MIPI D-PHY Protocol Fundamentals

Scope of this discussion

Mobile Computing

D-PHY Protocols

- D-PHY Layers
- Signaling and Traffic
- HS and LP Modes
- D-PHY States
- CSI and DSI idiosyncrasies

Early view of MIPI M-PHY

Demonstration of D-PHY Protocol Tools

Demand is shifting from client /laptop devices to smart devices.

Meanwhile, laptop devices will start to look more like smart devices.

PC demand is flattening

Region	Form Factor	2010	2011*	2012*	2013*	2014*	2015*
Mature Markets	Desktop PC	3.2%	-4.9%	2.1%	-2.7%	-2.0%	-0.1%
Mature Markets	Portable PC	8.5%	-3.2%	10.7%	9.0%	11.0%	8.8%
Mature Markets	Total PC	6.6%	-3.7%	7.8%	5.2%	7.1%	6.3%
Emerging Markets	Desktop PC	9.8%	4.5%	4.5%	3.9%	2.6%	2.2%
Emerging Markets	Portable PC	34.7%	18.2%	18.6%	21.0%	21.6%	20.5%
Emerging Markets	Total PC	21.3%	11.5%	12.2%	13.7%	14.2%	14.1%
Worldwide	Desktop PC	7.1%	0.8%	3.6%	1.4%	1.0%	1.4%
Worldwide	Portable PC	19.1%	6.7%	14.7%	15.3%	16.9%	15.5%
Worldwide	Total PC	13.7%	4.2%	10.2%	10.0%	11.3%	11.0%

and moving to mobile computing

"The cloud computing market is heading into the stratosphere as companies seek to offer services designed to serve tablets, smartphones and other mobile devices. ... projected to surge to \$110 billion in 2015, up from \$23 billion in 2010."

iSuppli December 22, 2011

MIPI Layered Protocols

MIPI Monolithic Protocols & Applications

About the MIPI Alliance

Coordinate technology across the mobile computing industry

- Over 240 member companies
- 100% penetration of MIPI specs in smartphones by 2013

Develop specifications that ensure a stable, yet flexible technology ecosystem

- 17 official working groups (14 active) and growing
- Partnerships with other industry organizations (JEDEC, USB-IF, Open Mobile Alliance, 3GPP, MEMS, etc.)
- Only members have access to specifications
- All members can participate and vote in discussions; higher levels of membership required to lead.

D-PHY layers (DSI example)

D-PHY Signaling Highlights

1-4 Data Lanes (trying to push the spec to x8)

1 lane clock for all data lanes

2 types of signaling LP and HS

- LP P & N signals are driven independently
- HS is differentially driven

Primarily a unidirectional link

Can get reverse communication though a Bus Turn Around (BTA) for DSI

D-PHY Global Operation Flow Diagram

D-PHY Low Power Signaling

LP Control

- 1.2V Nominal
- Stop state LP-11
- Escape Mode & HS Mode Entry/Exit
- Bus Turnaround (BTA), [DSI]

Escape Entry Codes

Trigger/Modes (generic protocol messaging)

Binary

opposites

- Ultra Low Power (ULP 78h)
- Low Power Data Transmission (LPDT – 87h)
- Derived clock, 10Mbs max.

High-speed to Low-power transitions in action

Bus Turnaround Procedure

- Only used on DSI
- Restricted to LP mode
- One lane only

BTA in action

Processor to Peripheral

Peripheral to Processor is identical

D-PHY High Speed Signaling

- Source-synchronous clocking, dual data rate
- Differential 200mV Nominal, Common Mode 200mV, nominal
- 80Mbs to 1.5Gbs (clock rates from 40MHz to 750MHz)
- Used for payload transmission

HS Burst in action

ECC error correction (both short and long packets)

Error Correction Code (ECC) byte allows single-bit errors to be corrected and 2-bit errors to be detected in the **Packet Header**.

- Includes both the Data Identifier and Word Count fields
- Hamming Code
 - Detects 2-bit errors
 - Recovers 1-bit errors

Checksum (long packets only)

Payload portion of long packets

Functionality:

- 16-bit field (covers 64k payload)
- Can only indicate the presence of one or more errors in the payload.
- Cannot be used to correct errors.

Usage:

- Mandatory for processor to peripheral communication (DSI).
- Optional for peripheral to processor. If not used, "0000h" checksum must be sent.
- If the payload length is 0, checksum is "FFFFh"

Packet Formats

Short Packets:

4-byte packets

Data Identifier lists different types of packets:

- Sync Events
- EoT
- Commands
- Generic Short Writes
- Generic Short Reads
- Short DCS command data (DSI)
- ACKs and Error Reports

Can be HS or LP
Many codes are reserved for
future use

Packet Formats

Long Packets:

- 4-byte header
- Up to 64k byte payload
- Word Count identifies length.

Data Identifier lists different types of packets:

- Blanking
- Generic Long Writes
- Image Data
- DCS command data (DSI)
- Response from Peripheral (DSI)

Can be HS or LP
Many codes are reserved
for future use

Example: DSI Packets

Data Type, hex	Data Type, binary	Description	Packet Size	Data Type, hex	Data Type, binary	Description	Packet Size
01h	00 0001	Sync Event, V Sync Start	Short	24h	10 0100	Generic READ, 2 parameters	Short
11h	01 0001	Sync Event, V Sync End	Short	05h	00 0101	DCS WRITE, no parameters	Short
21h	10 0001	Sync Event, H Sync Start	Short	15h	01 0101	DCS WRITE, 1 parameter	Short
31h	11 0001	Sync Event, H Sync End	Short	06h	00 0110	DCS READ, no parameters	Short
08h	00 1000	End of Transmission (EoT) packet	Short	37h	11 0111	Set Maximum Return Packet Size	Short
02h	00 0010	Color Mode (CM) Off Command	Short	09h	00 1001	Null Packet, no data	Long
12h	01 0010	Color Mode (CM) On Command	Short	19h	01 1001	Blanking Packet, no data	Long
22h	10 0010	Shut Down Peripheral Command	Short	29h	10 1001	Generic Long Write	Long
32h	11 0010	Turn On Peripheral Command	Short	39h	11 1001	DCS Long Write/write_LUT Command Packet	Long
03h	00 0011	Generic Short WRITE, no parameters	Short	0Eh	00 1110	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
13h	01 0011	Generic Short WRITE, 1 parameter	Short	1Eh	01 1110	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
23h	10 0011	Generic Short WRITE, 2 parameters	Short	2Eh	10 1110	Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
04h	00 0100	Generic READ, no parameters	Short	3Eh	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long
14h	01 0100	Generic READ, 1 parameter	Short				

Example: CSI Packets

Data Type	Description
0x00 - 0x07	Synchronization Short Packet Data Types
0x08 – 0x0F	Generic Short Packet Data Types
0x10 - 0x17	Generic Long Packet Data Types
0x18 - 0x1F	YUV Data
0x20 - 0x27	RGB Data
0x28 – 0x2F	RAW Data
0x30 - 0x37	User Defined Byte-based Data
0x38 - 0x3F	Reserved

Data Type	Description
0x00	Frame Start Code
0x01	Frame End Code
0x02	Line Start Code (Optional)
0x03	Line End Code (Optional)
0x04 – 0x07	Reserved

CSI-2 Particulars

CCI – Camera Control Interface

- I2C subset used to configure camera interface (instead of BTA)
 - CCI is the protocol layer
 - Multiple-devices, single controller
- No BTA

Only HS transmissions

Simple Low-Level Protocol packet formats

- Long for transmitting Application Specific Payload data
- **Short** for transmitting Frame and Line synchronization data, and other image-related parameters.

Virtual Channel – independent data stream for one of up to four peripherals

1 packet per HS frame

- Frame Start/ Frame End
- Optional Line Start/ Line End
- LP State between frames

DSI Particulars

LPDT (on D0 only)

Low-power burst

Greater variety of packet types

- Short packets
- Long packets
- Processor commands (BTA)
- Great variety of image traffic
 - Burst (asynchronous)
 - Non-burst (synchronous, with and without sync events)
 - Display commands

Pixel Stream Types

CSI DSI

RGB888 RGB 12-12-12

RGB666 RGB 10-10-10

RGB565 RGB 8-8-8

RGB555 RGB 6-6-6

RGB444 RGB 5-6-5

YUV422 YCbCr 4-2-2

YUV420 YCbCr 4-2-0

RAW 6/7/8/10/12/14

Common pitfalls

Seldom related to signal integrity
Protocol timing

- Capturing data during settling time
- BTA collisions
- Adapting to bus speed changes

Lane misalignment

Non-burst image synchronization

Mitigation

- Intimate specification knowledge
- Corner case testing
- Protocol "omniscience"

Example: Start of Transmission timing error

Look ahead at M-PHY

	D-PHY	M-PHY
Minimum configuration	1-way or half-duplex CLK + DATA (4 pins)	dual-simplex DATA (4 pins)
Min. pins for 6 Gbps	10	4 (Gear 3)
Data rate per lane	HS: 80 Mbps to 1.5 Gbps LP: <10 Mbps	HS: ~ 1.25/1.5; 2.5/3.0; 5/6 Gbps LP: 10k-600Mbps
Electrical signaling	HS LP	SLVS-200 LVCMOS1.2V
HS Clocking method	DDR Source-Sync Clk	Embedded
HS Line coding	None or 8b/9b	8b/10b
Power – Energy/bit	Low	Lower (YMMV)
Repeater/optical	No	Yes
LP only PHY's	Disallowed	Allowed

Power Saving

Variable Gear Rates

Power Saving Modes

State	Recovery Latency	~ Power
HIBERN8	0.1 – 1ms	10uW
Sleep	μs	100uW
LS Burst		1mW
Stall	ns	10mW
HS Burst		25mW

MIPI estimate for one M-TX and one M-RX including clock multiplication – v1.0

M-PHY Introduces a Transport Layer

Transport Layer

- Logical multiplexing of several communication channels (CPorts)
- E2E Flow Control

Network Layer

Fully compatible with future Switched Network

Data Link Layer

- Link reliability
- Traffic Classes (TC0/TC1)

PHY Adapter Layer

- Abstraction of M-PHY
- · Lane Discovery, downgrading
- Link Configuration (#lanes, gear etc.)
- Handling of multiple LANEs
- Native support for OMC

