Title

D. Zack Garza

Contents

1 Saturday, November 28: Introduction to $\infty\text{-categories}$

3

Contents 2

$1 \mid \substack{\mathsf{Saturday, November 28: Introduction to} \\ \infty\text{-categories}}$

Dealing with size issues: take a Grothendieck Universe \mathcal{U} : sets whose subsets are closed under all of the usual set operations (small).

Definition 1.0.1 (∞ -Category)

An ∞ -category \mathcal{C} is a (large) simplicial set \mathcal{C} such that any diagram of the form

admits the indicated lift, where Λ_i^n is an *i*-horn (a simplex missing the *i*th face) for 0 < i < n.

Remark 1.0.2: This is a specialized notion of a Kan complex, and in particular all ∞ -categories are Kan complexes. All inner horns are fillable, i.e. simplicial sets are *inner* Kan complexes. Different to Kan complexes, which include all i.

Definition 1.0.3 (Functors between ∞ -categories)

A ∞ -functor between two ∞ -categories is a map between simplicial sets.

Definition 1.0.4 (Nerve of a category)

Given an ordinary category \mathcal{C} , define the **nerve** of \mathcal{C} to be the simplicial set given by

$$N(\mathcal{C})_n := \{ \text{Functors } F : [n] \to \mathcal{C} \}$$

where [n] is the poset category on $\{1, 2, \dots, n\}$. So an n-simplex is a diagram of objects $X_0, \dots, X_n \in \text{Ob}(\mathcal{C})$ and a sequence of maps. This defines an ∞ -category, and there is a correspondence

$$\{ \text{ Functors } F: \mathcal{C} \to \mathcal{D} \} \iff \{ \infty \text{-Functors } \widehat{F}: N(\mathcal{C}) \to N(\mathcal{D}) \}.$$

Note that taking the nerve of a category preserves the usual categorical structure, since the objects are the 0-simplices and the morphisms are the 1-simplices.

Remark 1.0.5: For C an ∞ -category, we can define C_0 to be the "objects" and C_1 to be the "morphisms", although we don't have a good notion of composition yet. There will be boundary map: a 1-simplex has two boundary points, i.e. two objects $a, b \in C_0$, so we can think of this as a map $f: a \to b$ where $a = \partial_1 f, b = \partial_0 f^1$ are the first and second vertices respectively. We'll also have "degeneracy" maps going up from $C_0 \to C_1$, which we should think of as assigning identity morphisms to objects, or conversely that the identity morphism is the degenerate 1-simplex at an

¹This notation ∂_i denotes the boundary operator that drops the *i*th vertex.

object.

Definition 1.0.6 (Equivalence of Morphisms)

Given two morphisms $f,g:a\to b$ in an ∞ -category, we say $f\simeq g$ are **equivalent** iff there is a 2-simplex filling in the following diagram:

Remark 1.0.7: This turns out to be an equivalence relation. Note that in an ordinary category, if two morphisms are equivalent then they are already equal.