CYI101 Common CHEMISTRY(Organic)

Stereochemistry: Axial chirality

Axial Chirality: Chirality w/o chiral centre

Axial chirality refers to stereoisomerism resulting from the non-planar arrangement of four groups in pairs about a chiral axis.

Symmetrical regular tetrahedron molecule

→ Elongated tetrahedron molecule Desymmetrised tetrahedron of type Caabb

Condition for chirality: two ligands at each end of the axis should be different (a ≠ b).

The axis along which the tetrahedron is elongated is called *chiral axis* or the *stereoaxis*. The molecular chirality of this type is termed as *axial chirality*.

Allenes: Geometry

The central carbon of allene forms *two sigma bonds* and *two \pi-bonds*.

The central carbon is *sp-hybridized* and the two terminal carbons are *sp²-hybridized*.

The *two* π *-bonds* attached to the central carbon are perpendicular to each other.

The geometry of the π -bonds causes the groups attached to the end carbon atoms to lie in perpendicular plane.

Chiral Allene (abC=C=Cab): Dissymmetric.

$$ho_{CH_3}$$
 ho_{CH_3} ho

Chiral Allene (abC=C=Cde): Asymmetric.

$$\begin{array}{c} H_3C \\ H \end{array} = CH_3 \begin{array}{c} H \\ COOH \end{array} = CH_3 \begin{array}{c} H \\ COOH \end{array}$$
 Penta-2,3-dienoic acid [no σ , i, S_n (n>1) and C_n (n>1)]

Allenes: Geometry with cumulated bonds

Note that allenes with *odd numbers* of cumulated bonds are *not chiral*; only those with *even numbers* are.

Allene (abC=(C)_n=Cab): when n= even Exhibit cis-trans isomerism, not enantiomerism

Allene (abC=(C)_n=Cab): when n= odd Exist as a pair of **enentiomers** not exhibit **cis-trans** isomerism.

Chirality: Alkylidenecycloalkanes, Spiranes, Adamantanes

4-Methylcyclohexylidene acetic acid (a chiral alkylidenecycloalkane)

2,6-Dimethylspiro[3,3]heptane (a chiral spirane)

4-Methylcyclohexanone oxime (a chiral oxime)

Adamantane-2,6-dicarboxylic acid (a chiral adamantane)

Allenes

Substituted biphenyls

1,7-dioxaspiro[5.5]undecane

Axial Chirality: Substituted Biphenyl system

Ortho-substituted Biphenyl system: Stability of Rotamers

Biphenyl Systems: Atropisomerism

The biphenyls with large substituents at the ortho positions on either side of the central σ bond experience restricted rotation along this bond due to steric hindrance.

The stereoisomerism arising out due to the restricted roation around a single bond is known as *atropisomerism* and the isomers are called *atropisomers*.

6,6'-dinitrodiphenyl-2,2'-dicarboxylic acid (optically active)

Terphenyl derivative (optically inactive, due to the presence of a sigma-plane)

Assigning R_a/S_a - Configuration: Chiral Allene

Front group Precedes the rear group (Group at back)

Assigning R_a/S_a- Configuration: Biphenyl system

R_a/S_a - Nomenclature: Biphenyl system

 (S_a) -6,6'-dinitrobiphenyl-2,2'-dicarboxylic acid

R_a/S_a- Nomenclature: Biphenyl system

 (R_a) -methyl 2'-methoxy-6-nitro-[1,1'-biphenyl]-2-carboxylate

 (R_a) -[1,1'-binaphthalene]-2,2'-diol

Label the following pair of structures

Rule: Exchange among any three groups at a time in one direction keeping the fourth group fixed.

