Problem statement

We aim to understand which demographic and work-related factors are associated with higher income in the Adult Income dataset. Specifically, we will explore how variables such as age, education, occupation, work hours, marital status, and capital gains/losses relate to the probability that an individual's annual income exceeds \$50K.

Hypothesis

- H1 (Education): Individuals with higher education-num have a higher probability of income == >50K than those with lower education-num.
 - H0: Mean high-income rate is equal across education levels.
 - HA: Mean high-income rate increases with education level.
- H2 (Work hours): hours-per-week is positively associated with >50K income.
 - H0: Mean hours are equal between <=50K and >50K.
 - HA: Mean hours are higher in the >50K group.
- H3 (Marital status): Being married (e.g., Married-civ-spouse) is associated with a higher > 50K rate compared with non-married categories.
 - H0: High-income rate is independent of marital status.
 - HA: High-income rate differs by marital status (expected higher for married).
- H4 (Occupation): occupation groups differ in high-income rates.
 - H0: High-income rate is equal across occupations.
 - HA: At least one occupation has a different high-income rate.
- H5 (Capital gains): Positive capital-gain is associated with higher odds of >50K.
 - H0: High-income rate is independent of having any capital gains.
 - HA: High-income rate is higher when capital-gain > 0.

```
In [ ]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
```

Pandas: 2.3.0

```
In [4]: CSV_PATH = r"adult_income.csv"
df = pd.read_csv(CSV_PATH)
```

```
print("Shape:", df.shape)
df.head()
```

Shape: (32561, 15)

Out[4]:

```
education-
                                                      marital-
   age workclass
                    fnlwgt education
                                                                 occupation relationship
                                                                                             race
                                                                                                       sex
                                                        status
                                               num
                                                        Never-
                                                                      Adm-
                                                                                   Not-in-
0
                                                                                            White
    39
         State-gov
                     77516
                              Bachelors
                                                  13
                                                                                                     Male
                                                       married
                                                                     clerical
                                                                                    family
                                                      Married-
                                                                       Exec-
         Self-emp-
1
    50
                     83311
                              Bachelors
                                                                                 Husband White
                                                  13
                                                           civ-
                                                                                                     Male
           not-inc
                                                                 managerial
                                                        spouse
                                                                  Handlers-
                                                                                   Not-in-
            Private 215646
2
    38
                               HS-grad
                                                   9 Divorced
                                                                                            White
                                                                                                     Male
                                                                    cleaners
                                                                                    family
                                                      Married-
                                                                  Handlers-
3
    53
            Private 234721
                                   11th
                                                   7
                                                           civ-
                                                                                 Husband
                                                                                            Black
                                                                                                     Male
                                                                    cleaners
                                                        spouse
                                                      Married-
                                                                       Prof-
    28
            Private 338409
                              Bachelors
                                                  13
                                                                                     Wife
                                                                                            Black Female
                                                           civ-
                                                                   specialty
                                                        spouse
```

```
In []: df.info()

#Numeric summary
df.describe(include=[np.number])

#Categorical peek: top categories for a few columns
cat_cols = df.select_dtypes(include=["object"]).columns.tolist()
{c: df[c].value_counts().head(5) for c in cat_cols[:8]}
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype	
0	age	32561 non-null	int64	
1	workclass	32561 non-null	object	
2	fnlwgt	32561 non-null	int64	
3	education	32561 non-null	object	
4	education-num	32561 non-null	int64	
5	marital-status	32561 non-null	object	
6	occupation	32561 non-null	object	
7	relationship	32561 non-null	object	
8	race	32561 non-null	object	
9	sex	32561 non-null	object	
10	capital-gain	32561 non-null	int64	
11	capital-loss	32561 non-null	int64	
12	hours-per-week	32561 non-null	int64	
13	native-country	32561 non-null	object	
14	income	32561 non-null	object	

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

```
Private
          Self-emp-not-inc
                               2541
         Local-gov
                               2093
                               1836
         State-gov
                               1298
         Name: count, dtype: int64,
          'education': education
         HS-grad
                          10501
                           7291
          Some-college
          Bachelors
                           5355
         Masters
                           1723
         Assoc-voc
                           1382
         Name: count, dtype: int64,
          'marital-status': marital-status
         Married-civ-spouse
                                14976
          Never-married
                                10683
         Divorced
                                 4443
         Separated
                                 1025
         Widowed
                                  993
         Name: count, dtype: int64,
          'occupation': occupation
         Prof-specialty
                             4140
                             4099
         Craft-repair
          Exec-managerial
                             4066
         Adm-clerical
                             3770
          Sales
                             3650
         Name: count, dtype: int64,
          'relationship': relationship
         Husband
                           13193
          Not-in-family
                            8305
         Own-child
                            5068
         Unmarried
                            3446
         Wife
                            1568
         Name: count, dtype: int64,
          'race': race
         White
                                27816
         Black
                                 3124
         Asian-Pac-Islander
                                 1039
         Amer-Indian-Eskimo
                                  311
         Name: count, dtype: int64,
          'sex': sex
         Male
                    21790
          Female
                    10771
          Name: count, dtype: int64,
          'native-country': native-country
         United-States
                         29170
         Mexico
                             643
                             583
          ?
         Philippines
                             198
                             137
         Germany
         Name: count, dtype: int64}
In [ ]: #Replace '?' with NaN in object columns
        df_clean = df.replace('?', np.nan).copy()
        #Basic missingness overview
        df_clean.isna().sum().sort_values(ascending=False).head(15)
```

Out[]: {'workclass': workclass

```
Out[]: occupation
                            1843
                            1836
         workclass
          native-country
                             583
          age
                               0
         capital-gain
                               0
          capital-loss
                               0
          hours-per-week
          income
         Length: 15, dtype: int64
 In [8]: #Simple imputation strategy:
         #Categorical: fill missing with mode
         #Numeric: fill missing with median
         for c in df_clean.columns:
             if pd.api.types.is_numeric_dtype(df_clean[c]):
                 if df_clean[c].isna().any():
                     df_clean[c] = df_clean[c].fillna(df_clean[c].median())
             else:
                 mode_val = df_clean[c].mode(dropna=True)
                 if not mode val.empty:
                     df_clean[c] = df_clean[c].fillna(mode_val.iloc[0])
                 else:
                     df_clean[c] = df_clean[c].fillna("Missing")
         df_clean.isna().sum().sort_values(ascending=False).head(10)
Out[8]: age
                          0
         workclass
                          0
         fnlwgt
                          0
         education
         occupation
                          0
         relationship
                          0
         race
                          0
         Length: 10, dtype: int64
In [9]: #Drop exact duplicate rows
         before = len(df_clean)
         df_clean = df_clean.drop_duplicates()
         after = len(df_clean)
         print(f"Removed {before - after} duplicate rows. New shape: {df_clean.shape}")
        Removed 24 duplicate rows. New shape: (32537, 15)
In [10]: #Target: high_income (1 if >50K else 0)
         df_feat = df_clean.copy()
         df_feat["high_income"] = (df_feat["income"].str.strip() == ">50K").astype(int)
         #Binary flags useful for analysis
         df_feat["any_capital_gain"] = (df_feat["capital-gain"] > 0).astype(int)
         df feat["any_capital_loss"] = (df_feat["capital-loss"] > 0).astype(int)
         #An example of grouping education levels via education-num (already numeric years-of-education p
         #Also create a tidy label for plotting
         df_feat["education_num_label"] = df_feat["education-num"].astype(int).astype(str)
         df_feat[["education","education-num","hours-per-week","income","high_income","any_capital_gain"]
```

```
Out[10]:
             education education-num hours-per-week income high_income any_capital_gain
              Bachelors
                                     13
                                                     40
                                                          <=50K
                                                                             0
                                                                                              1
              Bachelors
                                                                                              0
                                     13
                                                     13
                                                          < = 50K
                                                                             0
          2
                                      9
                                                     40
                                                          <=50K
                                                                             0
                                                                                              0
               HS-grad
          3
                                      7
                   11th
                                                     40
                                                          < = 50K
                                                                             0
                                                                                              0
                                                                             0
          4
              Bachelors
                                     13
                                                     40
                                                          <=50K
                                                                                              0
```

```
In [11]: #IQR capping for highly skewed numerics (capital-gain, capital-loss, hours-per-week)

def iqr_cap(series):
    q1, q3 = series.quantile([0.25, 0.75])
    iqr = q3 - q1
    low, high = q1 - 1.5*iqr, q3 + 1.5*iqr
    return series.clip(lower=low, upper=high)

for col in ["capital-gain", "capital-loss", "hours-per-week"]:
    if col in df_feat.columns and pd.api.types.is_numeric_dtype(df_feat[col]):
        df_feat[col + "_capped"] = iqr_cap(df_feat[col])

caps = [c for c in df_feat.columns if c.endswith("_capped")]
    df_feat[caps].describe() if caps else "No caps created."
```

Out[11]: capital-gain_capped capital-loss_capped hours-per-week_capped

count	32537.0	32537.0	32537.000000
mean	0.0	0.0	41.203246
std	0.0	0.0	6.187352
min	0.0	0.0	32.500000
25%	0.0	0.0	40.000000
50%	0.0	0.0	40.000000
75%	0.0	0.0	45.000000
max	0.0	0.0	52.500000

```
Out[12]: (education-num
                0.000000
                0.036145
          3
                0.048193
          4
                0.062016
          7
                0.051064
          8
                0.076212
          9
                0.159520
                0.190332
          10
          Name: high_income, Length: 10, dtype: float64,
          education-num
          7
                0.051064
          8
                0.076212
          9
                0.159520
          10
                0.190332
                   . . .
          13
                0.414908
          14
                0.556911
          15
                0.734375
          16
                0.740920
          Name: high_income, Length: 10, dtype: float64)
In [13]: #High-income rate by marital status
         ms_rate = df_feat.groupby("marital-status")["high_income"].mean().sort_values(ascending=False)
         ms_rate.head(10)
Out[13]: marital-status
         Married-civ-spouse
                                  0.446894
         Married-AF-spouse
                                  0.434783
         Divorced
                                  0.104256
         Widowed
                                  0.085599
         Married-spouse-absent
                                  0.081340
                                  0.064390
         Separated
         Never-married
                                  0.046030
         Name: high_income, dtype: float64
In [14]: #High-income rate by occupation
         occ_rate = df_feat.groupby("occupation")["high_income"].mean().sort_values(ascending=False)
         occ_rate.head(10)
Out[14]: occupation
                            0.484133
         Exec-managerial
         Prof-specialty
                             0.342699
         Protective-serv
                              0.325116
                             0.305286
         Tech-support
                                . . .
         Transport-moving 0.200376
         Adm-clerical
                             0.134554
         Machine-op-inspct
                              0.124500
         Farming-fishing
                              0.115927
         Name: high_income, Length: 10, dtype: float64
In [15]: #Average hours-per-week by income group
         df_feat.groupby("income")["hours-per-week"].mean().sort_values(ascending=False)
Out[15]: income
         >50K
                  45.473402
                  38.842862
         <=50K
         Name: hours-per-week, dtype: float64
```

Out[16]:	education	10th	11th	12th	1st- 4th	5th- 6th	7th- 8th	9th	Assoc- acdm	Assoc- voc	Bachelors	Doctorate	HS- grad
	occupation												
	Adm- clerical	0.000	0.045	0.026	NaN	0.000	0.091	0.071	0.155	0.108	0.235	0.400	0.119
	Armed- Forces	NaN	NaN	0.000	NaN	NaN	NaN	NaN	NaN	NaN	0.000	NaN	0.000
	Craft- repair	0.112	0.103	0.155	0.087	0.070	0.070	0.073	0.278	0.321	0.391	0.500	0.211
	Exec- managerial	0.250	0.206	0.154	0.500	1.000	0.316	0.154	0.455	0.427	0.569	0.909	0.323
	•••												
	Machine- op-inspct	0.059	0.030	0.029	0.043	0.054	0.065	0.039	0.273	0.222	0.261	1.000	0.136
	Other- service	0.005	0.025	0.012	0.000	0.000	0.010	0.020	0.077	0.078	0.160	1.000	0.041
	Priv- house-serv	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.143	NaN	0.000
	Prof- specialty	0.045	0.014	0.080	0.000	0.065	0.024	0.019	0.232	0.312	0.374	0.726	0.138

10 rows × 16 columns

```
In [17]: #High-income rate by education-num (ordered)
plt.figure()
edu_rate.plot(kind="bar", title="High-Income Rate by Education-Num")
plt.xlabel("education-num")
plt.ylabel("High-Income Rate")
plt.tight_layout()
plt.show()
```

High-Income Rate by Education-Num


```
In [19]: #Top 10 occupations by high-income rate (drop NaNs)
top_occ = occ_rate.dropna().head(10)
plt.figure()
top_occ.plot(kind="bar", title="Top 10 Occupations by High-Income Rate")
plt.xlabel("Occupation")
plt.ylabel("High-Income Rate")
plt.tight_layout()
plt.show()
```



```
In [20]: #Hours-per-week distribution by income group (simple overlaid histograms)
plt.figure()
for label, g in df_feat.groupby("income"):
        g["hours-per-week"].plot(kind="hist", alpha=0.5, bins=30, label=label)
plt.title("Hours-per-week Distribution by Income Group")
plt.xlabel("Hours-per-week")
plt.ylabel("Count")
plt.legend()
plt.tight_layout()
plt.show()
```

Hours-per-week Distribution by Income Group


```
In [21]: from scipy import stats
                                #H2: t-test on hours-per-week between <=50K and >50K
                                g0 = df_feat.loc[df_feat["high_income"] == 0, "hours-per-week"].dropna()
                                g1 = df_feat.loc[df_feat["high_income"] == 1, "hours-per-week"].dropna()
                                tstat, pval = stats.ttest_ind(g1, g0, equal_var=False)
                                print(f"H2 t-test (hours-per-week): t=\{tstat:.3f\}, p=\{pval:.3g\} (n>50K=\{len(g1)\}, n<=50K=\{len(g0)\}, 
                           H2 t-test (hours-per-week): t=45.095, p=0 (n>50K=7839, n<=50K=24698)
In [22]: #H3: Chi-square test of independence for marital-status vs high_income
                                ct_ms = pd.crosstab(df_feat["marital-status"], df_feat["high_income"])
                                chi2, p, dof, exp = stats.chi2_contingency(ct_ms)
                                print("H3 Chi-square (marital-status ~ high_income):")
                                print(f"chi2={chi2:.3f}, dof={dof}, p={p:.3g}")
                                ct_ms.head()
                           H3 Chi-square (marital-status ~ high_income):
                           chi2=6510.332, dof=6, p=0
Out[22]:
                                                                high_income
                                                                                                                                            1
                                                            marital-status
                                                                           Divorced
                                                                                                              3978
                                                                                                                                     463
                                             Married-AF-spouse
                                                                                                                     13
                                                                                                                                        10
```

Married-civ-spouse

Never-married 10176

Married-spouse-absent

8280

384

6690

34

491

```
In [23]: #H4: Chi-square test for occupation vs high_income
         ct_occ = pd.crosstab(df_feat["occupation"], df_feat["high_income"])
         chi2, p, dof, exp = stats.chi2_contingency(ct_occ)
         print("H4 Chi-square (occupation ~ high_income):")
         print(f"chi2={chi2:.3f}, dof={dof}, p={p:.3g}")
         ct_occ.head()
        H4 Chi-square (occupation ~ high_income):
        chi2=3197.613, dof=13, p=0
Out[23]:
             high_income
                                  1
              occupation
             Adm-clerical 3261
                                 507
            Armed-Forces
                                  1
              Craft-repair
                         3165
                                 929
          Exec-managerial 2097
                               1968
          Farming-fishing
                           877
                                 115
In [24]: #H5: Chi-square for any capital gain vs high_income
         ct_gain = pd.crosstab(df_feat["any_capital_gain"], df_feat["high_income"])
         chi2, p, dof, exp = stats.chi2_contingency(ct_gain)
         print("H5 Chi-square (any_capital_gain ~ high_income):")
         print(f"chi2={chi2:.3f}, dof={dof}, p={p:.3g}")
         ct_gain
        H5 Chi-square (any_capital_gain ~ high_income):
        chi2=2302.418, dof=1, p=0
Out[24]:
             high_income
                             0
                                   1
          any_capital_gain
                       0 23663 6162
                           1035 1677
```