MATEMATYKA DYSKRETNA

Program wykładu w semestrze zimowym:

KOMBINATORYKA

- 1. Notacja i podstawowe pojęcia
- 2. Relacja binarna i jej własności; funkcja i jej własności
- 3. Zasady równoliczności, mnożenia i włączania-wyłączania
- 4. Zasada "szufladkowa" Dirichleta
- 5. Zbiory uporządkowane; zliczanie łańcuchów i antyłańcuchów
- 6. Zliczanie funkcji, injekcji i rozmieszczeń uporządkowanych
- 7. Permutacja i jej własności
- 8. Zliczanie i generowanie podzbiorów zbioru *n*-elementowego
- 9. Zliczanie w zbiorach z powtórzeniami (równania diofantyczne)
- 10. Metoda funkcji tworzącej
- 11. Zliczanie podziałów zbioru (liczby Stirlinga II rodzaju)
- 12. Zliczanie surjekcji
- 13. Zliczanie podziałów liczby
- 14. Wprowadzenie do ogólnej teorii zliczania

Literatura:

- *M.Libura, J.Sikorski* "Wykłady z matematyki dyskretnej. Cz.I: Kombinatoryka" Wydawnictwo WSISiZ (2003)
- Z.Palka, A.Ruciński "Wykłady z kombinatoryki" WNT (1998, 2004)
- W.Lipski "Kombinatoryka dla programistów" WNT (1989, 2004)
- K.Ross, C.Wright "Matematyka dyskretna" PWN (1996, 2003)
- R. Graham, D. Knuth, O. Patashnik, Matematyka konkretna" PWN (2002)

NOTACJA I POJĘCIA PODSTAWOWE

Funktory zdaniotwórcze:

v - *lub* (alternatywa, suma logiczna)

∧ - *i* (koniunkcja, iloczyn logiczny)

¬ - nie (negacja)

⇒ - *jeśli* ..., to ... (implikacja)

⇔ - ... wtedy i tylko wtedy, kiedy ... (równoważność)

Kwantyfikatory:

∃ - *istnieje* (kwantyfikator szczegółowy, egzystencjalny)

∀ - dla każdego (kwantyfikator ogólny)

Zbiory:

 \mathbb{R} - zbiór liczb rzeczywistych, \mathbb{C} - zespolonych,

 $\mathbb{N} = \{0, 1, 2, ...\}$ - zbiór liczb naturalnych,

 $\mathbb{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}$ - zbiór liczb całkowitych,

 $\mathbb{B} = \{ 0, 1 \}$ - zbiór "binarny", \emptyset - zbiór pusty,

 $\{a_1, ..., a_n\}$ - zbiór składający się z n elementów $a_1, ..., a_n$

 $\{a\}$ - zbiór jednoelementowy zawierający tylko a,

 $\{x \in X : W(x)\}$ - zbiór tych elementów zbioru X, dla których

funkcja zdaniowa W(x) ma wartość "prawda",

∪ - suma zbiorów,
 ∩ - iloczyn zbiorów,
 \ - różnica zbiorów,

 \otimes - różnica symetryczna zbiorów: $A \otimes B = (A \setminus B) \cup (B \setminus A)$

 \subseteq - zawieranie się zbiorów: $A \subseteq B$ (A jest zawarty w B)

 \subset - właściwe zawieranie się: $A \subset B$

(A jest podzbiorem właściwym zbioru B) $\forall A: A \subseteq A$, ale $A \not\subset A$

 $\mathbb{P}(A)$ - zbiór wszystkich podzbiorów zbioru A;

 $\forall A: \varnothing \subseteq A \Rightarrow \forall A: \varnothing \in P(A) \text{ oraz } \forall A: A \in P(A)$

|A| - liczność (moc) zbioru A, np. $|\{a_1, a_2, a_3\}| = 3$

(a, b) - para uporządkowana: a - poprzednik, b - następnik

 $A \times B$ - <u>iloczyn kartezjański</u> zbiorów A i B:

 $A \times B = \{ (a, b) : a \in A \land b \in B \}$

 $(a_1, ..., a_n)$ - n-tka uporządkowana (wektor n-elementowy)

 $A_1 \times ... \times A_n$ - iloczyn kartezjański zbiorów $A_1, ..., A_n$ $A_1 \times ... \times A_n = \{ (a_1, ..., a_n) : a_1 \in A_1 \wedge ... \wedge a_n \in A_n \}$

Funkcje i operacje:

 $\lfloor Q \rceil = \begin{cases} 1, \text{ jesli zdanie Q jest prawdziwe} \\ 0, \text{ jesli zdanie Q jest falszywe} \end{cases} - \text{,,binarna wartość zdania'',}$

 $\lfloor x \rfloor = \max\{y \in Z : y \le x\}$ - "podłoga"; $\lceil x \rceil = \min\{y \in Z : y \ge x\}$ - "sufit" $x \mod y = x - y \cdot \lfloor x/y \rfloor$ - "modulo", czyli reszta z dzielenia x przez y

 $x, y \in \mathbb{R}, y \neq 0$

Relacja binarna

$$R \subset A \times B$$

(relacja dwuczłonowa w iloczynie kartezjańskim zbiorów A i B)

Relacja binarna na zbiorze A:

$$R \subseteq A \times A$$

to, że elementy a i b są w relacji, zapisujemy: $(a, b) \in R$ lub aRb

Dziedzina relacji R:

$$\{ a \in A : (\exists b \in B : (a, b) \in R) \}$$

- zbiór poprzedników par należących do R

Przeciwdziedzina relacji $R: \{b \in B : (\exists a \in A : (a, b) \in R)\}$

- zbiór następników par należących do R

Przykład relacji

$$A = \{ 1, 2, 3, 4, 5 \}, B = \{ \{1, 2\}, \{1, 4\} \}$$

R - relacja przynależności do zbioru

$$R = \{ (1, \{1, 2\}), (1, \{1, 4\}), (2, \{1, 2\}), (4, \{1, 4\}) \} \subseteq A \times B$$

dziedzina relacji R: { 1, 2, 4 }

przeciwdziedzina relacji R: { $\{1, 2\}, \{1, 4\}$ }

graf relacji:

tablica relacji:

	{1, 2}	{1, 4}
1	1	1
2	1	0
3	0	0
4	0	1

Relacja (binarna) *R* na zbiorze *X* jest:

• **zwrotna**, jeśli $\forall x \in X : xRx$

• **przechodnia**, jeśli $\forall x, y, z \in X : (xRy \land yRz) \Rightarrow xRz$

• symetryczna, jeśli $\forall x, y \in X : xRy \Rightarrow yRx$

• antysymetryczna, jeśli $\forall x, y \in X : (xRy \land yRx) \Rightarrow x = y$

Relację zwrotną, przechodnią i symetryczną nazywamy relacją **równoważności**

typowe oznaczenie: \approx , np. $a \approx b$

Przykład relacji równoważności w zbiorze liczb rzeczywistych dla $x, y \in \mathbb{R}$ relacja $x \approx y$ zachodzi wtedy i tylko wtedy, gdy $x - y \in \mathbb{Z}$ (różnica jest liczbą całkowitą)

Relację zwrotną, przechodnią i antysymetryczną nazywamy relacją **porządkującą** zbiór X

typowe oznaczenie: \leq , np. $a \leq b$

Przykłady relacji porządkujących

- Relacja podzielności w zbiorze \mathbb{R} : $a\mathbf{R}b \iff a$ jest podzielnikiem b
- Relacja zawierania w zbiorze $\mathbb{P}(X)$: $ARB \iff A \subseteq B$

Pierwsze pytania "kombinatoryczne":

- Ile jest relacji binarnych w iloczynie kartezjańskim $X \times Y$, jeśli |X| = n i |Y| = m?
- Ile jest relacji binarnych na zbiorze |X| = n?
- Ile jest zwrotnych relacji binarnych na zbiorze |X| = n?
- Ile jest (anty)symetrycznych relacji binarnych na zbiorze |X| = n?

Funkcja $f: X \to Y$

to taka relacja $R \subseteq X \times Y$, że dla każdego $x \in X$ istnieje dokładnie jedna para postaci $(x, y = f(x)) \in R$

Fun(X, Y) – zbiór wszystkich funkcji z X w Y

Dla dowolnych zbiorów $A \subseteq X$ i $B \subseteq Y$ definiujemy:

$$f(A) = \{ y \in Y : \exists x \in A : y = f(x) \}$$
 (**obraz** zbioru *A*)
 $f^{-1}(B) = \{ x \in X : f(x) \in B \}$ (**przeciwobraz** zbioru *B*)

- o funkcji $f: X \to Y$ mówimy, że jest "**na**" jeśli f(X) = Y Sur(X, Y) zbiór wszystkich funkcji z X <u>na</u> Y (**surjekcji**)
- funkcja jest różnowartościowa (wzajemnie jednoznaczna), jeśli
 ∀ a, b ∈ X a ≠ b ⇒ f(a) ≠ f(b)
 Inj(X, Y) zbiór wszystkich funkcji różnowart. z X w Y (injekcji)

 $Bij(X, Y) = Sur(X, Y) \cap Inj(X, Y) - zbiór wszystkich$ **bijekcji**z X na Y

Zasada równoliczności

$$Bij(X, Y) \neq \emptyset \implies |X| = |Y|$$

Przykład zastosowania zasady

X – zbiór wszystkich rozmieszczeń n jednakowych przedmiotów w k ponumerowanych pojemnikach,

Y – zbiór wszystkich wektorów binarnych ($a_i \in \{0, 1\}$) o n+k-1 składowych, z których n jest równych 0

$$|X|$$
? $|Y|$

Zasada włączania-wyłączania

Dla 2 zbiorów: $|A \cup B| = |A| + |B| - |A \cap B|$

Dla 3 zbiorów: $|A \cup B \cup C| =$

$$|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Dla *n* zbiorów: $|A_1 \cup A_2 \cup ... \cup A_n| = ?$

Twierdzenie (zasada włączania-wyłączania)

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \sum_{1 \le i < j < k \le n} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n-1} |A_{1} \cap \dots \cap A_{n}|$$

Przykłady zastosowania zasady włączania-wyłączania (prosty)

Zbadano 50 samochodów wykonując testy na poziom zawartości trzech grup zanieczyszczeń: NO_x, HC, CO;

1 samochód nie spełnia żadnej z trzech norm, 3 samochody przekroczyły poziom NO_x i HC, 2 samochody przekroczyły poziom NO_x i CO, 1 samochód przekroczył poziom HC i CO, 6 samochodów ma zbyt wysoki poziom NO_x , 4 samochody maja zbyt wysoki poziom HC a 3 samochody maja zbyt wysoki poziom CO.

Ile samochodów spełnia wszystkie testowane normy?

A – zbiór samochodów, które przekroczyły poziom NO_x ,

B – zbiór samochodów, które przekroczyły poziom HC,

C – zbiór samochodów, które przekroczyły poziom CO;

$$|A| = 6$$
, $|B| = 4$, $|C| = 3$,

$$|A \cap B| = 3$$
, $|A \cap C| = 2$, $|B \cap C| = 1$,

$$|A \cap B \cap C| = 1$$

| zbiór samochodów, które nie spełniają co najmniej jednej normy| =

$$|A \cup B \cup C| = 6 + 4 + 3 - 3 - 2 - 1 + 1 = 8$$

| zbiór samochodów, które spełniają wszystkie normy| = 50 - 8 = 42

Zasada szufladkowa

Twierdzenie (Dirichlet)

Dla skończonych zbiorów X i Y, takich że $|X| > r \cdot |Y|$ dla r > 0: dla każdej funkcji $f \in Fun(X, Y)$ warunek $|f^{-1}(\{y\})| > r$ jest spełniony dla co najmniej jednego $y \in Y$.

J. Lejeune Dirichlet (1805 – 1869)

Dla r=1:

jeśli chowamy do szuflad więcej przedmiotów niż mamy szuflad, to w co najmniej jednej szufladzie znajdzie się więcej niż jeden przedmiot.

Przykład zastosowania zasady szufladkowej (mało ambitny)

W aglomeracji warszawskiej mieszkają co najmniej 4 osoby o tej samej liczbie włosów na głowie.

Zliczanie funkcji

Dane są dwa zbiory X i Y o licznościach |X| = n i |Y| = m.

$$|Fun(X, Y)| = ?$$

Ile jest funkcji $f: X \to Y$?

Interpretacja

Na ile sposobów można rozmieścić **n** ponumerowanych przedmiotów w **m** ponumerowanych pudełkach?

X - zbiór przedmiotów, Y - zbiór pudełek,

każda funkcja $f: X \to Y$ określa pewne rozmieszczenie przedmiotów w pudełkach przez wskazanie dla każdego przedmiotu $x \in X$ pudełka $f(x) \in Y$, w którym ten przedmiot zostaje umieszczony

Elementy w skończonych zbiorach X i Y można ponumerować i przyjmować, że $X = \{1, 2, ..., n\}$ i $Y = \{1, 2, ..., m\}$

Twierdzenie

Jeśli |X| = n i |Y| = m, to liczba wszystkich funkcji $f: X \to Y$ jest równa m^n ; $|Fun(X, Y)| = m^n$

	m^n											
	n = 0	1	2	3	4	5	6	7	8	9		
m = 0	1	0	0	0	0	0	0	0	0	0		
1	1	1	1	1	1	1	1	1	1	1		
2	1	2	4	8	16	32	64	128	256	512		
3	1	3	9	27	81	243	729	2187	6561	19683		
4	1	4	16	64	256	1024	4096	16384	65536	262144		
5	1	5	25	125	625	3125	15625	78125	390625	1953125		
6	1	6	36	216	1296	7776	46656	279936	1679616	10077696		
7	1	7	49	343	2401	16807	117649	823543	5764801	40353607		
8	1	8	64	512	4096	32768	262144	2097152	16777216	134217728		
9	1	9	81	729	6561	59049	531441	4782969	43046721	387420489		
•••												

Zliczanie injekcji

Dane są dwa zbiory X i Y o licznościach |X| = n i |Y| = m $(n \le m)$.

$$|Inj(X, Y)| = ?$$

Ile jest funkcji <u>różnowartościowych</u> $f: X \rightarrow Y$?

Interpretacja

Na ile sposobów można rozmieścić **n** ponumerowanych przedmiotów w **m** ponumerowanych pudełkach, tak aby w żadnym pudełku nie był więcej niż 1 przedmiot?

Twierdzenie

Jeśli |X|=n, |Y|=m i $n \le m$ to liczba wszystkich funkcji różnowartościowych (injekcji) $f:X \to Y$ jest równa $m \cdot (m-1) \cdot \dots \cdot (m-n+1) = m^{\frac{n}{2}}; \qquad |Inj(X,Y)| = m^{\frac{n}{2}}$

	$m^{\underline{n}}$											
	n=0	1	2	3	4	5	6	7	8	9	10	
m = 0	1	0	0	0	0	0	0	0	0	0	0	
1	1	1	0	0	0	0	0	0	0	0	0	
2	1	2	2	0	0	0	0	0	0	0	0	
3	1	3	6	6	0	0	0	0	0	0	0	
4	1	4	12	24	24	0	0	0	0	0	0	
5	1	5	20	60	120	120	0	0	0	0	0	
6	1	6	30	120	360	720	720	0	0	0	0	
7	1	7	42	210	840	2520	5040	5040	0	0	0	
8	1	8	56	336	1680	6720	20160	40320	40320	0	0	
9	1	9	72	504	3024	15120	60480	181440	362880	362880	0	
10	1	10	90	720	5040	30240	151200	604800	1814400	3628800	3628800	

Przyjmując formalne oznaczenie symbolu potęgi ubywającej:

 $m^{\underline{n}} = m \cdot (m-1) \cdot \dots \cdot (m-n+1)$, dookreślamy jego wartość $m^{\underline{0}} = 1$

Jeśli m=n, to każda funkcja <u>różnowartościowa</u> $f:X\to Y$ jest wzajemnie jednoznacznym odwzorowaniem zbioru X <u>na</u> zbiór Y.

$$m = n \Rightarrow |Inj(X, Y)| = |Sur(X, Y)| = |Bij(X, Y)|$$

Permutacja

Permutacją zbioru X nazywamy wzajemnie jednoznaczne odwzorowanie (bijekcję) $f: X \to X$.

$$|Bij(X, X)| = n^{\underline{n}} = n \cdot (n - 1) \cdot ... \cdot 1 = n!$$
, dla $|X| = n$

Twierdzenie

Liczba permutacji zbioru *n*-elementowego jest równa *n*!

Zasada mnożenia

Jeżeli rozważane są funkcje $f: X \to Y$,

dla których $X = X_1 \cup X_2$ i $Y = Y_1 \cup Y_2$ oraz spełnione są warunki

$$X_1 \cap X_2 = \emptyset$$
, $f(X_1) \subseteq Y_1$ if $f(X_2) \subseteq Y_2$,

to
$$|Fun(X, Y)| = |Fun(X_1, Y_1)| \cdot |Fun(X_2, Y_2)|$$

Jeżeli ponadto $Y_1 \cap Y_2 = \emptyset$,

to
$$|Inj(X, Y)| = |Inj(X_1, Y_1)| \cdot |Inj(X_2, Y_2)|$$

Zliczanie rozmieszczeń uporządkowanych

Interpretacja

Na ile sposobów można rozmieścić **n** ponumerowanych przedmiotów w **m** ponumerowanych pudełkach, jeśli dodatkowo rozróżniamy uporządkowanie przedmiotów, które trafiły do tego samego pudełka? Dwa rozmieszczenia są identyczne, jeśli w każdym pudełku jest taka sama liczba i kolejność przedmiotów.

Twierdzenie

Liczba rozmieszczeń uporządkowanych n przedmiotów w m pudełkach jest równa $m^{\overline{n}} = m \cdot (m+1) \cdot ... \cdot (m+n-1)$ (symbol $m^{\overline{n}}$ nazywa się potęgą przyrastającą)

	$m^{\overline{n}}$											
	n=0	1	2	3	4	5	6	7	8	9		
m = 0	1	0	0	0	0	0	0	0	0	0		
1	1	1	2	6	24	120	720	5040	40320	362880		
2	1	2	6	24	120	720	5040	40320	3628800	3628800		
3	1	3	12	60	360	2520	20160	181440	1814400	19958400		
4	1	4	20	120	840	6720	60480	604800	6652800	79833600		
5	1	5	30	210	1680	15120	151200	1663200	19958400	259459200		
6	1	6	42	336	3024	30240	332640	3991680	51891840	726485760	Г	
7	1	7	56	504	5040	55440	665280	8648640	121080960	1816214400		
8	1	8	72	720	7920	95040	1235520	17297280	259459200	4151347200		
9	1	9	90	990	11880	154440	2162160	32432400	518918400	8821612800		
•••												

Przykład rozmieszczania uporządkowanego

$$X = \{ a, b \}, |X| = 2, |Y| = 3$$

$$3^{\overline{2}}=3\cdot 4=12$$