Lecture Summary: Solution to a System of Linear Equations with an Invertible Coefficient Matrix

Source: Lec23.pdf

Key Points

- Invertibility of Square Matrices:
 - A square matrix A is invertible if there exists a matrix A^{-1} such that:

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$
.

where I is the identity matrix.

- Invertibility is equivalent to $det(A) \neq 0$. If det(A) = 0, A is not invertible.
- Inverse of a 2×2 Matrix:

– For
$$A=\begin{bmatrix} a & b\\ c & d \end{bmatrix}$$
:
$$A^{-1}=\frac{1}{\det(A)}\begin{bmatrix} d & -b\\ -c & a \end{bmatrix}, \quad \text{where } \det(A)=ad-bc.$$

- Adjugate Matrix:
 - The adjugate (or adjoint) matrix, adj(A), is the transpose of the cofactor matrix of A.
 - If A is invertible:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A).$$

- Solution of a Linear System (Ax = b):
 - If A is invertible, the solution is:

$$x = A^{-1}b.$$

- Homogeneous Systems:
 - A system is homogeneous if Ax = 0.
 - For a square matrix A:
 - 1. If $det(A) \neq 0$, the only solution is x = 0.
 - 2. If det(A) = 0, the system has infinitely many solutions.

Simplified Explanation

Example 1: Solving a System Using Inverses Given the system:

$$8x_1 + 8x_2 + 4x_3 = 1960$$
, $12x_1 + 5x_2 + 7x_3 = 2215$, $3x_1 + 2x_2 + 5x_3 = 1135$,

matrix representation:

$$A = \begin{bmatrix} 8 & 8 & 4 \\ 12 & 5 & 7 \\ 3 & 2 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 1960 \\ 2215 \\ 1135 \end{bmatrix}.$$

Compute det(A):

$$det(A) = -188 \neq 0 \implies A$$
 is invertible.

Using:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A),$$

and multiplying $A^{-1}b$, the solution is:

$$x_1 = 45, \quad x_2 = 125, \quad x_3 = 150.$$

Example 2: Homogeneous System If Ax = 0:

- If $det(A) \neq 0$, x = 0 is the only solution.
- If det(A) = 0, there are infinitely many solutions.

Conclusion

In this lecture, we:

- Explored the relationship between the determinant and invertibility of square matrices.
- Derived the formula for A^{-1} using the adjugate matrix and applied it to solve linear systems.
- Introduced homogeneous systems and their solution behavior based on det(A).

These concepts are foundational for solving linear equations and understanding matrix properties in linear algebra.