Photo Realistic WCT

- Use exact WCT architecture as before
 - ...but use max un-pooling in upsample layers, instead of transpose convolutions (meh)
 - ...and a smoothing constraint applied as an optimization on the result
 - Notation is borrowed from graph manifold rankings:

$$\arg\min_{R} \frac{1}{2} \sum_{i,j \in C}^{N,M} e^{-\frac{\|I_{i}^{c} - I_{j}^{c}\|^{2}}{\sigma_{i,j}^{2}}} \left\| \frac{R_{i}}{\sqrt{D_{ii}}} - \frac{R_{j}}{\sqrt{D_{jj}}} \right\|^{2} + \left(\frac{1}{\alpha} - 1\right) \sum_{i}^{N} \sum_{j}^{M} \left\| R_{i,j} - Y_{i,j} \right\|^{2}$$

Smoothing

 I^c is the content image, Y is the stylized image in graph structure

R is the desired result in graph structure

$$\arg\min_{R} \frac{1}{2} \underbrace{\sum_{i,j \in 1\Delta}^{N,M} \left[e^{-\frac{\|I_i^c - I_j^c\|^2}{\sigma_{i,j}^2}} \right]^2}_{i,j \in 1\Delta} \left\| \frac{R_i}{\sqrt{D_{ii}}} - \frac{R_j}{\sqrt{D_{jj}}} \right\|^2 + \underbrace{\left(\frac{1}{\alpha} - 1\right)}_{i} \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{M} \left\| R_{i,j} - Y_{i,j} \right\|^2}_{i}$$

 $\mathbf{W}_{i,j}$ affinity of content image as graph edges normalized by std of neighboring pixels (1 Δ) known as "Matting Affinity"

$$D_{ii} = \sum_{\forall j} e^{-\frac{\|I_i^e - I_j^e\|^2}{\sigma_{i,j}^2}} = \sum_{\forall j} W_{i,j}$$

D is a diagonal matrix (degree matrix), summed from W

$$\hat{\mathbf{R}} = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}})^{-1} \mathbf{Y}$$

closed form solution for smoothed result (I is identity matrix)

Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz, A Closed-form Solution to Photorealistic Image Stylization, 2018

58

What is W? Connectivity of pixels as graph

10 11

 \mathbf{I}^{c}

10

14

11

15

12

16

sigma neighborhood

59

 $\frac{1}{3}$

 $\overline{4}$ 15

What is W, Y, and R?

sum over

each

row

Laplacian of graph

- D is diagonal and easily invertible
- W is sparse and efficiently inverted after multiplications
- Y is the stylized image pixels on a diagonal matrix
- R can be converted to an image by returning the diagonal

How to make this graph?

sklearn.feature_extraction.image.grid_to_graph

sklearn.feature_extraction.image.grid_to_graph(n_x , n_y , n_z =1, mask=None, return_as=<class 'scipy.sparse.coo.coo_matrix'>, dtype=<class 'int'>)

[source]

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parameters:

n_x : *int*

Dimension in x axis

 $n_y: int$

Dimension in y axis

n_z : int, optional, default 1

Dimension in z axis

mask : ndarray of booleans, optional

An optional mask of the image, to consider only part of the pixels.

return_as : np.ndarray or a sparse matrix class, optional

The class to use to build the returned adjacency matrix.

dtype : dtype, optional, default int

The data of the returned sparse matrix. By default it is int

Similar Architecture as Before

 \mathbf{Y} no unpooling

 \mathbf{R}_{no} unpooling

(a) Style

(b) Content

(c) WCT [10]

(d) PhotoWCT

R

(e) WCT + smoothing

63

(b) Content (a) Style (c) Gatys et al. [8] (e) WCT [10] (d) Huang et al. [22] (f) Reinhard et al. [1] (g) Pitié et al. [2] (h) Luan et al. [9] (i) Ours

Apply Masking to Different Segments of Image

	Paper	Loss	Description	
	Gatys et al. [4]	Gram Loss	The first proposed style loss based on Gram-based style representations.	
	Johnson et al. [43]	Perceptual Loss	Widely adopted content loss based on perceptual similarity.	
۱	Berger and Memisevic [29]	Transformed Gram Loss	Computing <i>Gram Loss</i> over horizontally and vertically translated features. More effective at modelling style with symmetric properties, compared with <i>Gram Loss</i> .	
	Li et al. [51]	Mean-substraction Gram Loss	Subtracting the mean of feature representations before computing <i>Gram Loss</i> . Eliminating large discrepancy in scale. Effective at multi-style transfer with one single network.	
	Zhang and Dana [52]	Multi-scale Gram Loss	Computing Gram Loss over multi-scale features. Eliminating a few artefacts.	Model
	Li et al. [38]	MMD Loss with Different Kernels	Gram Loss is equivalent to MMD Loss with Second Order Polynomial Kernel. MMD Loss with Linear Kernel is capable of comparable quality with Gram Loss, but with lower computational complexity.	storeod spic
CAVE L71 Rose L71	Li et al. [38]	BN Loss	Achieving comparable quality with <i>Gram Loss</i> , but conceptually clearer in theory.	34
	Risser et al. [40]	Histogram Loss	Matching the entire histogram of feature representations. Eliminating instability artefacts, compared with single <i>Gram Loss</i> .	
rtralt CHILCH	Li et al. [41]	Laplacian Loss	Eliminating distorted structures and irregular artefacts.	
-	Li and Wand [42]	MRF Loss	More effective when the content and style are similar in shape and perspective, compared with <i>Gram Loss</i> .	
	Champandard [65]	Semantic Loss	Incorporating a segmentation mask over MRF Lass. Enabling a more accurate match.	
G	Gu et al. [54]	Reshuffle Loss	Connecting both global and local style losses. Capable of preserving global appearance while avoiding distortions in local style patterns.	- 2018 WCT
	Li and Wand [48]	Adversarial Loss	Computed based on PatchGAN. Utilising contextual correspondence between patches. More effective at preserving coherent textures in complex images.	
	Jing et al. [61]	Stroke Loss	Achieving continuous stroke size control while preserving stroke consistency.	
	Wang et al. [62]	Hierarchical Loss	Enabling a coarse-to-fine stylisation procedure. Capable of producing large but also subtle strokes for high-resolution content images.	
	Liu et al. [63]	Depth Loss	Preserving depth maps of content images. Effective at retaining spatial layout and structure of content images, compared with single <i>Gram Loss</i> .	
Y. Ji Con		Temporal Consistency Loss	Designed for video style transfer. Penalising the deviations along point trajectories based on optical flow. Capable of maintaining temporal consistency among stylised frames.	65
Le	Chen et al. [70]	Dispurity Loss	Designed for stereoscopic style transfer. Penalising bidirectional disparity. Capable of consistent strokes for different views.	

Evaluation

Evaluation

- Qualitative
 - Show a few cherry picked results in the paper
 - ...preferred by researchers who care little about the merits of evaluation but need a publication
 - User testing:
 - Single choice: Pick preferred style from a list, which method has more votes
 - Two-up random testing: Force users to choose preferred style in two styled images, rank final images
 - Infinite Rating Scale: Place Images along a continuous rating scale, allowing infinite precision (my Masters Thesis), Allows for similarity measure

Can achieve approximate rankings

Swapped Face Detection using Deep Learning and Subjective Assessment

Xinyi Ding1*, Zohreh Raziel², Eric C. Larson¹, Eli V. Olinick², Paul Krueger³ and Michael Hahsler²

Image Preference Ranking

Evaluation from EC Larson Master's Thesis

The CSIQ images were subjectively rated based on a linear displacement of the images across four calibrated LCD monitors placed side-by-side with equal viewing distance to the observer. The database contains 5000 subjective ratings from 35 different observers. Ratings were corrected for personal bias using "agreement" scrolls of images.

Evaluation

Quantitative

- There is no concrete, reliable quantitative measure
- That would be a human in the loop
- Any paper claiming their loss function is more minimized than others does not have respect for the perception of a human being's ability to discern art

Benchmarks

No evaluation results yet. Help compare methods by <u>submit evaluation metrics</u>.

Style Transfer Applications and Other Domains

Data Augmentation

 Current image augmentation can make robust to spatial location, rotation, skew, etc.

Perhaps style augmentation can achieve color, texture

invariance?

Current Applications

- Social Media: Image Filtering and Communication
- Architecture and Interior Design
- Digital Art and Photography (Adobe)
- Gaming/Movie Industry (NVIDIA)

Artistic style transfer for videos

Manuel Ruder Alexey Dosovitskiy Thomas Brox

University of Freiburg
Chair of Pattern Recognition and Image Processing

Audio Style Transfer

- Most works carry over on the audio spectrogram
- These works are lackluster, not really coherent
- Many open research questions
- One downside: most convolutions are handled as real numbers which makes little sense when applied the the STFT...

Audio Style Transfer with WaveNet

- WaveNet is an autoencoder for speech and music, capable of capturing many aspects of music from time domain samples
- FAIR Paper: Train single encoder, multiple decoders

State of the Art in Audio Transfer

FAIR results are compelling...

Supplementary audio samples to the paper:

A Universal Music Translation Network

Noam Mor, Lior Wolf, Adam Polyak, Yaniv Taigman Facebook AI Research

Lecture Notes for

Neural Networks and Machine Learning

Style Transfer: One Shot, Other Domains

Next Time:

Transfer Learning

Reading: None

