Math 441 HW2

Rohan Mukherjee

June 30, 2023

1. We recall that \mathcal{B} is a basis of a topology \mathcal{T} if every open $U \in \mathcal{T}$ can be written of the form $\bigcup_{\alpha \in I} B_{\alpha}$ with $B_{\alpha} \in \mathcal{B}$. Since $X \in \mathcal{T}$, write $X = \bigcup_{\alpha \in I} B_{\alpha}$. Now given any $x \in X$, we must have $x \in B_{\alpha}$ for some $\alpha \in I$, which completes (B1). One notices that B_1 and B_2 are unions of elements in \mathcal{B} (namely, themselves), so they are both open. By the definition of a topology, $B_1 \cap B_2$ is open, and since \mathcal{B} is a basis, we can write $B_1 \cap B_2 = \bigcup_{\alpha \in I} C_{\alpha}$ with $C_{\alpha} \in \mathcal{B}$. Now given any $x \in B_1 \cap B_2$, $x \in \bigcup_{\alpha \in I} C_{\alpha}$, which says that $x \in C_{\alpha}$ for some $\alpha \in I$. Thus $x \in C_{\alpha} \subset B_1 \cap B_2$, and we are done with this direction.

For the other direction, consider \mathcal{T} , the set of all subsets of X of the form $\bigcup_{\alpha \in I} B_{\alpha}$ with $B_{\alpha} \in \mathcal{B}$ and I any indexing set along with the empty set. Given any $x \in X$ there exists some B_x so that $x \in B_x$. Since $B_x \subset X$, $X = \bigcup_{x \in X} B_x$, which shows that $X \in \mathcal{T}$. By construction of \mathcal{T} the empty set is in \mathcal{T} . Given any $\{U_{\alpha}\}_{\alpha \in I} \subset \mathcal{T}$, WLOG we may assume that none of the U_{α} 's are the empty set since they contribute nothing to the union. Write $U_{\alpha} = \bigcup B_{\alpha}$ with $B_{\alpha} \in \mathcal{B}$. One notices now that

$$\bigcup_{\alpha\in I}U_{\alpha}=\bigcup_{\alpha\in I}\bigcup B_{\alpha}$$

which is just an arbitrary union of things in \mathcal{B} and hence in \mathcal{T} . Finally, let $U_1, U_2 \in \mathcal{T}$, and again write $U_1 = \bigcup_{\alpha \in \Delta_1} B_{\alpha}$ and $U_2 = \bigcup_{\beta \in \Delta_2} B_{\beta}$. From elementary set theory we see that

$$U_1 \cap U_2 = \bigcup_{\substack{\alpha \in \Delta_1 \\ \beta \in \Delta_2}} \left(B_\alpha \cap B_\beta \right)$$

Now, for any $\alpha \in \Delta_1$, $\beta \in \Delta_2$, and any $x \in B_\alpha \cap B_\beta$, we can find a $C_x \in \mathcal{B}$ with $x \in B_x$ and $B_x \subset B_\alpha \cap B_\beta$. By the union lemma we can write $B_\alpha \cap B_\beta = \bigcup_{x \in B_\alpha \cap B_\beta} B_x$. Thus,

$$\bigcup_{\substack{\alpha \in \Delta_1 \\ \beta \in \Delta_2}} \left(B_{\alpha} \cap B_{\beta} \right) = \bigcup_{\substack{\alpha \in \Delta_1 \\ \beta \in \Delta_2}} \bigcup_{x \in B_{\alpha} \cap B_{\beta}} B_x$$

- Which is just an arbitrary union of things in \mathcal{B} . By induction this holds for any finite number of sets, and thus \mathcal{T} is a topology.
- 2. Given any $x \in \mathbb{R}$, $x \in [\lfloor x \rfloor, \lfloor x \rfloor + 1)$, which establishes (B1). Given any [n, n + 1) and [m, m + 1) both in \mathcal{B} , either n = m or $n \neq m$. In the first case the intersection is just [n, n + 1) which is in \mathcal{B} , so we are done. In the second case, WLOG n < m, and hence $[n, n + 1) \cap [m, m + 1) = \emptyset$, so we are also done. Thus \mathcal{B} defines a topology on \mathbb{R} . This topology gives a hole on the real line next to every integer.
- 3. (a) Let U be an open subset of \mathbb{R} (with the euclidean topology), and let $x \in U$. Since U is open, we can find an $\varepsilon > 0$ so that $(x \varepsilon, x + \varepsilon) \subset U$. By truncating the decimal expansion of x, we can find an increasing sequence of rational numbers $a_n \to x$. Thus find $N \in \mathbb{N}$ so that $x \varepsilon/2 < a_N \le x$. By choosing $\varepsilon/3 < 1/K < \varepsilon/2$, we see that $(a_N 1/K, a_N + 3/K)$ is a neighborhood of x with both endpoints in \mathbb{Q} . By the union lemma all open sets in \mathbb{R} are just the union of intervals with rational endpoints. Since intervals with rational endpoints are open, we are done.
 - (b) Suppose that $[\sqrt{2},3)$ could be written as the union of things in the given basis. Thus $[\sqrt{2},3)=\bigcup[a,b)$. We see that $a\geq\sqrt{2}$ for every a, since otherwise the union would contain too many elements. Thus $a>\sqrt{2}$, since $\sqrt{2}$ isn't rational. We also see that $\sqrt{2}\in[a,b)$ for some a,b rational. But this can't be, since $a>\sqrt{2}$, a contradiction. Question 2 shows that this basis satisfies (B1). Given two sets in this collection [a,b) and [c,d), either these two intervals are disjoint or they are not. If they are not disjoint, $[a,b)\cap[c,d)=[\max\{a,c\},\min\{b,d\})$, which is in the collection, so we are done.
- 4. Given any $(x, y) \in \mathbb{R}^2$, $(x, y) \in x \times (y 1, y + 1)$, which shows (B1). Given any two $\{a\} \times (b, c)$ and $\{d\} \times (e, f)$, either a = d or not. If not, then the sets are disjoint. If they equal, their intersection is $\{a\} \times (\max\{b, e\}, \min\{c, f\})$, which is in the vertical interval topology, hence this defines a basis for a topology. This is like being attached to a line. Everything is super close to each other on the x-axis, and and looks like a normal real line on the y-axis.
- 5. Notice that given any $x \in \mathbb{Z}$, $\{x\} = \mathbb{Z} \cap (x 1/2, x + 1/2)$, hence all singletons are open. Since any subset of \mathbb{Z} is just the union of singletons, all subsets of \mathbb{Z} are open. Thus the subspace topology on \mathbb{Z} is the discrete topology.
- 6. In the first case, the open sets in Z are of the form $U \cap Z$ where $U \in \mathcal{T}$. In the second case, open sets in Z are of the form $V \cap Z$ where V is of the form $Y \cap U$ where U is in \mathcal{T} . Thus the open sets are of the form $U \cap Y \cap Z = U \cap Z$. So the open sets are exactly of the same form, and we are done. (Equivalently, in the first case you are also equal to $U \cap Z \cap Y$, and in the second case you are equal to $U \cap Z$, as stated.)

- 7. The subspace topology is the collection of sets of the form $Y \cap U$, where $U \in \mathcal{T}_X$. Since the only things in \mathcal{T}_X are \emptyset , X, the only things in \mathcal{T}_Y are $Y \cap X = Y$, and $Y \cap \emptyset = \emptyset$, thus the subspace topology on Y is the indiscrete topology. One notices that the subspace topology on $\{1\} \subset \mathbb{R}$ (\mathbb{R} with the euclidean topology) is the indiscrete topology (since the only subsets of $\{1\}$ are \emptyset , and $\{1\}$), but that the euclidean topology is of course not indiscrete.
- 8. Notice that if $\{U_{\alpha}\}_{\alpha\in\Delta}\subset\mathcal{T}$,

$$\left(\bigcup_{\alpha\in\Delta}U_{\alpha}\right)^{C}=\bigcap_{\alpha\in\Delta}U_{\alpha}^{c}$$

Since U_{α}^{C} is bounded, we can find an M>0 so that $||x|| \leq M$ for every $x \in U_{\alpha}^{C}$. By inclusion this holds for everything in the above intersection, so arbitrary intersections are in \mathcal{T} . Similarly, if $U_1, U_2 \in \mathcal{T}$, find M_1, M_2 so that if $x \in U_1^c$, $y \in U_2^c$, then $||x|| \leq M_1^c$, and $||y|| \leq U_2^c$. Thus $(U_1 \cap U_2)^c = U_1^c \cup U_2^c$ is bounded by $\max\{M_1, M_2\}$, and by induction this holds for any finite number of sets. Finally, $\emptyset \in \mathcal{T}$ by definition, and $\mathbb{R}^2 \setminus \mathbb{R}^2 = \emptyset$ is bounded vacuously, so it is also in our collection. Thus we have a topology. Since smaller open neighborhoods are those that have a huge hole in the middle, I'm going to say that it would be in the shape of an ice cream cone with a filled inside.