Chương 1 KHÁI NIỆM CHUNG VỀ KHO DỮ LIỆU VÀ KHAI PHÁ DỮ LIỆU

Nội dung

- 1. Khái niệm về kho dữ liệu.
- Khái niệm về khai phá dữ liệu.
- 3. Các loại dữ liệu và kiểu mẫu dùng để khai phá.
- 4. Các bài toán và phương pháp cơ bản trong khai phá dữ liệu.
- 5. Sự tích hợp của khai phá dữ liệu với một cơ sở dữ liệu hoặc với kho dữ liệu.
- 6. Ứng dụng của kho dữ liệu và khai phá dữ liệu.

Khái niệm về kho dữ liệu

- Kho dữ liệu (Data warehouse) là kho lưu trữ dữ liệu lưu trữ bằng thiết bị điện tử của một tổ chức,
- Các kho dữ liệu được thiết kế để hỗ trợ việc phân tích dữ liệu và lập báo cáo.
- Kho dữ liệu có những đặc điểm:
 - Tích hợp (Atomicity): Từ nhiều nguồn khác nhau,
 - ✓ Theo chủ đề (Consistency): Có ích để khai thác,
 - ✓ Biến thời gian (Isolation): Dữ liệu không bị ảnh hưởng hoặc tác động lẫn nhau khi được truy suất,
 - Cố định (Durable): khi đã hoàn chỉnh thì không đổi.

Khái niệm về kho dữ liệu

- Kho dữ liệu dung cho mục đích riêng biệt, lĩnh vực hẹp gọi là Data Mart.
- Một Data warehouse có thể hình thành nhiều Data Mart.
- Thuật ngữ Data Warehousing: Quá trình xây dựng và sử dụng một kho dữ liệu.

Khái niệm về kho dữ liệu

- Công cụ ETL (Extract Transform Load):
 - ✓ Rút trích (Extract):
 - Rút trích thông tin từ những nguồn đã có,
 - Những phiên bản phụ thuộc thời gian của dữ liệu,
 - Chọn lựa dữ liệu.
 - ✓ Chuyển đối (Transform):
 - Chuyển đổi các định dạng khác nhau về định dạng cho trước.
 - ✓ Tải (Load)
 - Sắp xếp, hợp nhất, lập chỉ mục, ... và phân hoạch.

Các các nhân, tổ chức ngập trong dữ liệu nhưng

đói thông tin.

Giải pháp: Kho dữ liệu và Khai phá dữ liệu

- Khai phá dữ liệu (Data mining) là quá trình phát hiện và trích xuất tri thức từ lượng dữ liệu lớn,
- Lượng dữ liệu lớn dùng cho khai phá gồm:
 - ✓ Có cấu trúc,
 - ✓ Bán cấu trúc,
 - ✓ Phi cấu trúc,
 - Được lưu trữ tạm thời hay ốn định.
- Các thuật ngữ: knowledge discovery/mining in data/knowledge extraction/data archeology, ...

- Tri thức đạt được từ quá trình khai phá:
 - Mô hình phân loại và dự đoán,
 - Mô hình gom cụm,
 - Mẫu thường xuyên, các mối qua hệ, tương quan,
 - ✓ Mô tả lớp/khái niệm,
 - Có cấu trúc, bán cấu trúc hoặc phi cấu trúc,
 - Có thể dùng trong điều khiển quy trình, ra quyết định, ...

√ ...

- Ý nghĩa và vai trò:
 - ✓ Ưng dụng được trong mọi lĩnh vực có dữ liệu,
 - Hỗ trợ nhiều đối tượng khác nhau:
 - Doanh nghiệp,
 - Khách hàng,
 - Nhà khoa học,
 - Giáo dục học, ...

Các loại dữ liệu và kiểu mẫu dùng để khai phá

- Dữ liệu hướng chủ thể:
 - Dữ liệu hướng theo từng nhóm đối tượng: khách hang, bệnh nhân, sản phẩm, ...
 - Tập trung vào việc mô hình hóa và phân tích các dữ liệu cho các nhà sản xuất quyết định
 - Chuyển từ hướng ứng dụng sang hướng hỗ trợ quyết định.
 - Không dùng cho các hoạt động hang ngày hoặc xử lý giao dịch.

Các loại dữ liệu và kiểu mẫu dùng để khai phá

Tính tích hợp:

- Dữ liệu được tập hợp từ nhiều nguồn: có thể khác kiểu, khác cấu trúc, ...
- Các nguồn: cơ sở dữ liệu quan hệ, tập tin có cấu trúc, tập tin phẳng, ...
- Cần được chuẩn hóa để đảm bảo tính nhất quán trong quy ước đặt tên, ...
- Việc chuẩn hóa cần thực hiện trước khi tích hợp.

Các loại dữ liệu và kiểu mẫu dùng để khai phá

- Dữ liệu biến thời gian.
 - Thông tin về quá khứ, hiện tại,
 - So sánh dữ liệu theo chiều thời gian,
 - Hỗ trợ quyết định cho tương lai.
 - Thành phần thời gian có thể tường minh hoặc ngầm định.
- Dữ liệu mang tính bền vững, chỉ đọc (non volatile):
 - Có thể thêm vào, nhưng không thay thể,
 - Phục vụ việc nghiên cứu, phân tích

- Khai phá dữ liệu nhằm mục đích:
 - Mô tả được một số khía cạnh của tập dữ liệu
 lớn,
 - Dự báo về những giá trị chưa biết hoặc sẽ có của các biến.

- Một số bài toán cơ bản:
 - 1. Mô tả khái niệm,
 - Quan hệ kết hợp,
 - 3. Gom cụm,
 - 4. Phân lớp,
 - 5. Hồi quy,
 - 6. Mô hình phụ thuộc,
 - 7. Phát hiện thay đối và độ lệch.

- 1. Bài toán mô tả khái niệm:
 - Tìm ra các đặc trưng và tính chất của khái niệm,
 - Tổng quát hóa, tóm tắt, ... để tím ra các đặc trưng của dữ liệu.

- 2. Bài toán tìm quan hệ kết hợp (Association Rule):
 - ✓ Phát hiện mối quan hệ kết hợp giữa các tập thuộc tính trong kho dữ liệu.
 - ✓ Bài toán khai phá luật kết hợp là một bài toán tiêu biểu
 - ✓ Ví dụ:
 - {Tóc đen, Da vàng} → {người Châu á},
 - {Mật ong, Đường} → {Ngọt}

- 3. Bài toán gom cụm dữ liệu (clustering):
 - ✓ Gom các dữ liệu có độ tương đồng cao thành các "cụm" để có thể phát hiện được đặc trưng của các thuộc tính trong miền ứng dụng.
 - Mục tiêu: cực đại hóa tính tương đồng giữa các phần tử trong cùng cụm, và cực tiểu hóa tính tương đồng giữa các phần tử khác cụm.
 - ✓ Phân cụm còn được gọi là bài toán "học máy không có giám sát" (unsupervised learning).

Bài toán gom cụm dữ liệu (clustering):

- 4. Bài toán phân lớp (classification):
 - Xây dựng (mô tả) các mô hình (hàm) nhằm đặc tả, phát hiện đặc trưng các lớp hoặc khái niệm để dự báo cho các dữ liệu tiếp theo.
 - ✓ Số lớp (nhóm) được xác định trước.
 - ✓ Một số phương pháp: cây quyết định, mạng Bayes, mạng neuron,...
 - ✓ Phân lớp thuộc nhóm bài toán "học máy có giám sát" (supervised learning).

4. Bài toán phân lớp (classification):

- 5. Bài toán hồi quy:
 - ✓ Điển hình trong phân tích thống kê và dự báo.
 - ✓ Dự đoán các giá trị của một hoặc một số biến phụ thuộc vào giá trị của một tập hợp các biến độc lập.
 - Có thể quy về việc học một hàm ánh xạ dữ liệu nhằm xác định giá trị thực của một biến theo một số biến khác.

- 6. Bài toán tìm mô hình phụ thuộc:
 - ✓ Tìm ra một mô hình mô tả sự phụ thuộc có ý nghĩa giữa các biến.
 - ✓ Bao gồm 2 mức:
 - Mức cấu trúc của mô hình: thường biểu diễn dạng đồ thị để phát hiện sự phụ thuộc bộ giữa các biến.
 - Mức định lượng của mô hình: Phát hiện độ mạnh của tính phụ thuộc dựa trên trọng số của các thuộc tính.

- 7. Bài toán phát hiện thay đổi và độ lệch:
 - ✓ Tập trung phát hiện sự thay đổi có ý nghĩa dưới dạng độ đo đã biết trước hoặc giá trị chuẩn,
 - ✓ Cung cấp những tri thức về sự biến đổi và độ lệch cho người dùng.
 - ✓ Thường được ứng dụng trong bước tiền xử lý.

1. Tích hợp dữ liệu:

- Cần có một lượng dữ liệu đủ lớn để phân tích và khai phá.
- Dữ liệu có thể thu thập từ nhiều nguồn: không thống nhất,
- ✓ Dữ liệu từ các nguồn khác nhau có thể là:
 - Có cấu trúc: cơ sở dữ liệu quan hệ, ...
 - Phi cấu trúc: Tập tin phẳng (flat file),
 - Được lưu trữ tạm thời hoặc ổn định, ...

- 1. Tích hợp dữ liệu:
 - Hợp nhất các nguồn có thể dẫn đến:
 - Cùng một thuộc tính nhưng có thể không tương đương nhau về ý nghĩa,
 - Không tương đồng về mặt giá trị,
 - ✓ Dư thừa dữ liệu,

√ ...

- 2. Biến đổi dữ liệu: Tạo tính tương thích giữa dữ liệu của nhiều nguồn khác nhau.
 - Làm mịn: loại bỏ trường hợp nhiễu.
 - Tổng hợp: Rút gọn dữ liệu và tạo khồi dữ liệu cho việc phân tích.
 - Khái quát hóa: Chuyển dữ liệu mức thấp sang mức cao.
 - Chuẩn hóa: Chuyển khoảng giá trị rộng thành khoảng giá trị nhỏ hơn ([10..1.000] -> [0.0..1.0])
 - Xác định thêm thuộc tính.

- 2. Biến đổi dữ liệu:
 - Một số phương pháp biến đổi:
 - ✓ Min-Max:

$$v' = \frac{v - \min_{A}}{\max_{A} - \min_{A}} (\text{new_max}_{A} - \text{new_min}_{B}) + \text{new_min}_{A}$$

- min_A, max_A: giá trị lớn nhất và nhỏ nhất của thuộc tính A
- New_min_A, new_max_A: miền giá trị mới.

- 2. Biến đổi dữ liệu:
 - Một số phương pháp biến đổi:
 - ✓ Z-score:

$$\mathbf{v}' = \frac{\mathbf{v} - \overline{\mathbf{A}}}{\sigma_{\mathbf{A}}}$$

- Ā: giá trị trung bình của thuộc tính A,
- σ_A : độ lệch chuẩn.
- ✓ Thay đổi tỷ lệ.
- Lựa chọn tập thuộc tính con

Ứng dụng của kho dữ liệu và khai phá dữ liệu

- Kinh doanh (Business),
- Tài chính (finance),
- Tiếp thị (sales marketing),
- Thương mại (commerce),
- Bảo hiểm (insurance),
- Khoa học (science),
- Điều khiển (control),

...

Câu hỏi

- Câu 1.2 ([1] trang 34)
- Câu 1.5 ([1] trang 35): Giải thích sự khác biệt và tương đồng giữa các phân biệt và phân loại, giữa tả và gom cụm, và giữa các phân lớp và hồi quy?
- Câu 1.8 ([1] trang 35).
- Câu 1.9 ([1] trang 35).