
In situ Resource Utilization: How to Live and Thrive in Space

Paul E. Hintze, Ph.D.
NASA Kennedy Space Center
Paul.E.Hintze@nasa.gov

Significant Events in Space

First American Satellite – 1958

First American to Orbit Earth – 1962

First American Spacewalk – 1965

First Manned Lunar Landing – 1969

First Robotic Landing on Mars – 1971

Space Shuttle Flights – 1981-2011

Continuous human occupation of space – 2000 - present

First Spacecraft to Leave the Solar System – 2013-2014

Significant Events in Space

HUMAN EXPLORATION
NASA's Path to Mars

EARTH RELIANT
MISSION: 6 TO 12 MONTHS
RETURN TO EARTH: HOURS

PROVING GROUND
MISSION: 1 TO 12 MONTHS
RETURN TO EARTH: DAYS

MARS READY
MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS

Mastering fundamentals aboard the International Space Station

U.S. companies provide access to low-Earth orbit

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov

Gravity Wells and Gear Ratios

Figure 1

The Gravity Well of the Earth

The Earth sits in a deep gravity well and considerable rocket energy is necessary to lift material from that well and put it into space. The rocket velocity change (ΔV) shown here is an indication of the minimum fuel needed to travel to low Earth orbit and to other places, including the lunar surface and Deimos. Not shown on the diagram but also important is the fact that it takes less ΔV to reach some Earth-crossing asteroids than it does to reach the lunar surface, about 10 percent less for asteroid 1982 DB, for example. This diagram is not a potential energy diagram, as the ΔV depends on the path taken as well as the potential energy difference. However, it is a good indication of the relative fuel requirements of transportation from one place to another. The diagram also does not take into account travel times corresponding to minimum ΔV trajectories. One-way travel times range from less than an hour to low Earth orbit to 3 days for lunar orbit to months to a year or more for Mars and Earth-crossing asteroids.

- NASA SLS will weigh 30,000 metric tons and deliver 130 metric tons to Low Earth Orbit (LEO)
- 20:1 gear ratio going from LEO to Mars surface
- One SLS launch can send 6.5 metric tons to Mars surface
- Proposed need of 5.8 metric tons of methane for return trip from Mars

Introduction to ISRU

- ❑ What is ISRU? – In Situ Resource Utilization
 - ❑ “Living off the land”
 - ❑ Use Space Resources to reduce cost and risk for NASA missions
 - ❑ Already used with Solar Panels for power
- ❑ What do we need?
 - ❑ Life Support: Air, water, food
 - ❑ Propellant
 - ❑ Structures
- ❑ Key space resources:
 - ❑ Lunar regolith and polar water ice/volatiles
 - ❑ Asteroid regolith, metals, and volatiles
 - ❑ Martian atmosphere and water ice/hydrates

Introduction to ISRU

- ❑ What do we need?
We need to breathe

Introduction to ISRU

- ❑ What do we need?
We need to eat/drink

Introduction to ISRU

What do we need?

Transportation

Introduction to ISRU

What do we need?

Shelter

ISRU in Books and Pop Culture

- The High Frontier, Gerard K. O'Neill, 1977
- The Case for Mars, Robert Zubrin, 1996
- Runaround, Isaac Asimov, 1942
- The Moon is a Harsh Mistress, Robert Heinlein, 1966
- Total Recall, 1990, based on “We Can Remember it for you Wholesale”, Phillip K. Dick, 1966
- Interstellar, 2014
- The Martian, 2015

Mass driver on the moon

O'Neill cylinder

ISRU Businesses

- ❑ Planetary Resources: asteroid mining, \$1.5 million crowd sourced for asteroid telescope. www.planetaryresources.com/
- ❑ Golden spike - monetize exploration of the moon.
goldenspikecompany.com/
- ❑ Moon Express – mine moon for rare metals.
www.moonexpress.com/
- ❑ Shackleton Energy – mine water on moon for propellant.
www.shackletonenergy.com/

ISRU – Earth's moon

James Irwin, Apollo 15

- All needs brought from Earth

ISRU – Earth's moon – Before 2009

Lunar Regolith (soil)

❑ Needs come from regolith

❑ Hydrogen reduction:

❑ Carbothermal reduction

❑ Molten regolith electrolysis

ISRU – Earth's moon – After 2009

Lunar nearside mosaic
taken by Lunar
Reconnaissance Orbiter

❑ Water was discovered in 2009

Lunar Prospector Neutron Spectrometer

ISRU – Asteroids

Eros, the first asteroid to have it's picture taken by an orbiting craft in 2000 by NASA's NEAR mission

- ❑ Many classes of asteroids
- ❑ Metals (Ni, Fe, Pt, ???)
- ❑ Water
- ❑ Hydrocarbons
- ❑ Keck Asteroid Retrieval Feasibility Study recommends a carbonaceous C-type asteroid, containing up to 40% volatiles
- ❑ Produce fuel and structures
 - ❑ Heat shields
 - ❑ Turn an asteroid into a spacecraft!

ISRU – Asteroids

Concept for NASA's Asteroid Redirect Mission:
Robotic vehicle capturing an asteroid

Concept for NASA's Asteroid Redirect Mission:
Astronaut collecting samples

ISRU – Mars

Mosaic of Mars
taken during the
Viking mission

- ❑ Atmosphere of Mars
 - ❑ 96% CO₂; 2% Ar; 2% N₂
 - ❑ ~7 mbar (<1% Earth pressure)
- ❑ Water ice at poles, and up to 10% in the top meter of regolith

Sedimentary rocks
taken by NASA's
curiosity rover

ISRU – Mars

❑ ISRU: Atmosphere only; solid oxide electrolysis

❑ ISRU: Atmosphere and soil processing

MARCO POLO: Mars Atmosphere and Regolith Collector/PrOcessor for Lander Operations

MARCO POLO: APM

- $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$
- Why is this challenging?
 - Conversion to methane not as favorable at Mars atmospheric pressure
 - Methane production rate low if carbon dioxide is not compressed
 - Thermal management

MARCO POLO: APM

CO₂ Freezer

Copper Cold Head

Trash to Gas

- ❑ The Trash to Gas project is a three-year study meant to develop promising trash processing technologies for future spaceflight missions
- ❑ Years one and two focused on developing five different technologies and selecting the most promising from among:
 - ❑ Catalytic Wet Air Oxidation
 - ❑ Incineration/Gasification
 - ❑ Ozone Oxidation
 - ❑ Pyrolysis
 - ❑ Steam Reforming
- ❑ Year three is focused on refining the most promising technology

Incineration/Gasification Team at Kennedy Space Center

Trash to Gas Benefits

- Stabilization of all combustible waste, including human wastes
- Volume reduction of stored waste
- Production of water for life support and/or propellants

Shuttle mission waste

Food waste 'football'

Oxygen
Water
Methane

Trash to Gas Benefits

Steam Reforming

Sabatier/Methanation Reaction

Bosch Reaction

Trash to Gas Benefits

	Amount produced (+) or consumed (-), kg/yr						
	CH ₄	CO ₂	CO	O ₂	H ₂ O	C _{solid}	H ₂
Case 1 with Sabatier (maximize water recovery)	870	922	586	0	267		
Case 1 with Bosch (maximize water recovery)	--	--	--	--	3087	1155	96
Case 2 (maximize methane production)	1539	--	--	2317	-1210	--	--
No Conversion of solid waste with Sabatier	302	630	--	--	-127	--	--
No Conversion of solid waste with Bosch	--	--	--	--	1069	399	19

Trash to Gas: Microgravity Challenges

KSC Reactor

Trash to Gas: Microgravity Challenges

Building Materials in Space

- ❑ Dust ejecta during lunar launch/landing can affect visibility, erode nearby coated surfaces and get into mechanical assemblies of in-place infrastructure
- ❑ Dust mitigation will be necessary for certain areas of the lunar habitat
- ❑ Surface stabilization can be used for roads, launch pads and other dust free areas

John Young, Photo S72_37002

Building Materials in Space

Charles Conrad Jr. and Surveyor III

Building Materials in Space

Cave in Hawaii used for shelter

Large Area Surface
Sintering System
(LASSS) used to sinter
the volcanic soil in
Hawaii

Building Materials in Space

- Able to layer tephra and connect sintered areas
- Strengths from 30 – 240 psi
- Fired thruster on sintered area
- Environmental conditions caused issues

Building Materials in Space

Questions?

Orion lift off

Photo credit: NASA/Sandra Joseph and Kevin O'Connell

The Orion floats in the Pacific with stabilizing balloons inflated as the USS Anchorage moves in to retrieve the spacecraft.