WHAT IS CLAIMED IS:

1	1. A prosthesis for placement at an os opening from a main body lumen			
2	to a branch body lumen; said prosthesis comprising:			
3	a radially expansible scaffold; and			
4	at least two circumferential anchors extending axially from an end of the			
5	scaffold, said anchors adapted to extend axially into and expandably circumscribe at least			
6	one-half of the main vessel wall when the scaffold is implanted in the branch lumen with said			
7	one end adjacent the os.			
1	2. A prosthesis as in claim 1, comprising at least three circumferential			
2	anchors extending axially from the end of the scaffold.			
1	3. A prosthesis as in claim 1, wherein the anchors have an axial length			
2	which is at least 1.5 times the width of the scaffold prior to radial expansion.			
1	4. A prosthesis as in claim 1, wherein the anchors have an axial length of			
2	at least 2 mm.			
1	5. A prosthesis as in claim 1, wherein the scaffold comprises a plurality			
2	of axially adjacent cells.			
1	6. A prosthesis as in claim 1, wherein the circumferential anchors are all			
2	congruent.			
1	7. A prosthesis as in claim 1, wherein the circumferential anchors will			
2	radially expand when the scaffold is radially expanded.			
1	8. A prosthesis as in claim 1, wherein the circumferential anchors are			
2	adapted to both bend and rotate relative to a control axis of the prosthesis.			
,	9. A prosthesis as in claim 1, further comprising a radiopaque marker at			
1	9. A prosthesis as in claim 1, further comprising a radiopaque marker at or near a transition location between the scaffold and the circumferential anchors.			
2	of hear a transition location between the scarloid and the circumferential anchors.			
1	10. A prosthesis as in claim 1, mounted on a balloon wherein the balloon			
2	has a radiopaque marker aligned with a transition location between the scaffold and the			
3	circumferential anchors.			

1		11.	A method for deploying a prosthesis across an os opening from a main	
2	body lumen to a branch body lumen, said method comprising:			
3	positioning the prosthesis so that a scaffold lies within the branch body and at			
4	least two circumferential anchors extend into the main body lumen;			
5		radiall	y expanding the scaffold to implant said scaffold in the branch body	
6	lumen; and			
7		circum	aferentially deforming the anchors to circumscribe at least a portion of	
8	the main vessel wall and open a passage through the anchors.			
1		12.	A method as in claim 11, wherein at least three circumferential anchors	
2	extend into the	e main 1		
1		13.	A method as in claim 11, wherein positioning the prosthesis comprises	
2	alianina a visi		ker on at least one of the prosthesis and a delivery balloon with the os.	
2	angining a visi	DIC IIIai	ket on at least one of the prostnesis and a derivery bulloon with the os.	
1		14.	A method as in claim 11, wherein the lumens are blood vessels.	
1		15.	A method as in claim 11, wherein the scaffold is expanded with a	
2	balloon expanded within the scaffold.			
1		16.	A method as in claim 15, wherein the anchors are deformed by	
2	expanding a balloon positioned transversely through the anchors.			
	1 0	•		
1		17.	A method as in claim 16, wherein the scaffold and anchors are	
2	expanded and deformed by the same balloon.			
1		18.	A method as in claim 16, wherein the scaffold and anchors are	
2	expanded and deformed by different balloons.			
1		19.	A method as in claim 11, further comprising deploying a second	
2	prosthesis with		passage through the anchors.	
	F			
1		20.	A method as in claim 19, wherein the second prosthesis is deployed by	
2	a balloon catho	eter exc	changed over a guidewire pre-positioned for deformation of the anchors.	
1		21.	A method as in claim 19, wherein the anchors are deformed by	
2	deployment of the second prosthesis.			

- 1 22. A method as in claim 19, wherein the deployed second stent supports
- 2 the anchors over their lengths from the os over the main body lumen wall.