# 编码器和译码器 实验报告

信息科学技术学院 吴海垚 PB22051035 信息科学技术学院 李 毅 PB22051031 教室: 电四楼 112 室 座位号: 12

2023年3月11日

# 第一部分 实验目的

- 1. 掌握用逻辑门实现编码器的方法
- 2. 掌握中规模集成电路编码器和译码器的工作原理以及逻辑功能
- 3. 掌握 74LS138 用作数据分配器的方法
- 4. 熟悉编码器和译码器的级联方法
- 5. 能够用译码器进行组合逻辑电路设计

# 第二部分 实验原理

#### 1. 编码器

在二值逻辑电路中,信号都是以高、低电平的形式给出的。因此编码器的功能就是把每一个高、低电平信号编程一个对应的二进制编码。

## (1) 普通编码器

用 n 位二进制代码对  $2^n$  个信号进行编码的电路称为二进制编码器。普通编码器不允许同时输入两个以上的编码信号的编码器。

# (2)8 线-3 线优先编码器 74HC148/74LS148

识别信号的优先级并进行编码的逻辑部件称为优先编码器。编码器 74HC148 的作用是将输入  $I'_0$  –  $I'_{7}$ 8 个状态分别编成二进制码输出,他的逻辑框图如下图所示。他有 8 个输入端,3 个输出端,输入使能端 S',输出使能端  $Y'_S$  和优先编码工作状态标志  $Y'_{EX}$ 。8 个输入端的优先级从  $I'_7$  —  $I'_0$  递减。可总结得出:

- (1) S'=0 允许编码,S'=1 禁止编码,输出  $Y_2'Y_1'Y_0'=111$ ;
- (2)  $Y'_{S}$  主要用在多个编码器电路的级联控制,即  $Y'_{S}$  总是接在优先级别低得相邻编码器的 S'端,当优先级别高的编码器允许编码而无输入端申请时, $Y'_{S}$ =0,从而允许优先级别低的相邻编码器工作,反之若有优先级别高的编码器有编码时, $Y'_{S}$ =1,禁止相邻级别低的编码器工作;
- (3)  $Y'_{EX}=0$  表示  $Y'_2Y'_1Y'_0$  是编码器输出, $Y'_{EX}=1$  表示  $Y'_2Y'_1Y'_0$  不是编码器输出



|   |     |       | 输   |       | 入     |     |       |     |     | 输                    |       | 出   |      |
|---|-----|-------|-----|-------|-------|-----|-------|-----|-----|----------------------|-------|-----|------|
| S | I o | $I_1$ | 1 2 | $I_3$ | $I_4$ | I 5 | $I_6$ | I , | Y 2 | $\boldsymbol{Y}_{1}$ | $Y_0$ | Y's | Y EX |
| 1 | Х   | Χ     | Χ   | Х     | Χ     | Χ   | Χ     | Х   | 1   | 1                    | 1     | 1   | 1    |
| 0 | 1   | 1     | 1   | 1     | 1     | 1   | 1     | 1   | 1   | 1                    | 1     | 0   | 1    |
| 0 | Х   | Х     | Х   | Х     | Х     | Х   | Х     | 0   | 0   | 0                    | 0     | 1   | 0    |
| 0 | Х   | Х     | Х   | Х     | Х     | Х   | 0     | 1   | 0   | 0                    | 1     | 1   | 0    |
| 0 | Х   | Х     | Х   | Х     | Х     | 0   | 1     | 1   | 0   | 1                    | 0     | 1   | 0    |
| 0 | X   | Х     | Х   | X     | 0     | 1   | 1     | 1   | 0   | 1                    | 1     | 1   | 0    |
| 0 | Х   | Х     | Х   | 0     | 1     | 1   | 1     | 1   | 1   | 0                    | 0     | 1   | 0    |
| 0 | Х   | Х     | 0   | 1     | 1     | 1   | 1     | 1   | 1   | 0                    | 1     | 1   | 0    |
| 0 | х   | 0     | 1   | 1     | 1     | 1   | 1     | 1   | 1   | 1                    | 0     | 1   | 0    |
| 0 | 0   | 1     | 1   | 1     | 1     | 1   | 1     | 1   | 1   | 1                    | 1     | 1   | 0    |

#### 2. 译码器

译码是编码的逆过程,他的功能是将有特定含义的二进制码进行辨别,并转换成控制信号,具有译码功能的逻辑电路称为译码器。其有广泛应用,不仅限于代码的转换,终端的数字显示,还用于数据分配,存储器寻址和组合控制信号等。

## (1) 二进制译码器

二进制译码器具有 n 个地址输入端, 2<sup>n</sup> 个输出端和若干个控制输入端。在控制输入端为有效电平时对应每一组输入代码,只有其中一个输出端为有效电平,其余输出端则为非有效电平。每一个输出所代表的函数对应于 n 个输入变量的最小项。带控制输入端的译码器又是一个完整得数据分配器,若利用控制输入端中的一个作为数据输入端,则器件就成为一个数据分配器。

以三线-八线译码器 74HC138/74LS138 为例进行分析:

功能表如下所示,输出低电平有限效。 $S_1,S_2'$ , $S_3'$  为控制输入端,当  $S_1S_2'S_3'=100$  时译码器工作,否则被禁止,输出全被封锁在高电平。



|       | 输             |       | λ     |       |       |           | 输         | 出     |           |       |       |       |  |  |
|-------|---------------|-------|-------|-------|-------|-----------|-----------|-------|-----------|-------|-------|-------|--|--|
| $S_1$ | $S_2' + S_3'$ | $A_2$ | $A_1$ | $A_0$ | $Y_0$ | $Y_1^{'}$ | $Y_2^{'}$ | $Y_3$ | $Y_4^{'}$ | $Y_5$ | $Y_6$ | $Y_7$ |  |  |
| 0     | X             | Х     | X     | Х     | 1     | 1         | 1         | 1     | 1         | 1     | 1     | 1     |  |  |
| X     | 1             | Х     | Χ     | Χ     | 1     | 1         | 1         | 1     | 1         | 1     | 1     | 1     |  |  |
| 1     | 0             | 0     | 0     | 0     | 0     | 1         | 1         | 1     | 1         | 1     | 1     | 1     |  |  |
| 1     | 0             | 0     | 0     | 1     | 1     | 0         | 1         | 1     | 1         | 1     | 1     | 1     |  |  |
| 1     | 0             | 0     | 1     | 0     | 1     | 1         | 0         | 1     | 1         | 1     | 1     | 1     |  |  |
| 1     | 0             | 0     | 1     | 1     | 1     | 1         | 1         | 0     | 1         | 1     | 1     | 1     |  |  |
| 1     | 0             | 1     | 0     | 0     | 1     | 1         | 1         | 1     | 0         | 1     | 1     | 1     |  |  |
| 1     | 0             | 1     | 0     | 1     | 1     | 1         | 1         | 1     | 1         | 0     | 1     | 1     |  |  |
| 1     | 0             | 1     | 1     | 0     | 1     | 1         | 1         | 1     | 1         | 1     | 0     | 1     |  |  |
| 1     | 0             | 1     | 1     | 1     | 1     | 1         | 1         | 1     | 1         | 1     | 1     | 0     |  |  |

#### (2) 显示译码器

数字显示电路常由译码器,驱动器,和显示器等部分组成,本实验用 CC4511,他驱动共阴极 LED 数码管。功能表与引脚排列如下所示:

其中 A, B, C, D——BCD 码输入端。

a,b,c,d,e,f,g——译码输出端,输出1有效,用来驱动共阴极 LED 数码管

LT'——测试输入端,当 LT'=0 时,译码输出全为 1.

BI'——消隐输入端, 当 BI'=0 时,译码输出全为 0

LE——锁定端,当 LE=1 时译码器处于锁定状态,译码输出保持在 LE=0 时的数据, LE=0 时正常译码。



|    |     | 箱   | 入 |   |   |   | 输出 |             |    |   |   |      |   |     |  |  |
|----|-----|-----|---|---|---|---|----|-------------|----|---|---|------|---|-----|--|--|
| LE | BI' | LT' | D | C | В | A | a  | b c d e f g |    |   |   | 显示字形 |   |     |  |  |
| ×  | ×   | 0   | × | × | × | × | 1  | 1           | 1  | 1 | 1 | 1    | 1 | 8   |  |  |
| x  | 0   | 1   | × | × | × | × | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 0  | 1   | 1   | 0 | 0 | 0 | 0 | 1  | 1           | 1_ | 1 | 1 | 1    | 0 | 8   |  |  |
| 0  | 1   | 1   | 0 | 0 | 0 | 1 | 0  | 1           | 1  | 0 | 0 | 0    | 0 | -   |  |  |
| 0  | 1   | 1   | 0 | 0 | 1 | 0 | 1  | 1           | 0  | 1 | 1 | 0    | 1 | - 5 |  |  |
| 0  | 1   | 1   | 0 | 0 | 1 | 1 | 1  | 1           | 1  | 1 | 0 | 0    | 1 | 3   |  |  |
| 0  | 1   | 1   | 0 | 1 | 0 | 0 | 0  | 1           | 1  | 0 | 0 | 1    | 1 | 4   |  |  |
| 0  | 1   | 1   | 0 | 1 | 0 | 1 | 1  | 0           | 1  | 1 | 0 | 1    | 1 | 5   |  |  |
| 0  | 1   | 1   | 0 | 1 | 1 | 0 | 0  | 0           | 1  | 1 | 1 | 1    | 1 | ь   |  |  |
| 0  | 1   | 1   | 0 | 1 | 1 | 1 | 1  | 1           | 1  | 0 | 0 | 0    | 0 | 7   |  |  |
| 0  | 1   | 1   | 1 | 0 | 0 | 0 | 1  | 1           | 1  | 1 | 1 | 1    | 1 | 8   |  |  |
| 0  | 1   | 1   | 1 | 0 | 0 | 1 | 1  | 1           | 1  | 0 | 0 | 1    | 1 | ٩   |  |  |
| 0  | 1   | 1   | 1 | 0 | 1 | 0 | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 0  | 1   | 1   | 1 | 0 | 1 | 1 | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 0  | 1   | 1   | 1 | 1 | 0 | 0 | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 0  | 1   | 1   | 1 | 1 | 0 | 1 | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 0  | 1   | 1   | 1 | 1 | 1 | 0 | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 0  | 1   | 1   | 1 | 1 | 1 | 1 | 0  | 0           | 0  | 0 | 0 | 0    | 0 | 消隐  |  |  |
| 1  | 1   | 1   | × | × | × | × |    | 锁存          |    |   |   |      |   |     |  |  |

# 第三部分 实验内容

## 1. 用逻辑门(与非门,反相器)设计一个 4 线-2 线的优先编码器

 $I_0-I_3$  为输入端, $Y_0-Y_1$  为输出端, $Y_S$  为输出使能端, $Y_{EX}$  为优先编码工作标志端。列出逻辑真值表如下:

图 3.1 4 线-2 线的优先编码器真值表

|       |       |       |       |       | - // - | * 1111.7 * 122.2 * * |          |  |  |  |
|-------|-------|-------|-------|-------|--------|----------------------|----------|--|--|--|
| $I_0$ | $I_1$ | $I_2$ | $I_3$ | $Y_0$ | $Y_1$  | $Y_S$                | $Y_{EX}$ |  |  |  |
| X     | X     | X     | 1     | 1     | 1      | 0                    | 1        |  |  |  |
| X     | X     | 1     | 0     | 1     | 0      | 0                    | 1        |  |  |  |
| X     | 1     | 0     | 0     | 0     | 1      | 0                    | 1        |  |  |  |
| 1     | 0     | 0     | 0     | 0     | 0      | 0                    | 1        |  |  |  |
| 0     | 0     | 0     | 0     | 0     | 0      | 1                    | 0        |  |  |  |

使用卡诺图化简并改写为与非-与非形式得到逻辑表达式为:

$$Y_1 = I_3 + I_2 I'_3 = (I'_2 I'_3)'$$

$$Y_0 = I_3 + I_1 I'_2 I'_3 = (I'_3 (I_1 I'_2 I'_3)')'$$

$$Y_S = I'_0 I'_1 I'_2 I'_3 = ((I'_0 I'_1 I'_2 I'_3)')'$$

$$Y_{EX} = (I'_0 I'_1 I'_2 I'_3)'$$

画出电路图如下:



图 3.1: 4 线-2 线的优先编码器逻辑电路图

2. 将 74LS138 用作数据分配器,将 1Hz 连续脉冲信号加到电路的控制输入端,输出接发光二级管,改变输入地址码  $A_2$ 、 $A_1$ 、 $A_0$  的值,观察实验现象,记录实验结果

电路图如下:



图 3.2: 74LS138 作数据分配器

记录实验结果得到逻辑真值表如下:

3. 验证编码器 74LS148 和译码器 74LS138 的逻辑功能

电路连接如图 3.3 所示:

|       | 输入            | _     |       |       |        |        |        | 输      |        |        |        |        |
|-------|---------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| $S_1$ | $S_2' + S_3'$ | $A_2$ | $A_1$ | $A_0$ | $Y_0'$ | $Y_1'$ | $Y_2'$ | $Y_3'$ | $Y_4'$ | $Y_5'$ | $Y_6'$ | $Y_7'$ |
| 0     | X             | X     | X     | X     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| X     | 1             | X     | X     | X     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| _ - _ | 0             | 0     | 0     | 0     | - _ -  | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| _ - _ | 0             | 0     | 0     | 1     | 1      | - _ -  | 1      | 1      | 1      | 1      | 1      | 1      |
| _ - _ | 0             | 0     | 1     | 0     | 1      | 1      | - _ -  | 1      | 1      | 1      | 1      | 1      |
| _ - _ | 0             | 0     | 1     | 1     | 1      | 1      | 1      | - _ -  | 1      | 1      | 1      | 1      |
| _ - _ | 0             | 1     | 0     | 0     | 1      | 1      | 1      | 1      | - _ -  | 1      | 1      | 1      |
| _ - _ | 0             | 1     | 0     | 1     | 1      | 1      | 1      | 1      | 1      | - _ -  | 1      | 1      |
| _ - _ | 0             | 1     | 1     | 0     | 1      | 1      | 1      | 1      | 1      | 1      | - _ -  | 1      |
| _ - _ | 0             | 1     | 1     | 1     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | - _ -  |

表 3.2: 74LS138 作数据分配器逻辑真值表



图 3.3: 验证编码器 74LS148 和译码器 74LS138 的逻辑功能 输出状态记录表 3.3 所示

|        |        |        |        |        |        |        |        |        |        |        |              | F門 6 14L5130 円 相 山 小 心 |       |        |        |        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
|        |        |        | 7      | 4LS1   | 48 (   | 编码     | 器)     |        |        |        | 74LS138(译码器) |                        |       |        |        |        |        |        |        |        |        |
| $I_0'$ | $I_1'$ | $I_2'$ | $I_3'$ | $I_4'$ | $I_5'$ | $I_6'$ | $I_7'$ | $Y_2'$ | $Y_1'$ | $Y_0'$ | $A_2$        | $A_1$                  | $A_0$ | $Y_0'$ | $Y_1'$ | $Y_2'$ | $Y_3'$ | $Y_4'$ | $Y_5'$ | $Y_6'$ | $Y_7'$ |
| 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0            | 0                      | 0     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| 0      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0            | 0                      | 0     | 0      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| X      | 0      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 0            | 0                      | 1     | 1      | 0      | 1      | 1      | 1      | 1      | 1      | 1      |
| X      | X      | 0      | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 1      | 0            | 1                      | 0     | 1      | 1      | 0      | 1      | 1      | 1      | 1      | 1      |
| X      | X      | X      | 0      | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 0            | 1                      | 1     | 1      | 1      | 1      | 0      | 1      | 1      | 1      | 1      |
| X      | X      | X      | X      | 0      | 1      | 1      | 1      | 0      | 1      | 1      | 1            | 0                      | 0     | 1      | 1      | 1      | 1      | 0      | 1      | 1      | 1      |
| X      | X      | X      | X      | X      | 0      | 1      | 1      | 0      | 1      | 0      | 1            | 0                      | 1     | 1      | 1      | 1      | 1      | 1      | 0      | 1      | 1      |
| X      | X      | X      | X      | X      | X      | 0      | 1      | 0      | 0      | 1      | 1            | 1                      | 0     | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 1      |
| X      | X      | X      | X      | X      | X      | X      | 0      | 0      | 0      | 0      | 1            | 1                      | 1     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0      |
|        |        |        |        |        |        |        |        |        |        |        |              |                        |       |        |        |        |        |        |        |        |        |

表 3.3 编码器 74LS148 和译码器 74LS138 的输出状态

## 4. 设计一个具有 3 路报警信号的报警装置

当第一路有报警信号时,数码管显示"1",当第二路有信号时,数码管显示"2",当第三路有信号时,数码管显示"3";当有两路或两路以上有报警信号时,数码管显示"8",无报警信号时,数码管显示"0"。

使用 74LS138 译码器实现电路。使用  $Y_1$ ,  $Y_2$ ,  $Y_3$  代表 1, 2, 3 路报警信号的输入,接  $A_2$ ,  $A_1$ ,  $A_0$  得到对应的最小项。根据数码管 CC4511 的功能表得出逻辑表达式为:

$$A = m(1,4)$$

$$B = m(2,4)$$

$$C = 0$$

$$D = m(3,5,6,7)$$

画出电路图如下:



图 3.4: 3 路报警信号的报警装置电路图

### 5. 试用两片 74LS138 和 74LS20 双与非门设计下面的多输出函数, 画出逻辑电路图。

将两片 74LS138 连接成 4 线-16 线译码器,A 接两片 74LS138 的  $A_0$  端,B 接两片 74LS138 的  $A_1$  端,C 接两片 74LS138 的  $A_2$  端,D' 接左边一片(对应最小项为  $m_0-m_7$ )74LS138 的  $S_1$  端,D 接右边一片(对应最小项为  $m_8-m_1$ 5)74LS138 的  $S_1$  端。

要求多输出函数为:

$$Y_1 = BC'$$

$$Y_2 = AB'CD + A'BC + AB'D$$

化为最小项形式为:

$$Y_1 = m(2, 3, 10, 11)$$

$$Y_2 = m(6, 9, 13, 14)$$

画出电路图如下:



图 3.5: 指定多输出函数电路图

# 第四部分 思考题

#### 1. 如何判断一个数码管的好坏

要检查数码管的好坏,需要检查数码管各段是否都能正常工作。为了一次检验,数码管连接好电源与地后,DCBA输入1000,若可以正常显示出8即为正常。

#### **门电路测试与应用 实验报告** 信息科学技术学院 PB22051035 吴海垚 PB22051031 李毅 2024 年 3 月 11 日

### 2. 共阴极和共阳极数字显示器有什么区别? 能否用 CC4511 直接驱动共阳极数字显示器

共阴极显示器:公共端为阴极,加阳极数码管点亮。即当真值为 1 时,数码管点亮;真值为 0 时,数码管不亮。

共阳极显示器:公共端为阳极,加阴极数码管点亮。即当真值为 0 时,数码管点亮;真值为 1 时,数码管不亮。

因此两者点亮方式完全相反,不能直接使用 CC4511 来驱动共阳极数字显示器,需要稍加改变,

## 3. 为什么用二进制译码器可以设计任意的组合逻辑电路

因为二进制译码器得  $2^n$  的输出端对应的就是对于 n 个变量的全部最小项,因此对于 n 个变量的组合逻辑电路,只需要将这些输出端进行相加组合即可得出响应逻辑表达式。

#### 4. 总结用集成电路进行功能扩展的方法

因为进行功能扩展用的都是相同的集成电路,在实现相应功能上效果都一样,主要问题是具体使用 时到底是用哪一个集成电路,需要用到电路的控制输入端或者是使能端,输出工作状态标志等。比如将 输出的一个变量用来控制使能端来选择集成电路;上一级的输出工作状态标志输出给下一级使能端,达 到不同优先级的控制。