Stephen W. Nesbitt, Ph.D.
Department of Atmospheric Sciences
School of Earth Society and Environment
University of Illinois at Urbana-Champaign
1301 West Green Street
Urbana, IL 61801 USA
E-mail: snesbitt@illinois.edu

1. PERSONAL HISTORY AND PROFESSIONAL EXPERIENCE

Phone: (217) 244-3740

A. Educational Background

B.S. in Meteorology with honors (*summa cum laude*), State University of New York College at Oswego, 1997 M.S. in Meteorology, Texas A&M University, 1999 Ph.D. in Meteorology, University of Utah, 2003

B. List of Academic Positions Since Final Degree

Associate Professor, Dept. of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 2006 – 2012 Associate Professor, Dept. of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 2012 – 2019 Affiliate, Computational Science and Engineering, University of Illinois at Urbana-Champaign, 2014 – present Affiliate, Center for Latin American Studies, University of Illinois at Urbana-Champaign, 2015 – present Visiting Professor, Dept. de Ciencias de la Atmósphera y los Océanos, Universidad de Buenos Aires, Spr 2015 Professor, Dept. of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 2019 – present Associate Head, Dept. of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 2021 – present Director of Graduate Studies, Dept. of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 2021 – present

C. Other Professional Employment

Undergraduate Research Assistant, State University of New York College at Oswego, Oswego, NY, 1995 –1997 Graduate Teaching Assistant, Department of Meteorology, Texas A&M University, College Station, TX, 1997 Graduate Research Assistant, Tropical Convection Research Program, Department of Meteorology, Texas A&M University, College Station, TX, 1997 –1999

Graduate Research Assistant, Tropical Meteorology Group, University of Utah, Salt Lake City, UT, 1999 – 2003 Research Scientist I, Dept. of Atmospheric Sciences, Colorado State University, 2003 – 2005

Research Scientist II, Dept. of Atmospheric Sciences, Colorado State University, 2005 - 2006

Research Fellow, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones del Mar y la Atmósfera, Argentina, Spr 2015

Visiting Scientist, Servicio Meteorológico Nacional, Argentina, Spr 2015

Affiliate Researcher, Instituto Nacional de Agua, Argentina, Jun 2019 – present

D. Honors, Recognitions, and Prizes

Highly Meritorious Meteorology Senior Award, State University of New York College at Oswego, 1997 Excellence in Graduate Research Award, University of Utah, 2003

NASA Earth System Science Graduate Fellowship, 2001-2003

Editors' Citation for Excellence in Refereeing for *Journal of Geophysical Research – Atmospheres*, AGU, 2006 NASA New Investigator Award, 2008

NASA Group Achievement Award, Genesis and Rapid Intensification Project field campaign, 2011

Editors' Citation for Excellence in Refereeing for *Journal of Geophysical Research – Atmospheres*, AGU, 2011 Co-Chair, AMS 35th Conference on Radar Meteorology, Pittsburgh, PA, 2011

Honors Council, College of Liberal Arts and Sciences, University of Illinois, 2012-2014

University of Illinois, College of Liberal Arts and Sciences, Reflective Teaching Seminar, 2010-11 academic year Elected chair, Scientific and Technical Advisory Committee on Radar Meteorology, AMS, 2013-2016

Program theme lead and organizing committee, AMS 36th Conference on Radar Meteorology, Breckenridge, CO, Oct 2013

Organizing committee, 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, Sep 2014

Research Fellowship, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, Spring 2015

NASA Robert H. Goddard Award, *Global Precipitation Measurement mission* ground validation team for exceptional achievement in science, 2015

NASA Group Achievement Award, Global Precipitation Measurement mission science team, 2015

Program theme lead and organizing committee, AMS 37th Conference on Radar Meteorology, Norman, OK, Sep 2015

Organizing committee, 8th European Radar and Hydrology Conference, Antalaya, Turkey, Oct 2016

AMS award for Outstanding Service as Member and Chair, Radar Meteorology, 2016

Science Community Committee, NASA Aerosol and Clouds, Convection, and Precipitation (ACCP) designated observable study, 2018 – 2021

Suborbital Working Group, NASA Atmosphere Observing System (AtmOS) mission, 2018 – present

Radar Working Group, NASA Atmosphere Observing System (AtmOS) mission, 2021 – present

Radiometer Working Group, Atmosphere Observing System (AtmOS) mission, 2021 – present

NASA Group Achievement Award, *The Cloud, Aerosol and Monsoon Processes Philippines Experiment* (CAMP²EX) field campaign, 2020

Co-Chair, NASA Global Precipitation Measurement Ground Validation Symposium, Online, 2020

Department faculty award for Outstanding Service to the Department of Atmospheric Sciences, 2020

Department faculty award for Outstanding Teacher in a Graduate Course, 2020

Co-Convener, Mesoscale Symposium, American Meteorological Society Annual Meeting, 2021

Department faculty award for Outstanding Graduate Student Mentor, 2021

Co-Chair, 19th Conference on Mesoscale Processes, American Meteorological Society Annual Meeting, Houston, Texas, 2022

University of Illinois at Urbana-Champaign List of Teachers Ranked as Excellent:

ATMS 403 Spring 2007, Fall 2007, Fall 2009, ATMS 406 Fall 2009, ATMS 505 Spring 2013, ATMS 571 Fall 2014, ATMS 597 Spring 2020

E. Invited Lectures and Invited Conference Presentations

Intense thunderstorms in the tropics, Local Chapter Meeting, Central Illinois Chapter of the American Meteorological Society, Lincoln, IL, September 2006

Observations and processes within intense thunderstorms, Seminar Series, Illinois State Water Survey, Champaign, IL, September 2006

Global Precipitation Mission ground validation strategies, Department of Energy Atmospheric Radiation Measurement Cloud Properties Working Group Meeting, Annapolis, MD, October 2006

North American Monsoon, Science Today Lecture Series, State University of New York College at Oswego, October 2007

Precipitation processes within the North American Monsoon, World Meteorological Organization Workshop on High Resolution Precipitation Products, Geneva, Switzerland, December 2007

Satellite studies of monsoon precipitation, Department of Earth Sciences, University of Goa, Goa, India, August 2008

North American Monsoon, Seminar Series, Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, October 2008

High resolution precipitation data and analysis of the North American Monsoon, Second Climate Prediction Program for the Americas Principal Investigator's Meeting, Silver Spring, MD, October 2008

North American Monsoon, Under threat? Department of Physics and Engineering, Fort Lewis College, April 2010 Impact of soil moisture initialization on convection in the North American Monsoon, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, April 2010

Impact of soil moisture initialization on convection in the North American Monsoon, Department of Atmospheric Science, University of Utah, June 2010

Soil moisture feedbacks on deep convection in the North American Monsoon, Max Planck Institute for Meteorology, Hamburg, Germany, October 2010

Orographic precipitation in conditionally unstable flow, Department of Earth and Atmospheric Science, Purdue University, October 2010

- Orographic precipitation in conditionally unstable flow, Department of Atmospheric Science, Colorado State University, November 2010
- Warm season orographic precipitation, Complex Terrain Workshop, Biosphere 2/University of Arizona, February 2011
- Convective structure of rapidly intensifying tropical cyclones, Department of Meteorology, University of Hawaii, December 2011
- Biosphere-atmosphere interactions in the North American Monsoon, Energy Biosciences Institute, Water Workshop, Chicago, IL, June 2012
- Radar-aircraft synergy in GPM Field Campaign Measurements, 5th NASA GPM Ground Validation Workshop, Toronto, Canada, July 2012 Advanced dual-polarization radar applications, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil, Dec 2012
- NASA Global Precipitation Measurement Mission Ground Validation, Argonne National Laboratory, Chicago, IL, Jan 2013.
- NASA Global Precipitation Measurement Mission Ground Validation, University of Wisconsin-Madison, Madison, WI, Mar 2013.
- Microphysics research using matched radar-aircraft analyses, NASA Precipitation Measurement Missions Science Team Meeting, Annapolis, MD, Mar 2013.
- Science activities of the Global Precipitation Measurement Missions Drop Size Distribution Working Group, 6th NASA GPM Ground Validation Workshop, Rome, Italy, Nov 2013.
- What we don't know about snow: Snowfall retrieval science in the Global Precipitation Measurement Mission. Program on Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts, Nov 2013.
- Building the GPM-GV Column from the GPM Cold season Precipitation Experiment. AGU Fall Meeting, San Francisco, California, Dec 2013.
- What we don't know about snow: Snowfall retrieval science in the Global Precipitation Measurement Mission. Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota, Dec 2014.
- RELAMPAGO. World Meteorological Organization, Working Group on Nowcasting Research, Montreal, Canada, Jul 2014.
- RELAMPAGO. Geosciences Division, National Science Foundation, Arlington, Virginia, Aug 2014.
- RELAMPAGO. Universidad Nacional de Cuyo, Mendoza, Argentina, Apr 2015.
- RELAMPAGO. Universidad Nacional de Córdoba, Cordoba, Argentina, Apr 2015.
- RELAMPAGO. Universidad de Buenos Aires, Buenos Aires, Argentina, May 2015.
- Improving Cold Season Precipitation Retrievals with GPM Ground Validatation Data. 7th NASA Global Precipitation Measurement Ground Validation Workshop, Seoul, Korea, May 2015.
- RELAMPAGO. Conference Keynote Presentation. XII Argentine Congress on Meteorology, Mar del Plata, Argentina, May 2015.
- What we don't know about snow: Snowfall retrieval science in the Global Precipitation Measurement Mission. School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Lausanne, Switzerland, Jun 2015.
- Constraining Global Precipitation Measurement Mission retrievals with GPM Field Campaign observations. NASA Precipitation Measurement Missions Science Team meeting.
- Radar operations during the CACTI field campaign. Atmospheric Radiation Measurement Radar Meeting, Miami, Florida, Feb 2016.
- Processes, prediction, and societal impacts of intense convection in subtropical South America. Environmental Sciences Division, Argonne National Laboratory, Mar 2016.
- Processes, prediction, and societal impacts of intense convection in subtropical South America. NASA Marshall Space Flight Center and University of Alabama-Huntsville, Mar 2016.
- CACTI-RELAMPAGO synergy. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Tysons, Virginia, Apr 2016.
- A critical evaluation of the GPM DPR algorithm assumptions using OLYMPEX data, OLYMPEX Workshop, Seattle, Mar 2017.
- RELAMPAGO. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Tysons, Virginia, Mar 2017.
- A critical evaluation of the GPM DPR algorithm assumptions using OLYMPEX data, OLYMPEX Workshop, Seattle, Mar 2017.

RELAMPAGO. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Tysons, Virginia, Mar 2017.

Resumen del Proyecto RELAMPAGO-CACTI. Servicio Meteorológico Nacional, Buenos Aires, Jul 2017.

Triple-frequency radar observations of snow in OLYMPEX. NASA Precipitation Measurement Missions Science Team meeting.

Proyecto RELAMPAGO-CACTI. AGU Fall Meeting, New Orleans, Louisiana, Dec 2017.

Earth system observations for societal benefit, Space Science and Engineering Center, University of Wisconsin-Madison, May 2018.

Proyecto RELAMPAGO-CACTI. Ministry of Science, Technology, and Innovation, Buenos Aires, Jun 2018.

Proyecto RELAMPAGO-CACTI. Universidad Nacional de Córdoba, Córdoba, Argentina, Jun 2018.

Orographic convective initiation and upscale growth. Invited keynote presentation, 4th Symposium on Radar and Hydrometeorological Systems, Córdoba, Argentina, Sep 2018.

Radar Meteorology, Advanced Study Institute-RELAMPAGO, National Science Foundation, Nov 2018.

Chasing the World's Most Intense Thunderstorms: Proyecto RELAMPAGO-CACTI Argentina 2018, American Meteorological Society Annual Meeting Student Conference, Phoenix, Arizona, Jan 2019.

RELAMPAGO. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Rockville, Maryland, Jun 2019.

Adaptive radar scanning in CACTI-RELAMPAGO. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Rockville, Maryland, Jun 2019.

Mesoscale flows during convective initiation and upscale growth observed during RELAMPAGO-CACTI. Invited keynote presentation, 18th Conference on Mesosocale Meteorology, American Meteorological Society, Savanna, Georgia.

Mesoscale flows during convective initiation and upscale growth observed during RELAMPAGO-CACTI. Invited seminar, Pacific Northwest National Lab, Richland, Washington, Aug 2019.

What can observations tell us about improving the representation of mesoscale convective systems in large-scale models. Invited presentation, AGU Fall Meeting, San Francisco, California, Dec 2019.

Suborbital Research for Convective Storm Systems, NASA Aerosol Clouds Convection Precipitation Study, Suborbital Workshop. Online, Mar 2020.

Objective 3 Science: Convective Storm Systems, NASA Aerosol Clouds Convection Precipitation Study, Science Community Committee Meeting. Online, Mar 2020.

Rapid convective mode transitions in the lee of complex terrain observed in RELAMPAGO-CACTI. 19th Conference on Mountain Meteorology, American Meteorological Society. Online, Jul 2020.

RELAMPAGO-CACTI, Earth and Planetary Science Department, Purdue University, Oct 2020.

Improving model predictions of precipitation, NOAA/DOE Precipitation Processes and Prediction Workshop, Online, Dec 2020

Understanding the ingredients for a global convective hotspot in Subtropical South America: RELAMPAGO-CACTI, Department Colloquium, Department of Atmospheric Science, Colorado State University, Mar 2021

Convective Storms Suborbital Campaigns for the Aerosols, Clouds, Convection, and Precipitation Mission, Second NASA ACCP Suborbital Workshop, virtual, Mar 2021.

Actividades de pronóstico meteorológico generadas a partir del proyecto RELAMPAGO como apoyo a la gestión de los recursos hídricos en Córdoba, Diálogos sobre educación, ciencia, y technología como apoyo para la gestión de los recursos hídricos y la adaptación al cambio climático, Provincia de Córdoba, Argentina, virtual, Mar 2021.

How can RELAMPAGO-CACTI address regional climate models? Seminar, National Center for Atmospheric Research, Research Applications Laboratory, November 2021

Understanding the ingredients for a global convective hotspot in Subtropical South America: RELAMPAGO-CACTI, Department Colloquium, Department of Meteorology, San Jose State University, November 2021

RELAMPAGO-CACTI in Hydroclimate Research, Department of Energy Workshop on Mountain Hydroclimate Research, virtual, January 2022

F. Offices Held in Professional Societies

President-elect, Central Illinois Chapter of the AMS, 2007

President, Central Illinois Chapter of the AMS, 2007 – 2009

Member, Scientific and Technical Advisory Committee on Radar Meteorology, AMS, 2009 – 2013

Chair, Scientific and Technical Advisory Committee on Radar Meteorology, AMS, 2013 – 2016

Member, Scientific and Technical Advisory Committee on Mesoscale Meteorology, AMS, 2019 - present

G. Editorships of Journals and Other Learned Publications

Editor, Journal of Applied Meteorology and Climatology, AMS, 2010 – 2014

Chief Editor, Atmosphere Section, Journal of Atmospheric and Oceanic Technology, AMS, 2022 -

H. Grants Received

Title: Creation and Analysis of C3VP Synthesis Datasets for Global Precipitation

Mission Algorithm Development and Evaluation

Granting Agency: NASA, Global Precipitation Mission Ground Validation Program

Dates of Award: 5/15/07 - 5/14/08

Award Amount: \$20 K

Role: Principal investigator

Title: Diurnal variations and forcing of precipitation systems in the North American

Monsoon system

Granting Agency: NOAA, Climate Prediction Program for the Americas Program

Dates of Award: 8/1/07 – 7/31/11

Award Amount: \$285 K

Role: Principal investigator

Title: Analysis of C3VP Synthesis Datasets for Global Precipitation Mission

Algorithm Development and Evaluation

Principal Investigator: Stephen W. Nesbitt

Granting Agency: NASA, Global Precipitation Mission Ground Validation Program

Dates of Award: 5/15/08 - 5/14/09

Amount: \$40K

Role: Principal investigator

Title: Improving the Measurement and Understanding of Orographic Precipitation

using NASA Satellite Measurements

Principal Investigator: Stephen W. Nesbitt

Granting Agency: NASA New Investigator Program

Dates of Award: 8/1/08 - 5/31/12

Amount: \$318K

Role: Principal investigator

Title: Application of NASA Field Observations, Satellite Retrievals and High

Resolution WRF Simulations to Study Physical and Dynamical Processes

Governing Tropical Cyclone Rainfall and Intensity Change

Granting Agency: NASA, Hurricane Science Research Program

Dates of Award: 1/1/09 – 12/31/12 Amount: \$614 K (\$270 K to SN)

Role: Principal investigator (Lead PI: Greg McFarquhar, Univ. Illinois)

Title: Coupling Between Weather, Climate, and Landscape Evolution in the Western

Ghats of India

Granting Agency: NSF, Geomorphology and Land Use Dynamics

 Dates of Award:
 7/1/09 - 3/31/14

 Award Amount:
 \$665 K (\$334 K to SN)

Role: Principal investigator (lead PI: Alison Anders, Univ. Illinois)

Title: Remote sensing and modeling studies of dynamical and microphysical processes

in tropical cyclone intensification

Granting Agency: NASA, Earth System Science graduate fellowship for Daniel Harnos

Dates of Award: 9/1/10 –8/31/13

Amount: \$75 K

Role: Principal investigator

Title: Synthesis of aircraft and ground based measurements for NASA GPM algorithm

validation

Granting Agency: NASA, Global Precipitation Mission Ground Validation Program

Dates of Award: 10/1/10 - 9/30/12

Amount: \$180 K

Role: Principal investigator

Title: An orographic optimization technique for improved satellite quantitative

precipitation estimation in complex terrain

Granting Agency: NASA, Earth System Science graduate fellowship for Kimberly Reed

Dates of Award: 9/1/11 –8/31/14

Amount: \$75 K

Role: Principal investigator

Title: GPM field campaign aircraft and radar data synergy for algorithm improvement

and error characterization

Granting Agency: NASA, Precipitation Measurement Mission

Dates of Award: 2/4/13 - 2/3/16

Amount: \$474 K

Role: Principal investigator

Title: Illinois continued participation in Global Precipitation Mission field campaigns

and analysis

Granting Agency: National Aeronautics and Space Administration, Global Precipitation Mission

Ground Validation Program

Dates of Award: 5/16/13 – 5/15/14

Amount: \$70 K

Role: Principal investigator

Title: Properties of ice and mixed phase particles in GPM-Ground Validation Field

Campaigns

Granting Agency: National Aeronautics and Space Administration, Global Precipitation Mission

Ground Validation Program

Dates of Award: 5/16/14 - 5/15/15

Amount: \$75 K

Role: Principal investigator

Title: Improving spaceborne falling snow retrievals using in situ data, particle models,

and validation

Granting Agency: NASA, Earth System Science graduate fellowship for George Duffy

Dates of Award: 9/1/14 –8/31/17

Amount: \$75 K

Role: Principal investigator

Title: Using scatterometer-measured vector winds to study high-impact weather events

Granting Agency: NASA, Ocean Vector Winds Science Team

Dates of Award: 7/1/14 – 6/30/18 *Amount:* \$600 K to SN

Role: Principal investigator (lead PI: Timothy J. Lang, NASA MSFC)

Title: Influence of potential vorticity anomalies on flash flood-producing convective

systems in subtropical South America

Granting Agency: NSF – Graduate Research Fellowship for Stella Choi

Dates of Award: 9/1/15 - 8/31/18

Amount: \$90 K

Role: Principal investigator

Granting Agency: University of Illinois Vice Chancellor for Research

Dates of Award: 1/1/15 - 1/1/16

Title: SCAMP: System for Characterizing And Measuring Precipitation

Amount: \$90 K for instrumentation for the department

Role: Principal investigator (lead PI: Sonia Lasher-Trapp, Univ. Illinois)

Principal Investigator: Stephen W. Nesbitt (lead PI: Robert J. Trapp)

Granting Agency: DOE – Office of Science

Dates of Award: 9/1/15 - 8/31/18

Title: A Bottom-up Approach to Improve the Representation of Deep Convective

Clouds in Weather and Climate Models

Amount: \$551 K (\$184 K to SN)

Role: Principal investigator (lead PI: Robert J. Trapp)

Title: Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Experiment

Granting Agency: DOE – Office of Science

Dates of Award: 8/1/18 – 4/30/18

Equipment allocation: Facilities grant: deployment of \sim \$10 million in facilities for CACTI to

Argentina

Role: Principal investigator (lead PI: Adam Varble, Univ. Utah)

Title: Participation in the OLYMPEX Field Campaign

Granting Agency: NASA, Global Precipitation Mission Ground Validation Program

Dates of Award: 10/1/15 - 9/30/16

Amount: \$75 K

Role: Principal investigator

Title: Ice and mixed phase precipitation system retrieval validation for improved

multifrequency spaceborne precipitation measurements

Granting Agency: NASA, Precipitation Measurement Missions

Dates of Award: 2/4/16 - 2/3/19

Amount: \$450 K

Role: Principal investigator

Title: CAMP2Ex leadership, flight planning and integrative analysis for addressing

heterogeneity issues in observing aerosol induced changes to cloud and

precipitation properties

Granting Agency: NASA

Dates of Award: 8/1/17 – 7/4/19

Amount: \$450 K (\$150 K to SN)

Role: Principal investigator (lead PI: Larry Di Girolamo, Univ. Illinois)

Title: RELAMPAGO (Remote sensing of Electrification, Lightning, And

Mesoscale/microscale Processes with Adaptive Ground Observations) Scientific

Overview Document and Experimental Design Overview Document

Dates of Award: 8/1/18 - 7/31/18

Granting Agency: NSF, Physical and Dynamical Meteorology

Equipment allocation: approx. \$15 million in observing facilities (\$30 K to SN for project planning)

Role: Principal investigator

Title: Collaborative research: Use of RELAMPAGO observations to understand the

thermodynamic, kinematic, and dynamic processes leading to heavy

precipitation

Amount: \$650 K

Granting Agency: NSF, Physical and Dynamical Meteorology

Dates of Award: 8/1/17 – 7/31/21
Role: Principal investigator

Title: Use of GPM field campaign in-situ cloud measurements to evaluate

precipitation retrieval assumptions

Granting Agency: NASA, Earth System Science graduate fellowship for Randy Chase

Dates of Award: 9/1/17 - 8/31/20

Amount: \$140 K

Role: Principal investigator

Title: Using satellite-measured ocean vector winds to determine cold pool

characteristics and their relationships to tropical convective variability

Granting Agency: NASA, Ocean Vector Winds Science Team

Dates of Award: 2/1/19 – 1/31/23 Amount: \$625 K to SN

Role: Principal investigator (lead PI: Timothy J. Lang, NASA MSFC)

Title: Activities to improve CACTI data collection, quality, and utility

Granting Agency: DOE, Pacific Northwest National Laboratory

Dates of Award: 7/1/18 - 6/30/20

Amount: \$200 K

Role: Principal investigator

Title: On-site support for Battelle G-1 research operations in CACTI

Granting Agency: DOE, Pacific Northwest National Laboratory

Dates of Award: 10/30/18 – 12/31/18

Amount: \$11 K

Role: Principal investigator

Title: Radar tower for RELAMPAGO

Granting Agency: NSF, Physical and Dynamical Meteorology

Dates of Award: 8/1/18 – 7/31/19

Amount: \$198 K

Role: Principal investigator

Title: RAPID: A scientific deployment of a C-Band radar to observe heavy

precipitation and convective system dynamic processes in RELAMPAGO

Granting Agency: NSF, Physical and Dynamical Meteorology

Dates of Award: 8/1/18 – 7/31/19

Amount: \$114 K

Role: Principal investigator

Title: Using GPM Ground Validation measurements for improved precipitation

retrievals

Granting Agency: NASA

Dates of Award: 2/1/19 - 1/31/22

Amount: \$450 K

Role: Principal investigator

Title: Deep convective updraft populations in organized and unorganized systems

across the globe

Granting Agency: NASA

Dates of Award: 2/1/19 - 1/31/22

Amount: \$450 K

Role: Co-Principal investigator (lead PI: R. Jeffrey Trapp)

Title: PERiLS (Propagation, Evolution and Rotation in Linear Storms)

Granting Agency: NSF

Dates of Award: 9/1/21 - 8/31/24

Amount: \$2.7 M

Role: Co-Principal investigator (lead PI: K. Kosiba)

Title: Confronting problems on aerosol, cloud, and precipitation heterogeneity in the

Philippine region: Continued CAMP2Ex integrative analysis and modeling

Granting Agency: NASA

Dates of Award: 8/16/21 - 8/15/24

Amount: \$648K

Role: Co-Principal investigator (lead PI: L. DiGirolamo)

Title: High-impact Observations for Enhancing Great Lakes Snowfall Forecasting

Granting Agency: NOAA

Dates of Award: 9/1/21 – 8/31/23 Amount: \$315K (\$120K to SN)

Role: Co-investigator (lead PI: C. Petterson, U. Michigan)

Title: CIF: Community Instruments and Facilities: Mobile and Quickly Deployable

Radars

Granting Agency: NSF

Dates of Award: 6/10/21 - 6/9/24

Amount: \$747K

Role: Co-Principal investigator (lead PI: K. Kosiba)

Submitted

Title: What makes the most intense thunderstorms on earth?

Granting Agency: NSF

Dates of Award: 9/16/22 - 8/15/25

Amount: \$721K

Role: Principal investigator

Title: Mid-scale RI-2: A Globally Transportable Phased Array Radar Fostering New

Discoveries in the Atmospheric Sciences

Granting Agency: NSF

Dates of Award: 8/16/21 – 8/15/24 Amount: \$66M (\$245K to SN)

Role: Co-Principal investigator (lead PI: R. Palmer)

I. Review Panels (e.g., for Governmental Agencies, Educational Institutions)

Precipitation Measurement Missions, NASA, Aug 2006 CubeSat Missions, National Science Foundation, Jul 2008 CloudSat/CALIPSO Science Team, NASA, Feb 2010 The Science of Terra/Aqua, NASA, Aug 2010

Lawrence Berkeley National Labs Climate and Atmospheric Systems Research Focus Areas, DOE, Sept 2010

NASA Energy and Water cycle Study (NEWS), NASA, Dec 2011

Making Earth Science Data Records for Use in Research Environments (MEaSUREs), NASA, Aug 2012

CloudSat/CALIPSO Science Team, NASA, Jun 2013

GoAMAZON, Department of Energy, Sep 2013

The Science of Terra/Aqua, NASA, Sep 2013

The Atmospheric Composition Campaign Data Analysis and Modeling program, NASA, Jul 2014

The Earth Venture Instruments program, NASA, Sep 2015

Weather Program, NASA, Sep 2016

National Science Foundation Graduate Research Fellowship, Jan 2017

National Science Foundation Major Research Instrumentation, Apr 2017

Priority Programme Polarimetric Radar, Deutsche Forschungsgemeinschaft (DFG), German Sci. Fndtn., Jul 2018

Department of Energy Atmospheric Radiation Measurement Mobile Facility Program Review, Aug 2018

CloudSat/CALIPSO Science Team, NASA, Apr 2019

NASA Orbital Earth Science Division Senior Review Panel, May-Jul 2020

University of California Multicampus Research Programs, Oct 2020

Priority Programme Polarimetric Radar, Deutsche Forschungsgemeinschaft (DFG), German Sci. Fndtn., Nov 2021 National Science Foundation Graduate Research Fellowship, Jan 2022

NOAA National Severe Storm Laboratory Science Review Panel, Nov 2021 (planned)

2. PUBLICATIONS AND CREATIVE WORKS

- # Denotes any publication derived from a candidate's thesis
- * Denotes any publication that has undergone stringent editorial review by peers
- + Denotes any publication that was invited and carries special prestige and recognition
- Denotes any publication from a student or post-doctoral researcher advised or co-advised by S. Nesbitt

A. Doctoral thesis title

*Nesbitt, S. W., 2003: Precipitation features according to the Tropical Rainfall Measuring Mission. Ph.D. Dissertation, Dept. of Meteorology, University of Utah, Salt Lake City, UT 84112-0110, 182 pp.

B. Books authored or co-authored

Rauber, R. M., and S. W. Nesbitt, 2018: Radar meteorology, a first course. Wiley-Blackwell, 488 pp.

C. Articles in journals

- 1. *Nesbitt, S. W., R. Zhang, and R. E. Orville, 2000: Seasonal and global NO(x) production by lightning estimated from the optical transient detector (OTD). *Tellus*, **52**, 1206–1215, https://doi.org/10.3402/tellusb.v52i5.17098.
- 2. *#Nesbitt, S. W., and E. J. Zipser, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. *J. Clim.*, **13**, 4087–4106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.
- 3. *Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon. *J. Clim.*, **15**, 1278–1294, https://doi.org/10.1175/1520-0442(2002)015<1278:TOOIVI>2.0.CO;2.
- 4. *Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. *Mon. Wea. Rev.*, **130**, 802–824, https://doi.org/10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.
- 5. *Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. *Mon. Wea. Rev.*, **130**, 769–784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.
- 6. *#Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. *J. Clim.*, **16**, 1456–1475, https://doi.org/10.1175/1520-0442-16.10.1456.
- 7. *#Nesbitt, S. W., E. J. Zipser, and C. D. Kummerow, 2004: An examination of version-5 rainfall estimates from the TRMM Microwave Imager, precipitation radar, and rain gauges on global, regional, and storm scales. *J. Appl. Meteor. Clim.*, **43**, 1016–1036, https://doi.org/10.1175/1520-0450(2004)043<1016:AEOVRE>2.0.CO;2.
- 8. *Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt, 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. *Natural Hazards and Earth System Sciences*, **4**, 29–51.
- 9. *Cecil, D. J, S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Lightning observations from TRMM. *Bull. Amer. Meteor. Soc.*, **86**, 322–323.

- 10. *Cecil, D. J, S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. *Mon. Wea. Rev.*, **133**, 543–566, https://doi.org/10.1175/MWR-2876.1.
- 11. *Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. *Mon. Wea. Rev.*, **134**, 2702–2721, https://doi.org/10.1175/MWR3200.1.
- *Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most: Intense thunderstorms on Earth? *Bull. Amer. Meteor. Soc.*, 87, 1057–1071, https://doi.org/10.1175/BAMS-87-8-1057.
- 13. *Higgins, W., D. Ahijevych, J. Amador, A. Barros, E.H. Berbery, E. Caetano, R. Carbone, P. Ciesielski, R. Cifelli, M. Cortez-Vazquez, A. Douglas, M. Douglas, G. Emmanuel, C. Fairall, D. Gochis, D. Gutzler, T. Jackson, R. Johnson, C. King, T. Lang, M. Lee, D. Lettenmaier, R. Lobato, V. Magaña, J. Meiten, K. Mo, S. W. Nesbitt, F. Ocampo-Torres, E. Pytlak, P. Rogers, S. Rutledge, J. Schemm, S. Schubert, A. White, C. Williams, A. Wood, R. Zamora, and C. Zhang, 2006: The NAME 2004 field campaign and modeling strategy. *Bull. Amer. Meteor. Soc.*, 87, 79–94, https://doi.org/10.1175/BAMS-87-1-79.
- 14. *Matrosov, S. Y., R. Cifelli, P. C. Kennedy, S. W. Nesbitt, S. A. Rutledge, V. N. Bringi, and B. E. Martner, 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. *J. Atmos. Ocean. Tech.*, 23, 952–963, https://doi.org/10.1175/JTECH1887.1.
- 15. *Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. *J. Clim.*, **20**, 489–503, https://doi.org/10.1175/JCLI4023.1.
- 16. *Lieberman, R. S., D. M. Riggin, D. A. Ortland, S. W. Nesbitt, and R. A. Vincent, 2007: Variability of mesospheric diurnal tides and tropospheric diurnal heating during 1997-1998. *J. Geophys. Res. Atmos.*, **112**, https://doi.org/10.1029/2007JD008578.
- 17. *Cifelli, R., S. W. Nesbitt, S. A. Rutledge, W. A. Petersen, and S. Yuter, 2007: Radar characteristics of precipitation features in the EPIC and TEPPS regions of the East Pacific. *Mon. Wea. Rev.*, **135**, 1576–1595, https://doi.org/10.1175/MWR3340.1.
- *Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radarobserved characteristics of precipitating systems during NAME 2004. *J. Clim.*, 20, 1713–1733, https://doi.org/10.1175/JCLI4082.1.
- *Lyon, S. W., F. Dominguez, D. J. Gochis, N. A. Brunsell, C. L. Castro, F. K. Chow, D. Fuka, Y. Hong, P. Kucera, S. W. Nesbitt, Y. Fan, N. Salzmann, J. Schmidli, P. K. Snyder, A. J. Teuling, T. E. Twine, S. Levis, J. D. Lundquist, G. D. Salvucci, A. M. Sealy, M. T. Walter, 2008: Coupling terrestrial and atmospheric water dynamics to improve prediction in a changing environment. *Bull. Amer. Meteor. Soc.*, 89, 1275–1279, https://doi.org/10.1175/2008BAMS2547.1.
- 20. *Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. *J. Appl. Meteor. Clim.*, **47**, 2712–2728, https://doi.org/10.1175/2008JAMC1890.1.
- 21. *Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. *J. Hydromet.*, **9**, 728–743, https://doi.org/10.1175/2008JHM939.1.
- 22. *Cifelli, R., S. W. Nesbitt, S. A. Rutledge, W. A. Petersen, and S. Yuter, 2008: Diurnal characteristics of precipitation features over the tropical East Pacific: A comparison of the EPIC and TEPPS regions. *J. Clim.*, 21, 4068–4086, https://doi.org/10.1175/2007JCLI2020.1.
- 23. *Nesbitt, S. W., and A. M. Anders, 2009: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. *Geophys. Res. Lett.*, **36**, https://doi.org/10.1029/2009GL038026.
- 24. *Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. *J. Atmos. Sci.*, **66**, 2913–2924, https://doi.org/10.1175/2008JAS2761.1.
- 25. *Lang, T. J, S. W. Nesbitt, and L. D. Carey, 2009: On the correction of partial beam blockage in polarimetric radar data. *J. Atmos. Ocean. Tech.*, **26**, 943–957, https://doi.org/10.1175/2008JTECHA1133.1.
- 26. *Gochis, D. J., S. W. Nesbitt, W. Yu, and S. F. Williams, 2009: Comparison of gauge-corrected versus non-gauge corrected satellite-based quantitative precipitation estimates during the 2004 NAME enhanced observing period. *Atmosfera*, **22**, 69–98.
- 27. *Molthan, A. L., W. A. Petersen, S. W. Nesbitt, and D. Hudak, 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. *Mon. Wea. Rev.*, **138**, 4254–4267, https://doi.org/10.1175/2010MWR3485.1.

- 28. *Harnos, D. S., and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements. *Geophys. Res. Lett.*, **38**, https://doi.org/10.1029/2011GL047010.
- 29. *Rickenbach, T. M., R. Nieto-Ferreira, R. P. Barnhill, and S. W. Nesbitt, 2011: Regional contrast of mesoscale convective system structure prior to and during monsoon onset across South America. *J. Clim.*, **24**, 3753–3763, https://doi.org/10.1175/2011JCLI3975.1.
- 30. *Schiffer, N. J., and S. W. Nesbitt, 2012: Flow, moisture, and thermodynamic variability associated with Gulf of California surges within the North American monsoon. *J. Clim.*, **25**, 4220–4241, https://doi.org/10.1175/JCLI-D-11-00266.1.
- 31. *McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and <u>T.-L. Hsieh</u>, 2012: Vertical Velocity and Microphysical Distributions Related to Rapid Intensification in a Simulation of Hurricane Dennis (2005). *J. Atmos. Sci.*, **69**, 3515–3534, https://doi.org/10.1175/JAS-D-12-016.1.
- 32. *Rickenbach, T. M., R. Nieto-Ferreira, R. P. Barnhill, and S. W. Nesbitt, 2013: Seasonal and regional differences in the rainfall and intensity of isolated convection over South America. *Int. J. Climatology*, **33**, 2002–2007, https://doi.org/10.1002/joc.3568.
- 33. *Bagley, J. E., S. C. Davis, M. Georgescu, M. Z. Hussain, J. Miller, S. W. Nesbitt, <u>A. VanLoocke</u>, and C. Bernacchi, 2014: The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems. *Biomass and Bioenergy*, **71**, 187–201, https://doi.org/10.1016/j.biombioe.2014.10.007.
- 34. *Yang, S., and S. W. Nesbitt, 2014: Statistical properties of precipitation as observed by the TRMM precipitation radar. *Geophys. Res. Lett.*, **41**, 5636–5643, https://doi.org/10.1002/2014GL060683.
- 35. *Williams, C.R., V.N. Bringi, L.D. Carey, V. Chandrasekar, P.N. Gatlin, Z.S. Haddad, R. Meneghini, S. Joseph Munchak, S.W. Nesbitt, W.A. Petersen, S. Tanelli, A. Tokay, A. Wilson, and D.B. Wolff, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. *J. Appl. Meteor. Clim.*, **53**, 1282–1296, https://doi.org/10.1175/JAMC-D-13-076.1.
- 36. *Skofronick-Jackson, G., D. Hudak, W. Petersen, S.W. Nesbitt, V. Chandrasekar, S. Durden, <u>K.J. Gleicher</u>, G. Huang, P. Joe, P. Kollias, <u>K.A. Reed</u>, M.R. Schwaller, R. Stewart, S. Tanelli, A. Tokay, J.R. Wang, and M. Wolde, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX) For Measurement's Sake, Let It Snow. *Bull. Amer. Meteor. Soc.*, 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-00262.1.
- 37. *Williams, C.R., V.N. Bringi, L.D. Carey, V. Chandrasekar, P.N. Gatlin, Z.S. Haddad, R. Meneghini, S. Joseph Munchak, S.W. Nesbitt, W.A. Petersen, S. Tanelli, A. Tokay, A. Wilson, and D.B. Wolff, 2015: Corrigendum to "Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters" *J. Appl. Meteor. Clim.*, **54**, https://doi.org/10.1175/JAMC-D-15-0055.1.
- 38. *Williams, C.R., V.N. Bringi, L.D. Carey, V. Chandrasekar, P.N. Gatlin, Z.S. Haddad, R. Meneghini, S. Joseph Munchak, S.W. Nesbitt, W.A. Petersen, S. Tanelli, A. Tokay, A. Wilson, and D.B. Wolff, 2015: Reply to "Comments on 'Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters." *J. Appl. Meteor. Clim.*, **54**, 1977–1982, https://doi.org/10.1175/JAMC-D-15-0058.1.
- 39. *Anders, A. M., and S. W. Nesbitt, 2015: Altitudinal precipitation gradients in the tropics from tropical rainfall measuring mission (TRMM) precipitation radar. *J. Hydromet.*, **16**, 441–448, https://doi.org/10.1175/JHM-D-14-0178.1.
- *Harnos, D. S., and S. W. Nesbitt, 2016: Varied pathways for simulated tropical cyclone rapid intensification. Part I: Precipitation and environment. *Quart J. Roy. Meteor. Soc.*, 142, 1816–1831, https://doi.org/10.1002/qj.2780.
- 41. *Harnos, D. S., and S. W. Nesbitt, 2016: Varied pathways for simulated tropical cyclone rapid intensification. Part II: Vertical motion and cloud populations. *Quart J. Roy. Meteor. Soc.*, **142**, 1832–1846, https://doi.org/10.1002/qj.2778.
- 42. *Harnos, D. S., and S. W. Nesbitt, 2016: Passive microwave quantification of tropical cyclone inner-core cloud populations relative to subsequent intensity change. *Mon. Wea. Rev.*, **144**, 4461–4482, https://doi.org/10.1175/MWR-D-15-0090.1.
- 43. *Jensen, M.P., W.A. Petersen, A. Bansemer, N. Bharadwaj, L.D. Carey, D.J. Cecil, S.M. Collis, A.D. Del Genio, B. Dolan, J. Gerlach, S.E. Giangrande, A. Heymsfield, G. Heymsfield, P. Kollias, T.J. Lang, S.W. Nesbitt, A. Neumann, M. Poellot, S.A. Rutledge, M. Schwaller, A. Tokay, C.R. Williams, D.B. Wolff, S. Xie, and E.J. Zipser, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). *Bull. Amer. Meteor. Soc.*, 97, 1667–1686, https://doi.org/10.1175/BAMS-D-14-00228.1.

- 44. *Fritz, C., Z. Wang, S. W. Nesbitt, and T. J. Dunkerton, 2016: Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. *Geophys. Res. Lett.*, **43**, 894–901, https://doi.org/10.1002/2015GL067122.
- 45. *Mulholland, J. P., J. Frame, S. W. Nesbitt, S. M. Steiger, K. A. Kosiba, and J. Wurman, 2017: Observations of misovortices within a long-lake-axis-parallel lake-effect snowband during the OWLeS project. *Mon. Wea. Rev.*, **145**, 3265–3291, https://doi.org/10.1175/MWR-D-16-0430.1.
- 46. *Trapp, R., <u>G. R. Marion</u>, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft width. *Journal of the Atmospheric Sciences*, **74**, 4199–4211, https://doi.org/10.1175/JAS-D-16-0331.1.
- 47. *Flynn, W. J., S. W. Nesbitt, A. M. Anders, and P. Garg, 2017: Mesoscale precipitation characteristics near the Western Ghats during the Indian Summer Monsoon as simulated by a high-resolution regional model. *Quart J. Roy. Meteor. Soc.*, **143**, 3070–3084, https://doi.org/10.1002/qj.3163.
- 48. *Vidal, L., S. W. Nesbitt, P. Salio, C. Farias, M. G. Nicora, M. S. Osores, L. Mereu, and F. S. Marzano, 2017: C-band Dual-Polarization Radar Observations of a Massive Volcanic Eruption in South America. *IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.*, **10**, 960–974, https://doi.org/10.1109/JSTARS.2016.2640227.
- 49. *Suarez, S. R, M. Sued, L. Vidal, P. Salio, D. Rodriguez, S. Nesbitt, and Y. G. Skabar, 2018: Supervised classification techniques for discrimination between meteorological and non-meteorological echoes using a C-band radar. *Meteorologica*, 44, 45-65.
- 50. *Mulholland, J. P., S. W. Nesbitt, R. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. *Mon. Wea. Rev.*, **146**, 2541–2557, https://doi.org/10.1175/MWR-D-18-0081.1.
- 51. *Trapp, R., <u>G. R. Marion</u>, and S. W. Nesbitt, 2018: Reply to "Comments on 'The regulation of Tornado intensity by updraft width." *J. Atmos. Sci.*, **75**, 4057–4061, https://doi.org/10.1175/JAS-D-18-0276.1.
- 52. *Chase, R. C., J. A. Finlon, P. C. Borque, G. A. McFarquhar, S. W. Nesbitt, M. Poellot, S. Tanelli, 2018: Evaluation of Triple-Frequency Radar Retrieval of Snowfall Properties Using Coincident Airborne In Situ Observations During OLYMPEX. *Geophys. Res. Lett.*, **45**, 5752–5760, https://doi.org/10.1029/2018GL077997.
- 53. *Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass-dimension relationships: Results from MC3E. *Atmos Chem. Phys.*, 19, 3621–3643, https://doi.org/10.5194/acp-19-3621-2019.
- 54. *Borque, P., K. J. Harnos, S. W. Nesbitt, and G. M. McFarquhar, 2019: Improved parameterization of ice particle size distributions using uncorrelated mass spectrum parameters; results from GCPEx. *J. Appl. Meteor. Clim.*, **58**, 1657-1676, https://doi.org/10.1175/JAMC-D-18-0203.1.
- 55. Tridon, F., A. Battaglia, A., R. J. Chase, F. J. Turk, J. Leinonen, J., S. Kneifel, K. Mroz. J. Finlon, A. Bansemer, S. Tanelli, A. J. Heymsfield, and S. W. Nesbitt, 2019: The microphysics of stratiform precipitation during OLYMPEX: compatibility between 3-frequency radar and airborne in situ observations. *J. Geophys. Res. Atmos.*, 124. https://doi.org/10.1029/2018JD029858
- 56. *Mulholland, J.P., S.W. Nesbitt, and R.J. Trapp, 2019: A Case Study of Terrain Influences on Upscale Convective Growth of a Supercell. *Mon. Wea. Rev.*, **147**, https://doi.org/10.1175/MWR-D-19-0099.1.
- 57. *Marion, G., J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. *Geophys. Res. Lett.*, **46**. https://doi.org/10.1029/2019GL084099.
- 58. *Borque, P. C., S. W. Nesbitt, R. J. Trapp, S. Lasher-Trapp, and M. Oue, 2020: Relationship between convectively-generated cold pools and the microphysics of deep mid-latitude convection. *Mon. Wea. Rev.*, 148, 719-737, https://doi.org/10.1175/MWR-D-19-0068.1.
- 59. *Cancelada, M., P. Salio. D. Vila., S. W. Nesbitt, L. Vidal, 2020: Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): a methodology to determine extreme convective initiation regions using satellite infrared imagery. *Remote Sensing*, **2**, 337, http://doi.org/10.3390/rs12020337.
- 60. *Garg., P., S. W. Nesbitt, T. J. Lang, T. Chronis, J. D. Thayer, and D. A. Hence, 2020: Identifying tropical oceanic mesoscale cold pools using spaceborne scatterometer winds, *J. Geophys. Res.-Atmos*, **125**, e2019JD031812.
- 61. *Kumjian, M. R., R. Gutierrez, J. S. Solderholm, S. W. Nesbitt, P. Maldonado, L. M. Luna, J. Marquis, K. Bowley, M. A. Imaz, and P. Salio, 2020: Gargantuan hail in Argentina. *Bull. Amer. Meteor. Soc.*, 101, E1241–E1258, https://doi.org/10.1175/BAMS-D-19-0012.1.
- 62. *Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on convective environment and associated convective morphology from an idealized modeling prospective. *J. Atmos. Sci.*, 77, 3929-3949, https://doi.org/10.1175/JAS-D-19-0190.1.
- 63. *Trapp, R. J., K. A. Kosiba, J. N. Marquis, M. R. Kumjian, S. W. Nesbitt, J. Wurman, P. Salio, D. A. Hence, P.

- Robinson, and M. Grover, 2020: Multiple-platform and multiple-Doppler radar observations of a supercell thunderstorm in South America during RELAMPAGO. *Mon. Wea. Rev.*, **148**, 3225–3241, https://doi.org/10.1175/MWR-D-20-0125.1.
- 64. *Chase, R. C., S. W. Nesbitt, and G. M. McFarquhar, 2020: Evaluation of the Microphysical Assumptions within GPM-DPR Using Ground-Based Observations of Rain and Snow. *Atmosphere*, **11**, 619, https://doi.org/10.3390/atmos11060619.
- 65. *<u>Ding, S.</u>, G.M. McFarquhar, S. W. Nesbitt, <u>R. C. Chase</u>, and M. Poellot, 2020: Dependence of mass–dimensional relationships on median mass diameter. *Atmosphere*, **11**, 756, https://doi.org/10.3390/atmos11070756.
- 66. *Rauber, R. M., H. Hu, F. Dominguez, S. W. Nesbitt, G. McFarquhar, T. Zaremba, and <u>J. Finlon</u>, 2020: Structure of an Atmospheric River over Australia and the Southern Ocean. Part I: Tropical and Mid-Latitude Water Vapor Fluxes as a Seeder-Feeder Process. *J. Geophys. Res. Atmos*, https://doi.org/10.1029%2F2020jd032513.
- 67. *Finlon, J. A., R. M. Rauber, W. Wu, T. J. Zaremba, G. M. McFarquhar, S. W. Nesbitt, M. Schnaiter, E. Jarvinen, F. Waitz, T. C. J. Hill, and P. J. DeMott, 2020: Structure of an Atmospheric River over Australia and the Southern Ocean. Part II: Microphysical Evolution. *J. Geophys. Res. Atmos*, https://doi.org/10.1029%2F2020jd032514.
- 68. *Borque, P. C., L. Vidal, M. Rugna, T. J. Lang, M. G. Nicora, and S. W. Nesbitt, 2020: Relationships between 1-minute satellite overshooting tops, lightning, and radar signatures in a severe supercell thunderstorm. *J. Geophys. Res.*, https://doi.org/10.1029%2F2020jd032856.
- 69. *Pal, S., F. Dominguez, M. E. Dillon, J. Alvarez, C. M. Garcia, C. M., S. W. Nesbitt, and D. Gochis, D., 2020: Hydrometeorological Observations and Modeling of an Extreme Rainfall Event using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina, *J. Hydrometeorology*, https://doi.org/10.1175/JHM-D-20-0133.1.
- 70. *Chase, R. C., S. W. Nesbitt, and G. M. McFarquhar, 2021: A dual-frequency radar retrieval of two parameters of the snowfall particle size distribution using a neural network. *J. Appl. Meteor. Clim.*, https://doi.org/10.1175/JAMC-D-20-0177.1.
- 71. *Schumacher, R. S., D. A. Hence, S. W. Nesbitt, R. J. Trapp, K. A. Kosiba, J. Wurman, P. Salio, M. Rugna, A. Varble, 2021: Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. *Mon. Wea. Rev.*, https://doi.org/10.1175/MWR-D-20-0293.1.
- 72. *Priftis, G., T. J. Lang, P. Garg, S. W. Nesbitt, R. D. Lindsley, and T. Chronis, 2021. Evaluating the Detection of Mesoscale Outflow Boundaries Using Scatterometer Winds at Different Spatial Resolutions. *Remote Sens.* **13** (7), 1334. https://doi.org/10.3390/rs13071334.
- 73. *Varble, A. C., S. W. Nesbitt, P. Salio, J. C. Hardin, N. Bharadwaj, P. Borque, P. J. DeMott, Z. Feng, T. C. J. Hill, J. N. Marquis, A. Matthews, F. Mei, R. Öktem, V. Castro, L. Goldberger, A. Hunzinger, K. R. Barry, S. M. Kreidenweis, G. M. McFarquhar, L. A. McMurdie, M. Pekour, H. Powers, D. M. Romps, C. Saulo, B. Schmid, J. M. Tomlinson, S. C. van den Heever, A. Zelenyuk, Z. Zhang, and E. J. Zipser, 2021: Utilizing a storm-generating hotspot to study controls on convective cloud transitions: The CACTI Experiment. *Bull. Amer. Meteor. Soc.*, https://doi.org/10.1175/BAMS-D-20-0030.1.
- 74. *Wurman, J., K. Kosiba, B. Pereira, P. Robinson, A. Frambach, A. Gilliand, T. White, J. Aikins, R. J. Trapp, S. W. Nesbitt, M. N. Hanshaw, and J. Lutz, 2021: The FARM (Flexible Array of Radars and Mesonets). *Bull. Amer. Meteor. Soc.*, https://doi.org/10.1175/BAMS-D-20-0285.1.
- 75. *Nesbitt, S. W., Salio, P.V., E. Ávila, P. Bitzer, L. Carey, V. Chandrasekar, W. Deierling, F. Dominguez, M. E. Dillon, C. M. Garcia, D. Gochis, S. Goodman, D. A. Hence, K. A. Kosiba, M. R. Kumjian, T. Lang, L. M. Luna, J. Marquis, R. Marshall, L. A. McMurdie, E. Lima de Nascimento, K. L. Rasmussen, R. Roberts, A. K. Rowe, J. J. Ruiz, E. São Sabbas, A. C. Saulo, R. S. Schumacher, Y. Garcia Skabar, L. Machado, R. J. Trapp, A. Varble, J. Wilson, J. Wurman, E. J. Zipser, I. Arias, H. Bechis, and M. Grover, 2021: A storm safari in Argentina, Proyecto RELAMPAGO. *Bull. Amer. Meteor. Soc.*, https://doi.org/10.1175/BAMS-D-20-0029.1.
- *Fisher, E. V., B. Bloodhart, K. Rasmussen, I. B. Pollack, M. G. Hastings, E. Marin-Spiotta, A. R. Desai, J. P. Schwarz, S. W. Nesbitt, and D. Hence, 2021: Leveraging field-campaign networks to identify sexual harassment in atmospheric science and pilot promising interventions. *Bull. Amer. Meteor. Soc.*, https://doi.org/10.1175/BAMS-D-19-0341.1.
- 77. *Rasmussen, K. R., M. A. Burt, A. Rowe, R. Haacker, D. Hence, L. M. Luna, S. W. Nesbitt, and J. Maertens, 2021: Enlightenment strikes! Broadening graduate school training through field campaign participation. *Bull. Amer. Meteor. Soc.*, https://doi.org/10.1175/BAMS-D-20-0062.1.

- 78. *Casanovas, C., P. Salio, V. Galligani, B. Dolan, and S. W. Nesbitt, 2021: Drop size distribution variability in central Argentina during RELAMPAGO-CACTI. *Remote Sensing*, **13**, 2026, https://doi.org/10.3390/rs13112026.
- 79. *Duffy, G., G. M. McFarquhar, S. W. Nesbitt, and R. Bennartz, 2021: Demonstration of a Consistent Relationship between Dual-Frequency Reflectivity and the Mass-Weighted Mean Diameter in Measurements of Frozen Precipitation from GCPEX, OLYMPEX, and MC3E. *J. Atmos. Sci.*, **78**, 2533-2547, https://doi.org/10.1175/JAS-D-20-0174.1.
- 80. *Rivelli-Zea, L., S. W. Nesbitt, A. L. Rincon, A. Varble, and J. A. Hardin, 2021: An investigation of the raindrop size distribution across the Americas. *Atmospheres*, **12**, 979, https://doi.org/10.3390/atmos12080979.
- 81. *Garg, P., S. W. Nesbitt, T. J. Lang, and G. Priftus, 2021: Diurnal cycle of tropical oceanic mesoscale cold pools. *J. Climate*, **34**, https://doi.org/10.1175/JCLI-D-20-0909.1.
- 82. *Dillon, M. E., P. Maldonado, P. Corrales, Y. García Skabar, J. Ruiz, M. Sacco, F. Cutraro, L. Mingari, C. Matsudo, L. Vidal, M. Rugna, M. P. Hobouchian, P. Salio, S. W. Nesbitt, C. Saulo, E. Kalnay, T. Miyoshi, 2021: A rapid refresh ensemble based Data Assimilation and Forecast system for the RELAMPAGO field campaign. *Atmos. Res.*, 261, https://doi.org/10.1016/j.atmosres.2021.105858.
- 83. *Singh, I., S. W. Nesbitt, and C. Davis, 2021: Quasi-idealized numerical simulations of processes involved in orogenic convection initiation over the Sierras de Córdoba mountains. *J. Atmos. Sci.*, in press. https://doi.org/10.1175/JAS-D-21-0007.1.
- 84. Casseretto, G., M. E. Dillon, P. Salio, Y. Garcia Skabar, S. W. Nesbitt, R. S. Schumacher, C. M. García, and C. Cataliani, 2022: High-resolution NWP forecast precipitation comparison over complex terrain of the Sierras de Córdoba during RELAMPAGO-CACTI. *Wea. Forecast.*, in press. https://doi.org/10.1175/WAF-D-21-0006.1.

D. Bulletins, Reports or Conference Proceedings

- 1. #Cecil, D. J., D. B. Wolff, E. R. Toracinta, and S. W. Nesbitt, 1998: Multi-sensor comparison of TRMM satellite and ground validation products from Texas and Florida squall line events. Preprints, 19th Conf. Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 587-590.
- 2. #Nesbitt, S. W., 1999: A comparison of 85 GHz ice scattering, reflectivity structure and lightning observations of tropical precipitation by TRMM. Preprints, 23rd Conference on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 939-942.
- 3. Nesbitt, S.W., Zipser, E. J., B. Xi, G. Heymsfield and R. Hood, 2000: Using radar profiles and passive microwave radiances as constraints for deriving microphysical profiles within cloud systems. Preprints, 13th International Conference on Clouds and Precipitation, Reno, NV, International Commission on Clouds and Precipitation, 250-253.
- 4. Yorty, D. P., E. J. Zipser, and S. W. Nesbitt, 2001: Global distribution of extremely intense storms between 36°S and 36°N using evidence from the TRMM radar. Preprints, 30th International Conf. on Radar Meteor., Munich, Germany, Amer. Meteor. Soc., 334-336.
- Nesbitt, S. W. and G. V. Mota, 2002: A comparison of precipitation estimates in the Himalayas and Andes. Preprints, 10th Conference on Mountain Meteorology and MAP Meeting, Park City, UT, Amer. Meteor. Soc., 237-238.
- Rutledge, S., S. Nesbitt, R. Cifelli, T. Lang, B. Martner, S. Matrosov, D. Kingsmill, K. Gage, C. Williams, V. Bringi, V. Chandrasekar, and P. Kennedy, 2005: Report and recommendations of the Global Precipitation Mission (GPM) Ground Validation (GV) Front Range Pilot Project. Report, submitted to NASA GPM Project Office, 67 pp.
- E. <u>Abstracts (since promotion to associate professor, 68 submitted prior to promotion to associate professor, omitted for space)</u>
- 1. Nesbitt, S. W., <u>A. VanLoocke</u>, and C. J. Bernacchi, 2012: Biosphere-atmosphere interactions in the North American Monsoon, Water Workshop, Energy Biosciences Institute, Chicago, IL.
- 2. Nesbitt, S. W., <u>K. J. Gleicher</u>, A. Heymsfield, A. Bansemer, M. Polleot, A. Newman, S. Collis, P. Kollias, W. A. Petersen, 2012: Multiple-wavelength radar perspectives of mixed-phase convective precipitation in MC3E. European Radar Conference, Toulouse, France.
- 3. Nesbitt, S. W., <u>K. J. Gleicher</u>, W. A. Petersen, A. Bansemer, A. Heymsfield, M. Poellot, A. Newmann, D. Delene, G. Heymsfield, 2012: Radar-aircraft synergy in GPM-GV field campaigns. Oral presentation, Fall meeting, AGU, San Francisco, CA.

- 4. <u>Gleicher, K. J.</u>, and S. W. Nesbitt, 2013: An evaluation of WRF microphysics using airborne and ground instrumentation in LPVEx for GPM-GV. Fall meeting, AGU, San Francisco, CA.
- 5. <u>Harnos, D. S.</u>, and S. W. Nesbitt, 2013: Structural morphology of tropical cyclones as witnessed by passive microwave sensors. Annual meeting, AMS, Austin, TX.
- Nesbitt, S. W., A. M. Anders, 2013: Precipitation, elevation and relief in the tropics. Annual meeting, AMS, Austin, TX.
- 7. <u>Kaufeld, W. J.</u>, and S. W. Nesbitt, 2013: Influence of soil moisture initialization on local precipitation patterns in the Western Ghats. Oral presentation, Annual meeting, AMS, Austin, TX.
- 8. <u>Schiffer, N. S.</u>, and S. W. Nesbitt, 2013: Does increased model resolution over complex terrain improve precipitation for the right reasons? A North American Monsoon case study. Oral presentation, Annual meeting, AMS, Austin, TX.
- 9. Nesbitt, S. W., 2013: Building the GV column: physical validation of GPM algorithms. Invited presentation, NASA Precipitation Measurement Missions science team meeting, Annapolis, MD.
- 10. Nesbitt, S. W., 2013: Building the GV column in the GPM Cold Season Precipitation Experiment (GCPEX). Invited poster, NASA Precipitation Measurement Missions Science Team Meeting, Annapolis, MD.
- Nesbitt, S. W., G. Duffy, G. McFarquhar, M. Kulie, C. V. Chandra, P. Kollias, S. Tanelli, W. A. Petersen, and A. Tokay, 2013: Quantifying snowfall scattering and microphysical properties from the Global Precipitation Mission Cold season Precipitation Experiment (GCPEx). Oral presentation, 36th Conference on Radar Meteorology, AMS, Breckenridge, CO.
- 12. Keeler, J. M, B. F. Jewett, R. M. Rauber, G. M. McFarquhar, A. A. Rosenow, D. M. Plummer, D. Leon, S. W. Nesbitt, R. M. Rasmussen, G. Thompson, L. Xue, and C. Liu, 2014: Comparisons of Wyoming Cloud Radar observations to simulations of precipitation generating cells in winter cyclones. Abstract, 36th Conference on Radar Meteorology, AMS, Breckenridge, CO.
- 13. Nesbitt, S. W., G. A. Duffy, K. Gleicher, G. M. McFarquhar, M. Kulie, C. R. Williams, W. A. Petersen, S. J. Munchak, A. Tokay, G. Skofronick-Jackson, V. Chandrasekar, P. Kollias, D. R. Hudak, S. Tanelli, 2013: Building the GPM-GV column from the GPM Cold season Precipitation Experiment. Invited oral presentation, AGU Fall Meeting, San Francisco, CA.
- 14. <u>Duffy, G.</u>, S. W. Nesbitt, G. McFarquhar, M. Poellot, V. Chandrasekar, D. Hudak, 2013: In situ microphysical and scattering properties of falling snow in GPM-GCPEx. Oral presentation, AGU Fall Meeting, San Francisco, CA.
- 15. <u>Gleicher, K.</u>, S. W. Nesbitt, <u>G. Duffy</u>, G. McFarquhar, A. Bansemer, A. Heymsfield, W. A. Petersen, 2013: Evaluating relationships between particle size distribution parameters and environment from GCPEx. Fall meeting, AGU Fall Meeting, San Francisco, CA.
- 16. Colle, B. E., A. Molthan, R. Yu, S. E. Yuter, and S. W. Nesbitt, 2013: Evaluation of model microphysics within precipitation bands of extratropical cyclones. AGU Fall Meeting, San Francisco, CA.
- 17. <u>Harnos, D. S.</u>, and S. W. Nesbitt, 2013: Evaluation of vertical motion contributions towards tropical cyclone rapid intensification under varying wind shear. AGU Fall Meeting, San Francisco, CA.
- 18. Reed, K. A., S. W. Nesbitt, M. Kulie, T. S. L'Ecuyer, and N. Wood, 2013: An evaluation of satellite retrievals of snowfall in regions of complex terrain. AGU Fall Meeting, San Francisco, CA.
- Wang, Z., I. E. Hankes, S. M. Hristova-Veleva, T. J. Dunkerton, and S. W. Nesbitt, 2014: Characteristics of tropical easterly wave pouches during tropical cyclone formation. 31st Conference on Hurricanes and Tropical Meteorology, San Diego, CA.
- 20. <u>Harnos, D. S.</u>, and S. W. Nesbitt, 2014: Characterization of the dynamical role of convection in two simulated episodes of rapid intensification. Oral presentation, 31st Conference on Hurricanes and Tropical Meteorology, San Diego, CA.
- 21. <u>Harnos, D. S.</u>, and S. W. Nesbitt, 2014: Passive microwave signatures of tropical cyclone symmetry as related to intensity change. 31st Conference on Hurricanes and Tropical Meteorology, San Diego, CA.
- 22. <u>Duffy, G.</u>, S. W. Nesbitt, and G. McFarquhar, 2014: Evaluations of radar scattering models for falling snow. Precipitation Measurement Missions Science Team Meeting, NASA, Baltimore, Maryland.
- 23. <u>Gleicher, K.</u>, S. W. Nesbitt, <u>K. Reed</u>, A. Bansemer, A. Heymsfield, and W. Petersen, 2015: Evaluating Relationships between Particle Size Distribution Parameters from GCPEx. Precipitation Measurement Missions Science Team Meeting, NASA, Baltimore, Maryland.
- 24. Nesbitt, S. W., P. Salio, D. Cecil, R. Garreaud, R. Houze, Jr., K. Rasmussen, A. Varble, L. Machado, D. Gochis, and S. Goodman, 2014: RELAMPAGO and SAME-PACE: Extreme storms that impact society in Southeastern South America. World Weather Open Science Conference, World Meteorological Organization, Montréal, Canada.

- 25. Nesbitt, S. W., <u>K. Gleicher, G. Duffy, K. Reed, V. Chandrasekar, W. Petersen, D. Hudak, 2014: Snowfall validation for the NASA Global Precipitation Measurement mission. 8th European Conference on Radar Meteorology and Hydrology, Garmisch-Partenkirchen, Germany.</u>
- 26. <u>Harnos, K.</u>, S. W. Nesbitt, <u>K. Reed, G. Duffy</u>, C. Williams, A. Bansemer, S. Munchak, A. Heymsfield, W. Petersen, 2014: Comparison of airborne and ground based measurements and the relationships between microphysical parameters from GCPEx. AGU Fall Meeting, San Francisco, CA.
- 27. Choi, S., S. W. Nesbitt, T. Lang, and T. Chronis, 2014: Influence of Mesoscale Ocean Wind Variability on Tropical Atmospheric Convection. AGU Fall Meeting, San Francisco, CA.
- 28. Nesbitt, S. W., <u>D. S. Harnos, K. Harnos, K. Reed, G. Duffy</u>, G. McFarquhar, S. Tanelli, C. Williams, B. Johnson, W. Petersen, A. Tokey, A. Barros, A. Wilson, 2014: Constraints on a priori assumptions and microphysical properties in precipitation from in situ measurements in GPM-GV field campaigns: regime dependence and impact on retrievals. AGU Fall Meeting, San Francisco, CA.
- 29. Colle, B., A. Molthan, R. Yu, and S. W. Nesbitt, 2014: Evaluation of Mixed-Phase Microphysics Within Winter Storms Using Field Data and In Situ Observations. AGU Fall Meeting, San Francisco, CA.
- 30. Barros, A., W. Petersen, T. Lang, A. Wilson, Y. Duan, S. W. Nesbitt, R. Cifelli, M. Schwaller, D. Wolff, D. Miller, J. Gourley, M. Petters, 2014: IPHEx 2014: Observations of Orographic Precipitation Processes in the Southern Appalachians. AGU Fall Meeting, San Francisco, CA. (invited)
- 31. Reed, K., S. W. Nesbitt, and A. Tokay: 2014: An Evaluation Of Cold Season Precipitation Microphysical Properties From A Ground-Based Perspective. AGU Fall Meeting, San Francisco, CA.
- 32. Kulie, M., S. W. Nesbitt, <u>D. S. Harnos</u>, A. Heymsfield, B. Johnson, S. Tanelli, 2014: Multi-Frequency Radar and Microwave Radiometer Simulations of Surface Snowfall Events from GCPEx: Synergistic Application of In-Situ Microphysics Observations with Modeled Ice Scattering Properties. AGU Fall Meeting, San Francisco, CA.
- 33. <u>Duffy, G.</u>, S. W. Nesbitt, and G. McFarquhar, 2014: Evaluations of Particle Scattering Models for Falling Snow. AGU Fall Meeting, San Francisco, CA.
- 34. Nesbitt, S. W., 2015: Improving Cold Season Precipitation Retrievals with GPM Ground Validatation Data. 7th NASA Global Precipitation Measurement Ground Validation Workshop, Seoul, Korea. (invited)
- 35. Nesbitt, S. W., 2015: RELAMPAGO: Remote sensing of Electrification, Lightning, And Meso-scale/micro-scale Processes with Adaptive Ground Observations. Invited Conference Keynote Presentation, XII Argentine Congress on Meteorology, Mar del Plata, Argentina.
- 36. Nesbitt, S. W., P. Salio, A. C. Saulo, 2015: RELAMPAGO Field Campaign. XII Argentine Congress on Meteorology, Mar del Plata, Argentina. (invited)
- 37. Ruiz, J. J., L. Vidal Sr., P. Maldonado, S. Suarez Ruiz, P. Salio, Y. Garcia Skabar, Y. Garcia Skabar, A. C. Saulo, S. W. Nesbitt, E. Kalnay, and T. Miyoshi, 2016: Local ensemble transform Kalman filter experiments using radar observations: a case study over central Argentina. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 38. Vidal, L. Sr., S. W. Nesbitt, P. Salio, S. Osores, C. Farias, A. Rodriguez, J. Serra, and G. Caranti, 2015: C-Band Dual-Polarization Observations of a Massive Volcanic Eruption in South America. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 39. Salio, P. V., and L. Pappalardo, S. W. Nesbitt, L. Vidal Sr., M. D. L. M. Alvarez Imaz, and A. Scardilli, 2015: Variability of parameters for Attenuation Correction over mid-latitude extreme precipitating events. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 40. Nesbitt, S. W., <u>G. Duffy, K. A. Reed</u>, G. McFarquhar, and A. Tokay, 2015: Using particle size distribution observations from GPM field campaigns to constrain spaceborne precipitation retrievals. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 41. Vidal, L. Sr., S. R. Suarez, P. Salio, S. W. Nesbitt, and R. Mezher, 2015: S. Ruiz Suarez, P. Salio, S. W. Nesbitt, and R. Mezher, 2015: C-band Hydrometeor Classification Scheme and Its Application on Hail Detection over Central Argentina. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 42. <u>Duffy, G.</u>, S. W. Nesbitt, and G. McFarquhar, 2015: A Comparison of Retrieved Mass-Diameter Relationships in Snowfall from Radar and Ice Water Content Measurements. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 43. Metzler, R., S. W. Nesbitt, and P. Salio, 2015: Investigating Hail Core Signatures Using C-Band Polarimetric Radar. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 44. <u>Reed, K. A.,</u> and S. W. Nesbitt, 2015: An Evaluation of Cold Season Precipitation Microphysical Properties from a Radar Perspective. 37th Conference on Radar Meteorology, AMS, Norman, OK.
- 45. Nesbitt, S. W., and K. L. Rasmussen, 2015: Extremely tall convection: characteristics and controls. AGU Fall

- Meeting, San Francisco, CA.
- 46. <u>Duffy, G. A.</u>, S. W. Nesbitt, and G. M. McFarquhar, 2015: Sensitivity of simulated snow cloud properties to mass-diameter parameterizations. AGU Fall Meeting, San Francisco, CA.
- 47. Fritz, C., Z. Wang, S. W. Nesbitt, and T. Dunkerton, 2015: Cloud Evolution during Tropical Cyclone Formation as Revealed by TRMM PR. AGU Fall Meeting, San Francisco, CA.
- 48. Reed, K. A., and S. W. Nesbitt, 2015: An uncertainty model for snowfall rate retrievals from the GPM DPR. AGU Fall Meeting, San Francisco, CA.
- 49. Nesbitt, S. W., and A. Varble, 2016: CACTI-RELAMPAGO synergy. Atmospheric Radiation Measurement Radar Meeting, Miami, FL. (invited)
- 50. Lang, T. J., S. W. Nesbitt, <u>P. Garg</u>, G. Priftus, and T. Chronis, 2016: Using scatterometer-measured vector winds to study high-impact weather events. NASA Ocean Vector Winds Science Team Meeting, Sapporo, Japan. (invited)
- 51. Nesbitt, S. W., and A. Varble, 2016: CACTI-RELAMPAGO synergy. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Tysons, VA. (invited)
- 52. Nesbitt, S. W., <u>P. Borque</u>, K. Rasmussen, P. Salio, R. J. Trapp, L. Vidal, M. Rugna, <u>J. Mulholland</u>, 2016: Severe Convection in Central Argentina: Storm Modes and Environments. 28th Conference on Severe Local Storms, AMS, Portland, OR.
- 53. Nesbitt, S. W. and <u>P. Borque</u>, 2017: RELAMPAGO. Atmospheric Radiation Measurement Atmospheric Systems Research Science Team Meeting, Tysons, VA. (invited)
- 54. <u>Garg, P.</u>, S. W. Nesbitt, T. J. Lang, 2017: Using scatterometer-measured vector winds to study high-impact weather events. NASA Ocean Vector Winds Science Team Meeting, San Diego, CA (invited)
- 55. Nesbitt, S. W., <u>R. Chase</u>, <u>P. Borque</u>, <u>J. Finlon</u>, <u>S. Ding</u>, and G. McFarquhar, 2017: A critical evaluation of the GPM DPR algorithm assumptions using OLYMPEX data, OLYMPEX Workshop, Seattle, WA. (invited)
- 56. Nesbitt, S. W., K. Rasmussen, M. Cancelada, P. Salio, L. Vidal, J. Mulholland, P. Borque, R. J. Trapp, 2017: Storm environments supporting spaceborne radar and GOES-observed severe storms in Central Argentina. 37th Conference on Radar Meteorology, AMS, Chicago, IL.
- 57. Nesbitt, S. W., <u>P. Borque</u>, <u>R. Chase</u>, and G. McFarquhar, 2017: Using GV Field Campaign Data to Improve GPM Algorithm Assumptions. Poster, NASA Precipitation Science Team Meeting, San Diego, CA.
- 58. Nesbitt, S. W., <u>R. Chase</u>, <u>P. Borque</u>, <u>J. Finlon</u>, and G. McFarquhar, 2017: Evaluation of GPM algorithm assumptions using GPM-GV data, NASA Precipitation Science Team Meeting, San Diego, CA. (invited)
- 59. Nesbitt, S. W., and coauthors: 2017: Improving high impact weather and climate prediction for societal resilience in Subtropical South America: Proyecto RELAMPAGO-CACTI. AGU Fall Meeting, New Orleans, LA. (invited)
- 60. McFarquhar, G. M., <u>J. Finlon</u>, S. W. Nesbitt, <u>P. Borque</u>, <u>R. Chase</u>, W. Wu, H. Morrison, and M. Poellot, 2017: A framework for characterizing how ice crystal size distributions, mass-dimensional and area-dimensional relations vary with environmental and aerosol properties. AGU Fall Meeting, New Orleans, LA. (Invited)
- 61. Garg, P., S. W. Nesbitt, T. J. Lang, and T. Chronis, 2017: Observed structure and characteristics of cold pools over tropical oceans using vector wind retrievals and WRF simulations. AGU Fall Meeting, New Orleans, I.A.
- 62. <u>P. Borque, J. Finlon</u>, S. W. Nesbitt, G. M. McFarquhar, 2017: Characterization of ice and snow in-situ properties during the main weather regimes observed in the Olympic Mountain Experiment. . AGU Fall Meeting, New Orleans, LA.
- 63. Borque, P. C., S. W. Nesbitt, and G. M. McFarquhar, 2018: Analysis of cold pools' morphology and thermodynamics in connection with associated convective clouds strength and microphysics evolution. AMS Annual Meeting, Austin, TX.
- 64. Nesbitt, S. W., and coauthors: 2018: Understanding Processes and Improving Predictions of Hydrometeorological Extremes: Proyecto RELAMPAGO-CACTI. AMS Annual Meeting, Austin, TX.
- 65. Mulholland, J., S. W. Nesbitt, R. J. Trapp, and K. L. Rasmussen, 2018: Factors Controlling Convective Storm Mode and Heavy Rainfall Production Near the Sierras De Córdoba, Argentina. AMS Annual Meeting, Austin, TX
- 66. <u>Flynn, W. J.</u>, S. W. Nesbitt, and <u>P. Garg</u>, 2018: On the Diurnal Cycle of Rainfall Near the Western Ghats during the Indian Summer Monsoon: Influences of the Low-Level Atmosphere and Land Surface. AMS Annual Meeting, Austin, TX.
- 67. <u>Borque, P.</u>, and S. W. Nesbitt, 2018: RELAMPAGO overview, synergy with CACTI. Department of Energy Atmospheric Radiation Measurement Principal Investigator Meeting and Atmospheric Radiation Measurement Climate Research Facility Users' Meeting. Tysons, VA.

- 68. Nesbitt, S. W., <u>P. Borque</u>, <u>R. Chase</u>, <u>J. Finlon</u>, and G. M. McFarquhar, 2018: Towards improved spaceborne ice and mixed-phase spaceborne precipitation retrievals. NASA Precipitation Measurement Missions Science Team Meeting, Phoenix, Arizona.
- 69. <u>Chase, R.</u>, S. W. Nesbitt, <u>P. Borque</u> and G. M McFarquhar, 2018: Multi-sensor investigation of large ice particles using GPM and NASA GV Data. NASA Precipitation Measurement Missions Science Team Meeting, Phoenix, Arizona.
- 70. Garg, P., S. W. Nesbitt, T. J. Lang, G. Priftus, and T. Chronis, 2019: Using scatterometer winds to identify convectively generated oceanic cold pools. NASA Ocean Vector Winds Science Team Meeting, Portland, Maine.
- 71. Nesbitt, S. W. <u>Garg, P.</u>, T. J. Lang, G. Priftus, and T. Chronis, 2019: The diurnal cycle of convectively generated cold pools in the Maritime Continent and surrounding seas. NASA Ocean Vector Winds Science Team Meeting, Portland, Maine.
- 72. Nesbitt, S. W., J. Mulholland, J. Mulholland, I. Singh, L. E. R. Zea, P. Borque, K. L. Rasmussen, R. S. Schumacher, A. K. Rowe, L. A. McMurdie, J. Marquis, P. Salio, M. D. L. M. A. Imaz, M. Cancelada, H. Bechis, and A. C. Varble, 2019: Mesoscale Flows Leading to Convective Initiation, Upscale Growth, and Heavy Precipitation As Observed during RELAMPAGO-CACTI. 18th AMS Conference on Mesoscale Processes, Savannah, GA.
- 73. Schumacher, R. S., D. A. Hence, N. R. Kelly, K. A. Kosiba, S. W. Nesbitt, R. J. Trapp, and J. Wurman, 2019: High-Frequency Mobile Soundings in Convective Environments During RELAMPAGO: Overview and Preliminary Findings. 18th AMS Conference on Mesoscale Processes, Savannah, GA.
- 74. Garg., P., S. W. Nesbitt, T. J. Lang, T. Chronis, G. Priftus, J. D. Thayer, and D. A. Hence, 2019: Identification and characterization of tropical atmospheric mesoscale near-surface cold pools using spaceborne scatterometer, precipitation, reanalysis, and high-resolution modeling. 18th AMS Conference on Mesoscale Processes, Savannah, GA.
- 75. <u>Singh, I. T.</u> and S. W. Nesbitt, 2019: High-resolution idealized simulations of orographic convection initiation over the Sierras de Córdoba Mountains. 18th AMS Conference on Mesoscale Processes, Savannah, GA.
- 76. Nesbitt, S.W., R. C. Chase, and G. M. McFarquhar, 2019: Using GPM-GV data for improved ice and mixed phase precipitation retrievals from GPM-DPR. NASA Precipitation Measurement Missions Science Team Meeting, Indianapolis, Indiana.
- 77. Chase, R. C., S. W. Nesbitt, and G. M. McFarquhar, 2019: Does an R-Dm relationship apply in snow? NASA Precipitation Measurement Missions Science Team Meeting, Indianapolis, Indiana.
- 78. Singh, I., S. W. Nesbitt, and C. A. Davis, 2019: Initiation of deep moist convection over the Sierras de Córdoba mountains in Argentina. AGU Fall Meeting, San Francisco, CA.
- 79. Rivelli Zea, L. E., S. W. Nesbitt, A. Tokay, and W. Petersen, 2019: RELAMPAGO-CACTI drop size distribution observations and the implications for hydrologic studies. AGU Fall Meeting, San Francisco, CA.
- 80. McFarquhar, G. M., J. Finlon, H. Morrison, M. Stanford, A. Varble, R. Rauber, S. W. Nesbitt, S. Ding, and W. Wu, 2019: A stochastic approach for representing uncertainty and variability in cloud microphysical parameters for use in process-oriented studies. AGU Fall Meeting, San Francisco, CA.
- 81. Pal, S., F. Dominguez, J. Alvarez, C. M. Garcia, S. W. Nesbitt, and D. Gochis, 2019: Hydrometeorological modeling of extreme rainfall events using WRF and WRF-Hydro during the RELAMPAGO campaign in Argentina. AGU Fall Meeting, San Francisco, CA.
- 82. Salio, P. V., M. Cancelada, S. W. Nesbitt, L. Vidal, and D. Vila, 2019: Environmental conditions associated to convective initiation of extreme convective systems over Southeastern South America. AGU Fall Meeting, San Francisco, CA.
- 83. Mulholland, J. S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2019: Terrain Influences on Upscale Convective Growth of Orographic Supercells into Mesoscale Convective Systems. AGU Fall Meeting, San Francisco, CA.
- 84. M. Cancelada, P. V. Salio, and S. W. Nesbitt, 2019: CCN Source Regions During RELAMPAGO-CACTI Field Campaign. AGU Fall Meeting, San Francisco, CA.
- 85. Chase, R. J., S. W. Nesbitt, G. McFarquhar, F. Tridon, and J. Leinonen, 2019: Improving Active Remote Sensing of Snow Through the Use of Multiple Frequencies, In-Situ Data and Neural Networks. AGU Fall Meeting, San Francisco, CA.
- 86. Casanovas, C., P. V. Salio, V. S. Galligani, S. W. Nesbitt, and B. Dolan, 2019: Drop-Size Distribution Variability over Central Argentina during RELAMPAGO-CACTI. AGU Fall Meeting, San Francisco, CA.
- 87. Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2019: Satellite-based anticipation of extreme convective weather through quantification of convective updraft characteristics: Application to potential tornado intensity

- estimation. AGU Fall Meeting, San Francisco, CA.
- 88. Marion, G., R. J. Trapp, and S. W. Nesbitt, 2020: Using Overshooting Top Area to Discriminate the Potential for Large, Intense Tornadoes. AMS Annual Meeting, Boston, MA.
- 89. Schumacher, R. S., D. A. Hence, N. R. Kelly, K. A. Kosiba, S. W. Nesbitt, R. J. Trapp, and J. Wurman, 2020: High-Frequency Mobile Soundings in Convective Environments during RELAMPAGO: Overview and Preliminary Findings. AMS Annual Meeting, Boston, MA.
- 90. Chase, R. J., S. W. Nesbitt, G. McFarquhar, F. Tridon, and J. Leinonen, 2020: Improving Active Remote Sensing of Snow Through the Use of Multiple Frequencies, In-Situ Data and Neural Networks. AMS Annual Meeting, Boston, MA.
- 91. Trapp, R. J., G. Marion, M. F. Sessa, D. Chehak, and S. W. Nesbitt, 2020: Robust Observational Support of the Hypothesized Connection between Rotating Updraft Width and Tornado Intensity. AMS Annual Meeting, Boston, MA.
- 92. Kosiba, K. A., J. Wurman, S. W. Nesbitt, R. J. Trapp, M. R. Kumjian, R. S. Schumacher, and D. A. Hence, 2020: Overview of CSWR RELAMPAGO Radar and Surface Observations. AMS Annual Meeting, Boston, MA.
- 93. Nesbitt, S. W., I. Singh, J. Mulholland, R. J. Trapp, A. C. Varble, and V. Chandrasekar, 2020: Convective Mode Transitions in the Lee of Mesoscale Terrain as Observed during RELAMPAGO-CACTI. 19th Conference on Mountain Meteorology, virtual (invited).
- 94. Singh, I., S. W. Nesbitt, and C. A. Davis, 2020: Processes Controlling the Location of Convection Initiation over Complex Terrain in a Sheared, Conditionally Unstable Environment, 19th Conference on Mountain Meteorology, virtual.
- 95. Maring, H. B., and coauthors, 2020: The Rock Matrix Around CAMP2Ex's Gemstones: The Value of the Apparently Mundane in Shaping Earth System Observation. AGU Fall Meeting, virtual.
- 96. Grover, M., R. J. Trapp, S. W. Nesbitt, L. Di Girolamo, and K. Kosiba, 2020: The Observed Relationship Between GOES-16 Derived Overshooting Top Area and Midlevel Updraft Area. AGU Fall Meeting, virtual.
- 96. van den Heever, S. C., S. W. Nesbitt, and coauthors, 2020: The Cold Pools of CAMP2EX. AGU Fall Meeting, virtual.
- 97. Schumacher, R. S., S. Hitchcock, K. Kosiba, S. W. Nesbitt, P. V. Salio, R. J. Trapp, 2020: A View into Mesoscale Convective Systems from High-Frequency Soundings in the PECAN and RELAMPAGO Field Campaigns. AGU Fall Meeting, virtual.
- 97. Chase, R. J., S. W. Nesbitt, and G. M McFarquhar, 2020: Global retrieved snowfall properties using a neural network and GPM-DPR. AGU Fall Meeting, virtual.
- 98. Nesbitt, S. W., L. E. Rivelli-Zea, M. Grover, R. J. Trapp, A. Varble, V. Chandrasekar, I. H. Arias, T. J. Lang, and K. M. Bedka, 2020: Perspectives on deep convective updraft modes using multi-sensor remote sensing data from RELAMPAGO-CACTI. AGU Fall Meeting, virtual (invited).
- 99. Fisher, E. V., B. Bloodhart, K. Rasmussen, I. B. Pollack, M. G. Hastings, E. Marin-Spiotta, A. R. Desai, J. P. Schwarz, S. W. Nesbitt, and D. Hence, 2021: Leveraging Field-Campaign Networks to Effect Collaborative Change on Sexual Harassment. AGU Fall Meeting, virtual.
- 100. Nesbitt, S. W., L. E. Rivelli-Zea, M. Grover, R. J. Trapp, A. Varble, V. Chandrasekar, I. H. Arias, T. J. Lang, and K. M. Bedka, 2021: Perspectives on deep convective updraft modes using multi-sensor remote sensing data from RELAMPAGO-CACTI. AMS Annual Meeting, virtual.

3. RESIDENT INSTRUCTION

A. Summary of Instruction

1. Courses Taught

ATMS 207 Introduction to Weather and Climate Data Science

ATMS 305 Geophysical Data Analysis

ATMS 315 Meteorological Instrumentation

ATMS 406 Tropical Meteorology

ATMS 410 Radar Remote Sensing

ATMS 411 Satellite Remote Sensing

ATMS 505 Weather Systems

ATMS 571 Graduate Professional Development

ATMS 591 Graduate Seminar

ATMS 597 Mesoscale Modeling with the Weather Research and Forecasting Model

ATMS 597 Weather and Climate Data Science

2. Supervision of graduate students

M.S. Students Supervised

Kaufeld/Flynn, Wendilyn M.S., 2010, continued to PhD in our department Schiffer, Nicole M.S., 2010, continued to PhD in our department Harnos, Daniel M.S., 2010, continued to PhD in our department

Brown, Patrick M.S., 2010, currently employed at Energy Resources Center

Reed, Kimberly M.S., 2011, continued to PhD in our department Duffy, George M.S. 2016, now a PhD student at Vanderbilt University

Choi, Lina M.S. 2016 (received NSF Graduate Fellowship Fall 2015), now a PhD student at Aalborg

University, Denmark

Chase, Randy M.S., 2018, continued to PhD in our department

Zea, Lina Rivelli

Williams, Kaela

Blind, Leanne

Wolff, Edward

Berman, Melinda

M.S. student, 2017 – 2020

M.S. student, 2021 – present

Ph.D. Students Supervised

Kaufeld/Flynn, Wendilyn 2012: "Land surface and orographic controls on precipitation patterns in the Sierra Madre Occidental and Western Ghats", Currently employed as an associate professor of earth sciences at the University of Northern Colorado.

Schiffer, Nicole 2013: "Intraseasonal precipitation processes in complex terrain: The effects of model and terrain resolution on WRF simulations of the North American Monsoon." Currently employed a science writer at the National Center for Supercomputing Applications.

Harnos, Daniel 2014, "Characterization of the role of precipitation in tropical cyclone intensification", Currently employed at NOAA Climate Prediction Center.

Gleicher/Harnos, Kirstin 2014, "Parametrizing PSD assumptions for GPM algorithms", Currently employed at NOAA Climate Prediction Center.

Reed, Kimberly 2009 – 2017, Passed Qualification Exam May 2013 (received NASA Earth System

Science Graduate Fellowship Fall 2011), now a researcher at Radiometrics, Inc.

Mulholland, Jake 2019, "How does terrain impact the upscale growth of deep moist convection", Currently a National Research Council postdoctoral fellow, Naval Research Laboratory.

Chase, Randy 2021, "Improving active remote sensing retreivals of snowfall at microwave

wavelengths: an emphasis on the Global Precipitation Measurement mission's dual-frequency precipitation radar", currently a postdoctoral fellow at the University of Oklahoma.

Garg, Piyush 2021, "Tropical Oceanic Mesoscale Cold Pools in Observations and Models", currently a scientist at Argonne National Laboratory.

Singh, Itinderjot 2021, "Numerical simulations of initiation and evolution of convection over the Sierras

de Córdoba mountains, Argentina", currently a postdoctoral scientist at Colorado State University

Cancelada, Maite 2016 – present, Universidad de Buenos Aires, Argentina

Rivelli-Zea, Lina 2020 – present Ladino Rincon, Alfonso 2020 – present

Suarez, Matias 2021 – present, Universidad Nacional de Córdoba, Argentina

Graduate Examination Committees

2007: Grim, Joseph (Ph.D.)

2008: Zhang, Henian (Ph.D.), Romine, Glen (Ph.D.)

2009: Um, Junshik (Ph.D)

2012: Van Loocke, Andrew (Ph.D)

2013: Barman, Rahul (Ph.D.), Ching, Joseph(Ph.D.)

2014: Mills, Catrin (Ph.D.), Hankes, Isaac (Ph.D.)

2015: Alvarez Imaz, Milagros (Licenciatura, Universidad de Buenos Aires, Argentina), Keeler, Jason (Ph.D.),

Anselmo, Evandro (Ph.D., Universidade de São Paulo, Brazil), Grazioli, Jacopo (Ph.D., École Polytechnique

Fédérale de Lausanne, Switzerland)

2016: Tian, Jian (Ph.D.), Rosenow, Andrew (Ph.D.)

2017: Fritz, Cody (Ph.D.), Wu, Wei (Ph.D., 2017)

2018: Hu, Huancui (Ph.D.)

2019: Curtis, Jeffrey (Ph.D.)

2019: Finlon, Joseph (Ph.D.), Elkins, Calvin (ABD)

2020: Gray, Kevin (ABD), Pal, Sujan (Ph.D.), Fu, Dongwei (ABD), Janiszeski, Andrew (ABD)

2021: Mitra, Arka (ABD), Geoff Marion (Ph.D.), Sujan Pal (Ph.D), Maxwell Grover (M.S.), Candela Casanovas (Licenciatura, Universidad de Buenos Aires, Argentina), Julián Berrío (U. Nacional Colombia, ABD), Divyansh Chug (ABD)

3. Supervision of Undergraduate Students (*capstone, +undergraduate researcher)

2009: Akers, Roger+

2011: Sulski, Katie*, Mycyk, Nicolas *

2012: Ventimiglia, Thomas*, Gacek, Zaneta+

2013: Ortiz, Ana*, Ewing, Gabriel+

2015: Carter, Lauren*, Gaggiano, Stephen*

2017: Soch, Carson*, Shackelton, James*, O'Shea, Brian*, Mandruccolo, Justin*, Grande, Anthony*

2018: Ross, Tobias*, Chung, Brian+

2019: James, Scott*

2020: James, Scott*, Daniel Lopez+, Xiqui Luo*

2021: Daniel Lopez+,*, Brianna Bragg (SOARS)+

4. SERVICE

A. Summary of Service

1. Public Engagement

Speaker at the Central Illinois Chapter of the AMS, Lincoln, IL, Sep 2006

Speaker at the Illinois State Water Survey, Champaign, IL, Oct 2006

Interviewed by Daily Illini on the hurricane season, Sep 2007

Represented Atmospheric Sciences at the National Weather Service Open House, Lincoln, IL, Oct 2007

Speaker at earth science classes, Lancaster High School, Lancaster, NY, Oct 2007

Speaker in campus-wide lecture series on the North American Monsoon, State University of New York at Oswego, Oswego, NY, Oct 2007

Interviewed by Daily Illini on snowy weather, Feb 2008

Speaker at Early Learning preschool on hurricanes, Champaign, IL, Dec 2008

Speaker at Early Learning preschool on tornadoes, Champaign, IL, May 2009

Interviewed by Daily Illini on climate change impacts, Oct 2009

Interviewed by Medill News Service on weather exhibit at Chicago Museum of Sci. and Technology, May 2010

Speaker at Bottenfield Elementary School on tornadoes, Champaign, IL, May 2010

Interviewed by Christian Science Monitor on research on rapidly intensifying hurricanes, Aug 2011

Interviewed by American Institute of Physics *Discoveries and Breakthroughs Inside Science* on rapidly intensifying hurricanes, Aug 2011

Speaker at Booker T. Washington Elementary School on tornadoes, Champaign, IL, Mar 2012

Interviewed on rapidly intensifying hurricanes, ORF Austria Radio/Television, May 2012

Speaker at Leal Elementary School on weather and tornadoes, Urbana, IL, May 2012

Led short course on Spaceborne Radar at the European Radar and Hydrology conference, Toulouse, France, Jun 2012.

Speaker at Polaris Charter Academy on Hurricanes, Chicago, IL, Sep 2012

Hosted the 7th grade class (~80 students) from Polaris Charter Academy in the Department of Atmospheric Sciences, Urbana, IL, Nov 2012

Invited webinar speaker on the Global Precipitation Mission, CoCoRAHS Webinar Series, Jun 2013

Invited webinar speaker on the Remote Sensing of Clouds and Precipitation, National Earth Science Teachers Association, Aug 2013

Invited webinar speaker on the Remote Sensing of Clouds and Precipitation, National Earth Science Teachers Association, Feb 2015

Led 8-day workshop on "Applications of dual polarization radar data" at Universidad de Buenos Aires, Mar-Apr 2015

Interviewed by the CANAL 10 television station (in Spanish) in Córdoba, Argentina, Apr 2015

Interviewed by the University of Buenos Aires Public Affairs Bureau on RELAMPAGO field campaign, May 2015

Speaker on Clouds and Precipitation at Bottenfield Elementary School, Champaign, IL, May 2016.

Speaker on Clouds and Precipitation at University Primary School, Champaign, IL, Oct 2016

Interviewed by Business Insider on "Scientists around the world are worried about a Trump team proposal to ax NASA's 58-year mission to study the Earth", Dec 2016

Interviewed by University of Illinois College of LAS news article on RELAMPAGO, Jun 2017

Interviewed for Champaign-Urbana News-Gazette The Big 10 with Jeff D'Alessio: "What game-changing innovations could be on the horizon in the next 20 years", Oct 2017

Interviewed by Perfil Newspaper, Buenos Aires, Argentina about RELAMPAGO, Apr 2018

Speaker on Tornado Safety, Campus Middle School for Girls, Urbana, IL, Jun 2018

Interviewed by Science Magazine about RELAMPAGO-CACTI, Oct 2018

Interviewed by New York Times Magazine about RELAMPAGO-CACTI, Oct 2018

Interviewed by BBC about RELAMPAGO-CACTI, Oct 2018

Interviewed by La Voz (Córdoba, Argentina Newspaper) about RELAMPAGO-CACTI, Oct 2018

Interviewed by C5N (Argentina National TV Network) about RELAMPAGO-CACTI, Oct 2018

Speaker on Precipitation and Clouds, Montessori School of Champaign-Urbana, Oct 2019

Interviewed by Weather Geeks podcast, March 2020

Interviewed by Forbes Magazine on Faculty Workloads, Mar 2020

Interviewed by Washington Post on Kansas Storms, Jun 2020

2. Service to Disciplinary and Professional Societies or Associations

Member, AMS Science and Technology Advisory Committee on Radar Meteorology, 2007 – 2012

President-elect, Central Illinois Chapter of the AMS, 2007

President, Central Illinois Chapter of the AMS, 2007 – 2009

Faculty advisor, University of Illinois Chapter of the AMS, 2007 – 2013

Chaired session on "Error Metrics" at the World Meteorological Organization Workshop on High Resolution Precipitation Products, Geneva, Switzerland, Dec 2007

Chaired session on "Use of Lightning Data in the Operational Warning and Decision Making Process" at the 3rd Conference on the Meteorological Application of Lightning Data, AMS Annual Meeting, New Orleans, LA, Jan 2008

Member of Validation Working Group, International Precipitation Working Group, Coordination Group for Meteorological Satellites, World Meteorological Organization, Oct 2008 – present

Served on National Academy of Sciences Committee on Progress and Priorities of US Weather Research and Research-to-Operations Activities", Woods Hole, MA, Jul 2009

Chaired session on "Quantitative Precipitation Estimation" at the 34th AMS Conference on Radar Meteorology, Williamsburg, VA, Oct 2009

Chaired session on "Convection" at the 29th AMS Conference on Hurricanes and Tropical Meteorology, Tucson, AZ, May 2010

Selection committee, Max Eaton Prize at the 29th AMS Conference on Hurricanes and Tropical Meteorology, Tucson, AZ, May 2010

Co-Chair, AMS 35th Conference on Radar Meteorology, Sep 2011

Selection committee, Spiros Geotis Prize at 35th AMS Conference on Radar Meteorology, Pittsburgh, PA, Sep 2011 Session co-convener, "Orographic precipitation: Measurement, Mechanisms, and Impact on Landforms", AGU Fall Meeting, Dec 2011.

Session co-convener, "Remote Sensing of Tropical Cyclones and Tropical Convective Systems: Observation and Data Assimilation", AGU Fall Meeting, Dec 2012.

Chair, AMS Science and Technical Advisory Committee on Radar Meteorology, 2013 – 2016.

Chaired session on "Applications" at the 4th International Workshop on Space-based Snowfall

Measurement (IWSSM), Mammoth Lakes, CA, May 2013

Chaired session on "Precipitation and Microphysics Estimation – Research" at the 36th AMS Conference on Radar Meteorology, Breckenridge, CO, Sep 2013

Chaired session on "Invited keynote speaker: Precipitation and Microphysics Estimation – research" at the 36th AMS Conference on Radar Meteorology, Breckenridge, CO, Sep 2013

Chaired session on "Nowcasting techniques", 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, Sep 2014.

Session rapporteur, "Ground Validation Science", at 7th NASA Global Precipitation Measurement Ground Validation Workshop, Seoul, Korea, May 2015.

Chaired session on "Microphysical Studies, General Topics in Radar Meteorology, and New and Emerging Radar Technology" at 37th Conference on Radar Meteorology, AMS, Norman, OK, Sep 2015.

Chaired session on "Microphysical Studies" at 37th Conference on Radar Meteorology, AMS, Norman, OK, Sep 2015.

Chaired session on "Intense Continental Convection" at 2015 Fall Meeting, AGU, San Francisco, CA, Dec 2015.

Chaired session on "Polarimetric Radar Applications" at 2016 Fall Meeting, AGU, San Francisco, CA, Dec 2016.

Chaired session on "Intense Continental Convection" at 2016 Fall Meeting, AGU, San Francisco, CA, Dec 2016.

Member, Earth Sciences Council, United Space Research Association, 2016 - present

Chaired session at Midwest Student Conference on Atmospheric Research, University of Illinois, Sep 2017.

Chaired session on "Mesoscale Convective Systems and PECAN Results" at 18th Conference on Mesoscale Meteorology, AMS, Savannah, GA, Jul 2019

Chaired symposium and session on "Mesoscale Processes Across Scales" at 101st Annual Meeting, AMS, New Orleans, LA, Jan 2021

Chaired symposium and session at 102nd Annual Meeting, AMS, Houston, TX, Jan 2022 (planned)

3. Editorship of Journals

Editor, Journal of Applied Meteorology and Climatology, AMS, 2010 – 2014 Chief Editor, Atmosphere section, Journal of Atmospheric and Oceanic Technology, AMS, 2022 –

4. Journals, publishers, or federal agencies serving as a reviewer for submitted papers, books, or proposals

Atmosphera

Atmosphere

Atmospheric Chemistry and Physics

Atmospheric Research

Bulletin of the American Meteorological Society

Cambridge Press

Geography Compass

Geophysical Research Letters

Department of Defense

Department of Energy

Deutsche Forschungsgemeinschaft (German National Science Foundation)

International Journal of Climatology

IEEE Transactions on Remote Sensing

Journal of Applied Meteorology and Climatology

Journal of Atmospheric Sciences

Journal of Climate

Journal of Geophysical Research – Atmospheres

Journal of Hydrometeorlogy

Journal of Atmospheric and Oceanic Technology

Journal of the Meteorological Society of Japan

Monthly Weather Review

Natural Environment Research Council (United Kingdom)

National Science Foundation

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration Quarterly Journal of the Royal Meteorological Society University of Illinois Research Foundation University of California Weather and Forecasting

5. Service to the University

College and Campus:

Member of College of Liberal Arts and Sciences Policy and Development Committee, 2007–2009

Member of College of Liberal Arts and Sciences Honors Council, 2012 – 2015

Member of College of Liberal Arts and Sciences Dean's Faculty Information Team, 2012 – 2013

Member of Water Council, Illinois Institute for Sustainability, Energy, and Environment (iSEE), 2014 – present

Member of College of Liberal Arts and Sciences General Education Council, 2015 – 2016, 2016 – 2018

Faculty Senate departmental representative, 2019 – 2021

Member of College of Liberal Arts and Sciences Diversity and Inclusion Working Group, 2020 - Present

Department:

Organized Department Seminars, 2008 – 2009

Member of Department Graduate Affairs Committee, 2007 – 2009, 2013 – 2014

Chair, Department Web Committee, 2007 – present

Member of Department Curriculum Committee, 2007 – 2009, 2015 – 18, 2019 – present

Chair, Department Curriculum Committee, 2012 – 2015

Research Poster Judge, School of Earth, Society, and Environment Research Review, 2009, 2010, 2013, 2015, 2016, 2017, 2018, 2019, 2020

Ogura Research Award departmental review committee, 2010, 2011, 2014, 2016, 2018

Prepared questions for and graded questions from Ph.D. graduate qualification exam, 2007 – 2014

Served on department head review committee, Spring 2013 semester

Chaired search committee for Junior Faculty Search, 2013 - 2014 academic year

Chaired discussion on department undergraduate and graduate Curriculum, 2014 department faculty retreat

Member of Department of Atmospheric Sciences Executive committee, 2015 - 2016, 2017 - 2018, 2019 - 2020, 2021 - 2022

Committee to form a new online graduate program in Atmospheric Sciences, 2017 – present

Hiring committee for Teaching Assistant Professor, 2019 – 2020

Effort to develop an undergraduate atmospheric science + data science major, 2019 - present

Faculty mentorship committee for an assistant professor, 2019 – present

Chair, Admissions Committee, 2019 – 2020

Department Diversity Advocate, 2019 - present

Chair, Diversity, Equity, and Inclusion committee, 2020 – 2021

Chair, Radar Technician search committee, 2021

Chair, Radar Engineer search committee, 2021

Chair, Radar Scientist search committee, 2021

Chair, Graduate Affairs Committee, 2021 - present

Organized Department Seminars, Fall 2021