الأشنقاق و نطبيقانه

سيدير محمد لخضر

الفهرس

2	قابلية إشتقاق دالة عددية	1
	$\hat{1}.\hat{1}$ و قابلية إشتقاق دالة في نقطة $\hat{1}.$	
	3 المماس لمنحنى دالة في نقطة $\ldots 3$	
	4 التقريب التآلفي لدالة بجوار نقطة 3.1	
	4.1 قابلية إشتقاق دالة على مجال 4	
5	الدالة المشتقة و المشتقات المتتالية	2
6	العمليات على الدوال المشتقة	ç
8	رتابة و مطارف دالة قابلة للاشتقاق	4
Ω	$a'' + av^2a = 0$. At the latest terms of the statest \ddot{a}	Ē

القدرات المنتظرة

- تقريب دالة بجوار نقطة بدالة تالفية.
- التعرف على ان العدد المشتق لدالة في x_0 هو المعامل الموجه لمماس منحناها في النقطة التي افصولها x_0
 - التعرف على مشتقات الدوال المرجعية.
 - التمكن من تقنيات حساب مشتقة دالة.
 - تحديد معادلة المماس لمنحنى دالة في نقطة و انشاؤه.
 - تحديد رتابة دالة انطلاقا من دراسة اشارة مشتقتها.
 - تحديد اشارة دالة انطلاقا من جدول تغيراتها او من تمثيلها المبياني.
 - حل مسائل تطبيقية حول القيم الدنوية و القيم القصوية.
 - تطبيق الاشتقاق في حساب بعض النهايات.

قابلية إشتقاق دالة عددية

قابلية إشتقاق دالة في نقطة 1.1

تعریف 1.

- $x_0 \in I$ و الله عددبه معرفهٔ على محال مفنوح f و الله عددبهٔ معرفهٔ على محال $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l$ نفول إن f فابلث للإشنفاق في f إذا و ففط إذا وجد عدد حفيفي f بحبث f $f'(x_0)$ العدد المشنق للدالة f في x_0 و نرمز له بالرمز العدد العدد المشنق العدد العد
- $[x_0; \alpha[$ معرفهٔ علی مجال من نوع آ $[x_0; \alpha]$ دالهٔ عددبهٔ معرفهٔ علی مجال من نوع نفول آن f فأبلُهُ للإشتفاق على البمبن في آيد و فقط إذا وجد عدد حفيفي البمبن نفول آن وجد عدد حفيفي البمبن في البمب $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = l$

 $f_d'(x_0)$ العدد x_0 و نرمز له بالرمز f على البمبن في x_0 و نرمز له بالرمز العدد f

• لَنَكُن f دالهٔ عددیهٔ معرفهٔ علی مجال من نوع $[\alpha;x_0]$. نفول إن f فایلهٔ للإشنفان علی البسار فی x_0 إذا و فقط إذا وجد عدد حقیقی f بحیث: . $\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}=l$ العدد l بسمى العدد المشنف للدالة t على البسار في x_0 و نرمز له بالرمز . المشنف

 $\lim_{x o x_0}h=\lim_{x o x_0}x-x_0=0$ و $x=h+x_0$ و بلون $h=x-x_0$ ملحوظة 1 .

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 : $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$: $\lim_{x \to 2} \frac{f(x_0 + h) - f(x_0)}{x - 2} = \lim_{x \to 2} \frac{3x^2 - 2x + 5 - (3x^2 - 2x^2 + 5)}{x - 2}$
$$= \lim_{x \to 2} \frac{3x^2 - 2x + 5 - (3x^2 - 2x^2 + 5)}{x - 2}$$

$$= \lim_{x \to 2} \frac{3x^2 - 2x - 8}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x - 2)(3x + 4)}{x - 2}$$

$$= \lim_{x \to 2} 3x + 4$$

$$= 10$$

f'(2)=10 إذن الدالة f نُفبل الإشنفاق في f و لدبنا العدد المشنق ل f في f في والم

خاصية f. نَاون الدالهُ f فابلهُ للإشنفاق في f إذا و ففط إذا كانت الدالهُ f فابلهُ للإشنفاق على البمبن في $f_d'(x_0) = f_g'(x_0)$ و على البسار في x_0

تمرين 1. ادرس فابلبه إشنفاق الداله f في x_0 في كل حاله من الحالات النالبه:

$$x_0 = 0 \text{ } \text{ } \begin{cases} f(x) = \frac{x}{x-1} & ; x \leqslant 0 \\ f(x) = -\frac{1}{2}x^2 & ; x > 0 \end{cases} -5$$

$$x_0 = 1 \text{ } \text{ } f(x) = \frac{x}{x+1} -1$$

$$x_0 = \frac{\pi}{2} \text{ } \text{ } f(x) = \sin x -2$$

$$x_0 = 3 \text{ } \text{ } f(x) = |x-3| -3$$

$$x_0 = 4 \text{ } \text{ } f(x) = \sqrt{|x-4|} -6$$

$$x_0 = 2 \text{ } \text{ } f(x) = |x^2 - 5x + 6| -4$$

2.1 المماس لمنحنى دالة في نقطة

تعریف 2. لَنَلَن f دالهٔ فابلهٔ للإشنفاق فی x_0 و x_0 المنحنی الممثل لها. المسنفیم الذی معامله الموجه هو $f'(x_0)$ و المار من النفطهٔ $A(x_0;f(x_0))$ بسمی المماس للمنحنی x_0 فی النفطه x_0 معامله الموجه هو x_0 و المار من النفطه x_0

 x_0 في الله فابله للإشنفان في f داله فابله للإشنفان في

 $y=f'(x_0)(x-x_0)+f(x_0)$ هما وله المنطق والمنطق المالة f في النفطة والمنطق والمنط

$$\lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = \lim_{x \to 1} \frac{3x^2 - 3}{x - 1}$$

$$= \lim_{x \to 1} \frac{3(x - 1)(x + 1)}{x - 1}$$

$$= \lim_{x \to 1} 3(x + 1)$$

$$= 6$$

g'(1) = 6 إذن

y=6x-3 و بالنالي المعادلة المختزلة للمماس (T) هي: y=g'(1)(x-1)+g(1) أي

 $f: x\mapsto 2-x^2$ المماسات لمنحنى الدالة (T_3) و (T_4) و (T_3) و (T_4) المماسات لمنحنى الدالة (T_4) و (T_4)

ملحوظة 2.

إذا كانث f نَفَيل الإِشْنَفَاقُ على البَمِين في x_0 على النَوالي على البِسَارِ في x_0 فهذا بعني أن منحنى الدالة f بفيل نصف مماس f على النوالي f على النوالي (f على النوالي معامله الموجه هو f على النوالي هو f على النوالي هو f على النوالي هو f على النوالي هو أرf على النوالي هو أرf

$$[T_2): \left\{ egin{array}{ll} y = f_g'(x_0)(x-x_0) + f(x_0) \ x \leqslant x_0 \end{array}
ight.$$
 $\left\{ egin{array}{ll} y = f_d'(x_0)(x-x_0) + f(x_0) \ x \geqslant x_0 \end{array}
ight.$: $\left\{ egin{array}{ll} y = f_d'(x_0)(x-x_0) + f(x_0) \ x \geqslant x_0 \end{array}
ight.$

إذا كانك $f'_d(x_0) \neq f'_g(x_0)$ بحبث $f'_g(x_0) \neq f'_g(x_0)$ فإن النفطة وعلى البسار في $f'_d(x_0) \neq f'_g(x_0)$ فإن النفطة $f'_d(x_0) \neq f'_g(x_0)$ نسمى نفطة مزواة لمنحنى $f'_d(x_0) \neq f'_g(x_0)$

f إذا كانك $= \pm \infty$ إذا كانك منحنى الرالم أو $= \pm \infty$ إذا كانك منحنى الرالم أو $= \pm \infty$ بفيل نصف مماس موازي لمحور الأرانب في النفطة ذات الأفصول $= \pm \infty$

- ادرس فابلبخ إشنفاق الدالخ g على البمبن و على البسار في -1
- 2 حدد نصفي المماس لمنحنى الدالة g على البمبن و على البسار في النفطة ذات الأفصول 2

3.1 التقريب التآلفي لدالة بجوار نقطة

تعریف 3. لَنَلَن f دالهٔ فابلهٔ للإشنفان في x_0 الدالهٔ x_0 الدالهٔ النّالفی الدالهٔ النّالفی الدالهٔ x_0 نسمی الدالهٔ النّالفی الدالهٔ x_0 بجوار x_0 فی x_0 أو النفرب النّالفی للدالهٔ x_0 بجوار x_0

 $f(x)\simeq f'(x_0)(x-x_0)+f(x_0)$ خاصية g(x) . لذونا في g(x) . لدبنا بجوار g(x) . لذور النفريب النا لفي للدالة g(x) . g(x) بجوار g(x) و لنسننئج فيمه مفريه للعدد g(x) . لنحدد النفريب النا لفي للدالة g(x) المرادة g(x) بجوار g(x) و لنسننئج فيمه مفريه للعدد g(x)

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x} = \lim_{x \to 0} \frac{1}{\sqrt{1 + x} + 1} = \frac{1}{2}$$
 و $f(0) = \sqrt{1 + 0} = 1$ باذن $f'(0) = \frac{1}{2}$

g(x)=f'(0)(x-0)+f(0) المعرفة g(x)=f'(0)(x-0)+f(0) المعرفة و الدالة g(x)=f'(0)(x-0)+f(0) المعرفة g(x)=f'(0)(x-0)+f(0) المعرفة g(x)=f'(0)(x-0)+f(0) المعرفة و الدالة و الدالة

. $f(x)\simeq g(x)$. $f(x)\simeq g(x)$. رو بالناتي بجوار $f(x)\simeq g(x)$. $\sqrt{1,0008}\simeq 1,0004$. را بناتي بجوار $f(0,0008)\simeq g(0,0008)$. را بناتي بجوار $f(0,0008)\simeq g(0,0008)$. رو بالناتي بجوار $f(0,0008)\simeq g(0,0008)$

- 0 بجوار $g:x\mapsto rac{1}{x+1}$ الناً لفي الذالة $g:x\mapsto -1$
 - $-\frac{1}{1,006}$ يسننج فبمخ مفربة للعرد -2

4.1 قابلية إشتقاق دالة على مجال

4 تعریف

- نفول أن داله f فابله للإشنفاق على مجال مفنوح [a;b] إذا كانت [a;b] فابله للإشنفاق في كل نفطه من [a;b]
- فول أن داله f فابله للإشنفاق على مجال مغلق [a;b] إذا كانث f فابله للإشنفاق على المجال المفنوح b و على البسار في a و على البسار في a و على البسار في a
- [a;b] و [a;b] و [a;b] و [a;b] و [a;b] و بنفس الطربقة نعرف فابلبة إشتفاق دالة على مجالات من نوع [a;b]

$$f(x)=\sqrt{x+1}$$
 : لَكُن f الدالة العددبة المعرفة ب $D_f=\{x\in\mathbb{R}/x+1\geqslant 0\}=[-1;+\infty[$ مجموعة تعربف الدالة f هي مجموعة تعربف الدالة العددبة الدالة عن الدالة العددبة العددبة الدالة العددبة العدبة العدبة العددبة العددبة العددبة العددبة العددبة العددبة العدب

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{\sqrt{x + 1} - \sqrt{a + 1}}{x - a} \quad .] - 1; +\infty[\text{ is } a \text{ if }$$

$$\lim_{x\to (-1)^+}\sqrt{x+1}=0^+ \,\,\text{لأون الدالله} \,\,f$$
 .] $\frac{1}{x}+\infty[+\infty]$.] $\frac{1}{x+1}=\lim_{x\to (-1)^+}\frac{1}{\sqrt{x+1}}=\lim_{x\to (-1)^+}\frac{1}{\sqrt{x+1}}=1$.] $\frac{1}{x+1}=1$... $\frac{1}{x+1}=1$.

 $[-1;+\infty[$ نسنننج أن الدالة f معرفة على المجال المجال $[-1;+\infty[$ و فابلة للإشنفاق على المجال

الدالة المشتقة و المشتقات المتتالية

I دالهٔ فابلهٔ للإشنفان على مجال f دالهٔ فابلهٔ للإشنفان على مجال

- الدالة المعرفة على I بما بلي: $x\mapsto f'(x)$ نسمي الدالة المشنفة للدالة f على المجال I و نرمز لها
- الدالة المشنفة f' فابلة أبضا للإشنفاق على المجال I فإن دالنها المشنفة نسمى الدالة f'f'' ألمشنفت الثانبت للدالت f على المجال \dot{I} و نرمز لها بالرمز
- بنفس الطربغة نعرف الدالة المشنفة من الرئبة $n\in\mathbb{N}\setminus\{0;1\}$ حبث f و نرمز لها بالرمز f و نرمز لها بالرمز $f^{(n)}=(f^{(n-1)})'$ و لدبنا: $f^{(n)}=(f^{(n-1)})'$

 $f(x) = x^3$ بثال 5. لنكن f الدالة العددية المعرفة ب

 $f':x\mapsto 3x^2$ أذن الدالة f نقبل الإشنفاق على $\mathbb R$ و مشنفنها الاولى هي الدالة f

$$\lim_{x \to a} \frac{f'(x) - f'(a)}{x - a} = \lim_{x \to a} \frac{3x^2 - 3a^2}{x - a} \quad .\mathbb{R} \text{ is } a \text{ if }$$

 $f'':x\mapsto 6x$ و المشنفة الثانبة للدالة f' فبل الإشنفاق على $\mathbb R$ و المشنفة الثانبة للدالة أ

مشتقات بعض الدوال الإعتيادية

حيز تعريف أ	f^\prime الدالة	حيز تعريف	fالدالة		
\mathbb{R}	$x \mapsto 0$	\mathbb{R}	$x \mapsto k \ / \ k \in \mathbb{R}$		
\mathbb{R}	$x \mapsto nx^{n-1}$	\mathbb{R}	$x \mapsto x^n \ / \ n \in \mathbb{N}^*$		
\mathbb{R}^*	$x \mapsto -\frac{1}{x^2}$	\mathbb{R}^*	$x \mapsto \frac{1}{x}$		
\mathbb{R}_+^*	$x \mapsto \frac{1}{2\sqrt{x}}$	\mathbb{R}_{+}	$x \mapsto \sqrt{x}$		
\mathbb{R}	$x \mapsto \cos x$	\mathbb{R}	$x \mapsto \sin x$		
\mathbb{R}	$x \mapsto -\sin x$	\mathbb{R}	$x \mapsto \cos x$		

 $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ نلنب إصطلاحا: (f(x))' = (f(x))' مثلا: 3. مثلا:

3 العمليات على الدوال المشتقة

 \mathbb{R} من x

خاصیة A لنکن A و B دالنبن فابلنبن للإشنفان علی مجال A و A عددا حفیفیا.

- (f+g)'=f'+g' الدالة f+g فابلة للإشنفاق على ا
 - (k.f)' = k.f' الدالة k.f فابلة للإشنفاق على ا
- . $(f \times g)' = f' \times g + g' \times f$ قابلة للإشتقاق على I و لدينا: $f \times g$ قابلة للإشتقاق على الم
- . $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$ قابلة للإشتقاق على كل مجال ضمن I لا تنعدم فيه f و لدينا: •
- . $\left(\frac{f}{g}\right)'=\frac{f'\times g-g'\times f}{g^2}$ الدالة $\frac{f}{g}$ قابلة للإشتقاق على كل مجال ضمن I لا تنعدم فيه g و لدينا: •

ملحوظة 4. الدوال الحدودبث و الدوال الجذربث فابلث للإشنفان على كل مجال ضمن مجموعت نعربفها. $h: x\mapsto \sqrt{x}\cos x$ و $g: x\mapsto \frac{x^3-6x}{2x+5}$ و $f: x\mapsto -6x^5+8x^2-3$ و $g: x\mapsto \frac{x^3-6x}{2x+5}$

$$f'(x) = (-6x^5 + 8x^2 - 3)'$$

$$= (-6x^5)' + (8x^2)' + (-3)'$$

$$= -6(x^5)' + 8(x^2)'$$

$$= -6 \times 5x^4 + 8 \times 2x$$

$$= -30x^4 + 16x$$

$$g'(x) = \left(\frac{x^3 - 6x}{2x + 5}\right)'$$

$$= \frac{(x^3 - 6x)'(2x + 5) - (2x + 5)'(x^3 - 6x)}{(2x + 5)^2}$$

$$= \frac{(3x^2 - 6)(2x + 5) - 2(x^3 - 6x)}{(2x + 5)^2}$$

$$= \frac{6x^3 + 15x^2 - 12x - 30 - 2x^3 + 12x}{(2x + 5)^2}$$

$$= \frac{4x^3 + 15x^2 - 30}{(2x + 5)^2}$$

$$h'(x) = (\sqrt{x}\cos(x))'$$
 : \mathbb{R}_+^* where $x \in \mathbb{R}_+^*$ is $x \notin \mathbb{R}_+^*$ and $x \notin \mathbb{R}_+^*$ is $x \notin \mathbb{R}_+^*$.

تمرين 5. حدد مشنفهٔ الدالهٔ f في كل حالهٔ من الحالات النّالبه:

$$f(x) = \frac{1}{3x^2 - 7} \quad (4) \quad f(x) = \frac{-2x + 9}{3x + 7} \quad (3) \quad f(x) = 4x^5 - 3x^3 + x - 8 \quad (2) \quad f(x) = 6x^2 + 2\sqrt{x}$$
 (1)

$$f(x) = \tan x$$
 (8) $f(x) = \frac{2\sqrt{x}}{x+1}$ (7) $f(x) = (2x^3 - x)(5x+6)$ (6) $f(x) = (2x-3)\sin x$ (5)

 $n\in\mathbb{N}^*$ حاصية b و b عددبن حفيفيبن و a و لكن خاصية b حال المثنفاق على مجال المثنفا و a

- . $(f^n)' = n.f' \times f^{n-1}$ الدالة f^n فابلة للإشنفاق على اI و لدبنا:
- $(f^{-n})'=$ الدالة f^{-n} قابلة للإشتقاق على كل مجال ضمن I لا تنعدم فيه f، و لدينا: $-n.f' imes f^{-n-1}$
- الدالة \sqrt{f} قابلة للإشتقاق على كل مجال ضمن I تكون فيه f موجبة قطعا، و لدينا: $(\sqrt{f})' = \frac{f'}{2\sqrt{f}}$
- الدالة $ax+b\in I$ بحيث x من x من x فابلة للإشتقاق في كل من x فابلة للإشتقاق في الدائة $x\mapsto f(ax+b)$.(f(ax+b))' = a.f'(ax+b)

 $f(x) = \frac{1}{(x^2 + x + 3)^5}$: نعنبر الدالة f المعرفة ب

ممبز الحدودبن x^2+x+3 هو: x^2+x+3 ممبز الحدودبن x^2+x+3 هو: x^2+x+3 نتعرم على

 \mathbb{R} و بالنالي الدالة الجذربة f معرفة و فابلة للإشتفاق على

 \mathbb{R} و للل x من \mathbb{R} لدبنا

 \mathbb{R} من \mathbb{R} لدينا:

$$f'(x) = \left(\frac{1}{(x^2 + x + 3)^5}\right)'$$

$$= ((x^2 + x + 3)^{-5})'$$

$$= -5(x^2 + x + 3)'(x^2 + x + 3)^{-6}$$

$$= -5(2x + 1)(x^2 + x + 3)^{-6}$$

$$= \frac{-5(2x + 1)}{(x^2 + x + 3)^6}$$

 $g(x) = \sin(4x - 7)$ المعرفة ب $g(x) = \sin(4x - 7)$. \mathbb{R} لدبنا الدالة g فابلة للإشنفاق على \mathbb{R} . إذن الدالة g فابلة للإشنفاق على

 $g'(x) = (\sin(4x - 7))'$ $= 4\sin'(4x - 7)$

 $= 4\cos(4x-7)$ $h(x) = \sqrt{-2x^2 + 3x - 1}$ نعنبر الداله h المعرفة بنال 9. نعنبر الدالة وينا

ممبز الحدوديث x^2+x+3 هو: x^2+x+3 هو: $\Delta=3^2-4\times(-2)\times(-1)=1>0$ همبز الحدوديث x^2+x+3 همبز الحدوديث x^2+x+3

x	$-\infty$		$\frac{1}{2}$		1		$+\infty$
$-2x^2 + 3x - 1$		_	0	+	0	_	

 $\overline{\cdot,]rac{1}{2}; 1[}$ و بالنالي الدالة h معرفة على $\overline{\cdot, [rac{1}{2}; 1]}$ و فابلة للإشنفان على

$$h'(x) = (\sqrt{-2x^2 + 3x - 1})'$$
 $(-2x^2 + 3x - 1)'$ $= \frac{(-2x^2 + 3x - 1)'}{2\sqrt{-2x^2 + 3x - 1}}$ $= \frac{-4x + 3}{2\sqrt{-2x^2 + 3x - 1}}$

تمرين 6. حدد مشنفهٔ الدالهٔ f فی کل حالهٔ من الحالات النالبه:

$$f(x) = \sqrt{5x - 3}$$
 (3) $f(x) = \sin(-7x + 8)$ (2) $f(x) = (4x + 2)^3$ (1) $f(x) = \sqrt{2x^2 - 5x + 6}$ (6) $f(x) = x^3 \cos(3x + 1)$ (5) $f(x) = (-3x^3 + 7x - 8)^{-7}$ (4)

4 رتابة و مطارف دالة قابلة للاشتقاق

مبرهنة 1. نفبل المبرهنة النالبة: لنلن f دالة فابلة للإشنفاق على مجال I.

I وإذا كانك f' موجبة فطعا على المان f' فزابدبة فطعا على المانك وإذا كانك f'

I على المنافصية فطعا على المنافصية فطعا على المنافصية فطعا على المنافعية f'

I إذا كانك f' منعرمهٔ على الله فإن f ثابنهٔ على I

 $f(x) = \frac{5}{3}x^3 + \frac{5}{2}x^2 - 10x + 2$ بالمعرفة بنال 10. نعتبر الدالة العددبة f المعرفة و فابلة للإشتفاق على f دالة حدودبة فإنها معرفة و فابلة للإشتفاق على f

 $f'(x)=5x^2+5x-10=5(x^2+x-2)$ لل x من x لدبنا: $\Delta=1^2-4\times1\times(-2)=9>0$ همبز الحدودبن x^2+x-2 همبز الحدودبن

 $-\frac{1+\sqrt{9}}{2 imes 1}=1$ و منه للحرودين x^2+x-2 جنرين هما: x^2+x-2

f' و بالنالي جدول إشارة المشنفة

x	$-\infty$		-2		1		$+\infty$
f'(x)		+	0	_	•	+	

[-2;1[و منه f گزابدیه فطعا علی کل من المجالین [-2;1[و $]-\infty;-2[$ و] و منه [-2;1[و گفته علی المجال المجالین [-2;1[و منافصیه فطعا علی المجال المجالین [-2;1[و منافصیه فطعا علی المجال و معارفها: [-2;1] و معارفها: [-2;1] و نقابات [-2;1] و معارفها: [-2;1] و معارف

x	$-\infty$		-2		1		$+\infty$
f'(x)		+	0	_	•	+	
f(x)	$-\infty$	<i>)</i>	56 3	*	$-\frac{23}{6}$	<i>></i>	$+\infty$

 $x_0 \in I$ خاصیة f. لنکن f دالهٔ فابلهٔ للإشنفان علی مجال مفنوح

- x_0 في ننعم في $f(x_0)$ مطراف للدالة f فإن $f(x_0)$ ننعم في •
- $f(x_0)$ إذا كانك f' ننعدم في $f(x_0)$ مغبرة إشارئها فإن والك للدالف للدالف $f(x_0)$

 $h(x) = 3x^4 + 8x^3 + 6x^2$ بعثبر الدالة العددية h المعرفة ب: .11 نعنبر الدالة العددية \mathbb{R} بما أن h داله حرودبه فإنها معرفه و فابله للإشنفاق على

 $.h'(x) = 12x^3 + 24x^2 + 12x = 12x(x+1)^2$ لدبنا: \mathbb{R} من \mathbb{R} لدبنا:

و بالنالي جدول إشارة المشنفة 'h'

x	$-\infty$		-1		0		$+\infty$
12x		_		_	0	+	
$(x+1)^2$		+	0	+		+	
h'(x)		_	0	_	0	+	

h(0)=0 المشنفة h' نتعدم في h' و h' لكن لا تغبر إشارنها إلا عند h' ون للدالة h مطراف واحد هو: تمرين 7. احسب f'(x) ثم إستنتج رئابة الدالة f و حدد مطارفها إن وجدت، في كل حالة من الحالات الثالبة:

$$f(x) = x^2 + \frac{1}{x^2}$$
 (4) $f(x) = x + \frac{1}{x}$ (3) $f(x) = x^4 - 2x^2 + 7$ (2) $f(x) = 2x^3 - 6x^2$

$$f(x) = x^3 - x^2 + 4x - 1 \quad (8) \quad f(x) = x^3(2 - x) \quad (7) \quad f(x) = \frac{3x^2 - 1}{x^2 + 1} \quad (6) \quad f(x) = \frac{1 - x}{x^2}$$

$y'' + w^2y = 0$:المعادلة التفاضلية

تعریف 6. لبلن w عددا حفیفیا.

المنساوبة $y''+w^2y=0$ حبث المجهول y دالة عددبة مشنفنها الثانبة y'' نسمى معادلة نفاضلبة.

 $y'' + w^2y = 0$ المعادلات النالبة هي معادلات نفاضلبة من نوع $y'' + w^2y = 0$

$$-g'' - 9g = 0$$
: $25y'' + 16y = 0$: $f'' + 2f = 0$: $16y + y'' = 0$

مبرهنة 2.

جبر w على \mathbb{R} جبت $w\in\mathbb{R}^*$ هي الدوال المعرفة على \mathbb{R} بما بلي: $w\in\mathbb{R}^*$ حبث $w\in\mathbb{R}^*$ حبث $w\in\mathbb{R}$ على \mathbb{R} بما بلي: مع a و عردان حفيفيان. $x \mapsto a \cos wx + b \sin wx$

حلول المعادلة النفاضلية y''=0 هي الدوال المُعَرِفة على $\mathbb R$ بما بلي: $x\mapsto ax+b$ مع y''=0 عددان حفيفيان. g(0)=g'(0)=1 الذي بحفق g(0)=g'(0)=1 الذي بحفق g(0)=g'(0)=1 الذي بحقق g(0)=g'(0)=1

حلول المعادلة النفاضلية (E) هي الدوال المعرفة على \mathbb{R} بي حلول المعادلة النفاضلية (E) مع α و عددان حفيفيان.

 $x \in \mathbb{R}$ ليلَن

جبت β و محدان حفیفیان. $g(x)=\alpha\cos 3x+\beta\sin 3x$. $g'(x)=-3\alpha\sin 3x+3\beta\cos 3x$

$$\left\{ \begin{array}{l} g(0) = 1 \\ g'(0) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha \cos 0 + \beta \sin 0 = 1 \\ -3\alpha \sin 0 + 3\beta \cos 0 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha = 1 \\ \beta = \frac{1}{3} \end{array} \right.$$

 $g(x)=\cos 3x+rac{1}{3}\sin 3x$:ب \mathbb{R} جن الدالة المعرفة على الدالة المعرفة الدالة المعرفة الدالة (E): y'' + 4y = 0 تمرین 8. نعنبر المعادلة النفاضلية

(E) حدد مجموعة حلول المعادلة -1

 $f'(rac{\pi}{2})=3$ و $f(rac{\pi}{2})=1$ و نحون الرائم عادلہ f النب نحفن $f(rac{\pi}{2})=3$ و $f(rac{\pi}{2})=3$

 $\mathbb R$ مع λ و θ من $f(x)=\lambda\cos(-2x+\theta)$ بن $f(x)=\lambda\cos(-2x+\theta)$ مع λ و θ من θ y'' + 4y = 0 يين أن f حل للمعادلة النفاضلية