

FIGURE 1

FIGURE 3

FIGURE 4

CompareOverWins Algorithm Flow Chart Basic Compare

Input:
Sequence A length a
Sequence B length b
Window Size

Output:

Array of size a by b of unsigned chars (0-255) Each point represents the number of matches in the window at that allignment and position

FIGURE 5C

Self Complementation Analysis - Single Sequence

Typical Descriptor

This is an example of a descriptor used to identify iron response elements. To search the database using RNAMOT, the stem-loop model is converted to a text string as shown below:

IRE

Stem-loop Model H1 S1 H2 S2 H2 H1

H1 3:3 NNN:NNN

S1 1 C

H2 5:5 NNNNN:NNNNN

S2 6 CAGNGN

W2

MO

IRE String descriptor

This descriptor allows for a wobble (W) of 2 (allows G-U pairing) and no mismatches. N can be any nucleotide H refers to the stem region while S refers to the single stranded region.

6 C C C C C C C C C C C C C C C C C C C	No	No	N _O	Yes	Yes	Yes	No
	o N	S.	N _o	Yes	Yes	N _O	
G-U A-U A-U C-6 C-6 C-A	Yes	Yes	Yes	Yes	No		
C C C C C C C C C C C C C C C C C C C	Yes	Yes	Yes	No			
	Yes	Yes	No				
A C C C C C C C C C C C C C C C C C C C	No	No					
3 4 6 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	No						
	HUMAN	HAMSTER	RAT	TROUT	SALMON	FROG	MOSQUITO
FIGUI	RE 13						

Compound CI

 $C_{12}H_{18}N_2O_5S$

$$\begin{bmatrix} H \\ HO \end{bmatrix} \begin{bmatrix} CH_3 \\ CH_3 \\ N \\ O \end{bmatrix} \begin{bmatrix} O \\ O \\ H \end{bmatrix} = OCH_3$$

Fi

Fii

 F_{iii}

Molecular formula

 H_2NO

C₅H₉NO

 $C_7H_7O_3S$

Addition of fragments to yield compounds

Table

Fragment Identifier	Structure H	Name	Molecular formula	Other
Fi	H-O-N-	Hydroxylamine	H_2NO	
Fii	CH ₃ CH ₃ N O H	Amino acid	C₅H ₉ NO	
F _{iii}	OCH ₃	Sulfonyl	$C_7H_7O_3S$	

Reagents	Identifier	Name	Properties
$H-O-NH_2$ or $P-O-NH_2$	R _i	Hydroxylamine	
CH_3 CH_3 N	Rii	FMOC blocked amino acid	
CI—S—OCH3	R _{iii}	Sulfonylchloride	

P = Solid support

Transformation

FIGURE 17

Common Fragment / Different Reagents and Transformations

Common Fragment / Different Reagents and Transformations

Common Reagent

CH₃ CH Transformation X'

Common reagent Z'

CH₃ CH₂

CH₂

Transformation Y'

$$CH_3$$
 CH_3
 CH_3

Symbolic addition of fragments to yield compound

Symbolic Structure	Symbolic Identifier	Molecular formula
Fragment		
<u> </u>	F _{i'}	$C_{\mathbf{u}}H_{\mathbf{v}}N_{\mathbf{w}}\dots$
\bigcirc -x	F _{ii'}	$C_{\mathbf{u}}H_{\mathbf{v}}N_{\mathbf{w}}$
х— <u> </u>	F _{iii'}	$C_{\mathbf{u}}H_{\mathbf{v}}N_{\mathbf{w}}$
Compound		
	CI'	$C_{\mathbf{u}}H_{\mathbf{V}}N_{\mathbf{W}}$
		Molecular formula F _{i'} +
		Molecular formula Fii' +
		Molecular formula Fiii'
		= Molecular formula CI'

Symbolic Reagent Table

Identifier	Name	Structure	Molecular formula
R1	xxx	∠ Cl	xxx
R2		CNO	
R3		Cl	
R4		Br	
R5		Cı —Cı	
R6		Pg—OEt	
R7	•••	Pg——Cl	
R8		Pg Br	
R9		Pg_1 Pg_2	•••
R10		Pg_1 Pg_2	

Symbolic Fragment Table

Identifier	Symbolic Structure	Molecular formula	Molecular Weight
F1	∠X	xxx	xxx
F2	\bigcirc -x		
F3	X		
F4	-x $-x$		
F5	х —О—		
F6	$X \longrightarrow_{Y}$		
F7	$x - \sum_{z=0}^{x} z$		
F0	Y		•
F8	$X \subset Z$	•••	

Symbolic Transformation Table

Identifier	[Symbolic	Reactions	Reagent
Tl	F1	\sim X	← R1	conditions α
T2	F2	\bigcirc -x	← R2	conditions β
Т3	F3	X	← R3	conditions α
T4	F3	X	← R4	conditions α
T5	F4	-x	← R5	conditions α
T6	F5	х— <u></u>	← R6	conditions ε
T7	F5	х—О— Y	← R7	conditions α
Т8	F6	$X \longrightarrow Y$	← R8	conditions α
Т9	F7	x——z	← R9	conditions γ
T10	F8	x Z	← R10	conditions γ

Single Compounds and Mixtures

P = synthetic path

CF = complex fragment

F = fragment

M = mixture

C = compound

M2

FIGURE 26

2 Starting Fragments

2 Complex Fragments

CF5

4 Complex Fragments

8 Complex Fragments

FIGURE 27A

Mixture 4 (continued)

16 compounds

FIGURE 27B

Tracking Table for Compound C1

(a) By Fragments:

n	n+1	<u>n+2</u>
F7		
	F2	
	F1	
	F5	
		F3

(b) By Transformations:

Synthesis Path 1

Synthesis Path 2

n	n+1	n+2
T9		
	Т2	
	T1	
	T7	
	• ,	Т3

Synthesis Path 3

Synthesis Path 4

n	<u>n+1</u>	<u>n+2</u>
T9		
	T2	
	T1	
	T7	
		T4

Tracking Table

Tracking M1

Ste	p l	
T9		

Ste	ep 2	
T9		
	T2	

Ste	p 3	
Т9	T2 T1	

Step 4						
Т9	T2 T1 T7					

Step 5	Step 5
T9 T2 T1 T5 T5 T5	T9 T2 T1 T7 T5 ²
C2	C3

Tracking Table

Tracking M2

Step 1					
n	n+1	n+2			
T9					
1					

Ste	p 2	
n	n+1	n+2
T10		
	T2	

C1

C5

Tracking M3

Step	1	
T9		

Step	2	
Т9	T2	

Step 3			Step 3			
T9	T2 T1		T9	T2 T3		

Step	4	Step	Step 4		
T9	T2 T1 T7	Т9	T2 T3 T7		

Step 5		Step	Step 5		Step 5			Step 5		
Т9	T2 T1 T7	T9	T2 T1 T7	T5 ²	Т9	T2 T3 T7	T5 ¹	Т9	T2 T3 T7	T5 ²
	C2		C3			C7			C8	

FIGURE 32

Synthesis of hydroxamic acids from alcohol resin

Synthesis of hydroxamic acids from hydroxylamine resin

- 1) piperidine/DMF
- 2) R₂SO₂Cl/pyridine

Biological Activity and Binding Energy for Structures Docked to TAR with Solvation/Desolvation Energy

Calc. ∆G of binding Structure ACD Code

IÇ. (MJ)

(kcal/mole)

00001199

~

00192509

V

00003934

FIGURE 38A

FIGURE 38B

Inhibition of translation by DeepBlue-3 in WGL

5'- GGCGUCA CACC U CCGCUGA GUGG C

16S A Site rRNA

5'- GGCGUCACACC U CCGCAG UGUGG C A G

Control RNA

Sequence and structure of 27mer RNA target FIGURE 40

MS-MS analysis of member bound to RNA/DNA chimera

ESI-MS of RNA/DNA chimera bound to paromomycin and library **FIGURE 44**

MS/MS of RNA/DNA chimera + compound with mass 665.1 not bound at the A-site FIGURE 45

MS-MS analysis of member bound to RNA/DNA chimera at the A-Site

MS Fragmentation of DNA:DNA duplexes FIGURE 47

MS Fragmentation of DNA:RNA duplexes FIGURE 48

MASS Analysis of Binding Location

MASS Analysis of Binding Location

non-A site binder

MASS analysis of 16S A site RNA plus 216 member library

FIGURE 51

(performed on quadrupole ion trap)

High Precision ESI-FTICR Mass Measurement of 16S A site RNA/Paromomycin Complex

