PL-TR-95-2154

SEISMIC STUDIES OF THE CASPIAN BASIN AND SURROUNDING REGIONS

Keith Priestley Stephen Mangino

University of Cambridge Department of Earth Sciences Madingley Rise, Madingley Road Cambridge CB3 OEZ UNITED KINGDOM

14 November 1995

Final Report 15 September 1993-14 November 1995 19960103 201

Approved for Public Release; Distribution Unlimited

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ Contract Manager JAME\$ F. LEWKOWICZ, Director Earth Sciences Division

This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/TSI, 29 Randolph Road, Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

Public reporting builden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and exintaning the data needed, and completing and reviewing the collection of information. Send comments regarding this builden estimate or any other aspect of this collection of information, meloding suggestions for reducing this burden. To Washington Headquarters Services, Operators in Information Operations and Reports, 1215 Jefferson collection of information, meloding suggestions for reducing this burden. Programme Regulators Services, Operators Regulators (2015) Programme Regulators (2015) Progr

Danis High-way, Suite 1204, Arthrigton, VA 22202 4302, and to the Office of Management and Sudget, Paperwork Reduction Project (UZIP-0100), Washington, PA, 20, 007							
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		3. REPORT TYP	3. REPORT TYPE AND DATES COVERED			
	14 NOVEMBER	1995	FINAL	REPO	ORT(15 Sep 93-14 Nov 95)		
4. TITLE AND SUBTITLE					5. FUNDING NUMBERS		
SEISMIC STUDIES OF THE	CASPIAN BASIN	AND SU	RROUNDING		PT (1100F		
REGIONS					PE 61102F		
					PR2309 TA G2 WU BM		
6. AUTHOR(S)					Contract F49620-92-J-		
KEITH PRIESTLEY					0475		
STEPHEN MANGINO							
T DE DECEMBER (ADECAMIZATION MANAL	S) AND ADDRESSUS)			8. PERFORMING ORGANIZATION		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Cambridge					REPORT NUMBER		
Department of Earth Scie	nces				•)		
Madingley Rise, Madingle) 		
Cambridge CB3 OEZ, UNITE							
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDI	RESS(ES)			10. SPONSORING / MONITORING AGENCY REPORT NUMBER		
Phillips Laboratory							
29 Randolph Road			PL-TR-95-2154				
Hanscom AFB, MA 01731-3010				PL-1R-93-2134			
Contract Manager: James	Lewkowicz/GPE	H					
11. SUPPLEMENTARY NOTES							
	LAAFELT				126. DISTRIBUTION CODE		
APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED							
APPROVED FOR PUBLIC RELEA	OF DISTRIBUTION	NA OMPTI	TILL)		
10 m m m m m m m m m m m m m m m m m m m							
13. ABSTRACT (Maximum 200 words)							

In order to investigate the anomalous crust and upper mantle structure of the south Caspian Basin, we installed a network of six three-component seismograph stations within the countries of Turkmenistan and Azerbaijan. Improved knowledge of the crust and upper mantle structure of the south Caspian Basin is important in a seismic verification context because of the anomalous effect it has on regional seismic waveforms. Our objective is to determine the velocity structure of this region using both body wave receiver function and surface wave modeling techniques. We present receiver function inversion results for four sites and fundamental mode Rayleigh wave observations for two great circle paths across this region. Also presented are results of a study of Russian deep seismic sounding data from a nuclear source recorded along a 2600km long profile in Siberia. This analysis supports the earlier observation that the 410km discontinunity beneath the Siberian Platform consists of a velocity increase over a 35km depth.

14. SUBJECT TERMS Seismic studies Caspian Basin	Upper mantle str Surface wave mod	15. NUMBER OF PAGES 84 16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT unclassified	20. LIMITATION OF ABSTRACT

CONTENTS

VELOCITY STRUCTURE OF UPPER MANTLE TRANSITION ZONES BENEATH CENTRAL EURASIA FROM SEISMIC INVERSION USING GENETIC ALGORITHMS

Summary				
INTRODUCTION				
NON-LINEAR GLOBAL INVERSION				
Misfit Function				
Genetic Algorithms				
APPLICATION TO DATA				
The Siberian RIFT Profile	Accession For			
Initial Models	NTIS CRA&A M			
Model Parameterization	Dy			
Inversion	Elektrication / Acciliately Deriva			
DISCUSSION	Avail and or Dist Special			
CONCLUSIONS	A-1			
References				

VELOCITY STRUCTURE IN THE REGION OF THE SOUTH CASPIAN BASIN FROM TELESEISMIC RECEIVER FUNCTION MODELING

Summary	2
INTRODUCTION	2
THE CASPIAN SEISMOGRAPH NETWORK	28
TELESEISMIC BODY WAVEFORM MODELING	30
SURFACE WAVE OBSERVATIONS	33
DISCUSSION AND CONCLUSIONS	35
References	36
Appendix 1: Caspian Seismograph Network Event Index	54

Velocity Structure of Upper Mantle Transition Zones beneath Central Eurasia from Seismic Inversion using Genetic Algorithms

Fernando A. Neves, Satish C. Singh and Keith F. Priestley

Bullard Laboratories, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, UK

SUMMARY

We present velocity constraints for the upper mantle transition zones beneath Central Siberia based on observations of the 1982 "RIFT" Deep Seismic Sounding (DSS) profile. The data consist of seismic recordings of a nuclear explosion in northwestern Siberia along a 2600-km long seismic profile extending from the Yamal Peninsula to Lake Baikal. We invert seismic data from the mantle transition zones using a non-linear inversion scheme using a genetic algorithm for optimization and the WKBJ method to compute the synthetic seismograms. A statistical error analysis using a graph-binning technique was performed to provide uncertainty in the velocity models.

Our best model for the upper mantle velocity discontinuity near 410 km depth has a two-stage velocity gradient structure with velocities increasing from 8.65 to 9.30 km/s over a depth range of 400–415 km, a gradient of 0.043 $\rm s^{-1}$, and from 9.30 to 9.65 km/s over a depth range of 415–435 km, a gradient of 0.0175 $\rm s^{-1}$. This derived model is consistent with other seismological observations and mineral physics models. The model for the velocity discontinuity near 660 km depth is simple, sharp and includes velocities increasing from 10.10 km/s at 655 km depth to 10.65 km/s at 660 km depth, a gradient of 0.055 $\rm s^{-1}$.

Key words: mantle transition zones, seismic inversion, genetic algorithm.

INTRODUCTION

The size and sharpness of the 410-km and 660-km seismic discontinuities provide important constraints in assessing petrological models of upper mantle phase changes and chemical layering. Laboratory studies (Ito & Takahashi, 1989) suggest that the velocity discontinuity at 410 km depth corresponds to a phase change over 20 km from peridotite to β -spinel structure. This result contradicts seismological studies of P'P' precursors (Lees et al. 1983;

Benz & Vidale, 1993) that suggest a simple and sharp 410-km discontinuity. The velocity discontinuity at 660 km depth corresponds to a phase change over 5 km from δ -spinel to perivoskite and magnesiowustite (Helffrich & Bina, 1994). Benz & Vidale (1993) have shown that the short-period frequency content of reflections from the 660-km discontinuity is sharp, corresponding to transition zones of 4 km or less.

Most of the previous seismic studies of the upper mantle transition zones have used low–frequency body wave or surface wave data, which results in poor resolution. Furthermore, a number of different source signatures are used in earthquake body wave studies, requiring a comparison of different waveforms or solving for the earthquake source, both resulting in possible ambiguities between velocities and earthquake source mechanism. Several recent upper mantle studies are based on very long refraction profiles in Asia (Mechie et al., 1993; Cipar et al., 1993; Priestley et al., 1994). The one–dimensional (1–D) model for the latter study, derived from travel–time forward modeling techniques and amplitude matching using reflectivity synthetic seismograms, has a 35–km thick transition zone (8.64–9.45 km/s) at 410 km depth and 4–km thick (10.25–10.62 km/s) at 660 km depth. As pointed out by Priestley et al. (1994) there is a clear evidence from the recorded section that lateral heterogeneity exists in the upper mantle along the profile.

In order to present seismic velocity models of upper mantle discontinuities that provide quantitative constraints on the petrology, error estimates on the velocity are necessary. Previous studies have used forward modeling techniques which give insight into the velocity structure, but they offer only qualitative estimates of the uncertainties associated with the velocity model features. Since the objective function which describes the goodness of fit between observed and synthetic seismograms is highly non-linear, a linear inversion scheme can provide neither a unique solution nor an error estimate. In this study we have used a non-linear global inversion scheme that can provide a statistical error analysis and model resolution. By obtaining the smallest structural details that are statistically resolvable, an inversion-derived velocity model can help discriminate between alternative seismic interpretations.

NON-LINEAR GLOBAL INVERSION

Seismic inversion schemes consist of three steps: forward modeling, evaluation of an

objective function and optimization of the objective function. The main objective of an inversion analysis is to find a "best" model that explains the observations. The forward modeling is achieved by efficiently solving the wave equation. The objective function is a measure of goodness between data and synthetic seismograms. Depending upon the nature of the objective function, a local (linear) or a global (non-linear) method of optimization is used. Linearized methods of optimization depend strongly on the starting model, and hence are prone to being either trapped in local optima or becoming unstable. As a result, these methods fail if the initial model is too far from the most likely model. In addition, they may require derivative of the objective function, and the computation of, which could be difficult and costly. A non-linear global optimization avoids nearly all of the limitations of the linear methods. For instance, by using an initial population of many randomly chosen velocity models, one does not require a starting velocity model. Instead of trying to find a "best" model that explains the observations, the global methods search for a family of velocity models which explain the data to a desired level of confidence. It is also possible to quantify the degree of confidence on each of the final estimated velocity models. Non–linear global inversion methods are attractive for problems where efficient forward modeling schemes are available.

Misfit Function

There are many measures of goodness of fit, and the choice of a specific one depends on the problem and the kind of data being analyzed. In general, a least-squares misfit between the data and synthetic seismograms should be used. However due to the absence of true amplitude information in the data that are analyzed here, we have used the semblance functional $E(\mathbf{m})$ defined as (Landa et al., 1989)

$$E(\mathbf{m}) = \sum_{k=0}^{K} \frac{\left\{ \sum_{j} U_{j} [kdt + \tau(\mathbf{m})] \right\}^{2}}{\sum_{j} \left\{ U_{j} [kdt + \tau(\mathbf{m})] \right\}^{2}}$$
(1)

where U_j represents the seismic trace for the j^{th} receiver, τ is the traveltime calculated by raytracing through the model m, dt is the time sampling interval and Kdt is the time window

for semblance calculation. Our goal is to find the model m which maximises the semblance functional E(m) calculated for all seismic traces in a time window along the traveltime trajectory defined by a forward modeling scheme. A time window length of 2 s (K=20) was used for the analysis.

Our choice of the semblance function was motivated primarily to avoid traveltime picking of the data. This is important since the seismic phases we are analyzing are secondary arrivals and hence of low signal—to—noise ratio. Furthermore, since the true amplitude information on the data was not available, we could not use a norm based on the full wavefield.

In order to perform a global search, which is computationally time consuming when compared to local search methods, we need a fast forward modeling scheme. The WKBJ synthetic seismogram method (Chapman, 1978) provides such a solution. We have used the WKBJ seismogram algorithm extended to laterally inhomogeneous media using the Maslov asymptotic theory (Chapman & Drummond, 1982) as a 2–D forward modeling technique. For the traveltime calculation we have applied a dynamic raytracing algorithm, where non–geometrical signals caused by inhomogeneities in the Earth are modeled. This algorithm is an extension of geometrical ray theory and agrees with geometrical ray theory for high–frequency direct and turning rays (Chapman et al., 1988). The Maslov algorithm was chosen because it is a fast and accurate 2–D forward modeling scheme to evaluate the objective function for a large number of models. We have adopted the 2–D raytracing scheme in order to take into account propagation effects generated by lateral heterogeneities within the crust and upper mantle.

Genetic Algorithms

The objective function $E(\mathbf{m})$ generally has many peaks and the methods based on local optimization often fail to find the largest value of the objective function if the starting model is not close enough to the final model. To avoid this problem, a global method, Genetic Algorithm (GA), is used. The GA works with a group of M velocity models simultaneously, each represented by a bit-string (Goldberg, 1989). The initial search space for each velocity is divided into 2n parts described by n bits. The initial population of M velocity models is generated randomly within each velocity bound.

At each iteration the GA essentially consists of three operations (Fig. 1): selection, crossover and mutation.

Selection: From the initial population of M-bit strings, an interim population of M parents is generated by selecting models from the original group with likelihood of selection determined by a probability depending on the objective function. The probability of selecting the k^{th} velocity model is written as (Sambridge & Drijkoningen, 1992)

$$P(\mathbf{m}_k) = \left[\sum_{j=1}^{M} \exp(BE_j)\right]^{-1} \exp(BE(\mathbf{m}_k))$$
 (2)

where $B=(E_{\sigma})^{-1}$. E_{σ} is the standard deviation of the objective function $E(\mathbf{m}_k)$ (k=1,...,M) within the population that is being evaluated by GA. E_j (j=1,...,M) is the current value of the objective function $E(\mathbf{m}_k)$. Note in Fig. 1 that model 1 with the highest objective function was selected twice, model 2 and 3 once, model 4 with the lowest objective function was rejected.

Crossover: From the parent population of M-bit strings a new generation of M-strings is generated, each of which is obtained by mixing bit-strings from two parents. All the M parents are randomly paired to produce M/2 couples. A probability for performing this step is assigned. The value designated for this probability is chosen by preliminary tests on the data. If this probability is greater than a generated random number between 0 and 1, then the current pair is to be crossed over. The location where the strings are cut is also determined randomly. Our GA algorithm uses a single-point crossover, with the cut position restricted to occur only at velocity boundaries (Fig. 1).

Mutation: This final process allows any bit in an individual string to flip between 0 and 1. The main goal of this process is to add some degree of local diversity (since only individual bits are affected) into the whole inversion process. Therefore, no genetic feature is permanently lost, something that would reduce the model space. A mutation probability (usually rather low) is used to control the likelihood of this process.

A Posteriori Probability Density (PPD) is assigned to each evaluated model, which is defined as (Basu & Frazer, 1990) :

$$\Psi(\mathbf{m}) = \frac{\exp(E(\mathbf{m})/\sigma)}{\sum \exp(E(\mathbf{m})/\sigma)}$$
(3)

where $E(\mathbf{m})$ is the semblance (objective) function value for model \mathbf{m} and σ is the variance in $E(\mathbf{m})$ for all the models sampled by the GA. Here we have assumed that the data are statistically independent. The square root of variance is a measure of uncertainty or standard error of the estimated parameter. The denominator $\sum \exp(E(\mathbf{m})/\sigma)$ is summed and evaluated at the end of all the runs and is used to normalize the PPD. Since it is impossible to plot the PPD in the M-dimensional model space, we have used the graph-binning technique proposed by Frazer & Basu (1990) where each model parameter was assigned the model's PPD and summed into model parameter bins. Nolte & Frazer (1994) argue that there is no theoretical basis for using GA to compute the PPD. However, we agree with Stoffa & Sen (1991) that many independent GA runs with different initial populations followed by a graph-binning technique can provide an estimate of the PPD.

APPLICATION TO DATA

The Siberian RIFT Profile

During the past 30 years, the Soviet Ministry of Geology (now the Center of Regional Geophysical and Geological Research) has conducted an extensive seismic exploration program of the Eurasian crust and upper mantle. Many of these profiles used nuclear explosions as seismic sources for recording long-range profiles (up to 4000 km) and chemical explosives for recording short-range (up to 750 km) profiles (Scheimer & Borg, 1984; Benz et al., 1992). Analysis of these data by Russian seismologists has largely been by forward modeling of the travel time data. Recently, data from several of these profiles have been analyzed by forward modeling of the waveform data (Cipar et al. 1993; Priestley et al. 1994).

The 1982 RIFT profile extends 2600 km across the Siberian platform from the Yamal Peninsula to Lake Baikal (Fig. 2). Seismic data were recorded from three nuclear explosions and thirty-four chemical explosions along this profile. The northernmost shot point (SP245) is located within the West Siberian rift on the northwest edge of the Siberian platform.

This aborted rift is buried beneath approximately 15 km of sediments (Cipar et al., 1993). The central section of the profile extends across the Tunguska basin (site of SP173), a region of widespread intraplate flood basalts. The southern portion of the profile crosses the presently active Baikal rift (site of SP35); this rift occurs within a recent regional uplift and is characterized by high heat flow and a low velocity upper mantle (Belousov et al. 1991).

We analyze the data from SP245 in this study. SP245 was located at 69.206°N 81.647°E, had a body wave magnitude of mb = 5.2, and was recorded in a SE-direction to a distance of 2400 km (Fig. 2). Analysis of the seismograms from the chemical explosions along this profile provides detailed crust and uppermost mantle velocity structure (Fig. 4) (Pavlenkova, personal communication).

SP245 was recorded at 182 sites, each equipped with three-component seismometers and a Taiga seismic recording system, (Chichinin et al., 1969). We analyze only the vertical component data in this study. The seismometers have a natural frequency of 1.5 Hz, and the recording system has a usable bandwidth between 0.5 and 20 Hz. The station locations are accurate to 0.1 km, which is lower than the accuracy of station locations for most modern crustal refraction studies. However, the source-receiver distances are much more accurate than in most mantle studies using earthquake data because the source location is accurately known. These data were commercially digitized and corrected for amplitude scaling to produce trace normalized record sections (Cipar et al., 1993). The seismic section for SP245 is shown in Fig. 3.

The nature of the wave field from these data have been discussed by Priestley et al. (1994). Crustal arrivals are prominent at short offsets, especially the crustal (Pg) phase. The uppermost mantle refracted arrival (Pn) is observed as a first arrival starting at a distance of ~ 150 km. The Pn arrival is observed to about 600 km but has variable amplitude. Since this amplitude variation can be correlated over large distances, it is likely to be due to variations in the lithospheric structure. The upper mantle velocity is about 8.2 km/s (Priestley et al., 1994). In this study we concentrate our effort on reflected/refracted arrivals from the upper mantle transition zones. The phase from the 410–km discontinuity is a clear secondary arrival beginning at about 1600 km and 15 s reduced time with a reduction velocity of 8.2 km/s, and becomes the first arrival at about 2200 km. The phase from the 660–km discontinuity

starts at about 2100 km range and 13 s reduced time.

Initial Models

Since we are interested in the details of the velocity discontinuities at 410 km and 660 km depths, we allow the velocity model to vary only in the vicinity of these zones and fix the model elsewhere. For the crust we include the 2–D velocity model determined from a study of refraction data recorded from the chemical explosions along the "RIFT" profile (Pavlenkova, personal communication). This crustal model is very complex, so instead of using this model for the crust, we have used a smoothed version (Fig. 4) of it. The smoothed crustal velocity model still contains significant lateral velocity variations which generate differential time delays at different ranges. These will certainly affect the depth and thickness estimates of mantle features. It is therefore important to use a 2–D raytracing technique for the crustal part of the profile. However, having only one line and one shot available, it is impossible to resolve lateral variations in upper mantle structures. Thus, we have used a hybrid method consisting of 2–D raytracing for the crust and a 1–D inversion scheme for the upper mantle transition zones. The 1–D upper mantle velocity model used in this study (Fig. 5, thin line) was derived by Priestley et al. (1994).

Model Parameterization

The velocity model in the vicinity of the transition zone was parameterized as a function of depth V(z) at various node points with linear interpolation applied between the node points. This implies that velocity gradient is parameterized. The separation between nodes was determined by the dominant frequency content of the seismic data. The dominant frequency of the P-waves for the upper mantle arrivals is around 1.5 Hz, giving a resolution of 4–5 km. Therefore, we have parameterized the velocity model for the region with velocity nodes every 5 km. The structure in the vicinity of the 410-km discontinuity was parameterized by 8 nodes equally spaced at 5 km and in the vicinity of the 660-km discontinuity by 4 nodes. This was based on the maximum resolution of 5 km provided by the data and also by the maximum thickness of the transition zones given by previous studies (Priestley et al. 1994). Thus we restrict the thickness of the 410-km transition zone to be less than 35 km and the thickness

of the 660-km transition to be less than 15 km.

Inversion

The inversion was run for 200 iterations with an initial population of 50 models, and with probabilities of crossover and mutation equal to 0.6 and 0.05, respectively. These values were obtained from preliminary tests on the data and must be tuned for each particular problem or data set. This tuning represents an unsatisfactory aspect of the GA method (Sambridge & Drijkoningen, 1992). The initial population of models was chosen randomly within the velocity range defined from the model–T. The velocity range was defined as $V_T \pm 0.5$ km/s, where V_T is the velocity of model–T. The velocity deviation in this range is greater than a typical accuracy of \pm 0.1–0.2 km/s provided by a ordinary wide–angle seismological survey. A positive velocity gradient constraint was imposed to avoid the presence of low velocity zones.

The evaluation of the semblance functional (eq. (1)) requires knowledge of neither the source wavelet nor the instrument response. However, we have used the source function described in Evernden et al. (1986) to calculate the synthetic seismograms so that the synthetic seismograms can be visually compared to the data. Evernden et al. (1986) present an empirically determined formula for the far field amplitude spectrum generated by explosions. The attenuation model used in computing the synthetics seismograms was taken from Der et al. (1986) as used by Priestley et al. (1994). Due to the long extent of the seismic line (2400 km) we have also applied the Earth flattening transformation described by Chapman (1973). The final inversion results for the velocity model for the 410-km and 660-km discontinuities are shown in Figs. 6a and 7a, respectively. In order to evaluate the effect of the 2-D crustal velocity model and a smoothed version of model-T (Fig. 5, thick line) were considered. The resulting velocity models for the 410-km and 660-km discontinuities with a 1-D crustal velocity model and a smoothed version of model-T are shown in Figs. 6a and 7a, respectively.

Merely fitting the data by an inversion scheme method is not sufficient for estimating model parameters; measurement of resolution and uncertainty are required. Therefore, we have evaluated the binned PPD function, where we have assumed a constant travel-time variance of $\sigma=0.5$ s for all models. The binary coding requires that the number of velocity

intervals for each node is an integral power of two. Thus, during the GA optimization procedure we set a fixed velocity interval $\Delta V = 0.1$ km/s, which is within the expected accuracy. In Figs. 6b and 7b we have also plotted the PPD's (dashed lines), calculated using eq. (3), at each node depth point.

In Figs. 6b and 7b, we show the data (solid curve) and the synthetics for the final model (dashed curve) for the arrivals from the 410-km and 660-km discontinuities, respectively. Figure 6c shows the data (solid curve) and the synthetic waveforms for our "best-fit" preferred model, a two-step gradient (dotted-dashed curve), a simple (one step) gradient (dotted curve) and a simple sharp discontinuity (dashed curve), for the 410-km discontinuity for stations located at 1803 km and 1982 km away from SP245. In order to quantify the goodness of fit between observed and synthetic seismograms, we have used the misfit function $\phi(j)$ defined as

$$\phi(j) = \frac{\sum_{t=t_0}^{t_0 + Kdt} |U_{\text{obs}}(j, t) - U_{\text{syn}}(j, t)|^2}{\sum_{t=t_0}^{t_0 + Kdt} (U_{\text{obs}}(j, t))^2}$$
(4)

where $U_{\rm obs}(j,t)$ are the observed data, $U_{\rm syn}(j,t)$ are the synthetic seismograms for station j, and t is the time. The computation of $\phi(j)$ is done within a time window Kdt starting from the traveltime t_0 estimated from the inversion. For the 410-km discontinuity (Fig. 6(c)) the values of $\phi(j=1803 \text{ km})$ for the sharp, one-step gradient and two-step are 0.33, 0.19 and 0.11, respectively. The values of $\phi(j=1982 \text{ km})$ for the sharp, one-step gradient and two-step gradient are 0.38, 0.24 and 0.16, respectively. At both locations, the misfit is the lowest for the two-step gradient model.

DISCUSSION

The synthetic seismograms obtained from our final velocity models for the 410-km and 660-km discontinuities adequately fit the general features of the observed data. Our model for the transition zone near 410 km depth (Fig. 6a) consists of a two-stage velocity gradient. This model has produced the best-fit (Fig. 6c). The first stage extends from 400 to 415 km depth with P-wave velocity increasing from 8.70 to 9.25 km/s with a high velocity gradient

of 0.0433 s⁻¹. The second stage extends from 415 to 435 km depth with P-wave velocity increasing from 9.25 to 9.60 km/s and a low velocity gradient of 0.0175 s⁻¹. The PPD's curves clearly show this bimodal velocity structure, which suggests that long period seismic data are more (or may be only) sensitive to this first step gradient, where there is a greater velocity variation at around 415 km depth. This may explain observations of Benz & Vidale (1993). In a mineral physics context, this would imply that the transformation from olivine to β -spinel is not linear in the 410-km transition zone, and it is faster for the first 15 km. For mineral physics models, a thickness of 35 km might be postulated when the transformation from olivine to β -spinel has taken place completely (Ita & Stixrude, 1992).

Although our model and the model—T for the 410-km discontinuity shows the same shape (two-step velocity gradient), our velocity model is faster (up to 0.2 km/s). However, Priestley et al. (1994) have adopted a broad transition region for the 410-km discontinuity.

The PPD plot in Fig. 6b shows clearly that model—T might result from a secondary optimum. With error analysis used here, we can distinguish various possible models.

Our model for the 660–km discontinuity (Fig. 7a) is consistent with previous seismological models, such as the model–T. We estimate this transition zone as 5 km thick over the depth range 655–660 km, with velocity ranging from 10.15 and 10.70 km/s and have a velocity gradient of $0.055~\rm s^{-1}$. The PPD plots are more complex than the one from Fig. 6b, which could be due to low signal–to–noise ratio for these later arrivals. It should be noted that we have assumed a 1–D model in the upper mantle although the earth is truly 3–D. For low frequency waves this is a good approximation, but this limits our power of spatial depth and lateral resolution, which means that lateral heterogeneity can be mapped into a 1–D velocity model (Kennett & Bowman, 1990). This may explain some small discrepancies between the data and synthetic seismograms.

CONCLUSIONS

The main points of this study are:

(1) Our proposed inversion method approach which combines 2-D forward modeling with dynamic raytracing for the crust and 1-D inversion for the upper mantle is relevant. The

error-analysis using a graph-binning technique has shown the existence of local optima where solutions associated with previous velocity models derived from forward modeling schemes might get trapped.

(2) We presented a 1–D compressional velocity model for the 410–km and 660–km upper mantle discontinuities beneath the Siberian Platform that is derived from non–linear global inversion applied to the deep seismic data recorded along the RIFT profile. However, we still consider this a preliminary model since we have analyzed data from only one shot point of the RIFT profile.

The major features of our model are: (a) a two-stage velocity gradient for the transition zone near the 410 km depth. The first one is a high velocity gradient zone ranging from 400 to 415 km depth and the second one is a low velocity gradient zone ranging from 415 to 435 km depth, (b) a simple and narrow high gradient zone between 655 and 660 km depth.

(3) We also suggest that the phase transformation from olivine to β -spinel is not linear for the shallower transition zone, which in turn generates the two-step velocity gradient pattern observed for this region. This result is independently confirmed by Stixrude (1995)

REFERENCES

- Basu, A. & Frazer, L. N., 1990. Rapid determination of the critical temperature in simulated annealing inversion, Science, 249, 1409–1412.
- Belousov, B., Pavlenkova, N. I. & Kvyatkovskaya, G. N., 1991. Crustal structure of the territory of the USSR (in Russian), Nauka, Moscow.
- Benz, H. M. & Vidale, J. E., 1993. Sharpness of upper-mantle discontinuities determined from high-frequency reflections, Nature, 365, 147-150.
- Benz, H. M., Unger, J. D., Leith, W. S., Mooney, W. D., Solodilov, L., Egorkin, A. V. & Ryaboy, V. Z., 1992. Deep seismic sounding in Northern Eurasia, EOS, Trans. Am. geophys. Un., 73, 297–300.
- Chapman, C. H., 1973. The Earth flattening transformation in body wave theory, Geophys.

- J. R. astr. Soc., 35, 55-70.
- Chapman, C. H., 1978. A new method for computing synthetic seismograms, Geophys. J. R. astr. Soc., 54, 481–518.
- Chapman, C. H. & Drummond, R., 1982. Body wave seismograms in inhomogeneous media using Maslov asymptotic theory, Bull. seism. Soc. Am., 72, 277-317.
- Chapman, C. H., Jen-Yi, C. & Lyness, D. G., 1988. The WKBJ seismogram algorithm, In Seismological Algorithms: Computational Methods and Computer programs, 47–74; Academic Press Ltd., London.
- Chichinin, I. S., Yegorov, G. V., Yemelianov, A. V. & Bochanov, A. J., 1969. Portable Telemonitored Seismic Equipment Taiga, Methods of Seismic Research, 95–119; Nauka, Moscow.
- Cipar, J. J., Priestley, K. F., Egorkin, A. V. & Pavlenkova, N. I., 1993. The Yamal Peninsula-Lake Baikal deep seismic sounding profile, Geophys. Res. Lett., 20, 1631-1634.
- Der, Z., Lees, A. & Cormier, V., 1986. Frequency dependence of Q in the upper mantle underlying the shield areas of Eurasia, Part III: The Q model, Geophys. J. R. astr. Soc., 87, 1103–1112.
- Evernden, J. F., Archambeau, C. B. & Cranswick, E., 1986. An evaluation of seismic decoupling and underground nuclear test monitoring using high-frequency seismic data, Rev. Geophysics, 24, 143-215.
- Frazer, L. N. & Basu, A., 1990. Freeze-bath inversion, 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1123-1125.
- Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.
- Helffrich, G. & Bina, C. R., 1994. Frequency dependence of the visibility and depths of mantle seismic discontinuities, Geophys. Res. Lett., 24, 2613–2616.
- Ita, J. & Stixrude, L., 1992. Petrology, elasticity, and composition of the mantle transition

- zone, J. geophys. Res., 97, 6849-6866.
- Ito, E. & Takahashi, E., 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. geophys. Res., 94, 10637-10646.
- Kennett, B. L. N. & Bowman, J. R., 1990. The velocity structure and heterogeneity of the upper mantle, Phys. Earth planet. Inter., 59, 134-144.
- Lees, A. C., Bukowinski, M. S. T. & Jeanloz, R. J., 1983. Reflection properties of phase transition and compositional change models of the 670-km discontinuity, J. geophys. Res., 88, 8145-8159.
- Landa, E., Beydoun, W. & Tarantola, A., 1989. Reference velocity model estimation from prestack waveforms: coherency optimization by simulated annealing, Geophysics, 54, 984–990.
- Nolte, B. & Frazer, L. N., 1994. Vertical seismic profile inversion with genetic algorithms, Geophys. J. Int., 117, 162–178.
- Mechie, J., Egorkin, A. V., Fuchs, K., Ryberg, T., Solodilov, L. & Wenzel, F., 1993. P-wave mantle velocity structure beneath northern Eurasia from long-range recordings along the profile Quartz, Phys. Earth planet. Inter., 33, 180-193.
- Priestley, K. F., Cipar, J. J., Egorkin, A. V. & Pavlenkova, N.I., 1994. Upper-mantle velocity structure beneath the Siberian platform, Geophys. J. Int., 108, 369-378.
- Sambridge, M. & Drijkoningen G., 1992. Genetic algorithms in seismic waveform inversion, Geophys. J. Int., 109, 323–342.
- Scheimer, J. F. & Borg, I. Y., 1984. Deep seismic sounding with nuclear explosives in the Soviet Union, Science, 226, 787–792.
- Stixrude, L., 1995. Mantle composition and structure of mantle discontinuities, IUGG XXI General Assembly, Abstract, B383.

Figure Captions

- Figure 1. A schematic illustration of the operators employed by the genetic algorithm. The selection operator chooses the models from the initial population (in this example four models) with a probability of selection proportional to the maximum of the objective function (E). Model 1, with the highest E, was selected twice while model 4, with the lowest E, was rejected for the next generation. The crossover operator randomly chooses pairs of models and exchanges their portions (three parameter models in this example) at a point selected at random along the length of the model to produce two new off-spring. The mutation operator is shown operating on a single velocity of parameter 4. The colors represent different parameter values.
- Figure 2. Simplified tectonic map of central Asia. The RIFT profile is the straight solid line and the large solid dots show the location of the nuclear explosion for the shot points 245, 173 and 35.
- Figure 3. Recorded, unfiltered SP245 seismic section reduced at 8.2 km/s. The seismograms are trace normalized. The arrivals labeled are: (a) Pg, (b) Pn, (c) reflection/refraction from the 410-km discontinuity and (d) reflection/refraction from the 660-km discontinuity.
- Figure 4. Smoothed 2-D crustal P-wave velocity model derived from chemical explosions along profile (Pavlenkova, personal communication). Numbers within the plot are velocities in km/s. Velocities vary linearly with distance and depth.
- Figure 5. P-wave upper-mantle velocity-depth function (thin solid line) for SP245 model-T (Priestley et al., 1994). Thick solid line is a smoothed version of model-T.
- Figure 6.(a) P-wave velocity-depth function for the 410-km discontinuity estimated from inversion with a 2-D crustal velocity structure (thick dark solid line), with a 1-D crustal velocity structure (thin solid line), with a smoothed model-T velocity structure (thick grey line) and model-T (dotted-dashed line). The crossed circles are the depth points where velocities were computed. The Posteriori Probability Density functions (PPDs) are shown by the dashed lines. (b) Comparison between synthetic seismograms (dashed

curve) filtered in the same frequency bandwidth and data (solid curve) for the 410-km discontinuity at reduced velocity of 8.2 km/s. The arrows show estimated traveltime from inversion and the dots those computed for model-T. (c) Comparison between data (solid curve) and the synthetic waveforms for a two-step gradient (dotted-dashed curve), a simple (one step) gradient (dotted curve) and a simple sharp discontinuity (dashed curve), for the 410-km discontinuity for the stations located at 1803 km and 1982 km away from SP245.

- Figure 7. (a) P-wave velocity depth function for the 660-km discontinuity estimated from inversion with a 2-D crustal velocity structure (thick dark solid line), with a 1-D crustal velocity structure (thin solid line), with a smoothed model-T velocity structure (thick light solid line) and model-T (dotted-dashed line). The crossed circles are the depth points where velocities were computed. The Posteriori Probability Density functions (PPDs) are shown by the dashed lines.
- (b) Comparison between synthetic seismograms (dashed curve) filtered in the same data frequency bandwidth and data (solid curve) for the 660-km discontinuity at reduced velocity of 8.2 km/s. The arrows show estimated traveltime from inversion and the dots those computed from model-T.

FIGURE 1

FIGURE 2

IGURE 3

FIGURE 4

FIGURE 5

"410" TRANSITION ZONE

FIGURE 6a

410 Km DISCONTINUITY

"660" TRANSITION ZONE

FIGURE 7a

Velocity Structure in the Region of the South Caspian Basin from Teleseismic Receiver Function Modeling

Stephen Mangino and Keith Priestley

Bullard Laboratories, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, UK

SUMMARY

The crust and upper mantle structure of the south Caspian Basin and the Turkmenian Lowlands is enigmatic. From Soviet deep seismic sounding data collected in the 1960s, the crust appears to consist of two layers: a thick sedimentary section (15–25 km) with a low P-wave velocity (3.5–4.0 km/s) overlying a 12–18 km thick basaltic lower crust. It has been suggested that this basaltic lower crust is "oceanic-like" crust and that the south Caspian Basin represents a section of relic ocean from a Paleozoic – Triassic ocean or a Mesozoic – Paleogene marginal sea. Improved knowledge of the crust and upper mantle velocity structure of the south Caspian Basin is important in a seismic verification context because of the anomalous effect it has on regional seismic waveforms. To investigate the crust and upper mantle structure of the south Caspian Basin, we have installed six three–component seismograph stations within the former Soviet Republics of Turkmenia and Azerbaijan. Our objective is to determine the velocity structure of this region using both body wave receiver function and surface wave modeling techniques. We present receiver function inversion results for four sites and fundamental mode Rayleigh wave observations for two great circle paths across this region.

Key Words: South Caspian Basin, crust and upper mantle structure, receiver functions, surface wave dispersion

INTRODUCTION

The south Caspian Basin and the Turkmenian Lowlands form an anomalous aseismic depression that is bounded to the north by the Apsheron-Balkhan Sill, a narrow seismogenic zone extending from the Caucasus Mountains in Azerbaijan to the Kopet Dagh Mountains of Turkmenia; and to the west in Azerbaijan and to the south along the Iranian border by the

active fold and thrust belts of the Talesh and Alborz Mountains, respectively. The northward movement of the Iranian plate with respect to the Eurasian plate is causing compressional deformation throughout the Caspian region (Jackson and McKenzie, 1984). Mechanisms of earthquakes occurring within the bounding seismic belts of the south Caspian Basin suggest that the crust of the south Caspian Basin is being overriden by the continental crust of the Iranian plateau in the south, and to a lesser extent, by the northern Caspian continental crust (Priestley et al, 1994).

The crust and upper mantle velocity structure of the south Caspian Basin is poorly known. Deep seismic sounding data collected in the early 1960s suggest that the crust of the south Caspian Basin and west Turkmenian Lowlands consists of two layers: a thick sedimentary layer (15–20 km) with a P-wave velocity of 3.5–4.0 km/s which overlies a 12–18 km thick "basaltic" layer with a P-wave velocity of 6.6–7.0 km/s (Neprochnov 1968; Rezanov and Chamo, 1969). It has been suggested that the south Caspian Basin represents a section of "ocean-like" crust that may be either a relic of an older Paleozoic-Triassic ocean or a marginal sea which developed behind a Mesozoic-Paleogene ocean (Berberian and King 1981; Berberian 1983). The south Caspian Basin strongly affects the propagation of regional seismic waves. For example, the seismic phase Lg is blocked for paths crossing the south Caspian Basin (Kadinsky-Cade et al, 1981). This has important ramifications for seismic monitoring in the Middle East.

To develop better velocity models for the crust and upper mantle for the south Caspian Basin and the surrounding region, we have installed and operated a network of digital three-component seismic stations in Turkmenia and Azerbaijan. In this report we present our preliminary results from the analysis of teleseismic P-wave: (1) travel time residuals, (2) P-wave azimuthal anomalies, and (3) velocity models of the crust and upper mantle from the analysis of receiver functions. We also discuss observations of fundamental mode Rayleigh waves for two great circle paths across this region.

THE CASPIAN SEISMOGRAPH NETWORK

To better understand the crust and upper mantle structure in the south Caspian region and its effect on regional seismic wave propagation, we have installed a network of three-

component broadband digital seismographs around the south Caspian Sea in Turkmenia and Azerbaijan (Fig. 1). Not all stations have operated simultaneously. Five stations (BAK, KAT, KRV, LNK, and NBD) were installed in June, 1993. DTA was installed in December, 1993. BAK was found to be extremely noisy and was moved to SHE in June 1994. The highly unstable political climate in Azerbaijan due to war with Armenia coupled with the nearby fighting in Groznyy forced us to remove stations LNK and SHE in February, 1995. In June 1995 a new station was installed at KAR using the instruments previously deployed at LNK. Also shown in Figure 1 is the station ABKT which was installed in May, 1993 by the Incorporated Research Institutions for Seismology (IRIS).

Each of the Caspian Seismograph Network stations we operate consists of Refraction Technology 72a-02 16-bit data loggers with external hard disk drives and either Omega or GPS time code receivers. Stations DTA, KAR, KAT, KRV, and LNK have Guralp CMG-3T three-component broadband seismometers and stations BAK, NBD, and SHE have threecomponent Teledyne Geotech SL210/220 long period (15 sec free period) seismometers. Each seismograph was installed at a permanent seismograph site of either the Turkmenian Academy of Sciences or "Geoseism" (the equivalent Azerbaijan organization). The stations are permanently occupied by a station-keeper and family, which therefore contribute to the amount of noise generated at each site. All seismometers are installed on cement piers within vaults that are located either within a sub-basement or within a surface vault adjacent to the station keeper's house. To correct for seismometer drift we designed and installed a clock activated re-centering unit for each of the CMG-3T seismometers. This device issues a centering command to the CMG-3T at weekly intervals. The LP seismometers are manually re-centered by the station keeper. All stations record data continuously at 10 samples/sec. In addition, some stations have had a triggered data stream at 50 samples/sec. Every two months each stations' data is transferred from disk to either Exabyte or DAT tape and returned to the SYNAPSE Moscow Data Center (MDC). At the MDC an inspection of data quality is conducted and duplicate copies are made. The raw data files are then sent to the University of Cambridge, arriving between 5-8 months after initial collection. The IRIS station ABKT is equipped with Streckeisen STS-1 seismometers, a 24-bit Quantera digitizer, and a GPS clock. Data for ABKT is obtained from the IRIS Data Management Center in Seattle, Washington. Parameters for each of these stations is given in Table 1.

We calibrate each station with a step function during each visit. More complete calibrations using a pseudo-random binary input and a sinusodial input are made on an annual basis. Analysis of the step calibrations indicate that the sensor characteristics have not deviated significantly during the deployment. Figure 2 shows the frequency response curves for the CMG-3T, the SL210/220, and STS-1 seismometers.

A catalogue of the recorded events recorded is given in Appendix 1.

TELESEISMIC BODY WAVEFORM MODELING

To determine the velocity structure of the crust and upper mantle beneath the seismographs shown in Figure 1 we model the teleseismic P-waveform using receiver function analysis (Owens et al, 1984). However, before we apply the receiver function method we use other information contained within teleseismic P-wave to determine more gross properties of the crust and upper mantle structure beneath each site. We first determine P-wave travel time residuals for the stations in the immediate vicinity of the south Caspian Basin relative to IASP91 and station ABKT. We then estimate the affects of scattering by examining P-wave azimuth anomalies. Finally, we model the P-waveforms using the receiver function technique.

P-wave Travel Time Residuals: To determine relative differences in crust and upper mantle structure in the south Caspian region we computed absolute P-wave travel time residuals with respect to the IASP91 earth model and relative travel time residuals of the south Caspian Basin stations compared to station ABKT. The relative residual is defined as

$$T_{resid} = \left[T_{CSN} - T_{IASP91(CSN)} \right] - \left[T_{ABKT} - T_{IASP91(ABKT)} \right]$$

where T_{CSN} is the arrival time at the CSN station, T_{IASP91} is the predicted arrival time for the IASP91 model, and T_{ABKT} is the observed arrival time at ABKT.

The observed residuals are plotted for each of the sites in Figures 3–5 and summarized in Table 2 and 3. Arrivals at all stations are late with respect to those predicted by the IASP91 earth model. Stations NBD and KAT, both located in the Turkmenian Lowlands, show mean delays of 0.9 sec with respect to ABKT. These large delays are likely due to

the thick sedimentary section in the south Caspian Basin. The KRV residuals are negative with respect to ABKT with a mean advance of -0.28 sec for events to the northeast and a mean advance of -0.70 sec for events to the southeast. The change of -0.5 sec occurs over a fairly narrow range at an azimuth of about N80°E. Negative residuals at KRV with respect to ABKT suggest either a faster mantle, a thinner crust, or a thinner sedimentary section beneath KRV compared to that beneath ABKT.

P-wave azimuthal anomalies: The frequency dependence of backazimuth anomalies and the polarization characteristics can be indicative of the level of scattering in the P-wavefield due to inhomogeneities in the crust and upper most mantle beneath the recording site. It is important to assess the level of scattering and its frequency dependence before attempting to extract information on the crust and upper mantle structure using the receiver function technique. We have measured the polarization using a technique discussed discussed in Kanasewich (1981) and implemented by Harris (1980). For this, the rectilinearity of the particle motion over a specified time window can be obtained from the ratio of the principal axes of the diagonalized covariance matrix from the three component time series. The degree of rectilinearity can be determined by comparing the relative magnitude of the two largest eigenvalues; and the direction of polarization can be determined by considering the components of the eigenvectors associated with the largest eigenvalue with respect to the coordinate directions (Fig. 6).

We use this procedure to examine the polarization of teleseismic P-waves in the 0.07-0.2 Hz and 0.3-2.0 Hz bands. Assuming an average crustal P-wave velocity of 6.4 km/s these bands correspond to wavelengths of about 96 to 32 km or crustal dimensions and about 21 to 3 km or subcrustal dimensions. Figure 7 shows an example of the measurement made on a teleseismic P-wave for the lower of these frequency bands, and the associated particle motion plots.

The results of the polarization analysis in the two frequency bands are shown in Figures 8–10 and summarized in Table 4. The results are complex however some conclusions can be drawn from these plots. With the exception of station KRV the differences between the low frequency observed and the theoretical backazimuths are small. However, the highpass backazimuth anomalies are large indicating significant scattering.

At ABKT the lowpass measurements are essentially on azimuth while a pattern is present at higher frequencies. Arrivals from teleseismic sources northeast of ABKT are deflected to the north while arrivals from the southeast are deflected to the south. The division between this frequency dependent scattering is roughly parallel to the trend of the Main Fault of the Kopet Dag Mountains. Although the bearing results at station DTA are sparse, this pattern is not present 200 km east of ABKT. At station KRV both the low and highpass bearings are inconsistent with the expected azimuth of arrival. The mean difference between the expected and observed azimuth of arrival is 17.5 degrees, counterclockwise about the station. These differences point to a mis-aligned seismometer. Stations NBD, KAT and LNK located within the Basin and all show significant scattering at higher frequencies while the lowpass bearings are variable.

Receiver Functions: We computed receiver function Caspian station we isolated the P to S converted phases in the 30 seconds following the P-wave arrival using the source equalization method (Langston, 1979; Ammon, 1991). Most of the source regions are along the Circum Pacific Seismogenic Zone, hence most of the receiver functions sample the lithosphere to the east of each station. Only the most stable deconvolutions (those with averaging functions that approximate a narrow band Gaussian pulse) are used to infer structure. Events from common source regions are then stacked and the variance of the stacked data is used as a measure of coherence of individual Ps arrivals. We examined the radial and tangential receiver functions as a function of azimuth and determined 1-D estimates of the receiver structure using the inversion method of Ammon et al. (1990).

Figure 11 presents the receiver function inversion results for the northeast backazimuth of CSN station KRV. The synthetic waveform fits are compared to the +/- 1 STD bounds obtained from the variance of the stacked data. Also shown are the stacked radial and tangential receiver functions and the range model space examined. We believe this range adequately covers most known rock types found in the earths crust. The KRV-NE radial receiver function is dominated by two Ps arrivals at 7s and 9.5s. These arrivals are well above the scattered wave field indicated by the amplitude of the tangential receiver function. Particle motion of these arrivals is consistent with P to S converted energy generated at a

near horizontal interface. Rotation of the KRV receiver functions by 17.5 degrees (the mean observed in the bearing analysis) yields a radial receiver function that does not significantly differ from the amplitude and phase of the unrotated data. The KRV-NE solution models indicate a 3-4 Km thick gradational shallow crust over a relatively constant upper crustal layer between 4-16 Km depth. A step in velocity of 1.5 Km/s is present between 16-18 Km. Beneath this step from 20 to 36 km depth the average P-wave velocity is between 6.5-7.0 km/s. From 36 to 46 km velocities range from 6.8-7.3 km/s. The crust-mantle boundary is gradational and velocities greater than 8 Km/s are first encountered at 52-54 Km depth.

Figure 12 presents a summary of the receiver function models obtained at the CSN stations and at station ABKT. Although these 1-D models represent only several data points across a complex region, some of the gross structural differences between the south Caspian Basin and adjacent Kopet Dag Mtns are clear. The models for stations KAT and LNK indicate the presence of a 10-12 km thick sedimentary layer in the upper crust. Both of these stations are located in the southern portion of the south Caspian Basin. The thickness of this layer is consistent with but less than the previously reported sedimentary thickness of 15-25 Km. It is important to note that our stations are located along the perimeter of the Basin and the previous DSS estimates are for the center of the Basin. Beneath the sedimentary layer at station LNK the mid-crustal velocities are high and are consistent with an ultra-mafic material, perhaps basalt, while at KAT a broad shallow low-velocity zone is present. The KRV-NE solutions and the ABKT-NE solutions both show a similar upper crustal velocity profile and include a step in velocity near 20 km depth. The crust-mantle boundary is gradational for all models and and occurs between 50-55 Km depth around the perimeter of the Basin and between 44-46 km depth beneath station ABKT. We are currently examining 1-D velocity estimates of the crust and upper mantle to depths approaching 150 km.

SURFACE WAVE OBSERVATIONS

The study of Kadinsky-Cade et al. (1981) demonstrated that the seismic phase Lg is largely blocked for paths crossing the south Caspian Basin and this is also apparent in the data we have collected in the region immediately surrounding the Caspian. However, Figure

13 shows that the south Caspian Basin also severely disrupts low frequency fundamental mode surface wave trains. Figure 13a compares long period seismograms for a mid-Atlantic ridge earthquake propagating along a great circle path between LNK and KAT. The LNK seismogram shows a dispersed fundamental mode wave train (~ 2400–3000 seconds) followed by scattered surface wave arrivals. The lowest frequency fundamental mode surface wave arrival seen in the LNK seismogram is clear in the KAT seismogram (~2600–2700 seconds) but the dispersed wave train observed at LNK is largely missing from the KAT seismogram and the overall surface wave amplitude has decreased significantly. Figure 13b compares seismograms for a north Mulucca Sea earthquake propagating along a great circle path between KAT and LNK, i.e., reversing the path of the event in Figure 13a. These seismograms exhibit the same degradation of the surface wave train and show that this is not, for example, an instrumental effect. We have observed this phenomenon for all events propagating along great circle paths across the central portion of the south Caspian Basin.

Surface waves propagating along the KRV-KAT great circle path across the Turkmenian Lowlands do not show the same disruption (Fig. 14) as those propagating across the main part of the basin (Fig. 13). Russian earth scientists have suggested that this region is structurally part of the south Caspian Basin and that the crust in the region consists of 10–15 km of sediment lying on "ocean-like" crust. The deep thickness of sediments is verified from well logs (Sengor, personal communications, 1995). The two upper seismograms in Figure 14a show one of four great circle path Rayleigh wave pairs recorded at stations KRV and KAT that are used to determine the dispersion curve. The comparison of the two wave trains in the lower part of the upper plot shows the match of the original KAT Rayleigh wave with the KRV Rayleigh wave after being filtered with the dispersion transfer function.

Figure 14b shows the fundamental mode Rayleigh wave phase velocity dispersion curve for this path. This curve was computed from four seismogram pairs using a constrained least–squares algorithm (Gomberg et al, 1988). The KRV–KAT phase velocity curve is compared with observed dispersion curves for several other possibly analogous regions; an ocean basin structure (Kuo et al, 1962), a continental tectonic structure (Knopoff et al, 1966), and the Bay of Bengal [curves A to D] (Brune and Singh, 1986). The main difference between curves A to D is due to an increase of sedimentary layer thickness from south to north in the Bay

of Bengal as one gets closer to the mouth of the Ganges River. The dispersion curve for the western Turkmenian Lowlands is most similar to curve "D" for the Bay of Bengal observed by Brune and Singh (1986). They suggest that a thick sedimentary section introduces a blanketing effect which results in an increase in temperature causing in the serpentinization of oceanic crust into a more "continental-like" crust. A similar blanketing process might be affecting the crust in the south Caspian Basin.

DISCUSSION AND CONCLUSIONS

This study has shown that the south Caspian has an anomalous crustal structure which has a pronounced effect on not only higher frequency regional seismic waveforms but also on lower frequency surface waves. The velocity structures from body wave modeling provide some insight into the effects of crustal structure on regional seismic waves propagating across the south Caspian Basin. It is clear from the Caspian data that both longer and shorter period surface wave trains are greatly scattered or attenuated for travel paths across the Caspian Sea, and to a lesser degree for paths across the Turkmenian Lowlands. The Lg phase is blocked for travel paths across the oceanic crust as well as in regions where the crustal structure includes rapid changes in thickness. If we consider the Lg phase to consist of multiple reflected S waves trapped within the crustal wave guide, then the receiver function modeling results suggest that the blockage is due to the abrupt change in crustal structure from a relatively simple model beneath ABKT to complex models beneath KAT and LNK. Although these are 1-D models and the basin is a 3-D structure, these observations support a scattering mechanism. Recent analysis of the logarithmic rms amplitude ratio of Sn/Lg (Zhang and Lay 1994) has shown that this ratio can be linearly related to changes in surface topography. The southern margins of the Basin and the eastern margin of the Turkmenian Lowlands range from below sea level at LNK up to 2 km in the Alborz Mountains. These features probably contribute to the Lg blockage, but these effects have not yet been examined.

Acknowledgements: Installation and the first year and a half of station operation in the Caspian was funded by the Phillips Laboratory. Operation of the stations in the second and third years was funded by USAF EOARD and INTAS grants. Station installation and main-

tenance in the Caspian region was made possible by the support of Drs. M. Roshkov and V. Kiseleivich, SYNAPSE Moscow Data Center; Drs. T Ashirov and B. Karryev, Institute of Seismology of Turkmenia; and Drs. A. Gasanov and S. Agamirzoev of the Geophysical Expedition of Azerbaijan. Throughout network operations indispensable technical support and software was obtained from the Program of Array Seismic Studies of the Continental Lithosphere (PASSCAL) Instrument Center at Lamont-Doherty Geological Observatory (LDGO) and from Refraction Technology.

References

- Ammon, C. J., The isolation of receiver effects from teleseismic P waveforms, *Bull. Seism*. *Soc. Am.*, 81, 2504–2510, 1991.
- Ammon, C. J., G. E. Randall and G. Zandt, On the resolution and non-uniqueness of receiver function inversions, *J. Geophys. Res.*, **95**, 15303–15318, 1990.
- Berberian, M., The southern Caspian: A compressional depression floored by trapped, modified oceanic crust, Can. J. Earth Sci., 20, 163–183, 1983.
- Berberian, M. and G. C. P. King, Towards a paleogeography and tectonic evolution of Iran, Can. J. Earth Sci., 18, 210-265, 1981.
- Gomberg, J.S., K.F. Priestley, T.G. Masters, and J.N. Brune, The structure of the crust and upper mantle of northern Mexico, *Geophys. J.*, **94**, 1–20.
- Harris, D.B., Comparison of the direction estimation performance of high-frequency seismic arrays and three-component stations, *Bull. Seis. Soc. Am.*, 80, 1951–1968, 1990.
- Jackson, J. A., and D. McKenzie, Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophys. J. R. Astr. Soc., 77, 185-264, 1984.
- Kadinsky-Cade, K., M. Barazangi, J. Oliver, and B. Isacks, Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian Plateaus, J. Geophys. Res., 86, 9377-9369, 1981.
- Knopoff, L., S. Mueller, and W.L. Pilant, Structure of the crust and upper mantle in the Alps

- from the phase velocity of Rayleigh waves, Bull. Seis. Soc. Am., 56, 1009-1044, 1966.
- Kuo, J., J. Brune, and M. Major, Rayleigh wave dispersion in the Pacific Ocean for the period range 20 to 140 seconds, Bull. Seis. Soc. Am., 52, 338-357, 1962.
- Langston, C. A., Structure under Mount Rainier, Washington inferred from teleseismic body waves, J. Geophys. Res., 84, 4749–4762, 1979.
- Neprochnov, Y. P., Structure of the earth's crust of epi-continental seas: Caspian, Black, and Mediterranean, Can. J. Earth Sci., 5, 1037-1043, 1968.
- Park, J., F. Vernon and C. R. Lindberg, Frequency dependent polarization analysis of high-frequency seismograms, J. Geophys. Res., 92, 12,664-12,674, 1987.
- Priestley, K., C. Baker and J. Jackson, Implications of earthquake focal mechanism data for the active tectonics of the south Caspian Basin and surrounding regions, *Geophys. J. Int.*, 118, 111–141, 1994.
- Rezanov, I. A. and S. S. Chamo, Reasons for absence of a granitic layer in basins of the South Caspian and Black Sea type, Can. J. Earth Sci., 6, 671–678, 1969.
- Zhang, T., and T. Lay, Analysis of short period regional phase path effects associated with topography in Eurasia, *Bull. Seis. Soc. Am.*, 84, 119-132, 1994.

Figure 1. Map of the Caspian Sea and surrounding regions. Caspian Seismograph Network stations are located in Turkmenistan near Krasnovosdk (KRV), Nebit Dag (NBD), Kizyl Atrek (KAT), Dana Tag (DTA), Kala Kara (KAR), and in Azerbaijan near Lenkoran (LNK), Baku (BAK) and Shemaha (SHE). Also shown are WWSSN stations Tabriz (TAB) and Mashad (MSH), the Iranian Long Period Array (ILPA) and IRIS station Alibek (ABKT). The shaded region denotes the subsurface lateral extent of the suspected "oceanic" crust.

Figure 2. Instrument response characteristics for the CMG-3T, LP and STS-1 seismometers.

Figure 3. P-wave traveltime residuals for station KRV. Symbol size is scaled at 0.5s intervals, circles are fast and triangles are slow with respect to standard station ABKT. Concentric circles indicate epicentral distance in degrees and residuals are plotted as a function of azimuth.

Figure 4. P-wave traveltime residuals for stations NBD (top) and KAT (bottom) relative to ABKT. Format is the same as in Figure 3.

Figure 5. P-wave traveltime residuals for stations LNK (top) and DTA (bottom) relative to ABKT. Format is the same as in Figure 3.

Figure 6. A perspective diagram of the three eigenvectors associated with the covariance matrix for a P-wave. The largest eigenvector extends through the center of the ellipse drawn above in 2 dimensions and defines the radial (R) direction.

Figure 7. Sample P-wave polarization analysis window (top) and corresponding particle motion in the three orthogonal planes between the source and receiver.

Figure 8. Stations ABKT (top) and DTA (bottom) expected (solid line) compared to the observed P-wave bearing (dashed line) for the lowpass 15s to 5s (left) and highpass 3s-2Hz filtered data (right). Concentric circles indicate epicentral distance from the station.

Figure 9. Stations KRV (top) and NBD (bottom) expected compared to the observed P-wave bearing . Format is the same as in Figure 8.

Figure 10. Stations KAT (top) and LNK (bottom) expected compared to the observed P-wave bearing . Format is the same as in Figure 8.

Figure 11. CSN station KRV-NE synthetic waveform fits compared to the +/-1 STD bounds (top left), the stacked radial and tangential receiver functions (bottom left) and the corresponding solution models (right).

Figure 12. P-wave velocity receiver function modeling results for stations ABKT, KRV, KAT and INK.

Figure 13. Reversed, great circle path vertical component seismograms recorded at CSN stations LNK and KAT. The upper pair (A) is a record of a mid-Atlantic ridge earthquake propagating from west to east across the south Caspian Basin, while the lower pair (B) is a larger event from the Mulucca Sea which propagates across the Basin from east to west. Both pairs show considerable degradation of the surface wave train after propagating across the south Caspian Basin. These seismograms are characteristic of all great circle path events across the central portion of the south Caspian Basin.

Figure 14. Fundamental mode Rayleigh wave phase velocity dispersion curve for the KRV-KAT path. This curve was computed from four seismogram pairs using a constrained least-squares alogrithm (Gomberg et al. 1988). The KRV-KAT phase velocity curve is compared with observed dispersion curves for an ocean basin (Kuo et al. 1962), a continental tectonic region (Knopoff et al. 1966), and the Bay of Bengal (Brune and Singh 1988) region. The primary differences in paths "A" to "D" is an increase in thickness of the near surface sedimentary layer and an increase in Moho depth from "A" to "D".

Table 1

Caspian Seismograph Network

STATION ID # KEY	STATION LAT, LON ELEV	AZIMUTH +°N +°E	DAS# CLOCK SENSOR	FIELD NOTES
KRV #1	40.0063° N 52.9575° E +4 m	184.8° 274.8°	580 GPS CMG-3T	Installed 5/93 CMG#357, 3Km east of Caspian Sea sub-basement vault overlies bedrock. Topography varies up to 100m, Edge of Krasnovosdk Plateau, Turkmenistan.
NBD #2	39.5077° N 54.3872° E +18 m	4.6° 94.6°	458 Ω CMG-3T/ LP	Installed 5/93 CMG #360; 12/93-present: LPZ=186 LPN=048, LPE=050; Sub-basement vault overlies unconsolidated sands and clay; Relatively flat topography; Turkmenian Lowlands.
KAT #3	37.6697° N 54.7766° E +84 m	4.1° 94.1°	454 Ω CMG-3T	Installed 5/93 CMG#363; 12/93-present CMG#360 Sub-basement vault overlies alluvium. Topography is ±10m; Turkmenian Lowlands, 3 Km north of Iraian Border, 20 Km north of Alborz Mtns.
LNK #4	38.7100° N 48.7788° E -2 m	4.4° 94.4°	450 Ω CMG-3T	Installed 6/93 CMG #364; Removed 5/95. Surface vault overlies bedrock. Topography ±50m. Foothills of Talesh Mts., 10Km west of Caspian Sea; Azerbaijan.
BAK #5	40.5813° N 49.9869° E -27 m	4.8° 94.8°	456 Ω LP	Installed 6/93 LPZ=077 LPN=043 LPE=039 Removed 6/94; 1Km west of Caspian Sea. Surface vault overlies unconsolidated sands and clay. Apsheron Peninsula, Azerbaijan.
DTA #6	39.0755° N 55.1663° E +319 m	4.5° 94.5°	582 GPS CMG-3T	Installed 12/93 CMG #363; Surface vault overliies silt stone and shale, Topography ± 200m Kopet Dag Mtns., Turkmenistan
SHE #7	40.6433° N 48.6394° E +829 m	184.8° 274.8°	456 Ω LP	Installed 6/94 LPZ=077, LPN=043, LPE=039 Removed 5/95; Surface vault overlies carbonates. Topography ±100. Eastern Caucasus, Azerbaijan.
ABKT #8	37.9304° N 58.1189° E +678 m	90° 0°	IRIS GPS STS-1	Operated by IRIS, installed 4/93, Sensors in tunnel within silt stone and carbonates. Kopet Dag Mtns., Turkmenistan.
KAR #9	38.4357° N 56.2709° E +304 m	184.3° 274.3°	456 Ω CMG-3T	Installed 6/95 CMG #364, Sensors in sub-basement vault, Kopet Dag Mtns., Turkmenistan

Table 2

Teleseismic P-wave residuals computed with respect to IASP91. BAZ= azimuthal search range, Mean= mean residual over the specified BAZ, STD= standard deviation and # Ev's= number of events used in calculation and all times are in seconds.

STATION	BAZ	MEAN	STD	#Ev's
DTA	0-360°	1.78	0.523	36
KRV	0-360°	1.38	0.807	113
NBD	0-360°	2.80	1.289	29
KAT	0-360°	2.96	0.888	99
LNK	0-360°	1.94	0.870	25
ABKT	0-360°	1.85	0.885	147

Table 3

Teleseismic P-wave residuals computed with respect to 'standard-station' ABKT. BAZ= azimuthal search range, Mean= mean residual over the specified BAZ, STD= standard deviation and # Ev's= number of events used in calculation, and all times are in seconds.

STATION	BAZ	MEAN	STD	#Ev's
DTA	0-360°	0.06	0.433	17
KRV KRV KRV	0-360° 0-70° 70-180°	-0.51 -0.28 -0.70	0.472 0.411 0.412	94 39 51
NBD	0-360°	0.89	0.825	26
KAT	0-360°	0.87	0.691	72
LNK	0-360°	0.06	0.998	22

Table 4

Summary of P-wave bearing analysis where BAZ is range of search, MEAN = average difference between observed and expected P-wave azimuth computed over the specified BAZ; STD=standard deviation; and # EV's = number of events.

	Lo	wpass res	ults	Highpass results						
Station	BAZ	MEAN	STD	#EV's	BAZ	MEAN	STD	#EV's		
ABKT	0-360°	1.89°N	8.41	61	0-80° 80-180°	22.66°N 31.85°S	7.57 12.43	6 27		
DTA	0-360°	2.28°S	11.56	17	0-80° 80-180°	6.90°S 1.39°S	7.92 13.64	10 6		
KRV		16.67°N 17.35°N	7.51 7.17	69 64	0-360° 0-180°	11.83°N 11.87°N	10.6 10.89	52 48		
NBD	0-360°	8.26°N	12.22	24	0-360°	0.35°S	48.76	20		
KAT	0-360°	7.74°S	25.45	42	0-360°	11.83°N	10.6	52		
LNK	0-360°	1.74°N	12.14	23	0-360°	88.82°S	41.61	27		

Appendix 1

Caspian Seismograph Network Event Index

Events are indexed by YR:Day:HR:MN:SS according to the Preliminary Determination of Epicenter monthly (1993-1994) and weekly (1995) bulletins. The station lookup key is equal to 1 if archived, 0 if not, and the stations are numbered as: KRV=1, NBD=2, KAT=3, LNK=4, BAK=5, DTA=6, SHE=7, ABKT=8 and KAR=9.

							Key
EventID	Lat	Lon	Z	Mb	Ms	Location	123456789
93143161830	46.564	153.267	2.1	5.1	4.9	KURIL ISLANDS	011000010
93144235120		-66.631				JUJUY PROVINCE, ARGENTINA	111000010
93145183825	37.557	45.961		4.1		NORTHWESTERN IRAN	111000000
93145231643		-160.513			5.8	ALASKA PENINSULA	111000010
93148094903		-147.732		4.0		CENTRAL ALASKA	111000000
93148155527		-155.171	33	5.0	5.0	SOUTH OF ALASKA	111000010
93148173110	37.031	68.067	33	4.4		AFGHANISTAN-USSR BORDER REGION	111000000
93149065013	19.072	-26.476	12	5.9	6.2	NORTH ATLANTIC OCEAN	111000010
93149105036	33.978	59.859		4.7		IRAN	111000000
93150141220	-3.674	142.703	6	5.9	5.6	NEAR N COAST OF PAPUA NEW GUINEA	111100000
93150170853	1.546	127.207	81	6.0		HALMAHERA	111100010
93150223403	-0.621	124.208	75	5.6		MOLUCCA SEA	111100000
93151000527	28.713	55.561	33	4.1		SOUTHERN IRAN	111100000
93151083422	-72.448	174.838	10	5.3	5.1	ROSS SEA	111100010
93151133812	37.767	66.581	50	4.1		AFGHANISTAN-USSR BORDER REGION	111100000
93151195329	36.599	71.626	33	4.8	3.4	AFGHANISTAN-USSR BORDER REGION	111000000
93152094529	34.352	26.184	47	4.9	4.2	CRETE	111000010
93152155347	-45.711	-77.211	33	5.3	5.4	OFF COAST OF SOUTHERN CHILE	111000010
93152195110	46.166	16.467	30	4.9		YUGOSLAVIA	111000000
93153030018	-46.471	33.954	10	5.6	5.5	PRINCE EDWARD ISLANDS REGION	111000010
93153082719	51.513	-178.744	33	5.6	5.4	ANDREANOF ISLANDS, ALEUTIAN IS.	111000010
93153161512	32.407	48.669	53	4.2		WESTERN IRAN	111000000
93153220148	28.940	47.606	10	4.7		EASTERN ARABIAN PENINSULA	111000000
93154074647	40.896	35.964		4.3		TURKEY	110000000
93154093825		167.299				VANUATU ISLANDS	110000000
93155030635	11.799					SOUTH OF MARIANA ISLANDS	111000010
93155104933	3.734	128.497			5.8	NORTH OF HALMAHERA	111000010
93155215625	42.969	43.613		4.2		WESTERN CAUCASUS	111000000
93157110500	36.377	71.333		4.6	c c	AFGHANISTAN-USSR BORDER REGION	111000000 111000010
93157132320	15.823	146.595 46.273		4.4	0.0	MARIANA ISLANDS N.W. IRAN-USSR BORDER REGION	111000010
93158071427	39.924 35.972	141.529			5 5	NEAR EAST COAST OF HONSHU, JAPAN	
93158074935 93158131438	35.286	141.900				NEAR EAST COAST OF HONSHU, JAPAN	
93159130336	51.218	157.829				NEAR EAST COAST OF KAMCHATKA	111000010
93159130330	33.585	72.746		4.8	7.5	PAKISTAN	111000000
93159231741		-69.234				SAN JUAN PROVINCE, ARGENTINA	111000010
93160040740	32.026	49.278		4.4		WESTERN IRAN	111000000
93160173336	34.763	53.276		5.0		IRAN	111000010
93161054938	39.383	67.665		4.6		SOUTHEASTERN UZBEK SSR	111000000
93161120456	51.170	159.097			5.2	OFF EAST COAST OF KAMCHATKA	111000010
93161125859	51.115	159.272				OFF EAST COAST OF KAMCHATKA	111000000
93161174838	-24.353	-176.082	34	5.7	5.4	SOUTH OF FIJI ISLANDS	111000000
93162095529	39.547	68.939	33	4.1		TAJIK SSR	111000000
93162130903	35.508	26.603		4.5		CRETE	111000000
93162132255	36.800	71.651	33	4.8		AFGHANISTAN-USSR BORDER REGION	111000000
93163054521		162.937	15	5.5	6.1	SOLOMON ISLANDS	111000010
93163085826	40.624	35.792	10	4.6		TURKEY	111000000
93163182642	-4.375	135.118	10	5.8	6.1	WEST IRIAN REGION	111000010
93163203325	51.259	157.692	44	5.9	6.0	NEAR EAST COAST OF KAMCHATKA	111000010
93164232640	39.363	20.495				GREECE-ALBANIA BORDER REGION	111000010
93165073017	35.568	78.407	33	5.1	4.4	EASTERN KASHMIR	111000010
93165195942	39.624	38.410	26	5.0	4.5	TURKEY	111000010
93166044257	34.868	141.683	47	5.4	5.3	OFF EAST COAST OF HONSHU, JAPAN	111000010

Appendix 1 (continued)

			App	endi	x 1	(continued)	W
							Key 123456789
EventID	Lat	Lon	Z	Mb	Ms	Location	123430703
						TA CHIPPAL VA CUMTP	111000000
20200-0	35.629	77.788		4.9			110000000
93168204452	36.168	71.236	104	5.2	. 7	KERMADEC ISLANDS REGION	110000000
93169115251 -	29.053	-176.753	16	6.2	6.7	KERMADEC ISLANDS REGION	110000000
93169175746 -		-176.893			0.7	IRAN	110000000
93170170156	36.807	54.904		4.6		BANDA SEA	110000000
93171020924	-6.262	130.092	125	5.5	5 6	SOLOMON ISLANDS	110000000
302.22.	-6.946	155.776		4.2	5.0	TURKEY	110000000
93172003251	39.200	40.401		4.3		TA.TIK SSR	110000000
93172161555	37.605	72.638 -17.543	55	5 1	4 8	ICELAND	110000000
93173123345	64.624					IRAN	110000000
93173163243	30.149	50.814 -56.376	10	6.2	5 4	SOUTH SHETLAND ISLANDS	110000000
93174112919 -		71.230		4.5	J. 4	AFGHANISTAN-USSR BORDER REGION	110000000
93175165339	38.911	93.306	33	4.3	4 3	QINGHAI PROVINCE, CHINA	100000000
93176100429	33.315		10	5 2	5 6	EASTER ISLAND REGION	000100010
93186005241 -		71.379		4.5	5.0	AFGHANISTAN-USSR BORDER REGION	000100000
93186080221	37.164	39.315		4.8		TURKEY	100100000
93187194809	37.891		10	5 5	6.1	EASTER ISLAND REGION	000100010
93187025303 -		127.992	35	5 1	4 9	RYUKYU ISLANDS	100100010
93188111053	27.887	169.294	34	5 5	5.3	VANUATU ISLANDS	100100000
93189103549 -	51.218	159.151	36	5.4	5.3	OFF EAST COAST OF KAMCHATKA	100100010
93189104625 93189182217 -		172.317	33	5.4	5.9	VANUATU ISLANDS REGION	101100010
93189233106	37.337	69.983		4.5		AFGHANISTAN-USSR BORDER REGION	101100000
93190102921	28.416	55.369	23	5.3	4.8	SOUTHERN IRAN	101100010
93190102321	-19.782					FIJI ISLANDS REGION	101100010
93190230605	36.853	55.230	61	4.6		IRAN	101100000
93192133621		-70.166	48	6.2	6.1	NEAR COAST OF NORTHERN CHILE	101000010
93192174811	47.626	154.156	28	5.6	5.3	KURIL ISLANDS	101000010
93193050531	72.175	1.071	10	5.1	4.9	NORWEGIAN SEA	101000010 101000010
93193131711	42.851	139.197	17	6.6	7.6	HOKKAIDO, JAPAN REGION	101000010
93193144505	43.124	139.183	33	6.0	6.3	EASTERN SEA OF JAPAN	
93194083553	-3.372	145.633				NEAR N COAST OF PAPUA NEW GUINEA IRAN-USSR BORDER REGION	101000010
93194142253	37.032	55.310		4.6			101000000
93195123149	38.224	21.756				GREECE EASTERN SEA OF JAPAN	101000000
93195173833	43.181	139.124	20	5.5	5.0	KURIL ISLANDS	101000000
93196005113	46.679	152.577 139.016		5.7	1 7	HOKKAIDO, JAPAN REGION	101000000
93196193737	42.670	99.636		5 3	4 8	YUNNAN PROVINCE, CHINA	101000000
93198094634	28.011 29.880		33	4.4		SOUTHERN IRAN	101000000
93198184819	34.465	141.339		5.2	5.1	OFF EAST COAST OF HONSHU, JAPAN	101000000
93200193504 93201132604	27.374	139 990	465	5.4	ļ	BONIN ISLANDS REGION	101000000
93201152004			10	5.1	5.2	SOUTH OF AFRICA	101000000
93201103044	39.533		11	4.6	5	TURKEY	101000000
93203045707	6.470			6.1	5.9	NORTHERN COLOMBIA	101000010
93203043707	21.760	144.261	127	5.6	5	MARIANA ISLANDS REGION	101000010
93204115006	36.437	70.416	272	5.2	2	HINDU KUSH REGION	101000000
93205020156	5.070		116	5.5.7	7	PHILIPPINE ISLANDS REGION	101000000
93205102656	51.509	-176.879	33	3 5.2	2 4.4	ANDREANOF ISLANDS, ALEUTIAN IS.	101000010
93205125603	39.087	138.636	14			EASTERN SEA OF JAPAN	101000000
93205202450		167.056	194	1 5.8	3	VANUATU ISLANDS	101000000 101000000
93205213205	36.443	70.604	223	3 4.0	5	HINDU KUSH REGION	101000000
93206150519	-17.844	-13.431		5.2	2 4.7	SOUTH ATLANTIC RIDGE	101000000
93207093130	29.960	66.626	3.	3 4.	1 4.9	PAKISTAN	001000000
93208194449	34.442	141.591				OFF EAST COAST OF HONSHU, JAPAN	001000000
93209031024	36.676					AFGHANISTAN-USSR BORDER REGION HINDU KUSH REGION	001000000
93209033238	36.639			3 4.		KURIL ISLANDS	001000000
93209171640	46.361			65.	U 6 E (9 SOLOMON ISLANDS	001000000
93209180748	-5.573					ROMANIA	001000000
93211142551	45.684			84. 84.		ARAB REPUBLIC OF EGYPT	001000000
93211233410	28.864	34.821	L I	0 4.	,	INCID TOTAL OPPLY OF THE PARTY	

			Ap	pend	ix 1	(continued)	
EventID	Lat	Lon	Z	Mb	Ms	Location	Key 123456789
93212023245	-4.397	28.361	10	5.0		LAKE TANGANYIKA REGION	001000000
93212175301		34.475		4.4		ARAB REPUBLIC OF EGYPT	001000000
93212192921		91.944		4.4		BHUTAN	001000000
93212231316		112.476	10	4.8		LAKE BAIKAL REGION	001000010
93213002040	15.385	31.690	13	5.2	5.1	SUDAN	001000010
93213141928	-43.824	-16.235		5.0	4.9	SOUTH ATLANTIC RIDGE	001000000
93214031321	30.828	131.418	33	5.4	5.4	KYUSHU, JAPAN	001000010
93214160059	30.914	51.839	39	4.9	4.2	IRAN	001000000
93214164815	36.992	71.341	115	4.6		AFGHANISTAN-USSR BORDER REGION	001000010
93214230455	37.482	70.947	33	4.7		AFGHANISTAN-USSR BORDER REGION	001000000
93215061555	85.253	91.728	10	4.9	4.5	NORTH OF SEVERNAYA ZEMLYA	001000000
93215071959	51.188	-130.797	10	5.5	6.1	QUEEN CHARLOTTE ISLANDS REGION	001000010
93215104327	85.294	91.440	10	4.8		NORTH OF SEVERNAYA ZEMLYA	001100000
93215123120		34.608	10	4.5		ARAB REPUBLIC OF EGYPT	001100000
93215124305	28.729	34.553	10	5.9	5.8	ARAB REPUBLIC OF EGYPT	001100010
93216075943	30.105	51.392	33	4.6		IRAN	001100000
93216113118		99.615	32	5.9	6.3	SOUTHERN SUMATERA	001100010
93216194609	37.008	57.936		4.4		IRAN-USSR BORDER REGION	001100000
93217070533		1.514			4.5	NORWEGIAN SEA	001100010
93217115319		151.700				NEW BRITAIN REGION	001100000
93219000037		125.612				NORTHEAST OF TAIWAN	001100010
93219175324		179.846				SOUTH OF FIJI ISLANDS	001100010
93219194241	41.985	139.839			6.1	HOKKAIDO, JAPAN REGION	001100010
93220083424	12.982	144.801				SOUTH OF MARIANA ISLANDS	001100000
93220200314	13.483	145.657	56	5.3	5.7	MARIANA ISLANDS	001100000
93220224143	38.662	70.447	16	5.1	4.8	AFGHANISTAN-USSR BORDER REGION	001100000
93221124248	36.379	70.868	215	6.2		HINDU KUSH REGION	011000000
93221060503	28.737	34.704	10	4.6		ARAB REPUBLIC OF EGYPT	001100000
93221113830	36.436	70.711				HINDU KUSH REGION	001000000
93222005153	-45.277	166.927	28	6.2	7.0	OFF W. COAST OF S. ISLAND, N.Z.	111000010
93222055822	40.201	22.978	15	4.6		GREECE	111000010
93222094635	-38.520	177.553	14	6.0	6.0	NORTH ISLAND, NEW ZEALAND	111000010
93222193620	83.066	-27.533	10	5.4	5.0	NEAR NORTH COAST OF GREENLAND	111000010
93223141737	13.178	145.651			6.1	MARIANA ISLANDS	111000010
93225003143	28.561	34.716	9	4.7		ARAB REPUBLIC OF EGYPT	111000000
93225004341	32.465	49.537	16	4.6		WESTERN IRAN	111000000
93225110220	-35.989	178.510	95	5.8		OFF E. COAST OF N. ISLAND, N.Z.	111000010
93226035242	37.542	70.714	64	4.5		AFGHANISTAN-USSR BORDER REGION	111000010
93226143004	25.440	101.545	33	4.9	4.8	YUNNAN PROVINCE, CHINA	111000010
93227031021	0.711	-25.956				CENTRAL MID-ATLANTIC RIDGE	111000010
93228043348	12.966	144.972				SOUTH OF MARIANA ISLANDS	111000010
93230120921						CRETE	110000000
93231080322		145.531		5.5		MARIANA ISLANDS	110000010
93231100428		52.094		4.6		IRAN	110000000
93231142656		71.983		4.7		PAKISTAN	110000000
93231152138	7.197	126.807				MINDANAO, PHILIPPINE ISLANDS	110000010
93231215205		126.743				MINDANAO, PHILIPPINE ISLANDS	110000010
93232050653		142.743			6.0	PAPUA NEW GUINEA	110000010
93232101020		53.879		4.1		SOUTHERN IRAN	110000000
93232115204	21.686	143.064				MARIANA ISLANDS REGION	110000000
93232185710					5.1	SOUTH OF TONGA ISLANDS	110000000
93232231000	28.764	34.687		4.5		ARAB REPUBLIC OF EGYPT	110000000
93233080749		96.032			5.5	SOUTHEAST INDIAN RISE	110000000
93233154114	27.359	55.922		4.3	2 2	SOUTHERN IRAN	110000000
93234015304	14.255	56.262				ARABIAN SEA	110000000
93235052143		67.921				PAKISTAN	110000010
93235120740		141.994			4.7	NEAR EAST COAST OF HONSHU, JAPAN	
93235195110	30.045	67.891		4.8	4 7	PAKISTAN	110000000
93236174730	20.641	71.365				INDIA	110000010
93237052532	-44./18	-79.958	7.0	5.6	5.4	OFF COAST OF SOUTHERN CHILE	110000010

Appendix 1 (continued)

Appendix 1 (continued)									
							Key		
EventID	Lat	Lon	Z	Mb	Ms	Location	123456789		
						many many	110000000		
93237225704	36.070	31.018	66	4.4	r 1	TURKEY OFF E. COAST OF N. ISLAND, N.Z.	110000000		
93238013000		178.265	33	5.5	5.4	DODECANESE ISLANDS	110000010		
93238100357	36.736	28.051			4.5	ROMANIA	110000010		
93238213233	45.727	26.565			4 E	INDIA	110000000		
93240042623	17.173	73.672			4.5	NICOBAR ISLANDS REGION	110000000		
93240201445	6.571	94.668				BANDA SEA	110000010		
93241095754	-7.005	129.560	14/	5.8	1 2	SAKHALIN ISLAND	110000000		
93242121231	48.508	143.326		5.3	4.5	CASPIAN SEA	110000010		
93243065532	41.878	49.466			5 7	SOUTH OF HONSHU, JAPAN	110000010		
93244004123	31.712	141.611 141.641	40	5.4	1 0	SOUTH OF HONSHU, JAPAN	110000000		
93244033527	31.859	102.567		5.8	4.9	SOUTHERN SUMATERA	110000010		
93244114838	-4.331 2.986	96.122	34	5 9	6 2	NORTHERN SUMATERA	110000010		
93244140319	14.523	-92.713		5 8	6.8	NEAR COAST OF CHIAPAS, MEXICO	110000010		
93246123500	13.862	145.003				MARIANA ISLANDS	110000000		
93247061137 93247113838	36.429	70.812			1.0	HINDU KUSH REGION	110000010		
93247113636	30.340	94.831		5.1		TIBET	110000000		
93247172310	-9.571	122.528			5.8	SAVU SEA	110000010		
93247213533	-4.641	153.231	49	6.2	6.6	NEW IRELAND REGION	110000000		
93250024850			10	5.9	6.5	KERMADEC ISLANDS REGION	110000010		
93251113837	29.987	52.028	31	4.9	4.4	SOUTHERN IRAN	110100010		
93251195441	40.191	52.490		4.5		TURKMEN SSR	110100010		
93253160232	35.039	12.366	10	5.0	4.9	MEDITERRANEAN SEA	110100000		
93253191254	14.717	-92.645	34	6.2	7.3	NEAR COAST OF CHIAPAS, MEXICO	110100010		
93254045533	42.003	142.581	58	5.7		HOKKAIDO, JAPAN REGION	110100010		
93254173646	20.113	121.446	42	5.4	5.4	PHILIPPINE ISLANDS REGION	100100010		
93255032238	13.826	-90.429	68	5.4	5.5	NEAR COAST OF GUATEMALA	000100000		
93255082234	-29.608	-177.279	33	5.6	5.8	KERMADEC ISLANDS	000100000		
93256052207	-6.072	149.908	30	5.3	5.4	NEW BRITAIN REGION	000100000		
93256123751	-29.492	-177.136				KERMADEC ISLANDS	000100000		
93257052112	14.410	53.566			4.3	ARABIAN SEA	000100000		
93258150813	33.322	75.740		5.0		EASTERN KASHMIR	100100000		
93259005926	44.533	149.036				KURIL ISLANDS	100100010		
93261002747	1.632	126.770			5.1	MOLUCCA PASSAGE	111100000 111100000		
93261050227	36.421	71.592	113	6.1	- 1	AFGHANISTAN-USSR BORDER REGION	110100010		
93262041836		-26.967	46	5.4	5.4	SOUTH SANDWICH ISLANDS REGION	110100010		
93262141056	14.362	-93.325	18	5./	6.4	NEAR COAST OF CHIAPAS, MEXICO CENTRAL MID-ATLANTIC RIDGE	110100010		
93263101742	0.750	-29.354				OREGON	110100010		
93264032855		-122.012				OREGON	110100010		
93264054533		-122.045 39.638				ETHIOPIA	110100010		
93264191135 93265123703	11.478	154 901				SOLOMON ISLANDS	110100010		
93268044419	38.167	73.002	103	4.4	0.0	TAJIK-XINJIANG BORDER REGION	110100010		
93269022934	36.253	71.219				AFGHANISTAN-USSR BORDER REGION	110100000		
93269033114	9.997	138.222		6.1	6.0	WEST CAROLINE ISLANDS	110100010		
93269115552	13.009	145.016	64	5.8		MARIANA ISLANDS	110100010		
93270044355	30.678	132.121	38	5.5	5.3	SOUTHEAST OF SHIKOKU, JAPAN	110100010		
93270133732		-51.621		6.2	6.6	SOUTH ATLANTIC OCEAN	110100010		
93272093920		167.667	35	5.5	5.2	VANUATU ISLANDS	110000000		
93272111603	0.494	121.528		6.1		MINAHASSA PENINSULA	110000010		
93272141801	36.421	70.886	188	4.6		HINDU KUSH REGION	110000010		
93272182620	-42.677	-18.385				SOUTH ATLANTIC RIDGE	110000000		
93272222548	18.066	76.451	7	6.3	6.2	INDIA	110000010		
93273170445	11.815	92.529				ANDAMAN ISLANDS REGION	110000000		
93273182750	15.417	-94.698				NEAR COAST OF OAXACA, MEXICO	110000000		
93274035933	36.637	23.967		4.9		SOUTHERN GREECE	110000000		
93275011730				5.0	4.4	TAJIK SSR	110000000		
93275084232	38.190					SOUTHERN XINJIANG, CHINA	100000010		
93275094319						SOUTHERN XINJIANG, CHINA	100000000 100000000		
93275172333	38.171	88.690	14	5.6	5.0	SOUTHERN XINJIANG, CHINA	100000000		

EventID	Lat	Lon	Z	Mb	Ms	Location	Key
				M	MS	Location	123456789
93277205438	3 -21.437	-174.301	34	5.1	8 5.	7 TONGA ISLANDS	101000010
93278015956			0	5.	9 4.	7 SOUTHERN XINJIANG, CHINA	101000010
93278050945			13	5.5	96.	1 BANDA SEA	101000010
93278183539			37	4.		TURKEY	101000000
93278212806				5.0		LAPTEV SEA	101000010
93280032658 93280175938		88.726		5.0		SOUTHERN XINJIANG, CHINA	100000000
93281182347		70.628 150.037				HINDU KUSH REGION	100000010
93282222421		57.660				KURIL ISLANDS 7 ARABIAN SEA	100000010
93284130729		-178.726	555	5.2	24.	FIJI ISLANDS REGION	100000000
93284155421	32.020	137.832				SOUTH OF HONSHU, JAPAN	101100010
93285023500	-33.913	94.278				SOUTH INDIAN OCEAN	101100010
93285210452		51.063	10	5.0	4.8	B EASTERN GULF OF ADEN	101100000
93286005233		121.484		5.3	3 4.8	MINDANAO, PHILIPPINE ISLANDS	101110010
93286020600		146.020	25	6.4	7.0	EAST PAPUA NEW GUINEA REGION	101110010 101110010
93286030730		146.153	33	6.1	6.7	EAST PAPUA NEW GUINEA REGION	101110010
93286233421		103.419	33	5.0)	SICHUAN PROVINCE, CHINA	101110010
93287120235		139.904	10	5.4	5.7	SOUTH OF AUSTRALIA	100110010
93288223719		48.105	56	4.8		EASTERN CAUCASUS	100110000
93289030530		146.202	27	6.2	6.4	EAST PAPUA NEW GUINEA REGION	100110010
93289105225 93291012822		123.447	31	5.5	5.4	MINDANAO, PHILIPPINE ISLANDS	100110010
93291135714		53.950 62.861		4.4		IRAN	100110000
93291205115	28.896	34.570	10	5.Z 4.8	4./	ARABIAN SEA	100110010
93292040221		-65.971				ARAB REPUBLIC OF EGYPT	100110010
93292153137		73.242		4.8		JUJUY PROVINCE, ARGENTINA TAJIK-XINJIANG BORDER REGION	100110010
93292225038	35.140	25.888		4.3		CRETE	100110010
93293101103		71.651		4.1		AFGHANISTAN-USSR BORDER REGION	100110000
93294073655	-56.497	-138.909				SOUTH PACIFIC CORDILLERA	100110000 100110010
93294215220	30.154	51.235	15	5.2		IRAN	101110010
93295084216		-26.557	33	5.5	5.5	SOUTH SANDWICH ISLANDS REGION	101110010
93296132642	29.773	51.103	33	4.3		SOUTHERN IRAN	100110000
93297055329 93297075215	11.327	125.396	49	5.8	5.2	SAMAR, PHILIPPINE ISLANDS	100110010
93298100711	16.755 -5.882	-98.717	21	6.3	6.7	NEAR COAST OF GUERRERO, MEXICO	100110010
93298102704	-5.909	145.933 145.990	18	5.1	5.6	EAST PAPUA NEW GUINEA REGION	100110010
93298143319	41.336	49.478	30	4.7	7.0	EAST PAPUA NEW GUINEA REGION CASPIAN SEA	100110010
93299113821	38.477	98.655			5 4	QINGHAI PROVINCE, CHINA	100110010
93299202503	37.225	70.192	10	4.5	5.4	AFGHANISTAN-USSR BORDER REGION	100110010
93301015206	41.604	142.024	67			HOKKAIDO, JAPAN REGION	100110000 101110010
93301111357	34.390	26.203	47	4.6		CRETE	101110010
93302040905		-178.184	34	5.8	5.3	ANDREANOF ISLANDS, ALEUTIAN IS.	101110000
93303001607	11.249	57.597	10	4.7		ARABIAN SEA	101110000
93303083033	15.437	121.785	39	5.3	5.1	LUZON, PHILIPPINE ISLANDS	101110010
93303175902 93303230553	30.405	-68.232				SAN JUAN PROVINCE, ARGENTINA	101110010
93305064631	28.244	67.651			4.5	PAKISTAN	101110010
93305181722	38.950	57.569 29.947	10 4			SOUTHERN IRAN	101110000
93306071450	42.812	131.129				TURKEY	101110000
93307131810	-7.123	67.916			5 4	E. USSR-N.E. CHINA BORDER REG. MID-INDIAN RISE	101110010
93307183933	28.654	34.650	13 4	1.9	4.6	ARAB REPUBLIC OF EGYPT	101110010
93308003240	31.985	59.969	33 4	1.5	- • •	IRAN	101110010 101110000
93308051837	38.372	22.002	17 5	5.0	5.2	GREECE	101110000
93309070206		106.101	75 5	5.4		JAVA	101110010
93309223720	-3.188	148.339	14 5	.7	6.2	BISMARCK SEA	101110000
93311082951 93312010602	34.494	70.671	33 4	1.7	3.9	AFGHANISTAN	101110000
93312204854	28.698 36.183	34.673	14 4	. 9	4.3	ARAB REPUBLIC OF EGYPT	101110010
93313021403	14.353	141.669 53.744	33 5	.4	4.9	NEAR EAST COAST OF HONSHU, JAPAN	101110010
93314214501 -		179.169 6	10 5	. 2		ARABIAN SEA	101110010
		_,5.1.05 (, 1, ,	. 4		SOUTH OF FIJI ISLANDS	101110010

		App	endi	Lx 1	(continued)	
						Key
EventID Lat	Lon	Z	Mb	Ms	Location	123456789
					TOTAL TOTAL DESCRIPTION TO	101110010
	-177.446				ANDREANOF ISLANDS, ALEUTIAN IS.	101110010
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	153.147	46	5.7	5.5	NEW IRELAND REGION	101110010
	-177.976			5.1	ANDREANOF ISLANDS, ALEUTIAN IS.	
93316134923 40.929	51.907	33	4.4	- 0	CASPIAN SEA	101110000 101110010
93317001649 16.288	-98.638	20	5.7	5.3	NEAR COAST OF GUERRERO, MEXICO	
93317011804 51.934	158.647			7.0	NEAR EAST COAST OF KAMCHATKA	101110010
93318082438 36.306	71.310	111	4.5		AFGHANISTAN-USSR BORDER REGION	101100000
93319224519 -18.559	167.637				VANUATU ISLANDS	101100000
	67.219	27	5.4	5.6	PAKISTAN NEAR EAST COAST OF KAMCHATKA	101100010
93321111851 51.816	158.659	33	6.1	5.6	UNIMAK ISLAND REGION	101100010
	-164.164	10	0.1	5.4	CENTRAL MID-ATLANTIC RIDGE	101100010
93323090539 7.317	-34.703			5.6	SOUTHERN ALASKA	101100010
	-153.003	7.0 TTO	5.0	5 1	MINDANAO, PHILIPPINE ISLANDS	101110010
93326030055 5.877	126.229	20	5.1	J.1	LOYALTY ISLANDS REGION	101110010
93329083114 -22.035	170.094		5.0	5.6	NORTH OF ASCENSION ISLAND	101110010
93329202400 -0.963	-13.264				SOLOMON ISLANDS	101110010
93330232004 -9.597	158.148			0.2	NEAR EAST COAST OF HONSHU, JAPAN	
93331061122 38.625	141.164				JAVA SEA	101110010
93332105027 -5.599	110.267				AFGHANISTAN-USSR BORDER REGION	101110010
93332205927 36.474	71.309	TOR	5.1	5 5	SOUTHWESTERN ATLANTIC OCEAN	101110010
93334045926 -59.047	-18.158 71.050			5.5	AFGHANISTAN-USSR BORDER REGION	101110000
93334075830 36.537 93334203712 39.263	75.030	10	5 2	5 6	SOUTHERN XINJIANG, CHINA	101110010
93334203712 39.263 93335005901 -57.475	-25 695	33	5 5	5 3	SOUTH SANDWICH ISLANDS REGION	101110010
_	70.394			5.5	HINDU KUSH REGION	101110010
• • • • • • • • • • • • • • • • • • • •	179.308	220	5 2	5 0	RAT ISLANDS, ALEUTIAN ISLANDS	101110010
93337054108 51.204 93337123625 -60.353	-20.446		5 5	5 2	SOUTHWESTERN ATLANTIC OCEAN	101110010
	34.903				ARAB REPUBLIC OF EGYPT	101110000
93338233411 28.886 93339001056 27.931	55.269		4.4	1.5	SOUTHERN IRAN	101110000
93340025821 35.748	71.027				PAKISTAN	101110000
93340104203 -6.360	154.916			5 7	SOLOMON ISLANDS	101110010
93340104203 0.300	72.332		4.9	5	TAJIK SSR	101110000
93340123019 37.737	30.189		4.1		TURKEY	101110000
93340205445 6.818	78.301			4.7	LACCADIVE SEA	101110010
93343043219 0.486	125.995				MOLUCCA PASSAGE	101110010
93343113827 0.425	125.891				MOLUCCA PASSAGE	101110010
93344085935 20.912	121.282				PHILIPPINE ISLANDS REGION	101110010
93346170319 0.317	125.939				MOLUCCA PASSAGE	111110010
93346170319 0.517	28.823		4.8	0.0	TURKEY	111110000
93346182628 0.344	125.925			5.5	MOLUCCA PASSAGE	111110010
93346204130 36.445	140.962	43	5.4	4.9	NEAR EAST COAST OF HONSHU, JAPAN	111110010
93347114344 -20,422		33	5.8	5.9		111110010
93348063119 -20.704	-173.451	31	5.5	6.1	TONGA ISLANDS	101110000
93348071214 37.963	72.732				TAJIK SSR	101110000
93348074959 -13.624	168.939			5.4	VANUATU ISLANDS	101110000
93349214942 23.184	120.574				TAIWAN	111110010
93350092215 41.473	23.079		4.5		GREECE-BULGARIA BORDER REGION	111110000
93350114818 37.422	20.806	33	4.4		IONIAN SEA	111110010
93350201121 53.804	171.382	9	5.8	5.7	NEAR ISLANDS, ALEUTIAN ISLANDS	111110010
93351031903 39.186	142.182		5.4		NEAR EAST COAST OF HONSHU, JAPAN	111110010
93351174228 36.669	71.053	204	4.1		AFGHANISTAN-USSR BORDER REGION	111110000
93352224420 -20.477	-173.883				TONGA ISLANDS	111110010
93353114530 25.210	62.603	24	5.1	5.0	PAKISTAN	111110010
93353175313 36.532	71.421	33	4.2		AFGHANISTAN-USSR BORDER REGION	111110000
93354135614 -6.876	131.340	8	6.4	5.7	TANIMBAR ISLANDS REGION	111110010
93354194538 36.330	71.086	33	4.6		AFGHANISTAN-USSR BORDER REGION	111110000
93356103517 -4.938	132.083		5.4		WEST IRIAN REGION	111110010
93356194013 38.395	21.759		4.3		GREECE	111110010
93357142235 36.756	-2.937				STRAIT OF GIBRALTAR	111110010
93358051834 -21.853	-178.646	445	5.6		FIJI ISLANDS REGION	111110010

		1-1			(Key
EventID L	Lat Lon	Z	Mb	Ms	Location	123456789
2.6	2011	-	- 100	110	200462011	123130703
93358215319 40	0.158 19.815	25	5 2	4 6	ALBANIA	111110010
	5.590 70.613				HINDU KUSH REGION	111110010
	1.921 24.217		4.8		CRETE	111110010
	7.467 68.253		4.5		AFGHANISTAN-USSR BORDER REGION	111110000
	3.628 68.926		5.0		TAJIK SSR	111110000
	2.519 125.267			5 6	SAMAR, PHILIPPINE ISLANDS	1111110010
	2.470 125.288				SAMAR, PHILIPPINE ISLANDS	1111110010
93363074814 -20					VANUATU ISLANDS	1111110010
93363083944 -19				6.5	VANUATU ISLANDS	111110010
	2.003 49.029		4.2		WESTERN IRAN	111110000
	78.793			5.2	EASTERN KAZAKH SSR	111110010
	0.169 63.304		4.3		UZBEK SSR	111110000
	3.048 55.565		4.8		SOUTHERN IRAN	111110000
	71.435				AFGHANISTAN-USSR BORDER REGION	111110010
	5.028 100.104				QINGHAI PROVINCE, CHINA	111110010
94003132413 -49					AUCKLAND ISLANDS REGION	111110010
	35.842			4.8	TURKEY	111110010
94004092938 29	0.188 51.442		4.8		SOUTHERN IRAN	111110000
94004193159 -4	.301 135.145	11	5.8	6.0	WEST IRIAN REGION	111110010
94005132409 39	.085 15.145	273	5.7		SOUTHERN ITALY	111100010
94006022922 37	.110 72.005	33	4.8		TAJIK SSR	111100000
94007034242 52	.028 159.019	55	5.6		OFF EAST COAST OF KAMCHATKA	111100010
94007092546 34	.761 71.211	37	4.7	4.0	PAKISTAN	111100000
94007192353 -0	.591 98.601	30	5.6	5.3	SOUTHERN SUMATERA	111100010
	.006 70.712		4.8		HINDU KUSH REGION	111100000
	.482 154.491		5.9		KURIL ISLANDS	111100010
94010155350 -13					PERU-BOLIVIA BORDER REGION	111100010
	.231 97.203			5 9	BURMA-CHINA BORDER REGION	111100010
	.223 97.128		4.6	5.5	BURMA-CHINA BORDER REGION	111100010
	.959 21.945			5 4	MEDITERRANEAN SEA	111100010
	.511 131.637				KYUSHU, JAPAN	111100010
	.797 23.099		4.6	1.0	CRETE	111100010
94013094306 -17			5.7		SOUTH ATLANTIC RIDGE	111100010
	.463 72.083		4.7		TAJIK SSR	111100010
	.571 20.942		4.8		IONIAN SEA	111100000
	.659 71.145				AFGHANISTAN-USSR BORDER REGION	111110000
94015170331 -20				5 6		
	.106 103.276				MONGOLIA	111110010 111110010
	.213 -118.537				SOUTHERN CALIFORNIA	
	.326 -118.698				SOUTHERN CALIFORNIA	111110010
	.176 135.970				WEST IRIAN REGION	1111110010
94019162648 -17					FIJI ISLANDS REGION	111110010 111110010
	.976 121.811				TAIWAN	111110010
	.002 -77.052			J.J	NORTHERN PERU	111110010
	.015 127.733			7 2	HALMAHERA	
	.859 103.664		6.1	1.4	SOUTHERN SUMATERA	$\frac{111110010}{111110010}$
	.977 149.791		5.4		KURIL ISLANDS	111110010
	.601 -41.715			5 9	NORTH ATLANTIC RIDGE	111100010
	.421 71.111			5.5	AFGHANISTAN-USSR BORDER REGION	
	.728 143.669			5 1	HOKKAIDO, JAPAN REGION	111100010
	.719 38.688		4.4	5.1	TURKEY	111100010
	.693 27.493			5 1	TURKEY	111100000
				5.1		111100010
94030205743 -29			5.6	4 0	KERMADEC ISLANDS	111110010
94031095735 -37				4.8	SOUTH INDIAN OCEAN	111110010
	.228 73.523		5.0		INDIA	111110010
	.778 122.525				TAIWAN REGION	111100010
	.363 71.349		4.6		AFGHANISTAN-USSR BORDER REGION	111100010
94034102330 -15					VANUATU ISLANDS	111110010
94034154343 -41					SOUTHEAST INDIAN RISE	111110010
94036233409 0.	.593 30.037	14	5.8	6.0	UGANDA	111100010

Appendix 1 (continued)

Appendix 1 (continued)										
EventID	Lat	Lon	Z	Mb	Ms	Location	Key 123456789			
Evencin	Dat	шоп								
94039032754						ICELAND REGION	111100010			
94040192708	-21.126	-174.091	26	5.7	5.2	TONGA ISLANDS	111100010			
94041022435	39.121	71.580				TAJIK SSR	111100010			
94041061518	36.969				4.3	TURKEY	111100010			
94042174007		43.726		4.5		WESTERN CAUCASUS	111100000			
94042211731		169.169				VANUATU ISLANDS	111100010			
94043041626						SOUTH PACIFIC OCEAN	111100010			
94043175823						VANUATU ISLANDS	111100010			
94045111427		158.894				NEAR EAST COAST OF KAMCHATKA	111100010			
94046150817		169.393				VANUATU ISLANDS	111110010			
94046170743		104.302				SOUTHERN SUMATERA	111110010			
94046210939		100.164			5.5	QINGHAI PROVINCE, CHINA	111110010			
94046222927		39.427		4.6		WESTERN CAUCASUS	111110000			
94047064657		168.906				LOYALTY ISLANDS	1111110010			
94047220308		168.925				LOYALTY ISLANDS	111110010			
94048215247		152.083				DENTRECASTEAUX ISLANDS REGION	111110010			
94048194156		125.838				MINDANAO, PHILIPPINE ISLANDS	011110000 111110010			
94049041907		96.232				SOUTHEAST INDIAN RISE				
94049125332	14.290	56.233 56.248				ARABIAN SEA ARABIAN SEA	111110000 111110010			
94049161940		67.845		4.6	4.0	PAKISTAN	111110010			
94050031308 94051015435		126.475			5 6	MOLUCCA PASSAGE	111110010			
94051013433		120.473			5.0	MINDORO, PHILIPPINE ISLANDS	111110010			
94054080204		60.596			6.1	IRAN	111110010			
94054115433		60.519				IRAN	111110010			
94054224517		60.480		5.4		IRAN	111110010			
94055001112		60.495			6.1	IRAN	111110010			
94055004500		60.510		4.5		IRAN	111110000			
94055100922	36.488	70.014				HINDU KUSH REGION	111110010			
94055152535			124	5.7		TONGA ISLANDS	111110000			
94055205131		60.446			4.4	IRAN	111110010			
94056004029	-17.420	-174.271				TONGA ISLANDS	111110000			
94056023051		20.532				GREECE	111110010			
94057023111		60.549			6.0	IRAN	111110010			
94057180228		60.376		4.5		IRAN	111110000			
94058090427		131.427				KYUSHU, JAPAN	111110010			
94059111354		60.562				IRAN	111110010			
94060034900		52.617			6.0	SOUTHERN IRAN	111110010			
94060190132		52.855		4.4	4 2	SOUTHERN IRAN	111110000			
94061130009		69.826			4.2	HINDU KUSH REGION	1111110010			
94061145722	30.844	60.460		4.6		IRAN	111110000			
94062145648		57.234		4.7	1 1	SOUTHERN IRAN WESTERN IRAN	111110000 111110000			
94062151048	33.134 28.900	48.394				SOUTHERN IRAN	111110000			
94062235401 94064040352	36.579	52.465 68.659				HINDU KUSH REGION	111110000			
94065080143						EASTER ISLAND CORDILLERA	111110010			
94066105457	33.146	48.033				WESTERN IRAN	111110010			
94066172900	36.475	71.075			7.2	AFGHANISTAN-USSR BORDER REGION	111110010			
94068061337	32.625	47.150		4.5		IRAN-IRAQ BORDER REGION	111110000			
94068120834	-9.580	154.986			5.6	DENTRECASTEAUX ISLANDS REGION	111110010			
94068165837	-9.444	159.604				SOLOMON ISLANDS	111110000			
94068232806						FIJI ISLANDS REGION	111110010			
94069122543						FIJI ISLANDS REGION	111110000			
94072031128		-178.231			4.4	ANDREANOF ISLANDS, ALEUTIAN IS.	111110010			
94073043007	-1.083	-23.929		6.0		CENTRAL MID-ATLANTIC RIDGE	111110000			
94073205124	15.994				6.2	MEXICO-GUATEMALA BORDER REGION	111110010			
94074033619	11.110	-88.083	15	5.8	5.6	OFF COAST OF CENTRAL AMERICA	111110010			
94074214615	36.800	54.780	33	4.4		IRAN	111010000			
94076080616	28.941	52.536		4.8		SOUTHERN IRAN	111010000			
94077035110	29.035	52.491	33	4.4		SOUTHERN IRAN	111010000			

Appendix 1 (continued)

						,	Key
EventID	Lat	Lon	Z	Mb	Ms	Location	123456789
						200002011	123430703
94078012444	51.500	159.290	33	5 3	5 2	OFF EAST COAST OF KAMCHATKA	111010010
94078045400				4.4		SOUTHERN IRAN	111010010
94078055704				4.4		SOUTHERN IRAN	111010000
94082171445		52.596		4.7		SOUTHERN IRAN	
94085152224				4.3		TURKMEN SSR	111010010
94085215101		141.289		5.4			111010000
94086134512		161.153				OFF EAST COAST OF HONSHU, JAPAN SOLOMON ISLANDS	111010000
94088075653		51.256		5.4		SOUTHERN IRAN	111010000
94088112041		70.385		4.6		PAKISTAN	111010010
94089132911		126.254				MINDANAO, PHILIPPINE ISLANDS	111010000
94089195546		52.745		5.5		SOUTHERN IRAN	111010010
94090224052						SOUTH OF FIJI ISLANDS	111010010
94091142459		52.650		4.6		SOUTHERN IRAN	101010010
94093065157		52.745				SOUTHERN IRAN	101010000
94093071936		52.705		4.7		SOUTHERN IRAN	101010010
94093130351		68.015		4.4		PAKISTAN	101010000
94093224937		67.212					101010000
94094013702						HINDU KUSH REGION	101010010
						TONGA ISLANDS	101010010
94094152833		66.826		4.5		HINDU KUSH REGION	101010010
94094183547		71.382		4.7		AFGHANISTAN-USSR BORDER REGION	101010000
94095093544		-178.152				ANDREANOF ISLANDS, ALEUTIAN IS.	101010010
94096070327		96.867				BURMA	101010010
94096121344		167.816				VANUATU ISLANDS	101010010
94096211832		34.645		4.6		ARAB REPUBLIC OF EGYPT	101010000
94098011040 94100134047		143.683				OFF EAST COAST OF HONSHU, JAPAN	101010010
94100194620		46.180 23.620		4.7		EASTERN CAUCASUS AEGEAN SEA	101010010
94100134020		126.852				RYUKYU ISLANDS REGION	101010010
94101112021		42.859				ETHIOPIA	101010010
94102001717		146.612			J. /	KURIL ISLANDS	101010010
94102111442		24.074		4.7		CRETE	101010010 101010000
94103040047		123.628			5 6	SOUTHEAST OF TAIWAN	101010000
94103141923						EASTER ISLAND CORDILLERA	101010010
94103222229		135.968				WEST IRIAN REGION	101010010
94104032826	-6.587	129.771			0.0	BANDA SEA	101010010
94104100805	29.158	51.592		4.5		SOUTHERN IRAN	111010000
94104110340	28.290	55.340		5.2		SOUTHERN IRAN	111010000
94104112637	28.237	55.288		4.6		SOUTHERN IRAN	111010010
94104201539		155.885			5 1	SOLOMON ISLANDS	111010000
94107054651	37.042	71.485			5.1	AFGHANISTAN-USSR BORDER REGION	111010000
94107080232	41.948	46.317			4 6	EASTERN CAUCASUS	111010010
94108162955		-71.897		0.0		NEAR COAST OF CENTRAL CHILE	111010010
94108172954	-6.470	154.934			6.7	SOLOMON ISLANDS	111010000
94108200735	36.319	70.922			0.,	HINDU KUSH REGION	111010010
94109161455	31.432	49.536			4.4	WESTERN IRAN	111010010
94110000508	28.294	55.326		4.8		SOUTHERN IRAN	111010000
94110233530						FIJI ISLANDS REGION	111010010
94111024215	-5.617	154.067			5.5	SOLOMON ISLANDS	111010010
94111035144	-5.702	154.120				SOLOMON ISLANDS	111010010
94111115032	27.477	54.385		4.6		SOUTHERN IRAN	111010000
94113150052	-14.175	167.537			6.0	VANUATU ISLANDS	111010000
94114025710	11.604	43.014	10	5.3		ETHIOPIA	111010000
94115001905		-151.142	68	5.4		KENAI PENINSULA, ALASKA	111010000
94116185927	56.727	117.867	18	5.3	5.4	EAST OF LAKE BAIKAL	111010010
94117092326	-21.515	-173.667	28	6.2	6.1	TONGA ISLANDS	111010010
94117141145	13.074	119.545	10	5.8	5.8	PHILIPPINE ISLANDS REGION	111010010
94118164454		-74.756	27	5.7	5.0	OFF COAST OF CENTRAL CHILE	111010010
94119071129		-63.252	562	6.3		SANTIAGO DEL ESTERO PROV., ARG.	111010010
94120032838	31.420	131.292	26	5.7	5.6	KYUSHU, JAPAN	111010000
94121120035	36.901	67.163	19	6.0	6.3	HINDU KUSH REGION	111010000

Appendix 1 (continued)

			App	pend:	ix 1	(continued)	
EventID	Lat	Lon	Z	Mb	Ms	Location	Key 123456789
94121211720	39.126	71.621	33	5 2	4 6	TAJIK SSR	111010000
94122171400	-1.116	97.487				SOUTHWEST OF SUMATERA	111010010
94122171405	40.306	43.130		4.5	0.0	TURKEY-USSR BORDER REGION	111010000
94123163643	10.241	-60.758			5.8	TRINIDAD	111010010
94123202018	33.501	47.384		4.4		WESTERN IRAN	111010000
94124063736		168.265				VANUATU ISLANDS	101010010
94124114721		-168.518			4.7	FOX ISLANDS, ALEUTIAN ISLANDS	101010010
94125051449		-17.482	9	5.7	5.2	ICELAND	101010010
94125111853	37.648	72.040	33	4.5		TAJIK SSR	101010000
94126042439	40.109	73.611		4.7		KIRGHIZ SSR	101010010
94126182037	-59.982	-18.550				SOUTHWESTERN ATLANTIC OCEAN	101010010
94126223926	-4.681	153.099			5.5	NEW IRELAND REGION	101010010
94127142444	30.329	50.586	54	4.7		IRAN	101010000
94128034825		147.096				WEST OF MACQUARIE ISLAND	101010010
94129091411	40.263	78.938				SOUTHERN XINJIANG, CHINA	101010010 101010010
94129123637	-2.060	99.731				SOUTHERN SUMATERA NORTHERN CHILE	101010010
94130014903	-19.613 5.234	-69.792 125.971		5.8		MINDANAO, PHILIPPINE ISLANDS	101010010
94130062653 94130181912	13.433	120.603		5.7		MINDORO, PHILIPPINE ISLANDS	101010000
94130181912	-2.008	99.770				SOUTHERN SUMATERA	101010010
94131114111	37.471	72.327			0.5	TAJIK SSR	101010000
94131211433	-2.056	99.669			5.9	SOUTHERN SUMATERA	101010010
94133201227	7.972	123.189				MINDANAO, PHILIPPINE ISLANDS	101010010
94134223434	15.207	42.055	10	5.0	4.7	WESTERN ARABIAN PENINSULA	101010010
94135034457	-48.993	73.666	10	5.8	5.7	KERGUELEN ISLANDS REGION	101010010
94137094613	-1.902	99.618				SOUTHERN SUMATERA	101010010
94138035400	44.727	149.401				KURIL ISLANDS	101010010
94138165609	29.038	142.295			5.1	SOUTH OF HONSHU, JAPAN	101010010
94138171852	41.133	43.982		4.5		TURKEY-USSR BORDER REGION	101010000 101010010
94139234143	-8.204 25.099	124.813 128.829		5.4	5 1	TIMOR RYUKYU ISLANDS	101010010
94140164000 94142191233	12.405	57.834				ARABIAN SEA	101010000
94143014142		-100.527		6.0	1.,	GUERRERO, MEXICO	101010010
94143053601	24.166	122.535			6.0	TAIWAN REGION	101010000
94143064616	35.559	24.727	76	6.0		CRETE	101010000
94143150448	14.657	54.465		4.5		ARABIAN SEA	101010000
94143151657	24.065	122.560				TAIWAN REGION	101010010
94144020536	38.664	26.542				AEGEAN SEA	101010010
94144040042	23.959	122.448			6./	TAIWAN REGION NEAR EAST COAST OF KAMCHATKA	101010010 101010010
94144211319	56.170 -4.199	161.169 135.489		5.9	6 1	WEST IRIAN REGION	101010010
94145040341 94145074258						UZBEK SSR	101010010
94145111515	35.560	71.344				PAKISTAN	101010000
94145163653	-1.962	138.805				NEAR N. COAST OF WEST IRIAN	101010000
94145184219	7.646	94.279				NICOBAR ISLANDS REGION	101010000
94146034627	39.805	69.833		4.7		TAJIK SSR	101010000
94146082652	35.305	-4.103	10	5.7	5.8	STRAIT OF GIBRALTAR	101010000
94146233542	14.768	54.842		5.0		ARABIAN SEA	101010000
94147024952	15.119	57.771		4.6		ARABIAN SEA	101010000
94147044911	37.049	72.498				TAJIK SSR	101010000
94148080432	35.406	136.134			4.4	SOUTHERN HONSHU, JAPAN	101010010
94148090350	37.750	72.737		4.3	6 2	TAJIK SSR BURMA	101010000 101000010
94149141150	20.556	94.160 -72.033				NORTHERN COLOMBIA	101000010
94151174155 94152113308	38.307	39.463		4.3	J. 0	TURKEY	101000010
94153181734		112.835			7.2	SOUTH OF JAVA	101000000
94154112506	3.524	-78.778				SOUTH OF PANAMA	101000010
94154155311	36.817	71.346		4.7	- · ·	AFGHANISTAN-USSR BORDER REGION	101000000
94154210659		112.892			6.4	SOUTH OF JAVA	101000010
94154224021	28.736	70.070				PAKISTAN	101000010

		App	pend	ix 1	(continued)	
EventID La	at Lon	Z	Mb	Ms	Location	Key 123456789
Bveneib Be	ас вол	4	1.17)	113	Bocacion	123436789
94155005750 -10	.777 113.366	11	6.0	6.3	SOUTH OF JAVA	101000010
94155103856 36	.821 54.747		4.6		IRAN	101000000
94155113636 -10.	.831 113.225	34	5.6	5.1	SOUTH OF JAVA	101000010
94155200934 -10.	.826 113.199	30	5.7	5.1	SOUTH OF JAVA	101000010
94156010930 24.	.511 121.905		6.1	6.6	TAIWAN	101000010
94156014502 -10	.349 113.398	26	5.8		SOUTH OF JAVA	101000000
94156165408 29.	.601 52.313	33	4.5		SOUTHERN IRAN	101000000
94157080238 36.	.333 71.413	33	4.7		AFGHANISTAN-USSR BORDER REGION	101000000
94157090300 28.	.598 129.099		5.8		RYUKYU ISLANDS	101000010
94157204740 2.	.917 -76.057	12	6.4	6.6	COLOMBIA	101000010
94157222223 38.	.849 71.581	33	4.5		AFGHANISTAN-USSR BORDER REGION	101000000
94158183142 -5.	.792 104.436	42	5.7		SOUTHERN SUMATERA	101000010
94160003316 -13.	.841 -67.553				NORTHERN BOLIVIA	101000010
94160011517 -14.	.365 -68.439	650	6.1		PERU-BOLIVIA BORDER REGION	101000000
94160162222 13.	.259 124.281		5.8		LUZON, PHILIPPINE ISLANDS	101000010
94160203650 36.	.945 71.325		5.4		AFGHANISTAN-USSR BORDER REGION	101000010
	.560 70.629			4.6	AFGHANISTAN-USSR BORDER REGION	101000010
	.527 88.710				SOUTHERN XINJIANG, CHINA	101000010
	.995 140.700			5.0	BONIN ISLANDS REGION	101000000
	.070 52.537	18	4.8	4.2	SOUTHERN IRAN	101000010
	223 70.229				HINDU KUSH REGION	101000010
	162 52.625		4.2		SOUTHERN IRAN	101000000
94164210409 -10.				5.6	SOUTH OF JAVA	101000000
94166092257 -10.	335 113.660				SOUTH OF JAVA	101000010
94166165301 37.	596 30.075		4.4		TURKEY	101000000
94167101246 -7.	391 128.125				BANDA SEA	101000010
94167184128 -15.	250 -70.294	200	5.6		SOUTHERN PERU	101000000
94169032515 -42.	963 171.658	14	6.2	7.1	SOUTH ISLAND, NEW ZEALAND	100000010
94169124200 28.		11			SOUTHERN IRAN	101000010
94169223819 -10.					SOUTH OF JAVA	101000010
94170134351 -43.		10	5.7	5.9	SOUTH ISLAND, NEW ZEALAND	101000010
	968 52.614			5.7	SOUTHERN IRAN	101001010
	131 52.388	33			SOUTHERN IRAN	101001000
	021 52.596	41			SOUTHERN IRAN	011001010
	151 52.554			4.5	SOUTHERN IRAN	001001000
	754 53.051	10			SOUTHERN IRAN	111001000
	697 37.077 252 52.006	10 33			TURKEY	111001000
	777 43.697	33			IRAN	111001000
	883 147.213	66			TURKEY-USSR BORDER REGION	111100000
	386 72.707	33			KURIL ISLANDS KIRGHIZ SSR	111100000
94178120303 -16.				1 5	MID-INDIAN RISE	111100000
	567 93.673				TIBET	111100100
	326 71.130					111100110
	941 50.609	33			AFGHANISTAN-USSR BORDER REGION CASPIAN SEA	111100110
94182101241 40.				5 2	TURKMEN SSR	111100100
94182130555 27.					SOUTHERN IRAN	111100110
	219 53.391	44 9		4.2	TURKMEN SSR	111100110
94182200231 38.		10			TURKEY	111100110
94183091443 -5.		88 5			BANDA SEA	111100110
94183204532 36.		33 4			HINDU KUSH REGION	111100110
94183210726 36.		57			HINDU KUSH REGION	111100110
94184142641 28.		15			ARAB REPUBLIC OF EGYPT	111100110
94184214444 -48.					SOUTH OF AFRICA	111100110
94185213641 14.					OFF COAST OF OAXACA, MEXICO	111100100 111100110
94186100922 10.		29 5	5.5	5.5	LEYTE, PHILIPPINE ISLANDS	111100110
	983 125.929	151 5	5.7		MINDANAO, PHILIPPINE ISLANDS	111100110
94187121925 37.		33 4			AFGHANISTAN-USSR BORDER REGION	111100110
94188193126 44.		33 4			EASTERN KAZAKH SSR	111100110
94189171014 0.3	256 66.740				CARLSBERG RIDGE	111100110

Appendix 1 (continued)

					(00000	Key
EventID Lat	Lon	Z	Mb	Ms	Location	123456789
94190155758 -37.217	-95.101	26	5.4	5.1	SOUTHERN PACIFIC OCEAN	111100110
94191231406 36.478					HINDU KUSH REGION	111100110
94192205737 37.541				4.3	IRAN-USSR BORDER REGION	111100110
94193001216 37.774			4.6		IRAN-USSR BORDER REGION	111100100
94193043505 36.411	71.056				AFGHANISTAN-USSR BORDER REGION	111100110
94194002514 -16.644				5 1	VANUATU ISLANDS	111100110
94194023556 -16.620					VANUATU ISLANDS	111100110
94194052343 29.875			4.5	,.5	SOUTHERN IRAN	111100110
94194032543 27.673					BANDA SEA	111100110
94194114323 7.532				5 9	VANUATU ISLANDS	111100110
94195201351 28.070			4.6	5.5	SOUTHERN IRAN	111100110
94197180505 -4.619					BANDA SEA	111100100
94199154416 38.713			4.8		GREECE	111000100
94199163359 -9.591				5 0	SOUTH OF JAVA	111000110
94200040549 37.563			4.8	3.0	AFGHANISTAN-USSR BORDER REGION	111000100
94200115944 -23.438				5 7	TONGA ISLANDS REGION	111000110
94202183631 42.340	132.865			5	NEAR E. COAST OF EASTERN USSR	111000100
94203165748 -7.777	158.417			5 9	SOLOMON ISLANDS	111000100
94204070814 37.438	54.413		4.9	J.J	IRAN-USSR BORDER REGION	111000100
94204070314 37.430	86.549			5 0	TIBET	111000100
94205054710 40.402	63.680		4.1	3.0	UZBEK SSR	111000110
94205144748 37.006	71.662				AFGHANISTAN-USSR BORDER REGION	111000100
94205175540 -16.966	167.574			6 5	VANUATU ISLANDS	111000110
94205215727 -10.654	113.269		6.0	0.5	SOUTH OF JAVA	111000110
94206220022 -56.362	-27.365		6.3		SOUTH SANDWICH ISLANDS REGION	111000110
94207014633 -10.263	113.590		5.7		SOUTH OF JAVA	111000110
94207180141 28.481	52.122		4.2		SOUTHERN IRAN	111000100
94208133937 36.438	71.198				AFGHANISTAN-USSR BORDER REGION	111000110
94209080301 -47.278	100.224			5.7	SOUTHEAST INDIAN RISE	111000110
	-168.333				FOX ISLANDS, ALEUTIAN ISLANDS	111000110
94210075328 -16.984	167.739				VANUATU ISLANDS	111000110
94210220627 36.417	71.087				AFGHANISTAN-USSR BORDER REGION	111000110
94211103745 37.493	36.189		4.7		TURKEY	111000110
94211212125 40.890	142.596	57	5.1		NEAR EAST COAST OF HONSHU, JAPAN	
94212051539 32.558	48.369	43	5.3	5.3	WESTERN IRAN	111000110
94214141752 52.428	158.044				NEAR EAST COAST OF KAMCHATKA	111000110
94215145957 21.514	93.981			5.1	BURMA	111000110
94216221537 -6.338	131.575				TANIMBAR ISLANDS REGION	111000110
94217111910 26.651	92.522	33	4.8		EASTERN INDIA	111000110
94218210214 26.991	54.363	16	5.3		SOUTHERN IRAN	111000110
94219063254 27.106	54.469	44	4.7		SOUTHERN IRAN	111000110
94220210831 24.721	95.200	122	6.0		BURMA	111000110
94222021115 26.951	54.352	44	4.8	4.4	SOUTHERN IRAN	111000110
94222145749 -58.756	-25.538	33	5.6	5.0	SOUTH SANDWICH ISLANDS REGION	111000100
94223064632 27.035	54.469	25	5.2	4.5	SOUTHERN IRAN	111000110
94223204208 -21.600	-173.768	31	5.9	5.4	TONGA ISLANDS	111000110
94224205805 37.171	69.878	33	4.2		AFGHANISTAN-USSR BORDER REGION	111000100
94226004620 44.709	150.103	17	6.0	5.9	KURIL ISLANDS REGION	111000110
94226013112 44.694	150.011	19	6.2	6.1	KURIL ISLANDS REGION	111000110
94226090652 38.794	142.075	44	5.4	5.3	NEAR EAST COAST OF HONSHU, JAPAN	111000110
94227061539 16.751	-60.739				LEEWARD ISLANDS	111000110
94228100932 37.842	142.462	20	5.9	5.2	OFF EAST COAST OF HONSHU, JAPAN	111000110
94229071129 36.606	71.129	145	4.4		AFGHANISTAN-USSR BORDER REGION	111000110
94230004547 -7.433	31.751	25	6.0	5.7	LAKE TANGANYIKA REGION	111000110
94230011305 35.520	-0.106	9	5.7	5.9	ALGERIA	111000110
94230044257 44.767	150.158	15	6.2	6.5	KURIL ISLANDS REGION	111000110
94230122947 39.217	72.097		4.1		KIRGHIZ SSR	111000100
94231100251 -26.642	-63.421	564	6.4		SANTIAGO DEL ESTERO PROV., ARG.	111000110
94231210245 17.974	96.415				BURMA	111000110
94232022111 44.606	149.325	23	6.0	5.2	KURIL ISLANDS	111000110

EventID	Lat	Lon	Z	Mb	Ms	Ingotion	Key
	Date	БОП	2	M	115	Location	123456789
9423204385		149.176	24	6.2	2 6.3	KURIL ISLANDS	111000110
9423302063		69.944	33	4.3	3	AFGHANISTAN-USSR BORDER REGION	011000110
9423315555		117.900	12	5.8	3 5.8	B EAST OF LAKE BAIKAL	011000110
9423412411		-6.103	10	5.3	3 4.9	JAN MAYEN ISLAND REGION	011000110
9423417263						SANTA CRUZ ISLANDS	011000110
9423512054		70.396		4.8		HINDU KUSH REGION	011000100
9423514183		78.818	33	5.0	5.0) SOUTHERN XINJIANG, CHINA	010000110
9423601282		160.336	32	5.4	4.7	OFF EAST COAST OF KAMCHATKA	010000100
94236151740 94237012440		-13.594				SOUTH ATLANTIC RIDGE	010000110
94238033814		145.049 56.052		5.4		HOKKAIDO, JAPAN REGION	010000100
94240183720		150.061		4.4		IRAN	010000100
94241173620		-19.172	10	5.5	. 0.0	KURIL ISLANDS REGION	010000110
94242061335		150.117	51	6.2	5.5	CENTRAL MID-ATLANTIC RIDGE KURIL ISLANDS REGION	010000100
94242194246		124.111				BANDA SEA	010000110
94243090725		146.013		6.0		KURIL ISLANDS	010000100
94244151553		-125.680				OFF COAST OF NORTHERN CALIFORNIA	010000110
94244161240		21.196	14	5.8	, ,	YUGOSLAVIA	
94245232940		48.861		4.4		WESTERN IRAN	010000110
94246090253						EASTER ISLAND REGION	010000110
94246174641		173.640	33	5.8	6.2	VANUATU ISLANDS REGION	$010000110 \\ 010000110$
94247022802	37.471	69.971	33	4.9		AFGHANISTAN-USSR BORDER REGION	010000110
94247071503	36.517	70.445				HINDU KUSH REGION	010000110
94247145034	35.941	100.080				QINGHAI PROVINCE, CHINA	010000100
94248052615	29.419	51.283	33	5.0		SOUTHERN IRAN	010000110
94248191317		46.231	62	4.7		EASTERN CAUCASUS	010000110
94248221347		155.226		5.9		KURIL ISLANDS REGION	010000110
94250135625		90.345	33	5.1	4.7	SOUTHERN XINJIANG, CHINA	010000110
94251092057		69.949	33	4.9		AFGHANISTAN-USSR BORDER REGION	010000110
94251133336		61.837		5.1		SOUTHERN IRAN	010000110
94252135004 94253045410		70.297		4.8		HINDU KUSH REGION	010000100
94254013203		126.599 99.516		5.6		MINDANAO, PHILIPPINE ISLANDS	010000100
94255062954		-71.706	40	5.1	4.0	SOUTHEAST ASIA NEAR COAST OF CENTRAL CHILE	010000110
94255113014		106.476	33	5 9	5.7	SOUTH OF JAVA	010000110
94256042801		129.910	34	5 8	6.2	RYUKYU ISLANDS	010000100
94256100132		-76.678	14	5.8	5.6	NORTHERN COLOMBIA	010000110 010000110
94259062018		118.711	13	6.5	6.7	TAIWAN REGION	010000110
94260022437		41.584		5.1		TURKEY	010000110
94260085753	26.450	55.601		4.7		SOUTHERN IRAN	010000110
94261102715	38.563	71.733	33	4.6	3.9	AFGHANISTAN-USSR BORDER REGION	010000100
94262152342	42.631	43.049	33	4.4		WESTERN CAUCASUS	010000110
94263055146		48.770			4.4	WESTERN IRAN	010000110
94264085323 94266023755	42.465	43.535		4.4		WESTERN CAUCASUS	010000110
94266075938	37.184 -3.379	142.123 148.537	25	5.4	5.0	OFF EAST COAST OF HONSHU, JAPAN	010000100
94270143253	31.661	49.176		4.5	0.0		010000110
94273025616	36.412	71.067				WESTERN IRAN	010000110
94273025716	37.551	75.025		5.0			010000110
94274082514	27.149	57.548		5.0			010000100
94274140420	13.116	50.416			4.4		110001110 110001110
94274163520	-17.745	167.682	17	5.9	6.5	7.73.3.77.7.8.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2.000.2	110001110
94274174637	-17.768	167.830	33	5.8	6.3	ITALITIA MILL TOTALIS O	110001110
94275162016	38.554	73.888	125	4.7		ma area areas	100001000
94276022245	32.763	48.880		4.6		WESTERN IRAN	110001100
94277120940	-6.218	104.891				SUNDA STRAIT	100001100
94277132255	43.773	147.321			8.1	KURIL ISLANDS	100001100
94277152415	43.526	147.908		6.3		KURIL ISLANDS	101001100
94277160102	43.706	147.991	16			KURIL ISLANDS	101001100
94277191628	43.774	147.504	35	6.0	5.6	KURIL ISLANDS	101001100

Appendix 1 (continued)

		App	endi	(continued)		
						Key 123456789
EventID Lat	Lon	Z	Mb	Ms	Location	123430703
	140.070	40	5 0	F 6	KURIL ISLANDS REGION	101001110
94278040047 43.398	148.078 147.336	40	5.0	5.5	KURIL ISLANDS	101001110
94278203948 43.954	147.336	33	5.2	5.6	KURIL ISLANDS REGION	101001000
94279074635 43.239		10	5 8	5 2	SOUTH PACIFIC CORDILLERA	101001110
94279154214 -56.628 94280023609 43.614	147.289		6.1		KURIL ISLANDS	101001110
•	88.753		6.0		SOUTHERN XINJIANG, CHINA	101001110
94280032558 41.662 94280070052 43.117	146.866	5.5	5.5		KURIL ISLANDS	101001010
94280070032 43.117	146.063	24	6.0	5.2	OFF COAST OF HOKKAIDO, JAPAN	101001110
94280152826 43.319	146.676	26	5.6	5.0	KURIL ISLANDS	101001000
94281095434 43.873	148.171		5.9		KURIL ISLANDS REGION	101001110
94281214407 -1.258	127.980			6.8	HALMAHERA	101001110
94282075539 43.905	147.916	33	6.5	7.1	KURIL ISLANDS	101001110
94282122422 43.883	147.341	46	5.8	5.5	KURIL ISLANDS	101001110
94282190843 39.907	77.117	40	4.9	4.5	SOUTHERN XINJIANG, CHINA	101001010
	-173.897	33	5.6	5.2	ANDREANOF ISLANDS, ALEUTIAN IS.	101001110
94284013720 -32.100	-71.447	47	5.7	5.4	NEAR COAST OF CENTRAL CHILE	101001100
94284203117 33.558	45.678	18	4.7		IRAN-IRAQ BORDER REGION	101001110
94285060249 13.765	124.538	27	5.5	5.7	LUZON, PHILIPPINE ISLANDS	101001010
94285064339 13.773	124.529			6.1	LUZON, PHILIPPINE ISLANDS	101001110
94285074401 42.371	44.430	10	4.3		WESTERN CAUCASUS	101001100
94285103322 51.605	-173.770	33	5.1	4.8	ANDREANOF ISLANDS, ALEUTIAN IS.	101001000
94286050424 -1.212	127.912			6.3	HALMAHERA	101001110
94286231957 40.381	52.975		4.3		TURKMEN SSR	101001100 101001000
94286233127 45.493	21.004	10	4.7	- 1	ROMANIA	101001000
94288003925 -3.804	152.148				NEW IRELAND REGION	101001100
94289051000 45.749	149.167				KURIL ISLANDS IRAN-USSR BORDER REGION	101001100
94289100952 38.089	56.703		4.5		KURIL ISLANDS	101001100
94291171250 43.576			6.2		ARGENTINA	101001100
94293011516 -39.187		102	5.0	5 3	HINDU KUSH REGION	101001100
94294050621 36.391	69.708 56.955		4.9		IRAN-USSR BORDER REGION	101001100
94294114627 38.250 94297192627 43.084			5.7		KURIL ISLANDS	101001100
94297192627 43.084 94298005434 36.359		239	5.9		HINDU KUSH REGION	101001100
94298133026 43.771		35	5.5	4.8	KURIL ISLANDS	101001100
94300131911 31.430		33	4.6		WESTERN IRAN	101001100
	-127.427		5.6	6.0	OFF COAST OF OREGON	101001100
04200222020 -25 778	179 339	519	5.9		SOUTH OF FIJI ISLANDS	101001100
94301091120 14.537	-103.755	33	5.2	5.5	OFF COAST OF GUERRERO, MEXICO	101001100
94303060627 -28.032		5	5.6	4.7	REPUBLIC OF SOUTH AFRICA	101000100
94303081129 -6.183			5.6		BANDA SEA	101000100 101000100
94304114813 3.019	96.192				NORTHERN SUMATERA	101000100
94304225926 9.037	-83.323	56	5.6	- 0	COSTA RICA	101000100
94305080802 -1.432					CARLSBERG RIDGE	101000100
94306014355 5.099			5.7		KALIMANTAN N.W. IRAN-USSR BORDER REGION	101000100
94306123101 38.152		10	5.0		SOUTHERN IRAN	101000100
94307114333 28.260					PERU-BRAZIL BORDER REGION	101000100
94308011320 -9.379		257	6 1	6 1	MACQUARIE ISLANDS REGION	101000100
94309021603 -57.193					PERU-BRAZIL BORDER REGION	101000100
94309120528 -9.386			5.0		NORTHERN XINJIANG, CHINA	101000100
94312053122 43.271 94313182102 43.556		5.A	6.2	5 2	KURIL ISLANDS	101000100
94313182102 43.556 94315084829 -15.626					SOUTHERN PERU	101000100
94317065600 36.910		10	4.9	5.0	TURKEY	101000100
94318191530 13.525			6.1	7.1	MINDORO, PHILIPPINE ISLANDS	101000100
94319201811 -5.589					JAVA SEA	101000100
94323021801 27.818			4.6		SOUTHERN IRAN	101000100
94324025701 14.769		10	5.0)	ARABIAN SEA	101000100
94324025715 -9.794		24	5.8	5.5	SOLOMON ISLANDS	101000100
94324143102 35.335	39.557	29			JORDAN - SYRIA REGION	101000100
94324165905 -2.001	135.932	16	5 5.8	6.3	WEST IRIAN REGION	101000100

Appendix 1 (continued)

						Key
EventID Lat	Lon	Z	Mb	Ms	Location	123456789
94324183434 4.330	97.591	153	5.7		NORTHERN SUMATERA	101000100
94325022130 -14.976	167.243	126	5.6		VANUATU ISLANDS	101000100
94325081634 25.540	96.657	14	5.6	5.9	BURMA	101000100
94325185516 35.902	51.884	33	4.5		IRAN	101000100
94326111157 43.961	147.293	49	5.6	5.1	KURIL ISLANDS	101000100
94328034636 37.484		33	5.2		TAJIK SSR	101000100
94330061110 -20.126	169.126	36	5.8	5.4	VANUATU ISLANDS	101000100
94330151047 71.946	-4.846	10	4.6		JAN MAYEN ISLAND REGION	101000100
94331211841 37.747	67.788	33	4.6		AFGHANISTAN-USSR BORDER REGION	101000100
94333143028 38.707	20.484	21	4.9	4.8	GREECE	101000100
94335061101 -7.639	128.173	84	5.6		BANDA SEA	101000100
94337013551 37.643	49.349	33	4.8		CASPIAN SEA	101000100
94337060251 32.624	47.307	81	4.6		IRAN-IRAQ BORDER REGION	101000100
94339162009 -8.576	159.833	49	5.8	5.1	SOLOMON ISLANDS	101000100
94340014047 40.632	27.750	10	0.0		TURKEY	101000100
94340090607 -15.316	-75.294	27	5.3	5.0	NEAR COAST OF PERU	101000100
94341033754 -23.422	-66.639	235	5.6		JUJUY PROVINCE, ARGENTINA	111000100
94341215210 30.928	51.145	28	4.9		IRAN	011000100
94342104755 36.450	70.927	200	5.1		HINDU KUSH REGION	011000100
94342125438 28.961			5.0		SOUTHERN IRAN	011000100
94344033931 -23.534				5.6	NEAR COAST OF NORTHERN CHILE	011000100
94344121601 27.914			5.2		PAKISTAN	011000100
				6.2	GUERRERO, MEXICO	011000100
94345022546 -5.829			5.7		SOUTHERN SUMATERA	011000100
94346074155 -17.477	-69.598	148	5.9		PERU-BOLIVIA BORDER REGION	010000100
94346125254 36.397	70.811	166	5.2		HINDU KUSH REGION	010000100
94346131406 42.501			4.4		WESTERN CAUCASUS	010000100
94346145253 -9.975	119.199	26	5.9	5.1	SUMBA ISLAND REGION	010000100
94346151203 38.175	73.021				TAJIK-XINJIANG BORDER REGION	010000100
94348072853 -9.519				5.9	SOLOMON ISLANDS	010000100
94348204353 35.104	58.633	33	5.3		IRAN	010000100
94349112022 -37.282				6.4	OFF E. COAST OF N. ISLAND, N.Z.	010000100
94349232448 28.956	52.641	33	4.7		SOUTHERN IRAN	010000100
94352163815 35.277	39.745	10	4.6		JORDAN - SYRIA REGION	010000100
94352203832 -17.838	-178.703	545	5.6		FIJI ISLANDS REGION	010000100
94353145958 40.934	47.816	33	4.6		EASTERN CAUCASUS	010000100
94358235147 38.588	73.897	33	5.3		TAJIK-XINJIANG BORDER REGION	010000100
94360144801 36.469					AFGHANISTAN-USSR BORDER REGION	010000100
94361173250 -31.965					KERMADEC ISLANDS REGION	010000100
94362121923 40.525					OFF EAST COAST OF HONSHU, JAPAN	010000100
94362205225 40.094					NEAR EAST COAST OF HONSHU, JAPAN	010000100
94362223746 40.375	143.636			6.0	OFF EAST COAST OF HONSHU, JAPAN	010000100
94363160118 35.655	80.663		5.5		KASHMIR-TIBET BORDER REGION	010000100
94364065616 38.179	39.670		4.7		TURKEY	010000100
94365025720 20.524	109.330				EASTERN CHINA	010000100
94365135023 40.217	142.546				NEAR EAST COAST OF HONSHU, JAPAN	010000100
95001065954 40.635	143.585				OFF EAST COAST OF HONSHU, JAPAN	010000100
95001085108 30.543	50.378			4.4	IRAN	010000100
95003025457 -56.211	-27.205				SOUTH SANDWICH ISLANDS REGION	010000110
95003161159 -57.698	-65.958			5.6	DRAKE PASSAGE	010000110
95003225144 34.901	23.622		4.8		CRETE	010000110
95004022211 27.444	56.693		4.6		SOUTHERN IRAN	010000110
95004085150 9.822	56.514		4.8		CARLSBERG RIDGE	010000110
95005124601 59.650	56.440		4.7		URAL MOUNTAINS REGION	010000110
95005233007 -22.036	168.838				NEW CALEDONIA	010000110
95006215932 9.169	126.195		5.7		MINDANAO, PHILIPPINE ISLANDS	010000110
95006223737 40.227	142.242		6.7		NEAR EAST COAST OF HONSHU, JAPAN	010000110
95007023608 40.264	142.411				NEAR EAST COAST OF HONSHU, JAPAN	
95007203047 37.920	19.949			4.4	IONIAN SEA	010000110
95008092219 -8.444	-74.289	149	5.1		PERU-BRAZIL BORDER REGION	010000100

Appendix 1 (continued)

Appendix 1 (continued)							
							Key 123456789
Event ID	Lat	Lon	Z	Mb	Ms	Location	123430703
		141 245	22	E 6	E 7	NEAR EAST COAST OF HONSHU, JAPAN	010000100
95009180017	35.864	141.345	33	5.0	5.7	EASTERN CHINA	010000100
95010100951	20.040	109.153 147.088	23	6.2	5.4	KURIL ISLANDS	010000110
95012102646	43.986 43.102	147.000	33	5 A	5 2	KURIL ISLANDS	010000100
95013031259	27.519	128.443	47	5 7	5 4	RYUKYU ISLANDS	011000000
95015024018	-5.264	152.025	66	5 7	5.9	NEW BRITAIN REGION	001000000
95015235926 95016181449	51.241	179.172	33	5.5	6.0	RAT ISLANDS, ALEUTIAN ISLANDS	001000000
95016181449	34.549	135.002	16	6.4	6.8	NEAR S. COAST OF SOUTHERN HONSHU	001000000
95017165412	-20 870					FIJI ISLANDS REGION	001000000
95018143858	36.608	71.233	214	4.5		AFGHANISTAN-USSR BORDER REGION	001001000
95019030023	43.326	147.010	40	5.5	5.1	KURIL ISLANDS	001001000
95019095534	-7.345	128.271	170	5.8		BANDA SEA	001001000
95019150503	5.075	-72.918	18	6.4	6.6	COLOMBIA	001001000
95020005522	-10.958	162.156			5.5	SOLOMON ISLANDS	001001000
95020033546	43.261	146.821	61	5.7		KURIL ISLANDS	$001001000 \\ 001001000$
95020154901	1.142	126.107			5.4	MOLUCCA PASSAGE	001001000
95021001611	47.126	152.806		4.9		KURIL ISLANDS	001001000
95021030231	29.040	52.073	33	4.6	- 4	SOUTHERN IRAN	001001000
95021065633	40.565	143.633				OFF EAST COAST OF HONSHU, JAPAN	001001000
95021073023	2.529	126.905			6.1	MOLUCCA PASSAGE	001001000
95021084729	43.335	146.717		6.5	E 1	KURIL ISLANDS COLOMBIA	001001000
95022104127	5.126	-72.966		4.9	3.1	SOUTHERN IRAN	001001000
95024041426	27.640	55.652		4.5		SOUTHERN IRAN	001001000
95024065857	27.300	55.454 154.493			6 2	SOLOMON ISLANDS	001001000
95024223635	-5.933	71.219			0.2	AFGHANISTAN-USSR BORDER REGION	001001000
95026070044	36.080 -2.332	138.883	47	5 6	5 1	WEST IRIAN	001001000
95027183451 95027201653	-2.332	134.462	33	6.2	6.8	WEST IRIAN REGION	001001000
95027201653	27.954	57.012		4.8	0.0	SOUTHERN IRAN	001001000
95028103727	43.922	148.163	33	5.2	5.2	KURIL ISLANDS REGION	001001000
95029012011	36.978	71.552				AFGHANISTAN-USSR BORDER REGION	001001000
95029045337	29.234	141.202	67	5.6		SOUTH OF HONSHU, JAPAN	001001000
95030223630	36.421	71.450	54	4.6		AFGHANISTAN-USSR BORDER REGION	001001000
95032142644	-42.432	-18.449			5.1	SOUTH ATLANTIC RIDGE	001001000
95033123358	-1.268	127.567	33	5.5	- 4	HALMAHERA	001001000 001001000
95033125353	10.755	-42.557			5.4	NORTH ATLANTIC RIDGE SOUTHEASTERN UZBEK SSR	001001000
95033193449	39.214	67.407		4.6	<i>c</i> 2	BALLENY ISLANDS REGION	001001000
95034023134		155.895	T ()	5.0	0.3	WEST IRIAN REGION	001001000
95034154054	-3.416	135.538 25.194		4.8	4.3	CRETE	001001000
95034222909	34.219 6.849	-82.675	10	5 R	5 4	SOUTH OF PANAMA	001001000
95036203710 95036225110				6.4		OFF E. COAST OF N. ISLAND, N.Z.	001001000
95037104357	-37 799	178.816	33	5.7	5.8	OFF E. COAST OF N. ISLAND, N.Z.	001001000
95037135135	41.124	142.188		5.6		HOKKAIDO, JAPAN REGION	001001000
95037211547	28.942	34.748	5	0.0		ARAB REPUBLIC OF EGYPT	001001000
95039184025	4.162	-76.644	69	6.3		COLOMBIA	001001000
95041014504	-37.968	178.472	33	5.8	6.4	OFF E. COAST OF N. ISLAND, N.Z.	001001000
95041074918	36.196	69.070		4.8		HINDU KUSH REGION	001001000
95041202703		-68.544	164	5.4		CHILE-BOLIVIA BORDER REGION	001001000
95042224533	12.607	-81.603	11	5.3	5.2	CARIBBEAN SEA	001001000 001001000
95043010207	-5.796	-76.135		5.7	5.1	NORTHERN PERU	001001000
95044001147		178.543				OFF E. COAST OF N. ISLAND, N.Z.	001001000
95044084339		127.420				HALMAHERA HALMAHERA	001001000
95044122955	-1.383	127.449		4.8		GREECE	001001000
95044131634	40.707	22.563				HALMAHERA	001001000
95044150426		127.522 42.698				TURKEY	001001000
95045111319 95045155356		-67.702				CHILE-ARGENTINA BORDER REGION	001001000
95045155356		148.098		5.9	5.6	KURIL ISLANDS REGION	001001000
95046130520		51.167		4.7		SOUTHERN IRAN	001001000
73040130320	23.103	020,					

Appendix 1 (continued)

		1 1				Key
EventID Lat	Lon	Z	Mb	Ms	Location	123456789
95047145252 52.191	-30.216				NORTH ATLANTIC RIDGE	001001000
95048024424 27.606				5.1	INDIA-CHINA BORDER REGION	001001000
95049132906 46.667	145.894				SEA OF OKHOTSK	001001000
95050001748 5.206					MINDANAO, PHILIPPINE ISLANDS	001001000
	-125.527				OFF COAST OF NORTHERN CALIFORNIA	
95050044550 43.098	146.842				KURIL ISLANDS	001001000
95051025912 -27.835	76.213			5.6	MID-INDIAN RISE	001001000
95051041224 39.255	71.054		5.4	A E	TAJIK SSR	001001000
95051080733 41.225	72.498				KIRGHIZ SSR	001001000
95052020950 45.942	151.553				KURIL ISLANDS OFF EAST COAST OF HONSHU, JAPAN	001001000
95054050125 39.663					TAIWAN	001001000
95054051902 24.136					CYPRUS	001001000
95054210302 35.039			4.8	5.7	CYPRUS	001001000
95054211036 35.089 95054214031 35.005	32.274		5.2		CYPRUS	001001000
95054214031 35.005 95056060930 -26.670				E 1	EASTER ISLAND REGION	001001000
95056094224 39.977	77.480		4.8	J.1	SOUTHERN XINJIANG, CHINA	001001000
95056110531 36.654	71.006				AFGHANISTAN-USSR BORDER REGION	001001000
95056215429 -18.235					FIJI ISLANDS REGION	001001000
	97.873			17	NORTHERN SUMATERA	001001000
			4.2	4.7	TAJIK-XINJIANG BORDER REGION	001001000
95059102410 38.149 95059211209 6.935	-81.805			5 5	SOUTH OF PANAMA	001001000
95062120210 -6.472	154.987				SOLOMON ISLANDS	001001010
95062120210 -6.472	45.177		4.6	5.0	IRAN-IRAQ BORDER REGION	001001010
95062211237 -14.617				5 7	SAMOA ISLANDS REGION	001001010
95065184342 2.662	118.218				CELEBES SEA	001001010
95067034559 16.555	-59.574				LEEWARD ISLANDS	001001010
95068183657 20.943	122.001				PHILIPPINE ISLANDS REGION	001001000
95069052222 46.075	143.540				SAKHALIN ISLAND	001001000
95070152110 44.008	148.132			5.7	KURIL ISLANDS	001001010
95071044045 40.187	143.489	33	5.1	5.1	OFF EAST COAST OF HONSHU, JAPAN	001001000
95071082300 17.911	73.422	33	4.7		INDIA	001001000
95071120943 -5.330	146.695				EAST PAPUA NEW GUINEA REGION	001001000
95072103150 -2.820	134.330			5.7	WEST IRIAN REGION	001001000
95073004322 6.859	-73.128				NORTHERN COLOMBIA	001001000
95073033233 -37.892	-73.331		5.2		NEAR COAST OF CENTRAL CHILE	001001000
95073102730 2.999	95.867					001001000
	-161.295				ALASKA PENINSULA	001001000
95075032704 30.311	67.248				PAKISTAN	101001010
95076021840 -13.142	166.676			5.2	VANUATU ISLANDS	111001010
95077180237 42.502	87.179		5.2		NORTHERN XINJIANG, CHINA	111000010
95078165815 36.509	70.920			4 0	HINDU KUSH REGION	111000010
95078174140 43.985	147.175				KURIL ISLANDS	111000010
95078183405 -4.270	135.061				WEST IRIAN REGION	111000010
95078235314 -4.148 95081062836 30.185	135.087 51.065		4.7	/.1	WEST IRIAN REGION IRAN	111000010
95082091821 -36.263	-72.943			5 5	NEAR COAST OF CENTRAL CHILE	111000010 111000010
95084224428 -11.050	166.111		5.9	5.5	SANTA CRUZ ISLANDS	111000010
95085021616 -55.855	-28.208			5 9	SOUTH SANDWICH ISLANDS REGION	111000010
95089181715 34.479	24.853		4.9	5.5	CRETE	111000010
95090140140 38.150	135.058				SEA OF JAPAN	111000010
95091034933 37.924	139.177		5.8		HONSHU, JAPAN	111000010
95091044814 31.195	45.934		4.6		IRAQ	111000010
95091055020 52.279	159.133			5.6	OFF EAST COAST OF KAMCHATKA	111000010
95093115443 24.083	122.250				TAIWAN REGION	111000010
95093200815 29.638	51.052	33	4.3		SOUTHERN IRAN	111000010
95094152952 28.212	71.593				INDIA-PAKISTAN BORDER REG.	111000010
95097220658 -15.187					TONGA ISLANDS	111000010
95098012007 -15.227				6.1	TONGA ISLANDS	111000010
95098174518 21.804	142.632	319	6.3		MARIANA ISLANDS REGION	111000010

Appendix 1 (continued)

Appendix 1 (continued)							
Eant ID	Tat	Lon	Z	Mb	Ms	Location	Key 123456789
Event ID	Lat	TOIL					
95104003254	30.244	-103.325				WEST TEXAS	111000010
95106132348	-9.759	159.514				SOLOMON ISLANDS	111000010
95107011420	-8.585	156.613				SOLOMON ISLANDS	111000010
95107071435	33.778	-38.600				NORTH ATLANTIC RIDGE	111000010
95107232808	45.904	151.288				KURIL ISLANDS	111000010
95108034939	-2.088	140.449	36	5.9	5.7	NEAR N. COAST OF WEST IRIAN	111000010
95108061240	31.812	49.283		4.7		WESTERN IRAN	111000010
95109035005	44.027	148.204			5.5	KURIL ISLANDS	111000010
95110084510	6.288	126.828		6.2		MINDANAO, PHILIPPINE ISLANDS	111000010
95110204910	45.901	151.253				KURIL ISLANDS	111000010
95111000956	11.999	125.699				SAMAR, PHILIPPINE ISLANDS	111000010
95111003447	12.064	125.931				SAMAR, PHILIPPINE ISLANDS	111000010 111000010
95111051700	12.142	125.948			6.9	SAMAR, PHILIPPINE ISLANDS NEAR SOUTH COAST OF FRANCE	111000010
95111080256	43.756	7.567		4.9	5 2	SAMAR, PHILIPPINE ISLANDS	111000010
95111170317	11.997	125.877 49.843				WESTERN IRAN	111000000
95112002149	30.912	179.713	16	6 1	6 1	RAT ISLANDS, ALEUTIAN ISLANDS	111000000
95113025554	51.340	125.364				SAMAR, PHILIPPINE ISLANDS	111000000
95113050803	5.255	-72.475				COLOMBIA	111000000
95113235540	-5.855	147.302				EAST PAPUA NEW GUINEA REGION	111000010
95115061502 95117124438	1.199	-84.929				OFF COAST OF ECUADOR	111000010
95117124438	44.058	148.055				KURIL ISLANDS	111000010
95118170843	44.090	148.122				KURIL ISLANDS	111000010
95118174413	-1.892	55.532		5.3	0.2	SOUTH INDIAN OCEAN	111000010
95119094400	11.766	126.044			6.0	PHILIPPINE ISLANDS REGION	111000010
95122060605	-3.854	-76.958				NORTHERN PERU	111000010
95122114811	43.824	84.607	33	5.5	5.3	NORTHERN XINJIANG, CHINA	111000010
95123024952	28.440	52.744		4.7		SOUTHERN IRAN	111000010
95124003412	40.673	23.466	28	5.1	5.1	GREECE	111000010
95124021851	1.857	128.488	55	6.0	6.0	HALMAHERA	111000010
95124160331	35.023	27.748	33	4.9	4.3	DODECANESE ISLANDS	111000010
95125035347	12.622	125.314				SAMAR, PHILIPPINE ISLANDS	111000010
95125091729	13.856	51.464				EASTERN GULF OF ADEN	111000010
95125130139		118.809			5.4	SOUTH OF SUMBAWA ISLAND	111000010
95125224805		168.681	123	5.8		VANUATU ISLANDS	111000010
95126015907	25.007	95.335				BURMA-INDIA BORDER REGION	111000010
95128174025	43.884	148.413				KURIL ISLANDS REGION	111000010
95129011437	40.820	20.664			4.2	GREECE-ALBANIA BORDER REGION	111000010 111000010
95129095420	25.260	95.136		5.2 4.8		BURMA-INDIA BORDER REGION CASPIAN SEA	111000010
95133072041	40.750	50.635			6 5	GREECE	111000010
95133084712	40.144	21.684 21.552				GREECE	111000010
95133105834		21.532		5.0		GREECE	111000010
95133114328 95133210054	40.138 -5.215	108.917				JAVA SEA	111000010
95133210034	40.138	21.540		4.7		GREECE	111000010
95134044701	40.134	70.691			4.0	TAJIK SSR	111000010
95134113321	-8.396	125.083				TIMOR	111000010
95134223347	39.957	77.610				SOUTHERN XINJIANG, CHINA	111000010
95135001652	38.407	49.390		4.8		CASPIAN SEA	111000010
95135040558	41.665	88.821		6.1		SOUTHERN XINJIANG, CHINA	111000010
95135041355	40.047	21.619		5.1		GREECE	111000010
95135152654		-27.770				SOUTH SANDWICH ISLANDS REGION	111000000
95135202149	13.126	49.523	10	4.9		EASTERN GULF OF ADEN	111000000
95136033503	36.485	70.896	190	5.7		HINDU KUSH REGION	111000000
95136201245		169.893			7.7	LOYALTY ISLANDS REGION	111000000
95136214808	17.800	96.550		5.8		BURMA	111000000
95136230040	40.034	21.574		4.8		GREECE	111000000
95137022929	-6.290	147.398		5.6	_	EAST PAPUA NEW GUINEA REGION	111000000
95137041424	40.160	21.597				GREECE	111000000
95137094507	39.998	21.536	10	5.0	4.7	GREECE	111000000

Appendix 1 (continued)

EventID	Lat	Lon	Z	Mb	Ms	Location	Key 123456789
95137112351	-23.028	170.079	33	5.7	6.5	LOYALTY ISLANDS REGION	111000000
95138000626					6.1	CENTRAL MID-ATLANTIC RIDGE	111000000
95138143114						KURIL ISLANDS	111000000
95139064849					5.0	GREECE	111000000
95139214451				4.6		GREECE	111000000
95140134502						SOUTH SANDWICH ISLANDS REGION	111000000
95142034504		169.931				LOYALTY ISLANDS REGION	111000000
95142040255		151.475				DENTRECASTEAUX ISLANDS REGION	111000000
95143221011		-3.150				SOUTH ATLANTIC RIDGE	111000010
95144202125		125.707				SAMAR, PHILIPPINE ISLANDS	111000010
95146031110						ARABIAN SEA	111000010
95147130355 95147201529						SAKHALIN ISLAND	111000010
95147201329	39.041	168.985 49.056		4.7	4.8	VANUATU ISLANDS CASPIAN SEA	111000010
95148195912		-71.098			5 1	NEAR COAST OF CENTRAL CHILE	111000010
95149140232	32.352	141.601				SOUTH OF HONSHU, JAPAN	101000010
95149072946		163.734				SOLOMON ISLANDS	110001000
95151135120	30.204	67.933				PAKISTAN	010001000 111001000
95151160840		-107.434				OFF COAST OF JALISCO, MEXICO	111001000
95151204411	28.194	53.264				SOUTHERN IRAN	111001000
95153232906	3.289	96.358		5.0	4.0	NORTHERN SUMATERA	111001000
95154115731	2.977	96.210			4 6	NORTHERN SUMATERA	111001000
95154200832	35.848	53.049		4.0	1.0	IRAN	111001000
95156202017	18.402	120.858			5.4	LUZON, PHILIPPINE ISLANDS	111001000
95157000304	26.568	67.167				PAKISTAN	111001000
95158005347		-179.326				ANDREANOF ISLANDS, ALEUTIAN IS.	111001000
95158230947	32.504	48.745				WESTERN IRAN	111001000
95162192050	11.711	125.867				SAMAR, PHILIPPINE ISLANDS	111001000
95162215549	32.556	69.618	33	5.1	5.6	PAKISTAN	111001000
95163033548	-8.308	-75.913	34	5.7	5.0	PERU	111001000
95163144759	39.169	95.365	33	5.2	4.5	GANSU PROVINCE, CHINA	111001000
95165054233	36.286	58.515				IRAN	111001000
95165111149	12.204	-88.349			6.0	OFF COAST OF CENTRAL AMERICA	111001000
95165121159	42.388	21.421		5.1		YUGOSLAVIA	111001000
95166001548	38.401	22.269				GREECE	111001000
95166003100	38.395	22.430			6.0	GREECE	111001000
95166183729	38.668 -8.255	69.964 123.020		4.6	E 1	TAJIK SSR FLORES ISLAND REGION	111001001
95168013711 95170005744	44.031	150.473				KURIL ISLANDS REGION	111001001
95172152851		154.714				BALLENY ISLANDS REGION	$\frac{111001001}{111001001}$
95172163305		-77.564		5.5	0.7	NEAR COAST OF PERU	111001001
95173010121	50.325	89.915			5.3	USSR-MONGOLIA BORDER REGION	111001001
95175065806		153.945				NEW IRELAND REGION	011001001
95176021041	-3.281	150.365				NEW IRELAND REGION	011001001
95176065905	24.599	121.713				TAIWAN	011001001
95177034142	-55.361	-27.843	33	5.4	5.1	SOUTH SANDWICH ISLANDS REGION	111001001
95177211255	36.327	51.060	33	4.1		IRAN	111001001
95177212649	7.106	-34.331	10	4.9	5.3	CENTRAL MID-ATLANTIC RIDGE	111001001
95177232735	39.852	48.310		4.4		N.W. IRAN-USSR BORDER REGION	111001001
95178004642	39.837	48.324		4.5		N.W. IRAN-USSR BORDER REGION	111001001
95178040929		-27.980				SOUTH SANDWICH ISLANDS REGION	111001001
95178100958	18.847	-81.730				CARIBBEAN SEA	111001001
95178211256		66.829				MASCARENE ISLANDS REGION	111001001
95179211449 95180074509	-1.617	127.365			5.4	HALMAHERA	111001001
95180074509	48.784	154.459 169.241		5.9		KURIL ISLANDS	111001001
95180122403	51.923	103.075			5 5	VANUATU ISLANDS LAKE BAIKAL REGION	111001001
95181115856		-110.264				BAJA CALIFORNIA	111001001
95182041055	12.942	57.468		5.2	0.5	ARABIAN SEA	111001001 111001001
95182235744		-27.819			5.2	SOUTH SANDWICH ISLANDS REGION	111001001
			- 0	J . L	J . L	COLD CHILD TOURNED THOTON	111001001

Appendix 1 (continued)

		App	pend:	(continued)		
						Key
EventID Lat	Lon	Z	Mb	Ms	Location	123456789
Evenerb Date						
95184195050 -29.198	-177 612	33	6.5	7.2	KERMADEC ISLANDS	111001001
95184215651 -29.052	-177 676		6.0		KERMADEC ISLANDS	111001001
95188104004 -53.563	9.186			5 2	SOUTHWEST OF AFRICA	111001001
				٠.٢	NEAR S. COAST OF HONSHU, JAPAN	111001001
95188211518 33.94		40	5.7	5 5	OFF EAST COAST OF HONSHU, JAPAN	111001001
95189054256 39.640		10	5.7	5.3	CARLSBERG RIDGE	111001001
95189113905 4.329		10	5.5	5.1	UNIMAK ISLAND REGION	111001001
	-163.546			5./	UNIMAK ISLAND REGION	111001001
95189234947 -24.153			5.7		SOUTH OF FIJI ISLANDS	111001001
95190022945 37.330			5.0		AFGHANISTAN-USSR BORDER REGION	111001001
95190203131 22.003	99.196	12	5.7	5.9	BURMA-CHINA BORDER REGION	
95191024232 12.399	141.651	55	5.2	4.9	SOUTH OF MARIANA ISLANDS	111001001
95192214639 21.933	99.162	13	6.1	7.2	BURMA-CHINA BORDER REGION	111001001
95193154659 -23.23	170.824	33	5.9	6.4	LOYALTY ISLANDS REGION	111001001
95193183849 12.31		33	5.8	5.6	SAMAR, PHILIPPINE ISLANDS	111001001
95194000023 -23.30	170.636	33	5.6	5.7	LOYALTY ISLANDS REGION	111001001
95195140307 42.81		33	4.2		CASPIAN SEA	111001001
95198231815 40.26		10	5.3	4.8	GREECE	111001001
95199143545 -3.85		33	5.4	5.7	WEST IRIAN REGION	111001001
95200002417 -22.68		32	5.8	5.6	LOYALTY ISLANDS REGION	111001001
95202224407 36.44		33	5.7	5.4	GANSU PROVINCE, CHINA	111001001
95205191321 55.59			5.4	5.2	NORTH ATLANTIC OCEAN	111000001
95206151326 10.69			5.4	5.5	NORTH ATLANTIC RIDGE	111000001
95206223923 44.12					KURIL ISLANDS	111000001
95207234202 2.563			5.9		MOLUCCA PASSAGE	111000001
95208055117 -12.578				5.9	SOUTH INDIAN OCEAN	111000001
95209142912 -21.09	75.257				TONGA ISLANDS	111000001
		51	5 5	5 3	TALAUD ISLANDS	111000001
95210080125 4.21 95211051123 -23.36			6 6	7 3	NEAR COAST OF NORTHERN CHILE	111000001
95211051125 -23.30			5 6	5 6	NEAR COAST OF NORTHERN CHILE	111000001
95211210550 -23.31			5.6	4 7	KURIL ISLANDS	111000001
95213021039 46.34			5.0	5 5	NEAR COAST OF NORTHERN CHILE	111000001
95214001409 -23.15	70.376		5.7	5 1	NEAR COAST OF NORTHERN CHILE	111000001
95214110539 -23.10			5.2	2.1	NEAR COAST OF NORTHERN CHILE	111000001
95215015721 -23.13					CHILE-ARGENTINA BORDER REGION	111000001
95215081853 -28.34			5.9	E 7	CAROLINE ISLANDS REGION	111000001
95219194424 4.08		10	5.5	5.7	SAMAR, PHILIPPINE ISLANDS	111000001
95220003524 11.78	125.791	33	5.3	5.0	MEN DETAIN DECION	111000001
95226043717 -4.82					NEW BRITAIN REGION	111000001
95228102726 -5.80					SOLOMON ISLANDS	111000001
95228162426 -5.41					NEW IRELAND REGION	111000001
95228231028 -5.78					SOLOMON ISLANDS	111000001
95229005957 41.58			6.0		SOUTHERN XINJIANG, CHINA	
95229100127 -5.17					NEW IRELAND REGION	111000001
95229231419 36.46	5 71.156	239	5.4		AFGHANISTAN-USSR BORDER REGION	111000001
95230021626 -55.89					SOUTH SANDWICH ISLANDS REGION	111000001
95231214332 5.09	6 -75.690	125	6.1		COLOMBIA	001000001

Prof. Thomas Ahrens Seismological Lab, 252-21 Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Keiiti Aki Center for Earth Sciences University of Southern California University Park Los Angeles, CA 90089-0741

Prof. Shelton Alexander Geosciences Department 403 Deike Building The Pennsylvania State University University Park, PA 16802

Prof. Charles B. Archambeau University of Colorado JSPC Campus Box 583 Boulder, CO 80309

Dr. Thomas C. Bache, Jr. Science Applications Int'l Corp. 10260 Campus Point Drive San Diego, CA 92121 (2 copies)

Prof. Muawia Barazangi Cornell University Institute for the Study of the Continent 3126 SNEE Hall Ithaca, NY 14853

Dr. Jeff Barker Department of Geological Sciences State University of New York at Binghamton Vestal, NY 13901

Dr. Douglas R. Baumgardt ENSCO, Inc 5400 Port Royal Road Springfield, VA 22151-2388

Dr. Susan Beck
Department of Geosciences
Building #77
University of Arizona
Tuscon, AZ 85721

Dr. T.J. Bennett S-CUBED A Division of Maxwell Laboratories 11800 Sunrise Valley Drive, Suite 1212 Reston, VA 22091 Dr. Robert Blandford AFTAC/TT, Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. Stephen Bratt ARPA/NMRO 3701 North Fairfax Drive Arlington, VA 22203-1714

Dale Breding U.S. Department of Energy Recipient, IS-20, GA-033 Office of Arms Control Washington, DC 20585

Dr. Lawrence Burdick C/O Barbara Wold Dept of Biology CA Inst. of Technology Pasadena, CA 91125

Dr. Robert Burridge Schlumberger-Doll Research Center Old Quarry Road Ridgefield, CT 06877

Dr. Jerry Carter Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. Martin Chapman Department of Geological Sciences Virginia Polytechnical Institute 21044 Derring Hall Blacksburg, VA 24061

Mr Robert Cockerham Arms Control & Disarmament Agency 320 21st Street North West Room 5741 Washington, DC 20451,

Prof. Vernon F. Cormier Department of Geology & Geophysics U-45, Room 207 University of Connecticut Storrs, CT 06268

Prof. Steven Day Department of Geological Sciences San Diego State University San Diego, CA 92182 Dr. Zoltan Der ENSCO, Inc. 5400 Port Royal Road Springfield, VA 22151-2388

Dr. Stanley K. Dickinson AFOSR/NM 110 Duncan Avenue Suite B115 Bolling AFB, DC 20332-6448

Prof. Adam Dziewonski Hoffman Laboratory, Harvard University Dept. of Earth Atmos. & Planetary Sciences 20 Oxford Street Cambridge, MA 02138

Prof. John Ebel Department of Geology & Geophysics Boston College Chestnut Hill, MA 02167

Dr. Petr Firbas Institute of Physics of the Earth Masaryk University Brno Jecna 29a 612 46 Brno, Czech Republic

Dr. Mark D. Fisk Mission Research Corporation 735 State Street P.O. Drawer 719 Santa Barbara, CA 93102

Prof. Donald Forsyth Department of Geological Sciences Brown University Providence, RI 02912

Dr. Cliff Frolich Institute of Geophysics 8701 North Mopac Austin, TX 78759

Dr. Holly Given IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Dr. Jeffrey W. Given SAIC 10260 Campus Point Drive San Diego, CA 92121 Dr. Indra N. Gupta Multimax, Inc. 1441 McCormick Drive Landover, MD 20785

Dan N. Hagedon Pacific Northwest Laboratories Battelle Boulevard Richland, WA 99352

Dr. James Hannon Lawrence Livermore National Laboratory P.O. Box 808, L-205 Livermore, CA 94550

Prof. Danny Harvey University of Colorado, JSPC Campus Box 583 Boulder, CO 80309

Prof. Donald V. Helmberger Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Eugene Herrin Geophysical Laboratory Southern Methodist University Dallas, TX 75275

Prof. Robert B. Herrmann
Department of Earth & Atmospheric Sciences
St. Louis University
St. Louis, MO 63156

Prof. Lane R. Johnson Seismographic Station University of California Berkeley, CA 94720

Prof. Thomas H. Jordan
Department of Earth, Atmospheric &
Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139

Prof. Alan Kafka Department of Geology & Geophysics Boston College Chestnut Hill, MA 02167 U.S. Dept of Energy Max Koontz, NN-20, GA-033 Office of Research and Develop. 1000 Independence Avenue Washington, DC 20585

Dr. Richard LaCoss MIT Lincoln Laboratory, M-200B P.O. Box 73 Lexington, MA 02173-0073

Dr. Fred K. Lamb University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801

Prof. Charles A. Langston Geosciences Department 403 Deike Building The Pennsylvania State University University Park, PA 16802

Jim Lawson, Chief Geophysicist Oklahoma Geological Survey Oklahoma Geophysical Observatory P.O. Box 8 Leonard, OK 74043-0008

Prof. Thorne Lay Institute of Tectonics Earth Science Board University of California, Santa Cruz Santa Cruz, CA 95064

Dr. William Leith U.S. Geological Survey Mail Stop 928 Reston, VA 22092

Mr. James F. Lewkowicz Phillips Laboratory/GPE 29 Randolph Road Hanscom AFB, MA 01731-3010(2 copies)

Prof. L. Timothy Long School of Geophysical Sciences Georgia Institute of Technology Atlanta, GA 30332

Dr. Randolph Martin, III New England Research, Inc. 76 Olcott Drive White River Junction, VT 05001 Dr. Robert Masse Denver Federal Building Box 25046, Mail Stop 967 Denver, CO 80225

Dr. Gary McCartor Department of Physics Southern Methodist University Dallas, TX 75275

Prof. Thomas V. McEvilly Seismographic Station University of California Berkeley, CA 94720

Dr. Art McGarr U.S. Geological Survey Mail Stop 977 U.S. Geological Survey Menlo Park, CA 94025

Dr. Keith L. McLaughlin S-CUBED A Division of Maxwell Laboratory P.O. Box 1620 La Jolla, CA 92038-1620

Stephen Miller & Dr. Alexander Florence SRI International 333 Ravenswood Avenue Box AF 116 Menlo Park, CA 94025-3493

Prof. Bernard Minster IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Prof. Brian J. Mitchell Department of Earth & Atmospheric Sciences St. Louis University St. Louis, MO 63156

Mr. Richard J. Morrow USACDA/IVI 320 21st St. N.W. Washington, DC 20451

Mr. Jack Murphy S-CUBED A Division of Maxwell Laboratory 11800 Sunrise Valley Drive, Suite 1212 Reston, VA 22091 (2 Copies) Dr. Keith K. Nakanishi Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Prof. John A. Orcutt IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Prof. Jeffrey Park Kline Geology Laboratory P.O. Box 6666 New Haven, CT 06511-8130

Dr. Howard Patton Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Frank Pilotte HQ AFTAC/TT 1030 South Highway A1A Patrick AFB, FL 32925-3002

Dr. Jay J. Pulli Radix Systems, Inc. 6 Taft Court Rockville, MD 20850

Dr. Robert Reinke ATTN: FCTVTD Field Command Defense Nuclear Agency Kirtland AFB, NM 87115

Prof. Paul G. Richards Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964

Mr. Wilmer Rivers Teledyne Geotech 1300 17th St N #1450 Arlington, VA 22209-3803

Dr. Alan S. Ryall, Jr. Lawrence Livermore National Laboratory P.O. Box 808, L-205 Livermore, CA 94550 Dr.Chandan K. Saikia Woodward Clyde- Consultants 566 El Dorado Street Pasadena, CA 91101

Dr. Richard Sailor TASC, Inc. 55 Walkers Brook Drive Reading, MA 01867

Prof. Charles G. Sammis Center for Earth Sciences University of Southern California University Park Los Angeles, CA 90089-0741

Prof. Christopher H. Scholz Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964

Dr. Susan Schwartz Institute of Tectonics 1156 High Street Santa Cruz, CA 95064

Mr. Dogan Seber Cornell University Inst. for the Study of the Continent 3130 SNEE Hall Ithaca, NY 14853-1504

Secretary of the Air Force (SAFRD) Washington, DC 20330

Office of the Secretary of Defense DDR&E Washington, DC 20330

Thomas J. Sereno, Jr. Science Application Int'l Corp. 10260 Campus Point Drive San Diego, CA 92121

Dr. Michael Shore Defense Nuclear Agency/SPSS 6801 Telegraph Road Alexandria, VA 22310 Dr. Robert Shumway University of California Davis Division of Statistics Davis, CA 95616

Dr. Matthew Sibol Virginia Tech Seismological Observatory 4044 Derring Hall Blacksburg, VA 24061-0420

Prof. David G. Simpson IRIS, Inc. 1616 North Fort Myer Drive Suite 1050 Arlington, VA 22209

Donald L. Springer Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Jeffrey Stevens S-CUBED A Division of Maxwell Laboratory P.O. Box 1620 La Jolla, CA 92038-1620

Prof. Brian Stump Los Alamos National Laboratory EES-3 Mail Stop C-335 Los Alamos, NM 87545

Prof. Jeremiah Sullivan University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801

Prof. L. Sykes Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964

Dr. Steven R. Taylor Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335

Los Alamos, NM 87545

Prof. Tuncay Taymaz Istanbul Technical University Dept. of Geophysical Engineering Mining Faculty Maslak-80626, Istanbul Turkey

Prof. Clifford Thurber University of Wisconsin-Madison Department of Geology & Geophysics 1215 West Dayton Street Madison, WS 53706

Prof. M. Nafi Toksoz Earth Resources Lab Massachusetts Institute of Technology 42 Carleton Street Cambridge, MA 02142

Dr. Larry Turnbull CIA-OSWR/NED Washington, DC 20505

Dr. Gregory van der Vink IRIS, Inc. 1616 North Fort Myer Drive **Suite 1050** Arlington, VA 22209

Dr. Karl Veith EG&G 2341 Jefferson Davis Highway Suite 801 Arlington, VA 22202-3809

Prof. Terry C. Wallace Department of Geosciences Building #77 University of Arizona Tuscon, AZ 85721

Dr. Thomas Weaver Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335 Los Alamos, NM 87545

Dr. William Wortman Mission Research Corporation 8560 Cinderbed Road Suite 700 Newington, VA 22122

Prof. Francis T. Wu Department of Geological Sciences State University of New York at Binghamton Vestal, NY 13901

Prof Ru-Shan Wu University of California, Santa Cruz Earth Sciences Department Santa Cruz, CA 95064

ARPA, OASB/Library 3701 North Fairfax Drive Arlington, VA 22203-1714

HQ DNA

ATTN: Technical Library Washington, DC 20305

TACTEC
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201 (Final Report)

Phillips Laboratory ATTN: XPG 29 Randolph Road Hanscom AFB, MA 01731-3010

Phillips Laboratory ATTN: GPE 29 Randolph Road Hanscom AFB, MA 01731-3010

Phillips Laboratory ATTN: TSML 5 Wright Street Hanscom AFB, MA 01731-3004

Phillips Laboratory ATTN: PL/SUL 3550 Aberdeen Ave SE Kirtland, NM 87117-5776 (2 copies)

Dr. Michel Bouchon I.R.I.G.M.-B.P. 68 38402 St. Martin D'Heres Cedex, FRANCE

Dr. Michel Campillo Observatoire de Grenoble I.R.I.G.M.-B.P. 53 38041 Grenoble, FRANCE Prof. Hans-Peter Harjes Institute for Geophysic Ruhr University/Bochum P.O. Box 102148 4630 Bochum 1, GERMANY

Prof. Eystein Husebye IFJF Jordskjelvstasjonen Allegaten, 5007 BERGEN NORWAY

David Jepsen Acting Head, Nuclear Monitoring Section Bureau of Mineral Resources Geology and Geophysics G.P.O. Box 378, Canberra, AUSTRALIA

Ms. Eva Johannisson Senior Research Officer FOA S-172 90 Sundbyberg, SWEDEN

Dr. Peter Marshall Procurement Executive Ministry of Defense Blacknest, Brimpton Reading FG7-FRS, UNITED KINGDOM

Dr. Bernard Massinon, Dr. Pierre Mechler Societe Radiomana 27 rue Claude Bernard 75005 Paris, FRANCE (2 Copies)

Dr. Svein Mykkeltveit NTNT/NORSAR P.O. Box 51 N-2007 Kjeller, NORWAY (3 Copies)

Prof. Keith Priestley University of Cambridge Bullard Labs, Dept. of Earth Sciences Madingley Rise, Madingley Road Cambridge CB3 OEZ, ENGLAND

Dr. Jorg Schlittenhardt Federal Institute for Geosciences & Nat'l Res. Postfach 510153 D-30631 Hannover, GERMANY

Dr. Johannes Schweitzer Institute of Geophysics Ruhr University/Bochum P.O. Box 1102148 4360 Bochum 1, GERMANY Trust & Verify VERTIC Carrara House 20 Embankment Place London WC2N 6NN, ENGLAND

Prof. Dr. M. Namik YALCIN Dept. of Earth Sciences P.O. Box 21, 41470 GEBZE-KOCAELI, TURKEY

> Defense Technical Information Center 8725 John J. Kingman Road Ft. Belvoir, VA 22060-6218 (2 copies)