

第17讲 二元离散型随机变量 边际分布律与条件分布律

(二)边际分布

对于离散型随机变量(X,Y),分布律为

$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$

必然事件

X,Y的边际分布律为:

$$P(X = x_i) = P(X = x_i, \bigcup_{j=1}^{\infty} (Y = y_j)) = \sum_{j=1}^{\infty} p_{ij} \stackrel{ith}{=} p_{i\bullet}$$
同理,
$$P(Y = y_j) = P(\bigcup_{i=1}^{\infty} (X = x_i), Y = y_j) = \sum_{j=1}^{\infty} p_{ij} \stackrel{ith}{=} p_{\bullet j}$$
必然事件

注意:记号 p_i 。表示是由 p_{ij} 关于j求和后得到的;同样 $p_{\bullet i}$ 是由 p_{ij} 关于i求和后得到的.

X^{Y}	<i>y</i> ₁	y_2		y_j	 $P(X = x_i)$
X_1	p_{11}	$\begin{array}{c} y_2 \\ p_{12} \\ p_{22} \\ \cdots \end{array}$		p_{1j}	 p_1 .
x_2	p_{21}	<i>p</i> ₂₂		p_{2j}°	 p_2 .
$\dot{\dot{x}}_i$	p_{21} p_{i1}	p_{i2}		p_{ij}	 p_i .
	11 				 :
$P(Y=y_j)$	p_{\cdot_1}	p_{\cdot_2}	•••	$p_{.j}$	 1

例1:盒中装有3只红球,2只白球,现分两次从中任取1球,以X、Y分别表示第1、2次取到的红球数。采用不放回与放回抽样分别求:X,Y的联合分布律及边际分布律。

解: $X = \begin{cases} 0, 第1次取到白球\\ 1, 第1次取到红球 \end{cases}$, $Y = \begin{cases} 0, 第2次取到白球\\ 1, 第2次取到红球 \end{cases}$

例1: 盒中装有3只红球,2只白球,现分两次从中任取1球,以 X、Y分别表示第1、2次取到的红球数。采用不放回与 放回抽样分别求:X,Y的联合分布律及边际分布律。

不	X	0	1	p_{i}
放	0	$\frac{2}{}\cdot\frac{1}{}$	$\frac{2}{3} \cdot \frac{3}{3}$	$\frac{2}{5}$
	O	5 4	5 4	5
回	1	3 2	3 2	3
抽	1	$\frac{\overline{5} \cdot \overline{4}}{4}$	$\frac{\overline{5} \cdot \overline{4}}{4}$	$\frac{3}{5}$
抽样	p_{\perp_j}	$\frac{2}{5}$	3 5	

例1: 盒中装有3只红球,2只白球,现分两次从中任取1球,以 X、Y分别表示第1、2次取到的红球数。采用不放回与 放回抽样分别求:X,Y的联合分布律及边际分布律。

放	X	0	1	p_{i}
回	0	$\frac{2}{5}\cdot\frac{2}{5}$	$\frac{2}{5} \cdot \frac{3}{5}$	$\frac{2}{5}$
抽	1	5 5 3 2	5 5 3 3	3
祖祥	1	5 5	5 5	5
样	p_{\perp_j}	$\frac{2}{5}$	$\frac{3}{5}$	

以上两表中,联合分布律不同,但它们的边际分布律相同;这就说明了,仅由边际分布一般不能得到联合分布。

例2:设一群体80%的人不吸烟,15%的人少量吸烟,5%的人吸烟较多,且已知近期他们患呼吸道疾病的概率分别为5%,25%,70%。记

$$X = \begin{cases} 0, & \text{不吸烟} \\ 1, & \text{少量吸烟}, Y = \begin{cases} 1, & \text{患病} \\ 0, & \text{不患病} \end{cases}$$

求:(1)(X,Y)的联合分布和边际分布;

(2) 求患病人中是吸烟者的概率.

解:(1)由题意可得:
$$\frac{X}{P}$$
 0.8 0.15 0.05

$$P\{Y=1 \mid X=0\} = 0.05, P\{Y=1 \mid X=1\} = 0.25,$$

 $P\{Y=1 \mid X=2\} = 0.70,$

由乘法公式:
$$P\{X=i,Y=j\}=P\{X=i\}P\{Y=j|X=i\}$$

X Y	0	1	P(X=i)
0	0.76	0.04	0.80
1	0.1125	0.0375	0.15
2	0.015	0.035	0.05
P(Y=j)	0.8875	0.1125	1

解(2) P(患病人中是吸烟者)

$$= P\{(X = 1) \cup (X = 2) | Y = 1\}$$

不相容
=
$$P\{X=1|Y=1\} + P\{X=2|Y=1\}$$

= $\frac{P\{X=1,Y=1\}}{P\{Y=1\}} + \frac{P\{X=2,Y=1\}}{P\{Y=1\}}$
= $\frac{0.0375 + 0.035}{0.1125} = 0.6444$.

(三)条件分布

对于两个事件A,B, 若P(A) > 0,可以考虑条件概率P(B|A),

对于二元离散型随机变量(X,Y),设其分布律为

$$P(X = x_i, Y = y_i) = p_{ii}, i, j = 1, 2, \dots$$

若 $P(Y = y_i) = p_{i,j} > 0$,考虑条件概率 $P(X = x_i | Y = y_i)$

由条件概率公式可得:

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{.j}}$$

当X取遍所有可能的值,就得到了条件分布律.

对于固定的 y_j , 若 $P(Y = y_j) > 0$, 则称:

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{ij}} \quad i = 1, 2 \cdots$$

为在 $Y = y_j$ 条件下,随机变量X的条件分布律;同样,对于固定的 x_i ,若 $P(X = x_i) > 0$,则称:

$$P(Y=y_{j} | X=x_{i}) = \frac{P(X=x_{i}, Y=y_{j})}{P(X=x_{i})} = \frac{p_{ij}}{p_{i}} j=1,2...$$

为在 $X = x_i$ 条件下,随机变量Y的条件分布律.

例3: 盒中装有3只红球,4只黑球,3只白球,在其中不放回取2球,以X表示取到红球的只数,Y表示取到黑球的只数。求(1)X,Y的联合分布律;

(2) X=1时Y的条件分布律.

解: (1)X,Y的取值均为0,1,2

$$P(X=0,Y=0) = \frac{C_3^0 C_4^0 C_3^2}{C_{10}^2}$$

$$P(X=i,Y=j) = \frac{C_3^i C_4^j C_3^{2-i-j}}{C_{10}^2}$$

$$i, j = 0, 1, 2, i+j \le 2.$$

X Y	0	1	2
0	1/15	4/15	2/15
1	3/15	4/15	0
2	1/15	0	0

由于
$$P(X=1)=7/15$$
,

故在X = 1的条件下, Y的分布律为:

$$P(Y=0 | X=1) = \frac{P(X=1, Y=0)}{P(X=1)} = \frac{3}{7}$$

$$P(Y=1 | X=1) = \frac{4}{7},$$

$$P(Y=1 | X=1) = \frac{4}{7},$$

$$P(Y=2|X=1)=0.$$

Y	0	1	2
$P(Y = j \mid X = 1)$	3/7	4/7	0

$X \setminus Y$	0	1	2
0	1/15	4/15	2/15
1	3/15	4/15	0
2	1/15	0	0

例4: (X,Y)的联合分布律为

已知 $P(Y \le 0 \mid X < 2) = 0.5.$

求: (1)a,b的值;

- $(2){X=2}$ 条件下Y的条件分布律;
- $(3){X+Y=2}$ 条件下X的条件分布律.

解: (1)考虑包含
$$a,b$$
的方程
$$\begin{cases} a+b+0.6=1 \\ P(Y \le 0 \mid X < 2) = 0.5 \end{cases}$$

$$0.5 = P(Y \le 0 \mid X < 2) = \frac{P(X < 2, Y \le 0)}{P(X < 2)} = \frac{P(X = 1, \{Y = -1\} \cup \{Y = 0\})}{P(X = 1)}$$

$$= \frac{P(X = 1, Y = -1) + P(X = 1, Y = 0)}{P(X = 1)}$$

$$= \frac{a + 0.2}{a + 0.4},$$

$$\Rightarrow a = 0 , b = 0.4$$

$$\Rightarrow a = 0 , b = 0.4$$

$$2 0.1 0.1 b$$

$$P(X=2) = 0.1 + 0.1 + b = 0.6$$

$$\Rightarrow P(Y=j|X=2) = \frac{P(X=2,Y=j)}{P(X=2)} = \begin{cases} 1/6, & j=-1\\ 1/6, & j=0\\ 2/3, & j=1 \end{cases}$$

Y				_	X^{Y}	-1	0	1
P(Y=j X=2)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$		1 2	0 0, 1	0. 2 0. 1	0. 2 0.4

解: (3)
$$P(X+Y=2)=P(X=1,Y=1)+P(X=2,Y=0)$$

=0.2+0.1=0.3

$$\Rightarrow P(X=i \mid X+Y=2) = \frac{P(X=i,Y=2-i)}{P(X+Y=2)} = \begin{cases} 2/3, & i=1\\ 1/3, & i=2 \end{cases}$$

X	1	2		X^{Y}	-1	0	1
P(X=i X+Y=	2) $\frac{2}{3}$	$\frac{1}{3}$	_	1 2	<i>0</i> 0. 1	0. 2 0. 1	0. 2 0.4