	x < 1	$1 \le x < 3$	$x \ge 3$
C_1	50%	35%	15%
C_2	48%	16%	36%

カテゴリ C_1, C_2

 C_2 の中を A とそれ以外に分ける

Aは C_2 の6割である

 C_2 の中の A 以外部分の分布は C_1 と等しい

A			
	$\begin{array}{c c} x < 1 \\ 0.4 \times 50\% \end{array}$	$\begin{array}{c c} 1 \le x < 3 \\ 0.4 \times 35\% \text{ o} \end{array}$	$x \ge 3$ $4 \times 15\%$

 C_2 には x < 1 が 48% あるが、A に属しない部分には $0.4 \times 0.5 = 20\%$ あるため、A の中の x < 1 は 28% となる

同様に A の中の $1 \le x < 3$ は $0.16 - 0.4 \times 0.35 = 2\%$ となる

A の中の x > 3 は $0.36 - 0.4 \times 0.15 = 30\%$ となる

 C_2 のうち A の割合が 6 割なので、次のような割合になっている。

$$[x < 1] 28\%$$
, $[1 \le x < 3] 2\%$, $[x \ge 3] 30\%$

これを A を 100% として計算し直す

$$[x < 1] \ 28\% \div 0.6 = \frac{28}{60}$$
, $[1 \le x < 3] \ 2\% \div 0.6 = \frac{2}{60}$, $[x \ge 3] \ 30\% \div 0.6 = \frac{30}{60}$

この集団 A から 16 個を取り出し、6 個が x < 3 である確率は計算で求められる。特に、6 個以下である確率は次の式で求められる。

$$\sum_{i=0}^{6} {}_{16}C_i \left(\frac{1}{2}\right)^i \left(\frac{1}{2}\right)^{16-i} \tag{1}$$

つまり、二項分布 $B\left(16,\frac{1}{2}\right)$ にしがたう。(上記計算結果は 0.2272491... となる。)

二項分布 B(n,p) は取り出した個数 n が十分に大きいと正規分布 N(np,np(1-p)) で近似できる。

今の場合、n = 16, p = 1/2 であるから N(8,4) で近似できるとする。

そこで標準化 $Z = (X - \mu)/\sigma$ を行う。

$$Z = \frac{6-8}{\sqrt{4}} = -1\tag{2}$$

この値を正規分布表から探せば値 0.1587 が得られる。