

EJERCICIOS UNIDAD 4

Para los ejercicios de la unidad IV y V se usó el software LOGISIM que es de distribución libre siempre y cuando se le de el reconocimiento de uso.

Reconocimiento que le damos en este momento, se recomienda la página web: http://www.cburch.com/logisim/index_es.html

1) De acuerdo a cada tabla de verdad, dibuja el latch o flip-flop que corresponda y especificar de qué tipo es (D, J-K, R-S).

2) partir de un flip-flop J-K construye uno tipo toggle (T).

3) Utilizando flip-flops desarrollar un circuito contador del 0 al 7 el cuál sea posible detener el conteo con 1 y continuarlo con 0.

4) En una oficina, hay 3 puertas (P1, P2 y P3), estas son controladas por un control remoto que cuenta con dos botones (B1 y B2). Si se está fuera de la oficina bastará con presionar el botón B1 para que se abra la primera puerta (P1), permitiendo el paso a la persona, automáticamente esta puerta se cerrará y se abrirá la segunda, lo mismo pasará con la tercera. Si se presiona el botón B2, el proceso se invertirá. Si una puerta se ha abierto y se desea mantener en ese estado, será necesario generar un valor 00, mientras que para cerrar esa puerta y terminar con el proceso se necesita generar 11. Para realizar el circuito utilizar flip-flops J-K, mostrar tabla de estados y diagrama de estados.

Nota: No es necesario mostrar todos los estados, solo aquellos que serán utilizados.

Ta					

P1	P2	P3	1	0	0	P1	P2	P3	JA	KA	JB	KB	JC	KC
0	0	0	1	0	0	0	0	0	0	Χ	0	Χ	0	Χ
0	0	Ο	1	0	0	0	0	1	0	Χ	0	Χ	1	Χ
0	0	Ο	1	0	0	1	0	0	1	Χ	0	Χ	0	X
0	0	Ο	1	0	0	0	0	0	0	Χ	0	Χ	0	X
0	0	1	1	0	0	0	0	1	0	Χ	0	Χ	Χ	0
0	0	1	1	0	0	0	1	0	0	Χ	1	Χ	X	1
0	0	1	1	0	0	0	0	0	0	Χ	0	Χ	X	1
0	0	1	1	0	0	0	0	0	0	Χ	0	Χ	X	1
0	1	0	1	0	0	0	1	0	0	Χ	Χ	0	0	X
0	1	0	1	0	0	1	0	0	1	Χ	X	1	0	X
0	1	0	1	0	0	0	0	1	0	Χ	X	1	1	Χ
0	1	0	1	0	0	0	0	0	0	Χ	X	1	0	X
1	0	0	1	0	0	1	0	0	X	0	0	Χ	0	X
1	0	0	1	0	0	0	0	0	Χ	1	0	Χ	0	Χ
1	0	0	1	0	0	0	1	0	X	1	1	Χ	0	Χ
1	0	0	1	0	0	0	0	0	X	1	0	Χ	0	Χ

Diagrama de estados

5) Utiliza un contador asíncrono que muestre los números binarios del 000 al 111, utilizar un flip-flop JK.

Para conocer el número de flip-flops a utilizar, se cuenta el número de bits de salida, cada bit representa a un flip-flop, en este caso son 3.

La tabla de verdad muestra cómo cambiarán los pulsos de salida, la salida C será la que cambie cada que el reloj esté en estado alto, B cada vez que sean 2 pulsos de reloj en alto y A cada 4 pulsos de reloj.

El valor 1 constante que se encuentra en la entrada de J y K se utiliza para el cambio de estado en cada flip-flop ante el pulso del CLK.

6) Diseña un decodificador asíncrono del 0 al 7.

Tabla de verdad del decodificador

A D C						•	
ABC	a	b	C	d	е	f g	
0 0 0	1	1	1	1	-1	0	
0 0 1	1						
0 1 0	0	1	1	0	0	0	
0 1 1	0						
	1	1	Ο	1	1	0	
	1						
	1	1	1	1	0	0	
	1						
1	0	1	1	0	0	1	
1	1						
1	1	0	-1	1	0	1	
1	1						
	0	0	1	1	1	1	
	1						
	1	1	1	0	0	0	
	0						

Ecuaciones

a= [ABC]' =A'+B'+C'

b= [AB'C]' = A'+B+C'

c=1

d=A'B'+B'C+BC'

e=A'B'+A'C'

f=A'+B'C

g=A'BC+AB'C+ABC'

Circuito obtenido

7) Dibuja el circuito correspondiente a la tabla de verdad mostrada, reduciendo términos por mapa de Karnaugh y comprobar resultado empleando el software Karnaughcalc.exe, que se puede obtener de la página: https://karnaughcalculator.softonic.com/

Α	В	С	D	sl
0 0 0 0 0 0 0 0	0		0	0
0	0	0	1	0 0 0
0	0	1	0	0
0	0 0 0 0 1 1 1 1 0 0	1	1 0 1 0 1 0	1
0	1		0	0
0	1	0	1	
0	1	1	0	1 1 1 0
0	1	1	1	1
1	0	0	0	0
1	0	1 0 0	1	1
1	0	1	0	1
1	0	1	1	1
1		1 0 0	0	1
1	1	0	1 0 1 0 1	1
1	1	1		1
1	1	1	1	1

CD+BD+BC+AD+AC+AB

S1 = {3,5,6,7,9,10,11,12,13.14.15}

Reduciendo con el software Karnaughcalc.exe resulta lo mismo, pero más rápido y fácil: S1=CD+BD+BC+AC+AB+AD

Por lo que el circuito queda

8) Un generador envía señales de forma discreta, cada vez que inicia o reinicia envía 3 señales al mismo tiempo indicando esto. Durante el transcurso generará un recorrido del bit más significativo al menos significativo y después lo hará en forma inversa, una vez terminado volverá a iniciar generando los 3 pulsos. Se puede detener el paso de la señal y regresarla al estado anterior mediante una entrada Diseñar un circuito que realice el proceso anterior utilizando máquina de Mealy.

Tabla de verdad

	Est	ido a	ctual	Entrada	Esta	10 sigu	viente		Salida	
	Α	В	С	E	Х	Υ	Z	B1	B2	B3
q0	0	0	0	0	0	0	0	1	1	1
q1	0	0	0	1	0	0	1	1	0	0
q2	0	0	1	0	0	0	1	1	0	0
	0	0	1	1	0	1	0	0	1	0
	0	1	0	0	0	1	0	0	1	0
	0	1	0	1	0	1	1	0	0	1
•	0	1	1	0	0	1	1	0	0	1
-	0	1	1	1	1	0	0	0	0	1
-	1	0	0	0	1	0	0	0	0	1
	1	0	0	1	1	0	1	0	1	0
	1	0	1	0	1	0	1	0	1	0
	1	0	1	1	1	1	0	1	0	0
	1	1	0	0	1	1	0	1	0	0
	1	1	0	1	1	1	1	1	1	1
q14	1	1	1	0	1	1	1	1	1	1
q15	1	1	1	1	0	0	0	1	1	1

Obtención de ecuaciones con el software Karnaughcalc.exe

X=A'BCE+AB'+AC'+AE'

Y=B'CE+BC'+BE'

Z=C'E+CE'

B1=AB+A'B'E'+A'B'C'ACE

B2=ABE+ACE'+A'C'E'+A'B'CE+AC'E

B3=BE+BC+B'C'E'

9) Simula el comportamiento de una máquina de refrescos que solo acepte monedas de 1 peso, suponiendo que el refresco cuesta 6 pesos y posee un sensor de monedas integrado. Utilizar máquina de Moore.

1º diseño del diagrama de estados

Donde q0=estado 000, q1 estado 001,...

A medida que se pone 1 peso el sistema avanza hasta llegar a 6 entrega 1 refresco, si se meten más de 6 pesos también entrega 1 refresco pues el sistema no da cambio.

2° Obtenemos la tabla de verdad

Est	Estado actual		Entrada	Estado actual		Salida	
Α	В	С	D	q0	ql	q2	S
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	0
1	0	1	1	1	1	0	0
1	1	0	0	Х	х	х	0
1	1	0	1	х	х	х	1
1	1	1	0	1	1	1	1
1	1	1	1	0	0	0	1

3°.-Se definen las ecuaciones, recordando que en ff tipo D, el estado siguiente es igual a la excitación, esto es Da=q0, Db=q1 y Dc= q2. Reduciendo con el software Karnaughcal.exe, tenemos:

S={12,13,14,15}=AB q0=Da={7,8,9,10,11,12x,13x,14} q1=Db={3,4,5,6,11,12x,13x,14} q2=Dc={1,2,5,6,9,10,12x,13x,14}

4° Realizamos el circuito

10) Obtén las ecuaciones booleanas de la siguiente tabla de verdad y utiliza un Arreglo Lógico Programable para simularla.

X= A'B'CD'+A'BC'D+A'BCD+AB'C'D+AB'CD'+ABCD'+ABC Y= A'B'C'D'+A'BC'D'+A'BCD+ABC'D'+ABC'D+ABCD

Notar que

11) Diseña el diagrama de estados y tabla de verdad, para simular el funcionamiento de un dado electrónico, utilizando FF tipo D.

1.-Se inicia con el diagrama de estados, se trabajará con 6 estados cada uno representará una cara del dado, dentro de cada estado se representa un número del 1 al 6 en binario. Los estados sobrantes se dirigen al estado 000.

Diagrama de estados de la simulación de un dado.

Estado actual A B C	Entrada E	Estado siguiente A B C	Salida X Y Z	Excitación FF tipo D Da Db Dc
000	0	000	110	000
000	1	001	001	0 0 1
001	0	001	001	0 0 1
0 0 1	1	010	010	010
010	0	010	010	010
010	1	011	011	011
011	0	011	011	011
011	1	100	100	100
100	0	100	100	100
100	1	101	101	101
101	0	101	101	101
101	1	000	110	000
110	0	000	110	000
110	1	000	110	000
111	0	000	110	000
111	1	000	110	000

La tabla de estados del flip-flop tipo D, en la columna de excitación la entrada es igual a la salida.

2º Para que el dado se detenga en cualquier número del 1 al 6, la cuenta de pulsos conviene hacerla en forma casi aleatoria, por ejemplo poner a la entrada un generador de pulsos a una velocidad alta, que no se pueda parar la cuenta en un número deseado, digamos a 60 c/s o mejor aún hacer un oscilador a 100 c/s.

12) Haz un resumen (acordeón) en una hoja, de los diferentes FF que existen y su tabla de excitación correspondiente.

Te corresponde hacer el acordeón.

13) Diseña un circuito que permita prender y apagar un foco led accionando el mismo botón tipo timbre.

1º Empezamos por diseñar un diagrama de estados, un estado es APAGA y el otro PRENDE

Del estado apaga apretamos la entrada a 1, prende el foco y cambia el estado a prende, estando en prende no hacemos nada y el foco permanece prendido.

Si estamos en el estado prende y accionamos la entrada a 1 del botón nuevamente, cambia de estado a apaga y el foco se apaga.

Numero de estados = 2

2FF= 2 → FF = 1 Número de Entrada = 1

2° .- Realizamos la tabla de verdad de acuerdo al diagrama de estados

Estado presente	Entrada	Estado siguiente	Salida	FF tipo D Excitación
А	Е	A_{+}	Χ	D_A
0	0	0	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	0	0

3° .- Obtenemos las ecuaciones.

$$X = \{1,2\} = A'E + AE'$$

$$DA = \{1,2\} = X$$

4°.- Dibujamos el diagrama del circuito.

14) Diseña un circuito para una lámpara que tiene 3 focos tipo led, que al accionar un botón, tipo timbre, por:

1ª vez enciende un foco.

2° vez encienden dos focos.

3ª vez encienden tres focos

4ª vez se apagan todos los focos

1º Empezamos por diseñar un diagrama de estados

Número de estados = 4

 $2FF=4 \rightarrow FF=2$ entrada = 1

2° Realizamos la tabla de verdad de acuerdo al diagrama de estados

Estado presente	Entrada	Estado siguiente	Salida	FF tipo D Excitación
AB	Е	A+ B+	XYZ	D _A D _B
0 0	0	0 0	000	0 0
0 0	1	0 1	100	0 1
01	0	0 1	100	0 1
01	1	1 0	110	1 0
10	0	1 0	110	1 0
10	1	1 1	111	1 1
11	0	1 1	111	1 1
11	1	0 0	000	0 0

3° .- Obtenemos las ecuaciones.

X={1,2,3,4,5,6}=[0,7]'=[A'B'E'+ABE]'

Y={3,4,5,6}=AE'+AB'+A'BE

Z={5,6}=AB'E+ABE'

DA={3,4,5,6}=Y

DB={1,2,5,6}=BE'+B'E

4° .- Dibujamos el diagrama del circuito.

- 15) Se tiene un tinaco para agua, una cisterna y un motor para bomba. Obtén las ecuaciones que definen el circuito, que permita el llenado en forma automática del tinaco cuando sea necesario, con los siguientes requisitos:
 - Utiliza los sensores de nivel que requiera.
 - La cisterna debe tener agua para poder llenar el tinaco.
 - El motor de la bomba prende cuando el tinaco está vacío y se apaga cuando se llena de agua.
 - El motor de la bomba no debe oscilar a prender-apagar.
 - En caso de falla prender alarma.
 - Para reducir las ecuaciones utilizar el software gratuito https://karnaughcalculator.waxoo.com/ar
 - Utilizar el FF tipo D.

1º Empezamos por diseñar un diagrama de estados

 C_A = 1, Cisterna llena

C_A = 0 ,Cisterna Vacía

T_L= 1, tinaco lleno

T_L= 0, tinaco con agua

T_V= 1, tinaco vacío

T_V= 0, tinaco con agua

Estados A y B

Salidas

X= Motor Bomba

Y= Foco Alarma

Z= Foco que indica cisterna vacía

Número de estados = 4 2FF= 4 → FF = 2 entrada = 3 salida = 3

Sistemas digitales.

Unidad IV. Dispositivos secuenciales

2º Realizamos la tabla de verdad de acuerdo al diagrama de estados.

			Entrada			
Entrada a cisterna	Estados	Entrada a Tinaco lleno	Tinaco vacio	Estado siguiente	Salidas	Excitación
C _A	АВ	T _L	T _v	A+ B+	XYZ	D _A D _B
0 0	0 0	X	X	0 0	0 0 0	0 0
0	0 0	X	X	0 0	0 0 1	0 0
0	0 0	X	X	0 0	0 0 1	0 0
3 0	0 0	Χ	X	0 0	0 0 1	0 0
0	0 1	X	X	0 1	0 0 1	0 1
0	0 1	X	X	0 1	0 0 1	0 1
0	0 1	X	X	0 1	0 0 1	0 1
7 0	0 1	X	X	0 1	0 0 1	0 1
0	1 0	X	X	1 0	0 0 1	1 0
0	1 0	X	X	1 0	0 0 1	1 0
0	1 0	X	X	1 0	0 0 1	1 0
11 0	1 0	X	X	1 0	0 0 1	1 0
0	11	X	X	1 1	0 0 1	1 1
0	11	X	X	1 1	0 0 1	1 1
0	11	X	X	1 1	0 0 1	1 1
15 0	11	X	X	1 1	0 0 1	1 1
1	0 0	0	0	0 0	100	0 0
1	0 0	0	1	0 1	100	0 1
1	0 0	1	0	0 0	010	0 0
19 1	0 0	1	1	0 0	010	0 0
1	0 1	0	0	0 1	010	0 1
1	0 1	0	1	0 1	100	0 1
1	0 1	1	0	0 1	010	0 1
23 1	0 1	1	1	1 0	0 0 0	1 0
1	1 0	0	0	1 0	010	1 0
1	1 0	0	1	1 1	0 0 0	11
1	1 0	1	0	1 0	010	1 0
271	1 0	1	1	1 0	0 0 0	1 0
1	11	0	0	0 0	100	0 0
1	11	0	1	1 1	0 0 0	1 1
1	11	1	0	1 1	010	1 1
31 1	11	1	1	1 1	010	1 1

3° .- Obtenemos las ecuaciones.

 $X = \{16,17,21,28\} = C_AA'T_L'T_V + C_AA'B'T_L' + C_AABT_L'T_V'$

 $Y = \{18,19,20,22,24,26,30,31\} = C_A T_L T_V' + C_A AB' T_V' + C_A A'B' T_L + C_A ABT_L +$

+ C_A A'BT_V'

 $D_A = \{8,9,10,11,12,13,14,15,23,24,25,26,27,29,30,31\} =$

 $= AT_V + AB' + C_A'A + BT_L + C_ABT_LT_V$

 $D_B = \{4,5,6,7,12,13,14,15,17,20,21,22,25,29.30,31\} =$

= $C_AB + C_AT_L'T_V + A'BT_V' + ABT_L$