Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Diffusion Protokoll:

Praktikant: Felix Kurtz

E-Mail: felix.kurtz@stud.uni-goettingen.de

Versuchspartner: Skrollan Detzler Betreuer: Martin Ochmann

Versuchsdatum: 30.06.2014

Note:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung			
2	Theorie 2.1 Ficksche Gesetze	3 3		
3	Durchführung3.1Versuchsaufbau3.2Konzentrationsverlauf in Abhängigkeit der Zeit3.3Konzentrationsprofil	4 4 5 5		
4	Auswertung4.1 erwartete Diffusionskurven4.2 Berechnung des Diffusionskoeefizienten4.3 Konzentrationsprofil	5 5 6 7		
5	Diskussion 5.1 Berechnung des Diffusionskoeefizienten	7		
6	Anhang	8		
Lit	teratur	8		

1 Einleitung

In diesem Versuch soll das Phänomen der *Diffusion* untersucht werden. Darunter versteht man die Durchmischung von zwei verschiedenen Gasen oder Flüssigkeiten, welche mit der Zeit vonstatten geht. Sie spielt besonders in der Biologie bei osmotischen Prozessen eine große Rolle. Als eine von vielen Transportphänomenen wie Wärmeleitung ist sie jedoch am besten experimentell messbar.

Wir wollen hier die Diffusion von Methylenblau in Wasser untersuchen.

2 Theorie

2.1 Ficksche Gesetze

1. Ficksches Gesetz

$$\vec{j}(\vec{x}) = -D \cdot \nabla n \tag{1}$$

2. Ficksches Gesetz

$$\boxed{\frac{\partial n}{\partial t} = -D \cdot \Delta n} \tag{2}$$

Man kann dies analytisch lösen. Dabei ergibt sich dies als Lösung:

$$c(x,t) = \frac{c_0}{2} \left[1 - \operatorname{erf}\left(\frac{x}{\sqrt{4Dt}}\right) \right] \tag{3}$$

Gaußsche Fehlerfunktion

$$\operatorname{erf}(y) := \frac{2}{\sqrt{\pi}} \int_0^y e^{-v^2} \, \mathrm{d}v$$

2.2 Wheatstone'sche Messbrücke und Fotowiderstand

Diese Schaltung (siehe Abb. 1) wird verwendet, um einen unbekannten Widerstand oder kleine Widerstandsänderungen zu messen. In unserem Fall ist letzteres der Fall. Misst man keine Spannungsdifferenz, gleichbedeutend mit keinem Stromfluss, dann gilt

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

Bei dem Aufbau, der in diesem Versuch vorliegt, kann man 3 verschiedene Widerstände für R_1 wählen, während R_2 ein Fotowiderstand ist. R_3 und R_4 bilden ein Potentiometer, welches in der Mitte frei abgegriffen werden kann.

Je mehr Licht auf den Fotowiderstand fällt, desto kleiner ist sein ohmscher Widerstand. Dies beruht auf dem inneren fotoelektrischen Effekt.

Mit dieser Schaltung kann man also sicherstellen, dass der Fotowiderstand immer dann einen bestimmten Lichteinfall misst, wenn kein Strom gemessen wird.

Abbildung 1: Wheatstone'sche Brückenschaltung [1]

3 Durchführung

3.1 Versuchsaufbau

Abbildung 2: schematischer Versuchsaufbau [1]

Zuerst wird der Spalt so justiert, dass auf den Photowiderstand die maximale Intensität trifft. Außerdem benötigt man noch zwei Stoppuhren für die späteren Messungen.

3.2 Konzentrationsverlauf in Abhängigkeit der Zeit

Für den Graufilter $c_0/16$ regelt man das Potentiometer so, dass das Amperemeter keinen Strom anzeigt. Dann wird die Küvette zu 3/4 mit Wasser gefüllt, darüber Methylenblau. Man startet die Stoppuhr, nachdem man die Küvette in den Strahlengang gestellt hat. Für eine halbe Stunde notiert man alle 30 Sekunden den Ort der Konzentration $c_0/16$. Dabei wird jedoch die Messbrücke nicht verändert, sondern die Küvette mittels Micrometerschraube nach oben bewegt, bis das Amperemeter wieder keinen Strom zeigt. Nach der Messung wird diese Küvette vorsichtig zur Seite gestellt, damit sich die Flüssigkeiten nicht zusätzlich vermischen. Die benutzte Stoppuhr lässt man für eine spätere Messung weiterlaufen. Dann füllt man eine zweite Küvette wie die erste, gleicht aber die Messbrücke mit dem Graufilter $c_0/32$ ab. Die vorige Messung wird mit der zweiten Küvette, der zweiten Stoppuhr und dem anderen Filter wiederholt.

3.3 Konzentrationsprofil

Etwa 40 Minuten nach Beginn der letzten Messung wird die Konzentrationsverteilug der zweiten Küvette in Abhängigkeit des Ortes gemessen. Dies sollte schnell geschehen, damit die Zeit als konstant angenommen werden kann. Trotzdem notiert man Beginn und Ende dieser Messung, die Stoppuhr muss also weiter laufen. Der Messvorgang sieht folgendermaßen aus: Nacheinander wird die Messbrücke auf die verschiedenen Graufilter $c_0/2$, $c_0/4$, $c_0/8$, $c_0/16$, $c_0/32$ abgeglichen, bevor man dazu die Stelle sucht, an der genau diese Konzentration herrscht. Diesen Vorgang wiederholt man nochmal in umgekehrter Reihenfolge der Graufilter.

Diesen ganzen Messvorgang wird für die erste Küvette nach ca. 100 Minuten seit Beginn der zugehörigen ersten Messung wiederholt.

4 Auswertung

4.1 erwartete Diffusionskurven

Aus der Lösung der Diffusionsgleichung (3) ergibt sich Abbildung 3. Man erkennt, dass es zu t=0 eine klare Grenze zwischen den beiden Flüssigkeiten gibt. Im Verlauf der Zeit (hier nach 30 und 90 Minuten bzw. 6 Stunden und 2 Tagen) vermischen sie sich und die Konzentration nähert sich überall $c_0/2$ an. Bei x=0 befindet sich jedoch immer die Konzentration $c_0/2$.

Bei den ersten beiden Messungen wird der c/c_0 Wert konstant gehalten und der Ort dieser Konzentration im Verlaufe der Zeit verfolgt. Also in Abb. 3 die Schnittpunkte einer parallelen Gerade zur x-Achse mit den Kurven zu unterschiedlichen Zeitpunkten. In den letzten beiden Messungen verfolgt man Werte auf einer Kurve mit konstanter Zeit.

Abbildung 3: Profil für den Diffusionskoeffizienten $D=4\cdot 10^{-10}~\mathrm{m^2}$ / s zu verschiedenen Zeiten

4.2 Berechnung des Diffusionskoeefizienten

$$\operatorname{erf}(y) = \operatorname{erf}\left(\frac{x}{\sqrt{4Dt}}\right)$$
 (4)

$$D = \frac{m}{4 C^2} \tag{5}$$

$$D = \frac{m}{4 C^2}$$

$$\sigma_D = \frac{\sigma_m}{4 C^2}$$
(5)

Für Messung 1 und 2 ergeben sich die Werte aus Tabelle 1.

	Messung 1	Messung 2	
	$c_0/16$	$c_0/32$	
C genähert ¹	1.085	1.317	
Steigung m	$(18.8 \pm 0.3) \cdot 10^{-10} \text{m}^2 / \text{s}$	$(19.7 \pm 0.6) \cdot 10^{-10} \text{ m}^2 / \text{ s}$	
Diffusionskoeffizient D	$(4.00 \pm 0.06) \cdot 10^{-10} $ m ² / s	$(2.83 \pm 0.09) \cdot 10^{-10} \text{ m}^2 / \text{s}$	

Tabelle 1: Auswertung Messung 1 und 2

Abbildung 4: ??????????????????

Daraus kann der gewichtete Mittelwert des Diffusionskoeffizienten berechnet werden

$$\overline{D} = (3.63 \pm 0.04) \cdot 10^{-10} \text{ m}^2 / \text{s}$$
 (7)

4.3 Konzentrationsprofil

5 Diskussion

5.1 Berechnung des Diffusionskoeefizienten

Betrachtet man Abb. 4, fällt auf, dass sich bei der ersten Messung $c_0/16$ wie erwartet eine Gerade ergibt. Bei der zweiten Messung ergibt sich jedoch eher etwas quadratisches. Deshalb sind beide Ursprungsgeraden ungefähr gleich und erklärt den großen Unterschied zwischen den beiden Werten für D. Dies ergibt physikalisch wenig Sinn. Daher muss nach einem Fehler in der Messung gesucht werden. Zum einen kann es daran liegen, dass wir bei der zweiten Messung zu lange zwischen Befüllen und Messen gewartet haben und sich die Flüssigkeiten schon vor der Messung vermischt haben. Dies geschieht auch, wenn die Küvette geschüttelt wurde. Berücksichtigt man dies,......

¹ WolframAlpha, www.wolframalpha.com

Abbildung 5: ??????????????????

5.1.1 Filter

Außerdem haben wir vergessen, die unterschiedlichen Filter zu reinigen. So hat sich der Wert geändert, wenn man die Höhe verändert hat, in der sich der Filter befand. Wir können also nicht garantieren, dass für die Filter die richtigen Werte gemessen wurden. Da uns dies aber zur Messzeit auffiel, haben wir zusätzlich noch die Potentiometer-Einstellung sowie den Wert des dritten Widerstandes notiert. Aus den Daten kann man ablesen,.............

6 Anhang

Literatur

- [1] Lehrportal der Universität Göttingen, Diffusion, http://lp.uni-goettingen.de/get/text/3665, abgerufen 09.07.14 11:21 Uhr
- [2] DIETER MESCHEDE (2010): Gerthsen Physik, 24. Auflage, Springer Heidelberg Dordrecht London New York