Группы симметрий геометрических фигур 26 октября • 8 класс

Разбор

Обозначения. Множество целых чисел обозначается символом \mathbb{Z} , натуральных — \mathbb{N} , рациональных — \mathbb{Q} , вещественных — \mathbb{R} . Как учил нас Декарт, точки плоскости можно отождествить с их координатами, поэтому множество точек плоскости будем обозначать $\mathbb{R} \times \mathbb{R}$ или просто \mathbb{R}^2 .

Значок \subseteq обозначает «является подмножеством». Например: $\{1,2\}\subseteq\{1,2,3\}$, $\mathbb{N}\subseteq\mathbb{Z}$, $\mathbb{Z}\subseteq\mathbb{Q}$, $\mathbb{Q}\subseteq\mathbb{R}$, $\{1,2,3\}\subseteq\{1,2,3\}$.

Определение. *Симметриями* фигуры $\Phi \subseteq \mathbb{R}^2$ называются такие движения плоскости $A \colon \mathbb{R}^2 \to \mathbb{R}^2$, которые оставляют эту фигуру на месте, то есть

$$\forall x (x \in \Phi \Rightarrow A(x) \in \Phi).$$

Множество всех симметрий фигуры Φ будем обозначать $\operatorname{Sym}(\Phi)$.

Пример 1. Пусть P_3 — правильный треугольник, смотри рисунок. Тогда множество $\mathrm{Sym}(P_3)$ состоит из:

e — тождественного движения;

 r_{120} — поворота относительно O на 120° (против часовой стрелки);

 r_{240} — поворота относительно O на 240° (против часовой стрелки);

 s_C — симметрии относительно серединного перпендикуляра к AB;

 s_A — симметрии относительно серединного перпендикуляра к BC;

 s_B — симметрии относительно серединного перпендикуляра к CA.

Очевидно, что композиция двух симметрий какой-либо фигуры также является симметрией той же фигуры. Например, $s_C \circ s_B = r_{240}$.

Задача 1. Заполните «таблицу умножения» для множества $\operatorname{Sym}(P_3)$ с операцией \circ .

0	$\mid e \mid$	r_{120}	r_{240}	$ s_C $	s_A	s_B
e	e	r_{120}	r_{240}	s_C	s_A	s_B
r_{120}	r_{120}	r_{240}	e	s_B	s_C	s_A
r_{240}	r_{240}	e	r_{120}	s_A	s_B	s_C
s_C	s_C	s_A	s_B	e	r_{120}	r_{240}
s_A	s_A	s_B	s_C	r_{240}	e	r_{120}
s_B	s_B	s_C	s_A	r_{120}	r_{240}	e

Множество с бинарной (то есть принимающей два аргумента) операцией называется **группой**, если эта операция удовлетворяет некоторым требованиям. Мы не будем сейчас перечислять эти требования, но постулируем, что для любой фигуры Φ , множество симметрий $\operatorname{Sym}(\Phi)$ с операцией композиции \circ является группой.

Задачи для самостоятельного решения

Задача 1. Пусть X — множество параллелограммов, Y — множество ромбов, Z — множество прямоугольников, W — множество четырёхугольников с перпендикулярными диагоналями.

- (a) Верны ли следующие утверждения? $Y \subseteq X$; $Z \subseteq W$; $Y = X \cap W$; $Z \subseteq X$.
- (b) Выразите множество квадратов Q через эти множества, используя операции объединения и/или пересечения.

Задача 2. Опишите множества симметрий следующих фигур:

```
(a) \Phi_1 \in (X-Z)-W — параллелограмм общего вида;
```

```
(b) \Phi_2 \in Z - W — прямоугольник общего вида;
```

(c)
$$\Phi_3 \in Y - Z$$
 — ромб общего вида;

(d)
$$P_4$$
 — квадрат (он же правильный четырёхугольник);

(e)
$$P_5$$
 — правильный пятиугольник;

(f, 2 балла)
$$P_{2n}$$
 — правильный $2n$ -угольник;

(g, 2 балла)
$$P_{2n+1}$$
 — правильный $2n+1$ -угольник;

(h, 2 балла) D — круг.

Задача 3. Постройте таблицы умножения для:

```
(a) (\operatorname{Sym}(\Phi_1), \circ);
```

(b)
$$(\operatorname{Sym}(\Phi_2, \circ);$$

(c) (Sym(
$$\Phi_3, \circ$$
);

(d)
$$(\operatorname{Sym}(P_4), \circ)$$
;

(e, 2 балла)
$$(Sym(P_5), \circ)$$
;

(f, 3 балла)
$$(Sym(P_{2n}), \circ)$$
;

(g, 3 балла)
$$(Sym(P_{2n+1}), \circ)$$
;

(h, 3 балла)
$$(Sym(D), \circ)$$
.