运算放大器基本应用电路(双电源应用图集)

1.1 比例运算电路

将输入信号按比例放大的电路,简称为比例运算电路或比例电路。它由集成运放和电阻组成深度负反馈电路来构成。根据输入信号所加到运放端口的不同,可划分为反相输入、同相输入和差动输入等三种比例电路。

1.1.1 反向比例运算电路

图 1 反向比例运算电路

反相比例电路如图 1 所示。由于输入信号 U_i 加在反相端,故输出电压 U_o 与 U_i 反相位。

电压放大倍数 A, 为

$$A_u = \frac{U_O}{U_i} = -\frac{R_f}{R_1}$$

通过改变 R_f 和 R_1 的比例,可以改变 $|A_u|$ 的大小。 $|A_u|$ 可以大于 1、小于 1 或等于

- 1。(备注:考虑到运放工作的稳定性,一般增益都会大于等于1)
- ◆ 知识扩展:
- 1、R'为偏置电流补偿电阻。一些类型运算放大器内部集成了偏置电流补偿电路,在实际使用时就不需要电阻 R',连接反而会造成输出偏移,可参看运算放大器数据手册。
- 2、 R_f 为负反馈电阻,一般取值范围为 $1k\Omega\sim100k\Omega$,具体取值可参看数据手册推荐值。
- ◆ 设计举例:使用运算放大器 OPA227 设计一个设计反向比例运算电路,电路增益 $A_{\mu} = 10$,记录 OPA227 各引脚的静态工作点。
- ◆ 设计过程: 根据 OPA227 数据手册可知补偿电阻 R['] 不需要,见数据手册 P12 "INPUT BIAS CURRENT CANCELLATION" 部分说明。

Conventional Op Amp Configuration

Recommended OPA227 Configuration

由增益关系式计算电阻取值过程如下,取 $R_f=10k$,则 $R_l=1k$,电路图如下图所

1.1.2 同向比例运算电路

图 2 同向比例运算电路

同相比例电路如图 2 所示。输入信号 U_i 加到同相输入端,输出电压 U_o 与输入电压 U_i 同相位。

电压放大倍数 A, 为

$$A_u = \frac{U_o}{U_{\perp}} = 1 + \frac{R_f}{R_1}$$

- ◆ 设计举例:使用运算放大器 OPA227 设计一个设计同向比例运算电路,电路增益 $A_u = 10$,记录 OPA227 各引脚的静态工作点,并采用设计完成的电路测量 OPA227 的增益带宽积 GBW 和压摆率 SR。
- ◆ 设计过程
- (1) 根据芯片手册取 $R_f = 10$ k.

电路图如下图所示。

下面基于上图来测量 OPA227 的增益带宽积和压摆率技术指标。

(1) 压摆率 SR 测试

输入低频方波,频率约 100Hz,这种方波会在输出端导致全电压摆幅,用示波器 测量输出信号,注意为了清楚观看上升沿信号,需拉伸示波器的水平时间轴。测 量示意图如下图。

选线性度较好的一段,使用示波器测量幅度和时间的变化量,如下图所示。

由上图可知, $SR = \frac{1V}{463ns} = 2.16V/us$,与数据手册提供的2.3V/us 吻合。

(2) 增益带宽积 GBW 测试

测试方案: 改变信号源的输出频率,测量运算放大器输出信号的幅度,由运算放大器输出幅 度和信号源输出幅度,可以计算出在不同频率时放大电路的增益,进而可以得出电路的幅频 特性,由幅频特性即可得出运放的增益带宽积指标。注意,在测量增益带宽积时,一定要保 证运放不会由于压摆率受限处于非线性性失真。

对于本测试电路,电路增益为 10,查阅 OPA227 数据手册可知 OPA227 的增益带宽积为 8MHz, 因此估算在增益为 10 时,-3dB 带宽为 800kHz 左右,需要保证输出信号在 800kHz 时不出现压摆率受限的失真,则输入信号幅度 $U_{in} \times 10 \times 2\pi \times 800 kHz \leq 2.3 V/us$,则

 $U_{in} \le 45.75 mV$, 选择输入信号 $U_{in} \le 40 mV$ (峰值)。记录如下序列信号: 输入信号频率为 1kHz 时,

输入信号频率为 500kHz 时,

输入信号频率为 750kHz 时,

因此测得的增益带宽积大小为 7.5MHz。

1.1.3 电压跟随器电路

图 3 电压跟随器电路

当断开同向比例运算电路的 R_1 时,电路图如图 3 所示,此时电路的电压放大倍数 $A_u=1$ 。该电路通常用作阻抗转换或隔离缓冲级。

- ◆ 知识扩展:
- 1、R[']和 R_f 不影响电路的增益,因此简单处理可以直接短路。在实际电路中,R[']和 R_f 可取 $50\sim500$ 范围内的电阻值。
- ◆ **设计举例:** 使用运算放大器 OPA227 设计一个设计电压跟随器电路,记录 OPA227 各引脚的静态工作点,并采用设计完成的电路测量 OPA227 的增益 带宽积 *GBW* 和压摆率 *SR* 。
- ◆ 设计过程

电路图如下图所示。

- 1.2 加减运算电路
- 1.2.1 反向求和运算电路

图 4 反向求和运算电路

反相加法电路是指多个输入电压同时加到集成运放的反相输入端。图 3 为三个输入信号

(代表三个变量)的反相加法电路。 $R^{'}=R_{1}\,/\!/\,R_{2}\,/\!/\,R_{3}\,/\!/\,R_{f}$ 。运用虚短、虚断和虚地的概念,由电路可得

$$U_o = -\left(\frac{R_f}{R_1}U_{i1} + \frac{R_f}{R_2}U_{i2} + \frac{R_f}{R_3}U_{i3}\right)$$

若 R₁=R₂=R₃=R , 上式可变为

$$U_o = -\frac{R_f}{R}(U_{i1} + U_{i2} + U_{i3})$$

- ◆ **设计举例:** 设计一个反向求和加法器,输入信号为频率 1kHz,幅度为 1V 的正弦波和 1V 的直流信号,增益为 5。关系式为 $y = -5 \times [\cos(2 \times \pi \times 1kHz \times t) + 1]$
- ◆ 设计过程:
- (1) 取 R_f=10k;

电路图如下图所示。

1.2.2 同向求和运算电路

图 5 同向求和运算电路

如果将各输入电压同时加到集成运放的同相输入端,称为同相加法电路。图 5 表示有三个输入量的同相加法电路。

$$U_{o} = \frac{R_{p}}{R_{n}} R_{f} \left(\frac{U_{i1}}{R_{1}} + \frac{U_{i2}}{R_{2}} + \frac{U_{i3}}{R_{3}} \right)$$

$$R_{n} = R / / R_{f}$$

$$R_{p} = R_{1} / / R_{2} / / R_{3} / / R_{4}$$

在 R_p 严格等于 R_n 的条件下,图 5 电路的输出电压与输入电压的关系为

$$U_o = R_f(\frac{U_{i1}}{R_1} + \frac{U_{i2}}{R_2} + \frac{U_{i3}}{R_3})$$

如果调整某一路信号的电阻(R_1 、 R_2 、 R_3)的阻值,则必须改变电阻 R 的阻值,以使 R_p 严格等于 R_n 。由于常常需反复调节才能将参数值最后确定,估算和调试的过程比较麻烦。所以,在实际工作中,不如反相电路应用广泛。

◆ 设计举例:设计一个同向求和加法器,输入信号为频率 1kHz,幅度为 1V 的正弦波和 1V 的直流信号,增益为 5。关系式为 $y=5\times[\cos(2\times\pi\times1kHz\times t)+1]$ 。

◆ 设计过程:

- (1) 取 R_f=10k;
- (2) 由增益为 5, 可计算 R₁=R₂= 2k;
- (3)由于需选取电阻 R_4 和 R ,使 $R_p=R_n$,可选 R_4 = 10k ,则 R=1k 。 电路图如下图所示。

1.2.3 差分比例运算电路

输出电压为

$$U_o = (1 + \frac{R_f}{R_1}) \frac{R_f'}{R_1' + R_f'} U_{i2} - \frac{R_f}{R_1} U_{i1}$$

当满足匹配条件(电路对称)即 $R_{1}^{'}=R_{1}$, $R_{f}^{'}=R_{f}$ 时, 则

$$U_o = \frac{R_f}{R_1} (U_{i2} - U_{i1})$$
 , $A_u = \frac{U_o}{U_{i2} - U_{i1}} = \frac{R_f}{R_1}$

若四个外接电阻全相等,即 $R_1 = R_1 = R_f = R_f$,则有

$$U_o = U_{i2} - U_{i1}$$

可以看出,四只电阻全相同的差动比例电路可作减法运算。该电路结构简单,缺点是输入电阻低,对元件的对称性要求比较高。如果元件失配,不仅在计算中会带来附加误差,而且将产生共模电压输出,同时输出电压调节也不方便。

◆ 设计举例:设计一个差分比例运算电路,输入信号为频率 1kHz,幅度为 1V

的正弦波和 1V 的直流信号。关系式为 $y = -[\cos(2 \times \pi \times 1 \text{kHz} \times t)] + 1$

◆ 设计过程:

由所要求的关系式,可取 $R_1^{'}=R_1=R_f^{'}=R_f=10k$

电路图如下图所示。

$$u_o = -\frac{1}{C} \int i dt \approx -\frac{1}{RC} \int u_i dt$$

积分时间常数 $\tau = RC$

◆ 知识扩展:

- 1、Rf 的作用是限制积分器的低频增益,以抑制漂移的影响,Rf 要远大于R,这样才能避免Rf 的引入影响积分特性。
- 2、 在低频时,由于电容 C 认为是断路,因此上图不再是积分器。作为积分器使

用的下限频率fx是

$$f_x = -\frac{1}{2\pi R_f C}$$

- ◆ 设计举例:应用集成运算放大器设计方波转换成三角波电路,方波频率 500Hz、幅度为 5V。输出三角波幅度的绝对值为 5V。
- ◆ 设计过程:

为保证积分后三角波的线性度好,应保证方波的频率 $f > 10 f_x$

(1) 积分时间
$$t = \frac{T}{2} = \frac{1}{(2f)} = \frac{1}{(2 \times 500)} = 1$$
ms

$$(2) \quad R = \frac{U_i t}{U_o C}$$

(3) 取 C=100nF, 则

$$R = \frac{U_i t}{(U_o C)} = \frac{5 \times 1 \times 10^{-3}}{(5 \times 0.1 \times 10^{-6})} = 10k\Omega;$$

(4) 由 $f > 10f_x$ 可得

$$R_F > \frac{10}{(2\pi \times f \times C)} = \frac{10}{(2\pi \times 500 \times 0.1 \times 10^{-6})} = 31.8k\Omega$$

为满足 $R_F >> R$,取 $R_F = 200k\Omega$;

(5) 验算
$$10f_x = \frac{10}{(2\pi \times R_F \times C)} = \frac{10}{(2\pi \times 200 \times 10^3 \times 0.1 \times 10^{-6})} = 80Hz$$
 $f = 500Hz$, 满足 $f > 10f_x$, 符合要求。

由计算参数所得原理图如下。

1.4 微分运算电路

基本关系式

$$u_o = -RC\frac{du_i}{dt}$$

◆ 知识扩展:

- 1、由于输出 u_o 正比于 $\frac{du_i}{dt}$,因此输出对输入的变化(如噪声和干扰等)非常敏感,以致输出噪声可能完全淹没微分信号,因此基本微分电路的抗干扰能力差。
- 2、由于基本微分电路的 RC 环节对于反馈信号具有滞后作用,它和集成运放内部电路的滞后作用合在一起,在高频段工作时极易引起自激振荡,使放大器工作不稳定。因此,在 R 和 R 两端各并联一只小电容器 C1 和 C ,起相位补偿作用,以消除自激。
- 3、当输入电压发生跳变时,有可能超过集成运放的最大输出电压,严重时将使 微分电路不能正常工作。可在 R 两端并联稳压管,限制输出幅度。

4、加一个小电阻 R1 和 C 串联,以限制噪声和突变的输入电压。实用微分电路如下图所示。

当输入阶跃信号时,输出为尖脉冲,输出信号幅度除与 \mathbf{R} 、 \mathbf{C} 有关,还与输入信号的变化率有关,输出信号大小受运算放大器输出饱和电压土 $U_{\mathbf{R}}$ 限制。阶跃信号作用时,微分电路输入和输出的波形如下图所示。

基本关系式

$$_{(1)}\ u_{o}=-RC\frac{du_{i}}{dt}$$

(2) 微分时间常数 $\tau_F = RC$

(3)
$$R_1 = \left[\frac{2 \times \tau_F}{(\pi \times BW_G \times C^2)}\right]^{1/2}$$
, 式中 BW_G 为运放增益带宽积。

(4)
$$\tau = \tau_F$$
 , $\tau < T_1$, $\tau < T_2$

式中, τ 为输出尖脉冲宽度,T为输入脉冲作用期,T3为输入脉冲休止期。

- (5) R' = R
- (6) $U_{om} = \pm U_B$, U_{om} 为输出最大值, U_B 为集成运放饱和输出电压。
- (7) $\diamond \tau_1 = R_1 C$, $\tau_2 = RC_1$, 为更好抑制噪声, 应满足 $\tau_1 = \tau_2$ 。
- **▶ 设计举例:**应用集成运算放大器设计一个将对称三角波转换成方波的电路, 三角波频率 500Hz、峰峰值为 5V, 要求输出方波的峰峰值为 10V。
- ◆ 设计过程:

(1) 由
$$u_o = -RC \frac{du_i}{dt}$$
可知,当输入为三角波时, $U_o = -RC \frac{U_i}{t}$

上式中, U_a 为输出方波峰值, U_t 为三角波峰峰值,t为三角波峰峰值变化时间。

(2)
$$t = \frac{T}{2} = \frac{1}{(2f)} = \frac{1}{(2x500)} = 1ms$$
(2)
$$R = \frac{U_o t}{(2x500)} = \frac{1}{(2x500)} = 1ms$$

$$(3) \quad R = \frac{U_o t}{U_i C}$$

取 C=100nF, 则 (4)

$$R = \frac{U_o t}{(U_i C)} = 5 \times 1 \times 10^{-3} / (5 \times 0.1 \times 10^{-6}) = 10 k\Omega,$$

(5) $R_{1} = \left[\frac{2 \times \tau_{F}}{(\pi \times BW_{G} \times C^{2})}\right]^{1/2} = \left[2 \times 10 \times 10^{3} \times 0.1 \times 10^{-6} / (\pi \times 8 \times 10^{6} \times (0.1 \times 10^{-6})^{2})\right]^{1/2} = 89\Omega$ 取系列电阳 91Ω :

(6) 由 $\tau_1 = \tau_2$ 可得 $R_1C = RC_1$, 推导

$$C_1 = R_1 C / R = 91 \times 0.1 \times 10^{-6} / (10 \times 10^3) = 910 \, pF$$

由计算参数所得原理图如下。

当输入阶跃信号时, 仿真输出波形如下图所示。

1.5 电压比较器电路

1.5.1 单限比较器

◆ 知识扩展:

- 1、运算放大器做电压比较器使用时,由于同相输入端和反相输入端存在差模电压,需要根据运放的差模输入电压范围来选型运算放大器。
- 2、在设计电压比较器电路时,可选用专门的电压比较器芯片,如LM311、LM339、TLV3501、TLV3502等。

1.5.2 滞回比较器

滯回比较器又称施密特触发器。这种比较器的特点是当输入信号 u_i 逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有"滯回"曲线的形状。

滞回比较器也有反相输入和同相输入两种方式,它们的电路及传输特性示下图所示。

滞回比较器及其传输特性(a)反相输入; (b)同相输入

集成运放输出端至反相输入端为开环。输出端至同相输入端引入正反馈,目的是加速输出状态的跃变,使运放经过线性区过渡的时间缩短。 U_R 是某一固定电压,改变 U_R 值能改变阈值及回差大小。

对于反相输入滞回电压比较器,正向和反向过程的阈值分别为

$$\begin{split} U_{\mathit{TH1}} &= \frac{R_{3}U_{\mathit{R}} + R_{2}U_{\mathit{oH}}}{R_{2} + R_{3}} = \frac{R_{3}U_{\mathit{R}} + R_{2}U_{\mathit{Z}}}{R_{2} + R_{3}} \\ U_{\mathit{TH2}} &= \frac{R_{3}U_{\mathit{R}} + R_{2}U_{\mathit{oH}}}{R_{2} + R_{3}} = \frac{R_{3}U_{\mathit{R}} - R_{2}U_{\mathit{Z}}}{R_{2} + R_{3}} \end{split}$$

对于同向输入滞回电压比较器,正向和反向过程的阈值分别为

$$U_{TH1} = (1 + \frac{R_2}{R_3})U_R - \frac{R_2}{R_3}U_{oL}$$

$$U_{TH2} = (1 + \frac{R_2}{R_3})U_R - \frac{R_2}{R_3}U_{oH}$$

1.6 矩形波发生电路

振荡周期 $T = T_1 + T_2 = 2R_3CIn\left(1 + \frac{2R_1}{R_2}\right)$

- ◆ 设计举例:应用集成运算放大器设计一个方波发生电路,要求方波频率 1kHz、 幅度为 5V。
- ◆ 设计过程:
- (1) & C = 0.01uF, $\diamondsuit R_1 = R_2 = 5.1k$, $\bigcup R_3 = 45.5k$
- (2) 输出稳压电路设计,需考虑稳定电流 I_Z 。由于要求输出幅度为 5V,可选用稳定电压 $U_Z=4.3$ 的两个稳压工极管反向串联使用。查阅资料,选取稳压二极管 $I_Z=20mA$, 当 电 源 电 压 为 I_Z 时 , 估 算 电 阻 $R_4<(12-5)/(20\times 10^{-3})\Omega$,所以 $R_4^{-1}<350\Omega$,选取 300Ω

由计算参数所得原理图如下。(备注: OPA227 运放仿真输出不符合,原因不明)

1.7 有源滤波电路

1.7.1 低通滤波电路

1.7.1.1 一阶低通滤波电路

请参看《有源滤波器设计范例》

1.7.1.2 二阶有源低通滤波电路(VCVS)

请参看《有源滤波器设计范例》

1.7.1.3 二阶有源低通滤波电路(MFB)

请参看《有源滤波器设计范例》

1.7.2 带通滤波电路

1.7.2.1 二阶有源带通滤波器 (VCVS)

请参看《有源滤波器设计范例》

1.7.2.2 二阶有源带通滤波器 (MFB)

请参看《有源滤波器设计范例》

1.7.3 高通滤波电路

1.7.3.1 二阶有源高通滤波器(VCVS)

请参看《有源滤波器设计范例》

1.7.3.2 二阶有源高通滤波器 (MFB)

请参看《有源滤波器设计范例》

1.7.4 全通滤波电路

1.7.4.1 超前电路

请参看《有源滤波器设计范例》

1.7.4.2 滞后电路

请参看《有源滤波器设计范例》