

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

COURSE: MATHEMATICS FOR COMPUTER ENGINEERS COURSE CODE: 21MAT31A MODULE – 1: Vector Spaces Question Bank

Q. No.		Questions
1	a)	Explain vector space, subspace over the field F
	b)	Show that the set of all 2x2 matrix with real elements is a vector space over the field of real numbers
2	a)	Prove that the set $W = \{(x,y,z)/(x-3y+4z=0)\}$ of a vector space $V_3(R)$ is a subspace of $V_3(R)$
	b)	Let $V = R_3$ the vector space of all ordered triplets of real number over the field of real number show that the subset $W = \{(x,0,0)/x \in R\}$ is a subspace of R_3
3	a)	Explain Linear Independent, Linear dependent of set V
4	b) a)	Show that the set $S = \{ (1,0,1), (1,1,0), (-1,0,-1) \}$ is Linearly dependent in $V_3(R)$ Show that the set $S = \{ (1,2,3), (3,-2,1), (1,-6,-5) \}$ is Linearly dependent
	b)	Show that the vector $X_1 = (1,2,-3,4)$, $X_2 = (3,-1,2,1)$, $X_1 = (1,-5,8,-7)$ are Linearly dependent
5	a)	Find the value of K for which the vectors (1,-2,K), (2,-1,5) and (3,-5, 7K) are LD
	b)	Find whether or not the following set of vectors are LD or LI $\{(1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1)\}$ in $V_4(R)$
6	a)	Find whether or not the following set of vectors are LD or LI $\{(1,1,0), (1,0,1), (0,1,1)\}$ in $V_3(R)$
	b)	Find whether or not the following set of vectors are LD or LI $\{(1,-2),(2,1),(3,2\}$ in $V_3(R)$
7	a)	Find whether or not the following set of vectors are LD or LI $\{(-3,0,4), (5,-1,2), (1,1,3)\}$ in $V_3(R)$
	b)	Find whether or not the following set of vectors are LD or LI $\{(1,2,3), (3,2,1), (3,3,3)\}$ in $V_3(R)$
8	a)	Find whether or not the following set of vectors are LD or LI $\{(-2,0,1), (3,2,5), (6,-1,1), (7,0,-2)\}$ in $V_4(R)$
	b)	Explain Basis and Dimension
9	a)	Verify the following set of vectors are basis of R_3 , $S = \{(1,0,0), (2,2,0), (3,3,3)\}$
	b)	Verify the following set of vectors are basis of R_3 , $S = \{(1,-2,3), (5,6,-1), (3,2,1)\}$
10	a)	Determine whether the set $\{(1,2,1), (3,4,-7), (3,1,5)\}$ is a Basis of $V_3(R)$

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

	b)	Show that $B = \{(1,1,0), (1,0,1), (0,1,1)\}$ is a Basis of $V_3(R)$
11	a)	Find the dimension and the basis of the subspace spanned by the vectors $(2,4,2)$, $(1,-1,0)$, $(1,2,1)$ and $(0,3,1)$ in $V_3(R)$
	b)	Find the dimension and the basis of the subspace spanned by the vectors $(2,4,2)$, $(1,-1,0)$, $(1,2,1)$ and $(0,2,1)$ in $V_3(R)$
12	a)	Determine whether the set $S = \{(1,2.3), (3,1,0), (-2,1,3)\}$ is a basis of $V_3(R)$. In case S is not a basis determine the dimension and the basis of the subspace spanned by S
	b)	Explain column space and null space
13	a)	Explain Linear transformation
	b)	If F is a mapping from $V_3(R)$ is defined by $F(x,y,z) = (x+y, y+z)$ show that F is a Linear transformation
14	a)	Verify F is Linear transformation defined by $F(x,y) = xy$
	b)	Find the matrix of the linear transformation T: $V_2(R) \rightarrow V_3(R)$ defined by $T(x,y) = (x+y, x, 3x-y)$ with respect to $B_1 = \{(1,1), (3,1)\}$ and $B_2 = \{(1,1,1), (1,1,0), (1,0,0)\}$
15	a)	Find the matrix of the linear transformation T: $V_2(R) \rightarrow V_3(R)$ defined by $T(x,y) = (x+y, x, 3x-y)$ with respect to $B_1 = \{(1,0), (0,1)\}$ and $B_2 = \{(1,0,0), (0,1,0), (0,0,1)\}$
	b)	Find the matrix of the linear transformation T: $V_3(R) \rightarrow V_2(R)$ defined by $T(x,y) = (x+y, y+z)$ with respect to $B_1 = \{(1,1,1),(1,0,0),(1,1,0)\}$ and $B_2 = \{(1,0),(0,1)\}$
16	a)	Explain Rank of the linear transformation
	b)	Find the rank of the linear transformation defined by $T(x,y,z)=(x+y, x-y, 2x+z)$
17	a)	Find the rank of the linear transformation defined by $T(x,y,z)=(y-x, y-z)$
	b)	if T is a linear transform from $V_3(R) \rightarrow V_4(R)$ defined by $T(1,0,0)=(0,1,0,2)$, $T(0,1,0)=(0,1,1,0)$ and $T(0,0,1)=(0,1,-1,4)$, find rank of the linear transformation
18	a)	Show that the set of all solution of the differential equation $y'' + p(x) y' + q(x) y = 0$ form a vector space over R
	b)	Show that the set of all solution of system of equation $a_1x+a_2y+a_3z=0$, $b_1x+b_2y+b_3z=0$, $c_1x+c_2y+c_3z=0$ from a vector space
19	a)	Prove that the set $W = \{(x,y,z)/(x-4y+7z=0)\}$ of a vector space $V_3(R)$ is a subspace of $V_3(R)$
	b)	Prove that the set $W = \{(x,y,z)/(3x+5y+z=0\}$ of a vector space $V_3(R)$ is a subspace of $V_3(R)$
20	a)	Verify the following set of vectors are basis of R_3 , $S = \{(2,3,0), (1,2,5), (1,9,4)\}$
	b)	Verify the following set of vectors are basis of R_3 , $S = \{(4,3,0), (3,2,-1), (4,3,-2)\}$