Matemática Discreta Lista de Exercícios 01

Técnicas de Demonstração (parte I)

- 1. Use uma demonstração direta para mostrar que a soma de dois números inteiros ímpares é par.
- 2. Mostre que o quadrado de um número par é um número par, usando a demonstração direta.
- 3. Demonstre que se m+n e n+p são números inteiros pares, em que m,n e p são números inteiros, então m+p é par. Que tipo de demonstração você utilizou?
- Use uma demonstração direta para mostrar que todo número inteiro ímpar é a diferenca de dois quadrados.
- 5. Use uma demonstração por contradição para provar que a soma de um número irracional e um racional é irracional.
- 6. Demonstre ou contrarie que o produto de dois números irracionais é irracional.
- 7. Demonstre que se x é irracional, então 1/x é irracional.
- 8. Use uma demonstração por contraposição para mostrar que se $x+y\geq 2$, em que x e y são números reais, então $x\geq 1$ ou $y\geq 1$.
- 9. Mostre que se n é um número inteiro e n^3+5 é impar, então n é par, usando:

 - (a) uma demonstração por contraposição.(b) uma demonstração por contradição.
- 10. Demonstre a proposição P(0), em que P(n) é a proposição "Se n é um número inteiro positivo maior que 1, então $n^2>n$ ". Qual tipo de demonstração você utilizou?
- 11. Assuma P(n) como a proposição "Se a e b são números reais positivos, então $(a+b)^n \geq a^n + b^n$ ". Comprove que P(1) é verdadeira. Qual tipo de demonstração você utilizou?
- Mostre que pelo menos 10 de quaisquer 64 dias escolhidos devem cair no mesmo dia da semana.
- 13. Use uma demonstração por contradição para mostrar que não há um número racional r para que $r^3+r+1=0$. [Dica: Assuma que r=a/b seja uma raiz, em que a e b são números inteiros e a/b é o menor termo. Obtenha uma equação que envolva números inteiros, multiplicando-os por b^3 . Então, veja se a e b são pares ou ímpares.]
- 14. Demonstre que se n é um número inteiro positivo, então n é ímpar se e somente se 5n + 6 for impar.
- 15. Demonstre ou contrarie que se m e n são números inteiros, tal que mn=1, então ou m = 1 e n = 1 ou m = -1 e n = -1.
- 16. Mostre que essas proposições sobre o número inteiro x são equivalentes: (i) 3x+2é par, (ii) x + 5 é impar, (iii) x^2 é par.
- 17. Mostre que essas proposições sobre o número real x são equivalentes: (i) x é irracional, (ii) 3x + 2 é irracional, e (iii) x/2 é irracional.
- 18. Os passos abaixo para encontrar as soluções de $\sqrt{x+3}=3$ x são corretos?
 - (1) $\sqrt{x+3} = 3 x \text{ é dado};$
 - (2) $x + 3 = x^2 6x + 9$, obtido tirando a raiz quadrada dos dois lados de (1);
 - (3) $0=x^2-7x+6$, obtido pela subtração de x+3 dos dois lados de (2);
 - (4) 0 = (x-1)(x-6), obtido pela fatoração do lado direito de (3);
 - (5) x = 1 ou x = 6, tirado de (4) porque ab=0 implica que a=0 ou b=0.
- Comprove que pelo menos um dos números reais $a_1, a_2,..., a_n$ é maior que ou igual ao valor da média desses números. Que tipo de demonstração você utilizou?
- Comprove que se n é um número inteiro, estas quatro proposições são equivalentes: (i) $n \in \text{par}$, (ii) $n + 1 \in \text{impar}$, (iii) $3n + 1 \in \text{impar}$, (iv) $3n \in \text{par}$.

Respostas:

- 1. Sejam n=2k+1 e m=2l+1 inteiros ímpares. Então, n+m=2(k+l+1)é par.
- Suponha que n seja par. Então, n=2k para algum inteiro k. Portanto, $n^2=(2k)^2=4k^2=2(2k^2)$. Como escrevemos n^2 como 2 vezes um inteiro, concluímos que n^2 é par.
- 3. Demonstração direta: suponha que m+n e n+p sejam pares. Então, m+n=2spara algum inteiro s e n+p=2t para algum inteiro t. Se somarmos estas expressões, obtemos m+p+2n=2s+2t. Subtraindo 2n de ambos os lados e fatorando, temos m+n=2s+2t-2n=2(s+t-n). Como escrevemos m+p como 2 vezes um inteiro, concluímos que m+p é par.
- 4. Como n é ímpar, podemos escrever n=2k+1 para algum inteiro k. Então, $(k+1)^2-k^2=k^2+2k+1-k^2=2k+1=n$.
- Suponha que r seja racional e que i seja irracional e que s=r+i seja racional. Então, pelo Exemplo 7, mostrado na página 79, s+(-r)=i é racional, o que é uma contradição.
- Como $\sqrt{2}.\sqrt{2}=2$ é racional e $\sqrt{2}$ é irracional, o produto de dois números irracionais não é necessariamente irracional.
- Demonstração por contraposição: se 1/x fosse racional, então, por definição, 1/x=p/q para alguns inteiros p e q com $q\neq 0$. Como 1/x não pode ser 0 (se fosse, teríamos a contradição 1=x. 0 ao multiplicar ambos os lados por x), sabemos que $p \neq 0$. Agora, x = 1/(1/x) = 1/(p/q) = q/p pelas regras usuais da álgebra e da atirmética. Portando, x pode ser escrito como o quociente de dois inteiros com o denominador diferente de zero. Logo, por definição, \boldsymbol{x} é racional.

- 8. Suponha que não seia verdade que x > 1 ou y > 1. Então, x < 1 e y < 11. Somando estas duas desigualdades, obtemos x+y < 2, que é a negação de x + y > 2.
- (a) Suponha que n seja impar, de modo que n=2k+1 para algum inteiro k. Então, $n^3+5=2(4k^3+6k^2+3k+3)$. Como n^3+5 é duas vezes algum inteiro, ele é par.
 - (b) Suponha que n^3+5 seja ímpar e que n seja ímpar. Como n é ímpar e o produto de dois números ímpares é ímpar, seque que n^2 é ímpar e, então, que n^3 é ímpar. Mas, então, $5=(n^3+5)-n^3$ teria de ser par, pois é a diferença entre dois números ímpares. Portando, a suposição que n^3 n eram ambos ímpares é falsa.
- 10. A proposição é vagamente verdadeira, pois 0 não é um inteiro positivo. Demonstração por vacuidade.
- 11. P(1) é verdadeira pois $(a+b)^1=a+b\geq a^1+b^1=a+b$. Demonstração direta.
- 12. Se escolhêssemos 9 ou menos dias em cada dia da semana, isto cobriria no máximo 9*7=63 dias. Mas escolhemos 64 dias. Esta contradição mostra que pelo menos 10 dos dias que escolhemos devem ser no mesmo dia da semana.
- 13. Suponha por contradição que a/b seja uma raiz racional, em que a e b são inteiros e esta fração está o mais simplificada possivel(isto é, a e b não tem divisores comuns maiores do que 1). Substitua a raiz proposta na equação para obter $a^3/b^3+a/b+1=0$. Multiplique por b^3 para obter $a^3+ab^2+b^3=0$. Se a e b forem ambos ímpares, então o lado esquerdo é a soma de três números e, portanto, deve ser ímpar. Se a for ímpar e b for par, então o lado esquerdo é ímpar + par + par, o que é novamente impar. Analogamentem, se a for par e b for impar, então o lado esquerdo é par + par + ímpar, o que é novamente ímpar. Como a fração a/b está simplificada, não pode ocorrer de ambos, a e b, serem pares. Portanto, em todos os casos, o lado esquerdo é ímpar e, portanto, não pode ser igual a 0. Esta contradição mostra que não existe nenhuma raiz.
- 14. Primeiro, suponha que n seja ímpar, de modo que n=2k+1 para algum inteiro k. Então, 5n+6=5(2k+1)+6=10k+11=2(5k+5)+1. Logo, 5n+6 é ímpar. Para demonstrar a recíproca, suponha que n seja par, de modo que n=2kpara algum inteiro k. Então, 5n+6=10k+6=2(5k+3), de modo que 5n+6é par. Assim, n é ímpar se e somente se 5n + 6 for ímpar.
- 15. Esta proposição é verdadeira. Suponha que m não seja nem 1 nem -1. Então, mntem um fator m maior do que 1. Por outro lado, mn=1, e 1 não tem um fator assim. Logo, m=1 ou m=-1. No primeiro caso, n=1, e no segundo caso, n=-1, pois n=1/m.
- 16. Demonstramos que todas estas são equivalentes a \boldsymbol{x} ser par. Se \boldsymbol{x} for par, então Definitistrations que todas estas saté equivalentes a x set par. Se x for par, entato x=2k para algum inteiro k. Portanto, $3x+2=3\cdot 2k+2=6k+2=2(3k+1)$, que é par, pois foi escrito na forma 2t, em que t=3k+1. Analogicamente, x+5+2k+5=2k+4+1=2(k+2)+1, de modo que x+5 é ímpar; e $x^2=(2k)^2=2(2k^2)$, de modo que x é par. Para as recíprocas, usaremos uma demonstração por contraposição. Assim, suponha que \boldsymbol{x} não seja par; logo, x é ímpar e podemos escrever x=2k+1 para algum inteiro k. Então, 3x+2=3(2k+1)+2=6k+5=2(3k+2)+1, que é ímpar(isto é, não é par), pois foi escrito na forma 2t+1, em que t=3k+2. Analogicamente, x+5=2k+1+5=2(k+3), de modo que x+5 é par(isto é, não é ímpar). Que x^2 é ímpar já foi demonstrado no Exemplo 1.
- 17. Damos demonstrações por contraposição de $(i) \to (ii)$, $(ii) \to (ii)$, $(i) \to (iii)$ e $(iii) \to (i)$. Para a primeira delas, suponha que 3x+2 seja racional, ou seja, igual a p/q para inteiros p e q com $q \ne 0$. Então, podemos escrever x = ((p/q) 2)/3(p-2q)/(3q), em que $3q \neq 0$. Isso mostra que x é racional. Para a segunda afirmação condicional, suponha que x seja racional, ou seja, igual a p/q com $q \neq 0$. Assim, podemos escrever 3x + 2 = (3p + 2p)/q, em que $q \neq 0$. Isto mostra que 3x + 2 = (3p + 2p)/q2 é racional. Para a terceira afirmação condicional, suponha que x/2 seja racional, ou seja, igual a p/q para inteiros p e q com $q \neq 0$. Então, podemos escrever x = 02 p/q, em que $q \neq 0$. Isso mostra que x é racional. E para a quarta afirmação condicioanl, suponha que x seja racional, ou seja, igual a p/q para inteiros p e qcom $q \neq 0$. Então, podemos escrever x/2 = p/(2q), em que $2q \neq 0$. Isso mostra que x/2 é racional.
- 18. Não. No passo (2) falta considerar o caso em que $x + 3 = -(3 x)^2$.
- 19. Daremos uma demonstração por contradição. Suponha que $a_1, a_2, ..., a_n$ sejam todos menores do que A, em que $A=(a_1+a_2+\cdots+a_n)/n$ é a média desses números. Então, $a_1+a_2+\cdots+a_n< nA$. Dividindo ambos os lados por n obtemos $A=(a_1+a_2+\cdots+a_n)/n< A$, que é uma contradição.
- 20. Mostraremos que as quatro formações são equivalentes indicando que (i) implica (ii), (ii) implica (iii), (iii) implica (iv) e (iv) implica (i). Primeiro, suponha que n seja par. Então, n+2k para algum inteiro k. Assim, n+1=2k+1modo que n + 1 é ímpar. Isso mostra que (i) implica (ii). A seguir, suponha que n+1 seja ímpar, de modo que n+1=2k+1 para algum inteiro k. Então, 3n+1=2n+(n+1)=2(n+k)+1, o que mostra que 3n+1 é impar, indicando que (ii) implica (iii). A seguir, suponha que 3n+1 seja impar, de modo que 3n+12k+1 para algum inteiro k. Assim, 3n=(2k+1) -1=2k, de modo que 3n é par. Isso mostra que (iii) implica (iv). Finalmente, suponha que n não seja par. Então, n é ímpar, de modo que n=2k+1 para algum inteiro k. Logo, 3n=13(2k+1)=6k+3=2(3k+1)+1, e 3n é ímpar. Isso completa a demonstração por contraposição de que (iv) implica (i).

Questões adicionais:

- 1. Use uma demonstração direta para mostrar que a soma de dois números inteiros pares é par.
- 2. Mostre que o inverso aditivo, ou negativo, de um número par é um número par, usando a demonstração direta.
- 3. Use uma demonstração direta para mostrar que o produto de dois números ímpares é ímpar.
- 4. Demonstre que se n é um quadrado perfeirto, então n+2 não é um quadrado perfeito.
- Use uma demonstração direta para mostrar que o produto de dois números racionais
- 6. Demonstre ou contrarie que o produto de um número racional diferente de zero e um número irracional é irracional.
- 7. Demonstre que se x é racional e $x \neq 0$, então 1/x é racional.

- 8. Demonstre que se m e n são números inteiros e mn é par, então m é par ou n é par
- 9. Demonstre que se n é um número inteiro e 3n+2 é par, então n é par, usando:
 - (a) uma demonstração por contraposição.
 - (b) uma demonstração por contradição.
- 10. Demonstre a proposição P(1), em que P(n) é a proposição "Se n é um número inteiro positivo, então $n^2 \geq n$ ". Qual tipo de demonstração você utilizou?
- 11. Mostre que se você pegar 3 meias de uma gaveta, com apenas meias azuis e pretas, você deve pegar ou um par de meias azuis ou um par de meias pretas.
- Mostre que pelo menos 3 de quaisquer 25 dias escolhidos devem cair no mesmo mês do ano.
- 13. Demonstre que se n é um número inteiro positivo, então n é par se e somente se 7n+4 for par.
- 14. Demonstre que se $m^2 = n^2$ se e somente se m = n ou m = -n.
- 15. Mostre que essas três proposições são equivalentes , em que a e b são números reais:(i) a é menor que (b), (ii) a média de a e b é maior que a, e (iii) a média de a e b é menor que b.
- 16. Mostre que essas proposições sobre o número real x são equivalentes: (i) x é racional, (ii) x/2 é racional, e (iii) 3x-1 é racional.
- 17. Esta é a razão para encontrar as soluções da equação $\sqrt{2x^2-1}=x$ correta? (1) $\sqrt{2x^2-1}=x$ é dado; (2) $2x^2-1=x^2$, obtido pelo quadrado dos dois lados de (1); (3) $x^2-1=0$, obtido pela subtração de x^2 dos dois lados de (2); (4) (x-1)(x+1)=0, obtido pela fatoração do lado esquerdo de x^2-1 ; (5) x=1 ou x=-1, confirmado, pois ab=0 implica que a=0 ou b=0.
- 18. Comprove que as proposições P_1 , P_2 , P_3 e P_4 podem ser equivalentes mostrando que $P_1\leftrightarrow P_4$, $P_2\leftrightarrow P_3$ e $P_1\leftrightarrow P_3$.
- Encontre um contra-exemplo para a proposição: todo número inteiro positivo pode ser escrito como a soma dos quadrados de três números inteiros.
- 20. Comprove que estas quatro proposições sobre o número inteiro n são equivalentes: $(i) \ n^2$ é ímpar, $(ii) \ 1-n$ é par, $(iii) \ n^3$ é ímpar, $(iv) \ n^2+1$ é par.