	ttgggatatt	ggaatgtaat	aaactgaaag	50280
ttctagatag	atctcaaaga	gccagatata	tacaatttat	ttaaaaggcc	tataacttcc	50340
tgtttccatt	atgcataaat	gtgatttttg	ttttgcttaa	gttgtatttg	gtccatgtaa	50400
agttctaact	aatttttaat	ccccttgggt	tttaggtgtt	aaaaatagac	caacaaggca	50460

tgatgtttta	gatgactcat	gtgacggctt	taaggacctc	atcaaacctc	atgaggaatt	50520
gaagaaaagt	gggagaggca	aaaaggtcag	tgtgtaaaaa	tattatttta	aactttcaaa	50580
tgctgataca	tcataatgtt	cttctctggg	tcaatgaaac	ataaaccagt	ctatctgact	50640
tgtcttttat	tttaaaaaat	tgattatggg	taaatgctgg	aaaactcaga	atatgaaact	50700
gaaagcgttg	tttgcattcc	agacaaagag	ttattattga	tagagcaagc	tttctcatat	50760
cactttgcta	atgcatttct	tataaaaatg	cctgtagctt	ctctcaagca	gagaatgttg	50820
gttgtgccag	tgtttcttgc	cattttataa	tcggaataaa	tatttactag	gtaggaggtg	50880
aagaatccaa	acattcattc	acttttgaac	taaccaagtc	ttgacctcaa	gccatcagag	50940
tgaaaggttt	atatactaac	actcaggtac	accettcact	ttgtggtttt	ggctttaaaa	51000
ccttgctctt	cctctgaaag	actccgctga	tcctcttaca	tgagtaatag	aatgaggatt	51060
ttaaatgttt	ttatcattca	atatctactt	gcattgctta	aatttaaaat	tagccatata	51120
tattatacct	tgtgcctcat	ttttatgagg	ccaaaaaagt	ataatgtagt	gaaacctgaa	51180
ttcagaatgg	tagggaaaaa	ccataccgat	tgaaaagcaa	cagatgaaaa	gaatgacaga	51240
gtagatgggt	ctgcatgggg	cttccaggtc	ctgatacgca	ggcttgaaca	gatgggcggc	51300
tgcatttgac	ctgcggaaga	gaaacctgac	tcctttgctt	cttatcttgg	caatggttaa	51360
aagacattta	aaattacaca	gatttcatga	aagttggcag	taacttgtag	aaacttagat	51420
ttctttattg	atgctttctg	gtttgtctcg	gaaaaaaaag	tggagcaaga	aaatggaaag	51480
gaaccctatt	tcaggtaaag	caacagatgt	ggagagagag	agactgtcag	ggtcccataa	51540
catgtttgtg	gcgtgggcaa	caccaaggca	cctgctctac	aatggcgttg	cgcactgtga	51600
ctccactgca	gcctgcggga	cctgctcagc	gcgctgcctc	ccaggggtgg	ggcccttcct	51660
agaacgctcg	caacactgtg	gctgagtttg	tgttttgcgt	cccagtttct	cagtcttctt	51720
cctactgcta	catggccgct	tgacctagtt	catttggaaa	gaaataaaga	accagtttcc	51780
tttgcatcta	ctaccgttcc	cgtgcctctc	ctgctgatgc	gtcgcatggc	accacagete	51840
tgttctgtgc	cctcccgctt	tactgaccct	ttaccctctg	ccagtgtctg	cccagggaag	51900
ccgtggtacc	tctcatctct	attggtactc	tacgttgtac	catgtctggc	tttttttt	51960
ttaagtgctc	agtaaatatt	gagtgttgag	ttacttgtta	ctcaccataa	aaatactccg	52020
tectgtetga	tcaaaaggca	tgaggtttga	ctttctcatt	tgcccacagt	ggaagttact	52080
gtttcagacg	agtggtattg	ccttcctgtg	cctgggatag	ccctgaatct	gatgggctgg	52140
gtctgtggaa	gcactgggtt	agggacaggc	atcctgggcg	ggagtgtggc	cccttcttcc	52200
ttatgaggca	tctcactgta	aatggcatat	gaatgggaga	tgggtacctg	tttgactttc	52260
tggcattctt	ctgtagatca	aatagtaagt	gctccataaa	tataaggtgg	tattactgtc	52320
ttgagtaatg	ataaaagaat	gagtggtcag	agagggagac	aaaatacaca	attacaaata	52380
cacacctcca	tatctgcctt	caactgctgt	gctcaggaac	aaaaatattt	tcatatatta	52440
aactgcctaa	cttgctcaaa	tttaagtctt	cttttaaaaa	tattttaaga	gtattagtaa	52500
actttgccct	cataatttag	aatgtcattt	ctgaaacgaa	tccaccactt	ctggttctgt	52560
gtgaagaatc	actcaaagca	ggttttaaat	gcagattttc	tgggccagtc	atggtggctc	52620
atgcctataa	teceggtact	ttggggcggg	cggatcactt	gaggtcagga	gttcgagacc	52680
agcctggcca	acgtggcaaa	accctggcca	acatggcaaa	atcccgtctc	tacaaaaaac	52740
acaaaaattg	gccaggcctg	gtggtgggca	cctgtaatcc	cagctgctca	agagactgag	52800
gtgggagaat	cacctgaacc	caggaagggg	aggttgcagt	gagtcgagat	catgccactg	52860
cactccagcc	tgggcgacag	agtgagactc	tgtctcaaaa	ataaataaat	aaatgctgat	52920
tttctggccc	cacctgagac	cctcctggcc	agcagctccc	gaccccagtg	cggcaccccg	52980

teettaaegt ggaggggaeg aacaeetagt gagggegaag aateeaeett etgtattgeg 53040 53100 tetegecaat ageagaagga geaagaceta ggttteeet ettteacagg attttetee 53160 taatccagtc cttattagtg ttcaccgcac agectttgct tgaatgaatc aaaaactcct 53220 aatgccctag ggtagtgctt cctgactggg ctgcgcattg gactcacctg gggatctgta aggtttgtgg ctgcctggcc ccaagccaga catgctggtg tcattaatat ggggtgcacc 53280 ctggccacta ggatttttt aaactcctga ggtgattcta atgcaaagca gagtttggaa 53340 actactgcct tgggactttt agaatttaaa caagtaattt atcctagaag aagtttcatt 53400 53460 tetttetaaa cattteteat gtaaagttgt tteattttta gaetetaaaa ttaaagaeea aggettaaag teetgatttg egggetgggt geggtggete acacetgtaa teecageget 53520 53580 ttgggagget gaggtgggea gateatgagg teaggagate aagaceatee tggetaagae ggtgaaaccc cgtctctact agaaatacaa aaaattagct gggcgtagtg gcgggcgcct 53640 53700 gtagtcccag ctcctcggaa ggctgaggca agagaatggc atgaacccgg gaggcggaga 53760 ttgcagtgag ctgagatcgt gccactgcat tccagcctgg gcaacagagt gagactcctt ctcaaaaaaa aaaaaaagaa aaaaaaaaat tcctgatttg tttgcttaaa ggttgagtga 53820 53880 gtgttttagg agcgcaaatt tgatagcaat atagatgaag gacgtgtttt attattttac 53940 attitattit totgagatgg agtatoacto tgatgoccag gotagagtgt actggtgtta 54000 teteggetea etgeaacete egeeteetga atttaagega tteteetgee eeageeteet 54060 54120 tagtagetgg aaccacagge accegecage acgeetgget aattttttaa gttttttgta gagatgggtt tcaccatgtt gaccaggctg gtctcgaact cctgacctca agtgatctgc 54180 54240 cttccttggc cctcccaaag tgctggaatt acaggcgtga gccacagcac ctagccagca acattaaatt ttaagtatat aacttcccag tagtttgaga tcttttgata tgagcatggg 54300 54360 gagagaagtt tatgttgata tgtggtaatg agtccacaga aacactaaaa tttagtttcc tggttttaaa agtatacagt ggaattgtgg aaggattgaa ttggtgaatt aaaattagaa 54420 gcttctgagt agcagcctac aaatataatg ttagtatctc aaccattctt tttttcccat 54480 54540 taaataggtt ttacctgctt attttgttcc ttgttagatt tcaagataaa ctgtgttaaa ctgaaatttg gaacttaaca cggccttttt tgtttgtttg tttgagatgg agtctcgctg 54600 tgtcacccag gctggagtgc aatggcacag tcttggctca ctgcaacctc tgcctcccgg 54660 54720 gttcaagcga ttctgctgcc tcagcctccc aggtagttgg gactacaggt gcacgccaca tatttttatg tataaggaca tattaaggta ttagattcta ttaagcacaa aattgtttct 54780 54840 atttcctaaa gaaaacaaaa tcttgtaatt gaatattaat gttgaaaaag ggagagttta caggaaatat ctttcaccag ctaatgactg aagcaatgcc tctactagaa tggagaacag 54900 taaggtotgg gootgacatt tttatgtttt cacttgagag coagcotaca tgotatttot 54960 55020 gtagtgagga aaatgatttg aaactcagat gtgtcccgtg gccctaatga ctttattttc tttttagttt taaatctgaa gtagcacttg caggtaatgt cctatctggg cagccctgca 55080 55140 gacaggactg tcagtcgatg agagctgtca gtcgtgagtt ctgagtaatg tgaaggtgcc aggtagaagg tacaaaggca agaaaggtgg gaaggcctgg agcctgtgcg aagagcagca 55200 55260 cggccttggt gtggcccggg gatggatgca gaaccgcgag aagagagagg ctgacttcag ccacggccac gggctctggg gttagactgc tctcatcttt ggttttctgt aggttcattg tgattgttgt accagagtat tgtttttgtt gtttatttac ttgagagtca caggccgtcc 55380 55440 tgtctttgat ctgttctgga aacttctcca ctgtgatttc ttttgcctgt tttctcacgc ctccattgct gggaacgcaa tctcgtgtgc tatcctttgc ttctatagcc catgtctcat 55500

gattttcctc	tatttctttc	ctcttgtatc	tccttatttc	attctggatg	tcttctattg	55560
gtttcttttc	catttcacct	ttgactcttt	ttaagtctat	tctgatgcta	aatccatata	55620
ctgagtttta	acatgtatta	tttttcagtc	cctgctattc	catttattt	ttttaattat	55680
tttttgtaga	gatgggggtc	tctccacgtt	ggccaggctg	gtctcgaacg	cctggtctca	55740
aacaatcctc	ctacctcgtc	ctcccagggt	actgggatta	caggcgggag	ccttcatgcc	55800
ctctatttga	tttataaaaa	ccatttccag	ttctctgtca	aaattattaa	tcctatcttt	55860
tatttatttg	aacatattat	gcatatttct	tttgaaataa	ctcccttttc	tggctcccct	55920
caatttctgt	ttttcttatc	tgttgttttc	aatcatacgt	tccatatcta	atatgcctgg	55980
ttagtttgtc	tttatcttcc	tagcagggac	tgagatgatc	tggagctggg	gttctgtctc	56040
tgtgaggcta	gctgtcccct	gggagtgtgg	gcttctgact	ctggttcacc	tcctcttcca	56100
tgggtttctt	cttccatgac	tcactgattt	agtagctggg	caacgtctgc	aaatagctgg	56160
ggcttgtttg	tttgtttgca	tcttgtccag	cttttctgag	ggctcacagt	gaggagccta	56220
tttcaaacta	cttagtccac	cattcctgga	gacgatgggt	gaattttaac	ggccacttaa	56280
cttttctaaa	tagagttttg	gtgtgaatgc	ttctctgaga	agacagcagt	aagaggccaa	56340
gtcaagagaa	atgatttttg	agatgaacac	gtaggtcagt	ttgcaaaaga	cacactaaac	56400
acctgaattg	acattaattc	agtttctctt	aaagagtgaa	aaaaaccatg	attccatgaa	56460
gaattataga	atctcagagc	tataacttcc	attagctttt	tttttggtgt	aatgcccatt	56520
tttaatggca	aaaatcactc	tataaatcag	ccagaaaaag	agtctgtttt	tttttagact	56580
tattttaaat	atacttgttt	caaatttgtt	gagactttt	tttttttt	ttttgagatg	56640
gagtctcgct	ctgttgtcca	ggccgaagtg	cagtggccca	gtcttggctc	actgcaacct	56700
ccaccccacc	aggttcaagt	gattcttgtg	tctcaacctc	ctgagtagct	gggattatag	56760
gtacctgcca	ccatgcccag	ctaattttc	tattttttt	ttttttaatt	agtagagaca	56820
gggttttgcc	atgttggcca	ggctggtttt	gaactcctga	cctcaagtga	tgtgcccgcc	56880
tcagcctccc	aaagtgctgg	gattacaggc	gtgagccacc	acacccggcc	tggtgagact	56940
ttatttggag	gatccagtta	agcagtttta	ttacctctgt	aatcttagtt	gcagcatgta	57000
ggtcattgac	attgatagtt	atacatcttt	tcagagggag	aaatagaaaa	tattatgacg	57060
aattttgacc	tgttttcttt	gttacttgtt	gaatattgtc	agacacagaa	cccaaagaag	57120
ctatgtatag	ataccagcac	tctggtagaa	atacacgaat	gtaattttt	tttctccaag	57180
			ggtttttcaa			57240
ggaacatttt	taatgtgagt	tatcaacagg	atagcttttt	gtaagtggct	cagttgtaga	57300
atctcatttt	ggagccatct	ctgccaatcc	agcttgttgc	atgtgaaggc	aagctgtggg	57360
tcagagcaca	gaaatgttta	cagaggcttt	cctaagcctg	gaggcctgga	gagatgtgaa	57420
ggaacaaata	gagcatactt	attttgatag	tggtttaaaa	aaattaaaga	attacacacc	57480
acatagaatg	cttaaattcc	tgaaagtttc	tcaaataggg	tgcaaaacaa	ataatagctt	57540
gcatatgctg	atagttgctt	gttcttacat	ctttgctaga	atatgagccc	ataaggacat	57600
agtctatatc	ctgttagtct	cttaatactc	agcaggatat	agcatcacaa	acaaaataag	57660
tgctcagtaa	atattttctg	agtaaataag	agatgcatta	atttcccttt	tactttttca	57720
gtgaacatgt	ttaaaacatt	tttggtgctc	ttaaccatca	ctcagtaatg	atggaatcat	57780
catcatgtac	ttcacttatt	tttgaatatt	cttccaaaac	ttgagagact	gtcttctttc	57840
agtaaaagat	ggattctctt	ctccaaggct	gtgcatggca	gcgcagtgtt	gctaaagcat	57900
tgcccccaga	gccagatgcc	tgggttcagt	cccatctctg	ttactcacct	gctctgtggg	57960
ttccatggtg	ttgaacaaat	tacttaatat	ctgtgcctat	acttctttgt	gtataaaaca	58020

ggaataataa	taatagtacc	agtctcctca	aagggtttgt	gctaattaat	tgagttgaaa	58080
catgcaaaga	gtttaagata	gtacctcata	tatagaagtg	ctcaaaaaat	gttagctatt	58140
ttcttcagca	ccagcttggg	tgagggtcat	gtctgcatat	tgactgtgct	ttgttctgca	58200
gctataactt	ggagtaggtc	tctcttacct	gcctcctctt	tgcccactcc	cagagaccac	58260
catgtgtctt	taatgaaaat	gaccctcaaa	actctgggac	agtccacact	gtgtttcttg	58320
ttggacttac	tgaccacagg	catgccagag	ccaaaataga	gtcttgggca	gggggtgagt	58380
ataggagtat	agccttttct	aaaagctcct	tcagtgattc	tgagctgatg	gtcatcctcc	58440
cattgagaac	ctttgttttg	ggggtgagat	gtaggccatt	agcatgaaat	tgtgctctgt	58500
catctcccc	aggaggcaga	agactgagtt	ctgcggtcag	aaatgcccgc	ttgggggatc	58560
tgcttcctca	gttttcgaga	gatgctttcc	tcatctccag	tatcattaga	accttcctga	58620
aagaactgag	atctttgtga	gctgcgatag	ggtactcaca	gctgtcattt	attgagcatt	58680
gtgacctctt	tttagattga	gttttctatt	tctcagtcat	atggaaagct	gaaaagaaag	58740
tatatttcag	agagctctaa	tcatgtcttt	attgcggagg	cagtagattg	ggaattacag	58800
ctcatttggg	tgtagcatcc	ccggagaagg	agccttgcag	tggaaagaag	ataaaagggt	58860
cccagtggcg	ggaataaaaa	gagtactaga	tgcccagagg	gtgggaaagg	cctagcccag	58920
atgcagtgtg	gccaggccag	ctaggggcag	gaggaaagag	agctgcaggg	atacagatgc	58980
cttcctgagc	agagaaaata	gaatacttga	gccaattttc	atgtaaaatg	gattattttc	59040
ctggcgtttc	ctgtccttca	agtaaaaggt	tctggaatga	gtacttcact	gctgtaatgg	59100
agacactaat	attttatgaa	tgcagtttta	cagtttgcag	taatgccagg	cctttggctg	59160
ttttccatta	gatggtgcac	ttggctggaa	gcatatactc	ttgtagcttt	gattttaaat	59220
ttaactttca	agttgaaaga	gcagtgactc	atccaaagga	caggtgatat	ttatttattt	59280
tttcttgaaa	atgcagcacg	ggtatgttgt	tatcacacgt	ttaggggaat	tgccacactt	59340
cctcgaggat	gacacccttt	gtaaatatcc	atgtaaatca	tttccattgt	tcagacccgc	59400
tgtacgcaga	aagataggcc	ctttagtgcc	gaccagccgg	ccagtgagct	ctgtaagatc	59460
gaaggtgccc	ttggtttcca	acacagctgt	ttcagtgatc	tgtaattgct	ttgataaatc	59520
acttttggca	gagtgtaccc	agagctggca	gtggcgggga	tgtgctcgtt	gtaacaggtg	59580
tgcggtccat	cagcagatgt	tgcttgatga	agccatttaa	aaaacagctg	cctgttgata	59640
	tgctttcagc					59700
aaaatattto	tacagaaaac	attaaatagg	atcttcaaag	aactccatct	ttttaaaaat	59760
	tgttcactaa					59820
	tttggactgg					59880
gcctcagtgg	tcgtctttgg	ccacgtaaag	gtagaggcca	ccgacggagg	acatttccca	59940
ctgggagacc	cacaggcgct	aagagaggag	ctagccgaag	aagtctattt	aagatetget	60000
	ggtgtggtgg					60060
gtggatcaco	tgaggtcagg	agtttgagac	cagcctggcc	aacatgggaa	aaccctgtgt	60120
ctactaaaaa	tacaaaaaat	tacctgggtg	tggtggtaca	cacctgtagt	cccagctact	60180
	aggcaggaca					60240
atcatgccac	ggcattctgg	cctgggcaac	agagaagatt	ccatctcaga	aaaaaaaaa	60300
aagaaaaatt	ctgctggtag	gcattctatg	cactgagcaa	aggagagatg	tggaggccca	60360
atttaaatag	ttacagctgc	tagctcctaa	ggtctatctt	actatctgca	ccgtttgcgg	60420
ggagtcagct	taatgatagt	aaactgtgct	aaatgggtct	agaaatatcc	aattaatctg	60480
tttgagatat	teggaaacte	aatagcttgc	tgaagtagca	aacttgaatc	cttattttta	60540

ttttaaaagg	gagtaaaggg	actgtagata	agtaaaagat	gctctgcact	gcgcctctct	60600
ggtaccagtc	cctctcgttt	aggcagcggc	cacttcccgc	ggagctgttc	acgccaagtg	60660
accctgccac	tgcgctgctc	ccaccacccc	atgtccaccc	cgtcctcgga	cgcctggtct	60720
cagcacatca	ccggtattct	cttcctctta	ccagtaatta	gtttgagact	gtgactcact	60780
tctgtccaac	aagatgtgaa	gggaagtctt	cctgggaggt	ttctggaaag	cgttctctca	60840
cttgtgatag	ccctgggaag	aaatgctccc	cgggtcctca	gagctttgtt	gtggctggac	60900
gcatcttctg	gaactgcgac	agcggaggag	gaagccaaga	gagtgaacca	aaacaaggaa	60960
gggcggaggg	cgggggaggc	ctgcaaacct	tacggcttat	ttccactgac	atcagagact	61020
catgttaata	agtaacaagc	ggctttgttt	gttatgctcc	tcagacacgc	ggtaagggag	61080
acacacagaa	atgcacagct	gtacgtattt	gtcttgaagg	ctagaattta	ctttaaatgt	61140
gagtggtttt	cccaggaaaa	atttatgtct	gttctcttga	ggaataatta	tttcctactc	61200
aattttatct	atcgatccat	ccatccatcc	atccatccat	ccatccatcc	atccatccat	61260
ccatccgata	cagagcctcg	ctctgtcgcc	caggctggag	tgcagtggcg	ctatcttggc	61320
tcactgcaac	ctctgcctcc	ccagttcaag	tgattcttgt	gcctcagcct	cccgagtagc	61380
tgggactaca	ggcccgtgcc	actacacctg	gctaattttt	gtatttttt	tttttttt	61440
ttttcctgag	acagatcttg	ctctatcgcc	aggctggagt	gcagttgcgc	aatctttgct	61500
cattgcaacc	tccgcttccc	aggttcaagt	gattctcctg	cctcagcctc	ctgagtagct	61560
ggtactagag	gcacgttcca	tcacgcctgg	ctaattttt	tttttttga	gatggagtct	61620
tggagtctcg	ctctgttgct	gaggctggag	tgcagtggtg	ccatctcggc	tcactgcaac	61680
ctccacctcc	tgggttcaag	tgattctcct	gcctcaacct	cctgggtagc	tgggagtaca	61740
ggcgcgtgcc	accacacctg	gctaagtttt	tgtattttcg	gtagcaacga	ggtttcgccg	61800
tattagccag	gatggtctca	ctctcctgac	ctcgtgatcc	gcccgccttg	gtctcccaaa	61860
gtgctgggat	tacaggcatg	agccaccacg	cgcagccttt	ttttgtgttt	tagtagagac	61920
agggtttcac	cgtgttggcc	aggatggtcc	gatctcctga	cctcgtgatt	ctctcacctc	61980
ggcctgtcaa	agtgctggga	ttacaggcgg	cagecacege	gcctggccta	atttttgtac	62040
ttttaagtac	agacggggtt	tcaccatgtt	gtccaggttg	gtctcaaact	cctgacctca	62100
agtgttccgc	ccaccttggc	cttccaaagt	gctgggatta	cagggttgag	ccaacgcgcc	62160
ctgccctcaa	ttatatttat	ttctttgcct	ttccttacgt	ctttaactct	tcacactttt	62220
aaaaaagtta	ttgccttcca	aataatattt	aggaatataa	attatttgat	attaatccag	62280
ggtaatttcg	atttgtttt	aaaaaagggg	aataaaaaca	ttattattca	gaaggggtta	62340
aatacaatga	caaaaactgc	aattcagaat	taatgaggcg	ttataatagg	gtttgttaaa	62400
aaaattatga	ggtatttaaa	atagatttt	ggcatatcct	tttgtgactt	ttggatagac	62460
ttaagactta	gtttatatat	caatagtgag	tctgtatagg	aaaagaatat	aatattcagt	62520
gactgtcaaa	ccagtgactg	gagcagcttg	gtatgaagcg	cttcttattc	tggtctccct	62580
aatcagtgat	tttcaatttt	gaaaactttt	ttttgaagtt	gtgttgtttt	atttttctgc	62640
agaaatatct	tctgcttttc	attttaaagt	atatttgcta	tttatttgca	atctagttct	62700
catcattaaa	agcagtacta	aaatcttatc	ccagaattta	taggttgtgt	cttttgtcct	62760
ttttttgttt	ttagtatttt	tctgtcactt	tacttcctca	ggtgaagttt	taacaaaaac	62820
gagggaccat	ggataggaaa	gtaggaatga	aacagtttac	agggttgaag	ttgtggtata	62880
attcttttt	tttgttttgt	ttaaagacag	ggtcttgctc	tgttgcccag	gctggagtgc	62940
cgtggcgaga	tcatagctca	ctgcagcctt	gattgcctgg	gctcaagtga	tccctccagc	63000
cttggcctca	tgagtagctg	agactccagg	caggtgccac	catgctcagc	taatttttt	63060

	tttaaatata	********	taatattaaa	ctcttggcct	63120
tgtttgtttt agagatgggacaaccatcc actcgcctgg					63180
cctggcccat ggagtaatto					63240
					63300
tcaaaatagt agcactagco					63360
ccatttgctt tggtgagttt					63420
ctacacctta gcttaagcaa					63480
gageteagag geagtettte					
ttgggctctg tggcttctct					63540
cctatggtcc tttgtttggg					63600
tgccccctat gctgtcctcc	cacctgccct	gtcctacaag	catgacctgc	accettetee	63660
cacacaccca gaccgcagct	tattcttact	ctccctggcc	agcccctctt	cttggagagg	63720
agaaaggatg atgtgaaaat	aatatctaac	attggggctc	cccagcgact	tccacaagga	63780
gcaaggagct aggtgcatgt	gtagacccca	tgggagcttt	agtgttagat	accgagtttg	63840
ctagatgaaa catctttta	attgaggtgg	tgcagatgta	ttgtttgaac	actttagaca	63900
ctaatgatga actacttgga	tgtacatttt	tttggttttt	tttttttt	gctatgaaaa	63960
ttagaaaaaa tatttatcca	agacagtaag	tattgaaaac	tgatactggt	gctgtatgga	64020
tcactattat tgtattattt	gaaactgttt	ggaaaaggta	ttgtagtttt	tagaaaaaca	64080
aagcaacctg aatattaaaa	gtctgtgaat	ttgagtaaaa	aacagtccac	ataagggaaa	64140
aaatatataa ggaaggacaa	tgaagttttg	aaactgttac	tataagaaag	ctaaaggctg	64200
agcacagtgg ctcatgcttg	taatcccagc	aatttgggag	gctgaggcag	gaggatcgct	64260
tgaggccagg agttcaagac	cagcctgggc	aaaggagtga	gacctcatct	ctactaaaaa	64320
taatttttta aaaatattag	ttggacatga	tggtggccac	ctgtggtcca	agctactagg	64380
gaggettgag accaggaatt	cgaggctgct	ctgagccgtg	attgtaccac	tgcactccag	64440
cctgggcaag agtgagacco	tgtctcaaaa	ataaacaaaa	aagaaactta	aagattttag	64500
tctcaatttt ctacattgaa	cccatcttta	gatcatagca	tgtataaaat	taaaaatggg	64560
ggaatatcaa cattattata	tttaatgcta	tagcttatta	ttgtatttaa	taagctactt	64620
gtttaaagat ctggggtctc	ttgggtccac	agactgagtc	tttctgaagg	tgctttacac	64680
gatgtagctg ccagggatct					64740
ttccagaatt tatcttttgt					64800
aatttatata aatatatgat					64860
cgtgaacaag gttaataato					64920
taaggaaaat taatttcact					64980
agaatgtttt gtttttgaaa					65040
agttgaccta tctttggtct					65100
tgcattcaat actctttttc					65160
tttcagaaca ttcttttgtg					65220
cgttggattc tttcatgtg	_	_			65280
					65340
ctaactgtgt gcttttcctg					65400
acaatgttaa aaacagaaaa					65460
taccttgaca tacttaaatt					65520
attaatatat tgctaataat					
gaatttgtac ttgtttttt	atttctgaga	tcctcatact	ttggggtttt	ccccattett	65580

ttattttttc gag	acaaagt ctcgctct	gt cacccaggct	ggagtgcagt	ggcgcgatct	65640
ccgctcactg caa	actteegt eteeeggg	t caagcgatto	tcctacctca	gcctcctgag	65700
tagctgggat tac	aggtttc ctgccacca	ac acccagctaa	tttttgtatt	tttaggagag	65760
ataggtttca cca	tgttggc caggctag	c togaactoct	gacctcaagt	gattcgccca	65820
ccttggtctc cca	aagtgct gggattac	ag atgtgagcca	ccatgccagg	ctctgagatc	65880
ctcgtacttt taa	aataaaat gttaagata	ac atgctttatg	cttttgctgc	ctctcatgtt	65940
tcatgaatac aag	staaaccc atgagtaa	ct catgaataca	cataaacttc	tgggcctcca	66000
aacgatgccc tgc	cagtggc catgccaca	ag gaatcagagg	ctgtacttca	ctttgtggtt	66060
gctttattat tcc	accatta taagcttta	ng tagaaaatgt	aaagagggtt	gttaaactga	66120
aggagtgttg tct	caaactg aaggagaa	aa gtagtgttgg	tgctgtaaga	tgtacataaa	66180
ctaaggggtg tct	tttctac catccagt	a gcaattagga	aagtccttct	ttgctcatac	66240
cattccaaag gga	gtcatct tattcttt	ct ctaaatttcc	ttacaatgga	ggctgctaca	66300
gtttaagtat cga	aggteet tttttte	ng atttcacctg	cagtgcctat	aaatttgggg	66360
gaatgccttt ttt	tgggggt gaccaaca	a ctcagtggat	cttggaccta	ccaccaagtg	66420
accttccttg ctc	acctgta aggctgaga	aa caccgtaago	aaagtaccag	gcttctttcc	66480
ccaagagggc ttt	gtaageg ttggegee	at aaaatcaacc	tgaggactta	ggtggctggt	66540
tatttctgag taa	agtgaata tcactctca	aa atacgacatt	ccagcaaagg	ccatggttgc	66600
atagccactg ttt	ttagtta tgtcctgg	a actaggaaga	tggattgttt	tttaatctat	66660
gcaaataatt ata	ittgcgct gaaaaaaa	g atactcaatt	acagtttcac	aattctggag	66720
ggatcaggca ggg	gataataa gataccati	t ccagatgttt	cctttctgtt	tataaaagca	66780
tagtcgactg aat	tgttagg agatacag	gc agagggagaa	gagaaagggt	tccttatgta	66840
tccagaatat aga	igtgttaa aatagcaa	ca atactgtaaa	caaaagccgc	agtcctcctt	66900
cagtagttca tct	gggccta gtcattaa	t tttgttccac	ttgatcttgg	gttagcagtc	66960
tcatgaatcc gtc	etgettet caatgaggg	gt tatagaaato	ctcttcccct	ggtggggtct	67020
cagcattatt tag	acaatge cataagaa	gc ctgtacccaa	aagtacccag	tatagttctt	67080
ctccacgggg ctc	ctaacaca gccccctc	t ggtcgaaggt	aagtcactct	ggcctatagc	67140
taattgcaga tgc	tgatcag ggaagtgt	ca gagaaacaca	gaaatctgta	ggtgacaaaa	67200
gattttaaat ggc	tatggtt ctcgtatt	ac tgataatttt	caaaactaaa	tttattgaga	67260
gttcattaca aca	igtattgg caactgata	aa gtaaagttag	ttatggtgtg	caaaacagag	67320
tcaacccgaa aaa	agttctag atacaaca	c tagaaacacc	ataattaacc	ttattttaaa	67380
agaacagtgg atg	ttacatc taatttata	aa aaatggaaga	acataatctt	tacagaaaaa	67440
atcttcagat ata	acaaaat agtcccaa	ga catartatac	aatgaatatg	ccaagcatat	67500
aattagaata gac	caagaat atcacatca	aa gagggttatt	ttagagggga	cataaacacc	67560
tatgtattaa taa	catatat ttaacctag	gg gctggctato	ttttttgatg	tgacaatttg	67620
tcccatataa ctt	atcaata gtaacaca	c aaatggatct	cctaattatt	tcaagcatct	67680
gttttttatt aaa	igtaaaag cacaaata	t ttttattttc	caggtatgtc	tggggaatct	67740
tagacagttt ttt	gttttgt tttgtttt	t tgagatggag	actcactctg	tcacccaggc	67800
tggagtgcat tgg	cccgatc ttagctca	ct gcaacctccg	cctcctgggt	ttcaagccat	67860
tctcctgccc cag	occtccca agtagctg	gg attacaggtg	cctgccacca	tgcctggcta	67920
atttttgtat ttt	ttagtag agatgggg	t tcgccatggt	gtccaggctg	gtctcgaact	67980
cctgacctca ggt	aatccac ccgcctcg	c ttcccaaagt	gctggaatta	cagggataag	68040
ccaccatgtc cag	cctcaga cagtttta	ag tacaaaatat	atcatttagg	atttgatttg	68100

cggaaggcaa	aatatcaaaa	attatcaaga	aattttgaat	acctgattcc	aataggatca	68160
tgtaacttag	aaacaatttt	tgactaccta	tttaatcaaa	gtgactgtaa	aaggttttaa	68220
aagtaaacag	agaggtaaca	tgattgtaaa	gaaccttagc	tctttcctaa	gagacacgaa	68280
ttcttgaata	ctcaagggta	aaataaagtc	aatataaacc	atagaaggtt	attctcataa	68340
aacacagaat	ctttggaatc	taagccaatt	atacagaaaa	aagaataagc	ctttattttt	68400
taggtgaatg	tggtaaacag	taaaccaaag	aaacaggctc	atcaatattg	ggtaaacttt	68460
tctttgtttt	taaatgttta	gtctttagtt	ttaagagatc	atctgcattt	tttctgtaat	68520
aaacttaaaa	gatatccact	tatatttctt	cagatttatt	aattctgtag	cattttaagc	68580
attgaaatga	cagtttttct	ctcaatcctt	tttttttt	tttttttt	tgagacggag	68640
tcaggctctg	ttgcccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaagctccg	68700
ttctccccag	gttcacgcca	ttctcctgcc	tcggcctccc	aagtagctgg	gactataggt	68760
gcccaccacc	atgcccggct	aattttttgt	atttttagta	gagatgaggt	ttcacagtgt	68820
tagccaggat	ggtctcgatc	tgctgaactc	gtgatctgcc	cacctcagcc	tcccaaagtg	68880
ctgggattac	aggcgtgagc	caccgcgccc	agcctgtctc	aatccttaac	aatgctatat	68940
ttgttgtatt	tcatatgttt	agctttctca	tggagaaaaa	gaaacatagg	cataaacctt	69000
tatactatcc	gcctgctggt	cctgcaacat	gagtttaata	aagcgttcct	gatacttaaa	69060
caatttctat	gatgtcagca	gagagatatc	agcaagagtg	attgtaaagt	agctagcctt	69120
ataagtcaag	agttataatc	tttgatccac	tgctcaatcc	atttcaagat	ctgatctaca	69180
ttattttcta	gctcttctgg	tttattgctg	ggcagccgat	gcacaacttc	ttccttgtag	69240
gatgccgtgg	cttcttcata	aagaacttgg	aaaatctcac	actgaatatt	gtcttttagt	69300
ttcttctcat	tataacccct	catttgaagt	atttcgtaca	atatgttggc	atctattctc	69360
aacacaaaaa	ctatgtgaaa	ccagcgttca	gggaagaaat	cacaaccgtg	gtaatcaaca	69420
ataactccac	attctctcat	ttggttatct	aactcatcag	ctactctgtc	ttcatctaaa	69480
atgggacaat	tatactcttc	atcatagtcg	tcatacaatt	rcttttctca	agctaaatca	69540
cccacattaa	tgtatttcaa	tcctgatttt	gattctgata	tgtggttttt	ccaacccctg	69600
gtgtacctgg	ctttctatga	cacgtttcta	tcaccaagtc	agaacaaagt	gacactttag	69660
gactgaactc	agggagtctg	tggggtcaaa	actaatttca	taatactact	aagactttaa	69720
catgcaatgg	gttcaccttg	ctgtctccaa	aaaaaaaatt	gcaccactgc	actccagcta	69780
gggcaacaga	gcaagaccct	gtctctcaaa	agtaaataaa	taaataattt	aaaaaattat	69840
tgttaaaaaa	agtttgtcag	gttaatgatt	caatttgatt	aagcacaaat	ttacatttt	69900
tcatagtctt	aaactttagg	agtaacgttc	acttatttga	tcagtaaatc	tgtatagctt	69960
ttgtaagaac	atgtaaaagt	agaatagcaa	tgtatagtgt	ggctgggcac	agtggctcat	70020
gcctataatc	ctagaaattt	ttggagtcca	agatgggagg	attgccgagg	gcaggtattt	70080
gagaccagcc	ttggtgacat	agcgagagac	cccatcttaa	aaaataagaa	taataatact	70140
taatgctgac	aactcataga	agacatgact	atttttatta	aaccccaaat	attcaactag	70200
tctcatttgc	caaatattta	cctaaatgtg	tgaacttgaa	ttcttaaaac	atttacgttt	70260
ctataggaat	actttttta	gtgctgttga	aagtattatt	ggaagttcaa	tttccttaat	70320
ttctgggaat	tttaggaaga	ttcaatttat	aggtgtctct	ttatttctaa	gccagtcaga	70380
acagaacatc	cttaagagct	atcacattct	cacttggtaa	gaccatctca	tgatggttat	70440
cccaggatga	gagacaatag	ctgctttgaa	agttcccctg	ccacactggg	cttccagtac	70500
cagtgcagct	aatgaccctg	ccctaacagc	aaatgctggg	gagcagggtg	caagtgttta	70560
cttgggtgcc	cttcacgggc	actcctttta	cgtggtggac	agcctgatgc	tttgttctct	70620

aaaccagtat caggcattcc	tctcatggga	gatgtgctta	tcctggcaga	cgcccttgtg	70680
gctcttttct gacccctctc	cagtttatga	ctgcctgacc	atcgctctgg	tgctcagagc	70740
ctgcccttgt gttcctcccc	agcatcccgg	ggaaaaccca	ggtagcctgg	gagagcccct	70800
ggttcttcag atggaatgtg	caaattcagc	acaccaacac	gataggaaat	aagttccaag	70860
atttattact tccagatcct	agagagggag	ggcgccatga	gtcgggaggg	caatgctcta	70920
tccccaggtc accagaagaa	tgaatgaagt	gtcaggcata	gagcaagaga	gagtgggacc	70980
catgggccac cacctttact	gggggccagg	gcattgtcca	agcaggtttc	ctgcagggag	71040
ttttagttgg tgagtttaaa	acaggcagcc	atgagtttca	ggatcacaca	gcaactgaga	71100
ggtggtccct gtggcatact	ccacagtcca	tgtggggtgt	ggggttggca	gggcagccag	71160
gtagactgtc tcttagagag	gccgtcacca	gaaagaggag	gtgtataagg	cagatccctg	71220
gatcaacccc attgaggact	gggggtggca	ggtggaagct	gtcgagggaa	actaagccct	71280
gtttctggta tgagaaggtt	aaacttatca	tcaaaataga	tgccaaggct	atatgaaact	71340
gtcagtattc actacagtgg	catttccaca	gtacaataca	gacatacaaa	cagacataga	71400
taatttgtaa gctgtaattc	taaaatttca	ggccaggcgc	ggtggctcac	ctctgtaatc	71460
ccagcacttt gggaggccga	ggtgggtgga	tcacctgagg	tcaggagttg	gagaccagcc	71520
tggccaacat ggtggaaccc	tgtctctact	agaaatacaa	aaattagctc	ggtatggtag	71580
tgggcgcctg tgatcccagc	tagttgggag	gctgaggcat	gagaattgct	tgaacccggg	71640
agatggaggt tgcagtgagc	cgagattgca	ccattgcact	ccagtctggg	caacaagagc	71700
aaaactccat ctcaaaaaaa	aaaaaaaaa	agaagaagaa	aaaaattcag	tcatagacca	71760
aacttaaaag cagaaatata	aaattttact	cagatgtcta	cttcctgatg	gcatgaaatt	71820
cttaattgtt ttgaaaccaa	agtagaaaag	cagacaaacg	aaaaatacta	gcaaatcaga	71880
ttctgttatc tttcacccaa	cagagacaag	atctctataa	accagcagtc	cttccccaaa	71940
tacgtagtat acaaaccgct	tcatgtctgt	cattttcgtc	aaccctgggg	tccttcaaat	72000
gccttttgtt ccttctcatt	tacttcacct	tgacttttca	agacatattg	gttatactac	72060
acagttggtt acatttgaag	tatttcatgt	aaattacaaa	agtatatgaa	taatgtgaat	72120
tcatttttgt ttatatatgt	atatgcatgc	atacacatac	acacacactc	ctatagagtg	72180
aacatttggc tgaatatact	gccaaattgt	taaacaatag	tcatttctag	ctggtggaat	72240
tacaggaaaa tttgtgtttc	tgattatata	tttctatagc	atttaaattt	tttgcaagtc	72300
agcgtgcatt tcttagataa	gcaaaaaaaa	aattaaacat	tttatttaaa	tttttttca	72360
attccagtta atagcagatg	tcaatagaac	aaataagttc	ccttatccat	gcttctgtat	72420
gtgggggatt cacttgacag	gtgcaacaga	agcacaagca	ttattgtgca	cctgtgtctg	72480
aaatgagaat gaggctgcct	agaagtcttg	agaaaagtgg	ctgacgagtc	tacaaaaaca	72540
cccttcttac cctttctcac	tttgaagtgc	atgaagacgt	tgacacactt	ggaggtctgc	72600
tggctaactg gtggaacaga	ttcctggggg	aaatttttt	gttttgctct	tgtacctcat	72660
gtctggatta ttttggattg	ctttggggac	agtatctgag	tttctatctc	ttggcctgtt	72720
ttttccagga atataaaggt	tttttttctt	tgacatatgc	ttaaatgttt	atttttaagt	72780
gatgtaactt ttcaaaaaac	ttattacagt	ttatttctgt	gggaaaaata	ttttttakgt	72840
ttttgactgt tttttgttcc	ttcttgtttg	aaatctctag	ccaacaagaa	cattagtcat	72900
gacaagcatg ccatctgagt	aagtacttgt	tttgatttct	gttcaatgta	aaatgttaac	72960
cttttctctc ttatactcta	attctgggtg	cctttaggca	acttgtcaat	ctgtcctgta	73020
tcacttttac tttataaaat	taatatctga	gttagaagat	cactgaaaat	taaacatgta	73080
ccaaatgtga gcgacttagc	cttgaaaact	ctggggttgt	ttaggcagca	ttaagaggtg	73140

tgtgctcgtt	ttggtgttct	tttgcttgct	tgataccaaa	tagcttcatg	aatgttcaag	73200
aagtggaaca	tcattgacca	aaacatttcc	cttaaaggtc	ttaaagcaat	actgcagcag	73260
aaagctttcc	acagcagtgt	taaagttgct	atgtatgcat	tttgtggaag	ggtcaatagc	73320
ttgttggcat	gctcttatca	tctcccttaa	acatttaaca	caacaaagaa	catccaacaa	73380
aaatacagtg	ctatattctt	tgcaacagat	ttttgaattc	ctgtttaaag	gggaaaacca	73440
tgtttttgat	atcaatcata	ggttttaagg	ttttaagaca	tccatcaaaa	cattggaaca	73500
tttcagtgaa	aaatatgctg	cagagagggc	acctttagaa	cattttcagt	agtgggatcc	73560
ttttcctgcc	tggggcttag	aaataaaagc	actgatcatc	aaacaccata	cattatatag	73620
tgaaaaaggg	ggtcactcaa	aatttttgta	aatatattat	gaaatatatt	gaacattcta	73680
aatagtctaa	tacagaagcg	aatattgaat	atatgtgtaa	tatttttaa	agtctttgta	73740
tttttccaaa	ataaaagaaa	aattactagt	taactgctta	ttttctcatt	caagatttaa	73800
aaataaaact	tttcatttag	gccatcttct	tgtcttactc	ttttttctc	cacatggact	73860
tcttgtgata	cttaagaata	agacctggac	attctgattt	tatgtggatt	agctgagcct	73920
tgcagagaca	cttgttactt	actggcacat	ccagcaagca	gctgccagcc	tcaggatgga	73980
gttctaggga	gtgtgtagtt	tagagctttt	tactttttgt	ttttgtttt	gttttctttt	74040
atcatttttg	cctttatttc	tttccaagtt	taattattt	tcttgactca	agcacacatt	74100
ctcgggttga	agtagtgatg	aggcccagat	cttgactcac	acatcttttc	taccctaagg	74160
atctcttaag	aatttaaaag	catgatataa	ttcagccctt	tcattttaca	gataaagaaa	74220
caggttttga	gatggacata	cctaagatca	ctagagataa	aactaagaag	gctgggtgtg	74280
ttggttcacg	gctataatcc	cagcactttg	agggtcccag	gtggacatat	tgtttgagcc	74340
taggagttca	agaccagcct	gggcaacata	gcaaaacctt	gtgtctacaa	aaaaatgcaa	74400
aagttagcca	gacttggtgg	tgaattgcct	atagtcccaa	ctacttggga	ggataaggca	74460
ggaggatcac	ttgagccctg	gagatcaagg	atgcagtgag	ccatgattgt	accactgcac	74520
tccagcctgg	gcaacagagt	gagaccctgt	ctcaaaacaa	taaaataaaa	ctaaggaaca	74580
ccatcatttg	gaaggaagag	tgttagaggc	agtctgtata	agcatagaca	ataacctctt	74640
cccctttgta	atataatttt	tggagaggag	agatgtttat	ttctttttct	atttatttat	74700
ttatttattt	atttatttat	ttattttgag	acagagtctc	cctctgtcac	ccaggctgga	74760
gtgcagtggc	gcaatctcct	cccactgcaa	gctccacctc	ccgggttcac	gccattctcc	74820
tgcgtcagcc	tcctgagtat	ctgggactac	aggcacccgc	gaccacgccc	ggctaatttt	74880
tttgttttt	tagtagagac	agcgtttcac	catgttgttg	tatatatcac	agtgtggctt	74940
agaaagccct	ccattgggga	tttttaaat	tttctgggag	agagggaaaa	ctaatgtcag	75000
aactaatggc	atagaaaggt	tattataaaa	gggaagaaag	aactgagggt	tgtttggtaa	75060
ggaagttgga	cggaaagaat	atatttttt	aaaggatatt	ttaagtatta	agggaatgac	75120
agagcaggag	ataagccata	atggtcatga	gctttgtgac	aaataggtcc	cagatttgat	75180
ttgatgattt	aataaaaagg	gtctttttc	ccctcttagt	agaaaaacta	tgtgttgata	75240
ctcaataaat	attacatttt	caaaataaaa	taagtgaggt	tcttggttct	gagcatgcac	75300
agataggttc	aaataggcct	gaaaaacaaa	tcattgcccc	agtgggaaga	gtgttggtct	75360
gatgtcaggg	gcctggttcc	ttttttttt	ttttctttt	ttctttttt	ttttttgaga	75420
cggagtctct	ccctgtcgcc	caggctggag	tgcagtgaca	cgatcgcggc	tcactgcaac	75480
ctccacctcc	cggattcaag	ctattctgtc	tgcctcagcc	tcctgagtag	ctggaacaac	75540
aggcgcgtgc	caccacgcct	ggctaatttt	tgtagttttt	agtagagacg	gggtttcacc	75600
atgttggcta	ggctgatctt	gaactcctgg	tgatccaccg	gcctcggcct	cccaaagtgc	75660

cgggattaca ggtgtgagcc	accgcgccca	gccaggggcc	tggtttctga	tgctggctct	75720
gtccctaccc agcccagcca	ctgtgggaag	ccattgacag	cctgtgggct	tgtcttctca	75780
gccattaaaa tagaattgag	atctgaagtt	tatttcccca	ggtttcaaag	cattgattat	75840
aagtcagtta agatatacgt	accataacca	aaatcagttt	caaattttgg	ctttctagtt	75900
ttattagtac taatattgag	tgtaactgct	ttgatgggca	tgtgcaacaa	agtcattcat	75960
tttgttaatt tttcccccga	tttgacagaa	agcagaatgt	cgtcatccag	gttgtggata	76020
aattgaaagg cttttcaatt	gcaccagacg	tctgtgagam	cacgactcac	gtgctttccg	76080
ggaagccact tcgcaccctg	aatgtgctgc	tgggaattgc	gcgtggctgc	tgggttctct	76140
cttatgattg ggtaagccct	gtgtgtgaat	gcgtatttta	aaacaaggca	ttttgataga	76200
gtgggtcacc ctgaggtgcc	gacatcagca	ctcaggccgg	cgtgcaccct	tgtggatctg	76260
cacactttcc tgtgagctgg	gaacacccgt	ctttcctcct	gttggtctcc	cgtgggctgc	76320
tacccttcaa ccagggccaa	gttctggggc	aacaggagga	cggggagggt	agagagcagg	76380
aagtgagtag cctctaagat	aaagcagaag	caagattaca	aagatgctga	aagaaacgca	76440
aaatgcatgt tctcacagtc	aaagagcttt	cctctatgtg	tgaccaagaa	acattgtgag	76500
ctgtggtggt ggtggtttgc	agagccaaaa	taattcagtg	attgtttgta	cagatggatt	76560
tacttaggat gaaggatgtt	cttttaatcc	catttggata	ggttttatcc	tatgtatatc	76620
tatctgtaac attatttgcc	cttgtttctg	tagattaaag	atagctttta	aaaatacata	76680
attattttcc ttattcataa	aaactgaaat	gaactgttat	tggttctatt	attactttca	76740
tcctcaacct aaggttgctc	caaagcattc	ctttctggtg	acagtagcat	cacttgttac	76800
gtatgttacc attctgcatc	tgtgggatcc	gtcttccctc	ctcctctccc	aagaatgtat	76860
tctattcata ctcatactgt	gttcatttaa	accagtagaa	ttataacatg	caaaagctac	76920
acatgtattt tcaagaatgg	ccgtcgtctt	ttttccgtgt	tgtgacagag	gttaaagaga	76980
ttagtgcttc tagttgtgaa	gtggaaaacg	ttgaaattcc	aaaagtaagc	actgttcatt	77040
tgcattggtg gcaatggggg	atcaccttac	ctgattatat	attagtactg	ctttatgttt	77100
atttggatga aagacagtag	tgcccctctc	atccagggtt	ttgttttgtg	tagtttcagg	77160
taccatggtc tgaaaatatt	aaatgggaaa	tcccagaaaa	taacaattta	taagtcttta	77220
aatgcattct tttctgacta	gcatgaagaa	atctcaggtt	atctggctcc	attctccctg	77280
ggatgtgaat cgtccttcag	tccagcctgt	gcatggagta	ggtgctgctt	gccctcactt	77340
agtagccatc ttggttatca	gatagaatct	cgtgattttg	cagtgtttgt	cttcaaggaa	77400
cccttatttg gcctaataat	gttccccaag	cacaagagta	ttgatgctga	caactttgat	77460
atgccaaaga ggagctccaa	ggtgctttct	ttaagtgaaa	aggtgaacgt	tgtccactta	77520
atatggaaag aaaaatggta	tgctgacgta	gctaaaatct	atggaaaaaa	tgactctttg	77580
acctgtgaaa ttgtgaagaa	ggagaaaaaa	ctgtgcatac	tatatatata	gggttcagaa	77640
ctatccacag ttttaggcat	ccccagggg	gccacggact	gtgccccctt	tggatagggt	77700
ggactactgt ctctttaata	actctagcat	cagtgaatga	gttctgtgtt	ttatttctct	77760
ccaattcaaa tcgtctctgt	gtcttcatct	gactactctc	ccttccctca	ggttttggag	77820
gaaaaaatgt tatttctaag	gatatgcatc	tgtacaggat	tccttaccca	acttattctt	77880
ctgggacttg gagcagtcca	tagaggtcag	acgtgagaac	gtactgcctt	tgctgtcgac	77940
atggatagag acctgctccc	tggttgtctg	catgtctctg	ctcagtgttc	tgctagtact	78000
ccacagctaa tcatacatag	aaacagaact	gggtgaaatt	ttaggttatt	gtatctcttc	78060
tgggattacc tgatatgata	aaggtgggca	ttaaaacaca	ttatttaata	aacttctcac	78120
ctttagtcta gactccttgc	ctggagggaa	gaacctgggg	cactcagaca	cataagtgaa	78180

tgaatgaggt	acaaggcaat	cagacaagaa	aagataataa	aaggcatgta	ggttagaaag	78240
gaagaaatag	agttatctct	atttataaac	cacacaattt	tctatgtaga	caagtcacaa	78300
gcaatctaca	aaacagcaat	tagaggtgac	agctgagttg	agcaagtcat	ccagatgcaa	78360
gaattccatt	gaaacttcag	tataaagcta	ataaaataag	tgcaggatct	gtgtgctgaa	78420
aactacaaaa	tactgatttt	aaagctcaaa	gaactaaata	tattaaaaga	catacaatgt	78480
tcatggatta	gaagacatag	tacagtgaac	atgtcacttc	ttcccaaaat	gatgtataga	78540
tttaacacat	tctcattcaa	aatctcagtg	gactctttca	agatacagac	aaactggttc	78600
taaaatttct	atggagatat	taaggagcca	gaatagccaa	aacaatttag	aaaggaaaga	78660
acaaggagga	ggactggcac	tacctgcttt	tggggcatcc	tttcaagctg	tggtcctcaa	78720
ggcagtgtgg	tattggtgga	cacacagaac	agacagagaa	tccagaaata	gacccccaaa	78780
atacatccca	tgggttttca	caaaggcatg	aaggcaattc	agtggagaaa	ttcagtcttt	78840
tgaacaagtg	gtgctggagc	agttggacat	acacaatcaa	gaaaaggaac	cttcccaaca	78900
ctttgggtgg	atcacctgag	gtcaggaatt	ggagatcagc	ctggccaaca	tggtgaaacc	78960
ccgtctctac	caaaaataaa	aaaactagct	cggcatggtg	gcacctgcct	gtaatcccag	79020
ctactcagga	ggctgaggca	caagaatcac	ttaaaccggt	gagatggagg	ttgcaaagag	79080
ccaataccat	gccactgcac	tgcagcctgg	gtgacagaga	gacaccctgt	caaagaaaag	79140
aaaagaaaag	gagaggagag	gaggaaggaa	gggagaacct	cattctatac	cttacacgag	79200
ccacaaaaat	tacctccaaa	tggatcatag	acaaaattta	aaggtataaa	acttctataa	79260
gtaaacatac	aagaaaaatg	atcttggtgt	aggcaaagag	ttcttagata	caccaaaagc	79320
atgatgaata	acagaaaaca	tagataagtt	agatttcatc	aaaattgaaa	gcttttactc	79380
tgtgaaagat	attatgaaga	gatcagaaga	aaacgtttgc	aaatcttata	tctgacaaaa	79440
gatttatgtc	tggaatatat	aaagaactct	taatactgaa	caataagaaa	acagaacagc	79500
tcaaacaaaa	aatggcaaag	aaaagatttg	aatagacagt	ttactgagga	cacacagatg	79560
gcaaataagc	atctaaaaag	atgctcatca	ttattgctca	cttcagaaat	atagtgagat	79620
ccactacata	tccattagaa	tggctaaaag	aaaaaataac	agtcgcactc	tagcaaggag	79680
ccagggcagc	tggaacggct	gctggtgcgt	gtgggaagtg	gtccagccgc	tttgagaaac	79740
agtttgacag	tttcacagaa	agctaaatgt	ccactcagca	gtcccactcc	cagatatttg	79800
cctcggagaa	atgaaagctt	gtgttcacac	agagtctgta	cgcgaatatt	tgtagcagcc	79860
ttacttatca	tcagctggac	ctggaaacag	cacagctgtc	cctccagtgg	gtgaatggat	79920
caaccagctg	gaccaaccat	gtggagt	gtcactcagg	agtcgaaagg	aatggtgata	79980
ggtacagcag	cttgcatgac	tctcaggggc	atcatgccaa	gttgaatagc	tggtctcaga	80040
aggtcacatg	ctgtataagg	ccatttcttt	gtcattctag	acaaggccaa	actataggga	80100
aggagaacag	atgagtggtt	gccgcgcatt	aaggtgggag	tagcatctgc	ctctgcagaa	80160
caatagcagc	tgtcacatct	ttggggcatt	ggaattgtgc	tgtgttgtta	gtggcaatgg	80220
ttacagaatc	catgtattaa	aacacagaga	actgtacaca	catatgcaca	cacgagtaaa	80280
tcttattgtt	tctaaattta	aattaaaaag	aatatctagg	cggggtgcag	tggctcatgc	80340
ctgtaatccc	agcacttttg	gaggccgagg	cgtgtggatc	acgaggtcag	cagttcaaga	80400
ccagcctggc	caagatggtg	aaactccgtc	tctactaaaa	atagaaaaat	tagctgggca	80460
cggtggcagg	tgcctataat	cccagctact	caggaggctg	aggcaggaga	atcgcttgaa	80520
cttggaggga	ggaggttgca	gtgagccgag	atcacgccac	tgcactccag	cctgggtgac	80580
agagtgagac	tctgtctcaa	aaaaaaaaa	gtatatctta	catatctaac	gtgctttcca	80640
aatggagatg	tttgagcact	ggtaggaccg	ggctagtgtc	ttggtttcag	aactaggttt	80700

ccttctgtgt gctgaagttt	acaggctcct	gtaccttcaa	ctgctgcctc	tgtacctata	80760
cttcctgtta gcactgaagc	ttcatcccag	cttttctatc	ttaaaaaaaa	aaatgaaaag	80820
aatttaaaaa cataactttc	tctaaattgc	tctttgccct	ctgtgctacc	ttttttccc	80880
ctcattcatg gcaaaacgtc	acaaatgtat	gtctgtattg	cccttgcctt	actgatgatg	80940
tcgctatttg ttaatagtat	caactcttgg	gagattgcga	aggctcaggt	ggcctatggc	81000
ttcaggtgaa atatctgttt	gtgtgattac	aaggtaacca	tgatggcagt	caggtatatc	81060
acacatatat aaatgacaca	aacagatata	aatatatgtt	tgtgtgatta	caaggtaaac	81120
gcaatggtaa ccgcaatggt	aaccacgatg	actctcgctg	gcacaacagg	agtattgatg	81180
ttcacaggtt gctcctgact	tgcaccctca	aaaagtttag	aaacaagccg	agtcactttc	81240
totgttcato tomgtottca	agaagacaaa	gacgactgct	gcttcttgca	tggcccccct	81300
cctttaactt ttaaataaat	tgaatagtac	aaacataaga	aatttgagag	aggatagttg	81360
ccaccaccat ttacaaagcc	attctacata	atttttaaag	cttagcaccc	actttaatat	81420
ttatctatgt cttgcatata	acttcagata	taaacttcac	agttccaatt	tcttttaggg	81480
tcaagattta aagtatccat	atcatatatt	atatacattg	actttgtgta	caaggaatct	81540
ctctctct ctctctct	ctctctctct	ctggcactct	cgctctctcg	ctctctcgtc	81600
ctcctccttc taaccctgtc	tccaatgtag	ttgggggatt	cttaaaatat	tctctttggc	81660
tagcagtata aactggcctc	caagaaaaac	actgctgagc	atgtttttat	ttcagggttt	81720
gtgtggtatt ctctggaaat	ttcttgtaaa	ggagatttgt	agcagttctt	cagaattaga	81780
tggttgtatg tggcccagct	agtcttatca	gaaactgtgg	cgattttata	acaaagttca	81840
gtttgaattt tgacttaata	tttttgagaa	gtttattggc	aatttttcca	tgtttacagc	81900
agttcacacc tccagtgtta	gcgctactgt	tttcaggaaa	gagaataatt	tatgtttttc	81960
ctccttcatg actgaattgt	ctggcagata	catggaaata	gaaaaccatg	ccaggagttg	82020
ccgagcttcc tatttatggg	agacaggaag	taacacaaca	gaaaaataaa	gaaattaatt	82080
tgaccaaagt gtccctttag	actcacattg	ttttgttatg	tgttgttcaa	gcatagcaca	82140
atttgaacct ttaaatactc	tttatcccac	tctcacttaa	tttgatgttt	cctgcacttt	82200
cctgtgactt gtctaaaatt	ctactttccc	tcgaaaccct	tttgtggatg	ctaacataca	82260
agcagagtgt cctgtgattc	agtcttccct	ttttccagct	accactccgt	gtcactctgt	82320
ccagcacagt gaggaataac	tcagcctgta	ttcagatttt	aatattttga	ttctgaacag	82380
cttatgaaaa ggatctgata	atagagattt	aaagctaatt	cacttataaa	tacaagtgta	82440
gggcttaaaa gctaaatcag	ctttacaaca	aaatgtcaag	gccgctaact	atcaacagat	82500
aatctagtgt tttcttaatc	aaaaatgatg	tcatgatgac	tattttcttg	agataatgtg	82560
atccacattg aacttagtaa	gcagtgagtc	agatgagata	tgtttttatc	agtggtgagc	82620
atagaatcaa tgaactgtta	gaataacaca	ctcagttcat	tccgttcacg	cgtctcattt	82680
tacattaaag aaatgctgag	ccgctctcct	aaaattataa	ctcatggcag	aaccagaact	82740
ggaatctcag cttttcactg	gtgttagttc	atcaccctgc	attcctaagt	ctgttcaaaa	82800
gggatcatct tgaaaaacca	ttctctttt	aaccttcagt	tggcagatta	acttcataac	82860
tcatgttagg aagaatcttc	aggcacattg	tacttggtgt	gtcacactga	cactgagttt	82920
ctgagggtgc ccttcaggtc	tctctggcag	acatttattg	ctcgcacttg	caagctgact	82980
aggateteag geetgggtet	ctgaactttc	acggcttgat	ttcaaagtcc	tttttatcct	83040
gctacagatt ataccttggt	aaaggacttt	atacttcaca	gagtgttttc	acatgcactg	83100
tctcactgga tcctgacaga	acatttttgc	agccgagaag	gacgctgcaa	ataattagtg	83160
agtttagtga tggagactct	gggcaaaaat	agcttgtctg	acttgaatgt	ggatcttaga	83220

aacacatctc	tgtcaaggca	ttgttttaag	gcagtgacta	tggtcttaca	tttatctcca	83280
ggacacctaa	tttatacttt	ttcctgatta	aaataatgga	ttctggtttt	gcccagacat	83340
agaacccaca	gagtttgtct	gcttctttca	cttgaggtgg	ttcctgagca	gtgccagagc	83400
tcattctctg	cggaggctcc	tgcaggctgc	ggcagcgtgg	cctctggccg	ctgggagcat	83460
gggaagcagg	cgctgcggtc	taggtcctcc	atccccctgt	ctgctgctcc	tggcaagacc	83520
ccaaggtgcg	catttcccag	gttggagccg	ctgtgcttcc	caggaccata	atctgctgat	83580
tgaggacaga	taccaaaaag	tgattcatct	gtaaaattga	gggctgtggt	gctgccctct	83640
aggaggacat	ttggaaagat	gtggagaaac	ctgtgagtgc	taagaatgac	tgatgttaaa	83700
gtttgaaaga	gtcaaagtga	tttttttagt	gggagaagac	tgtggagtca	ccctgagatg	83760
caaccacagg	cttgattaga	aataaagttt	gatcaccatt	ttcaaatttt	tacattaata	83820
ttttttaatt	ttcgaaaggt	gctaaacaga	atctacttaa	tgcacctggc	acagaaaagg	83880
cagtgcccgg	gtcctaaggc	tgcacctt,tg	caagaaagag	maatacctga	ggcaccggga	83940
gtgaggagga	caggtgttgg	agaaggctgt	agggccccag	tatggctgtg	tagttcaaga	84000
cgagggatgc	agaagccatc	ggactatttt	aattacagag	tggcagcttt	tgtctctgtg	84060
gcctctcagc	aaagaatgga	ttgcagggag	gtaagaacag	ggtgagaagc	aggaggcagc	84120
tagggtcatc	gaggtgaaaa	atgactgcgg	ctgtgtctag	agggggggtt	gataggtgga	84180
gaggagagag	caggtcggcg	cccttcctag	gaagatctag	tggaatctgt	aacgtcaggt	84240
gtgtgggaat	ggagaagtca	agaagactcc	cacccaaatt	ttttcctggg	gcgactaact	84300
atagataatg	gtgccatttg	cagagttagg	gaattctggg	gcagaagatt	gtgtgcaagg	84360
tttggggtac	aataaaaaat	tgatgtaggc	atattaggtc	tgagattcct	actggacatt	84420
caaatagaga	tactacatat	cagattatat	atatgtacat	atattcagag	gaaaggttaa	84480
ctattcactc	cagccatggt	acctggaagg	gagtgtgaat	gaagaaatga	agaaaacagt	84540
gagtttaggt	ttgatctctg	ggctgtgccc	tatgcagaag	tcagggggaa	gggggaggca	84600
gggggacccg	ggaacggcta	gctagcaacc	tgggggagac	accaggggaa	catggcatca	84660
gtcagaaggg	ggactgtctc	aggaaggaag	gatgctcagc	tgtgctgagt	gctgctggaa	84720
ggtgaataag	aggagacaga	agccactgtt	tgatttcttc	aggtggatgt	tgtcagagac	84780
cttgaaaaaa	gcaggatgaa	tccaatgact	aagacagttg	aagagtcaat	ggtacataaa	84840
gcagtggaag	cactagggtt	atgtgtaatg	gtgcgatttg	ctgagttagg	gattattatc	84900
agacatattg	ctgatatgtt	attcctagac	ataatgctgc	tgctacatca	gagagattgg	84960
ttggcagcga	atggggcact	gtgaagtgtg	actcgagcct	tctcgtgttg	ccaactgcaa	85020
cacagatcat	cgtcctagtg	cttggcgatg	tggttgcatt	atggtgagtt	gagtgtggcc	85080
ttgggaagca	tctgaatctg	ttggctgagt	tatcagggaa	aaaaaattta	aaaagtaaac	85140
taagattatg	tatattaatg	aaaaagttgc	tgtatttggc	aaatacttta	aatggataag	85200
gctaaaaacc	aacaagtcga	gagggtactt	gttgccaccc	atccttttcc	aaatcatggc	85260
cttcaaggat	cacactgttg	gtctttcctt	ttcttttaac	ttggatcaac	tgtgaagtaa	85320
cacaggtctt	cagtgtagat	ctcagttccc	caacatttgc	cttatgactg	agacctccag	85380
gacgtcaact	tggtccatgc	tgaactgcag	cacaaattcc	aagctttgac	catacctcaa	85440
ggtgcacttt	aacctttgca	gtgttctgcc	agacatctga	actttcactt	ttgtttctga	85500
catctcaatc	acacagttct	cactgtaaat	attaaataat	agcacagaat	attttaactt	85560
caggtattca	ttggaaaatt	caaccatggt	ttggttttat	ctgtcacttc	aaaaactgtc	85620
ttcagctgtc	catcatttag	atgtcattta	gatgttcctc	agggactttg	gggacattgt	85680
taacaatctg	ttatttcaag	gcttctaaac	tctatcccca	agttaaaatg	atttccaagg	85740

aacatcatac	ttctcttaca	gtctgtgtgt	aagcaccctc	tgtgaattcg	gttttaggga	85800
caatgttagc	ttttgaagag	agctgatgta	agaaatacta	gattttagga	aactgttgta	85860
ctttttcaa	agctatattt	gacgacattg	tacattttgc	tacctgatac	ttttgatgta	85920
tgatccacct	aatgcctttc	tcctaaaatt	aatttccagt	gaattgaata	ggaattccaa	85980
atgaaatgaa	tttcatagga	aaatctcata	cagaaaattt	gttaggctgt	ccttaaccag	86040
agaatgagaa	ttatgtaatg	cggttttgtc	agctagagta	acagcttgcc	ataggttcat	86100
aatagagctg	ttttttagtt	cttttcttg	ggttcttgtt	tctgaaagaa	agtttctctg	86160
ccagaatatt	gaagtcgtgc	ctaagttaat	aatttaacaa	gcattgtata	tattaataat	86220
ataatatcaa	taattaatgc	tattaatcat	taataacaat	tatttaatat	taatattaaa	86280
tacttaatat	taaatttta	gaatattaaa	atttaaaatt	taaaaaataa	aatttatcaa	86340
aaaaaatttt	ttttttactt	ttgaagcatt	ggttttatta	aactttcaaa	gtagtatggc	86400
aaaaaggtgg	ccacatacca	aatagtgtca	tacatttctt	aaaatctctc	ctagcaaata	86460
aacttaaatt	gagatcatga	gtcagttgaa	aagacaattt	aattttttg	ccatacaatt	86520
aaagtatttc	tgagaagtca	gagtgctttg	caatgtttgg	tgaataattt	acacaattcc	86580
agaataatgt	ctcacttatg	gagaatacac	ctaccactta	cttcgataaa	cagaagtaga	86640
gtctatggtt	tctttcttt	tttttttt	ttttagctgc	taaagattat	tattaggaca	86700
gaaggacaat	tagctttaaa	agcattcctc	agaacatgta	tttttttc	tagtattctt	86760
tttttttat	tatactttaa	gttctagggt	acatgtgcac	aacatgcagg	tttgttacat	86820
atgtatgcat	gtgccatgct	ggtgtgctgc	actcattaac	tcgtcattta	gcattaggtg	86880
tatctcctaa	tgctatccct	ccccactccc	ccgaccccac	aacaggccct	ggtgtgtgat	86940
gttccccttc	ctgtgtccat	gtcttctcat	tgttcaattc	ccacctatga	gtgagaacat	87000
gcggtgtttg	gtttttttgt	ccttgtgata	gtttgctgag	aatgatggtt	tccagcttca	87060
tccatgtccc	tacaaaggac	atgaactcat	catattttat	ggctgcatag	tagtccatgg	87120
tgtatatgtg	ccacattttc	ttaatccagt	ctatcattgt	tggacatttg	ggttggttcc	√87180
aagtctttgc	tattgtaaat	agtgccacag	taaacacacg	tgtgcatgtg	tctttatagc	87240
agcatgattt	atagtccttt	tgggtatata	cccagtaatg	ggatggctgg	atcaaatggt	87300
atttctagtt	ctagatcctg	aggaatcgcc	acactgactt	ccacaatggt	tgaactagtt	87360
tacagtccca	ctagcaatgt	aaaagtgttc	ctatttctcc	acatcctctc	cagcacctgt	87420
tgtttcctga	ctttttaatg	atcgccattc	taactggtgt	gtgatggtat	ctcattgtgg	87480
_	catttctctg					87540
ctgcataaat	gtcttctttt	gagaagtgtc	tgttcatatc	cttcgcccac	ttgttgatgg	87600
ggttgttttt	ttcttgtaaa	tttgttagag	ttctttgtag	attctggata	ttagcccttt	87660
gtcagatgag	tagattgcaa	aaattttctc	ccattctgta	ggttgcctgt	tcactctgat	87720
ggtagtttct	tttgctgtgc	agaagctctt	tagtttaatt	agatcccatt	tatcaatttt	87780
ggcttttgtt	gccattgcat	ttggtgtttt	agacatgaag	tccttgtcca	tgcctgtgtc	87840
	ttgccaaggt					87900
	aattatttaa					87960
attaaaattt	aaaattttt	taaaaataaa	tattttatat	taaattatca	aataaatatt	88020
aataataatt	atttaatatt	ataaaattaa	taatctttca	ttattgaatt	attgattgag	88080
ttaagtaatt	aattgattaa	ctgataagga	ttattgttaa	attattgtac	tcttgggtag	88140
tacagagact	gcatactgcg	ctttgccatg	taaatactat	tgtctacttc	ctggtacgtg	88200
gctctaggga	ggctatggca	gagtcaagtg	cttttgccct	taatgtgaac	aaaaaatagt	88260

PCT/US02/37660 WO 03/048185

gattgctctt	agtagccata	atatttggtt	tattgtctgt	gttggtaata	atttctgctg	88320
tgttttcata	cagtgaagtg	atgtttctgc	tgtttatttt	agttgcattg	gaatttgtta	88380
tatttatttc	tttgttttcc	ttttgataag	agaagtacgc	acttagttat	ttataaagat	88440
gtttggactt	cacatgtgag	tacagtggtg	acatgctggg	ttttcctggt	cattgcttag	88500
ctgtatttat	aaagtgaata	ttactgagca	gttaagcctt	aacatcgaga	atcacccatt	88560
ttcatttttg	aaaactggaa	aggattaggt	agaatgcaag	gagaataaat	tgaacttaaa	88620
tgtttgtgtt	caattgaggt	gagcttttc	ataagaatat	tcaagcctag	gtcaacatgc	88680
agcttgtttt	ccctctcacc	acctggaatt	cagtctctat	cggtcaatgt	cttctaaaag	88740
ggaaatgggt	tcttaactat	atacttttag	tactttattg	cttatcttcc	ctttcttggt	88800
tgaataggct	gtgttggata	tttagcttcc	tgcccctttc	tttatgagac	agctagggca	88860
gtgcttttca	aaaccttact	aatgtgtgga	tcacctgggg	gatcttactg	aagtgcagat	88920
cctggttcag	tgggtctggg	tctgctcagg	cttgaggtga	ggtccacgct	gctagtcctg	88980
tgacccagca	ttaggtcccc	aggatacaaa	atatgaccgg	ggatctctgt	cgtattcggg	89040
ggtggagatg	agacagcgtc	ccaatgatgt	tagtcacatg	gaacatttag	agatgcggag	89100
tactttgtca	gtgttttaca	catcgtcaag	ctgttagtca	agacagtaat	cctctgtgga	89160
aactgtgggt	tgaacacttt	cagtaaattg	ctcatggtca	tagtgcttgg	aaatagtaaa	89220
tttttttt	tttctttgag	acagagtttc	gctctgttgc	ccaggctgga	gtgcagtggc	89280
acgatcttgg	ctcactgcaa	catctgtctc	ccaggctcaa	gcaattcttg	tgcctcagcc	89340
tcttgagtag	ctgggattac	aggtgcatgc	caccacacct	ggctaatttt	tattttttgt	89400
agagacagag	tttcaccgtg	ttgtccaggc	tggtctcaaa	ctcctgacct	caagtgatcc	89460
gccgaccttg	gcctcccgag	gaactgggat	tacagatgtg	agccactgca	tcctgccaga	89520
aatggtgaat	tttgaatttg	aattcagctc	ttcctcaatt	catagcccac	attctttcta	89580
gcatctactt	ccaaagatag	cctagagagt	atttttatc	ttctatagct	gtaaaccttg	89640
atatgggcat	tctctgatgg	cctgtgtgtt	ttgaaaagat	taatggataa	ggcagtggat	89700
ttcactgcta	accttgctac	accgtagctg	tgtaaccttg	ggtaaggcag	tttctttatc	89760
tgtaaaagaa	tggaaagatc	acctaaataa	agtactcagt	aaacactcaa	taaatattaa	89820
atatcgttat	tattcaacaa	gcatttttga	cgctgatcac	tagccttcat	taaaagtata	89880
acttggatga	acgttgaaca	caccgagtga	aaggagccag	acacaaaaag	cacatgttgt	89940
ataattcctt	tcagacagta	tatccagaat	aggtaaatcc	atagaataga	aaactaatta	90000
gaagttacca	gggatggagg	ggagagaggg	atggggagtg	attacttaac	aggtacagga	90060
tgtttttctg	gggtgatgaa	agcattttga	aactagaaag	aggagctggt	tgcaccgcat	90120
catgatataa	aatgccattg	aattgcacac	tttaaaatgg	ttaattgtat	attatgccaa	90180
tttcacctca	cttaaaaaaa	gtcatatatg	gaaaatagct	ttaaggcacc	actacaacta	90240
ctaaataggt	ttgtattttt	aaaagaactt	tatggaatta	taggaagcat	ttcttgatgt	90300
tatgagatgt	gttggaaata	cagaagaata	gcttattttg	gaacagatat	tattggcttg	90360
aaattttgcc	agttcaagct	ggtctctttg	gaagactaga	cctttattt	ctggcttgaa	90420
aatgctttgg	acataagtac	cctattattt	tgttgttaaa	aattatacta	ttgacatccc	90480
caatttttc	tcctgaagtt	cagtataacc	tagaaataac	ttcattgcta	cactatttca	90540
ttaactacat	gggtgctttt	ttagttaata	atgatgcata	atgtcttcat	gtggcagaaa	90600
cactaacctg	ccccttgtca	taaatctgta	aaaagatgga	cattggttta	aacccagttg	90660
ttgaattctg	tgcctttaac	cagtatgtta	cactgtctag	ttggggaaga	atcccaaatc	90720
ttcttctttc	tttagaaaaa	tccaaaacag	catacaaact	agcaaactct	cataaatgtt	90780
		Pa	ige 126.			
			-			

gtttgagaaa atcaattgcc	ctaactacta	agacaaagga	tctataaaat	ctgatgagaa	90840
caatctttgt aatttgattt	ttataatttt	gtcagcttaa	attagtaaaa	agttaataat	90900
tattactttt gttacgctta	taataaataa	tgtgtttcta	caccttccat	aaacacctac	90960
aaccacactt tttaccacag	ttggtggagt	gaagggtgga	tggaggagat	agtggcaaaa	91020
acaccccaat cactttcagt	gattaaagta	aagatgtgtc	taactttact	cctaaagtat	91080
catccagtaa agtggaatgt	aaaacatact	tttgaactgt	ttgaaatcaa	ctacattcct	91140
atggcttacg actgtgggac	aagtttctaa	ctatcagatt	tgatttttaa	ttaatcagtg	91200
atattttata ccagcagtct	ccaacctttt	tggcaccaag	gaccagtttt	gtgaaagaca	91260
atttttccag ggacttgggg	gttgggaggg	tgagggagga	atggttttgg	gatgattcaa	91320
gcacattaca cttattgtac	actttatttc	tattattatt	acattgtaat	atataatgaa	91380
gtaattatac aactcactgt	aatgtaaaat	cagtgggagc	cctgagcttg	ttttctgcaa	91440
ctagacagtc ccatcggggg	gtgacgagag	acagtgacag	atcatcaggc	gttagattct	91500
cataaggagc atgcaaccta	gateceteat	ctgcacagtt	cacaataggg	ttcgcacttc	91560
tatgagaatg taatgccact	gctgatctga	caggaggtgg	agctcaggtg	gtaattaaag	91620
caatgggaag tggctgtaaa	tacagatgaa	gcttccttca	ctggttcacc	caccactcac	91680
ctcctgctgt gtggccccgt	tcctaatagg	ccacagactg	gtaccaggac	ccctgtttta	91740
cacgatgtgg agtcttttgt	atgcaaagaa	tattgttgac	tttcgccaca	cggaagcccc	91800
cccgccccgc ttcccccgcc	tttttccttt	ccagttacat	tcccacaggt	attcttagta	91860
ccacaactgc agttgaattt	cacagtatgg	tgggtggtaa	gctatggtgg	gcggtaygct	91920
tggataagcc tggctattta	gaaatttgga	ataaatgtag	tgttatgact	aacagtaatg	91980
ttgcctatca aaaattgtga	atgttaataa	atgttttcaa	cacaatcatt	aatgctttcc	92040
agtgagttaa accagcttca	tgttacagtt	gtattttcca	tcccagtagg	gagtcattat	92100
taaatggggt catgttttca	agcccaactt	aaaatccctc	ttacagattg	ccttccccac	92160
cccaccccca gttttctctc	atcacttata	cattgaaata	attgcttatt	gttttccctc	92220
tttaaatttt ttttgagaag	tcaaaaattg	agtaccttgt	tcagtgtttt	tgcttatgaa	92280
atactttgtg aataaatttt	gttcttagct	gaagaaaatt	tcttaggcag	ttaagaaaat	92340
actaataagc taattaatga	ataaaaacta	atttcattgg	tcctgattgg	aagtgcaaca	92400
tttaccgata tttagctata	atccttttga	tcagtcagaa	atttgtaatt	attctttgag	92460
aaataaaaag ttgagagggc	tgggtgcggt	ggctcacacc	tataatccca	acacgttgag	92520
aggccgaagc aggtggatca	cttgaggtca	tgagttcgtg	accagcctga	ccaacactgt	92580
gaaaccccat tctctaccaa	aaaaaaacaa	aaaaaaagaa	aaaagaaaaa	aattaaccag	92640
gcattgtgat gtgcgcctgt	agtctcagct	acacaggagg	ctgagtcagg	agaatcactt	92700
gaacctggga gacgatgctg	cagtgagcca	agattacacc	actgtactcc	agcctgggcg	92760
acagaggaag actgtctaaa	aaaaatagaa	aaggaagttg	aaaacagctt	agggaagagc	92820
tgcaaccact gaccagcacc	agtactccat	cataatatat	gcttttcact	tataaggaac	92880
tgtaatgtaa actgtggact	ttgggtgata	atgatgtgtg	aacacgggat	gactgggtac	92940
aacacatgta gcactccagt	gggagacatc	aaaatgcata	tgtggcggca	ggaggtgtat	93000
gggagctctc tgtaccttcc	tcttaatttt	gctatgaagc	taaagtggct	ttaaaaatac	93060
aaatacagaa aaaaacttgt	gctttctata	gattaatttg	aacatagaca	cattaatata	93120
atagatacat tgatttgaac	ataggtacat	taagttgaac	acttaaggtt	tttatgatgt	93180
cctataccac aataaactga	agaagtctgc	cttacaaatt	tgttcaaaga	actctcaatg	93240
ctctcactgc tccttccctg	ccttgaacag	gaagtgtcat	ccagtgcaat	aagggggaaa	93300

ataaaatgtg catagcaatc	agaaaggaag	aaataaagca	gtttctattc	acagatgcag	93360
ttcctattta aattcatcag	caaggttttg	gttttatgaa	tgataatatt	aaaatgtaaa	93420
aaacactatt ttcattatgt	aatgtgtcac	ctacaagatg	ctgaattcct	gttgcagcgg	93480
atgctgaatt cactctgccc	ttcttataag	aaatatgttg	ggccaacctt	ttgtttttaa	93540
gtttgcttac agccttacct	gtgctctttc	aaagtagatt	ttcactattt	tgaacactct	93600
attaaggtaa agatgtgtto	ggccaatgaa	actactagag	caaaatgttt	acactgtatt	93660
tctgatttga ttgttttaat	acaactgaat	tagtgttttc	tcctatctct	atgcaatatt	93720
aattcctggg atgtctgtgt	aaattaatta	atttactgac	cagaactcta	ctttagcttc	93780
ttatggtttt gttttcttaa	catttagaaa	cggctaaatt	tagaggacat	aaattttctc	93840
catgagattg tttaaattca	gttgactttt	taatgtggat	tatatttgaa	cttgaatgcc	93900
gcacgcattt ttaatgctgg	ttcatggctt	ctgtcactgg	tacgttgtat	ttctcactgt	93960
actattcttt tacgttgcct	cttgtctgaa	atgaacttga	tțttaacctt	ttattttctg	94020
gtctaattat atgagcttgt	ggggagcctc	acatattgtt	agtatatctc	cttaaataac	94080
atgcattgag gctgaggtca	gcagatcact	tcaggccaga	agttcgagac	cagcctggcc	94140
aacacggtga aacccgatct	ctactacaaa	tacaaaaaaa	attagccagg	tgtggtggtg	94200
ggcgcctgtg gtcccagcta	ctcaagaggc	tgaggcagga	gaattgcttg	aacctgggag	94260
gtggaggttg cagtgagctg	agattgcacc	actgcactcc	agcctggatg	acagagtgag	94320
agtttgtctc aaaaaataaa	taaattaaat	aaataaataa	aataaacatg	aattgtataa	94380
tccagctttg ttattttagc	tctaaacttc	tggtgtatgg	agacagattt	tcagggagtt	94440
tggtcctgga ggagagacgg	ctgcagaacc	tcaaatatta	ctgaattaaa	aaggaaaaga	94500
ttgtattgat cattttaccg	tgtggggatt	caaatactaa	gaggataatg	atgatgataa	94560
tgatgacgat gaaagcttgt	ttatgggaca	ttttactctt	ccaaagtctg	ggaaggaatt	94620
tcaagtgtat tctggggact	tctgaaaata	ttagccaatg	ttagaaacaa	agtcgcaagc	94680
caaagggatt gcttttgaat	ttaggcttgt	gatccatctt	cttttaattc	actgttttaa	94740
ttaataaaag totggaatat	ttacagagga	ttgtttataa	aacttcacaa	attagaaact	94800
tggaattaaa aatatatata	taaaatattt	catatgtgta	aaaacaggat	aatatttaaa	94860
tatctgacct catgagaata	atgactcaga	tttcttgtta	tcgtgagact	ttttctcaat	94920
caacttttta ttaatattca	taacgtttat	gcaacatgaa	gattctgaag	ggactttgtt	94980
gtctgagaac acatctattt	cagatetgeg	gagtgtatca	ctttttgctg	tgtcttcaaa	95040
gtgattcttg gtttattgcc	tgctaaggct	aataaatgta	taataaatct	gcttgttgtg	95100
tcacttgcag gtgctatggt	ctttagaatt	gggtcactgg	atttctgagg	agccgttcga	95160
actgtctcac cacttccctg	cagctcccgt	aagtcagatg	ttgttttacg	atggtaaatg	95220
cagtttgctg ttctcaagaa	attattataa	acataagggt	ggacttaagt	ttttatccag	95280
tcaagcacaa ttatgcccat	aattaaaaag	acattcacag	aacttaacac	cttttatcaa	95340
tttattcgyg agaacaaatg	tgagaacgtg	agaccactgt	gcaaaaagta	gtgaggaatg	95400
cagtccaaag aaaatttgac	gattaacatc	ctcagaactg	agaaaaacaa	aaatgaaaaa	95460
agactgaatt cttgggcagg	tagtcttata	tcttgcttaa	tgtttttact	kttaatagaa	95520
atagaactga taggtataaa	gattatggct	tgctggtgct	gtgataacag	tatttatatt	95580
tttatggctt tcctaaatto	cacttcaact	ttcaaatgct	tcattgaaaa	gttctgggtt	95640
ctaattttt ttaagattaa	gtaataatta	agtggataat	ttaaagtttg	cttggataca	95700
ggattgtgca gaagttgcct	ttcctgttca	aaaatgttaa	tttgtttgtc	acagtttatt	95760
cattcaaaag attaatagct	gaaagataaa	tggtgatttt	tatctgccac	tggtgttgtt	95820

atttagctgt	ttgagtaggc	catatgacta	aaacataaca	aggagttgaa	ctgtgctccc	95880
tgatcactgt	agttatctag	gttgttgggt	tgttttgttt	tcatttttaa	gattactgtt	95940
tgatttcctt	tcagctttat	aaacattttc	ttaaggagag	acaaaagctc	ctctcagcaa	96000
aactgtttgt	ttgaaatacc	gtgtaaggaa	ctgaagtgta	aagtaaaaac	acaaattccc	96060
cccattctcg	ctcataagag	attatatatg	atgcacaatg	acataatgag	atttgtcctt	96120
gaattttta	tcacctgcct	acaaagagaa	ttgatataaa	ttgtgttgtt	gccagttttt	96180
cctgcattar	cgtttcccta	cctaagtatc	catcactctt	gtcattgaga	tatcctagaa	96240
acttgttgtt	gtctttcgag	gctgtgaaat	tttcttattt	tcagttgttt	ttcaacttga	96300
tacaaggcca	tgataccgtt	gttgaattca	taaaaccttc	ttaaatataa	agtagataca	96360
gttctaagat	agggaggttc	ttaactagtt	aaatagttgt	tggaaaagtg	caccttggtg	96420
gaaataaaac	agagccttga	ctttgccaga	gtccatcatt	gactccaaat	atgtagcaac	96480
acctgtgtgt	tctaaaacta	cgtcaagtgg	tggggagaag	ttggggtaaa	ataaattaga	96540
ttttgaaatg	gaataaagaa	aaaataatgg	tagaacactg	taaggtgaag	acagacatat	96600
agtagatgct	agttacagac	tggactctga	acttccttgc	aaatgattca	gaaaagaata	96660
tatgagaaat	tgcctttaaa	ttataaagct	ttacacaaat	gttcattagt	attaattgta	96720
ctatgaaaat	ttcaaaagga	gttaaaactc	caggagttta	tggttttgta	gtcccgagta	96780
taaagctgtg	ttctcaaatt	ttctttctt	tcttttttt	tttttttt	tccgagatgg	96840
agtttgcttg	ttgccccggc	tggggtgcag	tggtgcgatt	tggctcactg	caaccttacc	96900
tccctggtgc	aagcagttct	ccctgcctca	gcctcccgag	tagctgggat	tacaggtgcc	96960
cgccagcacg	cctggctaat	ttttgtatta	tttagtagag	acagggtttc	accatgttgt	97020
ccaggctggt	ttgaactcct	gacctcaggt	gatctgccca	ccttgcctac	caatgtactg	97080
ggattatagg	tgtgagccac	tgcgcccagc	cctgtgttct	caaatttttg	gtaaatattt	97140
aaatatatta	tgaacatcag	attttgtttt	tgcactttga	aacccttttt	tttttttcag	97200
tttgctgatt	gacataaaaa	aacttactag	tgtcaattat	ttttttcctt	aagtaaattt	97260
aagggtgaat	cttgagacat	atagctttgt	aaawttctta	aatagaaggc	ttttctcaac	97320
cagaaattaa	attgtagtct	agttctataa	aaatatatct	tactaggaaa	gaaaacagac	97380
ctctgtttta	gaatagtgag	aagatagtaa	agtttctttg	tcatagaatg	aaatgtataa	97440
ttttcctcat	cattaaaagt	aagaagtttc	cttatcacaa	ggcacaatta	ggtcttttgg	97500
aaacaaatta	taaaattgta	aatattatca	taaaagttaa	acataggcat	atcccctaat	97560
aagttatatt	taattactaa	aaataccttc	atatttaaca	atcaggcaga	aaaaaatagt	97620
acggtctgca	tataaactaa	aatggcacgt	ttctgttgat	aatttcagag	attctggaag	97680
tttctaccat	ataaatttga	aatacgtatt	tgagcattaa	cttataacta	agctgtcaac	97740
ataaatgtaa	atacgctgtt	tttgaaataa	aaatttaaag	cacctaagag	atggagtaaa	97800
aatgcactaa	ctgtttttcc	aaatattaaa	cttctagtaa	ccccttctca	gaatatccct	97860
gaatatgtct	ttttatggct	tagagagttt	ttttcttcct	tttaattgtg	atagtgatgg	97920
tgaattcagg	acatatgggt	atttacacag	tgtataaaca	gtgctcagaa	gaatgcagtt	97980
ccaagatgat	ctgtattgta	taacataagt	gttctgtttt	ccakttattt	actgataaac	98040
ttgcacataa	cattcttggt	tgtgacagca	gcgtctgtaa	actgtcagtc	tgattctcag	98100
cctcgggttc	atctttgcat	aggtgttctg	tctaatcaca	attatggatg	tttagggtct	98160
tgctttggtc	cgttaagtga	tgcaagttta	agtgataaag	tttacaggct	ctaatctgga	98220
gcatgtgggt	cccgtcagca	ccgagcacac	gccctctgtg	gtggaagagg	acacagtgcg	98280
caccgtgact	ttcagtgcac	tgggcttaag	tctttgaaaa	tagttcgaga	cagttcctca	98340

ggtggactgg	gatgtttaga	aatctgctgg	tcggatcatc	atggttgtgg	ccttgagcga	98400
atagcctgag	cctttccagt	agtaccattt	aatgccgttg	aacttatttg	tgttctgcct	98460
ctgtggatag	tacattccgt	tcaagttgga	aggaccacat	gcatcaaacc	accagcctgt	98520
gaaagtaaaa	cacagaagga	attaggaact	aggtgatgcc	agctcccacc	acgaagacag	98580
caatactcag	ctaaggcagg	aggcacactg	caggcgtgtg	gagtaggcac	atgcagatga	98640
tggtgagtat	aggatgtgca	ctggcagagg	gattgttttc	cagccataca	cccatgacat	98700
cacagttcca	ttacggcaaa	tgcttttaca	agccttcttc	caccttttcc	cttgtgctgt	98760
gtggagaggc	ctgaattctc	cacagtccta	tttggtaagc	ccacagtgtg	tacacactta	98820
cagcaggagt	aagcaaacat	ctgaggcaca	gttggaaaac	tctccttcaa	ccaggattac	98880
tttgcagtcc	cagcaacatg	gtgggctgga	ctcrctcagg	ctccccttgc	tctattaaat	98940
gattttttcg	gttgaagttt	aamctaaaat	attaagtact	cagtggagct	acataaaaag	99000
gaagtctcta	tgtttcagag	acaaaaagga	aatttaaagt	gagagtgtgt	gctcgctcag	99060
ctaaagccag	ggcaggagag	gtgtccagca	caggggctgt	gggagtgaag	ccccatctgc	99120
accttaattt	ctgggcttgg	ccaaaaacag	gagcatgctg	gggtttgtga	gagaaagaaa	99180
cacagtagtc	ccccttatc	tgctattttt	gctttctgca	ctttcagata	cctgaagtca	99240
gctgggccaa	aaatattaaa	tggaaaaatc	tagaaatatt	ctataagcag	gggccgggcg	99300
cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggtgggtgg	atcacgaggt	99360
caggagaccg	agaccatcct	ggctaacacg	gtgaaacccc	gtctctacta	aaaatacaaa	99420
aaattagctg	ggcgtggtgg	cggacgcctg	tagtcccagc	tactcgggag	gctgaggcag	99480
gagaatggcg	tgaacccggg	aggcggagct	tgcagtgagc	cgagatcgcg	ccactgcact	99540
ccagcctggg	cgacagagtg	agactccagc	tcaaaaaaaa	aaaaaaaaa	aaagaatgta	99600
taaaccttaa	attgcatgcc	gttctgagta	acgggataaa	atctcctgat	gcccacttca	99660
tccctcccag	aacatgaata	atctcctcta	tccagtggat	ccacgctgtc	tacatccggt	99720
ctcctgatca	cttagtagct	gtcttggtta	ttagatcgat	tgtcacagta	tcgcagtgct	99780
tatgttcaag	taacgcttat	ttgacttaat	aatggcccca	aaagtgcaag	agtgatgatg	99840
ctggcaattc	agatatgtca	aagagaagct	gtaaagtgct	tcctttaagt	gaaaaggtga	99900
aagttcctga	cttaataagg	agagaaaaaa	atcgtacact	aaggatgcta	agatctatag	99960
aagaacaaat	cttatatcca	tgaaattgga	agcaatatgt	tgtatattat	tcagttttat	100020
tattgttaag	tctcttgtga	ctagtttaca	aactaaactt	tgtaagtatg	tgtgaacagg	100080
aaaaaatata	cacatagggt	ttgatactgt	gtgtgatttc	aggcatttgc	tggacatctt	100140
ggaatgtttc	ccctaaggat	aagggaggac	tgctgtaacc	ttgattttac	atatgttaaa	100200
ctgaataaat	ctcaaaaaca	ctgtgttgga	ggaacacata	cagtatgata	ctccttatat	100260
taatttttaa	aatagagaaa	ataattatga	ttgatatctc	catatgtagg	aaaattaata	100320
aataaagtga	attaacctcg	acccaagcgt	caggtaggga	atggcactgg	cagctcctct	100380
ttagccttac	ccgtaatgca	ttatttctta	ataaaaactc	tatgccaaag	aatatatata	100440
tatatattct	tatgtatata	tagaatatat	acatattctt	tatatatgta	tatataaaaa	100500
catacacata	ttctttatat	atgtatatat	ataaaaacat	atacatattc	tttatatatg	100560
tatatatata	aaaatatata	tatattcttt	atatatatat	atgttgtgtt	tatacattgg	100620
tttgttattt	catccaggtt	cctacattct	ttcttggtgg	taacagctca	gtgacttcat	100680
ttgattcagg	tgaatgcaga	ttggacggaa	gtttgcgtgt	tctattcaga	atccttcaca	100740
tattcaggac	tttgacagat	tcataggtca	gtgccttctg	gagcttgtcc	aactagagaa	100800
gttgctgtcc	atgcaaaatg	gagctgctca	ttaggctggt	tcattcatgg	tccagaccac	100860

tggctggaat ttgacctett cacaggcaag accactccac tttctctctt gggctgtttt 100920 tcctctcccc agtctctttt ccaattacat tctcagtccc taaatcttga tttgcgtaag 100980 taaatatatt gtttccttgg ttattaatgc aattctccta ctctcctgag aagctcagca 101040 catacgggtg gtctaataag cacaccette teaaggagag agetgggtee ageatgtggg 101100 gaaatggtag acaggaaaca aagtcctagg tgtctgtggc tcctccacct gaccctttcc 101160 ctgctgttca gctttaaaaa ggatgattgt gccaggatga aggaaacagg aagcttttgc 101220 aaaatcaata ggagggcttt gctcattggt gtaataatgg tgtaacatag ggaggacctg 101280 tgaggcctga ttctttcagc ataaaaggca tgaaatttaa agacatgaaa attactgaat 101400 agacggagtc tcactcttgt cgtccaggct ggattgtact ggtgcgatct cggctcattg 101520 caaactctgt ctccccggtt caagagattt tcctgcctca gcctcctgag tagctgggat 101580 tacaggcgta tgccaccatg cctggctaat ttttgtattt ttagtagaga tggggttttg 101640 ccatgttggc caggctggtc tcaaactcct gacctcaggt gatccatcca ccttggcctc 101700 ccaaagtgct gggattacaa gcgggggcca ccatgcccag ccctattaat gattcctata 101760 gtgtaaatgc atcataactt gggtcatcca tttgtttaat gtagtaactt tcatttataa 101820 aacatgttga ccatagctgt tacctttggt tttcctgggt gggtaacata ttaatttttg 101880 cagatatgat ttatgttctc tagaaattaa accetgecaa tttteetgtt attetttaca 101940 ttcatcttgc actattggca gagtttttgt tgctacttta aatctttcag tgtttttcaa 102000 gaactaactt gacagcattt gtcacacttt tttcttgtct cagtcactaa gtagcgtttg 102060 tttttttatt ttttttgagt gaattettge tetgteecee aggetggagt geagtggeae 102180 qatcttqqqt tactqcaacc tctqcctccc aqqttcaaqc cattctcctq cctqagcctc 102240 ctgagtagga gtagctggga ttacaggtgc cagccaccat gcccaggtaa tttttgtatt 102300 tttagtagag atggggtttc aacatgttgg ccaggctggt cttgaactcc taacttcagg 102360 tqatccaccc tccttqqcct ctcaaaqtqc tqqcattaca qgcqtqagca ccgggcccgg 102420 ccagaaaaat aacattttct aaaactttat tcctatgttt gaactctcaa atgtttctga 102480 ataccaaccc atctgtttta agtgactact acaatggttt ttggcttatg agtgtggttt 102540 tcattgtctg ttttatggca gtgtaatacc aaacctacaa tacaagaaag gtctcaaagt 102600 agaagatgac tcattttaat ttgatttact aaaaaaaggcg gattaactca tttgtgttta 102660 taggtgttgc tatatattaa tggaatcttt tttaaaaaaga cagctggggc cgggtgtggt 102720 ggctcacacc tgtaatctca acacttctgg aggctgaggc gggcagatca cttgaggtca 102780 gcagttcgag accagcctgg caaacatggt gaaaccctcc ctctactaaa aatacaaaat 102840 tagccgggtg cagtggtggg cgcctataat cccagcactg gggaggctga ggcaggagaa 102900 tegettgage etgggaggea ggggttgeag tgagetgega teacactece ttetggacaa 102960 caaagtaaga ctctgtctca aaataaataa ataaacaact ggagactgtg tctctaaata 103020 aataaataat aaatgacago tggaaattoo ttotttgaac attaaattat tagttggaaa 103080 tatttctata atctatatta ctgttgtggt tgctacttgg aatttttaac tttttacata 103140 aagcaaaatg taattaaacc atctctctag tatccagcaa gcacaaacgc aggagagctt 103200 gctaagaatc aaatatcccc tctccttgcc agggctaggt cctgaggaga cacagttggc 103260 ttgctgacaa gtctagctcc atatcatatt ctcacttaaa acttagtcta aaaaaagtga 103320 aaaacacatt tacctatatc aagctagtgt gtctacatat qaaattgtgg acatcgttac 103380

aaatcacaat ttgtagtcca aattgccagc ctttccctct atgaaatcat tccttgccaa 103440 tacaaatagg aagacagaaa gtcatcccta cctcctgtta gcatttgtga acatttgcaa 103500 atacatttgt cgttgtctcc atcctttgtg ctaaaatcat ttcctggttg gctgatgctg 103560 cttattttgc cggctgtccc tgtaagtcct ttraggtgaa tcctgtaagc gtgcaaagaa 103620 aaaaaacaca ttggctaggg tcattgattt accgtagtgg caaatttttt gtgatgaaga 103680 attccattct acagaagcgt gttctgtact cgttaatgga ctaatgcata ctctggacaa 103740 aatattttgc actggtataa acaggaacca acttatcatc aaatccttca gcaaagaggg 103800 atgttttcat gaaaccttca acacatatca cttgcacaac tatcagaagc gactgtagag 103860 ccctgtaatt tattttcctg ctgctttcag ataaacagaa gagaaagaaa tgcagcacca 103920 ggctcctcct cccaggtctc cagtcatctt ccatagagac ggagtcctga gacaactggg 103980 caaceteaaa cattattte egcaggggce eeggggggga tggagaatge agcagacaag 104040 gaatggccac tgagtttggg gaagaaatct acagaacggt gctgaaaata aatccttgtg 104100 gctacatttc ctcatgtctg tatagtaggg taatgtaatt aaacttttag acattgagaa 104160 aggaacaaat gtcggagtaa gttagacact atttacaata cagacgatcc ctgacttccc 104220 atggggctat gttctgataa gcccattttc tgttgaaaat gttgtatatt gaaaatgcat 104280 ggaatacacc tgacctttgg agcatcatag cttagctctg gccttcctta aatgtgctcg 104340 gaacactcac attagcccac agtcagacag agccatttgg caacacggtg cacgcagygt 104400 ctgttgttca ccctggggat cacaggactg actgggacct gtggctcgct gccgctgcct 104460 ggcatcatga gggagcatcg tgccacatat cactagccag ggaaagatcc aaatttaaat 104520 cccaaagtgt agtttctgct gaatgcgtat caccttcaca ccatcgtaaa gtcgaaaaat 104580 cttaagttga accattgtaa gctgaattgc aaaaatacgg cttacatcgg tcatctgtgt 104640 accagcaagg agcatataag ggaagggaga agacaatatt tttgaggttg ttttttcttt 104700 ttttttttt tttttatttt ccataactat gctcaagagt ttctgctgca aagaagcttc 104760 ttggcagatg gttcaggaca gatcagagca ggcattcacg taatggggta tgccatgttg 104820 gcacgttggg teetcaegte etgatggaga aacaggeaca egaagaeeca ggegaggage 104880 ctacaaagca aatcctgcaa tggtggcagg agaagtgtac ttgaagcacc aagatgatgc 104940 ccttctttgt aaaacctgct aatgtttgca agctgccaca ttggaataat ataatttcta 105000 acagtttgta ttggaagaat acaaagaaga gagaaaatgt tcttttagtt ttacctgctg 105060 gtcgggccag gccaggtgct tacacctgca tgcacactgg atgcttataa ccacgtgcag 105120 tggtggccgc catctttgtt ttggcactga aagtcactga ggttcagaga tataaacttg 105180 tccgaggtca gactcttaag tcatggaggt aggatttgca ccagatgcag caaatgcctc 105240 tgccatgttt caacactggt gcacacctaa acagagatgt ttgtttgttg aagaagttgt 105300 gaaaagatga gggtagggcc atgtgatgtg gagttccgta agtgttgctc ctaagtgact 105360 tcagtattaa ggcagcccta gaaacttcat cctaaggcat gaactggaca tgtgagtctc 105420 agtattttcc cacacgtttc aaaagtgaga ctggccgtag ctcagtctct aaatgcctgc 105480 tgcaaaatgc taatgtcata aatactcatc tctgttggga ttttgaaaca ctgtactttc 105540 tttccattgt cttcccatta atcatagaca ggattgagat gaaccacttc ccttgcttat 105600 cttttaactc tctcttgtct cctttgaaca tgtttagttc tcatggaact tgttaaatta 105660 tccccagagg caagaaaaat aagggagaat actatttttt atgagtctct gttagaaagg 105720 ttttgtgtaa ttttaggtcc ttttgtggcc cactggttta aagtgctttc tttaaaattt 105780 ggttattaag aatggccatg ttcttgaagt tgctttacat tggtatgggt tgatttttt 105840 ttttcaatct ctgcagcttt gccagggatg attttatata acagtggagt aaagaggtaa 105900

catcaacatt aacaattaaa cctcagtgtt atataaaact gccagaatgt gtgtgaaaag 105960 tgatgaattt ttaagattta atgtacgcat agcttttagt ttcactagaa agaatgaaat 106020 totattgatg catttatgca tttottataa catgtatttt coagttttoo aacacttggg 106080 gaacatttct tctgggaaaa aaaaatccct tacatgctgc atacaactgg cgtctcaaag 106140 catttgcagt tatgagaagt ttcagtccct tcacagttct cttatcatgc tagcatcatg 106200 ttttattagg ataataattt tcgatgtaat atctatttta tcttgccaag caaattaagc 106260 tttaaaccaa tgtgtgtgtt tttctaaatg gcctatccaa aaattgattg catttctaaa 106320 ggaaatatct gttaagaacc atctcagttt aaaatatttt tataatgtca gcrtacaagg 106380 gtaatgaccc attttgtaaa aatcttytta tacaaacagc ctaatcctta atttttgtgc 106440 ttcttttttt tttttttt taattcttct gttgtagatt cctaactgtt gccagttgaa 106500 aaaatattta acttggaggt aaaacactga ccaaccactt gtgtctcaaa attcattgaa 106560 gttttgatct ctttggagtc aagttggaac tgctgtgagg cccaaacacc tatcttctca 106620 ttcatctcgg ttgttgcctc tccaggagag cctgatcttt ccataatgag aatagtgaat 106680 atgcttcact gatgtttaaa gagtcacatc catgtatatc tgtttctcaa acatgcttct 106740 gaattttcat ccactgtttg tacagcagga catactgggc attgtagagt tttcagttgg 106800 ttgttcaggc aacttgacat ttagccgctt ctccgtgctg cccaccacaa tcctcccctg 106860 ggcagcctgc tcaaggactt taacattgtg tctcctttca gactgttcag gtcgtggagc 106920 ggagtgtctg acttgggcat taatgagatg aagacgagac tgtaggtcag atgatgactg 106980 tttttgtgat gttcgtgttg accttcattt gctaatttct gacctcaaag tgggtatttc 107040 ataatgtgtg ctccatgatc acgaggcgcc accagtctgt gctctttaga ctcctttagg 107100 ctggcgttgg tgccagtggg cacacagtct cacttctctg cccctcccgt tgcacacaca 107160 tttcggagtg cctctatgtg ccttgtgtac cagcattact gtgcatgtgg cttcaccgta 107220 cttatcttgc acactaggtt gtcaagtccc attgctgttc tctctctcta ctctcatggc 107280 attttagagg cagaaagtaa attcccagtc aaggttgccc atgctattac ttatgattat 107340 tgctgccaaa tgggtgagga caaggtaaac acccagggaa tgctgtgaat ctgatgtatt 107400 tcctgtagag gagagcagag ttgactaacc atcccaccta actctgccat ctctaaactt 107460 gacaactaat cttgactttg agattgaaga caattgaatg tgtttaaact tcataaagac 107520 agactaactt ttgaaacctt ttggaataaa acagcacagt cacaagtatc catcatttat 107580 gctattcatg tgacatatta tcatgggaac acttactatt cactgatttt acaaatacct 107640 atgaaagcca attatctacc aggcagagtt cttctaggct ttgaagatac acagtaaaca 107700 caatggacaa aatactgttt gtatgaagtt tcttttatat tgttataacc aaagttagaa 107760 ttttaaaccc agagaaactt aaagaagtaa tagtttagat cttggttaaa tcattgtgtt 107820 tctcattttc tggaatagtc acccagcaaa ccttttaatt ttttttttct ttttctttt 107880 cttttctttt ttttttgaga cggagtcttg ctctgtcgcc caggttgcag tgccgtggca 107940 cgatctcggc tcactgcaag tccgcctccc gggttcacgc cattcttctg cctcagcctc 108000 ccgagtagct gggactacag gcgcccacca ccacacctgg ctaatttttt tgtacttcta 108060 gtagagacag ggtttcactt tgtttgccag gatggtctcg atctcctgac ctcgtgatct 108120 gcccacctcg gcctcccaaa gtgctgggat tacaggcgtg agccaccgtg cccggccaca 108180 aatottttaa tittitotti caattaccat gaactcacti acctataati gagttottca 108240 cttgagagat agaaatgttc atacaatgag taagcctcat tcccttccca gtctttaagg 108300 tgtattttaa gcacrtagcg ttgctgrtta gtcagttgcg aaacaaactc atttcccagc 108360 caatattctc ctgaagggtt accaaatccc tgtaatgcaa gttgttaaat tcaattattt 108420

catgtaattt tttctttgta tatttgaagt ggatagtccg tcaacttaac ayagaataac 108480 tatcaaatag cagaaattcc ttctggtgct gtgacaattt agggtccttc ccaaaggaaa 108540 atggatttta aataggtcag ttattagata ctaagctgct gctggaagaa aacttgtatt 108600 aggataatga gaactacttg gggagccacc agcagaagcc ttggcataaa cagctcagtt 108660 catgggaatg tgaagcacca ttaaacagtc ggcttaccaa aaaaatgctg agtccacctt 108720 taaaaataag ctaagtagtg gcagccttgt ttatttgaga gtcttactct gttgcccagg 108780 ctggagcgca gtggtgtgat cttggctgac tgtaccctct gcctcccagg ttcaagcgat 108840 tctcctgcct cagcctcctg agtagctggg attacaggtg tgcaccacca cacctggcta 108900 atatttgtat tittagtaga tacagagttt tgttatgttg gccaactggt ctcaaactcc 108960 tgacctcagg taatccatct gcctcggcct cccaaagtgc tgggattaca ggcgtgagcc 109020 agcacgtctg gctgcagctt ttgttttgat acagtttacc ttatattggc cattctttaa 109080 aggggagact gaagcaccaa ttttaaaaac catgtcaaaa gtcattggtt agtttgggat 109140 tggtggttaa ggttccgcag atcttgaaag ctatttttca caagggaaat tctttyctga 109200 tgccttaaag aatgtcctta ccactttata ttctttccaa gtcctctgaa aatcaacgct 109260 gccatcctca cgtcgctgaa taattgtcca cccgcctcct ccagcttcca tgtcacagta 109320 ggcctgcaaa caggaatgca gggtataagt gacagagccc ccccactccc cccttacgta 109380 gcagaagcag gaggaatgta gaccctgagt gcaggactca gccgagaggg ttctctggga 109440 tataaggcac ggagtagacc atcggggttg tctaagaaac agatggtttc aaataaattg 109500 agaatatgac tcacttgtca tcatctgttc caggctaaag accccaccct gatggctggt 109620 ccaggagatt gctgtttttt tagagattca ttatgaatgg cacattttgg cagattggcc 109680 ccgaacccca.catctccatc ctgtagaaaa ccattgactt gtgttcacag ccttgaaacc 109740 tttcactaaa tgccagcccc tgcccctcca cagagagcta tgtgaagggg atactctttg 109800 atcatagggt ttggaggact cctgttacat tctcgtactg tggggctgtt tggcttcctt 109860 tatgtgcaat actaatcaga ttttttggtt cacatctgag cacaagggcc ttgaggctcc 109920 agtgtcctgg tgcaaggtgt gtgacctggg cttggcttag caccttggcc tcaagggcat 109980 gacttcacgt ttctctgtac atagctcact gcccacagtt tttctctaag caactctttt 110040 tatttctgct cttaaactgg ctctgtgggt ttaaactttg tccagaacac agaattcttt 110100 cttaagctaa gcgcatgcat gctcaatttc aactcagctg gagttttatt atgaaattaa 110160 aaacccctga aaataagatt acataaatag ttttaaataa taaagattac agtagaacga 110220 aacatgtttt ccagaaagta agataaattt tctgccacat acaaggtagg aaatattgaa 110280 gttaaggttc aaaaccaatt gtaaatattc ttcttgtgtt gtgtcccatg gtctttttga 110340 gaataatgga ggcgatttgg cagggtaagc ttcaacgcac actgttctct gtttacgagt 110400 tagaateeta aagaggagag egaaaagaga aetaagagag tgttatteet gttettteat 110460 ttcctacatg aggaaagagg ggtgcagagg aagtgcagtg gctgcctgat gcctcattgc 110520 cagtgcaacc agagaactgt ccctggaaca gcctggtctg caggggactt ctccccagca 110580 tggttctggt ctctctccag gaaggtcacc cggctcgtat tgccttcccc agtggcactc 110640 atgtttggaa agataggtgc cattaatgaa agttacattt attaagaaga aaattatttc 110700 ctcattttaa attaatctga tgtagaaaat cagtctgcac aagctaaccc cttgttaccg 110760 ctctgtattg ctatgatttt tattatcatt gctacacacc actctcatcc aagtactctg 110820 ccagatactt tgtgtatatt atctataatc tcacagcaac tctgctgtag tatcataatt 110880 ctgcattttt gaaaggagaa aagatttagc aaagttcgat tttgatcagt tactcacctt 110940

ctaagtgata tataggattt gaataaggtc tctttgattc ctgttatgtt ttttttccac 111000 tgacatcatg ctgccaaaaa tagagaaacc tgaccctttg gtaaataggc caaaagtccc 111060 tcaacacagt tccaagttta tatcagttca tgaataatac tgcctcttat ttgcctgcag 111120 tcaacaaaat ggtcagtgct gctcacttct atcaatattt ctttttaaaa atctatttca 111180 taaaccagct gaataagcta ctttggtttg aggattcatg tacatatatt gaagttaatt 111240 ctgtatccta aatggtatgc tcttgggttg aaagcattga cgtggctctt ggtgagccta 111300 teettgttee aagaatgttt gattetteag egteaaaate aetgetatga agttaceagt 111360 acttaaatac atgttctgtc ttgttcagag aacaagttta tcttgttatg gaagtcagag 111420 gcaaaactct taaatgtctg agagtcactg ccagcacata aatgatttga gccatatgag 111480 tattcgcttt gattccatta gtgatgatga taaggttatt agaacatttt cttagtactt 111540 catccaggtt tttagaaaaa agaacagagg atttgtaaaa actggagtat tatggttaat 111600 tggactataa aacttgcaga gaaagatagt gttcaaatag agttatctac ccagccagaa 111660 gatactgagt aaaagtgctg aaattgatta tatcaggatc agcaaagcag aagtcctcag 111720 atacttccca agaccttacc actccaatta caacaaacct aagggcagtt aatatcttta 111780 atctqtccac tggtgcacgg tgcaggaacc tgatatcttt ctgtaaagct tgatgttttt 111840 cagcaaataa tacttgactt gcttcaactc tgaggcaatg attaagtgac gggttaaata 111900 gcaaaccata gagacaaacg ttaggagtca ggtgtcctgt gaaatttagg gaaggaaatg 111960 accatacatg cttttgataa atgccatctt gcagtctctc tctcgtagaa gaaccaaatg 112020 aatttttcaa aactaaagct gcagtatttt ggcctttcag gaaaagatct gctcaaagac 112080 caattgaaca ttctttctt gaattagata aatgagtgca gaatcgggtc tcctgccagg 112140 caqaqaagtt qtctqqtaqt ctttqaaggc agcgaaaatg gtgaccacta ccatttactg 112200 tcccaagttc taccccaggg gctgtccctg tgttgtcaca acccccaagg ctgagggtat 112260 cattgttctg ttacagatgg ggaaactgag ctctcagaaa ggttaaatga ctcgcccaga 112320 gccacaaatg gcagagctag aatttacatc caagtctgtc tatctctccc tggatcagat 112380 tgtgacttac agagtcttaa gtctgcaagg gaatttagaa gtaacaattg acaccactta 112440 tttttcaaga tgagaaaatt gaggtttgtg aaagcttatt gttccctgct gtgtaaatga 112500 gtttctttta ctgcaaatgt ttaaagggaa tataaatcct aatgtttcca accatgacct 112560 gaggeteata taateeeaga gtaetatata tttteatett tetgeagaat attteagtta 112620 ttctgggggc catggggtgg gacagtgcac tggggtggga agettgcact tagactgaga 112680 aacatagatg aaacaatgtg atggggctgc atggttagcg gctgtccctc tgcatcggtg 112740 tecatggeat ecceatttea catgeatect etgteceece tettgacaet cetgtececa 112800 ggccaagaac acgccaacat ctggtgacag acaatggcat gcacagaatt gtcatgaaaa 112860 ccaqataqca aaaqagattg aaaggcttag cctagagtct gttcgttgcc ttttcatctg 112920 cagcagaccg tgttgtttgt gggtttgttc ccttccttcc ctgttgtatg gcttctaggg 112980 cgttagggac attaactaat tttcagggtt gatttaacac agcattaatg aattagaaag 113040 gtttctttgg aaagcattat gttgaatagc acaatattta tcttttccgt tcataatcaa 113100 qatacatqtt actqtttcaa gttccaggtc tttaaaaccc taatgcttgt atttttaaag 113160 tgtttttctt tgatactgtt ttaaatactt aggataatac tcaatttaaa gagataatac 113220 ttccaagagc ctcgaaaatt tccactttgg tacagtatcc actgtattct ctgtagttat 113280 ttgtgtttggt tcaatatgta gctgctttta catttatatg caaacatatt tatagacatt 113340 taatatatac agttatccag taattacata acacttcacc acactgattc tcctgtaata 113400 tcattcttcc ctatcaaatg tttaagagaa gccacattga aatattctcc ggaagggttt 113460

ttttttttcc ttatctaaag ttcagtgtct cccaaagcac cttcaggagt caggctctct 113520 gagtgaggct gcagaactag gaatgactga ggtaagctgt gttgtggctt tgcctgctgt 113580 gagtactgac tgtccactca cgttacatgc agtaattgga catatgcctt gaagtgaact 113640 ccgctgctgg agaagaaaat gaacactgtc tttatggtgt gtttcgagtc ttccagactg 113700 cgttagatga ggttagaatc gccttcccca gcggttctca tggtgtggac ctcagaatcc 113760 tgcgtgtccc tcagaccatg tcaccaagtc cacaggttga aactgttttc acgatgctaa 113820 gacaccaccg gtctgtggca ctgtgttagc gtttgctcag atagagcaaa aaccatggtg 113880 ggtaaaactg ccaccatccc cgtgtgaggc agggcagcgg tagctaactg tacaagtcac 113940 tatgcagtca cacacaaaaa agaaaggaac aataatatca ctgaaaaaatg actttgacac 114000 agcagtagaa attattaatt tcatgacacc tctatggctg atgcactatg gttgttcaac 114060 cttcagtttt tggaagatac tttctttaag gaaatgagtc tgacacctca ggaaaaacaa 114120 ctgacagtat gcattattca agcaaaatgc aaggagaatg tatttgttgc cgaagataag 114180 atagacattt ctacatcatt catatgcagc ttttgtattt tctgcacagc agcggcactt 114240 agagecettg geaageacte taggegaggt agetgeecag taactatgge tttgtactgt 114300 gtgaggctgg ggaagatett tggggagaga ettetgetet etggtteete aetetetaaa 114360 gtggcctgcc tagagccagg gagttagtaa ggggagacga atacctcacc ttgatctctt 114420 ctgtagaatt agggaatgtt aacgtgtaga tgccattcgt ggtgtgtcct gatttgaata 114480 cttcagcaca gtctctgaag ctgatttgtt cttctttagc aacagtgggg tccttagctg 114540 cttttaaaaa atagtaaggc atttaaacgg agttcatgaa aagacaaaga cttgttattt 114600 caasagccaa tcatttggtg agttttatta ctttggaatt cttaagtaag caaaaggctg 114660 taccactttt ttaacctttc tagaaagttt cctttcagcc tgttttcttc ttaattctca 114720 aaagattaat acttactttt tggtcattaa ttccatgtaa ttaaaatact tcaaataatc 114780 caaacttcct ttgctgatga tcaattacat gtaatgaaag tacttcacaa tcacataaat 114840 taaattatta cttttgaaga tctttcatct tgagtagaat agggtaaact tagtatggaa 114900 gaatttaaaa agaatgtccc taaacactgt tatctgtatc atgaccccat tgcctgcccc 114960 ttcaggccat tatcccactg aggacatagt ggggtgcagt gacacatctc agcttaccgc 115020 atcetectee teccaggitt aagtgattet cetaceteag ceteccaage agetgggatt 115080 gcaggtgccc accagcaagc ccagctaatt tttgtatttt tagtagagac aggatttcac 115140 catgttggcc acgctggtct ccaactcctg tectcaagtg atctgcctgc ctcagcctcc 115200 caaagtgctg gaattagagg cgtgatccac catatctggc ccttccctcc aatatataag 115260 agacgctgca aagtgaaaca ataataagga aggcaaaatg tgcttaagaa cctggcaaga 115320 taagggaact agcatctctt aagtgccagt gtattatctc atttaatctt aatggccatc 115380 ccatgggtct gatattattt ttcccatgta aaacctaaat aaatgaatat cggctgtggt 115440 ttagtaattt gcccagtctc atccttctaa ttaatgatgg aactaactaa aagtaggctc 115500 tttactgcca tgaatcaaaa gtatgcttgg ggtgtttgct tcataataat tagtataaca 115560 tatatttccc cttctcttct tccttcattt taattggtag atatttcatg tgaaatatat 115620 gagaaatagc gccttttctg aaaggtgaga attttttagt cttttgagtg ttttactgac 115680 taaaggttat taacgctgaa gaaagcatga tatgtraact tacagtttga tgtggacatc 115740 atagtcagta agttattaac tgtctccatg agatcatgtt gctgcttctg aagaactgaa 115800 ttattcaccg tggcagtcac tattttttt tctagttctt caatgatgga attttgcttg 115860 gatactaaca cctgtagctg atctttctct tcttttattg actgtagttg gatgatgtgc 115920 ttgtcttcca tagctagcac cttctttct aggaaacttg taaggaaaag aattgttagt 115980

tagtgaaggc tattctaatg aaatatttta tatttattga atttctactt ctccaaggta 116040 ctctgttaag atattgtagt ggttataaag taatatgatc ttaccagagc cctaaggaat 116100 ctctgaaact tgctgagaag attagatata taaatgtgtg tatatatgta aacgtataag 116160 catatatgta tgtacatgca gacttatgca tacacacaag aaaaggtacc ccatctggtc 116220 caggataggt gggatatggg tgttttttgt attagatgct acagcgctca gaagaaaggt 116280 gctgctcttt caagcttagt gctcatgaag tgcttttttg agaagggaga gtttcaactg 116340 ggctggaccc ttgggtagga tattagcttt ctcctaaact atttatattt taatattaat 116400 cctaatgata ataatagcac ttaatgctat gtgagaaata ctccttcatg gggaggtgaa 116460 tacttctccc agactcaagt cctggcttac cagccctgcg acttggaaca gtttacttag 116520 tcaccctatg cgttaatgtc ctcacctgtt aattaggata ctatcaccta cgtcatgggg 116580 ttggtgtgag gaacaaatgg gttttaaaat gtaaatgctg gccgggcgca gtggctcacg 116640 cttgtaatcc cagcactttg ggaggccgag gcgggcggat cacgaggtca ggagattgag 116700 agtatcctgg ctaacacggt gaaaccccgt ctccactaaa aatacaaaaa attctccagg 116760 cgtggtggcg ggcgcctgta gtcccagcta ctctggaggc tgaggcagga gaatggcgtg 116820 atctcgggag gcggagcttg cagtgagctg agatcacgcc actgcactcc agcctgggcg 116880 acagagcgag actccgtctc aagaaaaaaag aaaaaaaaat gtaaacgctt agactagcgc 116940 ctgtcataca ttaacactca atgaatgttt gttaacgtta atatagacat tattattccc 117000 atttccaatg aggaaattga aacttaggga cattgagggc caggctcagt ggctcacacc 117060 tataatccca gcactttgga aggctgaggc aggtgtatca ctagagtcca ggagcttgag 117120 agcaggctgg ccaacacggt gaaaccctct ctctactaaa aatacaaaaa ttagccaagc 117180 gtgggggtac atgaatgtaa tcccagctac tcaggaggct gaggcaggag aactgcttga 117240 accegggagg tggaggetga agtgagetga gattatgeca ttgcaeteca geetgggcaa 117300 aatcacatac ctaaagtcac acacagcagg tggcaggggc agaatacaat cccagcactt 117420 totgactorg aaatorgort ototoottit aatgragece cattoottot craaaaaatc 117480 taaccagcct atcgcatgta cttaatacat aacagttaat atgtgagcca agcccttgaa 117540 aagctttttt ttctcttttt ttgagatgga gtctcgctct gtcacccagg ctggagtgca 117600 agggtgccat cttggctcac tgcaaccttc acctcccagg ttcaagctat tctcctgcct 117660 cagtctcccg agtagctggg actacaggcg catgtcacca tgtcaggcta actttttgta 117720 tttttagtag agatgggctt ttaccgtgtt agccagaatg gtctcgatct cctgacctcg 117780 tgatccgccc gcccctgcct cccaaagtgc tgggattaca ggcatgagcc accacgcctg 117840 gcagaaaagc tttttaaaaa ttatttagag agctggtaaa attatgccat gtaagtccta 117900 agacacttta ttaatggtta tatagtttgc cttcctaatt tcaacttata aacatacgtt 117960 gctataaata tgttcaatga agagcatacc acttttaaac taaaaatagt tcctgtccat 118020 taagccagag gaaacaaatc caagagagta gagactatgt atttgagaat gttaactgtt 118080 tcccaggaac aaactcaaag acatgcacag tcaaggtatt tggcagggtt ttttgttttt 118140 tgttttttgt tttgagatgg agtctcggag tctcgcgctg tggcctgggc tgttgtgcgg 118200 tggcgcgatc tcagctcgct gcaacctccg cctcccggat tcaagcagtt ctcctgcctc 118260 agcctcctga gtagttagga ttacaggtgt gccaccacgc ccagctaatt ttttgtattt 118320 taagtagaga cgtggtttca ttatgttgtc caggctggtc tcgaactcat gacttcctga 118380 ttcgtccacc tcggccttcc aaagtgctgg gattacaggc atgagcaccg tgctggctgg 118440 cattttttt tttttaata agatacaaga ggaaaattgg atagcctgac actacattat 118500

tcagcaccta aagaggcttt					
aatatcttca ttttgtttgt					
taaaaataga aaaacagtga					
ataaagttta gtacacatga	atttgcacat	tgcagagttt	tgttttaaag	gaaggggacc	118740
tcatattccc ttttttgagt	cccgtataag	tcagctatct	tatttaataa	tgaaatatgt	118800
caatgatggc atctttatgt	ttcagaatta	ttttctgtct	actaacaagt	taccacagct	118860
tctgttaatg tcacattaga	agctggtgaa	atattctata	catttcacta	gcttttctgc	118920
gaaggcatat gaagagcaga	gaaacattat	tttcccacct	gcttgataaa	gaaaccttga	118980
accggccatt taacactgct	gtgagttatc	tgaagcctcc	tgagtcactt	tgcacttact	119040
ttcctaggaa ccgaaagcat	gtgaaattga	catacacgtt	tcactgagtg	atagttgggt	119100
tcagatcacg tcttaccttc	cgtttaacag	agatgtattg	aacacctacc	atgtacgagg	119160
tgttttttag ggttttggag	aaaaatcaag	aaatgaaagc	atcatgaacc	atagtettaa	119220
gcctgcggaa atttagatgt	tttgatggtc	ttcacatcat	caagctaaaa	agacaaggct	119280
atgaatgtct cccttgagga	aaaactaccc	ttgtggccat	gtaaggtctg	taaatagaag	119340
ttatcacagg gaatacatat	gaagatcatg	gtttcactga	agagaaaatg	gagaccctga	119400
gaagtcacct ttggtgtcac	gagcaccttc	aggtgaaagg	aaggagcctt	aggctgggaa	119460
tcccacctct gcacatggct	tcctgtgtca	catgggcagc	caccctgctg	tggacctcag	119520
gtgcatgtct gtctaggtga	atatctatct	aaataaagct	ctatgtaaaa	tgaaggcatt	119580
cgatttcatg gcctctcggg	ccccttttag	ttcgaatgat	ctggtaaatc	caccttttt	119640
tgacagtaac attttctgac	tctttaaccc	tgcaaacaat	attaaccagc	caaggaactg	119700
gctacccatt acatgtctcg	cccataagca	ataacaatca	gtattaataa	taattattag	119760
atattcaatt gtagctctta	aatgtattcc	agccccctga	tcgttgtaaa	ttagtatata	119820
attttggaga gatgggggtc	tgtctttgtt	gcccaggttg	gtatcaaact	cctaggctca	119880
agcgatccac ctgcctcagc	catccaaata	ggagagatta	caggtgtgtg	ccaccacatc	119940
tggctaattt ttgtattttt	tgtaaaaaatg	agctcattat	gttgccctgg	ctagtctcaa	120000
actectggee teaagaaate	ctatcactct	ggcctcccaa	agtgctggga	ttataggcat	120060
gagccactgt gcctggcttg	aatctattct	ataaagaaag	caattgcact	tttggggaat	120120
tataaaagat tatttaaaat	gtggtttgtc	caatgtgaaa	caccatttgc	atatttttgt	120180
aatgatatac ttgcaaataa	aatcataggc	cagtcagaat	ttaaggtaga	aaacacagca	120240
tgcagaactc atacacctgt	aaaatcatca	acactatttt	ctttttttat	tatttatagc	120300
tgttgatgaa aaaaaccttt	ttatttcctt	tcatatctgt	gacaaaaaaa	tacgatttct	120360
acatctgatg agaaaaagct	tattcttcct	acaggcatag	ttgaaagcca	atatgattgg	120420
aaaactattt gcaaagatga	tatttggggg	acataattga	cccaaattgg	tagttttagc	120480
attgtagcat gctaaatttg	aaacccaagt	ggggaaacag	tattcagtat	tagggtatgt	120540
tctacaaact ggacatatcc	taggtttgtc	acggacatca	ttgtataaca	ggcaagagaa	120600
aagtaatctc cagctcccat	gtgttccggg	aatcactgca	gcattttgaa	gagaacatta	120660
ctaagtaaga ctattaagaa	aacgacgcca	ggacggtggc	tcatgcctgt	aatcccagca	120720
ctttaggatg ctgcggtggg	cagaaggctt	aaattcagga	gtttgagacc	agcctgggca	120780
atatggcaaa accttgcctc	tactaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaatcagctg	120840
ggtgtgtgac acatgcctgt	agtcccagct	actcaggagg	ctgacatggg	agaatcacct	120900
gagcccagga ggttgaggat	gcagtaagct	gagatggcac	cactgcactc	cagccagggc	120960
aaccagagtg agaccctgtc	tcaaaaaaaa	aacacagaaa	agaaaatgaa	attagcagga	121020

ttgttatatc tcaatgattg gtctcaaatg ttcatttact gtttgtagag gagaaatctg 121080 aaacatgaaa gaaaaatatt tgaattttaa aaatctattt gcttttcaaa accctaaatc 121140 aataatgact taaacttggt atcctaagga cagaaagaat tatttcagct tagttcttga 121200 ttaacagtaa agaacaatta ttgaacaaga agtttatcat ttttggttaa gaataaagaa 121260 ttatttaaat tgtcaaatag gatatattgt tatagccatg ttccatgttg tatatacatg 121320 tetteattaa aaacaaggaa ataggeacae caggtatgtg cataaaatta teetettttg 121380 tcccaagtgg aacagacata tgaaaacagt ccccacctat cccctacaat tttttttcta 121440 ttgttgatct tgagattttt ctatatttta tttaaatatt aatataatca tgtttaatat 121500 ttttggtttt actttatcgt gtgtttgaag aggaaacatt ggatcataaa atgtgcattg 121560 gcttacagta taagtgtagc tttcatacta tagaccattc tgcgttgagt gaagctaagt 121620 ccccaagggc aaaggatctt ggtcaagtta atactgaaat aaaatgcctg ggccagtggt 121680 tettteacte cacageacta getgtatttt tataatagat tageatgtag aataetgagg 121740 cagggtttgg aggattactc taagaggatc ttttgggcca gtggttcttt cactccacag 121800 cactagetgt attittataa tagattagca tgcagaatac tgaggcaggg tittggaggat 121860 tactctaaga ggatctttaa ggggccaggg aatgaaaggt aaaatccagg actgtgttag 121920 gagagetgtg cetgtgeagg aattttetee aageeetete eetteteete eeteatgagg 121980 tttctgaccc ttacactaga catgaagaaa ctcaccattc tgataattca tcatttgaga 122040 ccgactttca tatctggaaa gtgtgcagtc ctgaattata aawgttttag tactgttatt 122100 acctgttctt atcttgcaat ttgtttattt cactggtctg gtccaaaatc tgtttttcca 122160 atttgtttgt cgagagggag tgttccaaga gctgaagttc aagtctcgtg gtctgattta 122220 atacctaaat gtaacaaaat gaagtteeta ttaattattt tttaattagt ttaactttet 122280 aactteettt teattaaagt acceaageta caggaaaaca taacaaaaac attatttatt 122340 aacccaagta tottattttg gcatattttt cattttcaga aaaggotcaa tgtottagat 122400 cacatotgag tgtgttaaac ctttttactc ttttccccac gtctctattt ttttttttt 122460 tgagatggaa tctcgctcca ttgcccgggg tggagtgcag tggcatgatc tcggctcact 122520 gcaacctccg cctcccgggt tcaagcaatt cttctgcctc attctcccca gtagctggga 122580 ttacaggtgc gtaccaccat acccagctaa ttttttatat tttttggtaca gatggggttt 122640 caccatgttg gccaggctgg tctggaactc ctgacctcaa gggattcacc tgcctcggcc 122700 teceaaagtg etgggattta eaggeattag eeactgeace eggeegttat gtetetatet 122760 tggaaagtgg ttagtagttc tggacaatgg ggtctgtgcc aaatactaaa tgttattttt 122820 ctagtctgcc atattttatt tcatacaatg agacaagtag gagtagaaaa tggtcatatt 122880 tcataggtcg aaagtatttt ccctttgccg aaaacaaaat gctattctca tatttatttg 122940 tcactagaca gagagattgg aagtcacatg cttccattat ataaaaatat agataatttt 123000 tagcctggga tttcctcatt tgtcaccact tgtttagact tttatttctt cttgccattt 123060 ctccttcctg ttttaaaact tgtttgaacc aatcgaagcc gtatagcgtg agtgtgaagc 123120 ggascctcag ccttgccgtg cgggcctttg tgagctactg cgtggcatga gcagtgcggc 123180 tetecegegg attetetage geetggttge cetteageag gaagaatega ytacteaett 123240 cctccatgtc atgcttattc aggatgtgat atcacaygca aatgtcagtc agcattgttg 123300 ccaaggaacc ggggaccttg aaagaatcat tgtttgctgg tgtctttatg tcatttgcag 123360 gageettgge tggtecacag egtgagttte agggatggte ttateettag agetggttta 123420 gttcttatca caaaaagtct tctgtgagaa taaagtcctt ggccaacrta aggttttgtt 123480 tgggttttaa tattaacacc tggaatatag atttggccta cgtcttcttt gagtccaaac 123540

attctatgtt ggttatttct aaaaggaact ggaaaattgt gtcctgttta attcataagg 123600 gttataacat gagtaaaatc ccgtggggag gcagggaagg atggcacata agtcatgatt 123660 ggcccagtag taattgtaac cattttcaca tcacttttct ggagagcatc aaaccgctgg 123720 accagcctga aggcgtccat ctgcagggga ctgtaaatta cccaggccag gtaatgatct 123780 ctcattccct ttaagatatg agacctccag ccacccattg ttgctcaatt tgatcgtctc 123840 tcattctgac cggcttggag aatcttgctt ctaatcagaa attttcagat ttgaatttaa 123900 gtctgtttca caaaatcagt aactgctcag caagtacctt caaacagagt gggtacataa 123960 ttcagtttct ttgcggcctt ccttaagctc agccattttt ctttttttt tttttttgag 124020 acagagtete actetgttge ceaggetgea gtgeggtgge accatatetg tteactacag 124080 actctgcctc ccaggcttaa gcacttcttg taacctcact aagcctccca agtaactggg 124140 tctacaagtg cacacaagca cgcctggtaa ttttttttt tttttttt tggtagagat 124200 ggggtttcac catgttgctc aagctggtct cggactcctg atctcaagcg atccacccac 124260 ctcggcctct caaagtgcta ggattataga tctgagcaag cgtgctcagc tggctcagcc 124320 attttcatgt gttcaattgg gcttcacatg gaaaaactgc ttactttcca tctgttttct 124380 tattttcctg ttatcctgga taacatgata tctagtttca caataggcgt ttttttttta 124440 aatcatatga cgcaacacaa gtacatcaaa tgctatgaag tctctgaccg ctataggatg 124500 tagcaaggtt tgcattgctg ctctgtccta acactttttc attactatta ttatttttta 124560 tttttttaaa tttttgccaa gctcccatgc ttggatctaa ctattatttt aaaatataag 124620 aaatgttata gtttaaaaat gcttatgaga cattttttgg atgagctatt caattaccca 124680 tcagtgttag tatcaaaagg tggggcatgt gacttaatca ttactaattt attttaatag 124740 gttggtgcaa ttttgccatt gaaagtaatg gtggccaggt acggtggctc acgcctgtga 124800 tcccagcagt ttgggaggcc aaggcaggtg gatcacctga ggtcaggagt tcgagaccag 124860 cctggccaac atggtgaaac cctgtctcta ctaaaaatac agaaatttag ccaggtgtgg 124920 tagectgeae etgtaateee agetaegeag gaggetaagg caegagaate gettgaacte 124980 gggaggtgga ggttgcagca agtcgagatc acaccattgc actccaacct gggcaatgca 125040 gtgagactct gtctcaaaaa aaaaaaaaaa aagtaatggc aaaatctgca gttacttttg 125100 gtccaaccta ataataattc gctttagata tatattgata tattgacttt taaatcttta 125160 gtttttatga cttcctagga tttaaatttt tagtacctta tgatccatta tgtaaaatat 125220 ttatgtatgt ttttcctgaa ctgttgtgat attgtggaaa gacctggtaa tcaagtaatt 125280 tgttattcta ttctcttatc tgtaagtctt ttgttaatct atcatttcgc tactgttttc 125340 tctgacctca tccaaccatt tttaggaaga caatgaaaga acagctgtgt ccttctagaa 125400 tgagtcttac gagagtggca gggcttatgg catctcccct ctcatgtcct ctcctggctg 125460 atqtctaqca tttcttgatc cttttagctg aagtagcatt taggaataat atggagtggg 125520 gattgtttca cttaaatctg ctctttttt taaaagcatt ccttgtagcc cagagtagga 125580 agccactgac ttcagaagca tgtaaagaag ccaggatgag gagtcagaaa gcgggcttgg 125640 ccgccgagag tcacgaccac ggctttgagc ttggagcgtc tgcatttgta ctgctaatag 125700 cagettttee ettteccace caggeegtte getgggteac atgttgtgca teatttagea 125760 tgtctctcgg tgaattttct tcttttgaaa ttttcctatt ttgctgttat tttactagtt 125820 tetttette tttettett tttttttt ttgagttgaa gteteaetet gttgeecagg 125880 ctggagtgca gtggcacgat ctcaactcac tgcagcctct gcctcctggg ttgaagcaat 125940 totoctgoot cagootocca agtagotggg attgcagatg cocgocacca cacotggota 126000 atttttttgt attttttagt agagacgggt tttcgccatg ttggccaggc tggtctcgaa 126060

ctcctgacct caggtgatcc acccatctcg gcctcccaaa gtgctgggat tacaggcgtg 126120 agctactgcg cctggccact agtttactat ttcagtcttc tttctgttat tattaatcac 126180 tageteatag aateteacag tggaaagaga aettageaat caettgtetg geccaaceet 126240 ttatattatt tgaggcccag aaaaggtgag tgcctcattg tgatgcattt atttggttag 126300 tggcagacct ggagccatgg cagcgctcag ggctcttgct cgggcgtgca ccatcttttc 126360 tgtggctaga cgcttctcac tgtcccactt gtctccttct ccataatctc attccacagg 126420 ctgtgttagc tgttgagatt caggtttcat cttaactcaa gagttagatt taaggccaga 126480 gtttctagct ctttgcctca gtgcttttca tttctcaaat gttcaaagac tttaggactt 126540 agaaatggaa aatgattccc ggagtccaga aagcaccagg gagacagagg gggtattcat 126600 cttgcagtgg ttgggatgcg tggcatgaaa atgactcaca tgtcttcagt agatagaaca 126660 catgaaattt aacctcagta ttaaaaacaa aaacagattt actgattttt aattcataag 126720 cagccataca teettaaytt ettateaatt eatteettt eteetgtggt ggtgetttet 126780 ttagtttete afgeetteat tgaggaaget eetgaegega etgagtgeta gtetetaget 126840 qcaggqacac cgtqtgcttt atqtggcatt acttacttgg gcttccacat cagttaactt 126900 ccgcgtttgc tccgctgttt ggttcaacag gtttgtccct atttctatca tcacagccgt 126960 ctggttctgt actgcattct gctgtatctc taccatttct ttcttcatgt tgtcctggat 127020 ataattotoa agotagaaaa gaacagtgtt ggaaggcagt cattagtcaa atgaccggaa 127080 tctatcaaaa gacttgtacc ttgccttccc ttttggaatc ttactatttt tttttatcat 127200 taggaaaata cagtgtgatt ttatttttat gcaaaatctg gcaacttagt cacatcatgt 127260 aaaggaggga gacaagctac tggttgcttc tgtgttcttc tagaagtcca tgtcatggca 127320 ggccacagag ggtggtgagg gcagccacag ggactgctgg gtgctgccac tgtggggttg 127380 tqtctgtcct acccaqctqc aactctgacc atgcagtcag gaaatgataa tttgacacaa 127440 agaagcatca ctatttctct cacattctag acttttggtt tctccacata gacttgagaa 127500 gacactctaa gacagcatat aaggagagga gcaccctttt gattttcctt ttaacctacg 127560 gaatcaccac teagtteeac attetgtggg gtetteecca cetteeteeg tattgagtta 127620 attcgaccta ttaaattttt cctaacatgt atgcattttt cacaattttg tcatttcatg 127680 tatcaagcaa acttttaatc gcaccttggt ccatttatca cctaacgtgc catgggctgg 127740 ttcttctctc cctcagttac taaagatgat gatcatgccg actaatttta gcattaactg 127800 aaacacaaga gaaggaagaa gctcatttca ctgccattgg tatagctatc cctgtctatg 127860 gcagtaaaat tacatgatta tgtataactg caagacaact gagtacgtgg gaagagcctt 127920 tgggcttgga gccagggaag cctgccctct gctttatagt cttggttcta ggaaagttgc 127980 ttaacctttt gggaccctag tttcctcata tgtaaaatag ggtttctggt tggtcagagg 128040 agtgtcttaa agaggggtta agctgtgctt ttaaagtcat tgtgtatgcg taactccaga 128100 tacttagegt tragtttett titttttt titttttt taaataatet aatgatggga 128160 accattette cattecetgg tecaaagtat aagetegtga gtgcacaaas catgttttet 128220 tccttttcac atagtgtaac aaacattgtt tattacattg aataattgaa agatgattat 128280 aaaactggtt ctggtgccct cctttaaaaa cttagaattc tttatagagr aamcattcgt 128340 ggagtcagtc atcagacatg atttccccca aaatgttaac cactaaataa ttctgtgctt 128400 tctgtcttta agagtaggaa aataggatgg gaagggtaga gtttctctct tagagcttct 128460 ttgttgatgc atttcataga ttgtgtcttg tgactggtat cagatggttt taggattagg 128520 ctggaactat aagtttcctg tttccgatgc cccctcgcca tcgactctgc cccacttctc 128580

taagctccca gctmcctgca tgcccctcag cctggtcact aaggctgcct ccctggcagt 128640 cgttctcccg tggatattgg atgggtcaga tgagcaggat gcatgasagg cacagtcagc 128700 cctccatctg tggcctccac atctacgggt tcaaccacac catcaatata tttwaaaaaa 128760 aaataacaat acaacaataa aaaacaaaaa ttgyaaaaca atacagtata gcaactattt 128820 acatggcatt gacattgtgt taggtattct aagcaacctc gagatgattt agagtatacg 128880 agaggatgtg tataggttat atgcagatct accetgtttt acggaagagg cttgagcacc 128940 gtggattttg gtattctcgg gaatcttgga atcagtcccc cacagacatc aagggacagt 129000 tgtactagag ctccaagcat gtgtaaaatc attttgttga aatgttactc aagccatcca 129060 cccgcctcag ccccccaaag tgctgggact acgagcgtga gccagcacat ctggctgaag 129120 ccttagtttt ccatatgaac caaaacagag tagaccacta ctttaaaaaa ttaaagtatt 129180 aaaaaatttt taaaaattta aaaaaataaa aaatcagtca ctgatacccg gcaggccagc 129240 aaccatctct attataggct tcataaaata tgaagagtct gaaatcttac taaccctttc 129300 tcagagttag ctcaggcttt ttagtgtgtg tgatctttct taattcattc tttctccttc 129360 ctcccctqcc tttataaaac tqtaactttt qtqattqaaa taaactattt aaaaqaagcc 129420 ataaatagca gttcgtaatt ctcccctccg ctcatcgcca tgggagtaat ggaatttttg 129480 aggttgcagt taaagctgtg tgtcacccag aggcactgtc ttagttactc ctcacagcac 129540 cccagccaag ataatattta aaaagtttca ttccgggagg cttggaacta tagagataga 129600 ctccagctgg agtttagttt aagcccatac tcagaaataa taatttacaa agtggtataa 129660 ataaaaagtc ttaacctcct tcttgatttc agtacttaag agctaaataa aaattattgt 129720 attttgtcac tctaaatcat acaaccagag agggaaaatg aatcctctaa tactgccttc 129780 ccccatttct agagctactg agtcagatgt gtttgcaact ctccagagat atgagaggat 129840 tgtttataat tgaaaactta aagtcaaatt ccaatttgaa attaaactta ggaactttga 129900 aagacataca ggcccaattt taaaaaataa aatttettaa eetgeeatat tgttttetaa 129960 acataaaaac aatagaatgc aagatccttt ttaaattgct actttttagc tattcaggat 130020 gactaagtat aggttcacag tgggtgagct aatgtgtgtc catttatgtt aatcttacat 130080 aaaagcagat tacaaataca catgatgtgt gtatatacag ataggtatat agcatatatg 130140 tatatagtgt ctataaatat atacagctct tgaagcatgt atcatttaaa taaaagaaaa 130200 ttctgtgtga tactgactgc attgctaatt aattgaagtc tttgggagaa gaatggaaca 130260 qaaccaaaaa tgtgcagtag tagatatttt gtgttgattt aaaaagatat ttgagccagt 130320 cgtgatggct catgcctgta atcccagcac tttgggaggc cgaggcagga ggattgcttg 130380 ctctcaggag tttgagacca ggctgagtaa catggtgaaa cccatctcta caaaaaatac 130440 aaaaaaaaaa aaattagett ggeetggtag tgegageetg tagteteagg taetggggag 130500 gctgaggtgg gaggactgct tgagcccagg agagcaaggc tgcagtgagc catgatcgtg 130560 ccactgcact gcagcttggg cgacagagtg agaccttgtc tcaaaaaaag aaaaaaatta 130620 aaattaaaag taaaaatact tatgttctta ctcttgaagt cattaaatta aggttttaag 130680 agaaatatat gatgtgacag tcaggtactc tttaaaaaaca aggaagaata ctgtatattt 130740 agccccagaa acactagcga caggaacagc cacagtaatg gtaggtactg tttcttggtt 130800 gccgkcactg cctgtgctgt atgggaatcg ctgtgtcggg atcccaggcg cctcacatca 130860 gcacaggtgg atgcagggct gagcactgga atgaccetca gcaaaatgtt agetcaacce 130920 agaggccgct tcatactttt ccagcctttt aagagccaaa agtgatatat ctcaaaattg 130980 gcttgagtat accttccaat tccaggcttc acaatgcctt aagaaaacag acagaccacc 131040 cacceteag tggagggeca tttttaccae cagaaaagee cagaattaaa gatgaccaat 131100

gccaattcta tcttctggga gcatcctgac aaaagaatct gtgttttctt ccaaagatta 131160 gtagtaattt ttagagatac agaaagacta tggatgtcca tcatatagta taaaaatgaa 131220 catttccaaa taaagatgtc ccatttaatg tagcctttcc ataaatcacc acqtatcaag 131280 gataatgaga acaaacctag aaacaaagcc atctggctca tccacttgga tagacagacc 131340 ttgaaatttc cctgtctctt gaccttgatg aattagttat tttctagttt attgtcctag 131400 aatgtctttc tgtttagtgt ctctcttatt tttactggct gtgactgaaa cccagaaata 131460 tagaaacctg cccagaaata tgaaattcca ttctaagtat aaggaagtct tagtacaagg 131520 aaaaaaaaa aaaaaccaac ccagtaaata agccatcctc cactggcagc accaaactcc 131580 acttgccttt ggagaatgtt teccatecet gteatetgca ecgaactget eteateaaaa 131640 cagttccaag atacttgaac ctcccgtggg aggggacccg gctctttcca atttcacatg 131700 catagcatgt gaaacatatt catgtttcgc aggaatgttt gccatcgcct tcatatctga 131760 agaggattat tccatgagcg tgatctgtag gcacacgtgt ctgaataggt cctgctgtat 131820 atgtgtgcga ggacagtgtg tgttcatttt gtcctcttct tgatggttga cacagtcggc 131880 aaagtgtggg gccttgggct gttcttcctt tctcagaact caagtgagtt atgcaagttt 131940 aacattgagg gccacagtga tccttctagc tgcatggttt gctgcttagt gttatttgat 132000 ttgctaaaag agttgcgccc cagacatagt ctttaaaact tggcagcgca tcgaaactca 132060 agcaaccagg atgaaatatt ttaatgcaac atatatatat atatatgttt acattaatat 132120 atatatattt tagtgcaaaa tatgttctga agttttttat tactcccaca acgttttgaa 132180 tgatcaaatt tgacaggaaa aataggtcca tttgtgaggc aactatggca gattgattac 132240 acatttaaaa gtttatctgg ctatcttcct tctcaccaag attgtcatca ttattttta 132300 taccaaaaga aaagtaatct tgaaactggc tcagtaaagg aaaacataga taatatatga 132360 aaactatccc caacttggag attctgatgt tgatttctca ccaactgtag atgctggttg 132420 agagateett tetatttaaa taaaatteaa ggteettaga eetttttaet aattagtttt 132480 tgtccatctg agtgacctaa ggtggacaaa aactaattaa tcagagggtc taaagacctt 132540 gaattttctg gtaaattaac aaataatttg agatttcctt ggaaactttt tactgttgcc 132600 catttcaatt tcgaaatagg attttgcaac catctctcac acacacatac acgtttttct 132660 atcccaatga tccatccatc ttcccaccca geeettccat ttttctagta aacccttgaa 132720 tttttctagt aaattcacaa ataatttgag atttccttgg aaacatttta ctgttgccca 132780 cttctattta gaaataagat attgcaacca tctgtcttac acacacaca acacgttttc 132840 taccccccat gatcccatct tcccgcccag ggtccactgt cctctctgtc tcttgctggc 132900 cacgcatccc ccagctgctc tcctttcatc ccgctgtcag agtcaggaat ccacatgcaa 132960 agctggtgac cgcagetcac tttetteeet tgcaggtttg cctgaggata aggtecagat 133020 teettetttt taagacacae acegeeteet gaetggegee eetgatettg tgggeeteag 133080 acctgggege geactgteet tggetgteec agetgeecag eggeeteata ceaeggeege 133140 ctttgtatct cctccttgag tcttctcttc ctcctcaggt cccaccatcc cccattgcat 133200 gccctmagca aagatactcg ttttgtgttt ccttttgata tcaaaaccat tttgtatttg 133260 tgtcatttca ttttaatctc cacagacaat aggttaatgt tcttgcttgc ttggtgaaga 133320 gtgaacagaa tcctcaaact ctgcaaccat tctacatata caccctagta acaacaagca 133380 aaacatccac tcttagaatt agtttgaaaa cttgagtgta agattattaa atccagggat 133440 attotatttg ggaggotttt gacotaatgt tottggttcc otgtcatgag gaaactotga 133500 aacatcattt gaggteteea gacagaaaag tggcaaaact gggeteteet ecceeteett 133560 ttagagttgg gcttgtgtgt gtgtgtgtgt gtgtttattc tggagatttt gctgcctaag 133620

cagctgtgta ctcagcagta	cttcatggca	gaggctgagc	ctaaagaggg	aagggctggg	133680
agatgcggat tttgggcagc	actttgtcct	cctaaacccc	tcgccagagc	ctggggggta	133740
ggcacagtac ccacagtgag	aggtgatgtt	cacatgccct	gtgacgtggg	aagcaagttt	133800
tctccatata ttgatgccag	atttgaattt	ctagaaccta	gaaaagccca	tgccaaagct	133860
acttgccatc tgttgactgt	ttttatagtc	ttggcctttt	cttcacgttc	agtgtaaggc	133920
cctagaagtt gaggcaaaag	ctaaaggccg	agggagggaa	gcctggcctc	tggtgccaat	133980
ttcctagtgg gtattgtgac	ttctcttagg	gagcacactt	gccttcacct	gccctgacca	134040
catggacgcc tgcccacata	gggtctttta	agcacttcct	gaaatggatc	tgttctgatc	134100
tagccttttt gctttttct	agtcatactt	ttttattgtc	tttttttga	gatggagtct	134160
cgctctgtct ctcaggctgg	agtgcagcgg	cgtgatcttg	gctcactgca	acctctgcct	134220
ccctggttca aacgattctc	cccgcctcag	cttcccaagt	agctggggtt	acaggcgcac	134280
accaccatgc ctgggaaatt	tttgtatttt	taatagagat	gggttcgcca	tgttggtcag	134340
gctggtctga aactcctgac	atcaggccat	ctgcctgcct	tggcctccca	aagtgctagg	134400
attacaggtg tgagccactg	tgcctggcca	tttaataatt	tatgagtgac	tatctgatac	134460
tgtatctaga taaccaacco	ctttcctact	ttcgctagta	taagagactg	aaagttcact	134520
tttggccact atataactcc	aagatgtatt	aggaaataag	tttgtgggcc	tcagctggtg	134580
gcattctaac attaatagtc	catgcctctc	ctcctgtgga	taggtacacc	ctacagtaat	134640
ttgagtgtac cagaatgtct	gtgctctggc	aaatcctatc	cgctttgctc	ttctttgagt	134700
gcagctgcat attctttgca	ttaattttt	tcacatatat	ttgaatatat	gtttttccac	134760
atatattcat atcattttac	ctctttgtgt	gtttccctta	ccactactcc	aaaatttgat	134820
aaggaaatgt gcttttccct	tcaaaatgtt	ccatttattt	tctactgata	aagtggctat	134880
ttctcatcaa tagcaggcat	tttaaatata	tgtaagttta	aggagactgc	tgtagtaacc	134940
tcatgtaaat ttctttgggc	atttcatatg	caaaaggtgt	cacattttac	acgagtgtct	135000
tttagaggtc ttgtagggca	catgtatatt	taccagatgt	ctgtgagcgt	gcagcctcat	135060
ggcacgttat gcatacctga	cacttgcaca	gattcctgga	agatgaggag	caaatacagt	135120
gcaacagacg ttgtcaggco	acgtctgcat	atatagatat	atacacagca	agaatagtta	135180
cagcagctta caatgacaaa	atgcttctca	gtgtgtatgt	gtgtgtacct	ctgtctcacc	135240
agattctcac actgccttag	cttgggtttc	cccaaaagca	gagcctgaga	caaaggcagg	135300
catgcaggaa gtttatttag	gcagtggtcc	cagagcgcag	ccatgccgaa	caggcgcggg	135360
aggcaggggc gccgcagggt	ggttcrcaca	cgtggactca	ggcggccacc	gccgcgctgg	135420
ctggtaagaa gccccacagg	atctcccaag	gagccctggg	acagtgtctc	agaacatcca	135480
cctggggcaa gaatggggac	tgctgtcccc	agggggcagg	tggagcctag	tgggcattca	135540
tgacccaggt tttggagctg	tgcttgcgag	agtgccgagg	aggctctcat	gggtgtcccg	135600
aggcagcttg gagccaacgt	ccctaggcat	ggcctggggg	tttgtgggaa	ggcctgaggc	135660
aaggeetgte tetgagatgt	cctgaagagc	aagttgggcc	cagagggtta	attccgagca	135720
gcacaagagg gtgaattctg	agcagcacca	gagggtttcc	ctgacacagc	aggggatgct	135780
ttgaggcccc tttaatgaag	gagaaaaatg	aggcttagag	aaagtcagtg	cccaccccaa	135840
gtctcatggg ccccaggctg	tgggcagtgg	ctaaagacag	gctagtgggt	aactcggggc	135900
cacgtggaag gggagcttgt	atttatagcc	cccagtcagc	agcgctggag	aggagaggag	135960
aggaaaagca gtgctctgag	aaagacaata	tttctagtag	attggggcag	ggcaggcctg	136020
gagacaggaa accaaagcca	gggttgtcat	gcaggagtga	gatgaggttg	cagcagcaga	136080
gcgaatgcgg agacgctcgg	caggtccttg	gtggcctctg	agttattctg	cagacttctg	136140

ccattcgtct attttttggg atactttgtt aaattctcag cttagaagat agtagtgatg 136200 ttttccctac agagatagaa gaaaatataa aactattttc tttttaaaac tgtactgaat 136260 gtagggccgg gcatagtggc tcactcctgt aatcccaata ctttaggggg ccaaggtagg 136320 aggatcactt gaggtcagca gttcaagacc agcctaggca acatggcgag actccatctc 136380 tacagaaaat ttttttaaaa attagctgga catggtggct catgcctgtg gtcctagcta 136440 ctcaggaggc taaggtggga ggattgcttg agcccaggag gttgaggctg cagtgagccg 136500 aaaaaaaagt actgaatgat aaatgattac aaatagaagc agttaaaatt tagctctagg 136620 aatgagattg atgcatttag gctacaatat accaggaact tcctttttaa atgaaactag 136680 agcgttcttg cctttctgaa tttaaggcac actgaaagaa aaaataataa taatgtaaca 136740 aaatgtotoa gtgtttttot atgooaaata gaatottatg tatatotgto tagagacata 136800 tatgcataca tttgtctaca catgtgaggt aggggtgtgt gtgtgtgtgt gtgtatctgt 136860 gtgtgtgtgt atgtatgtgt gtgtgtttca gttctctaag aaacagacat tccaaaactt 136920 qtqtqtgtgt gtttcagttc tctaagaaat agacattcca aagcttggtg ggcaatggcg 136980 ggaggettta gaccetgtaa tattgtegga gtgteactgt aagagggacg etagegeetg 137040 ggtcacagtg ctagctggta gcagagtact aacttaaacc ctggtctccc aacaccccat 137100 ccagcactct catcgctgta ctgatatgcc tattcttatc ttaaaaaaaa aaaagtgctg 137160 tctgaggagc attaacattc ttactttttc atttttgaaa tgaagtataa agatactgat 137220 ggccttttac gtctcctctc tgccctgttt ttgctgtctc tttctgtgtt acatgggttt 137280 gccaaaatac tgggtggagc tctgtggagg aggtagcatg atcatctctg aagtgggcag 137340 ttttttttttt tttccaataa actgaattta cttggtcaca atgactatcc taaatggcta 137400 gaaaagggaa aaggctagcg aaacttagat gattttctaa atttagataa ttttctagaa 137460 gacattttca aggcaaacta gtttttgctg tcctttataa ggccggcagg aagcgtgtgt 137520 tgtttctgtt ttaaaaaggg agaggagcgg acttgggaat gctgatggga atgcttgaga 137580 aatctcacag cagggetgtg egtgeeetge egggteeeac tgeetetgga cagaaaccce 137640 cgcaactcca cccccagcca agactttctg cttctttatc tcctctttct gctagcaccc 137700 aaaaagttga aagaattcca atggatagaa tttttgagat aatattggaa gatgctcaaa 137760 atacacagga ttaatttaca cgaagactca gcgggaacac aagccatctt ctgtacatga 137820 agatgcacta ctgacccgcc gtccgcaaat gtgtttgtac agttactttc tcagtatggg 137880 tgatggctct ccaacgaact gctcctcgtc tcctgcctgg acacccttct ctctgtgctt 137940 tcctgggtta gagtaaatgg atgcaaacac acatttccgt gctctgcagc aacttgagac 138000 tcctgtgagc aaaacgcact gacgggcaat gtgcgtgggt cgtggggagc atccagctcc 138060 catctgcgga ataaacccgc ccaaaccata gggaaaagcg ctgtcgtata aggccagggg 138120 attttcagaa aagaaatgtg ttctttcctc tttgattttt gtgttcataa agctgtaggt 138180 gcagcttttt ttaatgtaat gatttcataa ccgctgaagt tcgtgctttt ctgaactatt 138240 taggaagata atctacccct tgtattggat gagatgatct gtcccttcga cctctggttc 138300 agttcccatt ctcccaagta tttaaagctg cgagttttt catattttca tatttattta 138360 cataatttaa accccctgtg tgcatggact ttaaggagct gtacatctgc ctgggctttg 138420 cagaagctga aagggcgcaa tctttttata actcacatta gaaacacaga ttatttaacg 138480 qqqctatgtt ttgcacctta atctttaaag ttgcaatata ttttaagcat tttaaccttg 138540 ttttagatct gatcagcagt agaatgtttt cagataagaa acaatggagc aaaagcaaaa 138600 caatattcaa tacctagatg atgtggcaag acagagaata gtataacttt ttgttttcca 138660

aatataactt ttatcttcat ctcttgatct gaaatttggt aggaagtgta acaagtacga 138720 atcaacatat ttaccatttg ccatttcaaa tgttgatagt gaagctggga cctctgttta 138780 ttatggaaga ccatagaaaa ccccataaac acgttctact tctgtctgtg gccagcagtc 138840 cagcaaaaat gttctaaaag cacatgcact gtgttccgtg atgattatag tttgactgtg 138900 ctggaaagag agactgtgaa ctgcacatgg tgattatgac tttgggcaaa tcactgaact 138960 tgtaattatg tettecaaga eeteetaace caaaataaga gagtatttta etacaaaata 139020 tatgttacgt caaactgttt tttacaaaat accagctcta gggatgtttc caagtcattt 139080 tcggagagag tttgtcgaag tttttttcag ggtgtgtcat tcatgtattg gagggggaga 139140 gggttgagta agaaccgaca tgcacaactt ggccatgaaa tgaagcgcaa gcacatattt 139200 tatttctata ggattcctca ttctaaagta atttttacag aaaatggcac tctaagaagg 139260 aattcattaa gataaagaca cagatacagc atttagagtt acactttgcc ataaaagagc 139320 ctcccttacc tcctgacttg aatctataac atctgctgaa ctgtcgacat caggaagact 139380 cgaaatatrt tttgaggcca attatgtcat ttcagattga acctgctaac atcagattct 139440 ttggtcagta gtctcactag ttttgttctc acaatggaat tattattttg atttttaaat 139500 gttgctccat ggagactggt atgatgagct catgctctgc agttccattt taacaaataa 139560 cataatagat cgctgtcaaa tgaatgccat cacagacatc atgttgggtc acagaagcca 139620 caccctagga gtgcttacta gatgatccat ttccatgaag ctcaagaatg gaccgaactt 139680 actaaaggtg atagaagtca gaataatgtc ttccgggtgg gaggggtttg aggctgtgaa 139740 ctgagcagtg gcacgaggga gccttctgga gtgctgaaaa tgtttcctag atcttgacct 139800 cggtgctggt tacatgagtg aatccatatt tttaaaaagtt atcaagctgt aaatttcagg 139860 ttagtatact ttatccattt cctgtgtttt atatctcaaa aattctttta aaaactaaaa 139920 gacatttaga aatgaaatgt ttgacaagtt ttgttgtgac actatgaccc tagttactat 139980 gggtggtttt atttgtctct gcagttttca tctgggagca cctaaatcat gcctaatgaa 140040 atgaactttg gaaaagtaat tttaaagtaa ctatcttaga gaactgtgga ttaaaccatt 140100 ccagccatct gatgagggtt aaaatgtata ttcgtaatct gacattccaa aacacgattc 140160 tttccggatc aagcataaaa ggcatttgct cttggaagac caagaaagaa ttcatgtggt 140220 tcccattagt ctaaaaataa ataataaata aataaatgtc tgagtcatgt attggatttt 140280 gttggatttc agtggcttca agtataggaa gaaaatgatt tgtgctatta ataatagttc 140340 tacccattgc ccattggaat aaatacaaga ttactctgag aaaagtgaaa tcgattgaat 140400 ttagttctgc tttgagctac tgcaatgcaa gtgtttctga cttttgagac atagtataaa 140460 aaactgaata aaataacttt gttcatattg aattgagttg gggaagtagc gatatttgtg 140520 acattggaag ccattgtcat tacagattca tcattacagt acagatttga gaatcaaaca 140580 caccoggtgt gagtcccagt tcagttcctt aggaactact ggctcaatac tttctaacat 140640 cacatttctg gttggtaaaa caggtatata aatacctact gtgctatgct agtgtgaaaa 140700 ttaagtggaa tgagttagca caattcccaa actgtgtgcc aaggcaccct gggtccttgc 140760 agcaaacaaa ttggagtaag ggagacagtc tgaatattca agggcaaccc agcagtgttc 140820 aatgactgtc agccactgga agaattcata gctcaaagca gctcaccgtt tcaacagtat 140880 cagcttgtac ctctgtaaag ctaggttttt ggtggttgct gtttgtgaaa agcaagtgct 140940 acaggaaaat tagcatagag cgtaaaatgc aggtggcagt gtccaatttg attccaaagt 141000 ttgagaagcc aggtgtgcct aactggcaaa tatattccat tcatacgtca ctggggttac 141060 ttaagaaaga aaataaagga tottttttt aaaactcaat ttatatgtat attggtattt 141120 tcaaatagct actaaattgt cagaacataa atacttaaat tatttggagc taaccgctta 141180

atacaagcaa ctqttqqcct agagataaat agagaaaaaa tagtgaatca ctaagggtcc 141240 catgagetga gaaagtttga gaacaactag eetagaacet tgeaettggt aggatataaa 141300 ctcaacgtac cctctcctc cccttccccc aatccaggta ttgcctttaa ttgtaatctc 141360 tatgatttga tatgtttatc ggaaagcgag taagtcaaaa agaactaata aattgtgtaa 141420 gaccttcatt aagatgtacc cttccgtgtt ttcctaactt ctgaaatcac taggaaaaac 141480 agccatgttc cttgcaagct ggctggttag tcctgtcttc tttcaggtga acagcattta 141540 taaccacggt gtacctcgga agaagcgttc tcagagcaac atgcacgtgt tccgtgtgta 141600 ccgtggttgc cttcgggcta atgcgttttt ggaagtgtag attggtgcca gttttacaaa 141660 actcatgtgg cctatttctg cttgtaattt atagtttgcc tcctcaccat cctcacttgc 141720 tctaaggtga actagtttta taccattaga ttatacagaa aagccaaatt tacttgcatg 141780 ccacagcaat tcgggaagta aactttcagt gtgattctcc aaatgcttgt ggtaaaagta 141840 cagagacttg aatcattttc ccataattag tttcagttct ggaggcccgc cccctcttt 141900 taaccetett geettgeata tgtgtetett geaatggaag etagtggaaa ttteetetee 141960 cctttcactc cactgccata agttataaaa agcatgccat tcagaactga cgttttcttc 142020 tgcatgcttg aatttttact caacaactgg aaggggaaga agttatttcc agagatgttt 142080 ctctgtttat caaaggggcg cagagtcaca gtagcacttt ggaccaccgt agaatggctg 142140 actcacttgc ctcatcagta gaggggcaca tgttcctatc aaacagtgag tgcctttgag 142200 tgacggtgtg tgacacacag cacagcagca ccatttctca gagctgcagc aacactggtt 142260 cacacaagtc actagagatt cccatctcca ctgactcact cggtgggaac aaaagctccc 142320 atgccggtgg gaatgcgggg ccaggggagc accggaagaa gggagccgtg gcagaggttt 142380 ttttttaacc aaaactcact gtggttactt ctctagtttg ggttatgact cctacgagcc 142500 agtttaattt tatcagtggc agtgaattct tgaacgcttc cctcagttgt agaaatttag 142560 tttcacattt aagtggtcca agtgccagct taaactttgt ggtttagtgt ctttactgaa 142620 tcccccctag tggaagaacc tacattggag ttttggctgc tctttgggat tcaaattatg 142680 aqtagttggt tccactggaa tcttggcctt ctcctggagt ggcttgaggc ggcacacttt 142740 gactttagaa ggccaaagtt agaacctacg tgaaggcttt gtccaaaatg cctttcctgc 142800 accetggeat titeaggigg tgigtgiaga cetgaeagga etetaetegi gegieaette 142860 ccagctgttg gtcccctgcc acttagatgc ctttcatggg caagtccatg ctagcctagg 142920 aaatttcccg aaaatggcag tgataactca gaattaggat tttgatcctc atctcaacca 142980 ttatccccag tggtcgctag ctctcctctg cccagctcga ggaaaatgct gggtttttca 143040 ttgcagctta cttgcatttc agtggtccca gcaagcactc aagaggaaag atcagaccag 143100 ccaaacttgc aaggcaggct gatgagccaa ggtacagaaa gtacacctga tggatttttg 143160 taatgatggc cgtaagtcat agaaggtgaa gcttaatgca atttagaaaag atttgaaaaa 143220 aggaagaaaa gtcctcgtgc tcacagaagc aagctcccat tggcaaaatt attgtgtata 143280 acaagcatct ctctctgatg atgctggaaa aaaagaaggt gctatcaggg agggagggaa 143340 qatttqaaaq accagagtga gcagcagata ggcccttggg tccttccttt tattcccacc 143400 ctcttttcca ttggctgttg ataaagtttc atcacttttt agctgcctgt tgtatttcac 143460 tacctccttg ttaacctctg gttataacct ggggggaatt atgtttaacc agtacttaat 143520 gaatcaatct attoctcaaa agttggttot gggcatcacg gaataaacac caagaccact 143580 cagcgtattt totgaagagt ggatttoatt agaaggcagg ttagtottgg aactcagtca 143640 aaacagcttt cagtcagtcc aactccacag atttcagaga tagcagtaca agaaaaatga 143700

tacatgggtt tgtacagttg agtgttgaag tgttgacttc cataaaagaa cacaaatgtc 143760 aatctacagc agtaccatgg gtacgtaaat tgtgttatac agcgaaacac tgcacggtga 143820 tggaaaagaa gaaactttaa catgcacaac aacatggatc catcacagaa ataataaaag 143880 agaccaaaaa ggagtatgta ctgattgttc caattacatg acattcaaaa cctagcaaaa 143940 ttaacccatg gtgggtgaca gagcagagtc aggattggcg ttgagaagag ggggatattg 144000 acgaggaggg gcctgaggaa gccacgtgca gggtgggaag ccttctgtat cttgagctgg 144060 gcagtcatta cacaggtgcg cacatatatg gatgaggagg ggcgtgaggg agccgcgtgc 144120 agggcgggaa gccttctgca tcttgagctg ggcggtcgtt acacaggtgc gcacagatac 144180 agacaaagag gggcgtgagg gagctgcctg caggggaaga agccttccgt atcgagctgg 144240 gcggtcatta cacaggtgcg cacagatatg gatgaggagg ggcgtgaggg agccacgtgc 144300 agggcagcaa gtcctctata tcttgagctg ggtggtcatt gcacaggtgc gcacagatac 144360 aaaaatttac caagttgtac actcaagatt tgtgaatttt attctgtgta agttatatct 144420 aaaaaaagaa aagaaaagaa aaagctagat tccctaaaac agagacagca gggctcgagt 144480 ctgagctagc tatagccatg ccagcagcta gatccatgaa aaggttgggg ttggctttgc 144540 ccaggtgatc attcggggac gggggacgtg ctgtgaatgg aagatgtgcc tgctgtcagc 144600 actgatgttg cccaccettt atttetacaa egetgtette aaaagaatta cattteaatt 144660 ttataccaac tatcgtgcct cctcatgaat cccttccccg cacaacctgg aaaccctcgc 144720 ctggcgtcgg ctccatctcc agatgttact cactggctac cgctaggtgg ctgcgaaggg 144780 tggcggcgtc actgatgcgc actcaggcag cagccatggg gaggttgaat ccccggggca 144840 tetgeetete eetatgtgtg tgggteetgg gagtgaggea gtgtggegtg gggetgttge 144900 acacacccc gactgtaggg ctgcacccag acacgtgcgg tgaccccgtc tctacagccg 144960 cttgttgccc tggcaccaag ccaaccactc agcatccagc gcgtcctcac cctccctccg 145020 gggtgaageg gaaacaaggg tatgtgccaa aactggcctg ctcaccattt cccagatttt 145080 ccacatttgt tcccactcgg ggtgaggggt gtgcttctgg tgtgacagct gtgggctgtg 145140 tagggtggcg ggcgttggtg gtgaagtctg tcggccctcc tgacccacac acgagggggt 145200 gtggatttta tattgaaatc tttttaaaat ctgttttttt gtaagaggct ctgaaaggaa 145260 gaaattttat cagagttttg cggcctgtgt acgttctgat acctctcaga gctggagttt 145320 cttacccata taggacaage tgttgtgaaa ttgagtgaga cgatgtaage acatggcgtg 145380 cacctgataa atgccagctg ccaccacagt gatggtcagc agcgtggtca ccactgtcgt 145440 ttcacaatta cagcccaagg agcccaaggg gaaggagtgc ctctctctgt tttgaccttc 145500 tetgaetget gteetaataa acagtgteet ttetacaaga accetgtaga ettttgaaac 145560 caacaagtga aggcactcca aggcccttgt tttgagaagg ggtaagtgtg ctaggtaagg 145620 gatttccttg ggtgcttacc ttccacggct cctgggcccc tgactcgaag ctgaccatct 145680 gtgctgatgc tgacttagga ttttaaatca cttaaatttg agctggatag agaaagggtc 145740 ctagttaagc tgagagggct gcttattcgt gatttttttt ttcttctttc tcatgcagag 145800 actgtttatt ttagtggtag cggtatttag gggtgaagaa ggggaaagga agaatagtgt 145860 gccatcaatt aattetatge atgteagetg caaegeette atggeaeggg acaggeeaat 145920 tatgtaactg taaacaaatt atatgtatta aaagttgtcc aattaaagga aaaaacatgc 145980 atggatttat gtgtttgtta ttacccagaa gggagccatg ctgtacttga aaatatgcaa 146040 aatttcacat cacaaaatca ccagttgttg tttgaggggc tggtgttctg attagtctta 146100 atttttttta actcataaca tttttgtccc agtcatcaac actgttaaga acatgtcact 146160 ggtgcagtta agttaaaaat gattcaggtc aggaattcct gtcattaaca attttttata 146220

ttaaagttgg aaaagtttaa ggaaatttaa gaacctattc cttaatagtt aaaaatagta 146280 aggaatttca tataccccca aatattaagc ataggtaatt agcttgtggt tgggatttga 146340 tggttttctg tttttcagca aaatacaata acgtactttc tcgagcagaa tttttacacc 146400 aacatttccc attaagacca gtttgtttag ggaattttta agctacatct gtatgtaata 146460 attttttgag attccaaaga ctacgcagtc taataaaact ctaatacttc aactatcttc 146520 agactaatgt ttataattac ccggtagatg accaagaatt gatatcatct gttgattcca 146580 gaaattatgg cagagaaaat gctgtcagga acccaaagaa aatcagagga aatggtacct 146640 ctaagaaatt ctgaatcttt tctactaaga tatgtggctt gactgcttaa ccccaaaatg 146700 cctgcttaga aggtagtttg gggctatctt gtaatactca tttagttcct gccttcttct 146760 gccatagaaa caacatgcag aagcagcatt gcttacgact cacactgaac ctgaagggat 146820 qaaattacat atgacgatgg aatgtggcca tattcacgca gtcacagcag tgtgttgccc 146880 aatgacagta ctggagcagt ttccacagag gcactcatgc aatatgcaga atacagacat 146940 tttacacaca cacttacgat ggtccttttc attgtcgaaa aggaattcat tatctttcga 147000 gtaaacatgt gctttgaggt atataactct gaggtataga agttagaaca tttaacccga 147060 ttagggtgac tggaattata acctttaact aatgtgagat atagtataga tcttgataag 147120 tgtctttctg gtgttcctat taaaattcat tataattacc gttcctgcaa ttgtgtagca 147180 tcttacagtt tccaacaccc tgtgctagcc atcatcttat ttgaaacaca taataaccct 147240 acaagttcac tgatgtaggt aagaaaactg gtaccgtttc tgaagataca cagtgattgt 147300 ttcggccagt taattaaggc aagagatcac tcaacaattg ttctacagtt attcctgctt 147360 tttttttttt aactcactca ttaagtgaaa gaagccagtc tgaaaaggct gtatatttta 147420 tgattccaac tgtatgacat tctggaaaag ggaaaactga agatagtaaa aggatcaggg 147480 tttgccaggg gttaagggga agaagggctg tgcaggtaga gcacagagga ttcttagggc 147540 agtgaagetg etetgtgtga tgetacaatg gtggateeat ggetteatae attggteeaa 147600 acccacagaa tgtacagcac cagatgtcaa ctgcgggctc tgggtgataa tgatgggtca 147660 atgtagattc atcagttgta accagtgcac cactctggtg caggatgttg atcgtagggg 147720 aggtggctgt gtgtgtgcca cggaggggg atatgggaac tctctgcact ttactctcga 147780 tgtggctgtg aacctaaaac tgctctaaaa aacatagtct tttaaaaaaat catttactac 147840 atatgaaaag gaacaagtaa agcaacaaca acaaaatgtt attgtgtact ttcagattgc 147900 accagtaaac ctagccagcc ctcactaggg tcttctgatg gttacatagt taaaagtaca 147960 ctaqcacacc gggagaataa cttcagaggc ttgctggtct aatggtaatt gcgtcggctt 148020 cacacgtcaa cattttttta aaaattagat tttcttgaat ctgatcatgt ccaagatacc 148080 tcttattttg gtatagaacg cctttattca aacaacggga gaacatgaac atatcccttt 148140 qccatagttt ggctaaattc ctgaggctgg ctggggccag aaacaaaatc cctgaaatgg 148200 tctcaaaatt ttttttttt tttttacctc tccccttttc cttctggttg gtggtctttg 148260 gggcctacga ggccctcagg cagaggggaa atggcagttt ccccatcccc ttttgggact 148320 tcttgagcag aaaagcgaat gtcagacggt ccttataaag tcccacgtga ttcagccact 148380 gaggatggca ctggctgtgg atttacatgt aagacaactt catggcgtat tttcgccttt 148440 tgctgttgaa tataactacc aagatatggt ttgggcagac aaaatagaaa tcttctgtgt 148500 gtagcatgtc cagttggata ctgttagtga catagagaga cgagcgcaca actcaggttt 148560 aaccttcatc cctgaaattt gccggaacag tcataatgaa ggtgctaatg tatttcctga 148620 aatactgagt acttcagaca gggagatatg ggtggtatct agtagccttg tgataagacc 148680 catattagac taatagtagt cttatcacca gattaaacca cctggatagc ccacctcaag 148740

tcatcaagag tgttaacatg ggagtaagtg tgacaaatgc ccaggtggtc tggactaaat 148800 gtgacaaaat tgagaaatag accctaCaag atctggattt taaaaagaga gaaaaaaaaa 148860 aatggaaagg ctggctgctt gcttcctttt aagactttgt tcacgttctc gcccccaaaa 148920 gccaattatg attataattt atcagcccac aggaaatgat tgcttctcta tgagacatcg 148980 tcaacatgat aaaataatcc atttcccaag atttctatat cttagtatct catctcttta 149040 aaaaqctcca ttqtccataa aaaattataa aattacatat ttttacatga caqqtaattt 149100 ttaatgtata tttttaattt ggttgttggt ttttaaaata gtaaaatatt aaatatcaac 149160 tatgaatatt ttgtggtggt aagttgtcag gttaatgtaa agattccaaa aataattcac 149220 agacatgtgg aaagttgctc agagggagaa ccagtctgat tttggagaaa gtaattacca 149280 tcagagcagc cctcggaggg agcgggagag tccacaggtt tcaatcaggt tctagatgaa 149340 ttgcaaagag aaaggtttta gctggttgca ggaggggctc tggtaaaagg attaagtcca 149400 gttctcagga gttttttaat aggtttcaca tcttttgtca actggtgcaa ggaaggatta 149460 ggacagaaaa gaaaggtgat ttcatggaga aatatctaat taaaatatta aagatagtcg 149520 gatggcacac ctgacctaga gtccaggcag tggtaggcag agttccttcc ccttttttt 149580 aaaccacaca taaaacagtc attttaattc caacaaatgg ttcatactgg tattctaaac 149640 cactactcat gatttttttt actcttttta tttacatcaa atcattcaac ttcacatcat 149700 tttcttttta agcattaaca taatccaagt gccaggccat ttttggtgat ccaatctgta 149760 gaatgtgaga tggacaataa caatcaaacc gttttcaaac tctaatagtg ggaagagaag 149820 gccacatgga acttccctga ggctgaattt cgtcgtcctg cctttcaagt ggtgtcctgt 149880 gaaatccagc gtttccccct gtcaacttcc agaacagggc tgtaactaga tgtatggttt 149940 gtaagaatat cccatgtata cttcctcttg gttataacat aatttgtttt gcggggggtg 150000 gtttgccctt ttttttttt ggagacagga tctcactgcg tagcccaggc tggagtacca 150060 tggtgccatc ctggctcact gcagcctgtg cctcctgggt tcaaatgatc cacccacctc 150120 atcctcctga gtagctgaga ctacaggcat gtaccaccac gcctgggtga tttttatatt 150180 ttttggtaga gacggggttt catcgtgttg gccaggctgg ttttgaactc ctgagctcaa 150240 gcgacccacc cgcttcggcc tccgaaagtg ctgcgattac aggcatgagc cactgcaccc 150300 agccacataa atttgttttt agtcttctga acgattaaat agttgtacca attataccaa 150360 ttgcaccaat tctattacaa ggtggaattt cttatcgttc ctttacaaac aggatattcc 150420 cagttgcttg tttttgcttg ttttcctagc agcttcagca ccatcctcac atagaagggc 150480 tggcatetea cetatetaga ggtgagaaca aagetgtget etcageaate ggaatetgte 150540 aagtotgotg tggggaottg gtatotoagg cotgatgotg gootaggagt goootgoact 150600 cgtctcaaga tcgatgtccc agtgggcgag aattgctgcc aagactaacc aagggtgtca 150660 accagtgact taacttctca ggctcacttt tttttttatt tttaataaaa acaaattgtt 150720 aaagaggtaa tttaaaatat gtactatata ataagtacta cagcatatac agtgtttaca 150780 tacatatagg cattaaatat taagaatgtt tatttcagaa tcatataatt atacctgata 150840 tttacttttt gtcattcttt gtatattctc cattttttgc agtatctata tattacttgg 150900 gtaataggaa tagcaaccat tgagaaatag ttctaattga ttttcctttt ataaaagggt 150960 ttccgtgtag tgaccaagga cttaacatca tccccacccc acagtccctc acacgcctga 151020 ctccctttgt gctgtgttta atttctcatt tcattcattt acccttctgt gcagcacata 151080 ctagctgctg ctacactaca cgttctgacc aaagcatagt gtccccctgg ggcaagactc 151140 ttgggaattg tetttttta tttttttte attttttagg gteteaettt gttgeecagg 151200 ctggagcgca atggcaccat catagttcac tgcagccttg acctcttggg ctcaggcaat 151260

cctcccacct cagcctccca agtagctggg accacagctg cgtgccattg tagagatggg 151320 ggtctcactc tgttgaccag gctggtcttg aactcctggc ctcaaagtgt cttcccatct 151380 tggcctctca aagctctagg attacaggtg tgaggcactg tgcctggctt taggcatttt 151440 cttcccctc tgacttcttc taggcaccta gaaccaacac tgcctggaca tgtgaaggca 151500 ctcgataaat attttttgaa caaataaatc aacttgcatg gctcctgccc caaactggaa 151560 accccaccta ggaggggtgg gcggggtcat atggtgttca ctcacttacg ctaatgaact 151620 gagaaataac gcacttctgc ccaaattcat gttcattcac actcctctca gcagttttct 151680 gcagtcttcc cagccccacg gaaaattctg cttttgtcag aggaggggat atgcgtgctt 151740 tecegtgttt getttacege tgggcaatee atacaagget actaaactge agagggtact 151800 ggtgttagca tgccccgtgt ttataaggga cttaaaaaaaa tatacaggct tgcatccacc 151860 atacctacca tacttgtgta ctagagatat tctcggggca aaatgaggtg aggtgtggaa 151920 agtgctttaa ggtgactcag agccaccctg ttgcgattgc tgccttcgtg atgactggtg 151980 tggctgcaaa gttcagtggc tgtctttata tcagaataat tctagaataa tttaggagaa 152040 aattotoatt qttaggttoo ttoaagooaa aggaggatgt agtgaaaaga gaataggtgt 152100 tggctgtcta gatgggccct gtttaattag agtcgactgt atcagttgcc aaatgaagcc 152160 aatottacag ggccatoota tagaacaaat atatattttt tatatttaat atgatatata 152220 tgtgtgtgta cacacacaca cacacacaca cacacacaca tacatatata cagggagaga 152280 tagaatggtt tgcctgctga cttgccatta agtaccgtaa acatcctgga aattgtgaac 152340 agctaattgg aaaacagtot gtoogtgtto atgattcatt gtatgcatco totagatoto 152400 aactcaggaa atccacaaag ctgaccaggc cctgctgtca ttttgtggcc agatatggaa 152460 agatataaac cacctccttt cttccctgtc aaaacagttg tgccacgtcc tccccctctt 152520 cctcatcttg actgactccc tcacaggtgg tgtctctgtc tctcctgccc ctgcccccac 152580 acgcaccttt agttacctca gtctttcaaa ttttgctctt tgttcctaag tacagtcttc 152640 cttccaacct ctcgtcatgt catttttggg ccaggaaaga tcctgattat gctataatgc 152700 cactgtacgt gttttaaaaa gaaggaacgc tgtacatttg atattaaatt tggcatttta 152760 aataaagggc tggtaaaaaa atctctgagt gctaatctcc aagaaaggga tggaagactg 152820 gggaaagaga atctacttcc tatttccacc attttaatag cctgacatat ttttttacct 152880 tgcccatatc ttactttcat aacatttttg ttttattttt taaattactc ccatggcggt 152940 agagttgatt tgaactcttg tttttcaatt ttaaatgtac aaaatttcaa ttattttatg 153000 gattaaaata agcaccccag accatcctga gcatctgatc accaatggta agaccattat 153060 ccttctcaag tttcatctac ggtaactggc ttacagataa acttgtggat tacaacctgt 153120 ttgacaactg taaagagcca cattgattaa aatcagaaga ttttcagagt tcagtattta 153180 ttctaaactc tgcaagcaaa caatcatctc cccatagtgt gatatctaaa tagttaatcc 153300 agtatgtcag acaaccccat ttagtaaaca aagactactt gaccatagaa aacatatgat 153360 atatgtataa tatataatcc atatagagta aacatgtatt atattttata tactgtatag 153420 gcacatatca tactatacat atacatatcg cataagagat acagtaaact atatttgtat 153480 tttccaaaat taaatatgtt gcagttcccc taccatagtg aaactgtctc ttctacattc 153540 cttactgcat tecttactat atagtaatae taacaetgag cacaateata ttteaceaet 153600 caggatqtag ccagcggata cagtaatggt tcttgtcctc cgcaggagga ccacgggaga 153660 ccagtggctg tgaatgggat gggatttttt tctttcctct aatgaaccaa gccctgggtt 153720 ttattgttgt tgttttaata tacagctatt gagtgttttg tagccacaca cgacaacaca 153780

cacacacaca cacacacaca cacacacaca cacagagtee etageaaggg cagggtgggg 153840 ctagcgggct gggttcccct gggagcccct caccatccgt ttctcccagt gacggcagct 153900 atgtttgaag agcataactg catggtttcc tatgcattca ttcgtgagta gtagctctca 153960 tatattatta aaaagataca ctattattac ttttaaagaa agaaaaggat tgcaattcac 154020 atttacactt tocagectgt tettgtgttg tttaaaaaac aaacaaacaa aaaacgatgg 154080 cagaggaaat gtttgcctcc gtagtaggca tcaactttat ttttcaaatc attctgtttt 154140 aacgtgttca tagactgcag ttgtttatag gtatgaggca ctcatcagtg tgaaatagtt 154200 ctttcctttc catatttcct cttatcagaa aaaaaaattc ctgtggtctc ctagcaaaat 154260 acaatccatt ttgctaaatt atttgtgagt ttttataaag tgtgtttaat atcaccaggg 154320 cagaggttca cactagttgc aggattagca agagagacgt agcatgagta gtgtttggtc 154380 cactgcagtg tgttttgtgt gctagcgatc atgagtttat ctgatccttg tttaactact 154440 acacagtgag taagctgtcc tgtattgttc cattcatatt cctctgagtt cattcagaag 154500 cctgacactt cctttgccgg acagattaaa ggggcagcgt gggacctttt gatgatgtga 154560 aacctgcttt cttagtctaa gctccctagg ctatgctgac cactcagagg ttgaactact 154620 atttatttgc cctaaaatga accagaaact tggtcttagt ttccttcctg acacatgttt 154680 taatttccta aaagtgtacg gattttgtag tgggttgttt ttgaatcttt catttttagt 154740 gctqatccag gagagaaagg agatatggaa acattttttt caaaaaaatag ctcaaaagaa 154800 aatatgtaaa accatgaaaa acccagaatt gtgctgctgc tttctgtgct aattaaatca 154860 gtgggtgtta ggttgtaatg ataaccettt aactgtgtgg cttatetete attecatttt 154920 atattatttt cttcctcatg agaaaatcag tgtttattat cacaggtgac aaaacacagg 154980 agaaaaacaa acagtgaggt tacatttaat cactttaagt gggtttcatc tttgcttttt 155040 tgttttcatt cccaagccag aagccgtaaa ccgagcgaga gtgcaaattg cctttctcag 155100 gtgcacgttg ctgagatagg ctgggagaac aggtgtggag cccgtgaaaa gataaacatt 155160 aagtcattct tggggaaacg gtatttagct agacagctga agacggactt ttgaaatacc 155220 attgtgctac tgctgttcaa atattgacta agtgaacctg gaaaggaaga aattttggtc 155280 gcctaacata gaactcgttg tcttttctg tctttaaatg ttatctcaaa gacccaagag 155340 aaggggtagt ttacctaaga aagaaatatg agctttgctt atggagtttc aggtatacct 155400 aatgtaagtt aattaagcaa atacaatgta gcagccttgc atttggccta gcattctttt 155460 atgtttcctg gctgtttctt cgaggagatg acctgcctgt cgggcagatt agaatattta 155520 ctgcagtgca tctttcatgc ctcgctgtga ctctgtaacc acggtggatg tgggaaagcc 155580 attaaccatc agcttgacgg tttacaaaga aataggaagt tcaagttaag cagatattta 155640 ggatatagtt tgccttccac atatttcaac ctgtgttgct gcatactttt taagcttagc 155700 gtaattattc acacagctat gaattttaga agatgtttaa aagcaaacca cagtgacctg 155760 ggaaaggagg gaaacttact ggagcgctta gccaggagct taaaaagaca ttgctagtga 155820 gttttatgtc acatgaaatc tacatttgat aggtcatttt ggtaagtttt tgttgtttta 155880 aatgactcct cttgacacag taaccagtgg tgctgggaac attcattcac attcattcat 155940 ttaagctcat gactcaaata ataacttagt cgtttcctct ctgaaggtag gggaggtaat 156000 gaggagcacc gattaggctc caagatccgt tctgagattc agataaggtg tcctaacaaa 156060 aggtttatgg tgaaatgaaa gagtgagaaa ataattgtgc tttttctagg gtcatgcgtc 156120 aaatgagget caccaacttt taaaagactt tacatagett tagataatca catteeetge 156180 catgtaagca ttgtgatgta atggcatcat catgctactt aacaattaat ttatgcattt 156240 tgtttaaact tcctttagaa tatatatagt ccatataaag aaaattccag ggtcgttttg 156300

gattttgtat aaatagetee catgtttaca tgtgaaaaaa aattatttat gaaagaaaaa 156360 cagagettte aatateetat tttggttaeg tetecataaa aaetetagga aacagtggga 156420 tcatctgtga aacagtggaa tcaccccaag aacaaactgt cagacagacc gtcctgtcgt 156480 ggcatgactt gaacataacc gtcccacgtg gggacgcatt ccgcaccggt tgctggaact 156540 gacgggggct gcagtgctga atacctctgg gacgcttggg aactgtgccc ctgtttacag 156600 acggcaagcc cttagtggta gggccctgag attctgagaa acataaggtc tgctttattt 156660 aatttcctct cgtttaccaa gagtcacaac ctattttagt aaataaattc aggaaattgg 156720 taaagcactt tactccatcc gttatgcctc ggtcatcagc atggttgtca cggtctctct 156780 ggctcacggg ctgctgcggc tcacagcctt ccctcacttg cctgcaacca gctgagagcc 156840 tccctggtga tgggtgttac tgagcttaaa cgatgtaaac aaacagaacg gcacacaagt 156900 tgtgcaggga agtatatttc ctctaccttg ttaataaaga tttctaactt tagagatttt 156960 ctgtattgac tctggcattc tttccaaata attattttca ccccggggac tacccacaca 157020 ccctgggatg aataaaagaa attatettte atttgagggt accagcaace egetetecag 157080 tgttaaaacc tgagctgctg ccaagctgat cttaatagca tgttcacaaa gacagatgga 157200 tttttttcct accttcatta gccactgagt gttgttttcc atgatgttct ccagcacttg 157260 cagectetge accgagteat egtattegag eggegegtee etetgeacag cattggacae 157320 gtaggggctg gaggaagagc ggcagttgtc catctctggc aggaggaaag tgtagctgca 157380 ggacccatgc tggacctgat attgcttctt tcctatgctg tccatgctct tccgaaagtt 157440 gttataggct gcggccaaga caagatcaca gctcagagta aagaaaacaa tctgccacat 157500 totttottoa gtaataaaco agcagottag caaasttgag ggcaaacaca ogtocagagt 157560 cccgagctgc tgccgtctra aaygcagggc tgctacgctg ccatggctgg gtccgtcart 157620 gaaagtette tettteetet tetteeagta geaaacetgg tetttaetge tgtgttetet 157680 ccaggcatgc agtaaactgt cagattgcag tgggaagaac agtcctgctc acttgggagg 157740 getgtgtcag ettttacaga geagetttea eggteetttg tteetetete eccagateet 157800 acagtgtcag tatccgaatc aatcactttc ctttccttat atgataagtt gataagagca 157860 gccagacatg tgtagtgggc tgctccgccc tcctggctta gccgttatct tcctgtaggg 157920 ggtcactagc caggcaacag gaaaaatcag agcagaatgc ctgccctcca accaggaccc 157980 atgctgcaga aaccctctgg gaaaaaccga tctgttacag gacccctggg catttcctag 158040 gcaccacccc aattaagtat ttcctagaga gagcagttga tctcttttgt ctgaaactga 158100 tttttgccgt gctaagctgg caaaatatct gaggtaataa ctttaatgtt gaagtacaat 158160 gaaagttcct gttttttcct ttaggaataa aaatactaca aataggtcag gacttcggtt 158220 tatttttgtt attacaaata aagaggaaga agtttggctc ctgtaaacgt gtgccttttc 158280 agagggaaaa atagattcat tgattttagt tgattcttga accactagcc aagttacaaa 158340 agattttcat ttccgaacag ttggatagaa agatctgtta ttaagtcacg ttagaaacat 158400 cagtttctga gctctgacct ttattcttta aaaaaactcc acttggatat tcactctaaa 158460 aatacactgt actgattaag ttcattacat tacaatagag aaattagaat ttaagtgtct 158520 gtgtagaaag aggaatacaa acttttttt tttttttt tttttttt agacggagtc 158580 tegetetgte gaceaggeta gagtgeagtg gggeaatgtt ggeteaetge aaceteegee 158640 ttccgggttc aagtgattct cttgcctcag gctcctgagc agctgggatt acaggcacac 158700 gccaccacac ccggctaatt tttgtatttt tagtagagac agggtttcac catgttaggc 158760 tggtctcaaa ctcatgacct tgtgatcgac tcgcctttgg cctcccaaag tgctgagatt 158820

acaggtgtga gtcaccatgc ctggcccaca aacttcttta ttgtgtcaga atttgttgac 158880 atctcagcat titgtaacac attatcaatt acattagtcc cccttggtat tagactcggg 158940 caagtcactt ccctgtttta attaagctct aatgttctca tctgtgcaat tcaaggggtg 159000 cactcacaag atttttcacc ttcaatccta tggctctgta agttctacaa gtcacttcct 159060 ttaacaacta aaacttaata cttcagagat taataatatg ttaactcagc agcccaagtg 159120 tacataggga aaaagccccc tgcctttgct gcggtttgtt tatctctcaa ggtacaaggt 159180 ttattattcc cagcgagcgc tgaatagctg gtacactgac ttaacagacc acatctaccc 159240 ataaaagatc tttattttt actaagctct aaccgaaaga cagcctttcc cttatcaatg 159300 aatagttaac gaacaacagt gtgaatatct gtgactttct catcctcaga aatcagctct 159360 ttttatttgc tgccacaata ctcagaacta catttttatt aaacccagcc ctagatcttg 159420 ctactgaaca ttggaataaa gtagcatgtg tcttcttttg agaaggtgtt tataggcttc 159480 accagacaac caaagggttc tgtcacacag aaaagctgga agacatgctc tggaaggatc 159540 tcattagtag aagaggtagt atgattccac caaggttctg gacatggttt ccactaaggg 159600 aaccaattaa agatgctata cccatccgga cagtgcaccg tcgaagaaag catataggtc 159660 ttaaagatga gacctgtgtt agaaccctgc ttctgtgtga cctccagcaa atgcttccat 159720 tcttggagcc tcagtctccc tagtcataag atggagatca ttttttctct gtagggtttt 159780 taggattaag atataattgt atgtttagaa atatttgttc cttttcttta caggcatgct 159840 ccattaaatg gggatcagtt cttccaccat caaatagtat aactctgcta ttctctgaat 159900 gcaaagcagt ggcagtggca tagggtacaa tttttttatt tcctgtttga aaaagcatat 159960 tgtaaggtat taatatcaca tatgtggttt tacctttttt caagattatt ttttgtagag 160020 acggggtctc actcttgttg cccaggctgg tcttgaactc ctggcatcca atgatcctct 160080 tgcttggcct cccaaagtgc tgggatcaca ggtgtgagcc actgtacctg gcctgcatat 160140 atggttttaa aagtcattca gttgtcttcc aggcaaatag agtagtttaa aaggaacaaa 160200 tagaaagagg gcacaccaca gtactttttg tctaccagcc ttgtgtcaga caccatgcta 160260 tgcactgggg atagagatta aggcaactgg gtgtctgacc taaagaagct aatagtgtat 160320 ggagagggag agacccataa acaaattgga tgtggtaaga gagagcagtc ggagcacaaa 160380 gaaagacagt gatgcttccg ggtgcacaat atgccatgtg cagctggcat ggactccatc 160440 cttttcaaat tccctcaagt tccgaacatg gaaggaacag ctctttgtag attcctaaat 160500 ggaaattatc ggaaccagag agtcagggga agctctagta gagccggagt tggcaaactc 160560 tgtccagtgt cagatggtaa ttattttcgg ctctgcaggc tatacggcca ccatcgccac 160620 cactcaaagg taatgcggtg caaagcagct gtgggacagc attaactgag tgagcgtgct 160680 gggctccaat aaagctttat tcgtgatact gaaatttgaa tttcttgtaa ttttcacatc 160740 atgaaagatt ctattttctg caatcattta aaagtttaaa aaccattctt agctcatagg 160800 ctgttagaaa ccgggcctgg actgtagctt gctggcctct gagagcctag gtggtctgtg 160860 ggggtaggag gtgctgggca aggccgtcca cagtgcacgc ggtgtggtga ccgtgtgtg 160920 ttggcaaggc tgtcagcagt acacacagtg cagcaaccac cgtgtgtggt cagcaaggcc 160980 atccacagtc cacacagtgc aataaccgtg tgtggcgagc aaggctattg acactgtacg 161040 ccgtacagcg accgtgtgtg gtcagcaagg ccatggagag tgcacacagt acagtgacca 161100 cctgtggtcg gcatggccat caacagggca cacagcacgg tgaccatgtg tgatcagcaa 161160 ggccgtggat agtgcccgtg gtgtggtatc catgtgtgat cggcaaggcc atggatagtg 161220 catgtggtgc ggtgaccctg tgtgattggc aaggccatgg atagtgaacg tggtgcggtg 161280 acceptgtgt atceggcaagg ccatggatag tgcaceptgtt gcggtgacca tgtgtgatcg 161340

gcatgaccat cgacagtgct tatggtgtgg tgaccgtgtg tgatccgcaa ggccatggat 161400 agtgagtgca cacggtgcgg tgaccatgtg tgatcagcaa ggccatggat agtacacgcg 161460 gtgcggtgac catgtgtgat cggcaaggcc atggatagtg cacgcggtgc ggtgaccgtg 161520 ccatggatag tgcacgcggt gcggtgacca tgtgtgatcg gcaaggccat ggatagtgca 161640 cgcggtgtgg tgaccgtgtg tgatcggcaa ggccatagat agtgcacgcg gtgcggtgac 161700 cgtgtgtgat cggcaaggcc atggatagtg cccgtggcgt ggtgtccatg tatgatcagc 161760 aaggccatgg atagtgcacg tggtgcggtg accgtgtgtg atcggtaagg ccatgataga 161820 gcatgcagtg cggtgaccgt gtgtgatcgg taaggccatg atagagcatg cagtgtggtg 161880 acceptetete acceptaage tcategatag tetacaceget gegateacca tetegteatcc 161940 gcaaggtcat ggatagtgca cacggtgcgg tgaccatgtt tgatccgcaa ggccatggat 162000 agtgcacacg gtgcagtgac caccgtgtga acaggggagg actggtgcct cggctcagcc 162060 ttctgtgtgg ctgcttacag gggcttacta acgggataga ataggtgctt agagaaagtg 162120 ccacactgaa gtgaattaag gatgccaggt ggggagaggg gccaggaagt ggcctgggat 162180 gcaaqtqtgc atggatgggc gctcagctgt ggcccctagg gaagtggaga catggtctgc 162240 caggccactg accaggaagc ctcggggagc caatgggagg cgcttgaagg cattaggtgc 162300 aaagcctgga gttgtgggtg tccagtaaca ccaccatgca gcctgggggt ctgaggccac 162360 ccatctggga ccccttcact ctaaatgagg cttgactagg gggatctcag aagtccacag 162420 aaaatcttgg gtgttcctcc ctgctgtact gacgggacca caagaggcaa gtgagactgt 162480 cagatgagaa acattattac aggttcccaa aatccacctg cctacccacc caatttttgt 162540 ctgtaatagt tctgctgaac agctgtgcat agtgcaattt atttccttaa tactgtttgt 162600 tttctccccc atattctgtg tcggcaactg acatttcaga ggttcccatg tgttctctgt 162660 ggaactgtct caagttctta ttaccctggt tgacgacacc agaaaaacca tagctaccta 162720 ctcccagaaa gaggccagtg ttacaaagaa tctcgtggcc agcccttttg gctcagtttg 162780 cccagttgga ggccctaagg cgcaaaccag aaaagccaaa gggcctcctg aggaccgtgg 162840 aagtgggtgg cgcgtggacc catcgctagc tgaatgtgga atgtggaccc atcgctagct 162900 gaatgtggaa tgtggaccca tcgctagctg aatgtggaaa aggacttatg acagtcagac 162960 catcccaggt tcccccagag caatccgtgc agctctcata agcaaccaga aaccaaaaaa 163020 ggatgctaag tcagcacaaa gtggagcagc cccccagcta tgggttgcca aacagaattt 163080 gcttgtgggc cccgtgaccc ctgctgttgt ccagtttaat gctcagcatt tatccagatc 163140 aagggatgga aatggggcca ccagcctgac ccaggcccgg ggtcgttttg cttttccaac 163200 ctgtaccatc ccagcaatgc attgccagcg tgcaatttga aaaagccctg ccgagctgaa 163260 aaacacatgg gaagggetea gacacaetta aaggeacatt getgeeetge atttataegg 163320 cattttgtgc tgacatcgtt ttccatcagg cctgggcagc ccctcctgag actgtctccc 163380 gcctgccgtc ctcagcacgg cctgcccggc tacagtctgc tttcctccca ctgcccctgc 163440 ctgcaggcct tggaggcggt gactgctgca gacttatttg ggcagcctgg ccttaatttt 163500 tggaaagtgc cttgttgatg tatgaggaac ttccacggct gaaacagtct aaaaaaatga 163560 agctgggaca ctatgttttg attttagcca tttgcagaca gaggggcaca ctcgggactc 163620 ttgggcgcct ggcacactaa gctgggaggg acttttgaga catcttggcc atctaaatca 163680 gtcaacatgt ttatatatac aatttaatgt tcagtataca gggaaaacca ttagaaggtt 163740 agetgeacat aaaactgttg ttaaagttat ttttattact teeecccaca aategtatge 163800 aataattaat aagaactaga gaaatagcca caactggcac aacacctgcc cctctgccaa 163860

aagaaaaaaa	tcttcttct	gaaggcaggc	tccctatata	gtgattcctt	tatatgcctc	163920
ctggaagatc	tgtttcgact	ccattttgat	atatgttgaa	ccagatttga	agacccacaa	163980
atgcagtcta	gagccatttt	gcaaaagtgt	tgctgcatca	accatttcca	ttccccagtg	164040
ctgctcatca	tgttacacta	gtgttaaatc	ctgactttgg	aatgcgagga	aggacagttc	164100
cagccatggg	atttcaaaaa	agtaccaaag	gaaagcccct	tcaagttacc	gttaagacag	164160
aagaaaagga	agaaaaatat	aaacacacac	gtataaacat	gtaaggtagc	tttggtccct	164220
ataacagaca	aggaaatcaa	ggctccgtga	agagagagac	aagaattccc	ttagccaagt	164280
gcctgtgtgt	gtctgtcttt	tatgttaatg	gttatgaatt	taaggagaat	tgaaagcaat	164340
aattttgccc	ctctttaaca	tggcaaatac	agcctgcttt	agagatgatc	agcaatcacc	164400
atttagtact	ggccgtcacc	tctgtgcagc	acaaacacac	atcccgagtg	acagaagcca	164460
tttcactgcc	agagactctt	agcggccttc	agttctcttg	agctggagcc	actgggtctt	164520
gtatgaaagc	tcaccagaca	tctcatgtgg	acctcgggca	tctgagccgg	gaccatccta	164580
ttacaagtgc	ggaaaccaga	tcattaatgc	agagctgaat	tcaaattgtt	acttgctagc	164640
ttaggaaaga	atccttggaa	atccaacata	ttgtctaaat	ggatcagtta	atcttactat	164700
gtgcattcta	catacccttt	cattgtttgg	gcttaaataa	cttttctgct	ttgtctggtt	164760
taatttcatc	caatgtggat	cgctggaaga	atatgatgta	tgttttagaa	tagaaacagt	164820
tctgagatga	agttgagcac	aatttcctgt	tctagttgca	attaaatata	aatatagcat	164880
ttgacataaa	atagctggcc	cgatatattt	agagtacaag	ttaagtgtca	tccccttaga	164940
attgggcatt	gactccgtag	aattcccctt	tgtacaaggt	gagcaaatgt	atattttgtt	165000
aaaaataagt	atctgactgc	caaaacggac	agaaagctct	ttgccatatg	tgttttcagg	165060
ccatttcctt	tcctgggaaa	cagccatttc	ccccgcatta	tagttgtgtt	ttcatttgcg	165120
ggtagataga	gtaagcgcag	gagttaaagg	acgcgggcct	ccacagccaa	ggccttatct	165180
gggacaatta	tctttctcct	tgcagctgtg	taacttctgt	ttgacacaga	accacagaaa	165240
ccctgttagt	gggaaggatc	acagttaata	ggagaaaaat	cttcattgtt	catgagactt	165300
ctcaggtgct	tggcattctt	atttaggtgg	cttaaaaaag	ttccaagtac	tcattcattc	165360
taacttatct	gtgttcattg	tgaaatcgtg	tgtgaatgac	atttggagca	gatggattgt	165420
tgttttttt	tttttttt	tttaacaaac	ttaagagatt	cccgaatctt	tcacagtttg	165480
tactaccgca	aaccagcata	acatctgcta	aagaatttca	tattttaaag	ctgcactgta	165540
catcatatgg	aaccttaagg	actttgaagg	gaagagcttt	ttatttactg	gtagcttggg	165600
aaatatccaa	gtaactattt	tttaagaaaa	aaaaattcct	tgagttttta	gaaatagttt	165660
atataactgt	tatgctgttt	gatttttaaa	tattttcatt	ctctagtatt	attatggaat	165720
attttatctt	cccatcaaaa	aaatgccaga	aggtcaagat	agaagtcaca	acattaaaag	165780
ggagtggata	caattgtaaa	acaatagatg	agtacatttg	cctgataata	tttttgccag	165840
taattctgtg	tcctgttttc	tccctgtaga	atgaaatgct	aaacattttt	ttcaatggat	165900
tgatgtcagt	gtttactaac	atgacctgtg	ttaagtcaaa	taaagtattt	cctttgacaa	165960
acaccatatt	tcattagtgg	ctttgaggtg	ggcttatttg	ttataagtca	cattaaatgt	166020
tcccaaatcc	atttcataaa	tgttgtcgag	atctcaaact	ccgttgcttc	taaaaaaata	166080
tgtccagtct	ctttgtcata	accatcctaa	taaagatcta	aatttcttag	agtgaatttt	166140
	tggcttaatg					
	attattgaga					
	tatattatct					
aaagaagtaa	aaaaaagtcc	atgacctcct	tttggtatcc	ccatccatct	ggcggactta	166380

					gtacaaaaag	
					ttgcttgaag	
					ctgatgatgg	
					aaaacgctat	
					aatgttccat	
					gtaaattgta	
caaagactga	agagaggatg	cagtattaaa	cgtaccaagt	tcttgacatc	ggtttccctc	166800
aagaaaaaaa	aaaatgagta	acgttttttg	aaagcctgaa	actattctag	taaaatattt	166860
acggaaaaaa	taatatgcgc	tctcctccca	aatcctgatg	cgcatttaaa	tcaccttttt	166920
tatttataga	tcaaaaatct	tgcttgacta	caataaaaat	taaaaaatgg	tacctattta	166980
agaatgcaag	tatcaaatcc	acttgtaata	ctcactagct	ccctctgctg	atctcctatc	167040
aagcgacagg	caaatctatc	catgattgtt	attacaattg	ttaatggaaa	tgataggtaa	167100
tttaggacct	acatcaattg	caactaaaat	acaagctaca	atgctttcat	tttaatttta	167160
atgcaaaagc	acatcacacc	atatacagat	gttaaagacc	gacgtgcaca	cacacagtga	167220
aaaaatattt	ttaggcattc	atttagcata	catagaccta	ggagctgtct	ctgtatcctc	167280
aggtgataag	gttactacta	ttacaacagc	agaaaaagag	gtctgtactg	tctgtctcca	167340
taaggagcca	atttagagac	ccaatcctgt	tcaccccaag	cttacagtct	aacgaggtga	167400
acagatgtcc	catctggatg	cacaagcact	gctggctaag	gccctgggta	gtgcaggagg	167460
gagcccccac	acgggaagcc	tcccaaacca	cgtaagggct	acgtgaacag	caagaatagt	167520
ttcactgttt	atttagatcc	acactgttac	ttatttaaga	agaacatact	ctgccctttc	167580
tccctccctg	aagaaagacc	aaaactgagg	gaaattatat	tccaggctga	gaaaattgcc	167640
tgtgcactta	aaaaataaat	aaataaaagg	cgagaccacg	gaagttaaaa	taaattaaca	167700
ataattgagc	caagagggag	gagatgggtg	agtcggagat	gcggtctgga	actagctgct	167760
gaagagtctg	cttaggaatt	ggggttgtac	cctggacata	aagcatttgg	ggcgggggag	167820
tgtcctgatg	tgactgagaa	aggactgtgg	agtgctgtgt	gcagtagggc	ttagaggagg	167880
tgtgagtaga	ggcagagaga	ccagagcaga	agctgctaca	gtaattcagg	ttagatatta	167940
tagtggcctg	tgctagaata	ttaacatcag	gctcatgatg	ttaaagaggg	gtgatcaata	168000
ggccttctag	atggatggaa	tacagggagt	ccaggaatgg	gattggtctg	gtactgggac	168060
tgactcttac	acttaaaaat	gctaaaataa	aataacttgg	caatagtttt	taaagcatct	168120
gtaaaatgac	aagataataa	acacatattc	tgctcaaact	tatgtgaagg	caggaatcct	168180
gtgaactatt	aaagagcttt	gccatcaagt	catttgccaa	acctggccaa	cttaagccta	168240
cttcaaggcc	tgagtggttc	agacagaaga	caaaggccag	gacctaaaga	aatgggagca	168300
tctgatgaga	tacctccttc	caggaaggct	ctaccccagt	gtcagggaag	cagaagtaaa	168360
cctgcccacc	ccactctcca	gagcagacaa	gaaaacatgc	ctggatgtta	aacagaacta	168420
aaagagggga	geccatecet	gagaatttaa	ctacaagctc	acccttttgg	gttttacagt	168480
acacataagg	tggccagaaa	aaaccacaat	gaattgttct	aaggtggtcc	caggctgatc	168540
atcttattcc	cctaggtttg	tggaagaagc	aaatgaaaat	cctttctggg	agaatgcact	168600
ttcatcatgg	gtctcaaaac	attcttacaa	tttcccaaga	ataatgggca	actcacagac	168660
aaaaataaac	acacaagaaa	acatagtgct	attagcaaaa	atcagcagaa	agaagaaata	168720
gtaaaaacag	accagccaaa	aacatctatc	cctgctgtat	tggtttgcta	aggctgcggt	168780
acaatgtgcc	acaaaccggg	tgcctaaaac	aatgggaatt	tattctcaca	gctctggagg	168840
ctagaagtct	gtaattgagg	cgtcacaggg	ccatgctccc	tctgaaacct	gtagggggtc	168900

cttccctgtc ccatcctagc ttctggtgtt gctggcctca tcgtctcatg gtattctccc 168960 tccaggagga cctcctctca actagttaaa cctgcagtga cgctacttcc aaataagccc 169080 acatgctgag ttgctgtggc ttaggactta catctttcta tcaggaatgt aattctatcc 169140 ataacactta cgatgtttaa agatgaaagt aaaattttga aaacacctaa aggggacaga 169200 aaactaaaga agaaaatctt gcagatttaa aatgaaaact tatagacatg aaaaatacga 169260 tggttggaat ttataattca gagtcatgtt taacaagatt agacacacct gaagctgaaa 169320 gataagtgaa aacgagtcat cccaggtgta ggacagagag acgagataag gaccaggaga 169380 gaaagtgaag gaagacctgc aggatggagg aagagtgtct gacaaagtcc atccaaattc 169440 cagaagaagg gagagagaac agggcaggca atatccaggg agatagtcac tgaagctttt 169500 cccaaagtga tgaaagatat caagttacag attcgaaaaaa cggcaaaaaa tgacaaacag 169560 gataaataaa atgatgagat aaagcagtaa gagggaagtc aagaattact ggttctgcag 169620 tttctggcct ggcagctgca cagataggat tctcaagggc tcggaagggg agaggtagca 169680 gagaggcaat gcatgcagct tgcacacatt cagtttaaat tggctatgag acttccggtt 169740 agagttttcc tattgcatat ttgggtctga gctcaagaga gccacctggg ttggaagcag 169800 caggaagacc tattttcctg attaatctca atgccagcct cattacacaa tcttaactaa 169860 tattaaacag tatatgaaac aggtgaagaa gaacagctgt ataaattgca taaagcttag 169920 caatgtgggt ttttctagac aaagttaagc agcaaagcag ctccattatg agggaccctt 169980 ggccacggtt tcacaggtgc aggttctgca gatcatggca tgttgtcctg ttctctggat 170040 tatggctcta gaagagataa tgataaagaa gacccagggt ggtcagtaaa aaggtcctac 170100 gtggtgtcta tacaatgttg caagtgacta aaaatgagta aaacttacaa gatataatta 170160 gtagcatgca actcttcata aatttgtcac ttctttgaag gtccttgtta tgagttgaat 170220 tttgttctcc gaaaattcat gttgaagtcc taaatgccct cagcacgtga ccgtcttcgg 170280 aagtagggcc attgcagttg taatcagtta agatagggtc atactggagt ggagtgggcc 170340 cctaatctaa tgtgacagat gtctttataa gaggacggtc atgtgaagac agatacagga 170400 ggaacgcctc gtgacaacgc aggtagggac agggtgaagc ttctacaaaa cagggaacac 170460 caaagatgag cagccactgc cagcagttag cagagaggcg tgggacagat cctgcctcgt 170520 ggctttggct tccagaagga accaaccctg ccccacacct tcacctcaga tttctgctct 170580 ccagaactgc gagagagtgg atttctgttt aagcaagttt gtggtacttt gttacaacaa 170640 aaatataacg ctaccttgca gcctccacca aacactgttg ccatttggtt cttctccttc 170760 ttgttcaacc tcaggagggg gtgaaaaaag tccaggcagc tcctggtgat agctatgcaa 170820 agcttcattc tgcagcagta aaagtgtttc ctagaagtac taaggctcgt taattgcagc 170880 caccctataa aagaaggtcc tctttcatga agagcctgtt tctctgcagg aagatggggc 170940 tgacctcagg gcctccagca cttaggcact tatccatatg tctgtaacca ttgttgtgag 171000 gttagttgat aatggctcat tatcctcgct aaaatgaact cgttgaagta tgaggccagg 171060 ccttattgga atccttccct ttccctttcc cttcccgttt ccttttccct ttcccttccc 171120 cttccccttc cccttcccct tccccgtccc tttagatgta gtctccctct gtcccccagg 171180 ctggagtgca atggtgcgat ctcagttcac tgcaatctcc acctcccggg tcaagcgatt 171240 cttctgcctc agccttctga gtagctggga ttacaggtgc ccgccaccat gctctgctaa 171300 atgggttttc accatattgg tcagggtggt ctcgaactcc tgacctcagg tgatccgtcc 171420

gcaggtgage caccegeete ggeeteetaa agtgetggga gaggeacagg egteageeae 171480 agtgcctggc ctactgtctt ctctaaaatg gcatctgtgc attcatctca gccgccctg 171540 ctcagataaa agcaatggcg cctcctttga aatctgagag acgcagggcc ctgcccattc 171600 tgcggaattc cttctccctg ctgcctgctg tgaggaggcc ccctttgcca cggaacctga 171660 aattcctgcc actggaatta cgctctggac aagcggcaag atactccttt cagtcccagc 171720 cactgggttc ctgctgcaca ggaggccagg gtgctgtgaa cctgctctca gccccgggca 171780 aagggaatet egttaateea ggtggeeage geetetteet eagageatet geagtgetge 171840 agacagggcc tccctgcgtg gggcttctgt cctccacact gtggtgctgc tgggatgttt 171900 tcatggggcc tttcccttcc cgtcaccacg tgtgctccag aacccggtgc atttggatga 171960 agccactaga tgtataggtc agcagctcca catagaatcg aattatcaaa tgcacactac 172020 ctgatccaga atagatcgtc ctggggtaaa cacattcaca tattctgaat gtacaaatgg 172080 ctgtctagta aacacactgg aacttccata attattgtcc ttccagataa tttttcaaga 172140 ttatatgcac gtattctgcc attccttttc aagacaactt tagaacttcc tttggacagc 172200 tactgtaage caaagggett geatttgaat atettgeatg aagetaaate titgtteatg 172260 aaaggcagaa taattttata tgccacaaag ctgcagtagt gtgttaggtt tagtagatgg 172320 ctaagcacta cactgtatta ttctaatcct attttcacaa tttaacaaat gtgagacacc 172380 gtgctacttg tacaagagat acaaattaag gaatcttcaa tgaccttgta gcctagaaag 172440 acctttagta attettetta ateteectae agagetaagt gateeagage tgaattaate 172500 cagaatctat gtcttcctcc gcctccggag tagctctaga aaggtcaaac ccttccgaga 172560 tggagtgtct gtgggggtag gtcctctttg ctgtgtgcga tcctgtgaga cagcgggatg 172620 tectgeatet etgaatttga agegaggagt ttttetgeta tgtttgggga gageeteaet 172680 cccctgctca gtagatcaga cgtgttctct tctttcacca cagctacaaa caacacactg 172740 gcattgtttc ccagacactc gactgtcccg atgggcattt ggacatggtc tatgagagga 172800 ataagctcca gccactgtag tggctcatgg gagagggaaa tgggtagaaa ttctttccca 172860 aactggtatt tctagtaaag cactcagcca gagcctgcag ctgttcacta ttccatatca 172920 attctaaaca gcattttcgt tggcaaaaga aaagtgagaa aacaacaaag cttgaagccy 172980 aaaactttgg gaaacccctt teetgaatgt gtttacttag ggettaaaaa tatgeetgtt 173040 ttcagaacag aagaactaat atccatgttt tctatgccga tttttcagag tacattttaa 173100 atgtaagtac atttagtgat taaaagggaa aaatacttga tcgttttcta aacataacca 173160 aaatctcact atgtaattgt tttttcctct atttaagagc agaatatttc attgctacca 173220 aaatgctagt attttggaga aaatagaaga actagaataa gtagtcagca atacaaaacc 173280 ctgcgtggaa gatgtgtatt ttggataggt gtcaacatgt ccaagctctc agtgacaaac 173340 acaggeteat tacaggtetg agcaaatgtg ceaettetea ggaagacaag geagateaat 173400 gtaaaggcag gtggcacctg gtatggctca gactcgcacg tggttctcca cagagctgct 173460 ctcggctcct ttggaagagg ttcaacgttg ggagcacagg ttgcttctct ggcccatgtt 173520 attcctggag ctactacttc ccagggcaga gttcgtgttt ttcgttcata aatggcctgg 173580 aaatcctagc attgggccag ccatccagaa cagtggagct gcatgatctg gtctggggat 173640 atttcaaagg gaatagaata ctgaggccct gtgggatgga ggctgcttcc cgatattgag 173700 aactgcacca gactgagctg tgtccagagg aagggagaac gtctttcatt cacttaaaac 173760 teacceaaca cetgacacet ceatettgge ateatecace tgtageetet agecetette 173820 atctgttaag tgagagtaac tggcaggtta tttggagagt gaagtgacat cggcagagtt 173880 ccaggtatgg tgtctgatgc gtgagttegc cccctttccc ggtccccttc tcctccattt 173940

gactaattat caaagaaaga ttgctttagt gaatgagaca gtttagatcc attcccttgg 174000 gaaattatgg tggtcagccc tccgctcggt ctcactttta gataccagaa actatatgtc 174060 cttgtgttgg cagagetgga ttgtetgteg eeetetggtg caateetgea ttagtaaggg 174120 aagtgttttt ctggggcgtt ctaatgaaaa gtgcttaagc atttgttttg gtgcccagat 174180 aatgtgactg tagttagtat gtagtgtttg gactttttgc tcatgctttt gttgttgttg 174240 ttgtcattgc agaaataaaa ttaacccctt aatcttatgc ttaatgtaca caccaagtgg 174300 tttgcatatt atactgagaa aataaaaaga ttgttttaga aaaaccaaag gacaccaaca 174360 gctctttaca gccccaaagc aggtgtcgcc agaggtcaca ggaggggttc ttagttatca 174420 gcaagggaaa ctgaggcttt ctcgtttatg cagaagtgga atttattgaa taatattaag 174480 ggggctatgt cgccaatgcc acagtcacac tgcccacaca gaactggcct ggcgaggtgt 174540 tactttgacc accattgctg ggccaggacg ctgccaccaa ggccgtgccc ctgccagaaa 174600 ctaaatgtgg ctgccccatc cctggccctt tctgtcagta gggtcaggtt caaactcctg 174660 ggtagtcagc ccagctctca ttgactcagt ctgaacagct gcctgttccc tagaatccac 174720 atgcgctggg acaatgggaa gtatcggtag acgctatggt gggaagatga ctctgtgtcc 174780 accaaggttc ttgggctggg gaatggtctg agcatatgac ggcctcagac cccagccaac 174840 caaagggaaa ggtctcccct gtactcacga agcctccacg atgtccatca gcactttctt 174900 cctccgttgc agtgtaggtc agcccttcgc agatgctcac aattccctga tacagccggt 174960 tgccctttgt tgtgttaaac tgaaagaatt tcagagttgg ggccaggcat ggtggttcat 175020 gcctgtaatc ccagcacttt gggaggccga ggcgggcaga tcacgaggcc aggagttcaa 175080 gaccagcctg gccaacatag tgaaaccccg tctctactaa aaatacaaaa attagctggg 175140 catagtggcg tgttcctgta attccagcta ctcgggaggc tgaggcagaa ttgcttaaac 175200 cgggaggcag acgttgcagt gagctgtgat catgccactg cactccagcc tgggctacag 175260 ttggagaagg actcggacaa atgtcatatt atagaggagg aaaaagatcc aggaggcaga 175380 aagacttccc tgagggccat gatggtagtt agtgcatcca ttaaatacaa gtcttctgct 175440 tettatteet gtaaataagt tigeatttaa eatittigta eatitaaaegt taetgattea 175500 tagtcaatga ttatggtcag ccctccacat ccgcaggttc tgcatctgta ggttcaacca 175560 atcgtggacc aaatatattc aagaaaatga aataaaaata caacaataaa aaagtacaaa 175620 aaatcgagta caacaactat ttacatagca tttacattgt attaactatc ataagtaatc 175680 tagggatgat ttaaactatg tgggaagatg tgcataggtt atatgcaaat actccatttt 175740 atataaagac ttgagcatcc atggattttg atatccaagg tgggggtctt ggaaccccac 175800 aaataccaag ggacaactgt gtattatttt cataacccat ttctgcctag tgttccatta 175860 gtggaatgct aaccatgtgg gaattattta tatcctactg ttcaaggtca tcaccaaggt 175920 ctgatttttc acacacacac agaattgcaa cctccagcat aaatggggat gaatttacta 175980 ctaacatgta gtttccatcc acaaatccaa tgtccctatg ctatttgtaa ctgtggagcc 176040 aagagaagct gttgaatcat gtggtgaata tgatcaagaa ctcaagatta gggataaaag 176100 caatcattct qttattcctt tttaaaaatt attagcctgt aatttaaaca tcaggatctc 176160 atgtaataca gaacaatate ttetgacatt tttacaatac tagtattett acaaaacaca 176220 gttaggaagt tacatgaaga aaacacccag actgtgtgtg gctaaatctt tagtacctca 176280 tttccatagt cttagagaaa gtttaaatta tattgaaact tttctcaact gctatcttaa 176340 tgtgttcagg ctgctgtaac aacatatcat tcaaactggg tgtcttataa acgatagaaa 176400 tttatttctc acagttctgg aggctgagaa gtccaatatc caggcagatt ccatgtctgg 176460

tgagggcctg tttcctggtt catagatggc gccttctctg cgtcctcaca tggcagaagg 176520 ggtgagggag ctctctgggg tcccttttat aaggacacta atcccatttg tgaggatttt 176580 cactctcatg acctgctcac tttctaaagg caccacctcc cagtactctt gcattgggga 176640 ttaggcttca acatgaattt gagggaggcg caaacattca gaccatagcc actggtcaac 176700 attaggtaac ctgcagtgct tggctgtggg atgggaagcc tgtgttgtaa aggacgtctg 176760 agtgggaaca ggggtctcaa gctgccttca catctaacgt cagcacacta gagatggaca 176820 ttgcagctgc aacctactgt gcctgtaaag catttagaat tacgccttgc atacacaaag 176880 tgctcaataa atgttaactg ttattatggt tgggcatcag ccactttaat tatctctttc 176940 aatcctcata gtaactcttc aacataggta gccttatttt gcagttgagg aaactggagc 177000 ttaqcaaagt ttagtgacgt tgcagagcta gagttcaaac ccaagtctga ctccaaagtg 177060 catctatctg tgtatttgct tatttaacct cagacacaca gaatcggatt aattagagtc 177120 attttttgtt tgtttgtatt taatagtaag ataaacactg tgaactcacc acttacctct 177240 catcatgaga gcgctggtgc ccacctccac ctccgagttc cacatatccc attaccctgc 177300 cttccccgtc caaggaaacc actgtctgga atccttcgtc attcaagcct tttcacagta 177360 tggctctttc cagcctttta tttctctact gtttcgcttg gaaactctac atttctaaga 177420 cagtgtggtg cctctgagct ctgtggcttt tgctcctgct agcctttctt cataaagtct 177480 ttcagececa caagtgtege agettttcaa ageettteee ateetttaag gteetaettt 177540 tcttttccat gaagtcttct ctgggccacg atgactgggg aatcctcact gtcttctgaa 177600 gttctgcacg tacttactct gcacatagtc ggcggtgagg tattcatcac attgaaatcg 177660 agttacatgt ggtcctgttc tatagtcaac caaaactcct ggggtaaaaa tgctgctttt 177720 catcttggca atctctatcc taaccagcac agtgcctcgc tgaatattag aggcctgaga 177780 attttctttg ttttttttc agagtgattt ttttttctct gctttatttg atactttgaa 177840 gcagcacaca tttcagtttg ctttatgctt gattttttt tatttcttct aaacaaacga 177900 gatacatgtg cagaacgtgc aggattgaca caaataatag ctggcagagt gtcctaggaa 177960 agactectea gatgttataa ataatacaca aacaaaaaca cacacaaata tttactgaag 178020 acttttcttg ctctgcaagg cactggctgt gtgatgcaga ataaaaccga caaaattctt 178080 gccatctggg atgtgcatgt tatgtcagca cagggaagag atcaagtgtg tgtgcatagg 178140 acatcaagaa tacaataaaa caaagtggac aaaaggaagc gagggtggtg aacacaggac 178200 acctgaatga aggacagagt tgttggaaaa ggacccctga gtgcccaagg gaggagctgg 178260 cctggagtag tgagggcaag gtgattgcaa atgaggcctt ggtgattgga aatgagctca 178320 tccccacatc ttataaatag ttctccaagt tatccgaggc aggttattct gtggcaaaga 178380 cgcctcagct aactggatgc agaagagaca actgaataga gcctcatggt ctcggagtct 178440 tttttttttt ttttttaaga catatettig geatittgta eetaeettet gitetaaatt 178500 ttgcattttt actactttca agtgggtgga ctttgttgtg gtgggtagtt caagattcat 178560 catacaaatg tgattgtgct tcgaaactcc caccagtctg acgcacgcat gggttttctg 178620 gcaacatttg ccatctacag cactctcttt gatcaccttc atcatcttcc aacattcctg 178680 ccacagtcac ttcccagaaa cttgctaatc tgtaatagaa accctcagat tcctatggtg 178740 aatttgtaat caaaagtcac atattgattt caaaatcaat acacacttta aaaataacac 178800 tacagattta gcagctcagg gaggaaggaa accgtaagtt catctggtgc agctacccgt 178860 ctgggatgtg aattcctcct cttcatgaaa tgtttacatt catatcacag tctagggttt 178920 agtgaaccat aaaaagctga aagttaatgc aaacagaagt cgccccaaa acatatacca 178980

actgatttaa aaggagacac agcagatgga gattattgtg aaaagaactc ttactggaca 179040 atttttttgt tattttaatc tctgcttatc ccaattcttt tagctgcata tactgagaca 179100 cttcacatct ataataaact tggtaccaga acacaattca ttccagacct aactctttta 179160 gatcattata accgggggag gaaaaaagtt aaaaaggctt atctatctta agaagtattt 179220 ctcagtgttc gctacacgtc acttaatctt ttccaaaatt tgacaatata caaagcagtt 179280 tgtagtgact tttcatagtg actctacaat aaaatgggcc tgtcctcctt gcttttccaa 179340 atgcagtcat catctgacaa ggtttagcta tttggggaag tccttgcttg caaacgtagt 179400 tettttgeca aacaggtttg gteaaactgt gteecetagt tgeacagtta ceceatattt 179460 gattaacaaa tagcaaaaca gagataatct cagaaatatt caagagtctc aaaccccaaa 179520 taaaatatag gcatcctcct gttgagtcga attggcaatt ttgattagca aggctcatga 179580 agcagtagat atcccctctg atccccatcc cagtgcgagg gcacagtgag ttgtattttc 179640 taagtataaa ctatteteta geagttegge tggagtattg ggageaaaac tgtattttte 179700 taatattttc agactaagac agtgtctctg ttttctggac ttttccgtgg caaatgaagg 179760 atttatcagc aatacaaaga aagttctccc agtgggtact ccacggggag aggagctggg 179820 gtctcactag tgcacagcca taaaagacac cacaagcata ttacacgtga agcaggatcc 179880 gtgcccacca cagcagttgt cccaggagtt tcctgtttga atgagacact ttgggtggat 179940 actgcaggga gggagaagct gtgtgtggcc accacagctg gaagcgtggc ctggtgccct 180000 cacagetgte tgggageece tteeegggaa egeeggettt teeegggtge accattgeag 180060 ctggagccgt tgtcggccgc ctcgaaaaca tgcagttggg ctgctctggc aggcttctcc 180120 agccctcctc ccaaggttta cctctctaaa tgtcaaaagg gagagaatac tgtatttgtt 180180 tttccctcta ctgaaattta tttgtgacat caggcatcac tttcacctta gtcattttgg 180240 ctggattccc atactcaatt aaatatcctt ccttccatat ggcccatagg aagagagaga 180300 aattacatgt aactggtett teeteetett tataaagtet ggtggetgag caacttggee 180360 tgtacttect teatgaceca ceateceatg actgeaggge agttttaaac acageagett 180420 ggtttctatt gcacggaagc tggccaacag tcacagtgtg catttttcta ttgcacctcc 180480 ttgtgttaac ccaagttcac tcacagctgt aactacagaa gtttttctga aagcaagtga 180540 agccatcctt cttttattga gtttttgagc tagggtctca ctctgtcacc caggctggag 180600 tgcaatgatg tgaacatggc tyactgcagc cttgacctcc tgggttcaag tgatccttgt 180660 acttcaacct cctgagtagc taggactgca agcatgtgcc accatgccca cgctttctga 180720 ttttttttttg tagagacaga gtctctctat gttgcccagg ctggtcttga accactgggc 180780 tcaagtgatc ctcctgcctc agtctcccrg agtcctggga ttacaggtgt gagccaccat 180840 gcccagctca tccttccttt aaaaccggca gctgggcaat aatacagatg ggaccaacta 180900 agtttctcag accactcagg gaagctagtc ttgcatagac aaaatataca ccctcttacc 180960 tgccccacct ttaaggctgg tccccagggt ccgcgctctg tcctccagcc tccacgcttc 181020 cctgtgacta gcctctgtgg tcaaaggtgc ttgctgatgc agcctctgta cagcctccat 181080 gcagtgcgtg tctttatgtg gaggagaccg cccttctttc agcagttatt gagcatctac 181140 ccactctgtg ccggtcatag ggcttagaac tgcatgtctg gggggaattc tgcaaagaga 181200 gcctgaaata aaggcaaaca gtgagagacg gccaggagaa accatgagca ctgcagtgag 181260 tatcaaggga caaagctgaa aaaggaagac tgaacgctga gcttcaagcc attcatttct 181320 atgggccgcg ggagcccttg aaagtctgtg ggcaagtttt ggtgagatta agctggtagt 181380 tetgtteagg acaggttgaa gggatgagag attaggacae ttaccaeetg aateetgteg 181440 ctggctttag tttaaaccac ccgtaatgta gacatcctga cttagaattc cctgtgctgc 181500

ttcctttctg atggaaacag ctctgctaac agagtgcagg ctgtgggagc cgagccccgt 181560 tgcaggcagc ctgcaggccg cagtttcctc ggcttaccac ccagcgcttt tcattcggct 181620 cagogotagg gacototgot tocacttoto ggtgttggaa attgccattt atttttgctg 181680 tcgatgatct gtattgactt ggcctgagta tgcgtgcacg tctctggtgg tctgaattat 181740 atagaccaga agggtgtctg atgccgcttt tataaaaaat aataataatt tgaaaggaaa 181800 aatgactcac tgaagtctgg caaatacaga gccctctctc tgaatcgact tctcacttgg 181860 ccatgttgaa ttccaactgg gtgtcctcag acatttctat cccaagatct actcctggct 181920 tagaatctgt tttgttttgt cttatttcag ctcatggttc ttgttccccc agctttatgg 181980 ggtataattt ccatacaata gaattcaaca ctttcaatgt gtggttggat ggcttttggc 182040 aattgtatac agttttgcga tcacccctac actcaagata tagaacactg tttctcgtct 182100 ggtgattgct ggacattgaa ttctttccag ttttcactgt tatgaatctg actatgattt 182160 ttggcatgga tttgtatgta gctataaatc acttggtaat ttttcagaag aatagcagtc 182220 ttggggcctg gatggcttat tgtggtctca aaaagttcct gatgataagg ttgcagcctc 182280 atgcttcttt ataagaatgc agtattactt gcaagggagc ttgggtagat aagaaagcaa 182340 gaaagtccat gtggagaccc tgtccagaga gcacagacat ggactaagtt aaaggatggt 182400 aaattagcaa tgcccaaaag cacatggagg agatacttcc cctcctgact ctattggtga 182460 tgcagtttat ttgtctgagc tatctgagca agtttcctct cacttacgtg ctggggacag 182520 cagattccaa tgcagagtcc ttagagctca ggctcccctc aacctgacgc atctctcaac 182580 catttgtctt aagctgtctg aagtcagctt cccatcttgg ggaggtagaa gtgaaagggt 182640 ttccactttg ccaagtgagc gtatatgggg agactgaggg tgtgggagttg atgatggttg 182700 tggggtggct gacagtgtcc acagggctag tcttgaggca ggctgacact ggggccagat 182760 gggaccactg tgcctcctgt cccctccacc ttctcctagt ccaggaaggg aatagcagca 182820 gctgctctca gtggggcatt ctttttccag agacaggcca gcccagcagt gatcccttga 182880 taaagcaagt caccgttatc agagcaagaa ctatacattc acttaaaact tttttttt 182940 tttaagtgta aaatgggact gcaacaaaaa gaaaattgtg cttaggagaa tgtccctcag 183000 aaaatgtact ttatgattgc gaggaatatt tgccaaggtc tttgggggtag gctgagcccc 183060 ttcacctccc tggggacatg ctaggatggc aagagaggat cagacatctc ccagggaggc 183120 tgtgtccagc cgggctcctg gagtggcgta agtctggttg aaccagcact gaactgcctg 183180 agtocatgtg aacgcattga actgttaaac cgtgtctctg gcggccacat ctccgggctt 183240 caccegetge teteceetgt cetgeaggta caaagteaat agteaacete agttttgaat 183300 gttacaaaat tattagcctc tecatagtte tteecatgge tteteaceca ageettetge 183360 tectetete tetetgeeca ggteteacea getgeeettg ggeeaggtea etgeagtgte 183420 tgccagcacc acgacaggca ggctggaggc ccagttctca cagaaaagac tcgaaagggg 183480 gctttccatc ctttatagtc tacctgctac ttataggcca ccaggacaaa ggatcaaggt 183540 ggcaaggcag aaattgcagc acagagcgaa tggaaaggca gtcactgaag ggattctttt 183600 gcttttacaa gtagattttt cttaaacaat cactgtatga aaacaaaagt acaaaattat 183660 taaaacacct ggatgatgaa ttgacaacaa gagtttttct ggaacatcct cctgtgggct 183720 cggggaagac agttttttc tgtggtgata gatggtcagg aaatgtagtg acatagaagt 183780 gaaggcattt tacagagctc accttaatca atggcttttt cacttattaa gttttctttt 183840 attttttcct tcttcaaaaa cgactgatac cttaatttat gggaattgtt tccagtaaaa 183900 attgggacaa tgatagtgag tggagaatat ttatatgcta tacttcctgt cttccttcat 183960 cttttattac tgaggatatt gacatgaaaa caggatettt gtatecaatg agtteatega 184020

cggccgattt cccaccagaa attccaggct ttctgacatc agcgtgcatt gctctgcatg 184080 tcacttggag caccggcatc tggaaatgat gaaatcctga acaacaaagt ttgttttcag 184140 gaagacaagg cagtggggaa gggaagggtg ctaagcttca gtgactgcct actgtgtgcc 184200 aggcattttc atcttccatc tcgatagaat gtctaactgt gctctgagat gagaactata 184260 aatagctggt cagccaaaag ttttctgctt tttcttagtg atctcaagtg tttccatgac 184320 acgtgctgca accaaataca ttatgtgtaa attgccaaag acctgttgat ttccaaacca 184380 ttatatagtc atgggaatgc ttgtatacct gaattgtcat aaaattgatg agatgcgaag 184440 atacagcaga atatatcaga taattctgca gaactcttat tatggaaatg aaaataattc 184500 aatagagaag tetegattea taaaagaeta gttttaetet aaagtateta aaagaeatge 184560 attaaaaaga catggcactg tccccgaaat gatcttgctg tgttgcattt caaatggtac 184620 cttcattttg aaactttgca cattagcacg ttctttataa tagcaaaaag tgggggagtg 184680 aggaacattt ggtgccggaa gaatgattag gtaaagcaca ccaagctgaa aaaagtattt 184740 ttgcagagcg ttttcaagag catggaagag tgttataatg ttaagtgaac aaaaaaaaa 184800 aaaaatacag atccaactat gtaatcatta cacatagaaa taaaaatgag caataaagcc 184860 aggatgtcag tgaggatgga gtggagggaa tgtcctaaat gtgcgttggc ccatcatcac 184920 ctcatgcatg aagtgaatgg aaacatttgg tttatgtttt ctggaatgtc tcataagcca 184980 ttqtaaccaa aaactacacc atgaacaaaa agcaaagcag gccctgcagg ccctgggtgg 185040 gaagctgagg aggttggcag tttctcaaac tcatgtcaga tgcccctcgg ccactagaca 185100 gaatctgctg ctatttgggt tctggttgac cagaggccta atctggaatc tggttctaaa 185160 aaccaatttt tgttataggg cftgctggat acaaatctgc aatgagacat tgtcacaagc 185220 aatagcttaa gaaaaacata aaggaaaaaa taataataag tttttggaaa taagcctgga 185280 aaagcagttt attgccatct gctaactcat ttgattcttg cagtaaccct agggtaggta 185340 tgatggtgat ctctgcttca aagatgagaa aatcgaggct gcctcaggtc acttgacctc 185400 ctcacaggcc agtggagact ggcttcagac tcgggccttt ggacctcaag gccctggtct 185460 tettgttgcc caggetggag tecaatggcg caatetegge teaetgcaac eteegettee 185580 tgggctcaag taattctgcc tcagcctccc gagtagctgg gattgcaagc atgtgccacc 185640 acacceggtt aattgtgtat ttttagtaga gacgggttte tecatgttgg teaggetgtt 185700 ctcaaactcc tgacctcagg tgatcagccc gccttggcct cccaacgtgc tgggattaca 185760 ggcgtgagcc accacgagcg gccaaggcct tggtcttcct atcgcatttt gacaccttgc 185820 tragtargat gagtagttaa aatractgtr attggrtara tgcctarttt ttatagtrac 185880 tctacttatt gtggttttgg ctacatccta gttgaactct agggctagtg tttattaagg 185940 tettgatete atatggeatt tgtagacaat egaatgttga gtgataagee etggtaaegt 186000 gatttctcac tgctggcccg tgaagccatg gaaatgttcc catggaaatc accccatgtg 186060 tggaatgaat ggtcagtgga acataggcat ctttctctcc tgtcctctag gttttaaaat 186120 acctgaatgt cctgaaatgc aagagtatcc taagagcact ttagaaatat ctttgcggtt 186180 tctttctggt gtgctttgtg ggttgggtga ggtaccgtat tccaggacac gtggccctta 186240 gagaaacaaa taatttoott tootootgot toagtgttat tggtaaagtg ggaaggtago 186300 cccaagacac tcagctcctg cactgcattt ggatagaagg gcgttcaaat tccaccaggg 186360 acaacttcgt ctaaccccct agaattcctc attttgaccc ttggcatact ctatatttgt 186420 tgaaatacaa aaaaaggagt tgaaagtgag tctatctata tgtagtaggt atatcgtgtt 186480 cactgtaaaa ttccttactg tatgtttaaa atttttcaga atacaatgct gggggaaacc 186540

tatggaacag aagtagggaa aaaattcgac aacgcaaagt gagagtggga aaccatgtga 186600 agetetgtta gagtateate actaatetet ttttteetta taeetatatt catgaaagea 186660 aatagagaac aatacaatat agtgtaacac cgtgtaccca tcactcagca ttgctcaatc 186720 ttagttatca ttatggttat tattattatt attatttgag acaggacctt gttctgtcac 186780 ccaaactgga gtgcaatggg gtgatcctgg ctcactgcag ctcaacctct cgggctcaag 186840 tgatcctccc acctcagcct cccaagtagc tgggactaca cgtgcgtgcc accacacccg 186900 gctaattatt tttggtagag acagggtttt gccatgttgc tcagggaggt ctcaaactcc 186960 tggactcaag caatcctccc accttggcca attttaatat tttattatag ttgtttccat 187020 tttttgtgtt tttcataaat taaatcttgt aactattata tatttcacag aatattataa 187080 agttaaagct ccctttgcat ctttccctct ccaattccat tcttcctctc tctctaaaag 187140 taactgctgt cctgaattta acgatgattt ttaaagtcat ctaggctctc gtttttcttt 187200 gaaaaggggt ctcactctgt cacccaggct gaagtgcagt ggcgctctgt gggctcactg 187320 caacctctgc ctcccaggct gaagtgatcc tccaacctca gcctcctggg tagcagggac 187380 gacgaggtct tgccatgttg ctcaggctgg tctcaaactc ctgagctcaa gtgatttgcc 187500 tgccttgtcc tcccaaagtg ctgggattac aggcgtgagc caccgtgcca ggccggctct 187560 tgtttttctc ttccccctac accccaaata aacacagagc tttattcctg cctcagtcaa 187620 attgctgctt caaggccgca gtttggacac tatgtttttt agggtgtggt ttttttttt 187680 ttttttttta gacagagttt cgctcttgtt gcccaggctg cagtgcaatg gcacaatctt 187740 ggctcactgc aacctctacc tecegggtte aagtgattet cetgeeteag cettecaagt 187800 agctgggatt acaggcatgt gctaccatgc ccggctaatt ttgtcttttt aatagagatg 187860 ggatttetec atgttagtea ggetggtete aaacteetga eeteagatga teegeecace 187920 teggeeteec aacetgetgg gaatatagge ataageeace aaacteaact tataatttat 187980 gattaagget geagtgeaat ggegegatet tggeteeetg eaacetetge eteceaggtt 188040 caagtgattc tcctgcctca gccttccaag tagctggaaa tataggcaca cgccaccacg 188100 cctggctaat tttgtatttt taataaagat agcatttaat tatgttgtcc aggctagtcc 188160 cagacteetg accteaggtg atceaceea eteggeetee caaagtgttg ggattatagg 188220 tgtgaacccc tacagctgac ccagacacca tgtttttatg gctggatttt gtctttgctc 188280 tggttgcggt cttaggcacc cttataaata gagctttgaa gagaacatta ccaatgtatt 188340 tttaatgagg tcatgttata aaattgtcgc ataggacttc tcaagaaaag acagcctctt 188400 ccttgcaaga tactttcttt tgcaaagatt gagatcattc cacaacaata gacctctgtt 188460 cattgcttcc ttcttatgca aaagtggccg tccctcccat cagaaggacc cccgctggca 188520 ctctgtcagg tagacagaag catggataga aggctggtgg tgagctccag gtgccttccc 188580 tattgtctct tctctcctat aacctcgtat aaccttcctg ggttttcctg ggtgcatgtt 188640 tttttgttgt cattggtgtt ttgacagetg getgtecagg caaggetget gtgtttgage 188700 agaggtttgc tgagttgagc aggggtgtgg ctgcagggcc tagcctggcc tcccaggagc 188760 eccegetece egtgtgccca ggtcatacce aaacaggage attecttatg etggteetgg 188820 acagcgtttc tattaaaggg ttctttgtgt taggaatgtt cagcagagcg ccatgagccg 188880 ggtgagagtg gaatgagtgg tttacccagg gcacctctgg accctgggag tcacagctgt 188940 ggaattttac tggagttttc actgcagtgc agcccagggt aggacacaga gggcttccac 189000 tcccttggag catgctaatc tttccaaaac actcattcgt gggccctcat agaagctcct 189060

agggcattac caagaaatag cagtccttga tcatatccag tgaattctga aacagtgaag 189120 gaatttagat ctcatgtgtc catgttgctg agggcgtcct gggcacagag cctgctcgca 189180 tcaggccaga ttgtttggag tattgccaac tggccttttt tctggagaag aaagtactga 189240 cgctacgaag acttcagtgt tctcctgcag gggactgcag gggactgcag gggaagggag 189300 gattggcctg tcacttgcca tctctcattt ctgcgatgct acagagaggg aaggggaggc 189360 atacatatqt caqaatctaa attacagcat gtggaaagac ctgccctcgg ggtcagagca 189420 caccaggctg gggaggacct agtttaaagg gatagaagag acattacttt agctccttct 189480 cttcaggggc tccataatgg ttttaaactg ttctttaaaa tcgaagtttt tctaatctac 189540 ttttgactta tgtattaacc aagaacctct tgtaaatctt aagactatat agttgtcaaa 189600 gacaggcaac ttgaggttga gtctgttgct aactaactta ctgacttcgc acaaatcact 189660 ttgtctttgg gaacctcgct cccctatcag taaaacagag atgattgatt gattcaaaag 189720 cattcactga gcacccactc agctgcgagg cactgcctgc atacttggga tatgtcaggg 189780 agtgagagag gcaaggatcc ctgtcaacat ggagacttca ttccagcaga ggagacacac 189840 aggaatgagt gaatggaata agcaaatagg gtatgtactg taggagcaaa caagggatag 189900 aaacatggga gatgggtcag gagtgtggac tcgagtccac agcgctaaac tgtcccattg 189960 agaaggtgaa tgagttaaaa gagatcagga agttggccaa gtagatgcag gggaaaagtg 190020 ttccctggag agggagctgg ccagctgcat gcacaaggcc tgatggacgg ctgagccagt 190080 ggggaagagg aggcagcagc acagteggga tgaactggca ggtgggcttc tgctccagaa 190140 gagatgcggg agccctgcag gtttgagtga agagtgcatg gtccaacacg gtcttcagag 190200 catcgttcca gctgctgcag gtttgagtga agagtgcact gtccaacaag gtcttcagag 190260 catcattcca tetgetgeag gtttgagtga agagtgeact gteeaacaag gtetteagag 190320 catcattccg gctrctgcac agggaagagc atcaggggca agagttgatg cagacagtaa 190380 tagatggtaa tagagtcaga tacaattggg caggcaaygg ccctttacag atgacgaagc 190440 atcagaaaag ttagggtgca accatttgtt ttcagtttac aaaaagggaa gacgattaat 190500 ccccaaaaag gagcctgtga gagtcagatg aagaaattaa gaaatgaata atatgggtca 190560 catgagacag tetettett tttatteatt tatttatttt tacaaaaaag tatgtttetg 190620 tgtccttcag cacagtttgc aggagcattt agagcacacc cgtggagtgg cccttttatg 190680 cttgccaagc atgctgaaca ccgtaagcca cgtgtgacac atcttccatg gacatgaaag 190740 atatgttgat cattttattg ggctccagtc tcagctctgc cacgaactgg cactgtgcct 190800 tggaccaagt cacttcatcc ctttgggttt gcgtttgctc ccctggaagg taggggaggg 190860 gtgcagtgag ctctggcgtt cttcttagcc tctgctgcag ctgcatgagt gggtctatgg 190920 cacagecece tgeetgeate atggeaggtt atacacagta aagagatgaa aggaattttt 190980 ctgctaaggg aagtagccc atctgtcagg atagttggct ccattgtgtc taacgtaggt 191040 atcttataag cctgtacaca tggcagccaa ggggacctgg ccgccagagc cgtaggagat 191100 gacccagcac aatgggctgg gcagtaagga agccagactc tggagccagc gtggaggtgc 191160 aggagetegt gagtatgagg geatgatgag gggtgeacag aggaaceeet gggetaacag 191220 gggcccagga gacagtatta cggcattggg ctttgtattg ccggagacca gcacagatcc 191280 cacaatgcaa cgatgccaaa aaacggtaga actgaaaacc ccagccagat caacgcgaga 191340 ataaatetet tttetgetga aattgatage eteetaaaat getaagaeae atgeagygga 191400 gaataatcat tattgaccat gaaatagcta agaaccagct gagaaaatac agaaggacac 191460 acagtaagaa tgaatgagaa aactcttgca tagaggatac ggtcagagtt agcaaccagt 191520 tgcttcttca tgtaaattaa atcagcggag aatctaaaac catcccgtag accacattta 191580

gagggtagga aggatgcaat ggggcaaggt gggcaggaga tgggcttagc atccaagcag 191640 gctggactca cagccctctg cctggtgtgt gatctcagca cttcttgtac cttatctgag 191700 cctcaatgaa ggtaataaaa tcacctgcct ataagcctgc agtgagaatt agaggagcaa 191760 atggatgage etcagteetg tgtggggtet ggetgeteae aaggeaecat ggaegeegte 191820 tttaccatca tcactgtega cccggagcca atggtgaaag caggacacag gcaagcccca 191880 gcgtttccca ccattgtctt atttttcgg cttcaggaag acattagact tctaggaaga 191940 gatteettaa agecaggaet agaaggtaga etecagattt tggetacaag tggeaaatat 192000 gtcttgtaag atgaatttta tgtacttgtg ccaagtgcca ttggaaatac cgaagactgt 192060 gcaaaaataa aagacaacaa acagccccag gaacccggag ccctctccca gcccagaaca 192120 ttcaccagct cggccaagag ttctgctggg ttttctctgg gggctggtgc tgctgtggac 192180 acgacaaccc ggaacacgga gggagggctc agcgctagga agggagaggg aatgaagagg 192240 agtttccctc tctttgctaa tttcttcgtc tctgggaaca tttccttcaa cagagtcctg 192300 cttttctcat cctcacacct cactgcgccc ctcctgaacc cactcctttc tgaatatggt 192360 ctactgtcct tccgtgaccc acatcacctt ggtcctctcc ctcataagca catcctaggt 192420 cagaaccctg cttgttggtc tttctgcccc cagcacttga cctagagcct tgcactgagg 192540 acgtgccact catgtctgct gaataaacag ccacatttcc agatgacgat gtccttttcc 192600 agccaacatc agctcagcgg geettcacgt atttagttat acttgtgccc ccgctcaaca 192660 gggtgaggat gctcctggac acagaaatta gctctgaggc aggaaggagg aaaggggatg 192720 cttctgggag gcaaaggcgg tcaatcagag tgagcaccag agactccgtg tacctgggaa 192780 atacgtgggt tcccacacca gccttgggga gccagggtgg ggaagagggt ctgcagagca 192840 agtttaggat gcagcacatg ccaagctttt cagagtctca cagtcaggaa cagaactcat 192900 gcagggaggg gagggattgg aaagtaggag gcaaagcaga agccccgaac ccaaagacag 192960 agceggegae eggecagagt geagetetga geeteagaea tgaggggaga agaaggggat 193020 ggggtggggg gcggtcgtga ggaatgtcgt tgtccaggct ccacccggcc caccagctcc 193080 gcagaggaag gagtgggctg ggagaggcac acaccagaac agctctcctc ggggcaaagc 193140 aggetttett eeegaacaee caaggettte caaaaggtaa acaccattte eeecaagega 193200 ccccaatgtt tgctgaagca aaacctctcg tgtgagccgg cgggcggctt cacgacagge 193260 gtgagaagge catggeeetg tgtgggtgag gaagegeagt geggeteeee cetgegtggt 193320 gggactaaga agagccccct gccacccgaa aggcgcccta acacttcaga gagcggatgg 193380 ctgccgaggg tggccaggct ggagctgcgg cttcccaccc gatgcattgc agaatgtaac 193440 tttccaaaat gcattgctct catctcagct cagcgttaaa acacatgtgt gcacacacgc 193500 acatgcagcc ccgctgagct gggtggtgaa aagaccctaa ttagttctga ttccttaagg 193560 catgtatttt aaaaagcgtg aaacctattg agatgctact teetagegeg aataegggge 193620 tcttaaaagt cctgataaaa gtgaaaatcc gaggogogoc tgggaagtgg gaatgttccc 193680 tccaactcag gcttccacgg tcatgagtag gaagtcctct tcctaatctc agtatcttaa 193740 aaagaageet tgatgttgtt aegtgattae etaaaaggaa tgeetteete egeggaeegg 193800 aaggatattt ttaaaggaat gtgaagcttg tgacaggaat tatcgatacc tttggaattt 193860 ttttttccaa gtgactcagg cttacttgaa gccattacct cggagttagt cagggactgc 193920 atgacgccag gccccaactg tttaaagcag agcgcggctt agtgaaagaa tgaaaaaacc 193980 gaggatgtte tttgtecatt atteteaceg tgatgaatga tgettgtttt cetetecaet 194040 ttaattagaa tgtttctaca tttgccaaag aaaatgttgg aatggagaca aaaacctgaa 194100

attataggaa cagggcttga	tgtaatagct	tatttgtaaa	ggaaacacaa	cttgtttggc	194160
attttattga aacaggaagt	tcagaagctt	agtacacaca	agtacaacaa	attctcaggt	194220
gcttgttgag tcatctgttg	ttggaaatag	tctcctggta	gttttcccct	tgatttactt	194280
tttatcttca ttttgttttt	ttgaaagtag	tgagggtagg	aagttacaga	gagattcaat	194340
tagagattat gtgtattttt	aaaaatcagc	tatcaagatt	aaataaagca	agcgggaatt	194400
ctctccttgc tcccatgtac	caatttttgt	aattatgtac	aagatgaggg	aaaccaaaga	194460
aaaacaataa cttgcttcaa	tgcaattact	aattcaaaag	taaccattac	tctggggaat	194520
tgtattagag attaacaaag	aggaaaagta	ctgtggtttt	ctttctctat	gttctatttg	194580
ctaggaagcg gtcaataaag	taaccttttc	cccacaggag	ctggttaata	gttcgcttca	194640
tgctaaataa aagttacaga	aatatctgga	gctgagttgc	tggagacaca	gaaatcttca	194700
ggttggaatt tcttgccctt	ttccaaagga	ttaggccagg	acattgctgt	caaatctgca	194760
aaacctactc atcctggcaa	gagtgcggta	tttttaggac	tcactagtgt	gctacttcta	194820
atagtgctta gtcagggacc	cccaggggag	tgcaagggag	agagggtccc	cagcagggac	194880
gccagacctt ctctagctgg	ccgtgggtgc	tggcctggcc	acctgtagcc	ctcagcgcac	194940
aggtggaggt gtaactggta	ttcctgtggg	agtgacagtg	tccatctttg	acatttaaga	195000
gcctgctcct tcagatacat	ttaccattgc	caccattggg	gattggggca	gtactggcca	195060
cccttggcgg cacatctcca	gcttacagca	gagtctgagt	gtctctagca	tacctctgac	195120
tgaggcasgt taggcttgtg	acatcacatc	ttcctaggtg	gggcagagac	tttacaatac	195180
atgtgacaag agaaaaacct	tacagctttg	tattgaaaga	tttcttaagt	ttttagttta	195240
ttgactaaat aacactgaac	aaaatgattc	tactatgaaa	cgaaaggatt	ggacctctgt	195300
gagggttgtg gcaatgtttc	aatagctgag	caacgcagga	ggcacacagg	ccatcgttgg	195360
gggcaggttg gaggccttca	gttcctttac	agctatgggc	tcccatcaag	ggtgagtgca	195420
ttgaggagac attgcctaga	actactggac	agacatctca	cccaggagac	gggagcatgg	195480
tactcaacac acttccatgc	accgttcaga	atcgctaaac	acagcagtgc	agaggcagat	195540
gacaagggcc attacggggt	caccaaggga	ggaaataggg	actggagccc	ccaggaagga	195600
gagetgagte teeetgtggg	ctgggggctg	gctttgtggc	cctgcagcca	ccacctggag	195660
atgagagacc tgtccctagg	cctccctgca	gccaccacct	ggagacagag	tccctagacc	195720
teccagetgt geccacetgg	gcagctgcac	tttccagagg	attattcctg	cagcttccac	195780
cctcacatct ctcagctgtc	tttgcaggtg	catctctgga	aaacagttct	catcagggca	195840
ccctgtgctt cccagtttct	agtcatttcc	cttctctgaa	ggttctagtt	cagactcttg	195900
agcaaagcct tcaagacctc	tccttaaact	gccctcctcc	tcttccgtcc	agccacctgg	195960
ttgcctcctg gctcttcctg	ccctaatacc	ggctgcccgt	acgggactgc	tcacctcctg	196020
cagggagccg gacgtctgtg	gcgatctccc	tcccgccatg	acacccccta	cctgtcctcc	196080
atcatatggg acacacacac	acacacacac	acacacacac	ccctacgcac	acccacaccc	196140
cacatgcaca tcatacatac	atgcccacca	gaaatacaca	caccatacac	accacccacc	196200
cacatgcaca ccatacatac	acatacacac	aacacagaca	ttaaatacac	atgccactac	196260
acacagtgca taccacacac					
cccacaccac acacacacac					
aagcctttcc taattatcta					
gagaaattag tgtcaccctc					
aatactatca tataaaaagg					
tcttctgcta gatgatgagc	ttcctgaatg	caggctctga	agaattttt	catagtttta	196620

aatccactgc atggaataga gaaggctctc cataaacttc ctgagtttaa atggaatcgg 196680 attggaaggc agtagcaagg cacaaagtgc agtgagagcc aagctcagga aaaccagtgt 196740 ccttgagcag aaagacttag gaagggtgct cgctagcgag gagggaggca acaaggggcc 196800 agcccgtggg gagccttaag caccaagagc agggcggtgc acactttgtc tggcacgggc 196860 tggagcagga gagggaccgt ccttgcattc tgtgcggatt tctatggcaa tgacatggag 196920 ggaaatgaag gtaggatcaa gagtcccact gggaagtggc ctggcaacca gaggtgtccg 196980 caggacacct gagcctcagc agtgtctgtg aggataggag ggaaagccag accccagcct 197040 ctctggggag aatctggatg catgcgggag gaatggatgg aagggagggt gtggggctga 197100 gtggcggcgg ctgggctgtg ctctcccact cacagagcct tccccaaagc ggggaaggct 197160 gcttgccttt tggttcattt cctttcttta atacacagca aattcctggt caccctttgt 197220 tgttggctgg ttgggtttgt cgctttcctt gttgtttaca agctccaggt atttgtgaca 197280 gatettatea teteetteee tettagteae etettggeee aactetgeat attttacett 197340 tttaactctg ctcctgttct gacctcccca ctctcggaag catatttgct tggtgttttc 197400 agattttatt tcattttggc tatttaaaga gatgcaataa actaaatatg gcctggcaag 197460 tctggtctta aaatagaaaa tatatatata tgtatatttg tgtgtgcatg tgtgtctgtg 197520 tacataggcg catgtgtgtg cccttgagtg tgcatccgtg tgtgtgtgtg tggccggtgt 197580 actataaacc cagggcatca gtctcctgac gtcattgctt gcactttttg ccattctccc 197640 ccaaacacta gttttcagcc tgtattttct cagtttcccc aaaaatgatt ttttaagaaa 197700 agtcaaatca gaaagtgatc agcctctacc gccggactct gcttcagtat ccatccatgt 197760 ctctgaggtc ttggggctca taggaatgtg cttattttca tagtcccatt aacatgaata 197820 gtttcagaag ggccagctca gttttgtctt cagttttctc actggtgatt gtgcaggggt 197880 ggaatggcaa tggaatgcat aggggcatga gtgaactttt cgggatgacg gaagtactct 197940 atattttgat tgaggtgtta ttaattcaat gtgtcaaaat catcaaaatt tttacatttc 198000 atcattetta aattataeet eagtaaagtt gattttaaaa gttaaacaea taccetttge 198060 tcgaaaatga tcctgtagag cgtttatgcc tttatatgaa tttagctaat gcattctctc 198120 cccagggcca tttgcatttt aggatataac tgatgatgtg gaaggtacta gcaaggaagt 198180 atgggatggg aatctgggga tggaagtacc ttcctgcttt cagtaagtta cataggcact 198240 ccttattcat aaggctgagc ttggtttcag ataaataatc agaaagtagg ttgtgcaagg 198300 ttttaagaag aggatccaaa ctgggactta gtaacgaact ctgaaactgc cacttgcatt 198360 ctctgaactt cacatcaagt caatactctg tatgctacaa ttccatctta cattaaaaag 198420 caggictact aagggacccg attcccaaga aataaatgig cittitacaa igciigatti 198480 gcaagtcagt ttcaaagata atttggtgaa gatatcagag ttatttttac aagattaaaa 198540 atcagtattc aacaaattat tttattcact ttgacttttt ttttttttta acctgtctgt 198600 gacatatgtc tcctttgatc cgcacacaca ccctggccag taggaaacag gcacactctg 198660 ctggtggcag agggatgggg actggagcct gatcttggac cttccctgtc tcatctagct 198720 cagococcat gotgtcatag googoagoca agtggootto cacagococt coatggagoo 198780 atcgcagaca cagcttctcc acggagccct gttctcagcc ctggaggccg gcaatgtgct 198840 tcacccactg cctgccacat tccagccaac agaagaactt ttgaccgaga agtagaaact 198900 aggtgattca gatcagatct ctgttgtaga ctccactacc ctaatgatga atttttaaaa 198960 ttaaacattc cctaacaaac ctccaagact ctttgcttgg gtcggtcaaa atacagtgga 199020 atgtgagage acatgteaga atteteeage etaegtttge tgttgttgtt gttttgagae 199080 ggagtotoac totatogooc aggotggagt gcagtggogc aaactoggot cactgcaato 199140

tetgeettte aggetegagt gatteteetg eeteageete etaagtaget aggaetatae 199200 gtgcgtgcca ccacgcctgg ctagtttttg tatttgtagt agagacaggg tttcaccatg 199260 ttggccagac tggtctcgaa ttcctgacct caggtgatct gcctgcctcg gcctcccaaa 199320 gtgctgggat tacaggtgtg agacaccaca tccagcccag cctactttta tactatgaac 199380 aaaacttett agaattaeca aettaagtae aatagaaget titgaaatta geigggggga 199440 aattgagtct ctaagtaagg aggagtaaga gcaagaagat cagaaggaac cacagaatca 199500 aacactttca aaaggaaaga aaattaggaa attgttcggt gccatccctt catttcagag 199560 gggaagaact aaggactaga gaagtcaggt caccccgaca ggaccctatg tccctccttg 199620 tegeetgaee tetecetgtg agteteagtg gteetggtee caeageaggt gettggggae 199680 ccagaaagag gccaggtctc ctgacaccca gccccgctct tgttgggtcc ctgaatctgg 199740 aatggttact catgttgggg gaattttata ttcttttttc caaaagttga tatccagcta 199800 gaatctgtcc ttcctgagag cttgtcactg ccctttctct cctccctgcc tgtactcctg 199860 ttcgcttggg actcacactc cttgcaaaaa agcttgtttc acccaggggt gagttttgta 199920 actagagcag ggagtccttg cctttcattc caatgcattc cccaaaagca gaaaagtgtt 199980 atgcgatggg agtttgcatt ttggaccaaa gactccgcag caaataaatc atggaaacga 200040 acaatatgtc cttaaaccaa gatgtaactg taaacctcta ctgtcttatg aaataacaat 200100 actgtgcttt gagtagccag accacatagt agctggactc tagactctaa gcagggatga 200160 agtcagtggc tgctgatctg ggccttcccc agaaggatgc caagagatca agttttgttt 200220 ttaagttctg tgaatcacag acattatttt tgtaatcttt ttttttatga cacagagtct 200280 cactctgtca cccaggctgg agtgcagtgg cacgatctca gctcactgca acctccacct 200340 cccaggttca agcaattctc gtgcctcaga ctcccaagta gctgggatta caggtgtttg 200400 ccaccatgcc caactaattt ttgtattttt agtaaagatg ggtttcacca tgttggccag 200460 gctggtctcg aatgcctgac ctcaagtgat ctaccccct tggcccccca gaatgctggg 200520 attacaggca tgagccacca tgcctggctt tgtaaaaaat ttttaaagcc aatttgcttg 200580 tttaaaaaaac tgaatccaca ctggtaagtt ttgttttaat aaaaaaattg tgagtaagtt 200640 gtaaagcttt tgataagttc agtggctcct gtaggcagac aataaattgc taagtcccaa 200700 agtgttgcaa gattctggag agtactttgt tcatactttg aagaatatgc ctgattataa 200760 ggcaacacaa attactgaag ccttgaaatg atgaggttgt ttccatttac tcgcacataa 200820 aataatatat ctaaaacatc tagcaactct caaaagaaga gagtaaaaag cttttgagaa 200880 atcaaataca attcattcca attcaacttg aaaattccca acagtccgtg ttgcatttta 200940 tacatettga accaaaccat ggetttgagt aaaggettea tttaaaaace taacetatat 201000 atggtgggtg ttcatgttct attaaagcaa ggtccctgtc ctagttggag ggaacttccc 201060 taggttcggc agcataaacc agtgcctgtc gaccagggag tgtcaggagg atgtgctgct 201120 tcctgccccc tcccgcacag ggagcaaggc tgtgctgaat ggagatattc tagtaaggag 201180 gagagtgtat gtgagaaggt gtatgtgaga aggtgtggca tccacaacaa aactaataaa 201240 gcatcagcaa ccttaggtga tgcggtttgg ctatgtcccc acccaaatct catcttgagt 201300 teceacatgt tgtgggaggt aattgaatea cagggacagg tettteteat getgtteteg 201360 tgatagtgaa taagtgtcat aagagctgat ggtttcataa gggggagttt ccctgcacaa 201420 gctctcttct cttgtttgcc accatgtgag atgtgccttt caccttccac tatgagtgtg 201480 aggeeteece ageeacatgg aactgtaagt ceattaaace tetteettt gtaaattgee 201540 cagtcttggg tatgtcttta tcagcagtat gaaaacagac taatgcattt ggaaaccaag 201600 aggotgatgg tgttcaggac acactgtoco catttatago acottggoat ttcagaaaat 201660

cgcaaaagca	ggaaggcccc	tctcactttc	ccctccttgc	ccttctcccc	tggggcaggt	201720
tataagatcc	tcatttggga	gagtctttcc	caatacttgg	aggaaaggaa	catccttgtc	201780
tctgaagaca	cagagcacag	agaagaatca	gaacaaacag	gcctttctca	gtgaccccag	201840
tttatcacca	ttagctcact	cccagtttgt	ctaatcacct	cctccaccac	tatccactct	201900
tcatcaaacc	taagtacaaa	atacccaagt	ttgcctgttt	ctgtgggtct	tcctttcctt	201960
gtgataactc	ctgagtcaca	tgaaacacat	actaaatatg	tgtgcctgtt	ttcctcttgt	202020
tactctttag	ttacagggaa	gggccccagc	catgaaccta	gcaatgggtg	aggaaagaaa	202080
tctttccttc	cctactgata	tggtttggct	gtgtccctac	tcaaatctca	tcttgaattg	202140
tagctccctc	aattcccatg	tgttatggga	gggaaccagt	gggagataat	cgaatcatgg	202200
gggcagtttc	ccccataca	gttctcatgg	tagtgaataa	gtctcatgag	atctgatggt	202260
gaataagggg	aaatgccttt	cacttgcttc	ccatttttct	ctcttgtctg	ctgccatgta	202320
agacatgctg	tccaccttct	gccgtgattg	tgaggcctcc	ccaggcaggt	ggaactgtga	202380
gaccattaaa	cttctttctc	tttataaagt	atccagtctt	gggtatgtct	atatcagcag	202440
catgaaaacg	gactaataca	cctaccaggc	ccggatttgt	ttggcaataa	agtgatccat	202500
tcacgcccaa	gaagtgggtg	gagctgggaa	aggccagacc	aaccatttgg	aatagtgttt	202560
tttgatccac	ccccaggagg	tgaggattgg	caggggctga	ggggagtgct	cacctccagc	202620
aaggtgagct	ggagcccaca	gcaggactcc	agcctcagca	gaggaactgg	agagcaaacc	202680
aggaaaggca	gacagagctg	actcacgtgc	gagggtggga	gaggtcgcac	ggcctgcccg	202740
gaccctgatg	agctgagcac	agtgaaaaca	atgccaggcc	tcacctgccc	gtgcttaccg	202800
gctggtggca	ggggggctga	gcaggtgttg	aggtgttcac	aggtgagtag	gagaggaaag	202860
gcagacgtcg	gcctaaaggc	aatcgcaagg	agaaatgcgt	tgagaattgt	agcactgtat	202920
ccatcaaaaa	ggaagctcat	ctttcactgg	gtgtctttct	aattgttaga	cttgacactg	202980
catttgctgc	cctgatttct	tgtcctaacc	ttcaagcttg	ttagaacagg	gactcaggga	203040
ctctgttttc	ttctcctgtg	ctcagtgcag	ggcagcagga	ctcacttgct	aagtgctcac	203100
tgacagatgt	aagattattg	ttagagatat	ggacccgctt	gctcttctga	gcttccgtga	203160
ttctcattcg	gtcctttgct	gtcattagaa	tcgtctgggg	agaattttgt	cactcctgct	203220
actctgacca	aacctcgtat	acttcaatca	gaatgctcgg	agttggggct	gcagcaactg	203280
gaattgtttc	aaactccccg	ggtgactgcc	ctagcagtca	agtttgagaa	ccacgggcat	203340
ggtaaaatct	tttctcagcc	tgagcagccc	attagcttca	cctagggagc	tttaacaatc	203400
actaatgcct	aggcctcacc	accctccatc	ccgtgttctg	acttaattag	cgtggggtgg	203460
ggcccctaaa	acaacattct	aacagcttcc	caggcgatga	gaatgcacag	ctaggatgag	203520
cttctcctct	gaagcatgaa	gacccacaga	atactgcaga	gttgctgggg	gtggccctgc	203580
ccaaattctc	gcctaaaacc	ccaactttca	atgacattgt	ggacctgctt	tcgtgttatt	203640
ataaggttta	caaatttcta	tgccacctat	cagaccattt	tttaaggatg	aaatcaaagt	203700
ttctataagt	tgtatagttc	tttccctgtg	cattttatcg	taatattgaa	aaacgacagt	203760
gaaaagcaac	caaggcatct	cggcagcatg	ctgctgacta	gttcacgcag	ttaccaccaa	203820
	cgggacccag					
gcgttcgagt	tttgacatat	ttctcgcagt	tgttgaaaac	tatgaggcat	gaaatccaga	203940
tttatgactt	tttaaaaagt	tatttgtgga	ttcccaagac	gattatgttc	ccatcactta	204000
	aaagaaaaaa					
attgagttco	agtgtcagtt	gtctgaatcg	ccttcagcga	aagtcagggg	gaaaaaatac	204120
attccgcctt	cctttaactg	ctagttcgtc	atggagaaca	gaaagtccca	tttgcatgtg	204180

gcttttggaa aagctaagcc gggagcgatt atcctgatgc gcttttactt tttgcataaa 204240 ataagaattt gaggaggatg tcccgggaga gtgagccact tctcatttcc caggcctcgc 204300 ctgccatgct ctttgacaac atcatagatt ttatttttgc Cgggaatctc attatcaaag 204360 caatgcccc cgcccccc ccccacaca agactgccag gtaaaccaca gagggtgagg 204420 ggggtgcagg tcatggttgc cttattacac accetectet gccateacet cettttttgt 204480 ctggataagt tetttggcag ttetetcaac ttttatttet gaaacatect gaaacatete 204540 agtattaaaa gcaaggccga ttatataaac gatactccca ggcctgacaa cacatggttt 204600 tgcctgaggc ctttactgcc aagagccgta aggaccctct aagtcatgtt cgctattttt 204660 actggccttg agagtctcct tgctttgaca tcctcttgtc tccattgtca gactgttaaa 204720 tgctcatgct tctggttctc ttaaatagat gcagatgtgt ggggctgggt tgccactgag 204780 ccctcttctc ttttgcaaga gctgggatgc agacagaagg cggtttggaa aacacgagcc 204840 accttgattt tagacaaact ctaagttaca atcaggtgtc ttcatttatg acatttaact 204900 tttacttaac ctaatcaagc catgttgttg gctactgatt agaatatcct tttataactt 204960 accttaaatc tcactacttg ttccaaccat cccaaagtct ggcgtcaact gtcattgcat 205020 gctgctcttt tcagcctttc tagttcgact cttagcaaaa gccataatct tcctccagtc 205080 tgtttccttt ctgcagtgac aaaattgccc agggaaagga aaaagaacag catctatctt 205140 ctttcttttt agctccctgg tttaaggctt tcttttcccc catgatgaaa aactataatc 205200 attctgctta gaaagtacag acccctaagc ccacttccaa aagaaggatg cattttcaag 205260 tetgttatet ttaettteee agageetggg ggteteeeag geeagaagtt gaeagaaetg 205320 tetteataca etegagacaa etteatgeee attteettaa aactaagaac ataagaeget 205380 gatttttctt ccagaaaaaa aaaaaccttt cttgttcttt caagaactgt ttcacggaca 205440 gtgtttcata ttacaaaatt gaaacttggg acttttgaac tgcaaattta gcagaaaatg 205500 aatccatgcg cttgtggctt tgcttgtcac ctctactcag atgtctccca gacccctctc 205560 cagctgcaag ctgcaggcag aactgttcct ctaaaaagaaa acaaactcct gtttttccta 205620 ctactgctac tgcttctact gttgctacac acacacatac acacacactc tctcacacac 205680 acactcacac acacacacac acactcagaa aacacttctg acaccaaatg tatgggtttt 205740 tttcatgcca aacaattctg cagttcactg cagacaccag ctgagtgtcc tacaatccaa 205800 ttgtggcacc gcctgcctgg agttagcagg tgaaggactc agccccgcaa gcctgccccc 205860 ctacccatgc caattgcttg tcccagatcc ccgttctaac tgaccagcgg taaatcaggg 205920 gttgccacaa cccctcctg ggatttgtaa cttgctacag cagctcacaa aactcagaga 205980 aacacttaac attgaccaat tcatcacaaa cgatattttg aaaggatgtg aatgaacagc 206040 cagagaagag atgcacaggg cccggggccg gggagcaggg catacggagc tgccatgccc 206100 teteaggggg cateacetee tgeaceaggg tgtgtteaac cecaaagete etgaaceett 206160 taacgtcagg atttttttt atttttttt aaagacatag totcactotg totcocaggo 206220 tggagtgcag tggcgccatc tcagctccct gcaagctccg cctcccgggt tctcgccatt 206280 ctcctgcctc agcctcccca gtagctggga ctacaggcgt ccgccaccac gcccggctaa 206340 ttttttgtat ttttagcgga gacggggttt caccgtgtta gccaggatgg tctcggtctc 206400 ctgacctcgt gatccaccca cctcggcctc ccaaagtgct gggattacag gcgtgagcca 206460 ccgcgcccgg cctaacgtcg ggatttttaa ggagcttcat tacataggca ggactgatga 206520 aatcattggc cattgagtga accocagacc ttgcgggggt ggggctgaaa gtttcaaccc 206580 tecaaagatt gggeacgtte etetggeact eggeeceeag cetecaggag ceaceteatt 206640 agcatacacg caggtagggt tggaaagggc ttgtgataaa tgatgaagga cgttcttctg 206700

catcgctcgg ggaattccaa gggtttaggg gctcactgcc aggaacccgg ggcagaaacc 206760 aaatacatat ttetegttat ageacagtgt caccecetea etetgeetaa tttggtgaet 206820 agctgcccca tcacattctg cctatttaag ccaagccccc cttccccaag gccaacctcc 206880 tctcctccac agccagccca cttcccgggc gtgataactc ttctgcctca gctggagagt 206940 tgttctgagg ctttcatcct tctccacgtg ccgcctggca gtgctgctgc ctgtcttttg 207000 agggctaccc ctttctccat tacctctgcg acctggctag tccacatcct ccccgacccg 207060 tgctcttcag caccggtgcc tgccccgctc agtgcatgtc ctcatccctg cagcctccac 207120 cctgggcttc ctgaccccca ctgcgtccgg caccgctggt tgcgggcctg ctccggctct 207180 ctctgcccag ctggctggcc tgcctctgtt ccgacctccc ctgcctggcc tggtgttctg 207240 ggcgcctcct ccgctcacat cgccgcttca cctgcttttg ctatctgcac tttccatgtc 207300 ctgctccttc tcccagctgg tggtgcctct gagaagagga ctgagaaccg cctgtgaacc 207360 ccgcaatttc gtgggtgtgg tggaagcaaa ggcagagcgt gtgagtttag tgggcgtgcg 207420 ccactettte aagaagtttt gttacaaaaa gatgcaaagg aagtgaagag ggaaggggtt 207480 tgcaggttgg gagaaataac agcatttgtg ttgtttgttg ttgtgacggt tttgagccaa 207540 aacatgacaa acgggacaga aggaagacct gatggagcgt gtccttgaga aggcgagagg 207600 catggggttg gcctgctggg ggatcggcct tccatatggg ggttcctctc cagcagcctg 207660 gggttctgag gaaggcaggc ctgaagcagg tgccgggtgc cgggaagcag gagacatctc 207720 tgttactcca ctgtcctcag tggggagcca cggctgagcg tgagaaaggg cttataggct 207780 gaaggccagg cagacgggaa tggccaggca gaggagggga ggacgagccg ggtagaaaca 207840 gtggatagaa acacggaggg ccacacggcc aacggtcagg ggactggcac accagccaga 207900 ttcacccgcg gcgatgccgg tgcagagaag ctcggcatct gaatttaacc cgggttgtgg 207960 tttgactcag tctgacgtgg agagaagggc cagggagtca cgggggggtg gtgggctgtg 208020 tgctggttta ggggctggga catggagggg tgaaggcggg agtcagtcgc atccgctggg 208080 caggggcctg gggctgcaga caaggtggga ggtggcagct acggaggaag ctacaaggga 208140 ttctgcagtt ccccggggaa acaggagccc aagggaccgg ggggtgaggg ggttggaagg 208200 ggcacctgtg gatgttctga gacttccagg aagtgggaca ggatcagtga tggagataga 208260 gacagagtca tcagggccga gaggaatgac agtaacagcg aggttgaagt gggcaccccc 208320 gtctagcagc acggggtgtg gagctggctt gtggacggcc agggaacagg acgctttgag 208380 gtggcagcca ggggcaggga tgcttttgat cgccaaggga gaagacttga tgcagagttt 208440 caggagcctc catgacttcc ccatctgaag acctttttta ctttaatggg attgaagtga 208500 tcaccagaat agttaatggt gtgctccgtt cctatttctc tggtttttct aaggtccaca 208560 ggctgcagac atcgtttgta cttctccccg gtgccaaaga ccagttaatg ccgactttga 208620 tgggctcagt gcaggccaca ttgtcacgtg taactctaca ctgagaatta ttttagaagg 208680 ttagactcct aaaaatgttt tgtttttcca aatggtggcc tctgggtctg acttcacctc 208740 ttttgcaatg atcagcacta ggatatggtt ttggagacgg ttgtgcagag ccagggcttt 208800 caccaaaget tggcegeteg gacaggaete acgatggaag acggteaggt geeceaggtt 208860 tragatgeet genteeteer atgegtggtg aggggeetge eteetttata gettteeget 208920 gccaggctgg cgcctcctcc cctcaccccc atctcctcca gaggaagacc aacttaatca 208980 aatettacca caactacgta etgeeteetg gaaaaageet gatttetege eecetettgt 209040 ccctccctgc gtggaggcag gccctttgtc cagtgcccat gtggcttggt gggtggtctt 209100 tctaagttat cagaggacat tagcaaacac acacgtccat tggcctaacg cccaatctgc 209160 agccagcott atgaataato aacgtgactt gtototgtag ttoaatgoot atatotgoot 209220

ctcagttgtt attgaagctg	ggggcaaaaa	agatggatta	ttcattggaa	acctcaaaac	209280
ctcgacagct gagctttctt					
ctccccattt gcacacagga					
cattctgtct tgaatctccc	tcccttcccc	aaccccatac	cccaccctac	tccatccctt	209460
tttcttgggt cttcctgatc	tcaacccctc	catctgtcct	ccacgttgtc	tgcatagtga	209520
gcctcctaac acacggatcc	ccccatggcc	ttgtctgctc	aggtttctaa	ggtccccagt	209580
aaccacgctc acactgcgta	acacgaacgg	tctggtccac	acctcatcac	ttggcgtgca	209640
tgtgaatgtt ttagcaagtt	agctcttgca	attattgcct	gccgatcccc	tgggctgcat	209700
tcacacatgc cgtgagtctt	cagacaccca	ggtctcagga	cctgaggggc	tcctgtgtgc	209760
tttccgtgag gaactgtctt	tctgctcacg	actccatgtc	acatgccacc	atcaggaagt	209820
cctccctcaa tgccccaagc	ctactcaggc	tcccactttc	ctgcccatga	aatgtgtgta	209880
acttctaggg tgtcctgaga	agcaaagacc	atgtccctgc	atttttgcat	cctcagaact	209940
tagcctgata ctcacaatga	aatgagttca	cttaacgaca	caacgaacga	atgtgcaggt	210000
acttctgcag ggggtgatgt	ggggatgcgt	gcattgattc	tgtggctcag	ccctgagttg	210060
ggggcaggag gcaggtgctg	ggaggaggat	tttatgtctt	aggaagcaca	ggaaggcctt	210120
gccaggatcc aagaaaaaat	ggaaagtaga	ycaatgtaag	cgttaaaaga	acacatttta	210180
tcttttaaat gtgtgtacac	agtacagttg	acttttttgt	atacaattct	atgagtttaa	210240
acacacatat agattagcgt	aaccactaat	tataagattg	tagggaactg	gggaaaaaat	210300
gcatgcatta aggaatgata	yggcatattt	gggggacaga	gaacaggctt	gatgaggaca	210360
gagtctattt aaaagagaca	gtgggcacsg	caattggagg	ggaaggcggg	gcagggtttt	210420
agagaacccc tgagtgctgg	gctacaggat	tcagtaaagt	tattgatgag	attggctgca	210480
ttgtggattc tgaaatattt	atttaatacc	tcgaggaggg	tgtgagtaga	ttgtgctgat	210540
gatcgcataa ctctgactat	actaagaacc	actgagttgc	acccagagct	tgcattactg	210600
agcgctttac cagttaggaa	ggtttcgcgt	attccgtact	ttaaatctaa	ggtgacttga	210660
ctgtaaggcc tgcgagtatt	tcctggacca	ctcagaggaa	gaatgctgtg	aatgagaact	210720
acagccctgt aagacacgtc	ctgtatcgtt	gttgagatgg	gaaagtgcat	cttaagacgg	210780
ttagcaggcc gaggagcgac	tttaaagggt	gagetetgee	tagagggaaa	agcgaatgca	210840
ctaattgaaa tccaacaccc					
catttcttgg tgatggataa					
ctgttctgct tagctttgtc					
ttcggagagt gtgagctaaa					
aatgtggttt aaggcaaagc					
cctcaccctc tgcaacccag					
ttctgccact gcctcctcaa					
aacattttat gtcaccatta					
tcactctgac tactgagcag					
tccataagct ccacttaatc					
ttctgtaggg gaacatttgt					
gccaccttat ctgcttgcag					
taaatagctg ctggcaatgc					
tagagggaat gcttcctacc					
tatcagtatt cctaatcatt	aaatgtgttc	ttcggattgt	cctttgaacc	agttatagca	211740

tctcgttctg tcgcccaggc tggagtacag tggcgcaatc tcggctcact gcaagctcct 211920 cctcccaggt tcacaccatt cttctgcctc agcttcccaa aagttatgat ttttaaaaaa 211980 ttatctttta acatttttta gctagaaact tctgggtcaa tatataaata gatgagcctg 212040 gttatatctg aggttttcac tgaggtaaca acaaaaataa aacaacacga tgccaccgag 212100 ccatcgttcc ccaacttacg tetgteeet ccacatgtee tgeacacact cetgtttetg 212160 gggtgtgtgc atgtgtgtgt gtgtgtaaag gtttgcaatg aaattagaat cattggtttt 212220 tgttgggggt ggggagttgt attgttttga gacagggtct cgctctgtca cccacgctgg 212280 agtgaagggt cacaatcaca gttcactgca gcctcaactt cctgggctca agtgatcctc 212340 ccacctcagc ctcccaagta gcggaaacta taggcatgtg acaccatgcc gggcttgctt 212400 atctatgtct gtctgtctgt ctgtctatca tccatctatc tatctatcta tctaatctat 212460 atggggtctc cctatgttgc ccaggctggt ctcaaactcc tgggcttaag caatccaact 212580 acctcagcct cccaaagtgc tgggattaca ggtgttagcc actttgccca gctgaagtta 212640 gagtttagag cacattgctg taaattgcga ttaccaaggg tattgaaaaa tccatgaaaa 212700 taataaacag caagttgact tcagaatttg tgcgtttgag gcttttcgcc ttgatctcca 212760 ggtaacacac aggeteettg gegagageea gtggtgatac aatgagaaca eegeetgetg 212820 catctaatat ttgcagctta gaattcacag ctaacttttt aaaatgtacc agtgtggggg 212880 aaatggtgct ttatttgctg gataggaaaa ttggccaaga tcagaattct gaaggcagtg 212940 tcacagcaca aagaaactag ctactgaagt cacatcctaa acattcgaga ggttgatttc 213000 cttttctact qcattacaaa aaggtttatt tactgcttat ccatatagtg agatagagat 213060 tagateteag tttttggtta agaacaagea ttateataaa tgtgtgtgtg tgttgtgtgt 213120 gcattttaca ggatttttaa aaatacacag agaatttttc acagttgtta actctggtaa 213180 atggtgggga aggcaggggt gagaactgat ctattattca taatctcaat gatgaacaag 213240 ctatttccaa aaataggtgg attatttaaa attattatta ttaggatatt ttgggcttct 213300 agaaacaaaa acttaacaaa aaagtcactt aaagaattta ggggtctttt tttctgacat 213360 qaaaaqaaca aaataaaqga tgatttcagt ttggtccgtc agtgacttag aagtgttttt 213420 caggacccaa ggctttccgc cttcccactg ggccattttc agcgtgtccc gtggcctctg 213480 ggggcttcag tgatccaggc gtcacattag acatgacagt gtccagcaaa gagaagtatt 213540 tctgctttgc atctgtttat aacagtgaga aaaactcccc cagaatccca ccagcaattg 213600 attctcacgt tgcattggcc aggattgagg ccagctgtgc catgcttagc gcagtcattt 213660 gtattgcgat caccgtgatt agctcagacc catcctggga cttctccttg ggcttgaaga 213720 catggccagg tggagatcgg tgccccccag aagaagtctt tgttctgcca ataaagaaga 213780 cacagacaac agtgtctaac aggaaaagcc cctttttact ttataccctt ccgtattgct 213840 tcaacaatca aatactttat tttattgttt gagacagagt cctgctgtgt cgcccaggct 213900 ggagcgcagt ggcgccatct ctgctcactg ccacctccac ctcccagatt caagcgattc 213960 tectgeetea geeteeegag tagetgggat tacaggegee taccaaaatg eteggetagt 214020 ttttgtattt ttagtagaga tggggtttct ccatgttggt cagaccggtc tcgaactcct 214080 gacctcaagt gatccactca cctcagcctc cccaagtgct gggattacag gcgtgagcca 214140 ctgcgcccag ccttttttt ctttagatag agtgttgctc ttattgccca ggctggagtg 214200 cagtggcaca atotoagoto actgcaagot coacotocog ggttcacaco attotootgc 214260

ctcagcctcc cgagtagctg	ggactacagg	tgcccaccac	cacgcctggc	taatcttttg	214320
tatttttagt agagacaggt	ttcaccatgt	tagccaggat	gatcttgatc	tcctgacctt	214380
gtgacctgcc cgcctcagcc	tcgcaaagtg	ctgggattac	aggtgtgagc	caccgtgccc	214440
ggccagatac tttcataatt	aactttttga	atgtatgtgt	gtcctacttt	aaaatgaaag	214500
atactctttc ttgattccat	ttccatgcag	cttggccccg	tgatgctagg	gaccatggct	214560
ttttcttgca gtgtgactca	ccatttgcca	aagcaaatct	cttgccttgc	atcagctcag	214620
tctctttgtc tgcaaattaa	atcaatagcc	ctttccactg	cctatctcgc	aggatatagt	214680
gccaaaaata ctcacaaagt	caccatccag	gaagaatcat	ttgcccctgc	tgccactgtc	214740
tcctgcaagg cacatgaaag	ctgctgaggc	tcggtattta	ttatgctata	aaattcaaca	214800
caaggggaga gaacaagcaa	attccatgag	catatataag	tgtatcggat	ctactccatt	214860
gatgctggag ctatattttc	acagtaggat	cctcttttgt	taaatattac	agtagtagga	214920
aaacctagca gaagaatagt	tcactgtttc	tctgattttg	tgagtgatgt	gggctgtgga	214980
atttactctt tgctgctctt	ccccaacct	gcaccctacc	cctgcctccg	aggtcagcct	215040
tgcctgctgc ccctgactga	gaggaccccg	acgtcacccc	accccaggtt	atactcctct	215100
gagaaggtcc cttcatccct	tccccgaaat	acatcccctc	aaatctctaa	tttgtgtgaa	215160
ccattaattt cagatattgt	aggaaaaata	agcagggaaa	atacgcaaaa	caaaacgtgg	215220
atggcacata acccatagca	tctcgcaggg	tgtgtacact	gaagaagtct	ttaccaaccc	215280
gtagttagga aaatgcgtgt	tcagaataac	tgggccttcc	cgcggtcctc	tgagtcaaac	215340
agatgaccac acattgccag	aatgagaagc	agagcagctt	cacatccctg	cttctgaaat	215400
gtttcccaac agctcattga	aacaatctcg	agacacctct	ctccccaaa	cccagcgtgt	215460
ttcgggaatg gctctaggaa	ttctactttt	gcattgcctc	actctccctt	tccccgtcca	215520
aaccatggta ttggatttac	agcatttctt	acatcctata	aaagtccttt	tctgccaaga	215580
gcctggagcg cgctggattg	aatgacgctc	tcccagcaca	gccggcattt	gcagtgcatt	215640
agaatettge egteaettge	acacgtcacc	aagttacttt	agtgagagtt	cagcctagct	215700
atggctctgc tgtgctaaca	gttgcttttc	aatattttgt	ttgaggcttt	ggaataattc	215760
aaaggcctac acttttttt	ttctaatttg	tttccttgga	gttttacgca	tggctacttc	215820
agaaaacgtc agttttatgt	cattaatgtc	atcatcttct	ctggattctc	agaattcaaa	215880
attcacagga gcatggcagc	cttacattca	gtctattctt	ttcataaaaa	aggaagtaaa	215940
ctgcaacagt tcgcctacgc					
tgtetgeece acagetgtge	cgaagygagt	gccacttgtc	tgcagggccg	taccgcggaa	216060
ccctctttgc cgaccagcca	gygatgtttg	tctcgcctgc	cagcagcccc	ccagtggcca	216120
agctctgtga actagtccac	ctgtgcggag	gccgggtcag	ccaagtcccc	cgccaggcca	216180
gcatcgtcat cgggccctac					
aatgggtctt aggtaagaat	ccaggcacac	agacgctgtg	gtgtggtcca	gatctgtgga	216300
caggtttcca gggagggcgg	cktcaggctc	acaccccctt	ccacgcagct	ggggcacctg	216360
ggttgatgtc tcagcctcca	gcatctgccc	tggcagcgtc	gtgtggtcac	cctcggcatt	216420
cccgctcctt gctgttagca					
tececaettg acttecetgg	ctcgtgtgaa	aaatccaggc	tacccaaagc	caccccrggc	216540
cacccctgtg ggcacagact					
cttgtcctgc ttcaggagtc					
gtcatctcct ctcccaggta					
gttaaaagac gtcaaacgac	tccatctttt	atttgacaaa	gtgagcacag	tgtgaccgta	216780

atgtcccact ctggcgttca tggagctgcg ccaggcgccg tgtgcgattc tggggaggaa 216840 gaggtggtag gagctgagct gagatcggag gaggctggaa ccccacgccg tgctaacaca 216900 cgggctccag gagacttgca ggtgatcccc ggagaagagg gttaaggaag agtgtgaagc 216960 aaggacggcc tggggaatgc ggaggaagca ggggcagcgt ctgtgctaga aattacctgc 217020 cctgtggtgg agtcatatgt ggcgggacaa gcctagggct ccactgtggg gaaatcccac 217080 accetectee atggggttgt gataaacatg ttagtttget tgggetgeca tegeaaaata 217140 ctacaggctg ggtggcttca aacaacacgc attgtctctc agttctggag gctggaagtc 217200 taagatgggg tatcggcagc gttggtttcc cctgaggcct ctctcctggg cttgcagaca 217260 gctgccttct tcctgtgacc tcacgtggcc tttcctccat gcacacacat ccctggtatc 217320 tetgtgtgtg tecaaatgtt etetteteta aggataceag teagattgga ttagggetea 217380 cccaatggca tacttttatt tgcttttatt tatttttttg aaacagtgtc tcgctctgtc 217440 acceaggatg gagtgeagta geatgateae agettaetge ageeteagee tetetggetg 217500 aagtgattet cetgeeteag eeteecaagt agetggaaet acaggtgeae accaegatge 217560 ccagcttttc tttcttttt ttttttttt tttgtagaga tggggtctcc ctatgttgcc 217620 caggatagtc tcaaactccg gggctcaagc gatcctcctg ctttggcttc ccaaagtgct 217680 gggattacag gtgtgagcca ctgcacccag ccccagtggc atcattttaa cttgtctttt 217740 tcaaggcccc atctccaaat acagtctcat cctgagttac tgagggttaa gacatcgaca 217800 tacgaatttt gggcagacac aattcagccc ataacaatga atcactctag tttcagcccc 217860 tggggccaag atcettacce gactttagag gtacatecee tetetete teaatetete 217920 tetetetete cegttetete attetttte tetetetttg ettecatete ettecatgtt 217980 tectatteag teteetttet tagtaetttt geatgtetet aaateetaaa ettetggett 218040 ttctcatccg ctgctcaaca ttatccctta atagacaagt agatactgtg tttgttcaag 218100 ttacattcgt atctaactac ggacatttta caagtatctt ttacatgact gatggtcatc 218160 ctttcatata ttttagaagt gtggcaatca aaagtaattt tttactctgg tgcagagtaa 218220 ttcatctttt gcctggaaac caacttccaa aaaaaaaaa actatgattt tagtcacagt 218280 ccaaaagcta agaggctgtt tactcttttc taaatgccaa gaatataacc ttcaaaacat 218340 cctatgttct gaaacagagg ttgttgtttt gtttttctgg agaagtgtat tatcaaaatg 218400 ccacggactg cagaacagaa ctgggcctga aagcatgtct gggccagctg acggaactgt 218460 gcacacgatt gatatccaca gtgcatatca acaggcagtc tttttggagt ttgcaaagcg 218520 tgtgccgtgc agtgcccgag cctgcctctg cactcgtgtt tccaggttgg gtggctctga 218580 cageceette etgtgggtee tgegteettg tgtggagtea egettgeteg geagetgete 218640 acttecteeg gttgttttge egeteggete teeegeeegt gggtttteag gaggegaatg 218700 tctacctgct taatcctgag gcttcgatcc cgcaaagccc ttcagagttc tctgacttcc 218760 aggeeetgge cacaggeece ageetetttt tettteetee tgtaacttgt gteetgttte 218820 tgatttctca ccaattatgc catctgcctg tgcccttggt aacatctggg tattgtgtt 218880 getgeagace teacceatgt gagacaggte cecteacteg eeggeeacea gaceceagtg 218940 tagtgggcgt ctccagcgta gtgggcgtct ccagtgtagt gggcatctcc agtgtagtag 219000 acctctccag tgtaccaggc ctctccagcc cacactctct gagatgtaag atcacgtagt 219060 tctcaagtat ttattggctt gtatttttct ctttgtgaag tgaattccaa tctagtagct 219120 geagetatgt aegaataaag aagggtttat ttttctgtcc gtacatactt ctggcttttc 219180 traccetetg ctaaacatta teetttaata gacaagtaga tttttttgta tttttctett 219240 tgtgaattga attccaatct ggtagctgcc gctatgtaca aataaaggaa ggtttatttt 219300

totgtocata catacacacg tamacotaca gaacacacag tocagggcat tgcgtttcct 219360 gootcatoca ggtocaggot atttgottat tototaacca gaaacaaato atatactttt 219420 tttttttttt ttctgagatg gagtctcgct gtgtcaccag gctggagtgt gcagtgatga 219480 gateteaget caetgeaace tteaceteet gggtteaagt gattettetg ceteageett 219540 cccagtaget ggaattacag geecegeeac catgeceagg taatttttgt atttttagta 219600 gagatgaggt ttcaccatgt tggccaggct ggtctcaaac ccccaacctc aagtgatcct 219660 cctgcctcgg cctcccaaag tgctgggatt acaggcgtga gccaccgtgc ctggccgaaa 219720 tcacctattt tctgtggaat gcatttactt catgtataaa acagagtcat agcctccacc 219780 ttgcttaccc cacatgctgg ttaaaggagg aaacacagag agcgcaaatg ccctgtggca 219840 ggcgtaggct tcttaagtgt ggcagattga cggtatccat ggatgtgtcc tcatcatccc 219900 tgccccttcg acaaagcaca ttgtgtcttt tggagacttt ttttcctccc gttcatttcc 219960 attataacaa atgcttctct ggacaatgtt tcattctcaa aatatcgcaa tattgaaaaa 220020 ctaggaatat atcaaaccat tttaaagcac caaatcgaaa aagaagttat tttgtttaaa 220080 taaattatga aaagacaata ctcaaaaaaa aatcaattaa atttattcaa actggaatat 220140 caactgcttt gtaaggtagg gtccctgagc gtcttagagt aatttgagcc gggcgtggtg 220200 cggtgagcaa cgatcccacc actgtactcc agcctaggca acagagcaag accccatctc 220320 taaaaagaaa aaaaaagaa tcatttttca gtgcctttat attgtttctg tatcttaaca 220380 gtcttgtttt gcagatgtcg taaactcaca gggggtggag aaccaggagt tttttagcca 220440 ctaggaacct ctctgagaag tttcttttct tttcctttct ttattattat tagtattttg 220500 tggccagagg agggaaagga aggtgggtac tgaaacgaca gctcttcccc tgggactgca 220560 gcatcogage accaeagtee accegecage etttgtteet geacagtetg ceteteaaga 220620 ccaacaactc catatctatg acgataaaaa ttgttagtga ttattttact tgtaagaatt 220680 tetttegace teagetetga ggtgaceete agetegeeeg ceaceceage tgeeceacet 220740 tgctggcata gaacagggag tggaggtgtg aagtcactca acagggctca gtatacaaaa 220800 tgtaagccac gcctcactca cttgctccct ggagaatttc atctgcgccg cgttgcctaa 220860 taacggggtt atcggaaagg gcatgattac gttccctctt cattccctgg agtctttttt 220920 ccctgaaact gtattgtact tgggccaaga ttcttgatga atcattcaac cagaaggaga 220980 gcacacttgt gggtggttga acatggataa aaataaacgg gaaaacaaaa atcaaattcc 221100 cggccctagg aaataaaatg ttacctttac ctgatattga taatacatat tatatttgaa 221160 agcatttgct aatggttgca ttttcccccc aacactccca tgacatataa ttcccatttt 221220 ataagtcacg aaacgaagac cctggggtct gaaggaactt ggctggggtg aggatcacaa 221280 gcccttgggt ggagctctga gccctggcgc ggtcctcaag ggtctgcgac atttgtgctg 221340 tggtcagctc tgtgcactct tccctccctg ctgctgttat cacgaaaggc tggcttggcc 221400 tttctcatag gcgtatttcc actctcaggc gcccttttat tgtctgggct ccattcaagt 221460 gataagacat acatttatgc tattgtggga acataatgta atattctcaa cagcattgcc 221520 aaacaaaaaa aaagtttagc ctctgcctga ttttcttata acttataaag aaaatttggt 221580 ttgaacatgt cccatgtcga tgttttcagg aaaaagatcc gatagcatgc aggccttctc 221640 atgetggemt ggeteattea tegttteece taatgaetga etgaceagaa aaatgeaega 221700 cgctcccatg gggccactcg ggaggcctca ggcttcgggc ttcctgattc agtagatatg 221760 tgaggettga teagteaceg eagteeacat etceattgee tegataagga accagtegea 221820

gagaggggag gccatctgca gaagctgtgg agagtggcag agaggaragt gaggacgggg 221880 actgcccct tccagccct ctcctccaag gacggcctca ttttatcccc acccaggttt 221940 ccacacccag gagctcagca accgctcaga aaatgtttgt agaattcaaa gacataattc 222000 agacaatatg aagaattatt tttcctttga gttgttctta aaacagacga aatctaccag 222060 catataaatg aatgagaact aaaactggtg ggatttggta atgtcgacat ctgagatgtt 222120 taggetttta aatatatate teageeaggt geggtggeee atgeetataa teecageact 222180 ttaggaggcc gaggcgggtg ggtcgtttga gcccagcagc tcgagtccag cctgggcaac 222240 atggtagaat ctcgtctgta caaaaaagta caataattag cgggcatggt ggtgcaagcc 222300 tatagttgca gctacatgag aggctaaggt gggaggatca cctgagctca gggaggtcag 222360 tgctgcagtg agctgtgatc atgccattgc actccagcct gtgcgacaga gtgagaacct 222420 gtctaaaaat atatatgtgt ttatatatat atatttatat aaacattagt gggttttaaa 222480 aaaaattaac taactgctag ctcctaaaac agtattttgc cattagcttt ggaaaggttt 222540 gctcagaaaa tgaatttcta agcactccct tcattgcatt tattggtcaa actaatggtc 222600 ctggatggtt atctttgaaa cttcctaacc tgttgggtcc ccgtcgttaa acttatgcca 222660 acagaactaa actcactgga tgtgaattgc atcagagatg taaacattta aaagcgtatt 222720 aaggetggge geagtggete acteeegtea teecageact ttgggaggee gaagegggeg 222780 gateatgagg teaggagate gagaceatee tggetaacae agtgaaacee egtetetatt 222840 aaaaatacag aaaaattagc cggtcgtggt ggcaggtgcc tgtagtccca gctactcagg 222900 aggetgagge aggagaatge atgaaccegg gaggeagage ttgcagtgag eegagateae 222960 gccactgcac tccagcctgg gcaacagagt aagactctgt ctcaaaaaaaa aaaaaaaaa 223020 aaaaaaacat taaaagcaga ccaagaaaat cctagaatac aggagtcagc tgtctattca 223080 attcagaata agaaatattg tagacaaggc aacattttat gtgtattaga aatgtggtgg 223140 ttggtttgag aagtgaaacc agccatgtat atgctgctcc aagcattttg gttgtggcag 223200 gaaactttga agactatttt gctgtacaaa ttcacaaagc cccctgcaaa cactcccgtg 223260 cttggggtga atgcccaagt gtgtcacagc tgccttgcag ctctgaggat cagaaaggtt 223320 aatggacata aaagaaactt caaagctcaa cctcctaatg ggaagctgcc cttggtttta 223380 ggctgtcttt gcttactgac cgacttaatt catgctttgg gttatgactg taggagagat 223440 tttcctgtgt ctttggagta tgctgaactt gtgtttcttt ttgttgttgc atattagaca 223500 gtcagtgttg aaactaaagt gacctaaagt gacagagctc atgttatggg ctgaattttg 223560 tetececaga atteataggt tgaageette eeagteetta gaacatgatt gtatetggag 223620 ctagggcctt taaagacata aataaggtaa catgaggtca taagggcaag gccctaatcc 223680 aatatgactg gtgtccttat acgaagagga agaggccagg cgtggtggct tacgcctata 223740 atcccagcac tttgggaggc cagggccggc agatcacttg aggtcaggag tttgggacca 223800 gtgtgtccaa catggtgaaa ccccgtctct actaaaaatg caaaattagc tgggcatggt 223860 tgtgggcacc tgcaatccca gctacttggg aggctgaggc aggagaatcc cttgaacaca 223920 agaggcggag gctgcagtta gtcgtgatcc caccactgca ctccaacctg tgcaacagag 223980 caaaacccca tctcaaaaaa ataaaaataa aataaaggaa gacaaagaaa caccaaagat 224040 atttttgcac agagaagagt ccaagtgagg actcagggag aaggtggcca tctgcaaccc 224100 gagcagtete ccaggaagee teaggagaaa etaaceeetg tgacacettg gtettggact 224160 tectgeeete cagaactgtg aaaaaataca tgtetgetgt ttaageeace caccetgtgg 224220 cattttgtta tggtagcctg agcaaactag ttcagcccaa aatgaattct gatatcacct 224280 gcagaaatct gcttttagac agcaggaaac tgagggcctc tgagtttcta ggccagagtc 224340

	ctgaaag acccagaac				
atcttccttg gtaa	agaagca ggatcttagg	ctgggcccag	caagtggaaa	actcttttt	224460
atttacacag ccad	stgactg ttgtggtct	agactgtacc	acagaacctg	gtgttccaca	224520
aacttcccca gttt	rggagca agagaaaaa	gtagttggat	gaaatgatct	cattttattt	224580
tttagtcaat tttt	tottaaa tgttggtgo	tgaaaacaaa	tggatggcag	taaagtaatc	224640
ctgaagaaca cag	gaggaaa gaaataaaa	g aggcaatacc	aaatgttagc	aaaatggcag	224700
caaggcaaat aaga	aggotoa goaatagoa	a aaaactgagt	tctttggctg	ggaaaaactt	224760
ataaatatta aaaa	atcctga caatgttgaa	a aaagaaaggc	agagataggg	ttccaggaga	224820
aatactaaga atga	aaattgg agctgtcac	gcagttatcg	taaggatatt	ttaaaatcat	224880
aagagagcat gato	gaacaat ttaataccaa	a taaatttgaa	aacaggtaag	atggatgatt	224940
tttagaaaaa tgtt	taccaaa attgattcaa	a gaaatagaaa	atctaaacaa	gctcaagcgt	225000
taaaaaaatt aaat	taggtaa aatatgtac	tcaactgggc	acagtggctc	acgcctgtaa	225060
tcccaacact ttgg	ggagget gaagtggac	a gatcacttga	ggtcaggaac	tagagaccag	225120
cctgaccaac acg	gtgaaac cctgtcttt	a ctaaaaatac	aaaatgagcc	aggcatgatg	225180
gggcatgcct gtga	atcccag ctacttggg	a ggctgaggca	ggagaatcgc	ttgaacctgg	225240
gaggtggagg ttg	cagtgag ccgagactg	gccattgcac	tccagcctgg	gcaactagag	225300
caaaactctg tcct	taaaaaa aaaaaacaaa	a aaaaaaacaa	ttatatatca	acaaaaaaa	225360
gaaaatttta aaaa	agtaaca atttgaaaaa	a gtcaaatagg	caatcaaaag	tattcctttc	225420
accagccact aaaa	aaggcac ctgtacatg	g gaatggtagc	aaaatgacag	aagaggaaac	225480
tctaacctct cato	ccaacac agaaaccgc	aaaaccaggc	agaagctgtc	tgcagagatg	225540
ttgcaggtgc tcta	aaaaggt gctctaaac	a accaccaaat	gcatacagca	accaggcaaa	225600
tgcctgatag agga	aaagcca tcttcaagc	c cgcaggaaag	ttttstggca	catggtggca	225660
acccagttcc cagt	ttcccag ttcccttcc	caagctgcag	ggagcagacc	agacatgatt	225720
tgttctagtc tage	ctgattc atacctgaag	g gattgatcct	catctccatc	tcacataaca	225780
tgcaaggtgg gcaa	agaaaaa gaggtgggc	a cagctcatga	aagccacaga	gaggcaatta	225840
aggtaaaaat agat	taaattg cactatata	c aaattaaaga	cttcagtgca	tcaaaggata	225900
	gaaaagc aatctatgg				
aatcttcaca atat	tataaag aactcctgc	a actcaacaac	aaaaaaaac	cccagtttca	226020
	acttgaa taaacattt				
	tgcttaa cattactaa				
	agcacct cacacccat				
	agtgtta gtaaggatg				
	gtaagat attgtagcc				
	aattact gtatgatcc				
	atctcaa aagaataat				
	gcagaag cccaagtgt				
	gtggaat attattcac				
	aactttg aaaacatca				
	actacac ttataagag				
	taccaag ggtggagta				
	tcagttt tggataatg				
ctgcacagca ttg	cgaatgt acttcatgo	c actgaagtgg	acacttaaaa	atagctaata	226860

	tatgttatgt					
tagtaagttt	taccaaacat	tataaagttt	tacaggaaaa	aaaaagaaat	ctattcacct	226980
cattttacaa	ggctacattg	atcttgacct	aatactggtt	taaaaaactc	atttgtaaac	227040
aagtacataa	aaatctgagg	ctgagcgcag	tgactcatgc	ctgtaatccc	aacactttgg	227100
aaggccgagg	ggggcggatc	acaaggtcag	gagatcgaga	ccatcctggc	taacacagtg	227160
aaaccccatc	tctactaaaa	atacaaaaaa	ttagccgggc	gtggtggcat	gtgcctgtag	227220
tcccagctac	tcgggaggct	gaggcaggag	aatcacttaa	acctgggaga	aagaggttgc	227280
agtgagccaa	gagtgcgcca	ttgcactcca	gcctaggcaa	cagagtgaga	ctctgtctaa	227340
gaagaagaaa	agaaaaaaaa	actcagaaat	aagatatttc	atcaagtcaa	atttggtagt	227400
gtgtttttaa	aacacacaca	cacataacca	agtgtggttt	aacctaagaa	tgaaaggata	227460
aatgaatagc	attaagtctt	ctttttcta	atccattaat	tttcttagta	gtgttaaaaa	227520
gcagtaggga	agattcaatg	ccgagtaatg	atttaaaaaa	aaaaaaactc	ttcagaaacc	227580
aggaatagat	aactttctta	actatggagg	ttatctataa	aaaacgtaca	acaaatattg	227640
aatggtgaaa	accttagttt	aaggcttaaa	tcaggtacaa	gacacacatg	aatgctatta	227700
ctcttcaaca	gtgttctatg	attcctagtc	aagggaataa	aataaaaaaa	attacaagaa	227760
ttatacagga	agggacacat	tttgtttgca	tgtcatacag	ttgtctacat	agaaacatca	227820
aagagagtca	ataaactgtt	acaactcatt	cagcaaaatt	cctctttgta	agatccactc	227880
actgaaatct	ttagcatttg	tatacccaat	gataaacaat	tataaaatgt	aacagaaaac	227940
atagtaaata	atagtggatt	caaggctagc	catgtaatac	agattgaaca	ttcctaattt	228000
taatctgaaa	tgctccgata	tcttaaactt	tttgagtgcc	aacctgtcaa	cacaagtgga	228060
aaattccaca	cctgacctca	tgtgacaggg	catagtcaaa	gcacaggtgc	acgacacagt	228120
tgatttagcg	tccccaaggg	aaaaaaaga	cccacccagc	ccccttcaac	tatagtataa	228180
cttttccacg	cacacccaaa	ttcccccaca	caagcacgcc	cacaatgtgt	aataaaatgg	228240
cacgtgtgca	ggctggacgc	acccaacgca	gattccccac	gatacctcac	gtggggccga	228300
gaactccatg	cattactcac	tgtggttttt	tgcttattct	ctgcagtgtc	atgtaaaaat	228360
attactgaaa	atgtcgaaaa	ggcctgcaga	tccccctatg	tgtaacagtg	atcagaaaaa	228420
gaggaataat	ttatgtttat	caatagcaca	aacagtcaac	ttgttggagg	aactgaacag	228480
cagtataagt	gtgaagcgtc	ttacagaaga	gtatggtgtt	gggatgacca	ccatacatga	228540
cctgaagaaa	cagaaggata	cgcttttgaa	gttctatgct	gaatgtgatg	agcagaagtt	228600
aatgaaaaat	agaaaaactc	tacgtaaagc	taaaaatgaa	gatgtgaata	gtgtattgaa	228660
aaactagatc	tgaaggcatc	acactgaacc	cgtgccactc	agtggtaggc	tgatcatgaa	228720
acaagcgaag	atctatcctg	atgaactgaa	aattgaaggg	aactgtgaat	attcaacagg	228780
ctggttgcag	aaatttaaga	aatgacatgg	aattcaagtt	ttaaagcatc	tgcagatcac	228840
aaggcagcgt	cgaaactcat	tgacgagttt	gccaagatta	tcgctaatga	aaatctgatg	228900
ccagaacaag	tctgtattgc	tgatgagaca	tgaccatttg	ggtgctactg	ccccagaaag	228960
atgctgacta	cagctgacgg	gacagcccct	acaggaatta	aggatgccaa	ggacagaatg	229020
actgcagtgc	tgtgcaaatg	cagcaggcac	gcataagtgt	aaacctgctc	tcatgggcaa	229080
aagcttttgt	ccgtgctgtt	ttcaaagagt	aaatttctta	ccagtccatt	attatgctaa	229140
caaaaaggca	tagatcacca	gggacatctt	ttctgatcgg	ttttacaaac	acttcgtaca	229200
ggcctcttgt	gctcgctgca	gaaaagttgg	accggatgat	gacagcaaga	ttttcttatg	229260
ccttgactac	tgttctgctc	atcctccagc	tgaaattctc	atcaaagata	atattgatgc	229320
tgtgtacttt	cccccaaacg	tgacttcatt	agttgagcct	gtaaccaggg	tatctttaga	229380

tcaatgraaa gtaaatwtaa aaacactgtc ttgaattgca cgctcgcagc agtgaacgga 229440 ggtgtaggtg tagaagattt tcaggagctg agcatgaagg atgccataca tgctgttgcc 229500 aacacttgca acacagtgac taaagacaca gatgtgcgtg cctggcgtga cctctggcct 229560 acgactgtgt tcagtgatga tgatgaacca ggtggtggtt tagaagaatt cagcttgtca 229620 agtgagaaga aaaggatgtc tgacctccaa aaaatatacc ttcagagttc atcagtcagc 229680 gggaagaagt acacattaat gtcattttta acattgataa tgaggctccg gttgttcatt 229740 tcattgactg ttggggaaat agccagaatg gttctgaatc aaggtgatcg tgatgatacg 229800 accatgaaga tgacgttaac actgcagaaa aagcacccgt ggacagcgtg gagctcaggt 229860 gtgatgggtt aactgaggcc cagagcagcg tgcattcaca acagaacaag caatcatgtc 229920 agcttataaa atcaaagaaa gaatcctaag acaaaaaaga aagaaaaaaa attagccggg 229980 catggtgaca cgtgactata gtcccagctg tgtgggaggc tgaggtaaga gtcttgcctg 230040 agcccaggag ttagaggctg cagtgagccg tgatcatgcc actgcacacc agcctgggaa 230100 acagcgaggc cctgtctcaa aaaaacccaa aaaactaagt aaatattttg tacatgaaac 230160 aaactttgtg tacactgaac caacagaaag cagctgtcgg ttctgagacc attgttagtg 230220 gtgcagatac cattaaaaag cccccagca gaatgcctcc tcgtccccag aggacccact 230280 tcctgggcct gtaactgctt cttatgttcc ttctcaccta aaatgtaaaa tgccgtgtcc 230340 cgtaagcttt gaatcaaagc acagcatggt tgggagagca gaggcctgct gttgtttgtt 230400 gttgctgctg ttgttcagca gctgattgcg gtctctgctg atgccactgg ctgcttagct 230460 cccctgagca cgtaagtctt cactgtgtta atggcatgtc ttatttttta ctgtgaagta 230520 cttatgtgtg aataagtgta aggaaatgac tgcttggtag tagcatataa attcagagtc 230580 acgggcaggc acggtggctc acgcctgtaa tcccagcact ttgggaggcc aaggcgggca 230640 gatcgcttga ggccaggagt tcaacaccag cctggccaac atggcaaaac cccatctcta 230700 ctaaaaatta caaaaattag ccgggcgtga tggcacatgc atgtagtccc agctacttgg 230760 gaggctgagg caggggaatc gcttgagcct gggaggtaga gattgcagtg agccaagatt 230820 tcaccactgc actccagect gggtgacaga gagactgtet caaaaaaaaaa aaaaaaaaa 230880 tcacagtcag gaatgagggt gatgccacac aaccactgat tgtccacatg ggggtgaggg 230940 ctgagatagt gatacetetg etttetgatg gtteeatgta caeagaettt gttteatgea 231000 caaaatttgt ttgtttattt tttgaaacag agtttggctc tgttgcccag gctggtgtac 231060 agtgctgcga tcatagctca ttgcagcctt taactcctgg cctcaagcga tcttcccacc 231120 tragcetreg ttgtagetgg gartaragte atgetgtege acctggraat cacaccagte 231180 tatgcacaga actatttaaa atactgtata aaattacctc taggctatgt gtataagatg 231240 cagatgaaac ataaatgaat tttggtttta gactctggtc ctatcttcaa gatctctcat 231300 tgtccattcc aaaaatgcca cccaccaccc cccaaaaaaa atctggaatt caaaacattt 231360 ctggtctcca gcattttgga taagggacac accacctgta atatcctttt acacatttcc 231420 tggatgggaa acagaagttg gtgtggtagg agtcacacat aaacggcaga ctttcttgtc 231480 tgtgacacat tcttaggatg tcctagagaa gtatcagcga tgtgaatgtc tccagtcaaa 231540 tatcagagca gaaagaatat gttgagaact gctgtattat tagactgggc tactttcttc 231600 aaacaacaca tggtatcagg tcattcattc atttacccag tagatatttc ctacacactt 231660 gtcatatgcc gagcatatcc taggcactgc aggtacagca actgacagga atatacagcc 231720 tttgcccttg tgggacttaa catttaagag agaagacagg cagcaaacaa tttctttaaa 231780 aatccttctg gtggtaaatg caatgaagaa aacagggtga gtatagagag gaggagtgag 231840 gtaggcccct tgcacgtgag tggcatttga gctgaggccc agatgatgaa gagaaggatg 231900

gactettgta ggtetattgg actggeeett ccaggaatgg taagggetga gaggteagga 231960 gaagcggtaa gtttagcgtg gctgaaatga agggagagaa gacaaagcaa taggaaatga 232020 agctggagaa gcaggcagct tcagacagga ccattccaga ccactgacac cttaacagac 232080 aacagcaaga agtttgggtt ctgttctaag gataaatgga agtcacagaa cgattttaag 232140 tgggaggatt aggctgcggt atatgtttgt ttactctgtt tgtgtttatt tttgttttaa 232200 tggatacaga gtctcccaat gttgcccagg ctggttttga actcctgggc tcaacggatc 232260 ctcctaactc ggcctctcaa agtgctgaca catgtttttt taatggaagc agagaaagca 232320 gtctcggacc tttgcagtgg ttcaggtgat tagtgatggg ggttaggacc agggacgtat 232380 cgatggaggt gttgtgaagt tgtcatattt taaatataca tttcagagcc aggtgcactc 232440 gctgatacat tggatgtggc atattagaga aagaagactc gaaggtggca cctagtcttg 232500 tgttctgagc ttccagaatg aggcatctag aagccaggac ccgggagaag cacggaagga 232560 gcagtggttt attcagtctg cagaagcagt gcctacagga ctgctgtgtg aaagaggaca 232620 catgtgatat gagcagatga aaatcacaca gcaggcagct ctgggctcat tatgagaaac 232680 gactctagga atatttgtaa cctgctgggc tctactgcta agggctgcct taagccatga 232740 agcegeagag getgggtgae caeegteeca cagtgaggga getgggeaat teettaceag 232800 agtggagatg tggctagatc tcctagccct aacatgctta cttattttga taagcaaaga 232860 tgaageteae atgggteeeg tgtgetettg aacttetgta cattgtaeea ttaaccaea 232920 ttggatgctg gcaatcgcag ttttagttaa ataaagtgac ttgcccacca tactataaaa 232980 aattaatttt ggtagcatgt tgattctgta tcctaaccat aagaccacac agagccatgg 233040 ctagtaaact ttagcttgtg cgtaaatgcc tgccaagacc tgctaaatac tgttgcttac 233100 atttaaaaaa aaaaaaaaa tttttttt aatttaaatt tcacggagct gctcaagggc 233160 agttcagctt cctattcatc tctgtctcca ccggccagga ctggcattac tctaacatct 233220 gtctacggcc acattttatg ggatgtttga ggattattcc tatgaagtga cattggaatt 233280 tggggatgtg gctatgttca gatgccaaat aaacttggat agaaatcatt tttcctgtgt 233340 gtgtttacag ttaggaacgt ggggctgtga ggggctccct ggacatgacc ctggagctgt 233400 eggeeettgt teagtggtea gatgegette agaceteeca gagtgetgee egeacaetea 233460 gtcacagccc catgcgcacc tcaacgccac tgctcagaag tccagtgtaa ttcctcaggc 233520 agcatgtcct agagcaggcc atgagaggtg taaggtacag actttgttgt gaggttacat 233580 gtaggettet gttecatett gtetetgttt aaagategat aettetggea geetttatee 233640 ccaccacgat aaatacgtgg atggaaggat acatgcgtgg aagggtggat gggtggatgg 233700 ttggatggat gggtagacgg gtgcatgggt agatgggtag atgggtggat ggagtgatat 233760 ttgatttcat agtcaaagaa ctcaaacagt agacaagtac acagggtcct ccagtcttac 233820 aaccetteet taactacaat aaagatagaa gtgtatette tagatttett ttaaaaacat 233880 atttatgaat gtaaacatat tatggtcagg tccagtgact cacatgtata atctaacact 233940 ttgggaagcc aaggtgagtg gactgettga tgeegggagt ttgagaccag cettggeaac 234000 atagaaagac cgtgtcccta caaaaaaaat tttaaaaagta gcctggtgtc atggcacatg 234060 cctgtagtcc tagctactca ggacgtcaag gtgggaggat cactcgagga caggaattcc 234120 aggetgeagt aagceatgat cataceactg cacteeagte tgggeaatgg ateaagatee 234180 tgtctcttta aaaaaaaaa aaaacatatt tacatagaaa taaatgtata taaacacaga 234240 tattgtttag ggatttgttt ttatatatat tggagaatga catgcttttt caggagcttt 234300 tatttaaccc tatgoctaga agatccttcc agcttaacac atatacagct acttcattct 234360 ttttaaccat tgggaggtac tgtaattaat ttatgtgctt tctgttattt tcattgtttt 234420

gctattgtat ttacttattt attttagaaa caagatgtca ctatgttgcc caggctggcc 234480 tcaaactctt gggctcaagc agtcctccca ccttagcctc ccaagtaggc gggactacag 234540 gcatgaaccc tgcaatacgg ctggcttctg ctattttaaa ctcgtgtgtg tgtgtgtgt 234600 tgtgtgtttt ctaactgaac aatctgaatt caattttaag agattttctt gagctggaat 234720 tattctagtc cgagcccagg ctcatgaaga tttctgtaaa atacattcca agcagtgaaa 234780 ttactgtgcc ctaggatatg tgtacttaaa ttctgataca caaggctgca gcaatttaca 234840 ctattactaa cggtacataa agtcctattt cctatgtcct ataaattccc atgtccagta 234900 ctggacataa cccatatttt caatattggg tgatccgatt agttaaaaaa atagatctca 234960 ttaatttcta attgcctgat tactaaatta tgaatgagtc tgaatatctt agataggaga 235020 tttatcattc gtgaattacc tgtcctgatc ccttaactgt tttgaaattg ggttatttat 235080 atttttcaca tggttttaca gcaatgttta cataatatgg acattaaact tttgttgtgt 235140 tataaaactc tgtctcttta gctgtgctta tggtgtctta agtattacca agtttttaat 235200 ttttaactat tatttttac aaaattaaac acctcttttc ctccatggca cctacccttg 235260 tggttttgct tagaaaggcc ttcctcaccc tctgagcttt aaaaataatc tcatattctc 235320 ctatttatag ttttaaaaaa tatttagacc tttaatgcat gtgcatttca cttactgtat 235380 aatqtqaqqq gaccatqttq tttttaataa ctaatttatt gacactgacc tatattgccc 235440 cctgtgagtc atctcttaca ttcccacatg gtatgggtgt gtttctggtt attctcgtcc 235500 attgatetgt ttgtetatte tgtgetgaee tetattttae tgetataatt gtacagaetg 235560 ttttgatatc tggtatgtca aattttttct catcatttct ctttttaaaa atcatcttcc 235620 tatgcatttt tttctttcct ataaacttta gaataaacat gtcgttttct ttttgaaaag 235680 tttgaaattt ttggattaca ttgaatttct agatgaattt ggaaagagca tcattttttc 235740 tgcatttttt tatgattttt caaaactgac acctagtcag aaaactaagt gtaaaaattg 235800 aatccataga gtttttacaa cctggaagaa aatacaaatg tggctgaatg actttaaacc 235860 ctgagtatcg gaaaaggctt ccacctacct atgactcaaa agccagatgc aataagacaa 235920 agtgttgata taatttgaat acataagaaa ttgaaactta tacatggcaa aagtttgcat 235980 aagaaaagtc aagccaggtg tggtgggtta tgtctataat cccagcattt tggaagactg 236040 aggcacagga agattgcttg agcccaggag ttcgagatca gcctgggcaa caaagtgaga 236100 cattggctct acaaaaaatc aaaacattaa ctgggtgtgg tggtgcatac ctgtagtccc 236160 ggctacctgg gaagctgagt ctggaggatc acctgagtcc aggagactga ggctgcagtg 236220 agteatgttt geaceaatge agtetaacet gegtgaetga geaagaeeet ateteaaaaa 236280 aagaaaaaat atgtaaatca taataatacc tgcttcactg ttgtggagag aattaagtag 236340 tatgcctagt actaataata ttgttataat tatatacaat gtttttaact atatcatttc 236400 ttatatatat aagetateae aaatgttagt gtteeteeet tetgaaatte atetgagggt 236460 ccctcactga cccaggcctc ctgggtagaa gcacatttgt attgagaaga caacagttaa 236520 attctgggac actatcttga gctataacta agataagtca tttttttctt ccatttctaa 236580 aaatatttqt aqattaaacc catttttttc ttttttqtac cataccacca ggatagcttt 236640 ccaccttcca tcactcatct gtgtgacttc ttaagttcct tcaaatgtaa ctctgtaatt 236700 ataattatat attcacacaa tcattgtgat tctttaattg caattgattt aatctacctt 236760 atcatecaat eggtgetgac agtggattte atteetttt ttttetaaca gtaggaatag 236820 aatgcagtgc gcttgccagg actgaggaaa gagggagggg ttgtttccgc cagctgccag 236880 gatcacctgt gctgaccctt cagcagcacc tgcagcgcta tcctgggcca ggcgcaactt 236940

gtgattttca taaaatagtc gagtttcaaa cggatgggac tttagagctt ctttaatttg 237000 agctatgaag aacagagttt tagaaagtat gcttattcac ttggaattcc ataaaaaata 237060 cctatgctgg gtagatagga tagcacggcc tacctctcac cactggtgtc ataattaaaa 237120 ctcatatatg tatttactta tactctgcct tatgccaaga gtactggaag tggtgagcta 237180 agattagaaa ttettggete etatgteaca gaetggeaag etteecacee tgeecactga 237240 gtgtcctgac acaacgggaa cgtgccctgc atctaatggg acatgtggct accaagcact 237300 tgaactggcc agtgtgactg agaactgaat gtttcattgt attgaatttc gtttcacgtt 237360 aatttaaaaa ggtatgtgtg ctctatggac gtgggggggc ctatggacaa cacagctctt 237420 ggctatttgt ttttaaatat agtttcatgt atatacaaac aggttatcac tttcctatgt 237480 ggctggctat tatgaatgct aaactgcttt tcgctctctc tctagattcc atcacccage 237540 acaaggtctg tgccyctgaa aactacctat tgtcacaatg acagtgacct cactggcctg 237600 tggtgactgc acacageteg caaaactgte tttggatgtt caaatgagaa acaaaactgt 237660 gaagagaagg aactggcgta tacaagatga cttctgatat catgtttgcc atgtgttgtg 237720 gttcttaaga actcataggt gactttctga tgactgaatg tctgtttcag agacgcttcg 237780 ggccttttta tttttatttt atttttatt ttttgagacg gagtcctgcc ctgtttccca 237840 ggctggagtg caatggcaca atctcggctc actgcaacct ccacctccca ggttcaagcg 237900 attctgctgc ctcagcctcc tgagtagctg ggattacaga tgtgtgccac catgcctggc 237960 taatttttgt agttttagta gagacagggt ttcgccatgt tggccaggct ggtctcaaac 238020 gcctgagete aggtgatetg teaggeetet tetatagaat teeagtettt gtgtettagt 238080 catgatcata attgaaaggt cacagaacct ttgtcattag agcacagtac tgccaaataa 238140 agaatggaaa ttcaatgaca ttgttttatt actgagaaca actagagaac tctgcaagtt 238200 tcttggctta gactcgatct ttattaatac attatctatt aggtaggaaa gacatttgtc 238260 agctattaag gtgactttta tctagcggag attcctctct taaagtaatg aaaggagata 238320 ggtatggggg gtgttataca ggataattgg tgacatctga gtgtcttact tctgcaagcc 238380 tgctttatgg tgagcaaagc atcaccagca agtgatcaca atgtccactg gccgcttttt 238440 gcctgccgtc ctcgagatga aattggcagt tggggctgat tcacagaaac accgatttgt 238500 ggctgagcac ggtggctcac acctgtcatc ccagcccttt gggaggctga ggtggacaga 238560 tcacttgagg tcaggagttc gagaccagcc tgaccaacgc agcaaaaccc atctctacta 238620 aaaatacaaa aatcagctgg gtgtggtggc acacacctgt ggtcccagct cctcaggagt 238680 ctgaggcaga agaatcgctt gaacccaaga ggcagaggtt gcagtgagcc aaggttgcag 238740 tgaatcaaga ttgctccact gcactccagc ctgggcaaca gagtaactct ccttctcaaa 238800 ctaggaagtc ctagccagag tgatcaggca agaataagcc ataaaaggca tccaaatagg 238920 aaaagaagto aaactgtoto tottoactgo ogatatgatt otatacotag aaaaccotaa 238980 agactctgcc aaaaggctcc tggaaccgat aaatgactta agtaaagttt caggatagta 239040 aatccatgta caaaaatcag catttccaaa cacagtaaca ttcaagctga gcaccaaatc 239100 aagaacgcaa tcccatttcc aatagccacg gaatgaaata cctaggaaca cgtataacca 239160 aggaggcaaa ggatctctac aaggagaacc ataaacgaga tgctgagtcc cagcgaggtc 239220 ggaggtgcca ctgagccctc atcgtggtgc cgttcccgct ctgggttatt tatctgttgc 239280 tcatctcagc tgttgttcct acctcaaatt tcaagtccct caacaaatat aacagaacca 239340 cttctagaat gaacctttga gaagggaggt agcagtgcat tgtataggaa ttggcattct 239400 atagaaaacc acagaaactg gaaataatga agggttgtct cttggtttta aaataatgta 239460

tacacctaaa tcatcccctt atgatactca tcctctaaca gcaattgaac ttcaatacaa 239520 tgagtcattc ctgagttcac tcgcttcaca ttacatatgt ttctctataa ccacaagcat 239580 cctggcttgg tagtgctccc acagcaccaa aaatccctga ggaggctgac aaacattgtg 239640 ctgactcatg ctggagacaa gccacagaga acttccatcc cccaccacat cagccacgga 239700 gccagcccag cctctgccca cccaggcctc agtccccagt gttaagttct gatccctgat 239760 gctggcctgc cagtggccag tcaagattct ctttctgaaa gctagtattt tatgaggact 239820 gactgttgct agacattaca ctaagcacat tatatgttgt acttcatttt accctttcaa 239880 caatcctatt agtagcttac tgtgggtctg caaagcctta ctcaaaacat atagggctag 239940 aggttctcag gattctgaat tttaaaaaaaa atttgtaaag gcttatggct ctcaccactg 240000 ttattcaacg ttgcattaaa gtttctaccc agagaaggca ataaaaggaa attaaagcta 240060 tacagattgg aagtgaagaa ataaaagtct ttattctcaa gaatacaaga cactatgtat 240120 agaaattgta aggaatgcaa aaaaaaaaaa aaaaaaaagc cctacaagaa cttataacaa 240180 gtttagcaag attgcaatat acaatcttgc aatcttccta aagattatat acaaacctaa 240240 caqaattgta tttatatata ctgtcaataa gcaattcaaa atgaaattaa gaccacgatt 240300 ccatttaaaa ttgcatctaa aaataaacaa aataggaata gacttggcaa cagttgtaac 240360 atctgtatac tgaaacctgt aaaacattgc tgaaagaagt taaagacttc tttaaataga 240420 qacatataca aagttcatag attagaagat gcaatattgt taagatgata gtcctcaaat 240480 tgacqtatag attcaatgca atccattaaa atctcagatg gctttttata gaatttgaaa 240540 agctgatgct aaatctttta tgaaaatgca aagaacctct agtagacaaa acaatttttt 240600 taaqaqcaaa gttggaggat ttatagaacc tgattccaaa actgtcagta aaactacaat 240660 aattacaaag tatcagccag gtgccgtggc tcacatctgt aataccagct ctctgggagg 240720 ctgaggcggg tggatcactt gaagtcggga gtttaagacc agcctggcca acttggtgaa 240780 240825 accttgtctc tactagaaat acaaaaaatt agccaggcat gatgg <210> 128 <212> PRT <213> Homo sapiens <400> Met Val Asn Asp Arg Trp Lys Thr Met Gly Gly Ala Ala Gln Leu Glu
1 15 Asp Arg Pro Arg Asp Lys Pro Gln Arg Pro Ser Cys Gly Tyr Val Leu 20 25 30 Cys Thr Val Leu Leu Ala Leu Ala Val Leu Leu Ala Val Ala Val Thr 35 40 45Gly Ala Val Leu Phe Leu Asn His Ala His Ala Pro Gly Thr Ala Pro 50 60 Pro Pro Val Val Ser Thr Gly Ala Ala Ser Ala Asn Ser Ala Leu Val Thr Val Glu Arg Ala Asp Ser Ser His Leu Ser Ile Leu Ile Asp Pro 85 95 Arg Cys Pro Asp Leu Thr Asp Ser Phe Ala Arg Leu Glu Ser Ala Gln 100 105 110Ala Ser Val Leu Gln Ala Leu Thr Glu His Gln Ala Gln Pro Arg Leu 115 120 Val Gly Asp Gln Glu Gln Glu Leu Leu Asp Thr Leu Ala Asp Gln Leu 130 135 140

Pro Arg Leu Leu Ala Arg Ala Ser Glu Leu Gln Thr Glu Cys Met Gly 145 150 155 160
Leu Arg Lys Gly His Gly Thr Leu Gly Gln Gly Leu Ser Ala Leu Gln

Page 186.

Ser Glu Gln Gly Arg Leu Ile Gln Leu Leu Ser Glu Ser Gln Gly His 180 185 190 Met Ala His Leu Val Asn Ser Val Ser Asp Ile Leu Asp Ala Leu Gln 195 200 205 Arg Asp Arg Gly Leu Gly Arg Pro Arg Asn Lys Ala Asp Leu Gln Arg 210 220 Ala Pro Ala Arg Gly Thr Arg Pro Arg Gly Cys Ala Thr Gly Ser Arg 225 230 235 Pro Arg Asp Cys Leu Asp Val Leu Leu Ser Gly Gln Gln Asp Asp Gly 245 250 255Val Tyr Ser Val Phe Pro Thr His Tyr Pro Ala Gly Phe Gln Val Tyr 260 265 270 Cys Asp Met Arg Thr Asp Gly Gly Gly Trp Thr Val Phe Gln Arg Arg Glu Asp Gly Ser Val Asn Phe Phe Arg Gly Trp Asp Ala Tyr Arg Asp 290 295 300 Gly Phe Gly Arg Leu Thr Gly Glu His Trp Leu Gly Leu Lys Arg Ile 305 310 320 His Ala Leu Thr Thr Gln Ala Ala Tyr Glu Leu His Val Asp Leu Glu 325 330 335 Asp Phe Glu Asn Gly Thr Ala Tyr Ala Arg Tyr Gly Ser Phe Gly Val \$340\$Gly Leu Phe Ser Val Asp Pro Glu Glu Asp Gly Tyr Pro Leu Thr Val 355 360 365Ala Asp Tyr Ser Gly Thr Ala Gly Asp Ser Leu Leu Lys His Ser Gly 370 380Met Arg Phe Thr Thr Lys Asp Arg Asp Ser Asp His Ser Glu Asn Asn 385 395 400Cys Ala Ala Phe Tyr Arg Gly Ala Trp Trp Tyr Arg Asn Cys His Thr 405 410 415 Ser Asn Leu Asn Gly Gln Tyr Leu Arg Gly Ala His Ala Ser Tyr Ala 420 430 Asp Gly Val Glu Trp Ser Ser Trp Thr Gly Trp Gln Tyr Ser Leu Lys 435 445Phe Ser Glu Met Lys Ile Arg Pro Val Arg Glu Asp Arg 129 460 <210> <211> PRT Homo sapiens

<400> 129

PCT/US02/37660 WO 03/048185

Val Lys Asn Met Ser Leu Glu Leu Asn Ser Lys Leu Glu Ser Leu Leu 115 120 125 Glu Glu Lys Ile Leu Leu Gl
n Gln Lys Val Lys Tyr Leu Glu Gl
n 130 140 140 Leu Thr Asn Leu Ile Gln Asn Gln Pro Glu Thr Pro Glu His Pro Glu 145 150 160 Val Thr Ser Leu Lys Thr Phe Val Glu Lys Gln Asp Asn Ser Ile Lys Asp Leu Gln Thr Val Glu Asp Gln Tyr Lys Gln Leu Asn Gln Gln 180 His Ser Gln Ile Lys Glu Ile Glu Asn Gln Leu Arg Arg Thr Ser Ile 195 200 205 Gln Glu Pro Thr Glu Ile Ser Leu Ser Ser Lys Pro Arg Ala Pro Arg 210 215 220 Thr Thr Phe Phe Leu Gln Leu Asn Glu Ile Arg Asn Val Lys His Asp 225 230 235 Gly Ile Pro Ala Glu Cys Thr Thr Ile Tyr Asn Arg Gly Glu His Thr $245 \ \ 250 \ \ \ 255$ Ser Gly Met Tyr Ala Ile Arg Pro Ser Asn Ser Gln Val Phe Gly Val 260 265 270Tyr Cys Asp Val Ile Ser Gly Ser Pro Trp Thr Leu Ile Gln His Arg 275 280 285 Ile Asp Gly Ser Gln Asn Phe Asn Glu Thr Trp Glu Asn Tyr Lys Tyr 290 300Gly Phe Gly Arg Leu Asp Gly Glu Phe Trp Leu Gly Leu Glu Lys Ile 305 310 315 320 Tyr Ser Ile Val Lys Gln Ser Asn Tyr Val Leu Arg Ile Glu Leu Glu 325 330 335 Asp Trp Lys Asp Asn Lys His Tyr Ile Glu Tyr Ser Phe Tyr Leu Gly Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn 355 360 365Val Pro Asn Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp $370 \hspace{1cm} 375 \hspace{1cm} 380$ Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly 385 390 395 400 Gly Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys
405
410
415 Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu 420 425 430 Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys 435 440 445Met Leu Ile His Pro Thr Asp Ser Glu Ser Phe Glu 450 460

<212> PRT

Homo sapiens

<400> 130

Met Arg Pro Leu Cys Val Thr Cys Trp Trp Leu Gly Leu Leu Ala Ala Met Gly Ala Val Ala Gly Gln Glu Asp Gly Phe Glu Gly Thr Glu Glu 20 25 Gly Ser Pro Arg Glu Phe Ile Tyr Leu Asn Arg Tyr Lys Arg Ala Gly $\begin{array}{c} 45 \end{array}$ Glu Ser Gln Asp Lys Cys Thr Tyr Thr Phe Ile Val Pro Gln Gln Arg
50 60

Val Thr Gly Ala Ile Cys Val Asn Ser Lys Glu Pro Glu Val Leu Leu 65 75 80 Glu Asn Arg Val His Lys Gln Glu Leu Glu Leu Leu Asn Asn Glu Leu Leu Lys Gln Lys Arg Gln Ile Glu Thr Leu Gln Gln Leu Val Glu Val Asp Gly Gly Ile Val Ser Glu Val Lys Leu Leu Arg Lys Glu Ser Arg 115 120 125 Asn Met Asn Ser Arg Val Thr Gln Leu Tyr Met Gln Leu Leu His Glu 130 140 Ile Ile Arg Lys Arg Asp Asn Ala Leu Glu Leu Ser Gln Leu Glu Asn 145 150 160 Arg Ile Leu Asn Gln Thr Ala Asp Met Leu Gln Leu Ala Ser Lys Tyr 165 170 175 Lys Asp Leu Glu His Lys Tyr Gln His Leu Ala Thr Leu Ala His Asn $180 \hspace{1cm} 185 \hspace{1cm} 190$ Gln Ser Glu Ile Ile Ala Gln Leu Glu Glu His Cys Gln Arg Val Pro 195 205 Ser Ala Arg Pro Val Pro Gln Pro Pro Pro Ala Ala Pro Pro Arg Val 210 215 220 Tyr Gln Pro Pro Thr Tyr Asn Arg Ile Ile Asn Gln Ile Ser Thr Asn 225 230 - 235 240 Glu Ile Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu Pro 245 250 255 Thr Met Pro Thr Leu Thr Ser Leu Pro Ser Ser Thr Asp Lys Pro Ser . 260 265 270 Gly Pro Trp Arg Asp Cys Leu Gln Ala Leu Glu Ser Gly His Asp Thr 275 280 285 Ser Ser Ile Tyr Leu Val Lys Pro Glu Asn Thr Asn Arg Leu Met Gln 290 295 300 Val Trp Cys Asp Gln Arg His Asp Pro Gly Gly Trp Thr Val Ile Gln 305 315 320 Arg Arg Leu Asp Gly Ser Val Asn Phe Phe Arg Asn Trp Glu Thr Trp 325 330 335 Lys Gln Gly Phe Gly Asn Ile Asp Gly Glu Tyr Trp Leu Gly Leu Glu 340 345Asn Ile Tyr Trp Leu Thr Asn Gln Gly Asn Tyr Lys Leu Leu Val Thr 355 360 Met Glu Asp Trp Ser Gly Arg Lys Val Phe Ala Glu Tyr Ala Ser Phe 370 380 Arg Leu Glu Pro Glu Ser Glu Tyr Tyr Lys Leu Arg Leu Gly Arg Tyr 385 395 400 His Gly Asn Ala Gly Asp Ser Phe Thr Trp His Asn Gly Lys Gln Phe 405 415 Thr Thr Leu Asp Arg Asp His Asp Val Tyr Thr Gly Asn Ala Cys Ala 420 430His Tyr Gln Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn 435 445Leu Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Arg Tyr Gln
450 460 Asp Gly Val Tyr Trp Ala Glu Phe Arg Gly Gly Ser Tyr Ser Leu Lys Lys Val Val Met Met Ile Arg Pro Asn Pro Asn Thr Phe His

<210> 131 <211> 405

<212> PRT <213> Homo sapiens

<400> 131

Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala 1 10 15

Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser 20 30

Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu 35 45

Leu Gln Leu Gly Gln Gly Cys Ala Asn Thr Gly Ala His Pro Gln Ser 50 60

Ala Glu Arg Ala Gly Ala Arg Leu Ser Ala Cys Gly Ser Ala Cys Gln 65 75 80

Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg Val 85 90 95

Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln Asn 100 105 110

Ser Arg Ile Gln Gln Leu Phe His Lys Val Ala Gln Gln Gln Arg His 115 120 125

Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe Gly 130 140

Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala Arg 145 150 156

Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn 165 170

Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe Gln 180 185

Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly Ser 195 200 205

Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp Thr 210 215 220

Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro Trp 225 230 235 240

Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp Leu 245 250 255

Gly Leu Glu Lys Val His Ser Met Met Gly Asp Arg Asn Ser Arg Leu 260 265 270

Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu Gln Phe 275 280 285

Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu Thr 290 295 300

Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro Ser Gly 305 310 315

Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Arg 325 330 335

Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr 340 345 350

Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro Gln 355 360 365

Gln Arg Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg Gly 370 380

Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met Ala 385 395 400

Ala Glu Ala Ala Ser

<210> 132

<211> 412

<212> PRT <213> Homo sapiens

<400> 132

Met Arg Cys Ala Pro Thr Ala Gly Ala Ala Leu Val Leu Cys Ala Ala 1 10 15 Thr Ala Gly Leu Leu Ser Ala Gln Gly Arg Pro Ala Gln Pro Glu Pro 20 20 30Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Leu Leu Ala His Gly Leu 35 40 45 Leu Gln Leu Gly His Gly Leu Arg Glu His Val Glu Arg Thr Arg Gly 50 60 Gln Leu Gly Ala Leu Glu Arg Arg Met Ala Ala Cys Gly Asn Ala Cys 65 75 80Gln Gly Pro Lys Gly Lys Asp Ala Pro Phe Lys Asp Ser Glu Asp Arg Val Pro Glu Gly Gln Thr Pro Glu Thr Leu Gln Ser Leu Gln Thr Gln $100 \,$ $\,$ $105 \,$ $\,$ $\,$ $110 \,$ Leu Lys Ala Gln Asn Ser Lys Ile Gln Gln Leu Phe Gln Lys Val Ala 115 120 125 Gln Gln Gln Arg Tyr Leu Ser Lys Gln Asn Leu Arg Ile Gln Asn Leu 130 140 Gln Ser Gln Ile Asp Leu Leu Ala Pro Thr His Leu Asp Asn Gly Val 145 $$ 155 $$ 160 Asp Lys Thr Ser Arg Gly Lys Arg Leu Pro Lys Met Thr Gln Leu Ile 165 170 175Gly Leu Thr Pro Asn Ala Ala Thr His Leu His Arg Pro Pro Arg Asp 180 185 190 Cys Gln Glu Leu Phe Gln Glu Gly Glu Arg His Ser Gly Leu Phe Gln Ile Gln Pro Leu Gly Ser Pro Pro Phe Leu Val Asn Cys Glu Met Thr 210 220Ser Asp Gly Gly Trp Thr Val Ile Gln Arg Arg Leu Asn Gly Ser Val 225 230 235 Asp Phe Asn Gln Ser Trp Glu Ala Tyr Lys Asp Gly Phe Gly Asp Pro Gln Gly Glu Phe Trp Leu Gly Leu Glu Lys Met His Ser Ile Thr Gly 260 265 270Asn Arg Gly Ser Gln Leu Ala Val Gln Leu Gln Asp Trp Asp Gly Asn 275 280 285 Ala Lys Leu Gl
n Clu Phe Pro Ile His Leu Gly Gly Glu Asp Thr Ala 290 295 300 Tyr Ser Leu Gln Leu Thr Glu Pro Thr Ala Asn Glu Leu Gly Ala Thr 305 310315 Asn Val Ser Pro Asn Gly Leu Ser Leu Pro Phe Ser Thr Trp Asp Gln 325 330 335 Asp His Asp Leu Arg Gly Asp Leu Asn Cys Ala Lys Ser Leu Ser Gly 340 345Gly Trp Trp Phe Gly Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr 355 360 365Phe His Ser Ile Pro Arg Gln Arg Gln Glu Arg Lys Lys Gly Ile Phe Trp Lys Thr Trp Lys Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Leu 385 395 400 Leu Ile Gln Pro Met Glu Ala Thr Ala Ala Ser
405

```
<210>
       133
<211>
<212>
       DNA
       Homo sapiens
<220>
<221> misc_feature
       (543)..(543)
"n" may be any nucleotide.
<222>
<223>
<220>
<221> misc feature
<222> (612)..(612)
<223> "n" may be any nucleotide.
<220>
<221> misc feature
<222> (6907..(690)
<223> "n" may be any nucleotide.
<220>
<221> misc feature
<222> (6937..(693)
<223> "n" may be any nucleotide.
<400> 133
                                                                           60
ttttttttt gggatagtga tggtgaattc aggacatatg ggtatttaca cagtgtataa
acagtgctca gaagaatgca gttccaagat gatctgtatt gtataacata agtgttctgt
                                                                          120
tttccaqtta tttactqata aacttgcaca taacattctt ggttgtgaca gcagcgtctg
                                                                          180
                                                                          240
taaactgtca gtctgattct cagcctcggg gttcatcttt gcataggtgt tctgtctaat
                                                                          300
cacaattatg gatgtttagg gtcttgcttt ggtccgttaa gtgatgcaag tttaagtgat
aaagtttaca ggctctaatc tggagcatgt gggtcccgtc agcaccgagc acacgccctc
                                                                          360
tgtggtggaa gaggacacag tgcgcagccg tgactttcag tgcactgggc ttaagtcttt
                                                                          420
                                                                          480
gaaaatagtt cgagacagtt cctcaggtgg actgggatgt ttagaaatct gctggtcgga
tcaatcatgt tgtggccttg agcgaatagc ctgagccttt ccagtagtac catttaatgc
                                                                          540
cgntgaactt tatttgtgtc tggctctgtg gatagtacat tccggtcaag ttggaaggac
                                                                          600
                                                                          660
cacatgcatc anaccaccag gctattaatg agttctcact tgagagatta gaatgttcat
                                                                          720
acaatgagta agcctcattc ccttaccagn ctnttaggtg attttagcac atagcgttgc
                                                                          756
tgattagtcg ttgcgaacca actcatttcc cagcca
<210>
       134
<211>
       530
<212>
       DNA
<213> Homo sapiens
                                                                           60
gttctgaggt tgcttttatt ccaagaactc tgtgagctcc gcccagatac cattggcgcc
tgcttgtgtc cccaggggac ctacacacaa cagcaccagc accatgaggg cgctctcgac
                                                                          120
                                                                          180
ccacacaaqc cctqqtcccc gtcagtcaat gtgactgagt ccgccattga ggccagtctg
gctttgcaga tgctgaattc gcaggtgctg cttctccagg tgccgctgct gctgggccac
                                                                          240
                                                                          300
cttgtggaag agttgctgga tcctgctgtt ctgagccttg agttgtgtct gcaggctgtg
aaggacctca gggtccaccc ggctctcagg ggctaacggg aggtcggtgg acccctcggt
                                                                          420
tecetqaeaq qeqqaeeeqe acqeqeteaq gegeegttte agegegetea getgaetgeg
                                                                          480
ggtgcgctcc gcgtgttcgc gcagcccctg gccgagctgc aggagtccgt gcgccaggac
                                                                          530
attcatctcg tcccaggacg caaagcgcgg cgacttggac tgcacgggtc
<210>
       135
       458
<211>
       DNA
<213>
       Homo sapiens
<400>
       135
tittitit tittitigtt ctgaggttqc tittattcca agaactctgt gagctccgcc
                                                                           60
```

PCT/US02/37660 WO 03/048185

cagataccat	tggcgcctgc	ttgtgtcccc	aggggaccta	cacacaacag	caccagcacc	120
atgagggcgc	tctcgaccca	cacaagccct	ggtccccgtc	agtcaatgtg	actgagtccg	180
ccattgaggc	cagtctggct	ttgcagatgc	tgaattcgca	ggtgctgctt	ctccaggtgc	240
cgctgctgct	gggccacctt	gtggaagagt	tgctggatcc	tgctgttctg	agccttgagt	300
tgtgtctgca	ggctgtgaag	gacctcaggg	tccacccggc	tctcaggggc	taacgggagg	360
tcggtggacc	cctcggttcc	ctgacaggcg	gacccgcacg	cgctcaggcg	ccgctccagc	420
gcgctcagct	gactgcgggt	gcgctccgcg	tgttcgcg			458
<210> 136 <211> 220	1					

PRT <213> Homo sapiens <400> 136 Met Gly Ala Met Thr Gln Leu Leu Ala Gly Val Phe Leu Ala Phe Leu
1 10 15 Ala Leu Ala Thr Glu Gly Gly Val Leu Lys Lys Val Ile Arg His Lys 20 25 30 Arg Gln Ser Gly Val Asn Ala Thr Leu Pro Glu Glu Asn Gln Pro Val 35 45 Val Phe Asn His Val Tyr Asn Ile Lys Leu Pro Val Gly Ser Gln Cys 50 60 Ser Val Asp Leu Glu Ser Ala Ser Gly Glu Lys Asp Leu Ala Pro Pro 65 75 80 Ser Glu Pro Ser Glu Ser Phe Gln Glu His Thr Val Asp Gly Glu Asn 85 90 Gln Ile Val Phe Thr His Arg Ile Asn Ile Pro Arg Arg Ala Cys Gly 100 105 110 Cys Ala Ala Ala Pro Asp Val Lys Glu Leu Leu Ser Arg Leu Glu Glu 115 120 125 Leu Glu Asn Leu Val Ser Ser Leu Arg Glu Gln Cys Thr Ala Gly Ala 130 140 Gly Cys Cys Leu Gln Pro Ala Thr Gly Arg Leu Asp Thr Arg Pro Phe 145 150 160 Cys Ser Gly Arg Gly Asn Phe Ser Thr Glu Gly Cys Gly Cys Val Cys 175 175Glu Pro Gly Trp Lys Gly Pro Asn Cys Ser Glu Pro Glu Cys Pro Gly 180 185 190 Asn Cys His Leu Arg Gly Arg Cys Ile Asp Gly Gln Cys Ile Cys Asp 195 200 205 Asp Gly Phe Thr Gly Glu Asp Cys Ser Gln Leu Ala Cys Pro Ser Asp 210 215 Cys Asn Asp Gln Gly Lys Cys Val Asn Gly Val Cys Ile Cys Phe Glu 225 230 240 Gly Tyr Ala Gly Ala Asp Cys Ser Arg Glu Ile Cys Pro Val Pro Cys 245 250 255 Ser Glu Glu His Gly Thr Cys Val Asp Gly Leu Cys Val Cys His Asp 260 265 270Gly Phe Ala Gly Asp Asp Cys Asn Lys Pro Leu Cys Leu Asn Asn Cys 275 280 285 Tyr Asn Arg Gly Arg Cys Val Glu Asn Glu Cys Val Cys Asp Glu Gly 290 300 Phe Thr Gly Glu Asp Cys Ser Glu Leu Ile Cys Pro Asn Asp Cys Phe 305 310 315

Asp Arg Gly Arg Cys Ile Asn Gly Thr Cys Tyr Cys Glu Glu Gly Phe

Thr Gly Glu Asp Cys Gly Lys Pro Thr Cys Pro His Ala Cys His Thr 340 350 Gln Gly Arg Cys Glu Glu Gly Gln Cys Val Cys Asp Glu Gly Phe Ala 355 360 Gly Leu Asp Cys Ser Glu Lys Arg Cys Pro Ala Asp Cys His Asn Arg 370 380 Gly Arg Cys Val Asp Gly Arg Cys Glu Cys Asp Asp Gly Phe Thr Gly 385 395 400 Ala Asp Cys Gly Glu Leu Lys Cys Pro Asn Gly Cys Ser Gly His Gly
405 410 415 Arg Cys Val Asn Gly Gln Cys Val Cys Asp Glu Gly Tyr Thr Gly Glu
420 430 Asp Cys Ser Gln Leu Arg Cys Pro Asn Asp Cys His Ser Arg Gly Arg 435 440 445 Cys Val Glu Gly Lys Cys Val Cys Glu Gln Gly Phe Lys Gly Tyr Asp 450 460Cys Ser Asp Met Ser Cys Pro Asn Asp Cys His Gln His Gly Arg Cys 465 470 475 480 Val Asn Gly Met Cys Val Cys Asp Asp Gly Tyr Thr Gly Glu Asp Cys 495 Arg Asp Arg Gln Cys Pro Arg Asp Cys Ser Asn Arg Gly Leu Cys Val 500 510 Asp Gly Gln Cys Val Cys Glu Asp Gly Phe Thr Gly Pro Asp Cys Ala 515 525 Glu Leu Ser Cys Pro Asn Asp Cys His Gly Gln Gly Arg Cys Val Asn 530 540 Gly Gln Cys Val Cys His Glu Gly Phe Met Gly Lys Asp Cys Lys Glu 545 550 560 Gln Arg Cys Pro Ser Asp Cys His Gly Gln Gly Arg Cys Val Asp Gly 575 Gln Cys Ile Cys His Glu Gly Phe Thr Gly Leu Asp Cys Gly Gln His 580 590 Ser Cys Pro Ser Asp Cys Asn Asn Leu Gly Gln Cys Val Ser Gly Arg 595 600 605 Cys Ile Cys Asn Glu Gly Tyr Ser Gly Glu Asp Cys Ser Glu Val Ser 610 620 Pro Pro Lys Asp Leu Val Val Thr Glu Val Thr Glu Glu Thr Val Asn 625 630 640 Leu Ala Trp Asp Asn Glu Met Arg Val Thr Glu Tyr Leu Val Val Tyr 645 655 Thr Pro Thr His Glu Gly Gly Leu Glu Met Gln Phe Arg Val Pro Gly $_{660}^{\rm Hot}$ Glu Gly $_{660}^{\rm Hot}$ Asp Gln Thr Ser Thr Ile Ile Gln Glu Leu Glu Pro Gly Val Glu Tyr 675 680 685 Phe Ile Arg Val Phe Ala Ile Leu Glu Asn Lys Lys Ser Ile Pro Val 690 700 Ser Ala Arg Val Ala Thr Tyr Leu Pro Ala Pro Glu Gly Leu Lys Phe 705 710 715 720 Lys Ser Ile Lys Glu Thr Ser Val Glu Val Glu Trp Asp Pro Leu Asp 725 735Ile Ala Phe Glu Thr Trp Glu Ile Ile Phe Arg Asn Met Asn Lys Glu $740 \hspace{1.5cm} 745 \hspace{1.5cm} 750$ Asp Glu Gly Glu Ile Thr Lys Ser Leu Arg Arg Pro Glu Thr Ser Tyr 755 760 765 Arg Gln Thr Gly Leu Ala Pro Gly Gln Glu Tyr Glu Ile Ser Leu His

Ile Val Lys Asn Asn Thr Arg Gly Pro Gly Leu Lys Arg Val Thr Thr 785 790 790 800 Thr Arg Leu Asp Ala Pro Ser Gln Ile Glu Val Lys Asp Val Thr Asp 815 Thr Thr Ala Leu Ile Thr Trp Phe Lys Pro Leu Ala Glu Ile Asp Gly 820 830 Ile Glu Leu Thr Tyr Gly Ile Lys Asp Val Pro Gly Asp Arg Thr Thr 835 845 Ile Asp Leu Thr Glu Asp Glu Asn Gln Tyr Ser Ile Gly Asn Leu Lys 850 860 Pro Asp Thr Glu Tyr Glu Val Ser Leu Ile Ser Arg Arg Gly Asp Met 865 870 875 880 Ser Ser Asn Pro Ala Lys Glu Thr Phe Thr Thr Gly Leu Asp Ala Pro 895Arg Asn Leu Arg Arg Val Ser Gln Thr Asp Asn Ser Ile Thr Leu Glu 900 905 910 Trp Arg Asn Gly Lys Ala Ala Ile Asp Ser Tyr Arg Ile Lys Tyr Ala 915 920 925 Pro Ile Ser Gly Gly Asp His Ala Glu Val Asp Val Pro Lys Ser Gln 930 940 Gln Ala Thr Thr Lys Thr Thr Leu Thr Gly Leu Arg Pro Gly Thr Glu 945 950 955 960 Tyr Gly Ile Gly Val Ser Ala Val Lys Glu Asp Lys Glu Ser Asn Pro 965 970 975 Ala Thr Ile Asn Ala Ala Thr Glu Leu Asp Thr Pro Lys Asp Leu Gln 980 990 Val Ser Glu Thr Ala Glu Thr Ser Leu Thr Leu Leu Trp Lys Thr Pro 995 1000 1005 Leu Ala Lys Phe Asp Arg Tyr Arg Leu Asn Tyr Ser Leu Pro Thr 1010 1015 1020Gly Gln Trp Val Gly Val Gln Leu Pro Arg Asn Thr Thr Ser Tyr 1025 1035 Val Leu Arg Gly Leu Glu Pro Gly Gln Glu Tyr Asn Val Leu Leu 1040 1050 Thr Ala Glu Lys Gly Arg His Lys Ser Lys Pro Ala Arg Val Lys 1055 1060 Ala Ser Thr Glu Gln Ala Pro Glu Leu Glu Asn Leu Thr Val Thr 1070 1080 Glu Val Gly Trp Asp Gly Leu Arg Leu Asn Trp Thr Ala Ala Asp 1085 1095 Gln Ala Tyr Glu His Phe Ile Ile Gln Val Gln Glu Ala Asn Lys 1100 1110 Val Glu Ala Ala Arg Asn Leu Thr Val Pro Gly Ser Leu Arg Ala 1115 1120 1125 Val Asp Ile Pro Gly Leu Lys Ala Ala Thr Pro Tyr Thr Val Ser 1130 1140 Ile Tyr Gly Val Ile Gln Gly Tyr Arg Thr Pro Val Leu Ser Ala Glu Ala Ser Thr Gly Glu Thr Pro Asn Leu Gly Glu Val Val 1160 1165 1170 Ala Glu Val Gly Trp Asp Ala Leu Lys Leu Asn Trp Thr Ala Pro 1175 1180 1185 Glu Gly Ala Tyr Glu Tyr Phe Phe Ile Gln Val Gln Glu Ala Asp 1190 1200 Thr Val Glu Ala Ala Gln Asn Leu Thr Val Pro Gly Gly Leu Arg 1205 1210 1215

Ser	Thr 1220	Asp	Leu	Pro	Gly	Leu 1225	Lys	Ala	Ala	Thr	His 1230	Tyr	Thr	Ile
Thr	Ile 1235	Arg	Gly	Val	Thr	Gln 1240	Asp	Phe	Ser	Thr	Thr 1245	Pro	Leu	Ser
Val	Glu 1250	Val	Leu	Thr	Glu	Glu 1255	Val	Pro	Asp	Met	Gly 1260	Asn	Leu	Thr
Val	Thr 1265	Glu	Val	Ser	Trp	Asp 1270	Ala	Leu	Arg	Leu	Asn 1275	Trp	Thr	Thr
Pro	Asp 1280	Gly	Thr	Tyr	Asp	Gln 1285	Phe	Thr	Ile	Gln	Val 1290	Gln	Glu	Ala
Asp	Gln 1295	Val	Glu	Glu	Ala	His 1300	Asn	Leu	Thr	Val	Pro 1305	Gly	Ser	Leu
Arg	Ser 1310	Met	Glu	Ile	Pro	Gly 1315	Leu	Arg	Ala	Gly	Thr 1320	Pro	Tyr	Thr
Val	Thr 1325	Leu	His	Gly	Glu	Val 1330	Arg	Gly	His	Ser	Thr 1335	Arg	Pro	Leu
Ala	Val 1340	Glu	Val	Val	Thr	Glu 1345	Asp	Leu	Pro	Gln	Leu 1350	Gly	Asp	Leu
Ala	Val 1355	Ser	Glu	Val	Gly	Trp 1360	Asp	Gly	Leu	Arg	Leu 1365	Asn	Trp	Thr
Ala	Ala 1370	Asp	Asn	Ala	Tyr	Glu 1375	His	Phe	Val	Ile	Gln 1380	Val	Gln	Glu
Val	Asn 1385	Lys	Val	Glu	Ala	Ala 1390	Gln	Asn	Leu	Thr	Leu 1395	Pro	Gly	Ser
Leu	Arg 1400	Ala	Val	Asp	Ile	Pro 1405	Gly	Leu	Glu	Ala	Ala 1410	Thr	Pro	Tyr
Arg	Val 1415	Ser	Ile	Tyr	Gly	Val 1420	Ile	Arg	Gly	Tyr	Arg 1425	Thr	Pro	Val
Leu	Ser 1430	Ala	Glu	Ala	Ser	Thr 1435	Ala	Lys	Glu	Pro	Glu 1440	Ile	Gly	Asn
Leu	Asn 1445	Val	Ser	Asp	Ile	Thr 1450	Pro	Glu	Ser	Phe	Asn 1455	Leu	Ser	Trp
Met	Ala 1460	Thr	Asp	Gly	Ile	Phe 1465	Glu	Thr	Phe	Thr	Ile 1470	Glu	Ile	Ile
Asp	Ser 1475	Asn	Arg	Leu	Leu	Glu 1480	Thr	Val	Glu	Tyr	Asn 1485	Ile	Ser	Gly
Ala	Glu 1490	Arg	Thr	Ala	His	Ile 1495	Ser	Gly	Leu	Pro	Pro 1500	Ser	Thr	Asp
	Ile 1505	Val	Tyr	Leu		Gly 1510		Ala	Pro		Ile 1515		Thr	Lys
Thr	Ile 1520	Ser	Ala	Thr	Ala	Thr 1525	Thr	Glu	Ala	Leu	Pro 1530	Leu	Leu	Glu
Asn	Leu 1535	Thr	Ile	Ser	Asp	Ile 1540	Asn	Pro	Tyr	Gly	Phe 1545	Thr	Val	Ser
Trp	Met 1550	Ala	Ser	Glu	Asn	Ala 1555	Phe	Asp	Ser	Phe	Leu 1560	Val	Thr	Val
Val	Asp 1565	Ser	Gly	Lys	Leu	Leu 1570	Asp	Pro	Gln	Glu	Phe 1575	Thr	Leu	Ser
Gly	Thr 1580	Gln	Arg	Lys	Leu	Glu 1585	Leu	Arg	Gly	Leu	Ile 1590	Thr	Gly	Ile
Gly	Туг 1595	Glu	Val	Met	Val	Ser 1600	Gly	Phe	Thr	Gln	Gly 1605	His	Gln	Thr
Lys	Pro 1610	Leu	Arg	Ala	Glu	Ile 1615	Val	Thr	Glu	Ala	Glu 1620	Pro	Glu	Val
Asp	Asn 1625	Leu	Leu	Val	Ser	Asp 1630	Ala	Thr	Pro	Asp	Gly 1635	Phe	Arg	Leu

Ser	Trp 1640	Thr	Ala	Asp	Glu	Gly 1645	Val	Phe	Asp	Asn	Phe 1650	Val	Leu	Lys
Ile i	Arg 1655	Asp	Thr	Lys	Lys	Gln 1660	Ser	Glu	Pro	Leu	Glu 1665	Ile	Thr	Leu
Leu i	Ala 1670	Pro	Glu	Arg	Thr	Arg 1675	Asp	Leu	Thr	Gly	Leu 1680	Arg	Glu	Ala
Thr	Glu 1685	Tyr	Glu	Ile	Glu	Leu 1690	Tyr	Gly	Ile	Ser	Lys 1695	Gly	Arg	Arg
Ser (Gln 1700	Thr	Val	Ser	Ala	Ile 1705	Ala	Thr	Thr	Ala	Met 1710	Gly	Ser	Pro
Lys (Glu 1715	Val	Ile	Phe	Ser	Asp 1720	Ile	Thr	Glu	Asn	Ser 1725	Ala	Thr	Val
Ser	Trp 1730	Arg	Ala	Pro	Thr	Ala 1735	Gln	Val	Glu	Ser	Phe 1740	Arg	Ile	Thr
	Val 1745	Pro	Ile	Thr	Gly	Gly 1750	Thr	Pro	Ser	Met	Val 1755	Thr	Val	Asp
	Thr 1760	Lys	Thr	Gln	Thr	Arg 1765	Leu	Val	Lys	Leu	Ile 1770	Pro	Gly	Val
Glu (Tyr 1775	Leu	Val	Ser	Ile	Ile 1780	Ala	Met	Lys	Gly	Phe 1785	Glu	Glu	Ser
Glu !	Pro 1790	Val	Ser	Gly	Ser	Phe 1795	Thr	Thr	Ala	Leu	Asp 1800	Gly	Pro	Ser
Gly i	Leu 1805	Val	Thr	Ala	Asn	Ile 1810	Thr	Asp	Ser	Glu	Ala 1815	Leu	Ala	Arg
Trp (Gln 1820	Pro	Ala	Ile	Ala	Thr 1825	Val	Asp	Ser	Tyr	Val 1830	Ile	Ser	Tyr
Thr (Gly 1835	Glu	Lys	Val	Pro	Glu 1840	Ile	Thr	Arg	Thr	Val 1845	Ser	Gly	Asn
Thr '	Val 1850	Glu	Tyr	Ala	Leu	Thr 1855	Asp	Leu	Glu	Pro	Ala 1860	Thr	Glu	Tyr
	Leu 1865	Arg	Ile	Phe	Ala	Glu 1870	Lys	Gly	Pro	Gln	Lys 1875	Ser	Ser	Thr
	Thr 1880	Ala	Lys	Phe	Thr	Thr 1885	Asp	Leu	Asp	Ser	Pro 1890	Arg	Asp	Leu
Thr i	Ala 1895	Thr	Glu	Val	Gln	Ser 1900	Glu	Thr	Ala	Leu	Leu 1905	Thr	Trp	Arg
Pro !	Pro 1910	Arg	Ala	Ser	Val	Thr 1915	Gly	Tyr	Leu	Leu	Val 1920	Tyr	Glu	Ser
Val i	Asp 1925		Thr	Val	Lys	Glu 1930	Val	Ile	Val	Gly	Pro 1935	Asp	Thr	Thr
	Tyr 1940	Ser	Leu	Ala	Asp	Leu 1945	Ser	Pro	Ser	Thr	His 1950	Tyr	Thr	Ala
Lys	Ile 1955	Gln	Ala	Leu	Asn	Gly 1960	Pro	Leu	Arg	Ser	Asn 1965	Met	Ile	Gln
Thr	Ile 1970	Phe	Thr	Thr	Ile	Gly 1975	Leu	Leu	Tyr	Pro	Phe 1980	Pro	Lys	Asp
Cys :	Ser 1985	Gln	Ala	Met	Leu	Asn 1990	Gly	Asp	Thr	Thr	Ser 1995	Gly	Leu	Tyr
Thr	lle 2000	Tyr	Leu	Asn	Gly	Asp 2005	Lys	Ala	Gln	Ala	Leu 2010	Glu	Val	Phe
Cys 2	Asp 2015	Met	Thr	Ser	Asp	Gly 2020	Gly	Gly	Trp	Ile	Val 2025	Phe	Leu	Arg
Arg 1	Lys 2030	Asn	Gly	Arg	Glu	Asn 2035	Phe	Tyr	Gln	Asn	Trp 2040	Lys	Ala	Tyr
	Ala 2045	Gly	Phe	Gly	Asp	Arg 2050	Arg	Glu	Glu	Phe	Trp 2055	Leu	Gly	Leu

Asp Asn Leu Asn Lys Ile Thr Ala Gln Gly Gln Tyr Glu Leu Arg 2060 2070 Val Asp Leu Arg Asp His Gly Glu Thr Ala Phe Ala Val Tyr Asp 2075 2080 2085 Glu Gly Tyr Ser Gly Thr Ala Gly Asp Ser Met Ala Tyr His Asn 2105 2110 Gly Arg Ser Phe Ser Thr Phe Asp Lys Asp Thr Asp Ser Ala Ile 2120 2130Thr Asn Cys Ala Leu Ser Tyr Lys Gly Ala Phe Trp Tyr Arg Asn 2135 2140 2145 Cys His Arg Val Asn Leu Met Gly Arg Tyr Gly Asp Asn Asn His 2150 2160 Ser Gln Gly Val Asn Trp Phe His Trp Lys Gly His Glu His Ser 2165 2170 2175 Ile Gln Phe Ala Glu Met Lys Leu Arg Pro Ser Asn Phe Arg Asn 2180 2185 Leu Glu Gly Arg Arg Lys Arg Ala 2195 2200 <210> <211> <212> PRT <213> Homo sapiens <400> 137 Met Glu Leu Ser Gly Ala Thr Met Ala Arg Gly Leu Ala Val Leu Leu Val Leu Phe Leu His Ile Lys Asn Leu Pro Ala Gln Ala Asp Thr 20 30 Cys Pro Glu Val Lys Val Val Gly Leu Glu Gly Ser Asp Lys Leu Thr 35 40 45 Ile Leu Arg Gly Cys Pro Gly Leu Pro Gly Ala Pro Gly Pro Lys Gly 50 55 60 Glu Ala Gly Val Ile Gly Glu Arg Gly Glu Arg Gly Leu Pro Gly Ala 65 70 80Pro Gly Lys Ala Gly Pro Val Gly Pro Lys Gly Asp Arg Gly Glu Lys
95 Gly Met Arg Gly Glu Lys Gly Asp Ala Gly Gln Ser Gln Ser Cys Ala 100 105 110 Thr Gly Pro Arg Asn Cys Lys Asp Leu Leu Asp Arg Gly Tyr Phe Leu 115 120 125 Ser Gly Trp His Thr Ile Tyr Leu Pro Asp Cys Arg Pro Leu Thr Val Leu Cys Asp Met Asp Thr Asp Gly Gly Gly Trp Thr Val Phe Gln Arg 145 155 160 Arg Met Asp Gly Ser Val Asp Phe Tyr Arg Asp Trp Ala Ala Tyr Lys 165 170 175Gln Gly Phe Gly Ser Gln Leu Gly Glu Phe Trp Leu Gly Asn Asp Asn 180 185 190 Ile His Ala Leu Thr Ala Gln Gly Ser Ser Glu Leu Arg Val Asp Leu 195 200 205 Val Asp Phe Glu Gly Asn His Gln Phe Ala Lys Tyr Lys Ser Phe Lys 210 215 220 Val Ala Asp Glu Ala Glu Lys Tyr Lys Leu Val Leu Gly Ala Phe Val 225 230 240 Gly Gly Ser Ala Gly Asn Ser Leu Thr Gly His Asn Asn Asn Phe Phe 245 250 255 Page 198.

Ser Thr Lys Asp Gln Asp Asn Asp Val Ser Ser Ser Asn Cys Ala Glu 260 265 270Lys Phe Gln Gly Ala Trp Trp Tyr Ala Asp Cys His Ala Ser Asn Leu 275 280 285 Asn Gly Leu Tyr Leu Met Gly Pro His Glu Ser Tyr Ala Asn Gly Ile 290 295 300 Asn Trp Ser Ala Ala Lys Gly Tyr Lys Tyr Ser Tyr Lys Val Ser Glu Met Lys Val Arg Pro Ala 325 <210> <212> PRT Homo sapiens misc feature (269)..(272) "Xaa" may be any amino acid. <222> <400> 138 Met Trp Gln Asp Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala 1 10 15 Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Asp Gly Lys Lys 20 30Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala 50 60 Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Asp Met Glu Asn Asn Thr Gln Trp Leu Met Lys 85 90 95 Leu Glu Asn Asp Ser Gln Asp Asn Met Lys Lys Glu Met Val Glu Asp 100 105 110Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Asp Glu Asp Gly 115 120 125 Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp 130 135 140 Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu Glu Leu Gln Leu 145 150 155 Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Asp Leu Asp 165 170 175 Gln Thr Ser Glu Asp Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu 180 185 Lys Lys Val Leu Ala Met Glu Asp Lys His Asp Asp Gln Leu Gln Ser 195 200 Asp Lys Glu Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn 210 220Ser Asp Asp Glu Glu Leu Glu Lys Lys Asp Val Thr Ala Thr Val Asn 225 230 240 Asn Ser Val Leu Gln Lys Gln Gln His Asp Leu Met Glu Thr Val Asn 245 250 255 Asn Leu Leu Thr Met Met Ser Thr Ser Asn Cys Lys Xaa Xaa Xaa Xaa 260 265 270 Val Ala Lys Glu Glu Gln Asp Ser Phe Arg Asp Cys Ala Glu Val Phe 275 285 Lys Ser Gly His Thr Thr Asn Gly Asp Tyr Thr Leu Met Trp Gln Asp 290 295 300

Page 199.

```
Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro Glu Met Asp Asn 340 345 350
Cys Arg Ser Ser Ser Ser Pro Tyr 355 360
<210> 139
<211> 19
<212> PRT
     Artificial Sequence
<220>
<223> Synthetic
<400> 139
Val Asn Leu Ser Thr Lys Glu Gly Val Leu Leu Lys Gly Lys Arg Glu
Glu Glu Lys
<210> 140
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 140
Asp Glu Gly Arg
<210> 141
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 141
Gly Gly Gly Ser Ser Ser 1
<210> 142
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 142
Pro Gly Gly Asp Ser Gly Gly Gly Gly 10
<210> 143
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 143
<210> 144
<211> 13
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Synthetic
<400> 144
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Lys Glu Phe
<210>
      145
<211>
      PRT
<212>
      Artificial Sequence
<220>
<223> Synthetic
<400> 145
Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu 1 10 15
Val Leu His His Ala Lys Trp Ser Gln Ala
<210>
      146
<211>
<212>
       PRT
<213> Homo sapiens
<400> 146
Met Thr Val Phe Leu Ser Phe Ala Phe Leu Ala Ala Asp Leu Thr His
Asp Gly Cys Ser Asn Gln Arg Arg Ser Pro Glu Asn Ser Gly Arg Arg 20 30
Tyr Asn Arg Asp Gln His Gly Gln Cys Ala Tyr Thr Phe Asp Leu Pro 35 45
Gln His Asp Gly Asn Cys
<210>
       147
<211>
      DNA
      Homo sapiens
<400> 147
atgccggagc cgaagaaggt gttctgtaac atggacctca acgggggggg gtggaccgtg
                                                                        60
                                                                      120
atacagcacc gggaggacgg gtcgctcgac ttccagcggg ggtggaagga gtacaagatg
gggttcggga acccgtcggg ggagtactgg ctcgggaacg agttcatttt cgccattacc
                                                                       180
                                                                       240
tcqcaqcqqc aqtacatqct ccqgattgag ctcatggact gggaggggaa ccgggcctac
                                                                       300
tegeagtacg accegetteea catagggaac gagaagcaga actacegget ctaceteaag
gggcacaccg ggaccgccgg gaagcagtcg tcgctcaacc tccacggggc cgacttctcg
                                                                       360
accaaggacg ccgacaacga caactgtatg tgtaagtgtg ccctcatgct caccgggggg
tggtggttcg acgcctgtgg gccgtcgaac ctcaacggga tgttctacac cgccgggcag
                                                                       480
aaccacggga agctcaacgg gataaagtgg cactacttca aggggccgtc gtactcgctc
                                                                       540
                                                                       570
cggtcgacca ccatgatgat tcggccgctc
<210>
      148
       1494
<211>
<212>
       DNA
      Homo sapiens
<400>
      148
atgacagttt teettteett tgettteete getgeeatte tgactcacat agggtgeage
                                                                        60
                                                                       120
aatcagcgcc gaagtccaga aaacagtggg agaagatata accggattca acatgggcaa
                                                                       180
tgtgcctaca ctttcattct tccagaacac gatggcaact gtcgtgagag tacgacagac
cagtacaaca caaacgetet geagagagat getecacaeg tggaacegga tttetetee
                                                                       240
```

cagaaacttc aa	catctgga acatgtg	atg gaaaatta	ta ctcagtggct	gcaaaaactt	300
gagaattaca tt	gtggaaaa catgaag	tcg gagatggc	cc agatacagca	gaatgcagtt	360
cagaaccaca cg	gctaccat gctggag	ata ggaaccag	cc tcctctctca	gactgcagag	420
cagaccagaa ag	ctgacaga tgttgag	acc caggtact	aa atcaaacttc	tcgacttgag	480
atacagetge tg	gagaattc attatco	acc tacaagct	ag agaagcaact	tcttcaacag	540
acaaatgaaa to	ttgaagat ccatgaa	aaa aacagttt	at tagaacataa	aatcttagaa	600
atggaaggaa aa	cacaagga agagttg	gac accttaaa	gg aagagaaaga	gaaccttcaa	660
ggcttggtta ct	cgtcaaac atatata	atc caggagct	gg aaaagcaatt	aaacagagct	720
accaccaaca aca	agtgtcct tcagaag	cag caactgga	gc tgatggacac	agtccacaac	780
cttgtcaatc tt	tgcactaa agaaggt	gtt ttactaaa	gg gaggaaaaag	agaggaagag	840
aaaccattta ga	gactgtgc agatgta	tat caagetgg	tt ttaataaaag	tggaatctac	900
actatttata tt	aataatat gccagaa	ccc aaaaaggt	gt tttgcaatat	ggatgtcaat	960
gggggaggtt gg	actgtaat acaacat	.cgt gaagatgg	aa gtctagattt	ccaaagaggc	1020
tggaaggaat at	aaaatggg ttttgga	aat ccctccgg	tg aatattggct	ggggaatgag	1080
tttatttttg cca	attaccag tcagagg	cag tacatgct	aa gaattgagtt	aatggactgg	1140
gaagggaacc gag	gcctattc acagtat	gac agatteca	ca taggaaatga	aaagcaaaac	1200
tataggttgt at	ttaaaagg tcacact	ggg acagcagg	aa aacagagcag	cctgatctta	1260
cacggtgctg at	ttcagcac taaagat	gct gataatga	ca actgtatgtg	caaatgtgcc	1320
ctcatgttaa ca	ggaggatg gtggttt	gat gcttgtgg	cc cctccaatct	aaatggaatg	1380
ttctatactg cg	ggacaaaa ccatgga	aaa ctgaatgg	ga taaagtggca	ctacttcaaa	1440
gggcccagtt ac	teettacg ttecaca	act atgatgat	tc gacctttaga	tttt	1494
5555					
<210> 149 <211> 1494 <212> DNA <213> Homo sa					
<210> 149 <211> 1494 <212> DNA <213> Homo sa					60
<210> 149 <211> 1494 <212> DNA <213> Homo sa <400> 149 atgacagttt to	apiens	ecte getgecat	tc tgactcacat	agggtgcagc	60 120
<210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt to	apiens ctttcctt tgctttc	ecte getgecat eggg agaagata	tc tgactcacat ta accggattca	agggtgcagc acatgggcaa	
<210> 149 <211> 1494 <212> DNA <213> Homo sa <400> 149 atgacagttt tca aatcagcgcc gaa tgtgcctaca ct	apiens ctttcctt tgctttc agtccaga aaacagt	ctc gctgccat ggg agaagata cac gatggcaa	tc tgactcacat ta accggattca ct gtcgtgagag	agggtgcagc acatgggcaa tacgacagac	120
<210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tcc aatcagcgcc gaa tgtgcctaca ctc cagtacaaca caa	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa	ecte getgecat ggg agaagata cae gatggeaa gat getecaea	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga	agggtgcagc acatgggcaa tacgacagac tttctcttcc	120 180
<210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tca aatcagcgcc gaa tgtgcctaca ctr cagtacaaca caac cagaaacttc aaa	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga	ecte getgeeat ggg agaagata cae gatggeaa gat geteeaea gatg gaaaatta	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt	120 180 240
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tcc aatcagcgcc gaa tgtgcctaca ctc cagtacaaca caa cagaaacttc aaa gagaattaca ttaa</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtc	ecte getgeeat eggg agaagata eac gatggeaa egat geteeaca eatg gaaaatta	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt	120 180 240 300
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca caa cagaaacttc aaa gagaattaca ttc cagaaaccaca cgaaaccaca cgaaaccacaca cgaaaccacaca cgaaaccacaca cgaaaccacaca cgaaaccacaca cgaaaccacaca cgaaaccacaca cgaaaccacaca cgaaaccacacaca</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtc	ecte getgeeat ggg agaagata cae gatggeaa gat geteeaea gatg gaaaatta gteg gagatgge	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag	120 180 240 300 360
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca ca cagaaacttc aaa gagaattaca tt cagaaccaca cga cagaaccaca cga cagaaccaca aga cagaaccaca aga cagaaccaca aga cagaaccaca aga cagaaccaca aga cagaccagaa aga cagaccagaa aga </pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtc gtggaaaa catgaac	ecte getgeeat eggg agaagata eac gatggeaa egat getecaca eatg gaaaatta eteg gagatgge eata ggaaccag	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctcca aa atcaaacttc	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag	120 180 240 300 360 420
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ctr cagtacaaca cac cagaaacttc aac gagaattaca ttc cagaaccaca cgc cagaccagaa ag atacagctgc tgaa atacagctgc tgaa</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtc gtggaaaa catgaac gctaccat gctggac	ecte getgeeat ggg agaagata cae gatggeaa gat geteeaca gatg gaaaatta gteg gagatgge gata ggaaceag gate caggtaet	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca acc tectetctca aa atcaaacttc ag agaagcaact	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag	120 180 240 300 360 420 480
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca caa cagaaacttc aaa gagaattaca tt cagaaccaca cga cagaccagaa ag atacagctgc tga acaaatgaaa tc</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtg gtggaaaa catgaag gctaccat gctggag ctgacaga tgttgag gagaattc attatcc	ecte getgecat eggg agaagata eac gatggeaa egat getecaca eatg gaaaatta eteg gagatgge eata ggaaccag eace caggtact eace tacaaget	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctca aa atcaaacttc ag agaagcaact at tagaacataa	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag aatcttagaa	120 180 240 300 360 420 480 540
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca caa cagaaacttc aaa gagaattaca ttc cagaaccaca cga cagaccagaa ag atacagctgc tga acaaatgaaa tc atggaaggaa aaa atggaaggaa aaa</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtc gtggaaaa catgaac gctaccat gctggac ctgacaga tgttgac gagaattc attatcc	ecte getgeeat ggg agaagata cae gatggeaa gat geteeaca gatg gaaaatta gteg gagatgge gata ggaaccag gate caggtact caee tacaaget aaa aacagttt	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctcta aa atcaaacttc ag agaagcaact at tagaacataa gg aagagaaaga	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag aatcttagaa gaaccttcaa	120 180 240 300 360 420 480 540
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca caa cagaaacttc aaa gagaattaca tt cagaaccaca cga cagaccagaa ag atacagctgc tga acaaatgaaa tc atggaaggaa aaa ggcttggtta ct</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgto gtggaaaa catgaao gctaccat gctggao ctgacaga tgttgao gagaattc attatco ttgaagat ccatgaa cacaagga agagtto	ecte getgecat eggg agaagata eac gatggeaa egat getecaca gatg gaaaatta geeg gagatgge gata ggaaccag gace caggtact eace tacaaget aaaa aacagttt gac acettaaa	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctca aa atcaaacttc ag agaagcaact at tagaacataa gg aagagaaaga	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag aatcttagaa gaaccttcaa aaacagagct	120 180 240 300 360 420 480 540 600
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca caa cagaaacttc aaa gagaattaca tt cagaaccaca cg cagaccagaa ag atacagctgc tg acaaatgaaa tc atggaaggaa aa ggcttggtta ct accaccaaca ag accaccacaaca ag accaccacacaaca ag accaccacaaca ag accaccacacaca ag accaccacaca ag accaccacacaca ag accaccacacaca ag accaccacacaca ag accaccacacacacacacacacacacacacacacaca</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgaa gctaccat gctgga ctgacaga tgttgac ctgacaga tgttgac ttgaagat catgaa tctgaagat catatac cacaagga agagttc	ecte getgecat ggg agaagata cae gatggeaa gat getecaea gatg gaaaatta gteg gagatgge gata ggaaceag gace caggtact caec tacaaget aaa aacagtt agac acettaaa aate caggaget geag caactgga	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctcta aa atcaaacttc at tagaacataa gg aagagaaaga gg aaaagcaact gc tgatggacac	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagat gactgcagag tcgacttgag tcttcaacag aatcttagaa gaaccttcaa aaacagagct agtccacaac	120 180 240 300 360 420 480 540 600 660 720
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca cac cagaaacttc aa gagaattaca tt cagaaccaca cg cagaccagaa ag atacagctgc tg acaaatgaaa tc atggaaggaa aa ggcttggtta ct accaccaaca ac cttgtcaatc tt</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgto gtggaaaa catgaao gctaccat gctggao ctgacaga tgttgao gagaattc attatco ttgaagat ccatgaa cacaagga agagtto cgtcaaac atatata agtgtcct tcagaao	ecte getgeeat ggg agaagata acac gatggeaa gat getecaea gatg gaaaatta gteg gagatgge gata ggaaccag gace caggtact acac tacaaget aaa aacagttt ggac acettaaa aate caggaget geag caactgga	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctca aa atcaaacttc ag agaagcaact at tagaacataa gg aaaagcaatt gc tgatggacac gg gaggaaaaag	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag aatcttagaa gaaccttcaa aaacagagct agtccacaac agaggaagag	120 180 240 300 360 420 480 540 600 660 720 780
<pre><210> 149 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca cac cagaaacttc aac gagaattaca tt cagaaccaca cg cagaccagaa ag atacagctgc tg acaaatgaaa tc atggaaggaa aac ggcttggtta ct accaccaaca ac cttgtcaatc tt aaaccattta gag</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtc gtggaaaa catgaag gctaccat gctggag ctgacaga tgttgag gagaattc attatco ttgaagat ccatgaa cacaagga agagttg cgtcaaac atatata agtgtcct tcagaag tgcactaa agaaggt	ecte getgecat ggg agaagata cae gatggeaa gat getecaea gatg gaaaatta gteg gagatgge gata ggaaceag gace caggtaet caec tacaaget aaa aacagtt aaa aacagtt aaa accttaaa ate caggaget geag caactgga	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctca aa atcaaacttc ag agaagcaact at tagaacataa gg aaaagcaatt gc tgatggacac gg gaggaaaaag	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag aatcttagaa gaaccttcaa aaacagagct agtccacaac agaggaagag tggaatctac	120 180 240 300 360 420 480 540 600 660 720 780 840
<pre><210> 149 <211> 1494 <211> 1494 <212> DNA <213> Homo si <400> 149 atgacagttt tc aatcagcgcc gaa tgtgcctaca ct cagtacaaca cac cagaaacttc aa gagaattaca tt cagaaccaca ag atacagctgc tg acaaatgaaa tc atggaaggaa aa ggcttggtta ct accaccaaca ac cttgtcaatc tt aaaccattta gag actatttata tt</pre>	apiens ctttcctt tgctttc agtccaga aaacagt ttcattct tccagaa aacgctct gcagaga catctgga acatgtg gtggaaaa catgaag gctaccat gctggag ctgacaga tgttgag gagaattc attatcc ttgaagat ccatgaa cacaagga agagttg cgtcaaac atatata agtgtcct tcagaag tgcactaa agaaggt	ectc gctgccat ggg agaagata cac gatggcaa gat gctccaca gatg gaaaatta gtcg gagatggc gata ggaaccag gata ggaaccag gata caggtact cacc tacaagct aaaa aacagttt gac accttaaa aatc caggagct gcag caactgga ggt ttactaaa atat caagctgg	tc tgactcacat ta accggattca ct gtcgtgagag cg tggaaccgga ta ctcagtggct cc agatacagca cc tcctctca aa atcaaacttc ag agaagcaact at tagaacataa gg aaaagcaatt gc tgatggacac gg gaggaaaaag tt ttaataaaag gt tttgcaatat	agggtgcagc acatgggcaa tacgacagac tttctcttcc gcaaaaactt gaatgcagtt gactgcagag tcgacttgag tcttcaacag aatcttagaa gaaccttcaa aaacagagct agtccacaac agaggaagag tggaatctac ggatgtcaat	120 180 240 300 360 420 480 540 660 720 780 840 900

tttatttttg ccattaccag	tcagaggcag	tacatgctaa	gaattgagtt	aatggactgg	1140
gaagggaacc gagcctattc	acagtatgac	agattccaca	taggaaatga	aaagcaaaac	1200
tataggttgt atttaaaagg	tcacactggg	acagcaggaa	aacagagcag	cctgatctta	1260
cacggtgctg atttcagcac	taaagatgct	gataatgaca	actgtatgtg	caaatgtgcc	1320
ctcatgttaa caggaggatg	gtggtttgat	gcttgtggcc	cctccaatct	aaatggaatg	1380
ttctatactg cgggacaaaa	ccatggaaaa	ctgaatggga	taaagtggca	ctacttcaaa	1440
gggcccagtt actccttacg	ttccacaact	atgatgattc	gacctttaga	tttt	1494
<210> 150 <211> 570 <212> DNA <213> Homo sapiens					
<400> 150 atgccagaac ccaaaaaggt	gttttgcaat	atggatgtca	atgggggagg	ttggactgta	60
atacaacatc gtgaagatgg	aagtctagat	ttccaaagag	gctggaagga	atataaaatg	120
ggttttggaa atccctccgg	tgaatattgg	ctggggaatg	agtttatttt	tgccattacc	180
agtcagaggc agtacatgct	aagaattgag	ttaatggact	gggaagggaa	ccgagcctat	240
tcacagtatg acagattcca	cataggaaat	gaaaagcaaa	actataggtt	gtatttaaaa	300
ggtcacactg ggacagcagg	aaaacagagc	agcctgatct	tacacggtgc	tgatttcagc	360
actaaagatg ctgataatga	caactgtatg	tgcaaatgtg	ccctcatgtt	aacaggagga	420
tggtggtttg atgcttgtgg	cccctccaat	ctaaatggaa	tgttctatac	tgcgggacaa	480
aaccatggaa aactgaatgg	gataaagtgg	cactacttca	aagggcccag	ttactcctta	540
cgttccacaa ctatgatgat	tcgaccttta				570
<210> 151 <211> 732					
<212> DNA <213> Homo sapiens					
<212> DNA	agcctataac	aactttcgga	agagcatgga	cagcatagga	60
<212> DNA <213> Homo sapiens <400> 151					60 120
<212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc	gcatgggtcc	tgcagctaca	ctttcctcct	gccagagatg	
<212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca	gcatgggtcc cagcccctac	tgcagctaca gtgtccaatg	ctttcctcct	gccagagatg ggacgcgccg	120
<212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc	gcatgggtcc cagcccctac gcagaggctg	tgcagctaca gtgtccaatg caagtgctgg	ctttcctcct ctgtgcagag agaacatcat	gccagagatg ggacgcgccg ggaaaacaac	120 180
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt</pre>	gcatgggtcc cagcccctac gcagaggctg tgagaattat	tgcagctaca gtgtccaatg caagtgctgg atccaggaca	ctttcctcct ctgtgcagag agaacatcat acatgaagaa	gccagagatg ggacgcgccg ggaaaacaac agaaatggta	120 180 240
<212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct	gcatgggtcc cagcccctac gcagaggctg tgagaattat acagaaccag	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat	gccagagatg ggacgcgccg ggaaaacaac agaaatggta agggacaaac	120 180 240 300
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc	gccagagatg ggacgcgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta	120 180 240 300 360
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaaattg	120 180 240 300 360 420
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac tgcaagataa	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaaattg gaacagtttc	120 180 240 300 360 420 480
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga gaaaaacaga ttttggacca</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa tatggaagac	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact ataaacaaat aagcacatca	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac tgcaagataa tccaactaca	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaaattg gaacagtttc gtcaataaaa	120 180 240 300 360 420 480 540
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga gaaaaacaga ttttggacca ctagaaaaga aggtgctagc</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa tatggaagac ggtgttagta	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact ataaacaaat aagcacatca tccaagcaaa	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac tgcaagataa tccaactaca	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaattg gaacagtttc gtcaataaaa tgaagaacta	120 180 240 300 360 420 480 540
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga gaaaaacaga ttttggacca ctagaaaaga aggtgctagc gaagagaaag atcagctaca</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa tatggaagac ggtgttagta	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact ataaacaaat aagcacatca tccaagcaaa	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac tgcaagataa tccaactaca	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaattg gaacagtttc gtcaataaaa tgaagaacta	120 180 240 300 360 420 480 540 600
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga gaaaaacaga ttttggacca ctagaaaaga aggtgctagc gaagagaaag atcagctaca gaaaaaaaaa tagtgactgc ctcatggaga ca <210> 152 <211> 652 <212> DNA <213> Homo sapiens</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa tatggaagac ggtgttagta	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact ataaacaaat aagcacatca tccaagcaaa	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac tgcaagataa tccaactaca	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaattg gaacagtttc gtcaataaaa tgaagaacta	120 180 240 300 360 420 480 540 600 660 720
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga gaaaaacaga ttttggacca ctagaaaaga aggtgctagc gaagagaaag atcagctaca gaaaaaaaaa tagtgactgc ctcatggaga ca <210> 152 <211> 652 <212> DNA</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa tatggaagac ggtgttagta cacggtgaat	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact ataaacaaat aagcacatca tccaagcaaa aattcagttc	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaaat atgtggaagc ccctctcgac tgcaagataa tccaactaca attccatcat ttcaaaagca	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaaattg gaacagtttc gtcaataaaa tgaagaacta gcaacatgat	120 180 240 300 360 420 480 540 600 660 720
<pre><212> DNA <213> Homo sapiens <400> 151 tgtgatcttg tcttggccgc aagaagcaat atcaggtcca gacaactgcc gctcttcctc ctcgaatacg atgactcggt actcagtggc taatgaagct gagatacagc agaatgcagt ctgttgaacc aaacagctga aatcagacca cgagacttga gaaaaacaga ttttggacca ctagaaaaga aggtgctagc gaagagaaag atcagctaca gaaaaaaaaa tagtgactgc ctcatggaga ca <210> 152 <211> 652 <212> DNA <213> Homo sapiens <400> 152</pre>	gcatgggtcc cagccctac gcagaggctg tgagaattat acagaaccag gcaaacgcgg acttcagctc gaccagtgaa tatggaagac ggtgttagta cacggtgaat	tgcagctaca gtgtccaatg caagtgctgg atccaggaca acggctgtga aagttaactg ttggaacact ataaacaaat aagcacatca tccaagcaaa aattcagttc	ctttcctcct ctgtgcagag agaacatcat acatgaagaa tgatagaagt atgtggaagc ccctctcgac tgcaagataa tccaactaca attccatcat ttcaaaagca	gccagagatg ggacgccg ggaaaacaac agaaatggta agggacaaac ccaagtatta aaacaaattg gaacagtttc gtcaataaaa tgaagaacta gcaacatgat	120 180 240 300 360 420 480 540 600 660 720

ttcaggaact gggagacgta	caagcaaggg	tttgggaaca	ttgacggcga	atactggctg	240
ggcctggaga acatttactg	gctgacgaac	caaggcaact	acaaactcct	ggtgaccatg	300
gaggactggt ccggccgcaa	agtctttgca	gaatacgcca	gtttccgcct	ggaacctgag	360
agcgagtatt ataagctgcg	gctggggcgc	taccatggca	atgcgggtga	ctcctttaca	420
tggcacaacg gcaagcagtt	caccaccctg	gacagagatc	atgatgtcta	cacaggaaac	480
tgtgcccact accagaaggg	aggctggtgg	tataccactc	caacctcaac	ggggtctggt	540
accgcggggg ccatgctacc	aggacggagt	ctactgggct	gagttccgag	gaggctctta	600
ctcactcaag aaagtggtga	tgatgatccg	accgaacccc	aacaccttcc	ac	652
<210> 153 <211> 660 <212> DNA <213> Homo sapiens					
<400> 153 atcaatgaag gaccattcaa	agactgtcag	caagcaaaag	aagctgggca	ttcggtcagt	60
gggatttata tgattaaacc					120
agtttggacc ctgggggttg					180
ttcagaaatt gggaaaatta	_				240
ggactggaaa atatctatat	gcttagcaat	caagataatt	acaagttatt	gattgaatta	300
gaagactgga gtgataaaaa	agtctatgca	gaatacagca	gctttcgtct	ggaacctgaa	360
agtgaattct atagactgcg					420
tggcataatg gtaaacaatt					480
tgcgcccact ttcataaagg	aggctggtgg	tacaatgcct	gtgcacattc	taacctaaat	540
ggagtatggt acagaggagg					600
gaatacagag gegggteata	ctccttaaga	gcagttcaga	tgatgatcaa	gcctattgac	660
<210> 154 <211> 1957 <212> DNA <213> Homo sapiens					
<220> <221> misc feature <222> (1497)(1497) <223> "n" may be any	nucleotide.				
<400> 154 ggtgcagctg caggcaagcc	tggccactgt	tggctgcagc	aggacatccc	aggcacagcc	60
cctagggctc tgagcagaca	tccctcgcca	ttgacacatc	ttcagatgct	ctcccaacta	120
gccatgctgc agggcagcct	cctccttgtg	gttgccacca	tgtctgtggc	tcaacagaca	180
aggcaggagg cggatagggg	ctgcgagaca	cttgtagtcc	agcacggcca	ctgtagctac	240
accttcttgc tgcccaagtc	tgagccctgc	cctccggggc	ctgaggtctc	cagggactcc	300
aacaccctcc agagagaatc	actggccaac	ccactgcacc	tggggaagtt	gcccacccag	360
caggtgaaac agctggagca	ggcactgcag	aacaacacgc	agtggctgaa	gaagctagag	420
agggccatca agacgatctt	gaggtcgaag	ctggagcagg	tccagcagca	aatggcccag	480
aatcagacgg cccccatgct	agagctgggc	accagcctcc	tgaaccagac	cactgcccag	540
atccgcaagc tgaccgacat	ggaggctcag	ctcctgaacc	agacatcaag	aatggatgcc	600
	gtccaccaac	aagctggaga	accagctgct	gctacagagg	660
cagatgccag agacctttct					720
cagatgccag agacettee	gggccaaaac	agcgcgctcg	agaagcggtt	gcaggccctg	120
					780
cagaagetee ageagettea	gctggccagc	atcctcagca	agaaggcgaa	gctgctgaac	
cagaagetee ageagettea	gctggccagc cgccctcacc ggaccagcag	atcctcagca aacatcgagc	agaaggcgaa gcggcctgcg	gctgctgaac cggtgtcagg	780

cggcacctgg tgcaagaaag	noctaacocc	Franceceaa	ccttcataar	aacaaataaa	960
caggtgttcc aggactgtgc					1020
accatecagg tgtccaatge					1080
ggaggcaggt ggaccctcat					1140
tggaaggatt acaaacaggg					1200
gtggtgcacc agctcaccag					1260
gaaggccacg aggcctatgc					1320
tacaggettt etgtggtegg					1380
cagaacacca gctttagcac					1440
caagtgatgt ctggagggtg					1500
tactaccacg ctcccgacaa					1560
qqccccagct actcactgcg	_				1620
gcagctgtgc cagaggctgg					1680
-					1740
ctggacccag atgcaagaca	-				1800
cagccctcct tgacccagaa					
tgacatggag ggtgttcggg					1860
tccccttca ggggctccct		_	tgaatgggct	gagaacagac	1920
caaaaaaaaa aaaaaaaaaa	aaaaaaaaaa	aaaaaaa			1957
<210> 155 <211> 1512 <212> DNA <213> Homo sapiens					
<400> 155 catgetetee cagetageea	tgctgcaggg	cagcctcctc	cttgtggttg	ccaccatgtc	60
tqtqqctcaa cagacaaggc					120
cggccactgt agctacacct					180
ggtctccagg gactccaaca	ccctccagag	agaatcactg	gccaacccac	tgcacctggg	240
gaagttgccc acccagcagg					300
gctgaagaag ctagagaggg					360
gcagcaaatg gcccagaatc					420
ccagaccact gcccagatcc					480
atcaagaatg gatgcccaga					540
gctgctgcta cagaggcaga					600
gcggttgcag gccctggaga					660
ggcgaagctg ctgaacacgc					720
cctgcgcggt gtcaggcaca					780
getgetggtg ttgttgegge	_				840
					900
cataatggca ggtgagcagg					960
tgccagtggt gtctacacca					
tgacctgcag agcagtggag		_			1020
gaattttcag cggaactgga			_		1080
ctggctgggc aatgaagtgg					1140
ggagctgcaa gactgggaag					1200
cagtgagaac cagctataca		ggtcgggtac ge 205.	ageggeteag	cagggcgcca	1260

PCT/US02/37660 WO 03/048185

gagcagcctg gtcctgcaga acaccagctt tagcaccctt gactcagaca acgaccactg	1320
tototgcaag tgtgcccagg tgatgtotgg agggtggtgg tttgacgcot gtggcctgto	1380
aaacctcaac ggcgtctact accacgctcc cgacaacaag tacaagatgg acggcatccg	1440
ctggcactac ttcaagggcc ccagctactc actgcgtgcc tctcgcatga tgatacggcc	1500
tttggacatc ta	1512
<210> 156 <211> 1879 <212> DNA <213> Homo sapiens	
<400> 156 gagaagccga gctgagcgga tcctcacacg actgtgatcc gattctttcc agcggcttct	60
gcaaccaagc gggtcttacc cccggtcctc cgcgtctcca gtcctcgcac ctggaacccc	120
aacgtccccg agagtccccg aatccccgct cccaggctac ctaagaggat gagcggtgct	180
ccgacggccg gggcagccct gatgctctgc gccgccaccg ccgtgctact gagcgctcag	240
ggcggacccg tgcagtccaa gtcgccgcgc tttgcgtcct gggacgagat gaatgtcctg	300
gcgcacggac tcctgcagct cggccagggg ctgcgcgaac acgcggagcg cacccgcagt	360
cagetgageg egetggageg gegeetgage gegtgegggt eegeetgtea gggaacegag	420
gggtccaccg acctcccgtt agcccctgag agccgggtgg accctgaggt ccttcacagc	480
ctgcagacac aactcaaggc tcagaacaac aggatccagc aactcttcca caaggtggcc	540
cagcagcagc ggcacctgga gaagcagcac ctgcgaattc agcatctgca aagccagttt	600
ggcctcctgg accacaagca cctagaccat gaggtggcca agcctgcccg aagaaagagg	660
ctgcccgaga tggcccagcc agttgacccg gctcacaatg tcagccgcct gcaccggctg	720
cccagggatt gccaggagct gttccaggtt ggggagaggc agagtggact atttgaaatc	780
cagcctcagg ggtctccgcc atttttggtg aactgcaaga tgacctcaga tggaggctgg	840
acagtaattc agaggcgcca cgatggctca gtggacttca accggccctg ggaaacctac	900
aaggcggggt ttggggatcc ccacggcgag ttctggctgg gtctggagaa ggtgcatagc	960
atcacggggg accgcaacag ccgcctggcc gtgcagctgc gggactggga tggcaacgcc	1020
gagttgctgc agttctccgt gcacctgggt ggcgaggaca cggcctatag cctgcagctc	1080
actgcacccg tggccggcca gctgggcgcc accaccgtcc cacccagcgg cctctccgta	1140
cccttctcca cttgggacca ggatcacgac ctccgcaggg acaagaactg cgccaagagc	1200
ctctctggag gctggttggtt tggcacctgc agccattcca acctcaacgg ccagtacttc	1260
cgctccatcc cacagcagcg gcagaagctt aagaagggaa tcttctggaa gacctggcgg	1320
ggccgctact accegctgca ggccaccacc atgttgatcc ageccatggc agcagaggca	1380
geotectage gtootggetg ggeotggtee caggeocacg aaagaeggtg actottgget	1440
ctgcccgagg atgtggccgt tccctgcctg ggcaggggct ccaaggaggg gccatctgga	1500
aacttgtgga cagagaagaa gaccacgact ggagaagccc cctttctgag tgcagggggg	1560
ctgcatgcgt tgcctcctga gatcgaggct gcaggatatg ctcagactct agaggcgtgg	1620
accaaggggc atggagcttc actccttgct ggccagggag ttggggactc agagggacca	1680
cttggggcca gccagactgg cctcaatggc ggactcagtc acattgactg acggggacca	1740
gggcttgtgt gggtcgagag cgccctcatg gtgctggtgc tgttgtgtgt aggtcccctg	1800
gggacacaag caggcgccaa tggtatctgg gcggagctca cagagttctt ggaataaaag	1860
caacctcaga acaaaaaa	1879
<210> 157	

<210> 157 <211> 763 <212> DNA

<213> Homo sapiens	
<400> 157 ctggttggag ggcaggcatt ctgctctgat ttttcctgtt gcctggctag tgacccccta	60
caggaagata acggctaagc caggagggcg gagcagccca ctacacatgt ctggctgctc	120
ttatcaactt atcatataag gaaaggaaag tgattgattc ggatactgac actgtaggat	180
ctggggagag aggaacaaag gaccgtgaaa gctgctctgt aaaagctgac acagccctcc	240
caagtgagca ggactgttct tcccactgca atctgacagt ttactgcatg cctggagaga	300
acacagcagt aaaaaccagg tttgctactg gaaaaagagg aaagagaaga ctttcattga	360
cggacccagc catggcagcg tagcagccct gcgtttcaga cggcagcagc tcgggactct	420
ggacgtgtgt ttgccctcaa gtttgctaag ctgctggttt attactgaag aaagaatgtg	480
gcagattgtt ttctttactc tgagctgtga tcttgtcttg	540
tcggaagagc atggacagca taggaaagaa gcaatatcag gtccagcatg ggtcctgcag	600
ctacactttc etcetgeeag agatggacaa etgeegetet teeteeagee eetaegtgte	660
caatgctgtg cagagggacg cgccgctcga atacgatgac tcggtgcaga ggctgcaagt	720
gctggagaac atcatggaaa acaacactca gtggctaatg aag	763
<210> 158 <211> 156	
<212> DNA <213> Gallus gallus	
<400> 158	
ttttttttta gatagggagg agaygacaaa catttaggaa tcaggtttcc ggtcatttga	60
ctaatgactg ccttcyaaca ctgttctttt ctagcttgag aattatatcc aggacaacat	120
gaagaaagaa atggtagaga tacagcagaa tgcagt	156
<210> 159 <211> 46022	
<212> DNA <213> Gallus gallus	
<400> 159 gagggaggga ggggcggccc ctccgcatgt ctgccttccc ctaccaactt atcatataag	60
gaacggggg agccgagcac cggcggcagc tcgggacgcg gcggagcggg aggaggcgtt	120
cagggggtgg ggaggcggcg gagctcgggc cggctctccc tgggcaccgg gcgggccgcc	180
cgcagcgcat ggccgcgggg cgctgagctc cgagctccgg gccgggacct ccgcgggcgg	240
gaagatgogg ctgagogtet acttcacgtg gggctgcagc atcgttctcg ccgcgggata	300
caacgcotto gggaagggcg cggagccggc gggcaagaag cagtaccagg tccagcacgg	360
gccgtgcage tacacettee tgctgcccga ggccgacage tgccggccgc cctacgtgcc	420
caacgccgtg cagcgcgacg cgccgcttga ctacgacgac tccgtgcaga ggctgcagct	480
gctggagaac atcatggaga acaacaccca gtggctcctg aaggtgggat aacgtttctg	540
toctacgaac egggetegeg etgteteeet agetatgteg egetgggett catecettet	600
aacatcccta atttcacgca acacgtgctc tgtgctaggc ttctcacctg cctttctatc	660
caagggtctg agaagttcac tttccagccc agcaaggaac atttcactgc acagtctgtc	720
actgtgctgg agttctgcag ggtttgctgt tacattcatg ccacttggac aaccagtaac	780
ggcaggggtg ggcagcgagc gcgtctgagc gctctgacat gagagcagca gctcagagtg	840
tatcattaac cagcacgggc cgttctatct ctgtttaaat gatacagaac gtgccgttat	900
ctgaggcgtg ataaaaaaaa ataaaccgag acatgacctc agaattcgta ggcagaaaag	960
agagtaggta aaggcacagg gataagtgta gctccacgtg aggaataacg ccaggagggc	1020
tcgccgtgag gttagcctgc tgaagtgatg ggactgcaag aaagttcact ggcggatatc	1080
cttcacatcc tgtaacattt ccactcagac atagaaatat tcaaggaaaa acacactcgg	1140
Page 207.	

cccgaggtgt ttca	gatgcc acggagcttc	ctttagtgcc	actccactgg	aactaaagga	1200
tttattgccc gaat	ggcagc atttgtaaaa	ttatacctga	aacagctgga	aaacattata	1260
ctgcatccat tctt	aatgtg actggagaat	aaacctgacc	accgtgccac	atttttacag	1320
gaactcgatt ctaa	atgtga cagctcagcg	tatctcactg	ccacctggaa	gagagtgaca	1380
gtacagttta attg	catcat aaatgtgcaa	ttccgtgctt	atgcccatct	gccaagcagt	1440
aaacacgctg agga	cttaac tgagaagtto	acagtgattg	cagagcggtg	ccctgcgggt	1500
ttatttctta aaga	aatgtt gcaaatggag	agaattcaga	attctctgta	gtaagcagac	1560
ccttcttcat tcta	aagtca catcattata	tacgattttg	cattggggtt	gccttaactc	1620
atcagttaca gcgt	tacaga actagcacga	cagaatcaaa	gagacctgct	agcgagtgcg	1680
tgtgcttcag aaac	agaage cacttcaaag	cagaaagtgt	attgtgttca	gctacctgaa	1740
aatgagcaca aaag	cttaaa tccaaaatgo	acatgctcaa	agtgtgcatc	taagtctgtc	1800
tttaggggct cagg	atgcgt aagcccataa	atttgggaaa	gctcacgacg	tcagtagcct	1860
tatttttctt ttaa	cgtcac aggcaaactt	acttccctcc	acatgtggac	ttacctttct	1920
acttatgaat tctc	gacact cgctattgta	atgttagccc	gacattagca	gatgtgcagt	1980
gcaggatgaa aacc	actcaa aggaacacag	cctcatctac	ccagctggta	agcagcttcc	2040
cagcaaagtc acac	acggcg ctcctctcgt	aatgccactt	aagcaggaaa	acagtatcat	2100
aagtgacatc aggt	aaacag aaagcagcca	gcaaattcca	gcatccttat	ttagtaaaaa	2160
ctgtactttt cctg	tcaccc tctgggaagt	cagctacaag	aggaatagga	taagtgcctc	2220
caaccaattc ttta	ggggat caaaaggcag	attctgtttt	acaaggcaga	ggagtgtttc	2280
ttttagttga gcac	agattt ccaagtaaga	tgctgtagaa	cagactgatt	tttttttgtt	2340
ctagctgttc caca	gctaaa catcctgtaa	aatcagcact	gtttgccttt	ttcactattt	2400
taacacctgc tctc	tatgtc atctgttttg	ttcacaaaga	gactccaaca	aaagttgcct	2460
ttcctcagat ttgc	tttgct ggtgacacct	ggtctgccaa	gtgaagatga	aaagcaaaca	2520
ataaccttta aagt	tgctca ctgagttcgc	ctgatgtctt	tcttagtgct	tttattttt	2580
aacatcacca acro	acattc ctacgttcgt	atttcaagtt	accaaaacgt	aacaccagat	2640
ttttcaagcc ttgt	aaaaat atatatata	gttcacatag	cttttgtatt	gtgttaaaaa	2700
tgtaatatta gatt	aatttt aaaataacct	gctattaatg	tcacagcart	cacacgaaag	2760
ctgctctagg tttg	gttttg aaaaaaaaa	agctaatttt	gctcactgaa	gaggcagcac	2820
cacctgttct cttt	tgaagg cgaggaagaa	aaatatatgc	catgctttta	gtgtggrtta	2880
acttttaaaa gctg	ttccag aagtcctgca	catcccaaaa	catttttaca	ctcctccctc	2940
ccccgtcctg cctt	taatcc atcaactaaa	ggaaacatta	tgtttctgaa	tgaacagtag	3000
gcygtatgaa tgga	acagca tgggaagtgt	gctctttatc	tggttaatgg	acaaacacaa	3060
tggggagaaa attt	gttatg tagggccagg	ttettteetg	ctctagtcct	gcatacagag	3120
cagaagattt tgtt	ctacca ctgctacca	ttaaattggc	tgctgcttca	tgaaaaccct	3180
tgttttgttt tttt	tttctc tccatattgo	tttaatgcct	tatgccacca	ctgtacatac	3240
catacatata agtg	gaatgt cttttcaaaa	gtagattatg	cttaagggtt	cagatgacat	3300
actaggacaa acca	ctattc cccctaatco	agtgtttagc	agtaatccag	taagcgatgc	3360
tgtagagcag aggg	caaaac cctagatcaa	ctgtgcaata	atgtacctga	aatgaacttt	3420
cttctatgac tttc	cctact ttgggatca	tttacgtact	acaagtgtaa	gattttcaat	3480
acgagggggt agga	gtttga ggtacagata	ccgatgagat	acaagactga	aagttttaag	3540
tgtagtcacg tacg	cgcggc attatectte	agaacttctt	tatatataaa	taacattggg	3600
ttttcaaata ttcc	cagaag acggacgatt		ccacaattaa	acaaatctct	3660
	P	age 208.			

			aacatgacaa			3720
			taatgcttac			3780
			atgtaggact			3840
			agaaacagtc			3900
			tatttttag			3960
ctagaaaact	aaaatctgtg	ccaggagtca	acattaaacc	tcaaactaga	attttactgt	4020
gaaccatcct	agaaggggga	tactttgctg	acagagatgc	agtatctttg	tgtactctga	4080
actgctgttt	gctttttctt	accctggaag	ctagaaaccc	tttgtcattt	tgaaacatgc	4140
ttctctaggg	aaaacaaatt	ccgacgtttt	aagatgtatg	ggaatagata	tgtataatat	4200
tttatgaata	agtatcaatg	aatggttata	attattgcaa	tacttgcaca	gaagttcata	4260
tctcaaatat	gaaaaagata	ttctgacacg	catcatccaa	aaacatctgc	atgcaataga	4320
taaggacaaa	tatatgtaaa	gcactggatt	ttgaaatacg	caagagatgt	ttctgacttt	4380
gaattaagga	ctgcattcct	ttcttaagtg	atgcatctgt	tttcacttac	atgtgagaag	4440
tgcttgtttc	tgtatatcaa	ctatgtattt	gctaagcaaa	agaatactgg	catgaccgaa	4500
aaagaaaata	ctgttttact	ttgagaatag	tacatgttat	tggataaagt	ttcccagcta	4560
ctttagatga	tctgactctg	cagtttactg	ttgcatctcc	tgtaggtaaa	ttcttgtgaa	4620
aagatttgaa	attattcttg	tgtgtgttta	aaaactgatg	taaagactgt	ttctgtgtca	4680
ttccacaaat	accaaattga	tgaaacaggt	atgagactgt	acaaaaccaa	tgaagaggag	4740
cagagatttt	cttgtgtagg	tctacaagaa	aaaatggagc	ttgagagctc	atcatcttca	4800
agatgtgatt	agaaaagaaa	tatggtagac	agatgcttgy	tttactgaac	cagtctctta	4860
ttagtattca	aagtagattt	tcaagtgctc	tgtttgttat	cagtatgatc	acaaagtaat	4920
cacctctggc	tggtcctaat	agcaaactgg	aagacttcat	taattattga	caataagtgt	4980
ygttttgttt	tccgctcctt	caagtgcacg	tataggaaat	aagcctggag	atgattgagt	5040
tgacagtttc	cagtcctttg	tgtgcatgac	caataaatac	actgcaaaac	tcaacagcac	5100
aatctctaga	atgttttaga	acctcctgct	gagagactga	attccacagt	ggtatttact	5160
ttacagacag	ttaacttatt	agtgttcctt	tgttgttcat	catgaattaa	tacagtaata	5220
tgcacccctt	ccaagtctac	caagaaaaac	aactgatacc	ttttcttgat	ttcttcccga	5280
tcagaagaag	caaactgtga	caaaggggtt	gcctagaact	gaattttgcc	taaaagacac	5340
atttctaact	ttctaaatag	gaatatcggt	acctccagtg	actgtatttt	cacactatgg	5400
catttgtgtt	tttgaaaata	tacattatac	attactcaat	tcacaaaact	tttgacggta	5460
aaccaaggta	actcagtaga	tcactaatta	tttcatacct	ttttatataa	tttaatgtaa	5520
gaaactcttg	ttgcacctat	tgttaatggg	attttgcttt	ggctgaaaag	caggagcagg	5580
gcagagtaag	tatgtctttc	tataccaatt	atatcatcta	taccaattat	accatccatt	5640
atagggacag	acattcaaaa	cactgccagt	tgatttagaa	gatatgctct	ccgaccttag	5700
attagggtct	gcggctgaga	ggtgccactc	tctgatcctt	ctctggattt	tagcaaaccc	5760
			aatgagcttc			5820
			aaaagtggaa			5880
			aaaagctagc			5940
			accttggaat			6000
			tagaaaatat			6060
			ttgaatcagg			6120
			gaatggaaca			6180
			ige 209.	_		

	ggttctggca					6240
	caaactgcag					6300
	aaaaatacac					6360
	gttggcagta					6420
	gaaaacaatt					6480
ggggaatttc	tatgggtccg	agcgagaagt	tctaggataa	gcacacacat	ttttacctgc	6540
cattctagta	tctgaatttc	tcaaagtaaa	aaagcataaa	ttacaggtga	aaaaataata	6600
ggaggatcag	ataattttgc	agggttaaac	atctggaaaa	aaacagcggt	atggcactgt	6660
aatttaatac	tcagaaatgc	cttagagata	tggcacattc	cacagtggaa	caaattatgc	6720
caaatagcct	cacacatacc	aaaaaatgaa	agagcatttt	actactggaa	atactgtgat	6780
catttcattt	cctttagcag	atatatctct	aggaaatggg	gcagaggaaa	aagactcgtg	6840
tttttctct	acaattcaac	tactgtttgg	tgaatttaaa	gtctattcca	agcttaggga	6900
aaatgttaaa	gaattcttca	agttacaaaa	tccagattca	tatttcatgt	ggaaaaaata	6960
aaatctcaca	cctaaatagc	cctccaaaca	ctcagcgtgt	tggttttcaa	gctgcctata	7020
aaaatacggt	tctatcctta	agtacctttt	ttaaaaaaat	gctcactaca	ttttccaggc	7080
caaataatta	ctgaaaacca	tattagtttt	catctatcag	tgcaacaggt	taaccctaaa	7140
gtcaagatgc	tggttacaaa	gctcaggaaa	tgcatcctgc	agtttgcgtg	atgaaaaggc	7200
tgactgtcct	catttcaact	tccagcatgt	tatggcttag	tctggaaaga	cagaggggag	7260
ctacaggaac	tttcatatyg	tctttatact	gcccatacca	accttaatta	ctttatctaa	7320
taatcttcca	agggcttact	gaggtcataa	gaaggtcttg	ctkctaaaaa	atgagaaact	7380
gacagaatac	acaaccttct	ctccattaac	tcctgttagy	aaaaacatgg	aaatctagca	7440
tccttcagaa	taacattatt	cacagaatyg	gtaaggaggg	aaccatttcc	ctctgtagat	7500
gagtgaatac	tccacagttc	ttgggtgcca	tcaacttcct	ctacagttca	gctgtctcca	7560
gagattccca	ttaaccctag	tcatctcgta	ttttaagttt	gccccataac	tgtagcattt	7620
tcagttttgt	atttgtattc	agaacttgag	caaaaaaact	tatacagggt	accagctggg	7680
gagcaacatt	tcaactttct	gtcatcaatt	ctggtcagat	taaaatcagt	gttttgtggt	7740
aatgtggccg	agagcttaac	agagtgtttt	gttgaacagc	ttgctgcatg	gtctaagtat	7800
cacaggagga	aataaaaaaa	ctttgccgga	tacatcacaa	ctatctcaat	gttatcaagt	7860
taaatgcttt	aagagacatt	ccattttaca	ctctgttgtg	ctttttatta	atgtaactat	7920
tgaggtactg	gaacacttct	cctacgagga	agggctgaga	gagcaggggc	tgttcagctt	7980
ggaggtttca	aggtgacctg	atagtggcct	ttcaatatct	aaaggggaga	tacaggaaag	8040
aaggggacag	actctttagc	agggtctgtg	gcaatagaac	aagggggaat	ggtttcaagc	8100
ataaagaggg	tagatttagg	ttggatataa	gggaaaagtc	ttttacagtg	aggctggtga	8160
ggccctggaa	caggttgccc	agagatgtgg	ttgatgcccc	gtccctggag	actctcaagg	8220
cgaggctgga	taaggccctg	ggcaacctaa	tctagctgtg	gtgtccctgt	tcaatgcagg	8280
ggagttggag	cacatgacct	ctaatggtcc	cttccaactc	taaggattct	atcattctag	8340
	atagcatttc					8400
_	aaactagcgt					8460
	atttgagcta					8520
	atgatacaca					8580
	gaaaaactaa					8640
	aacttcttta					8700
			ige 210.	- -		

			gttcattttc			8760
			atgctttcag			8820
			attctgtcag			8880
			cagtagccac			8940
ccccagcccc	cacaggtgct	acctgacatc	attgtaccag	atggaagctg	ttcatcctgt	9000
gacctcatgt	gtagtcttgt	cctaaggcat	ttgagtgagc	tgagaggttt	aattttgata	9060
gctgtcacct	aaaaaacatc	tttgtttcac	cttcctctga	agaacttgta	tggatcatac	9120
tgagatactt	catgtacttc	cctcaggtcc	ttcgaactac	agcaatgttg	tgttgtgtac	9180
aattgctttc	ctttgaaaca	attttcctcc	ccatttccca	ttcacaagat	gcaaacactt	9240
gcaagatcct	agttcaaatc	aacagtttca	atgtgaaata	caaagcagct	ctttcaagag	9300
gacatgccac	tcattcacaa	gcagaggcct	acttttacac	ttcgccagcc	accaactgac	9360
catctaccta	aattgtgcaa	aagtcaatat	tgaaatgtca	caaacactcc	agatcacatg	9420
tgaaatacat	ataacaatgg	caaaggtgct	taccatacct	ttctgttgca	ctgatagaga	9480
gcctatccat	ttcaaacatt	aaatacgcaa	taaaattccc	tggtgaagac	ttatggaaaa	9540
aaattccata	gttttgattt	ttttcagaaa	agaaaactgg	ccataaacag	ggtaattcag	9600
ctatttgaaa	gtaacaccag	cctacatttt	tttttttaa	atacaacttt	aaataaattg	9660
atccagtagg	aaaaagacag	cttaagtgag	tgagttaaaa	cagacagaat	cttggatttt	9720
tgtatggttt	taaggaaatg	acttttgttt	tggctttttt	ttttttaatt	taaaagaagt	9780
ccaaatctcc	ttggatgagg	ttcaaacttt	gacctcatat	taactattcc	tgtgtttttc	9840
acttatgtca	aacttccctc	ctgatgccac	attttctgtc	tcatataatg	attatctgtg	9900
aagtaatagt	aataaaaaca	gcaacacaac	acaaatcaac	caactgatca	acaaacaaga	9960
aacaaaaccg	acttaatcat	agaattgcta	aggttggaaa	agacccacag	gatcatccag	10020
tccaaccatt	cgcccttcac	caatggtttc	cgctaaacca	tgtccctcaa	cacaacattc	10080
aaacgctctt	tgaacaccac	cagggtcggt	gactccacca	cctctctggg	cagcccattc	10140
cagtgcctga	ccaacccttt	caccctttaa	tgtgactgtt	actgttactt	aatgggaatg	10200
ttttgtgaaa	agtaccctga	tgtgatgaaa	tggagtccaa	gtaatgagag	agtaaacctc	10260
aacactaata	acctaaccct	taggagctat	aaactgcaay	aagtataaac	aatctgaccc	10320
ctgctgaaga	cttagtaaat	acaaacaagg	actctgacag	cagagaatag	gacaaacagt	10380
taaactacag	tttaccagca	actggagaat	gtttaaatat	agtttagtaa	tatccttata	10440
ttttttcct	gacactttca	tgtttatttg	atytacttgc	agaggaaact	tatcagtgtc	10500
ttgacatctt	cttcgttagg	gtaaacttga	ttattttaag	aaggctctga	tgacagcata	10560
caaaatccca	ggcacgtaga	aaagttcccg	ctgatttatt	agtgaaactg	agatttcatc	10620
ttatgcgtct	aaaaatttgt	ttgtcttaaa	aggcaaaatg	tacttatttt	ttaaacaaat	10680
tgaagttgct	aatggaataa	gacagcaaat	caaacacagg	ctctaaggct	ttctttcaca	10740
tagactaact	agtagggatg	ccagcaggaa	tgcaacagtg	atgattttaa	tcacaaggaa	10800
atgcacattt	tcattttttg	tccctctgaa	gtcactgtgg	gagtaatgtt	tcccaagagg	10860
			gtgggtttcc			10920
			tcttccagct			10980
			ctgacacaaa			11040
			ccttttgtct			11100
			tacgtcagtt			11160
			attttcaact			11220
-			nge 211.			

aagaggctgc	atgcatcctg	tacttcttcc	attgctgtat	ctggttagtc	atcttcagag	11280
cagtcttgca	tacaagaaag	tctcctgaaa	gtgccattaa	aagcctctcc	ctttagcggg	11340
ccatcccaga	cagasagttt	cctctcatgt	aatacccatc	ctaaagtgca	tatttcggtt	11400
ctcagccatt	ttgctgagag	ctgctcccct	tctgttataa	tcagtagcaa	tagagctgtt	11460
tgtttagcta	ggatctggct	cctgttactg	gtcttcactg	aaaggcccca	agagctggct	11520
gtctggctct	aggctttcag	gagcactgac	tggaactcag	ctcaagaggt	gactttccat	11580
cactaattga	gcactctgca	gggcaccaag	gacaaagaag	aagttttctt	cttggtgctg	11640
ttccaataaa	ctaaactgct	tactttaaga	tagataaacc	cagctattga	ggcaaaaata	11700
aatattttt	gttgggatta	catcatttta	aatactttt	tctcaagcat	gtgtgtcaca	11760
cactacattt	tgcttctgca	atatactgcc	tataagcact	gatcttttt	ccaaatattt	11820
gtgtttgacc	actcttaaca	cagtagcttc	ctgttttatc	tttcaagcat	ggaattcctc	11880
agaagctttt	gctttcaaga	ctcttaactg	tgctaacaga	acaacaatgg	gaaataagta	11940
agtaccattt	gagcagaata	tatcaagatg	ttcagttttt	aaacgaagta	gaggtgatca	12000
cctgagcttc	ccttcaggca	gaactctgtg	cgaccattgt	cagtcaagtc	cgttttggtt	12060
ctggagtcct	gctttcctga	cccagtaact	cagcaacgtc	agggaagttc	tctgacatct	12120
ctggtctggc	aaacaaggaa	tttacaggct	cgggatgaaa	ttttagcaac	ttttcagata	12180
cagcaccata	ccctgaccat	gcagcgtatt	agcaatgraa	gcatcggaga	gggagacttt	12240
tttttgtctc	tttgtcctat	ctcagagatg	cataatggaa	ccacaaaagg	aaccatgtga	12300
gatgaaggtt	ytctcttttt	ggaagtgcac	aggaaaatca	gactgtgaat	tctttgtagg	12360
gaaattcagt	ccttcaaaac	tgaaatcagc	agctgatctt	aacgtcttga	acactcaaaa	12420
actggcatct	cttcagctca	aatgaatgat	tccctcttac	tagcatcatc	agtcttcttc	12480
agaaatcctt	ctaaaacctc	cttaaacttt	atttgacatt	caatacacca	caacgtctaa	12540
aaacttctca	aagtgctttc	agtttcctct	atctgtgaaa	ttacaaaaaa	aaaaaaaaa	12600
aatctctaat	gatttttcat	gctgaaaggt	gttctgtttg	aaaaaggaga	cacccagttt	12660
tagagcttac	aaaagggact	aattgtattc	cacagcttcc	taactagttt	gatccttgaa	12720
ctccgaatca	ttcttcctcc	tggttggaag	cggaatgcaa	gatgactgct	tccctagaaa	12780
gcaatgctga	gaatgagctg	tgaatgccca	gctctctttc	acttccccag	tagcatagtc	12840
tgaagaagag	gaatttgctt	catgtttcct	cagaaaactg	ctgcatcaca	ccacragete	12900
ttctgtaaaa	taagccgttt	tgttgcaagg	ggaatttata	acaagcttca	cttgatattg	12960
taaattgaga	gaaaaagtag	tttcttatta	aggaaactct	gtaccagaca	craaatggct	13020
aaaaaaattt	gaaagcacgt	aaagctatgt	agctgttgtc	tttcataaaa	aatatatcct	13080
aagtactctc	ttcagcatac	cttacagaaa	gtttttctgc	tgcctgtggc	tcagtgaatg	13140
gaaacaaata	caaaaatgag	aaagcattac	tttaggtctg	gcatagcacc	tgtgcttacc	13200
caaatgtgta	ttttctaggc	cagaatttca	tctgtacacc	agtctggaaa	agtcttgatt	13260
cactgagagt	accatgcaag	tacaacatac	agctgaaaac	ttgagagaaa	accctacaaa	13320
acttcaaata	ttcaatttgt	gaaattatag	ttcagtgcta	tcactcagta	tttaaaaatt	13380
tagtatggat	tggcattatt	tctcaaacag	tttgtaaata	aggaatcttg	ttcctgaatt	13440
gttgtggctt	gttacacata	atgaggaata	tttatattca	tttcagtgaa	tggcagaagc	13500
atcactggct	tcatgccttc	ctggcttcag	tgctactgaa	cttcggcaaa	atgccattca	13560
tgactcagac	tatttattta	tttcttcttt	atttttagac	taatgggaac	tttatgaatt	13620
ccttccctga	tttctaaaag	acatatcatt	tagctgttat	cctgaaaaca	gtgattcaga	13680
atcttacatt	actgccttaa	-		tgagaaaggt	caatcaccaa	13740
		Pa	ge 212.			

atagttgagg	ttaggtctga	agacactgtt	gtaraatttt	acttcaaagt	tatttcttta	13800
cctgtacaga	aaatcagatt	aaaagatttg	tcaagacgaa	tatgtagttt	cagttagcag	13860
cattttttga	atttgcaata	tgtttgagat	ttcatttatg	ccttgtacaa	aatgcttgtc	13920
tatgtgccat	aaagcatata	tgcttcactg	gtagtacaaa	gcacctaacg	tcatcctcca	13980
agcgacaaac	cacctgaaaa	caaatgtaca	gttaggagag	cagtagtgag	acatcatccg	14040
tgcaaagcaa	ggtcagagtg	tggagtcttg	ggagctcagc	ttcaaaaagt	tggactcaat	14100
gatccttatg	catccctttc	aagttgggat	atttcatgag	tctaagttta	cccattggat	14160
agtttcagat	cacaatgcct	cttccctttc	cctaggtact	atttttcttt	ttccaggtca	14220
tgatttcaat	tgtaactctt	gtagttagtt	caaaatatgt	agtagaaagt	acgatgatgc	14280
tgtaataccc	ttcactgtta	ggtacaaaat	actttcagtc	aagaatacat	agcgaaagta	14340
attctttatt	gatatttgtg	cagacaatag	aggcacttca	tgcatttagt	ttcgtgcttt	14400
attaatgaaa	tattttttat	tcaagtaatt	attcccaatg	aaagttggaa	ttttttccct	14460
ttgatagaaa	atataaatgc	ttaataaaca	tcttacccta	tgtaagatgt	attcttgcat	14520
ctgattaagt	taataaactt	agtcgacaaa	tggcattaac	agaatcatct	ctgcatataa	14580
tttactttct	attctatgag	ttagcattta	aatcttttgt	cttttattta	gatagtttta	14640
gttttaattt	tttctaataa	atcacagctc	actttcagct	agtattcatt	tatgatgtta	14700
ctttcacctt	ctgtctgctg	acaggaaaat	gagataagag	aaaaatctta	gctggaggtc	14760
tggagaggct	gacatgctca	atggagtgtg	taaaaagcta	ataccaaaga	gacatctcaa	14820
gcattcccat	atacattccc	aaaagatttt	tgttttccct	cccctgagaa	acagcaaata	14880
gtccataggg	acttcctgca	gtagggaagg	aaaagaaatg	tccattttcc	agacacagtc	14940
actttgttct	tctgtagtgt	accactttcc	ccagaagtca	gaggctactt	aaattgatat	15000
ctgactttta	gaaaacttag	aaaaacgtgc	cattttaata	aaagctaatt	taaaatagat	15060
gaaggtttga	ttgatgtgga	ttgatgcaat	gccttttaaa	atatttttcc	ttaagtctat	15120
caagataagt	gagtcttgga	aggcacagtg	gttcctcttt	ttttttt	tetecetet	15180
tcctaacttt	aagcagtagc	aatattaata	gattttgaaa	acaagtatga	aaactagttt	15240
aaagtgagtc	tgcaaaattg	gattttttca	tagtattatg	ttttcataat	actaatacaa	15300
			tacatggaga			15360
			tgtatggctt			15420
			aataatacta			15480
			cgatccagaa			15540
			ataaacaatt			15600
			caaaactgca			15660
			tgcatggatg			15720
			gtttcaaatt			15780
gatcactcat	gaagaagtca	gacatggcca	gaatccaaag	aacattgcca	ctctgaaaca	15840
agggcaggca	gctaagacca	agcatggctg	ggttatggat	actcatggca	tctggagtac	15900
aagaagtagg	aaagtcttat	ccatattttg	aaaaagtatt	crgaaaaaga	attgatgaga	15960
tttatcaaag	ttttccttat	tttgccttgg	cattacaact	gagcaaaact	tatggttgcc	16020
			gtatataaat			16080
			gggctaatta			16140
•			ggacattttt			16200
aacaaaagct	tttgacacct		caaacattgt ige 213.	agcttcaatg	caaacttaaa	16260
		FC	.50 223.			

aaaatggtct	cctatagttg	ctaattatcc	ccttatcctc	cattttttt	ccttaggtta	16320
	gcttagtcag					16380
	ggagcatgga					16440
	gctgagcttc					16500
	atgcaagatt	-				16560
	acttctttgc					16620
	cagatgatct					16680
	gaactccctc			_		16740
	ctgcatttga					16800
	aaatgatcgt					16860
	aaagtcatga					16920
	attataaaca					16980
	cagacaaatt					17040
_	-					17100
	aacatttaga					17160
	aatttcattt					17220
	aactttaaat					-
	tggaaaatca					17280
	tttaagtaag					17340
	ttgaaaacaa					17400
-	aaagtttata					17460
	tgctcgaata					17520
taagattttg	tatgacctga	agtcctgaag	catgacaacc	ccaaactcgt	atccttagag	17580
aattctgtct	ctctaaaaat	atgtagccat	aactgtattt	caaaccttaa	atacattttt	17640
tttttaattt	cccagctgct	tttccaactt	aagcatattt	tgaaagacat	gctttttctc	17700
cctctgtgct	ttcattttt	atgtttactt	ttttcaagaa	tatgtgccag	ccaaagtctt	17760
aacaaagcat	ttaaaatgtt	taattaaaca	aaatcccatg	aagaaccact	gaaaagctaa	17820
gaattatcac	tgaaatattt	gttacacaat	tttcacaagt	tttacttgca	tgaacaagaa	17880
gaactcccca	caccaaatta	acaagcatca	gcacaacacc	aacaaatatg	gaccatttac	17940
acaggcccca	tcccttggcc	gcttcaccay	atgccaacag	cacattctct	gtaatcgcca	18000
cactctgaat	ctcaactaac	aagcaattct	ttctttcaga	ttaggtactg	aggtatt a at	18060
actcctttcc	ctctctccta	cattttttt	tgacagtatt	tattgatttc	ccgaagaaag	18120
atacattagt	aagagtcagc	tattaagttt	tgacatttac	tacaaagtaa	ccaccgtgca	18180
gtgaaggtta	acatatgtta	agtctaaagc	cttatacttc	actgaattaa	gaagagatta	18240
acaattatct	ttccataaaa	agtcctgtag	caaaggagaa	ctcctttgct	aattcctggt	18300
gcaccttcca	aattgaagca	aaatattgta	gaagacagac	atgtggcata	aaccaaactg	18360
ccacactcct	gaactgttgg	ataagagctg	gaacatttca	ttcctgtgct	cttccttctt	18420
gtcaatgacc	caaactattc	tccctcattc	agtaattctg	accgctccac	tgctcataca	18480
ggaagcagac	tccttggcag	gagctgataa	agagcactct	acaaagatgc	atgccacaaa	18540
gaactgctgt	ctttctaaat	agctgtgagt	cctcagtgtt	agtggtgaaa	ttcagccaca	18600
gctgccttaa	caaaagcata	tattgcaata	ttctcgcact	cactttcaag	agaacacaac	18660
ggccttccat	tctgagagta	tgcaatagga	atacgtactg	cttttgctaa	gatcagtagg	18720
agaggatccc	actggtaatt	ctcgtattca	tattagaaga	tgaaagtaag	cacctgccac	18780
		Pa	ige 214.			

	aaataaaaaa					18840
	tttcatactg					18900
	ctattcacgg					18960
	ttaggaaagg					19020
	gtagcacttt					19080
tgcttcatgt	tgctttaaat	tagaataaat	gagccagatc	atgaagctgg	ccacaaatct	19140
taaaataaat	ctcttttgat	gttcatattt	catactttca	agtaagcact	aataccatat	19200
tcactaagtt	gtctatttaa	tatttttcag	tttgaaaaca	gatttgtaga	caaactgttt	19260
agctttagcc	aagagaattc	ttcagtggtt	tagaatgcat	cacattaaag	atatattatt	19320
tggaaaaagc	agaggacwgt	gtttagatat	gtggcaacag	acttaaggat	attcaaataa	19380
gataaaatac	aaagatgcag	atctgtgtac	ctaaacaaga	ctgctttgta	aagttgcaag	19440
cacagagaca	tagggtttaa	aatcttgcaa	ccagaactgc	cagatgcctt	aaactgtaat	19500
cacaggtttt	gtgtactgta	atcagaacaa	ccttacagct	ctgagcttta	gctagggaat	19560
tgcctaagcc	taccttaact	tgtttacctt	aacttgttta	ccttaccttt	aagcccagaa	19620
ttaactcatt	ttctagtagt	aggttttggg	ataactcagt	gataacattt	tcaaagaagt	19680
cttgcaattc	tgtaacccta	tttgaagata	tgaccttgct	cagattctca	ttttgacctc	19740
tgcctgtagy	gaacaggaaa	ccaaccttca	agaatgaggt	ttaatattca	caattactta	19800
ttkmaataat	ttattccttt	caatgaagtg	raaaagaatc	aaagctcttg	atgataactc	19860
tgttgaacta	tttattgctt	cctttatttc	tattaagggc	tttttttc	tcctaaatga	19920
aaaaagacaa	ctgtattttc	aatacttttt	catattggaa	atgtatatca	tgctgaagca	19980
aatcaaatgc	attctgattc	tggagatttc	ccttcatttt	cttttacaga	agtgcattta	20040
gagtaaaggt	tttttccaag	atgtccataa	tgacgtccaa	ctttgcagtt	tcagtttcta	20100
aagttaatca	tgactcaaat	tgtttaatcc	ccatgtgtgc	agccccttca	gaggagatac	20160
gttaattgtt	ctcagtcttc	atgaagcacc	atctaacttt	gttgaagaat	tatatattta	20220
tatttaaaag	ccttcatatt	cttgcatatc	tccttggact	acgttgcact	aaatattatt	20280
tgctttagta	ttaaaattat	cactgtaatc	caatgtacta	aagtttgaaa	ttctaccatg	20340
tttgatcaaa	atagatgtgt	gtctggcagg	gaggcttttg	aaaatgagta	tctaggagta	20400
ataggagaat	agggaagaac	ttgaattgcc	atagtgtgat	gaaaactaaa	gataccccca	20460
ttaaattatt	gtgctccaaa	tcagttgact	gtatgctgac	tttcagcctt	caaaaatgtt	20520
gtcataaaaa	gaacacctag	tättgcctaa	aggcgacttt	tcaaatgcta	actacttaat	20580
ccttgtagta	tagctgggtg	gtaaacacag	cagcatttta	acagatatgg	gtcaaagctt	20640
gtgccaagtc	agaaattgtg	cactgcagat	cagagaacag	agtgaacaaa	taaagcgtgt	20700
tttaaaagtc	tggtcacatt	ggacaaaaaa	aaaaaaaaaa	aaaaaaatgc	tgaatttaaa	20760
caaagcatac	atgctaacta	tttattattt	actagcactc	tttgtagttc	agcatgttct	20820
cttgttcaaa	agatgttgga	gtgatcttat	ttatgtgtct	tctgtgaaga	acaaaagctg	20880
caaattctga	gtgtttaggc	acttttgtca	gtatgacagc	atccaaagcc	aaatttttag	20940
ttgtattaaa	atgcaaagga	aataactcag	tattcaataa	ctatattatg	aaaaagttta	21000
_	tagaatttgt					21060
•	gatacaggta	_	-	_		21120
_	attgaaccca					21180
	cctcaaagaa	_	_			21240
	aagacaaata	-	-	_		21300
	-	_	ige 215.		-	

gtgcatacaa	ggattacttg	caacttgtct	tctagttgta	ttagattgat	tgtcccccaa	21360
aagcactaaa	gaatagggaa	aaaaataacc	cttcagcaaa	caggattttt	aaaattactg	21420
ttttgaaatg	cttctgcttg	cttaaactcc	aataatttgg	aaatgttaac	ttcagctatt	21480
tcttctaagc	ttgtttacag	atcccatatc	ctgtcagaaa	ttattattat	tttttaattt	21540
ctcttacaca	gatttacaat	tcccacattc	tgaaagaata	ctttgtgctt	tccacagtgt	21600
acaattaaca	aatgtacagt	tagcagagtg	gtgtggttag	gatagtattt	tacaggcttt	21660
ataggtagaa	agattattgt	ggtggaraga	gacaatcaaa	aataaatgaa	atgctcaccc	21720
atgtcatagg	ctcacagtag	aaaactccaa	agggagggat	ctccagaacc	cctccccagt	21780
gggagtcagc	ccttaaatgg	ggggcggtct	aggagaggcg	cagccaggct	ccaccccttc	21840
cggtcacaca	gctgaattgc	cttcacctgt	gctcccaggg	ctgactcagt	ccttgcctca	21900
gttgatcaat	tggtggttca	ggccatgact	caacagttcc	catacacaca	gctaccacag	21960
tccctatttg	gtgratttgt	ctgttaaaat	tactcatttt	taccagcaag	atttctttt	22020
ttctttcttt	ctttctttt	ttttttaaga	aagatttgac	tttcagtata	ggcatatgca	22080
catagattca	gatttcccag	tgcttttaaa	aaatattcac	tagattctga	agaaaaatca	22140
ctgaatccca	agaagtgaag	aagttttaac	ctataatttg	gaaaaactaa	ctagaaaggc	22200
atagtgaaaa	agagtctatt	tcttactgct	gtaacctaac	tccttccaaa	gagaagtaat	22260
ttaggctcat	agctctgagc	atggttgcag	tagaaatatg	gcatcactga	tgattcaggt	22320
agaagcttaa	ttctagaaat	ttcctgtcaa	cagcaattaa	aataaaaata	gaaactagcc	22380
tggatttta	acagagttta	aagtaagcaa	atgacccatg	aatgtattat	gaaatatttg	22440
cagagttatc	aagaacatga	ttttaaagaa	gtatggagaa	aaatgagatt	gttttggata	22500
atgcagacac	acgggaagaa	agatttcatg	aaatgctaac	tgaattttct	ccttgctttc	22560
tttgaaagca	gcatattcct	ctataaagtg	actaccaaag	aagcctcatt	agtttagtca	22620
ttgaaataac	tttgtaatca	agtatttaa	acagttttg	cattctgaaa	taataagtat	22680
ttaaagtatt	tatgggtttt	cctactgttt	catgtctttc	tttgaaagtt	tctctgataa	22740
aaatatgcac	atcagcgttg	aatgacattc	gaccccttct	ctgacatcaa	gttgtgtgat	22800
gaaaaatgct	cttgaaaata	tttgagtctg	gatacaggaa	gatgactaaa	ctgctaagct	22860
tttgtcttct	aaaaaattcc	catcgctgcc	aaagctggtg	aagctactct	ggtggttacg	22920
atggtgggag	cactaccgta	gaagaagttc	ccagtgtctg	caagcgttct	cactgctgag	22980
ttctatctac	ctccagcaaa	tctgtgttcc	tgcctttaga	aaatagatgg	tcacacattc	23040
cttgtcatct	ttgcccttcc	tctgacagag	cttaatgttg	ggaagcttca	cagaaatgga	23100
aaacagacaa	ggacaaaaac	caaatttgtt	tagcaaggca	gacagcaggc	ttactgtact	23160
accacccccc	ttccaacatt	taaagaatgc	aactatcttc	ttttttcct	ttcccatgta	23220
gcttgagaat	tacatccaag	acagtatgaa	gaaagaaatg	gtagagatcc	agcaaactgc	23280
agtgcagaac	cagactgcag	taatgattga	aataggcaca	aacttactaa	atcaaacagc	23340
tgagcagacc	cgcaaattaa	cagatgttga	agcacaagta	agtaaagaat	ttcaacctaa	23400
aaatgcttct	gcttcccaaa	cgcctgtaac	cacttttaac	acagtttagt	gttacactgt	23460
gcagttcaac	agttaaaagt	caatcataat	gtaaaaaaga	aagtatcctg	tatggataca	23520
tgtttgtctg	tacaggtgga	aatgctgctg	tgtgtttgag	catcatgact	gtggttacat	23580
tgtctggact	aacaggttat	tcttcctggg	tatttttggt	tattgccaaa	ctctaggcct	23640
gcaactgtgc	ttaaggagtc	tcggtaccat	tctaacattg	tttttctgat	cctttgaaaa	23700
			ttttcccggt			23760
tatgtcctaa	cagtaattag		ctcatctcag ige 216.	agagagatat	gtgtggagtt	23820

ggtgatgctg	ttggtgatgt	tgtggaggta	tgtgtggaga	tgtgatgttg	gtgatgttgt	23880
ccaagtagct	gggaaagccc	acagcacagg	aatcatagat	tcatagaatg	gcctgggctg	23940
gaaaagacct	caaagatcat	ctagtttcaa	ccccctgcc	acaggcaggg	ttgccaaccg	24000
ctagatcagg	ctgcccagag	ccacatccag	cccggccttg	aatgcatcca	ggggcagggc	24060
atccacaacc	tccttgggca	acctgttcca	ggaaattttt	gtgcagttgc	agagtcagcg	24120
ctgacacaag	cagggagctg	gagggaaatc	tgtaggaaac	atggcttcct	taaatttgtg	24180
ggtgacaaaa	gtgatttgtt	tgtttgtttc	tttgtgccat	aacagtaatc	cattagtgta	24240
tccatacttt	ttttttcttt	tttttttt	ttttttccaa	aaatgctcta	accttgaaac	24300
ctcatggcat	ctcttttcat	taagctttga	aaatatttca	tcttctcctt	catatgccag	24360
gagttggaca	cgatgatcct	tgtgggtccc	atccaacacg	ggatcttctc	tgattatcat	24420
caacagctct	acccagctta	agaaaacatg	aatatttggt	aacatgaaag	acttctatta	24480
tggaaggatt	tggagattgt	ctagcaagac	aattgttaca	tccatcttca	aagataacat	24540
tctttaaact	actactgtag	gttcaagcat	acactttggt	aacggtatgc	ttttatacaa	24600
ctcttgttgt	atagctcttc	agtattcacc	tetecceace	agatcttagc	aaacagggtt	24660
ctttcccact	ctgcctttgt	tccatttact	gaactgtttt	ctttgaattt	tcttttaggt	24720
ttcaaaaaaa	aacttatcaa	taaaaaatgt	gatttttaaa	gagtgttttc	acagatgcta	24780
tgaatgaagg	aacagatcat	ttccagatca	ttcccagcac	aatgcactat	actattcctg	24840
tttatgagag	tgataaacta	accaacctga	gatgaattaa	gaaaaaaata	attaggtggc	24900
agctactggg	aaactatatt	aaagtaaact	tgcctacagt	atgttaatct	ctaaacaatt	24960
tcaaacaaca	aaaaaccaaa	agatttctct	ttaattgaaa	agtattaact	acagtaagac	25020
attgtgtgaa	atagaatgca	agtttttaat	atgttctact	atttaaagat	aaggacaaat	25080
ctcatcagtg	tagaacggta	tgcatttgta	gttttgctaa	caatccccag	acaagtgaat	25140
atagtatgta	gtacataatt	tattatgtaa	ctaacacata	aaacctaaat	tccttgctag	25200
gcattttact	atctgtagag	ttcatccact	gaatacaagt	atacttttaa	acctaaaata	25260
agccgttgtg	aattctttga	taaactggta	gttcatagct	cacagatgtg	aattctaact	25320
gcagcccagt	attttgcrca	tgttgagaga	atgtatttat	tcacagyaat	gacttgatgg	25380
aaattattca	gttatttyct	gcttaaagga	agaaaatcat	cactgacttt	ccttctctgc	25440
ttggaattac	tggtgactgg	ggtgaaggtc	ttaattaaca	acataaggaa	attaaccgaa	25500
caattgctct	ctcaaggaca	cttttttgg	caataatttt	cagttacagt	taattgtgaa	25560
atcatgtcct	gaatgacact	ttgacatgaa	ggacatgagt	aatcaattct	tcctgccaat	25620
gaaagccaaa	ttctactgaa	ttaaaaaaag	ctgttctaaa	acaataagaa	aatatttcta	25680
gaaaacatgc	ctcaaagtaa	tgcaatccag	gacaaaacag	aagcacttgc	catgtttccc	25740
aatttcttca	ttgaaagaca	caaataaatg	trgacagtaa	acaatccwta	tacaaaaggt	25800
gatgttaaaa	tgcaaggaat	tagttgacaa	atgaggccac	atgctaaaca	ccttagaata	25860
taatttagga	ttaaggaaaa	tagctacgag	tgaactaatg	gttttagagg	actgggccaa	25920
gatttccact	agtgagagat	acgcaaagtg	ctttctttct	acaataggtg	gagaaaacaa	25980
ctcttattat	tttttgatta	acaaccataa	cagttccagt	aatgaaacaa	gagcattaaa	26040
acacaacaga	aggtataaca	gtaaaactaa	tgtaaactaa	ctctcaatca	ttggtcagaa	26100
atgcagcata	ttactgaaac	actctcagtg	ataaatggta	gcagaacaac	aaaattagta	26160
gaaacttgtg	tattcttctt	cattctaatt	ctgagagcat	ttgtacctaa	attaaatgtt	26220
caacaataac	ttttgcatta	taagtttaca	caagacttca	caatataaag	aaattacaat	26280
tggtttaaaa	gaggtatygt	gattttcaaa	tacttttata	tattttattt	aggtactaaa	26340
		Pa	ge 217.			

ccagacaacc agacttgaac					26400
aagacagatt tetgtteaga					26460
agcctatcaa tttgataaaa	tgctattcct	ttatgtattt	ttagaaatgc	gtatgtgctt	26520
ttactggttt tagaactata	tttattgtgt	tctttatttt	ttttaacttc	aatgttgaaa	26580
tcttactttt ttactgaaat	tgtgacattt	ttcaaatttt	ttgtttttag	aatcagcaaa	26640
acgctgatta aatttgttga	ttctcatttc	tcagttacat	tcttactttt	atattactct	26700
tctacacaac tgcatcagct	ttctgttatg	ggaggaacat	taactttagt	aaatttactt	26760
gttccagtta caattctact	tttacgcaaa	gtacttgtag	agaaaatttg	tgattacgtt	26820
ccataaaggg gaaaaaatgt	cttgtttcat	taaatgacaa	ctgttcaaga	attttcctta	26880
gaactgaaag cctaattttg	tgacaactga	agctgatcta	aaaatcagaa	atgcttgtgc	26940
taagagaaga gtactggtga	ttatcctcac	taagacaagc	agatgaattt	tcaatcatat	27000
caattccctg agttggttta	cttcctggcc	tcaaacacct	ctgctgtgca	aagaggaatg	27060
aagagaaraa cagattgtag	cagccctaac	atttcattag	tttattacca	gagaaatact	27120
ttctaatggt ttgtcccatk	atacaagcty	ttcatgttgt	cctgagtgtc	cattagacac	27180
tatattgtac actgattctg	tggcaataat	atataacatt	atatatacta	atattatatc	27240
tgcatgaatg taagaaattg	tgtcaaaaca	gttcttttta	tgaataccaa	caatttattt	27300
ctatgatttg tttcttactg	gcatatagta	gtagcagtgg	acttctctgg	gagaaagagc	27360
ccccagtttt acttagttaa	ataaatttaa	caagaagtgt	gtgagaagat	acatttttca	27420
gataccagaa aagccaggaa	ataaagcctg	agacttttgt	tattactagg	cttttcacag	27480
aagcttcctt cactcagctg	tgctcacgat	aaaggtcata	cactatgtaa	ggcctataġa	27540
atcacaccag tctgttattc	ttgtgttctc	tttatatacc	attcttcatt	acctgaagta	27600
ttttttccga ggaacttaag	attaaaaact	ttcagtatgt	cagttttagc	cagttcatac	27660
tctttagact taaccagatg	aagctgttag	ttatgaaatc	tgactctrac	tcactgcaac	27720
cacatctctt aacattctat	ttccattaag	cacgcaggta	tcttaccctg	aatcaggtca	27780
cggccacagt cttttctga	tctcctgaga	aaagtcaact	actattcata	tgaaactcca	27840
aactactgaa cgttctgaaa	ttcaggacag	tatccaacta	ctgcttttat	ccattttagt	27900
actcagctgt tgtccaaagg	cttatgcctt	tttcgttggc	taggcctgaa	tatcatatca	27960
ccagagtcct attttacttt	tgtcaataaa	caatttagag	tgaaatgtaa	aagcagaaat	28020
aacagtacat ttttttttt	ccttcaaagt	caatgtttt	caatgagaac	cacatgtaca	28080
aagtgctttt ttaaaaattt	aaaagacaaa	aaaaaaaatc	acaggagatg	tcttgacatt	28140
ttggttcact actttacttt	atttatataa	gctccataaa	ggttttatct	acctgcttaa	28200
taacagcrgg tatcgttatc	taatgtaaac	taaatgtttt	taaaatctga	atggtttttg	28260
tgttgaatgc agtaaacttt	aagattacct	ttataaacac	caagtaaaca	caaaagcatt	28320
atttctcacc taacaaaaga	tgatctgaca	tttgagctta	tctgcttgaa	acataattaa	28380
aaggttcagg agtttttca	ataacagcaa	tggctattag	gcaaacttca	cccctctggc	28440
tctgcatctt ttaatgttag	ctctgtctgc	accagaacca	gtgcagtaac	tttccaccta	28500
accacccatt ccagccagct	cccatgctgg	aaatggatat	ggaactattt	gaatttttcc	28560
aggtcttaac actataatgt	ttattatcta	tattgcatgt	tataaataac	atatattgtc	28620
aaacaaacat tttaaatata	tttttataat	tacataattt	atttaatgtg	tttatataaa	28680
taacagttac cataatacat	gatatttgaa	aagtttaaag	gtttatcttt	aaattattt	28740
tgtcttttaa gaagataaaa	acatgcagtc	cttcactatt	gtgcctaatc	tctgagagaa	28800
tggtattcaa gacacttcag	tgtcacaagc	aacagttact	ttggatctac	aatcatttta	28860
	Pa	ige 218.			

taccgattct	tcatgtacta	ctagaactac	catctatttt	tcaggactaa	acaatatcaa	28920
catttcctaa	tgttgaatta	agacccaact	gataagcttc	aaaagcttat	gatacagctg	28980
tactagataa	tatttatgta	ctaattagtc	ctataataaa	tgaaagcata	cttgtaacag	29040
gcttaatact	gtttacatca	gttcagaatt	gtttcctgag	gtcctaatct	taatctttta	29100
tttagctttc	tagaaaaaag	agttcttgag	atggaagaca	agcacacact	tcagctgaag	29160
tcaataaaag	atgaaaaaga	tcagcttcaa	gtcctagtag	ccagacagaa	ttccattata	29220
gaagaactag	aaaagcagtt	agttacagct	acggtaaaca	actecgttet	gcaaaaacag	29280
caacatgatt	tgatggagac	tgttcataac	ttacttacta	tgatatctac	accaaactgt	29340
aagtgaaagt	caatttgagt	gaccttccct	agcttgtgta	caatacaaac	tcagcttaat	29400
gaccagtttt	tccattcttc	tgtttctcaa	aaactgtatt	tttttttg	ccttaaattc	29460
tgcatttgaa	ttaactgact	tgtttttctg	ggaaaaacaa	caacaacaaa	aaacatttac	29520
atggtttgtt	ttcattatct	tgctcatctt	ctgtgattta	tatecttatg	cctactcagc	29580
tatccagtag	ttcagcaaac	tacagcaatg	ccaaatatca	ttcatcccac	ctggcattca	29640
ttcatcttgc	agtgcatttt	cccttgacca	catgcctagg	ttagaacatg	tgatacaggc	29700
ttgtagcttt	tattcctggc	tcacgaatac	tggttttgcc	acctctcact	gttcaatgta	29760
catagaattg	atcaaagaaa	ggaaaattta	taatgactgt	taaaggcaaa	ataattggca	29820
ctggtgcagt	tattagtacc	tatgtatgcc	ctagaccaca	gaaagcacca	gtagaacctc	29880
caggcttaaa	gcaaagcttc	cctactcatc	ctaaaaatca	ctcagcgtaa	caaattttat	29940
agacaataac	ctcactcctc	acatgcttgg	cagtcctgca	gcaaagcata	ggttccacat	30000
ttatgccrgt	tcacatcctc	cattaaaaac	cacaaaagct	atgstttgtg	aaagttatgg	30060
ataaatgtta	aacatatgaa	caaatttctt	atcttgaact	tcatgtccga	tatggaactc	30120
ygacaaatgt	agaagttawg	agatatataa	atgtagaaag	atatataaat	gtakaagtag	30180
agagatatat	atgccatata	aaagagtaat	gaatctatca	tgcttgcctg	gaaagctatc	30240
tgggccagaa	atccacaagc	cacctctaaa	aaaaggaatt	taaaattaca	taccaggaaa	30300
attcttaaat	agacattaca	acttaaaaga	cagtattaat	ggactatact	gcattactct	30360
agttgggatc	agaayaagaa	aagggtgttt	gaaagtactc	attttaaaaa	gcaaattcct	30420
ctaagtcgtc	actttaaaaa	gtccttagta	atatattgtt	gtaggtttt	ctaaacaaag	30480
tgaaatccca	agttttttt	ttttctttt	ctgtatgtgt	gtgttaataa	ctggcactat	30540
tcccataaat	accattaaca	aagctgtacg	tgttatctgc	tgatgttatc	tgctgtgcta	30600
gtgcacaaat	aagtaaacaa	gtcaaagtca	tgttggctac	gccaccactg	aagccagagt	30660
ggaaaaaaata	atgaatgttt	gccaaaaaga	cagaattagc	agggaaagct	tctaagacag	30720
tttacaaaca	atggagtgtg	gaaaagcaat	taaaacactg	aatgtgttat	ttttgtattt	30780
aaggcaaagc	atgaaaacag	gtaaataatg	aataagtgag	ccaaatagaa	cataatatta	30840
agcaactata	atacatgcac	atacttatat	agcaactaga	gctttgtact	aactggctgt	30900
gtttgttaga	ttaaaatgga	aaatacacaa	aaccaacctc	caaggggtca	aatatgaaat	30960
atcagtcagc	aggctaaatg	tcaggaaatt	ccaaacttca	tagttaataa	agaactgaac	31020
aaaaagatgt	tctgtaaaac	aagaaggctt	agcgatatta	aaatgtatct	tttacagaaa	31080
tgaattccag	aagggatgtt	tcaggagtgg	gttgtcctaa	agtgccaagc	tttagtttgg	31140
tacatactaa	gttgtttctg	ctcagcatgg	ggcaaaagcg	tagctaaaac	tggagtagtt	31200
cctccactca	gtcagctgta	ttataaaaga	tttagtaatt	cctatgttag	ttttcactat	31260
tttggcatac	tagccatgta	tcaatataac	cagttgctac	ttagatctat	ttgtaatagt	31320
agttaatgca	aggggaagtt			agctagaatt	gctaaactga	31380
		Pa	ge 219.			

ctgagatatt	ataacctaag	tttttcttat	tcagcacatt	actaagtgtc	atcacttttc	31440
aacaagtcaa	gcaaccatgc	ttgttttgga	ataaaatgtc	ttagtaatat	aacataaagc	31500
ataattagta	acttaatctg	tcatttctgt	cagggccagg	cttatgtttg	gaactgcaga	31560
gctataaact	gactacatca	ctgatcgtta	gtaaatattg	attacctctc	tttattgcat	31620
ttttagcagc	taagaagaac	ttcatagcta	aagaggagca	aatcagcttc	aaagactgtg	31680
ctgaagcttt	caaatctgga	ctcacaacaa	gtggaatcta	caccttaaca	tttcctaact	31740
ctgcacagga	gaagaaggta	ggatgcctac	acagtatgtg	ttaaaaagtt	atttgatcta	31800
gtaaacatgc	tagtttaagg	gttagttaat	agctaactta	tttagcattt	tttcatgtag	31860
gcaatcactg	acatggatgc	gagtatctga	aaggagggtg	aaagcactta	aggttatcaa	31920
atctccaact	ccaatacaat	tggccttcat	actgaatggg	acagataacr	acgacagcct	31980
aaaatgcatg	aaagctctca	aataaaatag	acttttcctt	ggaagatatt	cctatcccgt	32040
gatcaggaca	aactgatgta	tatcagctgt	tagaatttta	cagacatgac	gaccactggc	32100
tatactttaa	cagctagttt	actgttgtat	gctagaagaa	tgcagctttc	catgagatca	32160
cactccatga	gaacacactc	aagctgaaga	tcacaacacc	ctcaaaaaag	gaaagtcaaa	32220
gctagcattt	aaggcagcca	ggtgggccaa	cattctcctg	tttcctctaa	gttcctcaca	32280
tgttcaatgc	ccttcaagca	gcaaaaggaa	ttaaaatcag	acttcagaaa	aaagggacat	32340
ggaagagctc	aggggtttgt	actcatgtaa	gcaatctcct	agtactgaac	ccatgtgtga	32400
gatccagttt	agatcagcac	aaataacaaa	aggtgataaa	gaaatttcct	tgaaactaca	32460
accttaagtt	gcttaaataa	aaggtaagac	ttcacagtgg	ttttgctgtg	gctcaatatt	32520
ttttaaagcc	tagaaaaagg	aaaaccaaca	aaaagtgtaa	aaaagagtga	aggaacattt	32580
ggaaaagcaa	gtggtaaaac	tatagtagta	aataactggt	taaaaagatt	tcatctagcc	32640
caagccagac	atgatcttta	cccttaaaag	ttctcaacta	aaggaaataa	gccatttgtt	32700
tgggtaagat	ccataaaata	caacacacaa	aaactactat	ttctgcagat	aacatctagt	32760
aaaataacgg	tatctgcaag	tttgtatcta	cagaaaatag	accgcttttc	ctttgggaat	32820
aacttcatct	atatttgata	catctgcttc	acaaaaaac	tagttacata	agatgaaatg	32880
aagtgtagta	ttatgcatga	agcaaaaggg	tatttaaata	acgtagatgt	ctacaatcac	32940
aactctaagt	gcaagttact	gcatctctaa	aggaaaagat	tgcagtggtc	tctcctagac	33000
atctcaggac	aagctacatt	ccttgaatca	cctaatgcta	cttgcctcaa	gggtttacct	33060
ttggttctaa	ttttattctc	aaatacaaag	agcatcagta	ttttctaaaa	gcagacacaa	33120
gtgcatgcca	tattacagaa	tggtaatttc	tgagtgtcag	aaacactgtg	tttgcaaagt	33180
cataatgttt	tagtcaattt	atatgatctg	agaacttaaa	gtgactcaaa	tttctacaaa	33240
actaaaacct	aaaatactgt	attcctgaac	caatttccta	gactgtaaag	cattggacgc	33300
tttacctttg	aacatgaagg	cctaaaacag	acaaaaccaa	aacaaaacaa	aataaaacca	33360
cctgcaacat	tttgacagca	gtgattcact	aggctaaaaa	accagtttca	acaccgtaat	33420
ytaattgaat	tcaattaaac	gttaaaagaa	ttttcatctt	attctgccta	cttccaataa	33480
aatggaaatg	acaagcaaaa	atcttgattt	actatacaaa	gtgaaaaaca	rgaaactaaa	33540
aagttttaat	ttgrtgcagg	cttttttt	ttctttttt	aaatacaaat	acaaatgcay	33600
aagaggggtt	gtcaaagaga	agtgaaggtt	tagggatagt	caacacctta	taccattttc	33660
aactgtttct	agccactcag	accaggaaat	agaatgacct	ttttcatgtg	ccaaaagtgc	33720
tgcactgctg	tttgtgtttt	catcttttcc	tcttgtaaca	ccttctgacc	tctcaacaag	33780
cttataaaca	acttctgtgt	aatctgtgta	actgatccca	ctccactaat	ttgtctccca	33840
tcataataca	aaactgaagt			aagaattatt	tcattccatt	33900
		Pa	ige 220.			

aatattttca	aactttcctg	ttctgcatca	ggacaaaagc	taagtccttt	taaaaacaca	33960
gaggaaaaac	agcaagagac	tgctgacata	aggaaaaacg	gcagaagcaa	acccatgaaa	34020
agtcaatagc	ttcatgttta	cagcggtaac	ttgaaccact	taacctcctg	attatagtta	34080
gacagaacag	ttgagcctgg	atgactccct	tatgttggct	taaccactac	cacarccatt	34140
accaaaatag	tgtcccaaat	ctttaaaaca	gtggcagagc	tgttccccat	tcccaccgcc	34200
actgagcagg	gctttcattg	cagaactcat	acatttcaat	gagccatttt	ctttaaacaa	34260
gatttcattg	gagaaagtga	tataggcaag	cctgaattta	ccagcaaaag	tatctttgca	34320
ttacttttat	agtagtgatc	acaaagatta	ctaggttagt	atctccagaa	ggagcccatt	34380
ccatggactt	agatcaaaac	acacatacac	caagagtttc	aaaccccaag	cacttaaaaa	34440
gacgtatgtg	caattctctg	atacaacagt	gggtgggggt	ttgataaggg	ctgtttttt	34500
tcctgagttt	tggaagtctg	gtcacctcac	ttttcagcta	gtaattggta	ttaggataaa	34560
ttacacaata	aaccagacat	atagctattt	ttttccacaa	caatgaaaat	aaggctgcaa	34620
ttcttatcta	gtcatatctc	taggaaataa	agcagaatac	aaatcattga	gcatcaggac	34680
taaaaagcta	attatgagca	tcgcaactca	aacattctga	caacagccag	aagtgatgca	34740
aagttaaact	tcacagatgt	gacatccaca	gctgctgtgg	tatgaaaact	gtagtggtta	34800
tttaccctga	taacccgccc	ggtctcacca	ttcagagact	ggatatgaaa	acacttatat	34860
ctttggaata	gggactactt	ctggttacaa	gcatcatata	gtatttaaaa	caaatatagc	34920
actgaccatc	agctaaaggt	gaaaaacagt	tctctttagc	tctcacagaa	tcatagaata	34980
gctggggttg	aaagggtcct	caaagatcct	ctagttataa	gctgtgggyt	gcaggtaggg	35040
ttgccaacca	ctaaatcagg	cactagatca	ggttgtacag	gcctgcgtcc	aacctggctt	35100
gaatacctcc	agggatgggg	caaccataac	ctctttgggc	agcctgttcc	agcacctcac	35160
cactctcagt	gaaaaaattt	cccaacatct	agtttaaatc	acacctcttt	tattcaaaac	35220
tgttcccgct	tgtcctgtca	ctgtctaccc	atgtagaaat	ttgatttatc	tcctgcttac	35280
aagctctctt	taggtactgg	aaggctgata	tcaagtctcc	cctgagcctt	gtcaaggctg	35340
aacaagccca	gctccccac	cttctcttca	taggaagggt	gctccagtcc	tctgatcact	35400
ttcgtgatct	gtttttggac	ttgttccaaa	agctccacát	ctttcttgag	ctgggggctc	35460
cctaccttcg	tgcagtactc	cagatggggc	ctcacaaggg	cagagcagag	ggggacaatc	35520
atctctctca	ccctgctgac	cacctctctt	ttgatgcagc	ccagtatgca	gttggccttc	35580
taggcttcaa	gcccacactg	ctggttcctg	ytaagtttct	catctcccag	ggctcctaag	35640
accttcttgg	cagggctgct	ctcaaatagt	tcttctccta	gtctgtaaac	atacctagga	35700
gtgccccaac	tcaagtgcaa	gaccttgcac	ttggtcttgt	taaacctcat	tagattatcg	35760
tgtgcctaat	tttcagcgtg	wccaggtcct	tctgggtgac	atccctccct	tctgtygtgt	35820
caactgtacc	actcagcttg	gtgtcatcag	caaacttgct	gagggtactc	tcaatcccac	35880
tttctgtgga	actgataaag	ttgtagaaga	gcyacaacac	ttggtcccaa	gatggacacc	35940
tgggggatac	cactcattgc	tggcmtttac	ctggacacag	agccattaac	aactaccctc	36000
tggctgtgac	cattcaacca	attttgtatt	caccttaaaa	tccatatctc	tccaatttag	36060
tgatraggat	gtggtgtggg	ctcatgtcaa	aggccttgca	gaaggccaga	tagattacat	36120
cagttgagct	tttttctact	tatgctgtca	gttcttcaca	gaaggccaac	tttcacagtg	36180
cttcaactgc	tagaattgca	agtactgaag	cagtacacaa	gataaatcat	atatgtactc	36240
tgccaatttg	ttgtaatttg	agatgctaat	ctctttattc	attttggcaa	ctgtttyaag	36300
actcctgctg	cctgtctaat	cttggtatct	atttttacta	gttctatgaa	atgttacatt	36360
tcttccttca	gaatataaaa	tctaggctag	gaggaaaggt	cagaagagct	gtattttaga	36420
		Pa	nge 221.			

aatgacagtt	agagaaagcc	tccaatgtgt	atcatcttac	tgaaaaatga	ttatttttt	36480
ttagtacaaa	taaatgcttc	ctctccctat	aactctcaca	cagatcgtta	agaatttatt	36540
ccatctactg	actaacacag	cattttattg	tttttattt	aaactaagca	aatcttttcc	36600
ttaatcttca	ttgtaccaaa	taggctatct	ctatccttaa	aaatacttat	gaatatataa	36660
aattgtagaa	taacagtcaa	gcccgtaagc	aaaatgtttc	atattattat	acttaaagat	36720
ggtaaaaata	atattaactt	tttagctatt	acaagggggc	aagtgtacaa	ctgtaaagta	36780
caacagtaag	aaaccataca	atgaaatctc	aaacaacaat	aatcatcttt	caccgagtca	36840
cctttcacaa	cagctattat	gacactaaac	gacaactatg	tcaactgtta	aattcccttt	36900
ccctatgcca	tattttccac	ccaataaaga	aaagaatttc	tatttttaac	atctaactgg	36960
caccttttgg	aagcacttag	agatgaattt	ttgtttgtgt	gagtgtatgt	gtgtggaaga	37020
aatatctgat	aaagtttaca	tacaatttat	gccatcgtta	ttgacaagaa	aagtctactc	37080
ctcttaaatt	ttctatattg	taatgcagtt	cctactaaaa	ttgctttcca	ctttaaaaaa	37140
aaaatttacg	ttaccacagt	atttatccca	aagagcacat	agtgcctata	aagtcaacca	37200
tctcgccatc	cacatataaa	atattcctct	tagagctagt	acccatttta	agacatccag	37260
tttgagaatg	ttgcaatctt	cttagaacta	aaatattttg	ctattttaag	gcattatacc	37320
tttaaagtaa	taattccaga	tgaattgaaa	tttagataat	aggttcaagg	aaattttatg	37380
taacattcaa	aaacatcaat	taacaattac	aacatcagta	gggaccatta	tcctgtataa	37440
attaataact	gcttaccaag	agagactggg	taaaaactac	acatttcata	caaggctgga	37500
acagttctgt	tctgaatctg	attattatac	catctctttc	ttcagtagca	tgaatcttca	37560
gagtcaacaa	ctttctctat	ragcagtgct	aactgagcac	ttatttgatc	agcattttaa	37620
cttacagaga	wttaagaaaa	gtatcagcat	ctgctttagt	ccatctctag	tatccctcat	37680
cacagcctct	tgtgacaatc	agtttttata	cgtgcattat	tagcttttta	aaacagattt	37740
atcactatta	tatctgatct	ttagaatttt	attccctcct	tttcaaggcc	atttttattt	37800
ttactaagct	caatttctat	gctattacca	aaccattacc	agtcattaaa	ttagtgaaaa	37860
gaagttcata	tataagaaat	tgcatgcagc	agcacaaatt	aaatttgctg	ctttcagtta	37920
aatttaattc	acatgacata	ctttaaccag	taattcttga	tccagctcac	tttcttccct	37980
cttttatctt	tatgagaatt	tgcacaattc	tctgatgctg	aacttttaac	atacagtacc	38040
tgctttggat	ttcctatatg	ttgcaacttg	ctgaaaaact	aacatgctta	ataatagcag	38100
ctctgagagc	ttgctttccc	ttcaaaagca	ctttctggct	catctacctg	ttcaaagaac	38160
taaaatcata	gaattgtttg	agttggaagg	gacctttaag	accatctagt	tccaaccccc	38220
tgctataggc	agggacacct	cccactaaac	caggttgctc	agagcctcat	ccagcctggc	38280
cttgaatgct	tccagggagg	gggtatgcac	aacctgtttc	agtgtctcat	cactaagtcc	38340
taataagaac	acctcttgtg	gaagaagatg	aagaaagaca	tatagcttca	gtgcaactca	38400
gtcacgattt	aagggcatgc	ataggtacac	tgtgacaagc	agcagtaatc	attttggcag	38460
gaaggaatac	cgctgagagg	ttgttttgga	taccacaaat	ggtttgcatg	aaaattatga	38520
aaatcaacac	ttttaggcta	atacacatta	cacattttaa	aactttccag	gatggagaac	38580
tgtgtaaaac	atatgctctc	tgttttaatt	ttcacttgag	tgcatgaact	tacactgtta	38640
cataattact	ttggtaggcc	tactgtgaca	tggaaagtaa	tggaggaggt	tggacagttc	38700
ttcagagacg	tgaagatggc	agcgtggatt	ttcaccggac	atggaaagag	tacaagatag	38760
taagtaatgt	ttttggaggc	attaatattg	gatattatat	tctgaaattt	gctatgataa	38820
agtaatacac	atagcatcct	cagaatgtag	gcaggttttg	aaagttgtct	ttatccatag	38880
atgttcattt	tgaaagggtc			acaaacaatt	tatacaaatg	38940
		Pa	age 222.			

tgatgtttgt ttttaaagag	aaacttcatt	tttctttcat	caactattct	atgatatgtc	39000
catatttttg agttacttat	atttgtgttt	ccactggcaa	cttgccccaa	gtctattatt	39060
tcagataaag atctgtwacc	ttcacagatc	cagtaaaact	atgtgttagc	tgactgaaaa	39120
ccactgaagt taaaaactga	tcaagggatc	tcttcaaact	caaagggaaa	aaacaagttg	39180
tatctttaag tgactatgtt	tcatgtgttg	aattacaggg	atttggtgat	cctgctgggg	39240
agtactggct aggaaatgag	tttgtttctc	aactgactaa	tcagaagcgc	tacgttctta	39300
aaataatcct gaaagactgg	gaaggaaatg	aagcgtacac	tttgtatgac	caattctatc	39360
tagcaaacga agaacaaaaa	tacaggtaag	cagaaaaatt	tgaactgaat	taaaaaaatg	39420
agctggtgat tattttaaac	tgtgtacatg	aattacatgc	ttgctctatt	ttaacctgct	39480
ccctgtagca ttcaaaaaaa	aacctttatt	tcaaaggaaa	caatgtacat	ttactagcgc	39540
acactggctg aacataaaac	agatgcatga	atatgaagag	atggtatggt	ataatatcag	39600
ataaatatac caatgtagca	gatggtagta	cccaattttc	aagaataaga	acacatctgc	39660
agttgcagag aaaagaaggg	tataaaaaga	tcctgtgtcc	atcttttact	ctgggcacaa	39720
agatccatcc aagtatattc	ttaacagaga	ataataacag	ctatctacag	tgattaatgc	39780
atttacgtat gcacatgata	acccttaaag	ttcagcagta	gatagggtgg	ggggggatgg	39840
gctggttttc cctgataggt	tttttctttc	tttaraacac	accatgggct	agtttttcaa	39900
agagaacttt cagataaatt	taacttctag	atttgctttt	cctctcatct	gaacagaatt	39960
ttacttcttg cagctatgta	actgttattc	acattttaaa	gatatattac	tgaattctat	40020
tactgaattg tctttaaatg	gtatggctta	gactactagt	tagatgtttc	tttatcagaa	40080
caaaattaca acaattcctg	tgttttcaaa	gaaaattcta	agccaactct	accctttaga	40140
actaatgtct atcactgtta	ttgacttaaa	agtaaaacaa	aragggaaac	tatttgctgg	40200
attaatgttg cagatggctt	caagaatgca	agagaatata	taatcatgat	tccaagcaat	40260
aaatagattt ctggaaagtg	gttgactgag	acagacaaga	cttgaaggag	attttctact	40320
tcagtcagtt gttagtagaa	gccttctgag	cacagtaatg	ttaccttatt	gttccacaat	40380
ccactgcctt ggattctcta	agaataatgc	tcctacgtat	gaaaaagtta	atactgaacg	40440
tccagtctca ttccctgtaa	ractgtcatt	ttaaaatcat	tttttattgc	acattttatt	40500
tatgctccca tttcattgca	aaatgaaagc	ttcacatttt	ttcatacctg	tttggttaga	40560
aatgacacat tatcaaagga	ttatacattt	taaaatagta	tcagtcataa	ctgaaatata	40620
tgggcagttc ttatttcatt	ctgcaggacc	tctgtcaaag	cagtacgtgt	ggtattatta	40680
gatgaaggag aactagagcg	tatagaataa	ctgataattt	cctactgcat	ggtccaggaa	40740
atgttttttc ataagaatct	tgcagattca	caaagctgga	tagagaaaaa	tatctatttt	40800
tagctacatt tctccaagat	cccttaacat	ctagtcgatg	taaacaaagt	caatctgaca	40860
cccttgagaa ctgargctgt	tacttcaact	caagtcttcc	atgcaaagca	atctaaaact	40920
atcagtatct ccatccctct	gaatgtatgg	tcttaatgcc	ttagcagtac	acagctgtct	40980
catttccaaa gcaaatgttt	tttcatctgg	gaacagttag	aatcaacagc	agagactttt	41040
ttttaagtaa tgcattaaaa	tacttacaaa	acaagttttg	tgaaataggt	cattgccctt	41100
gtccagttac atttctaaaa	acaatcactg	aaaactaaga	tgactgtcag	taaatagatc	41160
tttattttaa aatgcaacca	aacatggaat	gcatcataga	cacagtggtt	taaagaatag	41220
agtaatatga ataaaaaaaa	ggaagaaagc	gttcaaaggc	aactttcatt	acattgaaaa	41280
cattaaaaca tctcaatgct	ggaagatcat	gagttggttc	ataaaattaa	gatttcatag	41340
aaccatagaa gaagtggatt	cagaatgaac	ttgttctgag	gccaactact	tcataccagg	41400
ctaggttgct caaggctttg	ttgacatggg	ccttcataac	ctccaaagat	ggaggctgca	41460
	Pā	age 223.			

tagcctgttc	cattgctcac	ctatcctcag	ggtgaaaagt	tttcctgaca	tctagtcaga	41520
attcctcatt	tcaacttaca	tccattgact	ataatctcct	gttttactaa	gccatatttt	41580
ttaaaaacca	ctgagatgaa	taaatcttag	cttccattgt	acttcaaata	atacttgcaa	41640
ttcaggccta	ggctcatgct	ttctgctcag	aacatttagc	aatatcttcg	aaactggctt	41700
acagggacca	gtgtttgaat	ataaagcttt	aaactcacct	ttagaaaaaa	caagatattt	41760
aactttgaga	ttttagagga	agattgtaat	gagctaatct	ttggaaattc	atctgttctc	41820
aatatattca	catagagaat	ataaaattgg	ttaaaacaat	ctgtcaaact	accaaaacca	41880
acatcaatca	taagcagaga	atgacatgca	aagtcaagac	ctagctgggg	agaagctggt	41940
tctctcatac	gtagagtaga	ataactctga	gaagagtaag	atatttgatg	cagaaatgca	42000
atcagcaaaa	aattaatatg	ggggcagagg	ttcaaatcca	cttagttcaa	cacacacaca	42060
atttcataac	atggtcacag	ctgtgtaact	gcctcccacg	ttcagcaccc	caatatctct	42120
agccactaag	atgatcaaag	ggccagagca	cctctcctat	gaggaaatgt	tgagagaact	42180
gggcttgttt	agcttgsaga	agagaaggct	tcggggagac	ctcattgcag	ccttccagta	42240
cttgaaagga	gcatataaac	aggaagggga	atggctgttt	acaagggtgg	atagtgatas	42300
gacaaggggg	aatggtctta	aactgagaca	ggagaggttt	aggytagata	ttaggaggaa	42360
ggttttcacc	cagagggtga	tgacacactg	gaacaggttg	cccaaggagg	ttgtggactc	42420
cccgtcgctg	gaggcattca	aggccaggct	ggacgtggct	ctgggcagcc	tggtctagtg	42480
gttggcaacc	ctgcatgtag	caggggggtt	gaaactggat	gatcatgtgg	ttcttttcaa	42540
cccaggccat	tctatgatcc	tatgatttct	acccctgtga	gtgcatctct	atctgcataa	42600
gcaggtacag	acaatataca	attagatata	agcagataca	agcttaactt	gccaggtaag	42660
tgaaacaaac	tgttaaatac	ttgtgaagat	ccaacctaat	gaaacctatg	gacgttgtga	42720
aaataaagaa	taatttggaa	agtggaaaat	gaaacattta	gaagatccta	aagcatcagt	42780
tactagttgg	tatttgagag	tccaggaaat	gttcttatct	ctcgtaactg	cagagttrta	42840
atgctggatt	gccatattgt	gttaaaagca	aaatagaaag	aaaaaaggtt	tttgttaggc	42900
tttcaaactt	aattaaaaaa	atgcacacaa	tgcacttaat	aaagaaacat	taagaaatta	42960
tatacaaaaa	aagtttataa	tctgctcgtt	ttcttctaat	atgacatgaa	gaaaatgttc	43020
atctctactg	acagaggctg	ttcatcaaga	tactgtgatg	aacttttcca	ctcatgaaaa	43080
attgctgtga	aaccattcac	aacagtacat	tagctagaag	tgaactgagc	tatttgaaca	43140
ggatacttac	tgcaaactac	ttcttcatta	ttttctagct	caacttcaat	gtaatatttg	43200
tctttccatt	cctcacttct	acaggatcca	ccttaaagga	cttactggga	cagcaggcaa	43260
aataagtagt	ataagccaac	caggaaatga	ttttagcaca	aaggatgcag	acaatgacaa	43320
atgtatttgc	aaatgttcac	aaatgctaac	aggaggtagg	aatgttttt	ttgtttctca	43380
gtcttcctat	ttttattggg	cactggattt	gtctatgaga	taaatagtga	taattttgac	43440
ttagtaaatt	ctgattattg	aagaagttca	gaactgatgg	tcacgtggtg	actccaaatg	43500
aaatactttg	acaaatatta	tttgacaaag	gttgaggtaa	aatgaaaagt	taaaatctgg	43560
ggagaaaaag	gtaagcggcc	tctcaagcta	gggtacaaga	aagactgtga	ttgtgaaact	43620
aagaagaaca	acagcagatt	cttcttccaa	ggaatgataa	caaagtccca	aagtcaaaac	43680
acctaaagca	cttcaaaatt	tgttttagag	attcagatgg	tcactgaaat	ggctcctaat	43740
tctttaggca	caaatctaac	tattcaaaga	agaggaaaac	tcccaaactt	gatgaataca	43800
ctgcacatgc	tgcagaaggg	tacaagtatt	taattatgta	tttcaataca	agcatgaaat	43860
gtcaatacrt	gcatttctgg	taaaccatgt	gagaggcatc	tacactattg	tagtgattgt	43920
tcayaaccta	ttggaacttt	caatgaagtt	tttaccttta	actacacaag	tcactctata	43980
		Pa	ige 224.			

PCT/US02/37660 WO 03/048185

44040

```
atttqtcaat ctaaccttcc acattctgta atgtaaacaa cttcttttgt aaatttgact
tctcttcctg ttatctctta agaaatgctt tgtttcccta caacacaaaa agactttcaq
                                                                   44100
tttatccaaa aaqataattq gacttctgcc ctgtaaaaca gaacacacgc attatcgcct
tcataacaga agtataaaaa tattatctta ttaataaaaa taaattttcc ttatgaccaa 44220
ctaacaggtc aggaccacaa agatgcaaaa taagtttgga ctgctttttc ctcccttgca 44280
agtttcaaca cagttgtttt gaactatctg cacacagaac craaacaaat aactgaatta 44340
atcctctaaa aacaattaaq aaaqqaattt acatctgtga gtacaggaat ttaccaaaga 44400
gcaaatgaaa agcaaagaaa attcaatatc attacagttc gagtaaagtt ctacccttgg 44460
attgtcaata atagttgaca ttagtaatct agattgaaca ccttcccttt tcaactttaa 44520
                                                                   44580
actettagga attacattaa getttaagaa tatttaatta atagetttee ttaetggget
gggggtaaat gtcttatatt aaygtttcaa aatcatgaga atgaaacact gggtttggat 44640
ttgtttctca tgttgggaca ataaagtgtt aaaatcttca tgtatgctat gttaaaaaatt 44700
                                                                   44760
atctctgctg acattttcat ttgccggtat ttatctttgt gttctggtct tgcagggtgg
tggtttgatg cttgtggtcc ttctaacctc aatggaatgt attatccatt acgacagaac 44820
aacaacaagt tcaatggtat caagtggtac tactggaaag gctcaggata ctctctcaaa 44880
                                                                   44940
gccacgacta tgatgattcg accagcagat ttctaaatgc ttttgcattc ttatgtgaat
tatgtattgt atagtcttca aagactttat ttgccaagta tataaacaca tctgcaactt 45000
gtotoatttt caagoocaga aaacatgtgo tagtgttotg aagagatcag otcattocaa
                                                                   45060
tcattgaatt gcaatagtct tgatcagtta aagctcatat tattcaacta gaccaaagtc 45120
taaggcatcg acccgatata acagtgattt ggccaaatga ctgaataaaa agaatatcca
                                                                   45180
agaacctgtc agacaactga aggactgtgt tttactgatc atttatatta tgtatgtgtt
                                                                   45240
agtaaataac tggaactgtg aaaaatatct aaaatagttt tagaaatatg cattttgcct
catcactgaa cttcaaacat tactctaata taaaacttac ctagatctag aactatttat
                                                                   45360
                                                                   45420
ctctgagtat gtttgctgtt tatgtacata aaaatatatc gtcctgtaat tagcttaata
tactacttag tacattettt ecceeatage etattaaaca aettettaca ettgtteagg
                                                                   45480
qatttttccc aataqtttqc attactttat ttaacaqaqq acttgqcatt tattcttgga
                                                                   45540
aaatgccatg tacaaaaaaa atcgccattt cttccagttt gtgtttattg atcactacct 45600
ttaatttaca aaaatccctg caagttataa tatagtatga gtttctttac attgttatga 45660
tqattqcact ttttttattt ctttqtcaac tatctqtaaa ataactgacc agtattttat 45720
aaatggagat gataacatta gcaccagatg cctgattgtc tatcgtgatc agttatcaca 45780
tggtaccatg gtccatctaa acattttata agaacaatct aataatcatg tggatgttct 45840
                                                                   45900
ttgatgcaat tcaatttatg cttttgtctt aagaaacaga ttactacatt tgaaaaacag
gaaaaaaatc tgaaagttac ctaagaaacc aacagaatgt tctttttctt ctcccctca
                                                                   45960
aaattttcca tgaagcagta ggctctcagt gtatgacaca atgtgaataa attaatctac 46020
                                                                    46022
99
<210>
      160
      DNA
<212>
<213>
      Homo sapiens
<220>
      misc feature (120T)..(1219) "n" may be any nucleotide.
<221>
<223>
<220>
      misc feature
<221>
       (125\overline{4})..(1254)
```

```
<223> "n" may be any nucleotide.
<220>
      misc feature (1257)..(1257) "n" may be any nucleotide.
<221>
<222>
<220>
<221> misc_feature
<221> (1180 leature
<222> (1290)..(1290)
<223> "n" may be any nucleotide.
<220>
<221> misc feature
<222> (1295)..(1324)
<223> "n" may be any nucleotide.
<400> 160
atgtggcaga ttgttttctt tactctgagc tgtgatcttg tcttggccgc agcctataac
                                                                         60
aactttcgga agagcatgga cagcatagga aagaagcaat atcaggtcca gcatgggtcc
                                                                        120
                                                                        180
tgcagctaca ctttcctcct gccagagatg gacaactgcc gctcttcctc cagcccctac
gtgtccaatg ctgtgcagag ggacgcgccg ctcgaatacg atgactcggt gcagaggctg
                                                                        240
caaqtqctqq agaacatcat ggaaaacaac actcagtggc taatgaaggt agagaatata
                                                                        300
                                                                        360
tcccaggaca acatgaagaa agaaatggta gagatacagc agaatgcagt acagaaccag
acggctgtga tgatagaaat agggacaaac ctgttgaacc aaacagcgga gcaaacgcgg
                                                                        420
aaqttaactq atgtggaagc ccaagtatta aatcagacca cgagacttga acttcagctc
                                                                        480
                                                                        540
ttqqaacact ccctctcgac aaacaaattg gaaaaacaga ttttggacca gaccagtgaa
                                                                        600
ataaacaaat tgcaagataa gaacagtttc ctagaaaaga aggtgctagc tatggaagac
                                                                        660
aaqcacatca tccaactaca qtcaataaaa qaaqaqaaag atcagctaca ggtgttagta
                                                                        720
tocaagcaga attocatcat tgaagaacto gaaaaaaaaa tagtgactgo cacggtgaat
aattcagttc ttcagaagca gcaacatgat ctcatggaga cagttaataa cttactgact
                                                                        780
                                                                        840
atqatqtcca catcaaacqc aqctaaqqac cccactgttg ctaaagaaga acaaatcagc
ttcagagact gtgctgaagt attcaaatca ggacacacca cgaatggcat ctacacgtta
                                                                        900
                                                                        960
acattcccta attctacaga agagatcaag gcctactgtg acatggaagc tggaggaggc
                                                                        1020
gggtggacaa ttattcagcg acgtgaggat ggcagcgttg catttcagag gacttggaaa
gaatataaag tgggatttgg taacctctca gaaaaatatt ggctgggaaa tgagtttgtt
                                                                        1080
togcaactga ctaatcagca acgotatgtg ottaaaatac accttaaaga ctgggaaggg
                                                                        1140
aatgaggett acteattgta tgaacattte tateteteaa gtgaagaact caattatagg
                                                                        1200
nnnnnnnn nnnnnnnng gcaatgattt tagcacaagg gatggagcca ccgncanatg
                                                                       1260
tatttgcaaa tgttcacaaa tgctaacagn aggtnnnnnn nnnnnnnnnn nnnnnnnnnn
                                                                       1320
                                                                       1380
nnnntactgg aaaggeteag getatteget caaggecaca accatgatga teegaceage
                                                                        1387
agatttc
<210>
       161
<211>
       1332
<212>
       DNA
<213> Homo sapiens
atoctcacat gactgtgatc cqattetttc cageggeggg tettaccecc ggtecteege
                                                                          60
gtetecagte eteaacgtee eegagagtee eegaateeee geteecagtg ageggtgete
                                                                        120
cgacggccgg ggcagccctg atgcgccgtg ctactgagcg ctcagggcgg acccgtgcag
                                                                         180
ctttgcgtcc tgggacqaga tgaatgtcct ggcgcatcgg ccaggggctg cgcgaacacg
                                                                         240
cggagcgcac ccgcgctgga gcggcgcctg agcgcgtgcg ggtccgccgg ggtccaccga
                                                                         300
cctcccgtta gcccctgaga gccgtccttc acagcctgca gacacaactc aaggctcaga
                                                                         360
```

caactettee acaaggtgge	ccagcagcag	cggcaccctg	cgaattcagc	atctgcaaag	420
ccagtttggc ctacctagac	catgaggtgg	ccaagcctgc	ccgaagaaat	ggcccagcca	480
gttgacccgg ctcacaatgt	cagcgcccag	ggattgccag	gagctgttcc	aggttgggga	540
tatttgaaat ccagcctcag	gggtctccgc	cattttatga	cctcagatgg	aggctggaca	600
gtaattcaga ggagtggact	tcaaccggcc	ctgggaagcc	tacaaggccc	cacggcgagt	660
tctggctggg tctggagaag	gtgcgaccgc	aacagccgcc	tggccgtgca	gctgcgggac	720
cgagttgctg cagttctccg	tgcacctggg	tggcgagcct	gcagctcact	gcacccgtgg	780
ccggccagct ggccacccag	cggcctctcc	gtacccttct	ccacttggcc	tccgcaggga	840
caagaactgc gccaagagcc	tctcttggca	cctgcagcca	ttccaacctc	aacggccagt	900
ccacagcagc ggcagaagct	taagaaggga	atcttcgggc	cgctactacc	cgctgcaggc	960
caccaccatg ttcagcagag	gcagcctcct	agcgtcctgg	ctgggcctga	aagacggtga	1020
ctcttggctc tgcccgagga	tgtggggcag	gggctccaag	gaggggccat	ctggaaactt	1080
agaccacgac tggagaagcc	ccctttctga	gtgcagttgc	ctcctgagat	cgaggctgca	1140
ggatatgete aggaceaagg	ggcatggagc	ttcactcctt	gctggccaca	gagggaccac	1200
ttggggccag ccagactggc	ctcacacatt	gactgacggg	gaccagggct	tgtgtgggtc	1260
ggtgctggtg ctgttgtgtg	taggtcccct	ggggacatgg	tatctgggcg	gagctcacag	1320
agttcttgga at					1332
<210> 162 <211> 720 <212> DNA <213> Homo sapiens					
<400> 162 cctggtgggc ccagcaagat	ggatctactg	tggatcgctt	ctcctgcttg	gggggcctgc	60
ctgcctgaag acgctgccca	ggacccaggg	aactggaagc	cagcaaagag	ttgtcccgga	120
gctccaggaa gtcctgggga	gaagtcaagg	gccacctgga	ccaccaggca	agatgggccc	180
gccccagaaa ctgccgggag	ctgttgagcc	agggcgtggt	accatctgtg	cctacctgag	240
ggcagggccc tccatggaca	ccgagggggg	cggctggctg	gtgtttcagt	tctgtggatt	300
tcttccgctc ttggtcctcc	tacaaaccaa	gagtctgaat	tctggctggg	aaatgagaat	360
tctccagggt aactgggagc	tgcgggtaga	gctggaaccg	tactttcgcc	cactatgcga	420
ccttccgcct cccactacca	gctggcactg	ggcaagttct	cagagggccc	tgagcctcca	480
cagtgggagg ccctttacca	cctaattcaa	gcaacagcaa	ctgtgcagtg	attgtccacg	540
gcatcctgtt accgatcaaa	tctcaatggt	cgctattgcc	gcccacaaat	atggcattga	600
ctgggcctca ggacccctac	cgcagggttc	ggatgatgct	tcgataggag	tgcccttatc	660
tctcctgtac agcttccgga	tcgtttgcca	accacctctg	cttgcctgtc	cacatttaaa	720
<210> 163 <211> 2212 <212> DNA <213> Homo sapiens					
<400> 163 gaaagctata ggctacccat	tcagctcccc	tgtcagagac	tcaagctttg	agaaaggcta	60
gcaaagagca aggaaagaga	gaaaacaaca	aagtggcgag	gccctcagag	tgaaagcgta	120
aggttcagtc agcctgctgc	agctttgcag	acctcagctg	ggcatctcca	gactcccctg	180
aaggaagagc cttcctcacc	caaacccaca	aaagatgctg	aaaaagcctc	tctcagctgt	240
gacctggctc tgcattttca	tcgtggcctt	tgtcagccac	ccagcgtggc	tgcagaagct	300
ctctaagcac aagacaccag	cacagccaca	gctcaaagcg	gccaactgct	gtgaggaggt	360
gaaggagctc aaggcccaag	ttgccaacct	tagcagcctg	ctgagtgaac	tgaacaagaa	420

gcaggagagg gactgggtca gcgtggtcat gcaggtgatg gagctggaga gcaacagcaa	480
gcgcatggag tcgcggctca cagatgctga gagcaagtac tccgagatga acaaccaaat	540
tgacatcatg cagctgcagg cagcacagac ggtcactcag acctccgcag atgccatcta	600
cgactgctct tccctctacc agaagaacta ccgcatctct ggagtgtata agcttcctcc	660
tgatgacttc ctgggcagcc ctgaactgga ggtgttctgt gacatggaga cttcaggcgg	720
aggotggaco atcatocaga gaogaaaaag tggoottgto toottotaco gggactggaa	780
gcagtacaag cagggctttg gcagcatccg tggggacttc tggctgggga acgaacacat	840
ccaccggctc tccagacagc caacccggct gcgtgtagag atggaggact gggagggcaa	900
cctgcgctac gctgagtata gccactttgt tttgggcaat gaactcaaca gctatcgcct	960
cttcctgggg aactacactg gcaatgtggg gaacgacgcc ctccagtatc ataacaacac	1020
agcetteage accaaggaca aggacaatga caactgettg gacaagtgtg cacageteeg	1080
caaaggtggc tactggtaca actgctgcac agactccaac ctcaatggag tgtactaccg	1140
cctgggtgag cacaataagc acctggatgg catcacctgg tatggctggc atggatctac	1200
ctactccctc aaacgggtgg agatgaaaat ccgcccagaa gacttcaagc cttaaaagga	1260
ggctgccgtg gagcacggat acagaaactg agacacgtgg agactggatg agggcagatg	1320
aggacaggaa gagagtgtta gaaagggtag gactgagaaa cagcctataa tctccaaaga	1380
aagaataagt ctccaaggag cacaaaaaaa tcatatgtac caaggatgtt acagtaaaca	1440
ggatgaacta tttaaaccca ctgggtcctg ccacatcctt ctcaaggtgg tagactgagt	1500
ggggtctctc tgcccaagat ccctgacata gcagtagctt gtcttttcca catgatttgt	1560
ctgtgaaaga aaataatttt gagatcgttt tatctatttt ctctacggct taggctatgt	1620
gagggcaaaa cacaaatccc tttgctaaaa agaaccatat tattttgatt ctcaaaggat	1680
aggcctttga gtgttagaga aaggagtgaa ggaggcaggt gggaaatggt atttctattt	1740
ttaaatccag tgaaattatc ttgagtctac acattatttt taaaacacaa aaattgttcg	1800
gctggaactg acccaggctg gacttgcggg gaggaaactc cagggcactg catctggcga	1860
tcagactctg agcactgccc ctgctcgcct tggtcatgta cagcactgaa aggaatgaag	1920
caccagcagg aggtggacag agtctctcat ggatgccggc acaaaactgc cttaaaatat	1980
tcatagttaa tacaggtata tctattttta tttactttgt aagaaacaag ctcaaggagc	2040
ttccttttaa attttgtctg taggaaatgg ttgaaaactg aaggtagatg gtgttatagt	2100
taataataaa tgctgtaaat aagcatctca ctttgtaaaa ataaaatatt gtggttttgt	2160
tttaaacatt caacgtttct tttccttcta caataaacac tttcaaaatg tt	2212
<210> 164 <211> 1466 <212> DNA <213> Homo sapiens	
<400> 164 gaaattgaaa atcaagataa aaatgttcac aattaattgt tcctctagtt atttcctcca	60
gaattgatca aggattetet ateteeagag eeaaaateaa gatttgetaa aaattttage	120
caatggcctc cttcagttgg gacattgtcc ataagacgaa gggccaaatt aatgacatat	180
atatttgatc agtcttttta tgatctatcg ctgcaaagaa gaagaaaagg aactgagaag	240
aactacatat aaatgaagag gtaaagaata tgtcacttga actcaactct cctagaagaa	300
aaaattctac ttcaacaaaa agtggcaact aactaactta attcaaaatc aacctgaaac	360
aagtaacttc acttaaaact tttgtagaaa aacaaggacc ttctccagac cgtggaagac	420
caatataaac aatagtcaaa taaaagaaat agaaaatcag ctcagaagaa cccacagaaa	480
tttctctatc ttccaagcca agagcccttt cttcagttga atgaaataag aaatgtaaaa	540

tgctgaatgt accaccattt	ataacagagg	tgaacaatgc	catcagaccc	agcaactctc	600
aagtttttca tgatatcagg	tagtccatgg	acattaattc	aacatcgaaa	acttcaatga	660
aacgtgggag aactacaaat	atggatggag	aattttggtt	gggcctagag	aagatatact	720
tctaattatg ttttacgaat	tgagttggaa	gactggttat	attgaatatt	ctttttactt	780
gggaaatcac gatacatcta	gttgcgatta	ctggcaatgt	ccccaatgaa	agatttggtg	840
ttttctactt gggatcacaa	agcactgtcc	agagggttat	tcaggaggct	ggtggtggca	900
aaaacaacct aaatggtaaa	tataacaaac	caagaggaga	ggagaagagg	attatcttgg	960
aagtctcaaa attataaaat	caaccaaaat	gttgatccat	ccaacagaaa	tgaactgagg	1020
caatttaaag gcatatttaa	ccatttaatg	tggtctaata	atctggtata	aatccttaag	1080
atagattttt tttatcttaa	agtcactgtc	tatttaatca	cataacctta	aagaataccg	1140
tttacatttc tctaatacta	tttgttttaa	attttgtgat	gtgggaatca	caatctagat	1200
tataatcaat aggtgaactt	attaataaaa	aatttagaga	cttttattt	aaaaggcatc	1260
cacaactttc ccagtttaaa	aaactagtac	tcttgttgac	taaatacaga	ggactggtaa	1320
ttgtacagtt ctttaatttc	aaaactaaaa	atcgtcagca	cagagtataa	tacaaatttt	1380
taaactgatg cttcattttg	ctactaaatg	tttgatatga	tttatttatg	aaacctaatg	1440
tgtattaaaa taagttcgct	gtcttt			,	1466
<210> 165 <211> 1780 <212> DNA <213> Homo sapiens					
<400> 165 ggctcagagg ccccactgga	ccctcaactc	ttccttggac	ttettatata	ttctgtgagc	60
ttcgctggat tcagggtctt					120
gggaagccct ggctgcgtgc					180
gegggegeee egegetgeae					240
gtgtgctgga gcggccccgc					300
ctggcggcgc tgcgcatgcg					360
ctggcggcgg ccgacggcgc					420
ggcctgagcg cgcgcctggg					480
qcqqqccqq gggcgqatct					540
cgcgtgctca acgcgtccgc					600
gtcaagttcc gcgagctggc					660
gagcgcctgt gcccgggagg					720
gtgcctgtgg ttccggtccg					780
ccagccccag agccccagag					840
atgcctgcag gtcaccctgc					900
gaggcccgcc aggcaggcca					960
gtagtgtcag tatggtgtga					1020
aggcaagatg gttcagtcaa					1080
cggccagacg gagaatactg					1140
gaccatgage tgetggttet					1200
gatggcttct ccctggaacc					1260
ggtgatgctg gagactctct					1320
gaccgagact cctattctgg					1380
gaccyagact cotattety	caactytytt	cegeaceage	פיישרישריש	Jeggeneeae	1300

gcctgtgccc actccaacct c	caacggtgtg	tggcaccacg	gcggccacta	ccgaagccgc	1440
taccaggatg gtgtctactg g	ggctgagttt	cgtggtgggg	catattctct	caggaaggcc	1500
gccatgctca ttcggcccct g	gaagctgtga	ctctgtgttc	ctctgtcccc	taggccctag	1560
aggacattgg tcagcaggag c	ccaagttgt	tctggccaca	ccttctttgt	ggctcagtgc	1620
caatgtgtcc cacagaactt c	ccactgtgg	atctgtgacc	ctgggcgctg	aaaatgggac	1680
ccaggaatcc cccccgtcaa t	atcttggcc	tcagatggct	ccccaaggtc	attcatatct	1740
cggtttgagc tcatatctta t	aataacaca	aagtagccac			1780
<210> 166 <211> 2042 <212> DNA <213> Homo sapiens					
<400> 166 gcggacgcgt gggtgaaatt g	gaaaatcaag	ataaaaatgt	tcacaattaa	gctccttctt	60
tttattgttc ctctagttat t	tcctccaga	attgatcaag	acaattcatc	atttgattct	120
ctatctccag agccaaaatc a	aagatttgct	atgttagacg	atgtaaaaat	tttagccaat	180
ggcctccttc agttgggaca t	ggtcttaaa	gactttgtcc	ataagacgaa	gggccaaatt	240
aatgacatat ttcaaaaact c	caacatattt	gatcagtctt	tttatgatct	atcgctgcaa	300
accagtgaaa tcaaagaaga a	agaaaaggaa	ctgagaagaa	ctacatataa	actacaagtc	360
aaaaatgaag aggtaaagaa t	atgtcactt	gaactcaact	caaaacttga	aagcctccta	420
gaagaaaaaa ttctacttca a	acaaaaagtg	aaatatttag	aagagcaact	aactaactta	480
attcaaaatc aacctgaaac t	ccagaacac	ccagaagtaa	cttcacttaa	aacttttgta	540
gaaaaacaag ataatagcat c	caaagacctt	ctccagaccg	tggaagacca	atataaacaa	600
ttaaaccaac agcatagtca a	aataaaagaa	atagaaaatc	agctcagaag	gactagtatt	660
caagaaccca cagaaatttc t	tctatcttcc	aagccaagag	caccaagaac	tactcccttt	720
cttcagttga atgaaataag a	aaatgtaaaa	catgatggca	ttcctgctga	atgtaccacc	780
atttataaca gaggtgaaca t	tacaagtggc	atgtatgcca	tcagacccag	caactctcaa	840
gtttttcatg tctactgtga t	tgttatatca	ggtagtccat	ggacattaat	tcaacatcga	900
atagatggat cacaaaactt c	caatgaaacg	tgggagaact	acaaatatgg	ttttgggagg	960
cttgatggag aattttggtt g	gggcctagag	aagatatact	ccatagtgaa	gcaatctaat	1020
tatgttttac gaattgagtt g	gaagactgg	aaagacaaca	aacattatat	tgaatattct	1080
ttttacttgg gaaatcacga a	aaccaactat	acgctacatc	tagttgcgat	tactggcaat	1140
gtccccaatg caatcccgga a	aaacaaagat	ttggtgtttt	ctacttggga	tcacaaagca	1200
aaaggacact tcaactgtcc a	agagggttat	tcaggaggct	ggtggtggca	tgatgagtgt	1260
ggagaaaaca acctaaatgg t	taaatataac	aaaccaagag	caaaatctaa	gccagagagg	1320
agaagaggat tatcttggaa g	gtctcaaaat	ggaaggttat	actctataaa	atcaaccaaa	1380
atgttgatcc atccaacaga t	ttcagaaagc	tttgaatgaa	ctgaggcaat	ttaaaggcat	1440
atttaaccat taactcattc	caagttaatg	tggtctaata	atctggtata	aatccttaag	1500
agaaagcttg agaaatagat t	ttttttatc	ttaaagtcac	tgtctattta	agattaaaca	1560
tacaatcaca taaccttaaa g	gaataccgtt	tacatttctc	aatcaaaatt	cttataatac	1620
tatttgtttt aaattttgtg a	atgtgggaat	caattttaga	tggtcacaat	ctagattata	1680
atcaataggt gaacttatta a	aataactttt	ctaaataaaa	aatttagaga	cttttatttt	1740
aaaaggcatc atatgagcta a	atatcacaac	tttcccagtt	taaaaaacta	gtactcttgt	1800
taaaactcta aacttgacta a	aatacagagg	actggtaatt	gtacagttct	taaatgttgt	1860
agtattaatt tcaaaactaa a	aaatcgtcag	cacagagtat	gtgtaaaaat	ctgtaataca	1920

aatttttaaa ctgatgcttc attttgctac aaaataattt ggagtaaatg tttgatatga	1980
tttatttatg aaacctaatg aagcagaatt aaatactgta ttaaaataag ttcgctgtct	2040
tt	2042
<210> 167 <211> 1858 <212> DNA <213> Homo sapiens	
<400> 167 gcggatcctc acacgactgt gatccgattc tttccagcgg cttctgcaac caagcgggtc	60
ttacccccgg tcctccgcgt ctccagtcct cgcacctgga accccaacgt ccccgagagt	120
ccccgaatcc ccgctcccag gctacctaag aggatcagcg gtgctccgac ggccggggca	180
gccctgatgc tctgcgccgc caccgccgtg ctactgacgg ctcagggcgg acccgtgcag	240
tocaagtogo ogogotttgo gtootgggao gagatgaatg tootggotoa oggactootg	300
cageteggee aggggetgeg egaacaegeg gagegeacee geagteaget gagegegetg	360
gagcggcgcc tgagcgcgtg cgggtccgcc tgtcagggaa ccgaggggtc caccgacctc	420
ccgttagccc ctgagacgcg ggtggaccct gaggtccttc acacgctgca gacacaactc	480
aaggeteaga acaegaggat eeageaacte tteeacaagg tggeecagea geageggeae	540
ctggagaagc agcacctgcg aattcagcat ctgcaaagcc agtttggcct cctggaccac	600
aagcacctag accatgaggt ggccaagcct gcccgaagaa agaggctgcc cgagatggcc	660
cagocagitg accoggotoa caatgicago ogootgoaco ggotgoocag ggatigocag	720
gagctgttcc aggttgggga gaggcagagt ggactatttg aaatccagcc tcaggggtct	780
ccgccatttt tggtgaactg caagatgacc tcagatggag gctggacatg aattcagagg	840
cgccacgatg gctcagtgga cttcaaccgg ccctgggaag cctacaaggc ggggtttggg	900
gatccccacg gcgagttctg gctgggtctg gagaaggtgc atagcatcat gggggaccgc	960
aagagccgcc tggccgtgca gctgcgggac tgggatggca acgccgagtt gctgcagttc	1020
teegtgeace tgggtggega ggacaeggee tataegetge ageteactge accegtggee	1080
ggccagctgg gcgccaccac cgtcccaccc agcggcctct ccgtaccctt ctccacttgg	1140
gaccaggatc acgacetecg cagggacaag aactgegeea agageetete tggaggetgg	1200
tggtttggca cctgcagcca ttccaacctc aacggccagt acttccgctc catcccacag	1260
cageggeaga agettaagaa gggaatette tggaagaeet ggeggggeeg etactaeeeg	1320
ctgcaggcca ccaccatctt gatccagccc atggcagcag aggcagcctc ctagcgtcct	1380
ggctgggcct ggtcccaggc ccacgaaaga cggtgactct tggctctgcc cgaggatgtg	1440
gccgttccct gcctgggcag gggctccaag gaggggccat ctggaaactt gtggacagag	1500
aagaagacca cgactggaga agcccccttt ctgagtgcag gggggctgca tgcgttgcct	1560
cctgagatcg aggctgcagg atatgctcag actctagagg cgtggaccaa ggggcatgga	1620
getteactee ttgetggeea gggagttggg gaeteagagg gaecaettgg ggccagecag	1680
actggcctca atggcggact cagtcacatt gactgacggg gaccagggct tgtgtgggtc	1740
gagagcgccc tcatggtgct ggtgctgttg tgtgtaggtc ccctggggac acaagcaggc	1800
gccaatggta tctgggcgga gctcacagag ttcttggaat aaaagcaacc tcagaaca	1858
<210> 168 <211> 2148 <212> DNA <213> Homo sapiens	
<400> 168 cageteacec aggeeggte gatgeteaae gggeacaceg ageggaagea gtaaaaeteg	60
ctcctctgta acaagtacct caagttctaa cggcggaaga cctcgctcca gtgaaacaag	120

```
aagttctaaa acttccggac caagctcacc aacgggtagt tctcgatgat tctcctccag
                                                                      180
acgetetege teegggggaa ggagtegaac aageaggeeg tgeteeegga gataaagaac
                                                                      240
tagttctagc ggtcggagga gcggtcgaag ttctgtgagc ggcacgggcg gtcggtgctc
                                                                      300
geogtgoagt gacagttete gttecegete etetegtege tecegttetg acteacetag
                                                                      360
                                                                      420
ggggccgcca actcggccga gctccagaag accgtggggg aggacataac cgggttcaac
                                                                      480
atggggaacg tgccgaccct ctcgttcttc cagaacacga tggccaccct cgtgcgggtg
                                                                      540
eggeagacet egaceaceca gaegetetgt egggagatge tecacaegtg gaaceggatt
                                                                      600
tegeteeege ggaactteaa caactggaac atgtgatgga agattataet eteggggtgt
                                                                      660
aagaacetee ggattaeeet etggaagaee tgategegge ggtggeegeg gtaetegegg
                                                                      720
atgeaqttcc ggaccacccq gctcccqtgt tggcggtagg agccggcctc gtcgctccgg
ctccagtcgc ggccggagtc gtgacagatg ctccggccgc ggtactaaaa caagctcctc
                                                                      780
                                                                      840
gacctccggt actcgtgttg gcggattcac tacccgccga cctcgtagcg gtcgaacttc
ttcaaccggc agatgaagtc gtgacggtcg atgaagaaga ccgtgtacta gaacataaag
                                                                      900
tcqtagaagt ggaaggagaa cacccggaag tcgtggaccc cgtaacggaa gcggaagcgg
                                                                      960
                                                                     1020
accttcaagg cctggctcct cctcaagcac atataatcgc ggtcgtggaa gtcgaactaa
accgagetee egeegaceae egtgtegtte eggtegtega actggtegtg atggaeeeag
                                                                     1080
togaccacco totogaactt ogcootcaag aaggtgttot actaacggga ggagaaggag
                                                                     1140
cggaagcgga accacctcga gaccgtgcag atgtacaaca agctcgtgct cataaaggtg
                                                                    1200
                                                                     1260
gagtogacco tottoatact cataatatgt cagaaccoga agoggtgttt cgccatatgg
atgtcgatgg gggaggtggg gctctaatac aacaacgtga agatgcagct ctagatttcg
                                                                     1320
                                                                     1380
aaggaggccg ggcggaacat aaagtgggtg ctcgagaacc cgccggtgaa cattgggtgg
gggatgtcgc tcttcctccc gctcccgctc cgggggtcga cctgttaaga gctctcgtaa
                                                                     1440
                                                                     1500
tggaccggga aggggaccga gccgattcac tcgatgaccg actcgaccta ggagatgaag
tegaagaeca tagggtgtat ttaaaagete acceteggge ageaggagaa eegggeegee
                                                                     1560
                                                                     1620
tgatcgtaca cggtgctcat ttcggccctc aagatgctca taatgaccac cgtgtgtgcc
                                                                     1680
aacgtgccgt cgtgttaaca ggaggacggg gggctcatgc tcgtggcccc gccgaactaa
                                                                     1740
atggagtgtt cgatactccg ggacaagacc atggagaact gaatggggta atcggggacc
                                                                     1800
acctegaagg ggeeggtgac eeegtaegtg eegeagetet gatgattega eetetagatt
ttcqaqtcqq ccatqtcqqa qqccattatq aaqgccacca agaagtcggg ggaggccgcc
                                                                     1860
cggtgagaga ccgtgtgaaa gctccagaag cagaccatac tctcgccgtt ccagcagtaa
                                                                     1920
                                                                     1980
gtggtggtga tgtgatcgca ccaggggtcg tgaccgtgaa actggtcgcg gctctcgtcg
caggagtege teeteggggt gacegtgete acgtggeteg actaceggaa getecaetga
                                                                     2040
                                                                     2100
ctctcggggt tcaagaaggg gcggaactgt tgagcctgtt gtgcctcgaa ctactactgg
                                                                     2148
accetettet ggaactacgg gtegeagatg ataaacatgg tgaactte
<210>
       169
<211>
       22
<212>
       DNA
      Artificial Sequence
<220>
<223> Synthetic
<400> 169
                                                                       22
agtaatgcag tccaaagaga cg
<210>
      170
<211>
       23
<212>
      DNA
      Artificial Sequence
<213>
```

```
<220>
<223> Synthetic
<400> 170
aaagtctagt ggttcgatca tca
                                                                            23
       171
<210>
<211>
       PRT
       Artificial Sequence
<220>
<223> Synthetic
<400> 171
Ser Asn Ala Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val
Gln Arg Leu Gln Val Leu Glu Asn Asp Met Glu Asn Asn Thr Gln Trp 20 30
Leu Met Lys Leu Glu Asn Asp Ser Gln Asp Asn Met Lys Lys Glu Met 35 45
Val Glu Asp Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Asp 50 60
Glu Asp Gly Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys 65 70 75 80
Leu Thr Asp Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu Glu
85
90
95
Leu Gl<br/>n Leu Glu His Ser Leu Ser Thr As<br/>n Lys Leu Glu Lys Gl<br/>n 100 $100\,
Asp Leu Asp Gln Thr Ser Glu
115
<210>
<212>
       PRT
<213>
       Artificial Sequence
<220>
<223> Synthetic
<400> 172
Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu Gln Val Leu Glu Asn Asp
Met Glu Asn Asn Thr Gln Trp Leu Met Lys Leu Glu Asn Asp Ser Gln 20 30
Asp Asn Met Lys Lys Glu Met Val Glu Asp Gln Gln Asn Ala Val Gln 35 40 45
Asn Gln Thr Ala Val Met Asp Glu Asp Gly Thr Asn Leu Leu Asn Gln 50 60
Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp Val Glu Ala Gln Val Ser 70 75 80
Asn Ala Thr Thr Arg Leu Glu Leu Gln Leu Leu Glu His Ser Leu Ser 85 95
Thr Asn Lys Leu Glu Lys Gln Asp Leu Asp Gln Thr Ser Glu 100 105
<210>
       173
<212>
       DNA
       Artificial Sequence
<220>
<223> Synthetic
                                                                             60
ctogagtatg acgatagcgt acagagactg caggttettg agaatataat ggaaaacaac
acgcaatggc tcatgaaatt agagaatatc tcacaggaca atatgaaaaa ggaaatggta
                                                                            120
```

240

300

360

420

480

540

660

720

780

840

900

960 981

```
gaaatccaac aaaatgctgt tcaaaaccag acagcagtca tgattgagat aggaacaaac
cttttaaatc aaacagcaga acagactaga aaattgaccg atgtggaagc gcaggtgtct
aacgccacca ctagattgga actacaatta ttagagcatt ccttaagtac aaacaagcta
gaaaagcaga ttctggatca aacgtcggag cccttcagag attgtgcaga tgtctatcaa
gctgggttta acaagagtgg gatttatacg atttacatta acaatatgcc aggcccaaag
aaaqttttct qtaacatgga cgtaaacggt ggaggttgga ccgtgatcca gcaccgggag
gacggatctc tggattttca aagaggatgg aaagagtaca aaatgggttt cgggaaccct
tcgggggagt attggcttgg taatgaattc atatttgcaa taacgagtca gagacaatac
atgttgagga tagagttaat ggactgggaa gggaatagag cgtatagcca gtatgataga
ttccatatag gtaatgaaaa gcaaaattac cgtttatact tgaaaggaca tactggaaca
gcaggcaagc aatcaagttt aatactgcac ggtgcggatt tcagtactaa ggacgccgac
aacgataatt gcatgtgcaa gtgcgctctc atgttaacag gcggatggtg gttcgatgcc
tgtggaccgt ccaatctaaa cggcatgttt tacaccgctg gccagaatca cggcaaactt
aacgggatca aatggcatta ttttaaattt ccagcctatg cgctcgaagc acgacgcatg
atgatcgaac cactagactt t
<210>
       174
<212>
       PPT
       Homo sapiens
<220>
       MISC FEATURE
<221>
<222>
       (269)..(272)
"Xaa" may be any amino acid.
<223>
<400> 174
Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala
Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys
20 25 30
Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro
35 40 45
Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala
50 60
Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu
Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys
85 90 95
Leu Glu Asn Ile Ser Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile 100 105 110
Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly
115 120 125
Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp
130 135 140
Val Glu Ala Gln Val Ser Asn Ala Thr Thr Arg Leu Glu Leu Gln Leu
145 150 155 160
Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp
165 170 175
Gln Thr Ser Glu Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu
180 185 190
Lys Lys Val Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser 195 200 205
```

Ile Lys Glu Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn 210 220

 Ser 225
 Ile
 Ile
 Glu
 Glu
 Leu 230
 Glu
 Lys
 Lys
 Ile
 Val 235
 Thr
 Ala
 Thr
 Val 240

 Asn
 Ser
 Val Leu
 Leu Gln
 Lys
 Gln
 Gln
 His Asp
 Leu Met
 Glu
 Thr
 Val Asn
 250
 Leu Met
 Glu
 Thr
 Asn
 250
 Leu Met
 Glu
 Thr
 Val 255
 Asn
 Cys
 Lys
 Xaa
 Xaa