Computational Finance

Dealing with Data

More Datatypes

NumPy Arrays

- The most fundamental data type in scientific Python is ndarray, provided by the NumPy package (<u>user guide</u>).
- An array is similar to a list, except that
 - it can have more than one dimension;
 - its elements are homogenous (they all have the same type).
- NumPy provides a large number of functions (*ufuncs*) that operate elementwise on arrays. Allows *vectorized* code, avoiding loops (which are slow in Python).

Constructing Arrays

• Arrays can be constructed using the array function which takes sequences (e.g, lists), and converts them into arrays. The data type is inferred automatically or can be specified.

```
In [2]: import numpy as np
    a=np.array([1, 2, 3, 4])
    a.dtype

Out[2]: dtype('int64')

In [3]: a=np.array([1, 2, 3, 4], dtype='float64') #or np.array([1., 2., 3., 4.])
    a.dtype

Out[3]: dtype('float64')
```

• NumPy uses C++ data types which differ from Python (though float64 is equivalent to Python's float).

• Nested lists result in multidimensional arrays. We won't need anything beyond two-dimensional (i.e., a matrix or table).

Other functions for creating arrays:

Indexing

• Indexing and slicing operations are similar to lists:

```
In [11]: a=np.array([[1., 2.], [3., 4.]])
    a[0, 0] #indexing [row, column]. Equivalent to a[0][0]

Out[11]: 1.0

In [12]: b=a[:, 0]; b #First column. Note that this yields a 1-dimensional array, not a matrix

Out[12]: array([ 1.,  3.])
```

• Slicing returns *views* into the original array (unlike slicing lists):

• Apart from indexing by row and column, arrays also support *Boolean* indexing:

```
In [15]: a=np.arange(10); a
Out[15]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [16]: ind=a<5; ind
Out[16]: array([ True, True, True, True, False, False, False, False], dtype=bool)
In [17]: a[ind]
Out[17]: array([0, 1, 2, 3, 4])</pre>
```

Concatenation and reshaping

• To combine two arrays in NumPy, use concatenate or stack:

• reshape(n, m) changes the shape of an array into (n, m), taking the elements row-wise. A dimension given as -1 will be computed automatically

Arithmetic and ufuncs

• NumPy ufuncs are functions that operate elementwise:

- Other useful ufuncs are exp, log, abs, sqrt.
- Basic arithmetic on arrays works elementwise:

Broadcasting

• Operations between scalars and arrays are also supported:

```
In [24]: np.array([1, 2, 3, 4])+2
Out[24]: array([3, 4, 5, 6])
```

- This is a special case of a more general concept known as *broadcasting*, which allows operations between arrays of different shapes.
- NumPy compares the shapes of two arrays element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible if
 - they are equal, or
 - one of them is 1 (or not present)
- In the latter case, the singleton dimension is "stretched" to match the larger array.

• Example:

• NumPy's newaxis feature is sometimes useful to enable broadcasting. It introduces a new dimension of length 1; e.g, it can turn a vector (1d array) into a matrix (2d array) with a single row or column. Example:

• In this particular case, the same result could have been obtained by taking the outer product of u and v (in mathematical notation, uv'):

Array Reductions

- Array reductions are operations on arrays that return scalars or lower-dimensional arrays, such as the mean function used above
- They can be used to summarize information about an array, e.g., compute the standard deviation:

```
In [30]: a=np.random.randn(300, 3) #create a 300x3 matrix of standard normal variates
    a.std(axis=0) #or np.std(a, axis=0)

Out[30]: array([ 0.91547487,    1.05269445,    0.97301281])
```

- By default, reductions work on a flattened version of the array. For row- or columnwise operation, the axis argument has to be given.
- Other useful reductions are sum, median, min, max, argmin, argmax, any, and all (see help).

Saving Arrays to Disk

• There are several ways to save an array to disk:

Pandas Dataframes

Introduction to Pandas

- pandas (from panel data) is another fundamental package in the SciPy stack (<u>user quide</u>).
- It provides a number of datastructures (*series*, *dataframes*, and *panels*) designed for storing observational data, and powerful methods for manipulating (*munging*, or *wrangling*) these data.
- It is usually imported as pd:

```
In [36]: import pandas as pd
```

Series

• A pandas Series is essentially a NumPy array with an associated index:

```
In [37]: pop=pd.Series([5.7, 82.7, 17.0], name='Population'); pop #the descriptive name is optional
Out[37]: 0     5.7
     1     82.7
     2     17.0
     Name: Population, dtype: float64
```

• The difference is that the index can be anything, not just a list of integers:

```
In [38]: pop.index=['DK', 'DE', 'NL']
```

• The index can be used for indexing (duh...):

```
In [39]: pop['NL']
Out[39]: 17.0
```

• NumPy ufuncs operate on series and preserve the index:

• One advantage of Series compared to NumPy arrays is that they can handle missing data, represented as NaN (not a number).

Dataframes

• A dataframe is a collection of series with a common index (which labels the rows).

```
In [42]: data=pd.concat([gdp,pop],axis=1); data #concatenate series

Out[42]: Nominal GDP in Billion USD Population
DE 3494.898 82.7
DK NaN 5.7
NL 769.930 17.0
```

• Columns are indexed by column name:

• Rows are indexed with the loc method (note: the ix method listed in the book (p. 139) is deprecated):

- Unlike arrays, dataframes can have columns with different datatypes.
- There are different ways to add columns. One is to just assign to a new column:

```
In [46]: data['Language']=['German', 'Danish', 'Dutch']; #Add a new column from a list
```

• Another is to use the join method:

```
In [47]: s=pd.Series(['EUR', 'DKK', 'EUR', 'GBP'], index=['NL', 'DK', 'DE', 'UK'], name='Currency')
data.join(s) #Add a new column from a series or dataframe

Out[47]: Nominal GDP in Billion USD Population Language Currency
DE 3494.898 82.7 German EUR
DK NaN 5.7 Danish DKK
NL 769.930 17.0 Dutch EUR
```

• Notes:

- The entry for 'UK' has disappeared. Pandas takes the *intersection* of indexes ('inner join') by default.
- The returned series is a temporary object. If we want to modify data, we need to assign to it.
- To take the union of indexes ('outer join'), pass the keyword argument how='outer':

The join method is in fact a convenience method that calls pd.merge under the hood,
 which is capable of more powerful SQL style operations.

• To add rows, use loc or append:

```
In [49]: data.loc['AT']=[386.4, 8.7, 'German', 'EUR'] #Add a row with index 'AT' s=pd.DataFrame([[511.0, 9.9, 'Swedish', 'SEK']], index=['SE'], columns=data.columns) data=data.append(s) #Add a row by appending another dataframe. May create duplicates data
```

Out[49]:

	Nominal GDP in Billion USD		Population	Language	Currency
	DE	3494.898	82.7	German	EUR
	DK	NaN	5.7	Danish	DKK
	NL	769.930	17.0	Dutch	EUR
	UK	NaN	NaN	NaN	GBP
	AT	386.400	8.7	German	EUR
	SE	511.000	9.9	Swedish	SEK

• The dropna method can be used to delete rows with missing values:

In [50]: data=data.dropna(); data

Out[50]:

		Nominal GDP in Billion USD	Population	Language	Currency
	DE	3494.898	82.7	German	EUR
	NL	769.930	17.0	Dutch	EUR
	AT	386.400	8.7	German	EUR
	SE	511.000	9.9	Swedish	SEK

• Useful methods for obtaining summary information about a dataframe are mean, std, info, describe, head, and tail.

In [51]:	data.describe	e()		
Out[51]:	Nominal GDP in Bill	ion USD Population		
	count 4.000000	4.000000		
	mean 1290.557000	29.575000		
	std 1478.217475	35.605559		
	min 386.400000	8.700000		
	25 % 479.850000	9.600000		
	50 % 640.465000	13.450000		
	75 % 1451.172000	33.425000		
	max 3494.898000	82.700000		
In [52]:	[52]: data.head() #show the first few rows. data.tail shows the last few			
Out[52]:	Nominal GDP in Billion USD Population Language Currency			
	DE 3494.898	82.7 Germa	n EUR	
	NL 769.930	17.0 Dutch	EUR	
	AT 386.400	8.7 Germa	in EUR	
	SE 511.000	9.9 Swedis	sh SEK	

• To save a dataframe to disk as a csv file, use

• To load data into a dataframe, use pd.read_csv (see Table 6.6 in the book):

```
In [55]: pd.read_csv('myfile.csv', index_col=0)
Out[55]:
                 Nominal GDP in Billion USD Population Language Currency
             DE 3494.898
                                   82.7
                                                  EUR
                                           German
             NL 769.930
                                   17.0
                                           Dutch
                                                  EUR
             AT 386.400
                                   8.7
                                                  EUR
                                           German
             SE 511.000
                                                  SEK
                                           Swedish
In [56]:
            os.remove('myfile.csv') #clean up
```

• Other, possibly more efficient, methods exist; see Chapter 7 of Hilpisch (2014).

Working with Time Series

Data Types

- Different datatypes for representing times and dates exist in Python.
- The most basic one is datetime from the eponymous package, and also accesible from Pandas:

```
In [57]: pd.datetime.today()
Out[57]: datetime.datetime(2017, 10, 26, 19, 40, 49, 68706)
```

• datetime objects can be created from strings using strptime and a format specifier:

```
In [58]: pd.datetime.strptime('2017-03-31', '%Y-%m-%d')
Out[58]: datetime.datetime(2017, 3, 31, 0, 0)
```

• Pandas uses Timestamps instead of datetime objects. Unlike timestamps, they store frequency and time zone information. The two can mostly be used interchangeably. See Appendix C for details.

```
In [59]: pd.Timestamp('2017-03-31')
Out[59]: Timestamp('2017-03-31 00:00:00')
```

- A time series is a Series with a special index, called a DatetimeIndex; essentially an array of Timestamps.
- Can be created using the date_range function; see Tables 6.2 and 6.3.

```
In [60]:
         myindex=pd.date_range(end=pd.Timestamp.today(), normalize=True, periods=100, freq='B')
         P=20+np.random.randn(100).cumsum() #make up some share prices
         aapl=pd.Series(P, name="AAPL", index=myindex)
         aapl.tail()
Out[60]: 2017-10-20
                        20.983895
         2017-10-23
                        21.566867
          2017-10-24
                        20.484217
         2017-10-25
                        22.493990
         2017-10-26
                        22,226591
         Freq: B, Name: AAPL, dtype: float64
```

• As a convenience, Pandas allows indexing timeseries with date strings:

Financial Returns

- We mostly work with returns rather than prices, because their statistical properties are more desirable (stationarity).
- There exist two types of returns: simple returns $R_t \equiv (P_t P_{t-1})/P_{t-1}$, and log returns $r_t \equiv \log(P_t/P_{t-1}) = \log P_t \log P_{t-1}$.
- Log returns are usually preferred, though the difference is typically small.
- To convert from prices to returns, use shift(k) method which lags by k periods (or leads if k < 0).

- Note: for some applications (e.g., CAPM regressions), excess returns $r_t r_{f,t}$ are required, where $r_{f,t}$ is the return on a "risk-free" investment.
- These are conveniently constructed as follows: suppose you have a data frame containing raw returns for a bunch of assets:

```
In [64]:

P=20+np.random.randn(100).cumsum() #some more share prices

rf=1+np.random.randn(100)/100 #and a yield

msft=pd.Series(P, name="MSFT", index=myindex)

returns=pd.concat([aapl, msft], axis=1)

returns.tail()

Out[64]:

AAPL MSFT

2017-10-20 20.988895 35.29386

2017-10-24 20.484217 37.298781

2017-10-25 22.493990 37.233592

2017-10-26 22.226591 35.273647
```

Then the desired operation can be expressed as

```
In [65]: excess_returns=returns.sub(rf, axis='index') #subtract series rf from all columns
```

Fetching Data

- pandas_datareader makes it easy to fetch data from the web (<u>user guide</u>).
- It is no longer included in pandas, so we need to install it.

```
In [66]: #uncomment the next line to install. (Note: ! executes shell commands)
            #!conda install -y pandas-datareader
            import pandas_datareader.data as web #not 'import pandas.io.data as web' as in the book
In [67]:
            start = pd.datetime(2010, 1, 1)
            end = pd.datetime.today()
            p = web.DataReader("^GSPC", 'yahoo', start, end) #S&P500
            p.tail()
Out[67]:
                              High
                                                Close
                                                         Adj Close
                                                                  Volume
                                       Low
             2017-10-20 2567.560059 2575.439941 2567.560059 2575.209961 2575.209961
             2017-10-23 2578.080078 2578.290039
                                      2564.330078
                                                2564.979980
                                                         2564.979980
                                                                  3211710000
            2017-10-24 2568.659912 2572.179932
                                                         2569.129883
            2017-10-25 2566.520020 2567.399902 2544.000000
                                                2557.149902
            2017-10-26 2560.080078 2567.070068 2559.800049 2564.149902 2564.149902 1233621344
```

Regression Analysis

- Like in the book, we analyze the *leverage effect*: negative stock returns decrease the value of equity and hence increase debt-to-equity, so cashflow to shareholders as residual claimants becomes more risky; i.e., volatility increases.
- Hilpisch uses the VSTOXX index. Here, we use the VIX, which measures the volatility of the S&P500 based on implied volatilities from the option market.
- We already have data on the S&P500. We'll convert them to returns and do the same for the VIX. We'll store everything in a dataframe df.

- Next, we run an OLS regression of the VIX returns on those of the S&P.
- Note that this functionality has been moved from Pandas to the <u>Statsmodels package</u>, so we have to use a different incantation than in the book.
- Also, we will use a different interface (API) which allows us to specify regressions using R-style formulas (<u>user guide</u>).
- We will use heteroskedasiticy and autocorrelation consistent (HAC) standard errors.

```
In [69]: import statsmodels.formula.api as smf
         model = smf.ols('VIX ~ SP500', data=df)
         result=model.fit(cov_type="HAC", cov_kwds={'maxlags':5})
         print(result.summary2())
                            Results: Ordinary least squares
         Model:
                                               Adj. R-squared:
                              0LS
                                                                   0.654
         Dependent Variable: VIX
                                               AIC:
                                                                   -6715.8073
         Date:
                              2017-10-26 19:40 BIC:
                                                                   -6704.6367
         No. Observations:
                                               Log-Likelihood:
                                                                   3359.9
                             1969
         Df Model:
                                              F-statistic:
                                                                   842.5
                              1
         Df Residuals:
                             1967
                                              Prob (F-statistic): 1.78e-154
         R-squared:
                             0.654
                                               Scale:
                                                                   0.0019311
                         Coef.
                                  Std.Err.
                                                               [0.025
                                                      P>|z|
                                                                        0.975]
                                               Z
         Intercept
                         0.0024
                                    0.0009
                                              2.6424
                                                     0.0082
                                                               0.0006
                                                                        0.0041
         SP500
                         -6.4410
                                    0.2219
                                           -29.0253 0.0000
                                                              -6.8759 -6.0060
         Omnibus:
                              195.841
                                             Durbin-Watson:
                                                                     2.118
         Prob(Omnibus):
                              0.000
                                                                     1175.748
                                             Jarque-Bera (JB):
         Skew:
                              0.245
                                             Prob(JB):
                                                                     0.000
         Kurtosis:
                              6.754
                                             Condition No.:
                                                                     107
```

- Conclusion: We indeed find a significant negative effect of the index returns, confirming the existence of the leverage effect.
- Note: for a regression without an intercept, we would use model = smf.ols('VIX ~ -1+SP500', data=df).
- The result object has useful methods and variables: