Day42 SRL House Price Prediction Project

July 11, 2025

Simple Linear Regression: House Price Prediction Project

Project Description

This project uses **Simple Linear Regression** to predict house prices based on the **square footage of living area** (**sqft_living**) using a real dataset.

We'll go through:

- Data loading and exploration
- Feature selection
- Visualizing the relationship
- Training a Linear Regression model
- Evaluating model performance
- Making predictions on unseen data

Objective

Build a regression model to understand the relationship between square footage and price, and use it to predict prices for new, unseen homes.

1 Import Required Libraries

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from sklearn.linear_model import LinearRegression
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import mean_squared_error, r2_score
```

2 Load the Dataset

We are loading the dataset from the given path using pandas.read_csv() and displaying the first few rows using df.head().

```
[2]: df = pd.read_csv(r"D:\Assignment Practice\M3\08 July\08 July\7th- slr\SLR -

→House price prediction\House_data.csv")

df.head()
```

```
[2]:
                                           price
                 id
                                 date
                                                  bedrooms
                                                             bathrooms
                                                                         sqft_living \
        7129300520
                     20141013T000000
                                        221900.0
                                                                   1.00
                                                                                 1180
                                                          3
                                        538000.0
                                                          3
                                                                   2.25
     1
        6414100192
                     20141209T000000
                                                                                 2570
        5631500400
                     20150225T000000
                                        180000.0
                                                          2
                                                                   1.00
                                                                                  770
     3 2487200875
                     20141209T000000
                                        604000.0
                                                          4
                                                                   3.00
                                                                                 1960
       1954400510
                     20150218T000000
                                        510000.0
                                                          3
                                                                   2.00
                                                                                 1680
        sqft_lot
                   floors
                            waterfront
                                         view
                                                  grade
                                                          sqft_above
                                                                       sqft_basement
     0
             5650
                      1.0
                                     0
                                            0
                                                       7
                                                                 1180
            7242
                      2.0
                                     0
                                                       7
                                                                                  400
     1
                                            0
                                                                 2170
     2
           10000
                      1.0
                                     0
                                            0
                                                                  770
                                                                                    0
                                                       6
     3
             5000
                      1.0
                                     0
                                            0
                                                       7
                                                                 1050
                                                                                  910
                                            0
     4
            8080
                      1.0
                                      0
                                                       8
                                                                 1680
                                                                                    0
                                                                sqft_living15
        yr_built
                   yr_renovated
                                  zipcode
                                                lat
                                                         long
     0
             1955
                               0
                                    98178
                                            47.5112 -122.257
                                                                         1340
     1
             1951
                            1991
                                    98125
                                            47.7210 -122.319
                                                                         1690
     2
             1933
                               0
                                    98028
                                            47.7379 -122.233
                                                                         2720
     3
             1965
                               0
                                    98136
                                            47.5208 -122.393
                                                                         1360
     4
             1987
                               0
                                    98074 47.6168 -122.045
                                                                         1800
        sqft_lot15
     0
               5650
               7639
     1
     2
               8062
     3
               5000
               7503
```

[5 rows x 21 columns]

3 Understand the Data

info() gives an overview of column types and non-null counts.

[3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21613 non-null	int64
1	date	21613 non-null	object
2	price	21613 non-null	float64
3	bedrooms	21613 non-null	int64
4	bathrooms	21613 non-null	float64
5	${ t sqft_living}$	21613 non-null	int64
6	sqft_lot	21613 non-null	int64

```
7
    floors
                   21613 non-null float64
 8
    waterfront
                   21613 non-null
                                   int64
 9
                   21613 non-null
                                   int64
    view
 10 condition
                   21613 non-null
                                   int64
    grade
 11
                   21613 non-null
                                  int64
 12 sqft_above
                   21613 non-null int64
 13 sqft_basement 21613 non-null int64
    yr_built
 14
                   21613 non-null int64
 15 yr_renovated
                   21613 non-null int64
                   21613 non-null int64
 16
    zipcode
 17
    lat
                   21613 non-null float64
 18
    long
                   21613 non-null float64
 19 sqft_living15 21613 non-null int64
 20 sqft_lot15
                   21613 non-null int64
dtypes: float64(5), int64(15), object(1)
```

memory usage: 3.5+ MB

describe() gives statistical summary of numerical features.

[4]: df.describe()

[4]:		id	price	bedrooms	bathrooms	$sqft_living$	\
	count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000	
	mean	4.580302e+09	5.401822e+05	3.370842	2.114757	2079.899736	
	std	2.876566e+09	3.673622e+05	0.930062	0.770163	918.440897	
	min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	
	25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	
	50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	
	75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	
	max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	
		sqft_lot	floors	waterfront	view	condition	\
	count	2.161300e+04	21613.000000	21613.000000	21613.000000	21613.000000	
	mean	1.510697e+04	1.494309	0.007542	0.234303	3.409430	
	std	4.142051e+04	0.539989	0.086517	0.766318	0.650743	
	min	5.200000e+02	1.000000	0.000000	0.000000	1.000000	
	25%	5.040000e+03	1.000000	0.000000	0.000000	3.000000	
	50%	7.618000e+03	1.500000	0.000000	0.000000	3.000000	
	75%	1.068800e+04	2.000000	0.000000	0.000000	4.000000	
	max	1.651359e+06	3.500000	1.000000	4.000000	5.000000	
		grade	sqft_above	sqft_basement	<pre>yr_built</pre>	<pre>yr_renovated</pre>	\
	count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
	mean	7.656873	1788.390691	291.509045	1971.005136	84.402258	
	std	1.175459	828.090978	442.575043	29.373411	401.679240	
	min	1.000000	290.000000	0.000000	1900.000000	0.000000	
	25%	7.000000	1190.000000	0.000000	1951.000000	0.000000	
	50%	7.000000	1560.000000	0.000000	1975.000000	0.000000	

75%	8.000000	2210.000000	560.000000	1997.000000	0.000000
max	13.000000	9410.000000	4820.000000	2015.000000	2015.000000
	zipcode	lat	long	sqft_living15	sqft_lot15
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000
mean	98077.939805	47.560053	-122.213896	1986.552492	12768.455652
std	53.505026	0.138564	0.140828	685.391304	27304.179631
min	98001.000000	47.155900	-122.519000	399.000000	651.000000
25%	98033.000000	47.471000	-122.328000	1490.000000	5100.000000
50%	98065.000000	47.571800	-122.230000	1840.000000	7620.000000
75%	98118.000000	47.678000	-122.125000	2360.000000	10083.000000
max	98199.000000	47.777600	-121.315000	6210.000000	871200.000000

4 Select Features for Simple Linear Regression

We're using only one feature sqft_living to predict the house price, hence it's a Simple Linear Regression.

```
[5]: X = np.array(df['sqft_living']).reshape(-1, 1) # Independent variable
y = np.array(df['price']) # Dependent variable
```

- sklearn models expect X to be a 2D array \rightarrow shape (n_samples, n_features)
- .reshape(-1, 1) converts a 1D array to 2D
- -1 lets NumPy figure out the number of rows
- 1 means one feature (column)
- y can stay 1D it only contains target values.

5 Visualize the Relationship

A scatter plot helps to visualize whether there's a linear relationship between sqft_living and price.

```
[6]: plt.scatter(X, y, color='blue', alpha=0.5)
    plt.title("House Price vs. Square Feet Living")
    plt.xlabel("Square Feet Living")
    plt.ylabel("Price")
    plt.show()
```


6 Split the Data

We split the data into training and testing sets (80-20 split) so that we can evaluate the model's performance on unseen data.

```
[7]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_u \( \text{-random_state} = 42 \)
```

7 Build and Train the Model

We create a Linear Regression model and fit it using the training data.

```
[8]: model = LinearRegression()
model.fit(X_train, y_train)
```

[8]: LinearRegression()

8 Get Model Parameters

- Intercept (): The constant term it's the value of the price when sqft_living = 0.
- Coefficient (): The slope it tells how much the price increases for each additional square foot.

Equation of the model:

```
Predicted Price = b_0 + b_1 \times \text{sqft\_living}
```

```
[9]: print("Intercept (b):", model.intercept_)
print("Coefficient (b):", model.coef_[0])
```

Intercept (b): -42291.12839802564
Coefficient (b): 279.7397784623452

9 Predict and Evaluate the Model

- MSE measures average squared difference between actual and predicted values.
- R² Score tells how well the model explains the variation in the target variable.

9.1 Metrics

```
[11]: mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
```

```
[12]: print("Mean Squared Error:", mse)
print("R<sup>2</sup> Score:", r2)
```

Mean Squared Error: 76570251342.04109 R² Score: 0.4941006145983624

10 Plot the Regression Line

```
[13]: plt.scatter(X_test, y_test, color='blue', alpha=0.5, label="Actual")
    plt.plot(X_test, y_pred, color='red', linewidth=2, label="Regression Line")
    plt.title("Regression Line - House Price Prediction")
    plt.xlabel("Square Feet Living")
    plt.ylabel("Price")
    plt.legend()
    plt.show()
```


11 Predict on New (Unseen) Data

We use the trained model to predict house prices for unseen data points.

```
[14]: # Example: Predict price for 2000, 2500, and 3000 square feet
    new_sqft = np.array([[2000], [2500], [3000]])
    predicted_price = model.predict(new_sqft)

    for sqft, price in zip(new_sqft, predicted_price):
        print(f"Predicted price for {sqft[0]} sqft = ${price:,.2f}")

    Predicted price for 2000 sqft = $517,188.43
    Predicted price for 2500 sqft = $657,058.32
    Predicted price for 3000 sqft = $796,928.21
```

12 Conclusion

- We built a Simple Linear Regression model using sqft_living to predict house prices.
- Evaluated it using metrics like MSE and R².

	• Plotted the regression line and predicted new values.
[]:[