Решаемая задача: классификация изображений рукописных цифр и букв. Модели нейронный сетей: Многослойный перцептрон и Сверточная нейронная сеть.

Описание наборов данных (количественные характеристики).

Наборы данных содержат следующие изображения:

- MNIST 70'000 рукописных цифр; из них 60'000 входят в обучающую выборку, а 10'000 – в тестовую; размер каждого образа – 28*28 пикселей; рисунки выполнены в оттенках серого цвета;
- EMNIST-letters 145'600 рукописных букв английского алфавита; из них 124'800 входят в обучающую выборку, а 20'800 в тестовую; размер каждого образа 28*28 пикселей; рисунки выполнены в оттенках серого цвета;

Примеры изображений наборов с указанием имени класса над изображением.

5. Описание слоев исходной нейронной сети (результат model.summary()).

EMNIST

модель 1	многослойный перцептрон модель 1				
	Model: "sequential"				
	Layer (type)		Param #		
	dense (Dense)	(None, 128)			
	dense_1 (Dense)		8256		
	dense_2 (Dense)	(None, 32)	2080		
		(None, 26)			
	Total params: 111,674 Trainable params: 111,674 Non-trainable params: 0				
модель 2					

M-d-7 - Um-d-7 U		
Model: "model"		
Layer (type)	Output Shape	Param a
input_1 (InputLayer)	[(None, 28, 28)]	0
flatten (Flatten)	(None, 784)	0
dense_4 (Dense)	(None, 784)	615440
dense_5 (Dense)	(None, 32)	25120
dense_6 (Dense)	(None, 26)	858
Total params: 641,418		
Trainable params: 641,4	18	
Non-trainable params: 0		

6. Таблица с результатами использованных вариантов (не менее 2-х) НС со столбцами:

EMNIST

Свойства\№ модели	1	модель 2	модель 2
символьное описание НС	DR128-DR64-DR32-DS2	I(28,28)-F-DR784-DR32-DS 26	I(28,28)-F-DR784-DR32-DS 26
имя оптимизатора	adam	adam	adam
имя функции потерь	categorical_crossentropy	mse	categorical_crossentropy
число эпох	10	10	10
размер обучающего пакета	64	64	64
время обучения	49 секунд	101 секунда	101.62651300430298

			секунда
точность на обучающем множестве	0.9342	0.9417	0.9530
точность на оценочном множестве	0.9385	0.9067	0.9072
	1.00 0.95	1.00 0.95 - acc val_acc 0.90 - val_acc 0.80 - 0.75 - 0 2 4 6 8	1.00 0.95 - acc val_acc 0.95 - val_acc 0.85 - acc val_acc

Модель 1 - лучшая точность на оценочном множестве

На 2 и 3 модели можем наблюдать переобучение модели, явление, при котором обучаемая модель хорошо распознает примеры из обучающего множества, но плохо работает на валидационной выборке, не участвующей в процессе обучения. Мы видим, что на выборке валидации график точности перестает "расти", а точность на обучающей выборке (x_train, y_train) продолжает расти

Модель 2

Потери и точность

Модель 3 - худшая точность на оценочном множестве

Так как решается задача классификации, лучше использовать функцию ошибок categorical_crossentropy.

Точность по классам

a: 0.8625 b: 0.91875 c: 0.93875 d: 0.91375 e: 0.9425

f: 0.9325 g: 0.81125

h: 0.935

i: 0.69875 j: 0.935 k: 0.906251: 0.755 m: 0.96 n: 0.90625 o: 0.97375 p: 0.94375 q: 0.8025 r: 0.805 s: 0.96125 t: 0.9575 u: 0.9125 v: 0.92125 w: 0.9575 x: 0.92y: 0.9425

z: 0.95625

Примеры ошибочно классифицированных изображений (берется лучшая модель HC).

прогноз для модели 1 Точность по классам

a: 0.80125b: 0.88125c: 0.87375

d: 0.84625

e: 0.92

f: 0.845

g: 0.6475

h: 0.83

i: 0.6575

j: 0.8675

k: 0.91

1: 0.74125

m: 0.93875

n: 0.84625

o: 0.94

p: 0.94

q: 0.745

r: 0.82875

s: 0.9425

t: 0.93

u: 0.915

v: 0.895

w: 0.94625

x: 0.88

y: 0.89875

z: 0.93375