Parte I

Introducción matemática

A lo largo de nuestro viaje nos encontraremos y tendremos que amigarnos con los números complejos, por lo que es conveniente poder introducirlos ahora con un cierto formalismo para luego poder referirnos a ellos con comodidad.

1. El cuerpo $\mathbb C$ de los números complejos

Consideremos el conjunto \mathbb{R}^2 con las operaciones

$$(x,y) + (u,v) = (x+u,y+v)$$

 $(x,y).(u,v) = (xu - yv, xv + yu).$

Es muy fácil comprobar las propiedades asociativa y conmutativa de las operaciones así \hat{A} definidas y la distributiva del producto respecto de la suma. El elemento neutro de la suma es (0,0) y (1,0) es la unidad del producto. Además, (-x, -y) es el opuesto de (x, y), y $\forall (x, y) \neq (0, 0)$ tiene inverso

$$(x,y).(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2})=(1,0).$$

Todas estas propiedades se resumen en que $(\mathbb{R}^2;+;.)$ es un *cuerpo*, que representamos por \mathbb{C} y les llamamos a sus elementos números complejos.

1.1. Forma binómica de un numero complejo

El símbolo usual (x, y) para representar pares ordenados en la estructura de \mathbb{R}^2 como \mathbb{R} espacio vectorial no es conveniente para representar números complejos (calculate cualquier potencia grande y lo vas a notar). Pero observemos que

$$(x,0) + (y,0) = (x+y,0)$$

 $(x,0).(y,0) = (xy,0).$

Es decir que los números complejos de la forma (x,0) se comportan respecto a la suma y multiplicación definidas para los complejos como números reales respecto a su suma y multiplicación (O sea $\mathbb{R} \times \{0\}$ es un subcuerpo de \mathbb{C} isomorfo a \mathbb{R}). Esto nos permite la identificación (x,0)=x. Por otro lado al número complejo (0,1) lo representaremos por i, la unidad imaginaria (término acuñado por Descartes (1596-1650), padre de los ejes coordenados) y con ello tenemos

$$i^2 = (0,1).(0,1) = (-1,0) = -1.$$

Y ahora podemos escribir a todo número complejo como

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1) \cdot (y, 0) = x + iy$$

que le llamamos la forma binómica de un numero complejo donde $x = \Re e \ z \ y \ y = \Im m \ z$

Observación: Acabamos de ver que $i^2 = -1$ pero eso ni cerca nos permite escribir $i = \sqrt{-1}$, ya que si lo hacemos y manejamos a la raíz como estamos acostumbrados llegamos a que

$$-1 = i^2 = i \cdot i = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{-1 \cdot -1} = \sqrt{1} = 1$$

 \Longrightarrow -1=1 Abs! Fíjense que en realidad si escribimos $i=\sqrt{-1}$ no podemos interpretar a -1 como nmero real (ya que estos no tienen raíz cuadrada de negativos) sino como -1 complejo, por lo que estamos usando raíces de números complejos sin siquiera haberlas definido y presuponiendo que mantienen las propiedades de los números reales. Antes de escribir $i=\sqrt{-1}$ tenemos que saber que significa \sqrt{z} \forall $z\in\mathbb{C}$ y ahí se ve que $\sqrt{zw}=\sqrt{z}\sqrt{w}$ generalmente no es válida \forall $z,w\in\mathbb{C}\setminus\mathbb{R}^+$.

Observación 2: No existe un orden en \mathbb{C} ! Es importante remarcar que en los complejos no existe una relación de orden como \leq ya que, si la hubiese

$$0 < i^2 = -1 \Longrightarrow 0 < 1 + -1 = 0 \text{ Abs!}$$

Por lo tanto hay que tener cuidado con escribir relaciones de orden en \mathbb{C} .

1.2. Módulo y conjugado de un número complejo

Dado un número complejo z=x+iy se puede definir su reflexión con respecto al eje real pensándolo como $\mathbb R$ espacio vectorial, que resulta en el conjugado de un número complejo: $\overline{z}=x-iy$. Por otro lado también en la misma linea de razonamiento se define el m'odulo de z como $|z|=\sqrt{x^2+y^2}$. Intuitivamente se ve al m\'odulo como la mera norma euclídea, lo que nos lleva a verificar el m\'odulo cumple las condiciones de una norma y definimos la distancia entre dos números complejos como $|z-w| \ \forall \ z,w \in \mathbb C$.

Propiedades: Se puede verificar

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$

$$2. \ \overline{zw} = \overline{zw}$$

3.
$$|zw| = |z|.|w|$$

4.
$$|z+w| \le |z| + |w|$$

entre otras. Finalmente vale remarcar

$$\begin{split} z.\overline{z} &= |z|^2 \\ \implies \forall \; z \in \mathbb{C}, z^{-1} &= \frac{\overline{z}}{|z|^2} \end{split}$$

1.3. Forma polar de un número complejo

Dado que todo complejo $z = x + iy \neq 0$ presenta un módulo no nulo, uno puede escribir

$$z = |z| \cdot \frac{x + iy}{|z|}.$$

Como el segundo factor esta en la circunferencia unidad, se tiene que $\frac{x+iy}{|z|}$ tiene una relación biunívoca con $\cos t + i\sin t$, $t\in [0,2\pi)$. A este t se le llama el argumento principal del número z y notemos que aunque su definición no acarrea ambiguedades, la función arg z resulta discontinua. A la representación

$$z = r(\cos\theta + i\sin\theta, \ r \in \mathbb{R}^+, \ \theta \in [0, 2\pi)$$

se le llama forma polar de un número complejo z.

2. Exponencial compleja

Consideremos la serie $\sum_{n\geq 0} \frac{z^n}{n!}$ que, aplicando el criterio del cociente, sabemos que converge para todo z complejo. Entonces llamamos $exponencial\ compleja\ a$ la función

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \ (z \in \mathbb{C})$$

2.1. Propiedades

Se cumplen las siguientes propiedades cuya demostración, en función de la definición de la exponencial compleja, no le resultara dificultosa al lector

2

1.
$$exp'(z) = exp(z)$$

2.
$$exp(0) = 1$$

3.
$$exp(x) = e^x$$
 para $x \in \mathbb{R}$ con lo que se justifica $exp(z) = e^z$ $z \in \mathbb{C}$

4.
$$e^{z+w} = e^z \cdot e^w$$

5.
$$e^z \neq 0 \ \forall \ z \in \mathbb{C}$$

6. Si
$$z = x + iy \implies e^z = e^x \cdot e^{iy} = e^x \cdot (\cos(y) + i\sin(y))$$

2.2. Otras funciones complejas útiles y forma exponencial

A partir de la exponencial compleja podemos obtener las funciones seno y coseno complejos, que como se imaginarán, nos serán muy útiles; para luego poder dar la forma mas común de representar un número complejo tanto notacional como gráficamente:

Nosotros sabemos que $\forall t \in \mathbb{R}$

$$\begin{split} e^{it} &= \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \\ &= \lim_{n \to \infty} \sum_{k=0}^n \frac{(it)^k}{k!} \\ &= \lim_{n \to \infty} \sum_{k=0}^{2n+1} \frac{(it)^k}{k!} \\ &= \lim_{n \to \infty} \left(\sum_{k=0}^n \frac{(-1^(k)) \cdot t^{2k}}{2k!} + i \cdot \sum_{k=0}^n \frac{(-1)^k \cdot t^(2k+1)}{(2k+1)!} \right) \\ &= \cos(t) + i \sin(t) \\ &\implies e^{iz} + e^{-iz} = 2 \cdot \cos(z) \ \forall \ z \in \mathbb{C} \\ &\implies \cos(z) = \frac{e^{iz} + e^{-iz}}{2} \end{split}$$

Y análogamente $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$

Con lo cual tenemos una nueva manera de representar un número complejo que la llamaremos forma exponencial a saber $z = |z| \cdot e^{i\theta}$ $\theta \in [0, 2\pi)$.

En general nosotros sabemos de F1 que la solución del oscilador armónico la podemos escribir como $\psi(t) = A.\cos(\omega.t + \varphi)$ donde A era la amplitud y φ era la fase de la solución, pero si extendemos el coseno también se puede escribir como $\psi(t) = A_f.\cos(\omega.t) + B_c.\sin(\omega.t)$ donde f representa a estar en fase y c a estar en cuadratura. Sin embargo, con el nuevo formalismo complejo tenemos otra forma de representar las soluciones, que será la más útil veremos y es la razón por la que se introdujo el tema antes, $\psi(t) = \mathcal{R}e\{A.\exp(\omega.t + \varphi)\}\ A \in \mathbb{R}$ o $\psi(t) = \mathcal{R}e\{A.\exp(\omega.t)\}\ A \in \mathbb{C}$ donde ahora podemos elegir muy a gusto tener una amplitud con o sin la fase incluida, y sobre todo podemos evitarnos todas las propiedades trigonométricas y cambiarlas por exponenciales que son más simples de manipular.

3. Fasores

Dado que ya sabemos que podemos escribir al desplazamiento como $\psi(t) = \mathcal{R}e\{A.\exp(\omega.t + \varphi)\}$ En el caso de tener que sumar dos vibraciones con misma frecuencia puede resultar más simple trabajar con las relaciones geométricos involucradas (Gracias al isomorfismo que antes probamos entre el plano \mathbb{R}^2 y \mathbb{C}). Una de estas maneras es representar a los desplazamientos en los famosos diagramas de Argand como vectores móviles. Ya sabemos que el factor $\omega t + \phi$ varía uniformemente con el tiempo y el desplazamiento resulta de la proyección de dicho vector en el eje, ie: $\psi(t) = \langle \vec{z}, \widehat{\mathcal{R}ez} \rangle$. Por ende graficando el módulo de ψ como un vector, con un ángulo ϕ respecto al eje real y que se desplace en la dirección antihoraria con un ángulo ωt representaríamos en el eje real al desplazamiento $\psi(t)$ como podemos ver en la figura 1, este vector rotante se le llama fasor

Luego en el caso de querer sumar dos vibraciones $\psi = \psi_1 + \psi_2$ podemos representar el nuevo fasor de ψ_2 con el eje de coordenadas **en el fin del anterior**, tal como hacíamos con la suma de vectores. Es más como cuando trabajamos en la forma polar vimos que el producto de complejos resulta en el producto de sus módulos y la suma de sus argumentos, el producto de fasores resulta en el producto de sus módulos y la suma de sus fases iniciales $\phi_1 + \phi_2$.

Y para que sirve? Simple, cuando tenemos una relación entre vibraciones que debe valer para todo tiempo las podemos especializar en t=0 por ejemplo, y podemos traducir la ecuación en fasores y de allí poder verificar A y ϕ que lo cumplan para ese t y por ende deben valer $\forall t$

4. Identidades útiles

Para finalizar ésta sección sería útil presentar algunas de la identidades mas utilizadas en el trascurso del apunte y poder demostrarlas brevemente:

Figura 1: El fasor que genera $\psi(t)$. a t=0 el vector está a un ángulo ϕ del eje

1.
$$\int_{0}^{2\pi} \cos^2(x) \ dx = \pi$$

$$\int_{0}^{2\pi} \cos^{2}(x) dx = \int_{0}^{2\pi} \frac{1 + \cos(2x)}{2} dx$$

$$= \int_{0}^{2\pi} \frac{1}{2} dx + \int_{0}^{2\pi} \frac{\cos(2x)}{2} dx$$

$$= \frac{2\pi}{2} + \frac{(\sin(4\pi) - \sin(0))}{4} = \pi + 0 = \pi$$

2.
$$\int_{0}^{2\pi} \sin^2(x) dx = \pi$$

3.
$$\int_{0}^{2\pi} \cos(x) \sin(x) dx = 0$$

$$\int_{0}^{2\pi} \cos(x) \sin(x) dx = \int_{0}^{2\pi} \frac{\sin(2x)}{2} dx$$

$$= \left(\frac{-\cos(2x)}{4}\right) |_{0}^{2\pi}$$

$$= \frac{1}{4} (\cos(0) - \cos(4\pi)) = 0$$

4. $(1+\epsilon)^{\alpha} \approx 1 + \alpha\epsilon + \frac{\alpha(\alpha-1)}{2}\epsilon^2 \ (|\epsilon| < 1)$ Donde generalmente se toma solamente el primer orden, ie: $(1+\epsilon)^{\alpha} \approx 1 + \alpha\epsilon$

$$f(\epsilon) = (1 + \epsilon)^{\alpha} \implies f(\epsilon) \approx f(0) + \frac{f'(0)}{2} + \frac{f''(0)}{6}$$