Lecture 24: 80x86 Bus Interfaces, DMA, and DMA-Controlled IO

Seyed-Hosein Attarzadeh-Niaki

Based on the slides by Barry Brey

Microprocessors and Assembly

1

Review

80x86 interrupts and the 8259 chip

Microprocessors and Assembly

Outline

- Shared bus operation
- Bus interfaces
 - ISA
 - PCI
- DMA and 8237
- DMA-Controlled IO

Microprocessors and Assembly

3

SHARED BUS OPERATION

- In a distributed, multiprocessing, multitasking environment, each microprocessor accesses two buses.
 - 1. the local bus: connected directly to mem & IO
 - 2. the remote or shared bus: shared mem & IO
- 8086/8088 uses the 8289 bus arbiter for shared bus operation.
 - 80286 uses 82289 and 80386/80486 uses the 82389
 - The Pentium–Pentium 4 directly support a multiuser environment.
- The bus master is the main microprocessor in the PC.
- ISA bus is operated as a slave to the PC's microprocessor.
- The PCI bus can operate as a slave or a master.

Microprocessors and Assembly

The Bus Arbiter

- The 8289 bus arbiter controls interface of a bus master to a shared bus.
 - Controls the READY input of 8086
- Each bus master or microprocessor requires an arbiter for the interface to the shared bus.
 - which Intel calls the Multibus
 - and IBM calls the Micro Channel
- Processors connected in this kind of system are often called parallel or distributed processors because they can execute software and perform tasks in parallel.

Microprocessors and Assembly

7

The ISA Bus

- Industry Standard Architecture
- Originally 8-bit. Later evolved to 16-bit.
- Present in early PCs up to Pentium III
- Still present in some industrial applications

Microprocessors and Assembly

Back of Computer

Pin	ı #	
1	GND	IO CHK
2	RESET	D7
3	+5V	D6
4	IRQ9	D5
5	-5V	D4
6	DRQ2	D3
7	-12V	D2
8	OWS	D1
9	+12V	D0
10	GND	IO RDY
11	MEMW	AEN
12	MEMR	A19
13	IOW	A18
14	IOR	A17
15	DACK3	A16
16	DRQ3	A15
17	DACK1	A14
18	DRQ1	A13
19	DACK0	A12
20	CLOCK	A11
21	IRQ7	A10
22	IRQ6	A9
23	IRQ5	A8
24	IRQ4	A7
25	IRQ3	A6
26	DACK2	A5
27	T/C	A4
28	ALE	A3
29	+5V	A2
30		A1
31	GND	A0

The Peripheral Component Interconnect (PCI) Bus

- Plug-and-play characteristics
 - contains a series of registers, located in a small ROM on the PCI interface
- First version PCI 1.0 (1992): 32-bit 33 MHz
- Ability to function with a 64-bit data bus

Microprocessors and Assembly

PCI Bus Operation

Bus Commands

Burst mode Timing

$C/\overline{BE3}-C/\overline{BE0}$	Command						
0000	INTA sequence						
0001	Special cycle						
0010	I/O read cycle						
0011	I/O write cycle						
0100-1001	Reserved						
1010	Configuration read						
1011	Configuration write						
1100	Memory multiple access						
1101	Dual addressing cycle						
1110	Line memory access						
1111	Memory write with invalidation						

Microprocessors and Assembly

11

PCI Configuration Space

Configuration Memory

Class Codes

Class Code	Function					
0000H	Older non-VGA device (not PnP)					
0001H	Older VGA device (not PnP)					
0100H	SCSI controller					
0101H	IDE controller					
0102H	Floppy disk controller					
0103H	IPI controller					
0180H	Other hard/floppy controller					
0200H	Ethernet controller					
0201H	Token ring controller					
0202H	FDDI					
0280H	Other network controller					
0300H	VGA controller					
0301H	XGA controller					
0380H	Other video controller					
0400H	Video multimedia					
0480H	Other multimedia controller					
0500H	RAM controller					
0580H	Other memory bridge controller					
0600H	Host bridge					
0601H	ISA bridge					
0602H	EISA bridge					
0603H	MCA bridge					
0604H	PCI-PCI bridge					
0605H	PCMIA bridge					
H0890	Other bridge					
0700H-FFFEH	Reserved					
FFFFH	Not installed					

Microprocessors and Assembly

Recent Interfacing Standards

- Recent peripheral buses are serial
 - PCI Express
 - USB
 - Thunderbolt
- · Achieve higher transfer rate

Microprocessors and Assembly

13

BASIC DMA OPERATION

- Two control signals are used to request and acknowledge a DMA transfer
- HOLD input used to request a DMA action
 - Processor stops executing SW and enters hold cycles
 - Has higher priority than INTR or NMI
- HLDA output acknowledges the DMA action
 - Indicates processor has put its busses in Hi-Z

Microprocessors and Assembly

DMA Signals

- Memory and IO controlled simultaneously
 - That's why they have separate control signals
- A DMA read causes the MRDC and IOWC signals to activate simultaneously.
 - transferring data from memory to the I/Q device

DMA Speed

- Data transfer speed is determined by speed of the memory device or a DMA controller.
 - Mem speed: 50 ns -> Max DMA speed: 20 MB/s
 - But if DMA Freq 15MHz -> slows the system
- The switch to serial data transfers in modern systems has replaced DMAs.
 - The serial PCI Express bus transfers data at rates exceeding DMA transfers.
 - SATA: 300 Mbps
 - On-board PCI Express: 20 Gbps

Microprocessors and Assembly

THE 8237 DMA CONTROLLER

- A four-channel device compatible with 8086/8088, adequate for small systems.
- Capable of DMA transfers at rates up to 1.6M bytes per second.
- Each channel is capable of addressing a full 64K-byte section of memory

Microprocessors and Assembly

Software Commands

Signals					Operation			
АЗ	A2	A1	A0	ĪŌŔ	ĪŌW	Operation		
1	0	0	0	0	1	Read Status Register		
1	0	0	0	1	0	Write Command Register		
1	0	0	1	0	1	Illegal		
1	0	0	1	1	0	Write Request Register		
1	0	1	0	0	1	Illegal		
1	0	1	0	1	0	Write Single Mask Register Bit		
1	0	1	1	0	1	Illegal		
1	0	1	1	1	0	Write Mode Register		
1	1	0	0	0	1	Illegal		
1	1	0	0	1	0	Clear Byte Pointer Flip/Flop		
1	1	0	1	0	1	Read Temporary Register		
1	1	0	1	1	0	Master Clear		
1	1	1	0	0	1	Illegal		
1	1	1	0	1	0	Clear Mask Register		
1	1	1	1	0	1	Illegal		
1	1	1	1	1	0	Write All Mask Register Bits		

Microprocessors and Assembly

Programming the Address and Count Registers

Channel	Davister	Operation	Signals							Internal File Files	Data Bus DB0-DB7
Channel	Register		ĊS	IOR	IOW	А3	A2	A1	A0	Internal Flip-Flop	Data Bus DB0-DB7
0	Base and Current Address	Write	0	1	0	0	0	0	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	0	0	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	0	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	0	0	1	0 1	W0-W7 W8-W15
1	Base and Current Address	Write	0	1	0	0	0	1	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	0	1	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	1	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	0	1	1	0	W0-W7 W8-W15
2	Base and Current Address	Write	0	1	0	0	1	0	0	0 1	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	1	0	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	0	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	1	0	1	0	W0-W7 W8-W15
3	Base and Current Address	Write	0	1	0	0	1	1	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	1	1	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	1	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	1	1	1	0	W0-W7 W8-W15

Microprocessors and Assembly

Example: Clear the DOS Mode Video Screen using DMA

```
;A procedure that clears the DOS mode video screen using the DNA ;controller as depicted in Figure 13-12.
                                                                                                           MOV AX,ES
SHL AX,4
ADD AX,DI
OUT CH1A,AL
MOV AL,AH
OUT CH1A,AL
;Calling sequence:
; DI = offset address of area cleared;
; ES = segment address of area cleared;
; CX = number of bytes cleared
                                                                                                                                         enable block hold transfer
                                                                                                                                           ;enable channel 0
CLEAR PROC NEAR USES AX
         AX,ES
AL,AH
AL,4
                                       ;program latch B
                                                                                                          .REPEAT
IN AL,STATUS
.UNTIL AL & 1
RET
   OUT LATCHB, AL
OUT CLEARF, AL
                                   ;clear F/L
                                                                                                    CLEAR ENDP
   MOV AL,ZERO
MOV ES:[DI],AL
                                      ;save zero in first byte
                                       ;program source address
                                                                            Microprocessors and Assembly
```

DISK MEMORY SYSTEMS

- Disk memory is used to store long-term data.
- Many types of disk storage systems are available and they use magnetic media.
- Optical disk memory
 - CD-ROM, DVD
- Flash drives

Microprocessors and Assembly

VGA Signals

- A high-speed palette SRAM is used to store
 256 different 18-bit codes representing hues.
- To select any of 256 colors, an 8-bit code stored in the computer's video display RAM is used to specify color of a picture element.
 - newer systems use larger palette SRAM
- If color codes must be changed, it is done during retrace when RTC is a logic 1.

Microprocessors and Assembly

29

VGA Signals

- Retrace occurs 70.1 times per second vertical and 31,500 times per second horizontal direction for a 640 × 480 display.
 - used to move the electron beam to the upper left corner for vertical retrace and the left margin of the screen for horizontal retrace
- The resolution of the display determines the memory required for the video interface card.
 - 640 \times 480 bytes of memory (307,200) are required to store all of the pixels for the display

Microprocessors and Assembly

VGA Signals

- A 640 × 480 display has 480 video raster lines and 640 pixels per line.
 - a raster line is the horizontal line of video information that is displayed on the monitor
 - a pixel (picture element) is the smallest subdivision of this horizontal line
- In order to generate 640 pixels across one line, it takes 40 ns \times 640, or 25.6 μ s.
- A horizontal time of 31,500 Hz allows a horizontal line time of 1/31,500, or $31.746 \mu s$.
 - the difference between these two times is the retrace time allowed to the monitor

Microprocessors and Assembly

31

VGA Signals

- In the case of a VGA display (a 640 × 400 display), this is 449.358 lines.
 - 400 lines are used to display information
 - the rest are lost during the retrace
- Because 49.358 lines are lost, retrace time is $49.358 \times 31.766 \mu s$, or $1568 \mu s$.
- During this time color palette SRAM is changed or the display memory is updated.

Microprocessors and Assembly