Digital IC Design

Lecture 9: Layout of FinFET Standard Cells

黄柏蒼 Po-Tsang (Bug) Huang bughuang@nycu.edu.tw

International College of Semiconductor Technology National Chiao Tung Yang Ming University

Transistor Layout

Transistor Structure

n-type transistor

Inverter Cross-section Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - ◆ n-well
 - ◆ Polysilicon
 - ◆ n+ diffusion
 - ◆ p+ diffusion
 - **◆** Contact
 - ◆ Metal

Layout Editor

Similar for all tools

Layer Information

CMOS Inverter Layout

DRC/LVS/LPE after Layout

- DRC : Design Rule Checks
 - ◆ The operation checks for design rule violations.
- LVS : Layout Versus Schematic
 - ◆ The operation checks for inconsistencies between the schematic and the physical layout.
- LPE/PEX : Layout Parameter Extraction
 - ◆ Extract layout parameters, including transistors, parasitic capacitors, and resistors.
 - Extracted net-list will be used in Nanosim to run post layout simulation

How to Think About FinFET

■ Large W_{ELECTRICAL}

FinFET: Key Advantage

$$W_{ELECTRICAL} = FIN_{PERIMETER} = \#FINS(2FIN_H + FIN_W)$$

$$W_{ELECTRICAL} = \frac{PLANAR_{WIDTH}}{FIN_{PITCH}} \left(2FIN_{H} + FIN_{W}\right)$$

FEOL and MOL Cross Sections

Source-drain trench (SDT)

- ◆ Connects raised source-drain (SD) to MOL
- ◆ Self-aligned to gate spacers

LISD

Connects SD to M1 thru V0

LIG

Connects Gate to M1 thru V0

Standard Cell Architecture and Cross-section

Diffusion Break

Cell Height in FinFET

- 12 fin pitches, 9 M2 tracks
 - Easy intra-cell routing, rich library
 - Wasteful for density

- 10 fin pitches, 7.5 M2 tracks
 - Rich library without overly difficult routing or poor density
 - Allows wide M2 power rails
- 8 fin pitches, 6 M2 tracks
 - Difficult intra-cell routing, diminished library richness
 - Limited pin access

Standard Cell M1 Template

- M1 template enables rapid cell
- library development
 - –Larger M1 spacing at the center
 - ➤ Better pin access through M1 extension past M2 tracks
- C-shaped M1 pins
 - Avoid large tip-to-side design rules
 - Maximize pin access
 - No longer necessary on all pins

Planer to FinFET Layout Difference

Standard Cells: Latch

TSMC FINFLEXTM

