Chapitre 4 Les structures de contrôle

Exécution non séquentielle

- Les branchements conditionnels
 - if else
 - Switch
- Les boucles
 - while
 - do while
 - for
- Les branchements inconditionnels
 - break
 - continue
 - goto
 - return
 - exit

• Traduction des instructions : schéma conditionnel

Syntaxe en algo	Syntaxe en C
Si condition Alors Début Si instructions Fin Si	<pre>if (condition) { instructions }</pre>
Si condition Alors Début Si instructions Fin Si Sinon	if (condition) { instructions } else
Début Sinon instructions Fin Sinon	instructions }

Traduire en C

```
Si X > 0 alors
Début Si
   Ecrire("X supérieur à 0")
Fin si
Sinon
Début Sinon
   Si X=0 alors
    Début Si
       Ecrire("X égal à 0")
   Fin Si
   Sinon
    Début Sinon
       Ecrire("X inférieur à 0")
    Fin Sinon
FinSinon
```

Corrigé

Traduire en C

```
if (X > 0)
    printf("X supérieur à 0");
else
    if(X==0)
        printf("X égal à 0");
    else
        printf("X inférieur à 0");
```

Branchements conditionnels (Switch)

L'expression (entière) est évaluée. On passe alors au case correspondant et on exécute les instructions à partir de ce point. Si aucun case ne correspond, on exécute instrF.

```
switch(c){
  case 'a':     printf(''aba");
  case 'e':     printf(''ebe");
  default:     printf(''ibi");
}
```

Choix multiple: « switch case »

```
/* Utilisation de switch case */
main()
                                   Paramètre de décision
 char choix;
                                    Exécuté si choix = a
 switch(choix)
   case 'a': fonetionA();
                                    Exécuté si choix = a ou b
   case 'b': fonctionB();
                                    Exécuté si choix = a, b ou c
   case 'c': fonctionC();
                                     Exécuté si choix non
   default : erreur(3);
                                     répertorié par un « case »
```

Effet du « break »

```
/* Utilisation de switch case */
main()
                                  Paramètre de décision
 char choix;
                                    Exécuté si choix = a
 switch(choix)
   case 'a': fonetionA(); broak Exécuté si choix = b
   case 'b': fonctionB(); break
                                   Exécuté si choix = c
   case 'c': fonctionC(); break;
                                     Exécuté si choix non
   default : erreur(3);
                                     répertorié par un « case »
                                                           8
```

• Traduction des instructions : boucle Pour

Syntaxe en algo	Syntaxe en C
Pour i ← «valeur initiale» à « valeur finale»	for ($i = $ « valeur initiale»; $i < = $ « valeur
[de pas p] Faire	finale»; $i = i + p$)
instructions	{
Fin Pour	instructions
	}

Syntaxe en algo	Syntaxe en C
Pour i ← 1 à 100 de pas 1 Faire	for $(i = 1; i < = 100; i = i + 1)$
Fin Pour	<pre>{ }</pre>
Pour i ← 1 à 100 Faire	for $(i = 1; i < = 100; i++)$
Fin Pour	<pre>{ }</pre>

Traduire en C

```
Algorithme Factorielle
   Variables n, fact : Entier
   Début
            fact \leftarrow 1
             Pour n ← 1 à 100 Faire
                 fact \leftarrow (n * fact)
            Fin pour
   Ecrire ("La factorielle de 100 est ", fact)
   Fin
```

Corrigé

```
#include <stdio.h>
#include <stdlib.h>
int main ()
    int n, fact;
    fact = 1;
    for (n=1; n \le 100; n++)
        fact = (n * fact);
   printf ("La factorielle de 100 est %d", fact);
    return EXIT_SUCCESS;
```

• Traduction des instructions : boucle Tant que et répéter tant que

Syntaxe en algo	Syntaxe en C
Tant que condition Faire	while (condition)
instructions	{
Fin Tant que	instructions
	}

Syntaxe en algo	Syntaxe en C
Répéter	do
instructions	{
Tant que condition	instructions
	<pre>}while (condition);</pre>

Traduire en C

```
Algorithme Saisie
    Variable n : Entier
    Début
            Lire (n)
            Tant que n > 0 Faire
                Écrire ("Saisissez un nombre")
                Lire(n)
            Fin Tant que
    Fin
```

Corrigé

```
#include <stdio.h>
#include <stdlib.h>
int main ()
    int n;
    scanf("%d",&n);
    while (n > 0)
       printf("Saisissez un nombre");
        scanf("%d",n);
    return EXIT_SUCCESS;
```

Exemples

Exemple 1
 /* Afficher les

```
/* Afficher les nombres de 0 à 9 */
int I = 0;
while (I<10) {
    printf("%i \n", I); I++; }
```

Exemple 2

Branchements inconditionnels

- break: provoque la sortie immédiate de la boucle ou du switch en cours.
- continue: passage à la prochaine itération d'une boucle.
- goto: branchement sur une ligne labellisée.
- return: permet de sortir (proprement) de la fonction et de retourner une valeur (résultat de la fonction,...)
- exit: permet de quitter le programme avec une valeur, avec flush et fermeture des fichiers, libération de la mémoire....

Travaux pratiques

Exercice

Ecrire un programme qui permet de calculer et d'afficher le produit deux entiers saisis au clavier

```
#include <stdio.h>
#include <stdlib.h>
int main(){
    int x, y, prod;
    printf("Entrer deux valeurs entiers :");
    scanf("%d %d",&x, &y);
    prod = x*y;
    printf("Le produit de %d et de %d est : %d", x, y, prod);
    return EXIT_SUCCESS;
}
```

Travaux pratiques

Exercice

Ecrire un programme qui permet de calculer et d'afficher la somme de deux flottants saisis au clavier

```
#include <stdio.h>
#include <stdib.h>
int main(){
    float x, y, som;
    printf(" Entrer deux valeurs entiers :");
    scanf("%f %f",&x, &y);
    som = x+y;
    printf("le produit de %f et de %f est : %f", x, y, som);
    return EXIT_SUCCESS;
}
```

Travaux pratiques

Exercice

Ecrire un programme qui permet de comparer deux entiers :

```
#include <stdio.h>
#intclude <stdlib.h>
int main(){
         int x, y;
         printf("Entrer deux entiers ");
         scanf("%d %d", &x, &y);
          if (x > y){
                printf("%d est supérieur à %d", x, y);
         else {
            printf("%d est supérieur à %d", y, x);
        return EXIT_SUCCESS;
```

Exercice 1: Saisir un caractère au clavier avec scanf.
 Afficher son code ASCII à l'écran

Solution 1

```
#include <stdio.h>
void main() {
    char caractere ;
    scanf ("%c ", &caractere );
    printf ("dode ASCII du caractère saisi :%d ", caractere );
    return 0;
}
```

• Exercice 2

- Ecrire un programme C permettant de poser la question 'voulez-vous jouer ?'
- Il y aura saisie d'une réponse avec la fonction **getchar.** Si la réponse est 'o' ou 'O' vous affichez " c' est parti!". Si la réponse est 'n' ou 'N' vous affichez " tant pis"

Solution 2

```
#include <stdio.h>
void main() {
  char reponse;
  printf ("Voulez-vous jouer?");
  reponse=getchar();
 if (reponse=='o' || reponse=='O')
       printf ("\n c'est parti");
 else if (reponse=='n' || reponse=='N')
       printf ("\n tant pis");
```

- Exercice 3: Saisir un entier n puis calculer n !
 - 1) Utiliser une boucle while
 - 2) Utiliser une boucle for

Solution 3

```
/*solution avec for*/
#include <stdio.h>
void main() {
    int i, n, result;
   scanf("%d",&n); /*saisi l'entier n*/
   for(i=1;i<=n; I++)
      result=result*I; /*calcul de la factorielle*/
   printf(" %d ", result); /* affichage*/
```

Solution 3 suite

```
/*solution avec while*/
#include <stdio.h>
void main() {
   int i, n, result;
   scanf("%d",&n); /*saisi l'entier n*/
   while(I<=n)
     result=result*I; /*calcul de la factorielle*/
     i++;
  printf(" %d ", result); /* affichage*/
```

 Exercice 4: Ecrire un programme qui affiche la moyenne d'une suite d'entiers positifs entrés au clavier. On arrêtera la saisie quand le nombre -1 est entré, comme dans l'exemple suivant :

Entrez un entier positif: 5

Entrez un entier positif: 2

Entrez un entier positif: 3

Entrez un entier positif: -1

La moyenne de ces 3 entiers vaut 3.333333

Solution 4 4: /*** calcul de la moyenne d'une suite d'entiers #include <stdio.h> main() { int n = 0, x = 0, somme = 0; do somme += x; printf("Entrez un entier positif:"); scanf("%d",&x); n++; while (x != -1); printf("La moyenne de ces %d entiers vaut %f\n",n -1, (float)somme/(n-1));

Exercice 5: Ecrire un programme qui calcule Xⁿ
 où x est un nombre réel de type double et n un entier, tous deux entrés au clavier. On écrira le programme en utilisant une boucle for, puis une bouche while

```
Solution 5:
                                                   ***/
                       calcule de x^n
#include <stdio.h>
main() {
      int n. i:
     double x, puissance;
     printf("Entrez x : ");
     scanf("%lf",&x);
     printf("Entrez n : ");
     scanf("%d",&n);
    printf("\n Calcul de x^n avec une boucle for\n");
   for (i = 1, puissance = 1; i \le n; i++)
     puissance *= x;
  printf("(%lf) ^{\circ} %d = %lf\n",x,n,puissance);
  printf("\nCalcul de x^n avec une boucle while\n");
    i = 0; puissance = 1;
  while (i < n) {
      puissance *= x;
      i++;
 printf("(%lf) ^ %d = %lf\n",x,n,puissance);
```