EKSAMENDATABLAD VIR TEGNIESE WETENSKAPPE

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Standaarddruk	p_θ	1,01 × 10 ⁵ Pa
Standaardtemperatuur	T ⁰	273 K
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Planck se konstante	h	$6,63 \times 10^{-34} \text{ J} \cdot \text{s}$

TABEL 2 FORMULES

$$\begin{split} E_{sel}^{\theta} &= E_{katode}^{\theta} - E_{anode}^{\theta} \\ E_{sel}^{\theta} &= E_{reduksie}^{\theta} - E_{oksidasie}^{\theta} \\ E_{sel}^{\theta} &= E_{oksideermiddel}^{\theta} - E_{reduseermiddel}^{\theta} \end{split}$$

IEB Copyright © 2021 BLAAI ASSEBLIEF OM

TABEL 3 PERIODIEKE TABEL VAN ELEMENTE

	1	2	3	4	5	6	7 SLEU	8 ITEI	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H				Atoor	ngetal	1	2,1 -	Elekti		ıtiwitei	t						He
2	3 1,0 Li	4 1,5 Be				aderde	1 relation			001			5 2,0 B 10,8	6 2,5 C	7 3,0 N	8 3,5 O	9 4,0 F	10 Ne 20
3	11 0,9 Na 23	Mg 24,3				mmas							13 1,5 A2 27	14 1,8 Si 28	15 2,1 P 31	16 2,5 S 32	17 3,0 Cℓ 35,5	18 Ar 40
4	19 0,8 K 39 37 0,8	Ca	Sc 45	22 1,5 Ti 48 40 1,4	V 51	24 1,6 Cr 52	Mn 55	26 1,8 Fe 56 44 2,2	Co 59	Ni 59		Zn 65,4	Ga	Ge 72,6	33 2,0 As 75 51 1,9	Se 79	Br	Kr 84
5	85,5 55 0,7	Sr 88	Y 89	91 72 1,6	Nb 93	Mo 96 74	75 TC	Ru 101 76	Rh 103	Pd 106 78	Ag	112 80	49 1,7 In 115 81 1,8	Sn 119	Sb 121 83 1,9	Te	 127	Xe 131
6	Cs 133 87 0,7	Ba 137,3 88 0,9	La	Hf 178,5	Ta	W 184	Re 186	Os	Ir 192	Pt 195	Au 197	Hg 200,6	Te 204,4	Pb 207	Bi 209	Po	At	Rn
7	Fr	Ra	Ac		58	59	60	61	62	63	64	65	66	67	68	69	70	71
					Ce 140	Pr 141	Nd	Pm	Sm 150	Eu 152	Gd	Tb 159	Dy 163	Ho 165	Er 167	Tm 169	Yb 173	Lu 175
					90 Th 232	91 Pa	92 U 238	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

TABEL 4A

STANDAARDREDUKSIEPOTENSIALE

STANDAARDREDUKSIEPOTENSIALE Halfreaksies Ε ^θ (V)								
$F_2(g) + 2e^-$	ireaks ←	2F ⁻	+2,87					
Co ³⁺ + e ⁻		Co ²⁺						
	=		+1,81					
H ₂ O ₂ + 2H ⁺ + 2e ⁻	<i>≠</i>	2H ₂ O	+1,77					
MnO + 8H ⁻ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+1,51					
$C\ell_2(g) + 2e^-$	=	2Cl ⁻	+1,36					
Cr ₂ O + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33					
$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1,23					
MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,23					
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+1,20					
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+1,07					
NO + 4H+ + 3e-	\rightleftharpoons	NO(g) + 2H2O	+0,96					
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+0,85					
Ag+ + e ⁻	\rightleftharpoons	Ag	+0,80					
NO + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80					
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77					
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68					
I ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54					
Cu+ + e-	\rightleftharpoons	Cu	+0,52					
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H2O	+0,45					
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+0,40					
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34					
SO + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17					
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺ (0)	+0,16					
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15					
S + 2H+ + 2e-	=	$H_2S(g)$	+0,14					
2H+ + 2e-	+	H ₂ (g)	0,00					
Fe ³⁺ + 3e ⁻	≓	Fe	-0,06					
Pb ²⁺ + 2e ⁻	<u>+</u>	Pb	-0,13					
Sn ²⁺ + 2e ⁻	<u>,</u>	Sn	-0,14					
Ni ²⁺ + 2e ⁻	` ≓	Ni	-0,27					
Co ²⁺ + 2e ⁻	<u>`</u>	Co	-0,28					
Cd ²⁺ + 2e ⁻	` ⇌	Cd	-0,40					
Cr ³⁺ + e ⁻	<u>`</u>	Cr ²⁺	-0,41					
Fe ²⁺ + 2e ⁻	-	Fe	-0,44					
Cr ³⁺ + 3e ⁻	-	Cr	-0,74					
Zn ²⁺ + 2e ⁻	-	Zn	-0,76					
2H ₂ O + 2e ⁻	-	H2(g) + 2OH ⁻	-0,83					
Cr ²⁺ + 2e ⁻	-	Cr	-0,91					
Mn ²⁺ + 2e ⁻	-	Mn	-1,81					
$A\ell^{3+} + 3e^{-}$	-	Αℓ	-1,66					
$Mg^{2+} + 2e^{-}$	-	Mg	-1,00 -2,36					
Na ⁺ + e ⁻	=	Na	-2,36 -2,71					
Ca ²⁺ + 2e ⁻	= ≠	Ca	-2,71 -2,87					
Sr ²⁺ + 2e ⁻	= ≠	Sr						
Ba ²⁺ + 2e ⁻			-2,89					
	=	Ba	-2,90 2,02					
Cs+ + e-	=	Cs	-2,92					
K+ + e-	=	K	-2,93					
Li+ + e-	=	<u>Li</u>	-3,05					

Toenemende reduksievermoë

Toenemende oksidasievermoë

TABEL 4B STANDAARDREDUKSIEPOTENSIALE

	На	Ε ^θ (V)		
	Li+ + e-	=	Li	-3,05
	K+ + e-	\rightleftharpoons	K	-2,93
	Cs+ + e-	\rightleftharpoons	Cs	-2,92
	Ba ²⁺ + 2e ⁻	=	Ва	-2,90
	Sr ²⁺ + 2e ⁻	→	Sr	-2 ,89
	Ca ²⁺ + 2e ⁻	÷	Ca	-2,87
	Na+ + e-	÷	Na	-2,71
	Mg ²⁺ + 2e ⁻	÷	Mg	-2,36
	$A\ell^{3-} + 3e^{-}$	÷	Αℓ	-1,66
	Mn ²⁺ + 2e ⁻	÷	Mn	-1,18
	Cr ²⁺ + 2e ⁻	÷	Cr	-0,91
	2H ₂ O + 2e ⁻	÷	H ₂ (g) + 2OH ⁻	-0,83
	Zn ²⁺ + 2e ⁻	=	Zn	-0,76
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
	Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	-0,41
	Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
:e	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,27
enemende oksidasievermoë	Sn ²⁺ + 2e ⁻	=	Sn	-0,14
\ e	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
<u>ë</u> .	Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,06
Jas	2H+ + 2e-	=	H ₂ (g)	0,00
Sig	S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
\ \frac{8}{6}	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
de	Cu ²⁺ + e ⁻	\rightleftharpoons	Cu ⁺	+0,16
en	SO + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
E E	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
en	2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+0,40
P	SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H2O	+0,45
	Cu+ + e-	\rightleftharpoons	Cu	+0,52
	I ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
	Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
	NO + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80
₩	Ag+ + e-	\rightleftharpoons	Ag	+0,80
	Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\ell)$	+0,85
	NO + 4H ⁺ + 3e ⁻	\rightleftharpoons	NO(g) + 2H2O	+0,96
	$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br	+1,07
	Pt ²⁺ + e ⁻	\rightleftharpoons	Pt	+1,20
	MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,23
	$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	$2H_2O$	+1,23
	Cr ₂ O + 14H ⁺ + 6e ⁻	\rightleftharpoons	$2Cr^{3+} + 7H_2O$	+1,33
	$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+1,36
	MnO + 8H+ + 5e-	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+1,51
	H ₂ O ₂ + 2H ⁺ + 2e ⁻	\rightleftharpoons	$2H_2O$	+1,77
	Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+1,81
	$F_2(g) + 2e^-$	\rightleftharpoons	2F ⁻	+2,87

Toenemende reduksievermoë