

Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

EYP1026 - MODELOS PROBABILÍSTICOS Ayudantía N°3

Profesor: Guido del Pino Ayudante: José Quinlan Fecha: 24 de Agosto - 2016

- 1. Sea $X \sim \text{Beta}(\alpha, \beta)$ con $\alpha, \beta \in \mathbb{R}^+$. Calcule $\mathbb{E}[X^r(1-X)^s] : r, s \in \mathbb{R}^+$.
- 2. Sea $X \sim \text{Binomial}(n, p)$ con $n \in \mathbb{N}$ y $p \in (0, 1)$. Calcule:
 - a) E[X].
 - b) Var[X].
 - c) $E[\exp(tX)]: t \in \mathbb{R}$.
 - d) $E[(1+X)^{-1}].$
- 3. Sea $X \sim \text{Uniforme}(0,1)$ y $n \in \mathbb{N}$. Considere la transformación N = [nX] + 1 donde $[\cdot] : \mathbb{R} \to \mathbb{Z}$ es la función parte entera.
 - a) Deduzca la distribución de N.
 - b) Calcule E[N] y Var[N].
- 4. Sea $T \sim \text{Exponencial}(\lambda)$ con $\lambda \in \mathbb{R}^+$. Divida \mathbb{R}^+ en intervalos $I_k = (k\Delta \Delta, k\Delta] : k \in \mathbb{N}$ todos con longitud común $\Delta \in \mathbb{R}^+$. Considere la transformación $M = k \, 1_{I_k}(T)$ donde $1_{I_k}(\cdot) : \mathbb{R} \to \{0,1\}$ es la función indicatriz del conjunto I_k .
 - a) Deduzca la distribución de M.
 - b) Calcule E[M] y Var[M].