學號:B04901061 系級: 電機三 姓名:蔡忠紘

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: None)

答:

【模型架構】

CNN model:

Conv2D、ZeroPadding、 BatchNormalization、 Maxpooling、Dropout交錯組 成。

DNN:

3層Dense和最後一層softmax 組成。

Total Parameters:

約255萬。

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 48, 48, 256)	2560
zero_padding2d_1 (ZeroPaddin	(None, 52, 52, 256)	Θ
batch_normalization_1 (Batch	(None, 52, 52, 256)	1024
max_pooling2d_1 (MaxPooling2	(None, 26, 26, 256)	0
conv2d_2 (Conv2D)	(None, 24, 24, 128)	295040
batch_normalization_2 (Batch	(None, 24, 24, 128)	512
zero_padding2d_2 (ZeroPaddin	(None, 26, 26, 128)	0
conv2d_3 (Conv2D)	(None, 24, 24, 128)	147584
batch_normalization_3 (Batch	(None, 24, 24, 128)	512
max_pooling2d_2 (MaxPooling2	(None, 12, 12, 128)	0
dropout_1 (Dropout)	(None, 12, 12, 128)	0
conv2d_4 (Conv2D)	(None, 10, 10, 128)	147584
batch_normalization_4 (Batch	(None, 10, 10, 128)	512
zero_padding2d_3 (ZeroPaddin	(None, 12, 12, 128)	0
conv2d_5 (Conv2D)	(None, 10, 10, 128)	147584
batch_normalization_5 (Batch	(None, 10, 10, 128)	512
max_pooling2d_3 (MaxPooling2	(None, 5, 5, 128)	0
dropout_2 (Dropout)	(None, 5, 5, 128)	0
flatten_1 (Flatten)	(None, 3200)	0
dense_1 (Dense)	(None, 512)	1638912
batch_normalization_6 (Batch	(None, 512)	2048
dropout_3 (Dropout)	(None, 512)	0
dense_2 (Dense)	(None, 256)	131328
batch_normalization_7 (Batch	(None, 256)	1024
dropout_4 (Dropout)	(None, 256)	0
dense_3 (Dense)	(None, 128)	32896
batch_normalization_8 (Batch	(None, 128)	512
dropout_5 (Dropout)	(None, 128)	0
dense_4 (Dense)	(None, 7)	903
Total params: 2,551,047 Trainable params: 2,547,719 Non-trainable params: 3,328		

【訓練過程】

【準確率】

	Accuracy
Private	0.69462
Public	0.68264
Average	0.68863

訓練過程中比較特別的部分是validation accuracy一直都比train accuracy高,可能是validation挑到比較多happy的資料;此外,在第53個epoch有EarlyStopping。

準確率的部分,和同學討論後發現,train單一model達到接近69%的準確率算滿好的,可能是因為model疊很深,而且有用ImageGenerator增加資料量。

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

(Collaborators: None)

答:【訓練過程】

Train History 0.425 train validation 0.400 0.375 0.350 0.325 0.300 0.275 0.250 0.225 10 20 60 70 80 40 50 Epoch

【準確率】

	Accuracy	
Private	0.38227	
Public	0.39314	
Average	0.387705	

DNN model的結果明顯比CNN model train出來的結果差。同樣的,validation accuracy一直都比train accuracy高。此外,這次沒有EarlyStopping,若增加Epoch數量可能會有更好的結果。

【模型架構】

DNN:

3層Dense和最後一層softmax組成

Total Parameters:

約263萬,與DNN model的255萬參數量接近。

Layer (type)	Output		Param #
reshape_1 (Reshape)		2304, 1)	0
flatten_1 (Flatten)	(None,	2304)	0
dense_1 (Dense)	(None,	512)	1180160
batch_normalization_1 (Batch	(None,	512)	2048
dropout_1 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	1024)	525312
batch_normalization_2 (Batch	(None,	1024)	4096
dropout_2 (Dropout)	(None,	1024)	0
dense_3 (Dense)	(None,	512)	524800
batch_normalization_3 (Batch	(None,	512)	2048
dropout_3 (Dropout)	(None,	512)	0
dense_4 (Dense)	(None,	256)	131328
batch_normalization_4 (Batch	(None,	256)	1024
dropout_4 (Dropout)	(None,	256)	0
dense_5 (Dense)	(None,	512)	131584
batch_normalization_5 (Batch	(None,	512)	2048
dropout_5 (Dropout)	(None,	512)	0
dense_6 (Dense)	(None,	256)	131328
batch_normalization_6 (Batch	(None,	256)	1024
dropout_6 (Dropout)	(None,	256)	0
dense_7 (Dense)	(None,		1799
Total params: 2,638,599 Trainable params: 2,632,455 Non-trainable params: 6,144			

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] (Collaborators: None)

數據顯示,判斷'Happy'和'Surprise'兩種情緒的結果最準確,'Sad'和'Neutral'次之,而'Angry'、'Disgust'和'Fear'則最不準確。

其中, 'Angry'、'Disgust'和'Fear'都容易被誤判為'Sad'和'Neutral', 而其中誤判為'Sad'的機率比較高;同時, 'Sad'容易被判斷為'Neutral', 'Neutral'也容易被判斷為'Sad'。

推測因為負面情緒牽動的臉部肌肉類似,機器容易混淆,又'Sad'和'Neutral'常常只有一線之隔,可能是微微皺眉、眼神向下等等,因此被誤判為彼此的機率較高。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份? (Collaborators: None)

答:

答:

由圖中可得知,做classification時主要focus在五官,其中又以眼睛、眉毛、嘴巴 最為重要。頭髮和四周圍則相對不重要。

5. (1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的filter最容 易被哪種圖片 activate。

(Collaborators: b04901060黃文璁)

答:Figure Selected:#6543

Filters of the layer

Outputs of the layer

從兩張圖片中可觀察到,的確有特定的臉部輪廓和filter的圖樣類似。