CSE222 Computer Architecture Homework Set 07

(Review)

- 1. Gates and Circuits
 - a. Gates and Circuits
 - b. Elements and Nodes
 - c. Combinational and Sequential Circuits
- 2. Truth table, Boolean equation, Logic diagram
- 3. Boolean equations
 - a. Terms: complement, literal, implicant, minterm, maxterm
 - b. POS form, SOP form
 - c. A1-A5 Axioms, T1-T5, T6-T12 theorems
- 4. Simplifying Boolean equations through
 - a. Boolean theorems
 - b. K-map
- 5. Combinational Circuits/Combinational Building blocks
 - a. Multiplexer (MUX)
 - b. Decoder

(Exercise)

1. The following is the truth table of a logic circuit, use different circuits to implement this function:

A	В	C	Y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

- (a) 8:1 multiplexer
- (b) 4:1 multiplexer
- (c) 2:1 multiplexer
- (d) 3:8 decoder

2. The following is the truth table of a logic circuit, use different circuits to implement this function:

A	В	C	D	\mathbf{Y}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

- (a) 8:1 multiplexer
- (b) 4:1 multiplexer + 2:1 multiplexer (clue: use **two** 4:1 MUX + **one** 2:1 MUX)
- 3. Implement the following function:

$$Y = A \overline{B} + \overline{A} C + \overline{B} \overline{C}$$

With:

- (a) 8:1 multiplexer
- (b) 4:1 multiplexer
- (c) 3:8 decoder
- 4. Write a minimized Boolean equation for the function performed by the circuits below. Draw diagram using logic gates to perform the same functionality.

