THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial Week 8

STAT3023: Statistical Inference

Semester 2, 2023

1. Suppose X has a gamma distribution with known shape $\gamma_0 > 0$ and unknown scale parameter θ (see the computer exercise). Then X has PDF

$$f(x; \gamma_0, \theta) = \frac{x^{\gamma_0 - 1} e^{-x/\theta}}{\theta^{\gamma_0} \Gamma(\gamma_0)}$$

for x > 0, and 0 otherwise. Since this is an exponential family with sufficient statistic X (and X has a continuous distribution, so no randomisation required), the UMPU test of H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$ is of the form

$$\delta(X) = \begin{cases} 1 & \text{for } X < c \text{ or } X > d \\ 0 & \text{otherwise} \end{cases}$$
 (1)

where the constants c and d (c < d) are chosen so that both the following equalities hold:

$$E_{\theta_0} \left[\delta(X) \right] = \alpha \,; \tag{2}$$

$$E_{\theta_0}[X\delta(X)] = \alpha E_{\theta_0}(X). \tag{3}$$

- (a) Write down a formula for $E_{\theta}(X)$.
- (b) Show that the conditions (2) and (3) above imply

$$\int_{c}^{d} f(x; \gamma_0, \theta_0) dx = \int_{c}^{d} f(x; \gamma_0 + 1, \theta_0) dx.$$
 (4)

(c) By integrating the right-hand side of (4) by parts, show that c and d in (1) satisfy

$$c^{\gamma_0} e^{-c/\theta_0} = d^{\gamma_0} e^{-d/\theta_0} \,. \tag{5}$$

(d) Explain why the UMPU test of H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$ rejects for large values of

$$\frac{X}{\mu_0} - \log \left\{ \frac{X}{\mu_0} \right\}$$

where $\mu_0 = \gamma_0 \theta_0 = E_{\theta_0}(X)$, the expected value of X under H_0 .

2. Suppose X_1, \ldots, X_n (for $n \ge 2$) are iid $N(\mu, \sigma^2)$ and we are interesting in testing

$$H_0: \sigma^2 = \sigma_0^2 \text{ against } H_1: \sigma^2 \neq \sigma_0^2$$
 (6)

(a) The statistic $Y = \frac{1}{2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \frac{\sigma^2}{2} \chi_{n-1}^2$ which is the same as a gamma random variable with (known) shape $\frac{n-1}{2}$ and (unknown) scale parameter σ^2 . It turns out that the UMPU test of (6) is the same as the test from question 1 applied to the statistic Y (which makes sense since Y is sufficient for the scale parameter σ^2). Show that this test rejects for large values of

$$\frac{S^2}{\sigma_0^2} - \log\left(\frac{S^2}{\sigma_0^2}\right) \tag{7}$$

where $S^2 = \frac{2Y}{n-1} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is the sample variance.

(b) Is the GLRT of the hypotheses (6) above equivalent to the test rejecting for large values of (7)?

- **3.** Suppose X_1, \ldots, X_5 are iid Poisson (θ) random variables. Determine the UMP test of $H_0: \theta = 1$ against $H_1: \theta < 1$ at level 0.05. **Hint:** you will need to calculate a few Poisson probabilities!
- **4.** Suppose that X_1, \ldots, X_n are iid $U(0, \theta)$, with common density

$$f_{\theta}(x) = \frac{1\{0 \le x \le \theta\}}{\theta}.$$

- (a) Show that the sample maximum $X_{(n)}$ is a sufficient statistic for θ .
- (b) Derive the maximum likelihood estimator $\hat{\theta}_{ML}$ and show that it is biased.
- (c) For what value of the multiplier c_n is the estimator $c_n \hat{\theta}_{\text{ML}}$
 - (i) unbiased;
 - (ii) have the smallest possible MSE, i.e. for which $E_{\theta} \left[\left(c_n \hat{\theta}_{ML} \theta \right)^2 \right]$ is minimised?
- (d) Determine the form of the GLRT for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$ at level α .