1. Let A be an $n \times n$ rotation matrix whose entries are given by a_{ij} . Then for some vector $v = (v_1, v_2, \dots, v_n)$, we demand |v| = |Av|. This means

$$|v|^2 = a_i a_i \stackrel{!}{=} |Av|^2$$

$$= (Av)_i (Av)_i$$

$$= (a_{ij}v_j)(a_{ik}v_k)$$

$$= (a_{ij}a_{ik})v_j v_k,$$

and because $0 \le i, j, k \le n$, we can match terms when j = k with the left hand side by enforcing $a_{ij}a_{ik} = 1$. All of the terms where $j \ne k$ must be zero. Hence $a_{ij}a_{ik} = \delta_{jk}$.

2. Observe that the condition $a_{ij}a_{ik} = \delta_{jk}$ is symmetric in j and k, so out of all n^2 ways to select j and k, for the cases when $j \neq k$ (there are n cases where j = k), there are $n^2 - n - \frac{n^2 - n}{2}$ redundant equations (due to commutativity of multiplication, we can pair each equation where $j \neq k$ with another one). Then by adding back on the number of equations where j = k, the number of equations which are not redundant is $n^2 - \frac{n^2 - n}{2}$. Hence there are $n^2 - \left(n^2 - \frac{n^2 - n}{2}\right) = \frac{n(n-1)}{2} = \binom{n}{2}$ degrees of freedom, same as the number of degrees of freedom of rotation in n dimensions.