1. **Motion on a circle.** A point $(x,y) \in \mathbb{R}^2$ lies on the unit circle (the circle centered at (0,0) with radius 1) if and only if (x,y) can be written in the form $(\cos \theta, \sin \theta)$ for some $\theta \in \mathbb{R}$. Of course, if you add an integer multiple of 2π to θ , then the point (x,y) doesn't change.

Motion on the unit circle can be described by an equation of the form

$$\frac{d\theta}{dt} = f(\theta). \tag{1}$$

However, the function f must be 2π -periodic for (1) to describe the motion of a point on the unit circle. Explain why.

So

$$\frac{d\theta}{dt} = 3 + \cos\theta$$

describes motion on the unit circle, butt

$$\frac{d\theta}{dt} = 3 + e^{\theta}$$

does not.

2. **Oscillators described by a single differential equation.** We saw earlier that *x* cannot oscillate if

$$\frac{dx}{dt} = f(x).$$

However, suppose we have a differential equation like (1) describing motion on the unit circle. Then

$$x(t) = \cos \theta(t)$$
 and $y(t) = \sin \theta(t)$

may be functions that perpetually oscillate. What do you have to assume about the function f in (1) to ensure that x(t) and y(t) perpetually oscillate?

3. An example. Suppose

$$\frac{d\theta}{dt} = 2\pi.$$

What will the function $x(t) = \cos \theta(t)$ look like?

4. Another example. Suppose

$$\frac{d\theta}{dt} = 1.01 + \cos\theta.$$

What do you think the function $x(t) = \cos \theta(t)$ will look like? You can figure this out qualitatively by thinking about it, but you can also solve the differential equation using the midpoint method, then plot $\cos \theta(t)$ as a function of t.