Лекции по предмету **Линейная алгебра и геометрия**

Группа лектория ФКН ПМИ 2015-2016 Анастасия Иовлева Ксюша Закирова Руслан Хайдуров

2016 год

Содержание

1	Лекция 15 от 11.01.2016			
	1.1	Скаляры. Поля	1	
	1.2	Поле комплексных чисел	2	
	1.3	Геометрическая модель поля $\mathbb C$	4	
2	Лекция 16 от 18.01.2016			
	2.1	Комплексные числа (продолжение)	6	
	2.2	Корни из комплексного числа	6	
	2.3	Решение квадратных уравнений с комплексными коэффициентами	7	
	2.4	Векторные пространства над произвольным полем	8	
3	Лекция 17 от 25.01.2016			
	3.1	Овеществление и комплексификация	8	
	3.2	Сумма подпространств	9	
	3.3	Переход к новому базису	10	
4	Лекция 18 от 29.01.2016			
	4.1	Матрица перехода и переход к новому базису	11	
	4.2	Линейные отображения	12	
	4.3	Изоморфизм	13	
5	Лекция 19 от 01.02.2016			
	5.1	Изоморфизм (продолжение)	15	
	5.2	Матрицы линейных отображений	17	

6	Лекция 20 от 08.02.2016					
	6.1	Линейные отображения (продолжение)				
	6.2	Линейные операторы				
7	Лекция 21 от 15.02.2016					
	7.1	Инвариантность и обратимость				
	7.2	Собственные векторы и собственные значения				
	7.3	Диагонализуемость				
	7.4	Собственное подпространство				
8	Лекция 22 от 22.02.2016					
	8.1	Деление многочленов с остатком				
	8.2	Собственные значения и характеристический многочлен				
	8.3	Геометрическая и алгебраическая кратности				
	8.4	Сумма и прямая сумма нескольких подпространств				
9	Лекция 23 от 29.02.2016					
	9.1	Сумма собственных подпространств				
	9.2	Диагонализируемость				
	9.3	Инвариантные подпространства в \mathbb{R}^n				
	9.4	Корневые векторы и корневые подпространства				
10	Лек	ция 24 от 14.03.2016				
	10.1	Корневые подпространства				
	10.2	Жордановы клетки				
11	Лек	ция 25 от 21.03.2016				
	11.1	Жорданова нормальная форма				
	11.2	Линейные функции на векторном пространстве				
	11.3	Билинейные функции на векторном пространстве				
12	Лек	ция 26 от 06.04.2016				
	12.1	Матрицы билинейных функций				
	12.2	Симметричные билинейные функции				
	12.3	Квадратичные функции				
13	Лек	ция 27 от 13.04.2016				
	13.1	Привидение к каноническому и нормальному виду				
	13.2	Закон инерции, индексы инерции				

14 Лекция 28 от 19.04.2016 46
14.1 Евклидовы пространства
15 Лекция 29 от 27.04.2016 49
Лекция 15 от 11.01.2016
Скаляры. Поля
Для начала вспомним, что такое <i>векторное пространство</i> — это множество, на котором введены операции сложения, умножения на скаляр и в котором будут выполнятся восемь аксиом (см. 1 семестр). Но что такое скаляр?
Определение. Скаляры — это элементы некоторого фиксированного поля.
Определение. Полем называется множество F , на котором заданы две операции — «сложение» $(+)$ и «умножение» (\cdot) ,
$F \times F \to F \Rightarrow egin{array}{l} +: (a,b) \mapsto a+b \\ \cdot: (a,b) \mapsto a \cdot b \end{array}$
удовлетворяющие следующим свойствам («аксиомам поля»): $\forall a,b,c \in F$
1. $a+b=b+a$ (коммутативность по сложению);
2. $(a + b) + c = a + (b + c)$ (ассоциативность по сложению);
3. $\exists 0 \in F \colon 0 + a = a + 0 = a (существование нулевого элемента);$
4. $\exists -a \in F : a + (-a) = (-a) + a = 0$ (существование противоположного элемента);
5. $a(b+c) = ab + ac$ (дистрибутивность; связь между сложением и умножением);
6. $ab = ba \ (коммутативность по умножению);$
7. $(ab)c = a(bc)$ (ассоциативность по умножению);
8. $\exists 1 \in F \setminus \{0\} : 1 \cdot a = a \cdot 1 = a \ (существование единицы);$
9. $a \neq 0 \Rightarrow \exists a^{-1} \in F : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (существование обратного элемента).
Пример.
$ullet$ \mathbb{Q} — рациональные числа;

- ullet \mathbb{R} вещественные числа;
- ullet С комплексные числа;
- ullet $F_2=\{0,1\}$, при сложении и умножении по модулю 2.

Поле комплексных чисел

Поле действительных чисел $\mathbb R$ плохо тем, что в нем уравнение $x^2+1=0$ не имеет решения. Отсюда возникает идея определить поле, удовлетворяющее следующим требованиям:

- (T1) новое поле содержит \mathbb{R} ;
- (T2) уравнение $x^2 + 1 = 0$ имеет решение.

Давайте формально построим такое поле.

Определение. Полем $\mathbb C$ комплексных чисел называется множество $\{(a,b) \mid a,b \in \mathbb R\}$, на котором заданы операции сложения: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$ и умножения: $(a_1,b_1)\cdot(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)$.

Предложение. \mathbb{C} *и впрямь является полем.*

Доказательство. Операции сложения и умножения введены, осталось только проверить выполнение всех аксиом.

- 1. очевидно, так как сложение идет поэлементно;
- 2. также очевидно;
- 3. 0 = (0,0);
- 4. -(a,b) = (-a,-b);
- 5. почти очевидно (т.е. прямая проверка);
- 6. ясно (тоже прямая проверка);
- 7. проверим:

$$((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2)(a_3, b_3) =$$

$$= (a_1a_2a_3 - b_1b_2b_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3) =$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3) = (a_1, b_1)((a_2, b_2)(a_3, b_3));$$

8. 1 = (1,0);

9.
$$(a,b) \neq 0 \Leftrightarrow a^2 + b^2 \neq 0 \rightarrow (a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$
.

Осталось только проверить, правда ли введенное поле С удовлетворяет нашим требованиям:

(T1) Заметим, что в подмножестве \mathbb{C} , состоящим из элементов вида (a,0) операции сложения и умножения будут работать как в поле вещественных чисел.

$$(a,0) + (b,0) = (a+b,0)$$

 $(a,0) \cdot (b,0) = (ab,0)$

Следовательно, отображение $a \mapsto (a,0)$ отождествляет \mathbb{R} с этим подмножеством, то есть $\mathbb{R} \to \mathbb{C}$. Что нам и требуется.

(Т2) Примем i = (0,1). Тогда $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$. Итого, требование выполнено.

Однако запись комплексных чисел в виде упорядоченной пары (a,b) не очень удобна и громоздка. Поэтому преобразуем запись следующим образом:

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + bi.$$

Тем самым мы получили реализацию поля \mathbb{C} комплексных чисел как множества $\{a+bi\mid a,b\in\mathbb{R},\,i^2=-1\}$, с обычным сложением и умножением.

Определение. Запись z=a+bi называется алгебраической формой комплексного числа $z\in\mathbb{C}$.

 $a = \operatorname{Re} z - \partial e$ йствительная часть числа z.

 $b = \operatorname{Im} z -$ мнимая часть числа z.

Определение. Числа вида z = bi (m.e. Re z = 0) называются чисто мнимыми.

Определение. Отображение $\mathbb{C} \to \mathbb{C}$: $a+bi \mapsto a-bi$ называется (комплексным) сопряжением. Само число $\overline{z}=a-bi$ называется (комплексно) сопряженным к числу z=a+bi.

Лемма. Для любых двух комплексных числе $z,w\in\mathbb{C}$ выполняется, что

- 1. $\overline{z+w} = \overline{z} + \overline{w}$;
- 2. $\overline{zw} = \overline{z} \cdot \overline{w}$.

Доказательство. Пусть z = a + bi, а w = c + di.

1.
$$\overline{z} + \overline{w} = a - bi + c - di = (a + c) - (b + d)i = \overline{z + w}$$

2.
$$\overline{z} \cdot \overline{w} = (a - bi)(c - di) = ac - adi - bci + bdi^2 = (ac - bd) - (ad + bc)i = \overline{zw}$$

Замечание. Равенство $z=\overline{z}$ равносильно равенству $\operatorname{Im} z=0,$ то есть $z\in\mathbb{R}.$

Геометрическая модель поля $\mathbb C$

Заметим, что поле комплексных числе $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел сопоставляется со сложением векторов, а сопряжение — с отражением относительно оси $Ox(\operatorname{Re} z)$.

Определение. Модулем комплексного числа z = a + bi называется длина соответствующего вектора. Обозначение: |z|; $|a + bi| = \sqrt{a^2 + b^2}$.

Свойства модуля:

- 1. $|z| \ge 0$, причем |z| = 0 тогда и только тогда, когда z = 0;
- 2. $|z+w| \le |z| + |w|$ неравенство треугольника;
- 3. $z \cdot \overline{z} = |z|^2$;

Доказательство.
$$(a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$$
.

 $4. |zw| = |z| \cdot |w|;$

Доказательство. Возведем в квадрат.

$$|z|^2 \cdot |w|^2 = z\overline{z}w\overline{w} = (zw)\overline{z}\overline{w} = zw\overline{z}\overline{w} = |zw|^2$$

Замечание. Из свойства 3 следует, что при $z \neq 0$ выполняется:

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$(a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}.$$

Определение. Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

Неформально говоря, аргумент z — это угол между осью Ox и соответствующим вектором.

Замечание.

- 1. Аргумент определен с точностью до 2π .
- 2. Аргумент z=0 не определен.

Для $z \neq 0$ введем множество $\operatorname{Arg} z = \{$ множество всех аргументов $z\}$ — большой аргумент. Также введем малый аргумент $\operatorname{arg} z$ — это такой $\varphi \in \operatorname{Arg} z$, который удовлетворяет условию $0 \leqslant \varphi < 2\pi$ и, следовательно, определен однозначно.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Определение. 3anucь $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

Замечание.

$$r_1(\cos\varphi_1 + i\sin\varphi_1) = r_2(\cos\varphi_2 + i\sin\varphi_2) \Leftrightarrow \begin{cases} r_1 = r_2\\ \varphi_1 = \varphi_2 + 2\pi n, & n \in \mathbb{Z} \end{cases}$$

Лекция 16 от 18.01.2016

Вспомним предыдущую лекцию и кое-что дополним

Замечание.

- 1. Элемент $0 e \partial u$ нственный.
- 2. И элемент -a единственный.
- 3. Даже элемент 1 единственный.
- 4. Как это ни удивительно, но a^{-1} тоже единственный.

Легко увидеть, что пункты 2 и 4 доказываются одинаково с точностью до замены операции, как и пункты 1 и 3.

Доказательство. Докажем пункт 3. Если существует 1' — еще одна единица, тогда по аксиомам $1' = 1' \cdot 1 = 1$.

Докажем теперь пункт 4. Пусть b и c таковы, что $b \neq c$ и ba = ab = ac = ca = 1. Тогда

$$bac = (ba) c = b (ac) = 1 \cdot c = c = 1 \cdot b = b$$

To есть b=c.

Комплексные числа (продолжение)

Предложение. Пусть $z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2).$ Тогда

$$z_1 z_2 = |z_1||z_2| \left(\cos\left(\varphi_1 + \varphi_2\right) + i\sin\left(\varphi_1 + \varphi_2\right)\right)$$

Иными словами, при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Доказательство. Просто раскроем скобки и приведём подобные.

$$z_1 z_2 = |z_1||z_2|(\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 + i(\cos\varphi_1\sin\varphi_2 + \cos\varphi_2\sin\varphi_1)) =$$
$$= |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Следствие. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$

Следствие (Формула Муавра). Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

Замечание. В комплексном анализе функция $\exp x\colon \mathbb{R} \to \mathbb{R}$ доопределяется до $\exp z\colon \mathbb{C} \to \mathbb{C}$ следующим образом:

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!} .$$

И тогда оказывается, что $\exp z$ обладает теми же свойствами, кроме того:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi \quad \forall \varphi \in \mathbb{C}.$$

Всякое $z\in\mathbb{C}$ можно представить в виде $z=|z|e^{i\varphi},$ где $\varphi\in\mathrm{Arg}\ (z).$ Тогда формула Муавра приобретает совсем очевидный вид:

$$|z_1|e^{i\varphi_2} \cdot |z_2|e^{i\varphi_2} = |z_1||z_2|e^{i(\varphi_1+\varphi_2)}.$$

Замечание. Отображение $R_{\varphi} \colon \mathbb{C} \to \mathbb{C}, \ z \to ze^{i\varphi}, \ \varphi \in \mathbb{R}$ определяет поворот на угол φ вокруг 0.

Корни из комплексного числа

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Определение. Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

Если z=0, то |z|=0, а значит |w|=0, w=0. Получается, 0 — единственное комплексное число, у которого корень определён однозначно.

Далее рассмотрим случай $z \neq 0$.

$$z = |z| (\cos \varphi + i \sin \varphi)$$

$$w = |w| (\cos \psi + i \sin \psi)$$

$$z = w^n \Leftrightarrow \begin{cases} |z| = |w|^n \\ n\psi \in \operatorname{Arg}(z) \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ n\psi = \varphi + 2\pi k, \quad k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n}, \quad k \in \mathbb{Z} \end{cases}$$

С точностью до кратного 2π различные значения в формуле $\psi = \frac{\varphi + 2\pi k}{n}$ получаются при $k=0,\,1,\ldots,n-1$. Значит z имеет ровно n корней n-й степени.

$$\sqrt[n]{z} = \left\{ |z| \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n-1 \right\}$$

Замечание. Точки из множества $\sqrt[n]{z}$ при $z \neq 0$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{|z|}$.

Пример. $z = -1 = \cos \pi + i \sin \pi$

$$\sqrt[3]{z} = \left\{ \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}; \cos\pi + i\sin\pi; \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} \right\}$$

Решение квадратных уравнений с комплексными коэффициентами

Пусть дано квадратное уравнение $az^2 + bz + c = 0$, где $a, b, c \in \mathbb{C}$ и $a \neq 0$. Тогда имеем:

$$z^{2} + \frac{b}{a}z + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a}z + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения — это $z_1=\frac{-b+d_1}{2a},\,z_2=\frac{-b+d_2}{2a},$ где $\{d_1,d_2\}=\sqrt[2]{b^2-4ac}.$ В частности, квадратное уравнение всегда имеет комплексный корень, а при $b^2-4ac\neq 0$ два корня.

Теорема (Основная теорема алгебры). Всякий многочлен $P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ степени $n, \ \partial e \ n \geqslant 1, \ a_n \neq 0, \ u \ a_0, \ldots, a_n \in \mathbb{C}$ имеет корень.

Векторные пространства над произвольным полем

И снова вспомним, что такое векторное пространство:

- некоторое множество V;
- есть операция сложения $V \times V \to V$;
- есть операция умножения на скаляр $F \times V \to V$;
- выполняются 8 аксиом.

Все основные понятия и результаты теории векторных пространств из прошлого полугодия можно перенести на случай пространства над произвольным полем F без изменений.

Пример. Пусть V- векторное пространство над полем из двух элементов, $\dim V=n$. Тогда $|V|=2^n$. Действительно, каждое конечномерное пространство обладает базисом (в данном случае e_1,\ldots,e_n). Тогда $V=\{k_1e_1+k_2e_2+\ldots+k_ne_n\mid k_i\in F\}$. Но очень легко заметить, что всего таких линейных комбинаций 2^n

Лекция 17 от 25.01.2016

Овеществление и комплексификация

Пусть V — векторное пространство над \mathbb{C} .

Определение. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над \mathbb{R} . Обозначение: $V_{\mathbb{R}}$.

Операция умножения на элементы $\mathbb R$ в V уже есть, так как $\mathbb R$ — подполе в $\mathbb C.$

Пример. $\mathbb{C}_{\mathbb{R}} = \mathbb{R}^2$.

Предложение. V — векторное пространство над \mathbb{C} , $\dim V < \infty$. Тогда $\dim V_{\mathbb{R}} = 2\dim V$.

Доказательство. Пусть e_1, \ldots, e_n — базис в V. Тогда $V = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$, причём такая запись единственная в силу определения базиса. Пусть $z_k = a_k + ib_k$, причём такая запись тоже единственная. Тогда будем иметь

$$V = \{(a_1 + ib_1) e_1 + \ldots + (a_n + ib_n) e_n \mid a_k, b_k \in \mathbb{R}\} = \{a_1e_1 + \ldots + a_ne_n + b_1ie_1 + \ldots + b_nie_n \mid a_k, b_k \in \mathbb{R}\}$$

И причём такая запись тоже единственная. Выходит, что $e_1,e_2,\ldots,e_n,ie_1,ie_2,\ldots,ie_n$ — базис в $V_{\mathbb{R}}$, в котором $2n=2\dim V$ элементов.

Определение. Комплексификация пространства W — это множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1)+(u_2,v_2)=(u_1+u_2,v_1+v_2), (a+ib)(u,v)=(au-bv,av-bu).$

Пример. $\mathbb{R}^{\mathbb{C}} = \mathbb{R}$.

Утверждение. В нём выполняются все 8 аксиом векторного пространства над \mathbb{C} .

W отождествляется подмножеством $\{(u,0) \mid u \in W\}$. Действительно

$$w \in W \Leftrightarrow (w,0) \in W^{\mathbb{C}}; \ i(w,0) = (0,w) \in W^{\mathbb{C}}$$

В итоге $\forall (u,v) \in W^{\mathbb{C}}$ представим в виде

$$(u,v) = (u,0) + (0,v) = (u,0) + i(v,0) = u + iv$$

To есть $W^{\mathbb{C}} = \{u + iv \mid u,v \in W\}.$

Предложение. $\dim W^{\mathbb{C}} = \dim W$

Замечание. $3 decb \ W^{\mathbb{C}} - npocmpancmso \ nad \ \mathbb{C}, \ a \ W - nad \ \mathbb{R}.$

Доказательство. Пусть e_1, \ldots, e_n — базис в W. Тогда

$$W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\} = \{(a_1e_1 + a_2e_2 + \dots + a_ne_n, b_1e_1 + b_2e_2 + \dots + b_ne_n) \mid a_k,b_k \in \mathbb{R}\} = \{(a_1e_1,b_1e_1) + \dots + (a_ne_n,b_ne_n)\} = \{(a_1+ib_1)e_1 + \dots + (a_n+ib_n)e_n\} = \{z_1e_1 + \dots + z_ne_n \mid z_k \in \mathbb{C}\}$$

То есть выходит, что e_1, \ldots, e_n — базис в $W^{\mathbb{C}}$.

Сумма подпространств

Пусть V — конечномерное векторное пространство, а U и W — подпространства (в качестве упражнения лектор предлагает доказать, что их пересечение — тоже подпространство).

Определение. Сумма подпространств $U\ u\ W\ -\$ это множество.

$$U + W = \{u + w \mid u \in U, w \in W\}$$

Замечание. $\dim (U \cap W) \leq \dim U \leq \dim (U + W)$

Пример. Двумерные плоскости в пространстве \mathbb{R}^3 содержат общую прямую.

Теорема. dim $(U \cap W)$ = dim U + dim W - dim (U + W)

Доказательство. Положим $p=\dim(U\cap W),\ k=\dim U,\ m=\dim W.$ Выберем базис $a=\{a_1,\ldots,a_p\}$ в пересечении. Его можно дополнить до базиса W и до базиса U. Значит $\exists b=\{b_1,\ldots,b_{k-p}\}$ такой, что $a\cup b$ — базис в U и $\exists c=\{c_1,\ldots,c_{m-p}\}$ такой, что $a\cup c$ — базис в W. Докажем, что $a\cup b\cup c$ — базис в U+W.

Во-первых, докажем, что U+W порождается множеством $a\cup b\cup c$.

$$v \in U + W \Rightarrow \exists u \in U, w \in W \colon v = u + w$$

$$u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle$$

$$w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle$$

$$\Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow U + W = \langle a \cup b \cup c \rangle$$

Во-вторых, докажем линейную независимость векторов из $a \cup b \cup c$.

Пусть скаляры $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{k-p}, \gamma_1, \ldots, \gamma_{m-p}$ таковы, что:

$$\underbrace{\alpha_1 a_1 + \ldots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \ldots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$x + y + z = 0$$

$$z = -x - y$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \ldots, \lambda_p \in F \colon z = \lambda_1 a_1 + \ldots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U + W \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. То есть $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W)$$

Определение. $Ecnu\ U \cap W = \{0\},\ mo\ U + W\ называется прямой суммой.$

Следствие. В таком случае $\dim (U+W) = \dim U + \dim W$.

Пример. U - nnockocmb, $W - npsmas \ B^3$.

Переход к новому базису

Пусть V — векторное пространство, $\dim V = n, e_1, \dots, e_n$ — базис. То есть

$$\forall v \in V \quad \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{2} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$.

Предложение. e_1',\ldots,e_n' образуют базис тогда и только тогда, когда $\det C \neq 0$.

Доказательство.

 $[\Rightarrow] e'_1,\ldots,e'_n$ — базис, а значит $\exists C' \in M_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n) C' = (e_1, \dots, e_n) C' C$$

$$E = CC'$$

$$C' = C^{-1} \Leftrightarrow \exists C^{-1} \Leftrightarrow \det C \neq 0$$

 $[\Leftarrow] \det C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e'_1, \ldots, e'_n в таком случае линейно независимы. Пусть $x_1e'_1 + x_2e'_2 + \ldots + x_ne'_n = 0$. Тогда можно записать

$$(e'_1, e'_2, \dots, e'_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

$$(e_1, \dots, e_n) C \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Поскольку (e_1,\ldots,e_n) — базис, то $C\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}=0$. Умножая слева на обратную матрицу, получаем, что $x_1=x_2=\ldots=x_n=0$

Лекция 18 от 29.01.2016

Матрица перехода и переход к новому базису

Пусть V — векторное пространство, $\dim V = n$, вектора e_1, \ldots, e_n — базис, а e'_1, \ldots, e'_n — некий набор из n векторов. Тогда каждый вектор из этого набора линейно выражается через базис.

$$e'_{j} = \sum_{i=1}^{n} c_{ij}e_{i}, \quad c_{ij} \in F$$

$$(e'_{1}, \dots, e'_{n}) = (e_{1}, \dots, e_{n}) \cdot C, \quad C = (c_{ij})$$

То есть мы получили матрицу, где в j-ом столбце стоят коэффициенты линейного разложения вектора e'_j в базисе (e_1, \ldots, e_n) .

Теперь пусть e_1', \dots, e_n' — тоже базис в V. Вспомним, что на прошлой лекции уже было сказано, что в этом случае $\det C \neq 0$.

Определение. Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) κ базису (e'_1, \ldots, e'_n) .

Замечание. Матрица перехода от (e'_1,\ldots,e'_n) κ (e_1,\ldots,e_n) есть C^{-1} .

И небольшое замечание касательно записи: когда базис записан в скобках, то есть (e_1, \ldots, e_n) , то нам важен порядок векторов в нем, в противном случае, при записи e_1, \ldots, e_n , порядок не важен.

Итого, имеем два базиса пространства V, (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) , и матрицу перехода C такую, что $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$. Возьмем некий вектор v и разложим его по обоим базисам.

$$v \in V \Rightarrow \begin{cases} v = x_1 e_1 + \dots + x_n e_n, & x_i \in F \\ v = x_1' e_1' + \dots + x_n' e_n', & x_i' \in F \end{cases}$$

Предложение. Формула преобразования координат при переходе к другому базису:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} \qquad u \wedge u \qquad x_i = \sum_{j=1}^n c_{ij} x'_j$$

Доказательство. С одной стороны:

$$v = x_1'e_1' + \ldots + x_n'e_n' = \begin{pmatrix} e_1' & \ldots & e_n' \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Однако с другой стороны:

$$v = x_1 e_1 + \ldots + x_n e_n = \begin{pmatrix} e_1 & \ldots & e_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Сравнивая одно с другим, получаем, что:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Линейные отображения

Пусть V и W — два векторных пространства над полем F.

Определение. Отображение $f:V\to W$ называется линейным, если:

1.
$$f(u_1 + u_2) = f(u_1) + f(u_2), \quad \forall u_1, u_2 \in V;$$

2.
$$f(\alpha u) = \alpha f(u), \quad \forall u \in V, \forall \alpha \in F.$$

Замечание. Свойства 1-2 эквивалентны тому, что

$$f(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 f(u_1) + \alpha_2 f(u_2), \quad \forall u_1, u_2 \in V, \forall \alpha_1, \alpha_2 \in F.$$

Здесь важно понимать, что сначала сложение векторов и умножение на скаляр происходит в пространстве V, а потом в пространстве W.

Простейшие свойства.

1. $f(\vec{0}_V) = \vec{0}_W$

Доказательство.
$$f(\vec{0}_V) = f(0 \cdot \vec{0}_V) = 0 f(\vec{0}_V) = \vec{0}_W$$

2. $\varphi(-u) = -\varphi(u)$, где (-u) — обратный элемент к u.

Доказательство.
$$\varphi(-u) + \varphi(u) = \varphi(-u+u) = \varphi(\vec{0}_V) = \vec{0}_W \Rightarrow \varphi(-u) = -\varphi(u)$$

Примеры

- (0) $V \to V : v \mapsto v$ тождественное отображение.
- (1) $f: \mathbb{R} \to \mathbb{R}$ линейно $\Leftrightarrow \exists k \in \mathbb{R} : f(x) = kx, \quad \forall x \in \mathbb{R}$

Доказательство.

$$\Rightarrow f(x) = f(x \cdot 1) = xf(1) = kx$$
, где $k = f(1)$

← Проверим необходимые условия линейности.

1.
$$f(x) = kx \Rightarrow f(x_1 + x_2) = k(x_1 + x_2) = kx_1 + kx_2 = kf(x_1) + kf(x_2)$$

2.
$$f(\alpha x) = k\alpha x = \alpha kx = \alpha f(x)$$

- (2) $f: \mathbb{R}^2 \to \mathbb{R}^2$ декартова система координат.
 - 2.1 Поворот вокруг 0 на угол α линеен.
 - 2.2 Проекция на прямую, проходящую через 0, линейна.
- (3) $P_n = R[x]_{\leq n}$ пространство всех многочленов от x степени не больше n.

$$\Delta: f\mapsto f' \mbox{ (производная)}$$

$$(f+g)'=f'+g' \bigg|\Rightarrow \Delta - \mbox{ линейное отображение из } P_n \mbox{ в } P_{n-1}$$

(4) Векторное пространство V, dim $V = n, e_1, \dots, e_n$ — базис.

$$V\mapsto \mathbb{R}^n$$
 $x_1e_1+\ldots+x_ne_n\mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ — тоже линейное отображение.

(5) $A \in \operatorname{Mat}_{m \times n}, k \geqslant 1$ — любое, $\varphi : \operatorname{Mat}_{n \times k} \to \operatorname{Mat}_{m \times k}$.

$$\varphi(X) = A \cdot X$$

$$A(X_1 + X_2) = AX_1 + AX_2$$

$$A(\alpha X) = \alpha(AX)$$

Частный случай, при $k=1-\varphi:F^n\to F^m.$

Изоморфизм

Определение. Отображение $\varphi:V\to W$ называется изоморфизмом, если φ линейно и биективно. Обозначение: $\varphi:V\stackrel{\sim}{\to} W$.

Рассмотрим те же примеры:

- (0) Изоморфизм.
- (1) Изоморфизм, при $k \neq 0$.
- **(2)** 2.1 Изоморфизм.
 - 2.2 Не изоморфизм.
- (3) Не изоморфизм.
- (4) Изоморфизм.
- **(5)** Задача: доказать, что φ изоморфизм тогда и только тогда, когда n=m и $\det A \neq 0$.

Предложение. Пусть $\varphi: V \to W - u$ зоморфизм. Тогда $\varphi^{-1}: W \to V - m$ оже изоморфизм.

Доказательство. Так как φ — биекция, то φ^{-1} — тоже биекция.

$$w_1, w_2 \in W \Rightarrow \exists v_1, v_2 \in V : \begin{cases} \varphi(v_1) = w_1 & v_1 = \varphi^{-1}(w_1) \\ \varphi(v_2) = w_2 & v_2 = \varphi^{-1}(w_2) \end{cases}$$

Тогда осталось только доказать линейность обратного отображения. Для этого проверим выполнение необходимых условий линейности.

1.
$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}(\varphi(v_1) + \varphi(v_2)) = \varphi^{-1}(\varphi(v_1 + v_2)) = id(v_1 + v_2) = v_1 + v_2$$

2.
$$\alpha \in F$$
, $\varphi^{-1}(\alpha w_1) = \varphi^{-1}(\alpha \varphi(v_1)) = \varphi^{-1}(\varphi(\alpha v_1)) = \mathrm{id}(\alpha v_1) = \alpha v_1$.

Определение. Два векторных пространства V и W называются изоморфными, если существует изоморфизм $\varphi: V \xrightarrow{\sim} W$ (и тогда существует изоморфизм $V \xleftarrow{\sim} W$ по предположению). Обозначение: $V \simeq W$ или $V \cong W$.

Отображения можно соединять в композиции:

$$\begin{array}{c|c} \varphi:U\to V\\ \psi:V\to W \end{array} \Rightarrow \psi\circ\varphi:U\to W \quad \psi\circ\varphi(u)=\psi(\varphi(u))$$

Предложение.

- 1. Если φ и ψ линейны, то $\psi \circ \varphi$ тоже линейно.
- 2. Если φ и ψ изоморфизмы, то $\psi \circ \varphi$ тоже изоморфизм.

Доказательство.

1. Опять-таки, просто проверим необходимые условия линейности.

(a)
$$(\psi \circ \varphi)(u_1 + u_2) = \psi(\varphi(u_1 + u_2)) = \psi(\varphi(u_1) + \varphi(u_2)) = \psi(\varphi(u_1)) + \psi(\varphi(u_2)) = (\psi \circ \varphi)(u_1) + (\psi \circ \varphi)(u_2)$$

- (b) $(\psi \circ \varphi)(\alpha u) = \psi(\varphi(\alpha u)) = \psi(\alpha \varphi(u)) = \alpha \psi(\varphi(u)) = \alpha(\psi \circ \varphi)(u)$
- 2. Следует из сохранения линейности и того, что композиция биекций тоже биекция.

Следствие. Изоморфизм это отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

Рефлексивность $V \simeq V$.

Симметричность $V \simeq W \Rightarrow W \simeq V$.

Транзитивность $(V \simeq U) \land (U \simeq W) \Rightarrow V \simeq W.$

То есть множество всех векторных пространств над фиксированным полем F разбивается на попарно непересекающиеся классы, причем внутри одного класса любые два пространства изоморфны. Такие классы называются κ лассами эквивалентности.

Теорема. Если два конечномерных векторных пространства V и W над полем F изоморфны, то $\dim V = \dim W$.

Но для начала докажем следующую лемму.

Лемма (1). Для векторного пространства V над полем F размерности n верно, что $V \simeq F^n$.

Доказательство. Рассмотрим отображение $\varphi: V \to F^n$ из примера 4. Пусть (e_1, \dots, e_n) — базис пространства V. Тогда:

$$x_1e_1 + \ldots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_i \in F.$$

Отображение φ линейно и биективно, следовательно φ — изоморфизм. А раз существует изоморфное отображение между пространствами V и F^n , то они изоморфны.

Лекция 19 от 01.02.2016

Изоморфизм (продолжение)

На прошлой лекции мы ввели теорему и доказали одну лемму. Напомним их.

Теорема. Если два конечномерных векторных пространства V и W изоморфны, то $\dim V = \dim W$.

Лемма (1). Если dim V = n, то $V \simeq F^n$.

Замечание. Говорят, что функция φ отождествляет пространство V с пространством F^n , если $\varphi:V\stackrel{\sim}{\to} F^n$.

Но перед тем, как доказывать эту теорему, докажем лучше еще одну лемму.

Лемма (2). Пусть $\varphi: V \xrightarrow{\sim} W$ — изоморфизм векторных пространств, а e_1, \ldots, e_n — базис V. Тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$ — произвольный вектор. Положим $v \in V$ таковым, что $v = \varphi^{-1}(w)$.

$$v = x_1 e_1 + \ldots + x_n e_n, \quad x_i \in F$$

$$w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) \Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Покажем, что $\varphi(e_1), \ldots, \varphi(e_n)$ — линейно независимые вектора.

Пусть $\alpha_1, \ldots, \alpha_n \in F$ таковы, что $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$. Это то же самое, что $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применяя φ^{-1} , получаем $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Но так как e_1, \ldots, e_n базис в V, то $\alpha_1 = \ldots = \alpha_n = 0$, и потому вектора $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы. Следовательно, этот набор векторов — базис в W.

Теперь приступим наконец к доказательству теоремы.

Доказательство.

- $\Rightarrow V \simeq W \Rightarrow \exists \varphi : V \xrightarrow{\sim} W$. Тогда по лемме 2, если e_1, \ldots, e_n базис V, то $\varphi(e_1), \ldots, \varphi(e_n)$ базис W, и тогда $\dim V = \dim W$.
- \Leftarrow Пусть dim $V=\dim W=n$. Тогда по лемме 1 существуют изоморфизмы $\varphi:V\xrightarrow{\sim} F^n$ и $\psi:W\xrightarrow{\sim} F^n$. Следовательно, $\psi^{-1}\circ\varphi:V\to W$ изоморфизм.

То есть получается, что с точностью до изоморфизма существует только одно векторное пространство размерности n. Однако не стоит заканчивать на этом курс линейной алгебры. Теперь главная наша проблема — это как из бесконечного множества базисов в каждом векторном пространстве выбрать тот, который будет наиболее простым и удобным для каждой конкретной задачи.

Например, рассмотрим вектор
$$v \in F^n$$
 с координатами $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Пусть $v \neq 0$. Тогда су-

ществует такой базис e_1, \ldots, e_n , что $v = e_1$, то есть в этом базисе вектор имеет координаты

$$v = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Пусть V, W — векторные пространства над F, и e_1, \ldots, e_n — базис V.

Предложение.

- 1. Всякое линейное отображение $\varphi: V \to W$ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$.
- 2. Для всякого набора векторов $f_1, ..., f_n \in W$ существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, ..., \varphi(e_n) = f_n$.

Доказательство.

- 1. Пусть $v \in V$, $v = x_1e_1 + \ldots + x_ne_n$, где $x_i \in F$. Тогда $\varphi(v) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n)$, то есть если мы знаем вектора $\varphi(e_i)$, то сможем задать $\varphi(v)$ для любого $v \in V$.
- 2. Определим отображение $\varphi: V \to W$ по формуле $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1f_1 + \ldots + x_nf_n$. Прямая проверка показывает, что φ линейна, а единственность следует из пункта 1.

Следствие. Если $\dim V = \dim W = n$, то для всякого базиса e_1, \ldots, e_n пространства V и всякого базиса f_1, \ldots, f_n пространства W существует единственный изоморфизм $\varphi : V \xrightarrow{\sim} W$ такой, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$.

Доказательство. Из пункта 2. предложения следует, что существует единственное линейное отображение $\varphi: V \to W$ такое, что $\varphi(e_1) = f_1, \ldots, \varphi(e_n) = f_n$. Но тогда $\varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n) = x_1f_1 + \ldots + x_nf_n$ для любых $x_i \in F$. Отсюда следует, что φ биекция.

Матрицы линейных отображений

Пусть V и W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис V, $f = (f_1, \dots, f_m)$ — базис W, $\varphi : V \to W$ — линейное отображение. Тогда:

$$\varphi(e_j) = a_{1j}f_1 + \ldots + a_{mj}f_m = \sum_{i=1}^m a_{ij}f_i.$$

Определение. Матрица $A=(a_{ij})\in Mat_{m\times n}(F)$ называется матрицей линейного отображения φ в базисах $\mathfrak e$ и $\mathfrak f$ (или по отношению κ базисам $\mathfrak e$ и $\mathfrak f$).

Замечание. Существует биекция {линейные отображения $V \to W$ } $\rightleftarrows Mat_{m \times n}$.

Замечание. $B A^{(j)}$ стоят координаты $\varphi(e_i)$ в базисе f.

$$(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_n)\cdot A$$

Рассмотрим пример.

Пусть $P_n = F[x]_{\leqslant n}$ — множество многочленов над полем F степени не выше n. Возьмем дифференцирование $\Delta: P_n \to P_{n-1}$.

Базис P_n-1,x,x^2,\ldots,x^n . Базис $P_{n-1}-1,x,\ldots,x^{n-1}$. Тогда матрица линейного отображения будет размерности $n\times(n+1)$ и иметь следующий вид.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

Предложение. Eсли $v = x_1e_1 + \ldots + x_ne_n$ и $\varphi(v) = y_1f_1 + \ldots + y_mf_m$, то

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Доказательство. С одной стороны:

$$\varphi(v) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n) = (\varphi(e_1), \ldots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \ldots, f_m) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Однако с другой стороны:

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Сравнивая обе части, получаем требуемое.

А теперь проанализируем операции над матрицами линейных отображений.

V и W — векторные пространства. Обозначение: $\mathrm{Hom}(V,W):=$ множество всех линейных отображений $V \to W$.

Пусть $\varphi, \psi \in \text{Hom}(V, W)$.

Определение.

1.
$$\varphi + \psi \in \text{Hom}(V, W) - \mathfrak{smo}(\varphi + \psi)(v) := \varphi(v) + \psi(v)$$
.

2.
$$\alpha \in F, \alpha \varphi \in \text{Hom}(V, W) - \mathfrak{smo}(\alpha \varphi)(v) := \alpha(\varphi(v)).$$

Упражнение.

- 1. Проверить, что $\varphi + \psi$ и $\alpha \varphi$ действительно принадлежат Hom(V, W).
- 2. Проверить, что Hom(V, W) является векторным пространством.

Предложение. Пусть $e = (e_1, \dots, e_n) - \textit{базис } V$, $f = (f_1, \dots, f_m) - \textit{базис } W$, $\varphi, \psi \in \text{Hom}(V, W)$. При этом A_{φ} — матрица линейного отображения φ , A_{ψ} — матрица для ψ , $A_{\varphi+\psi}$ — для $\varphi+\psi$, а $A_{\alpha\varphi}$ — для $\alpha\varphi$.

Тогда
$$A_{\varphi+\psi} = A_{\varphi} + A_{\psi} \ u \ A_{\alpha\varphi} = \alpha A_{\varphi}.$$

Доказательство. Упражнение.

Теперь возьмем три векторных пространства — U,V и W размерности n,m и k соответственно, и их базисы e, f и g. Также рассмотрим цепочку линейных отображений $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$. Пусть A — матрица φ в базисах f и g, B — матрица ψ в базисах e и f, C — матрица $\varphi \circ \psi$ в базисах e и g.

Предложение. C = AB.

Замечание. Собственно говоря, отсюда и взялось впервые определение умножения матрии.

Доказательство. Запишем по определению:

$$(\varphi \circ \psi)(e_r) = \sum_{p=1}^k c_{pr} g_p, \quad r = 1, \dots, n$$

$$\psi(e_r) = \sum_{q=1}^m b_{qr} f_q, \quad r = 1, \dots, n$$

$$\varphi(f_q) = \sum_{p=1}^k a_{pq} g_p, \quad q = 1, \dots, m$$

Тогда:

$$(\psi \circ \psi)(e_r) = \varphi(\psi(e_r)) = \varphi\left(\sum_{q=1}^m b_{qr} f_g\right) = \sum_{q=1}^m b_{qr} \varphi(f_g) = \sum_{q=1}^m b_{qr} \left(\sum_{p=1}^k a_{pq} g_p\right) = \sum_{p=1}^k \left(\sum_{q=1}^m a_{pq} b_{qr}\right) g_p$$

$$\downarrow \downarrow$$

$$c_{pr} = \sum_{q=1}^m a_{pq} b_{qr}$$

$$\downarrow \downarrow$$

$$C = AB$$

И снова, пусть V и W — векторные пространства с линейным отображением $\varphi: V \to W$.

Определение. Ядро φ — это множество $\operatorname{Ker} \varphi := \{v \in V \mid \varphi(v) = 0\}.$

Определение. Образ φ — это множество $\operatorname{Im} \varphi := \{w \in W \mid \exists v \in V : \varphi(v) = w\}.$

Пример. Все то жее $\Delta: P_n \to P_{n-1}$. Для него $\operatorname{Ker} \Delta = \{f \mid f = const\}$, $\operatorname{Im} \Delta = P_{n-1}$.

Лекция 20 от 08.02.2016

Линейные отображения (продолжение)

Пусть $\varphi \colon V \to W$ — линейное отображение.

Предложение.

- 1. $\operatorname{Ker} \varphi nodnpocmpaнcmeo \ e \ V$.
- 2. $\operatorname{Im} \varphi nodnpocmpaнcmeo \ e \ W$.

Доказательство. Проверим по определению.

- 1. $\varphi(0_v) = 0_w$ этот факт мы уже доказали.
 - $v_1, v_2 \in \operatorname{Ker} \varphi \Rightarrow \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0_w + 0_w = 0_w \Rightarrow v_1 + v_2 \in \operatorname{Ker} \varphi$.
 - $v \in \text{Ker } \varphi, \alpha \in F \Rightarrow \varphi(\alpha v) = \alpha \varphi(v) = \alpha 0 = 0$, то есть αv тоже лежит в ядре.
- 2. $0_w = \varphi(0_v) \Rightarrow 0_w \in \text{Im } (\varphi)$.
 - $w_1, w_2 \in \text{Im } \varphi \Rightarrow \exists v_1, v_2 \in V : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \Rightarrow w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \Rightarrow w_1 + w_2 \in \text{Im } \varphi.$
 - $w \in \operatorname{Im} \varphi, \alpha \in F \Rightarrow \exists v \in V : \varphi(v) = w \Rightarrow \alpha w = \alpha \varphi(v) = \varphi(\alpha v) \Rightarrow \alpha w \in \operatorname{Im} \varphi.$

То есть все условия подпространства по определению выполнены и предложение доказано.

Предложение.

- 1. Отображение φ интективно тогда и только тогда, когда ${\rm Ker}\, \varphi = \{0\}.$
- 2. Отображение φ сюръективно тогда и только тогда, когда ${\rm Im}\, \varphi = W$.

Доказательство.

- 1. [⇒] Очевидно.
 - $[\Leftarrow] v_1, v_2 \in V : \varphi(v_1) = \varphi(v_2) \Rightarrow \varphi(v_1 v_2) = 0 \Rightarrow v_1 v_2 = 0 \Rightarrow v_1 = v_2.$
- 2. Очевидно из определения образа.

Следствие. Отображение φ является изоморфизмом тогда и только тогда, когда $\operatorname{Ker} \varphi = \{0\}$ и $\operatorname{Im} \varphi = W$.

Предложение. Пусть $U \subset V$ — подпространство и e_1, \ldots, e_k — его базис. Тогда:

- 1. $\varphi(U)$ nodnpocmpancmeo, $\varphi(U) = \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle$;
- 2. $\dim \varphi(U) \leq \dim U$.

Доказательство.

- 1. $\varphi(x_1e_1 + x_2e_2 + \ldots + x_ke_k) = x_1\varphi(e_1) + \ldots + x_k\varphi(e_k) \in \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle$.
- 2. $\varphi(U) = \langle \varphi(e_1), \dots, \varphi(e_k) \rangle \Rightarrow \dim \varphi(U) \leqslant \dim U$ по основной лемме о линейной зависимости.

Пусть V, W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис $V, f = (f_1, \dots, f_m)$ — базис W, A — матрица φ по отношению $k \in f$.

Предложение. dim Im $\varphi = \operatorname{rk} A$.

Доказательство.

$$v \in V$$
, $v = x_1 e_1 + \dots x_n e_n$
 $\varphi(v) = y_1 f_1 + \dots y_m e_m$

Тогда:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

 $A^{(j)}$ — столбец координат в базисе f, $\alpha_1, \ldots, \alpha_n \in F$.

$$\alpha_1 \varphi(e_1) + \dots + \alpha_n \varphi(e_n) = 0 \Leftrightarrow \alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = 0$$

Отсюда следует, что:

$$\operatorname{rk} A = \operatorname{rk} \left\{ \varphi(e_1), \dots, \varphi(e_n) \right\} = \dim \underbrace{\left\langle \varphi(e_1), \dots, \varphi(e_n) \right\rangle}_{\operatorname{Im} \varphi} = \dim \operatorname{Im} \varphi.$$

Следствие. Величина ${\rm rk}\ A$ не зависит от выбора базисов ${\rm e}\ u\ {\rm f}$.

Определение. Величина $\mathrm{rk}A$ называется рангом линейного отображения φ . Обозначение: $\mathrm{rk}\varphi$.

Следствие. Если $\dim V = \dim W = n$, то φ — изоморфизм тогда и только тогда, когда $\det A \neq 0$. Тогда A— квадратная.

Доказательство.

 $[\Rightarrow] \varphi$ — изоморфизм, следовательно:

$$\operatorname{Im} \varphi = W \Rightarrow \dim \operatorname{Im} \varphi = n \Rightarrow \operatorname{rk} A = n \Rightarrow \det A \neq 0.$$

 $[\Leftarrow] \det A \neq 0 \Rightarrow \exists A^{-1}.$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Таким образом, линейное отображение φ является биекцией, а значит, и изоморфизмом.

Следствие. Пусть $A \in \operatorname{Mat}_{k \times m}, B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min \{\operatorname{rk} A, \operatorname{rk} B\}$.

Доказательство. Реализуем A и B как матрицы линейных отображений, то есть $\varphi_A \colon F^m \to F^k$, $\varphi_B \colon F^n \to F^m$. Тогда AB будет матрицей отображения $\varphi_A \circ \varphi_B$.

$$\operatorname{rk}(AB) = \operatorname{rk}(\varphi_A \circ \varphi_B) \begin{cases} \leqslant \dim \operatorname{Im} \varphi_A = \operatorname{rk} A \\ \leqslant \dim \operatorname{Im} \varphi_B = \operatorname{rk} B \end{cases}$$

Первое неравенство следует из того, что $\operatorname{Im}(\varphi_A \circ \varphi_B) \subset \operatorname{Im} \varphi_A$, откуда в свою очередь следует, что $\dim \operatorname{Im}(\varphi_A \circ \varphi_B) \leqslant \dim \operatorname{Im} \varphi_A$. Рассматривая второе неравенство, получаем:

$$\operatorname{Im}\left(\varphi_{A}\circ\varphi_{B}\right)=\varphi_{A}(\operatorname{Im}\varphi_{B})\Rightarrow\operatorname{dim}\operatorname{Im}\left(\varphi_{A}\circ\varphi_{B}\right)=\operatorname{dim}(\varphi_{A}(\operatorname{Im}\varphi_{B}))\leqslant\operatorname{dim}\operatorname{Im}\varphi_{B}.$$

Упражнение.

- Если A квадртана $u \det A \neq 0$, то $\operatorname{rk} AB = \operatorname{rk} B$.
- $Ecnu\ B \in M_n\ u \det B \neq 0$, mo rk $AB = \operatorname{rk} A$.

Теорема. dim Im $\varphi = \dim \varphi - \dim \operatorname{Ker} \varphi$.

Существует 2 способа доказательства. Рассмотрим оба.

Бескоординатный способ. Пусть $\dim \operatorname{Ker} \varphi = k$ и e_1, \ldots, e_k — базис в $\operatorname{Ker} \varphi$. Дополним его до базиса V векторами e_k, \ldots, e_n . Тогда:

$$\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \dots, \varphi(e_n) \rangle = \langle 0, 0, \dots, 0, \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$$

Пусть $\alpha_{k+1}\varphi(e_{k+1})+\ldots+\alpha_n\varphi(e_n)=0$ для некоторых $\alpha_1,\ldots,\alpha_n\in F$. Тогда:

$$\varphi(\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n) = 0$$

$$\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n \in \operatorname{Ker} \varphi$$

$$\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n = \beta_1 e_1 + \dots \beta_k e_k,$$

для некоторых $\beta_1, \ldots, \beta_k \in F$.

Но так как e_1, \ldots, e_n — базис в V, то $\alpha_{k+1} = \ldots = \alpha_n = \beta_1 = \ldots = \beta_k = 0$. То есть векторы $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы, а значит, образуют базис $\operatorname{Im} \varphi$. Что и означает, что $\dim \operatorname{Im} \varphi = n - k = \dim V - \dim \operatorname{Ker} \varphi$.

Координатный способ. Зафиксируем базис $e = (e_1, \dots, e_n)$ в V и базис $f = (f_1, \dots, f_m)$ в W. Пусть A — матрица φ в базисе f. Тогда $v = x_1e_1 + \dots + x_ne_n$, $\varphi(v) = y_1f_1 + \dots + y_mf_m$. Получим,

что
$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
.

Кег φ состоит из векторов, координаты которых удовлетворяют СЛУ $A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$. Ранее

в курсе мы уже доказали, что размерность пространства решений равна $n-\operatorname{rk} A$, то есть $\dim\operatorname{Im}\varphi=n-\operatorname{rk} A=\dim V-\dim\operatorname{Ker}\varphi.$

Линейные операторы

Пусть V — конечномерное векторное пространство.

Определение. Линейным оператором (или линейным преобразованием) называется всякое линейное отображение $\varphi \colon V \to V$, то есть из V в себя. Обозначение: $L(V) = \operatorname{Hom}(V, V)$.

Пусть $e = (e_1, \dots, e_n)$ — базис в V и $\varphi \in L(V)$. Тогда:

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A,$$

где A — матрица линейного оператора в базисе е. В столбце $A^{(j)}$ стоят координаты $\varphi(e_j)$ в базисе е. Матрица A — квадратная.

Пример.

- 1. $\forall v \in V : \varphi(v) = 0$ нулевая матрица.
- 2. Тождественный оператор: $\forall v \in V : id(v) = v e \partial u + u + u + a \beta$ матрица.
- 3. Скалярный оператор $\lambda \mathrm{id}(v) = \lambda V$ матрица λE в любом базисе.

Следствие (Следствия из общих фактов о линейных отображениях).

- 1. Всякий линейный оператор однозначно определяется своей матрицей в любом фиксированном базисе.
- 2. Для всякой квадратной матрицы существует, причем единственный, линейный оператор φ такой, что матрица φ есть A.
- 3. Пусть $\varphi \in L(V)$, A матрица φ в базисе \mathfrak{e} . Тогда:

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\varphi(v) = y_1 e_1 + \dots + y_n e_n$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пусть $\varphi \in L(V)$, A — матрица φ в базисе $e = (e_1, \dots, e_n)$. Пусть $e' = (e'_1, \dots, e'_n)$ — другой базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, и A' — матрица φ в базисе e'.

Предложение. $A' = C^{-1}AC$.

Доказательство.

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$$

$$e'_j = \sum_{i=1}^n c_{ij}e_j$$

$$\varphi(e'_j) = \varphi\left(\sum_{i=1}^n c_{ij}e_j\right) = \sum_{i=1}^n c_{ij}\varphi(e_j)$$

$$(\varphi(e'_1), \dots, \varphi(e'_n)) = (\varphi(e_1), \dots, \varphi(e_n))C = (e_1, \dots, e_n)AC = (e'_1, \dots, e'_n)\underbrace{C^{-1}AC}_{A'}$$

Лекция 21 от 15.02.2016

Инвариантность и обратимость

Пусть $\varphi: V \to V$ — линейный оператор, и е — базис в V.

Обозначение. $A(\varphi, \mathbb{e})$ — матрица линейного оператора φ в базисе \mathbb{e} .

Если $e' = (e'_1, \dots, e'_n)$ — ещё один базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, $A = A(\varphi, e)$ и $A' = A(\varphi, e')$. В прошлый раз мы доказали, что $A' = C^{-1}AC$.

Следствие. Величина $\det A$ не зависит от выбора базиса. Обозначение: $\det \varphi$.

Доказательство. Пусть A' — матрица φ в другом базисе. Тогда получается, что:

$$\det A' = \det \left(C^{-1}AC\right) = \det C^{-1} \det A \det C = \det A \det C \frac{1}{\det C} = \det A.$$

Заметим, что $\det A$ — инвариант самого φ .

Определение. Две матрицы $A', A \in M_n(F)$ называются подобными, если существует такая матрица $C \in M_n(F)$, $\det C \neq 0$, что $A' = C^{-1}AC$.

Замечание. Отношение подобия на M_n является отношением эквивалентности.

Предложение. Пусть $\varphi \in L(V)$. Тогда эти условия эквивалентны:

- 1. Ker $\varphi = \{0\};$
- 2. Im $\varphi = V$;
- 3. φ обратим (то есть это биекция, изоморфизм);
- 4. $\det \varphi \neq 0$.

Доказательство.

- 1. \Leftrightarrow 2 следует из формулы $\dim V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.
- $2. \Leftrightarrow 3$ уже было.
- $3. \Leftrightarrow 4$ уже было.

Определение. Линейный оператор φ называется вырожденным, если $\det \varphi = 0$, и невырожденным, если $\det \varphi \neq 0$.

Определение. Подпространство $U \subset V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U) \subset U$. То есть $\forall u \in U : \varphi(u) \in U$.

Пример.

- 1. $\{0\}, V$ они инвариантны для любого φ .
- 2. Ker φ φ -инвариантно, $\varphi(\text{Ker }\varphi) = \{0\} \subset \text{Ker }\varphi$
- 3. Im φ тоже φ -инвариантно, $\varphi(\operatorname{Im} \varphi) \subset \varphi(V) = \operatorname{Im} \varphi$.

Пусть $U \subset V - \varphi$ -инвариантное подпространство. Также пусть (e_1, \ldots, e_n) — базис в U. Дополним его до базиса $V \colon \mathbb{Q} = (e_1, \ldots, e_n)$.

$$\underbrace{A(\varphi,\,\mathbf{e})}_{ ext{Матрица c углом нулей}} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, \quad \text{где } B \in M_k$$

Это нетрудно понять, если учесть, что $\varphi(e_i) \in \langle e_1, \dots, e_k \rangle$, $i = 1, \dots, k$. Если $U = \operatorname{Ker} \varphi$, то B = 0. Если $U = \operatorname{Im} \varphi$, то D = 0.

Обратно, если матрица A имеет в базисе e такой вид, то $U = \langle e_1, \dots e_k \rangle$ — инвариантное подпространство.

Обобщение. Пусть $V = U \oplus W$, где U, W - uнвариантные подпространства, $u \ (e_1, \ldots, e_k) - b$ азис W. Тогда $e = (e_1, \ldots, e_n) - b$ азис V.

$$A(\varphi, \, \mathbf{e}) = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$

Обобщение.

$$A(\varphi, e) = \begin{pmatrix} * \ 0 \ 0 \dots 0 \\ 0 * 0 \dots 0 \\ 0 \ 0 * \dots 0 \\ \vdots \vdots \vdots \dots \vdots \\ 0 \ 0 \ 0 \dots * \end{pmatrix} k_1 \\ k_2 \\ k_3 \\ \vdots \\ k_s$$

3десь k_1, \ldots, k_s — размеры квадратных блоков блочно-диагональной матрицы. Матрица $A(\varphi, e)$ имеет такой вид тогда и только тогда, когда:

$$U_1 = \langle e_1, \dots, e_{k_1} \rangle$$

$$U_2 = \langle e_{k_1+1}, \dots, e_{k_2} \rangle$$

$$\vdots$$

$$U_{k_s} = \langle e_{n-k_s+1}, \dots, e_n \rangle$$

Предел мечтаний. Найти такой базис, в котором матрица линейного оператора была бы диагональной. Но такое возможно не всегда.

Собственные векторы и собственные значения

Пусть $\varphi \in L(V)$.

Определение. Ненулевой вектор $v \in V$ называется собственным для V, если $\varphi(v) = \lambda v$ для некоторго $\lambda \in F$. При этом число λ называется собственным значением линейного оператора φ , отвечающим собственному вектору v.

Предложение. Вектор $v \in V$, $v \neq 0$ — собственный вектор в V тогда и только тогда, когда линейная оболочка $\langle v \rangle$ является φ -инвариантным подпространством

Доказательство.

- $[\Rightarrow] \varphi(v) = \lambda v \Rightarrow \langle v \rangle = \{kv \mid k \in F\}$. Тогда $\varphi(kv) = \lambda kv \in \langle v \rangle$.
- $[\Leftarrow] \varphi(V) \in \langle v \rangle \Rightarrow \exists \lambda \in F : \varphi(v) = \lambda v.$

Пример. 1. $V = \mathbb{R}^2$, φ — ортогональная проекция на прямуую l.

$$0 \neq v \in l \Rightarrow \varphi(v) = 1 \cdot v, \ \lambda = 1$$

$$0 \neq v \perp l \Rightarrow \varphi(v) = 0 = 0 \cdot v, \ \lambda = 1$$

- 2. Поворот на угол φ вокруг нуля на угол α .
 - $\alpha = 0 + 2\pi k$. Любой ненулевой вектор собственный. $\lambda = 1$.
 - $\alpha = \pi + 2\pi k$. Любой ненулевой вектор собственный. $\lambda = -1$.
 - $\alpha \neq \pi k$. Собственных векторов нет.
- 3. $V = P_n(F)$ многочлены степени $n, \varphi = \Delta \colon f \to f'$. Тогда $0 \neq f$ собственный вектор тогда, и только тогда, когда f = const.

Диагонализуемость

Определение. Линейный оператор φ называется диагонализуемым, если существует базис e в V такой, что $A(\varphi,e)$ диагональна.

Предложение (Критерий диагонализуемости). Отображение φ диагонализуемо тогда и только тогда, когда в V существует базис из собственных векторов.

Доказательство. Пусть e — базис V. Тогда $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, что равносильно $\varphi(e_i) = \lambda_i e_i$. Это и означает, что все векторы собственные.

В примерах выше:

- 1. φ диагонализуем. $e_1 \in l, e_2 \perp l$. Тогда матрица примет вид $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- 2. Если $\alpha=\pi k$, то φ диагонализуем ($\varphi=\mathrm{id}$ или $\varphi=-\mathrm{id}$). Не диагонализуем в других случаях.
- 3. φ диагонализуем тогда и только тогда, когда n=0. При n>0 собственных векторов **МАЛО**.

Собственное подпространство

Пусть $\varphi \in L(V)$, $\lambda \in F$.

Определение. Множество $V_{\lambda}(\varphi) = \{v \in V \mid \varphi(v) = \lambda V\}$ называется собственным подпространством линейного оператора, отвечающим собственному значению λ .

Упражнение. Доказать, что $V_{\lambda}(\varphi)$ — действительно подпространство.

Предложение. $V_{\lambda}(\varphi) = \operatorname{Ker}(\varphi - \lambda \operatorname{id}).$

Доказательство.

$$v \in V_{\lambda}(\varphi) \Leftrightarrow \varphi(v) = \lambda v \Leftrightarrow \varphi(v) - \lambda v = 0 \Leftrightarrow (\varphi - \lambda \mathrm{id})(v) = 0 \Leftrightarrow v \in \mathrm{Ker}(\varphi - \lambda \mathrm{id})$$

Следствие. Собственное подпространство $V_{\lambda}(\varphi) \neq \{0\}$ тогда и только тогда, когда $\det(\varphi - \lambda \mathrm{id}) = 0$.

Определение. Многочлен $\chi_{\varphi}(t) = (-1)^n \det(\varphi - t \mathrm{id})$ называется характеристическим.

Лекция 22 от 22.02.2016

Деление многочленов с остатком

Пусть F — поле, $\mathbb{F}[x]$ — множество всех многочленов от переменной x с коэффициентами из \mathbb{F} .

Теорема. Пусть G(x), $H(x) \in \mathbb{F}[x]$ — ненулевые многочлены, тогда существует единственная пара Q(x), $R(x) \in \mathbb{F}(x)$ такая, что:

1.
$$G(x) = Q(x) \cdot H(x) + R(x)$$
;

2. $\deg R(x) < \deg H(x)$ или R(x) = 0.

Доказательство. Аналогично делению рациональных чисел с остатком.

Рассмотрим важный частный случай: H(x) = x - a.

Теорема (Безу). *Если* G(x), $Q(x) \in \mathbb{F}[x]$ — ненулевые многочлены, $a \in \mathbb{F}$, то R = G(a) и G(x) = Q(x)(x-a) + R.

Доказательство.

$$G(x) = Q(x) \cdot H(x) + R(x)$$

$$H(x) = (x - a) \Rightarrow \deg R < \deg(x - a) \Rightarrow \deg R = 0$$

Подставим x = a:

$$G(a) = Q(a)(a-a) + R = 0 + R = R \Rightarrow G(a) = R.$$

Теорема. Многочлен степени п в поле комплексных чисел имеет п комплексных корней.

Доказательство. По основной теореме алгебры каждый многочлен $G(x) \in \mathbb{C}[x]$ степени больше 1 имеет корень. Тогда $G(x) = (x-a_1)G_1(x)$, где a_1 — корень многочлена G(x). В свою очередь, многочлен $G_1(x)$ также имеет корень, и тогда $G(x) = (x-a_1)G_1(x) = (x-a_1)(x-a_2)G_2(x)$. Продолжая по индукции, получаем, что $G(x) = (x-a_1)(x-a_2)\dots(x-a_n)b_n$, где b_n — коэффициент при старшем члене.

Также мы получаем следующее представление:

$$b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0 = b_n (x - a_1)^{k_1} \ldots (x - a_s)^{k_s}$$

Определение. Кратностью корня a_i называется число k_i такое, что в многочлене $b_n(x-a_1)^{k_1} \dots (x-a_s)^{k_s}$ множитель $(x-a_i)$ имеет степень k_i .

Собственные значения и характеристический многочлен

Определение. Пусть $V - \kappa$ онечномерное векторное пространство над полем \mathbb{F} . Рассмотрим линейный оператор $\varphi: V \to V$. Тогда характеристический многочлен φ имеет вид:

$$\chi_{\varphi}(t) = (-1)^n \det(\varphi - tE) = (-1)^n \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} =$$

$$= (-1)^n (t^n (-1)^n + \dots) = t^n + c_{n-1} t^{n-1} + \dots + c_0$$

Упражнение. Доказать, что:

$$c_{n-1} = -tr\varphi;$$

$$c_0 = (-1)^n \det \varphi.$$

Утверждение. λ — собственное значение линейного оператора φ тогда и только тогда, когда $\chi_{\varphi}(\lambda) = 0$.

Доказательство.
$$\lambda$$
 — собственное значение $\Leftrightarrow \exists v \neq 0 : \varphi(v) = \lambda v \Leftrightarrow (\varphi - \lambda E)v = 0 \Leftrightarrow \operatorname{Ker}(\varphi - \lambda E) \neq \{0\} \Leftrightarrow \det(\varphi - \lambda E) = 0 \Leftrightarrow \chi_{\varphi}(\lambda) = 0.$

Утверждение. Если $\mathbb{F} = \mathbb{C} \ u \dim V > 0$, то любой линейный оператор имеет собственный вектор.

Доказательство. Пусть $\varphi: V \to V$ — линейный оператор. У него существует характеристический многочлен $\chi_{\varphi}(x)$. Тогда по основной теореме алгебры у $\chi_{\varphi}(x)$ есть корень t_0 — собственное значение φ , следовательно существует и собственный вектор v_0 с собственным значением t_0 . \square

Пример. Для линейного оператора $\varphi = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (поворот на 90° градусов против часовой стрелки относительно начала координат) характеристический многочлен имеет вид $\chi_{\varphi}(x) = t^2 + 1$.

 $\Pi_{pu} \mathbb{F} = \mathbb{R} \Rightarrow coбственных значений нет.$

 $\Pi pu \ \mathbb{F} = \mathbb{C} \Rightarrow coбcmвенные значения \pm i.$

Геометрическая и алгебраическая кратности

Определение. Пусть λ — собственное значение φ , тогда $V_{\lambda} = \{v \in V \mid \varphi(v) = \lambda v\}$ — собственное подпространство, то есть пространство, состоящее из собственных векторов с собственным значением λ и нуля.

Определение. $\dim V_{\lambda}$ — геометрическая кратность собственного значения λ .

Определение. Если k — кратность корня характеристического многочлена, то k — алгебраическая кратность собственного значения.

Утверждение. Геометрическая кратность не больше алгебраической кратности.

Доказательство. Зафиксируем базис u_1, \ldots, u_p в пространстве V_{λ} , где $p = \dim V_{\lambda}$. Дополним базис u_1, \ldots, u_p до базиса $u_1, \ldots, u_p, u_{p+1}, \ldots, u_n$ пространства V. Матрица линейного оператора φ будет выглядеть следующим образом:

$$A_{\varphi} = \begin{pmatrix} \lambda E & A \\ \hline 0 & B \end{pmatrix}, \quad \lambda E \in M_p, A \in M_{n-p}$$

Тогда характеристический многочлен будет следующим:

$$\chi_{\varphi}(t) = (-1)^n \det(A_{\varphi} - t) = \begin{pmatrix} \lambda - t & 0 & \\ & \ddots & & A \\ \hline 0 & \lambda - t & \\ \hline & 0 & b - tE \end{pmatrix} = (-1)^n (\lambda - t)^p \dim(B - tE)$$

Как видим, $\chi_{\varphi}(t)$ имеет корень кратности хотя бы p, следовательно, геометрическая кратность, которая равна p по условию, точно не превосходит алгебраическую.

Пример. Рассмотрим линейный оператор $\varphi = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

 $V_2 = \langle e_1 \rangle \Rightarrow$ геометрическая кратность равна 1.

 $\chi_{\varphi}(t)=(t-2)^2\Rightarrow$ алгебраическая кратность равна 2.

Сумма и прямая сумма нескольких подпространств

Определение. Пусть $U_1, \ldots, U_k \subseteq V$ — векторные пространства. Суммой нескольких пространств называется $U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$.

Упражнение. $U_1 + \ldots + U_k - nodnpocmpancmeo$.

Определение. Сумма пространств называется прямой, если $u_1 + \ldots + u_k = 0$ тогда и только тогда, когда $u_1 = \ldots = u_k = 0$. Обозначение: $U_1 \oplus \ldots \oplus U_k$.

Упражнение. Если $v \in U_1 \oplus \ldots \oplus U_k$, то существует единственный такой набор $u_1 \in U_1, \ldots, u_k \in U_k$, что $v = u_1 + \ldots + u_k$.

Теорема. Следующие условия эквивалентны:

- 1. Сумма $U_1 + ... + U_k n$ рямая;
- 2. Если e_i базис U_i , то $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$;

3. $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

Доказательство.

 $(1)\Rightarrow (2)$ Пусть мы имеем прямую сумму $U_1\oplus\ldots\oplus U_k$. Покажем, что $e_1\cup\ldots\cup e_k$ — базис $U_1\oplus\ldots\oplus U_k$. Возьмем вектор $v\in U_1\oplus\ldots\oplus U_k$ и представим его в виде суммы $v=u_1+\ldots+u_k$, где $u_i\in U_i$. Такое разложение единственное, так как сумма прямая. Теперь представим каждый вектор этой суммы в виде линейной комбинации базиса соответствующего пространства:

$$v = (c_1^1 e_1^1 + \ldots + c_{s_1}^1 e_{s_1}^1) + \ldots + (c_1^k e_1^k + \ldots + c_{s_k}^k e_{s_k}^k)$$

Здесь e_j^i это j-ый базисный вектор в e_i , базисе U_i . Соответственно, c_j^i это коэффициент перед данным вектором.

Если $e \neq e_1 \cup \ldots \cup e_k$, то существует какая-то еще линейная комбинация вектора v через эти же векторы:

$$v = (d_1^1 e_1^1 + \ldots + d_{s_1}^1 e_{s_1}^1) + \ldots + (d_1^k e_1^k + \ldots + d_{s_k}^k e_{s_k}^k)$$

Вычтем одно из другого:

$$0 = v - v = ((d_1^1 - c_1^1)e_1^1 + \ldots + (d_{s_1}^1 - c_{s_1}^1)e_{s_1}^1) + \ldots + ((d_1^k - c_1^k)e_1^k + \ldots + (d_{s_k}^k - c_{s_k}^k)e_{s_k}^k)$$

Но по определению прямой суммы, ноль представим только как сумма нулей, то есть d^i_j должно равняться c^i_j . А это значит, что не существует никакой другой линейной комбинации вектора v. Что нам и требовалось.

 $(2) \Rightarrow (1)$ Пусть $e = e_1 \cup \ldots \cup e_k$ — базис $U_1 + \ldots + U_k$. Тогда представим 0 в виде суммы векторов из данных пространств: $0 = u_1 + \ldots + u_k$, где $u_i \in U_i$. Аналогично прошлому пункту, разложим векторы по базисам:

$$0 = (c_1^1 e_1^1 + \ldots + c_{s_1}^1 e_{s_1}^1) + \ldots + (c_1^k e_1^k + \ldots c_{s_k}^k e_{s_k}^k)$$

Но только тривиальная комбинация базисных векторов дает ноль. Следовательно, $u_1 = \ldots = u_k = 0$, и наша сумма по определению прямая.

 $(2)\Rightarrow (3)$ Пусть $e=e_1\cup\ldots\cup e_k$ — базис $U_1+\ldots+U_k$. Тогда:

$$\dim(U_1 + \ldots + U_k) = \dim(e) = \dim(e_1) + \ldots + \dim(e_k) = \dim(U_1) + \ldots + \dim(U_k).$$

 $(3) \Rightarrow (2)$ Пусть $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

Векторы е порождают сумму, следовательно, из е можно выделить базис суммы:

$$\dim(U_1 + \ldots + U_k) \leqslant \dim(\mathbb{e}) \leqslant \dim(\mathbb{e}_1) + \ldots + \dim(\mathbb{e}_k) = \dim U_1 + \ldots + \dim U_k.$$

Но по условию $\dim(U_1+\ldots+U_k)=\dim U_1+\ldots+\dim U_k$. Тогда $\dim(U_1+\ldots+U_k)=\dim(\mathbb{Q})$, и \mathbb{Q} это базис $U_1+\ldots+U_k$.

Лекция 23 от 29.02.2016

Сумма собственных подпространств

Вспомним, чем закончилась прошлая лекция.

Пусть V — векторное пространство, $U_1,\ldots,U_k\subseteq V$ — векторные подпространства.

Сумма $U=U_1+\ldots+U_k$ является прямой, если из условия $u_1+\ldots+u_k=0$ следует, что $u_1=\ldots=u_k=0$, где $u_i\in U_i$. Обозначение: $U=U_1\oplus\ldots\oplus U_k$.

Эквивалентные условия:

- 1. $U = U_1 \oplus \ldots \oplus U_k$.
- 2. Если e_i базис U_i , то $e = e_1 \cup \ldots \cup e_k$ базис U.
- 3. $\dim U = \dim U_1 + \ldots + \dim U_k$.

Пусть V — векторное пространство над полем $F, \varphi \in L(V), \lambda_1, \ldots, \lambda_k$ — набор собственных значений φ , где $\lambda_i \neq \lambda_j$ при $i \neq j$, и $V_{\lambda_i}(\varphi) \subseteq V$ — соответствующее собственное подпространство.

Предложение. Сумма $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_k}(\varphi)$ является прямой.

Доказательство. Докажем индукцией по k.

База: k = 1. Тут все ясно.

Теперь пусть утверждение доказано для всех значений, меньших k. Докажем для k.

Пусть $v_i \in V_{\lambda_i}(\varphi)$ и пусть $v_1 + \ldots + v_k = 0$. Тогда:

$$\varphi(v_1 + \ldots + v_k) = \varphi(0) = 0$$

$$\varphi(v_1) + \ldots + \varphi(v_k) = 0$$

$$\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$$

Теперь вычтем из нижней строчки $v_1 + \ldots + v_k = 0$, домноженное на λ_k . Получим:

$$(\lambda_1 - \lambda_k)v_1 + \ldots + (\lambda_k - \lambda_k)v_k = 0$$

$$(\lambda_1 - \lambda_k)v_1 + \ldots + (\lambda_{k-1} - \lambda_k)v_{k-1} + 0v_k = 0$$

Но из предположения индукции, а также потому что $\lambda_i \neq \lambda_j$ при $i \neq j$, следует, что $v_1 = \ldots = v_{k-1} = 0$. Но тогда и $v_k = 0$.

Следовательно, сумма прямая, что нам и требовалось.

Диагонализируемость

Следствие. Если характеристический многочлен имеет ровно n попарно различных корней, где $n = \dim V$, то φ диагонализируем.

Доказательство. Пусть $\lambda_1,\ldots,\lambda_n$ — корни $\chi_{\varphi}(t),\ \lambda_i\neq\lambda_j$. Тогда для всех i выполняется, что $V_{\lambda_i}(\varphi)\neq\{0\}$ и, следовательно, $\dim V_{\lambda_i}(\varphi)=1$. Но так как сумма $V_{\lambda_1}(\varphi)+\ldots+V_{\lambda_k}(\varphi)$ — прямая, то $\dim(V_{\lambda_1}(\varphi)+\ldots+V_{\lambda_k}(\varphi))=\dim V_{\lambda_1}(\varphi)+\ldots+\dim V_{\lambda_k}(\varphi)=n$. Иными словами, $V=V_{\lambda_1}(\varphi)\oplus\ldots\oplus V_{\lambda_k}(\varphi)$.

Выберем произвольные $v_i \in V_{\lambda_i} \setminus \{0\}$. Тогда (v_1, \dots, v_n) будет базисом в V. И так как все v_i — собственные значения для φ , то φ диагонализируем.

Теорема (Критерий диагонализируемости - 2). Линейный оператор φ диагонализируем тогда и только тогда, когда

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители;
- 2. Если $\chi_{\varphi}(t) = (t \lambda_1)^{k_1} \dots (t \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$, то $\dim V_{\lambda_i}(\varphi) = k_i \, \forall i \, (mo \, ecmb \, d$ ля любого собственного значения V равны геометрическая u алгебраическая кратности).

Доказательство.

 \Rightarrow Так как φ — диагонализируем, то существует базис $\mathbf{e}=(e_1,\ldots,e_n)$ такой, что:

$$A(\varphi, e) = \begin{pmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & \mu_n \end{pmatrix} = \operatorname{diag}(\mu_1, \dots, \mu_n).$$

Тогда:

$$\chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 & 0 \\ & \ddots \\ 0 & \mu_n \end{vmatrix} = (-1)^n (\mu_1 - t) \dots (\mu_n - t) = (t - \mu_1) \dots (t - \mu_n).$$

Итого, первое условие выполняется.

Теперь перепишем характеристический многочлен в виде $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ и $\{\lambda_1, \dots, \lambda_s\} = \{\mu_1, \dots, \mu_n\}$. Тогда $V_{\lambda_i} \supseteq \langle e_j \mid \mu_j = \lambda_i \rangle$, следовательно, $\dim V_{\lambda_i}(\varphi) \geqslant k_i$. Но мы знаем, что $\dim V_{\lambda_i} \leqslant k_i$! Значит, $\dim V_{l_i} = k_i$.

 \Leftarrow Так как $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)$ — прямая, то $\dim(V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = n$. Пусть e_i — базис в V_{λ_i} . Тогда $e_1 \cup \ldots \cup e_s$ — базис в V. То есть мы нашли базис из собственных векторов, следовательно, φ диагонализируем.

Инвариантные подпространства в \mathbb{R}^n

Пусть V — векторное пространство над полем \mathbb{C} , $\varphi \in L(V)$. Тогда в V есть собственный вектор (или одномерное φ —инвариантное пространство).

Теперь пусть V — векторное пространство над полем \mathbb{R} , $\varphi \in L(V)$.

Теорема. Существует одномерное или двумерное φ -инвариантное векторное подпространство.

Доказательство. Пусть $e = (e_1, \dots, e_n)$ — базис в V. Комплексифицируем V.

$$V^{\mathbb{C}} = \{ u + iv \mid u, v \in V \}$$
$$V^{\mathbb{C}} \supset V = \{ u + i \cdot 0 \mid u \in V \}$$

Рассмотрим линейный оператор $\varphi_{\mathbb{C}} \in L(V^{\mathbb{C}})$, заданный как $\varphi_{\mathbb{C}}(e_i) = \varphi(e_i)$, $\forall i$. Значит, e_1, \ldots, e_n базис в $V^{\mathbb{C}}$. Следовательно, $\chi_{\varphi_{\mathbb{C}}}(t) = \chi_{\varphi}(t)$, так как $A(\varphi_{\mathbb{C}}, e) = A(\varphi, e)$.

Случай 1: $\chi_{\varphi}(t)$ имеет хотя бы один действительный корень. Отсюда следует, что в V есть собственный вектор, что равносильно существованию одномерного φ -инвариантного подпространства (тогда $V^{\mathbb{C}}$ нам не нужен).

Случай 2: χ_{φ} не имеет действительных корней. Пусть $\lambda + i\mu$ — некоторый корень $\chi_{\varphi}(t)$, который, напомним, равен $\chi_{\varphi_{\mathbb{C}}}(t)$. Тогда существует собственный вектор $u+iv\in V^{\mathbb{C}}$ такой, что:

$$\varphi_{\mathbb{C}}(u+iv) = (\lambda + i\mu)(u+iv)$$

$$\varphi_{\mathbb{C}}(u+iv) = \varphi_{\mathbb{C}}(u) + i\varphi_{\mathbb{C}}(v) = \varphi(u) + i\varphi(v)$$

$$(\lambda + u\mu)(u+iv) = \lambda\mu - \mu\nu + i(\mu u + \lambda v)$$

Сравнивая два последних равенства, получаем:

$$\varphi(u) = \lambda u - \mu v$$
$$\varphi(v) = \mu u + \lambda v$$

Следовательно, $\langle u,v\rangle - \varphi$ -инвариантное подпространство, двумерное если u и v линейно независимы и одномерное в противном случае.

Пример. Поворот на α в \mathbb{R}^2 : $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Тогда $u = e_1, \ v = e_2, \ \lambda + i\mu = \cos \alpha + i\sin \alpha$.

Пусть V — векторное пространство над F, dim V = n.

Операции над L(V):

- 1. Сложение: $(\varphi + \psi)(v) = \varphi(v) + \psi(v)$.
- 2. Умножение на скаляр: $(\alpha \varphi)(v) = \alpha \varphi(v)$.
- 3. Умножение: $(\varphi \psi)(v) = \varphi(\psi(v))$.

В частности, для любого $P(x) \in \mathbb{F}[x]$, $P(x) = a_n x^n + \ldots + a_1 x + a_0$ и для любого $\varphi \in L(V)$ определен линейный оператор $P(\varphi) \in L(V)$: $P(\varphi) = a_n \varphi^n + \ldots + a_1 \varphi + a_0 \mathrm{id}$.

Корневые векторы и корневые подпространства

Определение. Вектор $v \in V$ называется корневым вектором линейного оператора φ , отвечающим значению $\lambda \in F$, если существует $m \geqslant 0$ такое, что $(\varphi - \lambda \mathrm{id})^m(v) = 0$.

Наименьшее такое т называют высотой корневого вектора v.

Замечание.

1. Вектор v = 0 для любого φ имеет высоту 0.

2. Высоту 1 имеют все собственные векторы.

Пример. $V = \mathbb{F}[x]_{\leq n}, \ \Delta : f \to f'. \ 3 \ decb \ \lambda = 0 - e \ duncmbehnoe \ coб cmbehnoe \ значение. Все векторы - корневые, отвечающие <math>\lambda = 0$.

Определение. Множество $V^{\lambda}(\varphi) = \{v \in V \mid \exists m \geqslant 0 : (\varphi - \lambda \mathrm{id})^m(v) = 0\}$ называется корневым пространством для $\lambda \in F$.

Упражнение. $V^{\lambda}(\varphi) - nodnpocmpancmeo \ e \ V$.

Замечание. $V_{\lambda}(\varphi) \subseteq V^{\lambda}(\varphi) \ \forall \lambda \in F.$

Лекция 24 от 14.03.2016

Корневые подпространства

Вспомним конец прошлой лекции.

Пусть V — векторное пространство над полем \mathbb{F} , $\varphi \in L(V)$ — линейный оператор.

Вектор $v \in V$ — корневой для φ , отвечающий собственному значению $\lambda \in \mathbb{F}$ тогда и только тогда, когда существует $m \leqslant 0$ такое, что $(\varphi - \lambda \mathrm{id})^m(v) = 0$. Высотой корневого вектора называется наименьшее такое m.

Корневым подпространством называется пространство из корневых векторов, соответствующих одному значению λ и нулевого вектора. Другими словами, $V^{\lambda}(\varphi) = \{v \in V \mid \exists m \geqslant 0 : (\varphi - \lambda \mathrm{id})^m(v) = 0\}$. Поскольку собственный вектор является корневым вектором высоты 1, то собственное подпространство включено в корневое подпространство с тем же значением: $V_{\lambda}(\varphi) \subseteq V^{\lambda}(\varphi)$.

Предложение. Корневое подпространство нетривиально тогда и только тогда, когда λ является собственным значением. Другими словами, $V^{\lambda} \neq \{0\} \Leftrightarrow \chi_{\varphi}(\lambda) = 0$.

Доказательство.

$$\leftarrow \chi_\varphi(\lambda) = 0 \Rightarrow V_\lambda(\varphi) \neq \{0\} \Rightarrow V^\lambda(\varphi) \neq \{0\}, \text{ так как } V^\lambda(\varphi) \supset V_\lambda(\varphi).$$

$$\Rightarrow$$
 Пусть $V^{\lambda}(\varphi) \neq \{0\} \Rightarrow \exists v \neq 0 \in V^{\lambda}(\varphi) \Rightarrow \exists m \geqslant 1 : (\varphi - \lambda \mathrm{id})^m(v) = 0.$ Рассмотрим $u = (\varphi - \lambda \mathrm{id})^{m-1}(v) \neq 0$, тогда:

$$(\varphi - \lambda id)(u) = (\varphi - \lambda id)(\varphi - \lambda id)^{m-1}(v) = (\varphi - \lambda id)^m(v) = 0.$$

То есть вектор u — это вектор, для которого $(\varphi - \lambda id)(u) = 0$, то есть собственный вектор. Следовательно λ — собственное значение.

Предложение. Для любого собственного значения $\lambda \in \mathbb{F}$ подпространство $V^{\lambda}(\varphi)$ инвариантно относительно φ .

Доказательство. Пусть v — корневой вектор высоты m. Докажем, что $\varphi(v)$ — также корневой вектор.

Заметим, что если $u=(\varphi-\lambda \mathrm{id})(v),$ то u- корневой вектор высоты m-1, и, соответственно, лежит в корневом пространстве:

$$u = (\varphi - \lambda id)(v) = \varphi(v) - \lambda v \in V^{\lambda}(\varphi).$$

Мы получили, что $\varphi(v) \in \lambda v + V^{\lambda}(\varphi)$. Но $\lambda v \in V^{\lambda}(\varphi)$, то есть $\lambda v + V^{\lambda}(\varphi) = V^{\lambda}(\varphi)$ и $\varphi(v) \in V^{\lambda}(\varphi)$. Что и означает, что пространство инвариантно относительно оператора φ .

Положим для краткости, что $\varphi - \lambda id = \varphi_{\lambda}$.

Заметим, что ядра степеней линейного оператора «вкладываются» друг в друга — те векторы, которые стали нулевыми при применении линейного оператора φ_{λ}^{k} , при применении линейного оператора φ_{λ} ещё раз так и остаются нулевыми, а также «добиваются» (переводятся в нулевые) некоторые ранее ненулевые векторы. Итого, получаем следующее:

$$V_{\lambda}(\varphi) = \ker \varphi_{\lambda} \subset \ker \varphi_{\lambda}^{2} \subset \ldots \subset \ker \varphi_{\lambda}^{m} \subset \ldots$$

Причём существует такое m, что $\ker \varphi_{\lambda}^m = \ker \varphi_{\lambda}^{m+1}$, так как V — конечномерно и размерность его не может уменьшаться бесконечно. Выберем наименьшее такое m.

Упражнение. Доказать, что для любого $s\geqslant 0$ выполняется равенство $\ker \varphi_\lambda^m=\ker \varphi_\lambda^{m+s}$.

Заметим также, что $V^{\lambda}(\varphi) = \ker \varphi_{\lambda}^{m}$. Пусть $k_{i} = \dim \ker \varphi_{\lambda}^{i}$. Тогда:

$$\dim V_{\lambda}(\varphi) = k_1 < k_2 < \ldots < k_m = \dim V^{\lambda}(\varphi).$$

Будем обозначать как $\varphi|_V$ ограничение линейного оператора на пространство V.

Предложение.

- 1. Характеристический многочлен линейного отображения $\varphi \mid_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.
- 2. Если $\mu \neq \lambda$, то линейный оператор $\varphi \mu \mathrm{id}$ невырожден на $V^{\lambda}(\varphi)$.

 \mathcal{A} оказательство. Напомним, что $k_i=\dim\ker\varphi^i_\lambda$, для $i=1,\ldots,m$. Пусть также $k_0=0$.

Выберем базис $e = (e_1, \dots, e_{k_m})$ в $V^{\lambda}(\varphi)$ так, чтобы (e_1, \dots, e_{k_i}) также был базисом в $\ker \varphi^i_{\lambda}$. Тогда:

$$A(\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, e) = \begin{pmatrix} 0 & * & * & \dots & * & * \\ 0 & 0 & * & \dots & * & * \\ 0 & 0 & 0 & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & * \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}, \quad \text{где } a_{ij} \in \text{Mat}_{(k_i - k_{i-1}) \times (k_j - k_{j-1})}$$

Но тогда:

$$A(\varphi|_{V^{\lambda}(\varphi)}, \mathbf{e}) = A(\varphi_{\lambda}|_{V^{\lambda}(\varphi)}, \mathbf{e}) + \lambda E = \begin{pmatrix} A_1 & * & * & \dots & * & * \\ 0 & A_2 & * & \dots & * & * \\ 0 & 0 & A_3 & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & A_{m-1} & * \\ 0 & 0 & 0 & \dots & 0 & A_m \end{pmatrix}, \quad \text{где } A_i = \lambda E_{k_i - k_{i-1}} \quad (*)$$

А значит, характеристический многочлен линейного отображения $\varphi|_{V^{\lambda}(\varphi)}$ равен $(t-\lambda)^{k_m}$.

Теперь докажем невырожденность линейного оператора $(\varphi - \mu id)$ при $\mu \neq \lambda$.

Рассмотрим матрицу ограничения этого оператора на корневое подпространство:

$$A((\varphi - \mu \mathrm{id})|_{V^{\lambda}(\varphi)}, e) = A(\varphi|_{V^{\lambda}(\varphi)}, e) - \mu E.$$

Она имеет вид (*), где $A_i = (\lambda - \mu) E_{k_i}$. Следовательно,

$$\det((\varphi - \mu \mathrm{id})|_{V^{\lambda}(\varphi)}) = (\lambda - \mu)^{k_m} \neq 0.$$

Что и означает, что линейный оператор невырожден.

Предложение. Если λ – собственное значение φ , то dim $V^{\lambda}(\varphi)$ равен кратности λ как корня многочлена $\chi_{\varphi}(t)$.

Доказательство. Пусть (e_1, \ldots, e_k) — базис $V^{\lambda}(\varphi)$, $k = \dim V^{\lambda}(\varphi)$. Дополним (e_1, \ldots, e_k) до базиса $e = (e_1, \ldots, e_n)$ всего пространства V. Тогда матрица линейного оператора имеет следующий вид:

$$A_{\varphi} = \left(\begin{array}{c|c} B & * \\ \hline 0 & C \end{array}\right), \quad B \in M_k, C \in M_{n-k}$$
$$\chi_{\varphi}(t) = \det(tE - A) = \det(tE - B) \det(tE - C).$$

Заметим, что $\det(tE-B)$ — это характеристический многочлен $\varphi|_{V^{\lambda}(\varphi)}$, следовательно,

$$\chi_{\varphi}(t) = (t - \lambda)^k \det(tE - C).$$

Осталось показать, что λ — не корень $\det(tE-C)$.

Пусть $W = \langle e_{k+1}, \dots, e_n \rangle$. Тогда рассмотрим линейный оператор $\psi \in L(W)$, у которого матрица в базисе (e_{k+1}, \dots, e_n) есть C. Предположим, что $\det(\lambda E - C) = 0$. Это значит, что λ — собственное значение для ψ и существует вектор $w \in W$, $w \neq 0$ такой, что $\psi(w) = \lambda w$.

Тогда:

$$\varphi(w) = \lambda w + u, \quad u \in V^{\lambda}(\varphi)$$
$$\varphi(w) - \lambda w \in V^{\lambda}(\varphi)$$
$$(\varphi - \lambda id)(w) \in V^{\lambda}(\varphi) \Rightarrow w \in V^{\lambda}(\varphi)$$

Получили противоречие. Значит, λ — не корень (tE-C).

Следствие. $V^{\lambda}(\varphi) = \ker \varphi_{\lambda}^{s}$, $\varepsilon \partial e s - \kappa pamhocmb \lambda \kappa a \kappa \kappa o ph s многочлена <math>\varphi_{\lambda}(t)$.

Предложение. Если $\lambda_1, \ldots, \lambda_k$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ — собственные значения φ , то сумма $V^{\lambda_1}(\varphi) + \ldots + V^{\lambda_k}(\varphi)$ — прямая.

Доказательство. Докажем индукцией по k.

База при k = 1 - ясно.

Теперь пусть утверждение доказано для всех значений, меньших k. Докажем для k.

Выберем векторы $v_i \in V^{\lambda_i}(\varphi)$ такие, что $v_1 + \ldots + v_k = 0$. Пусть m — высота вектора v_k . Тогда применим к нашей сумме оператор $\varphi^m_{\lambda_k}$, получив следующее:

$$\varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) + \varphi_{\lambda_k}^m(v_k) = 0.$$

С другой стороны, $\varphi_{\lambda_k}^m(v_k) = 0$, то есть:

$$\varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) + \varphi_{\lambda_k}^m(v_k) = \varphi_{\lambda_k}^m(v_1) + \ldots + \varphi_{\lambda_k}^m(v_{k-1}) = 0.$$

Тогда по предположению индукции $\varphi_{\lambda_k}^m(v_1)=\ldots=\varphi_{\lambda_k}^m(v_{k-1})=0$. Но $\varphi_{\lambda}|_{V^{\lambda}(\varphi)}$ не вырожден и обратим при $i\neq k$, следовательно $v_1=\ldots=v_{k-1}=0$. Но тогда и $v_k=0$.

П

Следовательно, сумма прямая, что нам и требовалось.

Теорема. Если характеристический многочлен $\chi_{\varphi}(t)$ разлагается на линейные множители, причём $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, то $V = \bigoplus_{i=1}^s \varphi^{\lambda_i}(\varphi)$.

Доказательство. Так как сумма $\varphi^{\lambda_i}(\varphi) + \ldots + \varphi^{\lambda_i}(\varphi)$ прямая и для любого i выполняется, что $\dim(\varphi^{\lambda_i}(\varphi)) = k_i$, то:

$$\dim(\varphi^{\lambda_1}(\varphi) + \ldots + \varphi^{\lambda_s}(\varphi)) = k_1 + \ldots + k_s = \dim V.$$

Следовательно, $V = \bigoplus_{i=1}^{s} \varphi^{\lambda_i}(\varphi)$.

Жордановы клетки

Определение. Пусть $\lambda \in \mathbb{F}$. **Жордановой клеткой** порядка n, отвечающей значению λ , называется матрица вида:

$$J_{\lambda}^{n} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix} \in M_{n}(\mathbb{F}).$$

Лекция 25 от 21.03.2016

Жорданова нормальная форма

Пусть V — векторное пространство, φ — линейный оператор.

Теорема (Жорданова нормальная форма линейного оператора). Пусть $\chi_{\varphi}(t)$ разлагается на линейные множители. Тогда существует базис е в V такой, что

$$A(\varphi, e) = \begin{pmatrix} J_{\mu_1}^{n_1} & 0 & \dots & 0 \\ 0 & J_{\mu_2}^{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\mu_p}^{n_p} \end{pmatrix} \quad (*)$$

Кроме того, матрица (*) определена однозначно с точностью до перестановок жордановых клеток.

Определение. *Матрица* (*) называется жордановой нормальной формой линейного оператора.

Следствие. В векторном пространстве над полем комплексных чисел для любого линейного оператора существует жорданова нормальная форма.

Схема построения:

Шаг 1: Разложим характеристический многочлен: $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$. Тогда, по доказанной на прошлой лекции теореме, $V = \bigoplus_{i=1}^s V^{\lambda_i}(\varphi)$, причем $\dim V^{\lambda_i}(\varphi) = k_i$.

Введем отображение $\psi_i = \varphi|_{V^{\lambda_i}(\varphi)} \in L(V^{\lambda_i}(\varphi))$. Тогда $\chi_{\psi_i}(t) = (t - \lambda_i)^{k_i}$. Также введем e_i — базис $V^{\lambda_i}(\varphi)$. Пусть $e = e_1 \cup \ldots \cup e_s$.

Тогда:

$$A(\varphi, e) = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_s \end{pmatrix}, \quad \text{где } A_i = A(\psi_i, e_i) \in M_{k_i}.$$

Шаг 2: Для любого i можно выбрать базис e_i так, чтобы

$$A_{i} = \begin{pmatrix} J_{\lambda_{i}}^{m_{i1}} & 0 & \dots & 0 \\ 0 & J_{\lambda_{i}}^{m_{i2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\lambda_{i}}^{m_{iq}} \end{pmatrix}, \quad m_{i1} + \dots + m_{iq} = k_{i}$$

Обратите внимание, что здесь все жордановы клетки отвечают одному значению λ_i , но при этом матрица A_i целиком жорданову клетку не образует, так как линия единиц над диагональю из λ разрывна там, где состыковываются две клетки:

Тогда жорданова нормальная форма матрицы $A(\varphi, e)$ составляется из таких матриц A_i :

Шаг 3: Осталось только заметить, что для каждого λ_i число и порядок жордановых клеток однозначно определено из последовательности чисел:

$$\dim \ker(\psi_1 - \lambda_1 \mathrm{id})$$
$$\dim \ker(\psi_2 - \lambda_2 \mathrm{id})^2$$
$$\dots$$
$$\dim \ker(\psi_i - \lambda_i \mathrm{id})^i$$

Откуда и следует однозначность представления в виде жордановой нормальной формы (с точностью до перестановки жордановых клеток).

Линейные функции на векторном пространстве

Рассмотрим функцию $f: \mathbb{R}^n \to \mathbb{R}$.

Пусть
$$x_0 \in \mathbb{R}^n$$
 и $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$ — приращение, то есть $x = x_0 + y$. Из этого следует, что

$$f(x) = f(x_0) + a_1 y_1 + \ldots + a_n y_n + b_{11} y_1^2 + \ldots + b_{ij} y_i y_j + \ldots + b_{nn} y_n^2 + \overline{o}(|y|^2).$$

Тогда сумма $a_1y_1+\ldots+a_ny_n$ будет называться линейной формой, а сумма $b_{11}y_1^2+\ldots+b_{ij}y_iy_j+\ldots+b_{nn}y_n^2$ — квадратичной формой.

Теперь дадим строгое определение:

Определение. Линейной функцией (формой) на векторном пространстве V называется всякое линейное отображение $\sigma \colon V \to F$, где F — одномерное векторное пространство. Обозначение: $V^* = \operatorname{Hom}(V, F)$.

Замечание. Формой принято называть, когда векторное пространство состоит из функций.

Пример.

1. $\alpha \colon \mathbb{R}^n \to \mathbb{R}; \ \varphi(v) = \langle v, e \rangle - c$ калярное произведение c некоторым фиксированным e.

2.
$$\alpha \colon \mathcal{F}(X,F) \to F; \ \alpha(f) = f(x_0). \ \exists \partial ecb \ \mathcal{F}(X,F) = \{f \colon X \to F\}.$$

3.
$$\alpha : C[a,b] \to \mathbb{R}; \ \alpha(f) = \int_a^b f(x) dx.$$

4.
$$\alpha : \operatorname{Mat}(F) \to F; \ \alpha(X) = \operatorname{tr} A.$$

Определение. Пространство V^* называется сопряженным (двойственным) к V.

Пусть
$$e = (e_1, \dots, e_n)$$
 — базис V , и существует изоморфизм $\alpha \colon V \xrightarrow{\sim} M_n$. Тогда $\alpha = (\alpha_1, \dots, \alpha_n)$, где $\alpha_i = \alpha(e_i)$. При этом, если $x = x_1e_1 + \dots + x_ne_n$, то $\alpha(x) = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Следствие. $\dim V^* = n$.

Пусть $e = (e_1, \dots, e_n)$ — базис V. Рассмотрим линейные формы $\varepsilon_0, \dots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, & i=j\\ 0, & i \neq j \end{cases}$ — символ Кронекера. То есть $\varepsilon_i = (\delta_{i1}, \dots, \delta_{ii}, \dots, \delta_{in}) = (0, \dots, 1, \dots, 0)$.

Предложение. $(\varepsilon_1, \ldots, \varepsilon_n) - \delta a s u c \ e \ V^*$.

Доказательство. Возьмем любое $\alpha \in V^*$. Положим $a_i = \alpha(e_1)$. Тогда $\alpha = a_1 \varepsilon_1 + \ldots + a_n \varepsilon_n$. То есть мы получили, что через $(\varepsilon_1, \ldots, \varepsilon_n)$ действительно можно выразить любое α .

Теперь покажем, что $\varepsilon_1, \ldots, \varepsilon_n$ — линейно независимы. Пусть $a_1\varepsilon_1 + \ldots + a_n\varepsilon_n = 0$, $a_i \in F$. Применив эту функцию к e_i , получим, что $a_1\varepsilon_1(e_1) + \ldots + a_n\varepsilon_n(e_i) = 0$. Отсюда следует, что $a_i = 0$, а все остальные a_j , при $j \neq i$, равны нулю в силу определения ε_j . Итого, $a_1 = \ldots = a_n = 0$, что и доказывает линейную независимость.

Определение. $\textit{Basuc} (\varepsilon_1, \dots, \varepsilon_n)$ называется сопряженным базисом.

Упражнение. Всякий базис V^* сопряжен с некоторым базисом V.

Билинейные функции на векторном пространстве

Определение. Билинейной функцией (формой) на векторном пространстве V называется всякое билинейное отображение $\beta\colon V\times V\to F$. То есть это отображение, линейное по каждому аргументу:

1.
$$\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y);$$

2.
$$\beta(\lambda x, y) = \lambda \beta(x, y);$$

3.
$$\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2);$$

4.
$$\beta(x, \lambda y) = \lambda \beta(x, y)$$
.

Пример.

1.
$$V = \mathbb{R}^n$$
, $\beta(x,y) = \langle x,y \rangle$ — скалярное произведение.

2.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$.

3.
$$V = C[a, b], \ \beta(f, g) = \int_a^b f(x)g(x)dx.$$

Лекция 26 от 06.04.2016

Матрицы билинейных функций

Пусть V — векторное пространство, $\dim V < \infty$, $\beta \colon V \times V \to F$ — билинейная функция.

Определение. Матрицей билинейной функции в базисе e называется матрица $B = (b_{ij})$, где $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$.

Пусть $x = x_1 e_1 + \ldots + x_n e_n \in V$ и $y = y_1 e_1 + \ldots + y_n e_n \in V$. Тогда:

$$\beta(x,y) = \beta \left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \right) = \sum_{i=1}^{n} x_i \beta \left(e_i, \sum_{j=1}^{n} y_j e_j \right) =$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j \beta(e_i, e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i b_{ij} y_j =$$

$$= (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad (*)$$

Предложение.

- 1. Всякая билинейная функция однозначно определяется своей матрицей в базисе (u, c) следовательно, в любом другом базисе).
- 2. Для любой матрицы $B \in M_n(F)$ существует единственная билинейная функция β такая, что $B = B(\beta, e)$.

Доказательство.

- 1. Уже доказано, это следует из формулы (*).
- 2. Определим β по формуле (*). Тогда β это билинейная функция на V и ее матрица есть в точности B. Единственность следует из все той же формулы.

Замечание. Эта биекция не имеет никакого отношения к биекции линейных операторов с квадратными матрицами.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два базиса V, β — билинейная функция на V. Пусть также e' = eC, где C — матрица перехода, также $B(\beta, e) = B$ и $B(\beta, e') = B'$.

Предложение. $B' = C^T B C$.

Доказательство. Рассмотрим представление вектора $x \in V$ в обоих базисах.

$$x = x_1 e_1 + \dots + x_n e_n = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$
$$x = x'_1 e'_1 + \dots + x' n e'_n = (e'_1, \dots, e'_n) \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x'_n \end{pmatrix}$$

Аналогично для $y \in V$:

$$y = (e_1, \dots, e_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

$$y = (e'_1, \dots, e'_n) \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix} \Longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Тогда, если мы транспонируем формулу для x, получаем:

$$\beta(x,y) = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x'_1, \dots, x'_n) C^T B C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Одновременно с этим:

$$\beta(x,y) = (x'_1, \dots, x'_n)B'\begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}.$$

Сравнивая эти две формулы, получаем, что $B' = C^T B C$.

Следствие. Число ${\rm rk}\ B$ не зависит от выбора базиса.

Определение. Число $\operatorname{rk} B$ называется рангом билинейной функции β . Обозначение: $\operatorname{rk} \beta$.

Симметричные билинейные функции

Как и для линейных операторов, неплохо было бы научиться находить такой базис, в котором матрица B была бы проще. Но мы это сделаем только для некоторого класса билинейных функций.

Определение. Билинейная функция называется симметричной, если $\beta(x,y) = \beta(y,x)$ для любый $x,y \in V$.

Предложение. Билинейная функция β симметрична тогда и только тогда, когда матрица $B(\beta, e)$ — симметрическая (т.е. она равна своей транспонированной).

Доказательство. Пусть $B = B(\beta, e)$.

$$\Rightarrow \beta(e_i,e_j) = b_{ij} = b_{ji} = \beta(e_j,e_i) \Rightarrow B$$
 симметрична.

 \Leftarrow Пусть $x = x_1e_1 + \dots x_ne_n$ и $y = y_1e_1 + \dots + y_ne_n$. Также воспользуемся тем, что данная нам матрица симметрична, то есть равна своей транспонированной.

$$\beta(y,x) = (y_1, \dots, y_n) B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} (y_1, \dots, y_n) B \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{bmatrix}^T =$$

$$= (x_1, \dots, x_n) B^T \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \beta(x,y)$$

То есть $\beta(y,x)=\beta(x,y),$ что и означает, что β симметрична.

Квадратичные функции

Определение. Пусть $\beta \colon V \times V \to F$ — билинейная функция. Тогда $Q_\beta \colon V \to F$, заданная формулой $Q_\beta(x) = \beta(x,x)$, называется квадратичной функцией (формой), ассоциированной с билинейной функцией β .

Покажем, что такая квадратичная функция на самом деле является однородным многочленом степени 2 от n переменных. Пусть $e = (e_1, \ldots, e_n)$ — базис $V, B = B(\beta, e), x = (x_1, \ldots, x_n)$. Тогда:

$$Q_{\beta}(x) = (x_1, \dots, x_n)V\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n b_{ij} x_i x_j$$

Квадратичную функцию удобно так представлять, но не определять.

Пример. $3 decb \ \mathbb{e} - cmandapmnый базис.$

1.
$$V = \mathbb{R}^n$$
, $\beta(x,y) = x_1 y_1 + \ldots + x_n y_n \implies Q_{\beta}(x) = x_1^2 + \ldots + x_n^2$, $B(\beta, e) = E$.

2.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = 2x_1y_2 \implies Q_{\beta}(x) = 2x_1x_2$, $B(\beta, e) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

3.
$$V = \mathbb{R}^2$$
, $\beta(x,y) = x_1 y_2 + x_2 y_1 \implies Q_{\beta}(x) = 2x_1 x_2$, $B(\beta, e) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Замечание. Kвадратичная функция задает билинейную функцию не однозначно (примеры 2 и 3).

В дальнейшем нам понадобится делить на два. Поэтому далее предположим, что в нашем поле F можно делить на два. Что это означает? Заметим, что 2=1+1, и, строго говоря, нельзя делить на ноль. Следовательно, наше условие можно переформулировать: рассматриваем такие поля F, в которых $1+1\neq 0$. В терминах поля, это уже гораздо более осмысленное и понятное условие.

Теорема. Отображение $\beta \mapsto Q_{\beta}$ является биекцией между симметричными билинейными функциями на V и квадратичными функциями на V.

Доказательство.

Суръективность. Пусть β — билинейная функция. Рассмотрим тогда ассоциированную с ней квадратичную функцию $Q_{\beta}(x) = \beta(x,x)$. Пусть $\sigma(x,y) = \frac{1}{2}(\beta(x,y) + \beta(y,x))$ — симметричная билинейная функция на V. Тогда:

$$Q_{\sigma}(x) = \sigma(x, x) = \frac{1}{2}(\beta(x, x) + \beta(x, x)) = \beta(x, x) = Q_{\beta}(x)$$

Итого, $Q_{\sigma} = Q_{\beta}$. Следовательно, отображение суръективно.

<u>Инъективность</u>. Пусть $\beta(x,y)$ – симметричная билинейная функция. Аналогично, рассмотрим $Q_{\beta}(x) = \beta(x,x)$. Посмотрим на $Q_{\beta}(x+y)$:

Полученная выше формула как раз и означает, что значения билинейной функции однозначно задаются соответствующей квадратичной функцией.

Замечание.

- 1. Билинейная функция $\sigma(x,y) = \frac{1}{2}(\beta(x,y) + \beta(y,x))$ называется симметризацией билинейной функции β . Причем если $B = B(\beta, e)$ и $S = B(\sigma, e)$, то $S = \frac{1}{2}(B + B^T)$.
- 2. Симметричная билинейная функция $\beta(x,y)=\frac{1}{2}\left(Q_{\beta}(x+1)-Q_{\beta}(x)-Q_{\beta}(y)\right)$ называется поляризацией квадратичной функции Q.

Пример. Для предыдущих двух примеров:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}^T \right)$$

Далее вся терминология для билинейных функций переносится на квадратичные функции.

Теперь вспоминаем, что перед нами стоит задача научиться приводить к хорошему виду.

Определение. Квадратичная функция Q имеет в базисе e канонический вид, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q_{\beta}(x) = a_1x_1^2 + \ldots + a_nx_n^2$, где $a_i \in F$. Иными словами, $B(\beta, e) = \operatorname{diag}(a_1, \ldots, a_n)$.

Определение. Квадратичная функция Q имеет нормальный вид в базисе e, если для любого вектора $x = x_1e_1 + \ldots + x_ne_n$ верно, что $Q_{\beta}(x) = a_1x_1^2 + \ldots + a_nx_n^2$, причем $a_i \in \{-1, 0, 1\}$.

Лекция 27 от 13.04.2016

Привидение к каноническому и нормальному виду

Пусть V — векторное пространство, $\dim V = n$, $e = (e_1, \ldots, e_n)$ — базис V, $Q: V \to F$ — квадратичная функция на V.

Теорема. Для любой квадратичной функции Q существует такой базис, в котором Q имеет канонический вид.

Доказательство. Метод Лагранжа.

Докажем индукцией по n.

При n=1 имеем, что $Q(x)=ax^2$, то есть уже имеем канонический вид.

Предположим, что для всех значений меньших n доказано. Докажем тогда для n.

Пусть $A=(a_{ij})$ — матрица квадратичной функции Q в исходном базисе. Тогда:

$$Q(x) = Q(x_1, \dots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

<u>Случай 0</u>: пусть $a_{ij}=0$ для всех пар (i,j). Тогда $Q(x)=0x_1^2+\ldots+0x_n^2$ — уже канонический вид.

Случай 1: пусть существует такое i, что $a_{ii} \neq 0$. Перенумеровав переменные, считаем, что $a_{11} \neq 0$. Тогда:

$$Q(x_1, \dots, x_n) = (a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n) + Q_1(x_2, \dots, x_n) =$$

$$= \frac{1}{a_{11}} \left((a_{11}x_1 + \dots + a_{1n}x_n)^2 - (a_{12}x_2 + \dots + a_{1n}x_n)^2 \right) + Q_1(x_2, \dots, x_n) =$$

$$= \frac{1}{a_{11}} (a_{11}x_1 + \dots + a_{1n}x_n)^2 + Q_2(x_2, \dots, x_n)$$

Теперь сделаем следующую замену переменных:

$$x'_1 = a_{11}x_1 + \ldots + a_{1n}x_n$$

 $x'_2 = x_2, \ldots, x'_n = x_n$

Получаем:

$$Q(x'_1, \dots, x'_n) = \frac{1}{a_{11}}x'_1 + Q_2(x'_2, \dots, x'_n)$$

Дальше пользуемся предположением индукции для Q_2 , окончательно получая канонический вид для исходной Q.

Случай 2: пусть $a_{ii} = 0$ для всех i, но существует такая пара (i,j), где i < j, что $a_{ij} \neq 0$. Переименовываем переменные так, чтобы $a_{12} \neq 0$ и делаем замену:

$$x_1 = x'_1 - x'_2$$

$$x_2 = x'_1 + x'_2$$

$$x_3 = x'_3, \dots, x_n = x'_n$$

Тогда $2a_{12}x_1x_2 = 2a_{12}x_1^2 - 2a_{12}x_2^2$. Следовательно:

$$Q(x'_1, \dots, x'_n) = 2a_{12}x'_1^2 - 2a_{12}x'_2^2 + 2\sum_{1 \le i < j \le n} a_{ij}x'_ix'_j$$

Таким образом, мы пришли к случаю 1, который уже умеем решать.

Следствие. Всякую квадратичную функцию над полем \mathbb{R} можно заменой базиса привести κ нормальному виду.

Доказательство. Существует такой базис, в котором $Q(x_1, \ldots, x_n) = a_1 x_1^2 + \ldots + a_n x_n^2$. Сделаем замену:

$$x_i' = \begin{cases} \sqrt{|a_i|} x_i, & \text{если } a_i \neq 0 \\ x_i, & \text{если } a_i = 0 \end{cases}$$

Второе условие нужно для того, чтобы можно было выразить старые переменные через новые, не деля при этом на ноль.

Получаем, что $Q(x_1', \dots, x_n') = \varepsilon_1 x_1'^2 + \dots + \varepsilon_n x_n'^2$, где $\varepsilon_i = \operatorname{sgn} a_i \in \{-1, 0, 1\}$. Что нам и было надо.

Замечание. Если $F = \mathbb{C}$, то любую квадратичную функцию Q можно привести κ виду $Q(x_1, \ldots, x_n) = x_1^2 + \ldots + x_k^2$, где $k \leqslant n$ $(k = \operatorname{rk} Q)$, то есть $B(Q, e) = \operatorname{diag}(1, \ldots, 1, 0, \ldots, 0)$.

Закон инерции, индексы инерции

Пусть Q — квадратичная функция над \mathbb{R} , которая в базисе \mathbb{R} имеет нормальный вид:

$$Q(x1,...,x_n) = x_1^2 + ... + x_s^2 - x_{s+1}^2 - ... - x_{s+t}^2,$$

где s — это количество положительных слагаемых, а t — отрицательных.

Теорема (Закон инерции). Числа s, t не зависят от выбора базиса, в котором Q имеет нормальный вид.

Доказательство. Пусть $e = (e_1, \dots, e_n)$ — базис такой, что $v = x_1 e_1 + \dots + x_n e_n$ и Q имеет в нем нормальный вид: $Q(v) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2$.

Пусть также $\mathbb{f}=(f_1,\ldots,f_n)$ — другой базис такой, что $v=y_1e_1+\ldots+y_ne_n$ и Q также имеет в нем нормальный вид: $Q(v)=y_1^2+\ldots+y_p^2-y_{p+1}^2-\ldots-y_{p+q}^2$.

Заметим, что s+t=p+q, так как обе эти суммы равны rk Q. В допущении, что $s\neq p$, не умоляя общности будем считать, что s>p.

Положим $L_1=\langle e_1,\dots,e_s\rangle,\ \dim L_1=s$ и $L_2=\langle f_{p+1},\dots,f_n\rangle,\ \dim L_2=n-p.$ Видно, что $L_1+L_2\subset V,$ а значит, $\dim(L_1+L_2)\leqslant n.$ Тогда:

$$\dim(L_1 \cap L_2) = \dim L_1 + \dim L_2 - \dim(L_1 + L_2) \geqslant s + n - p - n = s - p > 0.$$

Следовательно, существует ненулевой вектор $v \in L_1 \cap L_2$. Разложим тогда этот вектор в базисах данных линейных оболочек:

$$v = x_1 e_1 + \ldots + x_s e_s, \ \exists x_i \neq 0 \Rightarrow Q(v) = x_1^2 + \ldots + x_s^2 > 0$$

 $v = y_{p+1} f_{p+1} + \ldots + y_n f_n \Rightarrow Q(v) = -y_{p+1}^2 - \ldots - y_{p+q}^2 \leqslant 0$

Получили противоречие. Значит, исходное предположение неверно и s=p. Откуда в свою очередь следует, что t=q.

Определение. Эти числа имеют свои названия:

- 1. $i_{+} := s nonoжительный индекс инерции;$
- 2. $i_- := t ompuцательный индекс инерции;$
- $3. \ i_0 := n-s-t$ нулевой индекс инерции.

Определение. Kвадратичная функция Q над полем $\mathbb R$ называется

Термин	Обозначение	Условие
положительно определенной	Q > 0	$Q(x) > 0 \ \forall x \neq 0$
отрицательно определенной	Q < 0	$Q(x) < 0 \ \forall x \neq 0$
неотрицательно определенной	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$
неположительно определенной	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$
неопределенной	_	$\exists x, y : Q(x) > 0, Q(y) < 0$

Термин	Нормальный вид	Индексы инерции
положительно определенной	$x_1^2 + \ldots + x_n^2$	$i_{+} = n, i_{-} = 0$
отрицательно определенной	$-x_1^2-\ldots-x_n^2$	$i_{+} = 0, i_{-} = n$
неотрицательно определенной	$x_1^2 + \ldots + x_k^2, \ k \leqslant n$	$i_+ = k, i = 0$
неположительно определенной	$-x_1^2 - \ldots - x_k^2, \ k \leqslant n$	$i_+ = 0, i = k$
неопределенной	$x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2, \ s, t \geqslant 1$	$i_+ = s, \ i = t$

Пример. $V = \mathbb{R}^2$.

1.
$$Q(x,y) = x^2 + y^2$$
, $Q > 0$;

2.
$$Q(x,y) = -x^2 - y^2$$
, $Q < 0$;

3.
$$Q(x,y) = x^2 - y^2$$
;

4.
$$Q(x,y) = x^2, Q \ge 0;$$

5.
$$Q(x,y) = -x^2, Q \leq 0.$$

Лекция 28 от 19.04.2016

Пусть V — векторное пространство над полем F размерности n, и $e = (e_1, \ldots, e_n)$ — его базис. Пусть также $Q \colon V \to F$ — квадратичная форма, $\beta \colon V \times V \to F$ — соответствующая билинейная функция и $B = B(\beta, e)$ — ее матрица.

$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \vdots \\ b_{21} & b_{22} & b_{23} & \vdots \\ b_{31} & b_{32} & b_{33} & \vdots \\ \dots & \dots & \dots & \ddots \end{pmatrix}$$

Рассмотрим B_i — левые верхние $i \times i$ -подматрицы. Например, $B_1 = (b_{11}), B_2 = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ и так далее.

Матрица B_i — это матрица ограничения билинейной функции β на подпространство, натянутое на векторы (e_1, \ldots, e_i) . Назовем верхним угловым минором число $\delta_i = \det(B_i)$. Также будем считать, что $\delta_0 = 1$.

Определение. Базис @ называется ортогональным (по отношению κ β), если $\beta(e_i, e_j) = 0$ для любых $i \neq j$. В ортогональном базисе матрица κ вадратичной формы имеет канонический ε вид.

Теорема (Метод ортогонализации Грама — Шмидта). Предположим, что $\delta_i \neq 0$ для всех i. Тогда существует единственный базис $e' = (e'_1, \dots, e'_n)$ в V такой, что

 $1. \, \, \mathrm{e}' - opmoгoнaльный$

2.
$$e'_1 = e_1,$$

 $e'_2 \in e_2 + \langle e'_1 \rangle,$
 $e'_3 \in e_3 + \langle e'_1, e'_2 \rangle,$
...
 $e'_n \in e_n + \langle e'_1, \dots, e'_{n-1} \rangle$

3.
$$Q(e_i') = \frac{\delta_i}{\delta_{i-1}}$$
 для всех i .

Доказательство. Индукция по n. База для n=1 очевидна.

Теперь пусть всё доказано для всех k < n. Докажем для n. По предположению индукции, существует единственный базис $(e'_1, e'_2, \ldots, e'_n)$ с требуемыми свойствами.

Наблюдение: $\langle e_i, \ldots, e_n \rangle = \langle e'_i, \ldots, e'_n \rangle$.

Ищем e'_n в виде $e'_n = e_n + \lambda_1 e'_1 + \ldots + \lambda_{n-1} e'_{n-1}$. Тогда для всех i:

$$\beta(e'_n, e'_i) = \beta(e_n, e'_i) + \sum_{i=1}^{n-1} \lambda_j \beta(e'_j, e'_i)$$

Чтобы выполнялись требуемые условия, необходимо, чтобы эта сумма равнялась нулю.

Заметим, что последнее слагаемое обращается в нуль при $i \neq j$ по свойству выбранного базиса. Тогда остается только следующее:

$$0 = \beta(e_n, e'_i) + \lambda_i \beta(e'_i, e'_i) = \beta(e_n, e'_i) + \lambda_i Q(e'_i) = \beta(e_n, e'_i) + \lambda_i \underbrace{\frac{\delta_i}{\delta_{i-1}}}_{\neq 0}.$$

Выбирая $\lambda_i = -\frac{\beta(e_n, e_i')}{\beta(e_i', e_i')}$, получаем нужное равенство и однозначность разложения. Таким образом, условия 1 и 2 выполнены.

Проверим условие 3. Пусть C — матрица перехода от $\mathfrak e$ к $\mathfrak e'$. Тогда легко понять, что C — верхнетреугольная с единицами на главной диагонали. Значит, матрица $B' = C^T B C$ тоже диагональна. Заметим также, что C_i (та самая верхняя $i \times i$ -подматрица) является матрицей перехода от (e_1, \ldots, e_i) к (e'_1, \ldots, e'_i) . Тогда:

$$B_i' = C_i^T B_i C_i \Rightarrow \det B_i' = 1 \cdot \det(B_i) \cdot 1 = \delta_i.$$

Но поскольку $B'=\begin{pmatrix}Q(e_1')&0\\&\ddots\\0&Q(e_n')\end{pmatrix}$, то $\delta_n=Q(e_1')\cdot\ldots\cdot Q(e_n')$. Отсюда и получаем, что

$$\frac{\delta_n}{\delta_{n-1}} = Q(e'_n).$$

Пример. Пусть $V = \mathbb{R}^2$. Тогда $e'_1 = e_1$, а e'_2 получается, если спроецировать вектор e_2 на прямую, ортогональную e_1 . Если $V = \mathbb{R}^3$, то e'_3 является проекцией на прямую, ортогональную плоскости (e'_1, e'_2) .

Рассмотрим следствия данной теоремы для случая, когда $F = \mathbb{R}$.

Теорема (Якоби). Пусть $\delta_i \neq 0$ для всех i. Тогда $\operatorname{rk} Q = n$ и $i_-(Q)$ равен числу перемен знака последовательности $\delta_0, \delta_1, \ldots, \delta_n$ (напомним, что $\delta_0 = 1$).

Доказательство. Применим процесс ортогонализации. Получим базис (e'_1,\ldots,e'_n) , в котором $Q(y_1,\ldots,y_n)=\frac{\delta_1}{\delta_0}y_1^2+\ldots+\frac{\delta_n}{\delta_{n-1}}y_n^2$, где y_1,\ldots,y_n — координаты некоторого вектора в данном

базисе. Если для некоторого i выполняется, что $\frac{\delta_i}{\delta_{i-1}} < 0$, то значит, $\operatorname{sgn} \delta_i \neq \operatorname{sgn} \delta_{i-1}$. Что и означает, что отрицательный индекс равен количеству перемен знака в последовательности $\delta_0, \delta_1, \dots, \delta_n$.

Что касательно определителя, то условие $\operatorname{rk} Q = n$ равносильно условию $\det B \neq 0$. Но $\det B = \delta_n \neq 0$, а значит, все верно.

Теорема (Критерий Сильвестра). Q > 0 тогда и только тогда, когда $\delta_i > 0$ для всех i.

Доказательство.

[←] Следует из предыдущей теоремы.

 $[\Rightarrow]$ Докажем, что $\delta_i = \det(B_i) > 0$. Действительно, B_i — это матрица ограничения $Q|_{\langle e_1, \dots, e_i \rangle}$. Оно так же будет строго положительным, следовательно, существует матрица $C_i \in M_n(\mathbb{R})$, $\det(C_i) \neq 0$, такая, что $C_i^T B C_i = E$. Но тогда $\det C_i^T \det B_i \det C_i = \det E = 1$. Следовательно,

$$\det B_i = \frac{1}{(\det C_i)^2} > 0$$
, что и требовалось.

Теорема.
$$Q < 0 \Leftrightarrow \begin{cases} \delta_i < 0, & 2 \nmid i \\ \delta_i > 0, & 2 \mid i \end{cases}$$

Доказательство. Применяя критерий Сильвестра для B(Q, e) = -B(-Q, e), получаем требуемое.

Евклидовы пространства

Определение. Евклидово пространство — это векторное пространство \mathbb{E} над полем \mathbb{R} , на котором задана положительно определённая симметрическая билинейная функция (\cdot, \cdot) , которую мы будем называть скалярным произведением.

Пример.

1.
$$\mathbb{R}^n$$
, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $(x,y) = \sum_{i=1}^n x_i y_i$.

2.
$$\mathbb{E} = C[0,1], (f,g) = \int_0^1 f(x)g(x)dx, (f,f) = \int_0^1 f^2(x)dx > 0.$$

Замечание. Важно отметить, что евклидово пространство можно определить только над полем \mathbb{R} .

Определение. Пусть $x \in \mathbb{E}$. Тогда длиной вектора называют величину $|x| = \sqrt{(x,x)}$.

Очевидно, что $|x| \ge 0$, причем |x| = 0 тогда и только тогда, когда x = 0.

Предложение (Неравенство Коши-Буняковского). Пусть $x, y \in \mathbb{E}$. Тогда $|(x,y)| \leq |x||y|$, причём знак равенства возможен тогда и только тогда, когда x и y пропорциональны.

Доказательство.

1. x,y пропорциональны, т.е. $x = \lambda y$ для некоторого λ . Тогда:

$$|(x,y)| = |(x,\lambda x)| = \lambda |(x,x)| = |x|\lambda |x| = |x||y|.$$

2. x,y линейно независимы. Тогда они будут базисом своей линейной оболочки. Тогда матрица B билинейной функции $(\cdot,\cdot)\big|_{\langle x,y\rangle}$ равна:

$$B = \begin{pmatrix} (x,x) & (x,y) \\ (y,x) & (y,y) \end{pmatrix}$$

Так как $\det B > 0$, то $(x,x)(y,y) - (x,y)^2 > 0$. Следовательно:

$$|(x,y)|^2 < |x|^2 |y|^2$$
$$|(x,y)| < |x||y|$$

Определение. Углом между векторами x и y называют такой α , что $\cos \alpha = \frac{(x,y)}{|x||y|}$.

Рассмотрим систему векторов (v_1, \ldots, v_k) , где $v_i \in \mathbb{E}$.

Определение. Матрица Грама системы v_1, \ldots, v_k это

$$G(v_1, \ldots, v_k) := (g_{ij}), \quad g_{ij} = (v_i, v_j).$$

Предложение.

- 1. $\det G(v_1, \ldots, v_k) \ge 0$
- $2. \det G(v_1,\ldots,v_k)=0$ тогда и только тогда, когда v_1,\ldots,v_k линейно зависимы.

Доказательство.

- 1. v_1, \ldots, v_k линейно независимы. Следовательно, матрица $G(v_1, \ldots, v_k)$ является матрицей ограничения (\cdot, \cdot) на $\langle v_1, \ldots, v_k \rangle$, базисом в котором является (v_1, \ldots, v_k) . А значит, $\det G(v_1, \ldots, v_k) > 0$.
- 2. v_1, \ldots, v_k линейно зависимы. Значит, существуют коэффициенты $(\lambda_1, \ldots, \lambda_k) \neq (0, \ldots, 0)$ такие, что $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$. Если обозначить матрицу Грама $G(v_1, \ldots, v_k)$ за G, то тогда

$$\lambda_1 G_{(1)} + \ldots + \lambda_k G_{(k)} =$$

$$= (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_1) + (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_2) + \ldots + (\lambda_1 v_1 + \ldots + \lambda_k v_k, v_k) =$$

$$= 0 + 0 + \ldots + 0$$

То есть строки линейно зависимы и $\det G = 0$.

Лекция 29 от 27.04.2016

Пусть \mathbb{E} — евклидово пространство, dim $\mathbb{E} = n$.

Определение. Векторы x,y называются ортогональными, если (x,y) = 0. Обозначение: $x \perp y$.

Определение. Пусть $S \subseteq \mathbb{E}$ — произвольное подпространство. Ортогональным дополнением κ S называется множество $S^{\perp} = \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}.$

Замечание.

- 1. S^{\perp} noдпространство в \mathbb{E} .
- 2. $S^{\perp} = \langle S \rangle^{\perp}$.

Предложение. Пусть S-nodnpocmpaнcmeo в \mathbb{E} . Тогда:

1. dim $S^{\perp} = n - \dim S$;

2.
$$\mathbb{E} = S \oplus S^{\perp}$$
;

3.
$$(S^{\perp})^{\perp} = S$$
.

Доказательство.

1. Выделим в S базис (e_1, \ldots, e_k) и дополним его векторами (e_{k+1}, \ldots, e_n) до базиса \mathbb{E} . Рассмотрим вектор $x \in \mathbb{E}$ и представим его в виде $x_1e_1 + \ldots + x_ne_n$. Если $x \in S^{\perp}$, то это то же самое, если $(x, e_i) = 0$ для $i = 1 \ldots k$. Итого:

$$(x,e_i) = (e_1,e_i)x_1 + (e_2,e_i)x_2 + \dots, (e_n,e_i)x_n = 0, \quad i = 1\dots k$$

Получим однородную СЛУ
$$G\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}=0,$$
 где $G\in Mat_{k\times n}(\mathbb{R})$ и $g_{ij}=(e_i,e_j).$ Заметим,

что rk G=k, так как это часть матрицы Грама, и ее левый верхний $k\times k$ минор больше нуля. Следовательно, размерность пространства решений $\dim S^{\perp}=n-\mathrm{rk}\,G=n-\dim S.$

- 2. Из предыдущего пункта получаем, что $\dim S + \dim S^{\perp} = n$. Вместе с тем, поскольку (x,x) = 0 тогда и только тогда, когда x = 0, то $S \cap S^{\perp} = \{0\}$. Следовательно, $\mathbb{E} = S \oplus S^{\perp}$.
- 3. $S \subset (S^{\perp})^{\perp}$ всегда. Вместе с тем, $\dim(S^{\perp})^{\perp} = n \dim S^{\perp} = n (n k) = k = \dim S$. И так как размерности совпадают, то $S = (S^{\perp})^{\perp}$.

Итак, мы теперь знаем, что $\mathbb{E} = S \oplus S^{\perp}$. Значит, для $x \in \mathbb{E}$ существует единственное представление его в виде x = y + z, где $y \in S$, $z \in S^{\perp}$.

Определение. Вектор у называется ортогональной проекцией вектора x на подпространство S. Обозначение: $\operatorname{pr}_S x$.

Вектор z называется ортогональной составляющей вектора x вдоль подпространства S. Обозначение: $\mathrm{ort}_S x$.

Определение. Базис (e_1, \ldots, e_n) в $\mathbb E$ называется ортогональным, если $(e_i, e_j) = 0 \ \forall i \neq j$. Это равносильно тому, что $G(e_1, \ldots, e_n)$ диагональна.

Базис называется ортонормированным, если дополнительно $(e_i, e_i) = 1 \, \forall i$. Это равносильно тому, что $G(e_1, \ldots, e_n) = E$.

Замечание. Если (e_1,\ldots,e_n) ортогональный базис, то $\left(\frac{e_1}{|e_1|},\ldots,\frac{e_n}{|e_n|}\right)$ ортонормированный.

Теорема. В любом конечномерном евклидовом пространстве существует ортонормированный базис.

Доказательство. Следует из того, что всякую положительно определенную квадратичную форму можно привести к нормальному виду. □

Пусть (e_1, \ldots, e_n) — ортонормированный базис в $\mathbb E$. Пусть также есть ещё один базис (e'_1, \ldots, e'_n) , причём $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$.

Предложение. (e'_1,\ldots,e'_n) — ортонормированный тогда и только тогда, когда $C^TC=E$ или, что то же самое, $C^{-1}=C^T$.

Доказательство. Условие, что базис (e'_1,\ldots,e'_n) является ортонормированным, равносильно тому, что $G(e'_1,\ldots,e'_n)=E$. С другой стороны, $G(e'_1,\ldots,e'_n)=C^TG(e_1,\ldots,e_n)C$, причем аналогично $G(e_1,\ldots,e_n)=E$. Откуда и следует, что $C^TC=E$.

Определение. $Mampuya\ C\ в\ maком\ случае\ называется\ ортогональной.$

Свойства.

1. $C^TC = E$, значит, $C^T = C^{-1}$, и тогда $CC^T = E$. Итого, получаем:

$$\sum_{k=1}^{n} c_{ki} c_{kj} = \delta_{ij} = \sum_{k=1}^{n} c_{ik} c_{jk}$$

Напомним, что δ_{ij} это символ Кронекера.

2. $\det C = \pm 1$.

Пример. $C = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ — матрица поворота на угол φ в \mathbb{R}^2 .

Пусть $S \subseteq \mathbb{E}$ — подпространство, (e_1, \dots, e_k) — его ортогональный базис, $x \in \mathbb{E}$.

Предложение. $\operatorname{pr}_S x = \sum_{i=1}^k \frac{(x,e_i)}{(e_i,e_i)} e_i$. В частности, если базис ортонормированный, $\operatorname{pr}_S x = \sum_{i=1}^k (x,e_i) e_i$

Доказательство. Представим вектор x в виде суммы $x = \operatorname{pr}_S x + \operatorname{ort}_S x$. Тогда:

$$(x, e_i) = (\operatorname{pr}_S x, e_i) + \underbrace{(\operatorname{ort}_S x, e_i)}_{=0} = (\operatorname{pr}_S x, e_i) \quad i = 1, \dots, k.$$

Вместе с тем, $\operatorname{pr}_S x = \sum\limits_{j=1}^k \lambda_j e_j$, следовательно, $(x,e_i) = \sum\limits_{j=1}^k \lambda_j (e_j,e_i)$. Но так как базис ортогональный, все слагаемые, кроме одного, занулятся, и останется только $(x,e_i) = \lambda_i (e_i,e_i)$. Откуда и следует, что $\lambda_i = \frac{(x,e_i)}{(e_i,e_i)}$.

Пусть есть базис (e_1, \ldots, e_n) в \mathbb{E} . Процесс ортогонализации Грама-Шмидта даёт ортогональный базис (f_1, \ldots, f_n) , причем:

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$\dots$$

$$f_n \in e_n + \langle e_1, \dots, e_{n-1} \rangle$$

Точно так же можно заметить, что $\langle f_1,\ldots,f_i\rangle=\langle e_1,\ldots,e_i\rangle$ для всех $i=1,\ldots,n.$

Предложение. $f_i = \operatorname{ort}_{\langle e_1, \dots, e_{i-1} \rangle} e_i$ для $\operatorname{\mathit{ecex}} i = 1, \dots, n.$

Доказательство. Воспользовавшись равенством линейных оболочек, получаем, что $e_i \in f_i + \langle f_1, \dots, f_{i-1} \rangle$. Следовательно, данный базисный вектор можно представить в виде $e_i = f_i + \lambda_1 f_1 + \dots + \lambda_{i-1} f_{i-1}$. И из того, что $f_i \perp \langle e_1, \dots, e_{i-1} \rangle = \langle f_1, \dots, f_{i-1} \rangle$ как раз и получаем, что $f_i = \operatorname{ort}_{\langle e_1, \dots, e_{i-1} \rangle} e_i$.

Пример. Данное рассуждение проще понять, если представить себе частный случай для $\mathbb{E} = \mathbb{R}^3$.

У нас зафиксированы векторы e_1, e_2, e_3 , и мы их ортогонализируем. Для начала, $f_1 = e_1$. Вектор f_2 получается как проекция вектора e_2 на прямую, ортогональную f_1 . А вектор f_3 — как проекция e_3 на прямую, ортогональную плоскости, образованной векторами f_1 и f_2 . Аналогично для пространств большей размерности.

Теорема (Пифагора). *Если* $x, y \in \mathbb{E}$ $u \ x \perp y, \ mo \ |x + y| = |x|^2 + |y|^2$.

Доказательство.

$$|x+y|^2 = (x+y,x+y) = (x,x) + (y,y) + \underbrace{(x,y)}_{=0} + \underbrace{(y,x)}_{=0} = (x,x) + (y,y) = |x|^2 + |y|^2$$

Рассмотрим векторы $x, y \in \mathbb{E}$.

Определение. Расстоянием между векторами x и y называется число $\rho(x,y) := |x-y|$.

Предложение (Неравенство треугольника). $\rho(a,b) + \rho(b,c) \geqslant \rho(a,c)$ при $a,b,c \in \mathbb{E}$.

Доказательство. Пусть x=a-b, y=b-c. Тогда a-c=x+y. Теперь достаточно доказать, что $|x|+|y|\geqslant |x+y|$. Для этого рассмотрим $|x+y|^2$.

$$|x+y|^2 = (x,x) + 2(x,y) + (y,y) = |x|^2 + 2(x,y) + |y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

Сравнивая начало и конец неравенства, получаем, что $|x+y| \le |x| + |y|$.

Пусть P и Q — два произвольных подмножества \mathbb{E} .

Определение. Расстоянием между Р и Q называют величину

$$\rho(P,Q) := \inf \{ \rho(x,y) \mid x \in P, \ y \in Q \}.$$

Пусть $x \in \mathbb{E}$ и $U \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x,U) = |\operatorname{ort}_{U} x|$, причём $\operatorname{pr}_{U} x - e \partial u$ нственный ближайший к x вектор из U.

Доказательство. Пусть $y = \operatorname{pr}_{U} x$ и $z = \operatorname{ort}_{U} x$. Пусть также $y' \in U \setminus \{0\}$, тогда:

$$\rho(x, y + y') = |x - y - y'| = |z - y'| = \sqrt{|z|^2 + \underbrace{|y'|^2}_{>0}} > |z| = \rho(x, y).$$

Из того, что вектор z, которым мы огранили снизу, определяется однозначно, и следует, что существует единственный ближайший вектор к x из U.

Пусть $U \subseteq \mathbb{E}$ — подпространство, $x \in \mathbb{E}$, (e_1, \dots, e_k) — базис U.

Теорема.
$$(\rho(x,U))^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}$$

- 1. $x \in U$. Тогда $\rho(x,U) = 0$. Но с другой стороны, $\det G(e_1,\ldots,e_k,x) = 0$, поскольку эти векторы линейно зависимы, и значит, равенство выполняется.
- 2. $x \notin U$. Тогда $\rho(x,U) = |\mathrm{ort}_U x| = |z|$. Ортогонализация Грама-Шмидта к (e_1,\dots,e_k,x) даст нам (f_1,\dots,f_k,z) , причём $|z|^2 = (z,z) = \frac{\delta_{k+1}}{\delta_k} = \frac{\det G(e_1,\dots,e_k,x)}{\det G(e_1,\dots,e_k)}$.