INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.12 - Electrónica III

Trabajo Práctico $N^{\circ}1$

Grupo 4

Bertachini, Germán	58750
Dieguez, Manuel	56273
Galdeman, Agustín	59827
LAGUINGUE, Juan Martín	57430

PROFESORES
DEWALD, Kevin
WUNDES, Pablo

Presentado el 5 de Septiembre de 2019

Índice

1.	. Ejercicio 3 - Implementación de módulos en verilog				
	1.1. ENCODER de 4 entradas	2			
	1.2. DEMUX de 4 salidas	2			
2.	Ejercicio 4 - Conversor a codigo de Gray	9			

1. Ejercicio 3 - Implementación de módulos en verilog

A continuación, se implementarán los circuitos pedidos en lenguaje verilog, comentando como fue su desarrollo e emplementación.

1.1. ENCODER de 4 entradas

Entrada			Salida				
D	C_1	C_0	O_3	O_2	o_1	O_0	
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	0	0	0	0	
0	1	1	0	0	0	0	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	

1.2. DEMUX de 4 salidas

	Enti	Salida			
D	C	B	A	S_1	S_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

$$A = I \overline{S_1} \overline{S_0}$$

$$A = I S_1 \overline{S_0}$$

$$A = I \overline{S_1} S_0$$

$$A = I S_1 S_0$$

$$S_0$$
 A_{AB}
 O_0
 O

$$S_0 = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D}$$

$$S_1$$
 A_B
 O_0
 O_1
 O_1
 O_1
 O_2
 O_3
 O_4
 O_4
 O_5
 O_5
 O_6
 O_6
 O_7
 O_8
 O_9
 O_9

$$S_0 = \overline{A}B\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D}$$

2. Ejercicio 4 - Conversor a codigo de Gray

Para esté ejercicio, realizamos el desarrollo de un circuito lógico capaz de convertir un número binario de 4 bits a su equivalente de código de Gray, esto resulta en la siguiente tabla de verdad:

Entrada				Salida			
X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

De la tabla de verdad obtenemos las siguientes ecuaciones en función de los mintérminos:

$$Y_4 = m_1 + m_2 + m_5 + m_6 + m_9 + m_{10} + m_{13} + m_{14}$$

$$Y_3 = m_2 + m_3 + m_4 + m_5 + m_{10} + m_{11} + m_{12} + m_{13}$$

$$Y_2 = m_4 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11}$$

$$Y_1 = m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15}$$

Que al reemplazar cada mintérmino por su correspondiente expresión obtenemos:

$$Y_4 = \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot X_2 \cdot X_3 \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + X_1 \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4}$$

$$Y_3 = \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot X_4 + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4} + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline$$

Tenemos unas funciones muy larga y como las tenemos expresadas en mintérminos podemos simplificarlas por medio del mapa de Karnaugh. Ésto nos da a lugar a los siguientes mapas de Karnaugh y funciones de salida simplificadas:

$$X_1X_2 \\ 00 \\ 01 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\$$

$$Y_4 = X_3 \cdot \overline{X_4} + \overline{X_3} \cdot X_4$$
 Mapa de Karnaugh y formula de Y_4

$$Y_3 = X_2 \cdot \overline{X_3} + \overline{X_2} \cdot X_3$$
 Mapa de Karnaugh y formula de Y_3

$$X_1X_2 \\ 00^2 01 & 11 & 10$$
 $X_3X_4 \\ 00 & 0 & 0 & 1 & 1$
 $01 & 0 & 0 & 1 & 1$
 $01 & 0 & 0 & 1 & 1$
 $00 & 0 & 0 & 1 & 1$

$$Y_2 = X_1 \cdot \overline{X_2} + \overline{X_1} \cdot X_2$$
 Mapa de Karnaugh y formula de Y_2

 $Y_1 = X_1$ Mapa de Karnaugh y formula de Y_1

De los valores obtenidos podemos realizar el siguiente circuito conformado por compuertas OR, AND y NOT:

Figura 1: Implementación del conversor a código de Gray