

HOW TO PRESENT STATISTICAL RESULTS

Ágoston Török @ ELTE Multivariate statistics

MOTIVATION FOR PRESENTING THEM IN A STANDARD WAY

Ideally we expect our work to be read by anyone from any field These notations are standards

It takes less time to read a paper if you know what are you looking at (e.g. $\frac{\text{szig}}{\text{c}} > p$)

Facilitates metaanalysis

WHAT IS THE STANDARD WAY?

http://www.apastyle.org/manual/?apaSessionKey=WWJQnDVxwiSRN7mAYq9mUdwG

BOLD, ITALICS, GREEK, SYMBOLS

boldface for vectors and matrices: V, \sum

Use <u>italics</u> for statistical symbols: t, F, N, p

<u>Uppercase</u> N is the number of participants in the total sample: N = 328

Use an italicized, lowercase n in reference to only a portion of the sample: n = 42

Use hat for predicted values: \overline{y}

Greek letters should not be italicised: Ω

PARENTHESES & BRACKETS

Use parentheses to enclose degrees of freedom:

$$t(45) = 4.35$$

$$F(3, 87) = 9.11$$

Use brackets for confidence intervals:

95% Cls [3.45, 2.7] and [-7.23, 1.89]

ROUNDING

$n \in R$

n > 100	nearest whole number (e.g., $M = 6254$)
10 < n < 100 (10,100)	report to one decimal place (e.g., $M=23.4$)
0.1 < n < 10	For numbers between 0.10 and 10, report to two decimal places (e.g., $M=4.34$, $SD=0.93$)
n < 0.1	report to three decimal places, or however many digits you need to have a non-zero number (e.g., $M=0.014$, SEM = 0.0004).

DECIMALS

- If n can only be a whole number then don't report it with decimals. E.g., the number of participants in a study should be reported as N = 5, not N = 5.0.
- Report exact p-values (not p < .05), even for non-significant results. If the software you use reports a p-value of .000; then report p < .001.
- Two-tailed p-values are assumed. If you are reporting a one-tailed p-value, you must declare it.
- No leading zero for values (-1,1), such as p-values, correlation coefficients (r), partial eta-squared (ηp 2) (e.g., p = .043).

DESCRIPTIVES

Mean and **Standard Deviation** are most clearly presented in parentheses:

The sample as a whole was relatively young (M = 19.22, SD = 3.45). The average age of students was 19.22 years (SD = 3.45).

Percentages are also most clearly displayed in parentheses with <u>no</u> <u>decimal places</u>:

Nearly half (49%) of the sample was married.

EQUAL SIGNS

There should be a space before and after the

>

<

Etc.

IMPORTANCE OF EFFECT SIZES

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4, 863.

NON-PARAMETRIC TESTS

Do not report means and standard deviations for non-parametric tests. Report the median and range in the text or in a table. (Mann-Whitney, Wilcoxon rank test)