Тест	1		2		3		Итого				
								\leftarrow	– для пр	оверяющего!	
Фамилия, имя, номер группы:											
		• • • • • • • •	• • • • • • •			• • • • • • •		• • • • • •		• • • • • • • • • • • • • • • • • • • •	• •
Ответы	на тест:	:									
1	2	3	4	5	6	7	8	9	10		

Тест

Вопрос 1. Случайные величины X и Y независимы и имеют нормальное распределение с $\mathbb{E}(X) = 0$, \mathbb{V} ar $(X)=1, \mathbb{E}(Y)=5, \mathbb{V}$ ar(Y)=4. Величина Z=2X+Y имеет распределение

 $|A| \mathcal{N}(5;5)$

 $C \chi_2^2$

 $E \mid F_{1,1}$

 $B \mathcal{N}(5;8)$

 $D t_2$

F \mid нет верного ответа

Вопрос 2. Оценка $T_n = T(X_1, X_2, \dots, X_n)$ называется несмещённой оценкой параметра θ , если

 $|A| \mathbb{E}(T_n) = T_n$

 $D \mid \mathbb{E}(T_n) = 0$

 $B T_n = 0$

- $E \mid \mathbb{E}(T_n) = \theta$
- $oxed{C} \lim_{n o\infty} \mathbb{P}(|T_n- heta|>arepsilon)=0$ при arepsilon>0
- |F| нет верного ответа

Вопрос 3. Оценена регрессия $\hat{Y} = 300 + 6W$, где $R^2 = 0.85$ и $W_i = X_i/X_{i-1}$.

Если объясняющая переменная будет выражена в процентах, $\tilde{W}_i=100(X_i-X_{i-1})/X_{i-1}$, то результаты оценки регрессии примут вид

- $\hat{A} \hat{Y}_i = 3 + 6 \tilde{W}_i, R^2 = 0.85$
- $C \hat{Y}_i = 306 + 0.06 \tilde{W}_i, R^2 = 0.85$ $E \hat{Y}_i = 300 + 6 \tilde{W}_i, R^2 = 0.85$
- $oxed{B} \hat{Y}_i = 300 + 600 ilde{W}_i, R^2 = 0.85$ $oxed{D} \hat{Y}_i = 300 + 6 ilde{W}_i, R^2 = 0.085$ $oxed{F}$ нет верного ответа

Вопрос 4. Оценка ковариационной матрицы оценок коэффициентов регрессии $Y = X\beta + \varepsilon$ пропорциональна

 $A \mid (XX^T)^{-1}$

 $C \mid (X^T X)^{-1}$

 $E \mid X^T Y$

 $B X^T X$

 $D XX^T$

F нет верного ответа

	Вопрос 5.	Среди п	редпосылок т	еоремы Га	ycca-Ma _l	ркова фи	игурир	ует	условие
--	-----------	---------	--------------	-----------	----------------------	----------	--------	-----	---------

$$A$$
 $\mathbb{E}(Y_i) = 0$

$$C$$
 $\mathbb{E}(\varepsilon_i) = 1$

$$E$$
 $Var(\varepsilon_i) = 1$

$$\boxed{B} \ \varepsilon_i \sim \mathcal{N}(0; \sigma^2)$$

$$D$$
 $Var(\varepsilon_i) = const$

$$\overline{F}$$
 нет верного ответа

Вопрос 6. Оценено уравнение парной регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, причём МНК-оценка коэффициента β_1 равна 5, а стандартная ошибка оценки равна 0.25.

Значение t-статистики для проверки гипотезы, что этот коэффициент равен 4, есть

$$A - 2$$

$$C -4$$

$$B \mid 4$$

$$|F|$$
 нет верного ответа

Вопрос 7. Р-значение при проверке некоторой гипотезы H_0 оказалось равно 0.002.

Гипотеза H_0 не отвергается при уровне значимости

A 10%

C 1%

|E| всех перечисленных

B 0.1%

D 5%

 \overline{F} нет верного ответа

Вопрос 8. Известно, что выборочный коэффициент корреляции между X и Y равен 0.25. В регрессии Y на константу и X коэффициент R^2 равен

A 25

C 0.5

 $E \sqrt{0.5}$

B 0.25

уменьшится

D 0.0625

 \overline{F} нет верного ответа

Вопрос 9. Исследователь оценил регрессию $\hat{Y}_i = 90 + 3X_i$. Если увеличить переменную X на 10%, а Y — на 10 единиц, то

 \boxed{A} оценка коэффициента eta_0 уменьшится, а eta_1 — увеличится

 \boxed{D} оценки коэффициентов $eta_0,\,eta_1$ уменьшатся

 $oxed{B}$ оценка коэффициента eta_0 увеличится, а eta_1 —

 $\fbox{\it E}$ оценки коэффициентов eta_0 , eta_1 увеличатся

 $\overline{ | C | }$ оценки коэффициентов $eta_0, \, eta_1$ не изменятся

 $\lceil F \rceil$ нет верного ответа

Вопрос 10. Исследователь оценил регрессию $\hat{Y}_i = \frac{30}{(0.1)} + \frac{6}{(0.5)} X_i$, причём $\sum_i (X_i - \bar{X})^2 = 4$. Все предпосылки теоремы Гаусса-Маркова выполнены.

В скобках приведены стандартные ошибки коэффициентов. Несмещённая оценка дисперсии ошибок регрессии равна

A 0.25

C

 $E 2\sqrt{0.5}$

B 2

D 0.125

F нет верного ответа

Фамилия, имя, номер группы:

Задачи

1. Найдите величины Q1, ..., Q10, пропущенные в таблицах:

Indicator	Value						
Multiple R	Q1	ANOVA	df	SS	MS	F	Significance F
R^2	$\widetilde{\mathrm{Q}}_2$	Regression	Q4	42.9	42.9	923	0
Adjusted \mathbb{R}^2	0.54	Residual	798	37.0	46		
Standart error	Q3	Total	799	Q5			
Observations	800						

	Coef.	St. error	t-stat	P-value	Lower 95%	Upper 95%
Intercept	-25.24	2.0	Q6	0	Q7	-21.31
totspan	1.7	Q8	30.4	0	Q9	Q10

2. Грета Тунберг оценила зависимость средней температуры на Земном шаре в градусах, Y_i , от количества своих постов в твиттере в соответствующий день, X_i , по 52 дням:

$$\hat{Y}_i = -1.53 + 0.14 X_i$$
, где $\sum_i (X_i - ar{X})^2 = 52.4$ и $ar{X} = 10$

- а) Проверьте гипотезы о незначимости каждого коэффициента при уровне значимости $\alpha=0.01.$
- б) Проверьте гипотезу о равенстве углового коэффициента 2 при альтернативной гипотезе, что коэффициент больше 2 и уровне значимости $\alpha=0.01$.
- в) Найдите оценку дисперсии ε_i в модели $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$.
- г) Постройте 95%-ый доверительный интервал для индивидуального прогноза Y, если X=10.
- 3. Рассмотрим парную регрессию $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$.
 - а) Дайте определение коэффициента детерминации $\mathbb{R}^2.$
 - б) В каких пределах может лежать \mathbb{R}^2 в указанной парной регрессии? Докажите сформулированное утверждение.
 - в) Как связан коэффициент R^2 и выборочная корреляция зависимой переменной и регрессора? Докажите сформулированное утверждение.

Квантили распределения Стьюдента, t

ν	0.6	0.667	0.75	0.8	0.875	0.9	0.95	0.975	0.99	0.995	0.999
1	0.325	0.577	1.000	1.376	2.414	3.078	6.314	12.706	31.821	63.657	318.31
2	0.289	0.500	0.816	1.061	1.604	1.886	2.920	4.303	6.965	9.925	22.327
3	0.277	0.476	0.765	0.978	1.423	1.638	2.353	3.182	4.541	5.841	10.215
4	0.271	0.464	0.741	0.941	1.344	1.533	2.132	2.776	3.747	4.604	7.173
5	0.267	0.457	0.727	0.920	1.301	1.476	2.015	2.571	3.365	4.032	5.893
6	0.265	0.453	0.718	0.906	1.273	1.440	1.943	2.447	3.143	3.707	5.208
7	0.263	0.449	0.711	0.896	1.254	1.415	1.895	2.365	2.998	3.499	4.785
8	0.262	0.447	0.706	0.889	1.240	1.397	1.860	2.306	2.896	3.355	4.501
9	0.261	0.445	0.703	0.883	1.230	1.383	1.833	2.262	2.821	3.250	4.297
10	0.260	0.444	0.700	0.879	1.221	1.372	1.812	2.228	2.764	3.169	4.144
11	0.260	0.443	0.697	0.876	1.214	1.363	1.796	2.201	2.718	3.106	4.025
12	0.259	0.442	0.695	0.873	1.209	1.356	1.782	2.179	2.681	3.055	3.930
13	0.259	0.441	0.694	0.870	1.204	1.350	1.771	2.160	2.650	3.012	3.852
14	0.258	0.440	0.692	0.868	1.200	1.345	1.761	2.145	2.624	2.977	3.787
15	0.258	0.439	0.691	0.866	1.197	1.341	1.753	2.131	2.602	2.947	3.733
16	0.258	0.439	0.690	0.865	1.194	1.337	1.746	2.120	2.583	2.921	3.686
17	0.257	0.438	0.689	0.863	1.191	1.333	1.740	2.110	2.567	2.898	3.646
18	0.257	0.438	0.688	0.862	1.189	1.330	1.734	2.101	2.552	2.878	3.610
19	0.257	0.438	0.688	0.861	1.187	1.328	1.729	2.093	2.539	2.861	3.579
20	0.257	0.437	0.687	0.860	1.185	1.325	1.725	2.086	2.528	2.845	3.552
21	0.257	0.437	0.686	0.859	1.183	1.323	1.721	2.080	2.518	2.831	3.527
22	0.256	0.437	0.686	0.858	1.182	1.321	1.717	2.074	2.508	2.819	3.505
23	0.256	0.436	0.685	0.858	1.180	1.319	1.714	2.069	2.500	2.807	3.485
24	0.256	0.436	0.685	0.857	1.179	1.318	1.711	2.064	2.492	2.797	3.467
25	0.256	0.436	0.684	0.856	1.178	1.316	1.708	2.060	2.485	2.787	3.450
26	0.256	0.436	0.684	0.856	1.177	1.315	1.706	2.056	2.479	2.779	3.435
27	0.256	0.435	0.684	0.855	1.176	1.314	1.703	2.052	2.473	2.771	3.421
28	0.256	0.435	0.683	0.855	1.175	1.313	1.701	2.048	2.467	2.763	3.408
29	0.256	0.435	0.683	0.854	1.174	1.311	1.699	2.045	2.462	2.756	3.396
30	0.256	0.435	0.683	0.854	1.173	1.310	1.697	2.042	2.457	2.750	3.385
35	0.255	0.434	0.682	0.852	1.170	1.306	1.690	2.030	2.438	2.724	3.340
40	0.255	0.434	0.681	0.851	1.167	1.303	1.684	2.021	2.423	2.704	3.307
45	0.255	0.434	0.680	0.850	1.165	1.301	1.679	2.014	2.412	2.690	3.281
50	0.255	0.433	0.679	0.849	1.164	1.299	1.676	2.009	2.403	2.678	3.261
55	0.255	0.433	0.679	0.848	1.163	1.297	1.673	2.004	2.396	2.668	3.245
60	0.254	0.433	0.679	0.848	1.162	1.296	1.671	2.000	2.390	2.660	3.232
∞	0.253	0.431	0.674	0.842	1.150	1.282	1.645	1.960	2.326	2.576	3.090