

非线性规划概述 Nonlinear Programming

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- 非线性规划问题
- 非线性规划的基本概念
- ▶ 非线性规划问题的一般求解框架

非线性规划问题

min
$$z = f(x)$$

 $s.t$ $x \in D, D \subset R^n$

 $x_i \in I$

min
$$z = f(x)$$
 min $z = f(x)$
s.t. $A^{(1)}x \le b^{(1)}$ s.t. $A^{(1)}x = b^{(1)}$
 $A^{(2)}x = b^{(2)}$ $x_j \in I$

min
$$z = f(x)$$

s.t. $g_i(x) \le 0$
 $h_i(x) = 0$

f(x), g_i(x), h_i(x)**至少有** 一个是非线性函数

例: 曲线的最优拟合

▶ 理论分析表明,物理量 y与 另外 n个物理量 x₁, ..., x_n之 间具有如下函数关系:

$$y = g(x_1, x_2, ..., x_n; c_1, c_2, ..., c_k)$$

其中c₁, ..., c_k为k个未知物理常数或参数。现在为了获得完整的上述函数关系,进行了m次实验,得到以下观测结果:

$$(x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)}) \rightarrow y^{(i)}, i = 1, 2, ..., m$$

▶ 问题:如何由上述实验结果确定出 c_1 ,..., c_k 的最优估计?

非线性规划:例子

$$s.t. \quad (c_1, c_2, ..., c_k) \in D$$

 $\min_{c_1, c_2, \dots, c_k, \varepsilon} \varepsilon$ 模型二(模型一的转化)

$$\left| s.t. \right| \left| y^{(i)} - g(x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)}; c_1, c_2, ..., c_k) \right| \le \varepsilon;$$
 $i = 1, 2, \cdots, m$ 目标函数与约束

$$\left(c_1, c_2, ..., c_k\right) \in D$$

的灵活建模

$$\lim_{c_1, c_2, \dots, c_k} \sum_{i=1}^m \left(y^{(i)} - g(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}; c_1, c_2, \dots, c_k) \right)^2$$

$$s.t.$$
 $(c_1, c_2, ..., c_k) \in D$ 模型三

参数的自然约束

应用最广泛的 最小二乘模型

非线性规划的基本概念

$$\min \qquad z = f(x)$$

目标函数

s.t
$$x \in D, D \subset \mathbb{R}^n$$

可行域

无约束优化

 $\min z = f(x)$

min

$$z = f(x)$$

s.t
$$x \in \mathbb{R}^n$$

s.t
$$x \in D, D \subset R^n$$

完整形式:

(NLP)

min

$$z = f(x)$$

s.t.
$$g_i(x) \le 0, i = 1, 2, ...p$$

$$h_i(x) = 0, j = 1, 2, ...q$$

$$x \in R$$

定义一

▶ 定义1: 对于(NLP), 若 $\chi^* \in D$, 满足

$$\forall x \in D \Longrightarrow f(x^*) \le f(x)$$

则称x*是该(NLP)的一个全局最优解. 并称f(x*)为该 (NLP)问题的全局最优值. 定义2: 对于(NLP), 若 $x^* \in D$, 且存在 $\delta > 0$ 使得:

$$\forall x \in D, ||x - x^*|| < \delta \Longrightarrow f(x^*) \le f(x)$$

则称x*是该(NLP)的一个局部极优解. 并称f(x*)为该 (NLP)问题的局部极优值.

非线性规划问题的求解

无约束优化

Euler, 1755

$$\min f(x_1,\ldots,x_n)$$

$$\nabla f(\boldsymbol{x}) = 0$$

约束优化

Lagrange, 1797

$$\min \ f(x_1,\ldots,x_n)$$

s.t.
$$g_k(x_1,...,x_n) = 0$$
 $k = 1,...,m$

求解非线性方程组

求解非线性规划

求解非线性规划问题的一般框架

华罗庚

瞎子爬山法

搜索步长

求解非线性规划问题的一般框架

步骤	内容		
1	产生初始点: $x^0 \in D 或 x^0 \in R^n, k = 0$		
2	由 x^k 产生 x^{k+1} , $k->k+1$ 一般 $x^{k+1}=x^k+t_kp^k$ 构造 p^k (搜索方向) 确定恰当的 t_k (一维搜索	大部分算论的核心	- * - *
3	判断 <i>x^k</i> 是否可接受, 是->停 否->2		

定义二

- ▶ 定义3: $f: R^n \to R, \overline{x} \in R^n, p \in R^n, p \neq 0$. 若存在 $\delta > 0$ 使 $\forall t \in (0, \delta)$ 有 $f(\overline{x} + tp) < f(\overline{x})$,则向量p是f(x)在 \overline{x} 的下降方向.
- ▶ 定义4: 对于一个NLP问题, 设*D*为其可行域. $\bar{x} \in D$, 且 $p \in R^n$, $p \neq 0$. 若存在 t > 0 使得 $\bar{x} + tp \in D$.则 p是点 \bar{x} 的一个可行方向.
- ▶ 定义5:对于一个NLP问题, 设*D*为其可行域. $\bar{x} \in D$, 且 $p \in R^n$, $p \neq 0$. 若存在 $\delta > 0$ 使得 $\forall t \in [0, \delta]$, $\bar{x} + tp \in D$ 则p是点 \bar{x} 的一个可行下降方向.

一般算法构造的搜索方向是一个 *可行下降* 方向

问题

- ▶ (局部)最优解具有那些性质?怎样判定?
- 什么样的全局性质可以使得寻找全局最优解比较容易?
- ▶ 怎样构造(可行的)下降方向?
- ▶怎样确定步长?
- ▶ 怎样确定初始点?
- ▶ 算法的终止准则?

