一、填室题(盆室3分, 满分30分)

1. (4.5625)10

$$[4.9] \Rightarrow 4 \times (6^{\circ} + 9 \times 6^{\circ}) = (4.56)_{0}$$

只会一题是不够的!

看书 回忆: ① n进制转+进制? 例如 (IA.F)16=()10?

2. (010)

3. 0.42kl , 2.78kl

[解析] oci)输出低电子,电流灌入oci),G3~Gs为低电子输入,电流是从输入筛

向舒流的,如有国所示,此时,起到限制 oci)输入电流的作用,阻性疾病最中值(否则oci) 电流过大损于不

其取直最小时里有一个00门输出低电子(最极限情况,也就是所有电流都仅往一个00门里灌

$$\frac{V_{cc}-V_{OL}}{R_L} + \overline{I}_{IL} \times \underline{S} \leq \overline{I}_{OL}(max) \rightarrow R_L \geqslant \frac{V_{cc}-V_{OL}}{11mA}, \quad 2 V_{OL} \leq 0.4V,$$

$$\Rightarrow 3 V_{OL} + \overline{R} \cdot 0.4V + \overline{R} \cdot \overline$$

再计算 R_nax. 此时 Oc 了输出高电影漏电流仍流入 ○c 门, G3~G5 3高电输入,电流从输入漏 □ 5排门流入,如右国所示,此时 PLL电流等于上过电流之和, 名R过大园 Oc 门 输出电子版, 故 R应 育最 以直

其取值最大的方多所有门电路都有漏电流或输入电流(这种情况最极限,因为尺形大型00门输出就太硕)

的有
$$V_{CC} - (I_{IH} \times 8 + I_{OH} \times 2) \times R \ge 3V$$
 解算 $R_{Max} = \frac{5-3}{320+400} MD = 2.78 kD$ 注意点。

① 区间了有不同的处理方式、TTL 到的订输人为低电平时,形定输入有多个端日,都只算一个端日的电流; =输入TTL 异或订输入为低电平时,算三份了IL; 为高时时则不然、 为高时时,算四份IIH、 回电2、CMO5 ? 评细的分析需要看书、

② 前级输出为高电平和磁电时, 电流的流向? (很重要, 不然公里知有100是加有的是成,哪等的?)以及应考虑的门、编3数?

A'+B'

$$\Rightarrow \gamma = ((A'+B')')' = A'+B$$

Ac' + B'o' + B'c' + A'BC

		_			
阿折了	AB\CD	00	01	11	10
	00	X	1	0	X
	01	0	0	1	X
	11	X	1	0	0
	10	ĺ	1	0	1
Ac'					

要尽可能简单,就要尽可能圈大圈。 B'O' 整色的图最难看出。 A'BC

6 +12

$$[\widetilde{\mathcal{A}}_{1}^{\dagger}] \qquad \angle O' = \left[\left(Q_{1} \odot Q_{2} \right) \left(Q_{1}^{\dagger} + Q_{2} \right) \right]' = \left[\left(Q_{1} Q_{2}^{\dagger} + Q_{1}^{\dagger} Q_{2}^{\dagger} \right) \left(Q_{1}^{\dagger} + Q_{2} \right) \right]' = \left(Q_{1} Q_{2} \right)',$$

即、QQ2=11 时, LD'=0,下午节拍Q3即为新D3取反,剩各位置为O

例状态变化次序是: 0000→0001→0010→0101→0100→0101→0100→1001→100→1011→1100→1100→1100→1101→1100→1 有效循环对14个状态,即十四进制计数器、

10 λ.

[解析] 四金五人方式的这些在我们教材里没有,但是它对应的量比方法教材理前,与之对应的是"只会入"方式。 比如对于最大NV的模拟艇,要转成 m位 二进制数2量接击,若用只会私方式,则会取量化率位 $为 \frac{n}{2^m} V$, 并且, $0 \sim \frac{n}{2^m} V$ 的模拟脏就对z = 0 - 0 , $\frac{n}{2^m} V$ 的模拟脏功z = 0 - 0 , 依此类相 、 $(2^m + 1) + 0 = 0$ 实际均 v = 0 文献,实际均 v = 0 文献,实际均 v = 0 文献,实际均 v = 0 文献,实际均 v = 0 人 其金髓00+于一个的部分均含,所以是"只含成" 其金超过 5元 V+于一个的部分均含效

特色,每个数量对应的换拟量处于转收过的差量的模拟量的区间的下界

若网络入方式,则会取量化能公为 2nd / 1

铅,每个数量对应的换拟量处于轻低达为量的 模拟量的区间的中值 (对第一段而言, 们是下界)、 之后至区间就是一个4, 如 $\frac{n}{2^{n+1}} \sim \frac{3n}{2^{n+1}} \vee$ 的模拟矩址 $0 \cdots \circ 1$,徐此英雄、 美观地,实际上的单位 2mt + 真正对应 与中值相差如的脏均等痛差并犹至4,所以是"四舍乱" (P.S. 我也知道四种是是健康, 挨就是从取下界变成取帕里了)

据据量从单位,只了
$$\left\{\frac{n}{2^{m}} < 8mV\right\}$$

一个分弹力 $\left\{\frac{2n}{2^{m+1}-1} < 8mV\right\}$

据据量从单位,见了
$$\left\{\frac{n}{2^{m}} < 8mV\right\}$$
 $\left\{\frac{2n}{2^{m+1}-1} < 8mV\right\}$ $n=6$, 可得 $\left\{\frac{n}{n} > \log_2 750 \rightarrow 此直介 9和10之间 \right\}$ $n=6$, 可得 $n=6$, 可得 $n=6$, 可得

震翻转

向上取整得 M=10

复习、A/D in三种类型, 工作原理?

CLK高时期间都会接收了、K信号,但仅高的转一次, [阿科] Qè J=(<=1

*自办 O多从TK、到SR的异同 @出的融发与主从(脉冲融发) 的特色及异同

且翻转后就不能翻回。

9. 0.2

[胡析]

【题 7.9】 图 P7.9 是用 TTL 门电路接成的微分型单稳态电路,其中 R_a 阻值足够大,保证稳 态时 v_A 为高电平。R 的阻值很小,保证稳态时 v_{12} 为低电平。试分析该电路在给定触发信号 v_i 作用下的工作过程, 画出 v_A 、 v_{01} 、 v_{12} 和 v_0 的电压波形。 C_d 的电容量很小, 它与 R_d 组成微分电路。

见右侧分析、

解:由图 P7.9 可知,因 R 的阻值很小,所以 $v_{12} < V_{TH}$;而 R_a 阻值很大,使 $v_A \ge V_{TH}$ 。故稳态下

当 v_1 端有负的触发脉冲时 $,v_\Lambda$ 处出现负向的微分脉冲 $,v_{01}$ 和 v_{12} 产生正的电压跳变 $,v_0$ 跳变 为低电平。由于 v_0 的低电平反馈到门 G_1 的输入,所以在 v_A 的低电平信号消失后 v_0 的高电平和 v_0 的低电平仍继续维持。而且这种正反馈使 v_0 波形的边沿很陡。

 v_{01} 跳变成高电平以后电容 C 开始充电,随着充电的进行 v_{12} 逐渐下降,当降至 $v_{12}=V_{TH}$ 时 v_{0} 跳变为高电平、 v_0 ,跳变为低电平,电容C放电,电路恢复到触发前的稳定状态。

电路中各点电压的波形如图 A7.9 所示。从 v_{Λ} 的波形上可见,因为 v_{0} 的低电平反馈到了门 G_1 的输入端,所以在 v_0 低电平期间 v_A 一直被钳在低电平上。

第7章较抽象,关键是搞明白断问题。

① 突变是如何传递的?

②RC 和节及充放电路状态决定单稳态电路脉宽或多沿根高电路周期、这就要才我们并清楚电容的充放电阻路,

(有面可以到 VTH+VDD. 有丽翔是Vm. Why?电阻!) 而且这对了CMOS于OTTL电路是不同证!

这体情,填室题对度不大,主要考查细节,为数畸玩