Information Theory for Machine Learning

Nipun Batra

June 10, 2023

IIT Gandhinagar

The Data Compression Problem

"hello"

Source → Encoder Receiver

Unique characters and bit Massagee → Decoder

Figure 1: Data Compression Problem

- What is more surprising: Snowing in Kashmir or Snowing in Gandhinagar?
- To formalize, let us assume that the probability of snowing in Kashmir is p_1 and that in Gandhinagar is p_2 , and that $p_1 >> p_2$.
- How can we quantify the surprise?

- Events that are less likely to occur are more surprising.
- Also, if an event is 100% likely to occur, it is not surprising at all.
- Also, if two events are independent, then the surprise of both of them occurring together is the sum of the surprise of each of them occurring individually.
- So, we need a function that maps probability to a number.
 Function should be: monotonic, and additive, and is 0 when the probability is 1.
- The function is $I(x) = -\log_2(x)$ also called the self information or surprisal.

Figure 2: Self Information

Consider a categorical random variable X with 4 possible outcomes: A, B, C, D. The probability of each of these outcomes is 0.25. What is the self information of each of these outcomes?

$$I(A) = I(B) = I(C) = I(D) = 2$$
 bits.

Consider a categorical random variable X with 4 possible outcomes: A, B, C, D. The probability these outcomes is 0.5, 0.25, 0.125, and 0.125. What is the self information of each of these outcomes?

$$I(A) = 1$$
 bit, $I(B) = 2$ bits, $I(C) = I(D) = 3$ bits.

Proof on additivity of self information: Consider two independent random variables X and Y with PMFs $p_X(x)$ and $p_Y(y)$ respectively. The joint PMF is $p_{X,Y}(x,y) = p_X(x)p_Y(y)$. The self information of the joint PMF is:

$$I(X = x, Y = y) = -\log_2(p_X(x)p_Y(y))$$

$$= -\log_2(p_X(x)) - \log_2(p_Y(y))$$

$$= I(X = x) + I(Y = y)$$

7

Entropy

- The entropy of a random variable is the expected value of the self information.
- $H(X) = \mathbb{E}_{X \sim p(x)}[I(X)] = \mathbb{E}_{X \sim p(x)}[-\log_2(p(x))]$
- The entropy of a random variable is the expected number of bits required to encode the random variable.
- The entropy of a random variable is the minimum number of bits required to encode the random variable.

Entropy

For a Bernoulli random variable X with probability p of success, the entropy is:

$$H(X) = \mathbb{E}_{X \sim p(x)}[-\log_2(p(x))]$$

$$= -\log_2(p) \times p - \log_2(1-p) \times (1-p)$$

$$= -p\log_2(p) - (1-p)\log_2(1-p)$$

Entropy

For a k class categorical random variable X with probability p_i of class i, the entropy is:

$$H(X) = \mathbb{E}_{X \sim p(x)}[-\log_2(p(x))]$$
$$= -\sum_{i=1}^k p_i \log_2(p_i)$$

Figure 4: Entropy

Code Length

Let us assume our symbols are: A, B, C, D. Let us assume that the probability of each of these symbols is 0.25. Let us assume we use the following code to encode these symbols:

$$A \rightarrow 00$$

$$B \rightarrow 01$$

$$C \rightarrow 10$$

$$D \rightarrow 11$$

What is the expected code length?

Expected code length = $\sum_{i=1}^{4} p_i \times l_i = 2$ bits.

Code Length

Let us assume our symbols are: A, B, C, D. Let us assume that the probability of these symbols is 0.5, 0.25, 0.125, and 0.125. Let us assume we use the following code to encode these symbols:

$$A \rightarrow 00$$

$$B \rightarrow 01$$

$$C \rightarrow 10$$

$$D \rightarrow 11$$

What is the expected code length?

Expected code length $= \sum_{i=1}^{4} p_i \times l_i = 2$ bits. But, is this the most efficient code? No! What is the entropy of this random variable? H(X) = 1.75 bits.

Code Length

Let us assume our symbols are: A, B, C, D. Let us assume that the probability of these symbols is 0.5, 0.25, 0.125, and 0.125. Using fixed length codes, we need 2 bits to encode each symbol.

Key idea: Use shorter codes for more frequent symbols and longer codes for less frequent symbols.

How about the following code?

$$A \rightarrow 0$$
 $B \rightarrow 10$
 $C \rightarrow 110$
 $D \rightarrow 111$

Expected code length = $\sum_{i=1}^{4} p_i \times l_i = 1.75$ bits.

Huffman Encoding

- Huffman encoding is a method to construct a variable length code for a random variable.
- The code is constructed such that the expected code length is equal to the entropy of the random variable.
- The code is constructed such that the code is a prefix code.

KL divergence

Suppose we have four symbols A, B, C, D with probabilities 0.5, 0.25, 0.125, and 0.125 respectively. Let us call this distribution p(x). We want to transmit some data using these symbols. The optimum encoding scheme is:

$$A \rightarrow 0$$
 $B \rightarrow 10$
 $C \rightarrow 110$
 $D \rightarrow 111$

But, for some reason, we believe that the four symbols are distributed as per q(x): 0.25, 0.25, 0.25, and 0.25. For this distribution, the optimum encoding scheme is:

$$A \rightarrow 00$$

$$B \rightarrow 01$$