MACHINE LEARNING MODULE INTRO

Dr. Brian Mc Ginley

LEARNING OUTCOMES

- On completion of this module the learner will/should be able to;
 - Source documentation to use machine learning libraries and packages in computer programs.
 - Pre-process a data set for use in a machine learning context.
 - Select an appropriate mathematical model of a real-world problem.
 - Select an appropriate cost function for a given machine learning task.
 - Apply an optimisation technique to the parameters of a model.
 - Use a trained model to make a prediction.

Note: 10 ECTS

COURSE SYLLABUS - SUBJECT TO CHANGE...

- General ML stuff:
 - Supervised and Unsupervised Algorithms
 - Classification
 - Regression
 - Generalisation
 - Underfit/Overfit
 - Bias/Variance
 - Training/Test sets
 - Error/Loss Functions
 - Cross-Validation
 - Gradient Descent
 - Regularisation

COURSE SYLLABUS - SUBJECT TO CHANGE...

- Models/Algorithms:
 - Naive Bayes
 - K-Nearest Neighbour
 - Support Vector Machines
 - Neural Networks
 - Principle Component Analysis Eigenvectors
- Applications:
 - Natural Language Processing (NLP) (Speech Recognition)
 - Computer Vision
 - Some other things

ASSESSMENT

- Moodle MCQs
- Project
- Dates TBC

BOOKS

There are loads of books on machine learning

Trevor Hastie Robert Tibshirani Jerome Friedman The Elements of **Statistical Learning** Data Mining, Inference, and Prediction

