

O siblings: - It different nodes having a common parent, that different nodes is called Fibrings In frqure 1, B, C, D are siblings and node E and F are also bings. Degree of a node:- The not obsubtrees of a node is known as degree of that node. In figure 1, de gree of node A is equalito 3. degree of node B152, node cis 1 and node D 1:3: Degree of a tree? - The maximum degree of nodes in a gleven tree is called outhing degree of a tree. In figure-1, degree of the tree is equals to 3. Terminal Node sor leaf Mode: - The node having zero degree zero is called as leaf node or Perminal node. In tiqure-1 there are 7 leaf nodes that ar K, F, L, H, M, N, J' O Non terminal or 3- The nodes having degree greater than zero is caused as nonterminal node. In figure 1 there are 7 non terminal node that are A, B, E, C, G, D, I.

	Pege.
->	The above tree is defined as a strictly binary tree.
•	complete Binary Trees-
	A binary me of depth 'd' that contains exactly 'ad nodes' at level-d. is called as complete binary mee.
	example:- (A) level 0 2°=1
	(c) Level 1 2'=2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	figure-3
	The above me is a "complete Binary Tree".
	> the total number of nodes in a complete binary tree $t_n = 2^{d+1} - 1$
	> example: - of depth of a complete Binary tree is 4.
	$t_n = 2^{4+1} - 1 = 2^{3-1} = 32-1 = 31$
	$t_{n}=31$

	Unlabel nodes: En! I labeled (20)!	
->	since all the total number of leap nodes will be defined as &d. then total no. of non-leap nodes is defined as &d-1.	
	Example: 4f $d=S$ then total no. of nodes $t_n = 2^{S+1} - 1 = 63$ Potal no. of leaf node = $2^d = 2^S = 32$ Total no. of non leaf node = $2^d - 1$	
→	of total no. of nodes in a complete binary free is known men you can calculate depth d=	
	$\begin{array}{c} \text{(a)} = \log \left(t_n + 1 \right) - 1. \\ \text{(ex)} = \text{(ex)} \text{(i)} \text{(a)} \text{(i)} \text$	
	$d = \log (15+1)-1.$ $d = \log_2 (16) -1$	
	$d = wq_{2}(x)^{4} - 1$ $d = 4 - 1$ $d = 3$	
->	$t_n = 127$, calculate deptn'd'. $d = \log_2(127+1)^{-1}$	
	$d = \log_{2}(128)-1$ $d = \log_{2}(2)^{7}-1 = 7-1=6$ $d=6$	

		2	Date Page		
	*		ABD + E/* F		
	L	-*(ABD+E / *F		
	ſ÷	-*(ABD+E/*FG		
	+	-* (+	ABD+E/*FG		
فتخديه	Н	-*(+	ABD+E/*fGH		
de desire	1	-*(+/	ABD+E1 * FGH		
and the second	K	-*(+/	ABD+E/*FGHK		
)	- *	ABD+ E/ * FGMK/+		
)		ABD+E/* FGHK/+*-		
Jn tree traversing three methods are used for traversix a given tree— ① In order traversing ② Post order traversing ② Post order traversing ① In order traversing Algorithms for in order traversing:-					
pos	order (ROUT tooder (LEFT > Algorith	cobtree, Religions.	RIGHT SUBTREE) , RIGHT SUBTREE) HT SUBTREE, ROUT). bree element using inosder. nent- hee uning inosder.		

