1 Tło historyczne

Matematycy w XIX wieku nie posiadali aksjomatów dotyczących zbiorów - były dla nich oczywistymi bytami, wtedy definicja zbioru brzmiała "zbiór - kolekcja obiektów" (dzisiaj, nazywamy to "naiwną teorią zbiorów" i poza niskopoziomowymi paradoksami, nadal jest dobrym spojrzeniem na zbiory). Wiadomo było, że $\mathbb N$ i $\mathbb R$ są nieskończone, ale $\mathbb R$ wydaje się nieskończone w inny sposób - liczby naturalne są proste, można je wyliczyć: 0,1,2,..., natomiast nie istnieje następca liczby rzeczywistej. W każdym podzbiorze liczb rzeczywistych formy (a,b) jest ich również nieskończenie wiele.

Z powodu braku lepszej definicji, postanowiono, że dwa zbiory będą miały tyle samo elementów, kiedy istnieje bijekcja pomiędzy nimi (mając 7 osób, mogę je policzyć na palcach lub mogę mieć 7 czapek i każdemu założyć na głowę po jednej, w obu sytuacjach wiem, że osób jest dokładnie 7, zatem istnieje bijekcja pomiędzy zbiorem 7 czapek, a zbiorem liczb od 1 do 7). Pod koniec owego wieku, Georg Cantor udowodnił następujące twierdzenie ($\mathcal{P}(A)$ oznacza zbiór potęgowy):

Twierdzenie 1 Nie istnieje surjekcja $f: A \to \mathcal{P}(A)$

Załóżmy, że istnieje taka $f, B := \{a \in A \mid a \notin f(a)\}, f$ jest surjekcją, czyli $\exists b \in A : f(b) = B$, ale $b \in f(b) \iff b \in A \land b \notin f(b)$, głupota.

Q.E.D.

Owe twierdzenie świadczy też o braku bijekcji $f: A \to \mathcal{P}(A)$ (ponieważ bijekcja jest surjekcją).

2 Przeliczalność (formalnie)

Definicja 1 Zbiory A i B są równoliczne wtw, gdy istnieje bijekcja pomiędzy nimi.

Definicja 2 $A \sim B$ wtw, gdy A jest równoliczne z B.

Twierdzenie 2 \sim jest relacją równoważności.

Definicja 3 A jest przeliczalne wtw, gdy $A \sim \mathbb{N}$ lub A jest skończone.

Twierdzenie 3 A jest przeliczalne wtw, gdy istnieje injekcja $f: A \to \mathbb{N}$.

(dowody powyższych twierdzeń pozostawiam czytelnikowi)

3 Przeliczalność (intuicyjnie)

Zbiór jest przeliczalny, kiedy można wyliczyć jego elementy (upewnij się, że rozumiesz dlaczego ta intuicyjna definicja jest równoważna formalnej).

4 Przykłady

 $\{1,2,3\}$ jest przeliczalny (bo jest skończony lub jeśli wolisz, bo istnieje injekcja, f(n)=ndla $n\in\{1,2,3\})$

N jest przeliczalny (bo istnieje banalna bijekcja do N, podaj ją)

 \mathbb{Z} jest przeliczalny, bo możemy stworzyć bijekcję odpowiednio:

$$f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2, f(4) = -2, \dots$$

 $\mathbb R$ nie jest przeliczalny, jakakolwiek próba wyliczenia wszystkich liczb rzeczywistych skończy się fiaskiem (któreś będą pominięte).

5 Zadanie

Wiemy już, że zbiór wszystkich skończonych ciągów o wyrazach 0,1 jest nieskończony. Pokaż, że jest przeliczalny.

Innymi słowy, wylicz wszystkie te ciągi i pokaż, że żaden nie zostanie pominięty.