DSC640 Week 7-8 Assignment Assignment: 4.2

Name: Madhuri Basava

Date: 7/24/2024

Charts in Python

```
# Import the necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Ignore warningsB
import warnings
warnings.filterwarnings('ignore')

# Set the style of matplotlib
%matplotlib inline
```

```
# Load the players dataset into the data frame
ppg_df = pd.read_csv('ppg2008.csv')
ppg_df.head(10)
```

	Name	G	MIN	PTS	FGM	FGA	FGP	FTM	FTA	FTP	 3PA	3PP	ORB	DRB	TRB	AST	STL	BLK	то	PF
0	Dwyane Wade	79	38.6	30.2	10.8	22.0	0.491	7.5	9.8	0.765	 3.5	0.317	1.1	3.9	5.0	7.5	2.2	1.3	3.4	2.3
1	LeBron James	81	37.7	28.4	9.7	19.9	0.489	7.3	9.4	0.780	 4.7	0.344	1.3	6.3	7.6	7.2	1.7	1.1	3.0	1.7
2	Kobe Bryant	82	36.2	26.8	9.8	20.9	0.467	5.9	6.9	0.856	 4.1	0.351	1.1	4.1	5.2	4.9	1.5	0.5	2.6	2.3
3	Dirk Nowitzki	81	37.7	25.9	9.6	20.0	0.479	6.0	6.7	0.890	 2.1	0.359	1.1	7.3	8.4	2.4	8.0	8.0	1.9	2.2
4	Danny Granger	67	36.2	25.8	8.5	19.1	0.447	6.0	6.9	0.878	 6.7	0.404	0.7	4.4	5.1	2.7	1.0	1.4	2.5	3.1
5	Kevin Durant	74	39.0	25.3	8.9	18.8	0.476	6.1	7.1	0.863	 3.1	0.422	1.0	5.5	6.5	2.8	1.3	0.7	3.0	1.8
6	Kevin Martin	51	38.2	24.6	6.7	15.9	0.420	9.0	10.3	0.867	 5.4	0.415	0.6	3.0	3.6	2.7	1.2	0.2	2.9	2.3
7	Al Jefferson	50	36.6	23.1	9.7	19.5	0.497	3.7	5.0	0.738	 0.1	0.000	3.4	7.5	11.0	1.6	8.0	1.7	1.8	2.8
8	Chris Paul	78	38.5	22.8	8.1	16.1	0.503	5.8	6.7	0.868	 2.3	0.364	0.9	4.7	5.5	11.0	2.8	0.1	3.0	2.7
9	Carmelo Anthony	66	34.5	22.8	8.1	18.3	0.443	5.6	7.1	0.793	 2.6	0.371	1.6	5.2	6.8	3.4	1.1	0.4	3.0	3.0

Python - Heatmap:

```
1 # Create Heat Map
2
3 # Trim whitespace from column names
4 ppg_df.columns = ppg_df.columns.str.strip()
6 # set `NAME` column as index in the dataframe
7 ppg_df.set_index('Name', inplace=True)
9 # Create the heatmap
10 plt.figure(figsize=(10, 6))
sns.heatmap(ppg_df, annot=True, fmt=".2f", cmap="GnBu")
12
13 # Rotate y-axis labels for better readability
14 plt.yticks(rotation=0)
15
16 # Set title
17 plt.title('Players Heatmap')
19 # Show plot
20 plt.show()
```


Python - Spatial chart

```
# 1 #Load the costco geocoded dataset into a Pandas data frame.
2 geocoded_df=pd.read_csv("costcos-geocoded.csv")
3 geocoded_df
```

Address City State Zip Code Latitude Longitude 1205 N. Memorial Parkway Huntsville Alabama 35801-5930 34.743095 -86.600955 3650 Galleria Circle Hoover Alabama 35244-2346 33.377649 -86.812420 8251 Eastchase Parkway Montgomery Alabama 36117 32.363889 -86.150884 3 5225 Commercial Boulevard Juneau Alaska 99801-7210 58.359200 -134.483000 330 West Dimond Blvd 99515-1950 61.143266 -149.884217 Anchorage Alaska 412 19610 SE 1st St Vancouver Washington 98607 45.621299 -122.459135 413 10990 Harbor Hill Dr Gig Harbor Washington 98335 47.357748 -122.603888 414 27520 Covington Way SE Covington Washington 98042 47.354838 -122.121185 415 2150 Deming Way Middleton 53562-5507 43.100195 -89.522751 Wisconsin 416 950 Port Washington Rd Grafton Wisconsin 53024-9201 43.324691

417 rows x 6 columns

```
from shapely.geometry import Point
import geopandas as gpd
from geopandas import GeoDataFrame
import geodatasets

geometry = [Point(xy) for xy in zip(geocoded_df['Longitude'], geocoded_df['Latitude'])]
gdf = GeoDataFrame(geocoded_df, geometry=geometry)

# This is a simple map with geopandas
world = gpd.read_file(geodatasets.data.naturalearth.land['url'])
gdf.plot(ax=world.plot(figsize=(10, 6)), marker='o', color='orange', markersize=15);
```


Python – Lollipop Chart

```
# Create Lollipop chart

# Load the players dataset into the data frame
ppg_df = pd.read_csv('ppg2008.csv')

# Trim whitespace from column names
ppg_df.columns = ppg_df.columns.str.strip()

plt.figure(figsize=(10, 6))
plt.stem(ppg_df['Name'], ppg_df['PTS'], linefmt='b-', markerfmt='go', basefmt='k-') # green markers
plt.xticks(rotation=45, ha='right')
plt.xlabel('Player')
plt.ylabel('Points per Game')
plt.title('Points per Game')
plt.title('Points per Game by Player (Lollipop Chart)')
plt.tight_layout()

# Show plot
plt.show()
```


Charts in R

R –Heatmap:

values

R – Spatial chart:

```
# install.packages("ggplot2")
  install.packages("maps")
library(ggplot2)
library(maps)

# Import the data with coordinates
world <- geocoded_df

# Plot the map. group = group connects the points in the correct order
ggplot(data = world, aes(x = Longitude, y = Latitude, group = State)) + |
  geom_point(color = "blue")</pre>
```


R – Lollipop Chart:

```
# Create Lollipop Chart

# install.packages("ggplot2")
library(ggplot2)

ggplot(players_df, aes(x = Name, y = PTS)) +
    geom_segment(aes(x = Name, xend = Name, y = 0, yend = PTS), color = "blue") +
    geom_point(coclo = "blue", size = 3) +
    coord_flip() +
    labs(x = "Player", y = "Points per Game") +
    theme_minimal()
```


Charts in POWER BI

Power BI –Heatmap:

Power BI – Spatial chart:

Power BI –Lollipop Chart:

