Theorem 0.0.1. all vector bundles on \mathbb{P}^1 split into line bundles.

Definition 0.0.2. E(r,d) is the set of isomorphism classes of rank r vector bundles of degree d.

Definition 0.0.3. For \mathscr{F} a coherent sheaf on X,

$$\chi(X, \mathscr{F}) = \sum_{i=0}^{\infty} (-1)^i \dim H^i(X, \mathscr{F})$$

Definition 0.0.4. For X proper E coherent then,

$$\deg E = \chi(X, E) - \operatorname{rank}(E) \cdot \chi(X, \mathcal{O}_X)$$

If E is a vector bundle then,

$$\deg E = \deg \det E$$

Remark. If X is an elliptic curve g = 1 and,

$$\chi(X, \mathcal{O}_X) = 0$$

therefore,

$$\deg E = \chi(X, E)$$

Proposition 0.0.5. Degree is additive on short exact sequences and,

$$\chi(X,\mathscr{F}\otimes\mathscr{G})=\operatorname{rank}(\mathscr{F})\cdot\chi(X,\mathscr{G})+\operatorname{rank}(\mathscr{G})\cdot\chi(X,\mathscr{F})$$

Theorem 0.0.6 (Devissage). If P is a property of coherent sheaves on a locally noetherian scheme X such that,

(a) If there is a short exact sequence of coherent sheaves,

$$0 \longrightarrow \mathscr{F}_1 \longrightarrow \mathscr{F}_2 \longrightarrow \mathscr{F}_3 \longrightarrow 0$$

if \mathscr{F}_1 and \mathscr{F}_2 have P then \mathscr{F}_3 has P.

(b) for all $Z \subset X$ closed integral with generic point $\xi \in Z$ there is some coherent sheaf \mathscr{G} on X such that Supp $(\mathscr{G}) = Z$ and $\dim_{\kappa(\xi)} \mathscr{G}_{\xi} = 1$ and \mathscr{G} has P

Then P holds for all coherent sheaves on X.

Remark. We can use this to prove the previous tensor formula for curves since the closed irreducible sets are just a point.

First operation in "Euclidean Algorithm",

$$E(r,d) \to E(r,d+rk)$$

for any $k \in \mathbb{Z}$ fix a line bundle \mathcal{L} of degree 1 and send,

$$\mathcal{E} \mapsto \mathcal{E} \otimes \mathcal{L}^k$$

so by the formula,

$$\deg\left(\mathcal{E}\otimes\mathcal{L}^k\right) = d + rk$$

Therefore, we can always reduce to $0 \le d < r$ via choosing k. Now we want to reduce r,

$$E(r+d,d) \xrightarrow{\sim} E(r,d)$$

Idea: given $\mathcal{E} \in E(r,d)$ find a trivial subbundle of rank d with indecomposable quotient.

Main tool,

$$\{\text{extensions of } \mathcal{E}' \text{ by } \mathcal{O}_X^s\} \cong \operatorname{Ext}^1_{\mathcal{O}_X}(\mathcal{E}', \mathcal{O}_X^s) = H^1(X, \mathcal{E}'^{\vee} \otimes \mathcal{O}_X^s) = \operatorname{Hom}\left(\Gamma(\mathcal{O}_X^s)^{\vee}, H^1(X, \mathcal{E}'^{\vee})\right)$$

Fact: \mathcal{E} is indecomposable iff the class δ in Hom is injective. For now, assume deg $\mathcal{E} = d > 0$ then $s = \dim \Gamma(\mathcal{E}) > 0$ because,

$$\deg \mathcal{E} = \chi(\mathcal{E}) = h^0(\mathcal{E}) - h^1(\mathcal{E})$$

since $\chi(X, \mathcal{O}_X) = 0$.

Lemma 0.0.7. If r > d then any maximal degree sublinebundle in \mathcal{E} must have degree 0.

Proof. Find a maximal degree line bundle $\mathcal{L} \subset \mathcal{E}$ then we proceed to \mathcal{E}/\mathcal{L} to get a filtration,

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_r = \mathcal{E}$$

where $\mathcal{E}_{i+1}/\mathcal{E}_i \cong \mathcal{L}_i$ with $\mathcal{L}_0 = \mathcal{L}$. Then we can show that,

$$\deg \mathcal{L}_{i+1} \ge \deg \mathcal{L}_i$$

and that,

$$\deg \mathcal{E} = \sum_{i=0}^{r} \deg \mathcal{L}_i$$

Therefore, if $\deg \mathcal{L}_0 > 0$ then the above sum is at least r proving that $\deg \mathcal{E} \geq r$ contradicting the assumption.

By Lemma, any $\varphi \in \Gamma(\mathcal{E})$ generates a line bundle of degree 0 (it cannot have negative degree because its generated by the section φ).

Example 0.0.8. If \mathcal{L} is a line bundle on an elliptic curve, $\deg \mathcal{L} = 0$ and $h^0(\mathcal{L}) > 0$ then \mathcal{L} is trivial. (DONT NEED ELLIPTIC CURVE HERE)

If all φ generate trivial line bundles then $\Gamma(\mathcal{E}) \to \mathcal{E}_x$ is injective. Therefore $\Gamma(\mathcal{E})$ generate $\mathcal{O}_X^s \subset \mathcal{E}$.

Now we want to show that d = s. By induction on r: if r = 1, d > 0, then $h^0(\mathcal{E}) = d$ by Riemann-Roch. Assuming $\mathcal{E}' = \mathcal{E}/\mathcal{O}_X^s$ is indecomposable, then $\dim \Gamma(\mathcal{E}') = d$ by induction. Assuming that $\mathcal{E}, \mathcal{E}'$ are indecomposable, claim if $\mathcal{E}' = \mathcal{E}/\mathcal{O}_X^s$ then,

$$\dim \Gamma(\mathcal{E}') = \dim \Gamma(\mathcal{E})$$

then from,

$$0 \longrightarrow \mathcal{E}'^{\vee} \longrightarrow \mathcal{E}^{\vee} \longrightarrow \mathcal{O}_X^s \longrightarrow 0$$

we see that $\deg \mathcal{E} = \deg \mathcal{E}'$ and also this gives a long exact sequence,

$$0 \longrightarrow \Gamma(X, \mathcal{E}'^{\vee}) \longrightarrow \Gamma(X, \mathcal{E}^{\vee}) \stackrel{\delta}{\longrightarrow} H^{1}(X, \mathcal{E}'^{\vee})$$

given that \mathcal{E} is indecomposible iff δ is injective this implies that $\Gamma(\mathcal{E}'^{\vee}) = \Gamma(\mathcal{E}^{\vee})$. Then by Serre duality (recalling that $\omega_X = \mathcal{O}_X$),

$$h^1(X, \mathcal{E}') = h^1(X, \mathcal{E})$$

and also $\deg \mathcal{E} = \deg \mathcal{E}'$ so $h^0(X, \mathcal{E}) = h^0(X, \mathcal{E}')$.

Given $\mathcal{E}' \in E(r,d)$ and d > 0 there is a unique $\mathcal{E} \in E(r+d,d)$ which is an extension of \mathcal{E}' by \mathcal{O}_X^d . As for degree 0 case, for $\mathcal{E} \in E(r,0)$ there exists a unique $\mathscr{F}_r \in E(r,0)$ with $\Gamma(\mathscr{F}_r) \neq 0$, and for all $\mathcal{E} \in E(r,0)$ there exists a unique $\mathcal{L} \in E(1,0)$ such that,

$$\mathcal{E} = \mathscr{F}_r \otimes \mathcal{L}$$