Accelerated Proce Rolling:
Linear volocity = 19 Angular volocity = ω Condition for pure rolling R $V = R\omega$
Angular velocity = a . (M.
Condition for pure rolling R
V=RW
$\frac{dv}{dt} = R \frac{deo}{dt} \text{or} \alpha = R\alpha$
Linear Acceleration = Rx angular acceleration.
• If $\alpha = R\alpha$, then frictional force $f = 0$.
· If a < Ra, f will act in forward direction · If a > Ra, f will act in the backward direction.
From figure $\alpha = \frac{F_{net}}{M} = \frac{F + f}{M}$
$a = \frac{F_{net}}{F_{net}} = F + f$
M M
$\alpha = \frac{\gamma_c}{I} = \frac{(F-f)R}{I}$
For pure rolling $\alpha = R \alpha$.
V
$\frac{F+f}{M} = \frac{(F-f)R^2}{T}$
= IF+If = MR2F-MR2f
$\Rightarrow f(I+MR^2) = (MR^2-I)F$
$\int z \left(\frac{MR^2 - I}{MR^2 + I} \right) F$
(i) $I = MR^2$ then $f = 0$
(ii) If I < MR2 : f is positive, fish forward
direction.
(iii) If I > MR2 fis in backward direction.
Although I>MR2 not possible
so the force of friction is viture
in the forward direction or zero.

Rolling on rough inclined plane Masino a (8) $a = \frac{Mg \sin \theta - f}{M}$ $\alpha = \frac{\gamma}{T} = \frac{fR}{T}$ For pure volling a=RX $\frac{Mgsin0-f}{M} = \frac{fR^2}{T}$ \Rightarrow IMqsino-If= MfR² $\Rightarrow f(I + MR^2) = I Mq sin \theta$ $f = \frac{IMgsin\theta}{(I + MR^2)} = \frac{Mgsin\theta}{(I + \frac{MR^2}{I})}$ $\alpha = \frac{Mg \sin \theta - f}{M} = g \sin \theta - \frac{f}{M}$ a = gsino - Mgsino (1+ MR2) M = 9 sino 1 - 1 + MR2 $= 9 \sin \theta \left[1 - \frac{I}{I + MR^2} \right]$ = 9 sino | MR2 | T+MR2 | $Cl = \frac{9 \sin \theta}{\left[1 + \frac{I}{MR^2}\right]}$ Solid sphere, hollow sphere, Cylinder. Isphere = 1 MR2 Indow = 2 MR2 Icyl = 1 MR2 Angular Impulse: 7 = dI .. 7.de = di (7dt = Angular impulse = dI = I2-Ii

$$I_{total} = 2ma^{2} + m(2a)^{2} + 8m(6a)^{2}$$

$$= 2ma^{2} + 4ma^{2} + 24ma^{2}$$

$$= 30ma^{2}$$

$$= 30ma^{2}\omega$$

$$= 30 ma^{2}\omega$$

$$= 30 ma^{2}\omega$$

$$= -1 + -1$$

$$= -1 + -1$$

$$\omega = \frac{6mva}{3ma^2} = \frac{19}{5a}$$

Total Rinetic energy
$$E_{k} = \frac{1}{2} I_{\text{total}} \omega^{2}$$

$$= \frac{1}{2} (30 \, \text{ma}^{2}) \omega^{2}$$

$$= \frac{1}{2} 15 \, \text{ma}^{2}. \frac{v^{2}}{2502}$$

$$= \frac{3}{5} \text{ ma}^2$$
.