Run Time & Performance

Kurt Schmid

IIIIIO

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

Run Time & Performance

Kurt Schmidt

Dept. of Computer Science, Drexel University

November 15, 2016

Examples are taken from Kernighan & Pike, *The Practice of Programming*, Addison-Wesley, 1999

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth Intro

Performance

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Progra Growth **Objective:** To learn when and how to optimize the performance of a program.

The first principle of optimisation is don't.

- Knowing how aprogram will be used, and the environment it runs in, is there any benefit to making it faster?
- Which areas of the program should we focus on?

Strategy

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

- Use the simplest, cleanest algorithms and data structures appropriate for the task
- Enable compiler options to generate the fastes possible code
 - Modern compilers optimise by default
 - Modern compilers are very good at their jobs
- Then, measure performance to see if changes are needed

Strategy (cont.)

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis Big-Oh

Timing Programs

- Assess what changes to the program will have the most effect
 - Use a profiler to find hotspots in your code
- Make changes incrementally, re-assess
 - Consider alternative algorithms
 - Tune the code
 - Consider a lower-level language
 - Maybe just for time-sensitive components
 - Always retest your code!

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Profiling Code

Profiler - gprof

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

- A profiler watches your program run
- Reports back a bunch of information, including
 - How much time was spent in each function
 - How many times each function was called
- Use this information to find bottlenecks (areas worth improvement) in your code
- Profilers exist for most common languages, including Java, Python, and Haskell
- We will use gprof, which can be run with programs compiled with a gnu compiler

Using gprof

Run Time & Performance

Kurt Schmidt

Intr

Profiling Code

Analysis
Big-Oh
Ranking of Europians

Timing Programs

Program Growth ■ Use the -p option to compile extra information into your program:

```
$ gcc -p driver.c quicksort.c -o mySort
```

Now run the program once, to generate metrics:

```
$ ./mySort < ins.10000 > /dev/null
```

■ Note, a new data file has appeared:1

```
$ ls -ot | head -n3
total 3864
-rw-r--r- 1 kschmidt 747 Aug 4 16:05 gmon.out
-rwxrwxr-x 1 kschmidt 9102 Aug 4 16:05 mySort
```


¹It's raw data. Don't look at it yet

Reading the gprof Report

Run Time & Performance

Kurt Schmid

Intr

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth Supply gprof w/the name of the executable to see report on stdout:

```
$ gprof mySort
```

Report contains 2 tables of data, with description of the information:

```
Each sample counts as 0.01 seconds.
      %
         cumulative self
                                  self
                                         total
     time
           seconds seconds calls us/call us/call name
     61.41
           0.25 0.25
                             500
                                  503.60 805.76 quicksort
     36.85 0.40 0.15 45721062
                                   0.00
                                          0.00
                                               swap
1.23 0.41
                     0.01
                                               main
emphh ...
```

Reading the gprof Report (cont.)

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

 granul	larity:	each s	ample hit	covers 2	byte(s)	for 2.45	5% of	0.41	sed
index	% time	self	children	called	name				
					<s< td=""><td>pontaneo</td><td>ous></td><td></td><td></td></s<>	pontaneo	ous>		
[1]	100.0	0.01	0.40		main [1]			
		0.25	0.15	500/500	qu	icksort	[2]		
						-			
			66	66956	qu	icksort	[2]		
		0.25	0.15	500/500	ma	in [1]			
[2]	98.8	0.25	0.15	500+6666	956 quick	sort [2]		
		0.15	0.00 45	721062/45	721062 s	swap [3]			
			66	66956	qu	icksort	[2]		
					·	-			
		0.15	0.00 45	721062/45	721062	quicksor	t [2]		
[3]	37.0	0.15	0.00 45	721062	swap	[3]			
					<u>-</u>	-			

Run Time & Performance

Kurt Schmic

Intro

Profiling Cod

Run-time Analysis

Big-On Banking of Functions

Timing Programs

Program Growth

Run-time Analysis

Asymptotic Run Time

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time Analysis

Ranking of Functions

Timing Programs

- We would like to be able to compare algorithms, for arbitrarily large inputs
- We want to evaluate the growth of algorithms vs. input
 - We don't care about, e.g., processor speed, the leading coefficient, nor lower-order terms
 - E.g., linear search. If the array size doubles, so does the run-time $\implies \Theta(n)$
 - Selection sort is a quadratic sort, $\Theta(n^2) \Longrightarrow$ doubling input size will quadruple run time (for large n)
 - Accessing an element of an array is a constant-time operation, $\Theta(1)$, regardless of size of array

Lower Bound (Loose) - Little Omega

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Big-Oh

Timina

Programs -

Analysis

Program Growth Consider function $T_n = 5n^2 + 17n - 12$

$$\lim_{n \to \infty} \frac{5n^2 + 17n - 12}{n} = \infty \implies T_n \in \omega(n)$$

- We say T_n is bound below (loosely) by n
- We say T_n grows strictly faster (asymptotically) than n
- \blacksquare T_n can not be bound above by n

More generally:

$$\lim_{n \to \infty} \frac{T_n}{f_n} = \infty \implies T_n \in \omega(f_n)$$

Upper Bound (Loose) - Little Oh

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time

Analysis

Ranking of Function

Timing Programs

Program Growth

$$\lim_{n \to \infty} \frac{5n^2 + 17n - 12}{n^3} = 0 \implies T_n \in \mathbf{O}(n)$$

- We say T_n is bound above (loosely) by n^3
- We say T_n grows strictly more slowly (asymptotically) than n^3
- $\blacksquare T_n$ can not be bound below by n^3

More generally:

$$\lim_{n \to \infty} \frac{T_n}{f_n} = 0 \implies T_n \in \mathsf{o}(f_n)$$

Asymptotically Equivalent – Theta

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Analysis

$$\lim_{n \to \infty} \frac{5n^2 + 17n - 12}{n^2} = 5 \implies T_n \in \Theta(n)$$

- We say T_n grows like n^2 (asymptotically)
- \blacksquare T_n can bound below, and above, by n^2

More generally:

$$\lim_{n \to \infty} \frac{T_n}{f_n} = c, c \in \mathbb{R}^+ \implies T_n \in \Theta(f_n)$$

Note: This does not mean that T_n is polynomic

Notes on Asymptotic Equivalence

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Analysis

- Two equivalent functions needn't look the same
 - Just grow similarly
 - **Consider** $y = x + \sin x$
 - y grows like a line
 - Bound above by y = x + 1
 - Bound below by y = x 1
 - Clearly not a line

Quick Observations

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time

Big-Oh

Ranking of Functions

Timing Programs

Analysis

Program Growth

$$f \in O(g) \iff g \in \omega(f)$$

$$T \in \Theta(f) \implies T \notin O(f)$$

$$T \in \Theta(f) \implies T \notin \omega(f)$$

$$T \in \omega(f) \implies T \notin \Theta(f)$$

 $T \in \mathsf{o}(f) \implies T \notin \Theta(f)$

Big-Oh, -Omega

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Function

Timing Programs

Program Growth Upper (lower) bound, may or may not be tight

$$O(f) = o(f) \cup \Theta(f)$$

$$\Omega(f) = \omega(f) \cup \Theta(f)$$

We have these observations:

$$\mathsf{o}(f)\subset \mathrm{O}(f)$$

$$\omega(f)\subset\Omega(f)$$

Finally,

$$T \in \Theta(f) \iff T \in \Omega(f) \land T \in \Omega(f)$$

Qualitative Statements

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Run-time Analysis

Big-Oh Ranking of Functions

Timing Programs

Program Growth T is O(f)

- \blacksquare "T grows no faster than f"
- \blacksquare "T is bound above by f"
- "f is an upper bound for T"

T is $\Omega(f)$

- \blacksquare "T grows no slower than f"
- \blacksquare "T is bound below by f"
- "f is a lower bound for T"

Ranking of Common Functions

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Analysis

Big-Oh
Ranking of Functions

Time in a

Programs

Prograr Growth For reference, here are some common functions, in increasing order:

$$\begin{array}{cccc} 1 \text{ (constant)} & & n^2 \\ \log n & & \vdots & \\ \sqrt{n} & & n^p & \\ n & & c^n & \\ n \log n & & n^n \approx n! \end{array}$$

Note,
$$\log n \in \mathbf{O}(n^p), p \in \mathbb{R}, \forall p > 0$$

Run Time & Performance

Kurt Schmid

Intro

Profiling Cod

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Growth Growth

Timing Programs

Timing - time

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time
Analysis
Big-Oh
Ranking of Functions

Timing Programs

Prograr Growth If we can't evaluate the algorithm, we can run the program with various inputs, time each run

- Various languages may provide their own mechanism for timing from within the program
- The time utility takes a program, with arguments, to run
 - You now know why you type date to see what the time is

Using the time Utility

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

Progran Growth

```
time [options] cmd [cmd_args]
```

options Options to modify behavior of time. Must precede cmd

cmd The program run you want to time

cmd_args Arguments, including options, to be passed to cmd

Note: This is a built-in in Bash, Tenex C-Shell, and others.

time example

Run Time & Performance

Kurt Schmid

Intr

Profiling Code

Analysis

Big-Oh

Ranking of Eurotions

Timing Programs

Progran Growth

From our previous example:

```
$ time ./mySort < ins.10000 > /dev/null
```

- Output to screen is expensive
- We're not interested in that time

Output from time (to stdout:

```
real 0m7.572s
user 0m7.555s
sys 0m0.004s
```

Description of Output

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis
Big-Oh

Timing Programs

- real The wall clock. Total time elapsed. Keeps ticking, even if your program is sliced out
- user The actual time your program spent running, in user mode
 - sys The actual time your program spent running, in kernel mode
- The sum of the user and sys times is probably what you want

time Built-in v. Utility

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth

- There is a utility (not a shell built-in)
 - On tux, installed as /usr/bin/time
 - Can also report on other metrics
 - Output values and format can be customised to stderr
- Bash, Tenex C Shell, and others have a built-in time command, which doesn't allow for customising the output format
 - The built-ins are a bit slicker, parsing up the command line
 - For e.g., the following produces no output (why?), but works fine w/the shell built-in

\$ /usr/bin/time ./mySort < ins.10000 &> /dev/null

Alternatives to Timing Program

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

- Computers have gotten fast
 - Makes it a little harder to grab good numbers
- Alternatively, we could be creative, use metrics from a profiler
 - E.g., we could count the number of calls to swap for various sized inputs to our sort
 - Or, we might use a function to compare elements in a sort, use a profiler to count the number of times items are compared
- We can use this data in the same way, plot it, see how it grows

Run Time & Performance

Kurt Schmic

Intro

Profiling Cod

Run-time Analysis Big-Oh Ranking of Functions

Timing Programs

Program Growth

Estimating Program Growth

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Run-time
Analysis
Big-Oh
Ranking of Functions

Timing Programs

Program Growth Run your program on various-sized inputs, collect times

- Get a good number of points
- Discard very small results
- Provide inputs large enough to get past lower-order noise
- Find an upper and lower bound
- Consider $\frac{T_n}{f_n}$ for various functions f
 - Identify upper and lower bounds
 - Try to pinch in, get the upper and lower bounds closer to each other
 - You might not get them to meet

Estimating Program Growth – e.g.

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Run-time
Analysis
Big-Oh
Ranking of Functions

Timing Programs

Program Growth

Consider times T discovered for various input sizes n:

n	T(n)
10.00	3908.51
20.00	20657.40
30.00	55954.53
40.00	113992.17
50.00	198284.36
60.00	311920.28
70.00	457689.75
80.00	638156.74
90.00	855706.82
100.00	1112580.00

- *T*(*n*) appears to be increasing w/out bound
 - So, *T* is not constant
 - Maybe. We don't know this

Let's compare to f(n) = n

E.g. - Line is a Lower Bound

Run Time & Performance

Kurt Schmic

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

n	T(n)/n
10.00	390.85
20.00	1032.87
30.00	1865.15
40.00	2849.80
50.00	3965.69
60.00	5198.67
70.00	6538.43
80.00	7976.96
90.00	9507.85
100.00	11125.80

- ightharpoonup T(n)/n also appears to be increasing, w/out bound
- So, f(n) = n looks like a lower bound
 - I.e., $T(n) \in \Omega(n)$
 - If not tight, if it increases w/out bound, then $T(n) \in \omega(n)$

Let's try
$$f(n) = n^2$$
:

E.g. - Quadratic is a Lower Bound

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

n	$T(n)/n^2$
10.00	39.09
20.00	51.64
30.00	62.17
40.00	71.25
50.00	79.31
60.00	86.64
70.00	93.41
80.00	99.71
90.00	105.64
100.00	111.26

- $T(n)/n^2$ also appears to be increasing
- - I.e., $T(n) \in \Omega(n^2)$
 - If not tight, if it increases w/out bound, then $T(n) \in \omega(n^2)$

Let's try
$$f(n) = n^3$$
:

E.g. - Cubic is an Upper Bound

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Timing Programs

$T(n)/n^3$
3.91
2.58
2.07
1.78
1.59
1.44
1.33
1.25
1.17
1.11

- $\blacksquare T(n)/n^3$ is decreasing
- $f(n) = n^3 \frac{\text{looks like an upper}}{\text{bound}}$
 - I.e., $T(n) \in O(n^3)$
 - If not tight, if the values tend towards 0, then $T(n) \in \omega(n^2)$
- We know that T grows no slower than a quadratic, and no faster than a cubic
- We might be able to improve one or both of those bounds

E.g. $-n^2 \log n$

Run Time & Performance

Kurt Schmic

Intr

Profiling Code

Analysis
Big-Oh

Timing Programs

Program Growth Consider $f_n = n^2 \log n$

n	$\frac{T(n)}{n^2 \log n}$
10.0	16.974
20.0	17.239
30.0	18.279
40.0	19.313
50.0	20.274
60.0	21.162
70.0	21.986
80.0	22.755
90.0	23.477
100.0	24.159

- T(n) also seems to be increasing
- So, we have a new (better) lower bound

$$\blacksquare \ T(n) \in \Omega(n^2 \log n)$$

Let's try moving up a bit more:

Program Growth

Consider	f_n	=	$n^{2.3}$
Consider	I n	_	10

n	$T(n)/n^{2.3}$
10.0	19.589
20.0	21.024
30.0	22.411
40.0	23.558
50.0	24.528
60.0	25.369
70.0	26.112
80.0	26.781
90.0	27.388
100.0	27.947

■ I'm comfortable saying n^{2.3} is a lower bound

$$\blacksquare \ T(n) \in \Omega(n^{2.3})$$

Let's try moving up a bit more:

Analysis

Big-Oh

Timing Programs

Program Growth Consider $f_n = n^{2.5}$

n	$T(n)/n^{2.5}$
10.0	12.360
20.0	11.548
30.0	11.351
40.0	11.265
50.0	11.217
60.0	11.186
70.0	11.164
80.0	11.148
90.0	11.136
100.0	11.126

- This looks like an upper bound
 - $\blacksquare T_n \in \mathrm{O}(n^2\sqrt{n})$
- Is it tight?
- Let's try something a little lower:

Run Time & Performance

Kurt Schmid

Intr

Profiling Code

Analysis

Big-Oh

Timing Programs

Program Growth

Consider $f_n = n^{2.4}$

n	$T(n)/n^{2.4}$
10.0	15.560
20.0	15.581
30.0	15.949
40.0	16.290
50.0	16.587
60.0	16.845
70.0	17.074
80.0	17.279
90.0	17.464
100.0	17.633

- Increasing, so, lower bound
 - $T_n \in \Omega(n^{2.4})$

E.g. - Conclusion

Run Time & Performance

Kurt Schmid

Intro

Profiling Code

Analysis

Big-Oh

Ranking of Functions

Timing Programs

Program Growth We have T_n bound below by $n^{2.4}$ and bound above by $n^{2.5}$

- We maybe didn't find it exactly, but we have a very good idea how this algorithm grows
- Only push in each direction while you're comfortable w/the data
- None of this is proof
 - We need to choose input size sufficiently large to get past lower-order terms
 - No way to know
 - But, a program, on a given computer, has a practical upper limit on input size