Columbia University MATH GR5260 Spring 2023 Programming for Quant and Computational Finance Ka Yi Ng

Exam 1 Mar 10th 2023 (Fri) 6:15pm – 7:45pm

GUIDELINES

This is an open book exam. You may use any notes, reference materials, internet, Jupyter Notebook or any Python IDEs during the exam period. However, you only have limited time to complete the exam, so you must <u>use your time wisely</u>.

All answers must be written legibly.

In the Python code, add comments to your code where you think will help grader understand your logic.

Solution submission

- Answer the theory questions on the exam paper provided.
- Submit your python code (and output results) as HTML or pdf or Jupyter notebook files onto Courseworks
 under 'Exam 1' section, in the same way you uploaded your homework previously. If you have technical
 issues in submitting your solution, please notify your TA or Prof Ng and email your solution directly to your
 TA to get a proper timestamp of submission.
- You may name these files whichever way you like.
- Make sure that in each of these files, you have your name and UNI on it.

During the exam, if you suspect of any typos or have questions, notify your TA or Prof Ng.

Prof Ng: <u>kyn@math.columbia.edu</u> Ying Wu: <u>yw3521@columbia.edu</u>

Question	1	2	3	Total	
Points	30	25	15	70	

HONOR CODE AFFIRMATION

I affirm that I will not plagiarize, use unauthorized materials, or give or receive illegitimate help on assignments, papers, or examinations. I will also uphold equity and honesty in the evaluation of my work and the work of others. I do so to sustain a community built around this Code of Honor.

 $(\underline{https://www.college.columbia.edu/honorcode\#:^:text=})$

First name	Last name	UNI	Signature

QUESTION 1 (30 POINTS)

In homework 1, log-linear interpolation was used to generate a discount factor curve using swap rates. The projected daily forward rates exhibit a piecewise constant curve.

In this question, we'll use a different interpolation method to investigate the shape of the implied daily forward rate curve.

Suppose the discount factors DF_i for a set of dates D_i ($0 \le i \le n$) are given as follows.

Date	3/10/23	4/10/23	5/10/23	6/10/23
DF	1.0	0.99963	0.99563	0.99162

Let t_i be the time in years from today to the date D_i and let the zero rate for discount factor DF_i be $r_i = -\ln{(DF_i)}/t_i$ for $0 \le i \le n$.

For any time t where $t_i \le t < t_{i+1}$ ($0 \le i \le n$), the interpolated discount factor for time t is computed as:

$$DF(t) = e^{-rt}$$

$$r = r_i + (r_{i+1} - r_i)(t - t_i)/(t_{i+1} - t_i)$$

For $t > t_n$,

$$DF(t) = e^{-r_n t}$$

a) Write a python function to return the interpolated discount factor for a given time *t*. The function signature shall look something like this:

- b) Use the example data and your python function to compute the discount factors for 100 calendar days (including 3/10/2023). Plot the computed discount factors.
- c) Explain how you would compute the daily forward rate on a given time t if you have the discount factors DF_i for a set of times t_i ($0 \le i \le n$).

Answer

d) Write a python function to return the daily forward rate on a given time. The function signature shall look something like this:

```
def get_daily_forward_rate(t, df_times, df_values)
```

- e) Use the example data and your python function to compute the daily forward rates for the next 100 calendar days (including 3/10/2023). Plot the computed daily forward rates.
- f) Comment on the shape of the curve.

Answer

QUESTION 2 (25 POINTS)

This question is about applying Monte Carlo simulation to the valuation of a European option on a basket of two stock prices.

Suppose that the two stock prices $S_1(t)$ and $S_2(t)$ follow a 2-dimensional correlated Geometric Brownian Motion (GBM). That is, $dS_1(t) = S_1(t)(\mu_1 dt + \sigma_1 dW_1)$ and $dS_2(t) = S_2(t)(\mu_2 dt + \sigma_2 dW_2)$ where $W_1(t)$ and $W_2(t)$ are correlated standard Brownian Motions with constant correlation ρ .

Here we assume that the drift and volatility parameters in the GBM and the zero rate r are known constants.

Suppose the time to option expiry T = 0.5.

At option expiry time T, the payoff of the option is computed as the notional amount AMT multiplied by a payoff rate R(T) where R(T) is the average of relative returns of the individual stock prices, capped at 10%, floored at 0%. Mathematically:

$$R(T) = \max(0.0, \min(10\%, (u_1(T) + u_2(T))/2))$$
$$u_i(T) = \frac{S_i(T) - p_i}{p_i}, i = 0,1$$

 p_i is some fixed price for S_i as a reference to compute the relative return u_i .

a) Write down the present value V of the option as an expected value.

Answer

b) Write down the expression for $S_1(T)$ and $S_2(T)$ in terms of their initial prices, drift, volatility parameters and the bivariate standard normal random variable (Z_1, Z_2) with correlation ρ .

Answer

c) Write a Python function to compute the simulated price V_N of this option. The input parameters shall include: the number of simulations N, the notional amount, reference prices $p_i{}'s$, time to option expiry and the market data required. The function shall return **both** the simulated price and the 95% confidence interval. (You may use the input parameters without validating them within the function. You may also pass the standard normal random number generator as an input parameter)

Consider the following example data.

$$S_1(0)=120, S_2(0)=80, \mu_1=1.5\%, \ \mu_2=1.5\%, \ \sigma_1=\sigma_2=20\%, \ r=5\%, \ \rho=70\%$$
 $T=0.5, AMT=10000, \ p_1=100 \ {\rm and} \ \ p_2=100.$

d) Use your python function to compute the simulated price V_N for N=200000 simulations.

We would like to know the impact of the correlation parameter on the simulated price.

e) Plot a graph of V_N against correlation ρ for $\rho = -1.0, -0.9, ..., 0.9, 1.0.$

QUESTION 3 (20 POINTS)

This question is about using Pandas to handle P&L calculations for the FX spot transactions in a file.

Download the .csv files from Courseworks under the Assignment section, 'Exam 1'.

The file 2023_FX_trans.csv consists of a list of FX spot transactions.

	TradeID	Date	BuySellCcy1	Ccy1	Amt1	BuySellCcy2	Ccy2	Amt2
0	200171	2023-02-20	Sell	EUR	25000000	Buy	USD	23650000
1	200172	2023-02-20	Buy	EUR	35000000	Sell	USD	33057500
2	200173	2023-02-20	Buy	EUR	15000000	Sell	USD	14155500
3	200174	2023-02-21	Buy	EUR	10000000	Sell	USD	9439000

Header descriptions:

Date: date on which the transaction is traded

BuySellCcy1: buy/sell flag for Ccy1

Ccy1: primary currency of the currency pair

Amt1: amount in Ccy1

BuySellCcy2: buy/sell flag for Ccy2

Ccy2: secondary currency of the currency pair

Amt2: amount in Ccy2

The file 2023_EURUSD.csv keeps the closing prices of the EURUSD rate for the trading period.

		Date	Open	High	Low	Close
	0	2023-02-20	0.93594	0.93707	0.93410	0.93594
	1	2023-02-21	0.93610	0.93942	0.93496	0.93610

a) Write a Python program that reads the given input files and displays a DataFrame that keeps the following values, one record for each date.

Column name	Description			
Pos_EUR	Sum of EUR amounts of the transactions on date T			
Pos_USD	Sum of USD amounts of the transactions on date T			
CumPos_EUR	Cumulated sum of EUR amounts of all transactions up to and including date T			
CumPos_USD	s_USD Cumulated sum of USD amounts of all transactions up to and including date T			
EoDValue_USD	End-of-day value of all cumulated currency positions on date T			
	EoDValue_USD(T) = CumPos_EUR(T) x (Closing price of EURUSD on date T) + CumPos_USD(
PnL_USD	Daily P/L in USD on date T			
	PnL_USD(T) = EoDValue_USD(T) - EoDValue_USD(T-1)			
	Daily P/L in USD on the first date in file is equal to EoDValue_USD on the first date			

Here we assume zero transaction cost and date T-1 means the previous business day.

The first few rows will look something like this.

		Pos_EUR	Pos_USD	CumPos_EUR	CumPos_USD	EoD_Value_USD	PnL_USD
	Date						
	2023-02-20	25000000.0	-23563000.0	25000000.0	-23563000.0	-164499.3250	-164499.3250
	2023-02-21	-22000000.0	20874600.0	3000000.0	-2688400.0	119900.0180	284399.3430

The trader told you that the booking FX spot rate is problematic in some of the transactions and asked you to find them out. One possible approach is to set the lowest rate L and highest rate H in this trading period as the lower bound and upper bound of the range of reasonable rates.

Note: here booking rate of a EURUSD spot transaction is equal to the USD amount divided by the EUR amount.

b) Write a program to display the transaction records where the booking FX spot rate is greater than H or lower than L.

--end of exam— -- Happy Spring Break --