元素及其化合物 \cdot 一 \cdot 「钠 (Na) 及其化合物」

1. 钠单质

1.1 化学性质

1. Na 与 氧气 反应: $egin{cases} 4\,\mathrm{Na} + \mathrm{O}_2 &= 2\,\mathrm{Na}_2\mathrm{O} \ 2\,\mathrm{Na} + \mathrm{O}_2 & \stackrel{\Delta}{==} \mathrm{Na}_2\mathrm{O}_2 \end{cases}$

2. Na 与 氯气 反应: $2\,\mathrm{Na} + \mathrm{Cl}_2 \stackrel{\Delta}{=\!=\!=} 2\,\mathrm{NaCl}$

3. Na 与 水 反应: $2 \operatorname{Na} + 2 \operatorname{H}_2 \operatorname{O} = 2 \operatorname{NaOH} + \operatorname{H}_2 \uparrow$

现象: 「浮熔游响红」

钠的密度比水小,会 $\emph{\emph{p}}$ 在水面上;反应时,钠迅速 $\emph{\emph{p}}$ 化成小球(说明反应剧烈、大量放热、钠熔点偏低);产生的氢气推动钠在水面上 $\emph{\emph{i}}$ 动;发出 $\emph{\emph{n}}$ 声;滴加酚酞后变 $\emph{\emph{红}}$

4. Na 与 CuSO_4 水溶液 反应: $egin{cases} Frist. & 2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \ = \ 2\,\mathrm{NaOH} + \mathrm{H}_2 \uparrow \\ Second. & 2\,\mathrm{NaOH} + \mathrm{CuSO}_4 \ = \ \mathrm{Cu}(\mathrm{OH})_2 \downarrow \ + \mathrm{Na}_2\mathrm{SO}_4 \end{cases}$

5. Na 与 乙醇 反应: $2\,\mathrm{C}_2\mathrm{H}_5\mathrm{OH} + 2\,\mathrm{Na} \longrightarrow 2\,\mathrm{C}_2\mathrm{H}_5\mathrm{ONa} + \mathrm{H}_2 \uparrow$

现象: 钠沉于无水乙醇的底部(或因产生的氢气使得钠上下跳动),表面有气泡产生,慢慢消失;放出的气体可在空气中安静地燃烧,火焰呈淡蓝色(\mathbf{H}_2);烧杯壁上有水珠生成;澄清石灰水未变浑浊(无 \mathbf{CO}_2)

解释:由于烷基具有推电子作用($\mathrm{CH}_3\overset{
ightarrow}{\mathrm{CH}_2}-\mathrm{O}-\mathrm{H}$),使得 $\mathrm{O}-\mathrm{H}$ 键极性变弱,因此反应不会很剧烈

1.2 知识点

1. 制取: 2 NaCl(熔融) ^{通电} 2 Na + Cl₂↑

2. 用途: 钠、钾合金(液态)可用于原子反应堆的导热剂; 冶炼某些金属(如钛金属); 用作电光源,制作高压钠灯

3. 密度: $p(H_2O) > p(Na) > p($ 煤油) (密封保存,通常保存在石蜡油或煤油中)

4. 金属钠着火时用细沙覆盖灭火,不得使用水或二氧化碳灭火器

2. 氧化钠与过氧化钠

	氧化钠 (Na ₂ O)	过氧化钠($\mathrm{Na_2O_2}$)				
电子式	Na ⁺ [:Ö:] Na ⁺ (仅含有离子键)	Na ⁺ [:Ö:Ö:] ²⁻ Na ⁺ (含有离子键和非极性共价键)				
离子个数比 4	${ m Na^+}:{ m O}^{2-}=2:1$	${ m Na^+}:{ m O}_2^{2-}=2:1$				
化合物类型 1	离子化合物(碱性氧化物)	离子化合物(非碱性氧化物,为过氧化物)				
颜色、状态	白色、固体	淡黄色、固体				
主要性质	具有碱性氧化物的通性	具有强氧化性 ²				
稳定性	不稳定,加热生成 $\mathrm{Na_2O_2}$ 3	较稳定				
与 水 反应	$\mathrm{Na_2O} + \mathrm{H_2O} = 2\mathrm{NaOH}$	$2\mathrm{Na_2}\overset{-1}{\mathrm{O}_2} + 2\mathrm{H_2O} \overset{2e^-}{=\!=\!=} 4\mathrm{NaOH} + \overset{0}{\mathrm{O}_2} \uparrow \overset{5}{}$				
与 CO_2 反应	$\mathrm{Na_2O} + \mathrm{CO_2} = \mathrm{Na_2CO_3}$	$2\mathrm{Na_2}\overset{-1}{\mathrm{O}_2} + 2\mathrm{CO}_2 \stackrel{2e^-}{=\!=\!=\!=} 2\mathrm{Na_2}\mathrm{CO}_3 + \overset{0}{\mathrm{O}_2} \overset{5}{\uparrow}$				
用途	制取烧碱	漂白剂、消毒剂、供氧剂				

Table 2-1

- 1. 碱性氧化物与酸反应生成盐和水: $Na_2O+2HCl=2NaCl+H_2O$ $(Na_2O_2 \ \text{不是碱性氧化物}:\ 2Na_2O_2+4HCl=4NaCl+2H_2O+O_2 \uparrow)$
- $2. Na_2O_2$ 具有强氧化性
 - $\mathrm{Na_2O_2}$ 加入品红溶液中,在水中生成 $\mathrm{H_2O_2}$,利用其氧化性,使得品红溶液褪色
 - 如将其加入滴加酚酞的水中, ${
 m Na_2O_2}$ 会先变红,后褪色
 - 与 SO_2 反应: $Na_2O_2 + SO_2 \longrightarrow Na_2SO_4$
 - 投入 FeCl₂ 溶液中生成 Fe(OH)₃ 沉淀
 - 投入氢硫酸,氧化硫化氢成硫单质,溶液浑浊
 - 氧化 SO₃²⁻ 成 SO₄²⁻
- 3. Na $\xrightarrow{O_2}$ Na₂O $\xrightarrow{O_2}$ Na₂O₂ $\xrightarrow{H_2O}$ NaOH
- 4. 考点: $1mol \operatorname{Na_2O} + \operatorname{Na_2O_2}$ 混合溶液的离子数为 $3N_A$
- 5. 考点: $\mathrm{Na_2O_2} + \mathrm{H_2O}(g) + \mathrm{CO_2}(g)$ 反应产生 $1mol~\mathrm{O_2}$,即转移了 $2mol~e^-$
- 6. Na_2O_2 与某水溶液反应与 Na 类似

例 如 :
$$NaHCO_3$$
 与 Na_2O_2 反 应
$$\begin{cases} Frist. & 2\,Na_2O_2+2\,H_2O=4\,NaOH+O_2\uparrow\\ Second. & NaOH+NaHCO_3=Na_2CO_3+H_2O \end{cases}$$
 总方程式: $4\,NaHCO_3+2\,Na_2O_2=4\,Na_2CO_3+2\,H_2O+O_2\uparrow$

3. 碳酸钠与碳酸氢钠

	碳酸钠 (Na ₂ CO ₃)	碳酸氢钠 (NaHCO3)				
俗名	纯碱、苏打	小苏打				
溶解度	易溶于水	在水中溶解度比 ${ m Na_2CO_3}$ 小 1				
热稳定性 ²	稳定,受热难分解	受热易分解: $2 \operatorname{NaHCO}_3 \stackrel{\Delta}{=\!\!=\!\!=} \operatorname{Na}_2 \operatorname{CO}_3 + \operatorname{CO}_2 \uparrow + \operatorname{H}_2 \operatorname{O}$				
与酸反应	$\mathrm{Na_{2}CO_{3}} \xrightarrow{\mathrm{H^{+}}} \mathrm{NaHCO_{3}^{-}} \xrightarrow{\mathrm{H^{+}}} \mathrm{CO_{2}} \uparrow^{3}$	$\mathrm{NaHCO_3}^- \stackrel{\mathrm{H}^+}{\longrightarrow} \mathrm{CO_2} \uparrow$				
与 CO_2 反应	$\mathrm{Na_{2}CO_{3}+CO_{2}\uparrow +H_{2}O_{2}=NaHCO_{3}}$	不反应 ⁴				
与 $\mathrm{Ca}(\mathrm{OH})_2$ 反应	$\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} = \mathrm{CaCO_3} \downarrow$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
与 CaCl ₂ /BaCl ₂ 反应	$\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} \ = \ \mathrm{CaCO_3} \downarrow$	不沉淀				

Table 3-1

- 1. 侯氏制碱法中,向饱和 NaCl(aq) 中依次通入 NH_3 和 CO_2 ,溶液中存在 NH_4^+ 、 Na^+ 、 Cl^- 、 CO_3^{2-} 、 HCO_3^- , 其中 HCO_3^- 最先析出,加热析出的 NaHCO ,得到 Na_2CO_3
- 2. 实验:比较碳酸钠与碳酸氢钠的热稳定性

Figure 3-1

碳酸钠在外层,温度高,碳酸氢钠在内层,温度低, II 的澄清石灰水变浑浊,证明碳酸钠的热稳定性更强

3. 实验:辨别 HCl 和 Na₂CO₃

互滴。如 HCl 逐滴滴入 Na_2CO_3 溶液中,开始时没有气泡,后来有;如 Na_2CO_3 逐滴滴入 HCl 溶液中,一开始就有气泡

4. 考点: 除去 CO₂ 中的 HCl

相互转化: Na₂CO₃ 加入NaOH/NaHCO₃(s)可用加热 NaHCO₃

除杂:

1. 固体 $Na_2CO_3(NaHCO_3)$:加热至恒重

2. 水溶液 Na₂CO₃(NaHCO₃):加 NaOH

3. 水溶液 NaHCO₃(Na₂CO₃):加足量 CO₂

3.1 鉴别

物质 $\begin{cases} % & \begin{cases} % (A_1) & \text{ if } A_2 = A_2 \\ % (A_2) & \text{ if } A_3 \\ % (A_3) & \text{ if } A_4 = A_3 \\ % (A_3) & \text{ if } A_4 = A_3 \\ % (A_3) & \text{ if } A_4 = A_3 \\ % (A_3) & \text{ if } A_4 = A_3 \\ % (A_3) & \text{ if } A_4 = A_3 \\ % (A_3) & \text{ if } A_4 = A_3 \\ % (A_3) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4 \\ % (A_4) & \text{ if } A_4 = A_4$

4. 焰色反应

物理反应,进行焰色反应应使用 **铂丝**(镍丝、无锈铁丝)。把嵌在玻璃棒上的金属丝在 **稀盐酸** 里蘸洗后,放在酒精灯的火焰里灼烧,不同金属元素会使火焰变为各种颜色,这便是焰色反应。焰色反应的形成与原子光谱有关

离子	Li ⁺	$\mathrm{Na^{+}}$	K^{+}	Rb^+	$\mathrm{Cs^+}$	$\mathrm{Ca^{2+}}$	Cr^{2+}	$\mathrm{Ba^{2+}}$	Cu^{2+}
焰色	红	黄	紫	紫红	紫红	橙红	洋红	黄绿	绿

Table 4-1

1. 灼烧白色粉末,火焰呈黄色,证明原粉末中有 Na^+ ,无 K^+ (\times) 解析:能证明有 Na^+ ,但无法确定是否有 K^+ ,因为 Na^+ 的黄光会遮盖 K^+ 的微弱紫

光,因此必须透过蓝色钴玻璃过滤黄光,观察是否有紫光 2. 在火焰上灼烧搅拌过某无色溶液的玻璃棒,火焰出现黄色,说明溶液中含有 \mathbf{Na}^+ (\times)

解析:不能用玻璃棒做焰色实验,因为玻璃棒中含有 $\mathrm{Na_2SiO_3}$,其焰色会干扰实验