aenet tutorial beginners guide

March 25, 2021

Copyright (c) 2021 April M. Misch <miksch@theochem.uni-stuttgart.de>, Alex Urban <a. urban@columbia.edu>, and Nong Artrith <nartrith@atomistic.net> Distributed under the terms of the Mozilla Public License, version 2.0 (https://www.mozilla.org/en-US/MPL/2.0/)

This notebook is a companion to Miksch, Morawietz, Kaestner, Urban, Artrith, to be published (2021).

The tutorial demonstrates the construction of an artificial neural network (ANN) interatomic potential for water clusters with six water molecules, using the data set from [1].

[1] A. M. Cooper, J. Kästner, A. Urban, N. Artrith, npj Comput. Mater. 6, 54 (2020); Data: https://archive.materialscloud.org/record/2020.0037/v1

1 Prerequisites - installation of ænet and ASE

We will use the atomic energy network (ænet) package (http://ann.atomistic.net) artificial neural network (ANN) potential package

- N. Artrith and A. Urban, Comput. Mater. Sci. 114 (2016) 135-150.
- N. Artrith, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.

and the atomic simulation environment (ASE) package (https://wiki.fysik.dtu.dk/ase) for structure manipulation and to perform MD simulations

Larsen et al., J. Phys.: Condens. Matter Vol. 29 273002, 2017

Also *clone* the companion GitHub repository with files for this tutorial (https://github.com/atomisticnet/MLP-beginners-guide).

```
import aenet
  print("successfully imported aenet")
except ImportError:
!! git clone https://github.com/atomisticnet/aenet.git
!! cd aenet/lib && make
!! cd aenet/lib && make
!! cd aenet/src && make -f makefiles/Makefile.gfortran_serial
!! cd aenet/src && make -f makefiles/Makefile.gfortran_serial
!! cd aenet/src && make -f makefiles/Makefile.gfortran_serial lib
!! cd aenet/python3 && python3 setup.py build_ext --inplace
!! cd aenet/python3 && pip install -e . --user
```

```
print("completed installation of aenet")
```

completed installation of aenet

```
[2]: try:
    import ase
    print("successfully imported ase")
    except ImportError:
    !! pip install ase --user --upgrade
    print("completed installing ASE")
```

completed installing ASE

Get additional materials for this tutorial from GitHub (https://github.com/atomisticnet/MLP-beginners-guide).

```
[3]: import os
  if not os.path.exists('MLP-beginners-guide'):
    !! git clone https://github.com/atomisticnet/MLP-beginners-guide.git
    else:
       print("Tutorial files are already installed.")
```

Now: Notebook has to be restarted to activate the packages that we just installed.

```
[1]: try:
    import aenet
    import ase
    print("Both aenet and ase could be imported. You are all set for the tutorial.
    →")
    except ImportError:
    print("The notebook needs to be restarted. Run this cell again once the
    →restart is done.")
    import os
    os.kill(os.getpid(), 9)
```

Both aenet and ase could be imported. You are all set for the tutorial.

2 Python imports

We need to import Python packages/libaries that we will use below.

```
[2]: import numpy as np
  import pandas as pd
  import re
  from IPython.display import Image
  %matplotlib inline
  import matplotlib.pyplot as plt
```

```
plt.rcParams.update({"font.size": 15})
plt.close("all")
```

3 01-generate: Generating the reference data set

The first step is the transformation of the atomic structures in the reference data set into a feature-vector representation of local atomic environments. This is done with the ænet tool generate.x.

We enter a subdirectory in which we will generate the reference data set.

```
[3]: %cd /content/MLP-beginners-guide/tutorial/01_generate/%ls
```

generate.x is a command-line tool that reads input parameters from text files. The file generate.in is the pricipal input file containing information about the chemical species and the structures in the reference data set:

- The name of the *training set* output file to be generated,
- Atomic energies for each species that are subtracted from the total energy before the potential is trained,
- The file names of the *fingerprint* set-ups for each species that define how the local atomic environment is described, and
- The paths of the atomic structure files in the reference data set.

For more details, see also the aenet documentation: http://ann.atomistic.net/documentation/

```
[4]: ! head -n 15 generate.in

OUTPUT H20.train

TYPES
2
H 0.000000000
0 0.000000000

SETUPS
H H.fingerprint.stp
0 0.fingerprint.stp

FILES
1886
../water-clusters-BLYP-D3/train_2000_xsf/train0500_1.xsf
../water-clusters-BLYP-D3/train_2000_xsf/train0500_10.xsf
```

Let's take a look at the *fingerprint* set-up file for oxygen. The one for hydrogen is similar. This example uses

- A BP2011 descriptor [1] with 30 symmetry functions of type 2 and 4,
- The radial cutoff distance is set to 12 Bohr (6.35 Å), and
- The minimal distance between atoms is set to be 0.75 Bohr (0.4 Å).

[1] J. Behler, J. Chem. Phys. 134, 074106 (2011).

Note: The water reference data uses the units Hartree and Bohr for energies and lenghts. aenet ANN potentials are agnostic to the choice of units, but the aenet will (incorrectly) report electron-volts (eV) and Angstrom (Å) units in its output files.

```
! cat O.fingerprint.stp
[5]:
    DESCR
      Structural fingerprint setup for 0 in bulk TiO2.
      Ref.: N. Artrith and A. Urban, Comp. Mater. Sci. (2016)
    END DESCR
    O MOTA
    ENV
         2
    Η
    0
    RMIN 0.75d0
    SYMMFUNC type=Behler2011
    30
    G=2 type2=H
                   eta=0.001
                              Rs=0.0000
                                          Rc=12.0000
    G=2 type2=0
                   eta=0.001
                              Rs=0.0000
                                          Rc=12.0000
    G=2 type2=H
                   eta=0.010
                              Rs=0.0000
                                          Rc=12.0000
    G=2 type2=0
                   eta=0.010
                              Rs=0.0000
                                          Rc=12.0000
    G=2 type2=H
                   eta = 0.030
                                          Rc=12.0000
                              Rs=0.0000
    G=2 type2=0
                   eta=0.030
                                          Rc=12.0000
                              Rs=0.0000
    G=2 type2=H
                   eta=0.090
                              Rs=0.0000
                                          Rc=12.0000
    G=2 type2=0
                   eta=0.090
                              Rs=0.0000
                                          Rc=12.0000
    G=2 type2=H
                   eta=0.150
                              Rs=0.9000
                                          Rc=12.0000
    G=2 type2=0
                   eta = 0.150
                              Rs=4.0000
                                          Rc=12.0000
    G=2 type2=H
                   eta=0.300
                              Rs=0.9000
                                          Rc=12.0000
    G=2 type2=0
                   eta=0.300
                              Rs=4.0000
                                          Rc=12.0000
    G=2 type2=H
                   eta=0.600
                              Rs=0.9000
                                          Rc=12.0000
    G=2 type2=0
                   eta=0.600
                               Rs=4.0000
                                          Rc=12.0000
    G=2 type2=H
                   eta=1.500
                               Rs=0.9000
                                          Rc=12.0000
    G=2 type2=0
                   eta=1.500
                              Rs=4.0000
                                          Rc=12.0000
    G=4 type2=H
                  type3=0
                              eta=0.001 lambda= -1.0
                                                       zeta= 4.0
                                                                  Rc=12.0000
    G=4 type2=0
                  type3=0
                              eta=0.001 lambda= -1.0
                                                       zeta= 4.0
                                                                  Rc=12.0000
    G=4 type2=H
                              eta=0.001 lambda= 1.0
                                                                  Rc=12.0000
                  type3=0
                                                       zeta= 4.0
```

```
G=4 type2=0
            type3=0
                       eta=0.001 lambda= 1.0
                                               zeta= 4.0 Rc=12.0000
G=4 type2=H
            type3=H
                       eta=0.010 lambda= -1.0
                                              zeta= 4.0
                                                         Rc=12.0000
G=4 type2=H
            type3=H
                       eta=0.010 lambda= 1.0 zeta= 4.0
                                                         Rc=12.0000
G=4 type2=H
            type3=H
                       eta=0.030 lambda= -1.0 zeta= 1.0
                                                         Rc=12.0000
G=4 type2=0
            type3=0
                       eta=0.030 lambda= -1.0 zeta= 1.0
                                                         Rc=12.0000
G=4 type2=0
            type3=0
                       eta=0.030 lambda= -1.0 zeta= 1.0
                                                         Rc=12.0000
G=4 type2=H
            type3=H
                       eta=0.030 lambda= 1.0 zeta= 1.0 Rc=12.0000
G=4 type2=H
            type3=0
                       eta=0.030 lambda= 1.0 zeta= 1.0 Rc=12.0000
G=4 type2=0
            type3=0
                       eta=0.030 lambda= 1.0 zeta= 1.0 Rc=12.0000
G=4 type2=H
            type3=0
                       eta=0.070 lambda= -1.0 zeta= 1.0
                                                         Rc=12.0000
G=4 type2=H
                       eta=0.070 lambda= 1.0 zeta= 1.0 Rc=12.0000
            type3=0
```

In this example, everything is already prepared to start with the reference data set generation. So, we can simply run generate.x and wait until all structures have been processed. We collect the output that generate.x prints to the screen in a file named generate.out. Note that this can take a minute:

```
[6]: ! /content/aenet/bin/generate.x-2.0.4-gfortran_serial generate.in > generate.out
    print("Reference data set generation completed.")
    %1s
```

```
Reference data set generation completed.

generate.in H2O.train O.fingerprint.stp sort-list.dat
generate.out H.fingerprint.stp output/ Stuttgart-
HCP-generate.in
```

The training-set file H2O.train has been generated. Note that training-set files are binary files and cannot be opened with a text editor.

Now, we are ready to train our H2O cluster potential. Let's return to the main directory.

```
[7]: %cd /content/
```

/content

4 02-train: Training an ANN potential

In this section, we will use the reference data set generated in the previous section to train an artificial neural network (ANN) potential.

Potential training is also done with a command-line tool, which is named train.x.

```
[8]: %cd /content/MLP-beginners-guide/tutorial/02_train/%ls
```

```
/content/MLP-beginners-guide/tutorial/02_train
train.in
```

An input file for train.x, named train.in, has already been prepared for us. This file contains the following instructions

- The path to the reference data set file (H2O.train),
- The fraction of the data set that should be set aside as validation set,
- The number of training iterations (epochs) to perform,
- The training method and its parameters, and
- The architecture of the atomic-energy ANNs for each species.

For more details, see also the aenet documentation: http://ann.atomistic.net/documentation/

[9]: %cat train.in

```
TRAININGSET H20.train
TESTPERCENT 10
ITERATIONS 100
```

METHOD bfgs

SAVE_ENERGIES

NETWORKS

```
! atom network hidden
! types file-name layers nodes:activation
0 0.10t-10t.nn 2 10:tanh 10:tanh
H H.10t-10t.nn 2 10:tanh 10:tanh
```

Before we can start with training, the reference data set file needs to be made available. We will create a symbolic link to it in the present directory.

[10]: ! ln -s /content/MLP-beginners-guide/tutorial/01_generate/H2O.train %ls

```
H2O.train@ train.in
```

Now, we perform the training. Note that this can take a few minutes. We can observe the training iterations.

```
[11]: | /content/aenet/bin/train.x-2.0.4-gfortran_serial train.in | tee train.out | !! tar cfvz nn.tar.gz *.nn-* && rm -f *.nn-* %ls
```

```
______
```

Training process started.

2021-03-26 01:11:28

Copyright (C) 2015-2018 Nongnuch Artrith and Alexander Urban

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Mozilla Public License, v. 2.0, for more details.

Training set normalization

The training set will be normalized now. Depending on its size this process can take a while. The normalized data set will be written to another file. Load that file in future to avoid this step.

Name of the new training set file: H2O.train.scaled

The network output energy will be normalized to the interval [-1,1].

Energy scaling factor: f = 392.531310Atomic energy shift : s = -25.483040

Training set normalization done.

Networks

Creating a new H network

Number of layers: 4

Number of nodes (without bias) and activation type per layer :

1: 27

2: 10 hyperbolic tangent (tanh)
3: 10 hyperbolic tangent (tanh)
4: 1 linear function (linear)

Required memory (words) : 48919 (382.18 KB)

Total number of weights (incl. bias): 401

Creating a new O network

Number of layers: 4

Number of nodes (without bias)

and activation type per layer :

1: 30

2: 10 hyperbolic tangent (tanh)
3: 10 hyperbolic tangent (tanh)
4: 1 linear function (linear)

Required memory (words): 65443 (511.27 KB)

Total number of weights (incl. bias): 431

Storing networks

Saving the H network to file : H.10t-10t.nn Saving the O network to file : O.10t-10t.nn

Training set info.

Training set file : H2O.train.scaled

Number of structures in the data set: 1886

Atomic species in training set : 2

Species : H O

Average energy (eV/atom): -0.375722 Minimum energy (eV/atom): -1.000000 Maximum energy (eV/atom): 1.000000

The input and output values have been normalized to [-1.0, 1.0]. Structures outside of this interval will not be used for training.

Energy scaling factor: 392.531310 Atomic energy shift : -25.483040

Training details

Training method : Limited Memory BFGS

Number of iterations : 100

Training structures : 1698
Testing structures : 188

Testing set	ting set :	Testing se	et
-------------	------------	------------	----

22	23	34	79	106	107	145	146
153	154	158	165	172	173	175	186
189	192	200	201	216	221	222	225
228	239	242	248	258	263	278	304
309	369	371	384	399	407	439	446
448	449	455	480	489	492	493	499
515	520	523	526	529	530	540	542
556	557	558	580	591	621	627	642
705	709	720	741	764	779	799	800
807	813	835	836	837	843	857	869
870	871	875	876	879	887	889	898
905	907	912	916	917	920	951	963
970	974	988	1003	1010	1032	1050	1075
1091	1101	1116	1133	1178	1190	1192	1200
1201	1202	1210	1211	1218	1220	1227	1241
1254	1258	1264	1269	1293	1304	1305	1313
1317	1344	1369	1396	1408	1411	1422	1427
1434	1439	1444	1458	1472	1473	1488	1489
1498	1515	1519	1537	1547	1551	1556	1561
1566	1572	1584	1591	1603	1616	1628	1643
1663	1668	1672	1694	1707	1714	1730	1733
1739	1742	1745	1752	1772	1774	1779	1789
1797	1802	1806	1836	1838	1870	1881	1882
1883	1884	1885	1886				

Training process

Weight optimization for 100 epochs using the Limited Memory BFGS method.

Sampling type : sequential

	TRA	IN	TEST		
epoch	MAE	<rmse></rmse>	MAE	<rmse></rmse>	
0	1.033603E-03	1.148417E-03	1.018974E-03	1.122986E-03 <	
1	1.033603E-03	1.148417E-03	1.018974E-03	1.122986E-03 <	
2	2.166109E-03	2.246213E-03	2.196121E-03	2.276394E-03 <	
3	4.565986E-04	6.007754E-04	4.632075E-04	6.097483E-04 <	
4	4.511391E-04	5.939909E-04	4.577195E-04	6.023597E-04 <	
5	4.255899E-04	5.602556E-04	4.319588E-04	5.642586E-04 <	
6	3.902296E-04	5.160038E-04	3.933712E-04	5.186351E-04 <	
7	3.368786E-04	4.488755E-04	3.308854E-04	4.502780E-04 <	
8	3.211041E-04	4.258351E-04	3.236831E-04	4.268577E-04 <	
9	3.136198E-04	4.168514E-04	3.166364E-04	4.184181E-04 <	
10	2.955220E-04	3.892955E-04	2.983596E-04	3.880847E-04 <	

```
2.887204E-04
                       3.891358E-04
                                        2.989816E-04
                                                        3.927048E-04 <
11
                                                        3.794371E-04 <
12
      2.829289E-04
                       3.775348E-04
                                        2.900341E-04
13
      2.802000E-04
                       3.676670E-04
                                        2.815336E-04
                                                        3.669067E-04 <
      2.755465E-04
                                        2.769950E-04
                                                        3.605580E-04 <
14
                       3.612800E-04
                                                        3.479910E-04 <
15
      2.647098E-04
                       3.466123E-04
                                        2.640697E-04
      2.595012E-04
                                                        3.414323E-04 <
16
                       3.394793E-04
                                        2.580787E-04
17
      2.370662E-04
                       3.100946E-04
                                        2.339838E-04
                                                        3.123945E-04 <
18
      2.337471E-04
                       3.008693E-04
                                        2.395406E-04
                                                        3.055868E-04 <
                                        2.330907E-04
                                                        2.982068E-04 <
19
      2.268971E-04
                       2.934815E-04
20
      2.248515E-04
                       2.895063E-04
                                        2.276577E-04
                                                        2.921501E-04 <
21
      2.223819E-04
                       2.856329E-04
                                        2.241942E-04
                                                        2.870008E-04 <
                                                        2.757714E-04 <
22
      2.173449E-04
                       2.772653E-04
                                        2.174006E-04
23
      2.083253E-04
                       2.669012E-04
                                        2.110166E-04
                                                        2.682129E-04 <
                                                        2.647704E-04 <
24
      1.998556E-04
                       2.564870E-04
                                        2.058861E-04
25
      1.959174E-04
                       2.534612E-04
                                        2.132867E-04
                                                        2.686368E-04 <
      1.936206E-04
                       2.499747E-04
                                        2.048505E-04
                                                        2.635938E-04 <
26
27
      1.937651E-04
                       2.492560E-04
                                        2.055867E-04
                                                        2.625658E-04 <
28
      1.928636E-04
                       2.488269E-04
                                        2.067811E-04
                                                        2.647462E-04 <
29
      1.925338E-04
                       2.483930E-04
                                        2.068436E-04
                                                        2.643365E-04 <
30
      1.914316E-04
                       2.467108E-04
                                        2.065054E-04
                                                        2.631613E-04 <
                                                        2.606717E-04 <
31
      1.869370E-04
                       2.421160E-04
                                        2.030784E-04
32
      1.829402E-04
                       2.381880E-04
                                        2.025181E-04
                                                        2.614156E-04 <
33
      1.804692E-04
                       2.339805E-04
                                        2.007122E-04
                                                        2.572027E-04 <
                                                        2.569332E-04 <
34
      1.795198E-04
                       2.324865E-04
                                        2.012405E-04
35
      1.792674E-04
                       2.316891E-04
                                        2.002535E-04
                                                        2.551111E-04 <
                                                        2.530169E-04 <
36
      1.781684E-04
                       2.296759E-04
                                        1.993036E-04
      1.751723E-04
                                                        2.485075E-04 <
37
                       2.245031E-04
                                        1.958489E-04
38
      1.722181E-04
                       2.206138E-04
                                        1.925807E-04
                                                        2.467608E-04 <
                                                        2.470471E-04 <
39
      1.703024E-04
                       2.182084E-04
                                        1.916979E-04
40
      1.691496E-04
                       2.177356E-04
                                        1.901338E-04
                                                        2.48444E-04 <
      1.690010E-04
                       2.171057E-04
                                        1.891774E-04
                                                        2.464770E-04 <
41
42
      1.688544E-04
                       2.167164E-04
                                        1.889427E-04
                                                        2.455960E-04 <
43
      1.683767E-04
                       2.158630E-04
                                        1.878563E-04
                                                        2.441562E-04 <
      1.675097E-04
                       2.146245E-04
                                        1.863411E-04
                                                        2.423612E-04 <
44
                                                        2.403688E-04 <
45
      1.665121E-04
                       2.130464E-04
                                        1.841892E-04
                       2.119906E-04
46
      1.658652E-04
                                        1.833203E-04
                                                        2.391548E-04 <
47
      1.648537E-04
                       2.102443E-04
                                        1.818766E-04
                                                        2.367171E-04 <
      1.642254E-04
                       2.091858E-04
                                        1.810193E-04
                                                        2.357356E-04 <
48
      1.637187E-04
                                                        2.342208E-04 <
49
                       2.079052E-04
                                        1.805250E-04
50
      1.630771E-04
                       2.070710E-04
                                        1.796467E-04
                                                        2.329858E-04 <
      1.605315E-04
                       2.046810E-04
                                        1.761535E-04
                                                        2.282891E-04 <
51
      1.590510E-04
                                        1.754205E-04
                                                        2.286828E-04 <
52
                       2.034341E-04
53
      1.578123E-04
                       2.023113E-04
                                        1.735749E-04
                                                        2.256973E-04 <
                                                        2.245282E-04 <
54
      1.573606E-04
                       2.018453E-04
                                        1.731150E-04
55
      1.570008E-04
                       2.007736E-04
                                        1.720384E-04
                                                        2.223401E-04 <
56
      1.55888E-04
                       1.997868E-04
                                        1.688461E-04
                                                        2.185228E-04 <
57
      1.550335E-04
                       1.981869E-04
                                        1.679077E-04
                                                        2.177343E-04 <
58
      1.538111E-04
                       1.961046E-04
                                        1.651505E-04
                                                        2.153109E-04 <
```

```
59
       1.513926E-04
                        1.930885E-04
                                        1.620274E-04
                                                         2.134456E-04 <
60
       1.493786E-04
                        1.902116E-04
                                        1.603575E-04
                                                         2.133748E-04 <
                                                         2.128924E-04 <
61
       1.477363E-04
                        1.882616E-04
                                        1.594608E-04
62
       1.472945E-04
                        1.871904E-04
                                        1.595254E-04
                                                         2.123202E-04 <
                                        1.588538E-04
63
       1.469744E-04
                        1.868992E-04
                                                         2.116729E-04 <
64
       1.467176E-04
                        1.866993E-04
                                        1.588095E-04
                                                         2.118256E-04 <
65
       1.464792E-04
                        1.865064E-04
                                        1.584639E-04
                                                         2.114123E-04 <
66
       1.461396E-04
                        1.861042E-04
                                        1.579258E-04
                                                         2.107437E-04 <
67
       1.454881E-04
                        1.852273E-04
                                        1.570508E-04
                                                         2.092243E-04 <
68
       1.438568E-04
                        1.830345E-04
                                        1.555225E-04
                                                         2.056587E-04 <
69
       1.422773E-04
                                                         2.033153E-04 <
                        1.809235E-04
                                        1.552719E-04
70
       1.408547E-04
                        1.797084E-04
                                        1.518029E-04
                                                         1.991498E-04 <
71
       1.399832E-04
                        1.785291E-04
                                        1.532917E-04
                                                         1.997879E-04 <
72
       1.396206E-04
                        1.775502E-04
                                        1.542046E-04
                                                         1.975011E-04 <
73
       1.387268E-04
                        1.767161E-04
                                        1.543735E-04
                                                         1.981247E-04 <
74
       1.380552E-04
                        1.760245E-04
                                        1.537950E-04
                                                         1.974635E-04 <
75
       1.366021E-04
                        1.745122E-04
                                        1.542513E-04
                                                         1.984114E-04 <
76
       1.357735E-04
                        1.729659E-04
                                        1.495163E-04
                                                         1.925038E-04 <
                                                         1.906963E-04 <
77
       1.338512E-04
                        1.712325E-04
                                        1.482238E-04
78
                        1.702392E-04
                                        1.476157E-04
                                                         1.893032E-04 <
       1.327490E-04
79
       1.321737E-04
                        1.692463E-04
                                        1.468382E-04
                                                         1.879966E-04 <
80
       1.313195E-04
                        1.683857E-04
                                        1.450348E-04
                                                         1.859832E-04 <
81
       1.305454E-04
                        1.673256E-04
                                        1.427661E-04
                                                         1.835142E-04 <
82
       1.296041E-04
                        1.663495E-04
                                        1.427473E-04
                                                         1.821443E-04 <
83
                                        1.417771E-04
                                                         1.813121E-04 <
       1.288414E-04
                        1.653386E-04
84
                                        1.396086E-04
                                                         1.810077E-04 <
       1.279385E-04
                        1.636387E-04
85
       1.271749E-04
                        1.627539E-04
                                        1.388339E-04
                                                         1.807320E-04 <
86
       1.261391E-04
                        1.612894E-04
                                        1.378697E-04
                                                         1.804301E-04 <
87
       1.260048E-04
                        1.611350E-04
                                        1.375876E-04
                                                         1.799634E-04 <
88
       1.256679E-04
                        1.605907E-04
                                        1.372713E-04
                                                         1.795006E-04 <
89
       1.247128E-04
                        1.593181E-04
                                        1.369849E-04
                                                         1.786199E-04 <
90
       1.239220E-04
                        1.584206E-04
                                        1.362135E-04
                                                         1.775382E-04 <
91
       1.231302E-04
                        1.575818E-04
                                        1.349549E-04
                                                         1.756548E-04 <
92
       1.227922E-04
                        1.568080E-04
                                        1.333947E-04
                                                         1.744178E-04 <
       1.221576E-04
93
                                                         1.729666E-04 <
                        1.560244E-04
                                        1.319948E-04
94
       1.206247E-04
                        1.537319E-04
                                        1.293860E-04
                                                         1.707281E-04 <
95
       1.193319E-04
                        1.517209E-04
                                        1.254854E-04
                                                         1.679133E-04 <
                                                         1.676690E-04 <
96
       1.190118E-04
                        1.508329E-04
                                        1.250284E-04
97
       1.189787E-04
                       1.504166E-04
                                        1.244464E-04
                                                         1.669604E-04 <
98
       1.183739E-04
                        1.495744E-04
                                        1.240743E-04
                                                         1.665498E-04 <
99
       1.177252E-04
                        1.489369E-04
                                        1.229352E-04
                                                         1.645564E-04 <
                                                         1.610750E-04 <
100
       1.165869E-04
                       1.478403E-04
                                        1.207679E-04
```

Training finished.

Storing final energies

```
Energies of training structures : energies.train.PROCESS
Energies of testing structures : energies.test.PROCESS
(Manually concatenate the files from different processes.)
```

Final MAE of training set = 0.1 meV/atom Final MAE of testing set = 0.1 meV/atom

Final RMSE of training set = 0.1 meV/atom Final RMSE of testing set = 0.2 meV/atom

Storing networks

Saving the H network to file : H.10t-10t.nn Saving the O network to file : O.10t-10t.nn

2021-03-26 01:14:53

Neural Network training done.

energies.test.0 H2O.train@ 0.10t-10t.nn train.restart energies.train.0 H2O.train.scaled train.in train.rngstate H.10t-10t.nn nn.tar.gz train.out

Once training has completed, the ANN potentials for oxygen and hydrogen are available in 0.10t-10t.nn and H.10t-10t.nn. Note that ANN potential files are binary and cannot be open in a text editor.

[12]: %cd /content/

/content

5 Analyzing the training results

Was the training successful? One measure is the performance of the trained potential on the validation set, which is reported for each training epoch on lines that like the following:

```
N MAE_train RMSE_train MAE_val RMSE_val <
```

N is the training iteration (or *epoch*), MAE_train and RMSE_train are the *mean absolute error* and *root mean squared error* on the training set, and MAE_val and RMSE_val are the same for the validation set.

Note: As explained in the companion manuscript, the performance on the validation set is not necessarily a good estimate for the true accuracy of the ANN potential. A more robust accuracy

estimate should be obtained from testing on an independently generated test set.

Plotting the RMSE of both training and validation set together can be helpful to detect overfitting.

Note: As explained above, the energy unit in the water reference data set is Hartree, even though aenet reports electronvolts.

```
[13]: errors = []
with open("/content/MLP-beginners-guide/tutorial/02_train/train.out") as fp:
    for line in fp:
        if re.match("^ *[0-9].*<$", line):
            errors.append([float(a) for a in line.split()[1:-1]])
    errors = np.array(errors)
    errors = pd.DataFrame(
        data=errors,
        columns=['MAE_train', 'RMSE_train', 'MAE_test', 'RMSE_test'])
    ax = errors[['RMSE_train', 'RMSE_test']].plot(logy=True)
    ax.set_xlabel("Epoch"); ax.set_ylabel("RMSE (Ha/atom)")
    plt.show()</pre>
```


As seen in the figure, the training-set RMSE (RMSE_train) continues to decrease until the final training iteration. The validation set RMSE (RMSE_test) also decreases but exhibits more noise.

5.1 Comparison of training and validation errors

train.x can export the errors for all training samples in the training and validation sets. Here, we visualize the results for one example (set003).

6 04-anetLib-ann-md: The ænet-Python interface

Trained ænet ANN potentials can be used with a number of standard simulations packages. Here we will take a look at the ænet Python interface, which enables compatibility with the Atomic Simulation Environment (ase, see above).

```
[15]: import aenet from aenet.ase_calculator import ANNCalculator
```

```
import ase
import ase.spacegroup
import ase.visualize
```

We create a new directory and copy the trained potentials into it.

[16]: | mkdir -p /content/MLP-beginners-guide/tutorial/03_md %cd /content/MLP-beginners-guide/tutorial/03_md %ls

/content/MLP-beginners-guide/tutorial/03_md

Next, we create an ase structure object from one of the water cluster structures.

```
[17]: atoms = ase.io.read("/content/MLP-beginners-guide/tutorial/

→water-clusters-BLYP-D3/train_0500_xsf/train0500_1.xsf")

ase.io.write('6h2o.traj', atoms)

ase.io.write('6h2o.png', atoms)

Image("6h2o.png")

#ase.visualize.view(atoms, viewer='x3d')
```

[17]:

The ænet Python package provides an ASE Calculator class that can load ænet ANN

potentials. In this case, we use an ANN potential that was trained with the same input file parameters as above but for more iterations.

This calculator can then be used to predict energies (and atomic forces) for a given atomic structure.

```
[19]: atoms.set_calculator(calc)
E = atoms.get_potential_energy()
print("Total energy = {} Ha".format(E))
```

Total energy = -458.68794485712954 Ha

```
[20]: %cd /content
```

/content

7 Python/ASE Example: Molecular Dynamics Simulation

In this example, we use the ANNCalculator and ASE to perform a molecular dynamics (MD) simulation with constant energy (NVE ensemble).

Note: This is an educational example. MD simulations with ASE in a Google Colab notebook are *not* very efficient. For production simulations, an actual workstation is recommended. Furthermore, x and x also provides a C-compatible library (x netLib) that can be interfaced with other MD software [1].

[1] N. Artrith and A. Urban, Comput. Mater. Sci. 114 (2016) 135-150.

```
[21]: %cd /content/MLP-beginners-guide/tutorial/03_md
```

/content/MLP-beginners-guide/tutorial/03_md

The next cell runs the MD simulation. Note that the instructions are purely based on ASE and are not specific to ænet.

The MD simulation is performed in the microcanonical NVE ensemble, i.e., the cell volume and total energy are kept constant. We use a time step of 0.25 femtoseconds for the integration of the integration of motion with the velocity Verlet algorithm. Atomic momenta are initialized according to a Maxwell-Boltzmann distribution at a temperature of 300 K.

Note: It can be required to execute the following cell twice.

```
[23]: from ase.md.velocitydistribution import MaxwellBoltzmannDistribution from ase.md.verlet import VelocityVerlet from ase.units import kB, fs
```

```
import aenet
pot = {"H": "/content/MLP-beginners-guide/tutorial/02_train/H.10t-10t.nn",
       "O": "/content/MLP-beginners-guide/tutorial/02_train/0.10t-10t.nn"}
calc = ANNCalculator(pot)
dt = 0.25 # 0.25 fs time step
T = 300.0 # 300 K temperature
md atoms = ase.io.read("6h2o.traj")
md_atoms.set_calculator(calc)
MaxwellBoltzmannDistribution(md atoms, T*kB)
dyn = VelocityVerlet(md_atoms, dt*fs)
md_step = 0
def printenergy(atoms=md_atoms, i=[0.0, dt/1000]):
  """ Print status at each MD step. """
 E_pot = atoms.get_potential_energy()/len(atoms)
 E_kin = atoms.get_kinetic_energy()/len(atoms)
 E_tot = E_pot + E_kin
 T = E_kin/(1.5*kB)
 print("{:6.3f} {:6.1f} {:15.3f} {:15.3f}".format(
        i[0], T, E_pot, E_kin, E_tot))
 i[0] += i[1]
print("t (ps) T (K) E_pot (Ha/atom) E_kin (Ha/atom) E_tot (Ha/atom)")
dyn.attach(printenergy, interval=1)
printenergy()
dyn.run(100)
```

/root/.local/lib/python3.7/site-packages/ase/md/md.py:48: FutureWarning: Specify
the temperature in K using the 'temperature_K' argument
 warnings.warn(FutureWarning(w))

t (ps)	T (K)	E_pot (Ha/atom)	E_kin (Ha/atom)	E_tot (Ha/atom)
0.000	285.4	-25.483	0.037	-25.446
0.000	285.4	-25.483	0.037	-25.446
0.001	285.4	-25.483	0.037	-25.446
0.001	285.3	-25.483	0.037	-25.446
0.001	285.2	-25.483	0.037	-25.446
0.001	285.1	-25.483	0.037	-25.446
0.002	284.9	-25.483	0.037	-25.446
0.002	284.7	-25.483	0.037	-25.446
0.002	284.5	-25.483	0.037	-25.446
0.002	284.2	-25.483	0.037	-25.446
0.003	283.9	-25.482	0.037	-25.446

0.003	283.5	-25.482	0.037	-25.446
0.003	283.2	-25.482	0.037	-25.446
0.003	282.8	-25.482	0.037	-25.446
0.004	282.4	-25.482	0.037	-25.446
0.004	282.0	-25.482	0.036	-25.446
0.004	281.6	-25.482	0.036	-25.446
0.004	281.1	-25.482	0.036	-25.446
0.005	280.7	-25.482	0.036	-25.446
0.005	280.3	-25.482	0.036	-25.446
0.005	279.8	-25.482	0.036	-25.446
0.005	279.3	-25.482	0.036	-25.446
0.006	278.7	-25.482	0.036	-25.446
0.006	278.2	-25.482	0.036	-25.446
0.006	277.6	-25.482	0.036	-25.446
0.006	277.1	-25.482	0.036	-25.446
0.000	276.5	-25.482	0.036	-25.446
0.007	276.0	-25.481	0.036	-25.446
0.007	275.4		0.036	
		-25.481		-25.446
0.007	274.9	-25.481	0.036	-25.446
0.008	274.4	-25.481	0.035	-25.446
0.008	273.9	-25.481	0.035	-25.446
0.008	273.4	-25.481	0.035	-25.446
0.008	272.9	-25.481	0.035	-25.446
0.009	272.4	-25.481	0.035	-25.446
0.009	272.0	-25.481	0.035	-25.446
0.009	271.5	-25.481	0.035	-25.446
0.009	271.0	-25.481	0.035	-25.446
0.010	270.5	-25.481	0.035	-25.446
0.010	270.0	-25.481	0.035	-25.446
0.010	269.4	-25.481	0.035	-25.446
0.010	268.9	-25.481	0.035	-25.446
0.011	268.4	-25.480	0.035	-25.446
0.011	267.9	-25.480	0.035	-25.446
0.011	267.3	-25.480	0.035	-25.446
0.011	266.8	-25.480	0.034	-25.446
0.012	266.3	-25.480	0.034	-25.446
0.012	265.8	-25.480	0.034	-25.446
0.012	265.3	-25.480	0.034	-25.446
0.012	264.8	-25.480	0.034	-25.446
0.013	264.4	-25.480	0.034	-25.446
0.013	264.0	-25.480	0.034	-25.446
0.013	263.5	-25.480	0.034	-25.446
0.013	263.1	-25.480	0.034	-25.446
0.014	262.7	-25.480	0.034	-25.446
0.014	262.4	-25.480	0.034	-25.446
0.014	262.0	-25.480	0.034	-25.446
0.014	261.6	-25.480	0.034	-25.446
0.015	261.3	-25.480	0.034	-25.446

0.015	260.9	-25.479	0.034	-25.446
0.015	260.6	-25.479	0.034	-25.446
0.015	260.3	-25.479	0.034	-25.446
0.016	260.0	-25.479	0.034	-25.446
0.016	259.7	-25.479	0.034	-25.446
0.016	259.4	-25.479	0.034	-25.446
0.016	259.1	-25.479	0.033	-25.446
0.017	258.7	-25.479	0.033	-25.446
0.017	258.4	-25.479	0.033	-25.446
0.017	258.1	-25.479	0.033	-25.446
0.017	257.8	-25.479	0.033	-25.446
0.018	257.5	-25.479	0.033	-25.446
0.018	257.2	-25.479	0.033	-25.446
0.018	256.9	-25.479	0.033	-25.446
0.018	256.6	-25.479	0.033	-25.446
0.019	256.3	-25.479	0.033	-25.446
0.019	255.9	-25.479	0.033	-25.446
0.019	255.6	-25.479	0.033	-25.446
0.019	255.3	-25.479	0.033	-25.446
0.020	255.0	-25.479	0.033	-25.446
0.020	254.7	-25.479	0.033	-25.446
0.020	254.3	-25.479	0.033	-25.446
0.020	254.0	-25.479	0.033	-25.446
0.021	253.7	-25.479	0.033	-25.446
0.021	253.4	-25.479	0.033	-25.446
0.021	253.1	-25.478	0.033	-25.446
0.021	252.8	-25.478	0.033	-25.446
0.022	252.6	-25.478	0.033	-25.446
0.022	252.3	-25.478	0.033	-25.446
0.022	252.0	-25.478	0.033	-25.446
0.022	251.8	-25.478	0.033	-25.446
0.023	251.6	-25.478	0.033	-25.446
0.023	251.4	-25.478	0.032	-25.446
0.023	251.2	-25.478	0.032	-25.446
0.023	251.0	-25.478	0.032	-25.446
0.024	250.8	-25.478	0.032	-25.446
0.024	250.7	-25.478	0.032	-25.446
0.024	250.5	-25.478	0.032	-25.446
0.024	250.3	-25.478	0.032	-25.446
0.025	250.2	-25.478	0.032	-25.446
0.025	250.1	-25.478	0.032	-25.446
0.025	249.9	-25.478	0.032	-25.446
0.025	249.8	-25.478	0.032	-25.446

[23]: True

We can now take a look at the final structure.

```
[27]: ase.io.write('6h2o-md.png', md_atoms)
Image("6h2o-md.png")
#ase.visualize.view(md_atoms, viewer='x3d')
```

[27]:

[25]: %cd /content/

/content

8 Caution

This tutorial is purely an educational example, and the constructed ANN potential cannot be expected to be robust. Longer training (more iterations) and extensive testing would be required.