ELECTRO CHEMISTRY

Types of Conductivity

- 1. Specific Conductance (κ) => (kappa)
- 2. Equivalent Conductance (Λ) => (Lambda
- 3. Molar Conductance (Λ_m or μ)

1. Specific Conductance:

Unit of κ , CGI: mho.cm⁻¹ or $\Omega^{\text{-1}}\text{cm}^{\text{-1}}$. SI: Sm⁻¹

2. Equivalent Conductance:

$$\Lambda = \kappa \times \frac{1000 \, cm^3}{C} = \kappa \times V$$

C = Gram Equivalent Mass/Liter

Here,
$$C = \frac{equivalent\ mass}{Volume\ in\ Liter}$$

And, equivalent mass =
$$\frac{Atomic mass in gram}{Charge}$$
 of cation

Example: Equivalent Mass of Na₂CO₃ is (106/2), because cation Na⁺ has a positive charge of 2.

Unit of Equivalent conductance(Λ) Ω^{-1} cm⁻¹. (g. eqv)⁻¹ or in SI: S.m².(g. Eqv)⁻¹

3. Molar Conductance:

$$\Lambda_m = \kappa \times V = \kappa \times \frac{1000 \, cm^2}{M}$$

M =Moles of Electrolyte

Cell Constant =
$$\frac{l}{A}$$

Faraday's First law of Electrolysis:

$$W = ZQ$$

$$Q = I \times t$$

$$W = ZIt$$

$$Z = \frac{W}{Q} = \frac{atomic mass in gram}{valency \times 96473}$$

* Nernest Equation of Electric Cell Potential

$$\begin{split} E_{cell} &= E_{cell}^{o} - \frac{RT}{nF} lnQ \\ E_{cell} &= E_{cell}^{o} - \frac{0.0592 \, V}{n} \times logQ \end{split}$$

Here, E_{cell} = Potential of Battery or Cell in a nonstandard Temperature

E°_{cell} = Potential of Battery or Cell in a Standard Temperature

R = Ideal Gas Constant

T = Temperature in Kelvin Scale

F = Faraday's Constant Charge

Q = Ratio of Product Ion(s) and Reactant ion(s) = $\frac{[Product ion]^{x}}{[Reactant ion]^{y}}$

Example of Q:

Suppose the full Redox reaction is following:

$$Zn(s)+Cu^{2+}(aq)\rightarrow Zn^{2+}(aq)+Cu(s)$$

then,
$$Q = \frac{[Z^{2^+}]}{[Cu^{2^+}]}$$

n = Change of Charges;

for example:

if half oxidizing reaction is

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

and reducing half reaction is:

$$Cu^{2+}$$
 (aq) + $2e^{-} \rightarrow Cu(s)$

then, n = 2