Cálculos a realizar

- Parte 1: Determinar la constante de la red D con el láser rojo ($\lambda_{\text{láser}} = 632,800 \, \text{nm}$).
- Parte 2: Calcular λ del He para cada color usando $\lambda = D \cdot Z$ y su incertidumbre $\Delta \lambda \approx D \Delta Z$ (si ΔD no se considera).
- Parte 3: Con (λ, n) realizar el ajuste lineal hidrogenoide para obtener R.

Datos

Para todas las filas se usó $y=470,000\,\mathrm{mm},\,\Delta x_1=\Delta x_2=\Delta y=1,000\,\mathrm{mm}.$

Color	\overline{n}	$x_1 \text{ [mm]}$	$x_2 \text{ [mm]}$	$\Delta x_1 \text{ [mm]}$	$\Delta x_2 \text{ [mm]}$	y [mm]	$\Delta y \text{ [mm]}$
Rojo	1	175	562	1	1	470	1
Amarillo	2	202	560	1	1	470	1
Verde	3	230	527	1	1	470	1
Azul	4	239	514	1	1	470	1
Violeta	5	246	506	1	1	470	1

Definiciones y fórmulas

$$X = \frac{x_2 - x_1}{2}, \qquad Z = \sin \varphi = \frac{X}{\sqrt{X^2 + y^2}}, \qquad \Delta Z = \frac{y^2 \Delta x + |X| y \Delta y}{(X^2 + y^2)^{3/2}}.$$

Con $\Delta x=1{,}000\,\mathrm{mm}$ y $\Delta y=1{,}000\,\mathrm{mm}$. Para el láser rojo: $D=\frac{\lambda_{\mathrm{láser}}}{Z_{\mathrm{láser}}}$. Luego, para cada línea del He: $\lambda=D\,Z$ y, si ΔD no se propaga, $\Delta\lambda\approx D\,\Delta Z$.

Cálculo de X

$$\begin{split} X_{\rm rojo} &= \frac{562 - 175}{2} = 193{,}500\,\mathrm{mm}, & X_{\rm amarillo} &= \frac{560 - 202}{2} = 179{,}000\,\mathrm{mm}, \\ X_{\rm verde} &= \frac{527 - 230}{2} = 148{,}500\,\mathrm{mm}, & X_{\rm azul} &= \frac{514 - 239}{2} = 137{,}500\,\mathrm{mm}, \\ X_{\rm violeta} &= \frac{506 - 246}{2} = 130{,}000\,\mathrm{mm}. \end{split}$$

Cálculo de Z y ΔZ

Usando $y = 470,000 \,\text{mm}$:

$$Z_{\text{rojo}} = \frac{193.5}{\sqrt{193.5^2 + 470^2}} = 0.381, \qquad \Delta Z_{\text{rojo}} = \frac{470^2 \cdot 1 + |193.5| \cdot 470 \cdot 1}{(193.5^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{amarillo}} = \frac{179.0}{\sqrt{179.0^2 + 470^2}} = 0.356, \qquad \Delta Z_{\text{amarillo}} = \frac{470^2 \cdot 1 + |179.0| \cdot 470 \cdot 1}{(179.0^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{verde}} = \frac{148.5}{\sqrt{148.5^2 + 470^2}} = 0.301, \qquad \Delta Z_{\text{verde}} = \frac{470^2 \cdot 1 + |148.5| \cdot 470 \cdot 1}{(148.5^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{azul}} = \frac{137.5}{\sqrt{137.5^2 + 470^2}} = 0.281, \qquad \Delta Z_{\text{azul}} = \frac{470^2 \cdot 1 + |137.5| \cdot 470 \cdot 1}{(137.5^2 + 470^2)^{3/2}} = 0.002,$$

$$Z_{\text{violeta}} = \frac{130.0}{\sqrt{130.0^2 + 470^2}} = 0.267, \qquad \Delta Z_{\text{violeta}} = \frac{470^2 \cdot 1 + |130.0| \cdot 470 \cdot 1}{(130.0^2 + 470^2)^{3/2}} = 0.002.$$

Parte 1: Constante de la red D

$$Z_{\text{láser}} = 0,380, \qquad \lambda_{\text{láser}} = 632,800 \,\text{nm}, \qquad D = \frac{\lambda_{\text{láser}}}{Z_{\text{láser}}} = \frac{632,800 \,\text{nm}}{0,380} = 1665,263 \,\text{nm}.$$

Parte 2: Longitudes de onda del He

Con D fijo y sin incertidumbre declarada para el láser ($\Delta D = 0$):

$$\lambda = D Z, \qquad \Delta \lambda \approx D \Delta Z.$$

Color	Z	ΔZ	$\lambda \text{ [nm]}$	$\Delta \lambda \text{ [nm]}$
Rojo	0,381	0,002	633,966	3,955
Amarillo	$0,\!356$	0,002	$592,\!689$	3,993
Verde	0,301	0,002	501,706	4,042
Azul	$0,\!281$	0,002	$467,\!579$	4,048
Violeta	$0,\!267$	$0,\!002$	443,936	$4,\!050$

Parte 3: Ajuste para R

Usamos la linealización:

$$\frac{1}{\lambda} = (R \, Z^2) \, S + b, \qquad S = \Big(\frac{1}{n_0^2} - \frac{1}{n^2} \Big),$$

y la mejor consistencia se logra con $Z=2,\,n_0=2$ y $n=\{6,7,8,9,10\}$ (asignados de rojo a violeta). El ajuste arroja:

$$R \approx 9.930 \times 10^6 \,\mathrm{m}^{-1}$$
.

Figura 1: Ajuste lineal de $1/\lambda$ en función de $S=(1/n_0^2-1/n^2)$ con $Z=2, n_0=2$ y $n=\{6,7,8,9,10\}$. La pendiente cumple $m=R\,Z^2\Rightarrow R=m/4$.

Tabla de valores finales (con $Z_{\text{láser}} = 0.380$)

Constantes: $D = 1665,263 \,\mathrm{nm}$

Color	$x_1 \text{ [mm]} \ x$	₂ [mm] y	$I_{\text{mm}} = I_{\text{mm}} = I_{\text{mm}}$	Z	ΔZ	$\lambda [\mathrm{nm}]$	$\Delta \lambda [\mathrm{nm}]$	n (ajuste)	q
Rojo	175,000	562,000	470,000 193,500	0,381	0,002	633,966	3,955	6,000	1,006
Amarillo	202,000	560,000	470,000 179,000	$0,\!356$	0,002	592,689	3,993	7,000	0,803
Verde	230,000	527,000	470,000 148,500	0,301	0,002	501,706	4,042	8,000	0,530
Azul	239,000	514,000	470,000 137,500	0,281	0,002	$467,\!579$	4,048	9,000	0,409
Violeta	246,000	506,000	470,000 130,000	0,267	0,002	443,936	4,050	10,000	$0,\!324$

Conclusiones

 ${\it dasdsadsadsasdsasd}$