CASE OF STUDY

Introducción a la Ciencia de Datos

Kaggle knowledge competition – Bike Sharing Demand

- participants are asked to forecast bike rental demand of Bike sharing program in Washington, D.C based on historical usage patterns in relation with weather, time and other data.
- Using these Bike Sharing systems, people rent a bike from one location and return it to a different or same place on need basis. People can rent a bike through membership (mostly regular users) or on demand basis (mostly casual users). This process is controlled by a network of automated kiosk across the city.

How to approach a Dataset

- 1. Hypothesis Generation
- 2. Understanding the Data Set
- 3. Importing Data set and Basic Data Exploration
- 4. Feature Engineering
- 5. Hypothesis Testing (using multivariate analysis)
- 6. Model Building

1. Hyphotesis Generation

 Before exploring the data think about the problem and gain domain knowledge

Hourly trend: high demand during office timings. Early morning and late evening can have different trend. Low demand during 10:00 pm to 4:00 am.

Daily Trend: Registered users demand more bike on weekdays as compared to weekend or holiday.

Rain: The demand of bikes will be lower. Higher humidity will cause to lower the demand and vice versa.

Temperature: positive bike demand correlation with higher temperatures? Pollution: If the pollution level higher bike use? (influenced by government policies).

Time: Total demand should have higher contribution of registered user as compared to casual because registered user base would increase over time.

Traffic: It can be positively correlated with Bike demand.

- The dataset shows hourly rental data for two years (2011 and 2012).
- The training data set is for the first 19 days of each month.
- The test dataset is from 20th day to month's end. We are required to predict the total count of bikes rented during each hour covered by the test set.
- In the training data set, they have separately given bike demand by registered, casual
 users and sum of both is given as count.

Independent Variables

- Variable Type Identification str(data)
- Find missing values table(is.na(data))
- Understand the distribution of numerical variables

Weather 1 has higher contribution i.e. mostly clear weather.

4 categories with equal distribution

Variables temp, atemp, humidity and windspeed looks naturally distributed.

Convert discrete variables into factor (season, weather, holiday, workingday)

Feature Eingeneering

 In addition to existing independent variables, we will create new variables to improve the prediction power of model

Follow...in code

Useful Packages for Data Analysis

Pre-modeling stage

Data visualization: ggplot2, googleVis

Data Transformation: plyr, dplyr, data.table

Missing value Imputations: Missforest, MissMDA

Outliers Detection: Outliers, EVIR

Feature selection: Features, RRF, Boruta

Dimension Reduction: FactoMineR, CCP

Modeling stage

Continuous regression: car, randomforest

Ordinal Regression: Rminer, CoreLearn

Classification: Caret, BigRF

Clustering: CBA. RankCluster

Time Series: forecast, LTSA

Survival: survival, Basta

Post-modeling stage

General Model Validation: LSMeans, Comparison

Regression Validation: RegTest, ACD

Clasification Validation: ClustEval, SIgClust

ROC Analysis: PROC, TimeROC