Formal Setting: MAB Simplified I RL: no states & no transitions A: 1,-, K "arms" $r: A \rightarrow \Delta(IR)$ noisy $r_t \sim r(a_t)$ r(rtlat) e [0,1] $\mathbb{E}(\Upsilon(a)) = Ma$ T: Z+ integer time novizan Spal: maximize cumulative expected reward $\mathbb{E}\left[\mathbf{z}_{t=1}^{\mathsf{T}}\,\mathbf{v}(\mathbf{a}_{t})\right] = \mathbf{z}_{t=1}^{\mathsf{T}}\,\mathbf{M}_{\mathbf{a}_{t}}$ optimal action: $\alpha^* = \operatorname{argmax}_{\alpha=1,-1} Ma$ Devise an algorithm for balancing exploration and exploitation The regret of an algorithm which choosed a, -, at Definition (Regret) $R(T) = \mathbb{E}\left[\sum_{t=1}^{T} r(a^{*}) - r(a_{t})\right]$ $=\sum_{t=1}^{1}\mathcal{M}^{*}-\mathcal{M}a_{t}$ Want to find an algorithm <u>sublinear</u> in regret R(T) \wedge TP p(1 $\lim_{T\to\infty} \frac{R(T)}{T} \to 0$ in this case

Balancing explanation & explaitation Alg 1: Random Try each arm once for t=1, -,T: compute $\hat{\gamma}_{a_t} = r_t$ $a_{t} \sim writ(l_{1},...,K)$ for t= K+1, --. T at = argmax ya Both suffer from linear regret

Why? R(T) = \(\frac{1}{4} \) \(\text{E[r(a*) - r(a_t)]} \) $= \underbrace{ \left\{ \left[\left(r(\alpha^*) - r(\alpha_k) \right) \underline{1} \right\} \left[\alpha_k \neq \alpha_k \right] \right\} }_{\xi=1}$ = Z (y*-Max)[P{ax+ax}] 2 = \ \(\text{min (y*- ya)} \cdot \(\text{P\ aza*} \) \ \(\text{P\ aza*} \) Alg 3: Explore-thon-commit Pull euch arm N times (t=1,...,NK) exploration compute \mathcal{Y}_a as average observed reward. exploitation
 (commit) for t= NK+1, --, T at= argmax Aa = a* $R(T) = \sum_{k=1}^{NK} \mathbb{E}(r(a^k) - r(a_k)) + \sum_{Nk+1} \mathbb{E}(r(a^k) - r(a_k))$

Claim: R₁ < NK for reward bounder [0,1]