

PYTHON DAY - 5

DICTIONARY


```
dict = {"name" : "john", "age" : 30, "country" : "India"}
```

• Dictionary is a collection of key-value pairs enclosed in curly braces {}

• Dictionaries are also mutable, key-value pairs can be added, removed, or modified after they are created.

Duplicates are not allowed

DICTIONARY


```
X = {
  "name" : "john",
  "age" : 30,
  "country" : "India"
print(x)
```


DUPLICATE VALUES ARE OVERWRITED


```
X = {
  "Name" : "John",
  "Age" : 20,
  "Country" : "India",
  "Age" : 25
```


ALL DATA TYPES ARE VALID


```
thisdict = {
  "brand": "Ford",
  "electric": False,
  "year": 1964,
  "colors": ["red", "white", "blue"]
```


ACCESSING ITEMS

ACCESSING ITEMS


```
• • •
thisdict = {
  "brand": "Ford",
  "model": "Mustang",
  "year": 1964
x = thisdict["model"]
```

```
x = thisdict.get("model")
```


ACCESSING ITEMS

.KEYS()

x = thisdict.keys()

.VALUES()

x = thisdict.values()

.ITEMS()

x = thisdict.items()

CHECK KEY


```
X = {
  "brand": "Ford",
  "model": "Mustang",
  "year": 1964
if "model" in x:
 print("Yes, 'model' is present in the given dictionary")
```


CHANGE ITEMS

CHANGE VALUES


```
thisdict = {
  "brand": "Ford",
  "model": "Mustang",
  "year": 1964
thisdict["year"] = 2018
```


UPDATE METHOD


```
thisdict = {
  "brand": "Ford",
  "model": "Mustang",
  "year": 1964
thisdict.update({"year": 2020})
```


REMOVE ITEMS

N/	et	h		d	
IVI	EL		U	U	

.pop(key)

.popitem()

.clear()

del dictionary

LOOPING THROUGH DICTIONARY

LOOPING


```
for x in thisdict.values():
   print(x)
```

```
for x in thisdict.keys():
   print(x)
```

```
for x in thisdict:
  print(thisdict[x])
```

```
for x, y in thisdict.items():
  print(x, y)
```


COPY DICTIONARY

COPY DICTIONARY


```
thisdict = {
  "brand": "Ford",
  "model": "Mustang",
  "year": 1964
mydict = thisdict.copy()
print(mydict)
```


NESTED DICTIONARY

NESTED DICTIONARY


```
\bullet \bullet \bullet
myfamily = {
  "child1" : {
    "name" : "Emil",
    "year" : 2004
  },
  "child2" : {
    "name" : "Tobias",
    "year" : 2007
  },
  "child3" : {
    "name" : "Linus",
    "year" : 2011
```


ASSIGNMENT

1

ROMAN NUMERALS TO INTEGER

Roman numerals to integer

Roman numerals from user input should be converted into integer values as output

Rules:

 If the Larger value is written first followed by smaller value, then add those values.

eg:
$$III = 3$$
, $XII = 12$

2. If smaller is written first followed by larger value, then subtract those values

eg:
$$IV = 4$$
 , $CD = 400$

	1			
V	5			
X	10			
L	50			
C	100			
D	500			
M	1000			

EXAMPLE

Number	Expansion	Roman Numeral	1-10 Roman numerals
1	1	I	1 = I
2	1+1	II	2 = II
3	1+1+1	III	3 = III
4	5 – 1	IV	4 = IV
5	5	V	5 = V
6	5+1	VI	6 = VI
7	5+1+1	VII	7 = VII
8	5+1+1+1	VIII	8 = VIII
9	10 – 1	IX	9 = IX
10	10	X	10 = X

TEST CASES

Test cases

```
1. input = "MCMXCIX" ---> output = 1999
```

```
2. input = "DCCC" ---> output = 800
```

```
3. input = "DCLXXIII" ---> output = 673
```

4. input = "MMMDCCXXIV" ---> output = 3724

5. input = "MMMCMXCIX" ---> output = 3999

SUBMISSION PROCEDURE

PANTECH - AI , Machine Learning & Deep Learning Group

SUBMISSION PROCEDURE

#NMassignment1 #naanmudhalvan #TNSDC #python #pantechelearning @Pantechelearning @Sankar Pantech Name: College: NM code: Assignment code: Add to your post \blacksquare Post

THANKS FOR WATCHING

