# Guided Discussion: Intro To Topology

No Knot Theory! That's for sure

Walter Johnson Math Team

I apologize, there's still some geometry that is interesting before topology comes into play! But it leads right into it.

- We know what regular polygons are
- Equal length sides, equal angles.



**Regular Polygons** have equal side lengths and equal angles.

**Not** Polyhedrons:



Polyhedrons:

- A polyhedron is a loosely defined object in geometry. It is a 3 dimensional solid which is typically convex.
- Also defined so that if one were to fill it with water, it would only have to be filled once.





**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

- The definition for a polyhedron was more implied historically, with rigorous definitions hard to pinpoint because exceptions were often found.
- But certain attributes of what mathematicians typically thought of polyhedrons because loosely associated with them over time.

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

**Tetrahedron** has 4 equilateral triangles as faces

**Icosahedron** has 20 regular pentagons as faces

- A Regular Polyhedron is a polyhedron which has faces which are all congruent regular polygons.
- There are only 5



**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

A Regular Polyhedron is a polyhedron which has congruent regular polygonal faces.







(4) Dodecahedron (12 faces)

 Historically, these objects were heavily studied, through famous mathematicians such as Pythagoras, Plato, Kepler, Euclid, and Euler.

 These objects were idolized by mathematicians, making a variety of false theories about the universe stemming from these objects.

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.



- Plato believed the "elements" were constructed of these 4 regular polyhedrons, with the universe as the dodecahedron.
- This was widely accepted until the "Skeptical Chemist" in 1661 and the modern theory of chemistry.





- Kepler constructed a diagram of the universe revolving around these regular polyhedrons
- He tried to justify them with actual measurements of the planet's paths in the sky but eventually gave up pushing this theory.

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A Regular Polyhedron is a polyhedron which has congruent regular polygonal faces.







(4) Dodecahedron (12 faces)

 But real phenomena occurred with regular polyhedrons as well

 What do we notice about the number of vertices, edges, and

faces of these figures?

| Name                | Image | Vertices  V | Edges<br>E | Face: |
|---------------------|-------|-------------|------------|-------|
| <u>Tetrahedron</u>  |       | 4           | 6          | 4     |
| Hexahedron or cube  |       | 8           | 12         | 6     |
| <u>Octahedron</u>   |       | 6           | 12         | 8     |
| <u>Dodecahedron</u> |       | 20          | 30         | 12    |
| <u>Icosahedron</u>  |       | 12          | 30         | 20    |

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.



• But real phenomena occurred with regular polyhedrons as well

• What do we notice about the number of vertices, edges, and

faces of these figures?

• There is symmetry!

| Name                             | Image | Vertices<br>V | Edges<br>E | Faces |
|----------------------------------|-------|---------------|------------|-------|
| <u>Tetrahedron</u>               |       | 4             | 6          | 4     |
| <u>Hexahedron</u> or <u>cube</u> |       | 8             | 12         | 6     |
| <u>Octahedron</u>                |       | 6             | 12         | 8     |
| <u>Dodecahedron</u>              |       | 20            | 30         | 12    |
| <u>Icosahedron</u>               |       | 12            | 30         | 20    |

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.



• This symmetry explains why the regular polyhedrons can fit inside their pairs.

|   |                                  |       | Vertices | Edges | Faces |                                                                                        |                                                 |
|---|----------------------------------|-------|----------|-------|-------|----------------------------------------------------------------------------------------|-------------------------------------------------|
|   | Name                             | Image | V        | E     | F     |                                                                                        |                                                 |
| / | <u>Tetrahedron</u>               |       | 4        | 6     | 4     |                                                                                        |                                                 |
|   | <u>Hexahedron</u> or <u>cube</u> |       | 8        | 12    | 6     | Tetrahedron frame with Tetrahedron dual inside  Cube frame with Octahedron dual inside |                                                 |
|   | Octahedron                       |       | 6        | 12    | 8     |                                                                                        |                                                 |
|   | <u>Dodecahedron</u>              |       | 20       | 30    | 12    |                                                                                        |                                                 |
|   | <u>Icosahedron</u>               |       | 12       | 30    | 20    | Icosahedron frame with<br>Dodecahedron dual inside                                     | Dodecahedron frame with Icosahedron dual inside |

#### **Guided Discussion:** Euler's Number

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

A Regular Polyhedron is a polyhedron which has congruent regular polygonal faces.











(4) Dodecahedron (12 faces)

 Euler made a major discovery with polyhedrons, by looking at them in a context no one had ever done before, by acknowledging that they had edges.

 With this new eye of looking at polyhedrons, he came to the now widely known Euler's Formula

#### **Guided Discussion:** Euler's Number

$$V-E+F=2$$

Probably not the formula you were

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

A Regular Polyhedron is a polyhedron which has congruent regular polygonal faces.







(4) Dodecahedron (12 faces)

expecting, right?

- This relates the number of vertices, edges, and faces of any polyhedron.
- It's fascinating. And crazy.
- We're now going to count some

#### Guided Discussion: Euler's Number



**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.



- V-E+F=2
- Keep in mind, just because we are testing them for the regular polyhedrons, this formula works for all polyhedrons
- We can also imagine this as a projection onto the 2d plane, and a description from there

#### Guided Discussion: Euler's Formula

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once. No holes.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

$$V - E + F = 2$$

- We can also imagine this as a projection onto the 2d plane, and a description from there
- Counting the outside as a face, we see this formula holds.



#### Guided Discussion: Euler's Formula

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- The number 2 in the Euler formula only holds for Polyhedrons, which do not have holes.
- This includes objects such as the sphere.
- Although we cannot count points and edges and faces on a sphere, we can say that the sphere approximates and has the same topology as a polyhedron, and thus has the same Euler Number

#### Guided Discussion: Euler's Formula

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

• Although we cannot count points and edges and faces on a sphere, we can say that the sphere approximates and has the same topology as a polyhedron, and thus has the same **Euler Number** 



**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- Don't take this idea of deformation for granted!
- Remember, Topology relies on the idea of smooth deformations. But not all deformations are smooth.



**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

 So we see the **Euler Number** for all objects topologically equivalent to the sphere have an Euler Number of 2. Meaning

$$V - E + F = 2$$

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- Well what about objects which do have holes?
- What about 3 dimensional objects that aren't spheres?
- How do we find their Euler Number?



**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

Euler's Number: V - E + F

- We can find rigid objects which are topologically equivalent.
- Here we see a torus partitioned into faces, edges, and points.
- Counting the relation, what is this figure's Euler Number?



**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- We can find rigid objects which are topologically equivalent.
- Here we see a torus partitioned into faces, edges, and points.
- Counting the relation, what is this figure's Euler Number?
- 2
- What do you think the Euler Number will be for this figure?

| Name                              | Image   | Euler characteristic |  |
|-----------------------------------|---------|----------------------|--|
| Interval                          | • • • • | 1                    |  |
| Circle                            |         | 0                    |  |
| Disk                              |         | 1                    |  |
| Sphere                            |         | 2                    |  |
| Torus<br>(Product of two circles) |         | 0                    |  |
| Double torus                      | 8       | -2                   |  |
| Triple torus                      | 8       | -4                   |  |

- What do you think the Euler Number will be for this figure?
- -2
- We see this relation continues for objects with successive numbers of holes.

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- Scroll back a bit...
- We are saying there are only 5 regular polyhedrons. How can we prove that?

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- Scroll back a bit...
- We are saying there are only 5 regular polyhedrons. How can we prove that?
- Were going to do that with Euler's Theorem.

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

• Given Euler's Formula, we look at what would define a regular polyhedron. So we start with

$$V - E + F = 2$$

 Because we're dealing with a regular polyhedron, we're looking at the fact that each face has the same number of edges. Call this n

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

• Given Euler's Formula, we look at what would define a regular polyhedron. So we start with

$$V - E + F = 2$$

 Because we're dealing with a regular polyhedron, we're looking at the fact that each face has the same number of edges. Call this n

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

- Because we're dealing with a regular polyhedron, we're looking at the fact that each face has the same number of edges. Call this n
- We see that  $n \geq 3$
- We also see that the number of edges meeting at a vertex, let's call this m, must also be  $m \ge 3$
- And sense each edge is shared by two faces on the polyhedron, we have

$$E = \frac{1}{2}Fn$$

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

 And sense each face contributes n vertices, and each vertex meet at m faces, we have

$$V = \frac{Fn}{m}$$

Plugging these into Euler's formula we find the following

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

 Plugging these into Euler's formula we find the following

$$V-E+F=2$$

$$\frac{Fn}{m} - \frac{Fn}{2} + F = 2$$

$$F\left(\frac{n}{m} - \frac{n}{2} + 1\right) = 2$$

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

$$F\left(\frac{n}{m} - \frac{n}{2} + 1\right) = 2$$

$$F\left(\frac{2n-mn+2m}{2m}\right)=2$$

$$F = \frac{4m}{2n - mn + 2m}$$

And we know that 4m and F have to be positive

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

$$F = \frac{4m}{2n - mn + 2m}$$

And we know that 4m and F must be positive, so

$$2n - mn + 2m > 0$$

And we see the only satisfying pairs of integers are

2n - mn + 2m > 0

**Regular Polygons** have equal side lengths and equal angles.

A **Polyhedron** is a loosely defined object in geometry. It is a convex 3-dimensional object in geometry. If needed to fill with water, would only have to be filled once.

A **Regular Polyhedron** is a polyhedron which has congruent regular polygonal faces.

**Euler's Formula:** V - E + F = 2 for polyhedrons.

And we see the only satisfying pairs

of integers are

| Name                | Image | Vertices V | Edges<br>E | Faces |
|---------------------|-------|------------|------------|-------|
| <u>Tetrahedron</u>  |       | 4          | 6          | 4     |
| Hexahedron or cube  |       | 8          | 12         | 6     |
| <u>Octahedron</u>   |       | 6          | 12         | 8     |
| <u>Dodecahedron</u> |       | 20         | 30         | 12    |
| <u>Icosahedron</u>  |       | 12         | 30         | 20    |