

Production Technology 1

PT1 SS 2024

Institute of Photonic Technologies

Lecturers:

Prof. Dr.-Ing. Michael Schmidt
Full professor at the Institute of Photonic Technologies
Head of the Bayerisches Laserzentrums
Coordinator of SAOT

Dr. rer. nat. Kristian Cvecek

Institute of Photonic Technologies Konrad-Zuse-Straße 3/5 91052 Erlangen

Contact Person:

Dr.-Ing. Dominic Bartels

Tel: (+49) 09131 85-23244 dominic.bartels@lpt.uni-erlangen.de Institute of Photonic Technologies Konrad-Zuse-Straße 3/5 91052 Erlangen

Institute of Photonic Technologies

Quelle: maps.google.de

Research at the LPT:

- Ultrashort Pulse Laser Technologies
- Simulation & Modeling
- Sensing, Control & Real-timeSystems
- Photonics in Medical Engineering
- Additive Manufacturing

For more information: www.lpt.uni-erlangen.de

Lectures at LPT

Lecture	Sem.	SWS	Lecturer
Produktionstechnik 1 / Production Technology 1	WS + SS	2	Prof. DrIng. Schmidt
Optik und optische Technologien	WS	2	Prof. DrIng. Schmidt
Lasertechnology	WS	4	Prof. DrIng. Schmidt/ Dr. Kristian Cvecek/
Laserbasierte Prozesse in Industrie und Medizin	SS	4	Prof. DrIng. Schmidt
Lasersystemtechnik 1	WS	2	HonProf. DrIng. Hoffmann
Lasersystemtechnik 2	SS	2	HonProf. DrIng. Hoffmann
Laser in der Mikroproduktionstechnik	SS	1	Prof. DrIng. Schmidt
Laser in der Medizintechnik	WS	2	DrIng. Glasmacher
Licht in der Medizintechnik	WS	4	DrIng. Klämpfl
Lasers in Healthcare Engineering	WS	2	DrIng. Klämpfl
Laser Tissue Interaction	SS	4	DrIng. Klämpfl
Photonics in Medical Engineering	WS	4	DrIng. Klämpfl
Topics of Optical Technologies	WS	2	Silvana Burger, M.Sc.

Schedule Lectures

Day	Lecture unit
24.06.2024 (Prof. Schmidt)	LU05 – Water Jet + Plasma Beam
01.07.2024 (Dr. Cvecek)	LU06 – Electron Beam
08.07.2024 (Dr. Cvecek)	LU07 – Laser based Joining + Cutting
15.07.2024 (Prof. Schmidt)	LU08 – Additive Manufacturing

Lectures are available via StudOn

Schedule Lectures

Day	Lecture unit
26.06.2024	EX05 – Water Jet + Plasma Beam
03.07.2024	EX06 – Electron Beam
10.07.2024	EX07 – Laser based Joining + Cutting
17.07.2024	EX08 – Additive Manufacturing

Exercises on-site from 08:15 am to 09:45 am at lecture room H14 Additionally exercises are available via StudOn

Literature

- [1] Hügel, Helmut; Graf, Thomas: Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren. 2., neu bearbeitete Auflage. Wiesbaden: Vieweg+Teubner, 2009
- [2] Ion, John C.: Laser processing of engineering materials: Principles, procedure and industrial application. Amsterdam, s.l.: Boston, 2005
- [3] Poprawe, Reinhart: Lasertechnik für die Fertigung: Grundlagen, Perspektiven und Beispiele für den innovativen Ingenieur; mit 26 Tabellen. Berlin: Springer, 2005 (VDI-Buch)
- [4] Schultz, H.: *Electron beam welding*. Cambridge: Woodhead Publishing Ltd, 1994
- [5] Schultz, Helmut: Elektronenstrahlschweißen: Grundlagen, Maschinen und Anwendungen. 3., vollständig überarbeitete und erweiterte Auflage. Düsseldorf: DVS Media, 2017 (Fachbuchreihe Schweißtechnik Band 93)
- [6] Steen, William M.; Mazumder, Jyotirmoy: Laser material processing. 4th Edition. London: Springer-Verlag London, 2010
- [7] Wang, Jun: Abrasive waterjet machining of engineering materials. Zürich: Trans Tech Publ, 2003 (Materials science foundations 19)

Production Technology 1

Lecture Unit 05

Beam Processing Tools Water Jet & Plasma Jet/Arc

Beam Processing Technologies within DIN 8580

Primary Shaping	Forming	Cutting	Joining	Coating	Change of mat. prop
PBF-EB/M	Laser Bending	Water Jet Cutting	Electron Beam Welding	DED-LB/M	Hardening
PBF-LB/M		Laser Beam Cutting	Laser Beam Welding		VPP
DED-LB/M		Laser Beam Drilling	Plasma- beam- welding		
		Electron Beam Drilling			

Beam Processing Tools: Introduction

Beam definition:

- Straight line, limited on one side, propagating to infinity on the other side
- Starting from a point A moving into a defined direction

In reality: finite beam diameter, beam divergence, absorption and beam drift

Beam Processing Tools: Introduction

Examples for beam processing tools

Water Jet Electron Beam Laser Beam Plasma Jet © schweissmaschinen.net © Koppe © TU Dresden

Water Jet

Classification of Water Jet Cutting according to DIN 8580 **Cutting** (main group of DIN 8580) **Machining with undefined** Fragmenta-Machining with defined Dis-**Eroding** Cleaning cutting edges cutting edges tion section **Shearing Beam machining** Thermal eroding Water jet + abrasive water **Shearing + special Electron beam** Laser beam procedures jet cutting

Water Jet: Basics

Basics:

- Generation of a water jet with high pressure (up to 6,500 bar) using high pressure pump
- Transformation of pressure into velocity using gemstone nozzles
- Addition of abrasive substances for improved cutting performance
- → differentiation between water jet and abrasive water jet
- Generation of high sound pressures depending on the exit velocity of the water
 - → Noise reduction by processing underwater

Water Jet: Interaction with Matter

Water jet as a processing tool

Water pressure

cleaning (100-500 bar)

cutting (1500-6000 bar)

- High pressure → high jet velocity → high kinetic energy
- Energy of the water jet is adjusted according to the field of application
- <u>Pure</u> water jet is limited to processing of soft materials: paperboard, textiles, foamed material, rubber, leather

Water Jet: Effects

Water Jet: Interaction with Matter

Interaction of the water jet with matter (at very high pressure)

- The water jet hits the surface of the workpiece with high pressure
- Generation of mechanical stress in the material
- Transition from elastic to plastic deformation
- Locally limited destruction of the workpiece surface
- Ablation of microscopically small workpiece particles
- Jet penetrates into the workpiece

Water Jet Cutting with Pure Water

- Kinetic energy of the water jet is used for cutting
- Exit speed of the water: up to 850 m/s
- Nozzle diameter: 0.1...0.35 mm
- Operating pressure at 6200 bar
 sterility of the water due to the high water pressure
- Cutting speed ~200 m/min (paper)
- Applied for cutting soft materials, food or used as water scalpel

Pure water cutting head

© Wasserstrahlschneiden-marktplatz.de

Water Jet Cutting with Additional Particles

Water jet with abrasive substances

Addition of solid particles (abrasive substances) to the water jet

- → Abrasive Waterjet:
 Water jet as carrier medium for acceleration of particles
- → Increase of material ablation by the abrasive effect of the particles

© B. Awiszus et al.: Grundlagen der Fertigungstechnik, Hanser

Water Jet Cutting with Additional Particles

- Addition of abrasive materials: granite, olivine, corundum
 → Increase of the cutting power
- Beam diameter: 1 mm
- Operating pressure at 6200 bar
- Application for hard materials:
 e.g. metal, stone

© Wasserstrahlschneiden-marktplatz.de

Water Jet Cutting

© Interesting Engineering

© LPT PT 1 SS24 20

Live-Survey

The use of additives extends the maintenance intervals of water jet cutting systems.

- a) true
- b) wrong

Result

Water Jet Cutting: Cutting Speed

Cutting speed depends on:

- material thickness
- material
- desired quality
- concentration of abrasive materials

water pressure

material thickness	(mm/min)	Brass (mm/min)	Marble (mm/min)
2 mm	2800	3300	14500
5 mm	1010	1150	5050
20 mm	205	235	1025
100 mm	32	37	160

maximum cutting speed at 3800 bar and normal cutting quality in mm/min

Industrial Mode: precise cutting

Economy Mode: fast & economical

Premium Mode: highest precision

Water Jet: Fields of Application

Water Jet Cutting: Applications (1)

Gear

Granite

Aluminium honeycomb fabric (Alucore 7 mm)

Object made of stone

Water Jet Cutting: Applications (2)

Carbon-fiber-mats

Composite
Laminated wood 50 mm

Coupling tube CFK-Aluminium 7 mm

Foam

Variety of Material

High variety of materials:

- Steel, stainless steel, aluminium
- Ceramic, glass und armored glass
- Stone, e.g. granite and marble
- Plastics (fiber reinforced plastic, thermoplastic and duroplastic)
- Rigid and flexible foam
- Insulating materials
- Sandwich- and structural material
- Wood, paper und paperboard
- Sealant, e.g. rubber and hard tissue

Advantages of a Water Jet as Processing Tool

Advantages

- Environmental friendliness
 - → No generation of vapour, dusts or fume
- Lower thermal influence on the workpiece compared to mechanical or fusion based cutting
 - → No micro cracks or change in microstructure
- Water jet as wearless processing tool
- Lower processing forces compared to mechanical cutting
 - → Cutting of pressure-sensitive materials
- Beam dimension smaller with respect to typical cutting widths of mechanical cutting
- Clean and accurate cutting edges / no formation of burrs

Disadvantages of a Water Jet as Processing Tool

Disadvantages

- Limited precision, no deflection or guidance of the water jet
- Relatively low ablation rate
 - → Lower feed rates than for laser beam cutting
 - → Decreases with hardness, ductility and thickness of the material
 - → no mass production
- Higher maintenance costs compared to laser beam cutting due to wear of nozzles
- Additional costs due to consumption of abrasive material
- Direct water contact of material (corrosion)
 not suitable for materials susceptible to corrosion

© icubed.biz

Plasma Jet

Classification of Plasma Welding according to DIN 1910 - 100

Plasma: Basics

Definition of Plasma

- Absorption of energy leads to ionization of gas atoms
- Electrically conducting gas of electrons and ions
- → if not completely ionized also atoms and molecules
- High kinetic energy of the plasma (ions/electrons)
 → recombination of ions and electrons possible but the plasma is preserved due to new ionizations
 - (dynamic process)
 - → Emission of electromagnetic radiation (light) when electron and ion recombine
- No permanent recombination of ions and electrons
 - → electrically conducting, while electrically neutral to the outside since equal number of ions and electrons
- When a voltage is applied electrons / ions are accelerated towards the anode / cathode

© Dreher/Pixelio

© nasa.gov

© spiegel.de

Tungsten Inert Gas Welding: Basics

Tungsten inert gas welding (TIG)

- Application of inert shielding gas for preventing oxidation
- Electric current supply connected to tungsten electrode and workpiece
- Ionization of shielding gas results in ignition of arc
- Arc ignition typically by high frequency high voltage pulses
- Decoupled addition of filler material

Tungsten Inert Gas Welding: Current Supply

Tungsten inert gas welding

- Direct Current: Electrode on negative pole
 - Most common application
 - Joining of alloyed steels and non-iron metals
- Alternating Current: Electrode on positive pole
 - Breaking of oxide layer on surface
 - Joining of light metals (aluminium and magnesium)

TIG-Welding: Examples of Application

Manual TIG-welding

© huber-gmbh.de

Arc welding

© produktion.de

Aluminum bicycle frame

© mtb-news.de

Live-Survey

Plasma is an electric

- a) isolator
- b) conductor

Result

Plasma Welding: Principles

- Plasma generated inside plasma nozzle
- Application of two gas streams
 - → Plasma gas (argon) for generating the arc between nozzle and workpiece
 - → Shielding gas for preventing oxidation
- Expelled by overpressure through water-cooled nozzle (e.g. copper) to achieve a defined stream of hot plasma
 - → Higher intensity by lower beam divergence
- Conversion of the kinetic energy into thermal energy when the plasma beam hits the workpiece surface

Plasma Arc Material Processing

© Skill Lync

© LPT PT 1 SS24 36

Live-Survey

Between the nozzle and the workpiece, the plasma beam gets

- a) accelerated
- b) widened
- c) accelerated and widened

Result

Plasma Welding: Process Variants

- Arc ignition between electrode and copper nozzle
- Heating of the plasma gas while passing the arc between electrode and nozzle
- Arc inside the burner. Ejection of a hot gas jet

- Pilot arc between electrode and copper nozzle for arc ignition (Plasma jet/plasma arc welding)
- Welding circuit between electrode and workpiece while arc is transferred
- Polarity (DC) depending on workpiece material (alternative: AC polarity possible)

Comparison of Tungsten Arc Welding and Plasma Arc Welding

Plasma arc

- Higher intensity for Plasma Arc Welding
 - → Higher welding speed
 - → Small heat affected zone (HAZ)
 - → Smaller welding seams
- Magnetic pinch effect for plasma arc welding (if voltage is applied)
 - → Constriction of the arc

TIG-arc

Plasma arc

© schweissmaschinen.net

TIG-Welding and Plasma Arc Welding: Comparison

- Plasma arc welding: bundling of the arc on a smaller area by tungsten electrode inside the nozzle
 - → Higher temperature in the process zone
 - → Active cooling of the nozzle is necessary

Plasma Welding: Applications

Plasma welded pipe elbow

Valve housing

Switch control box

Plasma welded connection between a pressure vessel and its connection nozzle

Advantages and Disadvantages of Plasma Welding

Advantages

- Exact process control
- High stability of the arc even at low currents (0.1 A)
- Smaller melt pool dimensions and heataffected zone compared to TIG welding (but larger than for laser and electron beam welding)
 - → low distortion, favorable weld seam shape
- Large sheet metal thicknesses (butt joint 8 mm) possible
- Addition of powdered filler material possible
- Low seam convexity, low sagging of the root
- High welding speeds

Disadvantages

- More cost intensive welding equipment and maintenance compared to TIG welding
- No gap bridging possible
- Two inert gases required

