Applicazioni della Logica proposizionale

Prof. Rocco Zaccagnino 2022/2023

Se hai più di 12 anni o sei accompagnato dai tuoi genitori allora puoi salire su quella giostra

Analisi:

 Se hai più di 12 anni o sei accompagnato dai tuoi genitori allora puoi salire su quella giostra

Proposizioni elementari:

- a = hai più di 12 anni
- b = sei accompagnato dai tuoi genitori
- c = puoi salire su quella giostra

Traduzione: $(a \lor b) \rightarrow c$

Regola generale:

Individua nella frase le parole chiave che corrispondono ai connettivi logici ed usa essi per identificare le proposizioni elementari

Esempio

Puoi avere caffè gratis se sei maggiorenne ed è martedì

Regola generale:

Individua nella frase le parole chiave che corrispondono ai connettivi logici ed usa essi per identificare le proposizioni elementari

Esempio

Puoi avere caffè gratis se sei maggiorenne ed è martedì

Passo 1: individua i connettivi logici

Regola generale:

Individua nella frase le parole chiave che corrispondono ai connettivi logici ed usa essi per identificare le proposizioni elementari

Esempio

Puoi avere caffè gratis se sei maggiorenne ed è martedì

- Passo 1: individua i connettivi logici
- Passo 2: identifica le proposizioni elementari

Regola generale:

Individua nella frase le parole chiave che corrispondono ai connettivi logici ed usa essi per identificare le proposizioni elementari

Esempio

Puoi avere caffè gratis se sei maggiorenne ed è martedì

b

- Passo 1: individua i connettivi logici
- Passo 2: identifica le proposizioni elementari

Regola generale:

Individua nella frase le parole chiave che corrispondono ai connettivi logici ed usa essi per identificare le proposizioni elementari

Esempio

Puoi avere caffè gratis se sei maggiorenne ed è martedì

a

b

C

- Passo 1: individua i connettivi logici
- Passo 2: identifica le proposizioni elementari
- Passo 3: riscrivi la frase come una proposizione logica

Regola generale:

Individua nella frase le parole chiave che corrispondono ai connettivi logici ed usa essi per identificare le proposizioni elementari

Esempio

Puoi avere caffè gratis se sei maggiorenne ed è martedì

a

b

C

- Passo 1: individua i connettivi logici
- Passo 2: identifica le proposizioni elementari
- Passo 3: riscrivi la frase come una proposizione logica

$$(\mathbf{b} \wedge \mathbf{c}) \rightarrow \mathbf{c}$$

- Tu non guidi a più di 130 km/h
- ¬p

- Tu guidi a più di 130 km/h, ma non prendi la multa
- p ∧ ¬q

- Se non guidi a più di 130 km/h allora non prendi la multa
- ¬p → ¬q

- Guidare a più di 130 km/h è sufficiente a prendere la multa
- $\mathbf{p} \rightarrow \mathbf{q}$

- Prendi la multa, ma non guidi a più di 130 km/h
- q ∧ ¬p

Tautologia

Alcune proposizioni sono interessanti poiché i loro valori nella tabella di verità sono sempre gli stessi

Una **tautologia** è una proposizione composta che è **sempre vera** per tutti i possibili valori delle proposizioni elementari che la compongono

Esempio

p ∨ ¬p è una tautologia

р	¬p	p∨¬p
7	F	7
F	7	7

Contraddizione

Alcune proposizioni sono interessanti poiché i loro valori nella tabella di verità sono sempre gli stessi

Una **contraddizione** è una proposizione composta che è **sempre falsa** per tutti i possibili valori delle proposizioni elementari che la compongono

Esempio

p ∧ ¬p è una contraddizione

р	¬p	р∧¬р
7	F	F
F	7	F

Contingenza

Una **contingenza** è una proposizione composta che non è né tautologia né contraddizione

Esempio

p ∧ **p** è una contingenza

р	р	р∧р
7	7	<i>T</i>
F	F	F

Equivalenza logica

Le proposizioni p e q sono dette **logicamente equivalenti** se hanno **gli stessi valori di verità** (o equivalentemente se $\mathbf{p} \leftrightarrow \mathbf{q}$ è una tautologia).

La notazione $\mathbf{p} \equiv \mathbf{q}$ denota che p e q sono logicamente equivalenti

Esempio

$$p \rightarrow q$$
 è equivalente a $\neg q \rightarrow \neg p$

p	q	¬q	¬ p	$\mathbf{p} o \mathbf{q}$	$\neg q \rightarrow \neg p$
7	7	F	F	7	r
<i>T</i>	F	7	F	F	F
F	7	F	7	<i>T</i>	7
F	F	7	7	7	<i>T</i>

Equivalenza logica

Proposizioni composte logicamente equivalenti hanno lo stesso valore di verità per tutti i possibili casi

- Sostituire l'una con l'altra
- Utilizzare una qualunque di esse in un ragionamento logico
- Ottenere nuove proposizioni

Per verificare l'equivalenza si usa:

- la tabella di verità
- le trasformazioni mediante proprietà logiche

Equivalenze logiche note

Leggi di De Morgan

- 1) $\neg (p \lor q) \equiv \neg p \land \neg q$
- 2) $\neg (p \land q) \equiv \neg p \lor \neg q$

Esempio

Negare, utilizzando le leggi di De Morgan, la frase

L'inverno in Lucania è freddo e lungo

Soluzione:

L'inverno in Lucania non è freddo o non è lungo

Equivalenze logiche note

Identità

- p ∧ T ≡ p
- p∨F≡p

Dominazione

- p∨T≡T
- p ∧ F ≡ F

Idempotenza

- p∨p≡p
- p∧p≡p

Doppia negazione

• $\neg(\neg p) \equiv p$

Equivalenze logiche note

Commutativa

- p ∨ q ≡ q ∨ p
- p∧q≡q∧p

Associativa

- $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \land q) \land r \equiv p \land (q \land r)$

Distributiva

- $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
- $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Altre utili equivalenze

- p ∨ ¬p ≡ T
- p ∧ ¬p ≡ F
- $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$
- $p \rightarrow q \equiv (\neg p \lor q)$
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Uso di equivalenze logiche

Esempio: mostrare che

$$(p \land q) \rightarrow p$$
 è una tautologia

Dim 1: dobbiamo mostrare che $((\mathbf{p} \land \mathbf{q}) \rightarrow \mathbf{p}) \equiv \mathbf{T}$

$$(\mathbf{p} \wedge \mathbf{q}) \rightarrow \mathbf{p} \equiv \neg (\mathbf{p} \wedge \mathbf{q}) \vee \mathbf{p}$$

$$\equiv (\neg \mathbf{p} \vee \neg \mathbf{q}) \vee \mathbf{p} \qquad De Morgan$$

$$\equiv (\neg \mathbf{q} \vee \neg \mathbf{p}) \vee \mathbf{p} \qquad Commutativa$$

$$\equiv \neg \mathbf{q} \vee (\neg \mathbf{p} \vee \mathbf{p}) \qquad Associativa$$

$$\equiv \neg \mathbf{q} \vee \mathbf{T} \qquad Dominazione$$

Uso di equivalenze logiche

Esempio: mostrare che

$$(p \land q) \rightarrow p$$
 è una tautologia

Dim 2: usare la tavola di verità

р	q	p∧q	(p ∧ q) → p
<i>T</i>	r	r	r
<i>T</i>	F	F	r
F	7	F	7
F	F	F	r

Uso di equivalenze logiche

Mostrare che il contronominale di p \rightarrow q è equivalente a $\neg q \rightarrow \neg p$

$$(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$$

Dim:

$$(\neg \mathbf{q} \rightarrow \neg \mathbf{p}) \equiv \neg (\neg \mathbf{q}) \lor (\neg \mathbf{p})$$

$$\equiv \mathbf{q} \lor \neg \mathbf{p} \qquad doppia \ negazione$$

$$\equiv \neg \mathbf{p} \lor \mathbf{q} \qquad commutativa$$

$$\equiv \mathbf{p} \rightarrow \mathbf{q}$$

Precedenza operatori

operatore	precedenza
7	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

Dim:

(p ∨ q) ∧ (¬r) può essere scritta anche (p ∨ q) ∧ ¬r
(p ∧ q) ∨ (¬r) può essere scritta anche p ∧ q ∨ ¬r