RoboChef Pepper Mills

Presented by:

Anthony El Chemaly Catherina El Khoury Elie El Rayess Rodaina Fayad Garo Margossian Fawzi El Khoury Presented to:

Dr. Elie Saad

Discussion Points

- Introduction
- Use Case and Personas
- Code
- Challenges
- Solution to challenges
- Future work

Pepper Mills

Introduction

Imagine a kitchen where RoboChef assists you in preparing a delectable meal, from selecting recipes and gathering ingredients and help you be entertained while cooking.

Our project aims to achieve these goal by improving the cooking experience through technology.

Use Case

- Request a Recipe
- Recommend a recipe
- Create Account
- Provide Nutritional Information for a Specific Recipe
- Play music or tell a joke
- Monitor kitchen appliance

Covered Use Cases

- Request a Recipe
- Recommend a recipe
- Play music or tell a joke

Personas

Three different personas:

- Samira who wants to feed her family
- Sally who wants to be a Professional Chef
- Anastasia wants to learn how to cook

Our Work

In our project we made use of different blocks to reach the required functionality.

The functionality we aimed to achieve was that of the three use cases:

- UC01- Request a Recipe,
- UCO2 Recommend a Recipe
- UC-05 Play music or Tell a joke.

WebView Python Script

```
# create proxy on ALMemory
memProxy = ALProxy("ALMemory", "localhost", 9559)
#get data. Val can be int, float, list, string
cuisine = memProxy.getData("cuisine")
mealtype = memProxy.getData("mealtype")
option1 = memProxy.getData("option1")
option2 = memProxy.getData("option2")
nextinstruction = memProxy.getData("nextinstruction")
```

WebView Python Script


```
if tabletService:
                # use default robot IP address from the tablet
               robotIP = "198.18.0.1" | tabletService.getRobotIp()
               if nextinstruction:
                   url = "http://(ip)/apps/(appName)/pages/step.html?nextinstruction=(nextinstruction)".format(ip=robotIP, appName=appName, nextinstruction=nextinstruction)
               else:
                   if option1 and option2:
                       url = "http://(ip)/apps/(appName)/pages/choice.html?cuisine=(cuisine)&mealtype=(mealtype)&option1=(option1)&option2=(option2)".format(ip=robotIP,
appName-appName, cuisine-cuisine, mealtype-mealtype, option1-option1, option2-option2)
                        if cuisine or mealtype:
                           url = "http://{ip}/apps/{appName}/pages/displayinfo.html?cuisine-{cuisine}&mealtype-{mealtype}".format(ip-robotIP, appName-appName, cuisine-cuisine,
mealtype=mealtype)
                        else:
                           url = "http://{ip}/apps/{appName}/pages/index.html".format(ip-robotIP, appName-appName)
               self.logger.info(url)
                # Show the web view on the tablet
               tabletService.showWebview(url)
                                                                                                                                                     Activate Windows
               self.logger.warning("Couldn't find tablet service, so can't set application: %s" % appName)
```

QiChat Dialogue Sample

JS Raise Event


```
v function raiseEvent(name, value) {
       QiSession(function (session) {
         session.service("ALMemory").then(
           function (mem) {
             mem.raiseEvent(name, value);
           function (error) {
              console.log("An error occurred:", error);
10
11
12
```

JS Display Function

```
function displayPageInformation() {
       document.getElementById("cuisine").innerHTML =
41
          "Cuisine: " + decodeURI(getUrlParam("cuisine", ""));
42
       document.getElementById("mealtype").innerHTML = decodeURI(
43
         "Meal Type: " + getUrlParam("mealtype", "")
44
       );
45
46
       imageName1 = getUrlParam("option1", "");
47
       if (imageName1) {
48
         document.getElementById("optionOneLabel").innerHTML =
49
           transformText(imageName1);
50
         document.getElementById("option1").src = "../pics/" + imageName1 + ".png";
51
52
         document.getElementById("option1").onclick = function () {
           raiseEvent("chosenOption", imageName1);
53
54
         };
55
       imageName2 = getUrlParam("option2", "");
56
       if (imageName2) {
57
         document.getElementById("optionTwoLabel").innerHTML =
58
           transformText(imageName2);
59
         document.getElementById("option2").src = "../pics/" + imageName2 + ".png";
60
         document.getElementById("option2").onclick = function () {
61
           raiseEvent("chosenOption", imageName2);
62
          };
63
64
65
```

Echallenges

- Choreograph syntax
- Limitation in time to learn the language
- Inconvenient time to work with the robot
- Difference in majors
- Merging the separate work of each subteam
- Difficulties in communication with the robot

Solution Challenges

- Split ourselves into groups of two in a way to facilitate the working process.
- Standardize the code
- Keep everyone involved in the changes.
- Working outside class hours
- Relied on dialogue chat (through typing) to ensure the acquisition of information
- Enhance our knowledge in qichat through YouTube videos and examples.

Future

Work

- Access information from the internet
- Integrating Al into the robot for better communication with users.

Conclusion

Through this project, we implemented all the steps required to build a social robot, where it can communicate with users and provide a specific service.

• • • •

. . . .

