动态规划方法应用举例

学习方法建议:

第一步 先看问题, 充分理解问题 的条件、情况及求解目标。 第二步 结合前面讲到的理论和解

题过程, 考虑如何着手进行求解该问题的工作。分析针对该动态规划问题的"四大要素、一个方程"——这一步在开始时会感到困难, 但是一定要下决心去思考, 在思考过程中深入理解前文讲到的概念和理论。

动态规划方法应用举例

第三步 动手把求解甩路整理出来,或者说,把该问题作为习题独立的来做。

第四步 把自己的求解放到一边, 看书中的求解方法, 要充分理解教材中 的论述。

第五步 对照自己 的求解,分析成败。

动态规划应用举例

- 1. 动态规划的四大要素
- ① 状态变量及其可能集合 $x_k \in X_k$
- ② 决策变量及其允许集合 $u_k \in U_k$
- ③ 状态转移方程 $x_{k+1} = T_k(x_k, u_k)$
- 1 阶段效应 $r_k(x_k, u_k)$

动态规划应用举例

2. 动态规划基本方程 $f_{n+1}(x_{n+1}) = 0 \quad (边界条件)$ $f_k(x_k) = \text{opt }_u\{r_k(x_k, u_k) + f_{k+1}(x_{k+1})\}$ k = n, ..., 1

资源分配问题

如果将n种活动作为一个互相衔接的整体,对一种活动的资源分配作为一个阶段,每个阶段确定对一种活动的资源 投放量。则该问题成为一个多阶段决策问题。

状态变量 \mathbf{x}_{i_l} 的选取原则是要能够据此确定决策 \mathbf{u}_{i_l} ,以及满足状态转移方程所要求的无后效性。

在资源分配问题中,决策变量选为对活动 k的资源投放量, 因此状态变量可以选择为阶段 k初所拥有的资源量, 即将要 在第k种到第n种活动间分配的资源量。

资源分配问题

关于状态变量 x_k 的约束条件是 $0 \le x_k \le M$ 关于决策变量 u_k 的约束条件是 $0 \le u_k \le x_k$

状态转移方程为 $x_{k+1}=x_k-u_k$ 显然它满足无后效性要求。 阶段效应为对活动 k投放资源u,时的收益,

 $r_k(x_k, u_k) = g_k(u_k)$

目标函数是为 \mathbf{n} 种活动投放资源后的总收益 $R=\sum_{k=1}^n g_k(u_k)$ 动态规划基本方程

 $f_k(x_k) = \max_{u} \{g_k(u_k) + f_{k+1}(x_{k+1})\}\$

投放资金 元)	(万	0	10	20	30	40	50
收	Α	0	15	20	25	28	30
益	В	0	0	10	25	45	70
(万元)	С	0	10	20	30	40	50

	资:	金	0	10	20	30	40	50	2
沙尔 沙西 八 玉丁 入丁 日五	收	Α	0	15	20	25	28	30	1
资源分配问题	益	В	0	0	10	25	45	70	l
		С	0	10	20	30	40	50	
逆序求条件最优目标函数值	集合	和穿	件員	大代	快策组	[合。			l
$f_3(x_3) = g_3(u_3)$)			u_3	$=x_3$				
$f_3(0) = g_3(0) = 0,$			u ₃ ((0) =	0				
$f_3(1) = g_3(1) = 10,$			u_3	1) = 1	l l				
$f_3(2) = g_3(2) = 20,$			$u_{3}(2$	2) = 2	2				
$f_3(3) = g_3(3) = 30,$			u ₃ (3) =	3				
$f_3(4) = g_3(4) = 40,$	$f_3(4) = g_3(4) = 40,$ $u_3(4) = 4$								
$f_3(5) = g_3(5) = 50,$			u_3	(5) =	: 5				

	资:	金	0	10	20	30	40	50	3
ツァッエ ハーエコ・シュ 日本	收	Α	0	15	20	25	28	30	l
资源分配问题	益	В	0	0	10	25	45	70	ŀ
		С	0	10	20	30	40	50	l
逆序求条件最优目标函数值组	集合	和条	件最	优决	策集	合。	11	Į.	1
k=2时,0≤x ₂ ≤5 0≤u ₂ ≤x ₂		$f_2(x)$	(₂) =	ma	x {g	(u_2)) + f	(x_3))}
$f_2(0) = \max_{0 \le u_2 \le 0} \{g_2(u_2) + f_3(x_3)\}\$									
$f_2(1) = \max_{0 \le u_2 \le 1} \{g_2(u_2) + f_3(u_2)\}$	(x_3)								
$= \max \begin{cases} g_2(0) \\ g_2(1) \end{cases}$	$+f_{3}($	1)] _	max	0+1	0 = 1	0	ν'.(1)	=0	
	3.53	0)		(0+0)	1	***	112(1)	Ť	
$f_2(2) = \max_{0 \le u_1 \le 2} \{g_2(u_2) + f_3(x_3)\}$	}								
$g_2(0)$		2)		0 + 2	0				
$= \max\{g_{\gamma}(1)\}$. 60	K 1	den ber	0 . 1	n l	20	u', (2	0. 0	
- max \ 8 ₂ (1)	+ /3(1	= (ני	max	0+1	٠, -	20	$u_{2}(2$)=0	

	资金	È	0	10	20	30	40	50
	收	A	0	15	20	25	28	30
资源分配问题	益	В	0	0	10	25	45	70
$f_2(3) = \max_{0 \le u_1 \le 3} \{g_2(u_2) + f_3(x_3)\}$		C	0	10	20	30	40	50
$g_2(0)$	$+f_{3}($	(3)]		[0+3]	0]			
$f_2(4) = \max \begin{cases} g_2(1) \\ g_2(2) \\ g_2(3) \end{cases}$ $f_2(4) = \max_{0 \le u_2 \le 4} \{g_2(u_2) + f_3(x_3)\}$	$+f_{3}($	(1)	max {	0+2 10+1 (25+	0 = 3	80 uļ	(3) = 0	
$0 \le u_2 \le 4$ $g_2(0) + j$	(4))	[0	+40)			
$g_2(1)+f$	51.7		0	+30				
$= \max \left\{ g_2(2) + j \right\}$	3(2)	= ma	ıx {10	+ 20	= 45	u ₂ (4)	= 4	
$g_2(3) + j$	(1)	4	2	5+10				
$ g_{2}(4)+j $	ത	l-i-f	14:	5+0	1			

1. 阶段 k: 每投资一个项目作为一个阶段: 状态变量 xi: 投资第 k个项目前的资金 数: 3. 决策变量 di: 第k个项目的投资; 4. 决策允许集合: $0 < d_k < x_k$ 5. 状态转移方程: $x_{k+1} = x_k - d_k$ 6. 阶段指标: $v_k(x_k, d_k)$ 见表中所示; 7. 递推方程: $f_k(x_k) = \max\{v_k(x_k, d_k) + f_{k+1}(x_{k+1})\}$ 8. 终端条件: $f_{\lambda}(x_{\lambda})=0$

=3	, f ₄ (: , 0≤ x ₃ -d ₃			投入	资金 1万元 2万元 3万元		A 15万吨 28万吨 40万吨	B 13万吨 29万吨 43万吨	C 11万吨 30万吨 45万吨
X_3	D ₃ (x ₃)	X_4	v ₃ (x ₃ ,d ₃)	$v_3(x_3,d_3)+f_4(x_4)$	f3(x3)	d ₃ *	51万吨	55万吨	- 58万吨
0	0	0	0	0+0=0	0	0			
1	0	1	0 11	0+0=0 11+0=11*	11	1			
2	0 1 2	2 1 0	0 11 30	0+0=0 11+0=11 30+0=30*	30	2	_		
3	0 1 2 3	3 2 1 0	0 11 30 45	0+0=0 11+0=11 30+0=30 45+0=45*	45	3	-		
4	0 1 2 3 4	4 3 2 1 0	0 11 30 45 58	0+0=0 11+0=11 30+0=30 45+0=45 58+0=58*	58	4	_		

x_2	$D_2(x_2)$	X3	$v_2(x_2,d_2)$	$v_2(x_2,d_2)+f_3(x_3)$	$f_2(x_2)$	d_2*
0	0	0	0	0+0=0	0	0
1	0	1	0	0+11=11	13	1
1	1	0	13	13+0=13*	13	1
	0	2	0	0+30=30*		
2	1	1	13	13+11=24	30	0
	2	0	29	29+0=29		
	0	3	0	0+45=45*		
3	1	2	13	13+30=43	45	0
)	2	1	29	29+11=40	43	U
	3	0	43	43+0=43		
	0	4	0	0+58=58		
	1	3	13	13+45=58		
4	2	2	29	29+30=59*	59	2
	3	1	43	43+11=54		
	4	0	55	55+0=55		

k=1, $0 \le d_1 \le x_1$, $x_2 = x_1 - d_1$ 15+45=60* 15 28+30=58 60 1 2 28 40 40+13=5351+0=51 最优解为 $x_1=4$, $d_1*=1$, $x_2=x_1-d_1=3$, $d_2*=0$, $x_3=x_2-d_2*=3$, $d_3=3$ $x_4 = x_3 - d_3 = 0$, 即项目 A 投资 1 万元,项目 B 投资 0 万元,项目 C 投 资 3 万元,最大效益为 60 万吨。

例:对于一个具体问题 目动态规划求解k=3									
货物	1	2	3						
単位重 量	2	3	1						
单位价	65	80	30						

解:该问题中有三种物品需要装载,因此可以作为 三段决策问题,每阶段为一个物品决定装船的数量. k阶段系统的状态为在给第k物品决定装载数量时 ,船上还剩余的载重能力x_k

$f_3(x_3) = \max_{0 \le d_3 \le x_3/w_3} \{c_3 d_3 + f_4(x_4)\}\$	货物	1	2	3
$= \max_{0 \le a_3 \le a_3 \ne a_3} \{30 d_3\}$	单位重量	2	3	1
$= \max_{0 \le d_3 \le x_3/w_3} \{30 u_3\}$	单位价值	65	80	30
$f_3(0) = \max_{0 \le d_3 \le 0} \{c_3 d_3 + f_4(x_4)\} = 0 a$ $f_3(1) = \max_{0 \le d_3 \le 1/2} \{c_3 d_3 + f_4(x_4)\}$	$V_3'(0) = 0$			
$= \max \begin{cases} c_3 \times 0 + f_4(1) \\ c_3 \times 1 + f_4(0) \end{cases} = \max \begin{cases} 0 + 0 \\ 30 + 0 \end{cases} =$	30 d ₃ (1)	=1		
$f_3(2) = \max_{0 \le d_3 \le 2/1} \{c_3 d_3 + f_4(x_4)\}$				##
$\left[c_3 \times 0 + f_4(1)\right] \left[0 + 0\right]$				H
$= \max \left\{ \frac{c_3 \times 1 + f_4(0)}{c_3 \times 2 + f_4(0)} \right\} = \max \left\{ \frac{30 + 0}{60 + 0} \right\} = \left\{ \frac{30 + 0}{60 $	$=60 d_3(2$)=2		

x_3	$D_3(x_3)$	X_{4}	$30d_3 + f_4(x_4)$	$f_3(x_3)$	d_3 *
			0+0=0		
			0+0=0	30	1
			30+0=30*	30	
	0		0+0=0		
2			30+0=30	60 2	
			60+0=60*	60	
	0	3	0+0=0		
			30+0=30	00	
			60+0=60	90	
			90+0=90*		
	0	4	0+0=0		
			30+0=30		
			60+0=60		
			90+0=90	120	
			120+0=120*		
	0	-5	0+0=0		
			30+0=30		
			60+0=60		
			90+0=90	150	
			120+0=120	150	
			150+0=150*		

	对	チ <i>k</i> =2								
		$f_2(x_2)$)=	$\max_{0 \le d_2 \le x_2/w_2} \{c_2 d_2 + f_3\}$	(x_3)					
+	$= \max_{0 \le d_2 \le x_2/3} \{80d_2 + f_3(x_2 - 3d_2)\}$									
	列	# f ₂ (x ₂	的多	太 值表						
	X_2	$D_2\left(\chi_2\right)$	X_3	$80 d_2 + f_3(X_3)$	$f_2(\chi_2)$	d_2*				
	0	0	0	$0+f_3(0)=0+0=0*$	0	0				
	1			$0+f_3(1)=0+30=30*$						
	2			0+f ₂ (2)=0+60=60*						
	3	0	3	0+f ₃ (3)=0+90=90*						
	3			$80+f_3(0)=80+0=80$	90					
	_	0	4	0+f ₃ (4)=0+120=120*	120					
	4			80+f ₃ (1)=80+30=110	120					
	5	0	5	0+f ₃ (5)=0+150=150*	150					
	Э			80+f ₃ (2)=80+60=140	150					
				<u>"</u>						

	货物	1	2	3
	单位重量	2	3	1
対チk=1,x1=5 ◆	单位价值	65	80	30
$f(x) = \max_{x \in A} f(x)$				
$f_1(x_1) = \max_{0 \le d_1 \le x_1/w_1} \{c_1 d_1 + f_2(x_2)\}$				
$= \max_{0 \le d_1 \le x_1/2} \{65 \ d_1 + f_2(x_1 -$	$-2d_{1}$)}			##
$f_1(5) = \max_{0 \le d_1 \le 5/2} \{65d_1 + f_2(x_2)\}\$				
$(65 \times 0 + f_2(5))$ $(0+1500)$				++-
$= \max \left\{ 65 \times 1 + f_2(3) \right\} = \max \left\{ 65 + 90 \right\} = 160$	$0 d_1(5) =$	- 2		Ш
				2 (

由題意知, x_i=5, 由表 f_i(x_i)、f₂(x₂)、
f₃(x₃), 经回期可得:

d_i*=2, x_i=x_i-2d_i=1, d_i*=0, x_i=x₂-3d_i=1,
d_i*=1, x_i=x₃-d_i=0

即应取第一种物品 2 件, 第三种物品 1 件, 最高价值为 160 元, 背包没有余量。由 f₁(x₁)
得列表可以看出, 如果背包得容量为 F=4,
F=3, F=2和 F=1 时,相应的最优解立即可以
得到。

二维背包问题

- ◆若只考虑重量或体积限制,则称为一维背包问题, 若同时考虑重量和体积限制,则称为二维背包问题.
- *考虑有N种物品需要装船。第 / 种物品单位的重量 为ω_i, 单件体积为υ_i, 而价值为p_i。最大的装载 重量为W,最大体积为V。现在要确定在不超过船 的最大载重量和最大体积(不考虑货物形状)的 条件下,使所载物品价值最大的装载方案。

二维背包问题

◆例 己知货物的单位重量 $ω_i$,单位体积 $υ_i$ 及价值 p_i 如表所示,船的最大载重能力为 W = 5,最大装载体积为 V = 8,求最优装载

米 。			
j	ω_i	· · · U _i · · ·	p_i
Α	1	2	30
В	3	4	80
С	2	3	65

二维背包问题

◆例 W=5, V=8

解:该问题中有三种物品需要装载,因此可以作为 三段决策问题,每阶段为一个物品决定装船的数量 . k阶段系统的状态为在给第 k物品决定装载数量时, 船上还剩余的载重能力x_k和剩余体积y_k.

因此状态变量是二维的,记为 (x_k, y_k) 。

有 $0 \le x_k \le 5$, $0 \le y_k \le 8$

决策变量u_k表示装载第k种物品的数量。

 $0 \le u_k \le \min \left\{ \frac{x_k}{\omega_k}, \frac{y_k}{\upsilon_k} \right\}$

Д	背包	门门疋	<u>火</u>					
	(x_1, y_1)	$u_{\scriptscriptstyle 1}$	(x_2, y_2)	u_2	(x_3, y_3)			
	(5,8)	0	(5,8)	0	(5,8)			
				1	(2,4)	i	ω_i	Ui
		1	(4,6)	0	(4,6)	Α	1	2
				1	(1,2)	В	3	4
		2	(3,4)	0	(3,4)	ь	٦	
				1	(0,0)	С	2	3
		-3	(2,2)	0	(2,2)	_		
		4	(1,0)	0	(1,0)			

		j	ω_i	Uį	p_i
		Α	1	2	30
$f_3(x_3, y_3) = \max_{u_3} \{r_3(x_3, y_3, u_3) + f_4(x_4, y_3, u_3)\}$	y ₄)}	В	3	4	80
$= \max \{p_3 u_3 + f_4(x_4),$	$(y_{\scriptscriptstyle A})$	С	2	3	65
$0 \le u_3 \le \min\{x_3/2, y_3/3\}$ (1) 3 3 3 4 4 7 .					
$f_3(5,8) = \max_{0 \le u_3 \le \min\{5/2,8/3\}} \{p_3 u_3 + f_4(x_4, y_4)\}$? ₄)}				
$[65 \times 0 + f_4(5,8)]$ [0-	+0)				
$= \max\{65 \times 1 + f_4(3,5)\} = \max\{65$	+0 }=	130	$u_3(5,8)$)=2	
$[65 \times 2 + f_4(1,2)]$ [13]	0+0				
$f_3(4,6) = \max_{0 \le u_3 \le \min\{4/2,6/3\}} \{p_3 u_3 + f_4(x_4, \dots, x_4)\}$	y ₄)}				
$[65 \times 0 + f_4(4,6)]$					
$= \max \left\{ 65 \times 1 + f_4(3,3) \right\} = \max \left\{ 65 \times 1 + f_4(3,3) \right\}$	65+0	=130	$u_3(4,6)$	= 2	
$65 \times 2 + f_4(0,0)$	130+0				

	u ₃		, j	ω_i	Ui	p
二维冒	宇包	1.颗	Α	1	2	30
	<i>- [</i>		В	3	4	80
解当k	_ /3时,I	$f_4(x_4, y_4) = 0$	С	2	3	65
(x ₃ ,y ₃)	$0/(x_3, y_3)$	1/(x ₃ -2,y ₃ -3)	2/(x ₃ -4,y	₃ -6)	f ₃ ()	U′3
(5,8)	0+0	65±0	2×65	0 😽	130	2
(4,6)	0+0	65±0	2×65	0	130	2
(3,4)	0+0	65±0	×-		65	1
(2,2)	0+0	X	×		0	0
(1,0)	0+0	×	· · · ×		0	0
(2,4)	0+0	65±0	×		65	1
(1,2)	0+0	×	×		0	0
(0,0)	0+0	LLX	×		0	0

