Remote I/O Protocol

Philip Munts Munts Technologies

Revision 5 27 January 2018

Contents

Revision History	3
Introduction	4
Identifiers	
Message Numbers	
Common Message Definitions	6
Common Message Header	6
Loopback Request	6
Loopback Response	6
Version Request	
Version Response	7
Capability Request	
Capability Response	7
GPIO Message Definitions	8
GPIO Pins Present Request	8
GPIO Pins Present Response	
GPIO Configure Request	
GPIO Configure Response	9
GPIO Read Request	
GPIO Read Response	
GPIO Write Request	
GPIO Write Response	10
I2C Message Definitions	
I ² C Buses Present Request	
I ² C Buses Present Response	11
I ² C Bus Configuration Request	
I ² C Bus Configuration Response	
I ² C Bus Transaction Request	
I ² C Bus Transaction Response	
SPI Message Definitions	
SPI Devices Present Request	
SPI Devices Present Response	
SPI Device Configure Request	
SPI Device Configure Response	
SPI Transaction Request	
SPI Transaction Response	
ADC (Analog to Digital Converter) Message Definitions	
ADC Channels Present Request	
ADC Channels Present Response	
ADC Channel Configure Request	
ADC Channel Configure Response	
ADC Read Request	
ADC Read Response	16

Revision History

Revision 1, 21 April 2017	Initial release.
Revision 2, 17 May 2017	Added device number and delay fields to the SPI transaction request message. Changed the maximum number of SPI devices from 256 to 128.
Revision 3, 30 May 2017	Added missing SPI message definitions. Added ADC message definitions.
Revision 4, 7 August 2017	Corrected some typographical errors.
Revision 5, 27 January 2018	Return the ADC input resolution in the configuration response.

Introduction

This document specifies a lightweight message protocol for performing remote I/O operations. The protocol is implemented using a request/reply pattern, where the *master* device (*e.g.* a Linux computer) transmits an I/O request in a 64-byte message to the *slave* device (*e.g.* a single chip microcontroller). The slave device performs the requested I/O operation and returns an I/O response in a 64-byte message back to the master device.

The protocol is kept as simple as possible (exactly one 64-byte request message and one 64-byte response message) to allow using low end single chip microcontrollers such as the PIC16F1455 for the slave device. Although particularly suited for USB raw HID devices, this protocol can use any transport mechanism that can reliably transmit and receive 64-byte messages, such as UDP, ONC/RPC or ZeroMQ.

Identifiers

Message Numbers

LOOPBACK REQUEST	0
LOOPBACK RESPONSE	1
VERSION REQUEST	2
VERSION RESPONSE	3
CAPABILITY REQUEST	4
CAPABILITY RESPONSE	5
GPIO PRESENT REQUEST	6
GPIO PRESENT RESPONSE	7
GPIO CONFIGURE REQUEST	8
GPIO CONFIGURE RESPONSE	9
GPIO READ REQUEST	10
GPIO READ RESPONSE	11
GPIO WRITE REQUEST	12
GPIO WRITE RESPONSE	13
I2C PRESENT REQUEST	14
I2C PRESENT RESPONSE	15
12C CONFIGURE REQUEST	16
I2C CONFIGURE RESPONSE	17
12C TRANSACTION REQUEST	18
12C TRANSACTION RESPONSE	19
SPI PRESENT REQUEST	20
SPI PRESENT RESPONSE	21
SPI CONFIGURE REQUEST	22
SPI CONFIGURE RESPONSE	23
SPI TRANSACTION REQUEST	24
SPI TRANSACTION RESPONSE	25
ADC PRESENT REQUEST	26
ADC PRESENT RESPONSE	27
ADC CONFIGURE REQUEST	28
ADC CONFIGURE RESPONSE	29
ADC_READ_REQUEST	30
ADC_READ_RESPONSE	31
_	

Common Message Definitions

All remote I/O devices must implement the following request and response messages.

Common Message Header

Every message shall begin with the following common message header.

Byte 0	Message type
Byte 1	Message number

The *message type* determines the contents of the rest of the message.

The **message number** is initialized by the master device. The slave device will use the same message number in the response message.

Loopback Request

Byte 0	0
Byte 1	Message number
Bytes 2-62	Arbitrary data

Loopback Response

Byte 0	1
Byte 1	Message number
Byte 2	Error code
Bytes 3-63	Arbitrary data

<u>Version Request</u>

Byte 0	2
Byte 1	Message number

Version Response

Byte 0	3
Byte 1	Message number
Byte 2	Error code
Bytes 3-63	Version string

The version string is free format text and must be terminated with a NUL (zero) byte.

Capability Request

Byte 0	4
Byte 1	Message number

Capability Response

Byte 0	5
Byte 1	Message number
Byte 2	Error code
Bytes 3-63	Capability string

The capability string shall contain capability tokens separated by a single space and must be terminated with a **NUL** (zero) byte. Tokens may be in any order.

The following capability tokens are defined:

ADC

GPIO

I2C

SPI

An example of a valid capability string from a remote I/O device capable of both GPIO and I²C services would be:

"GPIO I2C"

GPIO Message Definitions

All of the following request and response messages must be implemented by the remote I/O device if it reports **GPIO** in the capability string.

GPIO pins are numbered 0 through 127 inclusive, and are named GPIO0 to GPIO127.

GPIO Pins Present Request

Byte 0	6
Byte 1	Message number

GPIO Pins Present Response

Byte 0	7
Byte 1	Message number
Byte 2	Error code
Bytes 3-18	GPIO's present

The GPIO present bits are numbered left to right: Byte 3 bit 7 indicates **GPIO0** is present, byte 3 bit 0 indicates **GPIO7** is present, and byte 18 bit 0 indicates **GPIO127** is present.

GPIO Configure Request

Byte 0	8
Byte 1	Message number
Bytes 2-17	GPIO's selected
Bytes 18-33	Data direction bits

The GPIO select bits are numbered left to right: Byte 2 bit 7 corresponds to GPIO0, byte 2 bit 0 corresponds to GPIO7, and byte 17 bit 0 corresponds to GPIO127.

The GPIO data direction bits are also numbered left to right: Byte 18 bit 7 corresponds to GPIO0, byte 18 bit 0 corresponds to GPIO7, and byte 33 bit 0 corresponds to GPIO127.

A data direction bit with a value of 0 indicates the GPIO pin shall be configured as an input. A value of 1 indicates the GPIO pin shall be configured as an output.

Note: The data direction values (0=input, 1=output) follow the convention of most GPIO devices, **except** Microchip PIC microcontrollers which use the **opposite** convention..

The slave device must silently ignore any GPIO pin that is not selected, not present, or not configurable.

GPIO Configure Response

Byte 0	9
Byte 1	Message number
Byte 2	Error code

GPIO Read Request

Byte 0	10
Byte 1	Message number
Bytes 2-17	GPIO's selected

The GPIO select bits are numbered left to right: Byte 2 bit 7 corresponds to GPIO0, byte 2 bit 0 corresponds to GPIO7, and byte 17 bit 0 corresponds to GPIO127.

GPIO Read Response

Byte 0	11
Byte 1	Message number
Byte 2	Error code
Bytes 3-18	GPIO state bits

The GPIO state bits are numbered left to right: Byte 3 bit 7 corresponds to GPIO0, byte 3 bit 0 corresponds to GPIO7, and byte 18 bit 0 corresponds to GPIO127.

The slave device must clear the state bit for any GPIO pin that was not selected in the request message or that it cannot read from (either because the pin does not exist or because it is write only).

GPIO Write Request

Byte 0	12
Byte 1	Message number
Bytes 2-17	GPIO's selected
Bytes 18-33	GPIO state bits

The GPIO select bits are numbered left to right: Byte 2 bit 7 corresponds to GPIO0, byte 2 bit 0 corresponds to GPIO7, and byte 17 bit 0 corresponds to GPIO127.

The GPIO state bits are also numbered left to right: Byte 18 bit 7 corresponds to GPIO0, byte 18 bit 0 corresponds to GPIO7, and byte 33 bit 0 corresponds to GPIO127.

The slave device must silently ignore any GPIO pin is not selected or that it cannot write to (either because the pin does not exist or because it is read only).

GPIO Write Response

Byte 0	13
Byte 1	Message number
Byte 2	Error code

I2C Message Definitions

All of the following request and response messages must be implemented by the remote I/O device if it reports I2C in the capability string.

I²C buses are numbered 0 through 127 inclusive, and are named 12C0 to 12C127.

I²C Buses Present Request

Byte 0	14
Byte 1	Message number

I²C Buses Present Response

Byte 0	15
Byte 1	Message number
Byte 2	Error code
Bytes 3-18	Buses present

The I²C bus present bits are numbered left to right: Byte 3 bit 7 indicates **12C0** is present, byte 3 bit 0 indicates **12C7** is present, and byte 18 bit 0 indicates **12C127** is present.

I²C Bus Configuration Request

Byte 0	16
Byte 1	Message number
Byte 2	I2C bus number
Byte 3	Freq bits 31:24
Byte 4	Freq bits 23:16
Byte 5	Freq bits 15:8
Byte 6	Freq bits 7:0

The most common I²C clock frequencies are 100 kHz (100,000) and 400 kHz (400,000). Other frequencies may or may not be supported by the particular remote I/O device.

Note: The maximum usable l^2C clock frequency will be limited by the slowest device on the l^2C bus.

I²C Bus Configuration Response

Byte 0	17
Byte 1	Message number
Byte 2	Error code

I²C Bus Transaction Request

Byte 0	18
Byte 1	Message number
Byte 2	I ² C bus number
Byte 3	I ² C device address
Byte 4	Write length, bytes
Byte 5	Read length, bytes
Bytes 6-63	Write data

I²C Bus Transaction Response

Byte 0	19
Byte 1	Message number
Byte 2	Error code
Byte 3	Read length, bytes
Bytes 4-63	Read data

SPI Message Definitions

All of the following request and response messages must be implemented by the remote I/O device if it reports **SPI** in the capability string.

SPI devices are numbered 0 through 127 inclusive, and are named SPIO to SPI127.

Note: The SPI bus organization (i.e. which devices are attached to which buses) is private to the remote I/O device.

SPI Devices Present Request

Byte 0	20
Byte 1	Message number

SPI Devices Present Response

Byte 0	21
Byte 1	Message number
Byte 2	Error code
Bytes 3-18	Devices present

The SPI device present bits are numbered left to right: Byte 3 bit 7 indicates **SPI0** is present, byte 3 bit 0 indicates **SPI7** is present, and byte 18 bit 0 indicates **SPI127** is present.

SPI Device Configure Request

Byte 0	22
Byte 1	Message number
Byte 2	Device 0-127
Byte 3	Mode 0-3
Byte 4	Word size in bits
Bytes 5-8	Speed in Hz

The allowed values for the SPI device number, mode, word size, and speed fields depend on the remote I/O device implementation. A word size of 0 implies 8 bits.

SPI Device Configure Response

Byte 0	23
Byte 1	Message number
Byte 2	Error code

SPI Transaction Request

Byte 0	24
Byte 1	Message number
Byte 2	Device 0-127
Byte 3	Write length, bytes
Byte 4	Read length, bytes
Bytes 5-6	Delay, µs
Bytes 7-63	Write data

Either the write length or the read length fields may be zero, indicating a read only or write only transaction respectively. The maximum write length is 57 bytes, limited by the 64-byte message size. The maximum read length is 60 bytes, also limited by the 64-byte message size.

SPI Transaction Response

Byte 0	25
Byte 1	Message number
Byte 2	Error code
Byte 3	Read length, bytes
Bytes 4-63	Read data

ADC (Analog to Digital Converter) Message Definitions

All of the following request and response messages must be implemented by the remote I/O device if it reports **ADC** in the capability string.

ADC channels are numbered 0 through 127 inclusive, and are named ADC0 to ADC127.

ADC Channels Present Request

Byte 0	26
Byte 1	Message number

ADC Channels Present Response

Byte 0	27
Byte 1	Message number
Byte 2	Error code
Bytes 3-18	Channels present

The ADC channel present bits are numbered left to right: Byte 3 bit 7 indicates **ADC0** is present, byte 3 bit 0 indicates **ADC7** is present, and byte 18 bit 0 indicates **ADC127** is present.

ADC Channel Configure Request

Byte 0	28
Byte 1	Message number
Byte 2	Channel 0-127

ADC Channel Configure Response

Byte 0	29
Byte 1	Message number
Byte 2	Error code
Byte 3	Bits of resolution

ADC Read Request

Byte 0	30
Byte 1	Message number
Byte 2	Channel 0-127

ADC Read Response

Byte 0	31
Byte 1	Message number
Byte 2	Error code
Bytes 3-6	Data sample

The analog data sample is a 32-bit unsigned integer. Response message byte 3 is the most significant byte and byte 6 is the least significant byte.

Note: The actual ADC subsystem organization (devices, channels, resolutions, signal conditioning, etc.) is private to the remote I/O device.