Correction des Séries de TD N° 3 et N° 4

Correction de la Série 3 : Correction de l'exercice 1 :

décimale	octale	hexadécimale	binaire
1016	1770	3F8	1111111000
2100	4064	834	100000110100
2730	5252	AAA	101010101010
292	444	124	100100100

Correction de l'exercice 2:

Donnez les représentations binaires sur 8 bits de -115 en utilisant les trois représentations :

- 1. Binaire signé : avec 8 bits on peux coder les nombres de -127 à 127. $115 = 112 + 3 = 7*16 + 3 = 01110000_2 + 00000011_2 = 01110011_{(bp)}$ (en binaire pure) et -115 = 11110011_(bs) en binaire signé.
- Complément à 1 : avec 8 bits on peux coder les nombres de -127 à 127.
 115 = 01110011_(bp) (en binaire pure)
 115 = 10001100_(cà1) (en complément à 1)
- 3. Complément à 2 : avec 8 bits on peux coder les nombres de -128 à 127.
 - $115 = 10001100_{\text{(cà1)}}$ (en complément à 1), donc $115 = 10001100_{\text{(cà1)}} + 1 = 10001101_{\text{(cà2)}}$.

Correction de l'exercice 2 :

Donnez la valeur en base 10 des nombres binaires 01010101, 10010001, selon que l'on les lit en considérant un codage d'entiers sur 8 bits :

1.	En binaire pur :	$01010101_{\text{(bp)}} = 85$	$10010001_{\text{(bp)}} = 145$
2.	En binaire signé :	$01010101_{\text{(bs)}} = 85$	$10010001_{\text{(bs)}} = -17$
3.	En complément à 1 :	$01010101_{(cal)} = 85$	$10010001_{(cal)} = -110$
4.	En complément à 2 :	$01010101_{(ca2)} = 85$	$10010001_{\text{(cà2)}} = -111$

Correction de l'exercice 3:

Additionnez en binaire -115 et 92, puis -115 et -2 dans les deux représentations complément à 1 et complément à 2 :

```
-115 + 92 = 10001100_{\text{(càl)}} + 01011100_{\text{(càl)}} = 11101000_{\text{(càl)}} = -23 \text{ ok}
```

- $-115 2 = 10001100_{(cal)} + 111111101_{(cal)} = 10001001_{(cal)} = -118$ non (Complément à 1 ne marche pas !).
- $-115 + 92 = 10001101_{(ca2)} + 01011100_{(ca2)} = 11101001_{(ca2)} = -23 \text{ ok}$
- $-115 2 = 10001101_{(ca2)} + 1111111110_{(ca2)} = 10001011_{(ca2)} = -117 \text{ ok}$

Correction de la Série 4 :

Correction de l'exercice 1:

- 1. a. la 1ère bit est 1 donc le nombre est négatif. Les 8 bits suivants 10000010₂=130, donc E_b=130-127=3. La mantisse M = 11110110000...0. Donc le nombre est -1,11110110 * 2³ = -1111,10110 = -15,6875
 b. la 1ère bit est 0 donc le nombre est positif. Les 8 bits suivants 10000001₂=129, donc E_b=129-127=2. La mantisse M = 1110000...0. Donc le nombre est 1,1110 * 2² = 111,10 = 7,5
 - **c**. la 1^{ère} bit est 1 donc le nombre est négatif. Les 8 bits suivants $10000100_2 = 132$, donc $E_b = 132 127 = 5$. La mantisse M = 0001110000...0. Donc le nombre est $-1,0001110 * 2^5 = -100011,10 = -35,5$

2.

- a. Le nombre est négatif, donc la première bit du codage est 1.
- -123, 75 = -1111011, 11 car $123=120+3=15*8+3=1111000_2+11_2=01111011_2$, et 0.75*2=1.5 d'où le premier 1 après la virgule, ensuite 0.5*2=1.0 ce qui donne le dernier 1.
- -123, 75 = -1, $111011111 * 2^6$. Donc la mantisse M est 11101111100...0 et $E_B=127+6=133=10000101_2$. Donc le codage de -123, 75 est

- **b.** Le nombre est positif, donc la première bit du codage est 0.

Correction de l'exercice 2 :

- 1. Le code de la lettre 'o' est $111_{10} = 96 + 15 = 1100000_2 + 1111_2 = 01101111_2$.
- **2.** Le code de la lettre 'n' est $011011110_2 = 111_{10} 1 = 110_{10}$.
- **3.** En mémoire, on trouve la séquence suivante 01101010 10010101.
 - **a.** Pour "deux nombres entiers naturels (sur 8 bits) codés en Binaire Pure", on trouve : $01101010_2 = 1100000_2 + 1010_2 = 96 + 10 = 106$. $10010101_2 = 10000000_2 + 10101_2 = 128 + 21 = 149$.
 - **b.** Pour "deux nombres entiers relatifs sur 8 bits en représentation complément à 1", on trouve :

Le nombre est positif : $01101010_{(c \grave{a} 1)} = 96 + 10 = 106$.

Le nombre est négatif : En inversant les bits, on a $01101010_2 = 106$. Donc le nombre $10010101_{(c | h|)} = -106$.

c. Pour "deux nombres entiers relatifs sur 8 bits en représentation complément à 2", on trouve :

Le nombre est positif : $01101010_{(c \grave{a} 2)} = 96 + 10 = 106$.

Le nombre est négatif : En inversant les bits, on a 01101010_2 et on ajoute 1 on trouve 01101011_2 =-107. Donc le nombre $10010101_{(c \grave{a} 2)}$ = **-107**.

d. Pour "deux caractères du code ASCII étendu", on trouve :

 $01101010_2 = 106$ qui le carartère '**j**'. $10010101_2 = 149$ qui est le caratère '**Ò**'