Group 4 Assignment

By: Paul Ycay
Jeesun Suppiah
Ali Syed

The Problem

Experimental design

a) What type of experimental design has been used?

Province						
1	2	3	4			
\$241	\$216	\$230	\$245			
235	220	225	250			
238	205	235	238			
247	213	228	255			
250	220	240	255			

 Since there is only <u>one</u> factor associated with this case study, the provinces, we can conclude that the experimental design <u>is completely randomized with four</u> <u>independent samples.</u>

Analysis of Variance Table

b) Construct the analysis of variance table for this data

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H_a : The average price of at least one of the provinces differs from the other 3

1. First, we will calculate the individual sources : $SST = (\Sigma T_i^2)/n_i - CM$ (Correction of Mean: G^2/n)

$$MST = SST/(k-1) = 3272.2/(4-1) = 1090.7$$

Total
$$SS=(\Sigma x_{ii}^2) - CM = 3932.2$$

$$MSE = SSE/(n-k) = 660/(20-4) = 41.25$$

	Provinces				
	1	2	3	4	
	\$241.00	\$216.00	\$230.00	\$245.00	
	235	220	225	250	
	238	205	235	238	
	247	213	228	255	
	250	220	240	255	
∑ of each Treatments	1,211	1,074	1,158	1,243	
			g ²	21,958,596	

Test stat F = MST/MSE = 1090.7/41.25 = 26.44

ANOVA TABLE

Anova: Sin	gle Factor					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Province 1	5	1211	242.2	38.7		
Province 2	5	1074	214.8	38.7		
Province 3	5	1158	231.6	35.3		
Province 4	5	1243	248.6	52.3		
ANOVA					-	
ce of Varic	SS	df	MS	F	P-value	F crit
Between	3272.2	3	1090.733	26.44202	1.94E-06	3.238872
Within Gr	660	16	41.25		-	
Total	3932.2	19	4			

c) Do the data provide sufficient evidence to indicate that the average price per 2.4 cubic meters of Douglas fir differs among the four provinces? Test using a=0.05

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ H_a : The average price of at least one of the provinces differs from the other 3

$$df_{Treatment} = 3$$
 $df_{Error} = 16$

$$F_{0.05}$$
= with $df_{Treatment}$ = 3 and df_{Error} =16 is 3.24

Since our t stat, F=26.44, is <u>much greater</u> than 3.24, we have to reject the null hypothesis.

Thus, there is sufficient evidence to indicate a difference in the average prices among the 4 provinces.

TABLE 6 (continued)

	df ₁									
df_2	α	1	2	3	4	5	6	7	8	9
10	0.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35
	0.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
	0.025	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78
	0.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
	0.005	12.83	9.43	8.08	7.34	6.87	6.54	6.30	6.12	5.97
11	0.100	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27
	0.050	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
	0.025	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59
	0.010	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
	0.005	12.23	8.91	7.60	6.88	6.42	6.10	5.86	5.68	5.54
2	0.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21
	0.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
	0.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44
	0.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
	0.005	11.75	8.51	7.23	6.52	6.07	5.76	5.52	5.35	5.20
3	0.100	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16
	0.050	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
	0.025	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31
	0.010	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
	0.005	11.37	8.19	6.93	6.23	5.79	5.48	5.25	5.08	4.94
14	0.100	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12
	0.050	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
	0.025	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21
	0.010	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
	0.005	11.06	7.92	6.68	6.00	5.56	5.26	5.03	4.86	4.72
5	0.100	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09
	0.050	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
	0.025	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12
	0.010	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
	0.005	10.80	7.70	6.48	5.80	5.37	5.07	4.85	4.67	4.54
6	0.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06
	0.050	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
	0.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05
	0.010	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
	0.005	10.58	7.51	6.30	5.64	5.21	4.91	4.69	4.52	4.38
7	0.100	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03
	0.050	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
	0.025	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98
	0.010	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
	0.005	10.38	7.35	6.16	5.50	5.07	4.78	4.56	4.39	4.25
8	0.100	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00
	0.050	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
	0.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93
	0.010	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
	0.005	10.22	7.21	6.03	5.37	4.96	4.66	4.44	4.28	4.14
9	0.100	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98
	0.050	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
	0.025	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88
	0.010	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
	0.005	10.07	7.09	5.92	5.27	4.85	4.56	4.34	4.18	4.04
20	0.100	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96
	0.050	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
	0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84
	0.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
	0.005	9.94	6.99	5.82	5.17	4.76	4.47	4.26	4.09	3.96

F-Distribution Graph

Alternate Method: P- Value Test

Our **Test Stat F**, came to be <u>26.44 with 1st and 2nd</u> degrees of freedom 3 and 16, respectively.

26.44 <u>does not exist</u> within the range of these degrees of freedoms, the p-value is hard to compute or non existent in this case

Thus, we <u>reject</u> the p-value method and only conclude our results between our test stat and critical value, 26.44 and 3.24, respectively

		df_1								
df ₂	α	1	2	3	4	5	6	7	8	9
10	0.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35
	0.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
	0.025	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78
	0.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
	0.005	12.83	9.43	8.08	7.34	6.87	6.54	6.30	6.12	5.97
11	0.100	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27
	0.050	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
	0.025	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59
	0.010	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
	0.005	12.23	8.91	7.60	6.88	6.42	6.10	5.86	5.68	5.54
12	0.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21
	0.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
	0.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44
	0.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
	0.005	11.75	8.51	7.23	6.52	6.07	5.76	5.52	5.35	5.20
13	0.100	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16
	0.050	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
	0.025	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31
	0.010	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
	0.005	11.37	8.19	6.93	6.23	5.79	5.48	5.25	5.08	4.94
14	0.100	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12
	0.050	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
	0.025	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21
	0.010	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
	0.005	11.06	7.92	6.68	6.00	5.56	5.26	5.03	4.86	4.72
15	0.100	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09
	0.050	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
	0.025	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12
	0.010	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
	0.005	10.80	7.70	6.48	5.80	5.37	5.07	4.85	4.67	4.54
16	0.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06
	0.050	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
	0.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05
	0.010	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
	0.005	10.58	7.51	6.30	5.64	5.21	4.91	4,69	4.52	4.38
17	0.100	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03
	0.050	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
	0.025	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98
	0.010	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
	0.005	10.38	7.35	6.16	5.50	5.07	4.78	4.56	4.39	4.25
18	0.100	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00
	0.050	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
	0.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93
	0.010	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
	0.005	10.22	7.21	6.03	5.37	4.96	4.66	4.44	4.28	4.14
19	0.100	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98
	0.050	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
	0.025	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88
	0.010	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
	0.005	10.07	7.09	5.92	5.27	4.85	4.56	4.34	4.18	4.04
20	0.100	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96
	0.050	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
	0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84
	0.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
	0.005	9.94	6.99	5.82	5.17	4.76	4.47	4.26	4.09	3.96