calibration and uncertainty analysis: how well does a model accomplish its purpose

Jeremy T. White

U.S. Geological Survey Texas Water Science Center

August 17, 2016

J.T. White

Outline

- 1.) | Theoretical aspects
- 2.) A synthetic example model
- 3.) Calibration of synthetic model
- 4.) Uncertainty analysis of synthetic model
- 5.) | Closing remarks

J.T. White

nodel purpose what is calibration? Bayes

Theoretical aspects

why do we model?

because we are uncertain about unmeasured quantities

- springflow under different conditions
- brackish water-freshwater interaction
- potential subsidence in unstressed areas
- drawdown from different pumping

we need a learning framework to reduce uncertainty

model purpose what is calibration? Bayes

What is calibration? (and is calibration a **learning** framework?)

J.T. White 5/70

historical aspects of calibration

- computational resources were limited
- understanding of model usage was limited
- : the best we could do at that time

J.T. White 6/70

what is calibration (thought to be)?

- "train" the model against reality
- improve the model's representation of reality
- make the model more like reality
- : the model simulates reality

J.T. White

dangers of calibration

"all models are wrong but some are useful"

Bayes

Bayesian framework for uncertainty analysis (a **learning** framework)

Bayes rule for uncertainty analysis

 $P(\theta|\mathbf{D}) \propto \mathcal{L}(\theta|\mathbf{D})P(\theta)$

J.T. White 10/70

Bayes rule for uncertainty analysis

$$\underbrace{P(\theta|\mathbf{D})}_{\text{what we know now}} \propto \underbrace{\mathcal{L}(\theta|\mathbf{D})}_{\text{what we know now}} \underbrace{P(\theta)}_{\text{what we know what we learned knew}} \underbrace{P(\theta|\mathbf{D})}_{\text{what we know now}} \times \underbrace{\mathcal{L}(\theta|\mathbf{D})}_{\text{what we know now}} \underbrace{P(\theta)}_{\text{what we know now}} \times \underbrace{\mathcal{L}(\theta|\mathbf{D})}_{\text{what we know now}} \underbrace{P(\theta)}_{\text{what we know now}} \times \underbrace{\mathcal{L}(\theta|\mathbf{D})}_{\text{what we know now}} \underbrace{P(\theta)}_{\text{what we know now}} \times \underbrace{\mathcal{L}(\theta|\mathbf{D})}_{\text{what we know now}} \underbrace{\mathcal$$

```
data
            model parameters
   P(\theta)
            prior parameter probability distribution
\mathcal{L}(\boldsymbol{\theta}|\mathbf{D})
            likelihood of the model parameters given the data
P(\theta|\mathbf{D})
            posterior parameter probability distribution
```

the Prior

- a useful modeler
- what we know and don't know about parameters
- initial ("best guess") ("mean value") parameters
- the spread around the "best guess"

likelihood

- "model-based learning"
- information transfer observations → parameters
- smaller residuals→higher likelihood
- ugly
 - non-parametric
 - high dimensional

the Posterior

- combination of expert knowledge and information in data
- non-parametric
- high dimensional
- expense to fully characterize

calibration in context

- calibration → maximum likelihood estimation
- a single point in parameter space
- what about other points that fit the data? (non-uniqueness)
- ignores the Prior
- ignores us, the modelers

boring model details observations forecasts a tale of two models

Synthetic example

why use synthetics?

- demonstration
- runs quickly
- "cheating" (answers in the back of the book)

J.T. White

tools

- PEST++ V3 (USGS)
 - object-oriented version of PEST
 - integrated parallel run manager
 - global sensitivity analyses
 - builds on Windows, Linux, and Mac OS
 - integrated linear-based uncertainty analyses
- pyEMU (about to be accepted at EMS hopefully)
 - python framework for linear-based uncertainty analyses
 - exploratory and data worth analyses
 - easy to use (says the guy who made it)

model details

- MODFLOW-2005
- MODPATH v6
- 1 stress period
- 1 layer
- 80 rows
- 50 columns

J.T. White

the "truth"

- sequential Gaussian simulation
- exponential variogram
- range 600.0m
- sill 0.2 $log_{10} \frac{m}{d}$

J.T. White 20/70

"observations"

- "observed" from the "true" model run
- heads at 9 locations
- Gaussian noise
- $\mathcal{N}(0, 0.1)$

forecasts

- 1.)head at location #9
- 2.)particle exit point
- 3.)particle travel time

tying it all together

J.T. White

a tale of two models

two parameterizations

- only K is different
- 104 pilot points
- a single zone

head prediction exit point prediciton travel time predictio what did we learn?

Calibration attempts

Calibration results Uncertainty analysis

how

- PEST++ V3
- subspace and Tikhonov regularization

single parameter results

J.T. White 27/70

pilot point results

head prediction

- 1.)head at location #9
- 2.)particle exit point
- 3.)particle travel time

head prediction exit point prediction travel time prediction

head prediction

 calibration has changed the value of the prediction from ≈2.2m to ≈ 2m

J.T. White 30/70

head prediction exit point prediction travel time prediction

head prediction (with truth)

both parameterizations calibrate to ≈ the true value

J.T. White 31/70

exit point prediction

- 1.)head at location #9
- 2.)particle exit point
- 3.)particle travel time

exit point prediction

 calibration of the single parameter model does not effect the prediction

J.T. White 33/70

exit point prediction (with truth)

both calibrated models are wrong

J.T. White 34/70

travel time prediction

- 1.)head at location #9
- 2.)particle exit point
- 3.)particle travel time

travel time prediction

 calibration does not effect the value of the prediction for either model

J.T. White 36/70

travel time prediction (with truth)

both calibrated models are wrong

J.T. White

what did we learn about the model's purpose?

(Calibration as an analysis tool)

- before calibration, each prediction had a value
- after calibration, each prediction has a (new) value
- increasing the number of parameters doesn't have any effect on our understanding of the model's purpose

.. we don't know what we learned about purpose

T. White 38/70

Theoretical aspects Synthetic example Calibration results Uncertainty analysis Closing remarks

head prediction exit point prediction travel time prediction what did we learn?

Check your work

Since we know the "truth"... Why did we not get the correct forecast?

pilot point results

J.T. White 44/70

J.T. White 47/70

Theoretical aspects Synthetic example Calibration results Uncertainty analysis Closing remarks

head forecast exit point forecast travel time forecas

Uncertainty analysis

Bayes for GW models

$$P(\theta|\mathbf{D}) \propto \mathcal{L}(\theta|\mathbf{D})P(\theta)$$

- in its purist form, Bayes is very difficult to apply to GW models
 - lots of parameters
 - long model run times
- so...we make some simplifying assumptions:
 - linear-based uncertainty analysis

background on linear theory (FOSM)

- First Order Second Moment
- FO→linearity assumption
- **SM**→multivariate Gaussian posterior assumption
- $P(\theta|\mathbf{D}) \approx \mathcal{N}(\overline{\boldsymbol{\mu}}_{\boldsymbol{\theta}}, \overline{\boldsymbol{\Sigma}_{\boldsymbol{\theta}}})$
- requires only one run per parameter!

J.T. White 51/70

Schur's complement

$$\underline{\overline{\Sigma}_{\theta}} = \underline{\Sigma_{\theta}} - \underline{\Sigma_{\theta}J^{\mathsf{T}}[J\Sigma_{\theta}J^{\mathsf{T}} + \Sigma_{\epsilon}]^{-1}J\Sigma_{\theta}}$$
what we still don't know didn't know what we learned

- **Σ**_θ prior parameter covariance matrix **J** Jacobian matrix
- Σ_{ϵ} measurement noise covariance matrix
- $\overline{\Sigma}_{\theta}$ posterior parameter covariance matrix

parameters → forecasts

$$egin{aligned} \sigma_s^2 &= \mathbf{y}^\mathsf{T} \mathbf{\Sigma}_{m{ heta}} \mathbf{y} \ \overline{\sigma}_s^2 &= \mathbf{y}^\mathsf{T} \overline{\mathbf{\Sigma}}_{m{ heta}} \mathbf{y} \end{aligned}$$

$$\overline{\sigma}_{s}^{2} = \mathbf{y}^{\mathsf{T}} \overline{\mathbf{\Sigma}}_{\boldsymbol{\theta}} \mathbf{y}$$

prior variance of forecast s (what we didn't know) posterior variance of forecast s (what we still don't know) forecast sensitivity vector

implementation - Legacy PEST utilities

implementation - PEST++ V3

- no additional model runs required!
- no reason not to use this valuable information

J.T. White 55/70

head forecast

- 1.)head at location #9
- 2.)particle travel time
- 3.)particle exit point

uncertainty: head forecast

- calibration of both models reduces uncertainty
- pilot points model bracket the "true" value

exit point forecast

- 1.)head at location #9
- 2.)particle exit point
- 3.)particle travel time

uncertainty: exit point forecast

- 1 parameter model grossly underestimates uncertainty
- calibration only slightly reduces uncertainty

J.T. White 59/70

travel time forecast

- 1.)head at location #9
- 2.)particle exit point
- 3.)particle travel time

uncertainty: travel time forecast

- 1 parameter model grossly underestimates uncertainty
- calibration does not reduce uncertainty

J.T. White 61/70

data worth analyses

- "what if..." scenarios
- data that we don't have!!!
- guide data acquisition
- where to "learn" about K
 - most reduce uncertainty
 - model purpose
- forecast specific
- no additional run required!
 - save \$

J.T. White

exploratory analysis: head forecast

- knowing K in the right place can reduce forecast uncertainty by 35%
- down gradient of forecast

exploratory analysis: exit point forecast

- knowing K in the right place can reduce forecast uncertainty by 37%
- up gradient of forecast

exploratory analysis: travel time forecast

- knowing K in the right place can reduce forecast uncertainty by 30%
- centerline of travel path

Theoretical aspects Synthetic example Calibration results Uncertainty analysis Closing remarks

"all models are wrong but some are useful"

J.T. White 66/70

Why calibration is dangerous

- The goal of calibration: get the "right" answer
 - yikes!

Calibration doesn't improve understanding (purpose)

J.T. White 67/70

why uncertainty analysis is better

- The goal of uncertainty analysis: bracket the "right" answer
 - a much better chance of being "right"
- uncertainty analysis directly addresses learning

J.T. White 68/70

data worth analyses

- great complement to uncertainty analysis
- super powerful tool for modeling analyses
- maximize value of expensive data collection
- very easy to apply
 - no additional model runs
 - pyEMU
- directly answers questions related to improved understanding of model purpose

J.T. White 69/70

Theoretical aspects Synthetic example Calibration results Uncertainty analysis Closing remarks

J.T. White 70/70