

Introduction to Machine Learning

Chapter 16: Random Forest cont.

Bernd Bischl, Christoph Molnar

Department of Statistics – LMU Munich Winter term 2017/18

- Single trees are highly interpretable
- Random Forests as an ensemble of many trees lose this feature
- Hence, contributions of a single covariate to the fit are difficult to evaluate
- Way out: variable importance measures

Measure based on permutations of OOB observations

- 1: After growing tree $\hat{b}^{[m]}(x)$, pass down OOB observations and record predictive accuracy.
- 2: Permute OOB observations of *j*th variable.
- 3: Pass down the permuted OOB observations and evaluate predictive accuracy again.
- 4: The loss of goodness induced by permutation is averaged over all trees and is used as a measure for the importance of the *j*th variable.

Measure based on improvement in split criterion

- 1: At each split in tree $\hat{b}^{[m]}(x)$ the improvement in the split criterion is attributed as variable importance measure for the splitting variable.
- 2: For each variable, this improvement is accumulated over all trees for the importance measure.

VARIABLE IMPORTANCE BASED ON PERMUTATIONS OF OOB OBSERVATIONS

Tree M

Inbag + oob of tree 1 Permuted oob obs. of x_1

	X ₁		Xp	у	ŷ
1	1.4			1	
2	2			0	
3	1.55	9	13	1	1
4	1.72	230	200	0	0
5	1.89			1	
:					
n	2.01	1	12	1	1

	X ₁		Xp	y	ŷ
1	1.4		1	1	1
2	2			0	
3	1.55	911	73	1	0
4	1.72			0	
5	1.89	23	6	1	1
1					
n	2.01			1	

	X ₁		Xp	y	ŷ
1	1.89		1	1	0
2	2			0	
3	1.4	38	13	1	0
4	1.72			0	
5	1.55	23	100	1	1
i					
n	2.01			1	

$$acc_{1, \text{ without permutation}} - acc_{1, \text{ with permutation}} = diff_1$$

$$acc_{1, \text{ without permutation}} - acc_{1, \text{ with permutation}} = diff_1$$
 $acc_{M, \text{ without permutation}} - acc_{M, \text{ with permutation}} = diff_M$

$$\frac{1}{M}\sum_{i=1}^{M} diff_i$$
 = variable importance for x_1

Figure: Two importance measures on iris.

iris_example (4 features)

Figure: RF importance as filters in mlr.

RANDOM FOREST: PROXIMITIES

- the "closeness" or "nearness" between pairs of cases.
- Algorithm
 - After a tree is grown, put all of the data down the tree.
 - If cases x_1 and x_2 are in the same terminal node through one tree increase their proximity by one.
 - At the end of the run of all trees, normalize the proximities by dividing by the number of trees.
- The proximities originally form a NxN matrix.
- Proximities are used in replacing missing data, locating outliers, and producing illuminating low-dimensional views of the data.

We can visualize our Proximities $P(x_i, x_j)$ for each $i \in \{1, ..., n\}$ example by MDS.

Our data contains 111 patterns obtained by bouncing sonar signals off a metal cylinder at various angles and under various conditions and 97 patterns obtained from rocks under similar conditions.

##		V53	V54	V55	V56	V57	V58	V59	V60	Class
##	1	0.0065	0.0159	0.0072	0.0167	0.0180	0.0084	0.0090	0.0032	R
##	2	0.0089	0.0048	0.0094	0.0191	0.0140	0.0049	0.0052	0.0044	R
##	3	0.0166	0.0095	0.0180	0.0244	0.0316	0.0164	0.0095	0.0078	R
##	4	0.0036	0.0150	0.0085	0.0073	0.0050	0.0044	0.0040	0.0117	R
##	5	0.0054	0.0105	0.0110	0.0015	0.0072	0.0048	0.0107	0.0094	R
##	6	0.0014	0.0038	0.0013	0.0089	0.0057	0.0027	0.0051	0.0062	R
##	7	0.0248	0.0131	0.0070	0.0138	0.0092	0.0143	0.0036	0.0103	R
##	8	0.0120	0.0045	0.0121	0.0097	0.0085	0.0047	0.0048	0.0053	R
##	9	0.0128	0.0145	0.0058	0.0049	0.0065	0.0093	0.0059	0.0022	R
##	10	0.0223	0.0179	0.0084	0.0068	0.0032	0.0035	0.0056	0.0040	R

We try to predict the type, based on signals obtained from a variety of different aspect angles, spanning 90 degrees for the cylinder and 180 degrees for the rock

We calculate the proximities $P(x_i, x_j)$ based on out-of-bag observations.

Now we can visualize proximities $P(x_i, x_j)$ by MDS, using as distance matrix D= 1 - P

ADAPTIVE NEAREST NEIGHBORS

Let $P(x, x_i) \in [0, 1]$ be the Proximity between the observation x and our original point x_i .

- For classification, the prediction will be the weighted greatest number of hits, which is proportional to the proximities $P(x, x_i)$.
- For a regression we can calculate the prediction of Random Forests at x as:
 - if every leaf node contains the same number of observations.

$$\hat{Y}_{RF}(x) = \frac{\sum_{n=0}^{n} P(x, x_i) Y_i}{\sum_{n=0}^{n} P(x, x_i)}$$

• if some leaf node contains the different number of observations, $P(x, x_i)$ is the percentage of trees where x and x_i fall into the same leaf node, and weights are inversely proportional for each tree to the number of samples in the leaf node where x_i falls into.

RANDOM FOREST: ADVANTAGES

- Easy to implement
- Can be applied to basically any model
- Easy to parallelize
- Often works well (enough)
- Enables variance analysis
- Integrated estimation of OOB error
- Can work on high-dimensional data
- Often not much tuning necessary

RANDOM FOREST: DISADVANTAGES

- Often suboptimal for regression
- Hard to interpret, especially interactions
- Does not really optimize loss aggressively
- No real way to adapt to problem (see e.g. loss in GBM, kernel in SVM)
- Implementations sometimes memory-hungry
- Prediction can be slow