Resolución del problema de las N torres usando redes de Hopfield

Esteban Sánchez Gámez

1. Modelado del espacio de estados

Para resolver el problema de colocar N torres en un tablero de ajedrez de tamaño $N \times N$ sin que se ataquen entre sí, se modela cada celda del tablero como una neurona binaria de una red de Hopfield.

Cada celda del tablero N imes N se representa con una variable binaria $x_{ij} \in \{0,1\}$:

- $x_{ij}=1$: indica que hay una torre en la posición (i, j)
- $x_{ij}=0$: indica que la celda está vacía

El estado del sistema se representa mediante una matriz binaria de tamaño $N \times N$, donde se busca una configuración con exactamente una torre por fila y por columna.

2. Función de energía

La red de Hopfield minimiza una función de energía, la cual se diseña para penalizar configuraciones inválidas en las que dos torres estén en la misma fila o columna.

$$E = rac{A}{2} \sum_{i=1}^{N} \left(\sum_{j=1}^{N} x_{ij} - 1
ight)^2 + rac{B}{2} \sum_{j=1}^{N} \left(\sum_{i=1}^{N} x_{ij} - 1
ight)^2$$

Donde:

- El primer término penaliza filas con más o menos de una torre.
- El segundo término penaliza columnas con más o menos de una torre.
- A y B son constantes que controlan el peso de cada restricción.

En la práctica, esta función se implementa a través de los pesos y umbrales de las neuronas.

3. Configuración de la red de Hopfield

Los pesos sinápticos de la red se configuran de forma que reflejen las restricciones del problema. Para dos neuronas x_{ij} y x_{kl} :

- Si están en la misma fila (i = k, j eq l): $w_{ij,kl} = -2\mu$
- Si están en la misma columna (j = l, i \neq k): $w_{ij,kl} = -2\mu$
- Si son la misma neurona: $w_{ij,ij}=0$
- En cualquier otro caso: $w_{ij,kl}=0$

Cada neurona tiene un umbral $\theta_{ij}=-2\mu$. Esta configuración garantiza que las neuronas "compiten" por activarse dentro de una misma fila y columna, cumpliendo así las restricciones del problema.

4. Dinámica de la red

La evolución de la red se basa en una dinámica asincrónica donde se actualiza una neurona a la vez en función del estado actual de sus vecinas.

$$x_{ij}^{(t+1)} = egin{cases} 1 & ext{si } \sum w_{ij,kl} x_{kl}^{(t)} > heta_{ij} \ 0 & ext{si no} \end{cases}$$

Esta actualización se repite iterativamente hasta que la red alcanza un estado estable (mínimo local de energía), que representa una solución al problema.

5. Convergencia y solución

Cuando el sistema alcanza un estado donde la energía ya no disminuye, se considera que ha llegado a un equilibrio. Si el modelo está bien parametrizado, este estado corresponde a una solución válida donde no hay conflictos entre las torres, es decir, hay exactamente una torre por fila y por columna.