RAPORT SYMULACJA CYFROWA

- 1. Nr rozszerzenia zadania A1, tabela D3, metoda planowania zdarzeń.
- 2. Treść rozwiązywanego zadania:

Szpitalny punkt krwiodawstwa korzysta z monitoringu liczby dostępnych jednostek krwi. Jeżeli liczba ta spadnie do poziomu **R** lub niżej, zostaje wysłane zlecenie na **N** nowych jednostek. Czas od wysłania zamówienia do otrzymania krwi jest zmienną losową o rozkładzie wykładniczym o średniej **Z**. Dostarczona krew musi zostać wykorzystana w ciągu **T**₁ jednostek czasu. Po tym czasie zostaje zutylizowana.

Odstęp czasu pomiędzy pojawieniem się kolejnych pacjentów wymagających transfuzji jest zmienną losową o rozkładzie wykładniczym i średniej \mathbf{P} . Liczba jednostek krwi podawana pojedynczemu pacjentowi jest zmienną losową o rozkładzie geometrycznym i średniej $\mathbf{1/W}$. Jeżeli liczba potrzebnych jednostek jest większa niż aktualny stan zaopatrzenia w punkcie krwiodawstwa, zostaje złożone awaryjne zamówienie na \mathbf{Q} jednostek. Czas dostarczenia takiego zamówienia jest zmienną losową o rozkładzie normalnym, średniej \mathbf{E} i wariancji \mathbf{EW}^2 . Dodatkowo, w punkcie krwiodawstwa krew oddają lokalni dawcy. Czas między zgłoszeniem się kolejnych dawców jest zmienną losową o rozkładzie wykładniczym i średniej \mathbf{L} . Każdy dawca oddaje jedną jednostkę krwi, która musi zostać zużyta w ciągu $\mathbf{T_2}$ jednostek czasu ($\mathbf{T_1} < \mathbf{T_2}$).

Punkt krwiodawstwa raz na TA jednostek czasu przeprowadza akcję promocyjną zbiórki krwi, podczas której średni czas pomiędzy zgłoszeniami kolejnych dawców spada o TR. Akcja trwa TT=7200 jednostek czasu.

TA – zmienna losowa o rozkładzie równomiernym w przedziale [TAmin,TAmax] [20k,22k] TR – zmienna losowa o rozkładzie równomiernym w przedziale [TRmin,TRmax] [100,200] Celem symulacji jest wyznaczenie wartości **R** oraz **N**, dla których prawdopodobieństwo awaryjnego zamówienia jest mniejsze niż **A**. Dla otrzymanych wartości wyznacz jaki procent krwi jest utylizowany

3. Opis modelu symulacyjnego:

a) Schemat modelu symulacyjnego:

b) Opis klas wchodzących w skład systemu i ich atrybutów:

Obiekt	Nazwa klasy implementującej obiekt	Opis	Atrybuty
Pojawienie się dawcy krwi	ApperanceDonor	Klasa reprezentująca pojawienie się dawcy krwi	 Wskaźnik na szpitalny punkt krwiodawstwa typu BloodDonationPoint Wskaźnik na obiekt generatora typu Generators Zmienna wynikowa z generatora czasu typu double
Pojawienie się pacjenta	ApperancePatient	Klasa reprezentująca pojawienie się pacjenta	 Wskaźnik na szpitalny punkt krwiodawstwa typu BloodDonationPoint Wskaźnik na obiekt generatora typu Generators
Pojawienie się krwi z awaryjnego zgłoszenia lub zamówienia	BloodDelivery	Klasa reprezentująca przywiezienie krwi	 Wskaźnik na szpitalny punkt krwiodawstwa typu BloodDonationPoint Wskaźnik na obiekt generatora typu Generators Zmienna wyliczeniowa mówiąca które zamówienie się pojawiło typu TypeDelivery
Szpitalny punkt krwiodawstwa	BloodDonationPoint	Klasa gromadząca pozostałe elementy sytemu.	 Minimalna liczba dostępnych jednostek krwi typu const int Liczba krwi przychodząca z awaryjnego zgłoszenia i zamówienia typu const int Liczba dostępnych jednostek krwi typu int Flagi mówiące o tym czy zostało wysłane awaryjne zgłoszenie/zamówienie typu bool Aktualny czas systemu typu double

			 - Zmienne pozwalające na zakończenie symulacji (z zależności od parametrów końca) typu int/double - Zmienne do zbierania statysyk typu int/double - Zmienna do ustalania czy praca krokowa czy ciągła typu bool - Zmienna mówiąca czy trwa akcja promocyjna typu bool - Kolejka pacjentów typu queue - Lista krwi typu list - Kalendarz zdarzeń typu list
Utylizacja krwi	BloodRecycling	Klasa reprezentująca przeterminowanie krwi	 Wskaźnik na szpitalny punkt krwiodawstwa typu BloodDonationPoint Wskaźnik na obiekt generatora typu Generators
Klasa wyliczeniowa	Enum	Klasa zawierająca typy wyliczeniowe	 Rodzaj krwi (czy od dawcy czy z dostawy) typu enum Rodzaj dostawy typu enum Rodzaj generatora typu enum Czy start czy stop kampanii promocyjnej typu enum Wartości do generatora typu enum
Zdarzenie czasowe	Event	Klasa nadrzędna dla zdarzeń czasowych	 Zmienna reprezentująca wykonania zdarzenia typu double Czas przydatności krwi od dawcy typu const int Czas przydatności krwi z dostawy typu const int
Generatory	Generators	Klasa zawierająca wszystkie generatory	- Zmienne typu <i>int</i> i <i>double</i> służące do generowania odpowiednich zmiennych o danym rozkładzie
Pacjent wymagający transfuzji	Patient	Klasa reprezentująca pacjenta wymagającego transfuzji krwi.	- Zużyte jednostki krwi przez pacjenta typu <i>int</i>
Kampania promocyjna	PromotionalCampainf	Klasa reprezentująca zdarzenie kampanii promocyjnej	 Wskaźnik na szpitalny punkt krwiodawstwa typu BloodDonationPoint Wskaźnik na obiekt generatora typu Generators Zmienna reprezentująca czas końca kampanii promocyjnej typu const int Zmienna wyliczeniowa mówiąca o tym czy zdarzenie jest początkiem czy końcem kampanii promocyjnej typu TypeCampaing
Jednostka Krwi	UnitOfBlood	Klasa reprezentująca jednostkę krwi. Krew jest dodawana po zdarzeniach jak i utylizowana po	 czas przydatności krwi od dawcy lub z zamówienia typu const double Zmienna reprezentująca czas do kiedy będzie przydatna krew typu double

	czasie jej	
	przydatności	

4. Opis przydzielonej metody symulacyjnej: a) Schemat blokowy pętli głównej:

b) Lista zdarzeń czasowych/warunkowych:

Zdarzenia czasowe:

Zdarzenie	Opis	Algorytm	
Pojawienie się pacjenta	Zdarzenie generowane jest	1. Generuj liczbę jednostek	
wymagającego transfuzji	w momencie pojawienia się	krwi jaką zużyje pacjent.	
	pacjenta wymagającego	2. Sprawdź czy jest ktoś	
	transfuzji krwi. Pojawienie się	w kolejce pacjentów.	
	kolejnego pacjenta	a) Jeśli nie to: obsłuż zdarzenie	
	wymagającego transfuzji krwi	warunkowe "Pobranie krwi	
	jest zmienną losową	przez pacjenta"	
	o rozkładzie wykładniczym	b) Jeśli tak to: umieść pacjenta	
	i średniej P. Liczba jednostek	na końcu kolejki	
	krwi jaką zużywa pacjent jest	Zaplanuj następne	
	zmienną losową o rozkładzie	zgłoszenie.	
	geometrycznym i średniej 1/W.	4. Obsłuż kolejne zdarzenie.	
Pojawienie się dawcy	Zdarzenie jest generowane	1.Generuj czas pojawienia się	
	w momencie pojawienia się	kolejnego dawcy.	
	dawcy w punkcie	Dodaj jedną jednostkę krwi.	
	krwiodawstwa. Czas między	Zaplanuj czas przydatności	
	zgłoszeniem się kolejnych	pobranej krwi.	
	dawców jest zmienną losową	4. Zaplanuj kolejne zgłoszenie.	
	o rozkładzie wykładniczym	5. Obsłuż kolejne zdarzenie.	
	i średniej L.		

Dostawa krwi	Zdarzenie jest generowane w momencie dostawy krwi ze zlecenia lub awaryjnego zamówienia	 Dodaj odpowiednią liczbę krwi z dostawy. Zaplanuj czas przydatności dostarczonej krwi. Obsłuż kolejne zdarzenie.
Utylizacja krwi	Zdarzenie występuję w momencie przeterminowania jednostek krwi w systemie	Usuń przeterminowane jednostki krwi. Obsłuż kolejne zdarzenie.
Początek akcji promocyjnej	Zdarzenie jest generowane w momencie początku akcji promocyjnej	 Zmniejsz czas pomiędzy pojawieniem się kolejnych dawców. Zaplanuj zdarzenia końca akcji promocyjnej. Zaplanuj zdarzenie kolejnej akcji promocyjnej. Obsłuż kolejne zdarzenie.
Koniec akcji promocyjnej	Zdarzenie jest generowane po odpowiednim czasie od rozpoczęcia akcji promocyjnej	Przywróć normalny czas między pojawieniem się kolejnych dawców. Obsłuż kolejne zdarzenie.

Zdarzenia warunkowe:

Zdarzenie	Opis	Algorytm
Wysłanie zlecenia na N nowych	W momencie gdy liczba	1. Sprawdź czy liczba
jednostek	dostępnych jednostek krwi	dostępnym jednostek krwi
	spadnie do poziomu R lub	większa lub równa R.
	niższego zostaje wysłanie	a) Jeśli tak to kontynuuj.
	zlecenie.	b) jeśli nie to wyślij zlecenie.
Pobranie krwi przez pacjenta	Pacjent pobiera odpowiednią	1. Sprawdź czy dostępna
	ilość wymaganą do transfuzji.	odpowiednia liczba jednostek
		krwi:
		a) Jeśli tak to usuń
		odpowiednią liczbę jednostek
		krwi.
		b) Jeśli nie to wyślij awaryjne
		zamówienie.
Wysłanie awaryjnego	To zamówienie jest wysyłane	1. Sprawdź czy liczba
zamówienia na Q jednostek	w momencie gdy liczba	dostępnym jednostek krwi
	potrzebnych jednostek krwi	większa lub równa liczbie
	jest większa od aktualnego	potrzebnych jednostek krwi.
	stanu zaopatrzenia.	a) Jeśli tak to kontynuuj .
		b) jeśli nie to wyślij
		zamówienie.

5. Parametry wywołania programu

W momencie gdy użytkownik rozpocznie pracę ciągło następuje 10 symulacji w których: następuje wygenerowanie niezależnych wartości każdego z generatorów, a następne wykonanie symulacji określony liczbę razy (np. dla pojawienia się 20 tyś pacjentów).

6. Generatory

- a) Opis zastosowanych generatorów liczb losowych z histogramami:
- Rozkład równomierny został wygenerowany za pomocą kodu:

A jego histogram wygląda następująco:

- Rozkład wykładniczy został wygenerowany za pomocą kodu:

```
ExponentialDistribution(const double lambda_) {
    return -pow(1 / lambda_, -1)*log(UniformDistribution());
```

A jego histogram wygląda następująco:

- Rozkład

geometryczny został wygenerowany za pomocą kodu:

```
const double w_ = 0.20;
GeometricDistribution() {
   int i = 0;
   do {
       i++;
   } while (UniformDistribution() < w_);
   return i;
}</pre>
```

A jego histogram wygląda następująco:

- Rozkład normalny został wygenerowany za pomocą kodu:

```
NormalDistribution() {
    double first_draw;
    double second_draw;
    double x;
    do
    {
        first_draw = UniformDistribution();
        second_draw = UniformDistribution();
        x = -log(first_draw);
    } while (!(second_draw <= exp(-pow(x - 1, 2) / 2)));
    if (UniformDistribution() < 0.5)
    x = x * -1.0;
    return x * variance_ew_ + mean_e_;}</pre>
```

A jego histogram wygląda następująco:

b) Zapewnienie niezależności w różnych sekwencjach:

Niezależność sekwencji w różnych symulacjach została zapewniona poprzez wygenerowanie różnych ziaren. Wygenerowałem 30 ziaren za pomocą funkcji:

```
for (int j = 0; j < 30; j++) {
    for (int i = 0; i <= 10000000; i++) {
        gen->UniformDistribution();
    }
    long long int Liczba2 = gen->CreateSeeds();
    std::cout << Liczba2 << std::endl;
    zapis << Liczba2 << std::endl;
}</pre>
```

Funkcja CreateSeeds() zwraca wylosowaną liczbę po odpowiedniej liczbie zadziałań generatora (u mnie 10 000 000). Ziarna są przechowywane w pliku "Seeds.txt". Dla każdego zestawu parametrów przewidziałem po 10 symulacji z różnymi ziarnami.

7. Krótki opis zastosowanej metody testowania i weryfikacji poprawności działania programu:

Zweryfikowałem działanie programu poprzez obserwowanie jego działania w pracy krokowej i poprzez porównanie z programami kolegów napisanymi w innych metodach. Również poprzez wykonanie 10 symulacji o różnych ziarnach i uśrednieniu parametrów. Z wykresu widać, że zbiega on do jednej stałej wartości.

8. Wyniki symulacji:

a. Wyznaczenie długości fazy początkowej:

Fazę początkową wyznaczam poprzez uśrednienie 10 symulacji i znalezienie punktu gdzie wykres zaczyna się stabilizować. W mojej symulacji następuje to dla czasu około 2 milionów.

b. Wyznaczenie parametrów:

Prawdopodobieństwo obliczane ze wzoru: Próby wysłania awaryjnego zamówienia
Liczba obsłużonych pacjentów
Aby zwiększyć wiarygodność pomiaru liczba obsłużonych pacjentów jest wartością stała (symulacja wykonywana dla 20 tysiecy obsłużonych pacjentów)

	stala (syl	manacja Wyko	ny wana ala z	tysiqey ob	siuzonych pac	jeritowy	
R	N	T1	T2	Q	Przedział	Auśrednione	Przedział
					ufności		ufności
					min		max
15	25	300	500	11	0.4415	0.4558	0.4700
45	25	300	500	11	0.3788	0.4252	0.4717
85	25	300	500	11	0.4300	0.4431	0.4562
45	50	300	500	11	0.4232	0.4309	0.4387
90	100	300	500	11	0.4212	0.4348	0.4484
Jak w	vidać należy z	zmienić koleji	ne parametry	,, aby zmniej	szyło się praw	dopodobień	stwo
85	50	300	500	40	0.4152	0.4257	0.4361
85	50	300	500	80	0.4097	0.4222	0.4348
Ponieważ	parametry n	adal się nie p	oprawiają zn	aczy to, że tr	zeba zmienić	czas przydat	ności krwi
		na większy	, żeby się tak	κ szybko nie ι	utylizowała		
85	50	600	1000	40	0.3531	0.3663	0.3795
170	100	600	1000	40	0.3530	0.3645	0.3760
Dwukrotn	Dwukrotne zwiększenie pozostałych parametrów nie wpłynęło na zmianę prawdopodobieństwa,						
		więc dale	ej będę zwięk	szał czas prz	ydatności		
85	50	1200	2000	40	0.2891	0.3033	0.3175
170	100	1200	2000	40	0.2894	0.3017	0.3139
	Kc	olejne dwukro	otne zwiększe	enie czasu pr	zydatności kry	wi	
85	50	2400	4000	40	0.2332	0.2491	0.2651
170	100	2400	4000	40	0.2407	0.2504	0.2600
	Ko	olejne dwukro	otne zwiększe	enie czasu pr	zydatności kry	vi	
85	50	4800	8000	40	0.1882	0.1967	0.2051
170	100	4800	8000	40	0.1801	0.1958	0.2114
170	100	4800	8000	80	0.1861	0.1954	0.2047

Kolejne dwukrotne zwiększenie czasu przydatności krwi							
85	50	9600	16000	40	0.1314	0.1406	0.1499
170	100	9600	16000	40	0.1148	0.1254	0.1361
170	100	9600	16000	80	0.1146	0.1237	0.1328
	Ko	olejne dwukro	otne zwiększe	enie czasu pr	zydatności kry	vi	
85	50	16200	32000	40	0.1052	0.1167	0.1282
170	100	16200	32000	40	0.0821	0.0873	0.0925
200	100	16200	32000	40	0.0772	0.0837	0.0901
250	100	16200	32000	40	0.0731	0.0794	0.0858
300	100	16200	32000	40	0.0773	0.0820	0.0867
Pomimo pi	rób zmienian	ia pozostałyo	h parametró	w wynik nie	ulega zmianie,	, więc musia	bym, żeby
(osiągnąć pra	wdopodobiei	ństwo mniejs	ze niż 6% zw	iększyć jeszcze	e trochę czas	
85	50	20000	35000	40	0.1073	0.1169	0.1266
170	100	20000	35000	40	0.0604	0.0711	0.0818
200	100	20000	35000	40	0.0662	0.0790	0.0917
250	100	20000	35000	40	0.0644	0.0705	0.0766
250	100	20000	35000	80	0.0684	0.0774	0.0863
350	150	20000	35000	40	0.0600	0.0684	0.0769

Dopiero dla takich o wiele większych wyników niż parametry zadane udało się osiągnąć prawdopodobieństwo około 6%. Dalsze zwiększanie czasu by skutkowało zapewne dalszym obniżeniem prawdopodobieństw.

c. Wyniki symulacji dla każdego przebiegu dla najlepszych parametrów (R=350, N=150, T1=20000, T2=35000, Q=40):

Numer przebiegu	Prawdopodobieństwo	Prawdopodobieństwo	
symulacji	awaryjnego zgłoszenia	utylizacji krwi	
1	0.0737449	0.3769	
2	0.06036	0.346015	
3	0.0676142	0.384172	
4	0.0724528	0.332846	
5	0.0824102	0.368408	
6	0.0617963	0.39671	
7	0.0616325	0.389137	
8	0.0568958	0.384886	
9	0.0770562	0.378277	
10	0.0702469	0.368461	

Średnie prawdopodobieństwo awaryjnego zgłoszenia = $\frac{Suma\ prawdopodobieństw}{10} = 0,0684$ Średnie prawdopodobieństwo utylizacji krwi = $\frac{Suma\ prawdopodobieństw}{10} = 0.3726$

d. Wyniki końcowe:

parametr	Przedział ufności	Średnia wartość	Przedział ufności			
	min		max			
Prawdopodobieństwo	0.0600	0.0684	0.0769			
awaryjnego zgłoszenia						
Prawdopodobieństwo utylizacji krwi	0.3523	0.3726	0.3929			
acynzacji ki Wi						

9. Wnioski:

Aby otrzymać założone prawdopodobieństwo konieczna była znacząca zmiana parametrów zadanych, w przypadku czasu przydatności krwi była to zmiana 70-krotna co jest dużym odstępem od wartości z treści zadania.