3éme année Licence 2023/2024Matière : \mathcal{M} esure et \mathscr{I} ntégration ¹

Série 3 : applications mesurables

Exercice 1 Soient (E,τ) et (F,\mathcal{L}) deux espaces mesurables, A une partie de E et $f:(E,\tau)\to (F,\mathcal{L})$ une application.

- 1. Montrer que si f est une application constante alors elle est mesurable.
- 2. Montrer que $\mathbf{1}_{\mathbf{A}}$ est mesurable si et seulement si A est mesurable.
- 3. Soit $f: E \to \mathbb{R}$ une application mesurable. Soit $k \in]0; +\infty[$.On pose

$$f_k(x) = \begin{cases} f(x), & \text{si } |f(x)| \le k, \\ k, & \text{si } f(x) > k, \\ -k, & \text{si } f(x) < -k. \end{cases}$$

Montrer que f_k est une application mesurable.

Exercice 2 Les applications suivantes sont-elles boréliennes?

1.
$$f(x) = \begin{cases} 0, & x \le 0; \\ \frac{1}{x}, & x > 0; \end{cases}$$

- 2. $f(x) = e^{\cos x}$
- 3. $f(x) = \ln x$.

Exercice 3 Soient (E,τ) un espace mesurable et $f:E\to \bar{\mathbb{R}}$ une application. Montrer que les propositions suivantes sont équivalentes

- 1. f est mesurable,
- **2.** $\forall r \in \mathbb{Q}, \{f \geq r\} \in \tau,$ **3.** $\forall r \in \mathbb{Q}, \{f < r\} \in \tau,$
- **4.** $\forall r \in \mathbb{Q}, \{f > r\} \in \tau,$ **5.** $\forall r \in \mathbb{Q}, \{f \le r\} \in \tau.$

Exercice 4 Soient (E,τ) un espace mesurable et $f:E\to \mathbb{R}$ et $g:E\to \mathbb{R}$ deux applications mesurables.

1. Montrer que les ensembles suivants sont mesurables

$$\{f < g\}, \{f \le g\}, \{f = g\}.$$

2. Montrer que les applications suivantes sont mesurables

$$\sup(f, g), \inf(f, g).$$

- 3. Montrer que f est mesurable $\Leftrightarrow f^+, f^-$ sont mesurables.
- 4. Montrer que f est mesurable $\Rightarrow |f|$ est mesurable. Est-ce que l'inverse est vraie?

Exercice 5 Soient $(f_n)_{n\geq 1}$ une suite de fonctions mesurables définies de (E,τ) dans $(\mathbb{R},\mathbb{B}(\mathbb{R}))$.

- 1. Montrer que $\lim_n \inf f_n$ et $\lim_n \sup f_n$ sont mesurables.
- 2. Montrer que si $(f_n)_{n\geq 1}$ converge simplement vers $f:E\to\mathbb{R}$, alors f est mesurable.
- 3. Montrer que l'application f définie sur \mathbb{R}^2 par

$$f(x) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{si } (x, y) \neq (0; 0), \\ 0, & \text{si } (x, y) = (0; 0) \end{cases}$$

est borélienne.

Exercice 6 Soit $f: \mathbb{R} \to \mathbb{R}$ une application.

^{1.} F. Zouyed, email :fzouyed@gmail.com, Laboratoire des Mathématiques appliquées LMA

- 1. Montrer que si f est dérivable alors f et f' sont boréliennes.
- 2. Montrer que si f est monotone alors elle est borélienne.

<u>Exercice 7</u> Soit $f: E \to \bar{\mathbb{R}}_+$ mesurable. Montrer que f est une limite d'une suite de fonctions mesurables étagées. Ind. on pourra considérer la suite de fonctions

$$f_n(x) = \begin{cases} k2^{-n}, & \text{si } \frac{k}{2n} \le f(x) \le \frac{k}{2n}); k = 0, 1, ..., n2^n - 1, \\ n, & \text{si } f(x) \ge n. \end{cases}$$