This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

WEST

Generate Collection

L1: Entry 19 of 21

File: DWPI

Mar 30, 1993

DERWENT-ACC-NO: 1994-182006

DERWENT-WEEK: 199422

COPYRIGHT 2001 DERWENT INFORMATION LTD

TITLE: Hologram diffraction efficiency determn for multiple recording of relief-phase holograms - determn zero order light intensity and its

distribution during development and extracting their AC component

INVENTOR: KOCHMALA, O G; KUVSHINSKII, N G; PAVLOV, V A

PATENT-ASSIGNEE:

ASSIGNEE

CODE

UNIV KIEV SHEVCHENKO

KISU

PRIORITY-DATA: 1989SU-4772656 (December 22, 1989)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES MAIN-IPC

SU 1805445 A1

March 30, 1993

004

G03H001/18

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

SU 1805445A1

December 22, 1989

1989SU-4772656

INT-CL (IPC): G03H 1/18

ABSTRACTED-PUB-NO: SU 1805445A

BASIC-ABSTRACT:

The method involves charging, exposure, developing and erasure by heating, then forming a diffraction pattern, measuring an intensity of a zero order of the pattern, which yields the efficiency of a hologram. Measurement of the intensity of light in the zero order of the pattern is carried out at an initial instant of developing together with a distribution of intensity of a light in the zero order during development.

During 0.1 s it is recorded a hologram of a flat wave front, while the light intensity is of 1/10 W per square cm. Then the hologram is developed by a current pulse of 14A passed through a current conducting coating (5). During development a light intensity of the zero order is recorded using photoreceiver (12), with extraction of an AC component using unit (13).

USE/ADVANTAGE - For <u>multiple recording relief-phase holograms</u> on films of <u>thermoplastic</u> photoreceivers. Improved operative assessing of diffraction efficiency. Bul.12/30.3.93

CHOSEN-DRAWING: Dwg.1/2

TITLE-TERMS: HOLOGRAM DIFFRACTED EFFICIENCY DETERMINE MULTIPLE RECORD RELIEF PHASE HOLOGRAM DETERMINE ZERO ORDER LIGHT INTENSITY DISTRIBUTE DEVELOP EXTRACT AC COMPONENT

COM COBETCKUX COMMANUCTUMECKUX PECHYBANK

... SU ... 1805445 A1

(51)5 G 03 H 1/18

FOCYDAPCTBEHHOL PRATERTHOE BEDOMCTBO CCCP (FOCHATERT CCCP)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4772656/25

(22) 22.12.89

(46) 30.03.93 Бюл. № 12

(71) Киевский госуда эственный университет им. Т.Г. Шевченко

(72) Н.Г.Кувшинский, О.Г.Кочмала, В.А.Павлов и Е.Д.Сенченко

(56) Патент США № 4252400, кл. G 03 H 1/02. 1981.

Регистрирующие среды для изобразительной голографии и кинематографии./Под ред. ГА Соболева. Л.: Наука. 1979 с 144-148

(54) СПОСОБ ОПРЕДЕЛЕНИЯ ДИФРАКЦИ-ОННОЙ ЗФФЕКТИВНОСТИ ГОЛОГРАММ (57) Сущность: дифракционную эффективность голограммы, зарегистрированной на термопластическом фотопроводнике, определяют, измеряя интенсивность света нулевого порядка дифракционной картины в начальный момент времени проявления и распределения интенсивности света в нулевом порядке во время проявления. Выделяют из измеренных сигналов переменную

составляющую, которая пропорциональна

искомой величине. 2 ил.

2

Изобретение относится к голографии и может быть использовано при многократной регистрации рельефофазовых голограмм на пленках термопластических фотоприемников.

Целью изобретения увеличение оперативности определения дифракционной эффективности.

По определению дифракционная эффективность $η = \frac{1}{100}$ где $I^i(t)$ интенсивность света в луче первого порядка дифракции: I_{00} интенсивность света в опорном луче. Если не учитывать незначительное постоянное поглощение света в носителе интенсивность света в луче нулевого порядка дифракции до начала развития деформации поверхности пленки $I^0_0 = I_{00}$. При проявлении голограммы нагревом на поверхности пленки развивается регулярный

рельеф на котором часть падающего света дифрагирует в первые и т.д. порядки. С ростом интенсивности света в первом порядке дифракции при развитии рельефа поверхности пленки соответственно падает интенсивность света в недифрагирующем луче нулевого порядка дифракции. Вклад интенсивности света лучей II, III и т.д. порядков по сравнению с вкладом первого порядка в изменение интенсивности света в луче нулевого порядка пренебрежимо мал. Поэтому можно представить значение переменной составляющей светового сигнала в луче нулевого по-Исходя из 21'(t). рядка Iⁿ(t) вышеизложенного, дифракционную эффективность определяют по формуле

$$\eta = \frac{1}{2} \frac{(t)}{t} \frac{0}{0}$$
Для этого с помощью фотоприем-

ного устройства измеряют интенсивность света в нулевом порядке дифракционной кар-

тины во время проявления, а затем из преобразованного поветового в электрический с сигнала выделяют начальные значения $1^{\circ}_{\circ}(t=0)$ и переменную составляющую $1^{\circ}(t)$, оп-

ределяют их отношение $\frac{1°(t)}{21°o}$, которое рав-

но дифракционной эффективности записываемой голограммы.

На фиг. 1 представлена блок-схема устройства для определения дифракционной эффективности, на фиг. 2 представлены: а график зависимости интенсивности света в нулевом порядке от времени проявления; б г график зависимости выделенной переменной составляющей интенсивности света в нулевом порядке [*(t); в г график зависимости дифракционной эффективно-

сти $\eta(t) = \frac{1^{\circ}(t)}{21^{\circ}}$ Сплошная кривая соот- 20

ветствует времени проявления t = 2.5 мс. пунктирная – t > 5 мс.

Устроиство содержит блок нитания 1, оптическую схему 2 с источником света НеNе лазером для регистрации голограмм Френеля. В качестве носителя для записи используется пленка 3 термопластического фотопроводника толщиной 1.1 мкм на основе сополимера эпоксипропилкарбазола с 5 мас. % бутилглицидилового эфира (ЭПК • 5 мас. % БГЭ) сенсибилизированного 3 мас. % тринитрофлуорендианометилена (ТНФДЦМ), нанесенная на стеклянную подложку 3, размером 40 х 40 х 4 мм³ с токопроводящим покрытием из двуокиси олова SnO2, сопротивление которого R = 25 Ом.

Управление регистрацией информации осуществляют с помощью последовательно соединенных блоков б зарядки пленки в коронном разряде. блока 7 экспонирования. блока 8 проявления. блока 9 считывания, приемное устройство которого расположено в 1 порядке дифракционной картины восстановленного изображения. блока 10 стирания. Выхеды блока проявления 8 и блока 10 стирания имеют связь со входом на вълючение нагрева ключевого коммутатора 11

Фотоприемное устроиство 12 располагают в О-м порядке дифракционной картины восстановленного изображения. Выход фотоприемного устройства соединен со входом параллельно расположенных блока 13 выделения 1°(t) и блока 14 определения 1°о, выходы ксторых соединены с дотелем 15. Выход делителя 15 соединен со входом компаратора 16, выход которого соединен со входом на выключение нагрева ключевого коммутатора 11 Выход ключевого коммутатора 11 Выход ключевого коммутатора 11

тора 11 соединен с токопроводящим покрытием 5.

Для реализации способа планку указанного состава заряжают в коронном разряде с постоянным током плотностью 0.01 А/м до потенциала 120 В. Регистрируют голограмму плоского волнового фронта - время экспонирования 0.1 с. интенсивность света 10⁻¹ Вт/м² Затем голограмму проявляют нагревом, пропуская импульс тока I = 14 A через проводящее покрытие 5. За время проявления с помощью фотоприемного уст ройства 12 регистрируют интенсивность света в нулевом порядке дифракционной картины. Из электрического сигнала на выходе фотоприемника с помощью блока 13 выделяют переменную составляющую I°(t). Одновременно сигнал с выхода фотоприемника поступает на вход блока 14, на выходе которого получают сигнал, соответствуюший loo- интенсивности света в начальный момент времени проявления. Блок 14 выполнен в виде интегратора со временем интегрирования значительно больше времени проявления. Сигналы, соответствующие (1) и 100, поступают на делитель 15, на выходе которого получают сигнал, соответствующий дифракционной эффективности голограммы. Затем этот сигнал поступает на один из выходов компаратора 16. на другой вход которого заранее подают сигнал. соответствующий заданному значению дифракционной эффективности 7 = 2% (0.1-30%) При достижении определяемой дифракционной эффективности значения $\eta=2\%$ (0.1-30%) на выходе компаратора 16. появляется сигнал на остановку проявления, который поступает на вход ключевого коммутатора 1. который и отключает цепь чагрева. Затем происходит считывание и стирание голограммы. Ограничение процесса стирания можно осуществить аналогичным способом. При этом значение заданной дифракционной эффективности устанавливается $\eta = 0$.

Формула изобретения

Способ определения дифракционной эффективности голограмм, зарегистрированных на пленках термопластических фотопроводников, нанесенных на прозрачную подложку с токопроводящим покрытием, включающий зарядку, экспонирование, проявление и стирание нагревом, формирование дифракционной картины, измерение интенсивности нулевого порядка дифракционной картины, по которой определяют дифракционную эффективность голограммы, отличающийся тем, что, с целью

of or The County by colf of the Start of the

увеличения оперативности определения при изменении условий регистрации, измеряют интенсивность света в нулевом порядке дифракционной картины в начальный момент времени проявления и распределе- 5 ния интенсивности света в нулевом порядке во время проявления, выделяют из них переменную составляющую интенсивности

света и определяют дифракционную эффективность у по формуле

 $\eta = 1^{\circ}(\mathfrak{t})/21^{\circ}_{\circ}$

где t = время проявления. $1^{o}_{o} =$ интенсивность света в начальный момент времени проявления:

I^o(t) - персменная составляющая интенсивности света во время проявления.

. DIALOG(R) File 351: Derwent WPI $\ell_{\ell}(c)$ 2000 Derwent Info Ltd. All rts. reserv.

009914296 **Image available**
WPI Acc No: 1994-182006 /199422

XRPX Acc No: N94-143712

Kop:

Hologram diffraction efficiency determn for multiple recording of relief-phase holograms - determn zero order light intensity and its distribution during development and extracting their AC component

Patent Assignee: UNIV KIEV SHEVCHENKO (KISU) Inventor: KOCHMALA O G; KUVSHINSKII N G; PAVLOV V A Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week SU 1805445 A1 19930330 SU 4772656 A 19891222 199422 B

Priority Applications (No Type Date): SU 4772656 A 19891222

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

SU 1805445 A1 4 G03H-001/18

Abstract (Basic): SU 1805445 A

The method involves charging, exposure, developing and erasure by heating, then forming a diffraction pattern, measuring an intensity of a zero order of the pattern, which yields the efficiency of a hologram. Measurement of the intensity of light in the zero order of the pattern is carried out at an initial instant of developing together with a distribution of intensity of a light in the zero order during development.

During 0.1 s it is recorded a hologram of a flat wave front, while the light intensity is of 1/10 W per square cm. Then the hologram is developed by a current pulse of 14A passed through a current conducting coating (5). During development a light intensity of the zero order is recorded using photoreceiver (12), with extraction of an AC component using unit (13).

USE/ADVANTAGE - For multiple recording relief-phase holograms on films of thermoplastic photoreceivers. Improved operative assessing of

diffraction efficiency. Bul.12/30.3.93

6 = Carone

7 = explosive unit

8 = Dueley Block

9 = Calculary unit

10 = erasure unit

11 = Key commutet

12 = Duele detect

13 = Separet unit (

14 = defigunit (initial measurent)

15 = different and (divider

16 = Comparater

Title Terms: HOLOGRAM; DIFFRACTED; EFFICIENCY; DETERMINE; MULTIPLE; RECORD; RELIEF; PHASE; HOLOGRAM; DETERMINE; ZERO; ORDER; LIGHT; INTENSITY;

DISTRIBUTE; DEVELOP; EXTRACT; AC; COMPONENT

Derwent Class: P84; V07

International Patent Class (Main): G03H-001/18

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): V07-M