1. Temporal Tests

Unicode Tests:

2. Mathematik

2.1. Sinus, Cosinus Abstandtest										
x φ	0 0 0	π/6 30°	$\pi/4$ 45°	π/3 60°	$\frac{1}{2}\pi$ 90°	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°		
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0		
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1		
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0		

$$\mathbf{\underline{A}} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mathbf{\underline{A}}^{-1} = \frac{1}{\det \mathbf{\underline{A}}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad \det(\mathbf{\underline{A}}) = ad - bc$$

$$\operatorname{Sp}(\mathbf{\underline{A}}) = a + d$$

$$\text{Eigenwerte } \lambda_{1/2} = \frac{\operatorname{Sp} \overset{\boldsymbol{A}}{\overset{\boldsymbol{A}}{\sim}}}{2} \pm \sqrt{\left(\frac{\operatorname{Sp} \overset{\boldsymbol{A}}{\overset{\boldsymbol{A}}{\sim}}}{2}\right)^2 - \det \overset{\boldsymbol{A}}{\overset{\boldsymbol{A}}{\sim}}}$$

Eigenwertzerlegung

- 1. Schritt 1
- 2. Schritt 2

2.3. Fouriertransformation

$$f(t) \underset{\mathsf{Zeitbereich}}{\circ} \circ^{ \underbrace{\mathcal{F}}_{\bullet}} \ F(\omega) \\ \underset{\mathsf{Frequenzspektrum}}{:=} \int\limits_{-\infty}^{\infty} f(t) \exp(- \mathrm{i} \omega t) \, \mathrm{d} t$$

Anmerkung: Es gibt unterschiedliche Normungen $(1, \frac{1}{\sqrt{2\pi}})$

3. Physik

Naturkonstanten	
Lichtgeschwindigkeit	$c_0 \equiv \frac{1}{\sqrt{\varepsilon_0 \mu_0}} := 299792458 \frac{m}{s}$
Elementarladung	$e \approx 1.602177 \times 10^{-19} \mathrm{C}$
Planck-Konst.	$h \approx 6.62606957 \times 10^{-34} \mathrm{J}\mathrm{s}$
	$\hbar \equiv \frac{h}{2\pi} \approx 1.05457 \times 10^{-34} \mathrm{J}\mathrm{s}$
Elektr. Feldkonst.	$\varepsilon_0 = 8.854188 \times 10^{-12} \frac{F}{m}$
Magn. Feldkonst.	$\mu_0 := 4\pi \times 10^{-7} \frac{\text{H}}{\text{m}}$
Avogadro-Konst.	$N_A \approx 6.022141 \times 10^{23} \frac{1}{\text{mol}}$
Atomare Masse	$u \approx 1.660539 \times 10^{-27} \text{ kg}$
Elektronenmasse	$m_{\rm e} \approx 9.109383 \times 10^{-31} {\rm kg}$
Protonenmasse	$m_{\rm p} \approx 1.674927 \times 10^{-27}{\rm kg}$
Neutronenmasse	$m_{\rm n} \approx 1.672622 \times 10^{-27}{\rm kg}$
Gravitationskonst.	$G \approx 6.67384 \times 10^{-11} \frac{\text{kg}}{\text{s}^2}$
Boltzmann-Konst.	$k_{\rm B} \approx 1.380655 \times 10^{-23}\frac{\rm J}{\rm K}$

3.1. Einheitpräfixe										
10 [±]	21	18	15	12	9	6	3	2	1	
+	Zm zetta	$\mathop{\rm Em}_{exa}$	Pm peta	$\mathop{\rm Tm}_{tera}$	Gm giga	$\mathop{\mathbf{Mm}}_{mega}$	km kilo	hm hecto	dam deca	
-	zm zepto	am	$_{\text{femto}}^{\text{fm}}$	$_{ m pico}^{ m pm}$	nm nano	μm micro	mm milli	cm centi	$_{deci}^{\mathrm{dm}}$	

3.2. Maxwellsche Gleichungen (Naturgesetze)

```
Gaußsches Gesetz:
                                                         Faradaysches ind. Gesetz
                                                         rot \, \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0
\operatorname{div} \vec{D} = \rho
Quellfreiheit des magn. Feldes
                                                      Ampèrsches Gesetz
                                                         \operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}
\operatorname{div} \vec{B} = 0
```

4. Informatik

4.1. c Programming Language

```
#include <stdio.h>
int main(int argc, char *argv[]){
   // global variables
   float percent = 0.0f;
// custom functions
int readIntFromFile(path){
   FILE *fp;
   int i;
   fp=fopen(path,"rb");
   fscanf(fp, "%d\n", &i);
```

5. Chemie

5.1. Bleibatterie 5.1.1. Reaktion an der positiven Elektrode

$${\sf PbO}_2 + 3\,{\sf H}^+ + {\sf HSO}_4^- + 2\,{\sf e}^- \xrightarrow[{\sf charge}]{\sf disch.} {\sf PbSO}_4 + 2\,{\sf H}_2{\sf O}$$

 $\rm O_2$ Entwicklung (Selbstentladung): $\rm H_2O \longrightarrow \frac{1}{2}~O_2 + 2~H^+ + 2~e^-$ Korrosion Pb (Alterung): Pb + 2 H₂O \longrightarrow PbO₂ + 4 H⁺ + 4 e⁻