Jurnal Tekno Insentif | ISSN (p): 1907-4964 | ISSN (e): 2655-089X DOI: https://doi.org/10.36787/jti.v14i2.150

METODE KOMPARASI ARTIFICIAL NEURAL NETWORK PADA PREDIKSI CURAH HUJAN - *LITERATURE REVIEW*

Herlina Jayadianti¹, Tedy Agung Cahyadi², Nur Ali Amri³, Muhammad Fathurrahman Pitayandanu⁴

1,4 Teknik Informatika, Fakultas Teknik Industri,

2,3 Teknik Pertambangan, Fakultas Teknologi Mineral,

Universitas Pembangunan Nasional "Veteran" Yogyakarta

¹herlinajayadianti@gmail.com ²tedyagungc@upnyk.ac.id ³nuraliamri@upnyk.ac.id ⁴fathurdanu@gmail.com

Abstrak - Penelitian untuk mencari model prediksi curah hujan yang akurat di berbagai bidang sudah banyak dilakukan, maka dilakukan di-review kembali guna membantu proses penyaliran dalam perusahaan tambang. Review dilakukan dengan membandingkan hasil dari setiap model yang telah dilakukan pada beberapa penelitian sebelumnya. Penelitian ini menggunakan metode kuantitatif. Model yang dibandingkan pada penelitian di antaranya yaitu model Fuzzy, Fast Fourier Transformation (FFT), Emotional Artificial Neural Network (EANN), Artificial Neural Network (ANN), Adaptive Ensemble Empirical Mode Decomposition-Artificial Neural Network (AEEMD-ANN), E-SVR-Artificial Neural Network (E-SVR-ANN), Artificial Neural Network Backpropagation (BPNN), Adaptive Splines Threshold (ASTAR), Seasonal First-Order Autoregressive (SAR), Gumbel, Autoregressive Integrated Moving Average (ARIMA), Feed Forward Neural Network (FFNN), Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), dan Artificial Neural Network-Fuzzy (ANN-Fuzzy). Hasil dari review menyimpulkan bahwa model Artificial Neural Network memiliki beberapa kelebihan dibandingkan dengan metode yang lain, yakni ANN mampu memberikan hasil yang dapat mengenali pola-pola dengan baik dan mudah dikembangkan menjadi bermacam-macam variasi sesuai dengan permasalahan maupun parameter yang ada, sehingga ANN direkomendasikan untuk perhitungan prediksi hujan.

Kata kunci : machine learning, prediksi, Artificial Neural Network, curah hujan, akurasi

Abstract - Various kinds of research have been carried out to find accurate models to predict rainfall in various fields, so the research that has been done previously was reviewed again to help the drainage process in mining companies. The review is done by comparing the results of each model that has been conducted in several previous studies. This research used quantitative methods. Models compared in this study include the Fuzzy model, Fast Fourier Transformation (FFT), Emotional Artificial Neural Network (EANN), Artificial Neural Network (ANN), Adaptive Ensemble Empirical Mode Decomposition-Artificial Neural Network (AEEMD-ANN), E-SVR -Artificial Neural Network (E-SVR-ANN), Artificial Neural Network Backpropagation (BPNN), Adaptive Splines Threshold (ASTAR), Seasonal First-Order Autoregressive (SAR), Gumbel, Autoregressive Integrated Moving Average (ARIMA), Feed Forward Neural Network (FFNN), Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Artificial Neural Network-Fuzzy (ANN-Fuzzy). The results of the review concluded that the Artificial Neural Network model has several advantages compared to other methods, namely ANN is able to provide results that can recognize patterns well and easily developed into a variety of variations in accordance with existing problems and parameters, so ANN is recommended for rain prediction calculation.

Keywords: machine learning, prediction, Artificial Neural Network, rainfall, accuracy

1. PENDAHULUAN

Sejak dahulu pengamatan cuaca khususnya pengamatan curah hujan telah dilakukan di berbagai tempat dengan berbagai model penelitian dan menghasilkan data yang sangat panjang. Data tersebut kemudian dianalisa, diolah, dan digunakan untuk mendukung berbagai keperluan penelitian. Salah satu bentuk penelitian dengan memanfaatkan data pengamatan cuaca khususnya curah hujan adalah untuk mendapatkan model prediksi yang akurat (Rakhmawati, 2015). Maka diharapkan dapat membantu proses penyaliran khususnya di dunia pertambangan. Dari penelitian relevan sebelumnya

yang sudah dilakukan, prediksi curah hujan pada dunia pertambangan masih menggunakan pengolahan konvensional seperti penggunaan metode Gumbel dan metode Thomas Fiering, namun dengan perkembangan metode *Artificial Intelligence* (AI) banyak pendekatan *Artificial Neural Network* (ANN) yang dipakai untuk melakukan pemodelan yang lebih cepat dan akurat (Badrzadeh, dkk., 2015).

Dari penelitian Sutikno (Hadihardaja dan Sutikno, 2005) disimpulkan bahwa pemodelan curah hujan bisa diterapkan menggunakan model ANN, tetapi hasilnya belum akurat karena masih terjadi penyimpangan. Penelitian Dharma menyimpulkan

bahwa ANN merupakan cabang AI yang memiliki kemampuan untuk mempelajari data tanpa waktu yang lama dalam pembuatan model. Kemudian ANN juga bisa menggandakan ketidakstabilan debit yang tak tentu ke bentuk model (Dharma, 2011). Di dalam penelitian yang dilakukan oleh Rakhmawati tahun 2015, mengutip penelitian sebelumnya mengenai kelebihan ANN sebagai sebuah metode prediksi yang dapat membaca pola dengan learning algorithm dan training seperti kerja pada otak manusia. Dari berbagai literature yang telah dilakukan review maka hal tersebut menjadi motivasi riset dalam penelitian ini yaitu, memberikan keterkaitan riset yang kuat antara deskripsi ANN dan penerapannya untuk prediksi curah hujan. Penelitian ini diperlukan untuk melihat keakuratan pengembangan metode ANN dalam memprediksi curah hujan dibandingkan metode Gumbel dan metode Thomas Fiering yang digunakan pada penelitian sebelumnya.

2. KAJIAN PUSTAKA

Perbandingan Model FFT, ANN, dan ARIMA pada penelitian yang telah dilakukan Susilokarti menunjukkan bahwa kinerja ANN yang paling baik daripada FFT dan ARIMA karena dapat menghasilkan nilai MSE terkecil (Susilokarti, Arif, Susanto, Sutiarso, 2015). Kesimpulan yang didapat dari penelitian oleh Tan, Lei, Wang, dkk,, tahun 2018, penggunaan model SAR lebih cocok digunakan pada musim kemarau sedangkan model AEEMD-ANN lebih baik digunakan pada musim penghujan untuk memperkirakan limpasan bulanan di Lembah Sungai Yangtze (Tan, Lei, Wang, dkk, 2018). Pada literature yang ditulis oleh Nourani, tahun 2016, disebutkan bahwa perbandingan metode Emotional ANN (EANN) yang memiliki referensi dari respons emosi pada manusia dengan Feed Forward Neural Network (FFNN) yang biasa digunakan pada pemodelan hidrologi memiliki tingkatan yang lebih akurat (Nourani, 2016). Karakteristik pola curah hujan berdasarkan ANN yang dikombinasikan dengan Fuzzy menunjukkan pola ekuator yang mendapatkan nilai validasi yang tinggi yaitu 92% (Winarti, 2018). Tabel 1 berikut berisikan rangkuman terkait penelitian yang sejenis.

Tabel 1. Penelitian Sejenis

Nama Peneliti	Tahun	Judul Penelitian	Hasil Penelitian
Wahyuni, Mahmudy, Iriany	2018	Rainfall Prediction in Tengger Region Indonesia using Tsukamoto Fuzzy Inference System. Lokasi Tengger Indonesia	Rekomendasi optimalisasi keanggotaan fuzzy dengan algoritma meta-heuristik
Nourani	2016	An Emotional ANN (EANN) approach to modeling rainfall-runoff process, Lokasi Lobbs Hole, Australia	Rekomendasi model EANN
Qiao-feng Tan, Xiao-hui Li, Xu Wang, dkk.	2018	An adaptive middle and longterm runoff forecast model using EEMD-ANN hybrid approach. Lokasi Stasiun Ertan, Cuntan dan Yichang di Cina	Rekomendasi Model SAR musim kemarau, Rekomendasi AEEMD-ANN musim hujan
Hadihardaja, Sutikno	2005	Pemodelan Curah Hujan Limpasan Menggunakan Artificial Neural Network (ANN) dengan Metode <i>Backpropagation</i> . Lokasi Sungai Way Sekampung, Lampung, Indonesia	Backpropagation relatif baik pada proses pembelajaran dan pengujian, namun hasil tidak terlalu akurat
Yu Xiang, Ling Gou, dkk.	2018	A SVR-ANN combined model based on ensemble EMD for rainfall prediction. Lokasi Provinsi Yunnan, Barat Daya Cina	Rekomendasi E-SVR-ANN
Dharma, Putera, dkk.	2011	Artificial Neural Networks Untuk Pemodelan Curah Hujan Limpasan Pada Daerah Aliran Sungai (Das) Di Pulau Bali. Lokasi Nyuling,DAS Tukad Jogading	Backpropagation memberikan hasil yang relatif baik
Dyah Susilokarti, Sigit Supadmo Arif, Sahid Susanto, Sutiarso	2015	Perbandingan Prediksi Curah Hujan, dengan Metode Fast Fourier Transformation, Autoregressive Integrated Moving Average Dan Artificial Neural Network. Lokasi berada di Daerah irigasi Curugagung, Cileuleuy, Cinangka dan Pangsor	Rekomendasi model ANN
Irwinda Famesa, Fhira Nhita, Adiwijaya	2015	Prediksi Curah Hujan Menggunakan Algoritma Hybrid Neural Network Dan Evolutionary Programming, Wilayah Soreang Kabupaten Bandung	Rekomendasi Model Hybrid Algoritma ANN pada algoritma Evolutionary Programming metode Simple Moving Average 3-MA arsitektur 3-1-1 serta 5-MA arsitektur 5-2-1
Suktino, Rokhana Dwi Bekti, Putri Susanti, Istriana	2010	Prakiraan Cuaca dengan Metode ARIMA, ANN dan ASTAR di Stasiun Juanda Surabaya, Stasiun Juanda, Surabaya	Rekomendasi Metode ASTAR khususnya Ex- Ante
Rachmawati	2015	Prediksi Data Curah Hujan dengan Parameter Cuaca di Pontianak pada Skala Harian, Dasarian dan Bulanan, Pontianak, Indonesia	Skala bulanan lebih baik oleh JST dibanding skala dasarian dan harian
Winartia, Jumarang, dkk.	2018	Prakiraan Kejadian Hujan di Kota Pontianak dengan Metode JST-Logika Fuzzy, Pontianak, Indonesia	Rekomendasi JST-Logika Fuzzy
Gautama, R.S.	2012	Storm Rainfall Analysis: An Important Factor In Designing Mine Dewatering Facilities In Tropical Ragion	Estimasi curah hujan menggunakan Gumbel untuk desain sistem penirisan tambang
Gumbel, E.J.	1941	The Return Period Of Flood Flows	Pemodelan curah hujan model empirik

3. METODE PENELITIAN

Tahapan penelitian dimulai dengan literature review. Literature review adalah proses kritisi mendalam dan evaluasi terhadap penelitian sejenis sebelumnya (Shuttleworth, 2009). Paper yang akan di-review adalah paper mengenai model Fuzzy, Fast Fourier Transformation (FFT), Emotional Artificial Neural Network (EANN), Artificial Neural Network (ANN), Adaptive Ensemble Empirical Mode Decomposition-Artificial Neural Network (AEEMD-ANN), E-SVR-Artificial Neural Network (E-SVR-ANN), Artificial Neural Network Backpropagation (BPNN), Adaptive Splines Threshold (ASTAR), Seasonal First-Order Autoregressive (SAR), Gumbel, Autoregressive Integrated Moving Average (ARIMA), Feed Forward Neural Network (FFNN), Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), dan Artificial Neural Network-Fuzzy (ANN-Fuzzy). Metodologi yang digunakan dalam penelitian ini adalah metode kuantitatif (Sudjana, N. dan Ibrahim, 2001), yakni:

- a. Sasaran dari penelitian yakni cenderung bersifat tetap sehingga dapat diprediksi, fragmental, serta berdimensi tunggal.
- b. Variabel dikaji dan diukur dengan alat yang baku dan tidak bersifat subjektif.

Ciri dari penelitian kuantitatif yakni:

- a. Proses penelitian mengikuti prosedur yang telah direncanakan.
- Subjek, data, sumber data, serta alat yang digunakan sesuai dengan perencanaan yang telah dilakukan.

Analisis data dikerjakan setelah data terkumpul.

4. ANALISIS

Penelitian yang telah dilakukan oleh Suktino pada tahun 2010 menjelaskan bahwa penggunaan metode ANN, ARIMA, dan ASTAR dalam prediksi curah hujan menggunakan parameter *input* tanggal, suhu

maksimum, suhu minimum, kelembapan minimum, kelembapan maksimum, dan curah hujan harian dimana data didapatkan dari BMKG Stasiun Juanda Surabaya-Jawa Timur. Data dimulai dari tanggal 1 Januari 2003 sampai dengan tanggal 31 Desember 2006 dan dari data tersebut metode ASTAR memperoleh nilai korelasi yang paling tinggi serta nilai *Root Mean Squared Error* (RMSE) yang paling rendah dibandingkan ANN dan ARIMA, sehingga dapat disimpulkan bahwa metode ini mempunyai kemampuan perkiraan yang lebih baik dan konstan. Kekurangan dari penelitian ini adalah data yang digunakan dalam *training* masih sedikit. Tentu semakin banyak data *training* yang digunakan, semakin baik pula pembelajaran yang dilakukan.

Namun pada penelitian Susilokarti pada tahun 2015 didapatkan nilai *Mean Squared Error* (MSE) pada ANN yang paling kecil dibandingkan dengan ARIMA dan FFT dengan parameter tanggal (waktu) dan curah hujan itu sendiri yang menggunakan data curah hujan bulanan dari tahun 1975 hingga 2012 dari enam stasiun yang didapatkan dari Divisi III Perum Jasatirta II Kabupaten Subang. Data tersebut digunakan untuk memprediksi curah hujan lima tahun yang akan datang, tetapi dalam penelitian ini tidak menjelaskan penggunaan data dari stasiun terkait dengan data pelatihannya.

Pada tahun 2005, Hadihardaja telah melakukan penelitian terkait dengan pencarian arsitektur jaringan yang optimal pada ANN *Backpropagation* untuk prediksi curah hujan-limpasan dengan hasil koefisien korelasi tertinggi sebesar 0,813 dengan Arsitektur A4-6 mendapatkan nilai Kesalahan Absolut Rata-rata (KAR) yaitu 0,447 dimana nilai tersebut adalah yang terkecil. Seluruh perbandingan pola arsitektur ANN Backpropagation dapat dilihat pada Tabel 2 sebagai berikut.

No	Pola	KAR	MSE	Data Maksimum	Data Minimum	Data Rata-	Standar Deviasi	Koefisien Skewnes	Koefisien Korelasi	
1	A1-4	0.836	0.004	207.132	11.967	rata 51.425	34.243	1.464	0.735	
2	A1-6	0.828	0.004	220.959	11.504	50.896	34.511	1.654	0.735	
3	A2-4	0.663	0.013	189.168	6.793	48.563	39.736	1.426	0.751	
4	A2-6	0.681	0.013	188.896	5.626	49.563	39.360	1.307	0.754	
5	A3-4	0.546	0.003	198.253	7.770	52.214	43.775	1.497	0.805	
6	A3-6	0.512	0.004	270.208	6.893	49.698	46.518	2.209	0.751	
7	A4-4	0.451	0.008	171.108	6.480	48.882	41.564	1.275	0.813	
8	A4-6	0.447	0.008	167.197	6.424	48.768	41.301	1.252	0.813	
	Peng	gamatan		301.900	4.000	47.108	46.146	2.212		

Tabel 2. Parameter statistika hasil pengujian (Hadihardaja, 2005)

Sehingga disimpulkan bahwa data yang paling optimum pada saat diuji menggunakan ANN arsitektur A4-6 dan juga dapat diaplikasikan untuk pemodelan curah hujan dan limpasan. Hasil yang diperoleh belum akurat karena terdapat hal yang tidak diperhitungkan, seperti berubahnya kondisi alam yang disebabkan oleh pengambilan air di sungai dalam jumlah yang banyak.

Penelitian yang dilakukan oleh Rachmawati pada tahun 2015 yaitu melakukan percobaan terhadap arsitektur jaringan ANN untuk mencari metode yang

paling optimal dan juga menganalisis hasil penelitian dalam skala harian, mingguan, dan bulanan dengan menggunakan parameter kelembapan, tekanan udara, suhu, serta penguapan. Rachmawati menyimpulkan bahwa skala waktu bulanan lebih akurat daripada skala waktu harian yang dihasilkan dari model. Pada penelitian ini penjelasan mengenai penyebab perbedaan tingkat akurasi terhadap skala waktu seperti harian, mingguan, dan bulanan tidak diterangkan. Berikut ini Tabel 3 yang merupakan daftar metode yang digunakan dalam penelitian sebelumnya.

Tabel 3. Metode yang digunakan

Penelitian	Tahun						Model yang digunakan								
		Fuzzy	FFT	EANN	AEEMD- ANN	E- SVR- ANN	BPNN	ASTAR	SAR	Gumbel	ARIMA	FFNN	SVM	ANFIS	ANN- Fuzzy
Wahyuni, Mahmudy, Iriany	2018	v													
Nourani	2016			V								v			
Qiao-feng Tan,Xiao- hui Li,Xu Wang, dkk	2018				v		V		v				v	V	
Hadihardaja, Sutikno	2005						V								
Yu Xiang, Ling Gou, dkk	2018					V									
Dharma, Putera, dkk	2011						V								
Dyah Susilokarti, Sigit Supadmo Arif, Sahid Susanto, Lilik Sutiarso	2015		V				V				V				
Irwinda Famesa , Fhira Nhita , Adiwij	2015						V								
Suktino, Rokhana Dwi Bekti, Putri Susanti, Istriana	2010						V	V			V				
Rachmawati	2015						v								
Vina Winartia, Muh. Ishak Jumaranga, Apriansyah	2018														v
Gautama, R.S.	2012									V					
Gumbel, E.J.	1941									V					

Pada penelitian lainnya yang dilakukan oleh Winarti pada tahun 2018, Winarti mencoba untuk mencari tahu tingkat keakuratan dalam menerapkan ANN-Fuzzy untuk memprediksi curah hujan. Kemudian penulis telah menyimpulkan bahwa tingkat keakuratan dengan ANN-Fuzzy cukup tinggi yaitu 92% dan pola curah hujan yang didapatkan menunjukkan pola ekuator. Penelitian ini tidak membahas alasan penggunaan fungsi aktivasi purelin, sigmoid biner, dan sigmoid bipolar.

Penelitian selanjutnya membahas pemodelan curah hujan menggunakan metode ANN dengan berbagai

arsitektur untuk mencari arsitektur yang paling optimal. Penelitian ini dikerjakan oleh Dharma pada tahun 2011. Kesimpulan yang didapatkan Dharma yaitu kinerja model ANN menunjukkan bahwa model nomor lima dengan arsitektur 3-10-5-1 memberikan hasil yang paling optimum dan ANN memiliki kemampuan yang bagus untuk mereplika fluktuasi debit acak ke dalam bentuk model buatan yang memiliki fluktuasi yang hampir sama.

Penelitian oleh Nourani tahun 2016, dilakukan percobaan untuk meneliti perbandingan tingkat akurasi dari metode FFNN dengan *Emotional* ANN.

Maka dari penelitian tersebut dihasilkan kesimpulan bahwa model ANN menghasilkan akurasi yang lebih tinggi daripada FFNN. Penelitian ini hanya menggunakan parameter curah hujan dan waktu saja, tetapi data yang digunakan data selama 20 tahun pada periode 1994-2014.

Penelitian Wahyuni juga terkait curah hujan tahun 2016, tetapi pada penelitian tersebut Wahyuni mencoba untuk membandingkan metode <u>Fuzzy</u> dengan metode GSTAR sehingga dihasilkan kesimpulan bahwa penggunaan metode Fuzzy lebih baik dibandingkan dengan metode GSTAR. Namun tidak dijelaskan penggunaan parameter yang dipakai.

Pada penelitian yang dikerjakan oleh Qiao-feng Tan tahun 2018, telah dilakukan perbandingan metode AEEMD-ANN, ANN, ANFIS, SVM, dan SAR dalam memprediksi curah hujan dengan parameter curah hujan dan *time series* saja. Kesimpulan dari penelitian tersebut yaitu penggunaan model SAR lebih cocok digunakan pada musim kemarau sedangkan model AEEMD-ANN lebih baik digunakan pada musim hujan untuk memperkirakan limpasan bulanan di Lembah Sungai Yangtze. Dalam penelitian ini parameter pendukung yang digunakan masih sangat sedikit. Tabel 4 di bawah ini merupakan daftar parameter yang telah digunakan dalam penelitian sebelumnya.

Tabel 4. Parameter yang digunakan

Penulis	Tahun	Parameter												
		Curah Hujan	Suhu Udara	Kelem- bapan udara	Kecepa tan angin bulanan	Debit sungai	Evapo- traspirasi	Tekana n udara	Peng- uapan	Waktu	Suhu Mini- mum	Suhu Maksi- mum	Kelembap an nisbi minimum	Kelem- bapan nisbi maksi- mum
Wahyuni, Mahmudy, Iriany	2018	V								v				
Nourani	2016	v								v				
Qiao- fengTan,Xiao -hui Li,Xu Wang, dkk	2018	V								V				
Hadihardaja, Sutikno	2005	v				V				v				
Yu Xiang, , dkk	2018	v								v				
Dharma, Putera, dkk	2011	v				V	V			v				
Susilokarti, Arif, dkk	2015	v								v				
Famesa, Nhita, Adiwij	2015	v								v				
Suktino, Bekti, Susanti, dkk	2010	v								v	v	v	V	v
Rachmawati	2015	v		v				V	v	v				
Winartia, Jumaranga, Apriansyah	2018	V	v	V	V					V				
Gautama, .S.	2012	v								v				
Gumbel, E.J.,	1941	v								v				

5. KESIMPULAN

Dari proses resume beberapa literature review, ANN memiliki metode yang mampu mempelajari pola data dengan baik dibandingkan dengan metode yang lainnya. Proses yang cepat dalam menghubungkan antara data pembelajaran dan data output menyebabkan ANN memiliki tingkat kecepatan koreksi yang lebih tinggi dengan memanfaatkan konsep koefisien korelasi. Proses bolak balik (backpropagation) mampu memperkecil persen kesalahan dari metode ini, sehingga mesin dianggap masih lebih baik dibandingkan metode yang lain.

6. DAFTAR PUSTAKA

Badrzadeh, H. (2015). Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. Journal of

Hydrology.

https://doi.org/10.1016/j.jhydrol.2015.07.057 Dharma, S., Putera, A., Ardana, P. D. H. (2011). Artificial Neural Networks Untuk Pemodelan Curah HujanLimpasan Pada Daerah Aliran Sungai (Das) Di Pulau Bali. Jurnal Bumi Lestari, 11(1), 9 - 22

 $https://ojs.unud.ac.id/index.php/blje/article/vi\\ ew/80$

Famesa, I., Nhita, F., Adiwijaya. (2015). *Prediksi*Curah Hujan Menggunakan Algoritma Hybrid

Neural Network Dan Evolutionary

Programming. e-Proceeding of Engineering:
2(2), 6872-6879

https://libraryeproceeding.telkomuniversity.a c.id/index.php/engineering/article/view/3072

Gautama, R. S. (1997). Storm Rainfall Analysis: An Important Factor In Designing Mine Dewatering Facilities In Tropical Region

- https://www.imwa.info/docs/imwa_1997/IM WA1997_Gautama_235.pdf
- Gumbel, E.J. (1941). The Return Period Of Flood Flows https://projecteuclid.org/euclid.aoms/1177731
- 747 Hadihardaja, I. K., Sutikno, S. (2005). *Pemodelan*
- Curah Hujan-Limpasan Menggunakan Artificial Neural Network (ANN) dengan Metode Backpropagation. Jurnal Teknik Sipil. 12(4), 249-258 https://media.neliti.com/media/publications/1 44054-ID-pemodelan-curah-hujan-limpasan-menggunak.pdf
- Nourani, V. (2016). *An Emotional ANN (EANN)* approach to modeling rainfall-runoff process. https://www.sciencedirect.com/science/article/pii/S0022169416307399
- Qiao-feng Tan, Xiao-hui Li, Xu Wang, Hao Wang, Xin Wen, Yi Ji, Ai-qin. (2018). *An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach*. https://www.sciencedirect.com/science/article/pii/S0022169418300155
- Rachmawati, A. (2015). Prediksi Curah Hujan Di Kota Pontianak Menggunakan Parameter Cuaca Sebagai Prediktor pada Skala Bulanan, Dasarian Dan Harian. POSITRON, 5(2), 50-57 http://jurnal.untan.ac.id/index.php/jpositron/a rticle/view/11755
- Sudjana, Nana dan Ibrahim, (2001) *Penelitian Dan Penilaian Pendidikan*, Sinar Baru Algesindo
- Suktino, Bekti, R. D., Susanti, P., Istriana. (2010).

 Prakiraan Cuaca dengan Metode
 Autoregressive Integrated Moving Average
 Neural Network dan Adaptive Splines
 Threshold Autoregression di Stasiun Juanda
 Surabaya. Jurnal Sains Dirgantara, 8(1), 43-61
- Susilokarti, D., Arif, S.S., Susanto, S., Sutiarso, L. (2015). Studi Komparasi Prediksi Curah Hujan, Metode Fast Fourier Transformation (Fft), Autoregressive Integrated Moving Average (Arima) Dan Artificial Neural Network (ANN). AGRITECH, 35(2), 241-247 https://jurnal.ugm.ac.id/agritech/article/view/9412
- Wahyuni, Mahmudy, Iriany. (2016). Rainfall Prediction in Tengger Region Indonesia using Tsukamoto Fuzzy Inference System. ICITISEE. | https://ieeexplore.ieee.org/document/780306
- Winarti, V., Jumaranga, M.I., Apriansyah. (2018). Prakiraan Kejadian Hujan di Kota Pontianak dengan Metode JST-Logika Fuzzy. Prisma Fisika. 6(2), Hal. 117 - 123 http://jurnal.untan.ac.id/index.php/jpfu/article /download/26522/75676577245

Yu Xiang, Ling Gou, Lihua He, Shoulu Xia, Wenyong Wang. (2018). A SVR-ANN combined model based on ensemble EMD for rainfall prediction

https://www.sciencedirect.com/science/article/abs/pii/S1568494618305350