ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

- 1. Дайте определение случайной величины, которая имеет гамма-распределение $\Gamma(\alpha, \lambda)$, и выведите основные свойства гамма-расределения. Запишите формулы для математичсекого ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ гамма-распределения
- 2. Дайте определение случайной величины, которая имеет χ^2 -распределение с п степенями свободы. Запишите плотность χ^2 распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с п степенями свободы. Найдите а) $\mathbb{P}(\chi^2_{20} > 10.9)$, где χ^2_{20} -случайная величина, которая имеет χ^2 распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы
- 3. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей
- 4. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;10] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,057\leqslant Z\leqslant 0,556)$.
- 5. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2] и [0;1] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.093 \leqslant Z \leqslant 0.551)$.
- 6. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;1] и [0;9] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(1,683 \leqslant Z \leqslant 13,185)$.
- 7. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;8] и [0;2] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.094\leqslant Z\leqslant 0.294)$.
- 8. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;9] и [0;10] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0.277 \le Z \le 1.26)$.
- 9. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;6] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,729\leqslant Z\leqslant 1,912)$.

- 10. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;6] и [0;1] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,087\leqslant Z\leqslant 0,235)$.
- 11. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,475\leqslant Z\leqslant 4,811)$.
- 12. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2] и [0;4] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,588 \leqslant Z \leqslant 3,842)$.
- 13. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;1] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,16\leqslant Z\leqslant 11,592)$.
- 14. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;4] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,182\leqslant Z\leqslant 1,21)$.
- 15. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;4] и [0;7] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,035 \leqslant Z \leqslant 2,775)$.
- 16. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;1] и [0;10] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,96\leqslant Z\leqslant 17,91)$.
- 17. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;10] и [0;9] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,719\leqslant Z\leqslant 1,005)$.
- 18. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2] и [0;7] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,019\leqslant Z\leqslant 3,843)$.
- 19. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;5] и [0;10] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,1 \leq Z \leq 3,714)$.
- 20. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;6] и [0;9] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(1,179\leqslant Z\leqslant 2,754)$.
- 21. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;7] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,006\leqslant Z\leqslant 0,519)$.

- 22. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;9] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,059\leqslant Z\leqslant 0,348)$.
- 23. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2] и [0;6] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,532\leqslant Z\leqslant 4,716)$.
- 24. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;1] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,039\leqslant Z\leqslant 5,208)$.
- 25. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;7] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(1,072\leqslant Z\leqslant 1,953)$.
- 26. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;10] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(3,263\leqslant Z\leqslant 5,35)$.
- 27. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;2] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,016\leqslant Z\leqslant 6,716)$.
- 28. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;5] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,915\leqslant Z\leqslant 2,783)$.
- 29. (10) Сформулируйте лемму Неймана-Пирсона в случае проверки двух простых гипотез. Приведите пример построения наиболее мощного критерия.
- 30. (10) По выборке $X_1, X_2...X_n$ объема n из нормального закона распределения $N(\mu, \sigma^2)$, когда $\sigma^2 = \mathbb{V}ar(X)$ неизвестна, проверяется на уровне значимости α основная гипотеза $H_0: \mu = \mu_0$ против альтернативной $H_1: \mu > \mu_0$ гипотезы . 1) Приведите необходимую статистику критерия и критическое множество для проверки H_0 против H_1 . 2) Приведите (с доказательством) основные свойства критерия. 3) Приведите (с выводом) выражение для P-значения критерия. 4) Приведите (с выводом и необходимыми пояснениями в обозначениях) выражения для вероятности ошибки второго рода β и мощности критерия W. 5) Является ли критерий: а) состоятельным; б) несмещенным? Ответ обосновать
- 31. (10) Сформулируйте критерий независимости χ^2 Пирсона. Приведите (с выводом и необходимыми пояснениями в обозначениях) явный вид статистики критерия в случае, когда таблица сопряженности двух признаков X и Y имеет вид

	$Y = y_1$	$Y = y_2$
$X = x_1$	a	b
$X = x_2$	c	d

32. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant 1$. Наблюдения показали, что в среднем она составляет 91,6667%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 59%

- 33. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составляет 75,0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 20%
- 34. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 91,6667%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 59%
- 35. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составляет 75,0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 20%
- 36. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составляет 87,5%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 53%
- 37. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составляет 87,5%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 17%
- 38. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составляет 75,0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 52%
- 39. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 85, 7143%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 26%
- 40. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 85, 7143%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 96%
- 41. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 88,8889%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 89%
- 42. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 93, 3333%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 5%
- 43. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \leqslant x \leqslant$ 1. Наблюдения показали, что в среднем она составляет 93, 3333%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 19%
- 44. Случайная величина Y принимает только значения из множества $\{10,7\}$, при этом P(Y=10)=0.24. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 4*y, \text{свероятностью } 0.53 \\ 9*y, \text{свероятностью } 1 - 0.53 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X. Помогите Дарье найти матожидание и дисперсию величины X

45. Случайная величина Y принимает только значения из множества $\{1,10\}$, при этом P(Y=1)=0.7. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 5*y, \text{свероятностью } 0.11 \\ 8*y, \text{свероятностью } 1$$
 - 0.11

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

46. Случайная величина Y принимает только значения из множества $\{7,5\}$, при этом P(Y=7)=0.08. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 9*y, \text{свероятностью } 0.24 \\ 8*y, \text{свероятностью } 1 - 0.24 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

47. Случайная величина Y принимает только значения из множества $\{2,1\}$, при этом P(Y=2)=0.61. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 8*y, \text{свероятностью } 0.15 \\ 6*y, \text{свероятностью } 1 - 0.15 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

48. Случайная величина Y принимает только значения из множества $\{3,4\}$, при этом P(Y=3)=0.33. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 9*y, \text{ свероятностью } 0.34 \\ 7*y, \text{ свероятностью } 1 - 0.34 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

49. Создайте эмперические совокупности sin и сов вида sin(1), sin(2), ..., sin(60) и cos(1), cos(2), ..., cos(60). Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности sin, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков sin и cos на совокупности натуральных чисел от 1 до 60.

50. Создайте эмперические совокупности \exp и \cos вида $\exp(1), \exp(2), ..., \exp(57)$ и $\cos(1), \cos(2), ..., \cos(57)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \exp , её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков exp и cos на совокупности натуральных чисел от 1 до 57.

51. Создайте эмперические совокупности \log и \cos вида $\log(1), \log(2), ..., \log(61)$ и $\cos(1), \cos(2), ..., \cos(61)$. Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \log , её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков log и cos на совокупности натуральных чисел от 1 до 61.

52. Создайте эмперические совокупности \exp и \sin вида $\exp(1), \exp(2), ..., \exp(85)$ и $\sin(1), \sin(2), ..., \sin(85)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \exp , её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков exp и sin на совокупности натуральных чисел от 1 до 85.

- 53. Создайте эмперические совокупности соз и log вида соз(1), соз(2), ..., соз(98) и log(1), log(2), ..., log(98). Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности соз, её четвёртый эмпирический центральный момент и эмпирический эксцесс.
 - Кроме того, найдите эмпирический коэффициент корреляции признаков cos и log на совокупности натуральных чисел от 1 до 98.
- 54. Создайте эмперические совокупности \exp и \log вида $\exp(1), \exp(2), ..., \exp(100)$ и $\log(1), \log(2), ..., \log(100)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \exp , её четвёртый эмпирический центральный момент и эмпирический эксцесс.
 - Кроме того, найдите эмпирический коэффициент корреляции признаков exp и log на совокупности натуральных чисел от 1 до 100.
- 55. Создайте эмперические совокупности \exp и \log вида $\exp(1), \exp(2), ..., \exp(77)$ и $\log(1), \log(2), ..., \log(77)$ Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности \exp , её четвёртый эмпирический центральный момент и эмпирический эксцесс.
 - Кроме того, найдите эмпирический коэффициент корреляции признаков ехр и log на совокупности натуральных чисел от 1 до 77.
- 56. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i=1...25. Все оценки известны $x_0 = 55$, $y_0 = 54$, $x_1 = 64$, $y_1 = 68$, $x_2 = 34$, $y_2 = 51$, $x_3 = 48$, $y_3 = 73$, $x_4 = 81$, $y_4 = 69$, $x_5 = 62$, $y_5 = 69$, $x_6 = 76$, $y_6 = 59$, $x_7 = 84$, $y_7 = 45$, $x_8 = 97$, $y_8 = 77$, $x_9 = 76$, $y_9 = 87$, $x_{10} = 43$, $y_{10} = 67$, $x_{11} = 33$, $y_{11} = 55$, $x_{12} = 71$, $y_{12} = 96$, $x_{13} = 62$, $y_{13} = 97$, $x_{14} = 84$, $y_{14} = 37$, $x_{15} = 41$, $y_{15} = 70$, $x_{16} = 92$, $y_{16} = 41$, $x_{17} = 60$, $y_{17} = 54$, $x_{18} = 71$, $y_{18} = 44$, $x_{19} = 39$, $y_{19} = 70$, $x_{20} = 98$, $y_{20} = 75$, $x_{21} = 99$, $y_{21} = 32$, $x_{22} = 58$, $y_{22} = 42$, $x_{23} = 61$, $y_{23} = 92$, $x_{24} = 58$, $y_{24} = 32$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 57. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i=1...25. Все оценки известны $x_0 = 37, y_0 = 77, \ x_1 = 59, y_1 = 94, \ x_2 = 40, y_2 = 37, \ x_3 = 41, y_3 = 52, \ x_4 = 96, y_4 = 55, \ x_5 = 52, y_5 = 55, \ x_6 = 70, y_6 = 77, \ x_7 = 38, y_7 = 83, \ x_8 = 70, y_8 = 73, \ x_9 = 31, y_9 = 89, \ x_{10} = 67, y_{10} = 93, \ x_{11} = 47, y_{11} = 41, \ x_{12} = 46, y_{12} = 51, \ x_{13} = 91, y_{13} = 45, \ x_{14} = 33, y_{14} = 44, \ x_{15} = 86, y_{15} = 83, \ x_{16} = 30, y_{16} = 57, \ x_{17} = 54, y_{17} = 97, \ x_{18} = 54, y_{18} = 85, \ x_{19} = 81, y_{19} = 95, \ x_{20} = 48, y_{20} = 67, \ x_{21} = 54, y_{21} = 75, \ x_{22} = 61, y_{22} = 92, \ x_{23} = 64, y_{23} = 34, \ x_{24} = 38, y_{24} = 88$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 58. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i=X(\omega_i)$ и $y_i=Y(\omega_i),\ i=1...25$. Все оценки известны $x_0=73,y_0=44,\ x_1=44,y_1=83,\ x_2=49,y_2=41,\ x_3=36,y_3=32,\ x_4=48,y_4=60,\ x_5=53,y_5=37,\ x_6=70,y_6=86,\ x_7=61,y_7=82,\ x_8=42,y_8=57,\ x_9=94,y_9=40,\ x_{10}=44,y_{10}=78,\ x_{11}=85,y_{11}=78,\ x_{12}=48,y_{12}=66,\ x_{13}=88,y_{13}=82,\ x_{14}=31,y_{14}=39,\ x_{15}=84,y_{15}=68,\ x_{16}=49,y_{16}=51,\ x_{17}=84,y_{17}=55,\ x_{18}=65,y_{18}=67,\ x_{19}=37,y_{19}=99,\ x_{20}=46,y_{20}=31,\ x_{21}=84,y_{21}=46,\ x_{22}=40,y_{22}=67,\ x_{23}=86,y_{23}=54,\ x_{24}=89,y_{24}=32$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant 50$ и $Y\geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 59. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i = 1...25. Все оценки известны $x_0 = 33, y_0 = 72, x_1 = 94, y_1 = 94, x_2 = 1...25$

- $91, y_2 = 52, x_3 = 47, y_3 = 59, x_4 = 53, y_4 = 45, x_5 = 96, y_5 = 54, x_6 = 60, y_6 = 99, x_7 = 70, y_7 = 44, x_8 = 50, y_8 = 81, x_9 = 57, y_9 = 40, x_{10} = 99, y_{10} = 61, x_{11} = 94, y_{11} = 43, x_{12} = 85, y_{12} = 96, x_{13} = 30, y_{13} = 91, x_{14} = 57, y_{14} = 37, x_{15} = 42, y_{15} = 35, x_{16} = 84, y_{16} = 75, x_{17} = 96, y_{17} = 97, x_{18} = 69, y_{18} = 92, x_{19} = 91, y_{19} = 93, x_{20} = 45, y_{20} = 30, x_{21} = 35, y_{21} = 94, x_{22} = 83, y_{22} = 53, x_{23} = 53, y_{23} = 60, x_{24} = 36, y_{24} = 69$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 60. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i=1...25. Все оценки известны $x_0=55, y_0=55, x_1=88, y_1=86, x_2=42, y_2=96, x_3=69, y_3=93, x_4=43, y_4=64, x_5=42, y_5=86, x_6=35, y_6=45, x_7=60, y_7=55, x_8=41, y_8=90, x_9=62, y_9=57, x_{10}=52, y_{10}=53, x_{11}=67, y_{11}=32, x_{12}=72, y_{12}=98, x_{13}=42, y_{13}=84, x_{14}=97, y_{14}=51, x_{15}=32, y_{15}=89, x_{16}=38, y_{16}=84, x_{17}=42, y_{17}=84, x_{18}=61, y_{18}=94, x_{19}=96, y_{19}=31, x_{20}=67, y_{20}=56, x_{21}=66, y_{21}=67, x_{22}=41, y_{22}=95, x_{23}=54, y_{23}=95, x_{24}=36, y_{24}=80$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant 50$ и $Y\geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 61. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i=1...25. Все оценки известны $x_0 = 64, y_0 = 84, x_1 = 82, y_1 = 42, x_2 = 51, y_2 = 99, x_3 = 68, y_3 = 57, x_4 = 90, y_4 = 71, x_5 = 89, y_5 = 55, x_6 = 55, y_6 = 55, x_7 = 90, y_7 = 58, x_8 = 61, y_8 = 78, x_9 = 38, y_9 = 84, x_{10} = 56, y_{10} = 95, x_{11} = 86, y_{11} = 69, x_{12} = 71, y_{12} = 72, x_{13} = 35, y_{13} = 99, x_{14} = 82, y_{14} = 67, x_{15} = 79, y_{15} = 59, x_{16} = 83, y_{16} = 88, x_{17} = 45, y_{17} = 75, x_{18} = 70, y_{18} = 79, x_{19} = 89, y_{19} = 80, x_{20} = 33, y_{20} = 30, x_{21} = 63, y_{21} = 73, x_{22} = 55, y_{22} = 53, x_{23} = 31, y_{23} = 78, x_{24} = 50, y_{24} = 90$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 62. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i=1...25. Все оценки известны $x_0 = 60, y_0 = 64, x_1 = 80, y_1 = 79, x_2 = 99, y_2 = 66, x_3 = 30, y_3 = 82, x_4 = 34, y_4 = 38, x_5 = 69, y_5 = 32, x_6 = 58, y_6 = 79, x_7 = 99, y_7 = 66, x_8 = 33, y_8 = 49, x_9 = 56, y_9 = 91, x_{10} = 64, y_{10} = 89, x_{11} = 95, y_{11} = 80, x_{12} = 97, y_{12} = 85, x_{13} = 33, y_{13} = 39, x_{14} = 34, y_{14} = 68, x_{15} = 90, y_{15} = 61, x_{16} = 30, y_{16} = 94, x_{17} = 59, y_{17} = 53, x_{18} = 45, y_{18} = 90, x_{19} = 61, y_{19} = 71, x_{20} = 85, y_{20} = 87, x_{21} = 44, y_{21} = 46, x_{22} = 79, y_{22} = 36, x_{23} = 36, y_{23} = 47, x_{24} = 70, y_{24} = 36$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
- 63. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i=X(\omega_i)$ и $y_i=Y(\omega_i),\ i=1...25$. Все оценки известны $x_0=40,y_0=84,\ x_1=83,y_1=71,\ x_2=85,y_2=64,\ x_3=77,y_3=32,\ x_4=86,y_4=59,\ x_5=99,y_5=77,\ x_6=91,y_6=74,\ x_7=46,y_7=48,\ x_8=73,y_8=42,\ x_9=82,y_9=89,\ x_{10}=40,y_{10}=43,\ x_{11}=60,y_{11}=31,\ x_{12}=81,y_{12}=57,\ x_{13}=88,y_{13}=50,\ x_{14}=34,y_{14}=31,\ x_{15}=45,y_{15}=63,\ x_{16}=38,y_{16}=45,\ x_{17}=34,y_{17}=92,\ x_{18}=92,y_{18}=83,\ x_{19}=88,y_{19}=56,\ x_{20}=60,y_{20}=36,\ x_{21}=85,y_{21}=59,\ x_{22}=60,y_{22}=87,\ x_{23}=30,y_{23}=53,\ x_{24}=56,y_{24}=73$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant50$ и $Y\geqslant50$; 2) коэффициент корреляции X и Y при том же условии.
- 64. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i=X(\omega_i)$ и $y_i=Y(\omega_i),\ i=1...25$. Все оценки известны $x_0=32,y_0=89,\ x_1=61,y_1=91,\ x_2=64,y_2=88,\ x_3=97,y_3=55,\ x_4=66,y_4=84,\ x_5=78,y_5=56,\ x_6=62,y_6=60,\ x_7=73,y_7=42,$

 $x_8=40, y_8=59, \ x_9=86, y_9=80, \ x_{10}=76, y_{10}=33, \ x_{11}=56, y_{11}=64, \ x_{12}=87, y_{12}=86, \ x_{13}=70, y_{13}=38, \ x_{14}=87, y_{14}=76, \ x_{15}=72, y_{15}=63, \ x_{16}=79, y_{16}=41, \ x_{17}=33, y_{17}=74, \ x_{18}=67, y_{18}=71, \ x_{19}=65, y_{19}=34, \ x_{20}=57, y_{20}=56, \ x_{21}=63, y_{21}=87, \ x_{22}=68, y_{22}=95, \ x_{23}=46, y_{23}=94, \ x_{24}=50, y_{24}=73$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant 50$ и $Y\geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.

- 65. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i=X(\omega_i)$ и $y_i=Y(\omega_i),\ i=1...25$. Все оценки известны $x_0=97,y_0=80,\ x_1=45,y_1=92,\ x_2=41,y_2=62,\ x_3=56,y_3=75,\ x_4=88,y_4=53,\ x_5=45,y_5=93,\ x_6=91,y_6=71,\ x_7=31,y_7=62,\ x_8=57,y_8=69,\ x_9=48,y_9=84,\ x_{10}=33,y_{10}=82,\ x_{11}=95,y_{11}=34,\ x_{12}=94,y_{12}=40,\ x_{13}=58,y_{13}=78,\ x_{14}=64,y_{14}=60,\ x_{15}=81,y_{15}=47,\ x_{16}=57,y_{16}=55,\ x_{17}=30,y_{17}=93,\ x_{18}=51,y_{18}=52,\ x_{19}=99,y_{19}=88,\ x_{20}=47,y_{20}=60,\ x_{21}=78,y_{21}=31,\ x_{22}=61,y_{22}=37,\ x_{23}=91,y_{23}=81,\ x_{24}=39,y_{24}=98$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant50$ и $Y\geqslant50$; 2) коэффициент корреляции X и Y при том же условии.
- 66. Распределение результатов экзамена в некоторой стране с 14-балльной системой оценивания задано следующим образом: $\{1:3,\ 2:7,\ 3:5,\ 4:2,\ 5:11,\ 6:9,\ 7:2,\ 8:19,\ 9:23,\ 10:26,\ 11:15,\ 12\}$ Работы будут перепроверять 16 преподавателей, которые разделили все имеющиеся работы между собой случайным образом. Пусть \overline{X} средний балл (по перепроверки) работ, попавших к одному преподавателю.

Требуется найти матожидание и стандартное отклонение среднего балла работ, попавших к одному преподавателю, до перепроверки.

67. Распределение результатов экзамена в некоторой стране с 11-балльной системой оценивания задано следующим образом: $\{1:13,\ 2:3,\ 3:14,\ 4:9,\ 5:6,\ 6:15,\ 7:1,\ 8:22,\ 9:17,\ 10:10,\ 11:16\}$ Работы будут перепроверять 6 преподавателей, которые разделили все имеющиеся работы между собой случайным образом. Пусть \overline{X} - средний балл (по перепроверки) работ, попавших к одному преподавателю.

Требуется найти матожидание и стандартное отклонение среднего балла работ, попавших к одному преподавателю, до перепроверки.

68. Распределение результатов экзамена в некоторой стране с 10-балльной системой оценивания задано следующим образом: $\{1:6,\ 2:16,\ 3:9,\ 4:16,\ 5:14,\ 6:4,\ 7:25,\ 8:26,\ 9:24,\ 10:10\}$ Работы будут перепроверять 10 преподавателей, которые разделили все имеющиеся работы между собой случайным образом. Пусть \overline{X} - средний балл (по перепроверки) работ, попавших к одному преподавателю.

Требуется найти матожидание и стандартное отклонение среднего балла работ, попавших к одному преподавателю, до перепроверки.

69. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y = 2	Y=4	Y = 5
X = 200	28	13	10
X = 300	1	12	35

Из Ω случайным образом без возвращения извлекаются 7 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y});$ 2) стандартное отклонение $\sigma(\bar{X});$ 3) ковариацию $Cov(\bar{X},\bar{Y})$

70. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	1	18	12
X = 300	31	26	12

Из Ω случайным образом без возвращения извлекаются 12 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

71. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	17	3	13
X = 300	21	23	23

Из Ω случайным образом без возвращения извлекаются 10 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

72. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	28	23	3
X = 300	2	12	32

Из Ω случайным образом без возвращения извлекаются 5 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

73. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	11	26	27
X = 300	5	10	21

Из Ω случайным образом без возвращения извлекаются 6 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

74. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	16	16	22
X = 300	7	26	13

Из Ω случайным образом без возвращения извлекаются 9 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

75. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	16	19	5
X = 300	25	10	25

Из Ω случайным образом без возвращения извлекаются 6 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

76. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблипей частот

	Y=2	Y = 4	Y = 5
X = 200	24	17	3
X = 300	13	24	19

Из Ω случайным образом без возвращения извлекаются 9 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

77. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	1	6	23
X = 300	13	30	27

Из Ω случайным образом без возвращения извлекаются 13 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

78. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y = 4	Y = 5
X = 200	25	26	10
X = 300	10	10	19

Из Ω случайным образом без возвращения извлекаются 12 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

79. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-8	X=-7	X=-6
Y = 7	0.304	0.245	0.32
Y = 8	0.005	0.029	0.097

Дарья получила, что $\mathrm{E}(\mathrm{Y}|\mathrm{X}+\mathrm{Y}=1)=7.0893.$ Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

80. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-3	X=-2	X=-1
Y = 2	0.29	0.298	0.234
Y = 3	0.066	0.03	0.082

Дарья получила, что E(Y|X+Y=1)=2.10982. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

81. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-4	X=-3	X=-2
Y = 3	0.07	0.084	0.205
Y = 4	0.011	0.201	0.429

Дарья получила, что E(Y|X+Y=1)=3.49618. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

82. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-9	X=-8	X=-7
Y = 8	0.09	0.005	0.23
Y=9	0.249	0.095	0.331

Дарья получила, что $\mathrm{E}(\mathrm{Y}|\mathrm{X}+\mathrm{Y}=1)=8.2921$. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

83. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-6	X=-5	X=-4
Y = 5	0.039	0.207	0.054
Y = 6	0.035	0.255	0.41

Дарья получила, что E(Y|X+Y=1)=5.82286. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

84. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X=-5	X=-4	X=-3
Y = 4	0.216	0.277	0.141
Y = 5	0.153	0.025	0.188

Дарья получила, что E(Y|X+Y=1)=4.15479. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

85. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{3X_1 + X_2 + 2X_3 + 4X_4}{10}, \hat{\theta}_1 = \frac{X_1 + 6X_2 + X_3 + 2X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 86. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{2X_1 + 6X_2 + X_3 + X_4}{10}, \hat{\theta}_1 = \frac{5X_1 + X_2 + X_3 + 3X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 87. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + X_2 + X_3 + 7X_4}{10}, \hat{\theta}_1 = \frac{3X_1 + 5X_2 + X_3 + X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 88. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{5X_1 + 2X_2 + X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{4X_1 + 4X_2 + X_3 + X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 89. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{2X_1 + 3X_2 + 4X_3 + X_4}{10}, \hat{\theta}_1 = \frac{2X_1 + 3X_2 + 2X_3 + 3X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

90. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 6X_2 + X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{3X_1 + X_2 + 3X_3 + 3X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 91. (10) Пусть $X_1,\,X_2,\,X_3,\,X_4$ выборка из $N(\theta,\sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 4X_2 + X_3 + 4X_4}{10}, \hat{\theta}_1 = \frac{2X_1 + 3X_2 + 3X_3 + 2X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 92. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + X_2 + 2X_3 + 6X_4}{10}, \hat{\theta}_1 = \frac{X_1 + 5X_2 + X_3 + 3X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 93. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{3X_1 + X_2 + 4X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{X_1 + 6X_2 + 2X_3 + X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 94. (10) Пусть $X_1,\,X_2,\,X_3,\,X_4$ выборка из $N(\theta,\sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{2X_1 + X_2 + 3X_3 + 4X_4}{10}, \hat{\theta}_1 = \frac{X_1 + 5X_2 + X_3 + 3X_4}{10}$$

- а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?
- 95. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 60.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 52.0%.
- 96. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 71.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 62.0%.
- 97. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 67.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 52.0%.
- 98. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 55.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 50.0%.
- 99. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 62.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 59.0%.
- 100. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 74.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 73.0%.
- 101. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 76.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 74.0%.
- 102. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 57.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 51.0%.