Московский государственный технический университет им. Н. Э. Баумана

Изучение свойств р-п-переходов

Москва Издательство МГТУ им. Н. Э. Баумана 2009

Рецензент В. Н. Атаманов.

Изучение свойств \mathbf{p} - \mathbf{n} -переходов : Методические указания к лабораторной работе Φ - $\mathbf{6}a$ по курсу общей физики / С. П. Бабенко ; под ред. Л. К. Мартинсона. — М. : изд-во МГТУ им. Н. Э. Баумана, 2009. — 13 с., ил.

В работе приведены основные положения квантовой теории электропроводности полупроводников и выпрямляющих свойств **p-n**-перехода. Описаны экспериментальные методы определения характерных параметров полупроводниковых диодов. Работа предназначена для студентов в качестве методического указания к выполнению лабораторной работы.

Ил. 6. Библиогр. 3 назв.

Бабенко Светлана Петровна Изучение свойств p-n-переходов

Цель работы — ознакомиться с теорией выпрямляющих свойств полупроводниковых диодов, освоить экспериментальные методы определения некоторых параметров \mathbf{p} - \mathbf{n} -переходов.

Введение

На контакте двух полупроводников с различными типами проводимости — электронной и дырочной, образуется **p**-**n**-переход. Он является основным элементом огромного класса полупроводниковых приборов. Такое широкое применение связано с многообразием ценных, для практического использования, свойств **p**-**n**-перехода. Ими можно управлять, выбирая параметры полупроводников и меняя технологию изготовления **p**-**n**-перехода. Это позволяет наиболее подходящие для выбранной цели свойства делать основными свойствами устройства. В частности, нелинейность активного сопротивления перехода является основным свойством выпрямительных диодов, используемых для преобразования частоты, детектирования, выпрямления и ограничения сигналов.

Нелинейность реактивного емкостного сопротивления **p-n**-перехода — основное свойство диодов, использующихся для генерации гармоник, модуляции и преобразования частоты, усиления СВЧ (сверхвысокочастотных) сигналов (параметрические усилители с малыми шумами), генерации и формирования импульсов.

Некоторые **p-n**-переходы имеют на вольт-амперной характеристике (ВАХ) участок с отрицательным сопротивлением (с ростом напряжения уменьшается ток или с ростом тока уменьшается напряжение). Его возникновение связано с такими физическими явлениями, как туннельный эффект, лавинные и пролетные явления в полупроводниковых структурах, высокочастотные неустойчивости в твердотельной плазме. Устройства с такими **p-n**-переходами используются в качестве усилителей и генераторов сверхвысоких частот.

В данной работе изучаются свойства выпрямительных диодов.

Теоретическая часть

1. Объяснение электрических свойств полупроводников квантовой теорией электропроводности

Решение уравнения Шредингера для электрона, движущегося в потенциальном поле кристаллической решетки, приводит к зонной теории твер-

дых тел. Сущность ее сводится к следующему.

- 1. Совокупность уровней энергии, разрешенных для электронов в кристалле, образует энергетические зоны. Внутри разрешенных зон уровни располагаются друг относительно друга на расстоянии $\Delta E \approx 10^{-22}\,\mathrm{pm}$, значительно меньшем средней энергии теплового движения электронов $(0.025\,\mathrm{pm})$ при $T=300\,\mathrm{K}$).
- **2.** Между зонами разрешенных уровней располагаются запрещенные зоны. Ширина запрещенных зон много больше средней энергии теплового движения электронов.
- **3.** С ростом энергии ширина разрешенных зон возрастает, а ширина запрещенных зон уменьшается.
- **4.** Электроны заполняют разрешенные зоны, начиная с нижней, в соответствии с принципом Паули и числом возможных состояний в каждой зоне.
- **5.** Последняя (по энергетической шкале) зона, которая при T=0 полностью заполнена электронами, называется валентной. Первая зона, которая при T=0 в полупроводниках совершенно свободна, называется зоной проводимости. Ширина запрещенной зоны между валентной и зоной проводимости $\Delta E=0.3\div7$ эВ.

Электроны полностью заполненных зон на проводимость электрического тока влияния не оказывают. Это объясняется тем, что для участия в токе электрон должен непрерывно менять энергию и переходить с одного энергетического уровня на другой, что в заполненной зоне запрещено принципом Паули.

При $T \neq 0$, под действием энергии теплового движения, часть электронов переходит из валентной зоны в зону проводимости. Обе зоны становятся частично заполненными электронами. Так как степень заполнения их различна, то различны и условия движения электронов в них. Расчеты показывают, что результат движения всех электронов валентной зоны, с точки зрения электропроводности, эквивалентен результату движения в ней положительных зарядов, число которых совпадает с числом вакантных мест в валентной зоне. Этот положительный заряд получил название "дырка". Условия ее движения в валентной зоне близки к условиям движения электрона в зоне проводимости. Поэтому физические характеристики электронов и дырок практически совпадают. При переходе электронов из валентной зоны в зону проводимости образуется равное число носителей обоих знаков (электронов и дырок), участвующих в проводимости.

Образуется \mathbf{p} - \mathbf{n} -переход на контакте двух примесных полупроводников — электронного (\mathbf{n} -типа) и дырочного (\mathbf{p} -типа). Примесными называются такие полупроводники, у которых носители, принимающие участие в проводимости тока, образуются двумя способами: 1) за счет перехода электронов из зоны в зону (собственные носители); 2) за счет переходов с уровня, обеспечиваемого примесью (в **n**-типе), или на него (в **p**-типе). Примесь, поставляющая в зону проводимости электроны, называется донорной; примесь, поставляющая дырки в валентную зону — акцепторной.

Технологически \mathbf{p} - \mathbf{n} -переход получают введением акцепторной (донорной) примеси с одного конца слаболегированного образца $\mathbf{n}(\mathbf{p})$ -типа. Энергетический уровень донорной примеси E_{π} лежит в запрещенной зоне вблизи дна зоны проводимости E_1 (рис. 1,a).

Рис. 1. Схема уровней запрещенной зоны между зоной проводимости и валентной зоной для примесных полупроводников

Энергетический уровень акцепторной примеси $E_{\rm a}$ расположен в запрещенной зоне вблизи потолка валентной зоны $E_{\rm 2}$ (рис. 1,б). Уровень Ферми $E_{\rm F}$ в примесном полупроводнике при T=0 лежит между примесным уровнем и краем ближайшей зоны. С ростом температуры он перемещается к середине запрещенной зоны. Для материалов, образующих **p-n**-переход, обычно уровень Ферми при $T=300\,{\rm K}$ лежит вблизи энергетического примесного уровня $E_{\rm A}$ или $E_{\rm a}$.

Для полупроводника с донорной примесью полная концентрация носителей складывается из концентрации собственных носителей $n_{\rm o}$ и $p_{\rm o}$ ($n_{\rm o}=p_{\rm o}$), и концентрации примесных электронов $n_{\rm np}$. Обычно при комнатной температуре $n_{\rm np}\gg n_{\rm o}$, поэтому проводимость практически полностью обеспечивается примесными электронами. Полупроводники, у которых проводимость определяется в основном электронами, называются полупроводниками \mathbf{n} -типа, или электронными. Электроны полупроводников \mathbf{n} -типа называются основными носителями, а дырки — неосновными.

Полупроводники, у которых проводимость определяется в основном дырками, — это полупроводники \mathbf{p} -типа, или дырочные. Дырки полупроводников \mathbf{p} -типа называются основными носителями, а электроны — неосновными.

$\mathcal{E}_{\scriptscriptstyle \mathrm{K}} \to$							
+	+	+	_	_			
n -тип +	+	+	_	— р- тип			
+	+	+	_	_			

Рис. 2. Двойной слой объемного заряда ионизированных атомов на контакте полупроводников **n**- и **p**-типов

На контакте полупроводников **n**- и **p**-типов возникает диффузионный ток основных носителей. Этот процесс приводит к образованию вблизи контакта двойного слоя объемного заряда ионизированных атомов доноров в полупроводнике **n**-типа и акцепторов в полупроводнике **p**-типа. Накопление

заряда сопровождается возникновением контактного электрического поля, напряженность которого направлена от положительного заряда к отрицательному (рис. 2). Это поле препятствует дальнейшему преимущественному перемещению основных носителей и при некотором своем значении $\overrightarrow{E_{\kappa}}$ прекращает его. С существованием такого равновесного поля связана разность потенциалов ϕ_{κ} , которая носит название контактной.

 E_F a) x x

Рис. 3. Кривые изменения вдоль \mathbf{p} - \mathbf{n} -перехода (оси x): a) расстояния от уровня Ферми E_F до краев зоны проводимости и валентной зоны, б) концентрации свободных носителей, в) объемного заряда \mathbf{p} - \mathbf{n} -перехода

Расчет показывает, что:

$$\varphi_{\kappa} = \frac{1}{e} (E_{F_1} - E_{F_2}),$$
(1)

где E_{F_1} — энергетический уровень Ферми для полупроводника ${\bf n}$ -типа, E_{F_2} — энергетический уровень Ферми для полупроводников ${\bf p}$ -типа, e — элементарный электрический заряд.

Электрическое поле проникает в образцы ${\bf n}$ - и ${\bf p}$ -типов на глубину $d\approx 10^{-7}\,{\rm m}$. Величина d носит название ширины ${\bf p}$ - ${\bf n}$ -перехода или ширины слоя объемного заряда. Электрическое поле ${\bf p}$ - ${\bf n}$ -перехода с напряженностью $\overrightarrow{E}_{\bf k}$ накладывается на внутреннее атомное поле $\overrightarrow{E}_{\bf a}$, в котором электрон находится внутри полупроводника. Величина $|\overrightarrow{E}_{\bf k}|\sim 10^6\,{\rm B/m}$ существенно меньше напряженности атомных полей $|\overrightarrow{E}_{\bf a}|\sim 10^8\,{\rm B/m}$, поэтому поле объ-

емного приконтактного заряда не изменяет зонной структуры, а лишь смещает зоны соседних полупроводников (рис. 3,а).

В отсутствие внешнего напряжения уровни Ферми в обоих образцах совпадают, так как образцы \mathbf{n} - и \mathbf{p} -типов образуют теперь единую систему. Вдали от \mathbf{p} - \mathbf{n} -перехода структура зон остается неизменной, т. е. уровень Ферми близок к зоне проводимости в \mathbf{n} -области и к валентной зоне в \mathbf{p} -области. В такой ситуации неизбежно относительное смещение зон полупроводников \mathbf{n} - и \mathbf{p} -типов. При этом расстояние от уровня Ферми до края валентной зоны (E_F-E_2) и края зоны проводимости (E_1-E_F) меняется вдоль \mathbf{p} - \mathbf{n} -перехода (рис. 3,а). Это означает, что вдоль него меняется концентрация свободных носителей (рис. 3,б), поскольку она определяется соотношениями:

$$n = N_e e^{-\frac{E_1 - E_F}{kT}}, \quad p = N_v e^{-\frac{E_F - E_2}{kT}},$$

где N_e , N_v — объемные плотности возможных состояний в зоне проводимости и в валентной зоне; E_1 , E_2 — энергии краев зоны проводимости и валентной зоны.

На рис. 3,в приведена кривая изменения объемного заряда в области **p-n**-перехода.

2. Выпрямительные свойства р-п-перехода

В силу непрерывного теплового движения в положении равновесия часть свободных носителей пересекает р-п-переход. Основные носители (электроны в полупроводнике n-типа и дырки в полупроводнике p-типа), пересекающие переход, создают ток J_0 одного направления. Неосновные носители (дырки в полупроводнике n-типа и электроны в полупроводнике **р**-типа), пересекающие переход, создают ток J_0 противоположного направления $(j = e \, nv)$. В отсутствие внешнего напряжения эти токи равны по величине и полный ток через р-п-переход равен нулю, т. е. $J = J_{0} - J_{H} = 0$. Поскольку при пересечении перехода основные носители преодолевают потенциальный барьер $e\,\phi_{\mbox{\tiny K}},\,$ а неосновные — не преодолевают его (рис. 3), то внешним напряжением можно регулировать значение полного тока $J = J_{\rm o} - J_{\rm H}$ через **p-n**-переход, изменяя $J_{\rm o}$. Если направление поля внешнего напряжения V противоположно направлению контактного поля $\overrightarrow{E_{\kappa}}$, то суммарный потенциальный барьер $\phi = \phi_{\kappa} - V$ для основных носителей с ростом V уменьшается. Равновесие нарушается и через \mathbf{p} - \mathbf{n} -переход течет суммарный ток, который при $\phi \to 0$ может достигать очень большой величины, так как характеризуется преимущественным током основных носителей.

Такой ток возникает, если "+" внешнего напряжения прикладывается к полупроводнику **p**-типа и "-" — к полупроводнику **n**-типа. Напряжение

указанной полярности на диоде (и соответствующий ему ток) называется положительным.

Если прикладывается внешнее поле, совпадающее по направлению с контактным, то суммарный потенциальный барьер для основных носителей возрастает. Равновесие опять нарушается и через **p-n**-переход течет суммарный ток, направленный противоположно положительному току. Величина его теперь определяется преимущественным переходом неосновных носителей, концентрация которых мала, поэтому и ток невелик. Этот ток и, соответствующее ему, напряжение на **p-n**-переходе называются отрицательными.

Рис. 4. Вольт-амперная характеристика **р-п**-перехода

Расчет показывает, что полный ток основных и неосновных носителей через **p-n**-переход:

$$J = J_{\rm H} \left(e^{\frac{eV}{kT}} - 1 \right), \tag{2}$$

где $J_{\rm H}$ — ток неосновных носителей или ток насыщения; V — внешнее напряжение на ${f p-n}$ -переходе. При V>0 и $|eV|\gg kT$, $e^{\frac{eV}{kT}}\gg 1$ и, соответственно, $J=J_{\rm H}\,e^{\frac{eV}{kT}}$, т. е. ток экспоненциально изменяется с напряжением. При V<0 и $|eV|\gg kT$, $e^{\frac{eV}{kT}}\gg 1$ и, соответственно $J=-J_{\rm H}={
m const.}$ т. е. ток стремится к постоянной величине.

Теоретическая зависимость (2) тока от напряжения, т. е. ВАХ ${f p-n}$ -перехода, изображена на рис. 4.

Экспериментальная часть

1. Решаемые экспериментальные задачи

В данной работе ставятся следующие задачи.

- **1.** Снятие зависимости тока I от напряжения V и построение BAX выпрямительного диода.
- **2.** Определение по ВАХ диода зависимости сопротивления ${\bf p}$ - ${\bf n}$ -перехода от величины напряжения на нем.
 - **3.** Оценка контактной разности потенциалов ϕ_{κ} выпрямительного диода.

Дифференциальное сопротивление в любой точке экспериментальной ВАХ определяется графически с помощью соотношения:

$$r = \frac{dV}{dJ} = \lim_{\Delta J \to 0} \frac{\Delta V}{\Delta J},$$

где ΔV — малое приращение напряжения в области выбранного значения V на BAX; ΔJ — приращение тока, соответствующее выбранному значению ΔV .

Контактная разность потенциалов определяется следующим образом. С ростом положительного напряжения на диоде сопротивление \mathbf{p} - \mathbf{n} -перехода уменьшается. Это уменьшение связано с тем, что с ростом приложенного напряжения внешнее поле компенсирует все контактное поле. Если внешнее напряжение станет равным контактной разности потенциалов ($V = \varphi_{\kappa}$), то контактное поле полностью нейтрализуется. При этом условии диод представляет собой обычное омическое сопротивление z, определяющееся геометрией полупроводников и их удельным сопротивлением. При $V > \varphi_{\kappa}$ ВАХ диода имеет линейный вид $V = \varphi_{\kappa} + J_r$. Следовательно, прямая линия, являющаяся продолжением практически линейного участка положительной ветви ВАХ, пересекает ось напряжений в точке $V = \varphi_{\kappa}$ (рис. 4).

2. Описание экспериментальной установки

Электрическая схема цепи для снятия ВАХ выпрямительного диода по-казана на рис. 5. Цепь питается стабилизированным источником напряжения 1. Для обеспечения плавной регулировки напряжения на диоде 3 используется потенциометр 2. Напряжение на диоде измеряется вольтметром 7 типа В7-27. Ток через диод определяется соотношением $J=\frac{U}{r}$. При замкнутом ключе 6, $r=\frac{r_1r_2}{r_1+r_2}=10\,\mathrm{кOm}$, т. к. $r_1(4)=100\,\mathrm{kOm}$, $r_2(5)=10\,\mathrm{kOm}$. При разомкнутом ключе 6, $r=r_1=100\,\mathrm{kOm}$.

Рис. 5. Электрическая схема цепи для снятия BAX

Рис. 6. Лицевая сторона платы с электрической схемой

Переключение вольтметра с измерения напряжения на диоде (клемма 9 замкнута на клемму 8) на измерение напряжения на активном сопротивлении (клемма 9 замкнута на клемму 10) осуществляется с помощью кнопочного переключателя. При положении кнопки в отжатом состоянии вольтметр показывает напряжение на диоде, а в нажатом — напряжение на активном сопротивлении, пропорциональное току через диод. Приведенная электрическая схема собрана на плате, лицевая сторона которой показана на рис. 6. Гнезда "+" и "-" служат для подключения схемы к источнику питания. При подключении "+" источника питания к клемме "+" на плате диод включен в прямом направлении, при подключении "+" к "—" на плате — в обратном направлении. Ручка "Рег. напр." служит для регулировки напряжения на диоде. При нажатии кнопки "П" вольтметр, подключеный к гнездам "V", переключается с диода на активное сопротивление. Переключатель сопротивления в положении "10 кОм" замыкает сопротивление r_2 (рис. 5) на сопротивление r_1 , а в положении "100 кОм" — отключает его.

3. Проведение эксперимента

Снятие ВАХ выпрямительного диода.

- **1.** Подключить плату к источнику питания ("+" источника питания к клемме "+" на плате) и к вольтметру.
 - 2. Переключатель шкал вольтметра поставить в положение "10 В".
- **3.** Включить вольтметр и источник питания в сеть. На источнике питания выставить напряжение $\mathcal{E}=1\,\mathrm{B}.$
 - **4.** Переключатель "r" на плате поставить в положение $10\,\mathrm{kOm}$ (рис. 6).
 - **5.** Ручкой "рег. напр." выставить на диоде напряжение $V=0.15\,\mathrm{B}.$
- **6.** Нажать кнопку "П" (рис. 6) и измерить напряжение на активном сопротивлении. Результаты измерения напряжения на диоде V и активном сопротивлении V_r занести в табл. 1.

V (B)	0,15	0,2	0,25	0,3	0,35	0,4	0,43	0,44
V_r (B)								
$J = \frac{V_r}{r} \text{ (A)},$ $r = 10 \text{ kOm}$								

Таблица 1. Данные для построения прямой ветви ВАХ

7. Измерения по пп. 5 и 6 провести для напряжений V на диоде, приблизительно равных следующим значениям: $0.15\,\mathrm{B};\ 0.2\,\mathrm{B};\ 0.25\,\mathrm{B};\ 0.3\,\mathrm{B};\ 0.35\,\mathrm{B};\ 0.4\,\mathrm{B};\ 0.43\,\mathrm{B};\ 0.44\,\mathrm{B}.$ Если последние точки не удается снять при напря-

жении на источнике $\mathcal{E}=1\,\mathrm{B}$, то снять их последовательно при значениях $\mathcal{E}=2\,\mathrm{B};~\mathcal{E}=3\,\mathrm{B};~\mathcal{E}=4\,\mathrm{B}.$

- 8. Ручку "рег. напр." вернуть в крайнее правое положение.
- **9.** Выставить на источнике напряжение 0.
- **10.** Сменить полярность напряжения, подаваемого на диод. Для этого "+" источника питания подсоединить к "—" платы.
- **11.** На источнике питания выставить напряжение $\mathcal{E} = 10\,\mathrm{B}$.
- **12.** Переключатель "r" на плате поставить в положение " $100 \, \mathrm{kOm}$ ".
- **13.** Ручкой "рег. напр." выставить на диоде $V=-1\,\mathrm{B}.$
- **14.** Нажать кнопку "П" и измерить напряжение V_r на активном сопротивлении. Результаты занести в табл. 2.
- **15.** Измерения по пп. 4 и 5 провести для следующих напряжений на диоде: -1 B; -2 B; -3 B; -6 B. Результаты занести в табл. 2.

V (B)	-1	-2	-3	-6	-9
V_r (B)					
$J = \frac{V_r}{r}$ (A), $r = 100$ кОм					

Таблица 2. Данные для построения обратной ветви ВАХ

- 16. Поставить ручку "рег. напр." в крайнее правое положение.
- **17.** Выставить на источнике $\mathcal{E} = 0$.

4. Обработка экспериментальных данных

- **1.** По экспериментальным данным построить зависимость J = f(V) для выпрямительного диода.
- **2.** Пользуясь экспериментальной зависимостью J=f(V) и соотношением $r \approx \frac{\Delta V}{\Delta J}$, определить дифференциальное сопротивление диода при следующих значениях напряжения на нем:
- 1) $V=0.2\,\mathrm{B};\,2)$ $V=0.25\,\mathrm{B};\,3)$ $V=0.36\,\mathrm{B};\,4)$ $V=-2\,\mathrm{B};\,5)$ $V=-0.4\,\mathrm{B}.$ При определении r взять $\Delta V=0.01\,\mathrm{B}.$
 - **3.** По найденным значениям r построить график зависимости r = f(V).
- **4.** Определить контактную разность потенциалов ϕ_{κ} . Для этого провести касательную к построенной ВАХ диода в точке, соответствующей максимальному напряжению на диоде. Продолжить касательную до пересечения с осью напряжений. Значение V, соответствующее точке пересечения, принять равным контактной разности потенциалов ϕ_{κ} .

Контрольные вопросы

- 1. Что такое полупроводники р- и п-типов?
- 2. Что такое р-п-переход? Каков механизм образования перехода?
- **3.** Из каких составляющих складывается суммарный ток через **p-n**-переход?
- **4.** Почему суммарный ток через **p-n**-переход в отсутствие внешнего напряжения на нем равен нулю?
- **5.** Как объяснить появление тока через **p-n**-переход при приложении к **p-n**-переходу внешнего напряжения?
 - **6.** Как объяснить выпрямляющие свойства **p-n**-перехода?
 - 7. Как по ВАХ определить контактную разность потенциалов?

Список литературы

- **1.** *Бушманов Б. М., Хромов Ю. А.* Физика твердого тела. М. : Высшая школа, 1971.-224 с.
 - **2.** Савельев И.В. Курс общей физики. М. : Наука, 1982. т. 2. 496 с.
 - **3.** Смит Р. Полупроводники. М. : Мир, 1982. 560 с.