1.5 Ćwiczenia do samodzielnego rozwiązania

Ćwiczenie 1.1. Obliczyć granice ciągów

a)
$$\lim_{n \to \infty} \frac{2n^2 + 5n - 7}{3n^2 + 6n - 5}$$
,

b)
$$\lim_{n \to \infty} \frac{\sqrt{n} - 3}{3n + 1},$$

c)
$$\lim_{n \to \infty} \frac{6n^6 - 2n}{2n^5 + 1}$$
,

d)
$$\lim_{n \to \infty} \sqrt{n} (\sqrt{n+1} - \sqrt{n}),$$

e)
$$\lim_{n \to \infty} \sqrt{2n^2 + n} - 5n,$$

f)
$$\lim_{n \to \infty} \sqrt{n} (\sqrt{n+1} - \sqrt{n}),$$

g)
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{(n+1)^2}$$
,

h)
$$\lim_{n \to \infty} \frac{\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}}{-\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{(-2)^n}}$$
.

Odp. a)
$$\frac{2}{3}$$
, b) 0, c) ∞ , d) $\frac{1}{2}$, e) $-\infty$, f) $\frac{1}{2}$, g) $\frac{1}{2}$, h) -3 .

Ćwiczenie 1.2. Zbadać monotoniczność ciągów o wyrazie ogólnym

a)
$$a_n = \frac{n+1}{n^2+1}$$
,

b)
$$a_n = \frac{3n^2 + 5n - 3}{n^2 + 2n}$$
.

Odp. a) malejący, b) rosnący.

Ćwiczenie 1.3. Zbadać zbieżność szeregów

a)
$$\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 3 \cdot \dots \cdot (2n-1)}$$
,

b)
$$\sum_{n=1}^{\infty} \frac{4n-3}{\sqrt{n3^n}}$$
,

c)
$$\sum_{n=1}^{\infty} \frac{(n!)^2 5^n}{(2n)!}$$
,

d)
$$\sum_{n=1}^{\infty} \frac{(5n+3)^n}{(3n-2)^n}$$
,

$$e) \sum_{n=1}^{\infty} \frac{2n^3}{3^n}.$$

Odp. a) zbieżny $\frac{1}{2}$ b) zbieżny $\frac{\sqrt{3}}{3}$ i e) zbieżny $\frac{1}{3}$, c) rozbieżny $\frac{5}{4}$ i d) rozbieżny $\frac{5}{3}$.