3.3. Monday for MAT4002

3.3.1. Remarks on Basis and Homeomorphism

Reviewing.

- 1. $A \subseteq A_S \subseteq \overline{A}$, where A_S is sequential closure and \overline{A} denotes closure.
- 2. Subspace topology.
- 3. Homeomorphism. Consider the mapping $f: X \to Y$ with the topogical space X, Y shown below, with the standard topology, the question is whether f is continuous?

Figure 3.1: Diagram for mapping f

The answer is no, since the left in (3.1) can be isomorphically mapped into (0,1); the right can be isomorphically mapped into [0,1], and the mapping $(0,1) \rightarrow [0,1]$ cannot be isomorphism:

Proof. Assume otherwise the mapping $g:(0,1) \to [0,1]$ is isomorphism, and therefore $f^{-1}(U)$ is open for any open set U in the space [0,1].

Construct $U = (1 - \delta, 1]$ for $\delta \le 1$, and therfore $f^{-1}((1 - \delta, 1])$ is open, and therfore for the point $x = f^{-1}(1)$, there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(x) \subseteq f^{-1}((1-\delta,1]) \Longrightarrow [x-\varepsilon,x) \subseteq f^{-1}((1-\delta,1)), \text{ and } (x,x+\varepsilon] \subseteq f^{-1}((1-\delta,1)).$$

which implies that there exists a,b such that $[x-\varepsilon,x)=f^{-1}((a,1))$ and $(x,x+\varepsilon]=f^{-1}((b,1))$, i.e., $f^{-1}((a,b)\cap(b,1))$ admits into two values in $[x-\varepsilon,x)$ and $(x,x+\varepsilon]$, which is a contradiction.

4. Basis of a topology $\mathcal{B} \subseteq (X, \mathcal{T})$ is a collection of open sets in the space such that the whole space can be recovered, or equivalently

- (a) $\mathcal{B} \subseteq \mathcal{T}$
- (b) Every set in $\mathcal T$ can expressed as a union of sets in $\mathcal B$

Example: Let \mathbb{R}^n be equipped with usual topology, then

$$B = \{B_q(x) \mid x \in \mathbb{Q}^n, q \in \mathbb{Q}^+\}$$
 is a basis of \mathbb{R}^n .

It suffices to show $U \subseteq \mathbb{R}^n$ can be written as

$$U = U_{x \in \mathbb{O}} B_{a_x}(x)$$

Proposition 3.4 Let X, Y be topological spaces, and \mathcal{B} a basis for topology on Y. Then

$$f: X \to Y$$
 is continuous $\iff f^{-1}(B)$ is open in $X, \forall B \in \mathcal{B}$

Therefore checking $f^{-1}(U)$ is open for all $U \in \mathcal{T}_Y$ suffices to checking $f^{-1}(N)$ is open for all $B \in \mathcal{B}$.

Proof. The forward direction follows from the fact $B \subseteq \mathcal{T}_Y$.

To show the reverse direction, let $U \in \mathcal{T}_Y$, then $U = \bigcup_{i \in I} B_i$, where $B_i \in \mathcal{B}$, which implies

$$f^{-1}(U) = f^{-1}\left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} f^{-1}(B_i)$$

which is open in *X* by our hypothesis.

Corollary 3.1 Let $f: X \to Y$ be a bijection. Suppose there is a basis \mathcal{B}_X of \mathcal{T}_X such that $\{f(B) \mid B \in \mathcal{B}_X\}$ forms a basis of \mathcal{T}_Y . Then $X \cong Y$.

Proof. Suppose $W \in \mathcal{T}_Y$, then by our hypothesis,

$$W = \bigcup_{i \in I} f(B_i), \ B_i \in \mathcal{B}_X \implies f^{-1}(W) = \bigcup_{i \in I} B_i \in \mathcal{T}_X,$$

which implies f is continuous.

Suppose $U \in \mathcal{T}_X$, then

$$U = \bigcup_{i \in I} B_i \implies f(U) = \bigcup_{i \in I} f(B_i) \in \mathcal{T}_Y \implies [f^{-1}]^{-1}(U) \in \mathcal{T}_Y,$$

i.e., *f* is continuous.

Question: how to recognise whether a family of subsets is a basis for some given topology?

Proposition 3.5 Let X be a set, \mathcal{B} is a collection of subsets satisfying

- 1. *X* is a union of sets in \mathcal{B} , i.e., every $x \in X$ lies in some $B_x \in \mathcal{B}$
- 2. The intersection $B_1 \cap B_2$ for $\forall B_1, B_2 \in \mathcal{B}$ is a union of sets in \mathcal{B} , i.e., for each $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Then the collection of subsets $\mathcal{T}_{\mathcal{B}}$, formed by taking any union of sets in \mathcal{B} , is a topology, and \mathcal{B} is a basis for $\mathcal{T}_{\mathcal{B}}$.

Proof. 1. $\emptyset \in \mathcal{T}_{\mathcal{B}}$ (taking nothing from \mathcal{B}); for $x \in X, B_x \in \mathcal{B}$, by hypothesis (1),

$$X = \bigcup_{x \in X} B_x \in \mathcal{T}_{\mathcal{B}}$$

2. Suppose $T_1, T_2 \in \mathcal{T}_{\mathcal{B}}$. Let $x \in T_1 \cap T_2$, where T_i is a union of subsets in \mathcal{B} . Therefore,

$$\begin{cases} x \in B_1 \subseteq T_1, & B_1 \in \mathcal{B} \\ x \in B_2 \subseteq T_2, & B_2 \in \mathcal{B} \end{cases}$$

which implies $x \in B_1 \cap B_2$, i.e., $x \in B_x \subseteq B_1 \cap B_2$ for some $B_x \in \mathcal{B}$. Therefore,

$$\bigcup_{x\in B_1\cap B_2} \{x\} \subseteq \bigcup_{x\in B_1\cap B_2} B_x \subseteq B_1\cap B_2,$$

i.e.,
$$B_1 \cap B_2 = \bigcup_{x \in B_1 \cap B_2} B_x$$
, i.e., $B_1 \cap B_2 \in \mathcal{T}_{\mathcal{B}}$.

3. The property that $\mathcal{T}_{\mathcal{B}}$ is closed under union operations can be checked directly. The proof is complete.

3.3.2. Product Space

Now we discuss how to construct new topological spaces out of given ones is by taking Cartesian products:

Definition 3.4 Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces. Consider the family of subsets in $X \times Y$:

$$\mathcal{B}_{X\times Y} = \{U\times V\mid U\in\mathcal{T}_X, V\in\mathcal{T}_y\}$$

This $\mathcal{B}_{X\times Y}$ forms a basis of a topology on $X\times Y$. The induced topology from $\mathcal{B}_{X\times Y}$ is called **product topology**.

For example, for $X = \mathbb{R}$, $Y = \mathbb{R}$, the elements in $\mathcal{B}_{X \times Y}$ are rectangles.

Proof for well-definedness in definition (3.4). We apply proposition (3.5) to check whether $B_{X\times Y}$ forms a basis:

- 1. For any $(x,y) \in X \times Y$, we imply $x \in X, y \in Y$. Note that $X \in \mathcal{T}_X, Y \in \mathcal{T}_Y$, we imply $(x,y) \in X \times Y \in \mathcal{B}_{X \times Y}$.
- 2. Suppose $U_1 \times V_1$, $U_2 \times V_2 \in \mathcal{B}_{X \times Y}$, then

$$(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2),$$

where $U_1 \cap U_2 \in \mathcal{T}_X$, $V_1 \cap V_2 \in \mathcal{T}_Y$. Therefore, $(U_1 \times V_1) \cap (U_2 \times V_2) \in \mathcal{B}_{X \times Y}$.

- However, the product topology may not necessarily become the largest topology in the space $X \times Y$. Consider $X = \mathbb{R}, Y = \mathbb{R}$, the open set in the space $X \times Y$ may not necessarily be rectangles. However, all elements in $\mathcal{B}_{X \times Y}$ are rectangles.
 - Example 3.8 The space $\mathbb{R} \times \mathbb{R}$ is isomorphic to \mathbb{R}^2 , where the product topology is defined on $\mathbb{R} \times \mathbb{R}$ and the standard topology is defined on \mathbb{R}^2 :

Construct the function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^2$ with $(a,b) \to (a,b)$.

Obviously, $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^2$ is a bijection.

Take the basis of the topology on $\mathbb R$ as open intervals,

$$B_X = \{(a,b) \mid a < b \text{ in } \mathbb{R}\}$$

Therefore, one can verify that the set $\mathcal{B}:=\{(a,b)\times(c,d)\mid a< b,c< d\}$ forms a basis for the product topology, and

$$\{f(B) \mid B \in \mathcal{B}\} = \{(a,b) \times (c,d) \mid a < b,c < d\}$$

forms a basis of the usual topology in \mathbb{R}^2 .

By Corollary (3.1), we imply $\mathbb{R} \times \mathbb{R} \cong \mathbb{R}^2$.

We also raise an example on the homeomorphism related to product spaces:

■ Example 3.9 Let $S^1 = \{(\cos x, \sin x \mid x \in [0, 2\pi])\}$ be a unit circle on \mathbb{R}^2 . Consider $f: S^1 \times (0, \infty) \to \mathbb{R}^2 \setminus \{\mathbf{0}\}$ defined as

$$f(\cos x, \sin x, r) \mapsto (r\cos x, r\sin x)$$

It's clear that f is a bijection, and f is continuous. Moreover, the inverse $g:=f^{-1}$ is defined as

$$g(a,b) = (\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}, \sqrt{a^2 + b^2})$$

which is continuous as well. Therefore, the $f:\mathcal{S}^1 imes(0,\infty)\to\mathbb{R}^2\setminus\{\mathbf{0}\}$ is a homeomorphism.