

EMAT10100 Engineering Maths I Lecture 17: Eigenvalues and Eigenvectors (part 2)

John Hogan & Alan Champneys

EngMaths I lecture 17

The trace of a matrix

Definition: The trace of a matrix is the sum of its diagonal entries:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Fact: The trace equals the sum of all eigenvalues:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i, \quad ext{ where } \mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

Keepercise 1: Check for the two example matrices: $\begin{pmatrix} 3 & -3 \\ -2 & -2 \end{pmatrix}$ and $\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \quad \text{whose eigenvalues are:} \\ 4 \ \& \ -3 \quad \text{and} \quad -1 \ \& \ -3 \text{ respectively}$

$$4 \& -3$$
 and $-1 \& -3$ respectively

Autumn Semester 2017

Last lecture

 \swarrow Eigenvalues λ & eigenvectors \mathbf{v} defined by

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

- ★ An eigenvector is direction that is held fixed by the matrix transformation
- The corresponding eigenvalue is the stretch factor
- $\ensuremath{\mathbb{K}}$ Calculate eigenvalues by setting $\det(\mathbf{A} \lambda \mathbf{I}) = 0$.
- \bowtie \Rightarrow characteristic polynomial $P(\lambda) = 0$
- $\norm{1}{k}$ roots are eigenvalues λ
- \mathbb{K} Calculate eigenvectors by solving $(\mathbf{A} \lambda_i \mathbf{I}) \mathbf{v} = \mathbf{0}$ for \mathbf{v}_i for the eigenvector \mathbf{v}_i corresponding to eigenvalue λ_i
- k should get an under-determined system, so that eigenvector is defined up to a scalar multiple α
- k Sometimes choose α to make \mathbf{v}_i a unit vector

EngMaths I lecture 17

The product of the eigenvalues

Fact: The determinant of a matrix $A = a_{ij}$ is the product of its eigenvalues. That is:

$$|\mathbf{A}| = \prod_{i=1}^n \lambda_i$$

★ Exercise 2: Check this for the matrices we have previously used as examples

$$\begin{pmatrix} 3 & -3 \\ -2 & -2 \end{pmatrix}, \qquad \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$

This make sense because determinant gives the area / volume scaling factor in 2D or 3D, whereas eigenvalues give stretch factors in separate (eigenvector) directions

Other useful properties of eigenvalues

Suppose that a matrix $\mathbf{A} = a_{ij}$ has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

 \normalfont{k} The eigenvalues of \mathbf{A}^{-1} if it exists are given by

$$\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$$

- $\normalfont{m{arkappa}}$ The eigenvalues of the transposed matrix ${f A}^T$ are the same as ${f A}$.
- \mathbf{k} If k is a scalar then the eigenvalues of $k\mathbf{A}$ are

$$k\lambda_1, k\lambda_2, \ldots, k\lambda_n$$

 $\ensuremath{\mathbb{K}}$ If k is a positive integer then the eigenvalues of \mathbf{A}^k are

$$\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$$

EngMaths I lecture 17 Autumn Semester 2017

What if $P(\lambda)$ doesn't have real solutions?

K E.g. Consider

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Its characteristic $P(\lambda) = \det(\mathbf{A} - \mathbf{I}_2 \lambda) = \lambda^2 - 2\lambda + 2$, which has complex roots $\lambda = 1 \pm j$.

- **Fact**: Complex eigenvalues of a real matrix come in complex conjugate pairs $\mu \pm j\omega$. But what do complex eigenvalues mean?
- Example: Consider first a pure rotation:

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

its eigenvalues are $\cos(\theta) \pm j \sin(\theta) = e^{j\theta}$ (can you show this?).

We Hence a pure rotation is given by a unit complex $re^{\pm j\theta}$ with modulus r=1 and argument θ being the rotation angle

A 3×3 example

- We The same principles work for finding eigenvalues and eigenvectors for matrices of any dimension. For an n-dimensional matrix, the characteristic polynomial $P(\lambda)$ is of nth-order and has n independent solutions.
- Exercise 3: Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

- 1. Find its characteristic polynomial $P(\lambda)$
- 2. Show that the eigenvalues (roots of the polynomial) are $\lambda_{1,2,3} = -1, 1$ and 2,
- 3. Find a **unit** eigenvector corresponding to the eigenvalue $\lambda = -1$.

EngMaths I lecture 17
Autumn Semester 2017

Engineering HOT SPOT

Applications of eignenvalues/vectors:

I. Stablitiy theory

Let $\mathbf{x}(t)$ be a vector of unknowns; consider linear system:

$$\frac{d\mathbf{x}(t)}{dt} = A\mathbf{x}(t)$$

 $\mathbf{x} = \mathbf{0}$ stable if all eigenvalues in left-half of complex plane.

Engineering HOT SPOT

Applications of eignenvalues/vectors:

II. Structural vibration modes are eigenvectors of $M^{-1}K$; where M mass matrix, K stiffness; eigenvalues are frequencies

III. Image processing

Image is (large) vector v of pixels; compare using covariance matrix; decompose using its eigenvectors:

EngMaths I lecture 17
Autumn Semester 2017

small modification to example from last lecture

This is clearly a rotation of some kind!

What about more general complex eigenvalues?

What does a general complex conjugate eigenvalue $\lambda=\mu\pm j\omega$ mean geometrically?

- **Fact** If we express in polar form $\lambda = re^{\pm j\theta}$, then:
 - \blacktriangleright θ gives the amount of rotation
 - r gives the amount of stretch in the radial direction
- **Fact:** Given complex eigenvalues, the eigenvectors are complex conjugate too:

$$\mathbf{v} = \mathbf{u} \pm j\mathbf{w}$$

- ★ But what does a complex eigenvector this mean ?!!
 - ▶ A1. In more than 2D, the two vectors \mathbf{u} and \mathbf{v} define a plane in which the stretch and rotation take place
 - ► A2. Don't worry about it, we don't really concern ourselves with complex eigenvectors

EngMaths I lecture 17 Autumn Semester 2017

- rotation of $\theta = 68.1^{\circ}$ radians.
- Exercise: show this!

Homework

- ₩ Read James 5.7
- - ► 5.7.3 Q.96, Q.97 a), b), g), h)
 - ▶ 5.7.8 Q.104,105
- - ► 5.7.3 Q.94, 95 a), b), g), h)
 - ► 5.7.8 Q.103,104
- ✓ An Assessed homework will be handed out next Monday (week 7)
 - ▶ for completion during the Reading Week (week 8)
 - ▶ like the class test, the marks will not count towards the unit mark