中国科学技术大学

2019-2020 学年第二学期 数理方程 B 期末复习试卷 数理方程 08 班制作,仅供学习交流使用

特别说明:这份复习试卷由作业题目中的易错问题组成,易错点分析详见每周的批改作 业反馈。

一、求解下列 Cauchy 问题。

(1)

$$\begin{cases} u_{tt} = a^2 \Delta_3 u \\ u|_{t=0} = \varphi(r) \\ u_t|_{t=0} = \phi(r) \end{cases}$$

$$\begin{cases} u_{tt} = a^2 \Delta_3 u \\ u|_{t=0} = \varphi(r) \\ u_t|_{t=0} = \phi(r) \end{cases}$$
(2)
$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = f(t, x)(-\infty < x < +\infty, t > 0) \\ u(0, x) = \varphi(x) \end{cases}$$
其中 $a \neq 0$,且 a 为常数。

二、求解下列固有值问题

(1)

$$\begin{cases} y'' - 2ay' + \lambda y = 0(0 < x < 1, a 为常数) \\ y(0) = y(1) = 0; \end{cases}$$

(2)

$$\begin{cases} (r^2 R')' + \lambda r^2 R = 0 (0 < r < a) \\ |R(0)| < +\infty, R(a) = 0 \end{cases}$$

提示: 令 y = rR.

三、求解圆内狄氏问题的解

(1)

$$\begin{cases} \Delta_2 u = 0 (r < a) \\ u|_{r=a} = A \sin^2 \theta + B \cos^2 \theta \end{cases}$$

(2)

$$\begin{cases} \Delta_2 u = 0 (r < a) \\ u_r(a, \theta) - h u(a, \theta) = f(\theta) (h > 0) \end{cases}$$

四、利用分离变量法求解定解问题

(1)

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^4 u}{\partial x^4} (0 < x < l, t > 0) \\ u(0, x) = x(l - x), u_t(0, x) = 0 \\ u(t, 0) = u(t, l) = 0 \\ u_{xx}(t, 0) = u_{xx}(t, l) = 0 \end{cases}$$

(2)

$$\begin{cases} \Delta_2 u = 0 (a < r < b) \\ u(a, \theta) = u_1, \frac{\partial u(b, \theta)}{\partial n} = u_2 \end{cases}$$

(3)

$$\begin{cases} u_{tt} = a^2 u_{xx} + b \operatorname{sh} x (0 < x < l, t > 0) \\ u(t, 0) = u(t, l) = 0 \\ u(0, x) = u_t(0, x) = 0 \end{cases}$$

五、设圆柱的半径为 R, 高为 h, 侧面在温度为零的空气中自由冷却,下底温度恒为零,上底温度为 f(r), 求柱内温度分布。

六、特殊函数的性质应用

(1) 计算积分

$$\int_{-1}^{1} (1 - x^2) \left[p'_n(x) \right]^2 dx$$

(2) 把函数 f(x) = |x| 按勒让德函数系展开

七、利用积分变换法求解定解问题

(1)

$$\begin{cases} \Delta_2 u = 0(-\infty < x < +\infty, y > 0) \\ u(x,0) = f(x) \\ \stackrel{\text{def}}{=} x^2 + y^2 \to +\infty \text{ iff}, u(x,y) \to 0 \end{cases}$$

(2)

$$\begin{cases} \Delta_2 u = 0, & x > 0, y > 0 \\ u|_{y=0} = f(x), & u_x|_{x=0} = 0, & u(x,y) \text{ } 有 \$. \end{cases}$$

提示:利用余弦变换。

八、利用拉普拉斯方程的基本解求解下列方程的基本解

(1)

$$u_{xx} + \beta^2 u_{yy} = 0(\beta > 0, \beta)$$
为常数)

(2)

$$\Delta_2 \Delta_2 u = 0$$

参 考 公 式

1. 拉普拉斯算子 Δ_3 在各个坐标系下的表达形式

$$\Delta_{3} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$

$$= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}$$

2. Legendre 方程: $[(1-x^2)y']' + \lambda y = 0$; n 阶 Legendre 多项式:

$$P_n(x) = \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k (2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k} = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

Legendre 多项式的母函数: $(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} P_n(x)t^n, |t| < 1$ Legendre 多项式的模平方: $\|P_n(x)\|^2 = \frac{2}{2n+1}$ Legendre 多项式满足的递推公式 ($n \ge 1$)

$$(n+1)P_{n+1}(x) - x(2n+1)P_n(x) + nP_{n-1}(x) = 0$$

$$nP_n(x) - xP'_n(x) + P'_{n-1}(x) = 0$$

$$nP_{n-1}(x) - P'_n(x) + xP'_{n-1}(x) = 0$$

$$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1)P_n(x)$$

3。3. ν 阶 Bessel 方程: $x^2y'' + xy' + (x^2 - \nu^2)y = 0; \nu$ 阶 Bessel 函数: $J_{\nu}(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left(\frac{x}{2}\right)^{2k+\nu}$

Bessel 函数的的母函数: $e^{\frac{x}{2}(\zeta-\zeta^{-1})} = \sum_{n=-\infty}^{+\infty} J_n(x)\zeta^n$

Bessel 函数在三类边界条件下的模平方分别为

$$\begin{split} N_{\nu 1n}^2 &= \frac{a^2}{2} J_{\nu + 1}^2 \left(\omega_{1n} a \right) \\ N_{\nu 2n}^2 &= \frac{1}{2} \left[a^2 - \frac{\nu^2}{\omega_{2n}^2} \right] J_{\nu}^2 \left(\omega_{2n} a \right) \\ N_{\nu 3n}^2 &= \frac{1}{2} \left[a^2 - \frac{\nu^2}{\omega_{3n}^2} + \frac{a^2 \alpha^2}{\beta^2 \omega_{3n}^2} \right] J_{\nu}^2 \left(\omega_{3n} a \right) \end{split}$$

Bessel 函数满足的微分关系和递推公式:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^{\nu} J_{\nu}(x) \right) = x^{\nu} J_{\nu-1}(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{J_{\nu}(x)}{x^{\nu}} \right) = -\frac{J_{\nu+1}(x)}{x^{\nu}}$$

4. 傅里叶变换: $\mathcal{F}[f](\lambda) = \int_{-\infty}^{+\infty} f(x)e^{i\lambda x} \mathrm{d}x$; 傅里叶逆变换

$$\mathcal{F}^{-1}[F](x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\lambda) e^{-i\lambda x} d\lambda; \mathcal{F}^{-1}\left[e^{-\lambda^2}\right] = \frac{1}{2\sqrt{\pi}} e^{-\frac{x^2}{4}}$$

5. 拉普拉斯变换: $L[f(t)] = \int_0^{+\infty} f(t)e^{-pt}dt, p = \sigma + is$

$$L\left[e^{\alpha t}\right] = \frac{1}{p-\alpha}; L\left[t^{\alpha}\right] = \frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$$

6. 拉普拉斯方程 $\Delta_3 u = \delta(M)$ 的基本解:

二维,
$$U(x,y) = -\frac{1}{2\pi} \ln \frac{1}{r}$$
, $r = \sqrt{x^2 + y^2}$

三维,
$$U(x,y,z) = -\frac{1}{4\pi r}$$
, $r = \sqrt{x^2 + y^2 + z^2}$

7. Green 第一公式: $\iint_{\partial V} u \frac{\partial v}{\partial n} \mathrm{d}S = \iiint_{V} u \Delta v \mathrm{d}V + \iiint_{V} \nabla u \cdot \nabla v \mathrm{d}V$

Green 第二公式: $\iint_{\partial V} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dS = \iiint_{V} (u \Delta v - v \Delta u) dV$

