Real-Time Fraud Detection in Transactions.

1. DATASET: THE PAYSIM DATASET

1.1 Background and Origin

The **PaySim dataset** is a **synthetic dataset** that simulates **mobile money transactions**. Originally, it was published on **Kaggle**, where it can be downloaded either manually or via the **Kaggle API**. The dataset is designed to **mimic real financial transactions** in terms of scale, distribution, and types of operations, while not revealing any sensitive private customer data (since it's artificially generated).

Why Synthetic?

Real financial transaction data is typically **strictly confidential** (due to privacy regulations and to avoid revealing vulnerabilities). Hence, PaySim was created to provide **researchers** and **developers** a near-realistic scenario to test **fraud detection** algorithms.

Kaggle Link:

We can find the dataset on Kaggle by searching for "PaySim dataset." Typically we can do something like:

kaggle datasets download -d YOURUSERNAME/paysim

to retrieve it with the Kaggle CLI, or we can download it directly from the Kaggle website.

1.2 Size and Format

- Rows: ~6.36 million transactions (some versions might slightly differ).
- File Size: ~500 MB in CSV form.

• Format: Plain CSV with a header row.

This large volume makes it ideal for **big data** or **streaming** pipeline demonstrations.

1.3 Columns in the PaySim Dataset

The dataset typically includes the following columns (naming might differ slightly depending on the version used):

1. step

- Integer: Each "step" corresponds to a discrete time unit in which transactions occurred.
- Think of it as an approximation of "hours" or "minutes," but the dataset's authors just named it "step."

2. type

- Categorical: Transaction type. Common values include:
 - PAYMENT
 - TRANSFER
 - CASH_OUT
 - DEBIT
 - CASH_IN (in some versions)
- This is an important feature because fraud often correlates with TRANSFER or CASH_OUT.

3. amount

• *Float*: The monetary value of the transaction. Ranges from small amounts to very large ones (up to 10^7 or so).

4. nameOrig

• *String*: The unique identifier of the sender (origin) account. Often in the format cxxxxxxx.

5. oldbalanceOrg

• Float: The sender's account balance before the transaction.

6. newbalanceOrig

• Float: The sender's account balance after the transaction.

7. nameDest

8. oldbalanceDest

• Float: The recipient's account balance before the transaction.

9. newbalanceDest

Float: The recipient's account balance after the transaction.

10. isFraud

- Integer (0 or 1): Primary label indicating whether the transaction is fraudulent
 (1) or legitimate (0).
- Highly imbalanced: only a tiny fraction are 1.

1. isFlaggedFraud

- Integer (0 or 1): Whether the transaction was flagged as fraud by some older heuristic approach.
- Typically near zero in most rows.

1.4 Key Dataset Characteristics

- Synthetic but distributionally realistic.
- **Unbalanced**: ~0.13% or fewer transactions labeled as fraud.
- **Transaction diversity**: multiple transaction "types," with typical money-laundering or fraud patterns lying mostly in **TRANSFER** and **CASH_OUT**.

2. EXPLANATION OF EACH COLUMN

Although summarized above, let's detail each column thoroughly:

1. step

- Each unit in this feature could be considered an incremental time step. Some interpreters assume it's an hour. If the highest step is ~743, that might represent a month's worth of hours.
- For time-series or streaming analysis, step can be used to see how transactions evolve over time.

2. type

- Common categories:
 - **TRANSFER**: Money moves from one account to another.
 - **CASH_OUT**: The account holder withdraws money, presumably as cash.
 - **PAYMENT**: Payment to a merchant.
 - **DEBIT**: Possibly a direct debit from an account by a third party.
 - (Sometimes **CASH_IN** if the dataset variant includes it.)
- This is an important predictor because historically, fraudulent transactions often cluster in certain types.

3. amount

- The transaction's monetary value. Ranges widely from negligible amounts to multi-million.
- Fraud can be high or low amounts, so we must carefully consider distribution.

4. nameOrig / nameDest

- Strings: Cxxxxxx for customer, Mxxxxxx for merchant.
- Not always needed for direct numeric modeling but can be used for feature engineering (like counting repeated patterns to the same "destination," etc.).

5. oldbalanceOrg / newbalanceOrg

- The balance before and after the transaction for the origin's account.
- Potentially important: a fraudulent user might have suspicious patterns like
 "oldbalanceOrg = amount, newbalanceOrg = 0" repeatedly.

6. oldbalanceDest / newbalanceDest

- Similarly for the recipient's account.
- If a destination is frequently receiving large amounts, that might be a red flag or normal merchant activity.

7. isFraud

- The main label used for **supervised** or **evaluation** tasks.
- In our anomaly detection approach, we often used this label only at the evaluation stage, because we do an unsupervised or semi-supervised approach.

8. isFlaggedFraud

- Often zero in most rows.
- The original creators said it flags transactions that are abnormally high (some threshold). Not extremely useful in practice, but can be a baseline.

3. OBJECTIVE OF THE PROJECT

Goal: **Real-Time Anomaly Detection in Financial Transactions** using the PaySim dataset as a stand-in for real mobile money data. Specifically:

1. **Detect** suspicious or fraudulent transactions **on the fly** (near real time).

- Leverage an unsupervised or semi-supervised approach (e.g., IsolationForest, LocalOutlierFactor, Autoencoders) to handle the extreme class imbalance.
- 3. **Demonstrate** a big data streaming pipeline with **Kafka** + **Spark Structured Streaming** for real-time ingestion.
- 4. **Provide** a user-friendly dashboard with **Streamlit** that can visualize the flagged anomalies in near-real time, offering **insights** to risk analysts or external stakeholders.

4. INTRODUCTION TO THE PROJECT

4.1 Overview

This project aims to simulate a **full end-to-end** pipeline for **fraud detection**:

- 1. **Data Ingestion**: Instead of a real transaction feed, we have the PaySim CSV. We mimic streaming by publishing rows to **Kafka**.
- Stream Processing: Spark Structured Streaming consumes from Kafka, runs a pre-trained anomaly detection model (like IsolationForest), and flags suspicious transactions.
- 3. **Storage**: The flagged anomalies are written out to **CSV** files in near-real time.
- 4. **Visualization**: A **Streamlit** dashboard loads those flagged anomalies, draws charts, and provides a user-friendly monitoring tool.

4.2 Contents of the Project

- 1. EDA & Feature Engineering Notebook (a local or Colab notebook)
- 2. **Model Training** with unsupervised ML (IsolationForest, LOF, Autoencoder).
- 3. **Kafka Producer Script** (kafka_producer.py): Streams rows from the CSV into Kafka topic.
- 4. **Spark Streaming Script** (spark_streaming.py): Subscribes to Kafka, loads pretrained model, flags anomalies, writes them to CSV.

- 5. **Streamlit Dashboard** (dashboard.py): Displays flagged anomalies in real time.
- 6. **Deployment**: GCP VM (Compute Engine) used to host Kafka + Spark + the entire pipeline.

4.3 Why PaySim?

- The PaySim dataset is large (~6 million rows), capturing the complexity of real transactions.
- The presence of an **isFraud** label allows for **evaluation** of anomaly detection.
- It's free, synthetic, and widely known in academic/industry examples.

4.4 Why Real-Time?

Fraud detection is most valuable when **immediate**. The faster we detect suspicious activity, the faster we can block it or investigate. Traditional offline batch detection might be too slow.

5. EXPLORATORY DATA ANALYSIS (EDA), FEATURE ENGINEERING, AND MODEL TRAINING

5.1 EDA

5.1.1 Basic Statistics

• **Total rows**: ~6,362,620

• **Fraud**: ~8,213 (only ~0.13%).

• Transaction Types: Payment, Transfer, Cash Out, Debit, etc.

• **Distribution of** amount: Skewed; many small transactions, few extremely large.

5.1.2 Visualizations

1. Fraud vs. Non-Fraud Count

A bar chart showing an enormous imbalance: ~6.35 million legitimate vs.
 ~8k fraud.

2. Transaction Types

• Payment is the most common type, followed by Transfer and Cash Out.

3. Time Step Analysis

• Plotted transaction volume over <a>step . Typically remains fairly stable but some peaks.

5.2 Feature Engineering

1. One-Hot Encode type:

- type_TRANSFER = 1 if the transaction type is "TRANSFER," else 0
- type_CASH_OUT , type_DEBIT , etc.

2. Delta Balances:

- delta_balanceOrig = newbalanceOrig oldbalanceOrg
- delta_balanceDest = newbalanceDest oldbalanceDest

3. Ratio:

- amount_div_oldbalanceOrg = amount / oldbalanceOrg (when oldbalanceOrg > 0)
- Helps detect if someone is draining their entire account in one go.

5.3 Model Choices and Why

We tested three unsupervised (or novelty) approaches:

1. IsolationForest

- Excels at isolating anomalies by randomly partitioning data.
- Very popular for high-dimensional data.
- In scikit-learn, we do IsolationForest(...).fit(...).

2. Local Outlier Factor (LOF)

- Density-based approach, compares local density of each sample to neighbors.
- Good for small or moderate datasets, but can be expensive for large data (LOF is O(n^2) with naive approach).

3. Autoencoder (Neural Network)

- A deep learning approach.
- Trained on normal (non-fraud) data to learn a compressed representation.
- High reconstruction error on anomalies.

5.4 Performance of Each Model

Based on our final classification reports (since we tested them on a labeled portion), we found:

5.4.1 IsolationForest

• Precision (Fraud): ~0.01

• **Recall (Fraud)**: ~0.60

• **F1**: ~0.02

This means it catches ~60% of fraud but with a very small precision (tons of false positives).

5.4.2 LOF

• Precision (Fraud): ~0.00

• **Recall (Fraud)**: ~0.03 or 0.05

• **F1**: ~0.00 or 0.01

LOF typically had the worst performance here—lots of difficulties with large-scale data.

5.4.3 Autoencoder

• **Precision (Fraud)**: ~0.06 or 0.07

• **Recall (Fraud)**: ~0.50 or 0.54

• **F1**: ~0.11 or 0.12

This is better than the other two, giving a more balanced approach. Still plenty of false positives, but decent coverage of fraud.

Model Comparison				
	Model	Precision (Fraud)	Recall (Fraud)	F1-score (Fraud)
0	Isolation Forest	0.01	0.61	0.02
1	LOF	0.00	0.03	0.00
2	Autoencoder	0.07	0.54	0.12

5.5 Selecting the Final Model

We eventually picked **IsolationForest** in the real-time pipeline because:

- It's relatively quick to predict.
- Doesn't require a GPU or large overhead.
- Recall was relatively strong (~60%).

Though the autoencoder had decent performance, it can be more complicated to integrate or scale. Some people might prefer the autoencoder if they can handle the overhead or want a better F1.

6. BUILDING THE REAL-TIME PIPELINE (KAFKA + SPARK)

6.1 Pipeline Architecture

- 1. **Kafka Producer**: A Python script (kafka_producer.py) that reads the PaySim CSV row by row, sending each transaction as a JSON message to a **Kafka topic**.
- 2. Kafka Topic: e.g. "paysim_transactions."
- 3. **Spark Streaming:** A script (spark_streaming.py) that subscribes to that Kafka topic, loads the IsolationForest model (iso_forest.pkl), and runs a **UDF** to predict anomalies.
- 4. Flagged Anomalies: Spark writes them as CSV to a specified output folder.

6.2 Why Kafka?

- Kafka is a distributed messaging system, widely used for real-time streaming ingestion.
- Simulates a "live feed" of transactions.

Allows us to scale if we had multiple producers or more consumers.

6.3 Why Spark Structured Streaming?

- It's a popular big-data engine for **stream** processing.
- Can do "micro-batches" in near-real time.
- Integration with Kafka is first-class (spark-sql-kafka-0-10 connector).

6.4 The kafka_producer.py Script

- 1. Uses csv.DictReader to read each row from "Transactions.csv."
- 2. **Transforms** row fields (like step, amount, etc.) into a JSON message.
- 3. **Sends** to the "paysim_transactions" topic with producer.send(...).
- 4. Sleeps ~0.01 seconds after each row to simulate ~100 transactions/sec.

6.5 The spark_streaming.py Script

6.5.1 Steps

1. Create SparkSession with Kafka support:

```
spark = SparkSession.builder \
 .appName("PaySimFraudDetection") \
 .master("local[*]") \
 .getOrCreate()
```

2. Load Model:

```
iso_forest = joblib.load("/home/.../iso_forest.pkl")
```

- 3. **Define Schema** for incoming JSON (step, amount, oldbalanceOrg, etc.).
- 4. Read from Kafka:

```
df_kafka = spark.readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "localhost:9092") \
 .option("subscribe", "paysim_transactions") \
 .load()
```

- 5. Parse the JSON into columns.
- 6. **UDF** for predict_iso(...): USES iso_forest.predict(features).
- 7. **Filter** or mark anomalies: IF_Anomaly = 1 if pred == -1 else 0.
- 8. Write flagged rows to CSV via:

```
df_fraud.writeStream \
 .outputMode("append") \
 .format("csv") \
 .option("path", "/home/monishaapatro/flagged_anomalies") \
 .option("checkpointLocation", "/home/monishaapatro/checkpoints") \
 .start() \
 .awaitTermination()
```

6.6 Google Cloud Platform

We used a **Compute Engine** VM for:

- Installing Kafka, Spark.
- Running the producer script, the Spark streaming job.
- Because it's often cheaper or straightforward than other clouds, but the same approach can be done on AWS, Azure, or local servers.

7. INSTALLING DEPENDENCIES AND SETTING UP

7.1 Dependencies

- Java (needed by Kafka & Spark)
- Python 3.11
- Pip packages: pandas , numpy , scikit-learn , streamlit , joblib , etc.
- **Spark**: downloaded from apache.org (like spark-3.5.4-bin-hadoop3).
- **Kafka**: downloaded from apache.org or used kafka_2.13-3.5.1.tgz.

7.1.1 Installing Kafka

- 1. Download the .tgz.
- 2. Extract to ~/kafka_folder.
- 3. Start Zookeeper, then start Kafka server:

bin/zookeeper-server-start.sh config/zookeeper.properties bin/kafka-server-start.sh config/server.properties

7.1.2 Installing Spark

- 1. Download the Spark binary.
- 2. Extract to ~/spark.
- 3. Add environment variables or just call ~/spark/bin/spark-submit.

7.2 Uploading Models and Dataset

- Transferred iso_forest.pkl, Transactions.csv, etc., to the VM using either scp or the GCP browser-based SSH's "Upload file."
- Placed them in our home directory or specific folders.
- Confirmed paths in scripts: e.g., CSV_PATH = "/home/monishaapatro/Transactions.csv".

8. FLAGGED ANOMALIES AND HOW THEY ARE DETERMINED

- 1. **IsolationForest** returns predict(...) = 1 for anomaly, +1 for normal.
- 2. We convert $1 \rightarrow 1$ (IF_Anomaly=1) meaning flagged as suspicious.
- 3. The script effectively says: "If anomaly, print or filter to a separate DataFrame."
- 4. Spark's streaming job writes those anomaly rows to **CSV** (the "flagged_anomalies" folder).

Hence, "flagged anomalies" are simply transactions that the model deems suspicious, typically because they deviate from normal patterns.

9. TRANSPORTING ANOMALIES TO CSV

- 1. The final df_anomalies (or df_fraud) is written out by df_anomalies.writeStream with format("csv").
- 2. Each micro-batch creates a part-00000-xxxx.csv file in the target folder.
- 3. _spark_metadata is also created for housekeeping.
- 4. This yields a growing list of CSV files each time Spark processes new data from Kafka.

10. USING STREAMLIT TO PRESENT THE DATA

10.1 Approach

We created a **Streamlit** app (dashboard.py) that:

- Loads the CSV files from "flagged_anomalies/" (or whichever directory Spark is writing to).
- 2. **Concatenates** them to gather all flagged transactions.
- 3. **Visualizes** them with line charts, bar charts, tables, etc.

10.2 Real-Time Refresh

Because Spark is continuously writing new part-*.csv files, the Streamlit script can periodically re-read the folder. For instance:

```
def load_anomalies_data():
 files = glob.glob("/home/monishaapatro/flagged_anomalies/*.csv")
 ...
 # read + concat data
 return df
```

A "Refresh Data" button in Streamlit might call load_anomalies_data() again. The user sees updated anomalies in near real time.

10.3 External Access

- If hosting on the **same** GCP VM, we can open the firewall for port 8501 and share the IP.
- We deploy to Streamlit Community Cloud with static sample data.

11. BENEFITS OF THE PROJECT

1. Rapid Detection:

• Instead of batch detection after the fact, suspicious transactions can be flagged within seconds.

2. Scalability:

- Kafka + Spark can handle millions of events per day.
- The unsupervised ML approach can be extended to more advanced or ensemble methods.

3. End-to-End Pipeline:

 Showcases ingestion, stream processing, ML inference, and final visualization—a full data engineering + data science solution.

4. **Demonstrates** skill in:

- Big data tools (Kafka, Spark)
- Cloud environment (GCP)
- Machine learning (IsolationForest, LOF, Autoencoder)
- Dashboarding (Streamlit)

12. FULL LIST OF SKILLS, TOOLS, FRAMEWORKS

- **Python** (3.11)
- Kafka (Apache Kafka 2.13+ distribution)
- Spark (Spark 3.5.4 with Structured Streaming + Kafka connector)
- Scikit-learn (for isolation forests, LOF)
- TensorFlow/Keras
- pandas, numpy, seaborn, matplotlib (EDA, data wrangling)
- Streamlit (for real-time dashboard)
- Google Cloud Platform
 - Compute Engine VM
- Git, GitHub (version control)
- Potentially **tmux** or **systemd** for running scripts on the VM continuously

If using the Kaggle API, kaggle CLI.

13. CONCLUSION

This project demonstrates a **complete pipeline** for **Real-Time Fraud Detection**:

- 1. We **ingest** synthetic transactions from the PaySim dataset in a streaming manner using Kafka.
- 2. **Spark** processes each transaction, applies an **IsolationForest** anomaly detection model, and flags suspicious ones.
- 3. These flagged anomalies are written to CSV.
- 4. A **Streamlit dashboard** reads those CSVs, producing interactive charts and tables to help investigators or analysts see suspicious transactions in near real time.
- 5. Everything is deployed on a GCP VM, showcasing cloud and big data skills.

Despite being synthetic, the **PaySim** dataset is large enough to **replicate** real production-scale challenges. This blueprint can adapt to a real financial system by hooking into actual transaction streams, training a more robust model on real data, and employing advanced security measures.

14. FUTURE WORK

- 1. **Ensemble Models**: Combine multiple anomaly detection models (e.g., autoencoder + isolation forest) for improved precision.
- 2. **Incorporate Additional Features**: E.g., geographic location, device info, historical user patterns.
- 3. **Real Production**: Use a real streaming pipeline with secure authentication, encryption, and robust monitoring.
- 4. **Active Learning**: Collect feedback from fraud investigators to refine the model.

- 5. **Advanced Visualizations**: Implement a more dynamic real-time chart that auto-refreshes every few seconds.
- 6. Auto-scaling: Deploy Kafka + Spark on a cluster.
- 7. **Deployment**: Containerize with Docker + use a platform like Cloud Run or Kubernetes for fully managed scaling.

15. BONUS SECTIONS OR ADDITIONS

- Performance Tuning:
 - Spark micro-batch interval configuration, partitioning strategies for Kafka.
 - Model hyperparameter tuning for isolation forest.
- Security:
 - SSL/TLS for Kafka, firewall rules for the GCP VM.
- Data Governance:
 - Real deployment must respect KYC (Know Your Customer), AML (Anti-Money Laundering) regulations.

FINAL REMARKS

Built a **multi-technology** solution that merges **data science** with **data engineering**. Even though PaySim is synthetic, we have gained experience with:

- Large-scale data (6 million+ rows)
- Real-time streaming using Kafka and Spark
- Unsupervised ML approaches for fraud detection
- A web dashboard (Streamlit) for easy monitoring
- Cloud hosting on GCP

This sets the stage for to handle real production pipelines, adapt to more advanced fraud detection, and integrate with sophisticated data or security frameworks.