

Transforming Data into Actionable Insights
Ronak Shah

Autonomous AI entities that can perceive their environment, make decisions, and take actions to achieve specific goals.

Autonomy:

Operates independently without constant human intervention.

Goal-Oriented:Designed to achieve specific objectives.

Adaptive: Can learn and adjust behavior based on experience and new information. Interactive: Can communicate and collaborate with other agents and humans.

Why Agentic Al for Complex Tasks?

Handles Complexity: Breaks down large, intricate problems into smaller, manageable tasks.

Improves Efficiency: Automates repetitive and time-consuming processes.

Enhances Accuracy: Reduces human error and bias.

Accelerates Discovery: Speeds up the process of finding insights and solutions.

An open-source Python framework for building agentic Al systems.

Features:

- Agent Management: Easily create and manage multiple agents with different roles and skills.
- Task Orchestration: Define tasks and assign them to agents.
- **Collaboration:** Enable agents to communicate and work together.
- **Tool Integration:** Integrate external tools and APIs to extend agent capabilities.
- **Process Definition:** Define the workflow and interactions between agents.

Challenge: Analyzing Mutation Annotation Format (MAF) files to identify potential therapeutic targets for cancer treatment.

Complexity: MAF files contain vast amounts of genomic data, requiring expertise in bioinformatics, cancer biology, and drug-gene interactions.

Agentic Al Solution: Automate the analysis process with a CrewAlpowered system.

CrewAl
Solution: A
Team of
Specialized
Agents

Chief Cancer Genomics Analyst: The lead agent responsible for orchestrating the analysis.

Role: Analyzes MAF data based on natural language instructions and identifies potential therapeutic targets.

Tools: Natural Language Parser, Task Delegator, MAF Summarizer, Somatic Interactions Tool, Drug-Gene Interaction Tool.

Report Agent: Compiles the analysis results into a clear and concise report.

Role: Creates a professional Markdown report summarizing the key findings and potential therapeutic targets.

Tools: Access to the outputs of the other agents.

Task
Breakdown:
From
Instruction
to Insights

₹/>	Input:	Natural language instruction and MAF file path.
-	Parsing Task:	The Chief Analyst uses the Natural Language Parser to create a plan of action.
	Summarization Task:	The Chief Analyst uses the MAF Summarizer to generate a summary of the MAF file.
•	Somatic Interactions Task:	The Chief Analyst uses the Somatic Interactions Tool to perform somatic interaction analysis.
ğ	Drug-Gene Interaction Task:	The Chief Analyst uses the Drug-Gene Interaction Tool to identify potential therapeutic targets.
	Gather Results Task:	The Chief Analyst gathers the results from all the analysis tools.
T	Report Generation Task:	The Report Agent compiles the results into a Markdown report.
Just	Output:	Markdown report with key findings and potential therapeutic targets.

Tool
Integration:
Extending
Agent
Capabilities

MAF Summarizer: Provides a concise overview of the MAF file.

Somatic Interactions Tool: Identifies significant somatic interactions between genes.

Drug-Gene Interaction Tool: Identifies potential therapeutic targets based on drug-gene interactions.

Natural Language Parser: Parses natural language instructions to create a plan of action.

Task Delegator: Delegates tasks to appropriate tools based on the plan.

Summary of traditional vs this approach

Feature	Traditional Script	CrewAl/Langchain
Flexibility	Low	High
Reasoning	None	Yes
Collaboration	Difficult	Easier
Natural Language	No	Yes
Explainability	Low	High
Learning	No	Yes
Development Effort	High (coding)	High (design)

When to use a Script vs. CrewAl/Langchain

- Script: Use a script when you have a well-defined analysis task that is unlikely to change, and you need maximum performance and control.
- CrewAl/Langchain: Use CrewAl/Langchain when you need a more flexible, adaptable, and collaborative analysis workflow, and you're willing to trade some performance for those benefits.

Complexity: For very simple analyses, a script is almost always the better choice. CrewAl/Langchain adds overhead.

Reliability: LLMs can hallucinate or make incorrect inferences. Thorough testing and validation are crucial. **Cost:** LLM API calls can be expensive, especially for complex workflows.

Resources

- https://www.crewai.com/
- https://python.langchain.com/
- https://platform.openai.com/docs/models