Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №2 Вариант 9

Выполнил:

Прокофьев Арсений Александрович Р3213

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов

1 вычислительная часть. Решение нелинейного уравнения

$$f(x) = -1.8 * x^3 - 2.94 * x^2 + 10.37 * x + 5.38$$

1) Графически:

2) Интервалы изоляции корня:

Для левого корня: [-3.2, -3]

Для центрального корня: [-0.6, -0.4]

Для правого корня: [1.8, 2.0]

3) Уточнение корней с точность eps = $10^{(-2)}$ = 0.01

Метод половинного деления - крайний правый корень Метод простой итерации - крайний левый корень Метод секущих - центральный корень

Уточнение корня уравнения методом половинного деления

№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
1	1.8	2.0	1.9	4.023	-0.04	2.123	0.2
2	1.9	2.0	1.95	2.123	-0.04	1.075	0.1
3	1.95	2.0	1.975	1.075	-0.04	0.526	0.05
4	1.975	2.0	1.988	0.526	-0.04	0.245	0.025
5	1.988	2.0	1.994	0.245	-0.04	0.103	0.012
6	1.994	2.0	1.9975	0.103	-0.04	0.032	0.006 <eps< td=""></eps<>

$$-1.8 * x^3 - 2.94 * x^2 + 10.37 * x + 5.38 = 0$$

$$x = (1.8x^3 + 2.94x^2 - 5.38) / 10.37$$

$$fi(x) = (1.8x^3 + 2.94x^2 - 5.38) / 10.37$$

$$fi'(x) = (5.4x^2 + 5.88x) / 10.37$$

На отрезке [-3.2, -3] условие сходимости не выполняется.

Введем параметр h.

$$(-1.8*x^3 - 2.94*x^2 + 10.37*x + 5.38)*h = 0$$
 $x = (-1.8x^3 - 2.94x^2 + 10.37*x + 5.38)*h + x$ $fi(x) = (-1.8x^3 - 2.94x^2 + 10.37*x + 5.38)*h + x$ $fi'(x) = 1 + h*(-5.4x^2 - 5.88x + 10.37)$ $h = 1/(max[a,b](f'(x))) = 1/26.11 = 0.0383$ На отрезке $[-3.2, -3]$ выполняется условие $ch = 0.0383 - |fi'(x)| < 0.5 < 1$ $fi(x) = (1.8x^3 + 2.94x^2 + 10.37*x + 5.38)*0.0383 + x$

Уточнение корня уравнения методом простой итерации

№ итера- ции	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	-3.2	-3.1589	0.024	0.041 > eps
2	-3.1589	-3.15798	0.001	0.0092 < eps

Уточнение корня уравнения методом секущих

	№ итера- ции	X_{k-1}	χ_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
Ī	1	0	-0.4	-0.477	-0.04	0.077 > eps
Ī	2	-0.4	-0.477	-0.48	-0.07591	0.003 < eps

2 часть. Решение системы нелинейных уравнений

Задание:

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
 - 3. Для метода простой итерации проверить условие сходимости метода.
 - 4. Подробные вычисления привести в отчете.

0	sin(x + y) = 1.5x - 0.1	Метод Ньютона
9	$\begin{cases} x^2 + 2y^2 = 1 \end{cases}$	

2.1.2 Решение системы нелинейных уравнений методом Ньютона

А далее вычислять на каждой итерации:

$$x_{i+1} = x_i + \Delta x_i \quad \mathsf{и} \quad y_{i+1} = y_i + \Delta y_i \,,$$

где x_i, y_i - текущее приближение к корню,

 x_{i+1}, y_{i+1} - последующее приближение,

 Δx_i , Δy_i – приращения к очередным приближениям.

Процесс вычисления заканчивается при выполнении следующих условий:

$$|x_{i+1} - x_i| \le \varepsilon$$
, $|y_{i+1} - y_i| \le \varepsilon$

$$\begin{cases} \sin(x+y) = 1,5x - 0,1\\ x^2 + 2y^2 = 1 \end{cases}$$

Якобиан

$$\begin{vmatrix} \cos(x+y) - \frac{3}{2} & \cos(x+y) \\ 2x & 4y \end{vmatrix}$$

Начальные приближения: x0=0,5; y0=0,5; Точность: 0.01

х	у	X(i)-X(i+1)	Y(i)-Y(i+1)
0,5	0,5	0,5	0,5
0,711	0,52	0,211	0,02
0,6886	0,51297	0,0224	0,00703
0,6883	0,51293	0,0003 <eps< td=""><td>0,00004<eps< td=""></eps<></td></eps<>	0,00004 <eps< td=""></eps<>

Программная реализация задачи:

https://github.com/MakeCheerfulInstall/Computational-Math-2024/tree/main/P3213/Prokofiev_367502/lab2

Вывод

В результате выполнения данной лабораторной работы были изучены численные методы решения нелинейных уравнений и их систем. У каждого из них есть свои достоинства и недостатки.