Lec 24: Class PP and &P; Valiant-Vazirani theorem

A couple of observations.

- Obs 1: If there's a NTM M that decides L in time T(n), then there's a NTM M' that decides L in time T'(n) = O(T(n)) and every computation path of M' on yp x has length exactly T'(1x1).
- Obs 2° 96 there's a PTM M that has run-time T(n), then there's a PTM M' that has run-time T'(n) = O(T(n)) s.t. Pr [M'(x)=1] = Pr [M(x)=1] & x & {0,1}, and every computation path of M' on i/p x has length exactly T'(1xi).

Class PP (Probabilistic Polynomial Time)

- · It is the decision version of the class #P.
- Defn. 1: A language L is in PP if there's a poly-time PTM M s.t. $x \in L \Leftrightarrow Pr[M(x)=1] > \frac{1}{2}$.

Equivalent Definitions

• Defin 2: Lin in PP if there's a poly-time NTM M s.t. x e L (=> majority (i.e., strictly > \frac{1}{2}) of the computation paths of M on i/p x are accepting.

• Defn 3: L is in PP if there's a poly-time DTM M and a poly-romial function $P(\cdot)$ s.t. $x \in L \iff \left| \left\{ u \in \left\{0, i\right\}^{P(1\times 1)} : M(x, u) = 1 \right\} \right| > \frac{1}{2} \cdot 2^{P(1\times 1)}$.

PP-completeness

- · Defn.: A language LEPP in PP-complete if L'SpL for every L'EPP.
- every $L \in \Gamma \Gamma$.

 Let Maj SAT := {Boolean ckt. $\varphi(z_1,...,z_m)$: $\# \varphi > 2^{n-1}$ }.
 - · Obs.: Maj SAT is PP-complete under poly-time (Karp) reduction.
 - · Lemma: PMajSAT = P#SAT (i.e. PPP = P#P).

Notation. For an $x \in \{0,1\}^*$, Int(x) will denote the integer corresponding to 2.

• Proof: (contd.) Let $\phi(x_1, \dots, x_n)$ be the ifp ckt. We wish to compute $\#\phi$. Let $M(b_1, \dots, b_n, x_1, \dots, x_n)$ be a DTM that outputs 1 iff Tnt(x) < Tnt(b).

- Obs: $\# \Psi_b(z) = Int(b) \in [0, 2^{n-1}]$.
- . Define, $\Gamma_b(z, z) := (z \wedge \varphi(z)) \vee (\exists z \wedge \psi_b(z))$.

$$\Rightarrow \# \Gamma_b(z,z) = \# P + Int(b)$$

• Proof (contd.). Query $\Gamma_b(z,z)$ to the Maj SAT oracle to check if $\#\Gamma_b(z,z) > \frac{1}{2} \cdot 2^{n+1} = 2^n$.

Now use binary search on $\{0,i\}^n$ to find the smallest \underline{b} s.t. $\# q + Int(\underline{b}) = 2^n \Rightarrow \# q = 2^n - Int(\underline{b})$.

Clearly, NP, co-NP $\subseteq P^{\#SAT}$.

Class &P (Parity P)

- · Defn.: A language L in in @P if there's a NTM M s.t. xEL (=) the number of accepting paths of M on i/p ze is odd.
- ⊕ SAT := {Boolean ckt. φ : # φ in odd}.
- · Obs: OSAT is OP-complete under poly-time (Karp) reduction.
- Obs: co-OP = OP, i.e, OP is closed under complementation Proof: DSAT := {Boolean cht op: #p is even} is co-OP-complete.

- · We wish to show that $\overline{\Theta}SAT \in \overline{\Theta}P$.
- · Let op be the ifp formula. Define, $\psi(z,z):=(z\Lambda\varphi(z))V(7z\Lambda z_1\Lambda\cdots\Lambda z_n).$ $\Rightarrow \# \Psi(z,z) = \# \varphi(z) + 1$. (Denote $\Psi(z,z)$ as $\varphi(z)$
- Therefore, Q(z) ∈ ⊕SAT iff Y(₹, ≥) ∈ ⊕SAT.
- . Think of a NTM that on if P P, at first forms y and then guesses z and ze and outputs 女(え, べ).

The Dequantitier

- · We will treat @ as a quantifier, just like 3&4.
- · Defn: For a Boolean ckt. $p(x_1, ..., x_n)$, we say PP(z) is true if #9 is odd.
- · We can define the problem & SAT, equivalently, as the Set of all true quantified Boolean ckt. of the form $\frac{1}{x} \varphi(x)$.

Toda's theorem: Proof outline

• Step 1: Give a randomized poly-time reduction from PH to \oplus SAT.

Step 2: (Derandomization of Step 1). Give a deterministic poly-time reduction from

PH to #SAT.

Open: Ss NP C P SAT?

· Proof of Step 1 uses the Valiant-Vazirani theorem.

Valiant - Vazirani theorem

- USAT := {Boolean cht 9: #9=1}
- · Obs: USAT C & SAT.
- · Theorem (VV'86): There is a randomized poly-time reduction f s.t. for every n-variate Boolean cht.

 - $\varphi, \text{ the following holds:} \\
 \varphi \in SAT \Rightarrow \Pr \left[f(\varphi) \in USAT \right] > \frac{1}{8n},$
 - $\varphi \notin SAT \rightarrow Pr \left[f(\varphi) \notin SAT \right] = 1$.

randoniezed poly-time · Corollary 1: There is a reduction from SAT to OSAT with success probabilieter > 1/80. This success prob. can be boosted. We'll see how later.

• VV Lemma: Let $fl_{n,k}$ be a family of pairwise independent hash fins from $\{0,1\}^n$ to $\{0,1\}^k$, and $S \subset \{0,1\}^n$ be such that $2^{k-2} \le |S| \le 2^{k-1}$. Then,

Pro [there's a unique $x \in S$ S.t. $h(x) = 0^k$] $\geqslant \frac{1}{8}$. $h \in r fl_{n,k}$

Proof of the Valiant-Vaziranie Lemma

- Let $N := No. of \times ES$ s.t. $h(x) = 0^k$. We would like to lower bound $Pr_h[N=1]$.
- · For the rest of the proof, we'll denote Prh as Pr.

· Proof (contd.). Observe that = Pr [N>] $P_{r}\left[N=1\right]+P_{r}\left[N\geq2\right]$ $\Rightarrow P_{\tau}[N=1] = P_{\tau}[N \geq 1] - P_{\tau}[N \geq 2]$ I Need to upper bound Need to lower bound I • $\Pr\left[N \ge 2\right] \le \binom{|S|}{2} \cdot \frac{1}{2^{2k}}$ (by union bound). $Pr[N>1] > 1SI \cdot \frac{1}{2^{k}} - {1SI \choose 2} \cdot \frac{1}{2^{2k}}$

(by inclusion - exclusion
principle)

. Therefore,
$$Pr[N=1] > |S| \cdot \frac{1}{2^k} - 2 \cdot {1Sl \choose 2} \cdot \frac{1}{2^{2k}}$$

$$> 151. \frac{1}{2^{k}} - 151^{2}. \frac{1}{2^{2k}}$$

$$>\frac{1}{8}$$
.

• As
$$2^{k-2} < 151 < 2^{k-1}$$
,

$$\frac{1}{4} \leq \frac{|s|}{2^{\kappa}} \leq \frac{1}{2}$$

Proof of the Valiant-Vazirani theorem

· let M be a DTM that taken Up: KEN, heflm,k, z [[0,]]

and outputs 1 iff h(x) = 0.

· Consider the following randomized reduction f.

onsider the form
$$f$$

$$\varphi(x) = f(\varphi)$$
1. Pick $k \in \{2, \dots, n+1\}$
2. Pick $h \in \{1, n\}$

Proof of the Valiant-Vaziranie theorem (contd.)

- · Obs: of ESAT then f(P) & SAT.
- · Obs: If $\varphi \in SAT$ then $f(\varphi) \in USAT \omega.p. > \frac{1}{8n}$.

Proof b Let S be the set of satisfying assignments of φ . Observe, $2^{\circ} < |S| < 2^{\circ}$.

• With prob. $\frac{1}{n}$, the reduction benction f chooses the "right" k, i.e., the chosen k satisfies $2^{k-2} \leq |S| \leq 2^{k-1}.$

· Therefore, conditional on the "right" choice of K, Prhl there's a unique z ∈ S s.t. h(z)=0k) > 1/8 (by the Valiant-Vaziranie lemma)

•
$$P_{r_{k,h}} \left[f(\varphi) \in USAT \right] \geq \frac{1}{8n}$$
 .

