What's the Catch? Recreational Fishing Trends in North Carolina (1990-2019)

 $https://github.com/ardathdixon/Data_FinalProject$

Ardath Dixon, Annie Harshbarger, Eva May

Spring 2021

Contents

1	Rationale and Research Questions	5
2	Dataset Information	6
3	Exploratory Analysis	7
4	Analysis	9
	4.1 Question 1: Are there trends in the amount of these fish caught over time? How do they compare?	9
5	4.2 Question 2: What could these trends look like in the future?	11 12
J	5.1 Strong seasonal trends	12
	<u> </u>	12
	5.2 Overall positive trend	
	5.3 Limitations	12
	5.4 Future recommendations	12
6	References	13

List of Tables

1	General Information About the Data Used	6
2	Total Catch Summaries	6
3	Number of missing values from NOAA MRIP data	7
4	Seasonal Mann Kendall Tests	11

List of Figures

1	Total Catch Patterns over Time	8
2	Seasonal and Trend Decomposition for All Fish Total Catch	9
3	Seasonal and Trend Decomposition for Bluefish Total Catch	10
4	Seasonal and Trend Decomposition for Black Sea Bass Total Catch	10

1 Rationale and Research Questions

- Are there trends in the amount of these fish caught over time? How do they compare?
- What could these trends look like in the future?

Write 1-2 paragraph(s) detailing the rationale for your study. This should include both the context of the topic as well as a rationale for your choice of dataset (reason for location, variables, etc.). You may choose to include citations if you like (optional).

At the end of your rationale, introduce a numbered list of your questions (or an overarching question and sub-questions).

2 Dataset Information

Data retrieved from NOAA Marine Recreational Information Program download query tool

- Bimonthly recreational fisheries catch totals for NC, 1990-2019
- All species, bluefish (*Pomatomus saltatrix*), and black sea bass (*Centropristis striata*)
- Multiple areas and modes of fishing

Provide information on how the dataset for this analysis were collected, the data contained in the dataset, and any important pieces of information that are relevant to your analyses. This section should contain much of same information as the metadata file for the dataset but formatted in a way that is more narrative.

Describe how you wrangled your dataset in a format similar to a methods section of a journal article.

Add a table that summarizes your data structure (variables, units, ranges and/or central tendencies, data source if multiple are used, etc.). This table can be made in markdown text or inserted as a kable function in an R chunk. If the latter, do not include the code used to generate your table.

Table 1: General Information About the Data Used

Detail	Description
Data Source	NOAA MRIP
Retrieved from	https://www.fisheries.noaa.gov/data-tools/recreational-fisheries-statistics-queries
Variables Used	Year, Wave, Total Catch, Mode, Area
Date Range	January 1990 - December 2019

Table 2: Total Catch Summaries

Summary Statistics	All Fish	Bluefish	Black Sea Bass
Minimum	11869	26	1168
Mean	12402954	1342064	411196
Median	11292146	1064369	313437
Maximum	34932698	5254124	1746847

3 Exploratory Analysis

We began our analysis by converting waves to months, in order to process the six annual waves using time series analyses. For NOAA fishing records, wave 1 represents January and February, wave 2 represents March and April, and this continues through the year. Therefore, we assigned wave 1 catches to the date of January 1, wave 2 catches to March 1, and beyond. We checked the number of waves without catch records for each dataset by joining the existing data to a list of all possible waves between Wave 1 of 1990 (represented by 1990-01-01) and Wave 6 of 2019 (2019-11-01). The results of this exploration, which informed our approach for interpolation, can be found in Table 3.

Table 3: Number of missing values from NOAA MRIP data

Dataset	Number of missing values
All fish	11
Bluefish	17
Black sea bass	13

To fill the gaps with no data, we interpolated the likely values of missing time periods. This interpolation incorporated the catch numbers on either side chronologically. We graphed the total catch trends over time (with the newly interpolated values for missing periods) as shown in Figure 1. With this visualization, we could compare the three categories' recreational fishing catch patterns: all fish, bluefish, and black sea bass.

Figure 1: Total Catch Patterns over Time

4 Analysis

4.1 Question 1: Are there trends in the amount of these fish caught over time? How do they compare?

##Annie, certainly feel free to restructure these figures etc. as fits with the text. I (Ardath) consolidated the p-values into a table to try & help make it visualize more clearly, too! I put the 3 tests into one chunk, but/and we can rearrange & smooth it out together on Sun, too.

Insert visualizations and text describing your main analyses. Format your R chunks so that graphs are displayed but code and other output is not displayed. Instead, describe the results of any statistical tests in the main text (e.g., "Variable x was significantly different among y groups (ANOVA; df = 300, F = 5.55, p < 0.0001)"). Each paragraph, accompanied by one or more visualizations, should describe the major findings and how they relate to the question and hypotheses. Divide this section into subsections, one for each research question.

Each figure should be accompanied by a caption, and each figure should be referenced within the text

Figure 2: Seasonal and Trend Decomposition for All Fish Total Catch

Figure 3: Seasonal and Trend Decomposition for Bluefish Total Catch

Figure 4: Seasonal and Trend Decomposition for Black Sea Bass Total Catch

Table 4: Seasonal Mann Kendall Tests

Fish Category	tau	2-Sided P-value
All Fish	0.4896552	0.000000e+00
Bluefish	0.3235180	8.748902e-10
Black Sea Bass	0.4095312	8.437695e-15

For both individual species and all species combined, **reject the null hypothesis** that there is no trend.

4.2 Question 2: What could these trends look like in the future?

5 Summary and Conclusions

Summarize your major findings from your analyses in a few paragraphs. What conclusions do you draw from your findings? Relate your findings back to the original research questions and rationale.

5.1 Strong seasonal trends

NOAA marine recreational fishing catch totals for North Carolina show strong seasonal trends. Many more fish are caught in the summer, and much fewer fish are caught in the winter, as demonstrated above (Figure 1). The high seasonality for all three datasets analyzed was confirmed with the Seasonal Mann Kendall Tests, where all three P-values < 0.05 (Table 4).

This seasonality is likely influenced by recreational fishing patterns, where fishers are more likely to fish in the warm summer weather than the cool winter weather. Another potential cause for the seasonal trends is fish abundance and migration patterns, with higher populations of fish in North Carolina waters during the summer than during the winter. Total catch trends for all fish and Black Sea Bass showed unimodal peaks and valleys overall, while Bluefish showed bimodal trends (Figure 1). These bimodal Bluefish peaks could be due to their seasonal migration patterns (ASMFC 2021).

5.2 Overall positive trend

- Increase in recreational fishing
- Variation from changing regulations, behavior

5.3 Limitations

- Data collection: Estimates based on surveys of fishers
- Interpolation
- Uncertainty in forecasting

5.4 Future recommendations

- Comparisons of other species or other states
- Catch per unit effort
- Include earlier data

6 References

< add references here if relevant, otherwise delete this section>