NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

MA1522 Linear Algebra for Computing

Tutorial 7

1. (a) Let $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ be a linear equation. Express this linear system as $\mathbf{a} \cdot \mathbf{x} = b$ for some (column) vectors \mathbf{a} and \mathbf{x} .

Solution:
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

(b) Find the solution set of the linear system

Solution: The RREF of the matrix coefficient is

$$\begin{pmatrix} 1 & 3 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Thus the solution set is

$$\left\{ \left. s \begin{pmatrix} -3\\1\\0\\0 \end{pmatrix} + t \begin{pmatrix} -4\\0\\-2\\1 \end{pmatrix} \right| s, t \in \mathbb{R} \right\}.$$

(c) Find a nonzero vector $\mathbf{v} \in \mathbb{R}^4$ such that $\mathbf{a}_1 \cdot \mathbf{v} = 0$, $\mathbf{a}_2 \cdot \mathbf{v} = 0$, and $\mathbf{a}_3 \cdot \mathbf{v} = 0$, where

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 3 \\ -2 \\ 0 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 2 \\ 6 \\ -5 \\ -2 \end{pmatrix}, \quad \mathbf{a}_3 = \begin{pmatrix} 0 \\ 0 \\ 5 \\ 10 \end{pmatrix}.$$

Solution: Write $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$. Then $\mathbf{a}_1 \cdot \mathbf{v} = 0$, $\mathbf{a}_2 \cdot \mathbf{v} = 0$, and $\mathbf{a}_3 \cdot \mathbf{v} = 0$ is equivalent

to solving the following linear system

$$\begin{cases} v_1 + 3v_2 - 2v_3 & = 0 \\ 2v_1 + 6v_2 - 5v_3 - 2v_4 = 0 \\ + 5v_3 + 10v_4 = 0 \end{cases}$$

From (b), we may choose
$$s=1$$
 and $t=0$, that is, $\mathbf{v}=\begin{pmatrix} -3\\1\\0\\0 \end{pmatrix}$.

This exercise demonstrates the fact that if **A** is a $m \times n$ matrix, then the solution set of the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ consist of all the vectors in \mathbb{R}^n that are orthogonal to every row vector of **A**.

2. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be an orthonormal set. Suppose

$$\mathbf{x} = \mathbf{v}_1 - 2\mathbf{v}_2 - 2\mathbf{v}_3$$
 and $\mathbf{y} = 2\mathbf{v}_1 - 3\mathbf{v}_2 + \mathbf{v}_3$.

Determine the value for each of the following

(a) $\mathbf{x} \cdot \mathbf{y}$.

Solution: Note that $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ whenever $i \neq j$. Furthermore, since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal set, $\mathbf{v}_i \cdot \mathbf{v}_i = 1$ for i = 1, 2, 3.

$$\mathbf{x} \cdot \mathbf{y} = (\mathbf{v}_1 - 2\mathbf{v}_2 - 2\mathbf{v}_3) \cdot (2\mathbf{v}_1 - 3\mathbf{v}_2 + \mathbf{v}_3)$$
$$= 2(\mathbf{v}_1 \cdot \mathbf{v}_1) + 6(\mathbf{v}_2 \cdot \mathbf{v}_2) - 2(\mathbf{v}_3 \cdot \mathbf{v}_3)$$
$$= 2 + 6 - 2 = 6.$$

(b) $||\mathbf{x}||$ and $||\mathbf{y}||$.

Solution:

$$||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

$$= \sqrt{(\mathbf{v}_1 \cdot \mathbf{v}_1) + 4(\mathbf{v}_2 \cdot \mathbf{v}_2) + 4(\mathbf{v}_3 \cdot \mathbf{v}_3)}$$

$$= \sqrt{1 + 4 + 4} = 3$$

$$||\mathbf{y}|| = \sqrt{\mathbf{y} \cdot \mathbf{y}}$$

$$= \sqrt{4(\mathbf{v}_1 \cdot \mathbf{v}_1) + 9(\mathbf{v}_2 \cdot \mathbf{v}_2) + (\mathbf{v}_3 \cdot \mathbf{v}_3)}$$

$$= \sqrt{4 + 9 + 1} = \sqrt{14}$$

(c) The angle θ between \mathbf{x} and \mathbf{y} .

Solution: We note that $0 \le \theta \le 180^{\circ}$.

$$\cos(\theta) = \frac{6}{3\sqrt{14}} \Rightarrow \theta = \cos^{-1}\frac{2}{\sqrt{14}} = 57.69^{\circ}.$$

3. Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, and $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2)$.

(a) Compute $\mathbf{v}_1 \cdot \mathbf{v}_1$, $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_2 \cdot \mathbf{v}_1$ and $\mathbf{v}_2 \cdot \mathbf{v}_2$.

Solution:

$$\mathbf{v}_1 \cdot \mathbf{v}_1 = 1 + 4 + 1 = 6,$$
 $\mathbf{v}_1 \cdot \mathbf{v}_2 = 1 + 0 - 1 = 0,$ $\mathbf{v}_2 \cdot \mathbf{v}_1 = \mathbf{v}_1 \cdot \mathbf{v}_2 = 0,$ $\mathbf{v}_2 \cdot \mathbf{v}_2 = 1 + 0 + 1 = 2.$

(b) Compute $\mathbf{V}^T\mathbf{V}$. What does the entries of $\mathbf{V}^T\mathbf{V}$ represent?

Solution:
$$\mathbf{V}^T \mathbf{V} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$$
.
Since $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2), \ \mathbf{V}^T = \begin{pmatrix} \mathbf{v}^T \\ \mathbf{v}_2^T \end{pmatrix}$. Hence
$$\mathbf{V}^T \mathbf{V} = \begin{pmatrix} \mathbf{v}_1^T \mathbf{v}_1 & \mathbf{v}_1^T \mathbf{v}_2 \\ \mathbf{v}_2^T \mathbf{v}_1 & \mathbf{v}_2^T \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \cdot \mathbf{v}_1 & \mathbf{v}_1 \cdot \mathbf{v}_2 \\ \mathbf{v}_2 \cdot \mathbf{v}_1 & \mathbf{v}_2 \cdot \mathbf{v}_2 \end{pmatrix}.$$

The (i, j)-entry of $\mathbf{V}^T \mathbf{V}$ is $\mathbf{v}_i \cdot \mathbf{v}_j$.

4. Let W be a subspace of \mathbb{R}^n . The orthogonal complement of W, denoted as W^{\perp} , is defined to be

$$W^{\perp} := \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in W \}.$$

Let
$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{w}_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \\ 0 \end{pmatrix}$, and $\mathbf{w}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$, and $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

(a) Show that $S = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent.

Solution: Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & -2 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$
. We compute

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

which shows that S is an orthogonal set of nonzero vectors.

An orthogonal set of nonzero vectors is linearly independent.

Therefore S is linear independent.

(b) Show that S is orthogonal.

Solution: Shown in (a).

(c) Show that W^{\perp} is a subspace of \mathbb{R}^5 by showing that it is a span of a set. What is the dimension? (**Hint**: See Question 1.)

Solution: By Question 1, W^{\perp} is the nullspace of \mathbf{A}^{T} . The fact that W^{\perp} is a nullspace of some matrix proves that it is a subspace. Now we compute the nullspace.

$$\mathbf{A}^T \longrightarrow \begin{pmatrix} 1 & 0 & 0 & -2 & -1/4 \\ 0 & 1 & 0 & 1 & 1/2 \\ 0 & 0 & 1 & 2 & 3/4 \end{pmatrix}$$

and the nullspace of \mathbf{A}^T is spanned by $\left\{ \begin{pmatrix} 2\\-1\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-3\\0\\4 \end{pmatrix} \right\}$. This shows that W^{\perp}

is a subspace of \mathbb{R}^5 of dimension 2.

(d) Obtain an orthonormal set T by normalizing $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$.

Solution: From (b) $S = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is an orthogonal set. From (a), $||\mathbf{w}_1||^2 = 5$, $||\mathbf{w}_2||^2 = 10$, and $||\mathbf{w}_3||^2 = 4$. Therefore

$$T = \left\{ \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\2\\-1\\-2\\0 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\-1\\0 \end{pmatrix} \right\}.$$

(e) Let $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$. Find the projection of \mathbf{v} onto W.

Solution: The projection is

$$\frac{\mathbf{v} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{v} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 + \frac{\mathbf{v} \cdot \mathbf{w}_3}{\mathbf{w}_3 \cdot \mathbf{w}_3} \mathbf{w}_3 = \frac{1}{10} \begin{pmatrix} 10 \\ -1 \\ 12 \\ 3 \\ 6 \end{pmatrix}.$$

(f) Let \mathbf{v}_W be the projection of \mathbf{v} onto W. Show that $\mathbf{v} - \mathbf{v}_W$ is in W^{\perp} .

Solution:

$$\mathbf{v} - \mathbf{v}_W = \begin{pmatrix} 2\\0\\1\\1\\-1 \end{pmatrix} - \frac{1}{10} \begin{pmatrix} 10\\-1\\12\\3\\6 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 10\\1\\-2\\7\\-16 \end{pmatrix}$$
$$\mathbf{A}^T (\mathbf{v} - \mathbf{v}_W) = \frac{1}{10} \begin{pmatrix} 1&1&1&1&1\\1&2&-1&-2&0\\1&-1&1&-1&0 \end{pmatrix} \begin{pmatrix} 10\\1\\-2\\7\\16 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}.$$

This shows that $(\mathbf{v} - \mathbf{v}_W)$ is in the nullspace of \mathbf{A}^T , which is W^{\perp} .

This exercise demonstrated the fact that every vector \mathbf{v} in \mathbb{R}^5 can be written as $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_W^{\perp}$, for some \mathbf{v}_W in W and \mathbf{v}_W^{\perp} in W^{\perp} . In other words, $W + W^{\perp} = \mathbb{R}^5$.

5. Let $S = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$ where

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \ \mathbf{u_2} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{u_3} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ \text{and} \ \mathbf{u_4} = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}.$$

(a) Check that S is an orthogonal basis for \mathbb{R}^4 .

Solution: Let
$$\mathbf{U} = \begin{pmatrix} 1 & 1 & -1 & -2 \\ 2 & 1 & 1 & 1 \\ 2 & -1 & -1 & 1 \\ -1 & 1 & -1 & 2 \end{pmatrix}$$
. Then

$$\mathbf{U}^T \mathbf{U} = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 10 \end{pmatrix}.$$

Hence, S is an orthogonal set. Since it is an orthogonal set of nonzero vectors, it is linearly independent. Moreover it contains 4 vectors so it is a basis of \mathbb{R}^4 . Alternatively, since the product $\mathbf{U}^T\mathbf{U}$ is invertible, \mathbf{U} is invertible. Hence the columns form a basis for \mathbb{R}^4 .

(b) Is it possible to find a nonzero vector \mathbf{w} in \mathbb{R}^4 such that $S \cup \{\mathbf{w}\}$ is an orthogonal set?

Solution: No. This is because if **w** were to exist, then $S \cup \{\mathbf{w}\}$ would be a linearly independent set in \mathbb{R}^4 containing 5 vectors. This is a contradiction.

Alternatively, from Tutorial 4 Question 6, \mathbf{w} must be in the nullspace of U. However, U is invertible so its nullspace is the trivial subspace and $\mathbf{w} = \mathbf{0}$. This shows that there can be no nonzero vector that is orthogonal to the set S.

(c) Obtain an orthonormal set T by normalizing $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}$.

Solution: From (a) we know that $||\mathbf{u}_1||^2 = 10$, $||\mathbf{u}_2||^2 = 4$, $||\mathbf{u}_3||^2 = 4$, and $||\mathbf{u}_4||^2 = 10$. Therefore

$$T = \left\{ \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\2\\2\\-1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1\\1\\-1\\-1 \end{pmatrix}, \frac{1}{\sqrt{10}} \begin{pmatrix} -2\\1\\1\\2 \end{pmatrix} \right\}.$$

(d) Let $\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$. Find $[\mathbf{v}]_S$ and $[\mathbf{v}]_T$.

Solution: We have

$$\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{v} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{v} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3 + \frac{\mathbf{v} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4,$$

which means that

$$[\mathbf{v}]_S = \begin{pmatrix} \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \\ \frac{\mathbf{v} \cdot \mathbf{u}_2}{\mathbf{v}_2 \cdot \mathbf{u}_2} \\ \frac{\mathbf{v} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_4} \\ \frac{\mathbf{v} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \end{pmatrix} = \begin{pmatrix} 3/10 \\ 1/2 \\ -1 \\ 9/10 \end{pmatrix}.$$

Let

$$\mathbf{u}_1' = \frac{1}{\sqrt{10}} \begin{pmatrix} 1\\2\\2\\-1 \end{pmatrix}, \mathbf{u}_2' = \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}, \mathbf{u}_3' = \frac{1}{2} \begin{pmatrix} -1\\1\\-1\\-1 \end{pmatrix}, \mathbf{u}_4' = \frac{1}{\sqrt{10}} \begin{pmatrix} -2\\1\\1\\2 \end{pmatrix}.$$

Then

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1')\mathbf{u}_1' + (\mathbf{v} \cdot \mathbf{u}_2')\mathbf{u}_2' + (\mathbf{v} \cdot \mathbf{u}_3')\mathbf{u}_3' + (\mathbf{v} \cdot \mathbf{u}_4')\mathbf{u}_4',$$

which means that

$$[\mathbf{v}]_T = \begin{pmatrix} \mathbf{v} \cdot \mathbf{u}_1' \\ \mathbf{v} \cdot \mathbf{u}_2' \\ \mathbf{v} \cdot \mathbf{u}_3' \\ \mathbf{v} \cdot \mathbf{u}_4' \end{pmatrix} = \begin{pmatrix} 3/\sqrt{10} \\ 1 \\ -2 \\ 9/\sqrt{10} \end{pmatrix}.$$

(e) Suppose
$$\mathbf{w}$$
 is a vector in \mathbb{R}^4 such that $[\mathbf{w}]_S = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$. Find $[\mathbf{w}]_T$.

Solution: Note that $\mathbf{u}_i' = \frac{\mathbf{u}_i}{||\mathbf{u}_i||}$, and so

$$\begin{split} \mathbf{w} &= \frac{\mathbf{w} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \frac{\mathbf{w} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} \mathbf{u}_3 + \frac{\mathbf{w} \cdot \mathbf{u}_4}{\mathbf{u}_4 \cdot \mathbf{u}_4} \mathbf{u}_4 \\ &= \left(\frac{\mathbf{w} \cdot \mathbf{u}_1}{||\mathbf{u}_1||} \right) \frac{\mathbf{u}_1}{||\mathbf{u}_1||} + \left(\frac{\mathbf{w} \cdot \mathbf{u}_2}{||\mathbf{u}_2||} \right) \frac{\mathbf{u}_2}{||\mathbf{u}_2||} + \left(\frac{\mathbf{w} \cdot \mathbf{u}_3}{||\mathbf{u}_3||} \right) \frac{\mathbf{u}_3}{||\mathbf{u}_3||} + \left(\frac{\mathbf{w} \cdot \mathbf{u}_4}{||\mathbf{u}_4||} \right) \frac{\mathbf{u}_4}{||\mathbf{u}_4||} \\ &= \left(\frac{\mathbf{w} \cdot \mathbf{u}_1}{||\mathbf{u}_1||} \right) \mathbf{u}_1' + \left(\frac{\mathbf{w} \cdot \mathbf{u}_2}{||\mathbf{u}_2||} \right) \mathbf{u}_2' + \left(\frac{\mathbf{w} \cdot \mathbf{u}_3}{||\mathbf{u}_3||} \right) \mathbf{u}_3' + \left(\frac{\mathbf{w} \cdot \mathbf{u}_4}{||\mathbf{u}_4||} \right) \mathbf{u}_4' \end{split}$$

Let $[\mathbf{w}]_S(i)$ and $[\mathbf{w}]_T(i)$ denote the *i*-th coordinate of $[\mathbf{w}]_S$ and $[\mathbf{w}]_T$, respectively. Then, we have

$$[\mathbf{w}]_S(i) = \frac{\mathbf{w} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} = \frac{\mathbf{w} \cdot \mathbf{u}_i}{||\mathbf{u}_i||^2} = \frac{1}{||\mathbf{u}_i||} \frac{\mathbf{w} \cdot \mathbf{u}_i}{||\mathbf{u}_i||} = \frac{1}{||\mathbf{u}_i||} [\mathbf{w}]_T(i).$$

And so
$$[\mathbf{w}]_T = \begin{pmatrix} \sqrt{10} \\ 4 \\ 2 \\ \sqrt{10} \end{pmatrix}$$
.

Extra problems

- 1. Let **A** be an $m \times n$ matrix.
 - (a) Show that the nullspace of \mathbf{A} is equal to the nullspace of $\mathbf{A}^T \mathbf{A}$.

Solution: We will prove the equality by showing that $\text{Null}(\mathbf{A}) \subseteq \text{Null}(\mathbf{A}^T \mathbf{A})$ and $\text{Null}(\mathbf{A}^T \mathbf{A}) \subseteq \text{Null}(\mathbf{A})$.

Suppose **u** is in the nullspace of **A**, that is, $\mathbf{A}\mathbf{u} = \mathbf{0}$. By premultiplying both sides by \mathbf{A}^T , we get

$$\mathbf{A}^T \mathbf{A} = \mathbf{A}^T \mathbf{0} = \mathbf{0}.$$

Hence **u** is in the nullspace of $\mathbf{A}^T \mathbf{A}$ too. This shows that $\text{Null}(\mathbf{A}) \subseteq \text{Null}(\mathbf{A}^T \mathbf{A})$.

Conversely, suppose \mathbf{v} is in the nullspace of $\mathbf{A}^T \mathbf{A}$, that is, $\mathbf{A}^T \mathbf{A} \mathbf{v} = \mathbf{0}$. Write

$$\mathbf{A}\mathbf{v} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$
 By premultiplying both sides by \mathbf{v}^T , we get

$$0 = \mathbf{v}^T \mathbf{0} = \mathbf{v}^T \mathbf{A}^T \mathbf{A} \mathbf{v} = (\mathbf{A} \mathbf{v})^T (\mathbf{A} \mathbf{v})$$
$$= b_1^2 + b_2^2 + \dots + b_m^2.$$

This implies $b_i = 0$ for i = 1, 2, ..., m, and hence, $\mathbf{A}\mathbf{v} = \mathbf{0}$, that is, \mathbf{v} is in the nullspace of \mathbf{A} . This shows that $\mathrm{Null}(\mathbf{A}^T\mathbf{A}) \subseteq \mathrm{Null}(\mathbf{A})$.

(b) Show that $\operatorname{nullity}(\mathbf{A}) = \operatorname{nullity}(\mathbf{A}^T \mathbf{A})$ and $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T \mathbf{A})$.

Solution: By (a),

$$\operatorname{nullity}(\mathbf{A}) = \dim(\operatorname{Null}(\mathbf{A})) = \dim(\operatorname{Null}(\mathbf{A}^T\mathbf{A})) = \operatorname{nullity}(\mathbf{A}^T\mathbf{A})$$

Now $\mathbf{A}^T \mathbf{A}$ is a $n \times n$ matrix. By the dimension theorem,

$$rank(\mathbf{A}^T \mathbf{A}) = n - nullity(\mathbf{A}^T \mathbf{A}) = n - nullity(\mathbf{A}) = rank(\mathbf{A}).$$

(c) Is it true that $\text{nullity}(\mathbf{A}) = \text{nullity}(\mathbf{A}\mathbf{A}^T)$? Justify your answer.

Solution: No. For example, let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

(d) Is it true that $rank(\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^T)$? Justify your answer.

Solution: Yes. Replace **A** with \mathbf{A}^T in (b), we have

$$rank(\mathbf{A}) = rank(\mathbf{A}^T) = rank((\mathbf{A}^T)^T \mathbf{A}^T) = rank(\mathbf{A}\mathbf{A}^T).$$

2. Let **A** and **B** be two matrices of the same size. Show that

$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B}).$$

Solution: Write $\mathbf{A} = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$ and $\mathbf{B} = (\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n)$, where \mathbf{a}_i and \mathbf{b}_i are the *i*-th column of \mathbf{A} and \mathbf{B} , respectively, for $i = 1, \ldots, n$. Then

$$\mathbf{A} + \mathbf{B} = (\mathbf{a}_1 + \mathbf{b}_1 \ \mathbf{a}_2 + \mathbf{b}_2 \ \cdots \ \mathbf{a}_n + \mathbf{b}_n)$$
.

Now for each i = 1, 2, ..., n, $\mathbf{a}_i + \mathbf{b}_i \in \operatorname{Col}(\mathbf{A}) + \operatorname{Col}(\mathbf{B})$ since $\operatorname{Col}(\mathbf{A}) + \operatorname{Col}(\mathbf{B}) = \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n, \mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$. Hence,

$$Col(\mathbf{A} + \mathbf{B}) = span\{\mathbf{a}_1 + \mathbf{b}_1, \mathbf{a}_2 + \mathbf{b}_2, ..., \mathbf{a}_n + \mathbf{b}_n\}$$

$$\subseteq Col(\mathbf{A}) + Col(\mathbf{B})$$

Therefore

$$\begin{aligned} \operatorname{rank}(\mathbf{A} + \mathbf{B}) &= \operatorname{dim}(\operatorname{Col}(\mathbf{A} + \mathbf{B})) \\ &\leq \operatorname{dim}(\operatorname{Col}(\mathbf{A})) + \operatorname{dim}(\operatorname{Col}(\mathbf{B})) - \operatorname{dim}(\operatorname{Col}(\mathbf{A}) \cap \operatorname{Col}(\mathbf{B})) \\ &\leq \operatorname{dim}(\operatorname{Col}(\mathbf{A})) + \operatorname{dim}(\operatorname{Col}(\mathbf{B})) \\ &= \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B}). \end{aligned}$$

3. (a) Let W be a subspace of \mathbb{R}^n . Prove that the orthogonal complement of the orthogonal complement of W is W, i.e.

$$(W^{\perp})^{\perp} = W.$$

Solution: Let **w** be a vector in W. Then by definition of the orthogonal complement W^{\perp} , every vector $\mathbf{v} \in W^{\perp}$ is orthogonal to \mathbf{w} , $\mathbf{w} \cdot \mathbf{v} = 0$. Hence, $\mathbf{w} \perp W^{\perp}$. This shows that **w** is in the orthogonal complement of W^{\perp} , that is, $W \subseteq (W^{\perp})^{\perp}$.

Now suppose **w** is a vector in $(W^{\perp})^{\perp}$. Write

$$\mathbf{w} = \mathbf{w}_p + \mathbf{w}_n,$$

where \mathbf{w}_p is the projection of \mathbf{w} onto W and $\mathbf{w}_n \perp W$; that is $\mathbf{w}_n = \mathbf{w} - \mathbf{w}_p \in W^{\perp}$. By assume, \mathbf{w} is orthogonal to W^{\perp} , that is, $\mathbf{w} \cdot \mathbf{v} = 0$ for all $\mathbf{v} \in W^{\perp}$. In particular, $\mathbf{w} \cdot \mathbf{w}_n = 0$. So,

$$0 = \mathbf{w}_n \cdot (\mathbf{w}_p + \mathbf{w}_n) = \mathbf{w}_n \cdot \mathbf{w}_p + \mathbf{w}_n \cdot \mathbf{w}_n = \mathbf{w}_n \cdot \mathbf{w}_n,$$

where the last equality follows from the fact that $\mathbf{w}_n \cdot \mathbf{w}_p = 0$. This shows that $\mathbf{w}_n = \mathbf{0}$, and hence $\mathbf{w} = \mathbf{w}_p$, that is, $\mathbf{w} \in W$. This shows that $(W^{\perp})^{\perp} \subseteq W$.

Alternative solution to the second half of the proof. Suppose **w** is a vector in $(W^{\perp})^{\perp}$. We write

$$\mathbf{w} = \mathbf{w}_p + \mathbf{w}_n,$$

where \mathbf{w}_p is the projection of \mathbf{w} onto W and $\mathbf{w}_n \perp W$. Now \mathbf{w}_p lies in $W \subseteq (W^{\perp})^{\perp}$. Since $(W^{\perp})^{\perp}$ is a subspace, $\mathbf{w}_n = \mathbf{w} - \mathbf{w}_p \in (W^{\perp})^{\perp}$. Hence $\mathbf{w}_n \in W^{\perp} \cap (W^{\perp})^{\perp}$. The intersection $W^{\perp} \cap (W^{\perp})^{\perp}$ is the zero subspace so $\mathbf{w}_n = \mathbf{0}$ and $\mathbf{w} = \mathbf{w}_p \in W$. This shows that $(W^{\perp})^{\perp} \subseteq W$.

(b) Show that for any matrix \mathbf{A} , the column space of \mathbf{A} is the orthogonal complement of the nullspace of \mathbf{A}^T ,

$$\operatorname{Col}(\mathbf{A})^{\perp} = \operatorname{Null}(\mathbf{A}^T),$$

or equivalently, the row space of A is the orthogonal complement of the nullspace of A,

$$\operatorname{Row}(\mathbf{A})^{\perp} = \operatorname{Null}(\mathbf{A}).$$

Solution: Write $\mathbf{A} = (\mathbf{a}_1 \cdots \mathbf{a}_n)$, where \mathbf{a}_i is the *i*-th column of \mathbf{A} , for i = 1, ..., n. Then $\text{Col}(\mathbf{A}) = \text{span}\{\mathbf{a}_1, ..., \mathbf{a}_n\}$. Hence, the result follows from

$$\mathbf{w} \in \operatorname{Col}(\mathbf{A})^{\perp} \iff \mathbf{a}_{i} \cdot \mathbf{w} = 0 \quad \text{ for all } i = 1, ..., n$$

$$\Leftrightarrow \mathbf{a}_{i}^{T} \mathbf{w} = 0 \quad \text{ for all } i = 1, ..., n$$

$$\Leftrightarrow \begin{pmatrix} \mathbf{a}_{1}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T} \end{pmatrix} \mathbf{w} = \mathbf{0} \quad \Leftrightarrow \quad \begin{pmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{n} \end{pmatrix}^{T} \mathbf{w} = \mathbf{0}$$

$$\Leftrightarrow \mathbf{A}^{T} \mathbf{w} = \mathbf{0}$$

$$\Leftrightarrow \mathbf{w} \in \operatorname{Null}(\mathbf{A}^{T}).$$