VLSI Design Internship AHB2APB BRIDGE DESIGN

1.Protocol:

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an on-chip communications standard for designing high-performance embedded microcontrollers. Three distinct buses are defined within the AMBA specification:

- Advanced High -performance Bus (AHB)
- Advanced System Bus(ASB)
- Advanced Peripheral Bus(APB)

<u>Advanced High -performance Bus(AHB)</u>:

The AMBA AHB is for high-performance, high clock frequency system modules. AHB supports the efficient connection of processors, on-chip memories and off-chip external memory interfaces with low-power peripheral microcell functions.

Advanced Peripheral Bus(APB):

The AMBA APB is for low -power peripherals. AMBA APB is optimized for minimal power consumption and reduced interface complexity to support peripheral functions.

Basic Terminology

Bus cycle:

For AMBA AHB or APB protocol Bus cycle is defined from rising-edge to rising-edge transitions.

Bus transfer:

An AMBA AHB bus transfer is a read or write operation of a data object, which may take one or more bus cycles.

Burst operation:

A burst operation is defined as one or more data transactions, initiated by a bus master, which have a consistent width of transaction to an incremental region of address space.

Types of Bursts:

Hburst[2:0]	Туре	Description
000	Single	Single Transfer
001	INCR	Incrementing length of unspecified length

010	WRAP4	4-beat Wrapping burst
011	INCR4	4-beat Incrementing burst
100	WRAP8	8-beat Wrapping burst
101	INCR 8	8-beat Incrementing burst
110	WRAP 16	16-beat Wrapping burst
111	INCR 16	16-beat Incrementing burst

<u>Types of transfers</u>:

Htrans[1:0]	Туре	Description
2'b00	IDLE	Indicates that no data transfer is
		required
2'b01	BUSY	Master is busy in continuing with a
		bursts of transfers and can't take the
		next transfer immediately
2'b10	NON-SEQ	Indicates the first transfer of a burst
		or a single transfer. Address and
		control signals are unrelated to the
		previous transfer.
2'b11	SEQ	Remaining transfer in a burst are
		sequential. Address is related to the
		previous transfer.

Address Calculation for Burst transfer:

Hsize	Hburst	Haddr
	WRAP 4	{Haddr[31:2],Haddr[1:0]+1'b1}
	WRAP 8	{Haddr[31:3],Haddr[2:0]+1'b1}
8 bits	WRAP 16	{Haddr[31:4],Haddr[3:0]+1'b1}
	INCR 4	Haddr + 1'b1
	INCR 8	Haddr +1'b1
	INCR 16	Haddr +1'b1
	WRAP 4	{Haddr[31:3],Haddr[2:1]+1'b1,Haddr[0]}
	WRAP 8	{Haddr[31:4],Haddr[3:1]+1'b1,Haddr[0]}
16 bits	WRAP 16	{Haddr[31:5],Haddr[4:1]+1'b1,Haddr[0]}
	INCR 4	Haddr + 2'd2
	INCR 8	Haddr +2'd2
	INCR 16	Haddr +2'd2
	WRAP 4	{Haddr[31:4],Haddr[3:2]+1'b1,Haddr[1:0]}
	WRAP 8	{Haddr[31:5],Haddr[4:2]+1'b1,Haddr[1:0]}
32 bits	WRAP 16	{Haddr[31:6],Haddr[5:2]+1'b1,Haddr[1:0]}
	INCR 4	Haddr + 3'd4
	INCR 8	Haddr +3'd4
	INCR 16	Haddr +3'd4

AMBA SIGNALS

AMBA AHB Signals:

Name	Source	Description
HCLK	Clock	This clock times all bus transfers. All signal timings are
	source	related to the rising edge of HCLK.
HRESETn	Reset	The bus reset signal is active LOW and is used to reset the
	controller	system and the bus. This is the only active LOW signal.
HADDR[31:0]	Master	The 32-bit system address bus.
HTRANS[1:0]	Master	Indicates the type of the current transfer, which can be
		NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.
HWRITE	Master	When HIGH this signal indicates a write transfer and
		when LOW a read transfer.
HSIZE[2:0]	Master	Indicates the size of the transfer, which is typically byte
		(8-bit), halfword (16-bit) or word (32-bit). The protocol
		allows for larger transfer sizes up to a maximum of 1024
		bits.
HBURST[2:0]	Master	Indicates if the transfer forms part of a burst. Four, eight
		and sixteen beat bursts are supported and the burst may be
		either incrementing or wrapping.
HWDATA[31:0]	Master	The write data bus is used to transfer data from the master
		to the bus slaves during write operations. A minimum data
		bus width of 32 bits is recommended.
HRDATA[31:0]	Slave	The read data bus is used to transfer data from bus slaves
		to the bus master during read operations. A minimum data
		bus width of 32 bits is recommended.
HREADY	Slave	When HIGH the HREADY signal indicates that a transfer
		has finished on the bus. This signal may be driven LOW to
		extend a transfer. Note: Slaves on the bus require
		HREADY as both an input and an output signal.
HRESP[1:0]	Slave	The transfer response provides additional information on
		the status of a transfer. Four different responses are
		provided, OKAY, ERROR, RETRY and SPLIT.

AMBA APB Signals:

Name	Source	Description
PADDR[31:0]	Master	This is the APB address bus, which may be up to 32-bits wide
		and is driven by the peripheral bus bridge unit.
PSELx[2:0]	Decoder	A signal from the secondary decoder, within the peripheral bus
		bridge unit, to each peripheral bus slave x. This signal indicates
		that the slave device is selected and a data transfer is required.
		There is a PSELx signal for each bus slave.
PENABLE	Master	This strobe signal is used to time all accesses on the peripheral
		bus. The enable signal is used to indicate the second cycle of an
		APB transfer. The rising edge of PENABLE occurs in the
		middle of the APB transfer.

PWRITE	Master	When HIGH this signal indicates an APB write access and when LOW a read access.
DDD 4 T 4 [21 0]	CI	
PRDATA[31:0]	Slave	The read data bus is driven by the selected slave during read cycles (when PWRITE is LOW). The read data bus can be up to 32-bits wide.
PWDATA[31:0]	Master	The write data bus is driven by the peripheral bus bridge unit during write cycles (when PWRITE is HIGH). The write data bus can be up to 32-bits wide.

Design Modules

AHB Slave Interface:

An AHB bus slave responds to transfers initiated by bus masters within the system. The signals required for transfer such as the address and control information, will be generated by the bus master.

APB Controller:

The AHB to APB bridge comprises a state machine, which is used to control the generation of the APB and aHB output signals, and the address decoding logic which is used to generate the APB peripheral select lines.

Peripheral memory map:

Indicates the address needed for selecting APB Peripheral

Address	Peripheral
OxBFFFFFF	undefined
0x8C000000	
	Remap & Pause
0x88000000	
	Counters timers
0x84000000	
	Interrupt controller
0x80000000	

2. Simulation Waveforms for the output:

Single write:

Single read:

Burst write:

3. Block Diagram and Architecture:

Architecture:

BLOCK DIAGRAM:

4. Synthesis Part:

