

CS65K Robotics

Modelling, Planning and Control

Chapter 2: Kinematics

LESSON 4: DIRECT KINEMATICS

DR. ERIC CHOU

IEEE SENIOR MEMBER

Objectives

- •The homogeneous representation of a vector is adopted
- •Homogeneous transformations are introduced as a compact representation of position and orientation
- •Composition of homogeneous transformations to derive the direct kinematics equation of an open-chain manipulator is illustrated
- Denavit-Hartenberg parameters are introduced
- •A formula is derived to compute the transformation matrix from one link to the next one in a kinematic chain
- A computationally recursive operating procedure is illustrated

Objectives

- •The direct kinematics equation is computed for a number of typical manipulator structures
- •Composition of the kinematics of the arm with the kinematics of the wrist is presented
- •The joint space and operational space concepts are illustrated

Homogeneous Coordinates

Homogeneous Coordinates

- •Homogeneous coordinates, introduced by August Ferdinand Möbius, make calculations of graphics and geometry possible in projective space. Homogeneous coordinates are a way of representing N-dimensional coordinates with N+1 numbers.
- •To make 2D Homogeneous coordinates, we simply add an additional variable, w, into existing coordinates. Therefore, a point in Cartesian coordinates, (X, Y) becomes (x, y, w) in Homogeneous coordinates. And X and Y in Cartesian are re-expressed with x, y and w in Homogeneous as;

$$X = x/w$$

$$Y = y/w$$

Homogeneous Coordinates

- •For instance, a point in Cartesian (1, 2) becomes (1, 2, 1) in Homogeneous. If a point, (1, 2), moves toward infinity, it becomes (∞,∞) in Cartesian coordinates. And it becomes (1, 2, 0) in Homogeneous coordinates, because of (1/0, 2/0) $\approx (\infty,\infty)$.
- •Notice that we can express the point at infinity without using "∞".

Why is it called "homogeneous"?

 As mentioned before, in order to convert from Homogeneous coordinates (x, y, w) to Cartesian coordinates, we simply divide x and y by w;

$$(x, y, w) \Leftrightarrow \left(\frac{x}{w}, \frac{y}{w}\right)$$

Homogeneous Cartesian

Why is it called "homogeneous"?

 Converting Homogeneous to Cartesian, we can find an important fact. Let's see the following example;

Homogeneous Cartesian
$$(1,2,3) \Rightarrow \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$(2,4,6) \Rightarrow \left(\frac{2}{6}, \frac{4}{6}\right) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$(4,8,12) \Rightarrow \left(\frac{4}{12}, \frac{8}{12}\right) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

$$\vdots \qquad \vdots$$

$$(1a,2a,3a) \Rightarrow \left(\frac{1a}{3a}, \frac{2a}{3a}\right) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

Why is it called "homogeneous"?

•As you can see, the points (1, 2, 3), (2, 4, 6) and (4, 8, 12) correspond to the same Euclidean point (1/3, 2/3). And any scalar product, (1a, 2a, 3a) is the same point as (1/3, 2/3) in Euclidean space. Therefore, these points are "homogeneous" because they represent the same point in Euclidean space (or Cartesian space). In other words, Homogeneous coordinates are scale invariant.

Homogeneous Transformation

Homogeneous Transformation

p(x, y)

$$p = \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale

$$x' = S_x x$$

$$y' = S_y y$$

$$= \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotate

ScaleRotateTranlate
$$x' = S_x x$$
 $x' = x \cos(\theta) - y \sin(\theta)$ $x' = x + a$ $y' = S_y y$ $y' = x \sin(\theta) + y \cos(\theta)$ $y' = y + b$

$$S = \begin{bmatrix} S_{\chi} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$$

Tranlate

$$x' = x + a$$
$$y' = y + b$$

$$S = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$$

Transformations

- •A **transformation** is a process that manipulates a polygon or other two-dimensional object on a plane or coordinate system. Mathematical transformations describe how two-dimensional figures move around a plane or coordinate system.
- •A **preimage** or inverse image is the two-dimensional shape before any transformation. The **image** is the figure after transformation.

Types of Transformations

There are five different transformations in math:

- **1.Dilation** (Scaling) -- The image is a larger or smaller version of the preimage; "shrinking" or "enlarging."
- 2.Reflection -- The image is a mirrored preimage; "a flip."
- **3.Rotation** -- The image is the preimage rotated around a fixed point; "a turn."
- **4.Shear** -- All the points along one side of a preimage remain fixed while all other points of the preimage move parallel to that side in proportion to the distance from the given side; "a skew.,"
- **5.Translation** -- The image is offset by a constant value from the preimage; "a slide."

Coordinate Change and Transformation are Inverse Operations

- •A coordinate system rotate for θ is equivalent to the operation for an object to rotate for $-\theta$.
- •Therefore, the two operations are inverse operation to each other.
- •Transformation:

$$(x,y) \rightarrow (x',y')$$

Sometimes, I use (X, Y)

Dilation

You dilate a preimage of any polygon by duplicating its interior angles while increasing every side proportionally.

Dilation

•Dilate a preimage of any polygon is done by duplicating its interior angles while increasing every side proportionally. You can think of dilating as resizing. Which triangle image, yellow or blue, is a dilation of the orange preimage?

preimage Reflection / Flip Imagine cutting out a preimage, lifting it, and putting it back face down.

Reflection

•Imagine cutting out a preimage, lifting it, and putting it back face down. That is a reflection or a flip. A reflection image is a mirror image of the preimage. Which trapezoid image, red or purple, is a reflection of the green preimage?

Rotation

Using the origin, 0,0, as the point around which a 2D shape rotates, you can easily see rotation in all these figures:

Rotation

•Using the origin, (0, 0), as the point around which a two-dimensional shape rotates, you can easily see rotation in all these figures:

Shear

When a figure is sheared, the area is unchanged.

A shear does not stretch dimensions; it does change interior angles.

Shear

•Here is a square preimage. To shear it, you "skew it," producing an image of a rhombus:

Translation

Moves the figure on the coordinate plane without changing its orientation.

Translation

•A translation moves the figure from its original position on the coordinate plane without changing its orientation. Which octagon image below, pink or blue, is a translation of the yellow preimage?

Homogeneous Representation of a Vector

• Coordinate transformation (*translation* + *rotation*)

$$p^0 = o_1^0 + R_1^0 p^1$$

Inverse transformation

$$p^1 = -R_0^1 o_1^0 + R_0^1 p^0$$

Homogeneous representation

$$\widetilde{m{p}} = egin{bmatrix} m{p} \ 1 \end{bmatrix}$$

Representation of a point in different coordinate frames

Homogeneous Transformation Matrix

 R_1^0 : Rotational Matrix

 o_1^0 : Displacement Vector

$$oldsymbol{A}_1^0 = egin{bmatrix} oldsymbol{R}_1^0 & oldsymbol{o}_1^0 \ oldsymbol{0}^T & 1 \end{bmatrix}$$

Homogeneous Transformation Matrix

Coordinate transformation

$$\widetilde{\boldsymbol{p}}^0 = \boldsymbol{A}_1^0 \widetilde{\boldsymbol{p}}^1$$

Inverse transformation

$$\widetilde{oldsymbol{p}}^1 = oldsymbol{A}_0^1 \widetilde{oldsymbol{p}}^0 = \left(oldsymbol{A}_1^0
ight)^{-1} \widetilde{oldsymbol{p}}^0$$

with

$$oldsymbol{A}_0^1 = egin{bmatrix} oldsymbol{R}_1^0 & -oldsymbol{R}_1^0 & -oldsymbol{R}_1^0 & -oldsymbol{R}_1^0 & -oldsymbol{R}_0^1 \ oldsymbol{0}^T & 1 \end{bmatrix} = egin{bmatrix} oldsymbol{R}_0^1 & -oldsymbol{R}_0^1 oldsymbol{o}_1^0 \ oldsymbol{0}^T & 1 \end{bmatrix}$$

Properties

Orthogonality does not hold

$$\mathbf{A}^{-1} \neq \mathbf{A}^{T}$$

Sequence of coordinate transformations

$$\widetilde{\boldsymbol{p}}^0 = \boldsymbol{A}_1^0 \boldsymbol{A}_2^1 \dots \boldsymbol{A}_n^{n-1} \widetilde{\boldsymbol{p}}^n$$

Type of Joints

SECTION 3

Manipulator

- •Series of rigid bodies (*links*) connected by means of kinematic pairs or *joints*Kinematic chain (from base to end-effector)
- Open (only one sequence of links connecting the two ends of the chain)
- •Closed (a sequence of links forms a loop)

 Degrees of freedom (DOFs) uniquely determine the manipulator's posture
- •Each DOF is typically associated with a joint articulation and constitutes a *joint* variable

Revolute joints

Prismatic joints

Base Frame and Endeffector Frame

Base Frame and End-effector Frame

- Joint variables $q = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix}^T$
- •End-effector frame with respect to base frame $R_e^b = \begin{bmatrix} n_e^b & s_e^b & a_e^b \end{bmatrix}$ Direct kinematics equation

$$m{T}_e^b(m{q}) = egin{bmatrix} m{n}_e^b(m{q}) & m{s}_e^b(m{q}) & m{a}_e^b(m{q}) & m{p}_e^b(m{q}) \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Description of the position and orientation of the end-effector frame

Two-link Planar Arm

SECTION 5

Two-link Planar Arm

$$egin{array}{lll} m{T}_e^b(m{q}) & = & egin{bmatrix} m{n}_e^b & m{s}_e^b & m{a}_e^b & m{p}_e^b \ 0 & 0 & 0 & 1 \end{bmatrix} \ & = & egin{bmatrix} 0 & s_{12} & c_{12} & a_1c_1 + a_2c_{12} \ 0 & -c_{12} & s_{12} & a_1s_1 + a_2s_{12} \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$$

Two-link Planar Arm

Open Chain

SECTION 6

Open Chain

Manipulator direct kinematics

$$T_n^0(q) = A_1^0(q_1)A_2^1(q_2)\dots A_n^{n-1}(q_n)$$

End-effector frame with respect to base frame

$$\boldsymbol{T}_{e}^{b}(\boldsymbol{q}) = \boldsymbol{T}_{0}^{b} \boldsymbol{T}_{n}^{0}(\boldsymbol{q}) \boldsymbol{T}_{e}^{n}$$

Coordinate transformations in an open kinematic chain

Denavit-Hartenberg Convention

Denavit-Hartenberg Convention

- Choose axis z_i along the axis of Joint i+1
- •Locate the origin O_i at the intersection of axis \mathbb{Z}_i with the common normal to axes \mathbb{Z}_{i-1} and \mathbb{Z}_i . Also, locate $O_{i'}$ at the intersection of the common normal with axis \mathbb{Z}_{i-1}
- •Choose axis x_i along the common normal to axes z_{i-1} and z_i with direction from Joint i to Joint i+1
- Choose axis y_i so as to complete a right-handed frame

Denavit-Hartenberg kinematic parameters

Denavit-Hartenberg Parameters

Denavit-Hartenberg Convention II

Nonunique definition of the link frame in the following cases

- For Frame 0, only the direction of axis z_0 is specified; then O_0 and x_0 can be arbitrarily chosen
- For Frame n, since there is no Joint n+1, z_n is not uniquely defined while x_n has to be normal to axis z_{n-1} . Typically, Joint n is revolute, and thus z_n is to be aligned with the direction of z_{n-1}
- When two consecutive axes are parallel, the common normal between them is not uniquely defined
- When two consecutive axes intersect, the direction of x_i is arbitrary
- When Joint i is prismatic, the direction of z_{i-1} is arbitrary

Denavit-Hartenberg Parameters

 a_i : distance between O_i and $O_{i'}$

 d_i : coordinate of $O_{i'}$ along z_{i-1}

 α_i : angle between axes z_{i-1} and z_i about axis x_i to be taken positive when rotation is made counter-clockwise

 ϑ_i : angle between axes x_{i-1} and x_i about axis z_{i-1} to be taken positive when rotation is made counter-clockwise

- a_i and α_i are always constant
- If Joint i is revolute the variable is θi
- If Joint i is prismatic the variable is di

Denavit-Hartenberg parameters

Coordinate Transformation

•Transformation from Frame i-1 to Frame i'

$$m{A}_{i'}^{i-1} = egin{bmatrix} \cos artheta_i & -\sin artheta_i & 0 & 0 \ \sin artheta_i & \cos artheta_i & 0 & 0 \ 0 & 0 & 1 & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

•Transformation from Frame i' to Frame i-1

$$m{A}_i^{i'} = egin{bmatrix} 1 & 0 & 0 & a_i \ 0 & \cos lpha_i & -\sin lpha_i & 0 \ 0 & \sin lpha_i & \cos lpha_i & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Coordinate Transformation II

 The resulting coordinate transformation is obtained by post-multiplication of the single transformations

$$m{A}_i^{i-1}(q_i) = m{A}_{i'}^{i-1}m{A}_i^{i'} = egin{bmatrix} c_{artheta_i} & -s_{artheta_i}clpha_i & s_{artheta_i}clpha_i & a_ic_{artheta_i} \ s_{artheta_i} & c_{artheta_i}clpha_i & -c_{artheta_i}s_{lpha_i} & a_is_{artheta_i} \ 0 & s_{lpha_i} & c_{lpha_i} & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Operating Procedure

- 1. Find and number consecutively the joint axes; set the directions of axes z_0, \ldots, z_n
- 2. Choose Frame 0 by locating the origin on axis z_0 ; axes x_0 and y_0 are chosen so as to obtain aright-handed frame. If feasible, it is worth choosing Frame 0 to coincide with the base frame

Execute steps from 3. to 5. for $i = 1, \ldots, n-1$

- 3. Locate the origin O_i at the intersection of z_i with the common normal to axes z_{i-1} and z_i . If axes z_{i-1} and z_i are parallel and Joint i is revolute, then locate O_i so that $d_i = 0$; if Joint i is prismatic, locate O_i at a reference position for the joint range (mechanical limit)
- 4. Choose axis x_i along the common normal to axes z_{i-1} and z_i with direction from Joint i to Joint i+1
- 5. Choose axis y_i so as to obtain a right-handed frame

Operating Procedure II

- 6. Choose Frame n; if Joint n is revolute, then align z_n with z_{n-1} , otherwise, if Joint n is prismatic, then choose z_n arbitrarily. Axis x_n is set according to step 4.
- 7. For i = 1, ..., n, form the table of parameters $a_i, d_i, \alpha_i, \vartheta_i$
- 8. On the basis of the parameters in 7. compute the homogeneous transformation matrices $A_i^{i-1}(q_i)$ for $i=1,\ldots,n$
- 9. Compute the homogeneous transformation $T_n^0(q) = A_1^0 \dots A_n^{n-1}$ that yields the position and orientation of Frame n with respect to Frame n
- 10. Given T_0^b and T_e^n , compute the direct kinematics function as $T_e^b(q) = T_0^b T_n^0(q) T_e^n$ that yields the position and orientation of the end-effector frame with respect to the base frame.

Kinematics of Typical Manipulator Structures

Three-link Planar Arm

DH parameters

Link

$$a_i$$
 α_i
 d_i
 ϑ_i

 1
 a_1
 0
 0
 ϑ_1

 2
 a_2
 0
 0
 ϑ_2

 3
 a_3
 0
 0
 ϑ_3

$$m{A}_i^{i-1}(artheta_i) = egin{bmatrix} c_i & -s_i & 0 & a_ic_i \ s_i & c_i & 0 & a_is_i \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Three-link planar arm with frame assignment

Three-link Planar Arm II

$$m{T}_3^0(m{q}) = m{A}_1^0 m{A}_2^1 m{A}_3^2 = egin{bmatrix} c_{123} & -s_{123} & 0 & a_1 c_1 + a_2 c_{12} + a_3 c_{123} \ s_{123} & c_{123} & 0 & a_1 s_1 + a_2 s_{12} + a_3 s_{123} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Anthropomorphic Arm

DH parameters

Link

$$a_i$$
 α_i
 d_i
 ϑ_i

 1
 0
 $\pi/2$
 0
 ϑ_1

 2
 a_2
 0
 0
 ϑ_2

 3
 a_3
 0
 0
 ϑ_3

$$m{A}_1^0(artheta_1) = egin{bmatrix} c_1 & 0 & s_1 & 0 \ s_1 & 0 & -c_1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{A}_1^0(artheta_1) = egin{bmatrix} c_1 & 0 & s_1 & 0 \ s_1 & 0 & -c_1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \qquad m{A}_i^{i-1}(artheta_i) = egin{bmatrix} c_i & -s_i & 0 & a_ic_i \ s_i & c_i & 0 & a_is_i \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \quad i = 2, 3$$

Anthropomorphic arm with frame assignment

Anthropomorphic Arm II

$$m{T}_3^0(m{q}) = m{T}_1^0 m{T}_2^1 m{T}_3^2 = egin{bmatrix} c_1 c_2 & -c_1 s_{23} & s_1 & c_1 (a_2 c_2 + a_3 c_{23}) \ s_1 c_{23} & -s_1 s_{23} & -c_1 & s_1 (a_2 c_2 + a_3 c_{23}) \ s_{23} & c_{23} & 0 & a_2 s_2 + a_3 s_{23} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Spherical Wrist

DH parameters

$_{ m Link}$	a_i	α_i	d_i	ϑ_i
4	0	$-\pi/2$	0	ϑ_4
5	0	$\pi/2$	0	ϑ_5
6	0	0	d_6	ϑ_6

Spherical wrist with frame assignment

Spherical Wrist II

$$m{A}_4^3(artheta_4) = egin{bmatrix} c_4 & 0 & -s_4 & 0 \ s_4 & 0 & c_4 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \quad m{A}_5^4(artheta_5) = egin{bmatrix} c_5 & 0 & s_5 & 0 \ s_5 & 0 & -c_5 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{A}_6^5(artheta_6) = egin{bmatrix} c_6 & -s_6 & 0 & 0 \ s_6 & c_6 & 0 & 0 \ 0 & 0 & 1 & d_6 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{T}_6^3(m{q}) = m{A}_4^3 m{A}_5^4 m{A}_6^5 = egin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \ -s_5 c_6 & s_5 s_6 & c_5 & c_5 d_6 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Anthropomorphic Arm with Spherical Wrist

DH parameters

Link	a_i	$lpha_i$	d_i	ϑ_i
1	0	$\pi/2$	0	ϑ_1
2	a_2	0	0	ϑ_2
3	0	$\pi/2$	0	ϑ_3
4	0	$-\pi/2$	d_4	ϑ_4
5	0	$\pi/2$	0	ϑ_5
6	0	0	d_6	ϑ_6

Anthropomorphic arm with spherical wrist with frame assignment

Anthropomorphic Arm with Spherical Wrist II

$$m{A}_3^2(artheta_3) = egin{bmatrix} c_3 & 0 & s_3 & 0 \ s_3 & 0 & -c_3 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{A}_3^2(artheta_3) = egin{bmatrix} c_3 & 0 & s_3 & 0 \ s_3 & 0 & -c_3 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \qquad m{A}_4^3(artheta_4) = egin{bmatrix} c_4 & 0 & -s_4 & 0 \ s_4 & 0 & c_4 & 0 \ 0 & -1 & 0 & d_4 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Anthropomorphic Arm with Spherical Wrist III

$$\boldsymbol{n}_{6}^{0} = \begin{bmatrix} c_{1}(c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{23}s_{5}c_{6}) + s_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6}) \\ s_{1}(c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{23}s_{5}c_{6}) - c_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6}) \\ s_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) + c_{23}s_{5}c_{6} \end{bmatrix}$$

$$s_6^0 = \begin{bmatrix} c_1(-c_{23}(c_4c_5s_6 + s_4c_6) + s_{23}s_5s_6) + s_1(-s_4c_5s_6 + c_4c_6) \\ s_1(-c_{23}(c_4c_5s_6 + s_4c_6) + s_{23}s_5s_6) - c_1(-s_4c_5s_6 + c_4c_6) \\ -s_{23}(c_4c_5s_6 + s_4c_6) - c_{23}s_5s_6 \end{bmatrix}$$

$$egin{array}{lll} m{a}_{6}^{0} &= egin{bmatrix} c_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + s_{1}s_{4}s_{5} \ s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) - c_{1}s_{4}s_{5} \ s_{23}c_{4}s_{5} - c_{23}c_{5} \end{bmatrix} \end{array}$$

$$\boldsymbol{p}_{6}^{0} = \begin{bmatrix} a_{2}c_{1}c_{2} + d_{4}c_{1}s_{23} + d_{6}\left(c_{1}\left(c_{23}c_{4}s_{5} + s_{23}c_{5}\right) + s_{1}s_{4}s_{5}\right) \\ a_{2}s_{1}c_{2} + d_{4}s_{1}s_{23} + d_{6}\left(s_{1}\left(c_{23}c_{4}s_{5} + s_{23}c_{5}\right) - c_{1}s_{4}s_{5}\right) \\ a_{2}s_{2} - d_{4}c_{23} + d_{6}\left(s_{23}c_{4}s_{5} - c_{23}c_{5}\right) \end{bmatrix}$$

Joint Space and Operational Space

Joint space

$$oldsymbol{q} = egin{bmatrix} q_1 & \dots & q_n \end{bmatrix}^T$$

- $q_i = \vartheta_i$ (revolute joint)
- $\cdot q_i = d_i$ (prismatic joint)

Operational space

$$oldsymbol{x}_e = egin{bmatrix} oldsymbol{p}_e \ \phi_e \end{bmatrix} \quad oldsymbol{x}_e \in \mathbf{R}^m, m \leq n$$

- P_e (position)
- ϕ_e (orientation)

Direct kinematics equation

$$x_e = k(q)$$

 $m < n \;$: Kinematically $redundant \;$ manipulator

Joint Space and Operational Space

Examples

Three-link planar arm

$$egin{aligned} m{x}_e = egin{bmatrix} p_x \ p_y \ \phi \end{bmatrix} = m{k}(m{q}) = egin{bmatrix} a_1c_1 + a_2c_{12} + a_3c_{123} \ a_1s_1 + a_2s_{12} + a_3s_{123} \ artheta_1 + artheta_2 + artheta_3 \end{bmatrix} \end{aligned}$$

•In the most general case of a six-dimensional operational space (m=6), the computation of the three components of the function $\phi_e(q)$ cannot be performed in closed form but goes through the computation of the elements of the rotation $\mathbf{R}_e(q) = [\mathbf{n}_e(q) \ \mathbf{s}_e(q) \ \mathbf{a}_e(q)]$ via inverse formulae

Summary

SECTION 9

Summary

- 1.By applying the rules for inverting a block-partitioned matrix, verify the expression of the homogeneous transformation matrix $m{A}_0^1$
- 2. Find the direct kinematics equation for the SCARA manipulator in the figure.

SCARA manipulator