Statistics with R

Hypothesis Testing

Zhuanghua Shi (Strongway) 28 May 2018

Hypothesis testing

Today we mainly cover

- 1. t-distribution and t-tests
 - Simple t-test
 - Paired t-test
- 2. Analysis of Variance (ANOVA)
 - one-way ANOVA
 - two-way ANOVA
 - repeated-measures ANOVA

t-distribution

Suppose we got n samples (X_i) from a unknown population $N(\mu, \sigma^2)$, and we are interested in comparison the mean \bar{X} to μ . Often we replace σ with the estimated standard deviation S, then $(\bar{X} - \mu)/(S/\sqrt{n})$ is a t-distribution with n-1 degree of freedom.

- t-distribution is bell shaped with thicker tails than the normal distribution
- t.test() is the command

Example: a simple t-test

- sleep data from R datasets:
 - the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients

Example: a simple t-test

A simple non-paired test using formula

```
stat_t = t.test(extra ~ group, data = sleep)
tidy(stat_t)
```

Example: a paired t-test

- For paired t-test you need to submit both x and y
 - 1. reshape the table using tidyverse
 - 2. using paired t-test(..., paired = T)

```
sleep %>% spread(group, extra, sep = '_') %>%
t.test(.$group_1, .$group_2, paired = T, data = .) %>%
tidy()
```

```
## estimate statistic p.value parameter conf.low con
## 1 -1.58 -4.062128 0.00283289 9 -2.459886 -0.7
## method alternative
## 1 Paired t-test two.sided
```

ANOVA Test

You need ANOVA when

- If you have number of groups > 2 (categorical variable)
- A single continuous dependent variable
- Separate, independent group of subjects
- more than 2 measures from same subjects (repeated measures ANOVA)

Null Hypothesis:

All groups are equal

Alternative Hypothesis:

At least one group has significant difference from the other

Variance partitioning in ANOVA

- Total variance can be divided into
 - Variability that can be attributed to differences between groups
 - Variability attributed to all other factors within group variability

Source	SS	df	MS	F
А	n Σ(Y _j - Y _T) ²	a - 1	SS _A /df _A	MS _A /MS _{S/A}
S/A	$\Sigma(Y_{ij} - Y_j)^2$	a(n -1)	SS _{S/A} /df _{S/A}	-
Total	$\Sigma(Y_{ij} - Y_T)^2$	N - 1	-	-

Example: A simple ANOVA

command aov()

```
sleep %>% aov(extra ~ group, data = .) %>%
tidy()
```

```
## term df sumsq meansq statistic p.value
## 1 group 1 12.482 12.482000 3.462627 0.07918671
## 2 Residuals 18 64.886 3.604778 NA NA
```

Example: A simple ANOVA

- Now we consider subjects ID as a random effects
 - using Error(ID) marked ID as random factor

```
sleep %>% aov(extra ~ group + Error(ID), data = .) ->aov1
summary(aov1)
```

```
##
## Error: ID
            Df Sum Sq Mean Sq F value Pr(>F)
##
## Residuals 9 58.08 6.453
##
## Error: Within
##
            Df Sum Sq Mean Sq F value Pr(>F)
## group 1 12.482 12.482 16.5 0.00283 **
## Residuals 9 6.808 0.756
```

10

R formula

R formulas are used in various modeling and statistics packages.

A typical formula: y is a function of x, a, and b

$$y \sim x + a + b$$

 The sepal width is a function of petal width, conditioned on species

Sepal.Width ~ Petal.Width | Species

R forumula

Symbols used in formula

- + for adding independent variables
- for removing terms
- : for interaction
- * for crossing
- %in% for nesting

```
y ~ x1 - x2 # ignor x2
y ~ x1*x2 # same as y ~ x1 + x2 + x1:x2
```

Conditions for ANOVA

- Independence
- Approximate normality: distribution of the response variable should be nearly normal within each group
- Equal variance: groups should have roughly equal variability

ezANOVA

- ez package by Michael Lawrence facilitates easy analysis of factorial experiments.
- It also contains a simulated data from Attention Network Test (ANT)

```
library(ez)
data(ANT)
ANT %>% dplyr::filter(error == 0) %>%
   group_by(group, cue, flank) %>%
   summarise(mRT = mean(rt)) -> mRTs
head(mRTs,3)
```

```
## # Groups: group, cue [1]
## group cue flank mRT
```

A tibble: 3 x 4

ezANOVA and ANT

Visualize the data

```
mRTs %>% ggplot(aes(flank, mRT, color = cue, group = cue))
geom_point() + geom_line() + facet_wrap(~group)
```


ezANOVA and parameters

ezANOVA parameters

- data data.frame table
- dv dependent variable
- wid subject id
- within within factors, multiple using .() list
- between between factors
- between_covariates covariates

Return

- Mauchly's test for specifity
- Sphericity corrections
- Levene's test for Homogeneity
- AOV

Test on ANT data

knitr::kable(results\$ANOVA)

	Effect	DFn	DFd	F	р	p<.05	
2	group	1	18	18.430592	0.0004378	*	0
3	cue	3	54	516.605213	0.0000000	*	0
5	flank	2	36	1350.598810	0.0000000	*	0
4	group:cue	3	54	2.553236	0.0649749		0
6	group:flank	2	36	8.768499	0.0007901	*	0
7	cue:flank	6	108	5.193357	0.0000994	*	0
8	group:cue:flank	6	108	6.377225	0.0000090	*	0

Practice session

Now we apply those tests for the search data.