Verification of database-driven systems via amalgamation

Mikołaj Bojańczyk, Luc Segoufin, <u>Szymon Toruńczyk</u>

Database = finite relational structure

$$E(-,-), \le (-,-), \circ (-), \circ (-)$$

Database = finite relational structure

Configuration

Transitions

quantifier-free formula, e.g.

$$E(x,x') \wedge \circ(x)$$

Reachability

Parameter: a class of databases C

Input: a database-driven system

states, initial and final states, registers, formulas $\delta_{p,q}$

Decide: does the system have some run to a final state for *some* database in the class *C*?

The database is unknown!

Classes of databases

- all labeled graphs decidable
- all relational structures over given signature decidable
- all strings with successor relation undecidable (via Minsky)

all strings with linear order – decidable

• a given regular tree language –? (XML motivation)

Contribution

Theorem 1. Reachability is decidable if *C* has *amalgamation*.

Fundamental notion from model theory

Decidability via emptiness of automata with suitable atoms

Theorem 2. Reachability is decidable if *C* is a regular tree language.

Classes of databases

- all labeled graphs amalgamation
- all relational structures over given signature amalgamation
- all strings with successor relation no amalgamation

all strings with linear order – amalgamation

• any regular tree language – extends to amalgamation class

Thank you!