Prueba Experimental

(Versión oficial en español)

E2 - 1

Radiación de calor

Objetivo: determinar la longitud y el diámetro del filamento de una lámpara incandescente (bombilla).

Elementos

- 1. Una fuente de corriente continua (debe usarse siempre en la posición de $V_0=6~{\rm V}$).
- 2. Una placa de pruebas electrónicas (Protoboard) con un resistor ajustable, una bombilla y un resistor fijo de valor $R_f=1~\Omega$, conectados entre sí como se muestra en la figura.
- 3. Un multímetro (debe usarse solamente como voltímetro; está prohibido utilizar el multímetro para medir resistencia y/o intensidad eléctrica).
- 4. Un destornillador (se usa para manipular el valor de la resistencia ajustable).
- 5. Tres pares de cables de conexión.

Introducción

El filamento en cuestión es un delgado alambre de tungsteno en forma helicoidal, que alcanza la incandescencia con el paso de la corriente eléctrica, irradiando luz y calor. La resistencia óhmica R del filamento aumenta linealmente con la temperatura absoluta T, es decir:

$$\frac{\Delta R}{\Delta T} = \alpha R_0 \tag{1},$$

en donde R_0 es la resistencia del filamento a temperatura ambiente y $\alpha=5.1\times10^{-3}~K^{-1}$ es el coeficiente térmico de resistividad del tungsteno. La resistividad del tungsteno a 20 °C es $\rho_0=5.5\times10^{-8}~\Omega\cdot\mathrm{m}$.

Prueba Experimental

(Versión oficial en español)

E2 - 2

Procedimiento y tareas

1. Características del filamento

El valor r de la resistencia ajustable se manipula girando el tornillo que sobresale en ésta. Debido a la naturaleza de la resistencia ajustable, su sensibilidad al giro del tornillo varía sustancialmente en el rango de medición; esto no significa que tenga averías.

- 1.1 Conecte a la fuente los cables que salen de la Protoboard para construir el circuito indicado en la figura.
- 1.2 [2,5 ptos.] Cambiando el valor de r, mida la tensión V en la bombilla: haciendo al menos diez mediciones entre 0,030 V y 0,100 V y al menos otras diez entre 0,100 V y 5,60 V. Simultáneamente mida otra(s) tensión(es) en el circuito, a partir de la(s) cual(es) pueda calcular la intensidad de la corriente eléctrica I en la bombilla, su resistencia óhmica R y la potencia disipada P en la bombilla. Escriba sus datos en la tabla 1.
- 1.3 [0,5 ptos.] Construya la curva característica de *I* en función de *V* de la bombilla (gráfica 1).
- 1.4 [0,5 pto.] Construya la curva de P en función de R (gráfica 2).

2. Resistencia de la bombilla a temperaturas cercanas a la ambiente

A temperaturas cercanas a la ambiente se puede despreciar la variación de la resistencia óhmica del filamento con la temperatura.

2.1 [1 pto.] A partir de la gráfica 1 determine la resistencia R_0 a temperaturas cercanas a la ambiente, con su incertidumbre.

3. Relación entre la potencia disipada y la resistencia a temperaturas altas

A temperaturas altas la energía del filamento se disipa principalmente por radiación. En este caso la potencia disipada es:

$$P = A\sigma T^4 \tag{2},$$

donde A es el área del filamento y $\sigma = 5.67 \times 10^{-8}$ Wm⁻²K⁻⁴ es la constante de Stefan–Boltzman.

- 3.1 [1,5 ptos.] A partir de las ecuaciones (1) y (2) encuentre una expresión que relacione la potencia disipada P con la resistencia R del filamento.
- 3.2 [2 ptos.] Grafique una linealización de la expresión encontrada en 3.1 (gráfica 3).

4. Longitud y diámetro del filamento

- 4.1 [1 pto.] Determine la longitud del filamento, con su incertidumbre.
- 4.2 [1 pto.] Determine el diámetro del filamento, con su incertidumbre.