СИНТЕЗ, ИЗУЧЕНИЕ СТРОЕНИЯ И БИОАКТИВНОСТИ МОЛЕКУЛЯРНЫХ КОМПЛЕКСОВ L-АСКОРБИНОВОЙ КИСЛОТЫ С L-ГИСТИДИНОМ И АРОМАТИЧЕСКИМИ АМИНОКИСЛОТАМИ

Ахметиин С.М., Черепанов И.С. Удмуртский государственный университет 426034, г. Ижевск, ул. Университетская, д. 1

В последние несколько лет существенно возрос интерес к поиску биологически активных соединений на основе L-аскорбиновой кислоты (Asc), открывающих путь к перспективным фармацевтическим препаратам и пищевым системам. В связи с чем представляется актуальным синтез и изучение строения молекулярных комплексов Asc с различными биоактивными веществами, в частности, с аминокислотами. Преимуществами подобных ассоциатов в сравнении с индивидуальными компонентами и их механическими смесями являются повышенная гомогенность, стабильность при хранении и сохранение антиокислительных свойств L-аскорбиновой кислоты.

Синтез целевых продуктов заключался в последовательном введении эквимолярных водно-этанольных растворов реагентов (1 ммоль) в колбу Кляйзена с последующим термостатированием и отгонкой избытка растворителя. Полученные концентраты высушивались при 25 °C и дважды промывались CCl₄.

В качестве продуктов идентифицированы молекулярные комплексы L-аскорбиновой кислоты с m-аминобензойной (m-ABA) \mathbf{I} , n-аминобензойной (p-ABA) \mathbf{I} кислотами и L-гистидином (His) \mathbf{III} , для которых были проведены испытания по ускоренному определению токсичности (см. таблицу).

Характеристики синтеза, строение и свойства полученных конъюгатов

Строение реагентов		Строение продуктов	Условия	Выход продукта	Идентификация по ИК-спектрам	Данные токсикологического анализа
OH OH OH OH OH Asc	o	HO OH OH OH OH OH	96% EtOH, отгонка		$\delta^{\rm NH3}$, отсутствует 1635 см $^{\rm 1}$ $\delta^{\rm N}_{\rm NH3}$, отсутствует 1635 см $^{\rm 1}$ $\delta^{\rm m}_{\rm NH3}$, плечо 1676 \rightarrow 1679 см $^{\rm 1}$ $V_{\rm CPC3}$ 1723 см $^{\rm 1}$ $V_{\rm CPO}$ (нейтральная форма m -ABA) 1754 \rightarrow 1758 см $^{\rm 1}$ $V_{\rm CPO}$	Средняя степень токсичности
	O OH NH2	HO OH II		0.2040 мг, 65.2 %	890 cm 1 γ _{NH2} oч. cna6. 1248 cm 1 δ _{C2-OH} oч. cna6. 1625 cm 1 δ _{NH2} cna6. 1663 \rightarrow 1668 cm 1 γ _{C-O} (p -ABA) 3318 cm 1 γ _{OH(C5)} oч. cna6. 3364 cm 1 γ _{NH2} cna6. 3460 cm 1 γ _{NH2} cna6.	Полное отсутствие токсичности
	CI NH ₃	HO OH OH	Na ₂ CO ₃ , 80% EtOH, отгонка	0.0192 мг, 5.8 %	$\begin{array}{l} 1248\text{cm}^{-1}\delta_{\text{C3-OH}}\text{otcytctbyet} \\ 1409\text{cm}^{-1}V^{\text{C}}_{\text{CDO}}. \\ 1500\text{cm}^{-1}\delta^{\text{S}}_{\text{NH3+}} \\ 1583\text{cm}^{-1}v^{\text{S}}_{\text{COO}}.\text{плечо} \\ 1640 \rightarrow 1637\text{cm}^{-1}\delta^{\text{SS}}_{\text{NH3+}} \\ 1674 \rightarrow 1600\text{cm}^{-1}v_{\text{C3-C3}} \\ 1754 \rightarrow 1720\text{cm}^{-1}v_{\text{CM}} \\ 3080\text{cm}^{-1}v_{\text{NH}}\text{otcytctbyet} \end{array}$	Токсичность практически отсутствует