Value at Risk calculation using sparse vine copula models

Time series seminar

2021711914 김동영

2021.11.15

Contents

- Introduction
- 2 Copula function
- Vine Copula
- Simulation and Real data study
- **5** Summary

Introduction

- Recently, asset price change rapidly in the global market
 - ⇒ The importance of how to manage market risk
- VaR (Value at Risk) is one of the extreme value theory (EVT)
 - ⇒ statistical measure of the portfolios of assets or financial entities
- VaR is a method for estimating the maximum loss of asset price

What is the VaR? (not VAR)

Value at Risk (VaR)

$$r_t = \log(P_t) - \log(P_{t-1})$$

- $R_t := \sum_{i=1}^d w_i r_{t,i}$
- Focus and interest on Loss rather than profit
- VaR is a simple quantile calculation with distribution assumption

$$P(R_t \leq VaR) = 1 - \alpha$$

However, a problem is to estimate the multivariate distribution

Copula function (Skalr's theorem)

ullet Every multivariate cumulative joint distribution function $H(\cdot)$

$$H(x_1, \dots, x_d) = Pr(X_1 \le x_1, \dots, X_d \le x_d)$$

$$\iff H(x_1, \dots, x_d) = C(F_1(x_1), \dots, F_d(x_d))$$

$$\implies h(x_1, \dots, x_d) = c(F_1(x_1), \dots, F_d(x_d)) \cdot f_1(x_1) \cdots f_d(x_d)$$

- Separately specifying the marginal distributions and the copula
- It can be used to generate random variables considering dependency

copula simulation

• z = MASS::mvrnorm(2000, rep(0,3), Sigma=sigma)

Figure 1: Multivariate normal distribution pairs plot

copula simulation

• u = apply(z, c(1,2), pnorm)

Figure 2: Normal cdf transformation for MVN data pairs plot

copula simulation

• qgamma(X1, shape=2, scale=1), qbeta(X2, 0.5,0.5), qt(X3, df=5)

Figure 3: Inverse marginal distribution transformation pairs plot

Pair Copula Constructions (PCC)

 High dimensions of three or more can be decomposed into bivariate copula and marginal density

• When d = 3

$$h(x_1, x_2, x_3) = f_{3|1,2}(x_3|x_1, x_2) \cdot f_{2|1}(x_2|x_1) \cdot f_1(x_1)$$

$$= f_1(x_1) \cdot f_2(x_2) \cdot f_3(x_3)$$

$$\times c_{12}(F_1(x_1), F_2(x_2)) \cdot c_{23}(F_2(x_2), F_3(x_3))$$

$$\times c_{13|2}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2))$$

• 3-dim \rightarrow bi-copula & marginal density

Vine Copula

- Financial data with heavy tail and skewness (stylized facts)
 - ⇒ Problem with multivariate copula ex. MVN, MVt
- These Distributions do not explain this property (underfit)
 - ⇒ Connecting bi-copula to form a more flexible function
- Vine copula determines the unique solution of PCC considering dependency
 - ⇒ How to represent a multivariate density as Vine Copula

Vine Copula

Tree graph can be represented by this formula and matrix

Figure 4: Three way of representation of vine copula

Vine Copula

- Vine copula can apply a different copula to each bivariate distribution
- Which copula is desirable?
 - close to the multivariate joint distribution
 - Order of sequence and each bi-copula to describe dependency best

However,

- The number of possible combinations : $\frac{d(d-1)}{2}$
- As d increase, it is hard to find an optimal solution
 - \Rightarrow Using Lasso penalty

Sparse Vine Copula

- Difficult to find a solution if $d \ge 20$
- Vine Copula with Lasso penalty (Muller and Czado(2019))
 - ⇒ simplifying calculations in high dimension situation
- For applying lasso for vine copula, we formulate structure equation model

$$X_1 = \psi_1 \epsilon_1$$

$$X_2 = \beta_{2,1} X_1 + \psi_2 \epsilon_2$$

$$X_3 = \beta_{3,1} X_1 + \beta_3, 2X_2 +_3 \epsilon_3$$

$$X_4 = \beta_{4,1} X_1 + \beta_{4,2} X_2 + \beta_4, 3X_3 +_4 \epsilon_4$$

Sparse Vine Copula

• Represent vine copula as tree and matrix

Regularization path

$$argmin_{\varphi}(\frac{1}{2n}\sum_{i=1}^{n}(x_{i,j}-\sum_{I\in\mathcal{H}\setminus\mathcal{B}}\varphi_{j,I}x_{i,I})^{2}+\sum_{I\in\mathcal{H}\setminus\mathcal{B}\setminus\mathcal{W}}\lambda_{j,I}|\varphi_{j,I}|)$$

- Notation
 - $ightharpoonup \mathcal{H}$: set of potential regressors
 - $ightharpoonup \mathcal{B}$: set of blacklist regressors
 - $ightharpoonup \mathcal{W}$: set of whitelist regressors

Simulation

- Comparison of VaR calculated by regular and sparse vine copula
- Use out of sample forecasting with MSPE

$$MSPE = E[(g(x_i) - \hat{g}(x_i))^2]$$

- Point of simulation
 - Generate random number from MVt to get return data
 - Set the covariance matrix of MVt to correlation of the real stock price
 - Two simulation setting
 - Original data set (non-sparse)
 - Data with a correlation of less than 0.6 set to 0 (sparse)

Simulation

• Comparison of VaR calculated by regular and sparse vine copula (1)

Table 1: n = 1000

	d = 10	d = 30	d = 50
df = 5			
R-vine	114.01	1365.09	2562.34
L-vine	114.79	445.38	1528.99
df = 15			
R-vine	31.96	98.16	602.89
L-vine	32.41	86.39	623.76

Table 2: n = 500

	d = 10	d = 30	d = 50
df = 5			
R-vine	179.76	947.50	2983.20
L-vine	178.51	490.48	1919.12
df = 15			
R-vine	38.83	231.44	781.66
L-vine	38.25	222.79	673.58

Table 3: n = 300

	d = 10	d = 30	d = 50
df = 5			
R-vine	177.97	1538.32	3057.82
L-vine	183.07	865.78	2195.18
df = 15			
R-vine	51.18	312.58	786.81
L-vine	55.10	307.85	754.01

Figure 5: Simulation setting 1 (original)

Simulation

• Comparison of VaR calculated by regular and sparse vine copula (2)

Table 4: n = 1000

	d = 10	d = 30	d = 50
df = 5			
R-vine	21.81	85.94	363.11
L-vine	21.22	67.32	211.29
df = 15			
R-vine	8.64	26.83	75.09
L-vine	9.45	20.25	83.27

Table 5: n = 500

	d = 10	d = 30	d = 50
df = 5			
R-vine	29.46	73.06	453.45
L-vine	28.71	61.45	297.17
df = 15			
R-vine	9.1	24.26	85.42
L-vine	9.38	23.46	92.88

Table 6: n = 300d = 10d = 30d = 50df = 5116.67 456.55 R-vine 33.64L-vine 33.85 99.59 260.47 df = 15R-vine 11.96 30.45103.76 11.73 27.09 L-vine 92.07

Figure 6: Simulation setting 2 (sparse)

- Comparison through real stock data
- 25 KOSPI stocks ex) 삼성전자, 네이버, SK하이닉스 etc.
- data period
 - ▶ train : $2016/01/01 \sim 2020/02/20$
 - ► test : 2020/02/21 ~ 2020/12/30
- Log return : $r_t = log(P_t) log(P_{t-1})$
 - ⇒ Differencing and variance stabilizing can make data stationary.

model : GARCH(1,1)

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

1. using residual for data

$$\hat{\epsilon}_t = \frac{r_t}{\hat{\sigma}_t}$$

- 2. Copula data between 0 and 1 are converted by t-dist cdf and residual
- 3. Fitting (sparse) vine copula model using copula data
- VaR calculation using the inverse of t-distribution by generating 10,000 samples from fitted copula model

Figure 7: (non sparse) vine copula Value at risk plot

Figure 8: sparse vine copula Value at risk plot

- Kupiec test (based on likelihood ratio test)
- H_0 : the observed violation rate = expected violation rate (1α)
- Under H_0 , $L \sim \chi^2(1)$

	VaR_{α}	Expected exceedances	Actual exceedances	H0 "Correct Exceedances"	
	From 2020-02-21 to 2020-07-24 (107 days)				
	$VaR_{0.1}$	10	16	p=0.1	
	$VaR_{0.05}$	5	8	p=0.27	
R-vine	$VaR_{0.01}$	1	5	p=0.0055	
	From 2020-07-25 to 2020-12-30 (107 days)				
	$VaR_{0.1}$	10	7	p=0.2	
	$VaR_{0.05}$	5	4	p=0.53	
	$VaR_{0.01}$	1	4	p=0.028	
L-vine	VaR_{α}	Expected exceedances	Actual exceedances	H0 "Correct Exceedances"	
	From 2020-02-21 to 2020-07-24 (107 days)				
	$VaR_{0.1}$	10	18	p=0.03	
	$VaR_{0.05}$	5	13	p=0.003	
	$VaR_{0.01}$	1	8	p=1.4*10-5	
	From 2020-07-25 to 2020-12-30 (107 days)				
	$VaR_{0.1}$	10	8	p=0.36	
	$VaR_{0.05}$	5	6	p=0.77	
	$VaR_{0.01}$	1	6	p=8*10-4	

Figure 9: Kupiec test result

Summary

Pros

- ▶ Penalty term enables VaR calculation in situation where the number of assets is large ($p \approx 100, 1000$)
- Sparse vine copula can be used not only in Value at Risk different situations requiring multivariate distribution estimation

Cons

- ▶ In real data study, there is no point that Sparse vine copula is better
- ▶ No explanation for the actual correlation of stock price in simulation
- Sparse vine copula is said to be faster empirically,
 but there are no figures like elapsed time or ratio

Thank you