Quantum Mechanics

Homework Assignment 13

Fall, 2019

1. [C-T Exercise 9-1] Consider a spin 1/2 particle. Call its spin $\hat{\vec{S}}$, its orbital angular momentum $\hat{\vec{L}}$, and its state vector $|\psi\rangle$. The two functions $\psi_{+}(\vec{r})$ and $\psi_{-}(\vec{r})$ are defined by $\psi_{\pm}(\vec{r}) = \langle \vec{r}, \pm | \psi \rangle$. Assume that

$$\psi_{+}(\vec{r}) = R(r) \left[Y_{00}(\theta, \phi) + \frac{1}{\sqrt{3}} Y_{10}(\theta, \phi) \right],$$

$$\psi_{-}(\vec{r}) = \frac{R(r)}{\sqrt{3}} \left[Y_{11}(\theta, \phi) - Y_{10}(\theta, \phi) \right],$$

where r, θ , ϕ are the coordinates of the particle and R(r) is a given function of r.

- (a) What condition must R(r) satisfy for $|\psi\rangle$ to be normalized?
- (b) \hat{S}_z is measured with the particle in the state $|\psi\rangle$. What results can be found, and with what probabilities? Same question for \hat{L}_z , then for \hat{S}_x .
- (c) A measurement of \vec{L}^2 , with the particle in the state $|\psi\rangle$, yielded zero. What state describes the particle just after this measurement? Same question if the measurement of $\hat{\vec{L}}^2$ had given $2\hbar^2$.
- 2. [C-T Exercise 9-2] Consider a spin 1/2 particle. $\hat{\vec{p}}$ and \vec{S} designate the observables associated with its momentum and its spin. We choose as the basis of the state space the orthonormal basis $|p_x p_y p_z, \pm\rangle$ of eigenvectors common to \hat{p}_x , \hat{p}_y , \hat{p}_z , and \hat{S}_z (whose eigenvalues are, respectively, p_x , p_y , p_z , and $\pm \hbar/2$). We intend to solve the eigenvalue equation of the operator \hat{A} which is defined by $\hat{A} = \hat{\vec{S}} \cdot \hat{\vec{p}}$.
 - (a) Is \hat{A} Hermitian?
 - (b) Show that there exists a basis of eigenvectors of \hat{A} which are also eigenvectors of \hat{p}_x , \hat{p}_y , and \hat{p}_z . In the subspace spanned by the kets $|p_x p_y p_z, \pm\rangle$, where p_x , p_y , and p_z are fixed, what is the matrix representing \hat{A} ?
 - (c) What are the eigenvalues of \hat{A} , and what is their degree of degeneracy? Find a system of eigenvectors common to \hat{A} and \hat{p}_x , \hat{p}_y , \hat{p}_z .
- 3. [C-T Exercise 9-3] The Hamiltonian of an electron of mass m, charge q, spin $\hbar \vec{\sigma}/2$ with σ_x , σ_y , and σ_z the Pauli matrices, placed in an electromagnetic field described by the vector potential $\vec{A}(\vec{r},t)$ and the scalar potential $U(\vec{r},t)$, is written $\hat{H}=\frac{1}{2m}\big[\hat{\vec{p}}-q\vec{A}(\hat{\vec{r}},t)\,\big]^2+qU(\hat{\vec{r}},t)-\frac{q\hbar}{2m}\vec{\sigma}\cdot\vec{B}(\hat{\vec{r}},t)$. The last term represents the interaction between the spin magnetic moment $(q\hbar/2m)\vec{\sigma}$ and the magnetic field $\vec{B}(\hat{\vec{r}},t)=\vec{\nabla}\times\vec{A}(\hat{\vec{r}},t)$. Show, using the properties of the Pauli matrices, that this Hamiltonian can also be written in the form ("the Pauli Hamiltonian") $\hat{H}=\frac{1}{2m}\Big\{\vec{\sigma}\cdot\big[\hat{\vec{p}}-q\vec{A}(\hat{\vec{r}},t)\,\big]\Big\}^2+qU(\hat{\vec{r}},t)$.
- 4. [C-T Exercise 10-3] Consider a system composed of two spin 1/2 particles whose orbital variables are ignored. The Hamiltonian of the system is $\hat{H} = \omega_1 \hat{S}_{1z} + \omega_2 \hat{S}_{2z}$, where \hat{S}_{1z} and \hat{S}_{2z} are the projections of the spins \hat{S}_1 and \hat{S}_2 of the two particles onto Oz, and ω_1 and ω_2 are real constants.
 - (a) The initial state of the system, at time t=0, is $|\psi(0)\rangle=\frac{1}{\sqrt{2}}\big[\,|+-\rangle+|-+\rangle\,\big]$. At time $t,\,\hat{\vec{S}}^2=(\hat{\vec{S}}_1+\hat{\vec{S}}_2)^2$ is measured. What results can be found, and with what probabilities?
 - (b) If the initial state of the system is arbitrary, what Bohr frequencies can appear in the evolution of $\langle \hat{\vec{S}}^2 \rangle$? Same question for $\hat{S}_x = \hat{S}_{1x} + \hat{S}_{2x}$.
- 5. [C-T Exercise 10-5] Let $\hat{\vec{S}} = \hat{\vec{S}}_1 + \hat{\vec{S}}_2 + \hat{\vec{S}}_3$ be the total angular momentum of three spin 1/2 particles (whose orbital variables will be ignored). Let $|\varepsilon_1 \varepsilon_2 \varepsilon_3\rangle$ be the eigenstates common to \hat{S}_{1z} , \hat{S}_{2z} , and \hat{S}_{3z} , of respective eigenvalues $\varepsilon_1 \hbar/2$, $\varepsilon_2 \hbar/2$, and $\varepsilon_3 \hbar/2$. Give a basis of eigenvectors common to $\hat{\vec{S}}^2$ and \hat{S}_z , in terms of the kets $|\varepsilon_1 \varepsilon_2 \varepsilon_3\rangle$. Do these two operators form a CSCO? (Begin by adding two of the spins, then add the partial angular momentum so obtained to the third one.)