MTH8414	Examen de modélisation	Dest : Étudiants
Automne 2023		Authors: ML

Examen de modélisation

Correction

Question 1

On a un preoblème de flux à "profit maximum", qui est juste une variante du problème de flux à coût minimum. On modélise ce problème par le graphe ci-dessous. On écrit en rouge le flux entrant et sortant des nœuds sources et puit.

Figure 1 – Problème de flux à "profit maximum"

<u>Paramètres</u>:

Nœuds sources (correspondant aux travailleurs) : s_1 , s_2

Nœud puit : t

Nœuds travaux : T_1 , T_2 , T_3 , T_4 , T_5

Ensemble des arcs : A

Bornes inférieures et supérieures et profits des flux : (l_{ij}, uij, c_{ij}) pour tout $(i, j) \in \mathcal{A}$

$\underline{\text{Variables}}$:

Flux sur les arcs : x_{ij} pour tout $(i, j) \in \mathcal{A}$

Fonction objectif:

$$\max \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij}$$

<u>Contraintes</u>:

— Flux entier $\forall (i, j) \in \mathcal{A}, x_{ij} \in \mathbb{Z}$ — Respect des bornes

 $\forall (i, j) \in \mathcal{A}, l_{ij} \leq x_{ij} \leq u_{ij}$

— Conservation du flux en $s_1: \sum_{j, (s_1, j) \in \mathcal{A}} x_{s_1 j} = 2$ en $s_2: \sum_{j, (s_2, j) \in \mathcal{A}} x_{s_1 j} = 2$ en $t: \sum_{i, (i, t) \in \mathcal{A}} x_{i t} = 4$

autres nœuds: $\forall i \in \{T_1, T_2, T_3, T_4, T_5\}, \sum_{i, (i,j) \in \mathcal{A}} x_{ij} = \sum_{j, (j,i) \in \mathcal{A}} x_{ji}$

Question 2

Données :

Prix de vente de $Prod j : p_j, j \in \{A, B, C\}$

Coût d'achat de MP $i: c_i, i \in \{1, 2, 3\}$

Limite de demande pour $Prod j : d_j, j \in \{A, B, C\}$

Quantité disponible de MP $i: q_i, i \in \{1, 2, 3\}$

<u>Variables</u>:

Quantité de MPi achetée pour $\operatorname{Prod} j: x_{ij}, i \in \{1, 2, 3\}, j \in \{A, B, C\}$

Quantité de ProdA utilisée pour ProdB : y_A Quantité de ProdB utilisée pour ProdC : y_B Quantie de Prodj vendue : z_j , $j \in \{A, B, C\}$

Remarque : il est possible de faire un modèle avec un peu moins de variables mais il serait moins lisible.

Fonction objectif

$$\max \sum_{j \in \{A,B,C\}} p_j z_j - \sum_{i \in \{1,2,3\}} c_i \sum_{j \in \{A,B,C\}} x_{ij}$$

Contraintes:

— Ne pas dépasser les demandes

 $\forall j \in \{A, B, C\}, z_j \leq d_j$

— Respect des quantités disponibles

 $\forall i \in \{1, 2, 3\}, \sum_{j \in \{A, B, C\}} x_{ij} \leq q_i$ — Fabrication de ProdA

 $z_A + y_A \le x_{1A}$

— Fabrication de ProdB

 $z_B + y_B \le x_{1B}$

Authors: ML

$$2(z_B + y_B) \le x_{2B}$$
$$2(z_B + y_B) \le y_A$$

— Fabrication de ProdC

 $z_C \le x_{2C}$ $z_C \le x_{3C}$ $z_C \le y_B$

— Variables entières et positives

$$\forall i \in \{1, 2, 3\}, j \in \{A, B, C\}, x_{ij} \in \mathbb{N}$$
$$y_A, y_B \in \mathbb{N}$$
$$\forall j \in \{A, B, C\}, z_j \in \mathbb{N}$$

Question 3

(a)

 $\underline{\text{Donn\'ees}}$: Nombre de clients : n

Temps de service du client $i: s_i, i \in \{1,... n\}$ $(s_0 = 0)$

Fenêtre de temps du client $i : [e_i, l_i], i \in \{1, ..., n\}$

Temps de transport entre deux clients i et j: c_{ij} , $i \in \{1,...,n\}$, $j \in \{1,...,n\}$

Temps de transport entre le dépôt et un client $i: c_{0i}, i \in \{1, ..., n\}$

Constante suffisamment grande : M

Variables:

 $x_{ij}, i \in \{0, ... n\}, j \in \{0, ... n\}$: 1 si le véhicule va directement du client i au client j (ou dépôt 0) $t_i, i \in \{0, ... n\}$: temps d'arrivée chez le client i (ou dépôt 0)

Fonction objectif:

$$\min \sum_{i=0}^{n} \sum_{i=0}^{n} x_{ij} (c_{ij} + s_i)$$

Contraintes:

— Le véhicule fait une tournée qui sert chaque client et le dépôt exactement une fois

$$\forall i \in \{0, ... n\}, \sum_{j=0}^{n} x_{ij} = 1$$

— Respect des fenêtres de temps

$$\forall i \in \{1, \dots n\}, e_i \leq t_i$$

$$\forall i \in \{1, \dots n\}, t_i + s_i \leq l_i$$

— Lien entre les x_{ij} et t_i

$$\forall i \in \{0, ... n\}, j \in \{1, ... n\}, t_i + s_i + c_{ij} \le t_j + M(1 - x_{ij})$$

— Variables positives ou binaires

$$\forall i \in \{0, ... n\}, j \in \{1, ... n\}, x_{ij} \in \{0, 1\}$$

 $\forall i \in \{0, ... n\}, t_i \geq 0$

MTH8414 Examen de modélisation Dest: Étudiants Automne 2023 Authors: ML

(b)

Données :

Ensemble des clients à visiter : $E = \{1, ... n\}$

Temps de service du client $i: s_i, i \in \{1, ..., n\}$ $(s_0 = 0)$

Fenêtre de temps du client $i : [e_i, l_i], i \in \{1, ..., n\}$

Temps de transport entre deux clients i et $j: c_{ij}, i \in \{1, ..., n\}, j \in \{1, ..., n\}$

Temps de transport entre le dépôt et un client $i: c_{0i}, i \in \{1,...n\}$

<u>Variables</u>

 $x_i,\,i\in\{1,\dots\,n\}$: client en $i^{\rm ème}$ position dans la tournée $(x_0=0$ et $x_{n+1}=0)$

Fonction objectif:

$$\min \sum_{i=0}^{n} c_{x_i x_{i+1}} + s_{x_i}$$

Contraintes:

- $-\forall i \in \{1, \dots n\}, x_i \in E$