Chapter 1.3 Matrix Operations and their Properties

IRISH C. SIDAYA

Theorem

Properties of Matrix Addition and Scalar Multiplication

If A, B, and C are $m \times n$ matrices, and c and d are scalars, then the following properties are true.

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$(cd)A = c(dA)$$

4.
$$1A = A$$

5.
$$c(A + B) = cA + cB$$

6.
$$(c + d)A = cA + dA$$

Commutative property of addition

Associative property of addition

Associative property of multiplication

Multiplicative identity

Distributive property

Distributive property

Theorem

Properties of Zero Matrices

If A is an $m \times n$ matrix and c is a scalar, then the following properties are true.

- 1. $A + O_{mn} = A$
- **2.** $A + (-A) = O_{mn}$
- 3. If $cA = O_{mn}$, then c = 0 or $A = O_{mn}$.

Sidaya, Irish C.

Theorem

$Properties\ of\ Zero\ Matrices$

If A is an $m \times n$ matrix and c is a scalar, then the following properties are true.

1.
$$A + O_{mn} = A$$

2.
$$A + (-A) = O_{mn}$$

3. If
$$cA = O_{mn}$$
, then $c = 0$ or $A = O_{mn}$.

Note: The matrix O_{mn} is called a **zero matrix**, and it is the **additive** identity for the set of all $m \times n$ matrices.

Theorem

Properties of Zero Matrices

If A is an $m \times n$ matrix and c is a scalar, then the following properties are true.

1.
$$A + O_{mn} = A$$

2.
$$A + (-A) = O_{mn}$$

3. If
$$cA = O_{mn}$$
, then $c = 0$ or $A = O_{mn}$.

Note: The matrix O_{mn} is called a **zero matrix**, and it is the **additive** identity for the set of all $m \times n$ matrices.

Example: Solving a Matrix Equation

Solve for X in the equation 3X + A = B, where

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -3 & 4 \\ 2 & 1 \end{bmatrix}.$$

Sidaya, Irish C. 3/10

Theorem

Properties of Matrix Multiplication

If A, B, and C are matrices (with sizes such that the given matrix products are defined), and c is a scalar, then the following properties are true.

1.
$$A(BC) = (AB)C$$

2.
$$A(B + C) = AB + AC$$

$$3. (A+B)C = AC + BC$$

4.
$$c(AB) = (cA)B = A(cB)$$

Associative property of multiplication

Distributive property

Distributive property

Theorem

Properties of Matrix Multiplication

If A, B, and C are matrices (with sizes such that the given matrix products are defined), and c is a scalar, then the following properties are true.

1.
$$A(BC) = (AB)C$$

2.
$$A(B + C) = AB + AC$$

3.
$$(A + B)C = AC + BC$$

4.
$$c(AB) = (cA)B = A(cB)$$

Associative property of multiplication

Distributive property

Distributive property

Note 1: In general, matrix multiplication is not commutative.

Theorem

Properties of Matrix Multiplication

If A, B, and C are matrices (with sizes such that the given matrix products are defined), and c is a scalar, then the following properties are true.

1.
$$A(BC) = (AB)C$$

2.
$$A(B + C) = AB + AC$$

3.
$$(A + B)C = AC + BC$$

4.
$$c(AB) = (cA)B = A(cB)$$

Associative property of multiplication

Distributive property

Distributive property

Note 1: In general, matrix multiplication is not commutative.

Note 2: Matrix algebra does not have a general cancellation property for matrix multiplication. That is, when AC = BC it is not necessarily true that A = B.

Theorem

Properties of Matrix Multiplication

If A, B, and C are matrices (with sizes such that the given matrix products are defined), and c is a scalar, then the following properties are true.

1.
$$A(BC) = (AB)C$$

2.
$$A(B + C) = AB + AC$$

3.
$$(A + B)C = AC + BC$$

3.
$$(A + B)C = AC + BC$$

4. $c(AB) = (cA)B = A(cB)$

Associative property of multiplication

Distributive property

Distributive property

Note 1: In general, matrix multiplication is not commutative.

Note 2: Matrix algebra does not have a general cancellation property for matrix multiplication. That is, when AC = BC it is not necessarily true that A=B.

Example: Show that AC = BC

$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}$$

Sidava, Irish C.

The identity matrix of order n is a special type of square matrix that has 1's on the main diagonal and 0's elsewhere. It is usually denoted by I_n .

Sidaya, Irish C. 5/10

The **identity matrix of order** n is a special type of *square* matrix that has 1's on the main diagonal and 0's elsewhere. It is usually denoted by I_n .

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$n \times n$$

The **identity matrix of order** n is a special type of *square* matrix that has 1's on the main diagonal and 0's elsewhere. It is usually denoted by I_n .

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$n \times n$$

The matrix I_n serves as the **identity** for matrix multiplication.

The **identity matrix of order** n is a special type of *square* matrix that has 1's on the main diagonal and 0's elsewhere. It is usually denoted by I_n .

$$I_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$n \times n$$

The matrix I_n serves as the **identity** for matrix multiplication.

Theorem

Properties of the Identity Matrix

If A is a matrix of size $m \times n$, then the following properties are true.

1.
$$AI_n = A$$

2.
$$I_m A = A$$

Sidaya, Irish C. 5/10

Matrix Multiplication

For repeated multiplication of *square* matrices, use the same exponential notation used with real numbers. That is, $A^1 = A$, $A^2 = AA$, and for a positive integer k, A^k is

$$A^k = \underbrace{AA \cdot \cdot \cdot A}_{k \text{ factors}}.$$

It is convenient also to define $A^0 = I_n$ (where A is a square matrix of order n). These definitions allow you to establish the properties (1) $A^jA^k = A^{j+k}$ and (2) $(A^j)^k = A^{jk}$, where j and k are nonnegative integers.

Matrix Multiplication

For repeated multiplication of *square* matrices, use the same exponential notation used with real numbers. That is, $A^1 = A$, $A^2 = AA$, and for a positive integer k, A^k is

$$A^k = \underbrace{AA \cdot \cdot \cdot A}_{k \text{ factors}}.$$

It is convenient also to define $A^0 = I_n$ (where A is a square matrix of order n). These definitions allow you to establish the properties (1) $A^{j}A^{k} = A^{j+k}$ and (2) $(A^{j})^{k} = A^{jk}$, where *i* and *k* are nonnegative integers.

Example: For the matrix $A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}$. Find A^3 .

The **transpose** of a matrix is formed by writing its columns as rows. For instance, if *A* is the $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Size: $m \times n$

The **transpose** of a matrix is formed by writing its columns as rows. For instance, if *A* is the $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Size: $m \times n$

then the transpose, denoted by A^T , is the $n \times m$ matrix

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & \cdots & a_{m1} \\ a_{12} & a_{22} & a_{32} & \cdots & a_{m2} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{m3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{mn} \end{bmatrix}.$$

Size: $n \times m$

Sidaya, Irish C.

Theorem

Properties of Transposes

If A and B are matrices (with sizes such that the given matrix operations are defined) and c is a scalar, then the following properties are true.

1.
$$(A^T)^T = A$$

2.
$$(A + B)^T = A^T + B^T$$

3.
$$(cA)^T = c(A^T)$$

4.
$$(AB)^T = B^T A^T$$

Transpose of a transpose

Transpose of a sum

Transpose of a scalar multiple

Transpose of a product

Theorem

Properties of Transposes

If A and B are matrices (with sizes such that the given matrix operations are defined) and c is a scalar, then the following properties are true.

1.
$$(A^T)^T = A$$

2.
$$(A + B)^T = A^T + B^T$$

3.
$$(cA)^T = c(A^T)$$

4. $(AB)^T = B^T A^T$

Definition: A matrix A is called **symmetric** when $A = A^T$.

Sidaya, Irish C.

Theorem

Properties of Transposes

If A and B are matrices (with sizes such that the given matrix operations are defined) and c is a scalar, then the following properties are true.

Transpose of a sum

1.
$$(A^T)^T = A$$

2.
$$(A + B)^T = A^T + B^T$$

3.
$$(cA)^T = c(A^T)$$

4. $(AB)^T = B^T A^T$

Definition: A matrix A is called **symmetric** when $A = A^T$.

Note: If $A = [a_{ij}]$ is a symmetric matrix, then $a_{ij} = a_{ji}$ for all $i \neq j$.

 (□) (□) (불) (불) (불) (불) (월)

 8/10

Finding the Transpose of a Product

Example:

Show that $(AB)^T$ and B^TA^T are equal.

$$A = \begin{bmatrix} 2 & 1 & -2 \\ -1 & 0 & 3 \\ 0 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 1 \\ 2 & -1 \\ 3 & 0 \end{bmatrix}$$

Finding the Transpose of a Product

Example:

Show that $(AB)^T$ and B^TA^T are equal.

$$A = \begin{bmatrix} 2 & 1 & -2 \\ -1 & 0 & 3 \\ 0 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 1 \\ 2 & -1 \\ 3 & 0 \end{bmatrix}$$

SOLUTION

$$AB = \begin{bmatrix} 2 & 1 & -2 \\ -1 & 0 & 3 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & -1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 6 & -1 \\ -1 & 2 \end{bmatrix}$$

$$(AB)^T = \begin{bmatrix} 2 & 6 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} 3 & 2 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{vmatrix} 2 & -1 & 0 \\ 1 & 0 & -2 \\ -2 & 3 & 1 \end{vmatrix} = \begin{bmatrix} 2 & 6 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$(AB)^T = B^T A^T$$

1 U F 1 UFF 1 E F 1 € P Q C

The Product of a Matrix and Its Transpose

Example:

For the matrix
$$A = \begin{bmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{bmatrix}$$
, find the product AA^T and show that it is symmetric.

The Product of a Matrix and Its Transpose

Example:

For the matrix $A = \begin{bmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{bmatrix}$, find the product AA^T and show that it is symmetric.

SOLUTION

Because
$$AA^T = \begin{bmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 3 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 10 & -6 & -5 \\ -6 & 4 & 2 \\ -5 & 2 & 5 \end{bmatrix},$$

it follows that $AA^T = (AA^T)^T$, so AA^T is symmetric.

Sidaya, Irish C.

The Product of a Matrix and Its Transpose

Example:

For the matrix
$$A = \begin{bmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{bmatrix}$$
, find the product AA^T and show that it is symmetric.

SOLUTION

Because
$$AA^T = \begin{bmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 3 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 10 & -6 & -5 \\ -6 & 4 & 2 \\ -5 & 2 & 5 \end{bmatrix},$$

it follows that $AA^T = (AA^T)^T$, so AA^T is symmetric.

Note: For any matrix A the matrix AA^T is symmetric. The matrix A^TA is also symmetric.