Lecture 23: Dynamic characteristics

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

RC circuit

- Consider a serial RC circuit.
 - The KCL states

$$\frac{V_{out} - V_{in}}{R} + C \frac{dV_{out}}{dt} = 0$$

- Assume a step-wise change of V_{in} at t=0. It becomes V_{DD} .
- Initial output voltage is V_0 .
- Its solution is given by

$$V_{out}(t) = V_{DD} + (V_0 - V_{DD}) \exp\left(-\frac{t}{RC}\right)$$

Speed of inverter (1/4)

- VTC merely describes the DC behavior.
 - Input voltages with different frequencies (1 kHz, 1 MHz, 1 GHz, ...)
 - Time-dependent behavior

Speed of inverter (2/4)

- A rapid transition of V_{in} from V_{DD} to 0
 - The capacitor should be charged.

Speed of inverter (3/4)

- Simply, it is a RC circuit.
 - Then, the solution is simply

$$V_{out}(t) = V_{out}(0^{-}) + [V_{DD} - V_{out}(0^{-})] \left(1 - \exp\frac{-t}{R_D C_L}\right)$$

- Since exp(-3) ≈ 0.05, after $3R_DC_L$, V_{out} reaches 0.95 V_{DD} .
- Yes, it takes time to get the stable output voltage...
- The delay restricts the maximum signal frequency.

Speed of inverter (4/4)

- A rapid transition of V_{in} from 0 to V_{DD} to 0
 - At the initial phase, the resistor does not conduct.
 - Also the MOSFET is operated in its saturation mode. Then,

$$I_{D,sat} + C_L \frac{dV_{out}}{dt} = 0$$

Origin of C_L ?

- Consider an inverter chain.
 - Then, what is the load capacitance for the first stage?

Interconnect

Standby(!) power

- The biggest problem in the NMOS inverter
 - When $V_{in} = 0$, no standby power
 - When $V_{in} = V_{DD}$?
 - The power consumption is (approximately) $\frac{V_{DD}^2}{R_D}$.
 - If $V_{DD}=1.8~\mathrm{V}$ and $R_D=10~k\Omega$, 324 $\mu\mathrm{W}!$

$$I_D = \frac{V_{DD} - V_{out}}{R_D} \approx \frac{V_{DD}}{R_D}$$

Homework#10, the final

- Due: 09:00, June 3 (Mon)
- Solve the following problems of the final exam in 2018.
 - P26
 - P27
 - P28
 - P29
 - P30