

Men's Arbitrage

Statistical Arbitrage in the US market

Men's Arbitrage

Executive Summary

Introduction

- Motivation
- Backtesting Methodology
- Performance Summary

Methodology of Men's Arbitrage

- PCA as Risk Factors
- Residual Process
- Trading Signal (Portfolio Selection)
- Mean-reversion Requirement (Portfolio Selection)
- OU process for parameter estimations
- Model Summary and Trading Rules

Extensions

- Maximum Number of Daily Positions
- Sensitivity Analysis on Long Short Threshold
- Dynamic Number of Principal Components

Executive Summary

Introduction

- Motivation
- Backtesting Methodology
- Performance Summary
- Methodology of Men's Arbitrage
 - PCA as Risk Factors
 - Residual Process
 - Trading Signal
 - Mean-reversion Requirement
 - OU process for parameter estimations
 - Model Summary and Trading Rules

Extensions

- Maximum Number of Daily Positions
- Sensitivity Analysis on Long Short Threshold
- Dynamic Number of Principal Components

Motivation

- Build factor models with PCs factors
- Model idiosyncratic residual process as mean-reverting OU-process
- Derive standardized S-score as trading signals
- Hold ~200 fully-hedged portfolios daily

Goal:

- 1) Market Neutral
- 2) Low-volatility, low-risk arbitrage returns

Backtesting Methodology

Platform:

BackTrader

Trading Universe:

US Equity Market(SP500 + Nasdaq100)

Cash:

10 mil USD

Transaction Cost & Slippage:

10bps

Rebalancing Period:

Daily

Back Test Period:

01/01/2013 (Start of data feeding)

01/01/2014 (Start of trading)

28/05/2021 (End of trading)

Figure 1. Portfolio Cumulative Return of Men's Arbitrage Strategy

Performance Summary of Men's Arbitrage

Higher Sharpe Ratio than SP500 (2013-2021)

Cumulative Returns vs Benchmark (Volatility Matched)

Figure 2. Volatility matched return of Men's Arbitrage Strategy vs SP 500

Market Neutral

Rolling Beta to Benchmark

Figure 3. Rolling Betas during the testing periods

Key Performance Metrics

Period: 2013-2021	Men's Arbitrage	SP500
Sharpe Ratio	1.07	0.84
Calmar Ratio	0.76	0.42
Sortino Ratio	1.69	1.17
Maximum Drawdown	-6.59%	-33.72%

Table 1. Comparison of Men's Arbitrage vs other benchmarks

Executive Summary

Introduction

- Motivation
- Backtesting Methodology
- Performance Summary

Methodology of Men's Arbitrage

- PCA as Risk Factors
- Residual Process
- Trading Signal (Portfolio Selection)
- Mean-reversion Requirement (Portfolio Selection)
- OU process for parameter estimations
- Model Summary and Trading Rules

Extensions

- Maximum Number of Daily Positions
- Sensitivity Analysis on Long Short Threshold
- Dynamic Number of Principal Components

Principal Components as Risk Factors

Risk Factor Decomposition (OLS): systematic & idiosyncratic components

Question: What is X(t) in idiosyncratic part?

- -Neither drift nor systematic
- -Hypothesis: Mispricing due to market over-reaction ———— Arbitrage Opportunity

Mean-reverting Residual Process X(t)

Hypothesis: If X(t) is caused by market over-reaction, logical to assume it **mean-reverts** around an equilibrium mean --> market is rational in the longer run as sentiments fade away

Notebook Demo

2021/12/4

Residual process X(t) ADF Test

ADF Test on residual process X(t), SP500:

Result: most of them are mean-reverting, some are not In practice, we trades every stocks, reasons:

- 1) equilibrium strategy --> market efficiency effect
- 2) marginal cost of hedging is low for additional pair (explained later)

X(t) Model

Ornstein-Uhlenbeck process: $dX_t = k(m - X_t) dt + \sigma dW_t$

Expected return at time s < t: E[dX|X(s)] = k(m - X(s))dt

Hedged Portfolio:

-For every \$1 long in S, short \$B1 of PC1, \$B2 of PC2, ..., etc

$$\frac{dS_t}{S_t} = \alpha dt + \sum_{i=1}^{15} \beta_i r_{pc_i} + dX_t \longrightarrow dP_t = dX_t \longrightarrow$$

Hedged Portfolio value ~~ X(t):

1) +ve expected return: X(t) < m

2) -ve expected return: X(t) > m

OU Process: Parameter Estimation for generating Trading Signals

OU process:

$$dX_t = km dt - kX_t dt + \sigma dW_t$$

$$dX_t + kX_t dt = km dt + \sigma dW_t$$

Multiply e^{kt} on both sides:

$$e^{kt}(dX_t + kX_tdt) = e^{kt}km dt + e^{kt} \sigma dW_t$$

Integrate from 0 to T on both sides:

$$\int_0^T \frac{d(e^{ks}X_s)}{ds} = e^{kT}X_T - X_0 = m(e^{kT} - 1) + \sigma \int_0^T e^{ks}dW_s$$
$$X_T = X_0e^{-kT} + m(1 - e^{-kT}) + \sigma \int_0^T e^{-k(T-s)}dW_s$$

Expectation and Variance:

$$E[X_T] = X_0 e^{-kT} + m (1 - e^{-kT})$$

$$Var(X_T) = \sigma^2 \int_0^T e^{-2k(T-s)} ds = \frac{\sigma^2}{2} (1 - e^{-2kT})$$

In terms of each step from t = t to $t = t + \Delta t$:

$$E[X_{t+\Delta t}] = X_0 e^{-k\Delta t} + m \left(1 - e^{-k\Delta t}\right)$$
$$Var(X_{t+\Delta t}) = \frac{\sigma^2}{2k} \left(1 - e^{-2k\Delta t}\right)$$

Therefore:

$$X_{t+\Delta t} = X_t e^{-k\Delta t} + m\left(1 - e^{-k\Delta t}\right) + \sigma \sqrt{\frac{1 - e^{-2k\Delta t}}{2k}} * N(0,1)$$

This is equivalent to AR(1) model:

$$y_{i+1} = b y_i + a + \epsilon_{i+1}$$

Thus, parameters can be estimated through linear regression of X(t) with lag 1 X(t-1):

$$b = e^{-k\Delta t}$$
, $a = m\left(1 - e^{-k\Delta t}\right)$, $SE = \sigma\sqrt{\frac{1 - e^{-2k\Delta t}}{2k}}$
 $k = -\log(b) * 252$

$$m = \frac{a}{1 - b}$$

$$\sigma = SE * \sqrt{\frac{2k}{1 - e^{-2k\Delta t}}}$$

$$\sigma_{eq} = \frac{\sigma}{\sqrt{2k}}$$

Estimation is Simple!

Lag-1 regression on X(t)

Trading signals: S score (Portfolio Selection)

Standardized measure: extent of deviations from mean

$$s_i = \frac{(X_i(t) - m_i)}{\sigma_{i,eq}} \stackrel{\text{Regression: X(T) = 0}}{>} s_i = -\frac{m_i}{\sigma_{i,eq}} \stackrel{\text{Centered mean}}{>} s_i = -\frac{m_i}{\sigma_{i,eq}}$$

 $\overline{m_i} = m_i - \langle m \rangle$ Where <m> : average of m across stocks

Figure 6. S score for TSLA, PCAR and NLSN

Long Short Thresholds on S score (Preset Value):

S_bo: threshold buy open (1.00)-

S_cl: threshold close long (0.5)

S_so: threshold sell open (1.25)

S_cs: threshold close short (0.5)

Intuitively, Residual that deviates by -1.00 standard deviations from equilibrium

Portfolio Selection: Mean-reversion requirement: k

Mean reversion speed: k

Mean reversion time in business days: 1/k * 252

Goal: Trade stocks (corresponding hedged portfolios) that have fast mean-reversion:

--> drift effect minimal

--> More trades, more stable returns

Our threshold:

K > 252/20

Mean-reversion time < 20 days

Model Summary and Trading Rules

Model Summary

Trading Rules: Pseudo Codes

Invest val per pos: 1/200 PV

```
Init vector: trade size
  For each stock k > 252/20:
     If s > 1.25 (s so):
           trade size += short stock, hedge with 15 PCs
     If s < 0.75 (s cs):
           trade size += close short.
     If s < -1 (s bo):
           trade size += long stock, hedge with 15 PCs
     If s > -0.5 (s cl):
           trade size += close long.
Execute(trade_size) next open
Max pos: 200
```

Theory vs Practice: Txn Cost

In theory:

High Transaction Cost

Each position requires hedging with PCs, which are each portfolio of every single stock. Txn cost is high.

In Practice:

Mild Transaction Cost

Hedging parts of long & short positions cancel out each other. Required hedging for whole portfolio is minimal.

Figure 2. Resulting weight vector for two pairs

Ticker

Gross Leverage

Intended:

2x gross both leg, 4x gross leverage

Actual:

~3x gross leverage (hedging parts cancels off)

Executive Summary

Introduction

- Motivation
- Backtesting Methodology
- Performance Summary

Methodology of Men's Arbitrage

- PCA as Risk Factors
- Residual Process
- Trading Signal
- Mean-reversion Requirement
- OU process for parameter estimations
- Model Summary and Trading Rules

Extensions

- Maximum Number of Daily Positions
- Sensitivity Analysis on Long Short Threshold
- Dynamic Number of Principal Components

Sensitivity Analysis on Long Short Threshold

Period

2017/01/01 - 2021/06/01

Tested Parameter

Long Threshold: (s_bo, s_cl)
Short Threshold: (s_so, s_cs)

Model Parameter : (-1,-0.5), (0.75,1.25)

Result

Sharpe Ratio: ranged from 0.7 to 1.4 SP500 Sharpe = 0.84

Most of the pairs outperform the market

Maximum Number of Daily Positions

Observation

Limit the maximum number of daily position to 200 generate a better back testing result than 150

Suggestion

Experimenting with the higher number of max daily positions

Fig 1. Graph of number of position over backtesting periods

Dynamic Number of Principal Components

Observation

Portfolio cumulative return increases rapidly with high explained variance %

From 2016 to 2018, cumulative return stop increasing when the explained variance % is low

Suggestion

Potential Performance improvement by using dynamic principal components to maintain a high explained variance

Figure 1. Comparison of explained variance and portfolio return over backtesting periods

Performance Summary of Men's Arbitrage

Higher Sharpe Ratio than SP500 (2013-2021)

Cumulative Returns vs Benchmark (Volatility Matched)

Figure 2. Volatility matched return of Men's Arbitrage Strategy vs SP 500

Market Neutral

Rolling Beta to Benchmark

Figure 3. Rolling Betas during the testing periods

Key Performance Metrics

Period: 2013-2021	Men's Arbitrage	SP500
Sharpe Ratio	1.07	0.84
Calmar Ratio	0.76	0.42
Sortino Ratio	1.69	1.17
Maximum Drawdown	-6.59%	-33.72%

Table 1. Comparison of Men's Arbitrage vs other benchmarks