Input/Output			
Pinmode	pinMode(<pin>, INPUT/OUTPUT)</pin>	pinMode(21, INPUT);	
	DDRx (x = Port) Bit auf 0: INPUT, 1: OUTPUT	DDRB = (1 << DDB3); DDRB &= ~(1 << DDB3);	
Output (write)	digitalWrite(<pin>)</pin>	digitalWrite(21);	
	Wenn Pin auf OUTPUT: PORTx = 1 (HIGH) 0 (LOW)	PORTB = (1 << P3);	
Input (read)	Wenn Pin auf INPUT: PINx = 1 (HIGH) 0 (LOW)	if (PINB & (1 << PINB3)) { }	

Einzelne Bits adressieren: Manual Seite 96

PORT: Px<0-7>
DDR: DDx<0-7>
PIN: PINx<0-7>

Interrupts

Global aktivieren	sei()	
	SREG = (1 << 7);	Manual Seite 13
Global deaktivieren	cli()	
	SREG &= ~(1 << 7);	
Spezielle Interrupts	EIMSK = (1 << INTx)	EIMSK = (1 << INT5);
aktivieren/deaktivieren		Manual Seite 111
Interrupt Flags	EIFR Register	Manual Seite 112
Steigende, oder	INT 0-3: EICRA	Manual Seite 110
fallende Flanke?	INT 4-7: EICRB	EICRB = (1 << ISC40) (1 << ISC41)
		In diesem Fall steigende Flanke für INT4
ISR definieren	ISR(vector) { }	ISR(INTO_vect) { }
Interrupt mit Arduino Library	attachInterrupt(<quelle>, <isr name="">, <mode>)</mode></isr></quelle>	attachInterrupt(digitalPinToInterrupt(21), count, RISING);
		//count ist eine definierte Funktion

Verschiedene Interrupt-Vektoren für ISR:

INTO_vect // externer Interrupt 0

TIMER4_COMPA_vect // Timer 4 hat Vergleichswert in OCR4A erreicht

TIMER4_OVF_vect // Timer 4 ist übergelaufen

Timer (n ist der jeweilige Timer)				
Pulsweitenmodulation	TCCRnA	TCCR3A = 0x00;		
Prescaler setzen und Timer starten	TCCRnB	TCCR3B = 0x00; TCCR3B = (1 << CS30) (1 << CS32);		
		// Prescaler auf 16 (Wenn man keinen Prescaler benutzt, muss auch ein Bit gesetzt werden!!!) Manual Seite 157		
Aktueller Zählerstand	TCNTn	TCNT4 = 0x00;		
Output Compare Register	OCRnA OCRnB	OCR4A = 62500; ISR(TIMER4_COMPA_vect) { }		
	OCRnC	ISR wird aufgerufen, wenn Timer 62500 erreicht		
Wert für Input Capture	ICRn			
Timer Interrupts aktivieren	TIMSKn	TIMSK4 = (1 << OCIE4A); Manual Seite 161f.		
Einzelne Interrupt Flags für Timer	TIFRn			
PWM-Modus (Pulsweitemodulation)	WGMn0 und WGMn3 in TCCRnA und TCCRnB konfigurieren	Manual Seite 145		
Output Compare Pins für PWM	OCnX (X = A, B oder C) n ist Nummer des Timers	In OCRnX wird jeweils der Schwellwert gesetzt, der PWM-Ausgang OCnX beeinflusst (z.B. OCRnB für OCnB)		
PWM Signal erzeigen (Arduino)	analogWrite(<pin>, <duty cycle="">)</duty></pin>			