Cheng Li

1308 W. Main St., Urbana, Illinois 61801

cli99.netlify.com

☑ cli99@illinois.edu

? github.com/rai-project

1 4194967797

OBJECTIVE

Full-time position

RESEARCH INTEREST

My research lies in the field of GPU-accelerated applications, with an emphasis on Deep Learning (DL). My work has focused on understanding and optimizing Deep Learning workloads. In the process, I have developed a number of open-source tools to benchmark, profile, and summarize Deep Learning training and inference across hardware and software stacks.

EDUCATION

University of Illinois Urbana-Champaign

Champaign, IL

Ph.D. in Computer Science

Expected August 2020

GPA: 3.95/4.0

Thesis: Performance Benchmarking, Analysis and Optimization of Deep Learning Inference

University of Michigan

Ann Arbor, MI

M.S. in Computer Science and Engineering

May 2015

GPA: 3.96/4.0

Shanghai Jiao Tong University

Shanghai, China

B.S. in Electrical Engineering

August 2013

GPA: 3.85/4.0

University of Michigan

Ann Arbor, MI

B.S. in Computer Engineering

May 2013

GPA: 3.63/4.0

WORK EXPERIENCE

Alibaba Group

Research Intern

Sunnyvale, CA

May - August 2019

o Extended MLModelScope with automatic across-stack characterization capability.

- Leveraged MLModelScope to benchmark and characterize public, MLPerf and AI Matrix models across systems of interest.
- Performed model/framework/system advising using the data collected, and explore its applicability in the Alibaba Cloud.

IBM Thomas J. Watson Research Center

Yorktown Heights, NY

Research Intern

May - August 2018

- Evaluated existing techniques for Deep Learning performance estimation on different models and systems, and understood the sources of inaccuracy.
- Developed a DL analysis tool that generates model benchmarks, finds patterns within models, and performs performance prediction for DL models across hardware.

9th Programming and Tuning Massively Parallel Systems and AI School

Barcelona, Spain *July* 2018

Teaching Assistant

o Designed GPU labs and projects for the summer school students.

o Advised the students during the summer school's hackathon.

IBM Thomas J. Watson Research Center

Yorktown Heights, NY

Research Intern

May - August 2017

- Developed MLModelScope a hardware/software agnostic and extensible platform for evaluating and profiling ML workloads.
- Experimented with GPU-accelerated alternating least square(ALS) algorithms for Matrix Factorization and conducted profiling with nvprof and nvvp.

University of Illinois Urbana-Champaign

Champaign, IL

Head Teaching Assistant for CS483 - Applied Parallel Programming

August - December 2016

 Designed GPU labs, exams, and projects for a class of 200 students. Maintained the assignment and the project submission systems - WebGPU and RAI.

RECENT PROJECTS

DLBricks

- DLBricks is a composable benchmark generation design that reduces the effort of developing, maintaining, and running DL benchmarks on CPUs.
- o DLBricks decomposes DL models into a set of unique runnable networks and constructs the original model's performance using the performance of the generated benchmarks.

Benanza

- We propose a "lower-bound" latency metric for DL models based on the observation that the latency of a DL model is bounded by the latencies of the cuDNN and cuBLAS API calls invoked by the model layers. This metric estimates the ideal latency of a model given a specific GPU hardware and software stack.
- o Benanza is a benchmarking and analyzing design that automatically generates micro-benchmarks given a set of models, computes their "lower-bound" latencies using the benchmark data, and informs optimizations of their executions on GPUs. The sustainable and extensible design of Benanza makes it cope with the fast evolution of DL innovations.

MLModelScope

- o MLModelScope is a framework and hardware agnostic, extensible and customizable, distributed platform design for evaluating and profiling ML models across datasets/frameworks/systems.
- MLModelScope proposes a specification to define DL model evaluations and techniques to provision the
 evaluation workflow using the user-specified HW/SW stack, defines abstractions for frameworks, and
 supports board range of DL models and evaluation scenarios.
- MLModelScope is implemented as an open-source project with support for all major frameworks and hardware architectures.

TrIMS: Transparent and Isolated Model Sharing for DL Inference

- TrIMS is a generic memory sharing technique that enables constant data to be shared across processes or containers while still maintaining isolation between users.
- TrIMS mitigates the DL model loading overhead and increases the hardware resource utilization in inference by sharing models across all levels of the memory hierarchy in the cloud environment — GPU, CPU, local storage, and remote storage.

TOPS: Implement Collectives using Tensor Core Units

- TOPS is a library of collectives expressed as matrix multiplication operations on Tensor Cores Units (TCU, specialized hardware for matrix multiplication).
- o It is the first to broaden the class of algorithms expressible as TCU operations and show benefits of the mapping in terms of program simplicity, efficiency, and performance.
- o We implemented reduction and scan using NVIDIA V100 Tensor Cores and achieved up to $100\times$ and $3\times$ speedup compared to state-of-the-art methods while decreasing the power consumption by up to 22% and 16% correspondingly.

PUBLICATIONS

- 1. The Design and Implementation of a Scalable DL Benchmarking Platform

 Cheng Li, Abdul Dakkak, Jinjun Xiong, Wen-Mei Hwu

 (arXiv'19)
- 2. DLBricks: Composable Benchmark Generation to Reduce Deep Learning Benchmarking Effort on CPUs (ICPE'20)

Cheng Li, Abdul Dakkak, Jinjun Xiong, Wen-Mei Hwu

- 3. Benanza: Automatic uBenchmark Generation to Compute "Lower-bound" Latency and Inform Optimizations of Deep Learning Models on GPUs

 Cheng Li*, Abdul Dakkak*, Jinjun Xiong, Wen-Mei Hwu

 (IPDPS'20)
- 4. XSP: Across-Stack Profiling and Analysis of Machine Learning Models on GPUs (IPDPS'20) Cheng Li*, Abdul Dakkak*, Jinjun Xiong, Wei Wei, Lingjie Xu, Wen-Mei Hwu
- 5. AI Matrix: A Deep Learning Benchmark for Alibaba Data Centers
 Wei Zhang, Wei Wei, Lingjie Xu, Lingling Jin, Cheng Li

 (arXiv'19)
- 6. MLModelScope: Evaluate and Introspect Cognitive Pipelines (IEEE Services'19)

 Cheng Li, Abdul Dakkak, Jinjun Xiong, Wen-Mei Hwu
- 7. TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep Learning Inference in Function as a Service Environments (IEEE CLOUD'19)

Abdul Dakkak, Cheng Li, Simon Garcia de Gonzalo, Jinjun Xiong, Wen-Mei Hwu

- 8. Accelerating Reduction and Scan Using Tensor Core Units

 Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, Wen-Mei Hwu

 (ICS'19)
- 9. Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects (ICPE'19)

Carl Pearson, Abdul Dakkak, Sarah Hashash, **Cheng Li**, I-Hsin Chung, Jinjun Xiong, Wen-Mei Hwu

- 10. Accelerating Reduction Using Tensor Core Units

 Abdul Dakkak, Cheng Li, Jinjun Xiong, Wen-Mei Hwu

 (HPCaML'19)
- 11. SCOPE: C3SR Systems Characterization and Benchmarking Framework

 Carl Pearson, Abdul Dakkak, Cheng Li, Sarah Hashash, Jinjun Xiong, Wen-mei Hwu

 (arXiv'18)
- 12. Matrix Factorization on GPUs with Memory Optimization and Approximate Computing (ICPP'18) Wei Tan, Shiyu Chang, Liana Fong, Cheng Li, Zijun Wang, LiangLiang Cao
- 13. RAI: A Scalable Project Submission System for Parallel Programming Courses (IPDPSW'17)

 Abdul Dakkak, Carl Pearson, Cheng Li, Wen-mei Hwu
- 14. KLAP: Kernel Launch Aggregation and Promotion for Optimizing Dynamic Parallelism (MICRO'16)

 Izzat El Hajj, Juan Gomez-Luna, Cheng Li, Li-Wen Chang, Dejan Milojicic, Wen-mei Hwu
- 15. DjiNN and Tonic: DNN as a Service and Its Implications for Future Warehouse Scale Computers (ISCA'15)

Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, **Cheng Li**, Trevor Mudge, Ronald G. Dreslinski, Jason Mars, Lingjia Tang

16. Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications for Future Warehouse Scale Computers (ASPLOS'15)

Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, **Cheng Li**, Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge, Vinicius Petrucci1, Lingjia Tang, Jason Mars

17. Stochastic circuits for real-time image-processing applications

Armin Alaghi, Cheng Li, John P. Hayes

(DAC'13)

TALKS & POSTERS

Super Computing 2019 Across-stack Profiling and Analysis of ML Models on GPUs	Denver, CO <i>November 18, 2019</i>
Tutorial at IISWC 2019 Challenges and Solutions for End-to-End and Across Stack ML Benchmarking	Orlando, FL November 3, 2019
HotChips 2019 MLModelScope: Evaluate and Profile ML Models at Scale and Across Stack	Palo Alto, CA <i>August 18, 2019</i>
Tutorial at ISCA 2019 Benchmarking Deep Learning Systems	Phoenix, AZ June 22, 2019
Tutorial at ASPLOS 2019 Benchmarking Deep Learning Systems	Providence, RI <i>April</i> 14, 2019
NVIDIA GPU Technology Conference 2019 <i>TOPS: Accelerating Reduction Using Tensor Core Units</i>	San Jose, CA March 22, 2019
NVIDIA GPU Technology Conference 2019 <i>TrIMS: Transparent and Isolated Model Sharing for Low Latency DL Inference</i>	San Jose, CA March 22, 2019
NVIDIA GPU Technology Conference 2019 MLModelScope	San Jose, CA March 22, 2019
Super Computing 2018 MLModelScope	Dallas, TX November 11, 2018
IBM AI Research Week 2018 MLModelScope	Boston, MA October 11, 2018
NVIDIA GPU Technology Conference 2017 RAI: A Scalable Submission System for GPU Applications	San Jose, CA March 22, 2017

LANGUAGES

C/C++, Go, CUDA, Python, JavaScript, Bash, LaTeX, Mathematica

Chinese, English

MEMBERSHIP

IEEE, ACM, CRA-W (Computing Research Association-Women), WCS (Women in Computer Science)