Step - 1: Business Problem Understanding

- Previously, we explored Is there a relationship between *total* advertising spend and *sales*? as well as predicting the total sales for some value of total spend
- What is the relationship between each advertising channel (TV,Radio,Newspaper) and sales?

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Step - 2 : Data Understanding

Load Data & Understand every variable

```
In [2]:

df = pd.read_csv("Advertising.csv")
df.head()
```

Out[2]:

	IV	radio	newspaper	sales
0	230100	37800	69200	22100
1	44500	39300	45100	10400
2	17200	45900	69300	9300
3	151500	41300	58500	18500
4	180800	10800	58400	12900

```
In [3]: ▶
```

```
df['TV'].unique().shape
```

Out[3]:

(190,)

Dataset Understanding

```
In [4]:
                                                                                    H
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
    Column
              Non-Null Count Dtype
    -----
               -----
 0
    TV
               200 non-null
                               int64
 1
               200 non-null
    radio
                               int64
    newspaper 200 non-null
 2
                               int64
 3
    sales
               200 non-null
                               int64
dtypes: int64(4)
memory usage: 6.4 KB
                                                                                    H
In [5]:
df.isnull().sum()
Out[5]:
```

Step - 3: Data Preprocessing

Exploratory Data Analysis

0

0

0

TV

radio

sales

newspaper

dtype: int64

On the basis of this data, how should you spend advertising money in the future? These general questions might lead you to more specific questions:

- 1. Is there a relationship between ads and sales?
- 2. How strong is that relationship?
- 3. Which ad types contribute to sales?
- 4. What is the effect of each ad type of sales?
- 5. Given ad spending, can sales be predicted?

In [6]: ▶

df.describe()

Out[6]:

	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000
mean	147042.500000	23264.000000	30554.000000	14022.500000
std	85854.236315	14846.809176	21778.620839	5217.456566
min	700.000000	0.000000	300.000000	1600.000000
25%	74375.000000	9975.000000	12750.000000	10375.000000
50%	149750.000000	22900.000000	25750.000000	12900.000000
75%	218825.000000	36525.000000	45100.000000	17400.000000
max	296400.000000	49600.000000	114000.000000	27000.000000

In [7]: ▶

```
sns.pairplot(df)
plt.show()
```


by observing the scatter plot, we made an assumption of the relation between y and (x1+x2+x3) is linear

```
In [8]:

df.corr()
```

Out[8]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

- The relation between y and x should be high .. The higher the value the stronger the correlation, better accuracy
- · The relation between any two independent variables should be low

If the correlation between any 2 independent variables is strong, then it is called as colinearity problem

Data Cleaning

```
In [9]:

#for this dataset, no data cleaning required
```

Data Wangling

```
In [10]:

#for this dataset, no encoding required
```

X&y

```
In [11]:

X=df[["TV",'radio','newspaper']]
y=df['sales']
```

Train-Test Split

```
In [12]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=9)
```

Step - 4: Modelling

Multiple Linear Regression - Linear regression include multiple input features. This is done by least squares Method

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n$$

Each *x* represents a different feature, and each feature has its own coefficient.

• In this case:

$$y = \beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper$$

```
In [13]:

X_train
```

Out[13]:

	TV	radio	newspaper
146	240100	7300	8700
169	284300	10600	6400
145	140300	1900	9000
55	198900	49400	60000
21	237400	5100	23500
56	7300	28100	41400
182	56200	5700	29700
199	232100	8600	8700
92	217700	33500	59000
126	7800	38900	50600

160 rows × 3 columns

```
In [14]:
# ModeLling
from sklearn.linear_model import LinearRegression
```

```
model.fit(X_train,y_train)
print("Intercept:",model.intercept_)
print("Coefficients:",model.coef_)
```

Intercept: 2993.523896904102

model = LinearRegression()

Coefficients: [0.04564499 0.18826117 -0.00196948]

```
In [15]: ▶
```

```
# Prediction
test_predictions = model.predict(X_test)
```

Step - 5: Evaluation Metrics

```
In [16]:
print("Test R2:",model.score(X_test,y_test))
```

Test R2: 0.9256258465335008

Model Selection

test_res = y_test - test_predictions

Check whether model has overfitting or underfitting problem

In [20]: ▶

```
plt.scatter(y_test,test_res)
plt.xlabel("observed_values")
plt.ylabel("fitted_values")
plt.show()
```


2. Normality of Errors

In [21]: ▶

```
sns.displot(test_res,bins=15,kde=True)
plt.show()
```


3. Equal Variance of Errors (Homoscadesicity)

In [22]: ▶

```
plt.scatter(test_predictions,test_res,c="r")
plt.axhline(y=0,color='blue')
plt.xlabel("fitted_values")
plt.ylabel("residuals")
plt.show()
```


4. Variables Significance

Hypothesis Testing for variables

- **null hypothesis:** There is no relationship between input variable and output variable (and thus β_1 equals zero)
- alternative hypothesis: There is a relationship between input variable and output variable (and thus β_1 is not equal to zero)

In [23]: ▶

```
import statsmodels.formula.api as smf
model1=smf.ols("y~X",data=df).fit()
model1.summary()
```

Out[23]:

OLS Regression Results

Dep. Variable:		у		R-squared:		0.897	
Model:		OLS		Adj. R-squared:		0.896	
Method:		:	Least Sq	uares	F-	statistic:	570.3
Date : Tu		: Tu	ıe, 28 Mar	2023	Prob (F-	statistic):	1.58e-96
Time:		:	08:	06:49	Log-Likelihood:		-1767.7
No. Obser	vations	:		200		AIC:	3543.
Df Re	siduals	:		196		BIC:	3557.
Df Model:		:		3			
Covariance Type:		:	nonr	obust			
	c	oef	std err	t	P> t	[0.025	0.975]
Intercept							
intercept	2938.8	894	311.908	9.422	0.000	2323.762	3554.016
X[0]		894 458	311.908 0.001	9.422 32.809		2323.762 0.043	3554.016 0.049
-	0.0				0.000		
X[0]	0.0	458 885	0.001	32.809	0.000	0.043	0.049
X[0] X[1] X[2]	0.0	458 885	0.001 0.009 0.006	32.809 21.893	0.000 0.000 0.860	0.043 0.172	0.049 0.206
X[0] X[1] X[2]	0.0 0.1 -0.0 nibus:	458 885 010	0.001 0.009 0.006 14 Du	32.809 21.893 -0.177	0.000 0.000 0.860 atson:	0.043 0.172 -0.013	0.049 0.206
X[0] X[1] X[2] Omn	0.0 0.1 -0.0 nibus:	458 885 010 60.4	0.001 0.009 0.006 14 Du 00 Jarq i	32.809 21.893 -0.177 rbin-Wa ue-Bera	0.000 0.000 0.860 atson: (JB):	0.043 0.172 -0.013 2.084	0.049 0.206

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.54e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Added variable plot (AV plot)

partial differention insted of normal differentiation

In [24]: ▶

```
import statsmodels.api as sm
sm.graphics.plot_partregress_grid(model1)
```

eval_env: 1
eval_env: 1
eval_env: 1

Out[24]:

· added varible plot is not showing any significance for newspaper

Final model including TV and Radio only

In [25]:

```
X=df[["TV",'radio']]
y=df['sales']

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=9)

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,y_train)
print("Intercept:",model.intercept_)
print("Coefficients:",model.coef_)

train_predictions = model.predict(X_train)
test_predictions = model.predict(X_test)

print("Train R2:",model.score(X_train,y_train))
print("Test R2:",model.score(X_test,y_test))
print("Cross Validation Score:",cross_val_score(model,X,y,cv=5).mean())
```

Intercept: 2957.3621138207127

Coefficients: [0.04565331 0.18718911]

Train R2: 0.8897265958178805 Test R2: 0.9258743223517101

Cross Validation Score: 0.889282957306453

Interpreting the coefficients

- Holding all other features fixed, a 1 unit increase in TV Spend is associated with an increase of 0.0456 units in sales.
- This basically means that for every \$1000 dollars spend on TV Ads, we could expect 45 more units sold.
- Holding all other features fixed, a 1 unit increase in Radio Spend is associated with an increase in sales 0.187 units in sales.
- This basically means that for every \$1000 dollars spend on Radio Ads, we could expect 187 more units sold.

Variance Inflation Factor (VIF)

• VIF measures the ratio between the variance for a given regression coefficient with only that variable in the model versus the variance for a given regression coefficient with all variables in the model.

In [26]: ▶

```
df[["TV","radio","newspaper"]].corr()
```

Out[26]:

	TV	radio	newspaper
TV	1.000000	0.054809	0.056648
radio	0.054809	1.000000	0.354104
newspaper	0.056648	0.354104	1.000000

In [27]: ▶

```
# calculating VIF's values of independent variables
rsq_TV = smf.ols('TV~radio+newspaper',data=df).fit().rsquared
vif_TV = 1/(1-rsq_TV)

rsq_radio = smf.ols('radio~TV+newspaper',data=df).fit().rsquared
vif_radio = 1/(1-rsq_radio)

rsq_newspaper = smf.ols('newspaper~radio+TV',data=df).fit().rsquared
vif_newspaper = 1/(1-rsq_newspaper)

# Storing vif values in a data frame
d1 = {'Variables':['TV','radio','newspaper'],'VIF':[vif_TV,vif_radio,vif_newspaper]}
Vif_frame = pd.DataFrame(d1)
Vif_frame
```

Out[27]:

	Variables	VIF
0	TV	1.004611
1	radio	1.144952
2	newspaper	1.145187

- if the VIF > 4 (threshold value=4)....then there exists a problem and reinvestigate the problem
- if VIF > 4, for any independent variable, then drop that particular variable