Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

« Дослідження рекурсивних алгоритмів»

Варіант 2

Виконав студент ІП-15, Богун Даниїл Олександрович (шифр, прізвище, ім'я, по батькові)

Перевірила Вєчерковська Анастасія Сергіївна (прізвище, ім'я, по батькові)

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 2

Задача: Обчислення добутку елементів геометричної прогресії, що убуває: початкове значення — 64, кінцеве значення — 1, крок — 4.

Постановка задачі:

Вводимо функцію prog.Ця функція виконує дію a = a/n. Повертаємо значення функції res = a * prog(a). Функція виконується, поки a не буде дорівнювати 1.

Побудова математичної моделі:

Змінна	Тип	Ім'я	Призначення
Початкове значення	Цілий	Num	Задане значення
Крок	Цілий	q	Задане значення
Функція	Процедура	prog(a)	Проміжне дане
Значення функції	Цілий	res	Результат

Початкове значення Num = 64.

Крок позначаємо літерою q, q = 4.

Res = a * prog(a/q)

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Введення а.

Крок 3. Обрахування ргод за допомогою підпрограми.

Псевдокод алгоритму:

Початок	Початок	Початок
Введення <i>Num</i>	Num = 64	Num = 64
Обрахування prog (a)	Обрахування prog	Обрахування prog
Виведення res	(64)	(64)
Кінець	Виведення res	Res = 4096
	Кінець	Кінець

Підпрограма:

prog(a)

$$q = 4$$

Якщо a = 1

Повернути a

Інакше

$$res = a*prog(a/q)$$

Повернути *res*

Кінець

Блок-схема алгоритму

Код:

```
□#include <iostream>
#include<windows.h>
 using namespace std;
pint prog(int a) {
     const int q = 4;
     if (a == 1)
         return a;
   else {
        int res = a * prog(a / q);
        return res;
□int main()
     SetConsoleCP(1251);
     SetConsoleOutputCP(1251);
    int Num = 64;
     cout << "Добуток = " << prog(Num);
     return 0;
```

Випробування алгоритму

a = 64
а != 1 — правда
a / q = 64/4 = 16
Res = 64 * 16 = 1024
a = 16
а != 1 — правда
a / q = 16 / 4 = 4
Res = 1024 * 4 = 4096
a / q = 4 / 4 = 1
а!= 1 – хибність
Res = 4096

Висновок

Протягом шостої лабораторної роботи я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під час складання програмних специфікацій підпрограм. В результаті виконання роботи я отримав алгоритм, який рекурсивно знаходить добуток елементів геометричної прогресії, що спадає.