Løsningsforslag INT010 vår 2011

Oppgave 1

- a) F-test. Testobservator $F = s_1^2 / s_2^2 = 13^2 / 24^2 = 0.29$. Forkastningsområde på 5% signifikansnivå med 7-1 og 8-1 frihetsgrader: $F > F_{0,025,\,6,\,7} = 5,12$ eller $F < 1/F_{0,025,7,6} = 1/5,70 = 0.18$. Aksepter H_0 om lik varians.
- b) H_0 : $\mu_1 \mu_2 = 0$ mot H_1 : $\mu_1 \mu_2 \neq 0$. Testobservator $t = (x_1 x_2) / \sqrt{[s_p^2 (1/n_1 + 1/n_2)]}$. Kritisk grense på 5% nivå $t > t_{0,025, 13} = 2,160$ eller $t < -t_{0,025, 72} = -2,160$.
- c) Forutsetninger: De to populasjonene (kunnskapsnivå) må være uavhengige og normalfordelte. Testobservator t = -2,76 (Minitab) og p-verdi lik 0,016. Forkast H₀ og påstå at kunnskapsnivået er forskjellig i de to næringene.
- d) Hypotesen H₀: μ₁ = μ₂ = μ₃ = μ₄ vs. H₁: minst en av forventningene er forskjellig blir nå testet. Testobservatøren er F = 4,12 og p-verdien er 0,034 (fra Minitab), kan derfor forkaste H₀, og påstå at kunnskapsnivået i de tre næringene er signifikant forskjellig.
- e) H₀: Plasseringen ('location') til de tre populasjonene er den samme vs. H₁: Minst to populasjonsplasseringer er forskjellige. Kritisk grense på 5% nivå H > χ_{α,k-1} = χ_{0,05,2} = 5,99. Behold H₀ pga. p-verdi lik 0,057 eller pga. testobservator H = 5,74. Her er resultatet motsatt i forhold til d). Men ser vi på p-verdiene, ser vi at forskjellen ikke er større enn 0,023, slik at resultatene faktisk ikke er så langt fra hverandre.

Oppgave 2

- a) F-test: F = MSR/MSE = 1346/21,4 = 62,9. Kritisk grense F > F_{0,05, 2,523-2-1} ≈ F_{0,05, 2,∞} = 3. Forkast H₀.
- 95% konfidensintervall for koeffisienten til "Educ": 0,913± 1,96·0,08219 = [0,752;1,074], der vi har benyttet at t_{0.025,x} = 1,96.
- c) Fra resultatet i a) og en rimelig høy R² konkluderer vi med at modellen har en relativt god forklaringsgrad. Koeffisientene til utdanning og arbeidserfaring er begge positive, dette virker rimelig. Dess høyere utdanning og arbeidserfaring, dess høyere lønn.
- d) Grafene på venstre side viser at residualene avviker noe fra normalfordelingen, spesielt med tunge haler i fordelingen. Grafen øverst i høyre hjørne viser residualene plottet mot predikert lønn, og det synes å være problemer med heteroskedastisitet. Vi ser økende varians i residualene. Grafen nederst til høyre antyder ingen autokorrelasjon, noe som er rimelig, da vi ikke har tidsrekkeobservasjoner.
- e) W = n·R² = 523·0,0215 = 11,24. Kritisk grense er χ²_{0,05,5} = 11,1 siden vi har k lik 5 (antall forklaringsvariable). Vi forkaster derfor H₀ (dog med liten margin) og påstår at vi har heteroskedastisitet.
- f) Alle koeffisienter er signifikante (både t-tester og F-tester), og med en relativt høy R² har modellen god forklaringsgrad. Koeffisientene til utdanning og arbeidserfaring er begge

fremdeles positive, dette virker rimelig. Da det nå er gjennomført en semilogaritmisk transformasjon, representerer koeffisientene til utdanning og arbeidserfaring semielastisiteter, dvs. ett års lengre utdanning fører til at lønnen går opp med om lag 9,4%, tilsvarende vil ett års lengre arbeidserfaring føre til at lønnen går opp med om lag 1,0%.

g) Vi ser nå fra plottene på venstre side at residualene er normalfordelt (vesentlig mer så enn i d). Tilsvarende er tyder plottet øverst til høyre på ingen heteroskedastisitet.

Oppgave 3

a) Prisen ved tidspunkt n er prisen ved tidspunkt n-1 multiplisert med (1+a) om oppgang (da er I_n = 1) eller multiplisert med (1-b) om nedgang (da er 1-I_n = 1). Ved så å innsette tilsvarende uttrykk for prisen ved tidspunkt n-1 (P_{n-1}) til tidspunkt 1 (P₁) fremkommer det endelige uttrykket. Siste overgang er kun en enkel omskriving.

b)
$$EP_n = E\left[P_0(1-b)^n\left(\frac{1+a}{1-b}\right)^{x_s}\right] = P_0(1-b)^n E\left[\left(\frac{1+a}{1-b}\right)^{x_0}\right] = P_0(1-b)^n E\left[z^{x_0}\right] = (\text{bruker Hint})$$

$$= P_0(1-b)^n \left[1-p+pz\right]^n = P_0(1-b)^n \left[1-p+p\left(\frac{1+a}{1-b}\right)\right]^n = P_0\left[(1-b)-p(1-b)+p\left(\frac{1+a}{1-b}\right)(1-b)\right]^n$$

$$= P_0\left[1-b-p-pb+p+ap\right]^n = P_0\left(1-b(1-p)+ap\right)^n \quad \text{q.e.d.}$$

c)
$$EP_n = P_0 \cdot (1-0,1) \cdot (1-0,4) + 0,2 \cdot 0,4)^n = P_0 \cdot 1,02^n$$

$$EP_2 = P_0 \cdot 1,0404$$

 $EP_{10} = P_0 \cdot 1,219$