## Chapter 1

## Theorem 1.1

**WTS.** Let  $\mathcal{M}(\mathcal{F})$  be the  $\sigma$ -algebra generated by  $\{$ , if  $\mathcal{E}$  is a subset of  $\mathbb{P}(X)$ , with  $\mathcal{E} \subseteq \mathcal{M}(\mathcal{F})$ , then  $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\mathcal{F})$ .

*Proof.* Notice that because  $\mathcal{E} \subseteq \mathcal{M}(\mathcal{F})$ ,

$$\mathcal{M}(\mathcal{F}) \in \{\mathcal{M}, \mathcal{E} \subseteq \mathcal{M}, \mathcal{M} \text{ is a } \sigma\text{-algebra}\}$$

Taking the intersection, noting that  $\mathcal{M}(\mathcal{E})$  is the intersection of all  $\sigma$ -algebras containing  $\mathcal{E}$  as a subset, we have

$$\bigcap \{\mathcal{M}(\mathcal{F})\} \supseteq \bigcap \{\mathcal{M}, \ \mathcal{E} \subseteq \mathcal{M}, \ \mathcal{M} \ \mathrm{is \ a \ } \sigma\text{-algebra}\}$$

And

$$\mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\mathcal{F})$$

## Theorem 1.2

**WTS.** The Borel  $\sigma$ -algebra of  $\mathbb{R}$ ,  $\mathbb{B}$  is generated by the following

- The family of open intervals  $\mathcal{E}_1 = \{(a,b), \ a < b\},$
- The family of closed intervals  $\mathcal{E}_2 = \{[a,b], a < b\}$
- The family of half-open intervals  $\mathcal{E}_3 = \{(a,b], a < b\}$  or  $\mathcal{E}_4 = \{[a,b), a < b\}$
- The open rays  $\mathcal{E}_5 = \{(a, +\infty), a \in \mathbb{R}\}\ or \mathcal{E}_6 = \{(-\infty, a), a \in \mathbb{R}\}$
- The closed rays  $\mathcal{E}_7 = \{[a, +\infty), a \in \mathbb{R}\}\ \text{or } \mathcal{E}_8 = \{(-\infty, a], a \in \mathbb{R}\}$

*Proof.* By definition,  $\mathbb{B}$  is generated by the family of all open sets in  $\mathbb{R}$ , but every open set is a countable union of open intervals. Therefore

$$\mathcal{T}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E}_1) \implies \mathbb{B} \subseteq \mathcal{M}(\mathcal{E}_1)$$

Conversely, every open interval is an open set, hence

$$\mathcal{E}_1 \subseteq \mathcal{T}_{\mathbb{R}} \subseteq \mathbb{B} \implies \mathcal{M}(\mathcal{E}_1) \subseteq \mathbb{B}$$

Every closed interval can also be written as a countable intersection of open intervals, for every [a, b], with a < b, we have

$$[a,b] = \bigcap_{n \ge 1} (a - n^{-1}, b + n^{-1}) \tag{1}$$

Indeed, fix any  $x \in [a, b]$  then for every  $n \ge 1$ ,

$$a - n^{-1} < a \le x \le b < b + n^{-1}$$

So  $x \in \bigcap_{n\geq 1} (a-n^{-1}, b+n^{-1})$ . If x an element of the left member, then for every  $n\geq 1$ ,

$$a - n^{-1} < x \implies a - x \le 0$$

Similarly for  $x \leq b$ , therefore equation (1) is valid, and  $\mathcal{E}_2 \subseteq \mathbb{B} = \mathcal{M}(\mathcal{E}_1)$ . To show the reverse estimate, every open interval can be written as a countable union of closed intervals,

$$(a,b) = \bigcup_{n \ge 1} [a + n^{-1}, b - n^{-1}]$$
 (2)

To show that the above estimate is indeed true, fix any  $x \in (a, b)$ , then

$$a < x < b \iff a < a + n^{-1} \le x \le b - n^{-1} < b$$
  
 $\iff x \in \bigcup_{n>1} [a + n^{-1}, b - n^{-1}]$ 

So that equation (2) holds. By similar argumentation we have  $\mathcal{E}_1 \subseteq \mathcal{M}(\mathcal{E}_2) \implies \mathcal{M}(\mathcal{E}_2) = \mathcal{M}(\mathcal{E}_1)$ .

For  $\mathcal{E}_3$ ,  $\mathcal{E}_4$ 

- $(a,b] = \bigcap_{n>1} (a,b+n^{-1})$ , proves  $\mathcal{M}(\mathcal{E}_3) \subseteq \mathcal{M}(\mathcal{E}_1)$ ,
- $(a,b) = \bigcup_{n>1} (a,b-n^{-1}]$ , proves  $\mathcal{M}(\mathcal{E}_1) \subseteq \mathcal{M}(\mathcal{E}_3)$ ,
- $[a,b) = \bigcup_{n>1} [a,b-n^{-1}]$ , proves  $\mathcal{M}(\mathcal{E}_4) \subseteq \mathcal{M}(\mathcal{E}_2)$ ,
- $[a,b] = \bigcap_{n>1} [a,b+n^{-1})$ , proves  $\mathcal{M}(\mathcal{E}_2) \subseteq \mathcal{M}(\mathcal{E}_4)$

So that  $\mathcal{M}(\mathcal{E}_1) = \mathcal{M}(\mathcal{E}_2) = \mathcal{M}(\mathcal{E}_3) = \mathcal{M}(\mathcal{E}_4) = \mathbb{B}$ . By taking complements of each element we get  $\mathcal{M}(\mathcal{E}_5) = \mathcal{M}(\mathcal{E}_8)$  and  $\mathcal{M}(\mathcal{E}_6) = \mathcal{M}(\mathcal{E}_7)$ . Notice also that

- $(a,b] = (a,+\infty) \cap (-\infty,b]$ , proves  $\mathcal{E}_3 \subseteq \mathcal{M}(\mathcal{E}_5)$ , and  $\mathcal{M}(\mathcal{E}_3) \subseteq \mathcal{M}(\mathcal{E}_5)$ .
- $(a, +\infty) = \bigcup_{n \geq 1} (a, a + n]$ , proves  $\mathcal{E}_5 \subseteq \mathcal{M}(\mathcal{E}_3)$ , and  $\mathcal{M}(\mathcal{E}_5) \subseteq \mathcal{M}(\mathcal{E}_3)$ .
- $[a,b) = [a,+\infty) \cap (-\infty,b)$ , proves  $\mathcal{E}_4 \subseteq \mathcal{M}(\mathcal{E}_6)$ , and  $\mathcal{M}(\mathcal{E}_4) \subseteq \mathcal{M}(\mathcal{E}_7)$ ,
- $[a, +\infty) = \bigcup_{n \ge 1} [a, a + n)$ , proves  $\mathcal{E}_7 \subseteq \mathcal{M}(\mathcal{E}_4)$ , and  $\mathcal{M}(\mathcal{E}_7) \subseteq \mathcal{M}(\mathcal{E}_4)$ .

Finally,  $\mathcal{M}(\mathcal{E}_3) = \mathcal{M}(\mathcal{E}_5) = \mathcal{M}(\mathcal{E}_8) = \mathbb{B}$  and  $\mathcal{M}(\mathcal{E}_4) = \mathcal{M}(\mathcal{E}_6) = \mathcal{M}(\mathcal{E}_7) = \mathbb{B}$ .

## Theorem 1.3

**WTS.** If A is countable, then  $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$  is the  $\sigma$ -algebra generated by

$$W \coloneqq \left\{ \prod_{lpha \in A} E_lpha, \; E_lpha \in \mathcal{M}_lpha 
ight\}$$

*Proof.* We agree to define

$$V\coloneqq\left\{\pi_{lpha}^{-1}(E_{lpha}),\ E_{lpha}\in\mathcal{M}_{lpha}
ight\}$$

By definition, V generates  $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$ . Fix any element in  $x = \pi_{\alpha}^{-1}(E_{\alpha}) \in V$ , then

$$\pi_{\alpha}(x) \in E_{\alpha}, \ \pi_{\beta \neq \alpha}(x) \in X_{\beta}$$

Then  $x \in W$  if we choose  $x = \prod_{c \in A} E_c$ , for  $E_c = E_\alpha$  if  $c = \alpha$ , and  $E_c = X_c$  if  $c \neq \alpha$ .

| Folland Reading | Theorem 1.4 |
|-----------------|-------------|
|                 |             |
| Theorem 1.4     |             |
| WTS.            |             |
| Proof.          |             |

| Folland Reading | Theorem 1.5 |
|-----------------|-------------|
|                 |             |
| Theorem 1.5     |             |
| WTS.            |             |
| Proof.          |             |

| Folland Reading | Theorem 1.6 |
|-----------------|-------------|
|                 |             |
| Theorem 1.6     |             |
| WTS.            |             |
| Proof.          |             |

| Folland Reading | Theorem 1.7 |
|-----------------|-------------|
|                 |             |
| Theorem 1.7     |             |
| WTS.            |             |
| Proof.          |             |

| Folland Reading | Theorem 1.8 |
|-----------------|-------------|
|                 |             |
| Theorem 1.8     |             |
| WTS.            |             |
| Proof.          |             |

| Folland Reading | Theorem 1.9 |
|-----------------|-------------|
|                 |             |
| Theorem 1.9     |             |
| WTS.            |             |
| Proof.          |             |

| Folland Reading | Theorem 1.10 |
|-----------------|--------------|
|                 |              |
| Theorem 1.10    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.11 |
|-----------------|--------------|
|                 |              |
| Theorem 1.11    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.12 |
|-----------------|--------------|
|                 |              |
| Theorem 1.12    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.13 |
|-----------------|--------------|
|                 |              |
| Theorem 1.13    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.14 |
|-----------------|--------------|
|                 |              |
| Theorem 1.14    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.15 |
|-----------------|--------------|
|                 |              |
| Theorem 1.15    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.16 |
|-----------------|--------------|
|                 |              |
| Theorem 1.16    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.17 |
|-----------------|--------------|
|                 |              |
| Theorem 1.17    |              |
| WTS.            |              |
| Proof.          |              |

| Folland Reading | Theorem 1.18 |
|-----------------|--------------|
|                 |              |
| Theorem 1.18    |              |
| WTS.            |              |
| Proof.          |              |