THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

STAT3910 Financial Economics I

Computer-based Assignment

Due: November 29, 2022

- 1. Let S = \$80, K = \$80, T = 1, $\sigma = 30\%$, r = 0.08, and $\delta = 0$.
 - (a) Compute the European put price using Black-Scholes formula.
 - (b) Compute the European put price again using binomial tree with number of periods n = 2, 50, 100, 500, 1000.
 - (c) Compute the European put price again using Monte Carlo method (sample size = 100000).
 - (d) What do you observe?
- 2. Suppose $S_0 = 100$, T = 1, r = 0.08 and $\delta = 0$. For different strike price K, you observe the European put price p in the market:

F	85	90	95	100	105	110	115
Ţ	3.90459	5.05327	6.66885	8.02293	10.6531	13.5959	16.8072

Assume the Black-Scholes framework, calculate the implied volatility for each strike price. What do you observe?

3. Let S = \$100, K = \$100, T = 1, $\sigma = 30\%$, r = 0.08, and $\delta = 0$. Assume the Black-Scholes framework, using Monte Carlo method to calculate the price of the option with the following payoff:

$$\max\{S_T, \sup_{0 \le t \le 1/2} S_t\}.$$