Package 'autoTS'

October 12, 2022

Type Package

Title Automatic Model Selection and Prediction for Univariate Time Series

Version 0.9.11

Author Vivien Roussez

Maintainer Vivien Roussez <vivien.roussez@gmail.com>

Description Offers a set of functions to easily make predictions for univariate time series. 'autoTS' is a wrapper of existing functions of the 'forecast' and 'prophet' packages, harmonising their outputs in tidy dataframes and using default values for each. The core function getBestModel() allows the user to effortlessly benchmark seven algorithms along with a bagged estimator to identify which one performs the best for a given time series.

License GPL-3

Encoding UTF-8

LazyData true

Imports rlang, prophet, dplyr, magrittr, lubridate, tidyr, forecast, ggplot2, RcppRoll,shiny, shinycssloaders, plotly

BugReports https://github.com/vivienroussez/autots/issues

URL https://github.com/vivienroussez/autoTS

Suggests knitr,rmarkdown,stringr

VignetteBuilder knitr

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-05 12:20:06 UTC

2 complete.ts

R topics documented:

	complete.ts	 	•	 •	 •	 •	 ٠	•	• •	٠	•	 •	 •	•	٠	٠	•	 •	•	•	•	•	
	getBestModel .	 																 					3
	getFrequency .	 																 					4
	my.bats	 																 					5
	my.ets	 																 					5
	my.mae	 																 					6
	my.predictions .	 																 					6
	my.prophet	 																 					7
	my.rmse	 																 					8
	my.sarima	 																 					9
	my.shortterm .	 																 					9
	my.stlm	 																 					10
	my.tbats	 																 					11
	prepare.ts	 																 					12
	runUserInterface																	 					13
Index																							14

complete.ts Creates additional dates and values when NA where removed and the TS is not complete

Description

Creates additional dates and values when NA where removed and the TS is not complete

Usage

```
complete.ts(dates, values, freq, complete = 0)
```

Arguments

dates A vector of dates that can be parsed by lubridate

values A vector of same size as dates

freq A chacracter string that indicates the frequency of the time series ("week",

"month", "quarter", "day").

complete A numerical value (or NA) to fill the missing data points

Value

A dataframe with 2 columns: date and val, with additional rows

getBestModel 3

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"month")
values <- rnorm(length(dates))
complete.ts(dates,values,"month",complete = 0)</pre>
```

getBestModel

Determine best algorithm

Description

Implement selected algorithms, train them without the last n observed data points (or n_test number of points), and compares the results to reality to determine the best algorithm

Usage

```
getBestModel(
  dates,
  values,
  freq,
  complete = 0,
  n_test = NA,
  graph = TRUE,
  algos = list("my.prophet", "my.ets", "my.sarima", "my.tbats", "my.bats", "my.stlm",
        "my.shortterm"),
  bagged = "auto",
  metric.error = my.rmse
)
```

Arguments

dates	A vector of dates that can be parsed by lubridate
values	A vector of same size as dates
freq	A chacracter string that indicates the frequency of the time series ("week", "month", "quarter", "day").
complete	A numerical value (or NA) to fill the missing data points
n_test	number of data points to keep aside for the test (default : one year)
graph	A boolean, if TRUE, comparison of algorithms is plotted
algos	A list containing the algorithms (strings, with prefix "my.") to be tested
bagged	A string. "auto" will use all available algoriths, skipping algos parameter. Else, specified algos of the 'algo' parameter will be used
metric.error	a function to compute the error the each models. available functions : my.rmse and my.mae

4 getFrequency

Value

A list contraining a character string with the name of the best method, a gg object with the comparison between algorithms and a dataframe with predictions of all tried algorithms, a dtaframe containing the errors of each algorithms, the preparedTS object and the list of algorithms tested

Examples

getFrequency

Determines the decimal frequency of a time series from a character string

Description

Determines the decimal frequency of a time series from a character string

Usage

```
getFrequency(freq.alpha)
```

Arguments

```
freq. alpha A character string that indicates the frequency of the time series ("week", "month", "quarter", "day").
```

Value

The decimal version of the frequency (useful for the forecast package functions).

Examples

```
getFrequency("week")
```

my.bats 5

my.bats

Fit BATS algorithm and make the prediction

Description

Fit BATS algorithm and make the prediction

Usage

```
my.bats(prepedTS, n_pred)
```

Arguments

prepedTS A list created by the prepare.ts() function

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series)

Value

A dataframe with 4 columns: date, average prediction, upper and lower 95

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.bats(my.ts,n_pred=4)</pre>
```

my.ets

Fit ETS algorithm and make the prediction

Description

Fit ETS algorithm and make the prediction

Usage

```
my.ets(prepedTS, n_pred)
```

Arguments

prepedTS A list created by the prepare.ts() function

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series)

6 my.predictions

Value

A dataframe with 4 columns : date, average prediction, upper and lower 95

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.ets(my.ts,n_pred=4)</pre>
```

my.mae

Custom (internal) function for MAE

Description

Custom (internal) function for MAE

Usage

```
my.mae(true, predicted)
```

Arguments

true num vector of actual values
predicted num vector of predicted values

Value

Num value with MAE

my.predictions

Make predictions with selected algorithms

Description

Fit selected algorithms, make the predictions and combine the results along with observed data in one final dataframe.

my.prophet 7

Usage

Arguments

bestmod A list produced by the getBestModel() function (optional if prepredTS is pro-

vided)

prepedTS A list created by the prepare.ts() function (optional if bestmod provided)

algos A list containing the algorithms to be implemented. If bestmod is supplied, this

value is ignored, and taken from the best model object Using this option will

overwrite the provided list of algorithms to implement them all

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series)

Value

A dataframe containing: date, actual observed values, one column per used algorithm, and a column indicating the type of measure (mean prediction, upper or lower bound of CI)

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(lubridate::as_date("2000-01-01"), lubridate::as_date("2010-12-31"), "quarter")
values <- 10+ 1:length(dates)/10 + rnorm(length(dates), mean = 0, sd = 10)
### Stand alone usage
prepare.ts(dates, values, "quarter") %>%
    my.predictions(prepedTS = .,algos = list("my.prophet", "my.ets"))
### Standard input with bestmodel

getBestModel(dates, values, freq = "quarter", n_test = 6) %>%
    my.predictions()
```

my.prophet

Fit prophet algorithm and make the prediction

Description

Fit prophet algorithm and make the prediction

8 my.rmse

Usage

```
my.prophet(prepedTS, n_pred)
```

Arguments

prepedTS A list created by the prepare.ts() function

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series)

Value

A dataframe for "next year" with 4 columns: date, average prediction, upper and lower 95

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.prophet(my.ts,n_pred=4)</pre>
```

my.rmse

Custom (internal) function for RMSE

Description

Custom (internal) function for RMSE

Usage

```
my.rmse(true, predicted)
```

Arguments

true num vector of actual values
predicted num vector of predicted values

Value

Num value with RMSE

my.sarima 9

my.sarima

Fit SARIMA algorithm and make the prediction

Description

Fit SARIMA algorithm and make the prediction

Usage

```
my.sarima(prepedTS, n_pred)
```

Arguments

prepedTS A list created by the prepare.ts() function

 n_pred Int number of periods to forecast forward (eg $n_pred = 12$ will lead to one year

of prediction for monthly time series)

Value

A dataframe with 4 columns: date, average prediction, upper and lower 95

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.sarima(my.ts,n_pred=4)</pre>
```

 $\verb"my.shortterm"$

Fit short term algorithm and make the prediction

Description

Fit short term algorithm and make the prediction

Usage

```
my.shortterm(prepedTS, n_pred, smooth_window = 2)
```

10 my.stlm

Arguments

prepedTS A list created by the prepare.ts() function

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series). Note that this algorithm cannot predict

further than one year

rate that will be applied for the forecast

Details

this algorithm uses data of the last year and makes the prediction taking into account the seasonality and the evolution of the previous periods' evolution

Value

A dataframe with 4 columns: date, average prediction, upper and lower 95

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.shortterm(my.ts,n_pred=4)</pre>
```

my.stlm

Fit STLM algorithm and make the prediction

Description

Fit STLM algorithm and make the prediction

Usage

```
my.stlm(prepedTS, n_pred)
```

Arguments

prepedTS A list created by the prepare.ts() function

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series)

Value

A dataframe with 4 columns: date, average prediction, upper and lower 95

my.tbats 11

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.stlm(my.ts,n_pred=4)</pre>
```

my.tbats

Fit TBATS algorithm and make the prediction

Description

Fit TBATS algorithm and make the prediction

Usage

```
my.tbats(prepedTS, n_pred)
```

Arguments

prepedTS A list created by the prepare.ts() function

n_pred Int number of periods to forecast forward (eg n_pred = 12 will lead to one year

of prediction for monthly time series)

Value

A dataframe with 4 columns: date, average prediction, upper and lower 95

Examples

```
library(lubridate)
library(dplyr)
dates <- seq(as_date("2000-01-01"),as_date("2010-12-31"),"quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates,values,"quarter",complete = 0)
my.tbats(my.ts,n_pred=4)</pre>
```

12 prepare.ts

nre	pare	t s
אוע	pai c	. LS

Format 2 vectors in a proper object usable by all algorithms

Description

Format 2 vectors in a proper object usable by all algorithms

Usage

```
prepare.ts(dates, values, freq, complete = 0)
```

Arguments

dates A vector of dates that can be parsed by lubridate

values A vector of same size as dates

freq A chacracter string that indicates the frequency of the time series ("week",

"month", "quarter", "day").

complete A numerical value (or NA) to fill the missing data points

Details

Creates a list with the time series in a dataframe and a ts object, and the frequency stored in decimal and litteral values. The result is meant to be put in the prophet or forecast functions

Value

A list containing: a dataframe, a ts vector for the time series, and 2 scalars for its frequency

Examples

```
library(lubridate)
library(dplyr)
library(ggplot2)
dates <- seq(lubridate::as_date("2000-01-01"), lubridate::as_date("2010-12-31"), "quarter")
values <- rnorm(length(dates))
my.ts <- prepare.ts(dates, values, "month", complete = 0)
plot(my.ts$obj.ts)
ggplot(my.ts$obj.df,aes(dates,val)) + geom_line()</pre>
```

runUserInterface 13

|--|--|--|

Description

A shiny application that allows the user to load a properly formated CSV file, benchmark the algorithms, make a prediction and download the results. Requires additional packages shiny, shinycss-loaders, tidyr and plotly to be installed

Usage

runUserInterface()

Examples

autoTS::runUserInterface()

Index

```
complete.ts, 2
getBestModel, 3
getFrequency, 4

my.bats, 5
my.ets, 5
my.mae, 6
my.predictions, 6
my.prophet, 7
my.rmse, 8
my.sarima, 9
my.shortterm, 9
my.stlm, 10
my.tbats, 11
prepare.ts, 12
runUserInterface, 13
```