MiCO AT v2.0 指令 -- 使用用例

本文将详细介绍:如何更新 AT 应用程序固件;如何实现工作模式切换;如何开启模块 WiFi 功能的不同工作模式;以及如何建立 Socket 连接并通信等功能。

这里提供一个 格西烽火 串口调试工程: MiCO_AT_v2.0_CMD.bsp, 用户可快速进行 AT 指令的开发与调试。 AT 指令 v2.0 使用用例,视频教程观看地址: http://t.elecfans.com/3770.html

日录

- AT 透传固件串口更新
- 工作模式切换
- WiFi 功能用例
 - 。 启动 AP 模式
 - 。 启动 Station 模式
- AT 透传固件 OTA 更新
- Socket 通信用例
 - 。 TCP 服务器端
 - 。 TCP 客户端
 - 。 UDP 广播(服务器端)
 - 。 UDP 单播(客户端)
- Easylink 配网
- Airkiss 配网
- 获取 SNTP 时间
- 获取 RTC 时间
- MQTT 协议通信用例
 - 。 和庆科Fog云实现mqtt通信
 - 。 和亚马逊aws云实现mqtt通信
- BT 蓝牙通信实例
- 与 FogCloud 直连通信
- 与 Alink 直连通信

AT透传固件串口更新

更新方法: 进入 Bootloader 模式,输入命令 1,通过用户串口进行下载。

1.硬件准备

首先,您需要拥有一个模块可以正常运行的硬件环境,可以是以下任意一种:

- MiCOKit-xxxx 开发板 支持EMW系列模块包括: EMW3165, 3166, 3239, 3031, 3080B, 3081, 3060。
- EMW-380-S2 开发板 支持 3088, 3162。
- 或您自己搭建的 EMWxxx 模块的 最小工作电路(至少包括:电源,串口两部分)。

2.软件准备

- 1.对应 WiFi 模块的 AT透传应用固件.bin文件,如: fog_v3_ATV2.0.0。
- 2.固件下载软件: SecureCRT。
- 3.AT指令串口调试软件:格西烽火。这里提供一个集成了新版 AT 指令的格西烽火bsp工程文件: MiCO AT 指令格西烽火 bsp 工程 ,可直接点击下载。

3.更新步骤

(1)连接串口

通过 Mini USB(for MiCOKit) 或 Micro USB(for EMB-380-S2) 串口线,将开发板的用户串口连接到PC,在PC的控制面板中-设备管理器找到 COM 端口号,打开secureCRT,创建连接,配置如下:

(2) 进入Bootloader模式

BOOT 脚拉低 0, STATUS 脚拉高1, RESET拉低, 重启模块, 串口输出log如下图:

```
MXCHTP MEMODES
MICO bootloader for EMW3080B, v3.4, HARDWARE_REVISION: 3080B
  command ----
0:BOOTUPDATE
                                                         function -
                                                         Update bootloader
Update MiCO
                            <-r>
  1:FWUPDATE <-r>
2:USERUPDATE
                                                         Update user APP
Update MICO partition
                         <-r>
   3:PARUPDATE
                            <-id n><-r><-e>
                         <-dev device>
   4:FLASHUPDATE
                                                         Update flash content
List flash memory map
Excure application
    <-e><-r><-start addr><-end addr>
   5:MEMORYMAP
  6:BOOT
   7:REBOOT
                                                         Reboot
       (C) COPYRIGHT 2015 MXCHIP Corporation By William Xu
 Notes
 NOTES:

-e Erase only -r Read from flash -dev flash device number

-start flash start address -end flash start address

Example: Input "4 -dev 0 -start 0x400 -end 0x800": Update

flash device 0 from 0x400 to 0x800
MXCHIP>
4
```

(3) 下载固件

输入: 1, Update application。返回如下图:

```
MXCHIP_MFMODE>
MICO bootloader for EMW3080B, v3.4, HARDWARE_REVISION: 3080B
   command
                                                              function --
                                                              Update bootloader
Update Mico
Update user APP
Update MICO partition
   0:BOOTUPDATE -1:FWUPDATE <-r>
                             <-r>
   2:USERUPDATE
                              <-r>
<-id n><-r><-e>
   3:PARUPDATE
   4:FLASHUPDATE
                              <-dev device>
                                                              Update flash content
List flash memory map
Excute application
   <-e><-r><-start addr><-end addr>
5:MEMORYMAP
   6:BOOT
7:REBOOT
                                                              Reboot
         (C) COPYRIGHT 2015 MXCHIP Corporation By William Xu
 NOTES:

-e Erase only -r Read from flash -dev flash device number

-start flash start address -end flash start address

Example: Input "4 -dev 0 -start 0x400 -end 0x800": Update

flash device 0 from 0x400 to 0x800
MXCHIP> 1
Updating application...
Waiting for the file to be sent ... (press 'a' to abort)
CCCCCCCCCCCCCC
```

特殊地,型号 3060 模块需要使用 boot 模式下的专用指令进行烧录,如下图:

```
MOC108 BOOTLOADER MENU
  Comamnd | Arguments
                               | Description
             <address> <size> | read flash
                               write flash
  write
             <address>
            <address> <size> | erase flash
  erase
                               | boot to APP, ATE or QC
  boot
            <mode>
  reboot
                               | reboot
  Author : Snow Yang
Version : 1.1.0
@ Author
                  3 2017 17:31:24
$ write 0x13200
waiting for the file to be sent ... (press 'a' to abort)
```

此时,选择菜单栏: Transfer—Send Ymodem, 选择要下载的固件, 如下图:

下载成功后,输出如下图。

```
MXCHIP MFMODE>
 MICO bootloader for EMW3080B, v3.4, HARDWARE_REVISION: 3080B
          command -----
0:BOOTUPDATE <
                                                                                                                                                                                   function --
                                                                                                                                                                                   Update bootloader
                                                                                      <-r>
           1:FWUPDATE
                                                                                                                                                                                   Update Mico
           2:USERUPDATE
                                                                                                                                                                                   Undate user APP
                                                                                                                                                                                   Update MICO partition
            3:PARUPDATE
                                                                                      <-id n><-r><-e>
          4:FLASHUPDATE
                :FLASHUPDATE <-dev device>
<-e><-r><-start addr><-end addr>
                                                                                                                                                                                   Update flash content
List flash memory map
Excurt application
           5:MEMORYMAP
           6:BOOT
          7:REBOOT
                                                                                                                                                                                   Reboot
                         (C) COPYRIGHT 2015 MXCHIP Corporation By William Xu |
     Property of the second 
 MXCHIP> 1
```

可进入QC模式,用户串口查看烧录固件版本结果:

QC 进入方法:

- 一个是 BOOT 拉低,STATUS 拉低,复位,波特率: 921600bps。(适用于 3162,3165,3166,3239,3031等)
- 一个是 用户串口输入 #, Reset 复位, 波特率: 921600bps。(适用于 EMW3080)

QC log如下:

```
#######==== MXCHIP Manufacture Test ====
Serial Number: 0000.FGV3.A200
App CRC: B150
PID: MICO_TEST_PID
Bootloader Version: EMW3080B v3.4 921600
Library Version: 3080B002.013
APP Version: MICO_BASIC_1_0
Driver: 3080B-3.6a
result 0, num 4
MAC: B0-F8-93-10-26-1B
SDS:

SCAN AP SUCCESS:
SSID: YOUXX-HUAWEI, RSSI: -39
SSID: TP_LINK_MESH_TEST, RSSI: -39
SSID: TP_LINK_MESH_TEST, RSSI: -42
SSID: Xiaomi.Router, RSSI: -45
SSID: Aiswatest, RSSI: -48
SSID: fog_Ss, RSSI: -50
SSID: MILB, RSSI: -50
SSID: MAA_BBB, RSSI: -52
SSID: AAA_BBB, RSSI: -54
SSID: DEE, RSSI: -60
SSID: PS4-7849DD60BA12, RSSI: -61
SSID: TP-LINK_96B2, RSSI: -64
SSID: AP042, RSSI: -65
SSID: William Xu, RSSI: -65
SSID: William Xu, RSSI: -71
SSID: WiFi-7P, RSSI: -71
SSID: WiFi-7P, RSSI: -71
SSID: WiFi-7P, RSSI: -71
SSID: mxchip-test_2.4G, RSSI: -80
```

MXCHIP_MFMODE> ###############

其中, Serial Number中的 FGV3.A200 表示支持 FogCloud 云服务直连的 AT 透传固件,版本 2.0.0。

此时可将BOOT脚拉高,STATUS 脚拉高,然后 Reset, 进入正常工作模式,即 AT指令模式 或 数据透传模式。

工作模式切换

AT指令模式切换至透传模式

AT 指令模式时,用户串口输入指令: AT+CIPSENDRAW\r, 返回: OK, 即可退出 AT 指令模式, 进入数据透传模式。

透传模式切换至 AT 指令模式

透传模式时,用户串口输入指令: +++, 返回: OK, 即可退出透传模式, 进入 AT 指令模式。

具体指令输入情况,如下图所示。

```
7 [2017-08-01 13:50:34.302 T]AT+CIPSENDRAW

8 [2017-08-01 13:50:34.442 R]

10 OK

11 [2017-08-01 13:50:35.587 T]+++

13 [2017-08-01 13:50:35.702 R]

14 OK
```

WiFi功能用例

启动AP模式

在 AT 指令模式下,通过 "用户串口" 输入以下指令,实现模块启动 Soft_AP 模式,步骤如下:

序号	步骤	发送指令(或操作)	返回(或现象)
1	进入 AT 指令模式	+++	OK .
2	设置模块 Soft_AP 名称并启动	AT+WSAP=jenny,12345678\r	ок
3	查询 Soft_AP 是否成功建立	AT+WSAPS\r	+WSAPS:ESTABLISHED\r\nOK
4	查询 模块 IP 地址	AT+WSAPIP?\r	WSAPIP:10.10.10.100,255.255.255.0,10.10.10.1

AP 模式设置串口工具log输出如下图所示:

```
1 [2017-08-01 15:21:14.138 T]+++
2 [2017-08-01 15:21:14.258 R]
3 OK
4
5 [2017-08-01 15:21:18.438 T]AT+WSAP=jenny,12345678
6
7 [2017-08-01 15:21:19.047 R]
8 OK
9
10 [2017-08-01 15:21:22.573 T]AT+WSAPS
11
12 [2017-08-01 15:21:22.607 R]
13 +WSAPS:ESTABLISHED
14 OK
15
16 [2017-08-01 15:21:26.819 T]AT+WSAPIP?
17
18 [2017-08-01 15:21:26.853 R]
19 +WSAPIP:10.10.10.100,255.255.255.0,10.10.10.1
```

启动STATION模式

在 AT 指令模式下,通过 "用户串口" 输入以下指令,实现模块启动 STATION 模式,步骤如下:

序号	步骤	发送指令(或操作)	返回(或现象)
1	设置模块接入的 AP 名称和密码	AT+WJAP=SWYANG,yangbatian2015\r	ОК
2	查询是否成功连接该 AP	AT+WJAPS\r	HWJAPS:CONNECTED\r\nOK
3	查看模块的 IP 地址	AT+WJAPIP?\r	[HWJAPIP:192.168.31.67,255.255.255.0,192.168.31.1]

Station模式设置串口log输出如下图所示:

```
1 [2017-08-02 14:35:33.898 T]+++
2 [2017-08-02 14:35:34.019 R]
3 OK
5 [2017-08-02 14:35:37.566 T]AT+WJAP=SWYANG,yangbatian2015
6 7 [2017-08-02 14:35:37.721 R]
8 OK
9 [2017-08-02 14:35:43.611 T]AT+WJAPS
1 [2017-08-02 14:35:43.612 R]
4 HJAPS:CONNECTED
4 OK
6 [2017-08-02 14:35:49.474 T]AT+WJAPIP?
7 [2017-08-02 14:35:49.504 R]
9 +HJAPIP:192.168.31.67,255.255.255.0,192.168.31.1,192.168.31.1
```

AT透传固件OTA更新

进入 AT 指令模式,设备需首先连接至 AP, 保证可联网通信,然后通过发送 OTA 查询和更新的 AT 指令进行在线固件更新。具体步骤及指令如下:

序号	步骤	发送指令(或操作)	返回(或现象)
1	进入 AT 指令模式	+++	OΚ
2	启动模块	AT+REBOOT\r	OΚ
3	设置模块STATION模式,及 接入的AP信息	AT+WJAP=Xiaomi.Router,stm32f215\r	OK, +WEVENT:STATION_UP
4	查询云端可更新的 AT 固件 版本	AT+OTACHECK\r	+OTACHECK:fog_v3_AT_v2.0.3, OK
5	开始更新指定版本号的 AT 固件	AT+OTASTART=fog_v3_AT_v2.0.3	OK,继而出现通知信息: +OTAEVENT:START, +OTAEVENT:SUCCESS,然后重启,出现: +WEVENT:STATION_UP。

具体步骤参考下图内容:

```
1 [2017-11-27 17:45:54.922 T]AT+REBOOT
2
3 [2017-11-27 17:45:54.946 R]
4 OK
5
6 [2017-11-27 17:46:00.082 T]AT+WJAP=Xiaomi.Router,stm32f215
7
8 [2017-11-27 17:46:00.838 R]
9 OK
10
11 [2017-11-27 17:46:05.272 R]
12+WEVENT:STATION_UP
13
14 [2017-11-27 17:46:06.959 T]AT+OTACHECK
15
16 [2017-11-27 17:46:07.417 R]
17 +OTACHECK:fog_v3_AT_v2.0.3
18 OK
19
20 [2017-11-27 17:46:11.662 T]AT+OTASTART=fog_v3_AT_v2.0.3
21
22 [2017-11-27 17:46:11.692 R]
23 OK
24
25 [2017-11-27 17:46:18.818 R]
26 +OTAEVENT:START
27
28 [2017-11-27 17:46:42.739 R]
29 +OTAEVENT:SUCCESS
30
31 [2017-11-27 17:47:01.731 R]
32 +WEVENT:STATION_UP
33
34
```

Socket通信用例

TCP服务器端

1.AP模式下,模块做TCP服务器

模块在 Soft_AP 模式下,做为 TCP 服务器,与 PC 端的 TCP 客户端之间建立一个 TCP 连接并通信。 步骤如下:

序号	步骤	发送指令 (或操作)	返回(或现象)	
1	设置并开启Soft_AP 模式	AT+WSAP=jenny,12345678\r	ОК	
2	查询模块 IP 地址	AT+WSAPIP?\r	+WSAPIP=10.10.10.1,255.255.255.0,10.10.10.1	
3	PC 连接到模块启动的 AP	PC端 Wlan 列表找到AP: jenny,并连接	成功连接	
4	设置模块做 TCP Server	AT+CIPSTART=0,tcp_server,8080\r	ОК	
5	PC 起 TCP 客户端 并连接	目标IP: 10.10.10.1,目标端口: 8080,不指定本地端口	连接成 功.+CIPEVENT=CLIENT,CONNECTED,10.10.10.2,54849	
6	AT指令模式下,模 块通过串口向TCP客 户端发数据	AT+CIPSEND=0,54849,5,在 1 分钟内,输入字符串: 12345	TCP客户端接收区收到: 12345	
7	AT指令模式 下,TCP客户端向模 块串口发数据	1. TCP工具发送区发送: 1234567890	发送成功	
		2. 若模块端为非自动接收至串口,即:AT+CIPRECV=0,54849\r 进行数据接收	+CIPRECV:10, 1234567890\r\nOK	
		3. 若模块端为自动接收至串口,即: AT+CIPRECVCFG设置为1,则不需输入指令进行数据接收.	模块串口接收到: 1234567890	
8	透传模式下,模块通 过串口向 TCP 客户 端发数据	1. 模块串口输入指令: AT+CIPSENDRAW\r;	OK	

		2. 串口输入: abcdefghijklmn	PC端TCP客户端接收到: abcdefghijklmn
9	透传模式下,TCP 客户端发送数据至模 块串口	TCP客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

PC端利用TCP/UDP测试软件创建TCP客户端,如下图:

TCP/UDP测试软件工作区如下:

串口调试软件的数据接收工作区信息如下:

```
1 [2017-08-02 16:33:51.904 T]+++
 2 [2017-08-02 16:33:52.024 R]
 3 OK
 5 [2017-08-02 16:33:58.236 T]AT+WSAP=jenny,12345678
 7 [2017-08-02 16:33:58.779 R]
 8 +WEVENT:AP DOWN
10 [2017-08-02 16:33:58.844 R]
11 OK
13 [2017-08-02 16:33:58.953 R]
14 +WEVENT: AP UP
16 [2017-08-02 16:34:01.019 T]AT+WSAPIP?
18 [2017-08-02 16:34:01.051 R]
19 +WSAPIP:10.10.10.1,255.255.255.0,10.10.10.1
21
22 [2017-08-02 16:34:31.089 T]AT+CIPSTART=0,tcp_server,8080,
23
24 [2017-08-02 16:34:31.234 R]
25 OK
26
27 [2017-08-02 16:34:44.932 R]
28 +CIPEVENT:CLIENT,CONNECTED,10.10.10.2,54849
30 [2017-08-02 16:34:57.922 T]AT+CIPSTATUS=0
32 [2017-08-02 16:34:57.954 R]
33 +CIPSTATUS:tcp_server,1
34 10.10.10.2,54849,8080
36 OK
38 [2017-08-02 16:35:38.182 T]AT+CIPSEND=0,54849,5
40 [2017-08-02 16:35:38.212 R]
41 >
42 |
43 [2017-08-02 16:35:40.419 T]12345
44 [2017-08-02 16:35:40.460 R]
45 OK
46
47 [2017-08-02 16:36:26.059 T]AT+CIPRECV=0,54849
48
49 [2017-08-02 16:36:26.089 R]
50 +CIPRECV:10,1234567890
51 OK
52
53 [2017-08-02 16:36:31.289 T]AT+CIPRECVCFG=1
55 [2017-08-02 16:36:31.432 R]
56 OK
58 [2017-08-02 16:36:36.577 R]1234567890
59 [2017-08-02 16:37:34.156 T]AT+CIPSENDRAW
 51 [2017-08-02 16:37:34.299 R]
 52 OK
 53
 54 [2017-08-02 16:37:40.269 T]abcdefghijklmn
 55 [2017-08-02 16:37:49.164 R]1234567890
```

2.STATION模式下,模块做TCP服务器

模块在 STATION 模式下,做 TCP 服务器,建立一个 TCP 连接,并通信。具体步骤如下:

序号	步骤	发送指令(或操作)	返回 (或现象)
1	设置并开启 STATION模式	AT+WJAP=William Xu,mx099555\r	ОК
2	查询模块的IP地址	n/fqIqALW+TA	+WSAPIP=10.0.1.45,255.255.255.0,10.10.10.1
3	模块设置TCP SERVER参数	AT+CIPSTART=0,tcp_server,8080\r	ОК
4	PC端 起tcp 客户端	PC WLAN 连接到 Willam Xu,TCP/UDP调试工具起一个TCP client,目标IP: 10.0.1.45, 端口号: 8080,并连接	连接成 功.+CIPEVENT=CLIENT,CONNECTED,10.0.1.41,53594
	AT指今模式下. 模		

5	块通过串口向TCP 客户端发数据	AT+CIPSEND=0,53594,5,3 秒内,输入字符 串: 12345	TCP客户端接收区收到: 12345
6	AT指令模式 下,TCP客户端向 模块串口发数据	1. TCP工具发送区发送: 1234567890	发送成功
		2. 若模块端为非自动接收至串口,即:AT+CIPRECV=0,53594\r	+CIPRECV:10,1234567890\r\nOK
		3. 若模块端为自动接收至串口,即: AT+CIPRECVCFG设置为1,则不需输入指令.	模块串口接收到: 1234567890
7	透传模式下,模块通 过串口向 TCP 客户 端发数据	1. 模块串口输入指令: AT+CIPSENDRAW\r;	OK
		2. 串口输入: abcdefghijklmn	PC端TCP客户端接收到: abcdefghijklmn
8	透传模式下,TCP 客户端发送数据至 模块串口	TCP客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

PC端利用TCP/UDP测试软件创建TCP客户端,如下图:

TCP/UDP测试软件工作区:

右侧为串口调试软件的数据接收工作区。

```
1 [2017-08-03 10:45:02.361 T]+++
 2 [2017-08-03 10:45:02.479 R]
 5 [2017-08-03 10:45:09.807 T]AT+WJAP=William Xu,mx099555
 7 [2017-08-03 10:45:09.962 R]
 8 +WEVENT:STATION DOWN
10 OK
12 [2017-08-03 10:45:14.741 R]
13 +WEVENT:STATION UP
14
15 [2017-08-03 10:45:15.546 T]AT+WJAPS
17 [2017-08-03 10:45:15.576 R]
18 +WJAPS:STATION UP
19 OK
20
21 [2017-08-03 10:45:18.010 T]AT+WJAPIP?
23 [2017-08-03 10:45:18.040 R]
24 +WJAPIP:10.0.1.45,255.255.255.0,10.0.1.1,10.0.1.1
25 OK
27 [2017-08-03 10:45:38.460 T]AT+CIPSTART=0,tcp_server,8080,
28
29 [2017-08-03 10:45:38.613 R]
30 OK
32 [2017-08-03 10:45:41.033 R]
33 +CIPEVENT:CLIENT,CONNECTED,10.0.1.41,53594
35 [2017-08-03 10:46:05.107 T]AT+CIPRECV=0,53594
37 [2017-08-03 10:46:05.137 R]
38 +CIPRECV:10,1234567890
39 OK
41 [2017-08-03 10:46:08.593 T]AT+CIPRECVCFG=1
42
43 [2017-08-03 10:46:08.739 R]
44 OK
46 [2017-08-03 10:46:10.855 R]1234567890
47 [2017-08-03 10:46:21.617 T]AT+CIPSEND=0,53594,5
49 [2017-08-03 10:46:21.642 R]
50 >
52 [2017-08-03 10:46:23.247 T]12345
53 [2017-08-03 10:46:23.267 R]
54 OK
56 [2017-08-03 10:46:29.002 T]AT+CIPSENDRAW
58 [2017-08-03 10:46:29.139 R]
59 OK
61 [2017-08-03 10:46:31.593 T]abcdefghijklmn
62 [2017-08-03 10:46:33.954 R]1234567890
```

TCP客户端

当需要模块做 TCP 客户端,并创建 TCP 链接,进行 TCP 通信时,可参考如下步骤:

1.AP模式下,模块做TCP客户端

AP 模式下,模块做 TCP 客户端,建立一个TCP连接,并通信。步骤如下:

序号	步骤	发送指令 (或操作)	返回 (或现象)
1	设置并开启Soft_AP模式	AT+WSAP=jenny,12345678\r	OK
2	PC连接到 AP,并获取IP地址	PC端 Wlan 连接至jenny; PC端打开cmd.exe,输入指令: ipconfig。	成功连接jenny,PC的IP 地址: 10.10.10.2
3	设置模块做 tcp client 的参数	AT+CIPSTART=1,tcp_client,10.10.10.2,20001\r	OK
4	PC起 TCP 服务器并自动连接	设置本机port端口号: 20001	与模块的 tcp client 自动连接成功.+CIPEVENT:1,SERVER,CONNECTED
5	AT指令模式下,模块通过串 口向TCP客户端发数据	AT+CIPSEND=1,5,3秒内,输入字符串: 12345	TCP客户端接收区收到: 12345

6	AT指令模式下,TCP客户端 向模块串口发数据	1. TCP工具发送区发送: 1234567890	发送成功
		2. 若模块端为非自动接收至串口,即: AT+CIPRECVCFG设置为0,则输入指令: AT+CIPRECV=1\r	+CIPRECV:10,1234567890\r\n0K
		3. 若模块端为自动接收至串口,即: AT+CIPRECVCFG设置为1,则不需输入指令.	模块串口接收到: 1234567890
7	透传模式下,模块通过串口向 TCP 客户端发数据	1. 模块串口输入指令: AT+CIPSENDRAW\r;	ОК
		2. 串口输入: abcdefghijklmn	PC端TCP客户端接收 到: abcdefghijklmn
8	透传模式下,TCP客户端发送 数据至模块串口	TCP客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

PC端利用TCP/UDP测试软件创建一个TCP服务器,与模块TCP客户端进行通信,具体情况请参考下图。

TCP/UDP测试软件工作区如下图:

串口调试软件的数据收发工作区如下图:

```
1 [2017-08-03 16:41:02.996 T]AT+WSAP=jenny,12345678
 3 [2017-08-03 16:41:03.286 R]
4 OK
  6 [2017-08-03 16:41:03.394 R]
  7 +WEVENT:AP UP
 9 [2017-08-03 16:41:08.085 T]AT+WSAPIP?
11 [2017-08-03 16:41:08.121 R]
12 +WSAPIP:10.10.10.1,255.255.255.0,10.10.10.1
13 OK
14
15 [2017-08-03 16:42:15.984 T]AT+CIPSTART=1,tcp_client,10.10.10.2,20001
17 [2017-08-03 16:42:16.147 R]
18 OK
19
20 +CIPEVENT:1,SERVER,CONNECTED
21
22 [2017-08-03 16:43:05.101 T]AT+CIPRECV=1
23
24 [2017-08-03 16:43:05.131 R]
25 +CIPRECV:10,1234567890
26 OK
27
28 [2017-08-03 16:43:10.038 T]AT+CIPRECVCFG=1
29
30 [2017-08-03 16:43:10.175 R]
32
33 [2017-08-03 16:43:14.441 R]12345678901234567890
34 [2017-08-03 16:43:24.190 T]AT+CIPSEND=1,5
36 [2017-08-03 16:43:24.220 R]
37 >
38
39 [2017-08-03 16:43:26.706 T]12345
40 [2017-08-03 16:43:26.727 R]
40 [2017-08-03 16:43:26.727 R]
41 OK
42
43 [2017-08-03 16:43:32.403 T]AT+CIPSENDRAW
44
45 [2017-08-03 16:43:32.548 R]
46 OK
47
48 [2017-08-03 16:43:38.318 T]abcdefghijklmn
49 [2017-08-03 16:43:40.583 R]1234567890
```

2.STATION模式下的TCP客户端

在 STATION 模式下,模块做 TCP 客户端,建立一个TCP连接,并通信。具体步骤如下:

注意:请确保当前id的连接为断开状态,再进行设置,否则,会报错。

序号	步骤	发送指令 (或操作)	返回(或现象)
1	设置并开启STATION模式,等 待连接成功	AT+WJAP=Willam Xu,mx099555\r	OK +WEVNET:STATION UP
2	PC连接到 Willam Xu,并获取 IP地址	PC端 Wlan 连接至Willam Xu; PC端打开cmd.exe,输入指令: ipconfig。	成功连接Willam Xu,PC的IP 地址: 10.0.1.45
3	设置模块做 tcp client 的参数	AT+CIPSTART=1,tcp_client,10.0.1.48,20001\r	ОК
4	PC起 TCP 服务器并自动连接	设置本机port端口号: 20001	与模块的 tcp client 自动连接成功。+CIPEVENT:1,SEVER,CONNECTED
5	AT指令模式下,模块通过串 口向TCP客户端发数据	AT+CIPSEND=1,5,3秒内,输入字符串: 12345	TCP客户端接收区收到: 12345
6	AT指令模式下,TCP客户端 向模块串口发数据	1. TCP工具发送区发送: 1234567890	发送成功
		2. 若模块端为非自动接收至串口,即:AT+CIPRECVCFG设置为0,则输入指令:AT+CIPRECV=1\r	+CIPRECV:10,1234567890\r\nOK
		3. 若模块端为自动接收至串口,即: AT+CIPRECVCFG设置为1,则不需输入指令.	模块串口接收到: 1234567890
	诱传模式下 模块诵讨串口向		

7	TCP 客户端发数据	1. 模块串口输入指令: AT+CIPSENDRAW\r;	OK	
		2. 串口输入: abcdefghijklmn	PC端TCP客户端接收到: abcdefghijklmn	
8	透传模式下,TCP客户端发送 数据至模块串口	TCP客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890	

利用TCP/UDP测试软件创建一个TCP服务器,与模块的TCP客户端进行通信,具体情况如下图。

PC端TCP/UDP测试软件数据收发工作区:

串口调试软件数据收发工作区:

```
1 [2017-08-04 09:55:21.921 T]AT+WJAP=William Xu,mx099555
  3 [2017-08-04 09:55:22.061 R]
 6 [2017-08-04 09:55:30.304 R]
7 +WEVENT:STATION UP
 9 [2017-08-04 09:55:33.479 T]AT+CIPSTART=1,tcp_client,10.0.1.48,20001
11 [2017-08-04 09:55:33.626 R]
12 OK
14 [2017-08-04 09:55:33.966 R]
15 +CIPEVENT:1,SERVER,CONNECTED
16
17 [2017-08-04 09:55:51.310 T]AT+CIPSEND=1,5
19 [2017-08-04 09:55:51.335 R]
20 >
21 |
22 [2017-08-04 09:55:52.613 T]12345
23 [2017-08-04 09:55:52.633 R]
24 OK
25
26 [2017-08-04 09:56:03.176 T]AT+CIPRECV=1
28 [2017-08-04 09:56:03.209 R]
29 +CIPRECV:10,1234567890
30 OK
32 [2017-08-04 09:56:06.947 T]AT+CIPRECVCFG=1
34 [2017-08-04 09:56:07.086 R]
35 OK
37 [2017-08-04 09:56:08.499 R]1234567890
38 [2017-08-04 09:56:15.935 T]AT+CIPSENDRAW
 40 [2017-08-04 09:56:16.077 R]
41 OK

42

43 [2017-08-04 09:56:18.998 T]abcdefghijklmn

44 [2017-08-04 09:56:23.255 R]12345678901234567890
```

UDP广播

当需要模块做 UDP 广播(服务器端),并发 UDP 广播信息时,可参考以下步骤。

1.AP模式下的UDP广播

在 AP 模式下,模块建立一个UDP广播服务(服务器端),发 UDP 广播信息。具体步骤如下:

序号	步骤	发送指令(或操作)	返回(或现象)
1	设置并开启Soft_AP模式	AT+WSAP=jenny,12345678\r	ОК
2	PC连接到 AP,并获取IP地址	PC端 Wlan 连接至jenny; PC端打开cmd.exe,输入指令;ipconfig。	成功连接jenny,PC的IP 地址: 10.10.10.2
3	设置模块 UDP 广播服务的参数	AT+CIPSTART=2,udp_broadcast,10.10.10.255,20001,4001\r	OK 返回通知 +CIPEVENT:2,UDP,CONNECTED
4	PC起 UDP 客户端并连接	设置目标 Port 端口号: 4001, 本机端口号: 20001	与模块的自动连接成功.
5	AT指令模式下,模块通过串口 向 UDP 服务器端发数据	AT+CIPSEND=2,5,3秒内,输入字符串: 12345	TCP客户端接收区收到: 12345
6	AT指令模式下,UDP 客户端向 模块串口发数据	1. 发送区发送: 1234567890	发送成功
		2. 若模块端为非自动接收至串口,即: AT+CIPRECVCFG设置为 0, 则输入指令: AT+CIPRECV=1\r	+CIPRECV:10,1234567890\r\n0K
		3. 若模块端为自动接收至串口,即:AT+CIPRECVCFG设置为1,则不需输入指令.	模块串口接收到: 1234567890
7	透传模式下,模块通过串口向 UDP 服务器发数据	1. 模块串口输入指令: AT+CIPSENDRAW\r;	OK OK
			PC端 IIDP 客户端接收

		2. 串口输入: abcdefghijklmn	到: abcdefghijklmn
8	透传模式下,UDP 客户端发送 数据至模块串口	UDP 客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

在PC端利用TCP/UDP测试软件创建一个UDP广播连接,与模块进行UDP通信,具体情况请参考。

PC端 UDP 连接创建如下:

PC端TCP/UDP测试软件数据收发工作区:

串口调试软件数据收发工作区。

```
1 [2017-08-28 16:53:49.611 T]AT+WSAP=jenny,12345678
 3 [2017-08-28 16:53:51.352 R]
4 +WEVENT:AP_UP
 6 OK
 8 [2017-08-28 16:54:09.740 T]AT
   +CIPSTART=2,udp_broadcast,10.10.10.2,20001,4001
10 [2017-08-28 16:54:09.957 R]
11 OK
12
13 +CIPEVENT: 2, UDP, CONNECTED
15 [2017-08-28 16:54:15.230 T]AT+CIPSEND=2,5
16
17 [2017-08-28 16:54:15.251 R]>
18 [2017-08-28 16:54:16.205 T]12345
19 [2017-08-28 16:54:16.232 R]
20 OK
21
22 [2017-08-28 16:55:52.266 R]+CIPEVENT:SOCKET,2,10,1234567890
23
24 [2017-08-28 16:55:58.629 T]AT+CIPSENDRAW 25
26 [2017-08-28 16:55:58.819 R]
27 OK
29 [2017-08-28 16:55:59.564 T]abcdefghijklmn
30 [2017-08-28 16:56:05.601 R]+CIPEVENT:SOCKET,2,10,1234567890
```

2.STATION模式下的UDP广播

在 STATION 模式下, 建立一个UDP服务端, 模块发 UDP 广播信息。具体步骤如下:

序号	步骤	发送指令 (或操作)	返回(或现象)
1	设置并开启STATION模式,等 待连接成功	AT+WJAP=MX,88888880\r	OK +WEVNET:STATION UP
2	PC连接到 Willam Xu,并获取 IP地址	PC端 Wlan 连接至MX; PC端打开cmd.exe,输入指令:ipconfig。	成功连接Willam Xu,PC的IP 地址: 192.168.100.118
3	设置模块做 UDP 服务器端 的参数	AT+CIPSTART=2,udp_broadcast,192.168.100.255,20001,4001\r	ОК
4	PC起 UDP 客户端并连接	设置目标 port 端口号: 4001, 本机端口号: 20001	与模块的udp广播连接成功。+CIPEVENT:2,UDP,CONNECTED
5	AT指令模式下,模块通过串口 向 UDP 客户端发数据	AT+CIPSEND=2,5,3秒内,输入字符串: 12345	TCP客户端接收区收到: 12345
6	AT指令模式下,UDP 客户端 向模块串口发数据	1 TCP工具发送区发送: 1234567890	
		2. 若模块端为非自动接收至串口,即: AT+CIPRECVCFG设置为 0,则输入指令: AT+CIPRECV=1\r	+CIPRECV:10,1234567890\r\nOK
		3. 若模块端为自动接收至串口,即:AT+CIPRECVCFG设置为1,则不需输入指令.	模块串口接收到: 1234567890
7	透传模式下,模块通过串口向 UDP 客户端发数据	1. 模块串口输入指令: AT+CIPSENDRAW\P;	ОК
		2. 串口输入: abcdefghijklmn	PC端 UDP 客户端接收 到:abcdefghijklmn
8	透传模式下,UDP 客户端发送 数据至模块串口	UDP 客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

在PC端利用TCP/UDP测试软件创建一个UDP广播连接,与模块进行UDP通信,具体情况请参考。

PC端创建 UDP 客户端 如下:

PC端TCP/UDP测试软件数据收发工作区:

串口调试软件数据收发工作区:

```
1 [2017-08-28 16:13:46.905 T]AT+WJAP=MX,88888880
 3 [2017-08-28 16:13:47.097 R]
 4 OK
 6 [2017-08-28 16:13:53.841 R]
 7 +WEVENT:STATION_UP
 9 [2017-08-28 16:13:58.839 T]AT
   +CIPSTART=2,udp_broadcast,192.168.100.255,20001,4001
11 [2017-08-28 16:13:59.054 R]
12 OK
13
14 +CIPEVENT: 2, UDP, CONNECTED
16 [2017-08-28 16:14:05.869 T]AT+CIPSEND=2,5
18 [2017-08-28 16:14:05.894 R]>
19 [2017-08-28 16:14:07.142 T]12345
20 [2017-08-28 16:14:07.163 R]
21 OK
23 [2017-08-28 16:14:42.926 R]+CIPEVENT:SOCKET,2,10,1234567890
25 [2017-08-28 16:14:47.905 T]AT+CIPSENDRAW
27 [2017-08-28 16:14:48.100 R]
30 [2017-08-28 16:14:49.089 T]abcdefghijklmn
31 [2017-08-28 16:14:57.349 R]+CIPEVENT:SOCKET,2,10,1234567890
```

当需要模块做 UDP 单播(服务端),并发 UDP 单播信息时,可参考以下步骤。

1.AP模式下的UDP单播

在WiFi AT指令模式下, AP 模式下建立一个UDP客户端,模块发 UDP 单播信息。具体步骤如下(以链接 1 为例,链接 2 方法相同):

序号	步骤	发送指令 (或操作)	返回 (或现象)
1	设置并开启Soft_AP模式	AT+WSAP=jenny,12345678\r	ОК
2	PC连接到 AP,并获取IP地址	PC端 Wlan 连接至jenny; PC端打开cmd.exe,输入指令:ipconfig。	成功连接jenny,PC的IP 地址: 10.10.10.2
3	设置模块 UDP 广播服务的参数	AT+CIPSTART=3,udp_unicast,10.10.10.1,20003,4003\r	ОК
4	PC起 UDP 客户端并连接	设置目标 Port 端口号: 4003, 本机端口号: 20003	与模块的自动连接成功。+CIPEVENT:2,UDP,CONNECTED
5	AT指令模式下,模块通过串口向 UDP 服务器端发数据	AT+CIPSEND=2,5,3秒内,输入字符串: 12345	TCP客户端接收区收到: 12345
6	AT指令模式下,UDP 客户端向模 块串口发数据	1. 发送区发送: 1234567890	发送成功
		2. 若模块端为非自动接收至串口,即:AT+CIPRECVCFG设置为0,则输入指令:AT+CIPRECV=1\r	+CIPRECV:10,1234567890\r\nOK
		3. 若模块端为自动接收至串口,即: AT+CIPRECVCFG设置为 1,则不需输入指令.	模块串口接收到: 1234567890
7	透传模式下,模块通过串口向 UDP 服务器发数据	1. 模块串口输入指令: AT+CIPSENDRAW\P;	OΚ
		2. 串口输入: abcdefghijklmn	PC端 UDP 客户端接收到:abcdefghijklmn
8	透传模式下,UDP 客户端发送数 据至模块串口	UDP 客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

PC端创建 UDP 单播连接如下:

PC端TCP/UDP测试软件数据收发工作区:

串口调试软件数据收发工作区:

```
1 [2017-08-31 17:46:29.106 T]AT+WSAP=jenny,12345678
 3 [2017-08-31 17:46:29.301 R]
 4 +WEVENT: AP_DOWN
 6 [2017-08-31 17:46:29.617 R]
 7 +WEVENT:AP_UP
 9 OK
11 [2017-08-31 17:46:34.054 T]AT+CIPSTART=3,udp_unicast,10.10.10.2,20003,4003
13 [2017-08-31 17:46:34.256 R]
16 [2017-08-31 17:46:34.276 R]
17 +CIPEVENT:3,UDP,CONNECTED
19 [2017-08-31 17:46:41.588 T]AT+CIPSEND=3,5
21 [2017-08-31 17:46:41.612 R]>
22 [2017-08-31 17:46:43.307 T]12345
23 [2017-08-31 17:46:43.333 R]
24 OK
26 [2017-08-31 17:46:49.424 R]+CIPEVENT:SOCKET,3,10,1234567890
28 [2017-08-31 17:47:05.060 T]AT+CIPSENDRAW
30 [2017-08-31 17:47:05.255 R]
31 OK
33 [2017-08-31 17:47:06.267 T]abcdefghijklmn
34 [2017-08-31 17:47:18.818 R]+CIPEVENT:SOCKET,3,10,1234567890
```

2.STATION模式下的UDP单播

在WiFi AT指令模式下,STATION模式下建立一个UDP客户端,模块发 UDP 单播信息。具体步骤如下(以链接 1 为例,链接 2 方法相同):

序号	步骤	发送指令 (或操作)	返回(或现象)
1	设置并开启STATION模式,等待 连接成功	AT+WJAP=MX,8888880\r	OK +WEVNET:STATION UP
2	PC连接到 Willam Xu,并获取 IP地址	PC端 Wlan 连接至MX; PC端打开cmd.exe,输入指令: ipconfig。	成功连接Willam Xu,PC的IP 地址: 192.168.100.105
3	设置模块做 UDP 服务器端 的	ΔT+CTPSTΔRT=3.udn unicast.192.168.100.105.20003.4003\r	OK

	参数	MITCE START-5, 000 _ 01112035, 152.1200.100.105, 20005, 4005 (1)	ON.
4	PC起 UDP 客户端并连接	设置目标 port 端口号: 4003, 本机端口号: 20003	与模块的udp client 自动连接成功。+CIPEVENT:3,UDP,CONNECTED
5	AT指令模式下,模块通过串口 向 UDP 客户端发数据	AT+CIPSEND=3,5,3秒内,输入字符串: 12345	TCP客户端接收区收到: 12345
6	AT指令模式下,UDP 客户端向 模块串口发数据	1. TCP工具发送区发送: 1234567890	发送成功
		2. 若模块端为非自动接收至串口,即:AT+CIPRECVCFG设置为 0,则输入指令:AT+CIPRECV=1\r	+CIPRECV:10,1234567890\r\nOK
		3. 若模块端为自动接收至串口,即:AT+CIPRECVCFG设置为 1,则不需输入指令.	模块串口接收到: 1234567890
7	透传模式下,模块通过串口向 UDP 客户端发数据	1. 模块串口输入指令:AT+CIPSENDRAW\r;	OK
		2. 串口输入: abcdefghijklmn	PC端 UDP 客户端接收 到: abcdefghijklmn
8	透传模式下,UDP 客户端发送 数据至模块串口	UDP 客户端发送区输入数据: 1234567890	模块串口接收到: 1234567890

PC端创建 UDP 单播连接如下:

PC端TCP/UDP测试软件数据收发工作区:

串口调试软件数据收发工作区:

```
1 [2017-08-31 17:55:54.762 T]AT+WJAP=MX,88888880
 3 [2017-08-31 17:55:54.961 R]
 4 OK
 6 [2017-08-31 17:56:01.643 R]
 7 +WEVENT:STATION_UP
 9 [2017-08-31 17:56:13.827 T]AT+WJAPIP?
11 [2017-08-31 17:56:13.857 R]
12 +WJAPIP:192.168.100.118,255.255.255.0,192.168.100.1,202.96.209.133
13 OK
17 [2017-08-31 17:56:27.620 R]
18 OK
20 +CIPEVENT: 3, UDP, CONNECTED
22 [2017-08-31 17:56:58.965 T]AT+CIPSEND=3,5
24 [2017-08-31 17:56:58.985 R]>
25 [2017-08-31 17:57:01.139 T]12345
26 [2017-08-31 17:57:01.160 R]
29 [2017-08-31 17:57:06.656 R]+CIPEVENT:SOCKET,3,10,1234567890
31 [2017-08-31 17:57:09.412 T]AT+CIPSENDRAW
33 [2017-08-31 17:57:09.603 R]
34 OK
36 [2017-08-31 17:57:09.952 T]abcdefghijklmn
37 [2017-08-31 17:57:14.946 R]+CIPEVENT:SOCKET,3,10,1234567890
```

Easylink配网

当需要使用 Easylink 为模块配网时,可向模块发送AT指令,启动配网。具体如下:

序号	步骤	发送指令(或操作)	返回 (或现象)
1	不管模块处于何种工作模式	AT+SMARTSTART=1\r	+WEVENT:STATION_DOWN, STATION 断开
2	手机打开 Easylink 配网APP,输入 ssid和key,开始配网		+WEVENT:STATION_UP,配网成功

Easylink_APP 扫码下载:

Airkiss配网

当需要使用微信公众号的 Airkiss 为模块配网时,可向模块发送AT指令,启动配网。具体如下:

序号	步骤	发送指令 (或操作)	返回 (或现象)
1	仅当发送了该配置 指令,Airkiss 配 网后,才可发现设 备	AT+SMARTCFG=gh_420af5d2de71_9b6ee2f805e286e2,gh_420af5d2de71\r(说明:第一个参数是您的微信公众号的原始ID:original_id,第二个参数是在该公众号下创建了产品后生成的设备ID:device_id)	OΚ
	启动 Airkiss 配网		+WEVENT STATION DOWN. STATION

2	状态	AT+SMARTSTART=2\r	断开
3	手机打开您的微信 公众号或扫描下 方配网二维码,进 入Airkiss配网页面, 输入 ssid和key, 开始配网		+WEVENT:STATION_UP,配网成功, 且APP端列表发现设备: mico鹿

Airkiss 配网 测试二维码:

获取SNTP时间

当需要模块获取 网络同步时间时,可向模块发送 AT 指令,获取 SNTP 时间。

提示:若要获取网络时间,前提是 模块必须连接上某路由器,要么启用 STATION 模式,要么 Easylink 配网成功,要么 Airkiss 配网成功,即处于 STATION_UP 状态。

具体步骤如下:

序号	步骤	发送指令 (或操作)	返回 (或现象)
1	模块连接路由器	启动STATION工作模式或配网	+WEVENT=STATION_UP
2	配置SNTP时区和服务器域名	AT+SNTPCFG=+8,cn.ntp.org.cn,pool.ntp.org\r	OK .
3	获取 SNTP 时间	AT+SNTPTIME\r	+SNTPTIME:2017-09-05T14:33:05.022320 \r\n OK

获取RTC时间

当需要模块获取模块的 RTC 时间时,可向模块发送 AT 指令,获取 RTC 时间。

具体步骤如下:

序号	步骤	发送指令 (或操作)	返回 (或现象)
1	当未做 SNTP 时间同步时,获取的 RTC 时间是:从 1970年1月1日0时0分0秒开始计时的系统运行时间	AT+RTCGET\r	+RTCGET:1970-01-01T00:01:00.028856
2	当做过 SNTP 时间同步后,获取的 RTC时间是: 当前指定时区的标准时间。	AT+RTCGET\r	如: +RTCGET:2017-09-05T14:33:05.022320\r\n OK
3	当系统掉电时,RTC 时间不保存,会恢复至初始时间: 1970年1月1日0时0分0秒,直到再次上电时才从该初试时间重新开始计时	AT+RTCGET\r	+RTCGET:1970-01-01T00:01:00.090555

MQTT协议通信用例

1.和庆科Fog云实现mqtt通信

以下讲解如何通过AT指令,实现设备与 Fog 云服务器之间的 MQTT 通信,包括: MQTT 连接建立,订阅主题,与发布数据。

说明: Fog云服务器不需要验证证书,需要 SSL 加密。

序号	步骤	发送指令(或操作)
1	连接 路由 器	AT+WJAP=ssid,password\r
	返回	OK和+WEVNET:STATION UP
2	使能 事件 推送 功能	AT+MQTTEVENT=ON\r
	返回	OK .
3	设置 MQTT 用户 名和 密码	AT+MQTTAUTH=6618fdda2a4f11e7a554fa163e876164/77a0853e3a1a11e7a554fa163e876164, ibV/zzpOyHKDUVH4EEXK7RoZtJHp6GTj6fazxst2+k4=\r
	返回	OK .
4	设置 主机 和端 口号	AT+MQTTSOCK=6618fdda2a4f11e7a554fa163e876164.mqtt.iot.gz.baidubce.com,1884\r
	返回	OK
5	关闭 MQTT 证书 验证	AT+MQTTCAVERIFY=OFF,OFF\r
	返回	OK
7	使能 SSL加 密	AT+MQTTSSL=ON\r
	返回	OK
8	设置 客户 端标 识符	AT+MQTTCID=77a0853e3a1a11e7a554fa163e876164\r\r
	返回	OK .
9	设置 MQTT 心跳 周期	AT+MQTTKEEPALIVE=30\r
	返回	OK
10	使能 MQTT 自动 重连 功能	AT+MQTTRECONN=ON\r

	返回	OK
11	使 MQTT 上 自 強 接 能	AT+MQTTAUTOSTART=ON\r
	返回	ок
12	启动 MQTT 服务	AT+MQTTSTART\r
	返回	OK和+MQTTEVENT:CONNECT,SUCCESS
13	订阅 主题	AT+MQTTSUB=0,6618fdda2a4f11e7a554fa163e876164/df358c1a348611e7a554fa163e876164/77a0853e3a1a11e7a554fa163e876164/status/json,0\r
	返回	+MQTTEVENT:0,SUBSCRIBE,SUCCESS
14	发布 设置	AAT+MQTTPUB=6618fdda2a4f11e7a554fa163e876164/df358c1a348611e7a554fa163e876164/77a0853e3a1a11e7a554fa163e876164/status/json,0\r
	返回	OK
15	发布 数据	AT+MQTTSEND=6\r,返回 后,输入数据:123456
	返回	+MQTTEVENT:PUBLISH,SUCCESS, 同时接收到订阅的相同主题返回的数据: +MQTTRECV:0,6,123456
16	取消 订阅 主题	AT+MQTTUNSUB=0\r
	返回	OK和+MQTTEVENT:0,UNSUBSCRIBE,SUCCESS
17	关闭 MQTT 服务	AT+MQTTCLOSE\r
	返回	OK和+MQTTEVENT:CLOSE,SUCCESS

2.和亚马逊aws云实现mqtt通信

以下讲解如何通过 MQTT 通信 AT指令,实现设备与 AWS 云服务器之间的 MQTT 通信。该服务器要求进行证书验证,因此与 Fog 通信相比,多了 3个证书验证指令。 具体过程如下,包括: MQTT 连接建立,订阅主题,发布数据。

说明

- 1.由于亚马逊提供的是付费服务,这里仅提供完整的使用流程,并不提供真实的用户名、密码及证书。
- 2.需用户根据具体的产品或项目,在亚马逊上注册服务,获取相关的用户名、密码和证书等。点此进入亚马逊aws官网。
- 3.用户在实际传递证书时,必须在证书的末尾追加Ctrl+Z (ASCII码是0x1A,不属于证书的一部分),作为证书传递结束的标志,此时模块会将证书 存入flash。

序号	步骤	发送指令(或操作)	返回 (或现象)
1	连接路由器	AT+WJAP=ssid,password\r	OK和+WEVNET:STATION UP
2	使能事件推 送功能	AT+MQTTEVENT=ON\r	OK
3	设置MQTT 用户名和密 码	AT+MQTTAUTH=UserName,PassWord\r	ОК

4	设置主机和 端口号	AT+MQTTSOCK=a1lqshc4oegz64.iot.us-west-2.amazonaws.com,8883\r	OK
5	使能MQTT 证书验证	AT+MQTTCAVERIFY=ON,ON\r	OK)
6	传递服务器 根证书	AT+SSLCERTSET=0\r	OK)
7	发送服务器 根证书文件 内容	服务器根证书文件内容	OK
8	传递客户端 证书	AT+SSLCERTSET=1\r	ок
9	发送客户端 证书文件内 容	客户端证书文件内容	ОК
10	传递客户端 私钥	AT+SSLCERTSET=2\r	ОК
11	发送客户端 私钥文件内 容	客户端私钥文件内容	ОК
12	使能SSL加 密	AT+MQTTSSL=ON\r	ок
13	设置客户端 标识符	AT+MQTTCID=MiCO\r	ок
14	设置MQTT 心跳周期	AT+MQTTKEEPALIVE=10\r	OK
15	关闭MQTT 自动重连功 能	AT+MQTTRECONN=OFF\r	ок
16	使能MQTT 上电自动连 接功能	AT+MQTTAUTOSTART=ON\r	OK)
17	启动MQTT 服务	AT+MQTTSTART\r	OK和+MQTTEVENT:CONNECT,SUCCESS
18	订阅主题0	AT+MQTTSUB=0,\$aws/things/myLight/shadow/delete/accepted,1\r	OK和+MQTTEVENT:0,SUBSCRIBE,SUCCESS
19	订阅主题1	AT+MQTTSUB=1,\$aws/things/myLight/shadow/update/delta,0\r	OK和+MQTTEVENT:1,SUBSCRIBE,SUCCESS
20	订阅主题2	AT+MQTTSUB=2,\$aws/things/myLight/shadow/update,0\r	OK和+MQTTEVENT:2,SUBSCRIBE,SUCCESS
21	发布设置	AT+MQTTPUB=\$aws/things/myLight/shadow/update,0\r	OK OK
22	发布数据	AT+MQTTSEND=6\r,返回〉后,输入数据: 123456	+MQTTEVENT:PUBLISH,SUCCESS,同时接 收到订阅的相同主题返回的数据: +MQTTRECV:2,6,123456
23	取消订阅主 题1	AT+MQTTUNSUB=1\r	OK和+MQTTEVENT:1,UNSUBSCRIBE,SUCCESS
24	关闭MQTT 服务	AT+MQTTCLOSE\r	OK和+MQTTEVENT:CLOSE,SUCCESS

BT蓝牙通信实例

序号	步骤	发送指令(或操作)	返回 (或现象)
1	查询 3239 蓝牙设备名称	AT+BTNAME=?\r	+BTNAME:MXCHIP_BT123456 \r\n OK
2	查询 3239 蓝牙配对秘钥	AT+BTPASSKEY=?\r	+BTPASSKEY:123456 \r\n OK
3	开启蓝牙可发现可连接模式	AT+BTDISCOVERY=ON\r	ОК
4	开始监听蓝牙事件	AT+BTEVENT=ON\r	ОК
5	查询当前蓝牙状态	AT+BTSTATE?\r	+BTSTATE:DISCOVERABLE \r\n OK处 于蓝牙待连接状态
5	打开手机蓝牙功能,并与蓝牙设备 配对	手机蓝牙设备列表中找到 MXCHIP_123456, 点击, 输入配对秘钥, 开始配对	成功配对
6	连接蓝牙设备	打开手机蓝牙串口 APP, 并连接3239蓝牙设备	+BTEVENT:CONNECTION,ON处于已连接 成功状态
7	AT指令模式下,3239 蓝牙设备与 手机APP端通信	设备通过指令发送数据给手机APP端,发送指令: AT+BTSEND=10\r	5
		返回 > 后, 紧接着1分钟内,发送指定长度的数据内容,如: 1234567890	OΚ
		手机蓝牙串口 APP 端,发送数据给 3239 蓝牙设备 ,如: 12345	OΚ
8	BT 透传模式下,3239 蓝牙设备与 手机APP端通信	设备由AT指令模式切换至BT透传模式,发送指令: AT+BTSENDRAW\r	ОК
		设备直接发送数据给手机APP: 1234567890	APP接收到数据: 1234567890
		手机APP直接发送数据给设备: 12345	APP接收到数据: 12345

与FogCloud直连通信

请参考: AT 指令实现连接 FogCloud 云服务 - 使用指南

与Alink直连通信

请参考: AT 指令实现连接 Alink 云服务 - 使用指南