Chapter 2

Classical Mechanics

2.1 The Hamiltonian Formalism

Definition 2.1 (Hamiltonian System). A *Hamiltonian system* is defined to be a tuple $((M, \omega), H)$, where (M, ω) is a finite-dimensional symplectic manifold, called the *phase space*, and $H \in C^{\infty}(M)$ is a smooth function, called the *Hamiltonian function*.

Definition 2.2 (Hamiltonian Vector Field). Let (M, ω, H) be a Hamiltonian system. The corresponding *Hamiltonian vector field* is the vector field $X_H \in \mathfrak{X}(M)$ given implicitly by

$$i_{X_H}\omega = -dH.$$

Proposition 2.3. Let (M, ω) and $(\widetilde{M}, \widetilde{\omega})$ be two symplectic manifolds and suppose that $\varphi \in C^{\infty}(M, \widetilde{M})$ is a symplectomorphism. Then

$$\varphi^* X_f = X_{\varphi^* f}, \quad \forall f \in C^{\infty}(\tilde{M}).$$

Proof. We compute

$$i_{X_{\varphi^*f}}\omega = -d\varphi^*f = -\varphi^*df = \varphi^*(i_{X_f}\widetilde{\omega}) = i_{\varphi^*X_f}(\varphi^*\widetilde{\omega}) = i_{\varphi^*X_f}\omega.$$

Proposition 2.4. Let (M, ω) and $(\widetilde{M}, \widetilde{\omega})$ be two symplectic manifolds and suppose that $\varphi \in C^{\infty}(M, \widetilde{M})$ is a symplectomorphism. Then

$$\theta_t^{X_{\varphi^*f}} = \varphi^{-1} \circ \theta_t^{X_f} \circ \varphi, \qquad \forall f \in C^\infty(\tilde{M})$$

whenever either side is defined.

Proof. Using proposition 2.3 we compute

$$\begin{split} \frac{d}{dt}\varphi^{-1} \circ \theta_t^{X_f} \circ \varphi &= D\varphi^{-1} \circ \frac{d}{dt}\theta_t^{X_f} \circ \varphi \\ &= D\varphi^{-1} \circ X_f \circ \theta_t^{X_f} \circ \varphi \\ &= D\varphi^{-1} \circ X_f \circ \varphi \circ \varphi^{-1} \circ \theta_t^{X_f} \circ \varphi \\ &= \varphi^* X_f \circ \varphi^{-1} \circ \theta_t^{X_f} \circ \varphi \\ &= X_{\varphi^* f} \circ \varphi^{-1} \circ \theta_t^{X_f} \circ \varphi \end{split}$$

and the result follows by the uniqueness of integral curves.

Definition 2.5 (Poisson Bracket). Let (M, ω) be a symplectic manifold. Define a mapping

$$\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$$

by

$$\{f,g\} := \omega(X_f,X_g)$$

where X_f and X_g are Hamiltonian vector fields associated to the Hamiltonian systems (M, ω, f) and (M, ω, g) , respectively. The mapping $\{\cdot, \cdot\}$ is called the *Poisson bracket on the algebra of observables* $C^{\infty}(M)$.

Let (M, ω) be a symplectic manifold. We show that the algebra of observables $C^{\infty}(M)$ together with the Poisson bracket is a Poisson algebra.

Definition 2.6 (Poisson Algebra). A *Poisson algebra* is defined to be a real commutative algebra $\mathfrak p$ together with a Lie bracket $\{\cdot,\cdot\}$ on $\mathfrak p$ satisfying the *Leibniz rule*

$$\{f,gh\} = h\{f,g\} + g\{f,h\} \quad \forall f,g,h \in \mathfrak{p}.$$

Proposition 2.7. Let (M, ω) be a symplectic manifold. Then

$$X_{f,g} = [X_f, X_g] \quad \forall f, g \in C^{\infty}(M).$$

Proof. We compute

$$\begin{split} i_{[X_f,X_g]}\omega &= \mathcal{L}_{X_f}i_{X_g}\omega - i_{X_g}\mathcal{L}_{X_f}\omega \\ &= -\mathcal{L}_{X_f}dg - i_{X_g}(i_{X_f}d\omega + di_{X_f}\omega) \\ &= -(i_{X_f}ddg + di_{X_f}dg) + i_{X_g}(ddf) \\ &= -di_{X_f}dg \\ &= di_{X_f}i_{X_g}\omega \\ &= -d\{f,g\}. \end{split}$$

Proposition 2.8. Let (M, ω) be a symplectic manifold. Then $(C^{\infty}(M), \{\cdot, \cdot\})$ is a Poisson algebra.

Proof. The bilinearity and antisymmetry of the Poisson bracket is immediate from the definition. Moreover, the Leibniz rule follows from the computation

$$\{f, gh\} = \omega(X_f, X_{gh})$$

$$= \omega(X_f, hX_g + gX_h)$$

$$= h\omega(X_f, X_g) + g\omega(X_f, X_h)$$

$$= h\{f, g\} + g\{f, h\}$$

for all $f, g, h \in C^{\infty}(M)$. Finally, the Jacobi identity follows using proposition 2.7 from the computation

$$\{f, \{g, h\}\} = \omega(X_f, X_{\{g, h\}})$$

$$= \omega(X_f, [X_g, X_h])$$

$$= i_{X_f} \omega[X_g, X_h]$$

$$= -df[X_g, X_h]$$

$$= -[X_g, X_h] f$$

$$= -X_g X_h f + X_h X_g f$$

$$= -X_g \{h, f\} + X_h \{g, f\} \}$$

$$= -\{g, \{h, f\}\} + \{h, \{g, f\}\} \}$$

$$= -\{g, \{h, f\}\} - \{h, \{f, g\}\} .$$

Corollary 2.9. Let (M, ω) be a symplectic manifold. Then

$$(C^{\infty}(M), \{f, g\}) \to (\mathfrak{X}(M), [\cdot, \cdot]), \qquad f \mapsto X_f$$

is a Lie algebra homomorphism.

Definition 2.10 (Evolution Operator). Let (M, ω, H) be a complete Hamiltonian system. Define the *evolution operator*

$$U_t : C^{\infty}(M) \to C^{\infty}(M), \qquad U_t(f) := f \circ \theta_t^{X_H}$$

for all $t \in \mathbb{R}$.

Proposition 2.11. Let (M, ω, H) be a complete Hamiltonian system. Then

$$\frac{d}{dt}U_t(f) = U_t\{H, f\} \qquad \forall f \in C^{\infty}, t \in \mathbb{R}.$$

Proof. Using Fisherman's formula we compute

$$\frac{d}{dt}U_t(f) = \frac{d}{dt}\left(\theta_t^{X_H}\right)^* f = \left(\theta_t^{X_H}\right)^* \mathcal{L}_{X_H} f = \left(\theta_t^{X_H}\right)^* \{H, f\} = U_t\{H, f\}.$$

More generally, we have the following fundamental property of an autonomous Hamiltonian function on a symplectic manifold.

Corollary 2.12 (Preservation of Energy). Let (M, ω, H) be a Hamiltonian system and denote by $\theta_t^{X_H} : \mathcal{D} \to M$ the flow of the Hamiltonian vector field X_H . Then

$$H\left(\theta_t^{X_H}(x)\right) = H(x) \qquad \forall (t, x) \in \mathcal{D}.$$

Proof. This follows immediately from a local version of Proposition 2.11 since

$$\frac{d}{dt}U_t(H) = U_t\{H, H\} = 0.$$

Motivated by proposition 2.11 we give the following definition of a preserved quantity in a Hamiltonian system.

Definition 2.13 (Integral of Motion). An *integral of motion* for a Hamiltonian system (M, ω, H) is defined to be a smooth function $I \in C^{\infty}(M)$ such that $\{H, I\} = 0$.

Remark 2.14. It is easy to check that the integrals of motion form a Lie subalgebra of $(C^{\infty}(M), \{\cdot, \cdot\})$.

Let $\theta: G \times M \to M$ be a smooth left action of a Lie group G on a smooth manifold M and denote by $\mathfrak{g} := T_eG \cong \mathfrak{X}_L(G)$ the corresponding Lie algebra. Every $\xi \in \mathfrak{g}$ determines a smooth global flow on M by $(t, x) \mapsto \theta_{\exp(-t\xi)}(x)$, where

$$\exp: \mathfrak{g} \to G, \qquad \exp(\xi) := \gamma_{\xi}(1)$$

denotes the exponential map and γ_{ξ} is the integral curve of the left-invariant vector field X_{ξ} starting at e with $\dot{\gamma}_{\xi}(0) = \xi$. Note that if there exists a bi-invariant Riemannian metric on G, then this exponential map coincides with the exponential map of the associated Levi–Civita connection at the identity. Define $\hat{\xi} \in \mathfrak{X}(M)$ to be the infinitesimal generator of this flow, that is,

$$\hat{\xi}_x = \frac{d}{dt}\Big|_{t=0} \theta_{\exp(-t\xi)}(x) \quad \forall x \in M.$$

Then

$$(\mathfrak{g},[\cdot,\cdot]) \to (\mathfrak{X}(M),[\cdot,\cdot]), \qquad \xi \mapsto \hat{\xi}$$

is a Lie algebra homomorphism.

Definition 2.15 (Weakly Hamiltonian Action). Let (M, ω) be a symplectic manifold. A smooth action $\theta \colon G \times M \to M$ of a Lie group G is said to be **weakly Hamiltonian**, iff $\theta_g^* \omega = \omega$ for all $g \in G$ and there exists a linear map

$$\mu \colon \mathfrak{g} \to C^{\infty}(M)$$
,

called a momentum map, such that the diagram

$$C^{\infty}(M) \xrightarrow{f \mapsto X_f} \mathfrak{X}(M, \omega)$$

$$\mathfrak{g}$$

$$\xi \mapsto \hat{\xi}$$

commutes.

Definition 2.16. A weakly Hamiltonian action of a Lie group G on a symplectic manifold (M, ω) is called

• *Hamiltonian*, iff the momentum map $\mu : \mathfrak{g} \to C^{\infty}(M)$ is G-equivariant with respect to the adjoint action of G on its associated Lie algebra \mathfrak{g} and the induced action of G on $C^{\infty}(M)$, that is

$$\mu(\mathrm{Ad}_{g^{-1}}(\xi)) = \mu(\xi) \circ \theta_g \qquad \forall g \in G, \xi \in \mathfrak{g},$$

where

$$\operatorname{Ad}_{g^{-1}}(\xi) := \frac{d}{dt} \Big|_{t=0} g^{-1} \exp(t\xi) g.$$

• *Poisson*, iff the associated momentum map

$$\mu \colon (\mathfrak{g}, [\cdot, \cdot]) \to (C^{\infty}(M), \{\cdot, \cdot\})$$

is a Lie algebra homomorphism.

For showing existence and uniqueness results for Poisson actions, we recall the basic notions of Lie algebra cohomology. Let g be a Lie algebra. Define

$$C^k := \Lambda^k \mathfrak{q}^*$$

and $d: C^k \to C^{k+1}$ by

$$d\tau(\xi_0, \dots, \xi_k) := \sum_{0 \le i < j \le k} (-1)^{i+j} \tau([\xi_i, \xi_j], \xi_0, \dots, \overline{\xi}_i, \dots, \overline{\xi}_j, \dots, \xi_k).$$

Then one checks that $d \circ d = 0$. The resulting nonnegative chain complex is called the **Chevalley–Eilenberg cochain complex**. Then the **k-th cohomology group of g** is defined by

$$H^k(\mathfrak{g};\mathbb{R}) := \frac{\ker d : C^k \to C^{k+1}}{\operatorname{im} d : C^{k-1} \to C^k}.$$

Theorem 2.17 (Uniqueness of Momentum Maps for Poisson Actions). Let μ and $\widetilde{\mu}$ be two momentum maps for a Poisson G-action on a connected symplectic manifold. If $H^1(\mathfrak{g}; \mathbb{R}) = 0$, then $\mu = \widetilde{\mu}$.

Proof. By assumption there exists $\sigma \in \mathfrak{g}^*$ such that

$$\mu(\xi) - \tilde{\mu}(\xi) = \sigma(\xi) \quad \forall \xi \in \mathfrak{g}.$$

Since both μ and $\widetilde{\mu}$ are Lie algebra homomorphisms, we have that $d\sigma = 0$. Indeed, for $\xi, \eta \in \mathfrak{g}$ we compute

$$d\sigma(\xi, \eta) = \sigma([\eta, \xi]) = \mu([\eta, \xi]) - \widetilde{\mu}([\eta, \xi]) = \{\mu(\eta), \mu(\xi)\} - \{\widetilde{\mu}(\eta), \widetilde{\mu}(\xi)\} = 0.$$

Thus $\sigma \in H^1(\mathfrak{g}; \mathbb{R}) = 0$, implying $\sigma = 0$ and the statement follows. \square

Theorem 2.18 (Existence of Poisson Actions). Suppose we are given a weakly Hamiltonian G-action on a connected symplectic manifold (M, ω) . If $H^2(\mathfrak{g}; \mathbb{R}) = 0$, then the action is Poisson.

Proof. For $\xi, \eta \in \mathfrak{g}$ we compute

$$X_{\mu([\xi,\eta])} = [\widehat{\xi},\widehat{\eta}] = [\widehat{\xi},\widehat{\eta}] = [X_{\mu(\xi)}, X_{\mu(\eta)}] = X_{\{\mu(\xi),\mu(\eta)\}}$$

using Proposition 2.7. Thus by connectedness of M there exists $\tau \in \Lambda^2 \mathfrak{g}^*$ such that

$$\{\mu(\xi), \mu(\eta)\} - \mu([\xi, \eta]) = \tau(\xi, \eta) \qquad \forall \xi, \eta \in \mathfrak{g}.$$

Invoking the Jacobi identity for the Lie as well as the Poisson bracket, yields $d\tau = 0$ and so $\tau \in H^2(\mathfrak{g}; \mathbb{R}) = 0$. Hence there exists $\sigma \in H^1(\mathfrak{g}; \mathbb{R})$ such that $\tau = d\sigma$. The momentum map

$$\mathfrak{g} \to C^{\infty}(M), \qquad \xi \mapsto \mu(\xi) - \sigma(\xi)$$

is a Lie algebra homomorphism.

Recall, that a Lie algebra $\mathfrak g$ is said to be semisimple iff $\mathfrak g$ does not admit any nontrivial abelian ideals.

Corollary 2.19. Let G be a Lie group with semisimple Lie algebra. Then every weakly Hamiltonian G-action on a connected symplectic manifold is Poisson and admits a unique momentum map.

Proof. The statement immediately follows from Theorem 2.17 and 2.18 as the two Whitehead lemmas imply $H^1(\mathfrak{g}; \mathbb{R}) = H^2(\mathfrak{g}; \mathbb{R}) = 0$.

We give now a profoundly deep example of an action that is simultaniously a Hamiltonian action and a Poisson action.

Lemma 2.20 (Momentum Lemma). Let $\theta: G \times M \to M$ be a smooth Lie group action on an exact symplectic manifold $(M, d\lambda)$ such that $\theta_g^* \lambda = \lambda$ for all $g \in G$ holds. Then the action is Hamiltonian and Poisson with momentum map

$$\mu(\xi) = i_{\widehat{\xi}}(\lambda), \quad \forall \xi \in \mathfrak{g}.$$

Proof. We show the result in four steps. Obviously, $\theta_g^* d\lambda = d\lambda$ for all $g \in G$. Step 1: θ is a weakly Hamiltonian action. Let $\xi \in \mathfrak{g}$. We compute

$$\begin{split} i_{\hat{\xi}} d\lambda &= \mathcal{L}_{\hat{\xi}} \lambda - d i_{\hat{\xi}} \lambda \\ &= \frac{d}{dt} \bigg|_{t=0} \theta^*_{\exp(-t\xi)} \lambda - d\mu(\xi) \\ &= \frac{d}{dt} \bigg|_{t=0} \lambda - d\mu(\xi) \\ &= -d\mu(\xi). \end{split}$$

Step 2: $\theta_g^* \hat{\xi} = \widehat{\mathrm{Ad}_{g^{-1}}(\xi)}$ for all $g \in G$ and $\xi \in \mathfrak{g}$. We have a commutative diagram

where $C_{g^{-1}}(h)=g^{-1}hg$ denotes the conjugation action on G. Let $g\in G$. Then we compute

$$\begin{split} \theta_g^* \hat{\xi} &= D \theta_{g^{-1}} \circ \hat{\xi} \circ \theta_g \\ &= D \theta_{g^{-1}} \circ \frac{d}{dt} \bigg|_{t=0} \theta_{\exp(-t\xi)} \circ \theta_g \\ &= \frac{d}{dt} \bigg|_{t=0} \theta_{g^{-1}} \circ \theta_{\exp(-t\xi)} \circ \theta_g \\ &= \frac{d}{dt} \bigg|_{t=0} \theta_{g^{-1} \exp(-t\xi)g} \\ &= \frac{d}{dt} \bigg|_{t=0} \theta_{\exp(-t \operatorname{Ad}_{g^{-1}}(\xi))} \\ &= \widehat{\operatorname{Ad}_{g^{-1}}(\xi)}. \end{split}$$

Step 3: θ is a Hamiltonian action. Using step 2, we compute

$$\begin{split} \mu(\mathrm{Ad}_{g^{-1}}(\xi)) &= i_{\widehat{\mathrm{Ad}}_{g^{-1}}(\xi)} \lambda \\ &= i_{\theta_g^* \widehat{\xi}} \lambda \\ &= \lambda(D\theta_{g^{-1}} \circ \widehat{\xi} \circ \theta_g) \\ &= \theta_{-g}^* \lambda(\widehat{\xi} \circ \theta_g) \\ &= i_{\widehat{\xi}} \lambda \circ \theta_g \\ &= \mu(\xi) \circ \theta_g \end{split}$$

for all $g \in G$ and $\xi \in \mathfrak{g}$.

Step 4: θ is a Poisson action. For ξ , $\eta \in \mathfrak{g}$ we compute

$$\begin{split} \mu[\xi,\eta] &= i_{\widehat{[\xi,\eta]}} \lambda \\ &= i_{\widehat{[\xi,\eta]}} \lambda \\ &= \mathcal{L}_{\widehat{\xi}} i_{\widehat{\eta}} \lambda - i_{\widehat{\eta}} \mathcal{L}_{\widehat{\xi}} \lambda \\ &= \mathcal{L}_{\widehat{\xi}} i_{\widehat{\eta}} \lambda \\ &= \mathcal{L}_{\widehat{\xi}} \mu(\eta) \\ &= \widehat{\xi} \mu(\eta) \\ &= X_{\mu(\xi)} \mu(\eta) \\ &= \{\mu(\xi), \mu(\eta)\}. \end{split}$$

Definition 2.21 (Symmetry Group). A Lie group G is said to be a *symmetry group* of a Hamiltonian system (M, ω, H) , iff there exists a weakly Hamiltonian action θ of G on (M, ω) , such that $H \circ \theta_g = H$ for all $g \in G$.

Theorem 2.22 (Noether's Theorem). *Let* G *be a symmetry group of a Hamiltonian system* (M, ω, H) *. Then* $\mu(\xi)$ *is an integral of motion for all* $\xi \in \mathfrak{g}$.

Proof. For $\xi \in \mathfrak{g}$ we compute

$$\{\mu(\xi), H\} = X_{\mu(\xi)}H = \hat{\xi}H = \frac{d}{dt}\Big|_{t=0} H \circ \theta_{\exp(-t\xi)} = \frac{d}{dt}\Big|_{t=0} H = 0.$$

2.2 The Lagrangian Formalism

Definition 2.23 (Lagrangian System). A *Lagrangian system* is a tuple (M, L), where M is a finite-dimensional smooth manifold, called the *configuration space*, and $L \in C^{\infty}(TM)$ is a smooth function, called the *Lagrangian function*. Moreover, the tangent bundle TM of the configuration space M is called the *state space*.

Remark 2.24. Infinite-dimensional configuration spaces are treated in classical field theory (see [10]).

Remark 2.25. Let $\pi: E \to M$ be a vector bundle, \mathcal{H} a connection on E and $\kappa: TE \to E$ be the associated connection map. Then

$$(D\pi, \kappa)$$
: $TE \to TM \oplus E$

is a vector bundle isomorphism along π . In particular

$$TTM \simeq TM \oplus TM$$

as vector bundles for every smooth manifold M. Note that this isomorphism depends on the choice of a connection and is therefore not canonical.

Definition 2.26 (Mechanical Lagrangian Function). Let (M,m) be a pseudo-Riemannian manifold and $V \in C^{\infty}(M)$. A *mechanical Lagrangian function* is defined to be the function $L_V \in C^{\infty}(TM)$

$$L_V(q, v) := \frac{1}{2} |v|_m^2 - V(q).$$

If $F \in C^{\infty}(M, N)$, then the derivative of F can be interpreted as a vector bundle homomorphism $DF : TM \to F^*TN$. Indeed, define

$$DF(q, v) := (q, (F(q), DF_q(v)))$$

for any $(q, v) \in TM$. If $\pi: E \to M$ is a fibre bundle, we can define

$$VE := \coprod_{p \in E} \ker D\pi_p.$$

Then VE with the usual footpoint projection is a vector bundle over E, called the **vertical bundle of** E. Moreover, one can show that VE is isomorphic to π^*E . Explicitly, the isomorphism $\Phi: \pi^*E \to VE$ is given by

$$\Phi(v,u) := \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} (v + \varepsilon u). \tag{2.1}$$

Definition 2.27 (Associated Form). Let (M, L) be a Lagrangian system. Define the *associated form*, written $\lambda_L \in \Omega^1(TM)$, by

$$\lambda_L(v) := dL((\Phi \circ D\pi_{TM})v) \qquad \forall v \in TTM. \tag{2.2}$$

Definition 2.28 (Legendre Transform). A *Legendre transform of a Lagrangian system* (M, L) is defined to be a mapping $\tau_L \in C^{\infty}(TM, T^*M)$ such that

$$\pi_{T^*M} \circ \tau_L = \pi_{TM}$$
 and $\lambda_L = \tau_L^* \lambda$.

Proposition 2.29. Let (M, L) be a Lagrangian system. Then $\tau_L \in C^{\infty}(TM, T^*M)$ is a Legendre transform if and only if

$$\tau_L(v)(u) = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} L_q(v+\varepsilon u) \qquad \forall v, u \in T_q M, q \in M.$$

Proof. Suppose $\tau_L \in C^{\infty}(TM, T^*M)$ is a Legendre transform. For $\zeta \in D\pi_{TM}^{-1}(u)$ we compute on one hand

$$(\tau_L^* \lambda)_{(x,v)}(\xi) = \lambda_{(x,\tau_L(v))}(D\tau_L(\zeta))$$

$$= \tau_L(v) \left((D\pi_{T^*M} \circ D\tau_L)(\zeta) \right)$$

$$= \tau_L(v) \left(D(\pi_{T^*M} \circ \tau_L)(\zeta) \right)$$

$$= \tau_L(v) \left(D\pi_{TM}(\zeta) \right)$$

$$= \tau_L(v)(u),$$

and on the other

$$\begin{split} \lambda_L|_{(x,v)}(\xi) &= dL((\Phi \circ D\pi_{TM})(\zeta)) \\ &= dL\left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}\left(v + \varepsilon D\pi_{TM}(\zeta)\right)\right) \\ &= \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}L_q(v + \varepsilon D\pi_{TM}(\zeta)) \\ &= \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}L_q(v + \varepsilon u). \end{split}$$

Definition 2.30 (Energy). The *energy of a Lagrangian system* (M, L) is defined to be the function $E_L \in C^{\infty}(TM)$ given by

$$E_L(q, v) := \tau_L(v)(v) - L(x, v)$$

for $(q, v) \in TM$.

Definition 2.31 (Hamiltonian Function). Let (M, L) be a Lagrangian system such that the Legendre transform τ_L is a diffeomorphism. The function $H_L \in C^{\infty}(T^*M)$ defined by

$$H_L := E_L \circ \tau_L^{-1}$$

is called the Hamiltonian function associated to the Lagrangian function L.

Remark 2.32 (**Tonelli Lagrangians**). Let (M, L) be a Lagrangian system and fix a Riemannian metric m on M. The Lagrangian function L is said to be **Tonelli**, iff the following conditions are satisfied:

(T1) The fibrewise Hessian of L is positive-definite, that is,

$$\frac{\partial^2 L}{\partial v^i \partial v^j}(q, v) u^i u^j > 0$$

for all $(q, v) \in TM$ and $u := u^i \partial_i \in T_x M$ such that $u \neq 0$.

(T2) The Lagrangian function L is fibrewise supercoersive, that is,

$$\lim_{|v|_m \to \infty} \frac{L(q, v)}{|v|_m} = +\infty$$

for all $x \in M$.

By [23, Proposition 1.2.1], for a fibrewise convex Lagrangian function L, the associated Legendre transformation $\tau_L : TM \to T^*M$ is a diffeomorphism, if and only if L is Tonelli.

Definition 2.33 (Symmetry Group). A Lie group G is called a *symmetry group of a Lagrangian system* (M, L), iff there exists a left action of G on M with

$$L \circ D\theta_g = L \quad \forall g \in G.$$

Theorem 2.34. Let (M, L) be a Lagrangian system with symmetry group G and such that the Legendre transform τ_L is a diffeomorphism. Then G is a symmetry group of the corresponding Hamiltonian system $(T^*M, d\lambda, H_L)$ with

$$\mu(\xi)(q,p) = p\left(\frac{d}{dt}\bigg|_{t=0} \theta_{\exp(-t\xi)}(q)\right) \qquad \forall \xi \in \mathfrak{g}, (q,p) \in T^*M,$$

where θ denotes the smooth left G-action on the configuration space M. Moreover, the induced action on the phase space T^*M is Hamiltonian and Poisson.

Proof. Define a smooth left G-action Θ on the phase space T^*M by

$$\Theta_g := \tau_L \circ D\theta_g \circ \tau_L^{-1} \qquad \forall g \in G.$$

Applying the Momentum Lemma 2.20 to this action yields the Theorem. We proceed in five steps.

Step 1: $D\theta_g^*\lambda_L = \lambda_L$ for all $g \in G$. We compute

$$\begin{split} ((D\theta_g)^*\lambda_L)(\zeta) &= dL((\Phi \circ D\pi_{TM} \circ DD\theta_g)(\zeta)) \\ &= dL(\Phi(D\theta_g(v), D\pi_{TM} \circ DD\theta_g(\zeta))) \\ &= dL(\Phi(D\theta_g(v), D\theta_g(D\pi_{TM}(\zeta)))) \\ &= dL\left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} D\theta_g(v + \varepsilon D\pi_{TM}(\zeta))\right) \\ &= dL \circ D\theta_g\left(\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} (v + \varepsilon D\pi_{TM}(\zeta))\right) \\ &= dL((\Phi \circ D\pi_{TM})(\zeta)) \\ &= \lambda_L(\zeta) \end{split}$$

for all $\zeta \in T_{(q,v)}TM$.

Step 2: The induced action Θ preserves the Liouville form. For $g \in G$ we compute

$$\Theta_g^* \lambda = (\tau_L \circ D\theta_g \circ \tau_L^{-1})^* \lambda$$
$$= (\tau_L^{-1})^* (D\theta_g)^* \tau_L^* \lambda$$
$$= (\tau_L^{-1})^* (D\theta_g)^* \lambda_L$$

$$= \left(\tau_L^{-1}\right)^* \lambda_L$$
$$= \lambda$$

by Step 1.

Step 3: The momentum map is of the stated form. We compute

$$\begin{split} \mu(\xi)(q,p) &= i_{\widehat{\xi}} \lambda(q,p) \\ &= \lambda_{(q,p)} \left(\frac{d}{dt} \bigg|_{t=0} \Theta_{\exp(-t\xi)}(q,p) \right) \\ &= p \left(\frac{d}{dt} \bigg|_{t=0} \pi_{T^*M} \circ \Theta_{\exp(-t\xi)}(q,p) \right) \\ &= p \left(\frac{d}{dt} \bigg|_{t=0} \pi_{TM} \circ D\theta_{\exp(-t\xi)} \circ \tau_L^{-1}(q,p) \right) \\ &= p \left(\frac{d}{dt} \bigg|_{t=0} \theta_{\exp(-t\xi)} \circ \pi_{TM} \circ \tau_L^{-1}(q,p) \right) \\ &= p \left(\frac{d}{dt} \bigg|_{t=0} \theta_{\exp(-t\xi)} \circ \pi_{T^*M}(q,p) \right) \\ &= p \left(\frac{d}{dt} \bigg|_{t=0} \theta_{\exp(-t\xi)}(q) \right) \end{split}$$

for all $\xi \in \mathfrak{g}$ and $(q, p) \in T^*M$.

Step 4: $E_L \circ D\theta_g = E_L$ for all $g \in G$. We compute

$$\begin{split} E_L(\theta_g(q), D\theta_g(v)) &= \tau_L(D\theta_g(v))(D\theta_g(v)) - L \circ D\theta_g(q, v) \\ &= \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} L_{\theta_g(q)} \circ D\theta_g((1+\varepsilon)v) - L(q, v) \\ &= \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} L_q((1+\varepsilon)v) - L(q, v) \\ &= E_L(q, v) \end{split}$$

for all $g \in G$ and $(q, v) \in TM$.

Step 5: $H_L \circ \Theta_g = H_L$ for all $g \in G$. Using Step 4 we conclude

$$H_L \circ \Theta_g = E_L \circ D\theta_g \circ \tau_L^{-1} = E_L \circ \tau_L^{-1} = H_L$$

for all $g \in G$.

2.3 Periodic Orbits on Regular Energy Surfaces

Let (M, ω, H) be a Hamiltonian system. Then *Hamilton's description of classical dynamics* is given by

$$\frac{d\mu}{dt} = 0$$
 and $\frac{df}{dt} = \{H, f\},$

for all states $\mu \in \mathcal{M}(M)$ and observables $f \in C^{\infty}(M)$, where $\mathcal{M}(M)$ denotes the convex space of all Borel probability measures on M. Moreover, a **process of measurement** is the map

$$C^{\infty}(M) \times \mathcal{M}(M) \to \mathcal{M}(\mathbb{R}), \qquad (f, \mu) \mapsto f_* \mu,$$

where $f_*\mu \in \mathcal{M}(\mathbb{R})$ denotes the pushforward measure of μ by f.

Lemma 2.35. Let (M, Ω) be a compact oriented smooth manifold of positive dimension and suppose that $\varphi \in \text{Diff}(M)$ such that $\varphi^*\Omega = \Omega$. Then there exists a unique regular φ -invariant Borel probability measure μ_{Ω} such that

$$\int_{M} f\Omega = \int_{M} f d\mu_{\Omega} \qquad \forall f \in C(M).$$

The measure μ_{Ω} is called the **measure associated with the volume form \Omega**.

Proof. Define a nonnegative normalised continuous linear functional I_{Ω} on $C^{\infty}(M)$ by

$$I_{\Omega}(f) := \int_{M} f \, \overline{\Omega}, \quad \text{where} \quad \overline{\Omega} := \Omega / \int_{M} \Omega.$$

Because $C^{\infty}(M)$ is dense in C(M) by the Stone–Weierstrass Theorem [9, p. 392], we can uniquely extend I_{Ω} to a nonnegative normalised continuous linear functional on C(M). Thus by the Riesz Representation Theorem [9, Theorem 7.2.8] there exists a unique regular Borel probability measure μ_{Ω} such that

$$I_{\Omega}(f) = \int_{M} f d\mu_{\Omega} \quad \forall f \in C(M).$$

We compute

$$I_{\Omega}(f) = \int_{M} f \, \overline{\Omega} = \int_{M} (f \circ \varphi) \varphi^{*} \, \overline{\Omega} = \int_{M} (f \circ \varphi) \, \overline{\Omega} = I_{\Omega}(f \circ \varphi)$$

for all $f \in C^{\infty}(M)$ and by density also for all $f \in C(M)$. In particular

$$\int_{M} f d\mu_{\Omega} = \int_{M} (f \circ \varphi) d\mu_{\Omega} = \int_{M} f d(\varphi_{*} \mu_{\Omega})$$

for all $f \in C(M)$ and consequently, $\varphi_*\mu_{\Omega} = \mu_{\Omega}$ by the uniqueness part of the Riesz Representation Theorem.

Lemma 2.36. Let M be a smooth manifold. Suppose that $\eta \in \Omega^1(M)$ is nowhere vanishing and $\xi \in \Omega^k(M)$. Then $\eta \wedge \xi = 0$ if and only if there exists $\zeta \in \Omega^{k-1}(M)$ such that $\xi = \eta \wedge \zeta$.

Proof. Choose a Riemannian metric m on M and define $x \in \mathfrak{X}(M)$ by

$$X := \widehat{m}^{-1}(\eta) / \|\widehat{m}^{-1}(\eta)\|_{m}^{2}$$

where $\widehat{m} \colon \mathfrak{X}(M) \to \Omega^1(M)$ denotes the tangent-cotangent bundle isomorphism. Set $\zeta := i_X(\xi)$ and assume that $\eta \wedge \xi = 0$. Then we compute

$$\eta \wedge \zeta = \eta \wedge i_X(\xi) = i_X(\eta) \wedge \xi - i_X(\eta \wedge \xi) = \eta(X)\xi = \xi.$$

The other direction is immediate.

Definition 2.37 (Regular Energy Surface). A *regular energy surface in a Hamiltonian system* (M, ω, H) is defined to be an embedded hypersurface $\Sigma = H^{-1}(0)$ such that $Crit(H) \cap \Sigma = \emptyset$.

Lemma 2.38. Let Σ be a compact regular energy surface in a Hamiltonian system (M^{2n}, ω, H) . Denote by θ the flow of X_H on Σ . Then there exists a unique regular θ -invariant probability measure μ_{Σ} on Σ , that is, we have that

$$(\theta_t)_*\mu_{\Sigma} = \mu_{\Sigma}, \quad \forall t \in \mathbb{R}.$$

Proof. By Lemma 2.35, it is enough to construct a θ -invariant volume form on Σ^{2n-1} . We proceed similar to the proof of Lemma 2.36. Since $dH \neq 0$ on Σ , we find a neighbourhood U of Σ in M such that $dH \neq 0$ on U. We claim that there exists $\eta \in \Omega^{2n-1}(U)$ such that

$$\omega^n = dH \wedge \eta. \tag{2.3}$$

Indeed, let m be any Riemannian metric on U. Define $X \in \mathfrak{X}(U)$ by

$$X := \operatorname{grad}_m H / \|\operatorname{grad}_m H\|_m^2$$
.

Set $\eta := i_X(\omega^n)$ and compute

$$dH \wedge \eta = dH \wedge i_X(\omega^n) = i_X(dH) \wedge \omega^n - i_X(dH \wedge \omega^n) = dH(X)\omega^n = \omega^n.$$

The volume form $\iota_{\Sigma}^* \eta$ is uniquely determined by the requirement (2.3). Indeed, suppose that there exists $\xi \in \Omega^{2n-1}(U)$ such that

$$\omega^n = dH \wedge \eta = dH \wedge \xi.$$

Then

$$dH \wedge (\eta - \xi) = 0$$
,

and thus by lemma 2.36 there exists $\zeta \in \Omega^{2n-2}(U)$ such that

$$\eta - \xi = dH \wedge \zeta.$$

But then

$$\begin{split} \iota_{\Sigma}^* \eta &= \iota_{\Sigma}^* (dH) \wedge \iota_{\Sigma}^* \zeta + \iota_{\Sigma}^* \xi \\ &= d \iota_{\Sigma}^* H \wedge \iota_{\Sigma}^* \zeta + \iota_{\Sigma}^* \xi \\ &= d (H \circ \iota_{\Sigma}) \wedge \iota_{\Sigma}^* \zeta + \iota_{\Sigma}^* \xi \\ &= \iota_{\Sigma}^* \xi \end{split}$$

because $H \circ \iota_{\Sigma}$ is constant. Using preservation of energy 2.12 and Problem 2.2 (c) we compute

$$dH \wedge \theta_t^* \eta = \theta_t^* (dH \wedge \eta) = \theta_t^* \omega^n = \omega^n \quad \forall t \in \mathbb{R}.$$

Corollary 2.39. Let Σ be a compact regular energy surface in a Hamiltonian system (M, ω, H) . Then $\theta_1 \in \text{Diff}(\Sigma)$ is a discrete reversible measure theoretical dynamical system on the probability space $(\Sigma, \mathcal{B}(\Sigma), \mu_{\Sigma})$.

Theorem 2.40 (Poincaré's Recurrence Theorem). Let Σ be a compact regular energy surface in a Hamiltonian system. Then almost every $x \in \Sigma$ is a recurrent point with respect to the probability measure μ_{Σ} , that is, for μ_{Σ} -almost every point $x \in \Sigma$ there exists a sequence $(t_k) \subseteq \mathbb{R}$ such that

$$t_k \to +\infty$$
 and $\lim_{k \to \infty} \theta_t^{X_H}(x) = x$.

Proof. Let $T := \theta_1 \in \text{Diff}(\Sigma)$. Then a routine computation shows

$$\mu\left(A \cap \bigcap_{k \ge 0} \bigcup_{l \ge k} T^{-l}(A)\right) = \mu(A) \qquad \forall A \in \mathcal{B}(\Sigma). \tag{2.4}$$

Fix a Riemannian metric m on Σ . Then (Σ, d_m) is a metric space with metric topology coinciding with the manifold topology of Σ . Because Σ is compact, for every $n \in \mathbb{N}$ there exists a finite index set I_n such that $(B_{1/n}(x_{i,n}))_{i \in I_n}$ is an open cover for Σ . Define

$$N := \bigcup_{n \in \mathbb{N}} \bigcup_{i \in I_n} \left(B_{1/n}(x_{i,n}) \setminus \left(B_{1/n}(x_{i,n}) \cap \bigcap_{k \ge 0} \bigcup_{l \ge k} T^{-l} \left(B_{1/n}(x_{i,n}) \right) \right) \right).$$

Then $N \in \mathcal{B}(\Sigma)$ and $\mu(N) = 0$. Indeed, we have that

$$\mu(N) \leq \sum_{n \in \mathbb{N}} \sum_{i \in I_n} \mu \left(B_{1/n}(x_{i,n}) \setminus \left(B_{1/n}(x_{i,n}) \cap \bigcap_{k \geq 0} \bigcup_{l \geq k} T^{-l} \left(B_{1/n}(x_{i,n}) \right) \right) \right)$$

$$= \sum_{n \in \mathbb{N}} \sum_{i \in I_n} \mu \left(B_{1/n}(x_{i,n}) \right) - \mu \left(B_{1/n}(x_{i,n}) \cap \bigcap_{k \geq 0} \bigcup_{l \geq k} T^{-l} \left(B_{1/n}(x_{i,n}) \right) \right)$$

$$= 0.$$

by (2.4). Moreover, every $x \in N^c$ is a recurrent point. Indeed, $x \in N^c$ means that for all $n \in \mathbb{N}$ and $i \in I_n$

$$x \in \left(B_{1/n}(x_{i,n})\right)^c$$
 or $x \in \bigcap_{k \ge 0} \bigcup_{l \ge k} T^{-l}\left(B_{1/n}(x_{i,n})\right)$.

Since $(B_{1/n}(x_{i,n}))_{i \in I_n}$ is an open cover for S_c , we conclude that

$$x \in \bigcap_{k \ge 0} \bigcup_{l \ge k} T^{-l} \left(B_{1/n}(x_{i,n}) \right) \tag{2.5}$$

for some $i \in I_n$. Consequently, for every $n \in \mathbb{N}$ there exists an index $i_n \in I_n$ such that (2.5) holds.

2.4 Problems

2.1 (Cotangent Bundles). Let M be a smooth manifold. Show that $(T^*M, d\lambda)$ is a symplectic manifold, where $\lambda \in \Omega^1(T^*M)$ is the *Liouville form* defined by

$$\lambda_{(q,p)}(\zeta) := p(D\pi_{T^*M}(\zeta)) \qquad \forall (q,p) \in T^*M, \zeta \in T_{(q,p)}T^*M.$$
 (2.6)

2.2 (Symplectic Vector Fields). Let (M, ω) be a symplectic manifold. Define the real vector space of *symplectic vector fields* by

$$\mathfrak{X}(M,\omega) := \{X \in \mathfrak{X}(M) : i_X \omega \text{ closed}\}.$$

- (a) Show that $\mathfrak{X}(M,\omega) \subseteq \mathfrak{X}(M)$ is a Lie subalgebra.
- (b) Let M be compact. Show that if $(\varphi_{\sigma})_{\sigma \in I}$ is a smooth path in $\mathrm{Diff}(M)$ starting at id_M , then $(\varphi_{\sigma})_{\sigma \in I}$ is a smooth path in $\mathrm{Symp}(M,\omega)$ if and only if $X_{\sigma} \in \mathfrak{X}(M,\omega)$, where

$$X_{\sigma} := \frac{d}{d\sigma} \varphi_{\sigma} \circ \varphi_{\sigma}^{-1},$$

for all $\sigma \in I$.

- (c) Let $X \in \mathfrak{X}(M,\omega)$. Show that the flow θ^X of X is volume preserving.
- **2.3** (The Euler–Lagrange Equations). A motion of a Lagrangian system (M, L) is defined to be a path

$$q \in \mathcal{P}_{x_0}^{x_1} M := \{ q \in C^{\infty}(I, M) : q(0) = x_0 \text{ and } q(1) = x_1 \}$$

for $x_0, x_1 \in M$ satisfying the *Hamilton's principle of least action*

$$\left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} \mathcal{E}_L(q_{\varepsilon}) = 0,$$

21

where

$$\mathcal{E}_L \colon \mathcal{P}_{x_0}^{x_1} M \to \mathbb{R}, \qquad \mathcal{E}_L(q) := \int_0^1 L(q(t), \dot{q}(t)) dt,$$

and q_{ε} is a variation of q with fixed ends, that is, the map

$$\Gamma: I \times (\varepsilon_0, \varepsilon_0) \to M, \qquad \Gamma(t, \varepsilon) := q_{\varepsilon}(t)$$

is smooth and satisfies $q_{\varepsilon}(0) = x_0$, $q_{\varepsilon}(1) = x_1$ for all $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$ for some $\varepsilon_0 > 0$ such that $q_0 = q$.

(a) Show that q is a motion of (M, L) if and only if q satisfies

$$\frac{d}{dt}\frac{\partial L}{\partial v}(\dot{q}) = \frac{\partial L}{\partial q}(\dot{q})$$

locally in standard coordinates on the tangent bundle. This system of second order ordinary differential equations is referred to as the *Euler-Lagrange equations of the Euler-Lagrange functional* \mathcal{E}_L .

(b) Let (M, m) be a pseudo-Riemannian manifold and consider the Lagrangian

$$L: TM \to \mathbb{R}, \qquad L(x,v) := \frac{1}{2} |v|_m^2.$$

Show that q is a motion of the Lagrangian system (M, L) if and only if q is a geodesic with respect to the induced Levi–Civita connection on TM.

(c) Let (M, L) be a Lagrangian system such that the Legendre transform τ_L is a diffeomorphism. Show that q is a motion of (M, L) if and only if **Hamilton's equations**

$$\dot{q} = \frac{\partial H_L}{\partial p}(q, p)$$
 and $\dot{p} = -\frac{\partial H_L}{\partial q}(q, p)$

hold for $(q, p) := \tau_L(q, \dot{q})$ in standard coordinates on T^*M .

(d) Let (M, m) be a pseudo-Riemannian manifold. Compute Hamilton's equations for the mechanical Lagrangian

$$L: TM \to \mathbb{R}, \qquad L(q, v) := K(q, v) - V(q),$$

where $K \in C^{\infty}(TM)$ and $V \in C^{\infty}(M)$.

2.4 (Physical Transformation). Let $\varphi \colon M \to \widetilde{M}$ be a diffeomorphism between smooth manifolds M and \widetilde{M} . Define the *cotangent lift of* φ

$$D\varphi^{\dagger} : T^*M \to T^*\widetilde{M}, \qquad D\varphi^{\dagger}(q, p)(v) := p(D\varphi^{-1}(v))$$

for all $(q, p) \in T^*M$ and $v \in T_{\varphi(x)}\widetilde{M}$.

(a) Show that $(D\varphi^{\dagger})^*\tilde{\lambda} = \lambda$, where $\tilde{\lambda}$ and λ are the Liouville forms on \tilde{M} and M, respectively.

(b) Deduce that for any action $\theta \in C^{\infty}(G \times M, M)$ of a Lie group G the lifted action $g \mapsto D\theta_g^{\dagger}$ is Poisson and show that the corresponding momentum map is given by

$$\mu \colon \mathfrak{g} \to C^{\infty}(T^*M), \qquad \mu(\xi)(q,p) = p(\widehat{\xi}).$$

- **2.5.** Let *G* be a connected Lie group. Show that a weakly Hamiltonian *G*-action on a symplectic manifold is Hamiltonian if and only if it is Poisson.
- **2.6** (Complete Integrability and The Kepler Problem). A Hamiltonian system (M^{2n}, ω, H) is said to be *completely integrable*, iff there exist Hamiltonian functions $H_1 = H, H_2, \ldots, H_n \in C^{\infty}(M)$ such that $\{H_i, H_j\} = 0$ for all $i \neq j$. The *Kepler problem* is defined to be the Hamiltonian system $(T^*M^n, dp \land dq, H)$, where $M^n := \mathbb{R}^n \setminus \{0\}$ and the Hamiltonian function is given by

$$H(q, p) := \frac{1}{2} |p|^2 - \frac{1}{|q|}.$$

Show that the spatial Kepler Problem $(T^*M^3, dp \wedge dq, H)$ is completely integrable.

- **2.7** (**Regular Energy Surfaces**). Let Σ be an embedded hypersurface in a symplectic manifold (M, ω) and J and ω -compatible almost complex structure.
 - 1. If Σ is compact, show that the following statements are equivalent.
 - (a) Σ is orientable.
 - (b) The normal bundle $N\Sigma \to \Sigma$ with respect to the Riemannian metric m_J is orientable.
 - (c) The characteristic line bundle $\ker \omega|_{\Sigma} \to \Sigma$ is orientable.
 - (d) There exists a parametrised family of hypersurfaces modelled on Σ , that is, there exists an embedding

$$\psi: \Sigma \times (-\varepsilon, \varepsilon) \hookrightarrow M$$

for some $\varepsilon > 0$ such that $\psi|_{\Sigma \times \{0\}} = \Sigma$.

- (e) There exists a local defining Hamiltonian function for Σ .
- 2. If Σ is orientable, show that there exists $H \in C^{\infty}(M)$ such that $\Sigma \subseteq H^{-1}(0)$, where 0 is a regular value of H.
- 3. If $H, \widetilde{H} \in C^{\infty}(M)$ are defining Hamiltonian functions for Σ , show that there exists a nowhere-vanishing function $f \in C^{\infty}(\Sigma)$ such that $X_{\widetilde{H}}|_{\Sigma} = fX_H|_{\Sigma}$.
- 4. If Σ is a connected regular energy surface in a connected Hamiltonian system (M, ω, H) , then Σ separates M.