

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Ralink Technology Corporation		
Applicant Address	4F, No. 2 , Technology 5th Road Hsin-Chu Science Park Hsin-Chu ,		
	Taiwan , ROC		
FCC ID	VQF-AP2800D		
Manufacturer's company	Ralink Technology Corporation		
Manufacturer Address	4F, No. 2 , Technology 5th Road Hsin-Chu Science Park Hsin-Chu , Taiwan , ROC		

Product Name	Ralink 802.11n dual band AP
Brand Name	Ralink
Model Name	AP2800D
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5250 ~ 5350MHz
Received Date	Sep. 26, 2007
Final Test Date	Oct. 18, 2007
Submission Type	Original Equipment
Operating Mode	Master

Statement

Test result included is only for the 802.11a (5250 \sim 5350MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart E. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. C	erti	FICATE OF COMPLIANCE	1
2. SI	JMN	MARY OF THE TEST RESULT	2
3. G	ENE	RAL INFORMATION	3
	1.	Product Details	
3.	2.	Accessories	
3.	3.	Table for Filed Antenna	
3.	4.	Table for Carrier Frequencies	4
3.	5.	Table for Test Modes	5
3.	6.	Table for Testing Locations	5
3.	7.	Table for Supporting Units	5
3.	8.	Table for Parameters of Test Software Setting	6
3.	9.	Test Configurations	7
4. TE	ST R	result	10
	1.	AC Power Line Conducted Emissions Measurement	
4.	2.	99% Occupied Bandwidth Measurement	16
4.	3.	Maximum Conducted Output Power Measurement	20
4.	4.	Power Spectral Density Measurement	24
4.	5.	Peak Excursion Measurement	28
4.	6.	Radiated Emissions Measurement	32
4.	7.	Band Edge Emissions Measurement	44
4.	8.	Frequency Stability Measurement	
4.	9.	Antenna Requirements	49
5. LI	ST C	OF MEASURING EQUIPMENTS	50
6. TE	ST L	OCATION	52
7. TA	AF C	ERTIFICATE OF ACCREDITATION	53
		IX A. PHOTOGRAPHS OF EUT	
APP	ND	IX B. TEST PHOTOS	B1 ~ B5
ΔΡΡΙ	=ND	IX C. MAXIMUM PERMISSIRI E EXPOSURE	C1 ~ C4

Issued Date : Apr. 18, 2008

History of This Test Report

Original	Issue	Date: Apr.	18,	2008
----------	-------	------------	-----	------

Report No.: FR7O0803AB

■ No additional attachment.

☐ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Certificate No.: CB9610062

CERTIFICATE OF COMPLIANCE

Product Name :

Ralink 802.11n dual band AP

Brand Name :

Ralink

Model Name :

AP2800D

Applicant:

Ralink Technology Corporation

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Sep. 26, 2007 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

SPORTON INTERNATIONAL INC.

FCC ID: VQF-AP2800D

Page No.

: 1 of 53

Issued Date : Apr. 18, 2008

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	3.54 dB			
4.2	15.407(a)	26dB Spectrum Bandwidth	Complies	-			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	8.45 dB			
4.4	15.407(a)	Power Spectral Density	Complies	11.46 dB			
4.5	15.407(a)	Peak Excursion	Complies	7.38 dB			
4.6	15.407(b)	Radiated Emissions	Complies	1.08 dB			
4.7	15.407(b)	Band Edge Emissions	Complies	3.20 dB			
4.8	15.407(g)	Frequency Stability	Complies	-			
4.9	15.203	Antenna Requirements	Complies	-			

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.5dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
Peak Excursion	±0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7℃	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

 Report Format Version: 02
 Page No.
 : 2 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	WLAN (1TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5250 ~ 5350MHz
Channel Number	11a: 4
Channel Band Width (99%)	11a: 17.05 MHz
Conducted Output Power	11a: 15.55 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna & Band width

Antenna	Single (TX)		Two	(TX)
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz
802.11a	V	X	Х	X
Draft n	X	X	V	X

3.2. Accessories

Power	Brand	Model	Rating
Adapter	SEC	SSW-1587	Input: 100-240VAC, 50/60Hz,
			Output: 12VDC, 2.0A

 Report Format Version: 02
 Page No.
 : 3 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
Α	ACON	WPS05018	Dipole Antenna	Reversed-SMA	1.96	TX/RX Ant.
В	ACON	WPS05018	Dipole Antenna	Reversed-SMA	1.96	RX Ant.
С	ACON	WPS05018	Dipole Antenna	Reversed-SMA	1.96	RX Ant.

Note: The EUT has three antennas.

Antenna A can be used as transmitting antenna.

Ant. A, Ant. B and Ant. C can both receive simultaneously.

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5250~5350 MHz	52	5260 MHz	60	5300 MHz
Band 2	56	5280 MHz	64	5320 MHz

 Report Format Version: 02
 Page No.
 : 4 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Conducted Emission	Normal Link	Auto	64	-
26dB Spectrum Bandwidth	Band 2/BPSK	6Mbps	52/60/64	Α
99% Occupied Bandwidth Measurement				
Max. Conducted Output Power				
Power Spectral Density				
Peak Excursion				
Radiated Emission Below 1GHz	Normal Link	Auto	64	-
Radiated Emission Above 1GHz	Band 2/BPSK	6Mbps	52/60/64	Α
Band Edge Emission	Band 2/BPSK	6Mbps	52/60/64	Α
Frequency Stability	Un-modulation	-	60	Α

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO04-HY	Conduction	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D400	E2K24GBRL
Notebook	DELL	D505	E2K24GBRL
Notebook	DELL	D400	E2K24GBRL

Report Format Version: 02 Page No. : 5 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

3.8. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11a

Test Software Version	QA2880							
Frequency	5260 MHz	5300 MHz	5320 MHz					
IEEE 802.11a Ant. A	7	7	8					

During the test, the following programs under WIN XP were executed:

Executed "QA2880" to control the EUT continuously transmit RF signal.

Executed "ping.exe" to link with the remote workstation to receive and transmit signal by LAN and WLAN.

Report Format Version: 02 Page No. : 6 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration

Test Configuration: 9KHz~1GHz

3.9.2. AC Power Line Conduction Emissions Test Configuration

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: 02 Page No. : 10 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: 02
 Page No.
 : 11 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	26 ℃	Humidity	53%
Test Engineer	Andy Tsai	Phase	Line
Configuration	Normal Link		

			Over	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.16555	59.27	-5.91	65.18	58.92	0.15	0.20	QP	LINE
2	0.16555	49.52	-5.66	55.18	49.17	0.15	0.20	AVERAGE	LINE
3	0.22083	52.83	-9.96	62.79	52.53	0.10	0.20	QP	LINE
4	0.22083	47.83	-4.96	52.79	47.53	0.10	0.20	AVERAGE	LINE
5	0.28178	45.18	-5.58	50.76	44.88	0.10	0.20	AVERAGE	LINE
6	0.28178	50.06	-10.70	60.76	49.76	0.10	0.20	QP	LINE
7	0.34100	43.77	-5.41	49.18	43.47	0.10	0.20	AVERAGE	LINE
8	0.34100	50.19	-8.99	59.18	49.89	0.10	0.20	QP	LINE
9	0.38315	47.52	-10.69	58.21	47.22	0.10	0.20	QP	LINE
10	0.38315	39.94	-8.27	48.21	39.64	0.10	0.20	AVERAGE	LINE
11	0.51824	44.06	-11.94	56.00	43.78	0.08	0.20	QP	LINE
12	0.51824	33.30	-12.70	46.00	33.02	0.08	0.20	AVERAGE	LINE
13	0.57313	44.28	-11.72	56.00	44.01	0.07	0.20	QP	LINE
14	0.57313	33.21	-12.79	46.00	32.94	0.07	0.20	AVERAGE	LINE
15	0.83488	35.81	-10.20	46.00	35.58	0.03	0.20	AVERAGE	LINE
16	0.83488	42.95	-13.06	56.00	42.72	0.03	0.20	QP	LINE
17	0.91357	34.55	-11.45	46.00	34.34	0.01	0.20	AVERAGE	LINE
18	0.91357	43.61	-12.39	56.00	43.40	0.01	0.20	QP	LINE
19	1.249	42.19	-13.81	56.00	42.04	0.00	0.15	QP	LINE
20	1.249	35.79	-10.21	46.00	35.64	0.00	0.15	AVERAGE	LINE
21	11.537	38.30	-11.70	50.00	37.80	0.10	0.40	AVERAGE	LINE
22	11.537	38.35	-21.65	60.00	37.85	0.10	0.40	QP	LINE
23	12.498	35.43	-14.57	50.00	34.93	0.10	0.40	AVERAGE	LINE

 Report Format Version: 02
 Page No.
 : 12 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

	Freq	Level				LISN Factor			Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	2	-8.8
24	12.498	36.15	-23.85	60.00	35.65	0.10	0.40	QP	LINE

 Report Format Version: 02
 Page No.
 : 13 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

Temperature	26℃	Humidity	53%
Test Engineer	Andy Tsai	Phase	Neutral
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	-	
1	0.16314	59.20	-6.10	65.30	58.70	0.30	0.20	QP	NEUTRAL
2	0.16314	48.56	-6.74	55.30	48.06	0.30	0.20	AVERAGE	NEUTRAL
3	0.22797	52.58	-9.94	62.52	52.20	0.18	0.20	QP	NEUTRAL
4	0.22797	47.27	-5.25	52.52	46.89	0.18	0.20	AVERAGE	NEUTRAL
5 6	0.28330	50.52	-10.20	60.72	50.15	0.17	0.20	QP	NEUTRAL
6	0.28330	45.17	-5.55	50.72	44.80	0.17	0.20	AVERAGE	NEUTRAL
7	0.33033	51.20	-8.24	59.44	50.87	0.13	0.20	QP	NEUTRAL
8 @	0.33033	45.90	-3.54	49.44	45.57	0.13	0.20	AVERAGE	NEUTRAL
9	0.38519	48.45	-9.72	58.17	48.15	0.10	0.20	QP	NEUTRAL
10	0.38519	41.98	-6.19	48.17	41.68	0.10	0.20	AVERAGE	NEUTRAL
11	0.51278	46.15	-9.85	56.00	45.85	0.10	0.20	QP	NEUTRAL
12	0.51278	38.68	-7.32	46.00	38.38	0.10	0.20	AVERAGE	NEUTRAL
13	0.56709	45.61	-10.39	56.00	45.31	0.10	0.20	QP	NEUTRAL
14	0.56709	38.95	-7.05	46.00	38.65	0.10	0.20	AVERAGE	NEUTRAL
15	0.63020	42.44	-13.56	56.00	42.14	0.10	0.20	QP	NEUTRAL
16	0.63020	31.51	-14.49	46.00	31.21	0.10	0.20	AVERAGE	NEUTRAL
17	0.83932	36.93	-9.07	46.00	36.63	0.10	0.20	AVERAGE	NEUTRAL
18	0.83932	44.12	-11.88	56.00	43.82	0.10	0.20	QP	NEUTRAL
19	0.89917	38.13	-7.87	46.00	37.83	0.10	0.20	AVERAGE	NEUTRAL
20	0.89917	45.26	-10.74	56.00	44.96	0.10	0.20	QP	NEUTRAL
21	0.95819	43.60	-12.40	56.00	43.30	0.10	0.20	QP	NEUTRAL
22	0.95819	36.33	-9.67	46.00	36.03	0.10	0.20	AVERAGE	NEUTRAL
23	1.249	44.50	-11.50	56.00	44.25	0.10	0.15	QP	NEUTRAL

 Report Format Version: 02
 Page No.
 : 14 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Loss Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	7 <u>-</u>	
24	1.249	38.29	-7.71	46.00	38.04	0.10	0.15	AVERAGE	NEUTRAL
25	1.552	43.27	-12.73	56.00	43.06	0.10	0.11	QP	NEUTRAL
26	1.552	36.76	-9.24	46.00	36.55	0.10	0.11	AVERAGE	NEUTRAL
27	1.959	41.34	-14.66	56.00	41.05	0.10	0.19	QP	NEUTRAL
28	1.959	34.25	-11.75	46.00	33.96	0.10	0.19	AVERAGE	NEUTRAL
29	2.396	40.33	-15.67	56.00	40.03	0.10	0.20	QP	NEUTRAL
30	2.396	35.41	-10.59	46.00	35.11	0.10	0.20	AVERAGE	NEUTRAL
31	2.707	40.76	-15.24	56.00	40.46	0.10	0.20	QP	NEUTRAL
32	2.707	34.41	-11.59	46.00	34.11	0.10	0.20	AVERAGE	NEUTRAL
33	3.123	39.44	-16.56	56.00	39.11	0.10	0.23	QP	NEUTRAL
34	3.123	34.51	-11.49	46.00	34.18	0.10	0.23	AVERAGE	NEUTRAL
35	3.381	39.75	-16.25	56.00	39.37	0.10	0.28	QP	NEUTRAL
36	3.381	33.29	-12.71	46.00	32.91	0.10	0.28	AVERAGE	NEUTRAL
37	3.840	33.57	-12.43	46.00	33.17	0.10	0.30	AVERAGE	NEUTRAL
38	3.840	39.50	-16.50	56.00	39.10	0.10	0.30	QP	NEUTRAL
39	4.092	33.41	-12.59	46.00	33.01	0.10	0.30	AVERAGE	NEUTRAL
40	4.092	39.52	-16.48	56.00	39.12	0.10	0.30	QP	NEUTRAL
41	4.501	40.12	-15.88	56.00	39.72	0.10	0.30	QP	NEUTRAL
42	4.501	34.07	-11.93	46.00	33.67	0.10	0.30	AVERAGE	NEUTRAL
43	4.772	39.10	-16.90	56.00	38.70	0.10	0.30	QP	NEUTRAL
44	4.772	33.39	-12.61	46.00	32.99	0.10	0.30	AVERAGE	NEUTRAL
45	5.333	32.33	-17.67	50.00	31.93	0.10	0.30	AVERAGE	NEUTRAL
46	5.333	38.34	-21.66	60.00	37.94	0.10	0.30	QP	NEUTRAL
47	9.451	36.38	-23.62	60.00	35.98	0.10	0.30	QP	NEUTRAL
48	9.451	30.79	-19.21	50.00	30.39	0.10	0.30	AVERAGE	NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss.

Page No. : 15 of 53

Issued Date : Apr. 18, 2008

4.2. 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits. But resolution bandwidth within band edge measurement is 1% of the 99% occupied bandwidth.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RB	300 kHz
VB	1000 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 300 kHz and the video bandwidth of 1000 kHz were used.
- 3. Measured the spectrum width with power higher than 26dB below carrier.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 02 Page No. : 16 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

4.2.7. Test Result of 99% Occupied Bandwidth

Temperature	25 ℃	Humidity	60%
Test Engineer	Beck Wu	Configurations	802.11a

Configuration IEEE 802.11a Ant. A

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
52	5260 MHz	20.00	16.79
60	5300 MHz	20.51	16.92
64	5320 MHz	20.51	17.05

 Report Format Version: 02
 Page No.
 : 17 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

26 dB Bandwidth Plot on Configuration IEEE 802.11a Ant. A / 5260 MHz

Date: 5.0CT.2007 21:06:56

26 dB Bandwidth Plot on Configuration IEEE 802.11a Ant. A / 5300 MHz

Date: 5.0CT.2007 21:04:53

 Report Format Version: 02
 Page No. : 18 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

26 dB Bandwidth Plot on Configuration IEEE 802.11a Ant. A / 5320 MHz

Date: 5.OCT.2007 21:02:52

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power and power density from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	300 kHz
Detector	Sample
Trace	Max Hold
Sweep Time	60s

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Test was performed in accordance with method #3 of FCC Public Notice DA-02-2138.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 02
 Page No. : 20 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	25 ℃	Humidity	60%
Test Engineer	Beck Wu	Configurations	802.11a

Configuration IEEE 802.11a Ant. A

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
52	5260 MHz	13.63	24.00	Complies
60	5300 MHz	14.13	24.00	Complies
64	5320 MHz	15.55	24.00	Complies

 Report Format Version: 02
 Page No.
 : 21 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A / 5260 MHz

Date: 5.0CT.2007 21:07:38

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A / 5300 MHz

Date: 5.0CT.2007 21:05:35

 Report Format Version: 02
 Page No. : 22 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Channel Output Power Plot on Configuration IEEE 802.11a Ant. A / 5320~MHz

Date: 5.OCT.2007 21:03:34

4.4. Power Spectral Density Measurement

4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)
5.25-5.35 GHz	11

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 3000kHz. Set Detector to Peak, Trace to Max Hold. Mark the frequency with maximum peak power as the center of the display of the spectrum.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

Report Format Version: 02 Page No. : 24 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	25℃	Humidity	60%
Test Engineer	Beck Wu	Configurations	802.11a

Configuration IEEE 802.11a Ant. A

Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
52	5260 MHz	-3.07	11.00	Complies
60	5300 MHz	-2.05	11.00	Complies
64	5320 MHz	-0.46	11.00	Complies

 Report Format Version: 02
 Page No.
 : 25 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

Power Density Plot on Configuration IEEE 802.11a Ant. A / 5260 MHz

Date: 5.OCT.2007 21:07:03

Power Density Plot on Configuration IEEE 802.11a Ant. A / 5300 MHz

Date: 5.0CT.2007 21:05:00

 Report Format Version: 02
 Page No. : 26 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Power Density Plot on Configuration IEEE 802.11a Ant. A / 5320~MHz

Date: 5.0CT.2007 21:02:59

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz (Peak Trace) / 1000 kHz (Average Trace)
VB	3000 kHz (Peak Trace) / 300 kHz (Average Trace)
Detector	Peak (Peak Trace) / Sample (Average Trace)
Trace	Max Hold
Sweep Time	60s

4.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set the spectrum analyzer span to view the entire emissions bandwidth. The largest difference between the following two traces (Peak Trace and Average Trace) must be ≤ 13 dB for all frequencies across the emissions bandwidth. Submit a plot.
- 3. Peak Trace: Set RBW = 1 MHz, VBW \geq 3 MHz with peak detector and max-hold settings.
- 4. Average Trace: Method #3—video averaging with max hold--and sum power across the band. Set span to encompass the entire emissions bandwidth (EBW) of the signal. Set sweep trigger to "free run". Set RBW = 1 MHz. Set VBW \geq 1/T (IEEE 802.11a VBW = 300kHz \geq 1/4 μ s). Use sample detector mode if bin width (i.e., span/number of points in spectrum) < 0.5 RBW. Otherwise use peak detector mode. Set max hold. Allow max hold to run for 60 seconds.

4.5.4. Test Setup Layout

4.5.5. Test Deviation

There is no deviation with the original standard.

 Report Format Version: 02
 Page No. : 28 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Peak Excursion

Temperature	25 ℃	Humidity	60%
Test Engineer	Beck Wu	Configurations	802.11a

Configuration IEEE 802.11a Ant. A

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
52	5260 MHz	5.62	13	Complies
60	5300 MHz	4.02	13	Complies
64	5320 MHz	4.34	13	Complies

 Report Format Version: 02
 Page No. : 29 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Peak Excursion Plot on Configuration IEEE 802.11a Ant. A / 5260 MHz

Date: 5.OCT.2007 21:07:50

Peak Excursion Plot on Configuration IEEE 802.11a Ant. A / 5300 MHz

Date: 5.0CT.2007 21:05:47

 Report Format Version: 02
 Page No. : 30 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Peak Excursion Plot on Configuration IEEE 802.11a Ant. A / 5320 MHz

Date: 5.OCT.2007 21:03:46

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	40 GHz	
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average	
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak	

Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP	
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	

Report Format Version: 02 Page No. : 32 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

4.6.3. Test Procedures

Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Report Format Version: 02
 Page No. : 33 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.6.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

Above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 02 Page No. : 34 of 53
FCC ID: VQF-AP2800D Issued Date : Apr. 18, 2008

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24.3℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	Normal Link

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

 Report Format Version: 02
 Page No. : 35 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24.3℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	Normal Link

Horizontal

		Over	Limit	Readi	Intenna	Preamp	Cable		Table	Ant	
Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	ав	ri.	deg	cm	
249.220	44.33	-1.67	46.00	57.54	11.56	26.52	1.75	QP	186	105	HORI ZONTAL
374.350	41.13	-4.87	46.00	51.42	14.79	27.09	2.02	Peak	0	100	HORIZONTAL
498.510	44.56	-1.44	46.00	52.54	17.24	27.70	2.48	QP	185	106	HORIZONTAL
750.710	42.59	-3.41	46.00	47.17	20.04	26.91	2.29	Peak	0	100	HORIZONTAL
874.870	42.43	-3.57	46.00	45.93	20.42	26.88	2.97	Peak	0	100	HORIZONTAL
1000.000	45.77	-8.23	54.00	48.46	20.30	26.44	3.45	Peak	0	100	HORI ZONTAL
	MHz 249.220 374.350 498.510	MHz dBuV/m 249.220 44.33 374.350 41.13 498.510 44.56 750.710 42.59 874.870 42.43	Freq Level Limit MHz dBuV/m dB 249.220 44.33 -1.67 374.350 41.13 -4.87 498.510 44.56 -1.44 750.710 42.59 -3.41 874.870 42.43 -3.57	Freq Level Limit Line MHz dBuV/m dB dBuV/m 249.220 44.33 -1.67 46.00 374.350 41.13 -4.87 46.00 498.510 44.56 -1.44 46.00 750.710 42.59 -3.41 46.00 874.870 42.43 -3.57 46.00	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV/m dBuV 249.220 44.33 -1.67 46.00 57.54 374.350 41.13 -4.87 46.00 51.42 498.510 44.56 -1.44 46.00 52.54 750.710 42.59 -3.41 46.00 47.17 874.870 42.43 -3.57 46.00 45.93	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV/m dB/m 249.220 44.33 -1.67 46.00 57.54 11.56 374.350 41.13 -4.87 46.00 51.42 14.79 498.510 44.56 -1.44 46.00 52.54 17.24 750.710 42.59 -3.41 46.00 47.17 20.04 874.870 42.43 -3.57 46.00 45.93 20.42	Freq Level Limit Line Level Factor Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB/m dB 249.220 44.33 -1.67 46.00 57.54 11.56 26.52 374.350 41.13 -4.87 46.00 51.42 14.79 27.09 498.510 44.56 -1.44 46.00 52.54 17.24 27.70 750.710 42.59 -3.41 46.00 47.17 20.04 26.91 874.870 42.43 -3.57 46.00 45.93 20.42 26.88	Freq Level Limit Line Level Factor Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 249.220 44.33 -1.67 46.00 57.54 11.56 26.52 1.75 374.350 41.13 -4.87 46.00 51.42 14.79 27.09 2.02 498.510 44.56 -1.44 46.00 52.54 17.24 27.70 2.48 750.710 42.59 -3.41 46.00 47.17 20.04 26.91 2.29 874.870 42.43 -3.57 46.00 45.93 20.42 26.88 2.97	Freq Level Limit Line Level Factor Factor Loss Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 249.220 44.33 -1.67 46.00 57.54 11.56 26.52 1.75 QP 374.350 41.13 -4.87 46.00 51.42 14.79 27.09 2.02 Peak 498.510 44.56 -1.44 46.00 52.54 17.24 27.70 2.48 QP 750.710 42.59 -3.41 46.00 47.17 20.04 26.91 2.29 Peak 874.870 42.43 -3.57 46.00 45.93 20.42 26.88 2.97 Peak	Freq Level Limit Line Level Factor Factor Loss Remark Pos MHz dBuV/m dB dBuV/m dB dB dB deg 249.220 44.33 -1.67 46.00 57.54 11.56 26.52 1.75 QP 186 374.350 41.13 -4.87 46.00 51.42 14.79 27.09 2.02 Peak 0 498.510 44.56 -1.44 46.00 52.54 17.24 27.70 2.48 QP 185 750.710 42.59 -3.41 46.00 47.17 20.04 26.91 2.29 Peak 0 874.870 42.43 -3.57 46.00 45.93 20.42 26.88 2.97 Peak 0	Freq Level Limit Line Level Factor Factor Loss Remark Pos Pos MHz dBuV/m dB uV/m dB uV dB uV<

 Report Format Version: 02
 Page No. : 36 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Vertical

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MKz	dBuV/m	dВ	dBuV/m	dBuV	dB/m	dB	dB	id.	deg	cm	-
1 @	44.550	35.82	-4.18	40.00	52.98	9.65	27.61	0.80	Peak	0	400	VERTICAL
2 @	125.060	38.75	-4.75	43.50	53.15	11.75	27.32	1.17	Peak	0	400	VERTICAL
3 @	249.220	43.96	-2.04	46.00	57.17	11.56	26.52	1.75	QP	183	100	VERTICAL
4 0	668.260	42.02	-3.98	46.00	48.04	18.86	27.13	2.26	Peak	0	400	VERTICAL
5 @	750.710	42.08	-3.92	46.00	46.66	20.04	26.91	2.29	Peak	0	400	VERTICAL
6 @	874.870	42.24	-3.76	46.00	45.74	20.42	26.88	2.97	Peak	0	400	VERTICAL
7	1000.000	44.32	-9.68	54.00	47.01	20.30	26.44	3.45	Peak	0	400	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: 02
 Page No. : 37 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	24.3 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Ch 52 Ant. A

Horizontal

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos Pol/Phase
	Mkz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	H.	deg	cm.
1 @	10522.120	72.10	-2.20	74.30	57.92	38.99	35.18	10.37	PEAK	160	110 HORIZONTAL

 Report Format Version: 02
 Page No. : 38 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Vertical

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos P	ol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB	E.	deg	cm.	- 20
1 0	10522.060	68.37	-5.93	74.30	54.18	38.99	35.18	10.37	PEAK	235	113 V	ERTICAL

 Report Format Version: 02
 Page No. : 39 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

Temperature	24.3℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Ch 60 Ant. A

Horizontal

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant
	Free	I Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos Pol/Phase
	М	z dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	14	deg	cm
10	10600.05	58.92	-1.08	60.00	44.71	38.96	35.10	10.36	AVERAGE	151	121 HORIZONTAL
2 @	10601.82	72.11			57.88	38.96	35.08	10.35	PEAK	151	121 HORIZONTAL

Item 2 fall in restricted band, thus 15.209 limit applies. However, the test site distance has been moved to 1.5m, the corresponding limit will be adjusted to 80dBuV/m.

 Report Format Version: 02
 Page No.
 : 40 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

Vertical

	T	Level	Over				Preamp Factor		Remark	Table Pos	Ant Pos Pol/Phase
	Freq	reser	Limit	Line	rever	ractor	ractor	Loss	Kemark	Pos	POS POI/Phase
	Ми	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dВ		deg	cm.
1 @	10600.000	57.11	-2.89	60.00	42.90	38.96	35.10	10.36	AVERAGE	234	105 VERTICAL
2 @	10601.930	70.90			56.67	38.96	35.08	10.35	PEAK	234	105 VERTICAL

Item 2 fall in restricted band, thus 15.209 limit applies. However, the test site distance has been moved to 1.5m, the corresponding limit will be adjusted to 80dBuV/m.

Temperature	24.3 ℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Ch 64 Ant. A

Horizontal

			Over	Limit	Readi	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	М	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	id.	deg	cm	*
1 @	10640.010	58.41	-1.59	60.00	44.17	38.94	35.05	10.35	AVERAGE	151	116	HORIZONTAL
2 @	10642.250	73.39			59.15	38.94	35.05	10.35	PEAK	151	116	HORI ZONTAL

Item 2 fall in restricted band, thus 15.209 limit applies. However, the test site distance has been moved to 1.5m, the corresponding limit will be adjusted to 80dBuV/m.

Vertical

			Over	Limit	Readi	Antenna	Preamp	Cable		Table	Ant	
	32	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
		dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	deg	cm	
10	10640.070	56.05	-3.95	60.00	41.81	38.94	35.05	10.35	AVERAGE	233	102	VERTICAL
2 @	10642.310	71.03			56.79	38.94	35.05	10.35	PEAK	233	102	VERTICAL

Item 2 fall in restricted band, thus 15.209 limit applies. However, the test site distance has been moved to 1.5m, the corresponding limit will be adjusted to 80dBuV/m.

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

 Report Format Version: 02
 Page No.
 : 43 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.25-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

· ·		
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1 MHz /1 MHz for Peak

4.7.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

 Report Format Version: 02
 Page No.
 : 44 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24.3℃	Humidity	56%
Test Engineer	Roy Huang	Configurations	802.11a Ch 52, 60, 64 Ant. A

Channel 52

	Free	[Level	Over Limit	55.7264			Preamp Factor		Remark	Table Pos	Ant Pos	Pol/Phase
	Mi	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	deg	cm	
10	5252.800	105.81			67.07	34.32	0.00	4.41	AVERAGE	86	109	VERTICAL
2 @	5253.600	114.19			75.46	34.32	0.00	4.41	PEAK	86	109	VERTICAL

Item 1, 2 are the fundamental frequency at 5260 MHz.

Channel 60

			Over	Limit	Readi	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MKz	dBuV/m	dВ	dBuV/m	dBuV	dB/m	- дв	dB	35 <u>-</u>	deg	cm	-
1 @	5293.400	113.91			75.11	34.40	0.00	4.40	PEAK	102	105	VERTICAL
2 @	5296.400	104.62			65.77	34.44	0.00	4.40	AVERAGE	102	105	VERTICAL
3 @	5350.000	55.91	-4.09	60.00	16.96	34.57	0.00	4.38	AVERAGE	102	105	VERTICAL
4	5350.000	67.35	-12.65	80.00	28.40	34.57	0.00	4.38	PEAK	102	105	VERTICAL

Item 1, 2 are the fundamental frequency at 5300 MHz.

Channel 64

			Over	Limit	Read	Antenna	Preamp	Cable		Table	Ant	
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pos	Pos	Pol/Phase
	MKz	dBuV/m	ав	dBuV/m	dBuV	dB/m	ав	ав	S 	deg	cm	3
1 @	5312.800	105.17			66.29	34.49	0.00	4.40	AVERAGE	102	107	VERTICAL
2 @	5313.200	114.28			75.40	34.49	0.00	4.40	PEAK	102	107	VERTICAL
3	5355.200	70.06	-9.94	80.00	31.12	34.57	0.00	4.38	PEAK	102	107	VERTICAL
4 @	5355.600	56.80	-3.20	60.00	17.85	34.57	0.00	4.38	AVERAGE	102	107	VERTICAL

Item 1, 2 are the fundamental frequency at 5320 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

 Report Format Version: 02
 Page No. : 45 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

EIRP Emission in Band on Configuration IEEE 802.11a Ant. A / 5260 MHz

Date: 17.0CT.2007 13:39:36

EIRP Emission in Band on Configuration IEEE 802.11a Ant. A / 5320 MHz

Date: 17.0CT.2007 13:45:50

 Report Format Version: 02
 Page No. : 46 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ± 20 ppm (IEEE 802.11a specification).

4.8.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc \times 10⁶ ppm and the limit is less than \pm 20ppm (IEEE 802.11a specification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -30°C~50°C.

4.8.4. Test Setup Layout

 Report Format Version: 02
 Page No. : 47 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5300 MHz
126.50	5299.987400
110.00	5299.991400
93.50	5300.010500
Max. Deviation (MHz)	0.012600
Max. Deviation (ppm)	2.38

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5300 MHz
-30	5299.987400
-20	5299.987400
-10	5299.991400
0	5299.991400
10	5299.991400
20	5300.010500
30	5300.010500
40	5300.125600
50	5300.125600
Max. Deviation (MHz)	0.125600
Max. Deviation (ppm)	23.70

 Report Format Version: 02
 Page No. : 48 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

 Report Format Version: 02
 Page No. : 49 of 53

 FCC ID: VQF-AP2800D
 Issued Date : Apr. 18, 2008

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Manufacturer Model No. Serial No.		Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100359	9kHz – 2.75GHz	Mar. 01, 2007	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 31, 2007	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2007	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2007	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	May 09, 2007	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
Isolation Transformer	Erika Fiedler OHG	D-65396 Walluf	58	45MHz-2.15GHz	N/A	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 14, 2007	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	1886	9 kHz - 2 GHz	Jan. 22, 2007	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jun.07, 2007	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 22, 2007*	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100305	9 kHz - 40 GHz	Dec. 15, 2006	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Jul. 21, 2007	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	May 04, 2007	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec. 02, 2006	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec. 02, 2006	Radiation (03CH03-HY)
Turn Table	HD	D\$ 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Dec. 17, 2006	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC ~ 30GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun. 27, 2007	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	May 04, 2007*	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Mar. 03, 2007	Conducted (TH01-HY)

Report Format Version: 02
FCC ID: VQF-AP2800D

Page No. : 50 of 53

Issued Date : Apr. 18, 2008

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2007	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 01, 2006	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 01, 2006	Conducted (TH01-HY)
Vector Signal Generator	R&S	SMU200A	102098	100kHz ~ 6GHz	Nov. 14, 2006	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Mar. 07, 2007	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

 Report Format Version: 02
 Page No.
 : 51 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008

^{*} Calibration Interval of instruments listed above is two year.

6. TEST LOCATION

	1		
SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085
		_	

7. TAF CERTIFICATE OF ACCREDITATION

Certificate No.: L1190-070110

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO

: ISO/IEC 17025:2005

Accreditation Number

: 1190

Originally Accredited

: December 15, 2003

Effective Period

: January 10, 2007 to January 09, 2010

Accredited Scope

: Testing Field, see described in the Appendix

Specific Accreditation

Accreditation Program for Designated Testing Laboratory

Program

for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: January 10, 2007

P1, total 9 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when used without the Appendix.

 Report Format Version: 02
 Page No.
 : 53 of 53

 FCC ID: VQF-AP2800D
 Issued Date
 : Apr. 18, 2008