

Short review of CNN architectures

- CNN Evolution
 - Classification
 - LeNet
 - AlexNet
 - VGG
 - GoogLeNet / Inception arch.
 - ResNet
 - Segmentation
 - FCN
 - U-Net

- What to do when there is little data
 - Augmentation
 - Transfer learning
 - Auto-encoders (Unsupervised Learning)
 - Semi-supervised learning
 - GANs

Le Net 1998

- One of the first NN first's (best MNIST)
- Considered the first reference CNN architecture
- Today, a relatively shallow network

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, November 1998

Alex net 2012

- Won the 2012 ILSVRC (15.3% error for top-5) with a huge margin >10%
- Programed on GPU
- Opened the current DL era

A. Krizhevsky, G. E. Hinton, ImageNet classification with deep convolutional neural networks. In NIPS, pp. 1106–1114, 2012

VGG 2014

- 2nd @ 2014 ILSVRC
- Possibly the most popular architecture
- Modules: (Pool + (2 or 3)xConv_(x2features))

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015

GoogLeNet, the Inception architecture 2014

- Won the 2014 ILSVRC
- Modules: 9xInception module
- More nonlinearities, fewer parameters, less computation
- Considered 22 layers deep (max #nonlinearities in path)

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions. In CVPR, 2015.

Pooling

Other

Inception Module *Naïve*

Concatenate (672)

1x1 Conv (128) 3x3 Conv (196) 5x5 Conv (96) MaxPool (256)

Previous Layer (256)

Inception Module Implementation with bottlenecks

Inception Module *Reduced Computations*

Concatenate (672)1x1 Conv 3x3 Conv 5x5 Conv MaxPool (128)(196)(96)(256)**Previous Layer** (256)Concatenate (480)3x3 Conv 5x5 Conv 1x1 Conv (192)(96)(64)1x1 Conv (128)1x1 Conv 1x1 Conv MaxPool (64)(64)(256)**Previous Layer**

(256)

	Parameters (no biases)	
1x1 conv	256x1x1x128=32.7K	
3x3 conv	256x3x3x192=442K	
5x5 conv	256x5x5x96=614.4K	
Totals	1,089,536	
1x1 conv	256x1x1x128=32.7K	
1x1 conv(3)	256x1x1x64=16.4K	
3x3 conv	64x3x3x192=110.6K	
1x1 conv(5)	256x1x1x64=16.4K	
5x5 conv	64x5x5x96=153.6.4K	
1x1 conv(P)	256x1x1x64=16.4K	
Totals	346,112	

GoogleNet Inception architecture details

- Two auxiliary classification paths for loss injection
 - Overcoming vanishing gradients in deep layers
 - During training only
- No dense layers for classification
 - Pooling reduces size to ~1000

Pooling

Softmax

Other

ResNet 2015

- Won the 2015 ILSVRC with top 5 error: 3.57%
- Broke the human benchmark of 5.1% error
- Modules: ResNet
- Going deeper: Many more nonlinearities

K. He X. Zhang S. Ren and J. Sun, Deep Residual Learning for Image Recognition, CVPR 2016

ResNet Motivation: Going deeper

- Deeper networks perform worse, but not due to overfitting
- This is strange
- There exists a better solution:
 - Deep layers = identity

ResNet module

- ResNet modules compute residual signals F(x)
- Addition shortcuts the loss across blocks
- There are many variant details for the block
 - Convolution blocks are broken to their component layers

Short review of CNN architectures Comparing CNN architectures

Fully convolutional architectures

1x1 Convolution kernels

Tail end of the VGG architecture


```
# Block 5

x = Conv2D(512, (3, 3), ...)(x)

x = Conv2D(512, (3, 3), ...)(x)

x = Conv2D(512, (3, 3), ...)(x)

x = MaxPooling2D((2, 2), strides=(2, 2))(x)

# Classification block

x = Flatten()(x)

x = Dense(4096, activation='relu')(x)

x = Dense(4096, activation='relu')(x)

x = Dense(classes, activation='softmax')(x)
```

```
...
# Classification block
x = Conv2D(4096, (7, 7), padding='valid'...)(x)
x = Conve2D(4096, (1, 1), ...)(x)
x = Conve2D(classes, (1, 1), ...)(x)
```

Fully convolutional network Arbitrary input size

- Train on a nominal size
 - e.g. 224x224
- Infer on an arbitrary (larger) size
 - Results resized accordingly
 - To get a single class average
- Spatial classification constitutes rough localization

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation. CoRR, 2014.

Fully convolutional architectures Rough localization

Localization for free

 Fine-grained details lost in consecutive down-sampling

• Can we do better?

Fully convolutional network Segmentation

 Add classification layers in upper layers

Average results

• Can we do better?

Fully convolutional semantic segmentation *U-Net*

- Based on VGG style blocks
- Valid convolutions
- Skip connections at every resolution
- Cascade of refinements
 - Based on coarse decisions
 - Semantically simpler at the finer levels

O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," MICCAI, 2015

U-Net original results

Data problem revisited

- We have more data, but...
 - Data of particular cases often rare
 - Most data not tagged

- Situation worse in medical data
 - Samples of rare malignancies
 - Segmentation of medical images

What to do when there is insufficient data

- Data augmentation
- Transfer learning
- Unsupervised learning / Auto-encoders
- GANs

Data augmentation Classical approach

Combinations of rotation translations flipping scaling and skewing

- Translation less effective in FCN
- Rotation, skew, flip, and scale limited by the relevant / clinical extent
- Effective augmentation bounded (~x10)
- Cannot replace real variability:
 - Age / size / gender / acquisitionHW / operator / protocol

GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan

Data augmentation

Computer graphics

In many cases data is simulated e.g. from models

Use real images:

Add lesions from real images to real images of healthy skin

Yunzhu Li, Andre Esteva, Brett Kuprel, Rob Novoa, Justin Ko, Sebastian Thrun Skin Cancer Detection and Tracking using Data Synthesis and Deep Learning NIPS Machine Learning for Healthcare Workshop 2016

Transfer Learning in birdland

Male vs. Female Colibri

Male vs. Female birds

Adapt:

- Keep features (colors)
- Adapt rules (threshold)

What will be the features for mammals

Size / weight / length of hair

Convolutional layers Semantics

"Sara"

Transfer learning *VGG16 as an example*

Medical imaging task

- Very small data:
 - Use top layer as classical features
- Small data
 - Freeze features
 - Train classifier part
- More data
 - As above + finetune features
- Medium data
 - Start from a shallower feature layer
- The different the domain is, transfer becomes less effective

Image
con-64
con-64
MaxPool
con-128
con-128
MaxPool
con-256
con-256
MaxPool
con-512
con-512
MaxPool
con-512
con-512
MaxPool
D-4096
D-4096
D-1000 SM

	Image
	con-64
	con-64
	MaxPool
	con-128
	con-128
	MaxPool
+ Finetune	con-256
	con-256
	MaxPool
	con-512
	con-512
	MaxPool
	con-512
	con-512
	MaxPool
	D-4096
	D-4096
	5 1101 1
	D-NSM

	Image	Image
	con-64	con-64
	con-64	con-64
	MaxPool	MaxPool
	con-128	con-128
	con-128	con-128
	MaxPool	MaxPool
	con-256	con-256
	con-256	con-256
	MaxPool	MaxPool
	con-512	con-512
	con-512	con-512
	MaxPool	MaxPool
	con-512	con-512
	con-512	con-512
	MaxPool	MaxPool
	D-4096	D-4096
	D-4096	D-4096
	D-NSM	D-NSM

Transfer Learning *Idealized effect of transfer learning*

For a real analysis of the effects of transfer learning alternatives for Medical Imaging Analysis:

N. Kajbakhsh, J. Y. Shin, S. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang. "Convolutional neural networks for medical image analysis: Full training or fine tuning?" IEEE Trans. on Medical Imaging, 2016

Stacked Autoencoders

- Use individual pixels as tags
- Narrow hidden layer to prevent the trivial solution
- Repeat the process (stack)
- You have trained two sub-nets:
 - Encoder
 - Decoder
- Transfer the encoder to your desired application
- Trained on your data

Denoising autoencoders

- Estimate clean images from noisy images
- As easy to generate ground truth for as regular autoencoders
- Not as 'trivial' a task as regular autoencoders
- Denoising is a valid application in and of itself
- Encourages semantically meaningful features

Denoising autoencoders

Original image

Noisy version

Denoised via autoencoder

Denoised via Median filter

Lovedeep Gondara, Medical image denoising using convolutional denoising autoencoders, Arxiv 2016

Restoration autoencoders

- Estimate clean images from degraded images
 - Noise
 - Down-sampling (super res)
 - JPG artifacts
- Similar to U-Net, but skip layers are summed rather than concatenated
- Wider direct and indirect applicability

X. J. Mao, C. Shen, and Y. B. Yang,

"Image restoration using convolutional auto-encoders with symmetric skip connections," CoRR, 2016.

Restoration encoders Cross modality mapping

S. Vedula, O. Senouf, A. M. Bronstein, O. V. Michailovich, and M. Zibulevsky, Towards CT-Quality Ultrasound Imaging Using Deep Learning, ArXiv 2017

Semisupervised learning (anomaly detection)

- 1. Train autoencoder for healthy samples
- 2. Anomaly detection for unknown samples
- 3. Train a segmentation NN on few ground truth labels and otherwise anomaly labeles

C. Baur, B. Wiestler, S. Albarqouni, N. Navab,

Fusing Unsupervised and Supervised Deep Learning for White Matter Lesion Segmentation, MIDL 2019

Semisupervised learning (consistency)

- 1. Start regular supervised training for 'Student'
- 2. Occasionally, update a Stable version as 'Teacher'
- 3. Unknown samples will be
 - 1. Augmented pre-student
 - 2. Augmented post-teacher
- 4. Student needs to be consistent with teacher

C.S. Perone, P. Ballester, R.C. Barros, J. Cohen-Adad, Unsupervised domain adaptation for medical imaging segmentation with self-ensembling, NeuroImage 2019

Revisiting encoders

- Imagine we trained an autoencoder for MNIST images
 - Encoding into 2 features
 - All digits map into 2D
- We can use the encoder as a pre-trained feature extractor for MNIST tasks
- We can use the decoder as a generator for unseen handwritten digits
- Are there alternative ways to train a generator?

Generator: Most inputs map to a valid output.

Valid output:
Indistinguishable from true images

GAN – Generative Adversarial Networks

- It should be really easy to train a discriminator to identify true images from fake images
- Will need a small representative set of true images
- Use the discriminator to train a generator
- Train both consecutively to improve both

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, Generative adversarial nets. NIPS, 2014.

GAN – Generative Adversarial Networks

Objective function

$$\min_{W_g} \max_{W_d} \left[E_{x \sim X} \{ \log D_{W_d}(x) \} + E_{z \sim Z} \left\{ \log \left(1 - D_{W_d} \left(G_{W_g}(z) \right) \right) \right\} \right]$$
 Log likelihood that: Log likelihood that: real is identified fake is identified (1-D)

For a batch of m real samples x^i and m noise samples z^i :

Update the Discriminator:

$$W_d += \delta \cdot \frac{\partial}{\partial W_d} \sum_{i=1}^{m} \log D_{W_d}(x^i) + \log \left(1 - D_{W_d}\left(G_{W_g}(z^i)\right)\right)$$

Update the Generator:

$$W_g = \delta \cdot \frac{\partial}{\partial W_d} \sum_{i=1}^m \log \left(1 - D_{W_d} \left(G_{W_g}(z^i) \right) \right)$$

Problems with GANs

- GAN's should converge to a Nash equilibrium
- They often stop converging (mode collapses)
- No way to identify convergence
- Even when they converge they are ... not perfect
- But...

Hallmarks of good embeddings

Smooth interpolation

Hallmarks of good embeddings

Semantic arithmetic

Hallmarks of good embeddings

Semantic arithmetic

Wave of new GAN architectures Designed for stability

Auxiliary Classifier GAN Lesion Classification

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan,

GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification, 2018

A. Odena, C. Olah, J. Shlens, "Conditional Image Synthesis with Auxiliary Classifier GANs", 2016

GAN supported Encoder Cross modality synthesis

D. Nie, R. Trullo, C. Petitjean, S. Ruan, and D. Shen, Medical Image Synthesis with Context-Aware Generative Adversarial Networks, MICCAI 2017

GAN supported Perceptual Loss Encoder Low dose CT reconstruction

Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss, Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun, and G. Wang, Arxiv 2018