CL=CSCI 160

CLASS 16

HW 15.1 Finish this by going on to finding all minimal forms for F₆.

Solution

From Class 15 we have:

All implicants are essential ---> only 1 minimal form:

$$F_6 = A + B + C + D$$

$$\left(F_6 = x + yt' + yz' + z't'\right)$$

	×	У	Z	†	F ₆
0	0	0	0	0	1
1	0	0	0	1	0
3	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
<u>4</u>	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	d
	1	0	1	1	d
	1	1	0	0	d
	1	1	0	1	d
	1	1	1	0	d
15	1	1	1	1	d

HW 15.2 Find all minimal forms for F7.

		×	у	z	t	F ₇
	0	0	0	0	0	0
E	1	0	0	0	1	0
	2	0	0	1	0	1_
\blacksquare	3	0	0	1	1	1
8	4	0	1	0	0	1
5	5	0	1	0	1	1
6	6	0	1	1	0	1
	7	0	1	1	1	Ō
	8	1	0	0	0	1
	9	1	0	0	_1	_1
	10	1	0	1	0	d
		1	0	1	1	d
		1	1	0	0	d
		1	1	0	1	d
		1	1	1	0	d
	15	1	1	_1	1	d

Essential: A, C, D ---> 2 minimal forms to cover the remaining $\frac{1}{6}$

$$F_7 = A + C + D + \left\langle \begin{array}{ccc} B & = x + y'z + yz' + \left\langle \begin{array}{ccc} yt' \\ zt' \end{array} \right.$$

Tabulation Method (Quine-McCluskey)

Example: $f = \sum (1, 2, 3, 4, 7, 8, 12, 15) + d \sum (0, 5, 9, 10, 14)$

Index	Impl. Binary	Impl. Dec.
0	0000	<u>o *</u> d_
	0001	1 *
	0010	2 *
1	0100	4 *
	1000	8 *
	0011	3 *
	0101	5 * d
2	1001	9 * d
	1010	10 * d
	1100	12 *
3	0111	7 *
	1110	14 * d
4	1111	15 *

Index	Impl. Binary	Impl. Dec.
	000-	(0, 1) 🗎 *
0	00-0	(0, 2) _□ *
	0-00	(0, 4) 🗆 🕇
	-000	(0, 8)□*
	00-1	(1, 3) - *
	0-01	(1, 5) *
	-001	(1, 9) 🗆 *
	001-	(2, 3) *
1	-010	(2, 10) 🛧
	010-	(4, 5) ⊨*
	-100	(4, 12) ★
	100-	(8, 9) ҈ ★
	10-0	(8, 10) [★
	1-00	(8, 12) ★
	0 - 1 1	(3, 7) ⊤★
	01-1	(5, 7) *
2	1-10	(10, 14) *
	11-0	(12, 14) *
3	-111	(7, 15)□
	111-	(14, 15)

Index	Impl. Binary	Impl. Dec.	11
	00	(0, 1, 2, 3)	G
	0-0-	(0, 1, 4, 5)	F
0	-00-	(0, 1, 8, 9)	E
	-0-0	(0, 2, 8, 10)	D
	00	(0, 4, 8, 12)	C
1	0 1	(1, 3, 5, 7)	В
	1 0	(8, 10, 12, 14)	A

We stop when we can no longer form larger ones and name the <u>prime implicants</u>.

Note: We can form larger implicants **only** by combining implicants of adjacent indices

Index = # of 1's in the string
We list all the mintages in binary

We list all the minterms in binary and desimal form, around by their indices

decimal form, grouped by their indices. Note: every size-4 implicant will be formed in 2 ways out of size-2 implicants:

We mark the d's. These are the size-1 implicants. We continue to size-2, size-4, etc implicants, until no more possible, marking the non-prime implicants with *

HW 16 - assigned

Consider the function on which we applied the tabulation method:

$$f = \Sigma (1, 2, 3, 4, 7, 8, 12, 15) + d \Sigma (0, 5, 9, 10, 14))$$

- 1) Draw the K-map and find all prime implicants, giving them the same labels (letters), A I, in class, when applying the tabulation method.
- 2) Minimize f.