Lecture note 4: Feature extraction

프로젝트 기반 딥러닝 이미지처리 한국인공지능아카데미 x Hub Academy

강사 : 김형욱 (hyounguk1112@gmail.com)

Agenda

- 1 Review : Image feature
- 2 Edge and corner detection
- 3 SIFT algorithm
- Contour detection

Review: image feature

Image feature의 정의와 주요 개념

영상 특징(Image features): 영상들간의 유사성을 계산하기 위한 영상의 패턴을 의미

키포인트(Keypoints) : 영상 특징이 위치한 영상 내 좌표 또는 스케일 정보를 의미

영상표현자(Descriptor): 영상 특징에 대한 정량적 표현. 주로 값(스칼라), 벡터, 행렬, 히스토그램 등으로 표현됨.

Primary features

- Edges
- Corners
- Blobs

How about averaging values of pixels? It's ok! But better ones could exist for most cases

Edge

Corner

What is good feature?

Well-designed features

Edge and corner detection

Image gradient : Sobel filter

Sobel filter는 영상의 수직/수평 방향 edge를 검출하기 위한 필터 컨볼루션 연산이 수행되는 지역(Region)의 좌우측 또는 상하의 **픽셀값 변화**를 계산함.

Result of Sobel operator

Image gradient

In practice, it is common to use:

$$g_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$g_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Magnitude:

$$g = \sqrt{g_x^2 + g_y^2}$$

Orientation:

n:
$$\Theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

두 종류의 Sobel 필터는 영상에서 각각 수직/수평 방향의 픽셀값 변화(미분값)를 계산할 수 있고, 이를 통해 Gradient field를 계산할 수 있음.

Image gradient

In practice, it is common to use:

$$g_x = egin{bmatrix} rac{-1 & 0 & 1}{-2 & 0 & 2} \ rac{-1 & 0 & 1}{-1 & 0 & 1} \ \end{pmatrix}$$

$$g_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Magnitude:

$$g=\sqrt{g_x^2+g_y^2}$$

Orientation:

on:
$$\Theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

두 종류의 Sobel 필터는 영상에서 각각 수직/수평 방향의 픽셀값 변화(미분값)를 계산할 수 있고, 이를 통해 Gradient field를 계산할 수 있음.

Canny edge detection

Gradient의 크기가 주변과 비교하여 최대값이 아닌 Pixel은 Gradient를 0로 변경하기

Hysteresis thresholding : maxVal와 minVal을 통한 edge 판별

Harris corner detection

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris corner detection

SIFT algorithm

Feature matching

두 영상의 작은 지역들의 특징을 표현하는 표현자(descriptor)를 생성하여 서로 유사도가 높은 표현자들 간의 정합(Matching)을 수행하는 것.

SIFT algorithm의 아이디어

나무에서 붉은 박스 내부를 바라볼 때, 안경을 쓴 사람과 벗은 사람은 각각 어떤 것을 보게 될까?

Scale 변화에 따른 픽셀값 변화

Scale

Scale 변화에 따른 픽셀값 변화값 계산

DOG 이미지들에서 주변 26개 점에 대해 minima와 maxima인 픽셀들을 찾아낸다. Scale 변화와 관계 없이 Pixel값 변화가 큰 point를 찾아내는 것을 의미(Scale robustness)

SIFT: keypoint detection

- Eliminates any low-contrast keypoints (A extrema is less than a threshold value, it is rejected)
- Eliminates edge keypoints

So what remains is strong interest points

SIFT: Feature extraction

Orientation Assignment & Keypoint descriptor

- 1. 각각의 4x4 patch에 대해 8-bin의 histogram을 만든다.
- Dominant orientation (keypoint 주변 gradient의 주방향)을 계산한다.
- 3. 16개의 8-bin histogram의 값들을 Dominant orientation 각도만큼 shift시켜 준다

SIFT: Feature matching

SIFT: Feature matching

Contour detection

Image contour

간단한 Shape에서의 Contour 검출

Contour들간의 계층 구조

Shape detection and Convex hull

Shape detection

Convex hull

Free Google Slides Templates