Anleitung Charge-Control

Ziel der Steuerung ist:

Mit der Steuerung soll erreicht werden, dass der Batteriespeicher möglichst schonend geladen wird um die Lebensdauer zu erhöhen.

- Speicher soll nie längere Zeit auf 100% geladen werden oder auf 0% entladen werden.
- Möglichst gleichmäßige Ladeleistung beim Laden.
- PV-Überschuss soll gespeichert werden um nicht in die 70% Abregelung zu kommen.
- Bei Überschreitung WR Begrenzung soll Überschuss in die Batterie gespeichert werden.

ioBroker:

Es werden folgende Adapter für das Skript Charge-Control benötigt:

Für die View Beispiele in VIS werden noch folgende Adapter benötigt:

Beispiel View zum Importieren findet ihr auf GitHub https://github.com/ArnoD15/iobroker E3DC

iobroker_VIS_View_Charge_Control.js

Iobroker_VIS_View_Info_1

iobroker_VIS_View_E3DC_Diagramm_Prognosen Ver_1.0.0.js

1.) Modbus Adapter Instanz erstellen und einrichten

Ich habe bei mir folgende Allgemeine Einstellungen vorgenommen:

und folgende Holding-Register eingetragen:

Die Modbus Holding-Register zum Importieren findet ihr auch auf GitHub.

Instanze	einstellungen: modbus.0 soa II C													
_		IGÄNGE EINGANGSREGISTER HOLDING-REGISTER												
+ †↓ Adresse ↑		Beschreibung	Einheit	Тур	Länge	Faktor	Offset Formel	Rolle	Raum	✓ Abfrage	□ WP	□ cw	□ SF	ı
40090	WalBox_2_CTRL	WallBox_2_CTRL		Unsigned 16 bit (Big Endian)			0	value			0			i
40091	WallBox_3_CTRL	WallBox_3_CTRL		Unsigned 16 bit (Big Endlan)	1	11	0	value		$ \mathbf{Z} $				î
40092	WallBox_4_CTRL	WallBox_4_CTRL		Unsigned 18 bit (Big Endian)	1		0	value						Î
40093	WallBox_5_CTRL WallBox_6_CTRL	WallBox_5_CTRL WallBox_6_CTRL		Unsigned 16 bit (Big Endian) Unsigned 16 bit (Big Endian)	1	1	0	value						î
40095	Wallbox_7_CTRL	Wallbox_7_CTRL		Unsigned 16 bit (Big Endlan)	1	1	0	value						
40096	DC_String_1_Voltage	Spannung in Volt (String 1)	v	Unsigned 16 bit (Big Endian)	1	1	0	value						ì
40097	DC_String_2_Voltage	Spanning in Volt (String 2)	V	Unsigned 16 bit (Big Endlan)	1	1	0	value						î
40098	DC_String_3_Voltage	Spanning in Volt (String 3)	v	Unsigned 18 bit (Big Endian)	1	1	0	value						ii .
40099	DC_String_1_Current DC_String_2_Current	Strom in Ampere (String 1) Strom in Ampere (String 2)	A A	Unsigned 16 bit (Big Endian) Unsigned 16 bit (Big Endian)	1	0.01	0	value						î
40101	DC_String_3_Current	Strom in Ampere (String 3)	A	Unsigned 16 bit (Big Endlan)	1	0.01		value			0			ì
40102	DC_String_1_Power	Leistung in Watt (String 1)	W	Unsigned 16 bit (Big Endian)	1	1	0	value						î
40103	DC_String_2_Power	Leistung in Watt (String 2)	W	Unsigned 16 bit (Big Endlan)	1	1	0	value						Î
40104	DC_String_3_Power	Leistung in Watt (String 3)	W	Unsigned 18 bit (Big Endian)	1	1	0	value						î
40105	Leistungsmesser_0	Leistungsmesser 0 Leistungsmesser 0 - Phase 1	w	Unsigned 10 bit (Big Endian)	1	1	0	value						î
40100	Leistungs messer_0_L1 Leistungs messer 0 L2	Leistungsmesser 0 - Phase 1 Leistungsmesser 0 - Phase 2	w	Signed 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	1	0	value						
40108	Leistungs messer_0_L3	Leistungsmesser 0 - Phase 3	w	Signed 16 bit (Big Endian)	1	1	0	value						ī
40109	Leistungsmesser_1	Leistungsmesser 1		Unsigned 16 bit (Big Endian)	1	1	0	value		$ \mathbf{Z} $				î
40110	Leistungsmesser_1_L1	Leistungsmesser 1 - Phase 1	w	Signed 16 bit (Big Endian)	1	1	0	value						ì
40111	Leistungsmesser_1_L2	Leistungsmesser 1 - Phase 2	W	Signed 16 bit (Big Endian)	1	1	o o	value						ì
Instanze	einstellungen: modbus.0 🕬 🖰													
ALLGEME	N DISKRETE EINGÂNGE DISKRETE AUS	S GÄNGE EINGANGSREGISTER HOLDING-REGISTER												
+ 1	9													
Adresse ↑		Beschreibung	Einheit		Läng		r Offset Formel	Rolle	Raum	☑ Abfrage	☐ WP	☐ cw	_	
40112	Leistungsmesser_1_L3	Leistungsmesser 1 - Phase 3	W	Signed 16 bit (Big Endian)	1	1	0	value						Î
40113	Leistungs messer_2 Leistungs messer_2_L1	Leistungsmesser 2 Leistungsmesser 2 - Phase 1	w	Unsigned 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	1	0	value						î
40115	Leistungs messer_2_L2	Leistungsmesser 2 - Phase 2	w	Signed 18 bit (Big Endian)	1	1	0	value						ì
40116	Leistungs messer_2_L3	Leistungsmesser 2 - Phase 3	w	Signed 16 bit (Big Endlan)	1	1	0	value						î
40117	Leistungs messer_3	Leistungsmesser 3		Unsigned 16 bit (Big Endian)	1	1	0	value						ì
40118	Leistungs messer_3_L1	Leistungsmesser 3 - Phase 1	W	Signed 16 bit (Big Endian)	1	1	0	value						î
40119	Leistungs messer_3_L2	Leistungsmesser 3 - Phase 2	W	Signed 10 bit (Big Endian)	1		0	value						Î
40120	Leistungsmesser_3_L3 Leistungsmesser_4	Leistungsmesser 3 - Phase 3 Leistungsmesser 4	W	Signed 18 bit (Big Endian) Unsigned 16 bit (Big Endian)	1	1	0	value		✓				î
40122	Leistungsmesser_4_L1	Leistungsmesser 4 - Phase 1	w	Signed 16 bit (Big Endian)	1	1	0	value						1
40123	Leistungs messer_4_L2	Leistungsmesser 4 - Phase 2	w	Sign ed 16 bit (Big Endlan)	1	1	0	value						î
40124	Leistungs messer_4_L3	Leistungsmesser 4 - Phase 3	w	Signed 18 bit (Big Endian)	1	1	0	value						î
40125	Leistungs messer_5	Leistungsmesser 5		Unsigned 16 bit (Big Endian)	1	1	0	value						î
40128	Leistungs messer_5_L1	Leistungsmesser 5 - Phase 1	W	Signed 18 bit (Big Endian)	1	1	0	value						î
40127	Leistungs messer_5_L2 Leistungs messer_5_L3	Leistungsmesser 5 - Phase 2 Leistungsmesser 5 - Phase 3	W	Signed 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	1	0	value						î
40129	Leistungsmesser_6	Leistungsmesser 6		Unsigned 16 bit (Big Endlan)	1	1	0	value						ì
40130	Leistungs messer_8_L1	Leistungsmesser 6 - Phase 1	w	Sign ed 18 bit (Big Endian)	1	1	0	value						ii
40131	Leistungs messer_6_L2	Leistungsmesser 6 - Phase 2	w	Signed 16 bit (Big Endian)	1	1	0	value		\checkmark				î
40132	Leistungs messer_6_L3	Leistungsmesser 6 - Phase 3	W	Signed 18 bit (Big Endian)	1	1	0	value						Î
40133	Leistungs messer_7	Leistungsmesser 7		Unsigned 16 bit (Big Endian)	1	1	0	value						î
Instanze	einstellungen: modbus.0 🐭 🚻 🖰													
ALLGEMEI	N DISKRETE EINGÄNGE DISKRETE AUS	SGÅNGE EINGANGSREGISTER HOLDING-REGISTER												
+ 1	9													
Adresse ↑		Beschreibung	Einhei				or Offset Formel	Rolle	Raum	☑ Abfrag				F iii
40134 40135	Leistungs messer_7_L1	Leistungsmesser 7 - Phase 1 Leistungsmesser 7 - Phase 2	w	Signed 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	1	0	value						î
40135	Leistungs messer_7_L2 Leistungs messer_7_L3	Leistungsmesser 7 - Phase 2 Leistungsmesser 7 - Phase 3	W	Signed 16 bit (Big Endlan) Signed 16 bit (Big Endlan)	1	1	0	value						1
40137	SG_Ready_Status	SG Ready-Status	X	Unsigned 16 bit (Big Endian)	1	1	0	value		2				i
41001	WR0_Scheinleistung_L1	Scheinleistung in Watt L1	W	Signed 32 bit (Big Endlan Word Swap)	2	1	0	value						î
41003	WR0_Scheinleistung_L2	Scheinleistung in Watt L2	W	Signed 32 bit (Big Endian Word Swap)	2	1	0	value						î
41005	WR0_Scheinleistung_L3	Scheinleistung in Watt L3	W	Signed 32 bit (Big Endian Word Swap)	2	1	0	value						Î
41007	WR0_Wirkleistung_L1	Wirkleistung in Watt L1	W	Signed 32 bit (Big Endian Word Swap)	2	1	0	value						î
41009	WR0_Wirkleistung_L2 WR0_Wirkleistung_L3	Wirkleistung in Watt L2 Wirkleistung in Watt L3	w	Signed 32 bit (Big Endian Word Swap) Signed 32 bit (Big Endian Word Swap)	2	1	0	value		2				î
41013	WR0_Bindleistung_L1	Blindleistung in Watt L1	W	Signed 32 bit (Big Endian Word Swap)	2	1	0	value		☑				
41015	WR0_Blindleistung_L2	Blindleistung in Watt L2	W	Signed 32 bit (Big Endian Word Swap)	2	1	0	value						î
41017	WR0_Blindleistung_L3	Blindleistung in Watt L3	W	Signed 32 bit (Big Endian Word Swap)	2	1	0	value						î
41019	WR0_AC_Spannung_L1	AC-Spanning in Volt L1	V	Signed 16 bit (Big Endian)	1		0	value						î
41020	WR0_AC_Spannung_L2	AC-Spanning in Volt L2	V	Signed 16 bit (Big Endian)	1	0.1	0	value						Î
41021	WR0_AC_Spannung_L3 WR0_AC_Strom L1	AC-Spannung in Volt L3 AC-Strom in Ampere L1	V A	Signed 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	0.1	0	value						î
41022	WR0_AC_Strom L1 WR0_AC_Strom L2	AC-Strom in Ampere L1 AC-Strom in Ampere L2	A	Signed 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	0.01		value						i
41024	WR0_AC_Strom L3	AC-Strom in Ampere L3	A	Signed 16 bit (Big Endlan)	1	0.01		value						i
41025	WR0_Phasen_Frequenz_L1	Phasen-Frequenz in Hertz L1	Hz	Signed 18 bit (Big Endian)	1	0.01		value				_	_	î
41026	WR0_DC_Leistung_L1	DC-Leistung in Watt String1	W	Signed 16 bit (Big Endian)	1	1	0	value						î
41027	WR0_DC_Leistung_L2	DC-Leistung in Watt String2	W	Signed 16 bit (Big Endlan)	1	1	0	value						î
41028	WR0_DC_Leistung_L3	DC-Leistung in Watt L3 wird nicht verwendet	W	Signed 16 bit (Big Endian)	1	1	0	value						Î
41029	WR0_DC_Spannung_L1	DC-Spanning in Volt String1	V	Signed 10 bit (Big Endian)	1	0.1		value						Î
41030	WR0_DC_Spannung_L2 WR0_DC_Spannung_L3	DC-Spannung in Volt String2 DC-Spannung in Volt L3 wird nicht verwendet	v	Signed 16 bit (Big Endian) Signed 16 bit (Big Endian)	1	0.1	0	value						Î
41031	WR0_DC_Spannung_L3 WR0_DC_Strom_L1	DC-Spannung in Volt L3 wird nicht verwendet DC-Strom in Ampere L1	V A	Signed 16 bit (Big Endlan) Signed 16 bit (Big Endlan)	1	0.1		value						î
41033	WR0_DC_Strom_L2	DC-Strom in Ampere L2	A	Signed 16 bit (Big Endian)	1		0	value						i
41034	WR0_DC_Strom_L3	DC-Strom in Ampere L3	А	Signed 16 bit (Big Endlan)	1	0.01		value						ı

2.) e3dc-rscp Adapter Instanz erstellen und einrichten

In den Einstellungen der Instanz folgende Einstellungen machen:

Wichtig ist hier die Einstellung SET_POWER Wiederholintervall [s] unbedingt auf 0 einstellen.

Bei den Einstellungen Abfrageintervalle folgenden Tag auf S einstellen:

TAG_EMS_REQ_EMERGENCY_POWER_STATUS

Alle anderen Tag's können nach belieben eingestellt werden

3.) Javascript Adapter Instanz erstellen und einrichten

Wenn alles soweit funktioniert, dann mit der Installation vom Skript Charge-Control fortfahren.

Das Skript findet ihr auf GitHub https://github.com/ArnoD15/iobroker E3DC

In den Einstellungen der Javascript Instanz müssen folgende Zusätzliche NPM-Module eingetragen werden:

xmlhttprequest, tail, is-it-bst, fs

Anschließend links im Menü auf den Reiter Script klicken und dann auf das Plus Zeichen um ein neues Script zu erstellen.

In dem Menü Javascript auswählen:

Im nächsten Menü den Namen eingeben und auf Ok klicken.

Jetzt auf den neu angelegten Skript Ordner im Menü klicken und rechts in das Feld das Script von GitHub kopieren.


```
Im Script müssen folgende Einstellungen geprüft bzw. angepasst werden:
//************** Einstellungen Charge-Control ***************
logflag = true;
Wenn "logflag" true ist werden die Historie Daten (Diagramm Prognose und kWh Werte pro Tag) zusätzlich in eine Lokale
Datei gesichert.
sLogPath = "/home/iobroker/HistoryPV_Leistung.json";
Pfad zur Sicherungsdatei. Wichtig: Der User iobroker muss auf das Verzeichnis und die Datei schreibrechte haben.
LogAusgabe = true;
Zusätzliche allgemeine LOG Ausgaben
DebugAusgabe = false;
Debug Ausgabe im LOG zur Fehlersuche, sonst auf false einstellen.
LogAusgabeSteuerung = false;
Zusätzliche LOG Ausgaben der Lade-Steuerung, nur zur Fehlersuche auf true stellen.
country = "de";
Ländercode de,at, ch, fr, it einstellen um die richtige Url zu laden.
ProplantaOrt = 'München'
Wohnort eintragen der abgefragt werden soll
ProplantaPlz = '80333'
Postleitzahl eintragen.
Solcast = true;
true = Daten Solcast werden abgerufen false = Daten Solcast werden nicht abgerufen
SolcastDachflaechen = 2;
Anzahl der Dachflächen. Aktuell max. zwei Dachflächen möglich
Resource Id Dach[1] = 'xxxx-xxxx-xxxx'
Rooftop 1 Id von der Homepage Solcast
Resource_Id_Dach[2] = 'xxxx-xxxx-xxxx'
Rooftop 2 Id von der Homepage Solcast
Solcast API Key von der Homepage Solcast
Die folgenden Werte werden benötigt um die Globalstrahlung von Proplanta in kWh umrechnen zu können.
```

nModulFlaeche = 73;

nWirkungsgradModule = 18;
Wirkungsgrad der Solarmodule in %

Installierte Modulfläche in m² (Silizium-Zelle 156x156x60 Zellen x 50 Module).

nKorrFaktor = 0

nKorrFaktor in Prozent. Wenn die berechnete Prognose von Proplanta immer zu hoch ist, kann hier die berechnete Prognose Reduziert werden um diese anzugleichen. nKorrFaktor= 0 ohne Korrektur

nMinPvLeistungTag_kWh = 3

minimal Mögliche PV-Leistung. Wenn Prognose niedriger ist wird mit diesem Wert gerechnet

nMaxPvLeistungTag_kWh = 105

max. Mögliche PV-Leistung. Wenn Prognose höher ist wird mit diesem Wert gerechnet.

```
Ab hier muss eigentlich nur geprüft werden ob die Pfadangaben so richtig sind
//***************** Einstellungen Modul Modbus **************
sID_Batterie_SOC = 'modbus.0.holdingRegisters.40083_Batterie_SOC'
 // Pfad Modul ModBus aktueller Batterie_SOC'
sID_PvLeistung_E3DC_W = 'modbus.0.holdingRegisters.40068_PV_Leistung'
 // Pfad Modul ModBus aktuelle PV_Leistung'
sID_PvLeistung_ADD_W = 'modbus.0.holdingRegisters.40076_Zusaetzliche_Einspeiser_Leistung'
// Pfad Modul ModBus Zusätzliche Einspeiser Leistung
sID BatterieLeistung W = 'modbus.0.holdingRegisters.40070 Batterie Leistung'
 // Pfad Modul ModBus aktuelle Batterie Leistung
sID_Power_Grid_W = 'modbus.0.holdingRegisters.40074_Netz_Leistung'
 // Pfad Modul ModBus aktuelle Netz Leistung
sID Power Home W = 'modbus.0.holdingRegisters.40072 Hausverbrauch Leistung'
 // Pfad Modul ModBus aktueller Hausverbrauch
//***************** Einstellungen Modul e3dc.rscp ***************
sID_Bat_Discharge_Limit = 'e3dc-rscp.0.EMS.BAT_DISCHARGE_LIMIT'
// Pfad Modul e3dc.rscp Batterie Entladelimit
sID_Bat_Charge_Limit = 'e3dc-rscp.0.EMS.BAT_CHARGE_LIMIT'
// Pfad Modul e3dc.rscp Batterie Ladelimit
sID_Notrom_Status = 'e3dc-rscp.0.EMS.EMERGENCY_POWER_STATUS'
// Pfad Modul e3dc.rscp Power Status
sID_installed_Battery_Capacity = 'e3dc-rscp.0.EMS.SYS_SPECS.installedBatteryCapacity'
// Pfad Modul e3dc.rscp Installierte Batterie Kapazität E3DC
sID_SET_POWER_MODE = 'e3dc-rscp.0.EMS.SET_POWER_MODE'
// Pfad Modul e3dc.rscp Lademodus
sID SET POWER VALUE W = 'e3dc-rscp.0.EMS.SET POWER VALUE'
// Eingestellte Ladeleistung
sID Max Discharge Power W = 'e3dc-rscp.0.EMS.MAX DISCHARGE POWER'
// Eingestellte maximale Batterie-Entladeleistung. (Variable Einstellung E3DC)
sID_maxDischargePower = 'e3dc-rscp.0.EMS.SYS_SPECS.maxDischargePower'
// Maximale Entladeleistung
sID_startDischargeDefault = 'e3dc-rscp.0.EMS.SYS_SPECS.startDischargeDefault'
// Anfängliche Entladeleistung Standard
sID_Max_wrleistung_W = 'e3dc-rscp.0.EMS.SYS_SPECS.maxAcPower'
// Maximale Wechselrichter Leistung
sID Einspeiselimit W = 'e3dc-rscp.0.EMS.DERATE AT POWER VALUE'
// Eingestellte Einspeisegrenze E3DC
sID BAT0 Nutzbare Kapazitaet = 'e3dc-rscp.0.BAT.BAT 0.USABLE CAPACITY'
// Nutzbare Batterie Kapazität BAT0
sID_BAT1_Nutzbare_Kapazitaet = 'e3dc-rscp.0.BAT.BAT_1.USABLE_CAPACITY'
// Nutzbare Batterie Kapazität BAT1
sID_Bat0_Modulspannung = 'e3dc-rscp.0.BAT.BAT_0.MODULE_VOLTAGE'
// Modulspannung BAT0
sID_Bat1_Modulspannung = 'e3dc-rscp.0.BAT.BAT_1.MODULE_VOLTAGE'
// Modulspannung BAT1
```


Beim ersten Start vom Skript können Fehler im LOG angezeigt werden, wenn im Adapter e3dc-rscp in folgenden State noch keine Werte eingetragen sind:

```
e3dc-rscp.0.EMS.SET_POWER_VALUE
e3dc-rscp.0.EMS.SET_POWER_MODE
```

Hier bitte im Adapter manuell 0 eintragen.

4.) Mit Edit Vis Views importieren oder selber erstellen.

Auf GitHub findet ihr folgende Views zum Importieren:

View Charge_Control:

Manuelle Anwahl der Einstellungen

Einstellung der Ladeparameter je nach Wetterprognose. Welche Einstellung aktiv ist wird durch die grüne Umrandung angezeigt.

Es werden folgende State vom Script angelegt bzw. für die View verwendet:

```
modbus.0.holdingRegisters.40087 EMS CTRL
                                                          // Anzeige ob die Ladesteuerung aktiv ist
0 userdata.0.Charge Control.Allgemein.Regelbeginn MEZ
                                                          // Start Regelzeitraum
0 userdata.0.Charge Control.Allgemein.Regelende MEZ
                                                          // Ende Regelzeitraum
0 userdata.0.Charge Control.Allgemein.Ladeende MEZ
                                                           // Ladeende
0 userdata.0.Charge Control.Allgemein.Anwahl MEZ MESZ // Umschaltung der Anzeigen auf Sommerzeit
                                                          // Umschaltung Automatik/Manuell
0_userdata.0.Charge_Control.Allgemein.Automatik
0 userdata.0.Charge Control.Allgemein.EinstellungAnwahl
                                                          // Anwahl der Einstellung 1-5
0 userdata.0.Charge Control.Parameter.Notstrom min
                                                           // Parameter Notstrom min
0_userdata.0.Charge_Control.Parameter.Notstrom_sockel
                                                          // Parameter Notstrom Sockel
0 userdata.0.Charge Control.Allgemein.EigenverbrauchTag
                                                          // Parameter Eigenverbrauch
0_userdata.0.Charge_Control.Proplanta.NaesteAktualisierung
// Uhrzeit der nächsten Aktualisierung der Wetterdaten Proplanta
0 userdata.0.Charge Control.Allgemein.PrognoseBerechnung kWh heute
// Anzeige Ergebnis der Prognoseberechnung
```

Parameter Einstellung 0-5 / 1-5 = Automatik 0 = Manuell

0 userdata.0.Charge Control.Parameter.Unload 0 bis 5

0 userdata.0.Charge Control.Parameter.Ladeende 0 bis 5

```
0_userdata.0.Charge_Control.Parameter.Ladeende2_0 bis 5
0_userdata.0.Charge_Control.Parameter.Ladeschwelle_0 bis 5
0_userdata.0.Charge_Control.Parameter.UntererLadekorridor_0 bis 5
0_userdata.0.Charge_Control.Parameter.Winterminimum_0 bis 5
0_userdata.0.Charge_Control.Parameter.Sommermaximum_0 bis 5
0_userdata.0.Charge_Control.Parameter.Sommerladeende_0 bis 5
0_userdata.0.Charge_Control.Allgemein.IstSummePvLeistung_kWh
0_userdata.0.Charge_Control.Allgemein.Notstrom_akt
0_userdata.0.Charge_Control.Proplanta.Bewoelkungsgrad_12
0_userdata.0.Charge_Control.Proplanta.Bewoelkungsgrad_15
```

View Info_1:

Ist einfach ein Basic HTML Widget mit einer kurzen Erklärung der einzelnen Parameter

View SolarDiagrammPrognose:

Umschaltung der Monatsansicht

Umschaltung mit welcher Prognose gerechnet werde soll

Es werden folgende State vom Skript angelegt bzw. für die View verwendet:

0_userdata.0.Charge_Control.Allgemein.PrognoseAnwahl // Umschaltung mit welcher Prognose gerechnet werden soll

0_userdata.0.Charge_Control.History.HistorySelect // Umschaltung zwischen den Monaten

0_userdata.0.Charge_Control.History.HistoryJSON // JSON Daten für das Diagramm

5.) Charge-Control Beschreibung

Die Einstellbaren Parameter zum Steuern der Ladeleistung der Batterie wurden auf das nötigste begrenzt. Durch den Adapter e3dc-rscp können alle wichtigen Informationen wie Speichergröße, max. Wechselrichter Leistung usw. automatisch abgerufen werden und müssen somit nicht mehr manuell eingestellt werden. Beim Start vom Skript werden die Globalstrahlung Werte von Proplanta abgerufen und dann immer nach der Aktualisierung der Webseite Proplanta. Der Bewölkungsgrad von Proplanta wird verwendet um zu entscheiden, ob der Speicher über den ganzen Tag geladen werden kann oder bereits an Vormittag geladen werden muss.

Da von Proplanta nur die Globalstrahlung für den Tag abgerufen werden kann, rechnet das Skript diese um in kWh.

Globalstrahlung * m² Solarfläche * Wirkungsgrad der Module in %

Die PV-Leistung von Solcast wird nur jeden Tag einmal um 4:00 Uhr abgerufen, da die Solarleistung für den Tag, alle 30 min. die alten Werte gelöscht werden. Das bedeutet, wenn man die Werte um 9:00 Uhr abrufen würde, hätte man von 6:00 Uhr bis 9:00 Uhr keine Werte mehr da diese bereits gelöscht wurden.

Einstellbare Parameter:

Unload: Wenn der SoC Wert der Batterie > Wert "Unload" ist, wird der Batteriespeicher mit Beginn Solarproduktion bis Beginn Regelzeitraum, auf SOC Wert Parameter "Unload" entladen.

Ist Unload < Ladeschwelle wird bis Ladeschwelle geladen und Unload ignoriert.

Ladeschwelle: Mit Beginn Solarproduktion wird die Batterie mit der maximalen Ladeleistung bis zum Wert Ladeschwelle geladen. Erst wenn der Batterie SOC den Wert Ladeschwelle erreicht, wird mit dem geregelten Laden begonnen. Danach wird bis SOC Wert "Ladeende" gleichmäßig geladen, mit Ausnahme, wenn die PV-Leistung das Einspeiselimit oder die WR-Maxleistung übersteigt, wird die Ladeleistung um den Wert erhöht, um das Einspeiselimit oder WR-Limit einhalten zu können. Bei unterschreiten von dem Wert Einspeiselimit oder WR-Limit, wird wieder mit neu berechneter Ladeleistung, gleichmäßig bis "Ladeende" geladen. Bei großem Überschuss kann die gleichmäßige Ladeleistung bis auf O abgesenkt werden. Parameter "Ladeschwelle" hat Vorrang vor "Unload", d.h. "Unload" wird ignoriert, falls "Ladeschwelle" größer sein sollte als "Unload".

Ladeende: SoC Wert Speicher, der zum Ende des Regelzeitraums erreicht werden soll.

Ladeende2: SoC Wert Speicher, der zum Ende Sommer Ladeende erreicht werden sollten.

Unterer Ladekorridor: Der "Untere Ladekorridor" definiert nur den min. Wert ab dem mit dem Laden der Batterie gestartet wird. Erst wenn die Berechnetet Ladeleistung den Wert "unteren Ladekorridor" übersteigt wird mit dem Laden der Batterie gestartet.

Winter Minimum: Beginn des Regelzeitraums am 21.12. GMT/UTC dezimal (kürzeste Tag des Jahres). Der Regelzeitraum wird vom Parameter " **Winter Minimum** " und "**Sommer Maximum**" bestimmt. Die Zeiten werden in GMT dezimal eingetragen. Regelzeitbeginn und Regelzeitende werden dem Sonnenlauf entsprechend über eine Sinusfunktion errechnet.

Sommer Maximum: Ende des Regelzeitraums am 21.6. GMT/UTC dezimal (längster Tag des Jahres)

Sommer Ladeende: Zeit bis zu der der Batteriespeicher den SOC Wert Parameter "Ladeende2" erreichen soll.

Eigenverbrauch: Der geschätzte Eigenverbrauch pro Tag in kWh. Wird für die Überschussberechnung der Prognose verwendet.

Notstrom min.: Speicherreserve in % bei Wintersonnenwende 21.12

Notstrom Sockel: min. SOC Wert bei Tag-/Nachtgleiche 21.3./21.9.

Berechnung Notstrom: 21.12 (Wintersonnenwende) ist der Bezugs-SoC = Wert "Notstrom min" und wird bis zum 21.3 (Tag-/Nachtgleiche) auf Wert "Notstrom Sockel" reduziert und bis zum 20.06 (Sommersonnenwende) um ca. weitere 10% reduziert. Ab dem 20.06 (Sommersonnenwende) steigt der Bezugs-SoC wieder bis zum 21.09 (Tag-/Nachtgleiche) auf den Wert "Notstrom Sockel" und bis zum 21.12 (Wintersonnenwende) auf den Wert "Notstrom min". Je Monat ändert sich somit der SoC um ca. +- 3,3%. Mit Notstrom min. und Notstrom Sockel kann man eine Dynamische Notstromreserve vorhalten, Vorteil ist, dass der Speicher nicht alle 3 Wochen entladen wird wie bei der Notstromreserve von E3DC.

Starten wir am 21.12 (Wintersonnenwende) der **kürzeste Tag**, da wird der Speicher bis auf **Notstrom min** = 20% entladen.

Ab jetzt werden die Tage immer länger, bis zum 21.3 (Tag-/Nachtgleiche) wo die Tage und Nächte **gleich lang** sind. Das bedeutet deine Speicherreserve kann immer geringer werden je länger die Tage sind, da ja mehr PV-Leistung zur Verfügung steht. Es wird somit jeden Monat die Speichergrenze um ca.3,33% **reduziert** bis zum 21.03 auf den Wert **Notstrom Sockel** = 10%.

Ab dem 21.03 werden die Tage immer länger bis zum 20.06 (Sommersonnenwende) dem **längsten Tag** im Jahr. Es wird also die Speichergrenze weiter jeden Monat um ca. 3,33% **reduziert** bis zum 20.06 auf 0%, Ab diesem Zeitpunkt werden die Tage wieder kürzer bis zum 21.9 (Tag-/Nachtgleiche) wo die Tage und Nächte wieder **gleich lang** sind und die Speicherreserve wird jeden Monat um ca. 3,33% **erhöht** auf Notstrom Sockel = 10%. Die Tage werden immer **kürzer** bis zum 21.12 (Wintersonnenwende) und die Speichergrenze wird weiter jeden Monat um ca. 3,33% **erhöht** auf den Wert Notstrom min = 20%

Notstrom Sockel ist somit der min. SOC Wert, wenn die Tage und Nächte gleich lang sind, also am 21.3 und 21.09 und **Notstrom min** wenn die Tage am kürzesten sind am 21.12 .

Laderegelung:

Beginn Solarproduktion Regelbeginn Regelende Ladeende (Sommer Ladeende)

Mit Beginn Solarproduktion wird die Batterie mit der maximalen Ladeleistung bis zum Wert **Ladeschwelle** geladen oder bis zum SOC Wert **Unload** entladen. Erst wenn der Batterie SOC den Wert **Ladeschwelle** erreicht, wird mit dem geregelten Laden begonnen.

Mit **Regelbeginn** wird die benötigte Ladeleistung berechnet um den SOC **Ladeende** bis zum **Regelende** zu erreichen. Danach wird bis SOC Wert **Ladeende** gleichmäßig geladen, mit Ausnahme, wenn die PV-Leistung das Einspeiselimit oder die maximale Wechselrichter Leistung übersteigt, wird die Ladeleistung um den Wert erhöht, um das Einspeiselimit oder die maximale Wechselrichter Leistung einhalten zu können. Bei unterschreiten von dem Wert Einspeiselimit oder WR-Limit, wird wieder mit neu berechneter Ladeleistung, gleichmäßig bis **Ladeende** geladen. Bei großem Überschuss kann die gleichmäßige Ladeleistung bis auf 0 abgesenkt werden.

Beim erreichen vom **Regelende** wird die Ladeleistung neu berechnet um den SOC **Ladeende2** bis zum **Ladeende** zu erreichen.