複数文字列に対する デカルト木円形 パターン照合の索引

Das Wohltemperierte Klavier - Le Clavier bien tempéré - The Well-Tempered Clavier

Praeludium 1

BWV 846

Johann Sebastian Bach 1685 – 1750

Treble Staff

Eric Osterkamp and Dominik Köppl

"Extending the Burrows-Wheeler Transform for Cartesian Tree Matching and Constructing It."
CPM 2025: 26:1-26:17

背景

■ 株価チャートの反転パターン

背景

■ 順序保存照合 (Order-Preserving Matching) [Kim+ '14] の時には厳しすぎる

 $9370748 \neq 9470748 \neq 9570748$

[Park+ '20]

[Park+ '20]

a

$$T = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{array} \right)$$

 $T \geq S$ のデカルト木は一致する場合、 $T \geq S$ は ct マッチすると言う($T =_{ct} S$)

[Park+ '20]

 $T \geq S$ のデカルト木は一致する場合、 $T \geq S$ は ct マッチすると言う($T =_{ct} S$)

[Park+ '20]

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

 $T \geq S$ のデカルト木は一致する場合、 $T \geq S$ は ct マッチすると言う($T =_{ct} S$)

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

 $T \geq S$ のデカルト木は一致する場合、 $T \geq S$ は ct マッチすると言う($T =_{ct} S$)

[Park+ '20]

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

$$S = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ p & a & p & a & y & a \end{array} \right)$$

 $T \geq S$ のデカルト木は一致する場合、 $T \geq S$ は ct マッチすると言う($T =_{ct} S$)

[Park+ '20]

ct(S)

[Park+ '20]

$$T = b a n a n a$$

$$T =_{\mathsf{ct}} S$$

ct(S)

[Park+ '20]

$$T = b a n a n a$$

p

$$T =_{\mathsf{ct}} S$$

ct(S)

[Park+ '20]

$$T = b a n a n a$$

$$S = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{array}$$

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline I & y & c & h & e & e \end{bmatrix}$$

$$T =_{\mathsf{ct}} S$$

[Park+ '20]

$$T = b a n a n a$$

$$S = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{array}$$

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ I & y & c & h & e & e \end{bmatrix}$$

$$T =_{\mathsf{ct}} S \neq_{\mathsf{ct}} R$$

Inverse Head & Shoulder [Fu+ '07]

Inverse Head & Shoulder [Fu+ '07]

Inverse Head & Shoulder [Fu+ '07]

Inverse Head & Shoulder [Fu+ '07]

- パターン *P* は出現するとは、 *T* の部分文字列が *P* と ct マッチする
- CTPM: *T* 中の *P* のすべての出現を数え上げる

- パターン *P* は出現するとは、 *T* の部分文字列が *P* と ct マッチする
- CTPM: *T* 中の *P* のすべての出現を数え上げる

$$P = \left[k \right] i \left[w \right] i$$

- パターン *P* は出現するとは、 *T* の部分文字列が *P* と ct マッチする
- CTPM: *T* 中の *P* のすべての出現を数え上げる

- パターン P は出現するとは、 T の部分文字列が P と ct マッチする
- CTPM: *T* 中の *P* のすべての出現を数え上げる

$$P = \left[k \right] i \left[w \right] i$$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

- パターン P は出現するとは、 T の部分文字列が P と ct マッチする
- CTPM: *T* 中の *P* のすべての出現を数え上げる

k

$$ct(T[2..5])$$
 $ct(T[1..4])$

- パターン P は出現するとは、 T の部分文字列が P と ct マッチする
- CTPM: *T* 中の *P* のすべての出現を数え上げる

データ構造	必要なスペース 単位 : ビット	建設のための 追加スペース	建設時間	CTPMの時間	参考
Suffix Tree	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(m\log\sigma)$	[Park+ `20]
Position Heap	$O(n \log n)$	$O(n \log n)$	$O(n\log\sigma)$	$0(m\sigma + m\log m + occ)$	[Nishimoto+ '21]
FM-Index (BWT)	3n + o(n)	$O(n \log n)$	$O(n \log n)$	0(<i>m</i>)	[Kim and Cho '21]

- occ 出現の総数

- n テキストの合計長
- *m* パターンの長さ

[Park+ '20]

[Park+ '20]

$$T = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{array} \right)$$

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \bigcirc^{1}$$

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \left[\infty \right]^{2}$$

[Park+ '20]

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

[Park+ '20]

$$\langle T \rangle = \left[\infty \right] \left[\infty \right] \left[1 \right] \left[2 \right]$$

[Park+ '20]

[Park+ '20]

[Park+ '20]

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & y & c & h & e & e \end{bmatrix} \neq_{ct} T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix} =_{ct} S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{bmatrix}$$

[Park+ '20]

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & y & c & h & e & e \end{bmatrix} \neq_{ct} T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix} =_{ct} S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{bmatrix}$$

[Park+ '20]

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & y & c & h & e & e \end{bmatrix}$$

$$\neq_{ct} T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

$$=_{ct} S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{bmatrix}$$

[Park+ '20]

[Park+ '20]

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & y & c & h & e & e \end{bmatrix} \neq_{ct} T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix} =_{ct} S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{bmatrix}$$

$$\langle R \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & 1 & \infty & 1 & 2 & 1 \end{bmatrix} \qquad \neq \qquad \langle T \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & \infty & 1 & 2 & 1 & 2 \end{bmatrix} \qquad = \qquad \langle S \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & \infty & 1 & 2 & 1 & 2 \end{bmatrix}$$

- *T* を円形的なテキストと見なす
- *P* は *T* の境目でも出現可能

- T を円形的なテキストと見なす
- *P* は *T* の境目でも出現可能

$$P = \begin{bmatrix} k & i & w & i \end{bmatrix}$$
 $T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$

- T を円形的なテキストと見なす
- *P* は *T* の境目でも出現可能

$$P = \left[k \right] i \left[w \right] i$$

- T を円形的なテキストと見なす
- *P* は *T* の境目でも出現可能

$$P = \begin{bmatrix} k \end{bmatrix} i w i$$

$$ct(T[5...6] \cdot T[1...2])$$

T =

- 回転文字列:文字列 T の任意のサイクリックシフト T[i..n]T[1..i-1]
- $T_1, ..., T_d$ のすべての回転文字列と $T = T_1 \cdot ... \cdot T_d$ 中の開始位置を同一視する

- $X^{\omega} := X \cdot X \cdot X \cdot M \cdot M$ と定義し、P でパターンを表現する
- 円形 CTPM: $C(i)^{\omega}[..|P|] =_{ct} P$ が成り立つような $T_1,...,T_d$ のすべての回転文字列を数え上げる

- 回転文字列: 文字列 T の任意のサイクリックシフト T[i..n]T[1..i-1]
- $T_1, ..., T_d$ のすべての回転文字列と $T = T_1 \cdot ... \cdot T_d$ 中の開始位置を同一視する

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{l} & \mathbf{e} \end{bmatrix}$$

- $X^{\omega} := X \cdot X \cdot X \cdot X \cdot \dots$ と定義し、 P でパターンを表現する
- 円形 CTPM: $C(i)^{\omega}[..|P|] =_{ct} P$ が成り立つような $T_1,...,T_d$ のすべての回転文字列を数え上げる

- 回転文字列: 文字列 T の任意のサイクリックシフト T[i..n]T[1..i-1]
- $T_1, ..., T_d$ のすべての回転文字列と $T = T_1 \cdot ... \cdot T_d$ 中の開始位置を同一視する

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline i & g \end{bmatrix} \cdot \begin{bmatrix} k & i & w & i \\ \hline k & i & w & i \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline a & p & p & l & e \end{bmatrix} \Rightarrow C(6) = wiki$$

- $X^{\omega} := X \cdot X \cdot X \cdot M \cdot M$ と定義し、 P でパターンを表現する
- 円形 CTPM: $C(i)^{\omega}[..|P|] =_{ct} P$ が成り立つような $T_1,...,T_d$ のすべての回転文字列を数え上げる

- 回転文字列:文字列 T の任意のサイクリックシフト T[i..n]T[1..i-1]
- $T_1, ..., T_d$ のすべての回転文字列と $T = T_1 \cdot ... \cdot T_d$ 中の開始位置を同一視する

$$T = \begin{cases} f & \text{if } g \end{cases} \cdot \begin{cases} k & \text{if } w & \text{if } k \end{cases} \cdot \begin{cases} a & \text{ppple} \end{cases} \Rightarrow C(6) = \text{wiki}$$

$$P = \begin{cases} b & \text{and} \end{cases} \Rightarrow \begin{cases} C(6) = \text{wiki} \end{cases} \Rightarrow C(6) = \text{wiki}$$

$$P = \begin{cases} b & \text{and} \end{cases} \Rightarrow \begin{cases} P(6) = \text{wiki} \end{cases} \Rightarrow C(6) = \text{wiki}$$

- $X^{\omega} := X \cdot X \cdot X \cdot X \cdot ...$ と定義し、 P でパターンを表現する
- 円形 CTPM: $C(i)^{\omega}[..|P|] =_{ct} P$ が成り立つような $T_1,...,T_d$ のすべての回転文字列を数え上げる

デカルト木照合

データ構造	必要なスペース 単位:ビット	建設のための 追加スペース	建設時間	CTPMの時間	参考	
Suffix Tree	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(m \log \sigma)$	[Park+ `20]	
Position Heap	$O(n \log n)$	$O(n \log n)$	$O(n\log\sigma)$	$0(m\sigma + m\log m + occ)$	[Nishimoto+ '21]	- СТРМ
FM-Index (BWT)	3n + o(n)	$O(n \log n)$	$O(n \log n)$	0(m)	[Kim and Cho '21]	
FM-Index (eBWT)	$O(n\log\sigma)$	$O(n\log\sigma)$	$O\left(n\frac{\log\sigma\log n}{\log\log n}\right)$	$O\left(m\frac{\log\sigma\log n}{\log\log n}\right)$	本論	円形
FM-Index (eBWT)	3n + o(n)	$O(n \log \sigma)$	$O\left(n\frac{\log\sigma\log n}{\log\log n}\right)$	0(m)	本論	CTPM

- occ 出現の総数

- n テキストの合計長
- *m* パターンの長さ

- パターンの出現が連続するように回転文字列を ソートする
- [Kim and Cho '21]のように、符号化された回 転文字列を辞書式にソートするのは駄目

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{l} & \mathbf{e} \end{bmatrix}$$

- パターンの出現が連続するように回転文字列を ソートする
- [Kim and Cho '21]のように、符号化された回 転文字列を辞書式にソートするのは駄目

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{l} & \mathbf{e} \end{bmatrix}$$

$$P = \left[p \right] \left[u \right] m$$

- パターンの出現が連続するように回転文字列を ソートする
- [Kim and Cho '21]のように、符号化された回 転文字列を辞書式にソートするのは駄目

$$P = \boxed{p} \boxed{u} \boxed{m}$$

$$\langle P \rangle = \left[\infty \right] \left[\infty \right] \left[1 \right] \left[2 \right]$$

- パターンの出現が連続するように回転文字列を ソートする
- [Kim and Cho '21]のように、符号化された回 転文字列を辞書式にソートするのは駄目

$$P = \boxed{p} \boxed{u} \boxed{m} \qquad \langle P \rangle = \boxed{\infty} \boxed{\infty} \boxed{1}$$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

$$T = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{array} \right)$$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

$$\langle T \rangle_r = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

• ω 前順序: $X \leq_{\omega} Y \Leftrightarrow \operatorname{root}(\langle X \rangle_r) = \operatorname{root}(\langle Y \rangle_r) \vee \exists i: \langle X^{\omega}[..i] \rangle < \langle Y^{\omega}[..i] \rangle$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 T の回転親距離符号化 $\langle T \rangle_r$ を定義

• ω 前順序: $X \leq_{\omega} Y \Leftrightarrow \operatorname{root}(\langle X \rangle_r) = \operatorname{root}(\langle Y \rangle_r) \vee \exists i: \langle X^{\omega}[..i] \rangle < \langle Y^{\omega}[..i] \rangle$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 *T* の回転親距離符号化 ⟨*T*⟩_r を定義

• ω 前順序: $X \leq_{\omega} Y \Leftrightarrow \operatorname{root}(\langle X \rangle_r) = \operatorname{root}(\langle Y \rangle_r) \vee \exists i: \langle X^{\omega}[..i] \rangle < \langle Y^{\omega}[..i] \rangle$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 *T* の回転親距離符号化 ⟨*T*⟩_r を定義

• ω 前順序: $X \leq_{\omega} Y \Leftrightarrow \operatorname{root}(\langle X \rangle_r) = \operatorname{root}(\langle Y \rangle_r) \vee \exists i: \langle X^{\omega}[..i] \rangle < \langle Y^{\omega}[..i] \rangle$

- 「Mantaci+ '07」によるeBWTへの適応アプローチ
- 文字列 *T* の回転親距離符号化 ⟨*T*⟩_r を定義

• ω 前順序: $X \leq_{\omega} Y \Leftrightarrow \operatorname{root}(\langle X \rangle_r) = \operatorname{root}(\langle Y \rangle_r) \vee \exists i: \langle X^{\omega}[..i] \rangle < \langle Y^{\omega}[..i] \rangle$

- $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...2z] \rangle = \langle Y^{\omega}[...2z] \rangle$, ただし $z = \max\{|X|,|Y|\}$ によって ω 前順序の計算が可能
- 最左の列: conjugate array CA
- 赤い行: conjugate range CR(P)

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{I} & \mathbf{e} \end{bmatrix}$$

$$P = p \mid u \mid m$$
 $\langle P \rangle = \infty \times 1 \times 2$

i	C(i)	$\langle C(i)^{\omega}[15]\rangle$	
8	apple	∞11345113451134	
5	iwik	∞121212121212	
7	ikiw	∞121212121212	
1	fig	∞12312312312	
9	pplea	∞1∞∞∞1134511345	
12	eappl	$\infty \infty 1134511345113$	
4	kiwi	∞∞12121212121	
6	wiki	$\infty \infty 1212121212121$	
3	gfi	∞∞1231231231	
11	leapp	∞ ∞ 113451134511	
2	igf	∞∞∞123123123	
10	pleap	$\infty\infty\infty\infty11345113451$	

conjugate array:回転文字列の配列(接尾辞配列の兄弟) conjugate range:パターンと一致する回天文字列の区間

- $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...2z] \rangle = \langle Y^{\omega}[...2z] \rangle$, ただし $z = \max\{|X|,|Y|\}$ によって ω 前順序の計算が可能
- 最左の列: conjugate array CA
- 赤い行: conjugate range CR(P)

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{l} & \mathbf{e} \end{bmatrix}$$

$$P = p \mid u \mid m$$
 $\langle P \rangle = \infty \times 1 \times 2$

i	C(i)	$\langle C(i)^{\omega}[15] \rangle$	
8	apple	∞11345113451134	
5	iwik	∞121212121212	
7	ikiw	∞121212121212	
1	fig	∞12312312312	
9	pplea	∞1∞∞∞1134511345	
12	eappl	$\infty \infty 1134511345113$	4
4	kiwi	∞∞1212121212121	
6	wiki	$\infty \infty 1212121212121$	
3	gfi	∞∞1231231231	
11	leapp	∞ ∞ 113451134511	4
2	igf	∞∞∞123123123123	
10	pleap	$\infty\infty\infty\infty11345113451$	4

conjugate array:回転文字列の配列(接尾辞配列の兄弟) conjugate range:パターンと一致する回天文字列の区間

タイブレーク

- $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...2z] \rangle = \langle Y^{\omega}[...2z] \rangle$, ただし $z = \max\{|X|,|Y|\}$ によって ω 前順序の計算が可能
- 最左の列: conjugate array CA
- 赤い行: conjugate range CR(P)

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{l} & \mathbf{e} \end{bmatrix}$$

$$P = p \mid u \mid m$$
 $\langle P \rangle = \infty \times 1 2$

i $C(i)$		$\langle C(i)^{\omega}[15] \rangle$	
8	apple	∞11345113451134	
5	iwik	∞121212121212	
7	ikiw	∞121212121212	
1	fig	∞12312312312	
9	pplea	∞1∞∞∞1134511345	
12	eappl	$\infty \infty 1134511345113$	K
4	kiwi	∞∞1212121212121	
6	wiki	$\infty \infty 1212121212121$	
3	gfi	∞∞1231231231	
11	leapp	∞∞∞113451134511	Z
2	igf	∞∞∞123123123123	
10	pleap	∞∞∞∞11345113451	+

conjugate array:回転文字列の配列(接尾辞配列の兄弟)

conjugate range:パターンと一致する回天文字列の区間

FL と LF 写像

- 回転文字列のランクは左右の回転文字列 のランクに写像する(右:FL,左:LF)
- タイブレークのため、テキスの符号化されたルートを循環させたい

- 回転文字列のランクは左右の回転文字列 のランクに写像する(右:FL,左:LF)
- タイブレークのため、テキスの符号化されたルートを循環させたい

$$T_2 = T[4..7] = \begin{bmatrix} k & i & w & i \end{bmatrix}$$

$$\langle T_2 \rangle_r = 1212$$

$$\operatorname{root}(\langle T_2 \rangle_r)$$

- 回転文字列のランクは左右の回転文字列 のランクに写像する(右:FL,左:LF)
- タイブレークのため、テキスの符号化されたルートを循環させたい

$$T_2 = T[4..7] = \begin{bmatrix} k \end{bmatrix} i \end{bmatrix} w \downarrow i$$

$$\langle T_2 \rangle_r = 1212$$

$$\operatorname{root}(\langle T_2 \rangle_r)$$

i	CA[i]	C(CA[i])	FL[i]	LF [<i>i</i>]
1	8	apple	5	6
2	5	iwik	7	7
3	7	ikiw	8	8
4	1	fig	11	9
5	9	pplea	12	1
6	12	eappl	1	10
7	4	kiwi	2	2
8	6	wiki	3	3
9	3	gfi	4	11
10	11	leapp	6	12
11	2	igf	9	4
12	10	pleap	10	5

- 両方の写像を省メモリで表現したい
- [Kim and Cho '21]の整数表現を適応

- 両方の写像を省メモリで表現したい
- [Kim and Cho '21]の整数表現を適応

$$P = \left(\begin{array}{c} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right)$$

- 両方の写像を省メモリで表現したい
- [Kim and Cho '21]の整数表現を適応

$$\langle P[5..] \rangle =$$
 $\langle P[4..] \rangle =$
 $\langle P[4..] \rangle =$
 $\langle P[3..] \rangle =$
 $\langle P[2..] \rangle =$
 $\langle P[1..] \rangle =$
 $\langle P[$

$$\llbracket P \rrbracket = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ p & I & u & m \end{bmatrix}$$

- 両方の写像を省メモリで表現したい
- [Kim and Cho '21]の整数表現を適応

$$\langle P[5..] \rangle =$$
 $\langle P[4..] \rangle =$
 $\langle P[4..] \rangle =$
 $\langle P[3..] \rangle =$
 $\langle P[2..] \rangle =$
 $\langle P[1..] \rangle =$
 $\langle P[$

$$\langle P[1..] \cdot P[..1] \rangle =$$
 $\langle P[4..] \cdot P[..4] \rangle =$
 $\langle P[3..] \cdot P[..3] \rangle =$
 $\langle P[2..] \cdot P[..2] \rangle =$
 $\langle P[1..] \cdot P[..2] \rangle =$
 $\langle P[1..] \cdot P[..1] \rangle =$

$$[\![P]\!] = 0 2 0 0$$

$$P = \boxed{p} \boxed{1} \boxed{u} \boxed{m}$$

$$\llbracket P \rrbracket_r = \boxed{0 \ 3 \ 0 \ 1}$$

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$[\![\mathbf{C}(\mathbf{CA}[i])]\!]_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	→ 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0*	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	→ 0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$[\![\mathbf{C}(\mathbf{CA}[i])]\!]_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	→ 1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0*	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0 🛎	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	\rightarrow 1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$[\![C(CA[i])]\!]_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	19004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$[\![C(CA[i])]\!]_r$	L [<i>i</i>]	LF[<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	19004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	04	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$[\![\mathbf{C}(\mathbf{CA}[i])]\!]_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	/ 0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0 -	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	/ 0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0 4	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[<i>i</i>]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	/ 0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

i	CA[i]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$\llbracket P \rrbracket = \overbrace{0 \quad 2 \quad 0 \quad 0}^{1}$$

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \begin{array}{c} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array}$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	
2	1	2	
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right)$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{}{\llbracket k rbracket}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right)$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{}{\llbracket k rbracket}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[\![P]\!] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	[24]

i	CA [<i>i</i>]	F [<i>i</i>]	L[i]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	[24]

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : $\langle P[k...] \rangle$ 中に ∞ の出現の個数
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[\![P]\!] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	[24]

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

割愛した内容

- conjugate rangesを効率的に更新 (テキストの長さ n とは無関係)
- 構築した索引 (cBWT) は、動的な実装と静的な実装がある
 - 静的な実装は、[Kim and Cho '21]による索引の直接的な適応
 - 動的な実装は、[Hashimoto+ '22, Iseri+ '24]によって変更されたLCP配列を使用
- 構築アルゴリズムの方針は:
 - 単一テキスト索引の構築
 - 既存の索引を他のテキストで拡張
- [Hashimoto+ '22, Iseri+ '24]による技術を応用した構築

まとめと今後の取り組み

- cBWT 索引とは
 - CTPMを複数のテキストと(選択的に)循環テキストに答える
 - 動的な実装: O(n log σ)ビット領域と O(mt) 時間で CTPMを答える
 - 静的な実装: 3n + o(n)ビット領域とO(m)時間で CTPMを答える
 - どちらの実装も、 $O(n \log \sigma)$ ビット領域と O(nt) 時間で構築可能
- 今後の課題
 - 領域を縮める
 - 実験など

$$t = \frac{\log \sigma \log n}{\log \log n}$$