

Linked Data Council's
Business Intelligence and Interactive Benchmark from GSQL to GQL

Ryan Meghoe -Web Science

TigerGraph

2017

AIM: Fast DBM for graphs

Language: GSQL

SCOPE

Bi workload (20)

Interactive workload (26)

GQL parser: pattern match evaluation test

LDBC

Business Intelligence

- OLAP
- multi-hop/path/subgraph queries
- inserts

Interactive Workload

- OLTP
- 2 hop/3hop queries
- inserts and deletes

Property Graphs & GQL

- Property Graphs terminology
- GQL

GQL

Standard

Property graphs

RPQ

ISO Standard :Final Delivery -> 2024

Property Graphs

Computer Science and Engineering, Database Group

Property Graphs

$$G = (N, E, rho, \lambda, \sigma)$$

1. N, E

2. ρ : $E \to (N \times N)$

3. λ :($N \cup E$) SET+(L)

4. σ : $(N \cup E) \times P SET+(V)$

Node Pattern

 χ and is a triple of (a,L,P):

- $a \in A \cup \{nil\}$ is an optional name.
- L \subset Ø \cup {L1,...,Ln}, which is finite
- P can be nil or (m,n) where $m,n \in N \cup \{nil\}$

Relationship Pattern

$$\rho = (d, a, L, P, I)$$

direction: $d \in \{ \rightarrow, \rightarrow, - \}$

- name: $a \in A \cup \{nil\}$
- empty finite set : $L \subset \emptyset \cup \{L1,...,Ln\}$
- P can be an empty finite set of key-value pairs, in the form (k,v);

k,∈ κ, ν,∈, ν

• I can be nil or (m,n) where $m,n \in \mathbb{N} \cup \{nil\}$

Data-Model

GQL values

- Base types
- Node and Edge indentifiers
- (Multiset)Set(Vn...Vm)
- Map()
- Paths

Pattern Matching

- Match Pattern Relationship
- Path Pattern Union & Multiset Alternation
- Restrictors & Selectors

Pattern Matching for GPML

Relationship Pattern

MATCH pattern

- <-[specification]- left directed
- <~[specification] ~ left undirected
- -[specification]-> right directed
- ~[specification] ~> right undirected
- ~-[specification] ~ undirected

Path patterns

UNION and Multiset Alternation

MATCH pattern_1 | pattern 2

MATCH pattern_1 |+| pattern 2

Restrictors

TRAIL ACYCLIC SIMPLE

Selectors

ANY vs ANY K

ANY SHORTEST vs ALL SHORTEST vs SHORTEST K vs SHORTEST K GROUP

Quantifiers

```
{m,n} between m and n repetitions
{m,}
*
+
```


Ensuring path Termination:

MATCH Type-selector Type-restrictorremaining query..

- GQL Syntax
- Demo

GQL features and Syntax

```
query ::= query expr (query conjunction query expr)* query conjunction ::= set operator | OTHERWISE query expr ::= focused query expr | ambient query expr focused query expr ::= (FROM a match clause+)+ return statement a \in A ambientqueryexpr ::= matchclause + returnstatement return statement ::= RETURNsetquantifier?(*|returnlist) set operator ::= unionoperator|othersetoperator union operator ::= unionoperator|othersetoperator union operator ::= unionoperator|othersetoperator other set operator ::= unionoperator|othersetoperator set quantifier ::= unionoperator|othersetoperator|othersetoperator set quantifier ::= unionoperator|othersetoperator|othersetoperator|othersetoperator|othersetoperator|othersetoperator|othersetope
```


GSQL	GQL
CREATE OR REPLACE DISTRIBUTED QUERY bi7(STRING tag) SYNTAX v2 {	
TYPEDEF TUPLE <string relatedtagname,="" replycount="" uint=""> RESULT;</string>	-
HeapAccum <result>(100, replyCount DESC, relatedTagName ASC) @@result;</result>	-GROUP BY ORDER BY
SumAccum <uint> @count;</uint>	- COUNT

GSQL breakdown to GSQL

```
tagWithName = SELECT t FROM Tag:t

WHERE t.name == tag;

replies = SELECT c FROM tagWithName -
(<HAS_TAG.<REPLY_OF)- Comment:c;

repliesWithTag = Pattern match 3

SELECT r
FROM tagWithName -(<HAS_TAG)- replies:r;

PRINT @@result as result;
}
```


GSQL	GQL	
repliesWithoutTag = replies MINUS repliesWithTag;	- EXCEPT ALL	
<pre>tmp = SELECT t FROM repliesWithoutTag:r -(HAS_TAG>)- Tag:t ACCUM t.@count += 1 POST-ACCUM @@result += RESULT(t.name, t.@count);</pre>	- - Return	

Final GQL QUERY

EXCEPT ALL

FROM BI
MATCH (c1:Comment)~[:HAS_TAG]~(tag1:Tag)
Return rTag_name

- DEMO
- Limitation(s)
- Future Research

Limitations

VIEWS -> Tables

Graph-> Binding Table -> Subgraph projection -> View-Table

Functions, Predicates

Brief Demo

PS C:\Users\megho\Downloads\Work>

k

Future Work

- TLP
- Views and Subgraphs
- Extension of the GQL parser to support those
- Path termination

Thank You

Question: r.a.meghoe@student.tue.nl

Bibliography

[1]:Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. Aggregation support for modern graph analytics in tigergraph. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD '20, page 377392, New York, NY, USA, 2020. Association for Computing Machinery

[2]:N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, M. Schuster, P. Selmer, and others. Formal semantics of the language cypher. *arXiv preprint arXiv:1802.09984*, 2018.

[3]:Alastair Green, Paolo Guagliardo, and Leonid Libkin. Property graphs and paths in gql: Mathematical definitions. Technical Reports TR-2021-01, Linked Data Benchmark Council (LDBC), Oct 2021