ME4524 - Robotics and Automation

Exercise # 1

1. Determine the overall rotation matrix that carries axes $\underline{x}\underline{y}\underline{z}$ into the axes $\underline{\alpha}\underline{\beta}\underline{\gamma}$ as shown in the Figure below.

2. Consider the diagram shown below. A robot base is set up 1m from a table. A frame $\{F_0\}$ is attached to the base of the robot such that the \underline{y}_0 passes through the two legs of the table. The tabletop is 1m high and 1m square. A frame $\{F_1\}$ is fixed to the edge of the table. A cube measuring 20 cm on each side is placed at the center of the table and a frame $\{F_2\}$ is defined at the center of the cube. A camera is situated directly above the center of the cube (2m above the tabletop) and a frame $\{F_3\}$ is attached to the camera. Find the homogenous transformation relating each of these frames to the base frame $\{F_0\}$. Also find the homogenous transformation matrix that relates the frame $\{F_0\}$ to $\{F_3\}$.

3. Compute the homogenous transformation representing a translation of 3 units along x-axis followed by a rotation of 90° about the current z-axis followed by a translation of 1 unit along the fixed y-axis. Sketch the frames at the end of each transformation. Find the coordinates of the relocated origin with respect to the original frame in each case.