NAIL062 P&P Logic: Worksheet 2 – Semantics, properties of theories

Teaching goals: After completing, the student

- understands the concepts of propositional logic semantics (truth value, truth function, model, validity, tautology, inconsistency, independence, satisfiability, equivalence), can formally define them and provide examples
- can decide whether a set of logical connectives is universal
- knows the terminology for formulas in CNF and DNF
- can convert a given formula or a finite theory into CNF and DNF, both using the set of models and using equivalent transformations
- understands the terminology of properties of theories (inconsistent, consistent/satisfiable, complete, consequences, T-equivalence), can define them formally and give examples
- understands the notion of [simple, conservative] extension, can formally define them and provide examples
- in a concrete case, can decide whether it is a [simple, conservative] extension, and justify it both from the definition and using the semantic criterion

IN-CLASS PROBLEMS

Problem 1. Give an example of a formula in the language $\mathbb{P} = \{p, q, r\}$ that is (a) valid (b) contradictory, (c) independent, (d) equivalent to $(p \wedge q) \rightarrow \neg r$, (e) has exactly the models $\{(1,0,0),(1,0,1),(0,0,1)\}.$

Solution. For example: (a) $p \vee \neg p$, (b) $p \wedge \neg p$, (c) p, (d) $\neg p \vee \neg q \vee \neg r$, (e) $(p \vee r) \wedge \neg q$ \Box

Problem 2. Are these sets of logical connectives universal? (a) $\{\lor, \to, \leftrightarrow\}$, (b) $\{\downarrow\}$ where \downarrow is the Peirce arrow (NOR).

Solution. (a) No; prove by structural induction that every formula has (1, ..., 1) as a model. (b) Yes; we use the fact that $\{\neg, \lor, \land\}$ is universal, and express:

- $\bullet \neg x \sim x \downarrow x$
- $x \lor y \sim \neg(x \downarrow y) \sim (x \downarrow y) \downarrow (x \downarrow y)$ $x \land y \sim \neg(\neg x \lor \neg y) \sim \neg x \downarrow \neg y \sim (x \downarrow x) \downarrow (y \downarrow y)$

Problem 3. Convert the following formula to CNF and to DNF. Do this (a) semantically (using a truth table), (b) via equivalent transformations:

$$(\neg p \lor q) \to (\neg q \land r)$$

Solution. (a) First find the models of the formula: $\{(0,0,1),(1,0,0),(1,0,1)\}$. Describe each model by one elementary conjunction:

$$(\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land r)$$

CNF is obtained from the set of non-models, where each clause forbids one non-model:

$$\{(0,0,0),(0,1,0),(0,1,1),(1,1,0),(1,1,1)\}$$

$$(p \vee q \vee r) \wedge (p \vee \neg q \vee r) \wedge (p \vee \neg q \vee \neg r) \wedge (\neg p \vee \neg q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$$

(b) $(\neg p \lor q) \to (\neg q \land r) \sim \neg (\neg p \lor q) \lor (\neg q \land r) \sim (p \land \neg q) \lor (\neg q \land r)$ is a DNF; CNF is obtained by distribution, and then simplified: $(p \vee \neg q) \wedge (p \vee r) \wedge (\neg q \vee \neg q) \wedge (\neg q \vee r) \sim (p \vee r) \wedge \neg q$

Problem 4. Let $T = \{p \leftrightarrow q, \neg p \rightarrow \neg q, q \lor r\}$ be a theory in the language $\mathbb{P} = \{p, q, r\}$.

- (a) Decide whether the theory T is [inconsistent/satisfiable/complete].
- (b) Give an example of a formula φ that is [true/false/independent] in T.
- (c) Give an example of an extension T' of the theory T (if it exists, and if possible not equivalent to T) that is [simple / conservative / complete / conservative simple / complete simple / complete conservative]. Also give an example of an extension T' of the theory T that is neither conservative nor simple.
- (d) Using your example extensions, show that the semantic criterion holds (i.e., the statement defining the notion of a [conservative] extension using expansions/reducts of models).

Solution. We will need to know the models: $M(T) = \{(0,0,1), (1,1,0), (1,1,1)\}$

- (a) It is not inconsistent, it is satisfiable, it is not complete.
- (b) In the theory T, for example, $p \lor r$ is true, $\neg q \land \neg r$ is false, $p \lor q$ is independent.
- (c) Let us give examples or justify non-existence:
 - 1. Simple: $\{p \land q\}$
 - 2. Conservative: $T_2 = \{(p \land q) \lor (\neg p \land \neg q), p \lor q \lor r, p \lor s\}$ in the language $\mathbb{P}' = \{p, q, r, s\}$
 - 3. Complete: $\{\neg p, \neg q, r, \neg s\}$ in the language $\mathbb{P}' = \{p, q, r, s\}$
 - 4. Conservative simple: must be equivalent to T, e.g., $\{(p \land q) \lor (\neg p \land \neg q), p \lor q \lor r\}$
 - 5. Complete simple: $\{p, q, \neg r\}$
 - 6. Complete conservative: does not exist; a non-complete theory cannot have a complete conservative extension (prove this).
 - 7. Neither conservative nor simple: $\{p \land q, r \lor s\}$ in the language $\mathbb{P}' = \{p, q, r, s\}$.
- (d) Construct the corresponding sets of models and verify the condition; we show it only for 2.:

$$M_{\mathbb{P}'}(T_2) = \{(0,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1)\}$$

We see that restricting the models of T_2 to the language \mathbb{P} yields exactly the models of T, so it is an extension; and every model of T can be expanded to some model of T_2 , hence the extension is conservative.

Problem 5. Prove or refute (or state the correct relationship) that for every theory T and formulas φ , ψ in the language \mathbb{P} the following hold:

- (a) $T \models \varphi$ iff $T \not\models \neg \varphi$
- (b) $T \models \varphi$ and $T \models \psi$ iff $T \models \varphi \land \psi$
- (c) $T \models \varphi$ or $T \models \psi$ iff $T \models \varphi \lor \psi$
- (d) $T \models \varphi \rightarrow \psi$ and $T \models \psi \rightarrow \chi$ iff $T \models \varphi \rightarrow \chi$

Solution. We give only the correct answers and counterexamples; prove them yourself (from the definitions).

- (a) False, e.g., for $T = p \lor q$, $\varphi = p$. (If T is consistent, the direction \Rightarrow holds.)
- (b) True.
- (c) False, e.g., for $T = p \lor q$, $\varphi = p$, $\psi = q$. The direction \Rightarrow holds.
- (d) False, e.g., for $T = \{p \to r\}, \ \varphi = p, \ \psi = q, \ \chi = r$. The direction \Rightarrow holds.

EXTRA PRACTICE

Problem 6. Let $T = {\neg q \rightarrow (\neg p \lor q), \ \neg p \rightarrow q, \ r \rightarrow q}$ be a theory in the language ${p, q, r}$.

(a) Give an example of the following: a formula true in T, false in T, independent in T, satisfiable in T, and a pair of T-equivalent formulas.

(b) Which of these propositions are true, false, independent, satisfiable in T? T-equivalent?

$$p, \neg q, \neg p \lor q, p \to r, \neg q \to r, p \lor q \lor r$$

Problem 7. Are the following sets of logical connectives universal? Justify your answer. (a) $\{\lor, \land, \to\}$ (b) $\{\uparrow\}$ where \uparrow is the Sheffer stroke (NAND)

Problem 8. Find the set of models of the given proposition. Use that it is in DNF or CNF.

- (a) $(\neg p_1 \land \neg p_2) \lor (\neg p_1 \land p_2) \lor (p_1 \land \neg p_2) \lor (p_2 \land \neg p_3)$
- (b) $(\neg p_1 \lor \neg p_2) \land (\neg p_1 \lor p_2) \land (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3)$

Problem 9. Convert to CNF and DNF by both methods: $(\neg p \rightarrow (\neg q \rightarrow r)) \rightarrow p$

Problem 10. Find the (shortest possible) CNF and DNF representations of the Boolean function maj: $\{0,1\}^3 \to \{0,1\}$ that returns the majority value among the 3 inputs.

Problem 11. The same assignment as in Example ??, but for the theory $T = \{(p \land q) \rightarrow r, \neg r \lor (p \land q)\}$ in the language $\mathbb{P} = \{p, q, r\}$.

Problem 12. Prove or refute (or state the correct relationship) that for arbitrary theories T, S over \mathbb{P} the following hold:

- (a) $S \subseteq T \Rightarrow \operatorname{Csq}(T) \subseteq \operatorname{Csq}(S)$
- (b) $\operatorname{Csq}(S \cup T) = \operatorname{Csq}(S) \cup \operatorname{Csq}(T)$
- (c) $\operatorname{Csq}(S \cap T) = \operatorname{Csq}(S) \cap \operatorname{Csq}(T)$

FOR FURTHER THOUGHT

Problem 13. Show that \wedge and \vee are not sufficient to define all Boolean operators, i.e., that $\{\wedge, \vee\}$ is not a *universal* set of logical connectives.

Problem 14. Consider the Boolean operator IFTE(p,q,r) defined as "if p then q else r".

- (a) Construct the truth table.
- (b) Show that all basic Boolean operators $(\neg, \rightarrow, \land, \lor, \dots)$ can be expressed using IFTE and the constants TRUE and FALSE.

Problem 15. Let \mathbb{P} be a countably infinite set of propositional variables.

- (a) Show that it is no longer true that every $K \subseteq M_{\mathbb{P}}$ can be axiomatized by a formula in CNF and also by a formula in DNF.
- (b) Give an example of a set of models K that cannot be axiomatized by a formula in CNF nor by a formula in DNF.

Problem 16. Find CNF and DNF representations of n-ary parity, i.e., the Boolean function par: $\{0,1\}^n \to \{0,1\}$, which returns the XOR of all input values:

$$par(x_1, \dots, x_n) = (x_1 + \dots + x_n) \bmod 2$$

Try it for small values of n.

Problem 17. Consider the infinite propositional theory $T = \{p_i \to p_{i+1} \mid i \in \mathbb{N}\}$ over var(T). (a) Find all models of T. (b) Which formulas of the form $p_i \to p_j$ are consequences of T?