

Model Development Phase Template

Date	04 June 2024
Team ID	SWTID1720096620
Project Title	E-commerce Shipping Prediction Using Machine Learning
Maximum Marks	6 Marks

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)				acy, F1
Random Forest Classifier	This ensemble method combines multiple decision trees to improve accuracy and control over-fitting by averaging their predictions.	'classifier_max_depth': 10, 'classifier_min_samples_le af': 1, 'classifier_min_sam ples_split': 2, 'classifier_n_estimators': 200	Classification 0 1 accuracy macro avg weighted avg	n Report with precision 0.58 0.93 0.75 0.78	, · ·	0.72 0.65 0.69 0.69 0.68	ing and SMOTE: support 1379 1921 3300 3300 3300
K-Nearest Neighbors Classifier	A simple, non-parametric method that classifies a data point based on the majority label among its knearest neighbors in the feature space.	'classifier_metric': 'euclidea n', 'classifiern_neighbors' : 9, 'classifierp': 1, 'classi fierweights': 'uniform'	Classification 0 1 accuracy macro avg weighted avg	Report with precision 0.57 0.80 0.68 0.70	, · ·	f1-score 0.67 0.66 0.66 0.66 0.66	support 1379 1921 3300 3300 3300

Logistic Regression	A linear model used for binary classification that estimates the probability of a binary response based on one or more predictor variables using a logistic function.	'classifierC': 0.01, 'classif iermax_iter': 100, 'classif ierpenalty': 'l2', 'classifier solver': 'liblinear'	Classification 0 1 accuracy macro avg weighted avg	Report with precision 0.55 0.77 0.66 0.68		0.64 0.65 0.64 0.64 0.64	ing and SMOTE: support 1379 1921 3300 3300 3300
XGB Classifier	An optimized gradient boosting library designed for speed and performance, which builds an ensemble of decision trees by sequentially minimizing a loss function.	'classifierlearning_rate': 0.01, 'classifiermax_dept h': 5, 'classifiern_estimat ors': 200, 'classifiersubsa mple': 0.7	Classification 0 1 accuracy macro avg weighted avg	0.58 0.94 0.76 0.79		rameter Tur f1-score 0.72 0.65 0.69 0.69 0.68	ing and SMOTE: support 1379 1921 3300 3300 3300
Support Vector Classifier	A classifier that constructs a hyperplane in a high-dimensional space to separate different classes with maximum margin, often using kernel functions for non-linear separation.	'classifierC': 10, 'classifie rgamma': 'auto', 'classifie rkernel': 'poly'	Classification 0 1 accuracy macro avg weighted avg	Report with precision 0.56 0.90 0.73 0.76	,, ,	rameter Tur f1-score 0.70 0.63 0.67 0.67	ing and SMOTE: support 1379 1921 3300 3300 3300
Decision Tree Classifier	A model that splits the data into subsets based on feature values, creating a tree structure where each leaf represents a class label and each node represents a decision rule.	'classifiercriterion': 'gini', 'classifiermax_depth': 10, 'classifiermin_samples_l eaf': 4, 'classifiermin_sa mples_split': 2	Classification 0 1 accuracy macro avg weighted avg	Report with precision 0.57 0.87 0.72 0.74		0.70 0.66 0.68 0.68 0.67	ing and SMOTE: support 1379 1921 3300 3300 3300
Naive Bayes Classifier	A probabilistic classifier based on Bayes' theorem, which assumes independence among features and calculates the probability of each class given the input features.	'classifiervar_smoothing' : 1e-09	Classification 0 1 accuracy macro avg weighted avg	Report with precision 0.55 0.86 0.70 0.73		rameter Tun f1-score 0.68 0.62 0.65 0.65 0.64	ing and SMOTE: support 1379 1921 3300 3300 3300

AdaBoost Classifier	An ensemble method that combines multiple weak classifiers, typically decision trees, by weighting them according to their accuracy and iteratively improving the model.	'classifierlearning_rate': 1, 'classifiern_estimators' : 200	Classification 0 1 accuracy macro avg weighted avg	Report with precision 0.58 0.87 0.73 0.75	 0.71 0.67 0.69 0.68	ing and SMOTE: support 1379 1921 3300 3300 3300
Gradient Boost Classifier	An ensemble technique that builds models sequentially, each new model correcting the errors of the previous ones, and combines them to make a final prediction.	'classifierlearning_rate': 0.01, 'classifiermax_dept h': 5, 'classifiern_estimat ors': 200, 'classifiersubsa mple': 0.9	Classification 0 1 accuracy macro avg weighted avg	0.58 0.93 0.76 0.79	0.72 0.66 0.69 0.69 0.68	ing and SMOTE: support 1379 1921 3300 3300 3300