Huhammad Raihan Maulana 230621 6636

$$\frac{1}{4} = \frac{1}{4} = \frac{1}$$

cari c ny u
$$c^{2} = a^{2} b^{2}$$

$$= 6^{2} - 3^{2} = 36 - 9 = 27$$

$$c = \pm \sqrt{27} = \pm 3\sqrt{3}$$

Standard Cari titik poteng

$$x=0$$
:
 $0+\frac{y^2}{36}=1 \iff y=\pm 6$
 $y=0$:
 $\frac{x^2}{y}+0=1 \iff x=\pm 3$

- direktrix =
$$9 = 6 + 373$$

dan $9 = -6 - 373$

$$\frac{3,0}{f} = (10, \pm 3, \pm 3)$$

$$4x^2 + y^2 = 36$$

 $\ell=2$; $y^2=-8\times$ ditanger different. pers. hiperbola dyn pusa (0,0), f, vertex, diretarial effects $y^2=-8\times$ dibenea the $y^2=-9\times$ 1 assimilate $y=\pm\frac{b}{2}\times$

- direletrix
$$= 6 + 373$$

dan $y = -6 - 373$

$$\ell=2$$
; $y^2=-8\times$ ditanger disentents, pers. hiperbola dan may $(0,0)$, f, vertex, direttrial effects $y^2=-8\times$ dibawa ke $y^2=4p\times$ a similar $y=\pm\frac{b}{a}\times$ $y^2=4(-2)\times$ = $\pm\frac{13}{2}\times$ = $\pm\frac{13}{2}\times$

asim tot :
$$y = \pm \frac{b}{a} x$$

= $\pm \frac{\sqrt{3}}{1} x = \pm \sqrt{3} x$

turena directrix garis x=C

that make hyperbody horizontal persamaan: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (=) $\frac{x^2}{1^2} - \frac{y^2}{3} = 1$

titik principle di (principle (
$$\pm a_{i0}$$
) = (± 1.0)

 $y=13x$

(-2)2 = (-1)2 + 62

b=19-1=183

e = L

7 Direct e=2

$$y = -13 \times$$

$$y = -13 \times$$

$$y = -13 \times$$

$$f'$$

$$f'$$

$$f'$$

Muhammad Raihan Maulana 2306216636

3 b)
$$4x^{2} - 16x + 2y^{2} + 16y + 40 = 0$$

 $4(x^{2} - 4x) + 2(y^{2} + 8y) = -40$
 $4(x^{2} - 4x + 4) + 2(y^{2} + 8y + 16) = -40 + 16 + 32$
 $4(x - 2)^{2} + 2(y + 4)^{2} = -18$
 $2(x - 2)^{2} + (y + 4)^{2} = -9$
Araggap $u = x - 2$; $v = y + 9$
 $2u^{2} + v^{2} = 19$ (:4)
 $\frac{u^{2}}{2} + \frac{v^{2}}{9} = 1$
 $\frac{v^{2}}{2} + \frac{v^{2}}{2} = 1$ $\Rightarrow \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$
 $2x^{2} + 2x^{2} = 1$ $\Rightarrow 2x^{2} + 3x^{2} = 1$
 $2x^{2} + 3x^{2} = 1$

genyebut a aba di y (atau u) directix maka ellipse horizontal; dancaticx y= ortho

$$(2^2 + (a^2 - b^2) = 0) = \sqrt{4 - 2} = \sqrt{2}$$

$$e = \frac{c}{a} = \frac{\sqrt{2}}{\sqrt{2}} = 1$$

tipot: 242+ 192 = 4 12=4 C=7 U= ±2 Saat 4=0: y+4 = ±2 y= ±2-9 9 = -6 Vy = -2 Saut 0=0: 242=9 X=2+72 Vx=2-15 u = ± √2 X-2 = ± √2

Sun 7 bordusarkan ini Tx = 2; Ty = -4

directrix:
$$y'=4 - y_1 - (y_2 - y_1)$$

$$V y'= y_2 + c$$

$$y = -6 - \sqrt{2} \quad V \quad y = -2 + \sqrt{2}$$

$$f = (0, Tx, Ty \pm c)$$

$$= (2, -4 \pm \sqrt{2})$$

$$f(2, -4 - \sqrt{2})$$

$$V f(2, -4 + \sqrt{2})$$

$$V f(2$$

(Tx, y) V (Tx, y) > p= (2,-9) (2,-6) V(2,-2)

(=)
$$(u^{2} + \frac{1}{2}u^{3})^{3} + \frac{1}{2}u^{2} + \frac$$