Homework 1

Matthieu Boyer

7 octobre 2024

1 Question 1

1.1 Question 1(a)

Initially, we have $d^* = 0$. Moreover, we always have $d^* \ge 0$ and an increase of d^* is caused by a relabeling. Thus, d^* can only increase $2n^2$ times (the maximum number of relabelings) and decrease as many times.

There are thus at most $4n^2$ phases.

1.2 Question 1(b)

• Relabeling v causes $\bar{d}(v)$ to increase but cannot cause $\bar{d}(w)$ to increase if $w \neq v$.

Thus, relabeling a node increases Φ by at most $\frac{n}{K}$.

• A saturating push creates at most one new active node.

Thus, a saturating push increases Φ by at most $\frac{n}{K}$.

• A nonsaturating push across the edge (u, v) deactivates node u and might activate node v. Then we have $\bar{d}(v) \leq \bar{d}(u)$, and hence a nonsaturating push does not increase Φ .

During heavy phases, we execute $\rho > K$ nonsaturating pushes. Since d^* is constant during the phase, all ρ nonsaturating pushes must be from nodes at level d^* .

Indeed, we choose nodes from the highest level, thus d^* .

The phase terminates either when all nodes in level d^* are deactivated or when relabeling moves a node to level $d^* + 1$.

Level d^* thus contains $\rho > K$ nodes (either active or inactive) throughout the phase.

Hence, each nonsaturating push decreases Φ by at least one, since $\bar{d}(v) \leq \bar{d}(u) - 1$ for (u, v) with $|\{w \mid d(w) = d(u)\}| \geq K$

Finally, a heavy phase of non saturating push will decrease Φ by at least $\rho > K$.

For light phases, the bound is easier: the number of nonsaturating pushes is bounded K.

1.3 Question 1(c)

The total increase of Φ is bounded by $\frac{(2n^2+2nm)n}{K}$ and so the total decrease cannot be more than that (since $\Phi \geq 0$). Therefore, the number of nonsaturating push cannot be more than $\frac{2n^3+2n^2m}{K}$. The number of non saturating pushes in both phases, is then bounded by:

$$\frac{2n^3 + 2n^2m}{K} + 4n^2K$$

since $4n^2$ is the number of phases (and thus more than the number of light phases).

Finally, since $n = \mathcal{O}(m)$ (the graph being connex $m \ge n - 1$ and $n \le m + 1$), taking $K = \sqrt{m}$ we get a complexity in $\mathcal{O}(n^2\sqrt{m})$.

2 Question 2

We will use Ford-Fulkerson's theorem on an appropriate graph to prove this property. Let us write $U = \{a_1, \ldots, a_n\}$. We define a set of vertices V by :

$$V = \left\{ s, \bar{S}_1, \dots, \bar{S}_k, \bar{a}_1, \dots, \bar{a}_n, \tilde{a}_1, \dots, \tilde{a}_n, \bar{T}_1, \dots, \bar{T}_n, t \right\}$$

Then, we add arcs with a capacity function:

- An arc (s, \bar{S}_i) with capacity 1 for each $j \in [1, k]$.
- An arc $(s, \tilde{a_i})$ with capacity 0 for each $i \in [1, n]$.
- An arc (\bar{S}_j, \bar{a}_i) with infinite capacity for i, j such that $a_i \in S_j$.
- An arc $(\bar{a_i}, \tilde{a_i})$ with capacity 1 for each $i \in [1, n]$.
- An arc $(\bar{a_i}, t)$ with capacity 0 for each $i \in [1, n]$.
- An arc $(\tilde{a_i}, \bar{T_j})$ with infinite capacity for i, j such that $a_i \in T_j$.
- An arc (\bar{T}_j, t) with capacity 1 for each $j \in [1, k]$.