(NASA-CR-168191) RESEARCH AND DEVELOPMENT PROGRAM FOR THE DEVELOPMENT OF ADVANCED TIME-TEMPERATURE DEPENDENT CONSTITUTIVE RELATION SHIPS. VOLUME 2: PROGRAMMING MANUAL Final Report (United Technologies

N84-10614

Unclas 3/39 44342

1 Report No. NASA CR-168191	2. Government Accessio	on No.		3. Recip	ent's Catalog No	
4 Title and Subtitle				5. Repor	rt Date	
Research and Developmen	=	-	:	Jul	ly 1983	
of Advanced Time-Temper		itutive		6. Performing Organization Code		
Relationships - Vol. 2	- Programming Manual					
7 Author(s)				8. Perfor	rming Organization Report N	
Dr. Brice N. Cassenti				R83-9	56077-2	
				O. Work	Unit No.	
9 Performing Organization Name and A	ddress					
United Technologies Res	earch Center		<u> </u>	11 Cook	act or Grant No.	
400 Main Streel				ir. Conti	act or Grant No.	
East Hartford, CT 0610	3		<u> </u>	NAS3-		
				3. Type	of Report and Period Cover	
2 Sponsoring Agency Name and Addre NASA/Lewis Research Cent			ĺ	Contr	actor Final Repor	
21000 Brookpark Road				4. Spons	soring Agency Code	
Cleveland, Ohio 44135						
5 Supplementary Notes		···				
Nation	Thompson, Mail Stop of the Aeronautics and Sp. Research Center, 2100 Land, Ohio 44135	pace Adm	inistrati park Road	on I,		
6 Abstract						
This report presents the	results of a 10-mon	th resea	rch and d	leve1o	pment program for	
nonlinear structural mod	deling with advanced	time-tem	perature	const	itutive relation-	
nonlinear structural mod ships. This program was	deling with advanced to s conducted by the Uni	time-tem ited Tec	perature hnologies	const	itutive relation- arch Center for the	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent	deling with advanced to s conducted by the Uni ter under contract NAS	time-tem ited Tec S3-23273	perature hnologies . This m	const Rese	itutive relation- arch Center for the describes the	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural mod ships. This program was NASA-Lewis Research Cent implementation of the th	deling with advanced to s conducted by the Unit ter under contract NAS ecry, discussed in Vol	time-tem ited Tec S3-23273 1. l, in	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instant	deling with advanced of conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the composite of the com	time-temited Tec S3-23273 1. 1, in utationa	perature hnologies . This m the MARC l applica	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instructions.	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the comparations	time-temited Tec S3-23273 1. 1, in utationa	perature hnologies . This m	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instructions of the Code, and provides instructions of the Code of the Code, and provides instructions of the Code o	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the compared to the compa	time-temited Tec S3-23273 1. 1, in utationa	perature hnologies . This m the MARC l applica	const Rese anual nonli	itutive relation- arch Center for the describes the near finite elemen	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instructions of the Code, and provides instructions of the Code of t	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the compare, acity,	time-tem ited Tec S3-23273 1. 1, in utationa	perature hnologies . This m the MARC l applica	const	itutive relation- arch Center for the describes the near finite elemen of the theory.	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instructions of the Code, and provides instructions of the Code of t	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the compared to the compa	time-tem ited Tec S3-23273 1. 1, in utationa	perature hnologies . This m the MARC l applica	const	itutive relation- arch Center for the describes the near finite elemen of the theory.	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instructions of the Code, and provides instructions of the Code of t	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the compared to the compa	time-tem ited Tec S3-23273 1. 1, in utationa	perature hnologies . This m the MARC l applica	const	itutive relation- arch Center for the describes the near finite elemen of the theory.	
nonlinear structural modeships. This program was NASA-Lewis Research Centimplementation of the the code, and provides instructions of the code, and provides instructions of the code of the code, and provides instructions of the code, and	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the compared to the compa	time-tem ited Tec S3-23273 1. 1, in utationa 18. Distribut Unlimit	perature hnologies This m the MARC l applica	const Resemanual nonlination	itutive relation- arch Center for the describes the near finite elemen of the theory.	
This report presents the nonlinear structural most ships. This program was NASA-Lewis Research Centimplementation of the fit code, and provides instructural most structural m	deling with advanced is conducted by the Uniter under contract NAS ecry, discussed in Voluctions for the compared to the compa	time-tem ited Tec S3-23273 1. 1, in utationa 18. Distribut Unlimit	perature hnologies . This m the MARC l applica	const Resemanual nonlination	itutive relation- arch Center for the describes the near finite elemen of the theory.	

Research and Development Program for the Development of Advanced Time-Temperature Dependent Constitutive Relationships

Vol. 2 - Programming Manual

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	DESCRIPTION OF THE MARC PROGRAM	2
3.0	IMPLEMENTATION OF VISCOPLASTIC THEORY IN MARC	6
4.0	INTEGRATION OF VISCOPLASTIC EQUATIONS IN SUBROUTINE HYPELA	9
	4.1 Self Adaptive Integration	9
	Terms	10 11 11 13 13
5.0	REFERENCES	15
FIGU	JRE	16
APPE	INDICES	17

1.0 INTRODUCTION

The theory described in Vol. 1 has been implemented in the MARC nonlinear finite element code, Ref. 1. Several modifications to the code are required to insure accurate results. The major modification is through the MARC user subroutine HYPELA. Section 2.0 contains a brief description of the MARC code, while Section 3.0 discusses the inputs to subroutine HYPELA. Section 4.0 presents the control parameters and data cards required to efficiently integrate the viscoplastic equations presented in Appendix 14 of Vol. 1.

2.0 DESCRIPTION OF THE MARC PROGRAM

The viscoplastic theories presented in Volume 1 have been incorporated into the MARC general purpose, nonlinear, finite element program, Ref. 1. This program has been developed expressly for nonlinear structural analysis. This computer code involves sophisticated computational algolithms and advanced finite element formulations, but relies on constitutive models not directly applicable to hot section components.

In this contract, as in the previous contract (Ref. 2), the viscoplastic constitutive theories were incorporated into the MARC program by means of an initial stress technique. All of the material nonlinearity in the constitutive equations is incorporated into an initial load vector and treated as a pseudo body force in the finite element equilibrium equations. Because the viscoplastic constitutive theories form a "stiff" system of differential equations, it is necessary to form the incremental constitutive equation appropriate to the finite element load increment by means of a subincrement technique.

In the subincrement technique the finite element load increment is split into a number of equal subincrements and the viscoplastic constitutive theories are integrated over the small subincrements to form an accurate representation of the incremental constitutive equation over the finite element load increment. Integration over each subincrement was accomplished by means of an explicit Euler forward difference method. Provided the subincrements are sufficiently small (so that the stability level of the forward difference method is not exceeded), the technique has been found to work efficiently and accurately, even for large finite element load increments. However, it is difficult for the user to pick efficient subincremental steps, and there is a considerable incentive to use as few subincrements as possible, consistent with the stability of the differential equations comprising the constitutive theory.

In order to understand the flow of information, it is necessary to briefly examine the MARC code operation. A summary of the operation of the MARC nonlinear finite element, taken from Ref. 2, follows.

The principle of virtual work may be used to generate the MARC nonlinear equilibrium equations governing the incremental response of the structure to an increment of load. In evaluating the nonlinear structural response of a component, the program assumes that the load history is divided into a number of incrementally applied load steps. Each load step is sequentially analyzed as a linear matrix problem using an appropriate stiffness matrix and load vector. Although each load step uses linear matrix methods to solve the incremental equilibrium equations, the incremental equilibrium equations themselves are nonlinear since the load vector will depend on the displacement increment obtained in the solution of the incremental equilibrium equations.

R83-956077-2

The principle of virtual work may be written, for applied external point loads $\mathbf{P_i}$, or displacements $\mathbf{u_i}$, in the form

$$\sum \int_{a} \delta \epsilon_{i}^{\mathsf{T}} \sigma_{i} \, dV = \delta u_{i}^{\mathsf{T}} P_{i} \,, \tag{1}$$

where the integral extends over the volume, V, of each finite element and the summation sign extends to all the elements in the structure.

In Eq. (1) the virtual displacement vector $\delta u_{\bf i}$ is related to the virtual strain vector $\delta \epsilon_{\bf i}$ through the relationship

$$\delta \epsilon_i = B_{ij} \delta u_i \text{ or } \delta \epsilon_i^T = \delta u_i^T B_{ij}^T,$$
 (2)

where B_{ij} is the strain-displacement matrix and the superscript T denotes transposition. Since δu_i is an arbitrary virtual displacement vector, Eqs. (1) and (2) may be written in the form

$$\sum \int_{\mathbf{v}} \mathbf{B}_{ij}^{\mathsf{T}} \sigma_{j} \, d\mathbf{v} = \mathbf{P}_{i}$$
 (3)

This relation expresses the equilibrium of the structure when the applied load vector is $\mathbf{P_i}$ and the stress vector is $\mathbf{\sigma_i}$. If an incremental load $\Delta\mathbf{P_i}$ is applied to the structure and the stress vector changes to $\mathbf{\sigma_i} + \Delta\mathbf{\sigma_i}$, the relation expressing the equilibrium of the structure at the end of the incremental load application may be written as

$$\sum \int_{\mathbf{V}} \mathbf{B}_{ij}^{\mathsf{T}} (\sigma_{j} + \Delta \sigma_{j}) \, d\mathbf{V} = \mathbf{R} + \Delta \mathbf{P}_{i} . \tag{4}$$

Hence, the relation expressing the equilibrium of the structure during the application of the incremental load vector ΔP_i is obtained from Eqs. (3) and (4) by subtraction in the form

$$\sum_{ij} \mathbf{B}_{ij}^{\mathsf{T}} \Delta \sigma_{j} \, d\mathbf{V} = \Delta \mathbf{P}_{i} . \tag{5}$$

ORIGINAL PAGE IS OF POOR QUALITY

The MARC code allows the user to implement very general constitutive relationships into the program by means of the user subroutine HYPELA. Within this subroutine the user must specify the values of the elasticity matrix D_{ij} and the inelastic stress increment vector $\Delta \zeta_i$ in the incremental vector constitutive relationship

$$\Delta \sigma_i = D_{ij} (\Delta \epsilon_j - \delta_j \alpha \Delta \Theta) - \Delta \zeta_i$$
 (6)

The inelastic stress increment vector $\Delta \zeta_i$ is computed in HYPELA from the viscoplastic constitutive relationships programmed in the Appendices.

In Eq. (6) α dnotes the coefficient of thermal expansion and δ_j is the vector Kronecker delta symbol,

$$\delta_{j} = \begin{cases} 1 & \text{if } 0 \leq j \leq 3 \\ 0 & \text{if } 3 < j \leq 6 \end{cases}$$
 (7)

For the class of nonlinear visoplastic constitutive relationships under consideration in this contract, the incremental inelastic stress vector $\Delta \zeta_{\bf i}$ depends in a highly nonlinear manner on the incremental strain vector $\Delta \varepsilon_{\bf i}$. Since $\Delta \varepsilon_{\bf i}$ = B_{ij} $\Delta u_{\bf j}$, the incremental inelastic stress vector $\Delta \zeta_{\bf i}$ depends in a highly nonlinear manner on the nodal displacement vector increment $\Delta u_{\bf j}$, so that $\Delta \zeta_{\bf i}$ = $\Delta \zeta_{\bf i}$ ($\Delta u_{\bf j}$).

Substitution of Eq. (6) into (5) produces the incremental equilibrium equations for MARC in the form,

$$\sum \kappa_{ij} \Delta u_j = \Delta P_i + \Delta R_i + \sum \int_{ij} B_{ij}^{T} \Delta \zeta_j dv + \sum \int_{ij} B_{ij}^{T} \delta_j \alpha \Delta \Theta dv , \qquad (8)$$

where K_{ij} is the elemental elastic stiffness matrix defined by the relation

$$K_{ij} = \int_{V} B_{ik}^{T} D_{k\ell} B_{\ell j} dV.$$
 (9)

The vector ΔR_i is the residual load correction vector or out-of-equilibrium force vector from the preceding load increment,

$$\Delta R_i = P_i - \sum \int_{\mathbf{v}} B_{ij} \sigma_j \, d\mathbf{v} \,, \tag{10}$$

which is added to the current increment in order to restore the structure to equilibrium. The nonlinearity in the incremental equilibrium relationship, defined in Eq. (8), arises because the inelastic stress increment vector $\Delta \zeta_1$ depends nonlinearly on the displacement increment vector Δu_j . Values of D_{ij} and $\Delta \zeta_j$ appropriate to the current incremental load step are returned to the main program by subroutine HYPELA and the incremental equilibrium relations in Eq. (8) are solved by successive iterations.

The solution of the incremental equilibrium equations in (8) is accomplished within the MARC code by the following algorithm. At the start of the increment the user subroutine HYPELA is entered to determine the elasticity matrix \mathbf{D}_{i} and the incremental inelastic stress vector $\Delta \zeta_1$. On entry to the subroutine the input consists of the strain increment vector $\Delta \epsilon_{\bf i}$, the temperature increment $\Delta \theta$, the time increment Δt over which the incremental external load vector $\Delta P_{\dot{1}}$ is applied to the structure, and the values of the stress, strain, temperature and viscoplastic state variables at the beginning of the increment. Since the incremental strain vector, $\Delta \varepsilon_i = B_{ij} \Delta u_i$, can only be accurately determined after the solution to the incremental equilibrium relationship in Eq. (8) has yielded the correct incremental solution vector $\Delta u_{\hat{1}},$ the strain increment vector $\Delta \epsilon_{\hat{1}}$ initially used to generate the inelastic stress increment vector $\Delta \zeta_i$ must be estimated. The initial estimate for $\Delta \epsilon_{f i}$ is assumed to be the value obtained for $\Delta \epsilon_{f i}$ in the preceding increment. On exit from subroutine HYPELA the elasticity matrix D_{ij} and the estimated inelastic stress increment vector $\Delta \zeta_i$ are passed into the main program. After the values of $D_{i,j}$ and $\Delta \zeta_i$ are obtained for each integration point in the structure. the incremental equilibrium relationship in Eq. (8) is assembled and solved for the incremental node displacement vector Δu_i . The incremental strain vector, $\Delta \varepsilon_i = B_{ij} \Delta u_i$, is then computed and compared with the initial guess for $\Delta arepsilon_1$ used to generate the inelastic incremental stress vector $\Delta \zeta_i$. If this incremental strain vector is equal, within a user specified tolerance, to the incremental strain vector used to compute $\Delta \zeta_1$ in the assembly phase, the solution is assumed to have converged. Otherwise, the updated strain increment vector, obtained from the solution of the equilibrium relations in Eq. 8), is passed into subroutine HYPELA, a new vector, $\Delta \zeta_i$, is computed, and the equilibrium equations resolved to yield an improved value of Δu_i and $\Delta \varepsilon_i$. The process is repeated until the value of the vector $\Delta \varepsilon_i$ on the assembly phase is equal, within a user specified tolerance, to the value of the vector $\Delta \epsilon_i$ on the solution phase. After convergence is achieved, the temperature, stress vector, strain vector and viscoplastic state variables are updated by adding the incremental values generated during the current increment to the values of these variables at the beginning of the increment. The program then passes on to the next load increment where the process is repeated. A flow chart of the iterative procedure required to implement viscoplastic constitutive theories into the MARC program is shown in Fig. 1.

3.0 IMPLEMENTATION OF VISCOPLASTIC THEORY IN MARC

The integration of the viscoplastic theory described in Vol. 1 can be introduced into the MARC code by means of the user subroutine HYPELA. This routine is called at each integration point in each element and supplies the elasticity matrix D_{ij} and the inelastic stress increment vector $\Delta \zeta_i$ to the main program.

The required header cards are:

SUBROUTINE HYPELA(D,G,E,DE,S,TEMP, DTEMP,NGENS,N,NN,KC,MAT,NDI, 1NSHEAR)

DIMENSION D(NGENS, NGENS), G(NGENS), E(NGENS), DE(NGENS), S(NGENS) DIMENSION TEMP(1), DTEMP(1)

FORTRAN CODING

RETURN

END

where

D(NGENS, NGENS)	is the elasticity matrix D_{ij} defined in this subroutine (output argument),
G(NGENS)	is the inelastic stress increment vector $\Delta \zeta_{i}$ defined in this subroutine (output argument),
E(NGENS)	is the mechanical strain $\epsilon_i - \delta_i \int_0^t \alpha(\xi) [\partial \Theta(\xi)/\partial \xi] d\xi$ at the beginning of the increment (input argument),
DE (NGENS)	is the increment of mechanical strain $\Delta \epsilon_i - \delta_i \alpha \Delta \Theta$ (input argument),
S(NGENS)	is the stress σ_i at the beginning of the increment (input argument),
TEMP(1)	is the temperature Θ at the beginning of the increment (input argument),
TEMP(2)	is the time t at the beginning of the increment (input argument),

	TEMP(3)	is the cumulative inelastic strain R at the beginning of the increment (input argument),
	TEMP(4)	and the realises of the total state of
through	TEMP (9)	are the values of the inelastic strains, c_1 through c_6 , at the beginning of the increment (input argument),
	TEMP(10)	and the melicer of the condition of
through	TEMP (15)	are the values of the equilibrium stresses Ω_1 through Ω_6 at the beginning of the increment (input argument),
	TEMP (16)	is the number of subincrements used to integrate the last MARC increment,
	DTEMP(1)	is the temperature increment $\Delta \Theta$ (input argument),
	DTEMP(2)	is the time increment Δt (input argument),
	DTEMP(3)	is the increment of cumulative inelastic strain ΔR (output argument)
	DTEMP(4)	and the decomposited well-state of the last
through	DTEMP(9)	are the incremental values of inelastic
cmroug		strain Δc_1 through Δc_6 (output argument),
	DTEMP(10)	are the incremental values of the equilibrium
through	DTEMP(15)	stress $\Delta\Omega_1$ through $\Delta\Omega_6$ (output argument),
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	DTEMP(16)	is output as zero, since the NSPLIT is updated automatically,
	NGENS	is the size of the D _{ij} matrix (NGENS = 3 for plane stress problems, NGENS = 4 for plane strain and axisymmetric problems, NGENS = 6 for three dimensional problems) (input argument),
	N	is the finite element number (input argument),
	NN	is the integration point number (input argument),
	KC	is the layer number in shell or beam problems (input argument),
	MAT	is the material identifier (input argument),

NDI

is the number of direct stress components (NDI = 2 for plane stress problems, NDI = 3 for plane strain, axisymmetric and three dimensional problems) (input argument)

NSHEAR

is the number of shear components (NSHEAR = 1 f ... plane stress, plane strain and axisymmetric problems. NSHEAR = 3 for three dimensional problems) (input argument)

4.0 INTEGRATION OF VISCOPLASTIC EQUATIONS IN SUBROUTINE HYPELA

4.1 Self Adaptive Integration

The values of $D_{\mbox{ij}}$ and $\Delta \zeta_{\mbox{i}}$ in the incremental constitutive relation,

$$\Delta \sigma_{i} = D_{ij} (\Delta \epsilon_{j} - \delta_{j} \alpha \Delta \Theta) - \Delta \zeta_{i}. \tag{11}$$

are obtained by a subincrement method. Incremental values of the variables $\Delta\theta$, Δt and $(\Delta\epsilon_{1}-\delta_{1}\alpha\Delta\theta)$ for the current finite element load increment are split into NSPLIT equal values, and the constitutive equations are integrated over the NSPLIT subincrements to provide accurate values of D_{ij} and $\Delta\zeta_{1}$. The subroutine HYPELA (Appendix 1) integrates Walker's viscoplastic equations and calls subroutine HYPCON (Appendix 2) to evaluate the material parameters. HYPCON contains the latest estimates for the parameters in the modified Walker's Theory described in Vol. 1. Each load increment in a MARC analysis is divided into NSPLIT subincrements. The integration of the constitutive equations is performed by using forward differences with a step size determined by dividing the MARC load increment by NSPLIT. Subroutine HYPELA performs the integration in two ways: (1) a fixed step size, or (2) a variable step size. In the fixed step size forward difference (KEY equal to one at line 32 of HYPELA), NSPLIT is the same for all MARC load increments and subincrements.

In the variable step size forward difference (%EY equal to zero in line 32 of HYPELA), NSPLIT is determined by the magnitude of the change in a strain measure for every subincrement. The change in the strain measure is defined as

$$E = \Delta R + \frac{\sqrt{3\Delta J_2}}{2\mu}$$
 (12)

where

大大大大大大大 日 一

$$\Delta R = \sqrt{\frac{2}{3} \Delta C_{ij} \Delta C_{ij}}$$
 (13)

$$\Delta J_2 = \frac{3}{2} \Delta S_{ij} \Delta S_{ij} \text{ and}$$
 (14)

R83-956077-2

the quantity $\Delta \epsilon$ is calculated in line 324 of HYPELA and is stored as variable ERRORO. There are three possible ways to determine NSPLIT. The method depends on the size of ERRORO. If

$$ERROR2 < ERROR0 < ERROR1$$
 (15)

Then NSPLIT remains the same for the next subincrement (ERROR1 and ERROR2 are specified in lines 54 and 55 of HYPELA). If

NSPLIT is divided in two for the next subincrement and rounded (up) to the nearest integer. If

$$ERRORO > ERROR1$$
 (17)

then NSPLIT is doubled and the step is recomputed. The value of NSPLIT at the end of the increment is stored in the state variable TEMP(16). The initial value of NSPLIT can be specified in an INITIAL STATE BLOCK in the MARC model definition cards or in line 31 of HYPELA. The maximum value of NSPLIT is specified by MXSPLT (line 57 of HYPELA). If NSPLIT exceeds MXSPLT the message:

"UNABLE TO REDUCE ERROR IN LESS THAN MXSPLT SUBINCREMENTS"

is written where the value of MXSPLT is inserted in the WRITE statement. After this condition is satisfied the integration is performed using a constant step size.

4.2 Time Independent Terms and Race of Change of Temperature Terms

Two remaining variables must be specified in HYPELA: NONISO (line 64 of HYPELA) and INDEP (line 67 of HYPELA). If

$$NONISO = 1 \tag{18}$$

the change in temperature with respect to time terms will be included. If

$$NONISO = 0 (19)$$

these terms will not be included. If

$$INDEP = 1 \tag{20}$$

the time independent terms will be included. If

$$INDEF = 0 (21)$$

these terms will not be included.

The state of the s

1.4

4.3 Modifications to Other MARC Subroutines

In order to run viscoplastic models in a more efficient manner, the MARC code can be modified to run using a constant inverted stiffness matrix. Such a modification eliminates the requirement to reassemble and invert the stiffness matrix with a subsequent savings in CPU time. This can be accomplished, for example, by:
(1) changing line 65 of subroutine THRUH (Appendix 3) to

$$LOADUQ = 0 (22)$$

(2) changing line 116 of subroutine INCDT1 (Appendix 4) to

IASMBL = 0, and

(3) changing line 208 of subroutin INCDT1 to

IASNIBL = 0

To insure proper runs only the appropriate lines specifying TASMBL in subroutines INCDT1 and INCDT2 should be changed. For example, if only BOUNDARY CHANGE cards are used in the load incrementation part of the MARC input, then only line 208 of INCDT1 for specifying IASMBL needs to be changed (along with line 65 of THRUH).

Line 753 of the MARC subroutine STEG needs to be changed to that shown in Appendix 5 to insure proper running of the MARC code when using HYPELA.

4.4 HYPELA Control Parameters

The subroutine HYPCON, which calculates the temperature dependent material parameters, is called four times by HYPELA at lines 68, 188, 193 and 198. Each of these calls evaluates the material parameters at a different temperature. The first call determines the elastic constants for which the stiffness matrix is generated, and will be the same on all increments. The second through the fourth calls evaluate the material constants at the median temperature of the subincrement, at the beginning of the subincrement and at the end of the subincrement, respectively.

The stiffness matrix is generated with the elastic constants determined by the temperature variable SFTEMP (see line 59 of HYPELA).

MARC solves the incremental equilibrium Eq. (8) by successive iteration. To see how the equilibrium equation iterations are converging one can pick the integration point, NPRIN, at line 51 of HYPELA, in element number, NELPR, at line 40 of HYPELA, at which the maximum amount of nonlinearity is expected. As subroutine

R83-956077-2

INDEP

HYPELA is entered on the assembly phase the routine prints out the strain increment vector $\Delta \varepsilon_i$ and the stress increment vector $\Delta \sigma_i$ at integration point NPRIN in element number NELPR. After the equilibrium equations have been solved for the incremental displacement vector Δu_i , subroutine HYPELA is again entered with $\Delta \varepsilon_i = B_{ij} \Delta u_j$ and the incremental vectors are printed out on the assembly and solution phase of every successive iteration of the equilibrium equations. In this way the convergence of the solution to the incremental equilibrium equations can be followed. If no printout of the incremental vectors is required, the variable IPR at line 50 of HYPELA, is set equal to zero.

In order to use subroutine HYPELA, several constants must be defined in the subroutine, starting at card number thirty-one (31). These constants are:

,		
MXSPLT	=	maximum number of subincrements allowed,
NELPR	=	element number for printout of incremental stress and strain vectors,
IPR	E	l if stress-strain increment output is required, 0 if stress-strain increment output is not required
NPRIN	=	integration point number for printout of incremental stress and strain vectors,
NSPLTT	±	number of subincrements per MARC increment,
SFTEMP	=	reference temperature for calculating elastic constants
ERROR2		minimum change in strain measure (Eq. 12) allowed before a subincrement step size
ERROR1	=	maximum change in strain measure (Eq. 12) allowed before halving subincrement step size
NONISC	#	1 to include rate of change of temperature terms, and equals

zero if these terms are not included

terms are not included.

1 to include time independent terms, and equals zero if these

In Appendices 6, 7 and 8 are listings of the data input to simulate the three thermomechanical fatigue cycles described in Volume 1.

4.5 MARC Input Data Set

In the MARC input data deck two cards are required in the parameter set before the END card. These are:

HYPOELAS STATE VARS

16

4.6 Temperature Input

A uniform temperature increment over the structure, together with an appropriate time increment, can be specified with the following cards:

THERMAL LOADS 1, 5.0, 2.0 BLANK CARD

In the above sequence of cards, the first state variable increment of 5.0 refers to the uniform temperature increment $\Delta\Theta$ = 5°F over the structure. The second state variable increment of 2.0 refers to a time increment of Δt = 2 seconds. The remainder of the card and the following BLANK card set the remaining fourteen (14) state variable increments to zero. Since the STATE VARS card defines sixteen (16) state variables, MARC expects this number as input. However, only the first two state variables, $\Delta\Theta$ and Δt are required as input by HYPELA. The remaining (14) state variable increments are defined within subroutine HYPELA.

If a nonuniform temperature over the structure is required (the usual case), the temperature increments and time increment must be set in user subroutine CREDE. This can be accomplished with the following header cards:

SUBROUTINE CREDE(DTDL,M,NSTRES,NEQST,NSTATS)
DIMENSION DTDL(NSTATS,NEQST,NSTRES)
COMMON/FAR/DUM,L

N =(where N =number of integration points in element number M)

DO ? II = 1, N

R83-956077-2

DTDL(1,1,II) = temperature increment at integration point II

2 CONTINUE RETURN END

5.0 REFERENCES

- 1. MARC General-Purpose Finite Element Program, MARC Corporation, Palo Alto, CA.
- 2. Walker, K. P.: Research and Development Program for Nonlinear Structural Modeling with Advanced Time-Temperature Dependent Constitutive Relationships. Final Report NASA CR-165533, November 1981.

Figure 1. Flow Chart of MARC Iteration Procedure

81-9-103-9

* ::

٠ ,

```
DUBROUTINE HYPELA(D,G,E,DE,S,TEMP,DTEMP,NGENS,N,NN,KC,MAT,NDI,

1NSHEAR)
DIMENSION D(NGENS,NGENS),G(NGENS),E(NGENS),DE(NGENS),S(NGENS)
DIMENSION TEMP(1),DTEMP(1)
DIMENSION DSIG(6),DMEG(6)
DIMENSION SIG(6),DMEG(6),C(6)
DIMENSION DC(6),DET(6),OMEGI(6),AB(6)
DIMENSION DEV(6),OV(6),DAB(6),ETI(6)
DIMENSION DEV(6),OV(6),DAB(6),CI(6)
COMMON/AKEV/KEVIN
COMMON/FAR/DUM,INC
COMMON/FAR/DUM,INC
COMMON/CDC/ICROUT,NUPTRA,NCPIN,NCYCM,TOLER,XFAC,FLAMB,FRCTOL,MINC,
ININST1,NINST2,NDUM,SCALE,NYD,IDESP,NFCQ,FACS,DISPRE,NCYCLE
C*****SECOND INVARIANT FUNCTION
SINV(A,B,C,D,E,F)=(A*A+B*B+C*C+2.*(D*D+E*E+F*F))*2./3.

1234 CONTINUE
C*****THIS SURBOUTING
C*****THIS SUBROUTINE RETURNS THE ELASTICITY MATRIX D AND INELASTIC STRESS C*****INCREMENT G FOR THE WALKER'S THEORY (B.N. CASSENTI UTRC) C*****USING THE DIFFERENTIAL FORM OF THE THEORY C*****EQUATIONS ARE INTEGRATED USING A FOWARD DIFFERENCE C*****WITH ERROR ESTIMATES FOR REVISING TIME STEPS
                                     FOR SELF ADAPTIVE INTEGRATION SET KEY=0
FOR FIXED STEP INTEGRATION SET KEY=1 AND
(1) SET NSPLIT IN TEMP(16) THROUGH AN INITIAL STATE BLOCK AND/OR
(2) SET NSPLIT IN THE IF STATEMENT BELOW
                                      NSPLIT=TEMP(16)
IF (NSPLIT.LT..999)NSPLIT=16
                                     KEY=1
IF(N.NE.1) GO TO 7
IF(NN.NE.1) GO TO 7
IF(NCYCLE.EQ.0) NWALK=0
                                      NWALK=NWALK+1
                     NQ=NWALK-2*NCYCLE
                                      NELPR-1
                                       IPR=1
                                       NPRIN=1
                                      IF ((INC+NCYCLE) .NE. 0) NSPLIT=TEMP(16)
ERRORI IS MAXIMUM ALLOWABLE STRAIN STEP SIZE
ERRORI=1.E-4
                      C
                                      MXSPLT IS THE MAXIMUM VALUE OF NSPLIT ALLOWED MXSPLT=65_
                                       ERROR 2=ERROR 1/10.
                      C
                                      IF (KEY .EQ. 1) MXSPLT-NSPLIT
SFTEMP-940.
DEGM-SFTEMP
                      IF (TEMP(1) .GT. 1.E-9) SFTEMP=TEMP(1)
C****NONISO=0 WILL NOT INCLUDE DTEMP/DTIME TERMS
C****NONISO=1 WILL INTERPOLATE TO INCLUDE DTEMP/DTIME TERMS
                      NONISO-O
C****INDEP=0 TIME INDEPENDENT TERMS NOT INCLUDED
C***INDEP=1 TIME INDEPENDENT TERMS ARE INCLUDED
                                       CALL HYPCON(INDEP.NONISO, DEGM.
```

```
l EEM, ANUM, AKIM, AK2M, ANIM, AMM, ANIM, AN2M, AN3M, AN4M, AN5M, AN6M, AN7M,
2 OMEGOM, AKINDM, SIINFM, DN1DTM, DN2DTM, DOMDTM,
3 ANM, ALAMM, AMUM, C1M, C2M, C3M, C4M, C5M)
C****SET ZERO STRAIN INCREMENTS = 1.E-8 TO AVOID DIVISION BY ZERO
DESINV=SINV(DE(1), DE(2), DE(3), DE(4), DE(5), DE(6))
DO 1 J=1, NGENS
IF(DESINV.EQ.O.) DE(J)=1.E-8
1 CONTINUE
C*****PUT STRESSES AT BEGINNING OF MARC INCREMENT INTO SIGB ARRAY ACCORDING
C******TO FLEMENT TYPE
 C*****TO ELEMENT TYPE
GO TO(801,802,803), KELTYP
                         801 CONTINUE

SIG(1)=S(1)

SIG(2)=S(2)

SIG(3)=S(3)

SIG(4)=S(4)

SIG(5)=0.

GO TO 900

802 CONTINUE

SIG(1)=S(1)

SIG(2)=S(2)

SIG(3)=0.

SIG(4)=S(3)

SIG(5)=0.

SIG(5)=0.

SIG(6)=0.

GO TO 900

803 DO 804 J=1,
                          801 CONTINUE
                                                                                                                                  ORIGINAL PAGE 19
                                                                                                                                  OF POOR QUALITY
  90
91
92
 93
94
95
96
97
98
                          803 DO 804 J=1,
SIG(J)=S(J)
804 CONTINUE
  99
                           900 CONTINUE
100
                     C*****INITIALIZE STATE VARIABLES ON FIRST ENTRY TO SUBROUTINE. ON SECOND C****AND SUBSEQUENT ENTRIES SKIP INITIALIZATION.
KEVIN-INC+NCYCLE
102
103
                                    IF(KEVIN.NE.O) GO TO 3

IF (TEMP(1) .GT. 1.E-9) SFTEMP=TEMP(1)

IF (TEMP(1) .LT. 1.E-9) TEMP(1)=SFTEMP

DO 2 J=2.15

TEMP(1)=1.E-9
104
105
106
107
108
                                   CONTINÚE
109
110
111
                                3 CONTINUE
                     C****SET STARTING VALUES OF STATE VARIABLES DURING PRESENT MARC INCREMENT DEG-TEMP(1)
                                    T=TEMP(2)
R=1±4P(3)
DO 104 KA=1,6
J=KA+3
1 12
1 13
1 14
1 15
                          OMEG(KA)=TEMP(J)
C(KA)=TEMP(J+6)
SUMSIG(KA)=0.
104 CONTINUE
116
117
Ī 18
1 19
120
                                    KSTEP=0
121
122
123
                     ERRORO=O.
C*****START INTEGRATION STEP OVER SUBINCREMENT
                                    SPLIT-NSPLIT
                     KSTEP=KSTEP+1

C WRITE (6,4271) KSTEP, NSPLIT, ERRORO, T

C4271 FORMAT (1H, 'KSTEP=',15,5X,'NSPLIT=',15,5X,'ERRORO=',1PE10.3,5X

C 1,'TIME=',1PE10.3)

IF (NSPLIT .LE. MXSPLT)GOTO4274

IF (KEY .EQ. 0) WRITE(6,4273) MXSPLT
124
125
126
127
128
129
130
131
136
137
138
139
                                      FORMAT
                                  KĘŸ-I
                     4274 IF (ABS(T-(TEMP(2)+DTEMP(2))) .GT. ABS(DTEMP(2)/SPLIT))GOTO6
SPLIT=DTEMP(2)/(TEMP(2)+DTEMP(2)-T)
IF (ABS((TEMP(2)+DTEMP(2)-T)/DTEMP(2)) .LT. 1.E-3) GOTO420
C****SET TEMPERATURE AND TIME SUBINCREMENTS
                                    DDEG=DTEMP(1)/SPLIT
                     DT=DTEMP(2)/SPLIT

C****SET STARTING VALUES FOR DEVIATORIC STRESSES

PRESS=(SIG(1)+SIG(2)+SIG(3))/3.
```

ş

```
143
                                                                                                                                                                           ORIGINAL PAGE 18
                                              DO 7777 J=1.6
 144
145
146
147
                              ALPHA=1.

IF(J.GT.3)ALPHA=0.

DEV(J)=SIG(J)-ALPHA*PRESS

7777 CONTINUE
                                                                                                                                                                          OF POOR QUALITY
                           C*****PUT SUBINCREMENTS OF TOTAL STRAIN INTO ARRAY DET ACCORDING
C*****ELEMENT TYPE
GO TO(61,62,63), KELTYP
   148
149
  150
                                          GO TO(61,62,63), KELTYP
CONTINUE
DET(1)=DE(1)/SPLIT
DET(2)=DE(2)/SPLIT
DET(3)=DE(3)/SPLIT
DET(4)=0.5*DE(4)/SPLIT
DET(5)=0.
DET(6)=0.
ET(1)=E(1)
ET(2)=E(2)
ET(3)=E(3)
ET(4)=0.5*E(4)
ET(5)=0.
GO TO 71
DET(1)=DE(1)/SPLIT
DET(2)=DE(2)/SPLIT
DET(3)=-DET(1)-DET(2)
DET(4)=0.5*DE(3)/SPLIT
DET(5)=0.
DET(6)=0.
ET(1)=E(1)
ET(2)=E(2)
ET(3)=-ET(1)-ET(2)
ET(4)=0.5*E(3)
DET(5)=0.
DET(6)=0.
GO TO 71
CONTINIIE
                                     61 CONTINUE
  151
  154
155
  156
157
158
  159
 160
  161
  162
  163
  164
  165
  166
167
  168
 169
170
  171
 172
173
                                             GO TO 71
                                    63 CONTINUE
                                             DO 64 J=1,6
FAC=1.
 180
                                            IF(J.GT.3)FAC=0.5
DET(J)=FAC*DE(J)/SPLIT
ET(J)=FAC*E(J)
 183
104
185
                                            CONTINUE
                                            CONTINUE
                         C*****COMPUTE TEMPERATURE DEPENDENT MATERIAL CONSTANTS

DEGM=DEG+0.5*DDEG

CALL HYPCON(INDEP, NONISO, DEGM,

1 EE, ANU, AK1, AK2, ANIN, AM, AN1, AN2, AN3, AN4, AN5, AN6, AN7,

2 OMEGO, AKIND, SIINF, DN1DT, DN2DT, DOMDT,

3 AN, ALAM, AMU, C1D, C2, C3, C4, C5)
 188
 ì89
 190
 191
                                            DEGM-DEG
                                         CALL HYPCON(INDEP, NONISO, DEGM,
1 EEO, ANUO, AK10, AK20, ANINO, AM0, AN10, AN20, AN30, AN40, AN50, AN60, AN70,
2 OMEGOO, AKINDO, SIINFO, DNIDTO, DN2DTO, DOMDTO,
3 ANTO, ALAMO, AMUO, C10, C20, C30, C40, C50)
DEGM-DEG-DDEG
 194
 195
 196
 197
                         DEGM=DEG+DDEG
CALL HYPCON(INDEP, NONISO, DEGM,
1 EE1, ANU1, AK11, AK21, ANIN1, AM1, AN11, AN21, AN31, AN41, AN51, AN61, AN71,
2 OMEGO1, AKIND1, SIINF1, DN1DT1, DN2DT1, DOMDT1,
3 AN1, ALAM1, AMU1, C11, C21, C31, C41, C51)
C*****SET INITIAL VALUES OF EQUILIBRIUM STRESS
DENOM=SINV(C(1).C(2), C(3), C(4), C(5), C(6))
DENOM=DENOM+1.E-30
AB(1)=-OMEGO+2.*OMEGO*(C(1)*C(1)+C(4)*C(4)+C(6)*C(6)
1+1.E-30)/DENOM
AB(2)=-OMEGO+2.*OMEGO*(C(4)*C(4)+C(2)*C(2)+C(5)*C(5)
1+1,E-30)/DENOM
 198
199
200
201
202
 203
204
205
206
207
                                         1+1.E-30)/DENOM

AB(3)=-OMEGO+2.*OMEGO*(C(6)*C(6)+C(5)*C(5)+C(3)*C(3)+

11.E-30)/DENOM

AB(4)=2.*OMEGO*(C(1)*C(4)+C(2)*C(4)+C(5)*C(6)+1.E-30)/
209
210
                                         1 DENOM
                                         AB(5)=2.*OMEGO*(C(4)*C(6)+C(2)*C(5)+C(3)*C(5)+1.E-30)/1DENOM
2 15
                                            AB(6)=2.*OMEGO*(C(1)*C(6)+C(4)*C(5)+C(3)*C(6)+1.E-30)/
Ž 16
                                         1 DENOM
```

. 1

٠

. 3

- Harry

M

1

* .

. .

ويهوا أواحف بوائح أيسرا

```
217
218
219
                                                                    ABSUM=AB(1)+AB(2)+AB(3)
DO 7124 J=1,6
ALPHA=1.
                                                                                                                                                                                                                                                                 ORIGINAL PAGE 19
                                                                                                                                                                                                                                                                OF POOR QUALITY
220
221
222
                                             IF(J.GT.3)ALPHA=0.
OMEGI(J)=AB(J)=ALPHA*ABSUM/3.
7124 CONTINUE
                                        7124 CUNTINUE
C*****COMPUTE DRAG STRESS
AK=AK1-AK2*EXP(-AN7*R)
C*****COMPUTE INELASTIC STRAIN SUBINCREMENTS
DO 67 J=1,6
OV(J)=1.5*DEV(J)-OMEG(J)
 223
224
225
226
227
2 28
2 29
2 30
2 31
                                                        67 CONTINUE
                                                                     ARG1=SINV(OV(1),OV(2),OV(3),OV(4),OV(5),OV(6))
ARG1=SQRT(ARG1)
IF(ARG1-LE-1-E-10)ARG1=1.E-10
                                                                      ARC2=(ARC1/AK)**AN
FAC=(ARC2/ARG1)*DT
DO 302 J=1.6
DC(J)=FAC*(1.5*DEV(J)-OMEG(J))
 232
233
234
235
236
237
238
239
240
                                                    302 CONTINUE
                                         C***ADD TIME INDEPENDENT PART

IF (INDEP .EQ. 0) GOTO68

DAJ2=1.-AKIND*.666667*ARG1**2/(SIINF/AK1*AK)**2

DWORK=0.
                                        DWORK=0.

DO 6801 J=1,6

6801 DWORK=DWORK+SIG(J)*DET(J)*FLOAT(1+J/4)

IF (DWORK .LT. 0) DWORK=0

FACTOR=(1.-AKIND)*DWORK/(SIINF/AK1*AK)**2/DAJ2

DO 6803 J=1,6

6803 DC(J)=FACTOR*0V(J)+DC(J)

C*****COMPUTE EQUILIBRIUM STRESS SUBINCREMENTS

68  OM2=SINV(OMEG(1),OMEG(2),OMEG(3),OMEG(4),OMEG(5),OMEG(6))

OM2=SORT(OM2)

DR=SINV(DC(1),DC(2),DC(3),DC(4),DC(5),DC(6))

DR=SQRT(DR)

DG=(AN3+AN4*EXP(-AN5*R))*DR+AN6*DT*OM2**(AM-1.)
 241
242
243
244
 245
246
247
 248
249
250
251
252
253
254
256
257
                                                                  DK=SQKT(DR)
DG=(AN3+AN4*EXP(-AN5*R))*DR+AN6*DT*OM2**(AM-1.)
DO 303 J=1.6
DOMEG(J)=(AN1+AN2)*DC(J)-DG*(OMEG(J)-OMEGI(J)-AN1*C(J))
IF (NONISO .EQ. 0) GOTO303
DOMEG(J)=DOMEG(J)+(OMEG(J)-OMEGI(J)-AN1*DC(J))*DN2DT*DDEG
1+DN1DT*DC(J)*DDEG
DDENOM=(C(1)*DC(1)+C(2)*DC(2)+C(3)*DC(3)*+
1 2.*(C(4)*DC(4)+C(5)*DC(5)*C(6)*DC(6)))
DOM=DOM=DOMDT*DDEG
  258
259
  260
                                                                       DOM=DOMDT*DDEG
                                                                      DOM1=DOM-2.*OMEGO*DDENOM
DENOM=SINV(C(1),C(2),C(3),C(4),C(5),C(6))
DENOM=DENOM+1.E-30
 261
262
263
                                                                  DAB(1)=DOM+2.*DOM1*(C(1)*C(1)+C(4)*C(4)+C(6)*C(6)
1+1.E-30)/DENOM
DAB(2)=DOM+2.*DOM1*(C(4)*C(4)+C(2)*C(2)+C(5)*C(5)
1+1.E-30)/DENOM
 264
265
266
267
                                                                   DAB(3)=-DOM+2.*DOM1*(C(6)*C(6)+C(5)*C(5)+C(3)*C(3)+
11.E-30)/DENOM
DAB(4)=2.*DOM1*(C(1)*C(4)+C(2)*C(4)+C(5)*C(6)+1.E-30)/
   268
269
270
271
                                                                    1 DENOM
                                                                        DAB(5)=2.*DQM1*(C(4)*C(6)+C(2)*C(5)+C(3)*C(5)+1.E-30)/
   272
273
274
275
                                                                    1 DENOM
                                                                   DAB(6)=2.*DQM1*(C(1)*C(6)+C(4)*C(5)+C(3)*C(6)+1.E-30)/1DENOM
                                                                   DAB(1)=DAB(1)+2.*OMEGO*(DC(1)*C(1)+DC(4)*C(4)+DC(6)*C(6)
1+1.E-30)/DENOM
DAB(2)=DAB(2)+2.*OMEGO*(DC(4)*C(4)+DC(2)*C(2)+DC(5)*C(5)
1+1.E-30)/DENOM
DAB(3)=DAB(3)+2.*OMEGO*(DC(6)*C(6)+DC(5)*C(5)+DC(3)*C(3)+
11.E-30)/DENOM
DAB(4)=DAB(4)+2.*OMEGO*(DC(1)*C(4)+DC(2)*C(4)+DC(5)*C(6)+1.E-30)/
DAB(4)=DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)+2.*DAB(4)
   276
277
278
279
   280
281
282
283
                                                                   DAB(5)=DAB(5)+2.*OMEGO*(DC(4)*C(6)+DC(2)*C(5)+DC(3)*C(5)+1.E-30)/
1DENCH
DAB(6)=DAB(6)+2.*OMEGO*(DC(1)*C(6)+DC(4)*C(5)+DC(3)*C(6)+1.E-30)/
1DANOM
    284
285
286
287
                                                                    DAB(1)=DAB(1)+2.*OMEGO*(C(1)*DC(1)+C(4)*DC(4)+C(6)*DC(6)
1+1.E-30)/DENOM
DAB(2)=DAB(2)+2.*OMEGO*(C(4)*DC(4)+C(2)*DC(2)+C(5)*DC(5)
    288
    289
290
```

•

```
291
292
293
294
                                                       1+1.E-30)/DENOM OF POOR QUALITY

DAB(3)=DAB(3)+2.*OMEGO*(C(6)*DC(6)+C(5)*DC(5)+C(3)*DC(3)+
11.E-30)/DENOM
DAB(4)=DAB(4)+2.*OMEGO*(C(1)*DC(4)+C(2)*DC(4)+C(5)*DC(6)+1.E-30)/
                                                                                                                                                                              OF POOR QUALITY
295
                                                        1 DENOM
296
297
                                                           DAB(5)=DAB(5)+2.*OMEGO*(C(4)*DC(6)+C(2)*DC(5)+C(3)*DC(5)+1.E-30)/
                                                       1 DENOM
 298
                                                          DAB(6)=DAB(6)+2.*OMEGO*(C(1)*DC(6)+C(4)*DC(5)+C(3)*DC(6)+1.E-30)/
299
300
                                                       1 DENOM
                                   303 CONTINUE

C*****COMPUTE STRESS SUBINCREMENTS

IF(KELTYP.EQ.2)DET(3)=(2.*AMU*DC(3)-ALAM*(DET(1)+DET(2)))/(ALAM+2.
 301
 302
303
304
305
                                                        1 *AMU
                                                           DVOLO-0.
                                                          DVOLU=0.

DVOLU=0.

DO 809 J=1,6

ETI(J)=ET(J)+DET(J)

CI(J)=C(J)+DC(J)

IF (J.GT. 3) GOTO809

DVOLO=DVOLO+ET(J)
 306
307
 308
309
310
311
312
313
                                                            DVOL1=DVOL1+ET1(J)
                                                           CONTINUE
DO 810 J=1,6
FAC=FLOAT(1-J/4)
S0=ALAMO*DVOLO*FAC+2.*AMUO*(ET(J)-C(J))
S1=ALAM1*DVOL1*FAC+2,*AMU1*(ET1(J)-C1(J))
                                        809
                                                           DSIG(J)=S1-S0
IF (KELTYP .NE. 2) GOTO810
DSIG(IN=FAC*2.*AMU*ALAM*DC(3)/(ALAM+2.*AMU)-2.*DC(J)*AMU
DSIG(J)=DSIGIN+(ALAM+2.*AMU)*FAC*(DVOL1-DVOL0)+2.*AMU*DET(J)
CONTINUE
TO STORT AND ADDITION OF THE PROPERTY 
  317
318
 319
 320
321
322
323
324
325
326
                                  c<sup>810</sup>
                                                          IF SELF ADAPTIVE INTEGRATION IS USED THEN CALCULATE STRAIN STEP, MAKE APPROPRIATE CHANGES TO NSPLIT AND GO TO CORRESPONDING PROGRAM STEP IF (KEY . 20. 1)GOTO410 ERRORO-SINV(DSIG(1),DSIG(2),DSIG(3),DSIG(4),DSIG(5)
                                                           DSIG(6))
ERRORO-SORT(ERRORO)/EE+DR
IF (ERRORO .LT. ERROR2) NSPLIT=(NSPLIT-1)/2+1
IF (ERRORO .LT. ERROR1) GOTO410
NSPLIT=2*NSPLIT
 327
 3 28
3 29
 330
331
 332
                                                            GOTO5
333
                                   C*****UPDATE SUBINCREMENT VARIABLES
410 DEG=DEG+DDEG
                                                            IF (NSPLIT .GT. MXSPLT) NSPLIT=MXSPLT-1
 335
 336
337
                                                            R=R+DR
                                                           REATUR

DO 113 J=1,6

OMEG(J)=OMEG(J)+DOMEG(J)

SIG(J)=SIG(J)+DSIG(J)

C(J)=C1(J)

ET(J)=ET(J)

SUMSIG(J)=SUMSIG(J)+DSIG(J)
 3 39
 340
341
  343
                                            113 CONTINUE
                                                           PRESS=(SIG(1)+SIG(2)+SIG(3))/3.
DO 114 J=1,6
ALPHA=1.
 344
345
 346
                                            IF(J.GT.3)ALPHA=0.
DEV(J)=SIG(J)-ALPHA*PRESS
114 CONTINUE
 347
348
349
 350
351
352
                                    C****END OF SUBINCREMENT LOOP
                                                            T=T+DT
                                                            GOTO5
                                   C*****PUT ELASTICITY MATRIX IN D AND INELASTIC STRESS INCREMENT IN G
420 GO TO(814,815,816), KELTYP
814 CONTINUE
DO 817 J=1,4
DO 817 K=1,4
D(J,K)=0.
817 CONTINUE
PO 818 J=1 3
 353
354
 355
356
357
 358
359
                                                           DO 818 J=1,3
DO 818 K=1,3
ALPHA=0.
  360
 361
362
                                                            IF(J.EQ.K) ALPHA=1.
D(J,K)=C5M+ALPHA*C3M
  363
  364
```

ORIGINAL PAGE IS

```
ORIGINAL PAGE 19
                            818 CONTINUE
D(4,4)=C4M
GO TO 903
365
366
367
                                                                                                                OF POOR QUALITY
368
369
370
371
372
                            815 CONTINUE
                                      CONTINUE
D(1,1)=C2M
D(1,2)=C1M
D(2,1)=C1M
D(1,3)=0.
D(3,1)=0.
D(2,2)=C2M
D(2,3)=0.
D(3,3)=C4M
GO TO 903
CONTINUE
373
376
377
378
                           816 CONTINUE

DO 819 J=1,6

DO 819 K=1,6

D(J,K)=0.

819 CONTINUE

DO 820 J=1,3

DO 820 K=1,3
 37 Š
 380
 381
 382
383
384
385
                       DO 820 K=1,3
ALPHA=0.
IF(J.EQ.K) ALPHA=1.
D(J.K)=C5M+ALPHA*C3M

820 CONTINUE
D(4,4)=C4M
D(5,5)=C4M
D(5,5)=C4M
O(6,6)=C4M

903 CONTINUE
DO 821 J=1,NGENS
G(J)=SUMSIG(J)
IF (KELTYF .EQ. 2 .AND. J .EQ. 3) G(3)=S
DO 821 K=1,NGENS

821 G(J)=G(J)-D(J,K)*DE(K)
C*****COMPUTE STRESS AT END OF MARC INCREMENT
DO 822 J=1,NGENS
386
387
388
389
391
392
393
 395
 396
397
398
                                                                                 2 .AND. J .EQ. 3) G(3) = SUMSIG(4)
 399
 400
                                        DO 822 J=1,NGENS
                                        SUM=0.
 401
                                       DO 823 K=1 NGENS
SUM=SUM+D(J,K)*DE(K)
 402
 403
                            823 CONTINUE
DS(J)=SUM+G(J)
822 CONTINUE
 404
 405
 406
                       C*****PUT STATE VARIABLE INCREMENTS IN TEMP ARRAY FOR NEXT MARC INCREMENT DTEMP(3)=R-TEMP(3)
TEMP(16)=NSPLIT
DO 923 KA=1,6
J=KA+3
 407
 408
409
410
 411
412
413
414
                             DTEMP(J)=OMEG(KA)-TEMP(J)
DTEMP(1+6)=C(KA)-TEMP(J+6)
923 CONTINUE
                               IF(IFR.EQ.O) GO TO 12
IF(NELPR.NE.N) GO TO 12
IF (NN.NE.NPRIN) GO TO 12
WRITE(6,20) INC
20 FORMAT(1 H INCREMENT ,15)
IF(NQ.EQ.O) WRITE(6,23) NOQ
IF(NQ.GT.O) WRITE(6,39) NCYCLE
23 FORMAT(55H VALUES OF PARAMETERS DURING SOLUTION OF RECYCLE NUMBER,
 415
 418
 419
 420
 421
422
423
424
425
426
427
428
                                39 FORMAT(55H VALUES OF PARAMETERS DURING ASSEMBLY OF RECYCLE NUMBER.
                               WRITE(6,29)

29 FORMAT(18H STRAIN INCREMENTS)
WRITE(6,30) (DE(J),J=1,NGENS)

30 FORMAT(1P6E15-6)
WRITE(6,31)
31 FORMAT(18H STRESS INCREMENTS)
UPITE(6,30) (DS(J),J=1,NGENS)
 429
430
431
 432
433
434
                                       WRITE(6,30) (DS(J),J=1,NGENS)
RETURN
                                        PTBUG SUBTRACE, UNIT (25), SUBCHK, INIT AT 1234
                        C
 435
 436
                                        END
```

```
SUBROUTINE HYPCON(INDEP, NONISO, DECM,

1 EE, ANU, AK1, AK2, ANIN, AM, AN1, AN2, AN3, AN4, AN5, AN6, AN7,

2 OMEGO, AKIND, SI INF, DN1DT, DN2DT, DOMDT,

3 AN, ALAM, AMU, C1, C2, C3, C4, C5)

THIS SUBROUTINE IS CALLED BY HYPELA TO CALCULATE ALL OF THE

TEMPERATURE DEPENDENT MATERIAL CONSTANTS

DIMENSION TABT(6), EET(6), ANUT(6), AKIT(6), ANINT(6), ANT(6), AN1T(6)

DIMENSION OMEGOT(6)

DIMENSION AKINDT(6), SIINFT(6)

DATA TABT/800., 1000., 1200., 1400., 1600., 1800./

DATA EET/26.E6, 24.E6, 24.E6, 22.6E6, 18.6E6, 13.2E6/

DATA ANUT/0.322, 0.328, 0.334, 0.339, 0.345, 0.351/

DATA AKIT/50931., 75631., 95631., 110696., 91505., 59292./

DATA ANIT/0.00., 0.00., 0.00., 0.00.

DATA ANIT/1.58, 1.158, 1.158, 1.158, 1.158, 1.158, 1.158/

DATA ANT/1.27, 1.9E7, 1.5E7, 2.E7, 5.E6, 1.E6/

DATA AN3T/250., 320., 781.2, 1178.6, 672.6, 312.5/

DATA AN5T/0., 0.00., 0.00., 0.00., 0.00.

DATA AN5T/0., 0.00., 0.00., 0.00., 0.00.

DATA AN5T/0., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00., 0.00.,
 10
12
13
14
15
 16
17
 2Ó
                                                                                         1234 NTP=6
                                                                                                                                           NTPMI=NTP-1
TDIF=TABT(2)-TABT(1)
                                                                                                                                            L1=DEGM
                                                                                                                                       L2=TABT(1)-TDIF
L3=TDIF
IT=(L1-L2)/L3
IF(IT.LT.1)IT=1
IF(IT.GT.NTPM1)IT=NTPM1
FAC=(DEGM-TABT(IT))/TDIF
EE=(EET(IT+1)-EET(IT))*FAC+EET(IT)
ANU=(ANUT(IT+1)-ANUT(IT))*FAC+ANUT(IT)
AK1=(AK1T(IT+1)-AK1T(IT))*FAC+AK1T(IT)
AK2=(AK2T(IT+1)-AK2T(IT))*FAC+AK2T(IT)
ANIN=(ANINT(IT+1)-ANINT(IT))*FAC+ANINT(IT)
AM=(AMT(IT+1)-AMT(IT))*FAC+AMT(IT)
AN1=(AN1T(IT+1)-AN1T(IT))*FAC+AN1T(IT)
AN2=(AN2T(IT+1)-AN2T(IT))*FAC+AN3T(IT)
AN3=(AN3T(IT+1)-AN3T(IT))*FAC+AN3T(IT)
AN4=(AN4T(IT+1)-AN5T(IT))*FAC+AN5T(IT)
AN5=(AN5T(IT+1)-AN5T(IT))*FAC+AN5T(IT)
AN6=(AN6T(IT+1)-AN6T(IT))*FAC+AN6T(IT)
AN7=(AN7T(IT+1)-AN7T(IT))*FAC+AN7T(IT)
OMEGO=(OMEGOT(IT+1)-OMEGOT(IT))*FAC+OMEGOT(IT)
IF (INDFP .EQ. 0) GOTO65
ANDM-(ANINTT(IT+1)-AN5T(IT))*FAC+OMEGOT(IT)
  32
33
                                                                                                                                            L2=TABT(1)-TDIF
 34
35
  40
 41
42
43
                                                                                                                                          UMEGU=(OMEGOT(IT+1)-OMEGOT(IT))*FAC+OMEGOT(IT)
IF (INDFP .EQ. 0) GOTO65
AKIND=(AKINDT(IT+1)-AKINDT(IT))*FAC+AKINDT(IT)
SIINF=(SIINFT(IT+1)-SIINFT(IT))*FAC+SIINFT(IT)
IF (NONISO .EQ. 0) GOTO73
DN1DT=(AN1T(IT+1)-AN1T(IT))/TDIF/(AN1+1.E-6)
DN2DT=(AN2T(IT+1)-AN2T(IT))/TDIF/(AN2+1.E-6)
DOMDT=(OMEGOT(IT+1)-OMEGOT(IT))/TDIF/(OMEGO+1.E-6)
CONTINUE
AN=1 //ANIN
                                                                                          65
                                                                                          73
                                                                                                                                            AN=1./ANIN
                                                                                                                                            ALAM=EE*ANU/((1.-2.*ANU)*(1.+ANU))
AMU=(1.-2.*ANU)*ALAM/(2.*ANU)
C1=2.*AMU*ALAM/(ALAM+2.*AMU)
                                                                                                                                            C2=4.*AMU*(ALAM+AMU)/(ALAM+2.*AMU)
C3=2.*AMU
                                                                                                                                              C4=AMU
                                                                                                                                            C5=ALAM
                                                                                                                                            RETURN
```

69 C DEBUG SUBTRACE, UNIT(25), SUBCHK, INIT
70 C AT 1234
END

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX 3. SUBROUTINE THRUH

ORIGINAL PAGE IS OF POOR QUALITY

```
101 CALL GMPRD(S,E1,DSEG,1,NGENS,1)
CALL SCLA(B,0.,NGENS,NGENS,0)
CALL SCLA(GF,0.,NGENS,1,0)
CALL SCLA(GF,0.,NGENS,1,0)
USER SUFPLIED HYPOELASTIC CONSTITUTIVE THEORY
CALL HYPELA(B,GF,EELAS,E1,S,DT,DTDL,NGENS,M,NNN,KC,MAT,NDI,NSHEAR)
LOADUQ=1
TOTAL ELASTIC STRAINS
CALL GMADD(EELAS,E1,EELAS,NGENS,1)
CALL GMADD(EELAS,E1,EELAS,NGENS,1)
INCREMENTAL STRESS COMPONENTS
C*****
```

٠,٠

1:

APPENDIX 4. SUBROUTINE INCDT1

ORIGINAL PAGE IS OF POOR QUALITY

```
l6 CONTINUE

205 161 CONTINUE

206 C

207 C**** BOUNDARY CHANGE

IASMBL=1
READ(5,103)CARD
CALL INTAC(CARD,ICARD,3,JBAD)

IF(JBAD.EQ.1)GO TO 110

211 NEWBC=ICARD(1)
 IFLAG=ICARD(2)
 IF(IFLAG.EQ.1) WRITE(6,1613)

214 1613 FORMAT(63HOFOLLOWING INFORMATION APPLIES TO HARMONIC RESPONSE CALC
```

APPENDIX 5. SUBROUTINE SIEG

ORIGINAL PAGE IS OF POOR QUALITY

```
741 399 CONTINUE
742 LA1=MMS4+ISIGXX
743 LA2=LMS1+IGSIG
744 IF (IHRESP.EQ.1)LA2=ICSIG1
745 IF (ISHELL.EQ.1)GO TO 617
746 IF (JTYPE.EQ.52)GO TO 620
747 UF (IHRESP.EQ.1) GO TO 618
748 DSEGA=ABS(DSEG)
749 DSEGA=DSEGE
750 DSEGA=DSEGE
751 IF (ICREP.EQ.1.OR.ITHERM.GT.0)CALL TPSMA(VARS(IB1),VARS(IECRP1),
752 VARS(IFCRP),1.,NGEN1,NGEN1,1)
753 IF (IPLA.EQ.1)
754 *CALL GMSUB(VARS(IFCRP),VARS(IGF),VARS(IFCRP),NGEN1,1)
755 IF (IHERED.EQ.0) GO TO 310
756 IF (MATV.EQ.0.OR.IVSCFN.NE.2) GO TO 310
757 IVS=IVNSER+MATV-1
758 NVSER=INTS(IVS)
759 IF (NVSER.EQ.0) GO TO 310
760 IVD=IVDSIZ+MATV-1
761 NVDSIZ=INTS(IVD)
762 CALL GMADD(VARS(IFCRP),VARS(IGFV2),VARS(IFCRP),NVDSIZ,1)
763 310 CONTINUE
```

APPENDIX 5. DATA INPUT FOR CLOSED SYMMETRIC TMF LOOP

```
l
             TITLE
                         THERMOMECHANICAL LOOP NO. 1 WITH FUNCTIONAL THEORY
     2
             SIZING
                             15000
                                             9
                                                  9
                                                        2
     3
                                                            10
            POST
     4
            ALL POINTS
    5
            INPUT TAPE
                            1
    6
            HYPOELAS
    7
            STATE VARS
                           16
    8
            NC LOADCOR
                            1
    9
            RESTART
   10
            END
   11
            MESH<sub>2D</sub>
   12
            BLOCKS
                                                                          ORIGINAL PAGE 19
   13
                l
                          10
                                      1
                                            9
                                                       6
   14
                                                                          OF POOR QUALITY
            DEFINE
   15
                1
                     2
                           2
                                      2
                                            3
                                                 4
  16
           BOUNDARY
  17
                1
                          l.
  18
                2
                          1.
                                     l.
  19
                3
                         0.
                                     l.
  20
                4
  21
           CONSTRAINT
  22
               2
  23
               l
                     3
                          l
  24
               1
                          2
  25
           MERGE
  26
           .0005
  27
           GENERATE
  28
          CONNECTIVITY
  29
 30
          COORDINATES
 31
                          1
          BOUNDARY CONDITIONS
 32
 33
              0
                  1
 34
          BOUNDARY CONDITIONS
 35
 36
          1,3,1,1,1.E-8
 37
          THERMAL LOADS
 38
          l,
 39
         0.,1.E-8
40
41
         PROPERTY
42
             1
43
             26.0E6
                             .322
                                                0.E-5
44
             1
45
         POST
46
             2
                  16
                       16
47
             1
48
            11
49
         PRINT CHOICE
50
                        l
51
             l
```

		ORIGINAL	PAGE IS		
52	CONTROL	OF POOR		122 123	BOUNDARY CHANGE
53 54	49,15,1,0 .05			1 24	3, 7,1,1,000123
55	RESTART			125 126	8,2,1,000123 9,3,1,000123 THERMAL LOADS
56	1,1,0,8,8			127 128	THERMAL LOADS
57 58	INITIAL STATE			1 29 1 3 0	39.3,1.250000
59	1,4,1,4			131 132	CONTINUE
60 61	800. END OPTION			133 134	BOUNDARY CHANGE 3, 7,1,1,000136
61 62 63 64	BOUNDARY CHANGE			135	8,2,1,000136
64	3, 7,1,1, .001239			136 137	9,3,1,000136 THERMAL LOADS
65 66 67	8,2,1, 001239 9,3,1, 001239			138 139	43.5,1.250000
68	9,3,1, 001239 THERMAL LOADS			140 141	CONTINUE
68 69 70 71	3.4,1.250000			142	BOUNDARY CHANGE
71 72	CONTINUE BOUNDARY CHANGE			143 144	3, 7,1,1,000147
72 73 74 75	3, 7,1,1,000032			145 146	7,1,1,000147 8,2,1,000147 9,3,1,000147 THERMAL LOADS
75 75	8,2,1,000032			147 148	
76 77 78	THERMAL LOADS			149 150	46.9,1.250000
79	10.2,1.250000			151	CONTINUE BOUNDAFY CHANGE
80 81	CONTINUE			152 153 154	3.
82 83	BOUNDARY CHANGE			155	8,2,1,000155
84 85 86	/.1.1. 000053			156 157	9,3,1,000155 THERMAL LOADS
R 7	8,2,1,000053 9,3,1,000053 THERMAL LOADS			158 159	49.5,1.250000
88 89 90 91	16.8,1.250000			160 161	CONTINUE
9 0	CONTINUE			162 163	BOUNDARY CHANGE
92	BOUNDARY CHANGE			164 165	3, 7,1,1,000160 8,2,1,000160
92 93 94 95 96	3,1,1,000072 8,2,1,000072	•		166 167	8,2,1,000160 9,3,1,000160 THERMAL LOADS
95 96	8,2,1,000072 9,3,1,000072 THERMAL LOADS			168 169	1
97 98	THERMAL LOADS			170	51.3,1.250000
99 100	23.1,1.250000			171 172	CONTINUE BOUNDARY CHANGE
101 102	CONTINUE BOUNDARY CHANGE			173 174	7,1,1,000163 8,2,1,000163 9,3,1,000163 THERMAL LOADS
103 104	3, 7,1,1,000091			175 176	8,2,1,000163 9,3,1,000163
105	8,2,1,000091 9,3,1,000091			177 178	THERMAL LOADS
106 107	THERMAL LOADS			179 180	52.2,1.250000
108 109	29.1,1.250000			181	CONTINUE
1 10 1 1 1	CONTINUE			182 183	BOUNDARY CHANGE
112 113 114 115 116 117 118	BOUNDARY CHANGE			184 185	7,1,1,000163 8,2,1,000163 9,3,1,000163 THERMAL LOADS
1 14 1 15	3, 7,1,1,000108 8,2,1,000108			186 187	THERMAL LOADS
116 117	9,3,1,000108 THERMAL LOADS			188 189	52.2,1.250000
i i8	1 34.5,1.250000			190 191	CONTINUE
120				192 193	BOUNDARY CHANGE 3,
121	CONTINUE				- 1

かった ないかんない ないかん

194	7,1,1,000160 8,2,1,000160	266	9,3,1,000072
195 1 9 6	8,2,1,000160 9,3,1,000160	267 268	THERMAL LOADS
197	THERMAL LOADS	269	23.1,1.250000
193 199	151.3,1.250000	270 271	CONTINUE
200 201		272	BOUNDARY CHANGE
202	CONTINUE BOUNDARY CHANGE	273 274	3,1,1,000053
203 204	3, 7,1,1,000155	275 276	8.2.1000053
205 206	8.2.1000155	276 277 278	9,3,1,000053 T'ERMAL LOADS
206 207	9,3,1,000155 THERMAL LOADS	278 27 9	16.8,1.250000
208	1	280	
210 210	49.5,1.250000	281 282	CONTINUE BOUNDARY CHANGE
209 210 211 212 213 214 215	CONTINUE BOUNDARY CHANGE	283 284	3.
213	3.	285	8,2,1,000032
214 215	7,1,1,000147 8,2,1,000147	286 287	9,3,1,000032 THERMAL LOADS
216	9.3.1000147	288	1 .
216 217 218 219	THERMAL LOADS	289 290 291	10.2,1.250000
219	46.9,1.250000	291 292	CONTINUE BOUNDARY CHANGE
220 221	CONTINUE	293	3,
222 223	BOUNDARY CHANGE	294 295	7,1,1,000011 8,2,1,000011
2 24	/. 1. 1 000136	296	9,3,1,000011
225 226 227	8,2,1,000136 9,3,1,000136 THERMAL LOADS	297 298	THERMAL LOADS
227	THERMAL LOADS	298 299 300	3.4,1.250000
228 229 230 231	43.5,1.250000	3 01	CONTINUE
230 231	CONTINUE	302 303	BOUNDARY CHANGE
232	BOUNDARY CHANGE	304	7.1.1000011
233	3,1,1,000123	305 306	9,3,1; :000011
235	8,2,1,000123 9,3,1,000123	307 308	THERMAL LOADS
232 233 234 235 236 237 238	THERMÁL LOADS	309 310	-3.4,1.250000
2 39	39.3,1.250000	311	CONTINUE
240 241	CONTINUE	312 313 314	BOUNDARY CHANGE
242	BOUNDARY CHANGE	3 14	3, 7,1,1, .000032
243 244	7,1,1,000108	315 316	9.3.1. .000032
245 246 247	8,2,1,000108 9,3,1,000108	317 318	THERMAL LOADS
247	THERMAL LOADS	3 19	-10.2, 1.250000
248 249	34.5,1.250000	320 321	CONTINUE
249 250 251		322 323	BOUNDARY CHANGE
251 252	CONTINUE BOUNDARY CHANGE	324 325	3, 7,1,1, .000053
252 253 254 255	3,1,1,000091	325 326	8,2,1, .000053 9,3,1, .000053 THERMAL LOADS
255	8,2,1,000091	326 327	THERMAL LOADS
256 257	7,1,1,000091 8,2,1,000091 9,3,1,000091 THERMAL LOADS	328 329 330	$\frac{1}{-16.8}$, 1.250000
258	i .	330 331	
2 59 260	29.1,1.250000	332	CONTINUE BOUNDARY CHANGE
261 262	CONTINUE BOUNDARY CHANGE	332 333 334 335	3
263	3.	335	8,2,1, .000072
264 265	7,1,1,000072 8,2,1,000072	336 337	9,3,1000072 THERMAL LOADS
		338	1,

2 20		ORIGINAL PA	GE 19		
3 39 3 4 0	-23.1,1.250000	OF POOR QU	ALITY	411 412	CONTINUE BOUNDARY CHANGE
341 342	CONTINUE BOUNDARY CHANGE			413 414	3.
343 344	3,			415	8:2:1 .000163
345	7,1,1, .000091 8,2,1, .000091			416 417	9,3,1, 000163 THERMAL LOADS
346 347	8,2,1, .000091 9,3,1, .000091 THERMAL LOADS			418 419	1 -52.2,1.250000
348	1, -29.1,1.250000			420 421	
349 350 351	-29.1,1.2JUUUU			422 423	CONTINUE BOUNDARY CHANGE
352	CONTINUE BOUNDARY CHANGE			424	3, 7,1,1, .000163
353 354 355	7,1,1, .000108			425 426	8,2,1, .000163 9,3,1, .000163 THERMAL LOADS
355 356	8,2,1, .000108 9,3,1, .000108			427	THERMAL LOADS
356 357 358	THERMAL LOADS			428 429 430 431	1,250000
3 59	-34.5,1.250000			430 431	CONTINUE
360 361	CONTINUE			432 433 434 435	BOUNDARY CHANGE
362 363	BOUNDARY CHANGE			434 435	7,1,1, .000160 8,2,1, .000160 9,3,1, .000160 THERMAL LOADS
364 365	7,1,1, .000123 8,2,1, .000123			436 437 438 439	9,3,1, .000160
366 367	8,2,1, 000123 9,3,1, 000123 THERMAL LOADS			437 438	L A
367 368	THERMAL LOADS			4 39 4 4 0 4 4 1	-51.3,1.250000
368 369 370 371	1, -39.3,1.250000			441 442	CONTINUE BOUNDARY CHANGE
3/2	CONTINUE BOUNDARY CHANGE			442 443 444	7,1,1, .000155 8,2,1, .000155 9,3,1, .000155 THERMAL LOADS
373 374	3.			445 446 447	8,2,1, 000155 9,3,1, 000155
375	8.2.1000136			447	THERMAL LOADS
373 374 375 376 377	9,3,1, .000136 THERMAL LOADS			448 449 450	-49.5,1.250000
378 379	$\frac{1}{4}$ 3.5,1.250000			451	CONTINUE
380 381	CONTINUE			452 453 454 455	BOUNDARY CHANGE
382	BOUNDARY CHANCE			454	7,1,1, .000147
383 384	7,1,1, .000147			455 4 <u>56</u>	8,2,1, .000147 9,3,1, .000147 THERMAL LOADS
384 385 386	7,1,1, .000147 8,2,1, .000147 9,3,1, .000147 THERMAL LOADS			456 457 458	
387	THERMAL LOADS			45 9 460	- 46.9,1.250000
388 389 390 391	-46.9,1.250000			461 462	CONTINUE BOUNDARY CHANGE
391	CONTINUE			463	3,
392 393	BOUNDARY CHANGE			464 465	3, 7,1,1, .000136 8,2,1, .000136 9,3,1, .000136
393 394 395	3,1,1,000155 8,2,1,000155 9,3,1,000155			466 467	9,3,1, .000136 THERMAL LOADS
396 397 398	9,3,1, .000155 THERMAL LOADS			468 469	1 -43.5,1.250000
398 399	1.			470 471	CONTINUE
400	-49.5,1.250000			479	ROUNDARY CHANCE
401 402	CONTINUE BOUNDARY CHANGE			473 474	3, 7,1,1, .00.12 8,2,1, .000123
403 404	3			475 476	3 A 3 A LA A U U U U I Z 3
405 406	7,1,1, .000160 8,2,1, .000160 9,3,1, .000160 THERMAL LOADS			477 478	THERMAL LOADS
407	THERMAL LOADS			479	-39.3,1.250000
4 08 4 09	1 -51.3,1.250000			480 481	CONTINUE
410				482	BOUNDARY CHANGE

では、これのでは、「「「「「「「「「「「「」」」」」では、「「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」

483	3	5 5 4	0 2 1 - 000020
4 84	7,1,1, .000108	556 557	9,3,1,000032 THERMAL LOADS
485 486	8,2,1, .000108 9,3,1, .000108 THERMAL LOADS	5 58 5 59	10.2,1.250000
487 488	THERMÁL LOADS	560 561	CONTINUE
489 490	-34.5,1.250000	562 563	BOUNDARY CHANGE
491	CONTINUE	564	3, 7,1,1,000053
492 493 494	BOUNDARY CHANGE 3,1,1, .000091	565 566	8,2,1,000053 9,3,1,000053
494 495 496	8.2.1000091	567 568	THERMAL LOADS
496 497	9,3,1, .000091 THERMAL LOADS	568 569 570	16.8,1.250000
497 498 499	-29.1,1.250000	571	CONTINUE BOUNDARY CHANGE
500 501		572 573 574	3.
5 02	CONTINUE BOUNDARY CHANGE	575	812111 - 000072
5 03 5 04	3, 7,1,1, .000072	576 577 578	9,3,1,000072 THERMAL LOADS
505 506	7,1,1, .000072 8,2,1, .000072 9,3,1, .000072 THERMAL LOADS	579	23.1,1.250000
507	1	580 581	CONTINUE
508 509 510	-23.1,1.250000	582 583	BOUNDARY CHANGE
510 511	CONTINUE	5 84 5 8 5	7,1,1,000091 8,2,1,000091
512 513	BOUNDARY CHANGE	586	7,1,1,000091 8,2,1,000091 9,3,1,000091 THERMAL LOADS
514 515	3, 1, 1, .000053 8, 2, 1, .000053	587 588	l,
516 517	9.3.1000053 THERMAL LOADS	5 89 5 9 0	29.1,1.250000
518 519	1-16.8,1.250000	591 592	CONTINUE BOUNDARY CHANGE
520	CONTINUE	592 593 594	3, 7,1,1,000108
521 522 523	BOUNDARY CHANGE	595 596	8,2,1,000108 9,3,1,000108
524	7,1,1, .000032	597	THERMAL LOADS
524 525 526	7,1,1, .000032 8,2,1, .000032 9,3,1, .000032	598 5 9 9	34.5,1.250000
527 528	THERMAL LOADS	600 601	CONTINUE
529 530	-10.2,1.250000	6 02 6 03	BOUNDAPY CHANGE
531 532	CONTINUE BOUNDARY CHANGE	604 605	7 1 1000123
533 534	7,1,1, .000011	606 607	8,2,1,000123 9,3,1,000123 THERMAL LOADS
535 536	8,2,1, .000011	608 609	39.3,1.250000
537	7,1,1, .000011 8,2,1, .000011 9,3,1, .000011 THERMAL LOADS	610 611	CONTINUE
538 539	1, -3.4,1.250000	612	BOUNDARY CHANGE
540 541	CONTINUE	613 614	7,1,1,000136 8,2,1,000136
542 543	BOUNDARY CHANGE	615 616	9.3.1000136
544	3, 7,1,1,000011 8,2,1,000011	617 618	THERMAL LOADS
545 546 547	7,1,1,000011 8,2,1,000011 9,3,1,000011 THERMAL LOADS	619 620	43.5,1.250000
548	1.	621 622	CONTINUE BOUNDARY CHANGE
549 550 551	3.4,1.250000	623	3.
5 52	CONTINUE BOUNDARY CHANGE	624 625	7,1,1,000147 8,2,1,000147
5 52 5 53 5 54	3,1,1,000032 8,2,1,000032	626 627	8,2,1,000147 9,3,1,000147 THERMAL LOADS
555	8,2,1,000032	628	1,

1.

本の という 一日の 女の歌

699 46.9,1.250000 7/1 CONTINUE 700 772 BOUNDARY CHANGE 773 3,	9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890	46.9,1.250000 CONTINUE BOUNDARY CHANGE 7,1,1,-000155 9,3,1,-000155 149.5,1.250000 CONTINUE BOUNDARY CHANGE 3,1,1,-000160 8,2,1,-000160 7,1,1,-000160 8,2,1,-000160 7,1,1,-000160 8,2,1,-000163 7,1,1,-000163 8,2,1,-000163 7,1,1,-000163 7,1,1,-000163 7,1,1,-000163 8,2,1,-000163 7,1,1,-000163 9,3,1,-000163 152.2,1.250000 CONTINUE BOUNDARY CHANGE 3,1,-000163 9,3,1,-000163 1,-000160 1,-0	77777777777777777777777777777777777777	CONTINUE BOUNDARY CHANGE 3, 1,000136 9,3,1,000136 7,3,1,000136 THERMAL LOADS 1, 43.5, 1.250000 CONTINUE BOUNDARY CHANGE 3, 1,000123 THERMAL LOADS 1, 39.3, 1000123 THERMAL LOADS 1, 1,000108 8,2,1,000108 8,2,1,000108 9,3,1,000108 7,1,1,000108 9,3,1,000108 1,34.5, 1.250000 CONTINUE BOUNDARY CHANGE 3, 1, 1,000091 8,2,1,000091 7,1,1,000091 8,2,1,000091 7,1,1,000091 7,2,1,000072 8,2,1,000072 8,2,1,000072 7,1,1,000072 7,1,1,000072 8,2,1,000072 7,1,1,000072 7,1,1,000072 7,1,1,000072 7,1,1,000072 7,1,1,000072 7,1,1,000072 7,1,1,000072 7,1,1,000033 7,1,1,000033 7,1,1,000032 8,2,1,000032 8,2,1,000032 8,2,1,000032 7,1,1,000032 8,2,1,000032 7,1,1,000032 8,2,1,000032 7,1,1,000032
---	--	--	--	---

774 775	7,1,1,000011 8,2,1,000011	846 847	9,3,1, .000123 THERMAL LOADS
776 777 778 779	9,3,1,000011 THERMAL LOADS	848 849 850	-39.3, 1.250000
779 780 781	3.4,1.250000	851	CONTINUE BOUNDARY CHANGE
782 783	CONTINUE BOUNDARY CHANGE 3,	852 853 854 855	3, 1, 1, .000136 8, 2, 1, .000136
784 785 786	3, 7,1,1, .000011 8,2,1, .000011 9,3,1, .000011 THERMAL LOADS	856 857	9,3,1, 000136 THERMAL LOADS
787	THERMAL LOADS	858 859 860	-43.5,1.250000
788 789 790 791	1, -3.4,1.250000 CONTINUE	861 862	CONTINUE BOUNDARY CHANGE
7 92 7 93 7 94 7 95	ROUNDARY CHANGE	863 864 865	7, 1, 1, .000147 8, 2, 1, .000147
794 795 796	3, 7,1,1, .000032 8,2,1, .000032 9,3,1, .000032	866 867	7,1,1, .000147 8,2,1, .000147 9,3,1, .000147 THERMAL LOADS
797 798 799	THERMAL LOADS	868 869 870	-46.9,1.250000
7 99 800 801	-10.2,1.250000 CONTINUE	871	CONTINUE BOUNDARY CHANGE
802 803	BOUNDARY CHANGE 3,	872 873 874 875	3, 7,1,1, .000155 8,2,1, .000155
804 805 806	7,1,1, .000053 8,2,1, .000053 9,3,1, .000053 THERMAL LOADS	876 877 878	9,3,1, .000155 THERMAL LOADS
807 808	1,	879 880	-49.5, 1.250000
809 810 811	-16.8,1.250000 CONTINUE	881 882 883 884 885 886	CONTINUE BOUNDARY CHANGE
812 813	ROUNDARY CHANGE	884 885	3, 7,1,1, .000160 8,2,1, .000160 9,3,1, .000160 THERMAL LOADS
814 815 816	7,1,1, .000072 8,2,1, .000072 9,3,1, .000072	886 887 888	9,3,1, .000160 THERMAL LOADS
816 817 818	THERMAL LOADS	889 890 891	-51.3,1.250000
819 820 821	-23.1,1.250000 CONTINUE	891 892 893	CONTINUE BOUNDARY CHANGE
822 823	BOUNDARY CHANGE 3.	8 94 895	7,1,1, .000163 8,2,1, .000163 9,3,1, .000163 THERMAL LOADS
824 825 826	7,1,1, .000091 8,2,1, .000091 9,3,1, .000091 THERMAL LOADS	896 897 898	9,3,1, .000163 THERMAL LOADS
827 828	T .	899 900	-52.2,1.250000
829 830 831	-29.1,1.250000 CONTINUE	901 902 903	CONTINUE BOUNDARY CHANGE
832 833 834	BOUNDARY CHANGE	904 905	7,1,1, .000163 8,2,1, .000163 9,3,1, .000163 THERMAL LOADS
835	8,2,1, .000108 9,3,1, .000108	906 907 908	
836 837 838 839	THERMAL LOADS	909 910	-52.2,1.250000
840 841	-34.5,1.250000 CONTINUE	911 912 913 914	CONTINUE BOUNDARY CHANGE
842 843	BOUNDARY CHANGE	914 915	7,1,1, .000160 8,2,1, .000160 9,3,1, .000160 THERMAL LOADS
844 845	7,1,1, .000123 8,2,1, .000123	915 916 917	9.3.1000160 THERMAL LOADS

918 1 -51.3,1.250000 920 -291. CONTINUE 922 BOUNDARY CHANGE 923 3,	990 991 992 993 994 995 996 997 999 1000 1001 1002 1003 1004 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	CONTINUE BOUNDARY CHANGE 3,1,1,000053 9,3,1,000053 THERMAL LOADS 1-16.8,1.250000 CONTINUE BOUNDARY CHANGE 3,1,1,000032 THERMAL LOADS 1-10.2,1.250000 CONTINUE BOUNDARY CHANGE 3,1,1,000011 8,2,1,000011 THERMAL LOADS 1,3,1,000011
--	---	---

APPENDIX 7. DATA INPUT FOR OPEN SYMMETRIC TMF LOOP

```
ì
                    THERMOMECHANICAL LOOP NO. 2 WITH FUNCTIONAL THEORY
        TITLE
 2
        SIZING
                        15000
                                  4
                                        9
                                             9
                                                   2
                                                       10
 3
        POST
                        2
        ALL POINTS
        INPUT TAPE
                        1
 6
        HYPOELAS
        STATE VARS
                       16
8
        NO LOADCOR
                       1
9
        RESTART
10
        END
11
        MESH2D
12
        BLOCKS
13
                       10
                                   l
             1
                                                   6
14
        DEFINE
15
                  2
            1
                        2
                                   2
                                        3
                                              4
16
        BOUNDARY
17
            1
                       1.
18
             2
                       1.
                                  1.
19
             3
                      0.
20
             4
21
        CONSTRAINT
22
             2
23
             1
                  3
                        l
24
             l
                        2
25
        MERGE
        .0005
26
27
        GENERATE
28
        CONNECTIVITY
29
30
        COORDINATES
31
32
        BOUNDARY CONDITIONS
33
            0
                1
34
        BOUNDARY CONDITIONS
35
        1,
1,3,1,1,1.E-8
36
37
38
39
        0.,1.E-8
40
41
        PROPERTY
42
             l
43
             26.0E6
                            .322
                                               0.E-5
44
             l
        POST
45
46
             2
                 16
                       16
47
             1
48
            11
49
        PRINT CHOICE
50
                        1
```

10. 15 p.

51	1	104	7,1,1,000126
52	CONTROL	105	8,2,1,000126
53	49,15,1,0	106	
54	.05	107	
55	RESTART	108	1,
56	1,1,0,8,8	109	41.1,1.250000
57	INITIAL STATE	110	41.1,17230000
58	1,1,1		CONTINUE
		111	CONTINUE
59	1,4,1,4	112	BOUNDARY CHANGE
60	820.	113	3,
61	END OPTION	1 14	7,1,1,000142
62	BOUNDARY CHANGE		8,2,1,000142
63	3,	116	9,3,1,000142
64	7,1,1, .000150	117	THERMAL LOADS
65	8,2,1, .000150	118	1,
66	9,3,1, .000150	119	45.0,1.250000
67	THERMAL LOADS	120	
68	1,	121	CONTINUE
69	19.0,1.250000	122	BOUNDARY CHANGE
70	1710,17230000	123	3,
71	CONTINUE	1 24	7,1,1,000155
72	BOUNDARY CHANGE	125	8,2,1,000155
73	3,	126	9,3,1,000155
73 74		127	THERMAL LOADS
	7,1,1,000065	128	
75 76	8,2,1,000065	129	1, 48.1,1.250000
76	9,3,1,000065	130	48.1,1.230000
77	THERMAL LOADS		COMPANY
78	1,	131	CONTINUE
79	25.6,1.250000	132	BOUNDARY CHANGE
80		133	3,
81	CONTINUE	1 34	7,1,1,000166
82	BOUNDARY CHANGE	135	8,2,1,000166
83	3,	136	9,3,1,000166
84	7,1,1,000088	137	THERMAL LOADS
85	8,2,1,000088	138	1,
86	9,3,1,000088	1 39	50.4,1.250000
87	THERMAL LOADS	140	•
88	1.	141	CONTINUE
89	31.3,1.250000	142	BOUNDARY CHANGE
90	31.3,1.230000	143	3,
91	CONTINUE	144	7,1,1,000174
92	BOUNDARY CHANGE	145	8,2,1,000174
93		146	9,3,1,000174
	3,	147	THERMAL LOADS
94	7,1,1,000108	148	
95	8,2,1,000108		1,
96	9,3,1,000108	149	51.8,1.250000
97	THERMAL LOADS	150	00MB71717
98	ι,	151	CONTINUE
99	36.5,1.250000	152	BOUNDARY CHANGE
100		153	3,
101	CONTINUE	154	7,1,1,000179
102	BOUNDARY CHANGE	155	8,2,1,000179
103	3,	156	9,3,1,000179
	•		- • •

157	MUEDWAY TOADO		
158	THERMAL LOADS	210	
	1,	211	CONTINUE
159	52.3,1.250000	212	BOUNDARY CHA E
160		213	3,
161	CONTINUE	214	7,1,1,000031
162	BOUNDARY CHANGE	215	8,2.1,000031
163	3,	215	9,3,1,000031
164	7,1,1,000160	2.	THERMAL LOADS
165	8,2,1,000180	218	1,
166	9,3,1,000180	219	37.5,1.250000
167	THERMAL LOADS	220	•
168	1,	221	CONTINUE
169	52.0,1.250000	222	BOUNDARY CHANGE
170	·	223	3,
171	CONTINUE	224	7,1,1,000028
172	BOUNDARY CHANGE	225	8,2,1,000028
173	3,	226	9,3,1,000028
174	7,1,1,000179	227	
175	8,2,1,000179		THERMAL LOADS
176	9,3,1,000179	228	1,
177	THERMAL LOADS	229	32.4,1.250000
178	1,	230	
	-	231	CONTINUE
179	50.7,1.250000	232	BOUNDARY CHANGE
180	CONTINUE	233	3,
181	CONTINUE	2 34	7,1,1,900024
182	BOUNDARY CHANGE	2 05	8,2,1,000024
183	3,	236	9,3,1,000024
184	7,1,1,000175	237	THERMAL LOADS
185	8,2,1, - .000i75	238	1,
186	9,3,1,000175	239	26.8,1.250000
187	THERMAL LOADS	240	,
188	1,	241	CONTINUE
189	48.6,1.250000	242	BUUNDARY CHANGE
190		243	3,
191	CONTINUE	244	7,1,.,000020
192	BOUNDARY CHANGE	245	
193	3,	245	8, 1,000020
194	7,1,1,000243	247	9,3,1,000020 THERMAL IOADS
195	8,2,1,000243		
196	9,3,1,000243	248 24 9	1,
197	THERMAL LOADS		20.7,1.250000
198	l,	250	
199	45.7,1.250000	251	CONTINUE
200	43.7,1.230000	252	BOUNDARY CHANGE
201	COMPTANTE	253	3,
202	CONTINUE	254	7,1,1,000015
	BOUNDARY CHANGE	255	8,2,1,000015
203	3,	256	9,3,1,060015
204	7,1,1,000034	257	THERMAL LOADS
205	8,2,1,000034	258	٠,
206	9,3,1,000034	259	14.2,1.250000
207	THERMAL LOADS	26 0	•
208	1,	261	CONTINUE
209	41.9,1.250000	262	BOUNDARY CHANGE

The second of th

· 16

263	3,	316	9,3,1, .000086
264	7,1,1,000011	317	THERMAL LOADS
265	8,2,1,000011	318	1,
		319	-25.6,1.250000
266	9,3,1,000011		-23.0,1.230000
267	THERMAL LOADS	320	animatuu.
268	1,	321	CONTINUE
269	7.5,1.250000	32"	BOUNDARY CHANGE
270	·	323	3,
271	CONTINUE	324	7,1,1, .000114
272	BOUNDARY CHANGE	3 25	8,2,1, .000114
273		326	9,3,1, .000114
	3,	327	THERMAL LOADS
274	7,1,1, .000108		
275	8,2,1, .000108	328	1,
276	9,3,1, .000108	329	-31.3,1.250000
277	THERMAL LOADS	330	
278	1,	331	CONTINUE
279	.7,1.250000	332	EOUNDARY CHANGE
280	,	333	3,
281	CONTINUE	334	7,1,1, .000139
282	BOUNDARY CHANGE	335	8,2,1, .000139
283	3,	336	9,3,1, .000139
284	7,1,1,000063	337	THERMAL LOADS
285	8,2,1,000063	338	1,
286	9,3,1,000063	3 3 9	-36.5, 1.250000
287	THERMAL LOADS	340	•
288	1,	341	CONTINUE
289	-6.1,1.250000	342	BOUNDARY CHANGE
	-0.1,1.250000		
290		343	3,
291	CONTINUE	344	7,1,1, .000162
29 2	BOUNDARY CHANGE	345	8,2,1, .000162
293	3,	346	9,3,1, .000162
294	7,1,1, .000569	347	THERMAL LOADS
295	8,2,1, .000569	348	1,
296	9,3,1, .000569	349	-41.1,1.250000
297	THERMAL LOADS	350	4101,10250005
			COMPANIE
298	1,	351	CONTINUE
299	-12.9,1.250000	352	BOUNDARY CHANGE
3 00		353	3,
301	CONTINUE	354	7,1,1, .000183
302	BOUNDARY CHANGE	355	8,2,1, .000183
303	3,	356	9,3,1, .000183
304		357	THERMAL LOADS
	7,1,1, .001229	358	l,
305	8,2,1, .001229		-
306	9,3,1, .001229	359	-45.0,1.250000
307	THERMAL LOADS	36 0	
308	1,	361	CONTINUE
309	-19.4,1.250000	362	BOUNDARY CHANGE
310	•	363	3,
311	CONTINUE	364	7,1,1, .000200
312	BOUNDARY CHANGE	365	8,2,1, .000200
313	3,	366	
314	7,1,1, .000086	367	THERMAL LOADS
315	8,2,1, .000086	368	1,

		100	BOTTLE AND OTHER
369	-48.1,1.250000	422	BOUNDARY CHANGE
370	·	423	3,
371	CONTINUE	424	7,1,1, .000047
		425	8,2,1, .000047
372	BOUNDARY CHANGE		
373	3,	426	
374	7,1,1, .000214	427	THERMAL LOADS
375		428	1,
	8,2,1, .000214	429	-48.6,1.250000
376	9,3,1, .000214		~48.0,1.230000
377	THERMAL LOADS	43 0	
378	1,	431	CONTINUE
379	-50.4,1.250000	432	BOUNDARY CHANGE
	-30.4,1.230000	433	3,
380			
381	CONTINUE	4 34	7,1,1, .000045
382	BOUNDARY CHANGE	435	8,2,1, .000045
		436	9,3,1, .000045
383	3,		
384	7,1,1, .000224	437	THERMAL LOADS
3 85	8,2,1, .000224	4 3 8	1,
386	9,3,1, .000224	4 39	-45.7,1.250000
		440	, , , , , , , , , , , , , , , , , , , ,
387	THERMAL LOADS		COMMINTER
388	1,	441	CONTINUE
389	-51.8,1.250000	442	BOUNDARY CHANGE
390	·	443	3,
391	CONTINUE	444	7,1,1, .000043
			8,2,1, .000043
392	BOUNDARY CHANGE	445	8,2,1, .000043
393	3,		9,3,1, .000043
394	7,1,1, .000230	447	THERMAL LOADS
395	8,2,1, .000230	448	1,
		449	-41.9,1.250000
396	9,3,1, .000230		41.5,1.250000
397	THERMAL LOADS	450	
39 8	1,	451	CONTINUE
399	-52.3,1.250000	452	BOUNDARY CHANGE
400	52.5,1.250000	453	3,
		4 54	7,1,1, .000039
401	CONTINUE		
402	BOUNDARY CHANGE		8,2,1, .000039
403	3,	456	9,3,1, .000039
404		457	THERMAL LOADS
	7,1,1, .000247	458	1,
405	8,2,1, .000247		
406	9,3,1, .000247	459	-37.5,1.250000
407	THERMAL LOADS	460	
408	1,	461	CONTINUE
409	-52.0,1.250000	462	BOUNDARY CHANGE
	-32.0,1.7,30000	463	
410			3,
411	CONTINUE	464	7,1,1, .000035
412	BOUNDARY CHANGE	465	8,2,1, .000035
413	3,	466	9,3,1, .000035
		467	THERMAL LOADS
414	7,1,1, .000048		
415	8,2,1, .000048	468	1,
416	9,3,1, .000048	469	-32.4,1.250000
417	THERMAL LOADS	470	
418	l,	471	CONTINUE
		472	BOUNDARY CHANGE
4 19	-50.7,1.250000		
420		473	3,
421	CONTINUE	474	7,1,1, .000030

475	8,2,1, .000030	531	CONTINUE
476	9,3,1, .000030	532	BOUNDARY CHANGE
477	THERMAL LOADS	533	3,
478	1,	5 34	7,1,1,000569
479	-26.8,1.250000	535	8,2,1,000569
480	20.0,1.250000	536	9,3,1,000569
	COMPANIE		
481	CONTINUE	537	THERMAL LOADS
482	BOUNDARY CHANGE	538	1,
483	3,	5 39	12.9,1.250000
484	7,1,1, .000025	540	
485	8,2,1, .000025	541	CONTINUE
486	9,3,1, .000025	542	BOUNDARY CHANGE
487	THERMAL LOADS	543	3,
488	1,	544	7,1,1,001229
489	-20.7,1.250000	545	6,2,1,001229
490	2017,11230000		
491	CONTINUE	546	9,3,1,001229
		547	THERMAL LOADS
492	BOUNDARY CHANGE	548	1,
493	3,	5 49	19.4,1.250000
494	7,1,1, .000019	550	
495	8,2,1, .000019	551	CONTINUE
496	9,3,1, .000019	552	BOUNDARY CHANGE
497	THERMAL LOADS	553	3,
498	1,	554	7,1,1,000067
499	-14.2,1.250000	555	8,2,1,000067
500	1412,1120000		
	CONTINUE	556	9,3,1,000067
501	CONTINUE	557	THERMAL LOADS
502	BOUNDARY CHANGE	5 58	1,
503	3,	5 59	25.6,1.250 000
504	7,1,1, .000013	560	
505	8,2,1, .000013	561	CONTINUE
5 06	9,3,1, .000013	562	BOUNDARY CHANGE
507	THERMAL LOADS	563	3,
508	1,	564	7,1,1,000088
509	-7.5,1.250000	565	8,2,1,000088
510	713,11230000	5 66	
511	CONTINUE		9,3,1,000088
512	BOUNDARY CHANGE	567	THERMAL LOADS
		568	1,
513	3,	569	31.3,1.250000
514	7,1,1,000106	570	
515	8,2,1,000106	571	CONTINUE
516	9,3,1,000106	572	BOUNDARY CHANGE
517	THERMAL LOADS	573	3,
518	1,	574	7,1,1,000108
519	7,1.250000	575	8,2,1,000108
520		576	9,3,1,000108
521	CONTINUE	577 577	THERMAL LOADS
522	BOUNDARY CHANGE		
522	3,	578 570	1,
		579 500	36.5,1.250000
524	7,1,1, .000063	580	
525	8,2,1, .000063	581	CONTINUE
526	9,3,1, .000063	582	BOUNDARY CHANGE
527	THERMAL LOADS	583	3,
528	1,	5 84	7,1,1,000126
52 9	6-1,1-250000	5 85	8,2,1,000126
530		586	9,3,1,000126

587	THERMAL LOADS	641	CONTINUE
588	1,	642	BOUNDARY CHANGE
589	41.1,1.250000	643	3,
	41.1,1.250000		
59 0	4	644	7,1,1,000180
591	CONTINUE	645	8,2,1,000180
5 9 2	BOUNDARY CHANGE	646	9,3,1,000180
593	3,	647	THERMAL LOADS
594	7,1,1,000142	648	1,
59 5	8,2,1,000142	649	52.0,1.250000
596	9,3,1,000142	650	,
597	THERMAL LOADS	651	CONTINUE
598		652	BOUNDARY CHANGE
	1,		
599	45.C,1.25 0000	653	3,
600		654	7,1,1,000179
601	CONTINUE	655	8,2,1,000179
602	BOUNDARY CHANGE	656	9,3,1, ~.000179
603	3,	657	THERMAL LOADS
604	7,1,1,000155	6 58	1,
605	8,2,1,000155	659	=
			50.7,1.250000
606	9,3,1,000155	660	
607	THERMAL LOADS	661	CONTINUE
608	1,	662	BOUNDARY CHANGE
609	48.1,1.250000	663	3,
610		664	7,1,1,000175
611	CONTINUE	665	8,2,1,000175
612	BOUNDARY CHANGE	666	9,3,1,000175
613	3,	667	THERMAL LOADS
614	7,1,1,000166	668	1,
615	8,2,1,000166	669	48.6,1.25000 0
616	9,3,1,000166	67 0	
617	THERMAL LOADS	671	CONTINUE
618	1,	672	BOUNDARY CHANGE
619	50.4,1.250000	673	3,
620		674	7,1,1,000243
621	CONTINUE	675	8,2,1,000243
622	BOUNDARY CHANGE	676	
			9,3,1,000243
623	3,	677	THERMAL LOADS
624	7,1,1,000174	678	1,
625	8,2,1,000174	679	45.7,1.25 0000
626	9,3,1,000174	68 0	
627	THERMAL LOADS	681	CONTINUE
628	1,	682	BOUNDARY CHANGE
629	51.8,1.250000	683	3,
630	(110), 1125(1000	684	7,1,1,000034
631	CONTINUE	685	
			8,2,1,000034
632	BOUNDARY CHANGE	686	9,3,1,000034
633	3,	687	THERMAL LOADS
634	7,1,1, ~.000179	688	l,
635	8,2,1,000179	689	41.9,1.250000
636	9,3,1,000179	690	•
637	THERMAL LOADS	691	CONTINUE
638	1,	692	BOUNDARY CHANGE
639		693	
	52.3,1.250000		3,
640		694	7,1,1,000031

695 69 6	8,2,1,000031	749	7.5,1.250000
697	9,3,1,000031 THERMAL LOADS	750 751	CONTINUE
698		751 752	CONTINUE
699	1,	752 752	BOUNDARY CHANGE
700	37.5,1.250000	753	3,
	actimitum.	754	7,1,1, .000108
701 702	CONTINUE	755	8,2,1, .000108
70 2 703	BOUNDARY CHANGE	756	9,3,1, .000108
	3,	757	THERMAL LOADS
704	7,1,1, ~.000028	758 750	1,
705	8,2,1,000028	759	.7,1.250000
706	9,3,1,000028	760 761	CONTINUE
707	THERMAL LOADS	761	CONTINUE
708	1,	762	BOUNDARY CHANGE
709	32.4,1.250000	763	3,
710		764	7,1,1,000063
711	CONTINUE	765	8,2,1,000063
712	BOUNDARY CHANGE	766	9,3,1,000063
713	3,	767	THERMAL LOADS
714	7,1,1,000024	768	1,
715	8,2,1,000024	769	-6.1,1.250000
716	9,3,1,000024	770	
717	THERMAL LOADS	771	CONTINUE
718	1,	772	BOUNDARY CHANGE
719	26.8,1.250000	773	3,
720		774	7,1,1, .000569
721	CONTINUE	775	8,2,1, .000569
722	BOUNDARY CHANGE	776	9,3,1, .000569
723	3,	777	THERMAL LOADS
724	7,1,1,000020	778	1,
725	8,2,1,000020	779	-12.9,1.250000
726	9,3,1,000020	78 0	
727	THERMAL LOADS	781	CONTINUE
728	1,	782	BOUNDARY CHANGE
729	20.7,1.250000	783	3,
730		784	7,1,1, .001229
731	CONTINUE	785	8,2,1, .001229
732	BOUNDARY CHANGE	786	9,3,1, .001229
733	3,	787	THERMAL LOADS
734	7,1,1,000015	788	1,
735	8,2,1,000015	789	-19.4,1.250000
736	9,3,1,000015	79 0	
737	THERMAL LOADS	791	CONTINUE
738	1,	792	BOUNDARY CHANGE
739	14.2,1.250000	793	3,
740		794	7,1,1, .000086
741	CONTINUE	795	8,2,1, .000086
742	BOUNDARY CHANGE	796	9,3,1, .000086
743	3,	797	THERMAL LOADS
744	7,1,1,000011	7 98	1,
745	8,2,1,000011	799	-25.6,1.250000
746	9,3,1,000011	800	•
747	THERMAL LOADS	801	CONTINUE
748	1,	802	BOUNDARY CHANGE

803 804 805 806	3, 7,1,1, .000114 8,2,1, .000114 9,3,1, .000114	857 858 859 860	THERMAL LOADS 1, -50.4,1.250000
807 808 809 810	THERMAL LOADS 1, -31.3,1.250000	861 862 863 864	CONTINUE BOUNDARY CHANGE 3, 7,1,1, .000224
811 812	CONTINUE BOUNDARY CHANGE	865 866 867	8,2,1, .000224 9,3,1, .000224 THERMAL LOADS
813 814 815	3, 7,1,1, .000139 8,2,1, .000139	868 869	1, -51.8,1.250000
816 817 818	9,3,1, .000139 THERMAL LOADS 1,	870 871 872	CONTINUE BOUNDARY CHANGE
819 820	-36.5,1.250000	873 874	3, 7,1,1, .000230
821 822 823	CONTINUE BOUNDARY CHANGE 3,	875 876 877	8,2,1, .000230 9,3,1, .000230 THERMAL LOADS
824 825 826	7,1,1, .000162 8,2,1, .000162 9,3,1, .000162	878 879 880	1, -52.3,1.250000
827 828 829	THERMAL LOADS 1, -41.1,1.250000	881 882 883	CONTINUE BOUNDARY CHANGE 3,
83 0 83 1	CONTINUE	884 885 886	7,1,1, .000247 8,2,1, .000247
832 833 834	BOUNDARY CHANGE 3, 7,1,1, .000183	887 888	THERMAL LOADS
835 836 837	8,2,1, .000183 9,3,1, .000183 THERMAL LOADS	889 890 891	-52.0,1.250000 CONTINUE
838 839 840	1, -45.0,1.250000	892 893 894	BOUNDARY CHANGE 3, 7,1,1, .000048
841 842	CONTINUE BOUNDARY CHANGE	895 896	8,2,1, .000048 9,3,1, .000048
843 844 845	3, 7,1,1, .000200 8,2,1, .000200	897 898 899	THERMAL LOADS 1, -50.7,1.250000
846 847 848	S,3,1, .000200 THERMAL LOADS 1,	900 901 902	CONTINUE BOUNDARY CHANGE
849 850 851	-48.1,1.250000 CONTINUE	903 904 905	3, 7,1,1, .000047 8,2,1, .000047
852 853	BOUNDARY CHANGE 3,	906 907	9,3,1, .000047 THERMAL LOADS
854 855 856	7,1,1, .000214 8,2,1, .000214 9,3,1, .000214	908 909 910	1, -48.6,1.250000

911	CONTINUE	9 66	9,3,1, .000025
912	BOUNDARY CHANGE	967	THERMAL LOADS
913	3,	968	1,
914	•		
		969	-20.7,1.250000
915	8,2,1, .000045	970	
916	9,3,1, .000045	971	CONTINUE
917	THERMAL LOADS	972	BOUNDARY CHANGE
918	1,	973	3,
919	-45.7,1.259000	974	7,1,1, .000019
920	43.7,11230000		
	4015	97 5	8,2,1, .000019
921	CONTINUE	976	9,3,1, .000019
922	BOUNDARY CHANGE	977	THERMAL LOADS
923	3,	978	1,
924	7,1,1, .000043	979	-14.2,1.250000
925	8,2,1, .000043	98 0	1.02,1.230000
			COMMINIE
926	9,3,1, .000043	981	CONTINUE
927	THERMAL LOADS	982	BOUNDARY CHANGE
9 28	1,	983	3,
9 29	-41.9,1.250000	984	7,1,1, .000013
930	,	985	8,2,1, .000013
931	CONTINUE		
		986	9,3,1, .000013
932	BOUNDARY CHANGE	987	THERMAL LOADS
933	3,	98 8	1,
934	7,1,1, .000039	9 89	-7.5,1.25 0000
935	8,2,1, .000039	99 0	, , , , , , , , , , , , , , , , , , , ,
936	9,3,1, .000039	991	CONTINUE
937	THERMAL LOADS	992	
			BOUNDARY CHANGE
938	1,	993	3,
939	-37.5,1.250000	9 94	7,1,1,000106
940		995	8,2,1,000106
941	CONTINUE	9 96	9,3,1,000106
942	BCUNDARY CHANGE	997	THERMAL LOADS
943		998	
	3,		1,
944	7,1,1, .000035	999	7,1.25 0000
945	8,2,1, .000035	1000	
946	9,3,1, .000035	1001	CONTINUE
947	THERMAL LOADS	1002	BOUNDARY CHANGE
948		1003	3,
	1,	1004	
949	-32.4,1.250000		7,1,1, .000063
95 0		1005	8,2,1, .000063
951	CONTINUE	1006	9,3,1, .000063
952	BOUNDARY CHANGE	1007	THERMAL LOADS
953	3,	1008	1,
954	7,1,1, .000030	1009	6.1,1.250000
		1010	0.1,1.230000
955	8,2,1, .000030		00×100 T 11110
956	9,3,1, .000030	1011	CONTINUE
957	THERMAL LOADS	1012	BOUNDARY CHANGE
958	1,	1013	3,
9 59	-26.8,1.250000	1014	7,1,1,000569
	201091120000	1015	8,2,1,000569
960			
961	CONTINUE	1016	9, 1,000569
962	BOUNDARY CHANGE	1017	That 'AL LOADS
963	3,	1018	1,
964	7,1,1, .000025	1019	12.5, 1.250000
965		1020	, ======
3 03	8,2,1, .000025	1021	CONTINUE
		.04.	OOM THON

APPENDIX 8. DATA INPUT FOR OPEN NONSYMMETRIC TMF LOOP

```
THERMOMECHANICAL LOOP NO. 3 WITH FUNCTIONAL THEORY
1
        TITLE
                        15000
                                        9
                                             9
                                                   2
 2
        SIZING
                                                       10
                       2
 3
        POST
 4
        ALL POINTS
 5
        INPUT TAPE
                       1
        HYPOELAS
 7
        STATE VARS
                      16
 8
        NO LOADCOR
                       1
        RESTART
 9
10
        END
11
        MESH2D
12
        BLOCKS
13
            1
                      10
                             1
                                                   6
14
        DEFINE
15
                  2
                       2
                             1
                                  2
                                        3
            l
                                             4
        BOUNDARY
16
17
            1
                      ı.
             2
18
                      l.
                                 l.
19
             3
                      0.
                                 1.
20
             4
21
        CONSTRAINT
22
            2
23
                  3
             1
                       1
24
                       2
             1
25
        MERGE
         .0005
26
27
        GENERATE
28
        CONNECTIVITY
29
                  1
30
        COORDINATES
31
32
        BOUNDARY CONDITIONS
33
             0
                  1
                       1
34
        BOUNDARY CONDITIONS
35
        1,
1,3,1,1,1.E-8
36
37
        THERMAL LOADS
38
        0.,1.E-8
39
40
41
        PROPERTY
42
             1
43
             26.0E6
                            .322
                                              0.E-5
44
             1
        POST
45
46
                 16
                      16
47
            1
48
            11
49
        PRINT CHOICE
50
```

51	3	1 04	7 1 1 000044
52	CONTROL		7,1,1,000344
	CONTROL	105	8,2,1,000344
53	49,15,1,0	106	9,3,1,000344
54	.05	107	THERMAL LOADS
55	RESTART	108	1,
56	1,1,0,8,8	109	68.9,2.104167
57	INITIAL STATE	110	•
58	1,1,1	111	CONTINUE
59	1,4,1,4	112	BOUNDARY CHANGE
	The state of the s	113	3,
60	940.	114	
61	END OPTION	115	7,1,1,000378
62	BOUNDARY CHANGE		8,2,1,000378
63	3,	116	9,3,1,000378
64	7,1,1, .000000	117	THERMAL LOADS
65	8,2,1, .000000	118	1,
66	9,3,1, .000000	1 19	79.6,2.104167
67	THERMAL LOADS	120	
68	1,	121	CONTINUE
69	.0,2.104167	122	BOUNDARY CHANGE
70	•0,2•104107	123	3,
	COMMINTE	124	7,1,1,000411
71	CONTINUE	125	8,2,1,000411
72	BOUNDARY CHANGE	126	9,3,1,000411
73	3,	127	THERMAL LOADS
74	7,1,1,000085		
75	8,2,1,000085	128	1,
76	9,3,1,000085	129	86.5,2.104167
77	THERMAL LOADS	130	
78	1,	131	CONTINUE
79	19.5,2.104167	132	BOUNDARY CHANGE
80	13.13,2010-107	133	3,
81	CONTINUE	1 34	7,1,1,000424
		135	8,2,1,000424
82	BOUNDARY CHANGE	136	9,3,1,000424
83	3,	137	THERMAL LOADS
84	7,1,1,000166	138	
85	8,2,1,000166	139	1,
86	9,3,1,000166		89.2,2.104167
87	THERMAL LOADS	1.40	
88	ι,	141	CONTINUE
89	38.1,2.104167	142	BOUNDARY CHANGE
9 0	•	143	3,
91	CONTINUE	144	7,1,1,000401
92	BOUNDARY CHANGE	145	8,2,1,000401
93	3,	146	9,3,1,000401
94		147	THERMAL LOADS
	7,1,1,000274	148	1,
95	8,2,1,000274	149	87.6,2.104167
96	9,3,1,000274	150	07.0,2.104107
97	THERMAL LOADS	151	CONTINUE
98	1,	152	
99	54.8,2.104167		BOUNDARY CHANGE
100		153	3,
101	CONTINUE	154	7,1,1,000374
102	BOUNDARY CHANGE	155	8,2,1,000374
103	3,	156	9,3,1,000374
	- ,	157	THERMAL LOADS

158	1,	211	CONTINUE
159	81.8,2.104167	212	BOUNDARY CHANGE
160	0110,21104101	213	3,
161	CONTINUE	214	7,1,1, .000000
162	BOUNDARY CHANGE	215	8,2,1, .000000
163	3,	216	9,3,1, .000000
164	7,1,1,000246	217	THERMAL LOADS
		218	1,
165	8,2,1,000246	219	.0,2.104167
166	9,3,1,000246	220	•0,2•104107
167	THERMAL LOADS		CONTINUE
168	1,	221	
169	72.0,2.104167	222	BOUNDARY CHANGE
170		223	3,
171	CONTINUE	224	7,1,1, .000000
172	BOUNDARY CHANGE	225	8,2,1, .000000
173	3,	226	9,3,1, .000000
174	7,1,1,000201	227	THERMAL LOADS
175	8,2,1,000201	228	1,
176	9,3,1,000201	2 29	.0,2.104167
177	THERMAL LOADS	230	
178	1,	231	CONTINUE
179	58.7,2.104167	232	BOUNDARY CHANGE
180	3017,121104107	233	3,
181	CONTINUE	2 34	7,1,1, .000000
182	BOUNDARY CHANGE	235	8,2,1, .000000
		236	9,3,1, .000000
183	3,	237	THERMAL LOADS
184	7,1,1,000100	238	l,
185	8,2,1,000100	239	.0,2.104167
186	9,3,1,000100	240	10,21104107
187	THERMAL LOADS	241	CONTINUE
188	1,		BOUNDARY CHANGE
189	42.6,2.104167	242	
190		243	3,
191	CONTINUE	244	7,1,1, .000000
192	BOUNDARY CHANGE	245	8,2,1, .000000
193	3,	246	9,3,1, .000000
194	7,1,1, .000146	247	THERMAL LOADS
195	8,2,1, .000!46	248	1,
196	9,3,1, .000146	249	.0,2.104167
197	THERMAL LOADS	250	
198	1,	251	CONTINUE
199	24.4,2.104167	252	BOUNDARY CHANGE
200	24,4,2,104107	253	3,
201	CONTINUE	254	7,1,1, .000000
201	BOUNDARY CHANGE	255	8,2,1, .000000
		256	9,3,1, .000000
203	3,	257	THERMAL LOADS
204	7,1,1, .000030	258	1
205	8,2,1, .000030	259	.0,2.104167
206	9,3,1, .000030		£0921107
207	THERMAL LOADS	260	CONTINUE
208	1,	261	CONTINUE
209	5.1,2.104167	262	BOUNDARY CHANGE
210		263	3,

```
264
         7,1,1, .000000
                                                   317
                                                             THERMAL LOADS
265
         8,2,1, .000000
                                                   318
266
         9,3,1, .000000
                                                   319
                                                                .0,2.104167
267
         THERMAL LOADS
                                                   320
268
                                                             CONTINUE
                                                   321
                                                             BOUNDARY CHANGE
269
            .0,2.104167
                                                   322
270
                                                   323
                                                             3,
271
         CONTINUE
                                                   324
                                                             7,1,1,
                                                                    .000000
272
         BOUNDARY CHANGE
                                                             8,2,1, .000000
                                                   325
273
                                                   326
                                                             9,3,1, .000000
274
         7,1,1, .000000
                                                   327
                                                             THERMAL LOADS
275
         8,2,1, .000000
                                                   328
         9,3,1, .000000
276
                                                   329
                                                                .0,2.104167
277
         THERMAL LOADS
                                                   330
278
                                                   331
                                                             CONTINUE
279
             .0,2.104167
                                                   332
                                                             BOUNDARY CHANGE
280
                                                   333
                                                             3,
281
                                                   334
         CONTINUE
                                                             7,1,1, .000000
282
         BOUNDARY CHANGE
                                                   335
                                                             8,2,1, .000000
283
         З,
                                                   336
                                                             9,3,1, .000000
284
         7,1,1, .000000
                                                   337
                                                             THERMAL LOADS
285
         8,2,1, .000000
                                                   338
         9,3,1, .000000
286
                                                   339
                                                                .0,2.104167
287
         THERMAL LOADS
                                                   340
288
                                                   341
                                                             CONTINUE
             .0,2.104167
289
                                                            BOUNDARY CHANGE
                                                   342
290
                                                   343
                                                            3,
291
         CONTINUE
                                                   344
                                                            7,1,1, .000000
         BOUNDARY CHANGE
292
                                                   345
                                                            8,2,1, .000000
         3,
293
                                                   346
                                                            9,3,1, .000000
294
         7,1,1, .000000
                                                   347
                                                            THERMAL LOADS
         8,2,1, .000000
295
                                                   348
296
         9,3,1, .000000
                                                   349
                                                                .0,2.104167
         THERMAL LOADS
297
                                                   350
298
                                                   351
                                                             CONTINUE
                                                   352
299
             .0,2.104167
                                                            BOUNDARY CHANGE
300
                                                   353
301
         CONTINUE
                                                   354
                                                            7,1,1, .000000
         BOUNDARY CHANGE
302
                                                   355
                                                            8,2,1, .000000
         3,
303
                                                   356
                                                            9,3,1, .000000
                .000000
                                                            THERMAL LOADS
304
                                                   357
         7,1,1,
         8,2,1, .000000
305
                                                   358
306
         9,3,1, .000000
                                                   3 59
                                                                .0,2.104167
         THERMAL LOADS
307
                                                   360
308
                                                   361
                                                             CONTINUE
             .0,2.104167
309
                                                   362
                                                            BOUNDARY CHANGE
310
                                                   363
                                                            3,
311
         CONTINUE
                                                   364
                                                            7,1,1, .000000
         BOUNDARY CHANGE
312
                                                   365
                                                            8,2,1, .000000
313
         3,
                                                   366
                                                            9,3,1, .000000
314
         7,1,1,
                 .000000
                                                   367
                                                            THERMAL LOADS
315
         8,2,1, .000000
                                                   368
316
         9,3,1,
                 .000000
                                                   369
                                                                .0,2.104166
```

化性量

3 70		423	3,
371	CONTINUE	4 24	7,1,1, .000248
372	BOUNDARY CHANGE	425	8,2,1, .000248
373	3,	426	9,3,1, .000248
374	7,1,1, .000000	427	THERMAL LOADS
		428	1,
375		429	
376	9,3,1, .000000		-42.6,2.104166
377	THERMAL LOADS	430	
3 78	1,	431	CONTINUE
379	.0,2.104167	432	BOUNDARY CHANGE
38 0		433	3,
3 81	CONTINUE	4 34	7,1,1, .000342
382	BOUNDARY CHANGE	435	8,2,1, .000342
383	3,	436	9,3,1, .000342
384	7,1,1, .000000	437	THERMAL LOADS
		438	
385	8,2,1, .000000		l,
386	9,3,1, .000000	4 39	-58.7,2.104167
387	THERMAL LOADS	440	
388	1,	441	CONTINUE
389	.0,2.104167	442	BOUNDARY CHANGE
39 0		443	3,
391	CONTINUE	444	7,1,1, .000420
392	BOUNDARY CHANGE	445	8,2,1, .000420
393	3,	446	9,3,1, .000420
39 4	7,1,1, .000000	447	THERMAL LOADS
	The state of the s		
395	3,2,1, .000000	448	1,
396	9,3,1, .000000	449	-72.0,2.1 04167
397	THERMAL LOADS	45 0	
39 8	1,	451	CONTINUE
399	.0,2.104166	452	BOUNDARY CLANGE
400		453	3,
401	CONTINUE	4 54	7,1,1, .000462
402	BOUNDARY CHANGE	455	8,2,1, .000462
403	3,	456	9,3,1, .000462
404	7,1,1, .000027	457	THERMAL LOADS
405	8,2,1, .000027	458	1,
406	9,3,1, .000027	459	-81.8,2.104166
407	THERMAL LOADS	460	
408	1,	461	CONTINUE
409	-5.1,2.104167	462	BOUNDARY CHANGE
410		463	3,
411	CONTINUE	464	7,1,1, .000366
412	BOUNDARY CHANGE	465	8,2,1, .000366
413	3,	466	9,3,1, .000366
414	7,1,1, .000131	467 : 69	THERMAL LOADS
415	8,2,1, .000131	468	1,
416	9,3,1, .000131	469	-87.6,2.104167
417	THERMAL LOADS	470	
418	1,	471	CONTINUE
419	-24.4,2.104167	472	BOUNDARY CHANGE
420	•	473	3,
421	CONTINUE	474	7,1,1, .000373
422	BOUNDARY CHANGE	475	8,2,1, .000373
744	POOUNTAL AIRCOND		-,-,-,

```
9,3,1, .000373
THERMAL LOADS
476
                                                              -38.1,2.104167
                                                     529
477
                                                     530
478
          l,
                                                     531
                                                              CONTINUE
479
         -89.2,2.104167
                                                     532
                                                              BOUNDARY CHANGE
480
                                                     533
481
          CONTINUE
                                                              7,1,1, -.000107
                                                     534
482
          BOUNDARY CHANGE
                                                     535
                                                              8,2,1, -.000107
         3,
483
                                                     536
                                                              9,3,1, -.000107
484
          7,1,1, .000362
                                                              THERMAL LOADS
                                                     537
485
          8,2,1, .000362
                                                     538
                                                              1.
          9,3,1, .000362
THERMAL LOADS
486
                                                     539
                                                              -19.5,2.104167
487
                                                     540
488
                                                     541
                                                              CONTINUE
489
          -86.5,2.104166
                                                     542
                                                              BOUNDARY CHANGE
490
                                                     543
491
          CONTINUE
                                                     544
                                                              7,1,1, .000000
492
          BOUNDARY CHANGE
                                                              8,2,1, .000000
                                                     545
493
                                                              9,3,1, .000000
THERMAL LOADS
                                                     546
          7,1,1, .000260
494
                                                     547
495
          8,2,1, .000260
                                                     548
496
          9,3,1, .000260
                                                     549
                                                                  .0,2.104166
497
          THERMAL LOADS
                                                     550
498
                                                     551
                                                               CONTINUE
          -79.6,2.104167
499
                                                     552
                                                               BOUNDARY CHANGE
500
                                                     553
501
          CONTINUE
                                                     554
                                                               7,1,1, -.000085
502
          BOUNDARY CHANGE
                                                     555
                                                              8,2,1, -.000085
503
          3,
                                                     556
                                                               9,3,1, -.000085
504
          7,1,1, .000225
                                                     557
                                                               THERMAL LOADS
505
          8,2,1, .000225
                                                     558
506
          9,3,1, .000225
                                                     559
                                                               19.5,2.104167
          THERMAL LOADS
507
                                                     560
508
                                                     561
                                                               CONTINUE
          -68.9, 2.104167
509
                                                     562
                                                               BOUNDARY CHANGE
510
                                                     563
511
          CONTINUE
                                                     564
                                                               7,1,1, -.000166
512
          BOUNDARY CHANGE
                                                     565
                                                               8,2,1, -.000166
513
          3,
                                                     566
                                                               9,3,1, -.000166
514
          7,1,1, .000070
                                                               THERMAL LOADS
                                                     567
          8,2,1, .000070
515
                                                     568
516
          9,3,1, .000070
                                                     569
                                                                38.1,2.104167
          THERMAL LOADS
517
                                                     570
518
                                                     571
                                                               CONTINUE
519
          -54.8,2.104166
                                                     572
                                                               BOUNDARY CHANGE
520
                                                     573
521
          CONTINUE
                                                     574
                                                               7,1,1, -.000274
522
          BOUNDARY CHANGE
                                                     575
                                                               8,2,1, -.000274
                                                               9,3,1, -.000274
523
          3,
                                                     576
524
          7,1,1, .000048
                                                     577
                                                               THERMAL LOADS
525
          8,2,1, .000048
                                                     578
526
          9,3,1, .000048
                                                     579
                                                                54.8,2.104166
527
          THERMAL LOADS
                                                     580
528
          l,
                                                     581
                                                               CONTINUE
```

```
582
          BOUNDARY CHANGE
                                                      635
                                                                8,2,1, -.000374
          3,
583
                                                      636
                                                                9,3,1, -.000374
584
          7,1,1, -.000344
                                                      637
                                                                THERMAL LOADS
585
          8,2,1, -.000344
                                                      638
586
          9,3,1, -.000344
                                                      639
                                                                 81.8,2 104166
587
          THERMAL LOADS
                                                      640
588
                                                      641
                                                                CONTINUE
589
           68.9,2.104167
                                                      642
                                                                BOUNDARY CHANGE
590
                                                      643
591
          CONTINUE
                                                      644
                                                                7,1,1, -.000246
592
          BOUNDARY CHANGE
                                                      645
                                                                8,2,1, -.000246
593
                                                      646
                                                                9,3,1, -.000246
594
          7,1,1, -.000378
                                                      647
                                                                THERMAL LOADS
595
          8,2,1, -.000378
                                                      648
596
          9,3,1, -.000378
                                                      649
                                                                 72.0,2.104167
597
          THERMAL LOADS
                                                      650
598
                                                      651
          1,
                                                                CONTINUE
599
          79.6,2.104167
                                                      652
                                                                BOUNDARY CHANGE
600
                                                      653
601
          CONTINUE
                                                      654
                                                                7,1,1, -.000201
602
          BOUNDARY CHANGE
                                                      655
                                                                8,2,1, -.000201
                                                                9,3,1, -.000201
603
                                                      656
604
          7,1,1, -.000411
                                                      657
                                                                THERMAL LOADS
605
          8,2,1, -.000411
                                                      658
                                                                l,
          9,3,1, -.000411
606
                                                      659
                                                                 58.7,2.104167
          THERMAL LOADS
607
                                                      660
608
                                                      661
                                                                CONTINUE
609
           86.5, 2.104166
                                                      662
                                                                BOUNDARY CHANGE
610
                                                      663
611
          CONTINUE
                                                      664
                                                                7,1,1, -.000100
612
          BOUNDARY CHANGE
                                                                8,2,1, -.000100
9,3,1, -.000100
THERMAL LOADS
                                                      665
613
                                                      666
614
          7,1,1, -.000424
                                                      667
          8,2,1, -.000424
9,3,1, -.000424
615
                                                      668
616
                                                      669
                                                                 42.6, 2.104166
617
          THERMAL LOADS
                                                      670
618
                                                      671
                                                                CONTINUE
619
           89.2,2.104167
                                                                BOUNDARY CHANGE
                                                      672
620
                                                                3,
                                                      673
621
          CONTINUE
                                                      674
                                                                7,1,1, .000146
622
          BOUNDARY CHANGE
                                                      675
                                                                8,2,1, .000146
623
                                                      676
                                                                9,3,1, .000146
624
          7,1,1, -.000401
                                                      677
                                                                THERMAL LOADS
625
          8,2,1, -.000401
                                                      678
                                                                1,
626
          9,3,1, -.000401
                                                      679
                                                                 24.4,2.104166
          THERMAL LOADS
627
                                                      680
628
          l,
                                                      681
                                                                CONTINUE
629
           87.6,2.104167
                                                      682
                                                                BOUNDARY CHANGE
630
                                                      683
                                                                3,
631
          CONTINUE
                                                      684
                                                                7,1,1, .000030
632
          BOUNDARY CHANGE
                                                                8,2,1, .000030
                                                      685
633
                                                     586
                                                                9,3,1, .000030
          7,1,1, -.000374
634
                                                                THERMAL LOADS
                                                     687
```

688	1,	741	CONTINUE
		742	BOUNDARY CHANGE
689	5.1,2.104168		
690	401-5-1	743	3,
691	CONTINUE	744	7,1,1, .000000
692	BOUNDARY CHANGE	745	8,2,1, .000000
693	3,	746	9,3,1, .000000
694	7,1,1, .000000	747	THERMAL LOADS
695	8,2,1, .000000	748	1,
696	9,3,1, .000000	7 49	.0,2.104168
697	THERMAL LOADS	75 0	
698	1,	751	CONTINUE
699	.0,2.104166	7 52	BOUNDARY CHANGE
700	***************************************	7 53	3,
701	CONTINUE	7 54	7,1,1, .000000
70°C 70°2		755	8,2,1, .000000
703	BOUNDARY CHANGE	756	9,3,1, .000000
	3,	757	THERMAL LOADS
704	7,1,1, .000000		
705	8,2,1, .000000	7 58 7 50	1,
706	9,3,1, .000000	759	.0,2.104166
707	THERMAL LOADS	760	
708	1,	761	CONTINUE
709	.0,2.104166	762	BOUNDARY CHANGE
710		763	3,
711	CONTINUE	764	7,1,1, .000000
712	BOUNDARY CHANGE	765	8,2,1, .000000
713	3,	766	9,3,1, .000000
714	7,1,1, .000000	767	THERMAL LOADS
715	8,2,1, .000000	768	1,
716	9,3,1, .000000	769	.0,2.104166
717	THERMAL LOADS	770	
718	1,	771	CONTINUE
719	.0,2.104168	772	BOUNDARY CHANGE
720	.0,2.104100	773	3,
721	CONTINUE	774	7,1,1, .000000
		775	8,2,1, .000000
722	BOUNDARY CHANGE	776	9,3,1, .000000
723	3,	777	THERMAL LOADS
724	7,1,1, .000000	778	
725	8,2,1, .000000		1,
726	9,3,1, .000000	779	.0,2.104168
727	THERMAL LOADS	780	
728	1,	781	CONTINUE
729	.0,2.104166	782	BOUNDARY CHANGE
730		783	3,
731	CONTINUE	784	7,1,1, .000000
732	BOUNDARY CHANGE	785	8,2,1, .000000
733	3,	786	9,3,1, .000000
734	7,1,1, .000000	787	THERMAL LOADS
735	8,2,1, .000000	788	1,
736	9,3,1, .000000	789	.0,2.104166
737	THERMAL LOADS	79 0	•
738	1,	791	CONTINUE
739	.0,2.104166	792	BOUNDARY CHANGE
740	•	793	3,

795	7 94	7,1,1, .000000	847	THERMAL LOADS
796 9,3,1, .000000 797 THERMAL LOADS 798 1, 851 CONTINUE 800 853 3, 801 CONTINUE 854 7,1,1, .000000 802 BOUNDARY CHANGE 855 8,2,1, .000000 803 3, 856 9,3,1, .000000 804 7,1,1, .000000 857 THERMAL LOADS 805 8,2,1, .000000 858 1, 806 9,3,1, .000000 859 .0,2.104166 807 THERMAL LOADS 860 808 1, 861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 867 THERMAL LOADS 810 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 867 THERMAL LOADS 814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 868 1, 816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 879 .0,2.104166 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 879 .0,2.104166 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000002 832 BOUNDARY CHANGE 885 8,2,1, .000002 833 3, 886 9,3,1, .000000 839 1, .000000 889 1, .0000027 833 3, 886 9,3,1, .0000027 834 7,1,1, .000000 889 1, .000000 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 830 9,3,1, .000000 831 THERMAL LOADS 833 3, 886 9,3,1, .0000027 834 7,1,1, .000000 889 1, .000000 835 8,2,1, .000000 889 1, .0000007 836 9,3,1, .000000 889 1, .000000131 844 CONTINUE 894 7,1,1, .0000131 843 3, 896 9,3,1, .0000131 844 8,2,1, .000000 899 1, THERMAL LOADS 845 8,2,1, .0000131 847 7,1,1, .0000131 848 9,2,1, .0000131				
797 THERMAL LOADS 1, 0,2.104166 851 CONTINUE 799 .0,2.104166 852 BOUNDARY CHANGE 800 853 3, 801 CONTINUE 854 7,1,1, .000000 802 BOUNDARY CHANGE 855 8,2,1, .000000 803 3, 856 9,3,1, .000000 805 8,2,1, .000000 858 1, 806 9,3,1, .000000 859 .0,2.104166 807 THERMAL LOADS 860 808 1, 861 CONTINUE 864 7,1,1, .000000 813 3, 866 9,3,1, .000000 859 .0,2.104166 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 813 3, 866 9,3,1, .000000 813 3, 866 9,3,1, .000000 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 869 .0,2.104168 816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 CONTINUE 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 872 BOUNDARY CHANGE 873 3, 876 9,3,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 877 THERMAL LOADS 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 881 CONTINUE 826 9,3,1, .000000 879 .0,2.104166 830 883 3, 886 9,3,1, .000000 837 THERMAL LOADS 830 881 CONTINUE 831 CONTINUE 884 7,1,1, .000000 837 THERMAL LOADS 838 1, 881 CONTINUE 839 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 876 9,3,1, .000000 837 THERMAL LOADS 838 1, 881 CONTINUE 839 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 886 9,3,1, .000007 831 CONTINUE 884 7,1,1, .000007 832 BOUNDARY CHANGE 885 8,2,1, .000000 833 3, 886 9,3,1, .000000 889 -5.1,2.104166 830 THERMAL LOADS 831 CONTINUE 884 7,1,1, .0000131 833 3, 886 9,3,1, .000000 889 -5.1,2.104166 839 .0,2.104168 893 3, 894 894 7,1,1, .0000131 843 3, 896 9,3,1, .000000 897 THERMAL LOADS 844 CONTINUE 894 7,1,1, .000131 845 8,2,1, .000000 897 THERMAL LOADS 846 9,3,1, .0000131 847 CONTINUE 894 7,1,1, .000131 848 895 8,2,1, .0000131 848 896 9,3,1, .0000131 849 897 THERMAL LOADS 840 897 THERMAL LOADS 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131				
798 1, 799 .0,2.104166 852 BOUNDARY CHANGE 850 BOUNDARY CHANGE 853 3, 856 9,3,1, .000000 853 1, .000000 859 1, .000000 866 861 1, .000000 866 862 863 3, .000000 866 864 7,1,1, .000000 866 866 9,3,1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 866 1, .000000 869 1, .0000000 869 1, .0000000 869 1, .000000 869 1, .000000 869 1, .000000 869 1, .000000 869 1, .000000 869 1, .000000 869 1, .000000 869 1, .000000 869 1,				10,21101100
799				CONTINUE
800 801 CONTINUE 802 BOUNDARY CHANGE 803 3, 804 7,1,1, .000000 803 3, 804 7,1,1, .000000 805 8,2,1, .000000 806 859 1, .000000 807 THERMAL LOADS 808 1, .861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 813 3, .866 9,3,1, .000000 814 7,1,1, .000000 815 864 7,1,1, .000000 816 9,3,1, .000000 817 REMAL LOADS 818 1, .861 CONTINUE 819 .0,2.104166 873 3, 818 1, .871 CONTINUE 819 .0,2.104166 873 3, 818 1, .871 CONTINUE 819 .0,2.104166 873 3, 819 .0,2.104166 873 3, 811 CONTINUE 874 7,1,1, .000000 812 BOUNDARY CHANGE 873 3, 814 7,1,1, .000000 869 .0,2.134168 817 THERMAL LOADS 818 1, .871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, .876 9,3,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, .876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 877 THERMAL LOADS 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 828 1, .881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 870 THERMAL LOADS 831 CONTINUE 884 7,1,1, .000000 837 THERMAL LOADS 838 1, .881 CONTINUE 839 .0,2.104166 882 BOUNDARY CHANGE 830 880 THERMAL LOADS 831 CONTINUE 884 7,1,1, .000000 833 3, .886 9,3,1, .000000 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 889 THERMAL LOADS 837 THERMAL LOADS 838 1, .891 CONTINUE 839 .0,2.104166 882 BOUNDARY CHANGE 830 BOUNDARY CHANGE 885 8,2,1, .000027 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 834 7,1,1, .000000 889 THERMAL LOADS 836 9,3,1, .000000 889 THERMAL LOADS 837 THERMAL LOADS 838 1, .891 CONTINUE 840 BOUNDARY CHANGE 895 8,2,1, .0000131 841 CONTINUE 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, .896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS 846 9,3,1, .000131 847 RAME LOADS 890 THERMAL LOADS 848 8,2,1, .000000 897 THERMAL LOADS 849 8,2,1, .0000131				
801 CONTINUE 854 7,1,1, .000000 802 BOUNDARY CHANGE 855 8,2,1, .000000 803 3, 856 9,3,1, .000000 857 THERMAL LOADS 805 8,2,1, .000000 858 1, .000000 858 1, .000000 858 1, .000000 858 1, .000000 858 1, .000000 858 1, .000000 859 .0,2.104166 860 860 860 860 860 860 860 860 860 8		,		
802 BOUNDARY CHANGE 855 8,2,1, .000000 804 7,1,1, .000000 856 9,3,1, .000000 805 8,2,1, .000000 858 1, 806 9,3,1, .000000 859 .0,2.104166 807 THERMAL LOADS 860 808 1, 861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 869 .0,2.104168 818 1, 871 CONTINUE 818 1, 871 CONTINUE 821 CONTINUE 873 3, 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000		CONTINUE		
803 3, 856 9,3,1, .000000 857 THERMAL LOADS 805 8,2,1, .000000 858 1,000000 858 1,000000 858 1,000000 858 1,000000 858 1,000000 858 1,000000 8590,2.104166 806 1,000000 860 860 81,000000 861 862 BOUNDARY CHANGE 863 3,000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3,000000 867 THERMAL LOADS 816 9,3,1, .000000 868 1,000000 8690,2.104168 861 9,3,1, .000000 8690,2.104168 861 1,000000 869000000 8600000000 8600000000 8				• - •
804 7,1,1, .000000 858 1, 857 THERMAL LOADS 805 8,2,1, .000000 858 1, 860 9,3,1, .000000 858 1, 860 860 87 THERMAL LOADS 860 1, 861 CONTINUE 863 3, 863 3, 866 9,3,1, .000000 867 THERMAL LOADS 869 1, .000000 867 THERMAL LOADS 869 1, .000000 867 THERMAL LOADS 865 8,2,1, .000000 869 .0,2.104168 868 1, 871 CONTINUE 864 7,1,1, .000000 869 .0,2.104168 868 1, 871 CONTINUE 871 CONTINUE 872 BOUNDARY CHANGE 872 BOUNDARY CHANGE 873 3, 874 CONTINUE 873 3, 874 CONTINUE 874 7,1,1, .000000 877 THERMAL LOADS 870 870 870 870 870 870 870 870 870 870				
805 8,2,1, .000000 859 .0,2.104166 806 9,3,1, .000000 859 .0,2.104166 807 THERMAL LOADS 860 808 1, 861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 8,2,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 868 1, 816 9,3,1, .000000 868 1, 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 877 THERMAL LOADS 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000000 837 THERMAL LOADS 830 883 3, 831 CONTINUE 884 7,1,1, .000000 837 THERMAL LOADS 830 883 3, 831 CONTINUE 884 7,1,1, .000000 837 THERMAL LOADS 830 883 3, 831 CONTINUE 884 7,1,1, .000007 833 3, 886 9,3,1, .000000 837 THERMAL LOADS 830 883 3, 831 CONTINUE 884 7,1,1, .000007 833 3, 886 9,3,1, .000000 837 THERMAL LOADS 838 1, 890 890 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .0000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 898 1,				- · ·
806 9,3,1, .000000 859 .0,2.104166 807 THERMAL LOADS 860 808 1, 861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 869 .0,2.104168 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 879 .0,2.104166 830 880 826 9,3,1, .000000 879 .0,2.104166 830 880 821 CONTINUE 880 880 822 BOUNDARY CHANGE 875 8,2,1, .000000 833 3, 836 9,3,1, .000000 879 .0,2.104166 830 880 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000007 833 3, 886 9,3,1, .000007 834 7,1,1, .000000 879 .0,2.104166 830 883 3, 886 9,3,1, .000007 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 889 -5.1,2.104166 830 883 1, 891 CONTINUE 831 CONTINUE 884 7,1,1, .000027 833 3, 886 9,3,1, .000000 889 -5.1,2.104166 830 890 893 1, .000131 844 7,1,1, .000000 899 1, .000131 844 7,1,1, .000000 899 1, .000131 844 7,1,1, .000000 899 1, .000131 844 7,1,1, .000000 899 1, .000131 844 7,1,1, .000000 899 1, .000131				
807 THERMAL LOADS 808 1, 861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 815 8,2,1, .000000 866 1, .0,2.104168 816 9,3,1, .000000 866 .0,2.104168 817 THERMAL LOADS 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 876 874 7,1,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, .000000 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 866 9,3,1, .000000 837 THERMAL LOADS 830 880 883 3, 876 883 3, 876 883 3, 884 883 3, 885 883 3, 885 883 3, 885 883 3, 885 883 3, 885 883 3, 885 883 3, 885 883 3, 885 883 3, 885 893 3, 885 893 3, 886 9,3,1, .000007 833 3, 886 9,3,1, .000000 887 THERMAL LOADS 831 CONTINUE 882 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 887 THERMAL LOADS 830 880 883 3, 886 9,3,1, .000007 831 CONTINUE 882 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 887 THERMAL LOADS 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 893 3, 896 9,3,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 898 1,				=
808 1, 861 CONTINUE 809 .0,2.104168 862 BOUNDARY CHANGE 810 863 3, 811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 868 1, 816 9,3,1, .000000 868 1, 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 878 1, 827 THERMAL LOADS 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 880 828 1, 881 CONTINUE 831 CONTINUE 832 BOUNDARY CHANGE 883 3, 831 CONTINUE 833 3, 886 9,3,1, .000000 837 THERMAL LOADS 830 880 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 866 9,3,1, .000000 887 THERMAL LOADS 880 881 1, 881 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 887 THERMAL LOADS 888 1, 891 CONTINUE 884 7,1,1, .000000 887 THERMAL LOADS 888 1, 891 CONTINUE 889 -5.1,2.104166 889 9,3,1, .00001 889 -5.1,2.104166 889 890 890 888 1, 891 CONTINUE 884 7,1,1, .000131 884 894 7,1,1, .000131 884 894 7,1,1, .000131 884 895 9,3,1, .000131 884 7,1,1, .000000 897 THERMAL LOADS 884 7,1,1, .000131 884 7,1,1, .000000 897 THERMAL LOADS 884 7,1,1, .000131 884 7,1,1, .000000 897 THERMAL LOADS 885 8,2,1, .000131		• • •		.0,2.104166
809				
810 811 CONTINUE 812 BOUNDARY CHANGE 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 815 8,2,1, .000000 816 9,3,1, .000000 817 THERMAL LOADS 818 1, 819 .0,2.104166 819 .0,2.104166 820 873 3, 821 CONTINUE 819 .0,2.104166 822 BOUNDARY CHANGE 823 3, 821 CONTINUE 824 7,1,1, .000000 825 8,2,1, .000000 826 9,3,1, .000000 827 THERMAL LOADS 828 1, 829 .0,2.104166 829 .0,2.104166 820 877 THERMAL LOADS 830 880 828 1, 831 CONTINUE 834 7,1,1, .000000 837 .0,2.104166 838 3, 831 CONTINUE 839 .0,2.104166 830 883 3, 831 CONTINUE 840 7,1,1, .000000 857 .0,2.104166 882 BOUNDARY CHANGE 883 3, 881 CONTINUE 884 7,1,1, .000000 879 .0,2.104166 885 8,2,1, .000000 879 .0,2.104166 886 9,3,1, .000000 879 .0,2.104166 887 THERMAL LOADS 880 881 3, 881 CONTINUE 884 7,1,1, .000000 885 8,2,1, .000000 887 .0,2.104166 888 3, 881 CONTINUE 884 7,1,1, .000000 885 8,2,1, .000000 887 THERMAL LOADS 888 1, 889 .0,2.104168 889 .5.1,2.104166 889 .0,2.104168				
811 CONTINUE 864 7,1,1, .000000 812 BOUNDARY CHANGE 865 8,2,1, .000000 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 866 THERMAL LOADS 815 8,2,1, .000000 868 1, 816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 877 THERMAL LOADS 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 887 THERMAL LOADS 837 THERMAL LOADS 838 1, 881 CONTINUE 839 .0,2.104166 830 889 -5.1,2.104166 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 836 9,3,1, .000000 887 THERMAL LOADS 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,		.0,2.104108		
812 BOUNDARY CHANGE 813 3, 866 9,3,1, .000000 814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 868 1, 816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 866 9,3,1, .000000 887 THERMAL LOADS 830 883 3, 831 CONTINUE 884 7,1,1, .000027 833 3, 866 9,3,1, .000000 887 THERMAL LOADS 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 838 1, 891 CONTINUE 839 0,2.104168 892 BOUNDARY CHANGE 830 890 838 1, 891 CONTINUE 831 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 CONTINUE 894 7,1,1, .000131 845 BOUNDARY CHANGE 895 8,2,1, .000131 844 CONTINUE 894 7,1,1, .000131 845 BOUNDARY CHANGE 895 8,2,1, .000131 845 B,2,1, .000000 897 THERMAL LOADS 845 B,2,1, .000000 897 THERMAL LOADS 856 B,2,1, .000131		CONTRACTO		
813 3, 866 9,3,1,.000000 814 7,1,1,.000000 867 THERMAL LOADS 815 8,2,1,.000000 868 1, 816 9,3,1,.000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1,.000000 822 BOUNDARY CHANGE 875 8,2,1,.000000 823 3, 876 9,3,1,.000000 824 7,1,1,.000000 877 THERMAL LOADS 825 8,2,1,.000000 878 1, 826 9,3,1,.000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1,.000027 833 3, 866 9,3,1,.000002 833 3, 866 9,3,1,.000000 879 .0,2.104166 830 883 1, 881 CONTINUE 831 CONTINUE 884 7,1,1,.000027 832 BOUNDARY CHANGE 885 8,2,1,.000027 833 3, 866 9,3,1,.000000 887 THERMAL LOADS 835 8,2,1,.000000 887 THERMAL LOADS 836 9,3,1,.000000 888 1, 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 830 890 831 CONTINUE 884 7,1,1,.000027 833 3, 886 9,3,1,.00001 834 7,1,1,.000000 887 THERMAL LOADS 835 8,2,1,.000000 889 -5.1,2.104166 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1,.000131 842 BOUNDARY CHANGE 895 8,2,1,.000131 843 3, 896 9,3,1,.000131 844 67,1,1,.000000 897 THERMAL LOADS 845 8,2,1,.000000 897 THERMAL LOADS 845 8,2,1,.000000 898 1,				
814 7,1,1, .000000 867 THERMAL LOADS 815 8,2,1, .000000 868 1, 816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 844 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 CONTINUE 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
815 8,2,1, .000000 868 1, 816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 BOUNDARY CHANGE 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 888 1, 837 THERMAL LOADS 838 1, 886 9,3,1, .000027 839 BOUNDARY CHANGE 885 8,2,1, .000027 831 THERMAL LOADS 890 832 BOUNDARY CHANGE 891 CONTINUE 833 3, 886 9,3,1, .000000 888 1, 834 7,1,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 844 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000				
816 9,3,1, .000000 869 .0,2.104168 817 THERMAL LOADS 870 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 888 1, 837 THERMAL LOADS 880 881 1, 891 CONTINUE 883 3, 886 9,3,1, .000027 883 89, 3,1, .000000 889 -5.1,2.104166 883 1, 891 CONTINUE 884 7,1,1, .000000 889 -5.1,2.104166 887 THERMAL LOADS 888 1, 891 CONTINUE 889 890 888 1, 891 CONTINUE 889 890 898 3, .000131 884 CONTINUE 894 7,1,1, .000131 884 BOUNDARY CHANGE 895 8,2,1, .000131 884 7,1,1, .000000 897 THERMAL LOADS 885 8,2,1, .000131 884 7,1,1, .000000 897 THERMAL LOADS				THERMAL LOADS
817 THERMAL LOADS 818 1, 871 CONTINUE 819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 878 1, 827 THERMAL LOADS 880 828 1, 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 844 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 887 THERMAL LOADS 837 THERMAL LOADS 838 1, 839 .0,2.104168 899 F.1,2.104166 840 893 3, 841 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 842 BOUNDARY CHANGE 895 8,2,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000			868	l,
817 THERMAL LOADS 818		9,3,1, .000000	869	.0,2.104168
819 .0,2.104166 872 BOUNDARY CHANGE 820 873 3, 821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 3, 896 9,3,1, .000131 842 BOUNDARY CH	817	THERMAL LOADS	870	•
820 821 CONTINUE 822 BOUNDARY CHANGE 833 3, 826 9,3,1, .000000 827 7,1,1, .000000 828 8,2,1, .000000 829 8,2,1, .000000 820 8,2,1, .000000 821 8,2,1, .000000 822 8,2,1, .000000 823 3, 824 7,1,1, .000000 825 8,2,1, .000000 826 9,3,1, .000000 827 THERMAL LOADS 828 1, 829 .0,2.104166 829 .0,2.104166 830 881 CONTINUE 829 .0,2.104166 830 883 3, 831 CONTINUE 830 884 7,1,1, .000027 832 BOUNDARY CHANGE 830 886 9,3,1, .000027 832 BOUNDARY CHANGE 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 887 THERMAL LOADS 837 THERMAL LOADS 838 1, 839 .0,2.104168 890 891 CONTINUE 839 .0,2.104168 890 893 3, 841 CONTINUE 839 .0,2.104168 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 843 3, 844 CONTINUE 854 BOUNDARY CHANGE 855 8,2,1, .000131 844 7,1,1, .000000 857 THERMAL LOADS 858 1, .000131 844 7,1,1, .000000 857 THERMAL LOADS 858 8,2,1, .000131	818	1,	871	CONTINUE
820 821	819	.0,2.104166	872	BOUNDARY CHANGE
821 CONTINUE 874 7,1,1, .000000 822 BOUNDARY CHANGE 875 8,2,1, .000000 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS	820		873	
822 BOUNDARY CHANGE 823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 878 1, 827 THERMAL LOADS 828 1, 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 888 1, 837 THERMAL LOADS 890 838 1, 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS	821	CONTINUE		
823 3, 876 9,3,1, .000000 824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 888 1, 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS		BOUNDARY CHANGE		· · ·
824 7,1,1, .000000 877 THERMAL LOADS 825 8,2,1, .000000 878 1, 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS		3.		- · ·
825 8,2,1, .000000 879 .0,2.104166 826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 888 1, 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS		· ·		
826 9,3,1, .000000 879 .0,2.104166 827 THERMAL LOADS 880 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
827 THERMAL LOADS 828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 888 1, 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 897 THERMAL LOADS				
828 1, 881 CONTINUE 829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,		* * *		•0,2•104100
829 .0,2.104166 882 BOUNDARY CHANGE 830 883 3, 831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				CONTINUE
830 831				
831 CONTINUE 884 7,1,1, .000027 832 BOUNDARY CHANGE 885 8,2,1, .000027 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,		•0,2•104100		
832 BOUNDARY CHANGE 833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,		CONTINUE		=
833 3, 886 9,3,1, .000027 834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
834 7,1,1, .000000 887 THERMAL LOADS 835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				T
835 8,2,1, .000000 888 1, 836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
836 9,3,1, .000000 889 -5.1,2.104166 837 THERMAL LOADS 890 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
837 THERMAL LOADS 838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
838 1, 891 CONTINUE 839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				-5.1,2.104166
839 .0,2.104168 892 BOUNDARY CHANGE 840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
840 893 3, 841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
841 CONTINUE 894 7,1,1, .000131 842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,		.0,2.104168		
842 BOUNDARY CHANGE 895 8,2,1, .000131 843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,				
843 3, 896 9,3,1, .000131 844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,		CONTINUE		
844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,	842	BOUNDARY CHANGE	895	8,2,1, .000131
844 7,1,1, .000000 897 THERMAL LOADS 845 8,2,1, .000000 898 1,	843	3,	896	
845 8,2,1, .000000 898 1,	844		897	
	845		89 8	
	846	9,3,1, .000000	899	-24.4,2.104168

9 00		9 56	9,3,1, .000373
901	CONTINUE	957	THERMAL LOADS
9 02	BOUNDARY CHANGE	958	1,
903	3,	959	-89.2,2.104168
904	7,1,1, .000248	960	,
905	8,2,1, .000248	961	CONTINUE
906	9,3,1, .000248	962	BOUNDARY CHANGE
9 07	THERMAL LOADS	963	
			3,
908	1,	964	7,1,1, .000362
909	-42.6,2.104166	965	8,2,1, .000362
9 10		966	9,3,1, .000362
911	CONTINUE	967	THERMAL LOADS
912	BOUNDARY CHANGE	96 8	1,
913	3,	9 69	-86.5,2.104166
914	7,1,1, .000342	97 0	
915	8,2,1, .000342	971	CONTINUE
916	9,3,1, .000342	972	BOUNDARY CHANGE
917	THERMAL LOADS	973	3,
918	1,	974	7,1,1, .000260
919	-58.7,2.104166	975	8,2,1, .000260
	-30.7,2.104100	976	
920	001/07/07		9,3,1, .000260
921	CONTINUE	977	THERMAL LOADS
922	BOUNDARY CHANGE	978	1,
923	3,	979	-79.6,2.104166
924	7,1,1, .000420	98 0	
925	8,2,1, .000420	981	CONTINUE
9 26	9,3,1, .000420	982	BOUNDARY CHANGE
927	THERMAL LOADS	983	3,
928	1,	984	7,1,1, .000225
929	-72.0,2.104168	985	5,2,1, .000225
930	72.0,2.104100	9 86	2,3,1, .000225
931	CONTINUE	987	THERMAL LOADS
932	BOUNDARY CHANGE	988),
		989	-68.9,2.104168
933	3,	990	-00.9,2.104100
934	7,1,1, .000462		COMPANIE
935	8,2,1, .000462	99 1	CONTINUE
936	9,3,1, .000462	992	BOUNDARY CHANGE
9 37	THERMAL LOADS	993	3,
938	1,	9 94	7,1,1, .00 0070
939	-81.8,2.104166	995	8,2,1, .00 0070
94 0		996	9,3,1, .000070
941	CONTINUE	99 7	THERMAL LOADS
942	BOUNDARY CHANGE	99 8	1,
943	3,	999	-54.8,2.104166
944	7,1,1, .000366	1000	
945	8,2,1, .000366	1001	CONTINUE
946	9,3,1, .000366	1002	BOUNDARY CHANGE
	· · ·	1003	3,
947	THERMAL LOADS	1003	
948	1,		7,1,1, .000048
949	-87.6,2.104166	1005	8,2,1, .000048
950		1006	9,3,1, .000048
951	CONTINUE	1007	THERMAL LOADS
952	BOUNDARY CHANGE	1008	1,
953	3,	1009	-38.1,2. 104166
954	7,1,1, .000373	1010	
955	8,2,1, .000373	1011	CONTINUE

明 海 1