Stručné shrnutí semináře 3

Prostor jevů Ω je množina všech možných výsledků fyzikálního experimentu.

Při realizaci experimentu nastane právě jeden **elementární jev** ω - tj. jednoprvková podmnožina Ω . Jev A je každá podmnožina Ω .

Pravděpodobnost P je zobrazení množiny všech podmnožin Ω do množiny reálných čísel splňující Kolmogorovy axiomy:

- $1.P(\Omega) = 1$
- 2. $A \subset \Omega \Rightarrow P(A) \geq 0$
- 3. $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

Pravděpodobnost určitého jevu A získáme jako **limitu relativních četností** toho jevu: $\lim_{N\to\infty} \frac{N_A}{N}$, kde N je počet opakování experimentu a N_A je počet výsledků příznivých tomuto jevu.

Pro **náhodnou proměnnou** je prostor jevů Ω číselná množina

Diskrétní náhodná proměnná (Ω je spočetná množina) je popsaná

Posloupností pravděpodobností $P_1, P_2, ...$ takových že pravděpodobnost i-tého výsledku je P_i $P(x_i) = P_i$

Pravděpodobnosti splňují normovací podmínku $\sum_i P_i = 1$ (suma je přes všechny možné výsledky)

Spojitá náhodná proměnná (Ω je nespočetná množina) je popsaná dvěma způsoby:

(i) hustotou pravděpodobnosti f(x), která je definovaná vztahem

 $\forall x_0 \in R$ $P(x \in \langle x_0, x_0 + dx \rangle) = f(x_0)dx$

Hustota pravděpodobnosti splňuje normovací podmínku $\int_{-\infty}^{\infty} f(x)dx = 1$.

(ii) distribuční funkcí F(x), která je definovaná vztahem $F(x) = \int_{-\infty}^{x} f(t) dt$

Pro distribuční funkci platí $\forall x_0 \in R$ $P(x \le x_0) = F(x_0)$

F(x) je neklesající funkce $x_1 \le x_2 \implies F(x_1) \le F(x_2)$

 $\lim_{x\to-\infty} F(x) = 0 \text{ a } \lim_{x\to\infty} F(x) = 1.$

Pravděpodobnost, že náhodná proměnná x se bude vyskytovat v intervalu $\langle a,b\rangle$ je

$$P(x \in \langle a, b \rangle) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$