Лекция 1

Магнитное поле - это особый вид материи, который создается движущимися зарядами и действут на движ. в этом поле электрические заряды.

$$[B] =$$
Тл

Сила Лоренца

$$\vec{F} = q\vec{E} + q[\vec{v}\vec{B}]$$

Магнитное поле в веществе

Процесс изменения состояния магнетика во внешнем магнитном поле называют намогничиванием.

$$\mu = \frac{\vec{B}}{\vec{B_0}}$$
 - магнитная проницаемость вещества.

Магнетики:

- 1. Диамагнетики ($\mu < 1$)
- 2. Парамагнетики ($\mu > 1$)
- 3. Фарромагнетики ($\mu >> 1$)

Доменная структура - это остаточная намогниченность.

Электромагнитная индукция

Если поток вектора магнитной индукции, пронизывающий замкнутый, проводящий контур меняется, то в контуре возникает электрический ток (индукционный ток).

Потоком вектора магнитной индукции (магнитным потоком) через малую поверхность площадью dS называется скалярная физическая величина, равная

$$d\Phi = \vec{B} \cdot d\vec{S}$$

где

$$d\vec{S} = dS \cdot \vec{n}$$

 \vec{n} — единичный вектор нормали к площади.

Учитывая угол α между \vec{B} и \vec{n} :

$$d\Phi = B \, dS \cos \alpha$$

- **Увеличение потока** $\frac{d\Phi}{dt}>0$ вызывает E<0, т.е. индукционное поле B_i направлено навстречу внешнему полю, поток которого Φ_B .

 Уменьшение потока $\frac{d\Phi}{dt}<0$ вызывает E>0, т.е. совпадает с направлением внешнего
- поля, поток которого Φ_B .

Важное замечание

ВАЖНО: Закон Фарадея универсален, так как не зависит от способа изменения магнитного поля.

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{d(BS)}{dt} = -\frac{d(BS\cos\alpha)}{dt}$$

Поток магнитной индукции можно менять следующими способами:

- 1. Изменять площадь рамки.
- 2. Вращать рамку.
- 3. Изменять внешнее магнитное поле.