Convolutional Neural Networks (CNN): High Level

TL;DR

- A single unit in Fully Connected (FC) Layer identifies the presence/absence of a single feature spanning the entire input
- A single "kernel" in a Convolutional Layer identifies the presence/absence of a single feature
 - Whose size is a fraction of the entire input
 - At each sub-span of the input

Example

- FC: is the input image the digit "8"
- CNN: are there one or more small "8"'s in the input image

We have seen how the Fully Connected (FC) layer performs a template-matching on the layer's inputs.

$$\mathbf{y}_{(l)} = a_{(l)}(\mathbf{W}_{(l)}\mathbf{y}_{(l-1)} + b)$$

- ullet Each element of $\mathbf{y}_{(l-1)}$ is independent
 - ullet there is no relationship between $\mathbf{y}_{(l-1),j}$ and $\mathbf{y}_{(l-1),j+1}$
 - even though they are adjacent in the vector ordering

To see the lack of relationship:

Let perm be a random ordering of the integers in the range $[1 \dots n]$.

Then

- $\mathbf{x}[\mathrm{perm}]$ is a permutation of input \mathbf{x}
- $\Theta[perm]$ is the corresponding permutation of parametrs Θ .

$$\Theta^T \cdot \mathbf{x} = \mathbf{x}[\mathrm{perm}] \cdot \Theta[\mathrm{perm}]$$

So a FC layer cannot take advantage of any explicit ordering	among the input elements
timeseries of pricesadjacent pixels in an image	

Another issue with an FC layer:

ullet The "template" ${f W}_{(l)}$ matches the full length of the input ${f y}_{(l-1)}$

There are cases where we might want to discover a feature

- whose length is less than n
- that occurs anywhere in the input, rather than at a fixed location

For example

- a spike in a timeseries
- the presence of an "eye" in an image

Both these questions motivate the notion of convolutional matching

- small templates
- that are slid over the entire input

By sliding the pattern over the entire input

- we can detect the existence of the feature somewhere in the input
- we can localize its location

- We place (3 imes 3) Kernel (weight matrix) on the inputs ($\mathbf{y}_{(0)}$, output of layer 0)
- Performs dot product
- Produces Layer 1 output $(\mathbf{y}_{(1)})$ feature labelled 1

Slide the Kernel up and repeat:

 ${\bf y}_{(0)}$

• The dot product using the identical kernel weights produces output $(\mathbf{y}_{(1)})$ feature labelled 2Repeat, centering the Kernel over each feature in $\mathbf{y}_{(0)}$:

 ${\bf y}_{(0)}$

The output of a convolution is of similar size as the input

• detects a specific feature at each input location

So, for example, if there are

- three spikes: will detect the "is a spike" feature in 3 locations
- two eyes: will detect the "is an eye" feature in two locations

The convolution operation is like

- creating a small (size of template) FC layer
- that is applied to each location

So it "fully connects" *neighboring inputs* rather than the *entire input* and thus takes advantage of ordering present in the input.

- The template is called a kernel or filter
- The output of a convolution is called a *feature map*

Pre-Deep Learning: manually specified filters have a rich history for image recognition.

Let's see some in action to get a better intuition.

Fully Connected vs Convolution

Fully Connected Layer

Convolutional Layer

$$n_{(l-1)}$$
 $n_{(l)}$

$$n_{(l-1)} \times n_{(l)} \text{ weights}$$

$$n_{(l-1)}$$
 $n_{(l)} = n_{(l-1)}$ $f = 3$ weights

- Fully Connected Layer
 - ullet each of the $n_{(l-1)}$ units of layer (l-1) connected to each of the $n_{(l)}$ units of layer (l)
 - $lacksquare n_{(l-1)}*n_{(l)}$ weights total
- Convolutional Layer with 1D convolution, filter size 3
 - ullet groups of 3 units of layer (l-1) connected to individual units of layer (l)
 - using the *same* 3 weights
 - 3 weights total

So a Convolutional Layer can use <i>many fewer</i> weights/parameters than a Fully Connected Layer.
As we will see, this enables us to create many separate convolutions in a single layer

CNN advantages/disadvantages

Advantages

- Translational invariance
 - feature can be anywhere
- Locality
 - feature depends on nearby features, not the entire set of features
 - reduced number of parameters compared to a Fully Connected layer

Disadvantages

- Output feature map is roughly same size as input
 - lots of computation to compute a single output feature
 - one per feature of input map
 - higher computation cost
 - training and inference
- Translational invariance not always a positive

Multiple kernels

We have thus far seen a *single* kernel, applied to a N=2 dimensional input $\mathbf{y}_{(l-1)}.$

The output $\mathbf{y}_{(l)}$ is an N dimensional feature map that identifies the presence/absence of a feature at each element of $\mathbf{y}_{(l-1)}$.

Why not use multiple kernels to identify multiple features?

- ullet Let Convolutional Layer l have $n_{(l),1}$ kernels
- \bullet The output is $n_{(l),1}$ feature maps, one per kernel, identifying the presence/absence of one feature each

This is similar in concept to a Fully Connected layer

- Let FC layer l have $n_{\left(l\right)}$ units/neurons
- ullet The output is a vector of $n_{(l)}$ features

Let $(n_{(l-1),1} imes n_{(l-1),2})$ denote the shape of $\mathbf{y}_{(l-1)}$.

If Convolutional Layer l has $n_{(l),1}$ kernels

ullet the output shape is $(n_{(l),1} imes n_{(l-1),1} \ imes n_{(l-1),2})$

That is, the input is replicated $n_{(l)}$ times, one per kernel of layer l.

CNN convolution

It also means that the matrix ${f k}_{(l)}$ representing the kernels at layer l has the same number of dimensions as the output

- the first dimension is the number of kernels
- the rest of the dimensions are the size of each kernel

Higher dimensional input (N>2)

After applying $n_{(l),1}$ kernels to N=2 dimensional input $\mathbf{y}_{(l-1)}$ of shape $(n_{(l-1),1} \times n_{(l-1),2})$ we get a three dimensional output of shape $(n_{(l),1} \times n_{(l-1),1} \times n_{(l-1),2})$.

What happens when input $\mathbf{y}_{(l-1)}$ is N=3 dimensional of shape $(n_{(l-1),1} \times n_{(l-1),2} \times_{(l-1),3})$?

ullet this can easily occur in layer (l-1) is a Convolutional Layer with $n_{(l-1),1}$ kernels

If $\mathbf{y}_{(l-1)}$ is the output of a Convolutional Layer

ullet $\mathbf{y}_{(l-1)}$ has $n_{(l-1),1}$ features over a space of shape $(n_{(l-1),2} imes_{(l-1),3})$

Convolutional Layer l

- ullet combines all $n_{(l-1),1}$ input features at a single "location"
- into a new synthetic <code>scalar</code> feature at the same location in output $\mathbf{y}_{(l)}$

This means the output $\mathbf{y}_{(l)}$ is of shape $(n_{(l),1} imes n_{(l-1),2} imes_{(l-1),3})$

This implies that each kernel of layer l is of dimension $N_{\left(l-1\right)}$

For example: if layer (l-1) has $N_{(l-1)}=3$ dimensions

ullet each kernel of layer l is has 3 dimensions

Kernel shape

We see that a Convolutional Layer l transforms

ullet an input of dimension $(n_{(l-1),1} imes n_{(l-1),2}$

$$imes n_{(l-1),3})$$

ullet into output with dimension $(n_{(l),1} imes n_{(l-1),2})$

$$imes n_{(l-1),3})$$

If each kernel of layer l has shape $(k_1 imes k_2)$ then the kernel matrix ${f k}_{(l)}$ for layer l

- ullet has shape $(n_{(l),1} imes k_1 imes k_2)$
- one kernel per output synthetic feature

Receptive field

The receptive field of a elements of a feature map

are the Layer 0 (input) features that affect features in the map.

For ease of notation:

- ullet we assume N=2 as the dimension of the kernel
- we assume that all N dimensions of the kernel are the same ($f_{\left(l\right)}$)

So we will assume without loss of generality that

- the "height" and "width" of a single kernel kernel is $(f \times f)$ the full dimensionality of a single layer l kernel is $(n_{(l-1),1} \times f \times f)$

Thus the receptive field of a Convolutional Layer at layer 1 is (f imes f).

Increasing the Receptive Field

There are several ways to "widen" the receptive field

- ullet Increasing $f_{(l)},$ the size of the kernel
- Stacking Convolutional Layers
- Stride
- Pooling

Striding and Pooling also have the effect of reducing the size of the output feature map.

Size of output

We can relate the size of a layer's output feature map to the size of its input feature map:

- ullet input $W_i imes H_i$
 - $imes D_i$
- ullet N: input size N imes N
- F: filter size $F \times F$
- S: stride
- ullet P: padding

No padding

$$egin{aligned} ullet & \operatorname{output \, size} \ ((W_i \ -F)/S \ & +1) \ & imes \ ((H_i \ -F)/S \ & +1) \ & imes \ D_o \end{aligned}$$

Padding

Assuming full padding, a layer l Convolutional Layer with $n_{(l),1}$ kernels will have output $\mathbf{y}_{(l)}$ dimension

- $ullet (n_{(l),1} imes n_{(l-1),2} imes n_{(l-1),3})$
 - $n_{(l),1}$ features
 - lacksquare over a spatial map of $(n_{(l-1),2} imes n_{(l-1),3})$

That is, the number of features changes but the spatial dimension is similar to $\mathbf{y}_{(l-1)}$

Down-sampling: Why does output size matter

Convolution applies a kernel to each region of the input feature map (assuming S=1).

Reducing the size of feature map at layer (l-1)

• will reduce the number of operations performed by Convolution at layer l.

For image inputs (with thousands or millions of input features) there is a incentive to down-sample

- Speed up training
- Speed up inference

Down-sample by

- Increasing Stride
- Pooling

Number of parameters

The real power of convolution comes from using the *same* filter against all locations of the input.

As a result, the number of parameters is quite small (compared to a separate set of parameters per each input).

- Dimension of a single filter $F imes F imes D_i$
- D_o : number of output filters
- total parameters: $F*F*D_i*D_o$

Remember: there is a depth to the input and the filter applies to the entire input depth

- size of a filter $F*F*D_i$
- number of filters: D_o , one per output channel
- total: $F * F * D_i * D_o$

If we were to have a separate filter for each input location, the number of parameters would increase by a factor of $W_i * H_i$.

```
In [4]: print("Done")
```

Done