Korektnosť prvorádových tabiel. Explicitné definície. Unifikácia

10. prednáška Logika pre informatikov a Úvod do matematickej logiky

Ján Kľuka, Ján Mazák, Jozef Šiška

Letný semester 2023/2024

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Obsah 10. prednášky

Korektnosť tablového kalkulu pre logiku prvého rádu

Vlastnosti ohodnotení a substitúcie

Korektnosť tabiel

Ďalšie korektné pravidlá

Explicitné definície

Unifikácia termov

Korektnosť tablového kalkulu pre logiku prvého rádu

Korektnosť tablového kalkulu

pre logiku prvého rádu

Vlastnosti ohodnotení a substitúcie

Voľné premenné a hodnota termu, splnenie formuly, teórie

Tyrdenie 13.1

Nech \mathcal{M} je štruktúra pre \mathcal{L} , nech e_1 a e_2 sú ohodnotenia, nech t je term. A je formula a S je množina formúl jazyka \mathcal{L} .

- Ak sa ohodnotenia e_1 a e_2 zhodujú na (voľných) premenných termu t (teda $e_1(x) = e_2(x)$ pre každú $x \in \text{free}(t)$), $tak\ t^{\mathcal{M}}[e_1] = t^{\mathcal{M}}[e_2]$.
- Ak sa ohodnotenia e_1 a e_2 zhodujú na voľných premenných formuly X, tak $\mathcal{M} \models A[e_1]$ vtt $\mathcal{M} \models A[e_2]$.
- Ak sa ohodnotenia e_1 a e_2 zhodujú na voľných premenných všetkých formúl z S, tak $\mathcal{M} \models S[e_1]$ vtt $\mathcal{M} \models S[e_2]$.

Substitúcia a hodnota termu

Ako súvisí hodnota termu po substitúcii s hodnotou termu, do ktorého sa substituuje?

```
Príklad 13.2
```

```
Zoberme štruktúru \mathcal{M} = (D, i), kde
                       D = \{1, 2, 3, 4, 5\}.
                   i(c) = 3, 	 i(d) = 4
                   i(f) = \{1 \mapsto 2, 2 \mapsto 5, 3 \mapsto 1, 4 \mapsto 1, 5 \mapsto 5\}
Nech e = \{x \mapsto 3, y \mapsto 4\}.
        ((\mathbf{f}(\mathbf{x}))\{\mathbf{x} \mapsto \mathbf{f}(\mathbf{y})\})^{\mathcal{M}}[e] = (\mathbf{f}(\mathbf{f}(\mathbf{y})))^{\mathcal{M}}[e]
                                                       = i(f)(i(f)(4)) = i(f)(1) = 2
                                                       = (f(x))^{\mathcal{M}} [e(x/1)]
                                                       = (f(\mathbf{x}))^{\mathcal{M}}[e(\mathbf{x}/(f(\mathbf{y}))^{\mathcal{M}}[e])]
```

Substitúcia vs. hodnota termu a splnenie formuly

Hodnota termu $t\sigma$ /splnenie formuly $A\sigma$ po substitúcii $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ pri ohodnotení e sa rovná hodnote termu t/splneniu formuly A pri ohodnotení e'. ktoré

- každej substituovanej premennej x_i
 priradí hodnotu za ňu substituovaného termu t_i pri ohodnotení e,
- ostatným premenným priraďuje rovnaké hodnoty ako e.

Tvrdenie 13.3

Nech $\mathcal M$ je štruktúra pre jazyk $\mathcal L$ e je ohodnotenie ind. premenných a nech $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ je substitúcia.

- Nech t je term jazyka \mathcal{L} . Potom $(t\sigma)^{\mathcal{M}}[e] = t^{\mathcal{M}}[e(x_1/t_1^{\mathcal{M}}[e])\cdots(x_n/t_n^{\mathcal{M}}[e])].$
- Nech A je formula jazyka \mathcal{L} a σ je aplikovateľná na A. Potom $\mathcal{M} \models A\sigma[e]$ vtt $\mathcal{M} \models A[e(x_1/t_1^{\mathcal{M}}[e])\cdots(x_n/t_n^{\mathcal{M}}[e])].$

Korektnosť tablového kalkulu pre logiku prvého rádu

Korektnosť tabiel

Korektnosť tablových pravidiel

Tyrdenie 13.4

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech x a y sú premenné, nech s, t sú termy, nech α , β , γ , δ sú ozn. formuly príslušného typu, A je ozn. formula.

- Ak $\alpha \in S^+$, tak S^+ je splniteľná vtt $S^+ \cup \{\alpha_1, \alpha_2\}$ je splniteľná.
- Ak $\beta \in S^+$, tak S^+ je splniteľná vtt
 - $S^+ \cup \{\beta_1\}$ je splniteľná <mark>alebo</mark> $S^+ \cup \{\beta_2\}$ je splniteľná.
- Ak γ(x) ∈ S⁺ a t je term substituovateľný za x v γ₁(x), tak S⁺ je splniteľná vtt S⁺ ∪ {γ₁(t)} je splniteľná.
 Ak δ(x) ∈ S⁺, v je substituovateľná za x v δ₁(x)
- a y nemá voľný výskyt v S^+ , tak S^+ ie splniteľná vtt $S^+ \cup \{\delta_1(v)\}$ ie splniteľná.
- S^+ je splniteľná vtt $S^+ \cup \{ \mathbf{T} t \doteq t \}$ je splniteľná.
- Ak $\{\mathbf{T} s \doteq t, A^+\{x \mapsto s\}\} \subseteq S^+$, s a t sú substituovateľné za x v A^+ , tak S^+ je splniteľná vtt $S^+ \cup \{A^+\{x \mapsto t\}\}$ je splniteľná.

Korektnosť tablových pravidiel – dôkaz

Dôkaz (čiastočný, pre pravidlo δ v smere \Rightarrow).

Zoberme ľubovoľné S^+ , x, y a $\delta(x)$ spĺňajúce predpoklady tvrdenia.

Nech S^+ je splniteľná,

teda existuje štruktúra $\mathcal{M}=(D,i)$ a ohodnotenie e také, že $\mathcal{M} \models S^+[e]$. Preto aj $\mathcal{M} \models \delta(x)[e]$.

Podľa tvaru $\delta(x)$ môžu nastať nasledujúce dva prípady:

• Ak $\delta(x) = \mathbf{T} \, \exists x \, A$ pre nejakú formulu A, tak podľa def. splnenia ozn. formuly $\mathcal{M} \models \exists x \, A[e]$ a podľa def. splnenia formuly

máme nejakého svedka $m \in D$ takého, že $\mathcal{M} \models A[e(x/m)]$. Podľa tvr. 13.3 potom $\mathcal{M} \models A\{x \mapsto y\}[e(x/m)(y/m)]$.

Prem. x nie je voľná v $A\{x \mapsto y\}$, preto podľa tvr. 13.1 $\mathcal{M} \models A\{x \mapsto y\}[e(y/m)]$,

teda $\mathcal{M} \models \mathbf{T} A\{x \mapsto y\}[e(y/m)],$ teda $\mathcal{M} \models \delta_1(y)[e(y/m)].$

Korektnosť tablových pravidiel – dôkaz

Dôkaz (čiastočný, pre pravidlo δ v smere \Rightarrow , pokračovanie).

• Ak $\delta(x) = \mathbf{F} \, \forall x \, A$ pre nejakú formulu A, tak podľa def. splnenia ozn. formuly $\mathcal{M} \not\models \forall x \, A[e]$ a podľa def. splnenia formuly neplatí, že $\mathcal{M} \models A[e(x/m)]$ pre každé $m \in D$.

Preto máme nejaký kontrapríklad $m \in D$ taký, že $\mathcal{M} \not\models A[e(x/m)]$.

Podľa tvr. 13.3 potom $\mathcal{M} \not\models A\{x \mapsto y\}[e(x/m)(y/m)].$

Prem. x nie je voľná v $A\{x \mapsto y\}$, preto podľa tvr. 13.1 $\mathcal{M} \not\models A\{x \mapsto y\}[e(y/m)]$,

teda $\mathcal{M} \models \mathbf{F} A\{x \mapsto y\}[e(y/m)]$, čiže $\mathcal{M} \models \delta_1(y)[e(y/m)]$.

Navyše y nie je voľná v žiadnej formule z S^+ , preto $\mathcal{M} \models S^+[e(y/m)]$. Teda $\mathcal{M} \models (S^+ \cup \{\delta, (y)\})[e(y/m)]$.

Preto je $S^+ \cup \{\delta_1(y)\}$ splniteľná.

Korektnosť – pravdivosť priameho rozšírenia tabla

Vetva sa správa ako konjunkcia svojich označených formúl — všetky musia byť naraz splnené.

Tablo sa správa ako disjunkcia vetiev — niektorá musí byť splnená.

Definícia 13.5

Nech S^+ je množina označených formúl v jazyku $\mathcal L$, nech $\mathcal T$ je tablo pre S^+ , nech π je vetva tabla $\mathcal T$. Nech $\mathcal M$ je štruktúra pre $\mathcal L$ a e je ohodnotenie indivíduových premenných. Potom:

- štruktúra $\mathcal M$ spĺňa vetvu π pri e vtt $\mathcal M$ spĺňa všetky označené formuly vyskytujúce sa na vetve π pri e.
- štruktúra $\mathcal M$ spĺňa tablo $\mathcal T$ pri e vtt $\mathcal M$ spĺňa niektorú vetvu v table $\mathcal T$ pri e.

Pomocné tvrdenia pre korektnosť prvorádových tabiel

Lema 13.6 (K1)

Nech S^+ je množina ozn. formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ . Nech \mathcal{M} je štruktúra pre \mathcal{L} a e je ohodnotenie ind. premenných. Ak \mathcal{T} a S^+ sú splnené štruktúrou \mathcal{M} pri e.

tak aj každé priame rozšírenie $\mathcal T$ a S^+ sú splnené štruktúrou $\mathcal M$ pri nejakom ohodnotení e'.

Definícia 13.7

Nech \mathcal{T} je tablo pre nejakú množinu označených formúl. Tablo \mathcal{T} je *splniteľné* vtt existuje štruktúra, ktorá spĺňa \mathcal{T} pri nejakom ohodnotení indivíduových premenných.

Lema 13.8 (K2)

Nech S^+ je množina ozn. formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ . Ak S^+ je splniteľná, tak aj \mathcal{T} je splniteľné.

Korektnosť prvorádových tabiel

Otvorené a uzavreté vetvy a tablá sú definované rovnako ako pri tablách pre výrokovú logiku.

Veta 13.9 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl.

Ak existuje uzavreté tablo \mathcal{T} pre S^+ , tak je množina S^+ nesplniteľná.

Dôkaz (sporom).

pretože S^+ ie splniteľná.

Nech S^+ je množina označených formúl.

Nech existuje uzavreté tablo $\mathcal T$ pre S^+ , ale S^+ je splniteľná. Pretože $\mathcal T$ je uzavreté, pre každú jeho vetva π existuje formula X taká, že $\mathbf T X$ a $\mathbf F X$ sa vyskytuje na π , a teda π je nesplniteľná. Preto $\mathcal T$ je nesplniteľné. To je v spore s lemou K2, podľa ktorej je $\mathcal T$ splniteľné,

pre logiku prvého rádu

Korektnosť tablového kalkulu

Ďalšie korektné pravidlá

Pohodlnejšie verzie pravidiel γ a δ

Tyrdenie 13.10

Nasledujúce pravidlá sú korektné:

$$\gamma^* \quad \frac{\mathbf{T} \, \forall x_1 \dots \forall x_n \, A}{\mathbf{T} \, A \{ x_1 \mapsto t_1, \dots, x_n \mapsto t_n \}} \quad \frac{\mathbf{F} \, \exists x_1 \dots \exists x_n \, A}{\mathbf{F} \, A \{ x_1 \mapsto t_1, \dots, x_n \mapsto t_n \}}$$

$$\delta^* \quad \frac{\mathbf{F} \, \forall x_1 \dots \forall x_n \, A}{\mathbf{F} \, A \{ x_1 \mapsto y_1, \dots, x_n \mapsto y_n \}} \quad \frac{\mathbf{T} \, \exists x_1 \dots \exists x_n \, A}{\mathbf{T} \, A \{ x_1 \mapsto y_1, \dots, x_n \mapsto y_n \}}$$

kde A je formula, x_1, \ldots, x_n sú premenné, t_1, \ldots, t_n sú termy, y_1, \ldots, y_n sú navzájom rôzne premenné, ktoré sa nevyskytujú voľné vo vetve, v liste ktorej je pravidlo použité, pričom pre každé $i \in \{1, \ldots, n\}$ je term t_i substituovateľný za x_i v A a premenná y_i je substituovateľná za x_i v A.

Pravidlá pre ekvivalenciu

Tyrdenie 13.11

Nasledujúce pravidlá sú korektné:

ESTT
$$\frac{\mathbf{T}(A_1 \leftrightarrow A_2)}{\mathbf{T}A_{3-i}}$$
 $\mathbf{T}(A_1 \leftrightarrow A_2)$ $\mathbf{T}(A_1 \leftrightarrow A_2)$ $\mathbf{T}(A_1 \leftrightarrow A_2)$ $\mathbf{T}(A_2 \leftrightarrow A_2)$

kde A_1 a A_2 sú formuly, $i \in \{1, 2\}$.

Všimnite si: 3 - 1 = 2 a 3 - 2 = 1.

Explicitné definície

Pojmy

V mnohých doménach sú zaujímavé komplikovanejšie kombinácie základných vlastností alebo vzťahov:

- x má spoločného rodiča s y, ale x je rôzne od y $\exists z (\operatorname{rodič}(z, x) \land \operatorname{rodič}(z, y)) \land \neg x \doteq y$
- x je živočích, ktorý konzumuje iba rastliny
 živočích(x) ∧ ∀y(konzumuje(x, y) → rastlina(y))

Často sa vyskytujúce kombinácie vzťahov a vlastností je výhodné:

- pomenovať
- a jasne vyjadriť význam nového mena pomocou doteraz známych vlastností a vzťahov,

teda zadefinovať pojem.

Definície pojmov

Definícia je tvrdenie, ktoré vyjadruje význam pojmu.

```
Explicitná definícia (najčastejší druh definície) je ekvivalencia medzi pojmom a opisom jeho významu, v ktorom sa definovaný pojem sám nevyskytuje.
```

Príklad 14.1

• Objekt x je súrodencom objektu y práve vtedy, keď x nie je y a x má spoločného rodiča s y. $\forall x \, \forall y \big(\text{súrodenec}(x,y) \leftrightarrow \big(x \neq y \land \exists z (\text{rodič}(z,x) \land \text{rodič}(z,y)) \big) \big)$

 Objekt x je bylinožravec vtedy a len vtedy, keď x je živočích, ktorý konzumuje iba rastliny.
 ∀x(bylinožravec(x) ↔ (živočích(x) ∧ ∀y(konzumuje(x, y) → rastlina(y))))

Explicitná def. a nutná a postačujúca podmienka

Všimnite si:

Definícia pojmu *súrodenec* vyjadruje **nutnú aj postačujúcu** podmienku toho, aby medzi dvoma objektmi bol súrodenecký vzťah.

- → Pre každú dvojicu objektov x a y, ktoré označíme za súrodencov, musí existovať ich spoločný rodič a musia byť navzájom rôzne.
- ← Každé dva navzájom rôzne objekty x a y, ktoré majú spoločného rodiča, musia byť súrodenci.

Podobne pre iné definície.

Použitie pojmov

Využitím definovaného pojmu

- skracujeme tvrdenia: Škrečky sú bylinožravce.
- $\forall x (\check{s}kre\check{c}ok(x) \rightarrow bylino\check{z}ravec(x))$
- jednoduchšie definujeme ďalšie pojmy:

Objekt x je sestrou objektu y práve vtedy,

keď x je žena, ktorá je súrodencom y.

 $\forall x\,\forall y \big(\mathtt{sestra}(x,y) \leftrightarrow (\check{\mathtt{zena}}(x) \land \mathtt{s\acute{u}rodenec}(x,y)) \big)$

 potenciálne skracujeme dôkazy (napr. nájdeme spor vyjadrený novým pojmom a nemusíme analyzovať celý podstrom zodpovedajúci rozvinutiu pojmu cez jeho definíciu)

Vyskúšajte si 14.1

Zadefinujte pojem *teta* (chápaný ako vzťah dvoch ľudí) neformálne (v slovenčine) aj formálne (formulou logiky prvého rádu).

Podmienené definície

Niekedy má pojem význam iba pre niektoré druhy objektov, alebo má ten istý pojem rôzne významy pre rôzne druhy objektov.

Vtedy môžeme definície podmieniť druhmi:

• Študent absolvuje predmet vtt je z neho hodnotený inou známkou ako Fx. $\forall x \, \forall y \big(\texttt{Študent}(x) \land \texttt{predmet}(y) \rightarrow \\ \big(\texttt{absolvuje}(x,y) \leftrightarrow \\ \exists z \big(\texttt{hodnoten} \acute{y}(x,y) \doteq z \land \texttt{známka}(z) \land z \not = \texttt{Fx} \big) \big) \big)$

Explicitná definícia presne

Definícia 14.2

Nech $\mathcal L$ a $\mathcal L_1$ sú jazyky logiky prvého rádu.

Jazyk \mathcal{L}_1 je rozšírením jazyka \mathcal{L} vtt $\mathcal{V}_{\mathcal{L}_1} = \mathcal{V}_{\mathcal{L}}$, $\mathcal{C}_{\mathcal{L}} \subseteq \mathcal{C}_{\mathcal{L}_1}$, $\mathcal{P}_{\mathcal{L}} \subseteq \mathcal{P}_{\mathcal{L}_4}$, $\mathcal{F}_{\mathcal{L}} \subseteq \mathcal{F}_{\mathcal{L}_4}$.

Definícia 14.3

Nech $\mathcal L$ je jazyk logiky prvého rádu, T je teória v jazyku $\mathcal L$, a $\mathcal L_P$ je rozšírenie jazyka o predikátový symbol P je s aritou n, ktorý sa nevyskytuje v $\mathcal L$. Teóriu v jazyku $\mathcal L_P$

$$T \cup \{ \forall x_1 \dots \forall x_n (P(x_1, \dots, x_n) \leftrightarrow A) \},\$$

kde A je formula, v ktorej sa nevyskytuje P, nazývame rozšírením teórie T explicitnou definíciou $\forall x_1 \dots \forall x_n (P(x_1, \dots, x_n) \leftrightarrow A)$ predikátového symbolu P.

Jednoznačnosť interpretácie definovaného predikátu

Význam explicitne definovaného predikátu je jednoznačne určený.

Príklad 14.4

Majme nejakú teóriu T v jazyku \mathcal{L} s $\mathcal{P}_{\mathcal{L}} = \{ \text{rodič}^2 \}$.

Rozšírme T o $X = \forall x \, \forall y \big(\text{súrodenec}(x, y) \leftrightarrow (x \neq y \land \exists z (\text{rodič}(z, x) \land \text{rodič}(z, y)) \big) \big).$

$$\mathsf{Nech}\,\mathcal{M} = (\{\mathring{\pmb{\bullet}}_\mathsf{I}, \mathring{\pmb{\bullet}}_\mathsf{J}, \mathring{\pmb{\bullet}}_\mathsf{K}, \mathring{\pmb{\bullet}}_\mathsf{L}, \mathring{\pmb{\bullet}}_\mathsf{M}, \mathring{\pmb{\bullet}}_\mathsf{N}, \mathring{\pmb{\bullet}}_\mathsf{O}\}, i) \text{ je model } T, \text{ kde}$$

 $i(\text{rodič}) = \{(\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||}), (\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||}), (\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||}), (\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||}), (\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||}), (\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||}), (\mathbf{\dot{\dagger}}_{||}, \mathbf{\dot{\dagger}}_{||})\}$

Potom sa
$$\mathcal{M}$$
 dá jednoznačne rozšíriť na model $T \cup \{X\}$: $\mathcal{M}_1 = (\{\mathring{\bullet}_{\mathsf{I}}, \overset{\bullet}{\bullet}_{\mathsf{J}}, \mathring{\bullet}_{\mathsf{K}}, \mathring{\bullet}_{\mathsf{L}}, \mathring{\bullet}_{\mathsf{M}}, \mathring{\bullet}_{\mathsf{N}}, \mathring{\bullet}_{\mathsf{O}}\}, i_1), i_1(\mathrm{rodi}\check{c}) = i(\mathrm{rodi}\check{c}),$ $i(\mathrm{súrodenec}) =$

Jednoznačnosť interpretácie definovaného predikátu

Význam explicitne definovaného predikátu je jednoznačne určený.

Príklad 14.4

Maime neiakú teóriu T v jazyku \mathcal{L} s $\mathcal{P}_{\mathcal{L}} = \{ \text{rodic}^2 \}$.

Rozšírme T o $X = \forall x \forall y (\text{súrodenec}(x, y) \leftrightarrow$ $(x \neq y \land \exists z (\text{rodič}(z, x) \land \text{rodič}(z, y)))).$

$$\operatorname{Nech} \mathcal{M} = (\{ \mathring{\bullet}_{\mathsf{I}}, \overset{\bullet}{\star}_{\mathsf{J}}, \mathring{\bullet}_{\mathsf{K}}, \mathring{\bullet}_{\mathsf{L}}, \mathring{\bullet}_{\mathsf{M}}, \mathring{\bullet}_{\mathsf{N}}, \mathring{\bullet}_{\mathsf{O}} \}, i) \text{ je model } T, \text{ kde}$$

 $i(\text{rodič}) = \{(\mathring{\mathbf{A}}_{1}, \mathring{\mathbf{A}}_{M}), (\mathring{\mathbf{A}}_{1}, \mathring{\mathbf{A}}_{M}), (\mathring{\mathbf{A}}_{1}, \mathring{\mathbf{A}}_{N}), (\mathring{\mathbf{A}}_{0}, \mathring{\mathbf{A}}_{N}), (\mathring{\mathbf{A}}_{M}, \mathring{\mathbf{A}}_{K}), (\mathring{\mathbf{A}}_{M}, \mathring{\mathbf{A}}_{K}), (\mathring{\mathbf{A}}_{M}, \mathring{\mathbf{A}}_{K})\}$ Potom sa \mathcal{M} dá jednoznačne rozšíriť na model $T \cup \{X\}$:

$$\mathcal{M}_1 = (\{\mathbf{\mathring{q}}_1, \mathbf{\mathring{g}}_J, \mathbf{\mathring{q}}_K, \mathbf{\mathring{q}}_L, \mathbf{\mathring{q}}_M, \mathbf{\mathring{q}}_N, \mathbf{\mathring{q}}_O\}, i_1), i_1(\text{rodi}\check{c}) = i(\text{rodi}\check{c}),$$

$$\mathcal{M}_1 = (\{\mathbf{\hat{q}}_1, \mathbf{\mathring{s}}_J, \mathbf{\mathring{q}}_K, \mathbf{\mathring{q}}_L, \mathbf{\mathring{q}}_M, \mathbf{\mathring{q}}_N, \mathbf{\mathring{q}}_O\}, i_1), i_1(\text{rodi}\check{c}) = i(\text{rodi}\check{c}),$$

$$i(\text{súrodenec}) = \{(\mathbf{\mathring{q}}_M, \mathbf{\mathring{q}}_N), (\mathbf{\mathring{q}}_N, \mathbf{\mathring{q}}_M), (\mathbf{\mathring{q}}_K, \mathbf{\mathring{s}}_J), (\mathbf{\mathring{s}}_J, \mathbf{\mathring{q}}_K)\}$$

Definícia ako dopyt

Explicitne definovaný predikát sa správa ako dopyt alebo pohľad nad ostatnými predikátmi.

rodič	CREATE VIEW súrodenec AS SELECT r1.d AS d1, r2.d AS d2 FROM rodič AS r1 JOIN rodič AS r2 ON r1.r = r2.r WHERE r1.d <> r2.d	súrodenec	
r d		d1	d2
i i i		∔ _M † _N	† _N † _M † _K
o in	$\forall x \forall y$ $(surodenec(x, y) \leftrightarrow (x \neq y \land)$	∳ K ∜ J	

Jednoznačnosť definičného rozšírenia

Definícia 14.6

Nech \mathcal{L}_2 je rozšírenie jazyka \mathcal{L}_1 . Nech $\mathcal{M}_1=(D_1,i_1)$ je štruktúra pre \mathcal{L}_1 a $\mathcal{M}_2=(D_2,i_2)$ je štruktúra pre \mathcal{L}_2 .

Potom \mathcal{M}_2 je rozšírením (expanziou) \mathcal{M}_1 vtt $D_2 = D_1$ a $i_2(s) = i_1(s)$ pre každý mimologický symbol s jazyka \mathcal{L}_1 .

Tvrdenie 14.7

Nech

- T je teória v jazyku \mathcal{L} .
- 1 je teoria v jazyku z
- Potom
- pre každý model teórie T existuje práve jedno jeho rozšírenie, ktoré je modelom teórie T',
 - ullet každý model teórie T' je rozšírením práve jedného modelu teórie T.

• T' je rozšírenie T explicitnou definíciou predikátového symbolu.

Konzervatívnosť definičného rozšírenia

Konzervatívnosť spočíva v tom, že pridávaním nepokazíme význam existujúcich vecí.

Tvrdenie 14.8

Nech T je teória v jazyku $\mathcal L$ a T' je rozšírenie T explicitnou definíciou nejakého predikátového symbolu.

Nech X je uzavretá formula jazyka \mathcal{L} .

Potom $T \vDash X \text{ vtt } T' \vDash X$.

Kontextová definícia funkčného symbolu

Nech A(x,y) je formula s voľnými premennými x,y. Táto formula popisuje akýsi vzťah medzi x a y (a mohli by sme pridať predikát, ktorým tento vzťah pomenujeme). Ak tento vzťah je funkcia, t. j.

$$T \vdash \forall x \exists y (A(x, y) \land \forall y_2 (A(x, y_2) \rightarrow y_2 \doteq y)),$$

môžeme jazyk rozšíriť o nový funkčný symbol f^1 a teóriu T o kontextovú definíciu funkcie f:

$$\forall x \, \forall y \big(f(x) \doteq y \leftrightarrow A(x,y) \big)$$

Príklady:

- Do jazyka teórie grúp pridáme unárny funkčný symbol ⁻¹ označujúci inverzný prvok (v grupe existuje práve jeden).
- Do teórie popisujúcej rodinné vzťahy pridáme funkčný symbol na označenie matky (z teórie však musí vyplývať, že matka je len iedna).

Kontextová definícia indivíduovej konštanty

Nech A(y) je formula s voľnou premennou y. Táto formula popisuje akúsi vlastnosť prvku domény (a mohli by sme pridať predikát, ktorým túto vlastnosť pomenujeme). Ak je takýto prvok jediný, t. j.

$$T \vdash \exists y (A(y) \land \forall y_2 (A(y_2) \rightarrow y_2 \doteq y)),$$

môžeme jazyk rozšíriť o novú indivíduovú konštantu a a teóriu T o kontextovú definíciu konštanty a

$$\forall x \big(a \doteq x \leftrightarrow A(x) \big)$$

Napr. pre jazyk popisujúci (matematické) polia pridáme symboly 0 a 1; do jazyka teórie množín pridáme konštantu pre prázdnu množinu.

Pridávanie mimologických symbolov

Rozširovanie existujúceho jazyka (resp. teórie) o nové predikáty, konštanty a funkčné symboly explicitnými/kontextovými definíciami nezvyšuje vyjadrovaciu silu jazyka:

- nové symboly možno vnímať ako pohodlné skratky,
- nevieme však dokázať nič viac, ako bez nich.

Toto zachytáva tvrdenie 14.8; podobné tvrdenia možno sformulovať aj pre pridané konštanty a funkčné symboly.

Niekedy môže byť výhodnejšie ako definičné axiómy funkcií a konštánt použiť:

$$\forall x \, A(x, f(x))$$
$$A(a)$$

Dokazovanie s explicitnými definíciami a rovnosťou

Využime nové pravidlá na dôkaz vyplývania z teórie s definíciou:

```
Príklad 14.9
```

Dokážme tablom, že $T \vDash X$ pre

Unifikácia termov

Dosádzanie termov za premenné

Pri kvantifikovaných formulách s funkčnými symbolmi môže byť ťažké povedať, aké termy dosádzať za všeobecne kvantifikované premenné.

Čo možno usúdiť z nasledujúcich dvoch formúl?

$$\forall y \quad P(\frac{f(y)}{y}, \frac{y}{y})$$
$$\forall x(\neg P(\frac{x}{y}, \frac{d}{y}) \lor R(\frac{x}{y}))$$

Ak by sme vhodným dosadením termov dosiahli totožnosť $\mathbf{f}(y)$ s \mathbf{x} a \mathbf{y} s \mathbf{d} , možno usúdiť $\mathbf{R}(\mathbf{x})$.

Dosádzanie termov za premenné

$$\forall y \ P(f(y), y)$$
$$\forall x (\neg P(x, d) \lor R(x))$$

Dosadenie popisujeme pomocou substitúcie. V našom prípade zjavne za y musíme substituovať d a za x...

Dosádzanie termov za premenné

$$\forall y \ P(f(y), y)$$
$$\forall x (\neg P(x, d) \lor R(x))$$

Dosadenie popisujeme pomocou substitúcie. V našom prípade zjavne za y musíme substituovať d a za x...

$$\sigma = \{ \mathbf{x} \mapsto \mathbf{f}(\mathbf{d}), \mathbf{y} \mapsto \mathbf{d} \}$$

Po substitúcii σ majú komplementárne literály rovnaké argumenty predikátu (preto σ nazývame *unifikátor*):

$$P(\mathbf{f}(y), y)\sigma = P(\mathbf{f}(d), d)$$
$$\neg P(\mathbf{x}, d)\sigma = \neg P(\mathbf{f}(d), d)$$

Jedným z dôsledkov uvedených dvoch formúl je teda R(f(d)). (Aké iné dôsledky z uvedených formúl vyplývajú?)

Definícia 15.1

Nech A, B sú postupnosti symbolov, σ je substitúcia.

Substitúcia σ je unifikátorom A a B vtt $A\sigma = B\sigma$.

- $A_1 = R(filantrop, y), B_1 = R(x, d),$
 - $\sigma_1 = \{x \mapsto \text{filantrop}, y \mapsto d\}$
- $A_2 = R(nk(y), y), B_2 = R(x, d),$

Definícia 15.1

Nech A, B sú postupnosti symbolov, σ je substitúcia.

Substitúcia σ je **unifikátorom** A a B vtt $A\sigma = B\sigma$.

- $A_1 = R(filantrop, y), B_1 = R(x, d),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto d\}$
- $A_2 = R(nk(y), y), B_2 = R(x, d),$
- $A_2 = R(nk(y), y), B_2 = R(x, d),$ $\sigma_2 = \{x \mapsto nk(d), y \mapsto d\}$
- $A_3 = R(nk(y), y), B_3 = R(e, x),$

Definícia 15.1

Nech A, B sú postupnosti symbolov, σ je substitúcia.

Substitúcia σ je **unifikátorom** A a B vtt $A\sigma = B\sigma$.

- $A_1 = R(filantrop, y), B_1 = R(x, d),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto d\}$
- $A_2 = R(nk(y), y), B_2 = R(x, d),$
- $\sigma_2 = \{x \mapsto nk(d), y \mapsto d\}$
- $A_3 = R(nk(y), y), B_3 = R(e, x), \qquad \sigma_3 = ???$ neexistuje!
- $A_4 = R(nk(y), y), B_4 = R(x, x),$

Definícia 15.1

Nech A, B sú postupnosti symbolov, σ je substitúcia.

Substitúcia σ je **unifikátorom** A a B vtt $A\sigma = B\sigma$.

- $A_1 = R(filantrop, y), B_1 = R(x, d),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto d\}$
- $A_2 = R(nk(y), y), B_2 = R(x, d),$

$$\sigma_2 = \{ x \mapsto nk(d), y \mapsto d \}$$

- $A_3 = R(nk(y), y)$, $B_3 = R(e, x)$, $\sigma_3 = ???$ neexistuje!
- $A_4 = R(nk(y), y), B_4 = R(x, x), \qquad \sigma_4 = ???$ neexistuje!
- $11_4 = \mathbb{N}(\mathbb{R}(y), y), D_4 = \mathbb{N}(A, A), \qquad 0_4 = \dots \text{ reconstage.}$
- $A_5 = R(f(y)), B_5 = R(x),$

Definícia 15.1

Nech A, B sú postupnosti symbolov, σ je substitúcia.

Substitúcia σ je **unifikátorom** A a B vtt $A\sigma = B\sigma$.

- $A_1 = R(filantrop, y), B_1 = R(x, d),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto d\}$
- $A_2 = R(nk(y), y), B_2 = R(x, d),$

$$\sigma_2 = \{ \mathbf{x} \mapsto \mathsf{nk}(\mathsf{d}), \mathbf{y} \mapsto \mathsf{d} \}$$

- $A_3 = R(nk(y), y), B_3 = R(e, x), \qquad \sigma_3 = ???$ neexistuje!
- $A_4 = R(nk(y), y), B_4 = R(x, x), \qquad \sigma_4 = ???$ neexistuje!
- $A_5 = R(f(y)), B_5 = R(x),$ $\sigma_5 = \{x \mapsto f(d), y \mapsto d\} / \{x \mapsto f(f(d)), y \mapsto f(d)\} / \dots$

Skladanie substitúcií

Definícia 15.3

Nech $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ a $\theta = \{y_1 \mapsto s_1, \dots, y_m \mapsto s_m\}$ sú substitúcie

Zložením (kompozíciou) substitúcií σ a θ je substitúcia $\sigma\theta = \{x_1 \mapsto t_1\theta, \dots, x_n \mapsto t_n\theta, y_{i_1} \mapsto s_{i_1}, \dots, y_{i_k} \mapsto s_{i_k}\},$

 $kde\{y_{i_1}, \dots, y_{i_k}\} = \{y_1, \dots, y_m\} \setminus \{x_1, \dots, x_n\}.$

Príklad 15.4

$$\sigma = \{x \mapsto nk(y), z \mapsto y\}$$

$$\theta = \{y \mapsto d\}$$

$$\sigma\theta = \{x \mapsto nk(d),$$

$$z \mapsto d, y \mapsto d\}$$

Je pravda, že pre ľubovoľné substitúcie α , β , γ platí $(\alpha\beta)\gamma = \alpha(\beta\gamma)$?

Definícia 15.5

Nech A, B sú postupnosti symbolov, σ a θ sú substitúcie.

$$\sigma$$
 je všeobecnejšia ako θ vtt existuje subst. γ taká, že $\theta = \sigma \gamma$. σ je najvšeobecnejším unifikátorom A a B vtt

- σ je unifikátorom A a B a zároveň
- pre každý unifikátor θ A a B je σ všeobecnejšia ako θ .

$$A = R(nk(x), y), B = R(u, v)$$

- $\sigma_1 = \{u \mapsto nk(d), v \mapsto y, x \mapsto d\}$
 - $\theta_1 = \{u \mapsto \mathsf{nk}(\mathsf{d}), v \mapsto y, x \mapsto \mathsf{d}\}$ $\theta_1 = \{u \mapsto \mathsf{nk}(\mathsf{d}), v \mapsto \mathsf{Biba}, x \mapsto \mathsf{d}, y \mapsto \mathsf{Biba}\}$
 - $\gamma_1 = \{ y \mapsto Biba \}$ $\sigma_2 = \{ u \mapsto nk(x), v \mapsto y \}$
 - $\theta_2 = \{u \mapsto \text{nk}(d), v \mapsto y, x \mapsto d\}$ $\gamma_2 = \{x \mapsto d\}$

Unifikácia má mnohoraké využitie:

- rezolvencia v prvorádovej logike
- inferencia typov kompilátormi (typy sú vlastne termy)
- niektoré druhy parserov (o. i. pattern matching)
- spracovanie prirodzeného jazyka (Prolog)
- deduktívne databázy
- expertné systémy, automatizované usudzovanie

Ukážeme si základný algoritmus na hľadanie najvšeobecnejšieho unifikátora (z r. 1965).

http://web.stanford.edu/class/linguist289/robinson65.pdf

https://eli.thegreenplace.net/2018/unification/

https://github.com/eliben/code-for-blog/blob/master/2018/unif/unifier.py

Unifikácia: typy

```
class Term:
   pass
# constant
class Const(Term):
   def __init__(self, value):
       self.value = value
# variable
class Var(Term):
   def __init__(self, name):
       self.name = name
# application of a function symbol
class App(Term):
   def __init__(self, fname, args=()):
      self.fname = fname
      self.args = args
Subst = dict[Var: Term]
```

Unifikácia: unify

```
def unify(s: Term, t: Term, sigma: Subst | None) -> Subst | None:
    """Unifies terms s and t, given an initial substitution."""
   if sigma is None:
       return None
   elif s == t:
       return sigma
   elif isinstance(s, Var):
       return unify_variable(s, t, sigma)
   elif isinstance(t, Var):
       return unify_variable(t, s, sigma)
   elif isinstance(s, App) and isinstance(t, App):
       if s.fname != t.fname:
           return None
       else:
           for i in range(len(s.args)):
               sigma = unify(s.args[i], t.args[i], sigma)
           return sigma
   else:
       # includes the case where s. t are different constants
       return None
```

Unifikácia: unify_variable

```
def unify_variable(x: Var, t: Term, sigma: Subst) -> Subst | None:
    """Unifies variable x with term t, using sigma.
   Returns updated sigma or None if impossible.
    .....
   if x.name in sigma:
       return unify(sigma[x.name], t, sigma)
   elif isinstance(t, Var) and t.name in sigma:
       return unify(x, sigma[t.name], sigma)
   elif occurs_check(x, t, sigma):
       return None
   else:
       # x is not yet in sigma and can't simplify t. Extend sigma.
       return {**sigma, x.name: t}
```

Unifikácia: occurs_check

```
def occurs_check(v: Var, t: Term, sigma: Subst) -> bool:
    """Does the variable v occur anywhere inside t?
   Variables in t are looked up in sigma and the check is applied
   recursively.
    .....
   if v == t:
       return True
   elif isinstance(t, Var) and t.name in sigma:
       return occurs_check(v, sigma[t.name], sigma)
   elif isinstance(t. App):
       return any(occurs_check(v, arg, sigma) for arg in t.args)
   else:
       return False
```

Korektný algoritmus: skončí a dá správny výsledok.

- Vďaka occurs_check algoritmus nikdy za premennú nedosadí term, ktorý ju obsahuje.
- Ak sme raz za premennú niečo dosadili, nedosadíme za ňu nič iné, a pri jej unifikovaní vždy použijeme existujúce dosadenie.
- unify_variable znižuje počet premenných. (Môžeme si predstaviť, že všetky termy pri každom dosadení prepíšeme už bez premennej, za ktorú sme dosadzovali.)
- unify zjednodušuje termy (postupne ubúdajú funkčné symboly).
- Algoritmus je preto konečný a nájde nejaký unifikátor (ak existuje).

Nájdený unifikátor je najvšeobecnejší kvôli tomu, že algoritmus rozširuje substitúciu len vtedy, keď musí, a najvšeobecnejšie, ako sa dá (nepridáva zbytočné funkčné symboly).

(Toto by si zaslúžilo podrobný dôkaz, o. i. pretože najvšeobecnejší unifikátor nie je celkom jednoznačný — hoci ak ich existuje viac, líšiť sa môžu len označením premenných. Na tomto predmete ho však robiť nebudeme.)

Zaujímavosť: v r. 1991 bola objavená chyba v 7 rôznych serióznych knihách prezentujúcich tento algoritmus¹.

¹http://norvig.com/unify-bug.pdf

Názorná predstava, ako unifikácia prebieha: máme sústavu rovností termov, ktorú upravujeme a postupne rozširujeme substitúciu o dosadenia za nové premenné. Povolené úpravy:

- Miesto rovnice, ktorá porovnáva dva rovnaké funkčné symboly s aritou k, zapíš k rovníc pre rovnosť jednotlivých argumentov.
- Ak je na niektorej strane rovnice osamotená premenná, dosaď za ňu term predpísaný rovnicou a prepíš všetky výskyty tejto premennej.
- Zmaž triviálne splnenú rovnicu.

Každá z operácií niečo znižuje (počet funkčných symbolov na ľavej strane, počet premenných, počet rovníc).

Príklad 15.7 (Úspešný beh unifikačného algoritmu)

$$f(X, h(X), Y, g(Y)) = f(g(Z), W, Z, X)$$

Príklad 15.7 (Úspešný beh unifikačného algoritmu)

$$f(X, h(X), Y, g(Y)) = f(g(Z), W, Z, X)$$

$$X = g(Z) \quad \{X \mapsto g(Z)\}$$

$$h(X) = W$$

$$Y = Z$$

$$g(Y) = X$$

Príklad 15.7 (Úspešný beh unifikačného algoritmu) $\mathbf{f}(X,\mathbf{h}(X),Y,\mathbf{g}(Y)) = \ \mathbf{f}(\mathbf{g}(Z),W,Z,X)$

$$X = g(Z) \qquad \{X \mapsto g(Z)\}$$

$$h(X) = W$$

$$Y = Z$$

$$g(Y) = X$$

$$h(g(Z)) = W \qquad \{W \mapsto h(g(Z))\}$$

$$Y = Z$$

$$g(Y) = g(Z)$$

```
Príklad 15.7 (Úspešný beh unifikačného algoritmu)
          f(X, h(X), Y, g(Y)) = f(g(Z), W, Z, X)
                           X = g(Z) \quad \{X \mapsto g(Z)\}
                        h(X) = W
                            Y = Z
                        q(Y) = X
                      h(g(Z)) = W \qquad \{W \mapsto h(g(Z))\}\
                           Y = Z
                        g(Y) = g(Z)
                           Y = Z \qquad \{Y \mapsto Z\}
                        g(Y) = g(Z)
```

```
Príklad 15.7 (Úspešný beh unifikačného algoritmu)
          f(X, h(X), Y, g(Y)) = f(g(Z), W, Z, X)
                           X = g(Z) \quad \{X \mapsto g(Z)\}
                        h(X) = W
                           Y = Z
                        g(Y) = X
                      h(g(Z)) = W \qquad \{W \mapsto h(g(Z))\}\
                           Y = Z
                        g(Y) = g(Z)
                           Y = Z \qquad \{Y \mapsto Z\}
                        g(Y) = g(Z)
                         g(Z) = g(Z)
```

Uvedený algoritmus nie je veľmi efektívny (napr. ho occurs_check spomaľuje natoľko, že sa v niektorých implementáciách vynecháva²). Existujú teoreticky lepšie algoritmy (zhruba lineárne), ale tie zase na mnohých praktických vstupoch bežia pridlho, preto sa veľmi nepoužívajú.

Poznámka: Pre účely tohto predmetu je najdôležitejšie, aby ste plne rozumeli, o čo pri unifikácii ide, a vedeli nájsť najvšeobecnejší unifikátor v konkrétnom prípade. Úplná znalosť všeobecného algoritmu či zdôvodnenie jeho vlastností sú menej podstatné.

²https://en.wikipedia.org/wiki/Occurs_check