A brief overview of simply-typed λ -calculus

Renato Neves

Table of Contents

Roadmap

Stripping (higher-order) programming to the essentials

The four chapters of this course

- 1. CCS and its semantics: focus on distributed systems comprised of processing units that communicate with each other
- 2. Adaption of previous notions to real-time systems: semantics via timed labelled transition systems
- 3. Going cyber-physical: simple imperative while-language and (as usual) program analysis via its semantics
- 4. Programming with algebraic effects: a uniform approach to the previous chapters

Overview

Modern programming typically involves different effects

- memory cell manipulation
- communication
- exception raising operations
- probabilistic operations
- real-time behaviour
- cyber-physical behaviour

In the following lectures we will study the mathematical foundations of

Programming with effects

in a uniform way

Table of Contents

Roadmap

Stripping (higher-order) programming to the essentials

Deductive Reasoning

The process of reasoning via assumptions and logical rules to obtain new knowledge: for example . . .

if every crow is black and x is a crow then x is black

Deductive reasoning has been studied in the last millenia, Aristotle being one of the fathers . . .

long before the age of artificial computers

So what does it have to do with programming?

A Logical Rule-Based System for Deductive Reasoning pt. I

Let $\mathbb{A}, \mathbb{B}, \mathbb{C} \dots$ denote propositions (i.e. a property or a statement) and 1 denote a special proposition that always holds. Next, if \mathbb{A} and \mathbb{B} are propositions then:

- $\mathbb{A} \times \mathbb{B}$ is a proposition it denotes the conjunction of \mathbb{A} and \mathbb{B}
- $\mathbb{A} \to \mathbb{B}$ is a proposition it says that \mathbb{A} implies \mathbb{B}

A Logical Rule-Based System for Deductive Reasoning pt. II

Let Γ denote a list of propositions. $\Gamma \vdash \mathbb{A}$ means "if the propositions in Γ hold then we deduce that \mathbb{A} also holds"

$$\frac{\mathbb{A} \in \Gamma}{\Gamma \vdash \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{A}} \text{ (π_1)} \qquad \frac{\Gamma \vdash \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \mathbb{B}} \text{ (π_2)}$$

$$\frac{\Gamma \vdash \mathbb{A} \qquad \Gamma \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \times \mathbb{B}} \text{ (prd)} \quad \frac{\Gamma, \mathbb{A} \vdash \mathbb{B}}{\Gamma \vdash \mathbb{A} \to \mathbb{B}} \text{ (cry)} \quad \frac{\Gamma \vdash \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash \mathbb{A}}{\Gamma \vdash \mathbb{B}} \text{ (app)}$$

Exercise

Show that $\mathbb{A} \times \mathbb{B} \vdash \mathbb{B} \times \mathbb{A}$

Building New Rules from the Original Ones

The following rules are derivable from the previous system

$$\frac{\Gamma \vdash \mathbb{A}}{\Gamma, \mathbb{B} \vdash \mathbb{A}}$$

$$\frac{\Gamma, \mathbb{A}, \mathbb{B}, \Delta \vdash \mathbb{C}}{\Gamma, \mathbb{B}, \mathbb{A}, \Delta \vdash \mathbb{C}}$$

Exercise

Prove that $\mathbb{A} \to \mathbb{B}, \mathbb{B} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{C}$ and also that $\mathbb{A} \to \mathbb{B}, \mathbb{A} \to \mathbb{C} \vdash \mathbb{A} \to \mathbb{B} \times \mathbb{C}$. Are these deductions familiar?

Going back to programming ...

The Essentials of Programming

In order to study effectful programming, we should think of what are the basic features of (higher-order) programming . . .

- variables
- function application
- function abstraction
- pairing . . .

and base our study on the simplest programming language containing these features . . .

Simply-typed λ -calculus

It is the basis of Haskell, ML, Eff, F#, Agda, Elm and many other programming languages

Simply-Typed λ -Calculus

Types
$$\mathbb{A} \ni 1 \mid \mathbb{A} \times \mathbb{A} \mid \mathbb{A} \to \mathbb{A}$$

 Γ is now a non-repetitive list of typed variables $x_1 : \mathbb{A}_1 \dots x_n : \mathbb{A}_n$

Programs are built according to the previous deduction rules

$$\frac{x : \mathbb{A} \in \Gamma}{\Gamma \vdash x : \mathbb{A}} \text{ (ass)} \qquad \frac{\Gamma \vdash V : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash x : \mathbb{A}} \text{ (friv)} \qquad \frac{\Gamma \vdash V : \mathbb{A} \times \mathbb{B}}{\Gamma \vdash \pi_{1} V : \mathbb{A}} \text{ (π_{1})}$$

$$\frac{\Gamma \vdash V : \mathbb{A} \qquad \Gamma \vdash U : \mathbb{B}}{\Gamma \vdash \langle V, U \rangle : \mathbb{A} \times \mathbb{B}} \text{ (prd)} \qquad \frac{\Gamma, x : \mathbb{A} \vdash V : \mathbb{B}}{\Gamma \vdash \lambda x : \mathbb{A} \cdot V : \mathbb{A} \to \mathbb{B}} \text{ (cry)}$$

$$\frac{\Gamma \vdash V : \mathbb{A} \to \mathbb{B} \qquad \Gamma \vdash U : \mathbb{A}}{\Gamma \vdash V U : \mathbb{B}} \text{ (app)}$$

Examples of λ -terms

- $x : \mathbb{A} \vdash x : \mathbb{A} \text{ (identity)}$
- $x : \mathbb{A} \vdash \langle x, x \rangle : \mathbb{A} \times \mathbb{A}$ (duplication)
- $x : \mathbb{A} \times \mathbb{B} \vdash \langle \pi_2 \ x, \pi_1 \ x \rangle : \mathbb{B} \times \mathbb{A} \text{ (swap)}$
- $f: \mathbb{A} \to \mathbb{B}, g: \mathbb{B} \to \mathbb{C} \vdash \lambda x: \mathbb{A}. g(f x): \mathbb{A} \to \mathbb{C}$ (composition)

Exercise

Build a λ -term $f: \mathbb{A} \to \mathbb{B}, g: \mathbb{A} \to \mathbb{C} \vdash ?: \mathbb{A} \to \mathbb{B} \times \mathbb{C}$ that pairs the outputs given by f and g

Semantics for Simply-Typed λ -Calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-Terms $\longrightarrow \dots$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

Semantics for Simply-Typed λ -Calculus

We wish to assign a mathematical meaning to λ -terms

$$\llbracket - \rrbracket : \lambda$$
-Terms $\longrightarrow \dots$

so that we can reason about them in a rigorous way, and take advantage of known mathematical theories

This is the goal of the next slides: we will study how to interpret λ -terms as functions. But first . . .

Basic Facts about Functions

For every set X, there is a 'trivial' function

$$!: X \longrightarrow \{\star\} = 1,$$
 $!(x) = \star$

We can always pair two functions $f: X \to A$, $g: X \to B$ into

$$\langle f, g \rangle : X \to A \times B, \qquad \langle f, g \rangle (x) = (f \times g \times g)$$

Consider two sets X, Y. There exist 'projection' functions

$$\pi_1: X \times Y \to X,$$
 $\pi_1(x, y) = x$
 $\pi_2: X \times Y \to Y,$ $\pi_2(x, y) = y$

Basic Facts about Functions

We can always 'curry' a function $f: X \times Y \rightarrow Z$ into

$$\lambda f: X \to Z^Y, \qquad \lambda f(x) = (y \mapsto f(x, y))$$

Consider sets X, Y, Z. There exists an 'application' function

$$\operatorname{app}: Z^Y \times Y \to Z, \qquad \operatorname{app}(f, y) = f y$$

Functional Semantics for the Simply-Typed λ -Calculus

Types \mathbb{A} are interpreted as sets $[\![\mathbb{A}]\!]$

A typing context Γ is interpreted as

$$\llbracket \Gamma \rrbracket = \llbracket x_1 : \mathbb{A}_1 \times \cdots \times x_n : \mathbb{A}_n \rrbracket = \llbracket \mathbb{A}_1 \rrbracket \times \cdots \times \llbracket \mathbb{A}_n \rrbracket$$

A λ -term $\Gamma \vdash V : \mathbb{A}$ is interpreted as a function

$$\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

Functional Semantics for the Simply-Typed λ -Calculus

A λ -term $\Gamma \vdash V : \mathbb{A}$ is interpreted as a function

$$\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket \mathbb{A} \rrbracket$$

in the following way

$$\frac{x_i : \mathbb{A} \in \Gamma}{\llbracket \Gamma \vdash x_i : \mathbb{A} \rrbracket = \pi_i} \qquad \frac{\llbracket \Gamma \vdash V : \mathbb{A} \times \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash \pi_1 V : \mathbb{A} \rrbracket = \pi_1 \cdot f}$$

$$\frac{\llbracket \Gamma \vdash V : \mathbb{A} \rrbracket = f \qquad \llbracket \Gamma \vdash U : \mathbb{B} \rrbracket = g}{\llbracket \Gamma \vdash \langle V, U \rangle : \mathbb{A} \times \mathbb{B} \rrbracket = \langle f, g \rangle} \qquad \frac{\llbracket \Gamma, x : \mathbb{A} \vdash V : \mathbb{B} \rrbracket = f}{\llbracket \Gamma \vdash \lambda x : \mathbb{A} \cdot V : \mathbb{A} \to \mathbb{B} \rrbracket = \lambda f}$$

$$\frac{\llbracket \Gamma \vdash V : \mathbb{A} \to \mathbb{B} \rrbracket = f \quad \llbracket \Gamma \vdash U : \mathbb{A} \rrbracket = g}{\llbracket \Gamma \vdash V U : \mathbb{B} \rrbracket = \operatorname{app} \cdot \langle f, g \rangle}$$

Exercises

Show that the following two equations hold.