$$T(n) = n + T(n-1)$$

$$= n + (n-1) + T(n-2)$$

$$= n + (n-1) + (n-2) + T(n-3)$$

$$= n + (n-1) + \dots + 3 + 2 + T(1)$$

$$= h(n+1) - 1 + T(1)$$

$$= \theta(n^2)$$

$$T(n) = c + T(\frac{n}{2})$$
Guess $T(n) = 0$ (Ign)
Goal: $T(n) \leqslant d$ Ign
Assume: $T(k) \leqslant d$ Igk , $\# k \leqslant n$

$$K = \frac{n}{2} \Rightarrow T(\frac{n}{2}) \leqslant d \cdot \lg \frac{n}{2}$$

$$Proof:$$

$$T(n) = c + T(\frac{n}{2})$$

$$T(n) = c + d \cdot \lg \frac{n}{2} = c + d \cdot \lg n - d \leqslant d \cdot \lg n$$

$$|\# R = c + d \cdot \lg n - d \leqslant d \cdot \lg n$$

$$|\# R = c + d \cdot \lg n - d \leqslant d \cdot \lg n$$

$$|\# R = c + d \cdot \lg n - d \leqslant d \cdot \lg n$$

$$N_0 = 1$$
: $T(1) = C \le d \lg 1 = 0$

$$C \le 0$$

$$N_0 = 2 : T(2) = C + C = 2C$$

$$|N_0=2|$$
: $T(2)=c+c=2c$
 $2c \leq dlg2 \Rightarrow d \geq 2c$

. *

s C

$$T(n) = 2T(\frac{n}{2}) + n$$

Guess: $T(n) = O(n|gn)$

Goal: $T(n) \le c \cdot n|gn$

Assume: $T(k) \le c \cdot k \cdot |gk|$, $\forall k \le n$
 $K = \frac{n}{2} : T(\frac{n}{2}) \le c \cdot \frac{n}{2} \cdot |g|^{\frac{n}{2}}$

Proof: $T(n) = 2 \cdot T(\frac{n}{2}) + n$.

 $S(n) = 2 \cdot T(\frac{n}{2}) + n$.

 $h_0=1$: $T(i)=1 \le Cnlgn=c \cdot lgl=0$ $[N_0=2]$: $T(2)=2+2=4 \le c \cdot 2 \cdot lg2$ =)[c>2]