Relación de ejercicios del tema 0

Topología II. Doble Grado en Matemáticas e Ingeniería Informática

Curso 2022/2023

Profesor: Rafael López Camino

Actualización: 02/09/2022, hora: 09:30:20

Aquí I = [0, 1].

1. (Construcción de la banda de Möbius). En $\mathbf{I}^2 = \mathbf{I} \times \mathbf{I}$ se define la relación de equivalencia

$$(t,s) \sim (t',s') \Leftrightarrow \begin{cases} (t,s) = (t',s'), & \text{o} \\ |t-t'| = 1, s = 1-s', \end{cases}$$

Se llama de Möbius al cociente $\mathbb{M} = \mathbf{I}^2/\sim$. Por otro lado definimos el siguiente subconjunto X de \mathbb{R}^3 . Denotamos por R_{θ} el giro de ángulo θ respecto del eje z. Sea A el segmento de extremos p = (2,0,-1) y q = (2,0,1) parametrizado como $A = \{(1-t)p + tq : t \in \mathbf{I}\}$. Consideramos el segmento $R_{\theta}(A)$ dentro del plano vertical que contiene a $R_{\theta}(A)$ y el eje z. En este plano vectorial con centro el punto medio $\frac{p+q}{2}$, se hace girar un ángulo $\theta/2$ respecto de dicho punto y denotado por $f_{\theta/2}(R_{\theta}(A))$. Probar $X = \{f_{\theta/2}(R_{\theta}(A)) : \theta \in \mathbb{R}\}$ es homeomorfo a \mathbb{M} . Para establecer fácilmente el homeomorfismo, es mejor hacerlo al cociente $\mathbf{I} \times [0, 2\pi]/\sim$ donde aquí \sim es la relación análoga definida en \mathbb{M} .

- 2. (Continuación) Probar que el subconjunto de M dado por $\mathbf{I} \times \frac{1}{2} / \sim$ es homeomorfo a \mathbb{S}^1 .
- 3. (Continuación) Consideramos el plano proyectivo \mathbb{P}^2 y la botella de Klein \mathbb{K} como cocientes de \mathbf{I}^2 y las correspondientes relaciones de equivalencia. Probar que ambos espacios contienen banda de Möbius.
- 4. (Homeomorfismo entre el toro $\mathbb{T} = \mathbb{S}^1 \times \mathbb{S}^1$ y el toro de revolución). Se considera C la circunferencia contenido en el plano y = 0 de radio 1 y centro (2,0,1). Se llama toro de revolución al conjunto $X = \{R_{\theta}(C) : \theta \in \mathbb{R}\}$. Probar que $\mathbb{T} \cong X$. Hallar en X los subconjuntos correspondientes a $\mathbb{I} \times \{0\} / \sim \mathbb{Y} \{0\} \times \mathbb{I} / \sim$.
- 5. Probar que la aplicación proyección $p \colon \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ es abierta y no es cerrada.

- 6. Probar que la aplicación proyección $p: \mathbb{S}^n \to \mathbb{P}^n$ es abierta y cerrada.
- 7. Se considera la aplicación

$$f: \mathbb{S}^2 \to \mathbb{R}^4$$
, $f(x, y, z) = (x^2 - y^2, xy, xz, yz)$.

Probar que f factoriza por la relación de equivalencia R_f estableciendo un enbebimiento de \mathbb{P}^2 en \mathbb{R}^4 .

8. Probar que si X es un espacio métrico compacto y $f: X \to Y$ es una aplicación continua en un espacio métrico, entonces f es uniformemente continua:

$$\forall \epsilon > 0, \exists \delta > 0, d(x, x') < \delta \Rightarrow d'(f(x), f(x')) < \epsilon.$$

- 9. Probar la existencia del número de Lebesgue: si X es un espacio métrico compacto y $\{U_i : i \in I\}$ es un recubrimiento por abiertos de X, entonces existe $\epsilon > 0$ tal que para todo $x \in X$, la bola $B_{\epsilon}(x)$ está contenida en algún abierto del recubrimiento.
- 10. Probar que la topología a derechas y la estrictamente a derechas en \mathbb{R} son arcoconexas.
- 11. Sea (X, τ) e (Y, τ') dos espacios topológicos y consideramos la unión disjunta de X e Y, denotada por $X \coprod Y$. Se llama topología suma en $X \coprod Y$ a la que tiene por base $\tau \cup \tau' = \{O, O' : O \in \tau, O' \in \tau'\}$.
 - (a) Probar que, efectivamente, dicha familia forma una base para alguna topología, que denotaremos por $\tau \oplus \tau'$. Hallar la topología. ¿los cerrados de X (o de Y son cerrados en la topología suma? Si la respuesta fuera sí, ¿son así todos los cerrados?
 - (b) Probar que las inclusiones naturales $I: X \hookrightarrow X \coprod Y \ y \ j: Y \hookrightarrow X \coprod Y \ son$ continuas y que una aplicación $f: X \coprod Y \to Z$ es continua si y sólo si $f \circ i$ y $f \circ j$ son continuas.
 - (c) Probar que $X \coprod X \cong X \times \{0, 1\}$.
 - (d) Estudiar si las inclusiones naturales de X e Y en $X \coprod Y$ y $X \vee Y$ son embebimientos.
 - (e) Se fijan $x_0 \in X$ e $y_0 \in Y$. En $X \coprod Y$ se define una relación de equivalencia identificando x_0 con y_0 , $x_0 \sim y_0$. Al espacio cociente lo llamamos topología wedge y lo denotamos por $X \vee Y$:

$$X \vee Y = \frac{X \coprod Y}{\sim}$$
.

- Se consider $X=Y=\mathbf{I}, x_0=y_0=0$. Probar que $X\vee Y\cong \mathbf{I}$. En caso que $x_0=y_0=1/2$, entonces $X\vee Y$ es homeomorfo a la letra X.
- (f) Se considera la figura del 8 formada por dos circunferencias tangentes, por ejemplo, $Z = \mathbb{S}^1(p) \cup \mathbb{S}^1(q)$, p = (-1,0) y q = (1,0). Sea $X = Y = \mathbb{S}^1$. Probar que $X \vee Y \cong Z$. En particular, no depende de los puntos prefijados en X e Y. Generalizar a esferas de dimensión 2.
- (g) Estudiar si las propiedades de conexión, arcoconexión y compacidad de X e Y se trasladan a $X \coprod Y$ y a $X \vee Y$.