ESAME DI MATEMATICA DISCRETA 21/03/2022

APPELLO STRAORDINARIO

ISTRUZIONI,

leggere attentamente.

- (1) Tempo massimo: 2 ore.
- (2) Voto massimo: **30/30**.
- (3) È possibile ritirarsi dall'esame, ma non prima di un'ora dall'inizio.
- (4) Dove richiesto è necessario spiegare le risposte. Risposte corrette senza spiegazioni o con spiegazioni errate o incoerenti saranno valutate 0.
- (5) Si è ammessi all'orale con un punteggio di almeno 15/30.
- (6) Non è permessa nessuna forma di comunicazione con l'esterno o con gli altri partecipanti all'esame.
- (7) Per la consegna è necessario mandare per e-mail la prova all'indirizzo slapenta@unisa.it con oggetto "matematica discreta".
- (8) Buon lavoro!

Esercizio 1 (8 punti). Siano $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ e $Y = \{a, b, c\}$. Sia $f: X \to Y$ definita da:

$$f(1) = a$$
, $f(2) = a$, $f(3) = c$, $f(4) = b$, $f(5) = a$, $f(6) = b$, $f(7) = c$, $f(8) = a$.

- (1) Scrivere $f^{-1}(\{a\})$, $f^{-1}(\{b\})$, $f^{-1}(\{c\})$. Formano una partizione di X? Motivare la risposta.
- (2) Sia $\sim \subseteq X \times X$ la relazione data da

$$x_1 \sim x_2 \Longleftrightarrow f(x_1) = f(x_2)$$

Dimostrare che è una relazione di equivalenza.

(3) Scrivere esplicitamente le classi di equivalenza di ogni elemento di X e l'insieme quoziente X/\sim .

Solutione:

- (1) Si ha $A=f^{-1}(\{a\})=\{1,2,8\},\ B=f^{-1}(\{b\})=\{4,6\},\ C=f^{-1}(\{c\})=\{3,7\}.$ Formano una partizione perché $A\cap B=A\cap C=B\cap C=\emptyset$ e $A\cup B\cup C=X.$
- (2) Si ha:
 - (a) $x_1 \sim x_1 \iff f(x_1) = f(x_1)$ che è verificato per la riflessività dell'uguale.
 - (b) Se $x_1 \sim x_2$, allora $f(x_1) = f(x_2)$, che è lo stesso di $f(x_2) = f(x_1)$ che implica $x_2 \sim x_1$.
 - (c) Se $x_1 \sim x_2$ e $x_2 \sim x_3$, allora $f(x_1) = f(x_2)$ e $f(x_2) = f(x_3)$, da cui segue $f(x_1) = f(x_3)$ e quindi $x_1 \sim x_3$.
- (3) Si ha

$$\begin{aligned} [1]_{\sim} &= [2]_{\sim} = [8]_{\sim} = \{1,2,8\} \\ [4]_{\sim} &= [6]_{\sim} = \{4,6\} \end{aligned} \qquad \begin{aligned} [3]_{\sim} &= [7]_{\sim} = \{3,7\} \\ X/\sim &= \{[1]_{\sim},[4]_{\sim},[3]_{\sim}\}. \end{aligned}$$

Esercizio 2 (7 punti). In un cesto sono presenti x palline. Svuotando il cesto succede che, prendendo le palline a 2 a 2 il cesto resti vuoto, prendendo le palline a 5 a 5 ne restano 4, prendendole a 3 a 3 ne restano 2. Qual è il numero minimo di palline nel cesto affinché questo accada?

Soluzione: Bisogna risolvere il sistema:

$$\begin{cases} x \equiv 0 \pmod{2} \\ x \equiv 4 \pmod{5} \\ x \equiv 2 \pmod{3} \end{cases}$$

La soluzione della prima equazione è s=2k, con $k\in\mathbb{Z}$. Sostituita alla seconda ottengo $2k\equiv 4\ (mod\ 5)$, da cui si ottiene k=2 e $T=[4]_{10}$ e t=4+10k. Sostituendo nella terza otteniamo $4+10k\equiv 2 \pmod 3$ e quindi $10k \equiv -2 \pmod{3}$. Da quest'ultima troviamo $k \equiv 1 \pmod{3}$ e l'insieme delle soluzioni è $S = [14]_{30}$. Quindi il numero minimo di palline è 14.

Esercizio 3 (8 punti). Per ognuna delle seguenti applicazioni, stabilire se è un omomorfismo:

- $f: (\mathbb{R}, +) \to (\mathbb{Z}, +), f(x)$ è il più grande intero minore di x (detto anche parte intera di x);
- $f: (\mathbb{Z}_6, +) \to (\mathbb{Z}_2, +), f(x) = rest(x, 2);$
- $f: (\mathbb{R}, +) \to (\mathbb{R} \setminus \{0, \}, \cdot), f(x) = 2^x$.

Soluzione:

- (1) Non lo è: $f\left(\frac{1}{2}\right) + f\left(\frac{1}{2}\right) = 0 + 0 = 0$, mentre $f\left(\frac{1}{2} + \frac{1}{2}\right) = f(1) = 1$. (2) Si, lo è: $f([a]_6 + [b]_6) = f([a+b]_6) = [a+b]_2 = [a]_1 + [b]_2 = f([a]_6) + f([b]_6)$. (3) Si, lo è: $f(x+y) = 2^{x+y} = 2^x \cdot 2^y = f(x) \cdot f(y)$.

Esercizio 4 (7 punti). Siano A e B due matrici sullo stesso campo tali che A é sottomatrice di B. Dimostrare che il rango di A é minore o uguale al rango di B.

Soluzione: Basta osservare che qualsiasi sottomatrice di A è anche sottomatrice di B. Più in dettaglio, se n = rq(A), allora per definizione esiste una sottomatrice C di A, di ordine $n \times n$ e tale che $det(C) \neq 0$. C è anche sottomatrice di B e quindi il rango di B è almeno n, cioè $rg(A) \leq rg(B)$.