Descriptive Complexity for Function Complexity Classes

Marcelo Arenas

PUC Chile & U. of Oxford

Edinburgh, January 2013

Warming up: Counting complexity classes

NP #P

SAT: is a propositional COUNTSAT: how many assignments satisfiable? satisfy a propositional formula?

A function $f(\cdot)$ is in #P if there exists a polynomial-time non-deterministic TM M such that:

f(x) = number of accepting computations of M with input x

► COUNTSAT is #P-complete

Warming up: Capturing #P

Can we characterize #P in the description complexity sense?

What is an appropriate logic for this?

Answer (Saluja, Subrahmanyam & Thakur): #FO captures #P

- One considers FO-formulas of the form $\varphi(\bar{X}, \bar{x})$, where \bar{X} , \bar{x} are tuples of FO and SO variables.
- Evaluation of $\varphi(\bar{X}, \bar{x})$ over \mathfrak{A} : Number of different instantiations \bar{R} of \bar{X} and \bar{a} of \bar{x} such that $\mathfrak{A} \models \varphi(\bar{R}, \bar{a})$

Warming up: More counting complexity classes

A function $f(\cdot)$ is in SPANP if there exists a polynomial-time non-deterministic TM M with output tape such that:

f(x) = number of distinct valid outputs of M with input x

A bit of intuition:

- ▶ #P: Given a graph G, return the number of Hamiltonian cycles of G
- ► SPANP: Given a graph G and an integer k, return the number of Hamiltonian subgraphs of G of size k

Warming up: Capturing SPANP

Can we characterize ${\ensuremath{\mathtt{SPANP}}}$ in the description complexity sense?

Answer (Compton & Gradel): $\#\exists SO$ captures SPANP

But this is just the starting point ...

Can we characterize the following classes?

- ▶ FP: Class of functions computable in polynomial time
- ▶ FPSPACE: Class of functions computable in polynomial space
- ▶ It is straightforward to prove that $FP \subseteq FPSPACE$: Consider 2^{2^n}
- ▶ GAPP: Class of functions $f(\cdot)$ for which there exists a polynomial-time non-deterministic TM M such that
 - f(x) = (number of accepting computations of M with input x) (number of rejecting computations of M with input x)

Encoding of finite structures

Assume $\mathbf{R} = \{R_1, \dots, R_k\}$, $\mathfrak{A} \in \text{Struct}[\mathbf{R}]$ with domain $A = \{a_1, \dots, a_n\}$, and < is the linear order $a_1 < a_2 < \dots < a_n$.

Encoding of $R_i^{\mathfrak{A}}$:

- Assume $\ell = \operatorname{arity}(R_i)$, and consider an enumeration of the ℓ -tuples over A in the lexicographic order induced by <
- ▶ $\operatorname{enc}(R_i^{\mathfrak{A}})$: string of length n^{ℓ} whose i-th bit is 1 if the i-th tuple in the previous enumeration belongs to $R_i^{\mathfrak{A}}$, and 0 otherwise

Encoding of \mathfrak{A} :

$$\operatorname{enc}(\mathfrak{A}) = 0^n \operatorname{1enc}(R_1^{\mathfrak{A}}) \cdots \operatorname{enc}(R_k^{\mathfrak{A}})$$

Function complexity classes

Let S be a countable set.

▶ A function $f : \mathbf{R} \to S$ is a total function from $\{\operatorname{enc}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{Struct}[\mathbf{R}]\}$ to S

Definition

 $\mathscr C$ is a function complexity class over S if for every $f\in\mathscr C$, there exists a relational signature $\mathbf R$ such that $f:\mathbf R\to S$

Function complexity classes (cont'd)

If $\mathscr K$ is a class of finite structures and $f:\mathbf R\to S$, we denote by $f|_{\mathscr K}$ the restriction of f to $\mathscr K$:

- ▶ Domain of $f|_{\mathscr{K}}$ is $\{\operatorname{enc}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{Struct}[\mathbf{R}] \cap \mathscr{K}\}$
- ▶ $f|_{\mathscr{K}}(\mathrm{enc}(\mathfrak{A})) = f(\mathrm{enc}(\mathfrak{A}))$ for every $\mathfrak{A} \in \mathrm{Struct}[\mathbf{R}] \cap \mathscr{K}$

Capturing function complexity classes: Informal

Fix a set S.

Assume given a logic $\mathscr F$ such that for every sentence θ in $\mathscr F$:

$$\llbracket \theta \rrbracket : \mathbf{R} \to \mathcal{S}$$

Let $\mathscr C$ a function complexity class over S and $\mathscr K$ a class of finite structures. Then $\mathscr F$ captures $\mathscr C$ over $\mathscr K$ if:

- ▶ for every θ in \mathscr{F} , there exists $f \in \mathscr{C}$ such that $\theta|_{\mathscr{K}} = f|_{\mathscr{K}}$
- ▶ for every $f \in \mathscr{C}$, there exists θ in \mathscr{F} such that $f|_{\mathscr{K}} = \theta|_{\mathscr{K}}$

Capturing function complexity classes: Informal (cont'd)

Notation

In the previous definition, if $\mathscr K$ is the class of all ordered finite structures, then we say that $\mathscr F$ captures $\mathscr C$ over the class of ordered structures.

Semirings

Structure $\mathbb{S} = (S, \oplus, \odot, \mathbb{O}, \mathbb{1})$ such that:

- (S, \oplus, \mathbb{O}) is a commutative monoid
- ▶ $(S, \odot, 1)$ is a monoid
- ▶ ⊙ distributes over ⊕
- ▶ $\mathbb{O} \odot s = s \odot \mathbb{O} = \mathbb{O}$ for every $s \in S$

We consider commutative semirings: ① is commutative

Quantitative Logic: Syntax

Fix: semiring $\mathbb{S} = (S, \oplus, \odot, \mathbb{O}, \mathbb{1})$.

Given a relational signature R, the set of S-quantitative second-order logic formulas (QSO(S)-formulas) over R is given by the following grammar:

$$egin{array}{lll} heta &:= & arphi & \mid & (heta + heta) & \mid & (heta \cdot heta) & \mid & \\ & & \Sigma x \, heta & \mid & \Pi x \, heta & \mid & \Sigma X \, heta & \mid & \Pi X \, heta \end{array}$$

where φ is an SO-formula over **R** and $s \in S$

Quantitative Logic: Semantics

Given: relational signature \mathbf{R} , finite \mathbf{R} -structure $\mathfrak A$ with domain A, first-order variable assignment v for $\mathfrak A$, and second-order variable assignment V for $\mathfrak A$

Evaluation of QSO($\mathbb S$)-formula θ over $(\mathfrak A, v, V)$ is defined as a function $[\![\theta]\!]$ that on input $(\mathfrak A, v, V)$ returns a value in S

Formally:

$$\llbracket \varphi \rrbracket (\mathfrak{A}, v, V) = \begin{cases} \mathbb{1} & \text{if } (\mathfrak{A}, v, V) \models \varphi \\ \mathbb{0} & \text{otherwise} \end{cases}$$
$$\llbracket s \rrbracket (\mathfrak{A}, v, V) = s$$

Quantitative Logic: Semantics (cont'd)

$$\begin{aligned}
& \llbracket \theta_1 + \theta_2 \rrbracket (\mathfrak{A}, v, V) &= \llbracket \theta_1 \rrbracket (\mathfrak{A}, v, V) \oplus \llbracket \theta_2 \rrbracket (\mathfrak{A}, v, V) \\
& \llbracket \theta_1 \cdot \theta_2 \rrbracket (\mathfrak{A}, v, V) &= \llbracket \theta_1 \rrbracket (\mathfrak{A}, v, V) \odot \llbracket \theta_2 \rrbracket (\mathfrak{A}, v, V) \\
& \llbracket \Sigma x \theta \rrbracket (\mathfrak{A}, v, V) &= \bigoplus_{a \in A} \llbracket \theta \rrbracket (\mathfrak{A}, v[a/x], V) \\
& \llbracket \Pi x \theta \rrbracket (\mathfrak{A}, v, V) &= \bigoplus_{a \in A} \llbracket \theta \rrbracket (\mathfrak{A}, v[a/x], V) \\
& \llbracket \Sigma X \theta \rrbracket (\mathfrak{A}, v, V) &= \bigoplus_{B \subseteq A^{\operatorname{arity}(X)}} \llbracket \theta \rrbracket (\mathfrak{A}, v, V[B/X]) \\
& \llbracket \Pi X \theta \rrbracket (\mathfrak{A}, v, V) &= \bigoplus_{B \subseteq A^{\operatorname{arity}(X)}} \llbracket \theta \rrbracket (\mathfrak{A}, v, V[B/X])
\end{aligned}$$

Quantitative Logic: An example

Consider
$$\mathbb{N}=\left(\mathbb{N},+,\cdot,0,1\right)$$
 and $\mathbf{R}=\left\{<\right\}$

Exercise

Define the function 2^k over the class of ordered structures.

▶ That is, define formula $\theta(x)$ such that for every **R**-structure \mathfrak{A} :

$$\langle \{a_0, \ldots, a_{n-1}\}, <^{\mathfrak{A}} = \{(a_i, a_j) \mid 0 \le i < j \le n-1\} \rangle$$

and
$$v(x) = a_i$$
, it holds that $[\theta](\mathfrak{A}, v) = 2^i$

Answer:
$$\theta(x) = \Pi y \left[2 \cdot (y < x) + \neg (y < x) \right]$$

Capturing function complexity classes: Formal

Fix
$$\mathbb{S} = (S, \oplus, \odot, 0, \mathbb{1})$$

A sentence θ in QSO(S) denotes a function from **R** to *S*:

$$\theta(\operatorname{enc}(\mathfrak{A})) = \llbracket \theta \rrbracket(\mathfrak{A})$$

Definition

Let \mathscr{F} be a fragment of QSO(S), \mathscr{C} a function complexity class over S and \mathscr{K} a class of finite structures. Then \mathscr{F} captures \mathscr{C} over \mathscr{K} if:

- ▶ for every θ in \mathscr{F} , there exists $f \in \mathscr{C}$ such that $\theta|_{\mathscr{K}} = f|_{\mathscr{K}}$
- ▶ for every $f \in \mathcal{C}$, there exists θ in \mathscr{F} such that $f|_{\mathscr{H}} = \theta|_{\mathscr{H}}$

Fragments of QSO(S)

QFO($\mathbb S$): Quantifiers ΣX , ΠX are not allowed

 $\Sigma QSO(S)$: Quantifier ΠX is not allowed

 $QSO(S, \mathcal{L})$: \mathcal{L} is a fragment of SO

Known results reformulated

Theorem (Saluja, Subrahmanyam & Thakur)

 $\Sigma \mathrm{QSO}(\mathbb{N},\mathrm{FO})$ captures $\#\mathrm{P}$ over the class of ordered structures.

Proposition (Compton & Gradel)

 $\Sigma \mathrm{QSO}(\mathbb{N},\mathrm{FO})$ does not capture $\#\mathrm{P}$ over the class of all structures.

Theorem (Compton & Gradel)

 $\Sigma \mathrm{QSO}(\mathbb{N}, \exists \mathrm{SO})$ captures SPANP over the class of ordered structures.

New results

Theorem

 $\Sigma \mathrm{QSO}(\mathbb{Z},\mathrm{FO})$ captures GAPP over the class of ordered structures.

New results: Polynomial-time computable functions

Theorem

 $QFO(\mathbb{Z}, LFP)$ captures FP over the class of ordered structures.

Proof: In the whiteboard, let's consider a function $f : \mathbf{R} \to \mathbb{N}$

Theorem

 $QFO(\mathbb{Z}, PFP)$ captures $\natural PSPACE$ over the class of ordered structures.

New results: Polynomial-space computable functions

Theorem

 $QSO(\mathbb{Z}, PFP)$ captures FPSPACE over the class of ordered structures.

Proof: Consider the following order

$$\varphi(X,Y) = \\ \exists \bar{u} \left(\neg X(\bar{u}) \land Y(\bar{u}) \land \forall \bar{v} (\bar{u} < \bar{v} \to (X(\bar{v}) \leftrightarrow Y(\bar{v}))) \right)$$

Ongoing research

- ► We want to get better characterizations of counting problems with easy decision problems
 - ▶ #PE, TotP, ...
- ▶ We also want to study optimization problems: OPTP
 - ▶ Consider the tropical semiring: $(\mathbb{N} \cup \{-\infty\}, \min, +, -\infty, 0)$
- **.** . . .