## Metodi Matematici per l'Informatica (secondo canale) — 12 Febbraio 2019 Soluzioni di Andrea Princic. Cartella delle soluzioni.

Es 1. Per ogni tripla di insiemi  $A, B \in C$  tali che A - B = C si ha:

$$\square_V \boxtimes_F \mathbf{A}. C \neq \emptyset$$

se 
$$A \subseteq B$$

$$\square_V \boxtimes_F \mathbf{B}. \ C \cup A = B$$

$$C \cup A = A$$

Es 2. Per ogni coppia di insiemi  $A \in B$  si ha che:

 $\square_{V} \boxtimes_{F} \mathbf{A}$ . se A è numerabile allora A - B è numerabile

$$A-B$$
 potrebbe essere finito o vuoto

 $\square_{V} \boxtimes_{F} \mathbf{B}.$  se Ae Bnon sono numerabili allora  $A \cap B$ non è numerabile

Ad esempio se 
$$A = \mathbb{N} \cup 2^{\mathbb{N}}$$
 e  $B = \mathbb{R}$ , allora  $A \cap B = \mathbb{N}$ 

 $\boxtimes_V \square_F$  C. se A e B sono numerabili allora  $A \times B$  è numerabile

**Es 3.** Si consideri la relazione  $D = \{(a, b) \mid a, b \in \mathbb{N} \land a \text{ divide } b\}.$ 

 $\square_V \square_F A$ . D è una relazione d'ordine stretto

Non è antiriflessiva

 $\square_V \square_F$  B. D è una relazione d'ordine largo

È riflessiva, antisimmetrica e transitiva

 $\boxtimes_V \square_F$  C. esiste  $x \in \mathbb{N}$  tale che per ogni  $y \in \mathbb{N}$  se  $x \neq y$  allora  $(y, x) \in D$ 

$$x = 0$$

Es 4. Scrivere una relazione di ordine stretto sull'insieme  $A = \{P, L, M, G\}$ 

$$\{(P,L),(P,M),(P,G),(L,M),(L,G),(M,G)\}$$

Es 5. Scrivere la definizione di chiusura simmetrica di una relazione.

La chiusura simmetrica di una relazione  $R\subseteq A\times A$  è la più piccola relazione simmetrica  $\hat{R}$  tale che  $R\subseteq \hat{R}\subseteq A\times A$ 

**Es 6.** Sia x un numero reale. Dimostrare che per ogni  $n \geq 2$  si ha

$$(1-x)\sum_{k=0}^{n-1} x^k = 1 - x^n$$

Caso base n=2:

$$(1-x)\sum_{k=0}^1 x^k = (1-x)(1+x) = 1-x^2$$

Passo induttivo n + 1:

$$(1-x)\sum_{k=0}^{n} x^{k} = (1-x)\sum_{k=0}^{n-1} x^{k} + (1-x)x^{n}$$
$$= 1 - x^{n} + (1-x)x^{n}$$
$$= 1 - x^{n} + x^{n} - x^{n+1}$$
$$= 1 - x^{n+1}$$

Es 7. Definire il concetto di modello nella logica predicativa.

Un modello è un'interpretazione che rende vera una formula

- Es 8. Vero o Falso? (N.B. Le lettere  $A, B, C, p_1, p_2, p_3$  variano su proposizioni arbitrarie nel linguaggio della logica proposizionale, non necessariamente distinte).
- $\square_V \boxtimes_F \mathbf{B}$ . Se  $A \vDash B \lor C$  e  $B \vDash \neg C$  allora  $(A \to C) \vDash \neg B$

| A | В | C | $A \vDash B \lor C$ | $B \vDash \neg C$ | $(A \to C) \vDash \neg B$ | risultato |
|---|---|---|---------------------|-------------------|---------------------------|-----------|
| F | F | F | V                   | V                 | V                         | V         |
| F | F | V | V                   | V                 | V                         | V         |
| F | V | F | V                   | V                 | F                         | F         |
| F | V | V | V                   | F                 | F                         | V         |
| V | F | F | F                   | V                 | V                         | V         |
| V | F | V | V                   | V                 | V                         | V         |
| V | V | F | V                   | V                 | V                         | V         |
| V | V | V | V                   | F                 | F                         | V         |

Il risultato è dato da  $(A \vDash B \lor C) \land (B \vDash \neg C) \rightarrow ((A \rightarrow C) \vDash \neg B)$ . Il simbolo  $\vDash$  viene trattato allo stesso modo di  $\rightarrow$  nella tavola di verità.

 $\square_V \boxtimes_F \mathbf{C}$ . Se  $A \wedge \neg B$  è soddisfacibile allora  $A \to B$  è insoddisfacibile

perché  $A \to B = \neg A \lor B = \neg (A \land \neg B)$  e il fatto che  $A \land \neg B$  sia soddisfacibile non implica che la sua negazione non lo possa essere.

 $\square_V \square_F \mathbf{D}$ . Se esiste B tale che il tableau di  $B \wedge \neg A$  ha tutti i rami chiusi allora A è una tautologia

il fatto che  $B \land \neg A$  abbia tutti i rami chiusi significa che  $\neg B \lor A$  è una tautologia, ma questo non significa che anche A debba esserlo

Es 9. L'enunciato seguente è una tautologia?

$$\square_V \boxtimes_F \mathbf{A} \cdot \exists x \forall y (A(y) \rightarrow \neg B(x))$$

Quando A e B sono entrambe tautologie nel dominio

Si può interpretare così: esiste una y per la quale A è falsa, oppure non esiste nessuna x per la quale è falsa. Questo ovviamente è vero perché o A è falsa per qualche y oppure è vera per tutte le x

Es 10. Formalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo  $\mathcal{L}$  composto da un simbolo < di relazione a due argomenti (con la sua ovvia interpretazione).

 $\exists x \ \forall y (x < y)$  "esiste un elemento xche è minore di tutti gli altri"

 ${f B.}$  La relazione < non ha un elemento massimo

 $\neg \exists \ x \forall y (y < x)$  "non esiste un elemento x che è maggiore di tutti gli altri"

C. La relazione < è densa, vale a dire che ogni coppia di elementi nella relazione < possiede un elemento intermedio

$$\forall x \ \forall y (x < y \to \exists z (x < z \land z < y))$$

## Tableau

$$\neg\exists x \forall y (A(y) \rightarrow \neg B(x)) \\ | \\ \neg \forall y (A(y) \rightarrow \neg B(a)) \\ | \\ \neg (A(b) \rightarrow \neg B(a)) \\ | \\ A(b) \\ | \\ B(a)$$

