_label2 __label4 __label4 __label3 __label4

Gaussian Process Regression

MATH-414: Stochastic Simulation

Francesco Pettenon, Francesca Venturi

École Polytechnique Fédérale de Lausanne

December 8, 2024

Professor: Fabio Nobile

Outline

- 1 Introduction
 - Context and Motivation
- 2 Theoretical Background
 - Covariance Kernels
- 3 Recovering a simple function
 - Gaussian Process Regression
 - Results
 - Optimize hyperparameters
- 4 GP Regression on a permeability field

- Dataset and computational considerations
- Optimize hyperparameters
- 2D Gaussian Process Regression
- Generate Processes: Circulant Embedding
- Monte Carlo Estimator
- Variance Reduction
- 5 Main References
- 6 Discussion

Introduction

Context and Motivation

Context:

- Permeability fields in geoscience
- Limited data collected through boreholes

Motivation:

- Uncertainty quantification
- Small datasets
- Prior and posterior distributions

Theoretical Background

Theoretical Background

Gaussian Process Regression (GPR)

- **Z**, Y finite set of positions \rightarrow **f**(Y) to predict
- Gaussian random field: $\mathbf{f}(Z) \sim \mathcal{N}\left(\mathbf{m}(Z), \mathbf{K}(Z)\right)$
- Noisy observations $\tilde{\mathbf{f}}(Z) = \mathbf{f}(Z) + \epsilon$, $\epsilon \sim \mathcal{N}\left(\mathbf{0}, s^2 \mathbf{I}_{N_Z}\right)$ covariance of $\tilde{\mathbf{f}}(Z)$ is $\mathbf{K}(Z) + s^2 \mathbf{I}$

Conditional distribution, mean and covariance functions:

$$\mathbf{f}(Y)|\tilde{\mathbf{f}}(Z) \sim \mathcal{N}\left(\tilde{\mathbf{m}}(Y \mid Z), \mathbf{K}(Y \mid Z)\right)$$

$$\tilde{\mathbf{m}}(Y \mid Z) = \mathbf{m}(Y) + \mathbf{K}(Y, Z)\left(\mathbf{K}(Z) + s^2\mathbf{I}\right)^{-1}(\tilde{\mathbf{f}}(Z) - \mathbf{m}(Z))$$

$$\mathbf{K}(Y \mid Z) = \mathbf{K}(Y) - \mathbf{K}(Y, Z)\left(\mathbf{K}(Z) + s^2\mathbf{I}\right)^{-1}\mathbf{K}(Z, Y)$$

Covariance Kernels

1 The Exponential (EXP) kernel:

$$K_{\exp}(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}'\|_2}{\ell}\right\}$$

- · Linear exponent \rightarrow rougher function
- Isotropic kernel
- The Squared Exponential (SE) kernel:

$$\mathcal{K}_{\mathsf{se}}\left(\mathbf{x},\mathbf{x}'
ight) = \sigma^2 \exp\left\{-rac{1}{2}\sum_{i=1}^k rac{\left(x_i-x_i'
ight)^2}{\ell_i^2}
ight\}$$

- · Squared exponent \rightarrow smoother function
- · Anisotropic kernel

Visual Comparison between kernels

Figure: Visual comparison between the EXP and the SE kernels 1D with fixed parameters σ^2 and ℓ .

Hyperparameters: ℓ and σ^2

- The Correlation Length ℓ : degree of smoothness in the function being modeled. The larger ℓ , the slower the drop off, leading to smoother shape.
- The Vertical Scale σ^2 : variance, deviation from the average prediction at any given point. The higher σ^2 , the greater the flexibility, leading to more fluctuations.

Recovering a simple function

Recovering a simple function

- Scalar function to recover: f(x) = sin(x)
- N_Z noise-free observations, i.e. y = sin(x).

Goal: generate N_Y Gaussian random variables whose mean approximates f(x) = sin(x), to predict the entire Gaussian random process.

1D Gaussian Process Regression

Algorithm 1D Gaussian Process Regression

- 1: Generate N_7 Points Z uniformly distributed in $[0, 2\pi]$
- 2: Generate 1000 *Points Y* in a 1D uniform grid of $[0, 2\pi]$
- Given f(x) = sin(x), evaluate the Points Z, obtaining f(Z)
- 4: Build the covariance matrices K(Y), K(Z), K(Y,Z) for both kernels and for a given set of parameters $\theta = (\ell, \sigma^2, s^2)$
- 5: Compute the prediction $\mathbf{m}(Y|Z)$ and $\mathbf{K}(Y|Z)$
- 6: Draw 3 independent realizations of the Gaussian f(Y)|f(Z)

Next: analysis of the newly generated Gaussian processes, changes upon the amount of observations, i.e. N_z , and the choice of the kernel.

Results for the EXP kernel

Figure: 1D Gaussian Process: Exponential Kernel

Results for the SE kernel

Figure: 1D Gaussian Process: Squared Exponential Kernel

Optimization criterion: maximization of the marginal likelihood Numerical optimization: gradient-based optimization algorithm L-BFGS-B

$N_{Z} = 10$	ℓ	σ^2	s^2
EXP	3.406	0.411	0.000
SE	1.964	0.444	0.000

Table: Optimized hyperparameters for $N_Z = 10$

$N_Z = 100$	ℓ	σ^2	s ²
EXP	12.781	0.182	0.000
SE	1.146	1.089	0.001

Table: Optimized hyperparameters for $N_Z = 100$

Results for optimized hyperparameters

Figure: Predictions and observations with optimized hyperparameters

Gaussian Process Regression on a Permeability Field

Dataset and computational considerations

Dataset: Permeability field of 60×110 noisy observations, $\epsilon \sim \mathcal{N}\left(\mathbf{0}, s^2 \mathbf{I}_{N_z}\right)$

Goal: Approximation of the field with a limited training set for model generation. The two uniform rectilinear grids are:

X	10	20	30	40	50
У	15	35	55	75	95

Table: First dataset 5×5

											55
у	5	15	25	35	45	55	65	75	85	95	105

Table: Second dataset 11×11

Optimize hyperparameters

Kernel SE has two parameters for the length scale ℓ (anistropy).

Z1	σ^2	s ²	ℓ_1	ℓ_2
EXP	12.395	1e-10	64.590	-
SE	9.047	0.589	16.330	21.891

Table: Optimal hyperparameters for Z1: $\theta = \{\sigma^2, s^2, \ell\}$

Z2	σ^2	<i>s</i> ²	ℓ_1	ℓ_2
EXP	11.428	0.035	40.395	-
SE	7.005	1.120	11.720	18.266

Table: Optimal hyperparameters for Z2: $\theta = \{\sigma^2, s^2, \ell\}$

Predict the Gaussian Process

Algorithm 2D Gaussian Process Regression

- 1: Create 2D-meshgrid with Points Z
- 2: Extract the Points Z in true_perm, obtaining f(Z)
- ^{3:} Create the link between the physical points (dim = (110×60)) and the Gaussian Vector Y (dim = 6600)
- 4: Optimize the parameters $m{ heta}=(\ell,\sigma^2,s^2)$ of the kernel w.r.t. marginal likelihood
- 5: Build the covariance matrices K(Y), K(Z), K(Y,Z)
- 6: Compute the prediction $\tilde{\mathbf{m}}(Y \mid Z)$ and $\mathbf{K}(Y \mid Z)$
- 7: return $\tilde{\mathbf{m}}(Y \mid Z)$, $\mathbf{K}(Y \mid Z)$

Figure: 2D Gaussian Process: Exponential Kernel

Figure: 2D Gaussian Process: Squared Exponential Kernel

Generate Processes: Circulant Embedding

Stationary Gaussian Process $\rightarrow 2D$ -circulant matrix P

Algorithm Circulant Embedding 2D

- 1: Build **P** starting from K(Y)
- 2: Calculate $\mathbf{W} = \mathrm{fft}(\mathbf{P})$, the 2-dimensional FFT of \mathbf{P}
- $_{3:}$ Check that all elements of $oldsymbol{W}$ are positive
- 4: Generate matrix **X** with size of **W** containing i.i.d. normal variables
- 5: Calculate $\mathbf{Z} = \mathrm{ifft}(\sqrt{\mathbf{W}} \odot \mathbf{X})$, the 2-dimensional inverse FFT of $\sqrt{\mathbf{W}} \odot \mathbf{X}$
- 6: Generate $\mathbf{f}(Y) = Re(\mathbf{Z})|_Y + Im(\mathbf{Z})|_Y$
- 7: return f(Y)

Generate Processes: Circulant Embedding

Within the 6600 values just generated, there are also the sampling points, whose true value is known. "A posteriori" conditioning can be applied to the observations.

Algorithm Generation from conditional Gaussian distribution

- 1: Generate $\mathbf{f}(Y) \sim \mathcal{N}(\mathbf{0}, \mathbf{K}(Y))$ using 2D Circulant Embedding
- Extract indexes of points Z and evaluate $\mathbf{f}_{\mathsf{new}}(Z) = \mathbf{f}(Y)|_{Z}$
- Generate $\mathbf{f}(Y)|\mathbf{f}(Z) = \mathbf{f}(Y) + \mathbf{K}(Y,Z)\mathbf{K}(Z)^{-1}(\mathbf{f}_{new}(Z) \mathbf{f}(Z))$
- 4: return f(Y)|f(Z)

Conditional Gaussian processes:

$$\mathbf{f}(Y)|\tilde{\mathbf{f}}(Z) \sim \mathcal{N}(\tilde{\mathbf{m}}(Y|Z), \mathbf{K}(Y|Z))$$

Figure: Gaussian Processed obtained via Circular Embedding technique

Monte Carlo Estimator

Determine whether the permeability at certain coordinates exceeds a predetermined threshold.

Critical locations: x = 35, 40, 45, 50 and y = 85.

$$\mathbb{P}(\max_{i=1,\ldots,4} f(x_i,y_i) \geq 8) = \mathbb{E}(\psi(\mathbf{x},\mathbf{y})),$$

where
$$\psi(\mathbf{x}, \mathbf{y}) = \mathbf{1}_{\max_{i=1,...,4} f(x_i, y_i) \geq 8}$$
.

Theorem

Let ${\bf X}$ be a Gaussian vector of size n with mean ${\boldsymbol \mu}$ and covariance matrix ${\boldsymbol \Sigma}$. Then the linear transformation ${\bf Y}=A{\bf X}+{\bf b}$ will transform ${\bf X}$ into a Gaussian vector ${\bf Y}$ with mean $A{\boldsymbol \mu}+{\bf b}$ and covariance matrix $A{\boldsymbol \Sigma}A^T$.

Monte Carlo Estimator

Z2	N	$\hat{\mu}_{ar{ extsf{N}}}$	$\hat{\sigma}_{ar{ extsf{N}}}$	tol
EXP	9360182	0.024976	0.15605	1e-4
SE	2633285	6.7596e-5	0.00822	1e-5

Table: Estimation with Two stages MC for datasets Z1

Z2	N	$\hat{\mu}_{ar{ extsf{N}}}$	$\hat{\sigma}_{ar{ extsf{N}}}$	tol
EXP	26223987	0.073693	0.26127	1e-4
SE	768284	2.6032e-5	0.00161	1e-5

Table: Estimation with Two stages MC for datasets Z2

Variance Reduction

Reduce the variance of MC \rightarrow accelerate convergence $O(\frac{1}{\sqrt{N}})$.

Theorem

Assume that the random variable Z has the expression $Z=\psi(X)$, with $X=(X_1,\ldots,X_d)$ a random vector with independent components, such that

- **X** has a symmetric distribution around its mean, i.e. $2\mathbb{E}[X] X \sim X$
- ullet ψ is a monotone function in each of its arguments.

Then
$$Z = \psi(X)$$
 and $Z_a = \psi(2\mathbb{E}[X] - X)$ satisfy $\mathbb{E}[Z] = \mathbb{E}[Z_a]$ and $Cov(Z, Z_a) < 0$.

Variance Reduction

Hypothesys on ψ hold: variance reduction with Antithetic Variables.

Z1	$\hat{\mu}_{ extit{CMC}}$	$\hat{\mu}_{AV}$
EXP	0.0249 ± 9.662 e-5	0.0250 ± 9.560 e-5
SE	7.4e-5 \pm 5.331e-6	7.23 e-5 \pm 5.269e-6

Table: Confidence interval of CMC and AV for datasets Z1

Z2	$\hat{\mu}_{ extit{CMC}}$	$\hat{\mu}_{AV}$
EXP	0.0737 ± 1.6193 e-4	0.0737 ± 1.5539 e-4
SE	$3.7 \text{e-}6 \pm 1.1922 \text{e-}6$	$3.7\text{e-}6 \pm 1.1922\text{e-}6$

Table: Confidence interval of CMC and AV for datasets Z2

Figure: Monte Carlo estimations and Antithetic Variables to reduce variance

References

Nobile, Fabio. Stochastic Simulation: Lecture Notes. 2022.

Van Barel, Andreas. "Multilevel Monte Carlo Methods for Robust Optimization of Partial Differential Equations".

In: (2021).

Williams, Christopher KI and Carl Edward Rasmussen. Gaussian processes for machine learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.

Questions?