

STA 108 Applied Statistical Methods: Regression Analysis

Linear Algebra

Shizhe Chen, PhD

Spring 2020

l

You are expected to read the course notes **before** lectures.

Linear Algebra

Why linear algebra?

Crucial knowledge in the era of data science

Prerequisite for understanding multiple linear regression

Why now?

R's syntax uses vectors and matrices

What to take away from this?

Look out for the image in the lower right corner, meaning "not required" ¹

^{1...} but will be investigated in R

Basic Definitions

Vectors and Matrices

An
$$n$$
-dimensional **vector** is: $\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$

An
$$n \times p$$
 matrix is: $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \in \mathbb{R}^{n \times p}$

The *j*th column of a matrix is written as \mathbf{a}_j and the (i, j)th element of a matrix is written as a_{ij} .

By convention, vectors are column vectors unless specified otherwise.

5

Vector and Matrix Tranpose

We will denote the **transpose** of a vector or matrix using the symbol (' or $_{\rm T}$).

The transpose of a vector turns a column vector into a row vector

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}_{n \times 1} \qquad \mathbf{a}^{\mathrm{T}} = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix}_{1 \times n}$$

The transpose of a matrix turns the columns into rows

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}_{n \times p} \qquad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{pmatrix}_{p \times n}$$

Vector and Matrix Transpose: Examples

What is the transpose of
$$\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 5 \\ 7 \end{pmatrix}$$
?

What is the transpose of
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}$$
?

7

Vector and Matrix Transpose: Examples

What is the transpose of
$$\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 5 \\ 7 \end{pmatrix}$$
?

What is the transpose of
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}$$
?

Answers:

$$\mathbf{a}^{\mathrm{T}} = \begin{pmatrix} 1 & 3 & 5 & 7 \end{pmatrix}, \qquad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{pmatrix}$$

7

Matrix Transpose: Useful Properties

Here are some useful properties of matrix transpose:

- $\blacktriangleright (\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}} (\mathbf{A} + \mathbf{B} \text{ is matrix addition})$
- $\bullet \ (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} \ (\mathbf{A}\mathbf{B} \ \text{is matrix multiplication})$
- $lackbox{(}\mathbf{A}^{-1})^{\mathrm{T}}=(\mathbf{A}^{\mathrm{T}})^{-1}(\mathbf{A}^{-1} \text{ is matrix inverse})$
- $ightharpoonup (c\mathbf{A})^{\mathrm{T}} = c\mathbf{A}^{\mathrm{T}}$ ($c\mathbf{A}$ is scalar multiplication)

Diagonal and Identity Matrices:

A diagonal matrix is a square matrix that has zeros in the off-diagonals:

$$\begin{pmatrix}
a_1 & 0 & \cdots & 0 \\
0 & a_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & a_n
\end{pmatrix}_{n \times n}$$

In this course, we also write $diag(a_1, \ldots, a_n)$ to denote a diagonal matrix

The identity matrix is a special type of diagonal matrix with ones on the diagonal, $\mathbf{I}_n = \operatorname{diag}(1, \dots, 1)$

9

Symmetric Matrix:

A **symmetric matrix** is square and symmetric along the diagonals elements

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pp} \end{pmatrix}$$

with $a_{ij} = a_{ji}$ for all $i \neq j$.

The transpose of a symmetric matrix is by definition itself, i.e., $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$.

Examples: are these matrices symmetric?

$$\begin{pmatrix} 1 & 5 & 8 \\ 5 & 3 & 6 \\ 8 & 6 & 2 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 5 & 8 \\ 5 & 3 & 6 \\ 3 & 6 & 2 \end{pmatrix}$$

Matrix Trace:

The trace of a square matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}_{n \times n}$$

is $tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$, i.e., the sum of the diagonal elements.

Example:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 3 & 5 \\ 2 & 6 & 1 \end{pmatrix} \qquad \text{tr}(\mathbf{A}) = 1 + 3 + 1 = 5.$$

Matrix Trace: Useful Properties

Here are some useful properties of matrix trace:

- ightharpoonup $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}^{\mathrm{T}})$
- $\qquad \operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
- $\blacktriangleright \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$
- $\blacktriangleright \operatorname{tr}(c\mathbf{A}) = c \cdot \operatorname{tr}(\mathbf{A})$
- ▶ If **A** is symmetric, $tr(\mathbf{A}) = \sum_{j=1}^{n} \lambda_j$, where λ_j is the jth eigenvalue of **A**.

Matrix Calculations

Matrix Equality

For two $n \times p$ matrices \mathbf{A} and \mathbf{B} , we say that \mathbf{A} is equal to \mathbf{B} $(\mathbf{A} = \mathbf{B})$ if and only if $a_{ij} = b_{ij}$ for all i, j.

Example:

if
$$\mathbf{A} = \begin{pmatrix} 2 & 8 & 9 \\ 3 & 2 & 3 \\ 3 & 8 & 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 8 & 9 \\ 3 & 2 & 3 \\ 3 & 8 & 4 \end{pmatrix}$, then $\mathbf{A} = \mathbf{B}$
if $\mathbf{A} = \begin{pmatrix} 2 & 8 & 9 \\ 3 & 2 & 3 \\ 3 & 8 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & 8 & 9 \\ 9 & 2 & 3 \\ 1 & 8 & 4 \end{pmatrix}$, then $\mathbf{A} \neq \mathbf{B}$

14

Matrix Addition

Given two matrices $\mathbf{A} = \{a_{ij}\}_{n \times p}$ and $\mathbf{B} = \{b_{ij}\}_{n \times p}$ of the same dimensions, the addition $\mathbf{A} + \mathbf{B}$ produces $\mathbf{C} = \{c_{ij}\}_{n \times p}$ such that $c_{ij} = a_{ij} + b_{ij}$.

Example:

Given
$$\mathbf{A} = \begin{pmatrix} 2 & 8 & 9 \\ 3 & 2 & 3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 3 & 5 \\ 4 & 7 & 1 \end{pmatrix}$, we have
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2+1 & 8+3 & 9+5 \\ 3+4 & 2+7 & 3+1 \end{pmatrix} = \begin{pmatrix} 3 & 11 & 14 \\ 7 & 9 & 4 \end{pmatrix}$$

15

Matrix Subtration

Given two matrices $\mathbf{A} = \{a_{ij}\}_{n \times p}$ and $\mathbf{B} = \{b_{ij}\}_{n \times p}$ of the same dimensions, the subtraction $\mathbf{A} - \mathbf{B}$ produces $\mathbf{C} = \{c_{ij}\}_{n \times p}$ such that $c_{ij} = a_{ij} - b_{ij}$.

Example:

Given
$$\mathbf{A} = \begin{pmatrix} 2 & 8 & 9 \\ 3 & 2 & 3 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 3 & 5 \\ 4 & 7 & 1 \end{pmatrix}$, we have
$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 2 - 1 & 8 - 3 & 9 - 5 \\ 3 - 4 & 2 - 7 & 3 - 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 4 \\ -1 & -5 & 2 \end{pmatrix}$$

Inner Product between Two Vectors

The inner product of two n-dimensional vectors $\mathbf{x} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$ is

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} = (x_1 \ x_2 \ \cdots \ x_n) \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \sum_{i=1}^n x_i y_i$$

Example:

Given
$$\mathbf{x} = (1 \ 3 \ -4)^{\mathrm{T}}$$
 and $\mathbf{y} = (3 \ -2 \ 1)^{\mathrm{T}}$, we have
$$\mathbf{x}^{T}\mathbf{y} = 1 \cdot 3 + 3 \cdot (-2) + (-4) \cdot 1$$
$$= 3 - 6 - 4 = -7$$

Note: x, y must have the same length.

Outer Product between Two Vectors

The outer product of two vectors $\mathbf{x}=(x_1,\ldots,x_n)^{\mathrm{T}}$ and $\mathbf{y}=(y_m,\ldots,y_m)^{\mathrm{T}}$ is

$$\mathbf{x}\mathbf{y}^{\mathrm{T}} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \cdot (y_{1} \ y_{2} \ \cdots \ y_{m}) = \begin{pmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{m} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & \cdots & x_{n}y_{m} \end{pmatrix}_{n \times n}$$

Example:

Given
$$\mathbf{x} = (1 \ 3)^{\mathrm{T}}$$
 and $\mathbf{y} = (3 \ -2 \ 1)^{\mathrm{T}}$, we have

$$\mathbf{x}\mathbf{y}^{\mathrm{T}} = \begin{pmatrix} 1 \cdot 3 & 1 \cdot (-2) & 1 \cdot 1 \\ 3 \cdot 3 & 3 \cdot (-2) & 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ 9 & -6 & 3 \end{pmatrix}$$

Note: x, **y** can have different lengths.

Matrix-Scalar Product

The matrix-scalar product of $\mathbf{A}=\{a_{ij}\}_{n\times p}$ and $b\in\mathbb{R}$ is the matrix $\mathbf{C}=\{c_{ij}\}_{n\times p}$ such that $c_{ij}=ba_{ij}$

$$b \cdot \mathbf{A} = \mathbf{A} \cdot b = \begin{pmatrix} ba_{11} & ba_{12} & \cdots & ba_{1p} \\ ba_{21} & ba_{22} & \cdots & ba_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ ba_{n1} & ba_{n2} & \cdots & ba_{np} \end{pmatrix}_{n \times p}$$

Example:

Given
$$\mathbf{A} = \begin{pmatrix} 1 & -3 \\ 4 & 2 \end{pmatrix}$$
 and $b = 3$, we have

$$b \cdot \mathbf{A} = \begin{pmatrix} 3 \cdot 1 & 3 \cdot (-3) \\ 3 \cdot 4 & 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} 3 & -9 \\ 12 & 6 \end{pmatrix}$$

Matrix-Vector Product

The matrix-vector product of $\mathbf{A}=\{a_{ij}\}_{n\times p}$ and $\mathbf{x}=(x_1,\ldots,x_p)^{\mathrm{T}}$ is

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}_{n \times p} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}_{p \times 1} = \begin{pmatrix} \sum_{j=1}^{p} a_{1j}x_j \\ \sum_{j=1}^{p} a_{2j}x_j \\ \vdots \\ \sum_{j=1}^{p} a_{nj}x_j \end{pmatrix}_{n \times 1}$$

Example:

Given
$$\mathbf{A} = \begin{pmatrix} 1 & -3 \\ 4 & 2 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, we have
$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 \cdot 3 + (-3) \cdot 1 \\ 4 \cdot 3 + 2 \cdot 1 \\ 0 \cdot 3 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 14 \\ 1 \end{pmatrix}$$

Note: The length of x must match the number of columns of A

Matrix-Matrix Product

The matrix-matrix product of $\mathbf{A} = \{a_{ij}\}_{n \times p}$ and $\mathbf{B} = \{b_{ij}\}_{p \times m}$ is

$$\mathbf{AB} = \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix}_{\substack{n \times p}} \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{p1} & \cdots & b_{pm} \end{pmatrix}_{\substack{p \times m}}$$

$$= \begin{pmatrix} \sum_{j=1}^{p} a_{1j}b_{j1} & \sum_{j=1}^{p} a_{1j}b_{j2} & \cdots & \sum_{j=1}^{p} a_{1j}b_{jm} \\ \sum_{j=1}^{p} a_{2j}b_{j1} & \sum_{j=1}^{p} a_{2j}b_{j2} & \cdots & \sum_{j=1}^{p} a_{2j}b_{jm} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{j=1}^{p} a_{nj}b_{j1} & \sum_{j=1}^{p} a_{nj}b_{j2} & \cdots & \sum_{j=1}^{p} a_{nj}b_{jm} \end{pmatrix}_{\substack{n \times m}}$$

Note: The number of rows of $\mathbf B$ (i.e., p) must match the number of columns of $\mathbf A$ (i.e., p)

Matrix-Matrix Product Example

Given
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 4 \\ 4 & 7 & 5 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 6 \end{pmatrix}$, we have
$$\mathbf{AB} = \begin{pmatrix} 1 & 3 & 4 \\ 4 & 7 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 3 \cdot 3 + 4 \cdot 1 & 1 \cdot 2 + 3 \cdot 4 + 4 \cdot 6 \\ 4 \cdot 1 + 7 \cdot 3 + 5 \cdot 1 & 4 \cdot 2 + 7 \cdot 4 + 5 \cdot 6 \end{pmatrix}$$

$$= \begin{pmatrix} 14 & 38 \\ 30 & 66 \end{pmatrix}$$

Typical Mistakes in Matrix-Matrix Product

In general, for A and B that have the same dimensions:

- ightharpoonup $AB \neq BA$
- ightharpoonup AB = CB generally **DOES NOT** imply that A = C

Properties of Matrices

Matrix Inverse

A square (not necessarily symmetric) matrix $\mathbf{A}=\{a_{ij}\}_{n\times n}$ is invertible (or non-singular) if there exists a matrix \mathbf{A}^{-1} such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_{n \times n}$$

A matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$ is invertible if and only if it has full rank, i.e., $\operatorname{rank}(\mathbf{A}) = n$

If A and B are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$ (why?)

Matrix Inverse for 2×2 Case

Claim: For a
$$2 \times 2$$
 matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the matrix inverse is

$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Proof: Show $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_{2\times 2}$.

Matrix Inverse: Example

Given
$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
, the inverse is $\begin{pmatrix} -1/5 & 3/5 \\ 2/5 & -1/5 \end{pmatrix}$:

$$\mathbf{A}\mathbf{A}^{-1} = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1/5 & 3/5 \\ 2/5 & -1/5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{-1}\mathbf{A} = \begin{pmatrix} -1/5 & 3/5 \\ 2/5 & -1/5 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Example: Multiple Linear Regression²

$$Y = \mathbf{X}\beta + \epsilon$$

$$\hat{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}Y$$

²Not required before learning multiple linear regression

Projection Matrix³

Definition: A square matrix P is a projection matrix if and only if $P^2 = P$ (idempotent).

- $\blacktriangleright \ (\mathbf{I} \mathbf{P})(\mathbf{I} \mathbf{P}) = (\mathbf{I} \mathbf{P}) \text{ and } \mathbf{PP} = \mathbf{P}.$
- $\blacktriangleright \mathbf{P}(\mathbf{I} \mathbf{P}) = \mathbf{0}.$

Example:

In $\hat{Y} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}Y$, $\mathbf{P} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}$ is a projection matrix ($\hat{Y} = \mathbf{P}Y$).

- ightharpoonup Is the projection matrix onto $\mathcal{R}(\mathbf{X})$ (column space of \mathbf{X}).
- ▶ I P is the projection matrix onto $\mathcal{R}(X)^{\perp}$.
- ightharpoonup PX = X
- $\blacktriangleright \ (\mathbf{I} \mathbf{P})\mathbf{X} = \mathbf{0}$

³Not required before learning multiple linear regression

Rank of a Matrix

Linear independence: vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ are linearly independent if $\sum_{i=1}^n c_i \mathbf{a}_i \neq 0$ unless $c_i = 0$ for all i.

The rank of a matrix $\mathbf{A} = \{a_{ij}\}_{n \times p}$ is a number of linearly independent rows/columns

- column rank: of A is the number of linearly independent columns
- ► row rank: of A is the number of linearly independent rows

We say that $\mathbf{A} = \{a_{ij}\}_{n \times p}$ is full rank if $\operatorname{rank}(\mathbf{A}) = \min(n, p)$.

- ▶ If n < p, full rank implies full row rank, i.e., $rank(\mathbf{A}) = n$
- ▶ If n > p, full rank implies full column rank, i.e., $rank(\mathbf{A}) = p$

Examples:

What is the rank of

▶ the matrix
$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$
?

► the matrix
$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
?

Length and Orthogonality

Length of a vector: the length of a vector $\mathbf x$ is measured by its ℓ_2 norm, i.e., $\|\mathbf x\| = \sqrt{\mathbf x^{\mathrm T} \mathbf x}$

Orthogonal vectors: two n-dimensional vectors \mathbf{x} and \mathbf{y} are orthogonal if $\mathbf{x}^T\mathbf{y} = 0$.

Orthogonal matrix: a matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$ is orthogonal if its columns are orthogonal with unit norm. If \mathbf{A} is orthogonal, then $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I}_{n \times n}$.

If A is square and orthogonal, then $A^{T} = A^{-1}$.

Matrix Determinant

The determinant of a square matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$ is a real-valued function from $\mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted as $|\mathbf{A}|$ or $\det(\mathbf{A})$.

The determinant can be calculated using a recursive formula.

For a
$$2 \times 2$$
 matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $|\mathbf{A}| = ad - bc$.

For a
$$3\times 3$$
 matrix $\mathbf{A}=\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$, show that

$$|\mathbf{A}| = aei + bfg + cdh - ceg - bdi - afh$$

Properties of Matrix Determinants

Here are some useful properties of matrix determinants:

- $\blacktriangleright |\mathbf{A}| = |\mathbf{A}^{\mathrm{T}}|$
- $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$
- ightharpoonup |AB| = |A||B| (if A and B are both square matrices)
- $ightharpoonup |b\mathbf{A}| = b^n |\mathbf{A}| \text{ (if } b \in \mathbb{R} \text{ and } \mathbf{A} = \{a_{ij}\}_{n \times n})$
- ▶ If **A** is symmetric, $|\mathbf{A}| = \prod_{j=1}^n \lambda_j$, where λ_j is the jth eigenvalue of **A**

Eigenvalue and Eigenvector

Definition: Let $\mathbf{A} = \{a_{ij}\}_{n \times n}$. If $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ where $\mathbf{x} \neq \mathbf{0}$, then λ is an **eigenvalue** of \mathbf{A} and \mathbf{x} is an **eigenvector** of \mathbf{A}

We can find the **eigenvalue** and **eigenvector** of a matrix by solving the following eigenvalue problem:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

For a symmetric matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$ with eigenvalues $\lambda_1, \dots, \lambda_n$:

- ightharpoonup rank(A) is the number of non-zero eigenvalues.
- $\blacktriangleright \operatorname{trace}(\mathbf{A}) = \sum_{j=1}^{n} \lambda_j.$
- $\blacktriangleright |\mathbf{A}| = \prod_{j=1}^n \lambda_j$

Eigenvalue and Eigenvector: Example

Find the eigenvalues and eigenvectors of $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

Step 1: Take determinant of $\mathbf{A} - \lambda \mathbf{I}$

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1)$$

Step 2: Solve the eigenvalue problem $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ for both eigenvalues.

$$\mathbf{x}_{\lambda=1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \mathbf{x}_{\lambda=3} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Matrix Definiteness

A symmetric matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$ is **positive definite** if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero \mathbf{x}

An equivalent definition: A symmetric matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$ is positive definite if all eigenvalues of \mathbf{A} are positive

Properties of positive definite matrix:

- ► All diagonals elements of **A** are positive
- ightharpoonup A is invertible, and A^{-1} is also positive definite
- ▶ $trace(\mathbf{A}) > 0$
- ► $|{\bf A}| > 0$
- ▶ If **A** is $n \times p$ of rank p, then $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is positive definite

Throughout the course, we write $\mathbf{A}\succ 0$ to indicate positive definiteness

Matrix Definiteness: Example

Verify that the matrix
$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 is positive definite

Proof: show that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

Matrix Definiteness: Example 2

All diagonal elements of a positive definite matrix are positive

Proof: Use the property $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

Matrix Decompositions

Eigenvalue (Spectral) Decomposition

Spectral Theorem: For any symmetric matrix $\mathbf{A} = \{a_{ij}\}_{n \times n}$, there exists an orthogonal matrix \mathbf{T} such that

$$\mathbf{T}^{\mathrm{T}}\mathbf{A}\mathbf{T} = \mathbf{\Lambda}$$

where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix with $\lambda_j \in \mathbb{R}$.

Some Properties of Spectral Decomposition:

- ▶ By convention, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$
- $ightharpoonup \lambda_1, \ldots, \lambda_n$ are the eigenvalues of ${f A}$ and the columns of ${f T}$ $({f t}_1, \ldots, {f t}_n)$ are the corresponding eigenvectors
- lacktriangle Note that $\mathbf{T}^{\scriptscriptstyle \mathrm{T}}\mathbf{T}=\mathbf{T}\mathbf{T}^{\scriptscriptstyle \mathrm{T}}=\mathbf{I}_{n\times n}$
- ► Related to **Principal Component Analysis**

Singular Value Decomposition

- ► Eigenvalue Decomposition works only for symmetric matrix
- ► Every matrix has a Singular Value Decomposition (SVD)
- ► Often, SVD is the best way to think about matrices

Singular Value Decomposition

The Singular Value Decomposition (SVD) decomposes any matrix $\mathbf{A} = \{a_{ij}\}_{n \times p}$ into a product of three matrices:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathrm{T}}$$

such that

- ▶ **U** is an orthogonal $n \times n$ matrix ($\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}_{n \times n}$)
- ▶ V is an orthogonal $p \times p$ matrix $(V^TV = I_{p \times p})$
- ▶ **D** is a diagonal matrix with $d_{ii} > 0$ for all $i \leq \min(n, p)$.
- Columns of U are left singular vectors and columns of V are right singular vectors
- ► The diagonal elements of D are the singular values

Note: The SVD is unique up to signs of columns of ${\bf U}$ and ${\bf V}.$

