Topic and contents

UNSW. School of Mathematics and Statistics

MATH2089 - Numerical Methods

Week 03 – Linear Systems, Norms, LU Factorization

- Linear Systems, Vector and Matrix Norms
 - Systems of Linear Equations
 - Vector Norms
 - Matrix norms
 - Eigenvalues and Eigenvectors
 - Condition numbers

- Sensitivity of Linear Systems
- LU factorization
 - Diagonal, triangular, permutation matrices
 - ullet LU factorization
 - Pivoting
 - Flops and multiple RHS

- MATLAB M-files
 - vecnorms.m • errex1.m
- matnorms.m
- luex1.m
- LUsolvers.m

• luex2.m

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

1 / 35

T2 2019

Linear Systems, Vector and Matrix Norms Systems of Linear Equations

Systems of Linear Equations

• System $A\mathbf{x} = \mathbf{b}$, $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$

- \bullet m linear equations in n variables
- \bullet each row is one of m equations
- all m equations must be satisfied simultaneously
- Exploit structure of A to solve in ways which are
 - numerically stable limit effects of errors in the data
 - efficient time (flops) and memory
- Systems are
 - Well-determined: m = n, same number equations, variables
 - Over-determined: m > n, more equations than variables
 - Under-determined: m < n, fewer equations than variables

Systems of linear equations

Systems of linear equations (or linear systems) arise in

- statistics (linear regression, least squares approximation)
- solving partial differential equations numerically in civil/mechanical engineering problems
- signal processing, electrical engineering (electrical networks), chemical engineering (balancing chemical reactions) etc.

Calculations are done on computers using floating point arithmetic

- Accuracy: Effects of finite precision
- Efficiency: Time and storage

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

2 / 35

Linear Systems, Vector and Matrix Norms Vector Norms

A motivational example

Example (Good/bad matrices)

Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 + 10^{-10} \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 + 10^{-10} \end{bmatrix},$$

In solving $A\mathbf{x}_1 = \mathbf{b}$ and $B\mathbf{x}_2 = \mathbf{b}$, which of the two computed solutions \mathbf{x}_1 and \mathbf{x}_2 is more accurate?

In order to answer this question properly, we need to introduce norms of vectors and matrices.

Linear Systems, Vector and Matrix Norms Vector Norms

Vector Norms

Measuring the magnitude of a quantity

- $\alpha \in \mathbb{R}$, magnitude $|\alpha| = \begin{cases} \alpha & \text{if } \alpha \geq 0; \\ -\alpha & \text{if } \alpha < 0. \end{cases}$
- $\mathbf{x} \in \mathbb{R}^n$, different measures of magnitude $\|\mathbf{x}\|$

Definition (Vector norm)

Vector norm on \mathbb{R}^n is a function $\|\cdot\|$ from \mathbb{R}^n to \mathbb{R} satisfying

- $\|\mathbf{x}\| > 0$ for all $\mathbf{x} \in \mathbb{R}^n$ and $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$
- $\|\mathbf{x} + \mathbf{y}\| < \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (Triangle inequality)
- $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \text{ for all } \alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$
- p-norms defined by, for p > 1,

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

5 / 35

Linear Systems, Vector and Matrix Norms Vector Norms

Vector norms – examples

Example (Vector norms)

Find the 1, 2 and infinity norms of the vector

$$\mathbf{v} = (-1, 2, -3, 2)^T$$

Solution

• 1-norm

$$\|\mathbf{v}\|_1 = \sum_{i=1}^4 |v_i| = 1 + 2 + 3 + 2 = 8.$$

• 2-norm

$$\|\mathbf{v}\|_{2}^{2} = \sum_{i=1}^{4} |v_{i}|^{2} = (-1)^{2} + 2^{2} + (-3)^{2} + 2^{2} = 18 \Longrightarrow \|\mathbf{v}\|_{2} = \sqrt{18}.$$

infinity norm

$$\|\mathbf{v}\|_{\infty} = \max_{i=1,2,3,4} |v_i| = \max\{1,2,3,2\} = 3.$$

Linear Systems, Vector and Matrix Norms Vector Norms

Vector p-norms

1-norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

• 2-norm

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$$

- $\|\mathbf{x}\|_2^2 = \mathbf{x}^T \mathbf{x}, \|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$ (cf. dot product $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$)
- MATLAB function norm, see vecnorms.m
 - 2-norm norm(x) = sqrt(x*x) (default)
 - 1-norm norm(x.1) = sum(abs(x))
 - ∞ -norm norm(x.Inf) = max(abs(x))

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

6 / 35

Linear Systems, Vector and Matrix Norms Vector Norms

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

7 / 35

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

Linear Systems, Vector and Matrix Norms Vector Norms

Errors in vectors

- ullet $ar{\mathbf{x}} \in \mathbb{R}^n$ approximation to $\mathbf{x} \in \mathbb{R}^n$
- Absolute error

$$\|\bar{\mathbf{x}} - \mathbf{x}\|$$

• Relative error for $x \neq 0$

$$\rho_{\mathbf{x}} = \frac{\|\bar{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|}$$

• Largest component of x has k significant figures \iff

$$\frac{\|\bar{\mathbf{x}} - \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} < 0.5 \times 10^{-k}$$

• Number of significant figures k

$$k pprox - \log_{10} \left(2 \frac{\|\bar{\mathbf{x}} - \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \right)$$

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

Linear Systems, Vector and Matrix Norms Vector Norms

Errors in vectors – example

Example (Errors in vectors)

 $\mathbf{x} = (-3.641, 0.7843)^T$, approximation $\bar{\mathbf{x}} = (-3.633, 0.7915)^T$ Find the absolute and relative errors using the infinity norm, and the estimate number of significant figures

Solution (MATLAB M-file errex1.m)

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 10 / 35

Linear Systems, Vector and Matrix Norms Matrix norms

Matrix norms

Definition (Matrix norm)

Matrix norm is a scalar function $\|\cdot\|$ defined on $\mathbb{R}^{m\times n}$ satisfying

- $|A + B| \le |A| + |B|$ for all $A, B \in \mathbb{R}^{m \times n}$ (Triangle inequality).
- $\|\alpha A\| = |\alpha| \|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{m \times n}$.

Definition (Consistent matrix norms)

Matrix norms are consistent ←⇒

||AB|| < ||A|| ||B|| for all $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times \ell}$.

(Numerical Methods) WK 03 - Linear Systems, Norms, LU

T2 2019 11 / 35

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 12 / 35

Subordinate matrix norms

Subordinate matrix norm defined in terms of vector norms

$$||A||_p = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p}$$

Common subordinate matrix norms

$$\|A\|_1 \equiv \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_1}{\|\mathbf{x}\|_1} = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$$

matrix 1-norm = maximum absolute column sum

$$\|A\|_{\infty} \equiv \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$$

 $matrix \infty$ -norm = maximum absolute row sum.

• Subordinate matrix norms satisfy for $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$

$$||A\mathbf{x}||_p \le ||A||_p ||\mathbf{x}||_p$$

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

Linear Systems, Vector and Matrix Norms Eigenvalues and Eigenvectors

Matrix 2-norm via eigenvalues of A^TA

Let $A \in \mathbb{R}^{m \times n}$

- $A^T A \in \mathbb{R}^{n \times n}$ is symmetric: $(A^T A)^T = A^T A$
 - Uses $(UV)^T = V^T U^T$. $(U^T)^T = U$
- Let $\lambda, \mathbf{v} \neq \mathbf{0}$ be an eigenvalue, eigenvector pair of $A^T A$

$$A^T A \mathbf{v} = \lambda \mathbf{v} \Longrightarrow \mathbf{v}^T A^T A \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} \Longrightarrow \lambda = \frac{\|A \mathbf{v}\|_2^2}{\|\mathbf{v}\|_2^2} \ge 0$$

- So eigenvalues of A^TA are real and non-negative
- For $A \in \mathbb{R}^{m \times n}$

$$\|A\|_2 = \max_{\mathbf{v} \neq \mathbf{0}} \frac{\|A\mathbf{v}\|_2}{\|\mathbf{v}\|_2} = \max_{i=1,\dots,n} \sqrt{\lambda_i(A^TA)}$$

 $\lambda_i(A^TA) > 0, i = 1, \dots, n$ are eigenvalues of A^TA

Eigenvalues and Eigenvectors

Definition (Eigenvalue and eigenvector)

For a square matrix $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue with corresponding non-zero eigenvector $\mathbf{v} \in \mathbb{C}^n \iff$

$$A\mathbf{v} = \lambda \mathbf{v}$$

- Eigenvalues satisfy the characteristic equation $\det(A \lambda I) = 0$
- Eigenvalues distinct \implies eigenvectors linearly independent
- Difficulties may arise with multiple eigenvalues
- $A \in \mathbb{R}^{n \times n} \Longrightarrow$ eigenvalues λ either real or occur in complex conjugate pairs
- For a real symmetric $(A^T = A)$ matrix, the eigenvalues are all real. and can choose eigenvalues to form an orthonormal basis for \mathbb{R}^n
- MATLAB eig calculates eigenvalues and eigenvectors

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 14 / 35

Linear Systems, Vector and Matrix Norms Eigenvalues and Eigenvectors

The set $\{A\mathbf{x}: \|\mathbf{x}\|_2=1\}$ with $A=\begin{bmatrix}1&2\\2&2\end{bmatrix}$. The norm $\|A\|_2$ is the radius of the red set.

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

15 / 35

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

Matrix norms

Frobenius norm

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

- Not the same as $||A||_2$
- MATLAB function norm

```
% Assume the matrix A is defined
              % default is 2-norm, norm(A, 2)
norm(A)
norm(A.1)
              % 1-norm, max col sum, max(sum(abs(A)))
norm(A,'inf') % Inf-norm, max row sum, max(sum(abs(A),2))
norm(A,'fro') % Frobenius norm, sqrt(sum(sum(A.*A)))
```

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

17 / 35

Linear Systems, Vector and Matrix Norms Eigenvalues and Eigenvectors

Matrix norms – examples

Example (Matrix norms)

Find the 1, 2, infinity and Frobenius norms of

$$A = \begin{pmatrix} 1 & -3 & 2 \\ -2 & 2 & 4 \end{pmatrix}$$

Solution (MATLAB M-file matnorms.m)

- $||A||_1 = \max\{3, 5, 6\} = 6$
- $||A||_2$

$$A^T A = \begin{pmatrix} 5 & -7 & -6 \\ -7 & 13 & 2 \\ -6 & 2 & 20 \end{pmatrix}$$

Eigenvalues $\lambda_i(A^T A) = 0.14, 24 \Longrightarrow ||A||_2 = \sqrt{24} = 4.8990$

- $||A||_{\infty} = \max\{6, 8\} = 8$
- $||A||_F^2 = 1^2 + (-3)^2 + 2^2 + (-2)^2 + 2^2 + 4^2 = 38$ $\implies ||A||_F = \sqrt{38} = 6.1644$

WK 03 - Linear Systems, Norms, LU

T2 2019 18 / 35

Linear Systems, Vector and Matrix Norms Condition numbers

Condition numbers

Definition (Condition number)

For $A \in \mathbb{R}^{n \times n}$, A nonsingular: Condition number

$$\kappa(A) = ||A|| \, ||A^{-1}||$$

- A nonsingular \iff det $(A) \neq 0 \iff A^{-1}$ exists
- Consistent matrix norm

$$I = AA^{-1} \Longrightarrow 1 = ||AA^{-1}|| \le ||A|| ||A^{-1}|| \Longrightarrow \kappa(A) \ge 1$$

- $\kappa(\alpha I) = 1, \ \alpha \in \mathbb{R}, \ \alpha \neq 0$
- For a real symmetric matrix, using 2-norm

$$\kappa_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{|\lambda_1|}{|\lambda_n|}$$

 $|\lambda_1| \geq \ldots \geq |\lambda_n|$ are magnitudes of eigenvalues of A

Linear Systems, Vector and Matrix Norms Condition numbers

Ill-conditioned matrices

- Condition number $\kappa(A) > 1$
- A ill-conditioned $\iff \kappa(A)$ large
 - What is large?
 - Large $\iff \kappa > 1/\epsilon \approx 10^{16}$ ($\epsilon = \text{relative machine precision}$)
- Reciprocal condition number rcond(A)

$$0<\mathrm{rcond}(A)\equiv\frac{1}{\kappa(A)}\leq 1$$

- Well conditioned \iff rcond(A) close to 1
- Badly conditioned \iff rcond(A) close to ϵ
- MATLAB functions
 - cond(A), uses 2-norm
 - cond(A, p) uses p-norm
 - rcond(A) estimate of $1/\kappa(A)$ using 1-norm

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 21 / 35

Linear Systems, Vector and Matrix Norms Sensitivity of Linear Systems

Accuracy of computed solution – example

Example (Accuracy of computed solution)

A symmetric matrix A is known exactly and has ordered eigenvalues

$$1004.2, 999.8, \ldots, 0.0034, 0.0005,$$

while the right-hand-side vector **b** is only measured to an accuracy of 6 significant figures.

- \bullet Explain why A is nonsingular
- Estimate the condition number of A
- \bullet What is the relative error in the inputs A, **b**
- **1** Estimate the relative error of the computed solution to $A\mathbf{x} = \mathbf{b}$
- What confidence do you have in the computed solution?

Sensitivity of Linear Systems

- Linear system $A\mathbf{x} = \mathbf{b}$, A nonsingular
- How do errors in data A. **b** affect computed solution?
- Perturbed system, parameter $n \in \mathbb{R}$

$$(A + \eta C)\mathbf{x}(\eta) = \mathbf{b} + \eta \mathbf{c},$$

 $C \in \mathbb{R}^{n \times n}$, $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{x}(0) = \mathbf{x}$

Relative error in input data

$$\rho_A = \eta \frac{\|C\|}{\|A\|}, \qquad \rho_b = \eta \frac{\|\mathbf{c}\|}{\|\mathbf{b}\|}$$

- Input errors $\rho_A > \epsilon$, $\rho_b > \epsilon$
- Relative error in solution

$$\frac{\|\mathbf{x}(\eta) - \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(A)[\rho_A + \rho_b] + O(\eta^2),$$

ullet relative error in solution $\leq \kappa(A) imes$ relative error in data

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

22 / 35

Linear Systems, Vector and Matrix Norms Sensitivity of Linear Systems

Accuracy of computed solution – solution

Solution (Accuracy of computed solution)

A motivational example

Example

Suppose a matrix A is given. There are 10^6 input vectors \mathbf{b}_k . What is the most effective way to solve 10^6 linear systems $A\mathbf{x}_k = \mathbf{b}_k$?

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 25 / 35

LU factorization Diagonal, triangular, permutation matrices

Diagonal, triangular and permutation matrices

- Coefficient matrix $A \in \mathbb{R}^{m \times n}$
- D is diagonal $\iff D_{ij} = 0$ for all $i \neq j$
 - All elements not on the main diagonal are zero
 - MATLAB command diag
- L is lower triangular $\iff L_{ij} = 0$ for all j > i
 - All elements above the main diagonal are zero
 - L unit lower triangular \iff L lower triangular and $L_{ii} = 1$ for all i
 - MATLAB command tril
- U is upper triangular $\iff U_{ij} = 0$ for all i > j
 - All elements below the main diagonal are zero
 - U unit upper triangular $\iff U$ upper triangular and $U_{ii} = 1$ for all i
 - MATLAB command triu
- P is permutation matrix $\iff P = [\mathbf{e}_{i_1}, \ldots, \mathbf{e}_{i_n}]^T$ (i_1,\ldots,i_n) permutation of $(1,\ldots,n)$, $\mathbf{e}_i\in\mathbb{R}^n$ is ith unit vector
 - ullet P is obtained by permuting rows of identity matrix I
 - P permutation matrix $\Longrightarrow PP^T = I$.

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 26 / 35

LU factorization LU factorization

Matrix factorizations

- Square system: $A \in \mathbb{R}^{n \times n}$
- ullet Express A as a product of matrices with special structure
- $A_k \in \mathbb{R}^{k \times k}$ leading principal sub-matrix of A
 - $(A_k)_{ij} = A_{ij}, i, j = 1, ..., k$
 - MATLAB Ak = A(1:k,1:k)

Proposition (LU factorization)

Leading principal sub-matrices A_k non-singular for $k = 1, ..., n \Longrightarrow$ there exist $L \in \mathbb{R}^{n \times n}$, L unit lower triangular and $U \in \mathbb{R}^{n \times n}$, U upper triangular:

- A = LU
- MATLAB [L, U] = lu(A)
- ullet LU factorization does not exist for all non-singular A

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ \ell_{21} & 1 \end{array} \right] \left[\begin{array}{cc} u_{11} & u_{12} \\ 0 & u_{22} \end{array} \right]$$

- $u_{11} = 0$ contradicts $\ell_{21}u_{11} = 1$
- Leading principal sub-matrix $A_1 = 0$ is singular

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

LU factorization – Example

- Use row operations of the form $R_i \leftarrow R_i L_{ij}R_i$ to make elements (i, j) zero for i > j.
- \bullet Continue until get upper triangular (row-echelon form) U

Example (LU factorization)

Calculate the LU factorization of $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -3 & 2 \\ 2 & 4 & 5 \end{pmatrix}$.

Solution (MATLAB luex1.m)

• Row operations $R_2 \leftarrow R_2 - (-1)R_1$ and $R_3 \leftarrow R_3 - (2)R_1$ give

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 5 \\ 0 & 0 & -1 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad A = LU.$$

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

LU factorization LU factorization

LU factorization

Proposition (LU factorization)

A non-singular \Longrightarrow there exists $L \in \mathbb{R}^{n \times n}$, L unit lower triangular, $U \in \mathbb{R}^{n \times n}$, U upper triangular and permutation matrix $P \in \mathbb{R}^{n \times n}$: $PP^T = I$ PA = LU

- \bullet Pre-multiplying A by P to get PA reorders rows (equations) of A
 - Row operation of swapping/interchanging rows
 - Does not change solution to linear system
 - Example

$$PA = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \left[\begin{array}{cc} 0 & 2 \\ 3 & 0 \end{array} \right] = \left[\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array} \right]$$

- Post-multiplying A by P to get AP reorders columns (variables) of A
- MATLAB
 - \bullet [L, U, P] = lu(A)
 - [L, U, p] = lu(A, 'vector')
 - P*A same as A(p,:)

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019

30 / 35

LU factorization

LU factorization

LU factorization – Example

Example (LU factorization with row swap)

Calculate the LU factorization of $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 2 \\ 2 & 2 & 5 \end{pmatrix}$.

Solution (MATLAB luex2.m)

• Row operations $R_2 \leftarrow R_2 - (-1)R_1$ and $R_3 \leftarrow R_3 - (2)R_1$ give

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & -1 & -1 \end{pmatrix}$$

• Swapping rows 2 and 3: $R_2 \leftrightarrow R_3$ gives

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 0 & 5 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, PA = LU$$

WK 03 - Linear Systems, Norms, LU

32 / 35

LU factorization Pivoting

LU factorization Flops and multiple RHS

Pivoting

- Working on sub-matrix in rows $i, i+1, \ldots, n$
- Need pivot element $a_{ij} \neq 0$
- Swap rows to get non-zero pivot element
- Numerical stability \implies pivot element as large as possible
- Partial pivoting choose largest magnitude element in column

$$|a_{\hat{i}j}| = \max_{i=j,\dots,n} |a_{ij}|$$

- Only need to swap rows/equations
- Complete pivoting choose largest magnitude element in sub-matrix

$$|a_{\hat{i}\hat{j}}| = \max_{\substack{i=j,\dots,n\\\ell=j,\dots,n}} |a_{i\ell}|$$

Need to swap both rows/equations and columns/variables

$$PAQ^TQ\mathbf{x} = P\mathbf{b} \iff PAQ^T\mathbf{y} = P\mathbf{b}, \quad \mathbf{y} = Q\mathbf{x}$$

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 33 / 35

LU factorization Flops and multiple RHS

Counting flops in solving $A\mathbf{x} = \mathbf{b}$ using LU factorization

- Factorization $\frac{2n^3}{3} + O(n^2)$ flops
- Forward substitution $\frac{n^2}{2} + O(n)$ flops
- Back-substitution $\frac{n^2}{2} + O(n)$ flops
- Total solve $\frac{2n^3}{3} + O(n^2)$ flops
- ullet Several RHS ${f b}_k,\ k=1,\ldots,K$ with $K\ll n$ and one factorization \Longrightarrow same total flops $\frac{2n^3}{3} + O(n^2)$
- MATLAB LUsolvers.m

(Numerical Methods)

WK 03 – Linear Systems, Norms, LU

T2 2019

35 / 35

Solving $A\mathbf{x} = \mathbf{b}$ using LU factorization

- Factorization: PA = LU
- $Ax = h \Longrightarrow PAx = Ph \Longrightarrow LUx = Ph$
- Forward substitution: Solve $L\mathbf{y} = P\mathbf{b} = \hat{\mathbf{b}}$

$$y_1 = \hat{b}_1, \quad y_i = \hat{b}_i - \sum_{j=1}^{i-1} y_i \hat{b}_i, \quad i = 2, \dots, n$$

• Back-substitution: Solve $U\mathbf{x} = \mathbf{y}$

$$x_n = y_n/U_{nn},$$
 $x_i = (y_i - \sum_{j=i+1}^n x_j y_j)/U_{nn},$ $i = n-1, \dots, 1$

(Numerical Methods)

WK 03 - Linear Systems, Norms, LU

T2 2019 34 / 35