(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平8-217484

(43) 公開日 平成8年(1996) 8月27日

(51) Int. Cl. 6 C 0 3 C G 0 2 B	3/068 3/15 3/155 1/02	識別記号	宁内整理 番	号	F I C 0 3 C G 0 2 B	3/068 3/15 3/155 1/02	技術表示箇所
	審査請求	未請求 謂	背求項の数 1	FD		(全6頁)	
(21) 出願番号	特	類平7-47731			(71) 出願人	000128784 株式会社オハラ	
(22) 出願日	平,	成7年 (1995)	2月13日		(72) 発明者	神奈川県相模原市小 小野沢 雅浩	山1丁目15番30号 山1丁目15番30号 株

(54) 【発明の名称】光学ガラス

(57) 【要約】

【目的】 本発明は、屈折率 (nd) が1.65~1. 90、アッベ数 (vd) が35~65の範囲の光学恒数 を有し、かつ、失透に対する十分なる安定性を示す光学 ガラスを提供することにある。

【構成】 必須成分が重量%で、B2O3 1~45%、 La_2O_3 1~50%, Lu_2O_3 0.5~30%, R O (ただし、R=Zn、Mg、Ca、Sr、Ba) 1 ~45%から成る。

20

【特許請求の範囲】

【請求項1】 重量%で、B₂O₃ $1 \sim 45$ 0~30%, GeO2 %、SiO₂ 0~10%、ただし、B₂O₃+SiO₂+GeO₂の合計 **暇** 10~45%、La₂O₃ 1~50%, L 0. 5~30%, Y₂O₃ $0 \sim 2$ u 2O3 $0 \sim 20\%$, Yb_2O_3 0%, Gd₂O₃ 0~20%、ただし、La₂O₃+Lu₂O₃+Y₂O₃+ Gd₂O₃+Yb₂O₃の合計型 15~65%、RO(た $0 \sim 5\%$, $TiO_2 + ZrO_2$ % A 1 2 O 3 の合計量 0~20%、Ta₂O₅+Nb₂O₅+WO₃の 合計量 0~40%、R'₂O(ただし、R'=Li、 0~ 2 $Na, K) 0 \sim 10\%, Sb_2O_3$ %、の各成分を含有し、かつ、屈折率(nd)が1.6 5~1.90、アッペ数 (vd) が35~65の範囲の 光学恒数を有することを特徴とする光学ガラス。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、屈折率 (nd) が 1 . $65 \sim 1$. 90 、 7 ッペ数 (νd) が $35 \sim 65$ の範囲 の光学恒数を有する光学ガラスに関する。

[0002]

【従来の技術】従来から、前記光学恒数を有する光学ガ ラスとしてはB2O3およびLa2O3を主成分としたガラ スが種々知られている。例えば、B2O3-SiO2-L a₂O₃-BaO-ZrO₂系、B₂O₃-La₂O₃-Gd₂ O₃-ROおよび/またはAl₂O₃系(ROは2価金属 酸化物)、B₂O₃-S i O₂-L a₂O₃-Y₂O₃-Z r $O_2 - Ta_2O_5$ 系および/または $B_2O_3 - SiO_2 - La$ 30 $_{2}O_{3}-Y_{2}O_{3}-Z$ r $O_{2}-Z$ nO系、 $B_{2}O_{3}-L$ a $_{2}O_{3}$ -Y₂O₃-RO-Li₂O系等のガラスが、それぞれ特 開昭51-34914号、特開昭48-61517号、 特公昭52-48609号、特開昭55-116641 号および特開昭60-221338号等の各公報におい て提案されている。一般的にこれらのガラスは耐失透性 に劣っていることから、前記各公報に掲載のガラスはい ずれも耐失透性の改善に重点がおかれているが十分では なく、ガラス成形上さらに耐失透性に優れたガラスの開 発が望まれている。

[0003]

【発明が解決しようとする課題】本発明は、屈折率(nd)が1.65~1.90、アッペ数(ν d)が35~65の範囲の光学恒数と大量生産し得るに十分な失透に対する安定性(耐失透性)を示す光学ガラスを提供することにある。

[0004]

前記光学定数を維持しつつ、一段と優れた耐失透性を示すことを見いだし、本発明をなすに至った。

【0005】本発明にかかる光学ガラスの特徴は、重量 %で、B₂O₃ 1~45%、SiO₂

 $0\sim30\%$ 、 GeO_2 $0\sim10\%$ 、ただし、 $B_2O_3+SiO_2+GeO_2$ の合計量 $10\sim45$ %、 La_2O_3 $1\sim50\%$ 、 Lu_2O_3 0. $5\sim30\%$ 、 Y_2O_3 $0\sim20\%$ 、 Gd_2O_3 $0\sim20\%$ 、 Yb_2O_3 $0\sim20\%$ 、

だし、 $R=Z\,n$ 、Mg、 $C\,a$ 、 $S\,r$ 、 $B\,a$) $1\sim4\,5$ 10 ただし、 $L\,a_2O_3+L\,u_2O_3+Y\,_2O_3+G\,d_2O_3+Y\,_2O_3+G\,d_2O_3+Y\,_2O_3+G\,d_2O_3+Y\,_2O_3$ $0\sim5\,\%$ 、 $T\,i\,O_2+Z\,r\,O_2$ $2O_3$ の合計量 $1\,5\sim6\,5\,\%$ 、 $R\,O$ (ただし、R=Z 0合計量 $0\sim4\,0\,\%$ 、 $R'\,_2O$ (ただし、 $R'=L\,_1$ 、 $0\sim5\,\%$ 、 $T\,i\,O_2+Z\,r\,O_2$ の合計量 $0\sim4\,0\,\%$ 、 $S\,b_2O_3$ $0\sim2$ $0\sim2\,0\,\%$ 、 $T\,a_2O_5+N\,b_2O_5+W\,O_3$ の合計量 $0\sim4\,0\,\%$ 、 $S\,b_2O_3$ $0\sim2\,0\,\%$ 、 $S\,b_2O_5+W\,O_3$ の合計量 $0\sim4\,0\,\%$ $S\,b_2O_5+W\,O_3$ の合計量 $0\sim2\,0\,\%$ $S\,b_2O_5+W\,O_3$ の合計量 $0\sim4\,0\,\%$ $S\,b_2O_5+W\,O_3$ $O\sim4\,0\,\%$ $O\sim4\,0\,$

【0006】本発明による B_2O_3 -L a_2O_3 -L u_2O_3 -RO系ガラスは、上記目的達成に当たり、 B_2O_3 -L a_2O_3 -RO系ガラスに、種々の成分中、とくにL u_2O_3 -RO系ガラスに、種々の成分中、とくにL u_2 O $_3$ 成分を共存させることがきわめて重要であるという従来技術にない知見にもとづいて構成されている点に特徴がある。

【0007】次に、上記のとおり、各成分の組成範囲を限定した理由について述べる。本発明の光学ガラスにおいて、 B_2O_3 、 SiO_2 および GeO_2 の各成分は、ガラス形成成分であるが、そのうち B_2O_3 成分の量が1%未満であるとガラスの失透傾向が増大し、また45%を超えると B_2O_3 成分の揮発により均質なガラスが得られなくなると同時に、ガラスの化学的耐久性が劣化する。また。 SiO_2 成分の量が30%を超えると溶解性の悪化から均質なガラスを得難くなる。さらに GeO_2 成分は光学恒数調整のため添加し得るが、その量は10%までで十分である。しかし B_2O_3 、 SiO_2 および GeO_2 各成分の1種または2種以上の合計量はガラスの失透防止のため10%以上必要であり、またこれらの成分の合計量が45%を超えると目標の光学恒数を維持できなくなる。

【0008】 La_2O_3 成分は、前記の光学恒数をガラス 40 に与えるのに有効な成分であるが、その量が1%未満では、 Lu_2O_3 との共存によるガラスの耐失透性改善効果が十分に得られず、50%を超えるとガラスはかえって失透しやすくなる。

【0009】 Lu_2O_3 成分は、本発明のガラスにおいて La_2O_3 成分と共存させることによってガラス化範囲を 拡大し、一段と良好な耐失透性を示すことを見いだした 重要な成分であるが、その量が0.5%未満では、その 効果が十分でなく、また、その量が30%を超えると、ガラスはかえって失透しやすくなる。

【0010】Y₂O₃、Gd₂O₃およびYb₂O₃の各成分

は、前記光学恒数をガラスに与えるのに有効な成分であ り、La₂O₃およびLu₂O₃と合わせてガラス組成を多 成分化することにより、耐失透性に優れたガラスが得ら れる。しかし、上記の諸効果を得るためには、これら5 成分のうちの2種以上の合計量を15%以上にすること が必要である。またこれらの成分の量が65%を超える とガラスはかえって失透しやすくなる。

【0011】ZnO、MgO、CaO、SrOおよびB a Oの各成分は、ガラスの耐失透性や均質性を向上させ る効果があるが、これら2価金属酸化物成分の上記諸効 10 果を得るためには、これらの成分の1種または2種以上 の合計量が1%以上必要である。しかし、これらの成分 の量が45%を超えるとガラスの化学的耐久性が著しく

【0012】Al2Os成分は、ガラスの化学的耐久性改 善のために任意に添加し得るが、その量は5%までで十 分である。

【0013】TiO₂、ZrO₂の各成分は、ガラスの化 学的耐久性改善および光学恒数調整のため任意に添加し %を超えるとガラスは失透しやすくなる。

【0014】Ta₂O₅、Nb₂O₅およびWO₃の各成分 は、ガラスの耐失透性改善および光学恒数調整のため任 意に添加し得るが、これらの成分の1種または2種以上 の合計量が40%を超えるとガラスは失透しやすくな

【0015】Li₂O、Na₂O、K₂Oの各成分はガラ スの溶融性改善のために添加し得るが、これらの成分の

1種または2種以上の合計量が10%を超えると化学的 耐久性が著しく悪化する。

【0016】Sb2Os成分はガラスの溶融の際の清澄剤 として任意に添加し得るが、その量は2%以下で十分で ある。

【0017】なお、本発明のガラスに上記以外の成分、 例えばF、Bi₂O₃、HfO₂、Cs₂OおよびSnO等 の成分の合計3%程度まで、光学恒数の調整、ガラスの 溶解性および失透性の改善のため必要に応じ添加しても さしつかえない。

[0018]

【実施例】次に、本発明の光学ガラスにかかる実施組成 例 (No. 1~No. 10) および前記従来の光学ガラ スの比較組成例 (No. 11~No. 13) についてそ れぞれ得られたガラスの屈折率(nd)、アッベ数(v d) および失透試験の測定結果とともに表1に示した。 【0019】失透試験はガラス成形時に発生する失透を 対象とした試験であり、白金製の50ccポットにガラ ス試料80gを入れて、電気炉中で各ガラスの溶融性の 得るが、これらの成分の1種または2種の合計量が20 20 難易度に応じて、各試料を1100~1300℃の温度 で2時間溶融した後、降温して各試料を1000℃、9 75℃および950℃で2時間保温した後、炉外に取り 出して失透の有無を顕微鏡により観察したもので、その 結果、失透が認められないガラスは○印で、また失透が 認められたガラスは×印で示した。

[0020]

【表1】

5

単位;重量%

									. 1 25 2		
				実 施			例				
		1 2			3		4		5		
SiO ₂		30.	0	15.	0			2.	0	20.	0
В.	O a	1.	0	5.	0	1 0	. 0	10.	_0_	20.	_0_
Ge	3 0 ₂					L		10.	_0_	L	
	. 0 .	1.	0	10.	0_	10		40.	_0_	28.	0
Lı	1 a O a	30.	0	<u>. 5.</u>	_0_	18	<u>. Q</u>	5.	0	2.	0
	0.							L		<u></u>	
	1.0.		·	L				10.	_0_	<u> </u>	
	0 2 0 3							<u> </u>			
	10			L				1.	0	5.	_0_
Μg				3.	<u>o</u>			L			
CaO		10.	0	L		4	<u>. 0</u>	L		5.	0
SrO				7.	<u> </u>	L		L		3.	0
BaO		10.	0	L		4 1		<u> </u>		5.	0
A1:0:		1.	_0_	L		5		L		0.	5
TiO:		3.	6_	20.	_0_	7		<u> </u>			<u></u> -
-	0.	6.	5_			3	<u>. 0</u>	2.	_5_	7.	_5_
	3 2 0 5					L		18.		<u> </u>	
	0 2 0 5	4.	9	22.	0_	L		1.	_0_	<u> </u>	
W				3.	0	 _	. 0	<u> </u>			
	i • 0	<u>l</u> .	0_	L		11_	. 0			4.	_0_
	3 2 0			5.	0	<u>-</u>		↓			
	0			5.	0_	L		├			
Sb: 0:		1.				<u> </u>					
n d		1.665		1.876		1.741		1.856		1.692	
νd		42.7		35.2		37.5		40.9		51.6	
	1000℃	0		0		(_	0		0	
失透試験	975℃ ○		0		0		0		0		
験	950℃	0		0		(>	0		0	

【表1】

7

8 単位;重量%

		実 施				(9 1)					
		6		7		8		9		10	
S	SiO.				5.0				6.0		
В.	0 :	20.	0	25.	0	28.	0	30.	0	45.	0
G	e 0 ₂					5.	0				
L	a . O .	17.	0	50.	0	20.	0	23.	5	29.	0
	1:0.	3.	0	0.	5	20.	0	1.	5	1.	0
Y.	0.	2.	0.			7.	0	6.	0	10.	0
G	1.0.	2.	0			<u> С</u>				5.	0
YI	0 . 0 .	2.	0	14.	5	3.	Ó				
2 1	n O					L		23.	_1_	5.	0
M	g O					L				L	
	a 0			L		5.	0_				
Sı	r 0			L		L					
	a O	6.	5	1.	0	L					
	l 2 O 3	2.	5	L		L				L	
	i 0 :			L		L		0.	_1_	L	
Z 1	r O ,	<u> </u>		3.	9	L		6.	0	2.	0
	3 2 O B										
N	0 z O s	40.	0	L		L					
W				<u></u>		<u>5.</u>				L	
L	i 2 0			L		5.	0	3.	3	3.	0_
	3 z O	L		L		L				L	
	0	5.	0_	L		L					
_	b 2 O 8			0.		2.		0.			
n d		1.89		1.779		1.729		1.708		1.691	
עע	<u>d</u>	38.	0	47.	7	52.	5	48.	9	56.	8
步	1000℃	0		0		0		C)	С)
失遊試験	975 ℃	0		0		0		О	·	С	
験	950°C	0		0		0		С)	0)

【表1】

单位;重量%

		比	較	例		
		1 1	12	1 3		
Si	0 2	2.0	20.0			
В.		10.0	20.0	45.0		
	0 z	10.0	<u></u>			
Lε		45.0	28.0	1.0		
	120.		ļ			
	0.		<u> </u>	10.0		
	120.	10.0	2.0	5.0		
	0:0:		L			
Z r	10	1.0	5.0	5.0		
M E			L			
C E			5.0			
SI			3.0			
Ba	ı O		5.0	L		
	20,		0.5			
	0 2					
	0 2	2.5	7.5	2.0		
	1 2 O e	18.5	<u> </u>	L		
NF	0.00	1.0				
W						
Li	. 0		4.0	3.0		
Nε	1 0		<u> </u>	L		
К.				<u></u>		
	203					
n c		1.857	1.690	1.693		
ע כ	<u>i</u>	40.9	51.8	56.9		
失選	1000℃	0	0	0		
選	975℃	×	×	0		
試験	950℃	×	×	×		

9

10

【0021】表1に見られるとおり、本発明の実施例のガラスはいずれも前記所定の光学恒数を有している。また、Lu₂O₃を含有しない、No.11~No.13の比較例のガラスに比べ、これらのガラスはいずれも耐失透性に優れ、さらに均質化しやすい。このため前記実施例のガラスは製造が容易である。なお、本発明の表1記載の実施組成例のガラスは、いずれも酸化物、炭酸塩および硝酸塩等の通常の光学ガラス原料を用いて所定の割合で秤量混合した後白金坩堝に投入し、組成による溶融の難易度に応じて1000~1300℃の温度で2~4時間溶融し、攪拌均質化した後適当な温度に下げて金型等に鋳込み徐冷することにより容易に得ることができる。

[0022]

【発明の効果】以上述べたとおり、本発明の光学ガラスは B_2O_3-L a_2O_3-L u_2O_3-R O系の特定組成を有するものであるから、屈折率 (nd) が $1.65\sim1.90$ 、アッベ数 (νd) が $35\sim65$ の範囲の光学定数と従来のガラスに比べて一段と優れた耐失透性を有する20 ガラスが得られる。