Euler Circuit & Hamiltonian Cycle

A Presentation for CSE 300: Technical Writing and Presentation

Soumik Bhattacharjee Reduanul Imon Tusher Bhomik

Bangladesh University of Engineering & Technology

February 13, 2024

Euler Circuit & Hamiltonian Cycle

A Presentation for CSE 300: Technical Writing and Presentation

Soumik Bhattacharjee Reduanul Imon Tusher Bhomik

Bangladesh University of Engineering & Technology

February 13, 2024

Tale of Contents

- Introduction to Euler Circuit & Hamiltonian Cycle
 - Introduction to Euler Cycle
 - Introduction to Hamiltonian Cycle
 - The Knight's Tour Problem
- 2 Euler Circuit
 - Introduction
 - Finding Eulerian Path
 - Trapped
 - Finding Eulerian Circuit
 - Circling the Unknown
 - Conclusion
- Hamiltonian Cycle
 - Introduction
 - Conditions
 - Applications

Introduction to Euler Cycle

Euler Path

The path in a graph that uses every edge of a graph exactly once.

Euler Cycle

The euler path of which the starting and ending vertices are the same.

Leonhard Euler Świss Mathematician 15 April 1707 – 18 September 1783

Euler's Theorem

For an Euler path to exist, the graph must have at most two odd degree vertices

For an Euler cycle, the number must be zero

Degree of a vertex

Number of edges associated with a vertex in a graph

Introduction to Hamiltonian Cycle

Hamiltonian Path

The path in a graph that uses every vertex of a graph exactly once.

Hamiltonian Cycle

The cycle in a graph that uses every vertex of a graph exactly once.

Introduction to Hamiltonian Cycle

Sir William Rowan Hamilton İrish mathematician 3/4 August 1805 – 2 September 1865

The Knight's Tour Problem

Problem 1

Can a knight traverse all cells of a chessboard only once?

Problem 2

Can a knight traverse all cells of a chessboard only once and can return to the initial cell in the end?

The Knight's Tour Problem

The Knight's Tour Problem

Over? It hasn't even begun

Eulerian Path

Definition

An **Eulerian Path** is a path of edges in the graph that visits every edge exactly once.

Finding Eulerian Path

Trapped!

Trapped! continue...

Trapped! continue...

Eulerian Circuit Recap

Definition

An **Eulerian Circuit** is an euler path which starts and ends on the same vertex .

Find Euler Circuit

Finding Euler Circuit Continue...

Circling the Unknown

What conditions are required for a valid Eulerian Circuit?

Undirected Graph	Every vertex has an even degree
Directed Graph	Every vertex has equal indegree and outdegree

Hamiltonian Graph

Definition

An **Hamiltonian Graph** is a circuit that traverses every **vertex** of a graph exactly once and returns to the starting point.

Differnece with Euler Circuit

Euler circuit covers all Edges

Conditions for Hamiltonian Graphs

Conditions

- Connectedness: The graph must be connected.
- The Graph must have a Hamiltonian Path and a Hamiltonian Cycle

Important Note

Hamiltonian Graph is a special kind of graph, not all graph have them

How to find Hamiltonian graph????

Search for Hamiltonian Path

- Ureka! Path is found
- But what about Cycle????

Be choosy in Life!!!!

Keep Going....

Keep Going....

Keep Going....

Oh No!!

Let's Try another way!!!

Trying....

Trying....

Found???

• Sad! Better luck Next time!!!

Can we find this time??

Hoping.....

Hoping....

Hoping....

Almost....

• Find a path

Happy now??

• Finally find Hamiltonian Graph!!!!

Let's get back to First example

• Is it now a Hamiltonian Graph?

Applications

- Travelling Salesman Problem (TSP)
- Circuit Design:
- Network Routing
- Vehicle Routing
- And many more....