1. The magnetic field at the center of a circular loop of radius 0.05 m carrying current 3 A is:
(a) 12×10^{-5} T (b) 6×10^{-5} T (c) 3.77×10^{-5} T (d) 7.54×10^{-5} T
Answer: (d) 7.54×10^{-5} T Explanation: Magnetic field at center of loop: B = (mu naught × I) / (2 × R) = $(4 \times pi \times 10^{-7} \times 3)$ / (2×0.05) = 7.54×10^{-5} T
2. The SI unit of magnetic field is:
(a) Ampere(b) Weber(c) Tesla(d) Gauss
Answer: (c) Tesla Explanation: 1 Tesla = 1 Newton / (Ampere × meter). It is the SI unit of magnetic field.
3. According to Biot–Savart law, magnetic field B is directly proportional to:
(a) Square of distance(b) Current(c) Area of loop(d) Voltage
Answer: (b) Current Explanation: B is directly proportional to current I and inversely proportional to square of distance from wire.

4. The magnetic field at a distance r from a long straight current-carrying wire is:

 (a) mu naught × I / (2 × r) (b) mu naught × I / (4 × pi × r) (c) mu naught × I × r (d) mu naught × I × r squared
Answer: (a) mu naught \times I / (2 \times r) Explanation: This is derived from the Biot–Savart law.
5. Magnetic field inside a long solenoid is:
(a) Constant(b) Zero(c) Inversely proportional to current(d) Non-uniform
Answer: (a) Constant Explanation: Inside a long ideal solenoid, the magnetic field is uniform and directed along the axis.
6. The magnetic field due to a current-carrying circular loop at its center is:
(a) Directly proportional to radius(b) Inversely proportional to radius(c) Inversely proportional to square of radius(d) Independent of radius
Answer: (b) Inversely proportional to radius Explanation: $B = (mu \ naught \times I) / (2 \times R)$
7. Right-hand thumb rule is used to determine:
(a) Direction of electric field (b) Direction of force

(c) Direction of magnetic field

(d) Direction of motion

Answer. (c) Direction of magnetic field
Explanation:
Thumb shows current direction, curled fingers show magnetic field around conductor.
8. Magnetic field inside a toroid is:
(a) Zero (b) Constant
(c) Directly proportional to distance from center
(d) Inversely proportional to distance
Answer: (b) Constant
Explanation:
Inside a toroid, magnetic field is constant and confined within the core.
9. Force experienced by a charge q moving with velocity v in magnetic field B is:
(a) q × v
(b) q × E (c) q × B
(d) q × (v cross B)
Answer: (d) q × (v cross B)
Explanation: This gives magnitude and direction of magnetic force on a moving charge.
This gives magnitude and an ection of magnetic force on a moving charge.
10. A current-carrying conductor experiences maximum force in a magnetic field when:
(a) It is parallel to magnetic field
(b) It is perpendicular to magnetic field
(c) It is at 45 degrees to field
(d) No current flows
Answer: (b) It is perpendicular to magnetic field
Explanation:
Force is maximum when angle between current and magnetic field is 90 degrees.

11. Magnetic field at the axis of a circular loop is:
(a) Zero(b) Maximum at center(c) Same throughout axis(d) Inversely proportional to square of distance from center
Answer: (d) Inversely proportional to square of distance from center Explanation: B decreases with distance along the axis of the loop.
12. Ampere's circuital law states that:
(a) Magnetic field forms closed loops(b) Current produces voltage(c) Line integral of magnetic field equals mu naught times net current enclosed(d) None of these
Answer: (c) Line integral of magnetic field equals mu naught times net current enclosed Explanation: Ampere's law: $\oint B \cdot dI = mu$ naught \times I enclosed
13. Magnetic field due to a solenoid increases with:
(a) Decrease in current(b) Decrease in number of turns(c) Increase in number of turns per unit length(d) Increase in radius
Answer: (c) Increase in number of turns per unit length Explanation: $B = mu \ naught \times n \times I, where \ n = number \ of turns \ per unit length$

14. Force between two long straight parallel conductors carrying current in same direction is:

(a) Repulsive(b) Attractive

(c) Zero
(d) Alternating
Answer: (b) Attractive
Explanation: Parallel currents attract; anti-parallel currents repel.
15. A wire of length L carrying current I is placed perpendicular to uniform magnetic field B. Force on wire is:
(a) I × B
(b) I × L × B (c) I × B divided by L
(d) Zero
Answer: (b) I × L × B
Explanation: $F = I \times L \times B \times sin(theta)$; for perpendicular, $sin(90) = 1 \rightarrow F = I \times L \times B$
r - 1 × L × B × Sin(theta), for perpendicular, Sin(90) - 1 -7 r - 1 × L × B
16. A square loop of side 0.2 m carrying current 5 A is placed in a uniform magnetic field of 0.3 T perpendicular
to its plane. The torque on the loop is:
(a) 0.06 Nm
(b) 0 Nm (c) 0.1 Nm
(d) 0.03 Nm
Answer: (b) 0 Nm
Explanation: Torque, $\tau = n \times I \times A \times B \times \sin(\theta)$
Here, $\theta = 0^{\circ}$ (perpendicular to the plane, so normal is parallel to B)
$\Rightarrow \sin(0^\circ) = 0 \Rightarrow \tau = 0$
17. Magnetic moment of a current loop is given by:

(a) I × A (b) B × A

- (c) $q \times r$
- (d) $m \times v$

Answer: (a) I × A Explanation:

Magnetic moment (M) = Current (I) × Area vector (A)

18. Two long parallel wires carry currents 10 A and 5 A in opposite directions. The distance between them is 0.2 m. The force per unit length between them is:

- (a) 5×10^{-5} N/m (attractive)
- (b) 5×10^{-5} N/m (repulsive)
- (c) 10⁻⁵ N/m (repulsive)
- (d) Zero

Answer: (b) 5×10^{-5} N/m (repulsive)

Explanation:

$$F/L = (mu naught / 2\pi) \times (I_1 \times I_2) / d$$

=
$$(2 \times 10^{-7}) \times (10 \times 5) / 0.2 = 5 \times 10^{-5} \text{ N/m}$$

Since currents are in opposite directions, force is repulsive.

19. A proton moving perpendicular to a magnetic field of 0.1 T with velocity 2×10^6 m/s experiences a force of:

- (a) $3.2 \times 10^{-14} \text{ N}$
- (b) $2 \times 10^{-13} \text{ N}$
- (c) $1.6 \times 10^{-13} \text{ N}$
- (d) $4 \times 10^{-14} \text{ N}$

Answer: (c) $1.6 \times 10^{-13} \text{ N}$

Explanation:

$$F = q \times v \times B$$

=
$$(1.6 \times 10^{-19}) \times (2 \times 10^{6}) \times 0.1 = 3.2 \times 10^{-14} \text{ N}$$

20. The direction of force on a moving charge in a magnetic field is given by:

- (a) Fleming's Left-Hand Rule
- (b) Fleming's Right-Hand Rule
- (c) Lenz's Law

(d) Ampere's Rule Answer: (a) Fleming's Left-Hand Rule **Explanation:** Fleming's Left-Hand Rule gives direction of force on a current or charge in a magnetic field. 21. A wire of length 0.5 m carrying current 4 A is placed in magnetic field 0.2 T. The maximum force on wire is: (a) 0.2 N (b) 0.4 N (c) 0.1 N (d) 0.05 N Answer: (b) 0.4 N **Explanation:** $F = I \times L \times B \times \sin(\theta) = 4 \times 0.5 \times 0.2 \times 1 = 0.4 \text{ N (maximum when } \sin(90^\circ) = 1)$ 22. Magnetic field inside a long ideal solenoid does not depend on: (a) Current (b) Number of turns per unit length (c) Length of solenoid (d) Permeability of medium Answer: (c) Length of solenoid **Explanation:** B = mu naught \times n \times I \rightarrow independent of total length, depends only on turns per unit length. 23. Which one of the following can produce a magnetic field? (a) A stationary charged particle (b) A bar magnet

(c) A neutral metal ball(d) A stationary neutron

Answer: (b) A bar magnet

Explanation:

Only moving charges or magnetic materials produce magnetic fields. Bar magnets have atomic magnetic
moments aligned.

24. A current loop behaves like:
(a) A point charge(b) A magnetic dipole(c) An electric dipole(d) A neutral particle
Answer: (b) A magnetic dipole Explanation: A current loop produces a magnetic dipole moment and has two poles like a bar magnet.
25. The unit of magnetic moment is:
(a) A × m ² (b) A × s (c) A × m (d) N × m
Answer: (a) $A \times m^2$ Explanation: Magnetic moment = $I \times A$; so unit is Ampere \times meter ²
26. Magnetic field at the center of a semicircular arc of radius R carrying current I is:
 (a) mu naught × I / (2 × R) (b) mu naught × I / (4 × R) (c) mu naught × I / R (d) mu naught × I × R
Answer: (b) mu naught $\times I / (4 \times R)$ Explanation: Use Biot–Savart law: B = mu naught $\times I / (4 \times R)$ for a semicircular wire.

27. Force on a charged particle moving parallel to a magnetic field is:

(a) Maximum (b) Minimum (c) Zero (d) Infinite
Answer: (c) Zero Explanation: $F = q \times v \times B \times \sin(\theta) \Rightarrow \text{If velocity is parallel to B, then } \theta = 0, \sin(0) = 0 \Rightarrow F = 0$
28. Cyclotron is used to:
(a) Measure magnetic field(b) Accelerate neutral particles(c) Accelerate charged particles(d) Produce electric field
Answer: (c) Accelerate charged particles Explanation: Cyclotron uses magnetic and electric fields to accelerate charged particles in a spiral path.
29. A beam of electrons enters a uniform magnetic field at right angle. Its path will be:
(a) Straight(b) Parabolic(c) Circular(d) Elliptical
Answer: (c) Circular Explanation: $F = q \times v \times B \text{ acts as centripetal force} \rightarrow \text{electrons move in circular path.}$
30. A current of 2 A is flowing through a circular loop of radius 0.1 m. Magnetic field at the center is:
(a) 4×10^{-5} T (b) 8×10^{-6} T (c) 1.26×10^{-5} T (d) 1.26×10^{-4} T

Answer: (d) 1.26×10^{-4} T Explanation:

B = mu naught × I / (2 × R) = $(4 \times pi \times 10^{-7} \times 2) / (2 \times 0.1)$

 $= 1.26 \times 10^{-4} \text{ T}$

- 31. A circular loop of radius 0.1 m carries a current of 3 A. What is the magnetic moment of the loop?
- (a) 0.094 A·m²
- (b) 0.047 A·m²
- (c) 0.0094 A·m²
- (d) 0.0047 A·m²

Answer: (b) 0.047 A·m²

Explanation:

Magnetic moment, M = I × A = I × πr^2 = 3 × π × (0.1)² = 0.047 A·m²

- 32. A rectangular current loop of area 0.05 m^2 is placed in a magnetic field of 0.2 T. If the plane of the loop is parallel to the field, what is the torque on the loop?
- (a) 0.01 Nm
- (b) 0 Nm
- (c) 0.005 Nm
- (d) 0.002 Nm

Answer: (b) 0 Nm Explanation:

Torque, $\tau = M \times B \times \sin(\theta)$; if loop is parallel to field, $\theta = 0^{\circ} \Rightarrow \sin(0) = 0 \Rightarrow \tau = 0$

- 33. A magnetic dipole placed in a uniform magnetic field experiences:
- (a) Only torque
- (b) Only force
- (c) Both force and torque
- (d) Neither force nor torque

Answer: (a) Only torque

Explanation:

In uniform magnetic field, net force is zero, but torque tends to align the dipole.

- 34. A galvanometer has resistance 40 Ω and gives full-scale deflection at 2 mA. The value of shunt resistance needed to convert it to an ammeter of range 2 A is:
- (a) 0.04 Ω
- (b) 0.02 Ω
- (c) 0.05Ω
- (d) 0.08Ω

Answer: (a) 0.04 Ω

Explanation:

$$S = (Ig \times G) / (I - Ig) = (2 \times 10^{-3} \times 40) / (2 - 0.002) = 0.08 / 1.998 \approx 0.04 \Omega$$

- 35. A galvanometer is converted to voltmeter of range 10 V using resistance 4980 Ω . If G = 20 Ω , the current for full-scale deflection is:
- (a) 2 mA
- (b) 1 mA
- (c) 0.5 mA
- (d) 5 mA

Answer: (b) 1 mA

Explanation:

$$V = Ig \times (R + G) \Rightarrow 10 = Ig \times (4980 + 20) \Rightarrow Ig = 10 / 5000 = 0.002 A = 2 mA$$

- 36. Magnetic field at the center of a circular loop of radius R carrying current I is proportional to:
- (a) R
- (b) 1/R
- (c) R²
- (d) $1/R^2$

Answer: (b) 1/R

Explanation:

$$B = (\mu_0 I)/(2R) \Rightarrow B \propto 1/R$$

37. Magnetic field inside a very long straight solenoid carrying current is:
(a) Directly proportional to its radius(b) Inversely proportional to its radius(c) Constant throughout the cross-section(d) Zero at center
(u) Zero at Cerrier
Answer: (c) Constant throughout the cross-section Explanation:
Field inside ideal solenoid is uniform and independent of radius.
38. A particle with charge +q enters a magnetic field at angle 90°. The radius of circular path is proportional to:
(a) q
(b) 1/q
(c) v
(d) mv/qB
Answer: (d) mv/qB
Explanation:
r = (mv)/(qB)
39. In cyclotron, particle gains energy due to:
(a) Magnetic field
(b) Electric field
(c) Gravity
(d) Friction
Answer: (b) Electric field
Explanation:
The electric field between dees accelerates the particle; magnetic field bends the path.
40. A long straight wire produces magnetic field of 4×10^{-5} T at a distance of 2 cm. The current in wire is:
(a) 4 A
(b) 2 A

- (c) 6 A
- (d) 8 A

Answer: (a) 4 A Explanation:

$$B = (\mu_0 \ I)/(2\pi r) \Rightarrow I = B \times 2\pi r \ / \ \mu_0$$

$$= (4 \times 10^{-5} \times 2\pi \times 0.02) / (4\pi \times 10^{-7}) = 4 \text{ A}$$

- 41. Magnetic force on a charged particle is maximum when the angle between velocity and magnetic field is:
- (a) 0°
- (b) 45°
- (c) 90°
- (d) 180°

Answer: (c) 90° Explanation:

 $F = qvBsin\theta \Rightarrow maximum when <math>sin\theta = 1 \Rightarrow \theta = 90^{\circ}$

- 42. Magnetic field due to current in a straight wire is:
- (a) Along the wire
- (b) Perpendicular to wire and field
- (c) In concentric circles around wire
- (d) Radial

Answer: (c) In concentric circles around wire

Explanation:

Use Right-Hand Thumb Rule – magnetic lines are circular around current.

- 43. A current loop behaves like a magnetic dipole because:
- (a) Current produces electric field
- (b) It stores charge
- (c) It has poles
- (d) It produces uniform magnetic field like a bar magnet

Answer: (d) It produces uniform magnetic field like a bar magnet

_				-			
Ex	nl:	ar	۱a:	ti	\cap	n	•
-	9	uı	ıu	CI.	•		•

A loop creates magnetic field pattern similar to that of a dipole/bar magnet.

- 44. Magnetic force on a wire is independent of:
- (a) Current
- (b) Length of wire
- (c) Magnetic field
- (d) Mass of wire

Answer: (d) Mass of wire

Explanation:

 $F = I \times L \times B \times \sin\theta \rightarrow \text{no dependence on mass}$

- 45. The torque acting on a rectangular coil in a uniform magnetic field is maximum when the plane of coil is:
- (a) Parallel to field
- (b) Perpendicular to field
- (c) At 45°
- (d) Along field direction

Answer: (a) Parallel to field

Explanation:

Maximum torque τ = nIAB when θ = 90° ⇒ coil plane || B ⇒ normal \bot B