CSE422 Problem Set Linear Regression and Gradient Descent. Instructor: Ipshita Bonhi Upoma

Part 1: Basic Computation

1. Suppose you have a dataset with three training examples given by (x, y):

You are using the hypothesis (model)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

and your parameters are initialized as $\theta_0 = 0$ and $\theta_1 = 1$. The mean squared error (MSE) Loss function is:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2,$$

where m=3 is the number of training samples.

- (a) Compute the predictions \hat{y} for each x using $\theta_0 = 0$ and $\theta_1 = 1$.
- (b) Compute the squared error for each example.
- (c) Compute the final cost $J(\theta_0, \theta_1)$.
- 2. Using the same data as above $\{(1,2),(2,3),(3,6)\}$ and the same hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$, assume the Loss function is again the MSE form. Let the learning rate (alpha) be $\alpha = 0.1$. Suppose your initial parameters are $\theta_0 = 0$ and $\theta_1 = 1$.
 - (a) Write down the partial derivative expressions for

$$\frac{\partial J}{\partial \theta_0}$$
 and $\frac{\partial J}{\partial \theta_1}$.

- (b) Compute the partial derivatives given the three data points.
- (c) Perform one gradient descent update step, i.e., compute the new

$$\theta_0^{\text{(new)}} = \theta_0 - \alpha \frac{\partial J}{\partial \theta_0}, \quad \theta_1^{\text{(new)}} = \theta_1 - \alpha \frac{\partial J}{\partial \theta_1}.$$

1

(d) Report the updated values of θ_0 and θ_1 .

Part 2: Simulation on given Dataset

Problem: Let the hypothesis model be,

$$h_{\theta}(x) = \theta_0 + \theta_1 x.$$

where, θ_0 and θ_1 are the parameters. The Loss function be of the MSE form:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

where, m is the number of examples. Starting with $\theta_0 = 0$ and $\theta_1 = 1$, simulate the gradient descent algorithm on the following Dataset 1, Dataset 2, Dataset 3 for

- 1. The learning parameter, $\alpha = 0.1$.
- 2. Decaying learning parameter, $\alpha = \frac{1000}{1000+t}$, where t is the iteration number.
- Dataset 1: A single-feature dataset where the feature is the number of hours a student studies, and the target is the student's test score on a 100-point exam.

$\overline{\textbf{Hours Studied }(x)}$	Test Score (y)
1.0	45
2.0	50
3.0	60
4.0	72
5.0	80

Table 1: Hours studied vs. test score dataset.

Interpretation:

$$x = \text{Hours studied}, \quad y = \text{Final test score}.$$

• Dataset 2: A single-feature dataset where the feature is the size of a house in square feet, and the target is its price (in thousands of dollars).

$\overline{\mathbf{House\ Size}\ (x,\mathrm{sq\ ft})}$	House Price (y, \$1000)
800	120
900	135
1000	150
1200	185
1500	230

Table 2: House size vs. house price dataset.

Interpretation:

$$x = \text{House size (sq ft)}, \quad y = \text{House price ($1,000)}.$$

• Dataset 3: A single-feature dataset where the feature is the age of a car and the target is its price.

Car Age $(x, years)$	Selling Price $(y, \$1000)$
1	22
2	18
4	15
5	12
7	8

Table 3: Car age vs. selling price.

Interpretation:

 $x = \text{Age of car (years)}, \quad y = \text{Selling price ($1,000)}.$

Part 3: Find the answers to these conceptual questions

- 1. Explain the principle of gradient descent. What are the roles of the learning rate and the number of iterations in this algorithm?
- 2. What happens if the learning rate is too large?
- 3. What happens if the learning rate is too small?
- 4. Explain the differences between gradient descent, stochastic gradient descent (SGD), and mini-batch gradient descent.
- 5. What does it mean for gradient descent to converge? How can you tell if gradient descent has failed to converge in practice?
- 6. What are some potential drawbacks or challenges of using stochastic gradient descent, especially in terms of the final stages of convergence?
- 7. Describe the cost function used in linear regression. Why is it important to minimize this function?
- 8. What is the hypothesis function in linear regression? How does it differ in its formulation between simple linear regression and multiple linear regression?