

HMIN122M

Mini-Projet : entrepôts de données

Rendu sur la modélisation d'un entrepôts de données

Bachar RIMA Joseph SABA Tasnim SHAQURA MUHAMMAD Jérémy BOURGIN

23 octobre 2018

Table des matières

Introduction
Questions
Question 1
Question 2
Question 3
Question 4
Questions 5 et 6
Data Mart de « voyages »
Data Mart de « maintenance »
Data warehouse de tam-voyages
Question 7
Question 8
Pour le data mart de « voyages »
Pour le data mart de « maintenance »

Introduction

Dans le cadre du mini-projet du module **HMIN122M**, nous avons décidé de modéliser un entrepôts de données pour le réseau de transport publique de Montpellier, tam-voyages. Pour ce faire, nous avons proposé des data marts formant le data warehouse et permettant de réaliser des requêtes analytiques sur un ensemble important de données. Cette modélisation permettra ainsi de mettre en œuvre un outil d'analyse permettant de bien répondre aux problématiques suivantes :

- 1. Comment *tam-voyages* pourront-ils augmenter leur taux de ventes en se basant sur la circulation du réseau ¹?
- 2. Comment *tam-voyages* pourront-ils suivre l'évolution et la maintenance de leurs matériaux de manière à réduire les dépenses qui y sont associées?

Ces problématiques seront ainsi adressées en analyzant les actions et opérations effectuées par *tam-voyages*, notamment en choisissant celles qui paraissent les plus pertinentes et les plus importantes en termes de données intégrées et flexibilité des critères d'analyse.

^{1.} en particulier en examinant les lignes de tramway et les bus

Questions

Question 1

Les actions/opérations effectuées par tam-voyages considérées :

- Les voyages.
- La maintenance de véhicules.
- Les ventes de tickets et les abonnements.
- Les amendes.

Question 2

- 1. exemples de requêtes analytiques pour l'action « voyages » :
 - le nombre de voyageurs par bus, utilisant des tickets pour le mois de juillet.
 - le prix moyen par type de ticket pour chaque voyage pendant les vacances de noël de 2018.
 - le nombre de voyageurs abonnés par ligne pour chaque voyage pour les deux derniers mois.
 - l'arrêt le plus fréquenté par toutes les lignes de circulation.
- 2. exemples de requêtes analytiques pour l'action « maintenance » :
 - le nombre de bus maintenus pour le mois de septembre 2018.
 - les X premières lignes ayant le nombre maximale de maintenances par mois.
 - les X premières véhicules nécessitant le plus de maintenance pour les 6 dernier mois.
- 3. exemples de requêtes analytiques pour l'action « ventes » :
 - le nombre d'abonnés ayant plus que 26 ans pour le mois d'août 2018.
 - le nombre d'abonnés par date de naissance pour l'année 2018.
 - les types d'abonnement les plus fréquents pour l'année 2018.
- 4. exemples de requêtes analytiques pour l'action « amendes » :

- les lignes qui ont générées le plus d'amendes pour les deux derniers mois.
- les lignes les plus contrôllées de la semaine dernière.
- le nombre des abonnés qui ont reçu des amendes par ligne, l'avant-midi.
- la somme total d'amendes rapportée par type de voyageur par ligne pour le dernier mois.

Question 3

Les actions considérées, par ordre d'importance :

- 1. « voyages ».
- $2. \ll \text{ventes} \gg$.
- 3. « maintenance ».
- 4. « amendes ».

Question 4

Les actions les plus pertinentes à analyser vis-à-vis les problématiques avancées sont « voyages » et « maintenance » qu'on traitera de la manière suivante :

voyages: modèle en étoile détaillé.

maintenance : modèle en étoile *moins* détaillé, en particulier le modèle intitulé "*periodic snapshot*".

Questions 5 et 6

Data Mart de « voyages »

Les mesures de la table des voyages sont :

— profit_travel : additive

FIGURE 1 – modèle en étoile de l'action « voyages »

Data Mart de « maintenance »

Les mesures de la table des maintenances sont :

— cost : additive

— estimated_time : additive

FIGURE 2 – modèle en étoile de l'action « maintenance »

Data warehouse de tam-voyages

FIGURE 3 – le data warehouse résultant

Remarques

- l'attribut **id_travel** de la table **Travel** est la clé primaire utilisé pour identifier un voyage (*dimension dégénérée*).
- l'attribut **price_travel** de la table **Travel** désigne la somme d'argent que la société gagne par voyageur selon le ticket acheté ou l'abonnement du voyageur associé.
- l'attribut **avg_served_people** de la table **Line** désigne le nombre de passagers en moyenne désservis par la ligne.
- l'attribut **place** de la table **Station** désigne l'endroit où se trouve la station (avenue X, rue Y, ...).
- l'attribut **standing_capacity** de la table **Vehicle** désigne la capacité théorique maximale de personnes debout.
- l'attribut wheelchair_capacity de la table Vehicle désigne la capacité théorique maximale de personnes handicappées et de leurs fauteuils roulants.
- la table Traveler est une dimension qui contient deux dimensions

corrélées (les abonnés et les non abonnés):

- 1. si le tuple désigne un **voyageur abonné**, alors on traite le tuple en tant qu'un **voyageur concret** dont les informations sont à notre disposition.
- 2. si le tuple désigne un **voyageur non abonné**, alors on traite le tuple en tant qu'un **type de voyageur** défini par le ticket qu'il utilise pour faire le trajet.
- 3. cette décision de corrélation est utilisée pour éviter la normalisation et l'introduction d'une superclasse abstraite étendue par les classes désignant les voyageurs abonnés et non abonnés.
- 4. nous utilisons ainsi l'attribut **anonymous** afin de distinguer les deux types de voyageurs. En effet, **anonymous** valera *true* quand le voyageur est non abonné, sinon il valera *true*.
- 5. les tuples de cette table contiendront ainsi des valeurs nulles pour certains attributs selon le type de voyageur.

Question 7

Question 8

Pour le data mart de « voyages »

$_{ m travel} \mid id_date \mid id_time$	$oxed{id_traveler \mid id_line \mid}$	$id_station \mid id_vehicle \mid$	$profit_travel$
---	---	-------------------------------------	------------------

Table 1 – Travel

id_line	num_line	type_vehicle	start_station	end_station	nb_stations	distance_travel	avg_duration_travel	avg_duration_btw_stations	avg_served_people
101	7	bus	Hôtel du département	La Martelle	34	1510	45	5	40
102	7	bus	Hôtel du département	Les Bouisses	34	1515	45	4	40
201	1	tram	Odvecoum	Mosson	30	15700	50	9	150

Table 2 – Line

id_station	name	$coord_x$	coord_y	place	disability_access	sheltered_for_rain
1	Hôtel du département	43.622108	3.835276	Avenue des moulins	false	true
2	Pergola	43.617558	3.839687	Rue Paul Rimbaud	false	true

Table 3 – Station

Pour le data mart de « maintenance »

id_vehicle	type	model	\max_speed	nb_seats	standing_capacity	wheelchair_capacity
1	bus	TransBus Enviro30	200	20	40	20
2	tram	Alstom Citadis 401	300	100	150	150

Table 4 – Vehicle

id_traveler	anonymous	name	surname	birth_year	gender	address	nationality	subscription_type	subscription_fees	ticket_price
1	true	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	10
2	true	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	1.60
100	false	Jean	Toto	1995	M	16 avenue de titi	France	contrat mobilité jeune	196	NULL
101	false	Jane	Tutu	1987	F	2 boulevard de nyehe	Angleterre	contrat mobilité pour tous	481.50	NULL

Table 5 – Traveler

id_date	date	year	month_year	month_calendar	day_month	day_calendar	day_week	day_year	holiday_indicator	weekday_indicator
1	21/10/2018	2018	10	Octobre	21	Dimanche	0	294	Non Holiday	Weekend
2	22/10/2018	2018	10	Octobre	22	Lundi	1	295	Non Holiday	Weekday
3	31/10/2018	2018	10	Octobre	31	Mercredi	3	295	Holiday	Weekday

Table 6 – Date

id_time	$full_time_description$	hours	minutes	seconds	AM_PM_indicator	$day_part_segment$
1	12:00:00	12	0	0	AM	Midnight
2	12:00:00	12	0	0	PM	Midday
3	8:30:12	8	30	12	PM	Afternoon

Table 7 - Time