网络电视台的"云计算"解决之道

光芒(北京)国际传媒网络技术有限公司 周海峰

网络电视的出现给人们带来一种全新的电视观看模式,它改变了以往被动的电视观看模式,实现了电视以网络为基础的按需观看,随看随停的观看模式。

网络电视一方面提供了巨大的机遇,如网络电视覆盖人群更加广泛,一个地市级的电视台,完全可以 将自身的节目发布在全国用户面前;同时,不同用户的收视习惯,也使得媒资的重组,起到越来越大的效 用;这些变数的引入,将使得网络电视充满着变化和机遇。

如果我们将视角集中在业务过程中,那么笼统的来说,所涉及的 3 个环节是:生产过程、存储和分发过程、以及业务、技术监管过程。以下我们针对这 3 个环节,谈谈在实际运营过程中,我们所碰到的一些问题,以及对应的解决方式。

1 一点生产、多点运营

在讨论这个问题之前,我们先考虑一个问题: 网络电视是不是就是将一个内容,经过技术处理,然后 投放在不同的终端上? 从实际运营情况来看,可能情况并不是那样的,众所周知,习惯于使用计算机和宽 带网络的用户,对于电视的关注度往往比较少,那么将电视节目简单的转移到网络上,恐怕也并不能充分 满足这些用户的需求。那么针对计算机、电视机、和手持设备的用户,他们的需求存在什么差异性呢?

对于计算机用户来说,由于内容的丰富性,以及充分的交互手段,使得他们习惯于更主动的收看模式,例如 2009 年 4 月 19 日的一次网络直播,在 19:00—22:00 之间,最大的并发人数为 526,781 人,而在此时间段中,交互和投票行为是 50,627,568,即每 1 个最大并发人数,贡献了将近 100 次交互行为。这种交互的密集程度,充分展现了计算机用户对于主动观看、以及交互的渴望。

但是,从某种意义上来说,计算机上并不是一个良好的终端,首先他不够轻便,不像手机或其他手持设备那样可以便捷的连接入网络获取信息;从另一个方面来说,他又不够强大,不能提供良好的收视感受。从这一点上来说,他实际上也为电视机前的用户,以及手持设备的用户留下了充分的用户场景来发挥。

对于电视机用户来说,收看节目是一种享受,更清晰的画质、更流畅的感受、更震撼的效果是电视用户所追求的,毕竟对他们来说,很难想象,模糊得看不清楚足球到底在哪里的球赛,在 42 寸乃至更大的电视屏上观看,有什么乐趣可言。对他们来说,更多的内容选择,高清节目,是他们的诉求。

对于手机用户来说,更便捷的获取消息,更快捷的了解事物是他们的诉求,毕竟不像坐在客厅里,除非别无选择,要不然恐怕也没有多少人会捧着手机,连续几小时看电影。

基于以上的描述,我们需要在内容生产环节,满足一点生产、多点落地的问题。

一点生产、多点运营采取了这样的生产过程:生产中心负责对各种内容进行加工,进行各种技术层面上的转换,进行基本产品包包装,形成基干的媒资素材库。而运营中心,会根据生产中心的内容,进行不同的节目展示、收费策略制定等。

这个过程,事实上解决了2个问题。

第一个问题是刚才我们所提及的,同一个内容在不同设备上的落地,这种落地不仅仅包括技术方面的转换——例如针对不同设备的适配视频格式、码率等;也包括在不同的设备上,根据用户的收视习惯,进行媒资的重组。

第二个问题是,同一个内容在不同地域的落地,即同一个视频,在 A 地域可能是按照新闻的方式展示,而在 B 区域,将配合各种历史的素材,封装在一个专题中向用户推出。同时,即使针对的同样的产品包,可能在不同区域,会进行不同的收费模式,产生不同的播放列表等等运营层面上的问题。这些问题,往往并不是生产中心的人员所能够完全掌控的,这就需要在各个运营中心中解决。

采取这样的模式,会带来如下的好处:

- 强化监管:由于运营中心的所有素材来自于生产中心,所以对于全网播出内容的监管将变得更加容易:例如,如果决定某一个节目下线,只需要在生产中心中做下线处理,即可完成:
- 资源共享:由于全网运营所需的主要服务器、带宽都集中在中心环节,从而使得这些资源能够共享使用。
- 集中优势:由于各个运营中心运营的内容都来自于一个生产中心,从而能够集中用户访问流量, 形成规模优势,从而在各种商务合作中,获得谈判优势:

2 "云存储"分发平台

在网络电视的传输、分发环节,主要需要解决的是2个问题:

- (1) 如何使得分布广泛、超大规模、访问弹性大的用户能够得到良好访问?
- (2) 如何使得节目内容得到一个低廉成本的安全存储?

国内的宽带网络可以说是全球最复杂的一张网络,从而使得覆盖来自于全国用户的访问变得具有很大的挑战性。我们曾经为国内一个网络电视进行了一次用户访问质量分析,我们分析了随机一周的全部用户

396 2010.4 第十届全国互联网与音视频广播发展研讨会 (NWC2010)

访问日志,发现能够满足 15 秒内显示视频第一帧,5 分钟内完全流畅播放的用户只有 20%不到。由此可见问题之严重。

同时,在为一个客户提供传输服务时候,我们不止一次的发现,一个区域的访问用户量短时间内发生 戏剧性的 40%以上的变化,可想而知,如果我们的网络随时保持 40%以上的冗余,将导致大量的资源浪费, 而如果不进行这部分资源的储备,又将使得用户量最多的时候,用户的访问感受又是最差的,这种状态令 人非常沮丧。

由此,对应的一种解决方式是融合了 CDN 和 P2P 技术的传输网络。

这张网络应具备如下的特征:

● 低成本和高质量:毋庸置疑,任何成本的考虑都基于质量的前提,失去质量考虑的成本节省都是毫无价值的。在这张网络中,在用户连接之初,会优先使用服务器直连方式为用户传输视频数据,从而使得用户可以尽快的启动视频播放,这个过程会一直持续到这个客户端从P2P网络中获取的数据,已经完全能够支撑他的播放时候,将逐步从服务器上退出。运营数据显示,在用户质量保障的前提下,100人以上的并发能够节省60%左右的服务器和带宽成本,如果并发用户膨胀到5000人左右,则成本节省将达到95%以上。

【用户启动时间分布图】

【在超量服务器带宽模式下,资源节省率】

- CDN和P2P完全融合:即无需为2种传输方式各自准备一套独立的存储和传输网络。采用何种传输模式,可以由业务系统决定,或者在满足某些条件的时候自动触发 例如并发访问人数大于100人的时候。
- 自冗余的传输网络:传统的传输网络一般使用树形结构进行内容的分发。这种传输网络结构的优势在于能够严格的进行流量规划和管理,但是,随之而来的问题是,这张网络应对异常情况的弹性交叉,特别是高层节点发生错误的时候,往往使得很大一个区域的用户失去服务。而我们应对这种灾难的常规做法是增加冗余,这在流量不大的时候,冗余网络的成本还比较容易掌控,但是当服务的用户越来越多,流量越来越大的时候,各点都存在的冗余网络成本将变得越来越沉重。而在一张CDN+P2P网络中,服务器之间的数据获取和补偿也可以设计成P2P模式,从而使得整个网络的弹性很强,即使某一些节点失去服务能力,依赖于他的节点也可以从其他节点上获取数据,同时,我们无需为此冗余能力而付出严重的代价。
- 流量可规划:早期的P2P技术,无法对流量进行规划,这一方面使得骨干网带宽被P2P数据所塞满,另一方面,也使得服务器带宽资源投入的针对性不强 因为他们往往被传输最优的客户端所吞噬,而那些最需要服务器支持的节点反而得不到支持;这张网络需要能够支持区域逻辑划分,使得某一个逻辑内的用户和服务器才能进行数据交换。从而实现流量可规划的特征。

另一个问题是,如何尽量廉价的建立一个安全存储网络。目前通行的存储解决方案,是建立一个昂贵的数据中心,采用高安全性、昂贵的专用设备建立一个专用的数据中心,用以保障最后一份数据的安全性。但是这种模式最大的缺点是 2 点:设备绑定的(解决方案和硬件设备绑定,从而使得将来扩容的成本压力较大),昂贵的。

另一种思路是:通过一些标准廉价服务器,通过自我冗余,从而实现整个数据的安全性要求。这张"云存储"网络应具备的特征包括:

- 业务无关性:这张存储网络和上层应用无关,上层应用调用标准接口进行数据的存取,而不用关心底层的网络结构、备份策略等。
- 自我冗余性:这张网络应该能过做到:假设一个4G的视频内容,被存储在这张网络中,按照1.5倍的冗余,需要消耗6G的实际存储量,则即使任意33%的节点停止服务,都能保证这份视频能够被完整恢复出来。

- 自我管理的:这张网络会对保存其中的数据,基于SLA标准自动进行安全性保证措施,例如3份异地热备、1份冷备数据等。并且,当网络、设备发生变动时,能够自动地进行数据恢复。这一切过程不需要人工驱动,而由系统自我完成。
- 易于扩张的: 当需要增加服务能力的时候,我们不需要细致的对每一台服务器进行调整,例如从甲地获得A数据,从乙地获得B数据;我们只需要将这台服务器安装好基干的服务程序,配置进入整个网络,即可融入到整个网络中提供服务。

3 有序的改进

对于网络电视的业务或技术的改进,往往存在被动的现象。运营人员并不是很清楚用户到底喜欢什么,也不很清楚到底用户的访问体验是什么。在这样的情况,所有的反应都是应激的反应。如果希望能够有序的改进,需要2个层面的保障:工具系统的保障、以及工作流程的保障。

我们举一个例子 —— 改进用户访问质量,来看一下有序的改进过程;

- 建立标准: 首先定义访问质量的定义,例如丢包率、访问错误比例、平均下行速率等标准,我们将基于这些标准来评判访问质量:
- 建立基线:选取一个周期的用户访问,例如1个月的所有访问数据,根据标准来建立目前的质量基线;这条基线可能会更深入一些,例如按照访问时间、访问地域、网络类型等维度进行划分,并且从平均值、方差等层面进行规范;这条基线定义了我们目前的质量现状,如果将来实际情况与基线相比发生较大的变化,那么我们将会更敏感的发现变化所在;
- 建立预警机制:系统搜集即时用户访问信息,以及以天为周期的全局用户访问质量数据,同基线进行比对,当达到触发点的时候(例如全局用户访问质量下降2%),则自动发出报警;
- 排查过程:排查过程将分为2个步骤;第一个步骤是查找相关服务器、带宽、应用程序的监控系统,去进行排查,寻找可能的原因。当第一个排查无效或者问题比较复杂时,将进入到BI分析系统中,根据预先设定的维度进行排查,例如这个2%用户访问质量的下降是一个全局的下降,还是某一个区域较大比例的错误导致的。通过BI进行解决问题的猜想和验证。
- 导入改进流程:如果这个问题不是临时性的,而是长期性的,则启动改进流程,改进后3天的数据和改进前的数据进行重叠,确保改进是有效的,同时没有产生意料外的变化,则改进完成。

通过这样一轮一轮的主动改进,从实际运营的经验来看,效果是良好的。在1年内,网络服务的优良 比例从73%提升到84%。

【日常运营报表: 用户访问分布】

【日常运营报表:分地域访问速度分布】

【日常运营报表:访问速度 - 访问总量 - 命中率维度】

区域	优良比例	差比例	区域	优良比例	差比例
安徽	91.2387	2.03734	辽宁	92.661	2.52534
北京	92.2962	2.21478	内蒙古	86.6733	4.06242
福建	91.2756	2.66198	宁夏	92.1667	2.94444
甘肃	90.2217	3.52416	青海	89.6985	2.38693
广东	87.352	3.75529	山东	93.6358	1.84718
广西	83.0617	4.80717	山西	91.4916	2.80987
贵州	90.5508	4.0678	陕西	94.2241	1.48119
海南	88.583	2.81514	上海	82.3449	6.94999
河北	89.9479	3.55996	四川	80.1413	5.93536
河南	94.612	2.05678	天津	86.9863	4.12671
黑龙江	91.9773	3.11034	西藏	90.9091	2.89256
湖北	89.6864	3.25719	新疆	89.6432	1.87973
湖南	91.9096	2.43751	云南	91.9673	2.12264
吉林	90.915	2,7173	浙江	95.4418	1.50738
江苏	92.8206	1.75332	重庆	89.8957	2.76498
江西	92.1522	2.6413			

【日常运营报表: 某客户访问质量分地域明细,标记出需要改进区域】

而业务方面的改进也遵循类似的方法,例如,我们的客户提出一个问题,同样的新闻类节目,多少时间内可以保持较高的访问热度,而如果放在专题内,则访问热度可以维持多少时间? 我们通过对 2547 个视频持续的跟踪和分析,表明,单一新闻的访问热度衰减是 2 周左右时间,而如果在专题内,同样内容的访问热点衰减是 2 个月左右。这充分证明了媒资重组对于访问量的一个巨大驱动作用。

三网融合的大背景加速了传统广播电视向多业态发展的进程。在这一过程中,以何种思路与眼光参与其中,将决定未来的发展能力与占位。一方面是大规模、大分布的用户需求,另一方面是合理的投入产出压力;一方面是广电传统业务的推广,另一方面是与互联网的高度融合。我们试着以"云计算"为切入点,应该可以找出切实可行的解决之道。

关于光芒国际:

光芒国际是 P2P 技术的创始公司,以 coolstreaming 开创了世界 P2P 流媒体应用的先河; 几年来,先后为海外运营商 Yahoo!BB、TV-bank、韩国 MBC,美国 Comcast ·······以及国内的凤凰网、百度、金山、中彩网等客户提供运营支撑服务。