Some important families of probability distributions

Discrete					
	Range	$p_X(x)$	μ	σ^2	$M_X(t)$
Binomial(n, p)	$0,1,\ldots,n$	$\binom{n}{x} p^x q^{n-x}$	np	npq	$(pe^t + q)^n$
Geometric(p)	$1, 2, \dots$	pq^{x-1}	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^t}{1 - qe^t}$
Negative Binomial (r, p)	$r, r+1, \dots$	$ \binom{x-1}{r-1} p^r q^{x-r} $	$\frac{r}{p}$	$\frac{qr}{p^2}$	$\left(\frac{pe^t}{1 - qe^t}\right)^r$
${\bf Hypergeometric}(N,K,n)$	$0,1,\ldots,n$	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	$\frac{nK}{N}$	$\frac{nK(N-K)(N-n)}{N^2(N-1)}$	
$\mathrm{Poisson}(\mu)$	0, 1,	$\frac{e^{-\mu}\mu^x}{x!}$	μ	μ	$e^{\mu(e^t-1)}$
		Continuous			
	Range	$f_X(x)$	μ	σ^2	$M_X(t)$
$\operatorname{Uniform}(a,b)$	(a,b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
$\operatorname{Exponential}(\beta)$	$(0,\infty)$	$\frac{1}{\beta}e^{-x/\beta}$	β	eta^2	$\frac{1}{1-\beta t}$
$\operatorname{Normal}(\mu,\sigma)$	$(-\infty,\infty)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + \sigma^2 t^2/2}$
$\operatorname{Gamma}(\alpha,\beta)$	$(0,\infty)$	1	$\alpha\beta$	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}$
$\mathrm{Beta}(lpha,eta)$	(0, 1)	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Student's $t(n)$	$(-\infty,\infty)$	$\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$	0	$\frac{n}{n-2}$	

$$\chi$$
 (n)

$$(0,\infty)$$

$$\chi^{2}(n)$$
 $(0,\infty)$ $\frac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2}$

$$\left(\frac{1}{1-2t}\right)^{n/2}$$

$$F(n_1, n_2) \tag{0, \infty}$$

$$(0,\infty)$$

$$\frac{n_2}{n_2 - 2} \quad \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$$