#### Clase nº4

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

30 de Agosto 2021



#### Teorema 8

4. 
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Ejemplo 16 
$$\int xe^x dx =$$

$$\int e^x \cos x \, dx =$$

Ejemplo 18 
$$\int x^3 e^{x^2} dx =$$

#### Recordar

Si 
$$f(x) = \arcsin x$$
 entonces  $f'(x) = \frac{1}{\sqrt{1-x^2}}$ 

#### Ejemplo 19

Utilizaremos integración por partes y luego integraremos por sustitución.

$$\int \arcsin x \, dx =$$

#### Algunas identidades trigonométrias

- a)  $\sin^2 x + \cos^2 x = 1$
- b)  $\sin(x + y) = \sin x \cdot \cos y + \sin y \cdot \cos x$
- c)  $cos(x + y) = cos x \cdot cos y sin x \cdot sin y$

Integrales de la forma 
$$\int \sin^n x \, dx$$
 y  $\int \cos^n x \, dx$ 

Caso a) Si n es par entonces utilizaremos las identidades

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
 y  $\cos^2 x = \frac{1 + \cos(2x)}{2}$ .

Luego realizamos la sustitución trigonométrica adecuada, desarrollamos el polinomio y se integra.

$$\int \sin^4 x \, dx =$$

Integrales de la forma 
$$\int \sin^n x \, dx$$
 y  $\int \cos^n x \, dx$ 

**Caso b)** Si n es impar entonces descomponemos la función trigonométrica en dos factores: uno con potencia (n-1) y el otro con potencia 1. Luego utilizamos  $\sin^2 x + \cos^2 x = 1$  y el método de cambio de variable.

$$\int \sin^3 x \, dx =$$

Integrales de la forma 
$$\int \sin^m \cos^n x \, dx$$

**Caso a)** Si *n* y *m* son números pares utilizamos simultáneamente las dos identidades

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
 y  $\cos^2 x = \frac{1 + \cos(2x)}{2}$ .

Luego utilizaremos los métodos vistos anteriormente.

$$\int \sin^2 x \cos^2 x \, dx =$$

#### Observación

Como en el ejemplo anterior, a veces podemos resolver este tipo de integrales expresando seno en términos de coseno (o coseno en términos de seno) mediante la identidad  $\sin^2 x + \cos^2 x = 1$ . Y luego podemos utilizar las estrategias antes vistas.

#### Ejercicios propuestos

$$1. \int x^2 \ln x \, dx =$$

$$2. \int x \cos(2x) \, dx$$

$$3. \int x^3 e^x dx =$$

$$4. \int \sec^3 x \, dx =$$

$$5. \int e^{2x} \cos(e^x) \, dx =$$

6. 
$$\int \frac{(\ln x)^2}{\sqrt{x}} dx =$$

## Ejercicios

$$7. \int \frac{xe^x}{(x+1)^2} dx =$$

8. 
$$\int x \cos x \, dx =$$

9. 
$$\int \ln x \, dx =$$

10. 
$$\int e^x \sin x \, dx =$$

$$11. \int x^2 e^{-x} dx =$$

#### Ejercicios propuestos

1. 
$$\int \sin^2 x \, dx =$$

$$2. \int \cos^2 x \, dx =$$

$$3. \int \sin^6 x \, dx =$$

$$4. \int \sin^4 x \cos^2 x \, dx =$$

#### Ejercicio propuesto

Para la integral

$$I = \int \sin^4 x \cos^2 x \, dx$$

a) Calcule esta integral utilizando que

$$I = \int \sin^4 x (1 - \sin^2 x) \, dx.$$

- b) Calcule I utilizando  $\sin^2 x = \frac{1-\cos(2x)}{2}$  y  $\cos^2 x = \frac{1+\cos(2x)}{2}$ .
- c) Compare ambos resultados e identifique que son iguales (salvo
- d) Compruebe que

una constante).

$$I = \frac{x}{16} - \frac{\sin(2x)}{32} - \frac{\sin^3(x)\cos x}{24} + \frac{1}{6}\sin^5(x)\cos x.$$

#### Bibliografía

|   | Autor             | Título                       | Editorial       | Año  |
|---|-------------------|------------------------------|-----------------|------|
| 1 | Stewart, James    | Cálculo de varias variables: | México: Cengage | 2021 |
|   |                   | trascendentes tempranas      | Learning        |      |
| 2 | Burgos Román,     | Cálculo infinitesimal        | Madrid: McGraw- | 1994 |
|   | Juan de           | de una variable              | Hill            |      |
| 3 | Zill Dennis G.    | Ecuaciones Diferenciales     | Thomson         | 2007 |
|   |                   | con Aplicaciones             | THOMSON         | 2001 |
| 4 | Thomas, George B. | Cálculo una variable         | México: Pearson | 2015 |

Puede encontrar bibliografía complementaria en el programa.