

Hijack a Kubernetes Cluster – a Walkthrough

Gold Cloud Platform Gold DevOps

Silver Application Development Silver Security Silver Application Integration

Nico Meisenzahl

- Senior Cloud & DevOps Consultant at white duck
- Microsoft MVP, GitLab Hero
- Cloud Native, Kubernetes & Azure

Phone: +49 8031 230159 0

Email: <u>nico.meisenzahl@whiteduck.de</u>

Twitter: @nmeisenzahl

LinkedIn: https://www.linkedin.com/in/nicomeisenzahl

Blog: https://meisenzahl.org

About this talk

- this is not an in-depth security talk
- it should make you aware of common attack vectors and how to prevent them
 - you will see demos on how to hijack a cluster
 - you will learn how to prevent those with common best practices
- one more slide, then we will start hijacking
 - https://github.com/nmeisenzahl/hijack-kubernetes

What we will do

Security quick wins through the DevOps cycle

Ensure secure application code

- automate and enforce code checks
- schedule dependency scanning
 - e.g. Dependabot
- enforce Static Application Security Testing (SAST) in PRs
 - scans your code to identify potential security vulnerabilities
 - more details: https://owasp.org/www-community/Source Code Analysis Tools

Ensure secure application code

- automate and enforce code checks
- schedule dependency scanning
 - e.g. Dependabot

Would have shown the possibility of code injection

- enforce Static Application Security Testing (SAST) in PRs
 - scans your code to identify potential security vulnerabilities
 - more details: https://owasp.org/www-community/Source Code Analysis Tools

Build secure container images

- build secure/small container images less is more
 - do only include required dependencies (no debugging tools!)
 - use self-contained binaries or "distroless" if possible
 - https://github.com/GoogleContainerTools/distroless
 - otherwise, use a small and secure Linux distro
- use and enforce SAST for validating your Dockerfiles
- scan your container images (on build and regularly)

Build secure container images

- build secure/small container images less
 - do only include required dependencies (no de
 - use self-contained binaries or "distroless" if pos
 - https://github.com/GoogleContainerTools/distroless
 - otherwise, use a small and secure Linux distro
- use and enforce SAST for validating your Dockerfiles
- scan your container images (on build and regularly)

Would have made it much harder to hijack the container and further expend

Ensure secure deployment code

- as important as secure application code and Dockerfiles
- validate your deployment manifests using SAST
 - and enforce them via PRs
- can help you to implement best practices like denying
 - containers running as root
 - mounting hostPath

• ...

Ensure secure deployment code

- as important as secure application code and Dockerfiles
- validate your deployment manifests using SAST
 - and enforce them via PRs
- can help you to implement best practices like denying
 - containers running as root
 - mounting hostPath

•

Would have made it much harder to hijack the node

SAST Tooling

- Source code
 - https://codeql.github.com
 - https://security-code-scan.github.io
 - https://securego.io
- Kubernetes manifests
 - https://kubesec.io
 - https://github.com/aquasecurity/trivy
- Dockerfiles
 - https://github.com/aquasecurity/trivy
- Terraform
 - https://github.com/tfsec/tfsec
 - https://github.com/aquasecurity/trivy

Kubernetes policies

- enforce compliance and governance within clusters
 - verifying manifests is not enough!
- examples include enforcement of
 - read-only filesystems
 - denying hostPath mounts
 - denying containers running as root
 - •

Kubernetes policies

- enforce compliance and governance within clusters
 - verifying manifests is not enough!
- examples include enforcement of
 - read-only filesystems
 - denying hostPath mounts
 - denying containers running as root

• ...

Would have made it much harder to further hijack the nodes and cloud resources

Kubernetes policy Tooling

- Open Policy Agent Gatekeeper
 - https://github.com/open-policy-agent/gatekeeper
- Kyverno
 - https://kyverno.io
- Azure Policies
 - based on Open Policy Agent Gatekeeper
 - https://docs.microsoft.com/azure/aks/use-azure-policy

Network Policies

- granular deny or explicitly allow between containers and ingress/egress of the cluster
 - limit egress access to the internet
 - limit access between applications/namespaces
 - deny access to the Cloud provider metadata service
- https://kubernetes.io/docs/concepts/servicesnetworking/network-policies

Network Policies

- granular deny or explicitly allow be ingress/egress of the cluster
 - limit egress access to the internet
 - limit access between applications/namespaces
 - deny access to the Cloud provider metadata service
- https://kubernetes.io/docs/concepts/services-networking/network-policies

Would have denied network connections (reverse shell, Redis, Internet, metadata service)

and

Container Runtime Security

- helps to detect malicious threads and workloads
 - untrusted process within container
 - a shell is running inside a container
 - container process mounting a sensitive path
 - a process making outbound network connections
- container runtime security tools like Falco can help
 - https://github.com/falcosecurity/falco

Container Runtime Security

- helps to detect malicious threads and
 - untrusted process within container
 - a shell is running inside a container
 - container process mounting a sensitive path
 - a process making outbound network connections
- container runtime security tools like Falco can help
 - https://github.com/falcosecurity/falco

Would have detect all our "work" within the containers

Further best practises

- do not
 - share service accounts between applications
 - enable higher access levels for the default service account if not required
 - mount service account token if not required
 - https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
- review all third-party snippets before applying them
- implement a Web Application Firewall (WAF) to further secure your application

Further best practises

Wouldn't have allowed us to talk to the API server

- do not
 - share service accounts between applications
 - enable higher access levels for the default service account if not required
 - mount service account token if not required
 - https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
- review all third-party snippets before applying them
- implement a Web Application Firewall (WAF) to further secure your application

Would have denied our code injection

Questions?

Slides: https://www.slideshare.net/nmeisenzahl

Demo: https://github.com/nmeisenzahl/hijack-kubernetes

Phone: +49 8031 230159 0

Email: <u>nico.meisenzahl@whiteduck.de</u>

Twitter: <u>@nmeisenzahl</u>

LinkedIn: https://www.linkedin.com/in/nicomeisenzahl

Blog: https://meisenzahl.org

