U.B.M Annaba - Département de mathématiques-L3 Processus aléatoires -TD5 Chaînes de Markov -Notions de base

Par A. Redjil - Juin 2020

Exercice1:

Soit (S_n) une marche aléatoire simple sur \mathbb{Z} . Lesquels des processus suivants sont des chaînes de Markov sur Z?. Pour qui le sont donner les matrices de transition.

1.
$$A = (S_n)_{n>0}$$

2.
$$B = (S_n + n)_{n>0}$$

3.
$$C = (S_n + n^2)_{n \ge 0}$$

1.
$$A = (S_n)_{n \ge 0}$$
 2. $B = (S_n + n)_{n \ge 0}$ 3. $C = (S_n + n^2)_{n \ge 0}$ 4. $D = (S_n + 10^n)_{n \ge 0}$

5.
$$E = (S_n + (-1)^n)_{n \ge 0}$$
 6. $F = (|S_n|)_{n \ge 0}$ 7. $G = (S^2 - n)_{n \ge 0}$ 8. $H = (S_{2n})_{n \ge 0}$

6.
$$F = (|S_n|)_{n \ge 0}$$

$$(S^2 - n)_{n \ge 0}$$

8.
$$H = (S_{2n})_{n \geq n}$$

Exercice 2:

Soient S un ensemble dénombrable et (G, σ) un ensemble mesurable. Soient aussi $(Z_n)_{n\geq 1}$ une suite de variables i.i.d à valeurs dans (G, σ) et $\phi: S \times G \to S$ une application mesurable. On définit une suite de variables $(X_n)_{n>0}$ à valeurs dans S par $X_0 = x \in S$ et $X_{n+1} = \phi(X_n, Z_{n+1})$ pour tout $n \geq 0$. Montrer que $(X_n)_{n>0}$ est une chaîne de Markov et déterminer sa matrice de transition.

Exercice 3:

- 1) Etablir les équations de Chapman- Kolmogorov.
- 2) Soit $\alpha_i = P(X_0 = i_0)$ la loi initiale d'une chaîne de Markov à espace d'états S. Montrer que:

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = \alpha_{i_0} P_{i_0, i_1} P_{i_1, i_2} P_{i_{n-1}, i_n}$$

où
$$P_{i_{k-1},i_k} = P(X_k = i_k \ / \ X_{k-1} = i_{k-1} \)$$

où
$$P_{i_{k-1},i_k} = P(X_k = i_k / X_{k-1} = i_{k-1})$$

Et pour tout $k: 0 \le k \le n-1, \forall (i_0,i_1,....,i_n) \in S^{n+1}$

Exercice 4:

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov homogène à espace d'états S et de probabilités de transition $p_{ij}, \forall (i,j) \in S^2$. On pose $Y_n = X_{2n}, \forall n \geq 0$.

Montrer que $(Y_n)_{n>0}$ est une chaîne de Markov de probabilités de transition $p_{ij}(2)$.

Exercice 5:

Soit
$$S = \{1, 2, 3\}$$
 un espace d'états et $P = \begin{pmatrix} \frac{1}{10} & \frac{2}{10} & \frac{7}{10} \\ \frac{3}{10} & \frac{3}{10} & \frac{4}{10} \\ \frac{1}{10} & \frac{1}{10} & \frac{8}{10} \end{pmatrix}$

la matrice de transition d'une chaîne de markov $(X_n)_{n\geq 0}$ et soit μ la probabilité initiale de cette chaîne donnée par: $\mu = (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$

1

- 1- Dessiner le graphe des transitions de la chaîne.
- 2- Calculer $P(X_4 = 3 | X_0 = 1, X_1 = 1, X_2 = 1, X_3 = 1), P(X_2 = 2 | X_0 = 1).$
- 3-Calculer $P(X_2 = 2)$, $P(X_0 = 2, X_1 = 2, X_2 = 1, X_3 = 3)$.