A Arquitetura: conjunto de instruções

código	instrução	comentário		
0000	NOP	Nenhuma operação		
0001	STA end	MEM(end) ← AC		
0010	LDA end	AC ← MEM(end)		
0011	ADD end	AC ← MEM(end) + AC		
0100	OR end	AC ← MEM(end) OR AC		
0101	AND end	AC ← MEM(end) AND AC		
0110	NOT	AC ← NOT AC		
1000	JMP end	PC ← end		
1001	JN end	IF N=1 THEN PC ← end		
1010	JZ end	IF Z=1 THEN PC ← end		
1111	HLT	pára processamento		

A Organização: transferências necessárias

Analisando todas as descrições RT, a agrupando pelo registrador destino, tem-se:

```
RI \leftarrow RDM
RDM \leftarrow AC
Write
Read
AC \leftarrow RDM; atualiza N e Z
AC \leftarrow AC + RDM; atualiza N e Z
AC \leftarrow AC \ OR \ RDM; atualiza N e Z
AC \leftarrow AC \stackrel{AND}{AND} RDM; atualiza N e Z
AC \leftarrow NOT(AC); atualiza N e Z
PC \leftarrow RDM
PC \leftarrow PC + 1
REM \leftarrow PC
REM \leftarrow RDM
```

A Organização: registradores

- AC: um registrador de 8 bits
- PC: um registrador de 8 bits (registrador-contador)
- RI: um registrador de 4 bits (ou 8)
- RDM: um registrador de 8 bits (largura do dado)
- REM: um registrador de 8 bits (largura do endereço)
- N: um flip-flop para o código de condição N
- Z: um flip-flop para o código de condição Z
- Uma memória de 256 posições (endereços) x 8 bits

Organização do Sistema de Memória

Associados à Memória:

- RDM (dados)
- REM (endereços)
- sinal de escrita (write)
- sinal de leitura (read)

Cada registrador é controlado por um sinal de carga

Organização da Unid. Aritmética e Lógica

Associados à UAL:

- 4 operações (ADD, AND, OR, NOT)
- sinal de controle (seleção)
- sinais de condição (N,Z)

Flip-Flops devem ter sinal de carga

Organização do Registrador de Instrução

Associados ao Reg. de Instruções (4 ou 8 bits??):

- Decodificador (4 bits para 16 instruções)
- sinais de condição (N,Z) (para JN e JZ)
- registrador deve ter sinal de carga

Operações na UAL

Dúvida:

 $AC \leftarrow RDM$; atualiza N e Z (via UAL)

Situação até aqui

Acrescentado Escrita do AC

Acrescentado Program Counter (PC)

O incremento do PC pode ser feito:

Por meio de um somador dedicado

Usando a ULA

Por meio de um registradorcontador

Acrescentado Program Counter (PC)

Valores para o REM

Existem duas transferências para o REM

REM ← PC

REM ← RDM

- O único registrador que recebe dados de duas fontes é o REM
- Para solucionar este conflito usa-se um multiplexador

Organização final

A Organização: sinais de controle para cada transferência

Transferência	Sinais de controle
REM ← PC	sel=0, cargaREM
PC ← PC + 1	incrementaPC
RI ← RDM	cargaRI
REM ← RDM	sel=1, cargaREM
RDM ← AC	cargaRDM
AC ← RDM; atualiza N e Z	selUAL(Y), cargaAC, cargaNZ
AC ← AC + RDM; atualiza N e Z	selUAL(ADD), cargaAC, cargaNZ
AC ← AC AND RDM; atualiza N e Z	selUAL(AND), cargaAC, cargaNZ
AC ← AC OR RDM; atualiza N e Z	selUAL(OR), cargaAC, cargaNZ
AC ← NOT(AC); atualiza N e Z	selUAL(NOT), cargaAC, cargaNZ
PC ← RDM	cargaPC

Temporização dos sinais de controle (parte 1)

tempo	STA	LDA	ADD	OR	AND	NOT
t0	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM
t1	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC
t2	carga RI	carga RI	carga RI	carga RI	carga RI	carga RI
t3	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM	sel=0, carga REM	UAL(NOT), carga AC, carga NZ, goto t0
t4	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC	Read, incrementa PC	
t5	sel=1, carga REM	sel=1, carga REM	sel=1, carga REM	sel=1, carga REM	sel=1, carga REM	
t6	carga RDM	Read	Read	Read	Read	
t7	Write, goto t0	UAL(Y), carga AC, carga NZ, goto t0	UAL(ADD), carga AC, carga NZ, goto t0	UAL(OR), carga AC, carga NZ, goto t0	UAL(AND, carga AC, carga NZ, goto t0	

Temporização dos sinais de controle (parte 2)

tempo	JMP	JN, N=1	JN, N=0	JZ, Z=1	JZ, Z=0	NOP	HLT
tO	sel=0,	sel=0,	sel=0,	sel=0,	sel=0,	sel=0,	sel=0,
	carga REM	carga REM	carga REM	carga REM	carga REM	carga REM	carga REM
t1	Read,	Read,	Read,	Read,	Read,	Read,	Read,
	incrementa PC	incrementa PC	incrementa PC	incrementa PC	incrementa PC	incrementa PC	incrementa PC
t2	carga RI	carga RI	carga RI	carga RI	carga RI	carga RI	carga RI
t3	sel=0,	sel=0,	incrementa	sel=0,	incrementa	goto t0	Halt
	carga REM	carga REM	PC,	carga REM	PC,		
			goto t0		goto t0		
t4	Read	Read		Read			
t5	carga PC, goto t0	carga PC, goto t0		carga PC, goto t0			
t6							
t7							

Gerador dos sinais de temporização

Expressões booleanas dos sinais de controle

```
carga REM = t0 + t3.(STA+LDA+ADD+OR+AND+JMP+JN.N+JZ.Z+t5.(STA+LDA+ADD+OR+AND)
incrementa PC = t1 + t4.(STA+LDA+ADD+OR+AND) + t3.(JN.N' + JZ.Z')
carga RI = t2
sel = t5.(STA+LDA+ADD+OR+AND)
carga RDM = t6.STA
Read = t1 + t4.(STA+LDA+ADD+OR+AND+JMP+JN.N+JZ.Z) + t6.(LDA+ADD+OR+AND)
Write = t7.STA
UAL(Y) = t7.LDA
UAL(ADD) = t7.ADD
UAL(OR) = t7.OR
UAL(AND) = t7.AND
UAL(NOT) = t3.NOT
carga AC = t7.(LDA+ADD+OR+AND) + t3.NOT
carga NZ = t7.(LDA+ADD+OR+AND) + t3.NOT = carga AC
carga PC = t5.(JMP+JN.N+JZ.Z)
goto t0 = t7.(STA+LDA+ADD+OR+AND) + t3.(NOP+NOT+JN.N'+JZ.Z') + t5.(JMP+JN.N+JZ.Z)
```