Test Design

Scenarios Setup

Name	Class	Scenario
setup1	BinaryTreeTes t	A Binary tree with the following keys = {1,2,3,4,5,6,7,8,9,10}. The values of each node are the same as the keys (ex. key 1, value 1).
setup2	BinaryTreeTes t	A Binary tree with the following keys = {50,100,0,25,-25,125,75,30}. The values of each node are the same as the keys (ex. key 50, value 50).
setup3	BinaryTreeTes t	An empty binary tree.
setup4	AVLTreeTest	An AVL tree with the following keys = {1,2,3,4,5,6,7,8,9,10}. The values of each node are the same as the keys (ex. key 1, value 1).
setup5	AVLTreeTest	An AVL tree with the following keys = {50,100,0,25,-25,125,75,30}. The values of each node are the same as the keys (ex. key 50, value 50).
setup6	AVLTreeTest	An empty AVL tree ;

Test objective:

To check if add works properly, adding known numbers and then asserting the numbers' existence in the Binary Tree by taking the postorder traversal of the tree and matching it with the expected String.

Class	Method	Scenario	Input values	Result
BinaryTree	Insert	setup2 setup1	postOrder() postOrder()	true true

Test objective:

To check if search works properly, searching 3 existent numbers and a non existent number in the Binary Tree.

Class	Method	Scenario	Input values	Result
BinaryTre e	search	setup1	search(1) search(5) search(10) search(13)	True True True Null

Test objective:

To check if remove works properly, removing and then searching the removed numbers, and removing a non existent number in the Binary Tree.

Class	Method	Scenario	Input Values	Result
BinaryTree	remove	setup2	remove(50) search(50) remove(25) search(25) remove(-25) search(-25) remove(13)	true null true null true null false

Test objective:

To check if height works properly, checking the height of specific nodes and comparing them to the expected results.

Class	Method	Scenario	Input Values	Result
BinaryTree	height	setup2	height(50) height(50) height(100) height(-25)	true false true true

Test objective:

To check if insert works properly, checking the height of specific nodes and comparing them to the expected results.

Class	Method	Scenario	Input Values	Result
AVLTree	insert	setup4	searchAVLTree(1) searchAVLTree(5) searchAVLTree(10) searchAVLTree(13)	true true true false

Test objective:

To check if the balance and insert methods work properly, inserting three values and checking if the tree has been balanced. In this case we want to test all the balance cases.

Class	Method	Scenario	Input values	Result
AVLTree	balance	setup6	case A: leftRotate(p) insert(5) insert(3) insert(8) insert(6) insert(9) insert(10)	Check if the key of the root is 8, his left children is 5, his right children is 9 and the right children of his left its 6

Class	lethod	Scenario	Input values	Result
AVLTree ba	alance	setup6	case C: rightRotate(q) leftRotate(p) insert(5) insert(10) insert(3) insert(2) insert(7) insert(11) insert(12) insert(6) insert(8) insert(9)	Check if the key of the root is 7, his left children is 5, his right children is 10, the right children of his left its 6 and the left children of its right its 8.

	Class	Method	Scenario	Input values	Result
ı					

AVLTree	balance	setup6	case D: rightRotate(p) insert(10) insert(11) insert(7) insert(6) insert(8) insert(5)	Check if the key of the root is 7, his left children is 6, his right children of his right its 8
---------	---------	--------	--	--

Class	Method	Scenario	Input values	Result
AVLTree	balance	setup6	case F: leftRotate(q) rightRotate(p) insert(10) insert(11) insert(4) insert(3) insert(6) insert(12) insert(5) insert(7) insert(2) insert(9)	Check if the key of the root is 6, his left children is 4, his right children is 10, the left children of his right its 7 and the right children of its left its 5

Test objective:

To check if remove works properly, removing and then searching the removed numbers, and removing a non existent number in the Binary Tree.

Class	Method	Scenario	Input Values	Result
AVLTree	remove	setup2	remove(50) search(50) remove(25) search(25) remove(-25) search(-25) remove(13)	true null true null true null false