D.S. Analyse Numérique ISIMA 1ère Année – Session de novembre 2006

V. Barra, J. Koko et Ph. Mahey

28 novembre 2006

Exercice 1 1. Soient deux matrices U et V, $(p \times n)$, dont les colonnes sont notées $[u_1, \ldots, u_n]$ et $[v_1, \ldots, v_n]$ respectivement. Montrer que

$$UV^T = \sum_{i=1}^n u_i v_i^T$$

2. Soit B une matrice carrée symétrique inversible $(p \times p)$, et $a \in \mathbb{R}^p$ tel que $a^T B^{-1} a \neq -1$. Montrer que la matrice $B + aa^T$ est inversible et vérifier que :

$$(B + aa^T)^{-1} = B^{-1} - \frac{B^{-1}aa^TB^{-1}}{1 + a^TB^{-1}a}$$

Exercice 2 Dans cet exercice, on cherche à recalculer la solution d'un problème de moindres carrés linéaires quand une mesure supplémentaire est rajoutée (le nombre de paramètres restant inchangé).

Soient une matrice $A(n) = \begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \end{bmatrix}$, $(n \times p)$, de rang p, et un vecteur de mesures $b(n) \in \mathbb{R}^n$.

On suppose connu le vecteur de paramètres x(n) qui minimise $E(n) = ||A(n)x - b(n)||^2$ ainsi que la matrice $P_n = (A(n)^T A(n))^{-1}$.

On dispose maintenant d'une observation supplémentaire (a_{n+1}, b_{n+1}) et on désire mettre à jour de manière itérative l'estimation de x. Autrement dit, on souhaite exprimer la nouvelle solution aux moindres carrés x(n+1) en fonction de x(n).

- 1. Montrer que P_{n+1} s'exprime en fonction de P_n et a_{n+1} Indication : on pourra utiliser les deux résultats de l'exercice 1.
- 2. On pose x(n+1) = x(n) + z, et $\epsilon_n = b_{n+1} a_{n+1}^T x(n)$. Montrer que $z = \epsilon_n P_{n+1} a_{n+1}$.
- 3. En déduire une expression de z en fonction de P_n, a_{n+1} et ϵ_n
- 4. Déterminer le coût de la mise à jour de x(n).
- 5. Montrer que $E(n) \leq E(n+1) \leq E(n) + \epsilon_n^2$.
- 6. Application numérique :

$$A = \begin{bmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ -1/3 & 2/3 \end{bmatrix}$$
$$b = \begin{bmatrix} 0 & 3 & 0 \end{bmatrix}^T$$

 $a_4 = [1 \ 1]^T \text{ et } b_4 = 1$

Calculer $x(3), E_3$, ainsi que $P_4, x(4), E_4$.