Northern University Of Bangladesh

Experiment No-4: verification of Thevenin's theorem

Name: Fardeen ahmed

Id: 04210301615

Semester: 8

Section : A

Course Name: Electrical Engineering & Circuit Analysis Lab Course

Code: CSE 1259

Result and Discussion:

Thevenin's theorem: Thevenin's theorem states that it is possible to simplify any linear circuit, irrespective of how complex it is, to an equivalent circuit with a single voltage source and a series resistance. There are three steps to solve thevenins's theorem

- 1) Find the Thevenin Resistance by removing all voltage sources and load.
- 2) Find the Thevenin Voltage by reconnecting the voltage sources.
- 3) Use the Thevenin Resistance and Voltage to find the total current flowing through the load.

Lets consider this circuit

Lets solve this circuit using thevnin's theorem

At first lets draw a thevnin's equivalent circuit

Here V_{th} is thevnin's voltage , R_{th} is thevnin's resistance and $R_{\text{\tiny L}}$ is load resistance .

According to the vnin's theorem we need to remove R_L form main circuit and calculate V_{th} and R_{th} .

Calculating V_{th} :

 V_{th} will be the voltage through the resistance 6Ω

So,
$$I = V / R = 16 V / (4 \Omega + 6 \Omega)$$

= 1.6 A

$$V_{6\Omega}$$
 = I x R = 1.6 A x 6 Ω = 9.6 V

Calculating R_{th}:

To calculate according to the vnin's theorem we need to remove voltage from the circuit.

Rth =
$$4 \Omega \mid \mid 6 \Omega = 2.4 \Omega$$

So ultimately the circuit will be

Now we need to calculate the voltage through R_L = 3 Ω resistor

So , I = V / (
$$R_{th}$$
 + R_{L}) = 9.6 v / (2.4 Ω + 3 Ω)
$$= 1.78 \; A$$

$$V_{RL} = I \times R_{L} = 1.78 \times 3 = 5.33 \text{ V}$$

Here $R_{\text{\tiny L}}$ also 5.33 V. So it can be said that the nin's theorem is verified .