Trait-Based Model

This model examines how the initial distribution of traits in a microbial population impacts diversity in a chemostat as dilution rate increases. Two scenarios are examined, one where the trait governing bacteria specific growth rate, ϵ_i is uniformly distributed, such that there are as many bacteria that have a specific growth rate near the upper growth rate limit as for any other specific growth rate. The other scenario examines our hypothesis that as you approach the upper specific growth rate limit for bacteria, there are many fewer ASVs capable of growing at that boundary. We randomly select ϵ_i from a beta probability distribution to explore the second scenario. Experimental details and data the model simulates can be found here http://ecosystems.mbl.edu/MEP-FoodWeb/Experiments/Exp1/index.html

Notebook setup

Set the working directory to where this notebook is saved

Experimental On-Line Data

Dissolved oxygen, DO (μ M), and partial pressure of oxygen in the chemostat gas headspace (%) from MC1 and MC2 during the course of the experiment.

Import Exp1.csv that has the O2, CO2, DO and pH for the two chemostats. From Exp1.csv, just use the O2 data, as the DO can be obtained from the Exp1_DOpH.csv file, which is of higher resolution because it did not rely on an A2D converted. In both cases drop the header from the csv data.

```
In[@]:= Dimensions[o2Data]
Out[0]=
                                      {2, 639, 2}
                                    Plot the pO2 data
       In[*]:= ListLinePlot[o2Data, PlotRange → All]
Out[0]=
                                    21.0
                                    20.8
                                    20.6
                                    20.4
                                    20.2
                                    20.0
                                                                                                                                                                                               15
                                                                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                                             25
       in[*]:= doData = {Drop[Import["../Data/Exp1_DOpH.csv"], 1] [All, {3, 4}]],
                                                       Drop[Import["../Data/Exp1_DOpH.csv"], 1] [All, {7, 8}]]};
                                      Now convert mg/L to uM O2
       \label{eq:lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_lower_
                                     Plot the DO data
       In[*]:= ListLinePlot[doData, PlotRange → All]
Out[0]=
                                    250
                                    200
                                      150
                                      100
                                        50
```

Dissolved Oxygen Data for k_L estimation

15

20

This data is used to determine the liquid-side oxygen mass transfer velocity, k_L (see below). DO data was collected following sparging of the chemostat with N_2 gas. After sparging with N2, the gas flow

25

was changed to air, and the chemostat headspace was quickly equilibrated with air using a small fan for a short time so that the gas overlying the water would be at atmospheric pressures (i.e., fixed boundary condition). Import the DO data:

```
In[@]:= o2DataN2 = Import[".../Data/DO_N2toAir.dat"];
       Plot the DO observations.
 In[\bullet]:= ListPlot[o2DataN2, FrameLabel \rightarrow {"Time (d)", "DO (\muM)"},
         Frame → {{True, False}, {True, False}}, BaseStyle → {FontSize → 15, FontWeight → Bold}]
Out[@]=
           200
       (W) 150
O 100
           150
             50
                              0.05
              0.00
                                              0.10
                                                             0.15
                                    Time (d)
```

Estimate $k_L a$ from data for transition from N_2 to Air

Preliminary model testing (no need to evaluate this subsection)

Estimate kL based on DO observations Only

Since we quickly equilibrated the headspace with air after driving the system anoxic with N_2 , the governing ODE only needs to track dissolved oxygen (DO), as the gas phase remains constant as it is in equilibrium with air. Here is the governing equation for DO.

```
In[*]:= odesD0[input List] := {
         c'[t] = (fL(cF - c[t]) + kLa(p[t]h - c[t])) / vL,
         c[0] = cF /. input
```

The Henry's constant as a function of temperature (K) for oxygen (see https://henrys-law.org/henry/casrn/7782-44-7) in μ M atm⁻¹ is:

In[*]:= h02[tk_] := 0.00131722
$$e^{\left(1700\left(\frac{1}{tk} - \frac{1}{298.15}\right)\right)}$$
 10⁶

Below solves the ODE and plots the solution versus the DO observations. The only parameters adjusted here are the oxygen piston velocity, kL (m d^{-1}), which was the objective of the experiment

and the oxygen concentration in the atmosphere, p[t] (atm). Note, it should not have been necessary to change p[t], as it should be 0.21 atm; however, our DO probe may not be perfectly calibrated (or perhaps the headspace still contained some of the N2 gas used for purging) and is reading a bit low; consequently, the O₂ concentration was decreased to 0.177 atm in order to get a good fit. **The value** found for the piston velocity is 1.65 m d^{-1} , which is pretty close to the estimated value of 1.3.

```
In[*]:= Show[Plot[
             Evaluate [c[t]] /. NDSolve [odesDO] { fL \rightarrow 0, cF \rightarrow 24.7, kL \rightarrow 1.65, a \rightarrow \pi 0.114<sup>2</sup>, h \rightarrow h02[298],
                       vL \rightarrow 3 \; / \; 1000, \; p[t] \rightarrow 0.177 \Big\} \Big] \; , \; \{c[t]\} \; , \; \{t, \, 0, \, 10\} \Big] \left[\![1]\!] \; \right] \; , \; \{t, \, 0, \, 0.2\} \; ,
             PlotRange \rightarrow All, PlotStyle \rightarrow Red, FrameLabel \rightarrow {"Time (d)", "DO (\muM)"},
             Frame → {{True, False}, {True, False}}, PlotLegends → {"Model"}],
           ListPlot[o2DataN2, PlotStyle → Blue, PlotLegends → {"Data"}],
           BaseStyle → {FontSize → 15, FontWeight → Bold}
Out[@]=
               200
         (W) 150
O 100
                                                                                               Model
                                                                                             Data
                 50
                   0.00
                                  0.05
                                                  0.10
                                                                  0.15
                                                                                 0.20
```

Governing Equations for Trait-Based Model

Time (d)

Adaptive Monod Kinetics

The adaptive Monod equation, written as the specific substrate uptake rate, v, not the specific growth rate; that is, $\mu = \epsilon v$. Standard parameters are used here. This function chooses along a continuum from gleaners $(\epsilon \to 0)$ to opportunists $(\epsilon \to 0.7)$. Note, as ϵ exceeds 0.77, uptake rate decreases due to loss of thermodynamic drive (i.e., growth reaction approaching equilibrium). Also see Vallino & Huber (2018) doi: 10.3389/fenvs.2018.001000

In[*]:=
$$V[S_{,} \in] := VM e^{2} \frac{S}{S + kM e^{4}} (1 - e^{2})$$

The adaptive Monod equation gives the following family of curves for different values of ϵ for the standard values of vM (350 d^{-1}) and kM (5000 μ M).

```
ln[e]:= Plot[Evaluate[Table[Tooltip[\epsilon v[s, \epsilon], \epsilon], \{\epsilon, 0.1, 1, 0.15}] /. {vM \rightarrow 350, kM \rightarrow 5000}],
        {s, 0, 5000}, PlotStyle → {{Red, Thick}, {Blue, Thick}, {Green, Thick},
          {Purple, Thick}, {Orange, Thick}, {Gray, Thick}, {Cyan, Thick}},
        Frame → True, FrameStyle → {{Black, White}}, {Black, White}},
       FrameLabel \rightarrow {"[S] (\muM)", "Specific Growth Rate (d^{-1})"},
        LabelStyle → {Bold, FontFamily → "Arial", FontSize → 16}]
```


redefine the function with the standard values for the parameters set

$$ln[\circ]:= V[S_{-}, \epsilon_{-}] := 350 \epsilon^{2} \frac{S}{S_{-} + 5000 \epsilon^{4}} (1 - \epsilon^{2})$$

Saturated Oxygen in saline water

This function, satO₂, returns the oxygen concentration (in μ M) for a given temperature (K) and salinity (PSU) in equilibrium with air in seawater. Reference Weiss1970: (in deep - sea research, 17:721-735) . However, the modified version here, hO2, allows for different partial pressures of oxygen, and changes the temperature unit to K.

This can be used for different partial pressures of oxygen (i.e., not just atmospheric). Also, if variables are passed to satO2, then the Exp term in satO2 is simplified, but this then leads to problems because

of large and small number multiplication. By ensuring the arguments are numbers, Exp will not be simplified which keeps this problem form occurring.

```
In[@]:= h02[s_?NumberQ, t_?NumberQ] := sat02[t, s] / 0.20946
 In[@]:= h02[3, 298] 0.20946
Out[0]=
       253.757
```

Setup governing equations where the number of bacteria is specified and the ϵ trait is randomly selected from a specified distribution.

The function generateODEs generates a set of ODEs based on the length of ranSample, where the latter is a list of ϵ_i values chosen from an appropriate probability distribution (that is, ranSample is given). The initial conditions for x[i][0] is set to 1/n, where n is the number of ASVs used and x[i] biomass of ASV i and has the units of μ M C.

```
In[@]:= generateODEs[params_List, ranSample_List] :=
       Flatten[\{Table[\{x[i]'[t] = \mathcal{D}(\theta - x[i][t]) + \epsilon[i] \times v[s[t], \epsilon[i]] \times x[i][t]\},
              {i, 1, Length[ranSample]}],
             s'[t] = D(s0 - s[t]) - Sum[v[s[t], \epsilon[i]] \times x[i][t], \{i, 1, Length[ranSample]\}],
             Table[x[i][0] == 1 / Length[ranSample], {i, 1, Length[ranSample]}],
             s[0] = 0,
             o2'[t] = D(o2f - o2[t]) + kLO2 a(pO2[t] \times hO2[sal, tK] - o2[t]) / vL -
               Sum[(1 - \epsilon[i]) v[s[t], \epsilon[i]] × x[i][t], {i, 1, Length[ranSample]}],
             p02'[t] = (fG(p02f - p02[t]) + kL02 a rGas tK(o2[t] - p02[t] \times h02[sal, tK])) / vG,
             02[0] = 02f
             p02[0] = p02f /. Table[\epsilon[i] \rightarrow ranSample[i]], {i, Length[ranSample]}] /. params]
```

Example, generate a set of ODEs for 3 ASVs with ϵ selected from a flat distribution where ϵ can vary between 0 and 0.7

In[@]:= generateODEs[{}, RandomReal[{0, .7}, 3]] // TableForm

Out[]//TableForm= $x[1]'[t] = -Dx[1][t] + \frac{7.12915 s[t] \times x[1][t]}{21.2222}$ 31.0297+s[t] $x[2]'[t] = -Dx[2][t] + \frac{49.3075 s[t] \times x[2][t]}{674.937+s[t]}$ $x[3]'[t] = -Dx[3][t] + \frac{12.46 s[t] \times x[3][t]}{69.1889 + s[t]}$ $s'[t] = \mathcal{D}\left(s\theta - s[t]\right) - \frac{25.4001 \, s[t] \times x[1][t]}{24.0007 \, s(t)} - \frac{81.3466 \, s[t] \times x[2][t]}{31.0007 \, s(t)} - \frac{36.3287 \, s[t] \times x[3][t]}{31.0007 \, s(t)}$ 31.0297+s[t] 674.937+s[t] 69.1889+s[t] $x[1][0] = \frac{1}{2}$ $x[2][0] = \frac{1}{2}$ $x[3][0] = \frac{1}{2}$ s[0] == 0 $o2'[t] \ = \ \mathcal{D} \ (o2f - o2[t]) \ + \ \frac{a \ kL02 \ (-o2[t] + h02[sal,tK] \times p02[t])}{\dots} \ - \ \frac{18.271 \ s[t] \times x[1][t]}{n} \ - \ \frac{32.0391 \ s[t] \times x[2][t]}{n} \ - \ \frac{23.8688 \ s[t] \times x[2][t]}{n} \ - \ \frac{32.0391 \ s[t]}{n} \$ $p02'[t] \ = \ \frac{fG\ (p02f-p02[t]) + a\ kL02\ rGas\ tK\ (o2[t]-h02[sal,tK]\times p02[t])}{fG\ (p02f-p02[t]) + a\ kL02\ rGas\ tK\ (o2[t]-h02[sal,tK]\times p02[t])}$ 02[0] = 02fp02[0] == p02f

Define a function that numerically solves the generated set of ODEs over time from t0 to tf. Note, experimental time is based on 00:00 30-Oct-2018. The simulation "begins" when water was collected and placed into the collection container at about 17:00, or at t0 of 0.71 d.

```
In[@]:= solveODEs[t0_, tf_, params_List, ranSample_List] :=
      NDSolve[Evaluate[generateODEs[params, ranSample]], Evaluate[
          Flatten[{Table[x[i], {i, 1, Length[ranSample]}], s, o2, p02}]], {t, t0, tf}][[1]
```

Define function to capture the shifts in dilution rate to match Exp1

First define a smooth and continuous step function, where the steepness of the function is given by σ . As σ approaches ∞ , the step function approaches a perfect step, which produces discontinuities at the steps that we wish to avoid for numerical reasons. A little trial and error was used to figure out what a reasonable value of σ should be.

$$In[*]:=$$
 stepFcn[t_, tm_, σ_{-}] :=
$$\frac{1}{1 + Exp[-\sigma (t-tm)]}$$

Then add these together to get the three dilution rates at the experimental step times of 0.84, 15.5 and 20.77 days.

$$ln[\cdot]:= expDil[t_, \sigma_] := stepFcn[t, 0.84, \sigma] / 10 + \frac{9}{10} stepFcn[t, 15.5, \sigma] + 9 stepFcn[t, 20.77, \sigma]$$

Here's what that function looks like over 25 days.

$In[a]:= Plot[expDil[t, 50], \{t, 0, 25\}, PlotRange \rightarrow All]$ Out[0]=

So a value of 50 for σ works well.

Uniform Distribution Solution for MS

Look at 500 ASVs with ϵ_i chosen from a uniform distribution. Note, each time this notebook is run, a new distribution will be generated. If you want to use the same distribution, make sure to save it (the one used for the manuscript is given below).

Parameters use for simulations

Notes from Exp 1 state: "Air feed rate to MC1 and MC2 reduced from 20 sccm to 10 sccm (0 °C, 1 atm) (15:302-Nov-2018, t = 3.65 d)", but just run the gas feed rate constant at 10 sccm for the simulations as the 20 sccm was only run for a short time.

Also, the feed O2 was measured at 20.97 for the first 3.73 days, then either a new air tank was installed or the old one remeasured (probably the former), but that increased the O2 in the feed gas to 21.06, so just use the later for the whole simulation.

```
In[\bullet]:= params = {\mathcal D} \rightarrow expDil[t, 50] (*d^{-1}*),
                50 \to 600, (*mmol m<sup>-3</sup>*)
                p02f → .2106, (*atm*)
                sal \rightarrow 3, (*PSU*)
                tK \rightarrow 298.15, (*K*)
                o2f \rightarrow h02[3, 298.15] .21, (*mmol m<sup>-3</sup>*)
                kL02 \rightarrow 1.65, (*m d<sup>-1</sup>*)
                a \to \pi 0.114^2, (*m^2*)
                rGas \rightarrow 0.082057338 \times 10<sup>-6</sup>, (*atm m<sup>3</sup> mmol<sup>-1</sup> K<sup>-1</sup>*)
                VL \rightarrow 3 / 1000, (*m<sup>3</sup>*)
                VG \rightarrow 4.74 / 1000, (*m<sup>3</sup>*)
                fG \rightarrow 15.72 / 1000 (*m<sup>3</sup> d<sup>-1</sup>*)
              };
```

```
In[@]:= uniform1 = RandomReal[{0, .7}, 500];
```

This is the uniform distribution used in the manuscript:

```
ln[a]:= uniform1 = {0.2065482419257525, 0.4172611296271571, 0.35183185854095655,
        0.4366451828429523`, 0.3560395316384306`, 0.42449820124996496`, 0.6809594877225937`,
        0.38842794341524045, 0.5847126988356506, 0.12897170837409266, 0.6597463035814124,
        0.4014891766117026`, 0.23870072093247252`, 0.691996463899059`, 0.014317448635199903`,
        0.652940269807988, 0.298415697907439, 0.466441107658033, 0.392198378063897, 0.46644110765803,
        0.6771372386680696`, 0.17839566115559657`, 0.35206258907344345`, 0.5171330447617475`,
        0.41650325004106237, 0.29624707718079657, 0.45497483718317033, 0.392919401893258,
        0.3732743676998975`, 0.08501767658279824`, 0.598904272697989`, 0.23202487559314888`,
        0.21349869826588597, 0.667393800437001, 0.3067727707769514, 0.6166236165635428,
        0.6314711452881445`, 0.3269875087285028`, 0.05652320530437438`, 0.2386818464093351`,
        0.23618223486855672, 0.42154032217211923, 0.5062047536523835, 0.23721474795391917,
        0.13196347011561338`, 0.22088640475114218`, 0.699243864658845`, 0.3116951761916804`,
        0.431017207214462, 0.3002163870388015, 0.250338211615442, 0.29806288030076,
        0.32310060134129626`, 0.33340928184110874`, 0.44892330441803985`, 0.5570765748832738`,
        0.6653657004231293, 0.5762303034727962, 0.4839664379219819, 0.32493975268700726,
        0.5213334157672369`, 0.5152970522232245`, 0.6598936468281722`, 0.5386564356001802`,
        0.5232076771678291, 0.544446484685907, 0.27026510317930574, 0.1833846234772416,
        0.5736104296623166`, 0.6006094731759439`, 0.2672580718518641`, 0.04709393805897244`,
        0.05941964602570604, 0.5622078444826373, 0.2274815658721403, 0.5007093025156355,
        0.25133611580942705, 0.6105546481148267, 0.1979532672525618, 0.05000807220941472,
        0.552066823233587, 0.2590003935727958, 0.237457443753463, 0.016898439574316693,
        0.5721126107501573`, 0.06465811590082526`, 0.6363583574943912`, 0.19032981350339662`,
        0.559154482555692, 0.26915324214085745, 0.6896679493978137, 0.632896679704996,
        0.5150649385804618, 0.43121230981447023, 0.4059060326582662, 0.6318075104634733,
        0.2651502889830646`, 0.41725198184995405`, 0.6893854894405991`, 0.041624697186729565`,
        0.019746996267215988`, 0.14415802609371964`, 0.10793432544039216`, 0.362822618693736`,
        0.05922100283814591, 0.3421355433833069, 0.07993191200692384, 0.6226334616255764,
        0.5207521764740912`, 0.5929204690868779`, 0.08851949859515662`, 0.024743815530322788`,
        0.4215260923680446`, 0.692383172946867`, 0.2844521825106663`, 0.39357078535235956`,
        0.04313401864321609`, 0.04664460703269424`, 0.37557069136499965`, 0.5191583634036083`,
        0.13789813647016524, 0.26735140531088375, 0.00789442336616597,
        0.006493044553240734, 0.11834930490153739, 0.4754075910671882,
        0.520063609868203`, 0.6758308528502595`, 0.11776190213599891`, 0.40489996300538067`,
        0.5151682312491013`, 0.5265715848238735`, 0.42585993926787546`, 0.6595932369253765`,
        0.5001001019038422`, 0.10277948543833249`, 0.19363619115146724`, 0.6258626927970223`,
        0.10015463157328586`, 0.44941615196498774`, 0.6639580030649792`, 0.24589710316420454`,
        0.296662824322695, 0.3222794353065439, 0.632920585713636, 0.4710608030494874,
        0.3073407065991345, 0.5361889598429055, 0.3154393501050501, 0.4450246792831589,
        0.22390945967960085, 0.22850025250821604, 0.2732681802864583, 0.06829244841718873,
        0.3031393426845157`, 0.05019573461237692`, 0.03554777864214709`, 0.3122836938365021`,
        0.003771339155015485`, 0.3369145107495395`, 0.4552134222451223`, 0.11775377493499473`,
        0.5175914026439326`, 0.5237186397082338`, 0.05420197407621552`, 0.5688008019027067`,
        0.4996714669896485`, 0.4564187989826092`, 0.27038034952758283`, 0.01442339627684297`,
```

```
0.41882803811838465, 0.4137107641086115, 0.6087810281810224, 0.10070729583572058,
0.27684253948583837, 0.3756644167406118, 0.009527840235670992, 0.3731076200296297,
0.3225264273249502, 0.43326904786272125, 0.014147089358764187,
0.13270432978998092, 0.0655469802774602, 0.28043454840314586, 0.3080004140569841,
0.03656213543141551, 0.65832884512829, 0.26509051825202956, 0.3300361486394825,
0.4502018712692031, 0.04773952093543998, 0.2621757604815901, 0.6889802476476965,
0.629855884807345, 0.13984631542686654, 0.01757923964267427, 0.6104937402581505,
0.09934303877249051, 0.169071230845382, 0.45717267734061284, 0.6504508010188645,
0.2522272379556365, 0.5022273971169731, 0.3765684623791232, 0.5149103284960848,
0.4247873460092446`, 0.04822777488911689`, 0.22102623881592098`, 0.14559108428134138`,
0.4055362957450488, 0.36902889555685725, 0.43307663966311116, 0.5696344426145243,
0.3080624291319367, 0.2701104715656921, 0.6117185734001893, 0.0093902602305459,
0.06278858891336392, 0.5838417162319471, 0.02900780551683335, 0.3471502734734766,
0.1893819695608724`, 0.03422406201783146`, 0.6694259146116552`, 0.14061068774787966`,
0.4968517825663361`, 0.5890820727151236`, 0.42706637558872274`, 0.10359572387306759`,
0.6597840002623023, 0.4709404884580477, 0.13970276121854897, 0.19672091639783873,
0.5599146198962612, 0.07630275549233345, 0.10684108574568352, 0.5173521151833715,
0.6103963511901886`, 0.4135177575553539`, 0.20769641660087623`, 0.3789065398505702`,
0.46778882513647213, 0.042822853000587524, 0.07409679433592253,
0.32427759401300893, 0.2540107391691374, 0.27928681476832284, 0.2922690826809595,
0.46492661047249584, 0.6814345942230915, 0.14685698824737725, 0.36716847668310026,
0.23877521091896214, 0.5399763882201027, 0.4050280510382773, 0.30254017129046673,
0.14449246022735462, 0.63453056953147, 0.17384426833101085, 0.4287762953332446,
0.3755860451070956`, 0.28291452467275524`, 0.5899259142489273`, 0.24798525127403592`,
0.34024573256340473, 0.11382921457231265, 0.1499386193208816, 0.4485868723048414,
0.4555787169377248`, 0.13305545599992508`, 0.3296476973223019`, 0.16217458133313722`,
0.3649241587876635`, 0.24665428324586935`, 0.3251145789644134`, 0.3811604931780477`,
0.26777481529216807, 0.3859233829913593, 0.39843041442399274, 0.21367901211309348,
0.3368844187090161`, 0.5356207438138778`, 0.19991123084250617`, 0.08527272409912157`,
0.370173623904956`, 0.12751757830050825`, 0.40558520071674353`, 0.5723067926812806`,
0.6695618615760031, 0.19040052824921672, 0.49440562752954387, 0.6809292090875803,
0.4994083356666488, 0.4032815134252552, 0.3309663577180897, 0.3413731610458124,
0.6351540088058383, 0.605694035552284, 0.11327180124522707, 0.5469156660817527,
0.027047039765383474, 0.2638053244903391, 0.22977235607880309,
0.5954757029191076`, 0.5094477977916994`, 0.4387785400065811`, 0.2179903592467023`,
0.0368866574851715`, 0.5310169159067182`, 0.6707172118145324`, 0.21345597592247656`,
0.41863771171505215`, 0.3815895732995318`, 0.4248102247655767`, 0.19412481043986296`,
0.0808361503612387, 0.5004663989257818, 0.49574593818404367, 0.3523246024814899,
0.5436841577233462, 0.16421278925508076, 0.537256442191552, 0.22213798017575914,
0.29791918320031807`, 0.2598702747058729`, 0.34861726597628717`, 0.6214245108224481`,
0.41264465422080265, 0.13274394601523398, 0.46639540530449985,
0.2011993651726387`, 0.29339618979577287`, 0.17565861330516108`, 0.6488071870992942`,
0.48255110726410777, 0.3578696701881823, 0.48357732694294286, 0.5097080668089093,
0.29783127068269544, 0.5421039541466608, 0.5067617238851734, 0.5781021129517645,
0.105674828699027, 0.2418580921410678, 0.6359859147360984, 0.21614322002293906,
0.6514983971431387, 0.39478548904559463, 0.3844683155403963, 0.30969947260076713,
0.32649147360537367`, 0.4947863773287675`, 0.010521962139906194`, 0.6494553238693299`,
```

```
0.4294003996078899`, 0.1929944572220853`, 0.15469519642795904`, 0.039917320657550825`,
0.5260988113956633, 0.23579130471925858, 0.3371519879451188, 0.6290213594015168,
0.3281784693720078`, 0.5858753959171139`, 0.0205872734250806`, 0.32211316850911165`,
0.3464977067174497`, 0.613194480452915`, 0.2821644470030129`, 0.06766244571250635`,
0.5409083213601404`, 0.3588434777950602`, 0.08244302955417204`, 0.3514519716286213`,
0.0714344987434734, 0.4979492668409198, 0.11621559630261902, 0.21473308996235463,
0.6634217560065465, 0.6489452642437117, 0.019836432709910534, 0.136406482283564,
0.37530637999389316`, 0.6774720266396821`, 0.5255601276399882`, 0.447229231764219`,
0.09499037882820016, 0.5422013043958789, 0.3953419482650642, 0.2166322514574046,
0.3281954751520617`, 0.6623971077752824`, 0.18101907262714523`, 0.6241552023459085`,
0.016511817410057916`, 0.5391156020265957`, 0.6662903734546595`, 0.6561237479173125`,
0.3068165327549526, 0.5552057467067735, 0.0898565845336392, 0.41748334971300083,
0.6295216478605794, 0.45415946628305504, 0.3254019880735495, 0.6275351676978755,
0.4008693425916874`, 0.6280778318971867`, 0.1305289119835934`, 0.3577954974155293`,
0.03815430590973501, 0.2717405099220672, 0.6634969529024755, 0.3615148752261521,
0.6842371281532844, 0.536276579173385, 0.6833934401359436, 0.6905416089972782,
0.06317887158481994`, 0.6433864303628316`, 0.2082159859106154`, 0.6738000597945417`,
0.6555720881238061`, 0.5554346153246026`, 0.6176525267784809`, 0.29729638414525184`,
0.37108743414729295`, 0.40091978301839504`, 0.0857563355669333`, 0.39704447609159343`,
0.16543233487499953`, 0.09218986791140704`, 0.5698681076233858`, 0.6956767933281949`,
0.41950240939788275, 0.2952400204149369, 0.08067700407842804, 0.25445234120507754,
0.36144733726060085, 0.3957455661682834, 0.21194023467288614, 0.5895714586824707,
0.105130076108367, 0.4130576892931277, 0.15773724076328866, 0.0348287500414356,
0.13923808962973494`, 0.5763757494959347`, 0.3081722320227287`, 0.10879844961608343`,
0.063858091223713, 0.22018399730578853, 0.3330353253304428, 0.3453126101695516,
0.1919241414515721, 0.2412064425045216, 0.5305119840694461, 0.5279098494207628,
0.09222150904942761, 0.6242624195065067, 0.5902858683907959, 0.11540739636530517,
0.5043633698671388, 0.23482345851686148, 0.2223792664108203, 0.3334528599286597,
0.061433857369995404`, 0.0747635812348807`, 0.4563892275506414`, 0.41160558793918733`,
0.542439113807941, 0.479626104698298, 0.407786686724668, 0.2591494587638222,
0.10554280829901075, 0.33913813127207737, 0.1270218904668956, 0.1916306449708426,
0.671447992469268`, 0.37673456646458847`, 0.15856388976844382`, 0.5261913306831196`,
0.528606821109352, 0.582104699603283, 0.13973327283704529, 0.5873707991867072,
0.3189383131140051, 0.16079910882618154, 0.099264140210233, 0.3617999954507791,
0.14617602634649052, 0.01762801396450997, 0.6849049180681488, 0.6698191461374112,
0.6668137282252296, 0.44924603983737343, 0.006476528919752256,
0.17729932817205374`, 0.49145878512771213`, 0.5208475936058174`, 0.334942734026195`};
```

Plot the realized probability density function based on uniform1 sample as well as the theoretical one.

```
In[@]:= uniformDistributionPlot = Show[{Histogram[uniform1, Automatic, "ProbabilityDensity",
           Frame \rightarrow {{True, False}, {True, False}}, FrameLabel \rightarrow {"\epsilon_i", "Probability Density"},
           LabelStyle → {Bold, FontFamily → "Arial", FontSize → 18, FontColor → Black},
           FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
           Epilog → {Text[Style["A", Bold, FontFamily → "Arial", FontSize → 16], {0.05, 1.65}]},
           ImageSize \rightarrow 550], Plot[PDF[UniformDistribution[{0, .7}], x],
           \{x, 0, .7\}, PlotStyle \rightarrow \{Blue, Thick\}\}
```


In[@]:= Export["uniformDistributionPlot.svg", uniformDistributionPlot]

Out[@]= uniformDistributionPlot.svg

Solve the 500 ASV ode equations for the uniform distribution

In[@]:= soln500 = solveODEs[0.71, 24, params, uniform1];

500 ASVs for the uniform distribution case in absolute concentrations (μ M C).

```
In[@]:= xiUniformPlot =
       ListLinePlot[Evaluate[Table[{t, x[i][t]}, {i, 1, 500}, {t, 0.71, 24, 0.1}] /. soln500],
        PlotRange → All, Frame → {{True, False}}, {True, False}},
        FrameLabel \rightarrow {"Time (d)", "x_i(t) concentration (\muM)"}, LabelStyle \rightarrow
         {Bold, FontFamily → "Arial", FontSize → 18, FontColor → Black}, PlotStyle → Thick,
        FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
        Epilog → {Text[Style["A", Bold, FontFamily → "Arial", FontSize → 16], {2, 3.5}]},
        ImageSize → 550]
```


Save this plot for the manuscript

```
In[@]:= Export["xiUniformPlot.svg", xiUniformPlot]
Out[0]=
```

xiUniformPlot.svg

The Manipulate function below allows you to slide the slider below to look at profile for individual ASVs (μ M C). However, this can cause issues with the front end, so it's not evaluated below

```
In[@]:= Manipulate[Plot[Evaluate[x[i][t] /. soln500],
        {t, 0.71, 24}, PlotLabel → "ASV: " <> ToString[i]], {i, 1, 500, 1}]
```

Plot the sum of all ASVs (μ M C).

 $ln[\circ]:=$ Plot[Evaluate[Sum[x[i][t], {i, 1, 500}] /. soln500], {t, 0.71, 24}, PlotRange \rightarrow All]

Out[0]= 200 150 100 50

Plot the substrate concentration (μ M C).

 $ln[\circ]:=$ Plot[Evaluate[s[t] /. soln500], {t, 0.71, 24}, PlotRange \rightarrow All]

Out[0]= 400 300 200 100 20

Look at diversity using relative abundance, and sample at the same times points as the MC's were. Note, because of the high diversity, the min ASV relative abundance must be set rather low, as no ASV reaches high rel abundance. Here, using 1% (that is, include any ASV that at any times exceeds 1% in abundance)

```
In[a]:= times = {0.8, 6.8, 9.5, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 22.8, 23.5};
       uniformASVs =
         Prepend[Evaluate[Table[x[i][t], {i, 1, 500}] /. soln500 /. t → times[j]],
              {j, 1, Length[times]}]], Evaluate[Table["ASV_" <> ToString[i], {i, 500}]]]<sup>T</sup>;
       uniformASVsRel = Prepend[Table[100 uniformASVs[1;;, i]] / Total[uniformASVs[1;;, i]],
             {i, 2, Dimensions [uniformASVs] [2]}, uniformASVs [1;;, 1]]^{\mathsf{T}};
 in[*]:= asvUniformRelGT1 = Select[uniformASVsRel, (Max[#[2;;]]] > 1) &];
       ListLinePlot[Table[{times, asvUniformRelGT1[i, 2;;]]}<sup>T</sup>,
          {i, 1, Length[asvUniformRelGT1]}], PlotRange → All]
Out[0]=
       1.5
       1.0
       0.5
       Look at including all ASVs
 in[*]:= asvUniformRelGT0 = Select[uniformASVsRel, (Max[#[[2;;]]] > 0) &];
       ListLinePlot[Table[{times, asvUniformRelGT0[i, 2;;]]}<sup>T</sup>,
          {i, 1, Length[asvUniformRelGT0]}], PlotRange → All]
Out[0]=
       1.5
       1.0
       0.5
```

Plot absolute ASV concentrations and relative abundance at the experimental sample times as a bar plot at the 0.1% relative abundance or greater.

```
In[@]:= asvMinAbunRel = 0.1;
                      asvUniformMin = Chop[N[uniformASVsRel], asvMinAbunRel];
                       (* this sets any ASV that is < asvMinAbunRel to 0 *)
In[*]:= GraphicsRow[{Plot[Evaluate[Table[x[i][t], {i, 1, 500}] /. soln500],
                                    {t, 0.71, 24}, PlotRange → All, Frame → {{True, False}}, {True, False}},
                                    FrameLabel \rightarrow {"Time (d)", "x_i(t) concentration (\muM)"},
                                    LabelStyle \rightarrow {Bold, FontFamily \rightarrow "Arial", FontSize \rightarrow 16, FontColor \rightarrow Black}, FrameStyle \rightarrow
                                         {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}}, PlotStyle → Thick,
                                    Epilog \rightarrow {Text[Style["A", Bold, FontFamily \rightarrow "Arial", FontSize \rightarrow 16], {2, 3.6}]}],
                               BarChart[asvUniformMin[1;;, 2;;], ChartLayout → "Stacked",
                                    ChartLabels → {{0.8, 6.8, 9.5, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8,
                                                 22.4, 22.8, 23.5}, Table["", \{14\}]}, PlotRange \rightarrow \{\{0.5, 14.5\}, \{0, 100\}\},
                                    LabelStyle → {Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black},
                                    \label{eq:frameLabel} \texttt{FrameLabel} \rightarrow \{\texttt{"Time} \ (\texttt{d}) \texttt{"}, \texttt{"x}_i \ (\texttt{t}) \ (\$) \texttt{"}\}, \texttt{Frame} \rightarrow \{\{\texttt{True}, \texttt{False}\}, \{\texttt{True}, \texttt{False}\}\}, \{\texttt{True}, \texttt{False}\}, \{\texttt{Tru
                                    FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
                                    ChartStyle → 24, Epilog → {Text[
                                                 Style["B", Bold, FontFamily \rightarrow "Arial", FontSize \rightarrow 16], {2, 97}]}]}, ImageSize \rightarrow 1024]
```


Bar Plot alone

```
ImagePadding \rightarrow {{All, All}, {All, 30}}, ImageSize \rightarrow 550,
Epilog \rightarrow {Thick, Text[Style["D = 0.1 d<sup>-1</sup>", Bold, 14], {(dBars[1] + dBars[2]) / 2, 105}],
  Line[\{dBars[1] - 0.3, 101\}, \{dBars[2] + 0.3, 101\}\}],
  Text[Style["D = 1.0 d<sup>-1</sup>", Bold, 14], {(dBars[3] + dBars[4]) / 2, 105}],
  Text[Style["D = 10. d^{-1}", Bold, 14], {(dBars[5] + dBars[6]) / 2, 105}],
  Line [\{dBars[3] - 0.3, 101\}, \{dBars[4] + 0.3, 101\}\}],
  Line[{{dBars[5] - 0.3, 101}, {dBars[6] + 0.3, 101}}]}
```

```
In[@]:= xiBarChart[xiRel_List, labels_List, dBars_List, fig_] :=
                        BarChart xiRel, ChartLayout → "Stacked", ChartLabels → labels,
                           PlotRange → {\{0.5, 14.5\}, \{0, 100\}\}, LabelStyle →
                                {Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black}, ChartStyle → 24,
                           \label{eq:frameLabel} \textbf{Frame} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{Frame} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \} \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \}, \{ True, False \}, \{ True, False \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \}, \{ True, False \}, \{ True, False \}, \\ \text{FrameLabel} \rightarrow \{ \{ True, False \}, \{ True, False \}, \{ True, False \}, \{ True, False \}, \\ \text{FrameLabel} \rightarrow \{ True, False \}, \\ \text{FrameLabel} \rightarrow \{ True, False \}, \{ True, False \}, \\ \text{FrameLabel} \rightarrow \{ True
                           FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
                           Thick, Text[Style["D = 0.1 d^{-1}", Bold, 14], {(dBars[[1]] + dBars[[2]]) / 2, 105}],
                                   Line [\{dBars[1] - 0.3, 101\}, \{dBars[2] + 0.3, 101\}\}],
                                   Text[Style["D = 1.0 d^{-1}", Bold, 14], { (dBars[3] + dBars[4]) / 2, 105}],
                                   Text[Style["D = 10. d^{-1}", Bold, 14], { (dBars[5]] + dBars[6]]) / 2, 105}],
                                   Line [\{dBars[3] - 0.3, 101\}, \{dBars[4] + 0.3, 101\}\}],
                                    Line[{{dBars[5] - 0.3, 101}, {dBars[6] + 0.3, 101}}]},
                           ImagePadding \rightarrow {{All, All}, {All, 30}}, ImageSize \rightarrow 550]
                   xiBarUniformPlot = xiBarChart[asvUniformMin[1;;, 2;;],
                            \{\{0.8, 6.8, 9.5, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 22.8, 23.5\},
                                Table["", {14}]}, {1, 5, 6, 9, 10, 14}, "A"]
```

Out[0]=

Save this plot for the manuscript

```
In[@]:= Export["xiBarUniformPlot.svg", xiBarUniformPlot]
Out[0]=
       xiBarUniformPlot.svg
```

Export the ASVs table for the time points that correspond to all sample times

```
In[*]:= Export["uniformASVs.csv", Prepend[uniformASVs, Flatten[{"ASVs", times}]]]
Out[0]=
       uniformASVs.csv
       Export the relative abundances with no cutoff
 In[@]:= Export["uniformASVsRelative.csv", Prepend[uniformASVsRel, Flatten[{"ASVs", times}]]]
Out[0]=
       uniformASVsRelative.csv
```

Beta distribution function Solution for MS

This is basically the same as above, except ϵ is drawn from a beta probability distribution that is skewed towards oligotrophic growth characteristics.

Run with $\alpha = 1.1$, $\beta = 13.3$

```
In[\bullet]:= params = \{\mathcal{D} \rightarrow expDil[t, 50] (*d^{-1}*),
           s0 \to 600, (*mmol m<sup>-3</sup>*)
           p02f → .2106, (*atm*)
           sal \rightarrow 3, (*PSU*)
           tK \rightarrow 298.15, (*K*)
           o2f \rightarrow h02[3, 298.15] .21, (*mmol m<sup>-3</sup>*)
           kL02 \rightarrow 1.65, (*m d<sup>-1</sup>*)
           a \to \pi 0.114^2, (*m^2*)
           rGas \rightarrow 0.082057338 \times 10<sup>-6</sup>, (*atm m<sup>3</sup> mmol<sup>-1</sup> K<sup>-1</sup>*)
           VL \rightarrow 3 / 1000, (*m^3*)
           VG \rightarrow 4.74 / 1000, (*m<sup>3</sup>*)
           fG \rightarrow 15.72 / 1000, (*m<sup>3</sup> d<sup>-1</sup>*)
           \alpha \rightarrow 1.1,
           \beta \rightarrow 13.3};
       Look at 500 samples taken from the beta distribution for \alpha = 1.1 and \beta = 13.3
ln[x] := betaSample = RandomVariate[BetaDistribution[\alpha, \beta] /. params, 500];
       This is the beta distribution used in the manuscript
ln[e]:= betaSample = {0.04871417003885394`, 0.03017318186219966`, 0.012564993680192262`,
           0.13259384803132962, 0.021620267469453208, 0.2344049750022628,
           0.15149911540580235, 0.004684454408583026, 0.004601369086191348,
           0.042992808450216524, 0.025453219010936827, 0.09417271597016663,
           0.045696091326077035`, 0.13284625263752917`, 0.0266933889076973`, 0.2629338141682852`,
           0.059354581681200495, 0.07931635152117568, 0.2205508867126184,
```

0.02118909371323286`, 0.08205366876494401`, 0.010931389024451262`,

```
0.1496050188706156, 0.05525010558659861, 0.15288468109095826,
0.015915678507397803, 0.031122272663232253, 0.0803226560606708,
0.04314709139378374, 0.14315676215797007, 0.058359206495349786,
0.18170250048485312`, 0.03360900445255381`, 0.02942456554931353`, 0.2087416396838662`,
0.0054045809746471685, 0.0013462079542849493, 0.07212716572067226,
0.10450967555532742, 0.08744099507163389, 0.09493157153736054, 0.0784467555946978,
0.05166651168990486, 0.001334149348788744, 0.07578982056455534,
0.037153957616935386, 0.005309644300830824, 0.15411445948443941,
0.009751849308989518, 0.07225647802771631, 0.06936608679819813,
0.06120727001345328, 0.12843678844929338, 0.042131323662609736,
0.01672018869895678, 0.015215508943382137, 0.11225009904324758,
0.04919497886917243, 0.0188384047140116, 0.037266167674637106,
0.11093762041353886, 0.12789992411848625, 0.12052621965819525,
0.010627490500548538, 0.01826746581890762, 0.023365705979300037,
0.02368827336416486, 0.0739020305574193, 0.011295655622854098,
0.05408094424198332, 0.1490046520058161, 0.12578634491357937,
0.004869659200823763, 0.26630301156497094, 0.003849534540199007,
0.06905215114004311, 0.06859481953405061, 0.028748724748098115,
0.14847369252819873`, 0.2174523572636497`, 0.193708893081989`, 0.07714866769087032`,
0.022871419185523347, 0.06341184944387644, 0.12244641637062309,
0.11624046267496087, 0.07164536542764394, 0.08039840001044087,
0.052431646380330536, 0.10668348177075203, 0.09154832908079456,
0.03257046394954066`, 0.09198072965736782`, 0.12734788662242694`, 0.1615990690664287`,
0.0007023097483443249, 0.04599757673754196, 0.1420387979824347,
0.02609236076796676`, 0.05483319833189066`, 0.0034541546335561378`,
0.059798268076024244, 0.022552148777120484, 0.023829340082174116,
0.03753009055321549, 0.15590155990015542, 0.13292412426629985,
0.0031347163603508955, 0.005809975013229053, 0.05347731920469983,
0.1195926517599274, 0.024169207539693684, 0.033868128972670254,
0.0047255961787532365, 0.009001096613049143, 0.05456996503276114,
0.015376698457814768, 0.03673534349017801, 0.0442168643374372,
0.004980503399767064, 0.06866586347795299, 0.039909944942066865,
0.024100042679365354, 0.06122708284578606, 0.12067197707201006,
0.22428778681067332, 0.10321455171062971, 0.061810528166035536,
0.03429125097271478, 0.009354432062220638, 0.13554475676696812,
0.05585587463340101, 0.0011726470568291143, 0.01148917385931319,
0.0035962648649721933`, 0.03181949730803888`, 0.2267838072655365`,
0.16117554712647378, 0.02698462446839613, 0.010845142280690185,
0.023816314095584358, 0.13052320860442276, 0.024311528150703785,
0.027374071069603177`, 0.002366588015184559`, 0.024849074414056854`,
0.2439961188452165, 0.0235668780209888, 0.021101438545775366,
0.003727398656108021, 0.22215983371715115, 0.06126381635770991,
0.03857094915832731, 0.010191563790865634, 0.09609645624578363,
0.02155436426391609, 0.0497287884915788, 0.027378315530424253,
0.10126542602303192, 0.11074720582468918, 0.059013521119175315,
0.08009191489674815, 0.026025990574873595, 0.0516453688165229, 0.436635733572928,
0.09505766406257224, 0.18151396744044626, 0.004026497589513533,
```

```
0.08694990562535915, 0.010689776034261059, 0.06093180898944036,
0.14815681455394025, 0.017389728855135546, 0.15376068053083183,
0.10547790711750345, 0.053319059254476144, 0.007828492425429658,
0.11547561707596206, 0.001962946563101294, 0.020742429167826728,
0.09263697203414759, 0.11065848773597486, 0.06350342699675426,
0.22296694310636778, 0.08771449197198464, 0.04811220738693807,
0.03711701562767455, 0.037113529737442814, 0.1275420670922201,
0.10890010804702391, 0.0010086477888882534, 0.12210310077445455,
0.032606956528330545, 0.03526221608701037, 0.17583830800943565,
0.06714135752884476, 0.09828443656338597, 0.0009216775278314409,
0.1705419780457287, 0.03811325289180692, 0.047644995061664995,
0.021183078103196543, 0.13362095999997362, 0.01524195729847747,
0.012765560839104026, 0.012902106693768548, 0.09892142768556995,
0.03809981023599537, 0.09142479321216293, 0.02117021052803575,
0.01790428904971133`, 0.023014618759056738`, 0.041208699630478025`,
0.1604234626667358, 0.13624906440479095, 0.2172044212009787, 0.01472299488027583,
0.10320904273889435, 0.03538900540536, 0.15383534367786517, 0.0831765127288058,
0.2891594570145767, 0.012784100076480495, 0.058137248081689574,
0.07989725697937083, 0.03750493565627171, 0.030127139394336866,
0.0692569612013841, 0.1057124791160422, 0.07636299363027825, 0.02805523454207417,
0.09803811080087738, 0.0040968904614844814, 0.18555557437046988,
0.13923635889454775, 0.054409267476525254, 0.07170089091396022,
0.17785360980939177`, 0.08703292497589263`, 0.11066124950446958`,
0.01849525339465957, 0.01125351097552394, 0.02617265456166756,
0.028703125286146262, 0.02435163110964077, 0.14764131913850376,
0.04282363862056955, 0.016388741616495523, 0.0024044815732956557,
0.06621756332129385, 0.08482442792532743, 0.0972863022943594,
0.06252463091101566, 0.006323773999152156, 0.07362815024186246,
0.0611440977466474, 0.07972642169305205, 0.1447556892689672, 0.09928994351387667,
0.020794784747151036, 0.050520000331074226, 0.12141743932292878,
0.036350985169579256, 0.01753499671893606, 0.09981444140966093,
0.3040912124150068, 0.21577960371639454, 0.12282298401480057,
0.005609713311279573, 0.014979100908650154, 0.03170198434798988,
0.008771309668806833, 0.12799598858285297, 0.18253831146701313,
0.22604220035805841, 0.022101791111936452, 0.17276189858838992,
0.08861263428291366, 0.04812472719891856, 0.046674493469162186,
0.021464146507729518, 0.16044991188722343, 0.0466983600698937,
0.06957677647088273, 0.09043801855017315, 0.1644442606878382,
0.12545534607706213, 0.08260742429007133, 0.08309558671739452,
0.014564491167656008, 0.07667963494845564, 0.051622435206747475,
0.12374328132302406, 0.002498968309387258, 0.013030313862055545,
0.006428129906045408, 0.05001626077167433, 0.026443982143654638,
0.0539879735120826`, 0.1312999823623269`, 0.11512505634597918`, 0.21686950178922165`,
0.13585031425223854, 0.07210004355656577, 0.04793868805193183,
0.09283559178732992`, 0.08969893726785652`, 0.1127165179660344`, 0.10775185052769168`,
0.082934653731241, 0.06823372191103245, 0.06587945352658324, 0.2328410568252529,
0.29667855682759264`, 0.2417366751952173`, 0.02268594766727997`, 0.10536656975095389`,
```

```
0.041595829142700776, 0.022853557801980416, 0.14210978074465158,
0.0832995335530726`, 0.042037241378529315`, 0.1356399267952631`, 0.1019334755670714`,
0.017516502335782242, 0.09479937599913722, 0.10588947742985351,
0.027886623944396186`, 0.04829511408747073`, 0.05377671868006312`,
0.027548383900668754, 0.10032500675730449, 0.0025943474034798727,
0.0002914995586228621, 0.11763744700827708, 0.10308827759380966,
0.07394200450453615, 0.10622159011543529, 0.014848515802661616,
0.25550171739791566, 0.2053131811836873, 0.0017261960196748958,
0.06294153015556311, 0.01920130174043932, 0.03554558881839803,
0.0791365044139423`, 0.026971779170970305`, 0.07574165069700076`,
0.1421689759972292, 0.09329687854788936, 0.05024255981023416, 0.0490125971519095,
0.022976297480557004, 0.029544565269354898, 0.15065479884821742,
0.008209166237822623, 0.17455831112154385, 0.013752289171807503,
0.07422293537549755, 0.1639564288054622, 0.14087312121450782,
0.014014135664685779, 0.0027830560397054402, 0.16666839002916034,
0.026505413568927255, 0.11446821433343855, 0.11050762219668844,
0.00541900015390286, 0.037520865133616896, 0.030772458132362467,
0.05280786810800987, 0.03407556710718542, 0.03084800257306437,
0.10102930634113923, 0.13044375778720677, 0.030600156418795557,
0.010512867983209667, 0.1274287373380895, 0.17745371321519915,
0.11057254754925154, 0.007516639911862173, 0.026979097585571113,
0.002611592186387166, 0.0337798156974438, 0.05597223108797968,
0.04911962522972667, 0.13053360462565602, 0.12067387539058357,
0.11878864049784978`, 0.1250216585092904`, 0.12074100130465794`, 0.20558704294754135`,
0.14246463035757395`, 0.07402279649358105`, 0.07786475965990819`, 0.0340581506060693`,
0.08041523444578938, 0.01558213710139311, 0.16397534159102004,
0.11779291952672884, 0.017105792256956742, 0.08357290011776101,
0.23607846408267072, 0.040883668439963376, 0.03321036888035268,
0.04703692179272006, 0.1166662308048623, 0.0038126213775626595,
0.07725972617027421, 0.01032278551667974, 0.13436662312586525,
0.36570938724633445, 0.10770468048277729, 0.01296953141933141,
0.04731132700667836, 0.044446624328923344, 0.00618235122746949,
0.05300837236083615`, 0.10050303763689357`, 0.190210728684964`, 0.0513335253832927`,
0.11537750376189984, 0.4878235997476536, 0.009631465023873832,
0.16066235202414658`, 0.17448920272235646`, 0.0816645835667271`, 0.21018687411435585`,
0.06529908683101382, 0.14954184309941784, 0.03624690107933765,
0.02128298021358151, 0.025108762686227807, 0.10885757617356026,
0.015409928243411416, 0.05263634391372248, 0.013831751270294623,
0.1400540494420741, 0.00406843759633261, 0.07963999651514335, 0.07330640592822639,
0.07304679090028407, 0.005040331979276583, 0.05734420056467882,
0.021502024380563593, 0.03827259182580616, 0.10814138756654423,
0.12808460159445015, 0.06217340387635631, 0.031154479356549615,
0.12116323038579138, 0.010500654548535904, 0.06516840129529362,
0.03301747044044952, 0.07547029436558676, 0.04258003424194382,
0.04384589188197849`, 0.03184852282369526`, 0.0780225475565889`, 0.01872239907846052`,
0.07086199931284655, 0.010902596630949998, 0.13966318078624584,
0.040832296776574635`, 0.03782425997615499`, 0.06320106847160721`,
```

```
0.052262142440238066, 0.04638169643741573, 0.04276469913748643,
         0.12672730542857397`, 0.0456168335292967`, 0.05412109296934094`, 0.11581652833622333`,
         0.078930530472329`, 0.04601024282871352`, 0.1506702363443959`, 0.07005305360127806`,
         0.047111011427714684, 0.017198257945144423, 0.111219962811526, 0.205405329278806,
         0.09596661055086143, 0.0031196112401487386, 0.049203736550980134,
         0.188870226685046, 0.09812922801643555, 0.04157488368849383, 0.1878757151311634,
         0.06781604975098905, 0.13737459056442122, 0.0017052641579928189,
         0.01147809467931195, 0.10381208418397085, 0.09294383557583803,
         0.025770371736442615, 0.0766033200309779, 0.04359861555511431,
         0.0015258878654216925, 0.130528588016478, 0.15164736597095563};
In[#]:= betaDistributionPlot = Show[Histogram[betaSample, Automatic,
         "ProbabilityDensity", Frame → {{True, False}}, {True, False}},
         FrameLabel \rightarrow {{"Probability Density", ""}, {"\epsilon_i", ""}},
         LabelStyle → {Bold, FontFamily → "Arial", FontSize → 18},
         FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
         Epilog → {Text[Style["B", Bold, FontFamily → "Arial", FontSize \rightarrow 16], {0.03, 10}]},
         ImageSize \rightarrow 550], Plot[PDF[BetaDistribution[\alpha, \beta] /. params, x],
         \{x, 0, 1\}, PlotStyle \rightarrow \{Thick, Blue\}, PlotRange \rightarrow \{\{0, 0.7\}, All\}\}
```


In[@]:= Export["betaDistributionPlot.svg", betaDistributionPlot] Out[0]= betaDistributionPlot.svg

Solve ODEs for 500 ASVs again, but using the sampled beta distribution.

```
In[@]:= soln500beta = solveODEs[0.71, 24, params, betaSample];
```

Plot the absolute concentrations over time

```
In[@]:= xiBetaPlot = ListLinePlot[
        Evaluate[Table[{t, x[i][t]}, {i, 1, 500}, {t, 0.71, 24, 0.1}] /. soln500beta],
        PlotRange → All, Frame → {{True, False}}, {True, False}},
        FrameLabel \rightarrow {"Time (d)", "x_i(t) concentration (\muM)"}, LabelStyle \rightarrow
         {Bold, FontFamily → "Arial", FontSize → 18, FontColor → Black}, PlotStyle → Thick,
        FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
        Epilog → {Text[Style["B", Bold, FontFamily → "Arial", FontSize → 16], {2, 115}]},
        ImageSize → 550]
```

Out[0]=


```
In[*]:= Export["xiBetaPlot.svg", xiBetaPlot]
```

xiBetaPlot.svg

Out[@]=

Look at relative abundances

```
In[a]:= times = {0.8, 6.8, 9.5, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 22.8, 23.5};
     betaASVs =
        Prepend[Evaluate[Table[X[i]]t], {i, 1, 500}] /. soln500beta /. t → times[j],
             {j, 1, Length[times]}]], Evaluate[Table["ASV " <> ToString[i], {i, 500}]]]]<sup>T</sup>;
     betaASVsRel = Prepend[Table[100 betaASVs[1;;, i]] / Total[betaASVs[1;;, i]]],
            {i, 2, Dimensions[betaASVs][2]}}, betaASVs[1;;, 1]] <sup>T</sup>;
```

Plot ASVs that have a relative abundance > 5 %

```
In[@]:= asvBetaRelGT5 = Select[betaASVsRel, (Max[#[2;;]] > 5) &];
       ListLinePlot[
         Table[\{times, asvBetaRelGT5[[i, 2;;]]\}^{T}, \{i, 1, Length[asvBetaRelGT5]\}], PlotRange \rightarrow All]
Out[0]=
       50
       40
       30
       20
        10
```

Look at bar plot with relative abundances > 0.1%.

```
In[@]:= asvMinAbunRel = 0.1;
     asvBetaMin = Chop[N[betaASVsRel], asvMinAbunRel];
     (* this sets any ASV that is < asvMinAbunRel to 0 *)
```

In[@]:= xiBarBetaPlot = xiBarChart[asvBetaMin[1;;, 2;;]], $\{\{0.8, 6.8, 9.5, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 22.8, 23.5\},$ Table["", {14}]}, {1, 5, 6, 9, 10, 14}, "B"]

Out[0]=

In[*]:= Export["xiBarBetaPlot.svg", xiBarBetaPlot]

Out[0]= xiBarBetaPlot.svg

For a single ASVs (this evaluation has been removed from the notebook)

In[@]:= Manipulate[Plot[Evaluate[x[i][t] /. soln500beta], $\{t, 0.71, 24\}, PlotLabel \rightarrow "ASV: " <> ToString[i]], {i, 1, 500, 1}]$

Sum of all ASVs (absolute concentration in μ M C)

 $\label{eq:locality} \textit{In[o]:=} \ \ Plot[Evaluate[Sum[x[i][t], \{i, 1, 500\}] \ /. \ soln500beta], \{t, 0.71, 24\}, \ PlotRange \rightarrow All]$

Out[0]=

Substrate concentration (μ M C)

 $In[\circ]:=$ Plot[Evaluate[s[t] /. soln500beta], {t, 0.71, 24}, PlotRange \rightarrow All]

Out[0]=

Export the ASVs for the beta distribution simulation

In[@]:= Export["betaASVs.csv", Prepend[betaASVs, Flatten[{"ASVs", times}]]]

Out[0]=

betaASVs.csv

```
In[a]:= Export["betaASVsRelative.csv", Prepend[betaASVsRel, Flatten[{"ASVs", times}]]]
Out[0]=
       betaASVsRelative.csv
```

Simulation comparison to observed pO₂ and DO

Plot the simulated vs observed and export fig.

20.4

20.2 20.0

```
In[@]:= pO2andDOFig = GraphicsRow[
          {Show[ListLinePlot[o2Data, PlotRange → {{0, 23.6}, All}, PlotStyle → {Black, Gray},
              PlotLegends → Placed[LineLegend[{Black, Gray, Blue, Red},
                 {"MC 1", "MC 2", "Uniform", "Beta"}], Center], Epilog → {Text[Style["A",
                  Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black], {23, 21.1}]]],
            Plot[Evaluate[100 p02[t] /. soln500beta], {t, 0.71, 25}, PlotStyle \rightarrow Red,
             PlotRange → All], Plot[Evaluate[100 p02[t] /. soln500],
              {t, 0.71, 24}, PlotStyle → Blue, PlotRange → All],
            Frame \rightarrow {{True, False}, {True, False}}, FrameLabel \rightarrow {"Time (d)", "p0, (%)"},
            FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
            LabelStyle \rightarrow {Bold, FontFamily \rightarrow "Arial", FontSize \rightarrow 16, FontColor \rightarrow Black},
            PlotRange \rightarrow {{0, 23.6}, {20, 21.1}}, PlotLegends \rightarrow Placed[LineLegend[
                {Black, Gray, Blue, Red}, {"MC 1", "MC 2", "Uniform", "Beta"}], Center]],
           Show[ListLinePlot[doData, PlotRange → {{0, 23.6}, All},
             PlotStyle → {Black, Gray}, PlotLegends → Placed[
                LineLegend[{Black, Gray, Blue, Red}, {"MC 1", "MC 2", "Uniform", "Beta"}], Center],
              Epilog → {Text[Style["B", Bold, FontFamily → "Arial",
                   FontSize → 16, FontColor → Black], {23, 270}]}],
            Plot[Evaluate[o2[t] /. soln500beta], \{t, 0.71, 24\}, PlotStyle \rightarrow Red, PlotRange \rightarrow All],
            Plot[Evaluate[o2[t] /. soln500], {t, 0.71, 24}, PlotStyle → Blue, PlotRange → All],
            Frame → {{True, False}, {True, False}},
            FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
            FrameLabel \rightarrow {"Time (d)", "DO (\muM)"},
            LabelStyle → {Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black},
            PlotRange → \{\{0, 23.6\}, \{0, 275\}\}\}, ImageSize → 1024]
Out[0]=
            21.0
            20.8
                                                         200
                                MC 1
                                                       (W) 150
          € 20.6
                                MC 2
                                                                             MC 2
```

100

15

Time (d)

20

```
In[*]:= Export["p02andD0Fig.svg", p02andD0Fig]
Out[0]=
       pO2andDOFig.svg
```

Total simulated bacterial concentrations for both distributions

```
in[@]:= modelBacteriaConcentrationFig = Plot[{Evaluate[Sum[x[i]]t], {i, 1, 500}}] /. soln500],
         Evaluate[Sum[x[i][t], {i, 1, 500}] /. soln500beta]}, {t, 0.71, 24},
        Frame \rightarrow {{True, False}}, {True, False}}, FrameLabel \rightarrow {"Time (d)", "Bacteria (\muM)"},
        LabelStyle → {Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black},
        PlotRange → \{\{0, 25\}, \{0, 250\}\}\, ImageSize → 512,
        PlotStyle → {{Thick, Blue}, {Thick, Red}},
        FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
        PlotLegends → Placed[LineLegend[{Blue, Red}, {"Uniform", "Beta"}], {0.25, 0.8}]]
```

Out[0]=


```
In[@]:= Export["modelBacteriaConcentrationFig.svg", modelBacteriaConcentrationFig]
Out[0]=
      modelBacteriaConcentrationFig.svg
       Import bacterial cell counts
 In[@]:= counts = Import["..\\Data\\BacterialCellCounts.csv"];
```

```
In[@]:= bacterialCounts =
       ListLinePlot[{counts[2;;, {1, 2, 3}]] /. {x_, y_, z_} \rightarrow {x, Around [10<sup>-6</sup> y, 10<sup>-6</sup> z]},
          counts [2;;, {1, 4, 5}] /. {x_, y_, z_} \rightarrow {x, Around [10^{-6} y, 10^{-6} z]},
         PlotMarkers → Automatic, Frame → {{True, False}}, {True, False}},
         FrameLabel \rightarrow {"Time (d)", "Bacteria (10<sup>6</sup> cells mL<sup>-1</sup>)"},
         LabelStyle → {Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black},
         PlotRange → {\{0, 25\}, \{0, 20\}}, ImageSize → 512,
         PlotStyle → {{Thick, Blue}, {Thick, Red}},
         FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
         PlotLegends → Placed[LineLegend[{Blue, Red}, {"MC 1", "MC 2"}], {0.1, 0.9}]]
```


In[@]:= Export["BacterialCounts.svg", bacterialCounts] Out[0]=

BacterialCounts.svg

Observed ASV Data Plots

Import all of the ASV data for MC1 and MC2, including taxa names and ASV data for Siders Pond which is in the file Table_S1_ASVs.csv in the Data subdirectory. Drop the header.

```
In[@]:= asvData = Drop[Import["..\\Data\\TableS1_ASVs.csv"], 1];
 In[*]:= Dimensions[asvData]
Out[0]=
       {1420, 34}
```

Get the ASV taxon names

```
In[@]:= taxaNames = asvData[[;;, {29, 30, 31, 32, 33, 34}]];
```

Add Siders ASV data as time "Siders" to each dataset and specify when samples were collected in days, which are slightly different for each MC.

```
In[@]:= timesMC1 =
       {"Siders", 0.8, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 22.8, 23.5};
     timesMC2 =
        {"Siders", 0.8, 6.8, 9.5, 10.5, 15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 23.5};
     timesMC12 = {"Siders", 0.8, 6.8, 9.5, 10.5,
         15.5, 16.5, 17.6, 18.8, 19.8, 21.5, 21.8, 22.4, 22.8, 23.5};
In[*]:= asvMC1 = Table[0, Dimensions[asvData][1]], Length[timesMC12] + 1];
     (* initialize these to 0 *)
     asvMC2 = Table[0, Dimensions[asvData][1], Length[timesMC12] + 1];
```

Copy in the asvData, but add in Siders' ASVs and keep columns 0 for where samples did not sequence.

```
in[*]:= asvMC1[[;; , Flatten[{1, 2, 3, Range[6, 16]}]] = asvData[[;; , Range[1, 14]]];
     asvMC2[;;, Flatten[{Range[1, 14], 16}]] = asvData[;;, Flatten[{1, 2, Range[15, 27]}]];
```

Define function to name and ASV based on columns in taxaNames above

```
In[@]:= nameMake[n1_String, n2_String] := n1 <> " " <> n2
```

Define function for generating bar charts with a percentage cutoff. This version of plotASVobs sets ASVs with relative abundances less than minPer to zero instead of removing them. That way, ASV color indexes stay the same. maxLedgend specifies how many of the top ASV taxon names to display, and colorIndex is based on the Mathematica's Indexed Color Palette Collections

```
in[@]:= plotASVobs[asvData_, timePts_List, minPer_, maxLedgend_, colorIndex_, dBars_List, fig_] :=
        Module[{asvDataRel, asvDataRelmin, tf, colors},
         (*Relative abundance of an ASV in each sample time, gen in percentage*)
         asvDataRel = Prepend[Table[
              100 asvData[;;, i] / If[Total[asvData[;;, i]] # 0, Total[asvData[;;, i]], 1],
              {i, 2, Dimensions[asvData] [2]}}], asvData[;;, 1]]]<sup>T</sup>;
         (*Any ASV less than minPer is set to zero. Note,
         Chop only works on reals, not integers or rational numbers*)
         asvDataRelmin = Chop[N[asvDataRel], minPer];
         (*Get a vector of colors based on colorIndex and add it as the first column *)
         colors = Table[ColorData[colorIndex][i], {i, Length[asvData]}];
         asvDataRelmin = Join[Partition[colors, 1], asvDataRelmin, 2];
         (* sort asvDataRelmin so the largest are first *)
         asvDataRelmin = ReverseSortBy[asvDataRelmin, Max[#[3;;]] &];
         tf[p_] := TableForm[Partition[Flatten[p], UpTo[10]], TableSpacing → {1, 1}];
         TableForm[{BarChart[asvDataRelmin[;;, 3;;]], ChartLayout → "Stacked",
            ChartLabels → {timePts, Table["", {Length[asvDataRelmin]}]},
            PlotRange \rightarrow {{0.5, Dimensions[asvDataRelmin][2] - 1.5}, {0, 100}},
            LabelStyle → {Bold, FontFamily → "Arial", FontSize → 16, FontColor → Black},
            ChartStyle → asvDataRelmin[;;,1], FrameLabel →
              {"Time (d)", "ASV Rel. Abundance (%)"}, Frame \rightarrow {{True, False}}, {True, False}},
            FrameStyle → {{Directive[Thick, Black], None}, {Directive[Thick, Black], None}},
            ImagePadding \rightarrow {{All, All}, {All, 30}}, ImageSize \rightarrow 550,
            Epilog \rightarrow {Text[Style[fig, Bold, FontFamily \rightarrow "Arial", FontSize \rightarrow 16], {1, 105}],
               Thick, Text[Style["D = 0.1 d^{-1}", Bold, 14], {(dBars[[1]] + dBars[[2]]) / 2, 105}],
               Line[{dBars[1] - 0.3, 101}, {dBars[2] + 0.3, 101}}],
               Text[Style["D = 1.0 d<sup>-1</sup>", Bold, 14], { (dBars[3] + dBars[4]) / 2, 105}],
               Text[Style["D = 10. d^{-1}", Bold, 14], {(dBars[5] + dBars[6]) / 2, 105}],
               Line[{dBars[3] - 0.3, 101}, {dBars[4] + 0.3, 101}}],
               Line[{{dBars[5] - 0.3, 101}, {dBars[6] + 0.3, 101}}]}|,
           SwatchLegend[asvDataRelmin[];; maxLedgend, 1], asvDataRelmin[];; maxLedgend, 2],
            LegendMarkerSize → 10, LabelStyle → {FontSize → 8}, LegendLayout → tf]}]
        ];
     Plot with names from Family
in[*]:= familyMC1 = asvMC1;
     familyMC1[[;;,1]] = Thread[nameMake[taxaNames[[;;,5]], asvMC1[[;;,1]]]];
     familyMC2 = asvMC2;
     familyMC2[[;;,1]] = Thread[nameMake[taxaNames[[;;,5]], asvMC2[[;;,1]]]];
     Plot ASVs who's relative abundance > 0.1%
```

In[*]:= mc1family = plotASVobs[familyMC1, timesMC12, 0.1, 10, 24, {2, 6, 7, 10, 11, 15}, "A"] Out[]//TableForm=

In[*]:= mc2family = plotASVobs[familyMC2, timesMC12, 0.1, 10, 24, {2, 6, 7, 10, 11, 15}, "B"] Out[]//TableForm=

In[@]:= Export["familyMC1_24.svg", mc1family]; Export["familyMC2_24.svg", mc2family];

Generate a legend based on the top maxLedgend based on both MCs

```
In[@]:= legendASVobs[asvData_, minPer_, maxLedgend_, colorIndex_, fontSize_] :=
        Module[{asvDataRel, asvDataRelmin, tf, colors},
         (*Relative abundance of an ASV in each sample time, gen in percentage*)
         asvDataRel = Prepend[
            Table [100 asvData [ ; ; , i] / If[Total[asvData [ ; ; , i]] \neq 0, Total [asvData [ ; ; , i]], 1],
              {i, 2, Dimensions [asvData] [2]}], asvData[;;,1]]<sup>T</sup>;
         (*Any ASV less than minPer is set to zero. Note,
         Chop only works on reals, not integers or rational numbers*)
         asvDataRelmin = Chop[N[asvDataRel], minPer];
         (*Get a vector of colors based on colorIndex and add it as the first column *)
         colors = Table[ColorData[colorIndex][i], {i, Length[asvData]}];
         asvDataRelmin = Join[Partition[colors, 1], asvDataRelmin, 2];
         (* sort asvDataRelmin so the largest are first *)
         asvDataRelmin = ReverseSortBy[asvDataRelmin, Max[#[3;;]] &];
         tf[p_] := TableForm[Partition[Flatten[p], UpTo[10]], TableSpacing → {1, 1}];
         SwatchLegend[asvDataRelmin[]; maxLedgend, 1], asvDataRelmin[]; maxLedgend, 2],
          LegendMarkerSize → 10, LabelStyle → {FontSize → fontSize}, LegendLayout → tf]
        1
      Top ASVs for both MCs
 In[@]:= legendFamilyTop30 =
       legendASVobs[Join[familyMC1, familyMC2[;;, Range[3, 16]]], 2], 0.1, 30, 24, 10]
Out[0]=
       Saccharospirillaceae ASV_1 Cellvibrionaceae ASV_2
                                                   Opitutaceae ASV_5
                                                                        Flavobacteriaceae ASV_9
                                                                                              Flavo
       ■ Methylophilaceae ASV_3 ■ Kordiimonadaceae ASV_11 ■ Rhodobacteraceae ASV_13 ■ Chitinophagaceae ASV_8
                                                                                              Sapro
       Spirosomaceae ASV_7
                             Rhodobacteraceae ASV_36 Caulobacteraceae ASV_14 Comamonadaceae ASV_17 Marin
       Clade_III ASV_48
       Cyclobacteriaceae ASV_21 Saprospiraceae ASV_67 Burkholderiaceae ASV_29 Illumatobacteraceae ASV_58 Rhod
                             Saprospiraceae ASV_30
       Rhizobiaceae ASV_19
                                                   Opitutaceae ASV_32
                                                                        Methylophilaceae ASV_94 Methy
 In[@]:= Export["legendFamilyTop30.svg", legendFamilyTop30]
Out[ = ] =
      legendFamilyTop30.svg
      Plot with names from Order
 In[@]:= orderMC1 = asvMC1;
      orderMC1[[;;,1]] = Thread[nameMake[taxaNames[[;;,4]],asvMC1[[;;,1]]]];
      orderMC2 = asvMC2;
      orderMC2[[;;,1]] = Thread[nameMake[taxaNames[[;;,4]],asvMC2[[;;,1]]]];
      Plot ASVs who's relative abundance > 0.1%
 In[*]:= Export["orderMC1 24b.svg", mc10rder];
       Export["orderMC2_24b.svg", mc2Order];
```

Conclusions

We see a decrease in α diversity with increasing dilution rate that matches the chemostat data only if the community maximum specific growth rate is skewed like the beta distribution; that is, the natural community appears to be skewed towards gleaners (oligotrophs) over opportunists (copiotrophs).