Class 7: Machine Learning

Chloe Wong (PID: A16893383)

Today we are going to learn how to apply different machine learning methods, beginning with clustering:

The goal here is to find groups/clusters in your input data.

First I will make up some data with clear groups. For this I will use the rnorm() function:

rnorm(10)

```
hist(rnorm(10000, mean = 3))
```

Histogram of rnorm(10000, mean = 3)


```
n <- 10000
x <- c(rnorm(n, -3), rnorm(n, +3))
hist(x)</pre>
```

Histogram of x


```
n <- 30
x <- c(rnorm(n, -3), rnorm(n, +3))
y <- rev(x)

z <- cbind(x,y)
head(z)</pre>
```

```
x y
[1,] -2.723726 2.169675
[2,] -2.024667 3.405520
[3,] -1.741238 2.131105
[4,] -4.361547 2.507584
[5,] -2.667583 5.102311
[6,] -5.318701 3.031132
```

```
plot(z)
```


Use the kmeans() function setting k to 2 and nstart=20

Inspect/print the results

- Q. How many points are in each cluster? There are 60 points in each cluster.
- Q. What 'component' of your result object details cluster size? cluster assignment/membership? cluster center? Answered below.
- Q. Plot x colored by the kmeans cluster assignment and add cluster centers as blue points. Answered below.

```
km <- kmeans(z, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 -3.125852 3.408706 2 3.408706 -3.125852

Clustering vector:

Within cluster sum of squares by cluster:

[1] 65.44407 65.44407

(between_SS / total_SS = 90.7 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

Results in kmeans object km

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Cluster size?

km\$size

[1] 30 30

Cluster Assignment/membership?

km\$cluster

Cluster center?

km\$centers

```
x y
1 -3.125852 3.408706
2 3.408706 -3.125852
```

Q. Plot x colored by the kmeans cluster assignment and add cluster centers as blue points.

```
plot(z, col= "red")
```


R will re-cycle the shorter color vector to be the same length as the longer number od data points) in z

```
plot(z, col= c("red","blue"))
```


plot(z, col=c(1,2))


```
plot(z, col=km$cluster)
points(km$centers, col = "blue", pch = 15, cex = 3)
```


Q. Can you run kmeans and ask for 4 clusters please and plot the results like we have done above?

```
km4 <- kmeans(z, centers = 4)
plot(z, col=km4$cluster)
points(km4$centers, col = "blue", pch = 15, cex = 3)</pre>
```


##Hierarchical Clustering

Let's tke our same made-up data ${\bf z}$ and see how h clust works.

First we need a distance matrix of our data to be clustered.

```
d <- dist(z)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

 $\begin{array}{lll} \hbox{\tt Cluster method} & : & \hbox{\tt complete} \\ \hbox{\tt Distance} & : & \hbox{\tt euclidean} \end{array}$

Number of objects: 60

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

I can get my cluster membership vector by "cutting the tree" with the ${\tt cutree}$ () function like so:

```
grps <- cutree(hc, h=8)
grps</pre>
```

Can you plot z colored by our hclust results:

```
plot(z, col=grps)
```


$\#\#\mathrm{PCA}$ of UK food data

Read data from the UK on food consumption in different parts of the UK

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


A so-called "Pairs" plot can be useful for small datasets like this one

pairs(x, col=rainbow(10), pch=16)

It is hard to see structure and trends in even this small data-set. How will we ever do this when we have big datasets with 1,000s or 10s of thousands of things we are measuring...

PCA to the resure

Let's see how PCA deals with this dataset. So main function in base R to do PCA is called prcomp()

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 3.176e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

Let's see what is inside this pca object that we created from running prcomp()

```
attributes(pca)
```

\$names

```
[1] "sdev" "rotation" "center" "scale" "x"
```

\$class

[1] "prcomp"

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

```
plot(pca$x[,1], pca$x[,2],
  col=c("black", "red", "blue", "darkgreen"), pch=16,
  xlab="PC1 (67.4%)", ylab="PC2 (29%)")
```


Lets focus on PC1 as it accounts for >90% of variance

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

