Recall: If A is an $m \times n$ matrix then

$$A \cdot \left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right] = \left[\begin{array}{c} c_1 \\ \vdots \\ c_m \end{array} \right]$$

Definition

If A is an $m \times n$ matrix then the function

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^m$$

given by $T_A(\mathbf{v}) = A\mathbf{v}$ is called the matrix transformation associated to A.

Example.

Let $T_A \colon \mathbb{R}^3 \to \mathbb{R}^2$ be the matrix transformation defined by the matrix

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 3 \end{array} \right]$$

1) Compute
$$T_A(\mathbf{v})$$
 where $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

2) Find a vector **v** such that
$$T_A(\mathbf{v}) = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
.

Geometric interpretation of matrix transformations $\mathbb{R}^2 \to \mathbb{R}^2$

$$A = \left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right]$$

Null spaces, column spaces and matrix transformations

Example.

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right]$$

Note

If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation associated to a matrix A then:

- Col(A) = the set of values of T_A .
- Nul(A) = the set of vectors v such that $T_A(v) = 0$.
- $T_A(v) = T_A(w)$ if and only if w = v + n for some $n \in Nul(A)$.

Recall:

A function $F: \mathbb{R}^n \to \mathbb{R}^m$ is:

ullet onto if for each ${f b} \in \mathbb{R}^m$ there is ${f v} \in \mathbb{R}^n$ such that $F({f v}) = {f b}$;

• one-to-one if for any v_1, v_2 such that $v_1 \neq v_2$ we have $F(v_2) \neq F(v_2)$.

Proposition

Let A be an $m \times n$ matrix. The following conditions are equivalent:

- 1) The matrix transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ is onto.
- 2) $Col(A) = \mathbb{R}^m$.
- 3) The matrix A has a pivot position in every row.

Proposition

Let A be an $m \times n$ matrix. The following conditions are equivalent:

- 1) The matrix transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one.
- 2) $Nul(A) = \{0\}.$
- 3) The matrix A has a pivot position in every column.

Example. For the following 2×2 matrix A check if the matrix transformation $T_A \colon \mathbb{R}^2 \to \mathbb{R}^2$ is onto and if it is one-to-one.

$$A = \left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right]$$

Example. For the following 3×4 matrix A check if the matrix transformation $T_A \colon \mathbb{R}^4 \to \mathbb{R}^3$ is onto and if it is one-to-one.

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 4 \end{bmatrix}$$

Proposition

Let A be an $m \times n$ matrix. If the matrix transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ is both onto and one-to-one then we must have m = n (i.e. A must be a square matrix).