Aufgabe 1 (Frühjahr 1996). Sei G eine Gruppe und U eine Untergruppe. Zeigen Sie, daß folgende Aussagen äquivalent sind:

- (a) Für alle $g \in G$ gilt: gU = Ug.
- (b) Die Menge der Rechtsnebenklassen und die Menge der Linksnebenklassen von G nach U stimmen überein: $G/U = U \backslash G$.
- (c) "Die Definition" $gU \circ hU := ghU$ definiert eine Verknüpfung auf den Linksnebenklassen, das heißt, eine Abbildung $G/U \times G/U \to G/U$.

Lösung. (a) \Rightarrow (b): Die Abbildung

$$\varphi: G/U \to U \backslash G, gU \mapsto Ug$$

ist wohldefiniert, da falls gU = hU nach (a) auch gilt Ug = gU = hU = Uh, also $\varphi(gU) = \varphi(hU)$. Nach (a) ist es eine Bijektion.

- (b) \Rightarrow (a): Da $G/U = U \setminus G$ gibt es für jedes $g \in G$ ein $h \in G$ mit gU = Uh. Da $e \in U$ ist, ist auch $g \in gU = Uh$. Also gibt es $u \in U$ mit g = uh, bzw. $h = u^{-1}g$ und es folgt $Uh = Uu^{-1}g = Ug$. Also ist gU = Ug.
- (a) \Rightarrow (c): Es ist gUhU = ghU. Also ist die definierte Verknüpfung wohldefiniert. Ist nämlich $g_1U = g_2U$ und $h_1U = h_2U$, so ist auch

$$g_1U \circ h_1U = g_1h_1U = g_1Uh_1U = g_2Uh_2U = g_2h_2U = g_2U \circ h_2U.$$

(c) \Rightarrow (a):Sei $g \in G$. Wir bemerken, daß für alle $u \in U$ gilt eU = uU = U. Da $G/U \times G/U \rightarrow G/U, gU \circ hU := ghU$ eine Verknüpfung ist, ist für alle $u \in U$

$$ugU = uU \circ gU = eU \circ gU = egU = gU.$$

Da $ug = uge \in ugU = gU$ für alle u, ist also $Ug \subseteq gU$. Genauso gilt auch $Ug^{-1} \subseteq g^{-1}U$. Da aber Ug in Bijektion zu $g^{-1}U$ ist und Ug^{-1} in Bijektion zu gU ist, folgt Ug = gU.

Aufgabe 2. Sei G Gruppe, deren Ordnung eine Primzahl p ist. man zeige, daß G keine Untergruppe hat außer $\{e\}$ und G. Außerdem ist G zyklisch und für alle $e \neq x \in G$ gilt $G = \langle x \rangle = \{e, x, \dots, x^{p-1}\}$.

Lösung. Ist $H \subset G$ eine Untergruppe, dann

$$|H||G| = p.$$

Also gilt |H| = 1 oder |H| = p, also $H = \{e\}$ oder H = G. Sei $e \neq x \in G$, dann ist $\langle x \rangle \neq \{e\}$, also

$$G = \langle x \rangle = \{e, x, \dots, x^{p-1}\}.$$

Aufgabe 3. Sei G eine Gruppe und Z(G) ihr Zentrum. Man zeige: Wenn es $x \in G$ gibt mit $G = \langle Z(G) \cup \{x\} \rangle$, dann ist G abelsch.

Lösung. Nach Voraussetzung hat jedes Element von G die Gestalt yx^a mit $y \in Z(G)$ und $a \in \mathbb{Z}$. Hieraus folgt die Behauptung.

Aufgabe 4 (Frühjahr 1994). Eine Operation einer Gruppe G auf einer Menge X heißt treu, falls zu jedem vom Einselement verschiedenen Element g aus G ein $x \in X$ existiert mit $gx \neq x$.

Sei G eine Gruppe der Ordnung 15, die auf einer Menge treu und transitiv operiert. Man beweise, daß X aus genau 15 Elementen besteht.

Gilt die entsprechende Aussage auch, wenn man 15 durch 12 ersetzt?

Lösung. Da die Operation transitiv ist, gilt für jedes $x \in X$, daß X = Gx als Mengen. Also ist $|X| = |Gx| \le 15$.

Für $x \in X$ sei $G_x = \{g \in G : gx = x\}$ die Stabilisatoruntergruppe von x. Es gilt $|X| = |Gx| = [G : G_x]$, für alle $x \in X$. Also hat G_x für alle x die gleiche Mächtigkeit.

Für ein beliebiges $g \in G$ wähle man $x \in \text{mit } gx \neq x$. Also ist $g \notin G_x$ und damit ist $G_x \subsetneq G$ eine echte Untergruppe von G. Damit ist

$$|G_x| \in \{1, 3, 5\}.$$

Ist $|G_x| = 1$, so ist $|X| = |Gx| = [G:G_x] = 15$ nach dem Satz von Lagrange und wir sind fertig. Drei Möglichkeiten den Beweis zu beenden:

Weiter von Hand:

Angenommen, dies ist nicht der Fall. Dann ist für jedes $x \in X$ die Gruppe G_x von der Ordnung p, wobei p = 3 oder 5. Sei zuerst

$$|G_x| = 5$$
, also $|X| = 3$.

Setze $X=\{x_1,x_2,x_3\}$. Da für alle $g\in G_{x_1}=:H$ gilt $gx_2\neq x_1$ und $gx_3\neq x_1$ operiert H auf $\{x_2,x_3\}$. Da $|Hx_2|$ Teiler von |H|=5 ist (denn $|Hx_2|=[H:H_{x_2}]$), ist $|Hx_2|=1$. Genauso für $|Hx_3|$. Es folgt, daß $G_{x_1}=G_{x_2}=G_{x_3}=H$. Für alle $e\neq h\in H$ gilt hx=x für alle $x\in X$, Widerspruch zur Treuheit. Ähnlich für

$$|G_x| = 3$$
, also $|X| = 5$.

Setze $X=\{x_1,x_2,x_3,x_4,x_5\}$. Da für alle $g\in G_{x_1}=:H$ gilt $gx_i\neq x_1$ für $i\in\{2,\ldots,5\}$ operiert H auf $\{x_2,x_3,x_4,x_5\}$. Da $|Hx_i|$ Teiler von |H|=3 ist, aber $|\{x_2,x_3,x_4,x_5\}|=4$ muß es nach der Bahnengleichung $i\in\{2,\ldots,5\}$ geben so daß $|Hx_i|=1$. Sei dies ohne Einschränkung i=2. Damit folgt $H=G_{x_1}=G_{x_2}$. Wie oben sieht man nun, daß H auf $\{x_3,x_4,x_5\}$ operiert.

Durch Umordnen zeigt man, daß es für jedes $i \in \{1, \dots, 5\}$ ein davon verschiedenes j gibt, so daß $G_{x_i} = G_{x_j}$. Da aber 5 ungerade ist, muß es i, j, k paarweise verschieden geben mit $G_{x_i} = G_{x_j} = G_{x_k}$. Sei ohne Einschränkung $H = G_{x_1} = G_{x_2} = G_{x_3}$. Dann sieht man wie oben, daß H auf $\{x_4, x_5\}$ operiert. Da $|Hx_4|$ Teiler von |H| ist (denn $|Hx_4| = [H:H_{x_4}]$), ist $|Hx_4| = 1$, es folgt $H = G_{x_4}$ und ebenso $H = G_{x_5}$. Also $H = G_{x_1} = G_{x_2} = G_{x_3} = G_{x_4} = G_{x_5}$. Für alle $e \neq h \in H$ gilt hx = x für alle $x \in X$, Widerspruch zur Treuheit.

Weiter mit Homomorphismen:

Angenommen, dies ist nicht der Fall. Dann ist für jedes $x \in X$ die Gruppe G_x von der Ordnung p, wobei p = 3 oder 5. Sei zuerst

$$|G_x| = 5$$
, also $|X| = 3$.

Da G auf X operiert, gibt es einen Gruppenhomomorphismus $\psi:G\to\mathfrak{S}_3$ und das Bild der Untergruppe $G_x\subset G$ ist eine Untergruppe $\psi(G_x)\subset\mathfrak{S}_3$. Da $|\mathfrak{S}_3|=6$ und $5\nmid 6$ ist $\psi(G_x)=\{\mathrm{id}\}$. Das heißt G_x operiert trivial auf X. Widerspruch zur Treuheit. Ähnlich für

$$|G_x| = 3$$
, also $|X| = 5$.

Setze $X=\{x_1,x_2,x_3,x_4,x_5\}$. Da für alle $g\in G_{x_1}=:H$ gilt $gx_i\neq x_1$ für $i\in\{2,\ldots,5\}$ operiert H auf $\{x_2,x_3,x_4,x_5\}$. Da $|Hx_i|$ Teiler von |H|=3 ist, aber $|\{x_2,x_3,x_4,x_5\}|=4$ muß es nach der Bahnengleichung $i\in\{2,\ldots,5\}$ geben so daß $|Hx_i|=1$. Sei dies ohne Einschränkung i=2. Damit folgt $H=G_{x_1}=G_{x_2}$. Wie oben sieht man nun, daß H auf $\{x_3,x_4,x_5\}$ operiert.

Durch Umordnen zeigt man, daß es für jedes $i \in \{1, \dots, 5\}$ ein davon verschiedenes j gibt, so daß $G_{x_i} = G_{x_j}$. Da aber 5 ungerade ist, muß es i, j, k paarweise verschieden geben mit $G_{x_i} = G_{x_j} = G_{x_k}$. Sei ohne Einschränkung $H = G_{x_1} = G_{x_2} = G_{x_3}$. Dann sieht man wie oben, daß H auf $\{x_4, x_5\}$ operiert. Also gibt es einen GRuppenhomomorphismus $\psi: H \to \mathfrak{S}_2$. Da $|\mathfrak{S}_3| = 2$ ist, und |H| = 3 ist $\psi(H)$ eine Untergruppe der Ordnung 1, also trivial. Das heißt H operiert trivial auf $\{x_4, x_5\}$ und $H = G_{x_1} = G_{x_2} = G_{x_3} = G_{x_4} = G_{x_5}$. Für alle $e \neq h \in H$ gilt $h_x = x$ für alle $x \in X$, Widerspruch zur Treuheit.

Weiter rmit Sylowsätzen:

Angenommen, dies ist nicht der Fall. Dann ist für jedes $x \in X$ die Gruppe G_x von der Ordnung p, wobei p=3 oder 5. Also ist jedes G_x eine p-Sylowuntergruppe von G. Nach den Sätzen von Sylow hat eine

Gruppe der Ordnung 15 jedoch genau eine 5- und eine 3-Sylowuntergruppe. Die Gruppen G_x stimmen also für alle $x \in X$ überein. Wir nennen diese Gruppe H. Da H nicht-trivial ist, gibt es $e \neq h \in H$ mit hx = x für alle $x \in X$. Widerspruch zur Voraussetzung der Treuheit.

Wir finden ein Gegenbeispiel für den Fall 12. Die symmetrische Gruppe \mathfrak{S}_4 operiert nach Definition auf der vierelementigen Menge $X = \{1, 2, 3, 4\}$. Es ist $|\mathfrak{S}_4| = 24$ und sie enthält als Untergruppe die alternierende Gruppe A_4 bestehend aus den Permitationen mit Signim +1. Sie enthält 12 Elemente. Als Untergruppe von \mathfrak{S}_4 operiert sie ebenfalls auf X.

Aufgabe 5 (Herbst 1981). Sei G eine Gruppe der Ordnung 55, M eine Menge von 39 Elementen. Man zeige, daß jede Operation von G auf M mindestens einen Fixpunkt hat.

 $L\ddot{o}sung$. Sei M_0 die Menge der Fixpunkte, T eine Transversale der Operation. Nach der Bahnengleichung wissen wir

$$|M| = |M_0| + \sum_{m \in T \setminus M_0} [G : G_m]$$

wobei G_m der Stabilisator von m ist. Für Fixpunkte gilt $G_m = G$, und $Gm = [G:G_m] = 1$. Für alle anderen Punkte gilt $G_m \subsetneq G$ ist eine exhte Untergruppe. Da |G| = 55 muss also $|G_m| \in \{1,5,11\}$. Ist $|G_m| = 1$, so ist nach Lagrange $[G:G_m] = 55$. Dies kann ausgeschlossen werden, da |M| = 39. Also muss für alle Nicht-Fixpunkte gelten $[G:G_m] = 5$ oder $[G:G_m] = 11$. Nun ist aber leicht zu sehen, daß 39 nicht als Summe von der Form a5 + b11 mit $a, b \in \mathbb{N}$ geschrieben werden kann. Also muss M_0 nach der Bahnengleichung nicht-trivial sein.

Aufgabe 6 (??). Eine Gruppe G operiere auf einer Menge X. Man zeige: Ist |X| kleiner als der kleinste Primteiler von |G|, so ist die Operation trivial.

Lösung. Sei X_0 die Meng der Fixpunkte der Operation und p der kleinste Primteiler von |G|. Nach der Bahnengleichung gilt

$$|X| = |X_0| + \sum_{x \in T \setminus X_0} [G : G_x]$$

wobei G_x der Stabilisator von x ist. Es gilt nach Lagrange immer $[G:G_x]||G|$, aber genau für Fixpunkte $x \in X_0$ gilt $[G:G_x] = 1$. Also muß für $x \in X \setminus X_0$ gelten $[G:G_x] \geqslant p$. Dies ist nach der Bahnengleichung unmöglich, und damit ist $X = X_0$ und G operiert trivial auf X.

Aufgabe 7 (Herbst 1988). Es sei p eine Primzahl und G eine Gruppe der Ordnung p^n mit $n \ge 2$. Sei C(g) der Zentralisator eines Elements $g \in G$. Zeigen Sie:

$$|C(g)| > p$$
.

Lösung. Für das Zentrum $Z(G) = \{x \in G : gx = xg \forall g \in G\}$ von G gilt $Z(G) = \bigcap_{x \in G} C(x)$, nach der Definition von $C(x) = \{g \in G : gx = xg\}$. Mithilfe der Klassengleichung sieht man leicht, daß das Zentrum nicht trivial sein muß:

Diese besagt

$$|G|=|Z(G)|+\sum_{s\in S}[G:C(s)],$$

wobei S eine Transversale der Konjugationsklassen in $G \setminus Z(G)$ ist. Für $s \in S$ gilt $1 \neq [G : C(s)] | |G|$, also p | [G : C(s)]. Da auch p | |G| gilt, folgt p | Z(G). Da $e \in Z(G)$ gilt $|Z(G)| \geqslant 1$, also $|Z(G)| \geqslant p$.

Wegen $Z(G) = \bigcap_{x \in G} C(x)$ muss also für jedes $g \in G$ gelten, daß $|C(g)| \ge |Z(G)| \ge p$. Ist $|Z(G)| \ge p^2$, so sind wir fertig.

Sei also |Z(G)| = p. Angenommen, es gibt $g \in G$ mit |C(g)| = p. Dann ist aber C(g) = Z(G). Insbesondere ist $g \in Z(G)$ und kommutiert damit mit allen Elementen in G, was aber bedeuten würde C(g) = G. Widerspruch.