Graphs

Directed Graphs and Undirected Graphs

A graph is usually denoted as G = (V, E), where V represents vertices, and E represents edges. There are two types of graphs, directed ones and undirected ones (see Figures below).

Figure 1: A directed graph G = (V, E), where $V = \{v_1, v_2, v_3, v_4, v_5\}$, and $E = \{(v_1, v_2), (v_3, v_2), (v_4, v_3), (v_4, v_2), (v_4, v_5), (v_5, v_4)\}$.

Figure 2: Left: a undirected graph G = (V, E), where $V = \{v_1, v_2, v_3, v_4, v_5\}$, and $E = \{(v_1, v_2), (v_3, v_2), (v_4, v_3), (v_4, v_2), (v_4, v_5)\}$. Right: the corresponding directed graph of G in which each (undirected) edge is replaced with two edges connecting the same two vertices with opporate directions.

Notice that for an edge (v_i, v_j) in an undirected graph, the order of v_i and v_j are interchangable, i.e., $(v_i, v_j) = (v_j, v_i)$. In directed graph this is not the case.

An undirected graph G = (V, E) can be transformed into a directed graph G' = (V, E') by replacing an (undirected) edge $(v_i, v_j) \in E$ as two (directed) edges (v_i, v_j) and (v_j, v_i) in E'.

Representations of Graphs

Adjacency matrix and adjacency list are two commonly-used data structures to represent a graph. Adjacency matrix uses a binary matrix M of size $|V| \times |V|$ to store a graph G = (V, E): M[i, j] = 1 if and only if

 $(v_i, v_j) \in E$. For undirected graphs, M is symmetric, and the number of "1"s in M is exactly 2|E|. For directed graphs, the number of "1"s in M is exactly |E|.

	v_1	v_2	<i>v</i> ₃	v_4	<i>v</i> ₅
v_1	0	1	0	0	0
v_2	0	0	0	0	0
<i>v</i> ₃	0	1	0	0	0
<i>v</i> ₄	0	1	1	0	1
v ₅	0	0	0	1	0

Figure 3: Adjacency matrix representation (directed graph.

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	0	0	0
v_2	1	0	1	1	0
<i>v</i> ₃	0	1	0	1	0
<i>v</i> ₄	0	1	1	0	1
<i>v</i> ₅	0	0	0	1	0

Figure 4: Adjacency matrix representation (undirected graph).

Adjacency list maintains a list/array A_i for each vertex $v_i \in V$, where A_i stores $\{v_j \in V \mid (v_i, v_j) \in E\}$, i.e., the "neighbors" of v_i . For undirected graph, $\sum_{v_i \in V} |A_i| = 2|E|$. For directed graph, $\sum_{v_i \in V} |A_i| = |E|$.

Figure 5: Adjacency list representation (directed graph).

Think: which one is better, adjacency matrix or adjacency list?

Figure 6: Adjacency list representation (undirected graph).