PRINCIPLES OF ANALYSIS SOLUTIONS TO ROSS §4

PAUL L. BAILEY

Lemma 1. Let F be a complete ordered field. Let $A \subset F$ and $x \in F$. (a) If A is bounded above and $x < \sup A$, then x < a for some $a \in A$. (b) If A is bounded below and $x > \inf A$, then x > a for some $a \in A$. *Proof.* We prove (a); the proof of (b) is analogous. Suppose that $x \geq \sup A$. Then x is an upper bound for A. By definition of supremum, $\sup A \leq x$. This is the contrapositive of what we wished to prove. \square **Exercise 1** (4.5). Let S be a nonempty subset of \mathbb{R} that is bounded above. Show that if $\sup S$ belongs to S, then $\sup S = \max S$. *Proof.* Let $\alpha = \sup S$. Then $\alpha \geq s$ for all $s \in S$. Since $\alpha \in S$, we have $\alpha = S$ $\max S$. **Exercise 2** (4.6). Let S be a nonempty bounded subsets of \mathbb{R} . Show that inf $S \leq$ $\sup S$. What can be said if $\inf S = \sup S$? *Proof.* Since S is nonempty, there exists $s \in S$. Then inf $S \leq s$ and $s \leq \sup S$. By transitivity of order, inf $S \leq \sup S$. If $\inf S = \sup S$, then S contains only one element. **Exercise 3** (4.7.a). Let S and T be nonempty bounded subsets of \mathbb{R} . Show if $S \subset T$, the inf $T \leq \inf S \leq \sup S \leq \sup T$. *Proof.* Let $s \in S$. Then $s \in T$, so inf $T \leq s$. Thus inf T is a lower bound for S, so inf $T \leq \inf S$. Similarly, $\sup S \leq \sup T$. That $\inf S \leq \sup S$ is true is exercise **Exercise 4** (4.7.b). Let S and T be nonempty bounded subsets of \mathbb{R} . Show that $\sup(S \cup T) = \max\{\sup S, \sup T\}.$ *Proof.* Either $\max\{\sup S, \sup T\} = \sup S$ or $\max\{\sup S, \sup T\} = \sup T$. Suppose that $\max\{\sup S, \sup T\} = \sup S$; in this case, $\sup T \leq \sup S$. Since $S \subset S \cup T$, we have $\sup S \leq \sup(S \cup T)$ by part (a). Now let $x \in S \cup T$. Then x is either in S or T. If $x \in S$, then $x \leq \sup S$. If

Date: October 28, 2005.

 $\sup(S \cup T) \leq \sup S$.

S and T reversed.

 $\sup(S \cup T)$.

1

 $x \in T$, then $x \leq \sup T \leq \sup S$. Thus $\sup S$ is an upper bound for $S \cup T$. Therefore

Since $\sup S \leq \sup(S \cup T)$ and $\sup(S \cup T) \leq \sup S$, it follows that $\sup S =$

Finally, if $\max\{\sup S, \sup T\} = \sup T$, the above proof is valid, with the roles of

Exercise 5 (4.8(b)). Let S and T be nonempty subsets of \mathbb{R} such that $s \leq t$ for every $s \in S$ and $t \in T$. Show that $\sup S \leq \inf T$.

Proof. Note that since S and T are nonempty, S is bounded above by an existing element of T and T is bounded below by an existing element of S. Thus $\sup S$ and $\inf T$ exist.

Suppose the conclusion is false; then $\inf T < \sup S$. By Lemma 1a, there exists $s \in S$ such that $\inf T < s$, By Lemma 1b, there exists $t \in T$ such that t < s. This is contrary to the assumption on S and T.

Exercise 6 (4.10). Show that if a > 0 then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.

Proof. Let $b = \max\{a, \frac{1}{a}\}$. By the Archimedean property, there exists $n \in \mathbb{N}$ such that n > b. Since $a \leq b$, we have a < n. Also since $\frac{1}{a} \leq b$, we have $\frac{1}{a} < n$. Thus by Theorem 3.2.(vii), we have $\frac{1}{n} < a$.

Exercise 7 (4.11). Let $a, b \in \mathbb{R}$ such that a < b. Show that there exist infinitely many rational numbers between a and b.

Proof. Suppose not. The the set $S = (a, b) \cap \mathbb{Q}$ is finite, so it has a minimum, say $c = \min S$. But then Theorem 4.7 tells us that there exists $d \in \mathbb{Q}$ such that a < d < c. But then d < b, so $d \in S$. This contradicts that $c = \min S$.

Define $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$. For the purposes of the next exercise, assume that \mathbb{I} is nonempty. We will show this in the appendix.

Exercise 8 (4.12). Let $a, b \in \mathbb{R}$. Show that if a < b, then there exists $x \in \mathbb{I}$ such that a < x < b.

Proof. Since \mathbb{I} is nonempty, let $\alpha \in \mathbb{I}$.

Let $q \in \mathbb{Q}$. Then $q \in \mathbb{R}$, and since $\alpha \in \mathbb{R}$ and \mathbb{R} is a field, $q + \alpha \in \mathbb{R}$. Suppose that $q + \alpha \in \mathbb{Q}$; say $q + \alpha = p \in \mathbb{Q}$. Then $\alpha = p - q$, and since p and q are both in \mathbb{Q} , then so is p - q, because \mathbb{Q} is a field. This contradicts the assumption on α . Thus $q + \alpha$ is irrational.

By the density of \mathbb{Q} in \mathbb{R} , there exists a rational number $q \in \mathbb{Q}$ such that $a - \alpha < q < b - \alpha$. Then $a < q + \alpha < b$, and $q + \alpha$ is irrational. Therefore, there exists an irrational number between any two real numbers.

Exercise 9 (4.14). Let A and B be nonempty bounded subsets of \mathbb{R} and let

$$S = \{x \in \mathbb{R} \mid x = a + b \text{ for some } a \in A, b \in B\}.$$

- (a) Show that $\sup S = \sup A + \sup B$.
- (b) Show that $\inf S = \inf A + \inf B$.

Proof. We prove (a); the proof for (b) is symmetric. It suffices to show that $\sup S \leq \sup A + \sup B$ and that $\sup A + \sup B \leq \sup S$.

Let $s \in S$. Then s = a + b for some $a \in A$ and $b \in B$. Then $a \le \sup A$ and $b \le \sup B$, so $a + b \le \sup A + \sup B$. Thus $\sup A + \sup B$ is an upper bound for S, so $\sup S \le \sup A + \sup B$.

Suppose that $\sup S < \sup A + \sup B$. Then $\sup S - \sup B < \sup A$, so there exists $a \in A$ such that $\sup S - \sup B < a$. From this, $\sup S - a < \sup B$, so there exists $b \in B$ such that $\sup S - a < b$. Let $s = a + b \in S$. We have $\sup S < s$, a contradiction. Therefore $\sup A + \sup B \le \sup S$.

Exercise 10 (4.15). Let $a, b \in \mathbb{R}$. Show that if $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$. *Proof.* We prove the contrapositive.

Suppose that a > b. By exercise 4.10, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a - b$. Thus $b + \frac{1}{n} < a$.

Exercise 11 (4.16). Show that $\sup\{r \in \mathbb{Q} \mid r < a\} = a$ for each $a \in \mathbb{R}$.

Proof. Let $a \in \mathbb{R}$, $A = \{r \in \mathbb{Q} \mid r < a\}$, and $s = \sup A$. We wish to show that a = s.

Suppose that a < s. Then there exists $r \in A$ such that a < r < s. This contradicts the definition of A.

On the other hand, suppose that s < a. By the density of \mathbb{Q} , there exists $r \in \mathbb{Q}$ such that s < r < a. Then $r \in A$. This contradicts the definition of s.

The only remaining possibility is that a = s.

We now use the completeness axiom to prove that for every nonnegative real number a there exists a unique nonnegative real number b such that $b^2 = a$, which we denote by \sqrt{a} (see related Exercise 6.6). By the Rational Roots Theorem, we know that there is no rational number whose square is equal to 2; thus this shows that \mathbb{Q} is not complete, and that irrational numbers exist.

The plan of the proof is as follows. We wish to find a set of rational numbers such that its supremum is the square root of a. The natural set to consider is

$$S = \{ x \in \mathbb{Q} \mid x^2 < a \}.$$

We are using \mathbb{Q} here primarily for aesthetic reasons: we wish to construct an irrational number from the rational ones using the Completeness Axiom.

Let $b = \sup S$. We wish to show that $b^2 = a$. Thus we try to show that $b^2 \le a$ and $a \le b^2$. Each of these inequalities presents its own difficulties.

To show that $b^2 \leq a$, we note that we can select an $s \in S$ as close to b as we like; thus their squares will be as close to b^2 as we like. If $a < b^2$, then one of these squares will be bigger than a, a contradiction.

To show that $a \leq b^2$, assume that $b^2 < a$ and find a rational whose square is between b^2 and a. To do this, we first show that the set of square integers between 0 and 1 is dense in [0,1] by breaking up the interval into pieces whose endpoints are square rationals with denominators n^2 for any $n \in \mathbb{N}$. If n is large enough, the distance between any two of these endpoints is less than $\beta - \alpha$.

The next two propositions help with the inequality $b^2 \leq a$.

Proposition 1. Let $S \subset \mathbb{R}$ be a set of real numbers which is bounded above, and let $b = \sup S$. Then for every $n \in \mathbb{N}$ there exists $s \in S$ such that $b - s < \frac{1}{n}$.

Proof. Otherwise, $b - \frac{1}{n}$ is an upper bound for S.

Proposition 2. Let $x, y \in \mathbb{R}$ such that $0 \le x$. Suppose that for every $n \in \mathbb{N}$, we have $0 \le x \le \frac{y}{n}$. Then x = 0.

Proof. We prove the contrapositive.

Suppose that x > 0. We wish to show that there exists $n \in \mathbb{N}$ such that $\frac{y}{n} < x$. Now either $y \le 0$ or y > 0. If $y \le 0$, then $\frac{y}{n} \le 0 < x$ for any $n \in \mathbb{N}$. If y > 0, then $0 < \frac{y}{x}$, so there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \frac{x}{y}$. Thus $\frac{y}{n} < x$.

The next three propositions will give us the inequality $a \leq b^2$.

Proposition 3. Let $q \in \mathbb{Q}$ be a positive rational number. Then there exists $n \in \mathbb{N}$ such that $1 - (\frac{n-1}{n})^2 < q$.

Proof. Since $q \in \mathbb{Q}$, there exist $l, m \in \mathbb{Z}$ such that $q = \frac{l}{m}$, and since q > 0, we may choose l, m > 0. Thus $\frac{1}{m} \leq q$.

Let n = 2m. Then

Let
$$n=2m$$
. Then
$$\frac{2}{n}-\frac{1}{n^2}=\frac{1}{m}-\frac{1}{4m}<\frac{1}{m}\leq q;$$
 so $-q<-\frac{2}{n}+\frac{1}{n^2}.$ Adding 1 to both sides gives

$$1-q<1-\frac{2}{n}+\frac{1}{n^2}=\frac{n^2-2n+1}{n^2}=(\frac{n-1}{n})^2.$$

Therefore $1 - (\frac{n-1}{n})^2 < q$.

Proposition 4. Let $n, i \in \mathbb{N}$ with 0 < i < n. Then

$$(\frac{i}{n})^2 - (\frac{i-1}{n})^2 < 1 - (\frac{n-1}{n})^2.$$

Proof. Since i < n, we have 2i - 1 < 2n - 1. Then

$$i^{2} - (i-1)^{2} = 2i - 1 < 2n - 1 = n^{2} - (n-1)^{2}$$
.

The result follows upon dividing by n^2 .

Proposition 5. Let $\alpha, \beta \in \mathbb{Q}$ with $0 < \alpha < \beta$. Then there exists $\gamma \in \mathbb{Q}$ such that $\alpha < \gamma^2 < \beta$.

Proof. First assume that $0 < \alpha < \beta < 1$.

Let $q=\beta-\alpha$; note that q>0. By Proposition 3, there exists $n\in\mathbb{N}$ such that $1-(\frac{n-1}{n})^2< q$. Let i be the smallest integer such that $\beta<(\frac{i}{n})^2$; since $\beta<1$, such an integer exists, and $i\leq n$. Then $(\frac{i-1}{n})^2<\beta$. Now by Proposition 4,

$$\beta - \alpha > 1 - (\frac{n-1}{n})^2 > (\frac{i}{n})^2 - (\frac{i-1}{n})^2 > \beta - (\frac{i-1}{n})^2;$$

subtracting β from both sides and multiplying by -1 gives

$$\alpha < (\frac{i-1}{n})^2.$$

Letting $\gamma = \frac{i-1}{n}$, we have $\alpha < \gamma^2 < \beta$. Now drop the assumption that $\beta < 1$. Then there exists a natural number n such that $\beta < n^2$. Then $0 < \frac{\alpha}{n^2} < \frac{\beta}{n^2} < 1$, so there exists $\gamma \in \mathbb{Q}$ such that $\frac{\alpha}{n^2} < \gamma^2 < \frac{\beta}{n^2}$. Therefore $\alpha < n^2 \gamma^2 < \beta$.

Lemma 2. Let $a, b \in \mathbb{R}$ and suppose that $a^2 \leq b^2$. Show that $|a| \leq |b|$.

Solution #1. Since $a^2 \le b^2$, we have $b^2 - a^2 \ge 0$ (O4). But for any $x \in \mathbb{R}$, we know that x^2 is positive (Thm 3.2.(iv)), so $x^2 = |x^2| = |x|^2$ (Thm 3.5.(ii)). Therefore $|b|^2 - |a|^2 \ge 0$. Factoring gives $(|b| - |a|)(|b| + |a|) \ge 0$. Since $|b| + |a| \ge 0$ (we can add inequalities by a combination of O3 and O4), we can divide by this term to get $|b| - |a| \ge 0$ (O5). Thus $|a| \le |b|$.

Solution #2. Assume that |a| > |b|. Multiply this by |a| to get $|a|^2 > |a||b|$ (O5); multiply it by |b| to get $|a||b| > |b|^2$. By transitivity (O3), $|a|^2 > |b|^2$. This proves the contrapositive of what we wished to show.

Theorem 1. Let $a \in \mathbb{R}$ with $a \geq 0$, and let

$$S = \{ x \in \mathbb{Q} \mid x^2 < a \}.$$

Then S is bounded above, and $(\sup S)^2 = a$.

Proof. Let $s \in S$. If $|s| \le 1$, then s < 1 + a. If |s| > 1, then $s < s^2 < a < 1 + a$. In either case, 1 + a is greater than s, so 1 + a is an upper bound for the set S. Thus $\sup S$ exists; let $b = \sup S$. Since $0 \in S$, we know that $b \ge 0$. We show that $a \le b^2$ and that $b^2 \le a$.

Suppose that $b^2 < a$. By the density of \mathbb{Q} in \mathbb{R} , there exists $q \in \mathbb{Q}$ such that $b^2 < q < a$. By the Proposition 5, there exists $s \in \mathbb{Q}$ such that $b^2 < s^2 < a$. By definition of S, $s \in S$. But by the lemma, $b^2 < s^2 \Rightarrow b < s$, so b is not an upper bound for S. This contradiction shows that $a < b^2$.

Since $b=\sup S$, Proposition 1 tells us that for every $n\in\mathbb{N}$ there exists $s\in S$ such that $b-s<\frac{1}{n}$. Then $(b-s)(b+s)<\frac{b+s}{n}$. So

$$0 \le b^2 - a < b^2 - s^2 < \frac{b+s}{n} < \frac{2b}{n}.$$

By Proposition 2, we have $b^2 - a = 0$, so $b^2 = a$.

Corollary 1. Let $a \in \mathbb{R}$ be a nonnegative real number. Then there exists a unique nonnegative real number $b \in \mathbb{R}$ such that $b^2 = a$.

Proof. By Theorem 1, the polynomial equation $f(x) = x^2 - a$ has a root, say c. Then -c is also a root, since $(-c)^2 = c^2 = a$. By a corollary to the division algorithm for polynomials, there are at most two roots. We see that if we let b = |c|, it is a unique positive root of f(x).

This justifies the notation \sqrt{a} . We have seen that there is no rational number whose square is 2; this shows that $\sqrt{2} \in \mathbb{I}$, and in particular, \mathbb{I} is nonempty.

Department of Mathematics & CSci, Southern Arkansas University $E\text{-}mail\ address$: plbailey@saumag.edu