

Week 08 – GLM Investigation Assignment Asritha Suraparaju

Course Code: 5230-07: High-Performance Computing

March 30, 2025

Module/Framework/Package	Name and Brief	Example Where It Outperforms Base R or
	Description of the	Equivalent in Python
	Algorithm	ı v
Base R (stats package)	Iteratively	Works fine for small datasets but struggles
, ,	Reweighted Least	with large datasets due to memory
	Squares (IRLS): A	limitations. If the dataset is too big, the
	traditional	computation becomes slow or may fail due
	optimization	to memory overflow. Python Equivalent:
	method for GLMs	statsmodels.api.GLM.
	that iteratively	
	updates weights to	
	improve model	
	estimates. It works	
	well for small to	
	medium dataset	
Big Data R (High-	Optimized	When working with datasets with millions of
Performance Computing in	memory-efficient	rows, these methods allow computation to
R)	methods (biglm,	happen without requiring all data to fit in
	speedglm): These	RAM, making it much faster than Base R.
	methods process	Python Equivalent:
	data in chunks	sklearn.linear_model.SGDClassifier, which
	rather than loading	also processes data in batches.
	it all into memory,	
	preventing	
	performance issues.	
Dask-ML (dask_ml.glm)	Stochastic	If you are working with a dataset that
	Gradient Descent	exceeds the available RAM, Dask-ML
	(SGD) and	allows parallel processing across distributed
	Newton's Method:	systems, making it much faster than Base R.
	Dask-ML	Python Equivalent:
	distributes	sklearn.linear_model.SGDClassifier.
	computations	
	across multiple	
	CPU cores or even	
	multiple machines,	
	making it efficient	
	for big data.	
Spark R (spark.glm)	IRLS and	When handling datasets too large for a single
	Distributed	machine (e.g., billions of rows), Spark R
	Optimization:	splits computations across a cluster, greatly
	Similar to Base R's	improving speed and efficiency. Python
	IRLS but optimized	Equivalent:
	for Spark's	pyspark.ml.classification.LogisticRegression.

	distributed	
	computing	
	framework,	
	allowing for large-	
	scale computations	
	across multiple	
	nodes.	
Spark MLlib Optimization	L-BFGS and	Best suited for massive datasets stored in a
	Stochastic	distributed system (e.g., cloud computing
	Gradient Descent	environments). It significantly outperforms
	(SGD): Uses	Base R when working with data that spans
	advanced	multiple machines. Python Equivalent:
	optimization	pyspark.mllib.optimization.
	techniques for	
	large-scale	
	distributed	
	computing. L-	
	BFGS (Limited-	
	memory BFGS) is	
	particularly	
	effective for	
	handling large	
	datasets with	
G 1141	complex models.	W 1 1 4 4 D D C 1 4 1
Scikit-learn	L-B Provides	Works better than Base R for moderately
(sklearn.linear_model)	multiple solvers for	large datasets by offering better solver
	optimization,	selection, faster convergence, and built-in
	allowing flexibility	regularization. R Equivalent: glmnet, which
	depending on	also provides efficient optimization methods.
	dataset size and	
	complexity. L-	
	BFGS is great for	
	large datasets,	
	while liblinear is	
	efficient for high-	
	dimensional sparse	
	data.	