## Solutions to Exercises in Steve Awodey's Book

Andreas Lynge

August 12, 2018

## ${\bf Contents}$

| Exercise 4.5.1  | 2 |
|-----------------|---|
| Exercise 5.7.9  | 3 |
| Exercise 5.7.11 | 4 |
| Exercise 6.8.4  | 4 |
| Exercise 6.8.16 | 5 |

**Exercise 4.5.1** Regarding a group G as a category with one object and every arrow an isomorphism:

- (a) Show that a categorical congruence  $\sim$  on G is the same thing as (the equivalence relation on G determined by) a normal subgroup  $N \subseteq G$ , that is, show that the two kinds of things are in isomorphic correspondence.
- (b) Show further that the quotient category  $G/\sim$  and the factor group G/N coincide.
- (c) Conclude that the homomorphism theorem for groups is a special case of the one for categories.

Solution. To solve this exercise I will make use of page 81 [1], where Awodey defines an equivalence relation  $\sim_N$ , determined by a normal subgroup  $N \subseteq G$ , such that

$$g \sim_N h$$
 iff  $g \cdot h^{-1} \in N$  for  $g, h \in G$  (1)

I will begin with part (a). First, let  $N \subseteq G$  be a normal subgroup in order to show that  $\sim_N$  is a categorical congruence. If  $r, s \in G$  and  $r \sim_N s$  then  $r \cdot s^{-1} \in N$ , and since N is normal we have

$$(g \cdot r \cdot h) \cdot (h^{-1} \cdot s^{-1} \cdot g^{-1}) = g \cdot (r \cdot s^{-1}) \cdot g^{-1} \in N$$
 for  $g, h \in G$ 

The above equation shows that

$$g \cdot r \cdot h \sim (h^{-1} \cdot s^{-1} \cdot g^{-1})^{-1} = g \cdot s \cdot h$$

and  $\sim_N$  is therefore a categorical congruence. On the other hand, let  $\sim$  be a categorical congruence on G regarded as a category. The goal is now to define a normal subgroup  $N \subseteq G$  with corresponding equivalence relation  $\sim_N$  satisfying

$$q \sim_N h$$
 iff  $q \sim h$  for  $q, h \in G$  (2)

Given definition (1),  $N:=\{g\cdot h^{-1}\mid g,h\in G\text{ and }g\sim h\}$  seems to be a natural candidate. If  $g\sim h$  then  $g\cdot h^{-1}\in N$  and thus  $g\sim_N h$  by definition (1). If  $g\sim_N h$  then  $g\cdot h^{-1}\in N$  so there exist  $r,s\in G$  where  $g\cdot h^{-1}=r\cdot s^{-1}$  and  $r\sim s$ . Since  $\sim$  is a categorical congruence we get  $g\cdot h^{-1}=r\cdot s^{-1}\sim s\cdot s^{-1}=u$ , implying  $g\sim h$ . This shows that equation (2) is satisfied. It remains to show that  $N\subseteq G$  is a normal subgroup. Let  $g\cdot h^{-1}\in N$  and  $r\cdot s^{-1}\in N$  such that  $g\sim h$  and  $r\sim s$ , and we get

$$a \cdot h^{-1} \sim h \cdot h^{-1} = u = r \cdot r^{-1} \sim s \cdot r^{-1}$$

Transitivity implies that  $(g \cdot h^{-1}) \cdot (s \cdot r^{-1})^{-1} = (g \cdot h^{-1}) \cdot (r \cdot s^{-1}) \in N$  and since  $u \in N$  by reflexivity and N is closed under inverse by symmetry, N is a subgroup. Now, let  $r \cdot s^{-1} \in N$  and  $g \in G$ . It follows that  $g \cdot r \sim g \cdot s = (s^{-1}g^{-1})^{-1}$  because  $r \sim s$  and  $\sim$  is a congruence, hence  $g \cdot (r \cdot s^{-1}) \cdot g^{-1} \in N$  and N is normal.

When I looked at the solution on page 288 I discovered that Awodey defines the normal subgroup as  $\overline{N}:=\{g\in G\mid g\sim u\}$ . Luckily, it turns out that  $\overline{N}=N$ , as I will show. If  $g\in \overline{N}$  then  $g\sim u$ , so  $g=g\cdot u^{-1}\in N$ . If  $r\cdot s^{-1}\in N$  where  $r\sim s$ , then  $r\cdot s^{-1}\sim u$  and  $r\cdot s^{-1}\in \overline{N}$  as required.

I will continue with part (b). Let  $N \subseteq G$  be a normal subgroup determining equivalence relation  $\sim_N$ . By part (a),  $g \sim h := g \sim_N h$  is a categorical congruence, hence  $G/N = G/\sim$  by definition on page 81 and 84 [1] respectively. In the other direction.

Let  $\sim$  be a categorical congruence, by part (a) there exists a normal subgroup  $N \subseteq G$  with corresponding equivalence relation  $\sim_N$  satisfying equation (2). It follows that  $G/N = G/\sim$  by definition.

Part (c). The homomorphism theorem for groups states that:

If  $h: G \to H$  is a group homomorphism and  $N \subseteq G$  a normal subgroup, then  $N \subseteq \ker(h)$  iff there is a unique homomorphism  $\bar{h}: G/N \to H$  with  $\bar{h} \circ \pi = h$ , where  $\pi: G \twoheadrightarrow G/N$  is the quotient.

The homomorphism theorem for categories states that:

Every functor  $F: \mathbf{C} \to \mathbf{D}$  has a kernel category  $\ker(F)$ , determined by a congruence  $\sim_F$  on  $\mathbf{C}$  such that given any congruence  $\sim$  on  $\mathbf{C}$  one has  $f \sim g \Rightarrow f \sim_F g$  iff there is a functor  $\overline{F}: \mathbf{C}/\sim \to \mathbf{D}$  with  $\overline{F} \circ \pi = F$ , where  $\pi: \mathbf{C} \to \mathbf{C}/\sim$  is the quotient.

Assume that  $h: G \to H$  is a homomorphism between groups, which is the same thing as a functor F := h if  $\mathbf{C} := G$  and  $\mathbf{D} := H$  are regarded as categories. Using the correspondence from part (a), we have from part (b) that G/N coincide with  $G/\sim$ , hence it suffices to show:

- (i) If  $N \subseteq G$  is a normal subgroup then  $N \subseteq \ker(h)$  implies  $f \sim_N g \Rightarrow f \sim_h g$ , where  $\sim_N$  is given by definition (1).
- (ii) If  $\sim$  is a categorical congruence on G then  $f \sim g \Rightarrow f \sim_h g$  implies  $N \subseteq \ker(h)$ , where  $N = \{g \cdot h^{-1} \mid g, h \in G \text{ and } g \sim h\}$ .

In order to prove (i), assume  $N \subseteq \ker(h)$  is a normal subgroup of G. If  $f \sim_N g$  then  $f \cdot g^{-1} \in N \subseteq \ker(h)$ , hence h(f) = h(g) and by definition on page 84 [1] we have  $f \sim_h g$ . To show (ii), assume  $\sim$  is categorical congruence on G and  $f \sim g \Rightarrow f \sim_h g$ . Let  $r \cdot s^{-1} \in N$  such that  $r \sim s$  and by assumption  $r \sim_h s$ , by definition of  $\sim_h$  we have h(r) = h(s). This shows that  $r \cdot s^{-1} \in \ker(h)$  and therefore  $N \subseteq \ker(h)$ .

**Exercise 5.7.9** Suppose the category  $\mathbf{C}$  has limits of type  $\mathbf{J}$ , for some index category  $\mathbf{J}$ . For diagrams F and G of type  $\mathbf{J}$  in  $\mathbf{C}$ , a morphism of diagrams  $\theta: F \to G$  consists of arrows  $\theta_i: F_i \to G_i$  for each  $i \in \mathbf{J}$  such that for each  $\alpha: i \to j$  in  $\mathbf{J}$ , one has  $\theta_i F(\alpha) = G(\alpha)\theta_i$  (a commutative square).

- (a) This makes **Diagrams**(**J**, **C**) into a category (check this).
- (b) Show that taking the vertex-objects of limiting cones determines a functor:

$$\lim_{\stackrel{\longleftarrow}{\mathbf{J}}}: \mathbf{Diagrams}(\mathbf{J},\mathbf{C}) \to \mathbf{C}$$

(c) Infer that for any set I, there is a product functor,

$$\prod_{i \in I} : \mathbf{Sets}^I \to \mathbf{Sets}$$

Solution. I begin with (a). If  $\theta: F \to G$  and  $\phi: G \to H$  are morphisms of diagrams of type **J**, then define the composite  $\phi \circ \theta$  to consist of arrows  $\phi_i \theta_i: F_i \to H_i$  for each  $i \in \mathbf{J}$ . Define the identity morphism  $1_F$  of F to consist of arrows  $1_{F_i}: F_i \to F_i$  for

each  $i \in \mathbf{J}$ . The associativity and unit laws are inherited from those of  $\mathbf{C}$ . For (b), let

$$\lim_{\longleftarrow_{\mathbf{I}}} (F) = \lim_{\longleftarrow_{i}} F_{i} \qquad \text{where } F : \mathbf{J} \to \mathbf{C} \text{ is a diagram}$$

If there is a morphism  $\theta: F \to G$  of diagrams of type  $\mathbf{J}$ , then  $\lim_{\longleftarrow i} F_i$  is a cone to G, hence there exists a unique arrow  $\bar{\theta}: \lim_{\longleftarrow i} F_i \to \lim_{\longleftarrow i} G_i$  from  $\lim_{\longleftarrow \mathbf{J}} (F)$  to  $\lim_{\longleftarrow \mathbf{J}} (G)$  since  $\lim_{\longleftarrow \mathbf{J}} (G) = \lim_{\longleftarrow i} G_i$  is terminal object in the category of cones to G. Define the operation of  $\lim_{\longleftarrow \mathbf{J}}$  on an arrow to be

$$\lim_{\leftarrow} (\theta : F \to G) = \bar{\theta} : \lim_{\leftarrow} (F) \to \lim_{\leftarrow} (G)$$

By uniqueness of  $\bar{\theta}$ ,  $\varprojlim_{\mathbf{J}}$  is forced to preserve identity and composition. The product functor from (c) can be defined by

$$\prod_{i \in I} (X) = \prod_{i \in I} X_i \qquad \text{where } X : I \to \mathbf{Sets} \text{ is a diagram}$$

This is a special case of the functor  $\varprojlim_{\mathbf{J}} : \mathbf{Diagrams}(\mathbf{J}, \mathbf{C}) \to \mathbf{C}$  with  $\mathbf{C} = \mathbf{Sets}$  and  $\mathbf{J} = I$ , where I is regarded as a discrete category.

**Exercise 5.7.11** Let  $R \subseteq X \times X$  be an equivalence relation on a set X, with quotient  $q: X \to Q$ . Show that the following is an equaliser:

$$\mathcal{P}Q \xrightarrow{\mathcal{P}q} \mathcal{P}X \xrightarrow{\mathcal{P}r_1} \mathcal{P}R$$

where  $r_1, r_2R \rightrightarrows X$  are the two projections of R, and  $\mathcal{P}$  is the (contravariant) powerset functor. (Hint:  $\mathcal{P}X \cong 2^X$ ).

Solution. Example 5.12 [1] shows that the contravariant powerset functor is representable by giving a natural isomorphism  $\mathcal{P}(X) \cong 2^X$ , and since contravariant representable functors map colimits to limits it suffices to show that the following diagram is a coequaliser

$$R \xrightarrow{r_1} X \xrightarrow{q} Q$$

But this has already been shown in example 3.20 [1].

## Exercise 6.8.4 Is the category of monoids cartesian closed?

Solution. I will show that category monoids is not cartesian closed. To obtain a contradiction, suppose that monoids is CCC. Let G be the cyclic group  $\mathbb{Z}/2\mathbb{Z}$ , which is a monoid. There exist homomorphisms  $\widetilde{\pi}_1, \widetilde{\pi}_2: G \rightrightarrows G^G$  making the following diagrams commute in the category of monoids:



The left diagram gives

$$0 = \pi_1(0,1) = \varepsilon((\widetilde{\pi}_1 \times 1_G)(0,1)) = \varepsilon(\widetilde{\pi}_1(0),1) = \varepsilon(u,1)$$

where  $u \in G^G$  is the unit. The right diagram gives

$$1 = \pi_2(0,1) = \varepsilon((\widetilde{\pi}_2 \times 1_G)(0,1)) = \varepsilon(\widetilde{\pi}_2(0),1) = \varepsilon(u,1)$$

which is a contradiction since  $0 \neq 1$ .

**Exercise 6.8.16** Verify the claim in the text that the products  $A \times B$  in categories  $\mathbf{Sets}^I$  of I-indexed sets (I a poset) can be computed "pointwise". Show, moreover, that the same is true for all limits and colimits.

Solution. I will show that limits and colimits can be computed pointwise, it follows that products can be so as well. Let  $A, B : I \Rightarrow \mathbf{Sets}$  be functors and I a poset, then:

 $\alpha: A \to B$  is a natural transformation in **Sets**<sup>I</sup> iff,

$$A(i) \xrightarrow{\alpha_i} B(i)$$
 for all  $I_1 \ni p: i \to j$  (i.e. 
$$A(p) \downarrow \qquad \qquad B(p)$$
 commutes in **Sets** iff, 
$$A(j) \xrightarrow{\alpha_j} B(j)$$

$$A^{\operatorname{op}}(i) \xleftarrow{\alpha_i^{\operatorname{op}}} B^{\operatorname{op}}(i)$$
 for all  $I_1^{\operatorname{op}} \ni p^{\operatorname{op}} : j \to i$ , the diagram 
$$A^{\operatorname{op}}(p^{\operatorname{op}}) \qquad A^{\operatorname{op}}(p^{\operatorname{op}}) \qquad \text{commutes in } \mathbf{Sets}^{\operatorname{op}} \text{ iff,}$$
 
$$A^{\operatorname{op}}(j) \xleftarrow{\alpha_j^{\operatorname{op}}} B^{\operatorname{op}}(j)$$

 $\alpha^{\text{op}}: B^{\text{op}} \to A^{\text{op}}$  is a natural transformation in  $(\mathbf{Sets^{\text{op}}})^{I^{op}}$ .

Natural transformations  $\alpha: A \to B$  in  $\mathbf{Sets}^I$  are in a bijective correspondence to natural transformations  $\alpha^{\mathrm{op}}: B^{\mathrm{op}} \to A^{\mathrm{op}}$  in  $(\mathbf{Sets}^{\mathrm{op}})^{I^{\mathrm{op}}}$ . The bijection respects identity  $1_A^{\mathrm{op}} = 1_{A^{\mathrm{op}}}$  and if  $\alpha, \beta \in \mathbf{Sets}^I$  are natural transformations then  $(\beta \circ \alpha)^{\mathrm{op}} = \alpha^{\mathrm{op}} \circ \beta^{\mathrm{op}}$ , implying that  $(\mathbf{Sets}^I)^{\mathrm{op}}$  is equivalent to  $(\mathbf{Sets}^{\mathrm{op}})^{I^{\mathrm{op}}}$ . Then, by duality,

a limit in  $\mathbf{Sets}^I$  corresponds to a colimit in  $(\mathbf{Sets}^{\mathrm{op}})^{I^{\mathrm{op}}}$ . Suppose  $(a_x)_{x \in \mathbf{J}_0}$  is a pointwise computed limit of a diagram  $F : \mathbf{J} \to \mathbf{Sets}^I$  with limit object L, i.e.

$$L(i) = \underset{x \in \mathbf{J}}{\lim} F_x(i)$$
 with limit cone  $(a_{x,i})_{x \in \mathbf{J}_0}$  for all  $i \in I_0$  (*i* is object in *I*).

Let  $L^{\text{op}}$  be the corresponding colimit object in  $(\mathbf{Sets^{\text{op}}})^{I^{\text{op}}}$ , then  $L^{\text{op}}(i)$  is the colimit object in  $\mathbf{Sets^{\text{op}}}$  with cocone  $(a_{x,i}^{\text{op}})_{x \in \mathbf{J_0}}$  and corresponding limit L(i) in  $\mathbf{Sets}$ , so the colimit is computed pointwise as well. This means that it suffices to prove: If S is a category with all limits and I is a poset, then  $S^I$  has all limits and they can be computed pointwise.

To prove this, let  $F: \mathbf{J} \to S^I$  be a diagram and define  $L: I_0 \to S$  by

$$L(i) := \underset{x \in \mathbf{J}}{\lim} F_x(i)$$

Let  $i \in I_0$ , by definition of L(i) there exists a limit cone  $(a_{x,i})_{x \in \mathbf{J}_0}$  of arrows  $a_{x,i} : L(i) \to F_x(i)$  where  $x \in \mathbf{J}_0$ , such that for all  $\mathbf{J}_1 \ni g : x \to y$ ,

$$F_{q,i} \circ a_{x,i} = a_{y,i} \tag{3}$$

Let  $x \in \mathbf{J}_0$ , it is required that L is a functor, thus an object in  $S^I$ , and that  $a_x$  is a natural transformation in  $S^I$  from L to  $F_x$ . Let  $I_1 \ni p : i \to j$ , i.e.  $i \le j$ , it must be shown that there exists an arrow  $L(p) : L(i) \to L(j)$  making the following diagram commute:

$$L(i) \xrightarrow{a_{x,i}} F_x(i)$$

$$L(p) \downarrow \qquad \qquad \downarrow F_x(p)$$

$$L(j) \xrightarrow{a_{x,j}} F_x(j)$$

Consider the diagram



where  $\mathbf{J}_1 \ni g: x \to y$  and  $I_1 \ni p: i \to j$  are arbitrary. The upper triangle commutes by equation (3) and the bottom square commutes because  $F_g$  is a natural transformation, hence L(i) is cone to  $x \mapsto F_x(j)$ . Since L(j) is limit cone there exists a unique arrow  $L(p): L(i) \to L(j)$  where

$$F_x(p) \circ a_{x,i} = a_{x,j} \circ L(p)$$
 for all  $x \in \mathbf{J}_0$  (4)

Furthermore, by uniqueness it follows that  $L(q \circ p) = L(q) \circ L(p)$  and  $L(1_i) = 1_{L(i)}$ , where  $p, q \in I_1$  and  $i \in I_0$ . This shows that L is a functor so  $L \in S^I$ . Equation (4) shows that  $a_x$  is a natural transformation and hence an arrow in  $S^I$ . Equation (3) shows that the family  $(a_x)_{x \in \mathbf{J}_0}$  of arrows in  $S^I$  is a cone to F. The only thing missing is that it is a limit cone, so let  $(b_x)_{x \in \mathbf{J}_0}$ ,  $b_x : K \to F_x$ , be an arbitrary cone to F. If  $\mathbf{J}_1 \ni g : x \to y$  and  $i \in I_0$  then  $F_g(i) \circ b_{x,i} = b_{y,i}$  and thus the family  $(b_{x,i})_{x \in \mathbf{J}_0}$  is a cone to  $x \mapsto F_x(i)$ , and there exists a unique arrow  $\beta_i : K(i) \to L(i)$ . I will show that  $\beta$  is a natural transformation by showing that the following diagram commutes:

$$K(i) \xrightarrow{\beta_i} L(i)$$

$$K(p) \downarrow \qquad \downarrow L(p)$$

$$K(j) \xrightarrow{\beta_j} L(j)$$

where  $I_1 \ni p : i \to j$ . Since  $L(p) \circ \beta_i$  is an arrow from K(i) to L(j), K(i) is cone to the diagram  $x \mapsto F_x(j)$  having limit cone L(j), so there exists just one arrow  $K(i) \to L(j)$ , hence  $L(p) \circ \beta_i = \beta_j \circ K(p)$ .

## References

[1] Steve Awodey (2010), Category Theory, Second Edition