<u>Tableau de bord</u> / Mes cours / <u>LU3IN006 - S1</u> / <u>QCM3 - Interprétation des fonctions, des prédicats et des connecteurs</u> / <u>QCM3-2 Interprétation de la formule F0</u>

Commencé le	dimanche 25	octobre 2020,	16:47
-------------	-------------	---------------	-------

État Terminé

Terminé le dimanche 25 octobre 2020, 17:23

Temps mis 35 min 29 s

Note 5,00 sur 5,00 (**100**%)

Question **1**

Correct Note de 1,00 sur 1,00 Soit a et b deux symboles de constante de \mathcal{F}_0 , p un symbole de prédicat d'arité 1 et q un symbole de prédicat d'arité 2. On considère la formule $F_0 = p(a) \Rightarrow (q(a,b) \vee \neg p(b))$. Cocher la valeur de $[F_0]^{\mathbf{M}_2}$ lorsque \mathbf{M}_2 est la structure de domaine $\{k_1,k_2\}$ telle que : $a^{\mathbf{M}_2}=k_1$ $b^{\mathbf{M}_2}=k_2$ $p^{\mathbf{M}_2}=k_2$ $q^{\mathbf{M}_2}=(k_2,k_1)$

Veuillez choisir au moins une réponse :

0

V 1

Question **2**Correct

Note de 1,00 sur 1,00 Soit a et b deux symboles de constante de \mathcal{F}_0 , p un symbole de prédicat d'arité 1 et q un symbole de prédicat d'arité 2. On considère la formule $F_0=p(a)\Rightarrow (q(a,b)\vee \neg p(b))$. Cocher la valeur de $[F_0]^{\mathbf{M}_3}$ lorsque \mathbf{M}_3 est la structure de domaine $\{k_1,k_2\}$ telle que : $a^{\mathbf{M}_3}=k_1$ $b^{\mathbf{M}_3}=k_2$ $p^{\mathbf{M}_3}=k_1$ $q^{\mathbf{M}_3}=(k_2,k_1)$

Veuillez choisir au moins une réponse :

0

1

Question **3**Correct

Note de 1,00 sur 1,00 Soit a et b deux symboles de constante de \mathcal{F}_0 , p un symbole de prédicat d'arité 1 et q un symbole de prédicat d'arité 2. On considère la formule $F_0 = p(a) \Rightarrow (q(a,b) \vee \neg p(b))$. Cocher la valeur de $[F_0]^{\mathbf{M}_5}$ lorsque \mathbf{M}_5 est la structure de domaine $\{k_1,k_2\}$ telle que : $a^{\mathbf{M}_5}=k_1$ $b^{\mathbf{M}_5}=k_2$ $p^{\mathbf{M}_5}=k_1,k_2$ $q^{\mathbf{M}_5}=(k_2,k_1)$

Veuillez choisir au moins une réponse :

✓

~

Question **4**Correct

Note de 1,00 sur 1,00 Soit a et b deux symboles de constante de \mathcal{F}_0 p un symbole de prédicat d'arité 1 et q un symbole de prédicat d'arité 2. On considère la formule $F_0 = p(a) \Rightarrow (q(a,b)[\lceil \log r \rceil \rceil \neg p(b))$. Cocher la valeur de $[F_0]^{M_1}$ lorsque M_1 est la structure de domaine $\{k_1,k_2\}$ telle que : $a^{M_1} = k_1 \ b^{M_1} = k_2 \ p^{M_1} = \emptyset \ q^{M_1} = (k_2,k_1)$

Veuillez choisir au moins une réponse :

Question **5**Correct
Note de 1,00 sur 1,00

Soit a et b deux symboles de constante de \mathcal{F}_0 p un symbole de prédicat d'arité 1 et q un symbole de prédicat d'arité 2. On considère la formule $F_0 = p(a) \Rightarrow (q(a,b)[\lceil r] \neg p(b))$. Cocher la valeur de $[F_0]^{M}$ 4 lorsque M_4 est la structure de domaine $\{k_1,k_2\}$ telle que : a^{M} $4 = k_1$ b^{M} $4 = k_2$ p^{M} $4 = k_1,k_2$ q^{M} $4 = (k_1,k_2)$

Veuillez choisir au moins une réponse :

■ QCM3-1 Interprétation d'un terme sans variable

 QCM3-3 Formules F1 et F2 ►