

Sharif University of Technology Computer Engineering Department

Software-Defined Networking

Ali Movaghar Mohammad Hosseini

Network Virtualization Part 1

TA: Iman Rahmati & Farbod Shahinfar

Primer on Virtualization

Virtualization

- * The act of creating a virtual (rather than actual) version of something
 - > Typically used to share resources
 - > such as memory, storage, network resources, and etc.

What has made virtualization in the past decade different

Virtual Machine (VM)

- ❖ A VM is a tightly isolated software container that runs its own operating system and applications as if it were a physical computer
- ❖ A virtual machine is an emulation of a physical computer.

The big problem that VMs fix

- Think about a big company and its applications
 - > CRM, ERP, Sales, Web, Email, Git, Chat, etc.

Each application requires its own server to run on

Server proliferation

What's so bad about server proliferation?

- ❖ On average nonvirtualized enterprise servers are only running at about 5% to 10% utilization.
 - ➤ Inefficient spending on servers, power, cooling, personnel to manage, ...

Server proliferation is bad unless ...

How VMs Fix the Underutilized Server Problem

- * VM creates a software version of a server that runs within a hardware server.
- * Each VM can be customized to the application needs.

Many VMs can run on the same physical server.

Hypervisor

Types of Hypervisors

- **Type 1 hypervisors** (bare metal hypervisors)
- ➤ Interface directly with the hardware resources
- VMware ESXi (as part of vSphere package)
- Microsoft Hyper-V

- **Type 2 hypervisors** (hosted hypervisors)
- ➤ Interface with the native OS running on the server
- ➤ VMware Workstation
- Oracle VirtualBox

Benefits of Virtual Machines

- * Reduces the expenses from server proliferation.
 - > (Servers, Energy, Cooling, Space, Cabling, etc.)
- Solves the problem of one application per server.
 - ➤ Minimizes resource competition.
 - ➤ Isolates application failures
- Application availability and fault tolerance
- Flexibility
- Faster Application Spin-Up and Provisioning
- Development Operations (DevOps)

Containers (OS-Level Virtualization)

- **Containers** are a lighter-weight, more agile way of handling virtualization.
- ❖ A hypervisor virtualizes underlying physical hardware.
- **Containers** virtualize the operating system. They share a common operating system.

Data Center

Types of Data Centers

- Specialized data centers built for one big app
 - Social networking: Facebook
 - Web Search: Google, Bing

- * "Cloud" data centers
 - ➤ Amazon EC2
 - ➤ Microsoft Azure
 - Google App Engine

Cloud Computing

Cloud computing is the on-demand delivery of IT resources over the Internet with payas-you-go pricing. Instead of buying, owning, and maintaining physical data centers and servers, you can access technology services, such as computing power, storage, and databases, on an as-needed basis from a cloud provider like Amazon AWS.

❖ On-demand

Use resources when you need it; pay per use (metered usage)

Elastic

Scale up & down based on demand

Multi-tenancy

- ➤ Multiple independent users share infrastructure (private and public clouds)
- > Security and resource isolation
- > SLAs on performance & reliability

Dynamic Management

- Workload movement: move work to other locations
- Resiliency: isolate failure of servers and storage

Cloud Example

Load balancer

Computation servers

Cloud Data Center

The main enabling technology for cloud computing is virtualization

What about networking?

Networking Challenges in a Cloud Data Center

- ❖ Isolating tenants in the data center's network
 - > VLAN?

Networking Challenges in a Cloud Data Center

- Challenge of virtual machine mobility for data center networking
 - The IP address of a VM is drawn from the subnet of physical network on which it resides.
 - ➤ If a VM is to migrate to another server, either it needs to move to a server where that subnet is also present, or it needs a new IP address.
 - The first choice limits where it can move within the datacenter, which affects the efficiency of resource usage.

The second option is quite a disruptive thing: TCP connections are dropped, and applications may need to be restarted.

Furthermore, some applications depend on layer-2 adjacency between communicating peers, and thus depend on some set of VMs staying in a given subnet even as they move around within the datacenter

Networking Challenges in a Cloud Data Center

- IP assignment
- Custom protocols
- Custom network policy

Network Virtualization in Cloud

- The goal of a multi-tenant cloud data center is to make the customer experience much the same as if they were using their own private data center.
- ❖ In this example, the physical resources are divided up among three different tenant.
- The server administrator allocates virtual machine resources to each tenant that may reside on different servers across the network.

- ❖ The network administrator also allocates **virtual network resources** to each tenant that interconnects the given tenant's virtual machines.
- The virtual machine network connections and virtual networks are isolated from each other

Network Virtualization

- ❖ Network Virtualization refers to abstracting network resources that were traditionally delivered in hardware to software.
 - Network virtualization can combine multiple physical networks to one virtual, software-based network,
 - ritual networks.