How to find pulsar? --with examples

K. J. Lee
Max-Planck Institute for Radio astronomy
kjlee@mpifr-bonn.mpg.de

Dec. 2011

Outline

- Find pulsar candidates
- Identify pulsar candidates
- Confirm pulsar candidates

Software aspects of the lecture is based on the related software manual, see

http://www.cv.nrao.edu/~sransom/presto/

http://sigproc.sourceforge.net/

http://dspsr.sourceforge.net/manuals/dspsr/

http://psrchive.sourceforge.net/

A general picture of pulsar signal

Wide band, persistent, periodical pulsing signal

ISM

- Dispersion
- Scattering
- Scintillation

Interference

- Narrow band
- Can be short duration
- Sin/cos/square/chirp...

Search solitary pulsars

Mitigate RFI

- RFI is one of the bottlenecks for pulsar searching. It limits the survey depth as well as increase the work-load of identifying candidates. It is critical to mitigate RFI at all stages of pulsar searching!
- e.g. In band, peak radio flux of 1 cell phone at 10 km away from telescope is 1e9 (十亿倍) times of that of the most bright pulsar!

Common method of RFI mitigation

- Time domain methods
 - Usually implemented together with the backend
 - Higher order statistics
 - Spatial filtering
- Radio-frequency domain methods
 - Frequency filtering
- Fluctuation spectrum domain methods
 - Birdie lists, candidate filtering
- Other methods
 - Compare multi-beam obs, 0-DM method, likelihood filter

Example

rfifind -time 5 -o 8bit 8bit.fil

	Ten most	significant bi	rdies:		
#	Sigma	Period(ms)	Freq(Hz)	Number	
1	27.91	357.115	2.80022	28315	
2	27.43	178.558	5.60044	2657 4	
3	25.98	238.077	4.20033	2716 4	
4	25.88	119.038	8.40065	27288	
5	23.78	59.5192	16.8013	25303	
6	23.42	714.23	1.40011	27337	
7	23.36	181.804	5.50043	2 4 942	
8	23.28	370.342	2.70021	264 4 8	
9	23.13	59.8756	16.7013	23846	
10	22.87	120.473	8.30065	25915	

Masked too much data

Total number of intervals in the data: 22594

Number of padded intervals: 0 (0.000%)

Number of good intervals: 4367 (19.328%)

Number of bad intervals: 18227 (80.672%)

Example

Mask less

With -time 0.2

Search solitary pulsars

Make a De-dispersing plan

Keep sensitivity under the computational constraints!

- Max DM= DM enough to smear the subband
- Min DM=shift one bin the edge
- DD plan is sensitive to data taking scheme!
- Optimal template method

Softwares

- Code dedicated to the architecture can be much faster than the generic code!
 - Sigproc
 - Dedisperse
 - Psrchive-DSPSR
 - dspsr
 - Presto
 - Prepdat, prepsubband
 - Dedicated program
 - Dedisperseall
 - Many other

Make De-dispersion plan

DM nchan bandwidth sampling-time frequency subband time resolution

```
random@AlphaX:~/work/pulsarsch/dat_tst$ DDplan.pu -d 100 -n 286 -b 140 -t 0.000065 -f 1429 -s 22 -r 0.2
Minimum total smearing : 0.0919 ms
Minimum channel smearing : 6.96e-06 ms
Minimum smearing across BW : 0.00199 ms
                           : 0.065 ms
Minimum sample time
Setting the new 'best' resolution to : 0.2 ms
  Note: ok_smearing > dt (i.e. data is higher resolution than needed)
         New dt is 2 \times 0.065 \text{ ms} = 0.13 \text{ ms}
Best guess for optimal initial dDM is 0.653
 Low DM
                        dDM DownSamp
                                                 #DMs DMs/call calls WorkFract
            High DM
                                       dsubDM
    0.000
             104.000
                        0.50
                                        8.00
                                                 208
                                                           16
                                                                   13
```


De-disperse

prepsubband -nsub 22 -lodm 0.0 -dmstep 10.0 -numdms 3 \
-zerodm -downsamp 2 -mask 8bit_rfifind.mask -o 8bit 8bit.fil

```
-rw-rw-r-- 1 random random 1.1K 8月 13 21:14 8bit_DM20.00.inf
-rw-rw-r-- 1 random random 4.9M 8月 13 21:14 8bit_DM20.00.dat
-rw-rw-r-- 1 random random 1.1K 8月 13 21:14 8bit_DM10.00.inf
-rw-rw-r-- 1 random random 4.9M 8月 13 21:14 8bit_DM10.00.dat
-rw-rw-r-- 1 random random 1.1K 8月 13 21:14 8bit_DM0.00.inf
-rw-rw-r-- 1 random random 4.9M 8月 13 21:14 8bit_DM0.00.dat
```

RFI mask is used here!

Dd plan tell how to chose these parameters.

Search solitary pulsars

Why search pulses with FFT

Most of the time, in the raw de-dispersed data, there is no way to see the single pulses!

FFT

FFT / Stack II

- For any element perform FFT
- Sum the power spectral (incoherently)

N In(N) V.S. SNR (power)~ T V.S.

N In(N/M) T/sqrt(M)

N~5E7 for 1 hour observation

Search for binaries

Hessel 06

Current binary search techniques

Time domain

$$T(t)=T0 (1+v(t)/c);$$

v(t)=v0+a t+ b t^2

Frequency domain

Above formula in frequency space

Incoherent

Softwares

- Sigproc
 - Seek
- Presto
 - Realfft, accelsearch

Check the 0-DM spectrum

prepdata -nobary -o 8bit_dm0 -dm 0.0 -mask 8bit_rfifind.mask -numout 500000 8bit.fil realfft 8bit_dm0.dat explorefft bit_dm0.fft

Find the peaks

accelsearch -numharm 4 -zmax 0 8bit_dm0.dat

```
Searched the following approx numbers of independent points:

1 harmonic: 249967

2 harmonics: 124983

4 harmonics: 62491

Timing summary:

CPU time: 2.080 sec (User: 2.080 sec, System: 0.000 sec)

Total time: 2.100 sec

Final candidates in binary format are in '8bit_dm0_ACCEL_0.cand'.

Final Candidates in a text format are in '8bit_dm0_ACCEL_0'.
```

RFIs

	C	Summed	Coherent	Num	Period	Frequency	FFT 'r'	Freq D		FFT 'z'	Accel	Net	
Cana	Sigma	Power	Power	Harm	(ms)	(Hz)	(bin)	(Hz/	's)	(bins)	(m/s^2)	Notes	
1	15.01	140.38	1313.53	4	714(2)	1.400(4)	45.88(13)	0.000	00(5)	0.00(50)	0.0(1.0)x10^5	PSR B0329+	54
2	9.42	69.56	33.89	4	204.2(2)	4.898(4)	160.50(13	0.000	0(5)	0.00(50)	0.0(2.9)x10^4		
3	8.14	57.60	31.15	4	39.701(6)	25.188(4)	825.38(13	0.000	00(5)	0.00(50)	0.0(5.5)x10^3	18th H B03	29+54
4	7.85	55.16	5.64	4	35.729(5)	27.988(4)	917.13(13	0.000	00(5)	0.00(50)	0.0(5.0)x10 ³	20th H B03	29+54
5	6.68	37.61	38.35	1	32.48(2)	30.79(2)	1009.00(50	0.00	10 (2)	0.0(2.0)	0.0(1.8)x10^4	22nd H B03	29+54
6	6.39	38.69	36.18	2	42.04(1)	23.788(8)	779.50(25	0.000	00(9)	0.0(1.0)	0.0(1.2)x10^4	17th H B03	29+54
7	6.22	42.73	1.84	4	37.610(5)	26.588(4)	871.25(13	0.000	0(5)	0.00(50)	0.0(5.3)x10^3	19th H B03	29+54
8	4.76	33.77	8.74	4	27.484(3)	36.385(4)	1192.25(13	0.000	0(5)	0.00(50)	0.0(3.8)x10^3	26th H B03	29+54
9	4.23	23.78	35.35	1	31.07(1)	32.18(2)	1054.50(50	0.00	00(2)	0.0(2.0)	0.0(1.7)x10 ⁴	23rd H B03	29+54
Cand	Harm	Sigma	Power Loc Po		Raw Power	FFT 'r' (bin)	Pred 'r' (bin)	FFT 'z' (bins)	Pred 'z' (bins)	Phase (rad)	Centroid (0-1)	Purity = 1	Notes
1	1	7.97	34.8(8.	.3)	17.9	45.875(57)	45.88	0.02(39)	0.00	6.17(12)	0.362(35)	1.153(47)	PSR B0329+54
	2	12.90	87(13		28.5	91.750(37)	91.75	0.05(25)	0.00	6.036(76		1.138(30)	2nd H B0329+54
	3	16.48	140(17		43.8	137.625(34)	137.62	0.07(26)	0.00	5.854(60		0.984(27)	3rd H B0329+54
	4	12.81	85(13		56.8	183.500(45)	183.50	0.10(37)	0.00	5.787(76		0.936(37)	4th H B0329+54
2	1	0.14	0.8(1.		0.436	160.53(46)	160.50	-0.1(3.7)	0.00	2.67(79)		0.95(37)	
	2	9.82	51(10		62.4	321.052(52)	321.00	-0.17(39)	0.00	5.421(99		1.038(42)	7th H B0329+54
	3	0.00	0.41(9		0.157	481.58(35)	481.50	-0.3(1.6)	0.00	5.8(1.1)		1.74(28)	
	4	4.85	14.3(5.	3)	9.24	642.10(14)	642.00	-0.3(1.6)	0.00	2.09(19)		0.72(12)	14th H B0329+5
3	1	10.33	57(11)	36.6	825.415(55)	825.38	0.23(45)	0.00	2.166(94	4) 0.530(27)	0.947(44)	18th H B0329+5
	2	4.15	11.0(4.		10.8	1650.83(13)	1650.75	0.5(1.1)	0.00	6.05(21)	0.408(62)	0.89(11)	36th H B0329+5
	3	3.00	6.6(3.	6)	6.21	2476.25(20)	2476.12	0.7(2.1)	0.00	3.00(28)	0.406(79)	0.75(16)	
	4	1.91	3.6(2.		3.76	3301.66(27)	3301.50	0.9(2.8)	0.00	1.05(37)		0.76(22	
		7.75	33.0(8.		40.3	917.196(73)	917.12	0.55(61)	0.00	2.09(12)		0.925(60)	20th H B 1529+5

Create RFI list

- Width is the number of harmonic to zap
- If zap width increase as harmonic counts, grow =1
- To zap celestial source (a known pulsar), bary =1

```
# Freq width harm grow barycentering
4.898 0.001 4 0 0
~
~
~
```

makezaplist.py birds.birds

Example

Example

realfft 8bit_DM*.00.dat

```
-rw-rw-r-- 1 random random 1.1K
                                 8月 13 21:21 8bit_DM20.00.inf
-rw-rw-r-- 1 random random 4.0M
                                 8月
                                     13 21:21 8bit_DM20.00.dat
                                     13 21:21 8bit_DM10.00.inf
-rw-rw-r-- 1 random random 1.1K
                                 8月
-rw-rw-r-- 1 random random 4.0M
                                 8月
                                     13 21:21 8bit_DM10.00.dat
                                     13 21:21 8bit_DM0.00.inf
-rw-rw-r-- 1 random random 1.1K
                                 8月
-rw-rw-r-- 1 random random 4.0M
                                     13 21:21 8bit_DM0.00.dat
                                 8月
                                 8月 13 21:23 8bit_DM20.00.fft
-rw-rw-r-- 1 random random 4.0M
-rw-rw-r-- 1 random random 4.0M |
                                 8月
                                     13 21:23 8bit_DM10.00.fft
-rw-rw-r-- 1 random random 4.0M
                                 8月
                                     13 21:23 8bit_DM0.00.fft
```

zapbirds -zap -zapfile birds.zaplist 8bit_DM10.00.fft

accelsearch -numharm 4 -zmax 0 8bit_DM20.00.dat

```
-rw-rw-r-- 1 random random 1.8K 8月 13 21:31 8bit_DM0.00_ACCEL_0.cand
-rw-rw-r-- 1 random random 18K 8月 13 21:31 8bit_DM0.00_ACCEL_0
-rw-rw-r-- 1 random random 1.6K 8月 13 21:31 8bit_DM10.00_ACCEL_0.cand
-rw-rw-r-- 1 random random 16K 8月 13 21:31 8bit_DM10.00_ACCEL_0
-rw-rw-r-- 1 random random 2.1K 8月 13 21:31 8bit_DM20.00_ACCEL_0.cand
-rw-rw-r-- 1 random random 22K 8月 13 21:31 8bit_DM20.00_ACCEL_0
```

Example

Candidate lists

			Coherent	Num	Period	Frequency	FFT 'r'	Freq Deriv	FFT 'z'	Accel	
Cand	Sigma	Power	Power	Harm	(ms)	(Hz)	(bin)	(Hz/s)	(bins)	(m/s^2)	Notes
1	43.81	994.86	7486.98	4	714.4(5)	1.3997(9)	192.38(13)	0.00000(3)	0.00(50)	0.0(5.7)x10^3	PSR B0329+54
2	25.30	351.72	424.07	4	158.80(2)	6.2973(9)	865.50(13)	0.00000(3)	0.00(50)	0.0(1.3)x10^3	
3	23.05	296.81	1023.96	4	42.030(2)	23.7924(9)	3270.00(13)	0.00000(3)	0.00(50)	0.0(3.3)x10^2	17th H B0329+54
4	18.71	204.83	690.69	4	37.607(1)	26.5909(9)	3654.63(13)	0.00000(3)	0.00(50)	0.0(3.0)x10^2	19th H B0329+54
5	17.76	187.30	346.94	4	35.726(1)	27.9906(9)	3847.00(13)	0.00000(3)	0.00(50)	0.0(2.8)x10^2	20th H B0329+54
6	17.46	181.89	216.44	4	129.92(2)	7.6971(9)	1057.88(13)	0.00000(3)	0.00(50)	0.0(1.0)x10^3	
7	17.41	180.86	3.99	4	31.0667(9)	32.1888(9)	4424.00(13)	0.00000(3)	0.00(50)	0.0(2.5)x10^2	23rd H B0329+54
8	17.39	180.55	117.49	4	204.14(4)	4.8985(9)	673.25(13)	0.00000(3)	0.00(50)	0.0(1.6)x10 ³	
9	16.64	167.62	36.19	4	27.4816(7)	36.3880(9)	5001.13(13)	0.00000(3)	0.00(50)	0.0(2.2)x10^2	26th H B0329+54
LØ	15.79	153.50	18.17	4	29.7721(8)	33.5885(9)	4616.38(13)	0.00000(3)	0.00(50)	0.0(2.4)x10^2	24th H B0329+54
1	11.15	82.37	113.12	2	19.3114(7)	51.783(2)	7117.00(25)	0.00000(5)	0.0(1.0)	0.0(3.1)x10^2	37th H B0329+54
12	10.18	78.17	213.01	4	13.4815(2)	74.1757(9)	10194.63(13)	0.00000(3)	0.00(50)	0.0(1.1)x10^2	H 53 of Cand 1
L3	9.57	71.85	123.69	4	61.244(3)	16.3282(9)	2244.13(13)	0.00000(3)	0.00(50)	0.0(4.9)x10^2	
14	8.19	58.87	43.94	4	38.277(1)	26.1252(9)	3590.63(13)	0.00000(3)	0.00(50)	0.0(3.0)x10^2	
L5	7.99	57.08	55.26	4	85.739(7)	11.6634(9)	1603.00(13)	0.00000(3)	0.00(50)	0.0(6.8)x10^2	
16	7.86	56.03	28.73	4	38.973(1)	25.6587(9)	3526.50(13)	0.00000(3)	0.00(50)	0.0(3.1)x10^2	
17	7.35	51.83	40.00	4	24.6389(6)	40.5862(9)	5578.13(13)	0.00000(3)	0.00(50)	0.0(2.0)x10^2	29th H B0329+54
L8	5.73	40.23	62.78	4	17.4271(3)	57.3818(9)	7886.50(13)	0.00000(3)	0.00(50)	0.0(1.4)x10^2	H 41 of Cand 1
9	5.56	39.20	86.09	4	43.746(2)	22.8592(9)	3141.75(13)	0.00000(3)	0.00(50)	0.0(3.5)x10^2	
20	5.47	30.76	30.50	1	10.0636(4)	99.368(4)	13657.00(50)	0.0000(1)	0.0(2.0)	0.0(3.2)x10^2	
21	4.96	35.65	89.48	4	16.6167(3)	60.1804(9)	8271.13(13)	0.00000(3)	0.00(50)	0.0(1.3)x10^2	H 43 of Cand 1
22	4.81	34.85	26.71	4	23.0486(5)	43.3865(9)	5963.00(13)	0.00000(3)	0.00(50)	0.0(1.8)x10^2	31st H B0329+54
23	4.66	26.50	26.91	1	6.9372(2)	144.151(4)	19812.00(50)	0.0000(1)	0.0(2.0)	0.0(2.2)x10^2	

Search solitary pulsars

Form the candidates

- De-disperse
- Fold
- The fold is used to avoid spectral leakage. A local search are usually performed to further improve SNR.
- Software
 - Prepfold, pdmp etc...

How the pulsar candidates look like?---PDMP

Presto

2 PQ2Q3Q=529936ff5524_0133_G37.28-00.97.S_6_DM301.20.subQQh_Information

		Summed	Coherent	Num	Period	Frequency	FFT 'r'	Freq Deriv	FFT 'Z'	Accel		
Cand	Sigma	Power	Power	Harm	(ms)	(Hz)	(bin)	(Hz/s)	(bins)	(m/s^2)	Notes	
1	43.81	994.86	7486.98	4	714.4(5)	1.3997(9)	192.38(13)	0.00000(3)	0.00(50)	0.0(5.7)x10^3	PSR B0329+54	
2	25.30	351.72	424.07	4	158.80(2)	6.2973(9)	865.50(13)	0.00000(3)	0.00(50)	0.0(1.3)x10^3		
3		296.81		4	42.030(2)	23.7924(9)	3270.00(13)	0.00000(3)	0.00(50)	0.0(3.3)x10^2	17th H B0329+54	
4		204.83	690.69	4	37.607(1)	26.5909(9)	3654.63(13)	0.00000(3)	0.00(50)	0.0(3.0)x10^2	19th H B0329+54	
5		187.30	346.94	4	35, 726(1)	27 9906(9)	3847 00(13)	0.00000(3)	0.00(50)	0 0(2 8)v10A2	20th H R0329±54	
6		181.89	216.44	4								
2		180.86	3.99	4	nronf	ald bauk	22 5 40	24 dm 20	10000	arch n A	7444 Obit fi	
6	17.39	180.55	117.49	4	prepi	ola -lisup	22 -11 10	24 -um 20	-HOSE	arcii -p u	.7144 8bit.fi	ı
- 6				4	Z PU	uses of Best From	ie Oandidatas	714.40ms_Cand	DΛ	500001 IIII	10rmation - 54,74,4	7.0000
10	16.64	167.62	36.19	4	V,	N.		Fffelsberg	KAJ2000	= 03:32:59.0000 Folding Parameters	$DEC_{J2000} = 54:34:4$	0.000
10		153.50	18.17	4	"			= 55174.7975231481	5 DOF =	$974.57 v^2 = 18$	36.437 P(Noise) ~ 0	
11			113.12	2			Epoch	= 55174.80287254725	5 Dispersio	on Measure (DM; pc/	cm^3) = 20.164	
12		78.17	213.01	4	l l	(1	T _{somple}	= 6.5536e-05	P. (m	(8) = 714.41305(99)) P. $(ms) = 714$.	40000(99)
13	9.57	71.85	123.69	4			Data Folde		P' (s	/s) = 0.0(4.6)x10 ⁻⁶	$P'_{L=1}$ (s/s) = 0.0(4	4.6)x10 ⁻⁸
14	8.19	58.87	43.94	4		11	Data Avg	= 3.591e+04	P"topo (S	s/s=) = 0.0(1.8)x10	$P_{\text{bary}}^{(1)}(s/s^2) = 0.0$	(1.8)x10 ⁻⁹
15	7.99	57.08	55.26	4			Data StdD			Binary Parameters		
16	7.86	56.03	28.73	4	- **		Profile Bin		P _{orto} (s)	= N/A /- (-) N/A	e = N/A	
17	7.35	51.83	40.00	4	*		Profile Avg	= 6.632e+07 Dev = 3.494e+04	a ₁ sin(i)/	c(s) = N/A	ω (rad) = N/A	
18	5.73	40.23	62.78	4	1			Dev — 3.434eTu4	T _{peri} = 1	VA.		
19	5.56	39.20	86.09	4	43		3					×° څانــــ
20	5.47	30.76	30.50	1	0			8 +				18 B
21	4.96	35.65	89.48	4	150				- 1			opp.
22	4.81	34.85	26.71	4			-			140		
23	4.66	26.50	26.91	1				0.8			10 ⁻⁶ 0	-10-6
										(MHz)	P-dot - 4.143e-11	(s/s)
					H.			.6 sub-band 10		. ≥		
								§]		1350 1350 Frequency		· ' 2 ~ '×
							· \	of Observation Sub- 5 10		_်ပို့ မို		28 5
					00		-	o katio		5.5 pp		1300 educ
					@ T		<u> </u>	7 ia		ᄕ		
							: }	å s			0.5 0	-0.5
					Тіте		1	ъ " ¹			Period - 714.41305062	2 (ms)
					i i			Fraction of				
						- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- \	3.≨ 1		300	Freq - 1.39975Ω (F	
					i i		0.00	[O +			-10 ⁻³ -5×10 ⁻⁴ 0 5×10 ⁻	
					22			0 0.4	0.8 1.2	1.6 2 m		²⁻⁰¹ (Hz/
					u /				Phase	- 1		1 × 2
					i i			2.2 2008				Ī
					1			2: 2×8 1		. 1 kg		0 74e
							1000 -	ã <u>ã</u> [/		41.4		8,117
								\$8⊧\		1 1		ဟု လ်
					1			Reduced χ^2 SOG COGISCO		- t 2		- 67 +
					0		<u> </u>		<u> </u>	3000		-0.5 -2x F-dot
					o o	0.5 1 1.5	200155010005000	0 100		0000	0.5	-0.5
						Phase	Reduced χ^2	В	M (pc/cm²	5)	Period - 714.41305060	2 (ms)
									VI -7	,		

Search solitary pulsars

De-disperse **FFT** Periodical search Stack Form candidates View candidates

Candidate identification and confirmation

Astronomers are busy.

- Past experience show that pulsar search agrees with Moor's law. (indication for computational cost limitation)
- At certain stage, we can not keep up looking all the candidates (e.g. PMPS has ~ 1e7 candidates, which take about 342 day x 8 hr x 3600 s to view all)
- Every 18 month 2 times better computer
- In future large scale survey, we need to face ~a few time 1e9 candidates. We will be limited by candidate viewing processes possibly, NOT computer!

How to evaluate a candidates?

- Is the pulse profile be good?
- Is signal broad band?
- Is signal persistent?
- Is DM trustful?
- Is period be good natural number?

A few example of bad candidates

2 PuB 2030 ലൂട്ടെ 755 iie 54695_0090_G36.72-01.38.N_2_DM3.60.sulsed ch Information

Computer based algorithms for candidate identification

- Simple selection rule
 - Pulsar viewers (Arccviewer, Dirtyplot etc)
 (Several PhD thesis)
- Naive Bayesian classifier
 - PEACE (Lee 2009, Lee et al., 2013)
- Neural network
 - Eatough et al. 09, Zhu et al. inpreparing

PEACE: Pulsar Evaluation Algorithm for Candidate Extraction

Neural network

Graphical tools to identify candidates

PEACE

```
20.16394705
                   0.87634284
                                   1265.05018972
                                                            0.71441305
                                                                            -0.78300660
                                                                                            -2.76439535
                                                                                                            -2.76439535
random@AlphaX:~/work/pulsarsch/dat_tst$ ~/work/autopsr/bin/autos2.exe -ostd -color -f 8bit_204.20ms_Cand.pfd
8bit_204.20ms_Cand.pfd
                           31.51972545
                                           0.59717765
                                                            0.71004247
                                                                            0.84375000
                                                                                             0.87500000
                                                                                                             0.77272727
                                                                                                                             0.86363636
   0.00000000
                   0.79010663
                                   1747.68983850
                                                            0.20420373
                                                                            -10.68460260
                                                                                            -5.98291260
                                                                                                             -5.98291260
```

0.14046060

1.00000000

1.00000000

1.00000000

1.00000000

random@AlphaX:~/work/pulsarsch/dat_tst\$ ~/work/autopsr/bin/autos2.exe -ostd -color -f 8bit_714.40ms_Cand.pfd

0.15326063

179.61822868

8bit_714.40ms_Cand.pfd

What to do next before one can start to do the science?

- Check if it is a known pulsar (ATNF catalog is not complete!)
- Try several times to confirm the source
- Do a griding to refine the source position
- Radiometer to get the flux
- Polarization, scattering, profile evolution etc...
- Start one or two dense observing to determine the system, binary or solitary
- Regular timing, if it is interesting.

Thanks!

If you have any further questions, please contact

kjlee007@gmail.com

Most of the lecture is based on the related software manual, see

http://www.cv.nrao.edu/~sransom/presto/

http://sigproc.sourceforge.net/

http://dspsr.sourceforge.net/manuals/dspsr/

http://psrchive.sourceforge.net/