Add WeChat powcoder

Advanced Safe DAAT Assignment Project Exam Help Algorithms https://powcoder.com

Add WeChat powcoder

Wei Wang UNSW

DAAT Add WeChat powcoder

- Idea
 - Access and score each document before moving to the next, based on the inverted index
- Invariant

Assignment Project Exam Help

• All the documents with docID smaller than the curDoc has been processed

#doc to be scored = union of the inverted lists of the query

Add WeChat powcoder

...

: curDoc

Always move the smaller docID

DAAT Add WeChat powcoder

- Top-k optimization
 - Current top-k-th document's score = threshold Assignment Project Exam Help
- Optimization
 - No need to access/scorethpeinpents whose eseme is < threshold
 - → Skipping docIDs, but how?
 Add WeChat powcoder
- Preliminaries:
 - UB(w): upper bound of the score contribution of any document in w's postings list $UB(w) = \mathrm{idf}(w) \cdot \max_{e \in L} e.\mathrm{tf}$

 \leftarrow Assume no normalization on the raw tf, UB(w) = idf(w)*4

Idea 1 Add WeChat powcoder

- Consider Q = A B C D
 - Assume $|A| \le |B| \le |C| \le |D|$
 - Can we split the query strong to De Con we split the query stron
 - Answering Q1 is more efficient (why?), and hopefully only accessing lists in Q2 for the final scoring https://powcoder.com
- Working out a sufficient gondition for the above scheme

MaxScore(d3) = ?, if d3 does not exist in A or B's list

If threshold ≥ 2 , what can you infer?

Generating the candidates

Scoring the candidates

Determinent des Optional Terms

- Only need to focus on documents that occurred ONLY in the lists of optional terms → Estimate their upper bounding score Assignment Project Exam Help
- Algorithm:
 - sort terms in decreasing to pre-portion decreasing to pre-
 - find the largest suffix of the terms such that the accumulative UB values is larger than the threshold (current top-k-th document's score)

Simplified WaxSpoweder

- Assume all idf = 1, threshold = 2, and Q1 = A B (required terms)
- Step 1: generate candidates:

 Assignment Project Exam Help
 - T = Result(Q1)

- https://powcoder.com
- Step 2: score candidates and get top-kowcoder
 - Foreach d in T: optional terms
 - Score(d) /* using lists in Q2 = C */
 - Keep top-k documents as the answer

- Any problem with this alg?
- Large candidate size:
 - [|A|, |A|+|B|]
- The same threshold is used throughout

Killing two birds with one stone!

Α	•••	1:3	•••	UB = 5	$T = \{1, 23\}$	C
В		23:2		UB = 3		S

$$score(d1) = 4$$

 $score(d23) = 2$

MaxScorre WeChat powcoder

- [Step 0] Obtain the initial threshold α
- Update the required terms
 Assignment Project Exam Help
 Repeat until the stopping condition
- - Perform one DAAT stephtheoured tender with the partial score of d on required terms

 • Score d using the optional terms via skiplo(d)
- [Step 2]
- [maintenance] If d's final score is larger than α
 - Update the top-k results
 - Update α

[Step 1]

- Update the required terms and optional terms
 - Fixed order of terms (decreasing UB values)
 - From the rear of the list, find the maximum number of terms such that their UB sum $\leq \alpha$

Assignment Project Exafixed ed roler = CBA

Α

В

C

<1, 4>

<2, 2>

<5, 1>

<7, 7>

<10, 1>

Exampled (INTECT) t powcoder

 $UB_A = 4$

 $UB_B = 5$

UBc = 8

- <1, 3>
- <2, 4>
- <7, 1>

- <1, 4>
- <2, 1>
- <7, 2>
- <8, 5>
- <9, 2>

<11, 5>

<11, 8>

- Step 0:
 - d1 = 11, d2 = 7
 - α =
 - Q1 =

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Assignment Project Exative Lorder = CBA

Exampled (INVECT) t powcoder

- α = 7
- Iter 1:

Assignment Project Exam Help

- curDoc = d5
- https://powcoder.com • partial score = 1
- "probe" A to get full score = 1 WeChat powcoder
- Nothing to update

Assignment Project Exative | Order = CBA

Exampled(INVECE) t powcoder

- α = 7
- Iter 2:
 - curDoc = d7
 - partial score = 9
- https://powcoder.com
 - "probe" A to get full score = 10 WeChat powcoder
 - Update
 - $\alpha = 10$
 - Q1 = C

Assignment Project Exative Lorder = CBA

Exampled(INVECE) t powcoder

- $\alpha = 10$
- Iter 3:

Assignment Project Exam Help

- curDoc = d10
- https://powcoder.com • partial score = 1
- "probe" A and B to get full score = 1 Add WeChat powcoder
- Nothing to update

Assignment Project Exative | Order = CBA

Exampled (INTECT) at powcoder

- $\alpha = 10$
- Iter 3:
 - curDoc = d11
 - partial score = 8
 - "probe" A and B to get full score = 13 Add WeChat powcoder
 - Update
 - α = 11
 - Q1 = C
- End

Assignment Project Exam Help

https://powcoder.com

UBc = 8

<1, 4>

<2, 2>

<5, 1>

<7, 7>

<10, 1>

<11, 8>

- This is the typical stopping condition; There is another possible stopping condition though. Can you figure it out? (not in this example)
- We can further optimize the algorithm to remove unnecessary "probes" on Q2 list(s). Can you find it out?

UB = 5

Idea 2 Add WeChat powcoder

Α

5

В

|--|

UB = 3

C

•••	4:*	•••

$$UB = 2$$

if
$$\alpha$$
 = 9, the first document that can score above α is from __B____

C

В

10

Pivot document is the current document is the current

Pivot term = B

Pivot doc = d7

Is it possible for any doc < Pivot Dog to white hinto to we doer

Case I: smallest DID ≠ PivotDoc

Cumulative Upper Bound

Sorted Term

Doc

Sorted Term	Α	С	В
Doc	2	*	7
Cumulative Upper Bound	5	7	10

$$score(d2) \le 8$$

- → align preceding lists to PivotDoc: A.skipTo(d7), C.skipTo(d7)
- → Check again

UB = 5

Idea 2 Add WeChat powcoder

В

UB = 3

Sorted Term	Α	С	В
Doc	*	*	*
Cumulative Upper Bound	5	8	10

C

4:*

UB = 2

if α = 9, the first document that can score above α is from ___B

Pivot document is the current document is the current

Pivot term = B

Pivot doc = d7

Is it possible for any doc < Pivot Dog to white into the doc

Case II: smallest DID = PivotDoc

Sorted Term	Α	С	В
Doc	7	*	7
Cumulative Upper Bound	5	8	10

C.Doc must be d7 score(d7) could be larger than α

→ fullScore(d7)

 \rightarrow Adjust α if necessary

→ all list pointing to d7: next()

Α

7:*

UB = 5

Idea 2 Add WeChat powcoder

В

7:*

UB = 3

Sorted Term	Α	С	В
Doc	*	*	*
Cumulative Upper Bound	5	8	10

C

7:*

UB = 2

if α = 9, the first document that can score above α is from B

Pivot term = B

Pivot document is the current document is the current

Pivot doc = d7

If all term preceding PivotTerm (in the worten arrest parter protDoc, then PivotDoc is the smallest document that may enter into top-k.

Full scoring:

Need to "probe" lists that are sorted after the PivotTerm

None in our example, but one can easily add D list.

WAND Add WeChat powcoder

1. Initialization

```
Algorithm 1 WAND processing. Assignment Project Exam Help function WAND(q, \mathcal{I}, k) for t \leftarrow 0 to |q| - 1 do https://powcoder.com U[t] \leftarrow \max_d \{w_d \mid (d, w_d) \in \mathcal{I}_t\} (c_t, w_t) \leftarrow first\_posting(\mathcal{I}_t) Add WeChat powcoder end for \theta \leftarrow -\infty // current threshold Ans \leftarrow \{\} // k-set of (d, s_d) values
```

WAND Add WeChat powcoder

2. Finding the Pivot

```
while the set of candidates (25342) is non-empty dect Exam Help
            permute the candidates so that c_0 \leq c_1 \leq \cdots c_{|a|-1}
10:
            score\_limit \leftarrow 0
                                            https://powcoder.com
            pivot \leftarrow 0
            while pivot < |q| - 1 do
                tmp\_s\_lim \leftarrow score\_limit \triangle deliW_t eChat powcoder
                if tmp\_s\_lim > \theta then
15:
                    break, and continue from step 20
                end if
                score\_limit \leftarrow tmp\_score\_lim
                pivot \leftarrow pivot + 1
            end while
```

WAND Add WeChat powcoder

while the set of candidates (c_t, w_t) is non-empty do 3a. Case II 20: if $c_0 = c_{pivot}$ then // score document c_{pivot} Assignment Project Exam Help while t < |q| and $c_t = c_{pivot}$ do https://powcodes.com/ // add contribution to score fullScore() $(c_t, w_t) \leftarrow next_posting(\mathcal{I}_t)$ 25: updatePointers-I Add WeChat powcoder end while // s is the score of document c_{pivot} if $s > \theta$ then // and is a possible top-k answer $Ans \leftarrow insert(Ans, (c_{pivot}, s))$ if |Ans| > k then 30: $Ans \leftarrow delete_smallest(Ans)$ update $\theta \leftarrow minimum(Ans)$ end if end if

optimization for

al, 2011].

memory-resident

index in [Fontoura et

Based on "Exploring the Magic of WAND" in ADCS 2013 Assignment Project Exam Help

WAND Add WeChat powcoder

while the set of candidates (c_t, w_t) is non-empty do 3b. Case I Assignment Project Exam Help $c_0 \neq c_{pivot}$ // can't score c_{pivot} (yet) 35: else https://powcodescomo $(c_t, w_t) \leftarrow seek_to_document(\mathcal{I}_t, c_{pivot})$ updatePointers-II Add and for half allowinters are now at c_{pivot} or greater end if It moves all the end while 40: preceding lists. It is the mWAND

19

Exampled(INV=Chat powcoder

- Step 1:
 - $\alpha = 0$

u = 0	Assignment Project Even Help
Sorted Term	Assignment Project Exam Help
Doc	¹ https://powcoder.com
Cumulative Upper Bound	4 9 17
PivotTerm = A	Add WeChat powcoder

- PivotTerm = A
- PivotDoc = 1
- Case II
 - fullScore() \rightarrow d1 = 11, α = 11
- updatePointers()

В

UBc = 8

 $UB_B = 5$

<1, 4>

<2, 1>

<7, 2>

<8, 5>

<9, 2>

<11, 5>

<1, 4>

C

<2, 2>

<5, 1>

<7, 7>

<10, 1>

<11, 8>

Exampled(INV=Chat powcoder

• Step 2:

• $\alpha = 11$

$\alpha = 11$	Assignment Project Even Help
Sorted Term	Assignment Project Exam Help
Doc	² https://powcoder.com
Cumulative Upper Bound	4 9 17
PivotTerm = C	Add WeChat powcoder

- PivotTerm = C
- PivotDoc = 2
- Case II
 - fullScore() \rightarrow d2 = 7, α = 11
- updatePointers()

Exampled (INVECT) t powcoder

• Step 3:

• $\alpha = 11$

• $\alpha = 11$	Assignment Project Even Ho	
Sorted Term	Assignment Project Exam He	1p
Doc	⁵ https://powcoder.com	
Cumulative Upper Bound	8 13 17	
PivotTerm = B	Add WeChat powcoder	

- PivotTerm = B
- PivotDoc = 7
- Case I
 - updatePointers()

Exampled (INVECT) t powcoder

- Step 4:
 - α = 11

• $\alpha = 11$	Assignment Project Even Help
Sorted Term	Assignment Project Exam Help
Doc	⁷ https://powcoder.com
Cumulative Upper Bound	8 13 17
PivotTerm = B	Add WeChat powcoder

- PivotTerm = B
- PivotDoc = 7
- Case II
 - fullScore() \rightarrow d7 = 10, α = 11
- updatePointers()
- Step 5: ...

Companisome Chat powcoder

	MaxScore	(m)WAND		
Pruning Strategy	UB based on fixed ordering of	UB based on variable ordering of		
Assitemment protive of the prosessive for the processive of the pr				
Performance	Better for short queries	Better for long queries		
Applicability	bttps://powcoder.com	DAAT		

Add WeCh	at Bow	code
Naive DAAT	193.0	$4,\!554.6$
mWAND	200.0	$2,\!104.6$
DAAT max_score	169.0	2,685.6
LI	SQ	LQ
Naive DAAT	3,581.3	26,778.3
mWAND	$1,\!867.0$	$7,\!556.3$
DAAT max_score	$1,\!572.6$	9,321.3

Table 5: Latency results for naive DAAT, mWAND and DAAT max_score.

Hybrid AAAWeChatAdwcoder

- Idea
 - Find a good α (with little cost) and run optimized DAAT algorithm
- Q = {A B C D}, in increasing order of list length https://powcoder.com
 - Q1 = {A, B}, Q2 = Q Q1 = {C, D}
 - $\alpha(Q1)$, L(Q1) = ProcessQuery(bat)powcoder
 - L(Q1): documents scored for Q1
 - ProcessQueryDAAT(Q2; α (Q1), L(Q1))
 - Treat L(Q1) as another inverted list, UB(L(Q1)) = α (Q1)

References WeChat powcoder

- Efficient Query Evaluation using a Two-Level Retrieval. CIKM 2003.
- Exploring the Magic of WAND Profest 2013 m Help
- [Fontoura et al, 2011] Evaluation Strategies for Top-k Queries over Memory-Resident Inverted indexes. VLDB 2011.
- Howard R. Turtle, James Alborde Query Evaluation: Strategies and Optimizations. Inf. Process. Manag. 31(6): 831-850 (1995)