27. a.	Derive the constitutive recovery behaviour.	ve equation of	kelvin model and sketch its creep and	10	3	2	
		(OD)					
b.		lain the stress i	ubjected to oscillatory shear in strain- response in the material. Clearly define istic functions used.	10	3	2	1
28. a.		•	measure the resilient modulus of soil/ I related to resilient modulus?	10	2	3	1
		(OR)					
b.		ulsion? Write th	the step by step process involved in the so clearly explain the emulsion braking	10	2	3	1
29. a.	_		the axle load survey conducted for 3 aber of standard axle loads of 80 kN	10	3	4	1
	Axle load (kN)	Repetitions					
	30 – 40	54	Marine and the second				
	40 – 50	65	100				
	50 - 60	56					
	60 - 70	78					
	70 – 80	103	ж				
	80-90	98					
	90 – 100	110					
	100 – 110	98					
	110 – 120	78					
	120 - 130	87					
	130 – 140	67					
	140 – 150	65	The state of the s				
b.	Explain in detail on pavement with cement		iteria used in the design of flexible	10	2	4	1
30. a.	List the possible dist suggest the remedial m		ole pavement. Mention it causes and fy the distress.	10	2	5	1
		(OR)					
b.	What is internation rou	, ,	How is it measured?	5	2	5	1

*	*	*	*	*	

ii. Explain how the pavement deflection is measured using Benkelman beam.

Page 4 of 4 21NF6/7/18CEE401T

				- 1						
						-	16.3			
T 3.7								-		
Reg. No.										
1105. 110.	1.0	 100		 	1 1			11	n m	
									11	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth/ Seventh Semester

	\$2	(For the candida	ites admitted from	the ac	ANALYSIS AND DESIGN cademic year 2018-2019 to 2019- and design charts are permitted)	2020)				
Note:										
(i)		t - A should be answ all invigilator at the			in first 40 minutes and OMR she	et sho	ıld be	hand	ded o	over
(ii)		t - B should be answ								
Time: 2	½ Ho	urs.				M	ax. M	lark	s: 7:	5
		PAR	$RT - A (25 \times 1 =$	= 25 N	farks)		Marks	BL	CO	PO
			Answer ALL Q	uestio	ns					
1.	Bur	mister's pavement	analysis is for		layered system.		1	1	1	1
	(A)	Single		(B)	Two					
	(C)	Three		(D)	Four					
2.	whe Pois	re q is contact p son's ratio.		ntact	ed structure is given by radius, E is modulus and		1	2	1	1
	(A)	$\frac{2qa}{E}(1+\gamma^2)$ $\frac{2qa}{E^2}(1-\gamma^2)$		(B)	$\frac{2qE}{a}(1+\gamma^2)$ $\frac{2qa}{E^2}(1+\gamma^2)$					
	(C) ₋	$\frac{2qa}{E^2}(1-\gamma^2)$		(D)	$\frac{2qa}{E^2}(1+\gamma^2)$					
3.	Whi load		stress will be n	naxim	um due to application of w	heel	1	2	1	1
	(A)	Shear stress (σ_{rz}))	(B)	Normal stress (σ_{rr})					
	(C)	Vertical stress (c	$\sigma_{zz})$	(D)	Normal stress $(\sigma_{\theta\theta})$		0			
4.		ch of the below la	nyer is considere	ed as	infinite in depth for stress-st	rain	1	1	1	1
		Surface		(B)	Base					
	` '	Subbase		' '	Subgrade					
	` /			` '	111111111111111111111111111111111111111					

3	ine	Poisson's ratio of olluminous conc	rete I	ayer is	•	-	•	
	(A)	0.15	(B)	0.35				
	(C)	0.50	(D)	0.20				
6.	The	increasing order of energy dissipat	ion in	various material is	1	2	2	
	(A)	Elastic, viscous and viscoelastic	(B)	Elastic, viscoelastic and viscous				
	(C)	Viscous elastic and viscoelastic	(D)	Viscous, viscoelastic and elastic				

7.	Permanent deformation in the viscoelastic material leads to	1	2	2
	(4) 7 4 4 4 4 (7) 61 6 4			

7.	Permanent deformation in the viscoelastic material leads to	1	2	2	
	(A) Fatigue cracking in the payement (B) Shear failure				

21NF6/7/18CEE401T

- (C) Pothole formation
 - (D) Rutting in the pavement

8.	Phas	se lag in Newtonian material is			1	1	2	1
	(A)	0°	(B)	90°				
	(C)	45°	(D)	180°				
9.	Whi	ch of the below equation more suits	for l	oituminous material?	1	2	2	1
		$\sigma = E\varepsilon$		$\sigma = \mu \dot{\varepsilon}$				
	(C)	$\dot{\varepsilon} = \frac{\dot{\sigma}}{\dot{\sigma}} + \frac{\sigma}{\dot{\sigma}}$	(D)	$\varepsilon = E\sigma$				
	. ,	$\varepsilon = \frac{-}{E} + \frac{-}{\mu}$						
10.	The	stress strain plot of viscoelastic ma	terial	due to sinusoidal shearing is	1	2	2	1
	(A)	Circular in shape	(B)	Straight line				
	(C)	Parabolic	(D)	Elliptical				
11	The	penetration of the bitumen is measu	red o	at a second	1	1	3	1
11.		25°C		10°C				
		65°C	• /	60°C				
	(C)	63 C	(D)	00 C				
12.	Flow	number is used to characterize	WIN S	of bituminous mixture.	1	1	3	1
	(A)	Rutting	(B)	Fatigue damage				
	(C)	IRI		Corrugation				
13.		ch of the below test is used in fat	igue	life determination of bituminous	1	2	3	1
	mixt							
		Four-point beam bending test						
	(C)	Stress-relaxation test	(D)	Creep and recovery test				
14	Sele	ct the specification of 16 mm nomin	nal si	ze agoregate	1	1	.3	1
		100 to 85% passing in 20 mm						
	()	sieve	(2)	sieve				
	(C)	100 to 85% passing in 16 mm	(D)					
	(-)	sieve	(-)					
15	Ritu	men as per BIS specification are gr	aded	hased on	1	1	3	1
10.		Viscosity		Dynamic modulus				
		Resilient modulus	. /	Penetration Penetration				
1/	TOCC	di CDD i d			1	1	4	1
10.		ctive CBR is the	4 1		•	1	4	1
		Average CBR of compacted and na						
	, ,	Maximum CBR of compacted and						
		Minimum CBR of compacted and						
	(D)	Equivalent CBR that causes san natural soil layer	ne de	eformation with compacted and				
17.		tensile stress at the bottom of cem nodulus of rapture 1.4 MPa, what is			1	1	4	1
		9.57 E5		5.26 E5				
	` '	2.12 E6	, ,	3.86 E6				
	(0)	2.12 DO	(D)	3.50 L0				
18.	The	contact pressure considered for the	e des	ign of cement treated sub base is	1	1	4	1
	(A)	800 MPa	(B)	0.800 MPa				
	(C)	560 MPa	` /	0.560 MPa				
	(-)		(-)					

19.	Front axle of the vehicle is single axle rear axle is single axle duel wheel w damage factor?			1	2	4	1
	(A) 1	(B)	4				
	(C) 2	(D)					
	(C) 2	(D)	Mga ni dimmir mustanas mi				
20.	The standard axle load considered for the (A) 65 kN, single axle single wheel			1	2	4	1
	(C) 224 kN, tridem axle	(D)	80 kN, single axle dual wheel				
21	The possible causes for bleeding in aspl	halt 1	over are (is)	1	1	5	1
41.	(A) Excess bitumen and low air		* · · · · · · · · · · · · · · · · · · ·				
	voids	(D)	Trigher an voids				
	(C) Moisture in the pavement	(D)	Excess loading				
	(C) Wolsture in the pavement	(D)	Excess loading				
22	A mixture of well graded fine aggregate	a fill	er and emulsion forms	1	1	5	1
44.			Bituminous concrete	T.			
			Stone mastic asphalt				
	(C) Slurry seal	(D)	Stone mastic aspiran				
22	IRI is expressed as			1	1	5	1
23.		(D)	Difference in gurface level for		-		-
	(A) Deflection in the pavement	(D)	Difference in surface level for				
	(C) Parameters of another dense	(D)	unit horizontal distance				
	(C) Percentage of cracked area	(D)	Difference in surface level of				
			road				
24	David ham an marridad to			1	1	5	1
24.	Dowel bars are provided to	(D)	Transfer load and hold alah in	-	-	_	-
	(A) Load transfer	(B)	Transfer load and hold slab in position				
	(C) Hold the slab together	(D)	Resist moisture infiltration				
	(C) Hold the slab together	(D)	Resist moisture initiation				
25	Reflection crack occurs in			1	1	5	1
23.	(A) Rigid pavement	(B)	Rigid overlay				
	(C) Subgrade layer	(D)					
	(C) Subgrade layer	(D)	pavement				
			pavement				
	$PART - B (5 \times 10 =$	50 N	[awks]	Marks	BL	CO	PO
	Answer ALL Qu		,				
	Allswei ALL Qu	iesuo.	IIS -				
26. a.	Narrate the step by step process inventilayered pavement.	olved	in the stress strain analysis of	10	2	1	1
	(OR)						
b.	A homogenous half-space is subjected	ed to	a circular load of 300 mm in	10	3	1	1
	diameter having contact pressure of	400	kPa. The half-space has elastic				
	modulus of 75MPa and Poisson's ratio	0.35.	Determine all the components of				
	stress, strain and deflection at point that						
	mm below the surface. (Please note Po		-				
	cannot use the charts)		•				
	•						
				,			

Page 2 of 4