AdamW 完整的更新公式

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t - \eta \lambda heta_t$$

其中:

- θ_{t+1} : 下一次迭代的参数值。这是优化器在当前步骤更新后,模型将使用的新的权重或偏置。
- θ_t : 当前迭代的参数值
- η : 学习率(Leanning Rate)。它控制了模型在梯度方向上更新的步长。学习率越大,参数更新越快,但也可能导致训练不稳定;学习率越小,训练越稳定,但收敛速度可能变慢。
- λ : 权重衰减系数(Weight Decay Coefficient)。这个一个超参数,用于控制权重衰减的强度。 λ 越大,权重被推向零的力度越大,模型正则化效果越好。
- ϵ : 一个很小的常数,通常为 $\frac{1}{10^8}$. 它的作用是防止分母为零,从而提高数值稳定性。
- \hat{m}_t : 偏差修正后的一阶矩估计。它是一阶矩 m_t 经过偏差修正后的版本。
 - 。 $m_t=\beta_1 m_{t-1}+\left(1-\beta_1\right)g_t$: 一阶矩(First Moment)。它是梯度的指数移动平均,可以看作梯度的"动量".
 - 。 β_1 : 用于计算一阶矩的超参数,通常设置为 0.9。
 - 。 q_t : 原始损失函数对参数的梯度,在反向传播时已经计算出来。
- \hat{v}_t : 偏差修正后的二阶矩估计。它由二阶矩 v_t 经过偏差修正的得到。
 - 。 $v_t=\beta_2 v_{t-1}+\left(1-\beta_2\right)g_t^2$: 二阶矩 (Second Moment)。它是梯度平方的指数移动平均,用于估计梯度的方差。
 - 。 β_2 :用于计算二阶矩的超参数,通常设置为 0.999

偏差修正的含义

在 Adam 和 AdamW 优化器中,偏差修正(Bias Correction) 是一个关键步骤。

- **一阶矩偏差修正**: 在训练初期, m_t 的值会倾向于零,因为它从零开始初始化。 $\frac{1}{1-\beta_1^t}$ 这一修正项可以抵消这个偏差,确保 m_t 的估计值在训练初期就能准确反映梯度的真实平均值。
- **二阶矩偏差修正**: 同理, v_t 也会有类似的偏差,修正项 $\frac{1}{1-\beta_s^t}$ 同样能够纠正这一问题。

我们可以将 AdamW 的更新公式分解为两个主要部分:

• Adam 更新项:

$$-rac{\eta}{\sqrt{\hat{v}_t}+\epsilon}\hat{m}_t$$

权重衰减项:

这部分是 AdamW 优化器独有的,它独立于 Adam 更新项,直接将当前的参数值按比例减小,以实现正则化。

具体实现过程

初始化

设置如下超参数:

- η: 学习率,比如 0.0001。
- λ: 权重衰减系统,比如 0.01。
- β_1 : 计算一阶矩超参数,通常设置为 0.9。
- β_2 : 计算二阶矩超参数,通常设置为 0.999。
- ϵ : 小常数,防止分母为零。

还包含一些内部参数:

- t: 时间步,用于偏差修正,每次更新自动+1,初始为零。
- m_states: 存储各个可更新参数的一阶矩估计矩阵,形状与可更新参数矩阵一致。
- v_states: 存储各个可更新参数的二阶据估计矩阵,形状与可更新参数矩阵一致。

更新过程

在一次训练的反向传播之后,将需要将所有具有可学习参数层的权重参数、偏置参数(可选)、权重梯度、偏置梯度(可选) 传给 AdamW 进行梯度更新。

并且,更新权重参数和偏置参数都是逐元素更新,也就是对参数中的每个元素应用相同的计算方法。以下举例,我们只考虑其中一个元素的更新过程。

1. 计算偏差修正因子,这个计算与参数无关,所以可以预先计算:

$$t=t+1$$
 $bias_1=1.0-eta_1^t$ $bias_2=1.0-eta_2^t$

2. 权重衰减

首先要确保当前更新参数的 [m_states,v_states] 存在,并且与参数矩阵形状一致。这个过程可以在第一次更新的时候完成,不需要预先初始化。

注意,权重衰减通常只应用于权重,不应用于偏置。

计算公式:

$$heta_{temp} = heta_t - \eta \lambda heta_t$$

或者等价形式:

$$\theta_{temp} = \theta_t (1 - \eta \lambda)$$

实际计算时, θ_t 原地操作,所以 $\theta_t = \theta_{temp}$

3. 参数更新

首先取出缓存的上次更新的一阶矩动量 m_{t-1} 和二阶矩动量 v_{t-1} (对应于当前参数矩阵的当前元素),然后更新 m_t 和 v_t :

$$m_t = eta_1 m_{t-1} + \left(1 - eta_1
ight) g_t$$
 $v_t = eta_2 v_{t-1} + \left(1 - eta_2
ight) g_t^2$

将以上 m_t 和 v_t 更新到缓存中,以便下次使用。

偏差修正:

$$\hat{m}_t = rac{m_t}{1.0-eta_1^t} \ \hat{v}_t = rac{v_t}{1.0-eta_2^t}$$

最后的参数更新:

$$heta_{t+1} = heta_{temp} - \eta \left(rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
ight)$$

在更新偏置参数时,因为没有权重衰减,所以直接用 θ_t 替代 θ_{temp} 。最后将 θ_{t+1} 写入原参数即可。