Package 'MultiHazard'

November 5, 2020

Title Tools for modeling compound events
Version 0.0.0.9000
Description What the package does (one paragraph).
License What license it uses
Encoding UTF-8
LazyData true
Imports texmex, fitdistrplus, tweedie, MASS, VGAM, copula, GeneralizedHyperbolic, statmod, RColorBrewer, VineCopula, ks, truncnorm, dplyr, lubridate
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 6.1.1
R topics documented:
Annual_Max
Con_Sampling_2D
Con_Sampling_2D_Lag
Cooley19
1 — —
Copula_Threshold_2D_Lag
Decluster
Design_Event_2D
Detrend

2 Annual_Max

Index		31
	Vine_Copula_Sim	29
	Vine_Copula_Fit	28
	Standard_Copula_Sim	
	Standard_Copula_Sel	
	Standard_Copula_Fit	
	SLR_Scenarios	
	NOAA_SLR	
	Migpd_Fit	
	Mean_Excess_Plot	
	Kendall_Lag	
	Imputation	
	HT04_Lag	
	HT04	
	GPD_Parameter_Stability_Plot	
	GPD_Fit	17
	Diag_Non_Con_Trunc_Sel	
	Diag_Non_Con_Trunc	
	Diag_Non_Con_Sel	14
	Diag_Non_Con	13

Description

Annual_Max

Extract annual maximum in years with over a user-defined proportion of non-missing values.

Generate annual maximum series

Usage

```
Annual_Max(Data_Detrend, Complete_Prop = 0.8)
```

Arguments

Complete_Prop Minimum proportion of non-missing values in an annual record for the annual maximum to be extracted. Default is 0.8.

Data frame containing two columns. In column:

- 1 A "Date" object of equally spaced discrete time steps.
- 2 Numeric vector containing corresponding time series values.

Value

List comprising the index of the annual maximum Event and the annual maximum values AM.

Examples

Con_Sampling_2D 3

Con_Sampling_2D Conditionally sampling a two-dimensional dataset	Con_Sampling_2D	Conditionally sampling a two-dimensional dataset	
--	-----------------	--	--

Description

Creates a data frame where the declustered excesses of a (conditioning) variable are paired with co-occurences of another variable.

Usage

```
Con_Sampling_2D(Data_Detrend, Data_Declust, Con_Variable, Thres = 0.97)
```

Arguments

Data_Detrend	Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe_Combine output.
Data_Declust	Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA. Columns must be in the same order as in Data_Detrend. First object may be a "Date" object. Can be Dataframe_Combine output.
Con_Variable	Column number (1 or 2) or the column name of the conditioning variable. Default is 1.
Thres	Threshold, as a quantile of the observations of the conditioning variable. Default is 0.97 .

Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurences of the other variable, the resulting two-dimensional sample data and name of the conditioning variable.

Examples

```
\label{eq:s20.Rainfall} S20.Rainfall <-Con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con_Variable="Rainfall",Thres=0.97)
```

Con_Sampling_2D_Lag Conditionally sampling a two dimensional dataset

Description

Creates a data frame where the declustered excesses of a (conditioning) variable are paired with the maximum value of a second variable over a specified lag.

```
Con_Sampling_2D_Lag(Data_Detrend, Data_Declust, Con_Variable,
  Thres = 0.97, Lag_Backward = 0, Lag_Forward = 0)
```

4 Cooley19

Arguments

Data_Detrend	Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe_Combine output.
Data_Declust	Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA. Columns must be in the same order as in Data_Detrend. First object may be a "Date" object. Can be Dataframe_Combine output.
Con_Variable	Column number (1 or 2) or the column name of the conditioning variable. Default is 1.
Thres	Threshold, as a quantile of the observations of the conditioning variable. Default is \emptyset . 97.
Lag_Backward	Positieve lag applied to variable not assigned as the Con_Variable. Default is 0 $$
Lag_Forward	Negative lag to variable not assigned as the Con_Variable. Default is 0

Value

List comprising the specifyied Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurences of the other variable, the resulting two-dimensional sample data and name of the conditioning variable.

Examples

```
S20.Rainfall <-Con\_Sampling\_2D(Data\_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data\_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con\_Variable="Rainfall",Thres=0.97)
```

Cooley19	Derives bivariate isolines using the non-parametric approach of Cooley et al. (2019).

Description

The Cooley et al. (2019) method exploits bivariate regular variation and kernel density estimation to generate isolines of bivariate exceedance probabilities. The function utilizes the ks and texmex packages, and works for both asymptotic dependence and independence.

```
Cooley19(Data, Migpd, p.base = 0.01, p.proj = 0.001, u = 0.95,
PLOT = FALSE, x_lim_min_T = NA, x_lim_max_T = NA,
y_lim_min_T = NA, y_lim_max_T = NA, x_lim_min = NA,
x_lim_max = NA, y_lim_min = NA, y_lim_max = NA)
```

Cooley19 5

Arguments

Data	Data frame consisting of two columns.
Migpd	An Migpd object, containing the generalized Pareto models fitted (independently) to the variables comprising the columns of Data.
p.base	Numeric vector of length one specifying the exceedance probability of the base isoline. Default is 0.01 .
p.proj	Numeric vector of length one specifying the exceedance probability of the projected isoline. Default is 0.001 .
u	Numeric vector of length one specifying the quantile at which to estimate the asymptotic nature of the data i.e. chi and chibar. Default is 0.95.
PLOT	Logical; indicating whether to plot the base and projected isolines on the original and transformed scale. Default is FALSE.
x_lim_min_T	Numeric vector of length one specifying the lower x-axis limit of the transformed scale plot. Default is NA.
x_lim_max_T	Numeric vector of length one specifying the upper x-axis limit of the transformed scale plot. Default is NA.
y_lim_min_T	Numeric vector of length one specifying the lower y-axis limit of the transformed scale plot. Default is NA.
y_lim_max_T	Numeric vector of length one specifying the upper y-axis limit of the transformed scale plot. Default is NA.
x_lim_min	Numeric vector of length one specifying the lower x-axis limit of the plot on the original scale. Default is NA.
x_lim_max	Numeric vector of length one specifying the upper x-axis limit of the plot on the original scale. Default is NA.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the plot on the original scale. Default is NA.
y_lim_max	Numeric vector of length one specifying the lower y-axis limit of the plot on the original scale. Default is NA.

Value

List comprising a description of the type of (asymptoptic) dependence Asym, the values the extremal dependence measures Chi and n.bar, exceedance probabilities of the base p.base and projected p.proj isolines, as well as the points on the base I.base and projected I.proj isolines.

See Also

```
Dataframe_Combine Decluster GPD_Fit Migpd_Fit
```

```
\label{eq:coley19} S20.GPD<-Migpd_Fit(Data=S20.Detrend.Declustered.df[,-1], mqu =c(0.99,0.99,0.99)) \\ Cooley19(Data=na.omit(S20.Detrend.df[,3:4]),Migpd=s.Migpd, \\ p.base=0.01,p.proj=0.001,PLOT=TRUE,x_lim_max_T=500,y_lim_max_T=500) \\
```

Copula_Threshold_2D Copula Selection With Threshold 2D - Fit

Description

Declustered excesses of a (conditioning) variable are paired with co-occurences of the other variable before the best fitting bivariate copula is selected, using BiCopSelect function in the VineCopula package, for a single or range of thresholds. The procedure is automatically repeated with the variables switched.

Usage

```
Copula_Threshold_2D(Data_Detrend, Data_Declust, Thres = seq(0.9, 0.99, 0.01), x_lim_min = min(Thres), x_lim_max = max(Thres), y_lim_min = -1, y_lim_max = 1, Upper = 0, Lower = 0, GAP = 0.05, Legend = TRUE)
```

Arguments

Data_Detrend	Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA.
Data_Declust	Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA.
Thres	A single or sequence of thresholds, given as a quantile of the observations of the conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01.
x_lim_min	Numeric vector of length one specifying x-axis minimum. Default is the maximum argument in Thres.
x_lim_max	Numeric vector of length one specifying x-axis maximum. Default is the minimum argument in Thres.
y_lim_min	Numeric vector of length one specifying y-axis minimum. Default -1.0.
y_lim_max	Numeric vector of length one specifying y-axis maximum. Default 1.0.
Upper	Numeric vector specifying the element number of the Thres argument for which the copula family name label to appear above the corresponding point on the Kendall's tau coefficient vs threshold plot, when conditioning on the variable in column 1. Default is 0.
Lower	Numeric vector specifying the element number of the Thres argument for which the copula family name label to appear below the corresponding point on the Kendall's tau coefficient vs threshold plot, when conditioning on the variable in column 2. Default is 0.
GAP	Numeric vector of length one specifying the distance above or below the copula family name label appears the corresponding point on the Kendall's tau coefficient vs threshold plot. Default is 0.05.
Legend	Logic vector of length one specifying whether a legend should be plotted. Default is TRUE.

Value

List comprising:

- Kendalls_Tau_Var1 Kendall's tau of a sample
- p_value_Var1 p-value when testing the null hypothesis H_0: tau=0 i.e. that there is no correlation between the variables
- N_Var1 Size of the dataset
- Copula_Family_Var1 Best fitting copula for the specified thresholds

when the dataset is conditioned on the variable in column 1. Analogous vectors Kendalls_Tau_Var2,p_value_Var2, N_Var2 and Copula_Family_Var2 for the specified thresholds when the dataset is conditioned on the variable in column 2.

See Also

```
Dataframe_Combine
```

Examples

```
\label{lem:copula_Threshold_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)], \\ Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)], \\ y_lim_min=-0.075, \ y_lim_max = 0.25, \\ Upper=c(6,8), \ Lower=c(6,8), GAP=0.1) \\ \\
```

```
Copula_Threshold_2D_Lag
```

Copula Selection With Threshold 2D - Fit

Description

Declustered excesses of a (conditioning) variable are paired with co-occurences of the other variable before the best fitting bivariate copula is selected, using BiCopSelect function in the VineCopula package, for a single or range of thresholds. The procedure is automatically repeated with the variables switched.

Usage

```
Copula_Threshold_2D_Lag(Data_Detrend, Data_Declust, Thres1 = seq(0.9, 0.99, 0.01), Thres2 = seq(0.9, 0.99, 0.01), Lag_Backward_Var1, Lag_Forward_Var2, Lag_Forward_Var2, x_lim_min = min(c(Thres1, Thres2)), x_lim_max = max(c(Thres1, Thres2)), y_lim_min = -1, y_lim_max = 1, Upper = 0, Lower = 0, GAP = 0.05, Legend = TRUE)
```

Arguments

Data_Detrend Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA.

Data_Declust Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA.

Lag_Backward_Var1

Numeric vector of length one specifying the negative lag applied to variable in the first column of Data_Detrend. Default 0.

Lag_Forward_Var1

Numeric vector of length one specifying positive lag applied to variable in the first column of Data_Detrend. Default 0.

Lag_Backward_Var2

Numeric vector of length one specifying negative lag applied to variable in the second column of Data_Detrend. Default 0.

Lag_Forward_Var2

Numeric vector of length one specifying positive lag applied to variable in the second column of Data_Detrend. Default 0.

x_lim_min Numeric vector of length one specifying x-axis minimum. Default is the maxi-

mum argument in Thres.

x_lim_max Numeric vector of length one specifying x-axis maximum. Default is the mini-

mum argument in Thres.

y_lim_min Numeric vector of length one specifying y-axis minimum. Default -1.0. y_lim_max Numeric vector of length one specifying y-axis maximum. Default 1.0.

Upper Numeric vector specifying the element number of the Thres argument for which

the copula family name label to appear above the corresponding point on the Kendall's tau coefficient vs threshold plot, when conditioning on the variable in

column 1. Default is 0.

Lower Numeric vector specifying the element number of the Thres argument for which

the copula family name label to appear below the corresponding point on the Kendall's tau coefficient vs threshold plot, when conditioning on the variable in

column 2. Default is 0.

SAP Numeric vector of length one specifying the distance above or below the copula

family name label appears the corresponding point on the Kendall's tau coeffi-

cient vs threshold plot. Default is 0.05.

Legend Logic vector of length one specifying whether a legend should be plotted. De-

fault is TRUE.

Thres A single or sequence of thresholds, given as a quantile of the observations of the

conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01.

Value

List comprising:

- Kendalls_Tau_Var1 Kendall's tau of a sample
- p_value_Var1 p-value when testing the null hypothesis H_0=0 i.e. that there is no correlation between the variables
- N_Var1 size of the dataset
- Copula_Family_Var1 best fitting copula for the specified thresholds

when the dataset is conditioned on the variable in column 1. Analogous vector Kendalls_Tau_Var2, p_value_Var2, N_Var2 and Copula_Family_Var2 for the specified thresholds when the dataset is conditioned on the variable in column 2.

See Also

Dataframe_Combine

Dataframe_Combine 9

Examples

Dataframe_Combine

Creates a data frame containing up to five time series

Description

Combines up to five time series, detrended where necessary, into a single data frame.

Usage

```
Dataframe_Combine(data.1, data.2, data.3, data.4 = 0, data.5 = 0,
    n = 3, names)
```

Arguments

n Integer 1-5 specifying the number of time series. Default is 3.

data.1:5 Data frames with two columns containing in column

- 1 Continuous sequence of times spanning from the first to the final recorded observations.
- 2 Corresponding values detrended where necessary.

Value

A data frame containing all times from the first to the most up to date reading of any of the variables.

See Also

Detrend

```
#Formatting data
S20.Rainfall.df<-Perrine_df
S20.Rainfall.df$Date<-as.Date(S20.Rainfall.df$Date)
S20.0sWL.df <-S20\_T\_MAX\_Daily\_Completed\_Detrend\_Declustered[,c(2,4)]
S20.OsWL.df$Date<-as.Date(S20.OsWL.df$Date)
#Detrending O-sWL series at Site S20
S20.OsWL.Detrend<-Detrend(Data=S20.OsWL.df,Method = "window",PLOT=FALSE,
                         x_lab="Date",y_lab="0-sWL (ft NGVD 29)")
#Creating a dataframe with the date alongside the detrended OsWL series
S20.OsWL.Detrend.df<-data.frame(as.Date(S20.OsWL.df$Date),S20.OsWL.Detrend)
colnames(S20.OsWL.Detrend.df)<-c("Date","OsWL")</pre>
#Combining the two datasets by Date argument
S20.Detrend.df<-Dataframe_Combine(data.1<-S20.Rainfall.df,
                                 data.2<-S20.0sWL.Detrend.df,
                                 data.3=0.
                                 names=c("Rainfall","OsWL"))
```

Design_Event_2D

	Decluster	Declusters a time series	
--	-----------	--------------------------	--

Description

Identify cluster maxima above a threshold, using the runs method of Smith and Weissman (1994).

Usage

```
Decluster(Data, u = 0.95, SepCrit = 3, mu = 365.25)
```

Arguments

Data	Numeric vector of the time series.
u	Numeric vector of length one specifying the declustering threshold; as a quantile [0,1] of Data vector. Default is 0.95.
SepCrit	Integer; specifying the separation criterion under which events are declustered. Default is 3 corresponding to a storm window of three days in the case of daily data.
mu	(average) occurrence frequency of events in Data. Numeric vector of length one. Default is 365.25, daily data.

Value

List comprising the Threshold above which cluster maxima are identified, rate of cluster maxima Rate, a vector containing the original time series Detrended and the Declustered series.

See Also

Detrend

Examples

Decluster(data=S20_T_MAX_Daily_Completed_Detrend\$Detrend)

Design_Event_2D	Derives a single or ensemble of bivariate design events	

Description

Calculates the single design event under the assumption of full dependence, or once accounting for dependence between variables the single "most-likely" or an ensemble of possible design events.

```
Design_Event_2D(Data, Data_Con1, Data_Con2, Thres1, Thres2, Copula_Family1,
   Copula_Family2, Marginal_Dist1, Marginal_Dist2, Con1 = "Rainfall",
   Con2 = "OsWL", mu = 365.25, RP, x_lab = "Rainfall (mm)",
   y_lab = "O-sWL (mNGVD 29)", x_lim_min = NA, x_lim_max = NA,
   y_lim_min = NA, y_lim_max = NA, delta = 1e-04, N, N_Ensemble)
```

Design_Event_2D 11

Arguments

Data	Data frame of dimension nx2 containing two co-occurring time series of length n.
Data_Con1	Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the first column.
Data_Con2	Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the second column. Can be obtained using the Con_Sampling_2D function.
Thres1	Numeric vector of length one specifying the threshold above which the variable in the first column was sampled in Data_Con1.
Thres2	Numeric vector of length one specifying the threshold above which the variable in the second column was sampled in Data_Con2.
Copula_Family1	Numeric vector of length one specifying the copula family used to model the Data_Con1 dataset.
Copula_Family2	Numeric vector of length one specifying the copula family used to model the Data_Con2 dataset. Best fitting of 40 copulas can be found using the Copula_Threshold_2D function.
Marginal_Dist1	Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable.
Marginal_Dist2	Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable.
Con1	Character vector of length one specifying the name of variable in the first column of Data.
Con2	Character vector of length one specifying the name of variable in the second column of Data.
mu	Numeric vector of length one specifying the (average) occurrence frequency of events in Data. Default is 365.25, daily data.
RP	Numeric vector of length one specifying the return period of interest.
x_lab	Character vector specifying the x-axis label.
y_lab	Character vector specifying the y-axis label.
x_lim_min	Numeric vector of length one specifying x-axis minimum. Default is NA.
x_lim_max	Numeric vector of length one specifying x-axis maximum. Default is NA.
y_lim_min	Numeric vector of length one specifying y-axis minimum. Default is NA.
y_lim_max	Numeric vector of length one specifying y-axis maximum. Default is NA.
delta	Numeric vector of length one specifying of the resolution at which the copula CDF is evaluated on the [0,1]2 square. Default is 0.0001.
N	Numeric vector of length one specifying the size of the sample from the fitted joint distributions used to estimate the density along an isoline. Samples are collected from the two joint distribution with proportions consistent with the total number of extreme events conditioned on each variable.
N_Ensemble	Numeric vector of length one specifying the number of possible design events

sampled along the isoline of interest.

12 Detrend

Value

Plot of all the observations (grey circles) as well as the declustered excesses above Thres1 (blue circles) or Thres2 (blue circles), observations may belong to both conditional samples. Also shown is the isoline associated with RP contoured according to their relative probability of occurrence on the basis of the sample from the two joint distributions, the "most likely" design event (black diamond), and design event under the assumption of full dependence (black triangle) are also shown in the plot. The function also returns a list comprising the design events assuming full dependence "FullDependence", as well as once the dependence between the variables is accounted for the "Most likley" "MostLikelyEvent" as well as an "Ensemble" of possible design events.

See Also

Dataframe_Combine Copula_Threshold_2D Diag_Non_Con Diag_Non_Con_Trunc

Examples

```
S22.Rainfall<-Con_Sampling_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                               Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],
                               Con_Variable="Rainfall", Thres=0.97)
S22.OsWL<-Con_Sampling_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                          Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],
                          Con_Variable="OsWL", Thres=0.97)
S22. Copula. Rainfall <-Copula\_Threshold\_2D(Data\_Detrend=S22. Detrend. df[,-c(1,4)],\\
                            Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],Thres =0.97,
                                          y_{\lim_{\to}} = -0.075, y_{\lim_{\to}} = 0.25,
                                   Upper=c(2,9),Lower=c(2,10),GAP=0.15)$Copula_Family_Var1
S22.Copula.OsWL<-Copula_Threshold_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                           Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],Thres =0.97,
                                      y_{\lim_{\to}} = -0.075, y_{\lim_{\to}} = 0.25,
                                   Upper=c(2,9), Lower=c(2,10), GAP=0.15) \\ Copula\_Family\_Var2
Design_Event_2D(Data=S22.Detrend.df[,-c(1,4)], Data_Con1=S22.Rainfall$Data,
                Data_Con2=S22.OsWL$Data, Thres1=0.97, Thres2=0.97,
                {\tt Copula\_Family1=S22.Copula.Rainfall,\ Copula\_Family2=S22.Copula.0sWL,}
                Marginal_Dist1="Logis", Marginal_Dist2="Twe",RP=100,N=10,N_Ensemble=10)
```

Detrend

Detrends a time series.

Description

Detrends a time series using either a linear fit covering the entire dataset or moving average trend correction with a user-specified window width.

```
Detrend(Data, Method = "window", Window_Width = 89,
   End_Length = 1826, PLOT = FALSE, x_lab = "Data", y_lab = "Data")
```

Diag_Non_Con 13

Arguments

Data	Data frame containing two columns. In column:
	• 1 A "Date" object of equally spaced discrete time steps.
	 2 Numeric vector containing corresponding time series values. No NAs allowed.
Method	Character vector of length one specifying approach used to detrend the data. Options are moving average "window" (default) and "linear".
Window_Width	Numeric vector of length one specifying length of the moving average window. Default is 89, window comprises the observation plus 44 days either side, which for daily data corresponds to an approximate 3 month window.
End_Length	Numeric vector of length one specifying number of observations at the end of the time series used to calculate the present day average. Default is 1826, which for daily data corresponds to the final five years of observations.
PLOT	Logical; whether to plot original and detrended series. Default is "FALSE".
x_lab	Character vector of length one specifying x-axis label. Default is "Date".
y_lab	Character vector of length one specifying y-axis label. Default is "Data".

Value

Numeric vector of the detrended time series.

Examples

Diag_Non_Con Goodness of fit of non-extreme marginal distributions
--

Description

Fits two (unbounded) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.

Usage

```
Diag_Non_Con(Data, x_lab, y_lim_min = 0, y_lim_max = 1)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Character vector of length one specifying the label on the x-axis of histogram and cumulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \emptyset .
y_lim_max	Numeric vector of length one specifying the upper y-axis limit of the histogram. Default is 1.

Value

Name of the best fitting distribution Best_fit. Panel consisting of three plots. Upper plot: Plot depicting the AIC of the two fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

See Also

```
Copula_Threshold_2D
```

Examples

Diag_Non_Con_Sel Demonstrate the goodness of fit of the selected non-extreme marginal distribution

Description

Plots demonstrating the goodness of fit of a selected (not truncated) non-extreme marginal distribution to a dataset.

Usage

```
Diag_Non_Con_Sel(Data, x_lab = "Data", y_lim_min = 0, y_lim_max = 1,
    Selected)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Numeric vector of length one specifyingLabel on the x-axis of histogram and cummulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram.
y_lim_max	Numeric vector of length one specifying the upper y-axis limit of the histogram.
Selected	Charactor vector of length one specifying the chosen distribution, options are the Gaussian "Gaus" and logistic "Logis".

Value

Panel consisting of three plots. Upper plot: Plots depicting the AIC of the two fitted distributions. Middle plot: Probabilty Density Functions (PDFs) of the selected distributions superimposed on a histgram of the data. Lower plot: Cummulative distribution function (CDFs) of the selected distribution overlaid on a plot of the empirical CDF.

See Also

```
Diag_Non_Con
```

Diag_Non_Con_Trunc

Examples

Diag_Non_Con_Trunc

Goodness of fit of non-extreme marginal distributions

Description

Fits seven (truncated) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.

Usage

```
Diag_Non_Con_Trunc(Data, x_lab, y_lim_min = 0, y_lim_max = 1)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Character vector of length one specifying the label on the x-axis of histogram and cumulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \emptyset .
y_lim_max	Numeric vector of length one specifying the upper y-axis limit of the histogram. Default is 1.

Value

Name of the best fitting distribution Best_fit. Panel consisting of three plots. Upper plot: Plot depicting the AIC of the eight fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

See Also

```
Copula_Threshold_2D
```

```
\label{eq:con_Sampling_2D} S20.0sWL <-Con\_Sampling\_2D(Data\_Detrend=S20.Detrend.df[,-c(1,4)], \\ Data\_Declust=S20.Detrend.Declustered.df[,-c(1,4)], \\ Con\_Variable="OsWL", Thres=0.97) \\ Diag\_Non\_Con\_Trunc(Data=S20.0sWL$Data$Rainfall,x_lab="Rainfall (Inches)", \\ y_lim\_min=0,y_lim\_max=2) \\
```

```
Diag_Non_Con_Trunc_Sel
```

Demonstrate the goodness of fit of the selected non-extreme marginal distribution

Description

Plots demonstrating the goodness of fit of a selected (truncated) non-extreme marginal distribution to a dataset.

Usage

```
Diag_Non_Con_Trunc_Sel(Data, x_lab, y_lim_min = 0, y_lim_max = 1,
    Selected)
```

Arguments

Data	Numeric vector containing realizations of the variable of interest.
x_lab	Character vector of length one specifying the label on the x-axis of histogram and cummulative distribution plot.
y_lim_min	Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \emptyset .
y_lim_max	Numericr vector of length one specifying the upper y-axis limit of the histogram. Default is 1.
Selected	Character vector of length one specifying the chosen distribution, options are the Birnbaum-Saunders "BS", exponential "Exp", gamma "Gam", lognormal "LogN", Tweedie "Twe" and Weibull "Weib".

Value

Panel consisting of three plots. Upper plot: Plot depicting the AIC of the eight fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

See Also

```
Diag_Non_Con_Trunc
```

```
\label{eq:con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)], Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)], Con_Variable="0sWL", Thres=0.97) \\ Diag_Non_Con_Trunc(Data=S20.0sWL$Data$Rainfall,x_lab="Rainfall (Inches)", y_lim_min=0,y_lim_max=2) \\ Diag_Non_Con_Sel_Trunc(Data=S20.0sWL$Data$Rainfall,x_lab="Rainfall (Inches)", y_lim_min=0,y_lim_max=2, Selected="Twe") \\
```

GPD_Fit

GPD	Fit
GF D	_ו ⊥ נ

Fits a single generalized Pareto distribution - Fit

Description

Fit a Generalized Pareto Distribution (GPD) to a declustered dataset.

Usage

```
GPD_Fit(Data, Data_Full, u = 0.95, mu = 365.25, min.RI = 1,
   PLOT = FALSE, xlab_hist = "Data", y_lab = "Data")
```

Arguments

Data	Numeric vector containing the declusted data.
Data_Full	Numeric vector containing the non-declustered data.
u	GPD threshold; as a quantile $[0,1]$ of Data vector. Default is 0.95 .
mu	Numeric vector of length one specifying (average) occurrence frequency of events in the Data_Full input. Default is 365.25 .
min.RI	Numeric vector of length one specifying the minimum return period in the return level plot. Default is 1 .
xlab_hist	Character vector of length one. Histogram x-axis label. Default is "Data".
y_lab	Character vector of length one. Histogram x-axis label. Default is "Data".
Plot	Logical; indicating whether to plot diagnostics. Default is FALSE.

Value

List comprising the GPD Threshold, shape parameter xi and scale parameters sigma along with their standard errors sigma. SE and xi.SE.

Details

For excesses of a variable X over a suitably high threshold u the fitted GPD model is parameterized as follows:

$$P(X > x | X > u) = \left[1 + \xi \frac{(x - u)}{\sigma}\right]_{+}^{-\frac{1}{\xi}}$$

where ξ and $\sigma > 0$ are the shape and scale parameters of the GPD and $[y]_+ = max(y, 0)$.

Examples

Decluster(Data=S20_T_MAX_Daily_Completed_Detrend\$Detrend)

18 HT04

```
GPD_Parameter_Stability_Plot

GPD parameter stability plots
```

Description

Plots showing the stability of the GPD scale and shape parameter estimates across a specified range of thresholds.

Usage

```
GPD_Parameter_Stability_Plot(Data, Data_Full, u = 0.95, PLOT = FALSE,
    xlab_hist = "Data", y_lab = "Data")
```

Arguments

Data_Full Numeric vector containing the declusted data.

Data_Full Numeric vector containing the non-declustered data.

u Numeric vector of GPD thresholds; given as a quantiles [0,1] of Data vector. Default is 0.9 to 0.999 in intervals of 0.001.

Plot Logical; indicating whether to plot diagnostics. Default is FALSE.

Value

Plot of the shape and modified scale parameter estimates along with their errors bars over the range of specified thresholds.

See Also

Decluster

Examples

```
\label{eq:GPD_Parameter_Stability_Plot(Data = S20.Detrend.Declustered.df\$Rainfall, \\ Data_Full= na.omit(S20.Detrend.df\$Rainfall), \\ u=seq(0.9,0.999,0.001))
```

HT04 Fits and simulates from the conditional multivariate approach of Heffernan and Tawn (2004)

Description

Fitting and simulating the conditional multivariate approach of Heffernan and Tawn (2004) to a dataset comprising 3 variables. Function utilizes the mexDependence and predict.mex.conditioned functions from the texmex package.

HT04

Usage

```
HT04(data_Detrend_Dependence_df, data_Detrend_Declustered_df, u_Dependence,
  Migpd, mu = 365.25, N = 100, Margins = "gumbel", V = 10,
  Maxit = 10000)
```

Arguments

data_Detrend_Dependence_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Values, detrended where necessary, of the variables to be modelled.

data_Detrend_Declustered_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any
 of the variables are recorded.
- 2:(n+1) Declustered and if necessary detrended values of the variables to be modelled.

u_Dependence

Dependence quantile. Specifies the (sub-sample of) data to which the dependence model is fitted, that for which the conditioning variable exceeds the threshold associated with the prescribed quantile. Default is 0.7, thus the dependence parameters are estimated using the data with the highest 30% of values of the conditioning variables.

Migpd

An Migpd object, containing the generalized Pareto models fitted (independently) to each of the variables.

Margins

Character vector specifying the form of margins to which the data are transformed for carrying out dependence estimation. Default is "gumbel", alternative is "laplace". Under Gumbel margins, the estimated parameters a and b describe only positive dependence, while c and d describe negative dependence in this case. For Laplace margins, only parameters a and b are estimated as these capture both positive and negative dependence.

٧

See documentation for mexDependence.

Maxit

See documentation for mexDependence.

Value

List comprising the fitted HT04 models Models, proportion of the time each variable is most extreme, given at least one variable is extreme Prop, as well as the simulated values on the transformed u.sim and original x.sim scales.

See Also

```
Dataframe_Combine Migpd_Fit
```

20 HT04_Lag

HT04_Lag

Fits and simulates from the conditional multivariate approach of Heffernan and Tawn (2004)

Description

Fitting and simulating the conditional multivariate approach of Heffernan and Tawn (2004) to a dataset. Function utilizes the mexDependence and predict.mex.conditioned functions from the texmex package.

Usage

```
HT04_Lag(data_Detrend_Dependence_df, data_Detrend_Declustered_df, Lags,
  u_Dependence, Migpd, mu = 365.25, N = 100, Margins = "gumbel",
  V = 10, Maxit = 10000)
```

Arguments

data_Detrend_Dependence_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Values, detrended where necessary, of the variables to be modelled.

data_Detrend_Declustered_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Declustered and if necessary detrended values of the variables to be modelled.

u_Dependence

Dependence quantile. Specifies the (sub-sample of) data to which the dependence model is fitted, that for which the conditioning variable exceeds the threshold associated with the prescribed quantile. Default is 0.7, thus the dependence parameters are estimated using the data with the highest 30% of values of the conditioning variables.

Migpd

An Migpd object, containing the parameterized Pareto models fitted (independently) to each of the variables.

Imputation 21

Margins Character vector specifying the form of margins to which the data are transformed for carrying out dependence estimation. Default is "gumbel", alternative is "laplace". Under Gumbel margins, the estimated parameters a and b describe only positive dependence, while c and d describe negative dependence in this case. For Laplace margins, only parameters a and b are estimated as these capture both positive and negative dependence.

V See documentation for mexDependence.Maxit See documentation for mexDependence.

Lag Matrix specifying the lags. The no lag i.e. 0 lag cases need to be speci-

fied. Row n denotes the lags applied to the variable in the nth column of data_Detrend_Dependence_df. Column n corresponds to the nth largest lag applied to any variable. NA. Default is matrix(c(0,1,0,NA),nrow=2,byrow = T), which corresponds to a lag of 1 being applied to variable in the first column of data_Detrend_Dependence_df and no lag being applied to the variable in the

second column of data_Detrend_Dependence_df.

Value

List comprising the fitted HT04 models Models, proportion of the time each variable is most extreme, given at least one variable is extreme Prop, as well as the simulated values on the transformed u.sim and original x.sim scales.

See Also

Dataframe_Combine Decluster GPD_Fit Migpd_Fit

Examples

Imputation	Imputing missing values through linear regression

Description

Fits a simple linear regression model, impute missing values of the dependent variable.

Usage

```
Imputation(Data, Variable, x_lab, y_lab)
```

Arguments

Data	Data frame containing two at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe_Combine output.
Variable	Character vector of length one specifying the (column) name of the variable to be imputed i.e. dependent variable in the fitted regression.
x_lab	Character vector of length one specifying the name of the independent variable to appear as the x-axis label on a plot showing the data, imputed values and the linear regression model.

22 Kendall_Lag

y_lab

Character vector of length one specifying the name of the dependent variable to appear as the y-axis label on plot showing the data, imputed values and the linear regression model.

Value

List comprising a

- Data data frame containing the original data plus an additional column named Value where the NA values of the Variable of interest have been imputed where possible.
- Model linear regression model parameters including its coefficient of determination

and a scatter plot of the data (black points), linear regression model (red line) and fitted (imputed) values (blue points).

Examples

```
####Objective: Fill in missing values at groundwater well G_3356 using record at G_3355
##Viewing first few rows of G_3356
head(G_3356)
#Converting date column to a "Date" object
G_3356$Date<-seq(as.Date("1985-10-23"), as.Date("2019-05-29"), by="day")
#Converting readings to numeric object
G_3356$Value<-as.numeric(as.character(G_3356$Value))</pre>
##Viewing first few rows of G_3355
head(G_3355)
#Converting date column to a "Date" object
G_3355$Date<-seq(as.Date("1985-08-20"), as.Date("2019-06-02"), by="day")
#Converting readings to numeric object
G_3355$Value<-as.numeric(as.character(G_3355$Value))</pre>
##Merge the two dataframes by date
library('dplyr')
GW_S20 < -merge(G_3356, G_3355, by="Date")
colnames(GW_S20)<-c("Date","G3356","G3355")</pre>
#Carrying out imputation
Imputation(Data=GW_S20, Variable="G3356",
           x_lab="Groundwater level (ft NGVD 29)",
           y_lab="Groundwater level (ft NGVD 29)")
```

Kendall_Lag

Kendall's tau correlation coefficient between pairs of variables over a range of lags

Description

Kendall's tau correlation coefficient between pairs of up to three variables over a range of lags

```
Kendall_Lag(Data, Lags = seq(-6, 6, 1), PLOT = TRUE, GAP = 0.1)
```

Mean_Excess_Plot 23

Arguments

Data	A data frame with 3 columns, containing concurrent observations of three time series.
Lags	Integer vector giving the lags over which to calculate coefficient. Default is a vector from -6 to 6.
GAP	Numeric vector of length one. Length of y-axis above and below max and min Kendall's tau values.
Plot	Logical; whether to show plot of Kendall's coefficient vs lag. Default is TRUE.

Value

List comprising Kendall's tau coefficients between the variables pairs composing columns of Data with the specified lags applied to the second named variable Values and the p-values Test when testing the null hypothesis H_0: tau=0 i.e. there is no correlation between a pair of variables. Plot of the coefficient with a filled point of hypothesis test (p-value<0.05). Lag applied to variable named second in the legend.

See Also

Dataframe_Combine

Examples

Kendall_Lag(Data=S20.Detrend.df,GAP=0.1)

Mean_Excess_Plot Mean excess plot - GPD threshold selection

Description

The empirical mean excess function is linear in the case of a GPD.

Usage

```
Mean_Excess_Plot(Data)
```

Arguments

data A vector comprising a declustered and if necessary detrended time series to be

modelled.

Value

Plot of the empirical mean excess function (black line), average of all observations exceeding a threshold decreased by the threshold, for thresholds spanning the range of the observations. Also provided are 95% confidence intervals (blue dotted lines) and the observations (black dots).

See Also

Decluster Detrend

24 Migpd_Fit

Examples

 ${\tt Mean_Excess_Plot(Data=S20_Detrend_Declustered_df\$Rainfall)}$

Migpd_Fit

Fits Multiple independent generalized Pareto models - Fit

Description

Fit multiple independent generalized Pareto models to each column of a data frame. Edited version of the migpd function in texmex, to allow for NAs in a time series.

Usage

```
Migpd_Fit(Data, mth, mqu, penalty = "gaussian", maxit = 10000,
    trace = 0, verbose = FALSE, priorParameters = NULL)
```

Arguments

Data	A data frame with n columns, each comprising a declustered and if necessary detrended time series to be modelled.
mth	Marginal thresholds, above which generalized Pareto models are fitted. Numeric vector of length n.
mqu	Marginal quantiles, above which generalized Pareto models are fitted. Only one of mth and mqu should be supplied. Numeric vector of length n.
penalty	See ggplot.migpd.
maxit	See ggplot.migpd.
trace	See ggplot.migpd.
verbose	See ggplot.migpd.
priorParameters	
	See ggplot.migpd.

Value

An object of class "migpd". There are coef, print, plot, ggplot and summary functions available.

See Also

Decluster Detrend Dataframe_Combine

```
#With date as first column  S22.GPD < -Migpd_Fit(Data = S22.Detrend.Declustered.df, mqu = c(0.99,0.99,0.99)) \\ #Without date as first column  S22.GPD < -Migpd_Fit(Data = S22.Detrend.Declustered.df[,-1], mqu = c(0.99,0.99,0.99))
```

NOAA_SLR 25

NOAA_SLR	NOAA sea-level rise scenarios	

Description

Time (in years) for a specified amount of sea-level rise (SLR) to occur at Miami Beach according to the five SLR scenarios in NOAA 2017 report titled "Global and Regional Sea Level Rise Scenarios for the United States".

Usage

```
NOAA_SLR(OsWL_req, SLR_scen = c("High", "Intermediate", "Low"),
   Input_unit = "m", Year.Inital = 2020)
```

Arguments

OsWL_req	Numeric vector of SLR required.
SLR_scen	Character vector specifying which of the NOAA (2017) scenarios to consider. Options include High, Intermediate high Int.High, Intermediate, Intermediate low (Int.Low) and Low.
Input_unit	Character vector of length one; specifying units of SLR. Default is meters "m", other option is feet "ft".
Year	Character vector of length one; specifying

Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurrences of the other variable, the resulting two-dimensional sample data and name of the conditioning variable.

Examples

```
\label{eq:NOAA_SLR} NOAA\_SLR <-function(OsWL\_req=seq(0,1,0.01), SLR\_scen=c("High","Intermediate","Low"), Input\_unit="m") \\
```

SLR_Scenarios	Sea level rise scenarios in the Southeast Florida Regional Climate
	Change Compact:

Description

Calculates and plots time required for sea level rise to reach a specified level according to the three scenarios in the Compact.

```
SLR_Scenarios(SeaLevelRise, Unit = "m")
```

Arguments

SeaLevelRise Numeric vector of length one, sea level rise required.

data A data frame with n columns, each comprising a declustered and if necessary

detrended time series to be modelled.

Value

An object of class "migpd". There are coef, print, plot, ggplot and summary functions available.

Examples

```
SLRScenarios(0.45)
```

Standard_Copula_Fit

Fit an Archimedean/elliptic copula model - Fit

Description

Fit a n-dimensional Archimedean or elliptic copula model. Function is simply a repackaging of the fitCopula function in the copula package.

Usage

```
Standard_Copula_Fit(Data, Copula_Type = "Gaussian")
```

Arguments

Data frame containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe_Combine output.

Copula_Type Type of elliptical copula to be fitted, options are "Gaussian" (Default), "tcopula",

"Gumbel", "Clayton" and "Frank".

Value

List comprising the Copula_Type and the fitted copula Model object.

See Also

Dataframe_Combine Standard_Copula_Sel CDVineCopSelect BiCopSelect

```
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Gaussian")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="tcopula")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Gumbel")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Clayton")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Frank")</pre>
```

Standard_Copula_Sel 27

Standard_Copula_Sel

Selecting best fitting standard (elliptical and Archimedean) copula

Description

Fits five n-dimensional standard copula to a dataset and returns their corresponding AIC values.

Usage

```
Standard_Copula_Sel(Data)
```

Arguments

Data

Data frame containing n at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe_Combine output.

Value

Data frame containing copula name in column 1 and associated AIC in column 2. Parameters are estimated using the fitCopula() function in copula package using maximum pseudo-likelihood estimator "mpl". See fitCopula for a more thorough explanation.

See Also

Dataframe_Combine Standard_Copula_Fit

Examples

Standard_Copula_Sel(Data_Detrend=S20.Detrend.df)

Standard_Copula_Sim

Archimedean/elliptic copula model - Simulation

Description

Simulating from a fitted Archimedean or elliptic copula model.

```
Standard_Copula_Sim(Data, Marginals, Copula, mu = 365.25, N = 10000)
```

28 Vine_Copula_Fit

Arguments

Data Data frame containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe_Combine output.

Marginals An migpd object containing the n-independent generalized Pareto models.

Copula An Archimedean or elliptic copula model. Can be specified as an Standard_Copula_Fit

object.

(average) Number of events per year. Numeric vector of length one. Default is mu

365.25, daily data.

Ν Number of years worth of extremes to be simulated. Numeric vector of length

one. Default 10,000 (years).

Value

Each n-dimensional realisation is given on the transformed [0,1]^n scale (first n columns) in the first data frame u. Sim and on the original scale in the second data frame x. Sim.

See Also

```
Standard_Copula_Sel Standard_Copula_Fit
```

Examples

```
#Fitting multiple independent GPDs to the data
#(required to transform realisation back to origional scale)
S20.Migpd<-Migpd_Fit(Data=S20.Detrend.Declustered.df[,-1],mqu=c(0.975,0.975,0.9676))
#Fitting Gaussian copula
Standard_Copula_Sim(Data=S20.Detrend.df,Marginals=S20.Migpd,Copula=S20.Gaussian,
                    mu=365.25, N=10000)
```

Vine_Copula_Fit

C and D-vine Copula - Fitting

Description

Fit either a C- or D-vine copula model. Function is a repackaging of the CDVineCopSelect function in the CDV ine package.

Usage

```
Vine_Copula_Fit(Data, FamilySet = NA, Type = "DVine",
 SelCrit = "AIC", Indeptest = FALSE, Level = 0.05)
```

Arguments

Data Data frame containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe_Combine output.

Integer vector which must include at least one pair-copula family that allows FamilySet

for positive and one that allows for negative dependence. If familyset = NA (default), selection among all possible families is performed. The coding of pair-copula families is shown below. See help file of the CDVineSim function to

find the integers representing the different copula families.

Vine_Copula_Sim 29

Type Type of the vine model:

1 or "CVine" = C-vine
 2 or "DVine" = D-vine

SelCrit Character vector specifying the criterion for choosing among the competing

pair-copula. Possible choices: "AIC" (default) or "BIC".

Indeptest Logical; whether a hypothesis test for the independence of u1 and u2 is per-

formed before bivariate copula selection (default: Indeptest = FALSE; cp. BiCopIndTest). The independence copula is chosen for a (conditional) pair if

the null hypothesis of independence cannot be rejected.

level Numeric; significance level of the independence test (default: level = 0.05).

Value

List comprising the pair-copula families composing the C- or D-vine copula Family, its parameters Par and Par2 as well as whether it is a C or D-vine Type.

See Also

Dataframe_Combine Vine_Copula_Sim CDVineCopSelect BiCopSelect

Examples

Vine_Copula_Sim

C and D-vine Copula - Simulation

Description

Simulating from specified C- and D-vine copula models. Builds on the CDVineSim in CDVine.

Usage

```
Vine_Copula_Sim(Data, Marginals, Vine_family, Vine_par, Vine_par2,
   Vine_Type = "DVine", mu = 365.25, N = 10000)
```

Arguments

Data frame containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe_Combine output.

Marginals An migpd object containing the d-independent generalized Pareto models.

Vine_family A n*(n-1)/2 integer vector specifying the pair-copula families defining the fitting

C- or a D-vine copula models. Can be specified as the Family argument of a Vine_Copula_Fit object. See help file of the CDVineSim function to find the

integers representing the different copula families.

Vine_par A n*(n-1)/2 vector of pair-copula parameters.

Vine_par2 A n*(n-1)/2 vector of second parameters for pair-copula families with two pa-

rameters.

30 Vine_Copula_Sim

Type of the vine model: Vine_Type • 1 or "CVine" = C-vine • 2 or "DVine" = D-vine Can be specified as the Type argument of a Vine_Copula_Fit object. mu (average) Number of events per year. Numeric vector of length one. Default is 365.25, daily data. Number of years worth of extremes to be simulated. Numeric vector of length Ν

one. Default 10,000 (years).

Value

List comprising an integer vector specifying the pair-copula families composing the C- or D-vine copula Vine_family, its parameters Vine_par and Vine_par2 and type of regular vine Vine_Type. In addition, data frames of the simulated observations: u.Sim on the transformed \$[0,1]^n\$ and x. Sim the original scales.

See Also

```
Vine_Copula_Fit
```

```
#Fitting vine copula
S20.Vine<-Vine_Copula_Fit(Data=S20.Detrend.df, FamilySet=NA,
                          Type="DVine", SelCrit="AIC",Indeptest=FALSE,
                          Level=0.05)
#Simulating from fitted copula
S20.Vine.Sim<-Vine_Copula_Sim(Data=S20.Detrend.df,Marginals=S20.Migpd,
                              Vine_family=S20.Vine$Family, Vine_par=S20.Vine$Par,
                              Vine_par2=S20.Vine$Par2, Vine_Type="DVine",N=10)
#Plotting observed (black) and simulated (red) values
S20.Pairs.Plot.Data<-data.frame(rbind(na.omit(S20.Detrend.df[,-1]),S22.Vine.Sim$x.Sim),
                                c(rep("Observation",nrow(na.omit(S20.Detrend.df))),
                                rep("Simulation",nrow(S20.Vine.Sim$x.Sim))))
colnames(S20.Pairs.Plot.Data)<-c(names(S20.Detrend.df)[-1],"Type")</pre>
pairs(S20.Pairs.Plot.Data[,1:3],
      col=ifelse(S20.Pairs.Plot.Data$Type=="Observation","Black","Red"),
      upper.panel=NULL)
```

Index

```
Annual_Max, 2
BiCopSelect, 26, 29
CDVineCopSelect, 26, 29
Con_Sampling_2D, 3
Con_Sampling_2D_Lag, 3
Cooley19,4
Copula_Threshold_2D, 6, 12, 14, 15
Copula_Threshold_2D_Lag, 7
Dataframe_Combine, 5, 7, 8, 9, 12, 19, 21, 23,
        24, 26, 27, 29
Decluster, 5, 10, 18, 21, 23, 24
Design_Event_2D, 10
Detrend, 9, 10, 12, 23, 24
Diag_Non_Con, 12, 13, 14
Diag_Non_Con_Sel, 14
Diag_Non_Con_Trunc, 12, 15, 16
Diag_Non_Con_Trunc_Sel, 16
fitCopula, 27
ggplot.migpd, 24
GPD_Fit, 5, 17, 21
GPD_Parameter_Stability_Plot, 18
HT04, 18
HT04_Lag, 20
Imputation, 21
Kendall_Lag, 22
Mean_Excess_Plot, 23
Migpd_Fit, 5, 19, 21, 24
NOAA_SLR, 25
SLR_Scenarios, 25
Standard_Copula_Fit, 26, 27, 28
Standard_Copula_Sel, 26, 27, 28
Standard_Copula_Sim, 27
Vine_Copula_Fit, 28, 30
Vine_Copula_Sim, 29, 29
```