Facultad de Ciencias Departamento de Matemáticas eherrera@javeriana.edu.co Análisis Numérico Primer parcial Agosto de 2021

Recomendaciones

- No se resuelven preguntas del contenido a evaluar, toda respuesta debe estar sustentada y justificada.
- Cada estudiante debe subir a su repositorio un documento en pdf con la solución, incluidas gráficas y tablas (recuerde que debe aparecer la fecha y hora en los pantallazos o ImpPt) y debe estar los archivos: R y/o .py (código) en un archivo aparte también en el repositorio.
- Tiene plazo para subir su solución en la carpeta parciales/parcial1 hasta 9:10 am (hora local)-agosto 27 de 2021 Inmediatamente que suba su solución, debe enviar un correo desde su cuenta de la javeriana a: eherrera@javeriana.edu.co con el link del repositorio (esto es obligatorio)
 - 1. En cada uno de los siguientes ejercicios debe implementar en R y/o Python el algoritmo asignado para resolver el problema (incluya en el código comentarios), generar una tabla con los errores relativos, determinar el número de iteraciones realizadas; una gráfica que evidencie el tipo de convergencia del método utilizado y si esta no es cuadrática aplique un método para acelerar la convergencia, para resolver el problema:

Encuentre la raíz de f(x) aplicando el método asignado con la tolerancia deseada y demuestre numéricamente que $f(x) = x^3 + 2x + k$ cruza el eje x exactamente una vez, independientemente del valor de la constante k. Si a =Ultimo digito de su documento de identificación (Cédula, Tarjeta de Identidad o Cédula de extranjería) entonces:

$$+\sqrt{a+2}$$
; ii. a -1/6.

- a. Método de Müller; $TOL < 10^{-16}$; $k = \sqrt{a+2}$
- b. Método de la secante; $TOL < 10^{-32}$; k = a 1/6
- c. Método de la posición falsa; $TOL < 10^{-12}$; $k = \sqrt{a + 12}$
- d. Método del punto fijo; $TOL < 10^{-10}$; $k = \sqrt{a+2}$
- e. Método de Newton-Raphson; $TOL < 10^{-8}$; k = a 1/3
- f. Newton-Raphson relajado; $TOL < 10^{-16}$; $k = \sqrt{a+2}$
- 2. En los siguientes ejercicios aplicar Taylor para aproximar f(x), con un polinomio P_i alrededor de x_0 ; calcular el error hacia adelante y hacia atrás para cada x^* ; encuentre un límite superior para el error $|f(x^*) P_i(x^*)|$ y compárela con el error real; realizar una gráfica que muestre el polinomio de aproximación y la función. Implemente en R y/o Python, con una precisión de 10^{-8} .
- a. $f(x) = \ln(x^2 + 2); x_0 = 1; P_3(1.5111)$
- b. $f(x) = (x-1)lnx; x_0 = 1; P_3(1.111)$
- c. $f(x) = xe^{x^2}$; $x_0 = 0$; $P_3(1/3)$
- d. $f(x) = 2\cos(2x) (x-2)^2$; $x_0 = 0$; $P_3(\pi/6)$
- e. $f(x) = \sqrt{x+1}$; $x_0 = 1$; $P_4(3/2)$
- 3. Para cada una de las siguientes ecuaciones, determine un intervalo [a, b] en el que la iteración de **punto fijo** converge. Estime el número de iteraciones necesarias para obtener aproximaciones precisas dentro de 10^{-5} y realice los cálculos. Implemente en R y/o Python
- a. 2 + sinx x = 0
- b. x cos x = 0
- c. $x^3 2x + 5 = 0$
- d. $3x + e^x x^2 = -2$.
- 4. Sea $f(x) = e^x x 1$ (a) Muestre numéricamente que f tiene un cero de multiplicidad 2. (b) Utilizando el método de Newton con $x_0 = 1$ demuestre numéricamente que converge a la raíz, pero no cuadráticamente. Implemente en R y/o Python
- 5. Sea $f(x) = e^x x 1$ realice una modificación del método de Newton con $x_0 = 1$ para que converja a la raíz cuadráticamente. Implemente en R y/o Python.
- 6. Dado $P(x) = 1 x + x^2 x^3 + \dots + x^{98} x^{99}$ en x = 1.0001; encuentre una expresión más sencilla y utilícela para calcular numéricamente el error de la multiplicación anidada para el valor de x; realice un gráfico donde se muestra la diferencia alrededor de x = 1.0001 Implemente en R y/o Python