ГЛАВА 2

ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ

§ 8. Предел последовательности

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Понятие предела. Число a называют пределом последовательности $\{x_n\}$, если для каждого $\varepsilon > 0$ существует такое натуральное N, что для любого $n \geqslant N$ верно неравенство

$$|x_n - a| < \varepsilon;$$

короче,

$$\forall \varepsilon > 0 \ \exists N \ \forall n \geqslant N : \ |x_n - a| < \varepsilon; \tag{1}$$

на языке окрестностей: если для каждой окрестности числа a найдется номер, начиная с которого все члены последовательности принадлежат этой окрестности; в символической записи

$$\forall U(a) \ \exists N \ \forall n \geqslant N \colon \ |x_n| \in U(a). \tag{2}$$

Иными словами, какую бы окрестность числа a ни взять, вне этой окрестности либо нет ни одного члена последовательности, либо находится лишь конечное количество ее членов.

Последовательность может иметь только один предел.

Если a — предел последовательности $\{x_n\}$, то пишут

$$\lim_{n\to\infty} x_n = a,$$

а саму последовательность называют $cxo\partial nu$ ейся κ a, иногда просто сходящейся.

Число a не является пределом последовательности $\{x_n\}$, если существует такое число $\varepsilon>0$, что для любого натурального N найдется номер $n\geqslant N$ такой, что

$$|x_n-a|\geqslant \varepsilon,$$

короче,

$$\exists \varepsilon > 0 \ \forall N \ \exists n \geqslant N \colon \ |x_n - a| \geqslant \varepsilon;$$
 (1')

на языке окрестностей: если существует окрестность числа a, вне которой находится бесконечно много членов последовательности.

Последовательность называют расходящейся, если никакое число не является ее пределом, другими словами, если для любого числа a существует такое число $\varepsilon>0$, что для любого натурального N найдется номер $n\geqslant N$ такой, что

$$|x_n - a| \geqslant \varepsilon$$
,

короче,

$$\forall a \ \exists \varepsilon > 0 \ \forall N \ \exists n \geqslant N \colon \ |x_n - a| \geqslant \varepsilon. \tag{3}$$

- 2. Свойства сходящихся последовательностей.
- 1) Если последовательность имеет предел, то она ограниченна. Значит, если последовательность неограниченна, то она расходится. Последовательность, сходящуюся к нулю, называют бесконечно малой.

Если последовательность $\{x_n\}$ бесконечно малая, а последовательность $\{y_n\}$ ограниченная, то их произведение, последовательность $\{x_ny_n\}$, бесконечно малая.

2) Для того чтобы число а было пределом последовательности $\{x_n\}$, необходимо и достаточно, чтобы для всех n

$$x_n = a + \alpha_n$$

где $\{lpha_n\}$ — бесконечно малая последовательность.

- 3) Если существует $\lim_{n\to\infty} x_n$, то для любого числа α существует $\lim_{n\to\infty} \alpha x_n$ и $\lim_{n\to\infty} \alpha x_n = \alpha \lim_{n\to\infty} x_n$.
 - 4) Echu cywectheyom $\lim_{n\to\infty} x_n$ u $\lim_{n\to\infty} y_n$, mo:
 - а) существует $\lim_{n \to \infty} (x_n + y_n)$ и

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n;$$

б) существует $\lim_{n \to \infty} x_n y_n$ и

$$\lim_{n\to\infty} x_n y_n = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n;$$

в) если к тому же $y_n \neq 0$ и $\lim_{n \to \infty} y_n \neq 0$, то существует $\lim_{n \to \infty} \frac{x_n}{y_n}$ и

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}.$$

5) Если $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$ и для всех n, начиная c некоторого, $x_n\leqslant y_n\leqslant z_n$, то

$$\lim_{n\to\infty}y_n=a$$

(теорема о трех последовательностях).

6) Если $\lim_{n\to\infty}x_n=a$ и для всех n, начиная c некоторого, $x_n\leqslant b$ (или $x_n\geqslant c$), то

$$a \leqslant b \quad (u \land u \ a \geqslant c).$$

7) Если $\lim_{n \to \infty} x_n > a$ (или $\lim_{n \to \infty} x_n < b$), то для всех n, начиная c некоторого,

$$x_n > a \quad (u \wedge u \ x_n < b).$$

3. Бесконечно большие последовательности. Последовательность $\{x_n\}$ называют бесконечно большой, если для каждого $\varepsilon>0$ существует такое натуральное N, что для любого $n\geqslant N$ верно неравенство

$$|x_n| > \varepsilon$$
,

и в этом случае пишут

$$\lim_{n\to\infty}x_n=\infty.$$

Бесконечно большая последовательность $\{x_n\}$ имеет пределом $+\infty$ (соответственно $-\infty$), если для каждого $\varepsilon>0$ существует такое натуральное N, что для любого $n\geqslant N$ верно неравенство

$$x_n > \varepsilon$$
 (соответственно $x_n < -\varepsilon$),

и это записывают так: $\lim_{n \to \infty} x_n = +\infty$ (соответственно $\lim_{n \to \infty} x_n = -\infty$).

Во всех этих случаях говорят, что последовательность имеет бесконечный предел.

Всякая бесконечно большая последовательность является неограниченной и расходящейся.

Неограниченная последовательность может и не быть бесконечно большой.

4. Частичный предел. Теорема Больцано—Вейерштрасса. Если подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$ имеет предел $\lim_{k\to\infty} x_{n_k} = a$, где a — число или одна из бесконечностей $+\infty$, $-\infty$, то a называют частичным пределом последовательности $\{x_n\}$.

Если $\lim_{n\to\infty} x_n = a$, где a — число или одна из бесконечностей $+\infty$, $-\infty$, то любая подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$ имеет тот же предел:

$$\lim_{k\to\infty} x_{n_k} = a.$$

Теорема (Больцано-Вейерштрасса). Любая ограниченная последовательность содержит сходящуюся подпоследовательность.

Всякая неограниченная последовательность имеет частичный предел $+\infty$ или $-\infty$. Таким образом, множество частичных пределов любой последовательности *не пусто*.

Пусть L — множество частичных пределов последовательности $\{x_n\}$ (наряду с числами L может содержать и $+\infty$, и $-\infty$). Верхним (нижним) пределом последовательности $\{x_n\}$ называют $\sup L$ ($\inf L$), и обозначают его

$$\overline{\lim_{n\to\infty}} x_n = \sup L \quad (\underline{\lim}_{n\to\infty} x_n = \inf L).$$

Верхний и нижний пределы последовательности являются ее частичными пределами.

5. Фундаментальные последовательности. Критерий Коши. Последовательность $\{x_n\}$ называют фундаментальной, если для каждого $\varepsilon > 0$ существует такое натуральное N, что для любого $n \geqslant N$ и любого $m \geqslant N$ верно неравенство

$$|x_n-x_m|<\varepsilon,$$

короче,

$$\forall \varepsilon > 0 \ \exists N \ \forall n \geqslant N \ \forall m \geqslant N : |x_n - x_m| < \varepsilon$$
 (4)

(условие Коши). Это же условие формулируют и так: для каждого $\varepsilon > 0$ существует такое натуральное N, что для любого $n \geqslant N$ и любого натурального p верно неравенство

$$|x_{n+p}-x_n|<\varepsilon,$$

короче,

$$\forall \varepsilon > 0 \ \exists N \ \forall n \geqslant N \ \forall p \colon |x_{n+p} - x_n| < \varepsilon.$$
 (4')

Теорема (критерий Коши). Для того чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она была фундаментальной.

Для того чтобы последовательность не имела конечного предела, необходимо и достаточно, чтобы она не удовлетворяла условию Коши, т. е. удовлетворяла *отрицанию условия Коши*: существует такое $\varepsilon > 0$, что для любого натурального N найдутся такие $n \geqslant N$ и $m \geqslant N$, что

$$|x_n-x_m|\geqslant \varepsilon,$$

короче,

$$\exists \varepsilon > 0 \ \forall N \ \exists n \geqslant N \ \exists m \geqslant N : \ |x_n - x_m| \geqslant \varepsilon.$$
 (5)

6. Монотонные последовательности. Число е.

Теорема (Вейерштрасса). Ограниченная и монотонная, начиная с некоторого номера, последовательность имеет конечный предел.

Последовательность

$$x_n = (1 + 1/n)^n, \quad n \in N,$$

строго возрастает, т. е. $\forall n \ x_n < x_{n+1}$, ограниченна: $2 \leqslant x_n < 3$, поэтому имеет предел, обозначаемый e,

$$\lim_{n\to\infty} (1+1/n)^n = e,$$

это нерациональное число $e=2,718\,281\,828\,459\,045\dots$

примеры с решениями

Пример 1. Доказать исходя из определения, что число 1 является пределом последовательности $x_n = n/(n+1) \ (n=1,2,...)$.

▲ Рассмотрим модуль разности

$$|x_n-1|=\left|\frac{n}{n+1}-1\right|=\frac{1}{n+1}.$$

Возьмем произвольное число $\varepsilon > 0$. Неравенство $|x_n - 1| < \varepsilon$ будет выполнено, если $1/(n+1) < \varepsilon$, т. е. при $n > 1/\varepsilon - 1$. В качестве N