Lecture 3: Benchmarks

William Gropp www.cs.illinois.edu/~wgropp

How Are Systems Measured?

- Why do you want to measure or rank a system?
 - What is the purpose of the extreme scale system?
 - ◆ If it is to do science, that should be the measurement
- There is value is having a way to compare systems before making a purchase or request
 - Will this system be able to solve my problem?
 - ♦ Is the system the right "size"?

Benchmarks

- Benchmarks are methods used to provide a measurement that allows similar things to be compared.
- High performance computing benchmarks are typically one or more program and defined input that must be run correctly; the measurement is usually either the time or the rate (operations/ second)

Some Popular Benchmarks

- HPLinpack http://top500.org
- STREAM http://www.cs.virginia.edu/stream/
- HPC Challenge http://icl.cs.utk.edu/hpcc
- Graph 500 http://graph500.org
- NAS Parallel Benchmarks
 http://www.nas.nasa.gov/publications/npb.html

Many others

HP Linpack

- The most famous HPC benchmark used for the "Top500" ranking
- Solve a system of n linear equations using Gaussian elimination (matrix is dense)
- Time is roughly 2n³/3 (floating point operations only)
- Memory is roughly n²
- Results are updated twice a year
- Solving a system of linear equation is at the heart of many computational science problems
 - But almost all large systems are sparse and are not solved with Gaussian elimination (or at best with a sparse Gaussian elimination algorithm) PARALLEL@IIINOIS

STREAM

- Measure "Sustainable Memory Bandwidth"
 - ♦ For four operations:
 - COPY (x(i) = y(i))
 - SCALE (x(i) = a * y(i))
 - $\bullet ADD (x(i) = y(i) + z(i))$
 - TRIAD (x(i) = y(i) + a * z(i))
- Very large arrays x, y, and z
 - ♦ We'll explain why "very large" later in this course

HPC Challenge

- Attempt to broaden the HPLinpack benchmark to a suite of benchmarks
 - ◆ HPLinpack
 - DGEMM dense matrix-matrix multiply
 - STREAM memory bandwidth
 - ◆ PTRANS parallel matrix transpose
 - RandomAccess integer accumulates anywhere (race conditions allowed)
 - ♦ FFT 1d FFT
 - ◆ Communication (from beff); bandwidth and latency
- Characteristics are not distinct
 - ◆ E.g., DGEMM a major part of HPL
 - Infrequently used today

Graph 500

- An attempt to provide an alternative to HP Linpack for graph problems
 - ♦ Results available since Nov 2010
 - Breadth First Search (BFS) is the first benchmark
 - Reference implementations for OpenMP and MPI
- Significant early progress through better algorithms
 - From the description: "However, we do not constrain the choice of BFS algorithm itself, as long as it produces a correct BFS tree as output"
- Additional graph benchmarks under development

NAS Parallel Benchmarks

- Derived from applications important to NASA
- Original version described problems to solve but left implementation to the user
 - Defined before there was a standard for programming parallel systems
- Most uses today based on the MPI or MPI
 +OpenMP hybrid versions available from NASA
- Benchmarks include
 - Integer sort
 - Conjugate gradient
 - Multigrid
 - ◆ 3D FFT
 - ◆ 3 "pseudo applications" (solvers)

More Recent Collections

- Sustained Petascale Performance
 - Measures full applications, weighted to represent workload
 - Used for Blue Waters
 - More accurate for specific system but hard to compare over time
- Coral
 - ◆ Used for most recent big DOE procurement
 - Large set ranging from applications to microbenchmarks

https://asc.llnl.gov/CORAL-benchmarks/

The Top 5 systems in Nov 2014 (by HPLinpack)

- 1. Tianhe-2 (China), 3,120,000 cores
- 2. Titan Cray XK (US), 560,640 cores
- 3. Sequoia Blue Gene/Q (US), 1,572,864 cores
- 4. Fujitsu K Computer (Japan), 705,024 cores
- 5. Mira Blue Gene/Q (US), 786,432 cores
- #1 has Intel Phi; #2 NVIDIA Kepler
- Blue Waters (with 792,064 cores) would be around #4 if we bothered to run this benchmark

Blue Waters and Sequoia Computing Systems

System Attribute	NCSA Blue Waters	LLNL Sequoia
Vendors Processors	Cray/AMD/NVIDIA Interlagos/Kepler	IBM PowerPCA2 variant
Total Peak Performance (PF) Total Peak Performance (C	13.34 CPU/GPU) 7.1/6.24	20.1 20.1/0.0
Number of CPU Chips (8, 16 Number of GPU Chips	FPcores/chip)49,50 4,224	4 98,304 0
Amount of CPU Memory (TB)	1,476	1,572
Interconnect	3D Torus	5D Torus
Amount of On-line Disk Stora Sustained Disk Transfer (TB/		50(?) 0.5-1.0
Amount of Archival Storage (Sustained Tape Transfer (GB,		?

Where Are HPC Systems Going?

- Many discussions look at the benchmarks
 - ◆ Top500 is the most common
 - STREAM and RandomAccess also common
- Increasing interest in more applicationoriented benchmarks
- Short form:
 - Rates of increase in performance are slowing
 - Meeting power and performance targets leading to more specialization in hardware

Trend Data

- Excellent, comprehensive report on HPC architecture issues and trends
- http:// www.osti.gov/ scitech/biblio/ 1104707

Thinking about Trends

- Absolute numbers are often hard to interpret
 - ◆ Is 1usec latency good? Bad?
 - Spectacularly good for disk
 - Good for interconnect
 - Poor for main memory
 - Disastrous for register

Ratios are often better

- Rather than I/O bandwidth, memory size to I/O bandwidth (bytes / (bytes/sec)) gives seconds
 - ◆ Time to copy all of memory to disk
 - ◆ Important for "checkpoints" (see fault tolerance later in this course)

Dimensionless Quantities Often the Best

- Example: Ratio of latencies
 - ♦ L1 to L2 cache
 - ◆ L1 to Memory
 - Memory to remote memory
 - Memory latency in clock ticks
- "Best" because independent of the units chosen
- We'll use ratios and dimensionless quantities when looking at trends

Questions

- True or False:
 - There are computers using more than one million cores today
 - ◆ The Top500 benchmark predicts the performance of many applications
- What are 3 important benchmarks? What do they measure?

 Do all benchmarks specify the specific code that must be run?
PARALLEL@ILLINOIS

Readings

 Abstract Machine Models and Proxy Architectures for Exascale Computing, J. Ang et al, http://crd.lbl.gov/Fassets/Fpubs
 _presos/ FCALAbstractMachineModelsv1.1.pdf

 ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems, P. Kogge Editor, http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

