Single Stage BJT Amplifier

AMPLIFIER GAIN

- Amplifier
 - Ratio of output signal to input signal
 - Ratio < 1: attenuator
 - Ratio = 1: buffer
 - Ratio > 1: amplifier
- 3 types of gains associated with an amplifier
 - Voltage gain
 - Current gain
 - Power gain

VOLTAGE GAIN

Defined as the ratio of ac output voltage to ac input voltage

Or, the mathematical expression:

$$A_{V} = \frac{V_{Out}}{V_{In}}$$

CURRENT GAIN

Defined as the ratio of ac output current to ac input current

Mathematically, expressed as:

$$A_I = \frac{I_{Out}}{I_{In}}$$

AMPLIFIER IMPEDANCE

- ☐ When a signal (current or voltage) is fed into the input, a portion of it will not get through the amplifier. This is due to external resistance effects.
 - 2 types of impedances associated with an amplifier:
 - Input impedance
 - Output impedance

BJT Transistor Modeling

A model is an equivalent circuit that represents the AC characteristics of the transistor.

A model uses circuit elements that approximate the behavior of the transistor.

There are two models commonly used in small signal AC analysis of a transistor:

r_e mode

Hybrid equivalent model

Important Parameter

Zi, Zo, Av, Ai are important parameters for the analysis of the Ac characteristics of a transistor circuit.

The $r_{\rm e}$ Transistor Model

BJTs are basically current-controlled devices; therefore the $r_{\rm e}$ model uses a diode and a current source to duplicate the behavior of the transistor.

One disadvantage to this model is its sensitivity to the DC level. This model is designed for specific circuit conditions.

The $r_{\rm e}$ Model

Small \emph{r}_{e} is the resistance looking into the emitter terminal of a transistor. As there is a voltage on the base of a transistor and a current flowing in the emitter, then from ohm's law

$$r_e = v/i$$

= v_{BE}/I_E
 $r_e = \frac{KT}{gl_e}$

K is Boltzman's constant 1.38 x 10-23 joule/K

$$r_e = \frac{25}{l_E}$$
 @ 20° C
 $r_e = \frac{26}{l_E}$ @ 25° C

Equivalent Circuit of BJT

We know,

 $i_c = \mathcal{B}_{ac} i_b$ Thus $\mathcal{B}_{ac} i_b$ can be thought of as a **constant current generator**. The equivalent circuit is shown below:

Transistor Equivalent Circuits

The two graphs best illustrate the difference between β_{DC} and β_{ac} . The two only differ slightly.

