JRAHS 2U Mathematics Trial Higher School Certificate 2003

Question 1		
(a)	Evaluate $\sqrt{\frac{40}{3} - \sqrt{12}}$, correct to three significant figures.	1
(b)	Find the exact value of $\sin \frac{4p}{3}$.	1
(c)	Differentiate $\frac{1}{e^x} + \sqrt{x}$ with respect to x .	2
(d)	Solve for x , $5 = \frac{6x}{x+1}$	2
(e)	Find the primitive of $3 \sin x$	2 2
(f)	Solve the inequality $ x-1 > 3$.	2
(g)	Given $\log_a 3 = 1.6$ and $\log_a 7 = 2.4$, find $\log_a (21a)$	2
Que	stion 2	
(a)	Find the equation of the normal on the curve $y = \ln(x+2)$ at the point (0,ln2)	3
(b)	Differentiate the following:	
	(i) $x^2 \tan 5x$	2 2
	(ii) x	2
	1-3x	1
	(iii) $\sin^3 x$	1
(c)	The angle subtended at the centre, O , of a sector is 42° and whose radius is 10 cm. find the arc length to the nearest centimetre.	2
(d)	State the domain and range of the function $f(x) = 2\sqrt{x-1} + 3$	2

Question 3 Marks

The points A(-3,1) and B(5,7) lie on the line L with the equation 3x - 4y + 7 = 0. The line l is parallel to the x-axis.

The points C(2,-2) and D are two points on l such that $DA \mid CB$

- Find the distance AB.
- 1 Find the perpendicular distance of *C* to the line *L*. (ii) 2
- (iii) Find the angle of inclination that line L makes with the x-axis (to nearest degree).
- (iv) Show that the equation of the line passing through A and D is y = 3x + 10. 2
- Find the coordinates of point D. 1 (v)
- (vi) Find the area of the quadrilateral *ABCD* by joining *AC*.

(b)

A ship S sails from port P on a bearing of N60°E for 56 nautical miles, as shown in the diagram, while a boat B leaves port P on a bearing of 110°T for 48 nautical miles. Calculate the distance from *S* to *B* (correct to one decimal place)

2

2

Question 4 Marks 2 (a) (i) Find $\int \frac{3x^3 - 1}{x} dx$. (ii) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos(px) dx$. 2 Solve $\cos 2x = \frac{1}{\sqrt{2}}$ for $0 \le x \le p$. 2 (b) 3

The sketch of the curve y = f'(x) is given below. (c)

Sketch the curve y = f(x), given f(3) = 0

The rate of water flowing, R litres per hour, into a pond is given by (d)

$$R = 65 + 4t^{\frac{1}{3}}$$

- (i) Calculate the initial flow rate
- 1 Find the volume of water in the pond when 8 hours have elapsed, if initially (ii) 2 there was 15 litres in the pond.

Question 5 (a) The roots of the equation $x + \frac{1}{x} = 5$ are a and b.

Find the value of

(c)

I IIIu u	ic value of			
(i)	1			1
` /	$a+\bar{-}$			
	а			

- (ii) a+b
- (iii) $\alpha^2 + \beta^2$
- (b) (i) Find the discriminant of $3x^2 + 2x + k$
 - (ii) For what values of k does the equation $3x^2 + 2x + k = 0$, have real roots? $\frac{2}{3}$

A BO N C D

Given $PQ \parallel RS$, CN=CM and $\angle ABQ=q^{\circ}$.

Find angle *NMS* in terms of q° , giving reasons.

- (d) Given the equation of a parabola is $(x-3)^2 = 4y + 8$,
 - (i) Find the coordinates of the vertex.
 - (ii) Find the coordinates of the vertex.

1

Question 6 Marks Solve the equation $x^2 - 3x - 18 = 0$ 2 (a) (i) 2 Hence, or otherwise find all real solutions to $(x^2 + 1)^2 - 3(x^2 + 1) - 18 = 0$ (ii) Given the curves $y = (x-1)^2$ and x + y = 3 intersect at A and B. (b) 0 Verify that coordinates of A=(2,1)(i) 1 Hence find the area enclosed by the curve $y = (x-1)^2$, and the lines (ii) 2 x + y = 3 and x = 3Given $\frac{dy}{dx} = e^{1-x}$ and when x = 1, y = 3, find y as a function of x (c) 2 A metal ball is fired into a tank filled with a thick viscous fluid. (d) The rate of decrease of velocity is proportional to its velocity $v \text{ cm s}^{-1}$ Thus $\frac{dv}{dt} = -kv$, where k=0.07 and t is time in seconds. The initial velocity of the ball when it enters the liquid id $85~\text{cm s}^{-1}$ (i) Show that $v = 85e^{-0.07t}$ satisfies the equation $\frac{dv}{dt} = -kv$

Calculate the rate when t=5

(ii)

Question 7 Marks

(a) Consider the shaded area of that part of the sketch of the curve $y = 16 - x^4$, for $0 \le x \le 2$, as shown.

This area is rotated about the y-axis.

Calculate the exact volume of the solid of revolution.

- (b) In a game of chess between two players *X* and *Y*, both of approximately equal ability, the player with the white pieces, having the first move, has a probability of 0.5 of winning, and the probability that the player with the black pieces, for that game, winning is 0.3
 - (i) What is the probability that the game ends in a draw?
 - (ii) The two players X and Y play each other in a chess competition, each player having the white pieces once.
 In the competition the player who wins a game scores 3 points, a player who loses a game scores 1 point and in draw each player receives 2 points.
 By drawing a probability tree diagram or otherwise, find the probability that
 - as a result of these two games

 (α) X scores 6 points 1

- (β) X scores less than 4 points 2
- (c) (i) State a formula for the interior angle sim of an *n*-sided convex polygon. 1
 - (ii) The interior angles of a convex polygon are in arithmetic sequence. The smallest angle is 120° and the common difference is 5°. Find the number of sides of the polygon.

Question 8 Marks

(a) In the diagram, ABCD is a square of side length 1 cm.

Not to scale

Points P and Q lie on AB and AD respectively, and $\angle PCQ = 45^{\circ}$.

AB is produced to E such that $BE = \mathbf{D}Q$

AB is produced to E such that $BE = \mathbf{D}Q$ as shown.

- (i) State which test confirms $\triangle CBE \equiv \triangle CDQ$
- (ii) Prove that PC bisects $\angle QCE$, giving reasons
- (iii) Deduce that $PC \perp QE$ (justify)

2

1

2

1

(b) A particle is moving in straight-line motion. The particle starts from the origin and after a time of *t* seconds it has a displacement of *x* metres from *O* given by

 $x = 4te^{-\frac{1}{2}t}$ as shown in the diagram.

Its velocity, v m/s, is given by $v = 2(2-t)e^{-\frac{1}{2}t}$

- (i) What is the initial velocity?
- (ii) When and where will the particle be at rest?
- (iii) At what time will the particle be travelling at constant velocity? Give reasons.
- (iv) When will the particle be accelerating?

Question 9 Marks

2

- (a) Show that $\frac{d}{dq} \left[\frac{1}{\cos q} \right] = \sec q \tan q$.
- (b) Fibre cabling is to be laid in a rectangular room along *BP* and *PQ* from the corner *B* of the floor *ABCD* as shown in the diagram.

Given the dimensions of the room are AB = 5 m, AD = 4 m and the height of the room AE = 3 m.

Suppose AP = x m,

- (i) State the length of BP in terms of x.
- (ii) Show that the length of PQ is $\sqrt{25-6x+x^2}$ m.
- (iii) Hence state the total length, L m, of the cabling (in terms of x)

 (iv) Find the value of AB when the total length L is to be minimum.
- (iv) Find the value of AP when the total length L is to be minimum

Question 10 Marks

Consider the curve $y = x^2$ for $x \ge 0$, and let $I = \int_{1}^{a} x^2 dx$, where a > 1.

Divide the interval $1 \le x \le a$ into n parts where the divisions are not of equal length, so that $x_0 = 1$, $x_1 = p$, $x_2 = p^2$, ..., $x_k = p^k$ and $x_n = a$, where $p^n = a$ and where p > 1.

Let A_n be the area of the n^{th} trapezium, as shown in the diagram.

Let S_n be the sum of the areas of the first *n* trapezia.

- (a) Using the trapezoidal rule, find S_1 , the area of the first trapezium (in terms of p).
- (b) Given $A_1 = S_1$, show that

(i)
$$S_2 = S_1 + \frac{1}{2}p^3(p-1)(1+p^2)$$
 and hence

2

(ii)
$$S_3 = \frac{1}{2}(p-1)(1+p^2)(1+p^3+p^6)$$

(c) Find an expression for S_n and hence show that 3

$$S_n = \frac{1}{2}(1+p^2)\left(\frac{p^{3n}-1}{p^2+p+1}\right)$$
, when simplified.

(d) Show that $p \to 1$ as $n \to \infty$.

Hence, evaluate
$$I$$
, using $I = \lim_{p \to 1} S_n$ 2