Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №3 по дисципение Сети ЭВМ и телекоммуникации Анализ трафика компьютерных сетей утилитой Wireshark

Студент: Саржевский Иван

Группа: Р3302

Содержание

1	Цел	њ	2
2	Ана	ализ трафика утилиты ping	2
	2.1	Фрейм	2
	2.2	Ethernet II	2
	2.3	IPv4	3
	2.4	Internet Control Message Protocol (ICMP)	4
	2.5	Ответы на вопросы	5
3	Ана	ализ трафика утилиты traceroute	6
	3.1	User Datagram Protocol	6
	3.2	ICMP в ответах на запросы	7
	3.3	Ответы на вопросы	8
4	Ана	ализ НТТР-трафика	8
	4.1	Transmission Control Protocol	9
	42	Hypertext Transfer Protocol	Q

1 Цель

Цель работы — изучить структуру протокольных блоков данных, анализируя реальный трафик на компьютере студента с помощью бесплатно распространяемой утилиты Wireshark.

2 Анализ трафика утилиты ping

Для анализа трафика, создаваемого утилитой ping был выбран сайт www.ias.ru.

```
Frame 5: 1042 bytes on wire (8336 bits), 1042 bytes captured (8336 bits) on interface wlp4s0, id 0 Ethernet II, Src: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5), Dst: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae) Internet Protocol Version 4, Src: 192.168.0.105, Dst: 81.195.71.197 Internet Control Message Protocol
```

Рис. 1: Заголовки протоколов для команды ping.

На рисунке 1 изображены заголовки различных протоколов, используемых при передаче запроса.

2.1 Фрейм

```
Interface id: 0 (wlp4s0)
Encapsulation type: Ethernet (1)
Arrival Time: Apr 12, 2020 22:23:51.094101026 MSK
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1586719431.094101026 seconds
[Time delta from previous captured frame: 0.000253948 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.036999160 seconds]
Frame Number: 5
Frame Length: 1042 bytes (8336 bits)
Capture Length: 1042 bytes (8336 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ip:icmp:data]
[Coloring Rule Name: ICMP]
[Coloring Rule String: icmp || icmpv6]
```

Рис. 2: Информация о фрейме команды ping.

Структура, представленная на рисунке 2, описывает метаданные Wireshark для этого запроса - его порядковый номер среди всех записанных, время прибытия, размер, протокол и цвет выделения в интерфейсе.

2.2 Ethernet II

Ethernet II - протокол канального уровня, т.е. описывает передачу данных в рамках локальной сети. Типичная структура кадра Ethernet II представлена в таблице 1.

Таблица 1: Структура кадра Ethernet II.

	таолица т. Ст	грунтура надра	Dullot III.										
	Кадр Ethernet II												
	(от 64	l-х до 1528-ти бай	it)										
	МАС-заголовок		Данные										
	(14 байт)		(от 46-ти до 1500 байт)	_									
МАС получателя	МАС отправителя	Тип протокола	Пауууула	CRC									
(6 байт)	(6 байт)	(2 байта)	Данные	(4 байта)									

В данном случае получателем выступает роутер, а отправителем - рабочая машина, их MAC-адреса записаны в кадр, тип протокола - IPv4, что можно увидеть на рисунке 3.

Рис. 3: Кадр Ethernet II для ping.

2.3 IPv4

IPv4 - протокол сетевого уровня. Подробные сведения полях, которые включены в заголовок протокола, приведены на рисунке 4. Туда включены IP-адреса отправителя и получателя, длинна заголовка и сообщения, флаги указывающие на наличие фрагментации данных, промежуточности данного пакета и т. д.

Offsets	Octet					0								1									2			3											
Octet	Bit	0	1	2	3	4	5	6	7	8	9	1	10 11	12	2 13	14	1	16	3	17	.8	19	20	21	. 2	2	23	24	25	5 26	27	7 28	29	30	31		
0	0		Vers	sion				HL					DSCP			E	CN				Total Length																
4	32		Identification Flags Fragment Offset																																		
8	64		Time To Live Protocol Header Checksum																																		
12	96	Source IP Address																																			
16	128		Destination IP Address																																		
20	160																																				
24	192																	<i></i>																			
28	224															Opt	ons	(if IH	IL:	> 5)																	
32	256																																				

Рис. 4: Структура заголовка IPv4.

Данные, переданные с использованием протокола IPv4 для команды ping можно увидеть на рисунке 5.

```
0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
   0000 00.. = Differentiated Services Codepoint: Default (0)
   .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
Total Length: 1028
Identification: 0x8a07 (35335)
Flags: 0x4000, Don't fragment
   0... .... .... = Reserved bit: Not set
   .1.. .... = Don't fragment: Set
   ..O. .... .... = More fragments: Not set
...0 0000 0000 0000 = Fragment offset: 0
Time to live: 64
Protocol: ICMP (1)
Header checksum: 0x5258 [validation disabled]
[Header checksum status: Unverified]
Šource: 192.168.0.105
Destination: 81.195.71.197
[Destination GeoIP: RU]
```

Рис. 5: Данные пакета IPv4 для команды ping.

2.4 Internet Control Message Protocol (ICMP)

Offsets	Octet				(0				1											:	2			3									
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
0	0	Тур	e							Cod	e							Che	ecksu	ım														
4	32	Res	t of	Head	ler																													

Рис. 6: Структура заголовка ІСМР.

Данный протокол сетевого уровня используется для передачи служебных сообщений - кода ошибки в случае исключительной ситуации, кода запрашиваемой операции и кода подтверждения в случае удачной передачи. Подробная структура заголовка ICMP приведена на рисунке 6.

```
Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xb113 [correct]
[Checksum Status: Good]
Identifier (BE): 4975 (0x136f)
Identifier (LE): 28435 (0x6f13)
Sequence number (BE): 1 (0x0001)
Sequence number (LE): 256 (0x0100)
[Response frame: 6]
Timestamp from icmp data: Apr 12, 2020 22:23:51.000000000 MSK
[Timestamp from icmp data (relative): 0.094101026 seconds]
Data (992 bytes)
```

Рис. 7: Данные ICMP для команды ping.

Для команды ping структура ICMP представлена на рисунке 7.

Структура ответов имеет схожую структуру, отличаться они будут типом ICMP, сменой адресов получателя и отправителя, timestamp'ами.

2.5 Ответы на вопросы

- 1. Имеет ли место фрагментация исходного пакета, какое поле на это указывает?

 Да. Но только в том случае, если размер пакета превышает Maximum Transmission Unit (MTU), равный для протокола Ethernet II 1500 байт. Информация о наличии фрагментации содержится во флаге в заголовке IPv4.
- 2. Какая информация указывает, является ли фрагмент пакета последним или промежуточным?
 - Φ лаг More Fragments в заголовке IPv4.
- 3. Чему равно количество фрагментов при передаче ping-пакетов?
 - МТU равен 1500 байт, пакет включает в себя IPv4-заголовок (20 байт), ICMP-заголовок (8 байт), и, непосредственно, данные. Это означает, что количество фрагментов равно $\lceil (s+20+8)/1500 \rceil$, где s аргумент -s команды ping. Зависимость количества фрагментов от размера пакета приведена в таблице 2.

Таблица 2: Количество фрагментов при разных размерах пакета

1								
Размер пакета	100	500	1000	1500	2000	3000	5000	10000
Кол-во фраг.	1	1	1	2	2	3	4	7

- 4. Построить график, в котором на оси абсцисс находится размер_пакета, а по оси ординат количество фрагментов, на которое был разделён каждый ping-пакет.
 - см. рисунок 8.

Рис. 8: Зависимость количества фрагментов от размера пакета

- 5. Как изменить поле TTL с помощью утилиты ping?
 - Linux:ping -t ttl_value

- Windows: ping -i ttl_value
- 6. Что содержится в поле данных ping-пакета?
 - В поле данных содержится текущий timestamp, а затем циклически повторяющиеся биты от 00 до FF.

3 Анализ трафика утилиты traceroute

Утилита traceroute отправляет UDP-запросы, постепенно увеличивая ttl, на 1 каждые 3 запроса.

```
Frame 18: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface wlp4s0, id 0
Ethernet II, Src: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5), Dst: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae)
Internet Protocol Version 4, Src: 192.168.0.105, Dst: 81.195.71.197
User Datagram Protocol, Src Port: 53039, Dst Port: 33447
Data (32 bytes)
```

Рис. 9: Заголовки протоколов для команды traceroute.

На рисунке 9 изображены заголовки различных протоколов, используемых при передаче запроса.

Все протоколы, кроме UDP, были описаны для команды ping.

```
Frame 21: 102 bytes on wire (816 bits), 102 bytes captured (816 bits) on interface wlp4s0, id 0 Ethernet II, Src: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae), Dst: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5) Internet Protocol Version 4, Src: 192.168.0.1, Dst: 192.168.0.105 Internet Control Message Protocol
```

Рис. 10: Заголовки протоколов для ответа на команду traceroute.

На рисунке 10 изображены заголовки протоколов, используемых при передаче ответа на запросы команды traceroute.

3.1 User Datagram Protocol

UDP - один из протоколов транспортного уровня, который предполагает отсутствие механизмов установления и поддержки соединения между отправителем и получателем. Структура UDP-датаграммы представлена в таблице 3.

Ha рисунке 11 можно увидеть содержимое датаграммы для запроса traceroute.

Таблица 3: Структура UDP-датаграммы.

Порт отправителя Порт получателя Длина датаграммы

Source Port: 53039

Destination Port: 33447

Length: 40

Checksum: 0x5ad3 [unverified]
[Checksum Status: Unverified]
[Stream index: 14]
[Timestamps]

Рис. 11: Содержимое датаграммы.

3.2 ІСМР в ответах на запросы

Как уже говорилось ранее, ICMP передает служебную информацию, такую как сообщения об ошибках. Именно эту его особенность использует утилита traceroute. Так как мы постепенно увеличиваем ttl начиная с единицы, каждый маршрутизатор в сети между отправителем и получателем будет возвращать ошибку Time-to-live exceeded (код 11), и по отправителям этих сообщений можно судить о маршрутизаторах в сети на пути пакетов. Пример такого ICMP можно увидеть на рисунке 12.

```
Type: 11 (Time-to-live exceeded)
Code: 0 (Time to live exceeded in transit)
Checksum: 0x4fd3 [correct]
[Checksum Status: Good]
Unused: 00000000
Internet Protocol Version 4, Src: 192.168.0.105, Dst: 81.195.71.197
User Datagram Protocol, Src Port: 46331, Dst Port: 33434
Data (32 bytes)
```

Рис. 12: ICMP с сообщением ttl-exceeded

Если же мы установили достаточно большой ttl для того, чтобы добраться до получателя, в ICMP с большой вероятностью будет другая ошибка — Destination unreachable (код 3) с расширением Port unreachable (код 3), так как traceroute отправляет запросы на случайные порты получателя. Пример такого ICMP можно увидеть на рисунке 13.

В обоих случаях в ответном сообщении содержится копия исходного.

Type: 3 (Destination unreachable)

Code: 3 (Port unreachable) Checksum: 0x57d0 [correct] [Checksum Status: Good]

Unused: 00000000

Internet Protocol Version 4, Src: 192.168.0.105, Dst: 81.195.71.197

User Datagram Protocol, Src Port: 33829, Dst Port: 33488

Data (32 bytes)

Рис. 13: ICMP с сообщением Destination unreachable

3.3 Ответы на вопросы

- 1. Сколько байт содержится в заголовке IP? Сколько байт содержится в поле данных? IPv4 20 байт, данных отправляется 32 байта. Если прибавить к этому 8 байт заголовка UDP и 14 байт заголовка Ethernet II, то получим 74 байта, это размер передаваемого сообщения.
- 2. Как и почему изменяется поле TTL в следующих друг за другом ICMP-пакетах traceroute?
 - Как уже было упомянуто выше, это позволяет по сообщениям с ошибкой Time-to-live exceeded определить все маршрутизаторы, которые работали с пакетом по пути до получателя. ttl увеличивается на 1 каждые 3 отправленных пакета.
- 3. Чем отличаются ICMP-пакеты, генерируемые утилитой tracert, от ICMP-пакетов, генерируемых утилитой ping?
 - Использовалась утилита traceroute, которая в отличие от tracert отправляет UDP запросы. Однако при использовании последней ICMP пакеты от ping отличаются только значением ttl.
- 4. Чем отличаются полученные пакеты ICMP reply от ICMP error и зачем нужны оба этих типа ответов?
 - В traceroute в качестве ICMP reply используется ICMP error, но с другим кодом ошибки Destination unreachable (Port unreachable). Если говорить о tracert, то ICMP reply, получаемые при достижении пакетов получателя, ничем не отличаются от аналогичных в утилите ping. ICMP error используются для идентификации всех маршрутизаторов на пути пакета, это описано в предыдущем вопросе.
- 5. Что изменится в работе tracert, если убрать ключ -d? Какой дополнительный трафик при этом будет генерироваться?
 - traceroute станет преобразовывать IP адреса маршрутизаторов в их строковые адреса, а для этого потребуются дополнительные DNS запросы. ИСПРАВИТЬ

4 Анализ НТТР-трафика

Для выполнения этого задания был выбран сайт www.ias.ru.

На рисунке 14 изображена структура запроса, все протоколы, кроме ТСР и НТТР были рассмотрены ранее.

```
Frame 3: 525 bytes on wire (4200 bits), 525 bytes captured (4200 bits) on interface wlp4s0, id 0
Ethernet II, Src: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5), Dst: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae)
Internet Protocol Version 4, Src: 192.168.0.105, Dst: 81.195.71.197
Transmission Control Protocol, Src Port: 42758, Dst Port: 80, Seq: 1, Ack: 1, Len: 459
Hypertext Transfer Protocol
```

Рис. 14: Структура запроса

4.1 Transmission Control Protocol

Это протокол транспортного уровня, один из основных протоколов передачи данных в интернете. ТСР предполагает надежную передачу потока данных, включает управление перегрузкой, рукопожатие, передачу данных. Структура ТСР-протокола приведена на рисунке 15. Она включает в себя информацию о портах отправителя и получателя, размер заголовка, а также контрольную сумму и флаги:

• URG: указатель важности

• АСК: номер подтверждения

• PSH: протолкнуть данные, накопившиеся в буфере, в приложение пользователя

• RST : оборвать соединение, очистить буфер

• SYN: синхронизация объектов последовательности

• FIN : завершение соединения

Offsets	Octet					0					1											2					3							
Octet	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	0 7 6 5 4 3 2 1 0 7 6 5 4 3 2													1	0		
0	0	Source port Destination port																																
4	32		Sequence number																															
8	64		Acknowledgment number (if ACK set)																															
12	96	D	ata	offs	et		ser	ved 0	N S	C W R	E C E	U R G	A C K	P S H	R S T	S Y N	F I N							٧	Vin	do	w S	Size	9					
16	128								С	heck	sum											Ur	ge	nt p	ooi	nte	er (i	if U	RG	set	:)			
20	160							Opti	ons	(if da	ta of	fset	> 5.	Padd	ed a	the	end	wit	h '	"0" l	byt	es	if	nec	es	sar	'y.)							
•••																																		

Рис. 15: Структура ТСР-сегмента.

Структура переданного сегмента приведена на рисунке 16.

4.2 Hypertext Transfer Protocol

Это протокол прикладного уровня для передачи данных. Состоит из стартовой строки, заголовков и тела сообщения.

```
Source Port: 42758
Destination Port: 80
[Stream index: 2]
[TCP Segment Len: 459]
                       (relative sequence number)
Sequence number: 1
Sequence number (raw): 3258221442
[Next sequence number: 460
                                (relative sequence number)]
Äcknowledgment number: 1
                             (relative ack number)
Acknowledgment number (raw): 2564089494
1000 .... = Header Length: 32 bytes (8)
Flags: 0x018 (PSH, ACK)
  000. .... : Reserved: Not set ...0 .... = Nonce: Not set
   .... 0... = Congestion Window Reduced (CWR): Not set
   .... .0.. .... = ECN-Echo: Not set
   ......0. .... = Urgent: Not set
......1 .... = Acknowledgment: Set
   .... 1... = Push: Set
   .... .... .0.. = Reset: Not set
   .... Not set
   .... .... 0 = Fin: Not set
   [TCP Flags: ·····AP···]
Window size value: 501
[Calculated window size: 501]
[Window size scaling factor: -1 (unknown)]
Checksum: 0x5c8b [unverified]
[Checksum Status: Unverified]
Urgent pointer: 0
Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
[SEQ/ACK analysis]
[Timestamps]
TCP payload (459 bytes)
```

Рис. 16: ТСР-сегмент переданного запроса.

В стартовой строке указывается метод запроса, версия запроса, а также путь к документу. В заголовках передается метаинформация о клиенте или сервере, тело сообщения содержит непосредственно полезные данные.

Структура первичного НТТР-запроса типа GET показана на рисунке 17.

В ответе на первичный запрос приходит HTTP-ответ с кодом 200, сигнализирующем об успешной обработке запроса, временем последней модификации запращиваемого html-документа и самим содержимым требуемого документа. Это можно увидеть на рисунке 18.

```
GET / HTTP/1.1\r\n
   [Expert Info (Chat/Sequence): GET / HTTP/1.1\r\n]
    Request Method: GET
    Request URI: /
   Request Version: HTTP/1.1
Host: www.ias.ru\r\n
Connection: keep-alive\r\n
Pragma: no-cache\r\n
Cache-Control: no-cache\r\n
Upgrade-Insecure-Requests: 1\r\n
User-Agent: Mozilla/5.0 (X11; Fedora; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.1... Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/appg,*/*;q=0.8,application/sig...
Accept-Encoding: gzip, deflate\r\n
Accept-Language: en-US,en;q=0.9\r\n
\r\n
[Full request URI: http://www.ias.ru/]
[HTTP request 1/3]
 [Response in frame: 8]
[Next request in frame: 10]
```

Рис. 17: Первичный НТТР-запрос.

Повторный запрос похож на первичный, за исключением того, что добавляется поле If-Modified-Since со значением даты, которое мы получили в первичном ответе. Таким образом, сервер вернет 200 только в случае, если запрашиваемая html-страница изменялась после переданного времени. Этот запрос можно увидеть на рисунке 19.

В ответе на повторный запрос можно увидеть код 304, что означает Not Modified и сигнализирует о том, что запрашиваемая страница не изменялась с момента времени, указанного в поле If-Modified-Since запроса, таким образом можно не передавать её содержимое снова. Это можно увидеть на рисунке 20.

```
Hypertext Transfer Protocol
  HTTP/1.1 200 OK\r\n
> [Expert Info (Chat/Sequence): HTTP/1.1 200 OK\r\n]
      Response Version: HTTP/1.1
      Status Code: 200
      [Status Code Description: OK]
   Response Phrase: OK
Server: nginx/1.6.2\r\n
   Date: Wed, 15 Apr 2020 11:52:15 GMT\r\n
   Content-Type: text/html\r\n
Last-Modified: Mon, 24 Apr 2017 11:34:28 GMT\r\n
   Transfer-Encoding: chunked\r\n
   Connection: keep-alive\r\n
   Vary: Accept-Encoding\r\n
   Content-Encoding: gzip\r\n
   \r\n
   [HTTP response 1/3]
   [Time since request: 0.032573610 seconds]
   [Request in frame: 3]
[Next request in frame: 10]
   [Next response in frame: 11]
   [Request URI: http://www.ias.ru/]
  HTTP chunked response
   Content-encoded entity body (gzip): 80 bytes -> 97 bytes
   File Data: 97 bytes
Line-based text data: text/html (9 lines)
   <!DOCTYPE html>\n
   <html>\n
   <head>\n
   <title>hello</title>\n
   </head>\n
   <body>\n
   <h1>hello</h1>\n
   </body>\n
</html>\n
```

Рис. 18: Первичный НТТР-ответ.

Рис. 19: Повторный НТТР-запрос.

```
HTTP/1.1 304 Not Modified\r\n

| Expert Info (Chat/Sequence): HTTP/1.1 304 Not Modified\r\n]
| Response Version: HTTP/1.1
| Status Code: 304
| [Status Code Description: Not Modified]
| Response Phrase: Not Modified
| Server: nginx/1.6.2\r\n
| Date: Wed, 15 Apr 2020 11:52:18 GMT\r\n
| Last-Modified: Mon, 24 Apr 2017 11:34:28 GMT\r\n
| Connection: keep-alive\r\n
| ETag: "58fde2c4-61"\r\n
| FTag: "58fde2c4-61"\r\n
| [HTTP response 3/3]
| [Time since request: 0.031237148 seconds]
| Prev request in frame: 10]
| [Prev response in frame: 11]
| Request in frame: 25]
| [Request URI: http://www.ias.ru/]
```

Рис. 20: Повторный НТТР-ответ.