

Cloud Computing Kapitel 10: Big Data

Mario-Leander Reimer

mario-leander.reimer@qaware.de

Rosenheim, 08.01.2018

Big Data

Big Data

Verarbeitung großer Datenmengen durch:

 verteilte und hochgradig parallelisierte Verarbeitung. Data

Big

 verteilte und effizient organisierte Datenablagen.

Wie verwalte und erschließe ich große Datenmengen?

Große Datenmengen können effizient nur von parallelen Algorithmen verarbeitet werden.

Ein Algorithmus ist genau dann parallelisierbar, wenn er in einzelne Teile zerlegt werden kann, die keine Seiteneffekte zueinander haben.

■ Funktioniert gut: Quicksort. Aufwand: $O(n \log n) \rightarrow O(\log n)$

```
private void QuicksortParallel<T>(T[] arr, int left, int right)
where T : IComparable<T>
{
    if (right > left)
    {
        int pivot = Partition(arr, left, right);
        Parallel.Do(
            () => QuicksortParallel(arr, left, pivot - 1),
            () => QuicksortParallel(arr, pivot + 1, right));
    }
}
```

■ Funktioniert nicht: Berechnung der Fibonacci-Folge ($F_{k+2} = F_k + F_{k+1}$). Berechnung ist nicht parallelisierbar.

Ein paralleler Algorithmus (<u>Job</u>) ist aufgeteilt in sequenzielle Berechnungsschritte (<u>Tasks</u>), die parallel zueinander abgearbeitet werden können. Der Entwurf von parallelen Algorithmen folgt oft dem Teile-und-Herrsche Prinzip.

Parallele Programmierung basiert oft auf funktionaler Programm besteht (ausschließlich) aus Funktionen.

- Eine Funktion ist die Abbildung von Eingabedaten auf Ausgabedaten:
 - $f(E) \rightarrow A$

Eine Funktion ändert die Eingabedaten dabei nicht.

- Funktionen sind idempotent:
 - Sie erzeugen neben den Ausgabedaten keine weiteren Seiteneffekte.
 - → Funktionen sind somit ideal parallelisierbar und zur Beschreibung von Tasks geeignet.
 - Sie erzeugen für die gleichen Eingabedaten auch stets die gleichen Ausgabedaten.
 - → Funktionen können im Fehlerfall stets neu ausgeführt werden. Parallele Verarbeitung ist aus technischen Gründen oft fehleranfällig. Damit kann eine Fehlertoleranz sichergestellt werden.

Parallele Programmierung kann sowohl im Kleinen als auch im Großen betrieben werden.

Keine Parallelität

Parallelität im Kleinen

Vorteile im Vergleich:

- Höherer Durchsatz
- Bessere Auslastung der Hardware
- Vertikale Skalierung möglich

Parallelität im Großen

Vorteile im Vergleich:

- Höherer Durchsatz
- Horizontale Skalierung möglich (Scale Out).
- Keine hardwarebedingte Limitierung des Datenvolumens (→ Big Data ready).

Big Data erfordert Parallelität im Großen. Die vier Paradigmen der Parallelität im Großen:

Folgt aus Datenmenge im Vergleich zur Programmgröße

Das Grundprinzip von paralleler Verarbeitung.

Folgt aus Praxisanforderung:
Viele Knoten
bedeutet
viele Ausfallmöglichkeiten

Folgt aus potenziell großer
Datenmenge und
Verarbeitungsgeschwindigkeit

- 1. Die Logik folgt den Daten.
- 2. Falls Datentransfer notwendig, dann so schnell wie möglich: In-Memory vor lokaler Festplatte vor Remote-Transfer.
- Parallelisierung über *Tasks* (seiteneffektfreie Funktionen) und *Jobs* (Ausführungsvorschrift für Tasks) sowie entsprechend partitionierter Daten (*Shards*).
- 4. Design for Failure: Ausführungsfehler als Standardfall ansehen und verzeihend und kompensierend sein.

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

Die map und reduce Funktion.

Die map Funktion: Transformation einer Menge von Datensätzen in eine Zwischendarstellung.
 Erzeugt aus einem Schlüssel und einem Wert eine Liste an Schlüssel-Wert-Paaren.

```
Signatur: map(k, v) \rightarrow list(\langle k', v' \rangle)
```

Die reduce Funktion: Reduktion der Zwischendarstellung auf das Endergebnis.
 Verarbeitet alle Werte mit gleichem Schlüssel zu einer Liste an Schlüssel-Wert-Paaren.

```
Signatur: reduce (k', list(v')) \rightarrow list(\langle k'', v'' \rangle)
```

■ Dabei soll gelten: |list(<k'', v''>) | << |list(<k', v'>) |

Programme werden in (mehrere) Map-Reduce-Zyklen aufgeteilt. Das Framework übernimmt die Parallelisierung.

Bedeutung der Pfeile: Datenfluss

Die Map-Phase

Split

Reduce

- Parallele Verarbeitung verschiedener Teilbereiche der Eingabedaten.
- Eingabedaten liegen in Form von Schlüssel/Wert-Paaren vor.
- Abbildung auf variable Anzahl von neuen Schlüssel/Wert-Paaren. Dabei sind alle Abbildungsvarianten zulässig:
- Beispiel: WordCount

Ein- und Ausgabe der Map-Phase:

Pseudocode Map-Phase:

```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word in value:
        EmitIntermediate(word, "1");
```

Die Shuffle-Phase

Reduce

- Verarbeitung der Ergebnisse aus der Map-Phase.
- Ausgaben aus der Map-Phase werden entsprechend ihrem Schlüssel sortiert und gruppiert.
- Im Standard-Fall ist die Shuffle-Phase nicht parallelisiert.
- Sie kann jedoch mittels einer Vor-Sortierung in der Map-Phase über eine Partitionierungsfunktion (z.B. Hash) auf den Schlüssel parallelisiert werden.

Die Reduce-Phase

Split

Мар

Shuffle

Reduce

- Parallele Verarbeitung von Ergebnis-Gruppen aus der Map-Phase. Es wird pro Reduce-Vorgang genau eine dieser Gruppen verarbeitet.
- Eingabedaten liegen in Form von Schlüssel-Wertlisten vor.
- Abbildung auf variable Anzahl an Schlüssel/Wert-Paaren. Dabei sind alle Abbildungsvarianten zulässig:

Ein- und Ausgabe der Reduce-Phase:

Pseudocode Reduce-Phase:

```
reduce(String key, Iterator values):
   // key: a word
   // values: a list of counts
   for each value in values:
     result += ParseInt(value);
   Emit(AsString(key + ', ', ' + result));
```

Übersicht über alle Phasen

http://blog.jteam.nl/2009/08/04/introduction-to-hadoop

Hadoop

"Open source platform for reliable, scalable, distributed computing."

Apache Hadoop

2005 implementierte Doug Cutting MapReduce für Nutch (http://nutch.apache.org).
 Nutch ist eine Open Source Suchmaschine, geschrieben in Java.

Aus Nutch heraus wurde dann das Projekt Hadoop (http://hadoop.apache.org) extrahiert.
 Es wurde als Open Source Implementierung des von Google beschriebenen MapReduce-Konzepts entwickelt. Die Google-Implementierung ist nicht veröffentlicht.

"Open source platform for reliable, scalable, distributed computing."

- Hadoop besteht aus zwei wesentlichen Bausteinen:
 - Einer Implementierung des Google File Systems (GFS), genannt Hadoop File System (HDFS),
 - sowie einem MapReduce-Framework.
- Seit 2008 ist Hadoop ein Top-Level-Projekt der Apache Software Foundation. Im Juli 2009 hat ein Hadoop-Cluster von Yahoo
 100 Terabyte in 2 Stunden und 53 Minuten sortiert (http://sortbenchmark.org)

Ein Map Task wird in Hadoop über die Schnittstelle Mapper implementiert.

```
public class Mapper < KEYIN, VALUEIN, KEYOUT, VALUEOUT > {
    void map(KEYIN key, VALUEIN value, Context context) {
        context.write((KEYOUT) key, (VALUEOUT) value);
    }
}
```

- Eingabe- und Ausgabe-Datentypen werden mittels Generics an den Mapper gebunden.
- Schlüssel-Typen müssen dabei **WritableComparable** und Wert-Typen **Writable** implementieren. Hadoop stellt eine Reihe an Standard-Datentypen zur Verfügung, die diese Schnittstellen implementieren. Die Java-Standard-Typen sind hier nicht einsetzbar.
- Das Splitting und die De-Serialisierung der Eingabedaten, sowie die Serialisierung und Partitionierung der Ausgabedaten erfolgt "by magic" im MapReduce Framework. Das Verhalten kann jedoch über Implementierung entsprechender Schnittstellen angepasst werden.
- Über das übergebene Context-Objekt können die Zwischenergebnisse übermittelt werden.

Ein Reduce Task wird in Hadoop über die Schnittstelle Reducer implementiert.

- Eingabe- und Ausgabe-Datentypen werden analog zum Mapper über Generics gebunden. Es gelten dabei die selben Regeln.
- Die Bereitstellung der Eingabedaten inkl. Sortierung und Gruppierung sowie die Serialisierung der Ausgabedaten erfolgt im MapReduce Framework "by magic" Das Verhalten kann jedoch über Implementierung entsprechender Schnittstellen angepasst werden.
- Über das übergebene Context-Objekt können die Endergebnisse übermittelt werden.

Die Resilient Distributed Dataset (RDD) Datenstruktur

Eine RDD ist in der Außensicht ein klassischer Collection-Typ mit Transformations- und Aktionsmethoden.

Die Anatomie eines RDDs.

Apache Spark

Spark läuft Hadoop aktuell deutlich den Rang ab.

	Hadoop MR	Spark	Spark
	Record	Record	1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk	3150 GB/s	618 GB/s	570 GB/s
throughput	(est.)		
Sort Benchmark	Yes	Yes	No
Daytona Rules			
Network	dedicated data	virtualized (EC2)	virtualized (EC2)
	center, 10Gbps	10Gbps network	10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

http://sortbenchmark.org

Daten verarbeiten: Mehr als Map und Reduce.

Filter

Map

```
val lengths = logData.map(line => line.length)
```

Reduce

```
val maxLength = lengths.reduce(Math.max)
```

Sort

```
val sorted = logData.sortBy(l => l.length)
```



```
take(N)
count()
collect()
reduce(func)
takeOrdered(N)
top(N)
```

Wie funktioniert das?

```
/* SimpleApp.scala */
                                                                                   Worker Node
import org.apache.spark.SparkContext
                                                                                    Executor
                                                                                           Cache
import org.apache.spark.SparkConf
                                                                                           Task
                                                 Driver Program
object SimpleApp {
                                                                  Cluster Manager
                                                  SparkContext
                                                                                     ker Node
  def main(args: Ary [String]) {
    val logFile = "UR SPARK HOME/README.m
                                                                                    Executor
                                                                                           Cache
    val conf = new __arkConf().setAppName("
                                                                                           Task
                                                                                     Task
    val sc = new SparkContext(conf)
    val logData = sc.textFile(logFile, 2).c
    val numAs = logData.filter(line => line.contains("a")).
    val numBs = logData.filter(line = line.contains("b")).
                                                                   akka
    println("Lines with a: %s, Lines with a: %s".format(num
```

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

Die Anatomie von Big Data Datenbanken

Query Distribution

Data Distribution

Data Persistence

Sharding and Partitioning: Verteilung und Stückelung von großen Datenmengen.

Wie werden große Datenmengen technisch so gespeichert, dass eine schnelle Scan-Geschwindigkeit erreicht wird?

Spalten-orientierte Datenspeicherung.

The fastest I/O is the one that never takes place: Es werden nur diejenigen Spalten gelesen, die benötigt werden (gerade bei breiten Tabellen wichtig)

Kompression (funktioniert bei Spalten besser als bei Zeilen):

- Datentyp-spezifisch (z.B. Dictionaries)
- Allgemein (z.B. Snappy)
- + ggF. Spalten-Index

Beispiel: Parquet

Verteilte und parallelisierte Ausführung von Abfragen.

Ein verteilter Ausführungsplan: Ein azyklischer Funktionsgraph.

