福建师范大学数学与统计学院

2024 — 2025 学年第二学期期中考试卷

一、单选题(每小题3分,共15分)

1.
$$\lim_{n \to \infty} \frac{1}{n} \left[\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} \right] = ($$
).
A. $\frac{1}{\pi} (1 - \cos 1)$ B. 2 C. $-\frac{2}{\pi}$ D. $\frac{2}{\pi}$

A.
$$\frac{1}{\pi}(1-\cos 1)$$

C.
$$-\frac{2}{\pi}$$

D.
$$\frac{2}{\pi}$$

2. 下列结论中正确的是()

A.
$$\int_1^{+\infty} \frac{dx}{x^2} = \int_0^1 \frac{dx}{x^2}$$
 都收敛 B. $\int_1^{+\infty} \frac{dx}{x^2} = \int_0^1 \frac{dx}{x^2}$ 都发散

B.
$$\int_1^{+\infty} \frac{dx}{r^2} = \int_0^1 \frac{dx}{r^2}$$
 都发散

C.
$$\int_1^{\infty} \frac{dx}{x^2}$$
 发散, $\int_0^1 \frac{dx}{x^2}$ 收敛

C.
$$\int_1^{+\infty} \frac{dx}{x^2}$$
 发散, $\int_0^1 \frac{dx}{x^2}$ 收敛 D. $\int_1^{+\infty} \frac{dx}{x^2}$ 收敛, $\int_0^1 \frac{dx}{x^2}$ 发散

3. 设函数
$$f(x)$$
 连续,则 $\frac{d}{dx} \int_0^x f(t-x) dt = ($).

B.
$$-f(x)$$

C.
$$f(-x)$$

D.
$$-f(-x)$$

4. 直线
$$\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z+1}{1}$$
 与平面 $x+y-z=0$ 的夹角为 ()

A.
$$\arccos \frac{2\sqrt{2}}{3}$$

B.
$$\arcsin \frac{2\sqrt{2}}{3}$$

C.
$$-\arcsin\frac{2\sqrt{2}}{3}$$

D.
$$-\arccos \frac{2\sqrt{2}}{3}$$

A.
$$e^{-3x}(C_1\cos 2x + C_2\sin 2x)$$

B.
$$e^{3x}(C_1\cos 2x + C_2\sin 2x)$$

C.
$$e^{-2x}(C_1\cos 3x + C_2\sin 3x)$$

D.
$$e^{2x}(C_1\cos 3x + C_2\sin 3x)$$

二、填空题(每小题3分,共15分)

1.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4\cos^4 x dx = \underline{\hspace{1cm}}$$

2. 曲线
$$r = a \cos \theta (a > 0)$$
 的弧长 $s =$

2. 曲线
$$r = a\cos\theta(a > 0)$$
的弧长 $s =$ _______.

3. $\int_{\frac{\pi}{\pi}}^{+\infty} \frac{1}{x^2} \sin\frac{1}{x} dx =$ ______.

5. 已知微分方程 y''+ay'+by=0 的通解为 $y=(C_1+C_2x)e^{3x}$,则该微分方程为_____.

三、(8分)求
$$\lim_{x\to 0} \frac{x(e^x-1)}{\int_{\cos x}^1 e^{-t^2} dt}$$
.

四、(8分)求定积分 $\int_0^x e^{\sqrt{2x+1}} dx$.

五、(8分)求微分方程 y"+(y')2+1=0的通解.

六、(8分) 求平面x+y+z-1=0上一直线L,使其与直线 $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z+1}{-1}$ 垂直相

交.

七、(8分)设平面经过原点及点(6,-3,2)且与平面4x-y+2z=8垂直,求此平面方程.

八、(10分)求微分方程y"+y=x+4sinx的通解.

九、(共12分)应用题

求曲线 $y=e^x$,直线 $y=e^2$ 及 x=0 所围成的平面图形的面积 A , 及其该平面绕 x 轴旋转而成的旋转体的体积 V_x .

十、(8分)设函数 f(x) 在[0,a](a>0)上可导,且存在正数 M,使得 $f'(x) \le M$,又 f(0) = 0,

证明: (1)当 $x \in [0,a]$ 时,有 $f(x) \le aM$;

$$(2) \int_0^a f(x) dx \le \frac{M}{2} a^2.$$