Marking Schemes

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its content with care.

Chemistry Paper 1

SECTION A

Question No.	Key	Question No.	Key
Part I	•	Part II	•
1.	A (81%)	25.	C (77%)
2.	C (88%)	26.	B (60%)
3.	D (59%)	27.	D (67%)
4.	C (75%)	28.	C (58%)
5.	B (86%)	29.	C (26%)
6.	B (59%)	30.	D (68%)
7.	A (58%)	31.	A (34%)
8.	A (66%)	32.	B (66%)
9.	C (77%)	33.	D (72%)
10.	B (63%)	34.	B (77%)
11.	A (84%)	35.	A (64%)
12.	B (50%)	36.	A (65%)
13.	C (51%)		
14.	D (75%)		
15.	B (36%)		
16.	A (68%)		
17.	C (73%)		
18.	A (85%)		
19.	C (27%)		
20.	D (38%)		
21.	C (72%)		
22.	D (49%)		
23.	C (77%)		
24.	D (58%)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

SECTION B

Part I

Marks 1. (a) 2, 8, 5 1 (b) Chlorine exists as isotopes. / There are chlorine atoms with same number of protons but different number of neutrons. (c) (i) Number of moles of P: Number of moles of Cl = 0.226/31.0 : 0.774/35.52 Molecular formula is (PCl₃)_n (31.0 + 35.5x3) n < 250n = 1Molecular formula is PCl₃ (ii) 1 2. (a) To increase the electrical conductivity of the filter paper / To increase the number of mobile 1 ions / To provide mobile ions (b) pale green 1 (c) Blue colour appears around the middle of the filter paper. 1 Fe²⁺(aq) ions move towards negative pole and Fe(CN)₆³⁻(aq) ions move towards positive pole forming a blue compound. (d) The colour around the middle of the filter paper remains unchanged. 1 Fe²⁺(aq) ions and Fe(CN)₆³⁻(aq) ions do not migrate towards each other. / K⁺(aq) ions and 1 SO₄²-(aq) ions migrate towards each other but do not form coloured compounds. (a) cracking 1 To produce alkenes / To produce smaller hydrocarbons from larger hydrocarbons / 1 To convert heavy oil to petrol (b) The reaction will be faster when using broken unglazed porcelain instead of a large piece of 1 unglazed porcelain due to larger surface area. (c) (i) $C_8H_{18} \rightarrow C_2H_6 + 2CH_3CH = CH_2 / C_8H_{18} \rightarrow C_2H_6 + 2C_3H_6$ 1 (ii) (1) Orange / brown Br₂ solution turns to colourless. (2) CH₃CHBrCH₂Br 1 (d) The delivery tube should be taken out of the water level before removing the heating source, otherwise sucking back will happen / the boiling tube will be cracked.

Marks (a) (i) s=c=s1 (ii) 1 (b) • C-H and C-Br bonds are polar. 1 C and H / C and Br have different electronegativities. / 1 C is more electron-withdrawing than H / Br is more electron-withdrawing than C. (c) The intermolecular forces between CS₂/CO₂ molecules are van der Waals' forces. As CS₂ has greater molecular size than CO₂, the van der Waals' forces between CS₂ molecules are stronger than those between CO2 molecules. (a) 1 propenoic acid 1 (b) addition 1 (c) B is a mixture of polymer molecules with different lengths. 1

1

(d)

6.	(a)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>Marks</u> 1	
	(b)	(i)	volumetric flask	1	
		(ii)	Number of moles of NaOH(aq) = 0.123×0.01845 Number of moles of citric acid reacting with NaOH(aq) = $0.123 \times 0.01845 \div 3$ Number of moles of citric acid in the sample = $0.123 \times 0.01845 \div 3 \times 10$ Percentage by mass of citric acid in the solid sample = $(0.123 \times 0.01845 \div 3 \times 10 \times 192.0 \div 1.65) \times 100\%$ = 88.0%	3	
	(c)	(i)	Colourless gas bubbles form. / Effervescence occurs.	1	
		(ii)	$H^{+} + NaHCO_3 \rightarrow H_2O + CO_2 + Na^{+}$	1	
7.	(a)	cons	stant pressure	1	
	(b)	b) It is very difficult for Mg(s), C(s) and O ₂ (g) to react directly to form MgCO ₃ (s).			
	(c)	(i)	Heat loss to surrounding / PS cup absorbs heat.	1	
		(ii)	No, because insoluble CaSO ₄ will be formed.	1	
	(d)	Mg(C(s) H ₂ (g Mg(y - :	Standard enthalpy change / kJ mol ⁻¹ $CO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$ -50 $s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$ -467 $+ O_2(g) \rightarrow CO_2(g)$ -394 $g) + 1/2 O_2(g) \rightarrow H_2O(l)$ -286 $s) + C(s) + 3/2 O_2(g) \rightarrow MgCO_3(s)$ y $50 = -467 - 394 - 286$ $-1097 \text{ kJ mol}^{-1}$	3	
8.	(a)	(i)	Reddish brown gas is observed.	1	
		(ii)	$Sr^{2^{-}} + 2e^{-} \rightarrow Sr$	1	
	(b)	Broi	nine gas formed is toxic / poisonous.	1	
	(c)	(i)	Oxidation number of Mn decreases / changes from $+4$ to $+3$. Therefore $MnO_2(s)$ is the oxidising agent.	1 1	

(ii) $2MnO_2(s) + 2NH_4^+(aq) + 2e^- \rightarrow Mn_2O_3(s) + 2NH_3(aq) + H_2O(l)$

			Marks		
9.	•	Dissolve the solids separately in water. Add aqueous ammonia / NaOH(aq) to each of the solutions obtained until excess.	1 1		
	•	White precipitate formed initially for all of them. But only the precipitate of ZnSO ₄ dissolves in excess aqueous ammonia / NaOH(aq).	1		
	•	Heat respectively the two remaining solids in a test tube and place a piece of dry CoCl ₂ paper in the mouth of the tube.	1		
	•	Only MgSO ₄ • 7H ₂ O can turn dry CoCl ₂ paper from blue to pink. Communication mark	1		
		Communication mark	1		
Par	t II				
10.	(a)	At dynamic equilibrium, the rate of forward reaction is equal to the rate of backward reaction, and not equals zero. /	1		
		At dynamic equilibrium, reactants are converted to products and products are converted to reactants at equal rate. No net change is observed.			
	(b)	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ Initial 2.0 mol 2.0 mol	3		
		At equil. $2.0-2x 2.0-x 2x$ where $2x = 1.8$ thus $x = 0.9$			
		$878 = [1.8/V]^2 / [0.2/V]^2 [1.1/V]$ V = 11.92 dm ³			
	(c)	(i) Decrease. The reaction is exothermic. Increase in temperature will cause the equilibrium position to shift to the left.	1		
		(ii) No change. A catalyst will increase the rate of forward reaction and that of backward reaction to the same extent. / A catalyst has no effect on the equilibrium position.	1		
11.	(a)	To ensure fair comparisons between the trials. /	1		
	` '	To ensure the concentration of NaOH(aq) is the only variable. / The volume of NaOH(aq) used can represent the concentration of NaOH(aq) in the reaction	•		
		mixtures.			
	(b)	$[OH^{-}(aq)] = 2.0 \text{ x } (4.0/5.0) = 1.6 \text{ mol dm}^{-3}$ $[H^{+}(aq)] \text{ x } 1.6 = 1.0 \times 10^{-14}$	3		
		$[H^{+}(aq)] = 6.25 \times 10^{-15} \text{ mol dm}^{-3}$ $pH = -\log (6.25 \times 10^{-15}) = 14.2$			
	(c)	The concentration of NaOH(aq)	1		
	(0)	The shorter the time for the pink colour disappeared, the faster the reaction. An increase in concentration of NaOH(aq) will result in an increase in the reaction rate.			
	(d)	Using colorimeter / measuring relative transmittance / absorbance of the mixture			

Step 2:

ŌН

$$O^{-Na^{+}} \quad conc. \ H_{2}SO_{4}, \ heat$$

$$O \quad O \quad O$$

$$OH \quad Conc. \ H_{2}SO_{4}, \ heat$$

$$O \quad O$$

$$O \quad O$$

			<u>Marks</u>			
13.	(a)	water in — water out heat	2			
	(b)	LiAlH ₄ /H ₂ (catalyst - Pt)	1			
	(c)	enantiomers / optical isomers	1			
	(d)	optical activity / P and Q rotate plane-polarised light to opposite directions to the same degree / extent.	1			
	(e)	Correct chemical reagent Correct observations with comparison between the tests on acetophenone and P Possible tests and the corresponding observations: $Cr_2O_7^{2-}/H^+ \qquad \text{acetophenone} - \text{no change}; P - \text{from orange to green}$ $MnO_4^-/H^+ \qquad \text{acetophenone} - \text{no change}; P - \text{from purple to colourless}$ $MnO_4^- \qquad \text{acetophenone} - \text{no change}; P - \text{formation of brown ppt.}$ $MnO_4^-/OH^- \qquad \text{acetophenone} - \text{no change}; P - \text{formation of brown ppt.}$ $2,4-DNP \qquad \text{acetophenone} - \text{formation of orange ppt.}; P - \text{no change}$ $CH_3COOH/H^+/\text{heat} \qquad \text{acetophenone} - \text{no change}; P - \text{pleasant odur substance formed}$ $2,4-DNP = 2,4-\text{dinitrophenylhydrazine}$	1 1			
14.	 Electrical conductivity: aluminium > sodium > silicon = sulphur (or: silicon > sulphur) Any 3 of the following items, each 1 mark Both aluminium and sodium have giant metallic structures with delocalised electrons so that electrical conductivity of them is high. The number of delocalised electrons of aluminium is more than that of sodium so that electrical conductivity of aluminium is higher than that of sodium. Silicon has giant covalent structure and its electrons are not mobile and cannot conduct electricity. OR Silicon has giant covalent structure and its electrons are not mobile. But silicon is a semimetal and can conduct electricity in some conditions. Suphur has simple molecular structure and its electrons are not mobile and cannot conduct electricity. 					
	•	Communication mark				

Paper 2

]				
1.	(a)	(i)	 Higher temperature will have a higher rate of reaction. But the forward reaction is exothermic, increasing the temperature will shift the equilibrium position to the left. Therefore, the operating temperature is set at 300°C. 	1
		(ii)		
		(ii)	total number of particles / total number of molecules	1
		(iii)	(1) carbon monoxide / CO and hydrogen / H ₂	1
			(2) methanol / CH ₃ OH	1
	(b)	(b) (i) fractional distillation of liquefied air		1
		(ii)	 The hot gas from reaction chamber can help heat up the hydrogen and nitrogen. It is to save energy. 	1
		(iii)	ii) Number of moles of $N_2(g) = 420000/28$; Number of moles of $H_2 = 96000/2$ Mole ratio of $N_2(g)$ to $H_2(g) = 420000/28 : 96000/2 = 1: 3.2$, $N_2(g)$ is the limiting reagent. Mass of $NH_3(g)$ produced = $420000/28 \times 2 \times 17 \times 15\%$ = 76.5 kg	
		(iv)	(1) $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$	1
			(2) $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$	1
	(c)	(i)	(1) • Compare experiments 1 & 3, [sucrose] remains the same but [HCl] is three times, rate is also three times. Therefore reaction order with respect to HCl is one.	1
			• Compare experiments 1 & 2, [sucrose] and [HCl] is doubled, the rate is quadrupled. Therefore reaction order with respect to sucrose is also one.	1
			(2) rate = k $[C_{12}H_{22}O_{11}(aq)]$ [HCl(aq)]	1
			(3) With data from Trial 1, $6.0 \times 10^{-7} = k (0.010) (0.10)$	
			$k = 6.0 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$	1
		(ii)	Acts as a catalyst.	1
		(iii)	• Need not to separate fructose from the mixture after enzymatic hydrolysis of starch but the hydrolysis of sucrose needs to do so.	1
			 Higher atom economy as glucose is the only product from the enzymatic hydrolysis of starch. 	1

Marks 2. (a) (i) Cellulose is biodegradable. 1 (ii) Molecules in liquid crystals are usually long and rigid rod-like / long and disk-like. 1 contains C=C / N=N double bonds. 1 (iii) • Many benzene rings in the structure can make it rigid. 1 There are many strong intermolecular hydrogen bonds between the polymer molecules. (b) (i) face-centred cubic / cubic close-packed 1 (ii) $(1 \div 4) \times 12 + 1$ 1 = 4 1 (iii) 12 1 (iv) • 18-carat gold is an alloy which is harder than pure gold. 1 Different kinds of metal atoms in alloy have different size making the atom layers 1 difficult to slide over one another. (v) stained glass 1 (c) (i) (1) HOCH2CH2CH2CH2OH 1 1 (2) Condensation polymerisation 1 (3) Extrusion moulding / injection moulding 1 (ii) resistant to chemicals resistant to tear and wear

1

1

(iii) (1)

(2)

Optically inactive because there is no chiral centres.

					<u>Marks</u>
3.	(a)	(i)		um hydroxide solid is deliquescent. / um hydroxide solid would absorb carbon dioxide gas from air.	1
		(ii)	•	Add a few drops of HCl(aq). Pale yellowish-green gas evolved which turns moist blue litmus paper red and then bleaches it.	1
		(iii)		Similarity: Both show an absorption peak at 3230–3670 cm ⁻¹ (O–H groups). Difference: Only chitin shows an absorption peak at 1680-1800 cm ⁻¹ (C=O groups).	1
	(b)	(i)	(1)	$Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 6Fe^{3+}(aq) + 7H_2O(1)$	1
			(2)	Number of moles of $Fe^{2^+} = 0.0642 \times 26.88 \times 10^{-3}$ = 0.0017257 mol [$Cr_2O_7^{2^-}(aq)$] × 25.00 × 10^{-3} × 6 = 0.0017257 [$Cr_2O_7^{2^-}(aq)$] = 0.0115 mol dm ⁻³	2
		(ii)	(1)	Blue filter allows blue light to pass through and the orange $Na_2Cr_2O_7(aq)$ solution absorbs blue light to a large extent.	1
			(2)	The absorbance is directly proportional to the concentration of $Cr_2O_7^{2-}(aq)$.	1
			(3)	Absorbance = 0.26, $[Cr_2O_7^{2-}(aq)]$ found from the graph = 7.0×10^{-4} mol dm ⁻³ $[Cr_2O_7^{2-}(aq)]$ in sample $\mathbf{B} = 7.0 \times 10^{-4} \times (100) = 0.07$ mol dm ⁻³	2
		(iii)		orimetry is more appropriate. very low colour intensity of the solution can still be determined by colorimetry.	1
	(c)	(i)	The •	mass spectra of \mathbf{X} and \mathbf{Y} are recorded respectively. In the mass spectrum of \mathbf{X} , a significant peak at m/z = 43 appears for CH_3CO^+ ions which does not appear in the mass spectrum of \mathbf{Y} . In the mass spectrum of \mathbf{Y} , a significant peak at m/z = 119 appears for $C_6H_5CH_2CO^+$ ions which does not appear in the mass spectrum of \mathbf{X} .	1
		(ii)	(1)	 Na₂CO₃(aq) is added to the solution of X and Y in dichloromethane. The mixture is shaken in a separating funnel. The mixture in the separating funnel is allowed to settle, and the aqueous layer is then separated from the organic layer. 	1
				• Dilute H ₂ SO ₄ (aq) is added to the aqueous layer until no more precipitate is formed.	1
				• Solid Y can be obtained by filtration.	1
			(2)	Measure the melting point of the solid obtained. If the melting point of the solid is 77°C, it may be pure compound Y.	1