MA3201 Homework 1

Tan Yee Jian (A0190190L)

February 1, 2021

Problem 1

Given
$$\alpha = 3(1,2) - 5(2,3) + 14(1,2,3)$$
, $\beta = 6(1) + 2(2,3) - 7(1,3,2)$, then
$$\alpha + \beta = 6(1) + 3(1,2) - 3(2,3) - 7(1,3,2) + 14(1,2,3)$$
$$2\alpha + 3\beta = -18(1) + 6(1,2) - 16(2,3) + 21(1,3,2) + 28(1,2,3)$$
$$\alpha\beta = -108(1) + 81(1,2) - 21(1,3) - 30(2,3) + 90(1,2,3)$$
$$\alpha^2 = 34(1) - 70(1,2) - 28(1,3) + 42(2,3) - 15(1,2,3) + 181(1,3,2)$$

Problem 2

1. Since $0 \neq 1$, then n > 0. Given that $x^n = x \cdot x^{n-1} = 0$, we have either n = 1 or n > 1. If n = 1, then $x \cdot x^{n-1} = x \cdot 1 = 0 \implies x = 0$.

Otherwise if n > 1, then $x \cdot x^{n-1} = 0$ and both not zero implies x, x^{n-1} are zero divisors. \square

2.

$$(rx)^n = (rx)(rx)\dots(rx)$$

 $= rxrx \cdots rx$ (associativity)
 $= r^n \cdot x^n$ (R is commutative)
 $= r^n \cdot 0 = 0$

thus rx is a nilpotent for all $r \in R$.

- 3. $(1+x)(1-x+\ldots+(-1)^{n-1}x^{n-1})=1\pm x^n=1\pm 0=1$. I claim that $x\neq -1$ (therefore $1+x\neq 0$ will be a unit). Assume the contrary that x=-1, then $x^n=\pm 1 \ \forall n\in \mathbb{Z}_{>0}$, a contradiction to the nilpotency. Therefore, (1+x) is a unit.
- 4. Note that by (2), $(u^{-1}x)$ is also nilpotent, thus by (3), $(1+u^{-1}x)$ is a unit. Then since the product of units will be a unit (Remark 1.8.2), $u \cdot (1+u^{-1}x) = u + x$ is also a unit.

Problem 3

1. Write $\phi(0) = \phi(1+(1)(-1)) = \phi(1) + \phi(1)\phi(-1) = \phi(1)(1+\phi(-1)) = 0$. If $\phi(1) \neq 0$ and $\phi(-1) \neq -1$, then $\phi(-1)(\text{and } 1+\phi(-1))$ is a zero divisor.

A few observations:

- (a) $\phi(1) = 0 \implies \phi$ is the zero map, since then $\forall r \in R, \phi(r) = \phi(1 \cdot r) = 0 \cdot \phi(r) = 0$.
- (b) $\phi(-1) = -1$ implies $\phi(1) = \phi(-1)\phi(-1) = (-1)(-1) = 1$.

Thus we must have $\phi(1)$ is a zero divisor.

In the case where S is an integral domain, then $\phi(1)(1+\phi(-1))=0$ forces either factor to be 0. Since by observation 1, $\phi(1)=0$ leads to ϕ being the zero map, we must have the second factor as 0. By the second observation, $\phi(1)=1$ as desired.

2. I claim that the induced map is the original map restricted to R^* . I will verify that units in R are mapped to units in S, ie. the new codomain S^* is correct. That is the only thing we need to do since the homomorphic property of the restricted map is already given by the original map.

Let ab=ba=1=cd=dc for some $a,b,c,d\in R$. Then indeed, $\phi(a)\phi(b)=\phi(ab)=\phi(1)=1$ we have units mapped to units.

3. Consider the product ring $R \times S$ of two rings R, S both with $1 \neq 0$, then the embedding $\phi: R \to R \times S, r \mapsto (r, 0)$ maps 1_r to $(1_R, 0) \neq 1_{R \times S} = (1_R, 1_S)$.

Problem 4

- 1. We take for granted the fact that I+J is an ideal (proved in appendix), and just show that
 - (a) I, J are contained in I + J.

Proof.

$$I = \{i + 0 | i \in I\} \subseteq \{i + j | i \in I, j \in J\} = I + J$$

and the proof is symmetric for $J \subseteq I + J$.

(b) I+J is the smallest ideal containing I and J. In other words, we show for any ideal K containing $I, J, I+J \subseteq K$.

Proof. Let K be given. Then for any $i \in I, j \in J$, $i \in K$ and $j \in K$. Since K is an Abelian group wrt addition, $i + j \in K$ by closure property of the group K. Therefore $I + J \subseteq K$ for any ideal K containing I and J.

2. We first show IJ is an ideal.

Proof. IJ is a subring of R since for any $\sum_{k=1}^{n} i_k j_k$, $\sum_{k=1}^{m} x_k y_k \in IJ$ where $i_k, x_k \in I$ and j_k, y_k for all $k = 1, \ldots, \max(m, n)$,

(a) $0 \in IJ \neq \emptyset$, and since $-x_k y_k = (-x_k)y_k$ can be rewritten as $i_{n+k}j_{n+k}$,

$$\sum_{k=1}^{n} i_k j_k - \sum_{k=1}^{m} x_k y_k = \sum_{k=1}^{n} i_k j_k + \sum_{k=1}^{m} -x_k y_k = \sum_{k=1}^{n+m} i_k j_k \in IJ$$

Thus IJ is a subgroup of R by the one-step subgroup test.

(b) For products of any two elements from IJ, its fully expanded form must have terms of the form

$$i_1 j_1 i_2 j_2 = [i_1(j_1 i_2)] j_2 = [i_1 r] j_2 = i_3 j_2$$

for some $i_1, i_2, i_3 \in I, j_1, j_2 \in J$ since I is an ideal. Therefore the product is a sum of finite terms of the form $i_k j_k$, which implies IJ is closed under multiplication.

Thus I+J is a subring of R. To verify that I+J is an ideal, note that For any $r \in R, i \in I, j \in J$,

$$r(ij) = (ri)j \in IJ \ni i(jr) = (ij)r$$

since I, J are ideals. Thus IJ is an ideal.

Now we show that IJ is contained in $I \cap J$.

Proof.

$$IJ = \{\Sigma ij | i \in I, j \in J\} \subseteq \{ir | i \in I, r \in R\} \subseteq I$$
$$IJ = \{\Sigma ij | i \in I, j \in J\} \subseteq \{rj | j \in I, r \in R\} \subseteq J$$
$$\therefore IJ \subseteq I \cap J$$

- 3. Since $n\mathbb{Z}$ are ideals for any $n \in \mathbb{N}$, we have $2\mathbb{Z} \cap 4\mathbb{Z} = 4\mathbb{Z} \neq (2\mathbb{Z})(4\mathbb{Z}) = 8\mathbb{Z}$.
- 4. We first need that $I \cap J$ is an ideal.

Proof. We know that $I \cap J$ is a subgroup of R. For any $k, l \in I \cap J$, $I \ni k, l \in J$, therefore $kl \in I \wedge kl \in J$ (I, J are rings) implies $kl \in I \cap J$. Thus $I \cap J$ is closed under multiplication. \square

We just need to show that $I \cap J \subseteq IJ$ when R is commutative and I + J = R.

Proof. Let $k \in I \cap J$. Since I + J = R, take any $r \in R$ and let $r = i + j \in I + J$.

$$\begin{split} I \cap J &= R(I \cap J) & (I \cap J \text{ is an ideal}) \\ &= (I+J)(I \cap J) & (R=I+J) \\ &= [I(I \cap J)] + [J(I \cap J)] & (\text{distributive}) \\ &\subseteq IJ + JI & (I \supseteq I \cap J \subseteq J) \\ &= IJ + IJ = IJ & (R \text{ is commutative}) \end{split}$$

Appendix

Lemma. Given a ring R with $1 \neq 0$, and two ideals I + J, then I + J is also an ideal.

Proof. I + J is a subring of R since for any $i_1 + j_1, i_2 + j_2 \in I + J$,

1.
$$0 \in I + J \neq \emptyset$$
, and

$$i_1 + j_1 - (i_2 + j_2) = (i_1 - i_2) + (j_1 - j_2)$$

Thus I + J is a subgroup of R by the one-step subgroup test.

2.

$$(i_1 - i_2) \cdot (j_1 - j_2) = [i_1(j_1 + j_2) + i_2j_1] + i_1j_2$$

where the first term is the sum of two elements from I postmultiplied, and the latter an element from J premultiplied. Thus their sum belongs to I + J.

Thus I+J is a subring of R. To verify that I+J is an ideal, note that any $r \in R, i \in I, j \in J$,

$$r(i+j) = ri + rj \in I + J \ni ir + jr = (i+j)r$$

since I, J are ideals. Thus I + J is an ideal.