Package 'polstat'

December 1, 2020

Type Package				
Title Useful Functions for Northwestern University Political Science Methods Classes				
Version 0.1.0				
URL https://github.com/lin-jennifer/polstat				
Description A collection of helpful functions to use along with core concepts learned in PS 403 and others				
License MIT				
Encoding UTF-8				
LazyData true				
RoxygenNote 7.1.				
Suggests testthat				
Depends R (>= 2.1	0)			
Tstats . Zprop . zscore .	imented:			
		_		
tscoreCI	One Sample Confidence Interval from a t Distribution			

Description

Helpful functions to calculate a one-sample confidence interval using a t-distribution

2 Tstats

Usage

```
tCIupper(x, se, ci, n)
tCIlower(x, se, ci, n)
tCI(x, se, ci, n)
tMOE(se, ci, n)
```

Arguments

X	x-bar for observed mean
se	Standard Error – see se() from zscoreCI section
ci	Confidence Interval Level
n	Number of participants

Details

NOTE: This is not NOT intended from a z-distribution. See relevant zscoreCI file for those calculations

See Also

```
zCI(), zCIupper(), zCIlower()
```

Examples

```
x = 3.5
sd = 2
n = 25
se <- se(sd, n) # 0.4
ci = 0.95 # for 95% Confidence Interval
tClupper(x, se, ci, n) # 4.325559
tCllower(x, se, ci, n) # 2.674441
tMOE(se, ci, n) # 0.8255594</pre>
```

Tstats

Two Sample T Test and Confidence Interval

Description

For PS 403 purposes. In real life, you should always just use t.test()

Usage

```
tEqvar(x1, s1, n1, x2, s2, n2)
tUneqvar(x1, s1, n1, x2, s2, n2)
```

Zprop 3

Arguments

x1	mean for sample 1
s1	sd for sample 1
n1	number on sample 1
x2	mean for sample 2
s2	sd for sample 2
n2	number on sample 2

Examples

```
x1 = 5

x2 = 8

s1 = 0.6

s2 = 0.4

n1 = 30

n2 = 25

tEqvar(x1, s1, n1, x2, s2, n2)

tUneqvar(x1, s1, n1, x2, s2, n2)
```

Zprop

Two Sample Proportions Test and Confidence Interval

Description

For use with proportions and z-scores.

Usage

```
prop.se(p, n)
p.hat(p1, n1, p2, n2)
z.prop(p1, n1, p2, n2)
```

Arguments

р	pi for a proportion, usually denoted as pi_0
n	number of responses
p1	probability for sample 1
n1	number on sample 1
p2	probability for sample 2
n2	number on sample 2

Details

When working with a one-sample proportion, it is suffucient to use prop.se() from here and the zscore() function, replacing the notions of x and means with the proper values for proportions. When working with these functions, it is CRUCIAL that you keep in mind what vales are for what. I would recommend setting up code similiar to the example to keep values in order.

4 zscoreCI

Examples

```
pi = 0.5

n = 100

p1 = 0.25

n1 = 200

p2 = 0.45

n2 = 350

prop.se(pi, n)

p.hat(p1, n1, p2, n2)
```

zscore

z-score Calculations

Description

Calculating a standard score in Base R can be hard.

Usage

```
zscore(x, mean, sd)
```

Arguments

x the observation
 mean mean of interest – can be sample or population depending on zscore interest
 sd standard deviation or standard error, depending on context

Examples

```
zscore(10, 15, 2)
```

zscoreCI

 $One \ Sample \ Confidence \ Interval \ from \ a \ Normal \ Distribution$

Description

Helpful functions to calculate a one-sample confidence interval using a z-distribution

zscoreCI 5

Usage

```
se(sd, n)
zCIupper(x, se, ci)
zCIlower(x, se, ci)
zCI(x, se, ci)
zMOE(se, ci)
```

Arguments

sd	Standard Deviation – reference sdNA()
n	Number of participants
x	x-bar for observed mean
se	Standard Error – see se()
ci	Confidence Interval Level

Details

NOTE: This is not NOT intended from a t-distribution. See relavant tscoreCI file for those calculations

Examples

```
x = 3.5
sd = 2
n = 25
se <- se(sd, n) # 0.4
ci = 0.95 # for 95% Confidence Interval
zClupper(x, se, ci) # 4.283986
zCllower(x, se, ci) # 2.716014
zMOE(se, ci) # 0.7839856</pre>
```

Index

```
p.hat (Zprop), 3
prop.se(Zprop), 3
se (zscoreCI), 4
tCI (tscoreCI), 1
tCIlower(tscoreCI), 1
tCIupper (tscoreCI), 1
tEqvar (Tstats), 2
tMOE (tscoreCI), 1
tscoreCI, 1
Tstats, 2
tUneqvar (Tstats), 2
z.prop(Zprop), 3
zCI (zscoreCI), 4
zCIlower (zscoreCI), 4
zCIupper (zscoreCI), 4
zMOE (zscoreCI), 4
Zprop, 3
zscore, 4
zscoreCI, 4
```