CLASE 02 - VARIABLES ALEATORIAS CONTINUAS

Diplomado en Análisis de Datos y Modelamiento Predictivo con Aprendizaje Automático para la Acuicultura.

Dra. María Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

10 April 2023

PLAN DE LA CLASE

1. Introducción

- Diferencia entre variable, variable aleatoria, datos y factores.
- Clasificación de variables aleatorias.
- Observar y predecir variables cuantitativas continuas.
- ► Formato correcto para importar datos a R.
- 2. Práctica con R y Rstudio cloud
- Elaborar un script de R e importar datos desde excel.
- Observar y predecir variable aleatoria con distribución normal.

CONCEPTOS Y DEFINICIONES

1. Variable

Características que se pueden medir u observar en un individuo o en un ambiente: peso, temperatura, sexo, crecimiento, madurez, flotabilidad, rendimiento, sobrevivencia, biomasa cosechada.

2. Variable aleatoria

Una variable aleatoria es una función que asigna un valor numérico a cada posible resultado de un experimento aleatorio. Según el tipo de variable aleatoria que se este analizando, tendrá una función de probabilidad o función de densidad asociada.

CONCEPTOS Y DEFINICIONES

3. Datos u observaciones

Son los valores que puede tomar una variable aleatoria. 6,5 Kg, 55 cm, 25 células por mililitro, Sexo= macho o hembra, 13° C, Lesiones Bacterianas = ausente, leve, mediano, severo; resistencia: Si (vivo) o NO (muerto).

4. Factor

Usado para identificar tratamientos de un experimento o variables de clasificación. Se podrían usar como *variables independientes o predictoras*; es decir, tienen un efecto sobre una *variable dependiente o respuesta*. Ej. **Sexo** (niveles: *macho* o *hembra*) tiene un efecto sobre nivel de hormonas.

CLASIFICACIÓN DE VARIABLES

VARIABLE ALEATORIA CUANTITATIVA CONTINUA

Definición: Puede tomar cualquier valor dentro de un intervalo (a,b), (a,lnf), (-lnf,b),(-lnf,lnf) y la probabilidad que toma cualquier punto es 0, debido a que existe un número infinito de posibilidades.

OBSERVAR VARIABLE CONTINUA CON HISTROGRAMA

hist() permite hacer un histograma. Cuando aumenta el n muestral se perfila una distribución llamada normal.

OBSERVAR CON BOXPLOT

Las gráficas de cajas y bigotes son muy adecuadas para observar la distribución de las variables aleatorias continuas **boxplot()**.

PREDICCIÓN CON DISTRIBUCIÓN NORMAL

Si la variable aleatoria tiene una distribución normal, podemos predecir la probabilidad de que la variable tome un determinado valor dentro de un intervalo (ej. 13,59 %).

PREDECIR CON DISTRIBUCIÓN ACUMULADA

La función de distribución empírica acumulada **ecdf()** permite predecir la probabilidad de que la variable aleatoria tome un valor determinado.

FORMATO CORRECTO PARA IMPORTAR A R

Figura 1: Formato correcto de archivo excel para que sea importado a R.

ERRORES EN FORMATO EXCEL

Figura 2: Errores comunes antes de importar a excel.

Importante: No colocar símbolos matemáticos por ejemplo (%,\$,+) como nombres de las **(variables)**.

ERRORES EN FORMATO EXCEL 2

sample_id	Weight	sex	sample_id	Weight	sex	Observaciones
1	17,2	female	1	17,2	female	
2	18,8	female	2	18,8	female	
3	27,8	male	3	27,8	male	
4	20,4	male	4	20,4	male	
5	20,6	male	5	20,6	male	
6	28,6	male	6	28,6	male	
7	sin registro	male	7		male	
8	13,7	female	8	13,7	female	
9	16,6	female	9	16,6	female	
10	17,8	female	10	17,8	female	
11	26,1	male	11	26,1	male	
12	21,8	male	12	21,8	male	
13	22	Indeterminado	13	22	NA	Sexo Indeterminado
14	20,6	male	14	20,6	male	
15	17,2	female	15	17,2	female	
16	28,9	male	16	28,9	male	
17	22,5, cola deforme	male	17	22,5	male	cola deforme
18	10,2	female	18	10,2	female	
19	23,5	male	19	23,5	male	

Figura 3: Errores comunes antes de importar a excel.

Importante: No colocar comentarios en las celdas de datos. Dejar celdas vacías o usar el símbolo *NA* es preferido cuando hay datos faltantes.

COMO IMPORTAR DATOS A R

El paquete **readxl** es muy útil para importar datos a R. Pero debe tener cuidado con: separador de columnas, decimales y valores faltantes.

PRÁCTICA VARIABLES ALETORIAS

Guía de trabajo programación con R en Rstudio.cloud.

RESUMEN DE LA CLASE

- Identificamos y clasificamos variables.
- Observamos la distribución de una variable cuantitativa continua usando histograma y boxplot.
- Predecimos el comportamiento de una variable cuantitativa continua con distribución normal usando funciones de densidad y de distribución enpírica acumulada.
- Es importante identificar la naturaleza que tiene nuestra variable en estudio, y así evitar errores en los análisis estadísticos que llevemos a cabo. No siempre tendrá distribución normal.