Top-Down Parsing

A **top-down parser** begins with the root of the parse tree and systematically extends the tree downward until its leaves match the classified words returned by the scanner.

General top-down parsing algorithm

- 1. select a nonterminal symbol on the lower fringe of the partially built parse tree
- 2. replace symbol with children corresponding to right-hand side of one of its productions
- repeat this process until
 - a) fringe only contains terminal symbols and input stream has been exhausted
 - → parsing succeeds
 - b) clear mismatch occurs between fringe and input stream
 - → backtrack and try another production
 - → if there are no more possible productions, report an error

```
1 root \leftarrow node for the start symbol S
2 focus \leftarrow root
3 push(null)
4 word ← NextWord()
5 while true do
     if focus is a nonterminal then
        pick next rule to expand focus (A \rightarrow \beta_1, \beta_2, \dots, \beta_n)
        build nodes for \beta_1, \beta_2, \dots, \beta_n as children of focus
        push (\beta_n, \beta_{n-1}, \dots, \beta_2)
        focus \leftarrow \beta_1
10
     else if word matches focus then
        word \leftarrow NextWord()
13
        focus \leftarrow pop()
     else if word = eof and focus = null then
14
15
        accept the input and return root
     else
16
        backtrack
17
```

Top-Down Parsing

If the focus is a terminal symbol that does not match the input, the parser must backtrack.

The implementation of "backtrack" is straightforward

- set focus to its parent in the partially-built parse tree and disconnects its children
- 2. if an untried rule remains with focus on its left-hand side
 - perform Lines 7 to 10 of algorithm on Slide 145
- 3. if no untried rule remains
 - move up another level and try again
 - if out of possibilities, report a syntax error and quit

Backtracking increases the asymptotic cost of parsing. In practice, it is an expensive way to discover syntax errors.

One key insight makes top-down parsing efficient: a large subset of the context-free grammars can be parsed **without** backtracking!

Transforming a Grammar for Top-Down Parsing

The efficiency of a top-down parser depends critically on its ability to pick the **correct** production each time that it expands a nonterminal

- if the parser chooses wisely, top-down parsing is efficient
- if the parser chooses poorly, the cost of parsing rises
- worst case behavior: the parser does not terminate!

Two structural issues with CFGs can lead to problems with top-down parsers

- non-termination due to left recursion
- backtracking due to unbounded lookahead

Next, we will look at transformations that the compiler writer can apply to the grammar to avoid these problems.

A Top-Down Parser with Oracular Choice

Assume that the parser has an **oracle** that picks the correct production at each point.

Example on next slide applies this parser to $a + b \times c$

- current position of the parser in the input
- → step in which the parser matches a terminal symbol and advances the input

At each step, the sentential form represents the lower fringe of the partially-built parse tree.

Implications of oracular choice

- number of steps proportional to derivation length plus input length
- inconsistent choices, e.g., productions applied to Expr in first and second step

Rule	Sentential Form	Input
	Expr	\uparrow name $+$ name $ imes$ name
1	Expr + Term	\uparrow name $+$ name $ imes$ name
3	Term + Term	\uparrow name $+$ name $ imes$ name
6	Factor + Term	\uparrow name $+$ name $ imes$ name
9	name + <i>Term</i>	\uparrow name $+$ name $ imes$ name
\rightarrow	name + <i>Term</i>	$name \uparrow + name imes name$
\rightarrow	name + <i>Term</i>	$name + \! \uparrow name \times name$
4	$name + \mathit{Term} \times \mathit{Factor}$	$name + \! \uparrow name \times name$
6	$name + \textit{Factor} \times \textit{Factor}$	$name + \! \uparrow name \times name$
9	$name + name \times \textit{Factor}$	$name + \! \uparrow name imes name$
\rightarrow	$name + name \times \textit{Factor}$	$name + name \uparrow \times name$
\rightarrow	$name + name \times \textit{Factor}$	name+name×↑name
9	$name + name \times name$	$name + name \times \uparrow name$
\rightarrow	$name + name \times name$	$name + name imes name \uparrow$

With the current version of our expression grammar, it is difficult to obtain a parser that makes **consistent**, **algorithmic** choices.

Example Assume our parser expands the **leftmost** nonterminal by applying productions in the **order** in which they appear in the grammar.

Rule	Sentential Form	Input
	Expr	$\uparrow name + name \times name$
1	Expr + Term	$\uparrow name + name \times name$
1	Expr + Expr + Term	$\uparrow name + name \times name$
1		\uparrow name $+$ name $ imes$ name

With this grammar and consistent choice, the parser will continue to expand the fringe **indefinitely** because that expansion never generates a leading terminal symbol.

This problem arises because the grammar uses **left recursion** in some of its productions.

```
Expr 
ightarrow Expr + Term
Expr 
ightarrow Expr - Term
Term 
ightarrow Term 
ightarrow Factor
Term 
ightarrow Term 
ightarrow Factor
```

With left recursion, a top-down parser can loop indefinitely without generating a leading terminal symbol that the parser can match.

Fortunately, we can reformulate a left-recursive grammar so that it uses **right recursion**, *i.e.*, any recursion involves the rightmost symbol in a rule.

$$A \rightarrow A\alpha$$
 $A \rightarrow \beta A'$
 $A' \rightarrow \alpha A'$
 $A' \rightarrow \alpha A'$

The translation from (direct) left recursion to right recursion is mechanical

- introduce a new nonterminal A' and transfer the recursion onto A'
- add a rule $A' \to \epsilon$, where ϵ represents the empty string

Note To expand the production $A' \to \epsilon$, the parser simply sets focus \leftarrow pop(), which advances its attention to the next node, terminal or nonterminal, on the fringe.

In the classic expression grammar, direct left recursion appears in the productions for both *Expr* and *Term*.

We obtain the **right-recursive variant** of the classic expression grammar (*cf.* next slide) by inserting these replacements back into the original grammar.

```
Goal \rightarrow Expr
      Expr → Term Expr'
     Expr' \rightarrow + Term Expr'
3
               Term Expr'
                  \epsilon
5
     Term → Factor Term'
     Term' \rightarrow × Factor Term'

÷ Factor Term'

8
                  \epsilon
9
    Factor \rightarrow (Expr)
10
                  num
11
                  name
```

This right-recursive grammar specifies the **same** set of expressions as the original left-recursive grammar

- it eliminates the problem with nontermination
- it does not avoid the need for backtracking

Example The next slide shows the behavior of a top-down parser using this grammar on the input $a + b \times c$

- it still assume oracular choice
- number of steps is still proportional to derivation length plus input length

Rule	Sentential Form	Input
	Expr	\uparrow name $+$ name $ imes$ name
1	Term Expr'	\uparrow name $+$ name $ imes$ name
5	Factor Term' Expr'	\uparrow name $+$ name $ imes$ name
11	name <i>Term' Expr'</i>	\uparrow name $+$ name $ imes$ name
\rightarrow	name <i>Term' Expr'</i>	$name \uparrow + name imes name$
8	name <i>Expr</i> '	$name \uparrow + name imes name$
2	name + <i>Term Expr</i> '	$name \uparrow + name imes name$
\rightarrow	name + <i>Term Expr</i> '	$name + \! \uparrow name imes name$
5	name + Factor Term' Expr'	$name + \! \uparrow name \times name$
11	name + name <i>Term' Expr'</i>	$name + \! \uparrow name imes name$
\rightarrow	name + name <i>Term' Expr'</i>	$name + name \uparrow \times name$
6	name + name × Factor Term' Expr'	$name + name \uparrow \times name$
\rightarrow	name + name × Factor Term' Expr'	$name + name \times \uparrow name$
11	$name + name \times name \textit{Term'Expr'}$	$name + name \times \uparrow name$
\rightarrow	$name + name \times name \textit{Term'Expr'}$	$name + name imes name \uparrow$
8	$name + name \times name \ \textit{Expr'}$	$name + name imes name \uparrow$
4	$name + name \times name$	$name + name imes name \uparrow$

So far, we have only tackled **direct** left recursion. There can also be **indirect** left recusion, which is caused by chains of "transitive" productions.

$$\alpha \to \beta, \beta \to \gamma, \text{and } \gamma \to \alpha \delta \implies \alpha \to^+ \alpha \delta$$

Indirect left recursion can be obscured by a long chain of productions. Therefore, we need a **more systematic approach** to convert indirect left recursion into right recursion.

We can eliminate all left recursion from a grammar using two simple techniques

- forward substitution to convert indirect left recursion into direct left recursion
- rewriting direct left recursion as right recursion

```
1 impose an arbitrary order on nonterminals A_1, A_2, \ldots, A_n

2 for i \leftarrow 1 to n do

3 | for j \leftarrow 1 to i-1 do

4 | if there is a production A_i \rightarrow A_j \gamma and A_j \rightarrow \delta_1 |\delta_2| \ldots |\delta_n then

5 | replace\ A_i \rightarrow A_j \gamma with a set of productions A_i \rightarrow \delta_1 \gamma |\delta_2 \gamma| \ldots |\delta_n \gamma|

6 | rewrite\ the\ productions\ to\ eliminate\ any\ direct\ left\ recursion\ on\ A_i
```

Note This algorithm assumes that the original grammar has no cycles $(A \rightarrow^+ A)$ and no ϵ -productions.

The need to backtrack is the **major source of inefficiency** in a leftmost, top-down parser.

Example With consistent choice, such as considering rules in order of appearance in the grammar on Slide 154, the parser would have backtracked on each name.

For this grammar, we can avoid backtracking with a simple modification

- when selecting a rule, the parser considers the focus symbol and the next symbol
- using one such lookahead symbol, the parser can disambiguate all of the choices

Backtrack-Free or Predictive Grammar

A context-free grammar for which the leftmost, top-down parser can **always** predict the correct rule with lookahead of at most one word.

To avoid the need for backtracking in a parser, we need to understand what property makes a grammar backtrack-free.

Intuition

At each point in the parse, the choice of an expansion is obvious because **each** alternative for the leftmost nonterminal leads to a **distinct** terminal symbol.

Comparing the next word against those choices reveals the correct expansion.

Formalizing this intuition will required some notation...

FIRST

For a grammar symbol α , FIRST(α) is the set of terminals that can appear at the start of a sentence derived from α .

The domain of FIRST is the set of grammar symbols, $T \cup NT \cup \{\epsilon, eof\}$ and its range is $T \cup \{\epsilon, eof\}$.

 $\alpha \in T \cup \{\varepsilon, eof\}$ FIRST (α) has exactly one member α $A \in NT$ FIRST(A) contains all terminal symbols that can appear as the leading symbol in any sentential form derived from A

```
1 foreach \alpha \in T \cup \{\epsilon, eof\} do
     FIRST(\alpha) \leftarrow \alpha
 3 foreach A \in NT do
       FIRST(A) \leftarrow \emptyset
 5 while FIRST sets are still changing do
       foreach p \in P of the form A \to \beta_1 \beta_2 \dots \beta_k, where \beta_i \in T \cup NT do
           rhs \leftarrow FIRST(\beta_1) - {\epsilon}
           i \leftarrow 1
           while \epsilon \in FIRST(\beta_i) and i \leq k-1 do
               \mathsf{rhs} \leftarrow \mathsf{rhs} \cup (\mathsf{FIRST}(\beta_{i+1}) - \{\epsilon\})
10
              i \leftarrow i + 1
11
           if i = k and \varepsilon \in FIRST(\beta_k) then
             \mid rhs \leftarrow rhs \cup \{\epsilon\}
13
          FIRST(A) \leftarrow FIRST(A) \cup rhs
14
```

For the right recursive expression grammar shown on Slide 154, the initial step of the algorithm produces the following FIRST sets of the **terminal symbols**.

	num	name	+	_	×	<u>•</u>	()	eof	€
FIRST	num	name	+	_	×	•	()	eof	€

Once the fixed-point computation terminates, the FIRST sets of the **nonterminal symbols** are as follows.

	Expr	Expr'	Term	Term'	Factor
FIRST	(, num, name	+, -, є	(, num, name	\times , ÷, ϵ	(, num, name

FIRST sets simplify the implementation of a top-down parser!

Example The parser tries to expand an *Expr'* using the rules of the right-recursive expression grammar.

It can use the lookahead symbol and the first sets to choose between Rules 2, 3, and 4.

Symbol	Rule	Reason
+	2	$+ \in FIRST(+ \ \textit{Term Expr'}), + \not\in FIRST(- \ \textit{Term Expr'}), \ and + \not\in FIRST(\epsilon)$
	3	$- ot\in$ FIRST $(+$ <i>Term Expr'</i> $),$ $-\in$ FIRST $(-$ <i>Term Expr'</i> $),$ and $- ot\in$ FIRST (ϵ)

Rule 4, the ϵ -production, poses a slightly harder problem: FIRST(ϵ) is just $\{\epsilon\}$, which matches no word returned by the scanner.

Dealing with ϵ **-productions**

- parser should apply the ϵ -production if the lookahead symbol is **not** a **member** of the FIRST set of any other alternative
- to differentiate between **legal input** and **syntax errors**, it needs to know which words can appear as the leading symbol after a valid application of an ϵ -production

FOLLOW

For a nonterminal A, FOLLOW(A) contains the set of words that can occur immediately after A in a sentence.

```
1 foreach A \in NT do
 _2 \mid \mathsf{FOLLOW}(\mathsf{A}) \leftarrow \emptyset
 3 FOLLOW(S) ← {eof}
 4 while FOLLOW sets are still changing do
      foreach p \in P of the form A \to \beta_1 \beta_2 \dots \beta_k, where \beta_i \in T \cup NT do
          lhs \leftarrow FOLLOW(A)
          for i \leftarrow k down to 1 do
              if \beta_i \in NT then
                  FOLLOW(\beta_i) \leftarrow FOLLOW(\beta_i) \cup lhs
                  if \varepsilon \in \mathsf{FIRST}(\beta_{\mathfrak{i}}) then
10
                      lhs \leftarrow lhs \cup (FIRST(\beta_i) - \{\epsilon\})
11
                  else
                    lhs \leftarrow lhs \cup FIRST(\beta_i)
13
              else
14
                                                                    // Note that since \beta_i \notin NT, FIRST(\beta_i) = \{\beta_i\}
                  lhs \leftarrow FIRST(\beta_i)
15
```

Once the fixed-point computation terminates, the FOLLOW sets of the **nonterminal symbols** of the expression grammar are as follows.

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof,)	eof,)	eof, +, -,)	eof, +, -,)	eof, $+$, $-$, \times , \div ,)

Example Recall the expansion of Expr' on Slide 163. The parser applies Rule 4 only if the lookahead symbol is in FOLLOW(Expr'), which contains eof and). Any other symbol causes a syntax error.

Using FIRST and FOLLOW, we can specify precisely the condition that makes a grammar backtrack free for a top-down parser.

Backtrack-Free Grammar

For a production $A \rightarrow \beta$, we define its augmented FIRST set, FIRST⁺.

$$\mathsf{FIRST}^+(A \to \beta) = \left\{ \begin{array}{ll} \mathsf{FIRST}(\beta) & \varepsilon \not\in \mathsf{FIRST}(\beta) \\ \mathsf{FIRST}(\beta) \cup \mathsf{FOLLOW}(A) & \textit{otherwise} \end{array} \right.$$

A grammar is **backtrack-free** if the following property holds for any nonterminal A with multiple right-hand sides, *i.e.*, $A \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$.

$$\forall \ 1 \leq i, j \leq n, i \neq j : \mathsf{FIRST}^+(A \to \beta_i) \cap \mathsf{FIRST}^+(A \to \beta_j) = \emptyset$$

Example Is the right-recursive expression grammar backtrack-free?

	Rule	FIRST	FIRST ⁺
2	Expr' ightarrow + Term Expr'	{+}	{+}
3	Expr' $ ightarrow$ — Term Expr'	{}	{—}
4	Expr' $ ightarrow \epsilon$	$\{\epsilon\}$	$\{\epsilon, eof,)\}$
6	Term' $ ightarrow$ $ imes$ Factor Expr'	{×}	{×}
7	Term' $ ightarrow \div$ Factor Expr'	{÷}	{ ÷ }
8	<i>Term'</i> $ ightarrow$ $ m arepsilon$	$\{\epsilon\}$	$\{\epsilon, eof, +, -,)\}$
9	Factor $ ightarrow$ (Expr)	{ (}	{(}
10	<i>Factor</i> → num	{num}	{num}
11	$ extit{\it Factor} ightarrow {\sf name}$	{name}	{name}

Note

We only need to consider the rules that have multiple right-hand sides

Only Rules 4 and 8 have FIRST+ sets that differ from their FIRST sets

Intersecting the FIRST⁺ sets of rules with alternate right-hand sides proves that the grammar is backtrack-free

Left-Factoring to Eliminate Backtracking

Not all grammars are backtrack-free. Assume we extend the expression grammar as shown to include function calls and array-element references.

Because productions 11, 12, and 13 all begin with name, they have **identical** FIRST⁺ sets. When expanding *Factor* with a lookahead of name, the parser may need to backtrack.

Note With a lookahead of two the need to backtrack can be avoided here.

Left-Factoring to Eliminate Backtracking

Fortunately, we can transform the problematic productions to create **disjoint** FIRST⁺ sets.

The rewrite adds a new nonterminal *Arguments* and pushes the alternate suffixes for *Factor* into right-hand sides for *Arguments*.

The process of extracting and isolating common prefixes in a set of productions is called **left-factoring**. Left-factoring can often eliminate the need to backtrack.

Note In general it is undecidable whether or not a backtrack-free grammar exists for an arbitrary context-free language.

Left-Factoring to Eliminate Backtracking

We can left factor any set of rules that has alternate right-hand sides with a common prefix.

$$A \rightarrow \alpha \beta_1 |\alpha \beta_1| \dots |\alpha \beta_n| \gamma_1 |\gamma_2| \dots |\gamma_m|$$

The transformation introduces a new nonterminal B to represent the alternate suffixes for α and rewrites the original productions according to the following pattern.

$$A \rightarrow \alpha B|\gamma_1|\gamma_2|\dots|\gamma_m$$

$$B \rightarrow \beta_1|\beta_1|\dots|\beta_n$$

To left factor a complete grammar, we must inspect each nonterminal, discover common prefixes, and apply the transformation in a **systematic** way.

Top-Down Recursive-Descent Parsers

Backtrack-free grammars lend themselves to simple and efficient parsing with a paradigm called **recursive descent**.

Constructing a recursive-descent parser

- for each nonterminal, construct a procedure to recognize its right-hand sides
- these mutually recursive procedures call one another to recognize nonterminals
- recognize terminals by direct matching

Example Consider the three rules for *Expr'* in the right-recursive expression grammar.

```
1 procedure Expr'()
    // Expr' \rightarrow + Term Expr' \mid - Term Expr'
    if word = + or word = - then
      word \leftarrow NextWord()
       if Term() then
          return Expr'()
       else
          return false
    // Expr' 
ightarrow \epsilon
    else if word = 0 or word = eof then
       return true
    // no match
    else
10
       report a syntax error
11
       return false
```

As the FIRST⁺ sets completely dictate the parsing decisions, we can automatically generate efficient top-down parsers for backtrack-free grammars.

LL(1) Parser

- scans input Left to right
- constructs a Leftmost derivation
- uses a lookahead of 1 symbol

Grammars that work in an LL(1) scheme are often called LL(1) grammars. By definition, LL(1) grammars are backtrack-free.

The most common implementation technique for an LL(1) parser generator uses a **table-driven skeleton parser**.

```
1 word ← NextWord()
2 stack.push(eof)
3 stack.push(S)
4 focus ← stack.peek()
5 loop
    if focus = eof and word = eof then report success and exit the loop
    else if focus \in T or focus = eof then
       if focus matches word then
         stack.pop()
         word ← NextWord()
10
       else report an error looking for symbol at top of stack
11
    else
       if table[focus, word] is A \rightarrow B_1B_2...B_k then
13
         stack.pop()
14
         for i \leftarrow k down to 1 do
15
            if B_i \neq \epsilon then stack.push(B_i)
16
       else report an error expanding focus
17
    focus \leftarrow stack.peek()
```

Given a nonterminal A and a lookahead symbol w, table [A, w] specifies the correct expansion.

The algorithm to build table (shown on the right) is straightforward.

If the grammar meets the backtrack-free condition, the algorithm will produce the correct table in $\mathcal{O}(|P| \times |T|)$ time.

If the grammar is not backtrack-free, the algorithm will try to assign more than one production to some elements of table.

```
1 build FIRST, FOLLOW, and FIRST+ sets
2 foreach A \in NT do
    foreach w \in T do
      table[A, w] \leftarrow error
    foreach p \in P with form A \to \beta do
       foreach w \in FIRST^+(A \rightarrow \beta) do
         table[A, w] \leftarrow p
       if eof \in FIRST^+(A \rightarrow \beta) then
          table[A, eof] \leftarrow p
```

Example The LL(1) parse table for the right-recursive expression grammar is shown below. Productions are denoted by their numbers, — denotes an error.

	eof	+	_	×	÷	()	name	num
Goal					_	0	_	0	0
Expr	_	_	_	_	_	1	_	1	1
Expr'	4	2	3		_		4	_	_
Term	-	_	 -			5		5	5
Term'	8	8	8	6	7	-	8	-	
Factor	_	_				9		11	10

Example

The table on the right shows the actions of the LL(1) expression parser for the input string $a + b \times c$.

The central column shows the contents of the stack, which holds the partially completed lower fringe of the parse tree.

The parse concludes successfully when it pops *Expr'* from the stack, leaving eof exposed on the stack and eof as the next symbol.

Rule	Stack	Input
_	eof <i>Goal</i>	\uparrow name $+$ name $ imes$ name
0	eof <i>Expr</i>	\uparrow name $+$ name $ imes$ name
1	eof <i>Expr' Term</i>	$\uparrow name + name \times name$
5	eof Expr' Term' Factor	\uparrow name $+$ name $ imes$ name
11	eof <i>Expr' Term'</i> name	$\uparrow name + name \times name$
\rightarrow	eof <i>Expr' Term'</i>	$name\uparrow + name\times name$
8	eof <i>Expr</i> '	$name\uparrow + name\times name$
2	eof <i>Expr' Term</i> +	$name\uparrow + name\times name$
\rightarrow	eof <i>Expr' Term</i>	$name + \! \uparrow name \times name$
5	eof Expr' Term' Factor	$name + \uparrow name \times name$
11	eof <i>Expr' Term'</i> name	$name + \!\uparrow name \times name$
\rightarrow	eof <i>Expr' Term'</i>	$name + name \uparrow \times name$
6	eof <i>Expr' Term' Factor</i> ×	$name + name \uparrow \times name$
\rightarrow	eof Expr' Term' Factor	$name + name \times \uparrow name$
11	eof <i>Expr' Term'</i> name	$name + name \times \uparrow name$
\rightarrow	eof <i>Expr' Term'</i>	$name + name \times name \uparrow$
8	eof <i>Expr</i> '	$name + name \times name \uparrow$
4	eof	$name + name \times name \uparrow$

Example

Consider the actions of the LL(1) parser on the **illegal** input string $x + \div y$.

It detects the **syntax error** when it attempts to expand a nonterminal *Term* with lookahead symbol ÷.

Looking up table [Term, \div] returns "—", which indicates this syntax error.

Rule	Stack	Input
_	eof <i>Goal</i>	\uparrow name $+\div$ name
0	eof <i>Expr</i>	\uparrow name $+\div$ name
1	eof <i>Expr' Term</i>	\uparrow name $+\div$ name
5	eof Expr' Term' Factor	\uparrow name $+\div$ name
11	eof <i>Expr' Term'</i> name	\uparrow name $+\div$ name
\rightarrow	eof <i>Expr' Term'</i>	$name \uparrow + \div name$
8	eof <i>Expr</i> '	$name \uparrow + \div name$
2	eof <i>Expr' Term</i> +	$name \uparrow + \div name$
\to	eof <i>Expr' <mark>Term</mark></i>	name+↑÷name

Direct-Coded LL(1) Parsers

In analogy to direct-coded scanners (*cf.* Slide 109), an LL(1) parser generator could also emit a **direct-coded parser**.

Building a direct-coded parser

- build FIRST, FOLLOW, and FIRST⁺ sets
- iterate through the grammar in the same way as the table-construction algorithm
- for each nonterminal, generate a procedure that recognizes all its right-hand sides

Direct-coded parsers have the same speed and locality advantages as recursive-descent parsers and direct-coded scanners, but retain the advantages of a grammar-generated system, such as a concise, high-level specification and reduced implementation effort.