

§7.3

Dr. Basilio

Outline

Guiding Questions

rig Sub

Case:  $\sqrt{a^2 - x^2}$ 

Case:  $\sqrt{a^2 + x}$ 

Case:  $\sqrt{x^2 - a}$ 

App to  $\int w/ax^2 + bx + c$ 

Volume of Doughnut

### §7.3: Trigonometric Substitution

Ch 7: Techniques of Integration
Math 5B: Calculus II

Dr. Jorge Eduardo Basilio

Department of Mathematics & Computer Science Pasadena City College

Class #10 Notes

March 26, 2019 Spring 2019

### Outline



§7.3 Dr. Basilio

- **Guiding Questions**
- Trigonometric Substitution
- **6** Case:  $\sqrt{a^2 x^2}$
- 4 Case:  $\sqrt{a^2 + x^2}$
- **6** Case:  $\sqrt{x^2 a^2}$
- 6 Application to integrals with  $ax^2 + bx + c$
- Application: Volume of a Doughnut

Outline

Case:  $\sqrt{x^2 - a^2}$ 

Case:  $\sqrt{a^2 - x^2}$ 

Case:  $\sqrt{a^2 + x^2}$ 

### **Guiding Questions for §7.3**

Guiding Questions

Case:  $\sqrt{a^2 - x^2}$ 

#### **Guiding Question(s)**

- What is trigonometric substitution?
- What are some blockbuster applications illustrating the technique?

#### Introduction

- The motivation is "classical" in that we would like to find the areas of some conic sections like circles, ellipses.
- A circle is given by  $x^2 + y^2 = a^2$ , a > 0, and an ellipse is given by  $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ , a, b > 0.





• These give rise to the corresponding integrals:

$$2\int_{-a}^{a} \sqrt{a^2 - x^2} dx$$
 and  $2\int_{-a}^{a} \frac{b}{a} \sqrt{a^2 - x^2} dx$ 

§7.3

Dr. Basilio

Outline

Guiding Questions

Trig Sub

$$\sqrt{a^2 - x^2}$$

Case: 
$$\sqrt{a^2 + x^2}$$

Case: 
$$\sqrt{x^2 - a^2}$$

App to  $\int w/ax^2 + bx + c$ 

#### Introduction



- I think the blockbuster application is that we can find the volume of a torus.
- A torus is a surface of revolution given by rotating a circle about an axis:



- We'll work this out later so I wont spoil the surprise of the integral we get.
- Notice, we can already do other conics like parabolas ( $y = ax^2$  by integrating and using the power rule) and hyperbolas (y = 1/x by integrating using the natural logarithm).

§7.3

Dr. Basilio

Outline

uiding uestions

Trig Sub

Case:  $\sqrt{a^2-x^2}$ 

 $\sqrt{a^2 + x}$ 

Case:  $\sqrt{x^2 - }$ 

App to  $\int w/ax^2 + bx + c$ 

#### Introduction



 I short, our goal is to learn to evaluate integrals that contain the expressions

$$\sqrt{a^2-x^2}$$
 or  $\sqrt{a^2+x^2}$  or  $\sqrt{x^2-a^2}$ 

somewhere in the integrand.

- The technique we'll use is called trigonometric substitution.
- Recall this is technique #4 in the integration toolbox introduced in §7.1.

§7.3

Dr. Basilio

Outline

Guiding Questions

Trig Sub

Case: 
$$\sqrt{a^2 - x^2}$$

Case: 
$$\sqrt{a^2 + x^2}$$

Case: 
$$\sqrt{x^2 - a^2}$$

App to  $\int w/ax^2 + bx + c$ 

### **Trigonometric Substitution**



#### **Definition 1: Trigonometric Substitution**

- Integrals with  $\sqrt{a^2 x^2}$  use the substitution  $x = a \sin(\theta)$ 
  - Valid only if:  $\theta \in [-\pi/2, \pi/2]$
  - Identity to use:  $\cos^2(\theta) + \sin^2(\theta) = 1$
- Integrals with  $\sqrt{a^2 + x^2}$  use the substitution  $x = a \tan(\theta)$ 
  - Valid only if:  $\theta \in (-\pi/2, \pi/2)$
  - Identity to use:  $1 + \tan^2(\theta) = \sec^2(\theta)$
- Integrals with  $\sqrt{x^2 a^2}$  use the substitution  $x = a \sec(\theta)$ 
  - Valid only if:  $\theta \in [0, \pi/2) \cup [\pi, 3\pi/2)$
  - Identity to use:  $\cos^2(\theta) + \sin^2(\theta) = 1$
- IMPORTANT POINT: GO BACK TO ORIGINAL VARIABLE AFTER YOU'VE INTEGRATED! Use the triangles for this.
- These are called inverse substitution since we'll need to solve for  $\theta$  in the substitution equations.

§7.3

Dr. Basilio

utline

uiding uestions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

 $ase: \frac{1}{a^2 + x^2}$ 

 $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

## **Trigonometric Substitution**



Case: 
$$\sqrt{a^2 - x^2}$$

$$\begin{cases} x = a \sin(\theta) \\ dx = a \cos(\theta) d\theta \end{cases}$$

$$a \cos \theta = \sqrt{a^2 - x^2}$$

Case:  $\sqrt{a^2 + x^2}$  $a \tan \theta = x$ 

Case: 
$$\sqrt{x^2 - a^2}$$

$$\begin{cases} x = a \sec(\theta) \\ dx = a \sec(\theta) \tan(\theta) d\theta \end{cases}$$

$$x = a \sec(\theta) \frac{1}{x^2 - a^2} = a \tan(\theta)$$

Case:  $\sqrt{a^2 - x^2}$ 

Why is works? For example,

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - (a\sin(\theta))^2} = \sqrt{a^2(1 - \sin^2(\theta))} = a\sqrt{\cos^2(\theta)} = a\cos(\theta)$$

since a>0 and  $\cos(\theta)>0$  with the restrictions on  $\theta$ . All the restrictions mentioned previously are so that we don't have to worry about absolute values! 87.3

Dr. Basilio

Trig Sub

 $ax^2 + bx + c$ 

## Trig Sub: Case: $\sqrt{a^2 - x^2}$



§7.3

Dr. Basilio

Outline

Guiding Questions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

Case:  $\sqrt{a^2 + x^2}$ 

Case:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

Volume of Doughnut

Activity 1: Case:  $\sqrt{a^2 - x^2}$ 

- (a) Evaluate  $\int \frac{1}{\sqrt{9-x^2}} dx$  in two ways:
  - (i) using  $\sin^{-1}(x)$  and it's DR/ADR, and (ii) using trig sub
- (b) Find:  $\int \sqrt{16 x^2} \, dx$

# Trig Sub: Case: $\sqrt{a^2 - x^2}$



§7.3

Dr. Basilio

utline

Guiding Questions

Trig Sub



Case: 
$$\sqrt{a^2 + x^2}$$

Case: 
$$\sqrt{x^2 - a^2}$$

App to 
$$\int w/ax^2 + bx + c$$

Trig Sub: Case: 
$$\sqrt{a^2 - x^2}$$



§7.3

Dr. Basilio

Outline

Guiding Questions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

Case:  $\sqrt{a^2 + x^2}$ 

Case:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

Volume of Doughnut

Activity 2: Case:  $\sqrt{a^2 - x^2}$ 

Find the area of a circle of radius a > 0 by setting up an appropriate definite integral and solving it with trig sub.

# Trig Sub: Case: $\sqrt{a^2 - x^2}$



§7.3

Dr. Basilio

utline

Guiding Questions

Trig Sub

 $\sqrt{a^2-x^2}$ 

 $\int_{a^2 + x^2}^{a^2 + x^2}$ 

Case:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

## Trig Sub: Case: $\sqrt{a^2 + x^2}$

#### utline

Guiding

Trig Sub

Case: 
$$\sqrt{a^2 - x^2}$$

Case: 
$$\sqrt{a^2 + x^2}$$

App to 
$$\int w/ax^2 + bx + c$$

Volume of Doughnut

#### Activity 3: Case: $\sqrt{a^2 + x^2}$

#### Evaluate:

(a) 
$$\int \frac{1}{\sqrt{x^2+9}} dx$$

(b) 
$$\int_0^{3\sqrt{3}/2} \frac{x^3}{(4x+9)^{3/2}} dx$$
  
(Example 6 in our book

(Example 6 in our book, this is a hard example. Hint: start with a sub y = 2x.)

# Trig Sub: Case: $\sqrt{a^2 + x^2}$



§7.3

Dr. Basilio

utline

Guiding Questions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

 $ase: \frac{1}{a^2 + x^2}$ 

Case:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

Trig Sub: Case: 
$$\sqrt{x^2 - a^2}$$

Activity 4: Case:  $\sqrt{x^2 - a^2}$ 

Evaluate:  $\int \frac{1}{x^2 \sqrt{4x^2 - 16}} dx$ 



§7.3

Dr. Basilio

utline

Guiding Questions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

 $\sqrt{a^2 + x^2}$ 

Case:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/$ 

# Trig Sub: Case: $\sqrt{x^2 - a^2}$



§7.3

Dr. Basilio

utline

Guiding Questions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

Case:  $\sqrt{a^2 + x^2}$ 

Case:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

## Application to integrals with $ax^2 + bx + c$



§7.3

Dr. Basilio

To evaluate an integral with a general quadratic term,  $ax^2 + bx + c$ , try using complete the square and trig sub.

Activity 5: Application to integrals with  $ax^2 + bx + c$ 

Evaluate: 
$$\int \frac{1}{(x^2 - 6x + 11)^2} dx$$

Case: 
$$\sqrt{a^2 - x^2}$$

Case: 
$$\sqrt{a^2 + x^2}$$

Case: 
$$\sqrt{x^2 - a^2}$$

App to  $\int w/ax^2 + bx + c$ 

## Application to integrals with $ax^2 + bx + c$



§7.3

Dr. Basilio

Outline

uiding uestions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

 $ase: \frac{1}{a^2 + x^2}$ 

ase:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ 

### Application: Volume of a Doughnut



§7.3

Dr. Basilio

Outline

Guiding Questions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$  Case:

 $\sqrt{a^2 + x^2}$ 

 $\sqrt{x^2-a^2}$ 

 $ax^2 + bx + c$ 

Volume of Doughnut

#### Activity 6: Application: Volume of a Doughnut

Find the volume of the "doughnut", that is, the inside of the surface of revolution obtained by rotating the circle  $(x-2)^2 + y^2 = 1$  about the y-axis.





You may use either the Washer Method or the Shell Method.

## Application: Volume of a Doughnut



§7.3

Dr. Basilio

utline

uestions

Trig Sub

Case:  $\sqrt{a^2 - x^2}$ 

 $a^2 + x^2$ 

ase:  $\sqrt{x^2 - a^2}$ 

App to  $\int w/ax^2 + bx + c$ Volume of