

Mathematics 1A ITMTA1-B44

Functions and Models

With

Amakan Elisha Agoni Amakan.agoni@EDUVOS.com

Lecture 1 Week 2 1.3

New Functions from Old Functions

Transformations of Functions

Transformations of Functions (1 of 8)

- By applying certain transformations to the graph of a given function we can obtain the graphs of related functions.
- This will give us the ability to sketch the graphs of many functions quickly by hand. It will also enable us to write equations for given graphs.
- Let's first consider translations of graphs.
- If c is a positive number, then the graph of y = f(x) + c is just the graph of y = f(x) shifted upward a distance of c units (because each y-coordinate is increased by the same number c).

Transformations of Functions (2 of 8)

Likewise, if g(x) = f(x - c), where c > 0, then the value of g at x is the same as the value of f at x - c (c units to the left of x).

- y = f(x) + c, shift the graph of y = f(x) a distance c units upward
- y = f(x) c, shift the graph of y = f(x) a distance c units downward
- y = f(x c), shift the graph of y = f(x) a distance c units to the right
- y = f(x + c), shift the graph of y = f(x) a distance c units to the left

Figure 1

Transformations of Functions (4 of 8)

The graph of y = -f(x) is the graph of y = f(x) reflected about the x-axis because the point (x, y) is replaced by the point (x, -y).

- y = cf(x), stretch the graph of y = f(x) vertically by a factor of c
- y = (1/c)f(x), shrink the graph of y = f(x) vertically by a factor of c
- y = f(cx), shrink the graph of y = f(x) horizontally by a factor of c
- $y = f\left(\frac{x}{c}\right)$, stretch the graph of y = f(x) horizontally by a factor of c
- y = -f(x), reflect the graph of y = f(x) about the x-axis
- y = f(-x), reflect the graph of y = f(x) about the y-axis

Transformations of Functions (6 of 8)

Figure 3 illustrates these stretching transformations when applied to the cosine function with c = 2.

Figure 3

Example 1

- Plot the graph of $y = 2 \cos x$ by multiplying the y-coordinate of each point on the graph of $y = \cos x$ by 2.
- This means that the graph of $y = \cos x$ gets stretched vertically by a factor of 2.

Example 2

Given the graph of $y = \sqrt{x}$, use transformations to graph $y = \sqrt{x} - 2$, $y = \sqrt{x-2}$, $y = -\sqrt{x}$, $y = 2\sqrt{x}$, and $y = \sqrt{-x}$.

Solution:

Figure 4

Combinations of Functions

Combinations of Functions (1 of 6)

Two functions f and g can be combined to form new functions f + g, f - g, fg, and $\frac{f}{g}$ in a manner similar to the way we add, subtract, multiply, and divide real numbers.

Definition Given two functions *f* and *g*, the **sum**, **difference**, **product**, and **quotient** functions are defined by

$$(f+g)(x) = f(x) + g(x) \quad (f-g)(x) = f(x) - g(x)$$
$$(fg)(x) = f(x)g(x) \quad \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

If the domain of f is A and the domain of g is B, then the domain of f + g is the intersection $A \cap B$ because both f(x) and g(x) have to be defined.

Combinations of Functions (2 of 6)

For example, the domain of $f(x) = \sqrt{x}$ is $A = [0, \infty)$ and the domain of $g(x) = \sqrt{2-x}$ is $B = (-\infty, 2]$, so the domain of $(f+g)(x) = \sqrt{x} + \sqrt{2-x}$ is $A \cap B = [0, 2]$.

The domain of fg is $A \cap B$, but we can't divide by 0 and so the domain of

$$\frac{f}{g}$$
 is $\{x \in A \cap B \mid g(x) \neq 0\}$.

For instance, if $f(x) = x^2$ and g(x) = x - 1, then the domain of the rational function

$$\left(\frac{f}{g}\right)(x) = \frac{x^2}{(x-1)}$$
 is $\{x \mid x \neq 1\}$, or $(-\infty, 1) \cup (1, \infty)$.

Examples

Given k(x) = 3x + 2 and g(x) = 4 - 5x, find

i)
$$(k-g)(x)$$

$$(k-g)(x) = [(3x+2) - (4-5x)] = 3x + 2 - 4 + 5x = 8x - 2$$

ii)
$$(k+g)(x) = [(3x+2) + (4-5x)] = 3x + 2 + 4 - 5x = 6 - 2x$$

iii)
$$(k.g)(x) = (3x + 2)(4 - 5x) = 12x - 15x2 + 8 - 10x$$

= $15x2 + 2x + 8$

iv)
$$(\frac{k}{g})x = \frac{3x+2}{4-5x}$$

Combinations of Functions (3 of 6)

There is another way of combining two functions to obtain a new function. For example, suppose that $y = f(u) = \sqrt{u}$ and $u = g(x) = x^2 + 1$.

Since y is a function of u and u is, in turn, a function of x, it follows that y is ultimately a function of x. We compute this by substitution:

$$y = f(u) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$$

The procedure is called *composition* because the new function is *composed* of the two given functions *f* and *g*.

Combinations of Functions (4 of 6)

In general, given any two functions f and g, we start with a number x in the domain of g and calculate g(x). If this number g(x) is in the domain of f, then we can calculate the value of f(g(x)).

The result is a new function h(x) = f(g(x)) obtained by substituting g into f. It is called the *composition* (or *composite*) of f and g and is denoted by $f \circ g(f)$ circle g(g).

Definition Given two functions f and g, the **composite function** $f \circ g$ (also called the **composition** of f and g) is defined by

$$(f\circ g)(x)=f(g(x))$$

Example 6

If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

Solution:

We have

$$(f \circ g)(x) = f(g(x)) = f(x-3) = (x-3)^{2}$$
$$(g \circ f)(x) = g(f(x)) = g(x^{2}) = x^{2} - 3$$

Combinations of Functions (6 of 6)

We know that, the notation $f \circ g$ means that the function g is applied first and then f is applied second. In Example 6, $f \circ g$ is the function that f is subtracts 3 and f then squares; $g \circ f$ is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is squares and f is the function that f is the function that f is the function that f is the function f is the function that f is the function that f is the function f is the f

It is possible to take the composition of three or more functions. For instance, the composite function $f \circ g \circ h$ is found by first applying h, then g, and then f as follows:

$$(f \circ g \circ h)(x) = f(g(h(x)))$$

Exercise

If $f(x) = x^3 - x + 5$ and g(x) = 3x - 2, find the composite function h(x) where $h(x) = f \circ g$ and k(x) where $k(x) = g \circ f$. Simplify your answers and hence find h(-10) and $k(\sqrt{2})$.