7#2		0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
7#1	$^{\cdot 1}$ α	0	0	0	0	0	0	0
G#2	$\sigma_1 \alpha$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
<u></u>	$\sigma_1 \alpha$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$I_{c+}^{\#1}$	$^{1}^{\dagger}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
O#2	$^{\circ}1^{+}\alpha\beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma^{\#_1}_{+}$	$^{-1}^{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
		$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\left.\sigma_{1}^{\#1} + ^{lpha} \right $	$\sigma_{1}^{#2} +^{\alpha}$	$\left[au_{1}^{\#1} +^{lpha} ight]$	$\tau_1^{\#2} + \alpha$

	Lagrangian de
(No massless particles)	

 $\frac{1}{3}t_1\;\omega_{,\alpha}^{\;\alpha\prime}\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_1\;\omega_{,\kappa\lambda}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}+\frac{2}{3}r_2\;\partial^\beta\omega^{\theta\alpha}_{\;\;\kappa}\partial_\theta\omega_{\alpha\beta}^{\;\;\kappa}$ $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa}^{}+\frac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{\alpha\beta\theta}\,\partial^{\kappa}\omega_{\alpha\beta\theta}^{}+$ $4\,r_3\,\partial_\theta\omega_\lambda^{\alpha}\,\partial_\kappa\omega^{\theta\kappa\lambda} - \tfrac{1}{2}\,t_1\,\partial^\alpha f_{\theta\kappa}\,\partial^\kappa f_{\theta} - \tfrac{1}{2}\,t_1\,\partial^\alpha f_{\theta}\,\partial^\kappa f_{\theta} - \tfrac{1}{2}\,t_1\,\partial^\alpha f_{\kappa}\,\partial^\kappa f_{\lambda}$ $_{,}^{\prime}+\tfrac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\lambda}\;\partial^{\kappa}f^{\prime}_{}+\tfrac{2}{3}t_{1}\;\partial^{\alpha}f_{\kappa\alpha}\;\partial^{\kappa}f^{\prime}_{}-\tfrac{1}{3}t_{1}\;\partial_{\kappa}f^{\lambda}_{}\;\partial^{\kappa}f^{\prime}_{}+$ $2t_1 \,\, \omega_{,\kappa\theta} \,\, \partial^\kappa f^{'\theta} - \tfrac{1}{3} t_1 \,\, \omega_{,\alpha}^{\ \ \alpha} \,\, \partial^\kappa f^{'}_{\ \ \kappa} - \tfrac{1}{3} t_1 \,\, \omega_{,\lambda}^{\ \ \lambda} \,\, \partial^\kappa f^{'}_{\ \ \kappa} + \tfrac{1}{2} t_1 \,\partial^\alpha f^{\lambda}_{\ \ \kappa} \,\partial^\kappa f_{\lambda\alpha} +$ $\frac{1}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\alpha\beta\theta} - \frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} + 4r_3\partial_\alpha\omega_{\lambda}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} \frac{1}{2}t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + \frac{1}{2}t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f_{\lambda}^{\theta} - \frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda\kappa} + \frac{1}{3}r_2 \partial_{\kappa} u$ $\frac{2}{3}r_2 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3}r_2 \partial^{\beta} \omega_{\alpha}^{\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\lambda} + \frac{2}{3}r_2 \partial^{\beta} \omega_{\lambda}^{\lambda\alpha} \partial_{\lambda} \omega_{\alpha\beta}^{\lambda} 4 r_3 \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} - 4 r_3 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} + 4 r_3 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \rho}$ ensity $\frac{1}{3}t_1 \omega_{\kappa\alpha}^{\quad \alpha} \partial^{\kappa} f'$

$f_{1^-}^{\#2}$	0	0	0	<u> </u>	$\frac{1}{3}i\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{\epsilon}{\tau_2}$	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}~\omega_{1}^{\#2}{}_{\alpha\beta}$	_ <u>t1</u> _ 2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#_2^2} +^{\alpha\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#_{1}} \dotplus^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	#2 +α 1-

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{-}$ $a_{eta\chi}$	0	0	$\frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_{2}^{#1} + \alpha^{\beta}$	$f_{2+}^{#1} +^{\alpha\beta}$	$\omega_{2}^{#1} +^{\alpha \beta \chi}$

 $k^2 r_2 - t_1$

0

0

0

0

0

0

0

 $w_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + f_{0}^{#1} + f_{$

0

0

0

0

0

0

0

 $6 k^2 r_3$

 $f_{0}^{\#1}$

 $\omega_{0^+}^{\#1}$

? $J^P = 0^-$?
?	?

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
$\frac{1}{k^{\mu}}$?	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

$\tau_{0}^{#2}$	†	0	0	0	C)				$\alpha\beta\chi$	0	0	$\frac{2}{t_1}$	
$\sigma_0^{\#1}$	+	0	0	0	$\frac{1}{k^2 r_2}$	- <u>-</u>				$\sigma_{2^{\text{-}}}^{\#1}$			(4) 45	
	#	П	-	М	m	m	m	2	19	$ au_2^{\#1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
Source constraints	sde			$+2ik\sigma_{1}^{\#1}\alpha == 0$		$\sigma_1^{\#2}\alpha$	$+ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\bar{l} k \sigma_2^{\#1} \alpha \beta == 0$		$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$ -	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
Source co	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} == 0$	$\tau_1^{\#2\alpha} + 2$	$\tau_1^{\#1}{}^\alpha == 0$	$\sigma_{1}^{\#1\alpha} == \alpha$		$\tau_2^{\#1}\alpha\beta$ - 2 i k	Total #:		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{\alpha\beta\chi}$	