VE281 Data Structures and Algorithms Hashing

Review

- Dictionary: a collection of pairs (key, element)
 - Methods: find(), insert(), remove()
- Basics of Hashing
 - Hash table, hash function, collision
- Hash Function
 - Mapping non-integers into hash code
 - String to integers
 - Compression mapping by modulo arithmetic
 - How to choose the divisor M?

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear probing
 - Quadratic probing and double hashing

Collision Resolution Scheme

- Collision-resolution scheme: assigns distinct locations in the hash table to items involved in a collision.
- Two major scheme:
 - Separate chaining
 - Open addressing

Separate Chaining

- Each bucket keeps a **linked list** of all items whose home buckets are that bucket.
- Example: Put pairs whose keys are 6, 23, 34, 28, 29, 7, 33, 30 into a hash table with M=7 buckets.

Separate Chaining

- Element find(Key key)
 - Compute k = h(key)
 - Search in the linked list located at the k-th bucket (e.g., check every element) with the key.
- void insert(Key key, Element element)
 - Compute k = h(key)
 - Search in the linked list located at the k-th bucket. If found, update its element; otherwise, insert the pair at the beginning of the linked list in O(1) time.

Separate Chaining

- Element remove (Key key)
 - Compute k = h(key)
 - Search in the linked list located at the k-th bucket. If found, remove that pair.

Worst-Case Performance Analysis

- Suppose a hash table with *M* buckets stores *N* items.
 - What is the worst-case situation for find()?
 - What is the time complexity for find() in the worst case?
- Answer:
 - Worst case happens when all *N* items are mapped to the same bucket.
 - The time complexity for find() is O(N).

Average-Case Performance Analysis

- \blacksquare Suppose a hash table with M buckets stores N items.
- Average list length for each bucket is N/M.
 - L = N/M is called the **load factor**.
- Average runtime for search

$$O(h()) + O(1) + O(L)$$

Computing Fetch Search hash the k-th the

- Average number of comparisons for tan unsuite estul search: L.
- Average number of comparisons for a successful search:

$$\frac{1}{L} \sum_{i=1}^{L} i = \frac{L+1}{2}$$

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear probing
 - Quadratic probing and double hashing

Open Addressing

- Reuse empty space in the hash table to hold colliding items.
- To do so, search the hash table in some systematic way for a bucket that is empty.
 - Idea: if there is a collision, apply another hash function from a predetermined set of hash functions $\{h_0, h_1, h_2, \ldots\}$ in sequence until there's no collision.
- Generally, we could define $h_i(x) = h(x) + f(i)$
 - We **probe** the hash table buckets mapped by $h_0(\text{key})$, $h_1(\text{key})$, ..., in sequence, until we

Open Addressing

- Three methods:
 - Linear probing:

$$h_i(x) = (h(x) + i) % M$$

• Quadratic probing:

$$h_i(x) = (h(x) + i^2) % M$$

• Double hashing:

```
h_i(x) = (h(x) + i*g(x)) % M
```

$$h_i(key) = (h(key)+i) % M$$

- Apply hash function h_0 , h_1 , ..., in sequence until we find an empty slot.
 - This is equivalent to doing a linear search from h(key) until we find an empty slot.
- Example: Hash table size M = 9, h(key) = key%9
 - Thus h_i (key) = (key%9+i)%9
 - Suppose we insert 1, 5, 11, 2, 17, 21 How about 2 (1) [1] [2] [3] [4] [5] [6] [7] [8]

Linear Probing Example

- Hash table size M = 9, h(key) = key%9
 - Thus h_i (key) = (key%9+i)%9
 - Suppose we insert 1, 5, 11, 2, 17, 21, 31 in

se	quenc 1	11	2	21	5	31		17
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]

- $h_0(2) = 2$. Not empty!
- So we try $h_1(2) = 3$. It is empty, so we insert there!
- h_0 (21) = 3. Not empty!
- h_1 (21) = 4. It is empty, so we insert there!
- h_0 (31) = 4. Not empty!
- $h_1(31) = 5$. Not empty!

Linear Probing find()

- With linear probing h_i (key) = (key%9+i)%9
 - How will you **search** an item with key = 31?
 - How will you search an item with key = 10?
- Procedure: probe in the buckets given by $h_0(\text{key})$, $h_1(\text{key})$, ..., in sequence **until**
 - we find the key,
 - or we find an empty slot, which means the key is not found.

Linear Probing remove()

- With linear probing $h_i(key) = (key%9+i)%9$
 - How will you **remove** an item with key = 11?
 - If we just find 11 and delete it, will this work?

What is the result for searching key = 2 with the above hash table?

remove()

cluster

1 2 21 5 31 17

[0] [1] [2] [3] [4] [5] [6] [7] [8]

- After deleting 11, we need to **rehash** the following "cluster" to fill the vacated bucket.
- However, we cannot move an item beyond its actual hash position. In this example, 5 cannot be moved ahead. 5 31 17 [8]

Alternative implementation of remove()

- Lazy deletion: we mark deleted entry as "deleted".
 - "deleted" is not the same as "empty".
 - Now each bucket has three states: "occupied", "empty", and "deleted".
- We can overwrite the "deleted" entry when inserting.
- When we search, we will keep looking if we encounter a "deleted" entry.

Clustering Problem

cluster

- Clustering: when contiguous buckets are all occupied.
- Any hash value inside the cluster adds to the end of that cluster.
- Are there any problems with a large cluster?
 - It becomes more likely that the next hash value will collide with the cluster.
 - Collisions in the cluster get more expensive to resolve.

Clustering Problem

- Assuming input size N, table size 2N:
 - What is the best-case cluster distribution?

• What is the worst-case cluster distribution?

• What's the average time to find an empty slot in both cases?

Outline

- Collision Resolution: Separate Chaining
- Collision Resolution: Open Addressing
 - Linear probing
 - Quadratic probing and double hashing

Quadratic Probing

- $h_i(key) = (h(key) + i^2) % M$
- It is less likely to form large clusters.
- However, sometimes we will never find an empty slot even if the table isn't full!
- Luckily, if the load factor $L \leq 0.5$, we are guaranteed to find an empty slot.

Quadratic Probing Example

- Hash table size M = 7, h(key) = key%7
 - Thus h_i (key) = $(key%7+i^2)%7$
 - Suppose we insert 9, 16, 11, 2 in sequence.

		9	16	11		2
[0]	[1]	[2]	[3]	[4]	[5]	[6]

- h_0 (16) = 2. Not empty!
- h_1 (16) = 3. It is empty, so we insert there.
- $h_0(2) = 2$. Not empty!
- $h_1(2) = 3$. Not empty!
- $h_2(2) = 6$. It is empty, so we insert there.

Double Hashing

$$h_{i}(x) = (h(x) + i*g(x)) % M$$

- Uses 2 distinct hash functions.
- Increments differently depending on the key.
 - For linear and quadratic probing, the incremental probing patterns are the same for all the keys.

Double Hashing Example

- Hash table size M = 7, h(key) = key%7,
 g(key) = (5-key)%5
 - Thus h_i (key) = (key%7+(5-key)%5*i)%7
 - Suppose we insert 9, 16, 11, 2 in sequence.

		9		11	2	16
[0]	[1]	[2]	[3]	[4]	[5]	[6]

- h_0 (16) = 2. Not empty!
- h_1 (16) = 6. It is empty, so we insert there.
- $h_0(2) = 2$. Not empty!
- $h_2(2) = 5$. It is empty, so we insert there.

Average Number of Comparisons

- It usually depends on the load factor L = N/M, where N is the number of items in the hash table and M is the size of the hash table.
- Define average number of comparisons in an **unsuccessful** search as U(L).
- Define average number of comparisons in a successful search as S(L).
- For separate chaining, we have

$$U(L) = L, \qquad S(L) = \frac{L+1}{2}$$

Average Number of Comparisons

Linear probing

$$U(L) = \frac{1}{2} \left[1 + \left(\frac{1}{1 - L} \right)^2 \right]$$
$$S(L) = \frac{1}{2} \left[1 + \frac{1}{1 - L} \right]$$

L	U(L)	S(L)
0.5	2.5	1.5
0.75	8.5	2.5
0.9	50. 5	5. 5

 $L \leq 0.75$ is recommended.

Average Number of Comparisons

• Quadratic probing and double hashing

$$U(L) = \frac{1}{1 - L}$$
$$S(L) = \frac{1}{L} \ln \frac{1}{1 - L}$$

L	U(L)	S(L)
0.5	2	1.4
0.75	4	1.8
0.9	10	2.6