Correct

Quiz, 10 questions

~	Congra	atulations! You passed!	Next Item	
	~	1/1 points		
		1. Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?		
	0	$a^{[3]\{7\}(8)}$		
	0	$a^{[3]\{8\}(7)}$		
	Corr	ect		
	0	$a^{[8]\{3\}(7)}$		
	0	$a^{[8]\{7\}(3)}$		
	~	1 / 1 points		
	2. Which agree	of these statements about mini-batch gradient descen with?	t do you	
	0	You should implement mini-batch gradient descend without an explicit for-loop over different mini-batch that the algorithm processes all mini-batches at time (vectorization).	itches, so	
	0	One iteration of mini-batch gradient descent (compute single mini-batch) is faster than one iteration of batch descent.	_	

Optimization algorithms one epoch (one pass through the training set) using

0/10 points (100%)

Optimizations	off digoritifies 1 using batch gradient descent.
	1/1 points
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
	Un-selected is correct
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
	Un-selected is correct
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
	Correct
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
	Correct
	1./1

points

Optimization algorithms

Quiz, 10 questions

10/10 points (100%)

Which of the following do you agree with?

0	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
0	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
0	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
0	If you're using mini-batch gradient descent, this looks

acceptable. But if you're using batch gradient descent,

Correct

1/1 points

something is wrong.

Optimization algorithms

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

10/10 points (100%)

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igcolum_2=10$$
 , $v_2^{corrected}=10$

$$oldsymbol{O}$$
 $v_2=7.5$, $v_2^{corrected}=7.5$

$$oldsymbol{O} \quad v_2 = 10$$
 , $v_2^{corrected} = 7.5$

$$oldsymbol{O}$$
 $v_2=7.5$, $v_2^{corrected}=10$

Correct

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

Correct

$$\bigcap \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$oldsymbol{lpha} = rac{1}{1+2*t}\,lpha_0$$

$$\bigcirc \quad \alpha = 0.95^t \alpha_0$$

Optimization algorithms

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

 $lue{lue{\Box}}$ Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

 $lue{}$ Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

lacksquare Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- O (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

Optimizations Quiz, 10 questions	9. Suppose batch gradient descent in a deep network is taking excessively large \mathbf{S} and \mathbf{S} and \mathbf{S} of the parameters that achieves a small value for the \mathbf{S} cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
	Try using Adam Correct
	\square Try tuning the learning rate α
	Try better random initialization for the weights

Try initializing all the weights to zero

Try mini-batch gradient descent

Which of the following statements about Adam is False?

The learning rate hyperparameter α in Adam usually needs to

Adam combines the advantages of RMSProp and momentum

Correct

Correct

10.

Un-selected is correct

1/1 points

be tuned.

We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)

Optimization algorithms

Quiz, 10 questions

Adam should be used with batch gradient computations, not with mini-batches.

Correct