Worksheet 09

Projectile Motion

Exercise 1. Given a projectile with initial velocity $||\vec{v}(0)|| = v_0$, that is launched with an angle of elevation α , from the surface of a planet with gravitational constant g, derive a vector valued function describing the position vector with respect to time.

Starting at
$$\vec{a} = -g\hat{j}$$
, we integrate to get Note: gravity is pulling the $\vec{v}(t) = \int \vec{a}(u) du = \int -g\hat{j} du = -g\hat{j} \cdot u \Big|_{t=0}^{t} + C$ the $-\hat{j}$ direction to $t = 0$ to $t = 0$.

So, as $\vec{V}(0) = \vec{V}_0$, we have v(+)= à.+ v

 $\vec{r}(t) = \int (\vec{a} \cdot u + \vec{r}_0) du = \vec{a} \frac{u^2}{2} + \vec{r}_0 u \left[\frac{t}{4} + D \right]$ $= \frac{1}{2} \overline{a} t^2 + \overline{v} \cdot t + D$

and r(0)=0, so r(t)= 1at2+ 5t Now, v = livillos(a) 2 + livillsin(a)?

Note: gravity

So r(t)= (||volles(a).t, - 29t2 + ||vollsin(a)t)

2 Kepler's First Law of Planetary Motion

First we recall two of Newton's Laws:

Law (Second Law of Motion).

$$\vec{F} = m\vec{a} \tag{1}$$

Where \vec{F} is force and m is mass.

Law (Law of Universal Gravitation Between a Planet and a Star).

$$\vec{F} = -\frac{GMm}{r^3}\vec{r} = -\frac{GMm}{r^2}\vec{u}. \tag{2}$$

Where \vec{F} is the gravitational force on the planet, m and M are the masses of the planet and the star, respectively, \vec{r} is the position vector of the planet, and $\vec{u} = \frac{1}{r}\vec{r}$, where $r = ||\vec{r}||$.

Law (Kepler's First Law of Planetary Motion). A planet revolves around a star with an elliptical orbit with the star at one focus.

The proof of this law happens in two parts:

- 1. We show that the planet moves around the star in a fixed plane, relative to the star.
- 2. We show that the path it traces in this plane is an ellipse.

Exercise 2. Using equations (1) and (2), conclude that the position and acceleration vectors are parallel. What does this tell us about $\vec{r} \times \vec{a}$?

Setting (1) = (2) we get
$$m\vec{a} = -\frac{G\mu m}{r^3} \vec{r} \implies \vec{a} = -\frac{GM}{r^3} \vec{r}$$
 So these vectors are scalar multiples of each other, thus, they are parallel. So, by Corollary 13.4.7, $\vec{a} \times \vec{r} = \vec{0}$.

Exercise 3. Compute

$$\frac{d}{dt} \left(\vec{r} \times \vec{v} \right),\,$$

where \vec{v} is the velocity vector of the planet.

By Theorem 14.2.3 part 5

$$\frac{d}{dt}(\vec{r} \times \vec{v}) = \vec{r}' \times \vec{v} + \vec{r} \times \vec{v}'$$

$$= \vec{v} \times \vec{v} + \vec{v} \times \vec{a} = \vec{0}$$
again by
$$\text{by exercise 2}$$
Cor. 13.4.7

Exercise 4. We may assume that \vec{r} and \vec{v} are not parallel. If we let $\vec{h} = \vec{r} \times \vec{v}$, what doe we know about \vec{h} ? (Aside from the fact that it is orthogonal to each of \vec{r} and \vec{v}).

from Ex3, we can conclude its component functions are constant.

Exercise 5. How can we use properties of \vec{h} to conclude that the curve traced out by \vec{r} is a plane curve. That is, that the planet moves in a fixed plane, relative to the star?

As $\vec{r}(t)$ and $\vec{h}(t)$ are orthogonal for all values of t, and we can assume that $\vec{r}(t)$ and $\vec{v}(t)$ are not parallel then $\vec{r}(t)$ and $\vec{v}(t)$ are always in the same plane, perpendicular to $\vec{h}(t)$, containing the argin.

Exercise 6. Fill in the missing steps in the following computation:

$$\vec{h} = \vec{r} \times \vec{v}$$

$$\vec{l} = \dots$$

$$= r\vec{u} \times (r\vec{u})'$$

$$\vec{l} = \dots$$

$$= r^2(\vec{u} \times (\vec{u})').$$
For \vec{l} we note that $\vec{l} = \vec{l}$ and $\vec{r} = r\vec{u}$

$$\vec{l} = \vec{l} \times \vec{v} = (\vec{l} \times \vec{u}) \times (\vec{l} \times \vec{u})'$$

For ② we apply Theorem 14.2.3 port 3, because v is still a function of t. 50

$$(r\vec{u}) \times (r\vec{u})' = (r\vec{u}) \times (r'\vec{u} + r\vec{u}')$$

 $= (r\vec{u} \times r'\vec{u}) + (r\vec{u} \times r\vec{u}')$ by 13.4.8 part 3
 $= r \cdot r' (\vec{u} \times \vec{u}) + r^2 (\vec{u} \times \vec{u}')$ by 13.4.8 part 2
 $= r^2 (\vec{u} \times \vec{u}')$ by Car 13.4.7

Exercise 7. Now, express $\vec{a} \times \vec{h}$ in terms of G, M, and \vec{u} . Use 13.6.8 Property 6

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \bullet \vec{c})\vec{b} - (\vec{a} \bullet \vec{b})\vec{c}$$

from (1) and (2) we have
$$\vec{A} = \frac{-GM}{r^2}\vec{u}$$
, from $\vec{E} \times \vec{B}$ we have $\vec{h} = r^2(\vec{u} \times \vec{u}')$

So $\vec{a} \times \vec{h} = -\frac{GM}{r^2}\vec{u} \times (r^2(\vec{u} \times \vec{u}')) = -GM(\vec{u} \times (\vec{u} \times \vec{u}'))$

$$= -GM((\vec{u} \cdot \vec{u}')\vec{u} - (\vec{u} \cdot \vec{u})\vec{u}')$$

$$= -GM((\vec{u} \cdot \vec{u}')\vec{u} - (||\vec{u}||^2)\vec{u}') (13.3.2.1)$$

$$= -GM((\vec{u} \cdot \vec{u}')\vec{u} - \vec{u}') (as ||\vec{u}|| = 1)$$

Exercise 8. Show that, if a vector valued function has constant magnitude, then that function and its derivative are always orthogonal.

Given
$$\|\vec{v}(t)\| = C$$
, ten $\vec{v} \cdot \vec{v} = C^2$

$$50, \frac{1}{4t}(\vec{r} \cdot \vec{r}) = 0$$
 and $\frac{1}{4t}(\vec{r} \cdot \vec{r}) = \frac{1}{4t}\vec{r} \cdot \vec{r} + \vec{r} \cdot \frac{1}{4t}\vec{r}$ by 14.2.3.4
= $2((\frac{1}{4t}\vec{r}) \cdot \hat{r})$ by 13.3.2.2

equating these gives us that vodiv=0, so a vector valued

Exercise 9. Using the fact from the previous exercises, verify that

$$\vec{a} \times \vec{h} = GM(\vec{u})'$$

function and its derivative are always orthogonal.

and, thus,

$$(\vec{v} \times \vec{h})' = GM(\vec{u})'$$

In the last line of
$$Ex7$$
 we conclude that $\vec{a} \times \vec{h} = -GM((\vec{u} \cdot \vec{u}')\vec{u} - \vec{u}')$
So, by $Ex9$, we get $\vec{a} \times \vec{h} = GM\vec{u}'$

and
$$(\vec{\nabla} \times \vec{h})' = \vec{\nabla} \times \vec{h}' + \vec{\sigma}' \times \vec{h} = \vec{\nabla} \times \vec{h}' + \vec{a} \times \vec{h}$$

 $= \vec{a} \times \vec{h} \quad (as \vec{h} \text{ is constant} \text{ so } \vec{h}' \text{ is zero})$

Note, that integrating both sides of the equation from Exercise 9 gives us

$$\vec{v} \times \vec{h} = GM\vec{u} + \vec{C} \tag{3}$$

where \vec{C} is a constant vector.

Until now, we haven't chosen our coordinate axes. To make life a bit more convenient, we will just arange our planet-star system so that the vector \vec{h} points in the standard z-axis direction. That is, we ensure that \vec{h} and \hat{k} are parallel.

Exercise 10. In which plane does the constant vector from equation (3) lie?

$$\vec{V} \times \hat{h}$$
 and $\vec{u} = \vec{f} \vec{r}$ are both orthogonal to \vec{h} , so \vec{c} must lie in the xy-plane as well, for (3) to hold.

Exercise 11. If θ is the angle between \vec{r} and \vec{C} , then (r,θ) are the polar coordinates of the planet. Verify that

$$\vec{r} \bullet (\vec{v} \times \vec{h}) = GMr + rc\cos(\theta),$$

where $c = ||\vec{c}||$.

$$\vec{r} \cdot (\vec{r} \times \vec{k})$$

$$= \vec{r} \cdot (\vec{G} \times \vec{k})$$

$$= GM \vec{r} \cdot \vec{u} + \vec{r} \cdot \vec{c} \qquad \text{by} \qquad 13.3.2.3$$

$$= GM \vec{r} \cdot \vec{u} + \vec{r} \cdot \vec{c} \qquad \text{by} \qquad 13.3.2.4 \text{ and} \qquad \vec{u} = \frac{1}{r} \vec{r}$$

$$= GM \vec{r} \cdot \vec{u} + r \cdot \vec{c} \cdot \cos \theta \qquad \text{by} \qquad 13.3.2.4 \text{ and} \qquad \vec{u} = \frac{1}{r} \vec{r}$$

$$= GM \vec{r}^2 + r \cdot \vec{c} \cdot \cos \theta$$

Now, we have that

$$r = \frac{\vec{r} \cdot (\vec{v} \times \vec{h})}{GM + c\cos(\theta)} = \frac{1}{GM} \frac{\vec{r} \cdot (\vec{v} \times \vec{h})}{1 + d\cos(\theta)}$$
(4)

where d = c/GM.

Exercise 12. Simplify the numerator of equation (4). (Denote $||\vec{h}|| = h$.)

$$\vec{r} \cdot (\vec{v} \times \vec{k})$$

$$= (\vec{r} \times \vec{r}) \cdot \vec{k} \quad \text{by 13.4.9.5}$$

$$= \vec{k} \cdot \vec{k} \quad \text{by def of } \vec{k}$$

$$= ||\vec{k}||^2 \quad \text{by 13.3.2.1}$$

$$= \vec{k}^2$$

Exercise 13. Let $f = h^2/d$. Simplify the equation from the previous exercise so that it is in terms of r, d, f and θ , only. Compare the result to Theorem 11.6.6 in your book.

 $f = \frac{fd}{1 + d \cos(\theta)}$ is the polar coordinate expression for an elipse