# CM1603 - Database Systems

### Week 01 | Introduction to DBMS

Dileeka Alwis – Lecturer / Level Coordinator,

Department of Computing, IIT













## Learning Outcomes

Preparing for LO1 of Module

- On completion of this lecture, students are expected to be able to:
  - Define data and information
  - Understand different data processing systems
  - Understand the importance of the database system
  - Define a data model and different types of data models
  - Identify and define Relational Data model







### Lesson Outline

- Data & Information
- Data Processing Systems
- Introduction to Database and DBMS
- Applications of Databases
- Data Models in DBMS
- Database Architecture
- The Role of a Database
- People who deal with databases







### What is Data and Information?









#### Data vs. Information

• **Data** can be any individual fact like character, text, word, number, picture, sound, or video. Data doesn't carry any significance or purpose on its own.

• **Information** is useful and can be understood by the human. Information enables decision making







### Example for Data and Information

#### Example of Data:

Joe, 34, Smith, Mr., NW65JH, Abbey, London, Road, England

#### Example of Information:

Mr. Joe Smith, 34 Abbey Road, London, NW65JH **England** 







## Data Processing Systems

#### Manual Processing



#### File based Processing

#### **Traditional Computer Files**

| Patient Id | Name   | D.o.B       | Gender | Phone   | Doctor Id | Doctor    | Room |
|------------|--------|-------------|--------|---------|-----------|-----------|------|
| 134        | Jeff   | 4-Jul-1993  | Male   | 7876453 | 01        | Dr Hyde   | 03   |
| 178        | David  | 8-Feb-1987  | Male   | 8635467 | 02        | Dr Jekyll | 06   |
| 198        | Lisa   | 18-Dec-1979 | Female | 7498735 | 01        | Dr Hyde   | 03   |
| 210        | Frank  | 29-Apr-1983 | Male   | 7943521 | 01        | Dr Hyde   | 03   |
| 258        | Rachel | 8-Feb-1987  | Female | 8367242 | 02        | Dr Jekyll | 06   |

Database Processing





#### **TECHNOLOGY**

# File-based Processing

**Data Duplication** 

ID 001 Name Anne Address Perth 747374 TelNo Marks 75



**Data Entry** & Report S

**File Handling** Routines

File Definitions

**Student System Files** 

Name Address

ID

Anne Perth

001

TelNo 747374

5 Books-Loan



**Data Entry** & Report S

File Handiing **Routines** 

**File Definitions** 



**Library System Files** 









**Library System Files** 







# Limitations of a file-based system

- Data Inconsistency
- Data Duplication
- Data integrity problems
- Incompatible file format
- Security Issues Only password security

#### How do we resolve these problems?







### Introduction to Database & DBMS

- What is a database?
  - A database is a collection of logically related data.

- What is a DBMS (Database Management System)
  - Set of programs to access the data.
  - A software package designed to create and maintain databases.
    - Eg: MS Access, MySQL, Microsoft SQL Server, Oracle, etc.







# Database Processing









## Database Processing









## Advantages of database systems

- Minimize data redundancy
- Data independence
- Efficient access to data
- Data integrity is high
- High security
- Improve data quality and accuracy
- Easy data administration
- Provide concurrent access
- Easy data sharing









## Applications of Databases









#### Data Models in DBMS

 Defines the logical design and structure of a database and defines how data will be stored, accessed and updated in a DBMS.

- There are several data models:
  - Hierarchical Model
  - Network Model
  - Entity-relationship Model
  - Relational Model (Most widely used database model)
  - Object Oriented Model









### Database Architecture

- 3 Level ANSI-SPARC Architecture
- 3 Schema (3 Tier) Architecture
- It contains 3 levels/views/schemas
  - External Schema (View Level )
  - Conceptual Schema (Logical Level)
  - Physical Schema (Internal Level)
  - These 3 levels are defined as levels of data abstraction.
  - Information about the schemas is stored in the system catalog





#### Database Architecture



Note: any given database has exactly one conceptual schema and one physical schema because it has just one set of stored relations, but it may have several external schemas







### External Schema

- The users' view of the database.
- Describes the part of the database that is relevant to each user.
- Describe how users or programs see the data.
- Application programs hide details of data types.
- Can hide some information (eg: Salary) for security purposes.
- Different external views can be provided to different categories of users.







## Conceptual Schema

- Defines the logical structure of the entire database.
- Describes what and how data is stored in the database and the relationships among the data.
- Describes all relations that are stored in the database.
- Defines the data types, field sizes, primary keys, foreign keys etc.







# Physical Schema

- The physical representation of the database on the computer.
- Describes how the data is stored in the database in terms of record formats, file structures, indexes etc.
- Describes how the files and indexes are used.
- Describes how a record is stored.
- Provides the disk drives and physical addresses.
- Physical database design is the responsibility of the database administrator(DBA).







#### The Role of a Database

- The database is typically not accessed directly by users.
  - It is first designed.
  - Then implemented in a DBMS.
  - The DBMS hosts the database, making it available for applications to interact with as needed.
  - Applications interact with the database; requesting data from it, inserting data into it, updating data in it, and deleting data from it.
  - Users interact with the application, not directly with the database.
  - This controls access to the database, allowing policies and procedures to be enforced.







### The Role of a Database



- The DBMS may contain multiple databases
- Multiple different applications may interact with a DBMS/database







### People who deal with databases

End users- uses applications written by database application programmers

**Application Programmers** – develop packages that facilitates data access for end users.

Database Administrators – undertake the task of designing and maintaining the database.

# Thank you

Contact: dileeka.a@iit.ac.lk





