You need to upload the solution in multi-page PDF or WORD file format on the canvas course website.

You must write down your name on your solution sheets.

1. Complete the **Verilog** HDL design for the following finite state machine.


```
module fms (reset, clk, a, y);
input reset, clk, a;
output y;
parameter s0=0,s1=1,s2=2,s3=3,s4=4;
reg[2:0] cu,ns;
always @(posedge clk)
begin
if(rst)
cs \le s0;
else cs \le ns;
end
always@(a,cs)
begin
case(cs)
so: begin
       if(in)
       begin
       ns \le s1;
       y < = 0;
       end
```

```
else
       begin
       ns <= s0;
       y<=0;
       end
end
s1:begin
       if(in)
       begin
       ns<= s2;
       y<=0;
       end
else
       begin
       ns<=s0;
       y<=0;
       end
end
s2:begin
       if(in)
       begin
       ns<= s2;
       y<=0;
       end
else
       begin
       ns<=s3;
       y<=0;
       end
end
s3:begin
       if(in)
       begin
       ns<= s4;
       y<=0;
       end
else
       begin
       ns<=s0;
       y<=0;
       end
end
s4:begin
      if(in)
```

```
begin
       ns \le s2;
       y<=1;
       end
else
       begin
       ns<=s0;
       y<=0;
       end
end
default :begin
      if(in)
       begin
ns<= s0;
       y<=0;
       end
endcase
endmodule
```


// Continue your Verilog design on this page.

.

2. Fill out 6 blanks in the following Veirlog design with the given circuit schematic.

```
module ex2(D, E, F, G, H, Y);
       D, E, F, G, H;
input
output Y;
reg
       M, N, Y;
always@(D or E or F or G or H)
begin
  M = subcir( _F_, _E_, _D_);
  N = subcir ( _F__, __G__, ___H__);
  Y = M \mid N;
end
function subcir;
input A, B, C;
reg P;
begin
    P = A \& B;
   subcir = P \mid C;
end
endfunction
endmodule
```


VHDL Exercises are for questions below.

Note:	VHDI	is not case	sensitive
INUIC.	V I I I / I	and hou case.	SCHSILIVE

End beh2;

3.	Use when else	statement to design 4 to 1 multiplexer.			
	Library ieee;				
	Useiee.std_logic_1164.all				
	Entity mux4to1 Port (d0, d1	is , d2, d3: in std_logic;			
	S:	instd_logic		<u>;</u>	
	Y End mux4to1;	outstd_logic);	
	Architecture beh1 of mux4to1 is				
	Begin Y <=	d0 whenS= '0'	else		
		d1 whenS= '1'	else		
		d2 whenS= '1'	else		
		d3;			
	End beh1;				
4.	Use with select statement to design 4 to 1 multiplexer. (Entity part is same with that used in question 3).				
	Architecture beh2 of mux4to1 is				
	Begin With S select				
	Y <=	d0 whenS='0'	,		
		d1 whenS='1'	,		
		d2 whenS='1'	,		
		d3 when others;			

5. Use if ... else statement to design 4 to 1 multiplexer. (Entity part is same with that used in question 3).

Architecture beh3 of mux4to1 is Begin Process(d0, d1, d2, d3, S) begin if (__S='0'______) then $Y \le d0;$ elsif (_____S='1'_____) then $Y \le d1;$ elsif (______S='1'_____) then $Y \leq d2$; else $Y \le d3;$ end if;

End process;

End beh3;

Page 7

6. Complete the VHDL statements to describe waveforms A and B.

A <= '0', '1' after _10___ ns, '0' after __20___ ns, '1' after ___50___ ns, '0' after ___60____ ns;

Process

Begin

Wait for ______ ns;

Wait for _____10______ ns;

Wait for ______20______ ns;

Wait for ______30______ ns;

Wait;

End process;