Convergence

Cliff Sun

March 21, 2024

Definition 0.1. Let $I \subseteq \mathbb{R}$ be an interval, f(x) be a function on I, and $f_n(x)$ be a sequence of functions on I. Then we say that $f_n(x)$ converges to f(X) pointwisely on I if and only if for any $x_0 \in I$

$$\lim_{m \to \infty} f_m(x_0) = f(x_0) \tag{1}$$

Applying to the Fourier Series, we see that

Definition 0.2. $\sum_{nodd} \frac{4}{n\pi} \sin(\frac{n\pi x}{l})$ converges to 1 on (0,l) <u>pointwisely</u>

However, it's difficult to check pointwise convergence for this function, since you'd have to check an infinite amount of points. Thus, we propose this new method of check convergence:

Definition 0.3. We define $f_m \to f \iff \lim_{m \to \infty} |f_m - f| = 0$

However, in order to this, we must have a notion of distance to measure the distance between f_m and f. For this problem, we define something called the sup norm distance.

Definition 0.4. Let $I \subseteq R$ be an interval, and f(x) and g(x) be functions on I. Then the sup norm distance between f and g on I is given by the following:

$$sup_{x \in I}|f(x) - g(x)| \tag{2}$$

In this case, the sup represents the maximum, so this represents the maximum of the distance between the functions.

Using this definition, choosing some $\epsilon \in \mathbb{R}$, and that $\sup |f(x) - g(x)| < \epsilon$, then that implies that g(x) is trapped in an interval of $[f(x) - \epsilon, f(x) + \epsilon]$ for x in I. Then we say that

Definition 0.5. f_m <u>uniformly converges</u> to f(x) on $I \iff \lim_{m \to \infty} \sup_{x \in I} |f_m(x) - f(x)| = 0$ for all $x \in I$