

From Scientific Workflows to Research Objects: Publication and Abstraction of Scientific Experiments

Daniel Garijo Verdejo **Supervisors**: Oscar Corcho, Yolanda Gil

Ontology Engineering Group

Departamento de Inteligencia Artificial

Facultad de Informática

Universidad Politécnica de Madrid

Index

- 1. Background
- 2. What do I do?
- 3. Motivation
- 4. Overview
- 5. Representing and publishing scientific workflows in the Web
 - Linked Data
 - Templates and provenance traces
 - Standards
- 6. Common motifs among scientific workflows
 - Workflow motif catalog
- 7. Detecting common fragments among scientific workflows
- 8. Workflows as part of an experiment: Research Objects

What are Scientific Workflows?

How are scientific workflows created?

What am I working on?

Workflow representation

- Plan/template representation
- Provenance trace representation
- •Link between templates and traces

CH1: Can we export an abstract template of the method being represented?

CH2: How do we interoperate with other workflow results?

CH3: How do we access the workflow results? **CH4**: How do we link an abstract method with several implementations?

Creation of abstractions/motifs in scientific workflows

- Abstraction catalog
- Find how different workflows are related

CH5: How can we detect what are the typical operations in scientific workflows?

CH6: How can we detect them automatically?

Understandability and reuse of scientific workflows

•Relation between the workflows involved in the same experiment

(Research Objects)

CH7: Which workflow parts are related to other workflows?

CH8: How do workflows depend on the other parts of the experiments?

Motivation

- As a designer: Discovery
 - •Workflows with similar functionality fragments/methods
 - Design based in previous templates.
- As user/reuser: Understandability, Exploration
 - Search workflows by functionality
 - Commonalities between execution runs
 - Component categorization

Overview

Abstraction definitions and categorization

Descriptions/
PSMs/Ontologies

Algorithms for finding the different abstractions automatically

Data mining tools, graph analysis, etc.

Experiment publication

RDF Stores

Provenance representation

Plan representation

Vocabularies

Taverna and Wings

http://www.taverna.org.uk/

http://www.wings-workflows.org/

Representing and publishing scientific workflows in the Web

Representing and publishing scientific workflows in the Web

A New Approach for Publishing Workflows: Abstractions, Standards, and Linked Data. Garijo, D.; and Gil, Y. In *Proceedings of the 6th workshop on Workflows in support of large-scale science*, page 47-56, Seattle, 2011. ACM

Overview

Abstractions definitions and categorization

Algorithms for finding the different abstractions automatically

Experiment Publication

Provenance representation

Plan representation

Virtuoso, Pubby, Wings (+Plugin)

OPMW

What is Linked Data?

"Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/"

Publishing workflows: high level architecture

OPMW: Process view

http://www.opmw.org/ontology/

OPMW: Attribution view

Representing and publishing scientific workflows in the Web

Standards

PROV-O: The PROV Ontology. Lebo, T.; Sahoo, S.; McGuinness, D.; Belhajjame, K.; Corsar, D.; Cheney, J.; Garijo, D.; Soiland-Reyes, S.; Zednik, S.; and Zhao, J. W3C Consortium. 2012.

Overview

Abstractions definitions and categorization

Algorithms for finding the different abstractions automatically

Experiment Publication

Virtuoso, Pubby,

Wings (+Plugin)

Provenance representation

Plan representation

OPMW + PROV + P-PLAN

http://purl.org/net/p-plan

- •Plans are not provenance
- •P-PLAN: Simple plan model for binding traces to template representations
- Aligned with OPMW and PROV (W3C Provenance Standard)

Augmenting PROV with Plans in P-PLAN: Scientific Processes as Linked Data. Garijo, D.; and Gil, Y. In *Proceedings of the 2nd International Workshop on Linked Science 2012*, Boston, 2012.

Representing and publishing scientific workflows in the Web

Common motifs among scientific workflows

Common motifs in scientific workflows: An empirical analysis. Garijo, D.; Alper, P.; Belhajjame, K.; Corcho, O.; Gil, Y.; and Goble, C. *Future Generation Computer Systems*, . 2013

Overview

Abstractions definitions and categorization

Motif Detection

Algorithms for automatic matching

Experiment Publication

Provenance representation

Plan representation

Virtuoso, Pubby, Wings (+Plugin)

OPMW

Empirical analysis on 260 workflow templates from Taverna,
 Wings, Galaxy and Vistrails

- Catalog of recurring patterns: scientific workflow *motifs*.
 - Data Oriented Motifs
 - Workflow Oriented Motifs

Understandability and reuse

Approach

•Reverse-engineer the set of current practices in workflow development through an analysis of empirical evidence

•Identify workflow abstractions that would facilitate

Workflow Motifs

- •Workflow motif: Domain independent conceptual abstraction on the workflow steps.
- 1. Data-oriented motifs: What kind of manipulations does the workflow have?
 - •E.g.:
 - Data retrieval
 - Data preparation
 - etc.

- 2. Workflow-oriented motifs: How does the workflow perform its operations?
 - •E.g.:
 - Stateful steps
 - Stateless steps
 - Human interactions
 - •etc.

Motif Catalog

Data-Oriented Motifs

Workflow-Oriented Motifs

Data Retrieval

Intra-Workflow Motifs

Data Preparation

Stateful (Asynchronous) Invocations

Format Transformation

Stateless (Synchronous) Invocations

Input Augmentation and Output Splitting

Internal Macros

Data Organisation

Human Interactions

Data Analysis

Inter-Workflow Motifs

Data Curation/Cleaning

Atomic Workflows

Data Moving

Composite Workflows

Data Visualisation

Workflow Overloading

Ontology Purl: http://purl.org/net/wf-motifs

Representing and publishing scientific workflows in the Web

Detecting common fragments among scientific workflows (macro motifs)

Detecting common scientific workflow fragments using execution provenance. Garijo, D.; Corcho, O.; and Gil, Y. In *Proceedings of of the seventh international conference on Knowledge capture*, page 33-40, Banff, 2013. ACM.

Summary: Work done at ISI

Motif Detection Abstractions definitions and categorization SUBDUE + PAFI exploration and Macro integration in Algorithms for automatic abstraction **RDF** matching detection Virtuoso, **Experiment Publication** Pubby, Wings (+Plugin) OPMW + PROV Plan Provenance + P-PLAN representation representation

Macro abstraction detection

Problem statement:

Given a repository of workflow templates (either abstract or specific) or workflow execution traces, what are the workflow fragments I can deduce from it?

Useful for:

- •Systems like Taverna and Wings: (Many templates, little annotation to relate them)
 - Finding relationships between workflows and sub-workflows.
 - •Most used fragments, most executed, etc.
- •Systems like GenePattern and Galaxy: (Many runs, nearly no templates published)
 - •Proposing new templates with the popular fragments.

Challenges: Common workflow fragment detection

- •Given a collection of workflows, which are the most common fragments?
 - Common sub-graphs among the collection
 - Sub-graph isomorphism (NP-complete)
- •We use the **SUBDUE** algorithm **[Holder et al 1994]** (hierachical clustering)
 - Graph Grammar learning
 - •The rules of the grammar are the workflow fragments

Each cluster corresponds to a workflow fragment

- Iterative algorithm with two measures for compressing the graph:
 - Minimum Description Length (MDL)
 - Size
- •Current tests with PAFI (http://glaros.dtc.umn.edu/gkhome/pafi/overview) ongoing.

[Holder et al 1994]: **Substructure Discovery in the SUBDUE System** L. B. Holder, D. J. Cook, and S. Djoko. AAAI Workshop on Knowledge Discovery, pages 169-180, 1994.

Results:

Fragment 1 (FRAG1):

Occurrences:

3 times

Fragment 2 (FRAG2):

2 times

Challenges: Generalization of workflows

Exporting the fragment results: Wf-FD model

http://purl.org/net/wf-fd

Exporting the fragment results: Wf-FD model

Research Objects

Workflow-Centric Research Objects: First Class Citizens in Scholarly Discourse. Belhajjame, K.; Corcho, O.; Garijo, D.; Zhao, J.; Missier, P.; Newman, D.; Palma, R.; Bechhofer, S.; Garcia, E.; Manuel, .G. J.; Klyne, G.; Page, K.; Roos, M.; Ruiz, J. E.; Soiland-Reyes, S.; Verdes-Montenegro, L.; De Roure, D.; and Goble, C. In *Proceedings of the Second International Conference on the Future of Scholarly Communication and Scientific Publishing Sepublica2012*, page 1-12, Hersonissos, 2012

What is a Research Object?

•Aggregation of resources that bundles together the contents of a research work:

- Data
- •Experiments
- Examples
- Bibliography
- Annotations
- Provenance
- •ROs
- •Etc.

Research Objects: An Overview

OAI-ORE

http://www.openarchives.org/ore/ Structuring and Bundling descriptions and components.

Annotation Data Ontology (AO) + Open Annotation

http://code.google.com/p/annotation-ontology/ A generic, domain-neutral annotation framework http://www.openannotation.org/spec/core/

- Tool support
- Interoperability

What can you find in a Research Object? A real example

Next steps: Internship Plan

- Finish integrating some other graph algorithms
 - PAFI (almost done)
 - Parsemis
- Test other workflow systems
 - •LONI (from ISI)
 - •GenePattern/Galaxy?
- Build a corpus for evaluation
 - Gold standard to test the different results.
- Perform evaluation
 - Analyze which is the best way to characterize the fragments
 - Presentation of the results
- Write paper(s)

Thanks!

From Scientific Workflows to **Research Objects: Publication** and Abstraction of Scientific **Experiments**

Daniel Garijo Verdejo Supervisors: Oscar Corcho, Yolanda Gil

Ontology Engineering Group Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid