

Machine Learning for Pixel and Object Segmentation

Robert Haase

With Material from
Deborah Schmidt, Jug Lab, MPI CBG
Uwe Schmidt, Myers Lab, MPI CBG
Martin Weigert, EPFL
Ignacio Arganda-Carreras, Universidad del Pais Vasco
Carsen Stringer, HHMI Janelia
Wei Ouyang, KTH Royal Institute of Technology, Stockholm and
The Scikit-Learn community

Lecture overview

Overview

- Machine learning for Pixel and Object Classification
 - Random Forest Classifiers
- Python
 - scikit-learn / napari
 - Accelerated pixel and object classification (APOC)

Image segmentation using thresholding

Recap: Finding the right workflow towards a good segmentation takes time

Image data source: <u>BBBC038v1</u>, available from the Broad Bioimage Benchmark Collection (Caicedo et al., Nature Methods, 2019].

Image segmentation using thresholding

Recap: Combining images, e.g. using Difference of Gaussian (DoG)

Image segmentation using thresholding

• Might there be a technology for optimization which combination of images can be used to get the best segmentation result?

Machine learning

PoL
Physics of Life
TU Dresden

- A research field in computer science
- Finds more and more applications, also in life sciences.

Trainable Weka Segmentation https://imagej.net/plugins/tws/

LabKit
https://imagej.net/
plugins/labkit/

Python /
scikit-learn /
napari /
apoc

Machine learning

- TU Dresder

- A research field in computer science
- Finds more and more applications, also in life sciences.

www.cellpose.org/

https://github.com/stardist/stardist

https://bioimage.io/

Machine learning

@haesleinhuepf

Automatic construction of predictive models from given data

• Guess classification (color) from position of a sample in parameter space.

Input data

Approaches

• The right approach depends on data, computational resources and desired quality

Machine learning for image segmentation

- Supervised machine learning: We give the computer some ground truth to learn from
- The computer derives a *model* or a *classifier* which can judge if a pixel should be foreground (white) or background (black)
- Example: Binary classifier

Random forest based image segmentation

- Decision trees are classifiers, they decide if a pixel should be white or black
- Random decision trees are randomly initialized, afterwards evaluated and selected
- Random forests consist of many random decision trees
- Example: Random forest of binary decision trees

Deriving random decision trees

- For efficient processing, we randomly *sample* our data set
 - Individual pixels, their intensity and their classification

Note: You cannot use a single threshold to make the decision correctly

Deriving random decision trees

 Decision trees combine several thresholds on several parameters

Deriving random decision trees

Depending on sampling, the decision trees are different

@haesleinhuepf

• By comparing performance of individual decision trees, good ones can be selected, bad ones excluded.

December 2022

Recap: Algorithm evaluation

Pol Physics of Life TU Dresden

- In general
 - Define what's positive and what's negative.
 - Compare with a reference to figure out what was true and false
 - Welcome to the Theory of Sets

Precision
$$\frac{TP}{TP + FP}$$

What fraction of points that were predicted as positives were really positive?

Recall (a.k.a. sensitivity)

$$\frac{TP}{TP + FN}$$

What fraction of positives points were predicted as positives?

@haesleinhuepf

• By comparing performance of individual decision trees, good ones can be selected, bad ones excluded.

December 2022

Combination of individual tree decisions by voting or max / mean

Typical numbers for pixel classifiers in microscopy

Available features: > 20

- Gaussian blur image
- DoG image
- LoG image
- Hessian
-

Selected features: <= depth

Depth: 4

Number of trees: > 100

Model validation

- Underfitting
 - A trained model that is not even able to properly process the data it was trained on
- Overfitting
 - A model that is able to process data it was trained on well
 - It processes other data poorly

Model validation

• A good classifier is trained on a hand full of datasets and works on thousands similarly well.

Raw data

• In order to assess that, we split the ground truth into two set

Typically done with hundreds or • Training set (50%-90% of the available data) thousands of cells / images / • Test set (10%-50% of the available data) objects / whatever. Classifier **Training set** Ability to Training abstract Ground truth Prediction Test set Prediction Ground truth

December 2022

Prediction

Pixel classification using scikit-learn scikit

Robert Haase

Tabular object classification

Classify objects starting from feature vectors (table columns)

Raw data

area elongation 0 3.950088 2.848643 1 4.955912 3.390093 2 7.469852 5.575289 3 2.544467 3.017479 4 3.465662 1.463756 5 3.156507 3.232181 6 9.978705 6.676372 7 6.001683 5.047063 8 2.457139 3.416050 9 3.672295 3.407462 10 9.413702 7.598608

"Ground truth" annotation

Classifier prediction

Classifier training

result = classifier.predict(validation_data)

December 2022

Prepare an empty layer for annotations and keep a reference

```
labels = viewer.add_labels(
    np.zeros(image.shape).astype(int))
```

Read annotations

manual annotations = labels.data

- Pixel classification using scikit-learn
 - Expects one-dimensional arrays for
 - every feature individually
 - ground truth

- Pixel classification using scikit-learn
 - Expects one-dimensional arrays for
 - every feature individually
 - ground truth

```
# for training, we need to generate features,
feature stack = generate feature stack(image)
X, y = format data(feature stack, manual annotations)
```

train classifier

```
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(max depth=2, random state=0)
classifier.fit(X, y)
```


Pixel classification using scikit-learn

```
# process the whole image and show result
result 1d = classifier.predict(feature stack.T)
result_2d = result_1d.reshape(image.shape)
viewer.add_labels(result_2d)
```


Jupyter notebooks and napari side-by-side

Jupyter notebooks and napari side-by-side

napari

Jupyter notebooks and napari side-by-side

Accelerated pixel and object classification (APOC)

Robert Haase

Accelerated pixel and object classification

@haesleinhuepf

 APOC is a python library that makes use of OpenCL-compatible Graphics Cards to accelerate pixel and object classification

December 2022

Object segmentation

Pixel classification + connected component labeling

Raw image

Pixel annotation

@haesleinhuepf

```
# define features
features = "gaussian_blur=1 gaussian_blur=5 sobel_of_gaussian_blur=1"

# this is where the model will be saved
cl_filename = 'my_object_segmenter.cl'

# delete classifier in case the file exists already
apoc.erase_classifier(cl_filename)

# train classifier
clf = apoc.ObjectSegmenter(opencl_filename=cl_filename, positive_class_identifier=2)
clf.train(features, manual_annotations, image)

segmentation_result = clf.predict(features=features, image=image)
cle.imshow(segmentation_result, labels=True)
```


Object label image

Object classification

What if we exchange pixel features with object features?

Pixel classification

Object classification

Aspect ratio

- The algorithms work the same but with different
 - Features
 - Number of features
 - Tree / forest parameters
 - Selection criteria

Object classification

Feature extraction + tabular classification

Object label image


```
# for the classification we define size and shape as criteria
features = 'area mean_max_distance_to_centroid_ratio'
# This is where the model will be saved
```

```
# delete classifier in case the file exists already
apoc.erase classifier(cl filename object classifier)
```

cl filename object classifier = "my object classifier.cl"

```
# train the classifier
classifier = apoc.ObjectClassifier(cl_filename_object_classifier)
classifier.train(features, segmentation_result, annotation, image)
```

```
# determine object classification
classification_result = classifier.predict(segmentation_result, image)
cle.imshow(classification_result, labels=True)
```


Class label image

Object classification

Graphical user interface

Object segmentation

Random Forest Classifiers for Pixel Classification + Connected Component Labeling

Supervised machine learning for tissue classification

Random Forest Classifiers based on

- scikit-learn and
- clesperanto

Data exploration / supervised machine learning

 Inspect how the random forest classifier makes decisions

Note: Beware of correlated parameters!

0.010

0.200

0.270

0.120

0.170

0.200

Dock widget 1

mean_intensity

standard_deviation_intensity

mean max distance to centroid ratio

average_distance_of_n_nearest_neighbors=1

average_distance_of_n_nearest_neighbors=6

average_distance_of_n_nearest_neighbors=10

area

Data exploration / supervised machine learning

 Inspect how the random forest classifier makes decisions

0.060

0.330

0.040

0.260

0.310

0.000

0.167

0.111

0.444

0.278

 Note: Beware of correlated parameters!

standard_deviation_intensity

mean_max_distance_to_centroid_ratio

average_distance_of_n_nearest_neighbors=6

Dock widget 2

mean_intensity

area

Data exploration / supervised machine learning

 Inspect how the random forest classifier makes decisions

Note: Beware of correlated parameters!

centroid ratio

ECHNISCHE

of intensity

Exercises

Summary

- Machine learning for Pixel and Object classification
 - Random Forest Classifiers
- Python
 - Scikit-learn + Napari
 - Accelerated pixel and object classifiers (APOC)

Coming up next:

Deep learning

