CSCE 4114 Embedded Systems

Ch 11. Control Systems

David Andrews dandrews@uark.edu

Figure 11.1.1: Water heater control system.

desired-actual = error

Controller: use error to adjust actuator to drive error -> 0

flame

plant

Figure 11.1.1: Water heater control system.

Controls the heat of a burner depending on the water temperature error
The difference between desired and actual water temperature
A tank of water whose temperature is being controlled
Actuator input that affects temperature of water heater
Controlled by the water heater control system

Reset

Figure 11.1.3: On/Off control behavior.

Controller: sets heater to on/off

 A control system regulates a physical property, like temperature or speed. 	
O True	
O False	
 On-off control is a simple control mechanism that either completely enables or disable an actuator. 	
O True	
O False	
Overshoot occurs when the actual output value fails to reach the desired value.	
O True	
O False	
 Oscillation occurs when the actual value switches between being higher and lower than the desired value. 	
O True	
O False	
 An unstable system will never match the actual output value to the desired output value. 	
○ True	
○ False	

Ch 11.2 Proportional control

Figure 11.2.1: Proportional control plot.

Ch 11.2 Proportional control

Figure 11.2.1: Proportional control plot.

- A proportional controller adjusts the actuator according to the difference between actual and desired system output.
 - True
 - Salse
- 2) Kp is a carefully-chosen constant.
 - O True
 - False

Ch 11.3 Proportional-derivative control

Figure 11.3.1: PD graph.

Deriv = Actual – Actual Prev

Actuator = Kp*Error –Kd*Deriv

Ch 11.3 Proportional-derivative control

1)	A PD c	ontroller considers both the output error and the output rate of chang
	0	True
	0	False
2)		ope of the output can be calculated with the equation Deriv = Prev + Actual.
	0	True
	0	False
3)	The fo Kd*De	llowing equation implements a PD controller: Actuator = Kp*Error + riv.
	0	True
	\circ	False

Ch 11.3 Proportional-integral- derivative control

Figure 11.4.1: Steady state error.

Ch 11.3 Proportional-integral- derivative control

Figure 11.4.2: Determining the integral term.

```
Integ = Integ + Error;
if (Integ > IntegMax) {
    Integ = IntegMax;
}
else if (Integ < IntegMin) {
    Integ = IntegMin;
}</pre>
```

Actuator = Kp*Error + Ki*integ - Kd*Deriv

