DL3 IN H.E.S.S.

Christoph Deil, MPIK Heidelberg IACT DL3 meeting, Meudon, April 6, 2016

H.E.S.S. data analysis with internal chains

- In H.E.S.S. we have 3 internal analysis chains (HAP-HD and HAP-Fr share some parts)
- DL1 to DL5 levels are mostly incompatible between the chains
- Lack of common data formats prevents mix & match of methods from different chains (e.g. calibrations, reconstructions, gamma-hadron separations, high-level analysis) and makes it hard to understand the differences in high-level results (e.g. source spectrum).

H.E.S.S. data analysis with open source tools

- A common DL3 data model and format to the rescue!
- Export events and IRFs at the DL3 level from each chain (after gamma-hadron separation, similar to Fermi-LAT public data)
- Makes mid-level (event energies, positions) and high-level (source position, morphology, spectrum) checks between the different chains, algorithms and open-source tools possible.
- Work on data formats, exporters, checks, open source tools ongoing in parallel ...

Data format summary

H.E.S.S. software chains

HAP-HD

HAP-Fr

ParisAnalysis

FITS exporter

Per observation (valid for all targets in the field of view)

EVENTS header

- Start time
- Observation time
- Livetime
- Pointing position (RA / DEC)

EVENTS table

- Time
- Energy
- RA, DEC
- DETX, DETY

Instrument response functions (IRFs) in Fermi-LAT IRF format

Effective area (offset, energy)

Energy resolution (offset, energy, energy_reco/energy)

Point spread function (offset, energy)

Background (detx, dety, energy_reco)

Per target (spectral analysis only)

OGIP standard format

Effective area — "ARF format" (energy)

Energy resolution — "RMF format" (energy, energy_reco)

PSF formats "RPSF" and "REEF" not exported and used so far

ON and OFF region counts (energy) — "PHA format"

- Mostly agreed on FITS formats for EVENTS, AEFF, EDISP, PSF, BACKGROUND in H.E.S.S. and open source tools (Gammapy & Gammalib)
- One exporter implemented in each H.E.S.S.-internal chain, export data once for all observations (per config), valid for the whole field of view (FOV)
- To analyse any target, use response for a given FOV position (or model the whole FOV), in any case no need to go back to the H.E.S.S software for any high-level analysis.

Why export per-observation event lists / IRFs?

- The whole H.E.S.S. 1 dataset is ~ 1 GB, fits on a USB stick and in memory -> super convenient and fast high-level analysis.
- Contrast this to the H.E.S.S. software, which uses a global IRF lookup database (ROOT files, sometimes MySQL database access for tech data like muon efficiency or quality selection).

Global IRF database:

- Much larger (10+ GB) because of an everchanging detector (many different array configurations, optical efficiency degradation, mirror re-coatings, new telescopes and cameras).
- Very complex, MC productions and IRF storage handled differently in each chain.
- Pre-computed per-observation IRFs are awesome for end users and science tool writers!

Muon Efficiency 2004 – 2012 CT1, CT2, CT3, CT4 (HD calibration, run-by-run)

IRF GLOBAL DATABASE DEPENDENCIES

lookup file (.root)	histogram	parameters	x-axis	y-axis	z-axis
ScaleInfo	avg_length	opt,azm,zen,off	$\ln(\text{size}/p.e.)$	d/m	$\langle L \rangle / \text{mrad}$
	$\operatorname{avg_width}$	opt,azm,zen,off	$\ln(\text{size}/p.e.)$	d/m	$\langle W \rangle / \mathrm{mrad}$
	$\operatorname{sigma_length}$	opt,azm,zen,off	$\ln(\text{size}/p.e.)$	d/m	σ_L/mrad
	$\operatorname{sigmawidth}$	opt,azm,zen,off	$\ln(\text{size}/p.e.)$	d/m	σ_W/mrad
EnergyInfo	MeanTrueEnergy	opt,azm,zen,off,tel	$\ln(\text{size}/p.e.)$	d/m	$E/{ m TeV}$
	$\operatorname{SigmaTrueEnergy}$	opt,azm,zen,off,tel	$\ln(\text{size}/p.e.)$	d/m	$\sigma(E)/{\rm TeV}$
EffectiveAreas	EffArea_TrueEnergy	opt,telp,azm,zen,off	$E_{ m true}/{ m TeV}$	$A_{ m eff}/{ m m}^2$	
	EffArea_RecoEnergy	opt,telp,azm,zen,off	$E_{ m reco}/{ m TeV}$	$A_{ m eff}/{ m m}^2$	
	EnergyBias	opt,telp,azm,zen,off	$\log_{10}(E/\text{TeV})$	$(E_{\rm reco} - E_{\rm true})/E_{\rm true}$	
PSF	ThetaSq	opt,telp,azm,zen,off	$\log_{10}(E/\text{TeV})$	$ heta^2/{ m deg}^2$	p.d.f. value
EnergyReconstruction	${\bf Energy Reconstruction PDF}$	opt,telp,azm,zen,off	$\log_{10}(E/\text{TeV})$	$(E_{\rm reco} - E_{\rm true})/E_{\rm true}$	p.d.f. value
RadialAcceptance	RadialLookup	zen	$(\Delta\Psi)^2/{\rm deg}^2$	acc/a.u.	

Table 1: Lookups used in hap. Here, d is the impact distance, L and W are the length and width of the shower in the camera, respectively. $(\Delta\Psi)^2$ is the square of the angular distance to the observation position. θ^2 is the square of the angular distance to the centre of a source. Azm, zen, off, opt,tel, and telp are used to abbreviate azimuth, zenith and offset angles, optical efficiencies, telescope ID, and telescope pattern (eq. (5)), respectively.

DL3 data distribution in HESS

Master index JSON file

HDU index FITS table columns

Column Name	Description
OBS_ID	Observation ID (a.k.a. run number)
HDU_TYPE	HDU type (see below)
HDU_CLASS	HDU class (see below)
FILE_DIR	Directory of file (rel. to this file)
FILE_NAME	Name of file
HDU_NAME	Name of HDU in file

- See <u>IACT data</u> storage spec
- No DL3 TECH files!

```
Valid HDU TYPE values (others opt Valid HDU_CLASS values:

    events - see format spec: IACT event lists

    events - Event list

    gti - see format spec: TODO

     gti - Good time interval

    aeff_2d - see format spec: aeff_2d format

                                           • edisp_2d - see format spec: edisp_2d format
     aeff - Effective area
                                           • psf_table - see format spec: psf_table format
     psf - Point spread function

    psf 3gauss - see format spec: psf 3gauss format

     edisp - Energy dispersion

    psf_king - see format spec: psf_king format

                                           • psf gtpsf - see format spec: gtpsf format
    bkg - Background
                                           • bkg 2d - see format spec: bkg_2d format
                                           • bkg_3d - see format spec: bkg_3d format
```

HESS EXPORTED FITS FILES

```
background
    bgmodel_alt7_az0.fits.gz
    bgmodel_alt8_az0.fits.gz
hdu-index.fits.gz
obs-index.fits.gz
run23400-23599
   run23523
       - aeff_2d_23523.fits.gz
        edisp_2d_23523.fits.gz
       - psf_king_23523.fits.gz
    run23526
        aeff_2d_23526.fits.gz
       - edisp_2d_23526.fits.gz
        psf_king_23526.fits.gz
    run23559
       aeff_2d_23559.fits.gz
        edisp_2d_23559.fits.gz
        psf_king_23559.fits.gz
    run23592
        aeff_2d_23592.fits.gz
        edisp_2d_23592.fits.gz
        psf_king_23592.fits.gz
```

- ➤ Formats described in the open-astrogamma-data spec (see previous presentation.
- ➤ On the left an example: files for 4 Crab runs from HESS.
- ➤ 1 observation = 1 GTI = 28 min
- ➤ Pre-computed IRFs
- ➤ IRF association currently via OBS ID
- ➤ Obs index table for quick data selection and HDU index table for quick data localisation (HESS 1 has 20k obs and 80k HDUs)
- ➤ Background models are shared between many observations (~ 10 to 100 bg models only)

HESS SHORT-TERM PLAN (WEEKS)

- ➤ Improve open data spec
 - ➤ FOV coordinates
 - ➤ Change IRF EVENT association via GTI or RTI?
- ➤ Improve exporters
 - ➤ Which PSF to use? EDISP and background smoothing?
 - ➤ Adapt to FOV and GIT/RTI changes in the spec

HESS MID-TERM PLAN (MONTHS)

- ➤ Extend open data spec to support splitting the data in event classes for HESS 2 mono / stereo analysis (and other classes):
 - ➤ Introduce EVENT_TYPE
 - ➤ Change EVENT IRF association method: one set of IRFs per GTI and EVENT_TYPE.
- ➤ We are preparing a proposal for a public HESS test data release (~50 hours of decade-old HESS 1 data, two point sources, two extended sources, one variable source).
 - Goal: contribution to data model / format / science tool writers, not a science data release.
- ➤ More testing of exporters and tools (X-check task) (Also: use for science publications!)

BACKUP SLIDES

Issues with histogram IRFs

- In HESS we use histogram IRFs for energy dispersion (edisp2d) and background (bkg3d).
- As you can see on the right, these can become very noisy...
- Started investigating smoothing and analytical models for energy dispersion and background ...

Energy dispersion example

Background example

Low energy: stats OK!

Issues with analytical IRFs

- In HESS we use analytical PSF models, such as <u>psf_3gauss</u>.
- For some configs / observations / energy / offset bins, the analytical fit doesn't converge.
- Started investigating if 2-Gauss or King profile is good enough, or if smoothed histogram PSF would work better.

Incorrect PSF model because of non-converging triple-Gauss PSF analytical model fit.

