Special Topics on Basic EECS I VLSI Devices Lecture 19 - Memory

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

L19 is for memory devices.

- L18 was for the MOS capacitor.
- Due to my business trip (International Memory Workshop),
 - -L19 was recorded.

L20 (May 20) will consider the MOS capacitor, again.

Note that

- To understand this lecture, we must first understand the operation of MOS transistors.
 - However, we are still considering the MOS capacitor... ☺
 - Treat the MOS transistor as a switch controlled by the gate voltage.
 - Its threshold voltage is V_t .

Memory devices

- Three representative memory devices
 - -SRAM
 - -DRAM
 - -NAND
- There are also "new" memory devices.
 - -FeRAM
 - PCRAM
 - -STT-MRAM
 - -ReRAM

Array of memory cells

• $W \times B$ bits

SRAM (Static Random-Access Memory)

For the SRAM device, watch my previous lecture.

-Title: [DIC2023] L25_20231205

-Starting point: 35:05

DRAM (Dynamic Random-Access Memory)

 Robert Dennard, the inventor of DRAM, passed away on April 23, 2024.

Robert Dennard

The inventor of DRAM laid the foundation for modern computing and received the US National Medal of Technology

1T1C

- It is considerably smaller in silicon area than a CMOS SRAM cell.
 - -The cell is in state "1" when there is charge in the capacitor.

Capacitor

Its capacitance is ~ 10 fF nowadays.

Major advancement in DRAM cell innovation (H. Sunami, ICSICT 2008)

WRITE operation

- It is straightforward to write a "0" to a DRAM cell.
 - $-V_{WL}$ is V_{dd} . V_{BLT} is 0 V.
 - -Then, V_{node} is 0 V.
- In writing a "1,"
 - $-V_{WL}$ is boosted to be higher than $V_{dd} + V_t$. V_{BLT} is V_{dd} .
 - -Then, V_{node} can reach V_{dd} .
- After the storage node is fully charged or discharged,
 - The wordline is brought back to its standby voltage. (The transistor is turned off.)

READ operation

- A cross-coupled CMOS sense amplifier
 - -BLT and BLC are precharged to $V_{dd}/2$.

Sense amplifier

- The same boost of the wordline to $V_{WL} > V_{dd} + V_t$ is applied.
 - If a "0" bis it stored in the cell, V_{BLT} is discharged to below $V_{dd}/2$.
 - If a "1" bit is stored in the cell, V_{BLT} is charged to above $V_{dd}/2$.
- ullet After a differential signal is developed between BLT and BLC,
 - -The sense amplifiers is activated.
 - It restores V_{node} . (Refresh)
- Read signal, V_s

$$V_s(C_{cell} + C_{bitline}) = \left(V_{node} - \frac{V_{dd}}{2}\right)C_{cell}$$
 Taur, Eq. (9.11)

Leakage current

- The charge stored in the capacitor leaks away over time.
 - Periodic read and refresh are necessary.
 - Retention time: Time interval between data refreshes
 - A typical worst-case data retention time is about 100 ms.

Thank you!