Devoir à la maison n°15 : corrigé

Problème 1 – Intégrales de Wallis et formule de Stirling

Partie I - Intégrales de Wallis

- 1. Le calcul ne pose aucune difficulté, on trouve $I_0 = \frac{\pi}{2}$ et $I_1 = 1$.
- 2. On intègre par parties

$$\begin{split} \mathbf{I}_{n+2} &= [-\cos(t)\sin^{n+1}(t)]_0^{\frac{\pi}{2}} + (n+1)\int_0^{\frac{\pi}{2}}\cos^2(t)\sin^n(t)d\,t\\ &= (n+1)\int_0^{\frac{\pi}{2}}(1-\sin^2(t))\sin^n(t)d\,t\\ &= (n+1)\int_0^{\frac{\pi}{2}}(\sin^n(t)-\sin^{n+2}(t))d\,t\\ &= (n+1)\mathbf{I}_n - (n+1)\mathbf{I}_{n+2} \end{split}$$

D'où la relation de récurrence,

$$\forall n \in \mathbb{N}, (n+2)I_{n+2} = (n+1)I_n$$

3. D'après la relation de récurrence établie précédemment :

$$\begin{split} \mathbf{I}_{2n} &= \frac{(2n-1)\times(2n-3)\times\cdots\times3\times1}{(2n)\times(2n-2)\times\cdots\times4\times2} \mathbf{I}_0 \\ &= \frac{(2n)\times(2n-1)\times(2n-2)\times(2n-3)\times\cdots\times4\times3\times2\times1}{[(2n)\times(2n-2)\times\cdots\times4\times2]^2} \mathbf{I}_0 \\ &= \frac{(2n)!}{[2^nn!]^2} \mathbf{I}_0 = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} \end{split}$$

De la même façon,

$$\begin{split} \mathbf{I}_{2n+1} &= \frac{(2n) \times (2n-2) \times \dots \times 4 \times 2}{(2n+1) \times (2n-1) \times \dots \times 5 \times 3} \mathbf{I}_{1} \\ &= \frac{[(2n) \times (2n-2) \times \dots \times 4 \times 2]^{2}}{(2n+1) \times (2n) \times (2n-1) \times (2n-2) \times \dots \times 5 \times 4 \times 3 \times 2} \mathbf{I}_{1} \\ &= \frac{[2^{n} n!]^{2}}{(2n+1)!} \mathbf{I}_{1} = \frac{2^{2n} (n!)^{2}}{(2n+1)!} \end{split}$$

4. Puisque $\forall t \in [0, \frac{\pi}{2}], 0 \leq \sin(t) \leq 1$, on a

$$\forall n \in \mathbb{N}, \sin^{n+1}(t) \leq \sin^n(t)$$

Ainsi après intégration sur le segment $[0, \frac{\pi}{2}]$, $I_{n+1} \leq I_n$. La suite $(I_n)_{n \in \mathbb{N}}$ est donc décroissante. On a donc en particulier,

$$\forall n \in \mathbb{N}, I_{n+2} \leq I_{n+1} \leq I_n$$

Soit encore, d'après la relation de récurrence obtenue ci-dessus,

$$\forall n \in \mathbb{N}, \frac{n+1}{n+2} \mathbf{I}_n \leq \mathbf{I}_{n+1} \leq \mathbf{I}_n$$

5. Par une récurrence sans difficulté, on prouve à l'aide de l'inégalité précédente que pour tout n positif, $I_n > 0$. D'après la question précédente,

$$\forall n \in \mathbb{N}, \frac{n+1}{n+2} \leq \frac{\mathbf{I}_{n+1}}{\mathbf{I}_n} \leq 1$$

De plus,

$$\lim_{n \to +\infty} \frac{n+1}{n+2} = 1$$

d'où, en appliquant le théorème d'encadrement,

$$\lim_{n \to +\infty} \frac{I_{n+1}}{I_n} = 1$$

et donc $I_{n+1} \sim I_n$.

6. On remarque que $\forall n \in \mathbb{N}$,

$$(n+2)I_{n+2}I_{n+1} = (n+1)I_nI_{n+1}$$

La suite $((n+1)\mathrm{I}_n\mathrm{I}_{n+1})_{n\in\mathbb{N}}$ est donc constante égale à $\frac{\pi}{2}$ car $\mathrm{I}_0=\frac{\pi}{2}$ et $\mathrm{I}_1=1$.

7. On a $(n+1)I_{n+1}I_n \sim nI_n^2$ d'après ce qui précède. Ainsi,

$$\lim_{n \to +\infty} n I_n^2 = \frac{\pi}{2}$$

Puisque la fonction racine carrée est continue en $\frac{\pi}{2}$ et que I_n est positive,

$$\lim_{n \to +\infty} \sqrt{n} \mathbf{I}_n = \sqrt{\frac{\pi}{2}}$$

Ainsi $I_n \sim \sqrt{\frac{\pi}{2n}}$.

Partie II - Formule de Stirling

1. On a $v_n = \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1$. Or

$$\ln\left(1+\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

donc $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$.

- 2. Comme $v_n \sim \mathcal{O}(1/n^2)$ et que la série à termes positifs $\sum_{n\geqslant 1}\frac{1}{n^2}$ converge, la série $\sum_{n\geqslant 1}v_n$ converge. Par télescopage, cela signifie que la suite $(\ln(u_n))_{n\geqslant 1}$ converge vers une limite $\lambda\in\mathbb{R}$. Par continuité de l'exponentielle, la suite $(u_n)_{n\geqslant 1}$ converge vers $\ell=e^{\lambda}>0$.
- 3. On déduit de la question précédente que $n! \sim \frac{n^n e^{-n} \sqrt{n}}{\ell}$. En utilisant l'expression factorielle de I_{2n} trouvée en I.3, on obtient $I_{2n} \sim \frac{\pi \ell}{n-1+\infty}$. Or d'après la question I.7, on a $I_{2n} \sim \frac{\sqrt{\pi}}{2\sqrt{n}}$. On en déduit $\ell = \frac{1}{\sqrt{2\pi}}$. Ainsi $n! \sim \sqrt{2\pi} n^n e^{-n} \sqrt{n}$.

Problème 2 – Puissances de matrices

Partie I -

1. Posons $E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $E_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$. On a clairement $\mathscr{A} = \text{vect}(E_1, E_2, E_3)$ donc \mathscr{A} est un , E_3) est libre donc c'est une base de \mathscr{A} . Ainsi dim $\mathscr{A}=3$.

2. Comme \mathscr{A} est un sous-espace vectoriel de $\mathscr{M}_3(\mathbb{R})$, c'est a fortiori un sous-groupe de $\mathscr{M}_3(\mathbb{R})$. De plus, $I_3 \in \mathscr{A}$ (choisir a = b = 1 et c = 0). Enfin, pour $(a, b, c, a', b', c') \in \mathbb{R}^6$

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix} \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & -c' & b' \end{pmatrix} = \begin{pmatrix} aa' & 0 & 0 \\ 0 & bb' - cc' & bc' + cb' \\ 0 & -(bc' + cb') & bb' - cc' \end{pmatrix} = \begin{pmatrix} a' & 0 & 0 \\ 0 & b' & c' \\ 0 & -c' & b' \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}$$

Ceci montre que \mathscr{A} est stable par produit et commutatif. Ainsi \mathscr{A} est bien un sous-anneau commutatif de $\mathscr{M}_3(\mathbb{R})$ et donc un anneau commutatif.

- 3. On calcule $M^2 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}$. Tout d'abord, on a bien I_3 , M, $M^2 \in \mathscr{A}$. Soit $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tels que $\lambda I_3 + \mu M + \nu M^2 = 0$. Ceci équivaut à $\begin{cases} \lambda 2\mu + 4\nu = 0 \\ \lambda + \mu = 0 \end{cases}$. On voit facilement que l'unique solution de ce système est le triplet nul. La $-\mu 2\nu = 0$ famille (I_1, M, M^2) set dess libres I_2 in I_3 and I_4 and I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are I_4 and I_4 are I_4 are I_4 are I_4 are I_4 are I_4 and I_4 are I_4 are

famille (I_3, M, M^2) est donc libre. Puisque dim $\mathcal{A} = 3$, cette famille est une base de \mathcal{A} .

4. On obtient $M^3 = 2M - 4I_3$.

Partie II -

- **1.** Comme \mathscr{A} est un anneau, il est stable par produit. On peut donc montrer par récurrence que pour tout $k \in \mathbb{N}$, $M^k \in \mathcal{A}$, d'où l'existence des réels a_k , b_k et c_k .
- 2. En écrivant $M^{k+1} = MM^k$, on trouve $\begin{cases} a_{k+1} = -2a_k \\ b_{k+1} = b_k c_k \end{cases}$ $c_{k+1} = b_k c_k$
- 3. On a $z_{k+1} = b_{k+1} + i c_{k+1} = (b_k c_k) + i (b_k + c_k) = (1+i)z_k$ pour tout $k \in \mathbb{N}$. La suite (z_k) est donc géométrique de raison 1+i et de premier terme $z_0=b_0+i\,c_0=1$: on a alors $z_k=(1+i)^k$ pour tout $k\in\mathbb{N}$. Enfin, puisque b_k et c_k sont réels, $b_k = \text{Re}(z_k) = \text{Re}((1+i)^k)$ pour tout $k \in \mathbb{N}$.
- **4.** En utilisant la question **II.2**, on montre que $b_{k+2} = b_{k+1} c_{k+1} = b_{k+1} b_k c_k = 2b_{k+1} 2b_k$. La suite (b_k) est donc une suite récurrente linéaire d'ordre 2 dont le polynôme caractéristique est $X^2 - 2X + 2$. Les racines de ce polynômes sont donc $1 \pm i$. Il existe donc $(\lambda, \mu) \in \mathbb{C}^2$ tels que $b_k = \lambda (1+i)^k + \mu (1-i)^k$ pour tout $k \in \mathbb{N}$. Or $b_0 = b_1 = 1$ donc $\lambda = \mu = \frac{1}{2}$. Ainsi pour tout $k \in \mathbb{N}$, $b_k = \frac{(1+i)^k + \overline{(1+i)^k}}{2} = \operatorname{Re}((1+i)^k)$.
- 5. Comme u_0 , u_1 et u_2 sont entiers et que u_{n+3} s'exprime comme une combinaison linéaire à coefficients entiers de u_n et u_{n+1} , on prouve par récurrence triple ou par récurrence forte que la suite (u_n) est à valeurs entières.
- **6.** Pour tout $n \in \mathbb{N}$, $tr(M^{n+3}) = tr(M^n M^3) = tr(M^n (2M 4I_3)) = 2 tr(M^{n+1}) 4 tr(M^n)$ en utilisant la question **I.4** et la linéarité de la trace. De plus, $tr(M^0) = tr(I_3) = 3$, $tr(M^1) = 0$ et $tr(M^2) = 4$: les suites (u_n) et $(tr(M^n))$ ont les mêmes trois premiers termes et vérifient la même relation de récurrence d'ordre 3, elles sont donc égales.
- 7. 2 divise bien $u_2 = 2$: on peut donc supposer p impair. Posons $n = \frac{p-1}{2}$. Puisque (a_k) est géométrique de raison -2 et de premier terme $a_0=1$, on a $a_k=(-2)^k$ pour tout $k\in\mathbb{N}$. Ainsi

$$u_p = a_p + 2b_p = (-2)^p + 2\operatorname{Re}((1+i)^p) = -2^p + 2\sum_{k=0}^p \binom{p}{k}\operatorname{Re}(i^k)$$

Or pour k impair, $Re(i^k) = 0$ donc

$$u_p = -2^p + \sum_{k=0}^n \binom{p}{2k} (-1)^k = -(2^p - 2) + 2\sum_{k=1}^n \binom{p}{2k} (-1)^k$$

D'après le petit théorème de Fermat, p divise 2^p-2 et puisque pour $1 \le k \le n$, on a $2 \le 2k \le p-1$, p divise également $\binom{p}{2k}$ d'après le rappel de l'énoncé. Ainsi p divise u_p .