La théorie des nombres

- Théorie des nombres: [HPS14; 1.2, 1.3, 1.4, 1.5, 2.2, 2.3]
- Discrete Logarithme Problem et Diffie-Hellman: [HPS14; 2.2, 2.3, 2.6, 2.7, 2.8]

[HPS14] J. Hoffstein, J. Pipher and J. H. Silverman. <u>An Introduction to Mathematical Cryptography</u>. Undergraduate Texts in Mathematics (<u>Springer</u>, <u>New York</u>, <u>NY</u>, <u>2014</u>). Accessed on Nov 18, 2024.

Exemples \hookrightarrow

Si tous les mois avaient 30 jours, est-ce qu'il y a des jours de la semaine qui ne seront jamais le premier du mois ?

Reformulation: pour tout nombre $0 \le j < 7$, existe-t-il x et y tels que 30x = j + 7y. Notation modulo : $30x \equiv j \pmod{7}$.

Si tous les ans avaient 365 jours, est-ce qu'il y a des jours de la semaine qui ne seront jamais le 25 Décembre ? Est si tous les ans avaient 366 jours ? Et s'ils avaient 364 jours ?

Reformulation: pour tout nombre $0 \le j < 7$, existe-t-il x et y tels que 365x = j + 7y. Notation modulo : $365x \equiv j \pmod{7}$.

Théorème de Bézout

Définition Le *Greatest Common Divisor (GCD)* de deux nombres $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$, noté $\gcd(a,b)$ est le plus grand nombre $g \in \mathbb{Z}$ qui divise a (noté $g \mid a$) et b (noté $g \mid b$). C'est à dire qu'il existe $x \in \mathbb{Z}$ tel que a = gx et $y \in \mathbb{Z}$ tel que b = gy. En notation modulaire, $a \equiv 0 \pmod{g}$ et $b \equiv 0 \pmod{g}$.

Théorème de Bézout II existe $x,y\in\mathbb{Z}$ tels que ax+by=c si et seulement si $\gcd(a,b)$ divise c. En notation modulaire $ax\equiv c\pmod b$ et $by\equiv c\pmod a$.

ullet Comment prouver que l'égalité ax+by=c implique que $\gcd(a,b)$ divise c ?

Algorithme d'Euclide : élaboration 🖘

Définition Le résultat de la division Euclidienne de a par un diviseur d est un quotient q et un reste $0 \le r < d$ tels que a = qd + r. En notation modulaire $a \equiv r \pmod{d}$.

- ▶ Observation clé Que dit le théorème de Bézout par rapport à gcd(a,d) et r.
- ▶ Observation clé Que dit le théorème de Bézout par rapport à $\gcd(d,r)$ et a.

Lemme: Si $a \equiv r \pmod{b}$ alors $\gcd(a, b) = \gcd(b, r)$.

- ▶ Observation clé Si a > b, trouver un mono-variant.
- ▶ Observation finale Si a et b sont positifs et qu'on effectue la substitution $(a,b) \to (b,r)$ récursivement, le mono-variant impose qu'on ne puisse itérer qu'un nombre fini de fois, que va-t-il se passer ?

Algorithme d'Euclide : implémentation

```
pgcd (generic function with 1 method)
   function pgcd(a, b)
       println("gcd($a, $b) = ")
       if b == 0
           println(a)
           return a
       else
           return pgcd(b, mod(a, b))
       end
   end
                  90284599
gcd_a =
                       = 249357461
gcd_b = 
1
   pgcd(gcd_a, gcd_b)
   gcd(90284599, 249357461) =
    gcd(249357461, 90284599) =
    gcd(90284599, 68788263) =
   gcd(68788263, 21496336) =
    gcd(21496336, 4299255) =
    gcd(4299255, 61) =
    gcd(61, 36) =
    gcd(36, 25) =
    gcd(25, 11) =
    |gcd(11, 3)| =
    gcd(3, 2) =
    gcd(2, 1) =
    gcd(1, 0) =
```

The complexity is difficult to evaluate but can be shown to be $O(\log(\min(a,b)))$.

Arithmétique modulaire : somme =

```
a \equiv \alpha \pmod{n} et b \equiv \beta \pmod{n} \Rightarrow a + b \equiv \alpha + \beta \pmod{n}

a \alpha b \beta n

11 1 1 13 3 5

1 abn\_picker

4 1 mod(a + b, n)
```

Arithmétique modulaire : produit 🖘

$$a \equiv \alpha \pmod{n}$$
 et $b \equiv \beta \pmod{n}$ $\Rightarrow ab \equiv \alpha\beta \pmod{n}$


```
3
1 mod(a * b, n)
```

```
1 mod(mod(a, n) * mod(b, n), n)
```

Corollaire

$$n\mid a\quad {
m et}\quad n\mid b\quad \Rightarrow\quad n\mid (ab)$$

À ne pas confondre avec

$$a \mid n \quad ext{et} \quad b \mid n \quad \Rightarrow \quad (ab/\gcd(a,b)) \mid n$$

Division par 3 et 9

Est-ce que 2345 est divisible par 3 ou 9?

$$2 \cdot 10^3 + 3 \cdot 10^2 + 4 \cdot 10 + 5 \equiv ? \pmod{9}$$

 $2 \cdot 1^3 + 3 \cdot 1^2 + 4 \cdot 1 + 5 \equiv ? \pmod{9}$
 $2 + 3 + 4 + 5 \equiv 14 \pmod{9}$

Est-ce que 2345 est divisible par 11?

$$2 \cdot (10)^3 + 3 \cdot 10^2 + 4 \cdot 10 + 5 \equiv ? \pmod{11}$$

 $2 \cdot (-1)^3 + 3 \cdot (-1)^2 + 4 \cdot (-1) + 5 \equiv ? \pmod{11}$
 $-2 + 3 - 4 + 5 \equiv 2 \pmod{11}$

Inverse et division modulaire

- Inverse modulaire : étant donné a, n, trouver x (noté a^{-1}) tel que $xa \equiv 1 \pmod{n}$
- Division modulaire : étant donné a,b,n, trouver x tel que $xa \equiv b \pmod n$ $x \equiv a^{-1}b \pmod n$.
- ▶ Est-ce que l'inverse modulaire existe toujours ?
- ► Comment trouver l'inverse modulaire ?

Algorithme d'Euclide étendu ⇔

$$xb + yr = g$$
 et $r = a - qb$ \Rightarrow $(x - yq)b + ya = g$

Solution homogène x=b, $y=-a \rightarrow ba-ab=0$. Donc si (x,y) est solution, (x+b,y-a) aussi.

```
pgcdx (generic function with 1 method)

1 function pgcdx(a, b)
2    if b == 0
3        return a, one(a), zero(a)
4    else
5        q, r = divrem(a, b)
6        g, x, y = pgcdx(b, r)
7        return g, y, x - y * q
8    end
9 end
```

```
▶ (1, 89932200, -32561659)

1 gcd_g, gcd_x, gcd_y = pgcdx(gcd_a, gcd_b)
```

```
1
1 gcd_x * gcd_a + gcd_y * gcd_b
```

Pas une solution unique:

```
▶ (1, 89932200, -32561659)

1 gcdx(gcd_a, gcd_b)
```

Inversion modulaire par Euclide étendu

Ensemble de solutions: (x+kb,y-ka) pour un $k\in\mathbb{Z}$ arbitraire. Prenons k tel que $0\leq x+kb < b$ avec mod .

```
modinv (generic function with 1 method)

1 function modinv(a, n)
2    g, x, y = gcdx(a, n)
3    return mod(x, n)
4 end
```

Revenons aux exemples:

```
30x \equiv j \pmod{7} \quad \Rightarrow \quad x \equiv (30)^{-1}j \pmod{7}
```

```
▶[0, 4, 1, 5, 2, 6, 3]

1 collect(mod.(modinv(30, 7) .* (0:6), 7))
```

```
365x \equiv j \pmod{7} \quad \Rightarrow \quad x \equiv (365)^{-1}j \pmod{7}
```

```
▶[0, 1, 2, 3, 4, 5, 6]

1 collect(mod.(modinv(365, 7) .* (0:6), 7))
```

```
366x \equiv j \pmod{7} \quad \Rightarrow \quad x \equiv (366)^{-1}j \pmod{7}
```

```
▶[0, 4, 1, 5, 2, 6, 3]

1 collect(mod.(modinv(366, 7) .* (0:6), 7))
```

S'il y avait 364 jours par ans, les fêtes seraient toujours le même jour de la semaine!

```
7
1 gcd(364, 7)
```

Fast powering \ominus

Comment calculer a^m pour un large m ?

1 @time big(2)^power

- lacktriangle Supposons que m est pair, c'est à dire m=2k...
- lacktriangle Que faire si que m est impair, c'est à dire m=2k+1...

Recursive implementation \bigcirc

```
fast_power (generic function with 1 method)
 1 function fast_power(prod_func::Function, a, power)
       if power == 0
           return one(a)
       elseif mod(power, 2) == 1
           return prod_func(fast_power(prod_func, a, power - 1), a)
       else
           b = <u>fast_power(prod_func</u>, a, div(power, 2))
           return prod_func(b, b)
       end
10 end
                       \supset 251
power =
3618502788666131106986593281521497120414687020801267626233049500247285301248
   @time big(2)^power
      0.000005 seconds (5 allocations: 160 bytes)
3618502788666131106986593281521497120414687020801267626233049500247285301248
   @time fast_power(*, big(2), power)
      0.008110 seconds (3.40 k allocations: 177.469 KiB, 99.74% compilation tim
▶ Quelle est la complexité temporelle ?
```

Fast modular powering

```
fast_mod_power (generic function with 1 method)
Last 3 digit:
\texttt{@time pow\_1000} = 248
   @time pow_1000 = fast_mod_power(2, power, 1000)
      0.000001 seconds
Et modulo 999?
\texttt{@time pow\_999} = 500
   @time pow_999 = fast_mod_power(2, power, 999)
      0.000001 seconds
Par l'algo d'Euclide, gcd(n, n-1) = 1 donc gcd(1000, 999) = 1.
 ► Comment trouver mod(2^power, 999000) en utilisant pow_1000 et pow_999 ?
252248
   fast_mod_power(2, power, 999000)
252248
 1 mod(pow_1000 * 999 * modinv(999, 1000) + pow_999 * 1000 * modinv(1000, 999), 999000)
```

Chinese remainder theorem =

```
Voir [HPS14; Section 2.8].
chinese_remainder_theorem (generic function with 1 method)
252248
   chinese_remainder_theorem([pow_1000, pow_999], [1000, 999])
                             100
primes_upper = 
prime_list =
▶ [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
 1 prime_list = primes(3, primes_upper)
▶ [2, 3, 4, 2, 7, 8, 10, 6, 15, 2, 19, 39, 22, 12, 50, 14, 35, 41, 64, 37, 11, 32, 67, 11]
 1 fast_mod_power.(2, power, prime_list)
986325341584402112586461440731025613
 1 chinese_remainder_theorem(big.(fast_mod_power.(2, power, prime_list)), big.
   (prime_list))
3618502788666131106986593281521497120414687020801267626233049500247285301248
 1 big(2)^power
```

► Comment savoir si prime_list contient assez de nombres pour avoir la bonne réponse ?

Fibonacci sequence

Équation de récurrence:

$$x_{k+1} = x_k + x_{k-1}$$

Reformulation sans (k-1)

$$egin{aligned} x_{k+1} &= x_k + y_k \ y_{k+1} &= x_k \end{aligned}$$

Forme matricielle:

$$egin{bmatrix} x_{k+1} \ y_{k+1} \end{bmatrix} = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} x_k \ y_k \end{bmatrix}$$

Matrix power:

$$egin{bmatrix} x_n \ y_n \end{bmatrix} = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^n egin{bmatrix} x_0 \ y_0 \end{bmatrix}$$

Fast powering for matrices \ominus

```
fib_rec (generic function with 1 method)
 1 fib_{rec}(n) = (n == 0 ? 0 : (n == 1 ? 1 : fib_{rec}(n - 1) + fib_{rec}(n - 2)))
267914296
 1 Qtime fib_rec(42)
      1.643827 seconds
fib_seq (generic function with 1 method)
 1 function fib_seq(n)
       f = zeros(BigInt, n + 1)
       f[2] = 1
       for k in 2:n
           f[k + 1] = f[k] + f[k - 1]
       return f[end]
 8 end
25311623237323612422401550035206072917663564858024852789519298419913127817605413152301534
   @time fib_seq(20000)
      0.014594 seconds (40.01 k allocations: 17.620 MiB, 71.38% gc time)
                                                                                   @
fib_pow (generic function with 1 method)
 1 function fib_pow(n)
       A = BigInt[1 1]
             1 0]
       x = A^{(n-1)} * [1, 0]
       return x[1]
 6 end
25311623237323612422401550035206072917663564858024852789519298419913127817605413152301534
   @time fib_pow(20000)
      0.000386 seconds (1.85 k allocations: 201.844 KiB)
```

Diagonalization to speed up powering

```
E = Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
   2-element Vector{Float64}:
    -0.6180339887498948
     1.618033988749895
   2×2 Matrix{Float64}:
     0.525731 -0.850651
    -0.850651 -0.525731
 1 E = eigen([1 1; 1 0])
D = 2×2 Diagonal{BigFloat, Vector{BigFloat}}:
     -0.618034
                1.61803
   D = Diagonal([(1 - \sqrt{big}(5)) / 2, (1 + \sqrt{big}(5)) / 2])
2×2 Matrix{Float64}:
 0.525731 -0.850651
 -0.850651 -0.525731
 1 E.vectors
2×2 Matrix{Float64}:
     1.0
1.0
1.0 -1.11022e-16
 1 E.vectors * Diagonal(E.values) * inv(E.vectors)
fib_diag (generic function with 1 method)
 1 function fib_diag(n)
       x = E.vectors * D^{(n - 1)} * (E.vectors \setminus [1, 0])
       return x[1]
 4 end
2.531162323732361578998428490601662084769270923897910687031954402219719762339543e+4179
   @time fib_diag(20000)
      1.271829 seconds (2.96 M allocations: 148.988 MiB, 2.58% gc time, 99.99%
                                                                                   ②
    compilation time)
```


Closed form solution =

Trouver \boldsymbol{b} tel que $\boldsymbol{x_k}$ est solution:

$$x_k = b^k \quad o \quad b^{k+1} = b^k + b^{k-1} \quad o \quad b^2 - b - 1 = 0 \quad o \quad b = rac{1 \pm \sqrt{5}}{2}$$

On a donc une famille de solutions:

$$x_k = a_1 igg(rac{1-\sqrt{5}}{2}igg)^k + a_2 igg(rac{1+\sqrt{5}}{2}igg)^k$$

Il reste à trouver a_1 et a_2 tels que $x_0=0$ et $x_1=1$. Ça correspond à calculer E.vectors \ [1, 0], etc...

$$x_0 = 0 \qquad a_1 + a_2 = 0 \ x_1 = 1 \qquad a_1 rac{1 - \sqrt{5}}{2} + a_2 rac{1 + \sqrt{5}}{2} = 1$$

Donc $a_1=-1/\sqrt{5}$ et $a_2=1/\sqrt{5}$.

fib_closed (generic function with 1 method)

- 1 $fib_closed(n) = (((1 + <math>\sqrt{big}(5)) / 2)^n ((1 \sqrt{big}(5)) / 2)^n) / \sqrt{big}(5)$
- - 1 @time fib_closed(20000)
- 0.000028 seconds (36 allocations: 1.695 KiB)
- 0.000031 seconds (58 allocations: 2.750 KiB)

25311623237323612422401550035206072917663564858024852789519298419913127817605413152301534

1 @time fib_pow(20000)

2 0.000274 seconds (1.85 k allocations: 201.781 KiB)

Fermat's Little Theorem

Fermat's little theorem [HPS14; Theorem 1.24]

Si
$$p$$
 est premier et $p \nmid g$, alors $g^{p-1} \equiv 1 \pmod{p}$.

Définition g est une racine primitive modulo p si g^k prend toutes les valeurs $1, 2, \ldots, p-1$.

Si
$$p \nmid b$$
, alors $b^{p-1} \equiv 1 \pmod{p}$

11

```
all_powers = ▶[2, 4, 8, 5, 10, 9, 7, 3, 6, 1]
1 all_powers = fast_mod_power.(g, 1:(p-1), p)

▶[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
1 sort(all_powers)
```

```
▶[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

1 unique(sort(all_powers))
```

Le nombre 2 est une racine primitive modulo 11

Dicrete logarithm 🖘

Étant donné un nombre premier p et une racine primitive q modulo q et un entier q tel que $q \nmid q$, le Discrete logarithme problem consiste à retrouver q tel que q tel que q tel que q.

discrete_log (generic function with 1 method)

1 function discrete_log(a, g, p)

2 gx = one(a)

3 for x = 0:(p-2)

4 if a == gx

```
for x = 0:(p-2)
for x = gx
featurn x
end
gx = mod(gx * g, p)
end
end
```

Le nombre 2 est une racine primitive modulo 11

```
x = 8
1 x = discrete_log(3, g, p)
3
1 fast_mod_power(g, x, p)
```

- ▶ Quelle est la complexité spatiale et temporelle de discrete_log ?
- ▶ Est-ce une complexité linéaire ou exponentielle en fonction de la taille de l'input

Meet in the middle approach

La méthode meet in the middle est une méthode générique permettant de passer d'une complexité de $\mathcal{O}(N)$ à $\mathcal{O}(\sqrt{N})$.

```
▶[1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9]

1 fast_mod_power.(g, 0:15, 17)
```

On peut mettre le vecteur de taille n^2 sous forme de matrice de taille n imes n

```
4x4 Matrix{Int64}:
    1    16    1    16
    2    15    2    15
    4    13    4    13
    8    9    8    9

1 reshape(fast_mod_power.(g, 0:15, 17), 4, 4)
```

On remarque que la matrice est de rang 1. Elle vaut

$$\begin{bmatrix} 1 & g^n & \cdots & g^{n^2-n} \\ g & g^{n+1} & \ddots & g^{n^2-n+1} \\ \vdots & \ddots & \ddots & \vdots \\ g^{n-1} & g^{2n-1} & \cdots & g^{n^2-1} \end{bmatrix} \equiv \begin{bmatrix} 1 \\ g \\ g^2 \\ \vdots \\ g^{n-1} \end{bmatrix} \begin{bmatrix} 1 & g^n & g^{2n} & \cdots & g^{n^2-n} \end{bmatrix} \pmod{p}$$

```
4x4 Matrix{Int64}:
1  16  1  16
2  15  2  15
4  13  4  13
8  9  8  9

1 mod.(fast_mod_power.(g, 0:3, 17) * fast_mod_power.(g^4, 0:3, 17)', 17)
```

On doit donc trouver la ligne i et la ligne et j tels que

$$g^{i-1}g^{(j-1)n}\equiv a \pmod p
onumber \ g^{i-1}\equiv a(g^{-n})^{j-1} \pmod p$$

Ils ne reste plus qu'à chercher une collision entre les listes de restes modulo p pour g^{i-1} et $a(g^{-n})^{j-1}$. L'identification des collision peut se faire en $\mathcal{O}(\sqrt{n}\log(n))$ avec une recherche

dichotomique our en $\mathcal{O}(\sqrt{n})$ amorti avec un dictionaire.

Shanks's Babystep-Giantstep Algorithm

Voir [HPS14; Section 2.7]

```
giant_steps (generic function with 1 method)

1 function giant_steps(g, n, p)
2     gn = fast_mod_power(g, n, p)
3     return baby_steps.(modinv(gn, p), n, p)
4 end
```

```
baby_steps (generic function with 1 method)

1 function baby_steps(g, n, p)
2    steps = [one(g)]
3    for i in 1:n
4        push!(steps, mod(steps[end] * g, p))
5    end
6    return steps
7 end
```

```
collision (generic function with 1 method)

1 function collision(a, b)
2    d = Dict(a[i] => i for i in eachindex(a))
3    for j in eachindex(b)
4         if haskey(d, b[j])
5             return d[b[j]], j
6         end
7    end
8 end
```

```
shanks_discrete_log (generic function with 1 method)

1 function shanks_discrete_log(a, g, p)
2    n = isqrt(p) + 1
3    i, j = collision(baby_steps(g, n, p), mod.(a .* giant_steps(g, n, p), p))
4    return i - 1 + (j - 1) * n
5 end
```

```
shanks_x = 8
1 shanks_x = shanks_discrete_log(3, g, p)
```

```
1 fast_mod_power(g, shanks_x, p)
```

► Quelle est la complexité?

Diffie-Hellman 🖘

Étant donné un nombre premier p et une racine primitive g modulo p, Alice (resp. Bob) génère un nombre secret a (resp. b). Ils communique ensuite publiquement A et B.

$$A \equiv g^a \pmod{p}$$
 $B \equiv g^b \pmod{p}$

$$A' \equiv B^a \pmod{p}$$
 $B' \equiv A^b \pmod{p}$

▶ What is the relation between A' and B' ?

Voir [HPS14; Section 2.3]

Utils =

```
▶[2, 3, 5, 7]

1 Primes.primes(10)
```

```
Precompiling DataFrames...

1769.3 ms StringManipulation
18430.0 ms PrettyTables
42220.8 ms DataFrames
3 dependencies successfully precompiled in 63 seconds. 30 already precompile
d.

Precompiling Luxor...
653.3 ms Bzip2_jll
661.4 ms Libgpg_error_jll
697.6 ms Libiconv_jll
760.4 ms XZ_jll
701.8 ms FreeType2_jll
697.2 ms Libgrypt_jll
682.0 ms Libtiff_jll
759.8 ms XML2_jll
523.5 ms XSLT_jll
735.0 ms Gettext_jll
932.1 ms Fontconfig_jll
664.6 ms Glib_jll
1241.6 ms Xorg_libXcb_jll
533.8 ms Xorg_libXext_jll
674.1 ms Xorg_libXext_jll
674.1 ms Xorg_libXext_jll
674.3 ms Xorg_libXext_jll
674.1 ms Xorg_libXext_jll
674.3 ms Cairo_jll
593.8 ms Cairo_jll
599.4 ms HarfBuzz_jll
599.4 ms HarfBuzz_jll
599.4 ms Pango_jll
688.6 ms Pango_jll
```

```
import DocumenterCitations
    Precompiling DocumenterCitations...
                                                                              3
        477.2 ms
       1271.7 ms
      25804.5 ms
      3217.5 ms

✓ DocumenterCitations

      8 dependencies successfully precompiled in 30 seconds. 60 already precompile
    Precompiling ParsersExt...
        529.8 ms
      1 dependency successfully precompiled in 1 seconds. 9 already precompiled.
slider_a =
 1 slider_a = @bind a Slider(1:100, default=11, show_value = true)
slider_b = 13
 1 slider_b = @bind b Slider(1:100, default=13, show_value = true)
slider_n = 5
 1 slider_n = @bind n Slider(1:100, default=5, show_value = true)
abn_picker =
                                                   b
                                                       β
                                                                           n
                          a
                             \alpha
                      \supset 11
                                                \supset 13
                              1
                                                       3
gp_picker =
g = -
                                                        \longrightarrow 11
 1 gp_picker = HAlign(
       md"'g' = $(@bind g Slider(2:(p-1), default = 2, show_value = true))",
       md"'p' = $p_picker",
 4)
power_slider = 251
 power_slider = @bind power Slider(1:10000, default = 256, show_value = true)
```

```
draw_fib (generic function with 2 methods)
   function draw_fib(n, size = 400)
        f = [0, 1, 1]
        for i in 3:(n+1)
            push!(f, f[end] + f[end - 1])
        scale = div(size, 2maximum(f[end-1]))
        #Luxor.scale(scale)
        colors = distinguishable_colors(n)
        if iseven(n)
            \Delta x = f[end]
            \Delta y = f[end - 1]
       else
            \Delta x = f[end - 1]
            \Delta y = f[end]
        end
        left_most = sum(f[i] for i in 1:(n+1) if mod(i, 4) == 1; init = 0)
        up\_most = sum(f[i] for i in 1:(n+1) if mod(i, 4) == 0; init = 0)
        shift = Point(left_most - \Delta x / 2, up_most - \Delta y / 2)
        pos(x, y) = scale * (Point(x, y) + shift)
        @draw begin
            x = 0
            y = 0
            j = 1
            for i in 2:(n+1)
                left = x
                if isodd(i)
                     if iseven(div(i - 1, 2))
                         left -= f[i]
                     else
                         left += f[i - 1]
                     end
                end
                up = y
                if iseven(i)
                    if iseven(div(i, 2))
                         up -= f[i]
                    else
                         up += f[i-1]
                    end
                end
                sethue(colors[i - 1])
                setopacity(0.6)
                rect(pos(left, up), scale * f[i], scale * f[i], action=:fill)
                setopacity(1)
                sethue("black")
                fontsize(div(scale * f[i], 2))
                text(string(f[i]), pos(left + f[i] / 2, up + f[i] / 2), halign =
                :center, valign = :middle)
```

```
x = min(x, left)
                y = min(y, up)
           end
        end \Delta x * scale \Delta y * scale
fib_picker = -
 1 fib_picker = @bind fib_n Slider(1:12, default = 10, show_value = true)
p_picker = -
 1 p_picker = @bind p Slider(primes(20), default = 11, show_value = true)
qa (generic function with 2 methods)
 1 include("utils.jl")
biblio =
▶ CitationBibliography("/home/runner/work/LSINC1113/LSINC1113/Lectures/biblio.bib", AlphaSt
 1 biblio = load_biblio!()
① Loading bibliography from `/home/runner/work/LSINC1113/LSINC1113/Lectures/bibli
   o.bib`...

    ⊗ Entry west2022Introduction is missing the publisher field(s).

    Loading completed.

cite (generic function with 1 method)
 1 cite(args...) = bibcite(biblio, args...)
refs (generic function with 1 method)
 1 refs(keys) = bibrefs(biblio, keys)
```