Elementy analizy wektorowej

Lista zadań

Opracowanie: dr Marian Gewert, doc. Zbigniew Skoczylas

Całki krzywoliniowe niezorientowane

- **1.** Obliczyć całkę krzywoliniową niezorientowaną $\int\limits_{\Gamma} f\,dl,$ jeżeli:
- (a) $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$, Γ odcinek łączący punkty (0,-1), (2,0);
- (b) f(x,y)=xy, Γ część okręgu $x^2+y^2=R^2$ leżąca, w pierwszej ćwiartce układu współrzędnych;
- (c) f(x,y,z)=x+y, Γ ćwiartka okręgu $\begin{cases} x^2+y^2+z^2=R^2, \\ y=x, \end{cases}$ położona w pierwszym oktancie układu współrzędnych;
- (d) $f(x,y) = (x^2 + y^2)^2$, $\Gamma \text{okrag } x^2 + y^2 = 9$;
- (e) $f(x,y)=xy, \Gamma$ część okręgu $x^2+y^2-2y=0,$ położona w pierwszej ćwiartce układu współrzędnych;
- (f) $f(x,y) = \operatorname{arctg} \frac{y}{x}$, Γ łuk spirali Archimedesa $x = t \cos t$, $y = t \sin t$, $t \in \left[0, \frac{\pi}{2}\right]$.
- 2. Obliczyć długości łuków:
- (a) Γ : $x = a(t \sin t)$, $y = a(1 \cos t)$, gdzie $0 \le t \le 2\pi$ oraz a > 0;
- (b) Γ jeden zwój linii śrubowej o skoku h nawiniętej, na walec o promieniu R;
- (c) $\Gamma : x = e^{-t} \cos t, \ y = e^{-t} \sin t, \ z = e^{-t}, \text{ gdzie } 0 \le t < \infty.$
- **3**. Obliczyć pole części powierzchni bocznej walca $x^2+y^2=1$ ograniczonej płaszczyznami $z=-x,\ z=5+y.$
- 4. Obliczyć masy podanych łuków o wskazanych gęstościach liniowych:
- (a) Γ : $x = a \cos t$, $y = a \sin t$, gdzie $t \in [0, 2\pi]$, $\lambda(x, y) = |y|$ oraz a > 0;
- (b) $\Gamma : x = r \cos t, \ y = r \sin t, \ z = bt, \ \text{gdzie} \ 0 \leqslant t \leqslant 2\pi, \ \lambda(x, y, z) = x^2 + y^2 + z^2 \ \text{oraz} \ r, b > 0;$

1

- (c) $\Gamma: x = t, y = \frac{t^2}{2}, z = \frac{t^3}{3}, \text{ gdzie } 0 \le t \le 1, \ \lambda(x, y, z) = \sqrt{2y}.$
- **5**. Wyznaczyć współrzędne środków masy łuków jednorodnych:

- (a) linia łańcuchowa $y = \frac{a}{2} \left(e^{x/a} + e^{-x/a} \right)$, gdzie $-a \le x \le a$;
- (b) linia śrubowa $x = r \cos t$, $y = r \sin t$, z = bt, gdzie $0 \le t \le 2\pi$;
- (c) brzeg trójkąta sferycznego $x^2+y^2+z^2=1$, gdzie $x\geqslant 0,\,y\geqslant 0,\,z\geqslant 0$;
- (d) ćwiartka okręgu o promieniu R;
- (e) półokrąg o promieniu R wraz ze średnicą;
- (f) krzywa $x^2 + y^2 = 1$, x + 2y + 3z = 12;
- (g) łuk cykloidy $x = t \sin t$, $y = 1 \cos t$, gdzie $t \in [0, 2\pi]$;
- (h) łuk okręgu $x^2 + y^2 = 1$, położony powyżej prostej y = x;
- (i) łuk asteroidy opisany równaniem $x=6\cos^3 t,\ y=6\sin^3 t,\ \mathrm{gdzie}\ t\in\left[0,\frac{\pi}{2}\right].$
- ${f 6}$. Obliczyć momenty bezwładności podanych łuków jednorodnych o masie M względem wskazanych osi:
- (a) brzeg kwadratu o boku a, względem przekątnej;
- (b) odcinek AB, gdzie A = (1, 2, 3), B = (3, 5, 4), względem osi Oz;
- (c) linia śrubowa $x = a \cos t$, $y = a \sin t$, z = bt, gdzie $0 \le t \le 2\pi$, względem osi Oz.

Całki krzywoliniowe zorientowane

- **7.** Obliczyć całki krzywoliniowe zorientowane z podanych pól wektorowych po wskazanych łukach (zorientowanych zgodnie z parametryzacją):
- (a) $\mathbf{F}(x,y) = (x^2 + y^2, xy)$, $\Gamma : x = t, y = e^t, \text{ gdzie } t \in [0,1]$;
- (b) $\mathbf{F}(x, y, z) = (yz, xz, xy), \quad \Gamma: \ x = \cos t, \ y = \sin t, \ z = t, \ \text{gdzie} \ t \in [0, 2\pi];$
- (c) $\boldsymbol{F}(x,y,z)=(y,z,x), \quad \Gamma$ odcinek AB, gdzie A=(1,-1,2), B=(0,2,3);
- (d) $\boldsymbol{F}(x,y) = \left(\frac{y-\sqrt{x}}{\sqrt{x}},2\sqrt{x}\right)$, Γ wykres funkcji $y=\log_2 x$, przebiegany od punktu A=(1,0) do B=(4,2);
- (e) $\mathbf{F}(x,y)=(y,x), \Gamma$ łamana o wierzchołkach A=(0,0), B=(2,0), C=(4,4), D=(0,4), przebiegana w kolejności A,B,C,D;
- (f) $\mathbf{F}(x, y, z) = (yz, zx, xy)$, Γ odcinek o początku A = (2, -1, 0) i końcu B = (0, 1, 3);
- (g) $\mathbf{F}(x,y,z) = (y+1,x-2y,3z^2)$, Γ zwój linii śrubowej $x=3\cos t,\ y=3\sin t,\ z=\frac{t}{\pi}$, gdzie $t\in[0,2\pi]$;
- (h) $\boldsymbol{F}(x,y)=(x\cos y,y\sin x),$ Γ odcinek o początku P=(0,0) i końcu $K=(\pi,2\pi).$
- **8**. Obliczyć całki krzywoliniowe z pól wektorowych \boldsymbol{F} po łukach Γ (orientacja łuku jest zgodna ze wzrostem zmiennej):

- (a) $\mathbf{F}(x,y) = (x-y, x+y), \quad \Gamma: \ y = \sin x, \text{ gdzie } 0 \leqslant x \leqslant \pi;$
- (b) $\mathbf{F}(x,y) = (\ln x, \ln y), \quad \Gamma: \ y = x^2, \text{ gdzie } 1 \leqslant x \leqslant e.$
- 9. Obliczyć całki krzywoliniowe zorientowane po wskazanych łukach zamkniętych:
- (a) $\oint_{\Gamma} xy \ dx + x^2 \ dy$, gdzie Γ jest brzegiem trójkąta o wierzchołkach $A=(0,0),\ B=(1,2),$ C=(-1,4), zorientowanym dodatnio;
- (b) $\oint_{\Gamma} x^2 y \, dx + xy(y+1) \, dy$, gdzie Γ jest okręgiem $x^2 + y^2 + 2y = 0$, zorientowanym dodatnio;
- (c) $\oint_{\Gamma} (3x+5z) dx + (x+4y) dy + (6x-z) dz$, gdzie Γ jest brzegiem trójkąta o wierzchołkach $A=(2,0,0),\,B=(0,2,0),\,C=(0,0,2)$, obieganym w kolejności ABCA.
- ${f 10}.$ Obliczyć całki krzywoliniowe zorientowane z potencjalnych pól wektorowych ${m F}$ po dowolnym łuku o początku A i końcu B:
- (a) $\mathbf{F}(x,y) = (x,y), A = (1,1), B = (-1,-2);$
- (b) $\mathbf{F}(x,y) = (\sin x \cos y, \cos x \sin y), A = (\frac{\pi}{2}, \frac{\pi}{2}), B = (\pi, \pi);$
- (c) $\mathbf{F}(x, y, z) = (x^2 2yz, y^2 2xz, z^2 2xy), A = (0, 0, 0), B = (1, 1, 1);$
- (d) $\mathbf{F}(x, y, z) = (2xyz, x^2z, x^2y + 1), A = (1, 2, 3), B = (3, 2, 1).$
- **11**. Sprawdzić, że całki krzywoliniowe nie zależą od kształtu krzywej całkowania i następnie obliczyć je:
- (a) $\int_{(0,0)}^{(1,\frac{\pi}{2})} e^x \cos y \, dx e^x \sin y \, dy;$
- (b) $\int_{(2,1)}^{(1,2)} \frac{y}{x^2} dx \frac{1}{x} dy$, wzdłuż łuku nie przechodzącego przez oś Oy;
- (c) $\int_{(1,1,1)}^{(2,3,4)} (x^2 2yz) dx + (y^2 2xz) dy + (z^2 2xy) dz$.
- **12**. Wykorzystując twierdzenie Greena obliczyć całki krzywoliniowe zorientowane. Sprawdzić wynik obliczając te całki bezpośrednio:
- (a) $\oint_{\Gamma} (1-x^2) y dx + x (1+y^2) dy$, gdzie Γ jest okręgiem $x^2 + y^2 = R^2$, zorientowanym dodatnio;
- (b) $\oint_{\Gamma} (x^2 + y) dx + (x + y^2) dy$, gdzie Γ jest brzegiem trójkąta o wierzchołkach A = (1, 1), B = (3, 2), C = (2, 5), zorientowanym dodatnio;
- (c) $\oint_{\Gamma} e^x (1 \cos y) dx e^x (y \sin y) dy$, gdzie Γ jest brzegiem obszaru $0 \le x \le \pi$, $0 \le y \le \sin x$,

zorientowanym dodatnio;

- (d) $\oint_{\Gamma} (x+y)^2 dx (x-y)^2 dy$, gdzie Γ jest krzywą zamkniętą złożoną z łuku paraboli $y=x^2$ między punktami (0,0) i (1,1) oraz z odcinka łączącego te punkty, zorientowaną dodatnio;
- (e) $\oint_{\Gamma} xy \, dx + (x^2 y^2) \, dy$, gdzie Γ jest brzegiem trójkątem o wierzchołkach A = (0,0), B = (1,0), C = (1,2), zorientowanym dodatnio;
- (f) $\oint_{\Gamma} x^2 y \, dx y^2 x \, dy$, gdzie Γ jest brzegiem ćwiartki koła $x^2 + y^2 \leqslant 4$, $x \geqslant 0$, $y \geqslant 0$, dodatnio zorientowanym;
- (g) $\oint_{\Gamma} x^2 y \, dx xy^2 \, dy$, gdzie Γ jest okręgiem $x^2 + y^2 = 2$, dodatnio zorientowanym.
- (h) $\oint_{\Gamma} (xy + x + y) \ dx + (xy + x y) \ dy$, gdzie Γ jest okręgiem $x^2 + y^2 = 4x$, dodatnio zorientowanym.
- **13**. Za pomocą całki krzywoliniowej zorientowanej obliczyć pola obszarów ograniczonych łukami zamkniętymi:
- (a) elipsa Γ : $x = a \cos t$, $y = b \sin t$, gdzie $t \in [0, 2\pi]$;
- (b) kardioida Γ : $x = 2\cos t \cos 2t$, $y = 2\sin t \sin 2t$, gdzie $t \in [0, 2\pi]$;
- (c) asteroida Γ : $x = \cos^3 t$, $y = \sin^3 t$, gdzie $t \in [0, 2\pi]$.
- **14**. Obliczyć pracę w polu wektorowym F podczas ruchu po łuku zorientowanym Γ , jeżeli:
- (a) $\boldsymbol{F}(x,y)=(2xy,x^2), \Gamma$ dowolny łuk łączący punkty A=(1,0), B=(0,3);
- (b) $\mathbf{F}(x,y,z)=(xy,y+z,z),$ $\Gamma: x=\cos t, \ y=\sin t, \ z=t,$ od punktu A=(1,0,0) do punktu $B=(-1,0,\pi);$
- (c) $\mathbf{F}(x,y,z)=(-x,-y,-z)$, Γ dowolny łuk łączący punkt $A=(x_1,y_1,z_1)$ należący do sfery $x^2+y^2+z^2=r^2$, z punktem $B=(x_2,y_2,z_2)$ należącym do sfery $x^2+y^2+z^2=R^2$;
- (d) $\mathbf{F}(x,y) = (x+y,x^2-y^2)$, Γ prawy półokrąg łączący punkty A=(3,0) i B=(3,4);
- (e) $\boldsymbol{F}(x,y)=(2x-y,x-2y),\;\Gamma$ wykres funkcji $y=e^x,$ od punktu (0,1) do (1,e);
- (f) $\mathbf{F}(x,y) = \frac{(y,x)}{x^2 + y^2}$, Γ łuk okręgu $x^2 + y^2 = 4$, od punktu P = (2,0) do K = (0,2).

Całki powierzchniowe niezorientowane

- 15. Obliczyć całki powierzchniowe niezorientowane po wskazanych płatach:
- (a) $\iint_{\Sigma} (x^2 + y^2) dS$, gdzie Σ jest sferą $x^2 + y^2 + z^2 = R^2$;
- (b) $\iint_{\Sigma} (x+y+z) \, dS$, gdzie Σ jest częścią płaszczyzny x+y+z=1, położoną w pierwszym

oktancie układu współrzędnych;

(c)
$$\iint_{\Sigma} \sqrt{x^2 + y^2} dS$$
, gdzie Σ jest stożkiem $z = \sqrt{x^2 + y^2}$, $z \leq 3$;

(d)
$$\iint_{\Sigma} (x^2 + y^2 + z^2) dS$$
, gdzie Σ jest płatem opisanym przez warunki $y^2 + z^2 = 1$, $z \ge 0$, $0 \le x \le 2$:

(e)
$$\iint_{\Sigma} (x+y) dS$$
, gdzie Σ jest półsferą o równaniu $z = \sqrt{4-x^2-y^2}$;

(f)
$$\iint_{\Sigma} \frac{dS}{x^2 + y^2}$$
, gdzie Σ jest walcem $x^2 + y^2 = 4$, ograniczonym płaszczyznami $z = 1$, $z = 2$.

16. Obliczyć pola płatów:

- (a) Σ część płaszczyzny 2x + 3y + z 6 = 0 wycięta przez walec $x^2 + y^2 = 4$;
- (b) Σ część parabolo
idy $z=x^2+y^2$ odcięta przez płaszczyznę $z=h\ (h>0);$
- (c) Σ powierzchnia boczna stożka ściętego o promieniach podstaw r,R i wysokości h (r < R);
- (d*) Σ fragment powierzchni Ziemi zawarty między południkami 60° i 80° **W** oraz równoleżnikami 45° i 60° **N**. Przyjąć promień Ziemi R=6370 km.

17. Obliczyć masy płatów o wskazanych gestościach powierzchniowych:

(a)
$$z = x + y$$
, gdzie $x \in [1, 2], y \in [2, 3], \sigma(x, y, z) = xyz$;

(b) półsfera
$$z = \sqrt{R^2 - x^2 - y^2}, \ \sigma(x, y, z) = z;$$

(c) stożek
$$z = \sqrt{x^2 + y^2}, z \le 1, \ \sigma(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

(d)
$$z = 2 - x - y$$
, $x \ge 0$, gdzie $y \ge 0$, $z \ge 0$, $\sigma(x, y, z) = xyz$;

(e) część walca $y^2+z^2=1$ ograniczona płaszczy
znami x=0, x=2, y=0, o gęstości $\sigma(x,y,z)=y^2.$

18. Znaleźć położenia środków masy jednorodnych płatów materialnych:

(a)
$$x + y + z = 4$$
, $x^2 + y^2 \le 1$;

(b)
$$z = 2\sqrt{x^2 + y^2}$$
, $2 \le z \le 6$;

(c)
$$z = x^2 + y^2$$
, $z \le 1$;

- (d) sześcienne pudełko o krawędzi a (otwarte od góry);
- (e) powierzchnia boczna stożka ściętego o promieniach podstaw r,R i wysokości H;
- (f) trójkąt o wierzchołkach A = (0,0,0), B = (1,2,-3), C = (2,-2,9);
- (g) powierzchnia zamkniętego stożka o promieniu podstawy R i wysokości H;

(h)
$$z = \sqrt{x^2 + y^2}$$
, gdzie $x \ge 0$, $z \le 3$.

- 19. Obliczyć momenty bezwładności płatów materialnych względem wskazanych osi:
- (a) jednorodna sfera o promieniu R i masie M, względem średnicy;
- (b) paraboloida $z=x^2+y^2$, gdzie $z\leqslant h$, o gęstości powierzchniowej masy $\sigma(x,y,z)=\frac{1}{\sqrt{1+4x^2+4y^2}},$ względem osi Oz;
- (c) jednorodna powierzchnia ośmiościanu |x| + |y| + |z| = a o masie M, względem osi Oz;
- (d) jednorodna powierzchnia boczna walca $x^2 + y^2 = R^2$, $-H \le z \le H$, o masie M, względem osi Ox;

Całki powierzchniowe zorientowane i elementy analizy wektorowej

- **20**. Obliczyć całki powierzchniowe zorientowane:
- (a) $\oiint xy \, dy dz + yz \, dz dx + xz \, dx dy$,

gdzie Σ jest zewnętrzną stroną powierzchni czworościanu: $x + y + z \le 1$, $x \ge 0$, $y \ge 0$, $z \ge 0$;

(b)
$$\iint xy^2 dydz + yz^2 dzdx + zx^2 dxdy,$$

gdzie Σ jest zewnętrzną stroną powierzchni sześcianu $0\leqslant x\leqslant 1,\,0\leqslant y\leqslant 1,\,0\leqslant z\leqslant 1;$

(c)
$$\iint_{\Sigma} x^2 \, dy dz + y^2 \, dz dx + z^2 \, dx dy;$$

gdzie Σ jest zewnetrzną stroną powierzchni stożka $\sqrt{x^2+y^2}\leqslant z\leqslant 1$;

(d)
$$\oiint_{\Sigma} z^2 dxdy$$
,

gdzie Σ jest zewnętrzną stroną sfery $x^2 + y^2 + z^2 = 4$;

(e)
$$\iint_{\Sigma} xyz \, dxdy$$
,

gdzie Σ jest częścią sfery $x^2+y^2+z^2=4$ położoną w pierwszym oktancie układu współrzędnych, zorientowaną na zewnątrz.

21. Uzasadnić wzory:

- (a) \mathbf{rot} ($\mathbf{grad} U$) = \mathbf{O} , gdzie U jest funkcją mającą ciągłe pochodne cząstkowe drugiego rzędu na obszarze $V \subset \mathbb{R}^3$;
- (b) $\mathbf{rot}(f\mathbf{c}) = \mathbf{grad} f \times \mathbf{c}$, gdzie f jest funkcją mającą pochodne cząstkowe pierwszego rzędu na obszarze $V \subset \mathbb{R}^3$, a \mathbf{c} ustalonym wektorem;
- (c) $\mathbf{rot}(f\mathbf{F}) = \mathbf{grad} f \times \mathbf{F} + f(\mathbf{rot} \mathbf{F})$, gdzie funkcja f oraz pole wektorowe \mathbf{F} są różniczkowalne w sposób ciągły na obszarze $V \subset \mathbb{R}^3$.

22. Uzasadnić wzory:

(a) $\operatorname{div}(F \times G) = G \circ \operatorname{rot} F - F \circ \operatorname{rot} G$, gdzie pola wektorowe F i G są różniczkowalne na

6

obszarze $V \subset \mathbb{R}^3$;

- (b) div (rot \mathbf{F}) = 0, gdzie pole wektorowe \mathbf{F} ma składowe dwukrotnie różniczkowalne w sposób ciągły na obszarze $V \subset \mathbb{R}^3$.
- **23**. Przy pomocy twierdzenia Gaussa–Ostrogradskiego obliczyć całki powierzchniowe zorientowane. Sprawdzić otrzymane wyniki wyznaczając te całki bezpośrednio:
- (a) $\oiint 2xy \, dy dz y^2 \, dz dx + 2z \, dx dy$,

gdzie Σ jest zewnętrzną stroną brzegu obszaru $V: x^2+y^2+z^2 \leqslant 9, \, x\geqslant 0, \, y\geqslant 0, \, z\geqslant 0;$

(b) $\oint (x+z) dydz + (x+y) dzdx + (y+z) dxdy,$

gdzie Σ jest zewnętrzną stroną brzegu obszaru $V: x^2+y^2 \leqslant R^2, \ x+y+z \leqslant 2R, \ z\geqslant 0$ (R>0);

(c) $\oiint_{\Sigma} x^3 dydz + y^3 dzdx + z^3 dxdy$,

gdzie Σ jest wewnętrzną stroną powierzchni walca $V: x^2 + y^2 \leqslant R^2, \ 0 \leqslant z \leqslant H;$

(d) $\oiint x \, dydz + y \, dzdx + z \, dxdy$,

gdzie Σ jest zewnętrzną stroną walca $x^2+z^2\leqslant 1,\, 1\leqslant y\leqslant 3;$

(e) $\bigoplus_{\Sigma} (x^2 + yz) dydz + (xz + y^2) dzdx + xy^2 dxdy,$

gdzie Σ jest zewnętrzną stroną walca $x^2 + y^2 \le 1$, $0 \le z \le 1$;

(f) $\iint_{\Sigma} (x+y)^2 dydz + (y+z)^2 dzdx + (z+x)^2 dxdy,$

gdzie Σ jest zewnętrzną stroną sfery $x^2 + y^2 + z^2 = 4$.

(g) $\bigoplus_{x \in \mathbb{R}} x^3 \, dy dz + y^3 \, dz dx + z^2 \, dx dy,$

gdzie Σ jest zewnętrzna stroną powierzchni walca $x^2 + y^2 \leq 9, \ 0 \leq z \leq 2;$

(h) $\oiint x \, dydz + y \, dzdx + z \, dxdy$,

gdzie płat Σ jest zewnętrzną stroną sfery $x^2+y^2+z^2=4;$

(i) $\oiint xz \, dxdy + xy \, dydz + yz \, dxdz$,

gdzie Σ jest zewnętrzną stroną czworościanu $x+y+z\leqslant 3,\,x\geqslant 0,\,y\geqslant 0,\,z\geqslant 0.$

- **24**. Korzystając z twierdzenia Stokesa obliczyć całki krzywoliniowe zorientowane. Sprawdzić otrzymane wyniki wyznaczając te całki bezpośrednio:
- (a) $\oint_{\Gamma} x^2 y^3 dx + dy + z dz$, gdzie Γ jest okręgiem $x^2 + y^2 = R^2$, z = 0, zorientowanym dodatnio;
- (b) $\oint_{\Gamma} x \ dx + (x+y) \ dy + (x+y+z) \ dz$, gdzie Γ : $x = \sin t$, $y = \cos t$, $z = \sin t + \cos t$ dla $t \in [0, 2\pi]$;

(c)
$$\oint_{\Gamma} (y+z) dx + (z+x) dy + (x+y) dz$$
, gdzie Γ jest okręgiem $x^2 + y^2 + z^2 = R^2$, $x = y$;

(d)
$$\oint_{\Gamma} (y+z) dx + (z+x) dy + (x+y) dz$$
, gdzie Γ jest okręgiem $x^2 + y^2 + z^2 = 1$, $x+y+z=0$;

(e)
$$\oint_{\Gamma} (y+z) dx + (z+x) dy + (x+y) dz$$
, gdzie Γ jest elipsą $x^2 + y^2 = 4$, $x - z = 0$;

(f)
$$\oint_{\Gamma} \left(y^2+z^2\right) dx + \left(x^2+z^2\right) dy + \left(x^2+y^2\right) dz$$
, gdzie Γ jest łamaną zamkniętą o wierzchołkach $A=(0,0,0),\,B=(1,1,0),\,C=(1,1,1)$, przebieganą w kolejności $ABCA$.

25. Obliczyć strumienie pól wektorowych \boldsymbol{F} przez płaty Σ :

(a)
$$\mathbf{F}(x, y, z) = \left(\frac{x}{3}, z^2 - x^2, \frac{2z}{3}\right)$$
,

gdzie Σ jest powierzchnią zewnętrzną walca $x^2+y^2\leqslant R^2,\, 0\leqslant z\leqslant H;$

(b)
$$\mathbf{F}(x, y, z) = \left(\frac{-x}{\sqrt{x^2 + y^2 + z^2}}, \frac{-y}{\sqrt{x^2 + y^2 + z^2}}, \frac{-z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

gdzie Σ jest powierzchnią zewnętrzną sfery $x^2 + y^2 + z^2 = R^2$;

(c)
$$\mathbf{F}(x, y, z) = (5x + z, x - 3y, 4y - 2z),$$

gdzie Σ jest górną częścią płaszczyzny x+y+z=2, odciętej płaszczyznami układu współrzędnych;

- (d) $\boldsymbol{F}(x,y,z)=(x,0,z)$, gdzie Σ jest zewnętrzną stroną walca o parametryzacji (cos u, sin u, v) dla $u\in[0,2\pi],\ v\in[-1,1];$
- (e) ${m F}(x,y,z)=(x,y,z);$ gdzie Σ jest zewnętrzną powierzchnią stożka $\sqrt{x^2+y^2}\leqslant z\leqslant 4;$
- (f) ${m F}(x,y,z)=(x,y,z)$; gdzie Σ jest zewnętrzną powierzchnią czworościanu $x+y+z\leqslant 1,\ x\geqslant 0,\ y\geqslant 0,\ z\geqslant 0.$
- **26**. Obliczyć cyrkulacje pól wektorowych \boldsymbol{F} wzdłuż wskazanych łuków zamkniętych zorientowanych Γ :
- (a) $\mathbf{F}(x,y,z)=(y^2,(x+y)^2,z)$, Γ łamana zamknięta łącząca punkty $A=(1,0,0),\,B=(0,1,0),\,C=(0,0,1)$ w kolejności ABCA;
- (b) $\mathbf{F}(x,y,z)=(y,1-x,-z)$, Γ łuk zamknięty otrzymany w wyniku przecięcia powierzchni walca $(x-1)^2+y^2=1$ i półsfery $(x-2)^2+y^2+z^2=4$ $(z\geqslant 0)$, przebiegany w kierunku odwrotnym do ruchu wskazówek zegara.