DYNAMIQUE CHROMATINIENNE

non-histones 25%

ADN 35%

ARN 5%

Histones 35%

ADN et histones

Rapport 1:1 organisation en collier de perles organisation dynamique de la chromatine

Variants d'histones

Gènes en une seule copie ⇒ expression pendant toute la durée du cycle gènes avec au moins 1 intron toutes les histones sauf H4

	Aa ciblé	Effecteur Qui ajoute Qui enlève		fonction
Ac	K: Lysine	HAT (histone acetyl transferase)	HDAC (Histone DeACetylase)	Activation transcriptionnelle Réparation de l'ADN
Met	K: Lysine R: Arginine	HMT (histone methyl transferase)	Histone déméthylase (ex: LSD1: lys specific histone demethylase)	Double (K): H3K9 HC/H3K4 EC Activation transcriptionnelle (R)
P	S: Serine T: Threonine	Kinases (snf1, MSK1, auroraB)	Phosphatases	Régulation transcriptionnelle (interphase) Associée à la condensation des chromosomes mitotiques
Ub	K: Lysine (H2A, H2B)	E2/ E3 enzymes	DUB (DeUbiquitinating enzymes)	Régulation transcriptionnelle Réponse aux dommages de l'ADN Inactivation du chromosome X (H2AZ)

Modifications posttraductionnelles des histones

Ajout d'un groupement acétyl sur lysine ⇒ ouverture de la chromatine
H3K9me3 ⇒ hétérochromatine
H3K4me2 ⇒ chromatine réprimée

Code des histones ⇒ transduction du signal à court terme + mémoire épigénétique à long terme

CAR = Chromatin Assiociated RNAs

Non codants pas de queue poly A ne sont pas des transcrits naissants en majorité des long non coding RNA

Octamère d'histone

Histones H2A, H2B, H3, H4 en 2 exemplaires : H3-H3 + H2A-H2B Domaine avec les hélices α = histonefold \Rightarrow interaction hydrophobes entre histones au sein de l'octamère d'histone

De part et d'autre de l'histone fold ⇒ extrémités N et C term ⇒ queues N ou queue C term des histones

Famille	Variant	Fonction
H3	H3.3	Remplacement
H2A	H2A.X	Réparation de l'ADN double brin
H2A	H2A.Z	Isolation des promoteurs
Н3	CenH3 (CENP-A)	Formation du kinétochore

Méthylation de l'ADN

Par DNMT = DNA méthyl transférase chez les vertébrés ⇒ contexte CpG ⇒ C massivement méthylée Régions denses en CpG = ilôts CpG 50% site de transcription 70% des promoteurs régions intergéniques ⇒ méthylation massive réprime l'expression d'éléments transposables et viraux

Role ⇒ répression transcriptionnelle

Rôle dans la structure ou le maintien de l'architecture chromatinienne (cohésine, condensine) rôle dans des fonctions nucléaires de la chromatine (réplication, réparation, expression

Histones

H1 ⇒ capable d'interagir avec l'ADN
⇒ peut protéger l'ADN quand H1
interagit avec la chromatine
Protéines basiques
Organisés en clusters
Dépourvus d'introns
Codent pour les seuls ARNm chez les
eucaryotes dépourvus de queue
polyA

⇒ extrémité tige-boucle « stemloop »

Complexes de remodelage de la chromatine

Complexes protéiques de 2 à 13 su qui modifient la structure chromatinienne Affinité avec l'élément de réponse ≠ façons de remodeler la chromatine

≠ familles ⇒ su ATPasique & d'interaction avec la chromatine

DMNT

DMNT 1 ⇒ maintien de la méthylation DMNT 3a/3b ⇒ établissement d'une nouvelle portion de méthylation

Déméthylation de l'ADN

Passive ⇒ perte d'efficacité de DMNT1

Acitve ⇒ mécanisme complexe & implication enzyme TET dioxygénase

Hydroxyméthylation de l'ADN

 $5hmc \Rightarrow pas d'effet sur la compaction de la chromatine <math>\Rightarrow$ 6è base du génome ?

Organisation de la chromatine

Organisé en globule fractal ⇒ contraintes topologiques ⇒ ne reste pas à l'équilibre Formation de boucles ⇒ visible par technique de 3C

Organisation du noyau

Nucléole : FC (composante fibrilaire), DFC, GC (composante granulaire) Porte des ség répétées Nuclear speckles ⇒ contiennent des composants de la machinerie d'épissage des ARNpm Corps de Cajal ⇒ assemblage des complexes RNP Corps PcG ⇒ domaines formés par l'hétérochromatinisation de régions du génome

Régulation transcriptionnelle

Modèle enhancer/promoteur ⇒ enhancer peut lier des facteurs de transcription

Maintien de la boucle par des protéines types cohésine = protéines architecturales

Gènes Hoxb au cours du développement

Organisés en clusters ⇒ localisation physique reflète leur patron d'expression spatio-temporelle au cours du dvpt formation d'une boucle à l'extérieur de leur territoire pour être transcrits

2 fenêtres particulières où les marques de chromatine doivent être maintenues ⇒ phase S et mitose phase S = maturation des nucléosomes mitose = éjection des facteurs de transcription, dissociation de l'enveloppe nucléaire ⇒ interruption des domaines d'hétérochromatine associée à la lamina nucléaire

Réplication de la chromatine ⇒ distribution des histones

- Aléatoire ⇒ régions avec bcp de nucléosomes
- Semi-conservatif ⇒ régions où les marques sont réduites à quelques nucléosomes successifs
- Asymétrique ⇒ changement de destinée cellulaire

