Übungsblatt 7 Ana

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Mehrfachintegral, Integrationsgebiet und deren wichtigste Eigenschaften.
- > Sie können z. B. für die Vereinfachung von Zweifach- und Dreifachintegralen kartesische Koordinaten in Polar- bzw. Zylinderkoordinaten umwandeln.
- Sie können Mehrfachintegrale auf einfachen Gebieten in 2D und 3D berechnen und die Integrationsreihenfolge vertauschen.
- > Sie können Masse, Volumen und Schwerpunkt mittels Mehrfachintegralen bestimmen.

1. Aussagen über Zweifachintegrale

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Ein Zweifachintegral beschreibt das Volumen zwischen dem		
Graphen einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und einem Gebiet in der xy-		
Ebene.		
b) Die Fläche eines Gebiets in 2D lässt sich mit Hilfe eines		
Zweifachintegrals berechnen.		
c) Für $f(x,y) \ge 0$ gilt: $\int_G f(x,y)dA \ge 0$ für jedes Gebiet G in der		
xy-Ebene.		
d) Für $f(x, y) \le 0$ gilt:		
$\int_{x_0}^{x_E} \int_{y_0}^{y_E} f(x, y) dy dx \le 0 \text{ für alle } x_0, x_E, y_0, y_E \in \mathbb{R}.$		

2. Integrale über Rechtecke

Berechnen Sie die folgenden Integrale.

a)
$$\int_0^1 \int_0^2 xy \, dx \, dy$$

b)
$$\int_0^2 \int_0^1 x^2 \, dx \, dy$$

c)
$$\int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y} dx dy$$

d)
$$\int_0^1 \int_1^e \frac{x^2}{y} dy dx$$

e)
$$\int_{1}^{4} \int_{-1}^{2} (2x + 6x^{2}y) dx dy$$

1

a)
$$\int_0^1 \int_0^2 xy \, dx \, dy$$
 b) $\int_0^2 \int_0^1 x^2 \, dx \, dy$ c) $\int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y} \, dx \, dy$ d) $\int_0^1 \int_1^e \frac{x^2}{y} \, dy \, dx$ e) $\int_1^4 \int_{-1}^2 (2x + 6x^2y) \, dx \, dy$ f) $\int_{-1}^2 \int_1^4 (2x + 6x^2y) \, dy \, dx$

3. Zweifachintegrale

Berechnen Sie die folgenden Integrale.

a)
$$\int_0^2 \int_{y^2}^{2y} (4x - y) \, dx \, dy$$
 b) $\int_1^2 \int_{1-x}^{\sqrt{x}} x^2 \, y \, dy \, dx$ c) $\int_1^2 \int_0^x e^{\frac{y}{x}} \, dy \, dx$

b)
$$\int_{1}^{2} \int_{1-x}^{\sqrt{x}} x^{2} y dy dx$$

c)
$$\int_1^2 \int_0^x e^{\frac{y}{x}} dy dx$$

4. Integrale über Gebiete

Berechnen Sie das folgende Integral über das jeweils angegebene Gebiet G.

$$I = \int_{G} 2xy^2 dA$$

- a) Rechteck mit Eckpunkten (-1; -1), (4; -1), (4; 2), (-1; 2),
- b) Dreieck mit Eckpunkten (0; 0), (3; 1), (-2; 1).

5. Integrationsreihenfolge tauschen

Vertauschen Sie die Integrationsreihenfolge für die folgenden Integrale.

a)
$$\int_{1}^{3} \int_{2}^{5} f(x, y) \, dx \, dy$$

a)
$$\int_{1}^{3} \int_{2}^{5} f(x, y) \, dx \, dy$$
 b) $\int_{0}^{1} \int_{2x}^{2} f(x, y) \, dy \, dx$ c) $\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) \, dx \, dy$ d) $\int_{0}^{2} \int_{y^{2}}^{4} f(x, y) \, dx \, dy$ e) $\int_{0}^{8} \int_{\sqrt{x}}^{2} f(x, y) \, dy \, dx$ f) $\int_{1}^{3} \int_{\ln x}^{3} f(x, y) \, dy \, dx$

c)
$$\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) \, dx \, dy$$

d)
$$\int_{0}^{2} \int_{y^{2}}^{4} f(x, y) dx dy$$

e)
$$\int_0^8 \int_{\sqrt[3]{x}}^2 f(x, y) \, dy \, dx$$

f)
$$\int_{1}^{3} \int_{\ln x}^{3} f(x, y) \, dy \, dx$$

6. Doppelintegrale

Lösen Sie die beiden folgenden Integrale unter Verwendung von Polarkoordinaten.

a) $I = \iint_A (1 + x + y) dA$, wobei der Integrationsbereich der Einheitskreis sein

b) $I = \iint_A (3\sqrt{x^2 + y^2} + 4) dA$, wobei der Integrationsbereich der angegebene Kreisring sein soll (Innenradius = 1, Aussenradius = 3).

7. Schwerpunkt

Bestimmen Sie den Flächenschwerpunkt S des skizzierten Kreisringausschnitts mit Innenradius $r_1=2$ und Aussenradius $r_2=6$.

8. Volumen zylinderförmiger Körper

Berechnen Sie das Volumen V des Körpers, der durch einen in der xy-Ebene gelegenen kreisförmigen Boden mit Radius r=1 und einen Deckel mit der Fläche $z=e^{x^2+y^2}$ gebildet wird.

