

Università di Pisa

Dept. of Information Engineering

Course on Wireless Networks - 2020/2021

Virtualization (LAB)

Alessandra Fais – PhD Student

email: alessandra.fais@phd.unipi.it

web page: for.unipi.it/alessandra_fais/

LAB organization

- PART I (theoretical)
 - ☐ Introduction to SDN, NFV, MEC * concepts
 - Cloud computing and service-based architectures

- □ PART II
 - OpenStack cloud computing platform
 - OpenStack and NFV
 - Live session: OpenStack platform of the DII CrossLab project

* SDN = Software Defined Networking, NFV = Network Function Virtualization, MEC = Multi-access Edge Computing

LAB organization

□ PART III

* VM = Virtual Machine

- Virtualization overview and different approaches
 - VMs* on hypervisors, containers, alternative solutions
- ☐ Hands-on session: VirtualBox + Ubuntu Linux VM creation

- PART IV
 - □ Containers -> Docker
 - Orchestrators -> Kubernetes
 - Hands-on session: Docker, docker-compose, Kubernetes

PART II

Outline

- 1) The OpenStack Cloud Computing Platform
 - Overview of the framework
 - Core services
 - The CrossLab real-world use case (live session)
- 2) OpenStack and NFV
 - ETSI NFV architecture
 - NFV platform components
 - General components (recap)
 - RedHat NFV components (brief overview)

The OpenStack Cloud Computing Platform

The Red Hat OpenStack Platform (RHOSP)

- Open source standard cloud computing platform
- Infrastructure-as-a-Service (laaS)
- Build and manage private, public or hybrid cloud platforms from the available physical hardware
 - Virtual resources are made available to users through a common API abstraction layer

The Red Hat OpenStack Platform (RHOSP)

- Collection of interacting services
 - Control computing, storage, network resources, ...
- Scale up or down the created cloud, based on the current requirements
- On-demand deploy of cloud workloads
- Security and performance

Stability and agility

OpenStack Framework Overview (1/3)

OpenStack Framework Overview (2/3)

Dashboard (GUI) Your Applications Monitoring & Tools

Hypervisor (abstract hardware resources)

Software Defined Network (abstract network resources)

Software Defined Storage (abstract storage resources)

Infrastructure below the framework

Physical layer (servers, network, storage)

OpenStack Framework Overview (3/3)

Plugin or driver interface with the physical resources

OpenStack Framework Overview: example

OpenStack Framework Overview: example

OpenStack Framework: core services

- A number of components (projects) provide APIs to access infrastructure resources
 - Different services can be deployed to provide various types of resources to cloud end users
 - Possibility to deploy third-party services too (e.g. Kubernetes)
- A full list of the OpenStack components can be found here: https://www.openstack.org/software/project-navigator/openstack-components#openstack-services

openstack.

Shared Services

- Keystone
- Glance

Keystone: identity service

 Centralized service for authentication and authorization to all OpenStack services

- Manages users, projects and roles
- Provides API client authentication, service discovery, and distributed multi-tenant authorization
- Supports multiple authentication mechanisms, including username and password credential and token-based systems

Glance: image service

- Stores resources such as VM images and volume snapshots
- Depends on Keystone

Key aspects:

- Acts as a registry service for virtual disk images
- Offers a RESTful API
- VM images can be stored in a variety of locations
 - Simple file systems
 - Object-storage systems (e.g. OpenStack Swift)

Full Documentation:

Computing, Networking and Storage

- Nova
- Neutron
- Cinder
- Swift

Nova: compute service

- Manages and provisions VMs running on hypervisors nodes
- Depends on Neutron, Glance and Keystone

- Provides virtual machines on demand and schedules them on a set of nodes
- Defines drivers to interact with the underlying virtualization mechanisms
- Exposes functionality to other OpenStack components

Neutron: networking service

- Provides connectivity between the interfaces of OpenStack services
- Depends on Keystone

- Handles creation and management of a virtual networking infrastructure in the OpenStack cloud
 - Infrastructure elements: networks, subnets, routers, ...
- Advanced services can be deployed
 - Firewalls, Virtual Private Networks (VPNs)

Cinder: block storage service

- Manages persistent block storage volumes for VMs
- Depends on Keystone

- Virtualizes the management of block storage devices
- End users can access the API to request/consume resources without knowing where the storage is actually deployed or on what kind of device

Swift: object storage service

Stores and retrieves files and arbitrary data

- Implements a distributed, scalable and consistent object/blob storage
 - Ideal for storing very large amount of data, including static entities such as videos, images, emails, files, VM images
- On the underlying file system, objects are stored as binaries along with metadata (file's attributes)

Orchestration

Heat

Heat: orchestration service

- Orchestrator engine based on templates
- Depends on Keystone

Key aspects:

- Keeps blueprints/templates of the infrastructure topology
- Orchestrates infrastructure resources for a cloud application
- Supports automatic creation of resource stacks (collections of resources)
- Offers a RESTful API

Full Documentation:

Dashboard

Horizon

Horizon: dashboard service

- Web browser-based platform to manage OpenStack services
- Depends on Keystone

- Graphical User Interface accessible for users and administrators
 - Create and launch instances, manage networking, and set access control
- Default dashboards: Project, Admin, Settings
- Modular design
 - Can be extended with other products (e.g. monitoring, additional management tools)

Example: real-world use case

The Cloud Computing Platform of the DII CrossLab

If you want to know more about the CrossLab projects of the DII, Università di Pisa:

<u> https://crosslab.dii.unipi.it/</u>

Volumes Horizon: dashboard options Volumes Snapshots Compute Groups Overview Group Snapshots Instances Project Images API Access Network Key Pairs Compute > Network Topology Server Groups Volumes Networks Network > Routers Identity Security Groups Floating IPs Firewall Groups

Overview

Limit Summary

Compute

VCPUs

Used 8 of 20

Used 15.8GB of 50GB

Used 1 of 10

Volume

Used 1 of 10

Volume Snapshots

Volume Storage Used 10GB of 1000GB

Network

Floating IPs

Allocated 0 of 0

Used 1 of 10

Used 0 of 10

Used 4 of 100

Usage Summary

Select a period of time to query its usage:

The date should be in YYYY-MM-DD format.

Images

Q Click here for filters or full text search.				×	+ Create Im	age	Delete Imag	es
Displaying 14 items								
□ Name ◆	Туре	Status	Visibility	Protected	Disk Format	Size		
□ ➤ Centos 7 centos/centos	Snapshot	Active	Public	No	QCOW2	911.06 MB	Launch	•]
□ ➤ CentOS 7 KEY AUTH	Image	Active	Public	No	QCOW2	898.75 MB	Launch	•
□ ➤ Cirros cirros/gocubsgo	lmage	Active	Public	No	QCOW2	12.13 MB	Launch	
□ ➤ Contiki OS	Snapshot	Active	Public	No	QCOW2	5.80 GB	Launch	•
Debian 10 debian/debian	Snapshot	Active	Public	No	QCOW2	1.36 GB	Launch	
Debian 10 KEY AUTH	Image	Active	Public	No	QCOW2	540.19 MB	Launch	•
□ ➤ IPfire	lmage	Active	Public	No	QCOW2	1.65 GB	Launch	
□ ➤ OpenWRT	lmage	Active	Public	No	QCOW2	52.50 MB	Launch	•
□ ➤ Ubuntu 16.04 Server 32-bit KEY AUTH	Image	Active	Public	No	QCOW2	281.50 MB	Launch	-
□ ➤ Ubuntu Server 18.04 GPU ubuntu/ubuntu	Snapshot	Active	Public	No	QCOW2	10.93 GB	Launch	•
□ ➤ Ubuntu Server 18.04 KEY AUTH	lmage	Active	Public	No	QCOW2	328.56 MB	Launch	•
□ ➤ Ubuntu Server 18.04 ubuntu/ubuntu	Snapshot	Active	Public	No	QCOW2	1.04 GB 3	Launch	•]

Network Topology

External network

Internal network

OpenStack and NFV

ETSI NFV architecture

- European Telecommunications Standards Institute (ETSI)
 - ICT standardization group in Europe
- Sets the requirements, reference architecture and infrastructure specifications necessary to ensure support to virtualized functions

- Red Hat adds NFV features to OpenStack and offers integration with other products to implement full NFV support
 - Single root I/O virtualization (SR-IOV)
 - Open vSwitch with Data Plane Development Kit (OVS-DPDK)

NFV ETSI Architecture and Components

General components of NFV platform (recap)

Virtualized Network Functions (VNFs)

 Software implementation of network functions (e.g. routers, firewalls, mobile packet processors, load balancers)

• NFV infrastructure (NFVi)

- Comprehends physical resources (compute, network, storage) and the virtualization layer that make up the infrastructure
- Foundation for the NFV layer
- Managed by the Virtual Infrastructure Manager (VIM)

General components of NFV platform (recap)

NFV Management and Orchestration (MANO)

- Provides service management and orchestration required throughout the network function life-cycle
- Service definition, monitoring and life-cycle management are decoupled from the physical infrastructure
- Two interacting entities: Virtual Network Function Manager (VNFM) and Orchestrator (NFVO)
 - NFVO interacts with databases and business function applications (e.g. billing, support) and can create new services for a customer
 - VNFM triggers the instantiation of a new virtualized function (this may result in multiple virtual machine instances) when NFVO asks for a new service

RedHat NFV components

Range of products that can act as the different components of the NFV framework in the ETSI model

OpenStack Platform

Supports IT and NFV workloads

• Enterprise Linux

Creates VMs and containers as VNFs

Ceph Storage

 Unified elastic and high-performance storage layer for the service provider workloads

RedHat NFV components

Range of products that can act as the different components of the NFV framework in the ETSI model

JBoss Middleware and OpenShift Enterprise

Improve the operation and business support systems

CloudForms

 Provides a VNF manager and presents data from multiple sources, such as the VIM and NFVi in a unified view

Satellite and Ansible

 Provide enhanced systems administration, automation and life-cycle management

- Red Hat OpenStack Platform 16.0 Product Guide
 - https://access.redhat.com/documentation/en-us/red hat openstack platform/1
 6.0/html/product guide/index
- Understanding OpenStack
 - https://www.redhat.com/en/topics/openstack
- OpenStack components in detail
 - https://access.redhat.com/documentation/en-us/red hat openstack platform/1
 6.0/html/product guide/ch-rhosp-software#sect-components
- A word about OpenStack and the general OpenStack projects architecture
 - https://www.mirantis.com/blog/confusing-openstack-with-infrastructure/

- Horizon: The OpenStack Dashboard Project
 - https://docs.openstack.org/horizon/latest/index.html
- Horizon Administration Guide
 - https://docs.openstack.org/horizon/latest/admin/index.html
- OpenStack Virtual Machine Image Guide
 - https://docs.openstack.org/image-guide/index.html

Advanced topic:

- Create images manually (Ubuntu example)
 - https://docs.openstack.org/image-guide/create-images-manually.html
 - https://docs.openstack.org/image-guide/ubuntu-image.html
 - Ubuntu 19.10 Eoan Ermine
 - http://archive.ubuntu.com/ubuntu/dists/eoan/main/installer-amd64/current/ images/netboot/mini.iso

- OpenStack and NFV
 - https://access.redhat.com/documentation/en-us/red hat openstack plat form/16.0/html/network functions virtualization product guide/pr01
- Advantages of NFV
 - https://access.redhat.com/documentation/en-us/red hat openstack plat form/16.0/html/network functions virtualization product guide/ch-underst anding red hat nfv
- ETSI NFV architecture and RedHat NFV components
 - https://access.redhat.com/documentation/en-us/red hat openstack plat form/16.0/html/network functions virtualization product guide/ch-nfv soft ware