Homework 5

Mark Schulist

1) 2.6

1.a)

$$E' = \{ \text{limit points of E} \} \tag{1}$$

Show that E' is closed.

Closed means that every limit point of E' is a point of E'.

We can show that $(E')^c$ is open.

Proof. For all $p \in (E')^c$, there exists an r > 0 such that for all $q \in B_r(p), q \notin E$ (with $q \neq p$).

Assume that $q \in E'$, with $d(p,q) = \varepsilon$. Then $B_{\frac{r-\varepsilon}{2}}(q) \subset B_r(p)$, so we have found a ball that avoids E. Hence q is not a limit point of E, so $q \notin E'$.

Hence every point of $(E')^c$ is an interior point, so $(E')^c$ is an open set.

1.b)

Show that E and \overline{E} have the same limit points. $\overline{E} = E \cup E'$.

Proof. $(\Longrightarrow, E' \subset (\overline{E})')$ We know that $E \subset \overline{E}$. Because of this, any limit point of E is a limit point of \overline{E} . Hence $E' \subset (\overline{E})'$.

$$(\longleftarrow, (\overline{E})' \subset E')$$

We know that for all $p \in (\overline{E})'$, for all r > 0 there exists $q \in B_r$ with $q \in \overline{E}$ (with $p \neq q$). Therefore $q \in E$ or $q \in E'$.

1.c)

Do E and E' always have the same limit points?

In (\mathbb{R}, d) .

Let $E = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Then $E' = \{0\}$ and $E'' = \emptyset$. So not true.

2) 2.7

 $A_1, A_2, ..., A_n$ are subset of a metric space.

2.a)

If $B_n = \bigcup_{i=1}^n A_i$, show that $\overline{B_n} = \bigcup_{i=1}^n \overline{A_i}$.

Proof. (\Longleftarrow) Suppose $y \in \bigcup_{i=1}^n \overline{A_i}$. Then $y \in \overline{A_i}$ for some $1 \le i \le n$. So $y \in A_i \cup A'_{i'}$ for some i.

- If $y \in A_i$, then $y \in B_n$ by the given, so $y \in \overline{B_n}$.
- If $y \in A_i'$, then y is a limit point of A_i . $A_i \subset B_n$, which implies that y is a limit point of $B_n \Longrightarrow y \in \overline{B_n}$. (\Longrightarrow) Suppose $y \in \overline{B_n} = B_n \cup B_n'$, then $y \in B_n$ or $y \in B_n'$.
- If $y \in B_n$ then $y \in A_i$ for some i. This implies that $y \in \bigcup_{i=1}^n A_i \Longrightarrow y \in \bigcup_{i=1}^n \overline{A_i}$.
- If $y \in B'_n$ then y is a limit point of B_n . Because y is a limit point of B_n , for all r > 0 $N_r(y)$ contains a point $x \in B_n$ with $x \neq y$. Because $x \in B_n$, there exists an i such that $x \in A_i$. Note that is only works for finite i as if we have an infinite union, then we might not be able to pick out a specific A_i that x is a part of (see (c)). Because we can find this x for any neighborhood of $y \in A_i$, $y \in A'_i$. Hence $y \in \overline{A_i}$, which means that y is in the RHS of the problem.

2.b)

If $B = \bigcup_{i=1}^{\infty} A_i$, show $\overline{B} \supset \bigcup_{i=1}^{\infty} \overline{A_i}$.

Proof. Suppose $x \in \bigcup_{i=1}^{\infty}$. Then $x \in \overline{A_i} = A_i + A_i'$ for some i.

- If $x \in A_i$, then $x \in B$ by given. So $x \in \overline{B}$ as $B \subset \overline{B}$.
- If $x \in A_i'$, then x is a limit point of A_i . $A_i \subset B \Longrightarrow x$ is a limit point of $B \Longrightarrow x \in \overline{B}$.

2.c)

Example:

$$\begin{split} A_i &= \left\{\frac{1}{i}\right\} \\ B &= \bigcup_{i=1}^{\infty} A_i = \left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\} \end{split} \tag{2}$$

So $0 \in \overline{B}$.

 $\overline{A_i} = A_i$ as they consist of a single point. So $0 \notin \bigcup_{i=1}^{\infty} \overline{A_i}$ as 0 is not in any A_i , but $0 \in \overline{B}$.

3) 2.9

$$E^{\circ} = \{ \text{interior points of } E \} \tag{3}$$

3.a)

Show E° is always open.

Proof. For all $x\in E^\circ$, there exists r>0 such that $N_r(x)\subset E$. This is because for all $N_r(x)$, we can pick a $q\in N_r(x)\Longrightarrow \exists N_{r_1}(q)\subset N_r(x)\subset E$. This is because there exists a neighborhood around q if we make r_1 smaller than $\frac{r-\varepsilon}{2}$, where $\varepsilon=d(p,q)$. Hence any point in $N_r(x)\in E^\circ$, which implies that $N_r(x)\subset E^\circ$.

Because we can always find a neighborhood around any $x \in E^{\circ}$ that is a subset of E° , we have shown that E° is an open set.

3.b)

Show that E open \iff $E^{\circ} = E$

Proof. (\Longrightarrow) Assume that E is open. So for all $x \in E$, x is an interior point. So $E = \{\text{interior point of } E\} = E^{\circ}$.

(\Leftarrow) Assume $E^{\circ} = E$. Then $E = \{\text{interior points of } E\}$. We know that E° is open, which implies that E must be open.

3.c)

Show that if $G \subset E$ and G is open, then $G \subset E^{\circ}$.

Proof. Because G is open, $G = G^{\circ}$. For all $g \in G$, there exists r > 0 such that $B_r(g) \subset G \subset E$. Hence every g is an interior point of E. Hence $G \subset E^{\circ}$.

3.d)

Show that $(E^{\circ})^c = \overline{E^c}$.

Proof. (\Longrightarrow) Suppose $y \in (E^{\circ})^c$. So y is not an interior point of E. So irregardless of how small we make our neighborhood of y, it will always contain a least one $x \in E^c$. So we have 2 options for y:

- if $y \in E^c$, then we are done (as $E^c \subset \overline{E^c}$)
- if $y \notin E^c$, then y must be a limit point of E^c as all neighborhoods of y must contains at least one point of E^c , or else y would be an interior point of E. Hence $y \in (E^c)' \subset \overline{E^c}$.

 (\Leftarrow) Suppose $y \in \overline{E^c}$. Then $y \in E^c$ or $y \in (E^c)'$.

- If $y \in E^c$, then y cannot be an interior point of E so $y \in (E^{\circ})^c$.
- If y ∈ (E^c)', then y is a limit point of E^c. This means that all neighborhoods of y contain another (distinct) point q ∈ E^c. Because all neighborhoods always contains another point in E^c, y cannot be an interior point of E. Hence y ∈ (E^o)^c.

3.e)

Do E and \overline{E} have the same interiors?

Let us be in \mathbb{R} .

Let $E = \{x \mid x \in \mathbb{Q}, 0 < x < 1\}.$

 $E^{\circ} = \emptyset$ as any neighborhood r > 0 contains points of \mathbb{R} not in \mathbb{Q} .

 $\overline{E} = (0,1)$ as \mathbb{Q} dense in \mathbb{R} .

 $(\overline{E})^{\circ} = (0,1) \neq \emptyset$. Hence E and \overline{E} do not necessarily have the same interiors.

3.f

Do E and E° have the same closures?

Let us be in \mathbb{R} .

Let
$$E = \{x \mid x \in \mathbb{Q}, 0 < x < 1\}$$
. Then $\overline{E} = [0, 1]$.

But $E^{\circ} = \emptyset$ as we are in \mathbb{R} and any neighborhood of any point in E cannot be a subset of E as it will contain another point in \mathbb{R} that is not in \mathbb{Q} (it will contain an *irrational* number). Hence $\overline{E^{\circ}} = \emptyset$.

So no as $\overline{E} \neq \overline{E}^{\circ}$.

4) 2.10

X is an infinite set. $p, q \in X$

$$d(p,q) = \begin{cases} 1 & \text{if } p \neq q \\ 0 & \text{if } p = q \end{cases} \tag{4}$$

4.a)

Show this is a metric.

- (a) $d(p,q) = 0 \Longrightarrow p = q$. d(p,q) = 1 > 0 otherwise.
- (b) d(p,q) = d(q,p) by definition of metric.
- (c) $r, p, q \in X$

We need $d(r, q) \le d(r, p) + d(p, q)$ to hold for all p, q, r.

Case 1: r = p = q. Then all terms are 0 so it holds.

Case 2: $r \neq p, r = q \Longrightarrow 0 \le 1 + 1$.

Case 3: $r = p, r \neq q \Longrightarrow 1 \leq 0 + 1$.

4.b)

Let $E \subset X$.

For all $x \in E$, $B_{r<1}(x) = \{x\} \subset E$ as $x \in E$. So all nonempty subsets of X are open.

4.c)

We know that all nonempty subsets of X are open, so if $E \subset X$, then E^c is open as E^c is a nonempty subset of X. So $(E^c)^c = E$ is closed. If $E = \emptyset$, then E is closed. So all subsets of X are closed.

4.d)

All finite subsets of X are compact as we just need to select all points in the subset as the finite subcover. Let $A \subset X$, with A infinite.

Suppose 0 < r < 1, then $\bigcup_{p \in A} B_r(p)$ is a cover of A. But it cannot be a finite subcover as $B_r(p)$ only contains one point of A. If there exists a finite subcover, then A must be finite $\mnothing\$. So there does not exist a finite subcover of A is A is infinite.

5) 2.14

Construct open cover of (0,1) which has no finite subcover.

Let $G_i = (\frac{1}{i}, 1)$. This covers (0, 1) if we have union of G_i for $2 \le i < \infty$. The sets are nested, meaning that the outermost set will approach containing (with $i \to \infty$) (0, 1).

If we have a finite subcover, then we just take the max index of our subcover. Call the max index m. Then we have missed all points between $\left(0, \frac{1}{m}\right)$ so any finite subcover will not cover (0, 1).

6) 2.22

$$\mathbb{Q}^k = \{(a_1, a_2, ..., a_k) \mid a_1, a_2, ..., a_k \in \mathbb{Q}\} \tag{5}$$

We know that $\mathbb{Q}^k \subset \mathbb{R}^k$ and that \mathbb{Q}^k is countable.

 \mathbb{Q}^k is countable because it is the cartesian product of countable sets, so it must be countable.

Now we must show that \mathbb{Q}^k is dense in \mathbb{R}^k .

Let $x \in \mathbb{R}^k, x \notin \mathbb{Q}^k$ (denote the components of x by x_1, x_2, \ldots).

We know that $\mathbb Q$ is dense in $\mathbb R$, so $\exists y_i \in \mathbb Q$ such that $|x_i-y_i|<\frac{r}{\sqrt{k}}$ for any r>0.

$$\left(x_i - y_i\right)^2 < \frac{r^2}{k} \tag{6}$$

$$|x - y| = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2} < \sqrt{\sum_{i=1}^{k} \frac{r^2}{k}} = r$$
 (7)

For all r > 0. Hence \mathbb{Q}^k is dense in \mathbb{R}^k .

Because \mathbb{Q}^k is countable and is dense in \mathbb{R}^k , we have shown that \mathbb{R}^k is separable.