#### МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДЕПАРТАМЕНТ ОСВІТИ І НАУКИ ОДЕСЬКОЇ ОБЛАСНОЇ ДЕРЖАВНОЇ АДМІНІСТРАЦІЇ

#### ОДЕСЬКИЙ ОБЛАСНИЙ ІНСТИТУТ УДОСКОНАЛЕННЯ ВЧИТЕЛІВ

# Всеукраїнська Інтернет-олімпіада з фізики І (заочний) тур 2014 рік

9 клас

Завдання виконують учні, які перейшли в 9-й клас. Також дані завдання можуть виконувати учні 7-го та 8-го класів. Роботи учнів, які перейшли в 10-й, 11-й класи не приймаються

**1.** *U*-подібну трубку із змінним діаметром заповнюють водою (див. малюнок). У ліве коліно наливають шар олії висоти *H*. На скільки підніметься рівень води у правому коліні? Густина води  $\rho_{\theta} = 1 \text{ г/см}^3$ , густина олії  $\rho_{M} = 0.8 \text{ г/см}^3$ .

U-образную трубку с переменным диаметром заполняют водой (см. рисунок). В левое колено трубки наливают слой масла высоты H. На сколько поднимется уровень воды в правом колене? Плотность воды  $\rho_{\rm e}=1~{\rm r/cm}^3$ , плотность масла  $\rho_{\rm m}=0.8~{\rm r/cm}^3$ .



**2.** У чайник налито  $V_I=1,5$  л холодної води. Через деякий час після ввімкнення вода закипіла і чайник автоматично відімкнувся. Через  $\tau_I=60$  с він знову був ввімкнений, і вода закипіла , як минуло  $\tau_2=6$  с, після чого чайник вимкнувся. Відразу після цього його ще раз увімкнули, але знявши кришку. Автоматичний вимикач, який спрацьовує під тиском пари, перестав діяти, і вода з чайника почала википати. Через  $\tau_3=240$  с після останнього вмикання виміряли об'єм води, яка залишилася. Виявилося, що він дорівнює  $V_2=1,3$  л. Яким є значення питомої теплоти пароутворення води r? Питома теплоємність води r = 4200 Дж/(кг · K), густина r = 1000 кг/м³, потужність нагрівального елементу r = 2200 Вт. Теплоємністю чайника знехтувати.

В чайник налито  $V_I = 1,5$  л холодной воды. Через некоторое время после включения вода закипела, и чайник автоматически отключился. Через  $\tau_I = 60$  с он был снова включен, и вода закипела по истечении  $\tau_2 = 6$  с, после чего чайник выключился. Сразу после этого его ещё раз включили, но сняв крышку. Автоматический выключатель, срабатывающий под давлением пара, перестал

действовать, и вода из чайника начала выкипать. Через  $\tau_3 = 240$  с после последнего включения измерили объём оставшейся воды. Он оказался равным  $V_2 = 1,3$  л. Каково значение удельной теплоты парообразования воды r? Удельная теплоёмкость воды c = 4200 Дж/(кг · К), плотность  $\rho = 1000$  кг/м³, мощность нагревательного элемента P = 2200 Вт. Теплоёмкостью чайника пренебречь.

**3.** Школяру вручили "чорну скриньку" (прямокутний паралелепіпед з отвором у верхній грані та тонким стрижнем, який стирчить з цього отвору) та дали завдання визначити його вміст. Порухавши уверх-униз тонкий стрижень, школяр вирішив, що стрижень прикріплений до пружини, яка, у свою чергу, прикріплена до дна "чорної скриньки". Вимірявши коефіцієнт жорсткості пружини, він отримав результат  $k = 100 \, \text{H/m}$ . Дійсна схема "чорної скриньки" показана на малюнку.

Всередині знаходяться вода та циліндр з поршнем. До поршня прикріплений тонкий стрижень, який виходить назовні. Чому дорівнює площа S поршня? Тертям та масою поршня можна знехтувати. Густина води  $\rho = 1000$  кг/м³, прискорення вільного падіння g = 10 м/с².

Школьнику вручили "чёрный ящик" (прямоугольный параллелепипед с отверстием в верхней грани и торчащем из этого отверстия



тонком стержне) и дали задание определить его содержимое. Подвигав вверх-вниз тонкий стержень, школьник решил, что стержень прикреплён к пружине, которая, в свою очередь, прикреплена к дну «чёрного ящика». Измерив коэффициент жёсткости пружины, он получил результат k=100 Н/м. Истинная схема «чёрного ящика» показана на рисунке. Внутри находятся вода и цилиндр с поршнем. К поршню прикреплён выходящий наружу тонкий стержень. Чему равна площадь S поршня? Трением и массой поршня можно пренебречь. Плотность воды  $\rho = 1000$  кг/м³, ускорение свободного падения g=10 м/с².

**4.** Скляний паралелепіпед розмірами  $10.0 \, \text{cm} \times 10.0 \, \text{cm} \times 16.0 \, \text{cm}$ , стоячи на своїй меншій грані, виглядає зверху як куб. Знайдіть показник заломлення паралелепіпеда.

Стеклянный параллелепипед  $10.0 \text{ см} \times 10.0 \text{ см} \times 16.0 \text{ см}$ , стоя на своей меньшей грани, выглядит сверху как куб. Определите показатель преломления параллелепипеда.

**5.** Виготовте камеру – обскура та вивчить, як залежить чіткість отриманого зображення від характерних параметрів (наприклад: розміри камери, розмір вхідного отвору). До звіту додайте знімок (світлину) зображення, яке Ви отримали.

Изготовьте камеру – обскура и изучите, как зависит четкость полученного изображения от характерных параметров (например: размеры камеры, размер входного отверстия). К отчету приложите снимок (фотографию) полученного Вами изображения.

#### МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДЕПАРТАМЕНТ ОСВІТИ І НАУКИ ОДЕСЬКОЇ ОБЛАСНОЇ ДЕРЖАВНОЇ АДМІНІСТРАЦІЇ ОДЕСЬКИЙ ОБЛАСНИЙ ІНСТИТУТ УДОСКОНАЛЕННЯ ВЧИТЕЛІВ

Всеукраїнська Інтернет-олімпіада з фізики

I (заочний) тур 2014 рік 10 клас

Завдання виконують учні, які перейшли в 10-й клас. Також дані завдання можуть виконувати учні 7-го, 8-го та 9-го класів. Роботи учнів, які перейшли в 11-й клас не приймаються

1. У чайник налито  $V_I=1,5$  л холодної води. Через деякий час після ввімкнення вода закипіла і чайник автоматично відімкнувся. Через  $\tau_I=60$  с він знову був ввімкнений, і вода закипіла , як минуло  $\tau_2=6$  с, після чого чайник вимкнувся. Відразу після цього його ще раз увімкнули, але знявши кришку. Автоматичний вимикач, який спрацьовує під тиском пари, перестав діяти, і вода з чайника почала википати. Через  $\tau_3=240$  с після останнього вмикання виміряли об'єм води, яка залишилася. Виявилося, що він дорівнює  $V_2=1,3$  л. Яким є значення питомої теплоти пароутворення води r? Питома теплоємність води r значення питомої теплоти пароутворення води r потужність нагрівального елементу r нагрівального чайника знехтувати.

В чайник налито  $V_I=1,5$  л холодной воды. Через некоторое время после включения вода закипела, и чайник автоматически отключился. Через  $\tau_I=60$  с он был снова включен, и вода закипела по истечении  $\tau_2=6$  с, после чего чайник выключился. Сразу после этого его ещё раз включили, но сняв крышку. Автоматический выключатель, срабатывающий под давлением пара, перестал действовать, и вода из чайника начала выкипать. Через  $\tau_3=240$  с после последнего включения измерили объём оставшейся воды. Он оказался равным  $V_2=1,3$  л. Каково значение удельной теплоты парообразования воды r? Удельная теплоёмкость воды c=4200 Дж/(кг · K), плотность  $\rho=1000$  кг/м³, мощность нагревательного элемента  $\rho=2200$  Вт. Теплоёмкостью чайника пренебречь.

**2.** На малюнку зображена схема ділянки кола, яка складається з невідомих опорів. Вам надані амперметр, вольтметр, батарея та з'єднувальні провідники. Виміряйте опір  $\mathbf{R}$ , не розриваючи жодного контакту у схемі.



На рисунке изображен участок

схемы, состоящий из неизвестных сопротивлений. Вам даны амперметр, вольтметр, батарея и соединительные провода. Измерьте сопротивление  $\mathbf{R}$ , не разрывая ни одного контакта в схеме.

**3.** Школяру вручили "чорну скриньку" (прямокутний паралелепіпед з отвором у верхній грані та тонким стрижнем, який стирчить з цього отвору) та дали завдання визначити його вміст. Порухавши уверх-униз тонкий стрижень, школяр вирішив, що стрижень прикріплений до пружини, яка, у свою чергу, прикріплена до дна "чорної скриньки". Вимірявши коефіцієнт жорсткості пружини , він отримав результат  $k=100\,$  Н/м. Дійсна схема "чорної скриньки" показана на малюнку. Всередині знаходяться вода та циліндр з поршнем. До поршня прикріплений тонкий

стрижень, який виходить назовні. Чому дорівнює площа S поршня? Тертям та масою поршня можна знехтувати. Густина води  $\rho = 1000$  кг/м<sup>3</sup>, прискорення вільного падіння g = 10 м/с<sup>2</sup>.

Школьнику вручили "чёрный ящик" (прямоугольный параллелепипед с отверстием в верхней грани и торчащем из этого отверстия тонком стержне) и дали задание определить его содержимое. Подвигав вверх-вниз тонкий



стержень, школьник решил, что стержень прикреплён к пружине, которая, в свою очередь, прикреплена к дну «чёрного ящика». Измерив коэффициент жёсткости пружины, он получил результат k=100 Н/м. Истинная схема «чёрного ящика» показана на рисунке. Внутри находятся вода и цилиндр с поршнем. К поршню прикреплён выходящий наружу тонкий стержень. Чему равна площадь S поршня? Трением и массой поршня можно пренебречь. Плотность воды  $\rho=1000$  кг/м³, ускорение свободного падения g=10 м/с².

**4.** Турист зібрався розпалити багаття з допомогою збільшувального скла. Коли діаметр світлової плями на папері становив  $D_0$ , температура плями була 100°С. Чи зможе турист запалити папір, якщо він зменшить діаметр плями у 2 рази? Температура займання паперу  $T \approx 233$ °С. Відповідь обґрунтуйте.

Турист собрался зажечь костер с помощью увеличительного стекла. Когда диаметр светового пятна на бумаге составлял  $D_0$ , температура пятна была  $100\,$  °С . Удастся ли туристу зажечь бумагу, если он уменьшит диаметр пятна в 2 раза? Температура воспламенения бумаги  $T \approx 233\,$ °С . Ответ обоснуйте.

**5.** Вивчіть та опишіть процес охолодження води у залежності від площі закритої частини її поверхні.

Изучите и опишите процесс охлаждения воды в зависимости от площади закрытой части ее поверхности.

#### МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДЕПАРТАМЕНТ ОСВІТИ І НАУКИ ОДЕСЬКОЇ ОБЛАСНОЇ ДЕРЖАВНОЇ АДМІНІСТРАЦІЇ

#### ОДЕСЬКИЙ ОБЛАСНИЙ ІНСТИТУТ УДОСКОНАЛЕННЯ ВЧИТЕЛІВ

### Всеукраїнська Інтернет-олімпіада з фізики І (заочний) тур 2014 рік

#### 11 клас

## Завдання виконують учні, які перейшли в 11-й клас. Також дані завдання можуть виконувати учні 8-го, 9-го та 10-го класів

**1.** Міномет встановлений біля основи деякої гори під кутом 1,5 радіана до горизонту. Мінометна обслуга веде записи про те, наскільки далеко падають міни в залежності від їх початкової швидкості. Знайдіть за цими даними висоту та примірну форму гори.

Миномет установлен у основания некоторой горы под углом 1.5 радиана к горизонту. Миномётный расчёт ведет записи о том, насколько далеко падают мины в зависимости от их начальной скорости. Определите по этим данным высоту и примерную форму горы.

| $v_{\theta}$ , M/c | <i>l</i> , м |
|--------------------|--------------|
| 10                 | 0,710576     |
| 14                 | 1,61942      |
| 18                 | 2,85057      |
| 22                 | 4,45474      |
| 26                 | 6,48101      |
| 30                 | 8,9838       |
| 34                 | 12,0195      |
| 38                 | 15,6393      |
| 42                 | 19,879       |
| 46                 | 24,7493      |
| 50                 | 30,2305      |
| 54                 | 36,2765      |
| 58                 | 42,8294      |
| 62                 | 49,8405      |
| 66                 | 57,2941      |
| 70                 | 65,2363      |
| 74                 | 73,8201      |
| 78                 | 83,4179      |
| 82                 | 95,0382      |

**2.** Кулю масою 2m кидають вертикально вгору із швидкістю  $v_{\theta}$ . До кулі прив'язана абсолютно жорстка нитка довжиною  $l < v_{\theta} / 2g$ , до другого кінця якої прив'язана куля масою m. Через який час і на якій висоті кулі зіштовхнуться?

Шар массой 2m бросают вертикально вверх со скоростью  $v_{\theta}$ . К шару привязана легкая абсолютно жесткая нить длиной  $v_{\theta} < v_{\theta} / 2g$ , к другому концу которой привязан шар массой m. Через какое время и на какой высоте шары столкнутся?

**3.** Підйомник піднімається та опускається у шахті, глибина якої 400 м за 40 с. Спочатку він розганяється зі сталим прискоренням, а потім з таким самим за модулем прискоренням уповільнюється. На скільки відстане за добу маятниковий годинник підйомника у порівнянні з нерухомим годинником? Підйомник перебуває у русі 5 год щоденно.

Подъемник поднимается или опускается в шахте, глубина которой 400 м за 40 с. Сначала он разгоняется с постоянным ускорением, а затем с тем же по модулю ускорением замедляется. На сколько отстанут за сутки маятниковые часы подъемника по сравнению с неподвижными часами? Подъемник находится в движении в течение 5 ч ежедневно.

**4.** Який мінімальний заряд q необхідно закріпити у нижній точці сферичної порожнини радіуса R, щоб у полі тяжіння невелика кулька маси m і заряду Q знаходилася у положенні стійкої рівноваги.

Какой минимальный заряд q нужно закрепить в нижней точке сферической полости радиуса R, чтобы в поле тяжести небольшой шарик массы m и заряда Q находился в верхней точке полости в положении устойчивого равновесия?

**5.** Вивчіть та опишіть залежність швидкості витікання рідини з високої циліндричної посудини від діаметра отвору у дні циліндра, який зроблено за допомогою швацької голки.

Изучите и опишите зависимость скорости вытекания жидкости из высокого цилиндрического сосуда от диаметра отверстия в дне цилиндра, сделанного с помощью швейной иглы.