

Problem 1 (2 marks): Given a right triangle that has a named angle of $\theta = 65^{\circ}$, and an adjacent of a = 67.22, compute both the opposite o and the hypotenuse h to 4 significant digits.

Problem 2 (2 marks): Given a right triangle that has a named angle of $\theta = 40^{\circ}$, and a hypotenuse of $h = 3.500 \times 10^{5}$, compute both the adjacent a and the opposite o to 4 significant digits.

Problem 3 (2 marks): Given a right triangle that has a named angle of $\theta = 50^{\circ}$, and an opposite of $o = 9.988 \times 10^{-3}$, compute both the adjacent a and the hypotenuse h to 4 significant digits.

Problem 4 (2 marks):

In the x,y coordinate system, is a box of width w_x and height w_y . The bottom left corner of the box is anchored to the origin (0,0) point. Initially the box's width w_x is along the positive x axis, and the box's height w_y is along the positive y axis. The box is rotated counterclockwise by an angle of θ with the bottom left corner still anchored to the origin point. Find the new x and y coordinates (x', y') of the top right corner of the box after the rotation. Give x' and y' as expressions involving only the quantities w_x , w_y , and θ .

Problem 5 (15 marks): Fill in the table below:

For each empty cell, insert one of the following values or ranges:

 $0,\,1,\,-1,\,\pm\infty,\,(0,1),\,(-1,0),\,(0,+\infty),\,(-\infty,0),\,(1,+\infty),\,(-\infty,-1)$

The chosen range must be tight: the range $(0, +\infty)$ is the incorrect choice when the range is actually $(1, +\infty)$.

θ	$\cos \theta$	$\sin \theta$	$\tan \theta$	$\sec \theta$	$\cot \theta$	$\csc \theta$
$\theta = 0$	1	0	0	1	$\pm \infty$	$\pm \infty$
$\theta \in (0, \pi/2)$	(0,1)	(0,1)	$(0,+\infty)$	$(1, +\infty)$	$(0,+\infty)$	$(1,+\infty)$
$\theta = \pi/2$	0	1	$\pm \infty$	$\pm \infty$	0	1
$\theta \in (\pi/2, \pi)$	(-1,0)	(0,1)	$(-\infty,0)$	$(-\infty, -1)$	$(-\infty,0)$	$(1,+\infty)$
$\theta = \pi$						
$\theta \in (\pi, 3\pi/2)$						
$\theta = 3\pi/2$						
$\theta \in (3\pi/2, 2\pi)$						
$\theta = 2\pi$						

Problem 6 (bonus 6 marks):

In the image of the right, a tree with a known height of $d=10.00\mathrm{m}$ is on top of a hill with an incline of $\theta=20^\circ$. From the bottom of the hill, the "angular size" of the tree is $\phi=5^\circ$. Compute all of:

- \bullet x, the **horizontal** distance of the tree from the observer.
- \bullet y, the altitude of the base of the tree.
- ullet z, the distance of the base of the tree from the observer.

