Titanic

November 4, 2016

1 Titanic Project

1.1 Exploration

0+ [0] .		D T-1	Q	D-1
Out[2]:	•	PassengerId		
	0	1	0	3
	1	2	1	1
	2	3	1	3
	3	4	1	1
	4	5	0	3
	5	6	0	3
	6	7	0	1
	7	8	0	3
	8	9	1	3
	9	10	1	2
	10	11	1	3
	11	12	1	1
	12	13	0	3
	13	14	0	3
			_	
	14	15	0	3
	15	16	1	2
	16	17	0	3
	17	18	1	2
	18	19	0	3
	19	20	1	3
	20	21	0	2

import matplotlib.pyplot as plt

```
2
21
                22
                            1
22
                23
                            1
                                     3
23
                24
                                     1
                            1
24
                25
                            0
                                     3
25
                                     3
                26
                            1
26
                27
                            0
                                     3
27
                28
                            0
                                     1
                29
28
                                     3
                            1
29
                30
                            0
                                     3
. .
               . . .
                           . . .
                                     2
                            0
861
               862
862
               863
                            1
                                     1
                            0
                                     3
863
               864
                                     2
               865
                            0
864
                                     2
865
               866
                            1
866
               867
                                     2
                             1
867
               868
                            0
                                     1
                            0
                                     3
868
               869
869
               870
                            1
                                     3
                            0
                                     3
870
               871
871
               872
                            1
                                     1
                                     1
872
               873
                            0
873
               874
                            0
                                     3
                                     2
874
               875
                            1
                                     3
875
               876
                            1
                            0
                                     3
876
               877
               878
                            0
                                     3
877
878
               879
                            0
                                     3
879
               880
                            1
                                     1
                                     2
880
               881
                            1
               882
                            0
                                     3
881
                                     3
882
               883
                            0
                                     2
883
               884
                            0
884
               885
                            0
                                     3
                                     3
               886
                            0
885
886
               887
                            0
                                     2
887
                            1
                                     1
               888
888
               889
                            0
                                     3
889
               890
                            1
                                     1
890
               891
                            0
                                     3
```

	Name	Sex	Age	SibSp	\
0	Braund, Mr. Owen Harris	male	22.0	1	
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	
2	Heikkinen, Miss. Laina	female	26.0	0	
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	
4	Allen, Mr. William Henry	male	35.0	0	
5	Moran, Mr. James	male	NaN	0	
6	McCarthy, Mr. Timothy J	male	54.0	0	
7	Palsson, Master. Gosta Leonard	male	2.0	3	
8	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	
9	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	
10	Sandstrom, Miss. Marguerite Rut	female	4.0	1	
11	Bonnell, Miss, Elizabeth	female	58.0	0	

```
12
                         Saundercock, Mr. William Henry
                                                              male
                                                                    20.0
                                                                               0
13
                             Andersson, Mr. Anders Johan
                                                              male
                                                                    39.0
                                                                               1
14
                   Vestrom, Miss. Hulda Amanda Adolfina
                                                            female
                                                                    14.0
                                                                               0
                                                                               0
15
                       Hewlett, Mrs. (Mary D Kingcome)
                                                            female
                                                                    55.0
16
                                    Rice, Master. Eugene
                                                              male
                                                                     2.0
                                                                               4
17
                            Williams, Mr. Charles Eugene
                                                                               0
                                                              male
                                                                     NaN
     Vander Planke, Mrs. Julius (Emelia Maria Vande...
18
                                                            female
                                                                    31.0
                                                                               1
                                 Masselmani, Mrs. Fatima
19
                                                            female
                                                                     NaN
                                                                               0
20
                                    Fynney, Mr. Joseph J
                                                              male
                                                                    35.0
                                                                               0
21
                                                                               0
                                   Beesley, Mr. Lawrence
                                                              male
                                                                    34.0
22
                            McGowan, Miss. Anna "Annie"
                                                            female
                                                                    15.0
                                                                               0
23
                            Sloper, Mr. William Thompson
                                                                    28.0
                                                                               0
                                                              male
                                                            female
24
                           Palsson, Miss. Torborg Danira
                                                                     8.0
                                                                               3
25
     Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...
                                                            female
                                                                    38.0
                                                                               1
26
                                 Emir, Mr. Farred Chehab
                                                                               0
                                                              male
                                                                     NaN
27
                         Fortune, Mr. Charles Alexander
                                                              male
                                                                     19.0
                                                                               3
28
                           O'Dwyer, Miss. Ellen "Nellie"
                                                                               0
                                                            female
                                                                     NaN
29
                                     Todoroff, Mr. Lalio
                                                              male
                                                                     NaN
                                                                               0
. .
                                                               . . .
                                                                      . . .
861
                             Giles, Mr. Frederick Edward
                                                              male
                                                                    21.0
                                                                               1
862
     Swift, Mrs. Frederick Joel (Margaret Welles Ba...
                                                            female
                                                                    48.0
                                                                               0
863
                      Sage, Miss. Dorothy Edith "Dolly"
                                                            female
                                                                     NaN
                                                                               8
                                  Gill, Mr. John William
864
                                                                    24.0
                                                                               0
                                                              male
865
                                Bystrom, Mrs. (Karolina)
                                                                               0
                                                            female
                                                                    42.0
866
                            Duran y More, Miss. Asuncion
                                                            female
                                                                    27.0
                                                                               1
867
                   Roebling, Mr. Washington Augustus II
                                                              male
                                                                    31.0
                                                                               0
868
                             van Melkebeke, Mr. Philemon
                                                              male
                                                                     NaN
                                                                               0
                        Johnson, Master. Harold Theodor
869
                                                              male
                                                                     4.0
                                                                               1
                                                                               0
870
                                                                    26.0
                                       Balkic, Mr. Cerin
                                                              male
871
      Beckwith, Mrs. Richard Leonard (Sallie Monypeny)
                                                            female
                                                                    47.0
                                                                               1
872
                                Carlsson, Mr. Frans Olof
                                                              male
                                                                    33.0
                                                                               0
873
                             Vander Cruyssen, Mr. Victor
                                                              male
                                                                    47.0
                                                                               0
874
                  Abelson, Mrs. Samuel (Hannah Wizosky)
                                                            female
                                                                    28.0
                                                                               1
875
                       Najib, Miss. Adele Kiamie "Jane"
                                                                               0
                                                            female
                                                                    15.0
876
                           Gustafsson, Mr. Alfred Ossian
                                                              male
                                                                    20.0
                                                                               0
877
                                    Petroff, Mr. Nedelio
                                                              male
                                                                    19.0
                                                                               0
878
                                      Laleff, Mr. Kristo
                                                              male
                                                                     NaN
                                                                               0
879
         Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)
                                                            female
                                                                    56.0
                                                                               0
880
          Shelley, Mrs. William (Imanita Parrish Hall)
                                                            female
                                                                    25.0
                                                                               0
881
                                      Markun, Mr. Johann
                                                              male
                                                                    33.0
                                                                               0
                            Dahlberg, Miss. Gerda Ulrika
882
                                                            female
                                                                               0
                                                                    22.0
883
                           Banfield, Mr. Frederick James
                                                              male
                                                                    28.0
                                                                               0
884
                                  Sutehall, Mr. Henry Jr
                                                              male
                                                                    25.0
                                                                               0
                                                                               0
885
                   Rice, Mrs. William (Margaret Norton)
                                                            female
                                                                    39.0
                                                                               0
886
                                   Montvila, Rev. Juozas
                                                              male
                                                                    27.0
                            Graham, Miss. Margaret Edith
                                                                    19.0
                                                                               0
887
                                                            female
888
               Johnston, Miss. Catherine Helen "Carrie"
                                                            female
                                                                     NaN
                                                                               1
                                   Behr, Mr. Karl Howell
                                                                               0
889
                                                              male
                                                                    26.0
890
                                     Dooley, Mr. Patrick
                                                              male
                                                                    32.0
                                                                               0
                                                 Cabin Embarked
     Parch
                       Ticket
                                    Fare
0
         0
                    A/5 21171
                                  7.2500
                                                   NaN
                                                               S
1
         0
                     PC 17599
                                 71.2833
                                                   C85
                                                               C
2
                                                               S
            STON/02. 3101282
                                  7.9250
                                                   NaN
```

3	0	113803	53.1000	C123	S
4	0	373450	8.0500	NaN	S
5	0	330877	8.4583	NaN	Q
6	0	17463	51.8625	E46	S
7	1	349909	21.0750	NaN	S
8	2	347742	11.1333	NaN	S
9	0	237736	30.0708	NaN	C
10	1	PP 9549	16.7000	G6	S
11	0	113783	26.5500	C103	S
12	0	A/5. 2151	8.0500	NaN	S
13	5	347082	31.2750	NaN	S
14	0	350406	7.8542	NaN	S
15	0	248706	16.0000	NaN	S
16	1	382652	29.1250	NaN	Q
17	0	244373	13.0000	NaN	S
18	0	345763	18.0000	NaN	S
19	0	2649	7.2250	NaN	С
20	0	239865	26.0000	NaN	S
21	0	248698	13.0000	D56	S
22	0	330923	8.0292	NaN	Q
23	0	113788	35.5000	A6	s
24	1	349909	21.0750	NaN	S
25	5	347077	31.3875	NaN	S
26	0	2631	7.2250	NaN	C
27	2	19950	263.0000	C23 C25 C27	S
28	0	330959	7.8792	NaN	Q
29	0	349216	7.8958	NaN	S
23					
			1.0300		
 861	0	28134	11.5000	 NaN	 S
 861 862		28134 17466	11.5000 25.9292	 NaN D17	 S S
 861 862 863	0 0	28134 17466 CA. 2343	11.5000 25.9292 69.5500	 NaN D17 NaN	 S S
861 862 863 864	0 0 2 0	28134 17466 CA. 2343 233866	11.5000 25.9292 69.5500 13.0000	 NaN D17 NaN NaN	 S S S
861 862 863 864 865	0 0 2 0 0	28134 17466 CA. 2343 233866 236852	11.5000 25.9292 69.5500 13.0000	 NaN D17 NaN NaN	
861 862 863 864 865 866	0 0 2 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149	11.5000 25.9292 69.5500 13.0000 13.8583	NaN D17 NaN NaN NaN	 S S S S
861 862 863 864 865 866 867	0 0 2 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958	NaN D17 NaN NaN NaN NaN	
861 862 863 864 865 866 867 868	0 0 2 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000	NaN D17 NaN NaN NaN NaN A24 NaN	
861 862 863 864 865 866 867 868 869	0 0 2 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333	NaN D17 NaN NaN NaN NaN A24 NaN	
861 862 863 864 865 866 867 868 869 870	0 0 2 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958	NaN D17 NaN NaN NaN A24 NaN NaN	
861 862 863 864 865 866 867 868 869 870 871	0 0 2 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542	NaN D17 NaN NaN NaN NaN A24 NaN NaN NaN NaN	
861 862 863 864 865 866 867 868 869 870 871 872	0 0 2 0 0 0 0 0 0 1	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000	NaN D17 NaN NaN NaN NaN A24 NaN NaN NaN D35	
861 862 863 864 865 866 867 868 869 870 871 872 873	0 0 2 0 0 0 0 0 1 0 1	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000	NaN D17 NaN NaN NaN NaN NaN A24 NaN NaN NaN D35 B51 B53 B55 NaN	
861 862 863 864 865 866 867 868 869 870 871 872 873 874	0 0 2 0 0 0 0 0 1 0 1 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000	NaN D17 NaN NaN NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN NaN D35 B51 B53 B55 NaN NaN	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875	0 0 2 0 0 0 0 0 1 0 1 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250	NaN NaN D17 NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN D35 B51 B53 B55 NaN NaN NaN	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876	0 0 2 0 0 0 0 0 1 0 1 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458	NaN NaN NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958	NaN NaN NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 7.8958	NaN D17 NaN NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 83.1583	NaN D17 NaN NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767 230433	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 83.1583 26.0000	NaN NaN D17 NaN NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN D35 B51 B53 B55 NaN NaN NaN NaN NaN NaN NaN NaN NaN N	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767 230433 349257	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 7.8958 83.1583 26.0000 7.8958	NaN NaN D17 NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN D35 B51 B53 B55 NaN NaN NaN NaN NaN NaN NaN NaN NaN N	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767 230433 349257 7552	11.5000 25.9292 69.5500 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 7.8958 83.1583 26.0000 7.8958 10.5167	NaN NaN D17 NaN NaN NaN NaN A24 NaN NaN NaN NaN NaN NaN NaN N	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767 230433 349257 7552 C.A./SOTON 34068	11.5000 25.9292 69.5500 13.0000 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 7.8958 83.1583 26.0000 7.8958 10.5167 10.5000	NaN	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767 230433 349257 7552 C.A./SOTON 34068 SOTON/OQ 392076	11.5000 25.9292 69.5500 13.0000 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 7.8958 83.1583 26.0000 7.8958 10.5167 10.5000 7.0500	NaN	
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883	0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	28134 17466 CA. 2343 233866 236852 SC/PARIS 2149 PC 17590 345777 347742 349248 11751 695 345765 P/PP 3381 2667 7534 349212 349217 11767 230433 349257 7552 C.A./SOTON 34068	11.5000 25.9292 69.5500 13.0000 13.0000 13.8583 50.4958 9.5000 11.1333 7.8958 52.5542 5.0000 9.0000 24.0000 7.2250 9.8458 7.8958 7.8958 83.1583 26.0000 7.8958 10.5167 10.5000	NaN	

887	0	112053	30.0000	B42	S
888	2	W./C. 6607	23.4500	NaN	S
889	0	111369	30.0000	C148	C
890	0	370376	7.7500	NaN	Q

[891 rows x 12 columns]

From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship: - Survived: Outcome of survival (0 = No; 1 = Yes) - Pclass: Socio-economic class (1 = Upper class;2 = Middle class; 3 = Lower class) - Name: Name of passenger - Sex: Sex of the passenger - Age: Age of the passenger (Some entries contain NaN) - SibSp: Number of siblings and spouses of the passenger aboard - Parch: Number of parents and children of the passenger aboard - Ticket: Ticket number of the passenger - Fare: Fare paid by the passenger - Cabin Cabin number of the passenger (Some entries contain NaN) -Embarked: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)

In [3]: # Despriptive statistics dataFrame.describe()

```
Out [3]:
                PassengerId
                               Survived
                                              Pclass
                                                              Age
                                                                         SibSp
        count
                 891.000000
                             891.000000
                                          891.000000
                                                       714.000000
                                                                    891.000000
                 446.000000
                                                                      0.523008
        mean
                               0.383838
                                            2.308642
                                                        29.699118
                 257.353842
                               0.486592
                                            0.836071
                                                        14.526497
                                                                      1.102743
        std
        min
                   1.000000
                               0.000000
                                            1.000000
                                                         0.420000
                                                                      0.000000
        25%
                 223.500000
                               0.000000
                                            2.000000
                                                        20.125000
                                                                      0.000000
        50%
                 446.000000
                               0.000000
                                            3.000000
                                                        28.000000
                                                                      0.00000
        75%
                 668.500000
                               1.000000
                                            3.000000
                                                        38.000000
                                                                      1.000000
                 891.000000
                               1.000000
                                            3.000000
                                                        80.00000
                                                                      8.000000
        max
                     Parch
                                   Fare
                            891.000000
        count
               891.000000
        mean
                  0.381594
                             32.204208
                  0.806057
                             49.693429
        std
        min
                  0.000000
                              0.000000
        25%
                  0.000000
                              7.910400
        50%
                  0.000000
                             14.454200
        75%
                  0.000000
                             31.000000
                  6.000000
                            512.329200
        max
In [4]: # Initial Plot
        %pylab inline
        plt.style.use('ggplot')
        dataFrame.hist(figsize=(10,10))
```

Populating the interactive namespace from numpy and matplotlib

```
Out[4]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1144cd190>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x1143cd8d0>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x11457ce50>],
               [<matplotlib.axes._subplots.AxesSubplot object at 0x114705650>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x117b4f5d0>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x117bb2490>],
               [<matplotlib.axes._subplots.AxesSubplot object at 0x117c35510>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x117c60bd0>,
                <matplotlib.axes._subplots.AxesSubplot object at 0x117d25410>]], dtype=object)
```


1.2 Research Question: ML Problem

Predicting the chance to survive from the the rest of the data is a clasification problem with lables. With less than 100k samples sci-kit learn suggests a support vector classifier with linear kernel. So that is what I am going to try. For simplicity I select only features which are numerice already.

1.3 Data wrangling

```
In [5]: # Data Pre-Processing
```

```
feature_cols = dataFrame.drop(['PassengerId', 'Survived', 'Name', 'Sex', 'Ticket', 'Cabin', 'Em'
target_col = dataFrame.iloc[:,1] # target/label column

print "Feature column(s):-\n{}".format(feature_cols)
print "Target column: {}".format(target_col)
```

```
# Imputation of missing values
        from sklearn.preprocessing import Imputer
        # Training Test Set
        from sklearn.cross_validation import train_test_split
        x_train, x_test, y_train, y_test = train_test_split(feature_cols, target_col) # test size is se
        print "Training set: {} samples".format(x_train.shape[0])
        print "Test set: {} samples".format(x_test.shape[0])
Feature column(s):-
     Pclass SibSp Parch
                               Fare
                             7.2500
0
          3
                 1
                        0
1
          1
                 1
                        0
                            71.2833
2
          3
                 0
                             7.9250
                        0
3
          1
                 1
                        0
                             53.1000
4
          3
                            8.0500
                 0
                        0
5
          3
                 0
                        0
                            8.4583
6
                        0 51.8625
          1
                 0
7
          3
                 3
                           21.0750
                        1
8
          3
                 0
                        2
                            11.1333
9
          2
                            30.0708
                 1
                        0
10
          3
                 1
                            16.7000
                        1
11
          1
                            26.5500
                 0
                        0
12
                            8.0500
          3
                 0
                        0
                            31.2750
13
          3
                        5
                 1
14
          3
                             7.8542
                 0
                        0
15
          2
                 0
                        0
                            16.0000
                             29.1250
16
          3
                 4
                        1
17
          2
                 0
                            13.0000
                        0
          3
                            18.0000
18
                 1
                        0
19
          3
                 0
                            7.2250
                        0
20
          2
                 0
                            26.0000
21
          2
                 0
                           13.0000
                        0
22
          3
                 0
                        0
                             8.0292
23
                 0
                           35.5000
          1
                        0
24
          3
                 3
                             21.0750
                        1
25
          3
                 1
                        5
                             31.3875
26
          3
                 0
                        0
                             7.2250
27
          1
                        2 263.0000
                 3
28
          3
                             7.8792
                 0
                        0
29
          3
                 0
                             7.8958
                        0
. .
861
          2
                 1
                        0
                            11.5000
862
                 0
                             25.9292
          1
                        0
                             69.5500
863
          3
                 8
                        2
```

13.0000

13.0000

13.8583

50.4958 9.5000

11.1333

870	3	0	0	7.8958
871	1	1	1	52.5542
872	1	0	0	5.0000
873	3	0	0	9.0000
874	2	1	0	24.0000
875	3	0	0	7.2250
876	3	0	0	9.8458
877	3	0	0	7.8958
878	3	0	0	7.8958
879	1	0	1	83.1583
880	2	0	1	26.0000
881	3	0	0	7.8958
882	3	0	0	10.5167
883	2	0	0	10.5000
884	3	0	0	7.0500
885	3	0	5	29.1250
886	2	0	0	13.0000
887	1	0	0	30.0000
888	3	1	2	23.4500
889	1	0	0	30.0000
890	3	0	0	7.7500

[891 rows x 4 columns]

Target column: 0 0

. .

```
861
       0
862
       1
863
864
       0
865
       1
866
       1
867
       0
868
       0
869
       1
870
871
       1
872
       0
873
       0
874
       1
875
       1
876
877
       0
878
879
       1
880
881
       0
882
883
       0
884
885
       0
886
       0
887
       1
888
       0
889
       1
890
Name: Survived, dtype: int64
Training set: 668 samples
Test set: 223 samples
```

1.4 Training the Classifier

```
In [9]: # Classifier
    from sklearn.svm import LinearSVC #sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', du
    from sklearn.grid_search import GridSearchCV

# Set the parameters by cross-validation with linear SVC
    tuned_parameters = [{'C': [0.0001, 0.001, 0.01, 0.1, 1]}]

# CV with grid search of C
    clf = GridSearchCV(LinearSVC (C = 1, random_state = 123), param_grid = tuned_parameters, cv = 5

# Fit
    clf.fit(x_train, y_train)

print clf
    print ('\n' "Best parameter from grid search: " + str(clf.best_params_) +'\n')

GridSearchCV(cv=5, error_score='raise',
    estimator=LinearSVC(C=1, class_weight=None, dual=True, fit_intercept=True,
    intercept_scaling=1, loss='squared_hinge', max_iter=1000,
```

```
multi_class='ovr', penalty='12', random_state=123, tol=0.0001,
verbose=0),
  fit_params={}, iid=True, n_jobs=1,
  param_grid=[{'C': [0.0001, 0.001, 0.01, 0.1, 1]}],
  pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)
```

Best parameter from grid search: {'C': 0.001}

1.5 Validation

precision recall f1-score

 0
 0.61
 0.96
 0.75
 123

 1
 0.84
 0.26
 0.40
 100

avg / total 0.72 0.65 0.59 223

These scores are not overwhelming. But for a simple prediction model that utilizes only about half of the available data, it is not that bad.

```
In [35]: # Plotting one decision boundary of the Minear SVC
```

```
import matplotlib.pyplot as plt

X = feature_cols.values[:, 1:3]
y = target_col

h = 0.02  # step size in the mesh

clf = svm.LinearSVC(C=0.001).fit(X, y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

plt.subplot(1, 1, 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
```

```
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('SibSp')
plt.ylabel('Parch')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title('LinearSVC')
```


The decision boundary for the features "Parch" and "SibSp" shows that the linear kernel of the classifier might not be the best fit. Feature engineering might help also.

1.6 Sources

- Kaggle
- Pandas Documentation
- Matplotlib Documentation
- sci-kit learn: Classification
- MLE Nanao Dergee Project 0
- sci-kit learn:Plot different SVM classifiers in the iris dataset