

Definition

Time Series can be defined as a set of measurements of certain variable made at **regular time intervals**.

Time acts as an independent variable for estimation

A time series defined by the values Y1, Y2.. of a variable Y at times t1, t2, t3.. is given by :

$$Y = F(t)$$

Series of monthly sales data

Applications

Notice that all these datasets include time

Time Series Pattern Types

Downtrend

Smartphone sales for a 3 year period

Stock Market price for a wall street company

A trend is a long-term increase or decrease in time series data

Time Series Pattern Types (Contd.)

- When factors such as the time of the year or the day of the week affect the dependent variable, repetitive patterns are observed in the time series
- · Seasonality is always of a fixed and known frequency

Time Series Pattern Types (Contd.)

- · Unlike seasonal patterns, cyclic patterns exhibit rise and fall that are not of fixed period
- · Duration is at least 2 years

Time Series Pattern Types (Contd.)

- Irregular patterns might occur due to random or unforeseen events
- · They are often of short duration and non-repeating

White Noise

A white noise series is one with a zero mean, a constant variance, and no correlation between its values at different times.

Since values are uncorrelated, the adjacent values do not help to forecast future values

White Noise (Contd.)

Example: Stock prices of companies may vary daily and time series become uncorrelated

Stationarity

The time series should be stationary to build the model

Non-Stationary Series

Stationarity Check

Plot the moving average or moving variance to check if it varies with time.

Notice the mean and variance **increase** constantly

Dickey Fuller test (Statistical)

Test Statistic 0.815369
p-value 0.991880
#Lags Used 13.000000
Number of Observations Used 130.000000
Critical Value (1%) -3.481682
Critical Value (5%) -2.884042
Critical Value (10%) -2.578770

dtype: float64

Null Hypothesis = TS is non-stationary

If 'Test Statistic' < 'Critical Value', Reject the null hypothesis 2

Removal of Non-Stationarity

Getting a TS perfectly stationary is desirable but not practical, so it is made as close as possible using these statistical techniques

Differencing

Differencing is performed by subtracting the previous observation from the current observation.

$$\Delta y_t = y_t - y_{t-1}$$

 Δy_t is the difference between two successive values $\mathbf{Y_t}$ is the value of y at t and $\mathbf{Y_{t-1}}$ is the value preceding $\mathbf{Y_t}$

On differencing the series on left

Decomposition

Detrending or de-seasonalizing eliminates the trend and seasonality respectively.

Decomposition is performed on the original series by regressing the series on time and taking the residuals from the regression.

$$y_t = \mu + \beta t + \epsilon_t$$

Seasonality with increasing trend

Seasonally decomposed series

You can also use techniques like **transformation** which penalize higher values more than lower values. Example: square root, cube root, log.

Time Series Models

Auto Regressive (AR) Model

In an AR model, you predict future values based on a weighted sum of past values.

Equation for the auto regressive model:

$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p Y_{t-p} + e_t$$

 \mathbf{Y}_{t} is the function of different past values of the same variable \mathbf{e}_{t} is the error term

c is a constant

 ϕ_1 to ϕ_p are the parameters

AR(1) is a model whose current value is based on the preceding value

AR(2) is based on the preceding two values

Day	Price	
1	21	y _{t-p}
2	22	
3	23	
4	24	
5	23	
6	26	
7	27	
8	27	
9	29	y _{t-3}
10	30	y _{t-2}
11	32	y _{t-1}
12	?	y _t

Moving Average (MA) Model

MA model is used to forecast time series if Y_t depends only on the random error terms.

Equation for the MA model:

Year	Units	Moving Avg	
1994	2	_	
1995	5 ~	3	
1996	2	≥ 3	
1997	2	3.67	
1998	7	> 5	
1999	6_	J –	

ARMA Model

ARMA model is used to forecast time series using both the past values and the error terms.

Equation for the ARMA model:

It is referred as ARMA (p, q), where p is autoregressive terms and q is moving average terms

ARIMA Model

ARIMA model predicts a value in a response time series as a linear combination of its own past values, past errors, also current and past values of other time series.

If no differencing is done (d = 0), the models are usually referred to as ARMA(p, q) models

ACF and PACF

Autocorrelation refers to the way the observations in a time series are related to each other.

Autocorrelation Function (ACF

ACF is the coefficient of correlation between the value of a point at a current time and its value at lag p, that is, correlation between Y(t) and Y(t-p)

ACF will identify the order of MA process

Partial Autocorrelation Function (PACF)

PACF is similar to ACF, but the intermediate lags between t and t-p are removed, that is, correlation between Y(t) and Y(t-p) with p-1 lags excluded.

PACF will identify the order of AR process

ACF and PACF are used to determine the value of p and q

Characteristics of ACF and PACF

MODEL	ACF	PACF
AR(p)	Spikes decay towards zero	Spikes cutoff to zero
MA(q)	Spikes cutoff to zero	Spikes decay towards zero
ARMA(p,q)	Spikes decay towards zero	Spikes decay towards zero

PACF "cuts off" to zero after the 2nd lag

Steps in Time Series Forecasting

Step 01		Visualize the time series – check for trend, seasonality, or random patterns
Step 02		Stationarize the series using decomposition or differencing techniques
Step 03		Plot ACF / PACF and find (p, d, q) parameters
Step 04	>	Build ARIMA model
Step 05	>	Make predictions using final ARIMA model