200 EESTI FÜÜSIKAOLÜMPIAADI ÜLESANNET AASTATEST 2005 – 2011

koos vihjete ja lahendustega

Koostas Taavet Kalda

© Autoriõigused: Eesti Matemaatika Selts, Tallinna Tehnikaülikool, Tartu Ülikool, ülesannete autorid ja Taavet Kalda.

Kogumiku koostamist toetasid: Eesti Matemaatika Seltsi fond "Benoit Mandelbroti Jälgedes", Robert Kitt ja Tallinna Tehnikaülikool.

Korrektorid Nata-Ly Pantšenko, Erki Leht, Aet Karolin, Päivo Simson Kaanekujundaja Rael Kalda

Kirjastanud Tallinna Tehnikaülikooli avatud ülikooli eksami- ja olümpiaadikool ISBN ???

Sisukord

issejuhatus	4
Staatika Staatika Kinemaatika Dünaamika Taevamehaanika Gaasid Vedelike mehaanika Termodünaamika Elektrostaatika Elektriahelad Magnetism Geomeetriline optika Varia Laineoptika	18 28 31 35 38 45 50 58 60
⁷ ihjed	73
ahendused	92
Öpilaste tulemused	224
Autorite loetelu	229

Sissejuhatus

Kogumik sisaldab 200 ülesannet Eesti gümnaasiumiastme füüsikaolümpiaadi piirkonnavoorudest, lõppvoorudest ja lahtistelt võistlustelt. Igale ülesandele on lisatud paarilauseline vihje. Juhul kui õpilane jääb ülesannet lahendades toppama, on tal võimalik vihjet lugeda ning teisele katsele minna.

Siinne kogumik on teine väljaanne Eesti füüsikaolümpiaadi ülesannete kogude seerias. Esimeses kogumikus oli 200 ülesannet ajavahemikust 2012—2018.

Ülesanded on jaotatud teemade kaupa ning teemasiseselt raskuse järgi. Raskustaset tähistatakse kuni viie tärniga. Ülesannete lihtsamaks otsimiseks on ülesannete numbrite ette pandud "Ü", vihjete ette "V" ja lahenduste ette "L". Näiteks ülesande 133 teksti number on kujul Ü133. Iga ülesande juures on kirjas ka selle autor ning olümpiaadi vooru lühinimetus, lisaks lühendid P 1, G 1 jne, kus tähed tähistavad põhikooli- ja gümnaasiumiastet. Näiteks G 9 viitab gümnaasiumiastme 9. ülesandele.

Kogumiku koostamise käigus eemaldati erinevatel põhjustel viis ülesannet, millele vastavalt on 2011. aasta füüsika lahtiselt võistluselt vaid viis ülesannet (ülejäänud on esimeses kogumikus).

Lisaks leiate kogumiku lõpust kogumiku poolt kaetud lahtiste ja lõppvoorude esimese ja teise järgu saanud õpilaste ning ülesannete autorite nimekirja.

Ülesanded

Staatika

Ü1 Pendel ★

Autor: Mihkel Heidelberg, piirkonnavoor, 2008, G 1

Otsast kinnitatud varras saab pöörelda ümber horisontaaltelje ühes tasandis. Varda otsa on kinnitatud koormis massiga m. Varda pikkus on l. Varda kinnitusele mõjub hõõrdest tingitud pidurdav jõumoment M. Millistes nurkade vahemikes võib olla varras paigal (vt joonist)? Arvestada, et mgl > M.

Ü2 Toru ★

Autor: tundmatu, lahtine, 2007, G 2

Kaks inimest kannavad toru massiga $m=80\,\mathrm{kg}$ ja pikkusega $l=5\,\mathrm{m}$. Esimene inimene hoiab toru kaugusel $a=1\,\mathrm{m}$ toru otsast, teine aga hoiab toru teist otsa. Leida jõud, mida toru avaldab kummalegi inimesele.

Ü3 Nürinenud käärid ★

Autor: Mihkel Kree, lõppvoor, 2009, G 1

Juku asus hekikääridega õunapuult jämedat kuivanud oksa lõikama. Et aga käärid olid juba ammu nürinenud, polnud neist mingit abi. Enamgi veel, oks hakkas kääride kokkuvajutamise ajal terade vahel lausa libisema. Libisemine peatus hetkel, mil terade vaheline nurk oli kahanenud α -ni. Kui suur oli hõõrdetegur oksa ja nürinenud lõiketera vahel?

Ü4 Kuul ★★

Autor: tundmatu, lahtine, 2005, G3

Metallist kuul asetseb lauaaugus, mille sügavus on 2 korda väiksem kuuli raadiusest (vt joonist). Kui suure laua kaldenurga α puhul kukub kuul august välja?

Ü5 Katus ★★

Autor: Ott Krikmann, piirkonnavoor, 2005, G 2

Ühtlase lumekihiga kaetud katus on horisondi suhtes kaldu $\alpha=40^\circ$ nurga all. Katus on ristküliku kujuline ja laius harjast räästani mööda katuse pinda on L. Katuse ja lume vaheline hõõrdetegur on $\mu=1$. Katuse harjast hakkab lumekihi ja katuse vahele voolama vesi, mis muudab märja katuse ja lumekihi vahelise hõõrdeteguri nulliks. Kui vesi jõuab katuseharjast kaugusele l, hakkab lumekiht alla libisema. Leidke suhe l/L.

Ü6 Kast kaubikus ★★

Autor: Oleg Košik, lõppvoor, 2009, G 2

Kast massiga $m=15\,\mathrm{kg}$ on kinnitatud kaubiku tagaseina külge nööriga. Leida nööri pinge minimaalne võimalik väärtus äkkpidurduse ajal, kui kiirusega $v_0=45\,\mathrm{km/h}$ sõitev kaubik jääb seisma ajaga $t=5\,\mathrm{s}$. Hõõrdetegur kasti aluse ja kaubiku põranda vahel $\mu=0,2$, nurk nööri ja kaubiku tagaseina vahel $\alpha=45^\circ$. Lugeda, et pidurdamine oli ühtlane ja kast püsis kogu aeg paigal.

Ü7 Liivahunnik ★★

Autor: Roland Matt, piirkonnavoor, 2011, G 5

Millisele pindalale on võimalik mahutada koonusekujuline liivahunnik, kui liiva ruumala on $V=50\,\mathrm{m}^3$ ja libisevate liivakihtide vaheline efektiivne hõõrdetegur $\mu=0.4$? Liivahunniku ja aluspinna hõõrdeteguri võib lugeda väga suureks.

Ü8 Tormituul ★★

Autor: Mihkel Kree, lõppvoor, 2011, G 3

Vaatleme tugeva külgtuule kätte jäänud veoautot lihtsustatult homogeense risttahukana. Auto laius on $a=2\,\mathrm{m}$, kõrgus $b=3\,\mathrm{m}$, pikkus $c=5\,\mathrm{m}$. Missugune peaks olema hõõrdetegur rataste ja maapinna vahel, et piisavalt tugev külgtuul suudaks auto tuulepoolsed rattad maast lahti kergitada?

Ü9 Hammasrattad ★★★

Autor: Siim Ainsaar, lõppvoor, 2010, G 4

Fikseeritud telgedega hammasrattad raadiustega r_1 ja r_2 hambuvad ja on ühendatud venimatu nööriga, mis on mõlemale puutujaks. Esimest ratast pööratakse jõumomendiga M. Kui suur on nööri pinge T?

Ü10 Kuul ★★★

Autor: tundmatu, lahtine, 2006, G7

Kasti tasasel põhjal asub kuul. Kasti põhi asub nurga all horisontaalsuuna suhtes. Kuuli hoiab tasakaalus kasti seina külge kinnitatud niit, mis on paralleelne kasti põhjaga (vt joonist). Kui suure maksimaalse nurga φ võrra saab kasti kallutada, et kuul oleks veel tasakaalus? Hõõrdetegur kuuli ja kasti vahel on μ .

Ü11 Toru ★★★

Autor: Aigar Vaigu, lõppvoor, 2010, G 5

Kareda horisontaalselt kinnitatud toru (raadius R) peal tasakaalustatakse risttahukakujulist prussi. Leidke prussi paksus L, mille korral prussi asend torul on stabiilne.

Märkus: kasulikud võivad olla väikeste nurkade korral kehtivad lähendused $\sin \alpha \approx \alpha$ ja $\cos \alpha \approx 1 - \alpha^2/2$, kus nurgad on radiaanides.

Ü12 Kuubik ★★★★

Autor: Riho Taba, piirkonnavoor, 2007, G 9

Kuubik massiga $m=10\,\mathrm{kg}$ ning küljepikkusega $a=0.1\,\mathrm{m}$ lebab laual. Laua ja kuubiku vaheline hõõrdetegur on $\mu=0.5$. Kas kuubikut on võimalik käega teisele küljele lükata, avaldades vaid jõudu kuni $F=40\,\mathrm{N}$? Eeldada, et hõõrdetegur käe ja kuubiku vahel on väga suur ehk käsi ei libise. Raskusjõu kiirendus on $g=9.8\,\mathrm{m/s^2}$.

Ü13 Kuulid ★★★★

Autor: Jaan Kalda, lahtine, 2009, G 9

Kolm ühesuguse raadiusega kuuli A, B ja C on ühendatud kergete varraste abil võrdkülgseks kolmnurgaks ABC, mis lebab siledal (kuid nullist erineva hõõrdeteguriga) horisontaalpinnal. Kuuli C lükatakse hästi aeglaselt nii, et selle kiirusvektor on kogu aeg risti sirgega AC. Kui kuul A on piisavalt raske (st masside suhe M_A/M_B on piisavalt suur), siis jääb kuul A paigale. Millise suhte M_A/M_B puhul hakkab kuul A libisema?

Ü14 Rõngas ★★★★

Autor: Jaan Kalda, lõppvoor, 2011, G 7

Ebaühtlase massijaotusega traadist on tehtud rõngas, mis kujutab endast ringi raadiusega R. Selle rõnga massikese asub ringi keskpunktist kaugusel R/2. Rõngas asetatakse horisontaalsele võllile rippuma. Milline peab olema rõnga ja võlli vaheline hõõrdetegur μ , et võlli aeglasel pöörlemisel rõngas võllil ei libiseks?

Ü15 Varras ★★★★

Autor: Siim Ainsaar, lõppvoor, 2008, G 9

Peenike homogeenne varras toetub ühe otsaga vastu põrandat (hõõrdetegur varda otsa ja põranda vahel on μ) ning küljega vastu libedat horisontaalset silindrit (hõõrdetegur on tühiselt väike), vt joonist. Silinder on liikumatult kinnitatud põranda külge, varras on risti silindri teljega ning moodustab põrandaga nurga α . Millise varda pikkuse l korral jääb varras sellisesse asendisse püsima?

Ü16 Konn ★★★★

Autor: Taavi Pungas, lahtine, 2010, G 9

Väike puukonn suudab ronida mööda seinu ja lagesid, luues enda ja seina vahele seinaga risti oleva tõmbejõu (nt iminappade tekitatud vaakumiga) ning vältides libisemist selle tagajärjel tekkiva hõõrdejõu abil. Millise nurga all maapinna suhtes peab olema sein, et tal oleks end kõige raskem paigal hoida (mil libisemise vältimiseks vajalik seinaga risti olev jõud on maksimaalne)? Hõõrdetegur seina ja konna vahel on μ .

Ü17 Torud ★★★★★

Autor: Jaan Kalda, piirkonnavoor, 2010, G 10

Põrandale asetatakse kõrvuti kaks ühesugust silindrilist toru — paralleelselt ja küljetsi üksteist puutuvana. Kolmas samasugune toru asetatakse nende peale — samuti paralleelselt, nõnda et see toetub kahele alumisele. Milliseid tingimusi peavad rahuldama hõõrdetegur μ toru ja põranda vahel ning hõõrdetegur k kahe toru vahel selleks, et pealmine toru kahte alumist üksteisest eemale ei vajutaks?

Ü18 Tungraud ★★★★★

Autor: Valter Kiisk, lõppvoor, 2011, G 10

Joonisel on kujutatud lihtsa konstruktsiooniga tungraud, mille keerme samm on 3 mm. Tungrauale surub auto jõuga $F=5\,\mathrm{kN}$. Vaatleme hetke, millal $\alpha=40^\circ$. Tungraua mõõtmeid vaadake jooniselt.

- **a**) Kui suure jõuga tuleb auto tõstmiseks vända käepidemele mõjuda, kui jätta arvestamata hõõrdumine kõigi libisevate pindade vahel?
- **b**) Kui hõõre oleks ka tegelikult tühiselt väike, siis ei püsiks tungraud üleskeeratud asendis: niipea kui käepidemest lahti lasta, hakkaks see auto raskuse mõjul pöörlema ja auto vajuks taas alla. Vastake eelmisele küsimusele eeldusel, et hõõrdetegur on parajasti nii suur (st mitte suurem, kui hädapärast vaja), et tungraud jääks üleskeeratud asendisse püsima.

Ü19 Platvorm ★★★★

Autor: Jaan Kalda, lõppvoor, 2005, G 10

Siledas põrandas on pöörlev ringikujuline platvorm (joonisel pealtvaates, hall), mis on samast materjalist nagu põrandki (joonisel valge). Põranda ja platvormi ülemine pind on samal horisontaaltasandil. Kolm ühesugust keha ühendatakse kergete varraste abil kolmnurgaks ning asetatakse sedasi, et kaks keha asuvad platvormil punktides A ja B (vt joonist). Vardad ei puuduta ei põrandat, ega platvormi.

- ${f a}$) Kui kolmas keha lebaks põrandal punktis C, kas siis
- kolmnurk hakkaks põranda suhtes liikuma või jääks paigale? Põhjendage vastust.
- **b**) Märkige joonisel selline punktihulk X, kus võiks asuda kolmas keha nii, et kolmnurk jääks põranda suhtes paigale.

Märkus: kolmnurga külgede AC ja BC pikkusi võib muuta. Seega, kui kolmas keha asub punktis $D \in X$, siis üldjuhul $|AD| \neq |AC|$ ja $|BD| \neq |BC|$.

Kinemaatika

Ü20 Autod ★

Autor: Oleg Košik, piirkonnavoor, 2006, G 1

Tartu ja Tallinna vahemaa on $s=180\,\mathrm{km}$. Jalgrattur sõidab Tartust Tallinna poole kiirusega $v_1=30\,\mathrm{km/h}$. Sõites luges ta kokku, et $t_0=5\,\mathrm{min}$ jooksul tuli talle vastu $n_0=20\,\mathrm{autot}$. Mitu Tallinnast Tartusse sõitvat autot on korraga maanteel? Eeldada, et autod sõidavad võrdsete vahemaadega kiirusega $v_2=90\,\mathrm{km/h}$ kogu maantee ulatuses.

Ü21 Ummik ★

Autor: Jaan Kalda, piirkonnavoor, 2007, G 2

Vaatleme kahe üherajalise tee, A ja B, liitumist üherajaliseks teeks C. Tipptunni ajal on kõik kolm teed täidetud autodega; kahe naaberauto keskmise vahemaa võib lugeda kõigil kolmel teel ühesuguseks. Tee A pikkus on $L_A=1$ km, tee B pikkus $L_B=3$ km ning tee C pikkus $L_C=2$ km. Autode keskmine kiirus teel A on $v_A=3$ km/h ning tee B läbimiseks kulub autol $t_B=36$ min. Kui kaua sõidab auto tee A algusest tee C lõpuni?

Ü22 Auto ★

Autor: tundmatu, lahtine, 2008, G 1

Paigalseisust liikuma hakanud autol kulus teatud vahemaa läbimiseks $t=15\,\mathrm{s}$. Millise ajaga läbis auto viimase viiendiku sellest vahemaast? Auto liikumine lugeda ühtlaselt kiirenevaks.

Ü23 Ratturid ★

Autor: tundmatu, lahtine, 2009, G 1

Kolm ratturit sõitsid linnast A linnaB. Linnast A väljusid nad üheaegselt. Esimese ratturi keskmine kiirus oli $v_1=30\,\mathrm{km/h}$, teise ratturi oma $v_2=20\,\mathrm{km/h}$. Esimene rattur jõudis sihtpunkti kell 19.00, teine rattur kell 20.00 ning kolmas rattur kell 21.00. Milline oli kolmanda ratturi keskmine kiirus v_3 ?

Ü24 Veok ★ Autor: Valter Kiisk, piirkonnavoor, 2005, G 1

Veok sõidab maanteel ühtlase kiirusega $v_1=80\,\mathrm{km/h}$. Veokile järgneb $l_1=10\,\mathrm{m}$ kaugusel sõiduauto. Veoki pikkus on $L_1=12\,\mathrm{m}$, sõiduauto pikkus $L_2=4\,\mathrm{m}$. Sõiduauto sooritab möödasõidu ühtlase kiirendusega $a=2\,\mathrm{m/s^2}$. Möödasõit lõpeb siis, kui sõiduauto on veokist $l_2=10\,\mathrm{m}$ kaugusel. Kui pikas minimaalses ulatuses s peaks vastassuunaline rada vaba olema ohutuks möödasõiduks? Ohutuks kauguseks vastutulevast autost loetakse $l_3=30\,\mathrm{m}$. Vastutulevad autod sõidavad kiirusega $v_2=90\,\mathrm{km/h}$.

Ü25 Rongiõnnetus ★

Autor: Oleg Košik, piirkonnavoor, 2011, G 4

Kehrast Aegviidu poole sõitis kiirusega $v_1=63\,\mathrm{km/h}$ kaubarong. Aegviidust hakkas Kehra poole sama teed pidi sõitma elektrirong kiirendusega $a_2=0.15\,\mathrm{m/s^2}$. Kui rongide vahemaa oli $s=2750\,\mathrm{m}$, märkas kaubarongi vedurijuht vastusõitvat elektrirongi ning vajutas pidurile. Elektrirongi kiirus oli selleks hetkeks $v_2=18\,\mathrm{km/h}$. Leidke rongide sõidukiirused vahetult kokkupõrke eel. Kaubarongi pidudrduskiirendus on $a_1=-0.1\,\mathrm{m/s^2}$.

Ü26 Sonar ★★

Autor: Oleg Košik, piirkonnavoor, 2006, G 3

Vaatame laeva kiiruse määramiseks järgmist meetodit: rannikult saadetakse eemalduvale laevale ultraheli signaal sagedusega f_1 . Laevalt peegeldub signaal tagasi rannikule, kus vastuvõtja fikseerib signaali sagedusega f_2 . Teades, et heli kiirus õhus on v_h , määrake laeva kiirus v.

Ü27 Autod ★★

Autor: Jaan Kalda, piirkonnavoor, 2008, G 2

Juuresolev joonis on tehtud kõrgelt otse alla pildistatud foto põhjal, millel on jäädvustatud kaks autot (tähistatud punktidega A ja B), mis lähenevad ristmikule jäävate kiirustega $v_A=40\,\mathrm{km/h}$ ja $v_B=60\,\mathrm{km/h}$. Kasutades joonist ja sellel antud mõõtkava, leidke autode edasisel liikumisel nende vaheline minimaalne kaugus.

Tervisesportlane kasutab GPS seadet oma jooksutreeningu tulemuste salvestamiseks. Tema GPS seade määrab iga 15 sekundi järel jooksja täpse asukoha, mille põhjal arvutab ja salvestab GPS seade viimase 15 sekundi keskmise kiiruse ning esitab saadud tulemused graafikul punktidena, mis on ühendatud sirglõikude abil. Jooksja märkas lahti läinud ketsipaelu, peatus ja sidus paelad kinni. Tänu väikesele puhkusele jätkas ta jooksmist juba kiiremini, vt juuresolevat GPS-i esitatud graafikut. Kui kaua kestis peatus? Pidurdumiseks ning puhkusjärgselt kiirendamiseks kulunud aeg lugeda tühiseks; jooksu kiirus oli konstantne nii enne peatust kui ka pärast seda.

Ü29 Tsunami ★★★

Joonisel on ookeani kujutatud ülaltvaates ja põhja sügavus on kodeeritud halltoonidega: tumehall vastab sügavamale, helehall madalamale veele. Ookeanipõhjas on astang, kus $h_1=5000\,\mathrm{m}$ sügavune vesi läheb $h_2=3200\,\mathrm{m}$ sügavuseks; ranna lähedal toimub madaldumine väga kiiresti. Rannale läheneb tsunami nii, nagu näidatud joonisel. Tsunami liikumiskiirus $v=\sqrt{gh}$, kus $g=9.8\,\mathrm{m/s^2}$ ja h tähistab vee sü-

Autor: Jaan Kalda, lõppvoor, 2005, G 6

gavust. Millisesse ranna punkti jõuab kõige kõrgem laine? Põhjendage vastust.

Ü30 Hävituslennuk ★★★

Autor: tundmatu, lahtine, 2011, G7

Ühel ilusal augustipäeval käis Mati paraadil vaatamas NATO hävituslennukeid, mis tegid rahva kohal demonstratsioonlende. Diktor ütles valjuhääldist, et lennuk lendab horisontaalselt üle rahva kiirusega $v=1350\,\mathrm{km/h}$. Matit huvitas aga, kui kõrgel lennuk lendab. Vajalike mõõtetulemuste saamiseks seisis ta nii, et tema ja läheneva lennukiga ühele joonele jäi täpselt üks 9 meetri pikkune elektripost ning Mati ise asus teise posti juures; postide vahekaugus oli 50 m. Mati käivitas oma mobiiltelefoni stopperi just siis, kui lennuk posti ülemise otsa tagant nähtavale ilmus, ning peatas hetkel, kui käis kõva pauk ja hakkas kostuma lennuki müra. Ta sai stopperi näiduks 32,04 s. Kodus mõõtis ta üle ka enda silma kõrguse maapinnast: $l=1,68\,\mathrm{m}$. Kui kõrgel lendas lennuk? Heli kiirus õhus on umbes $u=330\,\mathrm{m/s}$.

Vihje: kui lennuk lendab ülehelikiirusel, siis levib tema taga koonusekujuline lööklaine front, kusjuures koonuse tipus on lennuk ja selle koonuse telglõike tipunurk on $\alpha = 2 \arcsin\left(\frac{u}{v}\right)$.

Ü31 Fotograaf ★★★★

Autor: Jaan Kalda, lõppvoor, 2011, G 6

Fotograaf pildistas kõrgest joast langevat veevoolu; päikesevalguses sätendavad veepiisad venisid piltidel vertikaalseteks triipudeks. Kui fotoaparaat oli pildistamisel normaalasendis, siis olid kõik triibud pikkusega $l_1=120$ pikslit; kui fotoaparaat oli pildistamisel "jalad ülespidi" (st seda pöörati ümber optilise telje 180 kraadi), siis oli triipude pikkuseks $l_2=200$ pikslit. Kui pikad olid triibud siis, kui fotoaparaati hoiti pildistamisel "portree asendis" (st seda pöörati ümber optilise telje 90 kraadi)? Eeldada, et säriaeg ja optilise telje suund oli kõigil juhtudel üks ja sama. Kui toodud andmete põhjal pole vastus üheselt leitav, siis andke kõik võimalikud vastused.

Vihje: fotoaparaadi põhikomponendid on objektiiv (lääts) ja katik, millest esimene tekitab digitaalsensori (või filmi) tasandile pildistatavate esemete kujutise. "Puhkeasendis" ei lange see kujutis siiski sensorile, sest katik varjab läbi objektiivi tulnud valguse ära. Päästikule vajutamisel avaneb katik lühikeseks ajavahemikuks (säriajaks): objektide kujutis langeb nüüd tõesti sensorile ning sensori iga piksel mõõdab ära kogu selle aja vältel langeva valgusenergia. Harilikult kujutab katik endast kahte "kardinat", mis paiknevad vahetult sensori ees ja katavad selle. Alguses varjab sensorit esimene kardin, mille ülemine serv liigub päästikule vajutamisel konstantse kiirusega v ülevalt alla, avades sensori. Säriaja lõpetab teine kardin, mille alumine serv liigub samuti ülevalt alla, samasuguse kiirusega v nagu esimenegi. Kui säriaeg on hästi lühike, siis ei jõua sensor täielikult avaneda: mõlemad kardinad liiguvad koos ülevalt alla ning sensor on avatud objektiivist tulevale valgusele vaid kardinate vahelise kitsa horisontaalse riba ulatuses (kusjuures see valgusele avatud riba liigub kiirusega v ülevalt alla).

Ü32 Laev ★★★★

Autor: tundmatu, lõppvoor, 2007, G 5

Maailmas leidub jõgesid, kus vesi tõusude tõttu liigub kord ühes, kord teises suunas. Vaatleme laevaliiklust ühel sellisel jõel. Joonisel on antud vee liikumiskiiruse sõltuvus kellaajast. Positiivseks loetakse vee kiirus siis, kui see on suunatud punktist A punkti B poole. Leida optimaalne (lühimate sõiduaegadega) tunniplaan kaubalaeva regulaarseks liikumiseks üks kord päevas punktist A punkti B ja tagasi. Kaugus nende punktide vahel piki jõge on $L=20\,\mathrm{km}$, laeva kiirus seisvas vees $v_0=4\,\mathrm{km/h}$.

Ü33 Müra ★★★★

Autor: Siim Ainsaar, lahtine, 2009, G 10

Matkaja rõõmustab laagriplatsil, et elektrijaama müra tuuletu ilmaga nii vaikselt temani kostab. Hiljem, kui tuul tõuseb, on müra veel vaiksem. Puhub põhjatuul kiirusega βc , kus c on heli kiirus paigalseisvas õhus; jaam jääb matkajast edelasse (st tuule ja jaama suundade vaheline nurk on $\alpha=135^\circ$).

- a) Kas helisagedus on sama mis tuuleta?
- **b**) Kui tuuleta on tajutav helivõimsus P ja tuulega xP, siis kui suur on x? Võite lugeda, et elektrijaam on punktikujuline. *Soovitus*: uurige helifrondi levimist.

Ü34 Kaater ★★★★

Autor: Jaan Kalda, lõppvoor, 2009, G 8

Mootorpaat sõidab jõe ühelt kaldalt punktist A teisele kaldale punkti B. Paadi kiirus on $u = 7 \,\mathrm{m/s}$.

- a) Joonisel on näidatud paadi tekitatud veelained. Milline on jõe voolukiirus?
- **b**) On teada, et kui vee sügavus on h, siis lained levivad kiirusega $w = \sqrt{gh}$, kus g on vabalangemise kiirendus. Kui sügav on jõgi?

Ü35 Kodarad ★★★★

Autor: tundmatu, lahtine, 2011, G 10

Horisontaalsel pinnal veerevast radiaalsete kodaratega rattast tehakse pilt. Fotokaamera säriaeg on mõõduka pikkusega: paigalseisvad objektid on pildil teravad, liikuvad esemed aga hägused. Muuhulgas on ratta kodarad valdavalt hägused, kuid osade kodarate teatud punktid on ometigi teravad. Võib eeldada, et kogu pilt on salvestatud samaaegselt.

- **a**) Kopeerige juuresolev skeem lahenduslehele ning näidake konstruktsiooni teel, milline kodara *OP* punkt (või punktid) kujutub fotol teravalt; põhjendage vastust.
- **b**) Konstrueerige kõver, millel asuvad ülejäänud kodarate teravalt kujutuvad punktid.

Ü36 Propeller ★★★★ Autor: Andreas Valdmann, lõppvoor, 2010, G 10

See pilt pöörlevast lennukipropellerist on tehtud telefoni kaameraga, mis salvestab korraga ühe vertikaalse veeru pikselid. Pilt tekib vasakult paremale veergude kaupa skaneerides.

- **a**) Mis suunas pöörleb propeller fotograafi poolt vaadatuna (päripäeva või vastupäeva)?
- **b**) Mitu laba on propelleril?
- **c**) Mitu pööret teeb propeller ühes minutis, kui kogu pildi tegemiseks kulunud aeg on 1/8 sekundit?

Dünaamika

Ü37 Kivi ★

Autor: Aigar Vaigu, lõppvoor, 2005, G 1

Sirgjooneliselt ja jääva kiirusega $v=4\,\mathrm{m/s}$ tõusva õhupalli gondlis on poiss. Mingil hetkel kukutab poiss gondlist alla kivi ning seejärel viskab kivile järgi palli, millega proovib langevat kivi tabada. Milline võib olla suurim ajavahemik kivi lahtilaskmise ja palli viskamise vahel, et see oleks veel võimalik? Maapinnal seistes suudaks poiss visata palli vertikaalselt üles kuni $h=20\,\mathrm{m}$ kõrgusele. Võib eeldada, et õhupall asub piisavalt kõrgel selleks, et pall tabaks kivi enne maapinnale kukkumist. Õhutakistus lugeda tühiseks. Raskuskiirendus $g=9.8\,\mathrm{m/s^2}$.

Ü38 Pallid ★

Autor: tundmatu, lahtine, 2007, G1

Juku istub puu otsas ja laseb algkiiruseta lahti tema käes oleva palli. All seisab Juhan, kes samal hetkel viskab Juku pihta vertikaalselt üles täpselt samasuguse palli. Pärast pallide põrget jõuab Juku pall täpselt tema kõrgusele tagasi. Kas pall tabab Juhanit enne või pärast seda, kui Juku pall jõuab Jukuni? Lugeda, et pallide põrge on absoluutselt elastne.

Ü39 Hobune ★

Autor: Valter Kiisk, piirkonnavoor, 2007, G 1

Puuoksal istub poiss, kes soovib hüpata puu alt mööda galopeeriva hobuse selga. Hobuse kiirus on $v=10\,\mathrm{m/s}$ ja puuoksa kõrgus sadula suhtes $h=3\,\mathrm{m}$. Kui suur peab olema horisontaalsihiline distants sadula ja puuoksa vahel sel hetkel, kui poiss oksast lahti laseb?

Ü40 Eiffeli torn ★

Autor: Aigar Vaigu, piirkonnavoor, 2010, G 1

Eiffeli torni ülemiselt vaateplatvormilt (kõrgus maapinnast $h=273\,\mathrm{m}$) lastakse kukkuda raudkuulil. Täpselt t=3 sekundi pärast kukutatakse veel üks raudkuul. Kui suur on raudkuulide suurim kiiruste vahe langemisel? Kui suur on ajavahemik kuulide maapinnale jõudmiste vahel? Raskuskiirendus $g=9.8\,\mathrm{m/s^2}$. Katse käigus ükski külastaja viga ei saanud.

Ü41 Kokkupõrge ★ Autor: Andreas Valdmann, piirkonnavoor, 2011, G 1

Kaks autot massidega m=1,5 tonni teevad laupkokkupõrke, mille võib lugeda täielikult plastseks. Kui suur energia kulus purustuste tekitamiseks, kui:

- a) mõlema auto kiirus oli $v_a = 50 \frac{\mathrm{km}}{\mathrm{h}}$;
- **b**) üks auto seisis paigal ja teise auto kiirus oli $v_b=100\,\frac{\rm km}{\rm h}$? Võib arvestada, et autode lohisemisel pärast põrget olulist kahju ei teki.

Ü42 Tõus ★

Autor: tundmatu, lahtine, 2005, G 2

Talvise ilmaga Tartust Tallinnasse sõitev auto peab oma teekonna alguses ületama järsu ja libeda tõusu Jakobi tänaval (vt joonist). Tõusu kallak horisontaalsihi suhtes $\alpha \approx 5^\circ$, pikkus $l \approx 200\,\mathrm{m}$. Hinnata, kui suur on minimaalne hõõrdetegur μ rataste ja tee vahel, mille puhul kiirusega $v = 30\,\mathrm{km/h}$ mäkke üles sõitma hakanud auto suudab veel tõusu ületada?

Ü43 Keha ★

Autor: tundmatu, lahtine, 2006, G 3

Vertikaalselt üles visatud keha läbib kaks korda kõrgusel h asuvat punkti. Ajavahemik nende kahe läbimise vahel on Δt . Leida keha algkiirus v_0 ja aeg τ keha liikumise algusest kuni algpunkti tagasi jõudmiseni.

Ü44 Mootorratas ★

Autor: tundmatu, lahtine, 2007, G 5

Mootorrattur tahab hüpata üle kraavi, mille mõõtmed on näidatud joonisel. Kui suur peab olema mootorratturi minimaalne kiirus v lennu alguses selleks, et tema ettevõtmine õnnestuks?

Ü45 Kelk ★

Autor: tundmatu, lahtine, 2008, G 2

Kelguga lastakse alla $h=10\,\mathrm{m}$ kõrgusest $\alpha=30^\circ$ kaldenurgaga orunõlvast. Kui kõrgele tõuseb kelk saadud hooga mööda sama suure h kaldenurgaga vastasnõlva, kui hõõrdetegur on $\mu=0.1$?

Märkus: joonis on ligikaudne, languselt tõusule üleminek on tegelikult sujuv ja põrkega seotud kiirusekadu seal ei toimu.

Ü46 Hantel ★

Autor: Mihkel Kree, lõppvoor, 2008, G 1

Hantel koosneb kahest võrdse massiga kerast (kumbki massiga m) ning neid ühendavast massitust jäigast vardast. Alguses hoitakse hantel horisontaalselt õhus paigal. Nüüd antakse ühele kuulidest hetkega vertikaalsuunaline kiirus v ning hantel hakkab vabalt liikuma. Vabalangemise kiirendus on g. Missugune on süsteemi kineetiline energia hetkel, mil massikese saavutab maksimaalse kõrguse?

Ü47 Pingpong ★

Autor: Siim Ainsaar, lõppvoor, 2008, G 2

Pingpongipall kukutatakse kõrguselt h horisontaalsele lauale. Igal põrkel kahaneb palli energia k korda. Leidke palli lahtilaskmisest seismajäämiseni kuluv aeg t. Vabalangemise kiirendus on g.

Ü48 Mürsk ★

Autor: Mihkel Kree, piirkonnavoor, 2009, G 2

Kahurist välja lennanud mürsk (massiga M) laguneb oma lennutrajektoori kõrgeimas punktis mingi sisemise vedrumehhanismi abil kaheks võrdseks pooleks (kumbki massiga M/2) nii, et üks osadest kukub mürsu senist trajektoori pidi liikudes täpselt kahurini tagasi. Kui kaugele kahurist maandub teine pool? Lagunemispunkti projektsioon maapinnale asub kahurist kaugusel L.

Ü49 Kerad ★

Autor: Valter Kiisk, lahtine, 2010, G 1

On antud kolm väliselt identset ja ühesuguse massiga kera. On teada, et üks neist keradest on homogeenne, teine on seest õõnes ja kolmas on seest vedel. Kuidas saab lihtsate võrdlevate mehaanikakatsetega kindlaks teha, milline on iga kera sisemus? Abivahendeid võib vabalt valida, aga kerasid vigastada ei tohi.

Ü50 Sild ★

Autor: Valter Kiisk, lõppvoor, 2010, G 1

Risti üle $l=100\,\mathrm{m}$ laiuse jõe kulgeb kumer autoteega sild. Silla keskel on autotee kaldapealsest tasemest $h=5\,\mathrm{m}$ võrra kõrgemal. Silla profiiliks on ringjoone kaar. Auto massiga $m=1000\,\mathrm{kg}$ ületab silda muutumatu kiirusega $v=60\,\mathrm{km/h}$. Kui suure jõuga rõhub auto silla keskkohta? Kui suure kiiruse juures hakkab kaduma kontakt rataste ja tee vahel?

Ü51 Varras ★

Autor: Stanislav Zavjalov, lõppvoor, 2011, G 2

Mööda liigendi abil seina külge kinnitatud väga pikka ja tühiselt kerget varrast saab libiseda väike rõngas massiga m. Esialgu asub rõngas liigendist kaugusel l ja varras on horisontaalne. Ajahetkel t=0 hakkab süsteem vabalt liikuma. Leidke varda ja horisontaali vahelise nurga α ajaline sõltuvus. Kõik liikumised lugeda hõõrdevabaks.

Ü52 Karatist ★★

Autor: tundmatu, lahtine, 2007, G 6

Hinnake, millise kiirusega v peab karatisti käsi tabama kahele kivile toetuva lauajupi keskpunkti (vt joonist), et laud murduks? Käe mass on m=1,5 kg, laua mass M=2 kg, laua jäikustegur $k=1,4\cdot 10^5$ N/m, murdumiseks vajalik läbipaine (st laua keskpunkti nihe) d=20 mm.

 $M\ddot{a}rkus$: jäikustegur k on võrdetegur laua keskpunkti rakendatud jõu F ning laua keskpunkti nihke x vahel (vt joonist).

Ü53 Veenus ★★

Autor: Mihkel Kree, lõppvoor, 2007, G 2

Lugegem Maa ja Veenuse orbiidid ümber Päikese ringikujulisteks. Planeedid tiirlevad ümber Päikese samas suunas ja Veenuse maksimaalne eemaldumus (nurk Veenuse ja Päikese vahel Maalt vaadates) on 46 kraadi.

- a) Leidke Veenuse ja Maa orbiitide raadiuste suhe.
- **b**) Mitu päeva jääb järjestikuste maksimaalsete eemaldumuste vahele? *Vihje*: Kepleri seaduse kohaselt on taevakehade tiirlemisperioodide ruudud võrdelised vastavate orbiitide raadiuste kuupidega.

Ü54 Auto ★★ Autor: Mihkel Heidelberg, piirkonnavoor, 2009, G 5

Auto kiirendab nii, et rattad libisevad. Hetkel on auto kiirus stabiilselt v, vedavate rataste nurkkiirus ω ja raadius r. Kui oletada, et mootori võimsus läheb ainult auto liikumisse ja vedavate rataste libisemisse, siis kui suur on kasutegur?

Ü55 Vedru ★★ Autor: Aigar Vaigu, piirkonnavoor, 2010, G 4

Raske tellis kukub poole meetri kõrguselt jäigale lühikesele vedrule. Põrge on elastne ja tellis lendab peaaegu algsele kõrgusele tagasi. Kui kõrgele maast kerkib vedru pärast põrget?

Ü56 Pendel ★★

Autor: Taavi Pungas, piirkonnavoor, 2011, G 7

Pendel pandi väikese amplituudiga võnkuma ning stopperiga registreeriti neid hetki, kui pendel läbis vasakult poolt tulles oma tasakaalupunkti. Kaks järjestikust sellist sündmust toimusid hetkedel $t_1=3,19\,\mathrm{s}$ ja $t_2=5,64\,\mathrm{s}$. Pendlil lasti mõnda aega segamatult võnkuda, seejärel saadi kaheks järjestikuseks näiduks $t_3=61,14\,\mathrm{s}$ ja $t_4=63,54\,\mathrm{s}$. Leidke võimalikult täpselt pendli võnkeperiood ning hinnake selle mõõtemääramatust.

Ü57 Aerud ★★

Autor: tundmatu, piirkonnavoor, 2005, G 6

Aerude pikkus tullist (punktist, kus aerud kinnituvad paadi kere külge) kuni käepidemeni on $a=1\,\mathrm{m}$ ning tullist kuni labadeni on $b=1,5\,\mathrm{m}$. Keskmine jõud, millega aerutaja tõmbab kumbagi aeru, on $F=60\,\mathrm{N}$. Paadi ja vee vaheline takistusjõud on $F_h=\alpha v^2$, kus $\alpha=20\,\mathrm{kg/m}$. Kui suure keskmise kiirusega liigub paat? Hinnata aerutaja keskmist võimsust.

Ü58 Kivi ★★

Autor: tundmatu, lahtine, 2006, G 4

Paelaga lae külge kinnitatud kivi liigub mööda horisontaaltasapinnas asuvat ringjoont, mille kaugus laest $h=1,25\,\mathrm{m}$. Leida kivi tiirlemisperiood τ .

Ü59 Kaldpind ★★

Autor: Mihkel Rähn, piirkonnavoor, 2006, G 4

Pall kukub kaldpinnale ja hakkab elastselt põrkuma (st energiakadudeta). Kui kaugel on viies põrkekoht esimesest? Kaldpinna kaldenurk on α , palli algkõrgus esimesest põrkekohast oli h.

Ü60 Kuulike ★★

Autor: tundmatu, lahtine, 2008, G 5

Venimatu ja kaalutu niidi otsa kinnitati kuulike. Niit viidi horisontaalasendisse ja lasti lahti. Kuulikese kiiruse vertikaalne komponent hakkab esialgu suurenema, kuid teatud hetkest alates vähenema. Millise nurga moodustab niit vertikaalsihiga ajahetkel, kui kuulikese kiiruse vertikaalne komponent on maksimaalne?

Ü61 Veerev silinder ★★

Autor: Andres Laan, lahtine, 2010, G 3

Alusele kinnitatud poolsilindril raadiusega R lebab selle kõrgeimas punktis seest tühi silinder raadiusega r. Ühel hetkel nihkub keha veidi tasakaalust välja ja hakkab selle tulemusel libisemiseta veerema (hõõrdetegur on väga suur). Leidke, kui kõrgel aluse kohal keha poolsilindri pinnast eraldub. Vihje: kui veereva silindri mass on m ja ta masskese liigub kiirusega v, on ta kineetiline energia mv^2 (ilma kordajata $\frac{1}{2}$!).

Ü62 Sfäär ★★★

Autor: Andre Sääsk, lahtine, 2005, G 6

Üks osa Pariisi Cité des Sciences' teadusmuuseumi kompleksist — La Géode — kujutab endast hiigelsuurt sfääri raadiusega $R=18\,\mathrm{m}$, mille sees asub maailma suurim kinoekraan (vt joonist). Hoonet väljastpoolt imetlev uudishimulik koolipoiss otsustab tabada selle hoone tipp-punkti tennisepalliga. Kui suure minimaalse kiirusega v peaks ta palli viskama, et palli liikumise trajektoor lõikuks hoone välispinnaga vaid ühes punktis — hoone tipp-punktis — ja see oleks ühtlasi ka palli liikumise trajektoori kõrgeimaks punktiks? Pall alustab liikumist kõrgusel $h=1.5\,\mathrm{m}$.

Ü63 Anum ★★★

Autor: tundmatu, lahtine, 2005, G 7

Siledal pinnal asub kerge ristkülikuline anum, mis on täidetud vedelikuga tihedusega ρ_0 , vedeliku ruumala on V_0 . Anuma põhja sattunud põrnikas ruumalaga V ja tihedusega ρ hakkab anuma põhja suhtes roomama kiirusega u. Millise kiirusega hakkab anum pinnal liikuma? Anuma mass on tühine, veetase jääb kogu aeg horisontaalseks. Eeldada, et pinna ja anuma vahel hõõre puudub.

Ü64 Mullitaja ★★★

Autor: Jaak Kikas, lõppvoor, 2005, G 7

Veekogu põhjas asub mullitaja — õhuballoon väikese avausega, millest võrdsete ajavahemike $\Delta t=1$ s järel väljuvad õhumullid raadiusega R=0,3 mm. Taolise mullikese liikumisel vees mõjub sellele takistusjõud $F=6\pi\eta Rv$, kus η on vedeliku voolamistakistust iseloomustav tegur ehk vedeliku viskoossus (vee korral on selle suuruse väärtuseks $1\cdot 10^{-3}\,\mathrm{N}\,\mathrm{s/m^2}$) ja v on mullikese kiirus. Võite lugeda, et mullikese liikumine toimub kogu aeg kiirusega, mis on määratud tingimusega, et kõigi talle mõjuvate jõudude resultant on null. Vee tihedus $\rho=1000\,\mathrm{kg/m^3}$,

raskuskiirendus $g=9.8\,\mathrm{m/s^2}$, õhurõhk $p_0=100\,\mathrm{kPa}$. Mitu korda muutub vahemaa naabermullikeste vahel tõusul põhjast pinnale, kui veekogu sügavus on $H=27\,\mathrm{m}$?

Ü65 Plokk ★★★

Autor: tundmatu, lahtine, 2006, G 5

Kui suure kiirendusega a_k ja mis suunas hakkab liikuma kahest kehast koosneva süsteemi masskese, kui kehad on seotud niidiga, mis on tõmmatud üle ploki (vt joonist)? Kehade massid on m_1 ja m_2 ($m_1 < m_2$), niit on kaalutu ja mitteelastne.

Ü66 Kada ★★★

Autor: Oleg Košik, lõppvoor, 2006, G 3

Vaatame lihtsa kada ehk ragulka konstruktsiooni. Elastne kummipael tõmmatakse kahe fikseeritud otspunkti vahele, laskmiseks asetatakse kivi paela keskele, pael tõmmatakse koos kiviga pingule ja lastakse vabaks. Kivi lastakse lendu horisontaaltasandi suhtes nurga $\alpha=10^\circ$ all. Leidke, kui kaugele peab laskja tõmbama kivi, et tabada märki, mis asub kadast $L=25\,\mathrm{m}$ kaugusel ning sellega samal kõrgusel. Kui suurt jõudu peab ta selleks paelale rakendama? Kummipaela pikkus pingestamata olekus on $l=60\,\mathrm{cm}$, mis on ühtlasi ka paela kinnituspunktide vahekaugus. Pael lugeda kaalutuks ning jäikusteguriga $k=50\,\mathrm{N/m}$. Kivi mass on $m=20\,\mathrm{g}$. Õhutakistusega ei ole vaja arvestada. Raskusjõu mõju kivi kiirendamisel kadas pole vaja arvestada. Raskuskiirendus on $g=9,81\,\mathrm{m/s^2}$.

Ü67 Hooratas ★★★

Autor: Valter Kiisk, lõppvoor, 2007, G 4

Hooratas raadiusega R pöörleb nurkkiirusega ω . Lihtsuse huvides võib hooratast vaadelda peenikese rõngana (pöörlemistelg ühtib rõnga teljega).

 ${f a}$) Milline on energia salvestustihedus w (kineetiline energia massiühiku kohta) hoorattas?

b) Hooratas on valmistatud süsinikkiuga armeeritud polümeerist, mille tõmbetugevus $\sigma_{\rm max}=2,4\cdot 10^9\,{\rm Pa}$ ja tihedus $\rho=1500\,{\rm kg/m^3}$. Hinnake energia salvestustiheduse maksimaalselt võimalikku väärtust sellises hoorattas (andes numbrilise vastuse).

Vihje: tõmbetugevus on maksimaalne jõud ristlõike pindala kohta, mida antud materjal talub ilma purunemata.

Ü68 Maaler ★★★

Autor: Valter Kiisk, lahtine, 2010, G 5

Maaler on seina ülemise osa värvimiseks roninud kõrge, peaaegu vertikaalse redeli tippu. Ettevaatamatu liigutuse tulemusena hakkab redel ümber kukkuma. Kas vähemohtlik oleks redelist kohe lahti lasta või pigem klammerduda redeli külge? Põrand on lai ja tühi, nii et (redeli) kukkumist ei takista miski. Redeli alumine ots ei libise. Vihje: homogeensel vardal pikkusega l ja massiga m on ümber otsa nurkkiirusega ω pööreldes kineetiline energia $\frac{ml^2\omega^2}{6}$.

Ü69 Benji-hüpe $\star\star\star$ Autor: Andreas Valdmann, piirkonnavoor, 2010, G 6 Benji-hüppaja massiga $m=80\,\mathrm{kg}$ kasutab köit pikkusega $l=35\,\mathrm{m}$, mille jäikustegur $k=60\,\mathrm{N/m}$. Kui kõrgele maapinnast tuleks tõsta hüppeplatvorm, et jääks ohutusvaru $h=5\,\mathrm{m}$? Mis on suurim kiirus, mille hüppaja saavutab? Raskuskiirendus $g=9.8\,\mathrm{m/s^2}$. Hüppaja mõõtmetega arvestama ei pea.

Ü70 Vai ★★★★

Autor: Jaak Kikas, piirkonnavoor, 2006, G 10

Vertikaalset vaia pikkusega L ja massiga M lüüakse pinnasesse nii, et tema otsa pihta lastakse kõrguselt $H\gg L$ vaia otsast kukkuda koormisel massiga m. Lööki vaia pihta võib lugeda absoluutselt mitteelastseks, st pärast raskuse ja vaia kokkupuudet liiguvad nad kui üks tervik. Pinnase takistusjõud on $F=F_0+kl$, kus l on maa sees oleva vaiaosa pikkus. Kui suur on löökide arv N, mis on vajalik selleks, et vai täies pikkuses maasse lüüa? Võite eeldada, et ühekordse löögi tagajärjel nihkub vai sügavamale väikese osa võrra oma pikkusest.

Ü71 Klaaskuul ★★★★

Autor: Aigar Vaigu, piirkonnavoor, 2008, G 6

Klaaskuul kukkus vertikaalselt alla libedale horisontaalsele põrandale ning purunes kolmeks tükiks, mis lendasid mööda põrandat laiali. Sündmus jäädvustati fotol (vt joonist). Tükkide kujutised osutusid välja venitatuks, sest säriaeg oli võrdlemisi pikk. Millised olid kuuli tükkide masside suhted? Hõõrdejõud tükkide liikumisel lugeda tühiselt väikeseks. Fotoobjektiivi optiline peatelg oli pildistamisel vertikaalne

Ü72 Plokid ★★★★

Autor: Mihkel Kree, piirkonnavoor, 2008, G 9

Polüspast ehk liitplokk koosneb seitsmest plokist (vt. joonist). Koormiste massid M ja γM on näidatud joonisel. Missuguse kiirendusega hakkavad liikuma äärmised koormised? Mis tingimust peab rahuldama suurus γ , et äärmised koormised hakkaksid langema? Plokkide ja nööri mass jätta arvestamata ning nöör lugeda venimatuks.

Ü73 Rong ★★★★

Autor: tundmatu, lahtine, 2006, G 10

Rong sõidab kiirusega $v=100~{\rm km/h}$ ja pidurdab järsult (blokeerides rattad). Graafikul on toodud rongi rataste ja rööbaste vahelise hõõrdeteguri μ sõltuvus kiirusest (km/h).

- a) Kui pikk on rongi täieliku peatumiseni kulunud aeg?
- **b**) Kui suur on pidurdusmaa pikkus? Mõlemad vastused tuleb leida graafikualuste pindaladena sobilikult valitud teljestikes.

Ü74 Värinaalarm ★★★★

Autor: Jaan Kalda, lahtine, 2011, G 9

Uurime lihtsustatud mudeli abil kergelt kaldus pinnal asetseva mobiiltelefoni liikumist värinaalarmi töötamise ajal. Kujutagu lauale asetatud mobiil risttahukat massiga M, mille sees liigub üles-alla väike keha massiga m. Liikugu see keha ajahetkedel $t=0,2\tau,4\tau,\ldots$ vahemaa x võrra hetkeliselt üles ning ajahetkedel $t=\tau,3\tau,5\tau,\ldots$ algasendisse tagasi. Olgu mobiiltelefoni ja laua vaheline hõõrdetegur μ ning laua kaldenurk $\alpha\ll 1$. Mobiiltelefoni ja laua vahelised põrked lugege absoluutselt plastseiks. Millise keskmise kiirusega u hakkab mobiiltelefon mööda lauda liikuma?

Ü75 Kuulid ★★★★

Autor: Jaan Kalda, lõppvoor, 2006, G 10

Joonisel kujutatud süsteem koosneb kolmest võrdkülgse kolmnurga tippudes paiknevast kuulist massiga m ja kolmest kergest vardast pikkusega l, mis on omavahel šarniirselt ühendatud (liigendiga). Süsteem lebab hõõrdevabalt siledal horisontaalpinnal. Ühte kuuli lükatakse teatud lühiajalise jõuga nii, et see omandab kiiruse v_0 , mis on suunatud naaberkuuli poole. Leidke teiste kuulide kiiruste suunad ja moodulid ning kõigi

kuulide kiirendused vahetult peale esimese kuuli lükkamist.

Taevamehaanika

Ü76 Satelliit ★

Autor: Mihkel Pajusalu, piirkonnavoor, 2011, G 2

Satelliit tiirleb ringikujulisel orbiidil (raadiusega $r=7000\,\mathrm{km}$) ümber maakera, kusjuures satelliidi orbiit on samas tasapinnas Maa orbiidiga ümber Päikese. Kui suure osa ajast keskmiselt veedab satelliit Maa varjus? Maa läbimõõt on $R=6378\,\mathrm{km}$. Päikeselt tulevad kiired võib lugeda paralleelseteks ja Maa liikumise ühe satelliidi orbiiditaalperioodi jooksul tühiseks.

Ü77 Väike prints ★

Autor: Urmo Visk, piirkonnavoor, 2009, G 1

Väike Prints elab sfäärilisel asteroidil B-612. Jalutades märkas väike prints, et mida kiiremini ta kõnnib, seda kergemaks ta muutub. Kui väike prints jooksis piki asteroidi ekvaatorit kiirusega $v=6\,\mathrm{m/s}$, siis muutus ta kaalutuks ja hakkas asteroidi pinna kohal hõljuma. Kui suur on asteroidi raadius R? Eeldame, et asteroid ei pöörle. Asteroidi tihedus on $\rho=5200\,\mathrm{kg/m^3}$, gravitatsioonikonstant $G=6,67\cdot10^{-11}\,\mathrm{m^3\,kg^{-1}\,s^{-2}}$.

Ü78 Eksinud satelliit ★★

Autor: tundmatu, lahtine, 2009, G 5

Sidesatelliidid paiknevad geostatsionaarsel orbiidil — st niisugusel ringorbiidil, mille raadius ja suund on sellised, et satelliit püsib maapinna suhtes kogu aeg paigal. Ühe sidesatelliidi saatmisel aga esines viga, nii et ta saavutas küll õige kõrguse, kuid ringorbiidi suund sattus juhuslik. Milline on suurim võimalik suhteline kiirus, millega võib selliselt "eksinud" satelliit kokku põrkuda mõne teise sidesatelliidiga? Maa raadius on $R=6400\,\mathrm{km}$, raskuskiirendus maapinnal $g=9.8\,\mathrm{m/s^2}$.

Ü79 Kosmosejaam ★★★

Autor: Oleg Košik, lõppvoor, 2005, G 9

Joonisel on toodud ringorbiidil liikuva rahvusvahelise kosmosejaama trajektoor maapinna kohal (Maa keskpunktist kosmosejaamani tõmmatud sirge ja maapinna lõikepunkti jälg). Hinnake selle abil kosmosejaama kõrgust maapinnast. Maa raadius $R=6380\,\mathrm{km}$, raskuskiirendus maapinnal $g=9.8\,\mathrm{m/s^2}$.

Ü80 Kuukaabel ★★★★

Autor: Siim Ainsaar, piirkonnavoor, 2009, G 10

Oletame, et Maa ja Kuu on ühendatud sirge, homogeense, mõlema suhtes radiaalse kaabliga.

- a) Mitu korda on Maa poolt kaablile avaldatav raskusjõud suurem Kuu-poolsest?
- **b**) Maa pinnal asuv kaabli kinnitus sellele vertikaalsihis jõudu ei avalda. Kui kõrgel Kuu kohal asub punkt, kus pisut liiga nõrk kaabel katkeks?

Lugegem taevakehad paigalseisvaiks. Maa raadius $r_M=6370\,\mathrm{km}$, Kuu raadius $r_K=1740\,\mathrm{km}$, Maa mass $m_M=5.97\cdot 10^{24}\,\mathrm{kg}$, Kuu mass $m_K=7.35\cdot 10^{22}\,\mathrm{kg}$, taevakehade keskmete vahekaugus $D=3.80\cdot 10^5\,\mathrm{km}$.

Abivalem. Kui kaablit tõmbaks Maa üksi ning otspunktide kaugused Maa tsentrist oleksid a ja b, mõjuks sellele raskusjõud $Gm_M\lambda\left(\frac{1}{a}-\frac{1}{b}\right)$, kus G on gravitatsioonikonstant ning λ kaabli joontihedus (ühikuga kg/m).

Ü81 Satelliidid ★★★★

Autor: Mihkel Kree, lõppvoor, 2010, G 7

2009. aasta veebruaris põrkasid Siberi kohal 780 kilomeetri kõrgusel kokku USA ja Venemaa satelliidid. Pidades silmas, et ümber Maa tiirleb juba tuhandeid satelliite ning nende kõigi orbiite pole seetõttu võimalik omavahel koordineerida, hinnake, mitme aasta tagant keskeltläbi niisugused juhuslikud kokkupõrked aset leiavad. Oma lahenduses kasutage järgmisi hinnanguid ja lähendusi: maalähedaste satelliitide arv N=2500; orbiidid jäävad maapinnast kõrguste vahemikku $h_1=200\,\mathrm{km}$ kuni $h_2=2000\,\mathrm{km}$ ning satelliidid on jaotunud selles kihis ühtlase ruumtihedusega; tüüpilise satelliidi ristlõikepindala $S=10\,\mathrm{m}^2$. Maa raadius $R=6400\,\mathrm{km}$, raskuskiirendus maapinnal $g=10\,\mathrm{m/s}^2$.

Gaasid

Ü82 Jalgpall ★

Kui suure rõhuni p_N võib pumbata jalgpalli palli kolbpumbaga, kui pumpa surutakse kokku N=40 korda? Iga pumpamiskäigu jooksul võtab pump atmosfäärist õhu koguse ruumalaga $v=150\,\mathrm{cm}^3$. Atmosfääri rõhk $p_0=0,1\,\mathrm{MPa}$, palli ruumala $V=3\,\mathrm{l}$. Lugeda, et õhu temperatuur pallis võrdub välistemperatuuriga.

Ü83 Allveelaev ★

Mõnikord on inimesed uppuvatest allveelaevadest pääsenud avades esialgu alumised ventiilid (mida mööda vesi sisse tungib), seejärel ülemise luugi ning siis ise koos õhumulliga veepinnale tõustes. Kui suur osa k laeva ruumalast polnud täidetud veega peale ventiilide avamist, kui laev asus sugavusel $h=42\,\mathrm{m}$? Merevee tihedus $\rho=1{,}03\cdot10^3\,\mathrm{kg/m}^3$. Õhu rõhk laevas alghetkel $p_0=0{,}1\,\mathrm{MPa}$. Võite lugeda, et vee sisse laskmise käigus õhu temperatuur laevas ei muutu (tänu soojusvahetusele ümbritseva veega).

Ü84 Tuukrid ★

Autor: Ott Krikmann, piirkonnavoor, 2007, G 4

Autor: tundmatu, lahtine, 2006, G1

Autor: tundmatu, lahtine, 2007, G 3

Tuukrid (akvalangistid) kasutavad sageli oma varustuse ja keha keskmise tiheduse ühtlustamiseks vee tihedusega (vees hõljumise saavutamiseks) õhuga täidetavat hermeetilist vesti, kuhu pumbatakse õhku hingamisaparaadist (akvalangist). Oletame, et tuuker saavutas hõljumise veepinna lähedal, pumbates teatud ruumala õhku oma vesti. Seejärel sukeldus ta $h=25\,\mathrm{m}$ sügavusele. Mitu korda pidi tuuker sellel sügavusel oma vesti ruumala suurendama, et saavutada hõljumise selles sügavuses? Õhurõhk on $p_0=105\,\mathrm{kPa}$.

Ü85 Toaõhk ★

Autor: Mihkel Rähn, lõppvoor, 2008, G 3

Leida seos toaõhu molekulide summaarse kulgliikumise kineetilise energia ja toatemperatuuri vahel. Õhu rõhk on p ja toa ruumala V.

Ü86 Gaasitermomeeter ★★ Autor: Valter Kiisk, piirkonnavoor, 2006, G 5

Gaasitermomeeter koosneb mõõteampullist 1 ja manomeetrist 2, mis on omavahel ühenduses peenikese kapillaari 3 kaudu (vt joonist). Manomeetri ja mõõteampulli ruumalade suhe on $\alpha=30$. Kapillaari ruumala võib lugeda tühiselt väikeseks. Seade täidetakse toatemperatuuril oleva gaasiga rõhuni $p_0=1$ atm. Gaasi võib lugeda ideaalseks. Manomeetrit hoitakse toatemperatuuril $T_0=293\,\mathrm{K}$, mõõteampull asetatakse keskkonda, mille temperatuuri on tarvis määrata. Leidke keskkonna temperatuur, kui manomeetri näit on p=0,7 atm.

Ü87 Tuulik ★★

Autor: Valter Kiisk, piirkonnavoor, 2007, G 5

Teatud tuuleturbiin (tiiviku diameeter $d=50\,\mathrm{m}$) töötab maksimaalse efektiivsusega tuule kiirusel $v=9\,\mathrm{m/s}$. Sel juhul õnnestub $\eta=40\,\%$ tiiviku poolt haaratava õhuvoolu kineetilisest energiast muundada elektriks (kineetilise energia arvutamisel ei arvestata õhu pidurdumist tiivikul). Leidke nendel tingimustel tuuliku elektriline võimsus. Õhu tihedus on $\rho=1,3\,\mathrm{kg/m^3}$.

Ü88 Rong tunnelis ★★

Autor: Eero Uustalu, lõppvoor, 2009, G 4

Rong liikus kiirusega $v=54\,\mathrm{km/h}$ läbi pika horisontaalse silindrikujulise tunneli. Kui palju tõusis tunnelis asuva õhu temperatuur? Tunneli läbimõõt oli $d=5\,\mathrm{m}$. Rongi elektrimootor tarbis tunnelit läbides võimsust $P=800\,\mathrm{kW}$. Õhu molaarmass on $M=29\,\mathrm{g/mol}$, õhurõhk tunnelis $p=100\,\mathrm{kPa}$ ja algtemperatuur $t_0=17\,\mathrm{^{\circ}C}$. Õhk lugeda kaheaatomiliseks ideaalseks gaasiks. Eeldada, et rongi liikumisest tekkinud õhuvoolude liikumisest tulenev alarõhk on atmosfäärirõhuga võrreldes tühine

 $M\ddot{a}rkus$: kaheaatomilise gaasi siseenergia ühe molekuli kohta on 5/3 korda suurem kui samal temperatuuril oleval üheaatomilisel gaasil.

Ü89 Heelium ★★★

Autor: tundmatu, lahtine, 2008, G 6

Kolme mooli heeliumi soojendamisel muutus gaasi rõhk võrdeliselt gaasi ruumalaga. Mitme kraadi võrra tõusis heeliumi temperatuur, kui gaasile anti soojushulk $Q=300\,\mathrm{J}$?

Ü90 Õhk ★★★

Autor: tundmatu, lahtine, 2009, G7

Kaks anumat ruumalade suhtega $\alpha=V_1/V_2=2$ on ühendatud lühikese toruga, mille keskel asub ventiil. Ventiil laseb gaasi läbi juhul kui rõhkude vahe on suurem kui $\Delta p=1,1p_0$, kus p_0 on atmosfäärirõhk. Temperatuuril $t_1=27\,^{\circ}\mathrm{C}$ on suuremas anumas õhk normaalrõhul, väiksemas anumas on vaakum. Milliseks kujuneb rõhk väiksemas anumas, kui mõlemad anumad soojendada temperatuurini $t_2=127\,^{\circ}\mathrm{C}$?

Ü91 Õhuhoki ★★★

Autor: Mihkel Heidelberg, lõppvoor, 2010, G 6

Heast soojusjuhist plaadile asetatakse kuivast jääst (st tahkest süsihappegaasist) kerge seib raadiusega $r=1\,\mathrm{cm}$; seibi surutakse pealt jõuga $F=10\,\mathrm{N}$. Millise minimaalse aluse temperatuuri juures hõljub seib sublimeeruva süsihappegaasi tekitatud gaasipadjal? Aluse temperatuur lugege ühtlaseks ja samaks temaga vahetus kontaktis oleva ainekihiga. Õhurõhk $p_0=100\,\mathrm{kPa}$ ja kuiva jää aururõhu sõltuvus temperatuurist on kujutatud graafikul.

Ü92 Õhk ★★★★

Autor: tundmatu, lahtine, 2006, G 8

Leida niiske (suhteline niiskus $f=90\,\%$) ja kuiva õhu tiheduste suhe rõhu $p_0=0.1\,\mathrm{MPa}$ ja temperatuuri $t=27\,^\circ\mathrm{C}$ juures. Küllastunud auru tihedus sellel temperatuuril on $\rho_0=0.027\,\mathrm{kg/m^3}$. Õhu molaarmass $\mu_1=0.029\,\mathrm{kg/mol}$, vee molaarmass $\mu_2=0.018\,\mathrm{kg/mol}$.

Ü93 Gaasid ★★★★

Autor: Oleg Košik, lõppvoor, 2007, G 6

Isoleeritud silindrilises anumas vabalt liikuva koormise all on vesinik ja heelium, mis on teineteisest eraldatud vabalt liikuva ja aeglaselt soojust juhtiva õhukese vaheseinaga (vt. joonist). Alguses on gaaside temperatuurid võrdsed, kusjuures vesinik hõlmab heeliumist 3 korda väiksema ruumala. Vesinikule anti teatud soojushulk, mille tulemusena nihkus koormis $d_1=5.5\,\mathrm{cm}$ võrra ülespoole. Pika aja möödudes täheldati, et koormis nihkus veel. Mis suunas ja kui palju see nihkus? Gaasid lu

geda ideaalseteks. Vesiniku soojusmahtuvus konstantsel rõhul on $C_{\rm PH_2}=7R/2$ ning heeliumil $C_{\rm PHe}=5R/2$.

Ü94 Korsten ★★★★

Autor: Jaan Kalda, piirkonnavoor, 2009, G 9

Hinnake, milline oleks suitsu kiirus korstnast väljumisel, kui õhutakistusega (sh turbulentsest liikumisest tingitud takistusega) korstnas ning ahjulõõrides mitte arvestada. Korstna kõrgus (mõõdetuna korstnajala juurest, kuhu siseneb ahjust tulev soe õhk) on $h=10\,\mathrm{m}$ ja õhu keskmine temperatuur korstnas $t=80\,\mathrm{^{\circ}C}$. Lugeda, et ahju uks ja korstnajalg on samal kõrgusel. Välisõhu temperatuur on $t_0=0\,\mathrm{^{\circ}C}$.

Ü95 Rakettmootor ★★★★

Autor: Jaan Kalda, lahtine, 2010, G 10

Vedelkütusel töötava rakettmootori skeem on toodud juuresoleval joonisel. Põlemiskambris moodustuvad põlemisproduktid (gaasid) omandavad kõrge rõhu ja temperatuuri. Seejärel väljuvad need adiabaatiliselt paisudes ja jahtudes läbi düüsi. Õigesti konstrueeritud düüsi korral (kaela läbi-

mõõt vastab põlemiskiirusele ja -temperatuurile) jätkub adiabaatiline paisumine ka peale düüsikaela läbimist ning suur osa soojusenergiast muundatakse gaasijoa kineetiliseks energiaks. Leidke rakettmootori veojõud F eeldusel, et (a) on teada düüsi väljundristlõike pindala S, temperatuur põlemiskambris T_0 ning gaaside temperatuur T_1 ja rõhk p_1 düüsist väljumise hetkel, kusjuures $T_0\gg T_1$; (b) põlemiskambris on gaaside kineetiline energia tühine võrreldes soojusenergiaga; (c) atmosfäärirõhu mõju veojõule on tühine; (d) moodustuva gaasisegu ühe mooli soojusmahtuvus konstantsel ruumalal on $c_V=\frac{5}{2}R$, kus R on gaasikonstant.

Vedelike mehaanika

Ü96 Vedelik ★

Autor: tundmatu, lahtine, 2005, G1

Ühendatud silindrilistesse anumatesse diameetritega d_1 ja d_2 on valatud vedelik tihedusega ρ . Kui palju tõuseb vedeliku tase anumates, kui ühte anumasse pannakse ujuma vedeliku tihedusest väiksema tihedusega keha massiga m?

Ü97 Veetoru ★★

Autor: Taavi Pungas, lõppvoor, 2011, G 4

Kaks erineva diameetriga horisontaalset toru on otsapidi kokku ühendatud nii, et nende teljed ühtivad. Mööda esimest toru voolab vesi kiirusega v_1 . Kummagi veetoru külge on ühendatud väike vertikaalne toruke, vedelikusamba kõrgused neis on vastavalt h_1 ja h_2 (toru teljest mõõtes). Leidke horisontaalsete torude diameetrite suhe. Hõõrdumist mitte arvestada.

Vihje: vedeliku horisontaalsel voolamisel kehtib Bernoulli seadus kujul $\frac{\rho v^2}{2} + p =$ Const, kus p on hüdrostaatiline rõhk, ρ vedeliku tihedus ning v vedeliku kiirus.

Ü98 Veekahur ★★★

Autor: Oleg Košik, piirkonnavoor, 2005, G7

Veekahur tulistab veejuga, mille ristlõikepindala on $S=8\,\mathrm{cm}^2$ ning võimsus $N=6000\,\mathrm{W}$. Millise jõuga tabab veejuga märki, kui kahur ja märk asuvad samal kõrgusel? Vee tihedus on $\rho=1000\,\mathrm{kg/m^3}$, õhutakistust mitte arvestada. Märklaua ja veekahuri vahemaa on väike, st veejoa kõverdumist raskusjõu toimel ei pea arvestama.

Ü99 Veetünn ★★★

Autor: Mihkel Kree, lõppvoor, 2005, G 5

Silindriline veetünn, milles hoitakse muutumatut veetaset kõrgusega h, on tõstetud horisontaalsele platvormile, mille kõrgus maapinnast on H (vt joonist). Tünni seina kõrgusele a selle põhjast puuritakse auk. Väljuv veejuga puudutab maapinda kaugusel L platvormi jalamist. Graafikul on kujutatud kauguse L sõltuvus augu kõrgusest x=a/h. Määrake tünni kõrgus h ning aluse kõrgus H eeldusel, et h>H.

Ü100 Veejuga ★★★

Autor: Siim Ainsaar, piirkonnavoor, 2006, G 9

Vesi voolab kraanist vertikaalselt alla purki. Nagu teada, ei ole kraanist voolav veejuga silindriline. Joa raadius kraani otsa juures on $r_0=5\,\mathrm{mm}$, sellest kaugusel $h=130\,\mathrm{mm}$ allpool aga $r_1=3\,\mathrm{mm}$. Leidke aeg t, mis kulub purgi täitmiseks, kui raskuskiirendus on $g=9.8\,\mathrm{m/s}$. Purgi ruumala V=1 liiter. Pindpinevusest tingitud efekte pole vaja arvestada. Eeldada, et voolamiskiirus on iga ristlõike piires ühesugune ning keeriseid ei ole.

Ü101 Veepüstol ★★★

Autor: Valter Kiisk, lõppvoor, 2006, G 4

Veepüstoliga (vt joonist) tekitatakse veejuga, surudes vett läbi kitsa silindrilise suudme, mille sisediameeter on $d_2=1\,\mathrm{mm}$. Päästik on ühendatud kolviga, mis saab tihedalt liikuda silindrilises torus diameetriga $d_1=1\,\mathrm{cm}$. Oletagem, et sõrmed suruvad päästikule jõuga $F=20\,\mathrm{N}$ (jõu rakenduspunkt ja suund on näidatud joonisel). Kui suure kiirusega väljub veejuga püstolist? Vee liikumise võib lugeda laminaarseks, vee viskoossust ja püstoli liikuvatele osadele mõjuvaid hõõrdejõude võib ignoreerida. Vee tihedus on $\rho=1000\,\mathrm{kg/m^3}$

Ü102 U-toru ★★★

Autor: tundmatu, lahtine, 2009, G 6

Teatud torustikes võib vedeliku surve olla nii tugev, et torud võivad märgatavalt deformeeruda. Vaatleme sellist deformatsiooni Ukujulises torus (vt joonist): kaks sirget terastoru pikkusega l, mille välisraadius on $\sqrt{2}$ korda suurem siseraadiusest, on ühendatud sama sisemise raadiusega mittedeformeeruvast materjalist kaarekujulise toruga. Selles U-torus voolab vedelik tihedusega ρ ja konstantse voo-

lukiirusega v. Vedeliku hüdrostaatiline rõhk lugeda võrdseks välisrõhuga. U-toru

otsad on pinnal jäigalt kinnitatud. Leidke toru pikenemine eeldades, et õõnsa terastoru deformatsiooni jaoks toimib Hooke'i seadus, kusjuures jäikustegur avaldub kujul k = ES/l (E on terase nn Young'i konstant, S on toru ristlõike pindala ja l on deformeerimata toru pikkus).

Ü103 Ookean ★★★★

Autor: tundmatu, lahtine, 2005, G 8

Vee kokkusurutavuse tegur $\beta = 5 \cdot 10^{-5} \, \text{atm}^{-1}$.

- **a**) Hinnake ookeani keskmise sügavuse muutumist juhul, kui vesi oleks täielikult kokkusurumatu. Ookeani keskmine sügavus $h \approx 3800\,\mathrm{m}$.
- **b**) Hinnake vee tiheduste vahet $\Delta \rho$ veepinnalähedasel veel ja veel ookeani süvendi põhjas sügavusel $H=10~{\rm km}$.

 $M\ddot{a}rkus$: kokkusurutavuse tegur β näitab keha ühikulise ruumala vähenemist rõhu suurenemisel ühe ühiku võrra. Atmosfäär on rõhu mõõtmise ühik, mis võrdub atmosfääri normaalrõhuga merepinna kõrgusel: 1 atm = 101 325 Pa.

Ü104 V-toru ★★★★

Autor: Mihkel Kree, lõppvoor, 2008, G 8

Toomas mängib läbipaistvast aiavoolikust tehtud U-toruga. Et seekordne U-toru polegi klaasist, painutab ta üht poolt nurga α ning teist β võrra (vt joonist). Kas vedelikutaseme võnkesagedus on nüüd suurem või väiksem, mitu korda?

 $ext{M\"{a}rkus}$: vertikaalses U-torus on vedelikutaseme võnkumise sagedus $f=\frac{1}{2\pi}\sqrt{\frac{2S\rho g}{m}}$, kus S on toru ristlõikepindala, ρ vedeliku tihedus ning m torus oleva vedeliku mass.

Termodünaamika

Ü105 Balloon ★

Autor: Jaan Susi, lõppvoor, 2005, G 3

Suletud balloon ruumalaga V=101 oli täidetud veega temperatuuril $t_0=0\,^{\circ}\mathrm{C}$. Samal temperatuuril külmutati vesi jääks, mille tulemusena ballooni kest venis välja ja vesi avaldas kogu jäätumise protsessi käigus balloonile rõhku $p=5\cdot 10^7\,\mathrm{Pa}$.

Leida balloonis olnud vee (H₂O) siseenergia muut koos märgiga. Jää tihedus $\rho_j = 900 \, {\rm kg/m^3}$ ja sulamissoojuseks antud rõhul $\lambda = 317 \, {\rm kJ/kg}$. Jää ja vee kokkusurutavust mitte arvestada

Ü106 Kütteklaas ★

Autor: Jaak Kikas, lõppvoor, 2007, G 1

Ruumide soojendamiseks kasutatava elektriliselt köetava klaasi pind on kaetud õhukese valgust läbilaskva elektrit juhtiva kihiga, mille vastasservadele rakendatakse elektriline pinge (vool kulgeb mööda klaasi pinda). Kuidas suhtuvad sellisest klaasist valmistatud ristkülikukujuliselt aknalt eralduvad soojusvõimsused P_H ja P_V sama pinge rakendamisel vastavalt klaasi horisontaalsete (P_H) ja vertikaalsete (P_V) servade vahel? Akna horisontaalmõõde $a=0,5\,\mathrm{m}$ ja vertikaalmõõde $b=1\,\mathrm{m}$.

Ü107 Jääkuul ★

Autor: Urmo Visk, piirkonnavoor, 2008, G 4

Õhukeste seintega jääst kera sees on õhk. Algselt on jääkera külmkapis temperatuuril $t_0=-9\,^{\circ}\mathrm{C}$ ning õhurõhk tema sees võrdub välisrõhuga $p_0=105\,\mathrm{kPa}$. Kera tõstetakse külmikust välja tuppa, kus see hakkab soojenema. Kera sein on nii õhuke, et maksimaalne ülerõhk (st. sise- ja välisrõhkude vahe), mida ta purunemata talub, on $\Delta p=0.2p_0$. Mis juhtub enne: kas kera hakkab sulama või ta puruneb ülerõhu tõttu? Kuuli soojenemine lugeda nii aeglaseks, et igal ajahetkel võib lugeda õhu temperatuuri tema sees ning seinte sise- ja välispinna temperatuurid võrdseks.

Ü108 Küttesüsteem ★

Autor: tundmatu, piirkonnavoor, 2011, G 3

Küttesüsteem täidetakse $t_1=10\,^{\circ}\mathrm{C}$ temperatuuriga veega. Kui palju peab paisupaagis olema vaba ruumi, et kütmisel avatud paisupaagist vesi välja ei voolaks? Küttesüsteemis on $V_1=250$ liitrit vett ja tööolukorras on selle keskmine temperatuur $t_2=63\,^{\circ}\mathrm{C}$. Vee ruumpaisumistegur on $\beta=3\times10^{-4}K^{-1}$. Vedeliku ruumala mingil temperatuuril avaldub kujul $V=V_0(1+\beta t)$, kus t on vedeliku temperatuur Celsiuse kraadides, ning V_0 on vedeliku ruumala temperatuuril $0\,^{\circ}\mathrm{C}$.

Ü109 Ringprotsess ★

Autor: Riho Taba, piirkonnavoor, 2006, G 2

Kas joonisel kujutatud ringprotsessil on ideaalse gaasi töö positiivne või negatiivne? Põhjendada vastust.

Ü110 Vedelike segamine ★ Autor: Aleksei Vlassov, piirkonnavoor, 2007, G 3

Kahe erineva vedeliku segamisel ruumalade suhtega 1:1 tekib segu temperatuuriga $t_3=42\,^{\circ}\mathrm{C}$. Milline oleks segu temperatuur, kui ruumalade suhe oleks 2:1? Vedelike temperatuurid on vastavalt $t_1=27\,^{\circ}\mathrm{C}$ ning $t_2=47\,^{\circ}\mathrm{C}$.

Ü111 Tulehõõrumine ★

Autor: Jaak Kikas, piirkonnavoor, 2008, G 3

Jõuga F otsapidi vastu tasast pinda surutud toru pöörleb sagedusega f. Toru läbimõõt on D ja seina paksus $d \ll D$. Toru otspind on risti toru teljega, hõõrdetegur toru ja tasapinna vahel on μ . Kui palju soojusenergiat vabaneb ajavahemiku Δt jooksul?

Ü112 Termos ★

Autor: Urmo Visk, piirkonnavoor, 2009, G 3

Termoses, mis on ümbritsevatest kehadest soojuslikult isoleeritud, on $m_1=300\,\mathrm{g}$ vett temperatuuriga $t_1=20\,^{\circ}\mathrm{C}$. Sellele lisatakse $m_2=600\,\mathrm{g}$ vett temperatuuriga $t_2=80\,^{\circ}\mathrm{C}$. Pärast soojusliku tasakaalu saabumist mõõdeti vee temperatuuriks T_1 . Järgmisel korral oli samas anumas alguses $m_2=600\,\mathrm{g}$ vett temperatuuriga $t_2=80\,^{\circ}\mathrm{C}$ ja sellele lisati $m_1=300\,\mathrm{g}$ vett temperatuuriga $t_1=20\,^{\circ}\mathrm{C}$. Nüüd mõõdeti vee temperatuuriks soojusliku tasakaalu saabumise järel $T_2=T_1+2\,^{\circ}\mathrm{C}$. Kui suur on termose materjali erisoojus? Tühja termose mass on $m=140\,\mathrm{g}$ ja vee erisoojus $c=4200\,\mathrm{J/kg}\,\mathrm{C}$.

Ü113 Rauatükk ★

Autor: Oleg Košik, lahtine, 2010, G 2

Anumasse, milles oli V=11 vett temperatuuril $t_1=20\,^{\circ}\mathrm{C}$, visati rauatükk massiga $m=100\,\mathrm{g}$ temperatuuril $t_0=500\,^{\circ}\mathrm{C}$. Osa veest aurustus. Mõne aja pärast mõõdeti vee temperatuuriks $t_2=24\,^{\circ}\mathrm{C}$. Kui palju vett aurustus? Vee erisoojus $c_1=4200\,\mathrm{J/(kg\cdot{}^{\circ}\mathrm{C})}$, aurustumissoojus $L=2,26\cdot10^6\,\mathrm{J/kg}$ ja tihedus $\rho=1000\,\mathrm{kg/m^3}$; raua erisoojus $c_2=460\,\mathrm{J/(kg\cdot{}^{\circ}\mathrm{C})}$. Anum on tühise soojusmahtuvusega ning väliskeskkonnast hästi isoleeritud.

Ü114 Jõhvikad ★

Autor: Urmo Visk, piirkonnavoor, 2010, G 2

Keevasse vette kallatakse külmutatud jõhvikaid. Vee temperatuur langes väärtuseni $t=89\,^{\circ}\mathrm{C}$. Mitu korda oli vee mass suurem jõhvikate massist? Kuna jõhvikad olid väikesed ja sulasid väga kiiresti, siis võib vee soojusvahetuse ümbritseva keskkonnaga arvestamata jätta. Jõhvikate algtemperatuur oli $t_2=-18\,^{\circ}\mathrm{C}$. Jää erisoojus $c_j=2100\,\mathrm{J/(kg\,C)}$, vee erisoojus $c_v=4200\,\mathrm{J/(kg\,C)}$, jää sulamissoojus $L=330\,\mathrm{kJ/kg}$. Jõhvikate suure veesisalduse tõttu võib neid käsitleda jääna.

Ü115 Vesi ★

Autor: Taavi Pungas, lõppvoor, 2011, G 1

Avatud termoses on vesi temperatuuril $t_0=100\,^{\circ}$ C. Sellest 1 % aurustub. Hinnata, kui palju muutub termosesse jäänud vee temperatuur t. Vee erisoojus $c_v=4.2\,\mathrm{kJ\,kg^{-1}\,K^{-1}}$, veeauru erisoojus $c_a=1.9\,\mathrm{kJ\,kg^{-1}\,K^{-1}}$ ning vee aurustumissoojus temperatuuril 100 °C on $L=2.26\,\mathrm{MJ/kg}$. Eeldada, et termose seinte kaudu soojuskadusid ei ole.

Ü116 Kastmisvesi ★★ Autor: Urmo Visk, piirkonnavoor, 2008, G 5

Päikeselisel suvepäeval langeb päikesekiirtega risti olevale ühe ruutmeetrisele pinnale ühes sekundis keskmiselt $\varepsilon=0.5\,\mathrm{kJ/(s\,m^2)}$ energiat. Kastmisvett soojendatakse pilgeni täis valatud õhukeseseinalises kerakujulises anumas raadiusega $R=0.5\,\mathrm{m}$. Eeldada, et veeanum on päeva jooksul täielikult valgustatud. Kastmisvee temperatuur päikesetõusu ajal kell 4.30 oli $t_0=16\,\mathrm{^{\circ}C}$. Kui suur on kastmisvee temperatuur päikeseloojangu ajal kell 22.30? Vee erisoojus on $c=4200\,\mathrm{J/(kg\,^{\circ}C)}$, tihedus $\rho=1\,\mathrm{kg/dm^3}$. Eeldada, et anum neelab kogu pealelangeva päikesevalguse energia ning et kogu päikesevalguse energia läheb kastmisvee soojendamiseks. Soojusvahetus kastmisvee ja keskkonna vahel lugeda tühiseks.

Ü117 Lihvimisketas ★★

Autor: Ott Krikmann, piirkonnavoor, 2005, G 3

Detaili lihvitakse horisontaalselt pöörleva lihvimiskettaga, mille raadius on $r=20\,\mathrm{cm}$. Ülekuumenemise vältimiseks jahutatakse seda veega. Aja $t=1\,\mathrm{s}$ jooksul eraldub ketta ühelt ruutmeetrilt ($s=1\,\mathrm{m}^2$) keskmiselt $q=10\,\mathrm{kJ}$ suurune soojushulk, mille neelab jahutusvesi. Jahutusvett algtemperatuuriga $t_1=10\,\mathrm{^{\circ}C}$ juhitakse ketta tsentrisse vooga $w=10\,\mathrm{cm}^3/\mathrm{s}$. Vee erisoojus $c=4200\,\mathrm{J/(kg\,K)}$. Leidke üle kettaääre voolava vee keskmine temperatuur t_2 .

Ü118 Vee keemine ★★

Autor: Mihkel Kree, lõppvoor, 2008, G 6

Mari keetis Mikule teed, aga vesi läks seekord keema alles $t_0=105\,^{\circ}\mathrm{C}$ juures, kuigi toas oli normaalrõhk. Milles asi? Teatavasti hakkab vesi keema siis, kui küllastunud veeauru rõhk saab võrdseks õhurõhuga ning kogu anuma ulatuses saavad hakata paisuma küllastunud auruga täidetud mullid; tavaliselt on vees küllaldaselt tahkeid osakesi, millele tekivad piisavalt suured mullid, nii et pindpinevusega pole tarvis arvestada. Oletades aga, et seekord oli vesi haruldaselt puhas, hinnake, missugune oli mullide suurim võimalik raadius enne keemist. Vee pindpinevuseks keemistemperatuuril võib võtta $\sigma=58\cdot 10^{-3}\,\mathrm{N/m}$ ning lineaarses lähenduses arvestada, et temperatuuri tõstmisel ühe kraadi võrra suureneb küllastunud veeauru rõhk $\Delta p=3.5\,\mathrm{kPa}$ võrra (keemistemperatuuri läheduses)

Ü119 Vesi ja jää ★★

Autor: Andres Laan, piirkonnavoor, 2010, G 5

Kahte suurt paralleelset metallplaati hoitakse horisontaalselt vastastikku. Üks plaatidest on temperatuuril $T_1 = -20\,^{\circ}\mathrm{C}$ ja teine temperatuuril $T_2 = 20\,^{\circ}\mathrm{C}$. Metallplaatide vahel on vesi. Ilmselgelt on külma plaadi läheduses vesi tahkes olekus. On teada, et vee tahke ja vedela kihi paksuste suhe on 4. Millisele temperatuurile tuleb soojendada teine metallplaat, et vedela kihi paksus saaks võrdseks tahke kihi paksusega?

Ü120 Destillaator ★★

Autor: Koit Timpmann, lõppvoor, 2010, G 2

Destillaator toodab tunnis V=21 puhast vett. Sisenev aur ja kondenseerunud vesi on samal temperatuuril. Auru kondenseerumisel vabanenud soojusest kulub $\eta=95\,\%$ jahutusvee soojendamiseks. Jahutussüsteem kujutab endast pikka toru, milles voolab jahutusvesi. Toru ristlõikepindala on $S=0.8\,\mathrm{cm^2}$. Destillaatorisse siseneva ja sealt väljuva jahutusvee temperatuurid erinevad $\Delta T=30\,^\circ\mathrm{C}$ võrra. Kui kiiresti peab vesi voolama jahutussüsteemis? Vee aurustumissoojus $L=2300\,\mathrm{kJ/kg}$, vee erisoojus $c=4.2\,\mathrm{kJ/(kg\,K)}$ ja vee tihedus $\rho=1000\,\mathrm{kg/m^3}$.

Ü121 Külmutusseade ★★★

Autor: tundmatu, piirkonnavoor, 2005, G 8

Külmutusseadme mootor teeb tööd $A=2\,\mathrm{kJ}$. Kui suur on maksimaalne külmutusseadmes kehalt äravõetav soojushulk, kui külmutusseadme sisetemperatuur on $t_k=-15\,^\circ\mathrm{C}$ ja seadme jahutusvedeliku temperatuur on $t_j=10\,^\circ\mathrm{C}$? Vihje. Külmutusseadet võib vaadelda kui pööratud töötsükliga ideaalset soojusmasinat. See tähendab, et kõik tööd ja soojushulgad on vastupidise märgiga. Niisiis mootor ei tee tööd, vaid tema töös hoidmiseks on vaja teha tööd; madala temperatuuriga keskkond ei saa soojust, vaid annab soojust ära.

Ü122 Elektripliit ★★★

Autor: tundmatu, lahtine, 2007, G 8

Elektripliidi spiraali poolt ajaühikus keskkonnale üle antav soojushulk sõltub lineaarselt spiraali ja toa õhu temperatuuride vahest: $N=\kappa(T-T_0)$. Spiraali takistus sõltub sellest vahest samuti lineaarselt: $R=R_0[1+\alpha(T-T_0)]$, kus R_0 on spiraali takistus toatemperatuuril. Kui suure temperatuurini kuumeneb spiraal, kui seda läbib vool tugevusega I?

Ü123 Õhuaken ★★★

Autor: Jaan Kalda, lõppvoor, 2009, G 6

Tuba köetakse elektriradiaatoriga, mille võimsus on $P=1\,\mathrm{kW}$. Välistemperatuur on $t_0=0\,^\circ\mathrm{C}$, toas püsib ühtlane temperatuur $t_1=20\,^\circ\mathrm{C}$. Nüüd avatakse õhuaken ning õueõhku tuleb tuppa kiirusega $v=20\,\mathrm{l}$ sekundis. Milliseks kujuneb toatemperatuur? Õhu võib lugeda ideaalseks gaasiks, mille soojusmahtuvus konstantsel rõhul ühe mooli kohta on $c_P=\frac{7}{2}R$. Eeldada, et soojuskaod läbi seinte on võrdelised sise- ja välistemperatuuride vahega.

Ü124 Tuba ★★★

Autor: Oleg Košik, lõppvoor, 2006, G 7

Külma tõttu läks küttesüsteem rikki ja toatemperatuur hakkas langema. Ühel hetkel pandi tööle ajas muutumatu võimsusega töötav soojapuhur ning toatemperatuur hakkas taas tõusma. Graafikul on toodud toatemperatuuri sõltuvus ajast. Leidke toatemperatuur pika aja möödumisel. Protsessi vältel välistingimused ei muutunud. Seinte ja toas olevate esemete soojusmahtuvusega mitte arvestada. Soojusvahetuse kiirus väliskeskkonnaga ei ole võrdeline temperatuuride vahega.

Ü125 Küttekeha ★★★

Autor: Mihkel Heidelberg, lõppvoor, 2007, G 7

Teatud ruumi köetakse sellise küttekehaga, mille võimsus P sõltub ruumi temperatuurist, nagu on näidatud joonisel. Kui välistemperatuur on T_1 , siis ruumi temperatuur stabiliseerub T_2 juures (need temperatuurid on märgitud graafikul). Millise temperatuurini tõuseb toatemperatuur, kui välistemperatuur tõuseb T_3 -ni (leida see temperatuur graafilise konstrueerimise abil)? Soojusvahetus keskkonnaga on võrdeline temperatuuride vahega.

Ü126 Soojuskiirgus ★★★★

Autor: Valter Kiisk, lõppvoor, 2006, G 8

Veeldatud gaaside säilitamisel on tarvis palju tähelepanu pöörata anuma soojusisolatsioonile. Olulise osa soojusvahetusest moodustab soojuskiirgus. Oletagem, et anumal on kahekordsed seinad, mille kiirgusvõimsus pinnaühiku kohta on $\varepsilon\sigma T^4$, kus Stefan-Boltzmanni konstant $\sigma=5,67\cdot 10^{-8}\,\mathrm{W/(m^2\,K)}$ ja seinte kiirgamisvõime ε loeme temperatuurist sõltumatuks ja võrdseks 0,1-ga. Vedela lämmastikuga kokkupuutes oleva siseseina temperatuur on $T_s=77\,\mathrm{K}$, toaõhuga kokkupuutes oleva välisseina temperatuur aga $T_v=293\,\mathrm{K}$.

- a) Leidke soojuskiirgusest tingitud soojusvoog läbi $S=1\,\mathrm{cm}^2$ suuruse seinapinna.
- **b**) Soojusvoo vähendamiseks asetatakse sise- ja välisseina vahele N õhukest ekraani, mille pind on kaetud samasuguse materjaliga nagu anuma seinad. Mitu korda väheneb selle tulemusena soojusvoog? Põhjendage vastust.

 $\it M\ddot{a}rkus$: kehtib Kirchhoffi seadus — keha neelamisvõime, mis näitab, kui suur osa aine pinnale langevast kiirgusest neeldub, on alati võrdne tema kiirgamisvõimega ε .

Ü127 Pooljuht ★★★★

Autor: tundmatu, lahtine, 2008, G 10

Graafikul on antud pulgakujulise keraamilisest pooljuhist (nn. PTC takisti) soojendi materjali erijuhtivuse σ (1/(Ω m)) sõltuvus temperatuurist t(°C). Erijuhtivuseks nimetatakse eritakistuse pöördväärtust. Leida, millise temperatuurini kuumeneb avatud ruumis paiknev sellest materjalist soojendi, kui tema otstele rakendatakse pinge $U_1=60\,\mathrm{V}$. Milliseks kujuneb soojendi temperatuur, kui otstele rakendatud pinge on $U_2=36\,\mathrm{V}$? On teada, et kui soojendi otstele rakendatakse pinge $U_0=30\,\mathrm{V}$, siis soojendi temperatuuriks kujuneb $t_0=70\,\mathrm{^{\circ}C}$. Välisõhu temperatuur on $t_v=20\,\mathrm{^{\circ}C}$.

Elektrostaatika

Ü128 Juhe ★★

Autor: tundmatu, lahtine, 2005, G 5

Sirgjooneline juhe asub sügaval maa all ühtlases pinnases. Lekkevool ühikulise pikkusega juhtmest on i. Leidke lekkevoolu tihedus (A/m²) kaugusel r juhtmest. Juhtme pikkus on palju suurem kui r. Lekkevool on konstantne piki juhet. *Märkus*: lekkevooluks nimetatakse voolu, mis levib isolaatorites.

Ü129 Kuulikesed ★★

Autor: tundmatu, lahtine, 2005, G 4

Seitse ühesugust laetud kuulikest laenguga q on seotud omavahel samast materjalist võrdse algpikkusega elastsete niitidega ja saavad liikuda vaid ühes fikseeritud tasapinnas (vt joonist). Vahemaa kahe suvalise naaberkuulikese vahel tasakaalu olekus on l. Leidke tõmbepinged niitides.

Ü130 Tolmukübe ★★

Autor: Aigar Vaigu, piirkonnavoor, 2006, G 8

Tolmukübe massiga $m=1\cdot 10^{-9}$ g on kondensaatori horisontaalsete plaatide vahel tasakaalus. Laengu pindtihedus kondensaatori plaatidel $\sigma=2,6\cdot 10^{-5}$ C/m². Kui suur on tolmukübeme elektrilaeng? Millise kiirendusega hakkaks tolmukübe langema, kui kondensaatori polaarsus muuta vastupidiseks? Eeldada, et elektriväli kondensaatori plaatide vahel on homogeenne. Õhutakistust mitte arvestada. Elektriline konstant $\varepsilon_0=8,85\cdot 10^{-12}$ F/m, õhu dielektriline läbitavus $\varepsilon\approx 1$.

Ü131 Kuulikesed ★★

Autor: tundmatu, lahtine, 2007, G 7

Kaks ühesugust kuulikest, millest kumbki kannab laengut q, asuvad vertikaalsihis kaugusel H üksteisest. Alumine kuulike on jäigalt kinnitatud, ülemine aga hakkab liikuma vertikaalselt alla suunatud algkiirusega v. Kui suur on minimaalne kaugus h alumise kuulikeseni, millele suudab läheneda ülemine kuulike? Ülemise kuulikese mass on m. Raskuskiirendus on g.

Ü132 Laetud rõngas ★★

Autor: tundmatu, lahtine, 2009, G 4

Peenikesest traadist rõngas raadiusega R on ühtlaselt laetud negatiivse laenguga Q. Elektron massiga m ja laenguga e läheneb rõngale mööda sirget, mis on risti rõnga tasandiga ning läbib rõnga keskpunkti. Millist tingimust peab rahuldama elektroni kiirus punktis, mis asub kaugusel $d=R\sqrt{3}$ rõnga keskpunktist, et elektron saaks rõngast läbi lennata?

Ü133 Ioonmootor ★★

Autor: Mihkel Pajusalu, lahtine, 2010, G 6

Kosmosesond on varustatud lihtsa ioonmootoriga, mis koosneb ksenooni ioonide ${\rm Xe}^+$ allikast ja kahest elektroodist, mille vahele rakendatakse pinge U ja mille vahelist maad läbides ioone kiirendatakse. Kui suurt kogust (mass) ksenooni on vaja, et selle mootoriga sondi kiirust tõsta $\Delta v=1$ km/s võrra? Ksenooni aatommass $\mu=131,29$ g/mol, kosmosesondi mass M=1000 kg, kiirendav pinge U=100 kV, elementaarlaeng $e=1,60\cdot 10^{-19}$ C, Avogadro arv $N_A=6,02\cdot 10^{23}$ mol $^{-1}$.

Ü134 Lendav elektronkahur ★★★ Autor: Siim Ainsaar, lõppvoor, 2006, G 6

Jaan Tatikal tuli järjekordne lennumasinaidee, mida ta kohe realiseerima tõttas. Nimelt ehitas ta palkidest platvormi, mille alla kinnitas telerist välja lõhutud elektronkahuri koos vajaliku elektroonika ja akuga. Elektrone kiirendav pinge on U, voolutugevus elektronkiires I. Leidke, kui suurt tõstejõudu F suudab see seade tekitada. Missugust tingimust peaksid U ja I rahuldama, et taoline lennumasin suudaks leiduri õhku tõsta? Kas see on ka realistlik (televiisorites $U \approx 30\,\mathrm{kV},$ $I \approx 100\,\mathrm{\mu A}$)? Relativistlikke efekte pole vaja arvestada; elektroni algkiirus katoodi juures on 0. Eeldage, et kiir üldse moodustub (õhu olemasoluga ärge arvestage). Tatika mass koos platvormi ja seadmega on $m_T \approx 150\,\mathrm{kg}$, raskuskiirendus $g \approx 9.8\,\mathrm{m/s^2}$. Elektroni laengu ja massi suhe $k = e/m_e \approx 1.76 \cdot 10^{11}\,\mathrm{C/kg}$.

Ü135 Elektronkiir ★★★

Autor: tundmatu, lahtine, 2008, G7

Kitsas elektronkiir läbib vaakumis tasaparalleelsete plaatide vahelise pilu ja langeb seejärel fluorestseeruvale ekraanile, mis asub plaatide ekraanipoolsemast servast kaugusel $l=15\,\mathrm{cm}$. Kui plaatidele antakse pinge $U=50\,\mathrm{V}$, nihkub helendav punkt ekraanil endisest asukohast kaugusele $s=21\,\mathrm{mm}$. Plaatidevaheline kaugus $d=18\,\mathrm{mm}$, plaatide mõõtmed elektronide liikumise suunas on $b=6\,\mathrm{cm}$. Milline on elektronide algkiirus plaatide vahele sattumisel? Elektroni laengu ja massi suhe $e/m\approx 1.76\cdot 10^{11}\,\mathrm{C/kg}$.

Ü136 Kuup ★★★

Autor: Jaan Kalda, piirkonnavoor, 2008, G 7

Õhukesest elektrit mittejuhtivast materjalist on valmistatud kuup küljepikkusega a. Kuubil on elektrilaeng ühtlase pindtihedusega σ (pindtihedus on laeng pinnaühiku kohta). Ühe tahu keskkohta lõigatakse väike ruudukujuline auk mõõtmetega $b \times b$ ($b \ll a$). Leida elektrivälja tugevus kuubi keskpunktis.

Ü137 Liikuv laeng ★★★

Autor: Jaan Kalda, piirkonnavoor, 2009, G 6

Laetud osake laengu ja massi suhtega $q/m=1\,\mathrm{C/kg}$ seisab algselt paigal. Seejärel hakkab ta liikuma x- ja y-telje sihis toimivate elektrivälja impulsside mõjul. Elektrivälja vastavate komponentide E_x ja E_y sõltuvus ajast on toodud graafikul (graafiku mastaap ei ole korrektne, juhenduda tuleb graafikul näidatud numbritest impulsi kestvuse $\tau=1\,\mathrm{ms}$ ja amplituudi $E_0=1\,\mathrm{kV/m}$ ning perioodi $T=2\,\mathrm{s}$ jaoks). Visandage osakese trajektoor ja leidke keskmine kiirus (visandi tegemisel ja arvutustes võib lugeda ajavahemiku $\tau=1\,\mathrm{ms}$ jooksul toimuvad muutused hetkelisteks).

Ü138 Sfäärid ★★★

Autor: Kristian Kuppart, lahtine, 2011, G 8

Kaks juhtivast materjalist sfääri raadiustega R_1 ja R_2 on ühendatud pika juhtmega. Ühele sfääridest antakse mingi laeng. Leidke suhe $\frac{E_1}{E_2}$, kus E_1 ja E_2 on elektrivälja tugevused vastavate sfääride pinnal. Eeldage, et juhtme mahtuvus on tühine ning juhtme pikkus on oluliselt suurem sfääride raadiustest.

Ü139 Kondensaatorid ★★★★

Autor: Oleg Košik, lõppvoor, 2005, G 8

Kondensaatorid mahtuvustega 2C ja 3C on ühendatud pingeallikaga, mille pinge on U. Osake massiga m ning laenguga q lendab algkiirusega v, mis on suunatud paralleelselt kondensaatorite plaatidega (vt joonist). Osake lendab mõlema kondensaatori plaatide vahelt läbi. Mõlema kondensaatori plaatide pikkus on l ning plaatide vahelised kaugused on vastavalt 2d ja d. Leidke nurk, mille võrra kaldub osake võrreldes esialgse trajektooriga, kui ta väljub joonisel ülemisest kondensaatorist. Eeldada, et see nurk on väike.

Ü140 Kärbes ★★★★

Autor: Stanislav Zavjalov, lahtine, 2010, G7

Kärbes otsustas lennates püsida ainult elektrivälja ekvipotentsiaalpindade peal. Ta lendab sisse ruumi, mis on täidetud homogeense elektriväljaga \vec{E} , välja jõujoontega risti. Elektriväljas hoitakse paigal ka laengut -Q nii, et kärbse trajektoori esialgse puutuja ja laengu vahemaa on d (vt. joonist; -Q < 0). Kui lähedale kärbes laengule jõuab? Eeldage, et $Q \leq \pi \epsilon_0 E d^2$.

Ü141 Laetud klotsid ★★★★

Autor: tundmatu, lahtine, 2006, G 9

Horisontaalsel siledal dielektrilisel pinnal asuvad kaks laetud klotsi massidega m ja samanimeliste laengutega q. Alghetkel on vahemaa nende vahel l. Mis tingimusel hakkavad klotsid liikuma ja kui suur on vahemaa L nende vahel, kui liikumine lõppeb? Hõõrdetegur klotside ja pinna vahel on μ . Klotside mõõtmeid ja liikuvate laengute elektromagnetkiirgust mitte arvestada. Pinna dielektriline läbitavus on 1.

Ü142 Kosmoseprügi ★★★★ Autor: Siim Ainsaar, lõppvoor, 2009, G 9

Kosmoses hõljuvad vabalt kaks ühesugust elektriliselt laetud kuuli, mis on ühendatud ideaalse nööriga. Kummagi kera laeng on q ja mass M, nööri pikkus on l. Ootamatult lendab nööriga risti selle keskkoha pihta kosmoseprügi tükk massiga m ja kiirusega v ning jääb nööri külge kinni. Millisele vähimale kaugusele d lähenevad teineteisele kuulid? Eeldada, et kuulikeste diameetrid on väiksemad kui otsitav kaugus d.

Elektriahelad

Ü143 Mõõteriistad ★

Autor: Koit Timpmann, lõppvoor, 2006, G 1

Vooluringis on ampermeeter ja voltmeeter ühendatud jadamisi. Klemmidele on rakendatud pinge $U=9\,\mathrm{V}$. Kui voltmeetriga ühendada rööbiti takisti R, väheneb voltmeetri näit kaks korda, ampermeetri näit aga suureneb kaks korda. Kui suurt pinget näitas voltmeeter enne ja pärast takisti ühendamist?

Ü144 Elektriküünlad ★

Autor: Valter Kiisk, piirkonnavoor, 2009, G 4

Jõulukaunistuse valmistamiseks otsis Juku välja 10 taskulambipirni (nimipinge 3 V, võimsus 0,6 W) ja alaldi klemmipingega 5 V. Seejärel koostas ta skeemi, mis on kujutatud joonisel.

a) Kui suur peab olema takisti R takistus, et pinge lampidel ei ületaks nimipinget? **b**) Skeemi sisselülitamisel avastas Juku, et lambid põlevad oodatust tuhmimalt. Selgus, et alaldi klemmipinge oli koormusega langenud 4 V-ni ning pinge lampidel 2,3 V-ni. Kui suur tuleks valida takisti R väärtus, et lambid põleksid normaalse heledusega?

Ü145 Päikesepaneel ★

Autor: Mihkel Pajusalu, lõppvoor, 2010, G 3

Joonisel on kujutatud päikesepaneeli läbiva voolu sõltuvus klemmipingest. Määrake paneeli klemmidega ühendatud koormise takistus, mille korral on koormisel eralduv võimsus maksimaalne.

Ü146 Ampermeetrid ★★

Autor: tundmatu, lahtine, 2008, G 4

Vooluahelasse on ühendatud neli ühesugust ampermeetrit, igaüks sisetakistusega r, ja takisti R. Esimese kahe ampermeetri näidud on $I_1=3\,\mathrm{A}$ ja $I_2=5\,\mathrm{A}$. Leida takistuste suhte R/r arvuline väärtus.

Ü147 Patarei ★★

Autor: Taavi Pungas, piirkonnavoor, 2011, G 6

Patarei ühendatakse jadamisi takistiga takistusega R ja ampermeetriga, mis näitab voolutugevuseks I_1 . Kui lisada jadamisi veel üks takisti takistusega R, näitab ampermeeter voolutugevuseks I_2 . Leidke, mis vahemikku jääks suhe I_2/I_1 , kui vooluallika sisetakistus r oleks

- \mathbf{a}) väiksem kui R,
- **b**) suurem kui R.

Ü148 Vooluring ★★

Autor: Valter Kiisk, piirkonnavoor, 2005, G 4

Takisti takistuse määramiseks koostati kaks erinevat vooluringi kasutades voltmeetrit, ampermeetrit ja vooluallikat (vt joonist). Leidke avaldis takistuse R arvutamiseks, kui vasakpoolse skeemi järgi mõõtes saadi voltmeetri näiduks U_1 ja ampermeetri näiduks I_1 ning parempoolse skeemi järgi mõõtes vastavalt U_2 ja I_2 . Vooluallika elektromotoorjõud on muutumatu ning sisetakistus tühine. Mõõteriistade sisetakistused ei ole teada.

Ü149 Takistid ★★

Autor: Aigar Vaigu, lõppvoor, 2005, G 4

Mitu korda muutub joonisel kujutatud ahelas takistil A eralduv võimsus, kui vahetada alalispingeallika polaarsus? Kõik takistid on võrdse takistusega.

Ü150 Elektriskeem ★★

Autor: tundmatu, lahtine, 2006, G 2

Leida laengud q_1 , q_2 ja q_3 kõikidel skeemil toodud kondensaatoritel.

Ü151 Skeem ★★

Autor: tundmatu, lahtine, 2009, G 3

Elemendi X takistus muutub sõltuvalt selle pingest. Kui $U_X \leq 1\,\mathrm{V}$, siis selle takistus on $R_1=1\,\Omega$, kui aga $U_X>1\,\mathrm{V}$, siis on takistus $R_2=2\,\Omega$. Kolm elementi X ühendatakse ideaalse ampermeetriga, nagu näidatud joonisel. Väljundklemmidele rakendatakse pinge, mille ajaline sõltuvus on toodud graafikul. Joonestage ampermeetri näidu ajalise sõltuvuse graafik.

Ü152 Takisti ★★★

Autor: Jaan Kalda, piirkonnavoor, 2007, G 7

On vaja teha taksisti takistusega $R=1\,\Omega$, mille takistuse temperatuurisõltuvus oleks toatemperatuurile lähedastel temperatuuridel võimalikult väike. Kasutada on raudtraat ristlõikepindalaga $s=0,030\,\mathrm{mm^2}$ ja grafiitpulk ristlõikepindalaga $S=3,0\,\mathrm{mm^2}$. Kuidas valmistada soovitud takistit ja kui pikki grafiitpulga ning terastraadi juppe tuleb seejuures kasutada? Grafiidi ja raua eritakistused on vastavalt $\rho_g=3,0\cdot10^5\,\Omega\,\mathrm{m}$ ning $\rho_r=9,7\cdot10^{-8}\,\Omega\,\mathrm{m}$; takistuse temperatuurikoefitsiendid (suhtelised muutused $\Delta R/R$ temperatuuri kasvamisel ühe kraadi võrra) on $\alpha_g=-5,0\cdot10^{-3}\,\mathrm{K^{-1}}$ ning $\alpha_r=6,41\cdot10^{-3}\,\mathrm{K^{-1}}$

Ü153 Kondensaatoriredel $\star\star\star$ Autor: Siim Ainsaar, piirkonnavoor, 2007, G 8 Ühesugustest kondensaatoritest mahtuvusega C on koostatud joonisel näidatud lõpmatu ahel. Leidke ahela kogumahtuvus C_k .

Ü154 Traat ★★★

Autor: Jaan Kalda, lõppvoor, 2008, G 7

Ühtlase ristlõikega traati (ristlõike pindala $S=1\,\mathrm{mm^2}$) venitati nii, et tema erinevad lõigud venisid erinevalt. Enne venitamist oli traadile märgitud jooned iga millimeetri tagant. Joonisel on toodud nende joonte vahekaugused Δ pärast venitamist sõltuvana kaugusest traadi ühest otsast l (l on mõõdetud pärast venitamist). Leidke selle nüüdseks 4 meetri pikkuse traadi takistus, arvestades, et traadi materjali tihedus ja eritakistus $\rho=1\cdot10^{-6}\,\Omega$ m venitamise tagajärjel ei muutunud.

Ü155 Kondensaator ★★★ Autor: Aigar Vaigu, piirkonnavoor, 2010, G 7

Muudetava mahtuvusega kondensaator on ühendatud patareiga, mille klemmide pinge on U. Kondensaatori mahtuvust muudetakse laadimisel nii, et kondensaatori laadimise vool I on konstantne. Leidke patarei võimsus ja kondensaatori laadimisel energia salvestamise kiirus. Põhjendage võimalikku erinevust.

Ü156 Kondensaatorid ★★★ Autor: Mihkel Rähn, piirkonnavoor, 2006, G 7

Joonisel toodud elektriskeemil on vooluallikas elektromotoorjõuga $\mathcal E$ ja sisetakistusega r, kolm takistit takistustega $R_1=R_2=R_3=R$ ning kondensaatorid mahtuvustega C_1 ja C_2 . Arvutage, kui suured on elektrilaengud kondensaatoritel pärast pika aja möödumist, kui:

- a) lüliti 1 on suletud, lüliti 2 on avatud;
- **b**) mõlemad lülitid on suletud;
- **c**) eelmisest seisust avatakse mõlemad lülitid üheaegselt.

Ü157 Kondensaatorid ★★★

Autor: Mihkel Kree, lõppvoor, 2009, G 3

Kondensaatorite süsteem koosneb viiest kondensaatorist. Alghetkel on kolm neist laenguta ning kahel paikneb laeng q (vt joonist). Missugune laeng koguneb keskmisele kondensaatorile, kui süsteem on jõudnud tasakaaluolekusse?

Ü158 Aku laadimine ★★★★ Autor: Valter Kiisk, piirkonnavoor, 2008, G 8

Teatava akumulaatori elektromotoorjõud kasvab laadimise käigus nõnda, nagu kujutatud joonisel. Samas on toodud ka elektriskeem, mida Juku kavatseb kasutada sellise akumulaatori laadimiseks. Pingeallika klemmidel on pinge 6 V. Nii pingeallika kui ka aku sisetakistust võib lugeda tühiseks. Kuidas peaks Juku valima takistite R_1 ja R_2 väärtused, kui ta soovib, et maksimaalne laadimisvool ei ületaks 100 mA ja laadimisvool muutuks nulliks, kui akumulaator on täielikult laetud?

Ü159 Jõulukaunistus ★★★★

Autor: Valter Kiisk, lõppvoor, 2010, G 8

Soodsa jõulukaunistuse valmistamiseks otsustas Juku ühendada jadamisi kokku 50 valgusdioodi ja toita seda ahelat läbi alaldusdioodi D otse võrgupingega (vt joonist). Voolu piiramiseks on ahelasse lülitatud takisti ning voolu pulsatsiooni väljasilumiseks kondensaator. Pinge alaldusdioodil on tühine, igal valgusdioodil aga $U_d=3\,\mathrm{V}$. Kui suure takistusega R ja maksimumvõimsusega N tuleks valida takisti, kui valgusdioodid taluvad voolu kuni $I=20\,\mathrm{mA}$? Kui suure mahtuvusega C kondensaator kindlustab, et voolutugevuse pulsatsioon jääb $\alpha=5\%$ piiresse? Võrgupinge sagedus on $f=50\,\mathrm{Hz}$ ning amplituudväärtus $U_0=311\,\mathrm{V}$.

Ü160 Närvirakk ★★★★

Autor: Andres Laan, lõppvoor, 2011, G 9

Närviraku membraani võib vaadelda kui õhukest kilet mahtuvusega C, mida läbivad ioonkanalid, mis võimaldavad laengutel liikuda läbi membraani. Närviraku elektrilise tasakaalu seisukohast on olulisteks ioonideks naatrium ja kaalium. Kui naatriumioon (laenguga +e) läbib ioonkanali (sisenedes närvirakku), siis sooritavad keemilised jõud töö $e\mathcal{E}_{\mathrm{Na}}$, st võib öelda, et naatriumioonidele mõjub ioonkanalis elektromotoorjõud $\mathcal{E}_{\mathrm{Na}}$. Kaaliumioonide puhul on kanali läbimise protsess täpselt samasugune, kuid efektiivne elektromotoorjõud on sel puhul \mathcal{E}_{K} ($\neq \mathcal{E}_{\mathrm{Na}}$). Peale keemiliste jõudude töö toimivad laengu liikumisel ioonkanalis ka hõõrdejõud, mida saab kirjeldada elektrilise takistuse abil: naatriumioonide jaoks on membraani elektriline takistus R_{Na} ja kaaliumioonide jaoks R_{K} . Millise laengu omandab närviraku membraan elektrilise tasakaalu saabudes?

Magnetism

Ü161 Solenoid ★★

Autor: Andres Laan, lõppvoor, 2011, G 5

Õhksüdamikuga solenoidis (pikas silindrilises poolis) on vool I. Solenoidi sisemuses liigub elektron, mille trajektoor kujutab endast sellist kruvijoont, mille keerdude arv on võrdne solenoidi keerdude arvuga. Leidke selle elektroni kiiruse teljesihiline komponent. Võib eeldada, et elektroni kiiruse teljega risti olev komponent on piisavalt väike, et kokkupõrkeid solenoidi seinaga ei toimu. Elektroni mass on m ja laeng e.

Vihje: solenoidi sees on homogeenne magnetväli induktsiooniga $B=\mu_0 nI$, kus n on solenoidi traadi keerdude arv pikkusühiku kohta, I selles olev vool ja μ_0 vaakumi magnetiline läbitavus.

Ü162 Langev takisti ★★★

Autor: Andres Laan, piirkonnavoor, 2011, G 8

Joonisel on kujutatud Maa gravitatsiooniväljas vertikaalselt paiknevale juhtivale traadile kinnitati takisti nii, et see võib piki traati vabalt libiseda. Teades, et magnetinduktsioon oli B ja traadi harude vaheline kaugus d, leidke, millise lõppkiirusega hakkab takisti langema. Takisti mass on m ja takistus R.

Ü163 Laengud ★★★★ Autor: Jaan Kalda, lahtine, 2011, G 6

Kaks osakest laenguga q stardivad koordinaatide alguspunktist kiirusega v: üks x-telje sihis, teine y-telje sihis. Liikumine toimub homogeenses z-telje sihilises magnetväljas induktsiooniga B; osakeste omavahelise elektrostaatilise vastasmõjuga ärge arvestage. Milline on osakeste vahelise kauguse maksimaalväärtus l_{\max} edasise liikumise käigus?

Ü164 Traat ★★★★

Autor: Jaan Kalda, lõppvoor, 2007, G 10

Horisontaalsel libedal pinnal on fikseeritud kaks klemmi, mille vahekaugus a on väiksem neid ühendava hästi painduva sõlmevaba traadi pikkusest L. Süsteem asub vertikaalses homogeenses magnetväljas tugevusega B, traati läbib vool tugevusega I. Joonistage, millise kuju võtab traat. Kirjutage välja võrrandid, kust saab leida mehaanilise pinge T traadis. Leidke selle väärtus eeldusel, et $L \gg a$.

Ü165 Pool ★★★★

Autor: Siim Ainsaar, lõppvoor, 2008, G 10

Libedale klaaspulgale on pehmest traadist tihedasti keritud solenoid pikkusega ℓ , keerdude arvuga N ja ristlõikepindalaga S. Selles hoitakse konstantset voolu tugevusega I. Millist jõudu F oleks vaja rakendada pooli otstele südamiku sihis, et venitada seda pisutki pikemaks, kui kehtiks eeldus, et venitamisel suurenevad kõigi naaberkeerdude vahekaugused võrdselt? Võite lugeda, et klaasi magnetiline läbitavus $\mu=1$.

Vihje: tiheda solenoidi südamikus on homogeenne magnetinduktsioon $B = \mu_0 IN/\ell$.

Ü166 Laeng ★★★★

Ruudukujulise ristlõikega ruumipiirkond on täidetud homogeense magnetväljaga B ning selle keskel asub osake massiga m ja laenguga q, mis on alghetkel paigal. Alates alghetkest iga ajavahemiku $T=\frac{\pi m}{qB}$ tagant lülitub selles piirkonnas lühiajaliselt sisse elektriväli E (kestusega $\tau\ll T$), mis on suunatud risti magnetväljaga. Elektriväli võib muutuda kahes režiimis: (i) olles iga kord suunatud joonisel näidatud suunas; (ii) olles suunatud vaheldumisi kord joonisel näidatud suunas, kord vastupidises suunas.

Autor: Oleg Košik, lahtine, 2010, G 8

- a) Skitseerige osakese trajektoor mõlema režiimi korral.
- ${f b}$) Kumma režiimi korral väljub osake magnetväljaga piirkonnast kiiremini? Mitu korda kiiremini? Eeldage, et väljumisaeg on mõlemal juhul palju suurem kui T. Põhjendage vastust.

Ü167 Magnetväli ★★★★★ Autor: Jaan Kalda, piirkonnavoor, 2010, G 9

Magnetväli induktsiooniga B täidab joonisel kujutatud mõõtmetega risttahukakujulist ruumipiirkonda, välja arvatud väga kitsas magnetväljata pilus. Joonisel näidatud suunas lendab kiirusega v elektron (massiga m ja laenguga e). Arvutage ja visandage graafikul, kuidas sõltub elektroni kõrvalekaldenurk (st nurk tema kiirusvektorite vahel enne magnetvälja sisenemist ja pärast sealt lõplikku väljumist) elektroni algkiirusest v; piirduge väärtustega v < 2aBe/m.

Ü168 Silinder ★★★★

Autor: tundmatu, lahtine, 2007, G 10

Pika ühtlase mittejuhtiva silindri pinnal on ühtlaselt jaotatud laeng pindtihedusega σ . Alguses asub silinder välises homogeenses magnetväljas induktsiooniga B, mis on suunatud piki silindri telge; silinder on paigal. Seejärel lülitatakse magnetväli välja. Kui suure pöörlemise nurkkiiruse omandab selle tulemusel silinder? Silindri aine tihedus on ρ , silindri raadius on r.

Märkus: pöörleva silindri poolt tekitatav magnetväli lugeda tühiselt väikseks võrreldes välise väljaga

Geomeetriline optika

Ü169 Kiil ★

Autor: Valter Kiisk, lõppvoor, 2007, G 3

Laserkiire teele asetatakse enam-vähem risti õhuke klaasplaat (klaasi murdumisnäitaja n=1,5). Selle tulemusena nihkub L=2 m kaugusel ekraanil olev laserkiire kujutis d=5 mm võrra. Järeldatakse, et plaat on kergelt kiilukujuline. Leidke selle kiilu tipunurk α .

Vihje: väikeste nurkade φ puhul $\sin \varphi \approx \tan \varphi \approx \varphi$.

Ü170 Lääts ★

Autor: tundmatu, lahtine, 2009, G 2

Lääts tekitab esemest $d=24\,\mathrm{cm}$ kaugusele ekraanile kujutise, mis on esemest 3 korda suurem. Leidke läätse fookuskaugus.

Ü171 Kiirtekimbu laiendi ★ Autor: Koit Timpmann, piirkonnavoor, 2010, G 3

Kaks ühise optilise peateljega läätse moodustavad seadme, millega saab paralleelsest valgusvihust moodustada esialgsest laiema või kitsama paralleelse valgusvihu. Kasutatava seadme esimese läätse optiline tugevus on −20 dpt. Kui kaugele esimesest läätsest tuleks paigutada teine lääts, et laiendada seadmele langev valgusvihk 2,5-kordseks?

Ü172 Nõguspeegel ★★

Autor: EFO žürii, lõppvoor, 2006, G 2

On teada esemelt lähtunud ühe kiire suund enne ja pärast peegeldumist sfääriliselt nõguspeeglilt. Teades eseme AB ja optilise peatelje asukohta, konstrueerige eseme kujutis ja tähistage nõguspeegli fookuse asukoht. Ignoreerida sfäärilisi aberratsioone.

Ü173 Plaat ★★

Autor: tundmatu, lahtine, 2007, G 4

Tasaparalleelsel plaadil paksusega $d=5\,\mathrm{cm}$ on alumine pind hõbetatud. Valguskiir langeb plaadi ülemisele pinnale nurga $\alpha=30^\circ$ all, osaliselt peegeldub sellelt ning osaliselt murdub plaadi sisse. Seejärel peegeldub murdunud kiir plaadi alumiselt pinnalt ning murdub teist korda, väljudes tagasi õhku. Leidke plaadi materjali murdumistegur n, kui kaugus esimese peegeldunud ja teise murdunud kiire vahel $l=2.5\,\mathrm{cm}$.

Ü174 Valgusvihk ★★

Autor: Mihkel Kree, piirkonnavoor, 2005, G 5

On antud ülesanne muuta kitsas paralleelne valgusvihk võimalikult laiaks paralleelseks valgusvihuks. Kasutada saab vaid kahte läätse etteantud kolmest: kumerlääts (fookuskaugus $f_1=20\,\mathrm{cm}$), kumerlääts ($f_2=40\,\mathrm{cm}$) ning nõguslääts ($f_3=-10\,\mathrm{cm}$). Kuidas tuleb toimida ning mitu korda laiemaks valgusvihk sel juhul muutub? Eeldage, et läätsede mõõtmed on oluliselt suuremad valgusvihu laiusest.

Ü175 Biprisma ★★

Autor: Mihkel Kree, piirkonnavoor, 2006, G 6

Paralleelne kiirtekimp langeb võrdhaarsele kolmnurksele prismale risti prisma tahuga (vt joonist). Prisma teravnurgad on väikesed, suurusega α . Prisma materjali murdumisnäitaja on n. Prismast kaugusel d paikneb koondav lääts fookuskaugusega f. Läätse optiline peatelg on paralleelne kiirtekimbu esialgse sihiga ning läbib prisma tipunurka. Missugune pilt tekib läätse fokaaltasandis asuvale ekraanile? Leida pilti iseloomustavad parameetrid. Kuidas sõltub pilt kaugusest d?

Märkus: väikeste nurkade korral kehtib lähendus $\tan \alpha \approx \sin \alpha \approx \alpha$.

Ü176 Varjud ★★

Autor: Jaak Kikas, piirkonnavoor, 2007, G 6

Läbipaistmatut kera valgustab kerakujuline valgusallikas. Joonisele on kantud läbipaistmatu kera poolt tekitatud täis- ja poolvarju koonuste lõiked joonise tasandiga (kera keskpunkt asub samas tasandis). Konstrueerige valgusallika lõige joonise tasandiga. Valgusallika keskpunkt asetseb samuti joonise tasandis.

Ü177 Veealune valgus ★★

Autor: Jaak Kikas, lõppvoor, 2008, G 5

Kas basseini kohal rippuv punktvalgusallikas, mida vaadeldakse basseini põhjast, on heledam siis, kui bassein on veest tühi, või siis, kui ta on veega täidetud ja kaugus silmast veepinnani võrdub valgusallika kõrgusega veepinna kohal? Mitu korda? Veepinnalt peegeldub tagasi r=2% valgust, vee murdumisnäitaja on n=1,33 ja neeldumine vees on tühine. Allika heledus on võrdeline silmaavasse sattuva valguse energiaga, silmaava läbimõõdu loeme samaks kõigis vaatlustingimustes ja väikeseks võrreldes vaatleja sügavusega.

Ü178 Konfokaalne mikroskoop ★★ Autor: Mihkel Rähn, lõppvoor, 2009, G 7

Harilikest mikroskoopidest parema ruumilise lahutuse saamiseks kasutatakse konfokaalseid mikroskoope. Juuresoleval joonisel on kujutatud konfokaalse mikroskoobi põhielemendid: objektiiv, läätsed L_1 ja L_2 ning nende ühises fokaaltasandis asuv väike ringikujuline ava. Joonisel on samuti esitatud optilisel peateljel asuvast väikesest uuritavast esemest lähtuvate kiirte käik. Objektiivi fokaaltasandist kaugemal ja lähemal olevatest objektidest lähtuvad kiired ei läbi enamuses ava, vaid neelduvad ava servadel. Kõrvalnähtusena vaateväli kitseneb. Kui kaugel optilisest peateljest võib olla objektiivi fokaaltasandis olev ese, et see oleks veel nähtav? Läätsede L_1 , L_2 ja objektiivi fookuskaugused on vastavalt f_1 , f_2 ja $f_{\rm obj}$, ava läbimõõt d.

Ü179 Klaaskuulike ★★

Autor: Jaan Kalda, lahtine, 2010, G 4

Paljudes helkurmaterjalides kasutatakse valguse tagasisuunamiseks tillukesi klaaskuulikesi, mis kantakse tiheda kihina materjali pinnale. Uurime, milline peaks olema selliste klaaskuulikeste murdumisnäitaja. Teeme järgmised eeldused: (a) klaaskuulile langeb valguskiir nii, et valguskiire ja pinnanormaali vaheline nurk α on väike ($\alpha \ll 1\,\mathrm{rad}$); (b) valguskiir murdub klaasi pinnal, peegeldub ühekordselt kuuli sisepinnalt ja väljub seejärel kuulist (murdudes teistkordselt kuuli pinnal). Millise murdumisnäitaja n korral suundub selline valguskiir täpselt tagasi? Tehke kiirtekäigu joonis ja põhjendage vastust. *Abivalem:* väikese α korral radiaanmõõdus $\sin \alpha \approx \alpha$.

Ü180 Kiilud ★★★

Autor: tundmatu, lahtine, 2006, G 6

Tasaparalleelne plaat koosneb kahest klaaskiilust väikse nurgaga $\varphi \ll 1$ (vt joonist). Kiilude murdumisnäitajad on n_1 ja n_2 ($n_2 > n_1$). Plaadile risti tema pinnaga langeb paralleelne valgusvihk. Plaadi taga asub koondav lääts fookuskaugusega f. Läätse fokaaltasandis asub ekraan. Joonistage kiirte käik süsteemis. Kui palju nihkub valguslaik ekraanil, kui me eemaldame plaadi?

Vihje: väikeste nurkade puhul kehtib ligikaudne võrdus $\tan \varphi \approx \sin \varphi \approx \varphi$.

Ü181 Klaaskuup ★★★

Autor: tundmatu, piirkonnavoor, 2009, G7

Klaaskuubi neli tahku on värvitud mustaks nõnda, et värvimata jäänud tahud paiknevad kõrvuti (omavad ühist serva). Missugune peab olema klaasi murdumisnäitaja n, et ka värvimata tahud paistaksid mustadena?

Ü182 Peeglid ★★★

Autor: Jaan Kalda, piirkonnavoor, 2009, G 8

Kui paigutada kaks tasapeeglit nii, et nende tasapinnad moodustavad nurga $\alpha < 180^\circ$ ning peegeldavad pinnad on vastamisi, siis peeglite vahele paigutatud asjadest võib tekkida mitu kujutist: lisaks peegeldustele veel peegelduse peegeldused jne. Joonisel on kujutatud valgusallika S kaks peegeldust ning üks peegelduse peegeldus ülaltvaates (st peeglite tasapindade lõikejoone sihis). Leida konstruktsiooni abil peeglite ning valgusallika asukohad. Peeglitel on ainult üks peegeldav külg.

Ü183 Kapillaartoru ★★★

Klaasist kapillaartoru on sisemise raadiusega r ja välimise raadiusega R. Millist tingimust peavad rahuldama r, R ja klaasi murdumisnäitaja n, et küljelt vaadates paistaks, et kapillaartoru seinapaksus on null?

Ü184 Lääts ★★★★

Autor: tundmatu, lahtine, 2007, G 9

Autor: tundmatu, lahtine, 2009, G 8

Teritamata pliiatsi telg ühtib koondava läätse peateljega. Mitu korda on pliiatsi kujutise pikkus tema enda pikkusest erinev, kui pliiatsi ühe otsa kujutise diameetri ja pliiatsi diameetri suhe on k_1 ning teise otsa jaoks on see suhe k_2 ? Pliiatsi mõlemad otsad asuvad läätsest kaugemal kui on läätse fookuskaugus.

Ü185 Hajuti **** Autor: Andreas Valdmann, piirkonnavoor, 2010, G 8 Mõnedes valgustites kasutatakse valguse hajutamiseks joonisel kujutatud ristlõikega pleksiklaasist plaati. Valgus langeb selle siledale poolele ja läbib hajuti vaid juhul, kui langemisnurk on suurem kriitilisest nurgast $\alpha_{\rm kr}$. Leidke nurga $\alpha_{\rm kr}$ väärtus. Pleksiklaasi murdumisnäitaja n=1,5. Kõik sakilise poole tahud on sileda poole suhtes 45-kraadise nurga all.

Ü186 Nõguslääts eestvaates ★★★★

Autor: Siim Ainsaar, piirkonnavoor, 2011, G 10

Joonisel on kujutatud eestvaates nõguslääts, mille optiline peatelg on joonise tasandiga risti ja lõikub läätsega punktis O. Antud on ka üks horisontaalne valguskiir ning selle lõikepunktid eesmise fokaaltasandi ning läätsega (vastavalt punktid K ja L). Joonestage antud vaates lisalehel kiire edasine käik ning lõikepunkt tagumise fokaaltasandiga. Põhjendage lahendust.

Ü187 Gravitatsioonilääts ★★★★ Autor: Mihkel Kree, piirkonnavoor, 2007, G 10

Üldrelatiivsusteooria ennustab, et mustast august möödumisel kaldub valguskiir gravitatsiooni tõttu kõrvale oma esialgsest liikumissuunast nurga $\varphi = 4GM/c^2r$ võrra, kus M on musta augu mass ning r trajektoori lähima punkti kaugus selleni. Oletame, et must auk satub täpselt vaatleja ja tähe vahele nii, et kaugus vaatlejast musta auguni on L_1 ning mustast august täheni L_2 . Missugune on tähe kujutis vaatleja jaoks (põhjendage oma vastust kiirte käigu visandi abil) ning kui suur on kujutise nurkläbimõõt? Kuna vaatlejani jõudvate kiirte jaoks on r palju väiksem tähe kaugusest, võib kasutada väikeste nurkade lähendust $\sin \alpha \approx \tan \alpha \approx \alpha$.

Ü188 Akvaarium ★★★★

Autor: tundmatu, lahtine, 2005, G 10

Leidke maksimaalne suurendus k, mille tekitab sfääriline akvaarium, kui vaadata väljastpoolt selles ujuvat kala. Suurenduse all mõistame siin kala kujutise ja tegeliku kala suuruste suhet. Vee murdumisnäitaja n=1,3. Väikeste nurkade puhul kehtib ligikaudne võrdus $\sin \alpha \approx \alpha$.

Ü189 Kuup ★★★★

Läbipaistvast klaasist tehtud kuubis on suur kerakujuline õõnsus, mis on täidetud sinist värvi gaasiga. Kuup lebab kollaste seintega toas valgel põrandal. Juuresolev kuubi joonis on tehtud kuubi kohalt pildistatud foto põhjal, millelt on eemaldatud kõik värvid ning jäetud alles selgeltnähtavad kontuurid ja erivärviliste piirkondade eraldusjooned (joonte kujud ja mõõtmed on täpselt sellised nagu fotol). Kuubi mõõtmed lugeda hulga väiksemateks põranda mõõtmetest ning kõrgusest, millelt on tehtud joonise aluseks olnud foto. Millistele värvidele vastavad tähed A, B, C, D? PõhAutor: Jaan Kalda, lõppvoor, 2007, G 8

jendage vastust. Leidke klaasi murdumisnäitaja.

Ü190 Nõguspeegel ★★★★

Autor: Mihkel Kree, lõppvoor, 2007, G 9

Optiline süsteem koosneb kumerläätsest ja nõguspeeglist, mille optilised peateljed ühtivad. Kumerpeegli asukohta pole joonisel märgitud. On teada, et objektist A tekib teisele poole läätse kaks kujutist K_1 ja K_2 . Konstrueerige kumerpeegli kõveruskeskpunkt O ja kumerpeeglis objektist A tekkinud näiv kujutis A'. Eeldada, et optilises süsteemis on nurgad piisavalt väiksed, et sfäärilisi aberratsioone ei teki.

Ü191 Kärbes ★★★★

Autor: Aigar Vaigu, piirkonnavoor, 2008, G 10

Kärbes on merevaigutükis, mille murdumisnäitaja on n=1,6. Tüki üks pinnaosa on sfääriline kõverusraadiusega $r=3\,\mathrm{mm}$. Kui vaadata kärbse pead läbi selle pinnaosa, siis näib pea asuvat kõveruskeskpunkti läbival sirgel $k=5\,\mathrm{mm}$ sügavusel merevaigus. Kui sügaval on kärbse pea tegelikult?

Märkus: kasutada väikeste nurkade lähendust $\tan \alpha \approx \sin \alpha \approx \alpha$, kus $\alpha \gg 1$ on väike nurk mõõdetuna radiaanides.

Ü192 Punktallikad ★★★★

Autor: Jaan Kalda, lõppvoor, 2010, G 9

Juuresoleval joonisel on neli punkti, millest kaks on valgusallikad ja kaks nende tõelised kujutised, mille on tekitanud õhuke lääts. Leidke konstrueerimise teel läätse tasand ja optiline peatelg. Kui võimalusi on rohkem kui üks, siis leidke need kõik.

Ü193 Optiline süsteem ★★★★★ Autor: Andreas Valdmann, lõppvoor, 2011, G 8

Klaasist murdumisnäitajaga n on valmistatud õhuke kaksikkumer lääts, mille mõlema pinna kõverusraadius on r (läätse paksus $d\gg r$). Läätse üks pind kaetakse peegeldava metallikihiga. Leidke kumerläätsest ja nõguspeeglist tekkinud optilise süsteemi fookuskaugus.

Vihje: fookuskauguse leidmiseks võib vaadelda optilise peatelje lähedasi kiiri, mis levivad selle suhtes väikese nurga all. Sel juhul saab rakendada väikeste nurkade valemit $\sin \alpha \approx \tan \alpha \approx \alpha$, kus α on radiaanides.

Ü194 Sähvatus ★★★★

Autor: Mihkel Kree, lõppvoor, 2006, G 9

Optiline süsteem koosneb kahest nõguspeeglist ja kumerläätsest (vt joonist), mille optilised peateljed ühtivad. Ringikujulise ristlõikega valgusimpulss siseneb süsteemi optilise peatelje sihis ning valgusvihu telg ühtib sellega. Peeglite kõverusraadiused on $R_1=8\,\mathrm{m}$ ja $R_2=4\,\mathrm{m}$ ning peeglite vahekaugus $L=6\,\mathrm{m}$. Peeglite läbimõõdud on $d_1=160\,\mathrm{mm}$ ja $d_2=96\,\mathrm{mm}$. Kiire läbimõõt on $D=192\,\mathrm{mm}$. Läätse läbimõõt on suurem valgusvihu omast. Suurema peegli keskel on ava läbimõõduga $d_0=1\,\mathrm{mm}$. Joonistage valguse intensiivsuse ajaline kulg kumerläätse fookuses f. Eeldage, et süsteemi saabuva impulsi kestvus $\tau\ll L/c$. Valguse kiirus $c=3\cdot 10^8\,\mathrm{m/s}$.

Varia

Ü195 Tunnel ★

Autor: Jaan Kalda, lahtine, 2008, G3

Rong, mis sõidab kiirusega $v=50\,\mathrm{km/h}$, sisenes hästi pikka tunnelisse. Nii rongi kui tunneli ristlõiget lugeda ruuduks küljepikkusega vastavalt $a=4\,\mathrm{m}$ ja $b=6\,\mathrm{m}$. Hinnake, milline on tuule kiirus rongi aknast mõõdetuna.

Ü196 Kuu ★★

Autor: Urmo Visk, lõppvoor, 2006, G 5

Peegeldusteguriks nimetatakse pinnalt peegeldunud ja pinnale langenud valgusvõimsuste suhet. Säriaeg on ajavahemik, mille vältel langeb fotoaparaadis objektiivi läbinud valgus filmilindile. Päikeselisel sügispäeval on mingi objekti pildistamisel optimaalne säriaeg $t_1=1/8000\,\mathrm{s}$. Sama objekti pildistamisel öösel, kui paistab täiskuu, on optimaalne säriaeg $t_2=160\,\mathrm{s}$. Mõlema pildi tegemisel on erinev vaid säriaeg. Hinnake Kuu pinna keskmist peegeldustegurit. Kuu kaugus Maast $R=384\,000\,\mathrm{km}$ ja Kuu raadius $r=1740\,\mathrm{km}$. Kvaliteetse pildi saamiseks peab filmile langev valgusenergia päeval ja öösel olema sama väärtusega ehk fotografeerimisel võib valgustatuse ja optimaalse säriaja lugeda pöördvõrdeliseks.

Ü197 Maja ★★★

Autor: Jaan Kalda, lõppvoor, 2008, G 4

Fotol kujutatud maja alumise korruse kõrgus (mõõdetuna esimese korruse akna alumisest servast teise korruse akna alumise servani) on 3 meetrit. Kui kõrgel veepinnast on maja (täpsemalt, tema vundamendi ülemine serv)?

Ü198 Maja ★★★★

Autor: Jaan Kalda, lahtine, 2008, G 9

Juuresolev joonis on tehtud foto põhjal. Pildistamise hetkel asus fotoaparaat 2 m kõrgusel veepinnast. Kasutades antud joonist ja joonlauda määrake nii täpselt kui võimalik vees ujuva poi läbimõõt!

Laineoptika

Ü199 Kile ★★★★

Autor: Jaan Kalda, lahtine, 2008, G8

Selleks et vähendada peegeldusi optilistelt klaasidelt, kaetakse nende pinnad õhukese läbipaistva kilega. Leida, millise paksusega peaks olema selline kile, kui klaasi murdumisnäitaja on $n_0=1,5$ ja kile oma $n_1=1,3$. Eeldada, et kile on optimeeritud risti langeva rohelise valguse jaoks lainepikkusega $\lambda=530\,\mathrm{nm}$.

Ü200 Kunstinäitus ★★★★ Autor: Jaan Kalda, lõppvoor, 2009, G 10

Kunstinäituse saal kujutab endast valgete seintega suurt tuba, mida valgustatakse monokromaatilise rohelise valgusega (lainepikkus $\lambda=550\,\mathrm{nm}$). Sellel toal on siledast klaasist põrand; klaasi alumine pind on värvitud mustaks, ülemine pind on aga kaetud õhukese läbipaistva värvitu kilega. Keset tuba seisev näitusekülastaja näeb enda ümber põrandal heledaid ja tumedaid ringikujulisi vööte, kusjuures ta ise asub nende ringide keskpunktis — sõltumata sellest, kus kohas ta parajasti seisab. Näitusekülastaja uurib asja lähemalt: kükitab ja vaatab kaugele, seejärel püüab vaadata otse alla. Maksimaalselt õnnestub tal loendada N=20 heledat vööti. Kui paks on klaasi kattev kile? Klaasi murdumisnäitaja $n_0=1,6$, seda katva kile oma $n_1=1,4$.

Vihjed

- V1 Kangi kriitilise nurga korral kehtib varda jaoks jõumomentide tasakaal.
- **V2** Kehtib Newtoni II seadus ning jõumomentide tasakaal (näiteks ühe toru otspunkti suhtes).
- **V3** Toereaktsiooni kääride telje sihiline komponent peab olema tasakaalustatud hõõrdejõu poolt.
- **V4** Kuuli hoiab augus või "lükkab" august välja üks ja sama jõud kuulile mõjuv raskusjõud, mis on suunatud vertikaalselt alla. Kuul on augus, kui raskusjõu vektor läbib augu põhja, ja kukub, kui see väljub sellest.
- **V5** Libisemise piiril tasakaalustab lund katuselt alla lükkavat raskusjõudu hõõrdejõud, kusjuures hõõrdejõud mõjub vaid lume kuivale osale.
- **V6** Koheldes hõõrdejõudu tundmatuna, võime kasti jaoks kirja panna Newtoni II seaduse nii x- kui ka y-telje jaoks. Hõõrdejõu maksimaalne väärtus on $F_{\mu}=N\mu$, kus N on toereaktsioon.
- **V7** Liivahunniku maksimaalse kõrguse saavutamiseks peavad pindmised liivakihid olema libisemise äärel. Seega tasub vaadelda jõudude tasakaalu pindmiste liivaterade jaoks.
- **V8** Kriitilise hõõrdeteguri väärtuse korral kehtib jõumomentide tasakaal tuulepoolsete rataste telje suhtes.
- **V9** Kuna nöör on venimatu, on mõlemad hammasrattad paigal ja seega tasakaalus. Kehtib nii jõudude kui ka jõumomentide tasakaal. Antud juhul on kõige mugavam vaadelda jõumomentide tasakaalu hammasrataste keskpunktide suhtes.
- **V10** Kuulile mõjub raskusjõud, niidi pinge, toereaktsioon ning hõõrdejõud kuuli ja kasti vahel. Süsteemi lahendamise standardmeetod on rakendada Newtoni II seadust nii x- kui ka y-telje jaoks ning jõumomentide tasakaalu tingimust. Elu teeb lihtsamaks tähelepanek, et hõõrdejõu ja toereaktsiooni võib kombineerida üheks jõuks, mille nurk kasti vertikaali suhtes on kuni $\arctan \mu$, ning seejärel täheldada, et tasakaalu korral peavad kuulile mõjuvad kolm jõudu lõikuma ühes punktis.
- **V11** Prussi asend on stabiilne, kui väikse kõrvalekalde korral muutub prussi potentsiaalne energia suuremaks. Teisisõnu peab massikese kõrgemale tõusma.

- **V12** Ülesande lahendamiseks tuleb küsida: (a) kas antud jõust piisab üle serva kantimiseks; (b) ega klots seejuures libisema ei hakka? Mõlema küsimuse analüüsimiseks on mugav rakendada jõumomentide tasakaalu. Lisaks on kasulik teada, et hõõrdejõu ja toereaktsiooni resultantjõu maksimaalne nurk vertikaali suhtes on $\arctan \mu$.
- V13 Et kuuli C kiirusvektor on risti sirgega AC, siis hetkeline pöörlemiskese asub sellel sirgel. Seega, kui kuul A hakkab libisema, siis on selle kiirusvektor samuti (ning järelikult ka hõõrdejõu vektor) risti sirgega AC. Piirjuhtumil, kui kuulide masside suhe on selline, et kuul A hakkab vaevu liikuma, on hetkeline pöörlemiskese väga lähedal punktile A.
- **V14** Kehtib nii jõudude kui ka jõumomentide tasakaal. Ülesandes on kolm huviväärset punkti: rõnga keskpunkt, massikese ning võlli ja rõnga puutepunkt.
- V15 Pulgale mõjuvad neli erinevat jõudu: silindri ja pulga vaheline toereaktsioon, raskusjõud, maa ja pulga vaheline toereaktsioon ning hõõrdejõud. Pulga asend on stabiilne, kui jõudude ja jõumomentide tasakaalu tingimustest avaldatav hõõrdejõud ei ületa maksimaalset seisuhõõrdejõudu ning kui varda alaots ei tõuse õhku. Mõlemat tingimust väljendavad erinevad võrratused, mis peavad samaaegselt kehtima.
- **V16** Konnale mõjub kolm jõudu: raskusjõud, rõhumisjõu ja hõõrdejõu resultant ning iminapa tekitatud tõmbejõud. Rõhumisjõu ja hõõrdejõu resultandi nurk pinnanormaali suhtes on kriitilisel juhul $\arctan \mu$. Tasakaalu korral peavad antud jõud üksteist tasakaalustama, ehk moodustuma kolmnurga.
- V17 Tasakaalu korral peab iga toru jaoks kehtima jõudude ning jõumomentide tasakaal. Alumiste torude jaoks on jõumomentide tasakaalu kõige mugavam vaadelda maapinna puutepunkti suhtes, sest sellisel juhul on maapinna hõõrdejõu panus 0. Lisaks paneme tähele, et kahe alumise silindri vahel rõhumisjõudu ei ole, sest see kaob niipea, kui alumised silindrid natukenegi üksteisest eemalduvad.
- **V18 a**) Jõu määramiseks on vajalik leida, kui palju muutub tungraua kõrgus ühe vända täispöördega. Selle jaoks võib rakendada Pythagorase teoreemi tungraua pikkuse jaoks ja seda diferentseerida.
- **b**) Selleks, et tungraud oleks ilma väntamiseta hõõrdejõu tõttu tasakaalus, peab hõõrdejõud täpselt kompenseerima eelnevas alamülesandes leitud väntamiseks kuluva jõu.

- **V19** Tasakaalu korral peab kehtima jõumomentide tasakaal. Kuna kehade süsteemile mõjuvad kolm jõudu, peavad jõudude pikendused lõikuma samas punktis, sest vastasel juhul saaksime valida kahe jõu pikenduse lõikepunkti ning selle punkti suhtes mõjuks kolmanda punkti poolt nullist erinev jõumoment. Lisaks paneme tähele, et kehadele A ja B mõjuvad sama absoluutväärtusega jõud (mõlemad on libisemise äärel) ning nende suunad on teada.
- V20 Ratta liikumist on mugavam vaadelda autodega seotud süsteemis.
- **V21** Autode hulga pidevuse tõttu on lõigul C teatud punkti ajaühikus läbivate autode arv võrdne lõikude A ja B vastavate arvude summaga.
- **V22** Lihtsam on leida, kui palju aega kulus autol esimese 4/5 läbimiseks ning seejärel võtta t ja leitud aja vahe.
- **V23** Ratturite sõiduaeg on leitav asjaolust, et esimene ja teine rattur läbisid sama pika vahemaa.
- **V24** Möödasõidu käigus avaldub sõiduauto läbitud vahemaa ühtlase kiirenduse valemiga $x = vt + \frac{at^2}{2}$.
- **V25** Kuna rongid kiirenevad konstantse kiirendusega, saame avaldada läbitud vahemaa liikumisvõrrandist $s(t)=vt+\frac{1}{2}at^2$. Lisaks peab mõlema rongi kokkupõrkeni läbitavate vahemaade summa olema $s=2750\,\mathrm{m}$.
- **V26** Lõppsageduse avaldamiseks esialgse sageduse kaudu võib Doppleri seadust kaks korda järjest kasutada.
- **V27** Ülesannet on mugavam vaadelda emma-kumma autoga seotud taustsüsteemis.
- **V28** Graafikult on näha, et ainult kahel mõõdetud ajahetkel oli sportlase kiirus keskmisest madalama väärtusega. See tähendab, et peatus mahtus täielikult antud kahe perioodi sisse.
- **V29** Laine levik toimub geomeetrilise optika seaduste kohaselt. Kehtib $\sin \alpha_1/\sin \alpha_2 = v_1/v_2$, kus v_i ja α_i on vastavalt keskkonna $i \in \{1,2\}$ laine leviku kiirus ja langemisnurk eralduspinna normaali suhtes.
- **V30** Ülesande geomeetria ning lööklaine koonuse nurga kaudu on võimalik avaldada lennuki koordinaadid stopperi käivitamise ja peatamise hetkedel. Leitud nihke kaudu on lennukiirus lihtsasti leitav.

- **V31** Antud ülesandes on kolm tundmatut: pilu laius, katiku kiirus ja piisa kujutise kiirus sensori tasandis. Lisaks kirjeldati kahte olukorda, mis seovad antud tundmatuid. Selgub, et nendest piisab, et määrata kolmandas olukorras triibu pikkust.
- **V32** Liikudes B suunas on laeva kiirus $v_0 + v(t)$ ning liikudes A suunas on kiirus $-v_0 + v(t)$. Võimalik on näidata, et kahe punkti vahelise sõiduaja minimeerimiseks peavad voolukiirused alguses ja lõpus olema võrdsed. Vastasel juhul saaks valida veel väiksema sõiduajaga plaani nihutades stardiaega emmas-kummas suunas.
- V33 Ülesannet on mugavam vaadelda õhu taustsüsteemis, sest siis on helilainefrondid kiirusega c kasvava raadiusega ja paigaloleva keskmega poolsfäärid. Helivõimsus jaotub ühtlaselt üle terve frondipinna, seega on tajutav võimsus pöördvõrdeline frondi pindalaga ehk frondi raadiuse ruuduga.
- **V34** Olukorda on mugavam vaadelda veega seotud taustsüsteemis, sest siis liiguvad lained paadi trajektoori suhtes sümmeetriliselt (lainefrondid on paadi varasematest asukohtadest eemalduvad ringid).
- **V35** Pildistamise hetkel pöörleb kogu ratas ümber hetkelise pöörlemistelje, mis läbib ratta ja maa puutepunkti. See tähendab, et ratta iga osake liigub mööda ringjoone kaart, mille keskpunktiks on ratta ja maa puutepunkt.
- **V36 a**) Vastavalt sellele, kas labad liiguvad salvestatavatele pikslite veergudele vastu või eemale, on labade kujutiste tihedus vastavalt suurem või väiksem.
- **b**) Vaadeldes pildil ühte vertikaalset pikslite veergu ei ole moonutusi näha. Seega tasub uurida, kui palju labasid erinevatel pikslite veergudel näha on.
- **c**) Teades labade arvu on võimalik vaadelda täpselt, kui palju üks laba salvestamise käigus liigub.
- **V37** Maksimaalse viivituse korral on palli kiirus vaevu kivi omast suurem. Selles on võimalik veenduda liikudes vabalt langevasse taustsüsteemi. Seal liiguvad vabalt langevad kehad konstantse kiirusega ning selleks, et pall ja kivi kokku põrkaksid, peaks nende suhteline kiirus olema negatiivne.
- **V38** Kuna pallid on samasuguse massiga ja tegu on elastse kokkupõrkega, vahetavad pallid oma kiirusvektorid. Seega võime sama hästi öelda, et pallid lähevad üksteisest vabalt läbi.
- **V39** Langemise aeg on avaldatav valemi $s = \frac{at^2}{2}$ kaudu.
- **V40** Kukkumise käigus kiirenevad mõlemad kuulid sama kiirusega. Seega on nende suhteline kiirus muutumatu.

- **V41 a**) Energia jäävuse seaduse kohaselt kulub purustuse tekitamiseks esialgse ja pärastise kineetiliste energiate vahe.
- **b**) Taustsüsteemide vahetamine lihtsustab olukorda oluliselt.
- **V42** Mäe tippu jõudmiseks peab esialgne kineetiline energia olema suurem kui hõõrdejõu ja raskusjõu ületamiseks vajalik töö.
- **V43** Üles visatud keha vertikaalne koordinaat avaldub vastavalt liikumisvõrrandile kui $h = v_0 t \frac{gt^2}{2}$. Kuna tegu on ruutvõrrandiga, leidub fikseeritud h jaoks kaks ajahetke, mil keha sellel kõrgusel on.
- **V44** Tegu on suhteliselt sirgjoonelise ballistilise probleemiga. Mootorratturi kiirus peab olema selline, et mootorratturi paraboolne trajektoor läbiks kraavi vastasnurka.
- **V45** Kehtib energia jäävuse seadus. Koguenergiate vahe alg- ja lõppseisu vahel kulus hõõrdejõu ületamiseks vajalikuks tööks mõlemal mäenõlval.
- **V46** Massikeskme kulgliikumise energia muundub maksimaalsele kõrgusele jõudes täielikult potentsiaalseks energiaks.
- **V47** Palli koguenergia vastab geomeetrilisele jadale, sest iga järgmise põrke energia on eelnevast k korda väiksem. Saame sarnase jada, kui avaldame kahe järjestikuse põrke vahelise aja summaarse energia kaudu.
- **V48** Vedrumehhanismi vallandumisel muutub osa vedrudesse salvestatud potentsiaalsest energiast kineetiliseks energiaks seega kineetilise energia jäävus ei kehti. See-eest kehtib impulsi jäävuse seadus, sest lagunemise käigus ei mõju mürsule väliseid jõude (eeldusel, et mürsk laguneb hetkeliselt).
- **V49** Õõnes ja homogeenne kera erinevad nende intertsimomentide poolest. Vedelikku sisaldaval keral toimub sees paratamatult hõõrdumine ning seega energia kadu vedeliku erinevate kihtide vahel.
- **V50** Silla kõverusraadius on leitav Pythagorase teoreemist. Autole mõjub silla peal kaks jõudu: raskusjõud ja rõhumisjõud. Antud jõudude resultant annab kesktõmbekiirenduse
- **V51** Ülesanne näeb keerulisem välja, kui see tegelikult on. Olukorda lihtsustab oluliselt asjaolu, et varras on tühiselt kerge ja libisemised hõõrdevabad.
- **V52** Löögi hetkel kehtib impulsi jäävus, aga energia ei säili. See-eest säilib mehaaniline energia pärast põrget toimuval liikumisel.

- **V53 a**) Maksimaalse eemaldumise korral moodustub Maast, Veenusest ja Päikesest täisnurkne kolmnurk, mille täisnurga tipp on Veenus.
- **b**) Maa ja Veenuse suhtelise nurga (Päikeselt vaadatuna) muutus on avaldatav planeetide nurkkiiruste vahe kaudu.
- **V54** Nii auto liikumisse kui ka mootori tööse minevad võimsused on avaldatavad rataste ja maa vahelise hõõrdejõu kaudu.
- **V55** Tellise eemaldumise hetkel on vedru alumine ots paigal, aga ülemine ots liigub tellisega sama kiirusega üles.
- **V56** Pendli perioodi leidmiseks on võimalik teha esialgne hinnang, mis põhineb järjestikustel mõõtmistel. Täpsema hinnangu jaoks võib kasutada esialgset hinnangut ja pikemat ajavahemikku, et määrata täpselt mitu võnget antud ajavahemiku sisse mahub.
- **V57** Aerulabadele mõjuv keskmine jõud on leitav jõumomentide tasakaalust tullide suhtes. Keskmise kiirusega liikuva paadi puhul kehtib jõudude tasakaal aerulabadele mõjuva jõu ja takistusjõu vahel.
- **V58** Kivile mõjuva paela tõmbepinge T ja raskusjõu mg resultant on kesktõmbejõuks, mis on suunatud horisontaaltasapinnas sissepoole.
- **V59** Ülesannet on mugavam vaadelda x-y teljestikus, mis kulgeb vastavalt piki ja risti kaldpinda. Sellisel juhul muutub peale igat põrget kiiruse y-komponent vastupidiseks.
- **V60** Kuulikese kiirus on leitav energia jäävuse seadusest. Edasi taandub ülesanne ekstreemumpunkti leidmisele.
- **V61** Eraldumiskõrgust on kõige mugavam leida jõudude tasakaalust silindri keskpunkti radiaalsihis. Lisaks kehtib energia jäävuse seadus.
- **V62** Kriitilise kiiruse korral on palli trajektoori kõverusraadius sfääri tipp-punktis võrdne sfääri raadiusega. See tähendab, et pallile mõjuva raskuskiirenduse tasakaalustab kesktõmbe kiirendus v^2/R .
- **V63** Kui põrnikas (massiga ρV) roomab mööda anuma põhja, siis selle peale liigub ka põrnikat ümbritsev vedelik. Põrnika liikumist võib mugavuse mõttes ette kujutada virtuaalse põrnika liikumisega, mille tihedus on $\rho \rho_0$. Sellisel juhul liigub virtuaalne põrnikas vedelikku tõrjumata ning ülesanne taandub mugavamale dünaamika ülesandele.

- **V64** Arvestades mullide arvu jäävust on ruumiline vahemaa nende vahel võrdeline mullikeste kiirusega. Viimane on leitav võrdsustades takistus- ja üleslükkejõu ning arvestades mullikese ruumala muutust rõhu tõttu.
- **V65** Ülesandes ei ole niidi pinge *T* teada, aga see on leitav pannes plokkide jaoks kirja Newtoni teise seaduse ning niidi venimatuse tingimuse. Massikeskme kiirenduse avaldamine plokkide kiirenduste kaudu on analoogne massikeskme koordinaadi avaldamisega plokkide koordinaatide kaudu.
- **V66** Ragulkas salvestunud potentsiaalne energia muundub täielikult kivi kineetiliseks energiaks. Kummipaelale rakendatav jõud on leitav kummipaela pinge projektsioonist kivi lennu sihilisele teljele.
- **V67** Mehaaniline pinge rõngas on määratud tsentrifugaaljõu poolt, millega rõngast radiaalselt väljapoole tiritakse. Pinge täpseks määramiseks on mugav vaadelda väikest rõnga juppi ning sellele mõjuvate jõudude tasakaalu.
- **V68** Maalri asendi ohtlikkust võib hinnata tema kiirusega vahetult enne maapinnaga kokkupuutumist. Vastavad kiirused on leitavad energia jäävuse seadusest.
- **V69** Hüppe käigus säilib energia ehk hüppaja kineetilise energia ning hüppaja ja köie potentsiaalsete energiate summa on konstantne. Hüppaja kiirus on maksimaalne, kui talle mõjuv summaarne jõud on null, sest see vastab kiirenemise ja pidurdamise ülemineku punktile.
- **V70** Ühe põrke käigus kehtib impulsi jäävus, aga mitte energia jäävus. Selle põhjal on võimalik määrata hõõrdejõu ületamiseks kulunud töö ühe põrke jooksul ning saadud avaldis summeerida kogu vaia ulatuses.
- **V71** Tükikeste trajektooride järgi saab võrrelda kiiruste suundi ja suuruseid, sest $s=vt_s$, kus t_s on säriaeg. Lisaks kehtib impulsi jäävus. Kuna klaaskuul kukkus otse alla, peab summaarne põrandaga paralleelne impulss olema 0.
- V72 Ülesandes on kolm tundmatut: keskmiste plokkide kiirendused, äärmiste plokkide kiirendused ning niidi pinge. Vastavate tundmatute leidmiseks on vaja kolme võrrandit: kaks tulenevad Newtoni II seadusest ning üks tuleb niidi venimatuse tingimusest.
- **V73** Otsitavate suuruste jaoks on kasulik vaadelda lühikest ajavahemikku Δt , mille jooksul on rongi kiirus, ja seega hõõrdetegur, ligikaudu konstantsed. Seejärel saab saadud ajavahemikke summeerida terve graafiku ulatuses. Selle jaoks peab vajadusel konstrueerima uued graafikud teistsuguste telgedega.

- **V74** Väikse keha hetkelise liikumise käigus püsib mobiil+keha massikese paigal. Seega liigub mobiil iga τ tagant sarnaselt kehaga hetkeliselt üles või alla. Iga kord kui mobiil üles liigub, nihkub ta gravitatsiooni tõttu ka veidike laua sihis edasi.
- **V75** Teisest ja kolmandast kuulist koosnevale süsteemile mõjus esimese kuuli lükkamise ajal esimese varda sihiline jõud, sest teatavasti mõjuvad kergetele varrastele vaid varda sihilised pinged. Lisaks peab esimese kuuli lükkamise ajal kehtima varraste venimatuse tingimus.

Kiirenduse leidmiseks on süsteemi mugav vaadelda šarniirse ühenduspunktiga kaasa liikuvas ja kiirenevas taustsüsteemis ning seejärel rakendada Newtoni II seadust.

- **V76** Ringikujulisel orbiidil on satelliidi kiirus kogu orbitaalperioodi jooksul konstantne ja seetõttu on varjus veedetud osa ajast võrdne orbiidi varjus oleva osa pikkuse ja kogu orbiidi pikkuse suhtega.
- **V77** Kui väike prints kõnnib piki asteroidi ekvaatorit, mõjub talle gravitatsioonijõud, normaaljõud ning ringjoonelisest trajektoorist tingitud kesktõmbekiirendus. Hõljuma hakates normaaljõudu ei mõju ning kehtib jõudude tasakaal.
- **V78** Sidesatelliidil kõrgus on leitav ringorbiidil mõjuva gravitatsioonijõu ja tsentrifugaaljõu tasakaalust.
- **V79** Kosmosejaama trajektoori nihked on põhjustatud maa pöörlemisest ümber oma telje, kusjuures ühele ööpäevale vastava kosmosejaama nihke ja Maa ekvaatori pikkuse suhe on otseses sõltuvuses kosmosejaama ja maa pöörlemise nurkkiiruste suhtega.
- **V80 a**) Kuu ja Maa poolt avaldatavad jõud on otseselt leitavad abivalemi kaudu. **b**) Kaabli katkemispunktis on pinge maksimaalne. Pinge on leitav jõudude tasakaalust.
- V81 Satelliidi tüüpiline kiirus on võrreldav esimese paokiirusega, sest satelliitide orbitaalraadiused ei erine üksteisest märkimisväärselt. Ülesande eelduste kohaselt liiguvad satelliidid sarnaselt molekulidega gaasis. Gaasis molekuli vaba tee hindamisel arvestatakse, et molekul liigub ilma põrgeteta ligikaudu aja jooksul, mil tema kokkupõrke ristlõige on katnud ruumala, milles asub tüüpiliselt üks osake.
- V82 Pumpamise käigus kehtib ideealse gaasi olekuvõrrand.
- **V83** Ideaalse gaasi olekuvõrrandist on võimalik leida seos esialgse ja pärastise õhu ruumala vahel.

- **V84** Kõrgusega h veesamba lisarõhk on ρgh . Sukeldumise käigus kehtib ideaalse gaasi olekuvõrrand.
- **V85** Ühe molekuli keskmine kineetiline energia temperatuuril T avaldub kui $\langle E_m \rangle = \frac{3}{2}kT$.
- **V86** Kuna manomeeter ja mõõteampull on kapillaari kaudu ühenduses, siis nende gaasirõhud on isegi temperatuuride erinedes ühesugused.
- **V87** Kui ajavahemiku Δt jooksul kandub tiivikust läbi õhumass kineetilise energiaga ΔE , siis sellele vastav võimsus on $P = \frac{\Delta E}{\Delta t}$.
- **V88** Ülesannet on mugav lahendada uurides ajavahemikku Δt ning vaadeldes, kuidas rongist eraldunud võimsus soojendab rongist möödunud õhu molekule.
- **V89** Paisumisel gaasi poolt tehtud tööd on kõige lihtsam leida p-V graafikult protsessi aluse ala pindalana. Lisaks tuleb kasuks termodünaamika I seadus.
- **V90** Temperatuuri kasvades hakkab esimese anuma rõhk p_1 suurenema ning mingil hetkel ületab see ventiili kriitilise rõhu Δp . Sellest hetkest alates hakkab ventiil õhku läbi laskma nõnda, et edaspidi anumate rõhud p_1 ja p_2 rahuldavad tingimust $p_1 p_2 = \Delta p$.
- **V91** Seibi alumise külje läheduses surub süsihappegaas teatud rõhuga seibi üles. Vastav jõud on ülemiselt küljelt tasakaalustatud nii õhurõhu, kui ka surumisjõu poolt.
- **V92** Niiske õhu puhul on veeauru ja normaalse õhu rõhkude summa võrdne atmosfäärirõhuga, kusjuures veeauru rõhk on leitav küllastunud veeauru tihedusest.
- **V93** Esialgu on vesinik teatud temperatuurivahe võrra soojem kui heelium, kuid pika aja möödudes on mõlemad soojuslikus tasakaalus. Koormise nihe ongi põhjustatud gaaside soojenemisest tulenevast paisumisest.
- **V94** Korstna sees voolav õhk tekitab alarõhu, mis on avaldatav Bernoulli võrrandist. Rõhu langud korstna sees ja väljas peavad olema võrdsed.
- **V95** Adiabaatilisel paisumisel muutub gaasi siseenergia $c_V T_0$ osaliselt joa kineetiliseks energiaks $\mu v^2/2$. Düüsis peab kehtima energia jäävus. Seega, ajaühikus siseneval gaasihulgal on sama energia kui ajaühikus väljuval gaasil.
- **V96** Kuna anumad on ühendatud, on rõhud mõlemas anumas samal kõrgusel samad ja anumate vedelikutasemed võrdsed.

- **V97** Torudes oleva vee rõhk on avaldatav vedelikusammaste kõrguste kaudu. Lisaks kehtib mõlemas torus Bernoulli seadus ning vee pidevustingimus, st sama aja jooksul läbib mõlemat toru sama kogus vett.
- **V98** Õhutakistuse puudumisel jõuab veejuga märgini sama kiirusega nagu väljudes (energia jäävusest tulenevalt). Jõu leidmiseks võib vaadelda ajavahemikku Δt ning selle jooksul üle antavat vee impulssi.
- **V99** Veejoa väljumise kiirus on leitav energia jäävuse seadusest või alternatiivselt impulsi jäävusest. Mõlemad lähenemised on korrektsed, aga annavad numbrilise konstandi võrra erineva vastuse, mis on tingitud jäävusseaduste kehtivuse eelduste erinevusest. Tünni ja aluse kõrgused on leitavad valides graafikult kaks (või vajadusel rohkem) punkti ja lahendades tekkinud võrrandisüsteemi.
- **V100** Kuna veejuga kiireneb ühtlaselt, kehtib energia jäävuse seadus. Lisaks kehtib vee massi jäävus ristlõigete ulatuses.
- **V101** Kolbile mõjuv jõud tekitab kolvi sees lisarõhu F/S. Kuna tegu on laminaarse vooga, kehtib Bernoulli seadus. Alternatiivselt võib rakendada energia jäävust kolvi ees ja suudme juures.
- **V102** Sirges torus voolav vesi piki-sihilisi deformatsioone ei tekita. Kaarekujulise osa juures aga survestab vesi väliskülge rohkem kui sisekülge ning tekitab piki-sihilisi pingeid. Pinge täpse suuruse määramiseks on mugav vaadelda kaarekujulist osa tervikuna ning uurida, kuidas vee impulss muutub kaarekujulisse ossa sisenedes ja väljudes.
- **V103 a**) Juhul kui ookeani keskmine tihedus ning lisarõhk on vastavalt ρ ja p, kehtib ülesandes mainitud kokkusurutavuse seos $\rho \approx \rho_0(1+\beta p)$. Lisaks on vee rõhud ookeani põhjas kokkusurumatul ja kokkusurutud juhtudel võrdsed. **b**) Tasub vaadelda väikest vee kogust massiga m ning selle ruumala muute sügavusel H võrreldes pinnapealse olukorraga.
- **V104** Omavõnkesageduse leidmiseks on harilikult kõige mugavam vaadelda väikest hälvet tasakaaluasendist ning uurida, kuidas süsteem edasi käitub. Ülesande kontekstis võib oletada, et õhuke veekiht ühes toru harus kandub teisele toru poolele. See põhjustab lisarõhu toru teises pooles, mis üritab süsteemi tasakaaluasendisse tagasi viia.
- **V105** Termodünaamika I seaduse kohaselt $\Delta U = Q A$, kus Q on süsteemi antud soojushulk ning A on välisjõudude vastu tehtud töö. Antud üesande kontekstis on Q negatiivne ja A positiivne.

- **V106** Kahe vastasserva vaheline takistus on $R = \frac{\rho L}{S}$, kus L on servade vaheline kaugus ja S ristlõikepindala.
- **V107** Jääkera sees tekib ülerõhk, sest õhu soojenedes rõhk tõuseb. Seega on kõige kriitilisem moment vee sulamise temperatuuril.
- **V108** Küttesüsteemis oleva vee ruumala esialgses olukorras ja töörežiimis on avaldatavad ülesandes antud valemiga.
- V109 P-V teljestikus avaldub gaasi tehtud töö tsükli aluse pindalana. Alternatiivselt võib iga tsükli etapil tehtud töö leidmiseks rakendada termodünaamika esimest seadust.
- **V110** Mõlema olukorra jaoks kehtib energia jäävuse seadus, kusjuures vedelike tihedused ning erisoojused on tundmatud.
- **V111** Varda pöörlemise käigus muutub hõõrdejõu F_h ületamiseks kulutatud töö soojuseks. Töö on leitav hõõrdejõu ja läbitud tee pikkuse korrutisena.
- **V112** Ülesandes on kaks tundmatut: vee lõpptemperatuur ja termose erisoojus. Need on leitavad, kui panna süsteemi jaoks kirja soojusliku tasakaalu võrrandid.
- **V113** Energia jäävuse seaduse kohaselt peab rauatükist eraldunud soojusenergia minema vee soojendamiseks ja aurustumiseks.
- **V114** Energia jäävuse seaduse kohaselt peab jõhvikate soojendamiseks kuluv soojushulk tulema vee jahtumise arvelt.
- **V115** Vee aurustumise käigus kehtib energia jäävuse seadus. Seega tuleb väikese veekoguse aurustumiseks vajalik soojushulk järelejäänud vee temperatuuri langemise arvelt.
- **V116** Kastmisvee anuma taha tekib kiirtega ristuvale tasandile ringikujuline vari. Samasugune vari tekiks ka ringist, mis paikneb risti päikesekiirtega. Seega neelavad võrdse raadiusega kera ja kiirtega risti olev ring valgust võrdselt, sõltumata päikesevalguse langemise nurgast.
- **V117** Kehtib soojusbilanss lihvimise käigus eralduva soojuse ning sisse ja välja voolava vee soojusvoo vahel. Mugavuse mõttes võib vaadelda ajavahemikku Δt ning selle jooksul lihvil eralduvat ning vee poolt äraantavat soojushulka.
- **V118** Enne keema hakkamist pidid vees olevad mullid olema nii väiksed, et pindpinevuse poolt tekitatud lisarõhu ja õhurõhu summa jäi suuremaks kui küllastunud veeauru rõhk.

- **V119** Soojusvoog läbi kihi paksusega d, pindalaga S, temperatuuride vahega ΔT ja soojusjuhtivuskoefitsiendiga D on $Q = D \frac{S\Delta T}{d}$. Statsionaarses olekus tasakaalustab jää ja vee eralduspinnal ühe plaadi poolt tulev soojusvoog teiselt poolt tuleva soojusvoo täielikult ära.
- **V120** Süsteemis kehtib energia jäävuse seadus. Nimelt ühe tunni jooksul läheb 95 % kahe liitri aurustumisel eraldunud energiast tundmatu massiga jahutusvee soojendamiseks ΔT võrra. Jahutusvee kiirus on leitav toru massivoo ja ristlõike pindala kaudu.
- **V121** Ideaalse soojusmasina kasutegur avaldub kujul $\eta = \frac{T_j T_k}{T_j}$, kus T on temperatuur kelvinites. Kasutegur on samas tehtud töö ja jahtusvedelikult võetud soojushulga suhe.
- **V122** Spiraal kuumeneb temperatuurini, mil tekib soojuslik tasakaal spiraali ja ümbritseva keskkonna vahel. Teisisõnu, spiraali takistil eralduv võimsus peab olema võrdne soojusvooga spiraalist toa õhku.
- **V123** Soojusliku tasakaalu tingimuse kohaselt kulub radiaatori võimsus sissetuleva õhu soojendamiseks ja seinte soojuskadude kompenseerimiseks. Seinte soojuskaod on leitavad akna avamise eelsest tasakaalutingimusest.
- **V124** Temperatuuri kasvu või langemise kiirus on võrdeline tuppa siseneva summaarse soojusliku võimsusega. Sellele vastab graafiku puutuja tõus. Soojapuhuri sisse lülitamise ajahetkel oli graafiku tõusu muut võrdeline soojapuhuri võimsusega.
- **V125** Tasakaalulises olukorras on ruumist eemalduv soojuse hulk võrdne küttekeha poolt toodetud soojusega. Selle põhjal saab leida esialgsest olukorrast keskkonna ja ruumi vahelise soojusvahetuse võrdelisusteguri ning saadud tulemust kasutada hilisema tasakaalulise temperatuuri leidmiseks.
- **V126 a**) Kehtib soojuslik tasakaal sise- ja välisseina vahel. Nimelt on soojusvoog siseseinalt välisseinale võrdne siseseinalt kiirgava soojusvoo ja välisseinalt saabunud kiirguse peegeldunud osa summaga. Välisseina jaoks kehtib analoogne tasakaalutingimus.
- **b**) Nüüd kehtivad sarnased voo tasakaalud iga seinapaari vahel, aga õnneks on eelmise osa tulemus üldistatav ka mitme seina jaoks.
- **V127** Kütteelement on soojuslikus tasakaalus ümbritseva keskkonnaga ning kaod keskkonda on võrdelised sise- ja välistemperatuuride vahega. Soojusliku tasakaalu temperatuur on määratav nn graafilise meetodiga, mis seisneb $\sigma(t)$ ja teatud funktsiooni pingest lõikepunkti leidmises.

- **V128** Kehtib laengute jäävus valides suvalise suletud pinna, peab pinda läbiv vool olema võrdne pinna sisse jääva summaarse lekkevooluga.
- **V129** Sümmeetria tõttu mõjuvad kõikidele kuulidele radiaalsed sama väärtusega elektrostaatilised jõud, mis on niitide pingete poolt tasakaalustatud. Lisaks paneme tähele, et kuna niidid on identsed ning sama palju veninud, peavad kõikide niitide pinged võrdsed olema.
- **V130** Tolmukübemel kehtib jõudude tasakaal raskusjõu ja elektrostaatilise jõu vahel.
- **V131** Kehtib energia jäävuse seadus, kus peame arvestama nii gravitatsioonilise kui ka elektrilise potentsiaalse energiaga.
- **V132** Põhimõtteliselt on võimalik leida elektroni kiirendus rõnga poolt tekitatud elektriväljas ning seda integreerida, aga märgatavalt lihtsam on rakendada energia jäävuse seadust ning kasutada rõnga poolt tekitatud potentsiaalset energiat. Punktlaengu q poolt tekitatud potentsiaal kaugusel r on k^q_r .
- **V133** Ioonide kiirus on leitav energia jäävusest. Sondi ja ioonide kiiruse sidumiseks on kõige mugavam rakendada impulsi jäävust.
- **V134** Elektronkahurist aja Δt jooksul eralduva elektronide kogumi summaarne impulss on võrdne impulsi jäävusest elektronkahurile mõjuva jõu ja Δt korrutisega. Individuaalse elektroni impulss on leitav energia jäävuse seadusest.
- **V135** Selleks, et siduda elektronide kiirust ekraani-sihilise nihkega, tasub ülesanne jagada kaheks eraldi osaks: elektronide viibimine plaatide vahel ning plaatide ja ekraani vahelises ruumis. Esimeses osas mõjub elektronile ühtlane kiirendus, teises osas liigub elektron sirgjooneliselt.
- **V136** Kasulikuks võib osutada superpositsiooniprintsiip, mille kohaselt võib välja lõigatud ruutu tekitatud välja leida kui+ja laenguga ruutude väljade summana.
- **V137** Osakese asukohta on mugavam leida vaadeldes eraldi osakese x- ja y-koordinaate. Laengu keskmine kiirus on leitav perioodi jooksul sooritatud nihke ja perioodi suhtena.
- **V138** Kuna sfäärid on traadiga ühendatud, peavad need sama potentsiaaliga olema

- **V139** Kondensaatorid on pingeallikaga ühedatud jadamisi ning kondensaatorite C_1 ja C_2 kogutakistus jadamisi on $(1/C_1 + 1/C_2)^{-1}$.
- Kuna osakesele mõjuvad elektrijõud on esialgse liikumissuunaga risti, kulub mõlema kondensaatori läbimiseks sama aeg, kusjuures kondensaatorite vahel mõjub osakesele konstantne kiirendus.
- **V140** Kärbse potentsiaali on mugav avaldada x-y koordinaadistikus. Ülesande sümmeetriast on suhteliselt lihtne näha, et kärbse kaugus laengust on minimaalne siis, kui ta asub otse laengu kohal.
- **V141** Klotside läbitav vahemaa on leitav energia jäävuse seadusest. Nimelt on klotsid paigal nii alg- kui ka lõppasendis ning ainus viis soojuse eraldumiseks on hõõrdejõu kaudu, mis on omakorda avaldatav alg- ja lõppasendi potentsiaalsete energiate vahest.
- **V142** Hetkel, mil kuulide vahekaugus on minimaalne, peab massikeskme taustsüsteemis mõlemad kuulid ja kosmoseprügi paigal olema. Vastasel korral ei oleks kuulide vahekaugus minimaalne, sest kuulid liiguksid üksteise suhtes.
- **V143** Ampermeetri ja voltmeetri pingete summa peab olema võrdne klemmidele rakendatava pingega nii enne kui ka pärast takisti ühendamist.
- **V144 a**) Takisti peab tagama selle, et lampide pinge ei ületaks nominaalpinget ükskõik missuguse lambi sisetakistuse väärtuse korral
- **b**) Lampide oodatavast tuhmimalt põlemine on põhjustatud alaldi sisetakistusest.
- **V145** Koormisel eralduv võimsus on pinge ja voolu korrutis. Seega on vaja graafikult leida x- ja y-koordinaadi korrutise maksimum.
- V146 Mõlema kontuuri jaoks saab rakendada Ohmi või Kirchhoffi seadusi.
- **V147** Otsitav suhe I_2/I_1 on mugavalt avaldatav Ohmi seadusest, ülejäänud on võrratustega manipuleerimine.
- **V148** Ülesandes on neli tundmatut: vooluallika pinge, takisti takistus ning ampermeetri ja voltmeetri sisetakistused. Nelja tundmatu jaoks on vaja nelja võrrandit ning need tulenevad ülesandes antud ampermeetri ja voltmeetri näitudest.
- **V149** Teades, et päripidise voolu korral võib dioodi klemmid lugeda lühistatuks ning vastuvoolu korral isoleerituks, võib koostada esialgse skeemi asemel mõlema polaarsuse korral dioodideta ekvivalentsed skeemid.
- **V150** Kuna süsteemi stabiilses olekus on kondensaatorite pinge konstantne, ei läbi neid ka vool.

- **V151** Süsteem saab töötada kolmes erinevas režiimis. Esiteks, kui pinge on piisavalt madal või kõrge, on kõikide elementide takistus vastavalt 1 Ω või 2 Ω . Vahepealse pinge väärtuse korral on vasakpoolse elemendi takistus 2 Ω ja parempoolsetel 1 Ω . Teisi režiime ei ole, sest vasakpoolse takisti pinge on alati suurem kui parempoolsetel ning seega ei saa vasaku takisti takistus olla väiksem kui parempoolsetel.
- **V152** Mõlemat tüüpi traadijuppide pikkused peavad olema sellised, et 1) summaarne takistus on $1\,\Omega$; 2) temperatuurist sõltuvus oleks võimalikult väike. Temperatuurist sõltuvuse leidmiseks tuleb kasutada ülesandes antud temperatuurikoefitsente.
- **V153** Lõpmatust ahelast ühe lüli eemaldamisega summaarne mahtuvus ei muutu.
- **V154** Kõigepealt tasub leida lühikese traadijupi takistus ning seejärelt üritada saadud avaldist summeerida terve traadi ulatuses.
- **V155** Patarei tehtud töö ajaühikus Δt on $UI\Delta t$. Kondensaatorisse salvestatava energia muutumise kiirus on leitav võttes kondensaatori siseenergiast $\frac{CU^2}{2}$ aja järgi tuletise.
- **V156 a**) **b**) Peale pikka aega on kondensaatoreid läbiv vool null, sest nende pinged, ja seega laengud, on stabiliseerunud. Seega võib kondensaatorid efektiivselt süsteemist välja lõigata.
- c) Elimineerides süsteemist vooluallika, peab kehtima laengu jäävuse seadus.
- **V157** Süsteemis kehtib laengu jäävus, st alamsüsteemis, mis koosneb ülemisest sõlmpunktist ja sellega ühendatud kolmest kondensaatori plaadist peab alati olema summaarse laenguga -q. See kehtib sellepärast, et laengud saavad liikuda ainult mööda metalli ning ei saa eelmainitud alamsüsteemist õhu kaudu lahkuda.
- **V158** Mõlema ülesandes antud tingimuse jaoks on võimalik kirja panna vastav võrrand (kasutades näiteks Kirchhoffi seadusi) ning saadud võrrandisüsteemi lahendid peaksidki olema R_1 ja R_2 .
- **V159** Nominaalses töörežiimis on iga valgusdioodi pinge U_d ja vool maksimaalselt 20 mA. Teades võrgupinge maksimaalset pinget on võimalik leida takisti takistus ja maksimumvõimsus. Ühe täisperioodi jooksul tuleb pingelanguse muut kondensaatoril takisti arvelt. Seejuures on kondensaatori plaatide laengumuut leitav täisperioodi pikkusest ja ahela voolutugevusest.

- **V160** Ülesande peamine raskus on korrektselt määrata ülesande tekstiga ekvivalentne elektriskeem. Peale elektriskeemi määramist taandub ülesanne stabiilse režiimi leidmisele. See on tehtav näiteks Kirchhoffi seadustega.
- **V161** Elektron sooritab solenoidi teljega risti tasandis ringliikumist. Antud ringliikumise periood on leitav kasutades Lorentzi ja tsentrifugaaljõu tasakaalutingimust.
- **V162** Raamis indutseeritakse vool, sest takisti kukkudes suureneb raami läbiv magnetvoog, mis omakorda tekitab Faraday seaduse kohaselt raamis elektromotoorjõu ja voolu. Seega on stabiilses režiimis raskusjõud ning takistit läbiva voolu poolt tekitatud Lorentzi jõud tasakaalus.
- **V163** Lorentzi jõu tõttu liiguvad mõlemad osakesed mööda ringjoont, kusjuures mõlema osakese kiirusvektorite pöörlemise nurkkiirused on samad.
- **V164** Traat võtab kaare kuju (sest Ampere'i jõud mõjub analoogselt täispuhutud palli puhul pallikestale ülerõhu poolt mõjuva jõuga: lühikesele mõttelisele traadijupile mõjuv jõud on risti traadijupiga). Pinge leidmiseks on mugav vaadelda lühikest traadijupi lõiku ning kirja panna jõudude tasakaalu tingimus.
- **V165** Selleks, et venitada pooli väikse vahemaa $\Delta \ell$ võrra pikemaks, on vaja teha tööd, millest osa kulub magnetväljas salvestatud energia suurendamiseks ning teine osa kulub vooluallika poolt tehtud töö kompenseerimiseks. Magnetväljas salvestatud energia leidmiseks võib kasutada kas pooli koguenergia valemit $\frac{LI^2}{2}$ või magnetvälja energiatihedust $w=\frac{B^2}{2\mu_0}$.
- **V166** Magnetväljas liiguvad osakesed mööda ringjoont kiirusest sõltumatu perioodiga $t=\frac{2\pi m}{qB}$. Näeme, et ülesandes antud ajavahemik T vastab poolele täistiirule. Antud tähelepanek võimaldab olukorra mugavamat skitseerimist. Iga kord kui elektriväli sisse lülitatakse, antakse osakesele väike elektriväljasihiline impulss.
- **V167** Magnetväljas hakkab osake liikuma mööda ringjoont. Ringjoone raadius on avaldatav Lorentzi jõu ja kesktõmbekiiruse võrdsusest. Märkame, et kui ringjoone raadius on piisavalt väike, väljub elektron tuldud suunas tagasi. Ringjoone suurenedes väljub elektron lõpuks vasakust küljest.
- V168 Magnetvälja väljalülitamise käigus muutub magnetvoog läbi silindri ristlõike, mis indutseerib Faraday seaduse kohaselt keeris-elektrivälja. Keeris-elektriväli mõjub omakorda silindri pinnal olevatele laengutele teatud jõuga ning paneb silindri pöörlema. Silindri pöörlemise kiiruse leidmiseks on mugav vaadelda lühikest ajavahemikku Δt , mille jooksul väheneb magnetväli ΔB võrra.

- **V169** Laserkiire kõrvalekaldenurk on leitav Snelli seaduse ja kiilu geomeetria rakendamisest.
- **V170** Tasub teha selge joonis ning kasutada sarnaseid kolmnurki.
- **V171** Selleks, et sisenev kiirte kimp oleks ka peale teise läätse läbimist paralleelne, peavad läätsede fookused ühtima.
- **V172** Nõguspeegli pinnalt peegeldunud kiirte nurgapoolitajad läbivad peegli kõverusraadiuse keskpunkti.
- **V173** Tasub koostada selge joonis ning murdumisnäitaja leidmiseks kasutada täisnurksete kolmnurkade omadusi ja Snelli seadust.
- V174 Ülesande lahendamisel osutub tarvilikuks teadmine, et läätsele selle optilise teljega paralleelselt langevad kiired (või murtud kiirte pikendused nõgusa läätse puhul) koonduvad fookuses punktiks. Seega on ainus moodus kahe läätse abil saada süsteem, mis teisendab paralleelse kimbu uuesti paralleelseks kimbuks selline, et läätsede fookused ühtivad.
- **V175** Valguskiir siseneb prismasse murdumata, sest kiir on normaali sihiline. Küll aga toimub murdumine prismast väljudes. Kuna terve tahu ulatuses on langemisnurk sama, tekitab üks tahk paralleelse kiirtekimbu. Kuna meil on kaks murdvat tahku, on esialgne kiirtekimp pärast prisma läbimist jagunenud kaheks.
- V176 Nii täis- kui poolvarjude piirjoonte pikendused on valgusallika puutujad.
- **V177** Allika heledus on ligikaudselt võrdeline vaatleja silmaava nurkläbimõõdu ruuduga allika asukohast vaadatuna.
- V178 Piisab kahe ettevaatlikult valitud kiirte käikude vaatlemisest.
- **V179** Ülesande mugavamaks lahendamiseks tuleb teha selge joonis ning rakendada väikeste nurkade lähendust. Lisaks, kiire ja kuuli puutepunkti pinnanormaal ühtib kuuli raadiusega.
- **V180** On lihtne näha, et plaadist väljub endiselt paralleelne valgusvihk. Küll aga on selle levimise suund muutunud. Valguslaigu nihke leidmiseks on mugav vaadelda kiirt, mis läbib läätse optilist keskpunkti.
- **V181** Mustaks värvitud tahkudelt valgus peegelduda ei saa, toimub neeldumine. Ülesande tingimus on täidetud, kui värvimata tahust kuupi sisenev valgus ei saa väljuda läbi kõrvaltahu (toimub sisepeegeldus).

- **V182** Joonisel on kaks peegeldust ja üks peegelduse peegeldus. Sellele vastab kolm võimalikku punktide konfiguratsiooni ning eeldatavasti on võimalik paari kavala argumendi põhjal osad konfiguratsioonid elimineerida (näiteks peab valgusallikas olema mõlema peegli vahel).
- **V183** Selleks, et kapillaari sein paistaks null paksusega, peab kapillaarile puutujana langenud kiir napilt puudutama sisemist õõnsust. Sellisel juhul ei leidu ühtegi kiirt, mis läbiksid kapillaari seina ilma sisemise õõnsuse piirpinnale langemata.
- **V184** Suhteliselt kindel meetod on avaldada kõik ülesandes antud ja otsitavad muutujad võimalikult mugavate jooniselt leitavate suuruste kaudu ning loota, et saadud võrranditest on lihtne näha, kuidas lõppvastus avaldub k_1 ja k_2 kaudu. Kehvemal juhul tuleb lahendada kolmest võrrandist koosnev võrrandisüsteem (k_1 , k_2 ning otsitava suhte jaoks). Silmas peab pidama, et jooniselt valitud muutujad peavad ülesande geomeetria üheselt ära defineerima. Selleks sobivad näiteks läätse fookuskaugus ning pliiatsi mõlema otsa kaugused läätsest.
- **V185** Kriitilise langemisnurga all on valgus sakilisel poolel täieliku sisepeegeldumise piiril. Selleks, et antud tingimust langemisnurgaga siduda, on kasulik joonestada suur ja selge joonis.
- **V186** Kui nõgusläätsele langevad paralleelsed kiired, lõikuvad murdunud kiirte pikendused eesmisel fokaaltasandil.
- **V187** Kuna silmani jõudvate kiirte jaoks kehtib $r \ll L$ ning trajektoori kõverdumine toimub musta augu lähiümbruses, võib vaadelda kiire teekonda lihtsustatult: kiire liikumine musta auguni, hetkeline nurga muutus musta augu juures ning edasi sirge tee vaatlejani.
- V188 Sfäärilist akvaariumit saab vaadelda kui õhukest tasakumerat läätse, mis on surutud tasase küljega vastu sirge seinaga akvaariumi. Lisaks peab arvestama, et läätses lõplikku kujutist tekitav kala ei vasta tegelikule kala asukohale, vaid akvaariumis murdumise tõttu asuvale kujutisele, mis on tegelikust kala asukohast n korda lähemal.
- **V189** Kera ääres toimub pinnalt täielik sisepeegeldumine, kus peegeldunud kiired saavad alguse kas põrandalt või seinalt (ja olles seega kas valget või kollast värvi). Murdumisnäitaja määramiseks on vaja jooniselt uurida sisepeegeldumise piirjuhtu.
- **V190** Kahe kujutamise tekkeks peab kumerpeegel asuma objektist A vasakul. A' leidmiseks peab määrama läätse fookuse, aga selleks peab silmas pidama asjaolu, et pole teada, kumb kujutistest K_1 ja K_2 kuulub objektile A.

- **V191** Kärbse näiline asukoht vastab kärbsest alguse saanud klaasist väljunud murdunud kiirte pikenduste lõikepunktile. Selle jaoks tasub vaadelda kahte kiirt: mõlemad saavad alguse kärbsest, aga üks väljub merevaigutükist pinnaga risti ja teine väikse nurga all. Edasi tuleb kiirte geomeetriat ettevaatlikult uurida ning rakendada Snelli seadust.
- **V192** Allikat ja kujutist ühendav sirge läheb läbi läätse keskpunkti, kusjuures läätse keskpunkt peab jääma allika ja kujutise vahele, sest tegu on tõelise kujutisega. Lisaks teame, et sirge kujutis on sirge, kusjuures need kaks sirget lõikuvad läätse tasandis.
- **V193** Lisaks väikeste nurkade lähendusele lihtsustab ülesande geomeetriat võimalikult sümmeetriliste kiirte käikude uurimine. Näiteks on mugav vaadelda kiiri, mis peegelduvad risti peegli pinnaga.
- **V194** Ülesandes on arvandmed valitud nõnda, et peeglite fookused ühtiksid. Tõepoolest, nõguspeeglite fookuskaugus on pool raadiusest ja peeglite vahemaa on võrdne peeglite fookuskauguste summaga. See tähendab, et peale igat edasitagasi peegeldumist püsivad valguskimbu kiired paralleelselt, kusjuures kimp muutub 2 korda kitsamaks (sest fookuskauguste suhe on 2).
- V195 Rongi taustsüsteemis on rong paigal ning õhk uhab mööda kiirusega v, kusjuures õhu jaoks kehtib massi jäävuse seadus.
- **V196** Lihtsuse mõttes võib eeldada, et Kuu pinnale jõudev summaarne valgusvoog Päikeselt peegeldub ühtlaselt poolsfäärile, mille keskpunktiks on Kuu ja pinna peal asub Maa.
- **V197** Maja teatud punkt ja tema peegelkujutis mere pinnalt paiknevad sümmeetriliselt mere tasandiga võrreldes. See võimaldab vee tasandi leidmist.
- **V198** Kõik objektid, mis ületavad fotol horisonti, peavad olema vähemalt sama kõrgel kui fotoaparaat.
- **V199** Valgus peegeldub tagasi kile ülemiselt ja alumiselt pinnalt. Peegeldus on minimaalne, kui vastavad kiired liituvad vastasfaasides. Selleks, et määrata mitu täislainepikkust optiliste teede vahesse mahub, tuleb vaadelda, kuidas minimeerida peegeldunud valguse hulka punase ja sinise valguse jaoks.
- **V200** Heledad vöödid vastavad ülemiselt ja alumiselt pinnalt peegeldunud kiirte liitumisele samas faasis. Vaadates põrandat erinevate nurkade alt, muutub kiirte optiliste teekondade vahe piisavalt palju, et see vastaks 20-le lainepikkusele. Vastav optiliste teekondade vahe vahemik on leitav põranda geomeetriast.

Lahendused

L1 Pendel ★

Autor: Mihkel Heidelberg, piirkonnavoor, 2008, G 1

Koormisele mõjub raskusjõu moment $mgl\sin\alpha$. Kang püsib paigal, kui see on väiksem hõõrdejõu momendist M, seega $mgl\sin\alpha < M$, millest $\sin\alpha < \frac{M}{mgl}$.

L2 Toru ★

Autor: tundmatu, lahtine, 2007, G 2

Newtoni kolmanda seaduse kohaselt on toru toereaktsioonid N_1 ja N_2 suuruse poolest võrdsed otsitavate rõhumisjõududega (vt joonist).

Kuna jõudude summa peab tasakaalu asendis olema võrdne nulliga, siis

$$N_1 + N_2 - mg = 0.$$

Jõumomentide võrrand punkti O suhtes (võib valida suvalist punkti) on

$$N_1(l-a) = \frac{mgl}{2},$$

kust saame

$$N_1 = \frac{mgl}{2(l-a)} = \frac{80 \cdot 9.8 \cdot 5}{2 \cdot (5-1)} = 490 \,\text{N}.$$

Asendades N_1 esimesse võrrandisse, saame avaldise N_2 jaoks:

$$N_2 = \frac{mg(l-2a)}{2(l-a)} = \frac{80 \cdot 9.8 \cdot (5-2 \cdot 1)}{2 \cdot (5-1)} = 294 \,\text{N}.$$

L3 Nürinenud käärid ★

Autor: Mihkel Kree, lõppvoor, 2009, G1

Hõõrdejõud peab tasakaalustama toereaktsiooni kääride telje sihilise komponendi (joonis). Lihtsast geomeetriast saame, et $\mu = \tan \frac{\alpha}{2}$.

L4 Kuul ★★

Autor: tundmatu, lahtine, 2005, G3

Kuuli hoiab augus või "lükkab" august välja üks ja sama jõud — kuulile mõjuv raskusjõud, mis on suunatud vertikaalselt alla. Kuul on augus, kui raskusjõu vektor läbib augu põhja, ja kukub, kui see väljub sellest. Esimesel juhul on raskusjõu moment suunatud augu poole, teisel juhul august välja. Piirjuhul on kuul tasakaalus, toetudes vaid punktile A (vt joonist). Sellel juhul on kuulile mõjuv raskusjõud suunatud otse punkti A poole, jõuõlg ning järelikult ka jõumoment on võrdne nulliga.

Vaatleme piirjuhtu (vt joonist). Kuna lauaaugu sugavus |BC| on 2 korda väiksem, kui kuuli raadius r, saame kolmnurga AOB kohta kirjutada järgneva tingimuse:

$$\sin \gamma = \frac{r/2}{r} = \frac{1}{2} \quad \Rightarrow \quad \gamma = \arcsin \frac{1}{2} = 30^{\circ}.$$

Kuna punkti A tipunurgad on võrdsed, siis ka täisnurkse kolmnurga ADE üksnurkadest on 30°. Järelikult

$$\alpha = 90^{\circ} - 30^{\circ} = 60^{\circ}.$$

Kui laua kaldenurk ületab 60°, kukub kuul lauaaugust välja.

L5 Katus ★★

Autor: Ott Krikmann, piirkonnavoor, 2005, G 2

Vaatleme lund katusel kui kahte vastasmõjus olevat keha: üheks kehaks on lumi, mille all on vesi ning millele hõõrdejõud ei mõju, ja teiseks kehaks kuival katusel olev lumi. Nende kahe osa vahel mõjuva jõu F võime lugeda katuse sihiliseks (selle sihi valime x-teljeks, y-telg on katuse sihiga risti). Arvestame, et lumi on ühtlase paksusega ja seega osade massid on võrdelised nende pikkustega:

$$\frac{m_1}{m_2} = \frac{l}{L-l}.$$

y-telje sihiline tasakaaluvõrrand kuiva osa jaoks:

$$N_2 = m_2 g \cos \alpha$$

kus N_2 on kuivale osale mõjuva katuse rõhumisjõud. x-telje sihiline tasakaaluvõrrand vesise ja kuiva osa jaoks:

$$F = m_1 g \sin \alpha,$$

$$\mu N_2 = F + m_2 g \sin \alpha.$$

Elimineerides kahest viimasest võrrandist F-i leiame

$$\mu N_2 = (m_1 + m_2)q \sin \alpha.$$

Asendades siia N_2 leiame

$$m_2\mu g\cos\alpha=(m_1+m_2)g\sin\alpha.$$

Jagades läbi m_2g -ga ja asendades esimesest võrrandist suhte m_1/m_2 , saame

$$\frac{L}{L-l} = \mu \cot \alpha,$$

millest

$$\frac{l}{L} = 1 - \mu^{-1} \tan \alpha \approx 0.16.$$

Alternatiivne lahendus

Vaatleme lund katusel tervikliku süsteemina. Valime x-teljeks katuse sihi, y-telg olgu katuse sihiga risti. Lumekihile mõjuvad järgnevad jõud: raskusjõud mg, katusepinna toereaktsioonijõud N ning hõõrdejõud

$$F_h = \frac{L - l}{L} \mu N.$$

Kordaja (L-l)/L tuleb sellest, et hõõrdejud mõjub vaid (L-l)-pikkusel katuseosal. Tasakaaluvõrrand y-telje jaoks on

$$N = mg\cos\alpha,$$

x-telje jaoks aga

$$mg\sin\alpha = F_h = \frac{L-l}{L}\mu N.$$

Elimineerides kahest viimasest võrrandist N-i leiame

$$mg\sin\alpha = \mu mg\cos\alpha \frac{L-l}{L}.$$

Saame, et

$$\frac{L-l}{L} = \frac{\tan \alpha}{\mu}.$$

Seega

$$\frac{l}{L} = 1 - \frac{\tan \alpha}{\mu} \approx 0.16.$$

L6 Kast kaubikus ★★

Autor: Oleg Košik, lõppvoor, 2009, G 2

Kaubiku kiirendus on $a = v_0/t = 2.5 \,\mathrm{m/s^2}$. Newtoni II seaduse põhjal

$$\vec{N} + \vec{T} + \vec{F_h} + m\vec{g} = m\vec{a}.$$

Nööri pinge on minimaalne, kui hõõrdejud F_h saavutab maksimaalse väärtuse μN . Projektsioon x-teljele:

$$T\sin\alpha + \mu N = ma;$$

y-teljele:

$$N + T\cos\alpha - mg = 0.$$

Lahendades süsteemi leiame, et

$$T = m \frac{a - \mu g}{\sin \alpha - \mu \cos \alpha} \approx 14 \,\mathrm{N}.$$

L7 Liivahunnik ★★

Autor: Roland Matt, piirkonnavoor, 2011, G 5

Liivahunniku maksimaalse kõrguse saavutamiseks peavad pindmised liivakihid olema libisemise äärel ehk kehtib $\tan(\alpha)=\frac{h}{R}=\mu$, kus α on nurk maa ja koonuse moodustaja vahel, R hunniku aluse raadius ja h hunniku kõrgus. Liiva ruumala on

$$V = \frac{1}{3}\pi R^2 h = \frac{1}{3}\pi R^3 \mu,$$

millest

$$R = \sqrt[3]{\frac{3V}{\pi\mu}}$$

ning seega hunniku aluse pindala on

$$S = \pi R^2 = \sqrt[3]{9\pi \left(\frac{V}{\mu}\right)^2} \approx 76.2 \,\mathrm{m}^2.$$

L8 Tormituul ★★

Autor: Mihkel Kree, lõppvoor, 2011, G 3

Tuule poolt avaldatav horistonaalsuunaline jõud F peab olema niisugune, et selle poolt tekitatud jõumoment Fb/2 ületab raskusjõu poolt tekitatud jõumomendi Mga/2. Jõumomentide võrdsuse korral F=Mga/b. Et niisugune jõud autot libisema ei paneks, peab hõõrdejõud $F_h=\mu Mg$ selle tasakaalustama, millest saame nõutud tingimuseks: $\mu>a/b=2/3$.

L9 Hammasrattad ★★★

Autor: Siim Ainsaar, lõppvoor, 2010, G 4

Kasutame virtuaalse nihke meetodit: oletame, et nöör pole siiski päris venimatu ning saame esimest ratast pöörata väikese nurga α võrra. Hõõre puudub, mistõttu salvestub kogu välise jõumomendi töö nööri elastsusjõu potentsiaalseks energiaks. Välisjõumomendi töö on $M\alpha$ (kui jõumomenti avaldab üks jõud õlaga \tilde{o} ja suurusega M/\tilde{o} , siis nihkub ta rakenduspunkt $\alpha\tilde{o}$ võrra ja töö on $\alpha\tilde{o}M/\tilde{o}=M\alpha$). Väikesel nihkel ei jõua T oluliselt muutuda, seega peab nööri venitamise töö olema Ts, kus s on nööri pikenemine. Hambumusse jäävate hammasrataste pinnapunktide läbitavad teepikkused on võrdsed — mõlemal αr_1 , järelikult $s=2\alpha r_1$ ja $M\alpha=2\alpha r_1T$, kust $T=\frac{M}{2r_1}$.

Alternatiivne lahendus

Ratastele mõjuvad jõud ja jõumomendid on tasakaalus. Lihtsaim on kirjutada jõumomentide tasakaalud rataste tsentrite suhtes, kuna siis on võllide poolt avaldatava tundmatute jõudude õlad nullid. (Muidu saame lahenduse, kui avaldame need jõud jõudude tasakaaluvõrranditest.) Rattad mõjutavad teineteist puutujasihilise jõuga; kui teine ratas avaldab esimesele jõudu \vec{F} , siis avaldab Newtoni III seaduse järgi esimene teisele $-\vec{F}$. Jõumomentide tasakaal esimesele rattale on nii $M=(F+T)r_1$ ning teisele T=F, sestap $T=\frac{M}{2r_1}$.

L10 Kuul ★★★

Autor: tundmatu, lahtine, 2006, G7

Kõigepealt uurime kuulile mõjuvate jõudude projektsioone kasti põhjaga risti olevale teljele (vt joonist).

Nende projektsioonide summa peab olema võrdne nulliga. Projektsioone sellele teljele omavad vaid raskusjõud $m\vec{g}$ ja kasti põhja toereaktsioon \vec{N} . Järelikult $N=mg\cos\varphi$ ja hõõrdejõud

$$F \le \mu mg \cos \varphi. \tag{1}$$

Kuuli tasakaal sõltub selle võrratuse täitumisest.

Nüüd tuleb valida punkt, mille suhtes me hakkame määrama jõumomente. Valime punkti nii, et hõõrdejõu moment selle suhtes oleks nullist erinev, aga niidi tõmbepinge T moment oleks võrdne nulliga (niidi pinge arvutamise vältimiseks). Sellele tingimusele vastab punkt A, milles niit kinnitub kuuli külge. Selle punkti suhtes on hõõrdejõu õlg 2r (kus r on kuuli raadius), raskusjõu õlg $l=r\sin\varphi$, ning jõudude N ja T õlad võrdsed nulliga. Jõumomentide summa on tasakaalu puhul võrdne nulliga, järelikult

$$2rF - mgr\sin\varphi = 0 \quad \Rightarrow \quad F = \frac{mg\sin\varphi}{2}.$$

Arvestades võrratust (1) leiame, et tasakaalu puhul

$$\mu mg\cos\varphi \geq \frac{mg\sin\varphi}{2} \Rightarrow \tan\varphi = 2\mu,$$

ehk

$$\varphi = \arctan(2\mu)$$
.

L11 Toru ★★★

Autor: Aigar Vaigu, lõppvoor, 2010, G 5

Prussi võnkumine torul on stabiilne, kui prussi kõrvalekallutamisel väikese nurga α võrra prussi massikese tõuseb kõrgemale kui alguses. Esialgne prussi massikeskme kõrgus on R+L/2. Massikeskme kõrgus kõrvalekallutamisel on

$$\left(R + \frac{L}{2}\right)\cos\alpha + R\alpha\sin\alpha,$$

ning peab kehtima

$$\left(R + \frac{L}{2}\right)\cos\alpha + R\alpha\sin\alpha > R + \frac{L}{2}.$$

Kuna kõrvalekalde nurk on väike, siis võime arvestada, et $\sin \alpha \approx \alpha$ ja $\cos \alpha \approx 1 - \alpha^2/2$. Lihtsustades ning avaldades L-i, saame, et võnkumised on väikeste kõrvalekallete korral stabiilsed, kui

$$L < 2R$$
.

L12 Kuubik ★★★★

Autor: Riho Taba, piirkonnavoor, 2007, G 9

Ülesande lahendamine jaguneb kaheks osaks: (a) kas antud jõust piisab üle serva kantimiseks; (b) ega klots seejuures libisema ei hakka. Analüüsides oletame, et klots on juba kallutatud teatud nurga φ ($0 \le \varphi \le 45^\circ$) võrra; seejuures selgub, et $\varphi = 0$ on kõige ohtlikum olukord. Alternatiiv oleks väita intuitiivselt, et ohtlikuim on olukord $\varphi = 0$ ning uurida ainult seda juhtumit;

(a) Vaatleme jõumomentide tasakaalu toetava nurga suhtes. Kompenseerimist vajab raskusjõu moment $M_{1\text{max}}=Fa\cos(45^\circ)\cos(\varphi+45^\circ)$, mille maksimaalväärtus on

 $M_{1 \text{ max}} = \frac{mga}{2}, \quad M_{1 \text{ max}} = \frac{10 \cdot 9.8 \cdot 0.1}{2} = 4.9 \text{ N m}.$

Rakendatav jõud annab seda suurema momendi, mida suurem on õlg; õla maksimaalne pikkus ei sõltu nurgast φ ning on alati $l=a\sqrt{2}$. See väärtus saavutatakse siis, kui jõud on rakendatud maha toetuva serva suhtes vastasserva külge ning on risti ruudu diagonaaliga. Seega on antud jõu abil alati võimalik tekitada raskus-

jõudu kompenseeriv moment väärtusega kuni

$$M_2 = Fl = Fa\sqrt{2} = 5.6 \,\mathrm{N}\,\mathrm{m}.$$

Näeme, et $M_{1\text{max}} < M_2$, st antud jõud on piisav kuubi keeramiseks.

(b) Vaatleme jõudude tasakaalu raskusjõu $m\vec{g}$ ja rakendatud jõu \vec{F} pikenduste lõikepunkti O suhtes, vt joonist. Aeglasel pööramisel on jõud tasakaalus, st hõõrdejõu ja toereaktsiooni resultantjõud \vec{f} peab minema samuti läbi selle punkti. Et hõõrdetegur $\mu=0.5$, siis nurk toetuspinna normaali (st vertikaalsihi) ja jõu \vec{f} vahel ei tohi olla suurem, kui $\arctan\mu$, st jõud \vec{f} ei tohi olla vähem püstine, kui sirges. Nii see ka tõepoolest on, sest punkt O jääb alati piirkonda $x\leq 0$ ja y>0.

Alternatiivne lahendus osa (b) jaoks

Meil on vaja tõestada, et aeglasel pööramisel kehtib kogu aeg võrratus

$$|F_x| = F \cos(45^\circ - \varphi) \le N\mu$$

kus N on laua toereaktsioon. Paneme tähele, et vertikaalsest tasakaalutingimusest

$$N = mg - |F_y| = mg - F\sin(45^\circ - \varphi).$$

Me kasutame osast (a) teada olevat asjaolu, et kui hõõrdumist ei oleks, siis tasa-kaalu tagava jõu jaoks kehtib võrratus $F < F_{\rm max}$, seda asjaolu kasutame alljärgnevalt võrratuste ümber kirjutamisel.

Meile piisaks, kui suudaksime tõestada, et

$$\mu[mg - F_{\text{max}}\sin(45^{\circ} - \varphi)] \ge F_{\text{max}}\cos(45^{\circ} - \varphi),\tag{1}$$

sest sellisel juhul

$$N\mu = \mu \left[mg - F \sin \left(45^{\circ} - \varphi \right) \right] \ge \mu \left[mg - F_{\text{max}} \sin \left(45^{\circ} - \varphi \right) \right] \ge$$
$$\ge F_{\text{max}} \cos \left(45^{\circ} - \varphi \right) \ge F \cos \left(45^{\circ} - \varphi \right) = |F_x|.$$

Tõepoolest, $N\mu \ge |F_x|$. Võrratuse (1) tõestamiseks kirjutame selle ümber ekvivalentsel kujul

$$1 \ge \frac{F_{\text{max}}}{\mu m a} \left[\mu \sin \left(45^{\circ} - \varphi \right) + \cos \left(45^{\circ} - \varphi \right) \right],$$

mis tõepoolest kehtib, sest

$$\begin{split} &\frac{F_{\text{max}}}{\mu m g} \left[\mu \sin \left(45^{\circ} - \varphi\right) + \cos \left(45^{\circ} - \varphi\right)\right] = \\ &= \frac{F_{\text{max}} \sqrt{\mu^2 + 1}}{\mu m g} \sin \left(45^{\circ} - \varphi + \arcsin \left[\left(\mu^2 + 1\right)^{-1}\right]\right) \leq \\ &\leq \frac{F_{\text{max}} \sqrt{\mu^2 + 1}}{\mu m g} = \frac{40 \, \text{N} \cdot \sqrt{5/4}}{49 \, \text{N}} \approx 0.91 < 1. \end{split}$$

Autor: Jaan Kalda, lahtine, 2009, G9

L13 Kuulid ★★★★

Et kuuli C kiirusvektor on risti sirgega AC, siis hetkeline pöörlemiskese O asub sellel sirgel. Seega, kui kuul A hakkab libisema, siis on selle kiirusvektor samuti (ning järelikult ka hõõrdejõu vektor) risti sirgega AC. Piirjuhtumil, kui kuulide masside suhe on selline, et kuul A hakkab vaevu liikuma, on punkt O väga lähedal punktile A ning seega on punkti B kiirusvektor (ja hõõrdejõu suund) risti sirgega AB. Hõõrdejõudude jõumomentide summa punkti C suhtes peab olema null; et punkti A rakendatud hõõrdejõu õlg on |AC| ning punkti B puhul on õlg |AC|/2, saame kriitiliseks masside suhteks 1/2, st kuul A jääb paigale, kui $M_A/M_B > 1/2$. Märkus. Uurides olukorda edasi ja vaadeldes üha vähenevaid M_A väärtusi (alustades $M_B/2$ -st ja lõpetades tühiselt väikeste massidega) paneme tähele, et punkt O nihkub piki sirget AC, alustades punkti A juurest, üha kaugemale punktidest A ja C ning läheneb piiril $M_A \to 0$ punktile D, mis asub punktist A kaugusel |AC| — nõnda, et kolmnurk BCD on täisnurkne ning seetõttu punkti B rakendatud hõõrdejõu õlg läheneb nullile.

L14 Rõngas ★★★★

Autor: Jaan Kalda, lõppvoor, 2011, G 7

Olgu rõnga keskpunkt O ja massikese M ning võlli ja rõnga puutepunkt P. Vaadeldes jõumomentide tasakaalu punkti P suhtes näeme, et raskusjõud peab andma sarnaselt kõigi teiste jõududega null-momendi, st lõik PM peab olema vertikaalne. Toereaktsiooni \vec{N} ja hõõrdejõu \vec{F}_h resultant peab kompenseerima raskusjõu ja olema samuti vertikaalne. Pinnanormaali ja nimetatud resultantjõu vaheline nurk ei saa olla suurem kui arctan μ , vastasel korral algaks libisemine. Et pinnanormaaliks on sirge OP, siis

$$\angle OPM < \arctan \mu$$
.

Rõnga pöörlemise käigus |OP|=R ja |OM|=R/2; seega moodustub kolmnurk OPM lõikudest pikkusega R ja R/2 ning järelikult on tipu P juures olev nurk maksimaalne, kui tipu M juures on täisnurk. Sel juhul

$$\mu = \tan \angle OPM = |MO|/|MP| = \frac{R}{2}/\sqrt{R^2 - \frac{1}{4}R^2} = 1/\sqrt{3} \approx 0.58.$$

Vardale mõjuvad põranda ja silindri toereaktsioonid (vastavalt $\vec{N_p}$ ja $\vec{N_s}$), hõõrdejõud $\vec{F_h}$ ja raskusjõud $m\vec{g}$ (vt ülemist joonist). Asend on stabiilne, kui jõudude ja jõumomentide tasakaalu tingimustest avaldatav hõõrdejõud ei ületa maksimaalset seisuhõõrdejõudu:

$$F_h \le \mu N_p \tag{1}$$

ja varda alaots ei tõuse õhku:

$$N_p \ge 0. (2)$$

Siin ja edaspidi võiksime sama hästi rangeid võrratusi kasutada, täpne libisemise piir on reaalselt saavutamatu.

Jõudude tasakaal horisontaalsihis:

$$F_h = N_s \sin \alpha \tag{3}$$

ja varda sihis (võinuksime soovi korral valida ka muu sihi):

$$N_p \sin \alpha + F_h \cos \alpha = mg \sin \alpha. \tag{4}$$

Olgu d kaugus varda alaotsast toetuspunktini. Jõumomentide tasakaal varda alumise otsa suhtes annab (jällegi oleksid muud punktid võrdväärselt kasutatavad):

$$mg\frac{\ell}{2}\cos\alpha = N_s d. \tag{5}$$

Avaldame jõud ja asendame võrratustesse:

$$(5), (3) \Longrightarrow F_h = \frac{mg\ell}{2d} \sin \alpha \cos \alpha, \tag{6}$$

$$(6) \to (4) \Longrightarrow N_p = mg \left(1 - \frac{\ell}{2d} \cos^2 \alpha \right), \tag{7}$$

$$(6), (7) \to (1) \Longrightarrow \frac{\ell}{2\mu d} \sin \alpha \cos \alpha \le 1 - \frac{\ell}{2d} \cos^2 \alpha \Longrightarrow$$

$$\Longrightarrow \ell \le \frac{2\mu d}{\cos\alpha(\sin\alpha + \mu\cos\alpha)},\tag{8}$$

$$(7) \to (2) \Longrightarrow 1 - \frac{\ell}{2d} \cos^2 \alpha \ge 0 \Longrightarrow$$

$$\Longrightarrow \ell \le \frac{2d}{\cos^2 \alpha} = \frac{2\mu d}{\mu \cos^2 \alpha}.$$
(9)

(9) on leebem võrratus kui (8), mis on niisiis ℓ ülempiiriks (paremal nimetajas on selleks positiivne liige, $\sin \alpha$, juures). Kuna rangemat alampiiri ei ole, jääb selleks d.

d leidmiseks ühendame varda alaotsa silindri teljega (joonis 2). Tekib kaks võrdset kolmnurka, millest:

$$d = \frac{r}{\tan\frac{\alpha}{2}} = \frac{r\sin\alpha}{1 - \cos\alpha},\tag{10}$$

$$(10) \to (8) \Longrightarrow \ell \le \frac{2\mu r}{(\sin \alpha + \mu \cos \alpha) \cos \alpha \tan \frac{\alpha}{2}} = \frac{2\mu r}{(1 + \mu \cot \alpha)(1 - \cos \alpha) \cos \alpha}.$$

Kokkuvõttes

$$\frac{r\sin\alpha}{1-\cos\alpha}\leq \ell \leq \frac{2\mu r}{(1+\mu\cot\alpha)(1-\cos\alpha)\cos\alpha}.$$

L16 Konn ★★★★

Konnale mõjub kolm jõudu: raskusjõud $m\vec{g}=B\vec{C}$, mis on suunatud vertikaalselt alla, jõud $\vec{F}=C\vec{A}'$, mis on suunatud kaldpinna pinnanormaali sihis (pinna sisse), ning rõhumisjõu ja hõõrdejõu resultant $A^{\vec{I}}B$, mille nurk pinnanormaaliga $\alpha=\angle CA'B$ ei ületa väärtust arctan μ . Need kolm vektorit moodustavad tasakaalu korral joonisel toodud kolmnurga A'BC. Jooni-

Autor: Taavi Pungas, lahtine, 2010, G 9

selt on ilmne, et antud kaldenurga (A'C sihi) puhul saab konn minimeerida vajalikku jõudu (st lõigu A'C pikkust) suurendades nurga α maksimaalse võimaliku väärtuseni $\alpha = \arctan \mu$ (mil A' = A). Kui nüüd muuta pinna kaldenurka, siis joonistab punkt A ringjoone kaare (sest punktid B ja C on fikseeritud ning $\angle BAC$ on konstantne (arctan μ). Vajalik jõud (lõik AC) on maksimaalne, kui lõik AC on ringi diameetriks OC, st pinnanormaal moodustab horisondiga nurga arctan μ (sest $\angle OBC = 90^{\circ}$). Seega, sein on vertikaali suhtes kaldus arctan μ võrra, moodustades põrandaga teravnurga.

Alternatiivne lahendus

Olgu iminapa tekitatud tõmbejõud F, hõõrdejõud F_h ja normaaljõud N. Jõudude tasakaalu tingimusest saame $F_h=mg\sin\theta$ ja $F=N+mg\cos\theta$. Kui konn rakendab minimaalset tarvilikku jõudu, siis

$$F_h = \mu N = mg\sin\theta,$$

ehk

$$N = \frac{mg\sin\theta}{\mu}.$$

Niisiis,

$$F = N + mg\cos\theta = \frac{mg\sin\theta}{\mu} + mg\cos\theta = mg\left(\frac{\sin\theta}{\mu} + \cos\theta\right).$$

Nüüd on vaja leida, millise θ korral on F maksimaalne. Selleks katsume siinuse ja koosinuse summa avaldada ühe siinusena.

Otsime A ja B nii, et kehtiks võrdus

$$A\sin(\theta + B) = \frac{\sin\theta}{\mu} + \cos\theta.$$

Kuna

$$A\sin(\theta + B) = A\sin\theta\cos B + A\sin B\cos\theta,$$

siis $A \sin B = 1$ ja $A \cos B = \frac{1}{\mu}$. Siit saame $\tan B = \mu$ ja

$$A = \sqrt{\frac{1}{\mu^2} + 1} = \frac{1}{\mu} \sqrt{1 + \mu^2}.$$

Seega

$$F = \frac{mg}{\mu} \sqrt{1 + \mu^2} \sin(\theta + \arctan \mu).$$

Siinuse suurim võimalik väärtus on $\sin(90^\circ)=1$, ehk $\theta+\arctan\mu=90^\circ$. Seega on otsitav nurk $\theta=90^\circ-\arctan\mu$.

L17 Torud ★★★★

Autor: Jaan Kalda, piirkonnavoor, 2010, G 10

Kõigepalt paneme tähele, et põhimõtteliselt võiks antud süsteemis toimida rõhumisjõud kahe alumise silindri vahel, kuid see kaob niipea, kui alumised silindrid natukenegi üksteisest eemalduvad; niisiis võime sellega mitte arvestada.

Esmalt oletame, et μ on piisavalt suur, nii et vastu põrandat toetuvad torud pigem veerevad kui libisevad (kui k pole piisavalt suur). Vaatleme vastu põrandat toetuvale torule mõjuvate jõumomentide tasakaalu tingimust toru ja põranda kontaktpunkti P suhtes. Põranda rõhumis- ja hõõrdeju õlg on null; ka raskusjõud mg õlg on null. Vaadeldavale torule mõjub veel vaid üksainus jõud — ülemise toru põhjustatud hõõrde- ja rõhumisjõu resultant, mis on rakendatud puutepunkti Q (vt joonist) ja kui tegemist on libisemise piirjuhuga (st veidigi väiksem hõõrdetegur k viiks libisemisele), siis moodustab see vektor pinnanormaaliga nurga arctan k (sest antud vektor moodustub üksteisega risti olevate rõhumisjõu N ja hõõrdejõu F_h vektorite resultandina ning nurga tangens on $F_h/N=k$). Et ülejäänud jõudude moment oli null, siis peab ka selle jõu moment olema null, st jõu vektor peab olema suunatud punkti P. Et kolmnurk OQP on võrdhaarne (vt joonist), siis

$$k > \tan 15^{\circ} \approx 0.27.$$

Nüüd oletame, et $k \geq \tan 15^\circ$ ning vaatleme libisemise piirjuhtu punktis P. Selleks vaatleme jõumomentide tasakaalu punkti Q suhtes. Silindrile mõjuv raskusjõud mg ning punktis P toimiv rõhumisjõud $\frac{3}{2}mg$ (mis kompenseerib poolteise silindri raskusjõu) on rakendatud sirge OP sihis ning nende summaarne jõumoment $\frac{1}{4}mgR$ (kus R on silindri raadius) tasakaalustab hõõrdejõu momendi

$$\frac{3}{2}mg\mu\left(R+R\sin60^{\circ}\right).$$

Siinjuures arvestasime, et punktis P toimiv hõõrdejõud on μ -kordne rõhumisjõud $\frac{3}{2}mg$ ning on horisontaalne ja omab seetõttu õlga $R+R\sin 60^\circ$. Seega,

$$\mu \ge \frac{1}{6(1+\sin 60^\circ)} = \frac{1}{6(1+\frac{\sqrt{3}}{2})} \approx 0.09.$$

L18 Tungraud ★★★★★

Autor: Valter Kiisk, lõppvoor, 2011, G 10

a) Olgu a tungraua vertikaalne ja b horisontaalne diagonaal; Pythagorase teoreemi põhjal $a^2+b^2={\rm Const}$, millest diferentseerides saame

$$2a\Delta a + 2b\Delta b = 0 \quad \Rightarrow \quad \Delta a = \frac{-b\Delta b}{a} = -\cot\alpha\Delta b.$$

Siinjuures Δa ja Δb on tungraua kõrguse ja laiuse väikesed muutused. Vändaga ühe täispöörde tegemisel $\Delta b=-3\,\mathrm{mm}$. Võrrutades tehtud töö $2\pi l F_k$ (kus l on vända pikkus) potentsiaalse energia muuduga $F\Delta a$, saame

$$F_k = \frac{F \cot \alpha \Delta b}{2\pi l} \approx 24 \,\mathrm{N}.$$

Alternatiivne lahendus

Kui vändale rakendatakse pöördemomenti M, siis keerates seda väikese nurga $\Delta\Phi$ võrra tehakse tööd $M\Delta\Phi$. Kuivõrd hõõrdumine puudub, siis see töö peab olema sama mis $F\Delta H$, kus ΔH on tungraua kõrguse muutus. Niisiis

$$M = F \frac{dH}{d\phi} = F \times \frac{dH}{d\alpha} \times \frac{d\alpha}{dL} \times \frac{dL}{d\phi},$$

kus L on tungraua äärmiste šarniirsete kinnituste vahekaugus. Ilmselt $H=2a\sin\alpha$, kus $a=17\,\mathrm{cm}$. Seega d $H/\mathrm{d}\alpha=2a\cos\alpha$. Teiselt poolt, $L=2a\cos\alpha$, millest d $L/\mathrm{d}\alpha=-2a\sin\alpha$. Vända üks täispööre tingib L muutuse kruvikeerme sammu h võrra: $\Delta L=-(\Delta\Phi/2\pi)h$. Kokkuvõttes

$$M = F \times (2a\cos\alpha) \times \frac{1}{-2a\sin\alpha} \times \frac{-h}{2\pi} = \frac{Fh\cot\alpha}{2\pi}.$$

Tähistades vända õla pikkuse l, saame avaldada otsitava jõu:

$$F_k = \frac{M}{l} = \frac{Fh \cot \alpha}{2\pi l} \approx 24 \,\mathrm{N}.$$

b) Kui hõõrdumist ei ole, siis läheb vändast pööramisel tehtav töö puhtalt auto potentsiaalse energia kasvatamiseks. Kui hõõrdumine on olemas tekstis kirjeldatud määral, siis vastupidises suunas pööramisel ei ole jõudu peaaegu vaja rakendada (tungraud püsib libisemise piiri peal) ja seega on potentsiaalse energia muut oma moodulilt võrdne hõõrdejõudude tööga. Kui vändata päripidi (auto kergitamiseks), siis hõõrdejõu töö ei muutu (võrreldes sama nurga võrra vastupidi pööramisega) ja on seetõttu endiselt võrdne potentsiaalse energia muuduga. Niisiis tuleb võrreldes hõõrdevaba pööramisega sooritada kaks korda suuremat tööd, st rakendatav jõud peab olema täpselt kaks korda suurem, kui esimeses osas. Seega $F_1 = 2F = 48\,\mathrm{N}$.

L19 Platvorm ★★★★

Autor: Jaan Kalda, lõppvoor, 2005, G 10

- a) Kolmnurk hakkab põranda suhtes liikuma, sest summaarne jõumoment punkti C suhtes koosneb kahest liidetavast, mis omavad ühte ja sama märki ning on nullist erinevad. Selles veendumiseks tuleb tõmmata punktidesse A ja B rakendatud hõõrdejõudude pikendused AE ja BE (E on nende pikenduste lõikepunkt), mis on risti vastavalt raadiustega OA ja OB (vt joonist).
- **b**) Süsteemile mõjub kolm horisontaalsuunalist jõudu. Jõumomentide tasakaalu tingimusest järeldub et nende jõudude pikendused peavad lõikuma ühes punktis E. Olgu kolmas keha punktis D. Siis punkti D rakendatud hõõrdejõud peab olema suunatud piki sirget ED. Teisest küljest, jõudude tasakaalu tingimusest lähtuvalt peavad hõõrdejõudude vektorid moodustama võrdhaarse kolmnurga $\vec{F}_A + \vec{F}_B + \vec{F}_C = 0$ (võrdhaarse, sest punktidesse A ja B rakendatud jõud on moodulilt võrdsed, $|\vec{F}_A| = |\vec{F}_B|$).

Selletõttu peab vektorite \vec{F}_A ja \vec{F}_D vaheline nurk võrduma vektorite \vec{F}_D ja \vec{F}_B vahelise nurgaga. Niisiis peab sirge ED ristuma nurga $\angle AEB$ poolitajaga EG. See tähendab, et punktihulgaks X on sirge s, mis ristub nurga $\angle AEB$ poolitajaga EG. Lõpetuseks paneme tähele, et hõõrdejõud \vec{F}_D peab olema moodulilt väiksem, kui \vec{F}_A ja \vec{F}_B , sest muidu toimuks kolmanda keha juures libisemine. Nii ka on, sest nurk $\angle AEB$ on väiksem kui 60° (60°, st võrdkülgse kolmnurga puhul oleks jõudude kolmurgas $\vec{F}_A + \vec{F}_B + \vec{F}_C = 0$ kõik küljed võrdsed, 60° väiksemate nurkade puhul aga oleks vektor \vec{F}_C oma moodulilt teistest väiksem).

L20 Autod ★

Autor: Oleg Košik, piirkonnavoor, 2006, G 1

Vaatleme jalgratturi liikumist talle vastu sõitvate autode suhtes. Tema kiirus autode süsteemis on $v=v_1+v_2=120\,\mathrm{km/h}$. Seega katavad $n_0=20$ autot vahemaa $vt_0=10\,\mathrm{km}$ ning terve maantee ulatuses on autosid

$$n = n_0 \frac{s}{vt_0} = 360.$$

L21 Ummik ★

Autor: Jaan Kalda, piirkonnavoor, 2007, G 2

Lõigul C on teatud punkti ajaühikus läbivate autode arv N_C võrdne lõikude A ja B vastavate arvude summaga: $N_C=N_A+N_B$. Olgu autode vahemaa a ja vaadeldav ajavahemik τ . Siis $N_i=v_i\tau/l$, ehk

$$\frac{v_C\tau}{l} = \frac{v_A\tau}{l} + \frac{v_B\tau}{l} \quad \Rightarrow \quad v_C = v_A + v_B.$$

Et $v_B = L_B/t_B$, siis toodud arvude põhjal leiame

$$v_B = \frac{3\,\mathrm{km}}{36\,\mathrm{min}} = 5\,\mathrm{km/h}$$

ning seega $v_C=8$ km/h. Lõpetuseks, $t_A=L_A/v_A=20$ min ja $t_C=L_C/v_=15$ min C. Niisiis kulub autol aega $T=t_A+t_C=35$ min.

L22 Auto ★

Autor: tundmatu, lahtine, 2008, G1

Olgu släbitud vahemaa, aauto kiirendus ning τ aeg, millega auto läbis esimese 4/5teest. Kehtivad võrdused

$$s = \frac{at^2}{2}, \quad \frac{4}{5}s = \frac{a\tau^2}{2}.$$

Siit $\tau = 2t/\sqrt{5} \approx 13.4 \,\mathrm{s}$. Seega otsitav ajavahemik on $t - \tau \approx 1.6 \,\mathrm{s}$.

L23 Ratturid ★

Autor: tundmatu, lahtine, 2009, G1

Olgu esimese ratturi sõiduaeg tundides t, siis teise ratturi sõiduaeg on t+1 ning kolmanda ratturi oma t+2. Et esimene ja teine rattur sõitsid läbi sama pika vahemaa, saame võrrandi

$$30t = 20(t+1),$$

kust saame t=2 tundi. Järelikult linnade A ja B vaheline kaugus on $s=302=60\,\mathrm{km}$ kilomeetrit. Kolmanda ratturi keskmine kiirus oli seega

$$v_3 = \frac{s}{t+2} = 15 \,\text{km/h}.$$

L24 Veok ★

Autor: Valter Kiisk, piirkonnavoor, 2005, G 1

Tähistagu x teepikkust, mille sõiduauto läbib möödasõidu lõpuks (vt joonist) ja olgu t möödasõiduks kuluv ajavahemik. Vahemaa x läbib sõiduauto ühtlase kiirendusega a, alustades algkiirusega v_1 , seega

$$x = v_1 t + \frac{at^2}{2}.$$

Teiselt poolt, veoauto liikumise põhjal

$$x = v_1 t + L_1 + L_2 + l_1 + l_2.$$

Kahe viimase avaldise võrdsustamisel saame

$$\frac{at^2}{2} = L_1 + L_2 + l_1 + l_2 \Rightarrow t = \sqrt{\frac{2(L_1 + L_2 + l_1 + l_2)}{a}} \Rightarrow$$

$$s = v_1 t + L_1 + L_2 + l_1 + l_2 + v_2 t + l_3$$

$$s = (v_1 + v_2) \sqrt{\frac{2(L_1 + L_2 + l_1 + l_2)}{a}} + L_1 + L_2 + l_1 + l_2 + l_3 \approx 349 \,\mathrm{m}$$

Alternatiivne lahendus

Kasutame möödasõidu aja leidmiseks veoauto taustsüsteemi, kus möödasõitva auto algkiirus on u=0:

$$\frac{at^2}{2} = L_1 + L_2 + l_1 + l_2.$$

Selle aja jooksul lähenevad veoauto ja vastutulev auto vahemaa

$$s_1 = (v_1 + v_2)t$$

võrra, mis tähendab, et möödasõitja algvahemaa on

$$s = s_1 + L_1 + L_2 + l_1 + l_2 + l_3$$

st (asendades s_1 ja t eelnevatest võrranditest)

$$s = (v_1 + v_2) \sqrt{\frac{2(L_1 + L_2 + l_1 + l_2)}{a}} + L_1 + L_2 + l_1 + l_2 + l_3 \approx 349 \,\mathrm{m}.$$

L25 Rongionnetus ★

Autor: Oleg Košik, piirkonnavoor, 2011, G 4

Teisendades kiirusühikuid, saame $v_1=17.5\,\mathrm{m/s}$ ning $v_2=5\,\mathrm{m/s}$. Olgu t aeg, mis möödus kokkupõrkeni. Kaubarong läbis teepikkuse $s_1=v_1t+\frac{1}{2}a_1t^2$. Elektrirong läbis teepikkuse $s_2=v_2t+\frac{1}{2}a_2t^2$. Kuna $s=s_1+s_2$, siis

$$s = (v_1 + v_2) t + \frac{1}{2} (a_1 + a_2) t^2.$$

Lahendades ruutvõrrandi, leiame $t=109\,\mathrm{s}$. Seega kaubarongi kiirus oli kokkupõrke hetkel $v_k=v_1+a_1t=6,6\,\mathrm{m/s}$ ehk 24 km/h, elektrirongi oma $v_e=v_2+a_2t=21,4\,\mathrm{m/s}$ ehk 77 km/h.

Sonarist saadetakse välja heli lainepikkusega $\lambda_1=v_h/f_1$. Helilaine läheneb laevale kiirusega v_h-v , seega jõuab laevani helisignaal sagedusega

$$f_L = \frac{v_h - v}{\lambda_1} = f_1 \frac{v_h - v}{v_h}.$$

Peegeldudes laevalt tagasi, liigub helisignaal laeva suhtes kiirusega $v_h + v$. Kuna laevalt peegeldunud kiirt saab vaadelda kui kiirt, mis on alguse saanud laeva pardal olevalt signaaliallikalt sagedusega f_L , on signaali lainepikkus $\lambda_2 = (v_h + v)/f_L$. Sonari vastuvõtjasse rannikul jõuab signaal sagedusega

$$f_2 = \frac{v_h}{\lambda_2} = f_L \frac{v_h}{v_h + v} = f_1 \frac{v_h - v}{v_h + v}.$$

Avaldame viimasest võrdusest v:

$$v = v_h \frac{f_1 - f_2}{f_1 + f_2}.$$

Alternatiivne lahendus Kasutame Doppleri valemit

$$f_2 = f_1 \frac{1 + v_2/v_h}{1 + v_1/v_h},$$

kus saatja ja vastuvõtja lähenevad üksteisele kiirustega vastavalt v_1 ja v_2 . Kui signaal jõuab rannikult laevani, siis antud olukorras on saatja kiirus $v_1=0$ ja vastuvõtja kiirus $v_2=-v$, sest vastuvõtja (laev) kaugeneb saatjast. Doppleri valem saab sel juhul kuju

$$f_L = f_1 \frac{v_h - v}{v_h},$$

kus f_l on laevani jõudva signaali sagedus.

Olukorras, kus signaal läheb laevalt tagasi rannikule, on saatja kiirus $v_1=-v$, sest saatja (laev) kaugeneb vastuvõtjast (rannikult). Vastuvõtja kiirus on aga $v_2=0$. Vastavalt Doppleri valemile jõuab sonari vastuvõtjasse rannikul signaal sagedusega

$$f_2 = f_L \frac{v_h}{v_h + v} = f_1 \frac{v_h - v}{v_h + v}.$$

Avaldame viimasest võrdusest v:

$$v = v_h \frac{f_1 - f_2}{f_1 + f_2}.$$

Märkus: kuivõrd iga realistliku laeva kiiruse puhul $v \ll v_h$, siis on lubatud kasutada ligikaudset Doppleri valemit

$$f \approx f_0 \left(1 + \frac{v}{v_h} \right).$$

Sama lähendust saab kasutada ka esimese lahenduse puhul.

L27 Autod ★★

Autor: Jaan Kalda, piirkonnavoor, 2008, G 2

Kanname joonisele autode *A* ja *B* kiirusvektorid suvalises mõõtkavas (st vektorite moodulid suhtuvad nagu 40:60). Leiame nende vektorite vahe, see on autode suhteline kiirus. Tõmmates ühe auto juurest selle vektori sihilise sirge leiame tema trajektoori teise autoga seotud süsteemis. Teise auto kaugus sellest sirgest annabki vastuse. Mõõtkava arvestamine ja mõistlik numbriline tulemus annab 60 m.

L28 GPS ★★

Autor: Jaan Kalda, lõppvoor, 2009, G 5

Ajahetkel $t_1=75\,\mathrm{s}$ tervisesportlane veel jooksis, sest eelmise perioodi keskmine kiirus polnud veel alanenud ($v_0=11\,\mathrm{km/h}$); et ajahetkeks $t_2=90\,\mathrm{s}$ oli keskmine kiirus langenud kiiruseni $v_1=8\,\mathrm{km/h}$, siis oli ta seisnud juba ajavahemiku τ_1 , kus $v_1T=v_0(T-\tau_1)$ ning $T=15\,\mathrm{s}$. Seega,

$$\tau_1 = \left(1 - \frac{v_1}{v_0}\right) T.$$

Analoogselt, pärast ajahetke t_2 seisis sportlane veel ajavahemiku τ_2 , kus $v_2T=v_3(T-\tau_2)$ ning $v_2=3$ km/h ja $v_3=14$ km/h. Seega,

$$\tau_2 = \left(1 - \frac{v_2}{v_3}\right)T$$

ning kogu peatusaeg

$$\tau = \tau_1 + \tau_2 = T \left(2 - \frac{v_1}{v_0} - \frac{v_2}{v_3} \right) \approx 16 \,\mathrm{s}.$$

L29 Tsunami ★★★

Autor: Jaan Kalda, lõppvoor, 2005, G 6

Laine levik toimub geomeetrilise optika seaduste kohaselt: astangu juures on laine langemisnurga ja murdumisnurga suhe

$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{v_1}{v_2} = \frac{\sqrt{gh_1}}{\sqrt{gh_2}} = \sqrt{\frac{h_1}{h_2}} \quad \Rightarrow \quad \alpha_2 = \arcsin\left(\sin \alpha_1 \sqrt{\frac{h_2}{h_1}}\right).$$

Seal astangu osas, kus langemisnurk on 0°, murdumist ei toimu. Seal aga, kus $\alpha_1=60^\circ$, on murdumisnurk

$$\alpha_2 = \arcsin\left(\sin 60^{\circ} \sqrt{\frac{3200}{5000}}\right) \approx 44^{\circ}.$$

Seega kaldub laine esialgsest levimissuunast kõrvale nurga $\beta=\alpha_1-\alpha_2=16^\circ$ võrra. Niisiis jõuab rannalõigule AC kaks lainet ning rannalõigule DE ei jõua üldse lainet. Punkti B jõuavad mõlemad lained üheaegselt (sümmeetria tõttu) ning seal ongi laine kõige kõrgem.

L30 Hävituslennuk ★★★

Autor: tundmatu, lahtine, 2011, G7

Olgu hetkel, mil Mati käivitab stopperi, lennuki horisontaalsuunaline kaugus temast x_1 . Tähistame lennuki lennukõrguse H, posti pikkuse h ja kauguse L. Tekib kaks kujutletavat täisnurkset sarnast kolmnurka, mille ühise nurga tipus asub Mati. Nendest saame (kasutades eeldust, et ilmselt $l \ll H$):

$$\frac{H-l}{x_1} \approx \frac{H}{x_1} = \frac{h-l}{L}.$$

Kui lennuk on jõudnud üle Mati pea, jõuab temani lööklaine hetkel, mil lennuki horisontaalkaugus x_2 Matist on

$$x_2 = \frac{H}{\tan\left(\frac{\alpha}{2}\right)} = \frac{H}{\tan\left(\arcsin\left(\frac{u}{x}\right)\right)} = \frac{H}{u}\sqrt{v^2 - u^2}.$$

Olgu au mõõdetud aeg. Stopperi käivitamise hetkest seiskamiseni liikus lennuk vahemaa

$$x_1 + x_2 = H\left(\frac{\sqrt{v^2 - u^2}}{u} + \frac{L}{h - l}\right) = v\tau \Rightarrow H = \frac{v\tau}{\left(\frac{\sqrt{v^2 - u^2}}{u} + \frac{L}{h - l}\right)} \approx 1630 \,\mathrm{m}.$$

L31 Fotograaf ★★★★

Autor: Jaan Kalda, lõppvoor, 2011, G 6

Olgu pilu laius d, katiku kiirus u ja piisa kujutise kiirus sensori tasandis v. Katiku taustsüsteemis liigub piisa kujutis kiirusega $u\pm v$; kui fotoaparaat on päripidi, siis tuleb võtta märk "+" ja kui tagurpidi, siis "–". Seega on piisa jälje tekkimise aeg $d/|u\pm v|$ ning jälje pikkus $l=vd/|u\pm v|$. Olgu $u\geq v$; siis

$$l_1 = \frac{vd}{u+v}, \quad l_2 = \frac{vd}{u-v}.$$

Jagades teise võrrandi esimesega saame

$$\frac{u+v}{u-v} = \frac{l_2}{l_1} = \frac{5}{3},$$

millest

$$3u + 3v = 5u - 5v,$$

ehk

$$u = 4v$$
.

Kui fotoaparaat on portreeasendis, siis viibib piisa kujutis pilus ajavahemiku d/u jooksul ja jälje pikkus on seega

$$l_3 = vd/u$$
.

Esimese võrrandiga läbi jagades leiame, et $l_3/l_1=1+\frac{v}{u}=\frac{5}{4}$ ning

$$l_3 = \frac{5}{4}l_1 = 150$$
 pikselit.

Kui u < v, siis muutub ainult teine võrrand,

$$l_2 = \frac{vd}{v - u},$$

mistõttu 3u + 3v = 5v - 5u ja u = v/4, mistõttu

$$l_3 = 5l_1 = 600$$
 pikselit.

Märkus 1: ülesande teksti põhjal on see üks kahest võimalikust vastusest; reaalselt, arvestades tüüpilist katiku liikumiskiirust (18 mm läbimisaeg $\frac{1}{125}$ s $\Longrightarrow u =$

 $2.25 \, \mathrm{m/s} \implies v = 4u = 9 \, \mathrm{m/s}$), on siiski üsna raske saavutada, et v = 4u: pildistamine peaks toimuma ohtlikult lähedalt. Kui joa kõrgus oleks nt 100 m, siis vabalangenud piisa kiirus oleks ca 44 m/s, mistõttu pildistamiskauguse ja objektiivi fookuskauguse suhe (st suurendustegur) tuleks $44/9 \approx 5$ ning isegi teleobjektiivi (nt $f = 300 \, \mathrm{mm}$) korral peaks fotograaf olema joast vaid 1,5 m kaugusel.

 $\it M\ddot{a}rkus~2$: eeldusest, et "pilu laius on $\it d$ " võib jääda mulje, justkui eeldanuks me vaikimisi, et sensor ei jõua säritamise ajal täielikult avaneda. Ometigi kehtib lahendus ka siis, kui säriaeg on nii pikk, et sensor jõuab täielikult avaneda: piltlikult võib ette kujutada, et ikkagi mõlemad kardinad liiguvad samaaegselt, kuid pilu laius on suurem sensori kõrgusest, st esimene kardin jõuab sensori kohalt eemale minna enne teise kardina saabumist.

L32 Laev ★★★★

Autor: tundmatu, lõppvoor, 2007, G 5

Näitame, et laev peab sõitma nii, et voolukiirused stardihetkel t_s ja finišihetkel t_f on võrdsed, $v(t_s) = v(t_f)$. Teeme seda vastuväiteliselt. Vaatleme konkreetsuse mõttes liikumist B suunas, mil laeva kiirus kalda suhtes on $v_0 + v(t)$. Sellisel juhul on läbitud vahemaa L graafiku v(t) ja joone $v = -v_0$ vahelise piirkonna pindala. Nihutame stardi ja finišiaega väikese ajavahemiku Δt võrra. Läbitav vahemaa muutub seejuures $\Delta t(v_f - v_s)$ võrra. Kui $v(t_s) \neq v(t_f)$, siis saame valida Δt märgi selliselt, et $\Delta t(v_f - v_s) > 0$, st sama aja jooksul läbitud vahemaa kasvab saades suuremaks Lst. Seega saaks sõiduaega vähendada ning stardihetk polnud optimaalne.

Eelpool selgitatud tingimustele (stardi- ja finišihetke kiirused on võrdsed, graafiku ja joone $v=-v_0$ vaheline pindala võrdub 20 km-ga) vastavad stardiajad punktist A 22.20 ja punktist B 04.20.

L33 Müra ★★★★

Autor: Siim Ainsaar, lahtine, 2009, G 10

Õhu taustsüsteemis on helilainefrondid kiirusega c kasvava raadiuse ja paigaloleva keskmega poolsfäärid. Helivõimsus jaotub ühtlaselt üle terve frondipinna, seega on tajutav võimsus pöördvõrdeline frondi pindalaga ehk pöördvõrdeline frondi raadiuse ruuduga. Lisaks on võimsus ka võrdeline frontide vastuvõtmise sagedusega ehk võrdeline helisagedusega, aga nagu peagi leiame, on sagedus konstant.

Õhu taustsüsteemis liiguvad nii matkaja kui ka jaam vastu esialgsele tuule suunale kiirusega βc . Järelikult kui front oli vastuvõtmise hetkeks raadiusega d=ct, siis selle kiirgamise alguspunkt oli liikunud jaama suhtes allatuult kaugusele $a=(\beta c)t=\beta d$. Et see kaugus on kõigile frontidele ühesugune, on sama ka frontide teeloleku aeg ning aeg kahe frondi kiirgamise vahel võrdub ajaga nende vastuvõtmise vahel. Seega helisagedus ei muutu. Olgu

jaama kaugus ℓ. Rakendame tekkinud kolmnurgale koosinusteoreemi:

$$d^2 = a^2 + \ell^2 - 2a\ell\cos\alpha.$$

Kuna $x=\left(\frac{\ell}{d}\right)^2$ ja $\cos 135^\circ=-\frac{\sqrt{2}}{2}$, saame \sqrt{x} leidmiseks ruutvõrrandi, kusjuures ℓ taandub välja (karakteristlik pikkusmõõde puudub).

$$\begin{split} \frac{\ell^2}{x} &= \frac{\beta^2 \ell^2}{x} + \ell^2 + \frac{\sqrt{2}\beta\ell^2}{\sqrt{x}} \\ x &+ \sqrt{2}\beta\sqrt{x} + \beta^2 - 1 = 0 \\ x &= \left(\frac{-\sqrt{2}\beta \pm \sqrt{2\beta^2 - 4\beta^2 + 4}}{2}\right)^2 = \frac{\left(-\beta \pm \sqrt{2 - \beta^2}\right)^2}{2} = 1 \mp \beta\sqrt{2 - \beta^2}. \end{split}$$

Heli jääb vaiksemaks, mistõttu x < 1 ja peame valima miinusmärgiga lahend

$$x = 1 - \beta \sqrt{2 - \beta^2}.$$

L34 Kaater ★★★★

Autor: Jaan Kalda, lõppvoor, 2009, G 8

a) Veega seotud taustsüsteemis liiguvad lained paadi trajektoori suhtes sümmeetriliselt. Seega, veega seotud taustsüsteemis on paadi trajektoor lainetest moodustatud nurga poolitaja. Paadi kiirusest \vec{u} , jõe voolukiirusest \vec{v} ja paadi kiirusest maa suhtes moodustub kiiruste kolmnurk, vt joonis. Jooniselt mõõdame selle kolmnurga teravama nurga siinuse, $\sin \alpha = v/u = 0.26$, millest $v = 1.8 \, \text{m/s}$.

b) Kui paat tekitas teatud punktis häirituse, siis levis see ajaga t kaugusele wt (nähtavaks paadilaineks on selliste ringide mähisjoon), paat aga liikus kaugusele ut. Seega leiame jooniselt pikkuste suhte abil w/u = |OP|/|OQ| = 0,64, millest $w = 4.5 \, \text{m/s}$. Järelikult on vee sügavus $h = w^2/g = 2 \, \text{m}$.

L35 Kodarad ★★★★

Kodara antud punkt näib kujutisel terav, kui selle kiirusvektor on suunatud pikki

kodarat, st antud punktis kodar ei liigu enese ristsihis. Olukorda võib selgitada juuresoleva joonise abil. Olgu R ratta raadius ja olgu selle keskpunt O. Kui kodara pöördenurk on θ ning see nurk muutub pildistamise jooksul nurga d θ võrra, siis O on läbinud teatud vahemaa (R d θ), aga kodar on samuti pöördunud sama nurga (d θ) võrra. Jooniselt on näha, et uuel ja vanal kodara asendil on üks ühine punkt, olgu see punkt Q. Nii pildistamise alg- kui ka lõpphetkel asus selles punktis kodar, mistõttu kujutisel jääb see punkt selgelt näha (erinevalt teistest punktidest, kus kodar viibis vaid lühiajaliselt).

Kasutades eeltoodud joonist (kus tähistasime OQ=r) võime avaldada lõigu MN pikkuse kahel viisil: $R \, \mathrm{d}\theta \cos \theta = r \, \mathrm{d}\theta$, kus paremal pool kasutasime väikese nurga lähendust $\sin \mathrm{d}\theta \approx \mathrm{d}\theta$. Seega $R \cos \theta = r$, mis tähendab, et (a) punkt Q on leitav kodara lõikepunktina ratta ja maa kontaktpunktist S kodarale tõmmatud ristsirgega (vt järgnev joonis); (b) vaadeldes seda võrdust kui raadiuse r sõltuvust polaarnurgast θ näeme, et ülejäänud kodarate teravalt kujutuvad punktid asuvad ringjoonel, mille diameetriks on ratta raadius OS.

Alternatiivne lahendus

Pildistamise hetkel pöörleb kogu ratas ümber hetkelise pöörlemistelje, mis läbib ratta ja maa puutepunkti S (vt. joonist). Sellel hetkel liigub iga ratta osake mööda ringjoone kaart, mille keskpuntiks on S. Kui ühe sellisel moel liikuva punkti kiirus on mööda kodarat (OP), siis see punkt kujutub fotol selgena. Seega me otsime selliseid punkte Q, mille juures $\angle OQS$ on täisnurk. Piirdenurga omaduse põhjal peab selline punkt Q lebama ringjoonel, mille diameetriks on QS — sõltumata kodara kaldenurgast θ .

L36 Propeller ★★★★

Autor: Andreas Valdmann, lõppvoor, 2010, G 10

- **a**) Propeller pöörleb vastupäeva, sest pildi ülaosas liiguvad labad vastu parajasti salvestatavale pikseliveerule ja seetõttu paiknevad seal labade kujutised tihedamalt.
- **b**) Vasakpoolsel joonisel on ülalt alla tõmmatud üks veerg millel on korraga peal maksimaalset 2 laba. Kui labasid oleks 2, peaks veerus paistma korraga vaid üks laba. Labad ise on kantud joonisele mustaga. Näha on, et labade vaheline nurk on suurem kui 90 kraadi ja seega on propelleril kolm laba.

Alternatiivne lahendus

Tähistame labade tekitatud jooned numbritega 1 kuni 7, nii nagu näidatud parempoolsel joonisel. Joonise alumises servas eelneb joon 2 joonele 6. See tähendab, et joonele 2 vastav laba peab eelnema joonele 6 vastavale labale. Joonise ülemise serva põhjal võime analoogselt väita, et joonele 5 vastav laba peab eelnema joonele 6

vastavale labale. Järelikult peavad jooned 5 ja 2 vastama samale labale. Ülemises servas jääb joonte 5 ja 2 vahele veel 2 joont, st sellele labale vastavad jooned korduvad perioodiga 3 joont. See periood peab olema propelleri labade arvu n kordne. Et 3 on algarv, siis ainus variant on n=3.

c) Iga kolmas triip pildil kujutab sama propellerilaba. Järgneval joonisel on valgega nummerdatud labad; propelleri telje kõrgusel on tõmmatud joon mille kogupikkus moodustus pildistamise aja jooksul ehk kogupikkus on 1/8 s. Punasega on märgitud aeg millega laba number üks jõudis liikuda 1,5 pööret. Punase osa pikkus moodustab ligikaudu 4/5 pildi kogulaiusest. Seetõttu moodustab ka nende punktide ajaline intervall 4/5 pildi tegemise koguajast. Selle aja jooksul teeb propeller poolteist pööret. Ühes sekundis teeb propeller 1,5/(1/8 · 4/5) = 15 pööret ja ühes minutis $15 \cdot 60 = 900$ pööret.

L37 Kivi ★

Autor: Aigar Vaigu, lõppvoor, 2005, G 1

Läheme üle vabalt langevasse taustsüsteemi. Selles süsteemis liiguvad vabalt langevad kehad konstantse kiirusega. Kivi saavutab langevas süsteemis palli viskamise hetkeks, Δt , õhupalli suhtes suhtelise kiiruse $u=g\Delta t$; see ei tohi olla suurem, kui maksimaalne viskekiirus v_{\max} . Seega

$$\Delta t \le \frac{v_{\text{max}}}{q}.$$

Avaldame palli viskekiiruse energia jäävuse seadusest:

$$\frac{mv_{\max}^2}{2} = mgh \quad \Rightarrow \quad v_{\max} = \sqrt{2gh}.$$

Maksimaalne viivituse aeg on seega

$$\Delta t_{\rm max} = \frac{v_{\rm max}}{g} = \sqrt{\frac{2h}{g}} \approx 2 \, {\rm s}.$$

Autor: tundmatu, lahtine, 2007, G1

L38 Pallid ★

Ühesuguse massiga pallide elastse kokkupõrke tulemusena vahetavad nad oma kiirusevektorid (järeldub lihtsalt impulsi ja energia jäävusest massikeskme süsteemis vaadatuna). Seega võime sama hästi öelda, et pallid lähevad üksteisest vabalt läbi, kusjuures ühe palli algkiirus ja teise palli lõppkiirus on võrdsed nulliga. Kui Juku istub kõrgusel h, siis saame mõlema vabalt liikuva palli jaoks lennuajaks $t=\sqrt{2h/q}$. Seega tabavad pallid viskajaid üheaegselt.

Alternatiivne lahendus

Kui Juku visatud pall jõuab täpselt tagasi oma algkõrgusele, siis peab tema kiiruse absoluutväärtus vahetult kokkupõrke eel ja vahetult kokkupõrke järel olema sama. Elastse kokkupõrke korral kehtib energia jäävus, järelikult võrdub ka Juhani palli kiiruse absoluutväärtus vahetult kokkupõrke eel kiiruse absoluutväärtusega vahetult kokkupõrke järel. Seega liigub kumbki pall tuldud suunas tagasi nii, et liikumise ajagraafik on peegelsümmeetriline põrkehetke suhtes. Seega, kui nad startisid samaaegselt, siis nad ka finišeerivad samaaegselt.

L39 Hobune ★

Autor: Valter Kiisk, piirkonnavoor, 2007, G 1

Vaba langemise aeg

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \cdot 3}{9,81}} \approx 0.78 \,\mathrm{s}$$

Seega otsitav kaugus on $s = vt = 10 \,\mathrm{m/s} \cdot 0.78 \,\mathrm{s} = 7.8 \,\mathrm{m}$.

L40 Eiffeli torn ★

Autor: Aigar Vaigu, piirkonnavoor, 2010, G 1

Kontrollime, kui kaua kukub raudkuul ülemiselt vaateplatvormilt $h=273\,\mathrm{m}$ maapinnale.

$$h = \frac{gt^2}{2} \Rightarrow t = \sqrt{\frac{2h}{g}} \approx 7.5 \,\mathrm{s}.$$

Alates hetkest, kui mõlemad kuulid langevad, on nende suhteline kiirus muutumatu, sest mõlemad kuulid on siis vabalt langevas taustsüsteemis paigal. Leiame esimese kuuli kiiruse teise kuuli kukutamise hetkel.

$$v = gt \approx 29.4 \,\mathrm{m/s}.$$

Ajavahemik kuulide maapinnale jõudmisel on sama mis kuulide kukutamiselgi ehk $\,t=3\,\mathrm{s}.$

L41 Kokkupõrge ★ Autor: Andreas Valdmann, piirkonnavoor, 2011, G 1

- a) Autode kiirused on võrdsed ja vastassuunalised. Seetõttu on koguimpulss võrdne nulliga ja autod jäävad pärast kokkupõrget paigale. Kogu esialgne kineetiline energia kulub purustuste tekitamiseks. Selleks on $2\frac{mv_a^2}{2}=mv_a^2$. Autode kiirused on 50 km/h = 13,9 m/s ja koguenergia on 289 kJ.
- **b**) Minnes üle massikeskme taustsüsteemi näeme, et olukord taandub eelmiseks olukorraks, seega kokkupõrke koguenergia on 289 kJ.

L42 Tõus ★

Autor: tundmatu, lahtine, 2005, G 2

Autole mõjuv veojõud on määratud tee ja rataste vahelise hõõrdeteguriga. Antud juhul hõõrdumine ei takista liikumist, vaid vastupidi, on liikumise aluseks. Kui hõõrdetegur oleks võrdne nulliga, siis ei saaks auto üldse edasi liikuda. Kanname joonisele kõik autole mõjuvad jõud (vt joonist): raskusjõu $F_r=mg$, toereaktsiooni $N=mg\cos\alpha$ ja hõõrdejõuga võrdse veojõu $F_v=\mu mg\cos\alpha$.

Paneme kirja energia miinimumitingimuse mäkke tõusu jaoks:

$$E_h = E_0 + A$$
,

kus $E_h=mgh=mgl\sin\alpha$ on auto potentsiaalne energia mäe tipus, $E_0=mv^2/2$ on auto kineetiline energia mäe jalamil ning $A=F_vl=\mu mgl\cos\alpha$ on auto mäkke vedamiseks hõõrdejõu poolt tehtud töö. Saame

$$mgl\sin\alpha = \frac{mv^2}{2} + \mu mgl\cos\alpha.$$

Sellest võrrandist saame avaldada otsitava hõõrdeteguri:

$$\mu = \tan \alpha - \frac{v^2}{2gl\cos \alpha} = \tan 5^{\circ} - \frac{(30 \cdot 1000/3600)^2}{2 \cdot 9.8 \cdot 200 \cdot \cos 5^{\circ}} \approx 0.07.$$

Arvestades, et libedal jääl võib hõõrdetegur langeda alla 0,05, võib meie auto teoreetiliselt koju jääda, kui tee on libe, seda pole õigeaegselt liivatatud ja autol pole naastrehve all.

L43 Keha ★

Autor: tundmatu, lahtine, 2006, G 3

Üles visatud keha koordinaadi leiame võrrandist:

$$h = v_0 t - \frac{gt^2}{2}.$$

Iga antud v_0 ja h jaoks annab see võrrand kaks t väärtust:

$$t_{1,2} = \frac{v_0 \pm \sqrt{v_0^2 - 2gh}}{q}.$$

Nende kahe väärtuse vahe on ajavahemik, mis möödub kõrguse h kahe läbimise vahel keha poolt:

$$\Delta t = t_2 - t_1 = \frac{2\sqrt{v_0^2 - 2gh}}{q}.$$
 (1)

Siit saame, et

$$v_0 = \sqrt{2gh + \frac{g^2 \Delta t^2}{4}}.$$

Kui valemis (1) võtta h=0, siis saame ajavahemiku, mis möödub liikumise algusest kuni jõudmiseni tagasi algpunkti: $\tau=2v_0/g$. Asendades siia varem saadud v_0 väärtuse, saame:

$$\tau = 2\sqrt{\frac{2h}{g} + \frac{\Delta t^2}{4}}.$$

L44 Mootorratas *

Autor: tundmatu, lahtine, 2007, G 5

Suuname koordinaatteljed nii, nagu näidatud joonisel.

Mootorratturi liikumist kirjeldavad seosed

$$x = vt\cos\alpha, \quad y = vt\sin\alpha - \frac{gt^2}{2},$$

kust saame

$$y = x \tan \alpha - \frac{gx^2}{2v^2 \cos^2 \alpha}.$$

See on parabooli võrrand. Asendades siia mootorratturi langemiskoha koordinaadid x=s ja y=-h, leiame minimaalse kiiruse

$$\begin{split} -h &= s \tan \alpha - \frac{g s^2}{2 v^2 \cos^2 \alpha} \Rightarrow \frac{g s^2}{2 v^2 \cos^2 \alpha} = h + s \tan \alpha \Rightarrow \\ &\Rightarrow \quad 2 v^2 \cos^2 \alpha = \frac{g s^2}{h + s \tan \alpha} \quad \Rightarrow \quad v^2 = \frac{g s^2}{2 \cos^2 \alpha (h + s \tan \alpha)} \quad \Rightarrow \\ &v = \frac{s}{\cos \alpha} \sqrt{\frac{g}{2 (h + s \tan \alpha)}}. \end{split}$$

L45 Kelk ★

Autor: tundmatu, lahtine, 2008, G 2

Kehtib energia jäävuse seadus. Algul on kelk kõrgusel h ja omab potentsiaalset energiat mgh. See energia kulutatakse hõõrdejõu ületamise tööks mõlemal mäenõlval ja kelgu uueks tõusuks vajaliku potentsiaalse energia peale. Energia jäävust väljendab valem

$$mgh = A_1 + A_2 + mgh_2, \tag{1}$$

kus h_2 on kelgu lõppkõrgus. Hõõrdejõud mõlemal nõlval avaldub kujul $F=\mu N=\mu mg\cos\alpha$. Teepikkus laskumisel on $s_1=h/\sin\alpha$ ning tõusul $s_2=h_2/\sin\alpha$. Seega tehtud töö hõõdejõu ületamiseks on

$$A_1 = Fs_1 = \mu mgh/\tan\alpha$$

ja

$$A_2 = Fs_2 = \mu mgh_2/\tan\alpha.$$

Asendades saadud seosed valemisse (1) saame

$$h_2 = \frac{1 - \mu/\tan\alpha}{1 + \mu/\tan\alpha} h \approx 7 \,\mathrm{m}.$$

L46 Hantel ★

Autor: Mihkel Kree, lõppvoor, 2008, G 1

Kehale antakse energia $E_k=\frac{mv^2}{2}$. Massikese saab impulsi $p_c=mv$ ning hakkab vertikaalsuunas liikuma kiirusega

$$v_c = \frac{p_c}{m+m} = \frac{v}{2}$$

ning süsteemi kulgliikumise energia on seega

$$E_v = \frac{v_c^2(m+m)}{2} = \frac{mv^2}{4}.$$

Kui keha saavutab maksimaalse kõrguse, on tema kulgliikumise energia täielikult muutunud potentsiaalseks energiaks ning süsteemi kineetiline energia on nüüd

$$E = E_k - E_v = \frac{mv^2}{4}.$$

L47 Pingpong ★

Autor: Siim Ainsaar, lõppvoor, 2008, G 2

Kui pall tõuseb kahe järjestikuse põrke vahel (pärast i-ndat põrget) kõrgusele h_i , saame nende põrgete vahelise ajavahemiku t_i :

$$h_i = \frac{g\left(\frac{t_i}{2}\right)^2}{2} \Longrightarrow t_i = 2\sqrt{\frac{2h_i}{g}}.$$

Igas lennu haripunktis on palli kiirus ja ka kineetiline energia null ning koguenergia E_i potentsiaalne. Kui palli mass on m, siis $E_i = mgh_i$ ja on võrdeline haripunkti kõrgusega h_i . Seega ka haripunkti kõrgus kahaneb pärast igat põrget k korda: $h_{i+1} = \frac{h_i}{k}$. Ilmselt selles seoses $h_0 = h$. Kukkumise aeg enne esimest põrget:

$$t_0 = \frac{2h}{a}.$$

Nii saamegi koguaja:

$$t = t_0 + t_1 + t_2 + \dots = \sqrt{\frac{2h}{g}} + 2\sqrt{\frac{2h}{gk}} + 2\sqrt{\frac{2h}{gk^2}} + 2\sqrt{\frac{2h}{gk^3}} + \dots =$$

$$= \sqrt{\frac{2h}{g}} + 2\sqrt{\frac{2h}{gk}} \left[1 + \left(\frac{1}{\sqrt{k}}\right)^1 + \left(\frac{1}{\sqrt{k}}\right)^2 + \left(\frac{1}{\sqrt{k}}\right)^3 + \dots \right] =$$

$$= \sqrt{\frac{2h}{g}} + \sqrt{\frac{2h}{gk}} \frac{1}{1 - \frac{1}{\sqrt{k}}} = \sqrt{\frac{2h}{g}} + 2\sqrt{\frac{2h}{g}} \frac{1}{\sqrt{k} - 1} =$$

$$= \sqrt{\frac{2h}{g}} \left(1 + \frac{2}{\sqrt{k} - 1} \right) = \frac{\sqrt{k} + 1}{\sqrt{k} - 1} \sqrt{\frac{2h}{g}}.$$

L48 Mürsk ★

Autor: Mihkel Kree, piirkonnavoor, 2009, G 2

Tähistame mürsu kiiruse lagunemishetkel v-ga. Vahetult pärast lagunemist peab ühe poole kiirus olema samuti v, kuid vastassuunaline. Olgu teise osa kiirus sel hetkel u. Impulsi jäävuse tõttu

$$Mv = \frac{M}{2}u - \frac{M}{2}v,$$

millest u=3v. Vahetult pärast lagunemist kuulidel vertikaalne kiiruskomponent puudub, seetõttu võtab kummagi tüki langemine võrdselt aega. Teine tükk maandub kahurist kaugusele L+3L=4L.

L49 Kerad ★

Autor: Valter Kiisk, lahtine, 2010, G 1

Õõnes ja homogeenne kera eristuvad selle poolest, et esimese inertsimoment on suurem, sest mass on koondunud pöörlemistsentrist kaugemale, st sama nurkkiirusega pööreldes on pöörlemisega seotud kineetiline enregia suurem. Niisiis võrdse kineetilise energia omandamisel (näiteks sama kaldpinda mööda alla veeredes) saavutab õõnes kera väiksema kiiruse (sest pöörlemisega seotud energia on suurem).

Vedelikku sisaldava kera korral kulub aga osa liikumise energiast paratamatult vedeliku sisehõõrdumise ületamiseks, seetõttu mehaanilise energia jäävus on katsetes rikutud (näiteks lükkame kerad veerema; vedelikku sisaldav kera pidurdub iseenesest).

L50 Sild ★

Autor: Valter Kiisk, lõppvoor, 2010, G 1

Olgu silla kõverusraadius r. Pythagorase teoreemist

$$r^2 = (l/2)^2 + (r-h)^2 \implies 0 = l^2/4 - 2rh + h^2.$$

Kuna $h\ll l$ ja seega $h\ll r$, siis h^2 võib ära jätta ja $r=l^2/8h=250\,\mathrm{m}$. Auto raskusjõu mg ja toereaktsiooni N resultant annab kesktõmbekiirenduse v^2/r . Seega $N=mg-mv^2/r\approx 8700\,\mathrm{N}$.

Kontakt rataste ja maapinna vahel hakkab kaduma, kui N=0. Seega $v=\sqrt{gr}\approx 180\,\mathrm{km/h}$.

L51 Varras ★

Autor: Stanislav Zavjalov, lõppvoor, 2011, G 2

Kuna varras on kaalutu, peab sellele mõjuv summaarne jõud olema 0. Vastasel korral mõjuks sellele Newtoni III seaduse kohaselt lõpmatu jõud, mis pole füüsikaline. Sellest saab järeldada, et massile mõjuv normaaljõud on null ning hõõrdeta libisemise tõttu on ka vardaga paralleelne jõukomponent null. Seega ei mõju massile varda poolt ükski jõud ning mass on vabalanguses.

Aja t jooksul jõuab mass langeda vahemaa $\frac{gt^2}{2}$ ning varda ja horisontaali vaheline nurk avaldub kui (vt joonist) $\tan \alpha = \frac{gt^2}{2l}$.

L52 Karatist ★★

Autor: tundmatu, lahtine, 2007, G 6

Laua paindumist käsitleme sarnaselt vedru paindumisega. Laua elastsusenergia enne purunemist on $E=kx^2/2$. Eeldame, et pärast plastset põrget toimuval liikumisel on mehaaniline energia jääv ning lauajupp ja käsi peatuvad vahetult pärast lööki. Käe ja laua kokkupõrge — löök — on täielikult mitteelastne. Seega peab pärast lööki laua ja rusika kineetilisest energiast

$$W = \frac{(m+M)u^2}{2}$$

piisama laua deformeerimiseks.

$$E = W \quad \Rightarrow \quad u = \sqrt{\frac{kd^2}{m+M}},$$

kus u on laua ja käe kiirus pärast lööki. Löögi hetkel kehtib impulsi jäävus

$$(m+M)u = mv \quad \Rightarrow \quad v = \frac{m+M}{m}u.$$

Kokkuvõttes saame

$$v = \frac{m+M}{m} \sqrt{\frac{kd^2}{m+M}} = \sqrt{\frac{kd^2(m+M)}{m^2}},$$

$$v = \sqrt{\frac{1,4 \cdot 10^5 \cdot 0,02^2 \cdot (1,5+2)}{1,5^2}} \approx 9,3 \,\mathrm{m/s}.$$

L53 Veenus ★★

Autor: Mihkel Kree, lõppvoor, 2007, G 2

a) Maksimaalse eemaldumise korral moodustub Maast, Veenusest ja Päikesest täisnurkne kolmnurk, mille täisnurga tipp on Veenus. Siit saame Veenuse ja Maa orbitaalraadiuste suhte

$$\alpha = \sin 46^{\circ} = 0.72.$$

b) Veenuse tiirlemisperioodi saame Kepleri seadusest

$$T_V = T_M \sqrt{\alpha^3}$$
.

Maa tiirlemise nurkkiirus $\omega_M=\frac{2\pi}{T_M}$ ning Veenuse tiirlemise nurkkiirus $\omega_V=\frac{2\pi}{T_V}$. Nende suhtelise liikumise nurkkiirus

$$\Delta\omega = \omega_V - \omega_M = \omega_M \left(\frac{1}{\sqrt{\alpha^3}} - 1\right)$$

ning suhtelise liikumise periood on

$$T_s = \frac{T_M}{\frac{1}{\sqrt{\alpha^3}} - 1} = 570$$
 päeva.

Järjestikuste eemaldumiste vahele jääb Päikeselt vaadatuna nurk $2\cdot(90^\circ-46^\circ)=88^\circ$ või 360° - 88° = 272° ehk päevades

$$T_s \frac{88}{360} = 140$$
 päeva.

ja

$$T_s \frac{272}{360} = 430$$
 päeva.

L54 Auto ★★

Autor: Mihkel Heidelberg, piirkonnavoor, 2009, G 5

Vedavate rataste ja maa vahel mõjub mingi horisontaalsihiline hõõrdejõud F. Jõust ja kiirusest saame auto liikumisse mineva võimsuse $N_l=Fv$. Ratastele mõjub jõumoment Fr, mille tõttu mootori võimsus $N_m=\omega Fr$. Kasutegur on niisiis

$$\nu = \frac{N_l}{N_m} = \frac{Fv}{F\omega r} = \frac{v}{\omega r}.$$

L55 Vedru ★★

Autor: Aigar Vaigu, piirkonnavoor, 2010, G 4

Hetkel, mil tellis vedrust eemalduma hakkab, liigub vedru ülemine ots koos tellisega kiirusega v üles. Tellise kiirus on piisav, et kerkida tagasi esialgsele kõrgusele $H \propto v^2$. Eeldame, et vedru on pikisuunas ühtlane, sellisel juhul liigub vedru massikese ülemise ja alumise otsa keskmise kiirusega ülesse. Niisiis, $v_{\rm vedru} = v/2$. Seega tõuseb vedru massikese kõrgusele $h \propto v_{\rm vedru}^2 = v^2/4$, ehk

$$h = \frac{H}{4}.$$

L56 Pendel ★★

Autor: Taavi Pungas, piirkonnavoor, 2011, G 7

Esialgse hinnangu perioodile, $\tau=2.425\,\mathrm{s}$, saame $\tau_1=t_2-t_1$ ja $\tau_2=t_4-t_3$ keskmisest. Seda kasutades näeme, et t_1 ja t_3 vahel pidi toimuma täpselt 24 võnget, samamoodi t_2 ja t_4 vahel. Saame kaks sõltumatut mõõtmist 24 võnke kestuse kohta: $\tau_1'=(t_3-t_1)/24=2.4146\,\mathrm{s}$ ja $\tau_2'=(t_4-t_2)/24=2.4125\,\mathrm{s}$. Nende keskmine annab meie hinnangu pendli perioodi kohta, $\tau_1'=2.4135\,\mathrm{s}\approx 2.414\,\mathrm{s}$.

L57 Aerud ★★

Autor: tundmatu, piirkonnavoor, 2005, G 6

Jõumomentide tasakaalu tingimus aeru jaoks tullide suhtes annab aerulabadele mõjuva keskmise jõu: $F_l = Fa/b$.

Tasakaalutingimus süsteemi paat+aerutaja+aerud jaoks annab võrrandi:

$$\frac{2Fa}{h} = \alpha v^2,$$

millest

$$v = \sqrt{\frac{2Fa}{\alpha h}} = 2 \,\mathrm{m/s}.$$

Kui aerulabad püsiksid tõmbamise ajal vee suhtes paigal, siis oleks võimsus

$$P = \frac{2vFa}{b} = 160 \,\text{W}.$$

Et aga aerulabad nihkuvad ilmselt veidi tagasi, siis on tegelik võimsus mõnevõrra suurem.

Kivile mõjuvaks kesktõmbejõuks on paela tõmbepinge T projektsioon tiirlemise tasapinnale $F=T\sin\varphi$ (vt joonist), kus φ on nurk paela ja vertikaalsihi vahel. Newtoni teine seadus kivi liikumise jaoks mööda ringjoont raadiusega R näeb välja:

$$m\omega^2 R = T\sin\varphi,\tag{1}$$

kus $\omega=2\pi/\tau$ — kivi nurkkiirus ja m — kivi mass. Kuna vertikaalsuunas kivil kiirendus puudub, järelikult kivile mõjuvate jõudude projektsioonid vertikaalteljele annavad summas nulli:

$$T\cos\varphi = mg. \tag{2}$$

Jagades valemi (1) valemiga (2), saame

$$\tan \varphi = \frac{\omega^2 R}{q}.$$

Arvestades, et $\tan \varphi = R/h$, saame

$$\frac{\omega^2 R}{g} = \frac{R}{h} \quad \Rightarrow \quad \omega = \sqrt{\frac{g}{h}},$$

ehk

$$\tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{h}{g}} = 2 \cdot 3.14 \cdot \sqrt{\frac{1.25}{9.81}} \approx 2.24 \,\mathrm{s}.$$

L59 Kaldpind ★★

Autor: Mihkel Rähn, piirkonnavoor, 2006, G 4

Esimeseks põrkeks kogub pall kiiruse $v=\sqrt{2gh}$. Valime x-telje piki kaldpinda ja y-telje risti kaldpinnaga. Seega mõjub pallile x-suunaline kiirendus $a_x=g\sin\alpha$ ja y-suunaline kiirendus $a_y=-g\cos\alpha$. Märkame, et palli y-suunaline liikumine on efektiivselt sama nagu nõrgemas raskusväljas põrkumine ehk pall hakkab kindla perioodiga üles-alla põrkuma. Põrgete vaheline aeg avaldub kui

$$\tau = \frac{2v_{0y}}{|a_y|} = \frac{2\sqrt{2gh}\cos\alpha}{g\cos\alpha} = \sqrt{8h/g},$$

kus $v_{0x}=\sin\alpha\sqrt{2gh}$ ja $v_{0y}=\cos\alpha\sqrt{2gh}$ on palli esimese põrke järgsed kiiruskomponendid.

x-telje suunaline liikumisvõrrand avaldub kui

$$x = v_{0x}t + \frac{a_x t^2}{2}.$$

Peale viienda põrget, ajahetkel $t=4\tau$, on palli x-koordinaat

$$x = \sin \alpha \sqrt{2gh} \cdot 4\sqrt{\frac{8h}{g}} + \frac{g \sin \alpha}{2} \cdot 16\frac{8h}{g} = 80h \sin \alpha.$$

L60 Kuulike ★★

Autor: tundmatu, lahtine, 2008, G 5

Olgu α nurk vertikaali ja varda vahel ning l
 niidi pikkus. Energia jäävuse seadusest $v^2=2gl\cos\alpha$, millest kiiruse vertikaalkomponendi ruut

$$v_y^2 = 2gl\cos\alpha\sin^2\alpha = 2gl\cos\alpha\left(1-\cos^2\alpha\right).$$

Tähistades $\cos \alpha = y$, saame v_y^2 maksimumi tingimuse, kui võtame sellest tuletise y järgi:

$$\frac{\mathrm{d}v_y^2}{\mathrm{d}y} = 2gl\left(1 - 3y^2\right) = 0,$$

millest $y = 1/\sqrt{3}$ ja $\alpha = \arccos(1/\sqrt{3}) \approx 55^{\circ}$.

Alternatiivne lahendus

Ülesandes on öeldud, et kuulikese kiiruse vertikaalne komponent hakkab esialgu suurenema, kuid teatud hetkest alates vähenema. See tähendab seda, et kuulikese kiirenduse vertikaalne komponent oli alguses positiivne ning pärast muutus negatiivseks. Järelikult hetkel, kui kiiruse vertikaalne komponent on maksimaalne, on kiirenduse vertikaalne komponent null. Seega vaadeldaval hetkel võrdub kuulikese raskusjõu ja niidi tõmbejõu vertikaalsete projektsioonide summa nulliga ehk siis

$$mg = T\cos\alpha. \tag{1}$$

Kuuli kesktõmbekiirendus on $a_n=v^2/l$, kus l on niidi pikkus. Seega Newtoni II seaduse põhjal

$$m\frac{v^2}{I} = T - mg\cos\alpha. \tag{2}$$

Energia jäävuse seadusest

$$v^2 = 2gl\cos\alpha. (3)$$

Asendades võrdusesse (2) avaldised T ja v^2 jaoks võrdustest (1) ja (3) saame

$$\frac{m \cdot 2gl\cos\alpha}{l} = \frac{mg}{\cos\alpha} - mg\cos\alpha,$$

millest

$$\frac{1}{\cos\alpha} - \cos\alpha = 2\cos\alpha \quad \Rightarrow \quad \cos\alpha = \frac{1}{\sqrt{3}}.$$

Siit $\alpha = \arccos\left(1/\sqrt{3}\right) \approx 55^{\circ}$.

L61 Veerev silinder ★★

Autor: Andres Laan, lahtine, 2010, G 3

Eraldumiskõrgust on kõige lihtsam arvutada kasutades jõudude tasakaalu. Nii kaua kui veerev keha on alusega kontaktis, mõjub talle toereaktsioon. Pinnalt eraldumise punktis muutub toereaktsioon nulliks ja raskusjõu raadiusesihiline komponent saab võrdseks kesktõmbekiirendusega. Seega

$$\frac{mv^2}{R+r} = mg\cos\alpha,$$

kus α on pinna kaldenurk eraldumispunktis (mis asub kõrgusel $H=(r+R)\cos\alpha$). Vastav kiirus on leitav energia jäävuse seadusest ehk võrdsustades gravitatsioonienergia muudu kulg- ja pöördliikumise kineetilise energiaga:

$$mg(R+r-H) = mv^2.$$

Elimineerides eelnevaist võrrandeist $\cos \alpha$, saame tulemuseks H = (r + R)/2.

L62 Sfäär ★★★

Autor: Andre Sääsk, lahtine, 2005, G 6

Kuna küsitakse ainult minimaalset vajalikku kiirust (arvväärtust), siis ei pea me leidma ei viske nurka ega viske kohta. Vertikaalsuunalise kiiruse komponendi viske hetkel leiame energia jäävuse seadusest:

$$\frac{mv_{y0}^2}{2} = mg\Delta h = mg(2R - h) \quad \Rightarrow \quad v_{y0} = \sqrt{2g(2R - h)}.$$

Horisontaalsuunalise kiiruse komponendi leiame tingimusest, et sfääri ülemises punktis peab olema pallile mõjuv kesktõmbe kiirendus v^2/R võrdne pallile mõjuva raskuskiirendusega. Kuna sfääri ülemises punktis on $v_y=0$, siis $v=v_x$. Kuna õhu takistust me ei arvesta, siis $v_x=v_{x0}$ (kiiruse horisontaalsuunaline komponent ei muutu lennu ajal). Seega

$$\frac{v_{x0}^2}{R} = g \quad \Rightarrow \quad v_{x0} = \sqrt{gR}.$$

Teades kahte kiiruse komponenti, on lihtne leida kogu kiiruse viske hetkel:

$$v = \sqrt{v_{x0}^2 + v_{y0}^2} = \sqrt{gR + 2g(2R - h)} = \sqrt{g(5R - 2h)} \approx 29 \, \text{m/s}.$$

Alternatiivne lahendus

Läheneme ülesandele matemaatiliselt. Meil on ringjoon, parabool ning nende puutepunkt. Lahendades nende võrrandid puutepunkti leidmiseks peame saama ainult ühe lahendi, sest visatud pall ei tohi läbida kuplit. Koordinaatide alguspunkti paneme kera keskpunkti, y-telg on suunatud vertikaalselt üles, x-telg — horisontaalselt viske suunas.

Ringjoone võrrand

$$x^2 + y^2 = R^2.$$

Parabooli võrrand

$$y = ax^2 + bx + c.$$

Sümmeetriast y-telje suhtes on b=0, palli ja kupli kokkupuutepunkti teades on x=0 puhul y=R (vt joonist). Seega c=R ja parabooli võrrand omandab kuju:

$$y = ax^2 + R.$$

Nüüd tuleb ühest võrrandist tundmatu asendada teise. Olgu selleks parabooli võrrandi y, mille asendame ringjoone võrrandisse:

$$x^{2} + (ax^{2} + R)^{2} = R^{2},$$

$$x^{2} + a^{2}x^{4} + 2aRx^{2} + R^{2} = R^{2},$$

$$x^{4} + \left(\frac{2aR + 1}{a^{2}}\right)x^{2} = 0.$$

Lahendades selle võrrandi, saame kolm lahendit:

$$x = 0, \quad x = \pm \sqrt{-\frac{2aR+1}{a^2}}.$$

Meile sobib ainult esimene lahend, sest teised kaks on imaginaarsed. Seega

$$2aR + 1 = 0 \quad \Rightarrow \quad a = -\frac{1}{2R}.$$

Nüüd on paras aeg analüüsida kiiruse komponente. Vaatleme kõigepealt kiiruse vertikaalset komponenti. Energia jäävuse seadusest teame, et palli kineetiline energia viske alguses muundub palli potentsiaalseks energiaks trajektoori tipppunktis:

$$\frac{mv_{0y}^2}{2} = mg\Delta h = mg(2R - h) \quad \Rightarrow \quad v_{0y} = \sqrt{2g(2R - h)}.$$

Teisest küljest, kiiruse võrrandist teame, et

$$v_{0y} = g\Delta t \quad \Rightarrow \quad \Delta t = \frac{v_{0y}}{g} = \frac{\sqrt{2g(2R-h)}}{g}.$$

Seega lennuaeg on paika pandud viskekohta arvestamata. Analüüsime parabooli võrrandit viskekohas

$$-R + h = ax^2 + R \Rightarrow x^2 = \frac{h - 2R}{a}.$$

Lennuaeg on juba määratud, seega mida väiksem on x, seda väiksema kiirusega võib pall läbida vahemaad viskekohast nullpunkti vaadelduna x-teljel. Seega peab a olema võimalikult suur. Asendades suurima a saab

$$x = \sqrt{\frac{h - 2R}{-1/2R}} = \sqrt{2R(2R - h)}.$$

Kiiruse x-teljeline komponent teepikkuse ja aja suhtena on

$$v_{0x} = \frac{\Delta x}{\Delta t} = \frac{g\sqrt{2R(2R-h)}}{\sqrt{2g(2R-h)}} = \sqrt{\frac{g^2R}{g}} = \sqrt{gR}.$$

Liites komponendid saame minimaalse viske kiiruse:

$$v = \sqrt{v_{0x}^2 + v_{0y}^2} = \sqrt{gR + 2g(2R - h)} = \sqrt{g(5R - 2h)} \approx 29 \,\text{m/s}.$$

Antud lahendus on hea näide sellest, kui pikk ja keeruline võib olla ülesande matemaatiline lahendus võrreldes füüsikalisega.

L63 Anum ★★★

Autor: tundmatu, lahtine, 2005, G7

Vaatame algul liikuva anumaga seotud taustsüsteemi. Kui põrnikas (massiga ρV) roomab mööda anuma põhja, siis selle peale liigub ka põrnikat ümbritsev vedelik. Põrnika liikumist võib mugavuse mõttes ette kujutada virtuaalse põrnika liikumisega, mille tihedus on $\rho-\rho_0$. Sellisel juhul liigub virtuaalne põrnikas vedelikku tõrjumata ning ülesanne taandub mugavamale dünaamika ülesandele.

Liigume nüüd põrandaga seotud taustsüsteemi. Vastavalt impulsi jäävuse seadusele on põrnika ja anuma koguimpulss kogu aeg konstantne (sest põrnika+anuma süsteemile ei mõju väliseid jõude). Kuna see oli alguses 0, on põrnika ja anuma impulsid vastassuunalised ning absoluutväärtuse poolest võrdsed. Olgu anuma kiirus põranda suhtes v. Siis põrnika kiirus põranda suhtes on u-v. Impulsi jäävuse seadusest tulenevalt

$$\rho_0(V_0 + V)v = (\rho - \rho_0)V(u - v),$$

ehk

$$v = \frac{V(\rho_0 - \rho)}{\rho V + \rho_0 V_0} u.$$

L64 Mullitaja ★★★

Autor: Jaak Kikas, lõppvoor, 2005, G7

Arvestades mullide arvu jäävust on ruumiline vahemaa nende vahel võrdeline mullikeste kiirusega. Viimase leiame võrdsustades takistus- ja üleslükkejõu ning arvestades mullikese ruumala muutust rõhu muutumisel sügavuse vähenemisel. Mullikesele mõjuvad vee takistusjõud F ja üleslükkejõud F_A . Nende võrdusest

$$6\pi \eta R v = g(\rho - \rho_{hk})V,$$

kus V on mullikese ruumala. Kuna ülesande tingimuste kohaselt $\rho\ll\rho_{\rm hk}$ ja tähistades indeksitega "H" ja "0" vastavalt situatsioone veekogu põhjas ja pinna lähedal saame

$$6\pi\eta R_H v_H = g\rho V_H,\tag{1}$$

$$6\pi\eta R_0 v_0 = g\rho V_0. \tag{2}$$

Võrrandeid 1 ja 2 omavahel jagades ning kasutades seost $V_i = (4/3)\pi R_i^3$, saame mullikeste vahekauguse suhte

$$\frac{L_0}{L_H} = \frac{v_0}{v_H} = \frac{V_0 R_H}{V_H R_0} = \left(\frac{V_0}{V_H}\right)^{2/3}.$$

Kuna $V_0p_0 = V_Hp_H$ ja $p_H = p_0 + g\rho H$, siis

$$\frac{L_0}{L_H} = \left(1 + \frac{\rho gH}{p_0}\right)^{2/3} = 2.4,$$

st mullikeste vahemaa suureneb 2,4 korda.

Autor: tundmatu, lahtine, 2006, G 5

Kuna raskem keha hakkab liikuma allapoole ja kergem ülespoole, siis on selge, et süsteemi massikese hakkab liikuma allapoole.

Olgu süsteemi massikes
e alghetkel punktis C_0 (vt joonist). Kehade massikeskmete kaugused süsteemi massikeskmest lei
ame tingimusest:

$$m_1 b_1 = m_2 b_2. (1)$$

Aja t jooksul liigub raskem keha allapoole ja kergem liigub ülespoole kauguse H võrra:

$$H = at^2 2, (2)$$

kus a on kehade kiirendus. Süsteemi masskese liigub sama aja jooksul kauguse h võrra, mille määrab tingimus:

$$m_2(H + b_2 - h) = m_1(H + b_1 + h).$$

Siit, arvestades valemeid (1) ja (2), leiame, et:

$$h = \frac{m_2 - m_1}{m_2 + m_1} H = \frac{m_2 - m_1}{m_2 + m_1} \frac{at^2}{2}.$$
 (3)

Kiirenduse a leiame võrrandisüsteemist:

$$m_2 a = m_2 g - T, \quad m_1 a = T - m_1 g,$$

kus T on niidi tõmbepinge. Avaldades a võrrandisüsteemist, saame

$$a = \frac{m_2 - m_1}{m_2 + m_1} g.$$

Asendades leitud väärtuse valemisse (3), saame:

$$h = \left(\frac{m_2 - m_1}{m_2 + m_1}\right)^2 \frac{gt^2}{2} = \frac{a_k t^2}{2} \quad \Rightarrow$$
$$\Rightarrow \quad a_k = \left(\frac{m_2 - m_1}{m_2 + m_1}\right)^2 g.$$

L66 Kada ★★★

Autor: Oleg Košik, lõppvoor, 2006, G 3

Olgu kivi kiirus lasu järel v. Kiiruse horisontaalsuunaline komponent on $v_x=v\cos\alpha$ ja vertikaalsuunaline komponent $v_y=v\sin\alpha$. Kivi lennuaeg on

$$t = 2\frac{v_y}{q} = 2\frac{v\sin\alpha}{q}$$

ja lennukaugus

$$L = v_x t = \frac{2v^2 \sin \alpha \cos \alpha}{g} = \frac{v^2 \sin 2\alpha}{g}.$$

Siit

$$v^2 = \frac{gL}{\sin 2\alpha}.$$

Kivi saavutab algkiiruse tänu kumminööri elastsele energiale. Kui nööri pikenemine võrreldes algolekuga on x, siis energia jäävuse seadusest saame

$$\frac{kx^2}{2} = \frac{mv^2}{2},$$

kust

$$x^2 = \frac{mv^2}{k}$$
 \Rightarrow $x = \sqrt{\frac{mgL}{k\sin 2\alpha}} = 53.6 \text{ cm}.$

Uurides ragulka geomeetriat näeme, et moodustuva täisnurkse kolmnurga hüpotenuus on l/2 + x/2. Otsitav kaugus, millele tuleb nööri tõmmata, on seega

$$d = \sqrt{(l/2 + x/2)^2 - (l/2)^2} = 48.2 \,\mathrm{cm}.$$

Kumminööris tekib elastsusjõud $F_e=kx$. Jõud, millega tuleb nööri tõmmata, võrdub selle jõu kahekordse projektsiooniga z-teljele:

$$F = 2kx \frac{d}{l/2 + x/2} \approx 46 \,\mathrm{N}.$$

L67 Hooratas ★★★

Autor: Valter Kiisk, lõppvoor, 2007, G 4

- a) Hooratta kineetiline energia on $K=\frac{1}{2}M\omega^2R^2$, seega energia salvestustihedus $w=E/M=\frac{1}{2}\omega^2R^2$.
- **b**) Olgu rõnga raadius r ja mass m. Mehaaniline pinge rõngas (σ) on määratud tsentrifugaaljõuga, millega kahte rõnga poolt üksteisest eemale tõugatakse. Vaatleme ühe rõnga poole väikest lõiku pikkusega Δl . Selle mass on $\Delta m = (\Delta l/2\pi r)m$ ja sellele mõjub tsentrifugaaljõud suurusega $\Delta F = \Delta m \omega^2 r$, kus ω on pöörlemise nurkkiirus. Selle jõu projektsioon vertikaalsihile on (vt joonist)

$$\Delta F_{\parallel} = \Delta F \cos \alpha = \frac{m\omega^2}{2\pi} \Delta l \cos \alpha.$$

Ent $\Delta l \cos \alpha$ on lõigu Δl projektsioon horisontaalsihile. Järelikult summaarne jõud, mis mõjub ühele rõnga poolele, avaldub kui

$$F = \sum \Delta F_{\parallel} = \frac{m\omega^2}{2\pi} 2r = \frac{m\omega^2 r}{\pi}.$$

Teiselt poolt, $F = 2\sigma S$, kus S on rõnga ristlõige. Viimase asendame seosest

$$m = \rho V = \rho(2\pi rS) \Rightarrow S = \frac{m}{2\pi r\rho}.$$

Kokkuvõttes saame

$$\sigma = \frac{F}{2S} = \omega^2 r^2 \rho.$$

Rõnga kineetiline energia

$$E = \frac{mv^2}{2} = \frac{m\omega^2 r^2}{2} = \frac{m\sigma}{2\rho},$$

millest $E/m = \sigma/2\rho$. Võttes $\sigma = \sigma_{\text{max}}$, saame $E/m = 800 \, \text{kJ/kg}$.

L68 Maaler ★★★

Autor: Valter Kiisk, lahtine, 2010, G 5

Selgitame välja, kummal juhul on maaga kokku puutudes inimese kiirus väiksem. Lihtsuse huvides vaatleme redelit ühtlase homogeense vardana (pikkus L, mass M) ning inimest punktmassina m, mis on kinnitunud redeli ülemise otsa külge. Kui maaler laseks kohe redelist lahti, oleks tema kiirus maaga kokkupuute hetkel $\sqrt{2Lg}$. Kui aga maaler klammerdub redeli külge, tuleb lõppkiiruse v arvutamisel arvesse võtta ka redeli pöördliikumise tekitamiseks kuluvat energiat. Pikka ühtlast redelit võib esimeses lähenduses vaadelda kui homogeenset varrast, mis pöörleb ümber alumise otsa. Selleks hetkeks kui redel on jõudnud horisontaalasendisse, on tema nurkkiirus $\omega = v/L$. Niisiis redeli pöördliikumise energia sel hetkel avaldub $ML^2\omega^2/6 = Mv^2/6$. Nüüd energia jäävuse seadus annab

$$mgL + Mg\frac{L}{2} = \frac{mv^2}{2} + \frac{Mv^2}{6},$$

millest

$$v = \sqrt{\frac{3Lg(2m+M)}{3m+M}} = \sqrt{gL}\sqrt{2 + \frac{M}{3m+M}}.$$

Saadud tulemus ei ole ühelgi tingimusel väiksem kui $\sqrt{2Lg}$, nii et selles mõttes on kasulikum kohe redelist lahti lasta.

L69 Benji-hüpe ★★★ Autor: Andreas Valdmann, piirkonnavoor, 2010, G 6

Hüppe madalaimas punktis on hüppaja kiirus ja seetõttu ka kineetiline energia võrdne nulliga. Gravitatsioonivälja potentsiaalse energia muutus torni tipust selle punktini on võrdne köies tekkinud elastsusjõu energiaga:

$$mg(l + \Delta l_1) = \frac{k\Delta l_1^2}{2},$$

kus Δl_1 on köie pikenemine. Lahendades ruutvõrrandi Δl_1 suhtes ja ignoreerides negatiivset lahendit, saame

$$\Delta l_1 = \frac{mg + \sqrt{m^2g^2 + 2mgkl}}{k}.$$

Platvormi kõrgus on $h_1=l+\Delta l_1+h$. Arvuliselt, $h_1\approx 86\,\mathrm{m}$. Suurima kiiruse leidmisel lisandub energia võrrandisse kineetiline energia:

$$mg(l+\Delta l_2) = \frac{k\Delta l_2^2}{2} + \frac{mv^2}{2}.$$

Kiirendus muudab märki, kui elastsusjõud saab võrdseks gravitatsioonijõuga. Seetõttu on suurima kiiruse tingimuseks

$$mg = k\Delta l_2 \quad \Rightarrow \quad \Delta l_2 = \frac{mg}{k}.$$

Asetades antud tingimuse energia võrrandisse ja lahendades selle v suhtes, saame

$$v = \sqrt{\frac{g(gm + 2kl)}{k}} \approx 29 \,\mathrm{m/s}.$$

L70 Vai ★★★★

Autor: Jaak Kikas, piirkonnavoor, 2006, G 10

Olgu raskuse kiirus enne lööki vaia pihta v ja raskuse ning vaia kiirus vahetult pärast lööki v'. Löögi jooksul säilib impulss (aga mitte energia)

$$p = mv = (m+M)v'.$$

Kiiruse v või impulsi p saame energia jäävuse seadusest, näiteks kujul

$$\frac{p^2}{2m} = mgH.$$

Niisiis on peale lööki süsteem vai+raskus omandanud kiiruse v'. Hõõrdejõudude toimel peatuvad need teatava teepikkuse x jooksul, kusjuures tingimuste kohaselt löökide arv $N\gg 1$ ning seega $x\ll L$. Hõõrdejõudude töö on seejuures võrdne energia muuduga.

Eelpooltoodu võib kirja panna kujul

$$(F_0 + kl)x = (M+m)gx + \frac{p^2}{2(m+M)},$$

kuid lõppvastuse leidmise seisukohast on meil lihtsam võrrutada summaarne hõõrdejõudude töö (mis on leitav nt graafiku F(l) aluse pindalana),

$$A_h = F_0 L + \frac{kL^2}{2}.$$

summaarse dissipeeruva energiaga

$$E = \frac{Np^2}{2(m+M)} + (M+m)gL.$$

Võrdusest $A_h=E$ saame (arvestades eelpooltoodud avaldisi A_h , E ja $p^2/2m$ jaoks)

$$N = \left(F_0 + \frac{kL}{2} - Mg - mg\right) \frac{(m+M)L}{m^2gH}.$$

L71 Klaaskuul ★★★★

Autor: Aigar Vaigu, piirkonnavoor, 2008, G 6

Tükikeste trajektooride järgi saab võrrelda kiiruste suundasid ja suuruseid, sest $s=vt_s$, kus t_s on säriaeg (alternatiivselt võib kasutada kaugust kukkumispunktist $S=vt_s$, kus t_s on ajavahemik mahakukkumishetkest säriaja lõpuni). Seega on jälgede pikkuste suhe (või jälgede lõpp-punktide kauguste suhe kukkumispunktist) võrdne kiiruste suhtega. Fotolt saame, et $s_1\approx s_2\approx s_3$, st $v_1\approx v_2\approx v_3$. Kuna kiiruste suunad on teada, siis on teada ka impulsside $\vec{p}_1=m_1\vec{v}_1, \, \vec{p}_2=m_2\vec{v}_2$ ja $\vec{p}_3=m_3\vec{v}_3$ suunad. Kuna $\vec{p}_1+\vec{p}_2+\vec{p}_3=0$, siis moodustavad need vektorid kolmnurga. Et selle kolmnurga külgede suunad on teada, siis on teada selle kolmnurga nurkade suurused ning kolmnurk määratud sarnasusteguri täpsusega (et meid huvitavad külgede pikkuste suhted, siis sellest täpsusest piisab). Niisiis konstrueerime fotole kolmurga, mille küljed on vastavalt paralleelsed kolme kuulikillu jäljega. Jooniselt leiame, et $p_1:p_2:p_3$ suhtuvad kui 3:4:5. Kombineerides seda nüüd eelmise tulemusega $v_1\approx v_2\approx v_3$ saame, et $m_1:m_2:m_3$ suhtuvad kui 3:4:5.

L72 Plokid ★★★★

Autor: Mihkel Kree, piirkonnavoor, 2008, G 9

Rakendades Newtoni II seadust näeme, et kõik kolm keskmist koormist hakkavad liikuma võrdse kiirendusega a_0 :

$$Ma_0 = 2T - Mg$$

kus T on niidi pinge. Rakendades Newtoni II seaduste äärmiste koormiste jaoks saame

$$\gamma M a_1 = T - \gamma M g,$$

kus a_1 on äärmiste koormiste kiirendus. Elimineerides niidi pinge T saame

$$2\gamma a_1 - a_0 = g - 2\gamma g.$$

Nööri venimatus avaldub kujul $a_1 = -3a_0$, millest tulenevalt

$$-2\gamma a_1 - \frac{a_1}{3} = (2\gamma - 1)g \quad \Rightarrow \quad a_1 = \frac{1 - 2\gamma}{2\gamma + 1/3}g.$$

Äärmised koormised hakkavad langema, kui a_1 on negatiivne. Selle jaoks peab kehtima

$$1 - 2\gamma < 0 \quad \Rightarrow \quad \gamma > \frac{1}{2}.$$

L73 Rong ★★★★

Autor: tundmatu, lahtine, 2006, G 10

a) Vaatame väikest kiiruste vahemikku Δv , mille sees võib kiirust v ja järelikult ka hõõrdetegurit $\mu(v)$ lugeda konstantseks. Kiirendus on selle liikumisfaasi jooksul siis $a = \mu(v)g$ ning kiiruse vähenemiseks kuuluv aeg

$$\Delta t = \frac{\Delta v}{a} = \frac{\Delta v}{\mu(v)g}.$$

Summaarne aeg oleks summa üle kõigi selliste väikeste kiirusemuutuste. Konstrueerime esialgsest graafikust lähtudes suuruse $1/\mu(v)$ sõltuvuse kiirusest v (vt joonist). Siis pidurdamiseks kuuluv aeg on selle sõltuvuse graafikualune pindala (kiirusest 0 kuni 100 km/h), jagatud g-ga. Seejuures peame silmas, et kiirus x-teljel peab olema meetrites sekundis (m/s). Vastuseks saame ligikaudselt 18 s.

b) Vaatame samasugust kiiruste vahemikku Δv nagu esimeses osas. Ajaga Δt , mille jooksul kiirus selle võrra väheneb, läbib rong teepikkuse

$$\Delta s = v\Delta t = \frac{v\Delta v}{\mu(v)g}.$$

Summaarne pidurdusmaa oleks summa üle kõigi selliste väikeste teepikkuste. Konstrueerime esialgsest graafikust lähtudes suuruse $v/\mu(v)$ sõltuvuse kiirusest v (vt joonist). Siis pidurdusmaa on selle sõltuvuse graafikualune pindala (kiirusest 0 kuni 100 km/h), jagatud g-ga. Kiirus x-teljel on samuti meetrites sekundis (m/s). Vastuseks saame ligikaudselt 235 m.

Märkus. Integraalne avaldis pidurdusaja jaoks on kujul

$$t = \int_0^{v_0} \frac{\mathrm{d}v}{\mu(v)g} = \frac{1}{g} \int_0^{v_0} \frac{\mathrm{d}v}{\mu(v)},$$

kus v_0 on rongi algkiirus. Avaldis pidurdusmaa pikkuse jaoks on aga

$$s = \int_0^{v_0} \frac{v dv}{\mu(v)g} = \frac{1}{g} \int_0^{v_0} \frac{v dv}{\mu(v)}.$$

L74 Värinaalarm ★★★★★

Autor: Jaan Kalda, lahtine, 2011, G9

Kuivõrd väike keha liigub alla hetkeliselt, siis süsteemi mobiil+keha masskese püsib paigal, mistõttu mobiil kerkib lauapinnast kõrgusele $h=x\frac{m}{M}$. Edasi hakkab mobiil raskusjõu toimel langema; lauapinnale jõudmiseks kuluv aeg $t=\sqrt{2h/g}$. Hõõrdejõud peatab mobiili ilma libisemata, kui $\mu>\tan\alpha$; et $\alpha\ll 1$, siis võime eeldada, et see nii ka juhtub. Kui $t=\sqrt{2h/g}<\tau$, siis jõuab mobiil liikuda langemise jooksul lauapinna sihis vahemaa $\delta=h\sin\alpha\approx h\alpha$, mis annab keskmiseks kiiruseks

$$u = \frac{xm\alpha}{2\tau M}.$$

Kui $\sqrt{2h/g} < \tau$, siis ei jõua mobiil lõpuni langeda, vaid väikese keha kerkimine surub mobiili ennatlikult vastu lauda tagasi. Mobiil jõuab langeda vahemaa $H = g\tau^2/2$ võrra, mis annab keskmiseks kiiruseks

$$u = \frac{H\alpha}{2\tau} = \frac{1}{4}g\tau\alpha.$$

Kokkuvõtlikult võib vastuse anda kujul

$$u = \min\left(\frac{xm\alpha}{2\tau M}, \frac{1}{4}g\tau\alpha\right).$$

L75 Kuulid ★★★★

Teisest ja kolmandast kuulist koosnevale süsteemile mõjus sel ajal, kui esimest kuuli lükati, esimese varda sihiline jõud, sest teatavasti mõjuvad kergetele varrastele vaid varda sihilised pinged. Seega nihkus šarniirne ühenduspunkt esimese varda sihiliselt ning teine ja kolmas kuul omandasid sümmeetria tõttu ühesugused kiirused. Šarniirse ühenduspunkti kiirus on $v_s = v_0 \cos 30^\circ$, sest esimese varda pikkus ei muutu. Et nii teisele kui kolmandale kuulile mõjub ainult varda sihiline jõud, siis nende kiirus on ka varda sihiline; varda venimatusest juhtivalt $v_2 = v_3 = v_s \cos 60^\circ = v_0 \sqrt{3}/4$.

Pinged varrastes on võrdsed, sest šarniirse ühenduspunkti massi võime lugeda nulliks ning talle mõjuv resultantjõud peab olema 0 ja jõudude tasakaalust tuginevalt peab varraste pingetest moodustuma võrdkülgne kolmnurk. Olgu varraste pinge T. Seega on kõigi kuulikeste kiirendused võrdsed, $a_k = T/m$. Läheme šarniirse ühenduspunktiga seotud kulgevalt liikuvasse taustsüsteemi, mis liigub kiirendusega \vec{a} . Selles süsteemis on esimese kuuli kiirus $u_1 = v_0/2$ ning teiste kiirus $u_2 = v_s \sin 60^\circ = \frac{3}{4}v_0$. Selles süsteemis liiguvad kuulid ringjoont mööda. Iga kuuli jaoks saame välja kirjutada jõudude tasakaalu tingimuse projekteerituna vastava varda sihile (siis kaob vajadus teada kuulikese ringliikumise tangetsiaalkiirendust, sest see on teljega risti). Teise ja kolmanda kuuli tasakaalutingimusi võrreldes selgub, et inetrsijõu $-m\vec{a}$ projektsioon kummalegi teljele peab olema üks ja sama, st \vec{a} peab olema esimese varda sihiline. Seega saame kaks võrrandit:

$$mu_1^2/l + a = T,$$

$$mu_2^2/l - a/2 = T.$$

Elimineerides neist võrrandeist a, saame

$$T = \frac{1}{3} \frac{m}{l} \left(u_1^2 + 2u_2^2 \right)$$

ning otsitava kiirenduse

$$a_k = T/m = (u_1^2 + 2u_2^2) 3l = \frac{11}{24}v_0^2/l.$$

Ringikujulisel orbiidil on satelliidi kiirus kogu orbitaalperioodi jooksul konstantne ja seetõttu on varjus veedetud osa ajast võrdne orbiidi varjus oleva osa pikkuse ja kogu orbiidi pikkuse suhtega, mis on ülal toodud jooniselt leitav kui

$$k = \frac{2\alpha r}{2\pi r} = \frac{\arcsin\left(\frac{R}{r}\right)}{\pi} = 36.5\%$$

L77 Väike prints ★

Autor: Urmo Visk, piirkonnavoor, 2009, G 1

Kui väike prints kõnnib piki asteroidi ekvaatorit, mõjub talle gravitatsioonijõud, mis põhjustab kesktõmbekiirendust. Kaalugu väike prints m kilogrammi. Newtoni II seaduse põhjal

$$m\frac{v^2}{R} = G\frac{mM}{R^2} \quad \Rightarrow \quad v^2 = \frac{GM}{R}.$$

Asteroidi mass pole teada, kuid teada on asteroidi tihedus. Kui asteroidi raadius on R, siis on asteroidi ruumala $V=\frac43\pi R^3$ ja mass

$$M = \rho V = \frac{4}{3}\pi\rho R^3.$$

Asendades massi esialgsesse avaldisse saame

$$v^2 = \frac{GM}{R} = \frac{G}{R} \cdot \frac{4}{3}\pi \rho R^3 = \frac{4}{3}\pi \rho G R^2.$$

Siit avaldame asteroidi raadiuse:

$$R = v\sqrt{\frac{3}{4\pi\rho G}} = \frac{v}{2}\sqrt{\frac{3}{\pi\rho G}} = 5 \,\mathrm{km}.$$

L78 Eksinud satelliit ★★

Autor: tundmatu, lahtine, 2009, G 5

Leiame geostatsionaarse orbiidi raadiuse, olgu see r. Sellel orbiidil on satelliidi tiirlemise periood $T=24\,\mathrm{h}=86\,400\,\mathrm{s}$ ning nurkkiirus $\omega=\frac{2\pi}{T}=7,27\cdot10^{-5}\,\mathrm{s}^{-1}$. Olgu satelliidi mass m ja Maa mass M. Satelliit liigub kekstõmbekiirendusega $a=\omega^2 r$ ning talle mõjub gravitatsioonijõud

$$F_G = G \frac{Mm}{r^2}.$$

Newtoni II seaduse põhjal

$$G\frac{Mm}{r^2} = m\omega^2(R+h) \Rightarrow r^3 = \frac{GM}{\omega^2}.$$

Raskuskiirendus maapinnal võrdub $g=G\frac{M}{R^2}$, kust saame avaldada $GM=gR^2$. Saame nüüd asendada

$$r^3 = \frac{gR^2}{\omega^2} \Rightarrow r = \sqrt[3]{\frac{gR^2}{\omega^2}} \approx 42\,300\,\mathrm{km}.$$

Satelliidi orbitaalliikumise kiirus on seega $v_0 = \omega r = 3{,}08\,\mathrm{km/s}$. Põrkekiirus on maksimaalne siis, kui "eksinud" satelliit tiirleb samal ringorbiidil mis teised sidesatelliidid, kuid liikumise suund on vastupidine. Sel juhul

$$v = 2v_0 = 6.16 \,\mathrm{km/s}.$$

L79 Kosmosejaam ★★★

Autor: Oleg Košik, lõppvoor, 2005, G 9

Maa pöörlemise tõttu ümber oma telje tekivad trajektoori nihked. Mõõdame nihke pikkuse ekvaatoril Δl ning ekvaatori pikkuse (ehk kogu kaardi laiuse) l. Nende suhe määrab kosmosejaama nurkkiiruse ω_J ja maa pöörlemise nurkkiiruse ω_M suhte:

$$\alpha = \frac{l}{\Delta l} = \frac{\omega_J}{\omega_M} \approx 15,7.$$

Arvestades, et maa pöörlemise nurkkiirus on $\omega_M=2\pi/T$, kus T on ööpäeva pikkus ehk 86 400 s, leiame

$$\omega_J = \alpha \omega_M = \frac{2\pi\alpha}{T}.$$

Kosmosejaamale mõjuv gravitatsioonijõud määrab kesktõmbekiirenduse:

$$mg' = m\omega_J^2 r = m\omega_J^2 (R+h),$$

kus g' on raskuskiirendus kõrgusel h maapinnast. Gravitatsiooniseadusest teame, et raskuskiirendus on pöördvõrdeline kauguse ruuduga, millest

$$g' = g \left(\frac{R}{r}\right)^2 = g \left(\frac{R}{R+h}\right)^2.$$

Kombineerides kaks viimast võrrandit, saame

$$\omega_J^2(R+h) = g\left(\frac{R}{R+h}\right)^2,$$

kust ostitav kõrgus on

$$h = \sqrt[3]{\frac{gR^2}{\omega_J^2}} - R = \sqrt[3]{\frac{gR^2T^2}{4\pi^2\alpha^2}} - R \approx 359 \, \mathrm{km}.$$

 $M\ddot{a}rkus$: tegelik kõrgus varieerub 350 ja 365 km vahel (Maa raadius ei ole kõikjal ühesugune). Siin α väärtus oli mõõdetud suhteliselt täpsete arvutigraafika vahenditega, joonlauga joonise mõõtmise korral esinevate ebatäpsuste tõttu võib vastus erineda tegelikust kuni 200 kilomeetri võrra.

L80 Kuukaabel ★★★★

Autor: Siim Ainsaar, piirkonnavoor, 2009, G 10

a) Maa avaldab kaablile jõudu

$$F_M = Gm_M \lambda \left(\frac{1}{r_M} - \frac{1}{D - r_K} \right),\,$$

analoogiliselt Kuu,

$$F_K = Gm_K \lambda \left(\frac{1}{r_K} - \frac{1}{D - r_M} \right).$$

Suhe on seega

$$\frac{F_M}{F_K} = \frac{m_M \left(\frac{1}{r_M} - \frac{1}{D - r_K}\right)}{m_K \left(\frac{1}{r_K} - \frac{1}{D - r_M}\right)} \approx 21,9.$$

b) Leiame kaablit pingutava jõu T(x) Kuu keskmest mingil kaugusel x. Sellest kaugusest Maa-poolset kaabliosa mõjutavad kolm jõudu: kaabli pinge T(x) ning Maa ja Kuu poolt avaldatavad raskusjõud. (x-st Kuu-poolset osa mõjutab ka otsa Kuu küljes hoidev jõud, selle arvutamiseks pole tarvidust.) Nimetatud jõud on tasakaalus, mistõttu

$$T(x) = G\lambda m_M \left(\frac{1}{r_M} - \frac{1}{D-x}\right) - G\lambda m_K \left(\frac{1}{x} - \frac{1}{D-r_M}\right).$$

Kaabel katkeks sealt, kus pinge on tugevaim, seega lahendame ekstreemumülesande ja leiame T(x) maksimumi. Seal tuletis T'(x)=0. Kui saame ainult ühe mõistliku lahendi, pole ekstreemumi liigi määramiseks teist tuletist vajagi: teame, et kosmoses on T suurem kui kaabli otstes (taevakeha pinnalt kaabliosade eralduspunkti eemaldudes kasvab lähema keha tõmme alumisele kaablipoolele ilmselt kiiremini kui kahaneb teise keha tõmme ülemisele; osade suhtelised massid

muutuvad oluliselt erineva kiirusega), tänu millele (vähemalt) üks maksimum eksisteerib.

$$T'(x) = -\frac{G\lambda m_M}{(D-x)^2} + \frac{G\lambda m_K}{x^2} = 0 \implies x = \frac{D}{1 \pm \sqrt{\frac{m_M}{m_K}}}.$$

Miinusmärgiga lahend on negatiivsena mittefüüsikaline, seega otsitavaks kõrguseks osutub

$$h = \frac{D}{1 + \sqrt{\frac{m_M}{m_K}}} - r_K \approx 36\,200\,\mathrm{km}.$$

L81 Satelliidid ****

Autor: Mihkel Kree, lõppvoor, 2010, G 7

Lähtume analoogiast molekulaarfüüsikaga, kus ühe molekuli vaba tee hindamisel arvestatakse, et molekul liigub ilma põrgeteta tüüpiliselt aja jooksul, mil tema kokkupõrke-ristlõige on katnud ruumala, milles asub tüüpiliselt üks osake (see ruumala avaldub kui anuma ruumala jagatud osakeste arvuga). Kokkupõrke-ristlõige pole päris identne osakese enda ristlõikega – vaatleme näiteks kera-kujulisi osakesi raadiusega r, osakesed põrkuvad, kui nende tsentrid ei ole teineteisest kaugemal kui 2r, niisiis on ühe osakese kokkupõrke-ristlõige neli korda suurem tema ristlõikest.

Satelliidid liiguvad ruumiosas ruumalaga

$$V = \frac{4\pi}{3} \left[(R + h_2)^3 - (R + h_1)^3 \right] \approx 1.2 \cdot 10^{12} \,\mathrm{km}^3.$$

Liikumisruum ühe satelliidi kohta on seega V/N (niisuguse ruumalaga suvaliselt valitud ruumiosast leiame tüüpiliselt ühe satelliidi).

Aja t jooksul katab ühe satelliidi kokkupõrke-ristlõige ruumala

$$V_t = 4Svt$$
,

kus v on tüüpiline satelliidi liikumise kiirus. Me ei tee suurt viga, võttes v väärtuseks esimese kosmilise kiiruse (kiirus sõltub raadiuse ruutjuurest ning suhteline viga oleks ainult $\sqrt{\frac{6400+2000}{6400}} \approx 1{,}15$):

$$\frac{v^2}{R} = \frac{GM}{R^2} = g.$$

Niisiis,

$$V_t = \sqrt{gR} 4St.$$

Eelneva arutluse kohaselt arvestame, et ühel satelliidil tuleb kokkupõrget oodata niisugune ajavahemik t, et $V_t = V/N$. Et meil on aga N satelliiti, siis esimese niisuguse kokkupõrkeni kulub N korda vähem aega. Seega,

$$\Delta t = \frac{V}{N^2 4S \sqrt{gR}} = \frac{1,2 \cdot 10^{12} \cdot 10^9}{4 \cdot 2.5^2 \cdot 10^6 \cdot 10 \cdot \sqrt{10 \cdot 64 \cdot 10^2 \cdot 10^3}} s = 6 \cdot 10^8 \,\mathrm{s},$$

ehk

$$\Delta t = \frac{6 \cdot 10^8}{3600 \cdot 24 \cdot 365} \approx 19 \,\mathrm{a}.$$

L82 Jalgpall ★

Autor: tundmatu, lahtine, 2006, G1

Iga pumpamiskäigu alguses täidab atmosfääri õhk rõhuga p_0 pumba siseruumi ruumalaga v. Pumpamiskäigu lõpus on see õhk pallis, kus ta ruumala on V ja osarõhk p. Viimase saame leida Boyle-Mariotte'i seadusest:

$$p = \frac{p_0 v}{V}.$$

Pärast N pumpamiskäiku on rõhk pallis võrdne osarõhkude summaga:

$$p_N = Np = \frac{Nvp_0}{V} = \frac{40 \cdot 150 \cdot 0.1}{3000} = 0.2 \,\text{MPa}.$$

L83 Allveelaev ★

Autor: tundmatu, lahtine, 2007, G 3

Kuna temperatuur on jääv, kehtib seos pV = Const. Olgu laeva ruumala V ning õhu ruumala laevas peale ventiilide avamist v. Siis

$$p_0 V = (p_0 + \rho g h) v,$$

$$k = \frac{v}{V} = \frac{p_0}{p_0 + \rho g h} = \frac{0.1 \cdot 10^6}{0.1 \cdot 10^6 + 1.03 \cdot 10^3 \cdot 9.8 \cdot 42} \approx 0.19.$$

L84 Tuukrid ★

Autor: Ott Krikmann, piirkonnavoor, 2007, G 4

Oletame, et tuuker pumpas pinna lähedal vesti õhku, mille ruumala oli V_0 . Vee pinna lähedal oli rõhk võrdne välisrõhuga. Sukeldudes 25 m sügavusele, suureneb rõhk $\Delta p=\rho gh$ võrra. Summaarne rõhk sellel sügavusel on seega

$$p = p_0 + \Delta p = p_0 + \rho g h$$

Võrdusest $pV = p_0V_0$ leiame, et

$$\frac{V_0}{V} = \frac{p}{p_0} = \frac{p_0 + \rho gh}{p_0} = 3,33.$$

Seega, vestis oleva õhu ruumala väheneb endisega võrreldes 3,33 korda. Järelikult on vaja sellel sügavusel suurendada õhu ruumala 3,33 korda, et saavutada hõljumine.

L85 Toaõhk ★

Autor: Mihkel Rähn, lõppvoor, 2008, G 3

Summaarne kineetiline energia on $E = N \cdot \langle E_m \rangle$, kus N on toas oleva gaasi molekulide arv ja $\langle E_m \rangle$ ühe molekuli gaasi keskmine kineetiline energia. Kehtib

$$\langle E_m \rangle = \frac{3}{2}kT.$$

Ideaalse gaasi võrrandist saab avaldada toas olevate molekulide arvu N=pV/(kT) Pannes need kokku, $E=\frac{3}{2}pV$. Kuna toas on õhurõhk võrdne välisrõhuga, ei sõltu toas olevate õhumolekulide summaarne kineetiline energia temperatuurist.

L86 Gaasitermomeeter ★★ Autor: Valter Kiisk, piirkonnavoor, 2006, G 5

Olgu mõõteampulli ruumala V ning manomeetri ruumala V_m . Kui toatemperatuuril T_0 täideti seade n mooli gaasiga, siis ideaalse gaasi olekuvõrrandi põhjal

$$\frac{p_0 V}{T_0} + \frac{p_0 V_m}{T_0} = nR.$$

Kuna manomeeter ja mõõteampull on kapillaari kaudu ühenduses, siis nende gaasirõhud on isegi temperatuuride erinedes ühesugused. Kui mõõteampull on temperatuuril T, siis (gaasi koguhulk jääb samaks)

$$\frac{pV}{T} + \frac{pV_m}{T_0} = nR.$$

Elimineerides n ja asendades $V_m/V = \alpha$, saame

$$T = \frac{pT_0}{p_0 + (p_0 - p)\alpha} \approx 20.5 \,\mathrm{K}.$$

L87 Tuulik ★★

Autor: Valter Kiisk, piirkonnavoor, 2007, G 5

Tiiviku poolt haaratav pindala on

$$S = \frac{\pi d^2}{4},$$

Ajavahemikus Δt kandub läbi selle pinna õhumass $\Delta m = vS\rho\Delta t$, mille kineetiline energia on

$$\Delta E = \frac{\Delta m v^2}{2} = \frac{S \rho \Delta t v^3}{2},$$

millele vastab võimsus $P_0 = S\rho v^3/2$. Elektriks õnnestub muundada osa η sellest:

$$P = \eta P_0 = \frac{\eta S \rho v^3}{2} = \frac{\eta \pi d^2 \rho v^3}{8} \approx 370 \,\text{kW}.$$

L88 Rong tunnelis ★★

Autor: Eero Uustalu, lõppvoor, 2009, G 4

Õhu temperatuur tunnelis kasvab, kuna mootor soojendab tunneli läbimisel selles olevat õhku. Vaatleme rongi liikumist ajavahemiku Δt jooksul. Selle ajaga läbib rong vahemaa $s=v\Delta t$ ja rongist mööduva õhu ruumala on $\Delta V=\pi d^2s/4$. Õhu mass on $m=\Delta V\rho$ ja moolide arv on

$$N = \frac{m}{M} = \frac{\Delta V \rho}{M} = \frac{\pi d^2 v \Delta t \rho}{4M}.$$

Ideaalse gaasi olekuvõrrandist $pV=\frac{m}{M}RT$ saame avaldada $\rho=\frac{m}{V}=\frac{pM}{RT}$. Rongi mootoris eraldub samal ajal soojushulk $Q_1=P\Delta t$.

Üheaatomilise gaasi erisoojus jääval ruumalal on $C_1=3/2R$. Seega on kaheaatomilise gaasi erisoojus $C_2=5/3\cdot 3/2R=5/2R$. Gaasi erisoojus jääval rõhul on seega C=5/2R+R=7/2R. Õhu soojendamiseks ΔT võrra kulub soojushulk $Q_2=NC\Delta T$. Võrdsustame soojushulgad Q_1 ja Q_2 .

$$NC\Delta T = P\Delta t.$$

Asendades leitud avaldised N ja C jaoks saame pärast teisendusi

$$\Delta T = \frac{8PT}{7\pi d^2 vp} = 2.25 \,\mathrm{K}.$$

L89 Heelium ★★★

Autor: tundmatu, lahtine, 2008, G 6

Käsitleme heeliumit üheaatomilise ideaalse gaasina. Paneme kirja olekuvõrrandid alg- ja lõppseisundi jaoks:

$$p_1V_1 = nRT_1, \quad p_2V_2 = nRT_2.$$

Paisumisel tehtav töö võrdub graafikul halliks värvitud trapetsi pindalaga:

$$A = \frac{1}{2}(p_2V_2 - p_1V_1) = \frac{1}{2}nR(T_2 - T_1).$$

Termodünaamika I seaduse kohaselt

$$Q = A + \Delta U = \frac{1}{2}nR(T_2 - T_1) + \frac{3}{2}nR\Delta T = 2nR\Delta T.$$

Siit

$$\Delta T = \frac{Q}{2nR} \approx 6 \, \mathrm{K}.$$

Temperatuuri kasvades hakkab esimese anuma rõhk p_1 suurenema ning mingil hetkel ületab see ventiili kriitilise rõhu Δp . Sellest hetkest alates hakkab ventiil õhku läbi laskma nõnda, et edaspidi anumate rõhud p_1 ja p_2 rahuldavad tingimust $p_1 - p_2 = \Delta p$. See tingimus jääb edaspidi alati täidetuks, sest ei saa tekkida olukorda, kus väiksema rõhuga anumas kasvaks rõhk kiiremini kui suurema rõhuga anumas. Korrektse lahenduse huvides peame siiski ka veenduma, kas rõhk üldse kasvab piisavalt suureks, et ventiil avaneks. Selleks peaks rõhk kasvama 10% võrra, milleks omakorda peab temperatuuri tõstma vähemalt 10% võrra – tõepoolest, see on kooskõlas ülesandes antud arvudega: $t_2 - t_1 > 30$ °C. Algne gaasi hulk (moolides)

$$n = \frac{p_0 V_1}{R t_1}$$

on jääv suurus ning jaotub hiljem anumate vahel osadeks n_1 ja n_2 nõnda, et $n=n_1+n_2$, ehk

$$\frac{p_0 V_1}{R t_1} = \frac{(p_2 + \Delta p) V_1}{R t_2} + \frac{p_2 V_2}{R t_2}.$$

Asendades $\alpha = V_1/V_2$, saame

$$p_0 \alpha \frac{t_2}{t_1} - \Delta p \alpha = p_2(\alpha + 1), \quad \Rightarrow$$

$$p_2 = \frac{\alpha}{\alpha + 1} \left(p_0 \frac{t_2}{t_1} - \Delta p \right).$$

Kasutades arvutustes absoluutühikutesse teisendatud temperatuuride väärtusi $t_1=300\,\mathrm{K}$ ja $t_2=400\,\mathrm{K}$, saame vastuseks

$$p_2 = \frac{2}{3} \left(\frac{4}{3} - 1.1 \right) p_0 \approx 0.16 p_0.$$

L91 Õhuhoki ★★★

Autor: Mihkel Heidelberg, lõppvoor, 2010, G 6

Olukorras, kus aluse temperatuur on minimaalne, on rõhk seibi alumise külje vahetus läheduses võrdne süsihappegaasi aururõhuga. Seibi surutakse alla jõuga F ja kuna seibi pindala on πr^2 , peab surumist tasakaalustav rõhk olema $p=\frac{F}{\pi r^2}$. Vaadeldes rõhkude tasakaalu seibi ülemise ja alumise pinna läheduses, saame et kuiva jää aururõhk on

$$p_{\text{kuiv}} = p + p_0 = p_0 + \frac{F}{\pi r^2} = 131.8 \,\text{kPa}.$$

Sellele vastab graafiku põhjal temperatuur $\sim 195\,\mathrm{K}.$

Autor: tundmatu, lahtine, 2006, G 8

Kuiva õhu tihedus

$$\rho_1 = \frac{\mu_1 p_0}{RT}.$$

Suhtelise niiskusega f auru tihedus

$$\rho' = f\rho_0 = \frac{\mu_2 p_2}{RT},$$

kus p_2 on auru osarõhk. Siit:

$$p_2 = \frac{\rho_0 f R T}{\mu_2}.$$

Kuna niiske õhu rõhk on õhu ja auru osarõhkude p_1 ja p_2 summa, siis

$$p_1 = p_0 - p_2 = p_0 - \frac{\rho_0 f RT}{\mu_2}.$$

Õhu tihedus (ilma auruta) sellel osarõhul

$$\rho'' = \frac{\mu_1 p_1}{RT} = \frac{\mu_1 p_0}{RT} - \frac{\mu_1 f \rho_0}{\mu_2}.$$

Niiske õhu tihedus

$$\rho_2 = \rho' + \rho'' = \frac{\mu_1 p_0}{RT} - \left(\frac{\mu_1}{\mu_2} - 1\right) f \rho_0.$$

Niiske ja kuiva õhu tiheduste suhe on seega

$$\begin{split} \frac{\rho_2}{\rho_1} &= 1 - \frac{(\mu_1 - \mu_2) f \rho_0 RT}{\mu_1 \mu_2 p_0} \\ &= 1 - \frac{(0.029 - 0.018) \cdot 0.9 \cdot 0.027 \cdot 8.31 \cdot 300}{0.029 \cdot 0.018 \cdot 10^5} \approx 0.987. \end{split}$$

L93 Gaasid ★★★★

Autor: Oleg Košik, lõppvoor, 2007, G 6

Kogu protsessi jooksul on mõlema gaasi rõhud võrdsed ja konstantsed. Olgu vesiniku moolide arv n_0 . Kuna alguses on ka temperatuurid võrdsed, siis valemi $n=\frac{pV}{RT}$ põhjal näeme, et heeliumi moolide arv peab olema $3n_0$. Konstantsel rõhul avaldub molaarne erisoojus kui $C_P=\left(\frac{i}{2}+1\right)R$ (see valem on tuletatav ka teistest rohkem tuntud valemitest). Vesinik on kaheaatomiline gaas, heelium aga üheaatomiline, seega $i_{\rm H_2}=5$, $i_{\rm He}=3$ ning järelikult $C_{\rm PH_2}=7/2R$ ja $C_{\rm PHe}=5/2R$. Omandagu vesinik vahetult peale soojendamist temperatuuri, mis on algtemperatuurist ΔT_1 võrra kõrgem, ning olgu terve süsteemi tasakaaluline lõpptemperatuur algtemperatuurist ΔT_2 võrra suurem. Heelium saab temperatuuride ühtlustumise ajal soojushulga $3n_0C_{\rm PHe}\Delta T_2$, mis peab võrduma vesiniku poolt ära antava soojushulgaga:

$$n_0 C_{\mathrm{PH}_2} (\Delta T_1 - \Delta T_2) = 3n_0 C_{\mathrm{PHe}} \Delta T_2,$$

ehk

$$\frac{7}{2}(\Delta T_1 - \Delta T_2) = 3 \cdot \frac{5}{2}\Delta T_2,$$

kust

$$\Delta T_2 = \frac{7}{22} \Delta T_1.$$

Kuna protsess on isobaariline ja nii alguses kui ka lõpus on gaaside temperatuurid võrdsed, siis kehtivad võrdused $pV_{\rm H_2}=n_{\rm H_2}RT$, $p(V_{\rm H_2}+V_{\rm He})=(n_{\rm He}+n_{\rm H_2})RT=4n_0RT$. Siit tulenevalt kehtib ka

$$p\Delta V_{\rm H_2} = n_0 R\Delta T_1,$$

$$p\Delta(V_{\rm H_2} + V_{\rm He}) = 4n_0 R\Delta T 2.$$

Järelikult

$$\frac{d_2}{d_1} = \frac{\Delta (V_{\text{H}_2} + V_{\text{He}})}{\Delta V_{\text{H}_2}} = \frac{4\Delta T_2}{\Delta T_1} = \frac{28}{22}.$$

Seega lõpus on koormus algusega võrreldes $d_2=\frac{28}{22}d_1=7\,\mathrm{cm}$ kõrgemal, järelikult ta nihkub täiendavalt $\Delta d=d_2-d_1=1,5\,\mathrm{cm}$ ülespoole.

L94 Korsten ★★★★

Autor: Jaan Kalda, piirkonnavoor, 2009, G 9

Ahjusuusse siseneva õhu rõhk p_1 on võrdne õhurõhuga ahjusuu kõrgusel ning korstnast väljuva õhu rõhk p_2 on võrdne õhurõhuga korstnasuu kõrgusel. Seega, $p_2=p_1-\rho_0gh$, kus ρ_0 tähistab välisõhu tihedust. Bernoulli seaduse kohaselt kehtib seos

$$p_1 = p_2 + \rho g h + \rho \frac{v^2}{2} = p_1 - \rho_0 g h + \rho g h + \rho \frac{v^2}{2},$$

kus $\rho = T \rho_0 / T_0$ on õhu tihedus korstnas ning v on otsitav kiirus. Seega,

$$v = \sqrt{2\left(\frac{T}{T_0} - 1\right)gh} \approx 3.5 \,\mathrm{m/s}.$$

Märkus: ahjusuhu voolava õhu kiiruse võib lugeda tühiselt väikseks, sest voolava õhuga piirkonna ristlõike pindala on ilmselt hulga suurem korstna ristlõikepindalast.

Bernoulli seaduse võib tuletada ka energia jäävuse seadusest. Samuti lugeda õigeks impulsibalansi abil saadav tulemus (mis tuleb $\sqrt{2}$ korda väiksem), sest nõuti vaid hindamist.

L95 Rakettmootor ★★★★★

Autor: Jaan Kalda, lahtine, 2010, G 10

Adiabaatilisel paisumisel muutub gaasi sisenergia $c_V T_0$ osaliselt joa kineetiliseks energiaks $\mu v^2/2$ (avaldised on siin ühe mooli gaasi jaoks); energia jäävuse seaduses tuleb siiski arvestada ka põlemiskambris juurde tekkivate gaaside poolt tehtavat tööd $p_0 V_0$ ning äravoolavate gaaside pidurdavat tööd $p_1 V_1$, mis on olekuvõrrandi tõttu vastavalt võrdsed RT_0 -ga ja RT_1 -ga. Seega,

$$c_V T_0 + RT_0 = c_V T_1 + RT_1 + \mu v^2 / 2 \Rightarrow v^2 = 7R(T_0 - T_1) / \mu.$$

Veojõud on võrdne ajaühikus eemalduva gaasijoa impulsiga,

$$F = \dot{m}v = (\rho_1 S v) \cdot v = \rho_1 S v^2 = 7S \frac{R \rho_1 T_1}{\mu} \left(\frac{T_0}{T_1} - 1 \right).$$

Arvestades gaasi olekuvõrrandit ja lähendust $T_0 \gg T_1$ saame lõpptulemuseks

$$F = 7Sp_1T_0/T_1$$
.

L96 Vedelik ★

Autor: tundmatu, lahtine, 2005, G1

Kuna anumad on ühendatud ning vedelikes antakse rõhk igas suunas võrdselt edasi, on mõlemas anumas rõhud samal kõrgusel võrdsed. Järelikult võib antud anumaid vaadelda ühe anumana, mille pindala on

$$S = \pi \left(\frac{d_1}{2}\right)^2 + \pi \left(\frac{d_2}{2}\right)^2 = \frac{\pi \left(d_1^2 + d_2^2\right)}{4}.$$

Väljasurutud vedeliku mass on võrdne lisatava ujuva keha massiga. Seega on lisanduva vedeliku ruumala $\Delta V = m/\rho$ ning kõrguse muut avaldub kui

$$\Delta h = \frac{\Delta V}{S} = \frac{4m}{\pi \rho (d_1^2 + d_2^2)}.$$

L97 Veetoru ★★

Autor: Taavi Pungas, lõppvoor, 2011, G 4

Bernoulli seadusest saame seose

$$\frac{\rho v_1^2}{2} + p_1 = \frac{\rho v_2^2}{2} + p_2.$$

Rõhu torudes leiame veesamba kõrguse järgi, $p_1 = p_0 + \rho g h_1$ ja $p_2 = p_0 + \rho g h_2$, kus p_0 on atmosfäärirõhk. Asendades p_1 ja p_2 esimeses seoses, saame vee kiiruse teises torus:

$$v_2 = \sqrt{v_1^2 + 2g(h_1 - h_2)}.$$

Et torud on ühendatud, peab läbi nende voolama sama aja jooksul sama kogus vett, $v_1S_1=v_2S_2$. Kuna toru ristlõikepindala on $S=\pi d^2/4$, saame $v_1d_1^2=v_2d_2^2$. Kokku,

$$\frac{d_1}{d_2} = \sqrt{\frac{v_2}{v_1}} = \left(1 + \frac{2g(h_1 - h_2)}{v_1^2}\right)^{1/4}.$$

L98 Veekahur ★★★

Autor: Oleg Košik, piirkonnavoor, 2005, G7

Olgu veejoa kiirus kahurist väljudes v. Et märk ja kahur asuvad samal kõrgusel ning õhutakistus puudub, siis märgini jõuab veejuga samuti kiirusega v. Aja t jooksul väljub kahurist vesi massiga $m=\rho Svt$. Väljuva vee kineetiline energia on $E=mv^2/2$ ning asendades massi leiame

$$E = \frac{\rho S v^3 t}{2}.$$

Seega saame avaldada kahuri võimsuse

$$N = \frac{E}{t} = \frac{\rho S v^3}{2} \quad \Rightarrow \quad v = \sqrt[3]{\frac{2N}{\rho S}}.$$

Jõud, millega veejuga tabab märki, on määratud vee impulsiga:

$$F = \frac{mv}{t} \quad \Rightarrow \quad F = \frac{\rho S v^2 t}{t} = \rho S v^2.$$

Asendades v saame

$$F = \sqrt[3]{4N^2 \rho S} \approx 490 \,\mathrm{N}.$$

L99 Veetünn ★★★

Autor: Mihkel Kree, lõppvoor, 2005, G 5

Leiame esmalt veejoa väljumise kiiruse. Kiiruse avaldis on tuntud Torricelli seadusena, kuid selle leidmiseks võime arutleda nõnda: avast väljuv juga omab kineetilist energiat $mv^2/2$, teisalt peab see olema võrdne potentsiaalse energiaga, mis saadakse vee ülemiselt pinnalt kuni auguni langedes: mg(1-x)h. Seega väljumiskiirus avaldub

$$v = \sqrt{2g(1-x)h}.$$

 $M\ddot{a}rkus$: impulsi jäävusest saaksime (võrreldes tünni vasakule ja paremale seinale mõjuvate rõhumisjõudude vahe avaldist ning veejoa impulssi) tulemuse $v=\sqrt{g(1-x)h}$. See avaldis kehtib siis, kui vee liikumine tünnis pole laminaarne ning energia ei säili (läheb veekeeristesse). Laminaarse (energiakadudeta) voolu korral tuleks rõhumisjõudude vahe leidmisel arvestada Bernoulli seadusest tingitud rõhu muutust, mistõttu impulsi jäävusest tuletatud vastus ei kehti. Kuivõrd

antud ülesandes on voolu laminaarsuse küsimus jäetud täpsustamata, siis on mõlemad meetodid korrektsed.

Et veejoal vertikaalset kiiruskomponenti esialgu pole, kulub langemiseks aeg

$$\tau = \sqrt{\frac{2(H+xh)}{g}}.$$

Selle ajaga liigub aga veejuga horisontaalsihis kaugusele $L = v\tau$ ehk:

$$L = 2\sqrt{(1-x)h(H+xh)},$$

mida aga ongi antud graafikul kujutatud.

Seega piisaks H ja h leidmiseks kahe joone punkti koordinaatide määramisest ning tekkiva võrrandisüsteemi lahendamisest. Et aga võimalikult lihtsalt tulemuseni jõuda, kasutame tähelepanekut, et x=0 korral $L=2\sqrt{hH}$. Võtame graafikult lugemi punktis x=0 ning saame esimese võrrandi: $hH=9\,\mathrm{m}^2$.

Nagu öeldud, võib teise võrrandi saada suvalise punkti abil, kuid uurime natuke ekstreemumtingimust. Tähistame esmalt $\alpha = H/h$, L avaldub seega kui

$$L = 2h\sqrt{(1-x)(\alpha+x)}.$$

Kui võtame L-ist x-i järgi tuletise, näeme, et L omab ekstreemumväärtust $x=(1-\alpha)/2$ korral. Selle tulemiseni võib jõuda ka arutledes nõnda: $y=(1-x)(\alpha+x)$ kujutab endast allapoole suunatud parabooli nullkohtadega 1 ja $-\alpha$, ekstreemumväärtus on seega nende vahel ehk kohal $x=(1-\alpha)/2$. Asendame selle L-i avaldisse:

$$L=2h\sqrt{\left(1-\frac{1-\alpha}{2}\right)\left(\alpha+\frac{1-\alpha}{2}\right)}=2h\frac{1+\alpha}{2}=h+H.$$

Seega saame teise võrrandi L-i maksimumväärtust kasutades:

$$H + h = 10 \,\text{m}.$$

Nendest kahest lihtsast võrrandist tekkiva võrrandisüsteemi lahendamisel (viies need näiteks ruutvõrrandi kujule) leiame väärtused: h = 9 m ja H = 1 m.

L100 Veejuga ★★★

Autor: Siim Ainsaar, piirkonnavoor, 2006, G 9

Leidmaks purgi täitumise aega, on meil vaja teada veevoolu kiirust mingil kõrgusel. Olgu see kiirus kraanitoru otsa juures v_0 ning kaugusel h (seal, kus raadius on r_1) v_1 . Kuna vool kiireneb ühtlaselt, siis

$$v_1^2 - v_0^2 = 2gh.$$

Ajaga Δt läbib iga veejoa ristlõiget sama kogus vett, sest seda ei kao kuhugi ega tule ka juurde:

$$\pi r_0^2 v_0 \Delta t = \pi r_1^2 v_1 \Delta t.$$

Seega

$$v_1 = v_0 \left(\frac{r_0}{r_1}\right)^2,$$

mille asetame avaldisse $v_1^2 - v_0^2 = 2gh$:

$$\left[v_0 \left(\frac{r_0}{r_1}\right)^2\right]^2 - v_0^2 = 2gh \quad \Rightarrow \quad v_0^2 \left[\left(\frac{r_0}{r_1}\right)^4 - 1\right] = 2gh \quad \Rightarrow$$

$$\Rightarrow \quad v_0 = \sqrt{\frac{2gh}{\left(r_0/r_1\right)^4 - 1}}$$

Ajaga t voolab purki veekogus, mille ruumala on

$$V = \pi r_0^2 v_0 t.$$

Avaldame viimasest võrrandist aja t:

$$t = \frac{V}{\pi r_0^2 v_0} = \frac{V}{\pi r_0^2} \sqrt{\frac{(r_0/r_1)^4 - 1}{2gh}} = \frac{V}{\pi \sqrt{2gh}} \sqrt{\frac{1}{r_1^4} - \frac{1}{r_0^4}} \approx 21 \,\text{s.}$$

L101 Veepüstol ★★★

Autor: Valter Kiisk, lõppvoor, 2006, G 4

Kuna me ei arvesta dissipatiivseid efekte, siis peab kehtima mehaanilise energia jäävus. Liikugu kolb jõu F toimel kiirusega v_1 ja olgu vee kiirus suudmes v_2 . Kuna vee koguruumala ei muutu, siis $v_1S_1=v_2S_2$. Ajavahemiku t vältel läbib kolb vahemaa $x=v_1t$ tehes tööd A=Fx. Vaatame, milline on sellele liikumisele vastav vee summaarne kineetilise energia muut. Ühelt poolt kolvi eest "kaob ära" veehulk $m=S_1x\rho$, mille kiirus oli v_1 , teiselt poolt ilmub suudmesse sama kogus vett liikudes kiirusega v_2 . Energia jäävus annab

$$A + \frac{mv_1^2}{2} = \frac{mv_2^2}{2}$$

ehk peale asendamist ja v_1 elimineerimist

$$\frac{F}{S_1} + \frac{\rho v_2^2}{2} \frac{S_2^2}{S_1^2} = \frac{\rho v_2^2}{2}.$$

Aga $d_2 \ll d_1$ ja $S \propto d^2$, seega ammugi $S_2^2 \ll S_1^2$ ning teise liikme vasakul pool võrdusmärki võib ära jätta. Avaldame v_2 :

$$v_2 = \frac{1}{d_1} \sqrt{\frac{8F}{\pi \rho}} \approx 22.6 \,\text{m/s}.$$

Märkus: Bernoulli seadusele tuginedes oleks saanud ülesande lahendada ka lühemalt:

$$p + \frac{\rho v^2}{2} = \text{Const},$$

mille me lahendamise käigus sisuliselt tuletasime.

Autor: tundmatu, lahtine, 2009, G 6

Olgu U-toru siseraadius r ja välisraadius $R=\sqrt{2}r$. Vaatleme eraldi U-toru kaarekujulist osa. Aja Δt jooksul siseneb sinna kiirusega v veekogus massiga $\Delta m=\rho\Delta V=\rho\pi r^2vt$, ning samasugune veekogus voolab sealt sama kiirusega välja, seega summaarne vee impulsi muutus aja Δt jooksul on $\Delta p=2\rho\pi r^2v^2t$, ning jõud, millega vesi mõjub sellele toru osale, on Newtoni teise seaduse põhjal

$$F = \Delta p / \Delta t = 2\rho \pi r^2 v^2.$$

Kaarekujuline toru osa on liikumatu, nii et vee poolt rakendatud jõud on tasakaalustatud kahe terastoru elastsusjõuga. Kui terastoru jäikusteguriks võtame k, siis on selge, et kehtib võrdus

$$F = k\Delta l + k\Delta l = 2k\Delta l$$
,

kus Δl on ühe terastoru pikenemine. Teguri k avaldame ülesande tekstis toodud seose kaudu kui $k=ES/l=E\pi\left(R^2-r^2\right)/l=E\pi r^2/l$ (kogu ristlõike pindalast panustab jäikustegurisse ainult materjaliga kaetud osa) ning seega

$$2\rho\pi r^2 v^2 = 2E\pi r^2 \Delta l/l.$$

Siit saame ühe toru pikenemiseks $\Delta l = \rho v^2 l/E$ ning kogu U-toru pikenemiseks

$$2\Delta l = 2\rho v^2 l/E$$
.

L103 Ookean ★★★★

Autor: tundmatu, lahtine, 2005, G 8

a) Tähistame vedeliku keskmise tiheduse pinnast sügavuseni h kui ρ . Kuna vedeliku mass on kokkusurumatu ja kokkusurutud olukordades võrdne, siis

$$\rho_0 h_0 = \rho h$$
.

Kui tiheduse muut on väike, saab tiheduse avaldada kujul

$$\rho = \rho_0 (1 + \beta p_{\text{keskmine}}),$$

kus p_{keskmine} on keskmine veele mõju rõhk. Vee rõhk sügavusel h' on $p(h') = \rho g h'$, ehk keskmine rõhk avaldub kui $p_{\text{keskmine}} = p(h' = h/2) = \rho g h/2$ ning

$$\rho = \rho_0 \left(1 + \frac{\beta \rho g h}{2} \right) = \frac{\rho_0 h_0}{h} \quad \Rightarrow \quad h \left(1 + \frac{\beta \rho g h}{2} \right) = h_0,$$

Viimasest valemist saame avaldada sügavuste vahe Δh :

$$\Delta h = h_0 - h = \frac{\beta \rho g h^2}{2} \approx 36 \,\mathrm{m}.$$

b) Sügavusel $H=10\,000\,\mathrm{m}$ on lisarõhk ligikaudu $p\approx \rho gH$. Sellele vastab ruumala muutus (ühe kuupmeetri kohta):

$$\delta = \frac{\Delta V}{V} = \beta \rho g H \approx 0.0484.$$

Kui veepinnal on ruumalaga V vee mass ρV , siis sama vee massi ruumala sügavusel H on ligikaudu $V(1-\delta)$ ja tihedus seega:

$$\rho_H V(1 - \delta) = \rho V \quad \Rightarrow \quad \rho_H = \frac{\rho}{1 - \delta}.$$

Seega sellel sügavusel on vee tiheduse muutus:

$$\Delta \rho = \rho_H - \rho = \frac{\rho}{1 - \delta} - \rho = \frac{\rho \delta}{1 - \delta} \approx 51 \,\mathrm{kg/m}^3.$$

L104 V-toru ★★★★

Autor: Mihkel Kree, lõppvoor, 2008, G 8

Oletame, et vesi on tasakaalust hälbinud nii, et veekiht, mille kõrguse projektsioon toru sihis on δx , on kandunud nurga α all olevast toru poolest teise. Veetaseme kõrguste erinevus toru kahe poole vahel on $\delta h = \delta x(\cos(\alpha) + \cos(\beta))$, mis tekitab lisarõhu $\delta P = \rho \delta h g$. Lisarõhk mõjub vedelikule jõuga, mille toru sihiline komponent on

$$F = \delta PS = \rho \delta x(\cos(\alpha) + \cos(\beta))qS.$$

See valem on sarnane vedrupendli valemiga $F = k\delta x$, kus

$$k = \rho(\cos(\alpha) + \cos(\beta))gS.$$

Sellise pendli omavõnkesagedus avaldub kui

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{\rho(\cos(\alpha) + \cos(\beta))gS}{m}}.$$

Seega võime öelda, et toru pooli painutades väheneb vedeliku võnkumise sagedus

$$\sqrt{\frac{1}{2}(\cos\alpha + \cos\beta)}$$

korda.

L105 Balloon ★

Autor: Jaan Susi, lõppvoor, 2005, G 3

Termodünaamika I seaduse kohaselt $\Delta U = Q - A$, kus Q on süsteemi antud soojushulk ning A on välisjõudude vastu tehtud töö. Antud ülesande kontekstis on Q negatiivne ja A positiivne ning $A = p\Delta V$ ja $Q = -\lambda \rho_v V$. Niisiis,

$$\Delta U = -\lambda \rho_v V - p \left(\frac{V \rho_v}{\rho_i} - V \right) = -\rho_v V \left[\lambda + p \left(\rho_j^{-1} - \rho_v^{-1} \right) \right].$$

Paneme tähele, et avaldis nurksulgudes peaks kujutama endast sulamissoojust normaaltingimustel (sest vee võib viia samasse lõppolekusse ka teisel viisil — muutes ta jääks normaaltingimustel ning seejärel viies rõhu etteantud väärtuseni; et jää loeme kokkusurumatuks, siis rõhu tõstmisel tööd ei tehta). Paistab, et tegemist pole siiski päris hariliku veega, sest

$$\lambda + p \left(\rho_j^{-1} - \rho_v^{-1} \right) = 323 \,\text{kJ/kg} \neq \lambda_0 = 334 \,\text{kJ/kg}.$$

Arvandmete asendamisel leiame $\Delta U = -3.23 \,\mathrm{MJ}.$

L106 Kütteklaas ★

Autor: Jaak Kikas, lõppvoor, 2007, G 1

Kehtivad valemid

$$P = \frac{U^2}{R}, \quad R = \frac{\rho L}{S},$$

kus ρ on kattekihi eritakistus. Seega vastavalt orientatsioonile $R_H = \rho b/da$ ja $R_V = \rho a/db$, kus d on kattekihi paksus. Niisiis,

$$P_H/P_V = a^2/b^2 = 0.25.$$

L107 Jääkuul ★

Autor: Urmo Visk, piirkonnavoor, 2008, G 4

Rõhk kuuli sees kasvab seetõttu, et õhk kuulis soojeneb. Ülesande teksti põhjal võime eeldada, et õhu temperatuur kuuli sees on võrdne tema seinte temperatuuriga. Meie ülesandeks on kontrollida, kui palju on rõhk kasvanud selleks hetkeks, kui seinad hakkavad sulama, st on saavutanud temperatuuri $t_1=0\,^{\circ}\mathrm{C}$. Eeldame, et kera soojuspaisumine on tühine. Siis on õhu ruumala keras konstantne. Isohoorilises protsessis kehtib seos

$$\frac{p_1}{T_1} = \frac{p_0}{T_0}.$$

Tähistame indeksiga "0" gaasi omadusi külmikus ja indeksiga "1" omadusi temperatuuril, mille juures seinad hakkavad sulama. Niisiis

$$p_1 = p_0 \frac{T_1}{T_0}.$$

Kasutades seda tulemust saame avaldada rõhu suhtelise muutuse

$$\frac{\Delta p}{p_0} = \frac{p_1 - p_0}{p_0} = \left(\frac{T_1}{T_0} - 1\right).$$

Leiame selle avaldise numbrilise väärtuse:

$$\frac{\Delta p}{p_0} \approx 0.034 = 3.4 \%.$$

See on selgelt väiksem kui kuuli seinte purunemispiir, st kuul hakkab enne sulama (kuid puruneb ilmselt ülerõhu tõttu enne lõplikku ära sulamist).

Märkus: alternatiivse ja võrdväärse lahendusena võib leida, millise õhutemperatuuri juures saavutaks suhteline ülerõhk väärtuse 20 % (selleks tuleb 317 K ehk 44 °C) ja võrrelda seda jää sulamistemperatuuriga.

L108 Küttesüsteem ★

Autor: tundmatu, piirkonnavoor, 2011, G 3

Paisumisel lisanduva ruumala jaoks peab olema paisupaagis piisavalt lisaruumi. Vajalik ruumala on

$$V - V_1 = V_0 (1 + \beta t_2) - V_0 (1 + \beta t_1) = \frac{V_1 \beta}{1 + \beta t_1} (t_2 - t_1).$$

Vajalik vaba ruum paisupaagis on seega $V - V_1 \approx 4.01$.

L109 Ringprotsess ★

Autor: Riho Taba, piirkonnavoor, 2006, G 2

Antud joonise saab teisendeda telgedega P ja V graafikuks, kus iga tsükli osa töö on arvuliselt võrdne antud graafiku osa alla jääva pindalaga (sest tehtud töö on $P\Delta V$). Ideaalse gaasi töö protsessi osal $1\to 2$: $A_{1\to 2}=0$, protsessi osal $2\to 3$: $A_{2\to 3}<0$ ning protsessi osal $3\to 1$: $A_{3\to 1}>0$, kuid $|A_2\to 3|>|A_3\to 1|$, seega $A_{1\to 2\to 3}<0$, ehk gaasi tehtud töö on negatiivne.

L110 Vedelike segamine ★ Autor: Aleksei Vlassov, piirkonnavoor, 2007, G 3

Olgu vedelike tihedused vastavalt ρ_1 ja ρ_2 ning erisoojused c_1 ja c_2 . Olgu otsitav temperatuur t_4 . Paneme kirja energia jäävuse võrrandid mõlema segu jaoks:

$$\left\{ \begin{array}{l} \rho_{1}Vc_{1}\left(t_{3}-t_{1}\right)=\rho_{2}Vc_{2}\left(t_{2}-t_{3}\right) \\ 2\rho_{1}Vc_{1}\left(t_{4}-t_{1}\right)=\rho_{2}Vc_{2}\left(t_{2}-t_{4}\right) \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \rho_{1}c_{1}\left(t_{3}-t_{1}\right)=\rho_{2}c_{2}\left(t_{2}-t_{3}\right) \\ 2\rho_{1}c_{1}\left(t_{4}-t_{1}\right)=\rho_{2}c_{2}\left(t_{2}-t_{4}\right). \end{array} \right.$$

Korrutame esimese võrrandi vasaku poole läbi teise võrrandi parema poolega:

$$\rho_1 c_1 \rho_2 c_2 (t_3 - t_1) (t_2 - t_4) = 2\rho_1 c_1 \rho_2 c_2 (t_4 - t_1) (t_2 - t_3).$$

ehk

$$(t_3-t_1)(t_2-t_4)=2(t_4-t_1)(t_2-t_3).$$

Siit avaldame t_4 :

$$t_4 = \frac{t_1t_2 + t_2t_3 - 2t_1t_3}{2t_2 - t_1 - t_3} = 39$$
 °C.

L111 Tulehõõrumine ★

Autor: Jaak Kikas, piirkonnavoor, 2008, G 3

Varda pöörlemisel käigus muutub hõõrdejõu ületamiseks tehtud töö soojuseks. Toru otspinna ja aluse vahel mõjub hõõrdejõud F_h , mis võrdub pinnaga ristuva rõhumisjõu ja hõõrdeteguri korrutisega. Rõhumisjõuks on jõud F, millega surutakse toru vastu alust. Seega $F_h = \mu F$. Kui toru teeb ühe pöörde, siis läbib toru sein teepikkuse $L = \pi D$. Hõõrdejõu ületamiseks tehti ühe pöörde läbimisel töö $A = F_h L$. Kui toru pöörleb sagedusega f, siis aja t jooksul teeb toru N = ft pööret. Kokku eraldub toru pöörlemisel soojushulk

$$Q = AN = \mu F \pi D f \Delta t.$$

L112 Termos ★

Autor: Urmo Visk, piirkonnavoor, 2009, G 3

Olgu c_x otsitav erisoojus.

Vaatleme esimest juhtu, kus termoses oli algselt külmem vesi. Kuna külmem vesi oli termosega soojuslikus tasakaalus, siis oli ka termose temperatuur t_1 . Temperatuuride ühtlustumisel annab soojem vesi energiat ära. Külmem vesi ja termos saavad energiat juurde. Paneme kirja soojusliku tasakaalu võrrandi:

$$m_1 c (T_1 - t_1) + m c_x (T_1 - t_1) = m_2 c (t_2 - T_1).$$
 (1)

Vaatleme teist juhtu, kus termoses oli algselt soojem vesi. Kuna soe vesi oli termosega soojuslikus tasakaalus, siis oli ka termose temperatuur t_2 . Temperatuuride ühtlustumisel annavad termos ja soojem vesi energiat ära. Külmem vesi saab energiat juurde. Kirjutame soojusliku tasakaalu võrrandi:

$$m_1 c (T_2 - t_1) = m_2 c (t_2 - T_2) + m c_x (t_2 - T_2).$$
 (2)

Lahutame teineteisest võrrandid (2) ja (1).

$$m_1 c (T_1 - T_2) + m c_x (T_1 - t_1) = m_2 c (T_2 - T_1) - m c_x (t_2 - T_2).$$

Tähistame $T_2 - T_1 = \Delta T$. Allpool on toodud c_x tuletuskäik eelnevast valemist.

$$-m_1 c \Delta T + m c_x (t_2 - t_1) = m_2 c \Delta T + m c_x \Delta T \implies$$

$$-\Delta T c (m_2 + m_1) = m c_x (\Delta T + t_1 - t_2) \implies$$

$$c_x = -\frac{\Delta T c (m_2 + m_1)}{m (\Delta T + t_1 - t_2)} = 930 \,\text{J/kg C}.$$

L113 Rauatükk ★

Autor: Oleg Košik, lahtine, 2010, G 2

Algne vee mass on $M=\rho V=1000\,\mathrm{g}$. Olgu väljaaurustunud vee mass m_0 . Selle soojendamiseks keemistemperatuurini $t=100\,^\circ\mathrm{C}$ ning aurustamiseks läheb vaja energiat

$$Q_1 = m_0(c_1(t - t_1) + L).$$

Ülejäänud vee soojendamiseks temperatuurini t_2 läheb energiat

$$Q_2 = (M - m_0)c_1(t_2 - t_1).$$

Raua jahtumisel eraldub energia $Q_3=mc_2(t_0-t_2)$. Energia jäävuse seaduse kohaselt $Q_1+Q_2=Q_3$, ehk

$$m_0(c_1(t-t_1)+L)+(M-m_0)c_1(t_2-t_1)=mc_2(t_0-t_2).$$

Siit

$$m_0 = \frac{mc_2(t_0 - t_2) - Mc_1(t_2 - t_1)}{c_1(t - t_2) + L} \approx 2 \,\mathrm{g}.$$

L114 Jõhvikad ★

Autor: Urmo Visk, piirkonnavoor, 2010, G 2

Vee algtemperatuur oli $t_1=100\,^{\circ}\mathrm{C}$. Olgu vee ja jõhvikate massid vastavalt M ja m. Jõhvikate soojendamiseks kuluv soojushulk tuleb vee jahtumise arvelt. Vee jahtumisel eralduv soojushulk oli

$$Q_i = Mc_V(t_1 - t).$$

Jõhvikate soojendamise käigus tuli 1) soojendada külmunud jõhvikad sulamistemperatuurini, 2) sulatada külmunud jõhvikad ja 3) soojendada sulanud jõhvikad vee temperatuurini. Leiame igas etapis kulunud soojushulga:

$$Q_{s1} = mc_j(0 - t_2) = -mc_jt_2,$$

 $Q_{s2} = mL,$
 $Q_{s3} = mc_v(t - 0) = mc_vt.$

Liidame jõhvikate soojendamiseks kulunud soojushulgad ja võrdsustame saadud summa vee jahtumisel eraldunud soojushulgaga. Saadud võrrandist avaldame vee ja jõhvikate masside suhte:

$$-mc_it_2 + mL + mc_vt = Mc_V(t_1 - t),$$

kust

$$\frac{M}{m} = \frac{-c_j t_2 + L + c_v t}{c_V (t_1 - t)}.$$

Arvuliseks vastuseks saame 16.

L115 Vesi ★

Autor: Taavi Pungas, lõppvoor, 2011, G 1

Energia jäävusest teame, et väikese koguse vee aurustumiseks kuluv soojushulk tuleb järelejäänud vee temperatuuri langemise arvelt.

Kuigi aurustumise alghetkel tekib veeaur temperatuuriga $100\,^{\circ}$ C, on hiljem nii vee kui tekkiva veeauru temperatuur veidi madalam. Uuel temperatuuril aga ei ole enam väikese koguse vee aurustumiseks kuluv soojushulk otseselt arvutatav vee aurustumissoojusest temperatuuril $100\,^{\circ}$ C (ülesandes antud L).

Seega teeme lihtsustuse, et vee aurustumissoojus on selles temperatuurivahemikus kogu aeg L. Olgu esialgselt termoses oleva vee mass m. Saame $0.01mL=0.99mc_v\Delta t$, mis annab vastuseks

$$\Delta t = \frac{1}{99} \frac{L}{c_v} = 5.4 \,^{\circ}\text{C}.$$

L116 Kastmisvesi ★★

Autor: Urmo Visk, piirkonnavoor, 2008, G 5

Kastmisvee anuma taha tekib kiirtega ristuvale tasandile ringikujuline vari. Samasugune vari tekiks ka ringist, mis paikneb risti päikesekiirtega. Seega neelavad võrdse raadiusega kera ja kiirtega risti olev ring valgust võrdselt, sõltumata päikesevalguse langemise nurgast. Järelikult on veeanuma poolt ühes sekundis neelatav soojushulk $P=\varepsilon\pi R^2$. Päeva jooksul saadav soojushulk on $Q=P\tau$, kus ajavahemik

$$\tau = 22.5 \,\mathrm{h} - 4.5 \,\mathrm{h} = 18 \,\mathrm{h} = 64\,800 \,\mathrm{s}.$$

Teisest küljest kulub see soojus vee soojendamisele, st $Q=C\Delta t$, kus Δt on vee temperatuuri muutus ja vee soojusmahtuvus C=mc. Siinjuures vee mass $m=(4/3)\pi R^3\rho$. Niisiis

$$\pi R^2 \cdot \varepsilon \tau = \frac{4}{3} \pi R^3 \rho c \Delta t,$$

millest

$$\Delta t = \frac{3\varepsilon\tau}{4c\rho R}$$

ja järelikult lõpptemperatuur on

$$t = t_0 + \frac{3\varepsilon\tau}{4c\rho R};$$

numbriliselt $t \approx 28$ °C.

L117 Lihvimisketas ★★

Autor: Ott Krikmann, piirkonnavoor, 2005, G 3

Kettal aja t = 1 s jooksul eralduv soojushulk on

$$Q = \frac{\pi r^2 q}{s}.$$

Sama aja jooksul voolab vesi massiga

$$m = wt\rho$$
.

Et jahutusvesi kannab ära kogu eralduva soojuse, siis võib koostada soojusbalansi võrrandi aja $t=1\,\mathrm{s}$ jaoks:

$$\frac{\pi r^2 q}{s} = wt\rho c \left(t_2 - t_1\right).$$

Siit võrrandist avaldame t_2 :

$$t_2 = t_1 + \frac{\pi r^2 q}{swtc\rho} \approx 40$$
 °C.

L118 Vee keemine ★★

Autor: Mihkel Kree, lõppvoor, 2008, G 6

Leiame pindpinevuse tõttu mullis tekkiva lisarõhu. See on teatavasti $P=\frac{2\sigma}{r}$. Seda saab mitmel moel tõestada. Üks võimalus on vaadelda mulli keskpunkti läbivat tasandit, mis jaotab kera kaheks poolkeraks. Poolkerasid tõmbab kokku pindpinevusjõud $F=2\pi r\sigma$. Jõudude tasakaalust peab see olema võrdne lisarõhu poolt tekitatud jõuga $F=\pi r^2\cdot P$. Seega tekitab pindpinevus mullis lisarõhu $P=\frac{2\sigma}{r}$. Samale tulemusele võiksime jõuda ka järgnevalt. Pindpinevuse pinnaenergia avaldub teatavasti kui $E=\sigma 4\pi r^2$. Suurendades raadiust väikese Δr võrra, on energia muut

$$\Delta E = 4\pi\sigma((r + \Delta r)^2 - r^2) \approx 8\pi\sigma r \Delta r.$$

Samas avaldub energia muut rõhu kaudu

$$A \approx pS\Delta r = 4\pi r^2 p\Delta r.$$

Kuna $A = \Delta E$, siis $p = \frac{2\sigma}{r}$.

Kuni 105 kraadini ei toimunud keemist, seega pidid mullid olema nii väiksed, et pindpinevuse poolt tekitatud lisarõhu ja õhurõhu summa jäi suuremaks kui küllastunud veeauru rõhk: $p_0 + \frac{2\sigma}{r} > p_{\rm aur} = p_0 + 5 \cdot 3,5 \, {\rm kPa}$, siit

$$r = \frac{2\sigma}{5 \cdot 3.5 \text{ kPa}} = 6.6 \,\mu\text{m}.$$

L119 Vesi ja jää ★★

Autor: Andres Laan, piirkonnavoor, 2010, G 5

Soojusvoog läbi vee kihi on määrtud valemiga

$$Q = D \frac{S\Delta T}{l},$$

kus S on kihi pindala, l selle paksus, ΔT kihi ülemise ja alumise pinna temperatuuride vahe ning D vastava vee faasi soojusjuhtivuskoefitsient. Vaatleme vedela ja tahke faasi piirpinda. Antud pinna temperatuur on 0 °C. Tahkest poolest tulev soojusvoo võimsus on $Q_t = D_t S T_1/l_t$ ja vedelast faasist tuleva voo võimsus on $Q_v = D_v S T_2/l_v$. Statsionaarses olukorras, kus piirpinna asukoht ei muutu, tasakaalustavad antud vood üksteist ära. Arvestades, et mõlema faasi pindalad on võrdsed, saame

$$\frac{D_t T_1}{l_t} = -\frac{D_v T_2}{l_v}.$$

Kasutame ära asjaolu, et tahke ja vedela kihi paksuste suhe oli alguses 4:

$$\frac{D_t}{D_{tt}} = -\frac{T_2 l_t}{T_1 l_{tt1}} = -\frac{-20 \cdot 4}{20 \cdot 1} = 4,$$

Teisel juhul

$$T_2' = -\frac{D_t}{D_v} \frac{l_v'}{l_t'} T_1 = -4 \frac{l_v'}{l_t'} T_2 = 80 \,^{\circ}\text{C}.$$

L120 Destillaator ★★

Autor: Koit Timpmann, lõppvoor, 2010, G 2

Kahe liitri vee mass on $m=2\,\mathrm{kg}$. Kondenseerudes eraldub soojushulk Q=Lm. 95% eraldunud soojushulgast läheb jahutusvee soojendamiseks. Seosest $\eta Lm=cM\Delta T$ saame jahutusvee massi

$$M = \frac{\eta Lm}{c\Delta T}.$$

Jahutusvee massi saame avaldada tiheduse ja ruumala kaudu ning ruumala omakorda toru ristlõikepindala, voolu kiiruse ja aja kaudu:

$$M = \rho V = \rho S l = \rho S v t.$$

Viies kokku need kaks võrrandit, saame avaldada kiiruse:

$$v = \frac{\eta Lm}{c\Delta ToSt} \approx 0.12 \,\mathrm{m/s}.$$

L121 Külmutusseade ★★★

Autor: tundmatu, piirkonnavoor, 2005, G 8

Külmutusseadme korral on tegu pööratud soojusmasinaga, ideaalse soojusmasina puhul kehtib seos

$$\frac{A}{Q_j} = \frac{T_j - T_k}{T_j},$$

kus mootori tehtud töö on leitav energia jäävusest

$$A = Q_j - Q_k.$$

Siinjuures Q_j ja Q_k on vastavalt jahutusvedelikule ära antud ja jahutatavalt kehalt ära võetud soojushulk. Elimineerides mittevajaliku suuruse Q_j saame

$$1 + \frac{Q_k}{A} = \frac{T_j}{T_j - T_k},$$

millest

$$Q_k = \frac{AT_k}{T_j - T_k} = 22,6 \,\text{kJ}.$$

L122 Elektripliit ★★★

Autor: tundmatu, lahtine, 2007, G 8

Spiraal kuumeneb temperatuurini, mil tekib soojuslik tasakaal spiraali ja ümbritseva keskkona vahel. Kuna spiraalil eraldub võimsus $P=I^2R$, peab kehtima P=N (soojuskadusid arvestamata) ehk

$$\kappa \left(T-T_{0}\right)=I^{2}R_{0}\left[1+\alpha \left(T-T_{0}\right)\right].$$

Avaldades T, saame

$$T = T_0 + \frac{I^2 R_0}{\kappa - \alpha I^2 R_0}.$$

Kui $\kappa \leq \alpha I^2 R_0$ suureneb temperatuur lõpmatuseni ning pliit põleb läbi.

L123 Õhuaken ★★★

Autor: Jaan Kalda, lõppvoor, 2009, G 6

Soojusvahetuskiirus läbi seinte jms on

$$P_s = \alpha(t - t_0) = P \frac{t - t_0}{t_1 - t_0}.$$

Peale selle toimub soojusvahetus sissetuleva õhu abil $P_1 = \dot{\nu} \frac{7}{2} R(t-t_0)$, kus ajaühikus sisenevate moolide arv on $\dot{\nu} = v/V$ ja mooli ruumala $V = RT/p_0 = 22,41/\text{mol}$. Seega soojusliku tasakaalu tingimuse saab kirja kujul

$$P = P \frac{t - t_0}{t_1 - t_0} + c_p \frac{v}{V} (t - t_0),$$

millest

$$t = t_0 + \frac{P}{\frac{P}{t_1 - t_0} + c_p \frac{v}{V}} \approx 13,2 \,^{\circ}\text{C}.$$

L124 Tuba ★★★

Temperatuuri kasvu või langemise kiirus on võrdeline tuppa siseneva summaarse soojusliku võimsusega. Sellele vastab graafiku puutuja tõus. Ajahetkeni $t=1100\,\mathrm{min}$ läheb soojus toast välja, peale seda lisandub kaotatavale võimsusele soojapuhuri võimsus. Soojapuhuri võimsusele vastab puutuja tõusu muut mingil temperatuuril. Näiteks hetke $t=1100\,\mathrm{min}$ jaoks saame, et puutuja tõusu muut on (ligikaudu) $8/1000+10,2/400\approx0,036\,^\circ\mathrm{C/min}$. Graafiku abil leiame nüüd temperatuuri, mille korral soojuskadude võimsus võrdub soojapuhuri võimsusega. Selle jaoks võib kasutada joonlauda tõusuga $0,036\,^\circ\mathrm{C/min}$ ning määrata punkt graafikus, mis puutub antud sirget. Graafiku esimeses osas on selline punkt umbes temperatuuril $T=20\,^\circ\mathrm{C}$. Seega toatemperatuur pika aja möödumisel on $T=20\,^\circ\mathrm{C}$.

L125 Küttekeha ★★★

Autor: Mihkel Heidelberg, lõppvoor, 2007, G 7

Et ruumist eemalduva soojuse hulk on stabiilses olukorras võrdne küttekeha poolttoodetud soojusega, siis $P(T_2)=k(T_2-T_1),\,k=\frac{P(T_2)}{T_2-T_1}$. Teisel juhul jääb k samaks:

$$P(T_4) = \frac{P(T_2)}{T_2 - T_1} (T_4 - T_3),$$

kust on näha, et punkt $(T_4, P(T_4))$ peab asetsema sirgel, mis läbib punkti $(T_3, 0)$ ja on sama tõusuga (k), kui punkte $(T_2, P(T_2))$ ja $(T_1, 0)$ ühendav sirge. Joonistades sellise sirge, saame graafikute lõikepunktist vastuse.

L126 Soojuskiirgus ★★★★

Autor: Valter Kiisk, lõppvoor, 2006, G 8

a) Tähistame $j_{s \to v}$ abil soojusvoogu pindalaühiku kohta, mis on suunatud siseseinalt välisseina poole. Vastassuunalist soojusvoogu tähistame $j_{v \to s}, j_{s \to v}$ on tingitud siseseina kiirgusest ja $j_{v \to s}$ osalisest peegeldumisest. Analoogiliselt, $j_{v \to s}$ on tingitud välisseina kiirgusest ja $j_{s \to v}$ osalisest peegeldumisest. Seega siis

$$j_{s \to v} = \varepsilon \sigma T_s^4 + (1 - \varepsilon) j_{v \to s}$$
$$j_{v \to s} = \varepsilon \sigma T_v^4 + (1 - \varepsilon) j_{s \to v},$$

millest

$$j_{\mathrm{s}\to\mathrm{v}} = \sigma \frac{T_\mathrm{s}^4 + (1-\varepsilon)T_\mathrm{v}^4}{2-\varepsilon}, \quad j_{\mathrm{v}\to\mathrm{s}} = \sigma \frac{T_\mathrm{v}^4 + (1-\varepsilon)T_\mathrm{s}^4}{2-\varepsilon}.$$

Summaarne soojusvoog on

$$P = Sj = S(j_{v \to s} - j_{s \to v}) = S\varepsilon\sigma \frac{T_v^4 - T_s^4}{2 - \varepsilon} \approx 22 \,\mathrm{W}.$$

b) Eelmise punkti vastusest selgub, et kahe seina vahel toimuv soojusvoog on võrdeline vahega $T_2^4-T_1^4$. Seega on siin täielik analoogia elektriahelate teooriaga, kui T^4 tõlgendada pingena, soojusvoogu voolutugevusena ning $(2-\varepsilon)/(\sigma\varepsilon)$ takistusena. Viimane ei sõltu seinte vahekaugusest. Paigutades sise- ja välisseina vahele N ekraani, on tegemist N+1 ühesuguse takisti järjestikühendusega. Järelikult soojusvoog kahaneb N+1 korda.

L127 Pooljuht ★★★★

Autor: tundmatu, lahtine, 2008, G 10

Kütteelemendi takistus on

$$R = \frac{\rho L}{S} = \frac{L}{\sigma S},$$

kus ρ on eritakistus, L elemendi pikkus, S elemendi ristlõikepindala ja σ erijuhtivus. Elemendil eralduv võimsus on

$$N = \frac{U^2}{R} = \frac{S}{L}U^2\sigma.$$

Võimsus, millega keha annab soojust ümbritsevale keskkonnale, on võrdeline temperatuuride vahega ja tasakaalulise temperatuuri puhul peab võrduma kehal eralduva võimsusega. Seega

$$N = k\Delta t = \frac{S}{L}U^2\sigma.$$

Siit näeme, et

$$\frac{\sigma}{\Delta t} \cdot U^2 = k \frac{L}{S} = \text{Const}, \tag{1}$$

kus aga $\frac{\sigma}{\Delta t}$ on sirge tõus erijuhtivuse graafikul, kus algpunktiks on $t_v=20\,^{\circ}\mathrm{C}$ ja $\sigma=0$.

Algtingimusi silmas pidades on pinge $U_0=30\,\mathrm{V}$ juures see tõus $\left(\frac{\sigma}{\Delta t}\right)_{30}=\frac{7}{5}$ ning arvestades valemit (1) saame

$$\left(\frac{\sigma}{\Delta t}\right)_{30} \cdot U_0^2 = \left(\frac{\sigma}{\Delta t}\right)_{60} \cdot U_1^2 = \left(\frac{\sigma}{\Delta t}\right)_{36} \cdot U_2^2.$$

Siit

$$\left(\frac{\sigma}{\Delta t}\right)_{60} = \frac{U_0^2}{U_1^2} \left(\frac{\sigma}{\Delta t}\right)_{30} = \frac{7}{20},$$

$$\left(\frac{\sigma}{\Delta t}\right)_{36} = \frac{U_0^2}{U_2^2} \left(\frac{\sigma}{\Delta t}\right)_{30} = \frac{35}{36}.$$

Kanname vastavad sirged (alguspunktiga $t=20\,^{\circ}\mathrm{C}$ ja $\sigma=0$) graafikule ja loeme vastavad tasakaalulised temperatuurid.

Saame $U_1 = 60 \text{ V}$ puhul $t_1 = 277 \,^{\circ}\text{C}$.

Tekib huvitav nähtus, et tänu mittelineaarsusele on $U_2=36\,\mathrm{V}$ puhul pinge tõstmisel ja langetamisel tasakaalulised temperatuurid erinevad, vastavalt pinge tõusul $t_2=112\,\mathrm{^{\circ}C}$ ja langetamisel $t_2'=224\,\mathrm{^{\circ}C}$.

Paneme tähele, 36 V puhul on graafikult loetavaid lahendeid justkui kolm, aga keskmine lahend 207 °C on ebastabiilne. Nimelt olukorras, kus küttekeha on sellel temperatuuril, viib väikenegi küttekeha temperatuuri tõus võimsuse suurenemiseni ja langus vastavalt võimsuse vähenemiseni, seega temperatuur kas kasvab temperatuurini 224 °C või langeb temperatuurini 112 °C.

L128 Juhe ★★

Autor: tundmatu, lahtine, 2005, G 5

Valime mõttelise ühikulise pikkusega silindrilise kontuuri, mille raadius on r. Selle pindala on $S=2\pi r$, sellest voolab läbi vool i. Voolutihedus tuleb seega

$$j = \frac{i}{2\pi r}.$$

L129 Kuulikesed ★★

Autor: tundmatu, lahtine, 2005, G 4

Kõigepealt teeme kaks olulist tähelepanekut, lähtudes sümmeetria kaalutlustest:

- 1) Keskmine kuul jääb paigale.
- 2) Kõik 6 kuuli servades on samaväärsed, neile mõjuvate jõudude suurused on samad, kuid jõudude suunad on erinevad nad langevad kokku sirgetega, mis ühendavad vastava kuulikese keskmise kuulikesega, ning kuna laengud on samamärgilised, on suunatud keskmisest kuulikesest eemale.

Märgime joonisel ühele äärmisele kuulikesele mõjuvad jõud (vt joonist). Leiame jõudude väärtused. Jõud F_2 , F_6 ja F_7 mõjuvad kuulikesele 1, vastavalt kuulikeste 2, 6 ja 7 poolt:

$$F_2 = F_6 = F_7 = \frac{kq^2}{l^2}.$$

Jõud F_4 mõjub kuulikesele 1 kuulikese 4 poolt:

$$F_4 = \frac{kq^2}{(2l)^2} = \frac{kq^2}{4l^2}.$$

Jõud F_3 ja F_5 mõjuvad kuulikesele 1, vastavalt kuulikeste 3 ja 5 poolt:

$$F_3 = F_5 = \frac{kq^2}{(2l\sin 30^\circ)^2} = \frac{kq^2}{(2l\cdot\sqrt{3}/2)^2} = \frac{kq^2}{3l^2}.$$

Summaarse jõu leiame projitseerides jõud radiaalsele teljele:

$$F = F_7 + F_4 + 2F_2 \cos 60^\circ + 2F_3 \cos 30^\circ$$

$$= \frac{kq^2}{l^2} + \frac{kq^2}{4l^2} + 2 \cdot 0, 5 \cdot \frac{kq^2}{l^2} + 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{kq^2}{3l^2} = \frac{kq^2}{l^2} \left(1 + \frac{1}{4} + 1 + \frac{\sqrt{3}}{3} \right)$$

$$= \frac{kq^2}{l^2} \left(\frac{27 + 4\sqrt{3}}{12} \right).$$

Kuna tegu on ühesuguste niitidega, mis venisid sama palju (niitide alg- ja lõpppikkused on ühesugused), siis pinged kõigis niitides on võrdsed:

$$\vec{F} = \vec{T}_1 + \vec{T}_2 + \vec{T}_3, \quad \left| \vec{T}_1 \right| = \left| \vec{T}_2 \right| = \left| \vec{T}_3 \right|.$$

Siit:

$$F = T + 2T\cos 60^{\circ} = T(1 + 2 \cdot 0.5) = 2T.$$

Seega niitides on pinge

$$T = \frac{F}{2} = \frac{kq^2}{l^2} \left(\frac{27 + 4\sqrt{3}}{24} \right).$$

L130 Tolmukübe ★★

Autor: Aigar Vaigu, piirkonnavoor, 2006, G 8

Olgu plaatide pindala S, plaatide vaheline kaugus d, kondensaatori mahtuvus ja pinge vastavalt C ja U. Avaldame elektrivälja tugevuse kondensaatori plaatide vahel:

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$
 ja $C = \frac{q}{U}$,

kust

$$E = \frac{q}{\varepsilon \varepsilon_0 S}.$$

Arvestades, et pindtihedus $\sigma = q/S$, saame

$$E = \frac{\sigma}{\varepsilon \varepsilon_0}.$$

Tolmukübemele mõjub raskusjõud mg ja elektrostaatiline jõud Eq. Tasakaalu korral mg = Eq. Tolmukübeme laeng on seega

$$q = \frac{mg}{E} = mg \frac{\varepsilon \varepsilon_0}{\sigma} \approx 0.33 \cdot 10^{-17} \,\mathrm{C}.$$

Kui polaarsust muuta, siis mõjub tolmukübemele jõud

$$F = mg + Eq = 2mg.$$

Kiirendus, millega tolmukübe hakkab langema, on a = 2g.

L131 Kuulikesed ★★

Autor: tundmatu, lahtine, 2007, G7

Energia jäävuse seaduse kohaselt

$$mgH + \frac{mv^2}{2} + \frac{kq^2}{H} = mgh + \frac{kq^2}{h},$$

kus peale gravitatsioonilise potentsiaalse energia arvestasime ka elektrilise potentsiaaliga. Niisiis

$$h - \frac{v^2}{2g} - H - \frac{kq^2}{mgH} + \frac{kq^2}{mgh} = 0,$$

$$h^{2} - \left(\frac{v^{2}}{2g} + \frac{kq^{2}}{mgH} + H\right)h + \frac{kq^{2}}{mg} = 0.$$

Lahendades saadud ruutvõrrandi, saame

$$h = \frac{1}{2} \left(\frac{v^2}{2g} + \frac{kq^2}{mgH} + H \right) - \sqrt{\frac{1}{4} \left(\frac{v^2}{2g} + \frac{kq^2}{mgH} + H \right)^2 - \frac{kq^2}{mg}}.$$

Lahend "+"-märgiga ruutjuure ees oleks kaugusest H suurem ja vastaks maksimaalsele kõrgusele, mille saavutaks kuulike, kui ta saaks samasuguse kuid ülespoole suunatud algkiiruse.

L132 Laetud rõngas ★★

Autor: tundmatu, lahtine, 2009, G 4

Punktis, mis asub rõnga teljel kaugusel d rõnga keskpunktist on rõnga poolt tekitatud välja potentsiaal

$$\phi_1 = k \frac{Q}{\sqrt{R^2 + d^2}} = k \frac{Q}{2R}.$$

Rõnga keskpunktis on rõnga poolt tekitatud välja potentsiaal

$$\phi_2 = k \frac{Q}{R}.$$

Et elektron saaks rõngast läbi lennata, peab tema kineetiline energia olema piisav potentsiaalide vahe $U=\phi_2-\phi_1$ läbimiseks. Piirjuhul saame

$$\frac{mv^2}{2} = e\left(k\frac{Q}{R} - k\frac{Q}{2R}\right) = k\frac{eQ}{2R}.$$

Siit

$$v_{\min} = \sqrt{k \frac{eQ}{mR}}.$$

L133 Ioonmootor ★★

Autor: Mihkel Pajusalu, lahtine, 2010, G 6

Ioonide kiiruse leiame energia jäävuse seadusest:

$$mu^2/2 = Ue \Rightarrow u = \sqrt{2Ue/m},$$

kus $m=\mu/N_a$. Impulsi jäävuse seadusest süsteemi "laev+kiirendatud kütus" jaoks saame (eeldusel, et $M\gg m_k$)

$$m_k u = Mv \Rightarrow m_k = Mv/u = Mv\sqrt{\mu/2N_AUe} = 2.61 \text{ kg}.$$

Näeme, et tehtud eeldus $m_k \ll M$ tõepoolest kehtib.

L134 Lendav elektronkahur ★★★ Autor: Siim Ainsaar, lõppvoor, 2006, G 6

Olgu elektroni laengu absoluutväärtus e ja mass m_e . Ajaga t lahkub katoodilt hulk elektrone kogulaengu absoluutväärtusega q=It. Elektronide arv, mis selle ajaga lendu läheb, on siis $N=\frac{q}{e}=\frac{It}{e}$ ja mass $m=Nm_e=\frac{Itm_e}{e}$. Leiame ka, kui kiiresti need elektronid liiguvad. Üks elektron saab elektronkahuris kineetilise energia E=Ue. Samas $E=\frac{m_ev^2}{2}$, seega

$$v = \sqrt{\frac{2E}{m_e}} = \sqrt{\frac{2Ue}{m_e}}.$$

Ajaga t lendu läinud elektronide koguimpulss

$$p=mv=\frac{Itm_e}{e}\sqrt{\frac{2Ue}{m_e}}=It\sqrt{2U\frac{m_e}{e}}.$$

Et elektronkahur muudab aja tjooksul elektronide impulssi p võrra, siis mõjub temale keskmiseltjõud

$$F = \frac{p}{t} = I\sqrt{2U\frac{m_e}{e}} = I\sqrt{\frac{2U}{k}}.$$

Tõstmaks masinat õhku, peab see F ületama masinale (koos Tatikaga) mõjuva raskusjõu $m_T g$, st $F \geq m T g$ ehk

$$I\sqrt{U} \ge m_T g \sqrt{\frac{k}{2}} \approx 4.3 \cdot 10^8 \,\mathrm{A} \,\sqrt{\mathrm{V}}.$$

Ilmselt peavad I ja U olema ebarealistlikult suured, sest televiisori puhul

$$I\sqrt{U} \approx 0.017 \,\mathrm{A}\,\sqrt{\mathrm{V}}.$$

Seega pole Tatikal lootustki sellise masinaga lennata.

Märkus: erirelatiivsusteooriat arvestades sama arutluskäiku läbi tehes saaksime, et täpsem valem on

$$F = I\sqrt{\frac{2U}{k} + \frac{U^2}{c^2}},$$

kus $c\approx 3.0\cdot 10^8$ m/s on valguse kiirus vaakumis. Seega võime relativistlikud efektid arvestamata jätta vaid siis, kui

$$\frac{U^2}{c^2} \ll \frac{2U}{k}$$

ehk

$$U \ll \frac{2c^2}{k} \approx 1.0 \cdot 10^6 \,\mathrm{V}.$$

Arvestades vajalikku $I\sqrt{U}$ suurusjärku, peab Tatikas niisiis kardetavasti ka relatiivsusteooriat uurima... Lendu tõusta ei suudaks ta aga sellegipoolest.

L135 Elektronkiir ★★★

Autor: tundmatu, lahtine, 2008, G7

Olgu v_0 elektronide algkiirus plaatide vahele sattumisel. Aeg, mille jooksul üks elektron viibib plaatide vahel, on $t=\frac{b}{v_0}$.

Plaatide vahel on elektriväli tugevusega $E=\frac{U}{d}$. Newtoni II seadusest eE=ma leiame, et elektron liigub plaatide vahel kiirendusega $a=\frac{eU}{md}$. Läbides plaatide vahelise tee, kalduvad elektronid vahemaa s_0 esialgsest trajektoorist kõrvale, kus

$$s_0 = \frac{at^2}{2} = \frac{Ueb^2}{2dmv_0^2}.$$

Elektronide liikumise kiirus v plaatide vahelisest ruumist väljudes koosneb kahest komponendist:

– paralleelsest ekraaniga $v_y = at = \frac{eUb}{mdv_0}$,

– risti ekraaniga $v_x = v_0$.

Seega veedavad elektronid plaatidest ekraanini aja $t'=\frac{l}{v_x}=\frac{l}{v_0}$. Selle aja jooksul lisandub täiendav ekraaniga paralleelne nihe

$$s' = v_y t' = \frac{eUbl}{mdv_0^2}.$$

Kogu nihe on niisiis

$$s = s_0 + s' = \frac{eUb}{mdv_0^2} \left(\frac{b}{2} + l\right).$$

Seega

$$v_0 = \sqrt{\frac{e}{m} \frac{Ub}{ds} \left(\frac{b}{2} + l\right)} \approx 1,58 \cdot 10^7 \,\mathrm{m/s}.$$

Sooritame kontrolli, kas elektroni nihe plaatide vahel on väiksem kui plaatide vaheline kaugus:

$$s_0 = \frac{Ueb^2}{2dmv_0^2} = \frac{bs}{2l+b} = 3.5 \,\text{mm} < d.$$

L136 Kuup ★★★

Autor: Jaan Kalda, piirkonnavoor, 2008, G7

Kui auku ei oleks, oleks väljatugevus sümmeetria tõttu 0. Antud olukord on ekvivalente auguta kuubi ja negatiivse pindlaenguga $b \times b$ ruudu superpositsiooniga. Negatiivne ruut moodustab laengu $q=-\sigma b^2$ ning tekitab kuubi keskel väljatugevuse

$$E = \frac{\sigma b^2}{4\pi\epsilon_0 \left(\frac{a}{2}\right)^2} = \frac{\sigma b^2}{\pi\epsilon_0 a^2}.$$

L137 Liikuv laeng ★★★

Autor: Jaan Kalda, piirkonnavoor, 2009, G 6

Esimene impulss annab alguses la
engule x-suunalise impulsi $mv_x=qE_x\tau$, millest

$$v_x = \frac{q}{m} E_x \tau = 1 \,\mathrm{m/s}.$$

Ajavahemiku $t_1=T/4$ jooksul kuni järgmise impulsini jõuab osake liikuda sirgjooneliselt piki x-telge kaugusele $s_x=v_xT/4=0.5\,\mathrm{m}$. Seejärel saab ta impulsi y-telje sihis, mistõttu omandab ka kiiruse y-komponent samasuguse väärtuse: $v_y=v_x=1\,\mathrm{m/s}$, mistõttu ta liigub 45-kraadise nurga all, sooritades kuni järgmise impulsini nii x- kui y-telje sihis nihke $s_x=s_y=0.5\,\mathrm{m}$. Järgmine impulss peatab x-telje sihilise (kuid muutmata y-sihilist) liikumise, nii et osake nihkub nüüd piki y-telge kaugusele $s_y=0.5\,\mathrm{m}$. Järgmine impulss peatab ka x-suunalise liikumise, nii et osake jääb paigale. Edasi kordub protsess otsast peale. Eelpooltoodud tulemuste põhjal saame juuresoleva trajektoori.

Keskmise kiiruse leiame perioodi jooksul sooritatud nihke $s=\sqrt{1+1}$ m perioodi T=2s suhtena, $v\approx 0.7$ m/s .

L138 Sfäärid ★★★

Autor: Kristian Kuppart, lahtine, 2011, G 8

Et sfäärid on traadiga ühendatud, siis nad omandavad sama potentsiaali. Olgu ühe laeng Q_1 ja teise laeng Q_2 ; sellisel juhul $kQ_1/R_1=kQ_2/R_2$. Jagades selle võrduse vasaku ja parema poole läbi R_1R_2 -ga ja tähistades $E_1=kQ_1/R_1^2$ ning $E_2=kQ_2/R_2^2$, saame $E_1/R_2=E_2/R_1$, millest $E_1/E_2=R_2/R_1$.

L139 Kondensaatorid ★★★★

Autor: Oleg Košik, lõppvoor, 2005, G 8

Tegu on kondensaatorite jadaühendusega, mille tõttu laeng mõlemal kondensaatoril peab olema ühesugune. Kondensaatorite kogumahtuvuse leiame valemist

$$\frac{1}{C_0} = \frac{1}{C_1} + \frac{1}{C_2} \quad \Rightarrow \quad C_0 = 1,2C.$$

Seega laeng on q=1,2CU. Pinge kondensaatoril mahtuvusega 2C on seega $U_1=q/C_1=0,6U$ ning kondensaatoril mahtuvusega 3C vastavalt $U_2=0,4U$. Eeldame, et elektriväli on vaid kondensaatorite sees. Elektrivälja tugevus neis on nüüd vastavalt

$$E_1 = -\frac{U_1}{2d} = \frac{-0.3U}{d}$$
 ja $E_2 = \frac{U_2}{d} = \frac{0.4U}{d}$.

Kuna elektriväljad peavad olema suunatud vastupidistes suundades, siis ühe elektrivälja tugevuse võtsime negatiivseks. Määrame nüüd horisontaalsuunalise kiirenduse seosest Eq=ma. Esimese kondensaatori puhul on see

$$a_2 = \frac{E_2 q}{m} = \frac{0.4 U q}{m d}.$$

Vertikaalsuunaline kiirus on kogu aeg sama, selle tõttu aeg, mille jooksul asub osake mõlema kondensaatori elektrivälja mõjusfääris, on t=l/v. Selle aja jooksul muutub horisontaalsuunaline kiirus at võrra. Seega teisest kondensaatorist väljumise hetkel on osakese kiirus

$$v_h = ta_1 + ta_2 = t(a_1 + a_2) = \frac{0.1Uql}{mdv}.$$

Trajektoori kaldenurga tangens on järelikult

$$\tan \alpha = \frac{v_h}{v} = \frac{0.1 Uql}{mdv^2}.$$

L140 Kärbes ★★★★

Autor: Stanislav Zavjalov, lahtine, 2010, G7

Valime potentsiaali nullnivooks kärbse asümptootilise asukoha (lõpmatuses). Olgu laeng Q koordinaatide alguspunktiks ning olgu x-telg horisontaalne ja y-telg vertikaalne. Kärbes peab püsima laengu lähedal kõverduval null-potentsiaalil. Potentsiaal avaldub homogeense välja E potentsiaali ja punktlaengu potentsiaali superpositsioonina, seega

$$E(d-y) - \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{y^2 + x^2}} = 0.$$

Ülesande sümmeetriast on selge, kärbse vahemaa on minimaalne x=0 korral ehk teisisõnu kehtib E(d-y)=kQ/y. Antud võrrandist saame ruutvõrrandi lahenditega

$$y_{1,2} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} - \frac{kQ}{E}} = \frac{d}{2} \left(1 \pm \sqrt{1 - 4kQ/Ed^2} \right).$$

Juhul kui laeng on väike, liigub kärbes ilmselgelt sirgjooneliselt. Ometigi leidub kaks lahendit. Lahendi kahesus tuleneb sellest, et laengu läheduses leidub samuti null-potentsiaaliga suletud kõver. Laengu kasvades need kaks null-potentsiaaliga joont lähenevad üksteisele, kuni $Q=\pi\epsilon_0 Ed^2$ juures puutuvad kokku ja edaspidi moodustub null-potentsiaalist juba üksainus kõver, mis kulgeb ümber laengu. Seega vastab kärbse trajektoor ruutvõrrandi suuremale lahendile:

$$y = \frac{d}{2} \left(1 + \sqrt{1 - \frac{4kQ}{Ed^2}} \right).$$

L141 Laetud klotsid ★★★★

Autor: tundmatu, lahtine, 2006, G 9

Klots hakkab liikuma, kui sellele mõjuv elektrostaatiline jõud ületab maksimaalsehõõrdejõu:

$$\frac{kq^2}{l^2} > \mu mg.$$

Klotside läbitava vahemaa leiame energia jäävuse seadusest. Punktis, milles klots peatub, on elektrostaatilise välja potentsiaalne energia väiksem kui algpunktis. Potentsiaalsete energiate vahe muundub liikumise käigus klotside kineetiliseks energiaks, mis omakorda hõõrdejõu töö tulemusena muundub soojuseks.

Kui kuulide vahemaa liikuma hakkamisel oli l ning seisma jäämise hetkel L, siis muutus elektrostaatilises potentsiaalses energias on

$$\Delta E = \frac{kq^2}{l} - \frac{kq^2}{L}.$$

Hõõrdejõud μmg mõjub kummagile klotsile vahemaa (L-l)/2jooksul, seega kogu hõõrdejõu töö on

$$A = \mu m g(L - l).$$

Et need energia muudud on võrdsed, saame vahemaa L jaoks lihtsa võrrandi:

$$kq^{2}\left(\frac{1}{l} - \frac{1}{L}\right) = \mu mg(L - l) \Rightarrow \frac{kq^{2}}{\mu mg} \frac{L - l}{lL} = L - l \Rightarrow$$

$$\Rightarrow L = \frac{kq^{2}}{\mu mgl}$$

L142 Kosmoseprügi ★★★★

Autor: Siim Ainsaar, lõppvoor, 2009, G 9

Massikeskme taustsüsteemis on kerade kaugus minimaalne hetkel, kui süsteem on paigal. d saame energia jäävuse seadusest, mis kehtib, kuna nöör puutehetkel mutrile (sirgena) jõudu ei avalda ega muuda nii põrget plastseks. Süsteemi masskeskme liikumiskiirus satelliidi süsteemis

$$v_c = \frac{mv}{m + 2M},$$

mutri algkiirus masskeskme süsteemis

$$w = v - v_c = v \left(1 - \frac{m}{m+2M} \right) = v \frac{2M}{m+2M},$$

tehiskaaslase oma

$$W = v_c = \frac{mv}{m + 2M}.$$

Energia jäävus masskeskme taustsüsteemis on

$$\frac{mw^2}{2} + \frac{2MW^2}{2} + \frac{kq^2}{l} = \frac{kq^2}{d},$$

kust

$$d = \frac{kq^2}{\frac{mw^2}{2} + MW^2 + \frac{kq^2}{l}} = \frac{kq^2}{\frac{mv^2}{2} \left(\frac{2M}{m+2M}\right)^2 + Mv^2 \left(\frac{m}{m+2M}\right)^2 + \frac{kq^2}{l}} = \frac{1}{\frac{1}{l} + \frac{mMv^2}{kq^2(m+2M)}}.$$

Alternatiivne lahendus

Hetkel, kui keradevaheline kaugus on minimaalne, on satelliidi osad üksteise suhtes paigal. Seega liigub süsteem sel hetkel nagu jäik keha. Võtame inertsiaalse taustsüsteemi, kus tehiskaaslane oli enne kokkupõrget paigal, ja tähistame süsteemi kiiruse minimaalse kauguse saavutamise hetkel kui v_1 . Impulsi jäävusest

$$mv = (m+2M)v_1 \implies v_1 = \frac{mv}{m+2M}.$$

Kehtib ka energia jäävus.

$$\begin{split} \frac{mv^2}{2} + \frac{kq^2}{l} &= \frac{(m+2M)v_1^2}{2} + \frac{kq^2}{d}, \\ \frac{mv^2}{2} + \frac{kq^2}{l} &= \frac{m^2v^2}{2(m+2M)} + \frac{kq^2}{d}, \\ d &= \frac{kq^2}{\frac{mv^2}{2} + \frac{kq^2}{l} - \frac{m^2v^2}{2(m+2M)}} = \frac{1}{\frac{1}{l} + \frac{mMv^2}{kq^2(m+2M)}}. \end{split}$$

L143 Mõõteriistad ★

Autor: Koit Timpmann, lõppvoor, 2006, G 1

Olgu alguses ampermeetri ja voltmeetri pinged vastavalt U_A ja U_V . Jadaühenduse korral kehtib

$$U_A + U_V = 9 \,\mathrm{V}.$$

Pärast takisti lisamist suurenes ampermeetrit läbiv vool ja seega ka pinge kaks korda. Teisisõnu, ampermeetri uus pinge oli $2U_A$. Pinge voltmeetril aga vähenes kaks korda ja oli $0.5U_V$. Kirchhoffi pinge seaduse kohaselt

$$2U_A + 0.5U_V = 9 V.$$

Lahendades kahest võrrandist koosneva võrrandisüsteemi, saame $U_A=3\,\mathrm{V}$ ja $U_V=6\,\mathrm{V}$. Seega voltmeetril pinge oli alguses 6 V ning lõpus 3 V.

L144 Elektriküünlad ★

Autor: Valter Kiisk, piirkonnavoor, 2009, G 4

a) Lambi nimivool on $0.6~\mathrm{W}/3~\mathrm{V}=0.2~\mathrm{A}$. 10 lampi tarbivad voolu $10\times0.2~\mathrm{A}=2~\mathrm{A}$. Pingelang takistil on $5~\mathrm{V}-3~\mathrm{V}=2~\mathrm{V}$. Järelikult vajalik takistus on $2~\mathrm{V}/2~\mathrm{A}=1~\Omega$. b) $1~\Omega$ -st takistit kasutades oli voolutugevus ahelas $(4~\mathrm{V}-2.3~\mathrm{V})/1~\Omega=1.7~\mathrm{A}$. Sellise koormuse tulemusel langes pinge vooluallika klemmidel $1~\mathrm{V}$ võrra, seega alaldi sisetakistus on $1~\mathrm{V}/1.7~\mathrm{A}=0.59~\Omega$. Järelikult takisti R takistuse sobilik väärtus oleks $1~\Omega-0.59~\Omega=0.41~\Omega$.

L145 Päikesepaneel ★

Autor: Mihkel Pajusalu, lõppvoor, 2010, G 3

Koormisel eralduv võimsus avaldub kui UI. Peame leidma punkti graafikul, mil antud avaldis on maksimaalne. Graafikult saab erinevate punktide jaoks võimsuse välja arvutada ja ligikaudu maksimaalse võimsuse määrata. Saame $U_{\rm max} \approx 2,28\,{\rm V},\,I_{\rm max} \approx 0,33\,{\rm A}$. Seega vastav koormise takistus on

$$R = \frac{U_{\rm max}}{I_{\rm max}} \approx 6.9\,\Omega$$

Alternatiivne lahendus

Võimsus N = UI on maksimaalne, kui võimsuse tuletis pinge järgi on null. Seega,

$$dN = d(UI) = dUI + UdI = 0,$$

ehk

$$I + U \frac{\mathrm{d}I}{\mathrm{d}U} = 0,$$

kus dI/dU on graafiku tõus. Vaatleme vastavaid suurusi graafiku puntkis P. Joonise tähistustes, $|OC|=I,\,|CP|=U$ ja

$$\frac{|OA|}{|OB|} = \frac{|CA|}{|CP|} = -\frac{\mathrm{d}I}{\mathrm{d}U}.$$

Järelikult, kui me tahame, et P oleks otsitav võimsuse maksimumi punkt, peab kehtima

$$|OC| - |CP| \frac{|CA|}{|CP|} = 0 \implies |OC| = |CA| \implies |AP| = |PB|.$$

Joonlauaga veidi otsides pole sellist punkti ${\cal P}$ raske leida. Vastus on muidugi sama, mis esimeses lahenduses.

L146 Ampermeetrid ★★

Autor: tundmatu, lahtine, 2008, G 4

Märgime skeemil voolude oletatavad suunad ning valime kontuurides ACB ja CDB liikumise suunaks päripäeva.

Kirchhoffi 2. seaduse põhjal kontuuris ACB

$$I_2r - I_3r - I_1r = 0 \implies I_3 = I_2 - I_1 = 2 \text{ A}.$$

Kirchhoffi 1. seaduse põhjal punktis B

$$I_1 = I_3 + I_R \implies I_R = I_1 - I_3 = 1 \text{ A}.$$

Kirchhoffi 1. seaduse põhjal punktis ${\cal C}$

$$I_4 = I_2 + I_3 = 7 \,\mathrm{A}.$$

Ning lõpuks Kirchhoffi 2. seaduse põhjal kontuuris CDB

$$I_4r - I_RR + I_3r = 0 \Rightarrow 9r - R = 0 \Rightarrow R/r = 9.$$

L147 Patarei ★★

Autor: Taavi Pungas, piirkonnavoor, 2011, G 6

Olgu patarei sisetakistus r. Mõlemas olukorras on patarei elektromotoorjõud sama, st $I_1(R+r) = I_2(2R+r)$. Seega,

$$\frac{I_2}{I_1} = \frac{R+r}{2R+r} = \frac{2R+r-R}{2R+r} = 1 - \frac{R}{2R+r} = 1 - \frac{1}{2 + \frac{r}{D}}.$$
 (1)

a) r on väiksem kui R, aga samas peab r olema suurem kui 0. Seega $0 \le \frac{r}{R} < 1$ ja $1 - \frac{1}{2+0} \le I_2/I_1 < 1 - \frac{1}{2+1}$, ehk $1/2 \le I_2/I_1 < 2/3$. **b**) Nüüd kehtib R < r, ehk $I_2/I_1 > 2/3$. Valemist (1) on näha, et I_2/I_1 ülempiir

on 1, seega $2/3 < I_2/I_1 < 1$

L148 Vooluring ★★

Autor: Valter Kiisk, piirkonnavoor, 2005, G 4

Teisest skeemist näeme, et vooluallika elektromotoorjõud ${\mathcal E}$ võrdub voltmeetri näiduga,

$$\mathcal{E}=U_2.$$

Seega esimese skeemi jaoks

$$U_1 + I_1 r_a = \mathcal{E} = U_2$$

teise skeemi jaoks

$$I_2R + I_2r_a = U_2,$$

kus r_a on ampermeetri sisetakistus. Viimase elimineerimisel saame

$$R = \frac{I_1 U_2 + I_2 U_1 - I_2 U_2}{I_1 I_2} = \frac{U_2}{I_2} + \frac{U_1}{I_1} - \frac{U_2}{I_1}.$$

L149 Takistid ★★

Autor: Aigar Vaigu, lõppvoor, 2005, G 4

Paneme tähele, et pinge absoluutväärtus ahela otstele U ei muutu. Arvestades, et päripidise voolu korral võib dioodi klemmid lugeda lühistatuks ning vastuvoolu korral isoleerituks, saame kummagi polaarsuse jaoks koostada algse ahela (joonis 1) asemele ekvivalentsed ahelad (joonised 2 ja 3).

Joonis 1: Esialgne skeem

Leiame takistil A eralduva võimsuse päripinge puhul. Takistil A eralduv võimsus on $P_1 = I_1^2 R$, kus

$$I_1 = \frac{I}{3} = \frac{1}{3} \frac{U}{r_1}$$

Joonis 2: Ekvivalentne skeem ühe polaarsuse puhul

Joonis 3: Ekvivalentne skeem teise polaarsuse puhul

on vaadeldavat takistit läbiva voolu tugevus ning

$$r_1 = \frac{R}{3} + R = \frac{4}{3}R$$

on kogu ahela takistus. Seega

$$P_1 = \frac{R}{9} \frac{U^2}{r_1^2} = \frac{U^2}{R} \frac{1}{9} \frac{9}{16} = \frac{1}{16} \frac{U^2}{R}.$$

Nüüd määrame takistil A eralduva võimsuse vastupidise polaarsusega. Takistit A läbib vool $I_2 = U/3R$. Seega võimsus on

$$P_2 = \left(\frac{U}{3R}\right)^2 R = \frac{1}{9} \frac{U^2}{R}.$$

Võimsuste suhe

$$\frac{P_1}{P_2} = \frac{9}{16},$$

seega polaarsuse muutmisel muutub takistil A eralduv võimsus 9/16 korda.

L150 Elektriskeem ★★

Autor: tundmatu, lahtine, 2006, G 2

Kondensaatori C_1 plaadid on ühendatud läbi takistite R_1 ja R_2 . Seepärast laeng selle kondensaatori plaatidel on $q_1=0$ (pärast seda, kui on lõppenud kondensaatorite C_2 ja C_3 laadimine). Kuna pärast kondensaatorite laadimist voolud skeemis ei kulge, pinged kondensaatoritel C_2 ja C_3 on võrdsed \mathcal{E} . Järelikult, $q_2=C_2\mathcal{E}$ ja $q_3=C_3\mathcal{E}$.

Autor: tundmatu, lahtine, 2009, G 3

Süsteem saab töötada kolmes režiimis:

(I) Kõigi elementide takitus on 1Ω . Siis süsteemi kogutakistus on $R_I=1,5\Omega$, vool $I_I=\frac{U}{1,5}(A)$ ning pinge skeemi vasakpoolsel elementidel $\frac{2}{3}U$ ja parempoolsetel elementidel $\frac{1}{2}U$.

(II) Vasakpoolse elemendi takistus on 2Ω , parempoolsemate elementide takistus on 1Ω . Siis süsteemi kogutakistus on $R_I=2,5\Omega$, vool $I_I=\frac{U}{2,5}(A)$ ning pinge vasakpoolsel elemendil $\frac{4}{5}U$ ja parempoolsetel elementidel $\frac{1}{5}U$.

(III) Kõigi elementide takitus on 2Ω . Siis süsteemi kogutakistus on $R_I=3\Omega$, vool $I_I=\frac{U}{3}(A)$ ning pinge skeemi vasakpoolsel elemendil $\frac{2}{3}U$ ja parempoolsetel elementidel $\frac{1}{3}U$.

Vaatame süsteemi käitumist, kui klemmipinge kasvab. Alguses töötab süsteem režiimis I kuni hetkeni, mil klemmipinge kasvab väärtuseni $U=1,5\,\mathrm{V}$. Siis muutub vasakpoolse elemendi takistuse väärtus $R_2=2\,\Omega$ -ks ning süsteem jätkab tööd režiimis II. Hetkel, mil klemmipingepinge kasvab väärtuseni $U=5\,\mathrm{V}$, muutub ka parempoolsete elementide takistus R_2 -ks ning süsteem jätkab tööd režiimis III. Vaatame süsteemi käitumist, kui klemmipinge kahaneb. Alguses töötab süsteem režiimis III kuni hetkeni, mil klemmipinge langeb väärtuseni $U=3\,\mathrm{V}$. Siis muutub parempoolsete elementide takistuse väärtus tagasi $R_1=1\,\Omega$ -ks ning süsteem jätkab tööd režiimis II. Hetkel, mil klemmipingepinge langeb väärtuseni $U=1,25\,\mathrm{V}$, muutub ka vasakpoolse elemendi takistus tagasi R_1 -ks ning süsteem jätkab tööd režiimis I. Voolutugevuse käitumine on esitatud graafikul.

L152 Takisti ★★★

Autor: Jaan Kalda, piirkonnavoor, 2007, G7

Traadi ja pulga takistused pikkusühiku kohta on vastavalt $r_r=\rho_r/s=3.2\,\Omega/{\rm m}$ ja $r_g=\rho_g/S=10\,\Omega/{\rm m}$. Olgu traadi ja pulga pikkused vastavalt l_r ja l_g . Arvestades temperatuurisõltuvusega, on takistused vastavalt

$$R_r = l_r r_r \left(1 + \alpha_r \Delta T \right)$$
 ja $R_g = l_g r_g \left(1 + \alpha_g \Delta T \right)$.

Järjestikühenduse korral on summaarne takistus

$$R = (l_r r_r + l_g r_g) + (l_r r_r \alpha_r + l_g r_g \alpha_g) \Delta T.$$

Temperatuurisõltuvus on minimaalne (lineaarses lähenduses olematu), kui

$$l_r r_r \alpha_r + l_g r_g \alpha_g = 0.$$

Sellisel juhul on takistus

$$R = l_r r_r + l_a r_a.$$

Nendest kahest võrrandist saame avaldada l_r ja l_g : esimesest võrrandist leiame $l_r r_r = -l_q r_q \alpha_q / \alpha_r$, mille asendamisel teise saame

$$R = l_g r_g \left(1 - \frac{\alpha_g}{\alpha_r} \right) \quad \Rightarrow \quad l_g = \frac{R\alpha_r}{r_g \left(\alpha_r - \alpha_g \right)} \approx 5.6 \,\mathrm{cm}.$$

Analoogselt

$$l_r = \frac{R\alpha_g}{r_r \left(\alpha_g - \alpha_r\right)} \approx 13.6 \, \mathrm{cm}.$$

L153 Kondensaatoriredel ★★★ Autor: Siim Ainsaar, piirkonnavoor, 2007, G 8

Lõpmatust ahelast ühe lüli eemaldamisega mahtuvus ei muutu. Seetõttu võime tervet ahelat vaadelda kui jadaühendust C-st ning C ja C_k paralleelühendusest. Seega saame, kasutades veel asjaolu, et jadaühenduses liituvad mahtuvuse pöördväärtused ning rööpühenduses mahtuvused ise, võrrandi:

$$C_k = \frac{1}{1/C + 1/\left(C + C_k\right)}.$$

Teisendades jõuame ruutvõrrandini:

$$C_k^2 + CC_k - C^2 = 0.$$

Seda lahendades saame:

$$C_k = \frac{-1 \pm \sqrt{5}}{2} C \approx 0.6 \,\mathrm{C}.$$

Negatiivse lahendi heitsime kõrvale.

L154 Traat ★★★

Autor: Jaan Kalda, lõppvoor, 2008, G 7

Traadijupp pikkusega δ omab ristlõikepindala $s=S\cdot 1\,\mathrm{mm}/\Delta$ ning takistust $r=\rho\delta/s=\rho\delta\Delta\cdot 1\,\mathrm{mm}^{-3}$. Liites kokku kõikide väikeste juppide takistused näeme, et kogutakistus $R=\rho A\cdot 1\,\mathrm{mm}^{-3}$, kus A on graafiku alune pindala (liita tuleb ka joonest $\Delta=1\,\mathrm{mm}$ allapoole jääv osa). Joonise abil leiame $A\approx 14\,\mathrm{mm}\cdot\mathrm{m}$ ning seega $R\approx 14\,\Omega$.

L155 Kondensaator ★★★

Autor: Aigar Vaigu, piirkonnavoor, 2010, G7

Patarei pinge on $U={\rm const}$ ja vool ahelas, vastavalt ülesande tingimustele, on $I={\rm const}$. Patarei võimsus on

$$P_p = UI$$
.

Energia kondensaatoris on

$$E = \frac{CU^2}{2},$$

kus kondensaatori mahtuvus on C=q/U ja laeng kondensaatoris q. Kondensaatorisse energia salvestamise kiirus on energia muutumise kiirus kondensaatoris ehk energia tuletis aja järgi,

$$P_C = \frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}C}{\mathrm{d}t} \frac{U^2}{2} = \frac{\mathrm{d}(CU)}{\mathrm{d}t} \frac{U}{2} = \frac{\mathrm{d}q}{\mathrm{d}t} \frac{U}{2}.$$

Arvestades, et laengu muutumise kiirus $\mathrm{d}q/\mathrm{d}t$ on vool I, saame energia salvestumise kiiruseks kondensaatorisse

$$P_C = \frac{UI}{2}.$$

Näeme, et patareist "väljub" energiat kaks korda kiiremini, kui seda salvestub kondensaatorisse. Energia, mis ajaühikus kondensaatorisse ei jõua, läheb välisjõududele, mis muudavad kondensaatori mahtuvust selliselt, et I= const, vastu töö tegemiseks.

L156 Kondensaatorid ★★★ Autor: Mihkel Rähn, piirkonnavoor, 2006, G 7

- a) Vooluallikas laeb mõlemad kondensaatorid elektromotoorjõuga võrdse pingeni, seega on $q_{a1}=C_1\mathcal{E}$ ja $q_{a2}=C_2\mathcal{E}$.
- b) Leiame, kui suure pingeni kondensaatorid laaduvad. Voolutugevus ahelas on

$$I = \frac{\mathcal{E}}{R_1 + R_2 + R_3 + r}.$$

Kondensaatoril C_1 on laeng $q_{b1}=C_1I(R_1+R_2)$ ja kondensaatoril C_2 on laeng $q_{b2}=C_2IR_2$.

c) Kehtib laengu jäävus, paralleelses ühenduses on pinged kondensaatoritel võrdsed. Summaarne laeng $q=q_{b1}+q_{b2}$ ning mahtuvus $C=C_1+C_2$. Pinge kondensaatoril on U=q/C. Laengud kondensaatoritel on $q_{c1}=C_1U$ ja $q_{c2}=C_2U$.

L157 Kondensaatorid ★★★

Autor: Mihkel Kree, lõppvoor, 2009, G 3

Kogunegu keskmisele kondensaatorile (mahtuvusega 3C) laeng a ning nurgas paiknevatele kondensaatoritele (mahtuvusega 3C) laeng b. Vaatleme ülemist vasakpoolset kondensaatorit: selle negatiivsel plaadil on nüüd laeng -q+a+b ning positiivsel plaadil q+b. Saame võrrandi:

$$-(-q+a+b) = q+b \implies q-a-b = q+b \implies b = -a/2.$$

Lisaks saame pingete võrdsusest

$$\frac{a}{3C} = \frac{q+b}{C} + \frac{b}{3C} \implies a = 3q + 4b \implies a + 2a = 3q,$$

millest a = q.

L158 Aku laadimine ★★★★ Autor: Valter Kiisk, piirkonnavoor, 2008, G 8

Olgu aku klemmide pinge U ning voolutugevus I. Voolutugevus takistis R_2 on seega U/R_2 ja voolutugevus takistis R_1 avaldub kui U/R_2+I . Teise Kirchhoffi seaduse kohaselt

$$U + \left(\frac{U}{R_2} + I\right) R_1 = U_0 \quad \Rightarrow \quad UR_1 - (U_0 - U) R_2 + IR_1 R_2 = 0,$$

kus $U_0=6\,\mathrm{V}$. Laadimisgraafikult leiame, et maksimaalne vool $I=0,1\,\mathrm{A}$ vastab pingele $U=1,2\,\mathrm{V}$, kui aga $U=1,5\,\mathrm{V}$, siis peab olema I=0. Seega R_1 ja R_2 määramiseks saame võrrandisüsteemi

$$1,2R_1 - 4,8R_2 + 0,1R_1R_2 = 0$$
, $1,5R_1 - 4,5R_2 = 0$.

Selle lahend on $R_1 = 12 \Omega, R_2 = 4 \Omega$.

L159 Jõulukaunistus ★★★★ Autor: Valter Kiisk, lõppvoor, 2010, G 8

Maksimaalne pinge, milleni kondensaator laadub, võrdub võrgupinge amplituudväärtusega 311 V. Sellest takistile langeb pinge 311 V $-50\times3\,V=161\,V$. Seega takistuse väärtus peab olema $161\,V/20\,\mathrm{mA}\approx 8\,\mathrm{k}\Omega$ ja sellel eraldub võimsus $161\,V\times20\,\mathrm{mA}\approx 3.2\,W$. Peale pinge amplituudväärtuse saavutamist peab kondensaator olema suuteline vahelduvvoolu ühe perioodi (20 ms) jooksul valgusdioodide ahelat toitma nii, et pingelang takistil (ja seega ka kondensaatoril endal) kukub mitte rohkem kui $0.05\times161\,V=8\,V$ võrra. Samas kondensaatorilt võetakse sama aja jooksul elektrilaeng $20\,\mathrm{mA}\times20\,\mathrm{ms}=0.0004\,C$. Seega nõutav mahtuvus on $0.0004\,C/8\,V=50\,\mu\mathrm{F}$.

L160 Närvirakk ★★★★

Kuna laengud saavad voolata üle membraani kolme eri teed mööda ja kondensaatorile kogunev laeng põhjustab kõigile kolmele teele ühiselt mõjuva elektrostaatilise pinge U, siis on meil närviraku mudeldamiseks sobiv skeem, kus meil on rööbiti kolm vooluteed: kondensaatori voolutee, kaaliumi voolutee ja naatriumi voolutee.

Kui saabub tasakaal, ei lähe voolu läbi kondensaatori. Selleks peab kaaliumi ja naatriumi voolu summa olema elektriliselt neutraalne. Kaaliumi vool on $(\mathcal{E}_{\mathrm{K}}-U)/R_{\mathrm{K}}$. Naatriumi vool on $(\mathcal{E}_{\mathrm{Na}}-U)/R_{\mathrm{Na}}$. Võrrutades nende voolude summa nulliga saame pinge avaldiseks

$$U = \frac{R_{\rm K} \mathcal{E}_{\rm Na} + R_{\rm Na} \mathcal{E}_{\rm K}}{R_{\rm Na} + R_{\rm K}}.$$

Membraani kogulaeng on siis

$$q = CU = C \frac{R_{\rm K} \mathcal{E}_{\rm Na} + R_{\rm Na} \mathcal{E}_{\rm K}}{R_{\rm Na} + R_{\rm K}}. \label{eq:quantum}$$

L161 Solenoid ★★

Autor: Andres Laan, lõppvoor, 2011, G 5

Väljatugevus solenoidi sees on $B=\mu nI$, kus n on solenoidi traadi keerete arv pikkusühiku kohta, I seda läbiv vool ja μ vaakumi magnetiline läbitavus. Väli on suunatud piki solenoidi telge. Kui selle välja suunaga on risti mingisugunegi kiirus v, siis ühe pöörde tegemiseks kulub aeg $T=2\pi m/eB$ (tuletatav Lorentzi ja tsentrifugaaljõu tasakaalust), kus m ja e on vastavalt elektroni mass ja laeng. Olgu elektronil ka solenoidi telje sihiline kiirus v. Ühikulises ajas läbib ta distantsi 1/v. Selle aja sees teeb ta 1/(vT) pööret. Nende pöörete arv ülesande püstituse kohaselt peab olema n. Seega

$$n = \frac{1}{vT} = \frac{eB}{2v\pi m} = \frac{e\mu nI}{2v\pi m}.$$

Siit saame $v = e\mu I/(2\pi m)$.

Telje sihiline komponent kiirusel on üheselt määratud. Teljega risti olev kiiruse komponent peab olema nullist suurem.

L162 Langev takisti ★★★

Autor: Andres Laan, piirkonnavoor, 2011, G 8

Raami läbiva magnetvoo suuruse muutus põhjustab raamis elektromotoorjõu $\mathcal{E} = \mathrm{d}\Phi/\mathrm{d}t = Blv$. Elektromotoorjõud põhjustab raamis voolu $I = \mathcal{E}/R$. Magnetväljas mõjub vooluga juhtmele jõud F = BIl, mis peab olema tasakaalus raskusjõuga mg. Elimineerides I ja \mathcal{E} leiame

$$mg = \frac{B^2 l^2 v}{R} \Rightarrow v = \frac{mgR}{B^2 d^2}.$$

Alternatiivne lahendus

Lahendus lähtub energia jäävuse seadusest. Gravitatsioonijõu poolt tehtud töö võimsus on P=mgv. Elektrilise töö võimsus peab sellega võrduma, seega $P=mgv=U^2/R$. Pinge on leitav Faraday seadusest, mille kohaselt on pinge võrdne kontuuri läbiva magnetvoo muutumise kiirusega. Magnetvoo muutumise kiirus on d $\Phi/dt=Bdv$. Asendades selle eelmisesse võrrandisse ja avaldades v saame

$$v = \frac{mgR}{R^2d^2}.$$

L163 Laengud ★★★★

Autor: Jaan Kalda, lahtine, 2011, G 6

Kuna Lorentzi jõud mõjub alati risti liikumissuunaga, liiguvad laengud mööda ringjooni, mille raadiuse leiame Newtoni teisest seadusest:

$$qvB = m\frac{v^2}{r}$$
 \Rightarrow $R = mv/qB$,

kusjuures ühe ringjoone keskpunkt on punktis (0,R) ja teisel -(-R,0). Nende kiirusvektorid on alghetkel risti ja kuivõrd need pöörlevad ühesuguse kiirusega, siis jäävad risti ka edasise liikumise käigus, kusjuures suhtelise kiiruse vektor $\vec{w} = \vec{v}_1 - \vec{v}_2$ moodustab kummagi kiirusvektoriga 45-kraadilise nurga. Vahekaugus on maksimaalne, kui \vec{w} on risti laenguid ühendava sirgega, st laenguid ühendav sirge moodustab laengu asukohast tõmmatud puutujaga (st laengu kiirusvektoriga) 45-kraadilise nurga; on lihtne näha, et see juhtub hetkel, mil laengud on punktides (0,2R) ja (-2R,0), mis annab maksimaalseks vahekauguseks $l=2\sqrt{2}R=2\sqrt{2}mv/qB$.

Alternatiivne lahendus

Esitame laengute asukohad ajalises sõltuvuses kompleksarvudena komplekstasandil:

$$z_1 = Ri - Rie^{i\omega t}$$
 ja $z_2 = -R + Re^{i\omega t}$,

kus ω on tsüklotronsagedus. Nende vahekaugus

$$l = |z_1 - z_2| = |R(1+i)(1 - e^{i\omega t})| = R\sqrt{2}|1 - e^{i\omega t}|$$

on maksimaalne, kui $e^{\mathrm{i}\omega t}=-1$, mil $l=2\sqrt{2}R=2\sqrt{2}mv/qB$.

L164 Traat ★★★★

Autor: Jaan Kalda, lõppvoor, 2007, G 10

Traat võtab kaare kuju (sest Amper'i jõud mõjub analoogselt täispuhutud palli puhul pallikestale ülerõhu poolt mõjuva jõuga: lühikesele mõttelisele traadijupile mõjuv jõud on risti traadijupiga). Kaare raadiuse R saab leida järgmisest võrrandist:

$$a = 2R\sin(L/2R)$$
.

Väikese kaare-elemendi jaoks (pikkusega αR) välja kirjutatud Amper'i jõu ja mehaanilise pinge tasakaalust leiame pinge traadis: $\alpha RIB = T\alpha$. Eeldusel, et $L \gg a$, moodustub kaarest peaaegu täisring, st $R = L/2\pi$; seega

$$T = LIB/2\pi$$
.

L165 Pool ★★★★

Autor: Siim Ainsaar, lõppvoor, 2008, G 10

Venitame pooli väikese $\Delta \ell$ võrra pikemaks ja avaldame tehtud töö (A) kahel eri viisil. Ühelt poolt $A = F_1 \Delta \ell$. Samas salvestub osa kulutatud energiat (ΔE_m) magnetväljas ja ülejäänu (ΔE_v) kas eraldub vooluallika sisetakistusel (see peab nt lühise korral jääva voolu hoidmiseks alati olemas olema) või, kui $A < \Delta E_m$, täiendatakse vooluallika tööga. Igal juhul:

$$A = \Delta E_m + \Delta E_v.$$

 ℓ suurenedes B väheneb, mistõttu ilmselt $\Delta E_m < 0$ ja vooluallika sisetakistusel eraldub energiat:

$$A > 0 \Longrightarrow \Delta E_v > 0.$$

Vajalikud energiamuudud võime leida mitmel eri viisil.

Esimene meetod. Olgu kogu magnetvälja energia E_m . Selle energia ruumtihedus:

$$w = \frac{B^2}{2\mu_0} \Longrightarrow E_m = w\ell S = \frac{\ell S B^2}{2\mu_0} \Longrightarrow \Delta E_m = \frac{S\Delta\left(\ell B^2\right)}{2\mu_0} = \frac{INS \cdot \Delta B}{2}.$$

Toimugu pooli pikenemine ajaga Δt ja indutseerigu magnetvoo muutus poolil elektromotoorjõu absoluutväärtusega E. Faraday induktsiooniseadusest:

$$\mathcal{E} = N \frac{|\Delta B| \cdot S}{\Delta t}.$$

Siit saamegi ΔEv :

$$\Delta E_v = I\mathcal{E}\Delta t = INS|\Delta B|.$$

Teine meetod. Leiame tiheda pooli induktiivsuse L:

$$NBS = LI \Longrightarrow L = \frac{NBS}{I}.$$

Magnetvälja energia:

$$E_m = \frac{LI^2}{2} = \frac{NBSI}{2} \Longrightarrow \Delta E_m = \frac{INS \cdot \Delta B}{2}.$$

Toimugu pooli pikenemine ajaga Δt ja indutseerigu magnetvoo muutus poolil elektromotoorjõu absoluutväärtusega \mathcal{E} . Eneseinduktsioonielektromotoorjõud tuleneb Faraday induktsiooniseadusest:

$$\mathcal{E} = \frac{|\Delta(NBS)|}{\Delta t} = \frac{|\Delta(LI)|}{\Delta t} = \frac{NS|\Delta B|}{\Delta t},$$

kust saame:

$$\Delta E_v = I\mathcal{E}\Delta t = INS|\Delta B|.$$

Ühine osa mõlemale lahendusele. Leiame ΔB , eeldades, et $\Delta \ell$ on väike:

$$\Delta B = \mu_0 I N \Delta \left(\frac{1}{\ell}\right) = \mu_0 I N \left(\frac{1}{\ell + \Delta \ell} - \frac{1}{\ell}\right) = -\mu_0 I N \frac{\Delta \ell}{(\ell + \Delta \ell)\ell} \approx -\mu_0 I N \frac{\Delta \ell}{\ell^2}.$$

Lõpuks:

$$F = \frac{A}{\Delta \ell} = \left(-\frac{INS}{2} + INS\right) \frac{|\Delta B|}{\Delta \ell} = \frac{INS|\Delta B|}{2\Delta \ell} = \frac{\mu_0 I^2 N^2 S}{2\ell^2}.$$

Märkus. Paar sõna ülesande tekstis tehtud eelduse kohta, et kõik keerud hakkavad otstest tõmbamisel eemalduma võrdse vahemaa võrra. Tegelikult see ei kehti, otstest tõmbamisel hakkaksid kõigepealt lahti hargnema otsmised keerud (ja märksa väiksema jõu juures). Ilmselt oleks võimalik keerdude ühtlane eemaldumine spetsiaalse mehaanilise konstruktsiooni abil, kui keerud poleks mitte klaaspulgal, vaid vastava raamistiku peal. Aga selgub, et antud ülesande vastus realiseerub lihtsamas olukorras ka. Kui võtta kinni poolist kahest lähestikku asuvas kohas keskpaiga läheduses, siis allpool leitav jõud on ühtlasi selline jõud, millega tõmbamisel saab natuke eemaldada pika poolikeskkohast vasakule- ja paremale poole jäävaid keerde (seda väidet me siinkohas tõestama ei hakka).

L166 Laeng ★★★★

Paneme tähele, et ajavahemik T on võrdne poolega tsüklotronperioodist (ajaga, mis kulub sellel laengul magnetväljas täistiiru tegemiseks). Seega antakse impulsimuut $\Delta p = Eq\tau$ iga kord kiirusega paralleelselt (ii) või antiparalleelselt (i). Seega hakkab juhtumil (ii) impulss kasvama lineaarses sõltuvuses lülituste arvuga n = [t/T] (kus t on vaadeldav ajahetk ja nurksulud tähistavad täisosa): $p = Eq\tau[t/T]$. Et trajektoori kõverusraadius on võrdeline impulsiga, $R = v/\omega = p/qB$, siis kasvab kõverusraadius samuti lineaarselt n-ga, vt punktiirjoont joonisel. Juhtumil (i) paneb esimene jõuimpulss laengu liikuma, teine aga peatab liikumise. Tulemuseks on joonisel toodud laineline trajektoor (katkendjoon joonisel). Tuginedes nendele trajektooridele saame teha tabeli osakese eemaldumuse $l = \max(x,y)$ jaoks x või y-teljest erinevatel ajahetkedel.

Autor: Oleg Košik, lahtine, 2010, G 8

t/T	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
l/R (i)	1	2	2	2	3	4	4	4	5	6
l/R (ii)	1	2	2	2	3	4	4	4	5	6

Nagu näha, toimub eemaldumine mõlemal juhul vaadeldavate ajahetkede jaoks täpselt ühekiiruselt. Siiski, kui kuubi poolküljepikkus ei ole mitte R-i täisarvkordne, siis väljub (i) juhtumi korral osake veidi varem. Sellest võib aru saada uurides võrdlevalt kauguse l kasvufaase juhtumeil (i) ja (ii) ja juuresolevat joonist: antud ruudukujulise piirkonna jaoks väljumisaeg $2T+\Delta t$, kus täiendav ajavahemik juhtumil (ii) $\Delta t = \pi \alpha/T$ juhtumil (i) $\Delta t = \pi \beta/T$. Kuivõrd $\alpha > \beta$, siis saamegi järeldada, et juhtumil (i) väljub osake varem. On võimalik näha, et võrratus $\alpha > \beta$ kehtib peaaegu alati — välja arvatud siis, kui kuubi külje pikkus on R-i paarisarvukordne. Ülesandes antud eelduse $t \gg T$ tõttu muutub see väike väljumisaja erinevus tühiseks: aegade suhe sellel piirjuhul on 1.

L167 Magnetväli ★★★★

Autor: Jaan Kalda, piirkonnavoor, 2010, G 9

Magnetväljas mõjub elektronile Lorentzi jõud F = Bev, mis on kiirusega kogu aeg risti ning annab elektronile kesktõmbekiirenduse v^2/R , kus R on trajektoori kõverusraadius. Newtoni teisest seadusest $Bev = mv^2/R$, millest R = vm/Be. Et elektroni kiirus ei muutu (energia säilib!) siis ka kõverusraadius ei muutu st

Et elektroni kiirus ei muutu (energia säilib!), siis ka kõverusraadius ei muutu, st elektron liigub mööda ringjoont raadiusega R. Tuues sisse tähistuse $v_0 = aBe/m$, saame eelmise avaldise kirjutada kujul $R = vm/Be = va/v_0$.

Kui $v < v_0$, siis elektron teeb magnetväljas poolringi ning väljub tuldud suunas tagasi, st pöördenurk on π rad. Vastava graafikuosa eest.

Kui $v \approx v_0$, siis saab elektron väljuda mööda kitsast pilu, vt joonist, st pöördenurk on $\pi/2$ rad. Vastava graafikuosa eest.

Kiiruse edasisel suurenemisel väljub elektron külgsuunas; joonise abil on lihtne näha, et väljumisnurk on

$$\alpha = \frac{\pi}{2} + \arcsin \frac{2a - R}{R} = \frac{\pi}{2} + \arcsin \left(2\frac{v_0}{v} - 1\right).$$

Kvalitatiivselt mõistliku graafikuosa eest, st graafikuosa algab väärtuselt π rad ja lõppeb väärtuse $\pi/2$ rad juures.

Kokkuvõtvalt on sõltuvus $\alpha(v)$ esitatud järgmisel leheküljel oleval graafikul.

Autor: tundmatu, lahtine, 2007, G 10

Vaatleme mõttelist ringikujulist kontuuri, mis ühtib silindri külgpinna ristlõikega. Muutuv magnetväli tekitab suletud kontuuris elektromotoorjõu

$$\mathcal{E} = \frac{\Delta \Phi}{\Delta t} = \frac{S \Delta B}{\Delta t} = \frac{\pi R^2 \Delta B}{\Delta t}.$$

Sellise elektromotoorjõu olemasolu tähendab, et meil on teatud keeris-elektriväli E, mis on telgsümmeetrilisel juhtumil konstantne piki kontuuri ning seotud elektromotoorjõuga:

$$E = \frac{\mathcal{E}}{2\pi R} = \frac{1}{2} \frac{R\Delta B}{\Delta t}.$$

See elektriväli mõjub silindri külgpinnal olevale laengule q_i jõuga $F_i=Eq_i$, mis on risti teljelt tõmmatud raadiusvektoriga. Seega on selle jõumoment telje suhtes $M_i=Eq_iR$. Summeerides üle kõikide laengute, saame tuua ER sulgude ette ning summaarne jõumoment avaldub kui M=EQR, kus Q on summaarne laeng. See tekitab nurkkiirenduse

$$\frac{\Delta\omega}{\Delta t} = \frac{M}{I_0},$$

kus $I_0=\frac{1}{2}mR^2$ on silindri inertsimoment telje suhtes. Asendades siia M ja E avaldised leiame

$$\frac{\Delta\omega}{\Delta t} = \frac{2EQR}{mR^2} = \frac{2QR}{mR^2} \frac{1}{2} \frac{R\Delta B}{\Delta t} = \frac{Q}{m} \frac{\Delta B}{\Delta t}.$$

Seega

$$\Delta\omega = \frac{Q}{m}\Delta B$$

ning võttes arvesse, et algne nurkkiirus ning lõpp-magnetväli on nullid, saame

$$\omega = \frac{Q}{m}B = \frac{2\pi Rl\sigma}{\rho\pi R^2 l}B = \frac{2\sigma B}{\rho R}.$$

L169 Kiil ★

Autor: Valter Kiisk, lõppvoor, 2007, G 3

Kõik nurgad on tähistatud järgneval joonisel. α on meelevaldne (kuigi $\alpha \ll 1$). $\beta = \alpha/n$. $\gamma = \beta - \epsilon$. $\delta = n\gamma = \alpha - n\epsilon$. Kiire kõrvalekaldenurk

$$\phi = (\alpha - \beta) - (\delta - \gamma) = (\alpha - \delta) + (\gamma - \beta) = n\epsilon - \epsilon = \epsilon(n - 1).$$

Teades, et $\phi = 5 \,\mathrm{mm}/2 \,\mathrm{m} = 0.0025 \,\mathrm{rad}$, saame

$$\epsilon = \frac{\phi}{n-1} = 0.005 \,\mathrm{rad} = 0.29^{\circ}.$$

L170 Lääts ★

Autor: tundmatu, lahtine, 2009, G 2

Kuna kujutis tekib ekraanile, siis on kujutis tegelik ning tegemist on koondava läätsega.

Olgu a kaugus esemest läätseni, k kaugus kujutisest läätseni ning f läätse fookuskaugus. Et kujutis on esemest 3 korda suurem, siis sarnastest kolmnurkadest ABO ja A'B'O

$$\frac{k}{a} = 3 \quad \Rightarrow \quad k = 3a.$$

Kujutis tekib kugusele $d = 24 \,\mathrm{cm}$, seega

$$a + k = 4a = 24 \,\mathrm{cm}$$
 \Rightarrow $a = 6 \,\mathrm{cm}, k = 18 \,\mathrm{cm}.$

Nüüd läätse valemist

$$\frac{1}{a} + \frac{1}{k} = \frac{1}{f}$$

leiame, et $f = 4.5 \,\mathrm{cm}$.

 $M\ddot{a}rkus$: läätse valemi asemel võib fookuskauguse leidmiseks kasutada sarnaseid kolmnurki A'B'F ja OKF. Saame

$$\frac{k-f}{f} = 3 \quad \Rightarrow \quad f = \frac{k}{4} = 4.5 \,\text{cm}.$$

L171 Kiirtekimbu laiendi ★ Autor: Koit Timpmann, piirkonnavoor, 2010, G 3

Kuna esimese läätse optiline tugevus on negatiivne, on see nõgus. Selleks, et sisenev paralleelne valgusvihk püsiks paralleelne pärast süsteemist väljumist, peavad läätsede fookused ühtima. Olgu vastav ühine fookus F. Lisaks olgu läätsede keskpunktid O ja A ning siseneva kiirtekimbu kõige äärmise kiire lõikepunktid läbi läätsede K ja L.

Sellisel juhul saame kolmnurkade KOF ja LAF sarnasusest, et

$$\frac{|LA|}{|KO|} = \frac{|AF|}{|OF|}.$$

Kuna |AL| = 2.5|OK|, siis |AF| = 2.5|OF|, ehk läätsede vahekaugus on

$$|OA| = |AF| - |OF| = 1.5|OF| = 1.5 \left| \frac{1 \text{ m}}{-20} \right| = 7.5 \text{ cm}.$$

L172 Nõguspeegel ★★

Joonisel antud kiire kahe osa pikenduste lõikepunkt vastab nõguspeegli pinnale ning kiirte nurgapoolitaja ja optilise peatelje lõikepunkt annab nõguspeegli kõverusraadiuse keskpunkti O. Fookuse leidmiseks paneme tähele, et nõguspeegli fookuskaugus on pool kõverusraadiusest, kus kõverusraadiuse saame mõõta jooniselt. Edasi saame fookuse kaudu konstrueerida teise punktist A alguse saanud kiire käigu ning määrata eseme kujutise asukoha.

Autor: EFO žürii, lõppvoor, 2006, G 2

L173 Plaat ★★

Autor: tundmatu, lahtine, 2007, G 4

Kiirte käik plaadis on näidatud joonisel.

Nurk $\angle ABC$ täisnurkses kolmnurgas ACB on α , seetõttu $|AB|=l/\cos\alpha$. Teisest küljest, kolmnurgast ADB on näha, et $|AB|=2d\tan\gamma$. Nurgad α ja γ on seotud omavahel murdumisseadusega:

$$\frac{\sin \alpha}{\sin \gamma} = n.$$

Lahendades need võrrandid, saame

$$n = \frac{\sin \alpha}{\sin \left(\arctan\left(\frac{l}{2d\cos \alpha}\right)\right)} = \sin \alpha \sqrt{1 + \left(\frac{2d\cos \alpha}{l}\right)^2} \approx 1.8.$$

L174 Valgusvihk ★★

Autor: Mihkel Kree, piirkonnavoor, 2005, G 5

Ülesande lahendamisel osutub tarvilikuks teadmine, et läätsele selle optilise teljega paralleelselt langevad kiired (või murtud kiirte pikendused nõgusa läätse puhul) koonduvad fookuses punktiks. Seega on ainus moodus kahe läätse abil saada süsteem, mis teisendab paralleelse kimbu uuesti paralleelseks kimbuks, selline, et läätsede fookused ühtivad.

Esimene võimalus: kasutame kahte kumerläätse. Et kimbu diameeter suureneks, peab väiksema fookuskaugusega lääts olema eespool. Lihtsast geomeetriast (sarnased kolmnurgad) ilmneb, et tekkiva kiirtekimbu diameeter on $D=df_2/f_1=2d$.

Teine võimalus: kasutame ühte kumerat ja ühte nõgusat läätse. Kui kumer lääts oleks esimene, siis kimbu diameeter väheneks. Seega paigutame nõgusa läätse kumera läätse ette. Nõgus lääts tekitab näilise kujutise. Kumera läätse asetame nii, et selle fookus ühtiks nõgusläätse tekitatud ebakujutise asukohaga. Sarnastest kolmnurkadest leiame, et tekib kiirekimp diameetriga

$$D = \left| \frac{f_{\text{kumer}}}{f_3} d \right|.$$

Domab suurimat väärtust, kui kasutame suurema fookuskaugusega läätse, $f_{\rm kumer}=f_2.$ Niisiis

$$D = \left| \frac{f_2}{f_3} d \right| = 4d.$$

Näeme, et kiirtekimbu laiust saab suurendada maksimaalselt neli korda, kasutades selleks nõgusläätse ja kumerläätse ($f_2=40\,\mathrm{cm}$) nii, et nende fookused ühtiksid.

L175 Biprisma ★★

Autor: Mihkel Kree, piirkonnavoor, 2006, G 6

Valguskiir siseneb prismasse murdumata, sest kiir on normaali sihiline. Küll aga toimub murdumine prismast väljudes. Kuna terve tahu ulatuses on langemisnurk sama, tekitab üks tahk paralleelse kiirtekimbu (vt joonist). Kuna meil on kaks murdvat tahku, on esialgne kiirtekimp pärast prisma läbimist jagunenud kaheks. On lihtne märgata, et langemisnurk, millega kiired langevad murdvale tahule, on α . Vastavalt murdumisseadusele saame murdumisnurga γ jaoks seose:

$$\sin \gamma = n \sin \alpha$$
.

Väikeste nurkade jaoks lihtsustub see avaldis: $\gamma=n\alpha$. Kiir kaldus seega oma esialgsest sihist kõrvale nurga

$$\beta = \gamma - \alpha = (n-1)\alpha$$

võrra.

Teame, et paralleelne kiirtekimp koondub kumerläätse fokaaltasandis. Seega tekib fokaaltasandis asuvale ekraanile sümmeetriliselt kaks valgustäppi, teine teisele poole optilist peatelge. Arvutame ka nende kaugused peateljest. Selleks kasutame läbi läätse keskpunkti tõmmatud kiirt, mis asetseb peateljega nurga β all. Täisnurksest kolmnurgast saame valguspunkti kauguse peateljest:

$$s = f \tan \beta \approx f\beta = (n-1)\alpha f$$
.

Ilmselt ei sõltu ekraanil tekkiv pilt kaugusest d.

Et olla päris täpne, tuleks siiski märkida, et d kasvades piisavalt suureks hakkavad täpid muutuma tuhmimaks, kuni lõpuks kaovad üldse, sest siis kiired enam läätse ei läbi.

L176 Varjud ★★

Autor: Jaak Kikas, piirkonnavoor, 2007, G 6

Kanname joonisele varjukoonuste piirjoonte pikendused (sirged 1-4). Valgusallikaks oleva kera lõikejoon joonise tasandiga on ringjoon, mille puutujateks on kõik need sirged. Selle keskpunkti leidmiseks konstrueerime sirgete 1-3 ja 2-4 poolt moodustatud nurkade poolitajad (punktiirjooned joonisel), nende lõikepunkt 0 on otsitava ringjoone keskpunktiks. Ringi raadiuse leidmiseks konstrueerime punktist 0 mõnele sirgetest 1-4 keskristssirge.

L177 Veealune valgus ★★

Allika heledus on ligikaudselt võrdeline vaatleja silmaava nurkläbimõõdu ruuduga allika asukohast vaadatuna. Olgu α ja α_0 nurkläbimõõdud vastavalt veega täidetud ja veeta basseinis. Jooniselt

$$2L\tan(\alpha_0/2) = L\tan(\alpha/2) + L\tan(\beta/2),$$

kus langemis- ja murdumisnurkade lpha/2 ja eta/2 vahel kehtib seos

$$\frac{\sin(\alpha/2)}{\sin(\beta/2)} = n.$$

Autor: Jaak Kikas, lõppvoor, 2008, G 5

Kasutades väikeste nurkade lähendust $\tan \alpha \approx \sin \alpha \approx \alpha$, saame

$$\left(\frac{\alpha}{\alpha_0}\right)^2 = \frac{4n^2}{(n+1)^2}.$$

Arvestades ka peegeldumist veepinnalt, saame heleduste suhteks

$$\frac{I}{I_0} = \left(\frac{\alpha}{\alpha_0}\right)^2 (1 - r) = \frac{4(1 - r)n^2}{(n+1)^2} = 1.28.$$

L178 Konfokaalne mikroskoop ★★ Autor: Mihkel Rähn, lõppvoor, 2009, G 7

Lahenduse optiline skeem on toodud joonisel. Konstrueerimisel tuleb läätsede vahelised kiired joonestada paralleelsed ja läätsede keskpunkte läbivad. Sellisel juhul annavad need kiired eseme ja ava tasandil vastavalt eseme ja kujutise asukohad.

Värvitud kolmnurgad on NNN tunnuse järgi sarnased. Seetõttu kehtib võrdus

$$\frac{d}{2f_1} = \frac{r_{\rm ese}}{f_{\rm obj}},$$

millest

$$r_{\rm ese} = \frac{d \cdot f_{\rm obj}}{2f_1}.$$

L179 Klaaskuulike ★★

Autor: Jaan Kalda, lahtine, 2010, G4

Tagasipeegelduv kiir peegeldub kuulikeses nii, nagu näidatud joonisel. Murdumisseadusest väikeste nurkade jaoks saame $n=\sin 2\alpha/\sin \alpha \approx 2$.

L180 Kiilud ★★★

Autor: tundmatu, lahtine, 2006, G 6

On lihtne näha, et plaadist väljub endiselt paralleelne valgusvihk. Küll aga on selle levimise suund muutunud. Plaati sisenedes murdumist ei toimu, sest kiired liiguvad risti pinnaga. Kaldpinnale langevad kiired langemisnurga φ all, murdumisnurga γ saame murdumisseadusest:

$$n_1 \sin \varphi = n_2 \sin \gamma$$
.

Meil on lubatud kasutada väikeste nurkade lähendust $\sin \alpha \approx \alpha$, mistõttu $\varphi n_1 = \gamma n_2$. Murdumise tõttu muutus kiirte levimise suund nurga $\varphi - \gamma$ võrra. Ühtlasi on lihtne näha, et see on ka langemisnurgaks plaadi välistasandile, sest esialgu liikus kiir risti plaadiga. Arvestades, et õhu murdumisnäitaja on 1, saame leida kiire murdumisnurga δ plaadist väljumisel:

$$n_2(\varphi - \gamma) = \delta, \quad \delta = n_2 \left(\varphi - \frac{\varphi n_1}{n_2}\right) = \varphi \left(n_2 - n_1\right).$$

Valguslaigu nihet on nüüd lihtne leida. Vaatleme läätse optilist keskpunkti läbivat kiirt. Et see kiir läätses ei murdu, lõikab see fokaaltasandit teljest kaugusel

$$d = \delta f = \varphi f(n_2 - n_1).$$

L181 Klaaskuup ★★★

Autor: tundmatu, piirkonnavoor, 2009, G7

Mustaks värvitud tahkudelt valgus peegelduda ei saa, toimub neeldumine. Ülesande tingimus on täidetud, kui värvimata tahust kuupi sisenev valgus ei saa väljuda läbi kõrvaltahu (toimub sisepeegeldus). Sisepeegelduse kriitilise nurga saame murdumisseadusest:

$$\sin \gamma_C = \frac{1}{n}.$$

Kiir siseneb kuupi, kui $\alpha < \gamma_C$. Langemisnurk kõrvaltahule on $\beta = 90^\circ - \alpha$. Kiir väljub kuubist, kui

$$\beta < \gamma_C$$
, ehk $90^{\circ} < \gamma_C + \alpha < 2\gamma_C$.

Et kiir ei saaks kuubist väljuda, peab kehtima:

$$\gamma_C < 45^{\circ}$$
, ehk $n > 1/\sin 45^{\circ} = \sqrt{2}$.

L182 Peeglid ★★★

Autor: Jaan Kalda, piirkonnavoor, 2009, G 8

Kuna on teada, et üks antud punktidest on peegelduse peegeldus, siis peab üks tasapeeglitest kindlasti asuma peegelduse S_1 ning selle peegelduse peegelduse S_1' sümmetriateljel. Lisaks saab punkt S_1 tekkida ainult siis, kui paigutada S_1 ja allika S vahele teine peegel. Järelikult peab kolmas antud punkt S_2 olema allika S peegeldus esimesena paigutatud peeglis ehk see peegel asub nii S_1 ja S_1' kui ka S_2 sümmeetriateljel. Teades seda, on lihtne määrata joonisel allika S_2 asukoht. Selleks, et tekiksid peegeldused ning peegelduse peegeldused, peab allikas asuma kahe peegli vahel nii, et mõlemad peegeldavad küljed on sellele nähtavad. Kujutiste paariks S_1 ja S_1' saab olla ainult kaks alumist punkti joonisel, kuna vastasel korral jääks valgusallikas kõigi kujutiste suhtes teisele poole peegleid olenemata sellest, kas S_1 ja S_1' jaoks valitakse ülemine ja vasakpoolne (joonisel S_1) või ülemine ja parempoolne (joonisel S_1).

Niisiis, esimeseks peegliks on kahe alumise punkti sümmeetriatelg ning allikaks ülemise punkti peegeldus selles peeglis. Teine peegel peab olema allika ja parempoolse punkti sümmeetriatelg, sest kui see oleks allika ja vasakpoolse punkti sümmeetriatelg, siis jääks allikas jällegi peeglite vahelt välja.

L183 Kapillaartoru ★★★

Autor: tundmatu, lahtine, 2009, G8

Et kapillaarisein paistaks null-paksusega, peab kapillaarile puutujana (punktisA, vt joonist) langenud kiir a puudutama sisemist õõnsust (punktisB). Sellisel juhul pole ühtegi kiirt, mis läbiks kapillaari seina ilma sisemise õõnsuse piirpinnale langemata (ning vaid kiir a teeb seda puutujana). Kolmnurk AOB on täisnurkne, seetõttu saame murdumisseadusest n=R/r.

Ülesande olukorda edasi analüüsides paneme tähele, et ka võrratuse r>R/n korral puuduvad kiired, mis langevad kapillaari välispinnale, kuid ei lange sisemise õõnsuse piirpinnale; seega ka nende puhul näib kapillaari sein puuduvat.

Veel paneme tähele, et igal juhul on siiski oluline erinevus ime-õhukese seinaga kapillaarist: kapillaari servale lähedaste kiirte puhul toimub täielik sisepeegeldus sisemise õõnsuse piirpinnalt (joonisel kiir b). Visuaalselt paistab see peegel-kihina ja on selgelt eristatav, kui nt kapillaar täita värvilise gaasiga. Samas, see sisepeegeldus kaob, kui kapillaar täita värvilise vedelikuga, mille murdumisnäitaja on n.

L184 Lääts ★★★★

Olgu pliiatsi otste kaugused läätsest $d_1 = |BO|$ ja $d_2 = |DO|$ ning pliiatsi kujutise otste kaugused läätsest vastavalt $f_1 = |B'O|$ ja $f_2 = |D'O|$ (vt joonist).

Paneme kirja valemid suurendustegurite jaoks:

$$k = \frac{L'}{L}, \quad k_1 = \frac{|A'B'|}{|AB|}, \quad k_2 = \frac{|C'D'|}{|CD|}.$$

Sarnastest kolmnurkadest F'B'A' ja FOE leiame, et

$$\frac{|A'B'|}{|EO|} = \frac{|F'B'|}{|FO|} = \frac{f_1 - f}{f}.$$

Analoogiliselt, sarnastest kolmnurkadest F'D'C' ja FOE leiame, et

$$\frac{|C'D'|}{|EO|} = \frac{|F'D'|}{|FO|} = \frac{f_2 - f}{f}.$$

Kuna |EO| = |AB| = |CD|, siis

$$k = \frac{f_2 - f_1}{d_1 - d_2}, \quad k_1 = \frac{f_1 - f}{f}, \quad k_2 = \frac{f_2 - f}{f}.$$

Kasutades läätse valemit mõlema otsa jaoks:

$$\frac{1}{d_1} + \frac{1}{f_1} = \frac{1}{f}$$
 ning $\frac{1}{d_2} + \frac{1}{f_2} = \frac{1}{f}$

saame avaldada pikkused d_1 ja d_2 pikkuste f_1 ja f_2 kaudu:

$$d_1 = \frac{f_1 f}{f_1 - f}, \quad d_2 = \frac{f_2 f}{f_2 - f}.$$

Asendame saadud väärtused suurendusteguri k avaldisse:

$$k = \frac{f_2 - f_1}{f_1 - f} - \frac{f_2 f}{f_2 - f} = \frac{f_2 - f_1}{f} \frac{(f_1 - f)(f_2 - f)}{f_1(f_2 - f) - f_2(f_1 - f)}$$

$$= \frac{f_2 - f_1}{f} \frac{(f_1 - f)(f_2 - f)}{f_1 f_2 - f_1 f - f_2 f_1 + f_2 f} = \frac{f_2 - f_1}{f} \frac{(f_1 - f)(f_2 - f)}{f_2 f - f_1 f}$$

$$= \frac{f_2 - f_1}{f} \frac{(f_1 - f)(f_2 - f)}{f(f_2 - f_1)} = \frac{(f_1 - f)(f_2 - f)}{f^2}.$$

Võrreldes saadud avaldist varem saadud avaldistega k_1 ja k_2 jaoks, on lihtne näha, et

$$k = \frac{f_1 - f}{f} \frac{f_2 - f}{f} = k_1 k_2.$$

Märkus: mugavuse kaalutlusel vaatleme joonisel tegelikult vaid poolt pliiatsit, aga on ilmne, et lahenduskäik kehtib ka terve pliiatsi kohta (joonisel on pliiatsi teine pool näidatud punktiirjoonega).

L185 Hajuti ★★★★

Autor: Andreas Valdmann, piirkonnavoor, 2010, G 8

Valgus läbib hajuti, kui nurk γ on väiksem täieliku sisepeegeldumise nurgast. Kriitilisel juhul $\sin(\gamma_{\rm kr})=1/n$. Kuna $\beta=45^{\circ}-\gamma$, siis $\beta_{\rm kr}=45^{\circ}-\arcsin(1/n)$. Nurkade α ja β vahel kehtib murdumisseadus $\sin(\alpha)/\sin(\beta)=n$. Seega

$$\alpha_{\rm kr} = \arcsin(n\sin(45^{\circ} - \arcsin(1/n))).$$

Vastuse saab viia kujule

$$\alpha_{\rm kr} = \arcsin \left[\frac{\sqrt{2}}{2} (\sqrt{n^2 - 1} - 1) \right] = 4.8^{\circ}.$$

Kriitilisest väiksema α korral (vt parempoolsemat kiirt) on tagasi pöörduv kiir paralleelne hajutile langenud kiirega. Kiirte käigu pööramisel selgub, et tulemus ei muutu, kui esimene sisepeegeldus toimub 45-st kraadist suurema nurga all. Sel juhul toimub nurga γ all teine sisepeegeldus.

L186 Nõguslääts eestvaates ★★★★

Autor: Siim Ainsaar, piirkonnavoor, 2011, G 10

Kui nõgusläätsele langevad paralleelsed kiired, lõikuvad murdunud kiirte pikendused eesmisel fokaaltasandil. Joonistame antud kiirega paralleelse abikiire (optilise kõrvaltelje, joonisel AO), mis läbib läätse optilist keskpunkti. See abikiir ei murdu, seega ühtib oma läätse läbimise järgse osa pikendusega. Tema lõikepunkti eesmise fokaaltasandiga (punkti A) leiame tõigast, et lõik AO on lõigu KL paralleellüke. Küsitav murdunud kiir asub siis sirgel AL. Lääts asub täpselt oma fokaaltasandite vahel keskel, seetõttu poolitab punkt L lõigu L0, kus L10 on küsitav murdunud kiire lõikepunkt tagumise fokaaltasandiga. Järelikult saame punkti L10, kui peegeldame punkti L2 punkti L3 suhtes (L4) = L6.

L187 Gravitatsioonilääts ★★★★ Autor: Mihkel Kree, piirkonnavoor, 2007, G 10 Tähest väljunud kiired kõverduvad musta augu lähiümbruses (vt joonist).

Kujutise konstrueerimisel aga eeldatakse, et kiired on kogu tee otse liikunud. Et kiired jõuavad vaatlejani kõikjalt ümber musta augu, on kujutiseks ringjoon (eeldusel, et täht on punkt).

Et silmani jõudvate kiirte jaoks kehtib $r \ll L$ ning trajektoori kõverdumine toimub tähe lähiümbruses, võib vaadelda kiire teekonda lihtsustatult: sirge liikumine musta auguni, hetkeline nurga muutus musta augu juures ning edasi sirge tee vaatlejani (vt joonist). Joonisel arusaadavalt on vertikaalskaala võrreldes horisontaalskaalaga oluliselt välja venitatud.

Järgnevalt leiame tähe nurkdiameetri. Lihtsast geomeetriast järeldub, et $\alpha + \beta = \varphi$. Kaugused on suured ning nurgad väikesed, seega võime kasutada ligikaudseid valemeid $\alpha = r/L_1$ ja $\beta = r/L_2$. Niisiis

$$\frac{r}{L_1} + \frac{r}{L_2} = \frac{4GM}{c^2 r} \Rightarrow r = \sqrt{\frac{4GML_1L_2}{c^2 (L_1 + L_2)}}.$$

Tähe kujutise nurkdiameeter on

$$\gamma = \frac{2r}{L_1} = \sqrt{\frac{4GML_2}{c^2L_1(L_1 + L_2)}}.$$

L188 Akvaarium ★★★★

Autor: tundmatu, lahtine, 2005, G 10

Vaatleme sfäärilist akvaariumi kui õhukest tasakumerat läätse, mis on surutud tasase küljega vastu sirgeseinalist akvaariumi (vt jooniseid). Kasutades väikeste nurkade lähendust, on lihtne leida sellise õhukese läätse fookuskauguse f (f = |CF|):

$$\gamma = \alpha n, \quad \varepsilon f = (\gamma - \alpha)f = \alpha r \quad \Rightarrow \quad f = \frac{r}{n-1}.$$

Vee puhul

$$f = \frac{r}{1.3 - 1} \approx 3.3r.$$

Läätses näeme kala kujutist, mis tekib murdumisel akvaariumivees. See kujutis on n korda lähemal akvaariumi seinale kui kala ise, st maksimaalne kaugus on

$$l_{\text{max}} = \frac{2r}{n} \approx 1.5r,$$

mis on igal juhul väiksem kui läätse fookuskaugus. Lääts tekitab sellest kujutisest omakorda kujutise, mille kauguse (läätsest) x saame läätse valemist

$$\frac{1}{f} = \frac{1}{l} - \frac{1}{x}.$$

On lihtne näha, et suurendus on kahe kujutise kauguste suhe:

$$\frac{1}{k} = \frac{l}{x} = 1 - \frac{l}{f},$$

seega suurendus on maksimaalne, kui *l* on maksimaalne:

$$\frac{1}{k_{\text{max}}} = 1 - \frac{2(n-1)}{n} = \frac{2-n}{n} \quad \Rightarrow \quad k_{\text{max}} = \frac{n}{2-n} \approx 1,86.$$

L189 Kuup ★★★★

Autor: Jaan Kalda, lõppvoor, 2007, G 8

Välimine ringjoon on loomulikult kera välimine kontuur, tema raadius R_A on võrdne kera raadiusega foto mastaabis. Kerast eemal, piirkonnas D, näeb läbi kuubi põrandat, st piirkond D on valge. Piirkonnas A toimub täielik sisepeegeldumine kera pinnal, seega näeme me sealt põranda peegeldust, mis on samuti valge. Mõõtmise teel võib veenduda, et piirkondade A ja B eraldusjoone raadius R_B on umbes $\sqrt{2}$ korda väiksem R_A -st, st tegemist on põranda ja seinte eraldusjoone peegeldusega. Sestap on piirkond B kollane. Piirkondade B ja C eraldusjoon peab vastama täieliku sisepeegeldumise lõppemisele, st piirkonnas C on näha kera sisemust, mis on sinine valge põranda taustal. Niisiis on piirkond C sinine. On lihtne näha, et täieliku sisepeegeldumise piirjuhul langemisnurga siinus on $\sin \alpha = R_C/R_A = 1/n$. Seega murdumisnäitaja $n = R_A/R_C \approx 1,8$.

L190 Nõguspeegel ★★★★

Autor: Mihkel Kree, lõppvoor, 2007, G 9

Paneme tähele, et kõverustsenter O, objekt A ning kujutis A' kumerpeeglis asuvad samal sirgel. Seega, kui meil õnnestub leida sirge AA', siis selle lõikepunkt optilise teljega annaks punkti O. Teisest küljest, kiir, mis läbib punkti A kujutist läätses, K_2 , ja punkti A' kujutist, K_1 , jätkub peale murdumist läätses sirgena s' ja läbib nii punkti A kui A'. Tänu sellele leiamegi sirge AA' ja punkti O.

Punkti A' leidmiseks konstrueerime esmalt fokaaltasandi F. Selleks leiame fokaaltasandis lebava punkti — sirge s lõikepunkti sirgega t, mis on paralleelne sirgega s' ja läbib läätse keskpunkti. Kujutisi K_1 ja K_2 ühendav sirge murdub nii, et selle pikenduse lõikepunkt optilise peateljega ongi otsitav kõverustsenter. Punkti A' leiame kui sirge s' lõikepunkti sirgega q', mis peale murdumist läbib fookuse ja punkti K_1 (sest K_1 on A' kujutiseks).

L191 Kärbes ★★★★

Autor: Aigar Vaigu, piirkonnavoor, 2008, G 10

Olgu O pinna kõverusraadiuse keskpunkt ning K ja A vastavalt kärbse näiline ja tegelik asukoht. Allpool toodud joonis kujutab kärbsest alguse saanud kahe kiire AB ja AC edasist käiku. Kärbse näiline asukoht K vastab kärbsest alguse saanud murdunud kiirte pikenduste lõikepunktile (joonisel KB ja KC).

Arvestades väikeste nurkade korral kehtivat lähendust $\tan \alpha \approx \sin \alpha \approx \alpha$, võime murdumisseaduse kirjutada kujul:

$$\frac{\sin \beta}{\sin \alpha} = n \approx \frac{\beta}{\alpha}$$

Kolmnurkade $\triangle OCB$, $\triangle ACB$ ja $\triangle KCB$ kaudu avaldame kaare \widehat{BC}

$$\gamma r = \delta a = \varphi k = \widehat{BC}.$$

Kolmnurkade $\triangle KAB$ ja $\triangle AOB$ kaudu avaldame nurga $\angle BOC$

$$\alpha + \delta = \gamma$$
 ja $\beta + \varphi = \gamma$.

Saame

$$(\gamma - \alpha)a = \gamma r \Rightarrow \gamma(a - r) = \alpha a$$

 $(\gamma - \beta)k = \gamma r \Rightarrow \gamma(k - r) = \beta k.$

Paneme tähele, et need kaks võrrandit oleks saanud otse siinusteoreemist kolmnurkade $\triangle AOB$ ja $\triangle KOB$ arvestusega, et tänu nurkade φ , δ ja γ väiksusele $|KB| \approx k$ ja $|AB| \approx a$.

Arvestades, et $\beta/\alpha \approx n$, saame

$$\frac{a-r}{k-r} = \frac{a}{nk}$$
 \Rightarrow $a = \frac{nrk}{nk-k+r} = \frac{1,6 \cdot 3 \cdot 5}{1,6 \cdot 5 - 5 + 3} = 4 \text{ mm}.$

L192 Punktallikad ★★★★

Autor: Jaan Kalda, lõppvoor, 2010, G 9

Allikat ja kujutist ühendav sirge läheb läbi läätse keskpunkti ning see punkt peab jääma allika ja kujutise vahele, sest kujutis on tõeline. Seetõttu saame läätse keskpunkti O leida kui lõikude S_1S_1' ning S_2S_2' lõikepunkti, kus S_1 ja S_2 on allikad ning S_1' ja S_2' on vastavad kujutised. Et lõikepunkt tekiks, peavad S_1 ja S_1' paiknema diagonaalselt. Edasi paneme tähele, et sirge kujutis on sirge, kusjuures need kaks sirget lõikuvad läätse tasandis. Et sirge S_1S_2 kujutis on $S_1'S_2'$, siis nende lõikepunkt P võimaldab meil leida juba läätse tasandi OP; optiline peatelg on punktist O tõmmatud ristsirge. Läätse tasandi seisukohast pole oluline, kumb sirgetest $(S_1S_2$ või $S_1'S_2'$) on kujutis ja kumb originaal. Seetõttu tekib meil kaks oluliselt erinevat võimalust: kas need kaks sirget paiknevad ligikaudu horisontaalselt või ligikaudu vertikaalselt, vt joonist.

L193 Optiline süsteem ★★★★★ Autor: Andreas Valdmann, lõppvoor, 2011, G 8

Iga süsteemile langev valguskiir murdub läätse eesmisel pinnal, peegeldub tagumisel pinnal ja murdub uuesti. Lahenduse lihtsustamiseks vaatleme olukorda, kus kiirte käik on sümmeetriline. Sel juhul langeb murdunud kiir peegelpinnale risti, peegeldub otse tagasi ja teine murdumine on esimesega identne. Süsteemi sisenev ja sealt väljuv kiir lõikavad optilist peatelge ühes ja samas punktis P. Seal asuva punktobjekti kujutis langeb kokku objekti endaga.

Võtame vaatluse alla teljelähedase kiire PO, mille korral võime nurga $\angle LPO$ lugeda väikeseks. Lõik OC' on optilise peateljega veelgi väiksema nurga all ja punktide O ning C' kaugus optilisest peateljest on ligikaudu võrdne. Uurime lähemalt läätse õhukest kihti, mille kõrgus on palju väiksem kõverusraadiusest r. Sel juhul võime kõverpinnad asendada nende puutujatega. Pindade ristsirged on joonisel tähistatud punktiirjoonega ning need lõikavad optilist peatelge läätse kõverustsentrites. Optiline kõrvaltelg BB' on paralleelne optilise peateljega ning

$$\angle LCO = \angle B'OC' = \angle A'OB' = \angle BOC = \angle AOB \equiv \phi$$

ja murdumisnurk $\angle A'OC' = 2\phi$. Langemisnurgaks on $\angle AOP$. Murdumisseaduse rakendamisel kasutame väikese nurga lähendust

$$\frac{\sin(\angle AOP)}{\sin(\angle A'OC')} = n \approx \frac{\angle AOP}{\angle A'OC'},$$

millest

$$\angle AOP = n \angle A'OC' = 2n\phi.$$

Järgmisteks arvutusteks on vaja teada nurka

$$\angle LPO = \angle BOP = \angle AOP - \angle AOB = 2n\phi - \phi = (2n-1)\phi.$$

Kuna lääts on õhuke ja punkt O ei ole kaugel optilisest peateljest, siis $|CO| \approx |CL|$ ja $|PO| \approx |PL|$ ning $|CL| = r - \frac{d}{2} \approx r$, kus d on läätse paksus keskkohas. Jällegi väikese nurga lähendust kasutades saame

$$|LO| = \angle LCO|CL| = \angle LPO|PL|,$$

millest

$$|PL| = \frac{\angle LCO}{\angle LPO}|CL| = \frac{\phi}{(2n-1)\phi}r = \frac{r}{2n-1}.$$

Viimaseks rakendame läätse valemit

$$\frac{1}{a} + \frac{1}{k} = \frac{1}{f}$$

ja seost

$$|PL| = a = k = \frac{r}{2n-1}$$

ning saame, et

$$f = \frac{|PL|}{2} = \frac{r}{2(2n-1)}.$$

L194 Sähvatus ★★★★

Alustuseks paneme tähele suurepärast seost arvandmetes. Nimelt ühtivad peeglite fookused, sest peeglite vahemaa on võrdne peeglite fookuskauguste summaga. Nõguspeegli fookuskaugus on teatavasti pool raadiusest. Paralleelne kiirtekimp koondub peegli fookuses. Seepärast jääb paralleelne kiirtekimp antud süsteemis pärast kahekordset peegeldumist ikkagi paralleelseks. Kuid paneme tähele, et kiire laius väheneb kaks korda, sest ühe läätse fookuskaugus on kaks korda suurem teise omast.

Valguskiir jääb niisiis peeglite vahele pendeldama seniks, kuni tema kaugus teljest on väiksem kui $d_0/2=0.5\,\mathrm{mm}$, kusjuures esialgne kauguste vahemik, mis jõuab peegliteni, on $d_2/2=48\,\mathrm{mm}$ kuni $d_1/2=80\,\mathrm{mm}$, ehk pilu läbimiseks peab valgusvihk koonduma $d_2/d_0=96$ kuni $d_1/d_0=160$ korda. Pärast n-kordset edasi-tagasi peegeldumist väheneb kiire kaugus teljest 2^n korda. Paneme tähele, et 128 on kahe aste ($2^7=128$). Seepärast väljub peeglile langenud kiir pilust kahes järgus: esimene osa pärast seitsmendat edasi-tagasi liikumist ning teine osa pärast kaheksandat. Üks edasi-tagasi liikumine peeglite vahel tekitab ajalise viivise 2L/c.

Kumerläätsele langev paralleelne kiirtekimp koondub fookuses, kusjuures fookuseni jõudmise aeg ei sõltu kiire asukohast (teljelähedased kiired läbivad paksema klaasikihi kui kaugemad kiired, klaasi läbib valgus aga aeglasemalt). Niisiis on fookuses oodata kolme impulssi: peegli ümbert tulnud osa, pärast seitset edasitagasi peegeldumist tulnud osa ning pärast kaheksat. Nende impulsside ajaline vahe on vastavalt 14L/c ja 2L/c.

Nüüd tuleb veel leida impulsside suhtelised intensiivsused, mis on võrdsed vastavate rõngaste pindaladega esialgse kiire ristlõikes. Esimese peegli läbimõõdust väiksem osa ei läbigi süsteemi. Kõige välimise rõnga pindala on võrdeline arvuga 192^2-160^2 , järgmisele impulsile vastav rõnga pindala 128^2-96^2 ning viimasele impulsile vastava rõnga korral 160^2-128^2 . Need arvud suhtuvad kui: $32^2(6^2-5^2): 32^2(4^2-3^2): 32^2(5^2-4^2)=11:7:9$.

L195 Tunnel ★

Autor: Jaan Kalda, lahtine, 2008, G3

Autor: Urmo Visk, lõppvoor, 2006, G 5

Loeme õhu kokkusurumatuks. Sellisel juhul rongi ja tunneli seina vahele juurde voolanud õhu ruumala võrdub rongi eest välja surutud õhu ruumalaga:

$$(b^2 - a^2) u' = a^2 v,$$

kus u' on õhu kiirus tunneli suhtes. Seega otsitav kiirus on

$$u = v + u' = v \left(1 + \frac{a^2}{b^2 - a^2} \right) = \frac{vb^2}{b^2 - a^2} = 90 \text{ km/h}.$$

Tegelikult on kiirus veidi väiksem, sest rongi ees surutakse õhk mingil määral kokku ja rongi ees ning taga tekib teatud õhuvool.

L196 Kuu ★★

Olgu valgustatus (valgusvoog pinnaühiku kohta) päeval I_1 ja öösel I_2 . Kuna säriaeg ja valgustatus on pöördvõrdelised, siis kehtib seos

$$t_1/t_2 = I_2/I_1$$
.

Öösel valgustab Maad Kuult peegeldunud valgus. Kuna eeldati, et Kuu ja Maa on Päikesest võrdsel kaugusel, siis on valgustatus Kuul ka I_1 . Kui Kuu pind oleks Maad ja Kuud (ning ühtlasi Päikest) ühendava teljega risti, siis oleks Kuu poolt tagasi (Maa poole) suunatud valgusvoo tihedus $I_k = kI_1$, kus k on Kuu pinna keskmine peegeldustegur (albeedo). Kuu näiv keskpunkt seda ka on, aga servad mitte. Ometigi, visuaalne kogemus ütleb, et Kuu ketas näib kõikjal enam-vähem ühe heledune. Hinnanguliselt asendagem mõtteliselt Kuu "pannkoogiga", st kettaga, mille raadius on võrdne Kuu raadiusega.

Kuu pinnalt peegeldub Päikeselt sumaarne valgusvoog $E=I_1\pi r^2 k$ ning see jaotub ühtlaselt mõttelise poolsfääri peale, mille keskpunktis asub Kuu ja pinna peal Maa. Seega jõuab Maale valgusvoog

$$I_2 = \frac{E}{2\pi R^2} = I_1 \frac{r^2 k}{2R^2}.$$

Seega

$$\frac{I_2}{I_1} = \frac{t_1}{t_2} = \frac{r^2 k}{2R^2},$$

ehk

$$k = \frac{t_1}{t_2} \frac{2R^2}{r^2} \approx 8 \%.$$

L197 Maja ★★★

Maja teatud punkt P ja tema peegelkujutis mere pinnalt P' paiknevad sümmeetriliselt mere tasandiga. Vaatleme mõttelist sirget PP'. Tema lõikepunkt merega O paikneb mõlemast otsast võrdsel kaugusel ning tänu sellele saame me jooniselt punkti O kergelt määrata kui lõigu PP' keskpunkti. Maja kõrgus merepinnalt vastab vundamendi kaugusele punktist O, vt joonist. Mõõtes jooniselt akende vahekauguse $|AB| = 9.5 \, \mathrm{mm}$ ja $|OQ| = 58.5 \, \mathrm{mm}$ saame

$$H = 3\,\mathrm{m}\cdot\frac{|OQ|}{|AB|} = 18.5\,\mathrm{m}.$$

Autor: Jaan Kalda, lahtine, 2008, G 9

L198 Maja ★★★★

Joonise põhjal võib oletada, et poi on märksa lähemal horisondist (ca 5 km), seega võib Maa kumerust mitte arvestada. Asetame mõtteliselt kahe-meetrise teiba poi kõrvale. Fotoaparaati ja teiba ülemist otsa ühendav joon on horisontaalne ja seega läbib horisonti, mis tähendab, et teiba ots puudutab joonisel näha oleva horisondilõigu pikendust. Poi diameetri d leiame mõõtes joonisel pikkused a ja l:

$$d = 2 \,\mathrm{m} \cdot \frac{a}{l} = 45 \,\mathrm{cm}.$$

L199 Kile ★★★★

Autor: Jaan Kalda, lahtine, 2008, G 8

Valgus peegeldub tagasi kile ülemiselt ja alumiselt pinnalt. Risti langeva valguse puhul on nende vaheline optiliste teede pikkuse erinevus $2n_1d$, kus d on (otsitav) kile paksus. Peegeldus on minimaalne, kui need kiired liituvad vastasfaasis, st

$$2n_1d = \left(N + \frac{1}{2}\right)\lambda.$$

Kui tahetakse, et peegeldunud valgus oleks nõrk ka punase ja sinise valguse jaoks, siis tuleb täisarvu N väärtus võtta võimalikult väike. Olgu $\lambda - \Delta \lambda$ selline lainepikkus, mille puhul peegeldunud kiired liituvad samas faasis, st peegeldunud valgus on maksimaalse intensiivsusega. Sellisel juhul $2n_1d = N(\lambda + \Delta \lambda)$. Kahest võrdusest saame $\Delta \lambda = \lambda/2N$. Et antud juhul oleme huvitatud võimalikult suurest $\Delta \lambda$ väärtusest, siis tuleb valida N=1. Niisiis $d=\lambda/4n_1\approx 102\,\mathrm{nm}$.

L200 Kunstinäitus ★★★★

Kile ülemiselt ja alumiselt pinnalt peegeldunud kiirte optiliste teepikkuste erinevus on maksimaalne, kui kiir langeb pinnaga risti, ning võrdne $\Delta l_{\rm max}=2n_1d$, kus, d on kile paksus. Minimaalne on see siis, kui kiir langeb peaaegu paralleelselt kilega (st horisontaalsel); sellisel juhul on optiliste teepikkuste vahe $\Delta l_{\rm min}=2n_1d/\cos\alpha-2d\tan\alpha$, kus α on kiles leviva kiire nurk vertikaali suhtes, $\sin\alpha=1/n_1$. Seega

$$\Delta l_{\min} = 2d/\cos\alpha(n_1 - \sin\alpha) = 2n_1d(1 - n_1^{-2})/\sqrt{1 - n_1^{-2}} = 2n_1d\sqrt{1 - n_1^{-2}}.$$

Kui muuta vaatesuunda vertikaalsest horisontaalseks, siis muutub optiliste teepikkuste vahe $N\lambda$ võrra (sest selle protsessi käigus on võimalik registreerida N interferentsimaksimumi, mil optiliste teepikkuste vahe on lainepikkuse täisarvkordne). Seega $2n_1d(1-\sqrt{1-n_1^{-2}})=N\lambda$, millest

$$d = N\lambda/2n_1(1 - \sqrt{1 - n_1^{-2}}) \approx 13 \,\mu\text{m}.$$

Õpilaste tulemused

Füüsika lõppvoor 9. aprill 2005. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Aleksandr Morozenko	12	Nadežda Tšerkašina	58	Ι				
2	Siim Ainsaar	12	Mart Kuurme	55	Ι				
3	Karel Aru	12	Lilian Tambek	46	II				
4	Ott Rebane	12	Mart Kuurme	43	II				
5	Meelis Lootus	11	Elmu Mägi	42	II				

Füüsika lahtine võistlus 26. november 2005. a. Vanem rühm									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Aleksei Vlassov	12	Tatjana Beloussova	56					
2	Holger Haas	12	Elmu Mägi	54					
3	Mihkel Heidelberg	12	Aarne Silas	50					
4	Mihhail Verhovtsov	12	Esfira Zolotarjova	47					
5	Lauri Kaldamäe	12	Jaak Saukas	44					

Füüsika lõppvoor 4. märts 2006. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Aleksei Vlassov	12	Tatjana Beloussova	58,5	Ι				
2	Holger Haas	12	Elmu Mägi	50,5	II				
3	Meelis Lootus	12	Elmu Mägi	50	II				
4	Mihkel Heidelberg	12	Aarne Silas	45	II				

Füüsika lahtine võistlus 25. november 2006. a. Vanem rühm									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Andres Laan	11	Mart Kuurme	62					
2	Marek Jarkovoi	12	Mart Kuurme	54					
3	Velle Toll	12	Indrek Peil	52					
3	Jaan Katus	12	Mart Kuurme	52					
5	Andrei Klevtsov	11	Jelena Guljajeva	46,5					
5	Andrei Lošitski	12	Nadežda Tšerkašina	46,5					

Füüsika lõppvoor 17. märts 2007. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Uku Hämarik	11	Maire Piirimäe	49	Ι				
2	Stanislav Zavjalov	10	Gennadi Medkov	48	Ι				
2	Marek Jarkovoi	12	Mart Kuurme	48	I				
4	Priit Rinken	12	Madis Reemann	45	II				

Füüsika lahtine võistlus 24. november 2007. a.										
	Vanem rühm									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk					
1	Stanislav Zavjalov	11	Gennadi Medkov	48						
2	Heiki Niglas	12	Kusta Rumma	46						
3	Karen Atabekjan	12	Tatjana Beloussova	45						
4	Vjatšeslav Žarinov	12	Nelli Afonina	41,5						
5	Andreas Valdmann	12	Madis Reemann	41						

Füüsika lõppvoor 8. märts 2008. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Andres Laan	12	Mart Kuurme	53,5	Ι				
2	Heiki Niglas	12	Kusta Rumma	52,5	Ι				
3	Taavi Pungas	11	Mart Kuurme	51	Ι				
4	Stanislav Zavjalov	11	Gennadi Medkov	48,5	II				
5	Uku Hämarik	12	Maire Piirimäe	48	II				
6	Andrei Klevtsov	12	Jelena Guljajeva	45,5	II				
7	Ardi Loot	11	Märt Kask	45	II				
8	Heino Soo	11	Märt Kask	43	II				

Füüsika lahtine võistlus 29. november 2008. a. Vanem rühm									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Stanislav Zavjalov	12	Gennadi Medkov	59					
2	Taavi Pungas	12	Mart Kuurme	56					
3	Paavo Parmas	12	Aarne Silas	53					
4	Lauri Taaleš	12	Aarne Kivimäe	50					
5	Ardi Loot	12	Märt Kask	45					
5	Jonatan Jõks	12	Toomas Reimann	45					

Füüsika lõppvoor 7. märts 2009. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Stanislav Zavjalov	12	Gennadi Medkov	58	Ι				
2	Ardi Loot	12	Märt Kask	54	Ι				
3	Paavo Parmas	12	Aarne Silas	50	Ι				
4	Mihkel Soolep	12	Mart Kuurme	42	II				
5	Kadi Liis Saar	10	Mart Kuurme	41	II				

Füüsika lahtine võistlus 28. november 2009. a. Vanem rühm									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Ants Remm	11	Siim Oks	50	Ι				
2	Rauno Siinmaa	12	Elmu Mägi	47,5	Ι				
3	Roland Matt	12		43	II				
4	Janno Jõulu	11	Mart Kuurme	42,5	II				
4	Madis Ollikainen	11	Erkki Soika	42,5	II				

Füüsika lõppvoor 6. märts 2010. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Ants Remm	11	Siim Oks	51	Ι				
2	Madis Ollikainen	11	Erkki Soika	49	Ι				
3	Siim Liiser	11	Mart Kuurme	47,5	II				
4	Kadi Liis Saar	11	Mart Kuurme	46,5	II				
5	Andres Jaanson	11	Elmu Mägi	46	II				
6	Gerli Viikmaa	12	Elmu Mägi	45,5	II				
7	Sander Siim	11	August Alop	45	II				
7	Kert Pütsepp	11	Mart Kuurme	45	II				
9	Ivar Kiitam	11	Mart Kuurme	44,5	II				

Füüsika lahtine võistlus 27. november 2010. a. Vanem rühm									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Jaan Toots	10	Toomas Reimann	58	Ι				
2	Madis Ollikainen	12	Erkki Soika	53,5	II				
3	Ants Remm	12	Siim Oks	53	II				
3	Kristian Kuppart	12	August Alop	53	II				
5	Andres Jaanson	12	Elmu Mägi	51,5	II				
6	Erik Tamre	11	Mart Kuurme	51	II				

Füüsika lõppvoor 9. aprill 2011. a. Gümnaasium									
Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
1	Ants Remm	12	Siim Oks	61	Ι				
2	Siim Liiser	12	Mart Kuurme	58	Ι				
3	Jaan Toots	10	Toomas Reimann	57,5	Ι				
4	Tanel Kiis	11	Vahur Pohlasalu	55	II				
5	Deiwin Sarjas	11	Muia Keerutaja	53	II				
6	Andres Jaanson	12	Elmu Mägi	51,5	II				
7	Eero Vaher	12	Elmu Mägi	51	II				
7	Kristian Kuppart	12	August Alop	51	II				
7	Erik Tamre	11	Mart Kuurme	51	II				
10	Janno Jõulu	12	Mart Kuurme	50,5	II				

	Füüsika lahtine võistlus 26. november 2011. a.									
Vanem rühm										
	Koht	Nimi	Klass	Füüsikaõpetaja	Kokku	Järk				
	1	Jaan Toots	11	Toomas Reimann	61	Ι				
	2	Kaur Aare Saar	11	Guido Vegmann	57	Ι				
	3	Erik Tamre	12	Mart Kuurme	56	Ι				
	4	Tanel Kiis	12	Vahur Pohlasalu	53	II				
	4	Sandra Schumann	11	Mart Kuurme	53	II				
	6	Sergei Malõšev	12	Mihhail Emeljanov	51	II				
	7	Sergei Jakovlev	12	Elena Golubeva	50,5	II				
	8	Janno Veeorg	11	Toomas Reimann	50	II				
	9	Eva-Lotta Käsper	12	Siim Oks	48	II				

Autorite loetelu

Aigar Vaigu - Aalto Ülikool ja VTT Technical Research Centre of Finland

Aleksei Vlassov – Tartu Ülikool

Andre Sääsk – Tartu Ülikooli Narva kolledž

Andreas Valdmann – Tartu Ülikool

Andres Laan – Cambridge'i Ülikool

Eero Uustalu – Tallinna Tehnikaülikool

Jaak Kikas – Tartu Ülikool

Jaan Kalda – Tallinna Tehnikaülikool

Jaan Susi – Tartu Ülikool

Koit Timpmann – Tartu Ülikool

Kristian Kuppart - Tartu Ülikool

Mihkel Heidelberg – Tartu Ülikool ja Tallinna Tehnikaülikool

Mihkel Kree – Marseille' Ülikool ja Tartu Ülikool

Mihkel Pajusalu – Tartu Ülikool ja Massachusettsi Tehnoloogiainstituut

Mihkel Rähn – Tartu Ülikool

Oleg Košik - Tartu Ülikool

Ott Krikmann – Eesti Maaülikool

Riho Taba – Bristoli Ülikool ja Imperial College

Roland Matt – Tartu Ülikool ja ETH Zürich

Siim Ainsaar – Tartu Ülikool ja Tallinna Tehnikaülikool

Stanislav Zavjalov – Oxfordi Ülikool

Taavi Pungas – Cambridge'i Ülikool ja Tartu Ülikool

Urmo Visk - Tartu Ülikool

Valter Kiisk – Tartu Ülikool