

Digital IC Design

Lecture 12 Power

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Why Low-Power?

- Battery powered devices
 - We want to add more features
 - But we want to reduce the size (size is limited by the battery)
 - And we want to extend the lifetime (also limited by the battery)
- Mains powered devices (with power cord)
 - We want to save cost
 - Cost of electricity
 - US data centers consuming 140 billion kW-hr annually by 2020
 - costing \$13 billion annually in electricity bills only
 - Cost of cooling
 - Beyond 150W/chip liquid cooling or special heat sinks are required
 - We want to save the environment
 - Greenhouse emissions, climate change, etc.

Power and Energy

 \square Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

Instantaneous Power:

$$P(t) = I(t)V(t)$$

☐ Energy:

$$E = \int_{0}^{T} P(t)dt$$

☐ Average Power:

$$P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} P(t) dt$$

Energy

$$E = \int_{0}^{T} P(t)dt$$

- ☐ Energy in circuits is usually expressed in Joules (J)
 - 1 W = 1 J/s
- Energy in batteries is often given in W-hr
 - \blacksquare 1 W-hr = (1 J/s)(3600 s/hr)(1 hr) = 3600 J
- ☐ At the end of the day, the battery has "Energy" not "Power"
- You can operate at low power
 - But if you need multiple cycles to do a given operation
 - You may end up consuming more energy
 - So your battery will die faster
- ☐ The focus should be "Energy-Efficiency" rather than "Low-Power"
 - Always think "Energy-wise"

Power in Circuit Elements

$$P_{V\!D\!D}\left(t\right) = I_{D\!D}\left(t\right)V_{D\!D}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\stackrel{+}{V_C} \stackrel{\perp}{+} C \downarrow I_C = C dV/dt$$

Charging a Capacitor

- ☐ When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt}V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$

- Half the energy from V_{DD} is dissipated in the PMOS transistor as heat, other half stored in capacitor
- ☐ When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the NMOS transistor

Switching Waveforms

 \Box Example: $V_{DD} = 1.0 \text{ V}$, $C_{L} = 150 \text{ fF}$, f = 1 GHz

Switching Power

 \square Energy consumed in one switching cycle $(T_{sw} = 1/f_{sw})$:

$$E_{sw} = C_L V_{DD}^2$$

Average switching power (a.k.a. dynamic power):

$$P_{sw} = \frac{E_{sw}}{T_{sw}} = C_L V_{DD}^2 f_{sw}$$

- Quadratic dependence on V_{DD}
- Linear dependence on f_{SW}

Activity Factor

- \Box Suppose the system clock frequency = f_{clk}
- \Box Let $f_{sw} = \alpha f_{clk}$, where α = activity factor
 - The activity factor is the probability that the circuit node transitions from 0 to 1
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, α = 0.5
- Dynamic power:

$$P_{sw} = C_L V_{DD}^2 f_{sw} = \alpha C_L V_{DD}^2 f_{clk} = C_{eff} V_{DD}^2 f_{clk}$$

Short Circuit Current

- When transistors switch, both NMOS and PMOS networks may be momentarily ON at once
- ☐ Leads to a blip of "short circuit" current.
- \Box Controlled by $\frac{V_t}{V_{DD}}$ ratio
 - Also depends on rise/fall times
- $\Box \quad \text{For } \frac{V_t}{V_{DD}} \approx 0.3:$
 - 2-10% of dynamic power
- ☐ Less important for nanometer technologies
- ☐ We will generally ignore this component

Power Dissipation Sources

- - Switching load capacitances
 - Short-circuit current
- $\Box Static power: P_{static} = (I_{sub} + I_{gate} + I_{junct} + I_{contention})V_{DD}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current (in ratioed logic, to be discussed later)

Power Consumption Distribution

- ☐ In old technologies:
 - Roughly one-third of microprocessor power is spent on the clock
 - Another third on memories
 - The remaining third on logic and wires
- In nanometer technologies:
 - Nearly one-third of the power is leakage
 - High-speed I/O contributes a growing component too
- Example:
 - Active power consumption of Sun's
 - 8-core 84 W Niagra2 processor
 - The cores and other components
 collectively account for clock, logic, and wires

Dynamic Power Example

- ☐ 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 λ
 - Activity factor = 0.02 (only necessary bank is activated)
 - 1.0 V 65 nm process
 - C = 1 fF/ μ m (gate) + 0.8 fF/ μ m (diffusion)
- Estimate dynamic power consumption @ 1 GHz.
 - Neglect wire capacitance and short-circuit current.

Dynamic Power Example

- ☐ 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
- 950M memory transistors
 - Average width: 4λ
 - Activity factor = 0.02 (only necessary bank is activated)
- 1.0 V 65 nm process
- \Box C = 1 fF/ μ m (gate) + 0.8 fF/ μ m (diffusion)

$$C_{\text{logic}} = (50 \times 10^6)(12\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^6)(4\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}} \right] (1.0)^2 (1.0 \text{ GHz}) = 6.1 \text{ W}$$

Dynamic Power Reduction

$$P_{sw} = \alpha C_L V_{DD}^2 f_{clk}$$

- ☐ Try to minimize:
 - 1. Activity factor
 - 2. Capacitance
 - 3. Supply voltage
 - 4. Frequency

Activity Factor Estimation

- \Box Let P_i = Probability(node i = 1)
 - $\blacksquare \overline{P_i} = 1 P_i$
- \square $\alpha_i = P_i * \overline{P_i} = P_i (1 P_i)$
- \Box Completely random data has P = 0.5 and α = 0.25
- Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0 ©
- ☐ Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically $\alpha \approx 0.1$

Activity Factor Estimation

 \Box Let P_i = Probability(node i = 1)

$$\overline{P_i} = 1 - P_i$$

$$\Box \alpha_i = P_i * \overline{P_i} = P_i (1 - P_i)$$

Gate	P _Y
AND2	$P_{\mathcal{A}}P_{B}$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_{\mathcal{A}}\overline{P}_{\mathcal{B}}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\!\mathcal{A}}\overline{P}_{\!B}$
XOR2	$P_{\mathcal{A}}\overline{P}_{\mathcal{B}} + \overline{P}_{\mathcal{A}}P_{\mathcal{B}}$

Example

- ☐ A 4-input AND is built out of two levels of gates
- \Box Estimate the activity factor at each node if the inputs have P = 0.5

Example

- ☐ A 4-input AND is built out of two levels of gates
- \Box Estimate the activity factor at each node if the inputs have P = 0.5

Clock Gating

- ☐ The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity (α = 1)
 - Eliminates all switching activity in the block
- Why directly ANDing the clock is a bad idea?

Glitches

- Gates will sometimes make spurious transitions called glitches.
- ☐ Glitches: When a single input change causes an output to change multiple times
- Example: ABCD from 1101 to 0111
- ☐ Glitches cause extra power dissipation (increase in activity factor) especially in chains of gate
- Causes majority of power in ripple carry adders and array multipliers

Capacitance

- ☐ Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
 - To reduce power use $f > \hat{f} = 4$
 - For driving IO pads use $f = 8 \rightarrow 12$
 - Example: In a 64-bit adder, relaxing delay requirement by 10% can save 55% of energy!
- Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

- ☐ If the frequency and voltage scale down in proportion, a cubic reduction in power is achieved.
- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters (shifters) required when crossing from low to high V_{DD} domains
- Dynamic Voltage/Frequency Scaling (DVFS)
 - Adjust V_{DD} and f_{clk} according to workload

Dynamic Voltage/Frequency Scaling (DVFS)

Static Power

- ☐ Static power is consumed even when chip is idle.
 - Leakage draws power from nominally OFF devices
- Prior to the 90 nm node
 - Leakage power was negligible compared to dynamic power
 - It was of concern primarily during sleep mode
- In nanometer processes
 - Low threshold voltages and thin gate oxides
 - Leakage can account for as much as a third of total active power

Subthreshold Leakage

$$\Box \quad \text{For } V_{ds} > 2v_T = 2\frac{kT}{q} \approx 50mV:$$

$$I_{\text{sub}} = I_{\text{off}} 10$$

$$\frac{V_{gs} + \eta (V_{ds} - V_{DD}) - k_{\gamma} V_{sb}}{S}$$

- $oldsymbol{\square}$ I_{off} : Subthreshold leakage at $V_{gs}=0$ and $V_{ds}=V_{dd}$
 - $I_{off} \propto e^{\frac{-V_t}{nv_T}}$
 - Specified at $25^{\circ}C$, increases exponentially with temperature
 - $S = nv_T \ln 10 = nv_T / \log e = 2.3nv_T$: Subthreshold slope ~ 100mV/decade
- \square η : DIBL coefficient \sim 0.1V/V
- \mathbf{k}_{ν} : Body effect coefficient \sim 0.1V/V

Multi-Threshold CMOS (Multi- V_t)

- $lue{U}_t$ can be tuned by adjusting the doping of the channel (beneath the gate oxide)
 - Adds additional photolithography and ion implantation steps
- \Box $I_{off} \propto e^{\frac{i}{nv_T}}$: Subthreshold leakage current at $V_{gs} = 0$ and $V_{ds} = V_{dd}$
 - Example (65nm technology):
 - Low V_t : $I_{off} \approx 100 nA/\mu m$
 - Normal V_t : $I_{off} \approx 10 nA/\mu m$
 - High V_t : $I_{off} \approx 1nA/\mu m$
- \Box Use High V_t as default
 - Use Normal/Low V_t in critical paths only (to fix timing violations)

Stack Effect

- Series OFF transistors have less leakage
 - V_x is small
 - N1 will see lower DIBL
 - N1 will leak less
 - $V_x > 0$
 - N2 has negative V_{gs}
 - N2 will leak less
 - The smaller of N1 and N2 leakage will control the series path
 - Leakage through 2-stack reduces ~10x
 - Leakage through 3-stack reduces further
- $oldsymbol{\square}$ Power gating makes use of this effect (also has higher V_t)

Static Power Calculation

- ☐ Estimate the total width of transistors that are leaking
- Multiply by the leakage current per unit width
- ☐ Assume half transistors OFF → Subthreshold leakage
- □ Assume half transistors ON → Gate leakage

Static Power Example

- ☐ Revisit power estimation for 1 billion transistor chip
- Estimate static power consumption
 - Subthreshold leakage
 - Normal V_t : 100 nA/ μ m
 - High V_t : 10 nA/ μ m
 - High V₊ used in all memories and in 95% of logic gates
 - Gate leakage 5 nA/µm
 - Junction leakage negligible

Static Power Example

- \Box 50M logic transistors: Average width: 12 λ
- \square 950M memory transistors: Average width: 4 λ
- Subthreshold leakage
 - Normal V₊:

100 nA/μm

■ High V_t:

- $10 \text{ nA/}\mu\text{m}$
- High V₊ used in all memories and in 95% of logic gates
- ☐ Gate leakage

 $5 \text{ nA/}\mu\text{m}$

$$\begin{split} W_{\text{normal-V}_{t}} &= \left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.025 \mu\text{m}/\lambda\right) \left(0.05\right) = 0.75 \times 10^{6} \ \mu\text{m} \\ W_{\text{high-V}_{t}} &= \left[\left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.95\right) + \left(950 \times 10^{6}\right) \left(4\lambda\right)\right] \left(0.025 \mu\text{m}/\lambda\right) = 109.25 \times 10^{6} \ \mu\text{m} \\ I_{sub} &= \left[W_{\text{normal-V}_{t}} \times 100 \ \text{nA}/\mu\text{m} + W_{\text{high-V}_{t}} \times 10 \ \text{nA}/\mu\text{m}\right]/2 = 584 \ \text{mA} \end{split}$$

$$I_{gate} = \left[\left(W_{\text{normal-V}_t} + W_{\text{high-V}_t} \right) \times 5 \text{ nA/}\mu\text{m} \right] / 2 = 275 \text{ mA}$$

$$P_{static} = (584 \text{ mA} + 275 \text{ mA})(1.0 \text{ V}) = 859 \text{ mW}$$

Thank you!