色彩科學導論與應用

Encryption Metrics-2 NPCR and UACI

授課教師:王宗銘

2021/05/31

Assignment 12

本次作業為量測原始影像與加密影像之 NPCR 與 UACI。NPCR (Number of Pixel Change Rate)量測兩張影像 (原始與加密影像) 對應位置之像素是否有差異,若有差異,就累加 1,若無差異,則累加 0。UACI (Unified Average Changing Intensity)則考量兩對應位置之像素之差異量與 255 及解析度之比值。此兩個量測量都能反映加密演算法之優劣,故能將數值予以比較,得知何種加密演算法較佳。請各位是寫一個 python 程式,來計算在各個色彩通道之 NPCR 與 UACI 數值。

假設 $Origi_image$ 目錄儲存原始影像 N 張,不失一般情況下,令 N=6,並以 bmp 影像格式為例。 $Encry_image$ 目錄儲存對應的加密影像。 $Decry_image$ 目錄儲存對應的解密影像,如表 1 所示。

表 1:以 3 個目錄分別儲存原始影像、加密影像、解密影像與目錄內對應之影像名稱

編號	Origi_image directory	Encry_image directory	Decry_image directory
1	01_Airplane.bmp	01_Airplane_en.bmp	01_Airplane_de.bmp
2	02_Baboon.bmp	02_Baboon_en.bmp	02_Baboon_de.bmp
3	03_Lena.bmp	03_Lena_en.bmp	03_Lena_de.bmp
4	04_Peppers.bmp	04_Peppers_en.bmp	04_Peppers_de.bmp
5	05_Sailboat.bmp	05_Sailboat_en.bmp	05_Sailboat_de.bmp
6	06_Splash.bmp	06_Splash_en.bmp	06_Splash_de.bmp

- 1. 請寫一個 python 程式,求出原始影像 VS 加密影像之 NPCR 與 UACI 量化指標。
- 2. 假設各目錄之檔案名稱都一一對應,但是程式設計時,請考慮測試之影像數量可能 並非固定6個。
- 3. 請將計算後之數值,依照目錄輸出成 1 個 CSV 檔案(output12.csv,以利後續分析與整理。
- 4. 各 CSV 檔案第 1 行輸出各行之項目名稱,如範例所示。
- 5. NPCR (Number of Pixel Change Rate), 三個色彩頻道分別計算, NPCR_R, NPCR_B。 NPCR 單一頻道計算公式:

$$NPCR = \frac{\sum_{i=1}^{H} \sum_{j=1}^{V} \delta_{i,j}}{H \times V}, \text{ where } \delta_{i,j} = \begin{cases} 0, ORI_{i,j} = ENC_{i,j} \\ 1, ORI_{i,j} \neq ENC_{i,j} \end{cases}$$

NPCR之意義為:比較原始影像(ORI)與加密影像(ENC),對應像素位置(i,j)之檢視:若兩者相同,則累加0,若兩者不同,則累加1,故NPCR代表影像像素變動比例。請看範例。

NPCR 範例:

假設原始影像(ORI)為 $H \times V = 3 \times 3$ 影像,其綠色頻道之像素數值如下所示。

3	5	5
0	3	6
1	2	3

假設加密影像(ENC)之綠色頻道之像素數值如下所示。

6	5	5
0	4	6
1	4	3

比較對應的像素,可發現加密前後,共有 3 個像素相異,分別在位置(1,1), (2,2), (3,2), 如紅色字體所示,故

$$NPCR = \frac{\sum_{i=1}^{H} \sum_{j=1}^{V} \delta_{i,j}}{H \times V} \times 100\% = \frac{3}{9} \times 100\% = 33.3333$$

6. Unified Average Changing Intensity (UACI) ,三個色彩頻道分別計算,UACI $_R$, UACI $_B$ 。

UACI 單一頻道計算公式:

$$UACI = \frac{\sum_{i=1}^{H} \sum_{j=1}^{V} |ORI_{i,j} - ENC_{i,j}|}{H \times V \times 255} \times 100\%$$

UACI之意義為: 累加相異像素之差異數值並計算相對於最大數值 255 與解析度之比例, 請看範例。

UACI 範例

假設原始影像(ORI)為 $H \times V = 3 \times 3$ 影像,其綠色頻道之像素數值如下所示。

3	5	5
0	3	6
1	2	3

假設加密影像(ENC)之綠色頻道之像素數值如下所示。

6	5	5
0	4	6
1	4	3

累加相異像素之數值為
$$|6-3|+|4-3|+|4-2|=6$$
,故
$$UACI = \frac{|6-3|+|4-3|+|4-2|}{3\times3\times255} \times 100\% = \frac{6}{2295} \times 100\% = 0.2614$$

請注意:

1.輸出精確度為整數2位,小數4位,第5位四捨五入。

輸出檔案:以output12.csv 為例

- 第 1 行 No ORI Images ENC Image NPCR(R) NPCR(G) NPCR(B) UACI(R) UACI(G) UACI(B)
- 第 2 行 1,原始影像名稱,加密影像名稱,NPCR $_R$ NPCR $_G$ NPCR $_B$ UACI $_R$ UACI $_G$ UACI $_B$ 第 3 行 2,原始影像名稱,加密影像名稱,NPCR $_R$ NPCR $_G$ NPCR $_B$ UACI $_R$ UACI $_G$ UACI $_B$
- 第 N+1 行 原始影像名稱, 加密影像名稱, NPCR $_R$ NPCR $_G$ NPCR $_B$ UACI $_R$ UACI $_R$ UACI $_B$
- 輸出範例:以 output12.csv,以下數值為示意之虛擬數值,請依照實際求出之值輸出。 第 1 行 No ORI Images ENC Image NPCR(R) NPCR(G) NPCR(B) UACI(R) UACI(G) UACI(B)
- 第 2 行 1 01_Airplane.bmp 01_Airplane_en.bmp 99.5412 85.1248 75.5689 33.4512 32.1345 33.2541
- 第 3 行 1 02_Baboon.bmp 02_Baboon_en.bmp 98.54412 86.1248 75.5685 33.4212 32.1435 3.2541
- 第 4 行 1 03_Lena.bmp 01_Lena_en.bmp 99.5492 85.1248 75.5589 33.4512 32.1745 33.2541
- 第 5 行 1 04_Peppers.bmp 04_Peppers_en.bmp 99.5402 85.1298 75.5689 33.4512 32.1346 33.2541
- 第 6 行 1 05_Sailboat.bmp 05_Sailboat_en.bmp 98.5412 85.1248 75.5689 33.4512 32.1355 33.2541
- 第 7 行 1 06_Splash.bmp 06_Splash_en.bmp 99.5422 85.1548 75.5589 33.4502 32.1245 33.2541

Program:

The python program, "學號-12-DEC_MAT2.py," input a pair of original and encrypted images and produces output12.csv。

Submission:

Please submit the following **TWO** files.

- 1. 學號-12-DEC_MAT2.py
- 2. Output12.csv