Example: The Category of Sets

Example: The Category of Sets

The category **Set** is one of the most fundamental examples in Category theory, with sets as objects and functions as morphisms.

Definition

The category **Set** consists of: - **Objects**: All **Set** s - **Morphisms**: Functions between sets - **Composition**: Function composition - **Identity**: The identity function on each set

Verification of Category Axioms

We verify that **Set** satisfies the axioms of a category:

1. Composition is Associative

For functions $f: A \to B$, $g: B \to C$, and $h: C \to D$:

$$(h \circ q) \circ f = h \circ (q \circ f)$$

This holds because function composition is associative: for any $x \in A$,

$$((h \circ g) \circ f)(x) = h(g(f(x))) = (h \circ (g \circ f))(x)$$

2. Identity Laws

For each set A, the identity function $\mathrm{id}_A:A\to A$ defined by $\mathrm{id}_A(x)=x$ satisfies: - For any $f:A\to B$: $f\circ\mathrm{id}_A=f$ - For any $g:B\to A$: $\mathrm{id}_A\circ g=g$

Properties of Set

- 1. Size: Set is a large category its collection of objects forms a proper class, not a set
- 2. Special Morphisms:
 - Monomorphisms in Set are exactly the injective functions
 - Epimorphisms in Set are exactly the surjective functions
 - Isomorphisms in Set are exactly the bijective functions

3. Initial and Terminal Objects:

- The empty set \emptyset is the initial object (unique function from \emptyset to any set)
- Any singleton set {*} is a terminal object (unique function from any set to {*})

Related Categories

- FinSet: The category of finite sets
- Set* The category of pointed sets (sets with a distinguished element)

Dependency Graph

Local dependency graph