Trace normalisée

On prends K un corps local de caractéristique 0 et K_{∞}/K une \mathbb{Z}_p -extension qui est pas de conducteur fini (en gros on peut se ramener à une \mathbb{Z}_p -extension totalement ramifiée). Je note $\Gamma = G_K/G_{K_{\infty}} \simeq \mathbb{Z}_p$ et γ un générateur topologique, puis $\gamma_n := \gamma^{p^n}$.

1 Idée

L'idée c'est que K_{∞}/K est alors profondément ramifiée d'où on a Ax-Sen-Tate :

$$\mathbb{C}_K^{G_{K_\infty}} = \widehat{K}_\infty$$

puis
$$\mathbb{C}_K^{G_K} = \widehat{K_{\infty}}^{\Gamma}$$
.

1.1 Première partie

C'est Ax-Sen-Tate pour les extensions profondéments ramifiées.

1.2 Deuxième cas

Si $Tr_{K_{\infty}/K}(x) := \frac{1}{p^n} Tr_{K_n/K}(x)$ alors :

- 1. $|Tr_{K_{\infty}/K}(x)| \le c|\gamma.x x|_K$
- 2. $Tr_{K_{\infty}/K}(.)$ est continue et s'étend à $\widehat{K_{\infty}}$.
- 3. On obtient $\widehat{K}_{\infty} = K \oplus \widehat{K}_{\infty}^{\circ}$ où le deuxième terme c'est $\ker(Tr_{K_{\infty}/K})$.
- 4. $\gamma 1$ est bijectif d'inverse continu sur $\widehat{K}_{\infty}^{\circ}$.

Le dernier point permet de montrer que $\widehat{K_{\infty}}^{\Gamma} = K^{\Gamma} = K$ par injectivité de $\gamma - 1$.

1.3 Extension : $\mathbb{C}_K(\eta)^{G_K} = 0$

On peut ensuite étendre le résultat et prouver que

1. Si $\tau = \gamma - \lambda$ où $\lambda \in U_K^{(1)}$ est pas une racine de l'unité alors τ est bijectif d'inverse continu sur $\widehat{K_\infty}$.

En particulier étant donné un caractère non trivial de G_K , η , si $\eta(\gamma) = \lambda$ alors $\widehat{K_{\infty}(\eta)}^{\Gamma} = 0$ par injectivité de $\gamma - \lambda$. On prouve ensuite que

$$\mathbb{C}_K(\eta)^{G_K} = 0$$

parce que $\mathbb{C}_K(\eta)^{G_{K_\infty}} = \mathbb{C}_K^{G_{K_\infty}}(\eta)$. (directement via la déf)

2 Preuves

$2.1 \quad (1.2.1.)$

Dans l'ordre pour 1.2.1. on a :

- 1. $v_K(Tr_{K_n/K_{n-1}}) \ge v_K(x) + v_K(D_{K_n/K_{n-1}}) \frac{1}{p^{n-1}}$ par les formules d'estimation de valuations de traces.
- 2. En déroulant avec le théorème de Tate

$$|Tr_{K_n/K_{n-1}}(x)| \le |p|_K^{1-\frac{b}{p^{n-1}}}|x|_K$$

et (en pensant $\alpha^k - 1 = (1 + \alpha + \ldots + \alpha^{k-1}(\alpha - 1))$:

1. Via $Tr_{K_n/K_{n-1}}(x) = \sum_{k=0}^{p-1} \gamma_{n-1}^k(x), \ \gamma_n = \gamma^{p^n}$:

$$|Tr_{K_n/K_{n-1}}(x) - px|_K \le |\gamma.x - x|_K$$

on a une récurrence via si $y = \frac{1}{p} Tr_{K_n/K_{n-1}}(x)$ alors

$$Tr_{K_{\infty}/K}(x) = Tr_{K_{\infty}/K}(y)$$

et

$$|Tr_{K_{\infty}/K}(x) - x|_K = |(Tr_{K_{\infty}/K}(y) - y) + \left(\frac{1}{p}Tr_{K_n/K_{n-1}}(x) - x\right)|_K$$

Y faut juste estimer la constante c via les $p^{-b/p^{n-1}}$.

$2.2 \quad (1.2.2.)$