	<110> Rosenberg, Eugene
	Ron, Eliora
5	Orr, Elisha
	Paitan, Yossi

<120> GENE CLUSTER

- 10 <130> 2290.00101
 - <140> 09/710,262 <141> 2000-11-10
- 15 <160> 20

30

45

- <170> PatentIn Ver. 2.1
- <210> 1
 20 <211> 2392
 <212> Amino acid
 <213> Myxococcus xanthus
- - Tyr Pro Leu Leu Ala Gly Ala Ile Arg Val Glu Gly Thr Glu Pro Val 20 25 30
 - Ile Val Pro Ser Gly Gln Val Ser Ala Glu Val His Glu Val Pro Ser 35 40 45
- Val Ser Asp Ser Ala Leu Val Ala Thr Leu Arg Ala Ser Ala Lys Val 55 60
 - Pro Phe Asp Leu Ala Cys Gly Pro Leu Ala Arg Leu His Leu Tyr Ser 75 80
- 40 Arg Ser Glu His Glu His Val Leu Leu Cys Phe His His Leu Val 85 90 95
 - Leu Asp Gly Ala Ser Val Ala Pro Leu Leu Asp Ala Leu Arg Glu Arg 100 105 110
 - Tyr Ala Gly Thr Glu Ala Lys Ala Gly Leu Leu Glu Val Pro Ile Val 115 120 125
- Ala Pro Tyr Arg Ala Ala Val Glu Trp Glu Gln Leu Ala Ile Gly Gly 130 135 140
 - Asp Glu Gly Arg Arg His Leu Asp Tyr Trp Arg His Val Leu Ala Thr 145 150 155 160
- Pro Val Pro Pro Pro Leu Asn Leu Pro Thr Asp Arg Pro Arg Ser Ala 165 170 175
 - Thr Gly Leu Asp Ser Glu Gly Ala Thr His Ser Gln Arg Val Pro Thr 180 185 190
 - Glu Gln Ala Leu Arg Leu Arg Glu Phe Ala Arg Ala Gln Gln Val Ser

195 200 205

5		Pro 10	Thr	Val		Leu 215	Gly	Leu	Tyr 22	_	Ala	Leu	Leu	His	Arg	His
	Thr 225	Arg	Gln	Asp	Asp 230	Val	Val	Val 23	Gly 5	Ile	Pro	Thr 24		Gly	Arg	Pro
1.0	Arg	Ala	Glu	Leu 245	Ala	Thr		Ile 50	Gly	Tyr	Phe 25		Asn	Val	Met	Ala
•	Val	Arg	Ala 260		Gly	Leu	Gly 265	Gln	His	Ser	Phe 270	Glý	Ser	Leu	Leu	Arg
15	His	Leu 27		Asp	Ser	Val 280		Asp	Gly	Leu 285	Glu	His	Ala	His	Tyr	Pro
20		Pro 290	.Arg	Val		Lys 295	Asp	Leu	Arg 3	Leu 00	Ser	Asn	Gly	Pro	Glu,	Glu
	Ala 305	Pro	Gly	Phe	Gln 310	Thr	Met	Phe	Thr 315	Phe	Gln		Leu 320	Gln	Leu	Thr
25	Ser	Ala	Pro	Pro 325	Arg	Pro		Pro 330	Arg	Ser	_	Gly 335	Leu	Pro	Glu	Leu
	Glu	Pro	Leu 34	_	Cys	Val	His 345		Glu	Gly	Ala 350	Tyr	Pro	Leu	Glu	Leu
30	Glu	Val		Glu	Gly	Ala 36		Gly	Leu	Thr 365	Leu	His	Phe	Lys	Tyr	Asp
35		Arg 70	Leu	Tyr		Ala 75	Asp	Thr	Val 38		Arg	Met	Ala	Arg	Gln	Leu
	Leu 385	Arg	Ala	Ala	Asp 390	Gln	Val		Asp 95	Gly	Val		Ser 00	Pro	Leu	Ser
40	Ala	Leu	Ser	Trp 405	Leu	Asp	Asp	Glu 410	Glu	Arg	Arg	Thr 415		Leu	Arg	Asp
	Trp	Asn	Ala 42		Ala	Thr	Pro 425		Leu	Glu	Asp 430	Leu	Gly	Val	His	Glu
45	Leu		Gln 135	Arg	Gln		Arg 40	Glu	Thr	Pro 44		Ala	Met	Ala	Val	Ser
50		Glu 50	Gly	His		Leu 55	Ser	Tyr	Gln 46		Leu	Asp	Thr	Arg	Ser	Arg
	Glu 465	Ile	Ala		His 70	Leu	Lys	Ser 47	Phe 5	Gly	Val	Lys 480		Gly	Ala	Leu
55	Val	Gly		Tyr 185	Leu	Asp		Ser 90	Ala	Glu	Leu 49	_	Ala	Ala	Met	Leu
	Gly	Val	Leu 50		Ala	Glý	Ala 505	Ala	Tyr		Pro 510	Leu	Asp	Pro	Val	His
60	Pro		Asp 15	Arg	Leu	Arg 52		Met	Leu	Glu 52		Ser	Gly	Val	Val	Val

- Val Leu Ala Arg Gln Ala Ser Arg Asp Lys Val Ala Ala Ile Ala Gly 530 535 540
- 5 Ala Ser Cys Lys Val Cys Val Leu Glu Asp Val Lys Ala Gly Ala Thr 545 550 555 560
- Ser Ala Pro Ala Gly Thr Ser Pro Asn Gly Leu Ala Tyr Val Ile Tyr
 565 570 575
 10
 - Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Met Ile Pro His Arg
 580 585 590
- Gly Val Val Asn Phe Leu Leu Cys Met Arg Arg Thr Leu Gly Leu Lys
 595 600 605
 - Arg Thr Asp Ser Leu Leu Ala Val Thr Thr Tyr Cys Phe Asp Ile Ala 610 620
- 20 Ala Leu Glu Leu Leu Pro Leu Cys Ala Gly Ala Gln Val Ile Ile 625 630 635 640

- Ala Ser Ala Glu Thr Val Arg Asp Ala Gln Ala Leu Lys Arg Ala Leu 645 650 655
- Arg Thr His Arg Pro Thr Leu Met Gln Ala Thr Pro Ala Thr Trp Thr 660 665 670
- Leu Leu Phe Gln Ser Gly Trp Glu Asn Ala Glu Arg Val Arg Ile Leu 30 675 680 685
 - Cys Gly Glu Ala Leu Pro Glu Ser Leu Lys Ala His Phe Val Arg
- Thr Ala Ser Asp Val Trp Asn Met Phe Gly Pro Thr Glu Thr Thr Ile
 705 710 715 720
 - Trp Ser Thr Met Ala Lys Val Ser Ala Ser Arg Pro Val Thr Ile Gly 725 730 735
 - Lys Pro Ile Asp Asn Thr Gln Val Tyr Val Leu Asp Asp Arg Met Gln 740 745 750
- Pro Val Pro Ile Gly Val Pro Gly Glu Leu Trp Ile Ala Gly Ala Gly 45 755 760 765
 - Val Ala Cys Gly Tyr Leu Asn Arg Pro Ala Leu Thr Ala Glu Arg Phe 770 780
- Val Ser Asn Pro Phe Thr Pro Gly Thr Thr Leu Tyr Arg Thr Gly Asp 785 790 795 800
- Leu Ala Arg Trp Arg Ala Asp Gly Glu Val Glu Tyr Leu Gly Arg Leu 805 810 815 55
 - Asp His Gln Val Lys Val Arg Gly Phe Arg Ile Glu Met Gly Glu Ile 820 825 830
- Glu Ala Gln Leu Ala Gly His Pro Ser Val Lys Asn Cys Ala Val Val 835 840 845

		Lys 50	Glu	Leu		Gly 55	Thr	Ser	Gln 86		Val ·	Ala	Tyr	Cys	Gln	Pro
5 .	Ala 865	Gly	Thr		Phe 870	Asp	Glu	Glu 87		Ile	Arg	Ala .88		Leu	Arg	Lys
	Phe	Leu	Pro	Asp 88		Met	Val	Pro 890	Ala	His	Val 8	Phe 95	Ala	Val	Asp	Ala
10	Ile	Pro	Leu 900	Ser	Gly	Asn	Gly 905	Lys	Val		Arg 910	Gly	Gln	Leu	Met	Ala
15	Arg	Pro 91		Val	Thr	Arg 920	Arg	Lys	Thr	Ser 925	Ala	Val	His	Ala	Arg	Ser
10		Val 30	Glu	Ala		Leu 35	Val	Glu	Leu 94		Lys	Asn	Val	Leu	Gln	Val
20	Asn 945	Glu	Val	Gly	Val 950	Glu	Asp	Arg	Phe 955	Phe	Glu		Gly 960	Gly	Asp	Ser
	Val	Leu	Ala	Ala 965	Val	Leu		Glu 970	Glu	Met	Asn	Arg 975	Arg	Phe	Asp	Thr
25 ⁻	Arg	Leu	Ala 98		Thr	Asp	Leu 985		Lys		Val 990	Asn	Ile	Arg	Asp	Met
30	Ala	Arg 99		Met	Glu	Gly 100		Thr		Gln 1005	Ala	Arg	Thr	Gly	Ala	Thr
50		Pro 010	Ala	Arg	-	Asp 015	Thr	Ala		Glu 20	Arg	Asp	Tyr	Glu	Gly	Ser
35	Leu 1029		Val	Ile 10	_	Ile	Ser	Cys 103		Leu	Pro	Gly 104		Ala	Asp	Pro
•	Trp	Arg	Phe	Trp		Asn	Leu	Arg 105		Gly	Arg	Asp 105		Val	Val	Ala
40	Tyr	Arg	His 106		Glu	Leu	Arg 106		Leu	Gly	Val 1070		Glu	Ġlu	Val	Leu
45	Arg	_	Ser 075	Arg	Ťyr	Val 108		Val	Arg	Ser 1085	Ser	Ile	Gļu	Asp	Lys	Glu
43		Phe 090	Asp	Pro		Phe 1095	Phe	Gly		Thr	Ala	Arg	Asp	Ala	Ser	Phe
50	Met 1109		Pro	Gln	Phe 1110		Leu	Leu	Leu 111		His		Trp 1120	Lys	Ala	Val

Glu Asp Ala Ala Thr Thr Pro Glu Arg Leu Gly Pro Cys Gly Val Phe

Met Thr Ala Ser Asn Ser Phe Tyr His Gln Gly Ser Pro Gln Phe Pro 1140 1145 1150

Ala Asp Gly Gln Pro Val Leu Arg Thr Ala Glu Glu Tyr Val Leu Trp

Val Leu Ala Gln Ala Gly Ser Ile Pro Thr Met Val Ser Tyr Lys Leu

1170 1175 1180

		*														
5	Gly 1185		Lys		Pro 190	Ser	Leu		Val 195	His	Thr		Cys L200	Ser	Ser	Ser
Ū	Leu	Ser	Ala	Leu 1205	_	Val		Gln 210	Gln	Ala	Ile 121		Ala	Gly	Asp	Суз
10	Gln	Thr	Ala 122		Val		Ala 1225	Ala	Thr		Phe 230	Pro	Ser	Ala	Asn	Leu
	Gly	Tyr 123		His	Gln	Arg 124	_	Leu	Asn	Phe 124		Ser	Ala	Gly	Arg	Val
15		Ala 250	Phe	Asp		Ala 255	Ala	Asp	Gly 126		Ile	Ala	Gly	Glu	Gly	Val
20	Ala 1265		Leu		Val .270	Lys	Asp		Ala 75	Ala	Ala	Val 12		Asp	Gly	Asp
	Pro	Ile		Cys L285	Leu	Val		Lys 290	Val	Gly	Ile 12		Asn	Asp	Gly	Gln
25	Asp	Lys	Val 130	. –	Leu	Tyr	Ala 1309		Ser		Thr .310	Gly	Gln	Ala	Glu	Val
•	Ile	Arg	_	Leu	Phe	Asp 132	_	Thr	_	Ile 1325	Asp	Pro	Ala	Ser	Ile	Gly
30		Val 330	Glu	Ala	His 13	_	Thr	Gly	Thr 134		Leu	Gly	Asp	Pro	Val	Glu
35.	Val 1345		Ala		Ser 350	Glu	Ala		Arg 355	Thr	Phe		Asp 360	Arg	Arg	Gly
	Tyr	Cys	Arg	Leu 1365		Ser		Lys 1370	Ser	Asn	Leu		His 375	Leu	Asp	Thr
10	Val	Ala	_	Leu 1380	Ala	Gly		Ile 85	Lys	Thr	Ala 13		Ser	Leu	Arg	Gln
	Gly	Glu	Val 139		Pro		Leu 1400	His	Val		Gln L405	Val	Asn	Pro	Lys	· Leu
45	Glu	Leu 141		Asp	Ser		Phe 15	Val	Ile	Ala 142		Arg	Leu	Ala	Pro	Trp
50	Pro 1425		Leu		Gly .430	Pro	Arg		Ala 35	Ala	Val		Ala 40	Phe	Gly	Leu
,,	Gly	Gly	Thr	Asn 1445		His		Ile 150	Leu	Glu		Tyr 55	Pro	Arg	Asp	Ser
55	Arg	Pro	Arg 146		Arg	Ser	Gln 146		Ser	Asn	Ala 1470		Arg	Ala	Val	Ala
	Pro		Ser 175	Ala	Arg		Leu 80	Glu	Ala	Leu 14	_	Asp	Asn	Leu	Arg	Ala
60		Leu 490	Asp	Phe		Glu 1495	Asp	Pro		Ser 1500	Ala	Glu	Val	Ala	Leu	Ala

	,	Asp Ile 1505	Thr	_	Thr 510	Leu	Gln		Gly 15	Arg	Val	Ala 152		Pro	Glu	Arg
	5	Met Val		Thr .525	Ala	Ser		Arg 530	Asp	Glu		Val 535	Glu	Gly	Leu	Ārg
	10	Arg Gly	Ile 1540		Thr		Gly 545	Gly	Ala	His 15		Gly	Thr	Val	Val	Asp
,	10	Thr Ser		Ser	Val	Asp 156		Asp		Arg 1565		Val	Ala	Glu	Ala	Trp
	15	Ala Thr 1570	Gly	Asp	Ser 157		qzA	Trp	Asp 158		Leu	His	Gly	Asp	Val	Lys
		Pro Ala 1585	Arg		Ser 590	Leu	Pro		Tyr 95	Gln	Phe		Lys 00	Glu	Arg	Tyr
	20	Gly Leu	Ser	Pro 1605		His		Val 610	Ala	Asn		Ser 615	Lys	Thr	His	Pro
	25	Asp Ala	Gly 162		Pro	Leu	Phe 1625		Pro		Trp 1630		Pro	Trp	Ser	Glu
		Gly Ala 16		Asn	Ala	Ser 164		Ala	Leu	Arg 164		Leu	Val	Val	Leu	Cys
	30	Glu Pro 1650	Leu	Asp		Leu 655	Gly	Ala		Gly 60	Ala	Ser	Ala	Leu	Ala	Ser
		Thr Leu 1665	Ala		Arg .670	Arg	Ile		Val 75	Val	Arg	Thr 168		Ser	Pro	Ser
	35	Ala Arg	Leu	Asp 1685		Arg		Met 1690		His		Ser 695	Ala	Val	Phe	Glu
	40	Arg Val	Lys 170		Leu	Leu	Ser 1709		Arg	Leu	Thr 1710		Pro	Val	Thr	Leu
		Gln Val 17		Val	Pro	Glu 172		Arg	Asp	Ala 172		Ala	Leu	Ser	Gly	Leu
•	45	Gly Ser 1730	Leu	Leu	_	Ser 735	Val	Ser		Glu 740	Asn	Pro	Leu	Val	Arg	Gly
	-	Gln Leu 1745	Ile		Val 750	Gln	Gly		Val '55	Ser	Ala	Ser 176		Leu	Val	Asp
-	50	Val Leu	Val	Lys 1765		Ala		Ala 770	Gly	Asp		Thr 775	Asp	Ser	Arg	Tyr
	55	His Ala	Gly 178		Leu	Ser	Arg 1789	_	Glu	Trp	Arg 1790		Ala	Arg	Val	Ala
		Lys Gly	Asp 795	Ala	Ser		Phe 00	Trp	Arg	Glu 18	-	Gly	Val	Tyr	Val	Ile
	60	Ser Gly 1810	Gly	Thr		Ala 15	Leu	Ala		Leu 320	Phe	Val	Ala	Glu	Ile	Gly

•

÷

.

- Lys Arg Ala Thr Arg Ala Thr Val Ile Leu Val Ala Arg Ala Ser Ser 1825 1830 1835 1840
- Ala Glu Ala Val Asp Gly Gly Asn Gly Leu Arg Val Arg His Leu Pro 1845 1850 1855
- Val Asp Val Thr Gln Pro Asn Asp Val Asn Ala Phe Val Ala Thr Val 1860 1865 1870
- Leu Arg Glu His Gly Arg Ile Asp Gly Val Ile His Ala Ala Gly Ile 1875 1880 1885

raparet paret gapaga

وغوون فالمحافظة والمتحافظة

- Arg Arg Asp Asn Tyr Leu Leu Asn Lys Pro Val Ala Glu Met Gln Ala 1890 1895 1900
- Val Leu Ala Pro Lys Val Val Gly Leu Val Asn Leu Asp His Ala Thr 1905 1910 1915 1920
- Arg Glu Leu Pro Leu Asp Phe Phe Val Thr Phe Ser Ser Leu Ala Ala 1925 1930 1935
- Phe Gly Asn Ala Gly Gln Ser Asp Tyr Ala Ala Ala Asn Gly Phe Met 1940 1945 1950
- Asp Gly Phe Ala Glu Ser Arg Ala Ala Leu Val Asn Ala Gly Gln Arg 1955 1960 1965
- Gln Gly Arg Thr Val Ser Ile Arg Trp Pro Leu Trp Glu Asn Gly Gly 1970 1975 1980
- Met Gln Leu Asp Ser Arg Ser Arg Glu Val Leu Met Gln Arg Thr Gly 1985 1990 1995 2000
- Met Ala Ala Leu Gly Asp Glu Ala Gly Leu Gly Ala Phe Tyr Arg Ala 2005 2010 2015
- Leu Glu Leu Gly Ser Pro Gly Val Ala Val Trp Thr Gly Glu Ala Gln 2020 2025 2030
- Arg Phe Arg Glu Leu Ser Val Ser Val Ser Pro Ala Pro Pro His 2035 2040 2045
- Gln Val Ala Leu Asp Ala Val Val Ser Ile Thr Glu Lys Val Glu Thr 2050 2055 2060
- Lys Leu Lys Ala Leu Phe Ser Glu Val Thr Arg Tyr Glu Glu Arg Arg 2065 2070 2075 2080
- Ile Asp Ala Arg Gln Pro Met Glu Arg Tyr Gly Ile Asp Ser Ile Ile 2085 2090 2095
- Ile Thr Gln Met Asn Gln Ala Leu Glu Gly Pro Tyr Asn Ala Leu Ser 2100 2105 2110
- Lys Thr Leu Phe Phe Glu Tyr Arg Thr Leu Ala Glu Val Ser Gly Tyr 2115 2120 2125
- Leu Ala Glu His Arg Ala Glu Glu Ser Ala Lys Trp Val Ala Ala Pro 2130 2135 2140
- Gly Glu Asn Ser Ser Ser Val Ile Gln Glu Ala Arg Pro Pro Arg Ala

2145 2150 2155 2160

Asp Ala Thr His Arg Ala Pro Arg Ala Asp Glu Pro Il

Asp Ala Thr His Arg Ala Pro Arg Ala Asp Glu Pro Ile Ala Val Ile 2165 2170 2175

Gly Met Ser Gly Arg Tyr Pro Gly Ala Glu Asn Leu Thr Glu Phe Trp 2180 2185 2190

Glu Arg Leu Ser Arg Gly Asp Asp Cys Ile Thr Glu Ile Pro Pro Glu 10 2195 2200 2205

Arg Trp Ser Leu Asp Gly Phe Phe Tyr Pro Asp Lys Lys His Ala Ala 2210 2215 2220

Ala Arg Gly Met Ser Tyr Ser Lys Trp Gly Gly Phe Leu Gly Gly Phe 2225 2230 2235 2240

Ala Asp Phe Asp Pro Leu Phe Phe Asn Ile Ser Pro Arg Glu Ala Thr 2245 2250 2255

Ser Met Asp Pro Gln Glu Arg Leu Phe Leu Gln Ser Cys Trp Glu Val 2260 2265 2270

Leu Glu Asp Ala Gly Tyr Thr Arg Asp Ser Leu Ala Gln Arg Phe Gly 2275 2280 2285

Ser Ala Val Gly Val Phe Ala Gly Ile Thr Lys Thr Gly Tyr Glu Leu 2290 2295 2300

Tyr Gly Ala Glu Leu Glu Gly Arg Asp Ala Ser Val Arg Pro Tyr Thr 2305 2310 2315 2320

Ser Phe Ala Ser Val Ala Asn Arg Val Ser Tyr Leu Leu Asp Leu Lys 2325 2330 2335

Gly Pro Ser Met Pro Val Asp Thr Met Cys Ser Ala Ser Leu Thr Ala 2340 2345 2350

Val His Met Ala Cys Glu Ala Leu Gln Arg Gly Ala Cys Val Met Ala 40 2355 2360 2365

Ile Ala Gly Gly Val Asn Leu Tyr Val His Pro Ser Ser Tyr Val Ser 2370 2375 2380

45 Leu Ser Gly Gln Gln Met Leu Ser 2385 2390

<210> 2
50 <211> 7178
 <212> DNA
 <213> Myxococcus xanthus

5

20

35

55 stegaceegg cgaggetgae eegggeetgg gaaggaetge tegaaeggta teegetgete 60 getggegga ttegegtea aggeaeggag eeggteateg teeceagtgg geaggtetee 120 geegaggtee aegaggtee ateggetee gatteageae tggtggegae eetgegege 180 teegegaagg tgeeattega tetegeetgt ggaeegeteg eteggetgea eetgtaeteg 240 eggteggage aegageatgt eetgetgetg tgetteeaee aeetggtget egatggggea 300 teegtggege eettgetega egeeeteegg gagegttaeg eegggaeegg 360 gggetgeteg aggtteegat egtegeteet taeeggeeg eegtggagtg ggageagete 420

.....

```
gccattggag gcgatgaggg acggcgccac ctcgactact ggcggcacgt gttggccacg 480
     cocqttcctc cgccgttgaa tettecaacg gaccggcctc getecgccac ggggetggac 540
     teggagggag caaegeaete geagagggtg cecaeegage aageattgeg aetgegegag 600
     ttegeteggg caeageaagt gageetgeeg acegteetge tegggeteta etaegeettg 660
 5
     cttcatcggc acacgcgcca ggacgacgtg gtggtcggca tccccaccat ggggcggccc 720
     egggeggaac tggegaegge gattgggtae ttegteaaeg tgatggeegt gegegegeg 780
     ggcctggggc agcactcgtt cggctcgctg ctgcgccacc tccacgactc ggtcatcgat 840
     ggcctggagc atgcccacta tcccttcccg cgagtggtga aggacctccg gctgtcgaat 900
     gggcccgagg aggcgcctgg cttccagacg atgttcacct tccagagcct gcaactgacg 960
10
     agggeteege caaggeegga geceaggteg ggegggttge eggagettga geegetegae 1020
     tgcgtccatc aggaaggcgc ctacccgctg gagcttgaag tggtggaggg cgccaagggc 1080
     ctcacgctgc atttcaagta cgacgcgcgg ctgtacgagg cggacacggt cgaacggatg 1140
     gegegteagt tgttgegege egeggaeeag gtegeggatg gggtggagte teegetgage 1200
     geactgtegt ggetegaega egaagagege egeaegette teegegaetg gaatgeeaeg 1260-
15
     gccacgccgt tcctcgagga cctgggcgtt cacgagctct tccagcggca ggcccgggag 1320
     accccagacy ccatggctgt gagctacgag gggcactcgc tcagctatca ggcgctggat 1380
     acgeggagee gegagattge ggegeacetg aagagetteg gegteaagee tggggegete 1440
     gtgggcatct acctggaccg gtccgcggag ctggtggcgg cgatgctggg tgtgctgtcc 1500
     getggegegg cetaegtaee cetggaeeeg gtgeaeeeeg aggaeegget geggtaeatg 1560
20
     ctggaggaca gtggcgtggt ggtcgtgctg gcccgtcagg cctcgcggga caaggtcgcc 1620
     gccattgccg gagcctcctg caaggtgtgc gtgctggagg acgtcaaggc tggagccacg 1680
     teegegeegg egggaacete acegaaegga ettgeetaeg teatetaeae gteegggage 1740
     acgggccggc ccaagggcgt gatgattccc catcgcgggg tggtcaactt cctcctgtgc 1800
     atgegeagga egetgggeet gaagegeaeg gattegetgt tggeggteae gaegtaetge 1860
25
     ttegacateg eggegetega geteetgett eegetgtgtg egggggegea ggteateate 1920
     gegteggegg agaeggtteg ggatgegeag gegttgaage gggegetgeg cacccategg 1980
     cccacgttga tgcaggcgac gcccgcgacc tggacactgt tgttccagtc tggctgggag 2040
     aacgccgagc gggttcgaat cctctgcggt ggagaagcgc tgccggagtc gctcaaggcc 2100
     cacttegtte geacegegag egacgtgtgg aacatgtteg ggeecacega gacgaceate 2160
30
     tggtcgacga tggcgaaggt ctcggcctcg cgtccggtca ccattggaaa gccgatcgac 2220
     aacacgcagg tctacgtgct ggacgaccgg atgcagccgg tgcccatcgg tgtgccgggc 2280
     gagetgtgga ttgcgggcgc gggcgtggcc tgcggttacc tcaaccggcc ggcgctgacc 2340
     geogageget tegittecaa teegiteaeg eegggeaega egetetaeeg gaegggggae 2400
     ctggcgcgct ggcgcgctga cggtgaggtt gagtacctgg ggcggctcga ccaccaggtg 2460
35
     aaggtgegeg getteegeat egagatgggg gagattgaag egeagttgge egggeateee 2520
     agegtgaaga aetgtgeegt ggtggeeaag gagetgaaeg geaeetegea getegtegee 2580
     tactgtcage cegegggaac gagettegat gaggaageca teegtgcaca cetgeggaag 2640
     ttcctccccg actacatggt ccccgcgcac gtcttcgcgg tggatgcgat tccgctgtcg 2700
     ggcaatggca aggtggaccg gggccagctg atggccaggc cggtggtcac ccggcggaag 2760
40
     acateegegg tecatgeeeg ttegeetgtt gaggeeaeee tegtegaget gtggaagaae 2820
     gtgctccagg tcaacgaggt gggtgtcgag gatcgcttct tcgaagtggg gggggactcc 2880
     gtgctggccg ccgtgctggt ggaggagatg aaccggcgct tcgacacgcg gctcgccgtc 2940
     accgacctgt tcaagtacgt caatattcgc gacatggcgc gccacatgga gggcgcgacg 3000
     gegeaageee gtactgggge caeegageeg getegegagg acaeegegte ggagegtgae 3060
45
     tacgagggca gcctggccgt catcggcatc tcctgtcagt tgcccggagc cgcggacccc 3120
     tggcgcttct ggaagaacct gcgagagggc agggacagcg tggtggcgta ccgccatgag 3180
     gaactgegeg agetgggegt geecgaggag gteeteegeg atteeegtta egtegeggte 3240
     eggtegteca tegaagacaa ggagtgette gaccegeatt tetteggtet gaeggegegg 3300
     gacgcgtcct tcatggaccc gcagttccga ctgttgctga tgcacgcctg gaaggcagtg 3360
50
     gaagacgcgg cgacgacgcc tgagcgcctg ggaccgtgcg gcgtcttcat gacggccagc 3420
     aacagettet atcaccaggg ctegeegeaa ttteetgegg aegggeagee ggteeteege 3480
     acegeegaag aataegtget gtgggtgetg geeeaggeag geteeateee gaegatggtt 3540
     testacaage teggettgaa ggggeegage etgttegtee acaccaactg etegteatee 3600
     etgteegege tgtaegtgge teageaggee ategeagegg gagaetgeea gaeggegetg 3660
55
     gtgggggccg ccacggtctt cccttcggcg aacttgggtt atctgcacca gcgggggctc 3720
     aactteteca gegegggeg ggteaaggee ttegaegeeg eggeggaegg catgattgee 3780
     ggtgaaggtg tegeegtget ggtggtgaag gaegeegeag eggeggtgeg egatggegae 3840
     ccaatctact gcctcgtgcg gaaggtgggg atcaacaacg acggccagga caaggtgggt 3900
     ttatacgccc cgagcgccac cgggcaggcg gaggtcatcc ggcgtctgtt cgaccggacc 3960
60
     ggcatcgacc ctgcatcgat tggctacgtc gaggcccatg gcaccggaac cttgctgggt 4020
     gaccotyteg aggtotocyc gotyaycyaa goottoogga cottoaccya coggogogyg 4080
```

```
tactgccggc tgggctcggt gaagtcgaac ctgggccatc tggacacagt ggctggactg 4140
     gctgggctca tcaagacggc gctgagcctg cggcagggcg aagttcctcc gacgctccat 4200
    gtgacccagg tgaatccgaa gctcgagctg acggattcgc cgttcgtcat cgccgaccgt 4260
     ttggcgccgt ggccgtccct gccgggaccg aggcgggcgg ccgtgagtgc gttcggcctt 4320
    ggcgggacga atacccacgc cattetegaa cactaccege gegaeteeeg cecaegggag 4380
     aggagecage ggtegaaege agteegtgeg gtggeteeat teteggegeg caccetggag 4440
    gcgttgaagg acaacctccg cgcgctgctc gacttcctgg aggacccggc gtccgcggag 4500
    gtggcgctcg cggacatcac ctacacgttg caggtcggcc gggtcgcgat gcctgagcgg 4560
    atggtggtga ctgcgtcgac gcgcgacgaa ttggtggagg gactgcggcg aggcatcgcg 4620
10
    acggtgggcg gtgcccacgt gggaacggtg gtcgatacgt cacccagcgt ggatgccgat 4680
    gctcgggcag ttgcggaggc gtgggcgacg ggcgactcga ttgactggga ttcgctgcac 4740
     ggtgacgtga agcccgcccg tgtcagcctg cccacgtatc agttcgcgaa ggagcgctac 4800
     gggttgtcgc ccgcgcactc cgtggcgaat tcctccaaga cgcatcctga cgcgggtgtc 4860
     cegetetteg tteegacetg geageegtgg tetgagggeg egteaaatge etegttggeg 4920
15
     ctccggcacc tggtggtgtt gtgcgagcct cttgatgcgc tgggggctga aggtgcctcc 4980
     gegetggega geaegetege ggaeaggege ategaagtgg teaggaegte eageceaagt 5040
   gegeggetgg aegegeggtt catggegeat geeteggegg tettegaaeg egteaaggeg 5100
     ctgctgtcgg agcgtctgac cgctcctgtg acattgcagg tgctggtgcc agaggagcgg 5160
     gatgcgctgg cactgagtgg cctggggagc ctgctgcgtt cggtgtcgca ggagaatccg 5220
20
     ttggtccggg ggcagctcat ccgcgtccag ggaagcgtct ccgcatcggc gctggtggac 5280
     gttctggtga agtccgcgcg cgccggtgac gtcaccgatt cgcggtacca cgcgggccag 5340
     ctttctcgct gtgagtggcg cgaggcacgt gtcgccaagg gggacgcatc ccgcttctgg 5400
     cgcgaagacg gcgtctatgt gatttcagga ggaaccggcg ccctggcccg gctgttcgtc 5460
     geogaaateg ggaagegege gaegegggee accgteatte tggttgeeeg egeateeteg 5520
25
     geggaggegg tggaeggtgg gaaegggetg egegtgegge acetteeegt ggatgteace 5580
     caaccgaacg acgtgaacgc ctttgtcgct acggtgctgc gcgaacacgg gcgcatcgac 5640
     ggtgtcatcc atgcggcggg catccgccgt gacaactacc tgctcaacaa gccggtggcg 5700
     gaaatgcagg cggtgctcgc gcccaaggtg gtggggctcg tcaacctgga ccacgccacc 5760
     cgcgagctgc ccctggattt cttcgtcacg ttctcgtccc tggccgcgtt tggaaacgcc 5820
30
     ggtcagtcgg actacgcggc ggccaatggc ttcatggacg gattcgcgga gtcccgagcg 5880
     gegetegtga aegeeggaea geggeaggge eggaeggtgt eeateegttg geegetetgg 5940
     gagaacggcg ggatgcagct cgactcacgg agccgtgagg tcttgatgca gcggaccggg 6000
     atggccgcgc tgggagacga agcgggactg ggggcgttct accgggcgct ggaactgggc 6060
     teceetggtg tegeggtgtg gaegggggag geeeagaggt ttegtgaact eteegtgagt 6120
35
     gtttcgcccg caccgcctcc gcatcaggtg gcgttggacg ccgtggtgtc catcaccgag 6180
     aaggtegaga egaagetgaa ggegetette agegaggtea egegataega agagegeege 6240
     ategatgece gecageegat ggagegetat ggeategaet ceateateat caegeagatg 6300
     aaccaagece tegaagggee gtacaaegee etetegaaga egetgttett egaataeegg 6360
     acgetegegg aagteagegg gtatetggeè gageacegeg eggaagagag egegaagtgg 6420
40
     gatgegaege acegggegee tegegeegae gageecateg eegteattgg catgagegge 6540
     cgttatcccg gggcggagaa cctgacggag ttctgggagc gcctgagccg cggtgacgac 6600
     tgcatcaccg agattccgcc agagcgctgg tcgttggacg ggttcttcta cccggacaag 6660
     aagcacgccg ccgcgcgggg gatgagctac agcaagtggg gcggcttcct cggcggcttc 6720
45
     getgaetteg accegetgtt etteaacate tegeegegtg aggegaegag catggaeceg 6780
     caggageget tgtteetgea gagetgetgg gaggteetgg aggaegeggg gtacaeeegg 6840
     gacageetgg cecagegett tggcagegeg gtgggegttt tegegggaat caegaagaeg 6900
     ggctacgaac tctacggcgc ggagctggaa ggacgagatg cctcggtccg gccctatacg 6960
     tegtttgegt etgttgeeaa eegegteteg tatetgeteg acetgaaggg geegageatg 7020
50
     eccgtggaca ccatgtgete ggeetegetg acageegtee acatggettg egaggegetg 7080
     caacgaggeg cetgegteat ggccategeg ggtggagtga atetetaegt ceaceegteg 7140
                                                                  7178
     agctacgtca gcctgtccgg gcagcagatg ctgtcgac
```

55 <210> 3 <211> 785 <212> Amino acid <213> Myxococcus xanthus

 $60\ <400>3$ Met Lys Val Val Asn Lys Leu Clu Lys Leu Pro Asp Val Val Ala

	, 1			5				10				13				
5 .	Gly	Lys	Val 20	Pro	Asp ·	Val	Lys 25	Leu	Gln	Asp	Gln 30	Asp	Ile	Lys	Val	Pro
J .	Leu	Ala 3	Gln 5	Gly	Thr	Phe 40		Glu	Glu	Lys 45	Ile	Leu	Pro	Pro	Lys	Leu.
10		Met 50	His	Gly		Thr 5	Leù	Ser		Glü 0	Ala	Thr	Gly	Glu	Ala	Ser
	Ile 65	Arg	Asn		Asn 70	Ser	Leu		Asp 75	Val	Asp	Glu 80		Gly	Ile	Ile
15	Gly	Glu	Pro	Ser 85	Pro	Glu	Ser	Ala 90	Glu	Pro		Pro 95	Arg	Pro	Gln	Leu
20	Leu	Leu	Gly 10		Asp	Ile	Gly 105	Trp	Met		Tyr 110	Gln	Val	Ser	Ala	Arg
	Val	Lys 11		Ala	Val	Ser 120		Ser	Leu	Ser 125	Phe	Leu	Ala	Ser	Glu	Asn
25		Thr	Glu	Leu		Val	Thr	Leu	Ser 14	_ '	Tyr	Arg	Ala	His	Pro	Leu
	Gly 145	Gln	Asn	Met	Arg 150	Glu	Ala		Arg L55	Ser	Asp		Ser 60	Glu	Leu	Arg
30	Leu	Met	Gln	Ala 165	Thr	Asp	Leu	Ala 170	Lys	Leu		Thr 175	Gly	Asp	Ala	Val
35	Ala	Trp	His 180		Arg		Ala 185	Leu	His		Arg 190	Leu	Glu	Leu	Asn	Trp
	Ala	Asp 19	Ile 95	Phe	Pro	Thr 20		Leu	Asn	Arg 20		Gly	Phe	Leu	Arg	Gly
40		Glu 210	Leu	Leu		Leu 215	Lys	Thr		Ala 20	Lys	Ala	Gly	Leu	Ser	Ala
	Arg 225	Val	Ser		Thr 230				Gln 235			Phe		Arg	Pro	Arg
45	Ala	Gly		Ile 245	Gln	Val	Ala 25		Arg	Lys	Val 25		Ser	His	Glu	Gln
50	Ala	Leu	Ser 260		Gly		Gly 265	Ile	Thr	Val	Glu 270	Leu	Leu	Asp	Pro	Ala
	Thr	Val 27		Ala	Gln	Leu 28		Gln	Leu	Leu 289	_	Ala	Leu	Leu	Gly	Pro
55		Leu 290	Arg	Asp		Val 295	ГÀг	Lys	Gly 30	_	Thr	Ala	Val	Glu	Ile	Met
٠	Asp 305	Gly	Leu	Val	Asp 310	Lys	Ala		Lys 315	Ala	Lys	Leu	Asp 320		Asn	Gln
60	Lys	Lys	Val	Leu 325		Leu	Val	Leu 330	Glu	Arg		Gly 335	Ile	Asp	Pro	Glņ

		Leu	Ala	Asp 34	Pro 0	Ala	Asn	Leu 345		Gln	Ala	Trp 350		Asp	Phe	Lys	Ala
	5	Arg	Val 35		Glu	Ser	Leu . 36		Asn.	Ala	Val 365	Arg	Thr	Gln-	Val	Ala	Glu
	10	_	Phe 70	Glu	Tyr	Glu 37		Leu	Arg		Ser 80	Glu	Thr	Ser	Thr	Leu	Leu
		Glu 385	Val	Val	.Val	Glu 90	Asp	Val		Ala 95	Met	Arg	Phe 40		Glu	Ser	Leu
	15	Leu	Lys	Gly	Asn 405		Val	Glu	Leu 410	Ĺeu	Lys	Trp	Met 415	Lys	Ser	Leu	Pro
,		Ala	Gln	Gln 420	Ser	Glu	Phe	Glu 425		Arg	Asn	Tyr 430	Leu	His	Ala	Thr	Thr
	20	Leu	Thr 43		Gln	Gln	Ala 440	Ile	Gly	Phe	Ser 445	Leu	Gly ´	Leu.	Gly	Ser	Phe
	25		Leu 50	Leu	Lys		Lys 55	Asn	Val		Lys 60	Gln	Ser	Trp	Val	Thr	Gln
		Glu 465		Phe	Gln	Gly 470	Ala	Arg		Met 175	Ala	Phe		Gly 480	Arg	Arg	Gly
	30	Tyr	Glu	Asp	Lys 485		Leu	Gly	Thr 490	Arg	Gly		Trp 95	Val	Val	Asp	Leu
		Lys	Ala	Asp 50	Met 0	Thr	Arg	Phe 505		Pro	Thr	Pro 510	Val	Ala	Ser	Asp	Phe
. 1	35	Gly	Tyr 51		Leu	His	Leu 52		Leu	Trp	Gly 525		Gln	Lys	Lys	Leu	Ser
	40		Lys 30	Asp	Leu		Gln 35	Ala	Val		Asp 40	Ala	Va1	Val	Trp	Gly	Val
		Leu 545	Asp	Ala	Lys	Asp 550	Ala			Val 55	Ile	Ser	Thr 56		Gln	Glu	Asp
	45	Met	Gly	Lys	His 565	Pro	Ile		Thr 70	Arg	Leu		Leu 75	Lys	Met	Ala	Asp
		Asp	Ser	Phe 58	Arg 0	Ala	Leu	Val 585		Arg		Gln 590	Thr	Leu	Glu	Leu	Ser
	50	Arg	Phe 59	_	Arg	Ala	Leu 60		Arg	Ala	Leu 609	_	Trp	Ser	Glu	Gln	Leu
	55	_	Arg 10	Ala	Ser		Glu L5	Phe	Arg	Arg 62		Val	Tyr	Ala	Pro	Ile	Trp
	,	Glu 625	Ala	Tyr	Leu 6	Arg 30	Glu	Val	_	Glu 35	Gln	Gly	_	Leu 40	Met	Leu	Asn
	60	Asp	Leu	Ser	Pro 645		Arg		Ala 650	Gln	Ile	Ala 69		Trp	Tyr	Phe	Gln

Lys Asp Pro Thr Val Arg Asp Leu Gly Lys Asp Leu Gln Leu Ile Glu Ser Glu Trp Arg Pro Gly Gly Gly Asn Phe Ser Phe Ala Glu Val Ile 5 680 Ser Lys Asn Pro Asn Thr Leu Met Arg Cys Arg Asn Phe Val Ser Gly 700 690 695 -10 Met Val Arg Leu Arg Arg Ala Ile Asp Glu Arg Lys Ala Pro Asp Glu 710 715 Leu Arg Thr Val Phe Gly Glu Leu Glu Gly Met Trp Thr Thr Gly Phe 725 730 15 His Leu Arg Ala Ala Gly Ser Leu Leu Ser Asp Leu Ala Gln Ser Thr 745 .750 Pro Leu Gly Leu Ala Gly Val Glu Arg Thr Leu Thr Val Arg Val Ala 20 755 Asp Ser Glu Glu Gln Leu Val Phe Ser Thr Ala Arg Ser Thr Gly Ala 775 780 25 Ala 785 <210> 4 30 <211> 529 <212> Amino acid <213> Myxococcus xanthus <400> 4 35 Met Pro Ser Gly Cys Tyr Gly Ala Ala Ser Ala Phe Val Leu Pro Pro 10 Leu Pro Ala Met Pro Gln Ala Pro Ser Asp Val Ser Gln Val Leu Leu 40 Pro Phe Gly Gly Leu Val Gly Arg Glu Val Asp Leu Asp Ala Phe Leu Gln Thr Leu Met Asp Arg Ile Ala Ile Thr Leu Gln Ala Asp Arg Gly 45 Thr Leu Trp Leu Leu Asp Pro Ala Arg Arg Glu Leu Phe Ser Arg Ala 50 Ala His Leu Pro Glu Val Ser Gln Ile Arg Val Lys Leu Gly Gln Gly 90 Val Ala Gly Thr Val Ala Lys Ala Gly His Ala Ile Asn Val Pro Asp 110 55 Pro Arg Gly Glu Gln Arg Phe Phe Ala Asp Ile Asp Arg Met Thr Gly 115 120 . 125 Tyr Arg Thr Thr Ser Leu Leu Ala Val Pro Leu Arg Asp Gly Asp Gly 60

	Ala 145	Leu	Tyr		Va1 50	Leu	Gin		Leu 155	Asn	Arg		60 60	GIU	Asp	Arg
5	Phe	Thr	Asp	Glu 165	Asp	Thr	Gln	Arg 170	Leu	Thr	Ala 1	Ile 75	Ala	Ser	Gln	Val
	Ser	Thr	Ala 180		Gln	Ser	Thr 185	Ser	Leu	Tyr	Gln 190	Glu	Leu	Gln	Arg	Ala
10	Lys	Glu 19		Pro	Glņ	Val 20		Val	Gly	Tyr 20	Phe 5	Phe	Asn	Arg	Ile	Ile
4.5		Glu 10	Ser	Pro		Leu 15	Gln	Ala	Ile 220		Arg	Leu	Val	Arg	Lys	Ala
15	Ala 225	Pro	Thr		Ala 30	Thr	Val		Leu 35	Arg	Gly	Glu 24		Gly	Ser	Gly
20 .	Lys	Glu	Leu	Phe 245		Arg		Val 250	His	Val	Asn 2	Gly 55	Pro	Arg	Arg	Asp
	Gln	Pro	Phe 26		Lys	Val	Asp 265		Ala		Leu 270	Pro	Ala	Thr	Leu	Ile
25	Glu		Glu 75	Leu	Phe		His 80	Glu	Arg	Gly 28	Ala 5	Phe	Thr	Gly	Ala	Asp
30		Arg 90	Val	Pro		Lys 95	Phe	Glu	Ala 30		Ser	Gly	Gly	Thr	Val	Phe
50	Ile 305	Asp	Glu	Ile 31		Glu	Leu	Pro 31		Pro	Val	Gln 320		ГÀз	Leu	Leu
35	Arg	Val		Gln 325	Asp	Arg		Phe 330	Glu	Arg		Gly 35	Gly	Thr	Gln	Ala
	Val	Lys	Val 34	_	Val	_	Ile 345	Val	Ala	Ala 35		His	Arg	Asp	Leu	Ala
40	Arg		Val 55	Ala	Glu	Gly 36		Phe	Arg	Glu 36		Leu	Tyr	Tyr	Arg	Ile
45		Val 70	Val	Glu		Val 75	Leu	Pro	Pro 38		Arg	Glu	Arg	Gly	Ala	Glu
70	Asp 385	Ile	Glu	_	Leu 190	Ala	Arg		Phe 95	Vál	Ala	Ala 40	_	Ala	Arg	Arg
50	His	Arg	Leu	Thr 405	Pro	Pro	Arg	Leu 410	Ser	Ala		Ala 115	Val	Glu	Årg	Leu
	Ļys	Arg	Tyr 420	_	Trp	Pro	Gly 425	Asn	Val	Arg	Glu 430	Leų	Glu	Asn	Cys	Ile
55	Glu		Ala 35	Val	Val	Leu 44		Glu		Glu 445		Leu	Glu	Glu	His	Leu
60	Pro	Leu 450	Pro	Asp		Asp 455	Arg	Ala		Leu 60	Pro	Pro	Pro	Ala	Ala	Ala
00	Ġln	Gly	Val	Asn	Ala	Pro	Thr	Ala	Pro	Ala	Pro	Leu	Asp	Ala	Gly	Leu

Leu	Pro	Leu	Ala	Glu	Val	Glu	Arg	Arg	His	Ile	Leu	Arg	Val	Leu	Asp
		485					490			49	5			•	•

Ala Val Lys Gly Asn Arg Thr Ala Ala Ala Arg Val Leu Ala Ile Gly 500 505 510

Arg Asn Thr Leu Ala Arg Lys Leu Lys Glu Tyr Gly Leu Gly Asp Glu
515 520 525

Pro

15

5

10

<210> 5

<211> 292

<212> Amino acid

<213> Myxococcus xanthus

20

30

45

60

<400> 5

Met Arg Ala Ser Gln Ala Glu Ala Pro His Ser Arg Arg Leu Thr Met

1 5 10 15

25 Glu Val Arg Phe His Gly Val Arg Gly Ser Ile Ala Val Ser Gly Ser 20 , 25 30

Arg Ile Gly Gly Asn Thr Ala Cys Val Glu Val Thr Ser Gln Gly His
35 40 45

Arg Leu Ile Leu Asp Ala Gly Thr Gly Ile Arg Ala Leu Gly Glu Ile
50 55 60

Met Met Arg Glu Gly Ala Pro Gln Glu Ala Thr Leu Phe Phe Ser His 35 65 70 75 80

Leu His Trp Asp His Val Gln Gly Phe Pro Phe Phe Thr Pro Ala Trp 85 90 95

40 Leu Pro Thr Ser Glu Leu Thr Leu Tyr Gly Pro Gly Ala Asn Gly Ala
100 105 110

Gln Ala Leu Gln Ser Glu Leu Ala Ala Gln Met Gln Pro Leu His Phe 115 120 125

Pro Val Pro Leu Ser Thr Met Arg Ser Arg Met Asp Phe Arg Ser Ala 130 135 140

Leu His Ala Arg Pro Val Glu Val Gly Pro Phe Arg Val Thr Pro Ile 50 145 150 155 160

Asp Val Pro His Pro Gln Gly Cys Leu Ala Tyr Arg Leu Glu Ala Asp 165 170 175

55 Gly His Ser Phe Val Tyr Ala Thr Asp Val Glu Val Arg Val Gln Glu
180 185 190

Leu Ala Pro Glu Val Gly Arg Leu Phe Glu Gly Ala Asp Val Leu Cys 195 200 205

Leu Asp Ala Gln Tyr Thr Pro Asp Glu Tyr Glu Gly Arg Lys Gly Val

10

30

45

Ala Lys Lys Gly Trp Gly His Ser Thr Met Met Asp Ala Ala Gly Val 225 230 235 240

220

Ala Gly Leu Val Gly Ala Arg Arg Leu Cys Leu Phe His His Asp Pro 245 250 255

Ala His Gly Asp Asp Met Leu Glu Asp Met Ala Glu Gln Ala Arg Ala 260 265 270

Leu Phe Pro Val Cys Glu Pro Ala Arg Glu Gly Gln Arg Leu Val Leu 275 280 285

15 Gly Arg Ala Ala 290

<210> 6
20 <211> 168
 <212> Amino acid
 <213> Myxococcus xanthus

Arg Val Asn His Glu Lys Val Ala Ala Gln Leu Gly Lys His Gly 20 25 30

Tyr Glu Phe Phe Leu Pro Thr Tyr Thr Pro Pro Lys Ser Ser Gly Val

Lys Ala Lys Leu Pro Leu Phe Pro Gly Tyr Leu Phe Cys Arg Tyr Gln 55 60

Pro Leu Asn Pro Tyr Arg Ile Val Arg Ala Pro Gly Val Ile Arg Leu 65 70 75 80

40 Leu Gly Gly Asp Ala Gly Pro Glu Ala Val Pro Ala Gln Glu Leu Glu 85 90 95

Ala Ile Arg Arg Val Ala Asp Ser Gly Val Ser Ser Asn Pro Cys Asp 100 105 110

Tyr Leu Arg Val Gly Gln Arg Val Arg Ile Ile Glu Gly Pro Leu Thr 115 120 125

Gly Leu Glu Gly Ser Leu Val Thr Ser Lys Ser Gln Leu Arg Phe Ile 50 130 135 140

Val Ser Val Gly Leu Leu Gln Arg Ser Val Ser Val Glu Val Ser Ala 145 150 155 160

55 Glu Gln Leu Glu Pro Ile Thr Asp 165

<210> 7
60 <211> 79
<212> Amino acid

<213> Myxococcus xanthus

<4	n	Λ		7
< 4	u	u	>	•

- Met Asp Lys Arg Ile Ile Phe Asp Ile Val Thr Ser Ser Val Arg Glu $5 \ 1 \ 5 \ 10 \ 15$
 - Val Val Pro Glu Leu Glu Ser His Pro Phe Glu Pro Glu Asp Asp Leu 20 25 30
- 10 Val Gly Leu Gly Ala Asn Ser Leu Asp Arg Ala Glu Ile Val Asn Leu 35 40 45
 - Thr Leu Glu Lys Leu Ala Leu Asn Ile Pro Arg Val Glu Leu Ile Asp 50 55 60
- Ala Lys Thr Ile Gly Gly Leu Val Asp Val Leu His Ala Arg Leu
 65 70 75
- 20 <210> 8
 - <211> 420
 - <212> Amino acid
 - <213> Myxococcus xanthus
- 25 <400> 8

40

- Met Gly Pro Val Gly Ile Glu Ala Met Asn Ala Tyr Cys Gly Ile Ala 1 5 10 15
- Arg Leu Asp Val Leu Gln Leu Ala Thr His Arg Gly Leu Asp Thr Ser 30 25 30
 - Arg Phe Ala Asn Leu Leu Met Glu Glu Lys Thr Val Pro Leu Pro Tyr 35 40 45
- 35 Glu Asp Pro Val Thr Tyr Gly Val Asn Ala Ala Arg Pro Ile Leu Asp
 - Gln Leu Thr Ala Ala Glu Arg Asp Ser Ile Glu Leu Leu Val Ala Cys 65 70 75 80
 - Thr Glu Ser Ser Phe Asp Phe Gly Lys Ala Met Ser Thr Tyr Leu His 85 90 95
- Gln His Leu Gly Leu Ser Arg Asn Cys Arg Leu Ile Glu Leu Lys Ser 45 100 105 110
 - Ala Cys Tyr Ser Gly Val Ala Gly Leu Gln Met Ala Val Asn Phe Ile 115 120 125
- 50 Leu Ser Gly Val Ser Pro Gly Ala Lys Ala Leu Val Val Ala Ser Asp 130 135 140
 - Leu Ser Arg Phe Ser Ile Ala Glu Gly Gly Asp Ala Ser Thr Glu Asp 145 150 155 160
 - Trp Ser Phe Ala Glu Pro Ser Ser Gly Ala Gly Ala Val Ala Met Leu 165 170 175
- Val Ser Asp Thr Pro Arg Val Phe Arg Val Asp Val Gly Ala Asn Gly

 180 185 190

	Tyr Tyr Gly 195	/ Tyr Glu	Val Met 200	Asp. Thr	Cys Arg 205	Pro Val	Ala Asp	Ser
5	Glu Ala Gly 210	-	Asp Leu 215		Leu Ser 20	Tyr Leu	Asp Cys	Cys
	Glu Asn Ala 225	Phe Arg 230	Glu Tyr	Thr Arg 235	Arg Val	Pro Ala 240	Ala Asn	Tyr
10	Ala Glu Se	Phe Gly 245	Tyr Leu	Ala Phe 250	His Thr	Pro Phe 255	Gly Gly	Met [.]
15	Val Lys Gly 26		Arg Thr 265	Met Met	Arg Lys 270		Gly Lys	Asn
	Arg Gly Asp 275	o Ile Glu	Ala Asp 280	Phe Gln	Arg Arg 285	Val Ala	Pro Gly	Leu
20	Thr Tyr Cys		Val Gly 95 .	Asn Ile 300		Ala Thr	Met Ala	Leu
	Ser Leu Leu 305	Gly Thr	Ile Asp	His Gly 315	Asp Phe	Ala Thr 320	Ala Lys	Arg
25	Ile Gly Cys	s Phe Ser 325		Ser Gly 330		Ser Glu 335	Phe Phe	Ser
30	Gly Val Val		Glu Gly 345	Gln Glņ	Arg Gln 350	Arg Ala	Leu Gly	Leu
	Gly Glu Ala 355	a Leu Gly	Arg Arg 360	Gln Gln	Leu Ser 365	Met Pro	Asp Tyr	Asp
35	Ala Leu Leu 370		Asn Gly 375		Arg Phe 80	Gly Thr	Arg Asn	Ala
	Glu Leu Ası 385	Phe Gly 390	Val Val	Gly Ser 395	Ile Arg	Pro Gly 400	Gly Trp	Gly
40	Arg Pro Let	Leu Phe 405		Ala Ile 410	Arg Asp	Phe His	Arg Asp	Tyr
45	Gln Trp Ile 42							
50	<210> 9 <211> 325 <212> Amino <213> Myxoo		nthus					
	<400> 9 Met Ser Ser 1	r Val Ala S		Val Pro 10		Ala Arg	Asp Ser	Ala
55	Val Ser Arg		Arg Ile 25	Thr Pro	Ser Met 30	Cys Gly	Gln Thr	Ser
60	Leu Phe Ala	a Gly Gln	Ile Gly	Asp Trp	Ala Trp 45	Asp Thr	Val Ser	Arg

		50 50	GIA	Inr	_	55	Leu	THE	AIA 6	50	ASN	Ala	ser	GIY	Ala	Pro
5	Thr 65	Tyr	Leu		Phe 70	Tyr	Tyr	_	Arg 5	Ile	Arg	Gly 80	_	Pro	Ala	Leu
	His	Pro	Gly	Ala 85	Leu	Arg	Phe	Gly 90	Asp	Thr	Leu	Asp 95	Val	Thr	Ser	Lys
10	Ala	Tyr	Asn 10		Gly	Ser	Glu 105		Val		Thr 110	Val	His	Arg	Ile	Cys
15	Гуs	Thr		Glu	Gly	Gly 120	Ala	Pro	Glu	Ala 125	Asp	Ala	Phe	Gly	His	Glu
15		Leu 30	Tyr	Glu		Pro 35	Gĺn	Pro	Gly 140	-	Ile	Tyr	Ala	Glu	Thr	Phe
20 .	Asn 145	Arg	Trp		Thr 50	Arg	Ser		Gly 55	Lys	Ser	Asn 16		Ser	Leu	Ile
	Lys	Ser	Ser	Pro 165	Val	Gly		Gln 170	Tyr	Ala	His	Leu 1 <u>7</u> 5	Pro	Leu	Leu	Pro
25	Asp	Glu	Tyr 18		Pro		Arg 185	Ala	Tyr		Asp 190	Ala	Arg	Ala	Arg	Gly
30	Thr		His 5	Asp	Val	_	Ser 00	Ala	Glu	Tyr 205	_	Leu	Thr	Val	Asp	Arg
50		Pro 210	Leu	Arg		Ala 215	Val	Asp	Val 22		Arg	Asp	Val	Asn	Gly	Val
35	Gly 225		Ile		Phe 30	Ala	Ser		Phe 35	Ser	Met.	Val 24		Trp	Ala	Ile
,	Trp	Gln	Leu	Ala 245	Arg	His		Gly 250	Arg	Ser		Gln 55	Ala	Phe	Leu	Ser
40	Arg	Val	Val 260	Leu	Asp	Gln	Gln 265		Cys	Phe	Leu 270	_	Asn	Ala	Ala	Leu
45	Asp	Thr 27		Phe		Ile 28		Val	Gln	His 285		Glu	Arg	Val	Gly	Gly
70		Glu 90	Glu	Leu		Asn 295	Val	Lys	Met 3	Arg 00	Glu	Gly	Ala	Gln	Gly	Arg
50	Asp 305	Ile	Ala		Ala 10	Thr	Val	Lys 31	Val 5	Arg	Phe	Asp 320		Ala	Ser	Glu
	Gly	Gly	Arg	Arg 325	Gly											
55	<210	0> 10)			,							٠			
	<212		nino	acio												
60	<213	s > M ₂	xoco	occus	xai	nthus	5									

<400> 10

Met Thr Asp Glu Gln Ile Arg Gly Val Val His Gln Ser Ile Val Arg Val Leu Pro Arg Val Arg Ser Asn Glu Ile Ala Gly His Leu Asn Leu Arg Glu Leu Gly Ala Asp Ser Val Asp Arg Val Glu Ile Leu Thr Ser 45 40 Ile Leu Asp Ser Leu Arg Leu Gln Lys Thr Pro Leu Ala Lys Phe Ala Asp Ile Arg Asn Ilé Asp Ala Leu Val Ala Phe Leu Ala Gly Glu Val Ala Gly Gly <210> 11 <211> 374 <212> Amino acid <213> Myxococcus xanthus <400> 11 Met Met Gln Glu Arg Gly Val Ala Leu Pro Phe Glu Asp Pro Val Thr Asn Ala Val Asn Ala Ala Arg Pro Ile Leu Asp Ala Met Ser Pro Glu Ala Arg Glu Arg Ile Glu Leu Leu Val Thr Ser Ser Glu Ser Gly Val Asp Phe Ser Lys Ser Ile Ser Ser Tyr Ala His Glu His Leu Gly Leu Ser Arg His Cys Arg Phe Leu Glu Val Lys Gln Ala Cys Tyr Ala Ala Thr Gly Ala Leu Gln Leu Ala Leu Gly Tyr Ile Ala Ser Gly Val Ser 90 Pro Gly Ala Lys Ala Leu Val Ile Ala Thr Asp Val Thr Leu Val Asp 105 110 Glu Ser Gly Leu Tyr Ser Glu Pro Ala Met Gly Thr Gly Gly Val Ala 120 125 Val Leu Leu Gly Asp Glu Pro Arg Val Met Lys Met Asp Leu Gly Ala Phe Gly Asn Tyr Ser Tyr Asp Val Phe Asp Thr Ala Arg Pro Ser Pro 155 Glu Ile Asp Ile Gly Asp Val Asp Arg Ser Leu Phe Thr Tyr Leu Asp

Cys Leu Lys His Ser Phe Ala Ala Tyr Gly Arg Arg Val Asp Gly Val

185

190

5

10

15

20

25

30

35

40

45

50

55

	Asp P	ne vai 195	. Ser	Thr		Asp 00	Tyr	Leu	20		Hls	Thr	Pro	Phe	Ala
5	Gly L 210	eu Val	Lys		Gly 15	His	Arg	Lys 22		Met [.]	Arg	Glu	Leu	Thr	Pro
	Cys A 225	sp Val	qaA ,	Glu 230	Ile	Glu		Asp 235	Phe	Gly	_	Arg 40	Val	Lys	Pro
10	Ser L	eu Glr	Tyr 245	Pro	Ser		Val 250	Gly	Asn	Leu	Cys 255	Ser	Gly	Ser	Val
15 -	Tyr L	eu Ser . 26		Суѕ		Ile 265	Ile	Asp		Ile 70	Lys	Pro	Glu	Arg	Ser
	Ala A	rg Val	Gly	Met	Phe 28		Tyr	Gly	Ser 285	_	Cys	Ser	Ser	Glu	Phe
20	Phe S	er Gly 0	Val	Ile 29		Pro	Glu	Ser 300		Ser	Ala	Leu	Ala	Gly	Leu
	Asp I 305	le Gly		His 110	Leu	Arg		Arg 15	Arg	Gln		Thr 20	Phe	Asp	Gln
25	Tyr V	al Glu	Leu 325		Lys	Glu	Asn 330	Leu	Arg	Cys	Leu 335	Val	Pro	Thr	Lys
30	Asn A	rg Asp 34		Asp	Val	Glu 345	_	Tyr	Leu	Pro 350	Leu	Val	Thr	Arg	Thr
	Ala S	er Arg 355	Pro	Arg	Met 36		Ala	Leu	Arg 365		Val	Val	Asp	Tyr	His
35	Arg G 37	ln Tyr	Glu	Trp	Val										
40					nthus	5 -		·.							
45	<400> Met A 1	12 sn Thr	Pro 5	Ser	Leu	Thr	Asn 10	Trp	Pro	Ala	Arg 15	Leu	Gly	Tyr	Leu
	Leu A	la Val		Gly	Ala	Trp 25	Phe	Ala	Ala	Asp 30	Gln	Val	Thr	Lys	Gln
50		la Arg 35	Asp	Gly	Ala 40		Arg	Pro	Val 45	Ala	Val	Phe	Asp	Ser	Trp
55	Trp H	is Phe	His	Tyr 5		Glu	Asn	Arg 60		Gly	Ala	Phe	Gly	Leu	Phe
55	Ser S	er Phe	Gly	Glu 70	Glu	Trp		Met 75	Pro	Phe	Phe 8		Val	Val	Gly
60	Ala I	le Cys	Ile 85	Val	Leu	Leu 90	Ile	Gly		Tyr 95	Phe	Tyr	Thr	Pro	Pro

	Thr Met	10		GIN	Arg	105		Leu		110	Mec	iie	GIĀ	GIÀ	Ala
5	Leu Gly	Asn 15	Tyr	Val	Asp 12		Val	Arg	Leu 125		Tyr	Val	Val	Asp	Phe
	Val Ser 130	Trp	His		Gly 35	Asp	Arg	Phe 14		Trp	Pro	Ser	Phe	Asn	Ile
10	Ala Asp 145	Thr		Val 50	Val	Val	Gly 15		Ala	Leu	Met 160		Leu	Glu	Ser
15	Phe Arg	Glu	Pro 165		Gln	Gln	Leu 170	Ser	Pro	Gly	٠				
20	<210> 1 <211> 4 <212> A <213> M	75 mino			nthus										
	<400> 1	.3							٠				•		
25	Met Gly 1	Thr	Ser 5	Gľu	Pro	Val	Glu 10	Pro	Asp		Ala 15	Leu	Ser	Lys	Pro
	Pro Pro	Val 20		Pro	Val	Gly 25	Ala	Gln	Ala	Leu 30	Pro	Arg	Gly	Pro	Ala
-30	Met Pro	Gly 35	Ile	Ala	Gln 40	Leu	Met	Met	Leu 45		Leu	Arg	Pro	Thr	Glu
·	Phe Leu 50	a Asp	Arg	Суѕ	Ala 55	Ala	Arg		Gly 50	Asp	Thr	Phe	Thr	Leu	Lys
35	Ile Pro	Gly		Pro 0	Pro	Phe	Ile 75	Gln	Thr	Ser	Asp 80	Pro	Ala	Leu	Ile
40	Glu Val	. Ile	Phe 85	Lys	Gly	Asp	Pro 90	Asp	Leu	Phe	Leu 95	Gly	Gly	Lys	Ala
40	Asn Asr	_	Leu 00	Lys	Pro	Val	_	Gly	Glu	Asn 11		Leu	Leu	Val	Leu
45	Asp Gly	/ Lys 115	Arg	His		Arg 20	Asp	Arg		Leu 25	Ile	Met	Pro	Thr	Phe
	Leu Gly 130	/ Glu	Arg		His 135	Ala	Tyr	Gly 14		Val	Ile	Arg	Asp	Ile	Val
50	Asn Ala	a Ala	Leu	Asp 150	Arg	Trp		Val 55	Gly	Lys		Phe .60	Ala	Val	His
	Glu Glu	ı Thr	Gln 165	Gln	Ile		Leu 170	Glu	Val	Ile 17		Arg	Val	Ile	Phe
55	Gly Let	ı Glu 18	_	Ala	Arg	Thr 185	Ile	Ala	Gln	Phe 190	Arg	His	His	Va1	His
60	Gln Val	L Leu 195	Lys	Leu	Ala 20		Phe	Leu		Pro	Asn	Gly	Glu	Gly	Lys

		Ala 10	Ala	Glu		Phe 15	Ala	Arg	Ala 220	Val	Gly	Lys	Ala	Phe	Pro	Ser
5	Leu 225	Asp	Val		Ala 230	Ser	Leu		Ala 35	Ile	Asp	Asp 240		Ile	Tyr	Gln
	Glu	Ile	Gln	Asp 245	Arg	Arg		Gln 250	Asp	Ile	Ser 25	_	Arg	Gln	Asp	Val
10	Leu	Ser	Leu 260		Met	Gln	Ser 265		Tyr	Asp	Asp 270		Ser	Val	Met	Thr
15	Pro		Glu '5	Leu	Arg	_	Glu 80	Leu	Met		Leu 85	Leu	Met	Ala	Gly	His
15		Thr 90	Ser	Ala	Thr 29		Ala	Ala	Trp 300	Cys	Val	Tyr	His	Leu	Cys	Arg
20	His 305	Pro	Asp		Met 310	Gly	Lys		Arg 315	Glu	Glu	Ile 320		Ala	His	Thr
	Val	Asp		Val 325	Leu	Pro		Ala 330	Lys	Ile		Glu 35	Leu	Lys `	Phe	Leu
25	Asp	Ala	Val 340		Lys	Glu	Thr 345	Met	Arg		Thr 50	Pro	Val	Phe	Ser	Leu
30	Val	Ala 35		Val	Leu	Lys 36		Pro	Gln	Thr 365	Ile	Gly	Gly	Thr	Thr	Tyr
		Ala 70	Asn	Val		Leu 75	Ser	Pro	Asn 3.80		Tyr	Gly	Thr	His	His	Arg
35	Ala 385	Asp	Leu		Gly 390	Asp	Pro	Lys	Val 395	Phe	Arg		Glu 400	Arg	Phe	Leu
٠	Glu	Glu	Arg	Val 405	Asn	Pro	Phe	His 410	Tyr	Phe		Phe 415	Gly	Gly	Gly	Ile
40	Arg	Lys	Cys 42		Gly	Thr	Ser 425	Phe	Ala		Tyr 430	Glu	Met	Lys	Ile	Phe
45	Val	Ser 43	_	Thr	Val	Arg 44	_	Met	Arg	Phe 445	-	Thr	Arg	Pro	Gly	Tyr
,0		Ala 50	Lys	Val		Arg 55	Arg	Ser	Asn 46		Leu	Ala	Pro	Ser	Gln	Gly
50	Val 465	Pro	Ile	Ile 470		Glu	Ser	Arg 47	Leu 5	Pro	Ser					
:		0> 14											-		٠	
55	<212	l> 3: 2> Ar 3> My	nino			nthus	5,		•							
-		0> 14 Val		Ser	Val	Ser	Lys	Gln	Ala	Arg	Arg	Lys	Val	Phe	Leu	Phe
60 ·	1			5				10				15				

	ser	GŢŽ	20	GTA	THE	GIN.	25	TYL	rne	Mec	30	гуз	GIU	ьеи	Pne	Asp
5	Thr	Gln 35		Gly	Phe	Lys 40		Gln	Leu	Leu 4	_	Leu	Asp	Glu	Gln	Phe
		Gln 50	Arg	Leu		His 5	Ser	Ile	Leu 60	Glu	Arg	Ile	Tyr	Asp	Ala	Arg
10	Ala 65	Ala	Arg		Asp 70	Pro	Leu	Asp	Asp 75	Val	Leu	Val	Ser 80	Phe	Pro	Ala
15	Ile	Phe	Met	Ile 85	Glu	His	Ala 9		Ala	Arg	Leu 95		Ile	Àsp	Arg	Gly
15	Ile	Gln	Pro 100	Asp	Ala		Val 105	Gly	Ala		Met 10	Gly	Glu	Val	Ala	Ala
20	Ala	Ala 119		Ala		Ala 20	Ile	Ser	Val	Asp 25	Ala	Ala	Val	Ala	Leu	Val
		Ala 30	Gln	Ala	Gln 13		Phe	Ala	Arg 14		Ala	Pro	Arg	Gly	Gļy	Met
25	Leu 145	Ala	Val		His 50	Glu	Leu		Ala 155	Cys	Arg		Phe 60	Thr	Ser	Val
30	Ala	Arg	Asp	Gly 165		Val		Ala 70	Ile	Asn	Tyr 17		Ser	Asn	Phe	·Val
30	Leu	Ala	Ala 18		Glu	Ala	Gly 185	Leu	Gly		Ile 190	Gln	Gln	Glu	Leu	Ser
35	Gln	Arg 19		Val	Ala	Phe 20		Arg	Leu	Pro 205		Arg	Tyr	Pro	Phe	His
		Ser 10	His	Leu		Pro	Leu	Arg	Glu 2	Glu 20	Tyr	Arg	Ser	Arg	Val	Arg
40	Ala 225	Asp	Ser		Thr 230	Trp	Pro		Ile 35	Pro	Met	Tyr 24		Cys	Thr	Thr
45	Ala	Asn	Arg	Val 245	His	Asp	Leu	Arg 250	Ser	Asp	His	Phe 255		Asn	Val	Val
	Arg	Ala	Pro 260	Ile	Gln	Leu	Tyr 265	Asp	Thr		Leu 270	Gln	Leu	Glu	Gly	Gln
50	Gly	Gly 27		Asp	Phe	Ile 28		Val	Gly	Pro 285		Ala	Ser	Phe	Ala	Thr
55	Ile 29		Lys		Ile 295	Leu	Ala	Arg	Asp 300	Ser	Thr	Ser	Arg	Leu	Phe	Pro
, ,	Leu 305	Leu	Ser		Ser 310	Pro	Ala		Thr 315	Gly	Ser	Ser	Met	Gly		

<210> 15 <211> 330 <212> Amino acid <213> Myxococcus xanthus

<4	<00	15

25

- 5 Met Thr Glu Ala Pro Ala Pro Arg Ala Pro Ala Gln Val Pro Pro Pro 1 5 10 15
 - Pro Ser Ser Pro Trp Ala Leu His Thr Arg Gly Ala Ala Ser Ala Pro 20 25 30
- Val Asn Ala Arg Lys Ala Ala Leu Phe Pro Gly Gln Gly Ser Gln Glu
 35 40 45
- Arg Gly Met Gly Ala Ala Leu Phe Asp Glu Phe Pro Asp Leu Thr Asp 15 50 55 60
 - Ile Ala Asp Ala Ile Leu Gly Tyr Ser Ile Lys Arg Leu Cys Leu Glu 65 70 75 80
- 20 Asp Pro Gly Lys Glu Leu Ala Gln Thr Gln Phe Thr Gln Pro Ala Leu 85 90 95
 - Tyr Val Val Asn Ala Leu Ser Tyr Leu Lys Arg Leu Arg Glu Gly Ala 100 105 110
 - Glu Gln Pro Ala Phe Val Ala Gly His Ser Leu Gly Glu Tyr Asn Ala 115 120 125
- Leu Leu Val Ala Gly Ala Phe Asp Phe Glu Thr Gly Leu Arg Leu Val 30 130 135 140
 - Lys Arg Arg Gly Glu Leu Met Ser Gly Ala Ser Gly Gly Thr Met Ala 145 150 155 160
- 35 Ala Val Val Gly Cys Asp Ala Val Ala Val Glu Gln Val Leu Arg Asp 165 170 175
 - Arg Gln Leu Thr Ser Leu Asp Ile Ala Asn Ile Asn Ser Pro Asp Gln 180 185 190
 - Ile Val Val Ser Gly Pro Ala Gln Asp Ile Glu Arg Ala Arg Gln Cys
 195 200 205
- Phe Val Asp Arg Gly Ala Arg Tyr Val Pro Leu Asn Val Arg Ala Pro 45 210 215 220
 - Phe His Ser Arg Tyr Met Gln Pro Ala Ala Ser Glu Phe Glu Arg Phe 225 230 235 240
- 50 Leu Ser Gln Phe Gln Tyr Ala Pro Leu Arg Cys Val Val Ile Ser Asn 245 250 255
 - Val Thr Gly Arg Pro Tyr Ala His Asp Asn Val Val Gln Gly Leu Ala 260 265 270
- Leu Gln Leu Arg Ser Pro Val Gln Trp Thr Ala Thr Val Arg Tyr Leu 275 280 285
- Leu Glu Gln Gly Val Glu Asp Phe Glu Glu Leu Gly Pro Gly Arg Val 60 290 295 300

Leu Thr Arg 305	Leu Ile Th	r Ala Asn I 31		y Ala Pro 320	Ala Pro A	lla
Thr Ala Ala	Pro Ala Ly: 325	Trp Ala A	Asn Ala			
<210> 16 <211> 417 <212> Amino <213> Myxoc		ıs				
<400> 16					•	
Met Ser Thr 1	Ser Pro Vai	l Gln Glu I 10	Leu Val Va	1 Ser Gly 15	Phe Gly V	/al
Thr Ser Ala 20		n Gly Ala <i>I</i> 25	Ala Ser Ph 30	e Thr Ser	Ala Leu I	Leu
Glu Gly Ala 35	Ala Arg Pho	_	Met Glu Ar 45	g Pro Gly	Arg Gln H	lis
Gln Ala Asn 50	Gly Gln Th	Thr Ala I	His Leu Gl 60	y Ala Glu	Ile Ala S	Ser
Leu Ala Val	Pro Glu Gly	Val Thr 1		u Trp Arg 80	Ser Ala T	Ċhr
Phe Ser Gly	Gln Ala Ala 85	a Leu Val 1 90	Thr Val Hi	s Glu Ala 95	Trp Asn A	Ala
Ala Arg Leu 10		l Pro Gly I 105	His Arg Il 110	e Gly Leu	Val Val C	3ly
Gly Thr Asn 115		n Arg Asp 1 20	Leu Val Le 125	u Met Gln	Asp Ala T	ſyr
Arg Glu Arg 130	Val Pro Ph	e Leu Arg	Ala Ala Ty 140	r Gly Ser	Thr Phe M	1et
Asp Thr Asp	Leu Val Gly 150	_	Thr Gln Gl 55	n Phe Ala 160	Ile His C	Зlу
Met Ser Phe	Thr Val Gly	Gly Ala :	Ser Ala Se	r Gly Leu 175	Leu Ala V	Val
Ile Gln Ala 180	Ala Glu Al	a Val Leu : 185	Ser Arg Ly 190	s Val Asp	Val Cys I	Ile
Ala Val Gly 195		t Asp Val :	Ser Tyr Tr 205	p Glu Cys	Gln Gly I	Leu
Arg Ala Met 210	Gly Ala Me 215	t Gly Thr	Asp Arg Ph 220	e Ala Arg	Glu Pro C	3lu
Arg Ala Cys 225	Arg Pro Ph 230		Glu Ser As 235	p Gly Phe 240	Ile Phe C	Зlу
Glu Ala Cys	Gly Ala Va	l Val Val (Glu Ser Al	a Glu His	Ala Arg A	Arg

.

Arg Gly Val Thr Pro Arg Gly Ile Leu Ser Gly Trp Ala Met Gln Leu 265 Asp Ala Ser Arg Gly Pro Leu Ser Ser Ile Glu Arg Glu Ser Gln Val 5 280 285 Ile Gly Ala Ala Leu Arg His Ala Asp Leu Ala Pro Glu Arg Val Asp 10 Tyr Val Asn Pro His Gly Ser Gly Ser Arg Gln Gly Asp Ala Ile Glu 310 315 Leu Gly Ala Leu Lys Ala Cys Gly Leu Thr His Ala Arg Val Asn Thr 325 330 15 Thr Lys Ser Ile Thr Gly His Gly Leu Ser Ser Ala Gly Ala Val Gly 345 Leu Ile Ala Thr Leu Val Gln Leu Glu Gln Gly Arg Leu His Pro Ser 20 360 365 Leu Asn Leu Val Asp Pro Ile Asp Ser Ser Phe Arg Trp Val Gly Ala 25 Thr Ala Glu Ala Gln Ser Leu Gln Asn Ala Leu Val Leu Ala Tyr Gly Phe Gly Gly Ile Asn Thr Ala Val Ala Val Arg Arg Ser Ala Thr Glu 410 415 30 Ser 35 <210> 17 <211> 262 <212> Amino acid <213> Myxococcus xanthus 40 <400> 17 Met Gln Ala Ala Ser Pro Pro His Arg Asp Tyr Gln Thr Leu Arg Val 10 Arg Phe Glu Ala Gln Thr Cys Phe Leu Gln Leu His Arg Pro Asp Ala 45 25 Asp Asn Thr Ile Ser Arg Thr Leu Ile Asp Glu Cys Gln Gln Val Leu 50 Thr Leu Cys Glu Glu His Ala Thr Thr Val Val Leu Glu Gly Leu Pro His Val Phe Cys Met Gly Ala Asp Phe Arg Ala Ile His Asp Arg Val 75 55 Asp Asp Gly Arg Arg Glu Gln Gly Asn Ala Glu Gln Leu Tyr Arg Leu 90 Trp Leu Gln Leu Ala Thr Gly Pro Tyr Val Thr Val Ala His Val Gln 60 105 110

	Gly	Lys 11		Asn	Ala	Gly . 12		Leu	Gly	Phe 125		Ser	Ala	Cys	Asp	Ile
5.		Leu 30	Ala	Lys		Glu 85	Val	Gln	Phe 14		Leu	Ser	Glu	Leu	Leu	Phe
	Gly 145	Leu	Phe	Pro	Ala 150	Cys	Val	Met	Pro 155	Phe	Leu		Arg 60	Arg	Ile	Gly
0	Ile	Gln		Ala L65	His	Tyr	Leu 1	Thr 70	Leu	Met	Thr 179		Pro	Ile	Asp	Ala
5	Ala	Gln	Ala 18		Ser	Trp	Gly 185		Ala		Ala 190	Val	Asp	Ala	qsA	Ser
	Glu	Lys 19		Leu	Arg	Leu 20	His O	Leu	Arg	Arg 20		Arg	Cys	Leu	Ser	Lys
20		Ala 10	Val	Thr	_	Tyr L5	Lys	Lys	Tyr 220		Ser	Glu	Leu	Gly	Gly	Gln
	Leu 225	Leu	Ala	Ala	Met 230	Pro	Arg	Ala 23		Ser	Ala	Asn 24		Ala	Met	Phe
25 ·	Ser	Asp	Arg	Ala 245		Leu	Glu 2		Ile	His	Arg 25		Val	Glu	Thr	Gly
30	Arg	Leu	Pro 260	Trp	Glu	Ser					٠	·				
35	<213 <213	0> 18 l> 25 2> Ar 3> My	56 mino			nthus	5							·	•	
10)> 18	3													
	. 1	Gly	Ile	Met 5	Thr	Glu		Thr LO	Pro	Met	Ala 1		Val	Val	Thr	Leu
			`	5			1	LO .			1 Thr	5				Leu Glu
15	His	Glu Lys	Val 20	5 Glu	Glu	Gly	Val 25 Glu	LO Ala	Gln	Ile 3	Thr O Arg	5 Leu	Val	Asp	Arg	Glu
15	His Asn Phe	Glu Lys 3	Val 20 Asn 5	5 Glu Met	Glu Phe Asn	Gly Ser	Val 25 Glu	Ala Gln	Gln Leu Arg	Ile 3 Val 4	Thr O Arg	Leu Glu	Val Leu	Asp	Arg Thr	Glu Val
I5 50	His Asn Phe	Glu Lys 3 Gly 50	Val 20 Asn 5	5 Glu Met Val Thr	Glu Phe Asn	Ser Ser Gly 55	Val 25 Glu 10	Ala Gln Glu Leu	Gln Leu Arg	Ile 3 Val 4 Tyr	Thr 0 Arg 5	Leu Glu Ala Lys	Val Leu Val	Asp Ile Val	Arg Thr Leu	Glu Val Thr
60	His Asn Phe Gly 65	Glu Lys 3 Gly 50	Val 20 Asn 5 Lys	5 Glu Met Val Thr	Glu Phe Asn Tyr 70	Ser Gly 55 Phe	Val 25 Glu 10 Asn Ala	Ala Gln Glu Leu 7	Cln Leu Arg Gly 5	Ile 3 Val 4 Tyr 50	Thr O Arg Arg Thr Val	5 Leu Glu Ala Lys	Val Leu Val Ala	Asp Ile Val	Arg Thr Leu Leu	Glu Val Thr
	His Asn Phe Gly 65 Ser	Glu Lys 3 Gly 50 Tyr	Val 20 Asn 5 Lys Asp	5 Glu Met Val Thr Asp 85 Glu	Glu Phe Asn Tyr 70 Gly	Gly Ser Gly 55 Phe	Val 25 Glu 10 Asn Ala	Ala Gln Glu Leu 7 Ser 00	Cln Leu Arg Cly 5 Phe	Ile 3 Val 4 Tyr 50 Gly Asn	Thr O Arg Arg Thr Val	Leu Glu Ala Lys Thr	Val Val Ala 30 Asn	Asp Ile Val Gly Phe	Arg Thr Leu Leu	Glu Val Thr Leu Ser

Leu Ser Arg Glu Ser Val Tyr Thr Thr Asn Phe Met Arg Tyr Gly Phe 130 135 140 Thr Pro Gly Met Gly Ala Thr Tyr Ile Val Pro Lys Arg Leu Gly Tyr 5 Ser Leu Gly His Glu Leu Leu Leu Asn Ala Arg Asn Tyr Arg Gly Ala 165 170 10 Asp Leu Glu Lys Arg Gly Val Pro Phe Pro Val Leu Pro Arg Lys Glu 185 190 Val Leu Pro His Ala Tyr Glu Ile Ala Arg Asp Leu Ala Ala Lys Pro 195 200 205 15 Arg Leu Ser Leu Val Thr Leu Lys Arg His Leu Val Arg Asp Ile Arg Arg Glu Leu Pro Asp Val Ile Glu Arg Glu Leu Glu Met His Gly Ile 20 230 Thr Phe His His Asp Asp Val Arg Arg Ile Glu Gln Leu Phe Leu 250 25 <210> 19 30 <211> 424 <212> Amino acid <213> Myxococcus xanthus <400> 19 35 Met Leu Asn Leu Ile Asn Asn His Ala His Gly Tyr Val Val Thr Pro 10 Val Val Leu Ala Cys Asn Asp Ala Gly Leu Phe Glu Leu Leu Arg Gln 40 Gly Pro Lys Asp Phe Asp Arg Leu Ala Glu Ala Leu Arg Ala Asn Arg 40 Gly His Leu Arg Val Ala Met Arg Met Phe Glu Ser Leu Gly Trp Val 45 Arg Arg Asp Ala Asp Asp Val Tyr Ala Val Thr Ala Ala Ala Ala Ala 75 · 50 His Arg Ser Phe Pro Arg Glu Ala Gln Ser Leu Phe Ala Leu Pro Met Asp Arg Tyr Leu Arg Gly Glu Asp Gly Leu Ser Leu Ala Pro Trp Phe 105 110 55 Glu Arg Ser Arg Ala Ser Trp Asp Thr Asp Asp Thr Leu Val Arg Glu 115 120 Leu Leu Asp Gly Ala Ile Ile Thr Pro Leu Met Leu Ala Leu Glu Gln 60 135 140

	Arg 145	Gly	Gly		Lys 150	Glu	Ala		Arg LSS	Leu	Ser		Leu 60	Ţrp	Ser	Gly
5	Gly	Asp	Gly	Arg 165	Asp	Thr	Суз	Val 170	Pro	Glu		Val 75	Gln	His	Glu	Leu
	Ala	Gly	Phe 18		Ser	Ala	Gln 185		Trp	Thr	Arg 190	Glu	Asp	Ala	Val	Asp
10	Ala	Glu 19		Thr	Pro	Lys 20		Ala	Phe	11e 205		Glu	Arg	Ala	Leu	Leu
15		Ala 210	Ile	Val	Gly 21		Tyr	Arg	Pro 220		Leu	Ala	Ser	Met	Pro	Gln
10	Leu 225	Leu	Phe	Gly	Asp 230	Cys	Asp	Gln	Val 235		Gly	Arg	Asp 240	Glu	Ala	Gly
20	His	Glu	Leu	His 245	Leu	Asp	Arg	Thr 250	Leu	Asn		Ile 55	Gly	Ser	Gly	His
••	Gln	His	Arg 260		Tyr	Phe	Ala 265	Glu	Leu		Lys 270	Leu	Ile	Ile	Thr	Val
25	Phe		Ala 75	Glu	Asn		Ser 80	Ala	Gln	Pro 285	_	Tyr	Ile	Ala	Asp	Met
30	_	Cys 90	Gly	Asp	_	Thr 295	Leu	Leu	Lys 3	Arg 00	Val	Tyr	Glu	Thr	Val	Leu
	Arg 305	His	Thr		Arg	Gly	Arg		Leu 15	Asp	Arg		Pro 20	Leu	Thr	Leu
35	Ile	Ala		Asp 325	Phe	Asn		Lys 330	Ala	Leu		Ala 35	Ala	Gly	Arg	Thr
	Leu	Ala	Gly 34		Glu	His	Val 345	Ala	Leu		Ala 350	Asp	Val	Ala	Arg	Pro
40	Asp		Leu 155	Ile	Glu	Asp 36		Arg	Ala	Arg 369		Leu	Ala	Glu	Pro	Glu
45		Thr 370	Leu	His		Arg 75	Ser	Phe	Leu 38		His	Asp	Arg	Pro	Tyr	Gln
	Pro 385	Pro	Ala		Arg 90	Ala	Gly		His 95	Ala	Arg	Ile 40		Phe	Asp	Ser
50	Val	Phe	Val	Gly 405	Lys	Ala		Gln 410	Glu	Val		Pro 15	Ala	Glu	Val	Phe
	His	Ser	Leu 42	Val 0	Glu	His	Leu	Glu								
55	<21	0> 2 1> 1: 2> DI	9053	· •												
				occu.	s xa:	nthu	s									

<400> 20

```
gtogacgttg acgtcgcccg gtggcgtgcc gtgtgtcttc ttcgacgcgg aggtgcgcga 60
     ggtggcggcg gacggccggc gcgggccgct gttgtcgcgt gagcgcgcgt atgcgccggt 120
     actggcgctg cgtggccagc gcctccatgc ttcggtgtcc ttttcgcccg cgtcgctgat 180
     ggctccggtg gaggtgcgcc ggtgcaaggc cctgccaggc acggtgcccg cgtcctggta 240
     teagaeggeg caceeggagg ecetgteetg ggagegegtg ggegeggtgg gegaateetg 300
     cctcgtggtg ggtgaactcc ggaggggccc tgtcgagggc agctacgccc tggtcggtcg 360
     ggagggegge ceegegatgt tggtgetggg acceeagget eeggeeacet gtgggaeget 420
     ggegegeegg geetggegge aettegegge ggeeggggtg etgteeatgg eegeggeegt 480
     cgtcctgtca ggggcgctgt gagacgcgcg gcgggggccg taccgccgcg ccagaaacgt 540
    gatgegeege caggeetege ggteegggea etgaegeeeg ggeegetegg gaetegetea 600
     ggeggeteeg gtgettegeg eggtggagaa caegagetgt teetegetgt eegecaeeeg 660°
     cacggtgagg gtccgctcca cgccggcgag gcccagcggc gtggactgcg ccaggtccga 720
     gagcagggag cccgcagcgc gcaggtggaa gccggtggtc cacatgccct ccagctcgcc 780
     gaacacggtg cgcagctcgt ccggggcctt gcgttcgtcg atggcgcggc gcaggcgcac 840
15
     catgccgctc acgaagttcc tgcaccgcat gagcgtgttg gggttcttgg agatgacctc 900
     egegaagetg aagttgeege caceegggeg ceactegett tegatgaget geaggteett 960
     gctgggtgac aagtcattca gcatgaggct gccttgctcc tgcacctcgc ggaggtaggc 1080
     ctcccagatg ggggcgtaga ccgcgcgcg gaactcggcg gaggcgcggg gaagctgctc 1140
20
     gctccagggc agcgcgcggg ccagggcgcg tgagaagcgg gacagctcga gcgtctggat 1200
   geggggeace agggegegga aegagteate egecatette agetegagee gegtttegat 1260
     ggggtgcttg cccatgtcct cctgcatggt gctgatgacg gtggccgcgt ccttcgcgtc 1320
     cagcacgccc cagacgacgg cgtcatccac cgcctgctgc aggtccttgc gcgacagctt 1380
     ettetgeegt ceceaeagea teaggtgeag geegtageeg aagteggagg ceaegggggt 1440
25
     gggagagaag egegteatgt eegeetteag gteeaceace eaetggeege gggtgeeeag 1500
     cagettgtcc tegtageece ggegteegag gaacgeeatg egeegggege eetggaagtt 1560
     ctcctgcgtc acccaggact gcttgctgac gttcttcgcc ttgagcagct cgaacgagcc 1620
     cagececagt gagaageega tggeetgetg gegegtgage gtggtggegt geaggtagtt 1680
     gegeageteg aactegetet getgggeggg gaggetette atceaettea geageteeae 1740
30
     caggttgccc ttgagcaggg actcgtggaa gcgcatcgcg gtgacgtcct ccacgacgac 1800
     ctccagcage gtggaggtet cegacaggeg caggtatteg tactegaage ceteggegae 1860
     etgegtgegg aeggegttet ceagegacte tgegaegegg geettgaagt eggeeeagge 1920
     etgeggaagg ttggeegggt eegeaagetg egggtegatg eeaaggeget eeageaceag 1980
     gcccagcacc ttcttctgat tgtcgtccag cttcgccttg ctggccttgt ccaccaggcc 2040
35
     gtccatgatt tccaccgcgg tggtgccctt cttgacgagg tcgcgaagga cgggccccag 2100
     cagogottoc agcaactggc ccagttgggc cttcaccgtc gccgggtcca gcagctccac 2160
     ggtgatgccc aggccggcgg agagcgcctg ctcatgggac ttcaccttgc gcacggcgac 2220
     ctggatgcgg ccggcacggg gacgggagaa gctgagctgg tagtcgtcgg tgagggacac 2280
     ccgggcggac aggcccgcct tggcgctggt cttcaacgcg agcagctcgt tgccgcgcag 2340
40
     gaagcccagg cggttgaggt tggtggggaa gatgtccgcc cagttgagct ccagccgtgt 2400
     gtggagegeg cegeggacat gecaegeeae egegteeeee gtggteaget tggeeaggte 2460
     ggtggcctgc atcagccgca gctcggacag gtcggagcgc acggcctcac gcatgttctg 2520
     gcccagcgga tgcgcgggt agtcgctgag cgtgacggac agctccgtct ggttctcgga 2580
     ggcgaggaag gacaggctgg cgctcacggc ggccttcacg cgcgcggaca cctggtagcg 2640
45
     catccacceg atgtcactgc ccagcagcag ttggggccgg ggccctggct cggcgctctc 2700
     egggetegge tegeegatga tgeegtttte gteeaegteg eeeagegagt tgaagtteeg 2760
     gatggacgct tcgccggtgg cttcgaagga gagggtgaag ccgtgcatgg cgagcttggg 2820
     eggaaggatt ttetetteeg tgaaggteee etgggeeage ggeacettga tgteetggte 2880
     etgeagette aegtegggea cettgeeege caegaegteg ggaagettet ceageagett 2940
50
     gttgaccact ttcatgcgcg tccccctggg ctgaagcctc ctgcacgtgg gccggaggtc 3000
     tettegtegt aegeegttge eeagetegga acaaggegga taccagaaaa gaceggtggt 3060
     cageggacag atgeeetgga gggtggggtg ggageegeee eegegeggtg egteaggget 3120
     egtegeecaa teegtaetee ttgagtttee gegegagegt gttgeggeea ategeeagea 3180
     egegggeege ggeggtgegg ttgeeettea eggegteeag caegegeagg atgtggegge 3240
55
     gttcgacctc cgccagtggc agcaggcccg catccagggg cgcaggcgca gtcggcgcgt 3300
     tgacaccctg ageggetgeg ggaggeggea gggeggeeeg gtecacateg ggeaggggea 3360
     ggtgctcttc gagaatctcc ccttcacaga gcaccacggc gctctcgata cagttctcca 3420
     getecegeae gttteeggge eageggtage gettgaggeg etecacegeg geggegetga 3480
     ggcggggcgg cgtcagccgg tgcctccggg cgacggcggc gacgaagtgg cgggcgagcc-3540
60
     gctcgatgtc ctccgcgccg cgctcccgca gcggcggcag caccacctcg accaccttga 3600
     tgcggtagta gaggtcctcg cggaagcggc cctcggccac catgcgggcc aggtcccgat 3660
```

```
gggtggccgc gacgatgcgc acgtccacct tcacggcctg ggtgcctccc acgcgctcga 3720
actogogato otggatgaco ogoagoaact tgoootgcac oggoaggggo agotogocaa 3780
tctcgtcgat gaacacggtg ccgcctgg ccgcttcgaa cttgccgggc acgcggtggt 3840
ccgcgccggt gaaggcgccg cgttcgtggc cgaagagctc gttctcgatg agcgtggcgg 3900
geagegeege geagteeace ttgatgaagg getggteeet geggggaeea tteaegtgga 3960
eggeaegge gaacagetee ttgeegetge caetetegee gegeageage acegtegeat 4020
eggtgggege ggeettgege accagteggt agatggeetg gagetgeggg gaetegeega 4080
tgatgeggtt gaagaagtag eccaeeggta eetggggetg eteettegeg egetggaget 4140
cttgatagag gctggtgctc tggagggcgg tgctcacctg cgaggcgatg gcggtgagcc 4200
getgegtgte etegteggtg aageggteet egeegeggeg gttgaggaee tggageaege 4260
cgtagagggc gccgtccccg tcgcgcagtg gcacggcgag caggctggtg gtgcggtagc 4320
ccgtcatccg gtcgatgtcc gcgaagaagc gctgctcgcc gcgcgggtcc ggcacgttga 4380
tggcgtgccc cgccttggcg acggtgccgg cgacgccctg gcccagcttg acgcgaatct 4440
gggacacete gggeaggtge geggeggge tgaacagete geggegggee gggtecagea 4500
gecagagegt geegeggtee gettgeaggg tgatggegat geggteeate agegtetgga 4560
ggaacgegte gaggtecace tecetgeega egagteetee gaaggggagg aggaeetggg 4620
agacgtccga gggggcttgg ggcatggcgg gcaacggcgg caggacgaag gcggaggccg 4680
caccataaca tecagaggge atgggaetge ecceteteag geogegegge ceageaceag 4740
cegetggcet tegegtgegg getegeacae ggggaagagg gegegggeet geteegeeat 4800
gtcctcgagc atgtcgtcgc cgtgcgccgg gtcatggtgg aacaggcaca gccggcgcgc 4860
ccccaccage deggecacge degeggeate cateatggtg gagtggeede agedettett 4920
cgccacgccc ttgcggccct cgtattcgtc cggcgtgtac tgcgcatcca ggcacaggac 4980
gtccgcgccc tcgaagaggc ggcccacctc cggcgcgagc tcctgcaccc gcacctccac 5040
gtccgtggcg tagacgaacg aatggccatc cgcctccagg cggtacgcca ggcaccctg 5100
egggtgegge aegtegatgg gegtgaegeg gaaggggeee acetecaegg gtegggeatg 5160
caacgccgag cggaagtcca tccgcgagcg catggtgctc agcggcaccg gaaaatgaag 5220
eggetgeate tgegeggeea acteggactg gagegeetgg geceeatteg egeceggace 5280
gtagagegte ageteggaeg tgggeageea ggeeggegtg aagaagggga ageeetgeae 5340-
gtggtcccaa tgcagatgcg agaagaagag cgtggcctcc tggggcgcgc cctcgcgcat 5400
catgattteg eccagtgege ggatgeeegt eccegeatee aggatgagge ggtggeeetg 5460
gctggtcacc tccacgcagg ccgtgttgcc accaatgcgc gagcccgaca ccgcgatgct 5520
cccccgaacg ccatgaaacc ggacttccat cgtaagtctc cttgaatggg gggcctccgc 5580
ctgggacgcc ctcatgcccg gagcctcaga gcacggggtg tgccattccc aaatgcccgg 5640
aatcaggage gegggeeteg ggetegteea eeggtgetee agaatggate gegetegeet 5700
ggtgcgggcg atccaaagcg gtgcaggtcg cccgcaggac ggggcggcgg gcacgtcttc 5760
caacgtccca cggcagtcct gtcttcagat ctctcccgat gcgggaaggc gtccaggagg 5820
ttgcaccegg categagegg ggetgtgtgt tteaagtett gteggageet eggacacaac 5880
cgtctgggtt ctgggaatgc gccggcttcc gttcactcca gagtgattca atggctctcg 5940
agtgcaggtt tagcaatcct cgggccgtaa ccacgccgtt gaaggcagtc acgctctcgt 6000
cacgcttggg gtgtttccag cttcaacggt gtttatcctt cagggcggtt tgcttgacac 6060
gctgcctcat ggaagcgtat gcaaaacaat gaaaacggtg tcgttgccga gccttagggc 6120
ctccagaacg ccatcctcgc ggacccaggc agccggaatt tgagacgggg ctgtcagcgg 6180
tttgaacgca aggatgcggc gggggttgtg gcggcagccc gaccagaatt cggttggtgt 6240
gccagttatt gtcagattct gagaaatagc aggctggggg gaagttgcaa tgcctgggcc 6300
geggtgtget gagaacgatt gggttgeatt getegteege gteaateaeg agaaagtgge 6360
tgccgctcag ttggggaaac acggctacga gttcttcctg ccgacgtaca cgcctcccaa 6420
gteetegggt gtgaaggega agetteeget etteeeeggg taeettttet gtegttaeea 6480
geogeteaat eegtacegea tegteeggge geoeggggte ateeggetge teggaggtga 6540
egeggggeeg gaageegtge eegeacagga attggaggee ateegeeggg tegeggatte 6600
gggtgtctct tccaatccct gtgactatct gcgggtgggg cagcgcgtgc gcatcatcga 6660.
agggcccctg acaggtctgg aaggaagtct ggtgacgagc aagagccaac tccggttcat 6720
tgtctccgtg gggctgctac agcgctcggt gtccgtggag gtgagcgccg agcaactgga 6780
accgateace gactgattee geggacatee cettecatte etteateace eegaceegca 6840
gcaaggette agggacegtg agtegtteea tggacaagag aattatttte gacategtea 6900
ccagcagtgt tcgggaggtg gtacccgaac tcgaatcaca tccgttcgag ccggaggatg 6960
acctggtcgg actgggcgcg aactcgctcg accgcgccga aatcgtcaac ctcacgctgg 7020
agaagetgge geteaacate eccegggteg agetgattga egegaagace attggeggge 7080
tggtggacgt cetteacgeg aggetgtgag gegaagecat ggggeeggte gggattgaag 7140-
ecatgaatge etactgtgge ategecaggt tggatgtgtt geagetggeg acceacegtg 7200
geotggacae etecegette gegaacetge teatggagga gaagacegte eegeteeeet 7260
atgaggaccc tgtcacctac ggcgtgaatg ccgcccggcc catcctggac cagttgaccg 7320
```

```
eggeggaacg ggacagcate gagetgetgg tggettgeac ggagteeteg ttegaetteg 7380
     geaaggeeat gageacetae etgeaceage acetgggget gageegeaac tgeeggetea 7440
     tegageteaa gagegeetge tacteegggg tegeeggget geagatggee gteaacttea 7500
     tectgteegg egtgtegeeg ggggeeaagg eeetggtggt ggeeteegae etgtegeget 7560
 5
     tetecatege egaaggggga gatgeeteca eggaggaetg gteettegeg gageegaget 7620
     egggtgeggg egeggtggee atgetggtga gegaeaegee eegggtgtte egegtegaeg 7680
     tgggggcgaa cggctactac ggctacgagg tgatggatac ctgccgcccg gtggcggaca 7740
     gegaageggg agaegeggae etgtegetee tetegtaeet ggaetgetgt gagaaegeet 7800
     teegggagta caccegeege gteecegegg egaactaege ggagagette ggetaceteg 7860
10
     ccttccacac gccgtttggc ggcatggtga agggcgccca ccgcacgatg atgcgcaagt 7920
     teteeggeaa gaacegeggg gacategaag eggaetteea geggegagtg geeeceggge 7980
     tgacctactg ccagcgcgtg gggaacatca tgggcgcgac gatggcgctc tcgctcctcg 8040
     ggaccatcga ccacggcgac ttcgccaccg cgaagcggat tggctgcttc tcqtatqqct 8100
     cggggtgcag ctcggagttc ttcagcggcg tggtgacgga ggaagggcag cagcggcagc 8160
15
     gcgccctggg gctgggagaa gcgctggggc gccggcagca gctctccatg ccggattacg 8220
     acgcgctgct gaaggggaac ggcctggtgc gcttcgggac ccggaacgcc gagctggatt 8280
     teggtgtegt eggeageate eggeegggeg ggtggggeag geeettgete ttettgtegg 8340
     cgattcgtga cttccatcgc gactaccaat ggatttccta gcctcggggc ttcgagcaaa 8400
     gccatgtcca gcgtagcgac ggccgtcccc ctgacggccc gtgacagcgc ggtgagccgc 8460
20
     cggctgcgaa 'tcacccccag catgtgcggc cagacgtcct tgttcgccgg gcagattggc 8520
     gactgggcat gggacaccgt cagccgcctg tgtggcacgg acgtgctgac cgcgaccaac 8580
     gestsaggeg egessaceta estggestte tattacttes geatsegggg casgesegeg 8640
     ctgcatcccg gcgcgctgcg cttcggcgac acgctggacg tcacgtcgaa ggcgtacaac 8700
     tteggeageg aateegteet gaeggtgeae egeatetgea agaeggegga gggeggeget 8760
25
     ccggaggcgg atgccttcgg ccatgaagag ctgtacgagc agccccagcc aggccgcatc 8820
     tacgeggaga cetteaaceg gtggateaeg egeteggaeg geaagtegaa egagageetg 8880
     atcaagteet egecegtggg gtteeagtae geacacetge egetettgee ggaegaatae 8940
     tegeegegge gggeetatgg ggaegeggg gegeggggea eettteaega tgtggaetee 9000
     geggagtace ggetgacegt ggacegette eegetgeget aegeggtgga egteateegg 9060
30
     gacgtcaatg gggtggggct catctacttc gcgtcgtatt tctcgatggt ggactgggcc 9120
     atctggcage tggcgaggea ccagggacge agegagcagg cettectgte gegegtggtg 9180
     ctggaccage aactgtgett ceteggeaac geggegetgg acaecaectt egacategae 9240
     gtgcagcact gggagcgggt gggcggcggg gaagagctgt tcaacgtgaa gatgcgcgag 9300
     ggcgcgcagg gccgggacat cgccgtggcg acggtcaagg tgcgcttcga cgccgcttcg 9360
35
     gaaggaggcc gccgtgggtg agccgatgac agacgaacaa atccgcggag tcgtgcacca 9420
     gtccatcgtg cgcgtcctgc cccgcgtgcg ctccaacgag attgcgggcc acttgaacct 9480
     eegegagetg ggegeggaet eegtggaeeg ggtegagatt eteaegteea teetggaeag 9540
     cctgcggctg cagaagacgc cactggcgaa gttcgccgac atccgcaaca tcgacgcgct 9600
     ggtggcgttc ctggccggtg aggtcgcggg tggctgagcg ggttcccggc ggagtcggca 9660
40
     tegaggeeat caacgeetae ggeggegeeg cetecattee ggtgttggae ttgtteeggg 9720
     geeggegget ggacceegaa gegattetee aacetgatga tgeaggageg eggegtegeg 9780
     etgeegtteg aggaceeegt caccaaegeg gteaatgegg egeggeeeat cetggaegeg 9840
     atgtegeeeg aggeeeggga gegeategag eteetggtea eetegagega gteeggegtg 9900
     gactteagea agtecatete etegtatgeg caegageace tggggetgag eegeeactge 9960
45
     eggtteetgg aggtgaagea ggegtgttae geegeeaceg gagegeteea getagegetg 10020
     ggctacatcg cgtcgggcgt gtcaccgggg gccaaggccc tggtgattgc cacggacgtg 10080
     acgetggtgg acgagagegg tetgtaetee gageeggega tgggeaeegg eggegtegee 10140
     gtgctgctgg gcgacgagcc gcgcgtgatg aagatggacc tgggagcgtt cggcaactac 10200
     agctacgacg tettegacae egegeggeee tegeeggaga ttgatategg egaegtggae 10260
50
     eggtegetet teaegtacet ggaetgeete aageaeaget tegeegegta tggeegeegg 10320
     gtggacggtg tcgacttcgt gtcgacgttc gactacctgg cgatgcacac gccgttcgcc 10380
     ggactggtga aggccgggca ccgcaagatg atgcgcgagc tcaccccgtg cgacgtggac 10440
     gaaatcgaag cggacttcgg ccggcgcgtg aagccgtcac tgcagtaccc gagtctggtc 10500
     gggaacctgt geteeggete egtgtaeetg ageetgtgea geateatega eaceateaag 10560
55
     cccgagcggt ccgctcgggt gggaatgttc tcctatgggt cgggttgctc gtcggagttc 10620
     ttcagcggcg tcatcggccc ggagtccgtg tccgcgctag ctgggttgga catcggtggc 10680
     cacctccggg ggcgccgcca gctcacgttc gaccaatatg tcgaattgct gaaagagaac 10740
     ettegetgte tggttecaae gaagaaeegg gaegtggaeg tggagegeta eeteeegetg 10800
     gtgacgegga eggegageeg ceegegeatg etegeettge gaagggtegt ggaetateat 10860
60
     egtcagtacg agtgggtgta getcatacge cacetecaat teegacgaat gaacacteet 10920
     teettgaega actggeetge eegeetggge tateteettg eegttggegg egeatggtte 10980
```

```
geggeegate aagteaceaa acagatggeg egegaegggg egaaaaggee egtegeggte 11040
ttcgatagct ggtggcactt ccactacgtg gagaaccgag cgggtgcgtt cggtctgttc 11100
tecagetteg gegaagagtg gegeatgeet ttettetaeg tegtgggege catetgeate 11160
gtgttgctga ttggctacta cttctacacg ccgccgacga tgaagctcca gcgctggtcg 11220
ctggcgacga tgattggcgg cgcgttgggc aactacgtgg accgggtgcg cctgcgctac 11280
gtggtggatt tcgtgtcatg gcacgtgggg gaccgcttct attggccctc cttcaacatc 11340
geggaeaeag eggtagtegt aggggeegee etgatgatee tggagtegtt eegegageeg 11400
cgtcagcagt tgtctcccgg ataggccccg ccatgggtgt gcggtcggcc gccgggccaa 11460
ggactggagt tcatggggac ctcagagcca gttgagccgg accacgcctt gtcaaaacca 11520
cegectgteg egecegtegg egeceaggea etgeetegeg gteeggeaat geceggeate 11580
gcgcagttga tgatgttgtt cctgcggccc acggagttcc tggaccgctg cgccgcccgg 11640
tacggtgaca ccttcaccct caagattccg gggacgccgc cgttcatcca gaccagcgat 11700
cccgccttga tcgaggtcat cttcaagggt gacccggacc tcttcctcgg agggaaggcg 11760
aacaacgggt tgaagccggt ggtgggtgag aactcgctgc tggtgttgga cgggaagcgg 11820
caccggcgtg atcgcaagct catcatgccc accttcctgg gtgaacggat gcatgcgtat 11880
ggctcggtca tccgggacat cgtcaatgcg gcgcttgacc ggtggcccgt cgggaagccg 11940
ttcgcggtcc atgaagagac gcagcagatc atgctggagg tgattctccg ggtgattttc 12000
ggcctggagg acgcccggac cattgcccag ttccggcacc acgtgcacca ggtgctcaag 12060
ctggccctgt tcctgttccc gaacggggag ggcaagcccg ccgccgaggg cttcgcgcgg 12120
gccgtgggca aggcgtttcc ctccctggac gtgttcgcgt cgctgaaggc gattgacgac 12180
atcatctacc aggagattca ggaccgccgg agccaggaca tcagcgggcg gcaggacgtg 12240
ctctcgctga tgatgcagtc gcactacgac gacggctccg tgatgacgcc ccaggagctg 12300
egegaegage tgatgaeget getgatggeg ggeeaegaga egagegegae categeegeg 12360
tggtgcgtct accacctctg ccgtcacccg gatgcgatgg gcaagctgcg tgaggagatc 12420
geggeeeaca eggtggaegg egtgetgeeg etggegaaga teaacgaget gaagtteetg 12480
gatgccgtgg tcaaggagac gatgcgcatc acgcccgtct tcagcctggt ggctcgcgtg 12540
ctcaaggage cacagaccat tggcggaacg acgtacccgg cgaacgtggt gctgtcgccc 12600
aacatctacg gcacgcacca tegegeggac etgtggggag accegaaggt ettteggeca 12660
gagcgtttcc tggaggagcg ggtgaatccg ttccactact tccccttcgg agggggcatc 12720
cggaagtgca tcgggacgag cttcgcctac tacgagatga agatcttcgt ctcggagacg 12780
gtgcgccgca tgcgcttcga taccaggccc ggctaccacg cgaaggtggt gcgccggagc 12840
aacacgetgg egeegtetea gggegtgeee ateategteg agtegegget geegagetga 12900
accgcttggc cccaccatct ccagcgcggt gaacatcatg gtcgattcag tgtcgaaaca 12960
ggcacggcgg aaggtgtttc ttttttccgg ccagggcacc cagtcgtact tcatggccaa 13020
ggagctgttt gacacccaga cggggttcaa gcggcagctg ctggagctgg acgagcaatt 13080
caagcagcgg ctggggcact cgattctcga gcgaatctat gacgcgcgcg ccgcgcggtt 13140
ggatccgctc gacgatgtcc tggtgtcctt tcccgccatc ttcatgattg agcatgcgct 13200
ggcgcggctg ctcatcgacc ggggtatcca gccggacgct gtcgtgggcg ccagcatggg 13260
cgaggtggcg gcggcggcga ttgcgggcgc aatctcagtg gacgcggccg tggccctggt 13320
ggcggcgcag gcccagctct ttgcccgtac ggcgccgcgg ggcggcatgc tcgcggtgct 13380
teacgaactg gaageetgee ggggetteac gteegtegeg egggatggeg aggttgeage 13440
catcaactac ccgtcgaact tcgtccttgc ggcggatgag gcgggcctgg gacggattca 13500
geaggaacte teccaaeget eggtggegtt ecaeeggttg eeggtgeget acceetttea 13560
ttcctcgcac ctggacccgc tgagggagga gtaccgaagc cgcgtccgcg cggattcgct 13620
gacgtggccg cgaatcccca tgtactcgtg caccaccgcg aaccgggtgc acgacctgcg 13680
cagcgaccac ttctggaacg tggtccgcgc gcccatccag ctgtacgaca ccgtcctgca 13740
actggagggg cagggcggct gcgacttcat cgacgtcggc cccgccgcgt ccttcgcgac 13800
catcatcaag egeatecteg egegggaete caegteaegg etetteeegt tgeteageee 13860
ttctcccgca tcgaccggga gctcgatggg gtgacgcgga gctgcgcgat gacggaggcg 13920
ecegeaceca gggegeetge geaggtgeeg eegeegeega getegeeetg ggegetgeae 13980
accegaggag eggegagege geeggtgaat geeegeaagg eegegetett eeeggggeag 14040
ggctcgcagg agcgcggcat gggggccgcg ctcttcgacg agttcccgga cctgacggac 14100
atcgccgacg ccatcctggg gtattccatc aagcgtctct gtttggagga cccaggcaag 14160
gagetggege agaegeagtt cacceageeg gegttgtaeg tggtgaaege geteagetae 14220
ctgaagcggc tgcgtgaagg agcggagcag ccggccttcg tcgcgggcca cagcctgggc 14280
gagtacaacg cgctgctggt cgcgggggcc ttcgacttcg agacgggact gcggctggtg 14340
aagcggcggg gcgaactcat gagcggcgcg tccggaggga ccatggccgc ggtggtgggc 14400
tgtgatgccg tggccgtgga acaggtcctt cgagaccgtc agctgaccag tctggatatc 14460
gccaacatca actegeeega ecagattgtg gteteeggae eggegeagga categagegg 14520
gcacggcagt gtttcgtgga ccgtggcgcg cggtacgttc cgctcaacgt gcgagcgccg 14580
tttcactcgc gctacatgca gccggccgcc agcgagttcg agcgcttcct gtctcagttc 14640
```

```
cagtacgege egeteeggtg egtggteate tecaaegtea egggeegace ttaegeteat 14700
     gacaacgtgg tgcaggggct ggctctgcaa ctgcgcagcc cggtgcagtg gacggccacc 14760
     gtccgctacc tcctggaaca gggcgtggag gacttcgagg agctgggccc cggccgcgtg 14820
     ctgaccegee teateacege gaacaagegg ggegeeeeeg caceggeeae egeegegeee 14880
 5
     gcgaagtggg cgaatgcctg agccctccgg agcgtcgttg aaatcctcgg ccggtgggcc 14940
     gtccggctgc tgagaccact gaatgtccac ctcacctgtg caggagctgg ttgtctcqqq 15000
     gtteggggte aceteegeea ttggeeaggg ggeegegtee tteacetegg egetgetgga 15060 .
     gggcgcggca cggttccggg tgatggagcg gccgggccgt cagcatcagg ccaacgggca 15120
     gacgacggcc cacctggggg cggaaatcgc ctcgctggcc gtgcccgaag gcgtcacccc 15180
10
     acaactgtgg cgctcggcca cgttttcggg gcaggccgca ctggtgaccg tccacgaggc 15240
     ctggaacgcg gegegeetee aggeegteee eggacacegg attggattgg tggtgggggg 15300
     caccaacgtg cagcagegeg acctggtget gatgcaagac geetategeg agegggtgee 15360
     ctttctgcgg gcggcctacg ggtcgacctt catggacacc gacctcgtgg gcctctgcac 15420
     gcagcagttc gccatccacg ggatgtcctt cacggtggga ggcgcatcgg ccagtggcct 15480
15
     gctggcggtc atccaggccg cggaggcggt gctctcaaga agggtggacg tttgcatcgc 15540
     cgtgggggcg ctgatggacg tctcctactg ggaatgccag ggcctgcggg ccatgggcgc 15600
     gatgggcace gaceggtteg egegggagee ggagegtgee tgeeggeeet tegaceggga 15660
     gagtgatggc ttcatctttg gagaggcgtg cggcgccgtg gtggttgagt ctgcggagca 15720
     egeteggega egeggggtga etectegegg cateetgteg ggetgggeea tgeagttgga 15780
20
     egegageege ggeeegttgt egteeatega aggggagteg eaggtgattg gggetgeget 15840
     geggeaegeg gaeetegege eggagegggt ggaetaegtg aateeteaeg geageggtte 15900
     gegteagggg gatgeeateg agetggggge ettgaaggeg tgeggeetga egeaegeeeg 15960
     ggtcaacacc acgaagtcca tcaccgggca tggcctgtcc tcggcgggtg ccgtggggct 16020
     categocacg etggtecagt tggageaggg eeggetgeac eegteettga acetggtgga 16080
25
     ecegatigat teategitee geigggiggg ggecacegeg gaggeceagt cectecagaa 16140
     egegetggtg etegeetaeg getteggegg cateaacaec getgtegeeg tgegeeggag 16200
     cgccacggag agetgacacg cecatgeaag cegetteece teegcacege gaetaceaga 16260
     egeteegggt eegettegag gegeagaeet gtttteteea geteeaeegg eeggatgegg 16320
     acaacaccat cagccgcacg ctgattgacg agtgccagca ggtgctcacg ttatgtgagg 16380
30
     agcacgccac cacggtggtg ctcgaaggcc tgccacacgt gttctgcatg ggcgcggatt 16440
     ttegageeat ceaegaeegg gtegaegaeg geegeeggga geaaggeaae geggageage 16500
     tgtaccggct gtggctgcaa ctggcgacag gcccctacgt gacggtcgcc catgtgcagg 16560
     gcaaggccaa cgcgggcggc ctgggcttcg tcgccgcgtg cgacatcgtg ctggcaaagg 16620
     cggaggtcca gttcagtctc tccgagctgc tgttcgggct gttccccgcc tgcgtgatgc 16680
35
     egtteetege eeggegaate ggeateeage gggegeacta eetgaegetg atgaegegge 16740
     ccatcgacgc ggcccaggcg ctgagctggg ggttggcgga cgcggtggac gccgatagcg 16800
     agaagetgtt geggeteeae ttgegeagge tgeggtgeet gtegaageea geggtgaeee 16860
     agtacaagaa gtacgcctcc gagctgggcg gccagctgct cgcgggccatg ccccgggcca 16920
     tetecgecaa tgaggegatg ttetecgace gegecaeget ggaagecate categetaeg 16980
40
     tggagacagg ccgactccca tgggaatcat gacggaagga acgccaatgg cgccggtggt 17040
     cacgctccat gaggtggagg agggggtggc gcagatcacc ctggtggatc gcgagaacaa 17100
     gaacatgttc agcgagcagc tcgtgcgcga gctcatcacc gtgttcggca aggtgaatgg 17160
     aaacgagege taeegegegg tggtgeteae eggetaegae acetaetteg egeteggegg 17220
     gaccaaggcc ggcctgctgt ccatctgcga cggcatcggc tccttcaacg tcaccaactt 17280
45
     ctacagecte gegetggagt gegacatece ggtgatttee gecatgeagg gacatggegt 17340
     aggcggcggg ttcgcgatgg ggctgttcgc ggacttcgtg gtcctgagcc gggagagcgt 17400
     ctacacgacg aacttcatgc gctacggctt cacgccgggg atgggcgcca cgtacatcgt 17460
     gccgaagcgg ctggggtact cgctcgggca tgagctcctg ctcaacgcca ggaactaccg 17520
     eggegeegae etggagaage ggggegtgee tttteeggtg ttgeegegea aggaagtett 17580
50
     gccccacgcc tacgagattg cgagggacct ggccgcgaaa cctcggctgt cgctcgtgac 17640
     gctcaagcgg cacctggttc gcgacatccg ccgagagctt ccggacgtca tcgagcgtga 17700
     gctggagatg cacggcatca cettecatea egacgaegtg aggaggegea tegageaget 17760
     gttcctctga ggcgcgccc tatgttgaac ctgatcaaca accacgcaca cggttatgtg 17820
     gtcacgcccg tggtcctggc ctgcaacgac gctggcctgt tcgaactcct gcggcaggga 17880
55
     ccgaaggact tcgaccggtt ggcggaggca ttgcgtgcca accggggaca tctgcgcgtc 17940
     gcgatgagga tgttcgaatc gctcggctgg gttcgccgcg acgcggatga cgtgtacgcg 18000
     gtgacggcgg cggcggccgc gcatcggtcc ttccccgcg aggcgcagtc gctcttcgcg 18060
     ctgcccatgg accggtacet gcgcggggag gacggcctgt ccctggcgcc gtggttcgag 18120
     cgctctcggg cgtcgtggga taccgatgac acgctggtgc gcgagctgct cgacggcgcc 18180
60
     atcatcacgc cgctgatgct cgcgctggag cagcgtgggg gcctcaagga ggcgaggcgt 18240
     ctgtccgacc tgtggtccgg gggggatgga agggacacgt gcgtccccga ggccgtccaa 18300
```

	cacgagetgg	ccgggttctt	ctccgcgcag	aagtggacgc	gtgaggacgc	cgtcgacgcg	18360
					tgctcttcgc		
					tcggtgactg		
_					gaaccctcaa		
5	agcggccacc	agcaccggaa	gtacttcgcg	gagctggaga	agctcatcat	caccgtcttc	18600
	gatgccgaga	acctgtcggc	acagccgcgc	tacatcgcgg	acatggggtg	cggtgacggc	18660
	acgctcctga	agcgggtgta	tgaaacggtg	cttcggcaca	cgcggcgggg	aagggcgctc	18720
	gaccggtttc	cgctcacgct	catcgccgcg	gacttcaacg	agaaggcgct	cgaagccgct	18780
4.0	gggcggacgc	tggccgggtt	ggagcacgtt	gccttgcgcg	cggacgtggc	gcggccggac	18840
10					ctgagaatac		
	cgctcgtttc	tcgaccacga	ccgtccctac	cagcctcccg	cggacagggc	ggggctccac	18960
	gcccggattc	cgttcgattc	ggtgttcgtg	ggcaaggcgg	gccaggaggt	ggttccggcg	19020
			ggagcacctc			19053	