Juke

Introduction to Machine Learning: Kernel Extensions

ECE 580 Spring 2022 Stacy Tantum, Ph.D. **110.2: Kernel Extensions**

Kernels → basis functions

Kernels don't necessarily have to be parameterized by the training data

RBFs don't have to be centered @ training points,

they can be located anywhere!

F10.2: Kernel Extensions

If training data doesn't define kernels, what does?

We can define parameters of candidate basis functions (rather than accepting parameters specified by training data)

coarse grid

Choosing Kernel Parameter(s)

RBF width.

TREF (8=1 RVMN RBF (8=2)

Kernel parameters don't necessarily have to be chosen by a human (a priori, or through cross-validation)

RVM Feature Selection

Use linear (or direct) kernel

Copyright © 2014-2022 by Stacy Tantum Not to be distributed without express wri

- Each kernel (basis function) corresponds to a feature
- Relevant kernels are the selected features (and they come with associated weights!)

$$\mu_{0a} = [-1 \ 1 \ 0 \ 0 \dots 0]$$
 $\mu_{0b} = [1 \ -1 \ 0 \ 0 \dots 0]$
 $\mu_{1} = [-1 \ -1 \ 0 \ 0 \dots 0]$
RVM Relevant Kern (w = -0.55)
2 (w = -0.53)

$$\mu_{0a} = [0 \ 0 \dots 0 \ -1 \ 1]$$
 $\mu_{0b} = [0 \ 0 \dots 0 \ 1 \ -1]$
 $\mu_{1} = [0 \ 0 \dots 0 \ -1 \ -1]$
RVM Relevant Kerr

D-1 (w = -0.52)

D (w = -0.49)

RVM Relevant Kernels:
D-I (w =
$$-0.52$$
)
D (w = -0.49)

RVM Regression

Model the signal as a weighted sum of kernel functions, with the priors on the weights designed so that the majority of the weights go to zero

T10.2: Kernel Extensions

Problem-Specific Kernel Functions

Goal: Find a sparse representation for a wideband Electromagnetic Induction (EMI) sensor response to a target

Discrete Spectrum of Relaxation Frequencies*(DSRF)

$$H(\omega) = c_0 + \sum_{k=1}^{K} \frac{c_k}{1 + j\omega/\zeta_k}$$

Determine the K parameter sets (c_k, ζ_k) such that the signal is well-represented with minimal K

^{*} Mu-Hsin Wei, Waymond R. Scott, Jr., and James H. McClellan, "Robust estimation of the discrete spectrum of relaxations for electromagnetic induction responses," *IEEE Transactions on Geoscience and Remote Sensing* **48**(3):1169-1179 (March 2010)

DSRF Signal Model for Regression

DSRF signal model is a linear combination of nonlinear functions

Regress out the coefficients c_k for the nonlinear DSRF basis functions

RVM Regression for Model Inversion

Model the signal as a weighted sum of kernel functions, and use RVM regression to find a sparse solution*

^{*} Stacy L. Tantum, Waymond R. Scott, Jr., Kenneth D. Morton, Jr., Leslie M. Collins, and Peter A. Torrione, "Target classification and identification using sparse model representations of frequency-domain electromagnetic induction sensor data," IEEE Transactions on Geoscience and Remote Sensing, 51(5): 2689--2706 (May 2013)

T10.2: Kernel Extensions

Example RVM Regression Inversions

All rights reserved.

distributed without express written

Copyright © 2014-2022 by Stacy Tantum. Not to be distributed without express writ

Relaxation frequencies (ζ_k) are quite consistent despite considerable variations in the measured data

Example RVM Regression Inversions

All rights reserved.

Copyright © 2014-2022 by Stacy Tantum. All Not to be distributed without express written

Relaxation frequencies (ζ_k) are quite consistent despite considerable variations in the measured data

Estimated DSRFs by Target Type

