## Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления»

Кафедра «Автоматизированные системы обработки информации и управления»



# Отчет Лабораторная работа № 2

# По курсу «Технологии машинного обучения»

# «Изучение библиотек обработки данных»

| СПОЛНИТЕЛЬ:                    | ИСП  |
|--------------------------------|------|
| улова Надежда<br>Группа ИУ5-64 |      |
| _2020 г.                       | ""   |
| сподаватель:                   | ПРЕП |
| Гапанюк Ю.Е.                   | Γε   |
| _2020 г.                       | ""   |

Москва 2020

## 1. Цель работы

Изучение библиотеки обработки данных Pandas.

## 2. Описание задания

- Выполнить первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса <a href="https://mlcourse.ai/assignments">https://mlcourse.ai/assignments</a>.
- Сформировать отчет и разместить его на своем репозитории GitHub

## 3. Текст программы и экранные формы с примерами выполнения

См. на следующей странице

Unique values of all features (for more information, please see the links above):

- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt:continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- salary:>50K,<=50K

#### In [3]:

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

#### In [4]:

```
data = pd.read_csv('../data/adult.csv')
data.head()
```

#### Out[4]:

|   | age | workclass            | fnlwgt | education | education-<br>num | marital-<br>status         | occupation            | relationship      | race  |
|---|-----|----------------------|--------|-----------|-------------------|----------------------------|-----------------------|-------------------|-------|
| 0 | 39  | State-gov            | 77516  | Bachelors | 13                | Never-<br>married          | Adm-<br>clerical      | Not-in-<br>family | White |
| 1 | 50  | Self-emp-<br>not-inc | 83311  | Bachelors | 13                | Married-<br>civ-<br>spouse | Exec-<br>managerial   | Husband           | White |
| 2 | 38  | Private              | 215646 | HS-grad   | 9                 | Divorced                   | Handlers-<br>cleaners | Not-in-<br>family | White |
| 3 | 53  | Private              | 234721 | 11th      | 7                 | Married-<br>civ-<br>spouse | Handlers-<br>cleaners | Husband           | Black |
| 4 | 28  | Private              | 338409 | Bachelors | 13                | Married-<br>civ-<br>spouse | Prof-<br>specialty    | Wife              | Black |

### 1. How many men and women (sex feature) are represented in this dataset?

#### In [5]:

```
data['sex'].value_counts()
```

#### Out[5]:

Male 21790 Female 10771

Name: sex, dtype: int64

#### 2. What is the average age (age feature) of women?

### In [24]:

```
round(data[data['sex'] == 'Female']['age'].mean(), 3)
```

Out[24]:

36.858

### 3. What is the percentage of German citizens (native-country feature)?

```
In [23]:
round((data[data["native-country"] == "Germany"].shape[0] / data.shape[0]) * 100
, 3)
Out[23]:
0.421
```

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

```
In [20]:

salaryUnder50 = data[data["salary"] == "<=50K"]["age"]
salaryOver50 = data[data["salary"] == ">50K"]["age"]
print("Under 50:\n{0} ± {1} years".format(round(salaryUnder50.mean(), 3), round(salaryUnder50.std(), 3)))
print("Over 50:\n{0} ± {1} years".format(round(salaryOver50.mean(), 3), round(salaryOver50.std(), 3)))

Under 50:
36.784 ± 14.02 years
Over 50:
44.25 ± 10.519 years
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

```
In [30]:

educationsSet = set(['Bachelors', 'Prof-school','Assoc-acdm', 'Assoc-voc', 'Mast
ers', 'Doctorate'])
salaryOver50 = data[data['salary'] == '>50K']['education']
salaryOver50.map(lambda e: e in educationsSet).all()

Out[30]:
```

7. Display age statistics for each race (race feature) and each gender (sex feature). Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.

False

```
In [31]:
```

```
data.groupby(['race', 'sex'])['age'].describe()
```

#### Out[31]:

|                    |        | count   | mean      | std       | min  | <b>25</b> % | <b>50</b> % | 75%   | max  |
|--------------------|--------|---------|-----------|-----------|------|-------------|-------------|-------|------|
| race               | sex    |         |           |           |      |             |             |       |      |
| Amer-Indian-Eskimo | Female | 119.0   | 37.117647 | 13.114991 | 17.0 | 27.0        | 36.0        | 46.00 | 80.0 |
|                    | Male   | 192.0   | 37.208333 | 12.049563 | 17.0 | 28.0        | 35.0        | 45.00 | 82.0 |
| Asian-Pac-Islander | Female | 346.0   | 35.089595 | 12.300845 | 17.0 | 25.0        | 33.0        | 43.75 | 75.0 |
|                    | Male   | 693.0   | 39.073593 | 12.883944 | 18.0 | 29.0        | 37.0        | 46.00 | 90.0 |
| Black              | Female | 1555.0  | 37.854019 | 12.637197 | 17.0 | 28.0        | 37.0        | 46.00 | 90.0 |
|                    | Male   | 1569.0  | 37.682600 | 12.882612 | 17.0 | 27.0        | 36.0        | 46.00 | 90.0 |
| Other              | Female | 109.0   | 31.678899 | 11.631599 | 17.0 | 23.0        | 29.0        | 39.00 | 74.0 |
|                    | Male   | 162.0   | 34.654321 | 11.355531 | 17.0 | 26.0        | 32.0        | 42.00 | 77.0 |
| White              | Female | 8642.0  | 36.811618 | 14.329093 | 17.0 | 25.0        | 35.0        | 46.00 | 90.0 |
|                    | Male   | 19174.0 | 39.652498 | 13.436029 | 17.0 | 29.0        | 38.0        | 49.00 | 90.0 |

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
In [48]:
```

```
isMarried = lambda s: s.split('-')[0] == 'Married'
statistic = data[(data['sex'] == 'Male') & (data['salary'] == '>50K')]['marital-
status'].map(isMarried).value_counts()
print("Married count: {}".format(statistic[1]))
```

Married count: 5965

9. What is the maximum number of hours a person works per week (hours-per-week feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

```
In [73]:
```

```
maxHours = data['hours-per-week'].max()
print("Max hours/week:\n{}".format(maxHours))

workers = data[data['hours-per-week'] == maxHours]
workersCount = workers.shape[0]
print("People who work max hours/week count:\n{}".format(workersCount))

salaryOver50 = workers[workers['salary'] == '>50K'].shape[0]
print("Percent of those who earns over 50K:\n{:.3f}%".format(salaryOver50 / work ersCount * 100))

Max hours/week:
99
People who work max hours/week count:
85
Percent of those who earns over 50K:
29.412%
```

10. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) for each country (native-country). What will these be for Japan?

```
In [84]:
```

```
data.groupby(['native-country', 'salary'])['hours-per-week'].describe().unstack
()[['mean']]
```

| o olom.                    | mean                   | - FOV                  |
|----------------------------|------------------------|------------------------|
| salary native-country      | <=50K                  | >50K                   |
| ?                          | 40.164760              | 45.547945              |
| •                          | 41.416667              | 40.000000              |
| Cambodia                   | 37.914634              |                        |
| Canada                     |                        |                        |
| China                      | 37.381818              | 38.900000<br>50.000000 |
| Columbia                   | 38.684211<br>37.985714 |                        |
| Cuba                       |                        |                        |
| Dominican-Republic         | 42.338235              | 47.000000              |
| Ecuador                    | 38.041667              | 48.750000              |
| El-Salvador                | 36.030928              | 45.000000              |
| England<br>_               | 40.483333              | 44.533333              |
| France                     | 41.058824              |                        |
| Germany                    | 39.139785              | 44.977273              |
| Greece                     | 41.809524              | 50.625000              |
| Guatemala                  | 39.360656              | 36.666667              |
| Haiti                      | 36.325000              | 42.750000              |
| Holand-Netherlands         | 40.000000              | NaN                    |
| Honduras                   | 34.333333              | 60.000000              |
| Hong                       | 39.142857              | 45.000000              |
| Hungary                    | 31.300000              | 50.000000              |
| India                      | 38.233333              | 46.475000              |
| Iran                       | 41.440000              | 47.500000              |
| Ireland                    | 40.947368              | 48.000000              |
| Italy                      | 39.625000              | 45.400000              |
| Jamaica                    | 38.239437              | 41.100000              |
| Japan                      | 41.000000              | 47.958333              |
| Laos                       | 40.375000              | 40.000000              |
| Mexico                     | 40.003279              | 46.575758              |
| Nicaragua                  | 36.093750              | 37.500000              |
| Outlying-US(Guam-USVI-etc) | 41.857143              | NaN                    |
| Peru                       | 35.068966              | 40.000000              |
|                            |                        | 40.000707              |
| Philippines                | 38.065693              | 43.032787              |
| Philippines<br>Poland      |                        |                        |

Puerto-Rico 38.470588 39.416667

mean

| salary |                 | <=50K     | >50K      |
|--------|-----------------|-----------|-----------|
|        | native-country  |           |           |
|        | Scotland        | 39.444444 | 46.666667 |
|        | South           | 40.156250 | 51.437500 |
|        | Taiwan          | 33.774194 | 46.800000 |
|        | Thailand        | 42.866667 | 58.333333 |
|        | Trinadad&Tobago | 37.058824 | 40.000000 |
|        | United-States   | 38.799127 | 45.505369 |
|        | Vietnam         | 37.193548 | 39.200000 |
|        | Yugoslavia      | 41.600000 | 49.500000 |