Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism

ISCA 17

Neural Network Quantization & Compact Network Design Study, Al Robotics KR Constant (Sang-Soo) Park

https://constantpark.github.io/

2019-10-20

Contents

- Introduction
- Background & Motivations
- Contributions
- Scalpel: SIMD-aware weight/Node pruning
- Evaluation
- Conclusion

Introduction

- Pruning deep neural networks to make them fast and small
 - Removing connections that don't affect significantly affect the results^[1]
 - Possible to reduce the number parameters, the amount of computation
 - But will it really run faster in modern processor and dedicated processor?

Table 1: The compression pipeline can save $35 \times$ to $49 \times$ parameter storage with no loss of accuracy.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	40 ×
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39×
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	35×
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 ×

Background: Pruning

- Fine-grained vs Course-grained pruning
 - Fine-grained: Random distribution of zero values^[2]
 - Course-grained: **Structural pruning** such as channel-pruning^[3]

Figure 1: Different sparse structure in a 4-dimensional weight tensor. Regular sparsity makes hardware acceleration easier.

Background: Sparse matrix format

- Storage format for storing matrix
 - Store non-zero values and index information (where this value is stored)
 - Many ways to store sparse matrix: COO, CSR, CRS, etc.
 - Require additional decoding computations

Background: Vector processor (SIMD)

- Single instruction multiple data (SIMD)
 - Dedicated accelerator for vector processing inside processor
 - Compute arithmetic operations in parallel using SIMD accelerator
 - # of Lane: # of arithmetic operations that can be computed in parallel

Motivation: Vector processor (SIMD)

- Problems in SIMD operations
 - In the case of sparse matrix-vector multiplication (SPMV)
 - Maximum vector length (# of lane) is 4
 - Vector length of 3: 3 computations in parallel, but one lane is idle

Background: Vector processor (SIMT)

- Single instruction multiple thread (SIMT)
 - Graphic processing unit (GPU): many core architecture
 - CPU: 1~16 cores, GPU: more than 1,000 cores
 - Threads are grouped and controlled by group of thread (thread-block/work-group, warp/wave-front)

Motivation: Vector processor (SIMT)

- Divergence branch in GPU
 - Conditions (If-else, Case): serial execution by branch instruction, Idle state computing units (PEs)^[4]
 - Decoding makes additional condition loops

```
__global__ void SpMV_CSR_kernel(const SparseMatrixCSR A, const float * x, float * y) {
    const int row = blockIdx.x * blockDim.x + threadIdx.x;

    if (row < A.M) {

        float dotProduct = 0;
        const int row_start = A.row_indices[row];
        const int row_end = A.row_indices[row+1];
        for (int element = row_start; element < row_end; ++element) {

            dotProduct += A.values[element] * x[A.col_indices[element]];
        }

        y[row] = dotProduct;
    }
}</pre>
```


Contributions

- DNN weight pruning is not a panacea
 - Performance affected by both the structure network and data-parallel hardware
 - Pruned network that is customized to hardware platform (CPU, GPU)
 - Depend on hardware parallelism and layer type, choose SIMD-aware weight pruning or Node-pruning

Scalpel: Pruning technique

- Customized DNN pruning for different hardware platform
 - Two pruning techniques: SIMD-aware weight punning/Node pruning

Table 1: Hardware platforms with different parallelism.

	Parallelism		
	Low	Moderate	High
Example	Micro-	CPU	GPU
Example	controller	CFU	GFU
Memory	No cache	Deep cache	High bandwidth /
Hierarchy	No cache	hierarchy	long latency
Memory	~100KB	∼8MB	2-12GB DRAM
Size	SRAM	SRAM	2-12GB DRAM

Scalpel: SIMD-aware weight pruning

- Customized DNN pruning for different hardware platform
 - Grouping weights by the number of SIMD lanes
 - Using root-mean-square (RMS), measure the importance of weight groups
 - Removing grouped weights under threshold and retraining
 - Layer by layer manner with dropout

Figure 7: Main steps of SIMD-aware weight pruning.

Figure 8: (A) Weights grouping; (B) Sparse weight matrix after pruning weight groups; (C) Modified CSR format for SIMD-aware weight pruning.

Scalpel: Node pruning (=Channel pruning)

Hardware friendly pruning technique

- Sparse matrix multiplication requires more execution time compared to dense matrix
- Using **mask layer** (Boolean **a**): blocking one node (one neuron in FC, one feature map in convolution layer)
- L1 regularization to control the number of nodes got removed
- If the node is not important, β will be decreased to be lower that threshold T

Figure 11: Main steps of node pruning.

In training iteration $k \ge 1$, α_i is calculated as

$$y_i' = \alpha_i \cdot y_i$$
 $\alpha_i|_k = \begin{cases} 1, & T + \varepsilon \leqslant \beta_i|_k \\ \alpha_i|_{k-1}, & T \leqslant \beta_i|_k < T + \varepsilon \end{cases}$ $0, \quad \beta_i|_k < T$

Figure 12: Mask layers. Node A-3 with $\alpha_3 = 0$ can be removed. The whole mask layer A' will be removed after pruning all redundant nodes.

Evaluation: Hardware platform

- Micro-controller unit (MCU): low parallelism
 - ARM Cortex-M4: 3-stage in-order pipeline
 - **2-way SIMD unit** for 16b fixed-point
 - ARM's sparse matrix-vector BLAS
- CPU: moderate parallelism
 - Intel Core i7-6700 Skylake
 - 8-way SIMD ISA for 32b float
 - Math kernel library (MKL) CSRMV/CSRMM
- GPU: high parallelism
 - NVIDIA Titan X
 - cuSPARSAE CSRMV/CSRMM

Evaluation: Speedup in CPU

- Speedup in i7-6700 CPU running convolution and fully-connected
 - SIMD-Sparse (SIMD-aware), Simple-Sparse (Sparse matrix), Intel's BLAS (MKL-Dense/MKL-Sparse)
 - Conventional sparse methods (MKL/Simple-Sparse) require more execution time compared to dense
 - · To achieve performance speedup with pruning, at least 79% of weights need to be removed
 - But conv layers have much less redundancy compared fully-connected layer

Figure 14: Relative execution time for sparse matrix-matrix multiplication (CONV layers) on Intel Core i7-6700. The weight matrix and input matrix have the size of 128×1200 and 1200×729 , respectively.

Figure 13: Relative execution time for sparse matrix-vector multiplication (FC layers) on Intel Core i7-6700. The matrix size is 4096×4096 and the vector size is $4096 \cdot MKL$ -Dense/Sparse show the results of dense and sparse weight matrix with the Intel MKL library.

Evaluation: Model size in CPU

- Improvement of speedup and model size
 - Speedup can be up to 6.86x, relative size is reduced by up to 94.8%
 - Non of the layer in NIN can have more than 50% of weights
 - Converting to sparse matrix is expected to require additional overhead.

Figure 18: Relative performance speedups of the original models, traditional pruning, optimized pruning and Scalpel on Intel Core i7-6700 CPU.

Figure 19: Relative model sizes of the original models, traditional pruning, optimized pruning and Scalpel for Intel Core i7-6700 CPU.

Evaluation: High parallelism in GPU

- Improvement of speedup and model size
 - LeNet-300-100 is very tiny model
 - Removing DNN redundancy at a granularity of nodes to keep regular structure

DNNs	Percentage of Nodes Removed in Each Layer
LeNet- 300-100	31% (fc1)- 32% (fc2)
LeNet-5	50% (conv1)- 68% (conv2)- 65% (fc3)
ConvNet	28% (conv1) - 25% (conv2) - 49% (conv3)
NIN	28% (conv1)- 20% (cccp1)- 5% (cccp2)-
	2% (conv2)- 14% (cccp3)- 8% (cccp4)-
	22% (conv3)- 48% (cccp5)
AlexNet	3% (conv1)- 20% (conv2)- 24% (conv3)-
	18%(conv4)-0%(conv5)-17%(fc6)-23%(fc7)

Figure 20: Relative performance speedups of the original models, traditional pruning, optimized pruning and Scalpel on NVIDIA GTX Titan X GPU.

Figure 21: Relative model sizes of the original models, traditional pruning, optimized pruning and Scalpel for NVIDIA GTX Titan X GPU.

Evaluation: Compared to STOA

- Performance close to Deep Compression^[1]
 - Deep Compression: Pruning + Quantization + Lookup table
 - **Scalpel: 32b** floating-point + Pruning
 - In the case of AlexNet
 - Model size: Deep Compression (13.06%), Scalpel (11%)
 - Speedup: Deep Compression (3x), Scalpel (2.2x)

Table 3: Results overview.

Hardware	DNNs	Speedup	Relative Size
Micor- controller	LeNet-300-100	9.17x	6.93%
	LeNet-5	3.51x	6.72%
	ConvNet	1.38x	40.95%
CPU	LeNet-300-100	6.86x	7.08%
	LeNet-5	4.15x	5.20%
	ConvNet	1.58x	44.28%
	NIN	1.22x	81.16%
	AlexNet	2.20x	13.06%
GPU	LeNet-300-100	1.08x	66.83%
	LeNet-5	1.59x	11.67%
	ConvNet	1.14x	45.40%
	NIN	1.17x	81.16%
	AlexNet	1.35x	76.52%

In Deep Compression

DNNs	Relative Size
LeNet-300-100	8%
LeNet-5	8%
AlexNet	11%
VGG-16	7.50%

Figure 9: Compared with the original network, pruned network layer achieved $3\times$ speedup on CPU, $3.5\times$ on GPU and $4.2\times$ on mobile GPU on average. Batch size = 1 targeting real time processing. Performance number normalized to CPU.

Figure 10: Compared with the original network, pruned network layer takes $7 \times$ less energy on CPU, $3.3 \times$ less on GPU and $4.2 \times$ less on mobile GPU on average. Batch size = 1 targeting real time processing. Energy number normalized to CPU.

Conclusion

- Scalpel to customize DNN pruning for different hardware platform
 - SIMD-aware weight pruning, Node pruning
 - On MCU, CPU, and GPU
 - 3.54x, 2.61x, and 1.25x of speedup
 - 88%, 82%, 53% of reduced model size
- Potential problem
 - Activation pruning when zero value

Transfer Function

15	20	0	35
18	0	25	100
20	0	25	0
101	75	18	23