1

Trabalho Computacional 2 Sistema de Comunicações Digitais

Nome:

Matrícula:

INSTRUÇÕES

- O trabalho deverá ser enviado para o email: rubem070@alu.ufc.br. Ele deverá ser enviado compactado (em .zip, ou .tar.gz) contendo os seguintes arquivos:
 - Relatório em formato pdf nomeado como "NOMEALUNO_MATRICULA.pdf"
 - Para a questão 3, o arquivo .slx do modelo de comunicação em ambiente Simulink.
 - Para as demais questões, os arquivos .m (no caso MATLAB e Octave) utilizados neste Homework.
 - Para os arquivos de programa, eles deverão conter comentários acerca de cada passo desenvolvido. Cada parâmetro setado, cada função criada, cada bloco desenvolvido.
- Campo "Assunto" do email: Trabalho SCD 02
- O trabalho dever ser implementado em ambiente Simulink, a partir do modelo inicial disponibilizado pelo professor
- ATENÇÃO: NÃO será permitida a utilização de blocos provenientes de toolboxes em que a detecção do símbolo é realizada de maneira automática. Em outras palavras, deve-se utilizar apenas blocos elementares, tais como: osciladores, filtros, somadores, misturadores (mixers), delays...

Problema 1: Considere o esquema de modulação 8-QAM, mostrado na Figura 1.

Fig. 1. Constelação de sinais do esquema 8-QAM.

- 1) Calcule a energia média (E_m) dessa constelação em função de r_1 e r_2 ;
- 2) Derive uma expressão para a probabilidade de erro teórica com o auxílio da função Q, em função de E_m/N_0
- 3) Obtenha a curva da taxa de erro de símbolos (SER Symbol Error Rate) simulada em função da razão \mathcal{E}_m/N_0 , assumindo que $r_1 = 1$ e $r_2 = \sqrt{2}$. Considere uma faixa de valores entre 0 e 20dB com um passo de 2dB.
- 4) Repita o experimento anterior considerando agora $r_1 = r_2 = 1$ (observe que esta constelação equivale ao 8-PSK).

Problema 2: Considere o seguinte sinal recebido:

$$y = s_i + n,$$

onde y é o sinal observado, s_i sinal transmitido (símbolo) de um alfabeto com M possibilidades, isto é, s_i é escolhido a partir de um alfabeto $S = \{s_0, s_1, \dots, s_i, \dots S_{M-1}\}$, e n é definido como o ruído aditivo gaussiano na recepção, isto é $n \sim \mathcal{CN}(0, \sigma_n^2)$. Um detector MAP (maximum a posteriori) seleciona \hat{s} de forma a maximizar a seguinte probabilidade a posteriori

$$P_{S|Y}(\hat{s}|y) = f_{Y|S}(y|\hat{s})P_S(\hat{s}),$$

onde $P_{S|Y}(\hat{s}|y)$ é a probabilidade de ocorrência de \hat{s} dado a observação $y, f_{Y|S}(y|\hat{s})$ é a p.d.f conjunta, e $P_S(\hat{s})$ é a probabilidade de ocorrência do símbolo \hat{s} pertencente ao alfabeto S. Exemplo: Considere o seguinte alfabeto: $s_0 = -b$ e $s_1 = b$ e que a probabilidade de ocorrências dos símbolos seja a mesma, isto é, $P_S(s_0) = P_S(s_1) = 0.5$. Neste caso binário, há duas hipóteses: $H_0 \to s_0$ é detectado e $H_1 \to s_1$ é detectado. Duas possíveis decisões: $D_0 \to s_0$ é escolhido como símbolo mais provável e $D_1 \to s_1$ é escolhido. Logo, podemos montar a seguinte expressão para decisão:

$$f_{Y|S}(y|s_0)P_S(s_0) \underset{D_1}{\overset{D_0}{\gtrless}} f_{Y|S}(y|s_1)P_S(s_1),$$

$$\frac{f_{Y|S}(y|s_0)}{f_{Y|S}(y|s_1)} \underset{D_1}{\overset{D_0}{\gtrless}} \frac{P_S(s_1)}{P_S(s_0)}$$
(1)

onde temos que

$$f_{Y|S}(y|s_0) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{|y+b|^2}{2\sigma^2}\right)$$
$$f_{Y|S}(y|s_1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{|y-b|^2}{2\sigma^2}\right),$$

substituindo esta expressão em (1) e aplicando o logaritmo natural, temos

$$\ln \left(\frac{f_{Y|S}(y|s_0)}{f_{Y|S}(y|s_1)} \right) \underset{D_1}{\overset{D_0}{\geqslant}} \ln \left(1 \right)$$
$$\frac{2yb}{\sigma^2} \underset{D_1}{\overset{D_0}{\geqslant}} \ln \left(\frac{P_S(s_1)}{P_S(s_0)} \right).$$

Questão: Considere o alfabeto de símbolos a serem transmitidos $S = \{s_0 = -3, s_1 = -1, s_2 = 1, s_3 = 3\}$, com as seguintes probabilidades *a priori*, $P_S(s_0) = 0.2, P_S(s_3) = 0.2, P_S(s_1) = 0.3, e$ $P_S(s_3) = 0.3$. Dada a observação $y = s_i + n$, para $i = \{0, 1, 2, 3\}$, $n \sim \mathcal{CN}(0, \sigma^2 = 0.25$, determine:

- i As regiões de decisões para o estimador MAP
- ii Qual símbolo será detectado se: y = -2?

Problema 3: Sabe-se que o detector de máxima verossimilhança (maximum likelihood - ML) é equivalente ao detector MAP quando as probabilidades de ocorrência dos símbolos de um alfabeto são equivalentes, ou seja, para um alfabeto com M possíveis escolhas temos $P_S(s_i) = 1/M$, onde $i = \{0, 1, 2, ..., M-1\}$. Considere o sinal recebido:

$$y = s_i + n$$
,

onde $n \sim \mathcal{CN}(0, \sigma^2)$ é o ruído gaussiano aditivo de média zero e variância σ^2 , s_i é o símbolo transmitido de uma constelação 4-QAM, isto é $S = \{s_0 = 1 + j, s_1 = -1 + j, s_2 = -1 - j, s_3 = 1 - j\}$. Implemente o detector ML supondo um alfabeto 4-QAM, e obtenha as curvas de taxa de erro de símbolos (SER) em função da SNR (*Signal Noise Ratio* - Relação Sinal Ruído), isto é \mathcal{E}_m/N_0 comparando com a taxa de erro teórica (usando a função \mathcal{Q} do MATLAB, por exemplo). Dados: A SNR deve variar de -20 dB a 10dB ao passo de 5dB. A SER deve ser obtida sob a média de pelo menos $5 \cdot 10^4$ realizações. Ou seja, para cada realização gera-se um sinal transmitido, ruído aditivo, sinal recebido, e a estimação via o ML implementado.

Problema 4: Considere o modulador QPSK desenvolvido em ambiente Simulink (.slx) e disponibilizado pelo professor. Observe que o sistema possui duas fontes independentes de pertubações:

- Um canal AWGN (Additive White Gaussian Noise) com uma dada relação de energia média de bit por densidade espectral de ruído.
- Um desvio de fase, que é modelado como sendo um valor constante $\varphi \in \mathbb{R}$. Esse valor é desconhecido para o demodulador digital.

- 1) Considere inicialmente um sistema de comunicação perfeito, i.e., com $\varphi=0$ e sem ruído (dê um *bypass* no bloco de ruído AWGN). Implemente o demodulador QPSK, isto é, construa os modelos lógicos do *down-coverter* e do detector ótimo para o esquema QPSK. A saída do demodulador digital deve ser o *stream* de bits detectado.
- 2) Insira agora ruído branco ao modelo Simulink, e obtenha a BER do sistema para o intervalo de 0 a 20dB.
- 3) Insira agora um desvio de fase de $\varphi=\pi/4$ na fase da portadora do modulador. Obtenha novamente a BER do sistema para esta condições.
- 4) Acrescente ao seu demodulador um modelo lógico do estimador que recupere a fase do sinal transmitido. Corrija o desvio de fase no demodulador. Obtenha novamente a BER do sistema para o intervalo de 0 a 20dB.
- 5) Plote em um mesmo gráficos as curvas do item 2), 3), e 4), em adição a probabilidade de erro teórica da modulação. Comente sobre o comportamento do sistema operando com e sem desvio de fase, e com e sem a recuperação de fase da portadora.

Problema 5: Para um sinal CPM (do inglês, *Continuous Phase Modulation*) com um índice de modulação dado por h = n/m, em que $n, m \in \mathbb{N}_+ \setminus \{0\}$, responda os seguintes itens:

- 1) Desenhe a treliça para uma transmissão binária com h=1/3 e com um pulso de frequência retangular com L=1 (full-response)
- 2) Desenhe a treliça para uma transmissão binária com h=1/2 e com um pulso de frequência retangular com L=2 (partial-response)
- 3) No item anterior, se fosse adotado um pulso de frequência retangular de resposta completa (L=1), qual seria nome do modulação correspondente a essa treliça? Qual é a principal característica que a torna distinta dos outros sinais de fase contínua?