靠

东南大学考试卷 A 卷

题号	_	=	Ξ	Д	T ī.	六	七
得分							

一. (30%) 填空题

- 1. 若对任意数 x, y, 矩阵 A 满足 (x, y)A = (y, x, x + y), 则 $A = -\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$;
- 2. 若 2 阶方阵 $A = (\alpha, \beta)$ 可逆, $B = (3\alpha + \beta, \alpha + 2\beta)$,则 $A^{-1}B = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$;
- 4. 过点 A(1,0,1), B(1,2,0), C(0,1,3) 的平面的方程是____5x + y + 2z = 7;
- 5. R^3 的子空间 $V = \{(x, y, z) \mid x + y z = 0\}$ 的维数 $\dim V = ______$;
- 6. 曲线 $\begin{cases} z = 2x^2 + y^2 \\ x + y z = -1 \end{cases}$ 在 xy 平面上的投影曲线的方程为 $\begin{cases} 2x^2 + y^2 x y = 1 \\ z = 0 \end{cases}$
- 7. 若方程 $x^2 + py^2 + pz^2 + 2xy + 2xz = 1$ 表示椭球面,则 p 的取值范围是_p > 2;
- 9. 已知 α 是实三维列向量,且 $\alpha\alpha^T = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$,则 α 的长度 $\|\alpha\| = \underline{\hspace{0.5cm}} \sqrt{3}$ _;
- 10. 假设 A, B 都是 $n \times n$ 矩阵,则下述 4 个断言中正确的命题的个数为___3_
 - (1) 若 AB = O,则 A = O或 B = O; (2) 若 AB = O,则 |A| = 0或 |B| = 0;
- (3) 若 AB = O, 则 A = O或 |B| = 0; (4) 若 AB = O, 则 |A| = 0或 B = O。 共 4 页 第 1 页

二.
$$(8\%)$$
 计算 n 阶行列式 $D = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 1 & & & \\ 3 & & 1 & & \\ \vdots & & & \ddots & \\ n & & & 1 \end{vmatrix}$ 。

解:
$$D = \begin{vmatrix} 1-2-3-\cdots n & 1 & 1 & \cdots & 1 \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & 1 \end{vmatrix}$$

$$= 2 - \frac{n(n+1)}{2}$$
 3

三. (12%) 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 3 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}, 如果矩阵 $P, Q$$$

满足PA = B,PQ = C。求矩阵Q。

$$\mathsf{MF}: \ P = BA^{-1}, \ \ Q = P^{-1}C = AB^{-1}C \dots 4$$

共 4 页 第 3 页

六.	(15%) 已知矩阵 $A = \begin{pmatrix} 3 & 2 & -2 \\ k & -1 & -k \\ 4 & 2 & -3 \end{pmatrix}$ 与对角阵相似。求参数 k 的值,并求可逆矩阵 P
	及对角阵 Λ , 使得 $P^{-1}AP = \Lambda$ 。
解:	$\left \lambda E - A\right = (\lambda - 1)(\lambda + 1)^2$ 。所以, A 的特征和值是 1 , -1 (二重)。6
	如果 A 相似于对角阵,则相应于特征值 -1 , A 有两个线性无关特征向量,
	即 $r(A+E)=1$,于是 $k=0$ 。
	这时, $(A+E)x = 0$ 有基础解系: $(1,-2,0)^T$, $(0,1,1)^T$;
	$(A-E)x = 0$ 有基础解系: $(0,2,1)^T$
	故,若令 $P = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$
	则 $\Lambda = P^{-1}AP = diag\{-1, -1, 1\}$
七.	(10%, 第一小题 4%, 第二小题 6%)证明题:
	1.
证:	因为 A 不与对角阵相似,所以,两个特征值相同。
	因为行列式是特征值之积,故 $\left A\right =1$ 。
	2. 已知 n 维实非零列向量 α , β 相互正交。证明:矩阵 $A = \alpha \alpha^T - \beta \beta^T$ 的秩 $r(A) = 2$ 。
证:	因为 $A\alpha = \alpha, A\beta = -\beta$, 所以, $\alpha, \beta \in A$ 的特征向量, $\alpha^T\alpha, -\beta^T\beta$ 是特征值。2
	又 A 是实对称的,所以, A 相似于对角阵。
	设 A 相似于对角阵 Λ ,则都是 $\alpha^T \alpha$, $-\beta^T \beta \Lambda$ 的对角元,因此, $r(\Lambda) \ge 2$,
	故 $r(A) = r(\Lambda) \ge 2$ 。
	又 $r(A) \le r(\alpha \alpha^T) + r(\beta \beta^T) \le 1 + 1 = 2$ 。所以, $r(A) = 2$