

Embedded Software Engineering 1
HS 2024 – Prof. Reto Bonderer
Autoren: Laurin Heitzer, Simone Stitz https://github.com/P4ntomime/EmbSW1

Inhaltsverzeichnis

1	Emb	bedded Systems – Allgemein	2	4	Hard	dware-Software-Codesign	
	1.1	Definition	2		4.1	Ziele	
	1.2	Beispiele	2		4.2	Anforderungen für praktische Anwendungen	
	1.3	Deeply Embedded System	2		4.3	Spezifikationssprachen	
	1.4	Betriebssysteme bei Embedded Systems	2		4.4	Virtuelle Prototypen	
	1.5	Bare Metal Embedded System			4.5	X-in-the-loop	
	1.6	Zuverlässigkeit	2		4.6	Entwicklungsplattformen	
	1.7	Verfügbarkeit	2			81	
	1.8	Abstraktionsschichten	2	5	Zust	tandsbasierte Systeme	
_					5.1	Asynchrone vs. synchrone FSM	
2		l-Time System (Echtzeitsystem)	2		5.2	Finite State Machines (FSM)	
	2.1	Definitionen			5.3	State-Event-Diagramm (Zustandsdiagramm)	
	2.2	Fehlverhalten eines Systems (failed system)			5.4	Zustandstabelle	
	2.3	Echtzeitdefinition – Verschiedene Echtzeitsysteme					
	2.4	Determinsismus (determinacy)		6	State	echarts	
	2.5	Auslastung (utilization)			6.1	Nachteile von State-Event-Diagrammen	
	2.6	Real-time Scheduling	3		6.2	Definitionen	
3	Mod	lellierung eines Embedded Systems	3		6.3	Hierarchie (OR-super-states)	
	3.1	V-Modell für Software-Entwicklungszyklus	3		6.4	Default-State	
	3.2	Model Driven Development (MDD)	3		6.5	History	
	3.3	Vorgehen bei der Modellierung			6.6	Kombination: History- und Default-Mechanismus	
	3.4	Systemgrenze definieren & Systemprozesse finden			6.7	Parallelität (AND-super-state)	
	3.5	Verteilungen festlegen			6.8	Timers	
		Systemprozesse detaillieren	4		6.9	Beispiel – Armbanduhr als Statechart	

1 Embedded Systems - Allgemein

1.1 Definition

Ein Embedded System...

- ist ein System, das einen Computer beinhaltet, selbst aber kein Computer ist
- besteht üblicherweise aus Hardware (Mechanik, Elektronik) und Software
- ist sehr häufig ein Control System (Steuerung, Regelung)

Ein Embedded System beinhaltet typischerweise folgende Komponenten:

- Sensoren
- Mikrocomputer
- Hardware (Mechanik, Elektronik)
- Aktoren Software (Firmware)

1.1.1 Charakterisierung von Embedded Systems

Embedded Systems können (müssen aber nicht) folgende Eigenschaften haben:

- reactive systems: Reaktive Systeme interagieren mit ihrer Umgebung
- real-time systems: Echtzeitsysteme haben nebst funktionale Anforderungen auch de finierbaren zeilichen Anforderungen zu genügen
- dependable systems: Verlässliche Systeme sind Systeme, welche (sehr) hohe Zuverlässigkeitsanderungen erfüllen müssen
- Weitere (häufige) Anforderungen:
 - kleiner Energieverbrauch
 - kleine physikalische Abmessungen
- Lärm, Vibration, etc.

1.1.2 Typischer Aufbau

Ein gutes Design beinhaltet unterschiedliche Abstraktionsschichten → Layer → Siehe Abschnitt 1.8

Auto

· Sicherheitsrelevante Aufgaben

Autonom fahrende Autos

- ABS, ASR

- Motorenregelung

- Drive-by-wire

• Unterhaltung / Komfort

- Radio / CD / etc.

Mehrere Netzwerke

CAN, LIN, Ethernet

Von einfachsten μ Cs bis DSPs und

→ Auto ist ein riesiges Embedded System

Echtzeitteile und andere

Navigation

- Klima

GPUs

1.2 Beispiele

Fahrrad-Computer

- GPS-Navigation
- Geschwindigkeits- und Trittfrequenzmessung
- Pulsmesser
- Drahtlosübertragung (ANT+)
- Interface zu elektronischer Gangschaltung
- Barometer, Thermometer
- Trainingsassistent
- Display

Weitere Beispiele

- Smartphone
- Mobile Base Station
- CNC-Bearbeitungszentdrum

Hörgerät 1.3 Deeply Embedded System

- 'Einfaches' Embedded System, mit minimaler Benutzerschnittstelle, üblicherweise mit keinerlei GUI und ohne Betriebssystem
- Beschränkt auf eine Aufgabe (z.B. Regelung eines physikalischen Prozesses)
- Muss oft zeitliche Bedingungen erfüllen → Echtzeitsystem

1.3.1 Beispiele – Deeply Embedded System

- Hörgerät
- ABS-Controller
- etc...

- Motorenregelung
- 'Sensor' im IoT

1.4 Betriebssysteme bei Embedded Systems

- Es kommen Betriebssysteme wie (Embedded) Linux oder Android zum Einsatz → Achtung: Linux und Android sind nicht echtzeitfähig!
- Wenn Echtzeit verlangt wird: real-time operating systems (RTOS)
 - Beispiele: Zephyr, Free RTOS (Amazon), TI-RTOS (Texas Instuments), etc.

1.5 Bare Metal Embedded System

- Es kommt keinerlei Betriebssystem zum Einsatz
- Bare Metal Embedded Systems sind recht häufig, insbesondere bei Deeply Embedded Systems
- Bare Metal Embedded Systems stellen besondere Ansprüche an Programmierung

1.6 Zuverlässigkeit

- · Je länger das System läuft, desto weniger zuverlässig ist es
- Die Wahrscheinlichkeit für einen Ausfall steigt stetig

Achtung: Hier ist nur die Alterung der Hardware berücksichtigt

1.7 Verfügbarkeit

Die Verfügbarkeit A (Availability) ist der Anteil der Betriebsdauer innerhalb dessen das System seine Funktion erfüllt.

$$Verfügbarkeit = \frac{Gesamtzeit - Ausfallzeit}{Gesamtzeit}$$

1.8 Abstraktionsschichten

- Bei µC-Programmierung (Firmware) müssen oft Bitmuster in Register geschrieben werden
- Solche Register-Zugriffe dürfen nicht 'willkürlich' überall im Code erfolgen → schlecht lesbar, schlecht portiertbar, fehleranfällig
- · Damit Code lesbarer und besser auf andere Platform portierbar wird, beinhaltet jeder professionelle Code einen Hardware Abstraction Layer (HAL)
- HAL führt nicht zum Verlust bei Laufzeit, wenn korrekt implementiert

1.8.1 Hardware-abstraction-layer (HAL)

- Trennt HW-Implementierung von SW-Logik
- Gleiche SW kann auf verschiedene HW verwendet werden → Portabilität
- HW-Komponenten können einfach ausgetauscht werden → Flexibilität

2 Real-Time System (Echtzeitsystem)

2.1 Definitionen

2.1.1 Real-Time System (Echtzeitsystem)

- Ein Echtzeitsystem ist ein System, das Informationen innerhalb einer definierten Zeit (deadline) bearbeiten muss.
 - ➤ Explizite Anforderungen an turnaround-time (Antwortzeit) müssen erfüllt sein
- Wenn diese Zeit nicht eingehalten werden kann, ist mit einer Fehlfunktion zu rechnen.

Typisches Echtzeitsystem

Camera Input Sensor 2 ntrol Signal 2

Repräsentation RT-System

Sequenz von Aufgaben (Jobs) müssen zeitlich geplant (scheduled) werden

2.1.2 Zeitdefinitionen (Task)

- turnaround time: (response time, Antwortzeit)
 - Startet, wenn der Task bereit zur Ausführung ist und endet, wenn der Task fertig
 - Zeit zwischen dem Vorhandensein von Eingangswerten an das System (Stimulus) bis zum Erscheinen der gewünschten Ausgangswerte.
- waiting time: (Wartezeit)
- Zeit zwischen Anliegen der Eingangswert und Beginn der Abarbeitung des Tasks service time: (Bearbeitungszeit)
- Zeit für Abarbeitung des Tasks → Unterbrechungen bzw. (preemptions) möglich

2.2 Fehlverhalten eines Systems (failed system)

- Ein fehlerhaftes System (failed system = missglücktes System) ist ein System, das nicht alle formal definierten Systemspezifikationen erfüllt.
- Die Korrektheit eines RT Systems bedingt sowohl die Korrektheit der Outputs als auch die Einhaltung der zeitlichen Anforderungen.

2.3 Echtzeitdefinition – Verschiedene Echtzeitsysteme

- soft real-time system (weiches Echtzeitsystem)
 - Durch Verletzung der Antwortzeiten wird das System nicht ernsthaft beeinflusst
 - Es kommt zu Komforteinbussen
- hard real-time system (hartes Echtzeitsystem)
 - Durch Verletzung der Antwortzeiten wird das System ernsthaft beeinflusst
 - Es kann zu einem kompletten Ausfall oder katastrophalem Fehlverhalten kommen
- firm real-time system (festes Echtzeitsystem)
 - Kombination aus soft real-time system und hard real-time system
 - Durch Verletzung einiger weniger Antwortzeiten wird das System nicht ernsthaft beeinflusst
 - Bei vielen Verletzungen der Antwortzeiten kann es zu einem kompletten Ausfall oder katastrophalem Fehlverhalten kommen

2.3.1 Beispiele verschiedener Echtzeitsysteme

System	Klassifizierung	Erlärung		
Geldautomat	soft	Auch wenn mehrere Deadlines nicht eingehalten werden können, entsteht dadurch keine Katastrophe. Im schlimmsten Fall erhält ein Kunde sein Geld nicht.		
GPS-gesteuerter Rasenmäher	firm	Wenn die Positionsbestimmung versagt, könnte das Blumenbeet der Nachbarn platt gemäht werden.		
Regelung eines Quadrocopters	hard	Das Versagen der Regelung kann dazu führen, dass der Quadrocopter ausser Kontrolle gerät und abstürzt.		

2.4 Determinsismus (determinacy)

Ein System ist deterministisch, wenn für jeden möglichen Zustand und für alle möglichen Eingabewerte jederzeit der nächste Zustand und die Ausgabewerte definiert sind.

Insbesondere race conditions können dazu führen, dass der nächste Zustand davon abhängt, 'wer das Rennen gewonnen hat und wie gross die Bestzeit ist', d.h. der nächste Zustand ist nicht klar bestimmt.

→ Nicht mehr deterministisch und nicht mehr echtzeittauglich

2.5 Auslastung (utilization)

Die (CPU-) Auslastung (utilization) ist der Prozentsatz der Zeit, zu der die XPU **nützliche** (non-idle) Aufgaben ausführt.

2.5.1 Berechungen zur Auslastung (utilzation)

Annahmen:

- System mit $n \ge 1$ periodischen Tasks T_i und Periode p_1
- Jeder Task T_i het bekannte / geschätzte maximale (worst case) execution time e_i

Auslastungsfaktor eines Tasks

Gesamtauslastung des Systems

$$u_i = \frac{e_i}{p_i}$$

 $U = \sum_{i=1}^{n} u_i = \sum_{i=1}^{n} \frac{e_i}{p_i}$

→ utilization factor

→ utilization

⇒ Bei 69 % Auslastung ist das 'theoretical limit'

2.6 Real-time Scheduling

- Alle kritischen Zeiteinschränkungen (deadlines, response time) sollen eingehalten werden
- Im Notfall muss der Scheduling Algorithmus entscheiden, um die kritischsten Tasks einhalten zu können.
 - Unter Umständen müssen dabei Deadlines von weniger kritischen Tasks verletzt werden

3 Modellierung eines Embedded Systems

3.1 V-Modell für Software-Entwicklungszyklus

→ Nur Anforderungen (requirements) definieren, welche man auch testen kann!

3.2 Model Driven Development (MDD)

Bei modellbasierter Entwicklung kommen in allen Entwicklungsphasen durchgängig Modelle zum zur Anwendung

- MDD geht davon aus, dass aus formalen Modellen lauffähige Software erzeugt wird
 → Codegeneratoren
- Modelle werden traditionell als Werkzeug der Dokumentation angesehen
 - Unter Umständen wird zweimal dassibe beschrieben (Code und Diagramm)
 unbedingt zu vermeiden!

3.3 Vorgehen bei der Modellierung

1. Systemgrenze definieren

- Kontextdiagramm: Use-Case-Diagramm
- Kontextdiagramm: Sequenzdiagramm
- 2. Systemprozess finden
- Kontextdiagramm: Use-Case-Diagramm
- Kontextdiagramm: Sequenzdiagramm

3. Verteilungen festlegen

- Verteilungsdiagramm (deployment diagram)
- 4. Systemprozesse detaillieren
 - Umgangssprachlicher Text
 - Sequenzdiagramm
 - Aktivitätsdigramm
 - Statecharts
 - Code (C, C++, ...)

3.4 Systemgrenze definieren & Systemprozesse finden

3.4.1 Systemgrenze definieren

Die Festlegung der Systemgrenze ist das Wichtigste und Allererste bei sämtlichen Systemen!

Man sollte sich die folgenden Fragen stellen und diese beantworten:

- Was macht das System, d.h. was liegt innerhalb der Systemgrenze?
 - Was macht das System nicht?
- Mit welchen Teilen ausserhalb des Systems kommuniziert das System?
- Welches sind die Schnittstellen zu den Nachbarsystemen (Umsystemen, periheral system)?

3.4.2 Systemprozesse finden (use-cases)

Da man sich noch immer in der **Analyse** befindet, sollen nur die **Anforderungen** definiert werden. Die Umsetzung ist Teil des Designs!

Um die Use-Cases zu identifizieren, sollte folgendes beachtet werden:

- Aussenbetrachtung des Systems (oberflächlich!)
 - Nicht komplizierter als nötig
- System als Blackbox betrachten
 - Was soll System können; (nicht: wie soll das System etwas machen)
- RTE-Systeme bestehen häufig aus nur einem einzigen Systemprozess
 - speziell wenn System 'nur' ein Regler ist

3.4.3 Kontextdiagramm: Use-Case Diagramm

Tempomat: zu detailliert

Tempomat Geschwindigkeit halten auf Fahrerübersteuerung reagieren auf Bremsung reagieren konstant beschleunigen System kalibrieren

Tempomat: verbesserte Version

Stukturmodellierung (Statische

Modellierung der dynamischen

Aspekte)

Aspekte

3.4.4 Kontextdiagramm: Sequenzdiagramm

- Speziell bei Syetemen, deren Grenzen durch Nachrichtenflüsse charakterisiert werden können
- Details zu Sequenzdiagrammen siehe Abschnitt 3.6.1

3.5 Verteilungen festlegen

- Bei Embedded Systems werden häufg mehrere Rechnersysteme verwendet, um die verschiedenen Aufgaben zu erledigen
- Rechner sind örtlich verteilt und mittels Kommunikationskanal verbunden
- **→ Verteilte Systeme (distributed systems)**

3.5.1 Verteilungsdiagramm

Knoten: Darstellung der örtlichen Verteilung der Systeme

Knoten können auch hierarchisch

aufgebaut sein

Linien: Physikalische Verbindungen der Knoten (Netzwerke, Kabel, Wireless, etc.)

Beispiel: Tempomat

3.6 Systemprozesse detaillieren

- Die gefundenen Systemprozesse (use-cases) müssen genauer spezifiziert werden
 - Nicht detaillierter spezifizieren als sinnvoll / gefordert!
 - Jede weitere Spezifizierung soll eien 'added value' liefern
- Verschiedene Detaillierungsstufen für verschiedene Zielgruppen
 - Auftraggeber: Überblick (z.B. in Form von Umgangssprachlichem Text)
 - Systementwickler: 'Normale Sicht' enthält mehr Details

3.6.1 Sequenzdiagramm

- Gute Darstellung für Austausch von Meldungen zwischen Objekten innerhalb einer beschränkten Zeitdauer
 - Nachrichtenflüsse
 - Kommunikationsprotokolle
- · Ideal für...
 - kurze Zeitdauer
 - wenige Objekte
 - wenige Verschachtelungen wenige Verzweigungen
- Object aRegistration aRegistration aCourse: Manager register(Joe, aCourseList) Cust = getCustomer(Joe) Self Delegation sage Creation Condition <u>Joe</u> a Cust = new(Joe) [for all courses] Iteration addParticipant(aCust) Return numPart

delete()

aDatabase:

Pfeiltyp	Semantik
	Synchrone Aufrufe
>	Asynchrone Nachrichten
	Datenfluss

Activation Box

aCustomer:

Beim Zeichnen von Hand unbedingt die Pfeilkonventionen beachten!

Deletion

· Diagramme generell nicht 'überladen'

3.6.2 Kommunikationsdiagramm (Kollaborationsdiagramm)

- Kommunikationsdiagramm zeigt dieselbe Information wie Sequenzdiagramm
- Schwerpunkt: Informationsfluss zwischen den Objekten
 - → Beim Sequenzdiagramm liegt der Schwerpunkt auf dem zeitlichen Ablauf

3.6.3 Aktivitätsdigramm

- Gut geeignet für ...
 - workflow modelling
 - Sequenzielle Abläufe
 - Prozess- und Steuerfluss

 - Gleichzeitige Prozesse (fork, join)
- Weniger geeignet für ...
 - komplexe logische Bedingungen

4 Hardware-Software-Codesign

4.1 Ziele

- Entwurf (Design) so lange wie sinnvoll (nicht so lange wie möglich) lösungsneutral
- Systemdesign fördern, statt separate Designs für Mechanik, Elektronik, Firmware, Software, etc., die sich unter Umständen auch widersprechen können
- Systemspezifikation erfolgt idealerweise mit Hilfe einer eindeutigen Spezifikationssprache, nicht in Prosa
- Die Spezifikation sollte simuliert (ausgeführt) werden können
- Implementationen können einfach geändert werden: HW ↔ SW
- Zielplattformen: diskrete Elektronik, ASIC, μC, DSP, FPGA, Software

4.2 Anforderungen für praktische Anwendungen

- Methoden / Tools sollten beim Systemdesign nicht zu fachlastig sein
 - Methoden sollten für Elektronik-, Firmware- und wenn möglich auch Mechanikentwickler anwendbar sein
- Wenn möglich gute Toolunterstützung
- (Automatische Synthese aus dem Modell)

4.3 Spezifikationssprachen

- Formale Sprachen sind eindeutig (Prosa immer mehrdeutig)
- Spezifikation kann compiliert und ausgeführt werden → Simulationen
- Die ausführbare Spezifikation dient als Golden Reference für die künftigen Entwicklungsschritte

Beispiele für Spezifikationssprachen

- SystemC (eine C++-Template Library)
- SysML
- SpecC
- SystemVerilog
- Esterel
- Matlab/Simulink
- Statecharts

4.4 Virtuelle Prototypen

- Die Simulation des Systems kann unterschiedlich stark detailliert werden
- Die simulierten Systeme sind Virtuelle Prototypen
- Während der Entwicklung können einzelne (virtuelle) Teile des Prototyps laufend durch physische Teile ersetzt werden

4.5 X-in-the-loop

- Model-in-the-Loop (MIL): vollständig als Modell vorliegender virtuellen Prototyp
- Je mehr der Prototyp durch konkretere Implementationen ersetzt wird, spricht man von
 - Software-in-the loop (SIL)
 - Processor-in-the loop (PIL)
 - Hardwarein-the loop (HIL)
- → Test outputs werden jeweils mit Golden Reference verglichen

4.6 Entwicklungsplattformen

Als Entwicklungsplattformen eignen sich häufig FPGA basierte Systeme.

- Hardware mit VHDL
- Software/Firmware in C/C++
 - auf integriertem μC (z.B. Zynq von AMD/Xilinx) (Hard core)
 - auf Soft Core innerhalb FPGA (z.B. Nios II von Intel/Altera)

5 Zustandsbasierte Systeme

5.1 Asynchrone vs. synchrone FSM

- Asynchron
 - geänderte Inputsignale führen direkt zur Zustandsänderung
 - schneller, aber enorm anfällig auf Glitches

• Synchron

- Inputsignale werden nur zu diskreten Zeitpunkten betrachtet
 - → getaktete Systeme
- Softwareimplementationen sind eigentlich immer synchron, da Rechner getaktet sind
- Rein softwareseitig besteht die Problematik der Asynchronizität nicht

5.2 Finite State Machines (FSM)

Eine FSM besitzt die folgenden Eigenschaften:

- Eine FSM befindet sich immer in einem definierten Zustand
- Die Inputs X bezeichnen üblicherweise Ereignisse (Events)
- Die **Outputs** *Y* werden oft auch **Actions** genannt
- Eine FSM benötigt immer Speicherelemente zur Speicherung des internen Zustands
 Eine FSM ist ein sequenzielles und kein kombinatorisches System

Eine FSM kann auf zwei Arten dargestellt werden:

• State-Event-Diagramm

Zustandstabelle

5.2.1 Mealy-Automat

- Nächster Zustand Z_{n+1} abhängig vom Input X und vom internen Zustand Z_n
 Z_{n+1} = f(Z_n, X)
- Output Y ist abhängig vom internen Zustand Z_n und vom Input X
 Y = g(Z_n, X)
- Actions liegen bei den Transitionen

5.2.2 Moore-Automat

- Nächster Zustand Z_{n+1} abhängig vom Input X und vom internen Zustand Z_n
 Z_{n+1} = f(Z_n, X)
- Output Y ist nur abhängig vom internen Zustand Z_n
 Y = g(Z_n)
- Actions liegen bei den Zuständen
- → Wenn immer möglich sollten Moore-Automaten verwendet werden

5.2.3 Medvedev-Automat

- Nächster Zustand Z_{n+1} abhängig vom Input X und vom internen Zustand Z_n
 Z_{n+1} = f(Z_n, X)
- Output Y entspricht entspricht direkt internem Zustand Z_n
 Y = Z_n
- Actions liegen bei den Zuständen
- → Wird hier nicht weiter behandelt...

5.3 State-Event-Diagramm (Zustandsdiagramm)

Ein State-Event-Diagramm ist eine grafische Möglichkeit, um eine FSM zu beschreiben. In einem State-Event-Diagramm gelten folgende Darstellungsformen

- Zustände werden mit einem Kreis gezeichnet
- Ereignisse werden mit Pfeilen zwischen Zuständen dargestellt (Transitionen)
- Aktionen werden entweder bei Zuständen oder bei Transitionen geschrieben (je nach Automatentyp)
- Ausführung einer Transition ist unendlich schneller
 - → Bei Modellierung sind Zwischenzustäde vorgehesen, z.B. 'closing', starting up'

Beispiel: State-Event-Diagramm - Moore Automat

5.4 Zustandstabelle

Nebst der grafischen Darstellung einer FSM mittels State-Event-Diagramm kann die FSM auch tabellarisch mittels Zustandstabelle beschrieben werden.

Beispiel: Zustandstabelle für Elektromotor

Momentaner Zustand	Ereignis	Nächster Zustand	Aktionen
AUS	EIN-Taste	Hochlaufen	Motor ausschalten
			Kühlung ausschalten
			Grüne Lampe aus
			Rote Lampe aus
Hochlaufen	Drehzahl_erreicht	Drehzahl_ok	Motor einschalten
	Signal		Kühlung einschalten
	Aus-Taste	AUS	1
	Wasserkühlung	Störung	
	Störung		
Drehzahl_ok	Wasserkühlung	Störung	Grüne Lampe anzeiger
	Störung		
	AUS-Taste	AUS	
Störung	RESET-Taste	AUS	Motor ausschalten
			Kühlung ausschalten
			Rote Lampe anzeigen

6 Statecharts

6.1 Nachteile von State-Event-Diagrammen

- Zustandsdiagramme sind flach (es gibt keine Hierarchie) → schnell unübersichtlicht
- Es kann keine zeitliche Parallelität modelliert werden

6.2 Definitionen

active state: Aktueller Zustand der FSM

basic states: Zustände, die nicht aus anderen Zuständen bestehen

super states: Zustände, die andere Zustände enthalten

ancestor states: Für jeden basic state *s* werden die super states, die *s* enthalten, als **ancestor states** bezeichnet

OR-super-states: Super-states S werden OR-super-states genannt, wenn **genau einer** der sub-states von S aktiv ist, wenn S aktiv ist \Rightarrow Hierarchie

AND-super-states: Super-states *S* werden AND-super-states genannt, wenn **mehrere** der sub-states von *S* **gleichzeitig** aktiv sind, wenn *S* aktiv ist ⇒ Parallelität

6.2.1 Elemente der Statecharts

- Anfangszustand (initial pseudo state)
- Entscheidung (choice)
- Kreuzung (junction)
- Terminator (terminate pseudo state)
- (H) flache Historie (shallow history)
- (H*) tiefe Historie (deep history)
- Eintrittspunkt (entry point)

6.3 Hierarchie (OR-super-states)

Die FSM befindet sich in genau einem sub-state von S, wenn S aktiv ist.
 (⇒ either in A OR in B OR ...)

6.4 Default-State

- Ziel: Interne Struktur des states vor der Aussenwelt verstecken → default state
- Ausgefüllter Kreis beschreibt den sub-state, welcher 'betreten' wird, wenn der superstate S 'betreten' wird

6.5 History

- Wenn Input m auftritt, wird in S derjenige sub-state betreten, in welchem man war, bevor S verlassen wurde
- Wenn S zum ersten Mal betreten wird, ist der **default-Mechanismus** aktiv
- History und Default-Mechanismus können hierarchisch verwendet werden

6.5.1 Shallow History

• Der Histroy-Mechanismus merkt sich den entsprechenden sub-state

Beispiel: Shallow-History

- In Zustand Z3 bewirkt der Event e3 einen Übergang zu Z4
- Der Event e4 führt nu zu einem Übergang zum früheren Zustand Z3

6.5.2 Deep History

• Der Histroy-Mechanismus merkt sich frühere Zustände bis in die unterste Hierarchie

Beispiel: Shallow-History

- Im Zustand Z5 bewirkt der Event e4 einen Übergang zu Z6
- Der Event e5 führt nun zu einem Übergang zum früheren Zustand Z5
 - Eine Shallow History würde bei e5 nur in den Zustand Z3, und damit in Z4, wechseln

6.6 Kombination: History- und Default-Mechanismus

Folgende statecharts bilden genau das Gleiche ab

6.7 Parallelität (AND-super-state)

Die FSM befindet sich in allen sub-states von einem super-state S, wenn S aktiv ist.
 (⇒ in A AND in B AND ...)

6.8 Timers

- Wenn Evend a nicht eintritt, während das System für 20 ms im linken state ist, wird ein timeout passieren
- Eigentlich sind Timers nicht nötig, da die Wartezeit auch als Übergangsbedingung (Ereignis) zwischen zwei states formuliert werden könnte

6.9 Beispiel - Armbanduhr als Statechart

