Default Credit Card Clients - Predictive model

September 28, 2018

1 Default Credit Card Clients - Predictive model

2 Dataset details

2.1 Default Payments of Credit Card Clients in Taiwan from 2005

(https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset)

This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005

2.2 Content

There are 25 variables: * ID: ID of each client * LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit * SEX: Gender (1=male, 2=female) * EDU-CATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown) * MARRIAGE: Marital status (1=married, 2=single, 3=others) * AGE: Age in years * PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above) * PAY_2: Repayment status in August, 2005 (scale same as above) * PAY_3: Repayment status in July, 2005 (scale same as above) * PAY_4: Repayment status in June, 2005 (scale same as above) * PAY_5: Repayment status in May, 2005 (scale same as above) * PAY_6: Repayment status in April, 2005 (scale same as above) * BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar) * BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar) * BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar) * BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar) * BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar) * BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar) * PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar) * PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar) * PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar) * PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar) * PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar) * PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar) * default.payment.next.month: Default payment (1=yes, 0=no)

2.3 Acknowledgements

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import os
```

3 Data ingestion

```
In [2]: dataset = pd.read_csv('./data/UCI_Credit_Card.csv')
```

4 Glimpse at the data

```
In [3]: dataset.head()
```

In [3]:	αa	tase ⁻	t.nead	()											
Out[3]:		ID	LIMIT	_BAL	SEX	EDUCATION	N MARRIAC	EΕ	AGE	PAY_0	PAY_2	PAY_3	PAY.	_4	\
	0	1	200	00.0	2	2	2	1	24	2	2	-1	-	-1	
	1	2	1200	00.0	2		2	2	26	-1	2	0		0	
	2	3	900	00.0	2	2	2	2	34	0	0	0		0	
	3	4	500	00.0	2	4	2	1	37	0	0	0		0	
	4	5	500	00.0	1	2	2	1	57	-1	0	-1		0	
						I	BILL_AMT4	ΒI	LL AM	T5 B	ILL AMT6	PAY A	MT1	\	
	0						0.0			.0	0.0		0.0		
	1						3272.0		3455	.0	3261.0		0.0		
	2						14331.0		14948	.0	15549.0	151	8.0		
	3						28314.0		28959	.0	29547.0	200	0.0		
	4			• • •			20940.0		19146	5.0	19131.0	200	0.0		
		PAY	_AMT2	PAY_	AMT3	PAY_AMT4	PAY_AMT5	5 P	AY_AM	T6 \					
	0	(689.0		0.0	0.0	0.0)	C	.0					
	1	1	0.00	10	00.0	1000.0	0.0)	2000	.0					
	2	1	500.0	10	00.0	1000.0	1000.0)	5000	.0					
	3	2	019.0	12	00.0	1100.0	1069.0)	1000	.0					
	4	36	681.0	100	00.0	9000.0	689.0)	679	.0					
		def	ault.p	avmen	t.nex	t.month									
	Λ		1	J		4									

0	1
1	1
2	0
3	0
4	0

[5 rows x 25 columns]

In [4]: dataset.shape

Out[4]: (30000, 25)

In [5]: dataset.describe()

Out[5]:		ID	LIMIT_BAL	. SEX	EDUCATION	MARRIAGE \
	count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000
	mean	15000.500000	167484.322667	1.603733	1.853133	1.551867
	std	8660.398374	129747.661567	0.489129	0.790349	0.521970
	min	1.000000	10000.000000	1.000000	0.000000	0.00000
	25%	7500.750000	50000.000000	1.000000	1.000000	1.000000
	50%	15000.500000	140000.000000	2.000000	2.000000	2.000000
	75%	22500.250000	240000.000000	2.000000	2.000000	2.000000
	max	30000.000000	1000000.000000			
		AGE	PAY_O	PAY_2	PAY_3	PAY_4 \
	count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000
	mean	35.485500	-0.016700	-0.133767	-0.166200	-0.220667
	std	9.217904	1.123802	1.197186	1.196868	1.169139
	min	21.000000	-2.000000	-2.000000	-2.000000	-2.000000
	25%	28.000000	-1.000000	-1.000000	-1.000000	-1.000000
	50%	34.000000	0.000000	0.000000	0.000000	0.00000
	75%	41.000000	0.000000	0.000000	0.000000	0.00000
	max	79.000000	8.000000	8.000000	8.000000	8.000000
			•	BILL_AMT4	BILL_AMT5	5 \
	count			30000.000000	30000.000000)
	mean			43262.948967	40311.400967	•
	std		•	64332.856134	60797.155770)
	min			170000.000000	-81334.000000)
	25%			2326.750000	1763.000000)
	50%			19052.000000	18104.500000)
	75%			54506.000000	50190.500000)
	max			891586.000000	927171.000000)
		BILL_AMT6	PAY_AMT1	_		
	count	30000.000000				
	mean	38871.760400	5663.580500			
	std	59554.107537	16563.280354			
	min	-339603.000000	0.000000			
	25%	1256.000000	1000.000000			
	50%	17071.000000	2100.000000			
	75%	49198.250000	5006.000000			
	max	961664.000000	873552.000000	1.684259e+06	896040.00000	
		PAY_AMT4	PAY_AMT5	PAY_AMT	6 default nau	ment.next.month
	count	30000.000000	30000.000000			30000.000000
	mean	4826.076867	4799.387633			0.221200
	std	15666.159744				0.415062
	min	0.00000	0.000000			0.000000
	min 25%	296.000000	252.500000			0.000000
	25% 50%	1500.000000	1500.000000			0.00000
	75%	4013.250000	4031.500000			0.000000
	10%	4013.250000	4031.300000	4000.00000	U	0.00000

[8 rows x 25 columns]

5 Calculate outstanding amount

```
In [6]: dataset['APR-Outstanding'] = dataset['BILL AMT6'] - dataset['PAY AMT6']
        dataset['MAY-Outstanding'] = dataset['BILL_AMT5']-dataset['PAY_AMT5']
        dataset['JUN-Outstanding'] = dataset['BILL_AMT4']-dataset['PAY_AMT4']
        dataset['JUL-Outstanding'] = dataset['BILL_AMT3'] - dataset['PAY_AMT3']
        dataset['AUG-Outstanding'] = dataset['BILL_AMT2']-dataset['PAY_AMT2']
        dataset['SEP-Outstanding'] = dataset['BILL_AMT1'] - dataset['PAY_AMT1']
        dataset.head(5)
Out[6]:
           ID
                LIMIT_BAL
                            SEX
                                 EDUCATION
                                             MARRIAGE
                                                        AGE
                                                            PAY_0
                                                                    PAY_2
                                                                            PAY_3
                                                                                   PAY_4
        0
             1
                  20000.0
                              2
                                          2
                                                     1
                                                         24
                                                                 2
                                                                         2
                                                                                -1
                                                                                       -1
        1
            2
                 120000.0
                              2
                                          2
                                                     2
                                                         26
                                                                -1
                                                                         2
                                                                                0
                                                                                        0
        2
            3
                  90000.0
                              2
                                          2
                                                    2
                                                         34
                                                                 0
                                                                         0
                                                                                0
                                                                                        0
        3
            4
                  50000.0
                              2
                                          2
                                                     1
                                                         37
                                                                 0
                                                                         0
                                                                                0
                                                                                        0
                                          2
                                                                         0
        4
            5
                  50000.0
                                                     1
                                                         57
                                                                -1
                                                                               -1
                                                                                        0
                             PAY AMT4 PAY AMT5 PAY AMT6
                                                              default.payment.next.month
        0
                                   0.0
                                              0.0
                                                         0.0
                                                                                         1
                                1000.0
                                                      2000.0
        1
                                              0.0
                                                                                         1
        2
                                                     5000.0
                                1000.0
                                           1000.0
                                                                                         0
        3
                                1100.0
                                           1069.0
                                                      1000.0
                                                                                         0
                 . . .
        4
                                                       679.0
                                                                                         0
                                9000.0
                                            689.0
           APR-Outstanding
                             MAY-Outstanding
                                                JUN-Outstanding
                                                                  JUL-Outstanding
        0
                        0.0
                                           0.0
                                                             0.0
                                                                             689.0
        1
                     1261.0
                                        3455.0
                                                          2272.0
                                                                            1682.0
        2
                    10549.0
                                      13948.0
                                                         13331.0
                                                                           12559.0
        3
                    28547.0
                                      27890.0
                                                         27214.0
                                                                           48091.0
        4
                    18452.0
                                      18457.0
                                                         11940.0
                                                                           25835.0
           AUG-Outstanding
                             SEP-Outstanding
        0
                                        3913.0
                     2413.0
        1
                      725.0
                                       2682.0
        2
                    12527.0
                                      27721.0
        3
                    46214.0
                                      44990.0
                   -31011.0
                                       6617.0
```

6 Data cleanup

```
In [7]: # rename column name
        dataset.rename(columns={'default.payment.next.month':'DefaultPayment'},inplace=True)
        dataset.columns
Out[7]: Index(['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0',
               'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2',
               'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1',
               'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6',
               'DefaultPayment', 'APR-Outstanding', 'MAY-Outstanding',
               'JUN-Outstanding', 'JUL-Outstanding', 'AUG-Outstanding',
               'SEP-Outstanding'],
              dtype='object')
In [8]: # check and remove invalid data if any
        print(dataset['SEX'].min(),dataset['SEX'].max())
        print(dataset['SEX'].value_counts())
1 2
     18112
    11888
Name: SEX, dtype: int64
In [9]: # check for null
        dataset.isnull().any().any()
Out[9]: False
In [10]: # check EDUCATION and remove invalid data if any
         print('before\n',dataset['EDUCATION'].value_counts())
         dataset['EDUCATION'] = dataset['EDUCATION'].replace([4,5,6,0], 4)
         print('after\n',dataset['EDUCATION'].value_counts())
before
2
      14030
     10585
1
     4917
3
5
       280
4
       123
6
        51
        14
Name: EDUCATION, dtype: int64
after
2
      14030
1
     10585
3
      4917
```

468 Name: EDUCATION, dtype: int64 In [11]: # check MARRIAGE and remove invalid data if any Before = dataset['MARRIAGE'].value_counts() dataset = dataset[dataset['MARRIAGE'] > 0] After = dataset['MARRIAGE'].value_counts() print('Before\n',Before) print('After\n', After) Before 2 15964 1 13659 3 323 0 54 Name: MARRIAGE, dtype: int64 After 2 15964 1 13659 3 323 Name: MARRIAGE, dtype: int64 In [12]: dataset.head().transpose() Out[12]: 0 2 1 3 4 2.0 3.0 5.0 ID 1.0 4.0 LIMIT_BAL 20000.0 120000.0 90000.0 50000.0 50000.0 SEX 2.0 2.0 2.0 2.0 1.0 EDUCATION 2.0 2.0 2.0 2.0 2.0 MARRIAGE 1.0 2.0 2.0 1.0 1.0 AGE 24.0 26.0 34.0 37.0 57.0 PAY 0 2.0 -1.0 0.0 0.0 -1.0 2.0 0.0 PAY_2 2.0 0.0 0.0 -1.0 PAY_3 -1.0 0.0 0.0 0.0 PAY_4 -1.0 0.0 0.0 0.0 0.0 PAY_5 -2.0 0.0 0.0 0.0 0.0 PAY_6 -2.0 2.0 0.0 0.0 0.0 BILL_AMT1 3913.0 2682.0 29239.0 46990.0 8617.0 BILL_AMT2 3102.0 1725.0 14027.0 48233.0 5670.0 BILL_AMT3 689.0 2682.0 13559.0 49291.0 35835.0 BILL_AMT4 0.0 3272.0 14331.0 28314.0 20940.0 BILL_AMT5 0.0 3455.0 14948.0 28959.0 19146.0

1000.0

0.0

3261.0 15549.0 29547.0 19131.0

2000.0

2019.0 36681.0

2000.0

1518.0

1500.0

0.0

0.0

689.0

BILL_AMT6

PAY_AMT1

PAY_AMT2

```
PAY_AMT3
                              0.0
                                     1000.0
                                              1000.0
                                                       1200.0 10000.0
         PAY_AMT4
                                     1000.0
                                              1000.0 1100.0
                              0.0
                                                                9000.0
         PAY_AMT5
                              0.0
                                        0.0
                                              1000.0
                                                       1069.0
                                                                 689.0
         PAY_AMT6
                              0.0
                                     2000.0
                                              5000.0
                                                       1000.0
                                                                 679.0
         DefaultPayment
                              1.0
                                        1.0
                                                 0.0
                                                          0.0
                                                                   0.0
         APR-Outstanding
                              0.0
                                     1261.0 10549.0 28547.0 18452.0
         MAY-Outstanding
                              0.0
                                     3455.0 13948.0
                                                     27890.0 18457.0
         JUN-Outstanding
                              0.0
                                     2272.0 13331.0 27214.0 11940.0
         JUL-Outstanding
                                     1682.0 12559.0 48091.0 25835.0
                            689.0
         AUG-Outstanding
                           2413.0
                                     725.0 12527.0 46214.0 -31011.0
         SEP-Outstanding
                                     2682.0 27721.0 44990.0
                           3913.0
                                                                6617.0
In [13]: selectedColumns = ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2
         print(selectedColumns)
['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4',
In [14]: dataset.columns
Out[14]: Index(['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_O',
                'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2',
                'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1',
                'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6',
                'DefaultPayment', 'APR-Outstanding', 'MAY-Outstanding',
                'JUN-Outstanding', 'JUL-Outstanding', 'AUG-Outstanding',
                'SEP-Outstanding'],
               dtype='object')
In [15]: data = dataset[selectedColumns]
         data.head()
Out[15]:
            ID LIMIT_BAL SEX
                               EDUCATION
                                           MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 \
         0
             1
                  20000.0
                             2
                                        2
                                                  1
                                                      24
                                                              2
                                                                     2
                                                                           -1
                                                                                   -1
         1
                 120000.0
                             2
                                        2
                                                  2
                                                      26
                                                             -1
                                                                     2
                                                                            0
                                                                                   0
         2
                             2
                                        2
                                                  2
                                                              0
                                                                            0
                                                                                   0
             3
                  90000.0
                                                      34
                                                                     0
                                        2
         3
             4
                  50000.0
                             2
                                                  1
                                                      37
                                                              0
                                                                     0
                                                                            0
                                                                                   0
                                        2
            5
                  50000.0
                                                  1
                                                      57
                                                             -1
                                                                           -1
                                                                                   0
            PAY 5 PAY 6 SEP-Outstanding AUG-Outstanding \
         0
               -2
                      -2
                                   3913.0
                                                    2413.0
                                                                      689.0
         1
                0
                       2
                                   2682.0
                                                     725.0
                                                                     1682.0
         2
                0
                       0
                                  27721.0
                                                   12527.0
                                                                    12559.0
         3
                0
                       0
                                  44990.0
                                                   46214.0
                                                                    48091.0
         4
                0
                                   6617.0
                                                  -31011.0
                                                                    25835.0
            JUN-Outstanding MAY-Outstanding APR-Outstanding DefaultPayment
         0
                        0.0
                                         0.0
                                                          0.0
                                                                            1
         1
                     2272.0
                                      3455.0
                                                       1261.0
                                                                            1
```

2	13331.0	13948.0	10549.0	0
3	27214.0	27890.0	28547.0	0
4	11940.0	18457.0	18452.0	0

 $\textbf{In [16]: \# data['AvgOS_AMT'] = data[['SEP-Outstanding','AUG-Outstanding','JUL-Outstanding','JUN-Ou$

In [17]: data.describe()

111 [11].	aavara	.0501150()								
Out[17]:		ID	LIMIT_B	AL	SE	X EDU	JCATION	N M	ARRIAG	E '
	count	29946.000000	29946.00000	00 299	46.00000	0 29946	.000000	29946	.00000	0
	mean	14999.138015	167546.57316	35	1.60348	6 1	840646	5 1	.55466	55
	std	8659.571030	129807.83167	78	0.48918	2 0	743774	1 0	.51825	9
	min	1.000000	10000.00000	00	1.00000	0 1	.000000) 1	.00000	0
	25%	7499.250000	50000.00000	00	1.00000	0 1	.000000) 1	.00000	0
	50%	14997.500000	140000.00000	00	2.00000	0 2	.000000) 2	.00000	0
	75%	22495.750000	240000.00000	00	2.00000	0 2	.000000) 2	.00000	0
	max	30000.000000	1000000.00000	00	2.00000	0 4	.000000) 3	.00000	00
		AGE	PAY_0		PAY_2	I	PAY_3		PAY_4	\
	count	29946.000000	29946.000000	29946	.000000	29946.00	00000	29946.0	00000	
	mean	35.481300	-0.016430	-0	.133641	-0.16	6132	-0.2	20397	
	std	9.218413	1.123467	1	.196968	1.19	96428	1.1	68882	
	min	21.000000	-2.000000	-2	.000000	-2.00	00000	-2.0	00000	
	25%	28.000000	-1.000000	-1	.000000	-1.00	0000	-1.0	00000	
	50%	34.000000	0.000000	0	.000000	0.00	0000	0.0	00000	
	75%	41.000000	0.000000	0	.000000	0.00	0000	0.0	00000	
	max	79.000000	8.000000	8	.000000	8.00	00000	8.0	00000	
		PAY_5	PAY_6	SEP-0	utstandi	ng AUG-(Outstar	nding \		
	count	29946.000000	29946.000000	29	946.0000	00 2	.994600	0e+04		
	mean	-0.265945	-0.290857	45	619.1750	15 4	.329772	2e+04		
	std	1.133029	1.149773	73	212.4338	76 7	261554	le+04		
	min	-2.000000	-2.000000	-733	744.0000	00 -1	702347	7e+06		
	25%	-1.000000	-1.000000		750.0000	00 3	300000	0e+02		
	50%	0.000000	0.000000	18	568.5000	00 1	.811900	e+04		
	75%	0.000000	0.000000	62	382.2500	00 5	924400	e+04		
	max	8.000000	8.000000	913	727.0000	00 9	.332080	e+05		
		JUL-Outstandi	ng JUN-Outsta	anding	MAY-Out:	standing	APR-0	Outstand	ing \	
	count	2.994600e+	04 29946.0	000000	2994	6.000000	29	9946.000	000	
	mean	4.183537e+	04 38477.0	73432	3554	7.929173	33	3690.662	359	
	std	6.933957e+	04 64244.7	702389	6059	4.012145	60	0191.540	909	
	min	-8.546410e+	05 -667000.0	000000	-41438	0.000000	-684	1896.000	000	
	25%	2.672500e+	02 232.0	000000	(0.000000		0.000	000	
	50%	1.780100e+	04 16979.0	000000	1556	0.000000	13	3944.500	000	
	75%	5.636450e+	04 50353.7	750000	4698	6.000000	46	3112.000	000	
	max	1.542258e+	06 841586.0	000000	87717	1.000000	911	1408.000	000	

	DefaultPayment
count	29946.000000
mean	0.221432
std	0.415218
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	1.000000

7 Outlier treatment

data= data[MinOutliercondSep & MaxOutliercondSep]

-896.5 62382.25 134894.0

In [19]: data.describe()

Out[19]:		ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	\
	count	23956.000000	23956.000000	23956.000000	23956.000000	23956.000000	
	mean	14926.754759	144878.610786	1.604024	1.864627	1.564911	
	std	8634.851160	119857.561571	0.489070	0.733832	0.518820	
	min	1.000000	10000.000000	1.000000	1.000000	1.000000	
	25%	7467.250000	50000.000000	1.000000	1.000000	1.000000	
	50%	14937.500000	110000.000000	2.000000	2.000000	2.000000	
	75%	22309.250000	200000.000000	2.000000	2.000000	2.000000	
	max	30000.000000	800000.000000	2.000000	4.000000	3.000000	
		AGE	PAY_0	PAY_2	PAY_3	PAY_4	\
	count	23956.000000	23956.000000	23956.000000	23956.000000	23956.000000	
	mean	35.176866	0.040073	-0.060486	-0.135123	-0.181165	
	std	9.319899	1.121869	1.228231	1.232781	1.214463	
	min	21.000000	-2.000000	-2.000000	-2.000000	-2.000000	
	25%	28.000000	-1.000000	-1.000000	-1.000000	-1.000000	
	50%	33.000000	0.000000	0.000000	0.000000	0.000000	
	75%	41.000000	0.000000	0.000000	0.000000	0.000000	
	max	75.000000	8.000000	8.000000	8.000000	8.000000	
		PAY_5	PAY_6	SEP-Outstandin	ng AUG-Outstan	nding \	
	count	23956.000000	23956.000000	23956.00000	2.395600	0e+04	
	mean	-0.229838	-0.255260	31707.33219	2.765466	6e+04	

```
34603.063009
std
           1.178966
                          1.196043
                                                           3.894106e+04
min
          -2.00000
                         -2.00000
                                          -896.000000
                                                          -1.024731e+06
25%
          -1.000000
                         -1.000000
                                                           0.00000e+00
                                          2500.000000
50%
           0.000000
                          0.00000
                                        18568.500000
                                                           1.656750e+04
           0.000000
75%
                          0.000000
                                        49058.250000
                                                           4.717450e+04
max
           8.000000
                          8.000000
                                       134886.000000
                                                           3.206230e+05
       JUL-Outstanding
                          JUN-Outstanding
                                           MAY-Outstanding
                                                              APR-Outstanding
          23956.000000
                             23956.000000
                                               23956.000000
                                                                 23956.000000
count
mean
          27466.613375
                             25646.122099
                                               24103.911838
                                                                 23242.997328
          38479.470290
                             37019.395019
                                               36023.394211
                                                                 36973.908497
std
        -490073.000000
                                             -414380.000000
min
                          -502024.000000
                                                               -684896.000000
25%
                                                                      0.000000
             157.000000
                               131.250000
                                                   0.000000
50%
          16637.500000
                             15844.500000
                                               14390.000000
                                                                 12813.000000
75%
          45877.500000
                             41389.500000
                                               37338.750000
                                                                 35836.250000
         854454.000000
                           434497.000000
                                              492109.000000
                                                                484100.000000
max
       DefaultPayment
         23956.000000
count
              0.235933
mean
std
              0.424589
min
              0.000000
25%
              0.000000
50%
              0.000000
75%
              0.000000
              1.000000
{\tt max}
```

In [20]: data.shape

Out [20]: (23956, 19)

Binning Outstanding amount

```
In [21]: binwidth = round(int((max(data['SEP-Outstanding']) - min(data['SEP-Outstanding']))/5)
         bins = range(int(min(data['SEP-Outstanding'])),int(max(data['SEP-Outstanding'])),binw
         print(binwidth)
         print(bins)
         group_names=['1','2','3','4']
         group_names=['Below $30k','Between $30k - $60k','Between $60k - $90k','Above $90k']
         data['OS binned'] = pd.cut(data["SEP-Outstanding"],bins,labels=group names)
30000
range(-896, 134886, 30000)
In [22]: data['OS_binned'].value_counts()
```

```
Out[22]: Below $30k 14422

Between $30k - $60k 4753

Between $60k - $90k 2559

Above $90k 1567

Name: OS_binned, dtype: int64
```

9 Binning Age

```
In [23]: binwidth = 10
         bins = range(min(data['AGE']), max(data['AGE']), binwidth)
         print(binwidth)
         print(bins)
         group_names=['1','2','3','4','5','6','7']
         group_names=['Age 20-30','Age 30-40','Age 40-50','Age 50-60','Age 60-70']
         data['AGEGroup'] = pd.cut(data['AGE'],bins,labels=group names)
10
range(21, 75, 10)
In [24]: data['AGEGroup'].value_counts()
Out[24]: Age 20-30
                      10161
         Age 30-40
                       7912
         Age 40-50
                       4273
         Age 50-60
                       1383
         Age 60-70
                        154
         Name: AGEGroup, dtype: int64
```

10 Analyze the trend on outstanding amount for the bank

11 1. Overall outstanding amount trend

```
L.get_texts()[0].set_text('Male')
L.get_texts()[1].set_text('Female')
ax1.set(title='Outstanding Amount trend - Sex', xlabel='Outstanding Amount', ylabel='
# plot 2 - Outstanding trend - Education
DefaultgroupByEDUBucket = data[['OS_binned', 'EDUCATION']].groupby(['OS_binned', 'EDUCA'
DefaultgroupByEDUBucketSum = DefaultgroupByEDUBucket['EDUCATION'].aggregate(np.sum).uz
DefaultgroupByEDUBucketSum.plot(kind='bar',title='Outstanding Amount: By EDUCATION',a:
L2=ax2.legend()
L2.get_texts()[0].set_text('Graduate school')
L2.get_texts()[1].set_text('University')
L2.get_texts()[2].set_text('High school')
L2.get_texts()[3].set_text('Others')
ax2.set(title='Outstanding Amount trend - Education', xlabel='Outstanding Amount', ylabel='Outstanding 
# plot 3 - Outstanding trend - Marital Status
DefaultgroupByMARBucket = data[['OS_binned', 'MARRIAGE']].groupby(['OS_binned', 'MARIAGE']].groupby(['OS_binned', 'MARRIAGE']].groupby(['OS_binned', 'MARRIA
DefaultgroupByMARBucketSum = DefaultgroupByMARBucket['MARRIAGE'].aggregate(np.sum).ung
DefaultgroupByMARBucketSum.plot(kind='bar',title='Outstanding Amount: By Marital Stat
L3=ax3.legend()
L3.get_texts()[0].set_text('Married')
L3.get_texts()[1].set_text('Single')
L3.get_texts()[2].set_text('Others')
ax3.set(title='Outstanding Amount trend - Marital Status', xlabel='Outstanding Amount
# plot 4 - Outstanding trend - Age
DefaultgroupByAgeBucket = pd.crosstab(data['AGEGroup'],data['OS_binned'])
#DefaultgroupByAgeBucket = pd.crosstab(data['OS_binned'],data['AGEGroup'])
DefaultgroupByAgeBucket.plot(kind='bar',title='Outstanding Amount: By AGEGroup',ax=ax-
ax4.set(title='Outstanding Amount trend - AGEGroup', xlabel='Outstanding Amount', yla
fig.tight_layout()
plt.show()
```


12 2. Number of customers with outstanding amount (in different outstanding amount buckets)

```
In [26]: # Plot1: Outstanding Amount trend
    fig = plt.figure(figsize=(25, 10))

ax1=fig.add_subplot(131)
    var = data['OS_binned'].value_counts()

plt.style.use('fivethirtyeight') # using the fivethirtyeight matplotlib theme

var.plot(x = 'OutStanding Amount',kind='bar',title='Overall Outstanding Amount trend'

# Plot2: Outstanding Amount trend - DefaultPayment: NO
    ax2=fig.add_subplot(132)

dataDefaultO=data[data['DefaultPayment']==0]
    dataDefault1=data[data['DefaultPayment']==1]
```

```
var0 = dataDefault0['OS_binned'].value_counts()
var1 = dataDefault1['OS_binned'].value_counts()

#plt.xlabel('Outstanding amount bucket')
#plt.ylabel('No of Customers')

#p1 = var0.plot(x = 'OutStanding Amount',kind='bar',title='Overall Outstanding Amount
var0.plot(x = 'OutStanding Amount',kind='bar',title='Outstanding Amount trend - Defau
#plt.show()

# Plot3: Outstanding Amount trend - DefaultPayment: YES

ax3=fig.add_subplot(133)

#fig = plt.figure(figsize=(10, 5))
#p2 = var1.plot(x = 'OutStanding Amount',kind='bar',title='Overall Outstanding Amount
var1.plot(x = 'OutStanding Amount',kind='bar',title='Outstanding Amount trend - Defau
ax1.set(ylabel='No of Customers')
plt.tight_layout()
plt.show()
```


13 3. Age of outstanding amount analysis

```
'AGEGroup'],
dtype='object')

In [28]: AgeDF = AgeDF[(AgeDF['PAY_0'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_2'] > 0) & (AgeDF['PAY_3'] > 0) & (AgeDF['PAY_3']
```


14 Is there any relationship between in outstanding amount / trend with respect to age, education, marriage, credit limit?

15 a. Default payment by demographic variables

```
In [30]: fig= plt.figure(figsize=(15,7))
```

^{**} No significant behaviour observed of outstanding amount / trend affect on the default behavior in next month

```
# Payment Default: By Sex
ax1= fig.add_subplot(131)
DefaultgroupBySexBucket = data[['DefaultPayment', 'SEX']].groupby(['DefaultPayment', '
DefaultgroupBySexBucketSum = DefaultgroupBySexBucket['SEX'].aggregate(np.sum).unstack
DefaultgroupBySexBucketSum.plot(kind='bar',title='Payment Default: By Sex',ax=ax1)
L=ax1.legend()
L.get_texts()[0].set_text('Male')
L.get_texts()[1].set_text('Female')
#plt.xlabel('Outstanding amount bucket')
plt.ylabel('No of Customers')
# Payment Default: By EDUCATION
ax2= fig.add_subplot(132)
DefaultgroupByEduBucket = data[['DefaultPayment', 'EDUCATION']].groupby(['DefaultPayment'])
DefaultgroupByEduBucketSum = DefaultgroupByEduBucket['EDUCATION'].aggregate(np.sum).us
DefaultgroupByEduBucketSum.plot(kind='bar',title='Payment Default: By Education',ax=a
L=ax2.legend()
L.get_texts()[0].set_text('graduate school')
L.get_texts()[1].set_text('university')
L.get_texts()[2].set_text('high school')
L.get_texts()[3].set_text('others')
plt.xlabel('Outstanding amount bucket')
plt.ylabel('No of Customers')
# Payment Default: By Marital Status
ax3= fig.add_subplot(133)
DefaultgroupByMarriageBucket = data[['DefaultPayment', 'MARRIAGE']].groupby(['DefaultPayment'])
DefaultgroupByMarriageBucketSum = DefaultgroupByMarriageBucket['MARRIAGE'].aggregate(
DefaultgroupByMarriageBucketSum.plot(kind='bar',title='Payment Default: By Marital Stellar Ste
L=ax3.legend()
L.get_texts()[0].set_text('married')
L.get_texts()[1].set_text('single')
L.get_texts()[2].set_text('others')
plt.xlabel('Outstanding amount bucket')
plt.ylabel('No of Customers')
plt.tight_layout()
plt.show()
```


**The above plots do not show any significant impact of demographic variables on Default Payment

16 b. Default payment by age & sex

```
In [31]: # Default payment by Age and Sex
         datasetDefaultNo = data.query('DefaultPayment==0')
         datasetDefaultYes = data.query('DefaultPayment==1')
         datasetDefaultNoMale = datasetDefaultNo.query('SEX==1')
         datasetDefaultNoFemale = datasetDefaultNo.query('SEX==2')
         datasetDefaultYesMale = datasetDefaultYes.query('SEX==1')
         datasetDefaultYesFemale = datasetDefaultYes.query('SEX==2')
In [32]: from matplotlib import gridspec
         fig = plt.figure(figsize=(16, 10))
         plt.style.use('fivethirtyeight') # using the fivethirtyeight matplotlib theme
         #qs = gridspec.GridSpec(1, 2, width_ratios=[1, 1])
         gs = gridspec.GridSpec(2, 2)#, width_ratios=[1, 1])
         ### Plot 1 "Male By Age"
         ax0 = plt.subplot(gs[0,0])
         ax0.set_title('Payment Defaults- No : Male By Age', fontsize=10,fontweight="bold")
         ax0.set_xlabel('Male Age')
         ax0.set_ylabel('No of customers',fontsize=10)
         ax0.set_ylim(0, 3000)
```

```
plt.hist(datasetDefaultNoMale['AGE'],bins=10, histtype='bar', color='blue')
### Plot 2 "Male By Age"
ax1 = plt.subplot(gs[0,1])
ax1.set_title('Payment Defaults- Yes : Male By Age', fontsize=10,fontweight="bold")
ax1.set_xlabel('Male Age')
ax1.set_ylabel('No of customers',fontsize=10)
ax1.set_ylim(0, 3000)
plt.hist(datasetDefaultYesMale['AGE'],bins=10, histtype='bar', color='blue')
### Plot 3 "Female By Age"
ax2 = plt.subplot(gs[1,0])
ax2.set_title('Payment Defaults- No: Female By Age', fontsize=10,fontweight="bold")
ax2.set_xlabel('Female Age')
ax2.set_ylabel('No of customers',fontsize=10)
ax2.set_ylim(0, 3000)
plt.hist(datasetDefaultNoFemale['AGE'],bins=10, histtype='bar', color='pink')
### Plot 4 "Female By Age"
ax3 = plt.subplot(gs[1,1])
ax3.set_title('Payment Defaults- Yes: Female By Age', fontsize=10,fontweight="bold")
ax3.set_xlabel('Female Age')
ax3.set_ylabel('No of customers',fontsize=10)
ax3.set_ylim(0, 3000)
plt.hist(datasetDefaultYesFemale['AGE'],bins=10, histtype='bar', color='pink')
plt.tight_layout()
plt.show()
```


^{**} The above plots do not show any significant impact of age and sex on Default Payment

17 c. Outstanding amount Vs Credit Limit

13948.0

2

```
In [33]: dataset['AboveLimit'] = dataset['SEP-Outstanding'] - dataset['LIMIT_BAL']
          dataset.head()
                                                                                       PAY_4
Out[33]:
                                   EDUCATION
                 LIMIT_BAL
                              SEX
                                               MARRIAGE
                                                           AGE
                                                                PAY_0
                                                                        PAY_2
                                                                                PAY_3
             ΙD
                                                            24
                                                                    2
                                                                            2
         0
              1
                   20000.0
                                                       1
                                                                                   -1
                                                                                           -1
              2
                                            2
                                                       2
          1
                  120000.0
                                2
                                                            26
                                                                   -1
                                                                                    0
                                                                                            0
                                            2
                                                       2
          2
              3
                                2
                   90000.0
                                                            34
                                                                    0
                                                                                    0
                                                                                            0
         3
              4
                   50000.0
                                2
                                            2
                                                       1
                                                            37
                                                                    0
                                                                            0
                                                                                            0
                                                                                    0
              5
                   50000.0
                                            2
          4
                                                       1
                                                            57
                                                                   -1
                                                                            0
                                                                                   -1
                                                                                            0
                                                                  APR-Outstanding
                          PAY_AMT5
                                     PAY_AMT6
                                                DefaultPayment
                                           0.0
         0
                                                                                0.0
                                0.0
          1
                                0.0
                                        2000.0
                                                               1
                                                                            1261.0
          2
                                                               0
                             1000.0
                                        5000.0
                                                                           10549.0
          3
                             1069.0
                                        1000.0
                                                               0
                                                                           28547.0
                              689.0
                                         679.0
                                                                           18452.0
                                                   JUL-Outstanding
             MAY-Outstanding
                                JUN-Outstanding
                                                                     AUG-Outstanding
         0
                          0.0
                                             0.0
                                                              689.0
                                                                                2413.0
         1
                       3455.0
                                          2272.0
                                                             1682.0
                                                                                 725.0
```

13331.0

12559.0

12527.0

```
3
                    27890.0
                                     27214.0
                                                      48091.0
                                                                       46214.0
                    18457.0
                                     11940.0
                                                      25835.0
                                                                      -31011.0
            SEP-Outstanding AboveLimit
                     3913.0 -16087.0
        0
         1
                     2682.0 -117318.0
        2
                    27721.0
                              -62279.0
         3
                    44990.0
                               -5010.0
                     6617.0
                              -43383.0
         [5 rows x 32 columns]
In [34]: # function to check the limit
        def limitCheck(df, C, X):
            df_copy = df.copy()
             # 1 if crossed else 0
             df_copy['LimitExceed'] = (df_copy[C] >= X)*1
             return df_copy
In [35]: dataset = limitCheck(dataset, 'AboveLimit', 0)
In [36]: dataset['LimitExceed'].value_counts()
Out[36]: 0
              28935
               1011
        Name: LimitExceed, dtype: int64
In [37]: DFct = pd.crosstab(dataset['LimitExceed'],dataset['DefaultPayment'])
In [38]: fig = plt.figure(figsize=(10,5))
        ax1 = fig.add_subplot(111)
        DFct.plot(kind='bar',ax=ax1)
        ax1.set(title='Default Payment Vs Credit limit')
        plt.show()
```


** The above plot does not show any significant impact of customer's outstanding amount (exceeding their limit) on Default Payment

18 Target data distribution

19 Correlation

20 Feature selction - based on correlation

```
In [41]: # top features corrected with DefaultPayments
         SelectFeatures = ['PAY_0','PAY_2','PAY_3','PAY_4','PAY_5','PAY_6','DefaultPayment']
In [42]: FinalData = data[SelectFeatures]
         FinalData.head()
            PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 DefaultPayment
Out [42]:
         0
                2
                       2
                             -1
                                     -1
                                            -2
                                                   -2
         1
               -1
                       2
                              0
                                      0
                                             0
                                                    2
                                                                     1
         2
                                                                     0
                0
                       0
                              0
                                             0
                                                    0
                                      0
         3
                0
                       0
                              0
                                      0
                                             0
                                                    0
                                                                     0
               -1
                                                                     0
```

21 Prediction model: Default Payment using Machine Learning

In [44]: FinalData.describe()

Out $[44]$:		PAY_O	PAY_2	PAY_3	PAY_4	PAY_5	\
	count	23956.000000	23956.000000	23956.000000	23956.000000	23956.000000	
	mean	0.040073	-0.060486	-0.135123	-0.181165	-0.229838	
	std	1.121869	1.228231	1.232781	1.214463	1.178966	
	min	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	
	25%	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	
	75%	0.000000	0.000000	0.000000	0.000000	0.000000	
	max	8.000000	8.000000	8.000000	8.000000	8.000000	

```
PAY_6 DefaultPayment
       23956.000000
                        23956.000000
count
          -0.255260
                            0.235933
mean
std
           1.196043
                            0.424589
          -2.000000
                            0.000000
min
25%
          -1.000000
                            0.000000
50%
           0.000000
                            0.000000
75%
           0.000000
                            0.000000
           8.000000
                            1.000000
max
```

```
In [45]: # drop instances that have NA
    before_rows = data.shape[0]
    FinalData = FinalData.dropna()
    after_rows = data.shape[0]
    before_rows,after_rows,FinalData.shape
```

```
In [46]: FinalData.columns
Out[46]: Index(['PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'DefaultPayment'], dtype=
In [47]: y = FinalData.iloc[:,6].values
        У
Out[47]: array([1, 1, 0, ..., 0, 1, 1], dtype=int64)
In [48]: FeatuesPredictors = ['PAY_0','PAY_2','PAY_3','PAY_4','PAY_5','PAY_6']
        X=FinalData[FeatuesPredictors].values
        Х
Out[48]: array([[ 2, 2, -1, -1, -2, -2],
               [-1, 2, 0, 0, 0, 2],
               [0, 0, 0, 0, 0, 0],
               [-1, -1, -1, -1, 0, 0],
               [4, 3, 2, -1, 0, 0],
               [ 0, 0, 0, 0, 0]], dtype=int64)
21.0.1 More Importance to closest months
In [49]: Importance = np.array([1.2,1.0,0.6,0.4,0.2,0.05])
In [50]: X = X*Importance
        Х
Out[50]: array([[ 2.4, 2., -0.6, -0.4, -0.4, -0.1],
               [-1.2, 2., 0., 0., 0., 0.]
               [0., 0., 0., 0., 0., 0.]
               [-1.2, -1., -0.6, -0.4, 0., 0.]
               [4.8, 3., 1.2, -0.4, 0., 0.],
               [0., 0., 0., 0., 0., 0.]
    Data split: Training set and Test set
22
In [51]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123)
```

Out [45]: (23956, 23956, (23956, 7))

In [52]: # scale

from sklearn.preprocessing import StandardScaler

X_train = sc_X.fit_transform(X_train)
X_test = sc_X.fit_transform(X_test)

sc_X = StandardScaler()

23 Final Model

```
In [53]: # Fit Random forest to the training set
         from sklearn.ensemble import RandomForestClassifier
         RF_classifier = RandomForestClassifier(n_estimators = 50,criterion='entropy',random_s
         \#RF\_classifier = RandomForestClassifier(n\_estimators = 5, random\_state=0)
         RF_classifier.fit(X_train,y_train)
Out[53]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=1,
                     oob_score=False, random_state=0, verbose=0, warm_start=False)
In [54]: y_RFpredictions = RF_classifier.predict(X_test)
In [55]: # Measures Accuracy of the Classifier
         RFAccuracy = round(accuracy_score(y_true=y_test,y_pred=y_RFpredictions),3)
         RFAccuracy
Out[55]: 0.807
In [56]: # Confusion matrix
         from sklearn.metrics import confusion_matrix
         cm = confusion_matrix(y_test,y_RFpredictions)
Out[56]: array([[5159, 331],
                [1055, 642]], dtype=int64)
In [57]: from sklearn.metrics import roc_curve
         fpr, tpr, _ =roc_curve(y_test,y_RFpredictions)
In [58]: from sklearn.metrics import auc
         roc_auc = auc(fpr, tpr)
         print(roc_auc)
0.6590116169861525
In [59]: from sklearn.metrics import precision_recall_fscore_support
         report_lr= precision,recall,fbeta_score,support = precision_recall_fscore_support(y_te
         precision,recall,fbeta_score,support
Out[59]: (array([0.83022208, 0.65981501]),
          array([0.93970856, 0.37831467]),
          array([0.88157895, 0.48089888]),
          array([5490, 1697], dtype=int64))
```

```
In [60]: import matplotlib.pyplot as plt

    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b',label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1],'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1.05])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


24 model statistics

```
print(RFAccuracy*100,'%')
      print('\n --- Classification Report ---\n')
      from sklearn.metrics import classification_report
      target=['0','1']
      print(classification_report(y_test,y_RFpredictions, target_names=target))
      *************************************
--- Confusion Matrix ---
[[5159 331]
[1055 642]]
--- Accuracy ---
80.7 %
--- Classification Report ---
         precision
                  recall f1-score
                                support
       0
             0.83
                    0.94
                           0.88
                                  5490
             0.66
                    0.38
                           0.48
                                  1697
avg / total
            0.79
                    0.81
                           0.79
                                  7187
************************************
```