An Operator-Algebraic Perspective on Entropy Flow in Spin Networks

Matthew Sandoz & Collaborators

August 2, 2025

1 Introduction

The combinatorial "bridge-monotonicity" and "entropy-monotonicity" theorems established in [?, ?] show that inserting a spin- j_b bridge across a cut γ increases the boundary entropy by

$$\Delta S = \ln(2j_b + 1).$$

We recast those results in the language of finite von Neumann algebras. The reformulation exposes links to Jones index theory and modular flows, hinting at a uniqueness theorem for the emergent large-scale operator algebra of the universe.

2 Boundary von Neumann Algebras

Definition 2.1 (Edge algebra). For a cut γ whose intersected edges carry spins $\{j_e\}_{e \in \gamma}$, define the edge algebra

$$\mathcal{A}_{\gamma} := \bigotimes_{e \in \gamma} \operatorname{End}(V_{j_e}).$$

It is a finite-dimensional C*-algebra with the normalised trace tr.

Definition 2.2 (Gauge-invariant algebra). The diagonal SU(2) action u^{\otimes} on \mathcal{A}_{γ} yields the boundary algebra

 $\mathcal{N}_{\gamma} := \mathcal{A}_{\gamma}^{\mathrm{SU}(2)} = \{ X \in \mathcal{A}_{\gamma} \mid u^{\otimes} X u^{\otimes *} = X \ \forall u \in \mathrm{SU}(2) \}.$

3 Relational Entropy and Modular Hamiltonian

Definition 3.1 (Relational state and modular generator). Let $P_{\gamma} \in \mathcal{N}_{\gamma}$ project onto the singlet subspace and set

$$\rho_{\gamma} := \frac{P_{\gamma}}{\operatorname{tr} P_{\gamma}}, \qquad K_{\gamma} := -\ln \rho_{\gamma}.$$

Then $S_{\gamma} = \ln \operatorname{tr} P_{\gamma}$ reproduces the combinatorial count, and K_{γ} generates the Tomita-Takesaki flow on $(\mathcal{N}_{\gamma}, \rho_{\gamma})$.

Remark 3.1 (Parity obstruction). If the cut has odd total spin, $\operatorname{tr} P_{\gamma} = 0$ and ρ_{γ} is undefined. The operator-algebraic framework below therefore assumes $d_0 := \operatorname{tr} P_{\gamma} > 0$; extensions to odd-parity cuts require the parity-flipping moves mentioned in the Outlook.

4 Bridge Insertion as an Algebra Inclusion

Proposition 4.1 (Jones index of a bridge). Inserting a vertex-disjoint bridge of spin j_b yields

$$\iota_{j_b}: \mathcal{N}_{\gamma} \hookrightarrow \mathcal{N}_{\gamma'} \quad with \quad [\mathcal{N}_{\gamma'}: \mathcal{N}_{\gamma}] = 2j_b + 1.$$

Sketch. Write $V_{j_b}: V_{j_b} \otimes V_{j_b} \to \bigoplus_{\ell=0}^{2j_b} V_{\ell}$ and define

$$P_{\gamma'} = (P_{\gamma} \otimes \mathbf{1}_{j_b}^{\otimes 2}) V_{j_b}^* \prod V_{j_b},$$

where Π projects onto the $\ell = 0$ singlet component of $\bigoplus_{\ell=0}^{2j_b} V_{\ell}$. Tracing gives $\operatorname{tr} P_{\gamma'} = (2j_b+1)\operatorname{tr} P_{\gamma}$, so $\Delta S = \ln(2j_b+1)$, which equals the Jones index of the inclusion.

Theorem 4.1 (Bridge-monotonicity \Leftrightarrow index additivity). For any sequence $\{j_b^{(i)}\}_{i=1}^n$ of disjoint bridges,

$$S_{\gamma_n} - S_{\gamma_0} = \sum_{i=1}^n \ln(2j_b^{(i)} + 1) = \sum_{i=1}^n \ln[\mathcal{N}_i : \mathcal{N}_{i-1}]$$
(4.1)

Remark 4.1 (Entropy vs. index additivity). Equation (??) does more than tally logarithms: it unifies an information-theoretic quantity (boundary entropy) with a subfactor-theoretic invariant (Jones index), inviting cross-fertilisation between the two fields.

5 Quantum-Group Extension

Replacing Rep SU(2) by Rep SU(2)_k truncates the index to

$$[\mathcal{N}_{\gamma'}: \mathcal{N}_{\gamma}]_k = \min(2j_b + 1, k - 2j_b + 1),$$

saturating at $S_{\text{max}} = \ln(k+2)$, as in [?].

6 Admissible Local Moves

Definition 6.1 (Admissible moves). The rewrite system consists of the four local moves of ??:

- I. Bridge insertion add a vertex-disjoint edge of spin j_b across the cut.
- II. $Bridge\ removal inverse\ of\ I.$
- III. Parity-flipping contraction contract an odd-spin boundary edge, flipping total parity.
- IV. Parity-flipping expansion inverse of III.

7 Uniqueness Conjecture

Conjecture 7.1 (Uniqueness of the inductive-limit factor). Let $\{\mathcal{N}_{\gamma}\}$ be the directed system generated from a finite seed cut by all moves in Definition ??. Assume (i) the move graph is acyclic and (ii) indices of successive inclusions stay bounded. Then the inductive-limit algebra

$$\mathcal{N}_{\infty} := \underline{\lim} \, \mathcal{N}_{\gamma}$$

is *-isomorphic to the hyperfinite type II_1 factor \mathcal{R} .

8 Outlook

The operator-algebraic frame opens the door to modular theory, planar algebras and quantum-information monotones. A key next step is to recast the Type III/IV moves as *Morita equivalences*—bimodules between boundary algebras—so that parity changes integrate seamlessly into subfactor bimodule formalism. Other directions: (i) a full 9j analysis of linked bridges; (ii) categorical extensions to arbitrary fusion categories; (iii) numerical tests of modular-flow locality.

References

- [1] M. Sandoz, Bridge-Monotonicity in Spin Networks, 2025.
- [2] M. Sandoz, Entropy Flow in Spin Networks, 2025.