Cálculo Vetorial

Integrais múltiplas, de linha e de superfície

raphael.tinarrage@fgv.br

https://raphaeltinarrage.github.io/

Página web do curso. Informações sobre a agenda e os deveres de casa podem ser encontradas em https://raphaeltinarrage.github.io/EMApCalculoVetorial.html

Bibliografia.		(
	Integral 1D	[Pin10, MHB11]	$[\mathrm{Spi}06,\mathrm{PCJ}12]$	[Gou20]
	Integral 2D & 3D	[PM09, SR17, CB22]	[MT12]	
	Para ir além		[KKS04, Gri13]	

Conteúdo

1	Integrais 1D - Lembrete de integração	2
2	Campos vetoriais - Definição e campos de gradiente	19
A	Notações	2 9
В	Indicações para os exercícios	2 9
\mathbf{C}	Referências	33

Conteúdo detalhado

1	Inte	grais 1	1D - Lembrete de integração	2
	1.1	Integra	al de Riemann	2
		1.1.1	Somas de Riemann	2
		1.1.2	Somas de Darboux	5
		1.1.3	Propriedades fundamentais	6
		1.1.4	Passagem ao limite sob o sinal de integral	7
	1.2	Técnic	cas de integração e integral imprópria	8
		1.2.1	Integração via primitiva	8
		1.2.2	Integração por substituição	9
		1.2.3	Integração por partes	9
		1.2.4	Integral imprópria	10
	1.3	Outras	s integrais	11
		1.3.1	Integral de Lebesgue	12
		1.3.2	Integral de Henstock-Kurzweil	14
	1.4	Exercí	ícios	17
		1.4.1	Integrais definidas	17
		1.4.2	Integrais impróprias	18
		1.4.3	Limites de integrais	19
2	Can	npos v	etoriais - Definição e campos de gradiente	19
_	2.1	_	rete sobre diferenciais	19
		2.1.1	Estrutura euclidiana	19
		2.1.2	Diferenciabilidade	20
		2.1.3	O gradiente	22
	2.2	Camp	os vetoriais	22
		2.2.1	Definição	22
		2.2.2	Problema de Cauchy	24
	2.3	Camp	os de gradiente	26
		2.3.1	Definição	26
		2.3.2	Campos conservativos	28
\mathbf{A}	Not	ações		29
В	Indi	icações	s para os exercícios	29
_		_	cios da seção 1	29
\mathbf{C}	Refe	erência	as	33

1 Integrais 1D - Lembrete de integração

1.1 Integral de Riemann

Em livros de cálculo, define-se a integral de Riemann a partir de somas de Riemann (e de Darboux) [KKS04, Spi06, Pin10, PCJ12], a partir de primitivas [MHB11] ou de funções simples [Gou20]. Começaremos com o primeiro ponto de vista, deduzindo logo o segundo (teorema fundamental do cálculo). O terceiro ponto de vista é melhor compreendido no contexto da integral de Lebesgue, que estudaremos no final desta seção.

1.1.1 Somas de Riemann

Sejam $a,b \in \mathbb{R}$ tal que a < b, e $f : [a,b] \to \mathbb{R}$ uma função numérica (não se supõe que seja contínua). Por integral de f, entendemos a área do subconjunto do plano \mathbb{R}^2 contido entre o segmento [a,b] e o gráfico $f([a,b]) = \{f(x) \mid x \in [a,b]\}$. Na teoria da integral de Riemann, esta é obtida por meio de aproximações sucessivas com retângulos (veja a figura 1). Para tanto, definimos uma **partição** de [a,b] como um conjunto de intervalos

$$\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [1, n]\}$$

onde n é um número inteiro, $t_1 = a$, $t_{n+1} = b$, e $t_i \le t_{i+1}$ para todo $i \in [1, n]$. Também definimos uma **partição pontilhada** como um conjunto de pares

$$\mathcal{P}_{p} = \{(x_{i}, [t_{i}, t_{i+1}]) \mid i \in [1, n]\}$$

onde $\{[t_i,t_{i+1}]\mid i\in \llbracket 1,n\rrbracket\}$ define uma partição de [a,b], e $x_i\in [t_i,t_{i+1}]$ para $i\in \llbracket 1,n\rrbracket.$

Definição 1.1. A soma de Riemann de uma função $f:[a,b] \to \mathbb{R}$ para uma partição pontilhada $\mathcal{P}_p = \{(x_i,[t_i,t_{i+1}]) \mid i \in [1,n]\}$ é definida como

$$S(f, \mathcal{P}_p) = \sum_{i=1}^n f(x_i)(t_{i+1} - t_i).$$

Espera-se que quanto mais "fina" a partição, melhor a aproximação da área. Isto é formalizado da seguinte forma. Seja $\epsilon > 0$ um número real. Dizemos que uma partição $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [\![1, n]\!]\}$ é ϵ -fina se $t_{i+1} - t_i \leq \epsilon$ para todo $i \in [\![1, n]\!]$. Similarmente, uma partição pontilhada \mathcal{P}_p é dita ϵ -fina se a partição \mathcal{P} subjacente for. No limite, obtém-se a definição original da integral de Riemann.

Definição 1.2. Dizemos que uma função $f:[a,b] \to \mathbb{R}$ é **Riemann-integrável**, ou simplesmente **integrável**, se existe um número real $\ell \in \mathbb{R}$ tal que para todo $\epsilon > 0$, existe um $\eta > 0$ tal que para toda partição pontilhada \mathcal{P}_{D} η -fina, temos

$$|S(f, \mathcal{P}_p) - \ell| < \epsilon.$$

Neste caso, o valor ℓ é único, é chamado de **integral** de f e é denotado $\int f$.

Notação 1.3. Se quisermos explicitar o intervalo de integração, escreveremos $\int_a^b f$ no lugar de $\int f$. A propósito, se f é integrável, então mostra-se que por todo intervalo $[x,y] \subset [a,b]$, a restrição de f a [x,y], denotada $f_{|[x,y]}$, também é integrável. Denotaremos sua integral $\int_x^y f$. Além disso, se quisermos explicitar a variável de integração, escreveremos $\int_a^b f(x) \, dx$. Por exemplo, poderemos escrever $\int_a^b (x^2 + x + 1) \, dx$.

Como consequência da definição, se f for integrável, então obtém-se a integral como o limite das somas de Riemann por qualquer sequência de partições pontilhadas η -finas com η indo para 0. Por exemplo, pode-se usar a n-subdivisão regular de [a, b]:

$$\mathcal{P} = \left\{ \left[a + (i-1) \cdot \frac{b-a}{n}, \ a+i \cdot \frac{b-a}{n} \right] \mid i \in [1, n] \right\},\tag{1}$$

e escolher, em cada um desses intervalos, o ponto x_i como sendo o meio do intervalo. Porém, a definição exige que o limite valha para toda sequência de partições pontilhadas. Exceto pelos exemplos simples a seguir, essa definição de integrabilidade é imprática, e preferiremos a baseada nas somas de Darboux (apresentada na seção 1.1.2), ou, melhor ainda, usando o arsenal clássico de técnicas de integração coletadas na seção 1.2.

Observação 1.4. Na verdade, podemos restringir a definição 1.2 apenas a partições regulares, como na equação (1) (veja [Ton01] para uma prova). Isso é feito de forma implícita em vários livros de cálculo, como [SR17]. Porém, não podemos restringir a partições regulares pontilhadas com o ponto médio (ou o ponto à esquerda, ou à direita, do intervalo). De fato, certas funções não Riemann-integráveis se tornariam integráveis para essa nova definição — um exemplo sendo a indicadora dos racionais, no exemplo 1.9.

Observação 1.5. Antes de Riemann, Cauchy já havia dado uma definição da integral semelhante à 1.2, com a diferença de que os pontos das partições eram escolhidos como o ponto à esquerda dos intervalos. Isto é, só considerava partições pontilhadas da forma

$$\mathcal{P}_{p} = \{(t_{i}, [t_{i}, t_{i+1}]) \mid i \in [1, n]\}.$$

Enfatizamos o fato de que ele considerava todas as partições, não apenas as regulares. Mostra-se então que a definição de Riemann e a de Cauchy são equivalentes, no caso de funções contínuas [Gil15], ou mais geralmente de funções limitadas [KPR62]. Porém, fora estes casos, podemos construir funções Cauchy-integráveis mas não Riemann-integráveis. Um exemplo é dado pela função $x \mapsto 1/\sqrt{1-x}$ sobre [0,1] (veja o exemplo 1.10).

Exemplo 1.6 (Função constante). Seja $f: [a,b] \to \mathbb{R}$ a função constante igual a 1. Por qualquer partição pontilhada $\mathcal{P}_p = \{(x_i, [t_i, t_{i+1}]) \mid i \in [1, n]\}, \text{ temos}$

$$S(f, \mathcal{P}_{p}) = \sum_{i=1}^{n} f(x_{i})(t_{i+1} - t_{i}) = \sum_{i=1}^{n} 1 \cdot (t_{i+1} - t_{i}) = \underbrace{t_{n+1}}_{b} - \underbrace{t_{1}}_{a} = b - a.$$

Como o cálculo não depende da partição escolhida, f é Riemann-integrável, e $\int f = b - a$.

Exemplo 1.7 (Indicadora de um intervalo semiaberto). Seja $f = \chi_{[a,b)} \colon [a,b] \to \mathbb{R}$ a função indicadora de [a,b), i.e., f(x) = 1 se $x \in [a,b)$ e f(b) = 0. Observemos que ela não é contínua. Contudo, ela é integrável. Com efeito, por qualquer partição pontilhada, e reproduzindo o cálculo acima, obtemos

$$S(f, \mathcal{P}_{p}) = t_n - t_1$$
 ou $t_{n+1} - t_1$,

dependendo se $x_n = b$ ou não. Em ambos os casos, se \mathcal{P} é ϵ -fina, temos

$$|S(f, \mathcal{P}_{\mathbf{D}}) - (b-a)| \le \epsilon.$$

Deduzimos que f é integrável e $\int f = b - a$.

Exemplo 1.8 (Função identidade). Seja $f: [a,b] \to \mathbb{R}$ a função identidade, i.e., f(x) = x. Por qualquer partição pontilhada $\mathcal{P}_p = \{(x_i, [t_i, t_{i+1}]) \mid i \in [\![1, n]\!]\}$, temos

$$S(f, \mathcal{P}_{p}) = \sum_{i=1}^{n} f(x_{i})(t_{i+1} - t_{i}) = \sum_{i=1}^{n} x_{i} \cdot (t_{i+1} - t_{i}).$$

Introduzimos agora a soma auxiliar

$$S^* = \sum_{i=1}^n \frac{t_{i+1} + t_i}{2} (t_{i+1} - t_i).$$

Por um lado, um calculo telescópico mostra que

$$S^* = \frac{1}{2} \sum_{i=1}^{n} (t_{i+1} + t_i)(t_{i+1} - t_i) = \frac{1}{2} \sum_{i=1}^{n} (t_{i+1}^2 - t_i^2) = \frac{1}{2} (b - a)^2.$$

Por outro lado, se \mathcal{P} for ϵ -fina, vale

$$|S^* - S(f, \mathcal{P}_p)| \le \left| \sum_{i=1}^n \left(\frac{t_{i+1} + t_i}{2} - x_i \right) (t_{i+1} - t_i) \right| \le \sum_{i=1}^n \frac{\epsilon}{2} (t_{i+1} - t_i) = \frac{\epsilon}{2} (b - a)$$

pois $x_i \in [t_i, t_{i+1}]$. Deduzimos a desigualdade

$$\left| S(f, \mathcal{P}_{\mathbf{p}}) - \frac{1}{2}(b-a)^2 \right| \le \frac{\epsilon}{2}(b-a)^2 \xrightarrow[\epsilon \to 0]{} 0.$$

Logo, f é Riemann-integrável e sua integral vale $\frac{1}{2}(b-a)^2$.

Exemplo 1.9 (Função de Dirichlet). Seja $f = \chi_{\mathbb{Q}} \colon [0,1] \to \mathbb{R}$ a função indicadora dos racionais sobre [0,1], isto é, f(x) = 1 se x é racional e f(x) = 0 se não. Ela não é Riemann-integrável. Com efeito, por qualquer partição $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [1, n]\}$ de [0,1], podemos definir duas partições pontilhadas \mathcal{P}_p e \mathcal{P}'_p tal que

$$S(f, \mathcal{P}_{p}) = 0$$
 e $S(f, \mathcal{P}'_{p}) = 1$.

Elas são obtidas respectivamente escolhendo em cada intervalo $[t_i, t_{i+1}]$ um ponto x_i racional ou irracional — lembremos que os racionais são densos em \mathbb{R} . Vale mencionar que essa função, embora não seja integrável no sentido de Riemann, é no sentido de Lebesgue e de Henstock-Kurzweil (consulte a seção 1.3).

Exemplo 1.10. Seja $f: [0,1] \to \mathbb{R}$ definida por f(0) = 0 e $f(x) = 1/\sqrt{x}$ se x > 0. Pelo fato de ser ilimitada, pode-se mostrar que ela não é Riemann-integrável. De fato, por qualquer partição $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [\![1, n]\!]\}$ de [0,1], existe um intervalo $[t_i, t_{i+1}]$ onde f é ilimitada. Escolhendo nesse intervalo um ponto x_i tal que $f(x_i)$ é arbitrariamente grande, obtemos uma soma de Riemann arbitrariamente grande, que portanto não admite limite. De modo geral, mostra-se que uma função Riemann-integrável tem que ser limitada. Porém, é interessante observar que as integrais restritas $\int_{\epsilon}^{1} f$, por $\epsilon \in (0,1]$, existem e valem $2(1-\sqrt{\epsilon})$. Em particular, temos o limite

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} f = 2.$$

Este limite é chamado de *integral imprópria* (veja a seção 1.2.4). Como no exemplo anterior, mencionamos que f é integrável no sentido de Lebesgue e de Henstock-Kurzweil.

1.1.2 Somas de Darboux

Para pontilhar uma partição, os "piores" pontos que pode-se escolher são os que atingem o mínimo e o máximo da função em cada intervalo. Esta é a ideia de Darboux.

Definição 1.11. As somas inferior e superior de Darboux de uma função limitada $f: [a, b] \to \mathbb{R}$ em relação a uma partição (não-pontilhada) $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [1, n]\}$ são

$$S_{\inf}(f, \mathcal{P}) = \sum_{i=1}^{n} \inf\{f(x) \mid x \in [t_i, t_{i+1}]\} \cdot (t_{i+1} - t_i)$$

$$S_{\sup}(f, \mathcal{P}) = \sum_{i=1}^{n} \sup\{f(x) \mid x \in [t_i, t_{i+1}]\} \cdot (t_{i+1} - t_i).$$

Claramente, por toda partição pontilhada \mathcal{P}_{p} cuja partição subjacente é \mathcal{P} , temos

$$S_{\text{inf}}(f, \mathcal{P}) < S(f, \mathcal{P}_{\text{p}}) < S_{\text{sup}}(f, \mathcal{P}).$$

Além disso, se \mathcal{P}' é um refinamento de \mathcal{P} — i.e., uma partição cujos intervalos estão contidos nos de \mathcal{P} — então

$$S_{\inf}(f, \mathcal{P}') \ge S_{\inf}(f, \mathcal{P})$$
 e $S_{\sup}(f, \mathcal{P}') \le S_{\inf}(f, \mathcal{P}).$

Os "valores limites" destas somas têm nome.

Definição 1.12. As integrais inferior e superior de Darboux de f são

$$S_{\inf}(f) = \sup \{ S_{\inf}(f, \mathcal{P}) \mid \mathcal{P} \text{ partição de } [a, b] \}$$
e $S_{\sup}(f) = \inf \{ S_{\sup}(f, \mathcal{P}) \mid \mathcal{P} \text{ partição de } [a, b] \}.$

Quando estes valores coincidem, dizemos que f é **Darboux-integrável**, e definimos a sua integral como este valor.

Teorema 1.13. Uma função limitada $f:[a,b] \to \mathbb{R}$ é Riemann-integrável se e somente se ela é Darboux-integrável. Neste caso, as integrais coincidem.

1.1.3 Propriedades fundamentais

Da formulação de Darboux deduzem-se convenientemente as principais propriedades da integral de Riemann. Recomendamos que o leitor consulte as provas em [Spi06, §§ 13-14].

Teorema 1.14 (Linearidade). Sejam $f, g: [a, b] \to \mathbb{R}$ Riemann-integráveis $e \ c \in \mathbb{R}$. Então f + cg é Riemann-integrável e

$$\int f + cg = \int f + c \int g.$$

Teorema 1.15 (Positividade & monotonicidade). Seja $f:[a,b] \to \mathbb{R}$ Riemann-integrável e não negativa. Então

$$\int f \ge 0.$$

Como corolário, se $f,g:[a,b]\to\mathbb{R}$ são Riemann-integráveis e $f\leq g$, vale

$$\int f \le \int g.$$

Teorema 1.16 (Integrabilidade absoluta). Seja $f:[a,b] \to \mathbb{R}$ Riemann-integrável. Então |f| é Riemann-integrável, e

$$\left| \int f \right| \le \int |f|.$$

Teorema 1.17 (Aditividade). Sejam $f:[a,b]\to\mathbb{R}$ Riemann-integrável e $c\in(a,b)$. Então f é Riemann-integrável em [a,c] e [c,b], e

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Teorema 1.18 (Teorema fundamental do cálculo). Se $f:[a,b] \to \mathbb{R}$ é contínua, então ela é Riemann-integrável. Além disso, a função

$$F \colon [a,b] \longrightarrow \mathbb{R}$$
$$x \longmapsto \int_{a}^{x} f$$

 \acute{e} continuamente derivável e F' = f.

Como corolário, se $f:[a,b]\to\mathbb{R}$ é contínua e $F:[a,b]\to\mathbb{R}$ é uma primitiva de f (i.e., F derivável e F'=f), então

$$\int_{a}^{b} f = F(b) - F(a).$$

O próximo teorema é uma generalização deste resultado (F' pode não ser contínua).

Teorema 1.19 (Segundo teorema fundamental do cálculo). Seja $F:[a,b] \to \mathbb{R}$ derivável. Se F' é Riemann-integrável, então

$$\int_{a}^{b} F' = F(b) - F(a).$$

Notação 1.20. Neste documento, usaremos os colchetes $[F]_a^b$, ou a barra vertical $F|_a^b$, para denotar F(b) - F(a) (preferiremos a primeira notação para expressões longas).

Observação 1.21 (Critério de integrabilidade de Lebesgue-Vitali). O teorema 1.18 mostra que toda função continua (em um intervalo compacto [a,b]) é Riemann-integrável. No entanto, a classe das funções Riemann-integráveis não se restringe às funções contínuas. Já estudamos no exemplo 1.7 uma função com um ponto de descontinuidade. De modo geral, o teorema de Lebesgue-Vitali garante que uma função limitada é Riemann-integrável se e somente se ela for contínua quase em todo lugar — ou seja, o conjunto de pontos de descontinuidade é de medida zero, na linguagem da teoria de medida de Lebesgue (veja a seção 1.3.1). Em particular, uma função limitada com um número finito, ou contável, de descontinuidades é Riemann-integrável. Mencionemos que o exemplo 1.9 fornece uma função não Riemann-integrável, de fato, ela admite um número incontável de descontinuidades (ela é contínua em nenhum lugar).

Observação 1.22 (Outra formulação do teorema fundamental do cálculo). De modo mais geral, pode-se perguntar se o resultado a seguir é válido: dado $F:[a,b]\to\mathbb{R}$ derivável, então a derivada F' é Riemann-integrável e $\int_a^b F' = \left[F\right]_a^b$. Como se vê no seguinte exemplo, está errado. Considere a função $F:[0,1]\to\mathbb{R}$ definida por

$$F(x) = \begin{cases} x^2 \cos \frac{\pi}{x^2} & \text{se } x \in (0, 1], \\ 0 & \text{se } x = 0. \end{cases}$$

Ela é derivável, e

$$F'(x) = \begin{cases} 2x \cos \frac{\pi}{x^2} + \frac{2\pi}{x} \sin \frac{\pi}{x^2} & \text{se } x \in (0, 1], \\ 0 & \text{se } x = 0. \end{cases}$$

Como F' é ilimitada, ela não é Riemann-integrável. Veremos que esse resultado ainda é falso para a integral de Lebesgue, mas se torna válido para a de Henstock-Kurzweil.

1.1.4 Passagem ao limite sob o sinal de integral

Citamos agora três resultados relacionados ao comportamento da integral de Riemann a passagem ao limite. O segundo e terceiro são mais trabalhosos; uma demonstração foi dada por Cesare Arzelà, para a qual encaminhamos o leitor para [Lux71]. Vale a pena destacar que esses resultados são expressos de forma mais geral na integral de Lebesgue.

Teorema 1.23 (Convergência uniforme sob o sinal de integral). Considere uma sequência $(f_n: [a,b] \to \mathbb{R})_{n \in \mathbb{N}}$ de funções Riemann-integráveis que converge uniformemente a uma função $f: [a,b] \to \mathbb{R}$. Então f é Riemann-integrável, e

$$\lim_{n \to \infty} \int f_n = \int f.$$

Teorema 1.24 (Convergência dominada para a integral de Riemann). Considere uma sequência $(f_n: [a,b] \to \mathbb{R})_{n \in \mathbb{N}}$ de funções Riemann-integráveis que converge pontualmente a uma função $f: [a,b] \to \mathbb{R}$ Riemann-integrável, e tal que existe uma função $g: [a,b] \to [0,+\infty)$ que domina a sequência, i.e., tal que $|f_n(x)| \leq g(x)$ para todos $x \in [a,b]$ e $n \in \mathbb{N}$. Então vale

$$\lim_{n \to \infty} \int f_n = \int f.$$

Teorema 1.25 (Lemma de Fatou para a integral de Riemann). Considere uma sequência $(f_n: [a,b] \to [0,+\infty))_{n\in\mathbb{N}}$ de funções não negativas e Riemann-integráveis que converge pontualmente a uma função $f: [a,b] \to \mathbb{R}$ Riemann-integrável. Então vale

$$\liminf_{n \to \infty} \int f_n \ge \int f.$$

1.2 Técnicas de integração e integral imprópria

Veremos nessa seção as três estratégias elementares para calcular uma integral (via primitiva, substituição e integração por partes), bem como a noção de integral imprópria.

1.2.1 Integração via primitiva

Ao calcular uma integral, nosso primeiro reflexo é procurar uma primitiva e calcular sua diferença, como no teorema 1.18. Para isso, consultamos uma tabela de primitivas.

Função	Primitiva	Função	Primitiva
x^{α} $(\alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$	$\frac{1}{\cos^2 x}$	$\tan x$
x^{-1}	$\log x $	$\frac{1}{\operatorname{sen}^2 x}$	$-\cot nx$
e^x	e^x	$\frac{1}{a^2 + x^2} \qquad (a \neq 0)$	$\frac{1}{a} \arctan \frac{x}{a}$
$a^x (a > 0, a \neq 1)$	$\frac{a^x}{\log a}$	$\frac{1}{a^2 - x^2} \qquad (a \neq 0)$	$\frac{1}{2a}\log\left \frac{x+a}{x-a}\right $
$\operatorname{sen} x$	$-\cos x$	$\frac{1}{\sqrt{a^2 - x^2}} \qquad (a > 0)$	$\arcsin \frac{x}{a}$
$\cos x$	$ \sin x $	$\frac{1}{\sqrt{a^2 + x^2}} \qquad (a \neq 0)$	$\log\left(x + \sqrt{a^2 + x^2}\right)$
$\tan x$	$-\log \cos x $	$\frac{1}{\sqrt{-a^2 + x^2}} (a \neq 0)$	$\int \log \left x + \sqrt{-a^2 + x^2} \right $
$\cot anx$	$ \log \sin x $	$\log x$	$x \log x - x$

Exemplo 1.26. Para calcular $\int_0^1 \sqrt{3x+1} \, dx$, observamos que a derivada de $x \mapsto \frac{2}{9}(3x+1)^{3/2}$ é $x \mapsto \sqrt{3x+1}$, e escrevemos

$$\int_0^1 \sqrt{3x+1} \, dx = \left[\frac{2}{9} (3x+1)^{3/2} \right]_0^1 = \frac{14}{9}.$$

1.2.2 Integração por substituição

Um outro procedimento, mais sofisticado, é baseado no seguinte teorema (que é apenas uma consequência da regra da cadeia).

Teorema 1.27 (Mudança de coordenadas). Sejam $f:[c,d] \to \mathbb{R}$ contínua $e \phi:[a,b] \to [c,d]$ continuamente derivável. Vale

$$\int_{a}^{b} f(\phi(x))\phi'(x) \, dx = \int_{\phi(a)}^{\phi(b)} f(u) \, du.$$

Na prática, para aplicar esse resultado a uma expressão $\int_a^b g \, dx$, tentaremos adivinhar a substituição ϕ , e escrever g como $f(\phi(x))\phi'(x)$. É conveniente usar a notação simbólica

$$\begin{cases} "u = \phi(x)" \\ "du = \phi'(x) dx" \end{cases} \quad \text{donde} \quad \int_a^b f(\underbrace{\phi(x)}_u) \underbrace{\phi'(x) dx}_{du} = \int_{\phi(a)}^{\phi(b)} f(u) du.$$

Como mnemônico, lembraremos que "d $u=\phi'(x)$ dx" vem de " $\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{\mathrm{d}\phi(x)}{\mathrm{d}x}=\phi'(x)$ ".

Exemplo 1.28. Para calcular $\int_0^1 2x \ln(x^2+1) dx$, usamos a substituição $\phi(x) = x^2+1$:

$$\begin{cases} u = x^2 + 1 \\ \mathrm{d}t = 2x\mathrm{d}x, \end{cases}$$

e escrevemos a mudança de coordenadas

$$\int_0^1 2x \ln(x^2 + 1) \, dx = \int_0^1 \ln(\underbrace{x^2 + 1}_u) \underbrace{2x \, dx}_{du} = \int_{\phi(0)}^{\phi(1)} \ln(u) \, du = \int_1^2 \ln(u) \, du$$
$$= \left[x \ln(x) - x \right]_1^2 = 1 - 2 \ln(2).$$

1.2.3 Integração por partes

Dadas duas funções $u, v : [a, b] \to \mathbb{R}$ deriváveis, sabemos que vale (uv)' = u'v + uv'. Se elas são também continuamente deriváveis, então deduz-se, por linearidade,

$$[uv]_a^b = \int_a^b (uv)' = \int_a^b u'v + \int_a^b uv'.$$

Passando um termo integral ao outro lado, obtém-se a fórmula de integração por partes:

$$\int_a^b uv' = \left[uv\right]_a^b - \int_a^b u'v.$$

Exemplo 1.29. Para calcular $\int_0^{\sqrt{3}} \arctan x \ dx$, usamos a integração por partes com

$$\begin{cases} u(x) = \arctan x & u'(x) = \frac{1}{1+x^2} \\ v'(x) = 1 & v(x) = x, \end{cases}$$

e escrevemos

$$\int_0^{\sqrt{3}} \arctan x \, dx = \int_0^{\sqrt{3}} uv' = \left[uv \right]_0^{\sqrt{3}} - \int_0^{\sqrt{3}} u'v$$
$$= \left[x \arctan x \right]_0^{\sqrt{3}} - \int_0^{\sqrt{3}} \frac{x}{1 + x^2} \, dx = \frac{\pi}{\sqrt{3}} - \ln(2).$$

1.2.4 Integral imprópria

Uma lacuna crucial da integral de Riemann, conforme definida na seção 1.1.1, é que ela não aceita integrar funções ilimitadas, ou definidas em intervalos não-compactos. Felizmente, ela pode ser generalizada para esses casos. Para compreender isso, consideremos uma função $f: [a, b] \to \mathbb{R}$ contínua. Ela é Riemann-integrável, e mostra-se que

$$\lim_{x \to a^+} \int_x^b f = \lim_{x \to b^-} \int_a^x f = \int_a^b f.$$

Isso nos convida à seguinte definição.

Definição 1.30. Seja uma função contínua $f: I \to \mathbb{R}$ definida em um intervalo da forma

$$I = (a, b], [a, b), (-\infty, b]$$
 ou $[a, +\infty)$.

Se o seguinte limite existe

$$\lim_{x \to a^+} \int_x^b f, \quad \lim_{x \to b^-} \int_a^x f, \quad \lim_{x \to -\infty} \int_x^b f \quad \text{ou} \quad \lim_{x \to +\infty} \int_a^x f,$$

então dizemos que a função f é Cauchy-Riemann-integrável e que a integral $\int_I f$ converge. Definimos sua integral imprópria (ou generalizada, ou de Cauchy-Riemann) $\int_I f$ como este limite. Caso contrário, dizemos que a integral diverge.

Definição 1.31. Dizemos que a integral $\int_I f$ é absolutamente convergente se a integral $\int_I |f|$ é convergente, e que f é absolutamente integrável.

Observação 1.32. Pode-se mostrar que uma integral absolutamente convergente é convergente (isto é, uma função Cauchy-Riemann-integrável é absolutamente integrável), mas a recíproca é falsa (veja o exemplo 1.38). As integrais que são convergentes, mas não absolutamente, são ditas semiconvergentes (ou condicionalmente convergentes).

Notação 1.33. Poderemos denotar uma integral imprópria como $\int_a^b f$ no lugar de $\int_{(a,b]} f$ ou $\int_{[a,b)} f$. Porém, na notação $\int_a^b f$, não se vê de que lado o intervalo é aberto. Isso não será um problema, pois poderemos ler na função f onde ela não for definida. Se ela for definida em todo [a,b] e for Riemann-integrável, então a integral imprópria é de fato igual à integral usual, e não há ambiguidade. Além disso, para distingui-las das integrais impróprias, é costumeiro referirmo-nos às integrais usuais por **integrais definidas**.

Exemplo 1.34. A integral $\int_1^{+\infty} \frac{1}{x} dx$ é divergente. De fato,

$$\int_{1}^{t} \frac{1}{x} dx = \left[\log(x) \right]_{1}^{t} = \log(t) - 1 \xrightarrow[t \to +\infty]{} + \infty.$$

Por outro lado, $\int_1^{+\infty} \frac{1}{x^2} dx$ é convergente, já que

$$\int_{1}^{t} \frac{1}{x^2} dx = \left[\frac{-1}{x} \right]_{1}^{t} = 1 - \frac{1}{t} \xrightarrow[t \to +\infty]{} 1.$$

Ela também é absolutamente convergente, pois é não negativa.

Propriedade 1.35 (Exemplos referenciais). Seja $\alpha > 0$.

- 1. A função $x \mapsto \frac{1}{x^{\alpha}}$ é absolutamente integrável sobre (0,1] se e somente se $\alpha < 1$, e sobre $[1,+\infty)$ se e somente se $\alpha > 1$.
- 2. A função $x \mapsto e^{\alpha x}$ é absolutamente integrável sobre $[0, +\infty)$ por qualquer $\alpha > 0$.

Para mostrar que uma integral é absolutamente convergente, podemos a comparar com funções já conhecidas, usando o seguinte resultado.

Propriedade 1.36 (Critério da comparação para a integrabilidade absoluta). Sejam $f: I \to \mathbb{R} \ e \ \phi: I \to \mathbb{R}^+ \ contínuas.$

1. Se $|f| \le \phi$ e ϕ abs. integrável sobre I, então f também é abs. integrável sobre I, e

$$\left| \int_{I} f \right| \le \int_{I} \phi.$$

Suponhamos agora que f seja não negativa, e que I = (a, b] com $a \in \mathbb{R} \cup \{-\infty\}$.

- 2. Se $f(x) = \mathcal{O}_{x \to a} \phi(x)$ e ϕ abs. integrável sobre I, então f é abs. integrável sobre I.
- 3. Se $f(x) \sim_{x \to a} \phi(x)$, então f é abs. integrável sobre I se e somente se ϕ é.

Similarmente, suponhamos que I = [a, b) com $b \in \mathbb{R} \cup \{+\infty\}$.

- 4. Se $f(x) = \mathcal{O}_{x \to b} \phi(x)$ e ϕ abs. integrável sobre I, então f é abs. integrável sobre I.
- 5. Se $f(x) \sim_{x \to b} \phi(x)$, então f é abs. integrável sobre I se e somente se ϕ é.

Exemplo 1.37. A integral $\int_0^{+\infty} \sin(x)/x^2 dx$ é absolutamente convergente. De fato, $x \mapsto \sin(x)/x^2$ é limitada pela função não negativa $x \mapsto 1/x^2$, que é absolutamente integrável sobre \mathbb{R}^+ pelo exemplo 1.34. Podemos usar então o ponto 1 da propriedade 1.36.

No caso de integrais semiconvergentes, não podemos aplicar o critério de comparação anterior. Outras técnicas de integração devem ser usadas.

Exemplo 1.38. A integral $\int_0^{+\infty} \cos(x)/x \, dx$ é convergente. Para ver isso, fixemos um a > 0, e efetuemos uma integração por partes com $u'(x) = \cos(x)$ e v(x) = 1/x:

$$\int_0^a \frac{\cos(x)}{x} dx = \left[u(x)v(x) \right]_0^a - \int_0^a u(x)v'(x) dx$$
$$= \frac{\sin(a)}{a} + \int_0^a \frac{\sin(x)}{x^2} dx.$$

O primeiro termo converge para zero, e o segundo para $\int_0^{+\infty} \sin(x)/x^2 dx$, pois a integral é absolutamente convergente, pelo exemplo 1.37. Concluímos que $\int_0^{+\infty} \cos(x)/x dx$ converge. Porém, mostra-se que não é absolutamente convergente (veja o exercício 1.10).

1.3 Outras integrais

Esta seção "cultural" serve como um esboço de outras teorias de integração encontradas durante uma formação em matemática, aos níveis de graduação e mestrado. Apresentaremos brevemente a integral de Lebesgue que, além de fornecer um cenário muito geral para a integração — a teoria contemporânea da probabilidade baseia-se na teoria da medida de Lebesgue — nos permite generalizar os teoremas de convergência que vimos

na seção 1.1.4. Em seguida, definiremos a integral Henstock e Kurzweil que, surpreendentemente, não é mais do que uma simples modificação da definição da integral de Riemann. Entretanto, ela é bastante geral: permite integrar todas as funções integráveis no sentido de Riemann e Lebesgue, e também pode lidar com integrais impróprias. Recomendamos a leitura de [KKS04] para um relato detalhado dessas duas integrais (e mais), e de [Wel11] para uma introdução acessível à integral de Henstock-Kurzweil.

1.3.1 Integral de Lebesgue

A integral de Lebesgue repõe na teoria da medida, cuja ideia principal é "medir a largura" dos subconjuntos de \mathbb{R} . Denotemos $P(\mathbb{R})$ o conjunto de partes de \mathbb{R} , isto é, o conjunto de subconjuntos de \mathbb{R} :

$$P(\mathbb{R}) = \{ A \mid A \subset \mathbb{R} \}.$$

Como primeira tentativa, Lebesgue quis definir uma função $m^* : P(\mathbb{R}) \to \mathbb{R}$, satisfazendo a três axiomas [Leb72, página 118]:

invariância as translações de um conjunto têm a mesma medida,

 σ -aditividade a medida de uma união numerável de conjuntos disjuntos vale a soma das medidas, intervalos a medida de um intervalo é $m^*([a,b]) = b - a$.

Para tanto, um candidato natural é a **medida exterior**, definida por todo $A \subset \mathbb{R}$ como

$$m^*(A) = \inf \left\{ \sum_{i \in \mathbb{N}} (b_i - a_i) \mid ((a_i, b_i))_{i \in \mathbb{N}} \text{ família de intervalos tal que } A \subset \bigcup_{i \in \mathbb{N}} (a_i, b_i) \right\}.$$

Infelizmente, esta medida não satisfaz os três axiomas. Isto se deve a detalhes sutis da teoria dos conjuntos; por exemplo, o *conjunto de Vitali*, que só pode ser definido usando o axioma da escolha, mostra que m^* não é σ -aditiva. Para contornar este problema, é preciso restringir a medida exterior m^* a um determinado tipo de conjuntos.

Definição 1.39. Um subconjunto $A \subset \mathbb{R}$ é mensurável se por todo $B \subset \mathbb{R}$, vale

$$m^*(B) = m^*(B \cap A) + m^*(B \setminus A).$$

A coleção dos mensuráveis é chamada de σ -álgebra de Lebesgue e denotada \mathcal{M} . A restrição de m^* a \mathcal{M} é chamada de medida de Lebesgue e denotada $m: \mathcal{M} \to \mathbb{R}$.

A medida m agora é σ -aditiva. Além disso, mostra-se que \mathcal{M} contém todos intervalos de \mathbb{R} , bem como os subconjuntos abertos, seus complementares, e suas uniões finitas.

Passemos agora para a integral de funções. Da mesma forma que apenas determinados conjuntos são considerados, apenas determinadas funções devem ser consideradas.

Definição 1.40. Uma função $f: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ é **mensurável** se por todo $a \in \mathbb{R}$, o conjunto $\{x \in \mathbb{R} \mid f(x) > a\}$ é mensurável.

Em particular, funções contínuas, funções monótonas, ou funções com um número finito de descontinuidades, são mensuráveis. Uma outra classe de funções mensuráveis, importantes na teoria da medida, são as **funções simples**, isto é, as funções que assumem um número finito de valores. Toda função simples ϕ pode se escrever

$$\phi \colon x \mapsto \sum_{i=1}^{n} a_i \chi_{A_i}(x)$$

para um determinado $n \in \mathbb{N}$, valores $a_i \in \mathbb{R} \cup \{\pm \infty\}$ e conjuntos mensuráveis $A_i \subset \mathbb{R}$. Relembremos aqui que a indicadora χ_{A_i} é a função que vale 1 quando $x \in A_i$, e 0 se não. Para tal função simples, é natural definir sua integral como

$$\int \phi = \sum_{i=1}^{n} a_i m(A_i).$$

De modo geral, definimos a integral de Lebesgue como a "integral inferior" de aproximações por funções simples, um processo semelhante ao da integral de Darboux.

Definição 1.41. Seja $f: \mathbb{R} \to \mathbb{R}^+ \cup \{+\infty\}$ mensurável e não negativa. A sua **integral** de Lebesgue é

$$\int f = \sup \left\{ \int \phi \mid \phi \text{ simples e } 0 \le \phi \le f \right\}.$$

Mais geralmente, seja $f \colon \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ uma função mensurável, e defina

$$f^+: x \mapsto \max\{f(x), 0\}$$
 e $f^-: x \mapsto \max\{-f(x), 0\}.$

Se pelo menos uma das integrais $\int f^+$ e $\int f^-$ for finita, definimos a **integral de Lebesgue** de f como

$$\int f = \int f^+ - \int f^-.$$

Dizemos que f é **Lebesgue-integrável** se sua integral for finita.

Todas propriedades básicas da integral de Riemann vistas na seção 1.1.3 valem para a integral de Lebesgue: linearidade, positividade, monotonicidade, integrabilidade absoluta a aditividade. Entretanto, uma diferença fundamental é que a integral de Lebesgue permite a integração de funções ilimitadas, como ilustrado pelo seguinte teorema.

Teorema 1.42 (Convergência monótona). Seja $(f_n : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\})_{n \in \mathbb{N}}$ uma sequência crescente de funções mensuráveis e não negativas. Seja $f(x) = \lim_{n \to \infty} f_n(x)$ o limite pontual. Então f é mensurável, e vale

$$\int f = \lim_{n \to \infty} \int f_n.$$

Em particular, se o limite $\int f$ é finito, então f é Lebesgue-integrável. Esse é o caso, por exemplo, da função $x \mapsto \frac{1}{x} \cdot \chi_{(0,1]}(x)$ do exemplo 1.10, cuja integral é 2.

Observação 1.43. Quando f é mensurável e não negativa, podemos construir explicitamente uma sequência crescente de funções simples $(\phi_n)_{n\in\mathbb{N}}$ que converge a f. Em particular, teremos que $\int f = \lim_{n\to\infty} \int \phi_n$. Para tanto, definimos, para $i, n \in \mathbb{N}$,

$$A_i^n = \left\{ x \in \mathbb{R} \mid \frac{i-1}{2^n} \le f(x) \le \frac{i}{2^n} \right\} \quad \text{e} \quad A_\infty^n = \left\{ x \in \mathbb{R} \mid n \le f(x) \right\},$$

e pomos

$$\phi_n(x) = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} \chi_{A_i^n}(x) + n \chi_{A_{\infty}^n}(x).$$

Mostra-se que $\phi_n \to f$ pontualmente. Além disso, quando f é limitada, a convergência é uniforme. Damos uma representação gráfica dessa construção na figura 1.

Para continuar nossa apresentação, é importante observar que, no sentido de Lebesgue, as funções são definidas apenas **quase em todo lugar (q.t.l.)**. Para ser mais preciso, dizemos que duas funções mensuráveis f e g são **iguais em q.t.l.** se

$$m(\lbrace x \in \mathbb{R} \mid f(x) \neq g(x)\rbrace) = 0.$$

Em outras palavras, as funções são iguais fora de um conjunto de medida zero. Neste caso, f é Lebesgue-integrável se e somente se g é, sendo então iguais suas integrais.

Outro resultado fundamental da integral de Lebesgue é o seguinte.

Teorema 1.44 (Convergência dominada para a integral de Lebesgue). Seja $(f_n: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\})_{n \in \mathbb{N}}$ uma sequência de funções mensuráveis que converge pontualmente q.t.l a uma função $f: [a,b] \to \mathbb{R}$ (isto é, ela converge pontualmente fora de um conjunto de medida zero). Suponha que exista uma função $g: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ Lebesgue-integrável que domina a sequência, i.e., tal que $|f_n(x)| \leq g(x)$ para todos $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então f é Lebesgue-integrável, e vale

$$\lim_{n \to \infty} \int f_n = \int f.$$

A força desse teorema, em comparação com a versão para a integral de Riemann no teorema 1.24, é que a integrabilidade do limite é automática: nenhuma condição precisa ser verificada sobre f.

1.3.2 Integral de Henstock-Kurzweil

Observamos no exemplo 1.10 que a integral de Riemann não é capaz de integrar funções ilimitadas (a não ser por meio da integral imprópria). Este fenômeno ocorre porque, dada uma partição, a soma de Riemann de uma função ilimitada pode se tornar arbitrariamente grande. Além disso, destacamos no teorema 1.16 que ela é uma integral absoluta, isto é, uma função é Riemann-integrável se e somente se ela é absolutamente Riemann-integrável. Para superar essas limitações, a integral de Henstock-Kurzweil envolve uma versão mais refinada de partição pontilhada, baseada na noção de calibre.

Definição 1.45. Um calibre em [a, b] é uma função $\delta : [a, b] \to (0, +\infty)$. Se $\mathcal{P}_{p} = \{(x_{i}, [t_{i}, t_{i+1}]) \mid i \in [1, n]\}$ é uma partição pontilhada de [a, b] e δ é um calibre, dizemos que \mathcal{P}_{p} é δ -fina se satisfaz, para todo $i \in [1, n]$,

$$[t_i, t_{i+1}] \subset [x_i - \delta(x_i), x_i + \delta(x_i)].$$

Observação 1.46. Seja $\epsilon > 0$. Ao comparar a definição precedente com a da integral de Riemann, vemos que uma partição pontilhada ϵ -fina nada mais é do que uma partição pontilhada δ -fina com δ o calibre constante igual a ϵ .

Observação 1.47. Graças aos calibres, poderemos contornar o problema da integração de funções ilimitadas que motivou essa seção: bastará escolher um calibre que "assuma valores pequenos onde a função é grande" (veja a figura 1 para uma explicação visual).

Antes de tudo, citamos um lema que garante a existência de partições finas.

Lema 1.48 (de Cousin). Dado um calibre δ em [a,b], existe uma partição pontilhada δ -fina de [a,b].

Agora, a definição de nossa nova integral é uma réplica da definição 1.2 de Riemann.

Definição 1.49. Dizemos que uma função $f:[a,b] \to \mathbb{R}$ é **KH-integrável** se existe um número real $\ell \in \mathbb{R}$ tal que, para todo $\epsilon > 0$, existe um calibre $\delta:[a,b] \to \mathbb{R}$ tal que, para toda partição pontilhada $\mathcal{P}_{\mathbf{p}}$ δ -fina, temos

$$|S(f, \mathcal{P}_{p}) - \ell| < \epsilon.$$

Neste caso, ℓ é único, chamado integral de Henstock-Kurzweil de f, e denotado $\int f$.

Observação 1.50. Da mesma forma, podemos definir a integral de Henstock-Kurzweil de uma função sobre \mathbb{R} , considerando partições (finitas) de \mathbb{R} .

É uma consequência direta da definição que a integral de Henstock-Kurzweil abrange a de Riemann. Isto também vale para a integral de Lebesgue, mas a prova é menos trivial. Nesse sentido, a integral de Henstock-Kurzweil é a integral "mais geral".

Teorema 1.51. Toda função $f:[a,b] \to \mathbb{R}$ Riemann-integrável é HK-integrável. Além disso, se f é mensurável, então ela é Lebesgue-integrável se e somente se é absolutamente HK-integrável. Nestes casos, as integrais coincidem.

Em seguida, estudaremos as propriedades da integral de Henstock-Kurzweil. Ela exibe as propriedades básicas da integral de Riemann: linearidade, positividade, monotonicidade e aditividade; no entanto, não verifica a integrabilidade absoluta, como veremos no teorema 1.53. Além disso, ela satisfaz um teorema fundamental do cálculo generalizado (conforme mencionado na observação 1.22)

Teorema 1.52 (Segundo teorema fundamental do cálculo para a integral de Henstock-Kurzweil). Sejam $F: [a,b] \to \mathbb{R}$ derivável (exceto potencialmente em um número numerável de pontos). Então F' é HK-integrável em [a,b], e

$$\int_{a}^{b} F' = \left[F \right]_{a}^{b}.$$

Por fim, examinemos o problema das integrais impróprias. Conhecemos diversos belos cálculos que não são funções integráveis no sentido de Riemann ou de Lebesgue:

$$\int_{-\infty}^{+\infty} e^{-x^2} = \sqrt{\pi}, \qquad \int_{0}^{\infty} \frac{\sin x}{x} = \frac{\pi}{2}, \qquad \int_{0}^{\pi/2} \ln(\sin(x)) \, dx = \frac{\pi \log 2}{2}.$$

Pelo contrário, todas essas funções são KH-integráveis. Com efeito, o próximo teorema revela que, no sentido de de Henstock-Kurzweil, a noção de integral imprópria não existe.

Teorema 1.53 (Corolário do lema de Henstock). Seja $f:[a,b] \to \mathbb{R}$ HK-integrável sobre [c,b] por todo $c \in (a,b)$. Então $f \notin$ HK-integrável sobre [a,b] se e somente se $\lim_{c\to a^+} \int_c^b f$ existe. Neste caso,

$$\int_{a}^{b} f = \lim_{c \to a^{+}} \int_{c}^{b} f.$$

Observação 1.54. Um aluno impressionado com o poder da integral de Henstock-Kurzweil pode se perguntar por quê preferimos ensinar a ele a de Riemann. Acontece que eles dois, e outros atores da teoria, responderam em uma carta aberta¹ de 1997:

¹https://math.vanderbilt.edu/schectex/ccc/gauge/letter/

To: The authors of calculus textbooks

From: Several authors of more advanced books and articles

Subject: Replacing the Riemann integral with the gauge integral

It is only an accident of history that the Riemann integral is the one used in all calculus books today. The gauge integral (also known as the generalized Riemann integral, the Henstock integral, the Kurzweil integral, the Riemann complete integral, etc.) was discovered later, but it is a "better" integral in nearly all respects. Therefore, we would like to suggest that in the next edition of your calculus textbook, you present both the Riemann and gauge integrals, and then state theorems mainly for the gauge integral.

Observação 1.55 (Integral de McShane). Imaginemos a seguinte modificação da integral de Henstock-Kurzweil. Chamemos de **partição pontilhada livre** de [a,b] um conjunto de pares

$$\mathcal{P}_{l} = \{ (x_{i}, [t_{i}, t_{i+1}]) \mid i \in [1, n] \}$$

onde $\{[t_i, t_{i+1}] \mid i \in [\![1, n]\!]\}$ define uma partição de [a, b], mas x_i não é necessariamente um elemento de $[t_i, t_{i+1}]$. Como anteriormente, dado um calibre $\delta \colon [a, b] \to (0, +\infty)$, dizemos que \mathcal{P}_1 é δ -fina se satisfaz, para todo $i \in [\![1, n]\!]$, $[t_i, t_{i+1}] \subset [x_i - \delta(x_i), x_i + \delta(x_i)]$. Copiemos então a definição 1.49, substituindo "partição pontilhada" por "partição pontilhada livre". Obtemos desse modo a **integral de McShane**. Acontece que esta integral é equivalente à de Lebesgue. Esse resultado é uma ilustração do trabalho frutífero em análise no final do século passado, com um retorno às técnicas riemannianas.

Figura 1: Para calcular a área sob uma curva, a integral de Riemann corta o eixo das abcissas em segmentos iguais e constrói retângulos. Na integral de Lebesgue, é o eixo das ordenadas que é cortado, e os retângulos são puxados para trás. A integral de Henstock-Kurzweil usa a aproximação de Riemann, mas exige que os intervalos se adaptem às variações da função.

1.4 Exercícios

1.4.1 Integrais definidas

Exercício 1.1 (correção). Calcule as seguintes integrais:

$$I_{1} = \int_{0}^{2} 5x^{3} - 3x - 7 \, dx \qquad I_{2} = \int_{0}^{\pi/4} 2\cos x - 3\sin x \, dx \qquad I_{3} = \int_{0}^{1/3} 2e^{3x} + 2x \, dx$$

$$I_{4} = \int_{0}^{2} \frac{x}{1 + 2x^{2}} \, dx \qquad I_{5} = \int_{0}^{2} \frac{e^{3x}}{1 + 2e^{3x}} \, dx \qquad I_{6} = \int_{1}^{2} \frac{\ln x}{x} \, dx$$

$$I_{7} = \int_{0}^{1} xe^{x} \, dx \qquad I_{8} = \int_{1}^{e} x^{2} \ln x \, dx \qquad I_{9} = \int_{1}^{2} \ln^{2} x \, dx$$

$$I_{10} = \int_{1}^{4} \frac{1 - \sqrt{x}}{\sqrt{x}} \, dx \qquad I_{11} = \int_{1}^{3} \frac{\sqrt{x}}{x + 1} \, dx \qquad I_{12} = \int_{-1}^{1} \sqrt{1 - x^{2}} \, dx$$

Para I_{10} , I_{11} e I_{12} , pode-se usar respectivamente as substituições $t = \sqrt{x}$, $t = \sqrt{x}$ e sen t = x.

Exercício 1.2 (Integrais de Wallis, correção).

$$I_n = \int_0^{\pi/2} \operatorname{sen}^n x \, \mathrm{d}x.$$

- 1. Calcule explicitamente I_n por todo $n \in \mathbb{N}$.
- 2. Deduza a fórmula do produto de Wallis

$$\lim_{n\to\infty} \prod_{p=1}^n \left(\frac{2p}{2p-1} \frac{2p}{2p+1}\right) = \frac{\pi}{2}$$

e a aproximação

$$I_n \sim \sqrt{\frac{\pi}{2n}}.$$

Exercício 1.3 (Desigualdade de Hölder, <u>correção</u>). Sejam a > 0 e $f: [0, a] \to \mathbb{R}$ crescente estritamente, derivável em]0, a[, e tal que f(0) = 0. Ponha, para todo $x \in [0, a]$,

$$g(x) = \int_0^x f + \int_0^{f(x)} f^{-1} - x f(x),$$

onde f^{-1} denota a função inversa.

- 1. Mostre que g(x) = 0 para todo $x \in [0, a]$.
- 2. Deduza a desigualdade de Young: para todo $b \in]0, f(a)[$

$$ab \le \int_0^a f + \int_0^b f^{-1}.$$

3. Deduza a desigualdade de Hölder: dados $a,b\geq 0$ e p,q>1 tal que $\frac{1}{p}+\frac{1}{q}=1,$

17

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Exercício 1.4 (Teorema do valor médio para integrais, <u>correção</u>). Seja $f:[a,b]\to\mathbb{R}$ uma função contínua.

1. Defina $m = \inf\{f(x) \mid x \in [a, b]\}$ e $M = \sup\{f(x) \mid x \in [a, b]\}$. Mostre que

$$m \leq \frac{1}{b-a} \int_a^b f \leq M.$$

2. Mostre que existe um $c \in [a, b]$ tal que

$$\int_{a}^{b} f = (b - a)f(x).$$

3. Além disso, se $g \colon [a,b] \to \mathbb{R}$ é não negativa e Riemann-integrável, mostre que existe um $c \in [a,b]$ tal que

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g.$$

Exercício 1.5 (correção). Prova que se $h: \mathbb{R} \to \mathbb{R}$ é contínua, $f, g: \mathbb{R} \to \mathbb{R}$ são diferenciáveis, e

$$F(x) = \int_{f(x)}^{g(x)} h,$$

então F'(x) = h(g(x))g'(x) - h(f(x))f'(x).

1.4.2 Integrais impróprias

Exercício 1.6 (correção). Determine se as seguintes integrais impróprias convergem.

$$I_{1} = \int_{1}^{2} \frac{1}{\sqrt{x-1}} dx \qquad I_{2} = \int_{0}^{1} \frac{x^{2}+1}{x\sqrt{2-x}} dx \qquad I_{3} = \int_{0}^{1} \ln x dx$$

$$I_{4} = \int_{0}^{\pi/2} \tan x dx \qquad I_{5} = \int_{0}^{+\infty} \frac{x}{(x+2)^{2}(x+1)} dx \qquad I_{6} = \int_{0}^{1} \frac{1}{x\sqrt{x+1}} dx$$

$$I_{7} = \int_{0}^{1} x^{2024} e^{-x} dx \qquad I_{8} = \int_{0}^{1} \frac{e^{x}}{\sqrt{x}} dx \qquad I_{9} = \int_{1}^{2} \frac{1}{x \ln^{2} x} dx$$

Exercício 1.7 (Integral de Dirichlet, correção). Considere a integral imprópria

$$I = \int_0^{\pi/2} \ln(\operatorname{sen}(x)) \, \mathrm{d}x.$$

- 1. Mostre que I converge.
- 2. Partindo da fórmula sen(x) = 2 sen(x/2) cos(x/2), mostre que $I = -\frac{\pi \log 2}{2}$.

Exercício 1.8 (Integrais de Bertrand, correção). Sejam α, β reais. Mostre que

- 1. $\frac{1}{t^{\alpha}(\log t)^{\beta}}$ é abs. integrável sobre $[e, +\infty)$ se e somente se $\alpha > 1$, ou $\alpha = 1$ e $\beta > 1$.
- 2. $\frac{1}{t^{\alpha}|\log t|^{\beta}}$ é abs. integrável sobre (0,1/e] se e somente se $\alpha<1,$ ou $\alpha=1$ e $\beta>1.$

Exercício 1.9 (Função gamma, correção). Ponhamos, por todo $x \in]0, +\infty[$

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

- 1. Mostre que a integral imprópria $\Gamma(x)$ é convergente.
- 2. Mostre que para todo $x \in]1, +\infty[$, temos $\Gamma(x+1) = x\Gamma(x)$.
- 3. Mostre que para todo $n \in \mathbb{N}$, vale $\Gamma(n) = (n-1)!$.

Exercício 1.10 (correção). Mostre que $\int_0^\infty \frac{\cos(x)}{x} dx$ não é absolutamente convergente.

Exercício 1.11 (<u>correção</u>). Seja $f: [1, +\infty)$ tal que $\int_1^{+\infty} f$ converge. Mostre que por todo $\alpha > 0$, a seguinte integral converge:

$$\int_{1}^{+\infty} \frac{f(x)}{x^{\alpha}} \, \mathrm{d}x.$$

1.4.3 Limites de integrais

Exercício 1.12 (correção). Por todo $n \in \mathbb{N}$ positivo, considere a função $f_n = n \cdot \chi_{(0,1/n)}$, onde $\chi_{(0,1/n)}$ é a indicadora do intervalo aberto (0,1/n). Calcule $\int_0^1 f_n$. Deduza que a hipótese de dominação no teorema de convergência dominada é necessária.

Exercício 1.13 (correção). Suponha que $f: [0,1] \to \mathbb{R}$ seja contínua. Mostre que

$$\lim_{n \to +\infty} \int_0^1 f(x^n) \, \mathrm{d}x = f(0).$$

Exercício 1.14 (<u>correção</u>). Suponha que $f:[a,b] \to \mathbb{R}$ seja contínua, não negativa, e defina $M = \sup\{f(x) \mid x \in [a,b]\}$. Mostre que

$$\lim_{n \to +\infty} \left(\int_a^b f(x)^n \, dx \right)^{1/n} = M.$$

2 Campos vetoriais - Definição e campos de gradiente

Neste primeiro curso sobre campos vetoriais, apresentaremos a definição, e o importante caso dos campos de gradientes. Também aproveitaremos a oportunidade para discutir o conceito de campos elétricos. Como veremos ao longo do semestre, o cálculo vetorial é um formalismo bem sucedido para o eletromagnetismo. Recomendamos a referência [Gri13].

2.1 Lembrete sobre diferenciais

2.1.1 Estrutura euclidiana

Seja $n \in \mathbb{N} \setminus \{0\}$. Relembremos que o espaço \mathbb{R}^n é munido da norma euclidiana

$$\|(x_1,\ldots,x_n)\| = \sqrt{x_1^2 + \cdots + x_n}$$

e do produto escalar

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle = x_1y_1 + \cdots + x_ny_n.$$

Além disso, definimos a bola aberta de centro $x \in \mathbb{R}^n$ e raio r > 0 como o subconjunto

$$\mathcal{B}(x,r) = \{ y \in \mathbb{R}^n \mid ||y - x|| < r \}.$$

A topologia euclidiana é definida da seguinte forma: um subconjunto $A \subset \mathbb{R}^n$ é dito aberto se por todo $x \in A$, existe r > 0 tal que $\mathcal{B}(x, r) \subset A$.

Outra estrutura de que \mathbb{R}^n é munido é a linear. Sejam n, m > 0 inteiros, e $\mathbb{R}^n, \mathbb{R}^m$ os espaços euclidianos. Denotaremos $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ o espaço vetorial das **aplicações lineares** de \mathbb{R}^n em \mathbb{R}^m . Lembremos que, fixando as bases canônicas de \mathbb{R}^n e \mathbb{R}^m , construímos um isomorfismo de espaços vetoriais

$$\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)\longrightarrow \mathcal{M}_{n,m}(\mathbb{R})$$

onde $\mathcal{M}_{n,m}(\mathbb{R})$ representa o espaço vetorial das $n \times m$ matrizes. Mais precisamente, por toda aplicação linear $l \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, existe uma única matriz $M \in \mathcal{M}_{n,m}(\mathbb{R})$ tal que por todo $x \in \mathbb{R}^n$, temos l(x) = Mx, usando o produto matricial.

2.1.2 Diferenciabilidade

Para continuar, consideremos um conjunto aberto $\Omega \subset \mathbb{R}^n$. Relembremos que uma função $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ é **diferenciável** em $x \in \mathbb{R}^n$ se existe $l \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ tal que

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - l(h)}{\|h\|} = 0.$$

Se l existe, então é único, chamamos de diferencial de f em x e denotamos $d_x f$. Observemos que, equivalentemente, podemos escrever

$$f(x+h) = f(x) + l(h) + o(||h||)$$

onde $o(\|h\|)$ representa uma função tal que $\lim_{h\to 0} \|h\|^{-1} o(\|h\|) = 0$. Esta formulação mostra que l é a "aproximação linear da função f ao redor de x". Sabemos que uma função diferenciável é contínua, mas a recíproca é falsa. Além disso, as **derivadas parciais** são, por $i \in [1, n]$,

$$\frac{\partial f}{\partial x_i} \colon \Omega \longrightarrow \mathbb{R}^m$$

$$x \longmapsto \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t},$$

onde (e_1, \ldots, e_n) é a base canônica de \mathbb{R}^n . Se a função for diferenciável, então existem derivadas parciais. Por outro lado, se as derivadas parciais existem e são contínuas, então a função é diferenciável.

Notação 2.1. A diferencial $d_x f$ também denota-se como $D_x f$, e as derivadas parciais $\frac{\partial f}{\partial x_i}$ como $\partial_i f$. Em dimensão dois ou três, usaremos também as notações $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial f}{\partial z}$.

Observação 2.2. Uma função $f: \mathbb{R} \to \mathbb{R}$ é derivável se e somente se ela é diferenciável. Neste caso, a derivada e a diferencial admitem a seguinte equivalência: por todo $s, t \in \mathbb{R}$,

$$d_t f(s) = s f'(t).$$

Em particular, a derivada f'(t) nada mais é do que a diferencial em t na direção 1.

Ao explicitar as funções componentes de f como $(f_i: \Omega \to \mathbb{R})_{1 \le i \le m}$, isto é,

$$f=(f_1,\ldots,f_m),$$

vale que f é diferenciável se e somente se todas as suas componentes forem.

Do ponto de vista matricial, a diferencial escreve-se como a matriz jacobiana:

$$Jf = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}.$$

Em particular, quando n=1, as componentes de $f:\Omega\subset\mathbb{R}\to\mathbb{R}^m$ são funções de (um subconjunto) de \mathbb{R} para \mathbb{R} , a matriz jacobiana escreve-se como o vetor

$$J_t f = \begin{pmatrix} f_1'(t) \\ \vdots \\ f_m'(t) \end{pmatrix},$$

Como aplicação linear $d_x f: \mathbb{R} \to \mathbb{R}^m$, temos

$$d_t f(s) = s J_t f.$$

Uma propriedade fundamental é a seguinte.

Propriedade 2.3 (Regra da cadeia). Sejam n, m, p inteiros positivos, $\Omega \subset \mathbb{R}^n$ $e \Gamma \subset \mathbb{R}^m$ abertos, $e f : \Omega \to \mathbb{R}^m$ $e g : \Gamma \to \mathbb{R}^p$ diferenciáveis tal que $f(\Omega) \subset \Gamma$. Diagramaticamente, estas funções se encaixam em

$$\Omega \subset \mathbb{R}^n \xrightarrow{f} \Gamma \subset \mathbb{R}^m \xrightarrow{g} \mathbb{R}^p.$$

Então a função composta $g \circ f \colon \Omega \to \mathbb{R}^p$ é diferenciável e, por todo $x \in \Omega$, vale

$$d_x(g \circ f) = d_{f(x)}g \circ d_x f.$$

Em outras palavras, a diferencial da composição é igual à composição das diferenciais. Do ponto de vista matricial, a composição se torna o produto das matrizes jacobianas:

$$J_x(g \circ f) = J_{f(x)}g \cdot J_x f.$$

Exemplo 2.4. Sejam $f: \mathbb{R}^3 \to \mathbb{R}^2$ e $g: \mathbb{R}^2 \to \mathbb{R}^3$ definidas por

$$f(x,y,z) = \begin{pmatrix} x - yz \\ xy - z \end{pmatrix}$$
 e $g(x,y) = \begin{pmatrix} x^2 \\ xy \\ y^2 \end{pmatrix}$.

As diferenciais valem, em forma matricial,

$$J_{(x,y,z)}f = \begin{pmatrix} 1 & -z & -y \\ y & x & -1 \end{pmatrix} \quad \text{e} \quad J_{(x,y)}g = \begin{pmatrix} 2x & 0 \\ y & x \\ 0 & 2y \end{pmatrix}.$$

A diferencial da composta $g \circ f$ escreve-se, pela regra da cadeia,

$$\begin{split} \mathbf{J}_{(x,y,z)}(g \circ f) &= \mathbf{J}_{(x-yz,xy-z)}g \cdot \mathbf{J}_{(x,y,z)}f \\ &= \begin{pmatrix} 2(x-yz) & 0 \\ xy-z & x-yz \\ 0 & 2(xy-z) \end{pmatrix} \begin{pmatrix} 1 & -z & -y \\ y & x & -1 \end{pmatrix} \\ &= \begin{pmatrix} 2(xy-z) & -2(xy-z)z & -2y(xy-z) \\ xy-z+y(x-yz) & -(xy-z)z+x(x-yz) & -x-y(xy-z)+yz \\ 2y(xy-z) & 2x(xy-z) & -2(xy-z) \end{pmatrix}. \end{split}$$

2.1.3 O gradiente

Por fim, discutamos o caso m=1, isto é, quando $f\colon \Omega\subset\mathbb{R}^n\to\mathbb{R}$ é uma função numérica. A matriz jacobiana chama-se então de **gradiente**, e denota-se

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

Como o produto matricial de um vetor n e um vetor $1 \times n$ é igual ao produto escalar, temos a formulação

$$d_x f(y) = \langle \nabla f(x), y \rangle.$$

Exemplo 2.5. Seja $f:(0,+\infty)^3\to\mathbb{R}$ definida por $f(x,y,z)=(xyz)^{1/3}$. Temos

$$\begin{split} \nabla f(x,y,z) &= \begin{pmatrix} \frac{\partial f}{\partial x}(x,y,z) & \frac{\partial f}{\partial y}(x,y,z) & \frac{\partial f}{\partial z}(x,y,z) \end{pmatrix} \\ &= \frac{1}{3}(xyz)^{1/3} \begin{pmatrix} x^{-1} & y^{-1} & z^{-1} \end{pmatrix}. \end{split}$$

Vale destacar que a regra da cadeia assume uma formulação prática no caso onde o domínio e codomínio da composição são \mathbb{R} , i.e.,

$$\Omega \subset \mathbb{R} \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}.$$

Corolário 2.6 (Regra da cadeia com domínio e codomínio a reta). Sejam m inteiro positivo, $\Omega \subset \mathbb{R}$ e $\Gamma \subset \mathbb{R}^m$ abertos, e $f \colon \Omega \to \mathbb{R}$ e $g \colon \Gamma \to \mathbb{R}$ diferenciáveis tal que $f(\Omega) \subset \Gamma$. Então a função composta $g \circ f \colon \Omega \to \mathbb{R}$ é derivável e, por todo $t \in \Omega$, vale

$$(g \circ f)'(t) = \langle (\nabla g)(f(t)), f'(t) \rangle.$$

2.2 Campos vetoriais

A noção de campo vetorial surge naturalmente em muitas questões matemáticas, seja na teoria das equações diferenciais (problema de Cauchy), na geometria (teoria de Morse) ou na topologia (cohomologia de De Rham), para citar apenas alguns exemplos. Teremos a oportunidade de explorar estes assuntos na segunda metade deste curso. Por enquanto, nos restringiremos à sua aplicação ao formalismo do eletromagnetismo.

2.2.1 Definição

Definição 2.7. Sejam $\Omega \subset \mathbb{R}^n$ aberto e $k \in \mathbb{N} \cup \{\infty\}$. Um campo vetorial de classe C^k em Ω é definido como uma aplicação $F \colon \Omega \to \mathbb{R}^n$ de classe C^k .

Notação 2.8. Para explicitarmos as funções componentes de um campo vetorial $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, poderemos usar a notação

$$F(x) = (F_1(x), \dots, F_n(x)).$$

Pondo $x = (x_1, \ldots, x_n)$, isto lê-se $F(x_1, \ldots, x_n) = (F_1(x_1, \ldots, x_n), \ldots, F_n(x_1, \ldots, x_n))$. Para facilitar a leitura, poderemos preferir a notação vertical

$$F(x_1,\ldots,x_n) = \begin{pmatrix} F_1(x_1,\ldots,x_n) \\ \vdots \\ F_n(x_1,\ldots,x_n) \end{pmatrix}.$$

Quando n=2 (resp. n=3), é comum denotar as coordenadas dos pontos do plano como (x,y) (resp. dos pontos do espaço como (x,y,z)), e as componentes como P,Q(resp. P, Q, R). Escrevemos então

$$F(x,y) = \left(\begin{array}{c} P(x,y) \\ Q(x,y) \end{array} \right) \qquad \text{ou} \qquad F(x,y,y) = \left(\begin{array}{c} P(x,y,z) \\ Q(x,y,z) \\ R(x,y,z) \end{array} \right).$$

Observação 2.9. Como vimos na seção 2.1, para provar que um campo F = (F_1, \ldots, F_n) é de classe C^k , basta verificar que todas as funções componentes F_i são. Em particular, um campo é C^1 se as n^2 derivadas parciais $\frac{\partial F_i}{\partial x_j}$ existem e são contínuas.

Exemplo 2.10. As seguintes funções são campos vetoriais e pertencem à classe C^{∞} .

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad \qquad G: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad \qquad H: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (x,y) \qquad \qquad (x,y) \longmapsto (-y,x) \qquad \qquad (x,y) \longmapsto (1,\cos x).$$

Para esboçarmos um campo vetorial F no plano, escolheremos uns pontos (x,y), e desenharemos a seta de origem (x, y) e direção F(x, y) (veja a figura 2).

Exemplo 2.11 (Equação de Lotka-Volterra). Este é um modelo clássico de dinâmica populacional. Seja $x: \mathbb{R}^+ \to \mathbb{R}^+$ o número de coelhos — ou, melhor, a densidade — e $y\colon\mathbb{R}^+\to\mathbb{R}^+$ o de lobos. O sistema (normalizado) modeliza-se como

$$\begin{cases} x' = x - yx, \\ y' = yx - y. \end{cases}$$

Traduzida para o português, esta equação tem a seguinte redação:

imento da população de coelhos vale:

$$\underbrace{\text{o produto das duas populações}}_{\text{alimentação}} \ \ \underbrace{\text{menos}}_{\text{extinção}} \ \underbrace{\text{a quantidade de lobos}}_{\text{extinção}}$$

Entende-se a evolução da função $t\mapsto (x(t),y(t))$ como um sistema dinâmico cujo campo vetorial subjacente é

$$F(x,y) = \left(\begin{array}{c} x - xy \\ xy - y \end{array}\right).$$

Exemplo 2.12 (Lei de Coulomb). O campo elétrico produzido por uma carga pontual $q \text{ em } X_0 = (x_0, y_0, z_0) \in \mathbb{R}^3 \text{ \'e}$

$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$X = (x, y, z) \longmapsto \frac{q}{4\pi\epsilon_0} \frac{1}{\|X - X_0\|^3} (X - X_0), \tag{2}$$

onde ϵ_0 é a constante de permissividade do vácuo. Em presença de várias cargas, o princípio da superposição garante que o campo resultante é a soma dos campos produzidos por cada uma das cargas em separado. Por exemplo, um dipolo elétrico é o sistema formado por duas cargas opostas $q \in -q$. Denotemos $X_0^+ \in X_0^-$ suas coordenadas em \mathbb{R}^3 . O campo elétrico torna-se

$$\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$$

$$X \longmapsto \frac{q}{4\pi\epsilon_{0}} \left(\frac{X - X_{0}^{+}}{\|X - X_{0}^{+}\|^{3}} - \frac{X - X_{0}^{-}}{\|X - X_{0}^{-}\|^{3}} \right).$$

Na presença de uma distribuição contínua de cargas — por exemplo, ao longo de um fio ou de uma superfície — não podemos mais somar as contribuições e precisamos integrá-las, como veremos mais adiante.

Observação 2.13. Na definição 2.7, a premissa de que o domínio Ω é aberto poderia ser relaxada para subconjuntos mais gerais. Em particular, um objeto que nos interessará mais tarde será o das subvariedades.

2.2.2 Problema de Cauchy

Sejam dois abertos $I\subset\mathbb{R}$ e $\Omega\subset\mathbb{R}^n$, o primeiro representando o tempo e o segundo o espaço. Seja também uma função contínua

$$H: I \times \Omega \longrightarrow \mathbb{R}^n$$

Observemos que H é um "campo vetorial dinâmico": por todo $t \in I$, a função

$$H(t,\cdot)\colon \Omega\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$$

é um campo vetorial. Neste contexto, o **problema de Cauchy**, ou **problema de valor inicial**, consiste em, dado um valor inicial $(t_0, X_0) \in I \times \Omega$, achar uma função $\gamma \colon J \subset \mathbb{R} \to \Omega$ tal que $t_0 \in J$ e

$$\begin{cases}
\gamma'(t) = H(t, \gamma(t)) & \forall t \in J, \\
\gamma(t_0) = X_0.
\end{cases}$$
(3)

Em outras palavras, γ é uma solução da **equação diferencial ordinária** (3).

Um caso interessante é quando H não depende do tempo: para todo $t, H(t, \cdot)$ vale um determinado campo vetorial $F: \Omega \to \mathbb{R}^n$. Falamos então de **equação diferencial ordinária autônoma**. Uma solução $\gamma: J \subset \mathbb{R} \to \Omega$ satisfaz

$$\left\{ \begin{array}{l} \gamma'(t) = F(\gamma(t)) \quad \forall t \in J, \\ \gamma(t_0) = X_0. \end{array} \right.$$

Isto é, γ é um caminho cuja velocidade sempre vale o valor do campo vetorial em que se encontra. Também dizemos que γ segue a dinâmica prescrita por F. Ela chama-se **curva integral**.

No centro da teoria das equações diferenciais reside a questão da existência e da unicidade das soluções. O resultado fundamental, que foge ao escopo deste curso mas que vale a pena mencionar, é o teorema de Picard-Lindelöf (chamado de Cauchy-Lipshitz nas referências francesas).

Teorema 2.14 (Picard-Lindelöf). Se $H: I \times \Omega \longrightarrow \mathbb{R}^n$ é contínua e localmente lipschitziana na segunda variável², então para toda condição inicial $(t_0, X_0) \in I \times \Omega$, existe $\epsilon > 0$ e $\gamma: (t_0 - \epsilon, t_0 + \epsilon) \to \Omega$ tal que a equação (3) vale.

$$| ^2 \forall (t,x) \in I \times \Omega, \exists \epsilon > 0, \exists L > 0, \forall (s,y) \in \Omega, \|(t,x) - (s,y)\| < \epsilon \implies \|H(t,x) - H(t,y)\| \le L\|x - y\|.$$

Observação 2.15. O teorema garante apenas a existência local (no tempo) de soluções para o problema de Cauchy. Para estudar as soluções em sua totalidade, precisamos invocar outros resultados, como lema de Grönwall.

Exemplo 2.16. Dado $(t_0, (x_0, y_0)) \in \mathbb{R} \times \mathbb{R}^2$, as curvas integrais dos campos vetoriais do exemplo 2.10 tomam respectivamente a forma

$$\gamma_F \colon \mathbb{R} \longrightarrow \mathbb{R}^2 \qquad \qquad \gamma_G \colon \mathbb{R} \longrightarrow \mathbb{R}^2
t \longmapsto e^{t-t_0}(x_0, y_0) \qquad \qquad t \longmapsto r_0 \big(\cos(t - t_0 + \theta_0), \sin(t - t_0 + \theta_0) \big)$$

$$\gamma_H \colon \mathbb{R} \longrightarrow \mathbb{R}^2$$

 $t \longmapsto (t - t_0 + x_0, \operatorname{sen}(t) + c_0)$

onde r_0, θ_0 e c_0 são definidas por $(x_0, y_0) = r_0(\cos \theta_0, \sin \theta_0)$ e $c_0 = y_0 - \sin t_0$.

Exemplo 2.17. Pode-se mostrar que as curvas integrais da equação de Lotka-Volterra (exemplo 2.11) são periódicas. Infelizmente, elas não podem ser escritas explicitamente por meio de funções trigonométricas usuais. Além disso, a equação admite uma solução constante: o ponto fixo (x, y) = (1, 1).

Exemplo 2.18. Seja uma carga pontual Q, chamada de carga teste, mergulhada num campo elétrico F como na equação (2). Denotemos $\gamma(t)$, v(t) e a(t) sua posição, velocidade e aceleração, respectivamente. Segundo a lei de Coulomb, a carga experimenta uma força elétrica igual a

$$QF(\gamma(t)) = \frac{qQ}{4\pi\epsilon_0} \frac{\gamma(t) - X_0}{\|\gamma(t) - X_0\|^3}.$$

Para simplificar, suponhamos que o campo é centrado, isto é, $X_0 = (0,0,0)$. Por outro lado, e supondo que apenas a força elétrica esteja exercida, a segunda lei de Newton para o movimento afirma que

$$ma(t) = \text{soma das forças } = \frac{qQ}{4\pi\epsilon_0} \frac{\gamma(t)}{\|\gamma(t)\|^3}$$

com m a massa. Se escrevermos $a = \gamma''$, aparece uma equação de segunda ordem:

$$\gamma''(t) = \frac{qQ}{4\pi\epsilon_0 m} \frac{\gamma(t)}{\|\gamma(t)\|^3}.$$

Diferentemente da formulação do problema de Cauchy, esta equação fornece uma relação com a derivada segunda, não com a primeira. No entanto, ainda podemos buscar soluções. Vejamos o caso em que as cargas são opostas: qQ=-|qQ|, portanto a força elétrica é atrativa. Neste caso, a seguinte função é uma solução e é periódica:

$$t \longmapsto \left(\cos\left(\sqrt{\frac{|qQ|}{4\pi\epsilon_0 m}} \cdot t\right), \ \sin\left(\sqrt{\frac{|qQ|}{4\pi\epsilon_0 m}} \cdot t\right), \ 0\right).$$

Observação 2.19. Na verdade, as equações diferenciais de segunda ordem são apenas um caso especial do caso de primeira ordem, ao contrário do que o exemplo anterior poderia sugerir. De fato, há um truque para transformar uma na outra: se considerarmos

$$\gamma''(t) = F(\gamma(t)),$$

com $F: \mathbb{R}^n \to \mathbb{R}^n$ um campo vetorial, pomos $\Gamma(t) = \begin{pmatrix} \gamma(t) \\ \gamma'(t) \end{pmatrix}$, e a equação se reescreve

$$\Gamma'(t) = \left(\begin{array}{c} \gamma'(t) \\ \gamma''(t) \end{array} \right) = \left(\begin{array}{c} \gamma'(t) \\ F(\gamma(t)) \end{array} \right) = \Phi(\Gamma(t)) \qquad \text{onde} \qquad \Phi\left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} y \\ F(x) \end{array} \right).$$

A relação $\Gamma'(t) = \Phi(\Gamma(t))$ é, de fato, uma equação diferencial de primeira ordem, como na equação (3). Observemos, entretanto, que a curva $\Gamma(t)$ agora assume valores em \mathbb{R}^{2n} . Em conclusão, aumentando a dimensão, podemos transformar uma equação diferencial de segunda ordem em um problema clássico de Cauchy. Mais geralmente, isto se aplica à equações de qualquer ordem.

2.3 Campos de gradiente

Da mesma forma que a primitiva de uma função $f: \mathbb{R} \to \mathbb{R}$ é uma função $F: \mathbb{R} \to \mathbb{R}$ cuja derivada é f, definiremos uma noção de "primitiva" para campos vetoriais, chamada de potencial. Por outro lado, ao contrário da noção usual de primitiva, somente um tipo específico de campos vetoriais admite tal primitiva, chamados de campos conservativos.

2.3.1 Definição

Se uma função numérica $f\colon \Omega\subset\mathbb{R}^n\to\mathbb{R}$ é derivável, relembramos na seção 2.1 que seu gradiente é uma função

$$\nabla f \colon \Omega \to \mathbb{R}$$
,

ou seja, é um campo vetorial. Tais campos têm nome.

Definição 2.20. Dizemos que ∇f é o campo vetorial gradiente da função f.

Notação 2.21. O símbolo " ∇ " é chamado de nabla. A notação gradf também é comumente usada para representar o gradiente de f. Além disso, neste contexto, a função numérica f às vezes é chamada de campo escalar.

Relembremos a interpretação clássica do gradiente: ele indica a direção de maior elevação de f. Em outras palavras, em um determinado ponto x, o gradiente $\nabla f(x)$ é a direção a ser seguida para maximizar a função f localmente. Isto é também compreendido com o uso do seguinte conceito.

Definição 2.22. Dados $f: \mathbb{R}^n \to \mathbb{R}$ e $\alpha \in \mathbb{R}$, o conjunto de nível de f de valor α é

$$N_{\alpha} = f^{-1}(\{\alpha\}).$$

Quando n = 2 (resp. n = 3), os conjuntos de nível são chamados de curvas de nível ou curvas de contorno (resp. superfícies de nível).

Temos então a seguinte nova interpretação: o gradiente de uma função é ortogonal aos conjuntos de nível. Mas é preciso ser matematicamente cuidadoso aqui: não é verdade que as curvas de nível são sempre "curvas", em um sentido geométrico-diferencial a ser definido mais adiante (teorema da função inversa).

Exemplo 2.23. Consideremos a função numérica

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto xy.$

Ela é derivável, e seu campo de gradiente escreve-se

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}.$$

Além disso, as linhas de nível escrevem-se, por $\alpha \in \mathbb{R} \setminus \{0\}$, como

$$N_{\alpha} = \left\{ \left(t, \frac{\alpha}{t} \right) \mid t \in \mathbb{R} \setminus \{0\} \right\}.$$

Exemplo 2.24. Em topografia, o mapa da elevação de um terreno pode ser visto como uma função numérica do plano. Neste contexto, as linhas de nível são conjuntos de pontos na mesma altitude. Como exemplo, a figura 2 indica a elevação de uma seção da Chapada Diamantina³, bem como o campo de gradiente correspondente.

 $^{^3}$ https://www.infochapada.com.br/pt/parquechapadadiamantina/

Figura 2: Vendo um mapa da elevação topográfica como um campo escalar $\mathbb{R}^2 \to \mathbb{R}$, associamos um campo de gradiente.

2.3.2 Campos conservativos

Uma questão natural surge: dado um campo vetorial, ele é um campo de gradiente?

Definição 2.25. Um campo vetorial $F: \Gamma \subset \mathbb{R}^n \to \mathbb{R}^n$ é **conservativo** se existe uma função diferenciável $f: \Gamma \to \mathbb{R}^n$ tal que $F = \nabla f$. Neste caso, f é chamada de **função potencial** para F.

Esta é uma definição recíproca à 2.20: um campo conservativo nada mais é do que um campo de gradiente de uma função, com a "diferença" de que a função não é conhecida a priori. Para achar um potencial — um problema delicado em geral — um método clássico é o da separação de variáveis, como veremos nos exercícios.

Exemplo 2.26. O campo F exemplo 2.10 é conservativo pois admite o potencial $f(x) = ||x||^2/2$. Os outros dois não são; estudamos G no exemplo 2.29 e H na próxima aula.

Exemplo 2.27 (Potencial elétrico). O campo elétrico gerado por uma carga pontual, dado pela equação (2), admite o seguinte potencial:

$$V \colon X \longmapsto -\frac{q}{4\pi\epsilon_0} \frac{1}{\|X - X_0\|}.$$

Convém destacar que, na literatura física, o potencial é definido por $F = -\nabla f$ em vez de $F = \nabla f$. Além disso, acrescentamos que, como é bem conhecido no eletromagnetismo, o campo elétrico é sempre conservativo, não apenas no caso de uma carga pontual.

Um dos objetivos deste semestre é fornecer ferramentas para reconhecer se um campo é conservativo ou não. Neste estágio, já podemos propor um primeiro critério.

Propriedade 2.28. Se um campo é conservativo, então suas curvas integrais nãoconstantes são injetoras. Demonstração. Sejam $\gamma: J \subset \mathbb{R} \to \mathbb{R}^n$ uma curva integral não-constante de $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, e $f: \Omega \to \mathbb{R}^n$ uma função potencial para F. Por ser uma curva integral, vale

$$\gamma'(t) = F(\gamma(t))$$

por todo $t \in J$. Em particular, podemos ver que $\gamma'(t) \neq 0$, se não, a curva seria constante. Vemos também, pela regra da cadeia (corolário 2.6), que

$$f(\gamma(t))' = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle$$

= $\langle F(\gamma(t)), F(\gamma(t)) \rangle = ||F(\gamma(t))|| > 0.$

Logo, $t \mapsto f(\gamma(t))$ é estritamente crescente. Deduzimos que γ não assume duas vezes o mesmo valor, ou seja, ela é injetora.

Exemplo 2.29. O campo G do exemplo 2.10 não é conservativo. Com efeito, vimos no exemplo 2.16 que suas curvas integrais são periódicas. Concluímos pela contrapositiva da propriedade 2.28.

A Notações

Diremos que um números real $a \in \mathbb{R}$ é

positivo se
$$x \in (0, +\infty)$$

negativo se $x \in (-\infty, 0)$
não negativo se $x \in [0, +\infty)$
não positivo se $x \in (-\infty, 0]$

Além disso, usaremos as seguintes notações:

 $\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{R}^+$ Números inteiros, racionais, reais, reais não negativos \mathbb{R}^n Espaço euclidiano de dimensão n $\|\cdot\|^2, \langle\cdot,\cdot\rangle$ Norma euclidiana, produto escalar $[a,b], \llbracket m,n \rrbracket$ Intervalo real, intervalo inteiro χ_A Função indicadora de um conjunto $A \subset \mathbb{R}$ ou \mathbb{R}^n $\mathcal{P}, \mathcal{P}_{\mathbf{p}}$ Partição de um intervalo, partição pontilhada $\int f, \int_a^b f, \int_a^b f(x) \, \mathrm{d}x$ Integral de uma função $[F]_a^b$ ou $F|_a^b$ A diferença F(b) - F(a) Diferencial de uma função f em x, matriz jacobiana $\frac{\partial f}{\partial x_i}$ ou $\partial_i f$ Derivadas parciais de uma função f em x Gradiente de uma função f em x

B Indicações para os exercícios

B.1 Exercícios da seção 1

Correção do exercício 1.1.

• $I_1 = 0$ por integração via a primitiva $\frac{5}{4}x^4 - \frac{3}{2}x^2 - 7x$.

- $I_2 = \frac{5}{2}\sqrt{2} 3$ por integração via a primitiva $2 \sin x + 3 \cos x$.
- $I_3 = \frac{2}{3}e \frac{5}{9}$ por integração via a primitiva $\frac{2}{3}e^{3x} + 2x$.
- $I_4 = \frac{2}{9}$ por integração via a primitiva $\frac{1}{4}\ln(1+2x^2)$.
- $I_5 = \frac{1}{6} \ln \left(\frac{1+2e^6}{3} \right)$ por integração via a primitiva $\frac{1}{6} \ln (1+2e^{3x})$.
- $I_6 = \frac{\log^2 2}{2}$ por integração via a primitiva $\frac{1}{2} \ln^2 x$.
- $I_7 = 1$ por integração por partes com $\begin{cases} u(x) = x & u'(x) = 1 \\ v'(x) = e^x & v(x) = e^x \end{cases}$

$$\int_0^1 uv' = \left[uv \right]_0^1 - \int_0^1 u'v = \left[xe^x \right]_0^1 - \int_0^1 e^x \, \mathrm{d}x = e - (e - 1).$$

• $I_8 = \frac{1}{9}(1 - 2e^3)$ por integração por partes com $\begin{cases} u(x) = \ln x & u'(x) = 1/x \\ v'(x) = x^2 & v(x) = x^3/3 \end{cases}$

$$\int_{1}^{e} uv' = \left[uv\right]_{1}^{e} - \int_{1}^{e} u'v = \left[\frac{1}{3}x^{3}\ln x\right]_{1}^{e} - \int_{1}^{e} \frac{1}{3}x^{2} dx = \frac{1}{3}e^{3} - \frac{1}{9}e^{3} - \frac{1}{9}.$$

• $I_9 = 2(\ln 2 - 1)^2$ por integração por partes com $\begin{cases} u(x) = \ln^2 x & u'(x) = 2\frac{\ln x}{x} \\ v'(x) = 1 & v(x) = x \end{cases}$

$$\int_{1}^{2} uv' = \left[uv \right]_{1}^{2} - \int_{1}^{2} u'v = \left[x \ln^{2} x \right]_{1}^{2} - \int_{1}^{2} 2 \ln x \, dx = 2 \ln^{2} 2 - 2(2 \ln 2 - 1),$$

onde usamos a primitiva $x \ln x - x$ de $\ln x$.

• $I_{10}=-1$ por mudança de coordenadas com $\begin{cases} t=\sqrt{x}\\ \mathrm{d}t=\frac{1}{2\sqrt{x}}\mathrm{d}x \end{cases}$

$$\int_{1}^{4} \frac{1 - \sqrt{x}}{\sqrt{x}} dx = \int_{1}^{4} 2(1 - \sqrt{x}) \cdot \underbrace{\frac{1}{2\sqrt{x}} dx}_{dt} = \int_{\sqrt{1}}^{\sqrt{4}} 2(1 - t) dt$$
$$= \left[2t - t^{2}\right]_{1}^{2} = -1.$$

• $I_{11} = 2\sqrt{3} - 2 - \frac{\pi}{6}$ por mudança de coordenadas com $\begin{cases} t = \sqrt{x} \\ \mathrm{d}t = \frac{1}{2\sqrt{x}} \mathrm{d}x \end{cases}$

$$\int_{1}^{3} \frac{\sqrt{x}}{x+1} dx = \int_{1}^{3} 2 \frac{x}{x+1} \cdot \underbrace{\frac{1}{2\sqrt{x}} dx}_{dt} = 2 \int_{\sqrt{1}}^{\sqrt{3}} \frac{t^{2}}{t^{2}+1} dt = 2 \int_{1}^{\sqrt{3}} 1 - \frac{1}{t^{2}+1} dt$$

$$= 2 \left[t - \arctan t \right]_{1}^{\sqrt{3}}$$

$$= 2(\sqrt{3} - \arctan \sqrt{3} - 1 + \arctan 1)$$

$$= 2(\sqrt{3} - \frac{\pi}{3} - 1 + \frac{\pi}{4}).$$

•
$$I_{12} = \frac{\pi}{2}$$
 por mudança de coordenadas com
$$\begin{cases} \sin t = x & (t = \arcsin x) \\ dx = \cos t \ dt & (dt = \frac{1}{\cos t} \ dx) \end{cases}$$

$$\int_{-1}^{1} \sqrt{1 - x^2} \underbrace{dx}_{\cos t \, dt} = \int_{\arcsin 1}^{\arcsin 1} \sqrt{1 - \sin^2 t} \cdot \cos t \, dt = \int_{-\pi/2}^{\pi/2} \cos t \cdot \cos t \, dt$$
$$= \int_{-\pi/2}^{\pi/2} \frac{1 + \cos 2t}{2} \, dt = \frac{\pi}{2}.$$

Correção do exercício 1.2.

1. Ao integrar I_n por partes, vemos que $I_n = (n-1)(I_{n-2} - I_n)$, e portanto $I_n = \frac{n-1}{n}I_{n-2}$. Como $I_0 = \pi/2$, deduzimos

$$I_{2n} = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$
 e $I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}$.

onde o duplo fatorial é definido como $p!! = p(p-2)(p-4) \cdot \cdot \cdot$.

2. Este produto vale $\frac{I_{2n+1}}{I_{2n}}\frac{\pi}{2}$. Por monotonicidade da integral, $I_{2n+1} \leq I_{2n} \leq I_{2n-1}$. Logo,

$$1 \le \frac{I_{2n}}{I_{2n+1}} \le \frac{I_{2n-1}}{I_{2n+1}} = \frac{2n+1}{2n} \xrightarrow[n \to \infty]{} 1.$$

Correção do exercício 1.3.

- 1. Primeiro, mostre que se G é uma primitiva de f^{-1} , então G(f(x))' = xf'(x).
- 2. Chame o teorema do valor intermediário: existe $x \in [0, a]$ tal que f(x) = b.
- 3. Use $f(x) = x^{p-1}$.

Correção do exercício 1.4.

- 1. Use a monotonicidade da integral.
- 2. Use o teorema do valor médio para função f cujos mínimo e máximo são m e M.
- 3. Mostre primeiro que $m \int_a^b g \le \int_a^b fg \le M \int_a^b g$, e raciocine como antes.

Correção do exercício 1.5. Poderemos começar com $F(x) = \int_0^{g(x)} h$.

Correção do exercício 1.6.

I_1 converge	I_2 diverge	I_3 converge
I_4 diverge	I_5 converge	I_6 diverge
I_7 converge	I_8 converge	I_9 converge

Correção do exercício 1.7.

- 1. A convergência segue da aproximação $\ln(\operatorname{sen}(x)) \sim_{x\to 0} \ln(x)$, uma primitiva do qual é $x\mapsto x\ln(x)-x$.
- 2. Usando sen(x) = 2 sen(x/2) cos(x/2), obtemos

$$I = \frac{\pi \ln(2)}{2} + \int_0^{\pi/2} \ln \sin \frac{x}{2} \, dx + \int_0^{\pi/2} \ln \cos \frac{x}{2} \, dx$$

Por outro lado, integrando por substituição, temos

$$\int_0^{\pi/2} \ln \sin \frac{x}{2} \, dx = 2 \int_0^{\pi/4} \ln \sin x \, dx, \quad \int_0^{\pi/2} \ln \cos \frac{x}{2} \, dx = 2 \int_0^{\pi/4} \ln \cos x \, dx,$$

bem como

$$\int_0^{\pi/4} \ln \cos x \, dx = \int_{\pi/4}^{\pi/2} \ln \sin x \, dx.$$

Logo, a primeira equação reescreve-se como $I = \frac{\pi \ln(2)}{2} + 2I$, e deduzimos

$$I = -\frac{\pi \ln(2)}{2}.$$

Correção do exercício 1.8. Poderemos usar o critério da comparação (propriedade 1.36), juntamente com o seguinte truque: se $\alpha > 0$, então pode-se escrever $\alpha = 1 + 2h$, com h > 0, e

$$\frac{1}{t^{\alpha}(\log t)^{\beta}} = \frac{1}{t^{1+h} \cdot t^{h}(\log t)^{\beta}} = \mathcal{O}_{t \to +\infty} \left(\frac{1}{t^{1+h}}\right).$$

Correção do exercício 1.9.

- 1. Escreva $e^t t^{x-1} = e^{t+(x-1)\ln(x)}$, estude o comportamento assimptótico da função em $0 \text{ e} + \infty$, e usa resultados de comparação para integral imprópria.
- 2. Integre por partes.
- 3. Use (2) junto com $\Gamma(1) = 1$.

Correção do exercício 1.10. Fabrique, à mão, uma sequencia de intervalos $[t_0, t_1]$, $[t_2, t_3]$, ..., tal que $t_0 < t_1 < t_2 < t_3 < ...$ e

$$\sum_{i=1}^{+\infty} \int_{t_{2i}}^{t_{2i+1}} \frac{|\cos x|}{x} dx \ge \sum_{i=1}^{+\infty} \frac{1}{t_{2i+1}} \int_{t_{2i}}^{t_{2i+1}} |\cos x| dx = +\infty.$$

Correção do exercício 1.11. Pondo $F(t) = \int_1^t f$, a integração por partes mostra que

$$\int_{1}^{t} \frac{f(x)}{x^{\alpha}} dx = \left[\frac{F(x)}{x^{\alpha}} \right]_{1}^{t} + \alpha \int_{1}^{t} \frac{F(x)}{x^{\alpha+1}} dx.$$

Correção do exercício 1.12. Por um lado, $\int_0^1 f_n = 1$. Por outro lado, $(f_n)_{n>0}$ converge pontualmente em [0,1] a função constante igual a 0, cuja integral é 0. Consequentemente, $\lim \int_0^1 f_n \neq \int_0^1 \lim f_n$.

Correção do exercício 1.13. Pode-se usar o teorema de convergência dominada, junto com a convergência pontual $f(x^n) \xrightarrow[n \to \infty]{} f(0)$ por todo $x \in [0, 1)$.

Correção do exercício 1.14. Usando a desigualdade $f \leq M$, obtemos

$$\left(\int_a^b f(x)^n \, \mathrm{d}x\right)^{1/n} \le \left(\int_a^b M^n \, \mathrm{d}x\right)^{1/n} = \left((b-a)M^n\right)^{1/n} = (b-a)^{1/n}M$$

$$\xrightarrow[n \to \infty]{} M.$$

Agora, escolhamos um $\epsilon > 0$. Mostraremos que

$$\lim_{n \to \infty} \left(\int_a^b f(x)^n \, \mathrm{d}x \right)^{1/n} \ge M - \epsilon,$$

o que bastará para concluir. Seja $y \in [a, b]$ que atinge o máximo M e, por continuidade, $\eta > 0$ tal que $f(x) > M - \epsilon$ por todo $x \in [y - \eta, y + \eta]$. Escrevemos

$$\left(\int_{a}^{b} f(x)^{n} dx\right)^{1/n} \ge \left(\int_{y-\eta}^{y+\eta} (M-\epsilon)^{n} dx\right)^{1/n} = \left((2\eta)(M-\epsilon)^{n}\right)^{1/n}$$
$$= (2\eta)^{1/n}(M-\epsilon) \xrightarrow[n \to \infty]{} M - \epsilon.$$

C Referências

- [CB22] Jean Cerqueira Berni. Mat 2455 Cálculo diferencial e integral III. *Instituto de Matemática e Estatística IME/USP*, 2022. https://www.ime.usp.br/~jeancb/mat2455.html.
- [Gil15] DC Gillespie. The Cauchy definition of a definite integral. *The Annals of Mathematics*, 17(2):61–63, 1915. https://www.jstor.org/stable/2007121.
- [Gou20] Xavier Gourdon. Les maths en tête: Analyse. Les maths en tête, pages 1-456, 2020. https://keybase.theophile.me/maths/livres/gourdon-analyse.pdf.
- [Gri13] David J Griffiths. Introduction to electrodynamics. Pearson, 2013.
- [KKS04] D.S. Kurtz, J. Kurzweil, and C.W. Swartz. Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. Series in real analysis. World Scientific Pub., 2004. https://epdf.tips/theories-of-integration.html.
- [KPR62] Erik Kristensen, Ebbe Thue Poulsen, and Edgar Reich. A characterization of riemann-integrability. *The American Mathematical Monthly*, 69(6):498–505, 1962.
- [Leb72] Henri Lebesgue. *Œuvres scientifiques, Volumes I and II.* L'enseignement mathématique. and Université de Genève. Institut de mathématiques, 1972.

- [Lux71] WAJ Luxemburg. Arzela's dominated convergence theorem for the riemann integral. *The American Mathematical Monthly*, 78(9):970–979, 1971. https://sites.math.washington.edu/~morrow/335_17/dominated.pdf.
- [MHB11] Pedro Alberto Morettin, Samuel Hazzan, and Wilton de Oliveira Bussab. Cálculo funções de uma e várias variáveis. Saraiva Uni, 2011. https://document.onl/download/link/livro-calculo-funcoes-de-uma-e-varias-variaveis-bussab-wilton.html.
- [MT12] Jerrold E. Marsden and Anthony Tromba. Vector calculus. W.H. Freeman, New York, array edition, 2012. https://uuwaterloohome.files.wordpress.com/2020/04/jerrold-e.-marsden-anthony-tromba-vector-calculus.pdf.
- [PCJ12] Murray H Protter and B Charles Jr. A first course in real analysis. Springer Science & Business Media, 2012. https://www.mymathscloud.com/api/download/modules/University/Textbooks/analysis-real/8) A%20First%20 Course%20in%20Real%20Analysis%20Protter.pdf?id=25323333.
- [Pin10] Márcia Maria Fusaro Pinto. Introdução ao cálculo integral, 2010. https://docente.ifrn.edu.br/elionardomelo/disciplinas/calculo-diferencial-e-integral-ii/material-de-aula.
- [PM09] Diomara Pinto and Maria Cândida Ferreira Morgado. Cálculo diferencial e integral de funções de várias variáveis. UFRJ, 2009.
- [Spi06] Michael Spivak. Calculus. Cambridge University Press, 2006. https://isidore.co/CalibreLibrary/Spivak,%20Michael/Calculus%20(4th%20ed.) %20(8039)/.
- [SR17] James Stewart and Jorge Humberto Romo. cálculo, Volume 2. Cengage Learning, 2017. https://ead.ict.unesp.br/pluginfile.php/26291/mod_resource/content/3/Calculo%20-%20James%20Stewart%20-%207%20Edi%C3%A7%C3%A3o%20-%20Volume%202.pdf.
- [Ton01] Jingcheng Tong. Partitions of the interval in the definition of Riemann's integral. *International Journal of Mathematical Education in Science and Technology*, 32(5):788–793, 2001.
- [Wel11] Jonathan Wells. Generalizations of the Riemann integral: an investigation of the Henstock integral. Whitman Coll, pages 1-28, 2011. https://www.whitman.edu/documents/Academics/Mathematics/SeniorProject_JonathanWells.pdf.