Algebraic Approach to Complexity of Constraint Satisfaction Problems

William DeMeo williamdemeo@gmail.com

Hawaii Logic Seminar 29 September 2016

What is a CSP?

Informally, a Constraint Satisfaction Problem consists of

- a list of variables ranging over a finite domain and
- a set of constraints on those variables.

Problem: can we assign values to all the variables so that all of the constraints are satisfied?

Examples

A system of linear equations is a CSP

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

Also, a system of nonlinear equations is a CSP

$$a_{11}x_1^2x_3 + a_{12}x_2x_3x_7 + \cdots + a_{1n}x_4x_n^3 = b_1$$

 $a_{21}x_2x_5 + a_{22}x_2 + \cdots + a_{2n}x_4^3 = b_2$
 \vdots
 $a_{m1}x_3x_5x_8 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

For a fixed k, determining whether a graph is k-colorable is a CSP

Determining whether a given formula $\varphi(x_1, \ldots, x_n)$ is satisfiable is a CSP For example,

$$\varphi(x,y,z) = (x \vee y \vee \neg z) \wedge (\neg x \vee y \vee \neg z)$$

Determining whether a given formula $\varphi(x_1, \ldots, x_n)$ is satisfiable is a CSP For example,

$$\varphi(x,y,z) = (x \vee y \vee \neg z) \wedge (\neg x \vee y \vee \neg z)$$

is satisfiable. e.g., (x, y, z) = (0, 0, 1)

Algorithms

There is an *efficient* algorithm (Gaussian elimination) for solving any linear system. That is

There is an algorithm that accepts as input a linear system and decides whether that system has a solution.

The running time of the algorithm is bounded by f(s), a polynomial in the size s of the system.

Algorithms

There is an *efficient* algorithm (Gaussian elimination) for solving any linear system. That is

There is an algorithm that accepts as input a linear system and decides whether that system has a solution.

The running time of the algorithm is bounded by f(s), a polynomial in the size s of the system.

The input, a particular system, is an instance of the problem LINEAR SYSTEM.

Similarly

There is an algorithm that accepts as input a graph and decides whether the graph is 2-colorable.

Running time bounded by f(s), a *polynomial* in the size s of the graph.

The input, a particular graph, is an instance of the problem 2-COLORABILITY.

There is an algorithm that accepts as input a formula, $\varphi = \varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_k$ (each φ_i bijunctive) and decides whether φ is satisfiable.

Running time bounded by f(s), a polynomial in the length s of a string describing φ .

The intput formula φ is an instance of the problem 2-SAT.

We say that all these algorithms run in polynomial time.

No polynomial-time algorithm is known for, NONLINEAR SYSTEM, 3-COLORABILITY, or 3-SAT.

No polynomial-time algorithm is known for, NONLINEAR SYSTEM, 3-COLORABILITY, or 3-SAT.

However, any candidate solution to either of these problems can be checked in polynomial-time. No polynomial-time algorithm is known for, NONLINEAR SYSTEM, 3-COLORABILITY, or 3-SAT.

However, any candidate solution to either of these problems can be checked in polynomial-time.

Thus these problems are solvable in nondeterministic polynomial time.

Let *X* and *Y* be two problems. We write $X \leq_p Y$ to indicate that *Y* is at least as hard as *X*.

Let *X* and *Y* be two problems. We write $X \leq_p Y$ to indicate that *Y* is at least as hard as *X*.

Somewhat more precisely: any algorithm for solving Y can be transformed into an algorithm for X without drastically increasing its running time.

Let X and Y be two problems. We write $X \leq_p Y$ to indicate that Y is at least as hard as X.

Somewhat more precisely: any algorithm for solving Y can be transformed into an algorithm for X without drastically increasing its running time.

It is possible for $X \leq_p Y \leq_p X$. In that case, write $X \equiv_p Y$.

 \mathbb{P} is the class of all problems solvable in polynomial time. Its members are called tractable.

 \mathbb{NP} is the class of problems solvable in nondeterministic polynomial time.

 \mathbb{P} is the class of all problems solvable in polynomial time. Its members are called tractable.

 \mathbb{NP} is the class of problems solvable in nondeterministic polynomial time.

- \bullet $\mathbb{P} \subset \mathbb{NP}$
- Both \mathbb{P} and \mathbb{NP} are downsets, i.e., $Y \in \mathbb{P} \ \& \ X \leq_{p} Y \implies X \in \mathbb{P}$

 \mathbb{P} is the class of all problems solvable in polynomial time. Its members are called tractable.

 \mathbb{NP} is the class of problems solvable in nondeterministic polynomial time.

- \bullet $\mathbb{P} \subset \mathbb{NP}$
- Both \mathbb{P} and \mathbb{NP} are downsets, i.e., $Y \in \mathbb{P} \& X \leq_{p} Y \implies X \in \mathbb{P}$

The maximal members of \mathbb{NP} are called \mathbb{NP} -complete.

3-COLORABILITY, NONLINEAR SYSTEM, and 3-SAT are known to be $\mathbb{NP}\text{-}\text{complete}.$

If $\mathbb{P} = \mathbb{NP}$ then all of the above distinctions go away.

Most problems we care about can be solved efficiently. Just build bigger computers.

If $\mathbb{P} = \mathbb{NP}$ then all of the above distinctions go away.

Most problems we care about can be solved efficiently. Just build bigger computers.

In particular, this talk becomes pointless. So assume $\mathbb{P} \neq \mathbb{NP}$.

If $\mathbb{P} = \mathbb{NP}$ then all of the above distinctions go away.

Most problems we care about can be solved efficiently. Just build bigger computers.

In particular, this talk becomes pointless. So assume $\mathbb{P} \neq \mathbb{NP}$.

Ladner, 1975

If $\mathbb{P} \neq \mathbb{NP}$, then there are problems in $\mathbb{NP} \setminus \mathbb{P}$ that are not \mathbb{NP} -complete.

If $\mathbb{P} \neq \mathbb{NP}$ then the pink area is nonempty.

Oversimplified Definition of CSP

Input

- variables: $V = \{v_1, v_2, \dots\}$
- domain: D
- constraints: C_1, C_2, \ldots

Oversimplified Definition of CSP

Input

- variables: $V = \{v_1, v_2, \dots\}$
- domain: D
- constraints: C_1, C_2, \ldots

Output

- "yes" if there is a solution $f: \mathcal{V} \to \mathcal{D}$ (assigning values to variables and satisfying all C_i)
- "no" otherwise

Slightly more formally...

Let *D* be a set, *n* a positive integer

An *n-ary relation on D* is a subset of D^n

Slightly more formally...

Let D be a set, n a positive integer

An *n-ary relation on D* is a subset of D^n

 $Rel_n(D)$ denotes the set of all *n*-ary relations on *D*

 $Rel(D) = \bigcup_{n < \omega} Rel_n(D)$ is the set of all finitary relations on D

Slightly more formal defintion of CSP

Let *D* be a finite set and $\mathcal{R} \subseteq Rel(D)$

 $\mathsf{CSP}(D,\mathcal{R})$ is the following decision problem:

Instance:

- variables: $V = \{v_1, \dots, v_n\}$ (a finite set)
- constraints: (C_1, \ldots, C_m) (a finite list)

Each C_i is a pair (\mathbf{s}_i, R_i) , where

$$\mathbf{s}_i(j) \in V$$
 and $R_i \in \mathcal{R}$

Slightly more formal defintion of CSP

Let *D* be a finite set and $\mathcal{R} \subseteq Rel(D)$

 $\mathsf{CSP}(D,\mathcal{R})$ is the following decision problem:

Instance:

- variables: $V = \{v_1, \dots, v_n\}$ (a finite set)
- constraints: (C_1, \ldots, C_m) (a finite list)

Each C_i is a pair (\mathbf{s}_i, R_i) , where

$$\mathbf{s}_i(j) \in V$$
 and $R_i \in \mathcal{R}$

Question: Does there exist a solution?

an assignment $f: V \to D$ such that, for all $i \le m$,

$$(f(\mathbf{s}_i(1)),\ldots,f(\mathbf{s}_i(p)))\in R_i$$

Example: 3-colorability

$$D = \{r, g, b\}, \quad \mathcal{R} = \{R\}$$

$$R = \{ (x, y) \in D \times D : x \neq y \}$$

Then $CSP(D, \mathcal{R})$ is the 3-colorability problem

$$V = \{v_1, \dots, v_6\}$$

 $\mathbf{s}_1 = (v_1, v_2)$
 $\mathbf{s}_2 = (v_2, v_4)$
 \vdots
 $\mathbf{s}_m = (v_5, v_6)$
 $R_i = R$ for every i .

29 Sep 2016

$$D = \{0, 1\}$$

For a bijunctive clause $\varphi(x, y)$,

$$R_{\varphi} = \{ \langle a, b \rangle \in D^2 : \varphi(a, b) = 1 \}$$

$$D = \{0, 1\}$$

For a bijunctive clause $\varphi(x, y)$,

$$R_{\varphi}=\left\{\,\langle extbf{\textit{a}}, extbf{\textit{b}}
angle\in extbf{\textit{D}}^{2}: arphi(extbf{\textit{a}}, extbf{\textit{b}})=1\,
ight\}$$

X	У	$x \vee y'$
0	0	1
0	1	0
1	0	1
1	1	1

$$D = \{0, 1\}$$

For a bijunctive clause $\varphi(x, y)$,

$$R_{\varphi} = \left\{ \, \langle a,b
angle \in D^2 : arphi(a,b) = 1 \,
ight\}$$

$$D = \{0, 1\}$$

For a bijunctive clause $\varphi(x, y)$,

$$R_{\varphi} = \left\{ \, \langle a,b
angle \in D^2 : arphi(a,b) = 1 \,
ight\}$$

$$\mathcal{R} = \{\textit{R}_{\textit{x} \lor \textit{y}}, \, \textit{R}_{\textit{x} \lor \textit{y}'}, \, \textit{R}_{\textit{x}' \lor \textit{y}}, \, \textit{R}_{\textit{x}' \lor \textit{y}'}\}$$

williamdemeo@gmail.com

Example: 2-SAT

$$D = \{0, 1\}$$

For a bijunctive clause $\varphi(x, y)$,

$$R_{\varphi} = \left\{ \, \langle a,b
angle \in D^2 : arphi(a,b) = 1 \,
ight\}$$

$$\mathcal{R} = \{R_{x \vee y}, R_{x \vee y'}, R_{x' \vee y}, R_{x' \vee y'}\}$$

2-SAT is $\mathsf{CSP}(D,\mathcal{R})$

Schaefer's Dichotomy

Schaefer, 1978

Let $D = \{0, 1\}$. There are six families $\mathcal{R}_0, \dots, \mathcal{R}_5$ such that

$$\mathsf{CSP}(D,\mathcal{R}) \in \mathbb{P} \iff \mathcal{R} \subseteq \mathcal{R}_i, \mathsf{some} \; i < 6$$

Otherwise $CSP(D, \mathcal{R})$ is \mathbb{NP} -complete.

The six families

```
\mathcal{R}_0 = \{ R : \langle 0, 0, \dots, 0 \rangle \in R \} ("All False")

\mathcal{R}_1 = \{ R : \langle 1, 1, \dots, 1 \rangle \in R \} ("All True")

\mathcal{R}_2 = \{ R_{x \lor y}, R_{x \lor y'}, R_{x' \lor y}, R_{x' \lor y'} \} (bijunctive)

\mathcal{R}_3 = \Gamma (Horn)

\mathcal{R}_4 = \Gamma^{\partial} (dual-Horn)

\mathcal{R}_5 (affine, i.e., linear system over \mathbb{F}_2)
```

Two Motivating Questions

Dichotomy Conjecture Every $CSP(D, \mathcal{R})$ either lies in \mathbb{P} or is \mathbb{NP} -complete.

Two Motivating Questions

- **Dichotomy Conjecture** Every $CSP(D, \mathcal{R})$ either lies in \mathbb{P} or is \mathbb{NP} -complete.
- Tractability Problem Characterize those CSPs that lie in ℙ.

Two Motivating Questions

- **Dichotomy Conjecture** Every $CSP(D, \mathcal{R})$ either lies in \mathbb{P} or is \mathbb{NP} -complete.
- Tractability Problem Characterize those CSPs that lie in ℙ.

What would a characterization look like? What language could we use?

Why is 2-SAT tractable, but 3-SAT is not?

2-SAT:
$$\mathcal{R}_2 = \{R_{x \lor y}, R_{x \lor y'}, R_{x' \lor y}, R_{x' \lor y'}\}$$

3-SAT:
$$\Lambda = \{\lambda_0, \lambda_1, \dots, \lambda_7\}$$

Why is 2-SAT tractable, but 3-SAT is not?

2-SAT:
$$\mathcal{R}_2 = \{R_{x \lor y}, R_{x \lor y'}, R_{x' \lor y}, R_{x' \lor y'}\}$$

3-SAT:
$$\Lambda = \{\lambda_0, \lambda_1, \dots, \lambda_7\}$$

$$M(x, y, z) = \begin{cases} 0 & \text{if at least 2 of } x, y, z \text{ equal 0} \\ 1 & \text{otherwise} \end{cases}$$

"Majority Operation"

Why is 2-SAT tractable, but 3-SAT is not?

2-SAT:
$$\mathcal{R}_2 = \{R_{x \lor y}, R_{x \lor y'}, R_{x' \lor y}, R_{x' \lor y'}\}$$

3-SAT:
$$\Lambda = \{\lambda_0, \lambda_1, \dots, \lambda_7\}$$

$$M(x, y, z) = \begin{cases} 0 & \text{if at least 2 of } x, y, z \text{ equal 0} \\ 1 & \text{otherwise} \end{cases}$$

"Majority Operation"

M preserves each $R \in \mathcal{R}_2$:

$$\begin{array}{cccc} \langle a_1, & b_1 \rangle & \in R \\ \langle a_2, & b_2 \rangle & \in R \\ \langle a_3, & b_3 \rangle & \in R \text{ implies} \\ \langle \textit{M}(a_1, a_2, a_3), & \textit{M}(b_1, b_2, b_3) \rangle & \in R \end{array}$$

But *M* fails to preserve each $\lambda \in \Lambda$

For example, with $\lambda = \lambda_{x \lor y \lor z'} = \{0, 1\}^3 - \{\langle 001 \rangle\}$

$$\begin{split} &\langle \mathbf{1}, \mathbf{0}, \mathbf{0} \rangle \in \lambda \\ &\langle \mathbf{0}, \mathbf{0}, \mathbf{1} \rangle \in \lambda \\ &\langle \mathbf{0}, \mathbf{1}, \mathbf{1} \rangle \in \lambda \text{ but } \\ &\langle \mathbf{0}, \mathbf{0}, \mathbf{1} \rangle \notin \lambda \end{split}$$

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_k(D)$ and $f \colon D^n \to D$. We say f preserves R if

$$(a_{11},\ldots,a_{1k}),\ldots,(a_{n1},\ldots,a_{nk})\in R \Longrightarrow$$

 $(f(a_{11},\ldots,a_{n1}),\ldots,f(a_{1k},\ldots,a_{nk}))\in R$

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_k(D)$ and $f \colon D^n \to D$. We say f preserves R if

$$(a_{11},\ldots,a_{1k}),\ldots,(a_{n1},\ldots,a_{nk})\in R \Longrightarrow$$

 $(f(a_{11},\ldots,a_{n1}),\ldots,f(a_{1k},\ldots,a_{nk}))\in R$

f is an n-ary operation on D.

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_k(D)$ and $f \colon D^n \to D$. We say f preserves R if

$$(a_{11},\ldots,a_{1k}),\ldots,(a_{n1},\ldots,a_{nk})\in R \implies (f(a_{11},\ldots,a_{n1}),\ldots,f(a_{1k},\ldots,a_{nk}))\in R$$

Let \mathcal{R} be a set of relations on D.

 $Pol(\mathcal{R})$ is the set of operations preserving all members of \mathcal{R} .

These are the polymorphisms of R.

Let \mathcal{R} be a set of relations on D.

 $Pol(\mathcal{R})$ is the set of operations preserving all members of \mathcal{R} .

These are the polymorphisms of \mathcal{R} .

Let *F* be a set of operations on *D*.

Inv(F) is the set of relations preserved by all operations in F.

Let \mathcal{R} be a set of relations on D.

 $\text{Pol}(\mathcal{R})$ is the set of operations preserving all members of \mathcal{R} .

These are the polymorphisms of \mathcal{R} .

Let *F* be a set of operations on *D*.

Inv(F) is the set of relations preserved by all operations in F.

Important point: $(D, Pol(\mathcal{R}))$ is an algebraic structure

Theorem

Let $S, \mathcal{R} \subseteq Rel(D)$. Then

 $\mathsf{Pol}(\mathcal{S})\subseteq\mathsf{Pol}(\mathcal{R})\implies\mathsf{CSP}(\mathcal{R})\leq_{\mathsf{p}}\mathsf{CSP}(\mathcal{S}).$

Theorem

Let $S, \mathcal{R} \subseteq Rel(D)$. Then

$$\mathsf{Pol}(\mathcal{S})\subseteq\mathsf{Pol}(\mathcal{R})\implies\mathsf{CSP}(\mathcal{R})\leq_{\mathsf{p}}\mathsf{CSP}(\mathcal{S}).$$

Thus, the richer the algebraic structure, the easier the corresponding CSP

Schaefer proved that on $D = \{0, 1\}$, there are 4 key polymorphisms:

$$M(x,y,z)$$
 (majority)
 $x \wedge y$
 $x \vee y$
 $P(x,y,z) = x \oplus y \oplus z = x - y + z$

 $(\{0,1\},\mathcal{R})$ is tractable iff one of these is a polymorphism of \mathcal{R}

Schaefer proved that on $D = \{0, 1\}$, there are 4 key polymorphisms:

$$M(x,y,z)$$
 (majority)
 $x \wedge y$
 $x \vee y$
 $P(x,y,z) = x \oplus y \oplus z = x - y + z$

 $(\{0,1\},\mathcal{R})$ is tractable iff one of these is a polymorphism of \mathcal{R}

(Un)fortunately, things are more complicated when |D| > 2.

Galois Connection

One can go back and forth between relational and algebraic structures

$$\begin{array}{cccc} \textbf{Relational} & & \textbf{Algebraic} \\ (D, \mathcal{R}) & \longrightarrow & (D, \mathsf{Pol}(\mathcal{R})) \\ (D, \mathsf{Inv}(F)) & \longleftarrow & (D, F) \\ \end{array}$$

$$\mathsf{CSP}(D,\mathcal{R}) \equiv_{\mathsf{p}} \mathsf{CSP}(D,\mathsf{Inv}(\mathsf{Pol}(\mathcal{R})))$$

Galois Connection

One can go back and forth between relational and algebraic structures

$$\begin{array}{cccc} \textbf{Relational} & & \textbf{Algebraic} \\ (D, \mathcal{R}) & \longrightarrow & (D, \mathsf{Pol}(\mathcal{R})) \\ (D, \mathsf{Inv}(F)) & \longleftarrow & (D, F) \end{array}$$

$$\mathsf{CSP}(D,\mathcal{R}) \equiv_{\mathsf{p}} \mathsf{CSP}(D,\mathsf{Inv}(\mathsf{Pol}(\mathcal{R})))$$

Perhaps expressive power of algebra can help classify CSPs.

The Relational Clone

For a set \mathcal{R} of relations on D, let $\langle \mathcal{R} \rangle = \text{Inv}(\text{Pol}(\mathcal{R}))$.

 $\langle \mathcal{R} \rangle$ is called the relational clone generated by \mathcal{R} .

It coincides with the set of relations definable from $\mathcal R$ by *primitive positive formulas*.

The Relational Clone

For a set \mathcal{R} of relations on D, let $\langle \mathcal{R} \rangle = \text{Inv}(\text{Pol}(\mathcal{R}))$.

 $\langle \mathcal{R} \rangle$ is called the relational clone generated by \mathcal{R} .

It coincides with the set of relations definable from $\mathcal R$ by *primitive positive formulas*.

$$\varphi(x_1,\ldots,x_n) = (\exists y_1)(\exists y_2)\cdots(\exists y_m)(R_1(z_{1_1},\ldots,z_{1_k})\wedge\ldots\wedge R_t(z_{t_1},\ldots,z_{t_j}))$$

Here $R_1 \dots, R_t \in \mathcal{R}$ and every $z_{i_j} \in \{x_1, \dots, x_n, y_1, \dots, y_m\}$

Algebraic Facts

For an algebra $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ define

$$\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(A, \mathsf{Inv}(F))$$

Algebraic Facts

For an algebra $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ define

$$\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(A, \mathsf{Inv}(F))$$

Let **A** and **B** be algebras

 $\textbf{B} \text{ a subalgebra of } \textbf{A} \implies \mathsf{CSP}(\textbf{B}) \leq_p \mathsf{CSP}(\textbf{A}).$

 ${f B}$ a homomorphic image of ${f A} \implies {\sf CSP}({f B}) \leq_p {\sf CSP}({f A}).$

$$\mathsf{CSP}(\mathbf{A}^n) \equiv_{\mathsf{p}} \mathsf{CSP}(\mathbf{A})$$

Bulatov, Jeavons, Krokhin, 2000

If (D,\mathcal{R}) is a "core" and every polymorphism is essentially unary, then $\mathsf{CSP}(\mathcal{R})$ is \mathbb{NP} -complete.

f is essentially unary if $f(x_1, ..., x_n) = g(x_j)$ for some unary g and some $j \le n$.

Bulatov, Jeavons, Krokhin, 2000

If (D, \mathcal{R}) is a "core" and every polymorphism is essentially unary, then $\mathsf{CSP}(\mathcal{R})$ is \mathbb{NP} -complete.

f is essentially unary if $f(x_1, ..., x_n) = g(x_j)$ for some unary g and some $j \le n$.

Corollary

3-COLORABILITY, NONLINEAR SYSTEM, and 3-SAT are $\mathbb{NP}\text{-}\text{complete}.$

Informal reformulation of the dichotomy conjecture If \mathbf{A} has some kind of decent algebraic structure then $\mathsf{CSP}(\mathbf{A}) \in \mathbb{P}$ otherwise $\mathsf{CSP}(\mathbf{A})$ is \mathbb{NP} -complete.

Let n > 1. An n-ary operation f is called a weak near-unanimity operation if

$$f(x, x, \dots, x) = x$$
 and $f(y, x, x, x, \dots, x) = f(x, y, x, x, \dots, x) = \cdots$ $= f(x, x, \dots, x, y)$

Note: no essentially unary operation is WNU

Bulatov, Larose, Zádori, McKenzie, Maróti

If $\mathcal R$ is a core and $Pol(\mathcal R)$ has no WNU operation then $CSP(\mathcal R)$ is $\mathbb N\mathbb P$ -complete.

Let \mathcal{R} be a core. Then $\mathsf{CSP}(\mathcal{R})$ is tractable if and only if it has a WNU polymorphism. Otherwise, it is \mathbb{NP} -complete.

Let \mathcal{R} be a core. Then $\mathsf{CSP}(\mathcal{R})$ is tractable if and only if it has a WNU polymorphism. Otherwise, it is \mathbb{NP} -complete.

Let \mathcal{R} be a core. Then $\mathsf{CSP}(\mathcal{R})$ is tractable if and only if it has a WNU polymorphism. Otherwise, it is \mathbb{NP} -complete.

Let \mathcal{R} be a core. Then $\mathsf{CSP}(\mathcal{R})$ is tractable if and only if it has a WNU polymorphism. Otherwise, it is \mathbb{NP} -complete.

29 Sep 2016

Let $\mathcal R$ be a core. Then $\mathsf{CSP}(\mathcal R)$ is tractable if and only if it has a WNU polymorphism. Otherwise, it is $\mathbb N\mathbb P$ -complete.

Supporting Examples

• 2-SAT, 2-COLARABILITY, LINEAR SYSTEM have a WNU.

Algebraic CSP

Let $\mathcal R$ be a core. Then $\mathsf{CSP}(\mathcal R)$ is tractable if and only if it has a WNU polymorphism. Otherwise, it is $\mathbb N\mathbb P$ -complete.

Supporting Examples

- 2-SAT, 2-COLARABILITY, LINEAR SYSTEM have a WNU.
- Let **A** be an abelian group, n = |A|. Choose integers k, l with $kl \equiv 1 \pmod{n}$. Then

$$f(x_1,\ldots,x_k)=I(x_1+\cdots+x_k)$$

is a WNU operation.

Two General Techniques for Tractable Algorithms

Method 1

If $\mathsf{Pol}(\mathcal{R})$ contains a "cube operation" then $\mathsf{CSP}(\mathcal{R}) \in \mathbb{P}$

Two General Techniques for Tractable Algorithms

Method 1

If $\mathsf{Pol}(\mathcal{R})$ contains a "cube operation" then $\mathsf{CSP}(\mathcal{R}) \in \mathbb{P}$

Examples of cube operations:

$$P(x, y, z) = x - y + z$$

 $M(x, y, z) =$ majority

Essentially a generalization of Gaussian elimination.

Algebras with a cube operation possess "few subpowers". This algebraic property is used to prove that the algorithm terminates in polynomial time.

29 Sep 2016

Method 2

If Pol(\mathcal{R}) contains WNU operations v(x, y, z) and w(x, y, z, u) satisfying v(y, x, x) = w(y, x, x, x), then $\mathsf{CSP}(\mathcal{R}) \in \mathbb{P}$.

Method 2

If Pol(\mathcal{R}) contains WNU operations v(x, y, z) and w(x, y, z, u) satisfying v(y, x, x) = w(y, x, x, x), then $\mathsf{CSP}(\mathcal{R}) \in \mathbb{P}$.

Examples: majority, semilattice

Algebras with these operations have a property called "congruence meet-semidistributivity."

Current State of Affairs

The two general techniques do not cover all cases of a WNU. What to do next?

Two possible directions:

- Find a completely new algorithm.
- Combine the two existing algorithms.

I am exploring both approaches.