NOTES ON EXPERIMENTAL DESIGN

TAIM - M.EIC - 2023
RUI RODRIGUES

EXPERIMENT PLAN CHECKLIST

- Goal of the tests
- Where, When, Duration
- Equipment, Software
- Initial State, System load
- Coordinator / observer / facilitator
- Participants
- Test methods
- Tasks
- Data to collect
- Help resources, Facilitator help
- Test completion criteria
- Success criteria
- Experiment Protocol
- Pilot tests

EXPERIMENT PROTOCOL (GUIDE, SCRIPT)

- Introduction and objectives
- Informed Consent form
- Pre-test questionnaire
- Tasks
 - Task-specific questionnaire(s)
- Post-test questionnaire
- Interview

PILOT TESTS

- Anyone
- 2 to 3 people
- Test the procedure
 - Duration
 - Instructions
 - Tasks
 - Questionnaire
 - o Etc.

PARTICIPANTS

PARTICIPANTS - WHO?

- Representatives of the target users (or approximate)
- Knowing the general tasks, domain and vocabulary
- Balance in gender, age, etc.
 (unless e.g. system is gender-specific)

PARTICIPANTS - HOW MANY?

• Formative:

- 1 user -> 33% of problems
- o 5 users -> 85%
- 0 15 users -> 99%
- o 3 iterations with 5 users -> better than 1 x 15

Summative

 At least 10 to 20, to have a sample large enough for statistics

METHODS

METHODS

- Formative Assessment (usability problems)
 - Direct observation in the laboratory
 - Think aloud
 - Wizard-of-Oz
 - Interviews / Questionnaires
- Summative Assessment (performance measures)
 - Tests of usability
 - A/B tests

A/B TESTS

Between-subjects
 (inter-groups)

Group 1
System A

Within-subjects
 (intra-group)

ORDER EFFECTS ON INTRA-GROUP

- Order may play a role (e.g. learning A, facilitates B)
- So elements should have systems in different orders
 - Randomized
 - Sequenced
 - Latin-Squares

A	В	C	D
В	C	D	A
C	D	A	В
D	A	В	С

VARIABLES TO BE TESTED

• Dependent variables

- Its value depends on the system to be tested
- Variables measured in the study (e.g. time, errors, SUS)
- Related to the purpose of the prototype

• Independent Variables

- They do not depend on the variables we are measuring
- Solution characteristics (e.g. layout, color, etc.)
- Characteristics of the participants (e.g. age, etc.)

TASKS

TASKS

- Real and representative
- What and not how
- Specific
- Mixes complexities
- Summative (comparative) evaluation
 - a. Do not favor one of the solutions
 - b. Use the same tasks

EXAMPLES

Wrong:

Choose the option Uber to buy a trip and then write 'Aliados' and select the first option

• Right:

Buy a trip through the Uber service to Aliados

DATA

DATA TYPES

• Objective

- They do not depend on the predisposition (bias) inherent to the human being
- o E.g., time, errors, heart rate, etc.

• Subjective

- Enhances the user's perception
- o E.g., preference, SUS, etc.

DATA TYPES

Quantitative (quantity, specific and measurable)

- Did you complete the task? Yes/No
- o How long did it take?
- O How many errors?
- Which one did you prefer? A or B?

Qualitative (quality, "open")

- "What did you like most about the experience?"
- "What do you think of the home screen?"

DATA COLLECTION

Direct observation

- Observed users performing tasks
- In person or video

• Indirect observation

- Diaries manual
- Interaction logs automatic

INSTRUMENTATION

- Timestamp
- Player location
- Nr. bullets
- Events (shot, hit, died, ...)
- Where are you aiming?

MEASURING USABILITY

USABILITY MEASURES

- Time to complete task
- Nr. of mistakes made
- Nr. of completed tasks
- Nr. of clicks
- Nr. of help queries
- User satisfaction
- Etc.

STANDARD USABILITY QUESTIONNAIRES

Post-test

- SUS
 - System Usability Scale
- UEQ
 - User Experience Questionnaire
- NASA TLX
 - Task Load Index
- CSUQ
 - Computer System Usability Questionnaire

Post-task

- SEQ
 - Single Ease Question
- ASQ
 - After-Scenario Questionnaire

SYSTEM USABILITY SCALE (SUS)

	The System Usability Scale Standard Version	Strongly disagree		Strongly agree		
		1	2	3	4	5
1	I think that I would like to use this system.	0	0	0	0	(
2	I found the system unnecessarily complex.	0	0	0	0	(
3	I thought the system was easy to use.	0	0	0	0	(
4	I think that I would need the support of a technical person to be able to use this system.	0	0	0	0	(
5	I found the various functions in the system were well integrated.	0	0	0	0	(
6	I thought there was too much inconsistency in this system.	0	0	0	0	,
7	I would imagine that most people would learn to use this system very quickly.	0	0	0	0	,
8	I found the system very cumbersome to use.	0	0	0	0	(
9	I felt very confident using the system.	0	0	0	0	(
10	I needed to learn a lot of things before I could get going with this system.	0	0	0	0	(

NOTES ON EXPERIMENTAL DESIGN

TAIM - M.EIC - 2023
RUI RODRIGUES