On PDE approach to some machine learning problems

Hong Zhang

Applied Math, Brown University

April 8, 2017

1 / 44

Introduction

- Online Learning
- 3 Stochastic Control and Reinforcement Learning
- 4 Hamilton-Jacobi-Bellman Equations

Partial differential equations (PDEs) are used to describe many phenomenons. Many famous PDEs are from physics.

• Heat: heat equation, u tempature

$$\partial_t u = \sum_{i=1}^3 \frac{\partial^2 u}{\partial x_i^2} = \Delta u$$

Partial differential equations (PDEs) are used to describe many phenomenons. Many famous PDEs are from physics.

• Heat: heat equation, u tempature

$$\partial_t u = \sum_{i=1}^3 \frac{\partial^2 u}{\partial x_i^2} = \Delta u$$

Fluid mechanics: Naiver-Stokes equation

$$\partial_t u + (u \cdot \nabla)u - \Delta u = -\nabla p.$$

Partial differential equations (PDEs) are used to describe many phenomenons. Many famous PDEs are from physics.

• Heat: heat equation, *u* tempature

$$\partial_t u = \sum_{i=1}^3 \frac{\partial^2 u}{\partial x_i^2} = \Delta u$$

• Fluid mechanics: Naiver-Stokes equation

$$\partial_t u + (u \cdot \nabla)u - \Delta u = -\nabla p.$$

Quantum mechanics, electrodynamics, image processing,....

Probability and PDEs

Figure: Brownian Motion

 W_t : a Brownian motion with $W_0 = x$. W hits boundary at W_τ . $u(x) = \mathbb{E}^x[g(W_\tau)]$. Then

$$\Delta u = 0$$
,

and

$$u=g$$
 on S_1 .

Introduction

Online Learning

Stochastic Control and Reinforcement Learning

4 Hamilton-Jacobi-Bellman Equations

Figure: Spam Detection

emails arrive one by one

Figure: Spam Detection

- emails arrive one by one
- spam detector makes prediction for each of them: spam or not

Figure: Spam Detection

- emails arrive one by one
- spam detector makes prediction for each of them: spam or not
- sometimes get feedback from users

Figure: Spam Detection

- emails arrive one by one
- spam detector makes prediction for each of them: spam or not
- sometimes get feedback from users
- make better detection next time

Figure: Recommendation

• users visit Netflix /Amazon/...

Figure: Recommendation

- users visit Netflix /Amazon/...
- movies/products/...are recommended

Figure: Recommendation

- users visit Netflix /Amazon/...
- movies/products/...are recommended
- users click or not

Figure: Recommendation

- users visit Netflix /Amazon/...
- movies/products/...are recommended
- users click or not
- make better recommendation next time

Why Online Learning?

- Batch learning:
 - distribution fixed over time (training and test)
 - i.i.d. assumptions
 - a fixed predictor

Why Online Learning?

- Batch learning:
 - distribution fixed over time (training and test)
 - i.i.d. assumptions
 - a fixed predictor
- Online learning:
 - no distribution assumption
 - suitable for changing or adversarial environment
 - a natural model for many applications, mixing training and test
 - memory efficient

Prediction With Expert Advices

- Need: to make a decision every day
 - which stock to invest in
 - which route to drive home
 - . . .

Prediction With Expert Advices

- Need: to make a decision every day
 - which stock to invest in
 - which route to drive home
 - . . .
- Given: advice from a set of experts
 - financial adviser
 - Route 1, Route I-95, Route 295,...
 - . . .

Prediction With Expert Advices

- Need: to make a decision every day
 - which stock to invest in
 - which route to drive home
 - . . .

- financial adviser
- Route 1, Route I-95, Route 295,...
- . . .
- Question: How to combine advice and make smart choices?

unknown bit sequence

y1

y2

• • • • •

/T

unknown bit sequence

V1

y2

expert 1 $f_{1,1}$ $f_{1,2}$

 $f_{1,T}$

 $f_{2,T}$

expert N

fN,t

Gentle Start: a simple example

- Set up:
 - Predict an unknown sequence $y_1, y_2, ...,$ where $y_i \in \{0, 1\}$.
 - N experts provide advice $(f_{1,t}, f_{2,t}, \ldots, f_{N,t})$
 - A forecaster makes her guess $\hat{p}_t \in \{0,1\}$ for y_t
 - True y_t is revealed and find if $\hat{p}_t = y_t$.
 - Know that one of the experts makes no mistakes.
- Goal: bound the number of the mistakes made by the forescaster

Algorithm:

• at time t, expert i has weight w_i^t

Algorithm:

- at time t, expert i has weight w_i^t
- originally, $w_i = 1, \forall i \in [1, N]$

Algorithm:

- at time t, expert i has weight w_i^t
- originally, $w_i = 1, \forall i \in [1, N]$
- prediction according to the weighted majority

Algorithm:

- at time t, expert i has weight w_i^t
- originally, $w_i = 1, \forall i \in [1, N]$
- prediction according to the weighted majority
- update expert's weight with wrong prediction $w_i = 0$

Algorithm:

- at time t, expert i has weight w_i^t
- originally, $w_i = 1, \forall i \in [1, N]$
- prediction according to the weighted majority
- update expert's weight with wrong prediction $w_i = 0$

Conclusion: the number of mistakes made by the forecaster is bounded by $\lfloor \log_2 N \rfloor$.

More general setting:

• Do not know there is one expert who makes no mistakes.

More general setting:

- Do not know there is one expert who makes no mistakes.
- Weighted Majority Algorithm:
 - at any time, expert i has weight w_i^t.
 - originally, $w_i^t = 1, \forall i \in [1, N].$
 - prediction according to weighted majority.
 - ullet weight of each wrong expert updated $(eta \in (0,1))$

$$w_i^{t+1} \leftarrow w_i^t \beta$$
.

More general setting:

- Do not know there is one expert who makes no mistakes.
- Weighted Majority Algorithm:
 - at any time, expert i has weight w_i^t .
 - originally, $w_i^t = 1, \forall i \in [1, N]$.
 - prediction according to weighted majority.
 - weight of each wrong expert updated $(\beta \in (0,1))$

$$w_i^{t+1} \leftarrow w_i^t \beta$$

• Theorem: let m_i^t be the number of mistakes made by expert i till time t and m^t be the number of mistakes made by the WM algorithm. Then

$$m_t \leq \frac{\log_2 N + m_{\text{best}}^t \log_2 \frac{1}{\beta}}{\log_2 \frac{2}{1+\beta}}.$$

• $m_t < O(\log_2 N) + \text{constant} \times \text{best expert}$.

$$m_t \leq O(\log_2 N) + \text{constant} \times \text{best expert}$$

• Linear dependence on the best expert

$$m_t \leq O(\log_2 N) + \text{constant} \times \text{best expert}$$

- Linear dependence on the best expert
- Independent of the number of predictions

$$m_t \leq O(\log_2 N) + \text{constant} \times \text{best expert}$$

- Linear dependence on the best expert
- Independent of the number of predictions
- Independent of the choice of sequence of outcomes

$$m_t \leq O(\log_2 N) + \text{constant} \times \text{best expert}$$

- Linear dependence on the best expert
- Independent of the number of predictions
- Independent of the choice of sequence of outcomes
- Mild dependence on the number of the experts

General Setting

- For t = 1 to T do
 - feature $x_t \in X$ and advice $\hat{y}_{t,i} \in Y$, $i \in [1, N]$
 - predict $\hat{y}_t \in Y$
 - true label $y_t \in Y$
 - loss $L(y_t, \hat{y}_t)$

General Setting

- For t = 1 to T do
 - feature $x_t \in X$ and advice $\hat{y}_{t,i} \in Y$, $i \in [1, N]$
 - predict $\hat{y}_t \in Y$
 - true label $y_t \in Y$
 - loss $L(y_t, \hat{y}_t)$
- Objective: minimize regret, i.e., difference of total loss incurred and that of best exeprt:

$$Regret(T) = \sum_{t=1}^{T} L(y_t, \hat{y}_t) - \min_{i \in [1, N]} \sum_{t=1}^{T} L(y_t, \hat{y}_{t,i}).$$

General Setting

- For t = 1 to T do
 - feature $x_t \in X$ and advice $\hat{y}_{t,i} \in Y$, $i \in [1, N]$
 - predict $\hat{y}_t \in Y$
 - true label $y_t \in Y$
 - loss $L(y_t, \hat{y}_t)$
- Objective: minimize regret, i.e., difference of total loss incurred and that of best exeprt:

$$\mathit{Regret}(\mathit{T}) = \sum_{t=1}^{\mathit{T}} \mathit{L}(\mathit{y}_t, \hat{\mathit{y}}_t) - \min_{i \in [1, \mathit{N}]} \sum_{t=1}^{\mathit{T}} \mathit{L}(\mathit{y}_t, \hat{\mathit{y}}_{t, i}).$$

 Goal: obtain sublinear regret to the best expert. (top 10 experts, any competitor, etc.)

$$\lim_{T \to \infty} \frac{Regret(T)}{T} = 0.$$

An Optimal Bound

- Exponential weighted average
 - weight update:

$$w_i^{t+1} \leftarrow w_i^t e^{-\frac{\eta_t L_{t,i}}{t}},$$

where $L_{t,i}$ is total loss incurred by expert i till time t

prediction:

$$\hat{y_t} = \frac{\sum_{i=1}^{N} w_i^t y_{t,i}}{\sum_{i=1}^{N} w_i^t}.$$

An Optimal Bound

- Exponential weighted average
 - weight update:

$$w_i^{t+1} \leftarrow w_i^t e^{-\eta_t L_{t,i}},$$

where $L_{t,i}$ is total loss incurred by expert i till time t

• prediction:

$$\hat{y_t} = \frac{\sum_{i=1}^{N} w_i^t y_{t,i}}{\sum_{i=1}^{N} w_i^t}.$$

• Theorem: Assume L is convex in its first argument and takes values in [0,1]. Then for any T

$$\textit{Regret}(T) \leq \frac{\sqrt{2}}{\sqrt{2}-1} \sqrt{(T/2)\log_2 N} + \sqrt{\log_2 N/2}.$$

Remarks on the theorem

ullet When the loss is between [0,1]

$$Regret(T) = O(\sqrt{(\log N)T}).$$

Remarks on the theorem

• When the loss is between [0, 1]

$$Regret(T) = O(\sqrt{(\log N)T}).$$

• The bound can be improved if more information is known, e.g., if the loss functions are special, L_2 loss, L_1 loss,

Remarks on the theorem

• When the loss is between [0, 1]

$$Regret(T) = O(\sqrt{(\log N)T}).$$

- The bound can be improved if more information is known, e.g., if the loss functions are special, L_2 loss, L_1 loss,
- In general, the bound is asymptotically optimal.

Active research area: literatures

- Littlestone and Warmuth developed weighted majority algorithm
- Cesa-Bianchi et al. obtain minimax regret bounded by $\sqrt{(T/2) \log N}$.
- Cesa-Bianchi and Lugosi connected the regret with the Rademacher Complexity of the set of experts.
- Even-Dar et al. considered regret to the average
- Rakhlin et al. developed Sequential Rademacher Complexity to study online learning.
- ...

• Predict $y_1, y_2, ...$, where $y_t \in \{-1, 1\}$ (stock goes up or down).

- Predict $y_1, y_2, ...$, where $y_t \in \{-1, 1\}$ (stock goes up or down).
- Forecaster makes prediction $\hat{\rho}_t \in [-1, 1]$ (buy/sell $\hat{\rho}_1$ shares of stocks) according to some algorithm \hat{P} .

- Predict $y_1, y_2, ...$, where $y_t \in \{-1, 1\}$ (stock goes up or down).
- Forecaster makes prediction $\hat{p}_t \in [-1, 1]$ (buy/sell \hat{p}_1 shares of stocks) according to some algorithm \hat{P} .
- At each time t, investor loss (or gain) $-\hat{p}_t y_t$. Cumulative loss (or gain)

$$L(\hat{P}, y_T) := -\sum_{t=1}^T \hat{p}_t y_t$$

- Predict $y_1, y_2, ...$, where $y_t \in \{-1, 1\}$ (stock goes up or down).
- Forecaster makes prediction $\hat{\rho}_t \in [-1, 1]$ (buy/sell $\hat{\rho}_1$ shares of stocks) according to some algorithm \hat{P} .
- At each time t, investor loss (or gain) $-\hat{p}_t y_t$. Cumulative loss (or gain)

$$L(\hat{P}, y_T) := -\sum_{t=1}^T \hat{p}_t y_t$$

• Two naive experts: one predicts 1 (always goes up); the other one predicts -1(always goes down).

Cover proved

$$Regret(T) = \Theta(\sqrt{T}).$$

PDE approach

This problem was considered by Kohn using PDE technique.

• Instead of proposing an algorithm and then proving the asymptotic bound, PDE method focuses on the optimal strategy

PDE approach

This problem was considered by Kohn using PDE technique.

- Instead of proposing an algorithm and then proving the asymptotic bound, PDE method focuses on the optimal strategy
- Typical Goal: minimize the worst-case regret with respect to the best performing expert.

PDE approach

This problem was considered by Kohn using PDE technique.

- Instead of proposing an algorithm and then proving the asymptotic bound, PDE method focuses on the optimal strategy
- Typical Goal: minimize the worst-case regret with respect to the best performing expert.
- More general goal: minimize the worst case value of

```
\phi(regret w.r.t. expert "1", regret w.r.t. expert "-1")
```

at time T. ("Typical goal" is $\phi(x_1, x_2) = \max\{x_1, x_2\}$.)

Essentially, deterministic two-player games (optimal control):

Essentially, deterministic two-player games (optimal control):

• state space:

$$(x_1, x_2) = (\text{regret w.r.t. expert "1"}, \text{ regret w.r.t. expert "-1"}).$$

Essentially, deterministic two-player games (optimal control):

• state space:

```
(x_1, x_2) = (\text{regret w.r.t. expert "1", regret w.r.t. expert "-1"}).
```

ullet control: prediction $\hat{
ho}_t \in [-1,1]$ (investor's purchase bounded by 1)

Essentially, deterministic two-player games (optimal control):

• state space:

$$(x_1, x_2) = (\text{regret w.r.t. expert "1"}, \text{ regret w.r.t. expert "-1"}).$$

- ullet control: prediction $\hat{
 ho}_t \in [-1,1]$ (investor's purchase bounded by 1)
- value function: v(x, t) = optimal time T result, starting from relative regrets $x = (x_1, x_2)$ at time t.

dynamic programming principle:

$$\begin{split} v(x_1, x_2, t) &= \min_{|p| \le 1} \max_{b = \pm 1} v(\text{new position, } t + 1) \\ &= \min_{|p| \le 1} \max_{b = \pm 1} v(x_1 + b(1 - p), x_2 - b(1 + p), t + 1) \end{split}$$

for t < T, with final-time condition $v(x, T) = \phi(x)$.

dynamic Programming Principle

Recall: $(x_1, x_2) = (\text{regret w.r.t. "'1" expert, regret w.r.t. "-1" expert}),$ where regret = (investor's loss) - (expert's loss).

If the investor buys p shares and the market goes up, investor loss -p, the "+" expert loss -1, the "-1" expert loss 1. So the state moves from (x_1,x_2) to $(x_1-(1-p),x_2+(1+p))$.

Similarly, if investor buys p shares and market goes down, state move from (x_1, x_2) to $(x_1 + (1-p), x_2 - (1+p))$.

Hence the dynamic programming principle:

$$v(x_1, x_2, t) = \min_{\substack{|p| \le 1 \ b = \pm 1}} \max_{b = \pm 1} v(x_1 + b(1-p), x_2 - b(1+p), t+1).$$

• Want to know how the regret accumulates as $T \to \infty$.

- Want to know how the regret accumulates as $T \to \infty$.
- To access this question, it is natural to rescale the problem and look for a continuum limit.

- Want to know how the regret accumulates as $T \to \infty$.
- To access this question, it is natural to rescale the problem and look for a continuum limit.
- Our scaling is like the passage from random walk to Brownian motion.
 - Let ξ_1, ξ_2, \ldots be i.i.d. random variable with mean 0 and variance 1. For each n, define a continuous-time stochastic processes $\{W_n(t)\}$

$$W_n(t) = \frac{1}{\sqrt{n}} \sum_{1 \leq j \leq [nt]} \xi_j.$$

Then $W_n(t) \rightarrow W_t$, where W_t is a standard Brownian motion.

• So we consider a scaled version of the problem: stock moves $\pm \epsilon$, time steps are ϵ^2 , and the scaling of regret is ϵ^2 . The value function is still the optimal time-T result. The dynamic programming principle becomes

$$w^{\epsilon}(x_1, x_2, t) = \min_{|p| \le 1} \max_{b = \pm 1} w^{\epsilon}(x_1 + \epsilon b(1 - p), x_2 - \epsilon b(1 + p), t + \epsilon^2)$$

• So we consider a scaled version of the problem: stock moves $\pm \epsilon$, time steps are ϵ^2 , and the scaling of regret is ϵ^2 . The value function is still the optimal time-T result. The dynamic programming principle becomes

$$w^{\epsilon}(x_1, x_2, t) = \min_{|p| \leq 1} \max_{b = \pm 1} w^{\epsilon}(x_1 + \epsilon b(1 - p), x_2 - \epsilon b(1 + p), t + \epsilon^2)$$

• We expect as $\epsilon \to 0$, $w^{\epsilon}(x,t) \to w(x,t)$ and w solves some PDEs.

Use the Taylor's expansion to expand

$$w(x_1 + \epsilon b(1-p), x_2 - \epsilon(1+p), t + \epsilon^2),$$

then plug into the dynamic programming equation.

2 Investor choose p to make $O(\epsilon)$ terms vanishes; this gives

$$p = \frac{\partial_1 w - \partial_2 w}{\partial_1 w + \partial_2 w}.(\text{optimal strategy})$$

1 The $O(\epsilon^2)$ are insensitive to $b=\pm 1$; they give the nonlinear PDE

$$w_t + 2 < D^2 w \frac{\nabla^{\perp} w}{\partial_1 w + \partial_2 w}, \frac{\nabla^{\perp} w}{\partial_1 w + \partial_2 w} > = 0,$$

where $\nabla^{\perp} w = (\partial_2 w, -\partial_1 w)$. Prescribe the final value $w = \phi$ at T.

Conclusion

• if ϕ smooth

$$||w^{\epsilon}(x,t)-w(x,t)|| \leq C\epsilon$$
,

where C independent of t.

• if $\phi(x) = \max\{x_1, x_2\}$

$$||w^{\epsilon}(x,t)-w(x,t)|| \leq C\epsilon \log \epsilon.$$

• Equation can be solved explicitly.

 Stock prediction problem has a continuous-time limit. The PDE has a rather explicit solution.

- Stock prediction problem has a continuous-time limit. The PDE has a rather explicit solution.
- Problem is considered as a deterministic two-person game.

- Stock prediction problem has a continuous-time limit. The PDE has a rather explicit solution.
- Problem is considered as a deterministic two-person game.
- One can consider more complex situation, e.g., more experts, more intelligent experts, etc.

- Stock prediction problem has a continuous-time limit. The PDE has a rather explicit solution.
- Problem is considered as a deterministic two-person game.
- One can consider more complex situation, e.g., more experts, more intelligent experts, etc.
- dynamic programming principle can be hard to derive.

Introduction

- Online Learning
- Stochastic Control and Reinforcement Learning
- 4 Hamilton-Jacobi-Bellman Equations

Stochastic Control and Reinforcement Learning

Optimal control

Reinforcement Learning

S: Set of states

A: Set of actions

R: Reward function. $\forall s_t, a_t, r_t = R(s_t, a_t) \in \mathbb{R}$

• Markov decision process (MDP) is a discrete time stochastic control process. The value function $v:S\to\mathbb{R}$ satisfies a discrete Bellman equation.

- Markov decision process (MDP) is a discrete time stochastic control process. The value function $v:S\to\mathbb{R}$ satisfies a discrete Bellman equation.
 - Given a policy π with infinite horizon for any state $x \in X$

$$V_{\pi}(x) = R(x, \pi(x)) + \gamma \sum_{x' \in X} P(x'|x, \pi(x)) V_{\pi}(x')$$

Optimal policy

$$V^*(x) = \max_{a \in A} \{ R(x, a) + \gamma \sum_{x' \in X} P(x'|x, a) V_{\pi}(x') \}$$

- Continuous time and state: PDEs.
 - Dynamics of the state

$$dX_s = b(X_s, a_s) ds + \sigma(X_s, a_s) dW_s,$$
 (1)

- Continuous time and state: PDEs.
 - Dynamics of the state

$$dX_s = b(X_s, a_s) ds + \sigma(X_s, a_s) dW_s,$$
 (1)

Reward

$$R(t,x,a) = \mathbb{E}\left[\int_{t}^{T} f(X_{s}^{t,x},a_{s}) ds + g(X_{T}^{t,x})\right],$$

where $X^{t,x}$ is the solution of (1) starting from $X_t = x$.

- Continuous time and state: PDEs.
 - Dynamics of the state

$$dX_s = b(X_s, a_s) ds + \sigma(X_s, a_s) dW_s,$$
 (1)

Reward

$$R(t,x,a) = \mathbb{E}\left[\int_{t}^{T} f(X_{s}^{t,x},a_{s}) ds + g(X_{T}^{t,x})\right],$$

where $X^{t,x}$ is the solution of (1) starting from $X_t = x$.

Value function

$$v(t,x) = \sup_{a \in \mathcal{A}} R(t,x,a).$$

- Continuous time and state: PDEs.
 - Dynamics of the state

$$dX_s = b(X_s, a_s) ds + \sigma(X_s, a_s) dW_s,$$
 (1)

Reward

$$R(t,x,a) = \mathbb{E}\left[\int_{t}^{T} f(X_{s}^{t,x},a_{s}) ds + g(X_{T}^{t,x})\right],$$

where $X^{t,x}$ is the solution of (1) starting from $X_t = x$.

Value function

$$v(t,x) = \sup_{a \in \mathcal{A}} R(t,x,a).$$

HJB equation

$$\frac{\partial v}{\partial t} + \sup_{a \in A} (L_a v + f(x, a)) = 0 \quad \text{in}[0, T] \times \mathbb{R}^d,$$

where L_a is the infinitesimal generator of the process (1).

Second-order Linear Elliptic PDEs

A classical example is

$$\Delta u(x) = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = 0.$$

Let W_t be a Brownian motion starting from x. Then

$$\lim_{t\to 0}\frac{E^{x}u(W_{t})-u(x)}{t}=\frac{1}{2}\Delta u.$$

General diffusion process

$$L_{a}u = \frac{1}{2}\operatorname{Tr}(\sigma\sigma^{T}D^{2}u) = \frac{1}{2}\sum_{i,j=1}^{d}a_{ij}D_{ij}u,$$

where $\{a_{ii}\}$ is some positive-definite matrix.

HJB equation

Fully nonlinear equation (v depends on (t, x))

$$\frac{\partial_t v}{\partial t} + \sup_{a \in \mathcal{A}} (L_a v + f(x, a)) = 0,$$

where L_a is a second-order linear elliptic operator.

After deriving the HJB equation formally, the equation holds in a weak sense. The regularity of the solution is very low.

- Easy to find solution in the space of continuous function
- Equation holds in a very weak sense (viscosity solution).
- Important problem in the PDE community to prove the existence of classical solution.

Mathematical Result

Recall:

$$dX_s = b(X_s, a_s) ds + \sigma(X_s, a_s) dW_s.$$

Under some regularity assumption on the coefficients σ , b, then the solution to the HJB

$$\partial_t u + \sup_{a \in \mathcal{A}} (L_a u + f(x, a)) = 0,$$

is a classical solution. Rigorously, $u \in C^{2,\alpha}$ for some $\alpha > 0$.

The theoretical results helps to build numerical scheme to solve the HJB.

Jump processes and Nonlocal equations

Brownian motion is a continuous stochastic process. Consider more general process: Lévy processes (jump processes)

$$dX_s = b(X_s, a_s) ds + \sigma(X_s, a_s) dY_s,$$

where Y_s is a Lévy process. The infinitesimal generator of such processes is nonlocal

$$L_a u = \int_{\mathbb{R}^d} (u(x+y) + u(x-y) - 2u(x)) \frac{K_a(y)}{|y|^{d+\sigma}} dy,$$

and $\sigma \in (0, 2)$.

Theorem

Let v be a weak solution to

$$v_t + \sup_a (L_a v + f_a) = 0,$$

where L_a is a nonlocal operator defined previously. Then the solution v is a classical solution and derivatives of v are bounded.

Thank you.