Lab 05 Active Filter

[Purpose]

Build active filter using op amps and reactive elements

[Theory]

Frequency response of Filter

Voltage gain (A) of a filter is defined as:

$$A = \frac{v_{out}}{v_{in}} \quad A_{dB} = 20log|A|$$

Ideally, A=1 for pass band. Frequency response is plot of frequency (f) vs A_{dB}. Cutoff frequency (fc) is where voltage gain equals 0.707 (AdB= -3 dB).

Example of low pass filter and frequency response with $f_c = \frac{1}{2\pi R_2 C}$

1592.4

Example of high pass filter and frequency response with $f_c = \frac{0.707}{2\pi RC}$

1125, 8

[Instrument]

Oscilloscope(示波器)、Function generator(訊號產生器)、Power supply(電源供應器)、Resistor ($1K\Omega$, $10K\Omega$, $22K\Omega$)、Capacitor (0.01 uF x2 -103p)、OPAMP (ua741C)

[Steps]

1st order low pass filter

- 1. Connect the circuit.
- 2. Set function generator to 100 Hz. Adjust signal level to get a 1 V peak-to-peak at the output voltage.

 Measure and recode peak-to-peak input voltage in the table.
- 3. Change the frequency (200Hz to 10 KHz) and measure the input/output voltages. Record the data in table.
- 4. Calculate the voltage gain (A) and equivalent decibel gain (A_{dB})
- 5. Measure the cutoff frequency fc.

2nd order high pass filter

- 1. Connect the circuit.
- 2. Set function generator at 10 kHz. Adjust signal level to get a 1 V peak-to-peak at the output voltage. Measure and recode peak-to-peak input voltage in table.
- 3. Change the frequency (10 KHz to 100 Hz) and measure the input/output voltages. Record the data in table.
- 4. Calculate the voltage gain (A) and equivalent decibel gain (A_{dB})
- 5. Measure the cutoff frequency fc.

[Questions]

For 1st order low-pass filter

- 1. What is the theoretical voltage gain at 100 Hz and cutoff frequency? Why this value differ from the recorded values?
- 2. How fast should the voltage gain decrease? How much decrease is there between 5 and $10 \, \text{kHz}$? For 2^{nd} order high-pass filter
- 3. What is the theoretical cutoff frequency?
- 4. How fast should the voltage gain decrease above the cutoff frequency? Compare this to the recorded data.
- 5. How fast should the voltage gain decrease below the cutoff frequency? Compare this to the recorded data.

Suppleme Table 1	ent] (p-p)	(p-p)		
f	V _{in}	Vout	A	A_{db}
100 hz	0.(()	
200 hz	0 • 1	1	10	
500 hz	٥. (10	
1 khz	0.1	0.85	8.5	
2 khz	0.1	0.6	6	
5 khz	0 · (ე. კ 🗀	3, 2	
10 khz	0.1	b.\7	۲.	

[Questions]

For 1st order low-pass filter

- 1. What is the theoretical voltage gain at 100 Hz and cutoff frequency? Why this value differ from the recorded values?
- 2. How fast should the voltage gain decrease? How much decrease is there between 5 and 10 kHz? For 2nd order high-pass filter
- 3. What is the theoretical cutoff frequency?
- 4. How fast should the voltage gain decrease above the cutoff frequency? Compare this to the recorded data.
- 5. How fast should the voltage gain decrease below the cutoff frequency? Compare this to the recorded data.

[Supplement]

Table X

14610 4				
f	$\mathbf{V_{in}}$	Vout	A	$\mathbf{A}_{\mathbf{db}}$
100 hz		0.012		
200 hz		0.335		
500 hz		0,17		
1 khz	0.91	0,76		
2 khz	, 10	0.9 2		
5 khz				
10 khz				