

planetmath.org

Math for the people, by the people.

examples of ring of sets

Canonical name ExamplesOfRingOfSets
Date of creation 2013-03-22 15:47:52

Last modified on 2013-03-22 15:47:52

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 8

Author rspuzio (6075)

Entry type Example Classification msc 03E20 Classification msc 28A05 Every field of sets is a ring of sets. Below are some examples of rings of sets that are not fields of sets.

- 1. Let A be a non-empty set containing an element a. Let \mathcal{R} be the family of subsets of A containing a. Then \mathcal{R} is a ring of sets, but not a field of sets, since $\{a\} \in \mathcal{R}$, but $A \{a\} \notin \mathcal{R}$.
- 2. The collection of all open sets of a topological space is a ring of sets, which is in general not a field of sets, unless every open set is also closed. Likewise, the collection of all closed sets of a topological space is also a ring of sets.
- 3. A simple example of a ring of sets is the subset $\{\{a\}, \{a,b\}\}$ of $2^{\{a,b\}}$. That this is a ring of sets follows from the observations that $\{a\} \cap \{a,b\} = \{a\}$ and $\{a\} \cup \{a,b\} = \{a,b\}$. Note that it is not a field of sets because the complement of $\{a\}$, which is $\{b\}$, does not belong to the ring.
- 4. Another example involves an infinite set. Let A be an infinite set. Let \mathcal{R} be the collection of finite subsets of A. Since the union and the intersection of two finite set are finite sets, \mathcal{R} is a ring of sets. However, it is not a field of sets, because the complement of a finite subset of A is infinite, and thus not a member of \mathcal{R} .