Graph Theory winter term 2013

### Solution sheet 11

Date: January 17. Discussion of solutions: January 24.

Problem 41. 5 points

Show that an  $\epsilon$ -regular partition of a graph G is also an  $\epsilon'$ -regular partition of its complement  $\overline{G}$  for some  $\epsilon'$ .

#### Solution.

This follows immediately from the definition.

Problem 42. 5 points

Let G be any graph of chromatic number t. Show that  $ex(n, G) \ge ex(n, K_t)$  and that equality holds only if there is an edge e such that  $\chi(G - e) < t$ .

#### Solution.

Let G be a graph with  $\chi(G) = t$ . Considering the Turán graph T(n, t - 1) we see  $\chi(T(n, t - 1)) = t - 1$  and hence it does not contain G as a subgraph. Thus we have  $ex(n, G) \ge ex(n, K_t)$ .

Now assume that G does not fulfil the additional assertion, i.e., that removing any e edge from G still leaves one with a graph of chromatic number t. Again consider the Turán graph T(n, r-1) and add a single edge e in one of the independent sets. We will show that this graph, which necessarily contains a copy of  $K_t$ , does not contain a copy of G.

Assume for the sake of contradiction that we do have a copy of G. As  $\chi(G) = t$ , any copy of G must contain the edge e. So for any copy we get two vertices in the same maximal independent set of T(n, t-1) and, by construction, every other vertex must lie in distinct independent sets. But then the edge e is the only obstruction to making the graph (t-1)-chromatic, so deleting the edge e from G will yield a graph of chromatic number t-1 – a contradiction to our assumptions on G.

Problem 43. 5 points

Show that for any graph G = (V, E), |V| = n, there exists a set S,  $|S| \le \lfloor n^2/4 \rfloor$ , and for each vertex  $v \in V$  a subset  $S_v \subseteq S$  such that  $S_v \cap S_w \ne \emptyset$  if and only if  $vw \in E$ .

Hint: Try to cover the edges of G with cliques.

### Solution.

Let G = (V, E) be any n-vertex graph. We shall find a set S of edges and triangles in G such that every edge e of G is covered by S, that is,  $e \in S$  or e is part of a triangle in S. Then we can associate to each vertex v the set  $S_v \subseteq S$  of all edges and triangles in S that contain v. Then we have  $S_v \cap S_w \neq \emptyset$  if and only if v and w are contained in the same edge or the same triangle in S. So if  $vw \notin E$  then  $S_v \cap S_w = \emptyset$  and otherwise  $S_v \cap S_w \neq \emptyset$ , since S covers all edges of G.

Thus the statement follows from the following claim.

**Claim.** The edges of G can be covered by at most  $\lfloor n^2/4 \rfloor$  edges and triangles of G.

We prove the claim by induction on n.

**Induction base**  $n \leq 2$ . For n = 1 there is nothing to show. For n = 2 we have  $\lfloor n^2/4 \rfloor = 1 = \binom{n}{2}$ , so we can take S = E.

Graph Theory winter term 2013

**Induction step**  $n \geq 3$ . If  $|E| \leq \lfloor n^2/4 \rfloor$  then it is enough to take S = E and we are done. So assume that  $|E| \geq \lfloor n^2/4 \rfloor + 1$ . Then by Turáns theorem there is some triangle in G. Let u and v any two vertices contained in a triangle of G. We cover all edges incident to u and v with a set S' of triangles and edge by chosing at most one edge or triangle for each of the n-2 vertices in  $V \setminus \{u, v\}$ .

Let  $w \in V \setminus \{u, v\}$ . If w is adjacent to at most one of u, v, then let S' contain the edge (if existent) between w and  $\{u, v\}$ . Otherwise, if w is adjacent to both of u, v, then let S' contain the triangle  $\{u, v, w\}$ . Clearly, S' covers all edges of G incident to u, v, and |S'| < n - 2.

By induction on  $G' = G - \{u, v\}$  we obtain a set S'',  $|S''| \leq \lfloor (n-2)^2/4 \rfloor$ , of edges and triangles of G covering all edges of G'. Then  $S = S' \cup S''$  cover entire E and we have

$$|S| = |S'| + |S''| \le n - 2 + \lfloor (n-2)^2/4 \rfloor \le \lfloor n^2/4 \rfloor,$$

which concludes the proof.

Problem 44. 5 points

Determine the smallest number n such that the following holds. Whenever one colors the edges of  $K_n$  with two colors, red and blue, one creates a red triangle or a blue  $K_4$ .

## Solution.

We shall prove that the number we seek is n = 9, i.e., that every red-blue coloring of the edges of  $K_9$  induces a red triangle or a blue  $K_4$  and that there is a red-blue coloring of the edges of  $K_8$  that does neither induce a red triangle nor a blue  $K_4$ .

Let n be any number and the edges of  $K_n$  be colored arbitrarily with red and blue.

Claim. If some vertex v is incident to four red edges, then there is a red  $K_3$  or blue  $K_4$ .

Indeed, let  $v_1, \ldots, v_4$  be the endpoints of the four red edges at v. If one of the edges among  $\{v_1, \ldots, v_4\}$  is red we obtain together with v a red  $K_3$ . Otherwise, if all these edges are blue, then  $\{v_1, \ldots, v_4\}$  induce a blue  $K_4$ .

**Claim.** If some vertex v is incident to six blue edges, then there is a red  $K_3$  or blue  $K_4$ .

Indeed, let  $v_1, \ldots, v_6$  be the endpoints of the six blue edges at v. From the lecture we know that  $\{v_1, \ldots, v_6\}$  induce a red triangle or a blue triangle. In the former case we have a red  $K_3$  and in the latter case we obtain together with v a blue  $K_4$ .

Claim. If n = 9 then there is a red  $K_3$  or blue  $K_4$ .

Assume for the sake of contradiction that there is neither a red  $K_3$  nor a blue  $K_4$ . Since  $K_9$  is 8-regular it follows from the above claims that every vertex is incident to exactly three red edges and five blue edges. However, then the subgraph of  $K_9$  on all red edges would be 3-regular, which is impossible since the number of vertices is odd – a contradiction.

**Claim.** If n = 8 then there is a red-blue coloring inducing neither a red  $K_3$  nor blue  $K_4$ .



| Graph Theory winter | r term 2013 |
|---------------------|-------------|
|                     |             |
|                     | Ш           |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |
|                     |             |

# Open Problem.

Prove or disprove that if G is a triangle-free graph on n vertices, then there is a set of at most  $n^2/25$  edges in G whose deletion destroys all odd cycles in G.