

Machine Learning Project (Regression and Clustering)

Kalbe Nutritionals Data Scientist Project Based Internship Program

Presented by Vicky Tanamal

Vicky Tanamal

About Me

Just graduated from Data Science Bootcamp at Rakamin Academy and ready to switch career to become Data Scientist.

Experience

Project-Based Virtual Intern : Data Scientist Home Credit Indonesia x Rakamin Academy

Project-Based Virtual Intern : Data Scientist id/x partners x Rakamin Academy

Sales Engineer at PT Sinergi Giat Perkasa

EDA on DBeaver

Connect to the database and get the insight from it.

Connect DBeaver to PostgreSQL and test the connection

After the connection has connected, then import the data

There are NULL values in Marital Status

Fill the NULL values with Mode

Because Marital Status is categorical, we can fill the NULL value using **mode** which is in this case the mode is **Married**.

Customer's Average Age based on Marital Status and Gender

Average age based on Gender for Female is 40 and for Male is 39

Store with The Most Total Sales Quantity

Store Name	Lingga
Total Qty	738

Product with The Most Sold Total Amount

Product Name	Cheese Stick
Total Amount	27.615.000

Dashboard on Tableau

Create dashboard for Sales Report on Tableau.

Sales Report Kalbe Nutritionals

Sep

Oct

Nov

Dec

May

Jun

lan

Feb

Sales Report Dashboard

Predictive Modelling

Create Machine Learning Modelling Regression (Time Series)

Load Dataset

```
df_transaction = pd.read_csv('Case Study - Transaction.csv', sep=';')
df_store = pd.read_csv('Case Study - Store.csv', sep=';')
df_product = pd.read_csv('Case Study - Product.csv', sep=';')
df_customer = pd.read_csv('Case Study - Customer.csv', sep=';')
```

Handling Missing Values

```
df_customer.isnull().sum()

v 0.0s

CustomerID 0
Age 0
Gender 0
Marital Status 3
Income 0
dtype: int64
```


Changing Data Type

Merge Data

Overview Data

	TransactionID	CustomerID	Date	ProductID	Price_x	Qty	TotalAmount	StoreID	StoreName	GroupStore	Туре	Latitude	Longitude	Product Name	Age	Gender	Marital Status	Income
0	TR11369	328	2022-01-01	P3	7500	4	30000	12	Prestasi Utama	Prestasi	General Trade	-2.990934	104.756554	Crackers	36		Married	10.53
1	TR57013	328	2022-09-15	P7	9400		56400		Prima Tendean	Prima	Modern Trade	-6.200000	106.816666	Coffee Candy	36		Married	10.53
2	TR97172	328	2022-05-21	P1	8800		44000		Prima Tendean	Prima	Modern Trade	-6.200000	106.816666	Choco Bar	36		Married	10.53
3	TR67395	328	2022-01-22	P8	16000		48000	11	Sinar Harapan	Prestasi	General Trade	0.533505	101.447403	Oat	36		Married	10.53
4	TR45738	328	2022-12-29	P2	3200		9600	11	Sinar Harapan	Prestasi	General Trade	0.533505	101.447403	Ginger Candy	36		Married	10.53
•••																		
5015	TR37670	193	2022-09-26	P5	4200		8400		Buana Indah	Buana	General Trade	3.316694	114.590111	Thai Tea	42		Married	20.64
5016	TR98043	385	2022-06-27	P2	3200		22400	11	Sinar Harapan	Prestasi	General Trade	0.533505	101.447403	Ginger Candy	41		Married	15.84
5017	TR91332	385	2022-09-01	P9	10000		10000	10	Harapan Baru	Harapan Baru	General Trade	3.597031	98.678513	Yoghurt	41		Married	15.84
5018	TR88968	385	2022-08-21	P9	10000		60000		Lingga	Lingga	Modern Trade	-3.654703	128.190643	Yoghurt	41		Married	15.84
5019	TR90487	385	2022-12-24	P9	10000		50000	8	Sinar Harapan	Harapan Baru	General Trade	5.548290	95.323753	Yoghurt	41		Married	15.84

Sales Qty Data Overview

Sales Qty is very cyclical, the changes day by day is quite significant.

Train and Test Data

Modelling

Result from Modelling

RMSE Value: 19.69852579129112

R-squared Value: -0.7496914917708499

MAE Value: 16.405871447185074

Forecasting for Next Year

For the forecasting data it's not really similar with the Sales actual data, this is because the actual data is very cyclical and the forecasting is just take the mean of the sales data.

Clustering Modelling

Create Machine Learning Modelling Clustering using K-Means

Data Preparation

	CustomerID	TransactionID	Qty	TotalAmount
0	1	17	60	623300
1	2	13	57	392300
2	3	15	56	446200
3	4	10	46	302500
4	5	7	27	268600

442	443	16	59	485100
443	444	18	62	577700
444	445	18	68	587200
445	446	11	42	423300
446	447	13	42	439300

Standardization Data

	TransactionID	Qty	TotalAmount
0	1.779816	1.496527	2.094768
1	0.545884	1.261093	0.239269
2	1.162850	1.182615	0.672218
3	-0.379565	0.397833	-0.482047
4	-1.305014	-1.093251	-0.754347
442	1.471333	1.418049	0.984681
443	2.088298	1.653484	1.728488
444	2.088298	2.124352	1.804796
445	-0.071082	0.083921	0.488275
446	0.545884	0.083921	0.616794

Determine Number of Clusters

Number of Clusters = 4

Silhouette Score: 0.3177554917332133

Number of Clusters = 3

Silhouette Score: 0.40585912730645

Clustering Result

Cluster 1 have the most customer, but Cluster 0 has higher Qty, Total Amount and Transaction. Meanwhile Cluster 2 has the lowest for Qty, Total Amount and Transaction.

Business Recommendation

1. Cluster 0

We must keep this customer, because this Cluster has high value. We can give them like Loyalty Programs for repeat purchases or buy product by passing the limit of shopping and on that program we can give some points and the points can be exchanged with our another product for free.

2. Cluster 1

Most of customer in this Cluster, so we must increase buying rate of the customer. We can give them discount voucher after they bought product, so they consider to buy another product using that voucher.

3. Cluster 2

We must do some campaigns that can make our products become their top of mind to increase the buying rate. We must give them knowledge our product, why must choose and buy our product and we can highlight the good review for our product to proof that our product is good and worth to buy.

For More Information

GitHub:

https://github.com/vickytanamal/Machine-Learning-Time-Series-and-Regression-Kalbe-Nutritionals
Tableau:

https://public.tableau.com/views/KalbeNutritionalsVIX/Dashboard1?:language=en-US&publish=yes&:display_count=n&:origin=viz_share_link

Thank You

Video Presentation Here

https://youtu.be/WWWAkN8gATM