Bio334

Phylogenetic reconstruction Part I: Distance-based methods

Janko Tackmann & Lukas Malfertheiner For questions, feel free to contact us on Slack or via:

> <u>janko.tackmann@imls.uzh.ch</u> or <u>Lukas.malfertheiner@uzh.ch</u>

Complexity

Complexity

$$\binom{n}{2} = \frac{n!}{2! (n-2)!} = \frac{n (n-1)}{2} \sim O(n^2)$$

Time: 1000 proteins -> 1 s

10.000 proteins -> 100 s

100.000 proteins -> 10.000s (~ 3 hours)

Shortcomings of naïve Jaccard

- Shortcomings of naïve Jaccard
 - All amino acid transitions have equal probability:
 unrealistic
 - Use explicit substitution matrices (BLOSUM, PAM)

PAM Substitution Matrix

- Shortcomings of naïve Jaccard
 - All amino acid transitions have equal probability:
 unrealistic
 - Use explicit substitution matrices (BLOSUM, PAM)
 - Dependencies between neighboring sites (e.g. indels) are not considered
 - Smaller gap penalties, explicit modeling

AGTG-----ACTATAAT---CG---GAGGACAG-ATTCTGT---CCTATAAT---CG---GAGAAAAGCC
AGTCTGT---ACTATAATGTTGG---GAGGAAAAGC
AGTCCGTTGC--TATAAT---GG---GAGGAAAACC
AATCTGT---AGTATAAT---GGTGTGAGGAAAACC

Nucleotides vs Amino acids

- Nucleotides vs Amino acids
 - Nucleotides
 - High resolution: small differences can be detected
 - More neutrally evolving regions: less biased similarity estimates
 - Distinction between synonymous and non-synonymous mutations

- Nucleotides vs Amino acids
 - Nucleotides
 - High resolution: small differences can be detected
 - More neutrally evolving regions: less biased similarity estimates
 - Distinction between synonymous and non-synonymous mutations
 - Amino acids
 - Stable over longer evolutionary time frames, used to address questions on non-recent evolution

	Q	Α	В	С	D	
Q	0	0.08	0.36	0.36	0.38	
Α	0.08	0	0.32	0.34	0.36	
В	0.36	0.32	0	0.32	0.26	
С	0.36	0.34	0.32	0	0.22	
D	0.38	0.36	0.26	0.22	0	
	QA	В	С	D		
QA	0					
В	0.34					
С	0.35	0.32	0	0.22		
D	0.37	0.26	0.22	0		
	QA	В	CD			
QA	0					
В	0.34		0.29			
CD	0.36					
	QA	BCD				
QA		0.35333333				
BCD	0.35333333	0				

Fusobacterium necrophorum subsp. funduliforme B35

Fusobacterium necrophorum subsp. funduliforme B35

Genus Species Subspecies Type strain

$$Q(i,j) = \ (n-2)d(i,j) - \sum_{k=1}^n d(i,k) - \sum_{k=1}^n d(j,k)$$