			<u>רציפים</u>	<u>מ"מ</u>	\bigcirc
Var(x)	$E(x^2)$	E(x)	פונקצית התפלגות/ תוספות	פונקצית צפיפות	
$\frac{(R-L)^2}{12}$		$\frac{R+L}{2}$	$F_X(x) = \begin{cases} 0 & x < L \\ \frac{x - L}{R - L} & L \le x \le R \\ 1 & R < x \end{cases}$	$f_X(x) = \begin{cases} 0 & x < L \\ \frac{1}{R - L} & L \le x \le R \\ 0 & R < x \end{cases}$	התפלגות אחידה $x{\sim}U([L,R])$
$\frac{1}{\lambda^2}$	$\frac{2}{\lambda^2}$	$\frac{1}{\lambda}$	$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & o.w \end{cases}$	$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & o.w \end{cases}$	התפלגות מעריכית $x{\sim}exp(\lambda)$ $\lambda>0$
$\frac{\alpha}{\lambda^2}$	$\frac{\alpha(1+\alpha)}{\lambda^2}$	$\frac{\alpha}{\lambda}$	$\Gamma(\alpha)=\int_0^\infty x^{\alpha-1}e^{-x}dx$ $\Gamma(1)=1, \Gamma(0.5)=\sqrt{\pi}$ $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$ (חם אם שלמה) $\Gamma(\alpha)=(\alpha-1)!$	$f_X(x,\alpha,\lambda) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} & x \ge 0\\ 0 & o.w \end{cases}$	התפלגות גאמה $x{\sim} Gamma(lpha, \lambda) \ lpha > 0 \ , \lambda > 0$
1	1	0	$\frac{\sigma^2}{\overline{x_n} \sim N(\mu, \frac{\sigma^2}{n})}$ $\frac{\overline{x_n} \sim N(\mu, \frac{\sigma^2}{n})}{\frac{\sigma^2}{n}} \sim N(0,1)$ $\frac{\overline{x_n} - \mu}{\frac{\sigma^2}{n}} \sim N(0,1)$ $x = \sigma Z + \mu$ $\frac{x - \mu}{\sigma} \sim N(0,1)$ $x = \sigma Z + \mu$ $\frac{x - \mu}{\sigma} \sim N(0,1)$ $x = \pi + \pi$ $x = $	$f_Z(z, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$	התפלגות נורמאלית סטנדרטית $Z{\sim}N(0,1)$
σ^2	$\sigma^2 + \mu^2$	μ	$\frac{1}{\sigma_{0}}$ אכום משתנים נורמאליים: $x \sim N(\mu_{1}, \sigma_{1}^{2}) \rightarrow \tilde{x} = \frac{x - \mu_{1}}{\sigma_{1}} \rightarrow \tilde{x} \sim N(0, 1)$ $y \sim N(\mu_{2}, \sigma_{2}^{2}) \rightarrow \tilde{y} = \frac{y - \mu_{2}}{\sigma_{2}} \rightarrow \tilde{y} \sim N(0, 1)$ $S = x + y \sim N(\mu_{1} + \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2})$ $\tilde{S} = \tilde{x} + \tilde{y} \sim N(0, 2)$	$f_X(x,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$oldsymbol{\kappa}$ התפלגות נורמאלית $oldsymbol{\kappa}^{\sim}N(\mu,\sigma^2) \ -\infty < \mu < \infty \ \sigma^2 > 0$
$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$		$e^{\mu + \frac{1}{2}\sigma^2}$	$rac{n}{n}$ תקנון לנורמאלי סטנדרטי: $P(y \le m) = P(e^x \le m) = 0$ $= P(x \le log_e m) = P(Z \le \frac{log_e m - \mu}{\sigma})$	$f_Y(y) = \begin{cases} \frac{1}{y\sqrt{2\pi\sigma^2}} e^{-\frac{(\log_e y - \mu)^2}{2\sigma^2}} & x \ge 0\\ 0 & o.w \end{cases}$	התפלגות לוג נורמאלית $y{\sim}LogNormal(\mu,\sigma^2) \ x = log_e y{\sim}N(\mu,\sigma^2) \ y = e^x$
2		1	$\Gamma(0.5) = \sqrt{\pi}$	$f_Y(y) = \begin{cases} \frac{1}{2} \frac{1}{2} y^{-\frac{1}{2}} e^{-\frac{1}{2}x} \\ \frac{\Gamma(\frac{1}{2})}{0} & x \ge 0 \end{cases}$	$chi\ squared$ התפלגות $Z{\sim}N(0,1)$ $Y=Z^2{\sim}\chi^2_{\ (1)}=gamma(rac{1}{2}rac{1}{2})$
2n		n	$\sum_{i=1}^{n} \left(\frac{x_i - \overline{x_n}}{\sigma^2}\right)^2 = \sum_{i=1}^{n} Z_i^2 \sim \chi^2_{(n-1)}$	$\sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma^2}\right)^2 = \sum_{i=1}^{n} Z_i^2 \sim \chi^2_{(n)}$	$chi\ squared$ סכום התפלגות $Z_i{\sim}N(0,1)$ $\sum_{i=1}^n {Z_i}^2{\sim}\chi^2_{(n)}=gamma(rac{n}{2}rac{1}{2})$

Var(x)	$E(x^2)$	E(x)		פונקצית הצפיפות המצטברת	פונקצית הצפיפות	
l∞ (∞		ſ∞		$F_X(x) = \int_{-\infty}^x f_T(t) dt = P(X \le x)$ הערה: כאשר בונים את הקטע הרלוונטי, לא לשכוח או שכן מדובר בפונקציה מצטברת.	$P(a < x \le b) = \int_{a}^{b} f_{X}(x) dx$	כללי
$\int_{-\infty}^{\infty} x^2 f_X(x) dx - [E(x)]^2$	$\int_{-\infty}^{\infty} x^2 f_X(x) dx$	$\int_{-\infty}^{x} f_{X}(x) dx$	$F_X(a)>F_X(b)\leftarrow a>b$ מונוטונית לא יורדת $F_X(x)$.1 $\lim_{x\to-\infty}F_X(x)=0\;, \lim_{x\to\infty}F_X(x)=1\;\;.2$ $\lim_{x\to a+}F_X(x)=F_X(a):$ ארציפה מימין $F_X(x)=F_X(x)$.3		x לכל $f_X(x) \geq 0$.1 $\int_{-\infty}^{\infty} f_X(x) dx = 1$.2	תכונות
				דברים נוספים		
י שוויון צ'בישב	קסימום של מ״ <u>מ</u> אי שוויון צ׳בישב			$X_1 + X_2 = Y$ קונבולוציה:	מ"מ שאינו מתפלג אחיד [0,1]	דגימה מי
p(x - E(x) > a)	$<\frac{v(x)}{a^2}$	$max(x_i) = min(x_i) = 1 - min(x_i)$	•	$F_{Y}(y) = \int_{-\infty}^{y} F_{x_{1}}(u) \times F_{x_{2}}(y-u) du$	$x{\sim}F$ -1 $U{\sim}$ $x{\sim}F$ -1 $U{\sim}$ (פונקצית ההתפלגות) $F_x(x)=x=F_x^{-1}(U):$ ין 0 ל- 1, נציב ב- U ונתרגם להתפלגות	$\mathbf{u}: \mathbf{u}:$ נגדיר נתלץ את

<u>מ"מ בדידים</u>							
מתי נשתמש?	פונקצית ההסתברות	שונות	תוחלת	סימון	התפלגות		
משתנה בו כל ערכי המשתנה שווי הסתברות.	$P(X = k) = \frac{1}{N-M+1}, k = M, M+1,N-1, N$	$\frac{(N-M+1)^2-1}{12}$	$\frac{M+N}{2}$	U(M,N)	אחידה		
משתנה בינארי שבו יש ניסוי יחיד. אם תוצאת היעד התרחשה, המשתנה מקבל את הערך 1, או 0 אחרת.	P(X = 1) = p $P(X = 0) = 1 - p$	p(1-p)	р	Ber(p)	ברנולי		
משתנה המחשב הסתברות של k הצלחות ב- n ניסויי ברנולי ביית ושווי התפלגות.	$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$ $k = 0, 1,, n$	np(1-p)	np	Bin(n,p)	בינומי	בלתי תלויים	
משתנה הסופר מס׳ ניסויי ברנולי ב״ת ושווי התפלגות עד ההצלחה הראשונה.	$P(X = k) = p(1-p)^{k-1}, k = 1, 2,, \infty$	$\frac{1-p}{p^2}$	$\frac{1}{p}$	Geo(p)	גיאומטרי	עם + החזרה	
משתנה הסופר מס׳ ניסויים בינומיים ב״ת ושווי התפלגות עד ההצלחה ה- $m{n}$ (ולא עד ההצלחה הראשונה כמו במ״מ גיאומטרי).	$P(X = k) = {k-1 \choose n-1} p^n (1-p)^{k-n},$ $k = n, n+1, n+2,, \infty$	$\frac{n(1-p)}{p^2}$	$\frac{n}{p}$	NB(n,p)	בינומי שלילי		
משתנה הסופר מדגם בגודל n מתוך אוכלוסיה בת N איברים זמינים. נשמש במשתנה זה כאשר נתונה לנו אוכלוסיה בגודל B שמתחלקת ל- 2 קטגוריות: A וכן נתון לנו מה המדגם.	$P(X = k) = \frac{\binom{A}{k}\binom{B}{n-k}}{\binom{A+B}{n}},$ B	$\frac{nAB(A+B-n)}{(A+B)^2(A+B-1)}$	$\frac{nA}{A+B}$	HG(n,A,B)	היפר גיאומטרי	ללא החזרה + ללא סדר	
משתנה הסופר את מידת הצפיפות ליחידה סטנדרטית. שאלות שהנתון בהן הוא ממוצע האירועים ליחידת זמן או שטח.	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \qquad k \ge 0$	λ	λ	$Pois(\lambda)$	פואסון		

אמידה- הקצאה אופטימאלית

<u>הערות</u>	<u>נוסחאות רלוונטיות</u>	מה עושים?	מה הסיפור!
$E(\widehat{\theta})=\theta$: אומד ייקרא חסר הטיה אם $BE(\widehat{\theta}_n)$ אומד ייקרא עקיב אם $BE(\widehat{\theta}_n)$ אומד ייקרא אומד מוטה אסימפטוטית אם ככל ש-3 הולך וגדל- ההטיה קטנה.	$MSE = E[(\hat{\theta} - \theta)^{2}]$ $= Var(\hat{\theta}) + bias^{2}(\hat{\theta})$ $= E[(\hat{\theta} - E(\theta))]^{2} + [E(\hat{\theta}) - \theta]^{2}$	נמוך יותר ויוצרים MSE ממנו מדגם בעל n תצפיות.	ברצוננו למצוא אומד לפרמטר לא ידוע. עלינו לבחור לביצוע אחד משני סוגי המדגמים המוצעים.
	$\hat{\mu}=lpha\overline{x_n}+(1-lpha)\overline{y_n}$: האומד אומד אומד אומד אומד אומד אומד האומד האומד האומד $Var(\hat{\mu})=lpha^2rac{\sigma_1^2}{n_1}+(1-lpha)^2rac{\sigma_2^2}{n_2}$: לאחר גזירה $lpha=rac{\sigma_2^2}{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$ האומד אירה אומד האומד האומד האומד האומד אומד אומד האומד ה	האומד יורכב כך: $\hat{\mu}=lpha\overline{x_n}+(1-lpha)\overline{y_n}$ כיוון שהאומד הוא חסר הטיה, נמצא את ה $lpha$ - שממזערת את השונות על ידי גזירה.	נתונים שני מדגמים שכבר התקיימו, על מנת למצוא אומד לפרמטר לא ידוע. ברצוננו לקבוע איזה משקל לתת לכל מדגם באומד המשוקלל.
x אם נתון שמחיר כל דגימה מ- x כפול משל y , עבור m נקצה m נקצה m		אם ברשותנו תקציב ל- n דגימות נקבע שרירותית של- x נקצה m דגימות ול- y נקצה m נקצה m דגימות ווך שימוש בממוצעי המדגם ניצור אומד חסר הטיה, ואת שונות האומד נגזור לפי m . לבסוף נגיע למשוואה ריבועית של m , אשר פתרונה ימצא לנו את אחוז התצפיות של m שיש להקצות ל- x מתוך m .	ברצוננו לאמוד פרמטר לא ידוע. הפעם אנו חייבים להשתמש בשני מדגמים כיוון שהפרמטר הרצוי מורכב משני פרמטרים- אחד מכל מדגם, או שכל מדגם מורכב משני פרמטרים לא ידועים, מה שמחייב שני מדגמים כדי "לקזז" את הנעלם הלא רצוי. כאן השאלה היא של מחירי הדגימה וחלוקת התקציב בין שני המדגמים.

חוקי תוחלות, שונויות ולוגריתמים

<u>לוגריתמים</u>
$\log(a \times b) = \log(a) + \log(b)$
$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$
$\log(a^b) = b \times \log(a)$
$\log(e^a) = a$
$[\log(x)]' = \frac{1}{x}$

$\overline{x_n}$	X	
$E(\overline{x_n}) = \mu$	$E(x) = \mu$	E(x)
$V(\overline{x_n}) = \frac{\sigma^2}{n}$	$v(x) = \sigma^2$	v(x)
$E(\overline{x_n}) = \mu^2 + \frac{\sigma^2}{n}$	$E(x^2) = \mu^2 + \sigma^2$	$E(x^2)$

$\underline{cov(x,y)}$ שונות משותפת	<u>Var(z</u>	<u>ר) שונות</u>	<u> (תוחלת E(x</u>		
cov(x+z,y) = cov(x,y)	מדגמים ב"ת מדגמים תלויים				
	Var(x+y) שונות של סכום שווה $Var(x+y)$ אונות של סכום השונויות: $Var(x) + Var(y) + Var(y)$ $Var(x+y) + Var(y)$		תוחלת של סכום שווה לסכום התוחלות:	<u>סכום</u>	
+cov(z, y)	$Var(x - y) = \overline{V}$ $= Var(x) + \overline{V}$	דגש Var(x) + Var(-y) Var(Y) Var(Y)	E(x+y) = E(x) + E(Y)		
$cov(ax, by) = a \times b \times cov(x, y)$	Var(ax):	$=a^2Var(x)$	E(ax) = aE(x)	<u>הכפלה</u> בקבוע (ליניאריות)	
cov(a,b)=0	Var(a) = 0		E(a) = a	<u>קבוע</u>	
	$Var(\overline{x_n}) = \frac{\sigma^2}{n}$		$E(\overline{x_n}) = \frac{n\mu}{n} = \mu$	<u>כתוצאה</u> מכך	

שיטות לאמידה

ניקח את המומנט הראשון שהוא פונקציה של הפרמטר הנאמד.	$\mu_k = \hat{E}(x^k) = \frac{1}{n} \sum_{i=1}^n x_i^k$	שיטת המומנטים
אומד בשיטה זו הוא זה שמביא למקסימום את פונקצית הנראות	$etail = \frac{etageying}{n}$ בולקצית הנראות: $L(x,\theta) = P(X_i = x_i) = \prod_{i=1}^n \frac{ntraine}{n}$ (פונקציית הצפיפות/ההסתברות בהתאם להתפלוגת) $L(x,\theta) = P(X_i = x_i) = \prod_{i=1}^n \frac{\log_\theta N(x_i,\theta)}{n}$ (בדי להיפטר מהמכפלות נעשה $\frac{ntraine}{n} \frac{\log_\theta N(x_i,\theta)}{n}$ על פונקצית הנראות, כיוון שלפי חוקי הלוגים, כפל בתוך לוג שקול לסכימה של $\frac{ntraine}{n} \frac{\log_\theta L(x_i,\theta)}{n} = \frac{\log_\theta N(x_i,\theta)}{n}$ (פונקציית הצפיפות/ההסתברות בהתאם להתפלוגת) $ \frac{ntraine}{n} \frac{\log_\theta N(x_i,\theta)}{n} = \frac{ntraine}{n} nt$	<u>שיטת הנראות</u> <u>המקסימאלית</u>

רווח סמד

<u>הערות</u>		רווח הסמד	<u>התפלגות</u>		
		$P\left(\bar{x}_n - Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^2}{n}} < \mu < \bar{x}_n + Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^2}{n}}\right) = 1 - \alpha$	$\frac{\overline{x_n} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0,1)$	<u>שונות ידועה</u>	רווח סמך לתוחלת מקור התצפיות הן מהתפלגות נורמאלית
 גודל האוכלוסייה- ככל שיותר גדולה, השונות יותר קטנה ור״ס קטן. גודל המדגם- ככל שיותר גדול 		$P\left(\bar{x}_{n} - T_{1-n}^{1-\frac{\alpha}{2}} \sqrt{\frac{s_{n}^{2}}{n}} < \mu < \bar{x}_{n} + T_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{s_{n}^{2}}{n}}\right) = 1 - \alpha$	$\frac{\overline{x_n} - \mu}{\sqrt{\frac{s_n^2}{n}}} \sim T_{(n-1)}$	<u>שונות לא ידועה</u>	$x_i \sim N(\mu, \sigma^2)$ או n גדול מאוד משפט הגבול (משפט הגבול המרכזי)
רייס קטן. 1. רמת הביטחון ($a - 1$)- ככל איותר גדולה כך רייס קטן. 2. אורך רווח הסמך אינו תלוי ב \bar{x}_n .	$d_i = x_i - y_i$	$P\left(\bar{d}_{n} - T_{1-n}^{1-\frac{\alpha}{2}} \sqrt{\frac{s_{d}^{2}}{n}} < \mu_{d} < \bar{d}_{n} + T_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{s_{d}^{2}}{n}}\right) = 1 - \alpha$	$\frac{\overline{d_n} - \mu_d}{\sqrt{\frac{s_d^2}{n}}} \sim T_{(n-1)}$	<u>נתונים</u> <u>שונות</u> מזווגים <u>במדגמים</u> <u>ידועה/לא</u> תלויים	רווח סמך להפרש
$L_{v^*\gamma} = 2 \times Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}}$	$P\left((\bar{x}-\bar{y})\cdot\right)$	$-Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^{2}}{n_{x}} + \frac{\sigma^{2}}{n_{y}}} < \mu_{x} - \mu_{y} < \overline{(x} - \overline{y}) + Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^{2}}{n_{x}} + \frac{\sigma^{2}}{n_{y}}} = 1 - \alpha$	$\frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma^2}{n_x} + \frac{\sigma^2}{n_y}}} \sim N(0.1)$	שונויות ידועות <u>ידועות לא</u> <u>ושוות לא</u> מזווגים	$x_i \sim N(\mu_x, \sigma_x^2)$
	$P\left((\bar{x}-\bar{y})-\right.$	$T_{1-n}^{1-\frac{\alpha}{2}}\sqrt{\frac{s_{p}^{2}}{n_{x}} + \frac{s_{p}^{2}}{n_{y}}} < \mu_{x} - \mu_{y} < \overline{(x-\bar{y})} + T_{1-n}^{1-\frac{\alpha}{2}}\sqrt{\frac{s_{p}^{2}}{n_{x}} + \frac{s_{p}^{2}}{n_{y}}}\right) = 1 - \alpha$	$\frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}}} \sim T_{(n-1)}$	שונויות במדגמים לא לא ידועות ידועות אך שוות	$y_i \sim N(\mu_y, \sigma_y^2)$
\hat{p} הפרופורציה במדגם (ממוצע המדגם). המדגם). 2 $\hat{p}(1-\hat{p})$ שונות של ברנולי $\hat{p} \approx \frac{1}{2}$ אם n גדול מאוד אז $\frac{1}{2} \approx \hat{p}$	P	$\hat{p} - Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$	$\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim N(0,1)$	<u>פרופורציה</u>	
$P\left((\widehat{p_1} - \widehat{p_2}) - Z_{1 - \frac{\alpha}{2}} \sqrt{\widehat{p_1}}\right)$	$\frac{(1-\widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1-\widehat{p_2})}{n_2} < p_1$	$-p_{2} < (\widehat{p_{1}} - \widehat{p_{2}}) + Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p_{1}}(1-\widehat{p_{1}})}{n_{1}} + \frac{\widehat{p_{2}}(1-\widehat{p_{2}})}{n_{2}}} = 1 - \alpha$	√ n	<u>הפרש פרופורציות</u>	$rac{ extsf{P} - r}{c}$ רווח טמך ל $x_t \sim extsf{Ber}(p)$
	$P\left(\frac{\hat{p} + \frac{Z^{2}_{1-\frac{\alpha}{2}}}{2n} - Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{Z^{2}_{1-\frac{\alpha}{2}}}{4n^{2}}}}{\frac{Z^{2}_{1-\frac{\alpha}{2}}}{1 + \frac{Z^{2}_{1-\frac{\alpha}{2}}}{n}}$				
		$\frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{\chi^{2}_{(n), 1-\frac{\alpha}{2}}} < \sigma^{2} < \frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{\chi^{2}_{(n), \frac{\alpha}{2}}} = P\left(\frac{n \times \hat{\sigma}^{2}}{\chi^{2}_{(n), 1-\frac{\alpha}{2}}} < \sigma^{2} < \frac{n \times \hat{\sigma}^{2}}{\chi^{2}_{(n), \frac{\alpha}{2}}}\right) = 1 - \alpha$	$\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma^2} \sim \chi^2_{(n)}$	התוחלת ידועה	רווח סמך לשונות
	$P\left(\frac{\sum_{i=1}^{n}(x_i-x_i)}{\chi^2_{(n-1)}}\right)$	$\frac{(\bar{x})^2}{1-\frac{\alpha}{2}} < \sigma^2 < \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\chi^2_{(n-1), \frac{\alpha}{2}}} = P\left(\frac{(n-1) \times s^2}{\chi^2_{(n-1), 1-\frac{\alpha}{2}}} < \sigma^2 < \frac{(n-1) \times s^2}{\chi^2_{(n-1), \frac{\alpha}{2}}}\right) = 1 - \alpha$	$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sigma^2} \sim \chi^2_{(n-1)}$	התוחלת אינה ידועה	$x_i \sim N(\mu, \sigma^2)$
<u>אומד לשונות המתואמת</u>		אומד לשונות- אומד בלתי מוטה	<u>פי נראות מירבית ושיטת</u> יים)- אומד מוטה		
$S_{pooled}^2 = (n_x - 1)s_x^2 + (n_y - 1)s_x^2 + (n_y$		$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i})^{2} - \frac{n}{n-1} \bar{x}_{n}^{2} = \frac{n}{n-1} \hat{\sigma}^{2}$	$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2 = $	$(x_i)^2 - \left(\frac{1}{n}\sum_{i=1}^n x_i\right)^2$	$$ אומד לשונות $x_i \sim N(\mu, \sigma^2)$
$= \frac{\sum_{i=1}^{n} (x_i - \bar{x}_n)^2 + \sum_{i=1}^{n} (y_i)^2}{n_x + n_y - 2}$	$(\overline{y_n} - \overline{y_n})^2$	$\frac{(n-1)\times s^{2}}{\sigma^{2}} \sim \chi^{2}_{(n-1)} = \operatorname{gamma}\left(\frac{n-1}{2}, \frac{1}{2}\right)$	$\frac{n \times \widehat{\boldsymbol{\sigma}}^{2}}{\sigma^{2}} \sim \chi^{2}_{(n)} = gan$	$nma\left(\frac{n}{2},\frac{1}{2}\right)$	

הערות	>77) 1 7	חד צד		?	ה בודקים	מ			
	H ₀ : μ : H ₁ : μ	$=\mu_0$		$\mu = \mu_0$ $\mu \geqslant \mu_0$		ובנה המבחן	,				
	$R = egin{cases} \overline{X_n} > \mu_0 + Z_{1-rac{lpha}{2}}\sqrt{rac{\sigma^2}{n}} \ \overline{X_n} < \mu_0 - Z_{1-rac{lpha}{2}}\sqrt{rac{\sigma^2}{n}} \end{cases}$ $R = egin{cases} \overline{X_n} \geqslant \mu_0 \pm Z_{1-lpha}\sqrt{rac{\sigma^2}{n}} \end{cases}$		שונות ידועה אזור הדחיה		בדיקת השערות בדבר <u>תוחלת</u> של מ"מ נורמאלי או						
$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2 = \frac{1}{n} \sum_{i=1}^n (x_i)^2$	$2 - \left(\frac{1}{n}\sum_{i=1}^{n}x_i\right)^2 \rightarrow s^2$	$= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 =$	$\frac{1}{n-1} \sum_{i=1}^{n} (x_i)^2 - \frac{n}{n-1}$	$\frac{1}{n}\overline{x}_n^2 = \frac{n}{n-1}\hat{\sigma}^2$	מד בלתי ה לשונות			כמות תצפיות $x \sim N(\mu, \sigma^2)$			
	$R = \begin{cases} \overline{X_n} > \mu_0 \\ \\ \overline{X_n} < \mu_0 \end{cases}$	$t_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{s^2}{n}}$ $t_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{s^2}{n}}$ $t_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{s^2}{n}}$	$R = \left\{ \overline{X_n} \gtrless \right.$	$\mu_0 + T_{n-1}^{1-\alpha} \sqrt{\frac{s^2}{n}}$	ר הדחיה		שונות לא יז				
$\mu_x - \mu_y = \delta$	$H_0: \mu_x = \mu_y$ $H_1: \mu_1 \neq \mu_2$	$H_0: \delta = 0$ $H_1: \delta \neq 0$	$H_0: \mu_x = \mu_y$ $H_1: \mu_x \geqslant \mu_y$	$H_0: \delta = 0$ $H_1: \delta \geqslant 0$	מבחן	מבנה ה					
$\overline{X_{n_x}} - \overline{Y_{n_y}} = \hat{\delta}$	$R = \begin{cases} \hat{\delta} > 0 + 2 \\ \hat{\delta} < 0 - 2 \end{cases}$	$Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^2}{n_x} + \frac{\sigma^2}{n_y}}$ $Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^2}{n_x} + \frac{\sigma^2}{n_y}}$	$R = \left\{ \hat{\delta} \geqslant 0 \pm \right.$	$= Z_{1-\alpha} \sqrt{\frac{\sigma^2}{n_x} + \frac{\sigma^2}{n_y}} $	אזור הדחיה	שונות ידועות ושוות שונות לא ידועות אך שוות	ידועות	מדגמים לא			
$s_x^2 = \frac{1}{n_x - 1} \sum_{i=1}^n (x_i)^2 - \frac{n_x}{n_x - 1} \overline{x}_n^2$		$\frac{a_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$	$=\frac{\sum_{i=1}^{n}(x_i-\overline{x}_n)^2+\sum_{i=1}^{n}(x_i-\overline{x}_n)^2}{n_x+n_y}$	$\frac{\sum_{i=1}^{n}(y_i-\overline{y}_n)^2}{2}$	שונות מתואמת						מזווגים ובלתי תלויים
	$R = \begin{cases} \hat{\delta} > 0 + T_{n_x}^{1-} \\ \\ \hat{\delta} < 0 - T_{n_x}^{1-} \end{cases}$	$\frac{\frac{\alpha}{2}}{n_{x} + n_{y} - 2} \sqrt{\frac{s_{p}^{2}}{n_{x}} + \frac{s_{p}^{2}}{n_{y}}}$ $\frac{\frac{\alpha}{2}}{n_{x} + n_{y} - 2} \sqrt{\frac{s_{p}^{2}}{n_{x}} + \frac{s_{p}^{2}}{n_{y}}}$	$R = \left\{ \hat{\delta} \geqslant 0 \pm T, \right.$	$\left\{ \frac{1-\alpha}{n_x + n_y - 2} \sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}} \right\}$	אזור הדחיה		תלויים	בדבר שוויון $\frac{m}{n}$ של מ"מ $\frac{n}{n}$ נורמאליים או נורמאליים או כמות תצפיות $\frac{n}{n}$ גדולה במיוחד. $\frac{n}{n}$			
$\mu_x - \mu_y = \mu_d$	$H_0: \mu_x = \mu_y$ $H_1: \mu_x \neq \mu_y$	$H_0: \mu_d = 0$ $H_1: \mu_d \neq 0$	$H_0: \mu_x = \mu_y$ $H_1: \mu_x \geqslant \mu_y$	$H_0: \mu_d = 0$ $H_1: \mu_d \ge 0$	מבנה המבחן			$y \sim N(\mu_y, \sigma^2)$			
$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (d_i - \bar{d}_n)^2 = \frac{1}{n} \sum_{i=1}^n (d_i)^2$	$2 - \left(\frac{1}{n} \sum_{i=1}^{n} d_i\right)^2 \to s^2$	$= \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d}_n)^2 =$	$\frac{1}{n-1}\sum_{i=1}^{n}(d_{i})^{2}-\frac{n}{n-1}$	$\frac{1}{1}\overline{d_n}^2 = \frac{n}{n-1}\widehat{\sigma}^2$	אומד בלתי מדגמים מזווגים מדגמים מזווגים לשונות ותלויים						
$\overline{X_{n_x}} - \overline{Y_{n_y}} = \overline{d_n}$ אם אין הנחת נורמאליות במדגמים המזווגים, נבדוק את ההשערה בעזרת מבחן הסימן.	$R = \begin{cases} \overline{d_n} > 0 \\ \\ \overline{d_n} < 0 \end{cases}$	$+ T_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{{S_d}^2}{n}} $ $- T_{n-1}^{1-\frac{\alpha}{2}} \sqrt{\frac{{S_d}^2}{n}}$	$R = \left\{\overline{d_n} \gtrless \right.$	$0 \pm T_{n-1}^{1-\alpha} \sqrt{\frac{{S_d}^2}{n}} $	אזור הדחיה		$y_i - x_i$				

© מורל ש. כהן

הערות	נדדי	דוצ	777	חד צ		ה בודקים?	מ
	$H_0: p$ $H_1: p$			$ p = p_0 0 \ge p_0 $		מבנה המבחן	
	$R = \begin{cases} \overline{X_n} > np_0 + Z_{1 - \frac{\alpha}{2}} \sqrt{np_0(1 - p_0)} \\ \overline{X_n} < np_0 - Z_{1 - \frac{\alpha}{2}} \sqrt{np_0(1 - p_0)} \end{cases}$		$R = \{\overline{X_n} \geqslant np_0 \pm .$	$R = \left\{ \overline{X_n} \geq np_0 \pm Z_{1-\alpha} \sqrt{np_0(1-p_0)} \right\}$		קירוב נורמאלי-	
	$R = \begin{cases} \hat{p} > p_0 + Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{p_0(1 - p_0)}{n}} \\ \\ \hat{p} < p_0 - Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{p_0(1 - p_0)}{n}} \end{cases}$		$R = \left\{ \hat{p} \geq p_0 \pm Z_{1-\alpha} \sqrt{\frac{p_0(1-p_0)}{n}} \right\}$		אזור הדחיה	כמות תצפיות גדולה במיוחד $n \geq 30$	
.1 . במבחן חד צדדי נחפש את סכום	דו צדדי לא סימטרי	דו צדדי סימטרי	חד צדדי שמאלי	חד צדדי ימני			בדיקת השערות
$lpha$ ההסתברויות שלא עולה על $lpha$.2 במבחן דו צדדי נחפש בכל אחד משני הצדדים של ההתפלגות את סכום ההסתברויות שלא עולה $rac{\pi}{2}$	$H_0: p = p_0$ $H_1: p \neq p_0$	$H_0: p = \frac{1}{2}$ $H_1: p \neq \frac{1}{2}$	$H_0: p = p_0$ $H_1: p < p_0$	$H_0: p = p_0$ $H_1: p > p_0$	מבנה המבחן	מספר התצפיות אינו מספק כדי	בדבר פרופורציה של מ"מ בינומי של מ"מ בינומי $x{\sim}Bin(n,p)$ (הדבר גם נכון לכל התפלגות בדידה אחרת)
$rac{2}{lpha}$ ויחד נגיע לרמת מובהקות של	$R = \begin{cases} x \\ x \end{cases}$	$c > c_1$ $c < c_2$	$R = \{x < c_2\}$	$R = \{x > c_1\}$	אזור הדחייה		
תחת $p = \frac{1}{2}$ תחת במבחן דו צדדי כאשר	С	0 1	2	28 29			
תהיה סימטריה בהתפלגות, H_{0} ובין שני הערכים הקריטיים.	$P_{p_0}(x=c)$	של מיימ בינומי	מש בקירוב הסתברות התוצאות לפי פונקצית ההסתברות של מיימ בינומי		להשתמש בקירוב	,	
 במקרה הבדיד אי אפשר לבחור רמת מובהקות ספציפית, כי ההסתברויות אינן רציפות . אם הדרישה היא למקסימום 	$P_{p_0}(x < c_2) \le$ חד צדדי שמאלי	הסחררונות עד			איך	הנורמאלי של משפט הגבול המרכזי	
ייתכן שנאלץ להתפשר. $lpha=0.05$	$P_{p_0}(x>c_1)\leq$			נסכום את ההסתברויות עד	מוצאים את הערך		
p – value - כשמחפשים את ה- to compart to	(חד צדדי ימני)			שנגיע ל- α הרצויה	הקריטי?		
התוצאה שקיבלנו בניסוי $+$ ההסתברות לקבל תוצאות קיצוניות יותר לכיוון H_1	$P_{p_0}(x < c_2) + P_{p_0}(x > c_2)$	$(c_1) \leq lpha$ נסכום את הסתברויות עד (a,b) הרצויה (a,b) הרצויה		נסכום את ההסתברויות עד $\frac{\alpha}{2}$ הרצויה			
	$H_0: p_1 = H_1: p_1$			$= p_2 = p$ $1 \ge p_2$	מבנה המבחן		
$\hat{q} = 1 - \hat{p}$ $\hat{p} = \frac{m}{2}$	מס' המיוחדים משתי הדגימו n_1+n_2	$\widehat{p_2} = rac{'}{2}$ מאוכלוסייה ב $rac{n_2}{n_2}$	$\widehat{p_1} = \alpha \sigma' $	מס' המיוחדים מאוכלוסייד n_1	אומדים	מדנמנת נדולים	בדיקת השערות בדבר <u>שוויון</u>
$\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\hat{p}\hat{q}}=\sqrt{\left(\frac{\widehat{p_1}\widehat{q_1}}{n_1}+\frac{\widehat{p_2}\widehat{q_2}}{n_2}\right)}$ הערה: דרישה של רמת מובהקות $\hat{p}=\hat{q}=\frac{1}{2}$ מקסימאלית גוררת	$R = \begin{cases} \widehat{p_1} - \widehat{p_2} > 0 + \\ \\ \widehat{p_1} - \widehat{p_2} < 0 - \end{cases}$	$(n_1 n_2)$	$R = \left\{ \widehat{p_1} - \widehat{p_2} > 0 \pm Z_{1-\alpha} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \widehat{p}\widehat{q}} \right\}$		אזור הדחיה	מדגמים גדוכים	$\frac{2}{2}$ פרופורציות בין בין אוכלוסיות: $x_1 \sim Bin(n_1, p_1)$ $x_2 \sim Bin(n_2, p_2)$
	רמטריים.	ו בהרחבה תחת מבחנים א- פ	פירוט			מדגמים קטנים- Fisher (טבלה 2X2)	

© מורל ש. כהן

הערות	דו צדדי	חד צדדי		ה בודקים ?	מ
	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$H_0: \sigma^2 = \sigma^2_0$ $H_1: \sigma^2 \ge \sigma^2_0$		מבנה המבחן	
	$\widehat{\boldsymbol{\sigma}}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$		אומד לשונות	תוחלת ידועה	בדיקת השערות
	$R = \begin{cases} \frac{n \times \hat{\sigma}^2}{\sigma^2_0} > \chi^2_{(n), z_{1-\frac{\alpha}{2}}} \\ \frac{n \times \hat{\sigma}^2}{\sigma^2_0} < \chi^2_{(n), z_{1-\frac{\alpha}{2}}} \end{cases}$	$R = \left\{ \frac{n \times \hat{\sigma}^2}{\sigma^2_0} \gtrless \chi^2_{(n), 1-\alpha} \right\}$	אזור הדחייה	$\frac{n \times \hat{\sigma}^2}{\sigma^2} \sim \chi^2_{(n)}$	בדבר <u>שונות</u> של מ"מ נורמאלי או כמות תצפיות גדולה במיוחד.
	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i})^{2} - \frac{n}{n-1} \bar{x}_{n}^{2}$	$^2 = \frac{n}{n-1}\hat{\sigma}^2$	אומד בלתי מוטה לשונות	תוחלת לא ידועה	$x \sim N(\mu, \sigma^2)$
	$R = \begin{cases} \frac{(n-1) \times s^2}{\sigma^2_0} > \chi^2_{(n-1), z_{1-\frac{\alpha}{2}}} \\ \frac{(n-1) \times s^2}{\sigma^2_0} < \chi^2_{(n-1), z_{1-\frac{\alpha}{2}}} \end{cases}$	$R = \left\{ \frac{(n-1) \times s^2}{\sigma^2_0} \gtrless \chi^2_{(n-1),1-\alpha} \right\}$	אזור הדחייה	$\frac{(n-1)\times s^2}{\sigma^2} \sim \chi^2_{(n-1)}$	

$\underline{P-Value}$ -טעות מסוג ראשון, טעות מסוג שני, עוצמה ו

מציאות החלטה	H_0	H_1	
לא לדחות H_0 את	ההחלטה תואמת מציאות (1-lpha)	2 טעות מסוג (β)	
לדחות את $oldsymbol{H}_0$			

דחיית H_0 כשהיא למעשה ההשערה הנכונה. זוהי טעות חמורה: קבלת החלטה חדשנית שאין לה הצדקה!	$\alpha = P_{H_0}(H_1) = P_{H_0}(R)$	טעות מסוג ראשון
קבלת H_0 כשהיא למעשה ההשערה הלא הנכונה. זוהי טעות פחות חמורה, שכן זוהי למעשה המציאות שהייתה קודם לכן.	$\boldsymbol{\beta} = P_{H_1}(H_0) = P_{H_1}(\bar{R}) = 1 - P_{H_1}(R)$	טעות מסוג שני
. דחיית H_0 כאשר היא לא ההשערה הנכונה	$1 - \boldsymbol{\beta} = P_{H_1}(H_1) = P_{H_1}(R)$	העוצמה

$Z_{0.9} = 1.285$ $Z_{0.95} = 1.645$ $Z_{0.975} = 1.96$ $Z_{0.99} = 2.325$

שהמדגם גדל.

המשמעות של ה-P-Value ההסתברות לקבל את התוצאה בקיבלנו בניסוי+ ההסתברות לקבל תוצאות קיצוניות יותר לכיוון H_1 . כדי לחשב את ה-P-Value של המבחן מחלצים את אלפא מהמשוואה הבאה: $\overline{X} = \mu_0 + Z_1$

(מבחן חד צדדי),
$$\overline{X_n}=\mu_0\pm Z_{1-lpha}\sqrt{\frac{\sigma^2}{n}}$$
 (מבחן דו צדדי) $\overline{X_n}=\mu_0\pm Z_{1-\frac{lpha}{2}}\sqrt{\frac{\sigma^2}{n}}$

ערך ה- P של מבחן דו צדדי הוא פי 2 משל מבחן חד צדדי. מסתכלים על הצד המתאים לפי ממוצע המדגם שקיבלנו. © מורל ש. כהן

התפלגות χ^2 היא סימטרית וחיובית		<u>הערות</u>	
תמיד	lpha=0.08 אדחה גם בריימ אדחה גם בריימ אדחה גם בריימ אדחה אדחה גם בריימ ס		
, , ,== ,	$lpha=0.05$ אם דחיתי את H_0 בריימ H_0 לא בהכרח אדחה גם בריימ פ		
	אם $-C^* < ar{x} < C$ נדחה		
	אם $ar{x} < C^*$ לא נדחה		
	$lpha=0.05$ אם לא דחיתי את H_0 בריימ H_0 לא אדחה גם בריימ ס אם לא דחיתי את פריימ אווע היימ א		
	$lpha=0.08$ אם לא דחיתי את H_0 בריימ $lpha=0.05$ לא בהכרח שלא אדחה גם בריימ ס		
	אם $C^* < ar{x} < C$ נדחה		
	הה לא $ar{x} < C^*$ אם - $ar{x}$		
	1 גדלה, הערך הקריטי קטן, אבל אזור הדחייה גדל- אנו מוכנים לעשות יותר טעויות מסוג $lpha$		
	$\underline{\mu}$ האמיתי: μ האמיתי פונקציה של	<u>הקשר בין רווח סמך לבדיקת השערות במבחן דו צדדי:</u>	
		μ_0 אם μ_0 שייכת לרווח הסמך אז מתקיים μ_0	
		σ^2	
		$\bar{x}_n - \mu_0 < Z_{1-\frac{\alpha}{2}} \left \frac{\sigma^2}{n} \right $	
		extstyle ex	
		ולכן לא נודוודאונ 110 באוונודו מונ מובווקוונ.	

משפט הגבול המרכזי				
הסתכלות על סכומים		<u>הסתכלות על ממוצעים</u>		
כל מיימ פואסוני הוא סכום של מיימ פואסוניים ולכן ניתן באמצעות משפט הגבול המרכזי של סכומים לחשב הסתברויות למשתנה זה	$\frac{\sum_{i=1}^{n} x_i - n\mu}{\sqrt{n\sigma^2}} \sim N(0,1)$	$\frac{\overline{x_n} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0,1)$		

<u>מבחנים א- פרמטריים</u>					
מסקנה	איך זה נראה?	סימונים	מה בודקים?		
: דחה את H_0 אם		ההסתברויות לפי המודל של השערת האפס			
$\sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}} > \chi^{2}_{n-1,\alpha}$	קטגוריה קטגוריה קטגוריה קטגוריה 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	תוצאות המדגם שלקחנו $oldsymbol{o}_i$	<u>מבחנ</u>		
אינו ידוע- אי אפשר לבנות את E_i . על P אינו ידוע- אי אפשר ב	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	הציפייה לתוצאות $\boldsymbol{P}_i \times \boldsymbol{N} = \boldsymbol{E}_i$ המדגם על סמך המודל	H_0 : המודל שלי (χ^2) chi לא המודל שלי		
כן, נאמוד את P מהמדגם, כתוצאה מכך נאבד דרגת חופש. ומספר דרגות החופש יהיה $n-2$. למעשה,	E_i	גודל המדגם $oldsymbol{N}$	<u>התאמה</u>		
כל פרמטר שנאמד במדגם והוא לא בתוך		מספר הקטגוריות $oldsymbol{n}$			
הסטטיסטי גורר איבוד דרגת חופש.		מספר דרגות החופש $n-1$			
כדי להגיע למסקנות עלינו ראשית לחשב ידי להגיע למסקנות עלינו ראשית לחשב ידי להער ווידי בידי להסתברות לקבל תוצאה כפי שראינו ווידי להער	תצפית תצפית תצפית	תצפיות מזווגות בלי הנחת $\mathbf{x}_i - \mathbf{y}_i$			
במדגם או תוצאות קיצוניות יותר לכיוון H_1 . לאחר החישוב הכלל הוא כזה :	n מזווגת מזווגת מזווגת מזווגת מזווגת מזווגת n	(-/+) סימן ההפרש $oldsymbol{D}_i = oldsymbol{x}_i - oldsymbol{y}_i$	$oldsymbol{H_0}$: $p=rac{1}{2}$ מקרית מקרית		
(5 1)	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	מס׳ התצפיות המזווגות 🛚 n	$p \neq \frac{1}{2}$ דו צדדי דו אבחן הסימן		
p(Z=k) יש להתחשב בכל הסידורים האפשריים בכל הסידורים האפשריים	$(p(Z \le k) + p(Z \ge n - k))$ דו צדדי	פרופורציית ההפרשים החיוביים p	H_1 : $egin{cases} p eq rac{1}{2} & ext{TI YIT} \ p < rac{1}{2} & ext{DI TYYIT} \ p > rac{1}{2} & ext{DI TYYIT} \end{cases}$		
$p(Z = k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k}$	$p-value = egin{cases} p(Z \leq k) + p(Z \geq n-k) & ext{ דו צדדי שמאלי} \ p(Z \leq k) & p(Z \geq k) \end{cases}$ חד צדדי ימני	מסי ההפרשים החיוביים Z	$(p > \frac{1}{2})$ חוד צודי ימני		
·	(P(3 = N)	מסי ההפרשים החיוביים שקיבלנו במדגם k			
ההחלטה במבחן תהיה על סמך חישוב p – value : <u>סכום כל הלוחות שיותר קיצוניים</u> או שווים ללוח שראיתי.	תצפית תצפית תצפית מזווגת 3 מזווגת 2 מזווגת 1 a b a + b	תוצאות המדגם בכמויות a,b,c,d	אנו מעוניינים להשוות בין הפרופורציות שתי אוכלוסיות על משתנה בינארי, למשל חולים/ בריאים ביחס למעשנים/ לא מעשנים.		
כדי לחשב את ה- $value$ אני אצור שורה של לחשב את ה- H_1 מנקודת המבט של לוחות קיצוניים יותר לכיוון H_1 מנקודת המבט של תא ביחס לתא השולי שלו $a+c$, $a+c$	a אוכלוסייה בי c d $c+d$ $a+c$ $b+d$ n c d		H_0 : $p_x = p_y$ הפרופורציות של הפרופורציות של של שתי האוכלוסיות של הערי האוכלוסיות של הערי האוכלוסיות של של של הערי האוכלוסיות של הערי הערי הערי הערי הערי הערי הערי הערי		
p-value - a לא הה סתברויות הללו הוא היה $a < p-value$ לאחר החישוב הכלל הוא כזה: $a < p-value$ אם: $a < p-value$ במבחן דו צדדי עלינו לקחת לוחות יותר קיצוניים משני הצדדים- את הערכה לקיצוניות נקבל על סמך ההסתברות של אותו לוח- האם היא קטנה או שווה ללוח שראיתי במדגם.	$p(n) = rac{inom{a+b}{c}inom{c+d}{c}}{inom{n}{a+c}}$ עבור תא \mathbf{a} און און א	a+b+c+d=nסך התצפיות	H_0 : $p_x = p_y$ אורי. אורי האוכלוסיות אינן $p_x \neq p_y$ הפרופורציות אינן $p_x \neq p_y$ אורות או נוטות $p_x > p_y$ אורות או נוטות $p_x < p_y$ ספציפית. $p_x < p_y$ ספציפית.		