· Convex Set:

$$a^{T}x \leq b \Rightarrow a^{T}(x-x_{o}) \leq 0 \Rightarrow \{x \mid Ax \leq b, cx \leq d\}$$

· Hyperplane:

$$a = d - c$$

 $b = \frac{\|d\|_{2}^{2} - \|c\|_{2}^{2}}{2}$
 $a^{T}x - b$ or $f(x) = (d - c)^{T}(x - \frac{d + c}{2})$

• <Thm> Given two convex sets C and D, $\exists a,b$ s.t. $a^Tx \ge b$, $\forall x \in C$ <pr

Y VED, aTV z aTd should be true.

(If I VED, aTV< aTd, we can find a point on Va, i.e. d+t(v-d), is closer to C, for some small to

$$\frac{\partial \|d + t(v-d) - c\|_{2}}{\partial x} = 2 \cdot (d-c)^{T} \cdot (v-d) + 2 \cdot t(v-d)^{T} \cdot (v-d)$$

 $\approx 2.(a^{\mathsf{T}}\mathsf{V}-a^{\mathsf{T}}\mathsf{d})<0$

 $\Rightarrow \|d+t(v-d)-c\|_{2}$ is closer, which contrdicts our assumption that (c,d) is the closest point pair in (c,D)

· Supporting Hyperplane:

$$C = \left\{ x \left(\alpha^{\mathsf{T}} x \leq \alpha^{\mathsf{T}} \chi_0 \right) \right\}$$

Def $\tilde{C} = C \setminus Boundary of C$

 \Rightarrow there is a hyperplane that separates $\widetilde{\mathcal{C}}$ and χ_o

· Cone

· Pual Cones

> for each point in Cone K, each point in dual cone K* has < 90 degrees

$$U_1 = [1,0]$$

 $U_2 = [0,1]$
 $U_3 = [-1,0]$

if m<n, dual form might be useful

· Examples:

1.
$$K = R_{+}^{n}, K^{*} = R_{+}^{n}$$

3.
$$K = \{(x, \pm) | \|x\|_2 \le \pm, \pm 20\}, \quad K^* = \{(x, \pm) | \|x\|_2 \le \pm, \pm 20\}$$

· Convex Function:

$$f: \mathbb{R}^n \to \mathbb{R}$$
 is convex if don f is convex, $f(\theta x + (H\theta)y) \leq \theta f(x) + (H\theta) f(y)$, $f(y)$, $f(y)$, $f(y)$

· Example: