Statistical Modelling & Machine Learning HW1 (Due: 10/10/2021, Sunday)

1. Suppose that Y_i , i = 1, ..., n, are independent and $\mu_i = E(Y_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$, where \boldsymbol{x}_i is the *i*th input vector and $\boldsymbol{\beta}$ is an unknown parameter vector. Suppose that Y_i 's have double exponential distribution as follows:

$$p_{Y_i}(y_i; \mu_i, \sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|y_i - \mu_i|}{\sigma}\right).$$

For the fixed σ , Show that the maximum likelihood estimate of $\boldsymbol{\beta}$ can be obtained by minimizing $\sum_{i=1}^{n} |y_i - \hat{y}_i|$, where \hat{y}_i satisfies the linear model.

2. Consider the linear model as follows:

$$Y_t = \boldsymbol{X}_t^{\top} \boldsymbol{\beta} + \epsilon_t, \ t = 1, \dots, T,$$

where $\epsilon_t = e_t + \theta e_{t-1}$, where $|\theta| < 1$. Here we assume $\mathbf{e}_t \sim^{iid} N(0, \sigma^2)$ for all t. Specify the covariance matrix of $\mathbf{Y} = (Y_1, \dots, Y_T)^{\top}$.

3. Consider the spatial autoregressive model. Suppose that we collected 4 observations from the 2 dimensional coordinate (z_1, z_2) and we use the exponential distance weight with $\alpha = 1$ and the Euclidean distance for d_{ij} to construct the spatial weight matrix. Find the spatial weight matrix. Also, discuss the spatial correlation structure of the data.

	z_1	z_2
Obs 1	5	3
Obs 2	1	4
Obs 3	2	2
Obs 4	4	1

- **4.** Suppose that $Y_i \sim Poisson(\mu_i), i = 1, ..., n$ and Y_i 's are independent.
 - (1) Show that the Poisson distribution belongs to the exponential family.

1

(2) Find the canonical link function.

- 5. Consider 'Q5.csv' data file. To predict the variable Y based on (X1, X2, X3), use a data modelling technique.
 - (1) Investigate whether there is an irrelevant input variable for the prediction of Y. If it exists, find it and justify why it is the irrelevant variable.
 - (2) Construct the best parametric regression model and estimate the model parameters.
 - (3) Show the residual plot for the best model obtained from part (2).
 - (4) Based on part (2), describe the functional relationships between Y and individual input variables in the model.