# Devoirs et Lectures, 2022

### William McCausland

#### 2022-11-07

## Cours 1, le 7 septembre

### Devoirs, Rosenthal (matière du cours 1)

- 1. Exercice 1.3.1
- 2. Exercice 1.3.2
- 3. Exercice 1.3.3
- 4. Exercice 1.3.4
- 5. Exercice 1.3.5

### Lectures, Rosenthal (matière du cours 2)

- 1. Chapitre 1
- 2. Chapitre 2

Définitions importantes : espace de probabilité; espace d'état; algèbre; tribu; additivité (finie ou dénombrable); stabilité par complémentation, pour les réunions ou intersections (finies ou dénombrables); semi-algèbre.

#### Questions sur les lectures

- 1. Soit  $\Omega = [0, 1]$ . Soit  $\mathcal{F}$  l'ensemble des parties de  $\Omega$  qui sont finis ou de complémentaire fini.
  - a. Est-ce que  $\mathcal{F}$  est une algèbre? Appuyez votre réponse.
  - b. Est-ce que  $\mathcal{F}$  est une tribu (ou  $\sigma$ -algèbre)? Appuyez votre réponse.
- 2. Soit  $\Omega = \{1, 2, 3\}$  et  $\mathcal{F} = 2^{\Omega}$ . Trouvez une mesure de probabilité additive  $P \colon \mathcal{F} \to [0, 1]$  sur  $(\Omega, \mathcal{F})$  telle que  $P(\{1, 2\}) = 3/4$  et  $P(\{2, 3\}) = 1/2$ .
- 3. Soit  $\mathcal{J} = \{\emptyset, \{1\}, \{2\}, \dots, \{n\}, \{1, \dots, n\}\}$ . Soit  $\Omega = \{1, \dots, n\}$ . Montrez que
  - a.  $\mathcal{J}$  est stable pour les intersections finies,
  - b.  $\emptyset \in \mathcal{J}$  et  $\Omega \in \mathcal{J}$ ,
  - c. tous les éléments de  $\mathcal J$  ont un complément par rapport à  $\Omega$  qui égale une réunion disjointe finie des éléments de  $\mathcal J$ .
  - d.  $\mathcal J$  est une semi-algèbre de parties de  $\Omega.$

## Cours 2, le 14 septembre

## Devoirs, Rosenthal (matière du cours 2)

- 1. Exercice 2.7.4
- 2. Exercice 2.7.8
- 3. Exercice 2.7.14
- 4. Exercice 2.7.20
- 5. Exercice 2.7.22

### Lectures, Rosenthal (matière du cours 3)

1. Chapitre 3

Définitions importantes : variable aléatoire,  $\searrow$ ,  $\nearrow$ ,  $\lim\inf_n$  et  $\limsup_n$  pour une suite d'ensembles  $A_n$ , indépendance d'événements.

### Questions sur les lectures

- 1. Trouver  $\Lambda_1$  tel que  $[-1/n, 1/n) \searrow \Lambda_1$ .
- 2. Trouver  $\Lambda_2$  tel que  $[-1+1/n,1-1/n) \nearrow \Lambda_2$ .
- 3. Soit  $\Omega = \{1, 2, 3, 4\}$ ,  $A = \{1, 2\}$ ,  $B = \{1, 3\}$ . Soit  $D_n$  la séquence où  $D_n = A$  pour n pair et  $D_n = B$  pour n impair.
  - a. Trouvez l'algèbre (sur  $\Omega$ ) le plus petit qui contient A et B.
  - b. Trouvez  $\limsup_{n\to\infty} D_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} D_n$  et  $\liminf_{n\to\infty} D_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} D_n$ .
  - c. Soit  $P: 2^{\Omega} \to \mathbb{R}$  telle que  $(\Omega, 2^{\Omega}, P)$  est un espace de probabilité. Prouver que si A et B sont indépendants, A et  $B^c$  le sont aussi.
- 4. Soit  $\Omega = \{1, 2, 3\}, \mathcal{F} = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$ 
  - a. Donnez une fonction  $X: \Omega \to \mathbb{R}$  qui est une variable aléatoire sur  $(\Omega, \mathcal{F})$ .
  - b. Donnez une fonction  $f: \Omega \to \mathbb{R}$  qui n'est pas une variable aléatoire sur  $(\Omega, \mathcal{F})$ .

## Cours 3, le 21 septembre

### Devoirs, Rosenthal (matière du cours 3)

- 1. Exercice 3.6.2
- 2. Exercice 3.6.6
- 3. Exercice 3.6.10
- 4. Exercice 3.6.12

### Lectures, Rosenthal (matière du cours 4)

1. Chapitre 4

Définitions importantes : espérance, variance d'une variable aléatoire simple, covariance, corrélation entre deux variables aléatoires simples.

### Questions sur les lectures

1. Soit  $(\Omega, \mathcal{F}, P)$  la mesure de probabilité où  $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \ \mathcal{F} = 2^{\Omega}$  et P est la probabilité où  $P(\{\omega\}) = 2^{-\omega}, \ \omega \in \mathbb{N}$ . Soit  $X(\omega) = 0$ . Pour  $n \in \mathbb{N}$ , soit

$$X_n(\omega) = \begin{cases} 2^n & \omega = n \\ 0 & \omega \neq n. \end{cases}$$

Trouver E[X] et  $E[X_n]$ . Est-ce que  $E[X_n] \to E[X]$ ?

2. Soit  $(\Omega, \mathcal{F}, P)$  la mesure de probabilité où  $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \ \mathcal{F} = 2^{\Omega}$  et P est la probabilité où  $P(\{n\}) = 2^{-n}, \ n \in \mathbb{N}$ . Soit

$$X(\omega) = \begin{cases} 2, & \omega = 2, 3 \\ 1, & \omega = 4 \\ 0, & \text{autrement.} \end{cases}$$

Trouver E[X].

3. Soit  $(\Omega, \mathcal{F}, P)$  la mesure de Lebesgue sur  $\Omega = [0, 1]$ . Soit

$$Y(\omega) = \begin{cases} 1, & \omega \text{ irrationel, } \omega < 1/2 \\ 3, & \omega = 1/2 \\ 5, & 1/2 < \omega \leq 1 \\ 7, & \text{autrement.} \end{cases}$$

Trouver E[Y].

## Cours 4, le 28 septembre

### Devoirs, Rosenthal (matière du cours 4)

- 1. Exercice 4.5.1
- 2. Exercice 4.5.2
- 3. Exercice 4.5.3
- 4. Exercice 4.5.4
- 5. Exercice 4.5.13 (considérez les fonctions  $\omega^{-1}$ ,  $\omega^{-1/2}$ ,  $(1-\omega)^{-1}$  et  $(1-\omega)^{-1/2}$  sur  $\Omega$  et leurs combinaisons linéaires).

### Lectures, Rosenthal (matière du cours 5)

1. Chapitres 5, 6

Définitions importantes : convergence presque sur, convergence en probabilité.

### Question sur les lectures

- 1. Soit  $(\Omega, \mathcal{F}, P)$  un espace de probabilité avec  $\Omega = [0, 1]$  et P, la mesure de Lebesgue. Pour tous n > 0, soit  $A_n \equiv [0, 1/n]$ ,  $Z_n = 1_{A_n}$ , Z = 0. Lesquelles des affirmations suivantes sont vraies? Expliquez. Pour  $Z_n = n1_{A_n}$ , est-ce que les réponses changent?
  - a.  $Z_m \to Z$
  - b.  $Z_n$  converge à Z presque surement.
  - c.  $Z_n$  converge à Z en probabilité.

#### Cours 5, le 5 octobre

### Devoirs, Rosenthal (matière du cours 5)

- 1. Exercice 5.5.2
- 2. Exercice 5.5.10
- 3. Exercice 5.5.14
- 4. Exercice 6.3.2
- 5. Exercice 6.3.4

### Lectures, Rosenthal (matière du cours 6)

1. Chapitre 9, 10

Définitions importantes : lim inf d'une suite de nombres, lim inf d'une variable aléatoire, fonction géneratrice des moments

#### Question sur les lectures

1. Selon le lemme de Fatou, pour une séquence de variables aléatoires  $X_n \geq 0$ ,

$$E[\liminf_{n\to\infty} X_n] \le \liminf_{n\to\infty} E[X_n].$$

Supposez que  $(\Omega, \mathcal{F}, P)$  est un espace de probabilité où  $\Omega = \mathbb{N}$ ,  $\mathcal{F} = 2^{\Omega}$  et  $P(\{\omega\}) = 2^{-\omega}$ .

a. Montrez que la séquence de variables aléatoires  $X_n = 2^n 1_{\{n\}}(\omega)$  vérifie

$$E[\liminf_{n\to\infty} X_n] < \liminf_{n\to\infty} E[X_n].$$

b. Donnez une séquence de variables aléatoires  $X_n \geq 0$  telle que

$$E[\liminf_{n\to\infty} X_n] = \liminf_{n\to\infty} E[X_n].$$

- c. Donnez une séquence de variables aléatoires  $X_n \geq 0$  telle que  $E[\liminf_{n\to\infty} X_n] < \infty$  et  $\liminf_{n\to\infty} E[X_n] = \infty$ .
- d. Donnez une séquence de variables aléatoires  $X_n \geq 0$  telle que  $E[\liminf_{n\to\infty} X_n] = \infty$  et  $\liminf_{n\to\infty} E[X_n] = \infty$ .
- 2. Donnez la fonction génératrice des moments pour une v.a. Bernoulli avec probabilité p de succès.

## Cours 6, le 12 octobre

### Devoirs, Rosenthal (matière du cours 6)

- 1. Exercice 9.5.4
- 2. Exercice 9.5.6
- 3. Exercice 9.5.8
- 4. Exercice 10.3.4
- 5. Exercice 10.3.6

## Lectures, Rosenthal (matière du cours 7)

- 1. Chapitre 11, accent sur l'Intro, 11.1, 11.2
- 2. (si nécessaire, https://fr.wikipedia.org/wiki/Nombre\_complexe)

Définitions importantes : nombres complexes et les operations de base (addition, multiplication, division, exponential, logarithme, magnitude, angle), fonction caractéristique.

#### Questions sur les lectures

- 1. Exprimez les nombres complexes suivants sous la forme  $\alpha + i\beta$ , où  $a, b, c, d, r, \theta \in \mathbb{R}$ .
  - a. (a+ib)(c+id)
  - b. (a + ib)/(c + id)
  - c.  $re^{i\theta}$
  - d.  $\log(a+ib)$
- 2. Exprimez les nombres complexes suivants sous la forme  $re^{i\theta}$ , où  $a, b, r, r_1, r_2, \theta \in \mathbb{R}$ .
  - a. (a+ib)
  - b.  $r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2}$
  - c.  $re^{i\theta} \cdot i$
  - d.  $e^{a+ib}$
- 3. Les variables aléatoires indépendantes  $X_k$ ,  $k=1,2,\ldots$  suivent une loi Be(p) (Bernoulli) si  $P(X_k=0)=(1-p)$  et  $P(X_k=1)=p, k=1,2,\ldots$ 
  - a. Trouvez la fonction caractéristique  $\phi_X(t)$  de  $X_k$ .
  - b. La variable aléatoire  $Y = \sum_{k=1}^{n} X_k$  suit une loi Bi(n, p) (Binomial). Trouvez la fonction caractéristique  $\phi_Y(t)$  de Y.
  - c. Soit  $Z = \sqrt{n(n^{-1}Y p)}$ . Trouvez la fonction caractéristique  $\phi_Z(t)$  de Z.

### Cours 7, le 19 octobre

## Devoirs, Rosenthal (matière du cours 7)

1. Exercice 11.5.7

- 2. Exercice 11.5.11
- 3. Exercice 11.5.15 (ajouter la distribution  $Ga(\alpha, \beta)$ , utilisez les fonctions caractéristiques et non le « hint »)
- 4. Exercice 11.5.16
- 5. Exercice 11.5.18

### Lectures, Rosenthal (matière du cours 8)

1. Chapitre 13 de Rosenthal

#### Questions sur les lectures

- 1. Exercises 13.4.1, 13.4.2, 13.4.5
- 2. Généralisez le théorème de variance totale (théorème 13.3.1) à un théorème de covariance totale (aléas X et Y, sous-tribu  $\mathcal{G}$ )

### Cours 8, le 2 novembre

Notez que le 26 octobre est pendant la semaine d'activités libres et il n'y a pas de cours. Notez que l'examen intra est à remettre le 2 novembre.

### Devoirs, Rosenthal (matière du cours 8)

- 1. Exercice 13.4.2
- 2. Exercice 13.4.6
- 3. Exercice 13.4.8
- 4. Exercice 13.4.10
- 5. Exercice 13.4.12

#### Lectures, Casella et Berger (matière du cours 9)

- 1. Sections 6.1, 7.1
- 2. Assez de 6.2, 6.3 pour faire les exercices 6.3, 6.6, 6.12(a), 6.14, 6.18
- 3. Assez de 7.2 pour faire l'exercice 7.9

### Cours 9, le 9 novembre

#### Devoirs, Casella et Berger (matière du cours 9)

- 1. Exercice 6.9 (a,b,c)
- 2. Exercice 6.11
- 3. Exercice 6.12
- 4. Exercice 7.24

### Lectures, Casella et Berger (matière du cours 10)

- 1. Sections 7.2.3, 7.3
- 2. Page Wikipédia https://en.wikipedia.org/wiki/Admissible\_decision\_rule
- 3. Questions suggérées : 7.19, 7.20, 7.21, 7.22

### Cours 10, le 16 novembre

#### Devoirs, Casella et Berger (matière du cours 10)

- 1. Exercice 7.10
- 2. Exercice 7.38
- 3. Exercice 7.40

#### 4. Exercice 7.41

### Lectures, Casella et Berger (matière du cours 11)

- 1. Chapitre 8 (pas tous les détails des exemples)
- 2. Questions suggérées : 8.6, 8.16

## Cours 11, le 23 novembre

### Devoirs, Casella et Berger (matière du cours 11)

- 1. Exercice 8.12
- 2. Exercice 8.13
- 3. Exercice 8.53

### Lectures, Casella et Berger (matière du cours 12)

- 1. Chapitre 9 (pas tous les détails des exemples)
- 2. Questions suggérées : 9.1, 9.2, 9.6, 9.26

## Cours 12, le 30 novembre

### Devoirs, Casella et Berger (matière du cours 12)

- 1. Exercice 9.11
- 2. Exercice 9.13
- 3. Exercice 9.25
- 4. Exercice 9.51

### Lectures, Casella et Berger (matière du cours 13)

- 1. Chapitre 10 (accent sur 10.1, 10.3)
- 2. Questions suggérées : 10.2, 10.7, prouvez le théorème 10.1.3.

### Cours 13, le 7 décembre

#### Devoirs, Casella et Berger (matière du cours 13)

Devoirs, Casella et Berger (matière du cours 13)

- 1. Exercice 10.18
- 2. Exercice 10.19
- 3. Exercice 10.25
- 4. Exercice 10.33