NEURAL NETWORKS

SLIDES ADAPTED FROM STUART RUSSELL

Brains

 10^{11} neurons of >20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

McCulloch-Pitts "unit"

Output is a "squashed" linear function of the inputs:

$$a_i \leftarrow g(in_i) = g\left(\sum_j W_{j,i} a_j\right)$$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

- (a) is a step function or threshold function
- (b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Network structures

Feed-forward networks:

- single-layer perceptrons
- multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:

- recurrent neural nets have directed cycles with delays
 - ⇒ have internal state (like flip-flops), can oscillate etc.

Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Adjusting weights changes the function: do learning this way!

Single-layer perceptrons

Adjusting weights moves the location, orientation, and steepness of cliff

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960). Represents a linear separator in input space:

$$\sum_{j} W_{j} x_{j} > 0$$
 or $\mathbf{W} \cdot \mathbf{x} > 0$

Can represent AND, OR, NOT, majority, etc.:

Multilayer perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units

Back-propagation learning

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

Typical problems: slow convergence, local minima

Handwritten digit recognition

3-nearest-neighbor = 2.4% error

400-300-10 unit MLP = 1.6% error

LeNet (1998): 768-192-30-10 unit MLP = 0.9% error

SVMs: $\approx 0.6\%$ error

Current best: 0.24% error (committee of convolutional nets)

Example: ALVINN

steering direction

[Pomerleau, 1995]

Backpropagation

Slides adapted from Kyunghyun Cho

Learning as an Optimization

Ultimately, learning is (mostly)

$$\theta = \underset{\theta}{\operatorname{arg\,min}} \frac{1}{N} \sum_{n=1}^{N} c\left(\left(x_{n}, y_{n}\right) \mid \theta\right) + \lambda \Omega\left(\theta, D\right),$$

where $c((x,y) \mid \theta)$ is a per-sample cost function.

Gradient Descent

Gradient-descent Algorithm:

$$\boldsymbol{\theta}^t = \boldsymbol{\theta}^{t-1} - \eta \nabla L(\boldsymbol{\theta}^{t-1})$$

where, in our case,

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} I((x_n, y_n) \mid \theta).$$

Let us assume that $\Omega(\theta, D) = 0$.

Stochastic Gradient Descent

Often, it is too costly to compute $C(\theta)$ due to a large training set.

Stochastic gradient descent algorithm:

$$\boldsymbol{\theta}^{t} = \boldsymbol{\theta}^{t-1} - \eta^{t} \nabla I \left((x', y') \mid \boldsymbol{\theta}^{t-1} \right),$$

where (x', y') is a randomly chosen sample from D, and

$$\sum_{t=1}^{\infty} \eta^t o \infty$$
 and $\sum_{t=1}^{\infty} \left(\eta^t\right)^2 < \infty$.

Let us assume that $\Omega(\theta, D) = 0$.

Almost there...

How do we compute the gradient efficiently for neural networks?

Backpropagation Algorithm – (1) Forward Pass

Forward Computation:

$$L(f(h_1(x_1,x_2,\theta_{h_1}),h_2(x_1,x_2,\theta_{h_2}),\theta_f),y)$$

Multilayer Perceptron with a single hidden layer:

$$L(\mathbf{x}, y, \boldsymbol{\theta}) = \frac{1}{2} \left(y - \mathbf{U}^{\top} \phi \left(\mathbf{W}^{\top} \mathbf{x} \right) \right)^{2}$$

Backpropagation Algorithm - (2) Chain Rule

Chain rule of derivatives:

$$\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial x_1} = \frac{\partial L}{\partial f} \left(\frac{\partial f}{\partial h_1} \frac{\partial h_1}{\partial x_1} + \frac{\partial f}{\partial h_2} \frac{\partial h_2}{\partial x_1} \right)$$

Backpropagation Algorithm – (3) Shared Derivatives

Local derivatives are shared:

$$\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial f} \left(\frac{\partial f}{\partial h_1} \frac{\partial h_1}{\partial x_1} + \frac{\partial f}{\partial h_2} \frac{\partial h_2}{\partial x_1} \right)$$

$$\frac{\partial L}{\partial x_2} = \frac{\partial L}{\partial f} \left(\frac{\partial f}{\partial h_1} \frac{\partial h_1}{\partial x_2} + \frac{\partial f}{\partial h_2} \frac{\partial h_2}{\partial x_2} \right)$$

Backpropagation Algorithm - (4) Local Computation

Each node computes

- ► Forward: $h(a_1, a_2, ..., a_q)$
- ▶ Backward: $\frac{\partial h}{\partial a_1}$, $\frac{\partial h}{\partial a_2}$, ..., $\frac{\partial h}{\partial a_q}$

Backpropagation Algorithm - Requirements

- Each node computes a differentiable function¹
- ► Directed Acyclic Graph²

¹Well...?

²Well...?

Backpropagation Algorithm - Automatic Differentiation

- Generalized approach to computing partial derivatives
- ► As long as your neural network fits the requirements, you do *not* need to derive the derivatives yourself!
 - ► Theano, Torch, . . .

Convolutional Neural Networks

(First without the brain stuff)

32x32x3 image

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Preview

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

preview:

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 22

27 Jan 2016

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

What is a word embedding?

Suppose you have a dictionary of words.

The i^{th} word in the dictionary is represented by an embedding:

$$w_i \in \mathbb{R}^d$$

i.e. a *d*-dimensional vector, which is **learnt!**

- d typically in the range 50 to 1000.
- Similar words should have similar embeddings (share latent features).
- Embeddings can also be applied to symbols as well as words (e.g. Freebase nodes and edges).
- Discuss later: can also have embeddings of phrases, sentences, documents, or even other modalities such as images.

Learning an Embedding Space

Example of Embedding of 115 Countries (Bordes et al., '11)

 \Box Classification

Convolutional Neural Networks

How well can we do with a simple CNN?

Collobert-Weston style CNN with pre-trained embeddings from word2vec

