GCGGGGGCAGGAAGGGGCGGGGGGCTCGGCGCACTCGGCAGGAAGACACCCGCC ACCCGCCGTAGCCCGCGCCCCTGGCACTCAATCCCCGCCATGTGGGGGCTCCTGCTCG CCCTGGCCGCCTCGGCCGTCGGCCCGGCTCTGGGGGCCCCAGGAACTCGGTGC TGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCGACCCCGGCCCTGCATAGCA GCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCAGAACAGCATGTCCGGATT CGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAGAAGCTAACTCTAACTCG CCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACTCCAGCAGGGACCCTCGA CCCCGCTGAGAAACAGAAACAGGCTGTCCTCCTTTGGGTCTGGAGTCCCTGCGAGTTTC AGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACG GCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGATGAGCCCTGGTGTGCTGA GGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGG TGTTATCACACAGGGCAGGAACTCTGTCTGGAGGTATGACTGGGTCACATCATACAAGGT CCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAACCACAGCAGTGGGATGG ACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGC CCCAGGTGGCCCGCTTCATTCGCCTGCCCCAGACCTGGCTCCAGGGAGGCGCCCTTG CCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAATGACCTATTCCTTGAGGCC CCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCACAATTACAAGGCCATGAGGA AGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACCCGCATCTACAGCATTGGGA AGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCGGACAAGCCTGGGGAGCAT GCGGGAGTTGCTCTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCA CGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATG GCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGCTGGGCCGAGGGCCGCTGGA ACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACACACCACTGTGGGAAG CACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCTGCCATTGCCCACTT ACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGA AGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGTGAGCTCGTGGTGTCCTACCC ATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTCACGCCCACACCAGATGATGC TGTGTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAATCTGGCCATGCAGGACACCAGC CGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGAC GAGAACAACAAGACGCCCTCCTCACCTGGAGCAGGTGCGCATGGGCATTGCAGGA GTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACGCTGTCATTGCCGTGGATGGG ATTAACCATGACGTGACCACGGCGTGGGGCGGGATTATTGGCGTCTGCTGACCCCAGGG GACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTCGGGTC ACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAACAGAGG CTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCCTGGAG CGGCTAAGGGGACAGAAGGAT**TGA**TACCTGCGGTTTAAGAGCCCTAGGGCAGGCTGGAC CTGTCAAGACGGGAAGGGGAAGAGTAGAGAGGGAGGACAAA

Fig. 1

MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETAN
GTSEQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGC
PPLGLESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDA
DPWFQVDAGHPTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSS
GMDAVFPANSDPETPVLNLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSD
PNDLFLEAPASGSSDPLDFQHHNYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVME
MSDKPGEHELGEPEORYEAGMHGNEALGRELLLLLLMQFLCHEFLRGNPRVTRLLSEMRIH
LLPSMNPDGYEIAYHRGSELVGWAEGRWNNQSIDLNHNFADLNTPLWEAODDGKVP
HIVPNHHLPLPTYYTLPNATVAPETRAVIKWMKRIPFVLSANLHGGELVVSYPFDMTR
TPWAARELTPTPDDAVFRWLSTVYAGSNLAMQDTSRRPCHSODFSVHGNIINGADW
HTVPGSMNDFSYLHTNCFEVTVELSCDKFPHENELPQEWENNKDALLTYLEQVRMGI
AGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDYWRLLTPGDYMVTASAEGYHS
VTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKD

Fig. 2

Fig. 3

Fig. 3 (Continued)

Fig. 4

Fig. 5

RELATIVE EXPRESSION (%)

Figure 8

>CG54007-01 20190 nt

ATGTGGGGGCTCCTGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGG GCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCG ACCCCGGCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCA GAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAG AAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACT CCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTG GAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTT GGACCACCGAGGACGCTCAACATTCAGTCAGGCCTGGAGGACGCCGATCTATATGAT GGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCAC GTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAAC CACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTG AACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTC CAGGGAGGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAAT GACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCAC AATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACC CGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCG GGGAACGAGGCCCTGGGGCGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAG TTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTG CCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGC TGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTC AACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCAT CACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGG GCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGT GAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTC ACGCCCACACCAGATGATGCTGTTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAAT CTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGC CTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAG GTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGAC GCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTAT TGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCA GTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTC ACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCG GACCTTCGCAGCCCTGGAGCGGCTAAGGGGACAGAAGGATTGANNANTNCANNTTNAN NNTNGNNANNTCTCACTTATAAATGGAAGCTGGCGGGACACGGTGGCTCACTCCTGTAAT $\tt CCCAACACTTTGGGAGGCTGAGGCGGTTGATCACGAGGTCAGGAGATCGAGACCATCCT$ GACTAACACGGTGAAACCCGTCTCTACTAAAAACACAAAAAATTAGCTGGGCGTGGTGGC GGCACCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCATGAACCCAGGAG TCGGAGCTTGCAGTGAGCCGAGTTCACGCCACTGCATTCCAGCCTGGGCAACAGAGCGAG ATGCAAAGGCATACAGAATGGTATAATGGACATTGGAGACTCAGAAGGAGGAGGGTAAGC GGGGGGTGACAGATAAAAAAACTGCATGTTGCATACAATGTACACTACTCGGGTGATGG GCGCTCTAAGATTTCAAACTTCACCACTATACAGTTCTCCCCTGTAACCAAAAACCGCTG GTACCCCTAAAGCAATTGAAATAAAAATAGAAACTATGTTGTAGCCTGGATGACATAGCG AAAACTTGTCTCTTAAAAAAAAAAAATGTGGCCGGGTGCAGTGGCTCACACCTGTAATC $\tt CCAGCACTTTGGGAGGCCCAAGGCGGGCAGATCACAAGGTCAGGAGATTGAGACCGTCCT$ GGCTAACAAGGTGAAACTCCATCTCTACTAAAAATACAAAAAATTAGCCGGGTGTGGTGG CACACGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGA GGCGGAGGTTGCAGTGAGCCGAGATCGCACCACAGCACTCCAGCCTGGTGACAGAGTGAG GTGACACGTCCCAGATACTTGGGAGGCTGAGGTGGGAGGATCGCTTGAACCCAGGAGTTC CAGACTGCAGTGAGCTGTGATTACACTATTGCACTCCAGCCTAGGCTGTGGGAAAGAGAG TTTCTGGGGTGCCAGCTGAGTTAGTCTTCCCTGTGTGAGACACCCATGGGAAGCCATGCG CGGCCTCTGAGGAGAAAGTCTCCTTATTGCCTTCATGTCTTTACGCCCGAGAGCAGAAC CCCTCAGCGGCATTCCACAGGTTGCTCAGGCATATAACACTCCCTTGAAGCAGTGGAGTA TAATCAAACATCTTGGCTCCTGAAACCCACTCCCACCCGTTTCAGTCCCGATAAGTT AAAGATTTGTTTTGTTTTGTTTTGAGACGGAGTCTCGCTCTGTCGCCCAGGCTGG AGTGCGGTGGCTCGATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTC TTTGTATTTTTAGTAGAGACGGGGTTTCACCACGTTGGCCAGAGTGGTCTCGAACTCCTG ACCTCAAGCGATCCACCTCAGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCAC ${\tt CGCGCCGGCCAGTTAAAGATCTTAAGTAGTTTGACACTCCTCTTTGCTCAAGGAAATTC}$ ACAGAAACCGCCACTGCTATACATCTTACAGAATGACTCTCCAGTTCTCCTTCACTGATT AATCCTTTCCCTCATCCTCCTCCTCCATCTGCCCTAAGAACAAAGAGCTTGTAA ACCAATAAATTGGGCGGAGCCTGAGAACTCTGGGCCGTGAGCAAGCCTCCGACGCTCCGG ${\tt TCCCCTGGACCCGCCTTTTAAACGCTTATTCTGTCTCTTTCTAACTCCTTTGTCTCCGCC}$ GGACTCGGGGTAACCGCTAGGCGTTATGGGGCTGTTTTCCCCAACATAGGCAACAGAGCA GGACAGTGTCTCTAAAAAAACAAAACCAAAACTATATTTTGTACTATTCTGATAAAAATG ACTTAGTTACAAACAAAGAACAAATCAACAGATAGTCATGCTGTGGAGATCAGGAATATT $\tt CCTTCCCAGGGTAAATGAAAGACCAATTCCCTAACGTCATGTGGATATACGCTTGTGGCT$ TAAGATAAAATTACCCGTGACAGCATCAAATACCAGGGATAAAACTCAGTCTTCAACACG CATATGTATCTCCTGGGGTTGAATCCTCTGGAGGTCTTGTTAAAAATGCAGATTCTGGTC AAGAGTTCGAGACCAGCCTGGCCAATATGGTGAAACCCTGTCTCTACTAAAAAACACAAAA ATTAGCTGGGTGTGGTGGACGCCTGTAGTCCCAGCTACTCAGGAGACTGAGGCAGGA GAATTGCTTGAACCCGGGAGGTGGCAGTTTAGTGAGCTGAGATCGGGCCACTGCACTCCA TTTTTGGTTTTTTTTTTTTGACAGAGTCTAGCTCTTTCACCTAGGCTGGAGTGCATGAC ${ t ACCATCCCAGCTCACTGCCAACCTCCGCTTCTTGGGTTCAAGCGATTCTCCTGCCTCAGCC}$ GTAGAGATGGGGTTTCACCGTGTTGGCCAGGTAAGTTTTGTATTTGTATTTGGTCTTGAA CTCCTGACCTCAGGTGATCCGCCCGCCTCGGCCTCCCAAAGTTCTGGGATTACAGGCGTG AGCCACTGCACCCGGCCTGTTCTGCATTTCTAACAAGTTCCCAGGGGATGCTACTGCTGC AAAGCTGGGGTAGAGAGTGATGAGGGGAGAACGGGTGCGTGGGGAGATGCTCCCCTGTGC ATCCTGGTCCCATGTGAGGCTCCAACAATGCTCACCTACATCACAGGGAGAGCACCTAGC TTTTATTCCATCTAAGTATGTAGGAGTAAGAGGGCTGTGTTACACTGTTTTCCCCACCTT TAATGCATCTGATCAACCTAGGAGCCCCCTAAGACCCTATATTATCTCACTTTATCATCA CAGCAAACCTGGGAGAAGGATATGGTTCCTGTTTTACAGATGAGGAAACTAAGTCTCAGG GAGGTGAAACTACTGCCCAAGGATAGCCAAACAAATACACGTCAGAAGTGGGATGTGAA ACGAAGCCTGTATGTCACCAGAGTCACCTATCCTCTCCCCCTCCAACCACCTAACCACAC CAGGGAGTTGGCAGGAGATTCCTAGCCCACCCCTTACATTAAAATCCCTTTTAGGCGGGT GCCACTATCCAGTCCTTCTCAATTGCACCTAGTGAGACCACGAAAGATCTTCTACCTGGC TCCTGGTAGATGAGATCTGGCTATACAGGTACTTGGGTGCAAACCTGCCCCTCTGCCCCT GGAGCTATCACCTCCAGATCCTGCTACTTGTACCTTTGCAGCCCCAGGTAGCCAGTGGCA AGGGCCAGGGGTGGCAGCAGGGCTGGGAGTGGAGAAGGTGTGAGAAAGTGCTGCGGGGC TCAGGAGACACAGCAGGGAACCAAGGGGTCCTAAGGGTTGCAATAGAGGACAGGGGCAGG GAGTGCAGAGTGGTGGGAAGGGGGATGGGAGCTGGGTGCAGGAGACATAAGAGATGGAGC ATCCCGCCACACGCTGGCTCACACCTGTTATCCCAGCACTTTGGGAGGCCGAGGTGG GTGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCT ACTAAAAACACAAAAAATTAGCCAGGCGAGGTGGTGTGCACCTGTAGTCCCAGCTTCTTG GGAGGCTGAGGCAGGAGAATGGCGTGAACCCAGGAGGTGGAGCTTGCAGTCAGCTGAGAT AAAAGAAAAAGAGGTGGAGCATCCTGCAGCCCTGGCCCCTAAAAGATTGGTGGGAGAGT GCCAGCTGCTCCACCCTAGTCACTTTGGGAACTGGTCTTTCAGTTCACGGCCTGCCATGT CCTCTCCTGCAAATCCTGGCACTGTTGAGGAGGTCCTTTCAGCCCTGGTTTGTCCACTCT AACCTTGAATATTATACACACACTTTATGAGAGCTGACGAGGGACCAGGTGCTGTTCT AGGCTCTGAGGTGCAGCTGTGGACATTTGGGTACAAAGTTCTTCTGGCAGGGTACTTACC TCCTGCTGGGGGTGGGGGAACCTGAACAGCCAACACATAAGTAAAGCAAGATCATCTCGG TGTTGAGTGCCTTGAAGACAATAATTTAAACGGGTGGGAGGATAGAGTGTGTGAAGTGAA AAAGTTTGCTTTAGTCAGGGTAGTCAGGGAAAGCCTTTGGGAGCAGGTGATATTGAAAGG AAATCTGACTGAGAAGGCAAATTCCATGCACAAATTAAAAGGCCAGGAGGCTAGTTGGGC TGTTGCGTGGGAGGAGCAGCTAGAATGCCGGAGTGACTGGGGGGATGGGAGCCAGGGGAT AGGGAGGCAGATGGAATGGGAAAGGCGTGGGCAGGAAGAACTTGGTCATGAAGACCTTGC AGGTGAACCCACTGGGGCCTTAAGCCTGGAGGAACTTGACAGAATTTGCCTACTGTGG GGAACGGCTTGGAGGGGGTGTGGGCTTCAGGAGGCTGAGATGTCCTGTTTCTTGTGCCCC CTCCTTCCTCCAACACCCGAGAAACCTGGATGGGTGTGGGGACCAGAGACCTGGAGGT GGCCAGATTGGGCTTTGGCGGGACGCTTAGCAGCCCTCGGGACCTGTTCAGACTGCGGCC CGGCTGTGCAGCGCTTCCCTTGAAATGTCTCTCTGTCCTCCCATCCAGTGCCTGGGACCC GGCAGCGCCGTCGAGGCAGGGGGCTGCGAGGCGGGACCCAGTTGCACGTGGGCCCTGTGG GGTCACTCCCTTTCGGGGGTCCTCTAGCTCTTCACCCTGCGCGCGTGGGGCAGACCAGAT GCCTCGAGGACCTCCAGGACCAGTGCCTATGGGGTAGTCCCTGCCGGCGGTGGGCCCCAG TCCCAGACTGCGGCGCTATTTCTTTCTGGGGTTCGTGTGAGCGTGGGCTGCCAGAATG GTGCCCACAAGCTGCTTTTGGGTGATTCAAATCATTTATACAGATAGTGCCCCTGCAAAA AACATTTGCGCAGGCCCCGCTTACGCCAGAGGATTGCGGGCCACTTCTGGGCATCGCTC CTCGTGGGGATGGGAGCATCTCCCTGGAGAGCCCTTTGCAAAGGCCAAGCGCCGGCCAAA GGCACACCGCTGGACGCGTTTCCTTCCTTCTGGAGAGATGACCAGGAATGCAGGATCCAA AGGGGGTCTTGGAGGGGGGGGGGAAGGGCATCTCCGGATCTGGGCAGACCCAGGGCTGC CGGCTCCCGAGGAGAATACGGGCTGGGGGGGAGGGCCGGAGGGCAGGTCAGGCAGTGC ATCAACCCTTGGCTCCTCCACCGCAGCCCCAGCCCGCAGGCTATCGCTCAGGCTTCTCTC GGAGGGAAGGGAAAGGAGGGGGCAGGGCCGGGCTTGGTGATGGTGGTGGTGGAAG $\tt CGCCGCCGTGCCGCCTCTTCTTGGGCCCCTTGGGTTGTCTTTCTGGAGGATTCCGGGACC$ AGCCCTCTCCCCAGGCTCCGGGTCGCCCCCTAGCCCCCCGCCGCCTCATTTTCCCTTCAC TCTTTTCCCCCTTCTGTCCCACCCGCCCTGCCAGGGGGCCTCTGGCTCTGGATAGCTTTT CCTCTCCGGTTGTAGTTTCCTTCCCAAAGTTCTCAGCTTTGCTACCTCGCCCAAGTCATT TAAAACTCCTGGCATAGTGCATGGTACAAAGTAGATGTCTGCTGCAGGCTAAGGGCCTCG AGGGGCTAAGTGAAATGTTGTGTGCCAGGCTGGGTGTCAGAGCCCCGGGAGCCGCAGCCA CGAATGGTTGGCTCCCGGGTGGTAAAAGAATTTATCAACAACAGTATAGGTTTGAAAAGT TTTATTAGATGGAAAGAACTCCACAGCAGAGCGCAGCGGGATGCTTCGGCAAGAGAGGCC TGAGCTCACTTGCAGGGAACTGAAGGGTAATTTTGACCACATTAGTTTTGTAGGTCATAG TAAATGATTACATTTGTAGACATTTTGGCACCTTGATGACAGCAAAGGTTGCACAATGGG TTCCAACATGCGTGCATTCCGGAGATGTATAGAAATTCTAGGGAAAGAAGCCTGGTACCA GATGTGGCTTTAGATAATAGGAAAGTACCATTCTGAGTTCTTCAGATAAGGTGCTTTGCC TCCTGATGGTCTGCTTGATGGCCACCAGGTGATCCTTGCTCTCCTCATTTTCCCCCTGAT AAATATTTTGGGCAAATCTTTGACCCTTTGTATTTCTCCATGCTCATGTCTACTTGTCTG TTAGGATCCCAAGAAAGGGAAAATGGCACAGTGAAGAGGGGTGTCCAGTCTATCTGGCTA CTTCCTGCTGAAAAGGGCATTGAAAGGATTCCTTTCTTGCTTTCTGTCATGAAGGGAAT GAAGGGTCATGATAAACTTGTTCATGGAGGGAAGACCAGATTCCATCAAGAGGCCCCATG AAAATAGAAGTTGCTGTTGCAGGCTGGTATTGGGATTGCATAGTCATCTGTAGGTGGAAT CATTGTAAGCTGGAAGATATAAGCATTAAAAGGCAGGAATTACCGGCATGCACCTCCATG CCCACAGATTTTTGTGTTTTTAGTAGAGACAGGTTCTCACCATGTTGGCCAGGCTGGTCT CCAACTCCTGACCTCAGGTGATCCGCCCGCCTCGCCTTGGTCTCCCAAAGTACTAGGATT ACAGGTGTGAGCAACCACACCTGGCCCCTGGGGTCTCAATTTGTGTATTTATGCATGGCC TTATTTCTTTTTTTTTTTTTTTTGAGATGGAATTTCGCTCTTGTTGCCCAGGCTGGA GTGCAGTGGCGCAATCTCAGCTCACCACACTTCCGCCTCCAAGGTTCAAACGATTCTCC TGCCTCAGCCTCTGGAGTAACTGGGATTACAGGCATGCACCACCATGCCCAGCTCATTTT GTATTTTTAGTAGAGATGGGGTTTCTCCGTGTTGGCTAGGCTGGTCTCAAACCTCAGGTG ACCCGCTCGCCTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCGCGCCCAGC TATTATTTCTTATAATTTAGAAAAATTAACAGGTTTTATTATATATTTTCATTCCCTCC AACAGAGAAGTTACCATATGATCCTGTCTGCCCTTACCTCTGTTTGGGCCAGAATTGGTG GCCTGGTATTGCCAATAGGTTCTATGTTGGGGACAGCTTCTGCCCAGCTCTGTTATTAGG ACTGGGAGCATGAGCTTCATCTGCCCATGCTGAAGATCACACGTGTGATTTTTTTGTGTGT GGGAACAGCAGGTAGTTAATACCACAAATACATCTTGCCAGGTTAAATCAAAGGCAACAG TTAAAGTCTGAAATTCTTGAATGAACTTAGAGGGATCCTGACTAAATGAACCCAACTTGG ATTGAATTTGCAAAAGATCAGACATGATCAGAAAAAGGGACATGAACTTGGCTTGTTCCCA AATCTTCATTAGCCACCTTAGGGAGAGGCAAAATATTTTGGGGATTTTTCTGAGGACTCT GTACTAGTAGCATATGTGACTCCCCTGAGAGTATGTGAAGGGGAAAAGTATTTGGGTAT GTGGGTGGGAGATTGACTAGGGAATGGAGCAGATGGAGAGGGTGTAGGTGAAGAGTGAGC AGGTTGAGGAGGATGTAATAGGCAAAAGGAAGGATCATCTAAGACATCAGAACCGGGAAG GGATAAAGCAAAAAAGACCTGAACATATGGGACTTCTGAATCCTTTCCAAGGTTCCGGCA AAAAATCAGTTAAGTTGTAAAGTAGCATTGCAATCCCAAGTTTCATTAATTGGCCAAATT GATTGATTAGGGAGCTTGTATTGAACCCAAGCAATATTAGAAAAAAGGATATGCTTTTTA TGGAGTGCTGTGGCCCATCTTGGCCCACTGCAACCTCCGCCCCCGGGGTACAAGTGATT CTCCTGCCTCAGCCTCCCTAGTAGCTGGGATTATATGTGCCCGCCACATATAATTAGCCC CCAGGCTGATCTCGAACTCCTGACCTCAGGTGATCCACTCGCCTCGGCCTCCCAAAGTGC TAGGATTACAGGTGTGAGTCACTGTGCCCGGCCAAGTTTTTGCATTTTTAGTAGACTCCCG GTCTTTAACTCCGGACCTCAGGTGATCTGCCTGCCTTGGCCTCCCAAAGTGCTGGGGTTA CAGGCATAAGCCATTGTGCTCAGCCTTATATGCTTATTTTTAAGAGTTTGTGGGTCAAAA TAATTGAACCGAAGTTGGGTTTAGACAAGGAACTACAAGATCCCTGAGGCATCCCTGTGT AGAATTGAGATCCACCGCTTCCAGGACAAGGCTTATGGAGTGTTAAAATGAAAGTGCCCT GCCACTCTGACAGGCAATAGCTCTTTTGTCTTGGCCTTGGGGTAATACCGGGGGATGGCG $\tt CTTGGCCAGAAACTGTCAGTTGCCAACGAGAACTCAAGCTGGTTCACTGGCAGTCCGAAA$ ACAGAAAAGAGCCCTGGCCAGTCCCTCACCCCTAAGGGCAAGGACAGCCAGGTATCCCTT CTCTAGGGCTTCAGGATCCCACAGAAGAGCTGCCTCCACCGGGACCGGCAGTTCCCCAAA GAGTAAAGAACCAGACCGTGGAAGGAAGCAGAGAGAAAAAGGAAGAGGGAAATCCCAGTG AAGTCCCCGTATGGGCCACCAAGATGCCAGGCGAGGTGTCAGAGCTCCGGAACCGGGAAG TGGTTGGCTCCCGGGTGGTAAAAGAACTTATCAACAACCGTGTAGGTCTGAAAAGGAAAG TTTTATTAGACGGAAAGGACGAGGCAGCAGAGCGCAGTAGGCGCTTCAGCAAGAGAGAC TGAGCTCCCTGCGGGGAACTGCAGGGTAATTTGGACCACATTAGTCACTTAGGTCATGGT AAATGGTTACATTTGTCGATATTTTGGTGCCTTGATGTCAGCAAAGTTTGCACAATGGGT CTTAACGTGCACTCATTCCGGAAACGTACAGAAATTCTAGTTACTTATAAATTCTTGGGA

CGGAAGCTTGGTACCAGATGTGGCTTTAGACAATAGGGAAGTGTCATTCTGAATTGCTCA GATAAGGGGCTTTGCCTCCTGTTGGTCGACTTGATGGCCACCAGGTGATCTCTGGTCTCT TCAGTGTGGCTTTGCAGACTATAAAGGCGCAGCGCGCCAACGAGGCGGGTTGGCCCCAGA CGGCGGAGAGGAGGCAGAGTCGGCGGTCCTGAGACTTGGGGCCGCCCCTTGGAGGTCA GCCCGCTCGCTCCCGGCCCTCTCCTCCTCCGAGGTCCGAGGCGGCAGCGGGCT GTGGGCGGCAGGAGGCTGCGGAGGGGCGGGGGGCAGGAAGGGGCGGGGGGCTCGGCGCA CTCGGCAGGAAGAGACCGACCGCCACCGCCGTAGCCCGCGCGCCCCTGGCACTCAATC CCCGCCATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCCGGCCGTCGGCCCGGCT CTGGGGGCCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCA GGCTCGACCCCGGCCCTGCATAGCAGCCCGGCAGACCCGCCGGCGGAGACAGCTAACGGT GAGTTCCCCGACCGACGGTCCGCTCCCCCGCAAGCCGACTGCCCGGCTCTCCTGCCCCGT GGGGCGATCCCTCCCTAACACGCGGGCACACGCACACCCACACACTCACAGTCATGCA GCACACACATATACACACTCACACTCCCTCAACTCCCTGCTGGGAGCAATGGCTGCTG ACTCGGCAGCCCAGTTCCCTGCCAGACCTAGTCAGCAGTCCCAGGACAGGCGCCAGTGG GATGCTGCCTCTTCCAAGCCCCAAACCTTCCCTTTTCACCAAAGACAAAACAGGCCAGAA CTGGCAGGAGGGGAACAGAGGGGCAGAAGCTCTCAAGGTGCAGAGCAAGACTGCGTAGG AGAGAGTTTGAAGGCGAGGGCTGGAGAGAAAGAACAAAAGGAAAGAAGGGAGAGCCCCTC GCTGAGGCTGCCGGGAGGATGGGGCAGAGCGGGAGAGGAAGGCAGCCCGACCTCCCAGCT GAGGCAAGTGGAGGGGTCTTGAAGGGTGATGTCCCCGAGTCAGGGGAGTCTGGAGAGA GAGAGAGAGAGGGCTGCCAAGAAGGAAGCGGCGGCAAAGGCACAGGGGCACCAGATG CGGAAATGGGCAGCCTGTTCTGGAGGCAGCTGTGGAGCTTCGATGGGTACCCCCAGCACC TGCCTGGGCAGAGCCTTGTGCTGAAGGGCCGGCGGGCAGGCCCAGCCCTGAAAGCCTCGA CACCCAGGCAGACATGGATTCCAGGACAGGCCATCTGAGCCCAGAGAGCAGACAACAA TGGAAGCGGCACAGGGGTTTTGGGGCATGATGCTGAGTCTGGAGCTAAGAAAGCCTCCTT GGAAAGGCATCTGGGCTGAGATGCAAAGGAAGAATGGGAATTAGGTGAAAAAATCAGAGG CGAGGGGTAGCATTACAGGGGAGGGGATAGCTAGTGCAGAGGCCCGGAGGTAAAGTGCCA GACTCAGCTCTTTGGAGCAACCGAACAGTTTCTAGAGGCTGGGTGCAGCTCTCCATTGGA GCCAAGGAAGTGACTGGAGAGGCAGGTTGGGGTCAGATTGCAGGCCTTTGATGTCCTGTG AAGGCTGTTAGATCCTGGTGGTGGGCCTGCTGTGGGCTCACATGTCTTCTTGGGCTGGC AGACCTTTCCATCCGGGGTTTCACCATTCTTCCTTTCCCCCATGCTGTGCCTCTCGGACC CCAAGGGACCTCAGAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTAT TGTGACCCCCACTCCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGTACTTC $\tt CTCTCCAGGGGCCCAGACTTGCAGCCCCTGGGGCACTTTACCAGCACAGCTCTTG$ GCCTCATGGGCACCGGCACGCCCCTTGCTTGCCTAGCGCAGGAGCAACCTTAGGCTCAGC TTCCCACCTGCCTGGCTACCCTCCCTCTGGTCCTGTCTCACTGTTCTATCCCCGCCCCA GGCTGTCCTCTTTGGGTCTGGAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCC AGCAGCCAGTCCTTTGGTCTTGGACCACACCGAGGACGGCTCAACATTCAGGTCAGTAAT $\tt CTCCTCTGTCCTGGCCTGCCCCACTCTGTCCAACTGGGCCTGACCACCATGTCCTGTG$ TCTGCAGTCAGGCCTGGAGGACGGCGATCTATATGATGGAGCCTGGTGTGCTGAGGAGCA GGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCACCCCACCCGCTTCTCGGGTGTTAT AAGTAGGAACCACAGCAGTGGGATGGACGCAGTGAGTGGTCCCACTGTGGCTGGGCCTC CATGCTGGGAGTTGGGCACCCAGTCCAGGCTAGGCTGAGGCTCCTCTGAGGACAAGGAAT

AGACGCCAGCTTAGGCTTCCCAGGGGGGTGTGGCTTGTTGTCAAGAGGGTGGCACACGGC AGGCACCATTGGGAGCCAGCTGCTTTGGGACATGCCCACATCCTCCCCAGATAATGCCAC GCCTCTGGTCCACATCACTTCTTGCCTTCTCGTGGTTCTGACTTCCGCATCTCATGGACC TCTTTTACAGCAGGCTACAATGTGGAGTCCTGGCCAGCTCTAGGATTGGCTTCCCCCGA GTCATGTGGCCAAACTGGTCTAATGAACTGTGTCCAATCCAGAGAGCAAGGCTGCCTAGG GCTGCCCATTGGCAGGGGCTGTGGGCCGGGGTCTGTGTTTGATGCACAGTGCAAGTCTCT AGCTGAGCCCACTAGGGTGGGGAGACAGTAAGCTTGGAGGCCTGAGCTCCTTCCCTGGGT CCTGGGCCAGGCTTCTGGGGTTTGAGCAGCCACAACAGAGAACTTGCTGCCCCCAGGTAT TTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTGAACCTCCTGCCGGAGCCCCAGGTGG CCCGCTTCATTCGCCTGCCCCAGACCTGGCTCCAGGGAGGCGCGCCTTGCCTCCGGG CTTGGATGCAGGGTGCATCCTTCACTGTGGACACCCCTTTACCATAAACTCAACCTCCA CCAGACCCCAATGACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGAC TTTCAGCATCACAATTACAAGGCCATGAGGAAGGTCAGATATAACCCCTATGACCTGGGA AGGAGGGCCCACCCATCTCAGGTCCCCTTCCCACCTTCCCACCGGGGCACAACCTGCTGT GACTGCGCTTGTATGCCCCTGCTGCCTCCTGATGTCTCAGCCTTCTCCTCTGTGGACCCC TAAGCTCCATCCCACTTTCCCTTATTATGGCGCCCCCCAGTCCTACCCCTTCCTCCCGG $\tt CTCTGCTGCCGCTCCCTGTACCATGATGGGATGCCCCCTCTGTGTGGGCCATCGCT$ GACTTTTTAAGTCTTTCCATGGCACATGTGATCTGCCCCTGGGTGTACCCCTCCCATGCC TCATGCCACGCTACACTCTGCCCACCAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAA CATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGA AATGTCGGACAAGCCTGGGGAGCATGAGCTGGGTACTGGCATGGGGAGTGGGGAGAGGTA GGCACAGGCCAGGCCCCAGGCATGAACCCGCTGCAAGCCCCCATGTGTCCCCCAGGGGAG CTGCTCCTGATGCAGTTCCTGTGCCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGG CTGCTCTGAGATGCGCATTCACCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATC GCCTACCACCGGGTAGGCCACCCAGCATGAGGGCCACTCTGTCCTTCTGCCCTGGTGGCT GGACCTGCTCGACTTGAACAAGCCTCTTGCCCGGCAGGGTTCAGAGCTGGTGGGCTGGGC CGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTCAACAC ACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCATCACCT GCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGAGTATTTTGAGGGCGGCAGT GGAGGTCTGTGGGGGGGCGGACCTTGTCTCTGTCTCCTGCCCCTCCTGACCTGCCCCATCC AGGTGGCTCCTGAAACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAA GTGCCAACCTCCACGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCC CGTGGGCTGCCGCGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCA AGGACTTCTCCGTGCACGGCAACATCATCAACGGGGCTGACTGGCACACGGTCCCCGGGA GTATGTGCCTGAGGGTGGAGTTAGCCCTGGCCCCGTAACCCCCGCCCTGATAAGACAGCC TGCGGTTGCGTACAGTGCTGGCGTCTGTTCCCACTCTGAAGTGTCCCTCAGAGAAGGGAG GGTAGCGGGAGGATGGGACCGCATCCCGCCTGCTTAGGCAGCAGTGTCTGTGGTCCCCTT AGGCATGAATGACTTCAGCTACCTACACCAACTGCTTTGAGGTCACTGTGGAGCTGTC CTGTGACAAGTTCCCTCACGAGAATGAATTGCCCCAGGAGTGGGAGAACAACAAAGACGC CTCCTGCTGTCCATTTAGGCTACAGCTCCTACCAGGGGTTCTTCTAAGGTCCAGCTGAGC ATTCAGACTCACAAGATGCCATGGGCCATGCTTGGTATCAGATTGTCTTGGAAGCACACA GGACAGGAAGTGCAGTTTGCTGGCAGCGTGGCATCGTGTTAGAGCCGGTGGGAGGAGCCT CCATTGCAGTCTAGGTGGTGGTCCGTGGCGCTGCCCCAGAGCTATCCTCAGGAGAGACTC ACGTGAGGCAGGTGCAGGAGCTGTCCTGGCATAGAAGCTTCATGTTCCATGGAGCTCATA ACCCTTGTAATAGCTCCATAAGCAGAGCTTCCAAAGGGTCTACCAAAGACAAGCCCAATA ACCTGGGAAAGCCCAAGGATAGATAAGCCTTCCTACCAGGTATTTATCATTTTCTTAGTC AGGAACACAGTAGACCTACCACTTTGCTCAGGTTTGCAGGGCAACAGAGCCAGCAAGTTA GCTAAACAGCACATTATCCTGCCGAAGGGGAAGGGCTCTGATAACCTCTTCCCACACAGG TGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGACG CTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGGTGTGTTTGACCGGGAGG GCAAGGGAAGGGCTGGAGGCTCGGGGAAGAAGAAGATCATTAATTGGGT $\tt CCTGATCGTGCCCTTCACTCTCAGCGTGGGGGGGGGGGTTATTGGCGTCTGCTGACCC$ CAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCAGTGACACGGAACTGTC GGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTCACCAAGACTCCCAAAC AGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCGGACCTTCGCAGGCGCC TGGAGCGGCTAAGGGGACAGAAGGATTGATACCTGCGGTTTAAGAGCCCTAGGGCAGGCT GGACCTGTCAAGACGGGAAGGGGAAGAGTAGAGAGGGGAGGACAAAGTGAGGAAAAGGTG $\tt CTCATTAAAGCTACCGGGCACCTTAGCTCATCTTCGTGTTGTCTCTGTGCCCCAGGTCCT$ CCCCCGGGGGGCGTCGGCCCAGCCCTCAGTTCCTATTCTGCACACTTGCACACTCT CATCAGTTGGCTTCTGGACACATTGTGTGAAAAGAGGATCCCACCTGGGCTCTTCTTGAA $\tt CCAAGGGCCTGGCAGAGCAACTCATTTCTTCTGATCAGCTTCTGCTACAGGTACCATTAC$ ACTGCTGCCAGGCATTCTGTAAGCGCCTGCTCATTGCCAGGTGTGCAAGGAATCAGGATC AGCCGTGCCTGCACTCAAACTCCTGGGGCTCCTAGTCAAGGGAAAGGACAGTTCGGTACA TTGTGAGACATGCTAGGGTGGAGGCCAGGTGCCGTGAGAGTGCAGGGGAGCTGCACACGT GAAATACAGCACTGCACATCAACAGGACTGGGGCAGTCAAGGATGCAATAGAAGTAGTGG CTCTAGAAGTTCAGGCGGAGGTGGGCAGGGTGTGGAGTATGGACAGGGATGGCTCCAAG GAGGAGGGTCAGCCAAAGGTGGGTCAGCTGAGAACATTTGAATTTGCTTCAGCCATTCTC AGAGTATTGATAACTGATAGGCTTTGCTGAGTTTCTATCAGACTGAAGGGGAAGTTGTGT ATCAGTCTGTGTCTTGCCAGGTAAACAACCCATTCTAGGCACTTAAAGTGGAGGGAAATT TAATGCTGGAAATTGGATAGGAAGGTGTTGGAAGAGCTGGATGAGGCCGGGTGTGGTGGC TCACACCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGAGGATTGCTTGAGCCCAGGA GTTTGAGACCAGCCTGGATAACATAGCCAAACCCCGCCTCTACAAAAATAAGAAATAAGA AACATAGCCAGCTGTAGTGGCGCATGGCTAAGGGAGGCAGAGGCAGGAGGATCACTGGAG $\tt CCTGGGAGGTGGAGGCTGCAGAGGCAGCAGTGAGCCATGATGGCGCCACTATACTCCAAC$ CTGGATGGTCATAACAAAATAAACAAAAAA (SEQ ID NO:3)

>CG54007-04 60 **ATG**TGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGG GCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCG 120 ACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCA 180 GAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAG 240 AAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACT 300 $\tt CCAGCAGGGACCCTCGACCCCGCTGAGAAACAGAAACAGGCTGTCCTCTTTGGGTCTG$ 360 420 GAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTT GGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGAT 480 GGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCAC 540 600 GTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAAC 660 CACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCCAGAAACTCCAGTGCTG 720 780 AACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTC 840 CAGGGAGGCGCCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAAT GACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCAC 900 960 AATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACC CGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCG 1020 1080 GGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAG 1140 TTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTG 1200 1260 CCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGC TGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTC 1320 1380 AACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCAT CACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGG 1440 GCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGT 1500 GAGCTCGTGGTGTCCTACCCATTCGACATGGTGACTGCCAGTGCCGAGGGCTACCATTCA 1560 1620 GTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTC ACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCG 1680 ${\tt GACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGAT{\tt TGA}}$ (SEQ ID NO:5)1725

FIG. 10

EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL 1: ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH 1	
ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH 1	60
	20
DTD FGCVITTOCIDNGVWDVDWVTGVKVOFGNDGPTWWCGRNHSGCMDAVFPANSDPETPVI. 2	80
FIREBOATI ONLIDA A IDIKA ÖLDA DEKI MIGDIGINED GUDIATI TITA DEL TIT	40
MUDITE OVARCE EXTENDED OF THE CONTROL OF THE CONTRO	00
NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH 3	60
GMEADGREEDED IN OF THE THROUGH IN THROUGH IN THE THROUGH IN THROUGH IN THE THROUG	20
WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR 4	80
AVIKWMKRIPFVLSANLHGGELVVSYPFDMVTASAEGYHSVTRNCRVTFEEGPFPCNFVL 5	40
TKTPKQRLRELLAAGAKVPPDLRRRLERLRGQKD (SEQ ID NO:6)574	

>CG54007-05 ATGTGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGG 60 GCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCG 120 ACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCA 180 240 GAACAGCATGTCCGGATTCGAGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAG 300 AAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACT 360 CCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCTTTGGGTCTG 420 GAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTT GGACCACACGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGAT 480 GGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCAC 540 600 $\tt CCCACCCGCTTCTCGGGTGTTATCACACAGGGCAGAGATCCTGGCCTGCCCAGTCTCAGA$ $\tt CCCCAA{\color{red}{\bf TGA}CC}{\color{blue}{\bf TATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCA}$ 660 GCATCACAATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAA 720 780 CATCACCCGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGA AATGTCGGACAAGCCTGGGGAGCATGAGCTGGGGGAGCCTGAGGTGCGCTACGTGGCTGG 840 900 CATGCATGGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTG CCATGAGTTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCA 960 CCTGCTGCCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCT 1020 1080 GGTGGGCTGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGC TGACCTCAACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCC 1140 1200 CAACCATCACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGA AACGCGGGCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCA 1260 CGGGGGTGAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCG 1320 CGAGCTCACGCCCACACCAGATGATGCTGTGTTTCGCTGGCTCAGCACTGTCTATGCTGG 1380 CAGTAATCTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGT 1440 1500 CAGCTACCTACACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCC 1560 1620 GGAGCAGGTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGAT 1680 TGCTGACGCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGG 1740 GGATTATTGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTA 1800 CCATTCAGTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTT 1860 1920 $\tt CGTGCTCACCAAGACTCCCAAAC\underline{A}GAGGCTGCGCGAGCTGCTGGCAGCTGGGGGCCAAGGT$ GCCCCGGACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGA (SEQ ID NO:7)1972

FIG. 12

>CG54007-05	
MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS	60
EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL	120
ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH	180
PTRFSGVITOGRDPGLPSLRPO (SEO ID NO:8)202	

>CG54007-06 ATCTGGGGGGCTCCTGCTCGCCCTGGCCGCCTTCGCGCCGGCCGTCGGCCCGGCTCTGGGG 60 GCGCCCAGGAACTCGGTGCTGGGCCTCGCGCAGCCCGGGACCACCAAGGTCCCAGGCTCG 120 ACCCCGGCCCTGCATAGCAGCCCGGCACAGCCGCCGGCGGAGACAGCTAACGGGACCTCA 180 GAACAGCATGTCCGGATTCGTGTCATCAAGAAGAAAAAGGTCATTATGAAGAAGCGGAAG 240 AAGCTAACTCTAACTCGCCCCACCCCACTGGTGACTGCCGGGCCCCTTGTGACCCCCACT 300 CCAGCAGGGACCCTCGACCCCGCTGAGAAACAAGAAACAGGCTGTCCTCCTTTGGGTCTG 360 GAGTCCCTGCGAGTTTCAGATAGCCGGCTTGAGGCATCCAGCAGCCAGTCCTTTGGTCTT 420 GGACCACACCGAGGACGGCTCAACATTCAGTCAGGCCTGGAGGACGGCGATCTATATGAT 480 GGAGCCTGGTGTGCTGAGGAGCAGGACGCCGATCCATGGTTTCAGGTGGACGCTGGGCAC 540 600 GTCACATCATACAAGGTCCAGTTCAGCAATGACAGTCGGACCTGGTGGGGAAGTAGGAAC 660 CACAGCAGTGGGATGGACGCAGTATTTCCTGCCAATTCAGACCCAGAAACTCCAGTGCTG 720 780 AACCTCCTGCCGGAGCCCCAGGTGGCCCGCTTCATTCGCCTGCTGCCCCAGACCTGGCTC CAGGGAGGCGCCTTGCCTCCGGGCAGAGATCCTGGCCTGCCCAGTCTCAGACCCCAAT 840 GACCTATTCCTTGAGGCCCCTGCGTCGGGATCCTCTGACCCTCTAGACTTTCAGCATCAC 900 AATTACAAGGCCATGAGGAAGCTGATGAAGCAGGTACAAGAGCAATGCCCCAACATCACC 960 CGCATCTACAGCATTGGGAAGAGCTACCAGGGCCTGAAGCTGTATGTGATGGAAATGTCG 1020 1080 GGGAACGAGGCCCTGGGGCGGGAGTTGCTTCTGCTCCTGATGCAGTTCCTGTGCCATGAG 1140 1200 TTCCTGCGAGGGAACCCACGGGTGACCCGGCTGCTCTCTGAGATGCGCATTCACCTGCTG CCCTCCATGAACCCTGATGGCTATGAGATCGCCTACCACCGGGGTTCAGAGCTGGTGGGC 1260 ${\tt TGGGCCGAGGGCCGCTGGAACAACCAGAGCATCGATCTTAACCATAATTTTGCTGACCTC}$ 1320 AACACACCACTGTGGGAAGCACAGGACGATGGGAAGGTGCCCCACATCGTCCCCAACCAT 1380 1440 CACCTGCCATTGCCCACTTACTACACCCTGCCCAATGCCACCGTGGCTCCTGAAACGCGG GCAGTAATCAAGTGGATGAAGCGGATCCCCTTTGTGCTAAGTGCCAACCTCCACGGGGGT 1500 GAGCTCGTGGTGTCCTACCCATTCGACATGACTCGCACCCCGTGGGCTGCCCGCGAGCTC 1560 ACGCCCACACCAGATGATGCTGTTTTCGCTGGCTCAGCACTGTCTATGCTGGCAGTAAT 1620 1680 CTGGCCATGCAGGACACCAGCCGCCGACCCTGCCACAGCCAGGACTTCTCCGTGCACGGC 1740 $\tt CTACACCAACTGCTTTGAGGTCACTGTGGAGCTGTCCTGTGACAAGTTCCCTCACGAG$ 1800 1860 GTGCGCATGGGCATTGCAGGAGTGGTGAGGGACAAGGACACGGAGCTTGGGATTGCTGAC 1920 GCTGTCATTGCCGTGGATGGGATTAACCATGACGTGACCACGGCGTGGGGCGGGGATTAT 1980 TGGCGTCTGCTGACCCCAGGGGACTACATGGTGACTGCCAGTGCCGAGGGCTACCATTCA 2040 2100 GTGACACGGAACTGTCGGGTCACCTTTGAAGAGGGCCCCTTCCCCTGCAATTTCGTGCTC ACCAAGACTCCCAAACAGAGGCTGCGCGAGCTGCTGGCAGCTGGGGCCAAGGTGCCCCCG 2160 GACCTTCGCAGGCGCCTGGAGCGGCTAAGGGGACAGAAGGATTGA (SEQ ID NO:4) 2205

Figure 14.

```
>ptnr:SPTREMBL-ACC:Q9NUB5 DJ860F19.3 (NOVEL PROTEIN (ORTHOLOG OF MOUSE
            METALLOCARBOXYPEPTIDASE CPX-1)) - Homo sapiens (Human), 734 aa.
            Length = 734
Score = 2735 (962.8 bits), Expect = 0.0, Sum P(2) = 0.0
Identities = 510/510 (100%), Positives = 510/510 (100%)
           1 MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS 60
             MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS
           1 MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS 60
Sbjct:
          61 EOHVRIRVIKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL 120
Query:
             EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL
          61 EOHVRIRVIKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL 120
Sbict:
         121 ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH 180
Ouerv:
             ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH
         121 ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH 180
Sbjct:
         181 PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL 240
Query:
             PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL
         181 PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL 240
Sbjct:
         241 NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH 300
Query:
             NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH
         241 NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH 300
Sbjct:
         301 NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH 360
Query:
             NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH
         301 NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH 360
Sbjct:
         361 GNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG 420
Query:
             GNEALGRELLLLLMOFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG
         361 GNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG 420
Sbjct:
         421 WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR 480
Query:
             WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR
         421 WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR 480
Sbjct:
         481 AVIKWMKRIPFVLSANLHGGELVVSYPFDM 510
Ouerv:
             AVIKWMKRIPFVLSANLHGGELVVSYPFDM
         481 AVIKWMKRIPFVLSANLHGGELVVSYPFDM 510
Sbjct:
 Score = 341 (120.0 bits), Expect = 0.0, Sum P(2) = 0.0
 Identities = 67/69 (97%), Positives = 67/69 (97%)
         507 PFD-MVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRR 565
Ouerv:
             P D MVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRR
         666 PGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPPDLRRR 725
Sbjct:
Query:
         566 LERLRGQKD 574 (SEQ ID NO:6)
             LERLRGQKD
                            (SEQ ID NO:41)
         726 LERLRGQKD 734 (SEQ ID NO:42)
Sbjct:
```

Figure 15

Score = 1005 (353.8 bits), Expect = 4.4e-101, P = 4.4e-101 Identities = 192/193 (99%), Positives = 193/193 (100%)

Ouery:	1	MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS	60
~ -		MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS	
Sbjct:	1	${\tt MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS}$	60

Query:	61	EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL	120
~ •		EOHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL	

Query:	121	${\tt ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH}$	180
~ .		ECT DVCDCDLEAGSCOSECLGDHRGPLNLOSGLEDGDLYDGAWCAEEODADPWFOVDAGH	

Sbjct: 121 ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH 180

Query: 181 PTRFSGVITQGRD 193 (SEQ ID NO:8)

PTRFSGVITQGR+ (SEQ ID NO:43)

Sbjct: 181 PTRFSGVITQGRN 193 (SEQ ID NO:44)

Figure 16

>ptnr:SPTREMBL-ACC:Q9NUB5 DJ860F19.3 (NOVEL PROTEIN (ORTHOLOG OF MOUSE METALLOCARBOXYPEPTIDASE CPX-1)) - Homo sapiens (Human), 734 aa. Length = 734

Score = 3952 (1391.2 bits), Expect = 0.0, P = 0.0 Identities = 734/734 (100%), Positives = 734/734 (100%)

Query:	1	MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS	60
Sbjct:	1	MWGLLLALAAFAPAVGPALGAPRNSVLGLAQPGTTKVPGSTPALHSSPAQPPAETANGTS	60
Query:	61	EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL EOHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL	120
Sbjct:	61	EQHVRIRVIKKKKVIMKKRKKLTLTRPTPLVTAGPLVTPTPAGTLDPAEKQETGCPPLGL	120
Query:	121	ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH	180
Sbjct:	121	ESLRVSDSRLEASSSQSFGLGPHRGRLNIQSGLEDGDLYDGAWCAEEQDADPWFQVDAGH	180
Query:	181	PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL	240
Sbjct:	181	PTRFSGVITQGRNSVWRYDWVTSYKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL	240
Query:	241	NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH	3 00
Sbjct:	241	NLLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH	300
Query:	301	NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH	360
Sbjct:	301	NYKAMRKLMKQVQEQCPNITRIYSIGKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH	3 60
Query:	361	GNBALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG GNBALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG	420
Sbjct:	361	${\tt GNEALGRELLLLLMQFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHRGSELVG}$	420
Query:	421	WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR	480
Sbjct:	421	${\tt WAEGRWNNQSIDLNHNFADLNTPLWEAQDDGKVPHIVPNHHLPLPTYYTLPNATVAPETR}$	480
Query:	481	AVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSN AVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSN	540
Sbjct:	481	AVIKWMKRIPFVLSANLHGGELVVSYPFDMTRTPWAARELTPTPDDAVFRWLSTVYAGSN	540
Query:	541	LAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHE LAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHE	600
Sbjct:		LAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHE	600
Query:	601	NELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDY NELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDY	660
Sbjct:	601	NELPQEWENNKDALLTYLEQVRMGIAGVVRDKDTELGIADAVIAVDGINHDVTTAWGGDY	660
Query:	661	WRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPP WRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPP	720
Sbjct:	661	WRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPP	720
Query:	721	DLRRRLERLRGQKD 734 (SEQ ID NO:2) DLRRRLERLRGQKD (SEQ ID NO:45)	
Sbjct:	721	DLRRRLERLRGQKD (SEQ ID NO:45) DLRRRLERLRGQKD 734 (SEQ ID NO:46)	

B.

KKLTLTRPTPLVTAGPL KKLTLTRPPPLV-AGPL

Figure 18 ClustalW alignment of CG54007-01, CG54007-04 and CG54007-05 proteins of the present invention.

CG54007-05 CG54007_01 CG54007-04	MWG LL L ALA A FAPA VG PALGAPRNS VLGLA QFGT TK V PG STP A LH3 SPAQ P PA ET ANGT S MWG LL L ALA A FAPA VG PALGAPRNS VLGLA QPGT TK V PG STP A LH3 SPAQ P PA ET ANGT S MWG LL L ALA A FAPA VG PALGAPRNS VLGLA QPGT TK V PG STP A LHS SPAQ P PA ET ANGT S
CG54007-05 CG54007_01 CG54007-04	E QHVR I RV I KKKKVIMKKRKKLTLTRPTPLVTAGP L VTPTPAGT LDPAEKQETGCPPLG L E QHVR I RV I KKKKVIMKKRKKLTLTRPTPLVTAGP L VTPTPAGT LDPAEKQETGCPPLG L E QHVR I RV I KKKKVIMKKRKKLTLTRPTPLVTAGP L VTPTPAGT LDPAEKQETGCPPLG L
CG54007-05 CG54007_01 CG54007-04	E S LR V S DS R L EAS S S Q S F G L G P H R G R L N I Q S G L E D G D L Y D G A W C A E E Q D A D P W F Q V D A G H E S LR V S D S R L E A S S S Q S F G L G P H R G R L N I Q S G L E D G D L Y D G A W C A E E Q D A D P W F Q V D A G H E S L R V S D S R L E A S S S Q S F G L G P H R G R L N I Q S G L E D G D L Y D G A W C A E E Q D A D P W F Q V D A G H
CG54007-05 CG54007_01 CG54007-04	PTRFSGVITQGRDPGIPSLRPDPTRFSGVITQGRNSVWRYDWVTSVKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL PTRFSGVITQGRNSVWRYDWVTSVKVQFSNDSRTWWGSRNHSSGMDAVFPANSDPETPVL
CG54007-05 CG54007_01 CG54007-04	N LLPEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH N LLFEPQVARFIRLLPQTWLQGGAPCLRAEILACPVSDPNDLFLEAPASGSSDPLDFQHH
CG54007-05 CG54007_01 CG54007-04	N Y KAMR KLMKQVQBQCPN I TRI YS I GKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH N Y KAMR KLMKQVQBQCPN I TRI YS I GKSYQGLKLYVMEMSDKPGEHELGEPEVRYVAGMH
CG54007-05 CG54007_01 CG54007-04	GNEALGRELLLLLMOFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYEIAYHPGSELVG GNEALGRELLLLLMOFLCHEFLRGNPRVTRLLSEMRIHLLPSMNPDGYBIAYHRGSELVG
CG54007-05 CG54007_01 CG54007-04	WAEGRWNNOSIOLNHN FADLNT PLWEAQDDGKVPH I VPNHHL PLPTYYTL PNATVAPETR WAEGRWNNOSIOLNHN FADLNT PLWEAQDDGKVPH I VPNHHL PLPTYYTL PNATVAPETR
CG54007-05 CG54007_01 CG54007-04	AVIKWMKRIPFVLSANLHGGELVVSYPFDMIRTPWAARELTPTPDDAVFRWLSTVYAGSN AVIKWMKRIPFVLSANLHGGELVVSYPFDMV
CG54007-05 CG54007_01 CG54007-04	LAMQDTSRRPCHSQDFSVHGNIINGADWHTVPGSMNDFSYLHTNCFEVTVELSCDKFPHE
CG54007-05 CG54007_01 CG54007-04	N EL PQ E WEN N KDALLTYLE QVRMG I AGVV R DKDTE LG I A DAV I A VDG I NHDVTTAWGGD YTAS
CG54007-05 CG54007_01 CG54007-04	WRLLTPGDYMVTASAEGYHSVTRNCRVTFEEGPFPCNFVLTKTPKQRLRELLAAGAKVPF AEGYHSVTRNCRVTFEEGFFPCNFVLTKTPKQRLRELLAAGAKVPF
CG54007-05 CG54007_01 CG54007-04	

Fig. 20

