EW gamma + 2 jets (VBF photon) Plans for Snowmass

Hamed Bakhshian
Abideh Jafari
Mehdi Hajimaghsood
Masoomeh Tavakoli

Introduction

Pure electroweak Vjj production

- Produced via "vector boson fusion" (VBF)
 - + other diagrams with negative interference in SM
- Crucial to verify the unitarity of boson scattering
- Sensitive to triple gauge coupling vertex

Zjj and Wjj:

Have been studied in CMS and ATLAS

Yjj

- Direct access to WWy vertex
- Well motivated (arXiv:1004.0825)
- Not covered yet in LHC experiments

VBF Photon production

- Larger cross section (compared to Zjj and Wjj)
 - ~30 pb ($m_{ii} > 120 \text{ GeV}, \gamma p_{T} > 50 \text{ GeV}$)
- Main background
 - QCD γ+2jets
 - Very high xsection (>20K pb)
 - Difficult to model
 - Specially in high mjj bins (arXiv:1912.09866)
 - Available samples in CMS
 - LO: MadGraph, for 2016/2017/2018
 - · With and without DR cut
 - NLO γ+1jet: amc@NLO, for 2016 only
 - · Initial cross checks show good agreement with data
 - NLO: Sherpa, only for 2016

Concerns about MC samples

Signal

- LO gridpack is ready (ewk and interference)
- Details for PS (arXiv:2003.12435):
 - For pythia some additional options are needed (dipole-recoil)
 - HERWIG works out of the box

Background

- Binned in γp_T:
 - Low γp_T region is essential (main signal region, very high bkg xsection)
- amc@NLO gridpacks (γ+1jet) are available
 - We can work on NLO(Sherpa) with the help of experts
- VBF filter (at least 2jets, $m_{ii}>50$ GeV) can save a lot of resources
 - To investigate its efficiency, we need help from GEN experts

MC Sample request

Signal

Pure electroweak	1M
Interference	500K

QCD Background (no VBF mjj filter)

		Eq. Lum (/fb)
$50 \text{ GeV} < p_{T} \gamma < 100 \text{ GeV}$	100M	7.39
100 GeV $< p_{_{\rm T}} \gamma < 250$ GeV	100M	67.5
250 GeV < $p_T \gamma$ < 400 GeV	10M	78.5
$400 \text{ GeV} < p_{_{T}} \gamma < 700 \text{ GeV}$	5M	636
700 GeV < p _τ γ	2M	6800

The request my be optimized considering VBF filter

Plans for the Run-II analysis

- SMP-19-005
- A dedicated trigger for low pt photons+2 vbf jets
- Detailed study of the signal production at NLO and possible parton showers (pythia vs. herwig)

Detailed comparison of different modelings of the QCD

background with data

Data/MC discrepancy (for LO background)

• Idea: correct LO QCD background using DY information

How DY can help?

- **LO DY:** behavior is similar to QCD γ background in SR (high m_{ii} region)
 - NLO DY shows perfect agreement with data
- Corrections to LO sample can be extracted from data in DY CR (as a function of MVA var)
 - Corrections are consistent with NLO/LO k-factors
- The corrections will be applied on γ+jets
 QCD background

Plans for snowmass

- Use NLO QCD sample to estimate the main background contribution
 - take amc@NLO as the baseline and report comparison with Sherpa
- Validate the modeling of the QCD background using NLO/LO ratio in DY and photon+jet
 - Needs LO samples for both processes

Efficient simulation of the background is the main key for the success of this analysis

- Estimate the sensitivity to EFT parameters
 - Follow the same recipe as ewk-Zjj analysis at CMS (SMP-16-018)