LECTURE 3 — MEMORY AND DATA LOCALITY

Memory access efficiency

Tiled Matrix Multiplication

Tiled Matrix Multiplication Kernel

Handling Boundary Conditions in Tiling

Tiled Kernel for Arbitrary Matrix Dimensions

OBJECTIVE

- To learn to effectively use the CUDA memory types in a parallel program
 - Importance of memory access efficiency
 - Registers, shared memory, global memory
 - Scope and lifetime

EXAMPLE — MATRIX MULTIPLICATION

A BASIC MATRIX MULTIPLICATION

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {</pre>
  float Pvalue = 0;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Coll;
  P[Row*Width+Col] = Pvalue;
```


HOW ABOUT PERFORMANCE ON A GPU

- CGMA ratio (Compute to Global Memory Access ratio): The number of floating-point calculations performed for each access to the global memory within a region of a CUDA kernel.
- The bigger, the better.

What is the CGMA of Basic Matrix Multiplication?

CGMA OF BASIC MATRIX MULTIPLICATION

- All threads access global memory for their input matrix elements
 - One memory accesses (4 bytes) per floating-point addition
 - CGMA ratio =1
 - 4B/s of memory bandwidth/FLOPS
- Assume a GPU with
 - Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
 - 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
 - The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS
- This limits the execution rate to 3.3% (50/1500) of the peak floating-point execution rate of the device!
- Need to drastically cut down memory accesses to get close to the 1,500 GFLOPS
 - To achive peak 1,500 GFLOPS, we need CGMA=30

QUESTION

- How to improve memory access efficiency?
 - To increase calculation
 - To improve utilization
 - To utilize the memory hierarchy
 - Global memory
 - Shared memory
 - Register file

MEMORY AND REGISTERS IN THE VON-NEUMANN MODEL

PROGRAMMER VIEW OF CUDA MEMORIES

DECLARING CUDA VARIABLES

Variable declaration	Memory	Scope	Lifetime
int LocalVar;	register	thread	thread
deviceshared int SharedVar;	shared	block	block
device int GlobalVar;	global	grid	application
deviceconstant int ConstantVar;	constant	grid	application

- __device__ is optional when used with __shared__, or __constant__
- Automatic variables reside in a register
 - Except per-thread arrays that reside in global memory

EXAMPLE: SHARED MEMORY VARIABLE DECLARATION

```
void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{
    __shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];
    ...
}
```


WHERE TO DECLARE VARIABLES?

SHARED MEMORY IN CUDA

- A special type of memory whose contents are explicitly defined and used in the kernel source code
 - One in each SM
 - Accessed at much higher speed (in both latency and throughput) than global memory
 - Scope of access and sharing
 - Lifetime thread block, contents will disappear after the corresponding thread finishes terminates execution
 - Accessed by memory load/store instructions
 - A form of scratchpad memory

HARDWARE VIEW OF CUDA MEMORIES

CUDA Memories

Tiled Matrix Multiplication

Tiled Matrix Multiplication Kernel

Handling Boundary Conditions in Tiling

Tiled Kernel for Arbitrary Matrix Dimensions

OBJECTIVE

- To understand the motivation and ideas for tiled parallel algorithms
 - Reducing the limiting effect of memory bandwidth on parallel kernel performance
 - Tiled algorithms and barrier synchronization

GLOBAL MEMORY ACCESS PATTERN OF THE BASIC MATRIX MULTIPLICATION KERNEL

Global Memory

TILING/BLOCKING - BASIC IDEA

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time

TILING/BLOCKING - BASIC IDEA

BASIC CONCEPT OF TILING

- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
 - Carpooling for commuters
 - Tiling for global memory accesses
 - drivers = threads accessing their memory data operands
 - cars = memory access requests

SOME COMPUTATIONS ARE MORE CHALLENGING TO TILE

- Some carpools may be easier than others
 - Car pool participants need to have similar work schedule
 - Some vehicles may be more suitable for carpooling
- Similar challenges exist in tiling

CARPOOLS NEED SYNCHRONIZATION.

Good: when people have similar schedule

Worker A	sleep	work	dinner
Time			
Worker B	sleep	work	dinner

CARPOOLS NEED SYNCHRONIZATION.

 Bad: when people have very different schedule

SAME WITH TILING

 Good: when threads have similar access timing

BARRIER SYNCHRONIZATION FOR TILING

BARRIER SYNCHRONIZATION

- Synchronize all threads in a block
 - syncthreads()
- All threads in the same block must reach the __syncthreads() before any of the them can move on

OUTLINE OF TILING TECHNIQUE

- Identify a tile of global memory contents that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Use barrier synchronization to make sure that all threads are ready to start the phase
- Have the multiple threads to access their data from the on-chip memory
- Use barrier synchronization to make sure that all threads have completed the current phase
- Move on to the next tile

CUDA Memories

Tiled Matrix Multiplication

Tiled Matrix Multiplication Kernel

Handling Boundary Conditions in Tiling

Tiled Kernel for Arbitrary Matrix Dimensions

OBJECTIVE

- To understand the design of a tiled parallel algorithm for matrix multiplication
 - Loading a tile
 - Phased execution
 - Barrier Synchronization

MATRIX MULTIPLICATION

Data access pattern

University of Electronic Science and Technology of China

- Each thread a row of M and a column of N
- Each thread block a strip of M and a strip of N

Ν

Col

TILED MATRIX MULTIPLICATION

- Break up the execution of each thread into phases
- so that the data accesses by the thread block in each phase are focused on one tile of M and one tile of N
- The tile is of BLOCK_SIZE elements in each dimension

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & \cdots & \vdots \\ A_{s1} & \cdots & A_{st} \end{pmatrix} B = \begin{pmatrix} B_{11} & \cdots & B_{1r} \\ \vdots & \cdots & \vdots \\ B_{t1} & \cdots & B_{tr} \end{pmatrix}$$

$$AB = \begin{pmatrix} C_{11} & \cdots & C_{1r} \\ \vdots & \cdots & \vdots \\ C_{s1} & \cdots & C_{sr} \end{pmatrix}$$

$$C_{ij} = \sum_{k=1}^{i} A_{ik} B_{kj} (i = 1, ..., s; j = 1, ..., r)$$

Ν

LOADING A TILE

- All threads in a block participate
 - Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)

Phase 0 Use for Block (0,0) (iteration 0)

$N_{0,0}$	N _{0,1}	N _{0,2}	$N_{0,3}$
$N_{1,0}$	N _{1,1}	N _{1,2}	N _{1,3}
N _{2,0}	N _{2,1}	N _{2,2}	N _{2,3}
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Phase 0 Use for Block (0,0) (iteration 1)

$N_{0,0}$	$N_{0,1}$	N _{0,2}	$N_{0,3}$
$N_{1,0}$		N _{1,2}	
N _{2,0}	N _{2,1}	N _{2,2}	N _{2,3}
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Phase 1 Load for Block (0,0)

Phase 1 Use for Block (0,0) (iteration 0)

$N_{0,0}$	N _{0,1}	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	N _{1,1}	N _{1,2}	N _{1,3}
		N _{2,2}	
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	N _{0,1}	N _{0,2}	N _{0,3}
$N_{1,0}$	N _{1,1}	N _{1,2}	N _{1,3}
N _{2,0}	$N_{2,1}$	N _{2,2}	N _{2,3}
N _{3,0}	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Execution Phases of Toy Example

	Phase	0		Phase 1		
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$egin{array}{c} \mathbf{N_{0,0}} \\ \downarrow \\ \mathrm{Nds_{0,0}} \end{array}$	$\begin{array}{c} PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0} \end{array}$	$\mathbf{M_{0,2}}$ \downarrow $\mathbf{Mds_{0,0}}$	$egin{array}{c} \mathbf{N_{2,0}} \\ \downarrow \\ \mathrm{Nds}_{0,0} \end{array}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0} \end{array}$
thread _{0,1}	$M_{0,1}$ \downarrow $Mds_{0,1}$	$N_{0,1}$ \downarrow $Nds_{1,0}$	$PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1}$	$\mathbf{M}_{0,3}$ \downarrow $\mathbf{M}ds_{0,1}$	$N_{2,1}$ \downarrow $Nds_{0,1}$	$\begin{array}{c} PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1} \end{array}$
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$N_{1,0}$ \downarrow $Nds_{1,0}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0} \end{array}$	$\mathbf{M}_{1,2}$ \downarrow $\mathbf{M}ds_{1,0}$	$N_{3,0}$ \downarrow $Nds_{1,0}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0} \end{array}$
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$N_{1,1}$ \downarrow $Nds_{1,1}$	$\begin{array}{c} \text{PValue}_{1,1} += \\ \text{Mds}_{1,0} * \text{Nds}_{0,1} + \\ \text{Mds}_{1,1} * \text{Nds}_{1,1} \end{array}$	$\mathbf{M}_{1,3}$ \downarrow $\mathbf{M}_{1,1}$	$\begin{matrix} \mathbf{N_{3,1}} \\ \downarrow \\ \mathbf{Nds_{1,1}} \end{matrix}$	$\begin{array}{c} PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1} \end{array}$

time

Execution Phases of Toy Example (cont.)

	Phase	0		Phase 1		
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$egin{array}{c} \mathbf{N_{0,0}} \\ \downarrow \\ \mathbf{Nds_{0,0}} \end{array}$	$\begin{array}{c} \text{PValue}_{0,0} += \\ \text{Mds}_{0,0} * \text{Nds}_{0,0} + \\ \text{Mds}_{0,1} * \text{Nds}_{1,0} \end{array}$	$\mathbf{M_{0,2}}$ \downarrow $\mathbf{Mds_{0,0}}$	$egin{array}{c} \mathbf{N_{2,0}} \\ \downarrow \\ \mathbf{Nds_{0,0}} \end{array}$	$\begin{array}{l} \text{PValue}_{0,0} += \\ \text{Mds}_{0,0} * \text{Nds}_{0,0} + \\ \text{Mds}_{0,1} * \text{Nds}_{1,0} \end{array}$
thread _{0,1}	$\mathbf{M}_{0,1}$ \downarrow $\mathbf{Mds}_{0,1}$	$N_{0,1}$ \downarrow $Nds_{1,0}$	$PValue_{0,1} += Mds_{0,0}*Nds_{0,1} + Mds_{0,1}*Nds_{1,1}$	$\mathbf{M_{0,3}}$ \downarrow $\mathbf{Mds_{0,1}}$	$N_{2,1}$ \downarrow $Nds_{0,1}$	$PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1}$
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$egin{array}{c} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{array}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0} \end{array}$	$\mathbf{M}_{1,2}$ \downarrow $\mathbf{M}ds_{1,0}$	$N_{3,0}$ \downarrow $Nds_{1,0}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0} \end{array}$
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$N_{1,1}$ \downarrow $Nds_{1,1}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$	$\mathbf{M}_{1,3}$ \downarrow $\mathbf{Mds}_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$

Shared memory allows each value to be accessed by multiple threads

CUDA Memories

Tiled Matrix Multiplication

Tiled Matrix Multiplication Kernel

Handling Boundary Conditions in Tiling

Tiled Kernel for Arbitrary Matrix Dimensions

OBJECTIVE

To learn to write a tiled matrixmultiplication kernel

- Loading and using tiles for matrix multiplication
- Barrier synchronization, shared memory
- Resource Considerations
- Assume that Width is a multiple of tile size for simplicity

LOADING INPUT TILE 0 OF M (PHASE 0)

 Have each thread load an M element and an N element at the same relative position as its P element.

N[ty][Col]

N

LOADING INPUT TILE 0 OF N (PHASE 0)

University of Electronic Science and Technology

LOADING INPUT TILE 1 OF M (PHASE 1)

University of Electronic Science and Technology of China

LOADING INPUT TILE 1 OF N (PHASE 1)

University of Electronic Science and Technology of China

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, Int Width)
   shared float ds M[TILE WIDTH][TILE WIDTH];
  shared float ds N[TILE WIDTH][TILE WIDTH];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < WIDHT/TILE WIDTH; ++p) {</pre>
   // Collaborative loading of M and N tiles into shared memory
   ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
   ds N[ty][tx] = N[(p*TILE WIDTH+ty)*Width + Col];
   syncthreads();
   for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i][tx];
   synchthreads();
 P[Row*Width+Col] = Pvalue;
```

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, Int Width)
  shared float ds M[TILE WIDTH] [TILE WIDTH];
  shared float ds N[TILE WIDTH][TILE WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
 int Col = bx * blockDim.x + tx;
 float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < WIDHT/TILE WIDTH; ++p) {</pre>
   // Collaborative loading of M and N tiles into shared memory
   ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
   ds N[ty][tx] = N[(p*TILE WIDTH+ty)*Width + Col];
    syncthreads();
   for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i][tx];
   synchthreads();
 P[Row*Width+Col] = Pvalue;
```

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, Int Width)
  shared float ds M[TILE WIDTH][TILE WIDTH];
  shared float ds N[TILE WIDTH][TILE WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
 int Col = bx * blockDim.x + tx;
 float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < WIDHT/TILE WIDTH; ++p) {
   // Collaborative loading of M and N tiles into shared memory
   ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
   ds N[ty][tx] = N[(p*TILE WIDTH+ty)*Width + Col];
    syncthreads();
  for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i][tx];
     synchthreads();
 P[Row*Width+Col] = Pvalue;
```

课堂测试:

```
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < WIDHT/TILE_WIDTH; ++p) {
    // Collaborative loading of M and N tiles into shared memory
    ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
    ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
    __syncthreads();

    for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
    __synchthreads();
}
P[Row*Width+Col] = Pvalue;</pre>
```

请给出第一个和第二个__syncthreads()函数的作用。

TILE (THREAD BLOCK) SIZE CONSIDERATIONS

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads
- For 16, in each phase, each block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for each memory load)
- CGMA=?
- For 32, in each phase, each block performs 2*1024 = 2048 float loads from global memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for each memory load)

SHARED MEMORY AND THREADING

- For an SM with 16KB shared memory
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16
 - each thread block uses 2*256*4B = 2KB of shared memory.
 - For 16KB shared memory, one can potentially have up to 8 thread blocks executing
 - for TILE WIDTH 32
 - lead to 2*32*32*4 Byte= 8K Byte shared memory usage per thread block, allowing 2 thread blocks active at the same time
 - However, the thread count limitation of 1536 threads per SM in current generation GPUs will reduce the number of blocks per SM to one!
- Each __syncthread() can reduce the number of active threads for a block

CUDA Memories

Tiled Matrix Multiplication

Tiled Matrix Multiplication Kernel

Handling Boundary Conditions in Tiling

Tiled Kernel for Arbitrary Matrix Dimensions

OBJECTIVE

- To learn to handle arbitrary matrix sizes in tiled matrix multiplication
 - Boundary condition checking
 - Regularizing tile contents
 - Rectangular matrices

HANDLING MATRIX OF ARBITRARY SIZE

- The tiled matrix multiplication kernel we presented so far can handle only square matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)
 - However, real applications need to handle arbitrary sized matrices.
 - One could pad (add elements to) the rows and columns into multiples of the tile size, but would have significant space and data transfer time overhead.
- · We will take a different approach.

Phase 1 Use for Block (0,0) (iteration 0)

$\begin{array}{c cccc} N_{0,0} & N_{0,1} & N_{0,2} \\ N_{1,0} & N_{1,1} & N_{1,2} \\ N_{2,0} & N_{2,1} & N_{2,2} \\ \end{array}$	N _{2,0} N _{2 1} Shared Memory
$M_{0,0} M_{0,1} M_{0,2}$ $M_{1,0} M_{1,1} M_{1,2}$ $M_{2,0} M_{2,1} M_{2,2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Phase 1 Use for Block (0,0) (iteration 1)

N _{0,0} N _{0,1} N _{0,2} N _{1,0} N _{1,1} N _{1,2} N _{2,0} N _{2,1} N _{2,2}	$N_{2,0}$ $N_{2,1}$ Shared Memory
$M_{0,0} M_{0,1} M_{0,2}$ $M_{1,0} M_{1,1} M_{1,2}$ $M_{2,0} M_{2,1} M_{2,2}$	Shared Memory P _{0,0} P _{0,1} P _{0,2} P _{0,2} P _{1,1} P _{1,2} P _{2,0} P _{2,1} P _{2,2} P _{2,3} P _{2,4} P _{2,5} P _{2,6} P _{2,6} P _{2,7} P _{2,7} P _{2,8} P _{2,}

All Threads need special treatment. None of them should introduce invalidate contributions to their P elements.

Phase 0 Loads for Block (1,1) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading N tile

Threads (1,0) and (1,1) need special treatment in loading M tile

Major Cases in Toy Example

- Threads that do not calculate valid P elements but still need to participate in loading the input tiles
 - Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but need to participate in loading tile element N[1,2]
- Threads that calculate valid P elements may attempt to load nonexisting input elements when loading input tiles
 - Phase 1 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but attempts to load non-existing N[3,0]

A "SIMPLE" SOLUTION

- When a thread is to load any input element, test if it is in the valid index range
 - If valid, proceed to load
 - Else, do not load, just write a 0
- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element
- The condition tested for loading input elements is different from the test for calculating output P element
 - A thread that does not calculate valid P element can still participate in loading input tile elements

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	N _{0,1}	N _{0,2}	
$N_{1,0}$		N _{1,2}	
N _{2,0}		$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	$N_{0,1}$	N _{0,2}	
	N _{1,1}	N _{1,2}	
N _{2,0}	N _{2,1}	N _{2,2}	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
		$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

Boundary Condition for Input M Tile

- Each thread loads
 - M[Row][p*TILE_WIDTH+tx]
 - M[Row*Width + p*TILE_WIDTH+tx]
- Need to test
 - (Row < Width) && (p*TILE_WIDTH+tx < Width)
 - If true, load M element
 - Else, load 0

Boundary Condition for Input N Tile

- Each thread loads
 - N[p*TILE_WIDTH+ty][Col]
 - N[(p*TILE_WIDTH+ty)*Width+ Col]
- Need to test
 - (p*TILE_WIDTH+ty < Width) && (Col< Width)</p>
 - If true, load N element
 - Else, load 0

LOADING ELEMENTS — WITH BOUNDARY CHECK

```
for (int p = 0; p < (Width-1) / TILE WIDTH + 1; ++p) {
       if(Row < Width && t * TILE WIDTH+tx < Width) {
9
          ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
       } else {
• ++
          ds_M[ty][tx] = 0.0;
• ++
       if (p*TILE WIDTH+ty < Width && Col < Width) {
• ++
10
          ds N[ty][tx] = N[(p*TILE WIDTH + ty) * Width + Col];
       } else {
• ++
          ds_N[ty][tx] = 0.0;
++
• ++
• 11
      syncthreads();
```


INNER PRODUCT — BEFORE AND AFTER

```
    ++ if(Row < Width && Col < Width) {</li>
    12 for (int i = 0; i < TILE_WIDTH; ++i) {</li>
    13 Pvalue += ds_M[ty][i] * ds_N[i][tx];
    }
    14 __syncthreads();
    15 } /* end of outer for loop */
    ++ if (Row < Width && Col < Width)</li>
    16 P[Row*Width + Col] = Pvalue;
    } /* end of kernel */
```


SOME IMPORTANT POINTS

- For each thread the conditions are different for
 - Loading M element
 - Loading N element
 - Calculating and storing output elements
- The effect of control divergence should be small for large matrices

HANDLING GENERAL RECTANGULAR MATRICES

- In general, the matrix multiplication is defined in terms of rectangular matrices
 - A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix
- We have presented square matrix multiplication, a special case
- The kernel function needs to be generalized to handle general rectangular matrices
 - The Width argument is replaced by three arguments: j, k, l
 - When Width is used to refer to the height of M or height of P, replace it with j
 - When Width is used to refer to the width of M or height of N, replace it with k
 - When Width is used to refer to the width of N or width of P, replace it with l

