Boosting

David Rosenberg

New York University

March 4, 2015

Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models
- Parallel ensembles: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance
- Sequential ensembles:
 - Models are generated sequentially
 - Try to add new models that do well where previous models lack

The Boosting Question: Weak Learners

- A weak learner is a classifier that does slightly better than random guessing.
- Weak learners are like "rules of thumb":
 - If an email has "Viagra" in it, more likely than not it's spam.
 - Email from a friend is probably not spam.
 - A linear decision boundary.
- Can we extract wisdom from a committee of fools?
- Can we combine a set of weak classifiers to form single classifier that makes accurate predictions?
 - Posed by Kearns and Valiant (1988,1989):
- Yes! Boosting solves this problem. [Rob Schapire (1990).]

AdaBoost: Setting

- Consider $\mathcal{Y} = \{-1, 1\}$ (binary classification).
- Suppose we have a weak learner:
 - Hypothesis space $\mathcal{F} = \{f : \mathcal{X} \to \{-1, 1\}\}\}.$
 - Algorithm for finding $f \in \mathcal{F}$ that's better than random on training data.
- Typical weak learners:
 - Decision stumps (tree with a single split)
 - Trees with few terminal nodes
 - Linear decision functions

Weighted Training Set

- Training set $\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}.$
- Weights $(w_1, ..., w_n)$ associated with each example.
- Weighted empirical risk:

$$\hat{R}_n^W(f) = \frac{1}{W} \sum_{i=1}^n w_i \ell\{f(x_i), y_i\} \quad \text{where } W = \sum_{i=1}^n w_i$$

- Can train a model to minimize weighted empirical risk.
- What if model cannot conveniently be trained to reweighted data?
- Can sample a new data set from \mathcal{D} with probabilities $(w_1/W, \dots w_n/W)$.

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- So far, we've generated M classifiers: $G_1(x), \ldots, G_m(x)$.

AdaBoost: Schematic

From ESL Figure 10.1

AdaBoost - Rough Sketch

- Training set $\mathfrak{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for m = 1, ..., M:
 - Fit weak classifier $G_m(x)$ to weighted training points
 - Increase weight on points $G_m(x)$ misclassifies
- Final prediction $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.
- The α_m 's are nonnegative,
 - larger when G_m fits its weighted \mathcal{D} well
 - smaller when G_m fits weighted $\mathfrak D$ less well

Adaboost: Weighted Classification Error

- In round *m*, weak learner gets a weighted training set.
 - Returns a classifier $G_m(x)$ that roughly minimizes weighted 0-1 error.
- The weighted 0-1 error of $G_m(x)$ is

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i))$$
 where $W = \sum_{i=1}^n w_i$.

- Notice: $err_m \in [0, 1]$.
- We treat the weak learner as a black box.
 - It can use any method it wants to find $G_m(x)$. (e.g. SVM, tree, etc.)
 - BUT, for things to work, we need at least $err_m < 0.5$.

AdaBoost: Classifier Weights

• The weight of classifier $G_m(x)$ is $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$.

• Note that weight $\alpha_m \to 0$ as weighted error $err_m \to 0.5$ (random guessing).

AdaBoost: Example Reweighting

- We train G_m to minimize weighted error, and it achieves err_m.
- Then $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$ is the weight of G_m in final ensemble.
- Suppose w_i is weight of example i before training:
 - If G_m classfiles x_i correctly, then w_i is unchanged.
 - Otherwise, w_i is increased as

$$w_i \leftarrow w_i e^{\alpha_m}$$

$$= w_i \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \right)$$

• [Is it clear why this is always increasing the weight?]

Adaboost: Classifier Weighted Error

• Any misclassified point has weight adjusted as $w_i \leftarrow w_i \left(\frac{1 - \mathsf{err}_m}{\mathsf{err}_m} \right)$.

 \bullet The smaller err_m, the more we increase weight of misclassified points.

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1/n$, i = 1, 2, ..., n.
- ② For m = 1 to M:
 - Fit weak classifier $G_m(x)$ to $\mathfrak D$ using weights w_i .
 - 2 Compute weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i))$$
 where $W = \sum_{i=1}^n w_i$.

- $\textbf{3} \quad \text{Compute } \alpha_m = \ln \left(\frac{1 \text{err}_m}{\text{err}_m} \right).$
- $\bullet \text{ Set } w_i \leftarrow w_i \cdot \exp\left[\alpha_m 1(y_i \neq G_m(x_i))\right], \quad i = 1, 2, \dots, N$

AdaBoost with Decision Stumps

• After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.

AdaBoost with Decision Stumps

• After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

AdaBoost with Decision Stumps

• After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

- Methods we've seen so far come in two categories:
 - Convex optimization problems (L1/L2 regression, SVM, kernelized versions)
 - No issue minimizing objective function over hypothesis space
 - Trees
 - Can always fit data perfectly with big enough treehall
- AdaBoost is something new at this point, it's just an algorithm.
- Will G(x) even minimize training error?
- "Yes", if our weak classifiers have an "edge" over random.

- As a weak classifier, $G_m(x)$ should have $\operatorname{err}_m < \frac{1}{2}$.
- Define the **edge** of classifier $G_m(x)$ at round m to be

$$\gamma_m = \frac{1}{2} - \operatorname{err}_m.$$

• Measures how much better than random G_m performs.

Theorem

The empirical 0-1 risk of the AdaBoost classifier G(x) is bounded as

$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leqslant \prod_{m=1}^{M} \sqrt{1 - 4\gamma_m^2}.$$

For more details, see the book Boosting: Foundations and Algorithms by Schapire and Freund.

Example

Suppose $err_m \leq 0.4$ for all m.

• Then $\gamma_m = .5 - .4 = .1$, and

$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq G(x)) \leqslant \prod_{m=1}^{M} \sqrt{1 - 4(.1)^2} \approx (.98)^M$$

Bound decreases exponentially:

$$.98^{100} \approx .133$$

 $.98^{200} \approx .018$
 $.98^{300} \approx .002$

With a consistent edge, training error decreases very quickly to 0.

Typical Train / Test Learning Curves

Might expect too many rounds of boosting to overfit:

Learning Curves for AdaBoost

- In typical performance, AdaBoost is surprisingly resistant to overfitting.
- Test continues to improve even after training error is zero!

From Rob Schapire's NIPS 2007 Boosting tutorial.

Adaptive Basis Function Model

AdaBoost produces a classification score function of the form

$$\sum_{m=1}^{M} \alpha_m G_m(x)$$

- View this as an adaptive basis function model:
 - Linear in the basis functions.
 - But basis functions are learned from the data.

Adaptive Basis Function Model

Can write adaptive basis function expansion as

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

- where β_m are expansion coefficients
- and $b(x; \gamma_m)$ is a function of x, parameterized by γ_m .
- For example, each $b(x; \gamma_m)$ could be a tree
 - ullet γ_m would characterize the splits and the terminal node predictions
- If the γ_m 's were known, this would just be a linear model.
- This type of model is also called an additive model.

Fitting Adaptive Basis Function Model

• Would be nice directly minimize the empirical risk:

$$\min_{\{\beta_m,\gamma_m\}_{m=1}^M} \sum_{i=1}^n \ell\left(y_i, \sum_{m=1}^M \beta_m b(x_i; \gamma_m)\right).$$

- Prediction function more general than what we've seen before.
- Difficult to solve, in general.
- We'll discuss an approximate "greedy" solution, known as
 - forward stagewise additive modeling

Forward Stagewise Additive Modeling

Sequentially add basis functions to the expansion, without adjusting the parameters or coefficients of the functions that have already been added.

- Initialize $f_0(x) = 0$.
- 2 For m=1 to M:
 - Compute:

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)\}.$$

- **2** Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.
- **3** Return: $f_M(x)$.
 - Note: Actually implementing this minimization is difficult in general.
 More on this later.

Exponential Loss and AdaBoost

Take loss function to be

$$\ell(y, f(x)) = \exp(-yf(x)).$$

- Let $\mathcal{F} = \{b(x; \gamma) \mid \gamma \in \Gamma\}$ be a hypothesis space of weak classifiers.
- Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost!
 - (See HTF Section 10.4 for proof.)
- Only difference:
 - AdaBoost is loose about each G_m "fitting the weighted training data"
 - For FSAM we're explicitly looking for

$$G_m = \underset{G \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{N} w_i^{(m)} \mathbb{1}(y_i \neq G(x_i))$$

Exponential Loss

 Note that exponential loss puts a very large weight on bad misclassifications.

AdaBoost / Exponential Loss: Robustness Issues

- When Bayes error rate is high (e.g. $\mathbb{P}(f^*(X) \neq Y) = 0.25$)
 - Training examples with same input, but different classifications.
 - Best we can do is predict the most likely class for each X.
- Some training predictions should be wrong (because example doesn't have majority class)
 - AdaBoost / exponential loss puts a lot of focus on geting those right
- Empirically, AdaBoost has degraded performance in situations with
 - high Bayes error rate, or when there's
 - high "label noise"
- Logistic loss performs better with high Bayes error

Population Minimizers

- In traditional statistics, the population refers to
 - the full population of a group, rather than a sample.
- In machine learning, the population case is the hypothetical case of
 - an infinite training sample from $P_{X \times Y}$.
- A population minimizer for a loss function is another name for the risk minimizer.
- For the exponential loss $\ell(m) = e^{-m}$, the population minimizer is given by

$$f^*(x) = \frac{1}{2} \ln \frac{\mathbb{P}(Y=1 \mid X=x)}{\mathbb{P}(Y=-1 \mid X=x)}$$

- (Short proof in KPM 16.4.1)
- By solving for $\mathbb{P}(Y=1 \mid X=x)$, we can give probabilistic predictions from AdaBoost as well.

Population Minimizers

- AdaBoost has the robustness issue because of the exponential loss.
- Logistic loss $\ell(m) = \ln(1 + e^{-m})$ has the same population minimizer.
 - But works better with high lable noise or high Bayes error rate
- Population minimizer of SVM hinge loss is

$$f^*(x) = \text{sign} \left[\mathbb{P}(Y = 1 \mid X = x) - \frac{1}{2} \right].$$

• Because of the sign, we cannot solve for the probabilities.

Forward Stagewise Modeling and Iterative Optimization

- We start at $f_0(x) = 0$.
- 2 In each step, we find
 - function $b(\cdot; \gamma)$ (like a step direction)
 - \circ expansion coefficient β (like a step size)
 - $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m).$

Just like in gradient descent and SGD, final result is the sum of all of our steps.

Can we look at $b(\cdot; \gamma)$ as a gradient?

Maybe as a projected gradient.

Functional Gradient Descent

We want to minimize

$$\sum_{i=1}^n \ell\{y_i, f(x_i)\}.$$

- Can do a "functional" gradient descent with respect to f?
- Take functional gradient w.r.t. f.
- Take a step in the gradient direction (in function space).
- What about the constraint $f \in \mathcal{F}$, to prevent overfitting?
- ullet We can use a projection to keep us in ${\mathcal F}$

Functional Gradient Descent: Unconstrained Objective

Note that

$$\sum_{i=1}^{n} \ell\{y_i, f(x_i)\}$$

only depends on f at the training points.

Define

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^T$$

and write

$$\min_{\mathbf{f}\in\mathbf{R}^n}\sum_{i=1}^n\ell\left(y_i,\mathbf{f}_i\right).$$

• Corresponds to an unconstrained minimization over f (i.e. over all possible functions).

Functional Gradient Descent: Unconstrained Step Direction

- Suppose we're at $f_{m-1}(x)$, and we're ready for our next step.
- Write the objective function as

$$J(\mathbf{f}) = \sum_{i=1}^{n} \ell(y_{i}, \mathbf{f}_{i}).$$

So the negative gradient step direction for step m is

$$-\mathbf{g}_m = -\nabla_{\mathbf{f}} J(\mathbf{f}_{m-1}),$$

which we can easily calculate.

- This is just about how to adjust the values of f at the training data.
- How to keep $f \in \mathcal{F}$?
- Solve both of these problems by projecting $-\mathbf{g}_m$ into \mathcal{F} .

Functional Gradient Descent: Projection Step

Unconstrained step direction is

$$-\mathbf{g}_m = -\nabla_{\mathbf{f}} J(\mathbf{f}_{m-1}).$$

- Suppose \mathcal{F} is our weak hypothesis space.
- Find $h_m \in \mathcal{F}$ that is closest to $-\mathbf{g}_m$ at the training points, in the ℓ^2 sense:

$$h_m = \arg\min_{h \in \mathcal{F}} \sum_{i=1}^n \left(\left(-\mathbf{g}_m \right)_i - h(x_i) \right)^2.$$

- This is a least squares regression problem.
- So h_m is our step direction.

Functional Gradient Descent: Step Size

- Finally, we choose a stepsize.
- Option 1:

$$v_m = \underset{v>0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + v h_m(x_i)\}.$$

• Option 2: Use a fixed stepsize, such as $\nu=0.1$, and treat it as a hyperparameter. (More typical)

The Gradient Boosting Machine

- Initialize $f_0(x) = 0$.
- ② For m = 1 to M:
 - Compute:

$$\mathbf{g}_m = \left(\frac{\partial}{\partial f(x_i)} \left[\sum_{i=1}^n \ell\{y_i, f(x_i)\} \right] \right)_{i=1}^n$$

2 Fit regression model to $-\mathbf{g}_m$:

$$h_m = \operatorname*{arg\,min}_{h \in \mathcal{F}} \sum_{i=1}^{n} \left(\left(-\mathbf{g}_m \right)_i - h(x_i) \right)^2.$$

Choose step size:

$$v_m = \underset{v>0}{\arg\min} \sum_{i=1}^n \ell\{y_i, f_{m-1}(x_i) + v h_m(x_i)\}.$$

Take the step:

$$f_m(x) = f_{m-1}(x) + \gamma_m h_m(x)$$

Gradient Tree Boosting

Most common form of gradient boosting machine takes

$$\mathcal{F} = \{\text{regression trees of size } J\},$$

where J is the number of terminal nodes.

- J = 2 gives decision stumps
- HTF recommends $4 \leqslant J \leqslant 8$.
- Software packages:
 - Gradient tree boosting is implemented by the gbm package for R
 - as GradientBoostingClassifier and GradientBoostingRegressor in sklearn