Deep Learning: Class 1

Binary Perceptrons

Deep Learning

- The model does not require handcrafted features or attributes.
- ullet Given the samples $\{x_1,x_2,\ldots,x_n\}$ and the labels $\{y_1,y_2,\ldots,y_n\}$ The algorithm learns to how to classify the input data correctly.
- No decision to make such as coding algorithmic states for the bayesian networks or reinforcement learning.

• Invented by Frank Rosenblatt in the last 50s. Frank studied and later taught cognitive psychology in Cornell.

- Invented by Frank Rosenblatt in the last 50s. Frank studied and later taught cognitive psychology in Cornell.
- A model of the human brain and not simply a classification algorithm.

- Invented by Frank Rosenblatt in the last 50s. Frank studied and later taught cognitive psychology in Cornell.
- A model of the human brain and not simply a classification algorithm.

 NYT 7 JUL 1958: "The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence"

- Invented by Frank Rosenblatt in the last 50s. Frank studied and later taught cognitive psychology in Cornell.
- A model of the human brain and not simply a classification algorithm.

 NYT 7 JUL 1958: "The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and

be conscious of its existence"

A STEEL AND THE ADMITTS AND TH

NYT. Jul 7. 1958

The Perceptron: Algebra

- ullet Given class (yellow circle / blue star) find w,b that define the hyperplane to separate the two classes.
- The hyperplane is defined by as all the points such that:

$$wx+b=[\sum x^iw^i]+b=0$$

In this example:

$$egin{aligned} w &= (1,-1) \ b &= 0 \end{aligned}$$

CSE 440: Intro To Al, Fall 2021, MSU

The Perceptron: Algebra

- ullet Remember $x \cdot w = \sum x^i w^i = |x| \cdot |w| \cdot cos(lpha)$
- ullet W is orthogonal (90 degrees) to the hyperplane w=(1,-1)
- So for everything above the hyperplane (yellow dots) the angle is smaller than
 90 degrees!
- The dot product is positive!

The Perceptron: Algebra

- ullet Remember $x \cdot w = \sum x^i w^i = |x| \cdot |w| \cdot cos(lpha)$
- ullet W is orthogonal (90 degrees) to the hyperplane $\,w=(1,-1)\,$
- So for everything below the hyperplane (yellow dots) the angle is bigger than
 90 degrees!
- The dot product is negative!

ullet Taking the sign separates the classes! (1,2)

The Perceptron: W?

• According to Rosenblatt the perceptron can learn the right weights by initializing them to 0 and iteratively updating \boldsymbol{w} when a sample is misclassified.

$$w_{k+1} = w_k + y \cdot x \ y \in \{-1,1\}$$

CSE 440: Intro To AI, Fall 2021, MSU

The Perceptron: W?

ullet According to Rosenblatt the perceptron can learn the right weights by initializing them to 0 and iteratively updating $oldsymbol{w}$ when a sample is misclassified.

CSE 440: Intro To AI, Fall 2021, MSU

The Perceptron: b?

- ullet In the next few slides we will forget about $oldsymbol{b}$ and our equation becomes $sign(w\cdot x)$
- This is achieved via a simple transformation, for each $x=(x^1,x^2)$ we define $\hat x=(x^1,x^2,1)$ and for $w=(w^1,w^2)$ we define $\hat w=(w^1,w^2,b)$
- Now instead of looking for a 2 dimensional hyperplane wx+b we are looking for a 3 dimensional hyperplane $\hat{w}\hat{x}$.

- Assume that the points are actually separable by a hyperplane. Meaning that there is a w^* for which $\forall j$ it holds that $w^* \cdot x_j = y_j$. How can we show the perceptron actually learns to classify the input correctly?
- ullet Let k be an iteration in which some x_i was misclassified, meaning

$$w \cdot x_i \cdot y_i = -1$$

we want to show that is k bounded!

• Let k be an iteration in which some x_i was misclassified:

$$egin{aligned} w_{k+1} &= w_k + y \cdot x \ w^*w_{k+1} &= w^*w_k + y \cdot w^*x \geq w^*w_k + 1 \ w^* \cdot w_{k+1} &\geq w^*w_k + 1 \ \end{aligned}$$
Remember that $egin{aligned} w_0 &= \hat{0} & \text{hence:} \ w^*w_1 &\geq 1 \ w^*w_2 &\geq 2 \ \ldots \ w^*w_k &> k \end{aligned} egin{aligned} m{w}_k &| &\geq rac{k}{|w^*|} \end{aligned}$

CSE 440: Intro To Al, Fall 2021, MSU

• Let k be an iteration in which some x_i was misclassified:

$$egin{aligned} \left|w_{k+1}
ight|^2 &= \left|w_k + y_i x_i
ight|^2 = \left|w_k
ight|^2 + \left|x_i y_i
ight|^2 + 2w_k x_i y_i \ \left|w_{k+1}
ight|^2 &= \left|w_k
ight|^2 + \left|x_i
ight|^2 + 2(w_k x_i) y_i \ \left|w_{k+1}
ight|^2 &= \left|w_k
ight|^2 + \left|x_i
ight|^2 - 2 \leq \left|w_k
ight|^2 + \left|x_i
ight|^2 \end{aligned}$$

But x_i is from our data and is always bounded (for instance we can normalize)

Thus we get
$$rac{|w_{k+1}|^2 \leq |w_k|^2 + R^2}{|w_1|^2 \leq R^2} \Rightarrow |w_k|^2 \leq k \cdot R^2$$

CSE 440: Intro To AI, Fall 2021, MSU

ullet Let k be an iteration in which some x_i was misclassified. We get that:

$$rac{k^2}{\left|w^*
ight|^2} \leq \left|w_k
ight|^2 \leq k \cdot R^2$$

And therefore:

$$k \leq R^2 \cdot |w^*|^2$$

Meaning the perceptron converges after a bounded number of updates!

The Perceptron: Assignment!

- Before next class code the update in python. Pull from the github repository for this class and finish the perceptron class.
- The data is from the sklearn package we previously used. it is a breast cancer
 data from the Wisconsin med school, so every sample is a vector of 30
 measurements concerning the shape and size of a tumor, and the label tells us
 if it's cancerous or not.
- Each of the 569 patients in this data set actually recovered so don't let it get you down.
- My implementation gets over 93% accuracy.