Valós függvények differenciálszámítása

Előadásjegyzet

Alapfogalmak és kapcsolatuk

1. Definíció. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: I \to \mathbb{R}$ függvény. Ekkor a

$$\varphi(x, x_0) = \frac{f(x) - f(x_0)}{x - x_0}$$
 $(x, x_0 \in I, x \neq x_0)$

mennyiséget az f függvény x és x_0 pontokhoz tartozó **differenciahányados függvény**ének nevezzük.

2. Definíció. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum és $x_0 \in I$. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény differenciálható az $x_0 \in I$ pontban, ha létezik és véges a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

határérték. Erre a továbbiakban az $f'(x_0)$ jelölést használjuk és az f függvény x_0 pontbeli differenciálhányadosának nevezzük.

3. Definíció. Az előző definíció jelölései mellett azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény **balról differenciál-** ható az $x_0 \in I$ pontban, ha létezik és véges a

$$\lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0}$$

határérték. Azt mondjuk továbbá, hogy az $f: I \to \mathbb{R}$ függvény **jobbról differenciálható az** $x_0 \in I$ **pontban**, ha létezik és véges a

$$\lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0}$$

határérték.

1. Példa. Legyen $c \in \mathbb{R}$, ekkor az

$$f(x) = c \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvény minden $x_0 \in \mathbb{R}$ pontban differenciálható.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0,$$

azaz, tetszőleges $x_0 \in \mathbb{R}$ esetén

$$f'(x_0) = 0.$$

$$f(x) = x^2 \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0,$$

azaz, a fenti f függvény minden pontban differenciálható és

$$f'(x_0) = 2x_0 \qquad (x_0 \in \mathbb{R}).$$

- **1. Tétel (Differenciálhatóság** \Rightarrow **folytonosság).** Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: I \to \mathbb{R}$ és $x_0 \in I$. Ha az f függvény differenciálható az x_0 pontban, akkor az f ebben a pontban folytonos is.
- 1. Megjegyzés. Az előző tétel megfordítása nem igaz, ugyanis az

$$f(x) = |x| \qquad (x \in \mathbb{R})$$

függvény minden pontban folytonos, azonban az $x_0 = 0$ pontban nem differenciálható.

Differenciálhatóság és műveletek

- **2. Tétel.** Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $f, g \colon D \to \mathbb{R}$ olyan függvények, melyek differenciálhatóak az x_0 pontban. Ekkor
 - (i) az f + g függvény is differenciálható az x_0 pontban és

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

(ii) tetszőleges $\lambda \in \mathbb{R}$ esetén a $\lambda \cdot f$ függvény is differenciálható az x_0 pontban és

$$(\lambda \cdot f)'(x_0) = \lambda \cdot f'(x_0).$$

(iii) az $f \cdot g$ függvény is differenciálható az x_0 pontban és

$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0).$$

(iv) az $\frac{f}{g}$ függvény is differenciálható az x_0 pontban és

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)},$$

feltéve, hogy az x_0 pontnak van olyan környezete, melyben $g(x) \neq 0$.

3. Tétel (Az összetett függvény differenciálási szabálya). Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $g: I \to \mathbb{R}$ és $f: g(I) \to \mathbb{R}$ olyan függvények, hogy g differenciálható az x_0 pontban, f pedig differenciálható a $g(x_0)$ pontban. Ekkor az $f \circ g$ függvény differenciálható az x_0 pontban, továbbá

$$\left(f\circ g\right)'\left(x_{0}\right)=f'\left(g\left(x_{0}\right)\right)\cdot g'\left(x_{0}\right).$$

4. Tétel (Az inverz függvény differenciálási szabálya). Legyen $]a,b[\subset \mathbb{R} \text{ nemüres, nyílt intervallum, } f:]a,b[\to \mathbb{R} \text{ folytonos, szigorúan monoton függvény.} Ha az <math>f$ függvény differenciálható az $x_0 \in]a,b[$ pontban és $f'(x_0) \neq 0$, akkor az f^{-1} függvény differenciálható az $f(x_0) \in f(]a,b[)$ pontban és

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Néhány elemi függvény differenciálhányados függvénye

• ha
$$n \in \mathbb{Z} \setminus \{0\}$$
 és $f(x) = x^n$, akkor $f'(x) = n \cdot x^{n-1}$;

• ha
$$f(x) = \exp(x)$$
, akkor $f'(x) = \exp(x)$;

• ha
$$f(x) = a^x$$
, akkor $f'(x) = a^x \cdot \ln(a)$;

• ha
$$f(x) = \ln(x)$$
, akkor $f'(x) = \frac{1}{x}$;

• ha
$$f(x) = \cos(x)$$
, akkor $f'(x) = -\sin(x)$;

• ha
$$f(x) = \sin(x)$$
, akkor $f'(x) = \cos(x)$;

• ha
$$f(x) = \operatorname{tg}(x)$$
, akkor $f'(x) = \frac{1}{\cos^2}(x)$;

• ha
$$f(x) = \operatorname{ctg}(x)$$
, akkor $f'(x) = -\frac{1}{\sin^2(x)}$;

• ha
$$f(x) = \cosh(x)$$
, akkor $f'(x) = \sinh(x)$;

• ha
$$f(x) = \sinh(x)$$
, akkor $f'(x) = \cosh(x)$;

• ha
$$f(x) = \tanh(x)$$
, akkor $f'(x) = \frac{1}{\cosh^2(x)}$;

• ha
$$f(x) = \coth(x)$$
, akkor $f'(x) = -\frac{1}{\sinh^2(x)}$.

Középértéktételek

4. Definíció. Legyen $I \subset \mathbb{R}$ nemüres halmaz, $f: D \to \mathbb{R}$ függvény. Azt mondjuk, hogy az f függvénynek az $x_0 \in I$ pontban lokális minimuma van, ha van egy olyan, az az x_0 pontot tartalmazó $J \subset I$ nyílt intervallum, hogy

$$f(x_0) \leqslant f(x)$$

teljesül minden $x \in J$ esetén.

5. Definíció. Legyen $I \subset \mathbb{R}$ nemüres halmaz, $f: I \to \mathbb{R}$ függvény. Azt mondjuk, hogy az f függvénynek az $x_0 \in I$ pontban lokális maximuma van, ha van egy olyan, az az x_0 pontot tartalmazó $J \subset I$ nyílt intervallum, hogy

$$f(x_0) \geqslant f(x)$$

teljesül minden $x \in J$ esetén.

5. Tétel (Fermat-elv). Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: I \to \mathbb{R}$ függvény. Ha az f függvénynek az $x_0 \in I$ pontban lokális szélsőértéke van és az f függvény differenciálható ebben a pontban, akkor

$$f'(x_0)=0.$$

2. Megjegyzés. Az előző tétel megfordítása nem igaz, legyen ugyanis

$$f(x) = x^3 \qquad (x \in \mathbb{R}).$$

Ekkor az f függvény differenciálható az $x_0 = 0$ pontban és f'(0) = 0, azonban az f függvénynek az $x_0 = 0$ pont nem lokális szélsőértékhelye.

- **6. Tétel (Darboux).** Legyen $f:]a, b[\to \mathbb{R}$ differenciálható függvény és legyenek $c, d \in]a, b[, c < d]$. Ekkor az f függvény differenciálhányados függvénye minden f'(c) és f'(d) közé eső értéket felvesz a]c, d[intervallumban.
- **7. Tétel (Cauchy).** Legyenek $f, g: [a, b] \to \mathbb{R}$ olyan folytonos függvények melyek differenciálhatóak az]a, b[intervallumon. Ekkor van olyan $\xi \in]a, b[$ pont, hogy

$$(f(b) - f(a)) g'(\xi) = (g(b) - g(a)) f'(\xi)$$

teljesül.

8. Tétel (Lagrange). Legyen $f:[a,b] \to \mathbb{R}$ olyan folytonos függvény, mely differenciálható a]a,b[intervallumon. Ekkor van olyan $\xi \in]a,b[$, melyre

$$f(b) - f(a) = (b - a)f'(\xi)$$

teljesül.

9. Tétel (Rolle). Legyen $f:[a,b] \to \mathbb{R}$ olyan folytonos függvény, mely differenciálható az]a,b[intervallumon és tegyük fel, hogy f(a)=f(b). Ekkor van olyan $\xi \in]a,b[$, melyre

$$f'(\xi) = 0$$

teljesül.

10. Tétel (Az integrálszámítás alaptétele). Legyen $f:[a,b] \to \mathbb{R}$ olyan folytonos függvény, mely differenciálható az]a,b[intervallumon. Ha

$$f'(x) = 0 \qquad (x \in]a, b[),$$

akkor van olyan $c \in \mathbb{R}$, hogy

$$f(x) = c$$

teljesül minden $x \in [a, b]$ esetén.

1. ábra. A Lagrange-féle középértéktétel geometriai jelentése

2. ábra. A Rolle-féle középértéktétel geometriai jelentése

Magasabb rendű deriváltak

6. Definíció. Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: I \to \mathbb{R}$, $x_0 \in I$. Ha az f függvény differenciálható az x_0 pont egy környezetében, és az f függvény deriváltja differenciálható az x_0 pontban, akkor azt mondjuk, hogy az f függvény az $x_0 \in I$ pontban **kétszer differenciálható**, és $(f')'(x_0)$ -t az f függvény x_0 pontbeli **második differenciálhányados**ának nevezzük és $f''(x_0)$ -lal jelöljük.

Ha az f függvény a I intervallum minden pontjában kétszer differenciálható, akkor az

$$x \longmapsto f''(x) \qquad (x \in I)$$

függvényt az f függvény második deriváltjának hívjuk.

7. Definíció. Legyen $n \in \mathbb{N}$, $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: D \to \mathbb{R}$, $x_0 \in I$. Ha az f függvény n-szer differenciálható az x_0 pont egy környezetében, és az f függvény n-edik deriváltja differenciálható az x_0 pontban, akkor azt mondjuk, hogy az f függvény az $x_0 \in I$ pontban (n+1)-szer differenciálható, és $(f^{(n)})'(x_0)$ -t az f függvény x_0 pontbeli (n+1)-edik differenciálhányadosának nevezzük és $f^{(n+1)}(x_0)$ -lal jelöljük.

Ha az f függvény a I intervallum minden pontjában (n + 1)-szer differenciálható, akkor az

$$x \longmapsto f^{(n+1)}(x) \qquad (x \in I)$$

függvényt az f függvény (n+1)-edik deriváltjának hívjuk.

- **8. Definíció.** Ha az $f:]a, b[\to \mathbb{R}$ függvény az]a, b[intervallum valamely x_0 pontjában minden $n \in \mathbb{N}$ esetén n-szer differenciálható, akkor azt mondjuk, hogy az f függvény **akárhányszor differenciálható az** x_0 **pontban**.
- **9. Definíció.** Ha az $f: [a,b] \to \mathbb{R}$ függvény differenciálható az [a,b] intervallumon és az

$$x \longmapsto f'(x)$$
 $(x \in]a,b[)$

függvény folytonos, akkor azt mondjuk, hogy az f függvény **folytonosan differenciálható az**]a,b[**intervallumon**.

A Taylor-tétel

11. Tétel (Taylor). Legyen $n \in \mathbb{N} \cup \{0\}$, $f:]a,b[\to \mathbb{R} \text{ \'es } x_0 \in]a,b[$. Ha az f függvény (n+1)-szer differenciálható, akkor minden $x \in]a,b[$, $x \neq x_0$ esetén van olyan ξ pont x és x_0 között, hogy

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

teljesül.

10. Definíció. Az előző tételben szereplő

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

polinomot az f függvény x_0 ponthoz tartozó n-edik Taylor-polinomjának nevezzük. Az előző tétel alapján felírható

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

formulát pedig Taylor-formulának mondjuk, míg az

$$\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$

tagot a Taylor-formula maradéktagjának hívjuk.

3. ábra. Az ln függvény és annak $x_0 = 1$ körüli P_1, P_5, P_{10} és P_{100} Taylor-polinomjai

3. Példa. $Az \ln:]0, +\infty[\to \mathbb{R}$ függvény akárhányszor differenciálható a $]0, +\infty[$ intervallumon és tetszőleges $n \in \mathbb{N}$ esetén ennek a függvénynek az n-edrendű Taylor-polinomja

$$P_n(x) = \sum_{k=1}^n (-1)^{n+1} \frac{(x-1)^k}{k} \qquad (x \in]0, +\infty[).$$

4. Példa. Az

$$f(x) = x^6 - 5x^5 + 2x^4 - 3x^3 + 2x^2 + 6$$

függvény akárhányszor differenciálható \mathbb{R} -en. tetszőleges $n \in \mathbb{N}$ esetén ennek a függvénynek az n-edrendű Taylor-polinomja. Ennek a függvénynek az $x_0 = 2$ pont körüli hatodrendű Taylor-polinomja

$$P_6(x) = -74 - 172(x-2) - 128(x-2)^2 - 27(x-2)^3 + 12(x-2)^4 + 7(x-2)^5 + (x-2)^6$$

A l'Hospital-szabály

12. Tétel. Legyenek $f, g: [a, b] \to \mathbb{R}$ olyan folytonos függvények, melyek differenciálhatóak az [a, b] intervallumon és tegyük fel, hogy

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0.$$

Ha $g'(x) \neq 0$ minden $x \in]a,b[$ esetén és létezik a

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)}$$

(véges vagy végtelen) határérték, akkor $g(x) \neq 0$ minden $x \in]a,b[$ esetén és létezik a

$$\lim_{x \to a+} \frac{f(x)}{g(x)}$$

határérték is és

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

13. Tétel. Legyenek $f,g:[a,b[\to \mathbb{R} \ olyan \ folytonos \ függvények, melyek differenciálhatóak az]a,b[intervallumon és tegyük fel, hogy$

$$\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} g(x) = 0.$$

 $Ha\ g'(x) \neq 0\ minden\ x \in]a,b[$ esetén és létezik a

$$\lim_{x \to b-} \frac{f'(x)}{g'(x)}$$

(véges vagy végtelen) határérték, akkor $g(x) \neq 0$ minden $x \in]a,b[$ esetén és létezik a

$$\lim_{x \to b-} \frac{f(x)}{g(x)}$$

határérték is és

$$\lim_{x \to b-} \frac{f(x)}{g(x)} = \lim_{x \to b-} \frac{f'(x)}{g'(x)}.$$

14. Tétel. Legyenek $f,g:[a,+\infty[\to\mathbb{R} \text{ olyan folytonos függvények, melyek differenciálhatóak az }]a,+\infty[$ intervallumon és tegyük fel, hogy

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0.$$

 $Ha\ g'(x) \neq 0\ minden\ x \in]a, +\infty[$ esetén és létezik a

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

(véges vagy végtelen) határérték, akkor $g(x) \neq 0$ minden $x \in]a, +\infty[$ esetén és létezik a

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

határérték is és

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

15. Tétel. Legyenek $f,g:]-\infty,b]\to\mathbb{R}$ olyan folytonos függvények, melyek differenciálhatóak a $]-\infty,b[$ intervallumon és tegyük fel, hogy

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} g(x) = 0.$$

 $Ha\ g'(x) \neq 0\ minden\ x \in]-\infty, b[\ eset\'en\ \'es\ l\'etezik\ a$

$$\lim_{x \to -\infty} \frac{f'(x)}{g'(x)}$$

(véges vagy végtelen) határérték, akkor $g(x) \neq 0$ minden $x \in]-\infty, b[$ esetén és létezik a

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)}$$

határérték is és

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{f'(x)}{g'(x)}.$$

16. Tétel. Legyenek $f,g: [a,b] \to \mathbb{R}$ olyan folytonos függvények, melyek differenciálhatóak az [a,b] intervallumon és tegyük fel, hogy

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = +\infty.$$

 $Ha\ g'(x) \neq 0\ minden\ x \in]a,b[$ esetén és létezik a

$$\lim_{x \to a+} \frac{f'(x)}{g'(x)}$$

(véges vagy végtelen) határérték, akkor $g(x) \neq 0$ minden $x \in]a,b[$ esetén és létezik a

$$\lim_{x \to a+} \frac{f(x)}{g(x)}$$

határérték is és

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

3. Megjegyzés. Hasonlóan fogalmazhatóak meg a további

•

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = -\infty.$$

- $a = -\infty$
- $b = +\infty$

esetek is.

5. Példa.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

Ugyanis a l'Hospital-szabályt alkalmazva,

$$\lim_{x \to 0} \frac{\left[\sin(x)\right]'}{\left[x\right]'} = \lim_{x \to 0} \frac{\cos(x)}{1} = \cos(0) = 1.$$

6. Példa.

$$\lim_{x \to 0+} x \ln(x) = 0.$$

Ugyanis a l'Hospital-szabályt alkalmazva,

$$\lim_{x \to 0+} x \ln(x) = \lim_{x \to 0+} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0+} \frac{\left[\ln(x)\right]'}{\left[\frac{1}{x}\right]'} = \lim_{x \to 0+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0+} -x = 0$$

7. Példa.

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = 0.$$

Alkalmazzuk a l'Hospital-szabályt,

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{\left[x^2\right]'}{\left[e^x\right]'} = \lim_{x \to +\infty} \frac{2x}{e^x}$$

Alkalmazzuk még egyszer a l'Hospital-szabályt,

$$\lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{[2x]'}{[e^x]'} = \lim_{x \to +\infty} \frac{2}{e^x} = 0.$$

8. Példa.

$$\lim_{x \to +\infty} \frac{\sqrt{1+x^2}}{x} = 1$$

Alkalmazzuk a l'Hospital-szabályt,

$$\lim_{x \to +\infty} \frac{\sqrt{1+x^2}}{x} = \lim_{x \to +\infty} \frac{\left[\sqrt{1+x^2}\right]'}{\left[x\right]'} = \lim_{x \to +\infty} \frac{-\frac{1}{2}\frac{1}{\sqrt{1+x^2}} \cdot 2x}{1} = \lim_{x \to +\infty} \frac{x}{\sqrt{1+x^2}}$$

A l'Hospital-szabály nem vezet eredményre ebben az esetben. Azonban

$$\frac{\sqrt{1+x^2}}{x} = \sqrt{\frac{1}{x^2} + 1} \xrightarrow{x \to +\infty} 1.$$

Függvényvizsgálat

Monotonitás

11. Definíció. Azt mondjuk, hogy az $f:]a, b[\to \mathbb{R}$ függvény az]a, b[intervallumon **monoton növekedő**, ha minden $x, y \in]a, b[$, $x \le y$ esetén

$$f(x) \leq f(y)$$

teljesül.

12. Definíció. Azt mondjuk, hogy az $f:]a, b[\to \mathbb{R}$ függvény az]a, b[intervallumon **monoton csökkenő**, ha minden $x, y \in]a, b[$, $x \le y$ esetén

$$f(x) \geqslant f(y)$$

teljesül.

- **13. Definíció.** Ha a fenti egyenlőtlenségek minden $x \neq y$ esetén szigorúak, akkor azt mondjuk, hogy a szóban fogó függvény szigorúan monoton növekedő, illetve szigorúan monoton csökkenő.
- **17. Tétel.** Legyen $f:]a, b[\to \mathbb{R}$ egy olyan függvény, amely differenciálható az]a, b[intervallumon. Ekkor az alábbi állítások ekvivalensek.
 - az f függvény monoton növekedő az]a,b[intervallumon;
 - $tetsz ext{\'o} leges x \in]a,b[$ $eset ext{\'e} n f'(x) \ge 0.$
- **18. Tétel.** Legyen $f:]a,b[\to \mathbb{R}$ egy olyan függvény, amely differenciálható az]a,b[intervallumon. Ekkor az alábbi állítások ekvivalensek.
 - az f függvény monoton csökkenő az]a,b[intervallumon;
 - tetszőleges $x \in]a,b[$ esetén $f'(x) \le 0$.
- **19. Tétel.** Legyen $f:]a, b[\to \mathbb{R}$ egy olyan függvény, amely differenciálható az]a, b[intervallumon. Ekkor az alábbi állítások ekvivalensek.
 - az f függvény szigorúan monoton növekedő (szigorúan monoton csökkenő) az a, b[intervallumon;
 - tetszőleges $x \in]a,b[$ esetén $f'(x) \ge 0$ ($f'(x) \le 0$), és az]a,b[intervallumnak nem létezik olyan]c,d[részintervalluma, hogy f'(x) = 0 teljesül, ha $x \in]c,d[$.

$$f(x) = x^3 - 6x^2 + 12x + 1 \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor f differenciálható \mathbb{R} -en és

$$f'(x) = 3x^2 - 12x + 12 = 3(x - 2)^2 \qquad (x \in \mathbb{R})$$

Mivel tetszőleges $x \in \mathbb{R}$ esetén $f'(x) \ge 0$, ezért az f függvény szigorúan monoton növekedő \mathbb{R} -en.

10. Példa. Legyen

$$f(x) = x^2 - 4x + 6 \qquad (x \in \mathbb{R}).$$

Ekkor f differenciálható \mathbb{R} -en és

$$f'(x) = 2x - 4 \qquad (x \in \mathbb{R}).$$

 $Ha \ x \in [2, +\infty[$, $akkor \ f'(x) \ge 0$, $ha \ pedig \ x \in] - \infty, 2]$, $akkor \ f'(x) \le 0$. Így, $az \ f \ f \ uggvény \ a \ [2, +\infty[$ $intervallumon \ monoton \ n \ oveked \ over \ oveked \$

Szélsőérték

20. Tétel (Szélsőértékre vonatkozó szükséges feltétel). Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $f: D \to \mathbb{R}$ függvény. Ha az f függvénynek az $x_0 \in I$ pontban szélsőértéke van és az f függvény differenciálható ebben a pontban, akkor $f'(x_0) = 0$.

21. Tétel (Szélsőértékre vonatkozó elégséges feltétel). Legyen $f:]a,b[\to \mathbb{R}$ differenciálható függvény, $x_0 \in]a,b[$. Ha van olyan $\varepsilon > 0$, hogy $]x_0 - \varepsilon, x_0 + \varepsilon[\subset]a,b[$, és

- ha $x \in]x_0 \varepsilon$, $x_0[$ esetén $f'(x) \ge 0$, ha pedig $x \in]x_0, x_0 + \varepsilon[$, akkor $f'(x) \le 0$ teljesül, akkor az x_0 pont az f függvénynek lokális maximumhelye;
- ha $x \in]x_0 \varepsilon, x_0[$ esetén $f'(x) \le 0$, ha pedig $x \in]x_0, x_0 + \varepsilon[$, akkor $f'(x) \ge 0$ teljesül, akkor az x_0 pont az f függvénynek lokális minimumhelye.

22. Tétel (Szélsőértékre vonatkozó elégséges feltétel). Legyen $n \in \mathbb{N}$, $n \ge 2$, $f:]a,b[\to \mathbb{R}$ egy olyan függvény, mely az $x_0 \in]a,b[$ pontban n-szer differenciálható. Tegyük fel, hogy

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
, és $f^{(n)}(x_0) \neq 0$.

Ekkor, ha

- n páratlan, akkor az x_0 pont nem lokális szélsőértékhelye az f függvénynek
- n páros és
 - $f^{(n)}(x_0) > 0$, akkor az x_0 pont az f függvénynek lokális minimumhelye;
 - $f^{(n)}(x_0) < 0$, akkor az x_0 pont az f függvénynek lokális maximumhelye.

11. Példa. Legyen

$$f(x) = xe^x \qquad (x \in \mathbb{R}).$$

Ekkor

$$f'(x) = (x+1)e^x \qquad (x \in \mathbb{R}).$$

Mivel f'(x) = 0 pontosan akkor teljesül, ha x = -1, ezért ha az f függvénynek van szélsőértékhelye, akkor az csak az x = -1 pont lehet. Mivel

$$f''(x) = (x+2)e^x \qquad (x \in \mathbb{R}),$$

így $f''(-1) = \frac{1}{e} > 0$, vagyis az x = -1 pont az f függvénynek lokális minimumhelye.

$$f(x) = e^x \sin(x) \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$f'(x) = e^x(\sin(x) + \cos(x)).$$

Így f'(x) = 0 pontosan akkor teljesül, ha

$$e^x(\sin(x) + \cos(x)) = 0,$$

azaz, ha

$$\sin(x) + \cos(x) = 0.$$

Ez azt jelenti, hogy

$$x_n = -\frac{\pi}{4} + k\pi$$
 $(k \in \mathbb{N})$.

Ezért, ha az f függvénynek van szélsőértékhelye, akkor az $csak-\frac{\pi}{4}+k\pi$ alakú pontokban lehetséges. Mivel

$$f''(x) = 2e^x \cos(x),$$

így

$$f''\left(-rac{\pi}{4}+k\pi
ight)=egin{cases} e^{x_n}rac{\sqrt{2}}{2}, & ha\ k\ plpha ros \ -e^{x_n}rac{\sqrt{2}}{2}, & ha\ k\ plpha ratlan, \end{cases}$$

ezért az $-\frac{\pi}{4} + 2k\pi$ alakú pontok f-nek lokális minimumhelyei, míg a $-\frac{\pi}{4} + (2k+1)\pi$ alakú pontok f-nek lokális maximumhelyei.

Konvexitás

14. Definíció. Legyen $I \subset \mathbb{R}$ nemüres intervallum. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény **konvex**, ha minden $x, y \in I$ és minden $\lambda \in [0, 1]$ esetén

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

teljesül.

15. Definíció. Legyen $I \subset \mathbb{R}$ nemüres intervallum. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény **konkáv**, ha minden $x, y \in I$ és minden $\lambda \in [0, 1]$ esetén

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

teljesül.

- **1.** Állítás. Legyen $I \subset \mathbb{R}$ nemüres intervallum, $f: I \to \mathbb{R}$ függvény. Ekkor az alábbi állítások ekvivalensek.
 - az f függvény konvex;
 - a f függvény konkáv.

- **23. Tétel.** Legyen $]a,b[\to \mathbb{R}$ konvex függvény. Ekkor
 - f folytonos az]a,b[intervallumon;
 - az f függvénynek minden pontban létezik a bal- és a jobboldali deriváltja.
- **24. Tétel.** Legyen $f: [a, b] \to \mathbb{R}$ differenciálható függvény. Ekkor
 - f pontosan akkor konvex, ha f' monoton növekedő az a, b intervallumon;
 - f pontosan akkor konkáv, ha f' monoton csökkenő az]a, b[intervallumon.
- **25. Tétel.** Legyen $f: [a, b] \to \mathbb{R}$ egy kétszer differenciálható függvény. Ekkor
 - f pontosan akkor konvex, ha $f''(x) \ge 0$ teljesül minden $x \in]a,b[$ esetén;
 - f pontosan akkor konkáv, ha $f''(x) \le 0$ teljesül minden $x \in]a,b[$ esetén.

Inflexió

- **16. Definíció.** Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az x_0 pont az f függvénynek **inflexiós pont**ja, ha van olyan $\varepsilon > 0$, hogy az f függvény az $]x_0 \varepsilon$, $x_0[$ intervallumon konvex, az $]x_0, x_0 + \varepsilon[$ intervallumon konkáv, vagy megfordítva.
- **26. Tétel (Inflexiós helyre vonatkozó szükséges feltétel).** Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$, $f: D \to \mathbb{R}$ olyan függvény, mely differenciálható az x_0 pontban. Ha az x_0 pont inflexiós pontja az f függvénynek, akkor az x_0 pont lokális szélsőértékhelye az f' függvénynek.

27. Tétel (Inflexiós helyre vonatkozó elégséges feltétel). Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$, $f: D \to \mathbb{R}$ háromszor differenciálható függvény. Ha

$$f''(x_0) = 0$$

és

$$f'''(x_0)\neq 0,$$

továbbá, f''' folytonos az x_0 pontban, akkor x_0 inflexiós pontja az f függvénynek.

13. Példa. Tekintsük az

$$f(x) = x^3 + 2x^2 - x - 2 \qquad (x \in \mathbb{R})$$

módon megadott f : $\mathbb{R} \to \mathbb{R}$ *függvényt.*

Ekkor

$$f'(x) = 3x^2 + 4x - 1$$
 $(x \in \mathbb{R})$

és

$$f''(x) = 6x + 4 \qquad (x \in \mathbb{R}).$$

Ezért

$$f''(x) \geqslant 0 \iff x \in [-2/3, +\infty[$$
 és $f''(x) \leqslant 0 \iff x \in]-\infty, -2/3]$

Így, f konvex a $[-2/3, +\infty[$ intervallumon és konkáv a $]-\infty, -2/3]$ intervallumon. Továbbá,

$$f''\left(-\frac{2}{3}\right) = 6\left(-\frac{2}{3}\right) + 4 = 0$$

és

$$f'''(x) = 6 \qquad (x \in \mathbb{R}),$$

ezért

$$f'''\left(-\frac{2}{3}\right) = 6 \neq 0,$$

vagyis az $x_0 = -\frac{2}{3}$ pont az f függvénynek inflexiós pontja.

14. Példa. Legyen

$$f(x) = \ln(1 + x^2) \qquad (x \in \mathbb{R}).$$

Ekkor

$$f''(x) = -\frac{2x^2 - 2}{(x^2 + 1)^2} \qquad (x \in \mathbb{R}).$$

Ebben az esetben $f''(x) \ge 0$ pontosan akkor teljesül, ha

$$-\frac{2x^2-2}{(x^2+1)^2}\geqslant 0,$$

azaz, ha

$$-2x^2 + 2 \ge 0$$
.

ami pontosan akkor áll fenn, ha $|x| \le 1$. Továbbá,

$$f''(\pm 1) = 0$$
 és $f'''(1) = -1 \neq 0$ $f'''(-1) = -\frac{8}{125} \neq 0$,

ezért az x=-1 és x=1 pontok az f függvénynek inflexiós pontjai, valamint az f függvény konkáv a $]-\infty,-1]$ intervallumon, a]-1,1[intervallumon konvex, az $[1,+\infty[$ intervallumon pedig konkáv.

Egy f függvény **teljes függvényvizsgálat**ánál az alábbiakat határozzuk meg

- f értelmezési tartományát (\mathcal{D}_f);
- f értékkészletét (\mathcal{R}_f);
- f páros, páratlan, periodikus függvény-e;
- f zérushelyeit;
- \mathcal{D}_f azon részhalmazait, ahol f előjele állandó;
- f határértékeit \mathcal{D}_f határpontjaiban;
- \mathcal{D}_f azon részhalmazait, ahol f monoton növekedő/csökkenő;
- f szakadási helyeit;

- f differenciálhányados függvényeit;
- f szélsőértékhelyeit és szélsőértékeit;
- \mathcal{D}_f azon részhalmazait, ahol f konvex/konkáv;
- f aszimptotáit.

$$f(x) = x + \frac{1}{x}$$

függvényt. Ekkor f értelmezési tartománya: $\mathbb{R}\setminus\{0\}$.

A zérushelyek meghatározásához meg kell oldani az f(x) = 0 egyenletet.

$$f(x) = 0 \Leftrightarrow x + \frac{1}{x} = 0 \Leftrightarrow x^2 + 1 = 0.$$

Mivel az f(x) = 0 egyenletnek \mathcal{D}_f -en nincsen gyöke, így az f függvénynek nincsen zérushelye.

Az f függvény differenciálhányados függvényei

$$f'(x) = 1 - \frac{1}{x^2}$$

$$f''(x) = \frac{2}{x^3}$$

$$f^{(n)}(x) = (-1)^n \frac{n!}{x^{n+1}} \qquad (n \in \mathbb{N}, n \ge 3).$$

Az f függvénynek csak olyan pontokban lehet szélsőértéke, ahol a deriváltja eltűnik. Azonban,

$$f'(x) = 0 \Leftrightarrow 1 - \frac{1}{x^2} = 0 \Leftrightarrow x = \pm 1.$$

Így, ha az f függvénynek van szélsőértékhelye, akkor az csak a ± 1 pontok valamelyikéban lehet. Mivel

$$f''(1) = 2$$
 és $f''(-1) = -2$,

ezért az x = -1 pont az f függvénynek lokális maximumhelye, míg az x = 1 pont az f függvénynek lokális minimumhelye. A megfelelő szélsőértékek pedig

$$f(1) = 2$$
 és $f(-1) = -2$.

A monotonitáshoz az $f'(x) \ge 0$ egyenlőtlenséget kell megoldanunk.

$$f'(x) \ge 0 \Leftrightarrow 1 - \frac{1}{x^2} \ge 0 \Leftrightarrow x \in]-\infty, -1[\cup]1, +\infty[,$$

ezért az f függvény monoton növekedő $a] - \infty, -1[$ és az $]1, +\infty[$ intervallumokon, míg a [-1,0[és a]0,1] intervallumokon monoton csökkenő.

Tetszőleges $x \in \mathcal{D}_f$ esetén

$$f(x) = x + \frac{1}{x} = -\left(-x + \frac{1}{-x}\right) = -f(-x)$$

teljesül, ami azt mutatja, hogy az f függvény **páratlan**. Továbbá, az f függvény **nem páros** és nem is **periodikus**.

A konvexitás vizsgálatához meg kell oldanunk az $f''(x) \ge 0$ egyenlőtlenségek.

$$f''(x) \ge 0 \Leftrightarrow \frac{2}{x^3} \ge 0 \Leftrightarrow x > 0.$$

Ezért az f függvény a $]-\infty,0[$ intervallumon konkáv, míg a $]0,+\infty[$ intervallumon konvex. Az f függvénynek az értelmezési tartománya határpontjaiban vett határértékei pedig

$$\lim_{x \to 0+} x + \frac{1}{x} = +\infty$$
 és $\lim_{x \to 0-} x + \frac{1}{x} = -\infty$,

illetve,

$$\lim_{x \to +\infty} x + \frac{1}{x} = +\infty \quad \text{\'es} \quad \lim_{x \to -\infty} x + \frac{1}{x} = -\infty.$$

Ezeket a határértéktulajdonságokat a szélsőértéknél kapottakkal egybevetve, a Bolzano-féle középértéktétel miatt az f függvény minden –2-nél kisebb vagy egyenlő és minden 2-nél nagyobb vagy egyenlő valós számot felvesz értékül, azaz,

$$\mathscr{R}_f = \mathbb{R} \setminus]-2,2[.$$

