Introduction to Digital Logic

Assist. Prof. Hamza Osman İLHAN

hoilhan@yildiz.edu.tr

Course Outline

- 1. Digital Computers, Number Systems, Arithmetic Operations, Decimal, Alphanumeric, and Gray Codes
- 2. Binary Logic, Gates, Boolean Algebra, Standard Forms
- 3. Circuit Optimization, Two-Level Optimization, Map Manipulation, Multi-Level Circuit Optimization
- 4. Additional Gates and Circuits, Other Gate Types, Exclusive-OR Operator and Gates, High-Impedance Outputs
- 5. Implementation Technology and Logic Design, Design Concepts and Automation, The Design Space, Design Procedure, The major design steps
- 6. Programmable Implementation Technologies: Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic, Technology mapping to programmable logic devices
- 7. Combinational Functions and Circuits
- 8. Arithmetic Functions and Circuits
- 9. Sequential Circuits Storage Elements and Sequential Circuit Analysis
- 10. Sequential Circuits, Sequential Circuit Design State Diagrams, State Tables
- 11. Counters, register cells, buses, & serial operations
- 12. Sequencing and Control, Datapath and Control, Algorithmic State Machines (ASM)
- 13. Memory Basics

Introduction to Digital Logic

Lecture 9

Sequential Circuits

Storage Elements and Sequential Circuit Analysis

Introduction to Sequential Circuits

- A Sequential circuit contains:
 - Storage elements:Latches or Flip-Flops
 - Combinatorial Logic:
 - Implements a multiple-output switching function
 - <u>Inputs</u> are signals from the outside.
 - Outputs are signals to the outside.
 - Other inputs, <u>State</u> or <u>Present State</u>, are signals from storage elements.
 - The remaining outputs, <u>Next State</u> are inputs to storage elements.

Introduction to Sequential Circuits

 Output function type depends on specification and affects the design significantly

Types of Sequential Circuits

- Depends on the <u>times</u> at which:
 - storage elements observe their inputs, and
 - storage elements change their state

1 Synchronous

- Behavior defined from knowledge of its signals at <u>discrete</u> instances of time
- Storage elements observe inputs and can change state only in relation to a timing signal (<u>clock pulses</u> from a <u>clock</u>)

2 Asynchronous

- Behavior defined from knowledge of inputs an any instant of time and the order in continuous time in which inputs change
- If clock just regarded as another input, all circuits are asynchronous!

Discrete Event Simulation

• In order to understand the time behavior of a sequential circuit we use <u>discrete event simulation</u>.

• Rules:

- Gates modeled by an <u>ideal</u> (instantaneous) function and a <u>fixed gate delay</u>
- Any <u>change in input values</u> is evaluated to see if it causes a <u>change in output value</u>
- Changes in output values are scheduled for the fixed gate delay after the input change
- At the time for a scheduled output change, the output value is changed along with any inputs it drives

Simulated NAND Gate

• Example: A 2-Input NAND gate with a 0.5 ns. delay:

- Assume A and B have been 1 for a long time
- At time t=0, A changes to a 0 at t= 0.8 ns, back to 1.

t (ns)	A	В	F(I)	F	Comment
$-\infty$	1	1	0	0	A=B=1 for a long time
0	1⇒ 0	1	1 ← 0	0	F(Instantaneous) changes to 1
0.5	0	1	1	1 = 0	F changes to 1 after a 0.5 ns delay
0.8	1 = 0	1	1⇒ 0	1	F(Instantaneous) changes to 0
0.13	1	1	0	1⇒ 0	F changes to 0 after a 0.5 ns delay

Gate Delay Models

• Suppose gates with delay n ns are represented for n = 0.2 ns, n = 0.4 ns, n = 0.5 ns, respectively:

Circuit Delay Model

• Consider a simple 2-input multiplexer:

• With function:

$$Y = A \text{ for } S = 0$$

Y = B for S = 1

• "Glitch" is due to delay of inverter

Storing State

• The simple <u>combinational circuit</u> has now become a <u>sequential</u> <u>circuit</u> because its output is a function of a time sequence of input signals!

Y is stored value in shaded area

Storing State (Continued)

• Simulation example as input signals change with time. Changes occur every 100 ns, so that the tenths of ns delays are negligible.

Time	В	S	Y	Comment		
	1	0	0	Y "remembers" 0		
	1	1	1	Y = B when $S = 1$		
	1	0	1	Now Y "remembers" $B = 1$ for $S = 0$		
	0	0	1	No change in Y when B changes		
	0	1	0	Y = B when $S = 1$		
	0	0	0	Y "remembers" $B = 0$ for $S = 0$		
↓	1	0	0	No change in Y when B changes		

• Y represent the <u>state</u> of the circuit, not just an output.

Storing State (Continued)

 Suppose we place an inverter in the "feedback path."

- The following behavior results:
- The circuit is said to be <u>unstable</u>.
- For S = 0, the circuit has become what is called an *oscillator*. Can be used as crude <u>clock</u>.

В	S	Y	Comment
0	1	0	Y = B when $S = 1$
1	1	1	
1	0	1	Now Y "remembers" A
1	0	0	Y, 1.1 ns later
1	0	1	Y, 1.1 ns later
1	0	0	Y, 1.1 ns later

Basic (NAND) $\overline{S} - \overline{R}$ Latch

- "Cross-Coupling" two NAND gates gives the \$\bar{S}\$ -\$\bar{R}\$ Latch:
- which has the time sequence behavior: Time

• S = 0, R = 0 is <u>forbidden</u> as input pattern

R	S	Q	$ar{\mathbf{Q}}$	Comment
1	1	?•	•	Stored state unknown
1	0	1	0	"Set" Q to 1
1	1	1	0	Now Q "remembers" 1
0	1	0	1	"Reset" Q to 0
1	1	0	1	Now Q "remembers" 0
0	0	1	1	Both go high
1	1	?	?	Unstable!

Basic (NOR) S - R Latch

?

R

0

0

0

R (reset)

- Cross-coupling two NOR gates gives the S - R Latch:
- Which has the time sequence Time

behavior:

S "Set" Q to 1 Now Q "remembers" 1 0 "Reset" Q to 0 0 Now Q "remembers" 0 0 Both go low 0

Unstable!

Q ?	\overline{\overline{Q}}{?}	Comment Stored state unknown	
S	(set)		$\overline{\mathbf{Q}}$
			Q

Clocked S - R Latch

Adding two NAND
 gates to the basic
 S - R NAND latch
 gives the clocked
 S - R latch:

- Has a time sequence behavior similar to the basic S-R latch except that the S and R inputs are only observed when the line C is high.
- C means "control" or "clock".

Clocked S - R Latch (continued)

• The Clocked S-R Latch can be described by a table:

•	The table describes
	what happens after the
	clock [at time (t+1)]
	based on:

- current inputs (S,R) and
- current state Q(t).

Q(t)	S	R	Q(t+1)	Comment
0	0	0	0	No change
0	0	1	0	Clear Q
0	1	0	1	Set Q
0	1	1	???	Indeterminate
1	0	0	1	No change
1	0	1	0	Clear Q
1	1	0	1	Set Q
1	1	1	???	Indeterminate
		ļ	1	

D Latch

- Adding an inverter to the S-R Latch, gives the D Latch:
- Note that there are no "indeterminate" states!

Q	D	Q(t+1)	Comment
0	0	0	No change
0	1	1	Set Q
1	0	0	Clear Q
1	1	1	No Change

The graphic symbol for a

D Latch is:

Flip-Flops

- The latch timing problem
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops
- Flip-flop timing

The Latch Timing Problem

- In a sequential circuit, paths may exist through combinational logic:
 - From one storage element to another
 - From a storage element back to the same storage element
- The combinational logic between a latch output and a latch input may be as simple as an interconnect
- For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

The Latch Timing Problem (continued)

• Consider the following circuit:

• Suppose that initially Y = 0.

- As long as C = 1, the value of Y continues to change!
- The changes are based on the delay present on the loop through the connection from Y back to Y.
- This behavior is clearly unacceptable.
- Desired behavior: Y changes only once per clock pulse

The Latch Timing Problem (continued)

- A solution to the latch timing problem is to break the closed path from Y to Y within the storage element
- The commonly-used, path-breaking solutions replace the clocked D-latch with:
 - -a master-slave flip-flop
 - an edge-triggered flip-flop

S-R Master-Slave Flip-Flop

- Consists of two clocked
 S-R latches in series
 with the clock on the
 second latch inverted
- The input is observed by the first latch with C = 1

- The output is changed by the second latch with C = 0
- The path from input to output is broken by the difference in clocking values (C = 1 and C = 0).
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.

Flip-Flop Problem

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- S and/or R are permitted to change while C = 1
 - Suppose Q = 0 and S goes to 1 and then back to 0 with R remaining at 0
 - The master latch sets to 1
 - A 1 is transferred to the slave
 - Suppose Q = 0 and S goes to 1 and back to 0 and R goes to 1 and back to 0
 - The master latch sets and then resets
 - A 0 is transferred to the slave
 - This behavior is called *1s catching*

Flip-Flop Solution

- Use edge-triggering instead of master-slave
- An *edge-triggered* flip-flop ignores the pulse while it is at a constant level and triggers only during a <u>transition</u> of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A <u>master-slave</u> D flip-flop which also exhibits <u>edge-triggered behavior</u> can be used.

Standard Symbols for Storage Elements

Direct Inputs

- At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation
- This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously.

- Direct R and/or S inputs that control the state of the latches within the flip-flops are used for this initialization.
- For the example flip-flop shown
 - 0 applied to \overline{R} resets the flip-flop to the 0 state
 - 0 applied to \overline{S} sets the flip-flop to the 1 state

Sequential Circuit Analysis

General Model

Current State
 at time (t) is
 stored in an
 array of
 flip-flops.

- Next State at time (t+1)
 is a Boolean function of
 State and Inputs.
- Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Example 1

- Input: x(t)
- Output: y(t)
- State: (A(t), B(t))
- What is the <u>Output</u> <u>Function</u>?

• What is the Next State Function?

Example 1 (continued)

• Boolean equations for the functions:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = \overline{A}(t)x(t)$$

$$y(t) = \overline{x}(t)(B(t) + A(t))$$

State Table Characteristics

- *State table* a multiple variable table with the following four sections:
 - Present State the values of the state variables for each allowed state.
 - Input the input combinations allowed.
 - Next-state the value of the state at time (t+1) based on the present state and the input.
 - Output the value of the output as a function of the present state and (sometimes) the input.
- From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table

• The state table can be filled in using the next state and output equations:

•
$$A(t+1) = A(t)x(t) + B(t)x(t)$$

•
$$B(t+1) = \overline{A}(t)x(t)$$

•
$$y(t) = \overline{x}(t)(B(t) + A(t))$$

Present State	Input	Next	State	Output
A(t) B(t)	$\mathbf{x}(\mathbf{t})$	A(t+1)	B(t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

Example 1: Alternate State Table

• 2-dimensional table that matches well to a K-map. Present state rows and input columns in Gray code order.

```
- A(t+1) = A(t)x(t) + B(t)x(t)
- B(t+1) = \overline{A}(t)x(t)
- y(t) = \overline{x}(t)(B(t) + A(t))
```

Present	Next	Output		
State	$\mathbf{x}(\mathbf{t})=0$	$\mathbf{x}(\mathbf{t})=1$	$\mathbf{x}(\mathbf{t})=0$	$\mathbf{x}(\mathbf{t})=1$
A(t) B(t)	$\mathbf{A}(\mathbf{t}+1)\mathbf{B}(\mathbf{t}+1)$	$\mathbf{A}(\mathbf{t}\mathbf{+}1)\mathbf{B}(\mathbf{t}\mathbf{+}1)$	y(t)	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
1 0	0 0	1 0	1	0
1 1	0 0	1 0	1	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a <u>state diagram</u> with the following components:
 - A <u>circle</u> with the state name in it for each state
 - A <u>directed arc</u> from the <u>Present State</u> to the <u>Next State</u> for each state transition
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the <u>state transition</u>, and
 - A label:
 - On each <u>circle</u> with the <u>output</u> value produced, or
 - On each <u>directed arc</u> with the <u>output</u> value produced.

State Diagrams

- Label form:
 - -On <u>circle</u> with output included:
 - state/output
 - Moore type output depends only on state
 - -On directed arc with the output included:
 - input/output
 - Mealy type output depends on state and input

Example 1: State Diagram

- Which type?
- Diagram gets confusing for large circuits
- For small circuits, usually easier to understand than the state table

Moore and Mealy Models

• Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs). Two formal models exist:

Moore Model

- Named after E.F. Moore.
- Outputs are a function ONLY of <u>states</u>
- Usually specified on the states.

Mealy Model

- Named after G. Mealy
- Outputs are a function of inputs AND states
- Usually specified on the state transition arcs.

• In contemporary design, models are sometimes mixed Moore and Mealy

Moore and Mealy Example Diagrams

 Mealy Model State Diagram maps <u>inputs</u> and state to <u>outputs</u>

 Moore Model State Diagram maps <u>states</u> to <u>outputs</u>

Moore and Mealy Example Tables

 Mealy Model state table maps inputs and state to outputs

Present	Next State	Output		
State	x=0 $x=1$	x=0 $x=1$		
0	0 1	0 0		
1	0 1	0 1		

Moore Model state table maps state to

outputs

Present	Next	State	Output
State	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

Example 2: Sequential Circuit Analysis

Example 2: Flip-Flop Input Equations

- Variables
 - -Inputs: None
 - −Outputs: Z
 - -State Variables: A, B, C
- Initialization:
 - -Reset to (0,0,0)
- Equations

$$A(t+1) = B(t)C(t)$$

$$B(t+1) = \overline{B}(t)C(t) + B(t)\overline{C}(t)$$

$$C(t+1) = \overline{A}(t)\overline{C}(t)$$

$$Z = B(t)C(t)$$

Example 2: State Table

$$X' = X(t+1)$$

$$A(t+1) = B(t)C(t)$$

$$B(t+1) = \overline{B}(t)C(t) + B(t)\overline{C}(t)$$

$$C(t+1) = \overline{A}(t)\overline{C}(t)$$

ABC	A'B'C'	Z
0 0 0	0 0 1	0
0 0 1	0 1 0	0
0 1 0	0 1 1	0
0 1 1	1 0 0	1
1 0 0	0 0 0	0
1 0 1	0 1 0	0
1 1 0	0 1 0	0
1 1 1	1 0 0	1

Example 2: State Diagram

Circuit and System Level Timing

- Consider a system comprised of ranks of flip-flops connected by logic:
- If the <u>clock period</u> is too short, some data changes will not propagate through the circuit to flip-flop inputs before the setup time interval begins

