

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

Resolución de algunos ejercicios pertenecientes a la Práctica 2

Un rectángulo tiene un perímetro de 20m. Expresar el área del rectángulo como función de la longitud de uno de sus lados.

Sea ABCD un cuadrado de lados AB = x y BC = y.

Sabemos que el perímetro de ABCD es $2x + 2y = 20 \Rightarrow y = \frac{20 - 2x}{2} = 10 - x$ (1) Además conocemos cómo calcular el área de un rectángulo, que la llamaremos a, por lo que tenemos:

$$a = x \cdot y$$
 (2)

Luego, reemplazando (1) en (2) resulta que:

$$a = x \cdot y = x \cdot (10 - x) = 10x - x^2$$

Observemos que x representa la medida de un lado, es decir, x>0 Por otro lado, a(x) es la función que representa el área de ABCD según la medida del lado x, entonces a(x)>0 Ahora determinemos el dominio de la función a(x)

$$a(x) > 0 \Leftrightarrow x(10-x) > 0 \Leftrightarrow x > 0 \land 10-x > 0 \Leftrightarrow x > 0 \land x < 10$$

Por lo tanto,

$$Dom(a) = (0, 10)$$

Describir el dominio y recorrido de las siguientes funciones. Calcular el valor de la función en los puntos indicados en cada caso:

c.
$$q(x) = \begin{cases} 2x + 1 & -2 \le x \le 0 \\ 3 & 0 < x \le 3 \end{cases}$$

$$x = -1, x = 0, x = 2$$

Para determinar el dominio debemos tener en cuenta los intervalos en los cuales la función q está definida, es decir, q(x) = 2x + 1 si $-2 \le x \le 0$ y q(x) = 3 si $0 < x \le 3$ Esto nos indica que la función q(x) está definida en $[-2,0] \cup (0,3] = [-2,3]$. Por lo tanto,

$$Dom(q) = [-2, 3]$$

Previamente a determinar el recorrido de la función, calculemos los valores que nos piden. Recordemos que vamos a poder calcular las imágenes de los distintos valores de x, si es que dichos valores de estén en el dominio. En nuestro caso, -1, 0 y 2 pertenecen al dominio de q, por lo tanto vamos a poder calcular q(-1), q(0) y q(2)

$$* -1 \in [-2, 0] \Rightarrow q(-1) = 2 \cdot (-1) + 1 = -1$$

$$* 0 \in [-2, 0] \Rightarrow q(-1) = 2 \cdot 0 + 1 = 1$$

$$* 2 \in (0,3] \Rightarrow q(-1) = 2 \cdot 2 + 1 = 3$$

Ahora vamos a determinar el recorrido de q. Para ello, realicemos la gráfica de la función.

- * En el intervalo [-2,0], la función coincide con la recta y=2x+1 y, aprovechando lo que hicimos antes, conocemos dos puntos de la recta que son (-1, -1) y (0, 1).
- * En el intervalo (0,3], la función coincide con la función contante f(x)=3

Por lo tanto, la gráfica de q es:

Entonces, a partir de la gráfica, podemos observar claramente que el recorrido es

$$Rec(g) = [-3, 1] \cup \{3\}.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

a) Para cada una de las funciones $\{f_i: 1 \le i \le 2\}$, hallar el dominio y simplificar la expresión de la ley de cada una de las funciones

$$g_i(h) = \frac{f_i(3+h) - f(3)}{h}, \quad i = 1, 2$$

$$i)f_1(x) = x^2$$

b) Para cada una de las funciones $\{f_i: 1 \le i \le 2\}$ recién definidas, simplificar el valor de la expresión

$$g_i(h) = \frac{f_i(x+h) - f(x)}{h}, \quad i = 1, 2$$

$$i)f_1(x) = x^2$$

Primero determinemos el dominio de f_1 . Como es una función cuadrática cuya ley es $f_1(x) = x^2$, podemos calcular la imagen de cualquier valor que asuma x. Por lo tanto,

$$Dom(f_1) = \mathbb{R}$$

Ahora, veamos cómo es la ley de la función g_1 , a partir de la ley de f_1

$$g_1(h) = \frac{f_1(3+h) - f_1(3)}{h} = \frac{(3+h)^2 - 3^2}{h} (1)$$

Entonces, en claro reconocer que h=0 no pertenece al dominio de g_1 ya que anularía el denominador. Luego, tenemos que

$$Dom(g_1) = \mathbb{R} - \{0\}$$

Ahora simplifiquemos la expresión que nos quedó en (1)

$$g_1(h) = \frac{f_1(3+h) - f_1(3)}{h} = \frac{(3+h)^2 - 3^2}{h} = \frac{3^2 + 2 \cdot 3 \cdot h + h^2 - 3^2}{h} = \frac{6h + h^2}{h}$$

Solo nos resta sacar h como factor común del numerador y cancelarla con la del denominador, es decir

$$g_1(h) = \frac{6h + h^2}{h} = \frac{h(6+h)}{h} = 6+h$$

Por lo tanto, a expresión simplificada de g_1 es

$$q_1(h) = 6 + h$$

Para el ítem b), tenemos que realizar los mismos razonamientos, pero en vez de trabajar con 3 + h y 3 lo haremos con x + h y x. Simplifiquemos,

$$g_1(h) = \frac{f_1(x+h) - f_1(x)}{h} = \frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2 \cdot x \cdot h + h^2 - x^2}{h} = \frac{2xh + h^2}{h}$$

Solo nos resta sacar h como factor común del numerador y cancelarla con la del denominador, es decir

$$g_1(h) = \frac{2xh + h^2}{h} = \frac{h(2x+h)}{h} = 2x + h$$

Por lo tanto, a expresión simplificada de g_1 es

$$q_1(h) = 2x + h$$

Para cada una de las siguientes funciones: Indicar dominio y recorrido, dar una expresión en la cual no intervenga el valor absoluto y representarlas gráficamente.

ii.
$$f_2(x) = |x| + |x - 1|$$
.

 $ilde{N}$ Comencemos con el dominio de la función. Para esto, pensemos a f_2 como suma de dos funciones g(x) = |x| y k(x) = |x-1|. Luego $(g+k)(x) = |x| + |x-1| = f_2(x)$. Por otro lado sabemos que $Dom \ g = \mathbb{R}$, $Dom \ k = \mathbb{R}$ y $Dom \ (g + k) = Dom \ g \cap Dom \ k$. Entonces tenemos que $Dom \ f_2 = Dom \ (g+k) = \mathbb{R} \cap \mathbb{R} = \mathbb{R}.$

Para dar una expresión en la cual no intervenga el valor absoluto, recordemos primero la definición de valor absoluto:

$$|x| = \begin{cases} x & \text{si} \quad x \ge 0 \\ -x & \text{si} \quad x < 0. \end{cases}$$

Entonces, para |x-1| tenemos

$$|x-1| = \left\{ \begin{array}{ccc} x-1 & \text{si} & x-1 \geq 0 \\ -(x-1) & \text{si} & x-1 < 0 \end{array} \right. = \left\{ \begin{array}{ccc} x-1 & \text{si} & x \geq 1 \\ 1-x & \text{si} & x < 1. \end{array} \right.$$

Como cada sumando en la definición de f_2 tiene una definición diferente según el valor de xque estemos considerando, deberemos analizar tres casos:

- Si $x \ge 1$, sabemos que x > 0, entonces $f_2(x) = x + (x 1) = 2x 1$.
- Si x < 1 pero $x \ge 0$, resulta $f_2(x) = x + [-(x-1)] = x x + 1 = 1$.
- Si x < 0, sabemos que x < 1, y en este caso $f_2(x) = (-x) + (1-x) = -x + 1 x = -2x + 1 = -2x + 1$

En resumen, podemos escribir la ley f_2 como

$$f_2(x) = \begin{cases} 2x - 1 & \text{si} & x \ge 1\\ 1 & \text{si} & 0 \le x < 1\\ 1 - 2x & \text{si} & x < 0. \end{cases}$$

Ahora, analicemos analíticamente el recorrido de la función. La idea es tomar x en cada uno de los intervalos en los que está dividido el dominio de f_2 y analizar el intervalo al que pertenece $f_2(x)$.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

$$\bullet 0 \le x < 1 \Leftarrow f_2(x) = 1 \Leftrightarrow f_2(x) \in \{1\}.$$

$$x < 0 \Leftrightarrow 2x < 2 \cdot 0 \Leftrightarrow 2x < 0 \Leftrightarrow -2x > 0 \Leftrightarrow 1 - 2x > 1 \Leftrightarrow f_2(x) > 1 \Leftrightarrow f_2(x) \in (1, +\infty).$$

El recorrido de f_2 es la unión de los intervalos a los cuales pertenece $f_2(x)$ en cada sección del dominio. Entonces $Rec\ f_2=[1,+\infty)\cup\{1\}\cup(1,+\infty)=[1,+\infty)$.

Grafiquemos f_2 :

Observemos que para graficar una recta, alcanza con encontrar dos puntos que pertenezcan a la misma. Es decir que si la gráfica de f_2 coincide con una recta, podemos hallar el valor de f_2 en dos puntos distintos y trazar la recta que pasa por ellos.

Cuando x < 0, la función coincide con la recta y = 1 - 2x.

$$f_2(-1) = 1 - 2(-1) = 1 + 2 = 3,$$

$$f_2(-2) = 1 - 2(-2) = 1 + 4 = 5.$$

Entonces cuando x < 0 la función coincide con la recta que pasa por los puntos (-1,3) y (-2,5).

En el caso que $0 \le x < 1$, la función coincide con la función constante igual a 1.

Cuando $x \ge 1$, la función coincide con la recta y = 2x - 1.

$$f_2(1) = 2 \cdot 1 - 1 = 2 - 1 = 1,$$

$$f_2(2) = 2 \cdot 2 - 1 = 4 - 1 = 3$$

entonces cuando $x \ge 1$, la función coincide con la recta que pasa por los puntos (1,1) y (2,3).

Notemos que en la gráfica se ve claramente que $Rec\ f_2=[1,+\infty).$

Determinar si las siguientes funciones son monótonas, indicando si lo son en forma estricta.

ii.
$$f(x) = \begin{cases} 2x+3, & x < -1, \\ 1, & -1 \le x < 1 \\ x, & x \ge 1 \end{cases}$$

Observemos que la función f(x) esta definida para todo número real, por lo que resulta :

$$Dom \ f = \mathbb{R}.$$

Veamos si es una función monótona, es decir, si es creciente o decreciente en su dominio. Para eso, debemos considerar dos valores reales distintos $x_1,x_2\in\mathbb{R}$, uno menor que otro $(x_1< x_2)$ y analizar el comportamiento de sus imágenes($\xi f(x_1)< f(x_2)$?, $\xi f(x_1)> f(x_2)$?, $\xi f(x_1)\le f(x_2)$? o $\xi f(x_1)\ge f(x_2)$?). Tengamos presente de considerar todos los casos posibles ya que la ley de la función f está definida en partes. A continuación mostramos su resolución:

Sean $x_1, x_2 \in \mathbb{R}$, donde $x_1 < x_2$:

• Si x_1 , $x_2 < -1$:

$$f(x_1) = 2x_1 + 3 < 2x_2 + 3 = f(x_2).$$

- Si $x_1 < -1$ y $-1 \le x_2 \le 1$: $f(x_1) = 2x_1 + 3 < 2(-1) + 3 = -2 + 3 = 1 = f(x_2)$.
- Si $x_1 < -1$ y $x_2 \ge 1$: $f(x_1) = 2x_1 + 3 < 2(-1) + 3 = 1 \le x_2 = f(x_2).$
- Si $-1 \le x_1, x_2 < 1$: $f(x_1) = 1 = f(x_2).$
- Si $-1 \le x_1 \le 1$ y $x_2 \ge 1$: $f(x_1) = 1 \le x_2 = f(x_2)$.
- Si $x_1, x_2 \ge 1$: $f(x_1) = x_1 < x_2 = f(x_2)$.

Por lo tanto se verifica que $f(x_1) \leq f(x_2)$, $\forall x_1, x_2 \in \mathbb{R} / x_1 < x_2$.

Así, resulta que f es una función no decreciente en los \mathbb{R} . No es creciente estrictamente ya que, por ejemplo, en $-1 \le x_1, \ x_2 < 1$ tenemos que $f(x_1) = f(x_2)$.

Determinar si cada una de las siguientes funciones tiene algún tipo de paridad.

i.
$$f_1(x) = 4$$
. ; ii. $f_2(x) = x^2 + x$. ii. $f_3(x) = \frac{x}{x^2 - 1}$.

 $i.\ Dom\ f_1=\mathbb{R},$ el dominio es simétrico respecto al origen de coordenadas. Sea $x\in\mathbb{R},$

$$f_1(-x) = 4 = f_1(x).$$

Por lo tanto, f_1 es una función par.

 $ii.\ Dom\ f_2=\mathbb{R},$ el dominio es simétrico respecto al origen de coordenadas. Sea $x\in\mathbb{R},$

$$f_2(-x) = (-x)^2 + (-x) = x^2 - x$$

 $-f_2(x) = -(x^2 + x) = -x^2 - x$

Resulta que f_2 no es una función par, ni impar pues por ejemplo:

$$f_2(1) = 2 y f_2(-1) = 0$$

Es decir $f_2(1) \neq f_2(-1)$ y $-f_2(1) \neq f_2(-1)$.

 $iii.\ Dom\ f_3=\mathbb{R}-\{-1,1\},$ el dominio es simétrico respecto al origen de coordenadas. Sea $x\in\mathbb{R}-\{-1,1\},$

$$f_3(-x) = \frac{-x}{(-x)^2 - 1} = -\frac{x}{x^2 - 1} = -f_3(x).$$

Por lo tanto, f_3 es una función impar.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

n (S

-a- A partir de la gráfica de la función valor absoluto representar gráficamente las siguientes funciones e indicar sus dominios y recorridos:

$$f_2 \colon [-2,3] \to \mathbb{R}$$
 donde $f_2(x) = 1 - |x|$.

-b- A partir de la gráfica de la función f_2 representar gráficamente las siguientes funciones e indicar sus dominios y recorridos:

ii)
$$f_4(x) = |f_2(x)|$$
.

- -c- Utilizando las gráficas de las funciones $\{f_i: i=1,...,5\}$ obtenidas en a) y b) indicar, para cada una:
 - i) Los conjuntos $A_i = \{x \in \mathbb{R} : f_i(x) = 0\}$ y $B_i = \{x \in \mathbb{R} : 1 < f_i(x) \le 5\}$.
 - ii) Los valores de $k \in \mathbb{R}$ para los cuales la ecuación $f_i(x) = k$ admite exactamente dos soluciones reales.

-a- Para la función f_2 , debemos considerar cuáles son los sucesivos "movimientos" que debemos aplicar a la gráfica de la función valor absoluto para obtener la gráfica de f_2 . Para esto, iremos construyendo funciones auxiliares.

Primero llamemos $g_1(x) = |x|$

Notemos que para calcular $f_2(x)$, primero debemos multiplicar a |x| por (-1), entonces $g_2(x) = -|x|$. Como $g_2(x) = -g_1(x)$, la gráfica de g_2 se obtiene reflejando la gráfica de g_1 respecto del eje x.

Ahora, $f_2(x) = 1 - |x| = -|x| + 1$, entonces consideramos $g_3(x) = -|x| + 1$. Y como $g_3(x) = g_2(x) + 1$, la gráfica de g_3 se obtiene trasladando verticalmente la gráfica de g_2 una unidad hacia arriba.

Observemos que las funciones f_2 y g_3 son distintas. A pesar de que f_2 coincide con g_3 en su dominio, $Dom~g_3=\mathbb{R}$ y $Dom~f_2=[-2,3]$ como indica su definición. Por esto, para obtener la gráfica de f_2 a partir de la de g_3 , debemos restringir el dominio de g_3 al intervalo [-2,3].

Por último, veamos analíticamente el recorrido de f_2 :

 $-2 \leq x \leq 3 \Rightarrow 0 \leq |x| \leq 3 \Leftrightarrow -3 \leq -|x| \leq 0 \Leftrightarrow 1-3 \leq 1-|x| \leq 0+1 \Leftrightarrow -2 \leq 1-|x| \leq 1 \Rightarrow 1-|x| \leq$ $-2 \le f_2(x) \le 1.$

Por lo tanto, $Rec\ f_2 = [-2, 1]$.

-b-
$$f_4(x) = |f_2(x)|$$

Comencemos con la gráfica de f_2 .

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2020

Entonces la gráfica de f_4 coincide con la gráfica de f_2 cuando $f_2(x) \ge 0$ y se refleja respecto del eje x cuando $f_2(x) < 0$.

Además, $Dom f_4 = [-2, 3]$ y $Rec f_4 = [0, 2]$.

-c- i)
$$A_i = \{x \in \mathbb{R} : f_i(x) = 0\}$$
 $B_i = \{x \in \mathbb{R} : 1 < f_i(x) \le 5\}$

Observemos que los conjuntos A_i corresponden a los puntos para los cuales la gráfica interseca al eje x. En la gráfica de f_2 , vemos que los valores de x para los cuales $f_2(x)=0$ son x=-1 y x=1. En la gráfica de f_4 , vemos que $f_4(x)=0$ si x=-1 o x=1. Entonces,

$$A_2 = \{-1, 1\}$$
 $A_4 = \{-1, 1\}$

Consideremos ahora los conjuntos B_i . En palabras, el conjunto B_i es el conjunto de números reales, tales que su imagen por la función f_i está en la banda $1 < y \le 5$.

Podemos ver que la gráfica de f_2 no interseca la banda, mientras que la gráfica de f_4 interseca la banda para los valores $2 < x \le 3$. Resulta, $B_2 = \emptyset$ y $B_4 = (2,3]$.

-c- ii) Valores de $k \in \mathbb{R}$ para los cuales la ecuación $f_i(x) = k$ admite exactamente dos soluciones reales.

La ecuación $f_i(x) = k$ representa la intersección entre la gráfica de f_i y la recta y = k, es decir la recta horizontal con ordenada k. Si queremos hallar los valores de k para los cuales existan exactamente dos soluciones, debemos hallar los valores de k para los cuales la recta interseca a la gráfica en exactamente dos puntos.

En ambas gráficas se dibujaron las rectas correspondientes a los valores $k=\frac{3}{2},\ k=\frac{1}{2},\ k=-\frac{1}{2}$ $k = -\frac{3}{2}$.

En la gráfica de f_2 , podemos ver que la ecuación $f_2(x) = k$ tiene exactamente dos soluciones cuando k está en el intervalo [-1,1).

Considerando ahora la gráfica de f_4 , la única recta que interseca exactamente dos veces a la gráfica de f_4 es el eje x, es decir la recta y=0. Entonces la ecuación tiene exactamente dos soluciones cuando k=0.