Public Health Reports

Room

OLUME 66

nthly.

nal of ith it.

Public ry out ies for

al and dminly the

nd the will be at, and

aterial

PUBLIC

viduals in and

of the stribueither

n form chnical Public no wish implete previse

ription

Par

10,51

DECEMBER 21, 1951

NUMBER 51

[To be published monthly in 1952—see back cover and page 1709]

IN THIS ISSUE

Biochemistry of Q Fever in Bovine Mammary Gland Induced Changes in Salmonella Antigens Public Health Service Publications

FEDERAL SECURITY AGENCY

PUBLIC HEALTH SERVICE

FEDERAL SECURITY AGENCY Oscar R. Ewing, Administrator

PUBLIC HEALTH SERVICE Leonard A. Scheele, Surgeon General

Division of Public Health Methods G. St. J. Perrott, Chief of Division

CONTENTS

n

ini me an

un tak

the tiss: 0.85 per chic the contrighting ear

	Page
A biochemical study of experimental Q fever infection in the bovine mammary gland. Richard A. Ormsbee	168
Changes induced in the flagellar antigens of Salmonella rostock and Solmo-	
nella california. O. A. Peso and P. R. Edwards	1694
Public Health Service Publications, January-June 1951	1697
INCIDENCE OF DISEASE	
United States:	
Summary of reports from States	1709
Table of reported cases of communicable diseases	1712
Foreign reports:	
Canada—Provinces—Week ended November 17, 1951	1714
Cuba—4 weeks ended October 27, 1951	1714
Norway—July 1951	1715
Cholera	1715
Smallpox	1715
Typhus fever	1715
Yellow fever	1716

Public Health Reports

Vol. 66 • DECEMBER 21, 1951 • No. 51

A Biochemical Study of Experimental Q Fever Infection in the Bovine Mammary Gland

By RICHARD A. ORMSBEE*

This investigation was made to study several aspects of bovine mammary gland metabolism as they were influenced by experimentally induced infection with *Coxiella burnetii*, the causative agent of Q fever.

The data reported represent only a part of the clinical, epidemiological, and pathological information obtained from a study of six cows. Additional details will be published later (1).

Page

1685

1694

1697

1709

1712

1714

1714 1715

1715

1715

1715

1716

Material and Methods

Six young cows in the second and third months of their first lactation period were used in the experiment. Four were experimentally infected and two served as controls. Prior to initiation of the experiment, the cows were free of mastitis, as indicated by leukocyte counts and blood agar cultures.

Representative milk samples from the total morning milking from each quarter of the udder of each cow were taken three times a week until the acute phase of the infection was past. Samples were then taken once a week. Samples were also taken during the 10 days preceding inoculation with *C. burnetii*.

The cows were inoculated with *C. burnetii* (a California strain) by the injection of 20-ml. aliquots of 2.5 percent infected chick yolk-sac tissue via the lacteal duct. The infectious suspension was made up in 0.85 percent NaCl and contained 2.5×10° guinea pig infectious doses per milliliter. The infected yolk-sac material came from 13-day-old chick embryos; the corresponding normal yolk-sac suspension used in the control cattle came from 12-day-old chick embryos. The two control cows were injected in the left front and right rear, and the right front and right rear quarters, respectively. The animals receiving the infectious suspension were injected in the left front and left rear quarters in all cases.

^eFrom the Rocky Mountain Laboratory (Hamilton, Mont.), National Microbiological Institute, National astitutes of Health, Public Health Service.

Butterfat determinations were made according to the procedure described by Goss and Rudnick (2).

The pH determinations were made with a glass electrode. These

determinations were accurate to 0.02 units.

Lactose determinations were made following the Folin-Wu method for blood sugar. To 2 ml. of milk in a 25-ml. volumetric flask, 18 ml. of a mixture of eight parts of N/10 H₂SO₄ and one part of 10 percent Na₂WO₄ was added slowly and with shaking. This was allowed to stand 5 minutes and then diluted to volume with distilled water. The filtrate from this preparation was diluted 3:25, and 1 ml. of the diluted filtrate was used for the lactose determinations (3).

Chloride determinations were performed by adding 5 ml. of AgNO₃ (2.905 gm/1.) to a 5-ml. aliquot of a filtrate prepared as described in the preceding paragraph. To this was added 5 ml. of concentrated HNO₃ and 0.3 gm. FeNH₄(SO₄)₂·12 H₂O. This mixture was titrated in ice water to a 15-second persisting end point with KCNS of such a concentration that 5 ml. was equivalent to 1 ml. of the AgNO₃

solution.

Total nitrogen determinations were made by the usual micro-

Kjeldahl method and nesslerization of the distillate.

Casein was determined by a method involving the use of KH₂PO₄ as the precipitating agent. To a 25-ml. aliquot of milk diluted 1:50 with distilled water was added 25 ml. of M/4 KH₂PO₄. The mixture was allowed to stand 60 to 90 minutes, during which time the casein was precipitated as a fine flocculate. If precipitation was delayed, the addition of 0.1 ml. of 10 percent HAc caused rapid completion. The mixture was then filtered through Whatman No. 2 paper and washed with M/4 KH₂PO₄ to a total wash volume of about 75 ml. The precipitate was then dissolved by the drop-wise addition of 10 percent NaOH which was also used for rinsing out the original flask. A total volume of 15 ml. of 10 percent NaOH was employed, and the filter subsequently washed with water. The NaOH and wash waters were collected in a 25-ml. volumetric flask and made up to volume. N determinations were made on 1-ml. aliquots by the method previously described. The amount of casein was calculated on the basis of 15.7 percent N content. A comparison of this method of casein determination with other methods will be published at a later date.

Total solids were measured by weighing out approximately 3 ml. of milk into a 6.5-cm. Vycor evaporating dish and drying it at 96° for 24 hours. The dish then was stored in a desiccator until weighed.

Total ash was determined by weighing out approximately 20 ml. of milk in an 8.5-cm. Vycor evaporating dish and adding 6 ml. of concentrated HNO₃. This was digested cautiously over a microburner and then ashed at a temperature below redness until free of

u

S

q

in

T

Se

Ta

Col

Con

Cor

Con

Con

Infe

have

No

value repres fected The

Mil

of a

well

give

Dece

T

Removal of carbon was accelerated by the cautious dropwise addition of 30 percent H₂O₂. The samples were then cooled and left in a desiccator overnight before weighing.

Hemoglobin was measured colorimetrically as acid hematin. A 0.2-ml. aliquot of heparinized blood made up to 50 ml. with N/10 HCl was allowed to stand for 1 hour at room temperature, and the absorption measured at 540 mµ.

Results

A summary of the most important data is presented in table 1. The data given in this table cover only the period beginning 4 days before infection and the 12 days following infection. The major changes noted took place during this period. Determinations were actually made on the animals beginning 10 days before infection and lasting until the animals were killed—a period of 41 days postinoculation in Although individual determinations were made on each quarter of the udder of each cow, only the data on the quarters actually injected with normal or infectious yolk-sac suspensions are presented. The effects on the uninjected quarters are noted in the appropriate sections.

Table 1. Summary of the changes occurring as a result of experimental Q fever infection, including data for the injected quarters of the udders only

	A	В	C		A	B	O
	Mill	k volume in	ml.		Butte	erfat, gm.	percent
Control	963	415	848		4.2	4.7	3.8
Infected	1148	276	792		3.3	7.7	3.7
	Chlor	ide, mg. pe	ercent		Total ni	trogen, mg	. percent
Control.	77	114	65		579	767	449
Infected	87	201	187		500	818	553
	Case	in, mg. per	rcent	Lactore, gm. percent			
Control	1 2380	2 1950	2370		6. 09	4.28	5, 32
Infected	1 2040	3 1760	2380		5. 46	3, 39	4.43
		vt., gm. pe	rcent			ash, gm. 1	percent
Control	12.90	13. 53	12. 28		3 O. 96		4 0. 68
Infected	11.47	16.39	12.78		8 1. 02		1, 66
		pH				lobin, gm.	percent
Control	6.49	6, 61	6, 51	(2 animals)	10.0	11.3	10.6
Infected	6.46	6.65	6. 56	(3 animals)	10.3	10.1	11.0

Average value 7 to 11 days before injection.
 Complete series of determinations not made. Minimum value during first 8 days postinjection may have been lower. These values were obtained after dry weight values had returned almost to normal.
 Determinations made only once, 10 days before injection.
 Determinations made 42 days after injection.
 Determinations made on one cow only, 42 days after injection.

Note: Column A gives the average value during the 4 days preceding injection; column B the average maximum or minimum value obtained during the 8 days following injection; column C gives the average value during the eighth to the twelfth days postinjection. In the group designated "Control" each value represents the average value obtained from 4 quarters of the udders (2 from each of 2 cows). In the "Infected" group, each value represents the average value from 6 quarters (3 cows), unless otherwise indicated. The values are for morning milk only, except for the hemoglobin values, which are for blood.

Milk Production

ıre

ese

od

18

erred

er. the

 10^3

in

ted

ted

uch

VO3

ero-

PO₄ 1:50

ture

sein ved. ion. and ml. n of inal yed, and

e up the ated thod

at a

al. of o for

ed.

) ml.

il. of

icro-

ee of

1951

The volume of milk from each of the four quarters of the udder of a given cow varied considerably during the preinoculation period, as well as later. The injection of an infectious yolk-sac suspension into a given quarter resulted in a drastic fall in milk volume from 5 to 20

December 21, 1951

percent of normal. A similar drop, though not as great, occurred in the uninjected quarters. Beginning with the fourth day postinoculation, volume rapidly rose to near normal levels in both the injected and uninjected quarters. Milk volume never again, in the time period studied, reached the average preinjection level.

Milk flow from the quarters injected with normal yolk-sac suspensions likewise dropped but not as much as in the quarters injected with infectious material. Recovery was more rapid. The uninjected quarters of the control animals showed only a slight drop in milk production.

Butterfat

The percent of butterfat was only slightly affected in the control animals. However, the total butterfat production dropped significantly in these animals, particularly in the inoculated quarters, because the milk production dropped immediately following inoculation. This transitory decrease in butterfat production had largely disappeared by the eighth day following inoculation.

In the experimental animals the butterfat concentration increased markedly, particularly in the inoculated quarters, going as high as 9.9 percent in the inoculated quarters of one cow. Although the butterfat concentration increased markedly in the infected quarters of the experimental animals, there was a decrease in total butterfat much greater than that in the control animals because of the extreme decrease in milk volume in the infected animals.

The average percent of butterfat in the infected quarters rose about twofold and then dropped to normal within the 8 days following infection. A somewhat smaller rise occurred in the uninjected quarters of the experimental animals.

Lactose

A slight drop in lactose concentration following inoculation was noted in both the injected and uninjected quarters of the control animals.

The lactose concentration in the infected quarters of the experimental animals declined 38 percent immediately following inoculation, whereas the control quarters in these animals were relatively unaffected. Within 8 days, postinoculation lactose content was normal or nearly so in all cases although the return to normal values was more protracted than in the control animals.

Chloride

In the control animals a gradual decrease in milk chloride concentration was noted during the 10-day preinoculation period. This was likewise true of the experimental animals. Immediately following inoculation a sharp, but relatively small rise in concentration was 1

a

a

d

tl

th

di

ca

We

De

noted in the control animals. This was more marked in the injected quarters.

In the experimental animals the chloride concentration in the infected quarters rapidly rose far above those in the uninfected quarters of the udders of the same animals. The values in the infected quarters equaled the values of the corresponding normal quarters by the seventh day in one animal, and by the fourteenth day in the second, but never did reach the lower chloride concentration of the control quarters in a third, up to the time of sacrifice on the twenty-second day. The average maximum increase in chloride in the infected quarters was twofold.

Total Nitrogen

In the control animals a slight rise in nitrogen concentration was noted in the injected quarters on the day immediately following injection. The level had dropped to control values by the time the next determinations were made, 4 days following injection. The total nitrogen content of all quarters in the control animals fell to a level of about 78 percent of the preinjection value and was subsequently maintained at this level.

In the infected animals a sharp rise in total nitrogen occurred in the milk from the injected quarters, with a peak equaling 164 percent of normal on the fourth day. A fall in the total nitrogen of the corresponding uninjected quarters occurred. The peak nitrogen content in the milk from the injected quarters came simultaneously with the lowest ebb of milk production, and probably reflects protein concentration. NPN determinations were not made so it is not known whether or not the rise in total N reflects only protein concentration or whether an increase in NPN also occurred at this time. It is very likely that a rise in NPN did occur. The total N concentration in the milk from the injected quarters did not drop to the values obtained from the uninjected quarters until 20 days postinjection.

Casein

No evidence of significant fluctuations in casein concentrations in the milk from the control quarters as opposed to the injected quarters was noted in either the control animals or the experimental animals. Nor was the relative casein production in the experimental animals markedly altered as compared with the controls. These data, however, cover only part of the preinoculation period and only the postinoculation period beginning 6 days after inoculation. Since these data do not cover the period in which the greatest fluctuations occurred in the other constituents measured, no conclusion can be drawn concerning the influence of the experimental treatment on the casein content of the milk during the period in which marked changes were most likely to occur.

December 21, 1951

1689

ng inarters

the

and

riod

pen-

with

cted

milk

ntrol

mifi-

, be-

tion.

dis-

eased

s 9.9

erfat

peri-

eater

se in

bout

xperiation,

y unormal more

entrais was owing n was

, 1951

Dry weight determinations of milk samples showed a marked but erratic fluctuation in the control animals in the 6 days immediately following injection. In one control animal no change occurred in the uninjected quarters. In the other control animal a marked drop in dry weight values from the injected quarters and a smaller but significant drop in the uninjected quarters occurred.

In the experimental animals, a rise in dry-weight values occurred in all quarters, both injected and uninjected. This rise was maximal 4 days following injection or at the time of minimum milk production and was much greater in the injected quarters than in the uninjected quarters. One cow was a partial exception to this in that the highest dry-weight values in the infected quarters were observed 6 days following injection, at a time when milk production was increasing from its low point on the fourth day. The uninjected quarters in this cow showed a decrease in dry-weight value on the sixth day. values from the injected quarters as compared to the corresponding control quarters were approximately equal in the control animals by the sixth day following injection. This was likewise true in a second animal. In a third animal, however, the values from the control and infected quarters were never equal up to the time of sacrifice on the eleventh day following injection. In a fourth animal, values were approximately equal by the fifteenth day following injection although true equality did not obtain until the day of sacrifice, 22 days following injection. Dry-weight increases up to 158 percent of normal were observed. The average maximum increase in dry-weight values was 43 percent above normal and occurred in the injected quarters of the infected cows. Total ash measurements made in the preinjection period again just prior to sacrifice indicated no significant differences between the control and the experimental animals.

pH Changes

A small increase in the pH of the milk from the control animals was detected. The injected quarters were indistinguishable from the unin-

jected quarters in this regard.

Similar fluctuations in the pH of the milk from the infected cows occurred. They were more marked in the injected than in the uninjected quarters. In all cases the pH of the milk from injected quarters rose 0.1 to 0.2 units during the 8 days immediately following injection. This was accompanied by a rise in pH in the corresponding uninjected quarters in all cases. The values returned to values closely approximating the preinjection figures within 11 days in the case of two animals. In the third infected animal, the pH of the milk did not return to its preinfection value within 22 days, at which time the animal was killed. The magnitude of the pH changes was slight.

i t e f t

t

7

R

D

Control (preinjection) values averaged pH 6.46, and the average maximum value obtained in the 8 days following inoculation was pH 6.65.

Hemoglobin

but

tely

d in

drop but

ed in

imal

ction ected

ghest days

asing

this

The

ding

s by

cond

and

1 the

were

ough

wing

were

was

f the

ction

ences

Blood hemoglobin determinations made revealed no significant variations that could be ascribed to Q fever infection. The initial control values for the individual animals varied considerably, and later changes revealed no regular trend in concentration that could be ascribed to the experimentally induced infections.

Discussion

The changes that were noted occurred chiefly during the 8 days following injection. They were essentially similar in the control animals which had been injected with a normal chick yolk-sac suspension and in the experimental animals which had been injected with a corresponding suspension of infectious material. The major difference between the control and the experimental values lay in the magnitude and the duration of the changes, particularly with respect to butterfat and chloride. In the control animals, the changes resulting from the introduction of normal yolk-sac suspension were smaller in magnitude and recovery was rapid. In the experimental animals, the magnitude of the changes was greater and recovery to normal was considerably slower. Even so, most of the abnormal variations in milk composition had disappeared within the 8 days following infection. This 8-day period following injection also covered the appearance and disappearance of fever in the infected animals. No fever occurred in the control animals.

It seems reasonable to conclude that the major cause of the changes observed in the experimentally infected animals was the introduction in the udder of massive amounts of foreign protein. It is also clear, however, that changes in all constituents occurred in these animals above and beyond those nonspecific reactions caused by the yolk-sac components injected. Thus, the magnitude and duration of the changes which occurred in the infected animals can be attributed to the Q fever infection. This was particularly clear in one of the experimental cows in which the differences persisted for 22 days following injection. The most acute deviations from normal in this animal occurred several days after the appearance of the corresponding deviations in the control animals.

This animal, incidentally, represented the only case in which the original infection spread to an uninjected quarter of the udder. The animal was injected in the left front and left rear quarters, and 7 days later the milk from the right rear quarter became positive for Rickettsiae, and remained so until sacrificed, 63 days after injection.

December 21, 1951

1691

973048-51---2

s was unin-

cows uninarters etion.

ected roxitwo

d not e the light.

Table 2 presents a comparison (with the present findings) of the changes that occur during chronic bacterial mastitis (4). The most characteristic changes in the chemical composition of milk from udders with bacterial mastitis are increases in chloride, water, noncasein nitrogen, and pH, and decreases in casein, lactose, milk fat, nonfat solids, and ash. There may be a considerable decrease in milk volume also. The changes that occurred following infection with C. burnetii differ from those found in chronic bacterial mastitis in that there is a large increase in milk fat, in solids other than fat, and a relatively small increase in pH. The milk taken at the most acute stage was very thick and creamy in appearance, with butterfat values up to 9.9 percent and total solids values up to 19.1 percent.

The infected cows shed Rickettsiae in their milk until they were killed, or for periods of 5, 11, 22, and 63 days, respectively, following injection. The Rickettsiae were demonstrated by guinea pig inoculation. It thus appears that none of the measurements made were critical in indicating the existence of any Q fever infection except the most acute, since the infections persisted long after the milk had returned to normal. The acute Q fever infection, as exemplified by the foregoing data, is reflected in changes which were concerned with cellular synthetic activities, or with the integrity of epithelial

cell membranes.

These data indicate that *C. burnetii* infection produces only temporary metabolic changes in mammary gland activity, even when the organism is injected in massive doses. Milk volume, butterfat, casein, total nitrogen, lactose, chloride, and total solids, all assumed relatively normal levels within 3 weeks at most following infection and within 8 days for three out of four experimental animals. One exception may have been the declining milk volume noted from the twenty-eighth to the forty-first day in one infected animal.

No systemic involvement reflected in hemoglobin concentration changes or in blood cell counts was noted in these animals.

Naturally occurring infections of the mammary gland via the

Table 2. A comparison of the present data on milk composition with that for chronic bacterial mastitis (4)

	Bacterial mastitis	O fever infection	Injected with normal chick yolk sac only
NCN	+	+	+
Casein		_	-
Chloride	+	+	+
Lactose	_	,	_
Fat	_	+	±
pH	+	+	+
Nonfat solids	_	+	土
Ash	_	?	?
Milk volume	_	_	-
Total N		+	+
Water		_	-

Note: A "plus" sign indicates increase in concentration; a "minus" indicates a decrease in concentration.

d

d

b

co

A(

H.

Ta

RE

(1)

(2)

(5)

lacteal duct might be expected to produce less disturbance than was seen in these animals. The inocula in such cases would probably consist of a much smaller number of organisms and would be accompanied by much less foreign protein, which presumably caused the intense inflammatory reaction noted initially in both the control and the experimental animals. Since this experiment was performed, other data which suggest that naturally occurring mammary gland infections are of hematogenous origin have been published (5).

Conclusions

The injection of infectious suspensions of C. burnetii in the udders of cows resulted in the following changes in the composition of their milk: increases in total nitrogen, noncasein nitrogen, chloride, butterfat, nonfat solids, and pH; decreases in casein, lactose, milk volume, and water. No change in blood hemoglobin resulted.

Major fluctuations in these constituents disappeared within 8

days following injection.

Similar changes occurred in control animals injected with chick yolk-sac suspension, but the changes were of smaller magnitude and disappeared more quickly.

The changes are different from those that occur with chronic bacterial mastitis in that the butterfat and nonfat solids increased in

concentration.

ACKNOWLEDGMENT

The data on rickettsiae in the milk of the infected cows were obtained by Drs. H. G. Stoenner and E. J. Bell, and will be presented in detail in a future publication. It is a pleasure to acknowledge also the technical assistance of George Tallent.

REFERENCES

(1) Stoenner, H. G., Bell, E. J., Lackman, D. B., Kissling, R., and Parker, R. R.: Symptomatology and pathology of experimental Q fever in dairy cattle.

To be published.

(2) Goss, E. F., and Rudnick, A. W.: Testing milk and its products. I College Agricultural Extension Service Circular No. 219, 1943.

(3) Folin, O, and Wu, H.: A system of blood analysis. Supplement I. lified and improved method for determination of sugar. J. Biol. Chem.

41: 367-374 (1920).

(4) Little, R. B., and Plastridge, W. N.: Bovine Mastitis. McGraw-Hill, New York, 1946, p. 440.

(5) Stoenner, H. G.: Experimental Q fever in cattle—epizootiologic aspects. J. Am. Vet. Med. Assoc. 888: 170-174 (1951).

December 21, 1951

1693

conly

the

ost

ers

ein

on-

nilk

rith

in and

ute ues

rere

ring

ula-

vere

the

had

fied

ned

elial

em-

hen fat,

med

tion

One

the

tion

the

ronic

l with

tration. 1951

Changes Induced in the Flagellar Antigens of Salmonella rostock and Salmonella california

By O. A. Peso and P. R. EDWARDS*

Several instances of induced type transformation in the genus Salmonella have been reported. The first such report was that of Edwards, Moran, and Bruner (1) in which the intertransformability of Salmonella simsbury and Salmonella senftenberg was described. Bruner and Edwards (2) induced changes in the nonspecific phases of certain types. Bruner (3) was able to transform Salmonella oranienburg into a form indistinguishable from Salmonella montevideo. All of these changes in H antigens were brought about by cultivation of the organisms in semisolid agar to which had been added appropriate agglutinating serum in amount sufficient to immobilize the bacteria inoculated. Antigenic change was indicated by the migration of the bacteria through the medium after one or more transfers.

The present paper deals with changes produced in organisms which possess antigen g of the Kauffmann-White schema, i. e., forms which possess flagellar antigens related to Salmonella enteritidis. methods used were similar to those described in the references cited above. The first change to be described was the transformation of Salmonella rostock (IX, XII: g, p, u) into a form indistinguishable from Salmonella dublin (IX, XII: g, p). Growth from a single colony of Kauffmann's standard culture of S. rostock was inoculated into the semisolid medium of Edwards and Bruner (4) to which had been added serum for antigen u of S. rostock in a final dilution of 1 to The u serum was produced by absorption of S. rostock serum The serum was sterilized by addition of an excess of chloroform. After eight transfers at intervals of 3 days, filmy bulbs extending from the line of inoculation appeared. Upon prolonged incubation, these bulbs gradually spread through the medium. From the spreading growth a form was isolated which was serologically indistinguishable from S. dublin. While the induced form retained the biochemical reactions of S. rostock, it no longer was agglutinated by factor u serum and it removed all agglutinins from S. dublin serum.

The second change to be described was produced in Salmonella california (IV, XII:g, m, t). Progeny of a single colony of the original strain of this type was cultivated in semisolid agar which contained Salmonella oranienburg (VI, VII:m, t) serum which had been absorbed

1694

December 21, 1951

0

ty

ca

al

lo

p٤

ga

th

id

by

th

rel

tra

ph

1

cal

cha

Dec

^{*}From the Direction Principal de Laboratorios, O. S. N., Buenos Aires, Argentina, and the Communicable Disease Center, Atlanta, Ga., respectively.

by Salmonella montevideo (VI, VII: g, m, s). This serum contained agglutinins for factor t, which is the major antigen of S. california. After four transfers, filmy bulbs extending from the line of inoculation were noted. Further transfers yielded a spreading growth from which was isolated an induced phase closely related to Salmonella essen. The agglutinative reactions of S. essen, S. california, and the induced phase are given in the table.

Agglutinative properties of induced variant of S. california

	Serums								
Antigens	Derby (f, g)	Enteri- tidis (g, m)	Oranien- burg (m, t)	Enteritidis absorbed with california (induced phase)	m i	t,			
California (original) Essen California (induced phase) Enteritidis	80 2, 500 2, 500 2, 500	80 20, 000 10, 000 20, 000	5, 000 320 80 640	<20 5, 000 <20 5, 000	+‡+	+++			

 $^{^1}$ S. oranienburg antiserum absorbed with S. berta+S. senftenberg. 2 S. oranienburg antiserum absorbed with S. monterideo.

In the transformation of S. rostock to a form serologically identical with S. dublin, only loss variation is involved. In this instance the observed changes coincide with the theory of White (5) that Salmonella types arise by loss variation. On the contrary, the change of S. california to a form resembling S. essen involved a gain of certain antigenic characters as well as a loss of others. The induced form no longer contained demonstrable t antigen, the major component of the parent form. This loss of t antigen was accompanied by a distinct gain in g and m components which exist only in minimal amount in the parent culture of S. california. While the induced form was not identical with S. essen as shown by agglutinin absorption, nevertheless, by the usual methods employed in the typing of Salmonella cultures, the induced form would be identified as S. essen to which it is closely related.

The above experiments offer further evidence that it is possible to transform Salmonella types by induced variation and indicate probable phylogenetic relationships of the types involved.

Summary

By induced variation, S. rostock was converted into a form serologically indistinguishable from S. dublin. Likewise, S. california was changed to a form closely related to, but not identical with, S. essen.

December 21, 1951

1695

bed.
ases
nella
ideo.
tion
pro-

tion

Sal-

t of ility

hich The cited on of able ingle lated

1 to erum ss of oulbs nged From

cally ained nated erum.

mella iginal ained orbed

mmuni-

ACKNOWLEDGMENT

The senior author, a recipient of a Guggenheim fellowship during the course of this work, expresses his indebtedness to the Guggenheim Foundation.

REFERENCES

- (1) Edwards, P. R., Moran, A. B., and Bruner, D. W.: Intertransformability of Salmonella simsbury and Salmonella senftenberg. Proc. Soc. Exper. Biol.

- Salmonella simsbury and Salmonella senflenberg. Proc. Soc. Exper. Biol. and Med. 66: 230 (1947).
 (2) Bruner, D. W., and Edwards, P. R.: Changes induced in the nonspecific antigens of Salmonella. J. Bact. 55: 359 (1948).
 (3) Bruner, D. W.: The transformation of Salmonella oranienburg to Salmonella montevideo. J. Bact. 57: 387 (1949).
 (4) Edwards, P. R., and Bruner, D. W.: Serological identification of Salmonella cultures. Kentucky Agricultural Experiment Station Circular No. 54, 1942 1942.
- (5) White, P.: Further studies of the Salmonella group. Med. Research Council (Brit.), Special Report Series, No. 103, 1926.

(

1

h is tl D

Public Health Service Publications

January-June 1951

This list is issued to provide a complete and continuing record of Public Health Service publications for reference use by librarians, scientists, researchers, and others interested in public health work, and not to offer the publications for indiscriminate free distribution.

Single sample copies of most of the publications listed are available from the Public Inquiries Branch, Division of Public Health Methods, Public Health Service, Washington 25, D. C.

For quantities of any of these publications, except the statistical reports of the National Office of Vital Statistics, order from the Government Printing Office, where they are available at the prices shown, with a 25 percent reduction on orders of 100 or more copies of any single publication. The statistical reports of the National Office of Vital Statistics can be obtained only by writing to the National Office of Vital Statistics, Public Health Service, Washington 25, D. C.

PERIODICALS

- Public Health Reports (weekly), January-June, vol. 66, Nos. 1–26, pages 1 to 850. 15 cents a copy.
- Extracts from Public Health Reports (monthly), January-June, Tuberculosis Control Issues Nos. 59-64. Average 28 pages each. 10 cents a copy.
- The Journal of Venereal Disease Information (monthly), January-June, vol. 32, Nos. 1-6. Pages 1 to 175. 15 cents a copy.
- Journal of the National Cancer Institute (bimonthly), February-June, vol. 11, Nos. 4-6, pages 663 to 1324. \$1.50 a copy. Subscription price \$8 a year (available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.).
- Public Health Engineering Abstracts (monthly), January-June, vol. XXXI, Nos. 1-6. Approximately 30 pages each. No sales stock.
- Industrial Hygiene Newsletter (monthly), January-June, vol. 11, Nos. 1-6, 16 pages each. 10 cents a copy. (The name of this periodical was changed to Industrial Health Monthly beginning April 1951).
- CDC Bulletin (monthly), January-June, vol. X, Nos. 1-6. No sales stock.

NONPERIODIC PUBLICATIONS

Librarians, Please Note

se of

y of Biol.

anti-

nella

nella

54,

uncil

Nearly all publications on this list carry the designation "Public Health Service Publication No.—." This does not represent a new series, but is a registration system adopted late in 1950 as an internal housekeeping measure. Under the numbering plan, all nonperiodic issuances carry this designation, which is assigned consecutively at the time of going to press. Publications issued prior to adoption of

December 21, 1951

1951

the numbering plan do not carry this designation and will not be incorporated into the system unless they are reissued.

The following series have been discontinued:

Supplements to Public Health Reports—last issued: No. 213 (1950). Supplements to Journal of Venereal Disease Information—last issued: No. 23

(1949).

National Institutes of Health Bulletins—last issued: No. 193 (in press). Public Health Bulletins—last issued: No. 306 (1949). (A bulletin on rural health cooperatives, jointly prepared by the Farm Credit Administration and the Public Health Service which was published by the Farm Credit Administration, was erroneously identified as Public Health Bulletin No. 308.)

Venereal Disease Bulletins-last issued: No. 100 (1949).

Series to Continue. Publications with a subject and field homogeneity will continue to be issued in series. In addition to the registration number given them under the over-all numbering system, they will carry the conventional series notation long familiar to librarians. Publications issued as part of a series are shown first on this list.

Missing Numbers. Under the new numbering system, publications are assigned registration numbers at the time they go to the printer. Variations in printing schedules result in publications being released out of the consecutive order of the Public Health Service Publications number, and some will be temporarily missing. One publication (No. 36), prepared for in-service use and not for general distribution, was inadvertently numbered. No. 36, therefore, will be permanently missing from library files.

PUBLIC HEALTH BIBLIOGRAPHY SERIES

Chronic illness. Digests of selected references. By Violet B. Turner. 1951.
 216 pages. 50 cents. (PHS Publication No. 10.)

 Small plant health programs—a bibliography. Compiled and annotated by Walter J. Lear. January 1951. 26 pages. Out of print. (PHS Publication No. 80.)

CANCER MORBIDITY SERIES

 Cancer illness among residents of San Francisco and Alameda Counties, California, 1947. By William Grodowitz. 1951. 46 pages. No sales stock. (PHS Publication No. 65.)

 Cancer illness among residents of New Orleans, Louisiana, 1947. By Irving I. Warran. 1951. 52 pages. No sales stock. (PHS Publication No. 67.)

HEALTH INFORMATION SERIES

The common cold. Revised 1951. 6-page folder. 5 cents; \$1.50 per 100.
 (PHS Publication No. 106.)

 Diphtheria. Revised January 1951. 6-page folder. 5 cents; \$1.50 per 100. (PHS Publication No. 60.)

Gallstones. Revised 1951. 4 pages. 5 cents; \$1.00 per 100. (PHS Publication No. 99.)

1698

December 21, 1951

1

F

A

A

B

Bi

Br

Di

Di

De

WATER POLLUTION SERIES

- Water pollution in the United States. A report on the polluted condition of our waters and what is needed to restore their quality. 1951. 44 pages, illustrated. 35 cents. (PHS Publication No. 64.)
- Tennessee River Drainage Basin. A cooperative State-Federal report on water pollution. 1951. 121 pages. Limited distribution. No sales stock.
- Missouri River Drainage Basin. A cooperative State-Federal report on water pollution. 1951. 212 pages. Limited distribution. No sales stock.
- Great Basin Drainage Basin. A cooperative State-Federal report on water pollution. 1951. 67 pages. Limited distribution. No sales stock.
- California Drainage Basins. A cooperative State-Federal report on water pollution. 1951. 90 pages. Limited distribution. No sales stock.
- Pacific Northwest Drainage Basins. A cooperative State-Federal report on water pollution. 1951. 79 pages. Limited distribution. No sales stock.
- New England Drainage Basins. A cooperative State-Federal report on water pollution. 1951. 148 pages. Limited distribution. No sales stock.
- Western Gulf Drainage Basin. A cooperative State-Federal report on water pollution. 1951. 67 pages. Limited distribution. No sales stock.

NATIONAL INSTITUTES OF HEALTH BULLETINS

- 193. Contamination of natural waters and mud with Pasteurella tularensis and tularensis in beavers and muskrats in the Northwestern United States. By R. R. Parker, Edward A. Steinhaus, Glen M. Kohls, and William L. Jellison. 1951. 61 pages. 45 cents.
- 180. Manual for the microscopical diagnosis of malaria in man. By Aimee Wilcox. Second edition, revised. 1950. 49 pages; 16 plates. 65 cents.

ANNUAL REPORT

Annual report of the Federal Security Agency, 1950. Public Health Service. 1951. 73 pages. 25 cents.

POSTER

Public Health Service Poster No. 2. Careers in mental health. 1951. No sales stock. (To accompany booklet Mental Health Series No. 5, Careers in mental health.)

OTHER PUBLICATIONS

- Adequate financial support for hospital maintenance and operation. By Louis Block, David H. Spanier, and John V. Berberich, Jr. 1951. 27 pages. No sales stock. (PHS Publication No. 76.)
- A draft act governing hospitalization of the mentally ill. 1951. 34 pages. No sales stock. (PHS Publication No. 51.)
- Better health for 5 to 14 cents a year through fluoridated water. 1951. 24 pages, illustrated. 15 cents. (PHS Publication No. 62.)
- Biological products. Establishments licensed for the preparation and sale of viruses, serums, toxins and analogous products, and the trivalent organic arsenic compounds. Revised February 5, 1951. 25 pages. Restricted free distribution. 10 cents. (PHS Publication No. 50.) (Supersedes Miscellaneous Publication No. 39, issued January 3, 1949.)
- Breast self-examination. 1951. 8-page folder, illustrated. 10 cents; \$5 per 100. (PHS Publication No. 48.)
- Directory of full-time local health units, 1951. 1951. 55 pages. 20 cents. (PHS Publication No. 118.)
- Directory of State and Territorial health authorities, 1951. 1951. 61 pages. 20 cents. (PHS Publication No. 75.)

December 21, 1951 973048-51-3

be

23

s).

ral

on

dit

Vo.

10-

is-

m,

to

on

ns

er.

sed

ons

ion

on,

tly

951.

by

ica-

Cali-

ock.

ving

67.)

100.

100.

ubli-

1951

- Directory of venereal disease clinics. Revised 1950. 1951. 157 pages. 65 cents. (PHS Publication No. 57.)
- Drink away tomorrow's tooth decay. 1951. 6-page folder. 5 cents; 75 cents per 100. (PHS Publication No. 72.)
- Electrokymography—proceedings of the first conference, 1950. 1951. 215 pages. 75 cents. (PHS Publication No. 59.)
- Environment and health. Problems of environmental health in the United States and the Public Health Service programs which aid States and communities in their efforts to solve such problems. 1951. 152 pages, illustrated. 75 cents. (PHS Publication No. 84.)
- Fluoridation of public water supplies. By F. J. Maier. 1951. 13 pages. No sales stock.
- Handbook on sanitation of dining cars in operation. Standards of sanitation for operation and maintenance of food and drink service facilities on railroad passenger cars, 1951, 14 pages, illustrated, 20 cents. (PHS Publication No. 83.)
- Handbook on sanitation of railroad passenger car construction. Standards of sanitation applicable to the construction of railroad passenger and dining cars. 1951. 15 pages, illustrated. 15 cents. (PHS Publication No. 95.)
- Handbook on sanitation of railroad servicing areas. Design and operation of sanitation facilities for servicing railroad passenger cars. 1951. 28 pages, illustrated. 20 cents. (PHS Publication No. 66.)
- Handbook on sanitation of vessels in operation. Sanitation features and facilities on vessels in operation. 1951. 44 pages, illustrated. 25 cents. (PHS Publication No. 68.)
- Medical group practice in the United States. A summary of recent published material and supplementary unpublished data on fees and volume of work. By G. Halsey Hunt and Marcus S. Goldstein. 1951. 70 pages. 25 cents. (PHS Publication No. 77.)
- Medical school grants and finances. Part I. Conclusions and recommendations, 1951; 48 pages. 20 cents. (PHS Publication No. 53.)
- Medical school grants and finances. Part II. Financial status and needs of medical schools. 1951. 85 pages. 30 cents. (PHS Publication No. 54.)
- Medical school grants and finances. Part III. Public Health Service grants, their distribution and impact on medical schools. 1951. 58 pages. 20 cents. (PHS Publication No. 55.)
- National Institutes of Health. 1951. 22 pages, illustrated. No sales stock. (PHS Publication No. 81.)
- Ordinance and code regulating eating and drinking establishments. 1943 recommendations of the Public Health Service. 1950. 60 pages. 25 cents. (PHS Publication No. 37.) (Formerly Public Health Bulletin No. 280.)
- Patients in mental institutions, 1948. 1951. 119 pages. 55 cents. (PHS Publication No. 89.)
- Proceedings of the first conference on cancer diagnostic tests, 1950. 1951. 9 pages. 30 cents. (PHS Publication No. 96.)
- Proceedings of the first research conference on psychosurgery. 1951. 173 pages. \$1. (PHS Publication No. 16.)
- Public health areas and hospital facilities, a plan for coordination. By Joseph W. Mountin and Clifford H. Greve. 1950. 119 pages. 60 cents. (PHS Publication No. 42.)
- Research grants awarded by the Public Health Service, 1950. By Ernest M. Allen. 1951. 59 pages. No sales stock. (PHS Publication No. 63.)
- Salt and soda for shock in burns. 1951. 8-page folder. 5 cents; \$2 per 100. (PHS Publication No. 43.)
- Septic tank care. 1951. 6-page folder. 5 cents; \$1.50 per 100. (PHS Publication No. 73.)

6.0

3

3

3

30

30

30

De

- The national venereal disease control program. 1951. 12 pages, illustrated. 10 cents. (PHS Publication No. 56.) (This publication replaces Venereal Disease Bulletin 99.)
- The scientist in the U. S. Public Health Service. 1951. 23 pages, illustrated. 25 cents. (PHS Publication No. 41.)
- Water pollution control. Excerpts from "A Water Policy for the American People," the report of the President's Water Resources Policy Commission, 1950. January 1951. 29 pages. No sales stock. (PHS Publication No. 58.)
- You'll want to know about your hospital program. Revised May 1951. 2-page folder. 5 cents; \$1.50 per 100. (PHS Publication No. 8.)

REPRINTS FROM PUBLIC HEALTH REPORTS

- 3063. Dried smallpox vaccine. By J. W. Hornibrook and W. H. Gebhard. January 12, 1951. 6 pages; 1 illustration. 5 cents.
- 3064. Statistical studies of heart disease. VIII. Mortality from heart disease among Negroes as compared with white persons. By Maryland Y. Pennell and Josephine L. Lehmann. January 19, 1951. 24 pages. 10 cents.
- 3065. Accuracy of supplemental medical information on birth certificates. By A. M. Lilienfeld, E. Parkhurst, R. Patton, and E. R. Schlesinger. February 16, 1951. 8 pages, 5 cents.
- 3066. Q fever studies in southern California. XII. Aureomycin treatment of dairy cattle naturally infected with Coxiella burnetii. By Lauri Luoto, Robert J. Huebner, and Herbert G. Stoenner. February 16, 1951. 6 pages. 5 cents.
- 3067. Survey of brucellosis in slaughtered hogs. By Norman B. McCullough, C. Wesley Eisele, and Emma Pavelchek. February 16, 1951. 4 pages. 5 cents.
- 3068. The health of ferrous foundry workers. By Harry Heimann. February 23, 1951. 17 pages. 10 cents.
- 3069. Negro mortality. IV. Urban and rural mortality from selected causes in the North and South. By Maryland Y. Pennell and Mary Gover. March 9, 1951. 12 pages. 5 cents.
- 3070. Health department assistance in nutrition education in elementary and secondary schools. By Floy Eugenia Whitehead and Frederick J. Stare. March 9, 1951. 5 pages. 5 cents.
- 3071. Statistical studies of heart disease. IX. Race and sex differences in the trend of mortality from the major cardiovascular-renal diseases. By I. M. Moriyama and Theodore D. Woolsey. March 23, 1951. 14 pages. 5 cents.
- 3072. Graduates from undergraduate sanitary engineering courses in the United States. By Arthur P. Miller. March 23, 1951. 6 pages. 5 cents.
- 3073. Hazards of shoe-fitting fluoroscopes. By Willard W. Van Allen. March 23, 1951. 4 pages. 5 cents.
- 3074. Isolation and characterization of Rocky Mountain spotted fever Rickettsiae from the rabbit tick *Haemaphysalis leporis-palustris* Packard. By R. R. Parker, E. G. Pickens, D. B. Lackman, E. J. Bell, and F. B. Thraikill. April 13, 1951. 9 pages. 5 cents.
- 3075. A rabbit-ear cage for bloodsucking arthropods. By Paul A. Woke. April 13, 1951. 8 pages. 10 cents.
- 3076. Use of State advisory councils in the hospital survey and construction program. By Louis S. Reed. April 20, 1951. 14 pages. 5 cents.
- 3077. Preservation of viability and pathogenicity of the Nichols' rabbit strain of Treponema pallidum by freeze drying. By Edward G. Hampp. April 20, 1951. 6 pages. 5 cents.

nts.

nts

ges.

tes in

nts.

No

for

83.)

s of

n of

ges,

ities

Pub-

shed

ork.

ents.

ons.

lical

heir

ents.

ock.

eom-

PHS

PHS

91

ages.

h W.

Pub-

t M.

100.

olica-

- 3078. The significance of the early diagnosis of hearing impairment in children. By John E. Bordley and William G. Hardy. April 27, 1951. 8 pages. 5 cents.
- 3079. Rehabilitation: The role of the health department. By A. L. Chapman and J. H. Gerber. April 27, 1951. 6 pages. 5 cents.
- 3080. Physical status of men examined through Selective Service in World War II. By Marcus S. Goldstein. May 11, 1951. 24 pages. 10 cents.
- 3081. Activities of medical administrators in State health departments. By Harald M. Graning, Marion Ferguson, Bess A. Cheney, and Anne M. Leffingwell. May 18, 1951. 12 pages. 5 cents.
- 3082. Nutrition and the control of chronic disease. Public health aspects. By Richard W. Vilter and Carl Thompson. May 18, 1951. 8 pages. 5 cents.
- 3083. Cultivating community relationships in a mental health program. By Herbert L. Rooney. May 18, 1951. 8 pages. 5 cents.
- 3084. Influence of irradiation and penicillin on experimental syphilis transmission. By T. F. Probey. May 18, 1951. 5 pages. 5 cents.
- 3085. Evaluation of detergents. IV. A correlation of washing performance with dissolving and wetting ability. By C. C. Ruchhoft and Francis I. Norris. May 25, 1951. 13 pages. 5 cents.
- 3086. Poultry diseases as public health problems. By C. A. Brandly. May 25, 1951. 5 pages. 5 cents.
- 3087. Reported incidence of communicable diseases in the United States. 1950. May 25, 1951. 12 pages. 5 cents.
- 3088. Weight control: A simplified concept. By A. L. Chapman. June 8, 1951.
 7 pages. Out of print.
- 3089. Sources of morbidity and mortality material in industrial health. By Victoria M. Trasko. June 8, 1951. 8 pages. 5 cents.
- 3090. The oral cancer teaching program in dental schools. By Raymond F. Kaiser. June 15, 1951. 5 pages. 5 cents.
- 3091. Cancer research facilities construction grants, awarded through the National Cancer Institute by the Public Health Service. By R. G. Meader and W. W. Payne. June 15, 1951. 8 pages. 5 cents.
- 3092. An achievement examination in the subject of cancer for medical school students. By Howard R. Bierman and James L. McClelland. June 15, 1951. 10 pages. 5 cents.
- 3093. Mouse-protective potency assay of typhoid vaccine as performed at the Army Medical Service Graduate School. By H. C. Batson, Martha Brown, and Maurice Oberstein. June 22, 1951. 17 pages. 10 cents.
- 3094. A rapid flocculation test for the diagnosis of trichinosis. By John Bozicevich, John E. Tobie, Elizabeth H. Thomas, Helen M. Hoyem, and Stanley B. Ward. June 22, 1951. 9 pages. 5 cents.
- 3095. The challenge to voluntary health agencies. June 29, 1951. 12 pages. 5 cents.
- 3096. Nutrition in the health conference of the preschool child. By Philip C. Jeans. June 29, 1951. 4 pages. 5 cents.
- 3097. Preparation of antisera for detection of the somatic antigens of Salmonella cultures. By P. R. Edwards. June 29, 1951. 4 pages. 5 cents.

REPRINTS FROM JOURNAL OF THE NATIONAL CANCER INSTITUTE*

233. Effects of ionizing radiations on a transplanted lymphosarcoma. By Joanne Holleroft, Egon Lorenz, and Harriet Hunstiger. August 1950. 16 pages.

1702

December 21, 1951

2

2

2

2

24

24

24

248

249

250

251

Dec

^{*}No sales stock is carried on any of the reprints from the Journal of the National Cancer Institute.

- 234. Host and extraneous factors in heterologous tumor transplantation. By E. J. Eichwald, H. Chan, M. Landa, and R. G. Evans. August 1950. 15 pages; 1 illustration.
- 235. An evaluation of the antiproteolytic reaction of serum as a test for malignant neoplasia. By Eugene E. Cliffton. August 1950. 18 pages.
- 236. An induced adaptation in a transplantable tumor of mice. By Morris K. Barrett and Margaret K. Deringer. August 1950. 9 pages.
- Blood pentolysis in rats bearing induced sarcomata. By Stephen N. Steen. August 1950. 11 pages; 2 illustrations.
- 238. Attempt to detect a mammary tumor-agent in strain C mice by estrogenic stimulation. By Howard B. Andervont. August 1950. 9 pages.
- 239. Influence of thymectomy, splenectomy, and gonadectomy on incidence of radiation-induced lymphoid tumors in strain C57 black mice. By Henry S. Kaplan. August 1950. 8 pages.
- 240. Distribution of radioactivity in tissues of normal and tumor-bearing mice following intravenous administration of radioiodotetrazolium salt. By S. P. Masouredis, M. B. Shimkin, J. A. McMillan, and S. W. Fox. August 1950. 6 pages.
- 241. Complement fixation in animal neoplasia. I. A study of techniques for measurement of the reaction in rabbit serum with special reference to the temperature of inactivation. By Helen Thornton, L. D. Ellerbrook, M. C. Rhees, E. C. Stowell, Jr., and S. W. Lippincott. August 1950. 28 pages.
- 242. Influence of ovarian function on incidence of radiation-induced ovarian tumors in mice. By Henry S. Kaplan. August 1950. 8 pages.
- 243. Survival, body weights, and lymphoid-tissue weights following adrenalectomy in CBA mice. By Sumner N. Marder. August 1950. 7 pages.
- 244. The occurrence of tumors of the forestomach in mice after parenteral administration of methylcholanthrene: A histopathologic and genetic analysis. By Malcolm A. Bagshaw and Leonell C. Strong. August 1950. 35 pages; 11 illustrations.
- 245. Report of two cases of identical primary tumors involving spinal nerve roots and meninges in strain NHO mice. By Harold L. Stewart, Henry S. Kaplan, and James G. Bennett. August 1950. 21 pages; 7 illustrations.
- 246. Chromatographic studies on the separation of the virus from chicken tumor I. I. Effect of salt concentration on adsorption, elution, and purification. By Vernon Riley. August 1950. 16 pages.
- 247. Chromatographic studies on the separation of the virus from chicken tumor
 I. II. Zoning, purification, and recovery of the agent from the column.
 By Vernon Riley. August 1950. 13 pages.
- 248. Chromatographic studies on the separation of the virus from chicken tumor I. III. Titration curve of the agent. By Vernon Riley. August 1950. 7 pages.
- 249. A study of the Golgi material and mitochondria in malignant and benign prostatic tissue. By Albert E. Bothe, Albert J. Dalton, Willard S. Hastings, and Frederick O. Zillesen. October 1950. 13 pages; 4 illustrations.
- 250. Observations on the effect of thymectomy on spontaneous leukemias in mice of the high-leukemic strains, RIL, and C58. By L. W. Law and J. H. Miller. October 1950. 10 pages.
- 251. The relation of the lethal yellow (A*) gene to pulmonary tumor formation and obesity in an inbred strain of mice. By Walter C. Morgan. October 1950. 6 pages.

n.

es.

an

ar

By

Μ.

By

es.

Ву

on.

nce

cis

25,

50.

51.

By

F.

Na-

der

lool

une

the

tha

nts.

ice-

ley

ges.

C.

ella

LE.

nne

ges.

- 252. Comparative stability of the agent of chicken tumor I in citrate and phosphate buffers at 37° C. By W. Ray Bryan, Mary E. Maver, John B. Moloney, Marguerite T. Wood, and Carl L. White, with an appendix by Jerome Cornfield. October 1950. 9 pages.
- 253. Action of bacterial toxins on tumors. VIII. Factors in their use for cancer therapy. By Paul A. Zahl. October 1950. 10 pages.
- 254. The partition of radiophosphorus (P³²) in blood, urine, and tumor tissue in patients with Hodgkin's disease and lymphosarcoma before and after treatment with nitrogen mustard [methyl bis (betachloroethyl) amine]. By S. P. Masouredis, B. V. A. Low-Beer, H. R. Bierman, L. S. Cherney, and M. B. Shimkin. October 1950. 12 pages.
- 255. Serologic properties of mitochondria isolated from normal and neoplastic mouse tissues. By R. A. Malmgren and B. E. Bennison. October 1950, 11 pages.
- 256. Ascorbic acid, dehydroascorbic acid, and diketogulonic acid of transplanted melanomas and of other tumors of the mouse. By Helen M. Dyer and Helen E. Ross. October 1950. 6 pages.
- 257. Studies on the mechanism of action of chemotherapeutic agents in cancer. IV. Relationship of guanine and guanylic acid to the action of guanazolo on lymphoid tumors in mice and rats. By Abraham Goldin, Ezra M. Greenspan, and Emanuel B. Schoenbach. October 1950. 20 pages.
- 258. Histochemical studies of the ceroid pigment of rats and mice and its relation to necrosis. By C. S. Lee. October 1950. 11 pages; 1 illustration.
- 259. Production of malignancy in vitro. XII. Further transformations of mouse fibroblasts to sarcomatous cells. By Katherine K. Sanford, Wilton R. Earle, Emma Shelton, Edward L. Schilling, Emily M. Duchesne, Gwendolyn D. Likely, and Mary M. Becker. October 1950. 25 pages; 4 illustrations.
- 260. Transplantation studies on an induced fibrosarcoma in several rat strains.
 I. Influence of sex on incidence of tumor takes. By Michael Klein.
 October 1950. 4 pages.
- 261. Transplantation studies on an induced fibrosarcoma in rats. II. Influence of sex hormones and repeated transplantation on tumor immunity. By Michael Klein. October 1950. 9 pages.
- 262. Histologic changes in strain C mice following long-term ingestion of thiouracil. By A. J. Dalton, H. P. Morris, M. J. Striebich, and C. S. Dubnik. October 1950. 23 pages; 8 illustrations.
- 263. Carcinogenic action of the mustards. By W. E. Heston. October 1950. 9 pages.
- 264. The influence of thymectomy on the incidence of carcinogen-induced leukemia in strain DBA mice. By L. W. Law and J. H. Miller. October 1950. 13 pages; 3 illustrations.
- 265. Finer structure of hepatic, intestinal, and renal cells of the mouse as revealed by the electron microscope. By Albert J. Dalton, Herbert Kahler, Mary Jo Striebich, and Bolivar Lloyd. October 1950. 23 pages; 9 illustrations.
- 266. On the mechanism of cancer induction by ultraviolet radiation. By Harold F. Blum. December 1950. 33 pages.
- 267. Pulmonary carcinoma revealed at necropsy, with reference to increasing incidence in the Los Angeles County Hospital. By Paul E. Steiner, E. M. Butt, and Hugh A. Edmondson. December 1950. 14 pages.
- 268. Effects of roentgen rays on cancer. I. Direct microscopic observations on living intraocular transplants of frog carcinoma. By Balduin Lucké and H. G. Schlumberger. December. 1950. 33 pages; 10 illustrations.

4

2

2

D

269. Studies on the infectivity of the mouse mammary tumor agent. By Howard B. Andervont. December 1950. 9 pages.

270. Vascular reactions of normal and malignant tissues in vivo. 1II. Vascular reactions of mice to fibroblasts treated in vitro with methylcholanthrene.
 By Glenn H. Algire, Harold W. Chalkley, and Wilton R. Earle, with the assistance of Francis Y. Legallais, Helen D. Park, Emma Shelton, and Edward L. Schilling. December 1950. 25 pages; 7 illustrations.

271. Studies on the occurrence of spontaneous hepatomas in mice of strains C3H and CBA. By Howard B. Andervont. December 1950. 12 pages.

- 272. Transparent-chamber observations of the response of a transplantable mouse mammary tumor to local roentgen irradiation. By Ruth Merwin, Glenn H. Algire, and Henry S. Kaplan. December 1950. 31 pages; 7 illustrations.
- 273. Preliminary report of Conference on Geographical Pathology and Demography of Cancer held by Council for the Co-ordination of International Congresses of Medical Sciences, under the Auspices of World Health Organization (WHO) and United Nations Educational, Scientific, and Cultural Organization (UNESCO). Sessions held at Regent's Park College, Oxford, England, July 28 to August 4, 1950. December 1950. 36 pages.

274. A sex difference in the kidney glucuronidase activity of inbred mice. By Andrew G. Morrow, Dorothy M. Carroll, and Ezra M. Greenspan. February 1951. 7 pages.

Leukemoid reactions to transplanted mouse tumors. By Jeanne C. Bateman. February 1951. 17 pages; 2 illustrations.

276. A study of the "Gruskin serological test" for the detection of cancer; the precipitation of blood proteins by alcohol. By N. Holmgren, R. W. Denton, S. A. Levinson, A. C. Ivy, and L. E. Grubgeld. February 1951. 16 pages.

277. Studies of various tests for malignant neoplastic diseases. I. The reduction of methylene blue by plasma. By Nils Eriksen, Lester D. Ellerbrook, and Stuart W. Lippincott. February 1951. 24 pages.

278. Studies of various tests for malignant neoplastic diseases. II. The Gruskin intradermal test. By Louise Wiegenstein and Raymond F. Hain. February 1951. 4 pages.

279. Studies of various tests for malignant neoplastic diseases. III. The Hoff-Schwartz intradermal test. By Louise Wiegenstein and Raymond F. Hain. February 1951. 5 pages; 1 illustration.

280. Studies of various tests for malignant neoplastic diseases. IV. The effect of zinc ion upon the serum alkaline phosphatase activity. By Lester D. Ellerbrook, Stuart W. Lippincott, and H. Davis Chipps. February 1951. 17 pages.

281. Studies of various tests for malignant neoplastic diseases. V. The heat "coagulation" of plasma. By Nils Eriksen, Lester D. Ellerbrook, Edward C. Meek, and Stuart W. Lippincott. February 1951. 15 pages.

282. The measurement of proliferation in tissue cultures by enumeration of cell nuclei. By Katherine K. Sanford, Wilton R. Earle, Virginia J. Evans, Helen K. Waltz, and John E. Shannon. February 1951. 23 pages; 5 illustrations.

283. The excretion of radioactivity during a four-day period following the feeding of carbon 14-labeled 2-acetylaminofluorene to rats. By John H. Weisburger, Elizabeth K. Weisburger, and Harold P. Morris. February 1951. 7 pages.

hos-

n B.

k by

ncer

ie in

after

ine].

ney,

astic

950.

nted

and

ncer.

zolo

M.

ation

tion.

ouse

n R.

wen-

ages;

ains. Ilein.

ence

nity.

iour-

bnik.

1950.

euke-

tober

ealed

Mary

cions.

arold

asing

einer,

ations

Lucké

tions.

- 284. The effect of ingestion of thiouracil on strain C mice. By Harold P. Morris, Celia Dubnik Green, and Albert J. Dalton. February 1951. 11 pages; 2 illustrations.
- 285. Production of malignancy in vitro. XIII. Behavior of recovery cultures. By Emma Shelton and Wilton R. Earle. February 1951. 21 pages; 5 illustrations.
- 286. The effect of podophyllotoxin on the skin of the mouse, with reference to carcinogenic, cocarcinogenic, and anticarcinogenic action. By I. Berenblum. February 1951. 3 pages.
- 287. The action of croton oil in the induction of sarcomas in mice. By Michael Klein. February 1951. 6 pages.
- Observations on properties of leukemia cells, resistant to folic acid antagonists. By L. W. Law. February 1951. 17 pages; 1 illustration.
- 289. Observations on the effect of progesterone on carcinoma of the cervix. By Roy Hertz, J. K. Cromer, J. P. Young, and B. B. Westfall. April 1951. 7 pages; 1 illustration.
- Studies on the blood supply of tumors in man. I. Fluorescence of cutaneous lesions. By Howard R. Bierman, Keith H. Kelly, Kenneth S. Dod, and Ralph L. Byron, Jr. April 1951. 13 pages; 2 illustrations.
- 291. Studies on the blood supply of tumors in man. II. Intra-arterial nitrogen mustard therapy of cutaneous lesions. By Howard R. Bierman, Keith H. Kelly, Ralph L. Byron, Jr., Kenneth S. Dod, and Michael B. Shimkin. April 1951. 15 pages; 4 illustrations.
- 292. The preparation and handling of replicate tissue cultures for quantitative studies. By Virginia J. Evans, Wilton R. Earle, Katherine K. Sanford, John E. Shannon, and Helen K. Waltz. April 1951. 21 pages; 1 illustration.
- 293. Biological activity of the agent of chicken tumor I (Rous) in citrate buffers of various molar concentrations. By W. Ray Bryan, Mary E. Maver, John B. Moloney, Dorothy Calnan, Carl L. White, and Marguerite T. Wood. April 1951. 9 pages.
- 294. Nucleolar volume changes in the mouse pancreas after repeated pilocarpine injections. By Hisako O. Yokoyama and Robert E. Stowell. April 1951. 7 pages; 1 illustration.
- 295. Mammary-tumor incidence in female C3Hb mice following long-continued gamma irradiation. By Egon Lorenz, Allen B. Eschenbrenner, Walter E. Heston, and Delta Uphoff. April 1951. 19 pages; 2 illustrations.
- 296. Irradiation of the normal human hypophysis in malignancy: Report of three cases receiving 8,100-10,000 r tissue dose to the pituitary gland. By Keith H. Kelly, Eggert T. Feldsted, Reynold F. Brown, Paul Ortega, Howard R. Bierman, Bertram V. A. Low-Beer, and Michael B. Shimkin. April 1951. 17 pages; 4 illustrations.
- 297. Production of tumors by methylcholanthrene and fetal skin transplanted to different sites in mice. By Michael Klein. April 1951. 11 pages; 3 illustrations.
- 298. The effect of injections of tumor fractions on liver catalase activity of mice. By Robert E. Greenfield and Alton Meister. April 1951. 9 pages.
- 299. Differential effects of roentgen rays on cell permeability and on cell cleavage. Experiments with egg cells of Arbacia punctulata. By Balduin Lucké, Renato A. Ricca, and Arthur K. Parpart. April 1951. 17 pages; 1 illustration.
- 300. The spontaneous biopsy. By George Adams. April 1951. 11 pages; 1 illustration.
- 301. Effects of a filtrable, self-propagating contaminant on a transplantable

I

acute lymphoid leukemia in mice. By L. W. Law and Thelma B. Dunn April 1951. 19 pages; 3 illustrations.

302. Tumor development in susceptible strain A and resistant strain L lung transplants in LA F₁ hosts. By W. E. Heston and Thelma B. Dunn. April 1951. 15 pages; 3 illustrations.

303. The effect of supplementary choline on the livers of rats fed p-dimethyl-aminoazobenzene. By Helen M. Dyer. April 1951. 8 pages.

REPRINTS FROM THE JOURNAL OF VENEREAL DISEASE INFORMATION

- 419. A study of the filter paper microscopic (FPM) test for syphilis. Preliminary report. By Ad Harris and Sidney Olansky. January 1951. 4 pages. 5 cents.
- 420. High potency of a penicillin G in experimental syphilis. By R. C. Arnold and James D. Thayer. January 1951. 2 pages. 5 cents.
- 421. Dehydrogenations produced by the Reiter spirochete. By Matthew A. Bucca, James D. Thayer, Harriett B. Roberts, and Bernard Tager. January 1951. 8 pages. 5 cents.
- 422. Results of diagnostic procedures in evaluation of serodiagnostic methods, 1950. February 1951. 8 pages. 5 cents.
- 423. Syphilis among the Navaho Indians. By Charles S. McCammon, Frank J. Dufner, and Francis W. Felsman. February 1951. 6 pages. 5 cents.
- 424. Results of penicillin therapy for neurosyphilis at Bellevue Hospital. By Bernard Dattner, Evan W. Thomas, and Lopo de Mello. February 1951. 6 pages. 5 cents.
- Penicillin levels in spinal fluid after intramuscular injection of procaine penicillin. By R. D. Wright, J. D. Thayer, F. P. Nicholson, and R. C. Arnold. February 1951. 4 pages. 5 cents.
- 426. The effect of syphilis on nonwhite longevity as reflected in mortality data, Georgia, 1939-41. By Harry W. Martin. March 1951. 4 pages. 5 cents.
- 427. Venereal disease case finding in high-prevalence areas. I. Procedures used. By Gustav Gumpert, Norman R. Ingraham, Jr., and Michael J. Burke. March 1951. 10 pages, illustrated. 5 cents.
- 428. Dental hypoplasias in relation to congenital syphilis. By S. B. Beecher, H. N. McIntosh, and E. J. McCart. March 1951. 2 pages. 5 cents.
- Reinfections following routine metal therapy of early syphilis. By Evan W. Thomas and Simeon Landy. April 1951. 4 pages. 5 cents.
- 430. Cisternal puncture for examination of cerebrospinal fluid. By Howard L. Cecil and Edgar B. Johnwick. April 1951. 5 pages. 5 cents.
- 431. A new approach to venereal disease education at Michigan fairs. By John A. Cowan. April 1951. 4 pages. 5 cents.
- 432. Control serum in the serodiagnosis of syphilis with special reference to its use in standardizing Kahn antigens. By M. B. Kurtz and E. M. Hill. April 1951. 3 pages. 5 cents.
- 433. A comparison of two methods of gland transfer in experimental syphilis.

 By Charlotte P. McLeod and R. C. Arnold. April 1951. 4 pages.
- 434. Terramycin in treatment of granuloma inguinale. By Robert B. Greenblatt, Wm. E. Barfield, Robert B. Dienst, and Robert M. West. May 1951. 4 pages. 5 cents.
- 435. Local cortisone acetate therapy in congenital syphilitic interstitial keratitis. A preliminary report. By W. G. Simpson, B. F. Rosenblum, C. E. Wood, and E. L. Stammer. May 1951. 4 pages. 5 cents.

.

rris,

ges;

res.

8; 5

e to

ren-

nael

ag-

By

951.

ous

and

gen

eith

kin.

tive

ord,

; 1

fers

ver,

T.

ine

51.

ued

E.

of

nd.

ga,

kin.

ted

ges;

ice.

age. eké,

; 1

1; 1

ble

- 436. Relative effectiveness of penicillin therapy in early and latent syphilis in rabbits. By R. C. Arnold and Charlotte P. McLeod. May 1951. 4 pages. 5 cents.
- 437. Case finding of early syphilis by the public health nurse. By A. C. Bulla, Flora Wakefield, and M. Estelle Hunt. May 1951. 8 pages. 5 cents.
- 438. Case finding through an understanding of known syphilitic patients. By A. L. Gray, Theodore J. Bauer, Lida J. Usilton, and R. O. Carlson. 6 pages. 5 cents.
- 439. Syphilis case finding through education. By John W. Morse and Albert P. Iskrant. June 1951. 8 pages. 5 cents.
- 440. Syphilis prevalence and community structure. By W. Lloyd Warner, Mozell C. Hill, C. D. Bowdoin, J. Wallace Rion, and Bevode McCall. June 1951. 10 pages. 5 cents.

NATIONAL OFFICE OF VITAL STATISTICS PUBLICATIONS*

- International Recommendations on Definitions of Live Birth and Fetal Death, 1950. 11 pages. 5 cents. (PHS Publication No. 39.)
- The First Annual Report of the United States National Committee on Vital and Health Statistics, 1950. 23 pages. 15 cents. (PHS Publication No. 40.)
- Current Mortality Analysis (monthly), vol. 8, Nos. 10-12, 1950. Vol. 9, Nos. 1-3, 1951.
- Monthly Marriage Report (marriage licenses issued in major cities), vol. 4, Nos. 11-13, 1950; vol. 5, Nos. 1-4, 1951.
- Weekly Mortality Index, vol. 21, Nos. 52-53, 1950; vol. 22, Nos. 1-25, 1951.
- Weekly Morbidity Report, vol. 1, Nos. 51-52, 1950; vol. 2, Nos. 1-25, 1951.
- Communicable Disease Summary, weeks ending January 6, 1951-June 30, 1951.

Vital Statistics-Special Reports, Vol. 33, Selected Studies

No. 9. Estimated average length of life in the death-registration States. 163–170 pages.

Vital Statistics-Special Reports, Vol. 36, National Summaries

- No. 1. Summary of natality statistics, United States, 1949. 1-10 pages.
- No. 2. Summary of marriage and divorce statistics, United States, 1949 11-26 pages.
- No. 3 Marriages, United States, each State and county, 1949. 27-50 pages.
- No. 4. Births by race and by urban and rural areas, United States, each division and State, 1949. 51-60 pages.

t

I

t

d

C

S

S

p

u

H

ec

81

pi

la se ar in ca win ep

^{*}A vailable only from the National Office of Vital Statistics, Public Health Service, Washington 25, D. C.

Incidence of Disease

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

Announcement

A New Morbidity and Mortality Weekly Report

The new monthly Public Health Reports (see back cover) will publish from time to time, as appropriate, reports, tabulations, and articles dealing with morbidity statistics, both domestic and foreign. The present weekly "Incidence of Disease" section, however, will be discontinued as of December 31, 1951.

Current provisional morbidity data on notifiable diseases for the United States now appear in summary form and in tabulations by States and cities in the Weekly Morbidity Report issued by the National Office of Vital Statistics of the Public Health Service. Beginning on January 11, 1952, the Public Health Service through the National Office of Vital Statistics will issue a Morbidity and Mortality Weekly Report presenting these morbidity data as well as certain mortality data for selected cities.

Libraries and agencies that have depended upon Public Health Reports for current morbidity statistics for the United States may continue to receive the same data by writing to the National Office of Vital Statistics, Public Health Service, Washington 25, D. C., requesting that they be placed on the mailing list for the new *Morbidity and Mortality Weekly Report*. Individuals who wish to be placed on the mailing list should indicate how and to what extent they will make use of this publication.

Since the Weekly Epidemiological Record and other publications of the World Health Organization, Geneva, Switzerland, contain morbidity data for foreign countries, tabulations of notifiable diseases occurring outside the United States and its Territories will not appear regularly in National Office of Vital Statistics publications.

UNITED STATES

Reports From States for Week Ended December 1, 1951

The number of reported cases of measles increased from 3.401 for last week to 5,138 for the current week. Incidence increased in all sections of the country except in the West South Central, Mountain, and Pacific States. In 1950 the Mountain States was the only group in which a relatively high incidence rate was reported. The reported case rates show wide variations in the various parts of the country which probably are the result of differences in completeness of reporting. Thus, the relatively high rates of incidence which are common in epidemic years in the New England, Middle Atlantic, East North

December 21, 1951

in 4

la,

ts. By

ert

er,

th,

nd

os.

08.

51.

70

26

on

C.

1

Central, Mountain, and Pacific States probably are a reflection of more complete reporting. In other areas, such as the West North Central, Middle Atlantic, and East South Central States, reporting of measles probably is much less complete even in epidemic years when compared with the former group.

The incidence of diphtheria for the current week was 20 percent under that for the same week last year. The usual seasonal rise has not been evident in any part of the country except in the southern

States.

The number of cases of meningoco cal meningitis for the current week (84) is well above that for the same week last year (60) and the 5-year median (60). Since the seasonal low week early in September, 728 cases have been reported as compared with 661 for the same period last year.

A total of 29 cases of malaria in civilians was reported, 21 of which were in Wisconsin. A total of 117 cases in military establishments was reported. One military case in California, reported to have been infected in a southern State, is said to be a recurrent infection which has been treated since 1939.

One case of psittacosis was reported by Illinois, and two cases of smallpox were reported by Nebraska.

Epidemiological Reports

Serum hepatitis

Dr. C. R. Freeble, Ohio Department of Health, has reported an outbreak presumed to be homologus serum jaundice which has occurred in a State institution and was investigated in retrospect. September 1950 through August 1951 there was a total of 13 cases of hepatitis admitted to the institution hospital, all having jaundice. Each patient had had a febrile illness which started with general malaise and, usually, abdominal pain. In most cases the liver was palpable and each had an elevated icteric index. The cases had their onsets as follows: September 1950, one case; February 1951, one case; May, one case; June, two cases; July and August, four cases each. The patients were scattered at random throughout the institution, and it was not possible to show any correlation between exposure to known cases and onset of illness. However, during February and March 1951, all inmates were subjected to routine blood typings by the finger puncture method. One spring lancet was used for all finger punctures, and was "sterilized" each time by dipping in isopropyl The patients who had onsets of illness in June, July, and August remembered the month in which the puncture was done, and in all cases the illness fell within the general accepted incubation period for homologus serum jaundice. In September it was learned that a case of hepatitis occurred in a person who had been a patient

L

in another hospital where he had received a transfusion of blood on May 2. The blood donor was an inmate of the institution referred to above, but had not been recognized as a case of hepatitis.

Botulism

n of

orth

ting hen

cent

has

ern

rent

the ber,

riod

hich

ents

een hich

es of

an

rred

rom ases lice. eral was heir ase; ach. ion, e to and s by nger opyl and one,

tion

rned ient

1951

The food which was found to be implicated in the three fatal cases of botulism in Los Angeles, as reported last week, was home-canned greens, Portulaca oleracea. Type A toxin was demonstrated by animal inoculation.

Gastroenteritis

Dr. W. R. Giedt, Washington State Department of Health, has reported a small family outbreak of food intoxication in which commercially canned kippered herring was eaten. Bacteriological examination of the opened can showed it to contain hemolytic Staphylococcus aureus, but a specimen of another can of the same consignment was bacteriologically negative.

J. L. Rowland, Missouri Department of Public Health, has reported an outbreak of staphylococcus food poisoning which resulted from eating a cream-filled product known as "Long Johns." Of 40 persons known to have eaten this food, 34 became ill. On the day the cream filling was made, a few pastries were filled. The mix was refrigerated between fillings and overnight, but persons purchasing the pastry on the second day were more violently ill than those purchasing and eating the food on the first day.

Comparative Data for Cases of Specified Reportable Diseases: United States [Numbers after diseases are International List numbers, 1948 revision]

Disease	Total for week ended—		5-year me- dian	ne- sonal	Cumulative total since seasonal low week		5-year me- dian 1945-46	Cumulative total for calendar year—		5-year me- dian
	Dec. 1, 1951	Dec. 2, 1950	1946-50		1950-51	1949-50	through 1949–50	1951	1950	1946-50
Anthrax (062)	115	145	218	(¹) 27th	(¹) 1,820	(1) 2, 441	(1) 4, 298	57 3, 828	42 5, 569	
(082) Influenza (480–483) Measles (085)	33 581 5, 138	18 848 2, 515	974 2, 277	(1) 30th 35th	(1) 6, 350 25, 282	(1) 9, 887 15, 243			933 148, 651 303, 414	
Meningitis, meningococcal (057.0) Pneumonia (490–493) Poliomyelitis, acute (080)	1, 012 428	60 1, 443 597	60 (²) 433	37th (1) 11th	728 (1) 26, 379	661 (1) 30, 855	653 (1) 26, 321	3, 789 55, 132 27, 591		3, 184 (³) 26, 671
Rocky Mountain spotted fever (104) Scarlet fever (050) 3 Smallpox (084)	1, 276	4	1, 551	(1) 32d 35th	(1) 10, 132 3	(1) 10, 479 11	(1) 14, 061 9	14	451 50, 649 37	70, 143 52
Fularemia (059) Fyphoid and paratyphoid fever (040, 041) 4 Whooping cough (056)	13 52 1, 307	23 51 1, 931	23 51 1, 931	(1) 11th 39th	(1) 5 2, 500 9, 784	(1) 2, 745 14, 997	(1) 3, 186 14, 997	593 52, 935 63, 559	825 3, 254 112, 192	3, 671 91, 503

¹ Not computed.

Data not available.

Including cases reported as streptococcal sore throat.
Including cases reported as salmonellosis.
Deduction: Arkansas, week ended Oct. 27, 1 case.

Reported Cases of Selected Communicable Diseases: United States, Week Ended Dec. 1, 1951

[Numbers under diseases are International List numbers, 1948 revision]

Area	Diph- theria	Encepha- litis, in- fectious	Influ- enza	Measles	Meningitis, meningococcal	Pneu- monia	Polio- myelitis
	(055)	(082)	(480-483)	(085)	(057. 0)	(490-493)	(080)
United States	115	33	581	5, 138	84	1, 012	428
New England	1	1	1	939 161	3	87 28	1
Maine New Hampshire			1	161 32		28	
Vermont				87			1
Massachusetts	1			386 93	3	4	1
Rhode Island Connecticut		1		180		42	
	14	11	8	2,042	13	95	35
Middle Atlantic	14 8	11	(1) 8	888	6		19
New York New Jersey	1		(') 8	422	2	33	2
Pennsylvania	5			732	5	62	
East North Central	9	3	4	708	12	78	56 13
Ohio	5			176	4		17
Indiana			2	42	1	49	1
Illinois	3	2	3 1	242 136	6	62 16	16
Michigan	3	*		112	1		10
			9	281		78	42
West North Central	8 2	2	9	281 15	8 3	78 29	15
Iowa				2	1		
Missouri	5		4	6	1	1	10
North Dakota		1		225	2	40	3
South Dakota Nebraska	1			16			3
Kansas		1	4	11	1	8	10
South Atlantic	44		31	491	10	145	25
Delaware							
Maryland			2	239		22	3
District of Columbia	8			20 61	2	18	
Virginia West Virginia North Carolina	5			69			
North Carolina	6			3	2		1
South Carolina	9		5	3		6	
Georgia	11		24	82 14	5 1	52	10
Florida				-			
East South Central	23	2	1	264	6	54	31
Kentucky Tennessee	5 4			49 18	2	10	
Alabama	10	1		185	1 1	25	
Mississippi	4	i	1	12	2	19	13
West South Central	15	3	169	46	17	343	75
Arkansas			84	3	2	35	10
Arkansas	4 7		2		1 9	42	11
Oklahoma	1 3	1 2	83	1 42	9 5	14 252	11
Texas							
Mountain		1	255	190	4	57	39
Montana		1	13	35 10	21		
August				23		2	3
Colorado			74	55	1	29	13
New Merico				21		2	
Arizona			168	41	1	24	15
Utah Nevada				1			1
		10	103		11	75	125
Pacific	1	10	103 71	177 51	11 3	6	16
Oregon			71 26	51 21		29	12
California	1	10	6	105	8	40	101
			- who				
Alaska							

¹ New York City only.

Anthraz: Arkansas, 1 case.

Psittacosis: Illinois, 1 case.

Reported Cases of Selected Communicable Diseases: United States, Week Ended Dec. 1, 1951—Continued

[Numbers under diseases are International List numbers, 1948 revision]

Area	Rocky Moun- tain spotted fever (104)	Scarlet fever 1	Small- pox	Tulare- mia	Typhoid and para- typhoid fever ² (040, 041)	Whooping cough	Rabies in animals
United States	()	1, 276	2	13	52	1, 307	179
			-	10			1/3
New England Maine		84	********		3	127	
New Hampshire		5				6	
Vermont					1	24	
Vermont		46			2	70	********
Rhode Island		19					
Connecticut		11				19	*********
Middle Atlantie		229			3	244	36
New York New Jersey		135				86	10
New Jersey		24				73	
Pennsylvania		70			3	85	20
East North Central		366		1	4	217	20
Ohio		108			2	25	
Indiana		45				44	5 9 4 2
Illinois	*******	55		1	1	25	4
MichiganWisconsin.		114	~~~~~			63	2
wisconsin	********	44		********	1	60	********
West North Central		54	2	2	3	36	30
Minnesota		21				1	23
Iowa		5				5	8
Missouri North Dakota		11		2	1	15	2
South Dakota	********	1				1 6	
Nebraska		2	2		*********		
Kansas		14			2	8	********
lauth Atlantic		***				***	
South Atlantic		171		•	10	144	27
Maryland		21		1	1	7	
District of Columbia		8					
Virginia		18				15	3
West Virginia North Carolina		26				74	3
South Carolina		63		1	2	4 7	0
Georgia		15		î	5	30	3 3 5 9 7
Florida		9			5 2	6	
East South Central		69				100	
Kentucky		18	********	1	1	108 53	29 12
Kentucky Tennessee		41				17	6
Alabama		7			*******	24	11
Mississippi		3			1	14	********
West South Central		38		3	,	290	37
Arkansas		3			i	24	5
ArkansasLouisiana		4				14	
Oklahoma		9			2	11	3
Texas		22		3	6	241	29
Mountain		41		2	4	53	
Montana		10				2	
Idaho		1			1	5	
Wyoming		1	******	2		.1	
Colorado		3			1 2	15	*******
Arizona		6			-	20	
Utah		13				1	
Nevada		6		*******			*******
acific		224			15	99	
Washington		26		********	10	88	
Oregon. California.		16	*********		3	3	
California		182			12	78	
laska							
Iawaii		5 2			1		*******

Including cases reported as streptococcal sore throat.
 Including cases reported as salmonellosis.

Week

Polio-yelitis

(080)

FOREIGN REPORTS

CANADA

Reported Cases of Certain Diseases-Week Ended Nov. 17, 1951

Disease	Total	New- found- land	Prince Ed- ward Island	Nova Scotia	New- Bruns- wick	Que- bec	On- tario	Mani- toba	Sas- katch- ewan	Al- berta	Brit- ish Co- lum- bia
Brucellosis Chickenpox Diphtheria Dysentery:	1, 071 10	1		43	1	161 10	1 448	59	57	156	14
Amebic Bacillary	2					2		1		30	
German measles	76			8		6	14		13	30	
Influenza	30	******		24		*****	2	2	*******	009	263
Measles	807	3	******	50	6	134	32	21	12	287	207
Meningitis, meningo-	7					1	2		1	2	
coccal		1						33	6	21	5
Mumps	413	3			1	71	225	4	0	21	- 04
Poliomyelitis	25			3						38	15
Scarlet fever	376	3		******	2	90	20	41	32	38	100
Tuberculosis (all		+		_	_						
forms)	162	1		2	7	65	32	16	9	12	18
Typhoid and paraty-											
phoid fever	3					1	1			1	
Venereal diseases:											
Gonorrhea	288	4		13	6	78	54	35	19	30	41
Syphilis	67	4		5	4	28	7	2		7	10
Primary	6					3	2			1	
Secondary	3	1			2						
Other	58	3		5	2	25	5	2		6	10
Whooping cough	219	3				79	59	30	6	25	17

CUBA

Reported Cases of Certain Diseases-4 Weeks Ended Oct. 27, 1951

		Dinon	Habs	na	Matan-	Santa	Cama-	
Disease	Total	Pinar del Rio	Habana City	Total	288	Clara	guey	Oriente
Cancer Chickenpox	113	6		17	13	31	27	19
Diphtheria	19	1	5	12	1	1		4
Leprosy	47 81	1	1	10	3	18	8 2	8
Measles	10	1 3	4	5	1	1		
Poliomyelitis Tuberculosis	206	2 6	1	1	13	131	47	12
Typhoid fever	43	6	11	12	1	11	6	7

NORWAY

Reported Cases of Certain Diseases-July 1951

Disease	Cases	Disease	Cases
Diphtheria. Dysentery, unspecified. Encephalitis, infectious. Erysipelas. Gastroenteritis. Hepatitis, infectious. Impetigo contagiosa. Influenza. Malaria. Measies. Meningitis, meningococcal. Mumps.	6 2 2 300 3, 818 49 1, 254 1, 329 2 1, 164 11 121	Pneumonia (all forms) Poliomyelitis Rheumatic fever Scabies Scarlet fever Tuberculosis (all forms) Typhold fever Venereal diseases: Gonorrhea Syphilis Other forms Whooping cough	1,680 100 64 444 77 233 4 146 30 1,390

REPORTS OF CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER RECEIVED DURING THE CURRENT WEEK

The following reports include only items of unusual incidence or of special interest and the occurrence of these diseases, except yellow fever, in localities which had not recently reported cases. All reports of yellow fever are published currently.

Cholera

Pakistan. The incidence of cholera in East Bengal Province rose from 52 cases for the week ended October 6 to 272 cases for the week ended October 27. In Dacca two cases were reported for the week ended November 24. The seaport of Chalna reported seven cases during the week ended November 17.

Smallpox

Indonesia. Two cases of smallpox were reported in Ambon, Ceram, for the week ended October 13. For the week ended November 17, smallpox was reported in Java as follows: Bandoeng, two cases; and Surabaya, nine.

Sudan, Anglo-Egyptian. An outbreak of smallpox has occurred in the Anglo-Egyptian Sudan. The number of cases reported for the week ended November 17 was 25 as compared with only 2 for the previous week.

Venezuela. During September, six cases of alastrin were reported.

Typhus Fever

Ceylon. One case of typhus fever was reported in the Western Province for the week ended September 22. This was the first case since June 24.

India. During the week ended November 24, two cases of typhus fever were reported in the seaport of Cochin.

Iraq. For the week ended November 24, four cases of typhus fever were reported. Of these, two were in Baghdad and one in Mosul.

December 21, 1951

British Columbia

5

262

53

150

18

10

10 17

iente

12

951

Mexico. During the period October 28 to November 10, four cases of typhus fever were reported in Mexico City.

Yellow Fever

Gold Coast. During the period November 7-12, four cases of yellow fever were reported. Two cases were in African males, ages 8 and 27, at Akwatia. The other two cases were in the Oda District.

51

The printing of this publication has been approved by the Director of the Bureau of the Budget (August 10, 1949).

The Public Health Reports, first published in 1878 under authority of an act of Congress of April 29 of that year, is issued weekly by the Public Health Service through the Division of Public Health Methods, pursuant to the following authority of law: United States Code, title 42, sections 241, 245, 247; title 44, section 220.

It contains (1) current information regarding the incidence and geographic distribution of communicable diseases in the United States, insofar as data are obtainable, and of cholera, plague, smallpox, typhus fever, yellow fever, and other important communicable diseases throughout the world; (2) articles relating to the cause, prevention, and control of disease; (3) other pertinent information regarding sanitation and the conservation of the public health.

The Public Health Reports is published primarily for distribution, in accordance with the law, to health officers, members of boards or departments of health, and other persons directly or indirectly engaged in public health work.

Requests for and communications regarding the Public Health Reports and reprints should be addressed to the Surgeon General, Public Health Service, Washington 25, D. C. Subscribers should remit direct to the Superintendent of Documents, Washington 25, D. C.

Librarians and others should preserve their copies for binding, as the Public Health Service is unable to supply the general demand for bound copies. Indexes will be supplied upon request.

++

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON, D. C.: 1951

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 15 cents. Subscription price \$4.75 a year; \$6.25 foreign.

-Announcement-

PUBLIC HEALTH REPORTS To be Published Monthly Next Year

Beginning in January 1952 Public Health Reports will be published monthly. Two other technical publications of the Public Health Service—the Journal of Venereal Disease Information and the CDC Bulletin—are being merged with it.

The merger has come about as the result of an extended study of the Public Health Service's publishing activities. The new journal is designed to carry out more efficiently and economically the Public Health Service's responsibilities for disseminating scientific information on matters of health.

The new Public Health Reports will be concerned with the technical and professional aspects of public health practice, with problems of health administration, and with research in these fields. It will include substantially the types of material that have been appearing in the three present journals and the monthly Tuberculosis Control Issue of Public Health Reports. There will be more emphasis, however, on administrative practice, program development, and applied research aspects and less emphasis on bench research and clinical material not rather directly related to public health practice.

As has been true with each of the present journals, the pages of the new Public Health Reports will be open, on merit, to any responsible author. General editorial guidance will be provided by a Board of Editors composed of individuals of recognized competence and professional stature drawn from both within and outside the Federal service.

Every effort will be made to furnish the new Public Health Reports to representative organizations in public health and its related fields. Most of the readers on the mailing list are affiliated with organizations to which free distribution can legally be made. They will continue to receive the new journal either directly or through these organizations.

The first issue of the new Public Health Reports and an application form for a free subscription will be sent to readers now on the free lists for technical periodicals. After they have had an opportunity to review the new Public Health Reports and to consider its usefulness in their work, readers who wish to remain on the lists and receive the new periodical regularly should complete the application and send it in as soon as possible. This will allow time to revise the lists for mailing the second and subsequent issues.

The new Public Health Reports will also be available by paid subscription from the Superintendent of Documents, Government Printing Office.

PUBLIC LIBRARY

JAN 23 1952

DETROIT