Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Letný semester 2016/2017

Obsah

1.	O logike a tomto kurze Syntax výrokovej logiky	2
1.	O logike	2
2.	O kurze 2.1. Sylabus	8 8 9
3.	Výroková logika 3.1. Opakovanie: Výroková logika v prirodzenom jazyku 3.2. Syntax	9 9 11
II.	. Sémantika výrokovej logiky 3.3. Sémantika	

I. prednáška

O logike a tomto kurze Syntax výrokovej logiky

20. februára 2017

1. O logike

- I.1 Čo je logika _____
 - Logika je vedná disciplína, ktorá študuje formy usudzovania
 - filozofická, matematická, informatická, výpočtová
 - Tri dôležité predmety záujmu:

 ${\bf Jazyk}\,$ zápis pozorovaní, definície pojmov, formulovanie teórií $Syntax\,\, {\rm pravidl\acute{a}}\,\, z\acute{\rm apisu}\,\, {\rm tvrden\acute{i}}$

Sémantika význam tvrdení

Usudzovanie (inferencia) odvodenie nových dôsledkov z doterajších poznatkov

Dôkaz presvedčenie ostatných o správnosti záverov usudzovania

- I.2 Poznatky a teórie
 - V logike slúži jazyk na zápis tvrdení, ktoré vyjadrujú informácie poznatky o svete
 - Súbor poznatkov, ktoré považujeme za pravdivé, tvorí teóriu
 - Z teórie môžeme odvodiť logické dôsledky, ktoré nie sú priamo jej súčasťou, ale logicky z nej vyplývajú

Príklad 1 (Party time!). Máme troch nových známych — Kim, Jima a Sáru. Organizujeme párty a chceme na ňu pozvať niektorých z nich. Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

- (P1) Sára nepôjde na párty, ak pôjde Kim.
- (P2) Jim pôjde na párty, len ak pôjde Kim.
- (P3) Sára nepôjde bez Jima.

I.3	Možné svety a logické	dôsledky	

- Tvrdenie rozdeľuje množinu **možných stavov sveta/svetov** na tie, v ktorých je pravdivé (**modely**), a tie, v ktorých je nepravdivé
- Teória môže mať viacero modelov (ale aj žiaden)
 Príklad 2. Vymenujme možné stavy prítomnosti Kim, Jima a Sáry na párty a zistime, v ktorých sú pravdivé jednotlivé tvrdenia našej teórie a celá teória.
- Logickými dôsledkami teórie sú tvrdenia, ktoré sú pravdivé vo všetkých modeloch teórie (svetoch, v ktorých je pravdivá)

Príklad 3. Logickým dôsledkom teórie (P1), (P2), (P3) je napríklad: Sára nepôjde na párty.

I.4	Logické	usudzovanie	

- Vymenovanie všetkých svetov je často nepraktické až nemožné
- Logické dôsledky môžeme odvodzovať **usudzovaním** (inferovať)
- Pri odvodení vychádzame z premís (predpokladov) a postupnosťou úsudkov dospievame k záverom
 - Príklad 4. Vieme, že ak na párty pôjde Kim, tak nepôjde Sára (P1), a že ak pôjde Jim, tak pôjde Kim (P2). Predpokladajme, že na párty pôjde Jim. Potom podľa (P2) pôjde aj Kim. Potom podľa (P1) nepôjde Sára. Teda: Ak na párty pôjde Jim, nepôjde Sára.
- Ak sú všetky úsudky v odvodení správne, záver je logickým dôsledkom premís a odvodenie je jeho dôkazom z premís

• Už Aristoteles zistil, že ich formy, bez ohľadu :	=	dky sa dajú rozpoznať podľa	
Ak pôjde Jim, tak pôjd		Ak je dilítium dekryštalizované, tak antihmota neprúdi.	
Pôjde Jim.		Dilítium je dekryštalizované.	
Pôjde Kim.	A	Antihmota neprúdi.	
• Usudzovacie (inferemou tvrdení, s ktorým	, –	dlo je <i>vzor</i> úsudkov daný for-	
$\begin{array}{c} \operatorname{Ak}A\\ A.\end{array}$	$\left. \begin{array}{c} \text{, tak } B. \end{array} \right\} \text{vz}$	zory premís	
\overline{B} .	VZ	zor záveru	
		ých premís pravdivý záver	
• Dokaz je teda postup pravidiel (najlepšie sa	_	í korektných usudzovacích pre čitateľa dôkazu)	
• Dedukcia — usudzova	nie iba pomoc	cou korektných pravidiel	
I.6 Nededuktívne pravidlá Niektoré nie korektné usud	lzovacie pravid	dlá sú prakticky užitočné:	
Indukcia – zovšeobecnenie	: :		
Videl som tisíc havrano Žiaden nebol inej farby		Platí aj pre červené Fabie?	
Všetky havrany sú čieri	ne.	0.1	
Abdukcia – odvodzovanie		in z následkov:	
Ak je batéria vybitá, at Ak je nádrž prázdna, at Nádrž nie je prázdna. Auto nenaštartovalo. Batéria je vybitá.	ıto nenaštartuje	e.	
v v			

Usudzovacie pravidlá, korektnosť, dedukcia

I.5

Usudzovanie na základe analógie (podobnosti)

Venuša má atmosféru, podobne ako Zem.	A čo: Atmosféra
Na Zemi sa prejavuje skleníkový efekt.	Zeme je dýchateľná?
Na Venuši sa prejavuje skleníkový efekt.	zeme je dychatema:

I.7 Nededuktívne pravidlá

- Závery nededuktívnych pravidiel treba považovať za hypotézy plauzibilné, ale neoverené tvrdenia
- Hypotézy je nutné preverovať!
- Niektoré špeciálne prípady sú správne, napríklad matematická indukcia
- Usudzovanie s nededuktívnymi pravidlami je teda hypotetické
- Hypotetické usudzovanie je dôležité pre umelú inteligenciu
 - Reprezentácia znalostí a inferencia (magisterský predmet)
- Na tomto predmete sa budeme zaoberať iba dedukciou

I.8 Formalizácia _____

- Prirodzený jazyk je problematický tvrdenia môžu byť viacznačné, ťažko zrozumiteľné, používať obraty a ustálené výrazy so špeciálnym významom
 - Mišo je myš.
 - Videl som dievča v sále s ďalekohľadom.
 - Vlastníci bytov a nebytových priestorov v dome prijímajú rozhodnutia na schôdzi vlastníkov dvojtretinovou väčšinou hlasov všetkých vlastníkov bytov a nebytových priestorov v dome, ak hlasujú o zmluve o úvere a o každom dodatku k nej, o zmluve o ozabezpečení úveru a o každom dodatku k nej, o zmluve o nájme a kúpe veci, ktorú vlastníci bytov a nebytových priestorov v dome užívajú s právom jej kúpy po uplynutí dojednaného času užívania a o každom dodatku k nej, o zmluve o vstavbe alebo nadstavbe a o každom dodatku k nim, o zmene účelu užívania spoločných častí domu a spoločných zariadení domu a o zmene formy výkonu správy; ak sa rozhoduje o nadstavbe alebo o vstavbe v podkroví alebo povale, vyžaduje sa zároveň súhlas všetkých vlastníkov bytov a nebytových priestorov v dome na najvyššom poschodí. Zákon č. 182/1993 Z. z. SR v znení neskorších predpisov

- Nikto nie je dokonalý.
- Tieto ťažkosti sa obchádzajú použitím formálneho jazyka
- Presne definovaná syntax (pravidlá zápisu tvrdení) a sémantika (význam) – podobne ako programovací jazyk
- Problémy z reálneho sveta opísané v prirodzenom jazyku musíme najprv formalizovať, a potom naň môžeme použiť logický aparát

I.9	Formalizácia		

• S formalizáciou ste sa už stretli pri riešení slovných úloh

Karol je trikrát starší ako Mária. Súčet Karolovho a Mári
inho veku je 12 rokov. Koľko rokov majú Karol a Mária? $k = 3 \cdot m$
k + m = 12

- Stretli ste sa už aj s formálnym jazykom výrokovej logiky
 Príklad 5. Sformalizujme náš párty príklad:
 - (P0) Niekto z trojice Kim, Jim, Sára pôjde na párty.
 - (P1) Sára nepôjde na párty, ak pôjde Kim.
 - (P2) Jim pôjde na párty, len ak pôjde Kim.
 - (P3) Sára nepôjde bez Jima.

I.10 Výpočtová logika — automatizácia usudzovania	
---	--

- Pre niektoré logiky sú známe $\mathit{kalkuly}-$ množiny usudzovacích pravidiel, ktoré sú
 - korektné odvodzujú iba logické dôsledky
 úplné umožňujú odvodiť všetky logické dôsledky
- Základná idea výpočtovej logiky:

- Napíšeme program, ktorý systematicky aplikuje pravidlá logického kalkulu, kým neodvodí želaný dôsledok, alebo nevyčerpá všetky možnosti (nie vždy je ich konečne veľa!)
- Skutočnosť je komplikovanejšia, ale existuje množstvo automatických usudzovacích systémov
- Jeden z prienikov informatiky a logiky

I.11 Výpočtová logika — aplikácie ______

- Overovanie, dopĺňanie, hľadanie dôkazov matematických viet
- Špecifikácia a verifikácia hardvérových obvodov, programov, komunikačných protokolov
 - Špecifikácia a verifikácia programov (3. ročník)
 - Formálne metódy tvorby softvéru (magisterský)
- Logické programovanie
 - Programovacie paradigmy (3. ročník)
 - Výpočtová logika (magisterský)
 - Logické programovanie ASP (magisterský)
- Databázy pohľady, integritné obmedzenia, optimalizácia dopytov
 - Deduktívne databázy (3. ročník)
- Sémantický web a integrácia dát z rôznych zdrojov
 - Reprezentácia znalostí a inferencia (magisterský)
 - Ontológie a znalostné inžinierstvo (magisterský)
- Analýza zákonov, regulácií, zmlúv

I.12

Spomeňte si I.1

Tvrdenie, ktoré je pravdivé vo všetkých svetoch, v ktorých je pravdivá teória, je jej

A: premisou, C: záverom,

B: logickým dôsledkom, D: implikáciou.

Spomeňte si I.2

Účelom dôkazu je presvedčiť ostatných o správnosti nášho úsudku. Preto musí pozostávať z

Spomeňte si I.3

Usudzovanie, pri ktorom používame iba také pravidlá, ktoré z pravdivých premís vždy odvodia pravdivé závery, sa nazýva:

A: abdukcia, C: formalizácia, E: indukcia,

B: interpretácia, D: dedukcia, F: inferencia.

2. O tomto kurze

2.1. Sylabus

I.13 Čím sa budeme zaoberať v tomto kurze

Teoreticky • Jazykmi výrokovej a predikátovej logiky, ich syntaxou a sémantikou

- Korektnosťou usudzovacích pravidiel
- Korektnosťou a úplnosťou logických kalkulov
- Automatizovateľnými kalkulmi

Prakticky • Vyjadrovaním problémov v jazyku logiky

- Automatizovaním riešenia problémov použitím SAT-solverov
- Manipuláciou symbolických stromových štruktúr (výrazov formúl a termov)
- Programovaním vlastných jednoduchých automatických dokazovačov

Filozoficky • Zamýšľanými a nezamýšľanými okolnosťami platnosti tvrdení

• Obmedzeniami vyjadrovania a usudzovania

2.2. Organizácia kurzu

I.14 Organizácia kurzu — rozvrh, kontakty, pravidlá — https://dai.fmph.uniba.sk/w/Course:Mathematics_4

3. Výroková logika

3.1. Opakovanie: Výroková logika v prirodzenom jazyku

I.15 Opakovanie: Výroková logika v prirodzenom jazyku _______ $V\acute{y}rok$ – veta, o pravdivosti ktorej má zmysel uvažovať (zväčša oznamovacia).

Príklady 6.

- Miro je v posluchárni F1.
- Slnečná sústava má deviatu planétu.
- Mama upiekla koláč, ale Editka dostala z matematiky štvorku.
- Niekto zhasol.

Negatívne príklady

- Toto je čudné.
- Píšte všetci modrým perom!
- Prečo je obloha modrá?

Výrokom priraďujeme pravdivostné hodnoty

I.16 Opakovanie: Výroková logika v prirodzenom jazyku _____ Operácie s výrokmi – *logické spojky*

- Vytvárajú nové výroky, zložené (súvetia).
- Majú povahu funkcií na pravdivostných hodnotách spájaných výrokov (boolovských funkcií), teda pravdivostná hodnota zloženého výroku závisí iba od pravdivostných hodnôt podvýrokov.

Príklad 7. Negácia, konjunkcia, disjunkcia, implikácia, ekvivalencia, ...

Negatívny príklad

Spojku "pretože" nepovažujeme za $logick\acute{u}$ spojku.

Pravdivostná hodnota výroku "Emka ochorela, pretože zjedla babôčku" sa nedá určiť funkciou na pravdivostných hodnotách spájaných výrokov.

I.17 (Meta) matematika výrokovej logiky

- Stredoškolský prístup príliš neoddeľuje samotný jazyk výrokovej logiky od jeho významu a vlastne ani jednu stránku jasne nedefinuje
- V tomto kurze sa budeme snažiť byť presní
- Pojmy z výrokovej logiky budeme *definovať matematicky* ako množiny, postupnosti, funkcie, atď.
- Na praktických cvičeniach veľa pojmov zadefinujete programátorsky: ako refazce, slovníky, triedy a ich metódy
- Budeme sa pokúšať dokazovať ich vlastnosti
- Budeme teda hovoriť *o formálnej logike* pomocou matematiky, ktorá je ale sama postavená na *logike v prirodzenom jazyku*
- Matematickej logike sa preto hovorí aj meta matematika, matematika o logike (a v konečnom dôsledku aj o matematike)

3.2. Syntax výrokovej logiky

I.18 Syntax výrokovej logiky

- Syntax sú pravidlá budovania viet v jazyku
- Pri formálnych jazykoch sú popísané matematicky
- Nedajte sa tým odradiť, nie je to oveľa iné ako programovanie

I.19 Symboly jazyka výrokovej logiky

Definícia 8 (podľa [Smullyan, 1979, I.1.1], rovnako ďalšie). *Symbolmi jazyka výrokovej logiky* sú:

- $v\acute{y}rokov\acute{e}$ $premenn\acute{e}$ z nejakej nekonečnej spočítateľnej množiny $\mathcal{V} = \{p_1, p_2, \ldots, p_n, \ldots\}$, ktorej prvkami nie sú symboly \neg , \wedge , \vee , \rightarrow , (a), ani jej prvky tieto symboly neobsahujú;
- $logick\acute{e}$ symboly ($logick\acute{e}$ spojky): \neg , \wedge , \vee , \rightarrow (nazývané, v uvedenom poradí, "nie", "a", "alebo", "ak . . . , tak . . . ");
- pomocné symboly: (a) (ľavá zátvorka a pravá zátvorka).

Spojka – je *unárna* (má jeden argument).

Spojky \wedge , \vee , \rightarrow sú binárne (majú dva argumenty).

I.20 Symboly, výrokové premenné

Symbol je základný pojem, ktorý matematicky nedefinujeme.

Je o čosi všeobecnejší ako pojem znak.

Príklad 9. Ako množinu výrokových premenných \mathcal{V} môžeme zobrať všetky slová (teda konečné postupnosti) nad slovenskou abecedou a číslicami. Výrokovými premennými potom sú aj Jim, Kim, Sára.

Dohoda

Výrokové premenné budeme označovať písmenami $p, q, \ldots,$ podľa potreby aj s dolnými indexmi.

Výrokové premenné formalizujú jednoduché výroky.

Definícia 10. Formulou výrokovej logiky (skrátene formulou) nad množinou výrokových premenných $\mathcal V$ je postupnosť symbolov vytvorená nasledovnými pravidlami:

- Každá výroková premenná je formulou (voláme ju atomická f.).
- Ak A je formulou, tak aj $\neg A$ je formulou (negácia formuly A).
- Ak A a B sú formulami, tak aj $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú formulami (konjunkcia, disjunkcia, implikácia formúl <math>A a B).

Nič iné nie je formulou.

Dohoda

Formuly označujeme veľkými písmenami A, B, C, X, Y, Z, podľa potreby aj s dolnými indexmi. Množinu všetkých formúl označíme \mathcal{E} .

Formula je matematickou formalizáciou zloženého výroku.

II. prednáška

Sémantika výrokovej logiky

27. februára 2017

II.1	Alternatívna	definícia	formuly	

Definícia 11. Vytvárajúcou postupnosťou je ľubovoľná konečná postupnosť, ktorej každý člen je výroková premenná, alebo má tvar $\neg A$, pričom A je nejaký predchádzajúci člen postupnosti, alebo má jeden z tvarov $(A \wedge B)$, $(A \vee B)$, $(A \to B)$, kde A a B sú nejaké predchádzajúce členy postupnosti.

Definícia 12. Postupnosť symbolov A je formula, ak existuje vytvárajúca postupnosť, ktorej posledným prvkom je A. Túto postupnosť voláme tiež vytvárajúca postupnosť pre A.

Príklad 13. Nájdime vytvárajúcu postupnosť pre formulu $(\neg p \rightarrow (p \lor q))$.

II.2

Spomeňte si II.1

Ktoré z nasledujúcich postupností symbolov sú formulami nad množinou výrokových premenných $V = \{p, q, r, \ldots\}$?

A:
$$(p \lor \neg q \lor \neg r)$$

A:
$$(p \vee \neg q \vee \neg r)$$
, B: $(p \wedge \neg (q \rightarrow r))$, C: $\neg (\neg (\neg p))$.

C:
$$\neg(\neg(\neg p))$$

II.3Jednoznačnosť rozkladu formúl výrokovej logiky

Tvrdenie 14 (o jednoznačnosti rozkladu). Pre každú formulu X platí práve jedna z nasledujúcich možností:

- X je výroková premenná.
- Existuje práve jedna formula A taká, že $X = \neg A$.

• Existujú práve jedna dvojica formúl A, B a jedna spojka $b \in \{\land, \lor, \rightarrow \}$ také, že X = (A b B).

Príklad 15. Jednoznačnosť rozkladu by pri neopatrnej definícii formuly nemusela platiť. Nájdime takú definíciu "formuly" a "formulu", ktorá sa nedá jednoznačne rozložiť:

"Formulou" výrokovej logiky nad mn. výrok. prem. $\mathcal V$ je postupnosť symbolov vytvorená podľa nasledovných pravidiel: . . .

|--|

Definícia 16. Vytvárajúci strom pre formulu X je binárny strom T obsahujúci v každom vrchole formulu, pričom platí:

- v koreni T je formula X,
- ak vrchol obsahuje formulu $\neg A$, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu $(A\ b\ B)$, kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce výrokové premenné sú listami.

Príklad 17. Nájdime vytvárajúci strom pre formulu $((p \land q) \rightarrow ((\neg p \lor \neg \neg q) \lor (q \rightarrow \neg p))).$

II.5	Podformuly	

Definícia 18 (Priama podformula).

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú formuly A ($lav\acute{a}$ priama podformula) a B ($prav\acute{a}$ priama podformula).

Definícia 19 (Podformula). Vzťah *byť podformulou* je najmenšia relácia na formulách spĺňajúca:

- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Priklad 20. Vymenujme priame podformuly a podformuly $((p \lor \neg q) \land \neg (q \to p))$.

Spomeňte si II.2

Sú nasledujúce tvrdenia pravdivé? Odpovedzte áno/nie.

- a) Vďaka jednoznačnosti rozkladu má každá formula práve jednu priamu podformulu.
- b) Postorderový výpis vytvárajúceho stromu formuly X je vytvárajúcou postupnosťou tejto formuly.

II.7 Stupeň formuly

Definicia 21 (Stupeň formuly [deg(X)]).

- Výroková premenná je stupňa 0.
- Ak A je formula stupňa n, tak $\neg A$ je stupňa n+1.
- Ak A je formula stupňa n_1 a B je formula stupňa n_2 , tak $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú stupňa $n_1 + n_2 + 1$.

Definícia 21 (Stupeň formuly [deg(X)] stručne, symbolicky).

- deg(p) = 0 pre každú $p \in \mathcal{V}$,
- $deg(\neg A) = deg(A) + 1$ pre každú $A \in \mathcal{E}$,
- $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) = \deg(A) + \deg(B) + 1$ pre všetky $A, B \in \mathcal{E}$.

Príklad 22. Aký je stupeň formuly $((p \lor \neg q) \land \neg (q \to p))$?

II.8 Indukcia na stupeň formuly _____

Veta 23 (Princíp indukcie na stupeň formuly). Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}$). Ak platí súčasne

báza indukcie: každá formula stupňa 0 má vlastnosť P,

indukčný krok: $pre\ každú\ formulu\ X\ z\ predpokladu$, že všetky formuly menšieho stupňa ako $\deg(X)\ majú\ vlastnosf\ P$, vyplýva, že aj $X\ m\acute{a}\ vlastnosf\ P$,

tak všetky formuly majú vlastnosť P ($P = \mathcal{E}$).

Príklad 24. Dokážme:

Množina všetkých formúl vo vytvárajúcom strome formuly X je rovná zjednoteniu množiny všetkých podformúl X s $\{X\}$.

Vyskúšajte si II.3

Stupeň formuly $((\neg p \to q) \land q)$ je

II.10 Množina výrokových premenných formuly _____

Definícia 25 (Množina výrok. prem. formuly [vars(X)]).

- Ak p je výroková premenná, množinou výrokových premenných atomickej formuly p je $\{p\}$.
- Ak V je množina výrokových premenných formuly A, tak V je tiež množinou výrok. prem. formuly $\neg A$.
- Ak V_1 je množina výrok. prem. formuly A a V_2 je množina výrok. prem. formuly B, tak $V_1 \cup V_2$ je množinou výrok. prem. formúl $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$.

Definícia 25 (vars(X) stručnejšie).

- Ak p je výroková premenná, tak vars $(p) = \{p\}.$
- Ak A a B sú formuly, tak $vars(\neg A) = vars(A)$ a $vars((A \land B)) = vars((A \lor B)) = vars((A \to B)) = vars(A) \cup vars(B)$.

3.3. Sémantika výrokovej logiky

Sémantika výrokovej logiky II.11

- Syntax jazyka výrokovej logiky hovorí iba tom, ako sa zapisujú formuly ako postupnosti symbolov.
- Samé o sebe tieto postupnosti nemajú žiaden ďalší význam.
- Ten im dáva *sémantika* jazyka výrokovej logiky.
- Za význam výrokov považujeme ich pravdivostnú hodnotu.

II.12 Ohodnotenie výrokových premenných

- Výrokové premenné predstavujú jednoduché výroky.
- Ich *význam* (pravdivosť) nie je pevne daný.
- Môže závisieť od situácie, stavu sveta (Sára ide na párty, svieti slnko, zobral som si dáždnik, ...).
- Ako vieme programátorsky popísať pravdivosť výrokových premenných v nejakom stave sveta? A matematicky?

Definícia 26. Nech (t, f) je usporiadaná dvojica pravdivostných hodnôt, $t \neq f$, pričom hodnota t predstavuje pravdu a f nepravdu.

Ohodnotením množiny výrokových premenných V nazveme každé zobrazenie v množiny \mathcal{V} do množiny $\{t, f\}$ (teda každú funkciu $v \colon \mathcal{V} \to \mathcal{V}$ $\{t, f\}$).

Výroková premenná p je pravdivá pri ohodnotení v, ak v(p) = t. Výroková premenná p je nepravdivá pri ohodnotení v, ak v(p) = f.

II.13 Ohodnotenie výrokových premenných

Príklad 27. Zoberme $t \neq f$ (napr. t = 1, f = 0), $\mathcal{V} = \{a, \acute{a}, \ddot{a}, \dots, \check{z}, 0, \dots, 9, _\}^+$. Dnešné ráno by popísalo ohodnotenie v_1 množiny \mathcal{V} , kde (okrem iného):

$$v_1(\text{svieti_slnko}) = t$$
 $v_1(\text{zobral_som_si_dáždnik}) = f$

Minulotýždňové ráno opisuje ohodnotenie v_2 , kde okrem iného

$$v_2(\text{svieti_slnko}) = f$$
 $v_2(\text{zobral_som_si_dáždnik}) = f$

Jednu zo situácií v probléme pozývania kamarátov na párty by popísalo ohodnotenie, v ktorom (okrem iného):

$$v_3(\text{sara}) = t$$
 $v_3(\text{kim}) = f$ $v_3(\text{jim}) = t$

Prečo "okrem iného"?

II.14 Spĺňanie výrokových formúl

- Na formulu sa dá pozerať ako na podmienku, ktorú stav sveta buď $sp\acute{l}ňa$ (je v tomto stave pravdivá) alebo $nesp\acute{l}ňa$ (je v ňom nepravdivá).
- Z pravdivostného ohodnotenia výrokových premenných v nejakom stave sveta, vieme *jednoznačne* povedať, ktoré formuly sú v tomto stave splnené.

Príklad 28. Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(\text{kim}) = t$$
 $v_3(\text{jim}) = f$ $v_3(\text{sara}) = t$.

Spĺňa svet s týmto ohodnotením formulu ($\neg jim \rightarrow \neg sara$)? Zoberieme vytvárajúcu postupnosť, prejdeme ju zľava doprava:

Formulu jim sara
$$\neg \text{jim}$$
 $\neg \text{sara}$ $(\neg \text{jim} \rightarrow \neg \text{sara})$ ohodn. v_3 nespĺňa spĺňa spĺňa nespĺňa nespĺňa

II.15 Spĺňanie výrokových formúl — vytvárajúci strom — — — — — — — — — Príklad 28 (pokračovanie).

$$v_3(\text{kim}) = t$$
 $v_3(\text{jim}) = f$ $v_3(\text{sara}) = t$.

Iná možnosť je použiť vytvárajúci strom:

II.16 Spĺňanie výrokových formúl – program

Proces zistovania, či ohodnotenie spĺňa formulu, vieme naprogramovať:

def satisfies(v, A): ...

- Veľmi podobne vieme zadefinovať splnenie matematicky.
- II.17 Spĺňanie výrokových formúl definícia

Definícia 29. Nech \mathcal{V} je množina výrokových premenných. Nech v je ohodnotenie množiny \mathcal{V} . Pre všetky výrokové premenné p z \mathcal{V} a všetky formuly A, B nad \mathcal{V} definujeme:

- v spĺňa atomickú formulu p vtt v(p) = t;
- v spĺňa formulu $\neg A$ vtt v nespĺňa A;
- v spĺňa formulu $(A \wedge B)$ vtt v spĺňa A a v spĺňa B;
- v spĺňa formulu $(A \vee B)$ vtt v spĺňa A alebo v spĺňa B;
- v spĺňa formulu $(A \to B)$ vtt v nespĺňa A alebo v spĺňa B.

Dohoda

- Skratka vtt znamená vtedy a len vtedy, keď.
- Vzťah ohodnotenie v spĺňa formulu X skrátene zapisujeme $v \models X$, ohodnotenie v nespĺňa formulu X zapisujeme $v \not\models X$.
- Namiesto v (ne)spĺňa X hovoríme aj X je (ne)pravdivá pri v.

II.18 Spĺňanie výrokových formúl – príklad

Príklad 30. Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(\text{kim}) = t$$
 $v_3(\text{jim}) = f$ $v_3(\text{sara}) = t$.

Zistime, ktoré z formúl

$$\begin{array}{c} ((kim \vee jim) \vee sara) \\ (kim \rightarrow \neg sara) & (jim \rightarrow kim) & (\neg jim \rightarrow \neg sara) \end{array}$$

ohodnotenie v_3 spĺňa a ktoré nespĺňa.

$\deg(X)$	v_3 spĺňa X	v_3 nespĺňa X
0	kim, sara	jim
1	$\neg \text{jim}, (\text{kim} \lor \text{jim}), (\text{jim} \to \text{kim})$	$\neg sara$
2	$((kim \lor jim) \lor sara)$	$(kim \rightarrow \neg sara)$
3		$(\neg jim \rightarrow \neg sara)$

II.19 Spĺňanie výrokových formúl

Dohoda

V ďalších definíciách a tvrdeniach predpokladáme, že sme si pevne zvolili nejakú množinu výrokových premenných \mathcal{V} a hodnoty t, f.

"Formulou" rozumieme formulu nad množinou výrok. prem. \mathcal{V} .

"Ohodnotením" rozumieme ohodnotenie množiny výrok. prem. \mathcal{V} .

Tvrdenie 31. Splnenie výrokovej formuly pri ohodnotení výrokových premenných závisí iba od ohodnotenia (konečného počtu) výrokových premenných, ktoré sa v nej vyskytujú.

Presnejšie: Pre každú formulu X a všetky ohodnotenia v_1 a v_2 , ktoré zhodujú na množine výrokových premenných vyskytujúcich sa v X, platí $v_1 \models X$ vtt $v_2 \models X$.

II.20 Spĺňanie výrokových formúl

 $D\hat{o}kaz$. Indukciou na stupeň formuly X.

Báza: Nech X je stupňa 0. Podľa vety o jednoznačnosti rozkladu a definície stupňa musí byť X=p pre nejakú výrokovú premennú. Zoberme

ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X, teda na p. Podľa definície spĺňania $v_1 \models p$ vtt $v_1(p) = t$ vtt $v_2(p) = t$ vtt $v_2 \models p$.

Krok: Nech X je stupňa n > 0 a tvrdenie platí pre všetky formuly stupňa nižšieho ako n (indukčný predpoklad). Zoberme ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X. Podľa definície stupňa a jednoznačnosti rozkladu nastáva práve jeden z prípadov:

- $X = \neg A$ pre práve jednu formulu A. Pretože $\deg(X) = \deg(A) + 1 > \deg(A)$, podľa ind. predpokladu tvrdenie platí pre A. Ohodnotenia v_1 a v_2 sa zhodujú na premenných v A (rovnaké ako v X). Preto $v_1 \models A$ vtt $v_2 \models A$, a teda $v_1 \models \neg A$ vtt $v_1 \not\models A$ vtt $v_2 \not\models A$ vtt $v_2 \models \neg A$.
- $X = (A \land B)$ pre práve jednu dvojicu formúl A, B. Pretože $\deg(X) = \deg(A) + \deg(B) + 1 > \deg(A)$ aj $\deg(B)$, podľa ind. predpokladu pre A aj B tvrdenie platí. Podobne pre ďalšie binárne spojky.

3.4. Tautológie, splniteľnosť, ekvivalencia

II.21 Tautológia, (ne)splniteľnosť, falzifikovateľnosť _____

Definícia 32. Formulu X nazveme tautológiou (skrátene $\models X$) vtt je splnená pri každom ohodnotení výrokových premenných.

$$\begin{array}{l} \textit{Priklad 33. } (p \vee \neg p), \ \neg (p \wedge \neg p), \ (\neg \neg p \rightarrow p), \ (p \rightarrow \neg \neg p), \ (p \rightarrow (q \rightarrow p)), \\ ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))), \ ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)) \end{array}$$

Definícia 34. Formulu X nazveme *splniteľnou* vtt je splnená pri aspoň jednom ohodnotení výrokových premenných.

Formulu X nazveme nesplniteľnou vtt nie je splniteľná.

Formulu X nazveme falzifikovateľnou vt
t je nesplnená pri aspoň jednom ohodnotení výrokových premenných.

- Tautológie sú výrokovologické pravdy. Sú zaujímavé najmä pre klasický pohľad na logiku ako skúmanie správneho usudzovania.
- Vo výpočtovej logike je zaujímavá splniteľnosť a konkrétne spĺňajúce ohodnotenia.

_ Obrázok podľa [Papadimitriou, 1994]

Zamyslite sa II.4

Ak formula nie je falzifikovateľná, je:

A: splniteľná, B: nesplniteľná, C: tautológia.

Literatúra

Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.