Boğaziçi University Department of Mathematics Math 331 Metric Spaces Fall 2025 – First Midterm Exam·

1	2	3	4	5	\sum
PROF	OSED	SOL	JIIN		
20 pts	20 pts	20 pts	24 pts	18 pts	100 pts

Date:	October 27, 2025	Full Name:
Time:	17:00-19:00	

In this exam, X = (X, d) denotes an arbitrary metric space; $(V, ||\cdot||_V)$ denotes an arbitrary normed space. A metric g on a set Y that satisfies the stronger axiom $g(a,c) \leq \max(g(a,b),g(b,c))$ for all $a,b,c \in Y$ is called an ultrametric on Y.

Recall the expression for the *p-norm* over \mathbb{R}^n : $||\mathbf{x}||_p \stackrel{\text{def}}{=} \left(\sum_{i=1}^n |x_j|^p\right)^{1/p}$.

1. (a) (p. 5) For any $x, y \in X$, let $d'(x, y) = \min(d(x, y), 1)$. Show that this bounded d' is also a metric on X. (b) (p. 74) Show that (X, d') is homeomorphic to (X, d) when (X, d) is a bounded space.

(a) • $d(n,y) = 0 \Leftrightarrow d(n,y) = 0 \Leftrightarrow n = y$. • d'(n,y) = d'(y,n).

• $d'(x_{1}y) \leq \min(d(x_{1}z) + d(y_{1}z), 1) \leq \min(d(x_{1}z), 1) + \min(d(y_{1}z), 1) = d(x_{1}z) + d'(y_{1}z)$

(b) d and d' are equivalent: $\forall x,y \in X: d'(x,y) \leq d(x,y) \leq M.d(x,y)$ where M is a bound for d over X. By thm, the result follows.

Note. Claim true even if (X,d) is not bounded: YBd is open witd 1 Can you show
2. Prove directly from definitions:

& YBd is open witd. 1 Can you show
this?

2. Prove directly from definitions:

(p. 65) All linear mappings $T: (\mathbb{R}^n, ||\cdot||_1) \to V$ are continuous.

Fix a basis of u,,.., uny for IR". Given T, set M= max Tuj. For uEIRT, express u= Zajuj. Gilber E>O, we want E> ||Tully = ≥ lajl. T(uj) & M ≥ lajl = M. ||ully. So just choose S= E/M. Then ||ully < 8 ⇒ ||Tully < M. ||ully < E.

3. Consider the space \mathcal{C} of all continuous functions from [0,1] to [-1,+1] with the ∞ -norm (the supremum norm). Show that the set $P = \{ f \in \mathcal{C} : |f(x)| > 0 \text{ for all } x \in [0,1] \}$ is open in \mathcal{C} .

Let $g \in P$. Set $s = \inf_{x \in A} g(x) = \min_{x \in A} g(x)$. Since $g(x) \in P$.

For this page do not use any other paper for solutions. Use the spaces provided below.

- 4. TRUE or FALSE. 8 pts each... Either prove or refute. Refuting is a proof; you can do this by giving an explicit counterexample and proving that that example works.
 - (a) Every function from X to a discrete metric space is continuous.

FALSE: Let
$$X=\mathbb{R}$$
, Y a discrete space with $a,b\in Y$.
Consider $f:\mathbb{R}\to Y$, $f(x)=\{a,n\in \mathbb{R}\}$. OR easier: id: $(\mathbb{R},\text{eucl})\to (\mathbb{R},\text{discrete})$
Observe $\forall S>0$, $f(B_S(0))=\{a,b\}$.
So given $0<\epsilon<1$, there is no $S>0$ s.t. $f(B_S(0))\subset B_E(a)=a$

(b) $||\mathbf{x}||_{1/2}$ is a norm on \mathbb{R}^n , n > 0.

FALSE: For
$$n=2$$
 and $(1,0)$, $(0,1) \in \mathbb{R}^2$
 $\|(1,0) + (0,1)\|_{1/2} = \|(1,1)\|_{1/2} = (\sqrt{1} + \sqrt{1})^2 = 4$, while $\|(1,0)\|_{1/2} + \|(0,1)\|_{1/2} = 1 + 1 = 2$ fails

(c) Let B be an arbitrary open ball in a space Y with an ultrametric g. Then any point of B is a center of B.

TRUE: Let
$$B=B_r(y)=\{n\in Y\mid d(n,y)\leqslant r\}$$

Take $2\in B$. Then $\forall n\in B$, $d(n,2)\leqslant max(g(n,y),g(y,2))$
 $\leq max(r,r)=r$.
Hence $B_r(y)\subseteq B_r(n)$. Similarly $B_r(n)\subseteq B_r(y)$.

- 5. TRUE or FALSE? 3 pts each... No justification required. An incorrect answer cancels a correct one.
- In any metric space, any finite subset has empty interior.
- In a discrete space, the interior of a single-ton is nonempty. For any $a \neq b \in X$, there are open sets A and B in X such that $a \in A$, $b \in B$, $A \cap B = \emptyset$.
- For any $a \neq b \in A$, there are open sets A and B in A such that $a \in A$, $b \in B$, A set $a \in A$, $b \in B$, $a \in A$. Set $a \in A$, $b \in A$, then the open balls $a \in A$, $b \in B$, $a \in B$. For the norm- $a \in A$ unit sphere in \mathbb{R}^2 , its diameter in any $a \in A$. With respect to any $a \in A$ in the $a \in A$, $b \in B$, $a \in B$. With respect to any $a \in A$ in the $a \in A$, $b \in B$, $a \in B$
- Let d and d' be **equivalent** metrics on X.

A sequence is Cauchy with respect to d if and only if it is Cauchy with respect to d'.

(0,1), eucl) homeom to (R, wcl). However $(1-\frac{1}{n})_{n=1}^{\infty}$ is Carchy in the 1st not in 2nd. A linear mapping from one normed space to another is continuous if and only if it is bounded on

of thm bounded sets.