Lecture 3 Forward Contracts on Interest Rate

Yicheng Zhu

Outline

1. Zero Coupon Bonds

2. Forward Contract on Interest Rates

3. Forward Rate Agreements

Outline

1. Zero Coupon Bonds

2. Forward Contract on Interest Rates

3. Forward Rate Agreements

Zero Coupon Bonds

- ► Zero coupon bonds are bonds that pays no coupons (dividends) before the maturity.
- ▶ They are the simplest assets (no risk, no uncertainty, one piece of cash).
- We use Z(t, T) to denote time t price of a zero-coupon bond that pays \$1 at time T.
 - ▶ Suppose the continuously-compounded interest rate is r_c , $Z(t, T) = e^{-r_c(T-t)}$.
 - ▶ If we invest \$1 in riskfree rate, we receive $e^{r_c(T-t)}$ at maturity;
 - Adjust proportionally, and we know that at time t we only need to invest $e^{-r_c(T-t)}$ in zero-coupon bonds to get \$1 at time T.

- ▶ In real financial market, there is no such thing as zero coupon bonds.
- ► In practice, bonds are issued with very complicated terms (interest payment, maturity, ...), making it very hard to make comparison.
 - ► For example, it is very hard to say a 5-year bond with 5% annual interest payment should be more expensive than a 3-year bond with 6% semi-annual interest payment.
- People can, however, bundle different bonds and create 'artificial' zero coupon bonds.
- The artificial bonds can be used to price complex bonds (in practice), and provide direct understanding of economic outlooks.

Pricing Complex Bonds with Zero Coupon Bonds 1

- ► In practice, bonds have complex cash flow dynamics.
- ► There are regularly-scheduled dividend payments, and the payment of principle at maturity.
- ▶ We can use zero coupon bonds to price the bonds.

Pricing Complex Bonds with Zero Coupon Bonds 2

Suppose a two-year bond delivers interest d every one year, and then face value N at maturity.

► The cash flow is illustrated in the following figure.

▶ The bond can be considered as a combination of different zero coupon bonds.

Pricing Complex Bonds with Zero Coupon Bonds (Cont'd)

Cash flow	d at $t+1$	N+d at $t+2$
time- <i>t</i> price	dZ(t,t+1)	(d+N)Z(t,t+2)

The time-
$$t$$
 price of the bond should be
$$\frac{e^{-r(t-t)}}{dZ(t,t+1)+(N+d)Z(t,t+2)}.$$

▶ Note: Here I do not replace Z(t, T)'s with $e^{-r_c(T-t)}$ as r_c could vary with t and T.

Finding the Prices of Zero Coupon Bonds

- ► In practice, we are quoted with prices of bonds with multiple cash flow, rather than zero coupon bonds.
- ▶ We can use exactly the opposite argument to extract the prices of zero coupon bonds.

Finding the Prices of Zero Coupon Bonds

- ► Suppose we have two bonds:
 - One with maturity 6 months. No dividend payment. Face value: \$100, traded at \$95.
 - ▶ One with maturity 1 year, two dividend payments of \$5 after 6 months and 1 year, respectively. Face value: \$100, traded at \$100.
- The prices then must meet the following equations:

$$95 = 100Z(t, t + 0.5)$$

$$100 = 5Z(t, t + 0.5) + 105Z(t, t + 1).$$

▶ We can then solve for Z(t, t + 0.5) and Z(t, t + 1).

$$Z(t, t + 0.5) = 0.95$$

 $Z(t, t + 1) = 0.907.$

► We can further calculate the continuously-compounded interest rates (annualized) for 6-month and 1-year deposits, which are 10.26% and 9.75%, respectively.

Yield Curve

- ▶ In the previous slide, we solved the interest rates associated to 6-month and 1-year zero coupon bonds, respectively.
- ▶ In practice, people use more complicated products traded in the market and 'solve' for prices and then corresponding interest rates for zero coupon bonds of different maturities.
- ► The curve that plots (zero coupon bond) interest rates against maturity is called yield curve. This is core for fixed income asset pricing.

Outline

1. Zero Coupon Bonds

2. Forward Contract on Interest Rates

3. Forward Rate Agreements

So far, we have assumed that interest rate is constant.

What is the reality?

- ► Suppose you are a trade company and is scheduled to receive 1 million HKD after six months. The current interest rate for deposits is very high.
- ► You want to lock in the interest rates. However, interest rates might fluctuate.
- ➤ You want to construct a contract such that you can lock in the interest rates for future deposits.

Now let's think in the investment bank's position:

- ▶ A client want a contract to lock in the interest rate for deposits from T_1 to T_2 in the future.
- ightharpoonup At T_1 , the client deposit the cash.
- ▶ At T_2 , the client get back the cash, with market interest rate at T_1 . Instead, the client wants you to pay a pre-agreed amount, and pays you the market interest.

Forward Rate 1

long = buy fixed, pay met.

Short = buy met, pay fixed.

The timeline for the investment bank goes like:

- ▶ t: initiation of the contract.
- $ightharpoonup T_1$: Market interest rate r_{mkt} is known, but no cash flow.
- ▶ T_2 : Receives r_{mkt} from client, and pay a pre-specified rate r_K to the client.

Forward Rate 2

Thank (Short) ash flow = -rfix f rmict

How do we price this contract for the bank? Ytplicate -VK.

 $-r_K$ at time T_2 is easy: it's a fixed cash flow, and it can be priced as bonds. $-r_K Z(t, T_2)$.

Forward Rate 3

 $r_{
m mkt}$ at time T_2 is tricky: we don't know it at time t.

However, we can deposit \$1 at time T_1 ! We then can get $1 + r_{mkt}$ at T_2 . This requires $Z(t, T_1)$ at time t.

$$-Z(t, T_1)$$
 -1
 T_1
 T_2
 T_1
 T_2

We now have \$1 too much at T_2 . We get rid of it by short-selling and get $Z(t, T_2)$ at time t.

$$Z(t, T_2)$$
 -1
 $-Z(t, T_1)$ 1
 t T_1 T_2

▶ The net cost of replicating r_{mkt} at time T_2 is then $Z(t, T_1) - Z(t, T_2)$.

The value of the contract for the investor is then

$$-r_{K}Z(t,T_{2})+Z(t,T_{1})-Z(t,T_{2})$$

$$\left(\Gamma_{[C}+I)\left(-\frac{1}{2}\left(+\frac{1}{2}+I\right) \right) \right)$$

 \blacktriangleright We further convert r_{k} to continuous compounding by using

$$e^{r_{c,K}(T_2-T_1)}=1+r_K.$$

► Set the value zero. With some algebra, we get

$$e^{r_{c,K}(T_2-T_1)}Z(t,T_2) = Z(t,T_1)$$
 $r_{c,K} = rac{1}{T_2-T_1} \ln \left(rac{Z(t,T_1)}{Z(t,T_2)}
ight).$

▶ This is the continously-compounded interest rate the investment bank is willing to agree with at time t for a deposit from time T_1 to T_2 . We call this forward rate.

Outline

1. Zero Coupon Bonds

2. Forward Contract on Interest Rates

3. Forward Rate Agreements

► Now let's revisit the forward contract we just created, the **net** cash flow for the investor is

- ▶ However, r_{mkt} is revealed at T_1 . As a result, the cash flow can be moved to T_1 as it's determined, with a discount, $1 + r_{mkt}$.
- ► The new cash flow is given by

► This is the cash flow for forward contracts on interest rates in practice. Such contracts are called **Forward Rate Agreements (FRA)**.

Forward Rate Agreements (FRA) 2

- ► FRAs are OTC contracts that guarantee borrowing or lending rate
 - ► on given principal amount;
 - ► starting in future date;
 - ► for a specified period.

For an investor who tries to borrow notional principle N for a fixed rate

- At time t, he enters a FRA contract with cost 0, with the 'fixed' leg given by the **simple** interest rate r_{t,T_1,T_2}^{FRA} . The corresponding borrowing period is from T_1 to T_2 .
 - ▶ Here *simple interest rate* is the annualized return of holding a corresponding zero coupon bond.
- At time T_1 , the interest from T_1 to T_2 is revealed. If the investor does not enter the FRA, we will need to pay $1 + r_{T_1,T_2}^{\text{simple}}(T_2 T_1)$ at T_2 for each 1 dollar he borrows at T_1 . The contract implies that the investor needs to pay $N(1 + r_{t,T_1,T_2}^{FRA}(T_2 T_1))$ and receives $N(1 + r_{T_1,T_2}^{\text{simple}}(T_2 T_1))$ at time T_2 .
- ▶ The profit and loss are settled at time T_1 . As a result, the investor needs to discount the cash flow with the market simple interest rate. As a result, the payoff at T_1 is

$$\frac{(r_{T_1,T_2}^{\text{simple}} - r_{T_1,T_2}^{\text{FRA}}) \times (T_2 - T_1)}{1 + r_{T_1,T_2}^{\text{simple}} (T_2 - T_1)} \times N.$$