A számítástudomány alapjai 2022. I. félév

9. gyakorlat. Összeállította: Fleiner Tamás (fleiner@cs.bme.hu)

Tudnivalók

Def: A $V \leq \mathbb{R}^n$ altér *bázisa* a V egy lin.ftn generátorrendszere.

Az \mathbb{R}^n tér standard bázisa $\{\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n\}$.

Állítás: Minden altérnek van bázisa.

Biz: Kétféleképp is előállíthatjuk \mathbb{R}^n tetsz. V alterének egy bázisát.

- 1. lehetőség: Generátorrendszer ritkításával, azaz generátorrendszerből a többi által generált elem elhagyásával egész addig, amíg a maradék rendszer egyetlen elemét sem generálja a többi maradék elem. Az így kapott generátorrendszer lin.ftn.
- 2. lehetőség: Lin.ftn rendszer hízlalásával. Ha van az altérben a lin.ftn. rendszer által nem generált vektor, akkor azzal a rendszer úgy bővíthető, hogy a lin.ftn tulajdonság megmarad.

Megfigyelés: Tfh az M mátrixból az M' RLA mátrix ESÁ-okkal kapható és legyen V az M oszlopai által generált altér. Ekkor az M'-ben v1-t tartalmazó oszlopoknak megfelelő M-beli oszlopok a V bázisát alkotják.

Def: Homogén lineáris egyenletrendszer alatt olyan lineáris egyenletrendszert értünk, amiben minden egyenlet jobb oldalán a 0 konstans áll.

Megfigyelés: Tetsz. n ismeretlenes homogén lineáris egyenletrendszer megoldásaiból alkotott oszlopvektorok zártak az összeadásra és skalárral való szorzásra, így az \mathbb{R}^n tér egy alterét alkotják.

Állítás: Homogén egyenletrendszer segítségével megadott altér bázisát alkotják a homogén lineáris egyenletrendszer mindazon a megoldásaihoz tartozó vektorok, amelyekben egy szabad paramétert 1-nek, a többit pedig 0-nak választjuk.

Állítás: Az \mathbb{R}^n tetsz. V alteréhez található olyan homogén lineáris egyenletrendszer, aminek a megoldásaiból képzett oszlopvektorok pontosan a V altér elemei.

A fent leírt egyenletrendszer megkapható úgy, hogy tekintjük V egy G generátorrendszerét (pl.

egy bázisát), és a G-beli oszlopvektorok alkotta mátrixot kiegészítjük egy $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ vektorral. ESÁ-okkal az utolsó oszlop nélkül RLA mátrixot készítünk, és a v1-t nem tartalmazó sorok utolsó elemeit 0-val egyenlővé tesszük.

Tétel: Ha B_1 és B_2 a $V \leq \mathbb{R}^n$ altér bázisai, akkor $|B_1| = |B_2|$.

Def: A $V \leq \mathbb{R}^n$ altér dimenziója dim V=k, ha V-nek van k-elemű bázisa.

Megfigyelés: Bármely $V \leq \mathbb{R}^n$ altér tetsz. $U \leq V$ alterének bázisa kiegészíthető V bázisává, ezért dim $U \leq \dim V$.

Ållítás: Ha $V_1, V_2 \leq V \leq \mathbb{R}^n$ akkor $\dim(V_1 \cap V_2) + \dim(V) \geq \dim(V_1) + \dim(V_2)$.

Állítás: Ha B a $V \leq \mathbb{R}^n$ altér bázisa, akkor minden $\underline{v} \in V$ vektor egyértelműen fejezhető ki a B bázis elemeinek lin.komb-jaként.

Def: Ha $B = \{\underline{b}_1, \dots, \underline{b}_k\}$ a $V \leq \mathbb{R}^n$ altér bázisa, és $\underline{v} = \sum_{i=1}^k \lambda_i \underline{b}_i$ akkor a \underline{v} vektor B bázis szerinti koordinátavektora $[\underline{v}]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$.

Állítás: A $V \leq \mathbb{R}^n$ altér rögzített B bázisa szerinti koordinátavektorokon a V-beli műveletek megegyeznek az \mathbb{R}^k -beli műveletekkel, azaz $[\underline{u}+\underline{v}]_B = [\underline{u}]_B + [\underline{v}]_B$ ill. $\lambda \cdot [\underline{u}]_B = [\lambda \underline{u}]_B \ \forall \underline{u},\underline{v} \in V \ \forall \lambda \in \mathbb{R}$.

Megfigyelés: Ha $B=\{\underline{u}_1,\ldots,\underline{u}_k\}$ a $V\leq\mathbb{R}^n$ bázisa és $\underline{v}\in V$, akkor az $(\underline{u}_1,\ldots,\underline{u}_k,\underline{v})$ mátrixból ESÁ-okkal képzett RLA mátrix utolsó oszlopa a $[v]_B$ koordinátavektor.

Gyakorlatok

1. Az \mathbb{R}^n tér U és V altereire jelölje $\langle U \cup V \rangle := \bigcap_{U \cup V \subseteq W \leq \mathbb{R}^n} W$ az U és V alterek mindegyikét tartalmazó alterek metszetét. Legyen $U := \langle \underline{u}_1, \underline{u}_2, \underline{u}_3 \rangle$ ill. $V := \langle \underline{v}_1, \underline{v}_2, \underline{v}_3 \rangle$, ahol

$$\underline{u}_1 \ = \ \begin{pmatrix} 3 \\ 3 \\ 2 \\ -4 \\ 2 \end{pmatrix}, \ \underline{u}_2 \ = \ \begin{pmatrix} 4 \\ 1 \\ 4 \\ 4 \\ 4 \end{pmatrix}, \ \underline{u}_3 \ = \ \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}, \ \underline{v}_1 \ = \ \begin{pmatrix} 4 \\ 3 \\ 3 \\ -1 \\ 3 \end{pmatrix}, \ \underline{v}_2 \ = \ \begin{pmatrix} 4 \\ 3 \\ 1 \\ -9 \\ 1 \end{pmatrix}, \ \text{valamint} \ \underline{v}_3 \ = \ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Határozzuk meg az $U \cap V$ és az $\langle U \cup V \rangle$ alterek egy-egy bázisát!

- 2. Döntsük el, lineárisan függetlenek-e az $\underline{u}_1 = \begin{pmatrix} 5 \\ 2 \\ -4 \\ 2 \end{pmatrix}$, $\underline{u}_2 = \begin{pmatrix} 3 \\ 0 \\ 1 \\ 1 \end{pmatrix}$, $\underline{u}_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ vektorok, és ha igen, akkor egészítsük ki e három vektort az \mathbb{R}^4 tér bázisává.
- 3. Tegyük fel, hogy a $\underline{g}_1,\underline{g}_2,\ldots,\underline{g}_k$ vektorok a $V \leq \mathbb{R}^n$ altér generátorrendszerét alkotják. Igaz-e, hogy $\lambda \neq 0$ esetén $\lambda \underline{g}_1,\underline{g}_2,\ldots,\underline{g}_k$ is generálja V-t? Igaz-e, hogy $\underline{g}_1+\underline{g}_2,\underline{g}_2,\ldots,\underline{g}_k$ is generátorrendszer V-ben?
- 4. Tegyük fel, hogy $\underline{f}_1,\underline{f}_2,\ldots,\underline{f}_k$ lin.ftn vektorok. Igaz-e, hogy $\lambda\neq 0$ esetén $\lambda\underline{f}_1,\underline{f}_2,\ldots,\underline{f}_k$ vektorok is lin,ftn-ek? Igaz-e, hogy $\underline{f}_1+\underline{f}_2,\underline{f}_2,\ldots,\underline{f}_k$ is lin.ftn rendszer?
- 5. Tegyük fel, hogy $\underline{b}_1,\underline{b}_2,\ldots,\underline{b}_k$ a $V\leq\mathbb{R}^n$ altér bázisát alkotják. Igaz-e, hogy $\lambda\neq 0$ esetén $\lambda\underline{b}_1,\underline{b}_2,\ldots,\underline{b}_k$ is a V bázisa? Igaz-e, hogy $\underline{b}_1+\underline{b}_2,\underline{b}_2,\ldots,\underline{b}_k$ is bázis V-ben?
- 6. Tegyük fel, hogy $B \cup \{\underline{u}\}$ és $B \cup \{\underline{v}\}$ a $V \leq \mathbb{R}^n$ altér két bázisa. Igaz-e, hogy $\underline{v} = \lambda \underline{u}$ teljesül alkalmas λ skalárra?
- 7. Tegyük fel, hogy $\underline{a}, \underline{b}, \underline{c}, \underline{d}$ lin.öf. vektorok. Lehetnek-e az $\underline{a} 2\underline{b}, 42\underline{b} \pi\underline{c}, \sqrt[\pi]{42}\underline{c} 77\underline{d}, \underline{a} + \underline{b} + \underline{d}$ vektorok lin.ftn.-ek?
- 8. Tegyük fel, hogy az $\underline{a}, \underline{b}, \underline{c}$ vektorok a $V \leq \mathbb{R}^n$ altér bázisát alkotják. Igaz-e, hogy az $\underline{a} + \underline{b}, \underline{b} + \underline{c}, \underline{c} + \underline{a}$ vektorok is V bázisát alkotják?
- 9. Az \mathbb{R}^n tér U és V altereire jelölje $\langle U \cup V \rangle := \bigcap_{U \cup V \subseteq W \leq \mathbb{R}^n} W$ az U és V alterek mindegyikét tartalmazó alterek metszetét. Igazoljuk, hogy $\dim(U) + \dim(V) = \dim(U \cap V) + \dim\langle U \cup V \rangle$.
- 10. Tegyük fel, hogy az $\underline{b}_1, \underline{b}_2, \dots, \underline{b}_k$ vektorok a $V \leq \mathbb{R}^n$ altér egy B bázisát alkotják, és legyen $\underline{0} \neq \underline{v} \in V$. Bizonyítsuk be, hogy léteznek olyan α_i skalárok, amire $\underline{b}_1 + \alpha_1 \underline{v}, \underline{b}_2 + \alpha_2 \underline{v}, \dots, \underline{b}_k + \alpha_k \underline{v}$ nem bázis a V altérben. (*)