BAB 1. BESARAN DAN PENGUKURAN

Standar Kompetensi

1. Memahami prosedur ilmah untuk mempelajari benda-benda alam dengan menggunakan peralatan

Kompetensi Dasar

- 1.1 Mendeskripsikan besaran pokok dan besaran turunan beserta satuannya
- 1.2 Mendeskripsikan pengertian suhu dan pengukurannya
- 1.3 Melakkan pengukuran dasar secara teliti dengan menggunakan alat ukur yang sesuai dan sering digunakan dalam kehidupan sehari-hari.

Besaran dan Satuan

Besaran

Sesuatu yang dapat diukur, mempunyai nilai yang dapat dinyatakan dengan angka-angka dan memiliki satuan tertentu.

Contoh: panjang, massa, waktu, kecepatan, dan lain-lain.

Satuan

Seuatu yang digunakan untuk menyatakan nilai dari suatu besaran.

Sistem satuan:

SI Sistem International

m k s meter, kilogram, sekon

c g s centimeter, gram, sekon

Besaran pokok

Besaran yang satuannya telah didefinisikan terlebih dahulu dan tidak diturunkan dari besaran lain.

N	Nama Besaran	Satuan	
0	Pokok	Internasional	
1.	Panjang	meter	m
2.	Massa	kilogram	kg
3.	Waktu	sekon	S
4.	Kuat Arus Listrik	amper	A
5.	Suhu	kelvin	K
6.	Intensitas Cahaya	kandela	cd
7.	Jumlah Zat	mol	mol

Besaran turunan

Besaran yang satuannya diturunkan besaran pokok atau besaran yang tersusun dari beberapa besaran pokok.

No	Nama	Satuan
110	Besaran	Internasional
1.	Luas	m ²
2.	Volume	m^3
3.	Massa Jenis	kg m ³
4.	Kecepatan	m s ⁻¹
5.	Gaya	kg m s ⁻²
6.	Usaha	$kg m^2 s^{-2}$
7.	Energit	kg m ² s ⁻²

Pengukuran

Panjang

Alat ukur panjang:

Mistar

Skala terkecil mistar adalah 1 mm atau 0,1 cm.

Jangka Sorong

Skala terkecil jangka sorong adalah 0,1 mm atau 0,01 cm

Bacaan Jangka sorong Skala Utama + Skala Nonius

Dalam gambar Skala Utama 0,90 cm

Skala Nonius 0,05 cm

Angka hasil pengukuran 0,95 cm

Mikrometer skrup

Skala terkecil mikrometer skrup 0,01 mm atau 0,001 cm.

Bacaan Mikrometer Skrup Skala Utama + Skala Nonius

Dalam gambar Skala Utama 5,50 mm

Skala Nonius 0,30 mm

Angka hasil pengukuran 5,80 mm

Massa

Alat ukur massa

- neraca duduk
- neraca lengan (Ohaus)
- neraca elektronik

Waktu

Alat ukur waktu

- jam dinding
- stopwatch
- jam tangan (arloji)

Paralaks

Kesalahan membaca skala akibat posisi mata miring terhadap garis skala yang dibaca

Suhu dan Pengukurannya

Pengertian Suhu

Suhu

Suatu besaran untuk menyatakan derajat/tingkatan panas suatu benda.

Suhu suatu benda berkaitan dengan gerakan partikel-partikel yang ada di dalam benda, makin cepat gerakan partikel, makin tinggi suhu suatu benda.

Deteksi Suhu

Indra peraba-tangan, mampu melakukan pendeteksian terhadap suhu walau tidak tepat.

Percobaan

Perhatikan gambar di atas. Masukan tangan kanan dan kiri kamu masing-masing pada airhangat dan air-es (tahan beberapa saat) kemudian keduanyan secara serentak dimasukan ke dalam air-kran. Hasil yang akan dirasakan adalah tangan kanan menjadi sejuk sedangkan tangan kiri menjadi hangat.

Alat Ukur Suhu

Termometer

Termometer adalah alat ukur suhu yang tepat.

Termometer dibuat berdasarkan sifat **termometrik/volumetrik** zat, yaitu sifat zat yang berubah karena suhu.

Beberapa sifat termometrik zat:

- volume
- hambatan listrik
- tekanan
- warna nyala zat-intensitas cahaya

Skala Suhu

Ukuran suhu dinyatakan dalam derajat.

Skala suhu yang biasa digunakan adalah celcius (°C), reamur (°R), fahreinheit (°F), dan kelvin (K).

Hubungan antar skala suhu

Hubungan °C dengan °R

$$^{O}C = \frac{5}{4} ^{O}R atau^{O}R = \frac{4}{5} ^{O}C$$

Hubungan °C dengan °F

$${}^{0}C = \frac{5}{9} ({}^{0}F - 32) \text{ atau } {}^{0}F = \frac{9}{5} {}^{0}C + 32$$

Hubungan °C dengan K

$${}^{O}C = K - 273$$
 atau $K = {}^{O}C + 273$

Jenis-jenis Termometer

- a. Termometer berdasarkan sifat muaii zat
 - Termometer Zat Cair
 - Termometer Raksa

Keunggulan:

- warnanya mengilap
- pemuaiannya teratur
- titik didihnya tinggi (357 °C)

Kerugian:

- harganya mahal
- titik bekunya hanya -40 °C
- beracun
- Termometer alkohol

Keunggulan:

- titik bekunya sangat rendah (-115oC)
- pemuainya teratur
- sensitive terghadap panas-koefisien muainya besar

Kerugian:

- tidak warna
- titik didihnya hanya 80 °C
- membasahi dinding
- Termometer logam

Bimetal

Terbuat dari dua logam yang berbeda koefisien muainya dikeling menjadi satu, biasanya digunakan dalam pengukur suhu otomatis

b. Termometer yang bekerja berdasarkan hambatan listrik.

Termokopel

- Perubahan hambatan listrik akan berpengaruh terhadap perubahan nilai emf (electromotif force).
- Terbuat dari dua jenis logam yang pada salah satu ujungnya disambung/dijunction menjadi satu.
- Dapat mengukur suhu yang tinggi
- c. Termometer berdasarkan tekanan gas
 - Termometer gas
- d. Termometer berdasarkan perubahan intensitas cahaya
 - Pyrometer.