Графическое решение задачи линейного программирования

Цели:

- 1. Формирование знаний об основных понятиях и определениях графического метода решения задач линейного программирования.
- 2. Формирование знаний об основных способах решения задач линейного программирования графическим методом.

Задачи:

- 1. Сформировать теоретические знания необходимые при составлении и решении задач линейного программирования графическим методом.
- 2. Содействовать расширению профессиональной компетенции в области основных понятий и способов решений задач линейного программирования графическим методом.

Графический способ решения задач линейного программирования целесообразно использовать для:

- ✓ решения задач с двумя переменными, когда ограничения выражены неравенствами;
- ✓ решения задач со многими переменными при условии, что в их канонической записи содержится не более двух свободных переменных. целевая функция:

$$Z_{\max} = c_1 x_1 + c_2 x_2;$$

ограничения:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 \le b_1; \\ a_{21}x_1 + a_{22}x_2 \le b_2; \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 \le b_m; \\ x_1 \ge 0; x_2 \ge 0. \end{cases}$$

Каждое из неравенств системы ограничений задачи геометрически определяет полуплоскость соответственно с $a_{i1}x_1 + a_{i2}x_2 = b_i$; $(i = \overline{1,m})$; $x_1 = 0$; $x_2 = 0$ граничными прямыми.

В том случае, если система неравенств совместна, область ее решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей — выпуклое, то областью допустимых решений является выпуклое множество, которое называется многоугольником решений. Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки равенств.

Областью допустимых решений системы неравенств

- выпуклый многоугольник;
- выпуклая многоугольная неограниченная область;
- пустая область;
- луч;
- отрезок;
- единственная точка

Графическое решение

- Целевая функция определяет на плоскости семейство параллельных прямых, каждой из которых соответствует определенное значение Z.
- Вектор C = (c1; c2) с координатами c1 и c2, перпендикулярный этим прямым, указывает направление наискорейшего возрастания Z, а противоположный вектор направление убывания Z.
- Если в одной и той же системе координат изобразить область допустимых решений системы неравенств и семейство параллельных прямых, то задача определения максимума функции Z сведется к нахождению в допустимой области точки, через которую проходит прямая из семейства Z = const, и которая соответствует наибольшему значению параметра Z. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение.

Алгоритм решения задачи линейного программирования графическим способом

- 1. Построить прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки равенств.
 - 2. Найти полуплоскости, определяемые каждым из ограничений задачи.
 - 3. Определить многоугольник решений.
 - 4. Построить вектор $\overline{C} = (c_1; c_2)$.
- 5. Построить прямую $Z = c_1 x_1 + c_2 x_2 = 0$, проходящую через начало координат и перпендикулярную вектору С
- 6. Передвигать прямую $Z = c_1 x_1 + c_2 x_2$ в направлении вектора C, в результате чего либо находят точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность функции сверху на множестве планов.
- 7. Определить координаты точки максимума функции и вычислить значение целевой функции в этой точке.