

»Лекционен курс »Интелигентни системи

Съждителна логика>1

Съждителна логика

- » СЛ е сравнително проста логика
- » Синтаксис: дефинира позволените съждения
 - > Атомарни съждения: състоят се от един отделен съждителен символ
 - > Всяко съждение може да бъде true или false
 - > Започват с голяма буква
 - + P, Q, R, W_{1,2}, North
 - + Добра практика мнемоника
 - > Два съждителни символа с твърдо значение:
 - + True винаги вярно съждение
 - + False винаги грешно съждение

Комплексни съждения

Образуват се от по-прости съждения посредством свързване с логически оператори

- НЕ: Отрицание
- ∧ И: Конюнкция
- V ИЛИ: Дизюнкция
- → Импликация: означава се също като правило или if-then съждение
 (означава се също с → или ⊃)
- ⇔ Тогава, когато: бикондиционал, означава се също с ≡

Синтаксис на съждителната логика

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence]
\mid \neg Sentence
\mid Sentence \wedge Sentence
\mid Sentence \vee Sentence
\mid Sentence \Rightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
\mid Sentence \Leftrightarrow Sentence
| Sentence \Leftrightarrow Sentence
| Sentence \Leftrightarrow Sentence
| Operator Precedence : \neg, \land, \lor, \Rightarrow, \Leftrightarrow
```

Семантика

- » Дефинира правилата за определяне истинността на едно съждение относно определен модел
 - > В СЛ един модел определя вярностната стойност (true или false) за всеки съждителен символ
 - > Напр., ако в Б3 се използват P, Q и R, възможен модел е m_1 = {P=false, Q=false, R= true}
- » Трябва да покаже как може да бъде изчислена стойността на произволни съждения за един зададен модел
 - > Става рекурсивно
 - Всички съждения се образуват от атомарни и петте оператори трябва да покажем как се изчисляват стойностите на атомарните съждения и на тези, образувани посредством операторите
 - > За атомарни съждения:
 - + true, във всеки модел вярно, false, във всеки модел грешно
 - + Стойностите на всеки друг символ трябва да се зададат директно в модела
 - > За комплексните съждения таблицата

Вярностни стойности

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

 \Rightarrow : на пръв поглед изглежда озадачаващо, понеже не съвпада с нашето интуитивно разбиране (,,когато Р, тогава Q'')

- СЛ не изисква релация за каузалност или връзка между Р и Q
 - "5 е четно число" ⇒ "Пловдив е град в България"
- Такива импликации трудно се възприемат в нормалното разбиране на езика
- $P \Rightarrow Q$: ако P е вярно, могава се твърди, че Q е вярно
 - В противен случай не се прави твърдение
- Единствената възможност импликацията е да е грешна, когато Р вярно, а Q грешно

Б3 на W. света

$$R_{1}: \neg P_{1,1}$$

$$R_{2}: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$$

$$R_{3}: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,1} \lor P_{3,1})$$

$$R_{4}: \neg B_{1,1}$$

R₅: B_{2.1}

Конструира се върху непроменливи аспекти на W. света

Необходими символи:

- P_{x,y} true, когато в [x,y] има яма
- W_{x,y} true, когато в [x,y] е W. (жив или мъртъв)
- $B_{x,y}$ true, когато агентът възприема в [x,y] полъх
- $S_{x,y}$ true, когато агентът възприема в [x,y] зловоние

Напр., тези съждения са достатъчни за да изведем ¬Р1,2

Процедура за извод

- » Целта е да изведем (изчислим) дали е в сила $\overline{ 63} \models \alpha$ за едно определено съждение α
 - > Напр., ¬Р_{2.2} следствие от БЗ?
- » Първият алгоритъм за извод: използва подход за проверка на модели
 - > Директна имплементация на дефиницията за логическо следствие
 - > За решаване на логическо следствие в СЛ
- » При СЛ моделите са присвоявания на true или false за всеки символ
 - > За примера: 7 значими символи
 - + 128 възможни модели

Изводи в Б3

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false	false false	false false	false false	false false	false false	false true	true true	true	true false	true $true$	false false	false false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

3

БЗ вярна, когато R_1 , R_2 , R_3 , R_4 , R_5 са верни:

Процедура за извод

```
function TT-ENTAILS?(KB, alpha;) returns true or false
  inputs: КВ, база знания, съждение в СЛ
          alpha, въпрос (заявка), съждение в СЛ
  symbols ← списък от съждителни символи в БЗ и alpha
  return TT-CHECK-ALL(KB, alpha, symbols, { })
function TT-CHECK-ALL(KB, alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
    if PL-TRUE?(KB, model) then return PL-TRUE?(alpha, model)
    else return true // когато БЗ false, винаги return true
  else do
    P \leftarrow FIRST(symbols)
    rest \leftarrow REST(symbols)
    return (TT-CHECK-ALL(KB, alpha, rest, model ∪ { P = true })
             and
            TT-CHECK-ALL(KB, alpha, rest, model \cup { P = false }))
```

Общо за алгоритъма

» TT-Entails

> Генерира рекурсивно списък на крайно пространство от присвоявания за променливите

» Алгоритъмът е:

- > Коректен
 - + Понеже имплементира директно дефиницията на логическото следствие
- > Пълен
 - + Понеже функционира за всяка БЗ и всяко съждение
 - + Винаги завършва съществува краен брой модели, които се оценяват

» Комплексност

- $> \;$ Ако Б3 и lpha съдържат n символа, съществуват $2^{\rm n}$ модели
- > Комплексността е O(2ⁿ)

По-детайлни обяснения

- » ТТ означава вярностната таблица
- » PL-TRUE?
 - > Връща true, ако едно съждение е вярно в един модел
- » Променливата *model* представя един частичен модел
 - > Присвояване на някой от съждителните символи
- » Ключовата дума and се използва като логически оператор с два аргумента
 - > Връща true или false

