

#### Chapter 2

➤ The Metal – Oxide – Semiconductor (MOS) Transistor



#### <u>Chapter 2 The Metal – Oxide – Semiconductor (MOS) Transistor</u>

- ➤ MOS technology is the basis for most of the LSI digital memory and up ckts.
- > MOS xtor occupies less area the BJT
- ➤ MOS xtor involves fewer fabrication steps than BJT → fewer critical defects per unit.
- ➤ To realize a given function by dynamic ckt are practical in MOS technology but not in BJT



#### Chapter 2 The Metal – Oxide – Semiconductor (MOS) Transistor

- ≥ 2.1 PN Junction
- > 2.2 Alternative MOS Process
- ➤ 2.3 Structure and Operation of the MOS Transistor
- ➤ 2.4 Threshold Voltage of the MOS Transistor
- ➤ 2.5 Current Voltage Characteristic



#### 2.1 PN Junction

➤ Consider a PN junction diode based on Silicon





- ➤ A p-n junction diode can also be described by an energy band diagram.
- ➤ When a p-n junction is formed, the energy bands bend at the junction.





- The gradient of electron and hole densities results in a diffusive migration of majority carriers across the junction.
- The migration leaves a region of net charge of opposite sign on each side, called the space-charge region or depletion region.





- ➤ If the p-side is made negative and the n-side is made positive, the barrier is increased and electrons and holes cannot cross
- $\Rightarrow$  <u>no</u> electric current flows.
- > This situation is called







- ➤ If the p-side is made negative and the n-side is made positive, the barrier is increased and electrons and holes cannot cross
- $\Rightarrow$  <u>no</u> electric current flows.
- > This situation is called







#### 2.1 PN Junction

➤ If the p-side is made positive and the n-side is made negative, the barrier is reduced and electrons and holes can cross ⇒ electric current flows.



➤ This situation is called \_\_\_\_\_

Conduction band conduction band n-side





#### 2.1 PN Junction

➤ If the p-side is made positive and the n-side is made negative, the barrier is reduced and electrons and holes can cross ⇒ electric current flows.

➤ This situation is called \_\_\_\_\_

conduction band conduction band n-side



valence band

valence band



#### 2.1 PN Junction

- **>V**<sub>D</sub>= Bias Voltage
- ▶ □ Current through Diode.
   □ is Negative for Reverse
   Bias and Positive for
   Forward Bias

 $\triangleright V_{\phi}$  = Barrier Potential Voltage



p65



#### 2.2 Alternative MOS Process

- First ckts: in metal-gate PMOS, ±12V power supply voltage, data rates 200Kb/s ~ 1Mb/s
- ➤ Today: silicon gate CMOS, power supply ≤5V, data rates up to 300Mb/s
- > Reductions in internal dimension
  - Very sharp improvements in the MOS xtor ckt speed
  - BJT ckt speed improves only gradually as dimension reduced
- ➤ Limitation of MOS ckts : low driving currents and voltage
  - Bipolar ckts can drive highly capacitive loads and terminated transmission lines at high speed, such as off-chip data bus



#### 2.2 Alternative MOS Process-- MOS Transistor





#### 2.2 Alternative MOS Process

- The most prevalent version of MOS technology today is self-aligned silicongate NMOS
- ➤n areas have been doped with donor ions (arsenic)
- ▶p areas have been doped with acceptor ions (boron)



@Cyberfab.net. All rights reserved



#### Silicon Switches: The NMOS





#### Switch Model of NMOS Transistor







Source: Irwin&Vijay, PSU



#### Silicon Twitches: The PMOS





#### Switch Model of PMOS Transistor



Source: Irwin&Vijay, PSU



#### 2.2 Alternative MOS Process









Enhancement mode transistors are normally OFF (non-conducting with zero bias)

Depletion mode transistors are normally ON (conduct with zero bias)

Most CMOS ICs use Enhancement type MOS



#### 2.2 Alternative MOS Process

- Enhancement-Mode: the channel conductance is very low ( $V_G = 0$ ), the gate voltage is to increase the channel conductance.
- ▶ Depletion-Mode : at  $V_G$  =0, the channel conductance is very high (normally-on), the gate voltage is reduce the channel conductance.
- ➤ In Commercial application, the Enhancement-Mode MOSFETs are used



#### 2.3 Structure and Operation of the MOS Transistor

Any analysis or design is only accurate as the models used.

#### **NMOS** xtor

- Substrate or body: a single-crystal Si with p-type doping
- Active or transistor region: top surface of the body with thin oxide, where MOS is fabricated.
- Field or passive region: top surface of the body with thick oxide as an isolation between active region.





#### 2.3 Structure and Operation of the MOS Transistor

MOS xtor are symmetrical; source and drain are interchangeable

- ➤ In NMOS, the more positive electrode is defined as the drain CMOS xtor
- Enhancement-Mode NMOS and PMOS xtors are used in CMOS ckts.
- ➤ Gate Length, gate width, and gate oxide thickness are the major parameters determining the electrical characteristics of the MOS xtor.





#### 2.4 Threshold Voltage of the MOS Transistor

- ➤ In MOS transistor, Vt is an important parameter.
- Most are related to the material properties. In other words,  $V_t$  is largely determined at the time of fabrication, rather than by circuit conditions, like  $I_{ds}$ .





#### 2.4 Threshold Voltage of the MOS Transistor

- > For example, material parameters that effect V, include:
  - The gate conductor material (poly vs. metal).
  - The gate insulation material (SiO 2).
  - The thickness of the gate material.
  - The channel doping concentration.
- ➤ However, V <sub>t</sub> is also dependent on
  - V<sub>sb</sub> (the voltage between source and substrate), which is normally 0 in digital devices.
  - Temperature: changes by -2mV/degree C for low substrate doping levels.



# 2.4 Threshold Voltage of the MOS Transistor Added in Body-Effect

- ➤ The result of Body-Effect is : as VB drops V<sub>TH</sub> will increases; this is called "body effect" or "backgate effect"
- ➤ It can be proved for following equation



# 2.4 Threshold Voltage of the MOS Transistor Added in Body-Effect

- > The threshold depends on:
  - Gate oxide thickness
  - Doping levels
  - Source-to-bulk voltage
- ➤ When the semiconductor surface inverts to n-type the channel is in "strong inversion"
- $ightharpoonup V_{sb} = 0 \Rightarrow$  strong inversion for:
  - surface potential > 2φ<sub>F</sub>
- $V_{\rm sb} > 0 \Rightarrow$  strong inversion for:
  - surface potential > 2♦<sub>F +</sub> V<sub>sb</sub>



Source: Paulo Moreiar



# 2.4 Threshold Voltage of the MOS Transistor Added in Body-Effect

- ➤ In the analysis of page25 ~ page28, we tacitly assumed that the bulk and the source of the transistor were tied to ground.
- ➤ What happens if the bulk voltage of an NMOS drops below the source voltage







#### 2.4 The Body Effect

V<sub>BS</sub> is the substrate bias voltage (normally positive for n-channel devices with the body tied to ground)
 A negative bias causes
 V<sub>T</sub> to increase from 0.45V to 0.85V





# 2.4 Threshold Voltage of the MOS Transistor added in Body-Effect





#### 2.4 NMOS Theory of Operation







#### 2.4 NMOS Operation (Triode Mode)



Threshold voltage,  $V_T$ , is the potential difference between gate and source,  $V_{GS}$ , just enough to invert the channel and let the current flow

In triode (also called linear) mode current flow increases by increasing Vgs and Vds

$$I \propto (V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2}$$



#### 2.4 NMOS Operation (Saturation Mode)





#### 2.4 MOSFET Equations

- Cut-off region
- ➤ Linear region

- > Saturation
- ➤ Oxide capacitance
- ➤ Process "transconductance"



## 2.4 Transistor in Linear Mode—0<V<sub>DS</sub><V<sub>GS</sub>-V<sub>T</sub>

$$I_D = \beta W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$$









## 2.4 Transistor in Saturation Mode-- $V_{DS} > V_{GS} - V_{T}$

$$> I_{DS} = \frac{\beta W}{2L} (V_{GS} - V_T)^2$$









#### 2.5 NMOS Current-Voltage Characteristic



#### **Channel Length Modulation**

Refers to the fact that due to the enlargement of depletion layer on the drain side and, hence, reduction of channel length,  $I_D$  slightly increases as  $V_{DS}$  increases in saturation



## 2.5 NMOS Current-Voltage Characteristic added in Channel-Length Modulation

➤ In the saturation region conductance channel is pinched-off

 $\lambda$  : channel-length modulation parameter  $\lambda \cong 0.1 \sim 0.001$  ( /V )





## 2.5 NMOS Current-Voltage Characteristic

- ightharpoonupLinear region:  $V_{ds} < V_{gs} V_{T}$ 
  - Voltage controlled resistor
- $\gt$ Saturation region: $V_{ds} \gt V_{gs} V_{T}$ 
  - Voltage controlled current source
- Curves deviate from the ideal current source behavior due to:
  - Channel modulation effects







## 2.5 PMOS Current-Voltage Characteristic

- $>V_{\rm T}<0$
- ightharpoonupLinear region:  $|V_{ds}| < |V_{gs}| |V_{T}|$ 
  - Voltage controlled resistor
- **Saturation region**:  $|V_{ds}| > |V_{gs}| |V_T| V_{GS} = -1.0V$ 
  - Voltage controlled current source
- Curves deviate from the ideal current source behavior due to:
  - Channel modulation effects







### 2.6 Modeling the MOS Transistor for Circuit Simulation

➤ SPICE
(Simulation Program,
Integrated Circuit
Emphasis) is widely
used for IC simulation





## 2.6.1 SPICE MOSFET Model

- ➤ Level = 1 Schichman Hodges Model
- ➤ Level = 2 Modified Grove Frohman Model
- ➤ Level = 3 Empirical Model

The default value of level is 1



## 2.6.1 SPICE MOSFET Model

➤ The SPICE model of a MOSFET includes a variety of parasitic circuit elements and some process related parameters in addition to the elements previously discussed in this chapter. The syntax of a MOSFET incorporates the parameters a circuit designer can change as shown below:

#### **MOSFET syntax**

M <name> <drain node> <gate node> <source node> <bulk/substrate node>

- + [L=][W=][AD=][AS=]
- + [PD=][PS=][NRD=][NRS=]
- + [NRG=][NRB=]

where L is the gate length, W the gate width, AD the drain area, AS the source area PD is the drain perimeter, PS is the source perimeter



## 2.6.1 SPICE MOSFET Model

#### **Example:**

M1 3 2 1 0 NMOS L=1u W=6u

.MODEL NFET NMOS (LEVEL=2 L=1u W=1u VTO=-1.44 KP=8.64E-6

+ NSUB=1E17 TOX=20n)

where M1 is one specific transistor in the circuit, while the transistor model "NFET" uses the built-in model NFET to specify the process and technology related parameters of the MOSFET.



## 2.6.1 SPICE MOSFET Model

| SPICE variable | Equation                                                                                          |
|----------------|---------------------------------------------------------------------------------------------------|
| TOX            | $TOX = t_{ox}$                                                                                    |
| KP             | $KP = \mu C_{ox}$                                                                                 |
| VTO            | $\text{VTO} = V_{FB} + 2 \not \sim_F + \frac{\sqrt{2 \cdot s_q N_\alpha(2 \not \sim_F)}}{C_{OX}}$ |
| GAMMA          | GAMMA = $\gamma = \frac{\sqrt{2  s_3 q N_a}}{C_{OX}}$                                             |
| NSUB           | $NSUB = N_d$ or $N_a$                                                                             |
| U0             | $U0 = \mu$                                                                                        |
| LAMBDA         | $LAMBDA = \lambda$                                                                                |
| VMAX           | $VMAX = v_{sat}$                                                                                  |

SPICE parameters and corresponding equations



## 2.6.1 SPICE MOSFET Model

In addition there are additional parameters, which can be specified to further enhance the accuracy of the model, such as:

LD , lateral diffusion (length)

RD, drain ohmic resistance

RG, gate ohmic resistance

IS, bulk p-n saturation current

CBD, bulk-drain zero-bias p-n capacitance

CGSO/CGDO, gate-source/drain overlap capacitance/channel width

XJ, metallurgical junction depth

WD, lateral diffusion (width)

RS, source ohmic resistance

RB, bulk ohmic resistance

JS, bulk p-n saturation current/area

CBS, bulk-source zero-bias p-n capacitance



## 2.6.1 SPICE MOSFET Model

Large signal model of a MOSFET





## 2.7 Limitations on the MOS Transistor

#### 2.7.1 Voltage Limitations

> Punch through

```
As V_D \uparrow \Rightarrow D-B PN junction width \uparrow \Rightarrow extends to S-B depletion \Rightarrow Punch through
```

\* Punch through occurs at VD in 15 to 20 V.



## 2.7.1 Voltage Limitations

- ➤ Static charge (come from I/O Pads)
  - will destroy the gate dielectric.
  - can overcome by protection ckt.





## 2.7.2 Parasitic Bipolar Transistors and Latch-up

- Sequence of events for latch-up to occur
  - 1. The initial (forward biasing of one xtor)
  - The regeneration (forward biasing the other xtor, thus one driving the other)
  - Self-sustaining (the power supply must be capable of sustaining the current flow), the amount of current is called the Holding Current



**Equivalent Circuit** 



## 2.7.2 Parasitic Bipolar Transistors and Latch-up

- Common latchup suppression methods :
- 1. Bipolar spoiling : reduction  $\beta$ npn or  $\beta$ pnp  $\rightarrow$  degrade VLSI device performance
  - Beta reduction
    - Life time (base) reduction: gold doping
    - Increase lateral spacing (base width) (vertical dimension are fixed by process) ie. NMOS to Nwell or PMOS to P-well
  - guard-rings to reduce R<sub>substrate</sub> and R<sub>well</sub>, increase the space between n-well & NMOS, ...



## 2.7.2 Parasitic Bipolar Transistors and Latch-up

- 2. Bipolar Decoupling : prevent one transistor from turning on other-reduction of  $R_{well}$  and  $R_{substrate}$ 
  - R<sub>well</sub> reduction
    - Using enough well plugs (ohmic connections from the well to, usually through metal)
    - Placing P+ (for P-well process) collar around the pexiphery of a well. This greatly reduced  $R_{well}$  (from several  $k\Omega$  to less than  $100\Omega$ ) and is most useful for I/O circuits, where latching disturbance are most serve.
  - R<sub>substrate</sub> reduction
    - Using frequent substrate plugs (ohmic contacts connect to VDD)
    - Epi wafer



## 2.7.2 Parasitic Bipolar Transistors and Latch-up

- 3. Other process stricture
  - trench isolation
  - SOI (Silicon on Insulator)



## 2.7.2 Parasitic Bipolar Transistors and Latch-up

#### > Trench isolation





## 2.7.2 Parasitic Bipolar Transistors and Latch-up

> SOI (Silicon on Insulation)







# Appendix



## Reference

- Douglas A Pucknell, Kamran Eshraghian ,Basic VLSI Design 3rd Ed, Prentice Hall .
- M Michael Vai, VLSI Design, CRC Press, 2000
- D.A.Pucknell, K.Eshraghian, Basic VLSI Design, 3rd Ed, Prentice Hall, 1994
- Weste and Eshraghian, Principles of VLSI Design--A Systems Perspective, Addision-Wesley, 2nd, 1993
- C.Y. Chang and S.M. Sze, ULSI DEVICES, John Wiely & Sons, 2002
- ▶ 國家晶片系統設計中心,Dracula Training Manual, 2002.07
- 中央大學電機工程學系,鄭國興老師
- Irwin&Vijay, PSU
- ➤ Digital Integrated Circuits<sup>2nd</sup>
- 南台科技大學電子系,楊博惠老師
- Maitham Shams (CANADA)
- paulo moreira Switzerland
- http://jas.eng.buffalo.edu/index.html

回本節首頁