Multi-agent simulation of trust in vaccination Presentation

Calvin Massonnet calvin.massonnet@etu.univ-grenoble-alpes.fr

Internship financed by CNRS MODCOV19 Supervised by Carole Adam (LIG) and Didier Georges (GIPSA-lab)

STeamer seminar - 24 June 2022

- 1 Introduction
- 2 State-of-the-art
- 3 Conceptual model
- 4 Implementation
- **6** Observations
- 6 Discussion

- State-of-the-art

SARS-CoV-2 and COVID-19

Introduction 0000

• Emergence in late December 2019

- Emergence in late December 2019
- Government measures (e.g., social distancing, lockdowns)

SARS-CoV-2 and COVID-19

- Emergence in late December 2019
- Government measures (e.g., social distancing, lockdowns)
- SARS-CoV-2 variants

SARS-CoV-2 and COVID-19

- Emergence in late December 2019
- Government measures (e.g., social distancing, lockdowns)
- SARS-CoV-2 variants
- Vaccines

- Emergence in late December 2019
- Government measures (e.g., social distancing, lockdowns)
- SARS-CoV-2 variants
- Vaccines
- Misinformation and disinformation

Problem

Introduction

Agent-based simulations on vaccine effectiveness

Public trust in vaccines

Goal

Introduction

Agent-based simulations on vaccine effectiveness

Public trust in vaccines

- In the continuity of CoVprehension.org
- With the help of Pierrick Tranouez (Litis, University of Rouen Normandie)

- 1 Introduction
- State-of-the-art

State-of-the-art 0000

Epidemic simulations - Mathematical models

https://covprehension.org/2020/03/30/q6.html

Epidemic simulations

Mathematical models

- Homogeneous
- Macro-level model & analysis

Agent-based models

- Heterogeneous
- Micro-level model
- Macro-level analysis

- 1 Introduction
- State-of-the-art
- 3 Conceptual model

Compartmental model

S: Susceptible; I: Symptomatic; A: Asymptomatic; H: Hospitalised;

R: Recovered; D: Deceased

Calvin Massonnet

Compartmental model with vaccination

S: Susceptible; I: Symptomatic; A: Asymptomatic; H: Hospitalised;

R: Recovered; D: Deceased

13 / 30

Compartmental model probabilities

$$x : virus \ dangerousness$$
 $y : vaccine \ effectiveness$
 $P(T) = 1/2 * x$
 $P(Tv) = P(T) * (1 - y)$
 $P(I) = 1 - P(A)$
 $P(Iv) = 1 - P(Av)$
 $P(A) = P(T) + 1/4 * (1 - x)$
 $P(Av) = P(A) * y$
 $P(H) = 7/10 * x + i$
 $P(Hv) = P(H) * (1 - y)$
 $P(F) = 1/2 * x + h$
 $P(F) = P(F) * (1 - y)$
 $P(F) = 1 - P(F)$
 $P(F) = P(F) * (F)$
 $P(F) = 1 - P(F)$
 $P(F) = P(F) * (F)$
 $P(F) = 1/2 * x + r$
 $P(F) = P(F) * (1 - y)$

$$i \sim \mathcal{N}(21, 1), h \sim \mathcal{N}(10, 3), a \sim \mathcal{N}(15, 2), r \sim \mathcal{N}(6, 1)$$

Agents

Attributes

- Epidemiological state
- Vaccine status (boolean)
- Trust level (float: 0.0 1.0)

Behaviour

- Move randomly
- Influence each other's trust
- Symptomatic & Asymptomatic infect Susceptibles only
- Hospitalised are put apart
- Susceptible, Asymptomatic & Recovered visit hospitalised
- Uninfected vaccinate themselves based on their trust level and available doses

 State-of-the-art
 Conceptual model occidents
 Implementation occidents
 Observations occidents
 Discussion occidents

Trust and agent interactions (1/3)

Figure 1: Interpersonal influence - Agents close enough to each other will influence each other's trust. On the right, two agents are close enough to update their trust levels between themselves.

Trust and agent interactions (2/3)

Figure 2: Observational influence - Agents will observe their environment and update their own trust level based on their observations. The observing agent (big circle) can see four unvaccinated agents (small circles) with symptoms (-), five vaccinated agents (small triangles) without symptoms and one vaccinated agent with symptoms.

Trust and agent interactions (3/3)

Figure 3: Institutional influence - Agents will receive information about the proportion of vaccinated agents in and out of a specific epidemiological state. The aware agent (big circle) is informed that 10% of hospitalised agents are vaccinated and that 80% of unhospitalised agents are vaccinated.

- 1 Introduction

- 4 Implementation

Details

- NetLogo
- \sim 800 lines
- Based on CoVprehension's Q17
- Available on GitHub & CoVprehension.org (in near future)

Simulation environment

Environment details

- 2000 agents
- Agents initialised unvaccinated
- Agents initialised in the Susceptible class
- One agent initialised in the Symptomatic class
- Trust initialised randomly following custom law

Figure 4: Output of the algorithm used in the initialisation of the population's average trust.

Inputs

- Virus dangerousness (1 5)
- Vaccine effectiveness (1 9)
- Population average initial trust (0.1 0.9)
- Population misinterpretation of information (false/true)

Outputs

Raw numbers

- Total number of Hospitalised
- Total number of Hospitalised and vaccinated
- Total number of vaccines given

Graphs

- Epidemic dynamic
- Trust distribution
- Trust influence over daily vaccinations
- Hospitalisations and deaths per vaccination status
- Hospitalisations and deaths per vaccination status and trust level

Layout

- 1 Introduction

- 6 Observations

Calvin Massonnet

Population initial trust

Figure 5: An high initial trust (bottom: 0.7) and an effective vaccine heightens population trust and results in almost two times less deaths than starting with a low population trust (top: 0.3).

Misinterpretation of information

Figure 6: The population trusts faster without misinterpretation of information (bottom), which maximises daily vaccinations rates earlier than with misinterpretation of information (top).

- 1 Introduction

- 6 Discussion

Contribution

- Population trust is important and needed before the start of the vaccination campaign
- Making sure that the population correctly understands given information is crucial to heighten trust and give people the desire to get vaccinated

Future plans

- Add age groups
- Households (influence trust among families)
- Distrust when insufficient available vaccines
- Different types of information sources (influence trust differently)

