Proof of Dijkstra's Algorithm - A Deeper Dive

This deck unpacks some of the details in the proof of Dijkstra's algorithm given in class

Shortest paths in a graph with cycles and nonnegative weights Def: $\delta(s, v) = \text{minimum distance from } s \text{ to } v$.

Challenge: The same recurrence holds, but there is no obvious order in which to compute the recurrence if the graph has cycles.

Dijkstra's algorithm.

• Maintain a set of explored nodes S for which we know $u.d = \delta(s,u)$. Initialize $S = \{s\}, s.d = 0, v.d = \infty$

Key lemma: Suppose $u.d = \delta(s,u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s,v)$, where v is the vertex with minimum v.d in V-S.

So this v can be added to S, and we then repeat

Dijkstra's Algorithm

```
Dijkstra(G,s):
for each v \in V do
      v.d \leftarrow \infty, v.p \leftarrow nil, v.color \leftarrow white
s, d \leftarrow 0
create a min priority queue Q on V with d as key
while Q \neq \emptyset
      u \leftarrow \texttt{Extract-Min}(Q)
      u.color \leftarrow black
      for each v \in Adj[u] do
            if v.color = white and u.d + w(u,v) < v.d then
                  v.p \leftarrow u
                  v.d \leftarrow u.d + w(u,v)
                  Decrease-Key(Q, v, v.d)
```

Relax all(u, v) when u gets added to S

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

- Note that the red edges were relaxed when their sources were added to S
 (turning them black), and they will not be relaxed any more in the future
 (discussed in the DAG case)
- Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with a shorter distance than the current v.d was found. If v.d gets reduced further in later steps, the relaxation must come from some edge that is currently outside of S (non-red edge from a white vertex to v).

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

Pf. (by contradiction)

Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with distance v.d was found. So always have $v.d \ge \delta(s,v)$. Thus if $v.d \ne \delta(s,v)$ then $v.d > \delta(s,v)$ --- \bullet .

v.d is the smallest among nodes not in \mathcal{S}

A shortest path from s to from v

- ullet Consider a shortest path P from s to v, shown in the right graph and mapped to the left
 - Suppose $x \to y$ is the first edge on P that takes P out of S.
 - By our definition, it is possible that y = v and x = u

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

Pf. (by contradiction)

Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with distance v.d was found. So always have $v.d \ge \delta(s,v)$. Thus if $v.d \ne \delta(s,v)$ then $v.d > \delta(s,v)$ --- \bullet .

v.d is the smallest among nodes not in \mathcal{S}

A shortest path from s to from v

- ullet Consider a shortest path P from s to v, shown in the right graph and mapped to the left
 - P is shortest path, its subpath (s, ..., y) and (y, ..., v) must also be the shortest. According to the cut and paste argument, $\delta(s, v) = \delta(s, y) + \delta(y, v)$ --- 2
 - $\delta(s, v) \ge \delta(s, y)$, assuming nonnegative weights --- \bullet

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

Pf. (by contradiction)

Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with distance v.d was found. So always have $v.d \ge \delta(s,v)$. Thus if $v.d \ne \delta(s,v)$ then $v.d > \delta(s,v)$ --- \bullet .

v.d is the smallest among nodes not in $\mathcal S$

A shortest path from s to from v

- ullet Consider a shortest path P from s to v, shown in the right graph and mapped to the left
 - P is a shortest path, so its subpath (s, ..., x, y) must also be a shortest path. According to the cut and paste argument, $\delta(s, y) = \delta(s, x) + w(x, y)$ --- Φ
 - Since $x \in S$, we have $x.d = \delta(s,x)$, so $\delta(s,y) = x.d + w(x,y)$ ---- **5**.

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

Pf. (by contradiction)

Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with distance v.d was found. So always have $v.d \ge \delta(s,v)$. Thus if $v.d \ne \delta(s,v)$ then $v.d > \delta(s,v)$ --- \bullet .

v.d is the smallest among nodes not in \mathcal{S}

A shortest path from s to from v

- Consider a shortest path P from s to v, shown in the right graph and mapped to the left
 - In the left graph, the edge $x \to y$ has been relaxed, so $y.d \le x.d + w(x,y)$ --- 6.

After each round of relaxation, $j.d = \min_{i:(i,j)\in E}\{i.d + w(i,j)\}\$, so $j.d \leq i.d + w(i,j),(i,j) \in E$

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

Pf. (by contradiction)

Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with distance v.d was found. So always have $v.d \ge \delta(s,v)$. Thus if $v.d \ne \delta(s,v)$ then $v.d > \delta(s,v)$ --- \bullet .

v.d is the smallest among nodes not in \mathcal{S}

A shortest path from s to from v

ullet Consider a shortest path P from s to v, shown in the right graph and mapped to the left

contradicting fact that v.d is the smallest in V-S.

Dijkstra's Algorithm: Correctness (Original Slide)

Lemma. Suppose $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S have been relaxed. Then $v.d = \delta(s, v)$, where v is the vertex with minimum v.d in V - S.

Pf. (by contradiction)

Note that v.d starts $= \infty$. Whenever v.d is updated, it's because a path with distance v.d was found. So always have $v.d \ge \delta(s,v)$. Thus if $v.d \ne \delta(s,v)$ then $v.d > \delta(s,v)$.

- Consider the shortest path P from s to v.
 - Suppose $x \rightarrow y$ is the first edge on P that takes P out of S.
 - Since $x \in S$, we have $x \cdot d = \delta(s, x)$.

- The edge $x \to y$ has been relaxed, so $y.d \le x.d + w(x,y)$.
- P is shortest path, its subpath (s, ..., x, y) must also be shortest, so $x. d + w(x, y) = \delta(s, y)$.
- $\delta(s, y) \le \delta(s, v)$, assuming nonnegative weights

$$v. d > \delta(s, v) \ge \delta(s, y) = x. d + w(x, y) \ge y. d,$$

contradicting fact that v.d is the smallest in V-S.