

Power and Energy Dynamic Power Static Power 7: Power CMOS VLSI Design 4th Ed. 2

Power and Energy

- □ Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.
- ☐ Instantaneous Power: P(t) =
- \Box Energy: E =
- □ Average Power: $P_{\text{avg}} =$

7: Power

CMOS VLSI Design 4th Ed.

2

Power in Circuit Elements

$$P_{V\!D\!D}\left(t\right) = I_{D\!D}\left(t\right)V_{D\!D}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$_{V_{R}}^{+}$$
 \downarrow I_{R}

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\stackrel{+}{\underset{-}{\bigvee}} C \stackrel{+}{\underset{-}{\bigvee}} I_C = C \text{ dV/dt}$$

7: Power

CMOS VLSI Design 4th Ed.

Charging a Capacitor

- When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DL}^2$$

 $E_C = \frac{1}{2} C_L V_{DD}^2$ — But energy drawn from the supply is

$$\begin{split} E_{VDD} &= \int\limits_0^\infty I(t) V_{DD} dt = \int\limits_0^\infty C_L \frac{dV}{dt} V_{DD} dt \\ &= C_L V_{DD} \int\limits_0^V dV = C_L V_{DD}^2 \end{split}$$

- When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the nMOS transistor

7: Power

CMOS VLSI Design 4th Ed.

Switching Power

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} \left[T f_{\text{sw}} C V_{DD} \right]$$

$$= C V_{DD}^{2} f_{\text{sw}}$$

 $\begin{array}{c} \text{VDD} \\ \downarrow i_{\text{DD}}(t) \\ \downarrow \end{array} \begin{array}{c} f_{\text{sw}} \\ \downarrow \end{array} \begin{array}{c} \\ \downarrow \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\$

7: Power

CMOS VLSI Design 4th Ed.

7

Activity Factor

- ☐ Suppose the system clock frequency = f
- \Box Let $f_{sw} = \alpha f$, where α = activity factor
 - If the signal is a clock, α = 1
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
- Dynamic power:

$$P_{\text{switching}} = \alpha C V_{DD}^2 f$$

7: Power

CMOS VLSI Design 4th Ed.

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- ☐ Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- ☐ We will generally ignore this component

7: Power

CMOS VLSI Design 4th Ed.

9

Power Dissipation Sources

- \Box Dynamic power: $P_{dynamic} = P_{switching} + P_{shortcircuit}$
 - Switching load capacitances
 - Short-circuit current
- \Box Static power: $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

7: Power

CMOS VLSI Design 4th Ed.

Dynamic Power Example

- ☐ 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 λ
 - Activity factor = 0.02
 - 1.0 V 65 nm process
 - $-C = 1 \text{ fF/}\mu\text{m (gate)} + 0.8 \text{ fF/}\mu\text{m (diffusion)}$
- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

7: Power

CMOS VLSI Design 4th Ed.

11

Solution

$$C_{\text{logic}} = (50 \times 10^6)(12\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^6)(4\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = [0.1C_{\text{logic}} + 0.02C_{\text{mem}}](1.0)^2 (1.0 \text{ GHz}) = 6.1 \text{ W}$$

7: Power

CMOS VLSI Design 4th Ed.

Dynamic Power Reduction

- $\square P_{\text{switching}} = \alpha C V_{DD}^{2} f$
- ☐ Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

7: Power

CMOS VLSI Design 4th Ed.

13

Activity Factor Estimation

 \Box Let P_i = Prob(node i = 1)

$$-\overline{P_i} = 1-P_i$$

- \square $\alpha_i = \overline{P}_i * P_i$
- \Box Completely random data has P = 0.5 and α = 0.25
- □ Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- □ Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically α ≈ 0.1

7: Power

CMOS VLSI Design 4th Ed.

Switching Probability

Gate	P _Y
AND2	$P_{\mathcal{A}}P_{B}$
AND3	$P_{A}P_{B}P_{C}$
OR2	$1-\overline{P}_{A}\overline{P}_{B}$
NAND2	$1 - P_A P_B$
NOR2	$ar{P}_{\!A}ar{P}_{\!B}$
XOR2	$P_{\mathcal{A}}\overline{P}_{\mathcal{B}} + \overline{P}_{\mathcal{A}}P_{\mathcal{B}}$

7: Power CMOS VLSI Design 4th Ed.

Example

- ☐ A 4-input AND is built out of two levels of gates
- ☐ Estimate the activity factor at each node if the inputs have P = 0.5

7: Power

CMOS VLSI Design 4th Ed.

Clock Gating

- ☐ The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity (α = 1)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used

Capacitance

- ☐ Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
- Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

7: Power

7: Power

CMOS VLSI Design 4th Ed.

Static Power

- ☐ Static power is consumed even when chip is quiescent.
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in fight between ON transistors

7: Power CMOS VLSI Design 4th Ed. 20

Static Power Example

- ☐ Revisit power estimation for 1 billion transistor chip
- Estimate static power consumption
 - Subthreshold leakage

• Normal V_t : 100 nA/ μ m • High V_t : 10 nA/ μ m

 High Vt used in all memories and in 95% of logic gates

– Gate leakage 5 nA/μm– Junction leakage negligible

7: Power

CMOS VLSI Design 4th Ed.

21

Solution

$$\begin{split} W_{\text{normal-V}_{i}} &= \left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.025\,\mu\text{m}/\lambda\right) \left(0.05\right) = 0.75 \times 10^{6} \,\,\mu\text{m} \\ W_{\text{high-V}_{i}} &= \left[\left(50 \times 10^{6}\right) \left(12\lambda\right) \left(0.95\right) + \left(950 \times 10^{6}\right) \left(4\lambda\right)\right] \left(0.025\,\mu\text{m}/\lambda\right) = 109.25 \times 10^{6} \,\,\mu\text{m} \\ I_{sub} &= \left[W_{\text{normal-V}_{i}} \times 100 \,\,\text{nA}/\mu\text{m} + W_{\text{high-V}_{i}} \times 10 \,\,\text{nA}/\mu\text{m}\right]/2 = 584 \,\,\text{mA} \\ I_{gate} &= \left[\left(W_{\text{normal-V}_{i}} + W_{\text{high-V}_{i}}\right) \times 5 \,\,\text{nA}/\mu\text{m}\right]/2 = 275 \,\,\text{mA} \end{split}$$

 $P_{static} = (584 \text{ mA} + 275 \text{ mA})(1.0 \text{ V}) = 859 \text{ mW}$

7: Power

CMOS VLSI Design 4th Ed.

Subthreshold Leakage

 $\Box \quad \text{For V}_{\text{ds}} > 50 \text{ mV}$

$$I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$

 $\Box \quad I_{off} = leakage \ at \ V_{gs} = 0, \ V_{ds} = V_{DD} \quad \begin{array}{l} \gamma_{I} = 0.1 \\ k_{\gamma} = 0.1 \\ S = 100 \ mV/decade \end{array}$

Typical values in 65 nm

 I_{off} = 100 nA/ μ m @ V_t = 0.3 V

 $I_{\text{off}} = 10 \text{ nA/}\mu\text{m}$ @ $V_{\text{t}} = 0.4 \text{ V}$ $I_{\text{off}} = 1 \text{ nA/}\mu\text{m}$ @ $V_{\text{t}} = 0.5 \text{ V}$

7: Power

CMOS VLSI Design 4th Ed.

Stack Effect

☐ Series OFF transistors have less leakage - V_x > 0, so N2 has negative V_{gs}

$$I_{sub} = I_{10} I_{41} \underbrace{0_{S}^{1/(V_x - V_{DD})}}_{S} = I_{10} I_{41} \underbrace{0_{S}^{-V_x + \eta((V_{DD} - V_x) - V_{DD}) - k_y V_x}}_{S}$$

$$V_x = \frac{\eta V_{DD}}{1 + 2\eta + k_{\gamma}}$$

$$I_{sub} = I_{off} 10^{\frac{-\eta V_{DD}\left(\frac{1+\eta + k_{\gamma}}{1+2\eta + k_{\gamma}}\right)}{S}} \approx I_{off} 10^{\frac{-\eta V_{DD}}{S}}$$

- Leakage through 2-stack reduces ~10x
- Leakage through 3-stack reduces further

7: Power

CMOS VLSI Design 4th Ed.

Leakage Control

- ☐ Leakage and delay trade off
 - Aim for low leakage in sleep and low delay in active mode
- □ To reduce leakage:
 - Increase V₁: multiple V₁
 - Use low V_t only in critical circuits
 - Increase V_s: stack effect
 - · Input vector control in sleep
 - Decrease V_b
 - · Reverse body bias in sleep
 - Or forward body bias in active mode

7: Power

CMOS VLSI Design 4th Ed.

25

Gate Leakage

- \Box Extremely strong function of t_{ox} and V_{qs}
 - Negligible for older processes
 - Approaches subthreshold leakage at 65 nm and below in some processes
- An order of magnitude less for pMOS than nMOS
- \Box Control leakage in the process using $t_{ox} > 10.5 \text{ Å}$
 - High-k gate dielectrics help
 - Some processes provide multiple $t_{\rm ox}$
 - e.g. thicker oxide for 3.3 V I/O transistors
- ☐ Control leakage in circuits by limiting V_{DD}

7: Power

CMOS VLSI Design 4th Ed.

NAND3 Leakage Example

☐ 100 nm process

$$I_{gn} = 6.3 \text{ nA}$$
 $I_{gp} = 0$

$$I_{offn} = 5.63 \text{ nA}$$
 $I_{offp} = 9.3 \text{ nA}$

Data from [Lee03

7: Power

CMOS VLSI Design 4th Ed.

27

Junction Leakage

- ☐ From reverse-biased p-n junctions
 - Between diffusion and substrate or well
- ☐ Ordinary diode leakage is negligible
- ☐ Band-to-band tunneling (BTBT) can be significant
 - Especially in high-V_t transistors where other leakage is small
 - Worst at $V_{db} = V_{DD}$
- ☐ Gate-induced drain leakage (GIDL) exacerbates
 - Worst for $V_{gd} = -V_{DD}$ (or more negative)

7: Power

CMOS VLSI Design 4th Ed.

Power Gating

- ☐ Turn OFF power to blocks when they are idle to save leakage Transistors
 - Use virtual V_{DD} (V_{DDV})
 - Gate outputs to prevent invalid logic levels to next block

- Size the transistor wide enough to minimize impact
- ☐ Switching wide sleep transistor costs dynamic power
 - Only justified when circuit sleeps long enough

7: Power CMOS VLSI Design 4th Ed.

29

Output

Gated