

线性代数

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第三章 相似和合同

- 1 方阵的相似
- 2 实对称阵的正交合同
- 3 实对称阵的合同

第一节 方阵的相似

- 特征值与特征向量
- 特征值和特征向量的性质
- 方阵的相似
- ■相似矩阵的性质
- ■相似对角化

设 $f: \mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 由于 \mathbb{C}^n 中的向量由一组基

$$oldsymbol{lpha}_1,\dots,oldsymbol{lpha}_n$$

唯一线性表示, 因此它完全由它在该组基下的像决定.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 由于 \mathbb{C}^n 中的向量由一组基

$$\boldsymbol{lpha}_1,\dots, \boldsymbol{lpha}_n$$

唯一线性表示,因此它完全由它在该组基下的像决定。若 f 将每个 α_i 映射为它的倍数,则 f 将会变得很容易研究。

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 由于 \mathbb{C}^n 中的向量由一组基

$$\boldsymbol{lpha}_1,\ldots,\boldsymbol{lpha}_n$$

唯一线性表示,因此它完全由它在该组基下的像决定。若 f 将每个 α_i 映射为它的倍数,则 f 将会变得很容易研究。

定义

若常数 λ 和非零向量 x 满足 $Ax = \lambda x$, 称 λ 为 A 的特征值, x 为 A 关于 λ 的特征向量.

设
$$Ax = \lambda x$$
, 则

设
$$Ax = \lambda x$$
, 则

$$(\boldsymbol{A} - \lambda \boldsymbol{E})\boldsymbol{x} = \boldsymbol{0}.$$

该方程有非零解当且仅当

$$|m{A} - \lambda m{E}| = egin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix} = 0$$

设
$$Ax = \lambda x$$
, 则

$$(\boldsymbol{A} - \lambda \boldsymbol{E})\boldsymbol{x} = \boldsymbol{0}.$$

该方程有非零解当且仅当

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0.$$

注意到该行列式是 λ 的 n 次多项式, 最高项为 $(-1)^n \lambda^n$.

设
$$Ax = \lambda x$$
, 则

$$(\boldsymbol{A} - \lambda \boldsymbol{E})\boldsymbol{x} = \boldsymbol{0}.$$

该方程有非零解当且仅当

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0$$

注意到该行列式是 λ 的 n 次多项式, 最高项为 $(-1)^n \lambda^n$. 称之为 A 的特征多项式.

在复数域中 n 次多项式总有 n 个根 (计算重数),

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 $\mathbf A$ 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

特征值和特征向量只对方阵存在, 且有如下性质:

(1) 零向量不是特征向量;

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

- (1) 零向量不是特征向量;
- (2) 若 x 是对应 λ 的特征向量,则它的非零倍也是;

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以 写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

- (1) 零向量不是特征向量;
- (2) 若 x 是对应 λ 的特征向量,则它的非零倍也是;
- (3) 若 $x_1, x_2 \neq -x_1$ 是对应 λ 的特征向量,则 $x_1 + x_2$ 也是;

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

- (1) 零向量不是特征向量;
- (2) 若 x 是对应 λ 的特征向量,则它的非零倍也是;
- (3) 若 $x_1, x_2 \neq -x_1$ 是对应 λ 的特征向量, 则 $x_1 + x_2$ 也是;
- (4) $|A| = 0 \iff 0$ 是特征值; $|A| \neq 0 \iff 0$ 不是特征值;

在复数域中 n 次多项式总有 n 个根 (计算重数), 也就是说 A 的特征多项式可以写成

$$f(\lambda) = \pm (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

所以 A 的特征值有 n 个 (计算重数).

- (1) 零向量不是特征向量;
- (2) 若 x 是对应 λ 的特征向量,则它的非零倍也是;
- (3) 若 $x_1, x_2 \neq -x_1$ 是对应 λ 的特征向量, 则 $x_1 + x_2$ 也是;
- (4) $|A| = 0 \iff 0$ 是特征值; $|A| \neq 0 \iff 0$ 不是特征值;
- (5) 若 n 阶方阵 A 的各行元素之和为 k, 则 k 是 A 的一个特征值, 且特征向量为 $(1,\ldots,1)^{\mathrm{T}}$.

特征值和特征向量的计算步骤如下:

特征值和特征向量的计算步骤如下:

(1) 求 A 的特征多项式 $f(\lambda) = |A - \lambda E|$;

特征值和特征向量的计算步骤如下:

- (1) 求 A 的特征多项式 $f(\lambda) = |A \lambda E|$;
- (2) 解 $f(\lambda) = |\mathbf{A} \lambda \mathbf{E}| = 0$ 得到特征值;

特征值和特征向量的计算步骤如下:

- (1) 求 A 的特征多项式 $f(\lambda) = |A \lambda E|$;
- (2) 解 $f(\lambda) = |\mathbf{A} \lambda \mathbf{E}| = 0$ 得到特征值;
- (3) 对于每一个特征值 λ_i , 解 $(A \lambda_i)x = 0$, 其非零解就是对应特征向量.

例

$$\mathbf{A} \cdot \mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

例

求
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

解

(1) 特征多项式
$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 1 - \lambda & 3 \\ 4 & 2 - \lambda \end{vmatrix} = \lambda^2 - 3\lambda - 10.$$

例

$$\vec{x} A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

觯

(1) 特征多项式
$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 1 - \lambda & 3 \\ 4 & 2 - \lambda \end{vmatrix} = \lambda^2 - 3\lambda - 10.$$

(2) 由
$$\lambda^2 - 3\lambda - 10 = 0$$
 解得特征值 $\lambda_1 = 5, \lambda_2 = -2$.

例

$$\vec{x} A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

觯

- (1) 特征多项式 $|\mathbf{A} \lambda \mathbf{E}| = \begin{vmatrix} 1 \lambda & 3 \\ 4 & 2 \lambda \end{vmatrix} = \lambda^2 3\lambda 10.$
- (2) 由 $\lambda^2 3\lambda 10 = 0$ 解得特征值 $\lambda_1 = 5, \lambda_2 = -2$.
- (3) 对于 $\lambda_1 = 5$, $A 5E = \begin{pmatrix} -4 & 3 \\ 4 & -3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -3/4 \\ 0 & 0 \end{pmatrix}$, 得到基础解系 $\begin{pmatrix} 3/4 \\ 1 \end{pmatrix}$.

求
$$A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

- (1) 特征多项式 $|\mathbf{A} \lambda \mathbf{E}| = \begin{vmatrix} 1 \lambda & 3 \\ 4 & 2 \lambda \end{vmatrix} = \lambda^2 3\lambda 10.$
- (2) 由 $\lambda^2 3\lambda 10 = 0$ 解得特征值 $\lambda_1 = 5, \lambda_2 = -2$.
- (3) 对于 $\lambda_1 = 5$, $\mathbf{A} 5\mathbf{E} = \begin{pmatrix} -4 & 3 \\ 4 & -3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -3/4 \\ 0 & 0 \end{pmatrix}$, 得到基础解系 $\begin{pmatrix} 3/4 \\ 1 \end{pmatrix}$. 故对应的所 有特征向量为 $k(3,4)^{T}, k \neq 0$.

例

$$\vec{x} A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

脌

- (1) 特征多项式 $|\mathbf{A} \lambda \mathbf{E}| = \begin{vmatrix} 1 \lambda & 3 \\ 4 & 2 \lambda \end{vmatrix} = \lambda^2 3\lambda 10.$
- (2) 由 $\lambda^2 3\lambda 10 = 0$ 解得特征值 $\lambda_1 = 5, \lambda_2 = -2$.
- (3) 对于 $\lambda_1 = 5$, $\mathbf{A} 5\mathbf{E} = \begin{pmatrix} -4 & 3 \\ 4 & -3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -3/4 \\ 0 & 0 \end{pmatrix}$, 得到基础解系 $\begin{pmatrix} 3/4 \\ 1 \end{pmatrix}$. 故对应的所有特征向量为 $k(3,4)^{\mathrm{T}}, k \neq 0$.
- (4) 对于 $\lambda_2 = -2$, $\mathbf{A} + 2\mathbf{E} = \begin{pmatrix} 3 & 3 \\ 4 & 4 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, 得到基础解系 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

例

求
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$
 的特征值和特征向量.

解

- (1) 特征多项式 $|\mathbf{A} \lambda \mathbf{E}| = \begin{vmatrix} 1 \lambda & 3 \\ 4 & 2 \lambda \end{vmatrix} = \lambda^2 3\lambda 10.$
- (2) 由 $\lambda^2 3\lambda 10 = 0$ 解得特征值 $\lambda_1 = 5, \lambda_2 = -2$.
- (3) 对于 $\lambda_1 = 5$, $\mathbf{A} 5\mathbf{E} = \begin{pmatrix} -4 & 3 \\ 4 & -3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & -3/4 \\ 0 & 0 \end{pmatrix}$, 得到基础解系 $\begin{pmatrix} 3/4 \\ 1 \end{pmatrix}$. 故对应的所有特征向量为 $k(3,4)^{\mathrm{T}}, k \neq 0$.
- (4) 对于 $\lambda_2 = -2$, $A + 2E = \begin{pmatrix} 3 & 3 \\ 4 & 4 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, 得到基础解系 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. 故对应的所有特征向量为 $k(1,-1)^T$, $k \neq 0$.

求上三角阵
$$\mathbf{A} = \begin{pmatrix} a_1 & b & c \\ 0 & a_2 & d \\ 0 & 0 & a_3 \end{pmatrix}$$
 的特征值.

例

求上三角阵
$$A = \begin{pmatrix} a_1 & b & c \\ 0 & a_2 & d \\ 0 & 0 & a_3 \end{pmatrix}$$
 的特征值.

解

特征多项式

$$|m{A} - \lambda m{E}| = \begin{vmatrix} a_1 - \lambda & b & c \\ 0 & a_2 - \lambda & d \\ 0 & 0 & a_3 - \lambda \end{vmatrix} = (a_1 - \lambda)(a_2 - \lambda)(a_3 - \lambda).$$

例

求上三角阵
$$\mathbf{A} = \begin{pmatrix} a_1 & b & c \\ 0 & a_2 & d \\ 0 & 0 & a_3 \end{pmatrix}$$
 的特征值.

解

特征多项式

$$|oldsymbol{A} - \lambda oldsymbol{E}| = \begin{vmatrix} a_1 - \lambda & b & c \\ 0 & a_2 - \lambda & d \\ 0 & 0 & a_3 - \lambda \end{vmatrix} = (a_1 - \lambda)(a_2 - \lambda)(a_3 - \lambda).$$

因此特征值为 a_1, a_2, a_3 .

例

求上三角阵
$$m{A} = egin{pmatrix} a_1 & b & c \\ 0 & a_2 & d \\ 0 & 0 & a_3 \end{pmatrix}$$
 的特征值.

解

特征多项式

$$|oldsymbol{A} - \lambda oldsymbol{E}| = \begin{vmatrix} a_1 - \lambda & b & c \\ 0 & a_2 - \lambda & d \\ 0 & 0 & a_3 - \lambda \end{vmatrix} = (a_1 - \lambda)(a_2 - \lambda)(a_3 - \lambda).$$

因此特征值为 a_1, a_2, a_3 .

上三角阵、下三角阵、对角阵的特征值就是对角元

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 的特征值和特征向量.

例

求
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 的特征值和特征向量.

解

由特征多项式

$$\begin{vmatrix} |A - \lambda E| = \begin{vmatrix} -1 - \lambda & 1 & 0 \\ -4 & 3 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} -1 - \lambda & 1 \\ -4 & 3 - \lambda \end{vmatrix} = (2 - \lambda)(\lambda - 1)^2 = 0$$

得到特征值 $\lambda = 1, 1, 2$.

续解

对于 $\lambda_1 = 1$,

$$m{A} - m{E} = egin{pmatrix} -2 & 1 & 0 \ -4 & 2 & 0 \ 1 & 0 & 1 \end{pmatrix} \stackrel{r}{\sim} egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 0 \end{pmatrix},$$

得到基础解系 $(-1,-2,1)^{\mathrm{T}}$. 故对应的所有特征向量为 $k(-1,-2,1)^{\mathrm{T}}, k \neq 0$.

续解

对于 $\lambda_1 = 1$,

$$\mathbf{A} - \mathbf{E} = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix},$$

得到基础解系 $(-1,-2,1)^{\mathrm{T}}$. 故对应的所有特征向量为 $k(-1,-2,1)^{\mathrm{T}}, k \neq 0$. 对于 $\lambda_2=2$,

$$m{A} - 2m{E} = \begin{pmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得到基础解系 $(0,0,1)^{T}$.

续解

对于 $\lambda_1 = 1$,

$$m{A} - m{E} = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix},$$

得到基础解系 $(-1,-2,1)^{\mathrm{T}}$. 故对应的所有特征向量为 $k(-1,-2,1)^{\mathrm{T}}, k \neq 0$. 对于 $\lambda_2=2$,

$$m{A} - 2m{E} = \begin{pmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得到基础解系 $(0,0,1)^{T}$. 故对应的所有特征向量为 $k(0,0,1)^{T}, k \neq 0$.

练习

求
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

$$m{A} = egin{pmatrix} -2 & 1 & 1 \ 0 & 2 & 0 \ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

练习

求
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

答案

(1) 特征值 $\lambda = -1, 2, 2$.

练习

求
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

答案

- (1) 特征值 $\lambda = -1, 2, 2$.
- (2) -1 对应的所有特征向量为 $k(1,0,1)^{T}, k \neq 0$.

练习

求
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

答案

- (1) 特征值 $\lambda = -1, 2, 2$.
- (2) -1 对应的所有特征向量为 $k(1,0,1)^T, k \neq 0$.
- (3) 2 对应的所有特征向量为 $k_1(0,1,-1)^T + k_2(1,0,4)^T, k_1, k_2$ 不全为零.

练习

求
$$\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

答案

- (1) 特征值 $\lambda = -1, 2, 2$.
- (2) -1 对应的所有特征向量为 $k(1,0,1)^{T}, k \neq 0$.
- (3) 2 对应的所有特征向量为 $k_1(0,1,-1)^T + k_2(1,0,4)^T, k_1, k_2$ 不全为零.

若 $\lambda \in k$ 重特征值, 则它对应的线性无关的特征向量最多 k 个.

通过

$$|m{A} - \lambda m{E}| = egin{array}{cccc} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ dots & dots & \ddots & dots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{array}$$

的展开可以看出,

通过

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

的展开可以看出, 若 $i \neq j$, 则 i 行 j 列的代数余子式中最多只会出现 λ^{n-2} 项.

通过

$$|m{A} - \lambda m{E}| = egin{array}{cccc} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ dots & dots & \ddots & dots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{array}$$

的展开可以看出,若 $i \neq j$,则 i 行 j 列的代数余子式中最多只会出现 λ^{n-2} 项. 所以

$$|A - \lambda E| = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) +$$
至多 $n - 2$ 次项
= $(-1)^n (\lambda^n - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1}) +$ 至多 $n - 2$ 次项.

通过

$$|A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

的展开可以看出, 若 $i \neq j$, 则 i 行 j 列的代数余子式中最多只会出现 λ^{n-2} 项. 所以

$$|A - \lambda E| = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) +$$
至多 $n - 2$ 次项
= $(-1)^n (\lambda^n - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1}) +$ 至多 $n - 2$ 次项.

根据韦达定理, 特征值之和为 $a_{11} + a_{22} + \cdots + a_{nn}$.

通过

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

的展开可以看出, 若 $i \neq j$, 则 i 行 j 列的代数余子式中最多只会出现 λ^{n-2} 项. 所以

$$|A - \lambda E| = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) +$$
至多 $n - 2$ 次项
= $(-1)^n (\lambda^n - (a_{11} + a_{22} + \cdots + a_{nn})\lambda^{n-1}) +$ 至多 $n - 2$ 次项.

根据韦达定理, 特征值之和为 $a_{11} + a_{22} + \cdots + a_{nn}$.

$$\lambda = 0$$
 时, 特征多项式

$$f(\lambda) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$$

的取值 |A| 就是特征值的乘积.

- 特征值和特征向量的性质

定义 A 的迹为对角元之和:

$$Tr(\mathbf{A}) = a_{11} + a_{22} + \dots + a_{nn}.$$

特征值和特征向量的性质

定义 A 的迹为对角元之和:

$$\operatorname{Tr}(\mathbf{A}) = a_{11} + a_{22} + \dots + a_{nn}.$$

(1) 特征值之和等于迹: $\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{Tr}(\mathbf{A})$;

特征值和特征向量的性质

定义 A 的迹为对角元之和:

$$\operatorname{Tr}(\mathbf{A}) = a_{11} + a_{22} + \dots + a_{nn}.$$

- (1) 特征值之和等于迹: $\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{Tr}(\mathbf{A})$;
- (2) 特征值之积等于行列式: $\lambda_1\lambda_2\cdots\lambda_n=|\mathbf{A}|$.

特征值和特征向量的性质

定义 A 的迹为对角元之和:

$$\operatorname{Tr}(\mathbf{A}) = a_{11} + a_{22} + \dots + a_{nn}.$$

- (1) 特征值之和等于迹: $\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{Tr}(\mathbf{A})$;
- (2) 特征值之积等于行列式: $\lambda_1\lambda_2\cdots\lambda_n=|\mathbf{A}|$.

(A) 1, 0, 1

(B) 1, 1, 2

(C) -1, 1, 2

(D) -1, 1, 1

特征值和特征向量的性质

定义 A 的迹为对角元之和:

$$\operatorname{Tr}(\mathbf{A}) = a_{11} + a_{22} + \dots + a_{nn}.$$

(C) -1, 1, 2

- (1) 特征值之和等于迹: $\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{Tr}(\mathbf{A})$;
- (2) 特征值之积等于行列式: $\lambda_1\lambda_2\cdots\lambda_n=|A|$.

(D) -1, 1, 1

定理

 \overrightarrow{A} 是 \overrightarrow{A} 的特征值, x 是对应特征向量, 则下述矩阵有如下对应的特征值与特征向量:

 方阵	$k\boldsymbol{A}$	$oldsymbol{A}^m$	A^{-1}	$oldsymbol{A}^*$	$g(\boldsymbol{A})h(\boldsymbol{A})^{-1}$	$oldsymbol{A}^{ ext{T}}$	$P^{-1}AP$
特征值	$k\lambda$	λ^m	λ^{-1}	$ m{A} /\lambda$	$g(\lambda)/h(\lambda)$	λ	λ
对应特征向量	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	未必是 x	$P^{-1}x$

这里 g,h 是多项式, 且满足 h(A) 可逆.

定理

 \overrightarrow{A} 是 \overrightarrow{A} 的特征值, \overrightarrow{x} 是对应特征向量, 则下述矩阵有如下对应的特征值与特征向量:

方阵	$k\boldsymbol{A}$	$oldsymbol{A}^m$	\boldsymbol{A}^{-1}	$oldsymbol{A}^*$	$g(\boldsymbol{A})h(\boldsymbol{A})^{-1}$	$m{A}^{ ext{T}}$	$P^{-1}AP$
特征值	$k\lambda$	λ^m	λ^{-1}	$ m{A} /\lambda$	$g(\lambda)/h(\lambda)$	λ	λ
对应特征向量	\boldsymbol{x}	\boldsymbol{x}	$oldsymbol{x}$	\boldsymbol{x}	\boldsymbol{x}	未必是 x	$oldsymbol{P}^{-1}oldsymbol{x}$

这里 g,h 是多项式, 且满足 h(A) 可逆.

由此可知, 若 g(A) = O, 则 A 的所有特征值 λ 均满足 $g(\lambda) = 0$.

设 3 阶方阵 A 的特征值为 2,2,3, 则

(1) **A**² 的特征值为______;

设 3 阶方阵 A 的特征值为 2,2,3, 则

(1) A^2 的特征值为 4,4,9 ;

例

- (1) A^2 的特征值为 4,4,9 ;
- (2) $A^2 2A + E$ 的特征值为___

例

设 3 阶方阵 A 的特征值为 2,2,3,则

- (1) A^2 的特征值为___4,4,9__;

例

- (1) A^2 的特征值为 4,4,9 ;
- (2) $A^2 2A + E$ 的特征值为___1,1,4___;
- (3) $|A^2 2A + E| =$ ____;

例

- (1) A^2 的特征值为 4,4,9 ;
- (3) $|A^2 2A + E| = 4$;

例

设 3 阶方阵 A 的特征值为 2,2,3, 则

- (1) A^2 的特征值为 4,4,9 ;
- (2) $A^2 2A + E$ 的特征值为 1,1,4 ;
- (3) $|A^2 2A + E| = 4$;
- (4) A^{-1} 的特征值为______,

例

设 3 阶方阵 A 的特征值为 2,2,3,则

- (1) A^2 的特征值为 4,4,9 ;
- (3) $|A^2 2A + E| = 4$;
- (4) A^{-1} 的特征值为 1/2, 1/2, 1/3;

例

- (1) A^2 的特征值为 4,4,9 ;
- (2) $A^2 2A + E$ 的特征值为 1,1,4 ;
- (3) $|A^2 2A + E| = 4$;
- (4) A^{-1} 的特征值为 1/2, 1/2, 1/3;
- (5) **A*** 的特征值为_____;

例

- (1) A^2 的特征值为 4,4,9 ;
- (2) $A^2 2A + E$ 的特征值为______;
- (3) $|A^2 2A + E| = 4$;
- (4) A^{-1} 的特征值为 1/2, 1/2, 1/3;
- (5) **A*** 的特征值为___4,6,6__;

例

- (1) A^2 的特征值为 4,4,9 ;
- (3) $|A^2 2A + E| = 4$;
- (4) A^{-1} 的特征值为 1/2, 1/2, 1/3 ;
- (5) **A*** 的特征值为___4,6,6__;
- (6) $A_{11} + A_{22} + A_{33} = ____$, 其中 A_{ij} 表示 A 的代数余子式.

例

- (1) A^2 的特征值为 4,4,9 ;
- (3) $|A^2 2A + E| = 4$;
- (4) A^{-1} 的特征值为 1/2, 1/2, 1/3;
- (5) **A*** 的特征值为___4,6,6__;
- (6) $A_{11} + A_{22} + A_{33} = 16$, 其中 A_{ij} 表示 A 的代数余子式.

例

设 3 阶方阵 \boldsymbol{A} 的特征值为 1,-1,2. 求 $|\boldsymbol{A}^*+3\boldsymbol{A}-2\boldsymbol{E}|$.

例

设 3 所方阵 \boldsymbol{A} 的特征值为 1,-1,2. 求 $|\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{E}|$.

解

由于 |A| = -2, $A^* = -2A^{-1}$.

例

设 3 所方阵 \boldsymbol{A} 的特征值为 1,-1,2. 求 $|\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{E}|$.

解

由于 |A| = -2, $A^* = -2A^{-1}$. 于是

$$A^* + 3A - 2E = -2A^{-1} + 3A - 2E$$

的特征值为 -1, -3, 3,

例

设 3 所方阵 \boldsymbol{A} 的特征值为 1,-1,2. 求 $|\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{E}|$.

解

由于 |A| = -2, $A^* = -2A^{-1}$. 于是

$$A^* + 3A - 2E = -2A^{-1} + 3A - 2E$$

的特征值为 $-1, -3, 3, |\mathbf{A}^* + 3\mathbf{A} - 2\mathbf{E}| = (-1) \times (-3) \times 3 = 9.$

例

设 3 所方阵 \boldsymbol{A} 的特征值为 1,-1,2. 求 $|\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{E}|$.

解

由于 |A| = -2, $A^* = -2A^{-1}$. 于是

$$A^* + 3A - 2E = -2A^{-1} + 3A - 2E$$

的特征值为 $-1, -3, 3, |A^* + 3A - 2E| = (-1) \times (-3) \times 3 = 9.$

练习

 \overline{A} 4 阶方阵 A 的特征值为 1,2,-2,0, 则下列矩阵可逆的是 ()

(A) A

- (B) A 2E
- (C) A + E

(D) A - E

例

设 3 所方阵 \boldsymbol{A} 的特征值为 1,-1,2. 求 $|\boldsymbol{A}^* + 3\boldsymbol{A} - 2\boldsymbol{E}|$.

解

由于 |A| = -2, $A^* = -2A^{-1}$. 于是

$$A^* + 3A - 2E = -2A^{-1} + 3A - 2E$$

的特征值为 $-1, -3, 3, |\mathbf{A}^* + 3\mathbf{A} - 2\mathbf{E}| = (-1) \times (-3) \times 3 = 9.$

练习

 \overline{A} 4 阶方阵 A 的特征值为 1, 2, -2, 0, 则下列矩阵可逆的是(C).

(A) A

- (B) A 2E
- (C) A + E

(D) A - E

例

若
$$\boldsymbol{\alpha} = (1, k, 1)^{\mathrm{T}}$$
 为 $\boldsymbol{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的逆 \boldsymbol{A}^{-1} 的特征向量, 求 k .

例

若
$$\alpha = (1, k, 1)^{\mathrm{T}}$$
 为 $\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的逆 \mathbf{A}^{-1} 的特征向量, 求 k .

解

 α 也是 A 的特征向量.

例

若
$$\alpha = (1, k, 1)^{\mathrm{T}}$$
 为 $\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的逆 \mathbf{A}^{-1} 的特征向量, 求 k .

解

 α 也是 A 的特征向量.

$$oldsymbol{A}oldsymbol{lpha} = egin{pmatrix} k+3 \ 2k+2 \ k+3 \end{pmatrix} = \lambda egin{pmatrix} 1 \ k \ 1 \end{pmatrix},$$

例

若
$$\alpha = (1, k, 1)^{\mathrm{T}}$$
 为 $\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的逆 \mathbf{A}^{-1} 的特征向量, 求 k .

解

 α 也是 A 的特征向量.

$$m{A}m{lpha} = egin{pmatrix} k+3 \ 2k+2 \ k+3 \end{pmatrix} = \lambda egin{pmatrix} 1 \ k \ 1 \end{pmatrix},$$

因此 $\lambda = k+3, 2k+2 = (k+3)k, k^2+k-2 = 0, k = -2$ 或 1.

定理

 \overrightarrow{A} $\lambda_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α_1,\ldots,α_m 线性无关.

定理

 \overrightarrow{A} $\lambda_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α_1,\ldots,α_m 线性无关.

即对应于不同特征值的特征向量线性无关.

定理

 $\dot{A}_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值,则其对应的特征向量 α_1,\ldots,α_m 线性无关.

即对应于不同特征值的特征向量线性无关.

证明

设 $k_1 \overline{\alpha}_1 + \cdots + k_m \overline{\alpha}_m = \mathbf{0}.$

定理

 $\overrightarrow{A}_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α_1,\ldots,α_m 线性无关.

即对应于不同特征值的特征向量线性无关.

证明

设 $k_1\alpha_1 + \cdots + k_m\alpha_m = \mathbf{0}$. 左乘 \mathbf{A}^k 得到 $k_1\lambda_1^k\alpha_1 + \cdots + k_m\lambda_m^k\alpha_m = \mathbf{0}$.

定理

 $\dot{A}_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α_1,\ldots,α_m 线性无关.

即对应于不同特征值的特征向量线性无关.

证明

设 $k_1\alpha_1 + \cdots + k_m\alpha_m = \mathbf{0}$. 左乘 \mathbf{A}^k 得到 $k_1\lambda_1^k\alpha_1 + \cdots + k_m\lambda_m^k\alpha_m = \mathbf{0}$. 令 $k = 1, 2, \ldots, m-1$, 我们得到

$$(k_1\boldsymbol{\alpha}_1,\cdots,k_m\boldsymbol{\alpha}_m)\begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{pmatrix} = \boldsymbol{O}.$$

定理

 $\overrightarrow{A}_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α_1,\ldots,α_m 线性无关.

即对应于不同特征值的特征向量线性无关.

证明

设 $k_1\alpha_1 + \cdots + k_m\alpha_m = \mathbf{0}$. 左乘 \mathbf{A}^k 得到 $k_1\lambda_1^k\alpha_1 + \cdots + k_m\lambda_m^k\alpha_m = \mathbf{0}$. 令 $k = 1, 2, \ldots, m-1$, 我们得到

$$(k_1\boldsymbol{\alpha}_1,\cdots,k_m\boldsymbol{\alpha}_m)\begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{pmatrix} = \boldsymbol{O}.$$

注意到第二个方阵的行列式是范德蒙行列式, 当 $\lambda_1,\ldots,\lambda_m$ 两两不同时它非零,

定理

 $\ddot{A}_1,\ldots,\lambda_m$ 是 A 的 m 个两两不同的特征值, 则其对应的特征向量 α_1,\ldots,α_m 线性无关.

即对应于不同特征值的特征向量线性无关.

证明

设 $k_1\alpha_1 + \cdots + k_m\alpha_m = \mathbf{0}$. 左乘 \mathbf{A}^k 得到 $k_1\lambda_1^k\alpha_1 + \cdots + k_m\lambda_m^k\alpha_m = \mathbf{0}$. 令 $k = 1, 2, \ldots, m-1$, 我们得到

$$(k_1\boldsymbol{\alpha}_1,\cdots,k_m\boldsymbol{\alpha}_m)\begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{pmatrix} = \boldsymbol{O}.$$

注意到第二个方阵的行列式是范德蒙行列式, 当 $\lambda_1, \ldots, \lambda_m$ 两两不同时它非零, 从而 $(k_1\alpha_1, \cdots, k_m\alpha_m) = \mathbf{O}, \qquad k_1 = \cdots = k_m = 0.$

设 λ_1 对应线性无关的特征向量 $\alpha_1, \alpha_2, \lambda_2$ 对应线性无关的特征向量 β_1, β_2 .

设 λ_1 对应线性无关的特征向量 $\alpha_1, \alpha_2, \lambda_2$ 对应线性无关的特征向量 β_1, β_2 . 若 $\lambda_1 \neq \lambda_2$, 则 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 也是线性无关的.

设 λ_1 对应线性无关的特征向量 $\alpha_1, \alpha_2, \lambda_2$ 对应线性无关的特征向量 β_1, β_2 . 若 $\lambda_1 \neq \lambda_2$, 则 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 也是线性无关的. 这是因为

$$\mathbf{A}(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2) = \lambda_1(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2),$$

$$\boldsymbol{A}(\ell_1\boldsymbol{\beta}_1 + \ell_2\boldsymbol{\beta}_2) = \lambda_2(\ell_1\boldsymbol{\beta}_1 + \ell_2\boldsymbol{\beta}_2).$$

设 λ_1 对应线性无关的特征向量 $\alpha_1,\alpha_2,\lambda_2$ 对应线性无关的特征向量 β_1,β_2 . 若 $\lambda_1 \neq \lambda_2$, 则 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 也是线性无关的. 这是因为

$$\mathbf{A}(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2) = \lambda_1(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2),$$

$$A(\ell_1\beta_1 + \ell_2\beta_2) = \lambda_2(\ell_1\beta_1 + \ell_2\beta_2).$$

若 $k_1\alpha_1 + k_2\alpha_2 + \ell_1\beta_1 + \ell_2\beta_2 = \mathbf{0}$, 同理可证明这些向量都是零向量.

设 λ_1 对应线性无关的特征向量 $\alpha_1,\alpha_2,\lambda_2$ 对应线性无关的特征向量 β_1,β_2 . 若 $\lambda_1 \neq \lambda_2$,则 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 也是线性无关的. 这是因为

$$\mathbf{A}(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2) = \lambda_1(k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2),$$

$$A(\ell_1\boldsymbol{\beta}_1 + \ell_2\boldsymbol{\beta}_2) = \lambda_2(\ell_1\boldsymbol{\beta}_1 + \ell_2\boldsymbol{\beta}_2).$$

若 $k_1\alpha_1 + k_2\alpha_2 + \ell_1\beta_1 + \ell_2\beta_2 = \mathbf{0}$,同理可证明这些向量都是零向量.

由此也可以知道,不同特征值的特征向量的线性组合不可能还是特征向量.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + \dots + x_n \boldsymbol{e}_n.$$

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$x = x_1 e_1 + \dots + x_n e_n.$$

通过将 $f(e_1), \ldots, f(e_n)$ 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n 阶方阵 A 的联系.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$x = x_1 e_1 + \dots + x_n e_n.$$

通过将 $f(e_1), \ldots, f(e_n)$ 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n 阶方阵 A 的联系.

一般的线性空间并没有这样的标准正交基, 或者 \mathbb{C}^n 本身我们也可以选择其它基.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$x = x_1 e_1 + \dots + x_n e_n.$$

通过将 $f(e_1), \ldots, f(e_n)$ 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n 阶方阵 A 的联系.

一般的线性空间并没有这样的标准正交基, 或者 \mathbb{C}^n 本身我们也可以选择其它基. 则这种对应会有什么变化呢?

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + \dots + x_n \boldsymbol{e}_n.$$

通过将 $f(e_1), \ldots, f(e_n)$ 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n 阶方阵 A 的联系.

一般的线性空间并没有这样的标准正交基, 或者 \mathbb{C}^n 本身我们也可以选择其它基. 则这种对应会有什么变化呢? 设 α_1,\ldots,α_n 是 \mathbb{C}^n 中一组线性无关的向量,

$$P=(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n).$$

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$x = x_1 e_1 + \dots + x_n e_n.$$

通过将 $f(e_1), \ldots, f(e_n)$ 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n 阶方阵 A 的联系.

一般的线性空间并没有这样的标准正交基, 或者 \mathbb{C}^n 本身我们也可以选择其它基.则这种对应会有什么变化呢? 设 α_1,\ldots,α_n 是 \mathbb{C}^n 中一组线性无关的向量,

$$P=(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n).$$

则

$$f(\boldsymbol{\alpha}_i) = \boldsymbol{A}\boldsymbol{\alpha}_i = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_n) \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{\alpha}_i,$$

所以 $f(\alpha_i)$ 表达为 $\alpha_1, \ldots, \alpha_n$ 线性组合的系数形成的向量是 $P^{-1}A\alpha_i$.

设 $f:\mathbb{C}^n \to \mathbb{C}^n$ 是一个线性映射. 对于任意 $x \in \mathbb{C}^n$, 它可以唯一表达为

$$x = x_1 e_1 + \dots + x_n e_n.$$

通过将 $f(e_1), \ldots, f(e_n)$ 表达为这组标准基的线性组合, 我们建立了线性映射 f 与一个 n 阶方阵 A 的联系.

一般的线性空间并没有这样的标准正交基, 或者 \mathbb{C}^n 本身我们也可以选择其它基.则这种对应会有什么变化呢? 设 α_1,\ldots,α_n 是 \mathbb{C}^n 中一组线性无关的向量,

$$P=(\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_n).$$

则

$$f(\boldsymbol{\alpha}_i) = A\boldsymbol{\alpha}_i = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_n) P^{-1} A\boldsymbol{\alpha}_i,$$

所以 $f(lpha_i)$ 表达为 $lpha_1,\dots,lpha_n$ 线性组合的系数形成的向量是 $m{P}^{-1}m{A}lpha_i$. 它们构成矩阵

$$(\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{lpha}_1,\ldots,\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{lpha}_n)=\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}.$$

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $P^{-1}AP$.

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $P^{-1}AP$. 我们称 f 在不同基下矩阵为相似的.

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $\mathbf{P}^{-1}\mathbf{AP}$. 我们称 f 在不同基下矩阵为相似的.

定义

若存在可逆矩阵 P 使得 $B = P^{-1}AP$, 则称方阵 A 与 B 相似.

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $\mathbf{P}^{-1}\mathbf{AP}$. 我们称 f 在不同基下矩阵为相似的.

定义

若存在可逆矩阵 P 使得 $B = P^{-1}AP$, 则称方阵 A 与 B 相似.

注意, 相似只对方阵有定义.

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $\mathbf{P}^{-1}\mathbf{AP}$. 我们称 f 在不同基下矩阵为相似的.

定义

若存在可逆矩阵 P 使得 $B = P^{-1}AP$, 则称方阵 A 与 B 相似.

注意, 相似只对方阵有定义.

命题

方阵的相似满足

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. 我们称 f 在不同基下矩阵为相似的.

定义

若存在可逆矩阵 P 使得 $B = P^{-1}AP$, 则称方阵 A 与 B 相似.

注意, 相似只对方阵有定义.

命题

方阵的相似满足

(1) 自反性: A 与自身相似;

方阵的相似

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $\mathbf{P}^{-1}\mathbf{AP}$. 我们称 f 在不同基下矩阵为相似的.

定义

若存在可逆矩阵 P 使得 $B = P^{-1}AP$, 则称方阵 A 与 B 相似.

注意, 相似只对方阵有定义.

命题

方阵的相似满足

- (1) 自反性: A 与自身相似;
- (2) 对称性: 若 A 相似于 B, 则 B 相似于 A;

方阵的相似

也就是说,若我们将线性空间 \mathbb{C}^n 换一组基表达,线性映射对应的矩阵就会变成 $P^{-1}AP$. 我们称 f 在不同基下矩阵为相似的.

定义

若存在可逆矩阵 P 使得 $B = P^{-1}AP$, 则称方阵 A 与 B 相似.

注意, 相似只对方阵有定义.

命题

方阵的相似满足

- (1) 自反性: A 与自身相似;
- (2) 对称性: 若 A 相似于 B, 则 B 相似于 A;
- (3) 传递性: 若 A 相似于 B, B 相似于 C, 则 A 相似于 C.

相似与等价

若
$$A,B$$
 相似 $(B=P^{-1}AP)$, 则 A,B 等价 $(B=PAQ)$. 反之未必成立,例如 $A=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $B=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. 这是因为和 $A=E$ 相似的只有它自己.

相似与等价

若 A,B 相似 $(B=P^{-1}AP)$, 则 A,B 等价 (B=PAQ). 反之未必成立,例如 $A=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $B=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. 这是因为和 A=E 相似的只有它自己.

例

若 3 阶方阵 $A \xrightarrow{r_1 \leftrightarrow r_3} B \xrightarrow{c_1 \leftrightarrow c_3} C$, 则 A 与 C ().

(A) 等价但不相似

(B) 相似但不等价

(C) 等价而且相似

(D) 既不等价也不相似

相似与等价

若 A,B 相似 $(B=P^{-1}AP)$, 则 A,B 等价 (B=PAQ). 反之未必成立,例如 $A=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $B=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. 这是因为和 A=E 相似的只有它自己.

例

 \overline{A} 3 所方阵 $A^{r_1} \leftrightarrow r_3$ $B^{c_1} \leftrightarrow c_3$ C, 则 A 与 C (C).

(A) 等价但不相似

(B) 相似但不等价

(C) 等价而且相似

(D) 既不等价也不相似

相似矩阵的性质

若 A 与 B 相似,则二者的特征多项式相同,从而特征值也相同.

相似矩阵的性质

若 A 与 B 相似,则二者的特征多项式相同,从而特征值也相同.

这是因为若 $P^{-1}AP = B$, 则

$$P^{-1}(A - \lambda E)P = P^{-1}AP - \lambda P^{-1}EP = B - \lambda E.$$

相似矩阵的性质

若 A 与 B 相似, 则二者的特征多项式相同, 从而特征值也相同.

这是因为若 $P^{-1}AP = B$, 则

$$P^{-1}(A - \lambda E)P = P^{-1}AP - \lambda P^{-1}EP = B - \lambda E.$$

两边取行列式并利用行列式的可乘性得到 $|A - \lambda E| = |B - \lambda E|$.

相似矩阵的性质

若 A 与 B 相似, 则二者的特征多项式相同, 从而特征值也相同.

这是因为若 $P^{-1}AP = B$, 则

$$P^{-1}(A - \lambda E)P = P^{-1}AP - \lambda P^{-1}EP = B - \lambda E.$$

两边取行列式并利用行列式的可乘性得到 $|A - \lambda E| = |B - \lambda E|$.

注意反过来未必成立,例如 $\mathbf{A}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $\mathbf{B}=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. 的特征多项式相同,但它们不相似.

若 A 与 B 相似, 则二者的特征多项式相同, 从而特征值也相同.

这是因为若 $P^{-1}AP = B$, 则

$$P^{-1}(A - \lambda E)P = P^{-1}AP - \lambda P^{-1}EP = B - \lambda E.$$

两边取行列式并利用行列式的可乘性得到 $|A - \lambda E| = |B - \lambda E|$.

注意反过来未必成立,例如 $\mathbf{A}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$, $\mathbf{B}=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. 的特征多项式相同,但它们不相似.

相似矩阵具有相同的特征值, 但对应的特征向量未必相同.

相似矩阵的性质若 A 与 B 相似, 则

(1) A, B 特征值相同 (包括重数);

相似矩阵的性质

若A与B相似,则

- (1) A, B 特征值相同 (包括重数);
- (2) |A| = |B|, Tr(A) = Tr(B);

相似矩阵的性质

若A与B相似,则

- (1) A, B 特征值相同 (包括重数);
- (2) |A| = |B|, Tr(A) = Tr(B);
- (3) $\mathbf{A} \sim \mathbf{B}$, $\mathbb{P} R(\mathbf{A}) = R(\mathbf{B})$;

相似矩阵的性质

若A与B相似,则

- (1) A, B 特征值相同 (包括重数);
- (2) |A| = |B|, Tr(A) = Tr(B);
- (3) $\mathbf{A} \sim \mathbf{B}$, $\mathbb{P} R(\mathbf{A}) = R(\mathbf{B})$;
- (4) 对于多项式 g,h, 若 h(A) 可逆, 则 h(B) 也可逆, 且 g(A)/h(A) 与 g(B)/h(B) 相似. 特别地, $A \lambda E$ 与 $B \lambda E$ 相似.

相似矩阵的性质

若A与B相似,则

- (1) A, B 特征值相同 (包括重数);
- (2) |A| = |B|, Tr(A) = Tr(B);
- (3) $\boldsymbol{A} \sim \boldsymbol{B}$, $\mathbb{P} R(\boldsymbol{A}) = R(\boldsymbol{B})$;
- (4) 对于多项式 g,h, 若 h(A) 可逆, 则 h(B) 也可逆, 且 g(A)/h(A) 与 g(B)/h(B) 相似. 特别地, $A \lambda E$ 与 $B \lambda E$ 相似.

推论

 \overrightarrow{A} 与对角阵 $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ 相似, 则 $\lambda_1, \ldots, \lambda_n$ 是 A 的 n 个特征值.

例

 $oldsymbol{eta}$ 4 阶方阵 $oldsymbol{A}$ 与 $oldsymbol{B}$ 相似, $oldsymbol{A}$ 的特征值为 1,2,3,4, 则 $|oldsymbol{B}+oldsymbol{E}|=$ ______

例

若 4 阶方阵 A 与 B 相似, A 的特征值为 1,2,3,4, 则 |B+E|=120.

例

若 4 阶方阵 A 与 B 相似, A 的特征值为 1,2,3,4, 则 $|B+E|=\underline{120}$.

例

设 3 阶可逆阵 $m{A}, m{B}$ 相似, $m{A}^{-1}$ 的特征值为 1/2, 1/3, 1/4, 则 $|m{E} - m{B}| =$ _____.

例

 \overrightarrow{A} 4 所方阵 A 与 B 相似, A 的特征值为 1,2,3,4, 则 $|B+E|=\underline{120}$.

例

设 3 阶可逆阵 A, B 相似, A^{-1} 的特征值为 1/2, 1/3, 1/4, 则 $|E - B| = _{-6}$.

例

 \overrightarrow{A} 好方阵 A 与 B 相似, A 的特征值为 1,2,3,4, 则 $|B+E|=\underline{120}$.

例

设 3 阶可逆阵 A, B 相似, A^{-1} 的特征值为 1/2, 1/3, 1/4, 则 $|E - B| = _{-6}$.

例

设矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 4 \\ 0 & a & 7 \\ 0 & 0 & 3 \end{pmatrix}$$
 与 $\mathbf{\Lambda} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似, 求 a 与 b 的值.

例

 \overrightarrow{A} 4 所方阵 A 与 B 相似, A 的特征值为 1,2,3,4, 则 $|B+E|=\underline{120}$.

例

设 3 阶可逆阵 A, B 相似, A^{-1} 的特征值为 1/2, 1/3, 1/4, 则 $|E - B| = _{-6}$.

例

设矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 4 \\ 0 & a & 7 \\ 0 & 0 & 3 \end{pmatrix}$$
 与 $\mathbf{\Lambda} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似, 求 a 与 b 的值.

解

二者特征值相同, 从而 a=1,b=3.

练习

(1) 若 3 阶矩阵 A 与 B 相似, 且 |A-E|=0, |A+2E|=0, |2A-E|=0, 则 $|B^{-1}-E|=0$.

练习

- (1) 若 3 阶矩阵 A 与 B 相似, 且 |A E| = 0, |A + 2E| = 0, |2A E| = 0, 则 $|B^{-1} E| =$ _____.
- (2) 若 3 阶矩阵 A 与 B 相似, 且存在非零矩阵 C 使得 AC = 2C, |A + 2E| = 0, |2A E| = 0, 则 $|B^{-1} E| =$

练习

- (1) 若 3 阶矩阵 A 与 B 相似, 且 |A E| = 0, |A + 2E| = 0, |2A E| = 0, 则 $|B^{-1} E| = \frac{3/4}{4}$.
- (2) 若 3 阶矩阵 A 与 B 相似, 且存在非零矩阵 C 使得 $AC = 2C, |A + 2E| = 0, |2A E| = 0, 则 |B^{-1} E| = ...$

若 AB = kB, 则 B 的每个非零列向量均为 A 的属于特征值 k 的特征向量.

练习

- (1) 若 3 阶矩阵 A 与 B 相似, 且 |A E| = 0, |A + 2E| = 0, |2A E| = 0, 则 $|B^{-1} E| = \frac{3/4}{4}$.
- (2) 若 3 阶矩阵 A 与 B 相似, 且存在非零矩阵 C 使得 AC = 2C, |A + 2E| = 0, |2A E| = 0, 则 $|B^{-1} E| = \frac{3/4}{4}$.

若 AB = kB, 则 B 的每个非零列向量均为 A 的属于特征值 k 的特征向量.

定义

$$\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n),$$

则称 A 可(相似) 对角化.

定义

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

则称 A 可(相似) 对角化.

设
$$\boldsymbol{P}=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n)$$
, 则

$$m{P}^{-1}m{A}m{P}=m{\Lambda}\iff m{A}m{P}=m{P}m{\Lambda}\iff (m{A}m{p}_1,\ldots,m{A}m{p}_n)=(\lambda_1m{p}_1,\ldots,\lambda_nm{p}_n),$$

定义

$$\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n),$$

则称 A 可(相似) 对角化.

设
$$P=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n)$$
, 则

$$P^{-1}AP = \Lambda \iff AP = P\Lambda \iff (Ap_1, \dots, Ap_n) = (\lambda_1 p_1, \dots, \lambda_n p_n),$$

即
$$Ap_i = \lambda_i p_i$$
.

 \overline{H} 所方阵 \overline{A} 相似于某个对角阵

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

则称 A 可(相似) 对角化.

设
$$P=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n)$$
, 则

$$P^{-1}AP = \Lambda \iff AP = P\Lambda \iff (Ap_1, \dots, Ap_n) = (\lambda_1 p_1, \dots, \lambda_n p_n),$$

即 $Ap_i = \lambda_i p_i$. 由于 P 可逆, A 拥有 n 个线性无关的特征向量 p_1, \ldots, p_n .

定义

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

则称 A 可(相似) 对角化.

设
$$P=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n)$$
, 则

$$P^{-1}AP = \Lambda \iff AP = P\Lambda \iff (Ap_1, \dots, Ap_n) = (\lambda_1 p_1, \dots, \lambda_n p_n),$$

即 $Ap_i = \lambda_i p_i$. 由于 P 可逆, A 拥有 n 个线性无关的特征向量 p_1, \ldots, p_n . 反之, 若 A 拥有 n 个线性无关的特征向量, 则选择 P 以它们为列向量即可使 A 对角化.

定义

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

则称 A 可(相似) 对角化.

设
$$P=(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n)$$
, 则

$$P^{-1}AP = \Lambda \iff AP = P\Lambda \iff (Ap_1, \dots, Ap_n) = (\lambda_1 p_1, \dots, \lambda_n p_n),$$

即 $Ap_i = \lambda_i p_i$. 由于 P 可逆, A 拥有 n 个线性无关的特征向量 p_1, \ldots, p_n . 反之, 若 A 拥有 n 个线性无关的特征向量, 则选择 P 以它们为列向量即可使 A 对角化.

相似对角化的等价刻画

n 阶矩阵 A 可对角化 \iff A 有 n 个线性无关的特征向量.

可对角化的刻画

推论

若 A 的特征值两两不同,则 A 可对角化.

可对角化的刻画

推论

若 A 的特征值两两不同, 则 A 可对角化.

反之未必成立.

可对角化的刻画

推论

若 A 的特征值两两不同,则 A 可对角化.

反之未必成立.

例

设3 所方阵 B 的特征值为1,2,-1, $A = B^3 - 2B$, 求A 的特征值及相似对角阵.

可对角化的刻画

推论

反之未必成立.

例

设 3 阶方阵 B 的特征值为 1,2,-1, $A = B^3 - 2B$, 求 A 的特征值及相似对角阵.

解

 \overline{A} 的特征值为 -1,4,1, 相似对角阵为 diag(-1,4,1).

可对角化的刻画

推论

反之未必成立.

例

设3 所方阵 B 的特征值为 1,2,-1, $A = B^3 - 2B$, 求 A 的特征值及相似对角阵.

- 解

 \overline{A} 的特征值为 -1,4,1, 相似对角阵为 diag(-1,4,1).

回忆 k 重特征值对应的线性无关的特征向量最多 k 个.

可对角化的刻画

推论

若 A 的特征值两两不同,则 A 可对角化.

反之未必成立.

例

设 3 阶方阵 B 的特征值为 1, 2, -1, $A = B^3 - 2B$, 求 A 的特征值及相似对角阵.

解

 \overline{A} 的特征值为 -1,4,1, 相似对角阵为 diag(-1,4,1).

回忆 k 重特征值对应的线性无关的特征向量最多 k 个.

相似对角化的等价刻画

 \overrightarrow{A} 为 是 \overrightarrow{A} 的 k 重特征值, 则 \overrightarrow{A} 可对角化 $\iff \forall \lambda, R(\overrightarrow{A} - \lambda \overrightarrow{E}) = n - k$, 即 λ 对应 的线性无关的特征向量恰有 k 个.

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

解

(1) 特征值一正一负, 能对角化;

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

解

(1) 特征值一正一负, 能对角化; (2) 特征值为 1,3,0, 能对角化;

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

解

- (1) 特征值一正一负, 能对角化; (2) 特征值为 1,3,0, 能对角化;
- (3) $(2-\lambda)(\lambda^2-\lambda-2) \implies \lambda=-1,2,2.$

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

解

(1) 特征值一正一负, 能对角化; (2) 特征值为 1,3,0, 能对角化;

(3)
$$(2-\lambda)(\lambda^2-\lambda-2) \implies \lambda = -1, 2, 2.$$
 $\mathbf{A} - 2\mathbf{E} = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix}$ 秩 1, 能对角化;

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

解

(1) 特征值一正一负, 能对角化; (2) 特征值为 1,3,0, 能对角化;

(3)
$$(2-\lambda)(\lambda^2-\lambda-2) \implies \lambda = -1, 2, 2.$$
 $\mathbf{A} - 2\mathbf{E} = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix}$ \mathfrak{R} 1, \mathfrak{k} \mathfrak{P} \mathfrak{R} \mathfrak{R} ;

(4)
$$(2 - \lambda)(\lambda^2 - 2\lambda + 2) \implies \lambda = 2, 1, 1.$$

例

判断下列矩阵 A 能否相似对角化: (1) A 是二阶实矩阵且 |A| < 0;

(2)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; (3) $\mathbf{A} = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$; (4) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

解

(1) 特征值一正一负,能对角化;(2) 特征值为 1,3,0,能对角化;

(3)
$$(2-\lambda)(\lambda^2-\lambda-2) \implies \lambda = -1, 2, 2.$$
 $\mathbf{A} - 2\mathbf{E} = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix}$ 秩 1, 能对角化;

(4)
$$(2-\lambda)(\lambda^2-2\lambda+2) \implies \lambda=2,1,1.$$
 $A-E=\begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ 秩 2, 不能对角化.

例

$$oldsymbol{A} = egin{pmatrix} a & b & \cdots & b \ b & a & \cdots & b \ dots & dots & \ddots & dots \ b & b & \cdots & a \end{pmatrix}$$
的行列式。

例

计算
$$\mathbf{A} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$$
 的行列式.

- 解

$$b=0$$
 B, $|\mathbf{A}|=a^n$.

例

$$\mathbf{A} = egin{pmatrix} a & b & \cdots & b \ b & a & \cdots & b \ dots & dots & \ddots & dots \ b & b & \cdots & a \end{pmatrix}$$
 的行列式

解

$$b=0$$
时, $|\mathbf{A}|=a^n$. 读 $b\neq 0$, $\mathbf{B}=\mathbf{A}+(b-a)\mathbf{E}$,

例

计算
$$\mathbf{A} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$$
 的行列式.

- 解

$$\begin{vmatrix} b = 0 & \text{时}, |\mathbf{A}| = a^n.$$
 设 $b \neq 0$, $\mathbf{B} = \mathbf{A} + (b - a)\mathbf{E}$, 则 \mathbf{B} 所有元素为 b , 秩为 1 , $\mathbf{B}\mathbf{x} = \mathbf{0}$ 基础解系有 $n = 1$ 个向量

找性代数 ▶ 第三章 相似和合同 ▶ 1 方阵的相似 ▶ E 相似对角化

例

计算
$$\mathbf{A} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$$
 的行列式.

- 解

$$b=0$$
 时, $|A|=a^n$. 设 $b\neq 0$, $B=A+(b-a)E$, 则 B 所有元素为 b , 秩为 1 , $Bx=0$ 基础解系有 $n-1$ 个向量,从而 0 是 B 的至少 $n-1$ 重特征值

找性代数 ▶ 第三章 相似和合同 ▶ 1 方阵的相似 ▶ E 相似对角化

例

计算
$$\mathbf{A} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$$
 的行列式.

解

b=0 时, $|{\bf A}|=a^n$. 设 $b\neq 0$, ${\bf B}={\bf A}+(b-a){\bf E}$, 则 ${\bf B}$ 所有元素为 b, 秩为 1, ${\bf B}{\bf x}={\bf 0}$ 基础解系有 n-1 个向量. 从而 0 是 ${\bf B}$ 的至少 n-1 重特征值. 由于 ${\bf B}$ 行和为 nb, 因此 nb 也是它的特征值.

例

计算
$$\mathbf{A} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$$
 的行列式.

解

b=0 时, $|{\bf A}|=a^n$. 设 $b\neq 0$, ${\bf B}={\bf A}+(b-a){\bf E}$, 则 ${\bf B}$ 所有元素为 b, 秩为 1, ${\bf B}{\bf x}={\bf 0}$ 基础解系有 n-1 个向量. 从而 0 是 ${\bf B}$ 的至少 n-1 重特征值. 由于 ${\bf B}$ 行和为 nb, 因此 nb 也是它的特征值. 所以 ${\bf B}$ 的特征值就是 nb 和 0 (n-1 重), 特征多项式为

$$|\mathbf{B} - \lambda \mathbf{E}| = (nb - \lambda)(-\lambda)^{n-1},$$

例

计算
$$\mathbf{A} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{pmatrix}$$
 的行列式.

解

b=0 时, $|\mathbf{A}|=a^n$. 设 $b\neq 0$, $\mathbf{B}=\mathbf{A}+(b-a)\mathbf{E}$, 则 \mathbf{B} 所有元素为 b, 秩为 1, $\mathbf{B}x=\mathbf{0}$ 基础解系有 n-1 个向量. 从而 0 是 \mathbf{B} 的至少 n-1 重特征值. 由于 \mathbf{B} 行和为 nb, 因此 nb 也是它的特征值. 所以 \mathbf{B} 的特征值就是 nb 和 0 (n-1 重), 特征多项式为

$$|\boldsymbol{B} - \lambda \boldsymbol{E}| = (nb - \lambda)(-\lambda)^{n-1},$$

$$|\mathbf{A}| = (nb - (b-a))(a-b)^{n-1} = (a-b)^{n-1}(nb-b+a).$$

相似对角化的步骤如下:

相似对角化的步骤如下:

(1) 求出 A 的所有特征值 λ_i 和特征向量 p_i ;

相似对角化的步骤如下:

- (1) 求出 A 的所有特征值 λ_i 和特征向量 p_i ;
- (2) 根据上述判定方法判断 A 是否可以相似对角化;

相似对角化的步骤如下:

- (1) 求出 A 的所有特征值 λ_i 和特征向量 p_i ;
- (2) 根据上述判定方法判断 A 是否可以相似对角化;
- (3) 若能, 将 n 个对应的线性无关的特征向量 p_1, \ldots, p_n 组成方阵 $P = (p_1, \ldots, p_n)$,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
, 计算 \mathbf{A}^k

例

设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
, 计算 \mathbf{A}^k .

解

 $m{A}$ 特征值为 1,2, 对应的特征向量可以取 $m{p}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, m{p}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
, 计算 \mathbf{A}^k .

 $m{A}$ 特征值为 1,2, 对应的特征向量可以取 $m{p}_1=\begin{pmatrix}1\\0\end{pmatrix}$, $m{p}_2=\begin{pmatrix}1\\1\end{pmatrix}$. 设 $m{P}=\begin{pmatrix}1&1\\0&1\end{pmatrix}$, 则

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & \\ & 2 \end{pmatrix}.$$

设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
, 计算 \mathbf{A}^k .

 $m{A}$ 特征值为 1, 2, 对应的特征向量可以取 $m{p}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, m{p}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. 设 $m{P} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 则 $P^{-1}AP = \begin{pmatrix} 1 & \\ & 2 \end{pmatrix}$. 因此

$$\boldsymbol{A}^k = \boldsymbol{P} \begin{pmatrix} 1 & \\ & 2 \end{pmatrix}^k \boldsymbol{P}^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \\ & 2^k \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2^k - 1 \\ 0 & 2^k \end{pmatrix}.$$

一例

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
能否对角化?若能,求 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{AP}$ 是对角阵.

 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 能否对角化?若能,求 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{AP}$ 是对角阵.

解

(1) 上三角阵 A 特征值为 1,0,0.

例

$$oldsymbol{A} = egin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
能否对角化?若能,求 $oldsymbol{P}$ 使得 $oldsymbol{P}^{-1}oldsymbol{AP}$ 是对角阵.

解

- (1) 上三角阵 A 特征值为 1,0,0.
- (2) 对于 $\lambda_1 = 1, \boldsymbol{A} \boldsymbol{E} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$

例

$$oldsymbol{A} = egin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
能否对角化?若能,求 $oldsymbol{P}$ 使得 $oldsymbol{P}^{-1}oldsymbol{AP}$ 是对角阵.

解

(1) 上三角阵 A 特征值为 1,0,0.

(2) 对于
$$\lambda_1 = 1$$
, $\boldsymbol{A} - \boldsymbol{E} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ $\overset{r}{\sim} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 取特征向量 $\boldsymbol{p}_1 = (1,0,0)^{\mathrm{T}}$.

例

$$oldsymbol{A} = egin{pmatrix} 1 & 1 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$
能否对角化?若能,求 $oldsymbol{P}$ 使得 $oldsymbol{P}^{-1}oldsymbol{AP}$ 是对角阵.

解

- (1) 上三角阵 A 特征值为 1,0,0.
- (2) 对于 $\lambda_1 = 1, \boldsymbol{A} \boldsymbol{E} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 取特征向量 $\boldsymbol{p}_1 = (1,0,0)^{\mathrm{T}}$.
- (3) 对于 $\lambda_2 = \lambda_3 = 0$, A 对应的基础解系可以取 $\mathbf{p}_2 = (-1, 1, 0)^{\mathrm{T}}$, $\mathbf{p}_3 = (-1, 0, 1)^{\mathrm{T}}$.

例

$$oldsymbol{A} = egin{pmatrix} 1 & 1 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$
能否对角化?若能,求 $oldsymbol{P}$ 使得 $oldsymbol{P}^{-1}oldsymbol{AP}$ 是对角阵.

解

- (1) 上三角阵 **A** 特征值为 1,0,0.
- (2) 对于 $\lambda_1 = 1, \mathbf{A} \mathbf{E} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, 取特征向量 <math>\mathbf{p}_1 = (1,0,0)^{\mathrm{T}}.$
- (3) 对于 $\lambda_2 = \lambda_3 = 0$, A 对应的基础解系可以取 $p_2 = (-1, 1, 0)^T$, $p_3 = (-1, 0, 1)^T$.
- (4) 因此 A 可对角化, 取 $P = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 则 $P^{-1}AP = \text{diag}(1,0,0)$.

例: 对角化的性质

练习

已知矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 可对角化,则_____.

例: 对角化的性质

练习

已知矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 可对角化,则_____.

例: 对角化的性质

练习

已知矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 可对角化,则_____.

练习

读
$$P^{-1}AP = \text{diag}(1,2,3)$$
. 若 $P = (\alpha_1,\alpha_2,\alpha_3),Q = (\alpha_1,\alpha_3,\alpha_2)$, 與 $Q^{-1}AQ =$ ______.

例: 对角化的性质

练习

练习

读
$$P^{-1}AP = \text{diag}(1,2,3)$$
. 若 $P = (\alpha_1,\alpha_2,\alpha_3), Q = (\alpha_1,\alpha_3,\alpha_2)$, 则 $Q^{-1}AQ = \frac{\text{diag}(1,3,2)}{2}$.

例: 对角化的性质

练习

练习

设
$$P^{-1}AP=\mathrm{diag}(1,2,3)$$
. 若 $P=(\alpha_1,\alpha_2,\alpha_3),Q=(\alpha_1,\alpha_3,\alpha_2)$,则 $Q^{-1}AQ=\mathrm{\underline{diag}(1,3,2)}$.

练习

若
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, 凡 ().$$

(A) A, C 相似, B, C 相似

(B) A, C 不相似, B, C 相似

(C) A, C 相似, B, C 不相似

(D) A,C 不相似, B,C 不相似

例: 对角化的性质

练习

练习

设
$$P^{-1}AP = \text{diag}(1,2,3).$$
 若 $P = (\alpha_1,\alpha_2,\alpha_3),Q = (\alpha_1,\alpha_3,\alpha_2)$,则 $Q^{-1}AQ = \underline{\text{diag}(1,3,2)}$.

练习

若
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, 凡 (C).$$

(A) A, C 相似, B, C 相似

(B) A, C 不相似, B, C 相似

(C) A, C 相似, B, C 不相似

(D) A,C 不相似, B,C 不相似

$$\operatorname{diag}(\boldsymbol{J}_{k_1}(\lambda_1),\ldots,\boldsymbol{J}_{k_t}(\lambda_t)),$$

其中
$$m{J}_k(\lambda) = egin{pmatrix} \lambda & 1 & & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix}$$
 是 k 阶方阵.

$$\operatorname{diag}(\boldsymbol{J}_{k_1}(\lambda_1),\ldots,\boldsymbol{J}_{k_t}(\lambda_t)),$$

$$\operatorname{diag}(\boldsymbol{J}_{k_1}(\lambda_1),\ldots,\boldsymbol{J}_{k_t}(\lambda_t)),$$

其中
$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda \end{pmatrix}$$
 是 k 阶方阵. 当 $k_1 = \cdots = k_t = 1$ 时就是对角阵.

由此可知, A^* 的所有特征值的就是 A 的 n 个特征值中 n-1 个相乘得到的.

$$\operatorname{diag}(\boldsymbol{J}_{k_1}(\lambda_1),\ldots,\boldsymbol{J}_{k_t}(\lambda_t)),$$

其中
$$m{J}_k(\lambda) = egin{pmatrix} \lambda & 1 & & & & \\ & \lambda & \ddots & & & \\ & & \ddots & 1 & & \\ & & & \lambda & & \end{pmatrix}$$
 是 k 阶方阵. 当 $k_1 = \cdots = k_t = 1$ 时就是对角阵.

由此可知, A^* 的所有特征值的就是 A 的 n 个特征值中 n-1 个相乘得到的.

(1) 当 $|A| \neq 0$ 时, A^* 的所有特征值为 $|A|/\lambda$.

$$\operatorname{diag}(\boldsymbol{J}_{k_1}(\lambda_1),\ldots,\boldsymbol{J}_{k_t}(\lambda_t)),$$

由此可知, A^* 的所有特征值的就是 A 的 n 个特征值中 n-1 个相乘得到的.

- (1) 当 $|A| \neq 0$ 时, A^* 的所有特征值为 $|A|/\lambda$.
- (2) 当 |A| = 0 且 $\lambda_1 = 0$ 是一重特征值, 则 A^* 唯一的非零特征值为 A 非零特征值之 乘积.

$$\operatorname{diag}(\boldsymbol{J}_{k_1}(\lambda_1),\ldots,\boldsymbol{J}_{k_t}(\lambda_t)),$$

其中
$$m{J}_k(\lambda) = egin{pmatrix} \lambda & 1 & & & & \\ & \lambda & \ddots & & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix}$$
 是 k 阶方阵. 当 $k_1 = \cdots = k_t = 1$ 时就是对角阵.

由此可知, A^* 的所有特征值的就是 A 的 n 个特征值中 n-1 个相乘得到的.

- (1) 当 $|A| \neq 0$ 时, A^* 的所有特征值为 $|A|/\lambda$.
- (2) 当 |A| = 0 且 $\lambda_1 = 0$ 是一重特征值, 则 A^* 唯一的非零特征值为 A 非零特征值之 乘积.
- (3) 当 |A| = 0 且 $\lambda_1 = 0$ 是 ≥ 2 重特征值, 则 $A^* = O$.

对于 A 的 k 重特征值 λ ,

对于 A 的 k 重特征值 λ , 若

$$R((\mathbf{A} - \lambda \mathbf{E})^i) = n - r_i, \quad 0 = r_0 \leqslant r_1 \leqslant r_2 \leqslant \cdots \leqslant k,$$

对于 A 的 k 重特征值 λ , 若

$$R((\mathbf{A} - \lambda \mathbf{E})^i) = n - r_i, \quad 0 = r_0 \leqslant r_1 \leqslant r_2 \leqslant \cdots \leqslant k,$$

则 λ 对应的约当块有 r_1 个, 其中 $J_k(\lambda)$ 有 $2r_k - r_{k+1} - r_{k-1}$ 个.

对于 A 的 k 重特征值 λ . 若

$$R((\mathbf{A} - \lambda \mathbf{E})^i) = n - r_i, \quad 0 = r_0 \leqslant r_1 \leqslant r_2 \leqslant \cdots \leqslant k,$$

则 λ 对应的约当块有 r_1 个, 其中 $J_k(\lambda)$ 有 $2r_k - r_{k+1} - r_{k-1}$ 个.

利用约当标准形可以计算任意矩阵的方幂.

对于 A 的 k 重特征值 λ , 若

$$R((\mathbf{A} - \lambda \mathbf{E})^i) = n - r_i, \quad 0 = r_0 \leqslant r_1 \leqslant r_2 \leqslant \cdots \leqslant k,$$

则 λ 对应的约当块有 r_1 个, 其中 $J_k(\lambda)$ 有 $2r_k - r_{k+1} - r_{k-1}$ 个.

利用约当标准形可以计算任意矩阵的方幂. 设 $N=J_k(0)$, 则 $N^k=O$,

$$J_k(\lambda)^m = (\lambda E + N)^m = \sum_{i=0}^m C_m^i \lambda^{m-i} N^i.$$

练习

 \overline{A} 4 阶实矩阵 A^* 的特征值为 -1,1,2,4, 则下列矩阵可逆的是 (

(A) A + 2E

(B) A - 2E

(C) $A + \frac{1}{2}E$

(D) $\boldsymbol{A} - \boldsymbol{E}$

练习

 \overline{A} 4 阶实矩阵 A^* 的特征值为 -1,1,2,4,则下列矩阵可逆的是 (D).

(A)
$$A + 2E$$

(B)
$$A - 2E$$

(C)
$$A + \frac{1}{2}E$$

(D)
$$A - E$$

练习

 \overline{A} 4 阶实矩阵 A^* 的特征值为 -1,1,2,4,则下列矩阵可逆的是 (D).

(A) A + 2E

(B) A - 2E

(C) $A + \frac{1}{2}E$

(D) A - E

练习

 $\stackrel{\cdot}{H}$ 方 所实对称矩阵 $\stackrel{\cdot}{A}$ 满足 $\stackrel{\cdot}{A}$ 二 $\stackrel{\cdot}{A}$ 一 $\stackrel{\cdot}{A}$ — $\stackrel{\cdot}{A}$

(A) A + 2E

(B) A + E

(C) A - E

(D) $\boldsymbol{A} - 2\boldsymbol{E}$

练习

(A) A + 2E

(B) A - 2E

(C) $A + \frac{1}{2}E$

(D) A - E

练习

 \overline{A} n 阶实对称矩阵 A 满足 $A^2 - A = O$, 则下列矩阵不可逆的是 (C).

(A) A + 2E

(B) A + E

(C) A - E

(D) $\boldsymbol{A} - 2\boldsymbol{E}$

练习

(A) A + 2E

(B) A - 2E

(C) $A + \frac{1}{2}E$

(D) A - E

练习

 \overline{A} n 阶实对称矩阵 A 满足 $A^2 - A = O$, 则下列矩阵不可逆的是 (C).

(A) A + 2E

(B) $\boldsymbol{A} + \boldsymbol{E}$

(C) A - E

(D) $\boldsymbol{A} - 2\boldsymbol{E}$

练习

 \overrightarrow{A} 3 阶方阵 A 的特征值互不相同且 |A|=0, 则 R(A)=_____

练习

(A) A + 2E

(B) A - 2E

(C) $A + \frac{1}{2}E$

(D) A - E

练习

 \overline{A} n 阶实对称矩阵 A 满足 $A^2 - A = O$, 则下列矩阵不可逆的是 (C).

(A) A + 2E

(B) $\boldsymbol{A} + \boldsymbol{E}$

(C) A - E

(D) $\boldsymbol{A} - 2\boldsymbol{E}$

练习

 \overrightarrow{A} 3 阶方阵 A 的特征值互不相同且 |A|=0, 则 $R(A)=\underline{2}$.

设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
 有 3 个线性无关特征向量, $\lambda = 2$ 是 \mathbf{A} 的二重特征值. 求可逆阵 \mathbf{P} , 使得 $\mathbf{P}^{-1}\mathbf{AP}$ 为对角阵.

例

设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
 有 3 个线性无关特征向量, $\lambda = 2$ 是 \mathbf{A} 的二重特征值. 求可逆阵 \mathbf{P} , 使得 $\mathbf{P}^{-1}\mathbf{AP}$ 为对角阵.

解

由 $Tr(\mathbf{A}) = 10$ 可知特征值为 2,2,6.

例

设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
 有 3 个线性无关特征向量, $\lambda = 2$ 是 \mathbf{A} 的二重特征值. 求可逆阵 \mathbf{P} , 使得 $\mathbf{P}^{-1}\mathbf{AP}$ 为对角阵.

解

由 $Tr(\mathbf{A}) = 10$ 可知特征值为 2,2,6. 由 $R(\mathbf{A} - 2\mathbf{E}) = 1$ 可知 x = 2, y = -2.

设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
 有 3 个线性无关特征向量, $\lambda = 2$ 是 A 的二重特征值. 求可逆阵 P , 使得 $P^{-1}AP$ 为对角阵.

由
$$\operatorname{Tr}(\mathbf{A}) = 10$$
 可知特征值为 $2, 2, 6$. 由 $R(\mathbf{A} - 2\mathbf{E}) = 1$ 可知 $x = 2, y = -2$. $\mathbf{A} - 2\mathbf{E} = \begin{pmatrix} -1 & -1 & 1 \\ x & 2 & y \\ -3 & -3 & 3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \mathbf{p}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{p}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$

例

设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
 有 3 个线性无关特征向量, $\lambda = 2$ 是 A 的二重特征值. 求可逆阵 P , 使得 $P^{-1}AP$ 为对角阵.

解

由
$$\operatorname{Tr}(\mathbf{A}) = 10$$
 可知特征值为 $2, 2, 6$. 由 $R(\mathbf{A} - 2\mathbf{E}) = 1$ 可知 $x = 2, y = -2$.
$$\mathbf{A} - 2\mathbf{E} = \begin{pmatrix} -1 & -1 & 1 \\ x & 2 & y \\ -3 & -3 & 3 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow \mathbf{p}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{p}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

$$\mathbf{A} - 6\mathbf{E} = \begin{pmatrix} -5 & -1 & 1 \\ 2 & -2 & -2 \\ -3 & -3 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 2/3 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow \mathbf{p}_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}. \quad \mathbf{P} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}.$$

例

已知n 阶方阵 \mathbf{A} 的各行元素之和为2, $\mathbf{A}\begin{pmatrix}1&2\\0&1\\-1&1\end{pmatrix}=\begin{pmatrix}-1&2\\0&1\\1&1\end{pmatrix}$, 则 \mathbf{A} 相似于().

- (A) diag(1,1,2)
- (B) diag(2, 1, 1)
- (C) diag(2, 1, -1) (D) diag(2, -1, -1)

例

已知n 阶方阵 \mathbf{A} 的各行元素之和为2, $\mathbf{A}\begin{pmatrix}1&2\\0&1\\-1&1\end{pmatrix}=\begin{pmatrix}-1&2\\0&1\\1&1\end{pmatrix}$, 则 \mathbf{A} 相似于(\mathbf{C}).

- (A) diag(1,1,2)
- (B) diag(2, 1, 1)
- (C) diag(2, 1, -1) (D) diag(2, -1, -1)

已知 n 阶方阵 \boldsymbol{A} 的各行元素之和为 2, $\boldsymbol{A}\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, 则 \boldsymbol{A} 相似于 (\boldsymbol{C}).

- (A) diag(1,1,2) (B) diag(2,1,1) (C) diag(2,1,-1) (D) diag(2,-1,-1)

设
$$\mathbf{A} = \begin{pmatrix} 2 & a & 2 \\ 5 & b & 3 \\ -1 & 1 & -1 \end{pmatrix}$$
有特征值 ± 1 ,问 \mathbf{A} 能否相似对角化?

例

已知 n 阶方阵 \boldsymbol{A} 的各行元素之和为 2, $\boldsymbol{A}\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, 则 \boldsymbol{A} 相似于 (\boldsymbol{C}).

(A) diag(1,1,2) (B) diag(2,1,1) (C) diag(2,1,-1) (D) diag(2,-1,-1)

练习

设
$$\mathbf{A} = \begin{pmatrix} 2 & a & 2 \\ 5 & b & 3 \\ -1 & 1 & -1 \end{pmatrix}$$
 有特征值 ± 1 , 问 \mathbf{A} 能否相似对角化?

答案

$$|\overline{A \pm E}| = 0 \implies a = -1, b = -3. \operatorname{Tr}(A) = -2 \implies \lambda_3 = -2, \text{ } \exists A \text{ }$$

例

设 A 为三阶方阵, $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的三维列向量且 $A\alpha_1 = 2\alpha_1, A\alpha_2 = 3\alpha_2 + 2\alpha_3, A\alpha_3 = 2\alpha_2 + 3\alpha_3$. 求 A 并证明 A 可对角化.

例

设 A 为三阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的三维列向量且 $A\alpha_1=2\alpha_1,A\alpha_2=3\alpha_2+2\alpha_3,A\alpha_3=2\alpha_2+3\alpha_3$. 求 A 并证明 A 可对角化.

解

$$m{A}(m{lpha}_1,m{lpha}_2,m{lpha}_3)=(m{lpha}_1,m{lpha}_2,m{lpha}_3)m{B},m{B}=egin{pmatrix} 2 & 0 & 0 \ 0 & 3 & 2 \ 0 & 2 & 3 \end{pmatrix}$$
. 由于 $m{B}$ 是实对称矩阵, 因此 $m{B}$ 能

对角化,从而A也可以.

设 A 为三阶方阵, $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的三维列向量且 $A\alpha_1 = 2\alpha_1, A\alpha_2 = 3\alpha_2 +$ $2\alpha_3$, $A\alpha_3 = 2\alpha_2 + 3\alpha_3$. 求 A 并证明 A 可对角化.

$$A(\alpha_1,\alpha_2,\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)B,B=egin{pmatrix} 2&0&0\\0&3&2\\0&2&3 \end{pmatrix}$$
. 由于 B 是实对称矩阵, 因此 B 能

对角化. 从而 A 也可以.

为什么实对称矩阵一定能对角化? 在下一节中我们将回答这个问题.

线性递推数列是一种常见的数列,

线性递推数列是一种常见的数列,例如著名的斐波那契数列:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔,若一年内没有发生死亡,一对刚出生的兔子一年内能繁殖成多少对兔子?

线性递推数列是一种常见的数列,例如著名的斐波那契数列:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔.若一年内没有发生死亡,一对刚出生的兔子一年内能繁殖成多少对兔子?

设第 n 个月的兔子数量为 a_n , 那么

$$a_{n+2} = a_{n+1} + a_n, \quad a_2 = a_1 = 1.$$

线性递推数列是一种常见的数列,例如著名的斐波那契数列:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔.若一年内没有发生死亡,一对刚出生的兔子一年内能繁殖成多少对兔子?

设第 n 个月的兔子数量为 a_n , 那么

设
$$x_n=egin{pmatrix} a_{n+2}=a_{n+1}+a_n, & a_2=a_1=1. \ \mathcal{U} x_n=egin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$$
,则 $x_{n+1}=Ax_n$, $A=egin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

线性递推数列是一种常见的数列,例如著名的斐波那契数列:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔.若一年内没有发生死亡,一对刚出生的兔子一年内能繁殖成多少对兔子?

设第 n 个月的兔子数量为 a_n , 那么

$$a_{n+2}=a_{n+1}+a_n$$
, $a_2=a_1=1$. 设 $x_n=egin{pmatrix} a_{n+1} & a_n & a_2=a_1=1 \end{pmatrix}$. 设 $x_n=egin{pmatrix} a_{n+1} & a_n & a_n & a_n & a_n \end{pmatrix}$. 通过计算可知 $A=P\Lambda P^{-1}$, $\Lambda=\mathrm{diag}\Big(\frac{1+\sqrt{5}}{2},\frac{1-\sqrt{5}}{2}\Big)$, $P=egin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}$.

线性递推数列是一种常见的数列,例如著名的斐波那契数列:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔.若一年内没有发生死亡,一对刚出生的兔子一年内能繁殖成多少对兔子?

设第 n 个月的兔子数量为 a_n , 那么

$$a_{n+2}=a_{n+1}+a_n,\quad a_2=a_1=1.$$
 设 $x_n=egin{pmatrix} a_{n+1}=Ax_n, & A=\begin{pmatrix} 1&1\\1&0 \end{pmatrix} \end{pmatrix}$. 通过计算可知 $A=P\Lambda P^{-1},\quad \Lambda=\mathrm{diag}\Big(rac{1+\sqrt{5}}{2},rac{1-\sqrt{5}}{2}\Big),\quad P=egin{pmatrix} rac{1+\sqrt{5}}{2}&rac{1-\sqrt{5}}{2}\\1&1 \end{pmatrix}.$ 因此 $x_n=A^{n-1}x_1=P\Lambda^{n-1}P^{-1}x_1,\ a_n=rac{1}{\sqrt{5}}\Big(\Big(rac{1+\sqrt{5}}{2}\Big)^n-\Big(rac{1-\sqrt{5}}{2}\Big)^n\Big),$

线性递推数列是一种常见的数列,例如著名的斐波那契数列:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔.若一年内没有发生死亡,一对刚出生的兔子一年内能繁殖成多少对兔子?

设第 n 个月的兔子数量为 a_n , 那么

$$a_{n+2} = a_{n+1} + a_n$$
, $a_2 = a_1 = 1$. 设 $x_n = \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$, 则 $x_{n+1} = Ax_n$, $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. 通过计算可知 $A = P\Lambda P^{-1}$, $\Lambda = \mathrm{diag}\Big(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\Big)$, $P = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}$. 因此 $x_n = A^{n-1}x_1 = P\Lambda^{n-1}P^{-1}x_1$, $a_n = \frac{1}{\sqrt{5}}\Big(\Big(\frac{1+\sqrt{5}}{2}\Big)^n - \Big(\frac{1-\sqrt{5}}{2}\Big)^n\Big)$, $a_{12} \approx \frac{1.618^n}{\sqrt{5}} = 143.9 \approx 144$.

$$a_{n+k} - c_{k-1}a_{n+k-1} - \dots - c_1a_{n+1} - c_0a_n = 0,$$

$$a_{n+k} - c_{k-1}a_{n+k-1} - \dots - c_1a_{n+1} - c_0a_n = 0,$$

$$m{x}_n=(a_{n+k-1},\ldots,a_{n+1},a_n)^{\mathrm{T}}$$
满足 $m{x}_{n+1}=m{A}m{x}_n$,其中 $m{A}=egin{pmatrix} c_{k-1}&\cdots&c_1&c_0\ 1&&&&\ &\ddots&&\ &&1 \end{pmatrix}$ 的特

征多项式为

$$(-1)^k (\lambda^k - c_{k-1}\lambda^{k-1} - \dots - c_1\lambda - c_0) = 0.$$

$$a_{n+k} - c_{k-1}a_{n+k-1} - \dots - c_1a_{n+1} - c_0a_n = 0,$$

$$m{x}_n=(a_{n+k-1},\ldots,a_{n+1},a_n)^{\mathrm{T}}$$
满足 $m{x}_{n+1}=m{A}m{x}_n$,其中 $m{A}=egin{pmatrix} c_{k-1}&\cdots&c_1&c_0\ 1&&&&&\ &\ddots&&&\ &&&1 \end{pmatrix}$ 的特

征多项式为

$$(-1)^k (\lambda^k - c_{k-1}\lambda^{k-1} - \dots - c_1\lambda - c_0) = 0.$$

若特征值两两不同, 可知 a_n 的通项为 $\lambda_1^n, \ldots, \lambda_k^n$ 的线性组合;

$$a_{n+k} - c_{k-1}a_{n+k-1} - \dots - c_1a_{n+1} - c_0a_n = 0,$$

$$m{x}_n=(a_{n+k-1},\ldots,a_{n+1},a_n)^{\mathrm{T}}$$
满足 $m{x}_{n+1}=m{A}m{x}_n$,其中 $m{A}=egin{pmatrix} c_{k-1}&\cdots&c_1&c_0\ 1&&&&\ &\ddots&&\ &&1 \end{pmatrix}$ 的特

征多项式为

$$(-1)^k (\lambda^k - c_{k-1}\lambda^{k-1} - \dots - c_1\lambda - c_0) = 0.$$

若特征值两两不同, 可知 a_n 的通项为 $\lambda_1^n,\ldots,\lambda_k^n$ 的线性组合; 若特征值有重数, 由约当块的幂次形式可知

$$a_n = \sum_{\lambda} f_{\lambda}(n) \lambda^n,$$

其中 f_{λ} 是多项式, 且次数不超过 λ 的重数 -1.

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$x = (y^{(k-1)}, \dots, y', y)^{\mathrm{T}}$$
 满足 $x' = Ax$.

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$x = (y^{(k-1)}, \dots, y', y)^{\mathrm{T}}$$
 满足 $x' = Ax$. 于是 " $x = \exp(At)$ ".

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$m{x} = (y^{(k-1)}, \dots, y', y)^{\mathrm{T}}$$
满足 $m{x}' = m{A}m{x}$. 于是 " $m{x} = \exp(m{A}t)$ ".

其实这里的指数函数是通过幂级数展开定义的

$$\exp(\mathbf{A}) = \sum_{i=0}^{\infty} \frac{\mathbf{A}^i}{i!}.$$

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$m{x} = (y^{(k-1)}, \dots, y', y)^{\mathrm{T}}$$
满足 $m{x}' = m{A}m{x}$. 于是 " $m{x} = \exp(m{A}t)$ ".

其实这里的指数函数是通过幂级数展开定义的

$$\exp(\mathbf{A}) = \sum_{i=0}^{\infty} \frac{\mathbf{A}^i}{i!}.$$

若
$$\mathbf{A} = \mathbf{P} \operatorname{diag}(\lambda_1, \dots, \lambda_k) \mathbf{P}^{-1}$$
, 容易看出 $\exp(\mathbf{A}t) = \mathbf{P} \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_k t}) \mathbf{P}^{-1}$,

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$m{x} = (y^{(k-1)}, \dots, y', y)^{\mathrm{T}}$$
满足 $m{x}' = m{A}m{x}$. 于是 " $m{x} = \exp(m{A}t)$ ".

其实这里的指数函数是通过幂级数展开定义的

$$\exp(\mathbf{A}) = \sum_{i=0}^{\infty} \frac{\mathbf{A}^i}{i!}.$$

若 $\mathbf{A} = \mathbf{P} \operatorname{diag}(\lambda_1, \dots, \lambda_k) \mathbf{P}^{-1}$, 容易看出 $\exp(\mathbf{A}t) = \mathbf{P} \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_k t}) \mathbf{P}^{-1}$, 从而 y 是 $e^{\lambda_1 t}, \dots, e^{\lambda_k t}$ 的线性组合.

$$y^{(k)}(t) - c_{k-1}y^{(k-1)}(t) - \dots - c_1y'(t) - c_0y(t) = 0,$$

$$\boldsymbol{x} = (y^{(k-1)}, \dots, y', y)^{\mathrm{T}}$$
满足 $\boldsymbol{x}' = \boldsymbol{A}\boldsymbol{x}$. 于是" $\boldsymbol{x} = \exp(\boldsymbol{A}t)$ ".

其实这里的指数函数是通过幂级数展开定义的

$$\exp(\mathbf{A}) = \sum_{i=0}^{\infty} \frac{\mathbf{A}^i}{i!}.$$

若 $\mathbf{A} = \mathbf{P} \operatorname{diag}(\lambda_1, \dots, \lambda_k) \mathbf{P}^{-1}$,容易看出 $\exp(\mathbf{A}t) = \mathbf{P} \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_k t}) \mathbf{P}^{-1}$,从而 y 是 $e^{\lambda_1 t}, \dots, e^{\lambda_k t}$ 的线性组合. 对于一般情形,通过考虑约当块的指数函数可知

$$y(t) = \sum_{\lambda} f_{\lambda}(t)e^{\lambda t},$$

其中 f_{λ} 是多项式, 且次数不超过 λ 的重数 -1.

第二节 实对称阵的正交合同

- 实二次型
- 实对称阵和实二次型的合同

引例: 二次曲线的分类

我们知道,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

分别表示椭圆和双曲线.

引例: 二次曲线的分类

我们知道,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

分别表示椭圆和双曲线. 对于二次曲线

$$Ax^2 + Bxy + Cy^2 = 1,$$

它又表示什么图形呢?

定义

若 n 元多项式 $f(x_1,\ldots,x_n)$ 满足

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^2 f(x_1, \dots, x_n), \quad \forall \lambda \in \mathbb{R},$$

则称 f 为二次齐次多项式或实二次型. 它可以写成

$$f(x) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \dots + 2a_{n-1,n}a_{n-1,n}.$$

定义

若 n 元多项式 $f(x_1,\ldots,x_n)$ 满足

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^2 f(x_1, \dots, x_n), \quad \forall \lambda \in \mathbb{R},$$

则称 f 为二次齐次多项式或实二次型. 它可以写成

$$f(x) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \dots + 2a_{n-1,n}a_{n-1,n}.$$

本课程仅讨论实二次型.

定义

若 n 元多项式 $f(x_1,\ldots,x_n)$ 满足

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^2 f(x_1, \dots, x_n), \quad \forall \lambda \in \mathbb{R},$$

则称 f 为二次齐次多项式或实二次型. 它可以写成

$$f(x) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \dots + 2a_{n-1,n}a_{n-1,n}.$$

本课程仅讨论实二次型. 根据定义, f 不能包含一次项和常数项.

定义

若 n 元多项式 $f(x_1,\ldots,x_n)$ 满足

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^2 f(x_1, \dots, x_n), \quad \forall \lambda \in \mathbb{R},$$

则称 f 为二次齐次多项式或实二次型. 它可以写成

$$f(x) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \dots + 2a_{n-1,n}a_{n-1,n}.$$

本课程仅讨论实二次型. 根据定义, f 不能包含一次项和常数项. 若 f 的交叉项 $x_ix_j(i < j)$ 系数均为零, 则称 f 为实二次型的标准形.

设实二次型 f 的 x_i^2 项的系数为 a_{ii} , $x_i x_j (i < j)$ 项的系数为 $2a_{ij}$.

设实二次型 f 的 x_i^2 项的系数为 a_{ii} , $x_ix_j(i < j)$ 项的系数为 $2a_{ij}$. 设 $a_{ji} = a_{ij}$, 对称阵 $\mathbf{A} = (a_{ij})_n$, 则

$$(x_1, \dots, x_n) \mathbf{A} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (\sum_{i=1}^n a_{i1} x_i, \dots, \sum_{i=1}^n a_{in} x_i) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \sum_{j=1}^n (\sum_{i=1}^n a_{ij} x_i) x_j = \sum_{i,j=1}^n a_{ij} x_i x_j = f(x_1, \dots, x_n),$$

设实二次型 f 的 x_i^2 项的系数为 a_{ii} , $x_ix_j(i < j)$ 项的系数为 $2a_{ij}$. 设 $a_{ji} = a_{ij}$, 对称阵 ${\bf A} = (a_{ij})_n$, 则

$$(x_1, \dots, x_n) \mathbf{A} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (\sum_{i=1}^n a_{i1} x_i, \dots, \sum_{i=1}^n a_{in} x_i) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \sum_{j=1}^n (\sum_{i=1}^n a_{ij} x_i) x_j = \sum_{i,j=1}^n a_{ij} x_i x_j = f(x_1, \dots, x_n),$$

即 $f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$, 其中 $\mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}$, \mathbf{A} 为实对称阵.

设实二次型 f 的 x_i^2 项的系数为 a_{ii} , $x_ix_j(i < j)$ 项的系数为 $2a_{ij}$. 设 $a_{ji} = a_{ij}$, 对称阵 $\mathbf{A} = (a_{ij})_n$, 则

$$(x_1, \dots, x_n) \mathbf{A} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (\sum_{i=1}^n a_{i1} x_i, \dots, \sum_{i=1}^n a_{in} x_i) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \sum_{j=1}^n (\sum_{i=1}^n a_{ij} x_i) x_j = \sum_{i,j=1}^n a_{ij} x_i x_j = f(x_1, \dots, x_n),$$

即 $f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$, 其中 $\mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}$, \mathbf{A} 为实对称阵.

反过来,任给一个实对称阵 A,多项式 $f(x) = x^{T}Ax$ 显然满足

$$f(\lambda x) = (\lambda x)^{\mathrm{T}} A(\lambda x) = \lambda^2 f(x),$$

故 f 是实二次型.

设实二次型 f 的 x_i^2 项的系数为 a_{ii} , $x_ix_j(i < j)$ 项的系数为 $2a_{ij}$. 设 $a_{ji} = a_{ij}$, 对称阵 $\mathbf{A} = (a_{ij})_n$, 则

$$(x_1, \dots, x_n) \mathbf{A} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (\sum_{i=1}^n a_{i1} x_i, \dots, \sum_{i=1}^n a_{in} x_i) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \sum_{j=1}^n (\sum_{i=1}^n a_{ij} x_i) x_j = \sum_{i,j=1}^n a_{ij} x_i x_j = f(x_1, \dots, x_n),$$

即 $f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$, 其中 $\mathbf{x} = (x_1, \dots, x_n)^{\mathrm{T}}$, \mathbf{A} 为实对称阵.

反过来,任给一个实对称阵 A,多项式 $f(x) = x^{T}Ax$ 显然满足

$$f(\lambda x) = (\lambda x)^{\mathrm{T}} A(\lambda x) = \lambda^2 f(x),$$

故 f 是实二次型. 因此实二次型 f 与对称阵 A 之间存在——对应的关系.

例: 实二次型的矩阵形式

写出实二次型 $f(x_1,x_2,x_3)=x_1^2+4x_1x_2+4x_2^2+2x_1x_3+x_3^2+4x_2x_3$ 对应的矩阵.

例: 实二次型的矩阵形式

写出实二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 + 4x_2^2 + 2x_1x_3 + x_3^2 + 4x_2x_3$ 对应的矩阵.

解

$$oldsymbol{A} = egin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

线性代数 ▶ 第三章 相似和合同 ▶ 2 实对称阵的正交合同 ▶ A 实二次型

例: 实二次型的矩阵形式

例

写出实二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 + 4x_2^2 + 2x_1x_3 + x_3^2 + 4x_2x_3$ 对应的矩阵.

解

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

若 f 是标准形,则 f 对应矩阵 A 是对角阵.

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

(1) $A = (\alpha_1, \ldots, \alpha_n)$ 是正交阵 $\iff \alpha_1, \ldots, \alpha_n$ 是标准正交向量组.

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

- (1) $A = (\alpha_1, \dots, \alpha_n)$ 是正交阵 $\iff \alpha_1, \dots, \alpha_n$ 是标准正交向量组.
- (2) A 是正交阵 $\iff A^{\mathrm{T}} = A^{-1}$.

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

- (1) $A = (\alpha_1, \dots, \alpha_n)$ 是正交阵 $\iff \alpha_1, \dots, \alpha_n$ 是标准正交向量组.
- (2) A 是正交阵 $\iff A^{\mathrm{T}} = A^{-1}$.
- (3) A 是正交阵 \Longrightarrow $|A| = \pm 1$ 且 A^{T}, A^{-1}, A^{*} 都是正交阵.

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

- (1) $A = (\alpha_1, \dots, \alpha_n)$ 是正交阵 $\iff \alpha_1, \dots, \alpha_n$ 是标准正交向量组.
- (2) A 是正交阵 $\iff A^{\mathrm{T}} = A^{-1}$.
- (3) A 是正交阵 $\Longrightarrow |A| = \pm 1$ 且 $A^{\mathrm{T}}, A^{-1}, A^*$ 都是正交阵.

定义

若 P 为正交阵, 称线性变换 y = Px 为正交变换.

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

- (1) $A = (\alpha_1, \dots, \alpha_n)$ 是正交阵 $\iff \alpha_1, \dots, \alpha_n$ 是标准正交向量组.
- (2) A 是正交阵 $\iff A^{\mathrm{T}} = A^{-1}$.
- (3) A 是正交阵 $\Longrightarrow |A| = \pm 1$ 且 $A^{\mathrm{T}}, A^{-1}, A^*$ 都是正交阵.

定义

若 P 为正交阵, 称线性变换 y = Px 为正交变换.

例如, \mathbb{R}^2 上的正交变换就是绕原点的旋转、反射, 以及它们的复合.

正交阵

定义

若实方阵 A 满足 $A^{T}A = E$, 则称 A 为正交阵.

正交阵满足如下性质:

- (1) $A = (\alpha_1, \dots, \alpha_n)$ 是正交阵 $\iff \alpha_1, \dots, \alpha_n$ 是标准正交向量组.
- (2) A 是正交阵 $\iff A^{\mathrm{T}} = A^{-1}$.
- (3) A 是正交阵 $\Longrightarrow |A| = \pm 1$ 且 $A^{\mathrm{T}}, A^{-1}, A^*$ 都是正交阵.

定义

若P为正交阵, 称线性变换y = Px为正交变换.

例如, \mathbb{R}^2 上的正交变换就是绕原点的旋转、反射, 以及它们的复合. 由于

$$[\boldsymbol{P}\boldsymbol{x}, \boldsymbol{P}\boldsymbol{y}] = \boldsymbol{x}^{\mathrm{T}}\boldsymbol{P}^{\mathrm{T}}\boldsymbol{P}\boldsymbol{y} = \boldsymbol{x}^{\mathrm{T}}\boldsymbol{y} = [\boldsymbol{x}, \boldsymbol{y}],$$

因此正交变换保持向量的长度和夹角.

(1) 若存在可逆线性变换 x = Py 使得实二次型 f 在变量 x, y 下的矩阵分别为 A, B, 则称矩阵 A 合同或相合于 B.

- (1) 若存在可逆线性变换 x = Py 使得实二次型 f 在变量 x, y 下的矩阵分别为 A, B, 则称矩阵 A 合同或相合于 B.
- (2) 若 P 是正交阵, 则称矩阵 A 正交合同或正交相合于 B.

- (1) 若存在可逆线性变换 x = Py 使得实二次型 f 在变量 x, y 下的矩阵分别为 A, B, 则称矩阵 A 合同或相合于 B.
- (2) 若 P 是正交阵, 则称矩阵 A 正交合同或正交相合于 B.

若 A 是对称阵, P 可逆, 则 $P^{T}AP$ 也是对称阵.

- (1) 若存在可逆线性变换 x = Py 使得实二次型 f 在变量 x, y 下的矩阵分别为 A, B, 则称矩阵 A 合同或相合于 B.
- (2) 若 P 是正交阵, 则称矩阵 A 正交合同或正交相合于 B.

若 A 是对称阵, P 可逆, 则 $P^{T}AP$ 也是对称阵, 由

$$f = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}^{\mathrm{T}} \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{P} \boldsymbol{y} = \boldsymbol{y}^{\mathrm{T}} (\boldsymbol{P}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{P}) \boldsymbol{y}$$

可知 A (正交) 合同于 B 当且仅当存在可逆 (正交) 方阵 P 使得 $B = P^{T}AP$.

对称方阵的 (正交) 合同满足

命题

对称方阵的 (正交) 合同满足

(1) 自反性: A 与自身正交合同;

命题

对称方阵的 (正交) 合同满足

(1) 自反性: A 与自身正交合同;

(2) 对称性: 若 A (正交) 合同于 B, 则 B (正交) 合同于 A;

命题

对称方阵的 (正交) 合同满足

(1) 自反性: A 与自身正交合同;

(2) 对称性: 若 A (正交) 合同于 B, 则 B (正交) 合同于 A;

(3) 传递性: 若 A (正交) 合同于 B, B (正交) 合同于 C, 则 A (正交) 合同于 C.

命题

对称方阵的 (正交) 合同满足

(1) 自反性: A 与自身正交合同;

(2) 对称性: 若 A (正交) 合同于 B, 则 B (正交) 合同于 A;

(3) 传递性: 若 A (正交) 合同于 B, B (正交) 合同于 C, 则 A (正交) 合同于 C.

合同、等价、相似有如下关系:

命题

对称方阵的 (正交) 合同满足

- (1) 自反性: A 与自身正交合同;
- (2) 对称性: 若 A (正交) 合同于 B, 则 B (正交) 合同于 A;
- (3) 传递性: 若 A (正交) 合同于 B, B (正交) 合同于 C, 则 A (正交) 合同于 C.

合同、等价、相似有如下关系:

(1) 若 A, B 合同,则 A, B 等价, R(A) = R(B). 反之未必.

命题

对称方阵的 (正交) 合同满足

- (1) 自反性: A 与自身正交合同;
- (2) 对称性: 若 A (正交) 合同于 B, 则 B (正交) 合同于 A;
- (3) 传递性: 若 A (正交) 合同于 B, B (正交) 合同于 C, 则 A (正交) 合同于 C.

合同、等价、相似有如下关系:

- (1) 若 A, B 合同,则 A, B 等价, R(A) = R(B). 反之未必.
- (2) 若 A,B 正交合同,则 A,B 相似.反之,若实对称阵 A,B 相似,则二者正交合同.

定理

对于实对称阵 A, 存在正交阵 P 使得 $P^{T}AP$ 是对角阵. 从而 A 对应的实二次型在线性变换 y=Px 下变为标准形.

定理

对于实对称阵 A, 存在正交阵 P 使得 $P^{T}AP$ 是对角阵. 从而 A 对应的实二次型在线性变换 y=Px 下变为标准形.

命题

实对称阵的特征值一定是实数,从而其特征向量均可取实向量.

定理

对于实对称阵 A, 存在正交阵 P 使得 $P^{T}AP$ 是对角阵. 从而 A 对应的实二次型在线性变换 y=Px 下变为标准形.

命题

实对称阵的特征值一定是实数,从而其特征向量均可取实向量.

证明

设 A 是实对称阵, 非零向量 x 满足 $Ax = \lambda x$.

定理

对于实对称阵 A, 存在正交阵 P 使得 $P^{T}AP$ 是对角阵. 从而 A 对应的实二次型在线性变换 y = Px 下变为标准形.

命题

实对称阵的特征值一定是实数, 从而其特征向量均可取实向量.

证明

设 A 是实对称阵, 非零向量 x 满足 $Ax = \lambda x$. 两边取转置和共轭并右乘 x 得到

$$ar{\lambda} \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{x} = \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{A}^{\mathrm{T}} oldsymbol{x} = \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{A} oldsymbol{x} = \lambda \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{x}.$$

定理

对于实对称阵 A, 存在正交阵 P 使得 $P^{T}AP$ 是对角阵. 从而 A 对应的实二次型在线性变换 y = Px 下变为标准形.

命题

实对称阵的特征值一定是实数, 从而其特征向量均可取实向量.

证明

设 A 是实对称阵, 非零向量 x 满足 $Ax = \lambda x$. 两边取转置和共轭并右乘 x 得到

$$ar{\lambda} \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{x} = \overline{oldsymbol{x}}^{\mathrm{T}} \overline{oldsymbol{A}}^{\mathrm{T}} oldsymbol{x} = \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{A} oldsymbol{x} = \lambda \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{x}.$$

显然 $\overline{x}^T x = |x_1|^2 + \cdots + |x_n|^2 > 0$, 因此 λ 是实数.

定理

对于实对称阵 A, 存在正交阵 P 使得 $P^{T}AP$ 是对角阵. 从而 A 对应的实二次型在线性变换 y=Px 下变为标准形.

命题

实对称阵的特征值一定是实数,从而其特征向量均可取实向量.

证明

设 A 是实对称阵, 非零向量 x 满足 $Ax = \lambda x$. 两边取转置和共轭并右乘 x 得到

$$ar{\lambda} \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{x} = \overline{oldsymbol{x}}^{\mathrm{T}} \overline{oldsymbol{A}}^{\mathrm{T}} oldsymbol{x} = \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{A} oldsymbol{x} = \lambda \overline{oldsymbol{x}}^{\mathrm{T}} oldsymbol{x}.$$

显然 $\overline{x}^T x = |x_1|^2 + \cdots + |x_n|^2 > 0$, 因此 λ 是实数. 由于特征向量是方程 $(A - \lambda E)x = 0$ 的解, 系数矩阵是实方阵, 因此特征向量可取实向量.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体. 即方程 $(e_1, \ldots, e_k)^T x = 0$ 的解空间.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体, 即方程 $(e_1, \ldots, e_k)^T x = \mathbf{0}$ 的解空间. 由于系数秩为 k, 存在基础解系 $v_1, \ldots, v_{n-k} \in V$.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体, 即方程 $(e_1, \ldots, e_k)^T x = \mathbf{0}$ 的解空间. 由于系数秩为 k, 存在基础解系 $v_1, \ldots, v_{n-k} \in V$. 对任意 i, j,

$$[\boldsymbol{e}_i, \boldsymbol{A} \boldsymbol{v}_j] = \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_j = (\boldsymbol{A} \boldsymbol{e}_i)^{\mathrm{T}} \boldsymbol{v}_j = \lambda_i \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{v}_j = 0 \implies \boldsymbol{A} \boldsymbol{v}_j \in V.$$

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体, 即方程 $(e_1, \ldots, e_k)^T x = \mathbf{0}$ 的解空间. 由于系数秩为 k, 存在基础解系 $v_1, \ldots, v_{n-k} \in V$. 对任意 i, j,

$$[\boldsymbol{e}_i, \boldsymbol{A} \boldsymbol{v}_j] = \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_j = (\boldsymbol{A} \boldsymbol{e}_i)^{\mathrm{T}} \boldsymbol{v}_j = \lambda_i \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{v}_j = 0 \implies \boldsymbol{A} \boldsymbol{v}_j \in V.$$

设 (n-k) 阶矩阵 $m{B}$ 的第 j 列是 $m{A}m{v}_i$ 表示为 $m{v}_1,\dots,m{v}_{n-k}$ 线性组合的系数, 即

$$\boldsymbol{A}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})\boldsymbol{B}.$$

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体, 即方程 $(e_1, \ldots, e_k)^T x = \mathbf{0}$ 的解空间. 由于系数秩为 k, 存在基础解系 $v_1, \ldots, v_{n-k} \in V$. 对任意 i, j,

$$[\boldsymbol{e}_i, \boldsymbol{A}\boldsymbol{v}_j] = \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_j = (\boldsymbol{A}\boldsymbol{e}_i)^{\mathrm{T}} \boldsymbol{v}_j = \lambda_i \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{v}_j = 0 \implies \boldsymbol{A}\boldsymbol{v}_j \in V.$$

设 (n-k) 阶矩阵 $m{B}$ 的第 j 列是 $m{A}m{v}_i$ 表示为 $m{v}_1,\dots,m{v}_{n-k}$ 线性组合的系数, 即

$$\boldsymbol{A}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})\boldsymbol{B}.$$

设非零向量 x 满足 $Bx = \lambda x$, 则

$$A(v_1,\ldots,v_{n-k})x = \lambda(v_1,\ldots,v_{n-k})x,$$

即非零向量 $(v_1,\ldots,v_{n-k})x$ 是 A 关于 λ 的特征向量, 于是 $\lambda \in \mathbb{R}$ 且可选择 x 使得它是实向量, 它和 e_1,\ldots,e_k 均正交.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体, 即方程 $(e_1, \ldots, e_k)^T x = \mathbf{0}$ 的解空间. 由于系数秩为 k, 存在基础解系 $v_1, \ldots, v_{n-k} \in V$. 对任意 i, j,

$$[\boldsymbol{e}_i, \boldsymbol{A}\boldsymbol{v}_j] = \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_j = (\boldsymbol{A}\boldsymbol{e}_i)^{\mathrm{T}} \boldsymbol{v}_j = \lambda_i \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{v}_j = 0 \implies \boldsymbol{A}\boldsymbol{v}_j \in V.$$

设 (n-k) 阶矩阵 $m{B}$ 的第 j 列是 $m{A}m{v}_i$ 表示为 $m{v}_1,\dots,m{v}_{n-k}$ 线性组合的系数, 即

$$\boldsymbol{A}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})\boldsymbol{B}.$$

设非零向量 x 满足 $Bx = \lambda x$, 则

$$oldsymbol{A}(oldsymbol{v}_1,\ldots,oldsymbol{v}_{n-k})oldsymbol{x} = \lambda(oldsymbol{v}_1,\ldots,oldsymbol{v}_{n-k})oldsymbol{x},$$

即非零向量 $(v_1,\ldots,v_{n-k})x$ 是 A 关于 λ 的特征向量, 于是 $\lambda \in \mathbb{R}$ 且可选择 x 使得它是实向量, 它和 e_1,\ldots,e_k 均正交. 令 e_{k+1} 为该向量的标准化.

定理的证明

归纳证明 A 存在 n 个两两正交的单位特征向量. 假设我们已找到 k < n 个两两正交的单位特征向量 e_1, \ldots, e_k , 分别对应特征值 $\lambda_1, \ldots, \lambda_k$. 设 V 是与这些向量均正交的实向量全体, 即方程 $(e_1, \ldots, e_k)^T x = \mathbf{0}$ 的解空间. 由于系数秩为 k, 存在基础解系 $v_1, \ldots, v_{n-k} \in V$. 对任意 i, j,

$$[\boldsymbol{e}_i, \boldsymbol{A}\boldsymbol{v}_j] = \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_j = (\boldsymbol{A}\boldsymbol{e}_i)^{\mathrm{T}} \boldsymbol{v}_j = \lambda_i \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{v}_j = 0 \implies \boldsymbol{A}\boldsymbol{v}_j \in V.$$

设 (n-k) 阶矩阵 $m{B}$ 的第 j 列是 $m{A}m{v}_i$ 表示为 $m{v}_1,\dots,m{v}_{n-k}$ 线性组合的系数, 即

$$\boldsymbol{A}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})\boldsymbol{B}.$$

设非零向量 x 满足 $Bx = \lambda x$, 则

$$\boldsymbol{A}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})\boldsymbol{x} = \lambda(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-k})\boldsymbol{x},$$

即非零向量 $(v_1,\ldots,v_{n-k})x$ 是 A 关于 λ 的特征向量, 于是 $\lambda\in\mathbb{R}$ 且可选择 x 使得它是实向量, 它和 e_1,\ldots,e_k 均正交. 令 e_{k+1} 为该向量的标准化. 归纳可知 A 存在 n 个两两正交的特征向量, 它们构成的正交阵 $P=(e_1,\ldots,e_n)$ 满足题述要求.

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合,

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合, 因此:

推论

实对称阵的不同特征值对应的实特征向量正交.

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合, 因此:

推论

实对称阵的不同特征值对应的实特征向量正交.

练习

设 $\alpha_1 = (1, -3, 1)^{\mathrm{T}}, \alpha_2 = (1, a, 2)^{\mathrm{T}}$ 是实实对称阵 A 对应特征值 $\lambda_1 = 1$ 和 $\lambda_2 = 2$ 的特征向量, 则 a =

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合, 因此:

推论

实对称阵的不同特征值对应的实特征向量正交.

练习

设 $\alpha_1 = (1, -3, 1)^{\mathrm{T}}, \alpha_2 = (1, a, 2)^{\mathrm{T}}$ 是实实对称阵 A 对应特征值 $\lambda_1 = 1$ 和 $\lambda_2 = 2$ 的特征向量, 则 a = 1 .

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合, 因此:

推论

实对称阵的不同特征值对应的实特征向量正交.

练习

设 $\alpha_1 = (1, -3, 1)^{\mathrm{T}}, \alpha_2 = (1, a, 2)^{\mathrm{T}}$ 是实实对称阵 A 对应特征值 $\lambda_1 = 1$ 和 $\lambda_2 = 2$ 的特征向量, 则 a = 1.

练习

 \overrightarrow{A} 3 阶实实对称阵 A 满足 $A^2 = A, R(A) = 1$, 则 A 的特征值为_______

由于特征值 λ 对应的实特征向量就是 P 中 λ 对应的那些列向量的线性组合, 因此:

推论

实对称阵的不同特征值对应的实特征向量正交.

练习

设 $\alpha_1 = (1, -3, 1)^{\mathrm{T}}, \alpha_2 = (1, a, 2)^{\mathrm{T}}$ 是实实对称阵 A 对应特征值 $\lambda_1 = 1$ 和 $\lambda_2 = 2$ 的特征向量, 则 a = 1.

练习

 \overrightarrow{A} 3 阶实实对称阵 A 满足 $A^2 = A$, R(A) = 1, 则 A 的特征值为 0,0,1

例: 对阵矩阵的性质

设3阶实对称阵A的特征值为6,3,3,与特征值6对应的特征向量为 $\alpha_1=(1,1,1)^{\mathrm{T}}$,求A.

例

设 3 阶实对称阵 A 的特征值为 6,3,3, 与特征值 6 对应的特征向量为 $\alpha_1=(1,1,1)^{\mathrm{T}}$, 求 A.

解

由于有两个与特征值 3 对应的线性无关特征向量, 因此与 α_1 正交的向量都是与特征值 3 对应的特征向量.

例

设3 阶实对称阵A 的特征值为6,3,3,与特征值6 对应的特征向量为 $\alpha_1 = (1,1,1)^T$,求A.

解

由于有两个与特征值 3 对应的线性无关特征向量, 因此与 α_1 正交的向量都是与特征值 3 对应的特征向量. 由 $\alpha_1^{\rm T}x=0$ 得 $\alpha_2=(-1,1,0)^{\rm T},\alpha_3=(-1,0,1)^{\rm T}$.

例

设3 阶实对称阵A 的特征值为6,3,3,与特征值6 对应的特征向量为 $\alpha_1 = (1,1,1)^T$,求A.

解

由于有两个与特征值 3 对应的线性无关特征向量, 因此与 α_1 正交的向量都是与特征值 3 对应的特征向量. 由 $\alpha_1^{\rm T}x=0$ 得 $\alpha_2=(-1,1,0)^{\rm T},\alpha_3=(-1,0,1)^{\rm T}$. 故

$$\mathbf{A} = \mathbf{P} \operatorname{diag}(6, 3, 3) \mathbf{P}^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & & \\ & 3 & \\ & & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}.$$

设 3 阶实对称阵 **A** 的特征值为 6,3,3, 与特征值 6 对应的特征向量为 $\alpha_1 = (1,1,1)^T$, 求 **A**.

由于有两个与特征值 3 对应的线性无关特征向量, 因此与 α, 正交的向量都是与特征值 3 对 应的特征向量, 由 $\boldsymbol{\alpha}_1^{\mathrm{T}} \boldsymbol{x} = 0$ 得 $\boldsymbol{a}_2 = (-1, 1, 0)^{\mathrm{T}}, \boldsymbol{a}_3 = (-1, 0, 1)^{\mathrm{T}}$, 故

$$\mathbf{A} = \mathbf{P} \operatorname{diag}(6, 3, 3) \mathbf{P}^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & & \\ & 3 & \\ & & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}.$$

另解 注意到
$$A-3E$$
 行和为 3, 迹为 3, 可设 $A-3E=\begin{pmatrix} c & a & b \\ a & b & c \\ b & c & a \end{pmatrix}$, $a+b+c=3$. 再由 $R(A-3E)=1$ 可知 $a=b=c=1$.

对称阵正交实二次型的对角化,或求正交变换 x=Py 将实二次型 f 化为标准形的步骤:

(1) 写出 f 对应的对称阵 A.

- (1) 写出 f 对应的对称阵 A.
- (2) 求出 A 的特征值.

- (1) 写出 f 对应的对称阵 A.
- (2) 求出 A 的特征值.
- (3) 若特征值是 $k \ge 1$ 重的, 求出 k 个特征向量后, 用格拉姆-施密特方法将其正交单位化.

- (1) 写出 f 对应的对称阵 A.
- (2) 求出 A 的特征值.
- (3) 若特征值是 $k \ge 1$ 重的, 求出 k 个特征向量后, 用格拉姆-施密特方法将其正交单位化.
- (4) 这些特征向量构成正交阵 P, $P^{\mathrm{T}}AP$ 为这些特征向量对应的特征值构成的对角阵.

- (1) 写出 f 对应的对称阵 A.
- (2) 求出 A 的特征值.
- (3) 若特征值是 $k \ge 1$ 重的, 求出 k 个特征向量后, 用格拉姆-施密特方法将其正交单位化.
- (4) 这些特征向量构成正交阵 P, $P^{\mathrm{T}}AP$ 为这些特征向量对应的特征值构成的对角阵
- (5) 写出正交变换 x = Py 以及对应的实二次型

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

例

设
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
相似, 求 x, y 以及正交阵 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.

例

设
$$m{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}, m{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
相似, 求 x, y 以及正交阵 $m{P}$ 使得 $m{P}^{-1} m{A} m{P} = m{B}$.

解

由 A, B 相似得 |A| = -2 = |B| = -2y, Tr(A) = 2 + x = Tr(B) = 1 + y,

例

设
$$\boldsymbol{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}, \boldsymbol{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
相似, 求 x, y 以及正交阵 \boldsymbol{P} 使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{B}$.

解

由 A, B 相似得 |A| = -2 = |B| = -2y, Tr(A) = 2 + x = Tr(B) = 1 + y, 故 x = 0, y = 1.

例

设
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
相似, 求 x, y 以及正交阵 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.

解

由 A, B 相似得 |A| = -2 = |B| = -2y, Tr(A) = 2 + x = Tr(B) = 1 + y, 故 x = 0, y = 1.

• 对于
$$\lambda_1 = 2$$
, $A - 2E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

• 对于
$$\lambda_2 = 1$$
, $A - E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

• 对于
$$\lambda_2 = 1$$
, $\mathbf{A} - \mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

• 对于
$$\lambda_3 = -1$$
, $\mathbf{A} - \mathbf{E} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

• 对于
$$\lambda_2 = 1$$
, $\mathbf{A} - \mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

• 对于
$$\lambda_3 = -1$$
, $A - E = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \alpha_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

• 将特征向量单位化得到
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
.

例

求正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 为标准形.

例

求正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 为标准形.

例

求正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 为标准形.

•
$$f$$
 对应 $\mathbf{A} = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$.

例

求正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 为标准形.

•
$$f$$
 对应 $\mathbf{A} = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$. 由 $|\mathbf{A} - \lambda \mathbf{E}| = -(\lambda - 2)^2(\lambda - 8)$ 得到特征值 $8, 2, 2$.

例

求正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 为标准形.

•
$$f$$
 对应 $\mathbf{A} = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$. 由 $|\mathbf{A} - \lambda \mathbf{E}| = -(\lambda - 2)^2(\lambda - 8)$ 得到特征值 $8, 2, 2$.

• 对于
$$\lambda_1 = 8$$
, $A - 8E = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

例

求正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 化 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 为标准形.

- f 对应 $\mathbf{A} = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$. 由 $|\mathbf{A} \lambda \mathbf{E}| = -(\lambda 2)^2(\lambda 8)$ 得到特征值 8, 2, 2.
- 对于 $\lambda_1 = 8$, $A 8E = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. 将

其单位化得到
$$e_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

• 对于
$$\lambda_2, \lambda_3 = 2$$
, $A - 2E = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow \boldsymbol{\alpha}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$

• 对于
$$\lambda_2, \lambda_3 = 2$$
, $\boldsymbol{A} - 2\boldsymbol{E} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \overset{r}{\sim} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow \boldsymbol{\alpha}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$

将其正交单位化得到
$$oldsymbol{eta}_2=egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}, oldsymbol{e}_2=rac{1}{\sqrt{2}} egin{pmatrix} -1 \ 1 \ 0 \end{pmatrix},$$

$$m{eta}_3 = m{lpha}_3 - rac{[m{lpha}_3, m{eta}_2]}{[m{eta}_2, m{eta}_2]} m{eta}_2 = m{lpha}_3 - rac{1}{2}m{eta}_2 = egin{pmatrix} -1/2 \ -1/2 \ 1 \end{pmatrix}, \quad m{e}_3 = rac{1}{\sqrt{6}} egin{pmatrix} -1 \ -1 \ 2 \end{pmatrix}.$$

• 对于
$$\lambda_2, \lambda_3 = 2$$
, $A - 2E = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \stackrel{r}{\sim} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow \boldsymbol{\alpha}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$

将其正交单位化得到
$$oldsymbol{eta}_2=egin{pmatrix} -1\\1\\0 \end{pmatrix}, oldsymbol{e}_2=rac{1}{\sqrt{2}}egin{pmatrix} -1\\1\\0 \end{pmatrix}$$
,

$$m{eta}_3 = m{lpha}_3 - rac{[m{lpha}_3, m{eta}_2]}{[m{eta}_2, m{eta}_2]} m{eta}_2 = m{lpha}_3 - rac{1}{2}m{eta}_2 = egin{pmatrix} -1/2 \ -1/2 \ 1 \end{pmatrix}, \quad m{e}_3 = rac{1}{\sqrt{6}} egin{pmatrix} -1 \ -1 \ 2 \end{pmatrix}.$$

• 因此经过正交变换
$$\boldsymbol{x} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \boldsymbol{y}, f$$
 化为标准形 $f = 8y_1^2 + 2y_2^2 + 2y_3^2$.

例

设实二次型 $f = ax_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 经过正交变换 $\boldsymbol{x} = \boldsymbol{P}\boldsymbol{y}$ 化为 $f = 5y_1^2 - y_2^2 - y_3^2$. 求常数 a 和正交阵 \boldsymbol{P} .

例

设实二次型 $f = ax_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 经过正交变换 $\boldsymbol{x} = \boldsymbol{P}\boldsymbol{y}$ 化为 $f = 5y_1^2 - y_2^2 - y_3^2$. 求常数 a 和正交阵 \boldsymbol{P} .

$$f$$
 对这 $\mathbf{A} = \begin{pmatrix} a & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, $\operatorname{Tr}(\mathbf{A}) = a + 2 = 5 - 1 - 1$, $a = 1$.

例

设实二次型 $f = ax_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 经过正交变换 $\boldsymbol{x} = \boldsymbol{P}\boldsymbol{y}$ 化为 $f = 5y_1^2 - y_2^2 - y_3^2$. 求常数 a 和正交阵 \boldsymbol{P} .

|
$$f$$
 对应 $\mathbf{A} = \begin{pmatrix} a & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, $\operatorname{Tr}(\mathbf{A}) = a + 2 = 5 - 1 - 1$, $a = 1$.
| 同上例可得 $\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}$.

练习

设实二次型 $f = x_1^2 + 2x_2^2 + ax_3^2 - 4x_1x_2 - 4x_2x_3$ 经过正交变换 $\boldsymbol{x} = \boldsymbol{P}\boldsymbol{y}$ 化为 $f = 2y_1^2 + 5y_2^2 + by_3^2$. 求常数 a,b 和正交阵 \boldsymbol{P} .

练习

设实二次型 $f=x_1^2+2x_2^2+ax_3^2-4x_1x_2-4x_2x_3$ 经过正交变换 $\boldsymbol{x}=\boldsymbol{P}\boldsymbol{y}$ 化为 $f=2y_1^2+5y_2^2+by_3^2$. 求常数 a,b 和正交阵 \boldsymbol{P} .

答案

$$a = 3, b = -1, \mathbf{P} = \frac{1}{3} \begin{pmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

练习

设实二次型 $f=x_1^2+2x_2^2+ax_3^2-4x_1x_2-4x_2x_3$ 经过正交变换 $\boldsymbol{x}=\boldsymbol{P}\boldsymbol{y}$ 化为 $f=2y_1^2+5y_2^2+by_3^2$. 求常数 a,b 和正交阵 \boldsymbol{P} .

答案

$$a = 3, b = -1, \mathbf{P} = \frac{1}{3} \begin{pmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

例

设实二次型 $f = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 经正交变换化成标准形 $f(y_1, y_2, y_3) = 6y_1^2$, 则 a =

练习

设实二次型 $f=x_1^2+2x_2^2+ax_3^2-4x_1x_2-4x_2x_3$ 经过正交变换 $\boldsymbol{x}=\boldsymbol{P}\boldsymbol{y}$ 化为 $f=2y_1^2+5y_2^2+by_3^2$. 求常数 a,b 和正交阵 \boldsymbol{P} .

答案

$$a = 3, b = -1, \mathbf{P} = \frac{1}{3} \begin{pmatrix} -2 & 1 & 2 \\ 1 & -2 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

例

设实二次型 $f = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_2x_3 + 4x_3x_1$ 经正交变换化成标准形 $f(y_1, y_2, y_3) = 6y_1^2$, 则 a = 2.

第三节 实对称阵的合同

- 惯性指数
- 实二次型规范形
- 正定二次型

设 A,B,C 是不全为零的实数. 二次曲线 $Ax^2+Bxy+Cy^2=1$ 左侧的实二次型对应方阵 $\mathbf{A}=\begin{pmatrix}A&B/2\\B/2&C\end{pmatrix}$.

设 A,B,C 是不全为零的实数. 二次曲线 $Ax^2+Bxy+Cy^2=1$ 左侧的实二次型对应方阵 $\mathbf{A}=\begin{pmatrix}A&B/2\\B/2&C\end{pmatrix}$. 由

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} A - \lambda & B/2 \\ B/2 & C - \lambda \end{vmatrix} = \lambda^2 - (A + C)\lambda + (AC - B^2/4)$$

可知,

设 A,B,C 是不全为零的实数. 二次曲线 $Ax^2+Bxy+Cy^2=1$ 左侧的实二次型对应方阵 $\mathbf{A}=\begin{pmatrix}A&B/2\\B/2&C\end{pmatrix}$. 由

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} A - \lambda & B/2 \\ B/2 & C - \lambda \end{vmatrix} = \lambda^2 - (A + C)\lambda + (AC - B^2/4)$$

可知,

(1) 当 $B^2 - 4AC > 0$ 时, A 特征值一正一负,

设 A,B,C 是不全为零的实数. 二次曲线 $Ax^2+Bxy+Cy^2=1$ 左侧的实二次型 对应方阵 $\mathbf{A}=\begin{pmatrix}A&B/2\\B/2&C\end{pmatrix}$. 由

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} A - \lambda & B/2 \\ B/2 & C - \lambda \end{vmatrix} = \lambda^2 - (A + C)\lambda + (AC - B^2/4)$$

可知,

(1) 当 $B^2-4AC>0$ 时, \boldsymbol{A} 特征值一正一负,从而通过正交变换 $\begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{P} \begin{pmatrix} s \\ t \end{pmatrix}$ 可知该曲线为双曲线.

设 A,B,C 是不全为零的实数. 二次曲线 $Ax^2+Bxy+Cy^2=1$ 左侧的实二次型对应方阵 $\mathbf{A}=\begin{pmatrix}A&B/2\\B/2&C\end{pmatrix}$. 由

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} A - \lambda & B/2 \\ B/2 & C - \lambda \end{vmatrix} = \lambda^2 - (A + C)\lambda + (AC - B^2/4)$$

可知,

- (1) 当 $B^2-4AC>0$ 时, \boldsymbol{A} 特征值一正一负,从而通过正交变换 $\begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{P} \begin{pmatrix} s \\ t \end{pmatrix}$ 可知该曲线为双曲线.
- (2) 同理, $B^2 4AC < 0$ 时该曲线为椭圆 (或空集);

设 A,B,C 是不全为零的实数. 二次曲线 $Ax^2+Bxy+Cy^2=1$ 左侧的实二次型对应方阵 $\mathbf{A}=\begin{pmatrix}A&B/2\\B/2&C\end{pmatrix}$. 由

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} A - \lambda & B/2 \\ B/2 & C - \lambda \end{vmatrix} = \lambda^2 - (A + C)\lambda + (AC - B^2/4)$$

可知,

- (1) 当 $B^2-4AC>0$ 时, \boldsymbol{A} 特征值一正一负, 从而通过正交变换 $\begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{P} \begin{pmatrix} s \\ t \end{pmatrix}$ 可知该曲线为双曲线.
- (2) 同理, $B^2 4AC < 0$ 时该曲线为椭圆 (或空集);
- (3) $B^2 4AC = 0$ 时该曲线为两条直线 (若有一次项则为抛物线).

可以看出我们有时候只关心实二次型对应的矩阵的特征值的符号.

可以看出我们有时候只关心实二次型对应的矩阵的特征值的符号.

称实二次型 f 对应矩阵 A 的秩为 f 的秩.

可以看出我们有时候只关心实二次型对应的矩阵的特征值的符号.

定义

称实二次型 f 对应矩阵 A 的秩为 f 的秩.

对于可逆阵 P, $P^{T}AP$ 的秩和 A 相同.

可以看出我们有时候只关心实二次型对应的矩阵的特征值的符号.

定义

称实二次型 f 对应矩阵 A 的秩为 f 的秩.

对于可逆阵 P, P^TAP 的秩和 A 相同. 因此若可逆线性变换 x = Py 将 f 变为标准形, 则 y_i^2 系数非零为恰有 r 个.

可以看出我们有时候只关心实二次型对应的矩阵的特征值的符号.

定义

称实二次型 f 对应矩阵 A 的秩为 f 的秩.

对于可逆阵 P, $P^{T}AP$ 的秩和 A 相同. 因此若可逆线性变换 x = Py 将 f 变为标准形, 则 y_i^2 系数非零为恰有 r 个.

惯性定理

设实二次型 $f = x^T A x$ 的秩为 r. 若可逆线性变换 x = P y = Q z 分别将 f 变为

$$f = k_1 y_1^2 + \dots + k_r y_r^2$$

$$f = \ell_1 z_1^2 + \dots + \ell_r z_r^2,$$

则 k_1, \ldots, k_r 中正的个数和 ℓ_1, \ldots, ℓ_r 中正的个数相同.

证明

由题设可知

$$\boldsymbol{B} := \operatorname{diag}(k_1, \dots, k_r, 0, \dots, 0) = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{P},$$

$$C := \operatorname{diag}(\ell_1, \dots, \ell_r, 0, \dots, 0) = \mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}.$$

证明

由题设可知

$$\boldsymbol{B} := \operatorname{diag}(k_1, \dots, k_r, 0, \dots, 0) = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{P},$$

$$C := \operatorname{diag}(\ell_1, \dots, \ell_r, 0, \dots, 0) = \mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}.$$

设
$$oldsymbol{R} = oldsymbol{P}^{-1}oldsymbol{Q} = (oldsymbol{lpha}_1, \ldots, oldsymbol{lpha}_n)$$
,则

$$C = R^{\mathrm{T}}BR = \mathrm{diag}(k_1 \alpha_1^{\mathrm{T}} \alpha_1, \dots, k_r \alpha_r^{\mathrm{T}} \alpha_r, 0, \dots, 0).$$

证明

由题设可知

$$\boldsymbol{B} := \operatorname{diag}(k_1, \dots, k_r, 0, \dots, 0) = \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{P},$$

$$C := \operatorname{diag}(\ell_1, \dots, \ell_r, 0, \dots, 0) = \mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}.$$

设
$$oldsymbol{R} = oldsymbol{P}^{-1}oldsymbol{Q} = (oldsymbol{lpha}_1, \ldots, oldsymbol{lpha}_n)$$
,则

$$C = R^{\mathrm{T}}BR = \mathrm{diag}(k_1 \alpha_1^{\mathrm{T}} \alpha_1, \dots, k_r \alpha_r^{\mathrm{T}} \alpha_r, 0, \dots, 0).$$

从而
$$\ell_i = k_i ||\alpha_i||^2$$
, 二者符号相同.

惯性指数

定义

把 f 标准型系数中为正数的个数称为实二次型 f 的正惯性指数 p, 为负数的个数称为实二次型 f 的负惯性指数 q=r-q.

惯性指数

定义

把 f 标准型系数中为正数的个数称为实二次型 f 的正惯性指数 p, 为负数的个数称为实二次型 f 的负惯性指数 q=r-q.

推论

实二次型 $f = x^T A x$ 的正 (负) 惯性指数等于实对称阵 A 的正 (负) 特征值的个数.

惯性指数

定义

把 f 标准型系数中为正数的个数称为实二次型 f 的正惯性指数 p, 为负数的个数称为实二次型 f 的负惯性指数 q=r-q.

推论

实二次型 $f = x^T A x$ 的正 (负) 惯性指数等于实对称阵 A 的正 (负) 特征值的个数.

推论

设 A, B 均为 n 阶实对称阵. A 与 B 合同当且仅当 A 的正特征值的个数等于 B 的 正特征值的个数, 且 A 的负特征值的个数等于 B 的负特征值的个数.

例: 惯性指数的应用

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
,则 \mathbf{A} 合同于().

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$
 (B) $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

(C)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

矩阵
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$ ().

- (A) 合同且相似
- (B) 合同但不相似 (C) 不合同但相似 (D) 既不合同也不

相似

例: 惯性指数的应用

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
,则 \mathbf{A} 合同于(\mathbf{D}).

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$
 (B) $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

(C)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

矩阵
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$ ().

- (A) 合同且相似
- (B) 合同但不相似 (C) 不合同但相似 (D) 既不合同也不

相似

例: 惯性指数的应用

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
,则 \mathbf{A} 合同于(\mathbf{D}).

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$
 (B) $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

(C)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

矩阵
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$ (B).

- (A) 合同且相似
- (B) 合同但不相似 (C) 不合同但相似 (D) 既不合同也不 相似

(1)
$$p = 3, q = 0$$
 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

(1)
$$p = 3, q = 0$$
 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

(2)
$$p=2, q=1$$
 为单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

(1)
$$p = 3, q = 0$$
 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

(2)
$$p = 2, q = 1$$
 为单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$.

(3)
$$p = 1, q = 2$$
 为双叶双曲面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

(1)
$$p = 3, q = 0$$
 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

(2)
$$p = 2, q = 1$$
 为单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

(3)
$$p = 1, q = 2$$
 为双叶双曲面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

(4)
$$p = 2, q = 0$$
 为椭圆柱面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

(1)
$$p = 3, q = 0$$
 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

(2)
$$p = 2, q = 1$$
 为单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

(3)
$$p = 1, q = 2$$
 为双叶双曲面 $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$

(4)
$$p = 2, q = 0$$
 为椭圆柱面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

(5)
$$p = 1, q = 1$$
 为双曲柱面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

实二次型规范形

定义

若实二次型的标准形的系数只在 -1,0,1 三个数中取值,则称此实二次型为规范形.

实二次型规范形

定义

若实二次型的标准形的系数只在-1,0,1三个数中取值,则称此实二次型为规范形.

定理

任意一个实二次型总可经过适当的可逆线性变换化为规范形,且规范形是唯一的 (可任意交换变量顺序):

$$f = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2,$$

其中 p,q 分别为正负惯性指数.

实对称阵的合同标准形

推论

任意 n 阶实对称矩阵 A 合同于对角矩阵

$$egin{pmatrix} oldsymbol{E}_p & & & \ & -oldsymbol{E}_q & & \ & oldsymbol{O}_{n-p-q} \end{pmatrix},$$

其中 p,q 分别为正负特征值个数 (计算重数), $R(\mathbf{A}) = p + q$.

实对称阵的合同标准形

推论

任意 n 阶实对称矩阵 A 合同于对角矩阵

$$egin{pmatrix} m{E}_p & & & \ & -m{E}_q & & \ & m{O}_{n-p-q} \end{pmatrix},$$

其中p,q分别为正负特征值个数(计算重数), $R(\mathbf{A}) = p + q$.

例

若实对称矩阵 A 合同于 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$, 则通过可逆线性变换 x = Py 可将二次型

 $oldsymbol{x}^{ ext{T}}oldsymbol{A}oldsymbol{x}$ 化为规范形_____

实对称阵的合同标准形

推论

任意 n 阶实对称矩阵 A 合同于对角矩阵

$$egin{pmatrix} m{E}_p & & & \ & -m{E}_q & & \ & & m{O}_{n-p-q} \end{pmatrix},$$

其中 p,q 分别为正负特征值个数 (计算重数), $R(\mathbf{A}) = p + q$.

例

若实对称矩阵 $oldsymbol{A}$ 合同于 $egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 2 \ 0 & 2 & 0 \end{pmatrix}$,则通过可逆线性变换 $oldsymbol{x} = oldsymbol{P}oldsymbol{y}$ 可将二次型

 $x^{\mathrm{T}}Ax$ 化为规范形 $y_1^2 + y_2^2 - y_3^2$.

定义

设 $f = x^{\mathrm{T}} A x$ 是二次型.

(1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩阵. 也记作 A > 0.

定义

设 $f = x^{\mathrm{T}} A x$ 是二次型.

- (1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩阵, 也记作 A > 0.
- (2) 若对任意 x, 都有 $f(x) \ge 0$, 则称 f 为半正定二次型, 并称实对称阵 A 为半正定矩阵, 也记作 $A \ge 0$.

定义

设 $f = x^{\mathrm{T}} A x$ 是二次型.

- (1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩阵, 也记作 A > 0.
- (2) 若对任意 x, 都有 $f(x) \ge 0$, 则称 f 为半正定二次型, 并称实对称阵 A 为半正定矩阵, 也记作 $A \ge 0$.
- (3) 若 -f 正定, 则称 f 为负定二次型, 并称实对称阵 A 为负定矩阵, 也记作 A < 0.

定义

设 $f = x^{\mathrm{T}} A x$ 是二次型.

- (1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩阵, 也记作 A > 0.
- (2) 若对任意 x, 都有 $f(x) \ge 0$, 则称 f 为半正定二次型, 并称实对称阵 A 为半正定矩阵, 也记作 $A \ge 0$.
- (3) 若 -f 正定,则称 f 为负定二次型,并称实对称阵 A 为负定矩阵,也记作 A < 0.
- (4) $\dot{A} = f$ 半正定, 则称 f 为半负定二次型, 并称实对称阵 A 为半负定矩阵, 也记作 $A \leq 0$.

正定和负定

定义

设 $f = x^{\mathrm{T}} A x$ 是二次型.

- (1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩阵, 也记作 A > 0.
- (2) 若对任意 x, 都有 $f(x) \ge 0$, 则称 f 为半正定二次型, 并称实对称阵 A 为半正定矩阵, 也记作 $A \ge 0$.
- (3) 若 -f 正定,则称 f 为负定二次型,并称实对称阵 A 为负定矩阵,也记作 A < 0.
- (4) $\dot{A} = f$ 半正定, 则称 f 为半负定二次型, 并称实对称阵 A 为半负定矩阵, 也记作 $A \leq 0$.
- (5) 除此之外, 称 f 不定.

正定和负定

定义

设 $f = x^{\mathrm{T}} A x$ 是二次型.

- (1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正定矩阵, 也记作 A > 0.
- (2) 若对任意 x, 都有 $f(x) \ge 0$, 则称 f 为半正定二次型, 并称实对称阵 A 为半正定矩阵, 也记作 $A \ge 0$.
- (3) 若 -f 正定,则称 f 为负定二次型,并称实对称阵 A 为负定矩阵,也记作 A < 0.
- (4) $\dot{A} = f$ 半正定, 则称 f 为半负定二次型, 并称实对称阵 A 为半负定矩阵, 也记作 $A \leq 0$.
- (5) 除此之外, 称 f 不定.

可逆线性变换 x = Py 不会影响正定性.

正定和负定

设 $f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 是二次型.

- (1) 若对任意 $x \neq 0$, 都有 f(x) > 0, 则称 f 为正定二次型, 并称实对称阵 A 为正 定矩阵, 也记作 A > 0.
- (2) 若对任意 x, 都有 $f(x) \ge 0$, 则称 f 为半正定二次型, 并称实对称阵 A 为半正 定矩阵. 也记作 $A \ge 0$.
- (3) $\dot{a} = f$ 正定, 则称 f 为负定二次型, 并称实对称阵 \mathbf{A} 为负定矩阵, 也记作 A < 0
- (4) 若 -f 半正定,则称 f 为半负定二次型,并称实对称阵 A 为半负定矩阵,也记作 $A \leq 0$.
- (5) 除此之外, 称 f 不定.

可逆线性变换 x = Pu 不会影响正定性. A 正定 $\iff P^{T}AP$ 正定.

(1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2$ 半正定.

- (1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + \mathbb{E} \mathfrak{Z}$.
- (2) $f(x_1, x_2, x_3) = x_1^2 2x_2^2 + x_3^2 \ \pi \ \epsilon$.

- (1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + \mathbb{E} \mathbb{E}$.
- (2) $f(x_1, x_2, x_3) = x_1^2 2x_2^2 + x_3^2 \ \pi \ \mathcal{E}$.

- (1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + \mathbb{E} \mathbb{E}$.
- (2) $f(x_1, x_2, x_3) = x_1^2 2x_2^2 + x_3^2 \ \pi \ \epsilon$.
- (3) $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_3 + x_1)^2$ 正定.
- (4) $f(x_1, x_2, x_3) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_1)^2 + \mathbb{E} \mathfrak{Z}.$

- (1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + \mathbb{E} \mathbb{E}$.
- (2) $f(x_1, x_2, x_3) = x_1^2 2x_2^2 + x_3^2 \ \pi \ z$.
- (4) $f(x_1, x_2, x_3) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_1)^2 + \mathbb{E}$
- (5) 椭球面 f(x,y,z) = 1 对应的二次型正定.

- (1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + \mathbb{E} \mathbb{E}$.
- (2) $f(x_1, x_2, x_3) = x_1^2 2x_2^2 + x_3^2 \ \pi \ \epsilon$.
- (4) $f(x_1, x_2, x_3) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_1)^2 + \mathbb{E} \mathfrak{Z}$.
- (5) 椭球面 f(x,y,z) = 1 对应的二次型正定.
- (6) 单叶/双叶双曲面 f(x,y,z)=1 对应的二次型不定.

定理

设 $A \in n$ 阶实对称阵, $f = x^T A x$. 如下命题等价:

定理

设 $A \neq n$ 阶实对称阵, $f = x^T A x$. 如下命题等价:

(1) A > 0 正定, 即 f 正定.

定理

设 $A \neq n$ 阶实对称阵, $f = x^T A x$. 如下命题等价:

- (1) A > 0 正定, 即 f 正定.
- (2) f 的正惯性指数为 n, 即 A 特征值全为正.

定理

设 A 是 n 阶实对称阵, $f = x^T A x$. 如下命题等价:

- (1) A > 0 正定, 即 f 正定.
- (2) f 的正惯性指数为 n, 即 A 特征值全为正.
- (3) 存在正交阵 P 使得 $A = P^{T}P$.

定理

设 $A \neq n$ 阶实对称阵, $f = x^T A x$. 如下命题等价:

- (1) A > 0 正定, 即 f 正定.
- (2) f 的正惯性指数为 n, 即 A 特征值全为正.
- (3) 存在正交阵 P 使得 $A = P^{T}P$.

Hurwitz

(4) (赫尔维茨 定理) A 的各阶顺序主子式都为正, 即

$$\begin{vmatrix} a_{11} > 0, & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, & \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0, \dots, |A| > 0.$$

定理

设 $A \neq n$ 阶实对称阵, $f = x^T A x$. 如下命题等价:

- (1) A > 0 正定, 即 f 正定.
- (2) f 的正惯性指数为 n, 即 A 特征值全为正.
- (3) 存在正交阵 P 使得 $A = P^{T}P$.

Hurwitz

(4) (赫尔维茨 定理) A 的各阶顺序主子式都为正, 即

$$\begin{vmatrix} a_{11} > 0, & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, & \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0, \dots, |\mathbf{A}| > 0.$$

将(4)中 > 换成 \geqslant 即可判断半正定, 这也等价于 f 的负惯性指数为 0, 即 A 特征值全非负.

推论

若 A 正定,则 |A| > 0 且对角元全为正.

推论

若 A 正定,则 |A| > 0 且对角元全为正.

例

若 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 正定, 求 t 的取值范围.

推论

若 A 正定,则 |A| > 0 且对角元全为正.

例

若 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + tx_2x_3$ 正定, 求 t 的取值范围.

解

|
$$f$$
 对应 $\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & t/2 \\ 0 & t/2 & 1 \end{pmatrix}$, 顺序主子式 $2 > 0$, $\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1 > 0$, $|\mathbf{A}| = 1 - \frac{t^2}{2} > 0$ 得 到 $-\frac{\sqrt{2}}{2} < t < \frac{\sqrt{2}}{2}$.

判别二次型 $f = -5x^2 - 6y^2 - 4z^2 + 4xy + 4xz$ 是否正定.

例

判别二次型 $f = -5x^2 - 6y^2 - 4z^2 + 4xy + 4xz$ 是否正定.

解

由于
$$\mathbf{A} = \begin{pmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{pmatrix}$$
. 顺序主子式 $-5 < 0$, 因此不是正定的. 或由 $f(1,0,0) < 0$ 得到.

例

判别二次型 $f = -5x^2 - 6y^2 - 4z^2 + 4xy + 4xz$ 是否正定.

解

由于
$$\mathbf{A} = \begin{pmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{pmatrix}$$
. 顺序主子式 $-5 < 0$, 因此不是正定的. 或由 $f(1,0,0) < 0$ 得到.

例

若实对称阵 A 正定, 证明 |A + E| > 1.

例

判別二次型 $f = -5x^2 - 6y^2 - 4z^2 + 4xy + 4xz$ 是否正定.

解

由于
$$\mathbf{A} = \begin{pmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{pmatrix}$$
. 顺序主子式 $-5 < 0$, 因此不是正定的. 或由 $f(1,0,0) < 0$ 得到.

例

若实对称阵 \mathbf{A} 正定, 证明 $|\mathbf{A} + \mathbf{E}| > 1$.

证明

由A正定可知其特征值均为正,从而A+E特征值都大于1.

例

判别二次型 $f = -5x^2 - 6y^2 - 4z^2 + 4xy + 4xz$ 是否正定.

解

由于
$$\mathbf{A} = \begin{pmatrix} -5 & 2 & 2 \\ 2 & -6 & 0 \\ 2 & 0 & -4 \end{pmatrix}$$
. 顺序主子式 $-5 < 0$, 因此不是正定的. 或由 $f(1,0,0) < 0$ 得到.

例

若实对称阵 A 正定, 证明 |A+E|>1.

证明

由 A 正定可知其特征值均为正, 从而 A+E 特征值都大于 1. 从而 |A+E|>1.

例

设 3 阶实对称阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 + 2\boldsymbol{A} = \boldsymbol{O}, R(\boldsymbol{A}) = 2.$

设 3 阶实对称阵 A 满足 $A^2 + 2A = O, R(A) = 2.$

(1) 求 A 的全部特征值.

例

设 3 阶实对称阵 A 满足 $A^2 + 2A = O$, R(A) = 2.

- (1) 求 A 的全部特征值.
- (2) 当 k 为何值时, 矩阵 A + kE 为正定矩阵.

例

设 3 阶实对称阵 A 满足 $A^2 + 2A = O$, R(A) = 2.

- (1) 求 A 的全部特征值.
- (2) 当 k 为何值时, 矩阵 A + kE 为正定矩阵.

解

例

设 3 阶 实对称阵 A 满足 $A^2 + 2A = O, R(A) = 2.$

- (1) 求 A 的全部特征值.
- (2) 当 k 为何值时, 矩阵 A + kE 为正定矩阵.

解

(1) 由 $\mathbf{A}^2 + 2\mathbf{A} = \mathbf{O}$ 可知 \mathbf{A} 的特征值满足 $\lambda^2 + 2\lambda = 0, \lambda = 0, -2$.

例

设 3 阶实对称阵 A 满足 $A^2 + 2A = O$, R(A) = 2.

- (1) 求 A 的全部特征值.
- (2) 当 k 为何值时, 矩阵 A + kE 为正定矩阵.

解

(1) 由 $A^2 + 2A = O$ 可知 A 的特征值满足 $\lambda^2 + 2\lambda = 0, \lambda = 0, -2$. 由 R(A) = 2 可知 A 特征值为 0, -2, -2.

例

设 3 阶 实对称阵 A 满足 $A^2 + 2A = O, R(A) = 2.$

- (1) 求 A 的全部特征值.
- (2) 当 k 为何值时, 矩阵 A + kE 为正定矩阵.

解

- (1) 由 $A^2 + 2A = O$ 可知 A 的特征值满足 $\lambda^2 + 2\lambda = 0, \lambda = 0, -2$. 由 R(A) = 2 可知 A 特征值为 0, -2, -2.
- (2) A + kE 特征值为 k, k 2, k 2.

例

设 3 阶实对称阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 + 2\boldsymbol{A} = \boldsymbol{O}, R(\boldsymbol{A}) = 2.$

- (1) 求 A 的全部特征值.
- (2) 当 k 为何值时, 矩阵 A + kE 为正定矩阵.

解

- (1) 由 $A^2 + 2A = O$ 可知 A 的特征值满足 $\lambda^2 + 2\lambda = 0, \lambda = 0, -2$. 由 R(A) = 2 可知 A 特征值为 0, -2, -2.
- (2) A + kE 特征值为 k, k 2, k 2. 因此 k > 2.

例

设 \mathbf{A} 是 $m \times n$ 实矩阵且 $R(\mathbf{A}) = n$. 证明 $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ 正定.

例

设 \mathbf{A} 是 $m \times n$ 实矩阵且 $R(\mathbf{A}) = n$. 证明 $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ 正定.

证明

显然 $A^{T}A$ 是对称的.

例

设 A 是 $m \times n$ 实矩阵且 R(A) = n. 证明 $A^{T}A$ 正定.

证明

显然 $A^{\mathrm{T}}A$ 是对称的. 注意到

$$\boldsymbol{x}^{\mathrm{T}}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})\boldsymbol{x} = (\boldsymbol{A}\boldsymbol{x})^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x} = \|\boldsymbol{A}\boldsymbol{x}\|.$$

例

设 \mathbf{A} 是 $m \times n$ 实矩阵且 $R(\mathbf{A}) = n$. 证明 $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ 正定.

证明

显然 $A^{\mathrm{T}}A$ 是对称的, 注意到

$$\boldsymbol{x}^{\mathrm{T}}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})\boldsymbol{x} = (\boldsymbol{A}\boldsymbol{x})^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x} = \|\boldsymbol{A}\boldsymbol{x}\|.$$

由于 $R(\mathbf{A}) = n$, $\mathbf{A}\mathbf{x} = \mathbf{0}$ 只有零解.

例

设 $\mathbf{A} \neq m \times n$ 实矩阵且 $\mathbf{R}(\mathbf{A}) = n$. 证明 $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ 正定.

证明

显然 $A^{T}A$ 是对称的, 注意到

$$\boldsymbol{x}^{\mathrm{T}}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})\boldsymbol{x} = (\boldsymbol{A}\boldsymbol{x})^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x} = \|\boldsymbol{A}\boldsymbol{x}\|.$$

由于 R(A) = n, Ax = 0 只有零解. 因此当 $x \neq 0$ 时, $Ax \neq 0$, 从而

$$\boldsymbol{x}^{\mathrm{T}}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})\boldsymbol{x} = \|\boldsymbol{A}\boldsymbol{x}\| > 0.$$

例

设 A 为 n 阶实对称矩阵. 证明 $R(A)=n\iff$ 存在一个 n 阶实方阵 B 使得 $AB+B^{\mathrm{T}}A$ 正定.

例

设 A 为 n 阶实对称矩阵. 证明 $R(A)=n \iff$ 存在一个 n 阶实方阵 B 使得 $AB+B^{\mathrm{T}}A$ 正定.

证明

显然 $AB + B^{T}A$ 是对称的, 且

$$x^{\mathrm{T}}(AB + B^{\mathrm{T}}A)x = (Ax)^{\mathrm{T}}Bx + (Bx)^{\mathrm{T}}(Ax) = 2[Ax, Bx].$$

例

设 A 为 n 阶实对称矩阵. 证明 $R(A)=n \iff$ 存在一个 n 阶实方阵 B 使得 $AB+B^{\mathrm{T}}A$ 正定.

证明

显然 $\overline{AB} + B^{T}A$ 是对称的, 且

$$x^{\mathrm{T}}(AB + B^{\mathrm{T}}A)x = (Ax)^{\mathrm{T}}Bx + (Bx)^{\mathrm{T}}(Ax) = 2[Ax, Bx].$$

若
$$R(A) = n$$
, 令 $B = A$, 则当 $x \neq 0$ 时, $Ax \neq 0$, 从而

$$[\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{x}] = \|\mathbf{A}\mathbf{x}\| > 0.$$

例

设 A 为 n 阶实对称矩阵. 证明 $R(A)=n\iff$ 存在一个 n 阶实方阵 B 使得 $AB+B^{\mathrm{T}}A$ 正定.

证明

显然 $AB + B^{T}A$ 是对称的, 且

$$x^{\mathrm{T}}(AB + B^{\mathrm{T}}A)x = (Ax)^{\mathrm{T}}Bx + (Bx)^{\mathrm{T}}(Ax) = 2[Ax, Bx].$$

若
$$R(A) = n$$
, 令 $B = A$, 则当 $x \neq 0$ 时, $Ax \neq 0$, 从而

$$[Ax, Bx] = ||Ax|| > 0.$$

若 R(A) < n, 则存在 $x \neq 0$ 使得 Ax = 0, 从而 [Ax, Bx] = 0, $AB + B^{T}A$ 不正定.

例

设二次型 $f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$. 证明: 当 ||x|| = 1 时, $f(\mathbf{x})$ 的最大 (Λ) 值为实对称阵 \mathbf{A} 的最大 (Λ) 特征值.

例

设二次型 $f = x^T A x$. 证明: 当 ||x|| = 1 时, f(x) 的最大 (n) 值为实对称阵 A 的最大 (n) 特征值.

证明

将 A 的特征值排序为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$.

例

设二次型 $f=x^{T}Ax$. 证明: 当 ||x||=1 时, f(x) 的最大 (Λ) 值为实对称阵 A 的最大 (Λ) 特征值.

证明

将 \overline{A} 的特征值排序为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$. 存在正交变换 x = Py 使得

$$\mathbf{\Lambda} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \quad f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

例

设二次型 $f = x^T A x$. 证明: 当 ||x|| = 1 时, f(x) 的最大 (Λ) 值为实对称阵 A 的最大 (Λ) 特征值.

证明

将 \overline{A} 的特征值排序为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$. 存在正交变换 x = Py 使得

$$\mathbf{\Lambda} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \quad f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

由于正交变换保持长度, 因此 $\|x\| = 1 \iff \|y\| = 1$.

例

设二次型 $f = x^T A x$. 证明: 当 ||x|| = 1 时, f(x) 的最大 (Λ) 值为实对称阵 A 的最大 (Λ) 特征值.

证明

将 \overline{A} 的特征值排序为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$. 存在正交变换 x = Py 使得

$$\mathbf{\Lambda} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \quad f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

由于正交变换保持长度, 因此 $\|x\| = 1 \iff \|y\| = 1$.

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \leqslant \lambda_1 (y_1^2 + \dots + y_n^2) = \lambda_1,$$

且等式可在 y = (1, 0, ..., 0) 处取得.

例

设二次型 $f = x^T A x$. 证明: 当 ||x|| = 1 时, f(x) 的最大 (Λ) 值为实对称阵 A 的最大 (Λ) 特征值.

证明

将 A 的特征值排序为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$. 存在正交变换 x = Py 使得

$$\mathbf{\Lambda} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \quad f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

由于正交变换保持长度, 因此 $||x|| = 1 \iff ||y|| = 1$.

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \leqslant \lambda_1 (y_1^2 + \dots + y_n^2) = \lambda_1,$$

且等式可在 y = (1, 0, ..., 0) 处取得.

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \geqslant \lambda_n (y_1^2 + \dots + y_n^2) = \lambda_n,$$

且等式可在 y = (0, ..., 0, 1) 处取得.

例

设二次型 $f = x^T A x$. 证明: 当 ||x|| = 1 时, f(x) 的最大 (Λ) 值为实对称阵 A 的最大 (Λ) 特征值.

证明

将 \overline{A} 的特征值排序为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$. 存在正交变换 x = Py 使得

$$\mathbf{\Lambda} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \quad f = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2.$$

由于正交变换保持长度, 因此 $||x|| = 1 \iff ||y|| = 1$.

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \leqslant \lambda_1 (y_1^2 + \dots + y_n^2) = \lambda_1,$$

且等式可在 y = (1, 0, ..., 0) 处取得.

$$f = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \geqslant \lambda_n (y_1^2 + \dots + y_n^2) = \lambda_n,$$

且等式可在 y = (0, ..., 0, 1) 处取得. 故 f 的最大值为 λ_1 , 最小值为 λ_n .

实对称阵可用于判断多元函数的极值.

实对称阵可用于判断多元函数的极值. 设 $f(x) = f(x_1, ..., x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数.

实对称阵可用于判断多元函数的极值. 设 $f(x)=f(x_1,\ldots,x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 $f''_{ij}=\frac{\partial^2 f}{\partial x_i\partial x_j}$, 则 $f''_{ij}=f''_{ii}$.

实对称阵可用于判断多元函数的极值. 设 $f(x)=f(x_1,\ldots,x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 $f_{ij}''=\frac{\partial^2 f}{\partial x_i\partial x_j}$, 则 $f_{ii}''=f_{ii}''$. 于是 $A=(f_{ii}''(a))$ 是 n 阶实对称阵.

实对称阵可用于判断多元函数的极值. 设 $f(x) = f(x_1, \ldots, x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 $f''_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$, 则 $f''_{ij} = f''_{ii}$. 于是 $A = (f''_{ij}(a))$ 是 n 阶实对称阵.

定理

设f在a处各阶偏导均为零.

实对称阵可用于判断多元函数的极值. 设 $f(x) = f(x_1, \ldots, x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 $f''_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$, 则 $f''_{ij} = f''_{ji}$. 于是 $A = (f''_{ij}(a))$ 是 n 阶实对称阵.

定理

设f在a处各阶偏导均为零.

(1) 若 A 正定,则 f 在 a 处取极小值;

实对称阵可用于判断多元函数的极值. 设 $f(x)=f(x_1,\ldots,x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 $f_{ij}''=\frac{\partial^2 f}{\partial x_i\partial x_j}$, 则 $f_{ij}''=f_{ji}''$. 于是 $\mathbf{A}=(f_{ij}''(a))$ 是 n 阶实对称阵.

定理

设f在a处各阶偏导均为零.

- (1) 若 A 正定,则 f 在 a 处取极小值;
- (2) 若 A 负定,则 f 在 a 处取极大值.

实对称阵可用于判断多元函数的极值. 设 $f(x)=f(x_1,\ldots,x_n)$ 是一个 n 元实函数, a 是其定义域内一点, 且 f 在 a 附近具有连续的二阶偏导数. 记 $f_{ij}''=\frac{\partial^2 f}{\partial x_i\partial x_j}$, 则 $f_{ij}''=f_{ji}''$. 于是 $\mathbf{A}=(f_{ij}''(a))$ 是 n 阶实对称阵.

定理

设f在a处各阶偏导均为零.

- (1) 若 A 正定,则 f 在 a 处取极小值;
- (2) 若 A 负定,则 f 在 a 处取极大值.

若 A 不定,则无法判断 a 是否是极值点.

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列.

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列. 首先对 $A^{T}A$ 这一半正定对称阵做正交合同对角化

$$A^{\mathrm{T}}A = V^{\mathrm{T}}\Lambda V$$
, $V = (v_1, \dots, v_n)$, $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_1 \geqslant \dots \geqslant \lambda_n \geqslant 0$.

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列. 首先对 $A^{\mathrm{T}}A$ 这一半正定对称阵做正交合同对角化.

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}^{\mathrm{T}}\mathbf{\Lambda}\mathbf{V}, \quad \mathbf{V} = (\mathbf{v}_{1}, \dots, \mathbf{v}_{n}), \quad \mathbf{\Lambda} = \mathrm{diag}(\lambda_{1}, \dots, \lambda_{n}), \lambda_{1} \geqslant \dots \geqslant \lambda_{n} \geqslant 0.$$

奇异值是指 $\sigma_i = \sqrt{\lambda_i}$.

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列. 首先对 $A^{\mathrm{T}}A$ 这一半正定对称阵做正交合同对角化.

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}^{\mathrm{T}}\mathbf{\Lambda}\mathbf{V}, \quad \mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n), \quad \mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \lambda_1 \geqslant \dots \geqslant \lambda_n \geqslant 0.$$

奇异值是指 $\sigma_i = \sqrt{\lambda_i}$. 令 $\Sigma \in M_{m \times n}$ 为对角阵, 对角元为 $\sigma_1, \ldots, \sigma_n$.

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列.

首先对 $A^{T}A$ 这一半正定对称阵做正交合同对角化

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}^{\mathrm{T}}\mathbf{\Lambda}\mathbf{V}, \quad \mathbf{V} = (\mathbf{v}_{1}, \dots, \mathbf{v}_{n}), \quad \mathbf{\Lambda} = \mathrm{diag}(\lambda_{1}, \dots, \lambda_{n}), \lambda_{1} \geqslant \dots \geqslant \lambda_{n} \geqslant 0.$$

奇异值是指 $\sigma_i = \sqrt{\lambda_i}$. 令 $\Sigma \in M_{m \times n}$ 为对角阵, 对角元为 $\sigma_1, \ldots, \sigma_n$.

对于
$$1 \leqslant j \leqslant r = R(\mathbf{A})$$
, 令 $\mathbf{u}_j = \frac{1}{\sigma_j} \mathbf{A} \mathbf{v}_j$,

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列.

首先对 $A^{T}A$ 这一半正定对称阵做正交合同对角化

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}^{\mathrm{T}}\mathbf{\Lambda}\mathbf{V}, \quad \mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n), \quad \mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \lambda_1 \geqslant \dots \geqslant \lambda_n \geqslant 0.$$

奇异值是指 $\sigma_i = \sqrt{\lambda_i}$. 令 $\Sigma \in M_{m \times n}$ 为对角阵, 对角元为 $\sigma_1, \ldots, \sigma_n$.

对于 $1 \leqslant j \leqslant r = R(A)$, 令 $\boldsymbol{u}_j = \frac{1}{\sigma_j} A \boldsymbol{v}_j$, 设 $\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_m$ 是 $A^{\mathrm{T}} \boldsymbol{x} = \boldsymbol{0}$ 的一组标准正交基础解系.

$$oldsymbol{A} = oldsymbol{U}_{m imes m} oldsymbol{\Sigma}_{m imes n} oldsymbol{V}_{n imes n}^{ ext{T}},$$

其中 U, V 分别是 m, n 阶正交阵, Σ 是 $m \times n$ 型对角阵, 对角元非负且按降序排列.

首先对 $A^{T}A$ 这一半正定对称阵做正交合同对角化

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}^{\mathrm{T}}\mathbf{\Lambda}\mathbf{V}, \quad \mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_n), \quad \mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n), \lambda_1 \geqslant \dots \geqslant \lambda_n \geqslant 0.$$

奇异值是指 $\sigma_i = \sqrt{\lambda_i}$. 令 $\Sigma \in M_{m \times n}$ 为对角阵, 对角元为 $\sigma_1, \ldots, \sigma_n$.

对于 $1\leqslant j\leqslant r=R(\pmb{A})$, 令 $\pmb{u}_j=\frac{1}{\sigma_j}\pmb{A}\pmb{v}_j$, 设 $\pmb{u}_{r+1},\ldots,\pmb{u}_m$ 是 $\pmb{A}^{\mathrm{T}}\pmb{x}=\pmb{0}$ 的一组标准正交基础解系,则 $\pmb{U}=(\pmb{u}_1,\ldots,\pmb{u}_m)$ 是正交阵,且 $\pmb{A}=\pmb{U}\pmb{\Sigma}\pmb{V}^{\mathrm{T}}$.

$$A = U'_{m \times r} \Sigma'_{r \times r} V'_{r \times n},$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

$$oldsymbol{A} = oldsymbol{U}_{m imes r}' oldsymbol{\Sigma}_{r imes r}' oldsymbol{V}_{r imes n}',$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵. 这意味着当 r 相比 m, n 较小时, 只需存储 (m+n+1)r 个元素即可还原 A.

$$m{A} = m{U}_{m imes r}' m{\Sigma}_{r imes r}' m{V}_{r imes n}',$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m,n 较小时, 只需存储 (m+n+1)r 个元素即可还原 \boldsymbol{A} . 这是一种无损压缩算法.

$$\boldsymbol{A} = \boldsymbol{U}_{m \times r}' \boldsymbol{\Sigma}_{r \times r}' \boldsymbol{V}_{r \times n}',$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m,n 较小时, 只需存储 (m+n+1)r 个元素即可还原 A. 这是一种无损压缩算法. 如果我们只截取前 k < r 个奇异值以及对应的 U,V 部分, 则可以对 A 进行有损压缩到 A'.

$$\boldsymbol{A} = \boldsymbol{U}_{m \times r}' \boldsymbol{\Sigma}_{r \times r}' \boldsymbol{V}_{r \times n}',$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m,n 较小时, 只需存储 (m+n+1)r 个元素即可还原 A. 这是一种无损压缩算法. 如果我们只截取前 k < r 个奇异值以及对应的 U,V 部分, 则可以对 A 进行有损压缩到 A'. 例如 A 表示一张图像的像素信息, 保留它较大的奇异值往往对它的信息影响很小.

$$A = U'_{m \times r} \Sigma'_{r \times r} V'_{r \times n},$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m,n 较小时, 只需存储 (m+n+1)r 个元素即可还原 A. 这是一种无损压缩算法. 如果我们只截取前 k < r 个奇异值以及对应的 U,V 部分, 则可以对 A 进行有损压缩到 A'. 例如 A 表示一张图像的像素信息, 保留它较大的奇异值往往对它的信息影响很小. 有时候, 我们甚至需要主动舍弃较小的奇异值, 只保留较大的奇异值来实现信号降噪.

$$A = U'_{m \times r} \Sigma'_{r \times r} V'_{r \times n},$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m,n 较小时, 只需存储 (m+n+1)r 个元素即可还原 A. 这是一种无损压缩算法. 如果我们只截取前 k < r 个奇异值以及对应的 U,V 部分, 则可以对 A 进行有损压缩到 A'. 例如 A 表示一张图像的像素信息, 保留它较大的奇异值往往对它的信息影响很小. 有时候, 我们甚至需要主动舍弃较小的奇异值, 只保留较大的奇异值来实现信号降噪.

矩阵还有诸如 LU 分解, QR 分解, 科列斯基分解等. 这些分解往往都在压缩或降噪中发挥着作用.

$$A = U'_{m \times r} \Sigma'_{r \times r} V'_{r \times n},$$

其中 Σ' 是 A 奇异值降序的对角阵, U', V' 为列/行为标准向量且两两正交的矩阵.

这意味着当 r 相比 m,n 较小时, 只需存储 (m+n+1)r 个元素即可还原 A. 这是一种无损压缩算法. 如果我们只截取前 k < r 个奇异值以及对应的 U,V 部分, 则可以对 A 进行有损压缩到 A'. 例如 A 表示一张图像的像素信息, 保留它较大的奇异值往往对它的信息影响很小. 有时候, 我们甚至需要主动舍弃较小的奇异值, 只保留较大的奇异值来实现信号降噪.

矩阵还有诸如 LU 分解, QR 分解, 科列斯基分解等. 这些分解往往都在压缩或降噪中发挥着作用.

当 m=n=3 时,可以看出线性变换可以分解为旋转、放缩、旋转的复合.