

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-5

No processamento de bebidas, a aplicação de um determinado conservante é efetuada em função da combinação de 04 variáveis reais, definidas por x_1 (teor de água), x_2 (grau de acidez), x_3 (temperatura) e x_4 (tensão superficial). Sabe-se que existem apenas três tipos de conservantes que podem ser aplicados, os quais são categorizados por tipo A, B e C. A partir destas variáveis, realizam-se ensaios em laboratório para especificar que tipo de conservante deve ser aplicado em determinada bebida.

Por intermédio de 148 desses ensaios experimentais, a equipe de engenheiros e cientistas resolveu aplicar uma rede perceptron multicamadas como classificadora de padrões, a fim de que esta identifique qual conservante será aplicado em determinado lote de bebida. Por questões operacionais da própria linha de produção, utilizar-se-á aqui uma rede perceptron com três saídas, conforme apresentado na figura abaixo.

A padronização para a saída, representando o conservante a ser aplicado, ficou definida da seguinte forma:

Tipo de Conservante	<i>y</i> ₁	<i>y</i> ₂	у3
Tipo A	1	0	0
Tipo B	0	1	0
Tipo C	0	0	1

Utilizando os dados de treinamento apresentados no Anexo, execute o treinamento de uma rede perceptron multicamadas (04 entradas, 15 neurônios na camada escondida e 03 saídas) que Página 1 de 3

possa classificar, em função apenas dos valores medidos de x_1 , x_2 , x_3 e x_4 (já normalizados), qual o tipo de conservante que deverá ser aplicado em determinada bebida. Para tanto, faça as seguintes atividades:

- 1. Execute cinco treinamentos da rede perceptron multicamadas ilustrada na Figura 1, por meio do algoritmo de aprendizagem *backpropagation*, inicializando-se todas as matrizes de pesos com valores aleatórios entre 0 e 1. Utilize a função de ativação logística para todos os neurônios, taxa de aprendizado $\eta = 0.1$ e precisão $\varepsilon = 10^{-6}$. Meça também o tempo de processamento envolvido com cada um desses treinamentos.
- 2. Dado que o problema se configura como um típico processo de classificação de padrões, implemente a rotina que faz o pós-processamento das saídas fornecidas pela rede (números reais) para números inteiros. Utilize o critério do arredondamento simétrico, isto é:

$$y_i^{\text{pós}} = \begin{cases} 1, \text{se } y_i \ge 0.5 \\ 0, \text{se } y_i < 0.5 \end{cases}$$
, utilizado apenas no pós-processamento do conjunto de teste.

3. Para cada um dos cinco treinamentos, faça então a validação aplicando o conjunto de teste fornecido na tabela abaixo. Forneça a taxa de acerto (%) entre os valores desejados e os valores fornecidos pela rede (após o pós-processamento) em relação a todas as amostras de teste.

Amostra	x_1	x_2	<i>x</i> ₃	x_4	d_1	d_2	d_3	y ₁ ^{pós}	y ₂ ^{pós}	y ₃ ^{pós}	<i>y</i> ₁	<i>y</i> ₂	у з
1	0.8622	0.7101	0.6236	0.7894	0	0	1						
2	0.2741	0.1552	0.1333	0.1516	1	0	0						
3	0.6772	0.8516	0.6543	0.7573	0	0	1						
4	0.2178	0.5039	0.6415	0.5039	0	1	0						
5	0.7260	0.7500	0.7007	0.4953	0	0	1						
6	0.2473	0.2941	0.4248	0.3087	1	0	0						
7	0.5682	0.5683	0.5054	0.4426	0	1	0						
8	0.6566	0.6715	0.4952	0.3951	0	1	0						
9	0.0705	0.4717	0.2921	0.2954	1	0	0						
10	0.1187	0.2568	0.3140	0.3037	1	0	0						
11	0.5673	0.7011	0.4083	0.5552	0	1	0						
12	0.3164	0.2251	0.3526	0.2560	1	0	0						
13	0.7884	0.9568	0.6825	0.6398	0	0	1						
14	0.9633	0.7850	0.6777	0.6059	0	0	1						
15	0.7739	0.8505	0.7934	0.6626	0	0	1						
16	0.4219	0.4136	0.1408	0.0940	1	0	0						
17	0.6616	0.4365	0.6597	0.8129	0	0	1						
18	0.7325	0.4761	0.3888	0.5683	0	1	0						
Taxa de Acerto (%):													

- 4. Explique qual foi o motivo de se realizar cinco treinamentos para uma mesma configuração topológica de rede perceptron multicamadas.
- 5. Para o melhor dos cinco treinamentos realizados acima, trace o respectivo gráfico dos valores de erro quadrático médio (EQM) em função de cada época de treinamento.

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

ANEXO

Amostra	x_1	x_2	x_3	χ_4	d_1	d_2	d_3	Amostra	x_1	x_2	x_3	x_4	d_1	d_2	d_3
1	0.3841	0.2021	0.0000	0.2438	1	0	0	71	0.3460	0.2722	0.1866	0.5049	1	0	0
2	0.1765	0.1613	0.3401	0.0843	1	0	0	72	0.2241	0.2046	0.3575	0.2891	1	0	0
3	0.3170	0.5786	0.3387	0.4192	0	1	0	73	0.1412	0.2264	0.4025	0.2661	1	0	0
4	0.2467	0.0337	0.2699	0.3454	1	0	0	74	0.5782	0.6418	0.7212	0.6396	0	0	1
<u>5</u>	0.6102 0.7030	0.8192 0.7784	0.4679 0.7482	0.4762	0	0	0	75 76	0.9153	0.6571	0.8229	0.6689	0	0	1
7	0.4767	0.4348	0.4852	0.3640	0	1	0	77	0.7328	0.7004	0.8812	0.7060	0	0	1
8	0.7589	0.8256	0.6514	0.6143	0	0	1	78	0.4270	0.6352	0.6811	0.3884	0	1	0
9	0.1579	0.3641	0.2551	0.2919	1	0	0	79	0.6189	0.1652	0.4016	0.3042	1	0	0
10	0.5561	0.5602	0.5605	0.2105	0	1	0	80	0.2143	0.3868	0.1926	0.0000	1	0	0
11	0.3267	0.2974	0.0343	0.1466	1	0	0	81	0.5696	0.7238	0.7199	0.6677	0	0	1
12	0.2303	0.0942	0.3889	0.1713	1	0	0	82 83	0.8656	0.6700 0.6858	0.6570	0.6065	0	0	1
14	0.2933	0.2903	0.5780	0.3048	0	1	0	84	0.4167	0.5255	0.7409	0.4093	0	1	0
15	0.5860	0.5250	0.4792	0.4021	0	1	0	85	0.8325	0.4804	0.7990	0.7471	0	0	1
16	0.7045	0.6933	0.6449	0.6623	0	0	1	86	0.4124	0.1191	0.4720	0.3184	1	0	0
17	0.9134	0.9412	0.6078	0.5934	0	0	1	87	1.0000	1.0000	0.7924	0.7074	0	0	1
18	0.2333	0.4943	0.2525	0.2567	1	0	0	88	0.5685	0.6924	0.6180	0.5792	0	1	0
19 20	0.2676	0.4172	0.2775	0.2721	0	0	0	89 90	0.6505	0.4864	0.2972	0.4599 1.0000	0	0	0
21	0.4850	0.5506	0.5269 0.2312	0.6036	1	0	0	90	0.8124	0.7690	1.0000	0.8046	0	0	1
22	0.1250	0.3023	0.1826	0.2024	1	0	0	92	0.8872	0.7556	0.9307	0.6791	0	0	1
23	0.5598	0.4253	0.4258	0.3192	0	1	0	93	0.3708	0.2139	0.2136	0.4295	1	0	0
24	0.5738	0.7674	0.6154	0.4447	0	0	1	94	0.5159	0.4349	0.3715	0.4086	0	1	0
25	0.5692	0.8368	0.5832	0.4585	0	0	1	95	0.6768	0.6304	0.8044	0.4885	0	0	1
26	0.4655	0.7682	0.3221	0.2940	0	1	0	96	0.1664	0.2404 0.2807	0.2000	0.3425	1	0	0
27 28	0.5568 0.8842	0.7592 0.7509	0.6293 0.5723	0.5455	0	0	1	97 98	0.2493	0.2348	0.4679	0.2200	1	0	0
29	0.7959	0.9243	0.7339	0.7334	0	0	1	99	0.5748	0.8552	0.5973	0.7317	0	0	1
30	0.7124	0.7128	0.6065	0.6668	0	0	1	100	0.3858	0.7585	0.3239	0.3565	0	1	0
31	0.6749	0.8767	0.6543	0.7461	0	0	1	101	0.3329	0.4946	0.5614	0.3152	0	1	0
32	0.3674	0.4359	0.4230	0.2965	1	0	0	102	0.3891	0.4805	0.7598	0.4231	0	1	0
33	0.3473	0.0754	0.2183 0.5386	0.1905 0.5794	0	0	0	103 104	0.2888	0.4888	0.1930	0.0177	0	0	0
34 35	0.6439	0.3188	0.3380	0.3794	0	1	0	104	0.6047	0.4900	0.6274	0.5809	0	1	0
36	0.5627	0.4893	0.6831	0.5120	0	1	0	106	0.9840	0.7031	0.6469	0.4701	0	0	1
37	0.5182	0.7553	0.6368	0.4538	0	1	0	107	0.6554	0.6785	0.9279	0.7723	0	0	1
38	0.6046	0.7479	0.6542	0.4375	0	1	0	108	0.0466	0.3388	0.0840	0.0762	1	0	0
39	0.6328	0.6786	0.7751	0.6183	0	0	1	109	0.6154	0.8196	0.6339	0.7729	0	0	1
40	0.3429	0.4694	0.2855	0.2977 0.4520	0	0	0	110 111	0.8452 0.6927	0.8897 0.7870	0.8383	0.6961	0	0	1
42	0.6371	0.5069	0.6407	0.4320	0	0	1	111	0.4032	0.7870	0.4930	0.7213	0	1	0
43	0.3529	0.5504	0.3706	0.4828	0	1	0	113	0.4006	0.3094	0.3868	0.0811	1	0	0
44	0.4302	0.3237	0.6397	0.4319	0	1	0	114	0.7416	0.7138	0.6823	0.6067	0	0	1
45	0.7078	0.9604	0.7470	0.6399	0	0	1	115	0.7404	0.6764	0.8293	0.4694	0	0	1
46	0.7350	0.8170	0.7227	0.6279	0	0	1	116	0.7736	0.7097	0.6826	0.8142	0	0	1
47	0.7011	0.2946 0.3817	0.6625	0.4312	0	1	0	117	0.5823 0.2081	0.9635 0.3738	0.3706	0.5636 0.3552	0	0	0
48	0.0000	0.3817	0.0303	0.3003	1	0	0	118 119	0.2081	0.3738	0.5119	0.3332	0	0	1
50	0.5996	0.5704	0.6965	0.6548	0	0	1	120	0.6594	0.8907	0.6000	0.7157	0	0	1
51	0.4289	0.3709	0.3994	0.3656	0	1	0	121	0.3979	0.3070	0.3637	0.1220	1	0	0
52	0.2093	0.3655	0.3334	0.1802	1	0	0	122	0.2644	0.0000	0.3572	0.1931	1	0	0
53	0.2335	0.2856	0.3912	0.1601	1	0	0	123	0.4816	0.4791	0.4213	0.5889	0	1	0
54 55	0.3266	0.7751 0.1203	0.4356 0.1228	0.3448	0	0	0	124 125	0.0848	0.0749	0.4349 0.3533	0.3328	0	0	0
56	0.4656	0.1203	0.1228	0.4862	0	1	0	126	0.4155	0.6589	0.5333	0.5404	0	1	0
57	0.7511	0.8868	0.5408	0.6253	0	0	1	127	0.3934	0.6244	0.4817	0.4324	0	1	0
58	0.7825	0.9386	0.6510	0.6996	0	0	1	128	0.5843	0.8517	0.8576	0.7133	0	0	1
59	0.3463	0.4118	0.2507	0.0454	1	0	0	129	0.1995	0.3690	0.3537	0.3462	1	0	0
60	0.5172 0.6942	0.1482 0.4516	0.3172 0.5387	0.2323	0	0	0	130	0.3832	0.2321	0.0341	0.2450	1	0	0
61	0.6942	0.4516	0.5387	0.5983	0	0	1								
63	0.6880	0.6004	0.6602	0.4320	0	1	0								<u> </u>
64	0.4742	0.5079	0.4135	0.4161	0	1	0								
65	0.4419	0.5761	0.4515	0.4497	0	1	0								
66	0.3367	0.4333	0.2336	0.1678	1	0	0								<u> </u>
67	0.4744	0.4604	0.1507	0.4873	1	0	0					1			
68	0.7510 0.4045	0.4350 0.5636	0.5453 0.2534	0.4831	0	1	0								
70	0.4043	0.3636	0.2334	0.0559	1	0	0								
, 0	0.177/	0.1337	0.2770	0.0007		,									