

Application No. 10/633,893
Amendment dated July 29, 2005
Reply to Office Action of April 29, 2005

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A glass composition comprising the following glass ingredients:

62.5 to 75 % by weight of SiO₂;

1 to 16% [[20 %]] by weight of Al₂O₃;

an amount of B₂O₃ sufficient to change the fusibility of the glass composition but not more than [[0 to]] 8 % by weight [[of B₂O₃]];

SiO₂ + Al₂O₃ + B₂O₃ accounting for 80.4 to 90 % by weight;

a total of 0 to [[20]]15% by weight, zero inclusive, of R₂O compounds, where R = Li, Na, and K; and

a total of 0 to 15 % by weight, zero inclusive, of TiO₂ + ZrO₂ + Ln_xO_y, where Ln_xO_y represents at least one compound selected from the group consisting of lanthanoid metal oxides, Y₂O₃, Nb₂O₅, and Ta₂O₅.

2. (Original) A glass composition as claimed in claim 1, further comprising the following glass ingredients:

a total of 12 % or less by weight of one or two or more R'O compounds, where R' = Mg, Ca, Sr, Ba, and Zn.

3. (Currently Amended) A glass substrate formed of a glass composition comprising the following glass ingredients:

62.5 to 75 % by weight of SiO₂;

1 to [[20]]16% by weight of Al₂O₃;

an amount of B₂O₃ sufficient to change the fusibility of the glass substrate but not more than [[0 to]] 8 % by weight [[of B₂O₃]];

Application No. 10/633,893
Amendment dated July 29, 2005
Reply to Office Action of April 29, 2005

$\text{SiO}_2 + \text{Al}_2\text{O}_3 + \text{B}_2\text{O}_3$ accounting for 80.4 to 90 % by weight;
a total of 0 to 15 % [[20 %]] by weight, zero inclusive, of R_2O compounds, where
 $\text{R} = \text{Li}, \text{Na}, \text{and K};$ and
a total of 0 to 15 % by weight, zero inclusive, of $\text{TiO}_2 + \text{ZrO}_2 + \text{Ln}_x\text{O}_y$, where
 Ln_xO_y represents at least one compound selected from the group consisting of lanthanoid
metal oxides, Y_2O_3 , Nb_2O_5 , and Ta_2O_5 .

4. (Original) A glass substrate as claimed in claim 3, further comprising the
following glass ingredients:

a total of 12 % or less by weight of one or two or more $\text{R}'\text{O}$ compounds, where R'
= Mg, Ca, Sr, Ba, and Zn.

5. (Original) A glass substrate as claimed in claim 3, wherein the glass
substrate is not subjected to strengthening.

6. (Original) A glass substrate as claimed in claim 3, wherein the glass
substrate is a substrate for a magnetic disk.

7. (Original) A glass substrate as claimed in claim 3, wherein the glass
substrate has a fracture toughness K_c of $0.90 \text{ MPa} / \text{m}^{1/2}$ or greater.

8. (Original) A glass substrate as claimed in claim 3, wherein the glass
substrate has SiO_2 elution A in a range of from 10 to 450 ppb per 2.5-inch disk.

9. (Original) A glass substrate as claimed in claim 3, wherein the glass
substrate has a fracture toughness K_c of $0.90 \text{ MPa} / \text{m}^{1/2}$ or greater, and has SiO_2 elution A
in a range of from 10 to 450 ppb per 2.5-inch disk, with a ratio of the SiO_2 elution A to the
fracture toughness K_c in a range of from 3 to 500.

10. (Original) A glass substrate as claimed in claim 3, wherein the glass
substrate has alkali elution B of 350 ppb or lower per 2.5-inch disk.

Application No. 10/633,893
Amendment dated July 29, 2005
Reply to Office Action of April 29, 2005

11. (Original) A glass substrate as claimed in claim 3, wherein the glass substrate is not subjected to strengthening, and has a specific elastic modulus E / ρ of 30 or higher.

12. (Original) A glass substrate as claimed in claim 3, wherein the glass substrate is not subjected to strengthening, and has a Vickers hardness Hv in a range of from 500 to 700.

13. (Original) A glass substrate as claimed in claim 3, wherein the glass substrate is not subjected to strengthening, and has a linear thermal expansion coefficient α in a range of from $40 \times 10^{-7} / ^\circ\text{C}$ to $90 \times 10^{-7} / ^\circ\text{C}$.

14. (Original) A glass substrate as claimed in claim 3, wherein the glass substrate exhibits a weight reduction factor lower than 8.0 % when kept in a melted state at 1 500 °C for 24 hours.

15. (Original) A glass substrate as claimed in claim 3, wherein the glass substrate has a glass transition temperature T_g of 600 °C or lower.

16. (Original) A glass substrate as claimed in claim 3, wherein the glass substrate has a liquid phase temperature T_L of 1 300 °C or lower.

17. (Original) A glass substrate as claimed in claim 3, wherein a temperature $T_{\log \eta = 2}$ at which the glass substrate has a melt viscosity of $\log \eta = 2$ is 1 550 °C or lower.

18. (Original) A magnetic disk substrate comprising a glass substrate as claimed in claim 3 and a magnetic film formed on at least one surface thereof.

19. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate further comprises the following glass ingredients:

Application No. 10/633,893
Amendment dated July 29, 2005
Reply to Office Action of April 29, 2005

a total of 12 % or less by weight of one or two or more R'O compounds, where R' = Mg, Ca, Sr, Ba, and Zn.

20. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate is not subjected to strengthening.

21. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate has a fracture toughness Kc of 0.90 MPa / m^{1/2} or greater.

22. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate has SiO₂ elution A in a range of from 10 to 450 ppb per 2.5-inch disk.

23. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate has a fracture toughness Kc of 0.90 MPa / m^{1/2} or greater, and has SiO₂ elution A in a range of from 10 to 450 ppb per 2.5-inch disk, with a ratio of the SiO₂ elution A to the fracture toughness Kc in a range of from 3 to 500.

24. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate has alkali elution B of 350 ppb or lower per 2.5-inch disk.

25. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate is not subjected to strengthening, and has a specific elastic modulus E / ρ of 30 or higher.

26. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate is not subjected to strengthening, and has a Vickers hardness Hv in a range of from 500 to 700.

27. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate is not subjected to strengthening, and has a linear thermal expansion coefficient α in a range of from 40×10^{-7} / °C to 90×10^{-7} / °C.

Application No. 10/633,893
Amendment dated July 29, 2005
Reply to Office Action of April 29, 2005

28. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate exhibits a weight reduction factor lower than 8.0 % when kept in a melted state at 1 500 °C for 24 hours.

29. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate has a glass transition temperature T_g of 600 °C or lower.

30. (Original) A magnetic disk substrate as claimed in claim 18, wherein the glass substrate has a liquid phase temperature T_L of 1 300 °C or lower.

31. (Original) A magnetic disk substrate as claimed in claim 18, wherein a temperature T_{log η = 2} at which the glass substrate has a melt viscosity of log η = 2 is 1 550 °C or lower.