Neural branching heuristics for SAT solving

Sebastian Jaszczur, Michał Łuszczyk, Henryk Michalewski University of Warsaw

AITP 2019, bit.ly/neurheur-aitp2019

Overview

- 1. Introduction
- 2. The neural network
- 3. Experiments
- 4. Conclusions

1. Introduction. DPLL algorithm

DPLL – basic backtracking algorithm for SAT solving. For illustration purposes.

```
 function DPLL(Φ)
 Φ ← simplify(Φ)
 if Φ is trivially satisfiable then return True
 if Φ is trivially unsatisfiable then return False
 literal ← choose-literal (Φ)
 if DPLL(Φ ∧ literal) then return True
 if DPLL(Φ ∧ ¬literal) then return True
 return False
```

Our work applies to CDCL, too!

2. Models

Neural network interface

CNF invariants

Invariant	TreeNN, LSTM	BOW averaging	Graph NN
"Variable renaming" - invariance	No	No	Yes
"Permutation of literals in clause" - invariance	No	Yes	Yes
"Permutation of clauses in formula" - invariance	No	Yes	Yes
"Negation of all occurrences of variable" - invariance	No	No	Yes

CNF formula: graph representation

We can erase the labels and have an equisatisfiable problem!

Graph neural network for CNF clauses

Inspired by NeuroSAT

Each vertex stores an embedding. In each iteration, each vertex:

- 1. calculates a message and sends to neighbours,
- 2. receives the messages and aggregates,
- calculates its new embedding based on aggregate and previous embedding.

Dataset SR(x)

- x number of variables
- CNF distribution introduced in NeuroSAT
- formulas difficult for SAT solvers
- labels: generated with Glucose

Problem difficulty:

	Average number of clauses	Average formula size	Average time for MiniSAT
SR(30):	300±33	1480±175	0.007
SR(110)	1060±50	5100±287	0.137
SR(150)	1450±60	6930±320	3.406

2. Trained models.

We trained 3-5 models on each of the following datasets.

Problem	Loss	sat error	<i>policy</i> error	Batch size	Train. steps	Train. time
SR(30)	28.178 ± 0.672	0.084 ± 0.004	0.050 ± 0.002	128	1200K	20h
SR(50)	32.024 ± 0.555	0.233 ± 0.017	0.105 ± 0.006	64	600K	12h
SR(70)	33.010 ± 0.482	0.266 ± 0.033	0.110 ± 0.007	64	600K	22h
SR(100)	34.227 ± 0.127	0.319 ± 0.007	0.123 ± 0.002	32	1200K	28h

Mean and stdev over 3-5 trained models.

3. Experiments

Performance with DPLL compared to static heuristics; at step limit 1000

Learned heuristic better than DLIS. JW-OS better at SR(50)-SR(70) and worse at SR(90)-SR(110).

Hybrid vs JW-OS guiding DPLL and CDCL

Hybrid - use Model SR(50) if sat probability > 0.3, otherwise fallbacks to JW-OS. Why? 1. Faster 2. NN policy isn't trained on unsatisfiable formulas.

Attention experiment

y axis: policy error, average and std over 3-5 runs

- Attention significantly better,
- except for SR(30)
 l20 and SR(50) l40.

Our contributions

- Learned branching heuristic using a GNN
- Modifying the NeuroSAT-inspired network with attention

Future work

- Optimise for the number of steps.
- Curriculum learning.
- Integrate with restart policy and clause learning and forgetting decision.
- Compare to VSIDS and other dynamic heuristics.
- Unsat certificates.

Our workshop paper: bit.ly/neurheur-iclr2019

(e|~f|d|a|~b|~i)&(~e|g|b)&(f|i|g)&(e|~f|i|~i)&(~i|f|~d)&(~c|~f|~h)&(~a|~i|~d)&(~i|h|~b| $\sim f$)&($\sim h$ | $\sim c$ |i| $\sim b$ |i|e)&($\sim c$ | $\sim e$ |a|b|i)&($\sim f$ |b|g| $\sim i$)&($\sim a$ |i|h|f|c)&($\sim d$ |f|g| $\sim c$ |a)&(a|d| $\sim c$ | $\sim h$)&(c|-a|-h|d)&(f|-i|-a)&(d|b|f|-g|a)&(e|d|c|-f|-i)&(-f|d|-a)&(-c|-g|-d|-f|i)&(f|e|i)&(d|c|-f|-i)&(-f|d|-a)&(-c|-g|-d|-f|i)&(f|e|i)&(d|c|-f|-i)&(-f|d|-a)&(-c|-g|-d|-f|i)&(f|e|i)&(d|c|-f|-i)&(-f|d|-a)&(-c|-g|-d|-f|i)&(-f|e \sim h)&(e|h|~c|~b|d|a|g)&(~e|~i|~i|d|f)&(h|e|~g|d)&(~f|h|c|g|~i|b|d|~i|~a)&(~d|~i|~h|i|~c $)&(\sim a|\sim c|\sim d)&(d|\sim a|f)&(a|h|d)&(\sim b|\sim g|\sim f|\sim i|a|d)&(\sim a|\sim f|\sim g|j)&(e|\sim b|j|f)&(i|\sim g|\sim f|\sim e)&$ $(a|b|\sim h|\sim j|\sim f|\sim i)\&(a|j|c)\&(g|j|\sim c|\sim f)\&(\sim e|d|\sim f|\sim c)\&(j|\sim c|f)\&(e|i|\sim f|j|b|g)\&(\sim d|a|c|e)\&(\sim b)$ |-a|-h)&(a|-i|h|e|i|c)&(-d|-a|g|h|-c|-f|i)&(-h|-e|-d)&(h|-i|-b|-f|-e|-g|d)&(-i|-i|a|d $)&(\sim ||\sim h|\sim f(\sim b|c)&(\sim f(e|a)&(j|b|\sim i)&(\sim c|j|\sim i|a|\sim h|e|d)&(\sim i|\sim h|c|\sim e|j|\sim d|\sim g)&(b|\sim c|j|i)&(\sim i|\sim h|\sim f(\sim b|c)&(\sim f(e|a)&(j|b|\sim i)&(\sim c|j|\sim i|a|\sim h|e|d)&(\sim i|\sim h|c|\sim e|j|\sim d|\sim g)&(b|\sim c|j|i)&(\sim i|\sim h|c|\sim e|j|\sim e|j|\sim e|j|\sim e|j|$ $|e|^{-d}^{-a}|^{-g}^{-h}$ $(c|^{-b}|i|^{-h})$ $(^{-i}|h|c)$ $(^{-c}|i|g)$ $(^{-i}|a|^{-i})$ $(^{-e}|h|^{-i}|^{-c}$ $(^{-d})$ $(^{-e}|b|^{-i})$ $(^{-e}|h|^{-i})$ $i|d)&(\sim d|a|e)&(h|\sim j|d)&(d|\sim f|\sim h|\sim e|\sim b)&(\sim b|\sim f|j|\sim c|h|\sim i)&(\sim b|f|\sim j|d|\sim g)&(\sim a|i|\sim b|\sim c)&$ $(d|e|\sim c|i|\sim h)\&(\sim b|\sim d|\sim i|\sim i|\sim a)\&(f|i|i|h|\sim g|d|\sim a|\sim c)\&(g|f|\sim e)\&(\sim e|\sim h|d|i)\&(i|i|\sim a|g|\sim e|\sim a|g|\sim e|\sigma|\sim a|g|\sim a|g$ $h)&(\sim e|\sim g|i)&(c|\sim h|e|\sim i|\sim d)&(i|\sim f|\sim i)&(b|\sim h|\sim g|i|f|i|e|\sim d)&(\sim i|e|\sim i|\sim a|d|\sim g)$

Why sigmoidal attention?

- Attention with sigmoid resembles aggregation with sum while attention with softmax resembles aggregation with average,
- average loses important information e.g. it cannot count the neighbours.

Why we compare steps rather than time

- Time optimisations are possible (parallel execution, simpler model, non-Python implementation), it's engineering work,
- bigger models determines the upper bound,
- we expect better time at sufficiently large instances:
 - o actually, we're better than some heuristics now.

How NeuroSAT works x axis - iteration number, sat probability at each literal node

Usage

- We take a formula, and we predict SAT probability and policy probability
- SAT probability, computed for whole formula:
 - Ground truth is "is whole formula satisfiable?" like NeuroSAT
 - We do linear regression on every node's embedding. We output sigmoid of sum of the results of those linear regression.
- Policy probability, computed separately for each literal:
 - Ground truth is "is there a solution to this formula with this literal?".
 - We do logistic regression on every literal node's embedding.