Contents

1	Vectors	2
	Interpretations of Vectors	2
	Vector Multiplication	2
	Vector Space	3

1 Vectors

Interpretations of Vectors

- ▶ Vector: an ordered list of numbers.
- \triangleright Possible notations: $\vec{v} = v$ are most common.
- Dimensionality: the number of the elements in a vector.
- ▶ Geometric vector: an object with a magnitude and direction.
- ▶ Standard position: when the vector beings at the origin.
- ▶ Vectors must have same dimensionality for addition and subtraction.
- ▶ **Unit vector**: a vector with a *norm* (length) of 1. Notation: $\hat{u} = \frac{u}{|u|}$

Vector Multiplication

- ▶ Scalar: scales each element in a vector, does not change direction. Generally represented with greek letters.
- ▶ **Dot product**: a single number that provides information about the relationship between two vectors. Must have same dimensionality.
- \triangleright Notation for dot product: $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = \langle \mathbf{a} \mathbf{b} \rangle = \sum a_i b_i$
- ▷ Algebraic dot product properties:
 - ∘ Associative: False; $a^T(b^Tc) \neq (a^Tb)^Tc$
 - o Distributive: True; $a^T(b+c) = a^Tb + a^Tc$
 - Commutative: True; $a^Tb = b^Ta$
 - \circ Vector magnitude/length: $\|\mathbf{v}\| = \sqrt{\mathbf{v}^T\mathbf{v}}$
- ▶ Geometric dot product properties:
 - Magnitudes of vectors scaled by angle between them.
 - $| \circ | \vec{a} = |a||b|\cos(\theta_{ab})$
 - o Geometric and algebraic are really the same. The above equation can be rewritten as the algebraic vector length, i.e. $\mathbf{a}^T \mathbf{b} = \cos(\theta_{ab})|\mathbf{a}||\mathbf{b}|$
- \triangleright Dot product features based on θ :
 - \circ If $\cos(\theta) > 0$ then $\alpha > 0$
 - o If $cos(\theta) < 0$ then $\alpha < 0$
 - \circ If $\cos(\theta) = 0$ then $\alpha = 0$; termed **Orthogonal**

- \circ If $\cos(\theta) = 1$ then $\alpha = |a||b|$
- ► Hadamard vector multiplication: elementwise multiplication of two vectors of equal dimensionality.
- ▶ **Outer product**: $vw^T = n \times m$ matrix resulting from vectors with dimensions n and m.
- ▶ **Cross product**: defined only for two 3D vectors; produces another 3D vector that is perpendicular to both original vectors, or *normal*, to the plane containing them.
- ▷ Complex conjugate: inverse sign of imaginary component of a number.
- ▶ **Hermitian transpose**: or conjugate transpose, is transpose of a vector or matrix containing imaginary numbers using the complex conjugate.
- \triangleright Notation for Hermitian transpose on a matrix: M^H or M^*

Vector Space

>