(22.

Assume that f: A > B is onto and h: B > C is not one - to - one. Since h is not one to one, there exist $b_1, b_2 \in B$, $b_1 \nmid b_2$, $C \circ \in C$ that $h(b_1) = h(b_2) = C_0$. Since g is onto, there exist $a_1, a_2 \in A$. $a_1 \nmid a_2$ that $g(a_1) = b_1$, $g(a_2) = b_2$. Thus, $h(g(a_1)) = h(g(a_2)) = C_0$, that is $h \circ g(a_1) = h \circ g(a_2)$. Thus, $h \circ g$ is not one - to - one.

Qz

We prove by induction. Assume $\frac{n}{2}$ n(n+3) = $\frac{n(n+3)(n+5)}{3}$ Base case: if n=0, $0 \times (0+3) = \frac{0 \times (0+1) \times (0+5)}{3} = 0$

Inductive case = $\frac{1}{3}$ m = n + 1, $\frac{m(m+1)(m+5)}{3} + n(m+3) = \frac{(n-1)n(m+4)}{3} + n(m+3)$ = $\frac{n^3 + 6n^2 + 5n}{3}$

 $\frac{n(n+1)(n+1)}{3} = \frac{n^3+6n^2+5n}{3}$

Since $\frac{n(n+1)(n+5)}{3} = \frac{(n-1)[(n+1)+1][(n+1)+5]}{3} + n(n+5)$, by induction we can conclude that for n(N), $o(3+1+4+2+5+\cdots+n(n+3)) = \frac{n(n+1)(n+5)}{3}$

(24)
m=4.
Prove: 4!=24, 42=18, 4!>42+2.
for smaller natural numbers,
100 Structer nacour ac recensers,
$3! = 6$, $3^{2} + 2 = 11$, $4! < 3^{2} + 2$.
$2! = 2$, $2^2 + 2 = 6$, $2! < 2^2 + 2$
1:=1, 12+2=3, 1!<12+2.