Algebra

linear and quadratic functions

- Solve several linear inequalities in two variables and find the solution set
 Manipulate algebraic expressions by collecting like terms, multiplying a single term over a bracket, taking out common factors, expand the product of two linear expressions eq (ax ± p)(bx ± q); factorising quadratic expressions including the difference of two squares and cancelling common factors in rational expressions
- © Plot graphs of simple cubic functions, the reciprocal function y = 1/x, $x \ne 0$, the exponential function $y = k^x$ for integer values of x and simple positive values of x, the circular functions $y = \sin x$ and $y = \cos x$, using a spreadsheet of graph plotter as well as pencil and paper; recognise the characteristic shapes of all these functions
- Transform triangles and other 2-D shapes by translation, rotation and reflection and combinations of these transformations
- \bigcirc Apply to the graph of y = f(x) the transformations y = f(x) + a, y = f(ax), y = f(x + a), y = a if (x) for linear, quadratic, sine and cosine functions f(x)

Laws of indices for all rational exponents.	Maths 2 ∞ + beyond Indices	*Simple exponential equations Follow on*; Teacher Notes	*On Target 1*	*N12 INDICES*
	BOTM	<u></u>		<u>RISP 35</u>
	Algebraic Indices I Algebraic Indices II Numerical Indices I Numerical Indices II Law of Indices			NRich Giants Climbing Powers
Use and manipulation of surds.	*MUM*			*N11 SURDS*
	Surds BOTM			NRich The Root of The Problem
	Manipulation of surds			Absurdity

	C1 (EDEXCEL)					
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources	
	Quadratic functions and their graphs. The discriminant of a quadratic function.	BOTM Difference between two squares Completing the Square *Quadratic functions* Analysing Graphs	*Quadratic Sort*	Mathsnet Exam Questions	*C1 CLASSIFYING QUADRATICS* RISP10 RISP 33	
	Completing the square. Solution of quadratic equations.		<u>Song 1</u> <u>*Song 2*</u>		RISP 17 NRich Proof Sorter- Quadratic Equation Power Quady Quadratic Harmony	
Algebra	Solution of simultaneous equations. Analytical solution by substitution.	*BOTM* Simultaneous equations			RISP 8 RISP 12 NRich System Speak Always Two	
	Solution of linear and quadratic inequalities.	*BOTM* Inequalities			NRich Article: Proofs with Pictures Unit Interval Eyes Down In between	

	C1 (EDEXCEL)				
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources
	Algebraic manipulation of polynomials, including expanding brackets and collecting like terms, and factorisation.	*BOTM* Simplifying algebraic fractions Manipulating algebraic fractions Factorising		*On Target 2*	RISP 3 NRich Sums of Squares Common Divisor Root to Poly Polynomial Relations
	Graphs of functions; sketching curves defined by simple equations. Geometrical interpretation of algebraic solution of equations. Use of intersection points of graphs of functions to solve equations.	BOTM Curve Sketching	*Graph Recognition loop*	True, Never, Sometimes; Teacher Notes	RISP 6 RISP 34 NRich Witch of Agnesi Intersections
	Knowledge of the effect of simple transformations on the graph of $y = f(x)$ as represented by $y = af(x)$, $y = f(x) + a$, $y = f(x+a)$, $y = f(ax)$	AUTOGRAPH Transforming Graphs; Teacher Notes Shoot That Goal Explore y = mx + c Explore trig functions GSP Transforming functions BOTM Transforming graphs	*Transform Loop*	*Mathsnet Exam Questions*	NRich Parabolic Patterns
			go hmmmmmm*		

	C1 (EDEXCEL)						
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources		
ne	Prior knowledge: ③ Understand that one coordinate identifies a poin and '3-D' ③ Use conventions for coordinates in the plane ⑤ Locate points with given coordinate ⑥ Plot points in all four quadrants ⑥ Find the coordinates of points identified by geom ⑥ Find the coordinates of the midpoint of the line s ⑥ Recognise (when values are given for m and c explicitly in terms of x (as in y = 2 x + 3), or in ⑥ Find the gradient of lines given by equations of t ⑥ Understand that the form y = mx + c represent ⑥ Explore the gradients of parallel lines and lines p gradient (-5) and that the line with equation y = Equation of a straight line in forms y = mx + c, y-y₁ = m(x-x₁) and	netrical information regment AB, given the points A and B,) that equations of the form y = mx + nplicitly (as in x + y = 7) he form y = mx + c (when values are is a straight line and that m is the grad perpendicular to these lines [for example	then calculate the length AB c correspond to straight-line graphs in given for m and c) ient of the line, and c is the value of the le, know that the lines represented by t	the coordinate plane; plot graphs	of functions in which y is give		
	$\dots ax + by + c = 0$	BOTM Linear Equations	*Co-ord Match*; Teacher Notes	<u>Ivor Cocked Up</u>			

	C1 (EDEXCEL)					
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources	
	Conditions for two straight lines to be parallel or perpendicular to each other.	AUTOGRAPH Dog in the Fridge; Teacher Notes *BOTM* Parallel lines Perpendicular lines Unit Summary	Perpendicular Proof Teacher Notes	*Mathsnet Exam Questions* PROBING QUESTIONS	*A10 CONNECTING PERPENDICULAR LINES* NRich Parabella Enclosing Squares	
		Things to make you	go hmmmmmm			

		C1 (EI	DEXCEL)		
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources

	Prior Knowledge: ③ Generate common integer sequences (including a generate terms of a sequence using term-to-term a generate terms of a sequence using term-to-term a generate term of the sequence using term-to-term and the sequence using term-to-term of the sequence using terms of the sequence using terms of the sequence using the s	n and position-to-term definitions of th	ne sequence		
series	Sequences, including those given by a formula for the <i>n</i> th term and those generated by a simple relation in the form $x_{n+1} = f(x_n)$	*BOTM* Recurrence relations	Introducing Sequences and Series	*On Target*	N13 ANALYSING SEQUENCES
				True, Never, Sometimes;	DICD 4
ces alla	Arithmetic series, including the formula for the sum of the first <i>n</i> natural numbers.	BOTM Identifying progressions Arithmetic progressions Sigma notation	*TRIO; Teacher Notes* *AS Loop* Do the AS Conga *Proof Jumble*	Teacher Notes	RISP 1 RISP 2 RISP 20
5	Understanding of Σ notation.			AS Treasure Hunt Teacher Notes	NRich Proof Sorter – Sum of a AP Prime AP
				Mathsnet Exam Questions	
				PROBING QUESTIONS	
		Things to make you	ı go hmmmmmm		

		C1 (ED	EXCEL)		
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources

Prior Knowledge:

Differentiation

- Use index laws to simplify and calculate the value of expressions involving multiplication and division of integer powers, zero powers, fractional and negative powers
- © Recognise (when values are given for m and c) that equations of the form y = mx + c correspond to straight-line graphs in the coordinate plane; plot graphs of functions in which y is given explicitly in terms of x (as in y = 2x + 3), or implicitly (as in x + y = 7)
- □ Find the gradient of lines given by equations of the form y = mx + c (when values are given for m and c)
- Understand that the form y = mx + c represents a straight line and that m is the gradient of the line, and c is the value of the y intercept explore the gradients of parallel lines and lines perpendicular to these lines [for example, know that the lines represented by the equations y = -5x and y = 3 5x are parallel, each having gradient (-5) and that the line with equation y = x divided by 5 is perpendicular to these lines and has gradient 1/5]

The derivative of f(x) as the gradient Gradient = 2?; Teacher Notes* AUTOGRAPH RISP 36 of the tangent to the graph of y = f(x)First Principles: Teacher Notes **Gradient Function** *On Target* at a point; the gradient of the tangent **Gradient Curve** NRich as a limit; interpretation as a rate of **Gradient Function** Slide change. Second order derivatives. Differentiation of x n and related *Math 2 ∞ + beyond* Differentiation Song *C3 sums and differences. *Match the Pairs; MATCHING FUNCTIONS **Teacher Notes*** AND DERIVATIVES* BOTM Basic differentiation True, Never, Sometimes; *C4 Teacher Notes Harder differentiation **DIFFERENTIATING** FRACTIONAL AND **NEGATIVE POWERS*** Applications of differentiation to MUM *Unjumble; Teacher Notes* gradients, tangents and normals. Differentiation *Mathsnet Exam BOTM Questions* Finding gradients Tangents and normals PROBING QUESTIONS

	C1 (EDEXCEL)				
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources

	Indefinite integration as the reverse of differentiation.	BOTM Basic Integration MUM Integration	Fundamental Theorem of Calculus(FTC) *Matching Pairs: Teacher Notes* *Integration loop (x ⁴ +c)*	On Target	
,	Integration of x ⁿ .	*BOTM* The 4 fs – finding f from f Harder Integration Maths 2∞ + beyond	Partners Please; Teacher Notes Poems and Songs	True, Never, Sometimes: Teacher Notes	*C4 INTEGRATING FRACTIONAL AND NEGATIVE POWERS*
				* <u>Mathsnet Exam</u> <u>Questions</u> *	
				PROBING QUESTIONS	

Formulae that students are expected to remember and that may not be included in formulae booklets.

Quadratic equations

$$ax^2 + bx + c = 0$$
 has roots
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Differentiation

Function Derivative
$$\frac{x^n}{n}$$
 $\frac{nx^{n-1}}{n}$

Integration

Function

Inction Integral
$$\frac{1}{n+1}x^{n+1} + C, n \neq -1$$