Señal	Transformada de Fourier	Coef. serie de Fourier
		(si es periódica)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_o)$	a_k
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0 k \neq 1$
$\cos \omega_0 t$	$\pi \left[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)\right]$	$a_k = 0$ $k \neq 1$ $a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, con otro valor
$\sin \omega_0 t$	$\frac{\pi}{j}\left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$, con otro valor
1	$2\pi\delta(\omega)$	$a_0 = 1$ $a_k = 0 k \neq 0$
Onda cuadrada periódica		
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\sin k\omega_0 T_1}{k\pi} = \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)$
x(t+T) = x(t)		
$\sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ para todo k
$\frac{x(t+T) = x(t)}{\sum_{n=-\infty}^{+\infty} \delta(t - nT)}$ $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$rac{2\sin\omega T_1}{\omega}$	-
$\frac{\sin Wt}{\pi t}$	$X(\omega) = \left\{ egin{array}{ll} 1, & \omega < W \ 0, & \omega > W \end{array} ight.$	-
$\delta(t)$	1	-
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	-
$\delta(t-t_0)$	$e^{-j\omega t_0}$	-
$e^{-at}u(t), \Re\{a\} > 0$	$\frac{1}{a+j\omega}$	<u>-</u>
$te^{-at}u(t), \Re\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	-
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \Re\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	-

Tabla 1: Pares Básicos de Transformadas de Fourier

Propiedad	Señal Aperiódica	Transformada de Fourier
Linealidad	ax(t) + by(t)	$aX(\omega) + bY(\omega)$
Desplazamiento temporal	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Desplazamiento en frecuencia	$e^{j\omega_0 t}x(t)$	$X(\omega - \omega_0)$
Conjugación	$x^*(t)$	$X^*(-\omega)$
Inversión temporal	x(-t)	$X(-\omega)$
Escalado	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Convolución	x(t) * y(t)	$X(\omega)Y(\omega)$
Multiplicación	x(t)y(t)	$\frac{1}{2\pi}X(\omega)*Y(\omega)$
Diferenciación en tiempo	$\frac{d}{dt}x(t)$	$j\omega X(\omega)$
Integración	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{i\omega}X(\omega) + \pi X(0)\delta(\omega)$
Diferenciación en frecuencia	tx(t)	$j\frac{d}{d\omega}X(\omega)$

Relación de Parseval

$$\int_{-\infty}^{+\infty}|x(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}|X(\omega)|^2d\omega$$

Tabla 2: Propiedades de la Transformada de Fourier

Propiedad	Señal periódica	Coef. Serie de Fourier
	$ \begin{cases} x(t) \\ y(t) \end{cases} \text{ Periodo } T \ (\omega_0 = \frac{2\pi}{T}) $	$egin{array}{c} a_k \ b_k \end{array}$
Linealidad	Ax(t) + By(t)	$Aa_k + Bb_k$
Desplazamiento temporal	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0}$
Desplazamiento en frecuencia	$e^{jM\omega_0t}x(t)$	a_{k-M}
Conjugación	$x^*(t)$	a_{-k}^*
Escalado temporal	$x(\alpha t), \alpha > 0$	a_k
	Periódica con periodo T/α	
Convolución Periódica	$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplicación	x(t)y(t)	$\sum\limits_{l=-\infty}^{+\infty}a_lb_{k-l}$
Diferenciación	$\frac{d}{dt}x(t)$	$jk\omega_0 a_k$
Integración	$\int_{-\infty}^{t} x(\tau) d\tau$ (Finita y periódica	$\left(rac{1}{jk\omega_0} ight)a_k$
	sólo si $a_0 = 0$)	
Simetría Conjugada	x(t) real	$a_k=a_{-k}^st$

Relación de Parseval

$$\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{-\infty}^{+\infty} |a_k|^2$$

Tabla 3: Propiedades de la Serie Continua de Fourier

Señal	Transformada de Fourier	Coef. serie de Fourier
		(si es periódica)
$\sum_{k=< N>} a_k e^{jk(2\pi/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\Omega - \frac{2\pi}{N}k)$	a_k
$e^{j\Omega_0 n}$	$2\pi\delta_p(\Omega-\Omega_0)$	$(a) \ \Omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m \pm lN, \ l = 0, 1, \dots \\ 0, & \text{otro valor} \end{cases}$ $(b) \frac{\Omega_0}{2\pi} \text{ irracional} \Rightarrow \text{ la señal es aperiódica}$ $(a) \ \Omega_0 = \frac{2\pi m}{N}$
$\cos\Omega_0 n$	$\pi \left[\delta_p(\Omega - \Omega_0) + \delta_p(\Omega + \Omega_0) \right]$	$a_k = \left\{ egin{array}{ll} rac{1}{2}, & k = \pm m \pm l N, & l = 0,1, \dots \\ 0, & { m otro\ valor} \end{array} ight. \ \left. \left(b ight) rac{\Omega_0}{2\pi} & { m irracional} \Rightarrow & { m la\ se\~nal\ es\ aperi\'odica} \end{array} ight.$
$\sin\Omega_0 n$	$\frac{\pi}{j} \left[\delta_p(\Omega - \Omega_0) - \delta_p(\Omega + \Omega_0) \right]$	$(a) \ \Omega_0 = \frac{2nm}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = m \pm lN, \ l = 0, 1, \dots \\ -\frac{1}{2j}, & k = -m \pm lN, \ l = 0, 1, \dots \\ 0, & \text{otro valor} \end{cases}$ $(b) \ \frac{\Omega_0}{2\pi} \text{ irracional} \Rightarrow \text{ la señal es aperiódica}$
1	$2\pi\delta_p(\Omega)$	$a_k = \left\{ egin{array}{ll} 1 & k = 0, \pm N, \pm 2N, \dots \\ 0 & ext{otro valor} \end{array} \right.$
Onda cuadrada periódica $x[n] = \left\{ \begin{array}{ll} 1, & n \leq N_1 \\ 0, & N_1 < n \leq \frac{N}{2} \\ x[n+N] = x[n] \end{array} \right.$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\Omega - \frac{2\pi k}{N})$	$\begin{array}{l} a_k = \frac{\sin[(2\pi k/N)(N_1+1/2)]}{N\sin[2\pi k/2N]}, k \neq 0, \pm N, \dots \\ a_k = \frac{2N_1+1}{N}, k = 0, \pm N, \pm 2n, \dots \end{array}$
$\frac{x[n+N] = x[n]}{\sum_{k=-\infty}^{+\infty} \delta[n-kN]}$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\Omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ para todo k
	$\frac{1}{1-ae^{-j\Omega}}$	-
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin\left[\Omega(N_1+1/2)\right]}{\sin(\Omega/2)}$	-
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$	$X(\Omega) = \begin{cases} 1, & 0 \le \Omega \le W \\ 0, & W < \Omega \le \pi \end{cases}$	-
$0 < W < \pi$	$X(\Omega)$ periódica con periodo 2π	
$\delta[n]$	1	-
u[n]	$\frac{1}{1-e^{-j\Omega}} + \pi \delta_p(\Omega)$	-
$\delta[n-n_0]$	$e^{-j \pi m_0}$	-
$(n+1)a^nu[n], a < 1$	$ \frac{1}{(1-ae^{-j\Omega})^2} \\ \frac{1}{(1-ae^{-j\Omega})^r} $	-
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\Omega})^r}$	-

Tabla 4: Pares Básicos de Transformadas de Fourier de Tiempo Discreto

Señal Aperiódica	Transformada de Fourier
ax[n] + by[n]	$aX(\Omega) + bY(\Omega)$
$x[n-n_0]$	$e^{-j\Omega n_0}X(\Omega)$
$e^{j\Omega_0 n}x[n]$	$X(\Omega - \Omega_0)$
$x^*[n]$	$X^*(-\Omega)$
x[-n]	$X(-\Omega)$
$x_{(k)}[n]$	$X(k\Omega)$
x[n] * y[n]	$X(\Omega)Y(\Omega)$
x[n]y[n]	$X(\Omega) \circledast Y(\Omega)$
x[n]-x[n-1]	$(1 - e^{-j\Omega})X(\Omega)$
$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\Omega}}X(\Omega) + \pi X(0)\delta_p(\Omega)$
nx[n]	$j\frac{dX(\Omega)}{d\Omega}$
	$ \begin{aligned} & x[n] + by[n] \\ & x[n - n_0] \\ & e^{j\Omega_0 n} x[n] \\ & x^*[n] \\ & x[-n] \\ & x[k][n] \\ & x[n] * y[n] \\ & x[n]y[n] \\ & x[n] - x[n - 1] \\ & \sum_{k = -\infty}^n x[k] \end{aligned} $

Relación de Parseval

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega$$

Tabla 5: Propiedades de la Transformada de Fourier de Tiempo Discreto

Propiedad	Señal periódica	Coef. Serie de Fourier
	$\left. egin{aligned} x[n] \\ y[n] \end{aligned} ight. ight. ext{Periodo } N \; \left(\Omega_0 = rac{2\pi}{N} ight) .$	$\begin{pmatrix} a_k \\ b_k \end{pmatrix}$ Periodo N
Linealidad	Ax[n] + By[n]	$Aa_k + Bb_k$
Desplazamiento temporal	$x[n-n_0]$	$a_k e^{-jk(2\pi/N)n_0}$
Desplazamiento en frecuencia	$e^{jM(2\pi/N)n}x[n]$	a_{k-M}
Conjugación	$x^*[n]$	a_{-k}^*
Inversión de tiempo	x[-n]	a_{-k}
Escalado temporal	$x_{(m)}[n]$	$\frac{1}{m}a_k$
	(Periódica de periodo mN)	
Convolución Periódica	$\sum_{r=< N>} x[r]y[n-r]$	Na_kb_k
Multiplicación	x[n]y[n]	$\sum_{l=< N>} a_l b_{k-l} \ (1-e^{-jk(2\pi/N)}) a_k$
Diferenciación	x[n]-x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$
Acumulación	$\sum_{k=-\infty}^{n} x[k]$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
	(Finita y periódica sólo si $a_0 = 0$)	
Simetría Conjugada	x[n] real	$a_k=a_{-k}^*$
Dologión do Dovoceml		

Relación de Parseval

$$\frac{1}{N} \sum_{n = < N >} |x[n]|^2 = \sum_{k = < N >} |a_k|^2$$

Tabla 6: Propiedades de la Serie Discreta de Fourier

Señal	Transformada	ROC
$\delta[n]$	1	z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	$\int z - \{0\} \text{si } m > 0$
$o_{[n-m]}$	2	$z - \{\infty\}$ si $m < 0$
$\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
$n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
$(\cos \Omega_0 n)u[n]$	$\frac{1 - (\cos \Omega_0)z^{-1}}{1 - (2\cos \Omega_0)z^{-1} + z^{-2}}$	z > 1
$(\sin \Omega_0 n)u[n]$	$\frac{(\sin \Omega_0)z^{-1}}{1-(2\cos \Omega_0)z^{-1}+z^{-2}}$	z > 1
$(r^n \cos \Omega_0 n)u[n]$	$\frac{1 - (r \cos \Omega_0)z^{-1}}{1 - (2r \cos \Omega_0)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \Omega_0 n)u[n]$	$\frac{(r \sin \Omega_0)z^{-1}}{1-(2r \cos \Omega_0)z^{-1}+r^2z^{-2}}$	z > r

Tabla 7: Pares Básicos de Transformada Z

Propiedad	Señal	Transformada Z	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_1(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linealidad	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Al menos $R_1 \cap R_2$
Desplazamiento en el tiempo	$x[n-n_0]$	$z^{-n_0}X(z)$	$R \pm \{0\}$
Escalado en z	$e^{j\Omega_0 n}x[n]$	$X(e^{-j\Omega_0 n}z)$	R
	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R
	$a^nx[n]$	$X(a^{-1}z)$	a R (El conjunto de puntos
			$\{ a z\}$ para z en R)
Inversión en el tiempo	x[-n]	$X(z^{-1})$	R^{-1} (el conjunto de puntos
			z^{-1} donde z está en R)
Expansión en el tiempo	$x_{(k)}[n]$	$X(z^k)$	$\mathbb{R}^{1/k}$ (el conjunto de puntos
			$z^{1/k}$ donde z está en R)
Conjugación	$x^*[n]$	$X^{*}(z^{*})$	R
Convolución	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Al menos $R_1 \cap R_2$
Primera diferencia	x[n] - x[n-1]	$(1-z^{-1})X(z)$	Al menos $R \cap (z > 0)$
Acumulación	$\sum_{k=infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	Al menos $R \cap (z > 1)$
Diferenciación en \boldsymbol{z}	nx[n]	$-z\frac{dX(z)}{dz}$	R

Teorema del valor inicial Si x[n] = 0 para n < 0 entonces $x[0] = \lim_{z \to \infty} X(z)$

Tabla 8: Propiedades de la Transformada Z

Señal	Transformada	ROC
$\delta(t)$	1	s
u(t)	$\frac{1}{s}$	$\Re\{s\}>0$
-u(-t)	$\frac{1}{s}$ $\frac{1}{s}$ $\frac{1}{s}$	$\Re\{s\} < 0$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re\{s\}>0$
$\frac{t^{n-1}}{(n-1)!}u(t) - \frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re\{s\} < 0$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re\{s\} > -\alpha$
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re\{s\} < -\alpha$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) - \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re\{s\}>-\alpha$
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re\{s\} < -\alpha$
$\delta(t-T)$	e^{-sT}	8
$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re\{s\}>0$
$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re\{s\} > 0$
$e^{-\alpha t}\cos(\omega_0 t)u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re\{s\}>-\alpha$
$e^{-\alpha t}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re\{s\}>-\alpha$
$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s^n	s
$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{}$	$\frac{1}{s^n}$	$\Re\{s\}>0$
n veces		

Tabla 9: Transformada de Laplace de Funciones Elementales

Propiedad	Señal	T. de Laplace	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linealidad	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	Al menos $R_1 \cap R_2$
Desplazamiento en tiempo	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Desplazemiento en s	$e^{s_0t}x(t)$	$X(s-s_0)$	R desplazada
			$(s \text{ en ROC si } s - s_0 \text{ en } R)$
Escalado en tiempo	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	R escalada
			(s en ROC si s/a en R)
Conjugación	$x^*(t)$	$X^*(s^*)$	R
Convolución	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	Al menos $R_1 \cap R_2$
Diferenciación en tiempo	$\frac{d}{dt}x(t)$	sX(s)	Al menos R
Diferenciación en s	-tx(t)	$\frac{d}{ds}X(s)$	R
Integración en tiempo	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{s}X(s)$	Al menos $R \cap \{\Re\{s\} > 0\}$

Teoremas del valor inicial y final

Si x(t)=0 para t<0 y x(t) no contiene impulsos o funciones singulares de orden superior en t=0, entonces

$$x(0^{+}) = \lim_{s \to \infty} sX(s)$$
$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

Tabla 10: Propiedades de la Transformada de Laplace