Welcome to the PHC Webinar Series

This lecture on "Next-Generation Sequencing for the Clinical Laboratory" is given by Karl V. Voelkerding, MD, FCAP

Your host is Jill Kaufman, PhD. For comments about this webinar or suggestions for upcoming webinars, please contact Jill Kaufman at jkaufma@cap.org

THE WEBINAR WILL BEGIN MOMENTARILY. ENJOY!

Karl Voelkerding, MD, FCAP

- Professor of Pathology at the University of Utah
- Medical Director for Genomics and Bioinformatics at the ARUP Laboratories
- Past President of the Association for Molecular Pathology
- Board certified in Clinical and Molecular Genetic Pathology
- His research interests include translation of nucleic acid based technologies into diagnostics with a current focus on complex genetic analyses by next generation sequencing

Next-Generation Sequencing for the Clinical Laboratory

Karl V. Voelkerding, MD, FCAP

July 20, 2011

Disclaimer

The College does not permit reproduction of any substantial portion of the material in this Webinar without its written authorization. The College hereby authorizes attendees of the CAP Webinar to use the pdf presentation solely for educational purposes within their own institutions. The College prohibits use of the material in the Webinar – and any unauthorized use of the College's name or logo – in connection with promotional efforts by marketers of laboratory equipment, reagents, materials, or services.

Opinions expressed by the speaker are the speaker's own and do not necessarily reflect an endorsement by CAP of any organizations, equipment, reagents, materials or services used by participating laboratories.

Disclosure

I have nothing to disclose.

Outline

- Progression: Gene Panels to Genomes
- Next Generation Sequencing Technology
- Bioinformatics

Progression

Whole Genome

Whole Exome

Multi-Gene Diagnostics

Increasing Complexity

Hearing Loss

Retinopathies

Metabolic Disorders

Oncology

Structure/Function Complexes and Signaling Pathways

Technical Options

Sanger Sequencing of Individual Genes

Scanning and Sequencing

Multi-Gene Resequencing Microarrays

Next Generation Sequencing

Outline

- Progression: Gene Panels to Genomes
- Next Generation Sequencing Technology
- Bioinformatics

Sanger Sequencing

PCR followed by Cycle Sequencing with dNTPs/ddNTPs

Electrophoretic separation of chain termination products

Next Generation Sequencing

Sequence DNA fragment library in situ in a flow cell

Massively parallel configuration


```
GCCACCGCGGTGCACCGCCCCGACCTCGTGGTGTCCGCCGGGTTTATGAAGATTCTTGGACCGCAGTTCCTTTCGCAGTTC-TTGGGCCGCG
GCCACCGCGGTGCACCGCCCCGC
GCCACCGCGCCGCCCCGACC
GCCACCGCGTGCACCGCCCGACCTCGTT
GCCACCGCGTGCACCGCCCGACCTCGTTG
GCCACCGCGGTGCACCGCCCGACCTCGTTG
GCCACCGCGTGCACCGCCCGACCTCGT--TGTC
   CCGCGGTGCACCGCCCGACCTCGTTGTCTCCGCCG
    |cgcggtgcaccgcccgacctcgttgtctccgccgg
       GGTGCACCGCCCGACCTCGTTGTCTCCGCCGGATT
           C-CCGCCCGACCTCGTTGTCTCCGCCGGATTTATGA
           C-CCGCCCGACCTCGTTGTCTCCGCCGGATTTATGA
                     ACCTCGTTGTCTCCGCCGGATTTATGAAGATTCTTG
                     CCTCGTTGTCTCCGCCGGATTTATGAAGATTCTTGG
                       CGCGTTGTCTCCGCCGGATTTATGAAGATTCTTGGA
                       CTCGTTGTCTCCGCCGGATTTATGAAGATTCTTGGA
                        TCGTTGTCTCCGCCGGATTTATGAAGATTCTTGGAC
                        CGTTGTCTCCGCCGGATTTATGAAGATTCTTGGACC
                         CGTTGTCTCCGCCGGATTTATGAAGATTCTTGGAC
                          GTTGTCTCCGCCGGATTTATGAAGATTCTTGGACCG
                         GTTGTCTCCGCCGGATTTATGAAGATTCTTTGACCG
                          TTGTCTCCGCCGGATTTATGAAGATTCTTGGACCGC
                           TGTCTACGCCGGATTTATGAAGATTCTTGGACCGCA
                             TCTCCGCCGGATTTATGAAGATTCTTGGACCGCAGT
                              CGCCGCCGGATTTATGAAGATTCTTGGACCGC
                              CTCCGCCGGATTTATGAAGATTCTTGGACCGCAGTT
                              CTCCGCCGGATTTATGAAGATTCTTGGACCGCAGTT
                                CCGCCGGATTTATGAAGATTCTTGGACCGCAGTTCC
                                 CGCCGGATTTATGAAGATTCTTGGACCGCAGTTCCT
```


Process

Genomic DNA or Enriched Target Genes

End Repair and Adapter Ligation

Adapter Fragment A Adapter

Adapter Fragment B Adapter

Adapter Fragment C Adapter

Process

Process

Sequencing of Clonal Amplicons in a Flow Cell

Ref Seq **Qualitative and Quantitative Information** GCCACCGCGGTGCACCGCCCCGACCTCGTGGTGTCCGCCGGGT TATGAAGATTCTTGGACCGCAGTTCCTTTCGCAGTTC-TTGGGCCGCG GCCACCGCGGTGCACCGCCCCGC GCCACCGCGCCGCCCCGACC GCCACCGCGTGCACCGCCCCGACCTCGTT GCCACCGCGTGCACCGCCCGACCTCGTTG Illumina GCCACCGCGTGCACCGCCCGACCTCGTTG **G>** GCCACCGCGTGCACCGCCCGACCTCGT--TGTC CCACCGCGGTGCACCGCCCGACCTCGTTGTCTCCG CCGCGGTGCACCGCCCGACCTCGTTGTCTCCGCCC CGCGGTGCACCGCCCGACCTCGTTGTCTCCGCCGG TGCACCGCCCGACCTCGTTGTCTCCGCCGGAT TA C-CCGCCCGACCTCGTTGTCTCCGCCGGATTTATGA C-CCGCCCGACCTCGTTGTCTCCGCCGGAT TATGA Coverage GACCTAGTTGTCTCCGCCGGAT TATGAAGATTCTT ACCTCGTTGTCTCCGCCCGAT TATGAAGATTCTTG CCTCGTTGTCTCCGCCGGAT TATGAAGATTCTTGG CGCGTTGTCTCCGCCGGAT TATGAAGATTCTTGGA CTCGTTGTCTCCGCCGGAT TATGAAGATTCTTGGA TCGTTGTCTCCGCCGGAT TATGAAGATTCTTGGAC CGTTGTCTCCGCCCGAT TATGAAGATTCTTGGACC CGTTGTCTCCGCCGGAT TATGAAGATTCTTGGACC GTTGTCTCCGCCGGAT TATGAAGATTCTTGGACCG GTTGTCTCCGCCCGAT TATGAAGATTCTTTGACCG TTGTCTCCGCCGGAT TATGAAGATTCTTGGACCGC TGTCTACGCC GAT TATGAAGATTCTTGGACCGCA TCTCCGCCGGAT TATGAAGATTCTTGGACCGCAGT CGCCGCC GAT TATGAAGATTCTTGGACCGCAGTT CTCCGCCCGAT TATGAAGATTCTTGGACCGCAGTT CTCCGCCGGAT TATGAAGATTCTTGGACCGCAGTT CCGCCGGAT TATGAAGATTCTTGGACCGCAGTTCC CGCCGGAT TATGAAGATTCTTGGACCGCAGTTCCT

Gene Enrichment Approaches

Gene Enrichment Approaches

Genomic DNA

Amplification Based

Array Capture Based

PCR or LR-PCR
RainDance ePCR
Fluidigm
HaloGenomics

Solid Surface or In Solution

Advantage: Enrichment Specificity

Advantage: Scalable to Exome

Drawbacks:

Not as Scalable
Instrument and Chip
Costs

Drawbacks:

Homologous Sequence Capture Manually Complex

NGS Library Preparation

Automation

Beckman SPRI-TE 1-10 Samples

Next Generation Sequencing Technology

Illumina HiSeq 2000

Advantage: High Throughput

Drawbacks:

Batching Sample Coordination

Independent Flow Cells 8 Lanes per Flow Cell

Multiple Panel Samples per Lane

- 1-3 Exome(s) per Lane
- 1- 2 Genome per 8 Lanes

New Platforms Lower Throughput - Faster TAT "Random Access"

Illumina miSeq

Reversible Dye Terminators

Ion Torrent PGM

Monitors H+ Release

Multi-Gene Diagnostics – Parallel Testing

Re-Sequencing – Cardiomyopathy Genes

Variant g.34142190T>C in *TPM1*

GAGGCCAAGCACATTGCTGAAGATGCCGACCGCAAA

ATG AGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG
GCCAAGCACATTGCTGAAGATGCCGACCGCAAA

ACG AGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAA

Reference

LR-PCR 47%

CCAAGCACATTGCTGAAGATGCCGACCGCAAATATGAAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACC

Sanger

Progression

Whole Exome

Multi-Gene Diagnostics

Increasing Complexity

Human Exome

"Journey to the Center of the Genome"

~ 30 Megabases (~ 1% of the genome)

~ 180,000 exons (~ 20,500 genes)

Harbors "Majority" of Mendelian Mutations

Gene Discovery
~ 40 Publications
July 2011

Genomic DNA

Library Preparation

Next Generation Sequencing Library

Hybridize to Exome Capture Probes

Exome Enriched Library

Next Generation Sequencing

Bioinformatics Analysis

Exome Sequencing – Cardiomyopathy Genes

Variant g.34142190T>C in *TPM1*

GAGGCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ATG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG
GCCAAGCACATTGCTGAAGATGCCGACCGCAAGT ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ATG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ACG AAGAGGGCAGATCCTGGGGCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ACG AAGAGGGCCAGAATCCTGGGGCCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ACG AAGAGGTCAGATCCTGGGGCCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ACG AAGAGGTCAGATCCTGGGGCCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ACG AAGAGGTCAGATCCTGGGGCCCCAAAGCCTTGTGGACACC
GCCAAGCACATTGCTGAAGATGCCGACCGCAAAT ACG AAGAGGTCAGATCCTGGGGCCCCAAAGCCTTGTGGACACC

GCCAAGCACATTGCTGAAGATGCCGACCGCAAA ATGAAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACC
CCAAGCACATTGCTGAAGATGCCGACCGCAAA ATGAAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACC

Reference

LR-PCR 47%

GAGGCCAAGCACATTGCTGAAGATGCCGACCGCAAA ATG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG
GAGGCCAAGCACATTGCTGAAGATGCCGACCGCAAA ATG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGG
GAGGCCAAGCACATCGCTGAGGATTCAGACCGCAAA ATG AAGAGGT
GAGGCCAAGCACATTGCTGAAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGAC
AGGCCAAGCACATTGCTGAAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACA
CCAAGCACATTGCTGAAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCC
CAAGCACATTGCTGAAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCA
CTGAAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCA
TGAAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG
AAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG
AAGATGCCGACCGCAAA ACG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG
CGACCGCAAA ATG AAGAGGTCAGATCCTGGGGCCCAAAGCCTTGTGGACACCCAG

Exome 47%

Sanger

Progression

Whole Genome

Whole Exome

Multi-Gene Diagnostics

Increasing Complexity

Genomic DNA

Process

Covaris
Acoustic Wave

Library Preparation - Illumina

PCR

[bp] Ladder P Library P PCR 10380 -7000 -2000 -1000 -600 -500 -400 -300 -200 -150 -100 -2 3

Beckman SPRI-TE

BioAnalyzer

PCR Amplified Library

Dilution/Denaturation

Flow Cell Cluster Generation

Illumina cBot

Sequencing HiSeq 2000

Cluster Densities/Intensities

Real Time Analysis - Cycle 25+

2 X 100bp **Pair End**

Target ~ 100+ Gb

FastQ Files

Whole Genome Sequencing Chr 10: g.43,615,633C>G in RET

Whole Genome Sequencing Chr X: 3bp deletion in *FOXP3*

Outline

- Progression: Gene Panels to Genomes
- Next Generation Sequencing Technology
- Bioinformatics

Next Generation Sequencing Bioinformatics

Signal to Noise

Alignment Considerations

Alignment Softwares

Academic Softwares

- Command Line
- Free
- Genome community support

Commercial Softwares

- Feature rich user interface
- •\$\$\$
- Company support

maq assemble [-sp] [-m maxmis] [-Q maxerr] [-r
 hetrate] [-t coef] [-q minQ] [-N nHap]
 out.cns in.ref.bfa in.aln.map 2> out.cns.log

Alignment Softwares

Commercial Softwares

Academic Softwares

BFAST (UCLA)

BWA (Sanger Institute)

SAMtools (Sanger Institute)

Next Generation Sequencing Bioinformatics

Signal to Noise

Variant Annotation

- ✓ dbSNP ← 1,000 Genome Project
- ✓ OMIM
- ✓ Human Genome Mutation Database
- √ Locus Specific Databases
- ✓ Literature and Internet
- ✓ Functional Prediction Programs

Convergence of Chemistry + Bioinformatics

Exome Sequencing

Variant Calling (15-20,000)

Approach 1

Nonsense Splicing & Frame shifts

Missense:
Protein Function
Predictions

Functional Relevance Filter Out Common Variants (750-1000)

Genes/Regions Family/SNP Arrays (10-200)

> Variant Annotation

> > 1

Candidate Genes

Approach 2

Evolutionary Constraint

Approach 3

VAAST (Variant Annotation, Analysis, and Selection Tool)

VAAST – Probabilistic Candidate Gene Finder

Allele Frequencies
Cases and Controls

AA Substitution Analysis Model Variant Severity

Combined Likelihood Framework

Identify Aberrant Variant
Combinations
Compromise Gene Function

VAAST – Probabilistic Candidate Gene Finder

0.5:A 0.5:T 0.5:A 0.5:T 0.9:C 0.1:T 0.9:C 0.1:T **Gene X** × Gene 0.8:G 0.2:T 0.6:G 0.4:C 0.1:G 0.9:C 0.9:C 0.1:T 0.9:C 0.1:T 0.2:A 0.8:G 0.2:A 0.8:G **Controls** Cases

Caucasian Only (65 genomes)				
Genome-wide	DHODH		DNAH5	
Significant Genes	Rank	P-Value	Rank	P-Value
17	14	9.93E-07	19	5.79E-05
Mixed Ethnicities (189 Genomes)				
IVIIAEU E	umiciu	62 (103	Genom	esj
Genome-wide		ODH (103		AH5

Miller: DHOD

PCD: DNAH5

GWS Alpha is 2.4 E-6

One

Genomics Clinical Research Program

Summary

- Progression: Gene Panels to Genomes
- Next Generation Sequencing Technology
- Bioinformatics

Acknowledgements

Genomics-Bioinformatics
Rebecca Margraf Jacob Durtschi
Emily Coonrod Perry Ridge

U of Utah Genetics Mark Yandell Lynn Jorde

voelkek@aruplab.com

Omicia
Martin Reese

ARUP Laboratories Institute
for
Clinical and Experimental Pathology

Next in the Series of Free PHC Webinars

- How to Have Successful Patient Interactions, Wednesday, August 17th, 11:00-12:00 pm CT
 - Mary Ann Abrams, MD, MPH & Barbara Savage, MT(ASCP)
- Go to <u>www.cap.org/institute</u> For All Upcoming Webinars!
- Past Webinars Available Now Online at www.cap.org/institute
 - Accountable Care Organizations
 - Whole Genome Analysis as a Universal Diagnostic
 - How to Build and Fund a Financially Viable Molecular Lab
 - Cancer: The Critical Role of Pathology
 - Molecular Markers in Breast Cancer
 - Bethesda System: Integrating Cytology and HPV Molecular Testing
 - Molecular Diagnosis for Lung Cancer Patients
 - Molecular Diagnosis for Colorectal Cancer Patients

CAP Events of Interest

- Don't Forget to Register for CAP'11 THE
 Pathologists' Meeting September 11 14, 2011
 held at the Gaylord Texan in Grapevine, Texas!
 - -Go to www.cap.org/CAP11 or call 1-800-967-4548. International attendees please call 1-847-996-5891.

For more information go to www.cap.org/CAP11

Tuesday, Sept 12th:

TP120 Breakfast Workshop – Hot Topics in Pathology: What Every Community Pathologist Should Know About Clinical Requests for Molecular Tests (6:30-7:45 am)

Faculty--Samuel K. Caughron, MD, FCAP Frederick L. Kiechle, MD, PhD, FCAP Michael S. Brown, MD, FCAP

ST109 Companion Diagnostics for Targeted Therapy in Cancer (2:00-5:30 pm)

Faculty--Sanja Dacic, MD, PhD, FCAP David Hicks, MD, FCAP Jeffrey Kant, MD, PhD, FCAP

Wednesday, Sept 13th:

ST110 Direct-to-Consumer Genetic Testing: Staying Ahead of Patients in This Current Trend

(8:00-9:00 am)

Faculty--Nazneen Aziz, PhD
Elizabeth A. Mansfield, PhD

ST111 What's in It for Me? Using Technology to Become a Diagnostic Hero (8:00-11:30 am)

Faculty--Kenneth J. Bloom, MD, FCAP John W. Turner, MD, FCAP