Colles de mathématiques en PCSI 5

27 mars 2012

Programme

Révision du programme précédent. Groupes, anneaux, corps. Dénombrement.

Exercice nº 1

On se donne un ensemble fini E et n sous-ensembles $A_1,...,A_n \in \mathcal{P}(E), n \geqslant 1$. On va établir une expression de $\operatorname{Card}(A_1 \cup A_2 \cup ... \cup A_n)$.

- 1. Étudier les cas n = 2, 3, 4. Conjecturer la formule.
- **2.** Étant donnée une partie A de E, on définit sa fonction indicatrice : $\chi_A: E \to \{0,1\}$ par :

$$\chi_A \colon x \in E \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

Exprimer en fonction de χ_A et χ_B les indicatrices : $\chi_{A \cap B}$, $\chi_{A \cup B}$, χ_{A^c} . Justifier que $\operatorname{Card}(A) = \sum_{x \in E} \chi_A(x)$.

3. Conclure en considérant Card $((A_1 \cup ... \cup A_n)^c)$.

Exercice nº 2

Soit E un ensemble fini. Calculer les sommes suivantes en fonction de n = Card(E):

$$\sum_{X \subset E} \operatorname{Card}(X), \ \sum_{X,Y \subset E} \operatorname{Card}(X \cap Y), \ \sum_{X,Y \subset E} \operatorname{Card}(X \cup Y).$$

Exercice nº 3

Soient $p, q \in \mathbb{N}$ et $0 \le n \le p + q$. Montrer que :

$$\binom{p+q}{n} = \sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k}$$

Exercice nº 4

Soit E un ensemble fini. Montrer que E a autant de parties de cardinal pair que de parties de cardinal impair.

Exercice nº 5

Calculer

$$\sum_{k=0}^{n} k \binom{n}{k} \text{ et } \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}.$$

Exercice nº 6

Soient $n, p \in \mathbb{N}^*$, avec $n \ge p$.

- 1. Calculer $\sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{k}{p}$.
- 2. En déduire la formule d'inversion de Pascal :

Si
$$f: \mathbb{N} \to \mathbb{R}$$
, on définit $g: \mathbb{N} \to \mathbb{R}$ par : $\forall n \in \mathbb{N}, \ g(n) = \sum_{k=0}^{n} \binom{n}{k} f(k)$. Alors :

$$\forall n \in \mathbb{N}, \ f(n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} g(k).$$

Exercice nº 7

Soit n un entier non nul. Calculer:

$$\sum_{0 \leqslant 2p \leqslant n} \binom{n}{2p} \text{ et } \sum_{0 \leqslant 2p+1 \leqslant n} \binom{n}{2p+1};$$
$$\sum_{0 \leqslant 3p \leqslant n} \binom{n}{3p}.$$

Donner l'idée générale pour calculer, pour $p \leq n$ et $0 \leq q < p$, la somme :

$$\sum_{0 \leqslant k \leqslant n, \ k \equiv q[p]} \binom{n}{k}.$$

Exercice nº 8

On se propose de classifier les sous-groupes de $(\mathbb{R},+)$. Le résultat est le suivant :

Soit G un tel sous-groupe. Alors on a l'alternative :

- Soit G est discret de la forme $a\mathbb{Z}$, a > 0 (i.e. $G = \{an, n \in \mathbb{Z}\}$).
- Soit G est dense dans \mathbb{R} .

On se donne donc G un sous-groupe additif de \mathbb{R} et on pose $a = \inf(G \cap \mathbb{R}_+^*)$. On suppose d'abord que a > 0. On montre alors qu'on est dans le cas discret.

- **1.** Prouver que $a \in G$. (On pourra prendre $(x_n) \in (G \cap \mathbb{R}_+^*)^{\mathbb{N}}$ une suite telle que $(x_n) \to a$.)
- **2.** En déduire $a\mathbb{Z} \subset G$.
- **3.** Soit $x \in G$. En effectuant la pseudo-division euclidienne de x par a, prouver que x est un « multiple » de a. Conclure.

Maintentant on s'intéresse au cas a = 0.

- 4. En utilisant à nouveau une suite minimisante, prouver que G contient des éléments non nuls de valeur abolue aussi petite que l'on veut.
- **5.** Conclure.

Exercice nº 9

Soit G un groupe, et $H \subset G$ une partie finie de G, non vide et stable par la loi de G, c'est à dire : $\forall x, y \in H$, $xy \in H$.

Prouver que H est un sous-groupe de G.

Exercice nº 10

Soit G un groupe. On note :

$$\mathcal{Z}(G) = \{a \in G : \forall g \in G, ga = ag\}, \text{et pour } X \subset G, \quad \mathcal{C}(X) = \{g \in G : \forall x \in X, gx = xg\}.$$

Prouver que $\mathcal{Z}(G)$ et $\mathcal{C}(X)$ sont des sous-groupes de G.

Exercice nº 11

Soit G un groupe fini, tel que $\forall x \in G, x^2 = e$.

- 1. Montrer que G est commutatif. (considérer $(xy)^2$)
- **2.** Soit H un sous-groupe de G et $x \notin H$. Prouver que si K est le sous-groupe engendré par $H \cup \{x\}$, alors $\operatorname{Card}(K) = 2\operatorname{Card}(H)$.
- **3.** En déduire que le cardinal de G est une puissance de 2.

Exercice nº 12

Déterminer tous les sous-groupes finis de (\mathbb{C}^*, \times) .

Exercice nº 13

Soit f un morphisme de corps de \mathbb{R} (pour sa structure usuelle).

- 1. Déterminer $f|_{\mathbb{Q}}$.
- 2. Si on suppose f continue, déterminer f.
- 3. Montrer que cette hypothèse est superflue.