

TN
X57
C64
C375
no 3
U.S.

U. S. DEPARTMENT OF THE INTERIOR
PROTOTYPE OIL SHALE LEASING PROGRAM

TRACT C-b

QUARTERLY REPORT #3

(Through May 31, 1975)

BLM Library
D-55CA, Building 50
Denver Federal Center
P. O. Box 25047
Denver, CO 80225-0047

Submitted to:

Mr. Peter A. Rutledge
Area Oil Shale Supervisor
Conservation District
U. S. Geological Survey
Grand Junction, Colorado

By:

Ashland Oil, Inc.
Atlantic Richfield Company
Shell Oil Company, Operator
The Oil Shale Corporation

JULY 15, 1975

TABLE OF CONTENTS BY VOLUME NUMBER

Volume
Number

Table of Contents

Alluvial Well Pump Test

Alluvial Well Pump Test

II B-9 AQUIFER DATA - PUMPING TESTS

Lower Aquifer Pumping Test

Quarterly Report #2 contains a detailed description of the objectives and history of the upper zone phase of the aquifer pumping test at AT-1. It was stated that the upper zone test was terminated in mid-January when a drilling rig was brought back to the site, and AT-1 deepened. This action, in fact, began the preparation for testing the lower zone. The test well AT-1 was drilled to the base of the mine zone and casing was installed and cemented in place. The well was then drilled an additional 270 feet, downward into the "lower zone aquifer." A pump with water production capability of 150 gallons per minute was installed at a depth of 1430 feet below ground surface. (It was determined during the deepening of AT-1 that the lower aquifer could not sustain rates in excess of 150 gpm. The upper aquifer, by comparison, was capable of yielding greater than 400 gpm.)

Water produced during the deepening operation had a relatively low dissolved solids content, 1500 mg/l and a fluoride content of approximately 20 mg/l. This was similar in character to waters directly above the Mahogany zone in the upper aquifer. During the test, fluoride and boron levels averaged 20 mg/l and 1 to 2 mg/l, respectively. During the lower zone test, the dissolved solids content of production water never exceeded 1200 mg/l.

Background pressure readings were taken for several days before the test was actually commenced. Almost immediately, however, an equipment problem forced a restart. After restart, the test well maintained a rate of approximately 120 gpm for 17 days. At that time, the generator unit failed and the initial pumping phase of the test was terminated. A recovery period lasted for eight days and was followed by a pulse-pumping phase before final shut-in. A complete chronology of events for the lower aquifer test is given in Table II B-51.

An overview of pressure response data generated during the lower aquifer test revealed that strong anisotropic or directional permeability exists. The orientation of this anisotropy in the lower aquifer can be described as following the general direction of AT-1 to SG-6. This is approximately normal to the directional permeability shown in the upper zone test. Computer analysis has not been initiated as yet because pressure data are still being reduced and will not be available in suitable format for some time. Manual plots and interpretation of the pressure responses in the lower aquifer, however, have yielded transmissivity values as shown in Tables II B-52 and II B-53. More complete permeability values are being calculated by the Leasee's reservoir simulation group.

8
100

ε

Figure
II B-14

SCHEMATIC CROSS-SECTION LOWER AQUIFER PUMP TEST

C-b TRACT, COLORADO

SCALE: None

Perforated Interval

} II Tubing String Number

Figure II B-14

SCHEMATIC CROSS-SECTION LOWER AQUIFER PUMP TEST

C-b TRACT, COLORADO

SCALE: None

10 } JI Tubing String Number

With respect to potential aquifer interconnection, it was observed that pressure gauges in the upper zone showed no response to the pumping in the lower zone, in spite of large drawdown of lower aquifer water levels during the pumping of AT-1. Water levels in the upper aquifer continued to recover throughout the lower zone test. This is an expected response, if the two aquifer systems are hydraulically separated by the Mahogany zone; water levels in the upper zone would be expected to recover or rise as a response to the termination of pumping of the upper aquifer.

Supplemental graphs have been provided which illustrate the manual data interpretation conducted to date (Pages II B-1088 through II B-1157). Pressure (psi) is plotted versus time for each of the well strings monitored during the lower zone tests. Additional data in the form of computer reduced water level responses and pressure responses is currently being generated and is not available for reporting.

TABLE II B-51
LOWER AQUIFER PUMP TEST

Sequence of Events

6-hour surge test drawdown (systems test) 2-5-75 (12 P.M.-6 P.M.)
surge test recovery 2-5-75 (6 P.M.) to 2-15-75 (5:20 P.M.)
Original start of drawdown 2-15-75 (5:20 P.M.) to 2-17-75 (12:45 P.M.)
(generator failure)
Recovery Period 2-17-75 (12:45 P.M.) to 2-21-75 (12:00 P.M.)
Initial drawdown 2-21-75 (12:00 P.M.) to 3-10-75 (10:00 A.M.)
. 17 days pumping
Initial recovery 3-10-75 (10:00 A.M.) to 3-18-75 (12:00 P.M.)
8 days shut in
Pulse test drawdown 3-18-75 (12:00 P.M.) to 3-26-75 (12:00 P.M.)
8 days pumping
Final recovery 3-26-75 (12:00 P.M.) to 4-15-75 (12:00 P.M.)
20 days shut in
Pulled pump and instruments 4-15-75
Set up limited data collection network in AT1-c, SG-6, SG-10, and SG-11
5-7-75 through 5-14-75 changed upper strings to Stevens digital
recorders, lower and middle strings using pressure monitor on Sperry
systems.

LOWER AQUIFER PUMP TEST
DRAWDOWN AND RECOVERY CURVES

II B-1085

TABLE II B-52
TRANSMISSIVITY AND STORAGE COEFFICIENT VALUES
LOWER AQUIFER PULSE TEST - DRAWDOWN PHASE

WELL NO.	DRAWDOWN COMPUTATIONS	Horizontal Permeability
AT-1	T = 359 gpd/ft. early stage T = 532 gpd/ft. middle stage T = 756 gpd/ft. final stage	153.5 millidarcys
AT-1A (String #1)	T = 465; S = 5x10-4	94.4 millidarcys
AT-1A (String #2)	Interpretative technique is not applicable	
AT-1C (String #1)	T = 219; S = 5x10-5 early stage Instrument drift during final stage	
AT-1C (String #2)	T = 316; S = 2x10-5 early stage T = 513; S = 6x10-7 final stage	104.2 millidarcys
AT-1D (String #2)	T = 271; S = 3x10-5 early stage T = 327; S = 7x10-7 final stage	66.4 millidarcys
SG-6 (String #1)	Slight downward response	
SG-6 (String #2)	T = 442; S = 8x10-5 final stage	89.7 millidarcys
SG-10 (String #1)	T = 1468; S = 2x10-4 T = 811; S = 1x10-4	164.6 millidarcys
SG-10 (String #2)	No response	
SG-11 (String #1)	No response	
SG-11 (String #2)	Overall downward trend	II B-1086

6

7

8

TABLE II B-53

TRANSMISSIVITY and STORAGE COEFFICIENT VALUES

LOWER AQUIFER PUMP TEST

Well No.	Initial Drawdown	Initial Recovery
AT #1	T = 310 g/d/ft. Initial T = 460 Secondary T = 380 Tertiary	T = 160 g/d/ft. Initial T = 320 Secondary
AT #1A (String #1)	T = 441; S = 3.11×10^{-4} T = 338; S = 4.56×10^{-4}	T = 435; S = 5.64×10^{-4} T = 335; S = 8.11×10^{-4}
AT #1A (String #2)	No Valid Response	No Valid Response
AT #1C (String #1)	T = 129; S = 1.52×10^{-4} T = 260; S = 2.24×10^{-5}	T = 1125; S = 1.80×10^{-4} T = 255; S = 3.22×10^{-5}
(String #2)	T = 173; S = 5.82×10^{-5} T = 275; S = 2.04×10^{-5} T = 376; S = 3.77×10^{-6}	T = 157; S = 9.44×10^{-5} T = 340; S = 1.98×10^{-5}
AT #1D (String #1)	T = 143; S = 1.08×10^{-4} T = 348; S = 8.63×10^{-6}	T = 136; S = 1.18×10^{-4} T = 325; S = 2.14×10^{-5}
SG - 6 (String #1)	T = 1430; S = 4.52×10^{-4} T = 620; S = 3.87×10^{-4}	T = 2800; S = 7.38×10^{-4}
(String #2)	T = 1520; S = 6.86×10^{-5} T = 574; S = 5.62×10^{-5} T = 305; S = 6.66×10^{-5}	T = 400; S = 7.53×10^{-5}
SG - 10 (String #1)	T = 490; S = 6.06×10^{-5}	T = 950; S = 1.13×10^{-4} T = 846; S = 1.11×10^{-4}
(String #2)	No Response	Very Slight Downward Response
SG - 11 (String #1)	No Response	No Response
(String #2)	T = 1065; S = 1.69×10^{-3}	No Recovery-Downward Response

6

6

6

At T#1 Recovery Test 3-10-75 — 3-18-75

Time in hours size pump turned off

AT#17 - String #2 - Recovery Test 3-10-75 - 3-18-75

21, 631.3

Time in hours since pump turned off

11 B-1090 10

Gross loss due
to leak in option 6

$$T = \frac{26.4 S}{0.5240.51 - 34.5 \cdot 3 - 9.3} = 21.5$$

$$= \frac{26.4 \times 125}{21.5}$$

$$T = 1535.9 / 1.4 / 10^4 ?$$

$$S = \frac{T \cdot c}{430 \times 10^2} \quad r = 35^\circ$$

$$= \frac{1535.9 \times 3180}{3.47 \times 10^7}$$

$$= 1.41 \times 10^{-1} ?$$

Delta
inches?

370

350
330

360

C

C

C

AT-1C String #1 Recovery Test 3-10-75 — 3-15-75

Time in hours since pump turned off

C

C

C

ATT/C string #2 "Recovery Test" 3-10-75 — 3-18-75

(-)

(-)

(-)

AT#1D - String #1 Recovery Test 3-10-75 - 3-18-75

6

6

6

II B-1094

470

SG-6 #1 String Recovery Test 3-10-75 - 3-18-75

6

6

6

24.1/11

II B-1096

420

SG-10 Spring #1 Recovery Test 3-10-75 - 3-18-75

•

•

•

SG-10 String #2 Recovery Test. 3-10-75 — 3-18-75

SG-11 String #1 Recovery Test 3-10-75 — 3-18-75

SIG-11 String #2 Recovery Test 3-10-75 —

Time since pump turn on in hours

AT#1 - Draw down test. 2-28-75 - 3-10-75

ATM1 A-String #1 Drawdown Tost - 2-25-75 - 3-10-75'

6

6

6

STANDARD LOGARITHMIC 4 CYCLES X 70 DIVISIONS
PLUMBLEIGH CO., NEW YORK

400013

AT #1 A - Shing H R Drawdown T_{0.5}T 2-28-75 - 3-10-75
C-4870

AT #1C - Drawing #1 Drawn by [unclear] 2-28-75 - 3-10-75

6

6

6

AT #1 C - String #2 Drawdown Test 2-22-20-3-10-75

6

6

6

AT #172 - string #1 Drawdown Test # 2-26-75 - 3-10-75

€

€

€

56-#6 - #/editing Drawing Test 22k-75-3-10-75

FIG. 2: CIRCUIT LOGARITHMIC A CYCLES X 70 DIVISIONS

46 Gm's

e

e

e

III B-1107

56-6 #2 Spring Drawdown Test - 2-21-75 - 3-10-75

€

€

€

56-10-d1 Sizing - Drawdown Test 2-27-75 - 3-10-75

56-10 #25 King Drawdown Test 2-24-75 - 3-10-75

5-11 Sinking w/ Drawdown Test 2-21-75 - 3-10-75

Time in hours since first turned on

Time in Hours since pump turned on

100
1000

K-42 SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KELUFFEL & ESSER CO., MADE IN U.S.A.

46 6212

Lower Flywiper - Dual Down 3-18'-7.5 → 3-26'-7.5

AT-1A Signaling / False test

142 SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

466212

e

e

e

K-22 SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KNUFFEL & ESSER CO., MADE IN U.S.A.

46 6212

Time in hours since pump turned on

Time in hours since pump turned on

AT-1D - String #2 lowest Acq. Pts: Pale Yellow - DrawDown 3-18-75

1600 SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

466212

Pulse Test lower Ammeter 56-6 at 2 String Drawdown Test 3-18-75 - 3-26-75

Pulse Test 56-10 String #1 Drawdown Test 3-18-75 - lower Agitator 3-26-75

46 6212

K.E.
SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KESIFFEL & ESSER CO. MADE IN U.S.A.

Pulse Test

String #2 Drawdown

3 - 18' - 7.5' — Lower Aquifer 3-26-75 —

46 6212

K&E SEMILOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

Time in hours since pump turned over

10

10

10

10

Pump Test Block CTF

II B-1122

2 min

670

Pulse Test Lower Aquifer SG-11 String #1 Drawdown Test 3-18-75 — 3-26-75

Pulse Test Lower Aquifer SG-11 String & Drawdown test

०

८

९

LOWER AQUIFER PUMP TEST
FINAL RECOVERY CURVES

II B-1124

6

6

6

TABLE II B-54
TRANSMISSIVITY and STORAGE COEFFICIENT VALUES
Lower Aquifer Pump Test

Well No.	Final Recovery
AT#1	$T = 194.7 \text{ gpd/ft.}$ Initial $T = 351.0 \text{ gpd/ft.}$ Final
AT#1A (String #1)	$T = 333.4 \text{ gpd/ft.}; S = 6.4 \times 10^{-4}$ Initial $T = 365.4 \text{ gpd/ft.}; S = 5.3 \times 10^{-4}$ Final
(String #2)	NO VALID RESPONSE
AT#1C (String #1)	$T = 133.4 \text{ gpd/ft.}; S = 1.8 \times 10^{-4}$ Initial $T = 310.3 \text{ gpd/ft.}; S = 1.5 \times 10^{-5}$ Final
(String #2)	$T = 226 \text{ gpd/ft.}; S = 5.2 \times 10^{-5}$ Initial $T = 346.9 \text{ gpd/ft.}; S = 1.4 \times 10^{-5}$ Final
AT#1D (String #1)	$T = 303.2 \text{ gpd/ft.}; S = 2.5 \times 10^{-5}$ Initial $T = 360.5 \text{ gpd/ft.}; S = 1.1 \times 10^{-5}$ Final
SG-6 (String #1)	$T = 380.8 \text{ gpd/ft.}; S = 1.02 \times 10^{-3}$
(String #2)	$T = 400.5 \text{ gpd/ft.}; S = 8 \times 10^{-5}$
SG-10 (String #1)	$T = 694.6 \text{ gpd/ft.}; S = 1.4 \times 10^{-5}$
(String #2)	NO RESPONSE
SG-11 (String #1)	NO USABLE RESPONSE DUE TO HIGH GAS PRESSURE POSSIBLE
(String #2)	NO USABLE RESPONSE DUE TO INSTRUMENT DRIFT

€

€

€

II B-1126

$$Q = 116.7 \text{ gpm}$$

$$\Delta S = \frac{319 - 245.5}{158.2} = 0.455 \text{ in.}$$

$$\frac{T_1}{T_2} = \frac{264 \cdot 116.7}{527.5} = 0.455$$

400

$\frac{T_1}{T_2} = \frac{\Delta S}{\Delta S}$

300

200

150 Recovery in ft. / in. Hg

11 B-1127 100

Check Valve

Stuck

Time in hours since pump turned off
100

$$r = 85 \text{ ft.}$$

$$t_0 = 66 \text{ min.}$$

$$\Delta S = 382 - 342 = 40 \text{ ft.} \quad T_1 = 264.1167 = 333.49 \text{ pds/ft.}$$

$$T = \frac{T_1 - t_0}{\Delta S}$$

$$S = \frac{T_1 - t_0}{4190 r^2}$$

$$S = \frac{333.4964}{4190 (85)^2} = 6.4 \times 10^{-4}$$

$$A_S = 419.5 - 342 = 77.5 = 77.5 \text{ min.}$$

$$T_2 = 264.1167 = 264.1167 \text{ min.}$$

$$S_2 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_3 = 84.7 = 84.7 \text{ min.}$$

$$S_3 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_4 = 112.3 = 112.3 \text{ min.}$$

$$S_4 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_5 = 150.9 = 150.9 \text{ min.}$$

$$S_5 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_6 = 189.5 = 189.5 \text{ min.}$$

$$S_6 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_7 = 228.1 = 228.1 \text{ min.}$$

$$S_7 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_8 = 266.7 = 266.7 \text{ min.}$$

$$S_8 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_9 = 305.3 = 305.3 \text{ min.}$$

$$S_9 = \frac{36.5451}{4190 (85)^2} = 5.54 \times 10^{-4}$$

$$T_{10} = 342.1 = 342.1 \text{ min.}$$

460

440

420

400

380

360

340

320

III B-1128

Recov.
11/11/28

382

$$\begin{aligned}
 C_1 &= 116.75 \text{ sec} \\
 T &= 85 \text{ sec} \\
 A_S &= 31.5^{\frac{1}{4}} = 19.77 \\
 S &= \frac{1}{19.77} = 0.0510 \\
 t_0 &= 67.7 \text{ min}
 \end{aligned}$$

$$\begin{aligned}
 T &= \frac{364.116.7}{447.7} = 619.95 \text{ sec} \\
 ? &= 619.95 \text{ sec}
 \end{aligned}$$

$$\begin{aligned}
 A_S &= 31.5^{\frac{1}{4}} = 19.77 \\
 S &= \frac{1}{19.77} = 0.0510 \\
 t_0 &= 67.7 \text{ min} \\
 T &= \frac{364.116.7}{447.7} = 619.95 \text{ sec} \\
 ? &= 619.95 \text{ sec}
 \end{aligned}$$

$$\begin{aligned}
 T &= \frac{364.116.7}{447.7} = 619.95 \text{ sec} \\
 ? &= 619.95 \text{ sec}
 \end{aligned}$$

360 370 380 390 400 410 II B-1129 420

SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

46 6212

SEMITILOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO., MADE IN U.S.A.

46 6212

K-2 SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

46 6212

TIME IN HOURS SINCE PUMP TURNED OFF

$$T = \frac{364.6}{\frac{8.83}{364.116.7}} = 3582.89 \text{ K}$$

卷之三

卷之三

卷之三

卷之三

卷之三

485 II B-113

480

21

17

475

42

۲۳۶

470

1

1

465

1

1

460

15-35

FINAL RELEVANCY

C

C

C

LOG SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KUFFEL & ESSER CO. MADE IN U.S.A.

46 6212

K-2
SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

46 6212

e

e

e

Model 72 SEMI-LOGARITHMIC 5 CYCLES X 70 DIVISIONS
KELFILL & ECKER CO. MADE IN U.S.A.

46 6212

TIME IN HOURS SINCE PUMP TURNED OFF

426

425

424

II B-1138 423

422

421

420

419

C.R. #11 STRING #2 FINAL READING 100% ADVANCE 2-7-75 TO 4-15-75

100 90 80 70 60 50 40 30 20 10 1 0.1

LOWER AQUIFER PUMP TEST
CORRECTED PRESSURE CURVES

II B-1139

WATER POLLUTION FUND TEST : SLO - 11 ENTHALPY + T

II-B-1141

KOF: 20 x 30 TO THE INC 47 1242
SOUTHERN INSTITUTE OF TECHNOLOGY

K.E. II B-1142
20 TO 20 TO THE INDEX 321232.
REVERSE & REVERSE CO.

II-B-1143

K-E 20 x 20 INCHES 471242
MERRILL'S LABORATORY CO.

Pressures in PSI - Actual

020

020

020

020

020

Time: Hours

Pressure in P.S.I.-Ounces/inch²

RECORDED BY THE INCH 471242

11 B-1144

DOSE RADIATION COND TEST: S6-10 GRAMS #5

11-B-1145
K-E 20 x 20 THERMOCO 471242

11-B-1146

K-E 10 X 10 THE TECH 471242

Pressure in PSI-Corrected

Expanded Scale

Process in PSL-Corresponding

RECORDED & INDEXED 10
10-15-1961 BY J. H. COOPER

II B-1147

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ
الْحُكْمُ لِلَّهِ رَبِّ الْعَالَمِينَ
إِنَّا هُوَ بِكُلِّ شَيْءٍ عَلِيمٌ

NO. 90004 FORTRESS BUMPER TEST : SLAB STRIPPING

841-B-II 1242 K.E. 100000 THE INC. 1242 1242 1242 1242 1242 1242 1242 1242 1242 1242 1242 1242

11-B-1149

Pressure in PSI - corrected

Pressure in PSI - Air initial

300
200
100
0

ME 30 x 30 INCH A71242

B-1150

TIME: H.C.D.15

250 225 200 175 150 125 100 75 50 25 0

300

230

200

170

140

110

80

50

20

0

N.E. 30 V.20 TO THE INCH 471242
RECORDED & INDEXED CO.

Pressure in PSI - Corrected

400

300

200

100

0

3511-B 11

Time: Nov 6, 5

200 100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

K.E. 20 X 30 TO THE INCH 471242
PASSEUR IN PSS-COMM-A.L.
MEASURED & DRAWN BY

CHARGE NUMBER

HOLYWOOD HOUSING PROJECT : AT-1A TRAILER #5

e

e

e

LOWE'S ACCURATE PUMP TEST : FITTED DRILLING

PRESSURE IN PSI - OIL AND GAS

K.E. 20 X 10 TO THE POWER OF 671242
RECORDED & DRAWN BY

II-B-1155

LOWER AQUIFER FLOW TEST : AT - 10 SPRINGS

200

Pressure in PSI - Circular

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

II-B-1157

Litholo

Lower Aquifer Pump Test

AQUIFER DATA
ALLUVIAL WELL PUMP TEST

II B-1158

C

C

C

TABLE II B-55

ALLUVIAL WELL A#1 PRODUCTION 6.11 gpm
 Measured 4-23-75 Starting 1129 hours
 Static Water Level 46.82 ft.

Drawdown		Recovery	
Column #1	Column #2	Column #1	Column #2
time of measurement from 0 = 1129 hours + minutes	drawdown in feet (-) from 0 = 46.82 feet below land surface	time of measurement from 0 = 1309 hours + minutes	recovery in feet (-) from 0 = 46.82 feet below land surface
0	0	0	0
1	0.59	1	.55
2	0.63	2	.62
3	0.675	3	.66
4	0.70	4	.68
5	0.705	5	.70
6	0.715	6	.71
7	0.730	7	.71
8	0.730	8	.72
9	0.730	9	.72
10	0.725	10	.725
12	0.735	12	.73
14	0.740	14	.74
16	0.745	15	.75
18	0.745	18	.75
20	0.745	20	.76
25	0.745	25	.76
30	0.750	30	.76
35	0.750	35	.76
40	0.755	40	.765
45	0.755	45	.77
50	0.755	50	.77
60	0.755	60	.77
70	0.760	70	.77
80	0.765	80	.77
90	0.760	90	.77
100	0.762		
120	0.760		
140	0.760		
160	0.760		
180	0.750		
temperature 12.5°C	conductivity 2200 ohms		

C

C

C

TABLE II B-56
 ALLUVIAL WELL A#2 PRODUCTION 6.11 gpm
 Measured 4-14-75 Starting 13:05 hours
 Static Water Level 14.06 ft.

Drawdown		Recovery	
Column #1	Column #2	Column #1	Column #2
time of measurement from 0 = 13:05 hours + minutes	drawdown in feet (-) from 0 = 14.06 feet below land surface	time of measurement from 15:45 hours + minutes	recovery in feet (-) from 0 = 14.06 feet below land surface
0	0	0	5.72
1	2.8	1	3.0
2	3.25	2	2.15
3	3.7	3	1.79
4	3.93	4	1.59
5	4.03	5	1.40
6	4.15	6	1.27
7	4.29	7	1.16
8	4.37	8	1.18
9	4.47	9	1.12
10	4.56	10	.95
12	4.77	12	.83
14	4.94	14	.75
16	5.04	16	.69
18	5.12	18	.63
20	5.20	20	.58
25	5.28	25	.48
30	5.41	30	.40
35	5.47	35	.33
40	5.55	40	.28
45	5.60	45	.25
50	5.60	50	.21
60	5.58	60	.15
70	5.67	70	.10
80	5.68	80	.05
90	5.69	90	.05
100	5.69	100	.01
120	5.72	120	-.03
140	5.74	140	-.05
160	5.76	160	-.07
180	5.72	180	-.09
200	5.67	200	-.10
220	5.67	220	-.11
240	5.72	240	-.12
average temperature 11.0°C	average conductivity 1300 ohms		

C

C

C

TABLE II B-57
ANALYTICAL SUMMARY
ALLUVIAL WELLS.

#A1 - Drawdown (late data) T = 67,210 gpd/ft.
Recovery (early data) T = 10,082 gpd/ft.

#A2 - Drawdown (early data) T = 881 gpd/ft.
Recovery (late data) T = 2,688 gpd/ft.

The range between early and late data analyses is the result of hole effects on the early data in general; the late data of these analyses will be the figure used.

A-1 DRAWDOWN - APRIL 23, 1975

$$T = \frac{2640}{\Delta s}$$

$\Delta s = 1.62 + .024 = .048$

$$\frac{1}{T} = \frac{264(1.6)}{.024} = 673.0 \text{ cpm}$$

1.1

1.0

0.9

1.000

0.7

0.6 II B-1162 65

0.4

A-1 Recovery April 23, 1975

$$t = \frac{264Q}{A}$$

$$Q = 6.119 P^M$$

$$\Delta S = 1.871 - .711 = .16$$

$$\bar{T} = 120.5 \text{ min}$$

0.9

0.8

1.774 21 NODOM 0.7

0.6

0.6

II B-1163

0.5

0.4

K+E SEMI-LOGARITHMIC • 3 CYCLES X 70 DIVISIONS
KEUFFEL & ESSER CO. MADE IN U.S.A.

465493

10 Minutes Sun/CE 12MP OFF

A2 DRAWDOWN

100

100

MINUTES SINCE PUMP ON

J. Matto

H-1

DATE: APRIL 23, 1975 STARTING TIMING: 11:29 A.M.
 STATIC WATER LEVEL: 16.82 SAMPLE TAKEN: YES

DRAWDOWN (in feet)

IN LEVEL	ΔH_2O	TEMP.	CONDUCT	GPM	MIN	H_2O	LEVEL	TEMP.	CONDUCT	GPM
0	0.60				90	0.760				
1	0.59				100	0.762				
2	0.63				120	0.760				
3	0.675				140	0.760				
4	0.70				160	0.760	12.5	2200	6.11	
5	0.705				180	0.750				
6	0.715				200					
7	0.730				220					
8	0.730				240					
9	0.730						RECOVERY (in feet.)			

10	0.725	0	0	MIN.	ΔH_2O	LEVEL	MIN.	ΔH_2O	LEVEL
12	0.735	1	.55	20	.76	160			
14	0.740	2	.62	25	.76	180			
16	0.745	3	.66	30	.76	200			
18	0.745	4	.68	35	.76	220			
20	0.745	6.11	5	.70	40	765	240		
25	0.745		6	.71	45	.77			
30	0.750		7	.71	50	.77			
35	0.750		8	.72	60	.77			
40	0.755		9	.72	70	.77			
45	0.755	6.11	10	.72	80	.77			
50	0.755		12	.73	90	.77			
60	0.755		19	.74	100				
70	0.760		16	.75	120				
80	0.765		18	.75	140				

J. Morris

A L

DATE: APRIL 14, 1975 STARTING, TIMING 1.305 Hours
 STATIC WATER LEVEL: 14.06 SAMPLE TAKEN: YES

DRAWDOWN (in feet)

N	ΔH_2O	LEVEL in ft.	TEMP.	CONDUCT	GPM	MIN	H_2O	LEVEL	TEMP.	CONDUCT	GPM	
0	0					90	5.69	11.0	1300	6.11		55 gal / 4 min.
1	.2.8					100	5.69	11.0	1300	6.11	"	
2	3.25					120	5.72	11.0	1300	6.11	"	
3	3.7					140	5.74	11.5	1300	6.11	"	
4	3.93					160	5.76	11.0	1300	6.11	"	
5	4.03					180	5.72	10.5	1300	6.11	"	
6	4.15					200	5.67	10.5	1300	6.11	"	
7	4.29					220	5.67	10.5	1300	6.11	"	
8	4.37					240	5.72					

RECOVERY (in feet)

				ΔH_2O	LEVEL	MIN.	ΔH_2O	LEVEL	
10	4.56			0	5.72				
12	4.77			1.3	3.0	20	.58	160	-.07
14	4.94			2	2.15	25	.48	180	-.09
16	5.01			3	1.79	30	.40	200	-.10
18	5.12			4	1.59	35	.33	220	-.11
20	5.20			5	1.40	40	.28	240	-.12
25	5.28	11.5	1250	6	1.27	45	.25		
30	5.41			7	1.16	50	.21		
35	5.47			8	1.18	60	.15		
40	5.55	11.0	1300	9	1.12	70	.10		
45	5.60			10	.95	80	.05		
50	5.60	11.0	1300	6.11	12	.83	90	.05	
60	5.58				14.83	.75	100	.01	
70	5.67	11.0	1300	6.11	16	.69	120	-.03	
80	5.68	11.0	1300	6.11	18	.63	140	-.05	II B-1167

Lithologic Logs

II B-10 LITHOLOGIC LOGS

The lithologic logs present a description of rock types encountered in a core hole. The detail of description varies with depth and operation. In most cases, however, the lithology is described from drill cuttings on ten-foot intervals above the "A" groove. In the lower zones, the lithology is described from cores on one-foot intervals.

In addition to providing a means for describing lithology, the litholog presents data such as information on structural dip, joints, fractures, and general rock quality data. These data are entered in the lithologic log at the appropriate depth.

The final lithologic logs for the following wells are included in this section of the Third Quarterly Report:

AT-1a	SG-10
SG-1	SG-11
SG-6	SG-17
SG-8	SG-18
SG-9	SG-19

For information on lithologic logs compiled for other wells, refer to the Well Summary Table II B-1.

LOGS CONSIDERED SENSITIVE

ASK PERMISSION OF AOSS TO SEE LITH. LOGS

