Machine Learning in Healthcare

#L18-Introduction to convolutional neural networks

Technion-IIT, Haifa, Israel

Asst. Prof. Joachim Behar Biomedical Engineering Faculty, Technion-IIT Artificial intelligence in medicine laboratory (AIMLab.) https://aim-lab.github.io/

Twitter: @lab_aim

Intuition

Parameters estimation in NN

- Categorical data with a limited number input features.
- Not many parameters to estimate, here: 5 x 2 +2 = 12 weights parameters.

Parameters estimation in NN, images

- Consider an image which is 1000 x 1000 pixels, with three color channels (RGB) and one a NN with 1000 neurons in the hidden layer.
- How many weight parameters do we have to estimate?
- $W^{[1]} \in \mathbb{R}^{1000 \cdot 3M}$ which makes 3 billions parameters to estimate.
- And this is considering only one hidden layer.

Parameters estimation in NN, temporal time series

- Consider an ECG time series sampled at 1kHz and a window size of 30 seconds for classifying the ECG segment as arrhythmia or not.
- How many weight parameters do we have to estimate?
- $W^{[1]} \in \mathbb{R}^{1000 \cdot 30000}$ which makes 30 millions parameters to estimate.
- And this is considering only one hidden layer.

Parameters estimation in NN

- Learning such a high number of parameters is challenging. How can we better deal with this type of data?
- Recall the intuition of deep learning as a type of representation learning:
 - Learn more and more complex features as we go deeper in the network.
- How, would we get the first level of features without having "3 billions" weights parameters to estimate?
- How could we detect edges in a "cheap" manner?

Image from Zeiler and Fergus (2014).

- Horizontal derivatives:
 - Gradient:

$$G_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} * X$$

Sobel:

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * X$$

Original

Sobel X

- Vertical derivatives:
 - Gradient:

$$G_{y} = \begin{bmatrix} +1 & +1 & +1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} * X$$

Sobel:

$$G_y = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * X$$

Sobel Y

Sobel X+Y

- What about edges that would be at a specific angle (e.g. 40°)?
- What if images have noise embedded?
 - Canny edge detector:

$$B = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix} * X$$

Gaussian smoothing + edge detection.

- So there are different flavors of "edge detection filters". Instead, of using a specific defined filter, could we learn it from data?
- Derivative along x-axis:
 - Defined filter (e.g. gradient):

$$G_{\mathcal{X}} = \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} * X,$$

• Learn from data $\{w_{i,j}\}$:

$$G_{x} = \begin{bmatrix} w_{11} & w_{21} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} * X$$

Summary

- Too many parameters to estimate when dealing with images or large time series.
- We seek a way to reduce the number of free parameters.
- We elaborated on the feasibility to detect edges using pre-defined filters (Sobel, Canny etc.). We could feed a NN with these "engineered" first level features.

Summary

- We pointed to the fact that these filters are the implementation of different ideas/insights but that there would be value in learning the filter coefficients from data rather than using a pre-defined template.
 - If we take back our initial example of an image 1000 x 1000 with RGB channels and one hidden layer of 1000 neurons, we had **3 billions parameters**.
 - If we now consider 10 filters of size 3 x 3 we wish to learn then we have 27*10 = 270 parameters.
- This provides the insight behind why Convolutional Neural Network are very interesting.

Cross-correlation versus convolutions

- Cross-correlation
 - $\blacksquare G = h \otimes F$
 - $G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] F[i+u,j+v]$
- Convolution
 - $G = h \otimes F$
 - $G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] F[i-u,j-v]$
- Practically, what we do in CNN are cross-correlation operations and not convolutions per se. But for historical reasons "Convolutional Neural Network" is the terminology we use.

CNN

Convolution

Image

Convolved Feature

Convolution

Padding

- When applying a convolution the image shrinks
 - $\bullet 5 \times 5 \rightarrow 3 \times 3$
 - Also we intrinsically use less the information at the edges than the information in the center of the image.
- To address these issues we use padding.

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Padding

To address these issues we use padding.

Image: 5 x 5

Image + padding: 7 x 7

Striding

No striding

Input: 7 x 7
Output: 5 x 5

...

Striding

Striding with stride (s) of 2

Input: 7 x 7
Output: 3 x 3

...

Notations

- We write
 - *f* : filter size.
 - p: padding.
 - s: stride.
 - \blacksquare n: size of the image in pixels.
- Sizing: $(n \cdot n) * (f \cdot f) \rightarrow \left(\frac{n+2p-f}{s} + 1\right) \times \left(\frac{n+2p-f}{s} + 1\right)$

• • •

Generalization

Filter W1 (3x3x3)			Output Volume (3x3x2)				
w1[:,:,0]			0[:,:,0]				
-1	0	1		6	9	12	
1	0	1		3	7	11	
-1	1	0		8	11	8	
w1 [:,:	,1]	0[:	,:,	1]	
-1	0	0		4		-2	
-1	1	0		2	4	-3	
-1	1	0		0	-1	3	
w1 [:,:	, 2]				
1	1	0					
0	0	-1					
-1	-1	1					
Diox h1 (1v1v1)							
Dias	Bias b1 (1x1x1)						

b1[:,:,0]

toggle movement

Notations - generalization

• For a layer l and for an image of width n_w and height n_H :

Symbol	
$f^{[l]}$	Filter size.
$p^{[l]}$	Padding.
$s^{[l]}$	Stride.
$n_c^{[l]}$	Number of filters.
$n_{ m w}^{[l]}$	Width at layer \emph{l} .
$n_H^{[l]}$	Height at layer \emph{l} .

Sizing:

Generalization

$$n_{\rm w}^{[0]} = 6$$

 $n_{\rm H}^{[0]} = 6$
 $n_{\rm C}^{[0]} = 3$

 $n_H^{[1]} = n_W^{[1]} = 4$

 $n_c^{[1]} = 5$

26

Notations - generalization

- Output: $n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$
- Number of weights to learn at layer $l: f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$
- Activation at layer $l: n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$

Example

softmax

Take home

- CNN as a way to take advantage of "convolutions" for elaborating features. Rather than hand-crafting the convolution filters we learn their coefficients.
- Practically we use cross-correlation and not convolutions but for historical questions we call these NN "convolutional neural network".
- Using CNN enables to reduce the number of parameters by orders of magnitudes.
- Filter size, padding and striding.

References

- [1] Andrew Ng, Coursera, Neural Networks and Deep Learning. Coursera.
- [2] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.