5.24 among_diff_0

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the automaton of nvalue.

Constraint among_diff_O(NVAR, VARIABLES)

Arguments NVAR : dvar

VARIABLES : collection(var-dvar)

Restrictions NVAR > 0

NVAR \leq |VARIABLES|
required(VARIABLES, var)

Purpose

NVAR is the number of variables of the collection VARIABLES that take a value different from $\boldsymbol{0}.$

Example

```
(3, \langle 0, 5, 5, 0, 1 \rangle)

(0, \langle 0, 0, 0, 0, 0 \rangle)

(1, \langle 0, 0, 0, 6, 0 \rangle)
```

The first among_diff_0 constraint holds since exactly 3 values of the collection of values (0, 5, 5, 0, 1) are different from 0.

All solutions

Figure 5.60 gives all solutions to the following non ground instance of the among_diff_0 constraint: $V_1 \in \{0,3\}$, $V_2 \in [0,1]$, $V_3 \in [5,6]$, $V_4 \in [0,2]$, among_diff_0($\frac{2}{3}$, V_1 , V_2 , V_3 , V_4).

Figure 5.60: All solutions corresponding to the non ground example of the among_diff_0 constraint of the **All solutions** slot, where the number of variables assigned a value different from zero is equal to NVAR = 2

```
\begin{tabular}{lll} {\bf NVAR} &> 0 \\ {\bf NVAR} &< |{\tt VARIABLES}| \\ |{\tt VARIABLES}| &> 1 \\ {\bf atleast}(1, {\tt VARIABLES}, 0) \\ 2*{\tt among\_diff\_O(VARIABLES.var)} &> |{\tt VARIABLES}| \\ \end{tabular}
```

Symmetries

- Items of VARIABLES are permutable.
- An occurrence of a value of VARIABLES.var that is different from 0 can be replaced by any other value that is also different from 0.

Arg. properties

- Functional dependency: NVAR determined by VARIABLES.
- ullet Contractible wrt. VARIABLES when NVAR =0.
- Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
- Aggregate: NVAR(+), VARIABLES(union).

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for among_diff_0: domains 0..n

Solution density for among_diff_0

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	1	1	1	1	1	1	1
	1	4	9	16	25	36	49	64
	2	4	27	96	250	540	1029	1792
	3	-	27	256	1250	4320	12005	28672
	4	-	-	256	3125	19440	84035	286720
	5	-	-	-	3125	46656	352947	1835008
	6	-	-	-	-	46656	823543	7340032
	7	-	-	-	-	-	823543	16777216
	8	-	-	-	-	- :£ 0. domo	-	16777216

Solution count for among_diff_0: domains 0..n

Solution density for among_diff_0

Parameter value as fraction of length

Solution density for among_diff_0

Parameter value as fraction of length

See also

common keyword: nvalue (counting constraint).

generalisation: among (variable $\neq 0$ replaced by variable \in values).

Keywords

characteristic of a constraint: joker value, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.

 $\begin{array}{lll} \textbf{Arc input(s)} & \textbf{VARIABLES} \\ \textbf{Arc generator} & & & & \\ \textbf{SELF} \mapsto \textbf{collection}(\textbf{variables}) \\ \textbf{Arc arity} & & 1 \\ \textbf{Arc constraint(s)} & & \textbf{variables.var} \neq 0 \\ \textbf{Graph property(ies)} & & \textbf{NARC} = \textbf{NVAR} \\ \end{array}$

Graph model

Since this is a unary constraint we employ the SELF arc generator in order to produce an initial graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.61 respectively show the initial and final graph associated with first example of the **Example** slot. Since we use the **NARC** graph property, the loops of the final graph are stressed in bold.

Figure 5.61: Initial and final graph of the among_diff_0 constraint

Automaton

Figure 5.62 depicts the automaton associated with the among_diff_0 constraint. To each variable VAR $_i$ of the collection VARIABLES corresponds a 0-1 signature variable S_i . The following signature constraint links VAR $_i$ and S_i : VAR $_i \neq 0 \Leftrightarrow S_i$. The automaton counts the number of variables of the VARIABLES collection that take a value different from 0 and finally assigns this number to NVAR.

Figure 5.62: Automaton of the among_diff_0 constraint

Figure 5.63: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the among_diff_0 constraint: since all states variables Q_0, Q_1, \ldots, Q_n are fixed to the unique state s of the automaton, the transitions constraints share only the counter variable C and the constraint network is Berge-acyclic