AINA PRUNELL

Química 2n batxillerat

- 1. Considera una solució d'acetat de sodi 0,10 M. Dades (K_a (CH_3COOH) = 1,8 · 10⁻⁵
- Constant de basicitat de l'anió acetat (també anomenada constant d'hidròlisi, k_h).
- Calcula el pH de la solució
- Determina el grau d'hidròlisi (α) de l'anió acetat

a)
$$K_{v} = k_{a} \cdot k_{b} \rightarrow k_{b} - \frac{k_{w}}{k_{e}} = \frac{10^{-14}}{1.8 \cdot 10^{-5}} = \frac{5}{5}, 6 \cdot 10^{13}$$

ph=14+log[on]

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$-x$$
 $-$

$$V_{b} = \frac{x^{2}}{\partial r_{1} M_{b}} - 1 V_{b} = \frac{x^{2}}{\partial r_{1}} -$$

- **10.** El grau d'ionització d'un àcid dèbil monopròtic HA 0,001 M és α = 0,13, Calcula:
- a) la constant d'acidesa de l'acid
- **b)** el pH de la solució.

Sol.:a) 1,94· 10⁻⁵; b) 3,89

- **6.** Una solució saturada de clorur de plom(II) conté a 25 °C una concentració d'ions Pb²⁺ de 1,6·10⁻² mol·L⁻¹.
- a) Calcula la concentració d'ions clorur d'aquesta solució.
- **b)** Calcula el valor de la constant del producte de solubilitat del PbCl₂ a aquesta temperatura.

Sol.:3,2·10⁻² M; 1,64 10⁻⁵

a)
$$PbCl_{2}(s) = Pb^{2+} + 2(e^{-s} + 2s)$$

 $[Pb^{2+}] = 5 = 1.6 \cdot p^{2} + [(e^{-s})] = 2s = 3.2 \cdot 10^{2} \text{ M}$
b) $V_{ps} = [Pb^{2+}] \cdot [(e^{-s})^{2} = s \cdot (2s)^{2} = 4.5^{3}$

La solubilitat molar del sulfat d'argent, Ag₂SO₄, és 1,5·10⁻² M. Troba el valor del producte de solubilitat d'aquesta sal i la concentració molar dels ions Ag[£]i SO₄²⁻

Sol.: $1,35 \cdot 10^{-5}$; $3,0 \cdot 10^{-2}$ mol·L⁻¹ i $1,5 \cdot 10^{-2}$ mol·L⁻¹

$$S = 1.5 \cdot 10^{-2} \text{ M}$$
 $K_{ps}??$
 $EA_{y} # ? ESO_{y}^{2}??$
 $A_{g} = [A_{g}^{\dagger}]^{2} [SO_{y}^{2}] = (2s)^{2} \cdot 5 = 4 \cdot 5^{3} - 1.35 \cdot 10^{-5}$
 $EA_{g} = [A_{g}^{\dagger}]^{2} [SO_{y}^{2}] = (2s)^{2} \cdot 5 = 4 \cdot 5^{3} - 1.35 \cdot 10^{-5}$
 $EA_{g} = [A_{g}^{\dagger}]^{2} = 2s = 2 \cdot 1.5 \cdot 10^{-2} - 3 \cdot 10^{-2} \text{ M}$

8. Calcula la solubilitat del Pb(IO₃)₂ en una solució que conté 0,020 mols de KIO₃ per litre de solució. Dades: K_s [Pb(IO₃)₂] = 3,2·10⁻¹³ Sol.: 8,0·10⁻¹⁰ M.