Лабораторная работа 1.3.3

Измерение вязкости воздуха по течению в тонких трубках

Д. Лежнев, И. Артемов 6 марта 2023 г.

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, подводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

1. Теоретическое введение.

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого («внутреннего») трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Характер течения в трубе может быть ламинарным либо турбулентным. При ламинарном течении поле скоростей $\vec{u}(\vec{r})$ образует набор непрерывных линий тока, а слои жидкости не перемешиваются между собой. Турбулентное течение характеризуется образованием вихрей и активным перемешиванием слоев, при этом даже в стационарном течении в каждой точке имеют место существенные флуктуации скорости течения и давления.

Характер течения определяется числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta},$$

где ρ - плотность среды, u - характерная скорость потока, a - характерный размер системы, η - вязкость среды. Число Рейнольдса показывает отношение кинетической энергии элемента объёма жидкости к потерям энергии на трение K/A_{fr} . При малых значениях R в потоке доминируют вязкие силы трения, и движение ламинарно.

Рис. 1. К выводу формулы Пуазейля.

При значениях Re, больших некоторого критического ($\sim 10^3$), характер течения меняется на турбулентный.

В нашей модели также будет считаться, что газ nec mec mec

Течение Пуазейля.

Рассмотрим движение жидкости при малых Re. Оно будет ламинарным, поэтому в любом сечении трубки давление одинаково, а скорость течения среды \vec{v} всюду направлена вдоль оси трубы.

Из 2 закона Ньютона для цилиндра жидкости длиной dx и радиусом r, имеющем координату x (рис. 1):

$$\pi r^2 dP = -\eta \frac{dv}{dr} 2\pi r dx \Rightarrow \frac{dP}{dx} = -\frac{2\eta}{r} \frac{dv}{dr}$$

Левая часть выражения зависит только x, правая зависит только от r, поэтому обе части выражения являются константами. Тогда:

$$P(x) = P_0 - \frac{\Delta P}{l}x,\tag{1}$$

где $P_0 = P(0)$, ΔP - перепад давления на участке длиной l. Для скорости имеем:

$$v(r) = v(0) - \frac{\Delta P}{4\eta l} r^2$$

Используя граничное условие u(R) = 0, получим:

$$v(r) = \frac{\Delta P}{4nl}(R^2 - r^2) \tag{2}$$

Тогда объёмный расход жидкости:

$$Q = \int_{0}^{R} v(r)2\pi r dr = \frac{\pi R^4 \Delta P}{8\eta l}$$
 (3)

Средняя скорость потока:

$$u \equiv \overline{v} = \frac{Q}{\pi R^2} = \frac{R^2 \Delta P}{8\eta l} \tag{4}$$

Длина установления.

Пусть на вход трубы поступает течение, распределение которого не является пуазейлевским. Определим длину l_{est} , на которой установится пуазейлевское течение. Кинетическая энергия цилиндра толщиной dx:

$$K \sim \frac{1}{2}\rho u^2 \pi R^2 dx$$

Работа сил трения на длине l:

$$A_{fr} \sim \eta \frac{u}{R} \cdot 2\pi r \cdot dx \cdot l$$

Если $l=l_{est}$, то $A_{fr}\sim K$, поэтому:

$$l_{est} \sim \frac{\rho u R^2}{\eta} = R \cdot Re$$

Из опыта:

$$l_{est} = 0.2R \cdot Re \tag{5}$$

Экспериментально $l_e st$ можно будет определить, измеряя распределение давления вдоль оси трубки P(x). На неустановившемся участке будет наблюдаться отклонение от линейного закона и при том же расходе Q градиент давления будет больше (ибо участки жидкости имеют ускорение).

2. Экспериментальная установка.

Схема экспериментальной установки изображена на рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Рис. 2. Экспериментальная установка.

3. Ход работы.

1. Подсоединим манометр к двум соседним выводам на трубке. Закроем все отверстия в этой и других трубках пробками, кроме выходного отверстия исследуемой трубки.

Включаем компрессор. Переводим рычажок манометра в рабочее положение (+). Медленно приоткрывая кран K, создадим небольшой поток воздуха через трубу. Убеждаемся, что при неизменном положении крана K показания микроманометра стабильны, а стрелка расходомера вращается равномерно.

2. Измерим параметры окружающей среды: температуру, влажность воздуха и атмосферное давление. Запишем диаметры трубок. Результаты - в табл.1.

$\varphi,\%$	$t,^{\circ} C$	P_a , к Π а	d_1 , см	d_2 , cm	d_3 , cm
82	23.2	100	3.95 ± 0.05	5.05 ± 0.05	3.0 ± 0.1

Таблица 1

3. Проведём предварительные расчёты. Полагая критическое значение $\text{Re} \sim 10^3$, по формулам (4) определим критические значения расхода и разности давлений, при которых течение становится турбулентным:

$$Q_{cr} = \pi R^2 \frac{\eta Re}{\rho R} = \frac{\pi \eta ReR}{\rho}$$

$$\Delta P_{cr} = \frac{8\eta l}{R^2} \frac{\eta Re}{\rho R} = \frac{8\eta^2 lRe}{\rho R^3}$$

d, mm	3.95	5.05	3.0
l, cm	30	30	20
$Q_{cr} \cdot 10^3$, л/с	105	135	80
$\Delta P_{cr}, \Pi a$	105.8	50.6	161.0
ΔP_{cr} , дел	54	26	82
ΔP_{cr}^{exp} , дел	60	74	
l_{est} , cm	39.5	50.5	30

Таблица 2

Используя уравнение состояния идеального газа: $\rho = P\mu/(R_uT)$ (где $\mu = 0.029$ кг/моль - молярная масса воздуха), получим:

$$Q_{cr} = \frac{\pi \eta ReRR_u T}{P\mu} \tag{6}$$

$$\Delta P_{cr} = \frac{8\eta^2 lRe}{R^3} \frac{R_u T}{P\mu} \tag{7}$$

Значения Q_{cr} и ΔP_{cr} , а также l_{est} (вычисляемое по формуле (5)) для всех трёх трубок - в табл. 2. При расчётах вязкость воздуха полагалась $\eta \sim 2 \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}$.

Перевод давления из делений в Па осуществляется по формуле:

$$\Delta P = 0.2 \cdot gN$$
 (N — число делений по шкале манометра)

- **4.** Меняя расход воздуха краном K и наблюдая за столбиком спирта в микроманометре, визуально определим границу перехода ΔP_{cr} от ламинарного течения к турбулентному. Результаты в табл. 2.
- 5. Так как относительная погрешность измерения расхода постоянна и равна $\varepsilon = 1\%$, то будем выбирать объём V_{min} в зависимости от показаний секундомера. Выбор основан на том, что погрешность измерения времени (время реакции человека) $\sigma_t = 0.3$ с, поэтому чтобы погрешность измерения расхода $\Delta V/\Delta t$, не превосходила 1%, необходимо, чтобы $t \gtrsim 30$ с, что и будет достигаться выбором объёма.

Погрешность измерения давления примем равной цене деления:

$$\sigma_{\Delta P}=1$$
 дел $=2$ Па

6. Измерим зависимость $\Delta P(Q)$. Постепенно увеличивая расход, проведём измерения так, чтобы на ламинарный и турбулентный режимы приходилось по 7-9 точек.

Для измерения расхода будем измерять время t, необходимое для прохождения объёма V газа:

$$Q = \frac{V}{t}$$
 ; $\sigma_Q = Q\sqrt{\varepsilon_V^2 + \left(\frac{\sigma_t}{t}\right)^2}$ $(\varepsilon_V = 1\%)$

Результаты - в табл. 3, 4, 5.

V, л	σ_V , л	t, c	$Q \cdot 10^3$, л/с	$\sigma_Q \cdot 10^3$, л/с	ΔP , дел	ΔP , Πa
0.500	0.005	63.2	7.91	0.09	20	39
1.000	0.010	55.7	17.9	0.2	25	49
1.500	0.015	61.2	24.5	0.3	30	59
1.500	0.015	50.2	29.9	0.3	35	69
1.500	0.015	43.9	34.2	0.4	40	78
2.00	0.02	46.3	43.2	0.5	45	88
2.00	0.02	41.9	47.7	0.6	50	98
2.50	0.03	48.4	51.7	0.6	55	108
3.00	0.03	53.7	55.9	0.6	60	118
3.00	0.03	50.2	59.8	0.7	65	128
3.00	0.03	47.9	62.7	0.7	70	137
3.00	0.03	45.4	66.0	0.8	75	147
3.00	0.03	42.7	70.2	0.9	80	157
3.50	0.04	46.9	74.7	0.9	85	167
3.50	0.04	46.2	75.7	0.9	90	177
3.50	0.04	43.7	80.1	1.0	95	186
4.00	0.04	49.6	80.6	0.9	100	196

Таблица 3. d = 3.90 мм

V, л	σ_V , л	t, c	$Q \cdot 10^3$, л/с	$\sigma_Q \cdot 10^3$, л/с	ΔP , дел	ΔP , Πa
2.00	0.02	40.6	49.3	0.6	35	69
2.50	0.03	37.3	67.1	0.9	40	78
3.00	0.03	38.9	77.2	1.0	45	88
4.00	0.04	43.7	91.6	1.1	50	98
4.00	0.04	39.9	100.2	1.3	55	108
5.00	0.05	45.2	110.6	1.3	60	118
5.00	0.05	42.9	116.5	1.4	65	128
5.00	0.05	40.4	123.9	1.5	70	137
5.00	0.05	38.4	130.1	1.7	75	147
6.00	0.06	44.0	136.5	1.7	80	157
6.00	0.06	42.7	140.5	1.7	85	167
6.00	0.06	40.6	147.9	1.8	90	177
6.00	0.06	39.6	151.4	1.9	95	186
6.00	0.06	38.5	155.9	2.0	100	196

Таблица 4. d = 5.05 мм

V, л	σ_V , л	t, c	$Q \cdot 10^3$, л/с	σ_Q , л/с	ΔP , дел	$\Delta P, \Pi a$
6.00	0.06	33.1	181	2	70	137
7.00	0.07	34.9	200	3	80	157
10.00	0.10	37.5	267	3	130	255

Таблица 5. d = 3.0 мм

L, cm	ΔP , дел	i	j
11.5	20	0	1
41.5	70	0	2
81.5	98	0	3
131.5	132	0	4
30.0	50	1	2
70.0	77	1	3
120.0	112	1	4
40.0	45	2	3
90.0	99	2	4
50.0	54	3	4

Таблица 6.
$$d = 3.95 \text{ мм}$$

$$Q = 47.7 \cdot 10^{-3} \text{ л/c}$$

L, cm	ΔP , дел	i	j
11.5	46	0	1
41.5	64	0	2
81.5	97	0	3
131.5	126	0	4
30.0	37	1	2
70.0	70	1	3
120.0	97	1	4
40.0	49	2	3
90.0	79	2	4
50.0	54	3	4

Таблица 8.
$$d=5.05 \, \mathrm{mm}$$
 $Q=124\cdot 10^{-3} \, \mathrm{\pi/c}$

x, cm	$\Delta P(x)$, Πa
11.5	39
41.5	137
81.5	192
131.5	259

Таблица 7.
$$d=3.95 \; \mathrm{mm}$$
 $Q=47.7\cdot 10^{-3} \; \mathrm{\pi/c}$

x, cm	ΔP , Πa
11.5	90
41.5	144
81.5	190
131.5	247

Таблица 9. d = 5.05 мм $Q = 124 \cdot 10^{-3} \text{ л/c}$

- 7. Измерим распределение давления газа вдоль трубки P(x). Установим поток воздуха через трубку, близкий к критическому, но всё ещё сохраняющий ламинарность. Не меняя расхода, последовательно подсоединим микроманометр ко всем парам выводов исследуемой трубки. Вывод "0" примем за начало отсчёта. Значения давления на одинаковых расстояниях x будем усреднять. Результаты в табл. 6, 7, 8, 9.
- 8. По данным табл. 3-5 построим графики зависимости $Q(\Delta P)$ для трёх трубок. Результаты на рис. 3, 4, 5. Аппроксимируем результаты по МНК. Для коэффициента пропорциональности $Q(\Delta P)$ получим (d=3.95 мм):

$$\alpha \equiv \frac{\pi R^4}{8\eta l} = (0.67 \pm 0.03) \cdot 10^{-6} \frac{M^3}{\Pi a \cdot c} \Rightarrow \eta = \frac{\pi R^4}{8\alpha l} = (3.1 \pm 0.2) \cdot 10^{-5} \ \Pi a \cdot c$$

Рис. 3. d = 3.95 мм

Для d = 5.05 мм:

$$\alpha = (1.10 \pm 0.07) \cdot 10^{-6} \frac{\text{M}^3}{\Pi \text{a} \cdot \text{c}} \Rightarrow \eta = (4.7 \pm 0.2) \cdot 10^{-5} \ \Pi \text{a} \cdot \text{c}$$

Для d = 3.0 мм:

$$\alpha = (0.72 \pm 0.05) \cdot 10^{-6} \frac{\text{M}^3}{\Pi \text{a} \cdot \text{c}} \Rightarrow \eta = (1.4 \pm 0.9) \cdot 10^{-5} \ \Pi \text{a} \cdot \text{c}$$

По графикам определяем, что для трубки диаметром d=3.95 мм переход от ламинарного к турбулентному участку происходит при:

$$\Delta P_{cr} \approx 105 \text{ Ha}$$
 ; $Q_{cr} \approx 50 \cdot 10^{-3} \text{ m/c}$

Для трубки с d = 5.05 мм:

$$\Delta P_{cr} \approx 120 \; \Pi \text{a} \; ; \; Q_{cr} \approx 110 \cdot 10^{-3} \; \text{m/c}$$

Из формул (6), (7) можно определить критическое число Рейнольдса по критическим значениям ΔP_{cr} и Q_{cr} . Для трубки d=3.95 мм:

$$Re_Q = \frac{P\mu Q_{cr}}{\pi \eta RR_u T} \approx 312 \; ; \; Re_{\Delta P} = \frac{P\mu R^3 \Delta P_{cr}}{8\eta^2 lR_u T} \approx 396 \; ; \; Re_{\Delta P^{exp}} \approx 410$$

Рис. 4. d = 5.05 мм

Рис. 5. d = 3.0 мм

Рис. 6. d = 3.95 мм

Для трубки с d = 5.05 мм:

$$Re_Q \approx 350 \; ; \; Re_{\Delta P} \approx 415 \; ; Re_{\Delta P^{exp}} \approx 505$$

Полученные значения Re близки между собой, однако в 2 раза отличаются от предполагаемого изначально значения.

9. По данным табл. 7, 9 построим график зависимости падения давления $\Delta P(x)$ для трубок с d=3.95 мм и d=5.05 мм. Результаты - на рис. 6, 7.

Как видно, зависимости являются линейными, а градиенты давления в пределах погрешностей совпадают. Определить длину установления ламинарного течения по этим зависимостям невозможно, т.к. мало экспериментальных точек.

4. Вывод.

В работе были исследованы свойства течения воздуха по трубкам различного диаметра при различных числах рейнольдса. Было выяснено, что закон Пуазейля применим при числах Рейнольдса $Re \lesssim 400$. Это значение подтверждается анализом зависимости расхода от разности давлений для разных трубок, а также прямыми измерениями по наблюдению за колебаниями столбика микроманометра.

Рис. 7. d = 5.05 мм

В работе был проверен закон Пуазейля для ламинарного течения путём анализа зависимости $Q(\Delta P)$. Из той же зависимости были определены значения вязкости воздуха:

$$\eta_1 = (3.1 \pm 0.2) \cdot 10^{-5} \text{ } \Pi \text{a} \cdot \text{c} ; \ \eta_2 = (4.7 \pm 0.2) \cdot 10^{-5} \text{ } \Pi \text{a} \cdot \text{c}$$

Полученные значения выше табличного для $t=21.3~^{\circ}C,~P=10^{5}~\Pi a$:

$$\eta_0 = 2.06 \cdot 10^{-5} \; \text{\Pia} \cdot \text{c}$$