CT303 - Digital Communications Lecture 4: 2 September 2020

Lab Submission: 1. 1 submission/group. 2 Submit (a) Code (Pythans) in a single of pythofile (b) Pdf report: GraypID. pdf (c). Zip file cartaining Later source and regol images. Deadline: Friday 12 noon - 5 google meet links. Spectral Density: Measures Conartifies the amount of energy power around each frequency.

Every Spectral Density (ESD): E_{x} : $\int_{\infty}^{\infty} x dt^{2} dt = \int_{-\infty}^{\infty} |x(f)|^{2} df$ Yn(f)= |X(f)|² is called the Energy Speetral Donn'y Power Spectral Dourity (PSD) * (Aperiodie Signals) $\begin{array}{ccc}
(psd) & \infty & 2 \\
G_{\chi}(f) & \sum |C_{n}|^{2} S(f-nf_{o}) \\
N & \infty & f_{o} & \omega_{o} \\
\hline
2\pi
\end{array}$ Periódic signals

2(t) = E che imust

Pr = I studt = E |ch|2

Apariadic Signals (Power) $\chi(t) \leftarrow \text{Rect} \rightarrow \chi_{T}(t) = \chi(t), -T_2 < t \leq T_2$ = 0, elsewhere. lun 27(t) = 2(t), + felk. T-500 Ext = 1/2 xets 2dt Par = 1/2 xets 2dt $|X - f(w)| = \int_{-\infty}^{\infty} \chi(t) e^{\int_{-\infty}^{\infty} dt} \cdot G_{\chi_{T}}(f) = \frac{1}{T} |\chi_{T}(f)|^{2}.$ G_X(f): Lim [X7(f)]² Power spectral

T>00 T

Apperiodne fower

signal. { - | XT, (A) , - | XT2(A) , - | XT3(A) | - - - } $\longrightarrow G_{\times}(f)$

Autocorrelation
1. Energy lignals
$R_{\chi}(z) = \int_{0}^{\infty} \chi(t) \chi(t+z) dt, -\infty \angle z < \infty$
$=\langle \chi, D_{\chi} \rangle \simeq \text{Inner products}$ $=\langle \chi, D_{\chi} \rangle \simeq \text{Inner products}$
Properties: $(1) R_{2}(-7) = R_{2}(7)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{2}{2} R_{\gamma}(0) > R_{\gamma}(7)$ $= 2 R_{\gamma}(0) > R_{\gamma}(1)$
z Ex
$R_{\alpha}(0) = \ \alpha\ ^{2} \leq \langle \alpha_{1} \alpha \rangle$
Cauchy-Schwartz Inequality!

$$\begin{aligned} |\langle x_{1}y \rangle| &\leq ||x|| \, ||y|| &\quad a \cdot b \cdot z \, ||all \, ||bd| \, colo \\ |a \cdot b| &\leq ||all \, ||bd| \, . \end{aligned}$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||bd| \, .$$

$$|a \cdot b| \leq ||all \, ||b$$

=> Auto correlation for Power Signals a. Pareodie Signals Rx(z)= 13 xxxxxxx+z)dt b. Aperiodie signals Rx(7)= lim T/2
T-300 -T/2 - 00 C T C 00. Properties: 1. Rn(Z) z ln(-7) 2. $F \{ R_{\alpha} \} = \lim_{T \to \infty} \frac{1}{T} \frac{|X_{\tau}(\omega)|^2}{|X_{\tau}(\omega)|^2} = \frac{G_{x}(f)}{p.s.b.g?}$ 3. $R_{\chi}(0) > R_{\chi}(7)$ & Convolution: $(\chi \neq y)(t) = \int \chi(\tau) y(t-\tau) d\tau$ Probability and Statistics

Probability and Statistics
Random Variable (RV). A RV is a mapping from
the sample space (S) to IR.
Characterizations of a RV
1. Drefai bution functions (Fx) X-> RV

