

ON TRANSFER IN BOUNDED COHOMOLOGY

INDIRA CHATTERJI AND AND GUIDO MISLIN

ABSTRACT. We define a transfer map in the setting of bounded cohomology with certain metric G -module coefficients. As an application, we extend a theorem on the comparison map from Borel-bounded to Borel cohomology (cf. [1]), to cover the case of Lie groups with finitely many connected components.

1. INTRODUCTION

The groups G we are working with are always assumed to be separable, locally compact, with a topology given by a complete metric. Borel cohomology groups $H_B^*(G, A)$ for G with coefficients in a polish G -module A were introduced by Moore [3]. In case A is equipped with a metric, one can define the Borel-bounded cohomology groups $H_{Bb}^*(G, A)$ and study the comparison map from Borel-bounded to Borel cohomology. The case of a connected Lie group G and $A = \mathbb{Z}$ with trivial G -action was dealt with in [1]. The purpose of this note is to define a transfer map in the H_B^* and H_{Bb}^* setting, with respect to a closed subgroup $H < G$ of finite index. We will make use of our transfer map to extend some results proved in [1] for connected Lie groups, to cover the case of groups with finitely many connected components (*virtually connected groups*).

We thank Ian Leary for helpful remarks.

2. THE BOREL (BOUNDED) SETUP

Through this note, G will denote a separable, locally compact topological group, with a topology given by a complete metric.

Definition 2.1. We denote by $P(G)$ the category of G -modules which are separable, completely metrizable with an isometric G -action (*Polish G -modules*); morphisms are continuous G -maps.

When dealing with bounded cohomology, we need to fix a metric on our coefficient modules. Let $M \in P(G)$. Let m_1 and m_2 be two

Partially supported by NSF grant No. 0644613 and ANR grant JC-318197.

complete metrics on M (compatible with the given topology) with respect to which the G -action is isometric. We say that m_1 and m_2 are *bounded equivalent* (b -equivalent for short), if they define the same bounded subsets in M .

Definition 2.2. We denote by $mP(G)$ the category of G -modules M in $P(G)$, equipped with a preferred b -equivalence class $[m]$ of metrics. Morphisms in $mP(G)$ are continuous G -maps which map bounded subsets to bounded subsets.

If $H < G$ is a closed normal subgroup of finite index and M is a finitely generated $\mathbb{Z}G$ -module with trivial H -action, then the word metric m_S on the underlying abelian group of M , with respect to a finite G -stable generating set $S < M$ defines a b -equivalence class $[m_S]$ of complete metrics on M , independent of the particular S chosen. In this way we obtain a fully faithful functor

$$\mathrm{fgMod}(G/H) \rightarrow mP(G),$$

with $\mathrm{fgMod}(G/H)$ denoting the category of finitely generated G/H -modules.

There is an obvious forgetful functor $mP(G) \rightarrow P(G)$. In this way, we may view an $M \in \mathrm{fgMod}(G/H)$ as an object in $mP(G)$, respectively $P(G)$.

For $M \in P(G)$, a map $f : G^{n+1} \rightarrow M$ is called *Borel*, if it is Borel measurable with respect to the σ -algebras associated to the topological spaces G^{n+1} and M respectively; in case M is in $mP(G)$, f is called *bounded*, if its range is a bounded subset of M ; f is called *G -equivariant*, if $f(xg_0, \dots, xg_n) = xf(g_0, \dots, g_n)$. We write

$$C_B^n(G, M) = \mathrm{map}_B^G(G^{n+1}, M) \text{ and } C_{Bb}^n(G, M) = \mathrm{map}_{Bb}^G(G^{n+1}, M)$$

for the abelian group of G -equivariant Borel (respectively Borel bounded) maps $G^{n+1} \rightarrow M$. With the usual differentials, this defines cochain complexes $C_B^*(G, M)$ and $C_{Bb}^*(G, M)$ whose respective cohomologies,

$$H_B^*(G, M) \text{ and } H_{Bb}^*(G, M)$$

is the *Borel* (respectively *Borel bounded*) cohomology of G with coefficients in M (for Borel cohomology with coefficients in $P(G)$, see Moore [3]; Borel bounded cohomology with Banach G -module coefficients has been dealt with in [2]).

Remark 2.3. Let G denote a virtually connected Lie group with connected component G_0 . For $M \in P(G)$ with underlying topology of M discrete, the G -action on M factors through G/G_0 so that M is a G/G_0 -module. Note also that, because G is virtually connected

$\pi_1(BG) = \pi_0(G) = G/G_0$ is a finite group. According to Wigner [5, Theorem 4], see also Moore [3, Section 7, (1)], one has for M discrete and countable a natural isomorphism

$$H_B^*(G, M) \cong H^*(BG, M)$$

where $H^*(BG, M)$ denotes the singular cohomology of BG with local coefficients in the $\pi_1(BG)$ -module M . Similarly, for V a continuous finite-dimensional \mathbb{R} -representation of G , one has a natural isomorphism

$$H_B^*(G, V) \cong H_c^*(G, V),$$

with $H_c^*(G, V)$ denoting the continuous cohomology of G [3, Section 7, (2)].

Let $H < G$ be a closed subgroup of finite index and let $M \in P(H)$. We write $\pi : G \rightarrow G/H$ for the projection and we fix a section $\sigma : G/H \rightarrow G$ satisfying $\sigma(1 \cdot H) = 1 \in G$. There is a continuous retraction $\rho : G \rightarrow H$ given by $\rho(g) = g \cdot \sigma(\pi(g^{-1}))$. We define the coinduced module $\text{Coind}_H^G M \in P(G)$ as follows: the underlying abelian group consists of all continuous functions $f : G \rightarrow M$ such that $f(gh) = h^{-1}f(g)$ for all $(g, h) \in G \times H$. This defines a coinduction functor

$$\text{Coind}_H^G : P(H) \rightarrow P(G).$$

If $M \in mP(G)$, that is, M is equipped with d_M a compatible preferred metric, we observe that the range of $d_M(f(?), 0) : G \rightarrow \mathbb{R}$ is compact, because $d_M(f(gh), 0) = d_M(f(g), 0)$ for $h \in H$. We define a metric on $\text{Coind}_H^G M$, using the sup-metric $\|f\| = \sup_G(d_M(f(g), 0))$. The isometric G -module structure on $\text{Coind}_H^G M$ is given by $(x \cdot f)(g) = f(x^{-1}g)$. Hence the functor Coind_H^G defines a coinduction functor

$$\text{Coind}_H^G : mP(H) \rightarrow mP(G).$$

It also follows that one has a natural isomorphism

$$(\text{Coind}_H^G M)^G \xrightarrow{\cong} M^H, f \mapsto f(1).$$

The following partial *Eckmann-Shapiro* Lemma holds in this situation.

Lemma 2.4. *Let G be a separable, locally compact topological group, with a topology given by a complete metric and let $H < G$ a closed subgroup of finite index. Let $M \in mP(H)$. There is a natural diagram*

$$\begin{array}{ccc} H_{Bb}^*(G, \text{Coind}_H^G M) & \xrightarrow{\Theta_b^*} & H_{Bb}^*(H, M) \\ \downarrow & & \downarrow \\ H_B^*(G, \text{Coind}_H^G M) & \xrightarrow{\Theta^*} & H_B^*(H, M) \end{array}$$

and both maps Θ^* and Θ_b^* are onto.

Proof. The map of cochain complexes:

$$\Theta : C_B^*(G, \text{Coind}_H^G M) \rightarrow C_B^*(H, M),$$

given on n -cochains by $\Theta(f)(h_0, \dots, h_n) = f(h_0, \dots, h_n)(1)$, restricts to a map Θ_b of bounded cochains. Moreover, the map

$$\Lambda : C_B^*(H, M) \rightarrow C_B^*(G, \text{Coind}_H^G M)$$

given by $\Lambda(f)(g_0, \dots, g_n)(g) = f(\rho(g^{-1}g_0), \dots, \rho(g^{-1}g_n))$ on n -cochains, satisfies

$$\begin{aligned} (\Theta \circ \Lambda)(f)(h_0, \dots, h_n) &= \Lambda(f)(h_0, \dots, h_n)(1) \\ &= f(\rho(h_0), \dots, \rho(h_n)) = f(h_0, \dots, h_n), \end{aligned}$$

so that $\Theta \circ \Lambda = Id$ and therefore the induced map Θ^* and Θ_b^* are split surjections. \square

Recall that the *radical* \sqrt{G} of a (not necessarily connected) Lie group G is its maximal, connected, normal, solvable subgroup. A Lie groups is called *linear*, if it admits a faithful representation $G \rightarrow GL(n, \mathbb{R})$ for some n .

Corollary 2.5. *Let G be a virtually connected Lie group such that for every finitely generated G/G_0 -module M the forgetful map $H_{Bb}^*(G, M) \rightarrow H_B^*(G, M)$ is surjective. Then the radical \sqrt{G} of G is linear.*

Proof. Since $\text{Coind}_{G_0}^G \mathbb{Z}$ is finitely generated as an abelian group, with the connected group G_0 acting trivially, it is a finitely generated G/G_0 -module. We conclude from our assumption that

$$H_{Bb}^*(G, \text{Coind}_{G_0}^G \mathbb{Z}) \rightarrow H_B^*(G, \text{Coind}_{G_0}^G \mathbb{Z})$$

is surjective. From Lemma 2.4 with $H = G_0$ and $M = \mathbb{Z}$ we conclude that

$$H_{Bb}^*(G_0, \mathbb{Z}) \rightarrow H_B^*(G_0, \mathbb{Z})$$

is surjective too. Because G_0 is connected, we can apply Theorem 1.1 of [1] to conclude that $\sqrt{G_0}$ is linear, which completes the proof of the corollary, since $\sqrt{G_0} = \sqrt{G}$. \square

3. CONSTRUCTION OF THE TRANSFER MAP

Let G be a separable, locally compact topological group, with a topology given by a complete metric and let $H < G$ a closed subgroup of finite index. Let $M \in P(G)$. The map

$$\kappa : \text{Coind}_H^G M \rightarrow M, \quad f \mapsto \sum_{gH \in G/H} g \cdot f(g)$$

is well-defined, because for $h \in H$, $h^{-1}f(g) = f(gh)$ so that $gh \cdot f(gh) = g \cdot f(g)$. Moreover, κ is a G -equivariant map since for $x \in G$,

$$\begin{aligned} \kappa(x \cdot f) &= \sum_{G/H} g \cdot (xf)(g) = \sum_{G/H} g \cdot f(x^{-1}g) \\ &= x \left(\sum_{G/H} x^{-1}g \cdot f(x^{-1}g) \right) = x \cdot \kappa(f). \end{aligned}$$

We further note that, when working with a fixed compatible metric on M , then $\|\kappa(f)\| \leq [G : H]\|f\|$. Hence κ maps bounded sets of $\text{Coind}_H^G M$ to bounded sets of M and induces

$$\kappa^* : H_{Bb}^*(G, \text{Coind}_H^G M) \rightarrow H_{Bb}^*(G, M).$$

Definition 3.1. We define the *transfer map* in Borel cohomology for $M \in P(G)$ by

$$\text{Tran} := \kappa^* \circ \Theta^* : H_B^*(H, M) \rightarrow H_B^*(G, \text{Coind}_H^G M) \rightarrow H_B^*(G, M).$$

If $M \in mP(G)$, one similarly defines the *transfer map* in Borel bounded cohomology by

$$\text{Tran} := \kappa^* \circ \Theta_b^* : H_{Bb}^*(H, M) \rightarrow H_{Bb}^*(G, \text{Coind}_H^G M) \rightarrow H_{Bb}^*(G, M).$$

Theorem 3.2. *Let G be a separable, locally compact topological group, with a topology given by a complete metric and let $H < G$ a closed subgroup of finite index. Let $M \in P(G)$ and denote by $\text{Res} : H_B^*(G, M) \rightarrow H_B^*(H, M)$ the restriction map. Then the composite map*

$$\text{Tran} \circ \text{Res} : H_B^*(G, M) \rightarrow H_B^*(G, M)$$

is the multiplication by the index $[G : H]$. Moreover, if $M \in mP(G)$, there is a natural commutative diagram

$$\begin{array}{ccccc} H_{Bb}^*(G, M) & \xrightarrow{\text{Res}} & H_{Bb}^*(G_0, M) & \xrightarrow{\text{Tran}} & H_{Bb}^*(G, M) \\ \downarrow & & \downarrow & & \downarrow \\ H_B^*(G, M) & \xrightarrow{\text{Res}} & H_B^*(G_0, M) & \xrightarrow{\text{Tran}} & H_B^*(G, M). \end{array}$$

Proof. Consider $H_B^*(G, ?)$ as a cohomological functor on $P(G)$. In [3, Theorem 4] Moore proved that this functor is coeffaceable, that is, for $M \in P(G)$ there exist a closed embedding $M \rightarrow J(M)$ with $J(M) \in P(G)$ satisfying $H_B^*(G, J(M)) = 0$ for $* > 0$. It follows that any natural transformation $T^* : H_B^*(G, ?) \rightarrow H_B^*(G, ?)$ of functors on $P(G)$ is determined by $T^0 : H_B^0(G, ?) \rightarrow H_B^0(G, ?)$. Applying that remark to the natural transformation $T = \text{Tran} \circ \text{Res}$ one verifies for $M \in P(G)$ that in degree 0 the map $T^0 : H^0(G, M) \rightarrow H^0(G, M)$ corresponds to the map $M^G \rightarrow M^G$ given by $m \mapsto \sum_{gH \in G/H} gm = [G : H]m$. As a result, the composite map $\text{Tran} \circ \text{Res}$ is, as claimed, the multiplication by $[G : H]$, in all degrees. The commutativity of the diagram for the forgetful map is immediate from the definition of the transfer. \square

4. APPLICATIONS

If A is a finitely generated $\mathbb{Z}G$ -module, with kernel of the G -action on A a normal subgroup of finite index in $H < G$, we can (as described earlier) consider A as an object in $mP(G)$, by choosing a word metric on A with respect to a G -stable finite generating set. Forming $A \otimes \mathbb{R}$, we can choose a G -invariant Euclidean metric on that finite dimensional \mathbb{R} -vector space, yielding an object $A \otimes \mathbb{R}$ in $mP(G)$ such that $A \rightarrow A \otimes \mathbb{R}$ is a morphism in $mP(G)$ (it maps bounded subsets to bounded subsets). We can also form $(A \otimes \mathbb{R})/\text{image}(A)$, which is topologically a finite dimensional torus, inheriting from $A \otimes \mathbb{R}$ a natural G -invariant metric, yielding an exact sequence

$$A \rightarrow A \otimes \mathbb{R} \rightarrow (A \otimes \mathbb{R})/\text{image}(A)$$

in $mP(G)$. We call this the *standard way* of viewing A , $A \otimes \mathbb{R}$ and $(A \otimes \mathbb{R})/\text{image}(A)$ as objects in $mP(G)$.

Lemma 4.1. *Let G be a separable, locally compact topological group, with a topology given by a complete metric and let $H < G$ a closed subgroup of finite index. Let A be a finitely generated $\mathbb{Z}G$ -module with H acting trivially on A ; view A and $A \otimes \mathbb{R}$ in the standard way as an object in $mP(G)$. If the natural map $H_B^*(G, A) \rightarrow H_B^*(G, A \otimes \mathbb{R})$ maps an element $x \in H_B^*(G, A)$ to an element $\bar{x} \in H_B^*(G, A \otimes \mathbb{R})$ which lies in the image of $H_{Bb}^*(G, A \otimes \mathbb{R}) \rightarrow H_B^*(G, A \otimes \mathbb{R})$, then x lies in the image of $H_{Bb}^*(G, A) \rightarrow H_B^*(G, A)$.*

Proof. We first consider the case of an A with underlying abelian group torsion-free. In that case, tensoring with $\mathbb{Z} \rightarrow \mathbb{R} \rightarrow S^1$ yields a short exact sequence $A \rightarrow A \otimes \mathbb{R} \rightarrow A \otimes S^1$ in $mP(G)$, which admits a Borel bounded section $A \otimes S^1 \rightarrow A \otimes \mathbb{R}$ of the underlying spaces (cf. [4]). Therefore, we obtain a commutative diagram with exact rows

and vertical maps α and δ isomorphisms, because $A \otimes S^1$ has finite diameter:

$$\begin{array}{ccccccc} H_{Bb}^{n-1}(G, A \otimes S^1) & \rightarrow & H_{Bb}^n(G, A) & \rightarrow & H_{Bb}^n(G, A \otimes \mathbb{R}) & \rightarrow & H_{Bb}^n(G, A \otimes S^1) \\ \cong \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \cong \downarrow \delta \\ H_B^{n-1}(G, A \otimes S^1) & \rightarrow & H_B^n(G, A) & \longrightarrow & H_B^n(G, A \otimes \mathbb{R}) & \rightarrow & H_B^n(G, A \otimes S^1). \end{array}$$

The result then follows from a simple diagram chase. If A has torsion, denote by $TA < A$ the torsion subgroup (with the induced metric); it is a G -submodule. We have a \mathbb{Z} -split short exact sequence $TA \rightarrow A \rightarrow A/TA$ in $mP(G)$, which gives rise to a commutative diagram with exact rows and isomorphisms χ and μ , because TA is finite:

$$\begin{array}{ccccccc} H_{Bb}^n(G, TA) & \longrightarrow & H_{Bb}^n(G, A) & \longrightarrow & H_{Bb}^n(G, A/TA) & \longrightarrow & H_{Bb}^{n+1}(G, TA) \\ \cong \downarrow \chi & & \downarrow \psi & & \downarrow \phi & & \cong \downarrow \mu \\ H_B^n(G, TA) & \longrightarrow & H_B^n(G, A) & \longrightarrow & H_B^n(G, A/TA) & \longrightarrow & H_B^{n+1}(G, TA). \end{array}$$

Having proved the claim of the lemma for A/TA and using that $A \otimes \mathbb{R} \cong (A/TA) \otimes \mathbb{R}$, a simple diagram chase completes the proof for the general case. \square

Lemma 4.2. *Let G be a virtually connected, separable, locally compact topological group, with a topology given by a complete metric and let M in $mP(G)$ be finitely generated as an abelian group and with discrete topology. Let $x \in H_B^*(G, M)$ and assume that for some $n > 0$, nx lies in the image of $H_{Bb}^*(G, M) \rightarrow H_B^*(G, M)$. Then so does x .*

Proof. The connected component G_0 acts trivially on M and has finite index in G . From our assumption we infer that the image \bar{x} of x in $H_B^*(G, M \otimes \mathbb{R})$ has the property that $n\bar{x}$ lies in the image of the map $H_{Bb}^*(G, M \otimes \mathbb{R}) \rightarrow H_B^*(G, H \otimes \mathbb{R})$. Since that image is an \mathbb{R} -vector space, we conclude that \bar{x} lies in that image too. Using Lemma 4.1, it follows that already x lies in the image of $H_{Bb}^*(G, M) \rightarrow H_B^*(G, M)$. \square

The following result was proved in [1] for connected Lie groups and trivial coefficients $A = \mathbb{Z}$. However, in applications one is often confronted with Lie groups with finitely many connected components (virtually connected Lie groups), like $GL(n, \mathbb{R})$ or $O(p, q)$. The transfer map allows a natural generalization of [1, Theorem 1.2] to include such groups.

Corollary 4.3. *Let G be a virtually connected Lie group. Then the following are equivalent:*

- (1) *the radical \sqrt{G} is linear;*
- (2) *for every finitely generated G/G_0 -module M , the forgetful map $H_{Bb}^*(G, M) \rightarrow H_B^*(G, M)$ is surjective.*

Proof. That (2) \Rightarrow (1) is the content of Corollary 2.5, so we show that (1) \Rightarrow (2). For this we consider the commutative diagram

$$\begin{array}{ccccc} H_{Bb}^*(G, M) & \xrightarrow{\text{Res}} & H_{Bb}^*(G_0, M) & \xrightarrow{\text{Tran}} & H_{Bb}^*(G, M) \\ \downarrow \varepsilon & & \downarrow \zeta & & \downarrow \eta \\ H_B^*(G, M) & \xrightarrow{\text{Res}} & H_B^*(G_0, M) & \xrightarrow{\text{Tran}} & H_B^*(G, M). \end{array}$$

Since G_0 is connected, the G_0 -action on M is trivial. Because $\sqrt{G} = \sqrt{G_0}$ we conclude from [1, Lemma 3.5] that ζ is surjective. It follows that for $x \in H_B^*(G, M)$, the element $\text{Tran} \circ \text{Res}(x) = [G : G_0] \cdot x$ lies in the image of η . By Lemma 4.2, we conclude that x lies in the image of η too, completing the proof. \square

REFERENCES

- [1] I. Chatterji, G. Mislin, C. Pittet and L. Saloff-Coste, *On the bounded cohomology of Lie groups*. preprint 2009. (arXiv:0904.3841v2)
- [2] N. Monod, *Continuous Bounded Cohomology of Locally Compact Groups*. Lecture Notes in Mathematics, Vol. 1758, Springer-Verlag, 2001.
- [3] C. C. Moore, *Group extensions and cohomology of locally compact groups*. Trans. Amer. Math. Soc. **221** (1976), no. 1, 1–33.
- [4] G. Warner, *Harmonic Analysis on Semi-Simple Lie Groups*. Springer, 1972.
- [5] D. Wigner, *Algebraic cohomology of topological groups*. Trans. Amer. Math. Soc. **178** (1973), 83–93.

MAPMO UNIVERSITÉ D’ORLÉANS, ORLÉANS
E-mail address: indira.chatterji@univ-orleans.fr

MATHEMATICS DEPARTMENT, ETH ZÜRICH
E-mail address: mislin@math.ethz.ch
Current address: Mathematics Department, Ohio-State University
E-mail address: mislin@math.ohio-state.edu