Appunti di Analisi I

Analisi Matematica (prof. Mongodi) - CdL Informatica Unimib - 23/24

Federico Zotti

Indice

1	Insi	mi	6											
	1.1	Notazione	6											
	1.2	Prodotto cartesiano	6											
	1.3	Insieme delle parti	7											
2	Fun	ioni	7											
	2.1	Funzioni Iniettive e Suriettive	8											
	2.2	Immagine e controimmagine	9											
3	Nun	eri Reali	9											
	3.1	Insiemi numerici	9											
	3.2	Proprietà dei numeri reali	9											
		3.2.1 Algebriche	10											
		3.2.2 Di Ordinamento	10											
		3.2.3 Assioma di Continuità	10											
	3.3	Sottoinsiemi dei reali	11											
4	Infe	iore, Superiore, Massimo e Minimo	11											
	4.1	Estremo superiore ed Estremo inferiore	12											
		4.1.1 Caratterizzazione di inf e sup	13											
5	Funzioni reali 1													
	5.1	Grafici, Iniettività e Suriettività	14											
6	Fun	ioni elementari	15											
	6.1	Potenze pari	15											
	6.2	Potenze dispari	15											
	6.3	Esponenziali	16											
	6.4	Funzioni trigonometriche	16											
		6.4.1 Seno	16											
		6.4.2 Coseno	17											
		6.4.3 Tangente	17											

7	Tras	formazione di grafici	17								
8	Succ	essioni	18								
	8.1	Terminologia	18								
	8.2	Succesioni a valori reali	18								
	8.3	Limite di una successione	19								
	8.4	Teorema di unicità del limite	20								
	8.5	Limitatezza delle successioni convergenti	20								
	8.6	Teorema di permanenza del segno	20								
	8.7	Retta reale estesa	21								
	8.8	Teoremi algebrici	21								
	8.9	Teoremi di confronto	22								
9	Tecniche di calcolo dei limiti										
	9.1	Disuguaglianza di Bernoulli	23								
	9.2	Dimostrazione teorema del confronto a 2	24								
10	Crite	rio del rapporto & Criterio della radice	24								
	10.1	Criterio del rapporto	24								
	10.2	Criterio della radice	25								
	10.3	Fattoriale	25								
	10.4	Gerarchia degli infiniti	26								
	10.5	Criterio del rapporto-radice	26								
	10.6	Dimostrazione del criterio della radice	28								
11	Prin	cipio di induzione	28								
	11.1	Disuguaglianza di Bernoulli (dimostrazione)	29								
	11.2	Coeff. binomiali	30								
12	Succ	essioni monotone	30								
13	Succ	essioni per ricorrenza	32								
14	Serie	e numeriche	34								
	14.1	Definizione SBAGLIATA	34								

	14.2	Definizione CORRETTA	35
	14.3	Carattere di una serie (comportamento)	35
	14.4	Serie telescopiche	35
	14.5	Serie geometriche	36
	14.6	Strumenti per lo studio delle serie	37
		14.6.1 Teoremi algebrici	37
		14.6.2 Condizione necessaria	38
		14.6.3 Serie note	38
		14.6.4 Serie a termini di segno costante	39
		14.6.5 Assoluta convergena per serie a termini di segno variabile	45
		14.6.6 Criterio di Leibniz per serie a termini alterni	45
15	Limi	ti di Funzione	46
		$\lim_{x\to+\infty} f(x) \dots \dots \dots$	46
		$\lim_{x \to -\infty} f(x) \dots \dots \dots \dots \dots$	47
		$\lim_{x \to x_0} f(x) \qquad \dots \qquad \dots$	47
		15.3.1 $\lim_{x \to x_0^+} f(x)$	48
		15.3.2 $\lim_{x \to x_0^-} f(x)$	48
	15.4	Note tecniche	48
	15.5	Caratterizzazione del limite per succesioni	49
16		iche di Calcolo dei Limiti	49
	16.1	Continuità	
		16.1.1 Come trovare funzioni continue	50
	16.2	Limiti notevoli	
		16.2.1 Patriarchi	50
		16.2.2 Prima generazione	51
		16.2.3 Seconda generazione	51
	16.3	Cambi di variabile	51
17	O-pi	ccolo e Equivalenza asintotica	51
	17.1	Proprietà algebriche degli o-piccoli	52
	17.2	Transitività degli o-piccoli	53

	17.3	Limiti notevoli espressi in o-piccoli	53
	17.4	Equivalenza asintotica	53
18	Diffe	renziabilità e Derivabilità	53
	18.1	Esempi di non derivabilità	55
	18.2	Derivate delle funzioni elementari	55
19	Rego	ole di derivazione	56
	19.1	Derivata della composizione	57
	19.2	Derivata della funzione inversa	57
	19.3	Trucco dell'esponenziale	58
	19.4	Teorema di L'Hopital	58
20	L'Ho	pital e Taylor	59
	20.1	Esempi di applicazione del teo. di L'Hopital	59
	20.2	Formula di Taylor con centro in $x_0=0$	59
	20.3	Sviluppi di Taylor	60
	20.4	Taylor con centro qualsiasi	61
21	Funz	zioni continue	62
	21.1	Tipi di discontinuità	62
	21.2	Discontinuità delle funzioni monotone	63
22	Stud	lio locale di funzioni	64
23	Mass	simi e Minimi	66
	23.1	Teorema di Weierstrass	~
	25.1	reorema di wererstrass	66
		Ricerca dei punti di Max/Min	66
	23.2		
	23.2 23.3	Ricerca dei punti di Max/Min	66
	23.223.323.4	Ricerca dei punti di Max/Min	66 66
	23.223.323.423.5	Ricerca dei punti di Max/Min	66 66
	23.223.323.423.523.6	Ricerca dei punti di Max/Min	66 66 67

24	Stud	io glob	ale d	i funz	ione	!																	69
	24.1	Punti d	li nor	ı deriv	/abili	ità .										•		•					 70
25	Asin	toti																					71
	25.1	Asintot	ti oriz	zonta	ıli .								•										 71
	25.2	Asintot	ti ver	ticali																			 71
	25.3	Asintot	ti obl	iqui														•					 71
26	Tayl	or con r	esto	di La	gran	ge																	72
	26.1	Utilità																					 73
		26.1.1	App	rossir	nazio	oni							•										 73
		26.1.2	Con	fronta	are la	fun	zio	ne c	on	il s	uo	SV	ilu	pp	00 (di ⁻	Гау	loı	r		•		 73
27	Conv	/essità																					74
	27.1	Conves	ssità	geom	etric	a .					•											•	 74
	27.2	Definiz	ione	analit	ica											•		•					 74
28	Succ	essioni	per	ricorr	enza	ı - p	t 2																76
20	Cont	razioni	o Ma	atada	di N	owt	on																76

1 Insiemi

1.1 Notazione

Per elenco: Prima operazione, poi insieme di partenza

$$A = \{1, 2, 3, 4, 5\}$$

 $B = \{n^2 \mid n \text{ naturale }\}$

Per proprietà: Prima insieme che scelgo, poi la proprietà che verifico

$$C = \{ n \text{ naturale } | n \text{ è un quadrato } \}$$

Altri simboli:

$$\begin{array}{c} \operatorname{appartiene} \to a \in A \\ \\ \operatorname{non appartiene} \to a \notin A \\ \\ \grave{\operatorname{e}} \operatorname{sottoinsieme} \to A \subseteq B \\ \\ \grave{\operatorname{e}} \operatorname{sottoinsieme} \operatorname{stretto} \to A \subset B \\ \\ \operatorname{insieme} \operatorname{vuoto} \to \varnothing \\ \\ \operatorname{unione} \to A \cup B | \vee \\ \\ \operatorname{intersezione} \to A \cap B | \wedge \\ \\ \operatorname{sottrazione} \to A \setminus B \\ \\ \operatorname{cardinalita} \to |A| \end{array}$$

1.2 Prodotto cartesiano

Dati due insiemi A e B, il loro **prodotto cartesiano** è l'insieme delle coppie (a,b) con $a \in A$, $b \in B$.

Si indica con $A \times B$.

$$|A \times B| = |A| \cdot |B|$$

Es:

$$A = \{1, 2, 3\}$$

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

1.3 Insieme delle parti

Dato A, $\mathcal{P}(A)$ è l'insieme di tutti i sottoinsiemi di A.

$$|\mathcal{P}(A)| = 2^{|A|}$$

Es:

$$A = \{1, 2\}$$

$$\mathcal{P}(A) = \{\emptyset, A, \{0\}, \{1\}\}$$

2 Funzioni

Come si descrive una funzione:

- 1. Un insieme di partenza (A) (dominio);
- 2. Un insieme di arrivo (B) (codominio);
- 3. Una serie di regole che ad ogni elemento di A associa un **unico** elemento di $f(a) \in B$.

$$f:A\to B$$

Il grafico di una funzione è:

$$g = \{ (a, f(a)) \in A \times B | a \in A \}$$
$$= \{ (a, b) \in A \times B | b = f(a) \}$$

2.1 Funzioni Iniettive e Suriettive

Sia $f: A \rightarrow B$ una funzione.

• f si dice **iniettiva** se manda elementi distinti di A in elementi distinti di B.

$$a_1 \in A, a_2 \in A, a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

ovvero se

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

f si dice suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

$$\forall b \in B \exists a \in A \text{ t.c. } f(a) = b$$

Una funzione si dice **biunivoca** se è sia iniettiva che suriettiva.

Teo: Una funzione $f:A\to B$ è biunivoca se e solo se è invertibile, cioè se e solo se esiste una funzione $g:B\to A$ t.c.:

$$g(f(a)) = a \,\forall \, a \in A$$

$$f(g(b)) = b \,\forall \, b \in B$$

Oss:

$$f:A\to B$$

- è iniettiva se ogni elemento di *B* è ottenuto da al più un elemento di *A* tramite *f*;
- è suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

2.2 Immagine e controimmagine

Sia $f: A \rightarrow B$ una funzione.

- Se $b = f(a) \operatorname{con} a \in A, b \in B$, si dice che $b \grave{e}$ immagine di a tramite f;
- Sia $C \subseteq A$ un sottoinsieme, si dice *immagine di* C tramite fl'insieme degli elementi di B che sono imamgine di elementi di C. $f(c) = \{ f(a) : a \in C \} \subseteq B$
- Immagine di A: $f(A) = \{ f(a) : a \in A \}$
- Sia $D \subseteq B$ un sottoinsieme, si dice **controimmagine di** D tramite f l'insieme di tutti gli elementi di A che hanno immagine contenuta in D.
- Controlmmagine di D: $f^{-1}(D) = \{a \in A : f(a) \in D\}$ (definita anche se f non è invertibile).

3 Numeri Reali

3.1 Insiemi numerici

- Naturali: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Razionali: $\mathbb{Z} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \setminus \{0\} \}$
- Reali: ℝ
- Irrazionali: Q
- Complessi: ℂ

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{R}\subset\mathbb{Q}\subset\mathbb{C}$$

3.2 Proprietà dei numeri reali

Sono di tre tipi:

- Algebriche;
- · Di Ordinamento;
- · Assioma di Continuità.

3.2.1 Algebriche

Sui numeri reali sono definite due operazioni $+ e \cdot$, dette somma e prodotto, con le seguenti proprietà:

- Relative alla somma:
 - Commutativa: $a + b = b + a \forall a, b \in \mathbb{R}$ (n,z,q,r,c)
 - Associativa: $(a+b)+c=a+(b+c) \ \forall \ a,b,c \in \mathbb{R} \ (n,z,q,r,c)$
 - Elemento neutro somma: $\exists 0 \in R \text{ t.c. } a + 0 = a \ \forall \ a \in \mathbb{R} \ (n,z,q,r,c)$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \text{t.c.} \ a+b=0 \ (z,q,r,c)$
- Relative al prodotto:
 - Commutativa: $a \cdot b = b \cdot a \ \forall \ a, b \in \mathbb{R} \ (n, z, q, r, c)$
 - Associativa: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall \ a,b,c \in \mathbb{R} \ (n,z,q,r,c)$
 - Elemento neutro prodotto: $\exists 1 \in \mathbb{R} \text{ t.c. } a \cdot 1 = a \ \forall \ a \in \mathbb{R} \ (n,z,q,r,c)$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \text{ t.c. } a \cdot b = 1 \ (q,r,c)$
- **Distributiva:** $a \cdot (b+c) = ab + ac \ \forall \ a,b,c \in \mathbb{R} \ (n,z,q,r,c)$

3.2.2 Di Ordinamento

Dati due numeri reali x e y, si ah sempre che $x \ge y$ oppure $x \le y$. Tale ordinamento ha le proprietà:

- Riflessiva: $x \ge x \ \forall \ x \in \mathbb{R}$
- Antisimmetrica: se $x \ge y \land y \ge x$, allora x = y
- Transitiva: se $x \ge y \land y \ge z$, allora $x \ge z$
- se $x \ge y$, allora $x + z \ge y + z \ \forall z \in \mathbb{R}$
- se $x \ge y$, allora $x \cdot z \ge y \cdot z \ \forall \ z \in \mathbb{R} \ \mathsf{con} \ z \ge 0$

Queste valgono in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ma non in \mathbb{C} .

3.2.3 Assioma di Continuità

Dati $A, B \subseteq \mathbb{R}$ sottoinsiemi diversi da \emptyset . Diciamo che A sta tutto a sinistra di B se $a \le b \ \forall \ a \in A, \ \forall \ b \in B$.

L'assioma di continuità dice che se A sta tutto a sinistra di B allora esiste almeno un $c \in \mathbb{R}$ t.c. $c \ge a \ \forall \ a \in A; c \le b \ \forall \ b \in B$.

c non è obbligato ad essere unico; c può appartenere ad A, a B o anche a entrambi (in questo caso è unico elemento "separatore").

Es:

$$A = \{ x \in Q : x \ge 0 \land x^2 < 2 \}$$

$$B = \{ x \in Q : x \ge 0 \land x^2 > 2 \}$$

$$\text{se } a \in A, b \in B \to a > b$$

$$c^2 = 2$$

Questo è impossibile in Q, quindi l'assioma di continuità non vale in Q.

Conclusione: sui numeri reali, $\sqrt{2}$ è l'elemento separatore tra A e B e si può dimostrare che è unico.

3.3 Sottoinsiemi dei reali

 $(a,b) \subseteq \mathbb{R}$ è l'intervallo separato da estremi $a,b \in \mathbb{R}$ (con a < b).

- $]a,b[= (a,b) = \{ x \in \mathbb{R} \text{ t.c. } a < x < b \}$
- $[a, b] = \{ x \in \mathbb{R} \text{ t.c. } a \le x \le b \}$

4 Inferiore, Superiore, Massimo e Minimo

Sia $A \subseteq \mathbb{R}$ un sottoinsieme *non vuoto*.

```
M \in \mathbb{R} si dice maggiorante di A se M \ge a \ \forall \ a \in A m \in \mathbb{R} si dice minorante di A se m \le a \ \forall \ a \in A
```

Minoranti e maggioranti non sono obbligati ad esistere. Ad esempio $A=\mathbb{N}$ ha minoranti ma non ha maggioranti.

Se esiste un maggiorante invece, ne esistono infiniti. Se M è un maggiorante, anche M+1 lo è. Lo stesso vale per i minoranti.

 $A \subseteq \mathbb{R}, A \neq \emptyset$ si dice **superiormente limitato** se ammette un maggiorante e **inferior**mente limitato se ammette un minorante. Si dice limitato se è contemporaneamente superiormente e inferiormente limitato.

- $A = (0, +\inf)$ è inferiormente limitato ma non superiormente
- $B = \{\frac{1-n}{2} : n \in \mathbb{N}\}$ è superiormente limitato, ma non inferiormente
- C = (1, 7] è limitato

 $M \in \mathbb{N}$ si dice **massimo** di A (e si scrive $M = \max A$) se $M \in A \land M \ge a \ \forall \ a \in A$ $m \in \mathbb{N}$ si dice **minimo** di A (e si scrive $m = \min A$) se $m \in A \land m \le a \ \forall \ a \in A$

 \max e \min non sono obbligati ad esistere, nemmeno per insiemi limitati.

Es:

• A = (0, 1) non ha né \max , né \min

 \max e \min , se esistono, sono unici.

4.1 Estremo superiore ed Estremo inferiore

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$.

Si dice che $\sup A = +\inf$ se A non è superiormente limitato o $\sup A = L \in \mathbb{R}$ se lo è e Lè il minimo dei maggioranti.

Si dice che $\inf A = -\inf$ se A non è inferiormente limitato o $\inf A = l \in \mathbb{R}$ se lo è e l è il massimo dei minoranti.

- $\sup(0,1)=1$

Teo: Se $A \subseteq \mathbb{R}$, $A \neq \emptyset$ è superiormente limitato, allora il minimo dei maggioranti esiste.

Dim: Sia $B = \{x \in \mathbb{R} \mid x \geq a \ \forall a \in A\}$ l'insieme dei maggioranti. Allora A sta tutto a sinistra di B. Per l'assioma di continuità c'è un elemento separatore $c \in \mathbb{R}$, ovvero $c \leq b \ \forall b \in B \ e \ c \geq a \ \forall a \in A \implies c \in B$. Quindi $c = \min B$.

Esercizio per casa #todo-compito: Enunciare e dimostrare il teorema analogo per il massimo dei minoranti.

4.1.1 Caratterizzazione di inf e sup

- $\sup A = +\inf \mathsf{se} \, \forall \, M \in \mathbb{R} \, \exists \, a \in A \, \mathsf{t.c.} \, a \geq M \, (ovvero \, \mathsf{se} \, posso \, trovare \, elementi \, di \, A \, grandi \, quanto \, voglio)$
- $\inf A = -\inf \operatorname{se} \forall M \in \mathbb{R} \ \exists a \in A \text{ t.c. } a \leq M$
- $\sup A = L \in \mathbb{R}$ se
 - $a \le L \ \forall \ a \in A \ (L \ \grave{e} \ un \ maggiorante)$
 - $\forall \varepsilon > 0 \ \exists a \in A \ \text{t.c.} \ a \ge L \varepsilon$
- $\inf A = L \in \mathbb{R}$ se
 - $a \ge l \ \forall \ a \in A \ (l \ \grave{e} \ un \ minorante)$
 - $\forall \varepsilon > 0 \exists a \in A \text{ t.c. } a \leq l + \varepsilon$

Se esiste $M = \max A$ allora $\sup A = M$. Se esiste $m = \min A$ allora $\inf A = m$. $\sup A$ non è obbligato ad appartenere ad A, ma se vi appartiene è il **massimo**. Stessa cosa per $\inf A$.

5 Funzioni reali

```
f:\mathbb{R}\to\mathbb{R} oppure f:A\to\mathbb{R}. Grafico di f=\{(x,y)\in\mathbb{R}^2:y=f(x)\} (\mathbb{R}^2=\mathbb{R}\times\mathbb{R}).
```

Proprietà di simmetria:

• f si dice pari se $f(x) = f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'asse y)

- f si dice **dispari** se $f(x) = -f(-x) \ \forall \ x \in \mathbb{R}$ (simmetrica rispetto all'origine)
- f si dice **periodica** se $\exists T > 0$ t.c. $f(x + T) = f(x) \ \forall x \in \mathbb{R}$ (il grafico si ottiene traslando il pezzo [0, T] in [T, 2T], [T, 3T], ...)

Se $f : \mathbb{R} \to \mathbb{R}$ è dispari, allora f(0) = 0.

Se T è un periodo, anche 2T, 3T, 4T, ... lo sono. Il **minimo periodo** è il più piccolo T (se esiste) per cui vale $f(x+T)=f(x) \ \forall T \in \mathbb{R}$.

Proprietà di **monotonia**:

- f si dice strettamente crescente se $x > y \implies f(x) > f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice strettamente decrescente se $x > y \implies f(x) < f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice **debolmente crescente** se $x > y \implies f(x) \ge f(y) \ \forall x, y \in \mathbb{R}$
- f si dice **debolmente decrescente** se $x > y \implies f(x) \le f(y) \ \forall x, y \in \mathbb{R}$

Se f è strettamente crescente allora è anche debolmente crescente. Se f è strettamente decrescente allora è anche debolmente decrescente.

Se fè sia deb. crescente che deb. decrescente allora è **costante**.

5.1 Grafici, Iniettività e Suriettività

- Suriettiva

 in ogni elemento dell'insieme di arrivo termina almeno una freccia

 (tutto l'asse y è "coperto")
- Iniettiva

 in ogni elemento dell'insieme di arrivo termina al più (0|1) una freccia

 (l'asse yè "coperto" solo una volta)
- Retta orizzontale: $y = \lambda$
- Grafico di f: y = f(x)
- Intersezioni: $f(x) = \lambda$

$$f$$
iniettiva $\iff f(x) = \lambda$ ha al più una soluz. $\forall \lambda \in \mathbb{R}$ f suriettiva $\iff f(x) = \lambda$ ha almeno una soluz. $\forall \lambda \in \mathbb{R}$

Se f è pari o periodica non è iniettiva. Se f è strettamente crescente o strettamente decrescente allora è iniettiva.

6 Funzioni elementari

6.1 Potenze pari

$$f(x) = x^{2k} \qquad k \in \mathbb{N} \setminus \{0\}$$

- Con $\mathbb{R} \to \mathbb{R}$ (non iniettiva o suriettiva).
- Con $\mathbb{R}_{\geq 0} \to \mathbb{R}$ (iniettiva ma non suriettiva)
- Con $\mathbb{R} \to \mathbb{R}_{\geq 0}$ (non iniettiva ma suriettiva)
- Con $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ (biunivoca)

Quindi l'inverso è

$$g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$
$$g(x) = \sqrt{x}^{2k}$$

Oss: $f(x) = x^{2k}$ è una funzione *pari*, strettamente crescente su $[0, +\infty)$ e strettamente decrescente su $[-\infty, 0)$.

| Oss: la funzione f(x) = |x| ha le stesse proprietà.

6.2 Potenze dispari

$$f(x) = x^{2k+1}$$
 $k \in \mathbb{N}$

È una funzione dispari.

• $\mathbb{R} \to \mathbb{R}$ (biunivoca)

L'inverso è definito come

$$g: \mathbb{R} \to \mathbb{R}$$
$$g(x) = \sqrt{x}^{2k+1}$$

Vale lo stesso per $f(x) = \frac{1}{x^k}$

[!warning] Confermare la funzione

Oss: $f(x) = x^{2k+1}$ è strettamente crescente su \mathbb{R} .

6.3 Esponenziali

$$f(x) = a^x \qquad \text{con } a > 1$$

- $\mathbb{R} \to \mathbb{R}$ (iniettiva)
- $\mathbb{R} \to \mathbb{R}_{>0}$ (biunivoca)

L'inversa è

$$g: \mathbb{R}_{>0} \to \mathbb{R}$$
$$g(x) = \log_a x$$

| **Ese:** fate lo stesso per $f(x) = a^x \operatorname{con} 0 < a < 1$

Oss: se $a \in (0, 1)$ allora $b = \frac{1}{a} \in (1, +\infty)$.

6.4 Funzioni trigonometriche

6.4.1 Seno

$$f(x) = \sin x$$

 $f: \mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è dispari ($\sin(-x) = -\sin x$).

- $\mathbb{R} \to \mathbb{R}$ (non iniettiva e non suriettiva)
- $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$ (biunivoca)

L'inversa è

$$g: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $g(x) = \arcsin x$

Oss: $\arcsin(\sin(\frac{3}{4}\pi)) = \frac{\pi}{4} \neq \frac{3}{4}\pi$

6.4.2 Coseno

$$f(x) = \cos x$$

 $f: \mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è pari ($\cos x = \cos(-x)$).

- $\mathbb{R} \to \mathbb{R}$ (non iniettiva e non suriettiva)
- $[0, \pi] \rightarrow [-1, 1]$ (biunivoca)

L'inversa è

$$g: [-1,1] \rightarrow [0,\pi]$$

 $g(x) = \arccos x$

Oss: $\arccos(\cos(\frac{3}{2}\pi)) \neq \frac{3}{2}\pi$

6.4.3 Tangente

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

- $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\}\to\mathbb{R}$ è periodica di periodo minimo π ed è dispari (solo suriettiva)
- $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ è dispari (biunivoca)

L'inversa è

$$g: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$g(x)=\arctan x$$

7 Trasformazione di grafici

Dato $f: \mathbb{R} \to \mathbb{R}$.

- Simmetria assiale rispetto all'asse x: y = -f(x)
- Simmetria assiale rispetto all'asse y: y = f(-x)

- Traslazione del vettore (0, c) (verso l'alto se c > 0): y = f(x) + c
- Traslazione del vettore (-c, 0) (verso sinistra se c > 0): y = f(x + c)
- Compressione verso l'asse x (dilatazione se c > 1): $y = f(x) \cdot c$
- Dilatazione verso l'asse y (compressione se c > 1): $y = f(x \cdot c)$
- Ribaltamento sull'asse x: y = |f(x)|
- Ribaltamento sull'asse y. y = f(|x|)

8 Successioni

8.1 Terminologia

Sia $\mathcal{P}(n)$ una affermazione a proposito del numero $n \in \mathbb{N}$. Sarà vera o falsa a seconda del valore di n.

Diciamo che:

- $\mathcal{P}(n)$ è vera frequentemente se è vera per infiniti $n \in \mathbb{N}$
- P(n) è vera definitivamente se è vera "da un certo punto in poi", cioè se ∃n₀ ∈
 N t.c. P(n) è vera ∀ n ≥ n₀

| Oss: Definitivamente ⇒ Frequentemente.

Es:

- 1. $n^2 \ge 1000$ è vera definitivamente
- 2. n^3 è multiplo di 8 è vera frequentemente, ma non definitivamente
- 3. $n+1 \ge 3^n$ è falsa definitivamente

8.2 Succesioni a valori reali

Def rigida: una successione a valori reali è una funzione $a : \mathbb{N} \to \mathbb{R}$.

Di solito, invece di scrivere a(n), si scrive a_n .

Oss: così non è possibile considerare $a_n = \frac{1}{n}$.

Def più elastica: una successione a valori reali è una funzione $a:A\to\mathbb{R}$ con $A\subseteq\mathbb{N}$, tale che $\exists\, n_0\in\mathbb{N}$ per cui $\forall\, n\geq n_0, n\in A$ (tale che $n\in A$ definitivamente).

8.3 Limite di una successione

Sia a_n una successione. Abbiamo 4 possibili comportamenti:

- 1. $\lim_{n\to+\infty} a_n = \ell \ (a_n \to \ell; \ \ell \in \mathbb{R})$
- 2. $\lim a_n = +\infty (a_n \to +\infty)$
- 3. $\lim a_n = -\infty (a_n \to -\infty)$
- 4. $\lim a_n$ non esiste (a_n è indeterminata)

Def:

- Una successione è di tipo 4. se non è di nessun degli altri tipi
- Una successione è di tipo 2. se $\forall M \in \mathbb{R}, a_n \geq M$ definitivamente ($\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N} \text{ t.c. } a_n \geq M \ \forall n \geq n_0$)
- Una successione è di tipo 3. se $\forall m \in \mathbb{R}, a_n \leq m$ definitivamente ($\forall m \in \mathbb{R}, \exists n_0 \in \mathbb{N} \text{ t.c. } a_n \leq m \ \forall n \geq n_0$)
- Una successione è di tipo 1. se
 - $\forall \varepsilon > 0, a_n \in [\ell \varepsilon, \ell + \varepsilon]$ definitivamente \vee
 - $\forall \, \varepsilon > 0, \ell \varepsilon \le a_n \le \ell + \varepsilon \, \text{definitivamente} \, \lor$
 - $\forall \, \varepsilon > 0, |a_n \ell| \le \varepsilon \, \text{definitivamente}$

Varianti di 1.:

- $a_n \to \ell^+$ tende a ℓ da destra se $\forall \varepsilon > 0, \ell < a_n \le \ell + \varepsilon$ definitivamente
- $a_n \to \ell^-$ tende a ℓ da sinistra se $\forall \, \varepsilon > 0, \ell \varepsilon \le a_n < \varepsilon$ definitivamente

8.4 Teorema di unicità del limite

Una successione ricade sempre in uno e uno solo dei quattro tipi di comportamento. Se poi ricade nel tipo 1. $(\ell \in \mathbb{R})$, il valore ℓ è unico.

Dim: se a_n è di tipo 1. cioè $a_n \to \ell$, allora definitivamente $\ell - 1 \le a_n \le \ell + 1$. $l - 1 \le a_n$ implica che non può essere di tipo 3.. $a_n \le \ell + 1$ implica che non può essere di tipo 2.. Inoltre se è di tipo 2., definitivamente si avrà $a_n \ge 1$. Se è di tipo 3., definitivamente si avrà $a_n \le -1$. Queste condizioni non possono accadere insieme. Infine, se $a_n \to \ell_1$, $a_n \to \ell_2$ con $\ell_1 \ne \ell_2$, allora fisso $\varepsilon = \frac{|\ell_1 - \ell_2|}{4}$. Quindi a_n si ritrova in due intervalli contemporaneamente: $\ell_1 - \varepsilon \le a_n \le \ell_1 + \varepsilon$ e $\ell_2 - \varepsilon \le a_n \le \ell_2 + \varepsilon$. Se $\ell_1 < \ell_2$ allora $\ell_1 + \varepsilon < \ell_2 - \varepsilon$. Dunque $a_n \le \ell_1 + \varepsilon < \ell_2 - \varepsilon \le a_n$ definitivamente. Questo è assurdo!

8.5 Limitatezza delle successioni convergenti

- Se $a_n \to \ell \in \mathbb{R}$ allora $\{a_n \mid n \in \mathbb{N}\}$ è limitato
- Se $a_n \to +\infty$ allora $\{a_n \mid n \in \mathbb{N}\}$ è inferiormente limitato
- Se $a_n \to -\infty$ allora $\{a_n \mid n \in \mathbb{N}\}$ è superiormente limitato

Dimostrazione nelle slide. #view-slide

8.6 Teorema di permanenza del segno

- Se $a_n \to \ell \in (0, +\infty)$ o se $a_n \to +\infty$ allora $a_n > 0$ definitivamente
- Se $a_n \ge 0$ definitivamente e se $a_n \to \ell$ allora $\ell \ge 0$ oppure $\ell = +\infty$

Dimostrazione nelle slide #view-slide

Oss: vale lo stesso risultato con i negativi.

- Se $a_n \to \ell \in (-\infty,0)$ o se $a_n \to -\infty$ allora $a_n < 0$ definitivamente
- Se $a_n \leq 0$ definitivamente e se $a_n \to \ell$ allora $\ell \leq 0$ oppure $\ell = -\infty$

8.7 Retta reale estesa

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

- Posso scrivere $a_n \to \ell \in \overline{\mathbb{R}}$ per unificare i tipi 1., 2., 3.
- Le operazioni di $\mathbb R$ si estendono a $\overline{\mathbb R}$ quasi bene:

$$+x \cdot (\pm \infty) = \pm \infty$$
$$-x \cdot (\pm \infty) = \mp \infty$$
$$x + (\pm \infty) = \pm \infty$$
$$(+\infty) \cdot (+\infty) = +\infty$$
$$(-\infty) \cdot (-\infty) = +\infty$$
$$\frac{x}{+\infty} = 0$$

- Ci sono 2 eccezioni:
 - 1. Le 7 forme indeterminate:

$$(+\infty) + (-\infty)$$

$$0 \cdot (\pm \infty)$$

$$\frac{\pm \infty}{\pm \infty}$$

$$\frac{0}{0}$$

$$0^{0}$$

$$1^{\pm \infty}$$

$$(\pm \infty)^{0}$$

2. Le divisioni per 0

8.8 Teoremi algebrici

Siano a_n,b_n successioni, $a_n \to \ell_1 \in \overline{\mathbb{R}}, b_n \to \ell_2 \in \overline{\mathbb{R}},$ allora:

$$a_n + b_n \to l_1 + l_2$$

$$a_n - b_n \to l_1 - l_2$$

$$a_n \cdot b_n \to l_1 \cdot l_2$$

$$\frac{a_n}{b_n} \to \frac{l_1}{l_2}$$

$$a_n^{b_n} \to l_1^{l_2}$$

Con le dovute eccezioni di ∞.

8.9 Teoremi di confronto

Se $a_n \le b_n$ definitivamente, allora:

- 1. Se $a_n \to a$ e $b_n \to b$, allora $a \le b$
- 2. Se $a_n \to +\infty$, allora $b_n \to +\infty$
- 3. Se $b_n \to -\infty$, allora $a_n \to -\infty$

Se a_n, b_n, c_n sono tali che $a_n \leq b_n \leq c_n$ definitivamente e $a_n \to \ell, c_n \to \ell$ (lo stesso $\ell \in \overline{\mathbb{R}}$) allora $b_n \to \ell$. (teorema del carabiniere).

Es: $\lim_{n\to+\infty} n + \cos n$.

$$\forall n \in \mathbb{N}, \cos n \ge -1 \implies n + \cos n \ge n - 1$$

Per il teorema del confronto a 2, visto che $\lim_{n\to+\infty} n-1=[+\infty-1]=+\infty$, ho che $\lim_{n\to +\infty} n + \cos n = +\infty$

$$\forall n \in \mathbb{N}, -1 \le \sin n \le 1 \implies -\frac{1}{n} \le \sin n \le \frac{1}{n}$$

 $\forall\,n\in\mathbb{N},-1\leq\sin n\leq1\implies-\frac{1}{n}\leq\sin n\leq\frac{1}{n}$ E poiché $\lim_{n\to+\infty}-\frac{1}{n}=\lim_{n\to+\infty}\frac{1}{n}=0$, per il teorema del confronto a 3 $\frac{\sin n}{n}\to0$.

9 Tecniche di calcolo dei limiti

Fatto N.1

$$\lim_{n \to +\infty} n^a = +\infty \qquad \forall \, a > 0$$

Fatto N.2

$$\lim_{n \to +\infty} n^a = 0^+ \qquad \forall \, a < 0$$

Oss:
$$n^a = \frac{1}{n^{-a}} \Rightarrow \lim_{n \to +\infty} n^a = \lim_{n \to +\infty} \frac{1}{n^{-a}} = \left[\frac{1}{+\infty}\right] = 0^+$$

Ricordare negli esercizi di scrivere teoremi algebrici dove vengono usati.

9.1 Disuguaglianza di Bernoulli

$$\forall n \in \mathbb{N}, \ \forall x \ge -1$$
 si ha $(1+x)^n \ge 1 + nx$

Fatto N.3

$$\lim_{n \to +\infty} a^n = +\infty \qquad \forall \, a > 1$$

Dim: $a^n = (1 + (a - 1))^n \ge 1 + n(a - 1) \to [1 + \infty(a - 1)] = +\infty \Rightarrow a^n \to +\infty$ per il confronto a 2.

Fatto N.4

$$\lim_{n \to +\infty} a^n = 0 \qquad \forall \, 0 < a < 1$$

Dim: $a = \frac{1}{b} \operatorname{con} b > 1 \operatorname{e} b^n \to +\infty \operatorname{quindi} a^n = \frac{1}{b^n} \to 0^+.$

Fatto N.5

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = 1 \qquad \forall \, a > 1$$

 $| \mathbf{Dim} : a^{\frac{1}{n}} \ge 1 \ \forall \ n \in \mathbb{N}$

Finire la dim dalle slide #todo-uni.

9.2 Dimostrazione teorema del confronto a 2

Sappiamo che $a_n \leq b_n$ definitivamente

1. Se $a_n \to a, b_n \to b$, vogliamo dimostrare che $a \le b$

Per assurdo, se b < a, posso scegliere $\varepsilon > 0$ tale che $\varepsilon < \frac{a-b}{2} \Rightarrow b + \varepsilon < a - \varepsilon$.

Allora definitivamente $a_n \geq a - \varepsilon$ e $b_n \leq b + \varepsilon$, quindi $b_n \leq b + \varepsilon < a - \varepsilon \leq a_n$ definitivamente.

Ciò significa che $b_n < a_n$, il che è assurdo.

- 2. Se $a_n \to +\infty$, $\forall \, M \in \mathbb{R}$, ho $a_n \geq M$ definitivamente \Rightarrow ho $b_n \geq a_n \geq M$ definitivamente $\forall \, M \in \mathbb{R} \Rightarrow b_n \to +\infty$.
- 3. Uguale a 2..

10 Criterio del rapporto & Criterio della radice

10.1 Criterio del rapporto

Sia a_n una successione definitivamente positiva (> 0). Supponiamo che

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \ell \in [0, +\infty]$$

allora

1. se $\ell < 1, a_n \to 0$

- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1, ??$

10.2 Criterio della radice

Sia a_n una successione definitivamente ≥ 0 . Supponiamo che

$$\lim_{n\to +\infty} \sqrt[n]{a_n} = \ell \in \left[0,+\infty\right]$$

allora

- 1. se $\ell < 1, a_n \to 0$
- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1, ??$

Es: $a_n = \frac{n^3}{2^n}$ con i teo. algebrici ottengo $[\frac{+\infty}{+\infty}]$, quindi

$$\frac{a_n+1}{a_n} = \frac{\frac{(n+1)^3}{2^{n+1}}}{\frac{n^3}{2^n}} = \frac{1}{2} \left(\frac{n+1}{n}\right)^3 \to \frac{1}{2}$$

per il criterio del rapporto $a_n \to 0$.

Fatto N.6 (Esponenziale batte potenza)

$$\lim_{n\to +\infty} \frac{n^a}{b^n} = 0 \qquad \forall \, b>1, \, \forall \, a\in \mathbb{R}$$

10.3 Fattoriale

$$\lim_{n\to +\infty} n! = +\infty$$

Fatto N.7 (Il fattoriale batte l'esponenziale)

$$\lim_{n \to +\infty} \frac{b^n}{n!} = 0 \qquad \forall b > 0$$

Fatto *N.7 n^n batte il fattoriale.*

$$\lim_{n\to+\infty}\frac{n!}{n^n}=0$$

10.4 Gerarchia degli infiniti

- 1. *n*ⁿ
- 2. *n*!
- 3. b^n
- 4. *n*^a
- 5. n

Attenzione: nella gerarchia degli infiniti, dovete rispettare religiosamente le espressioni date. n! batte 2^n , ma non so cosa fa con $2^{(n^2)}$.

10.5 Criterio del rapporto-radice

Supponiamo $a_n > 0$ definitivamente e che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\ell\in \left[0,+\infty\right]$$

allora

$$\lim_{n\to+\infty} \sqrt[n]{a_n} = \ell \quad (\mathsf{stesso}\,\ell)$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n} = 2$

Applico il criterio rapporto-radice con $a_n=n$, che è definitivamente >0. Ho che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to +\infty}\frac{n+1}{n}=\lim_{n\to +\infty}1+\frac{1}{n}=1\implies \lim_{n\to +\infty}\sqrt[n]{n}=\lim_{n\to +\infty}\sqrt[n]{a_n}=1$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n^a} = ?$

$$\lim_{n\to+\infty} \sqrt[n]{n^a} = \lim_{n\to+\infty} n^{\frac{a}{n}} = \lim_{n\to+\infty} (n^{\frac{1}{n}})^a = 1$$

Es: $\lim_{n \to +\infty} \sqrt[n]{n^7 - n^2 + 1} = ?$

Ha senso perché $n^7-n^2+1\to +\infty \implies$ è definitivamente positiva per il teorema di permanenza del segno.

$$\lim_{n \to +\infty} \sqrt[n]{n^7} \cdot \sqrt[n]{1 - \frac{1}{n^5} - \frac{1}{n^7}} = 1 \cdot 1 = 1$$

Fatto N.8

$$\lim_{n \to +\infty} \sqrt[n]{\text{polinomio}} = 1 \qquad \forall \text{ polinomio}$$

Fatto N.9

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n!} = ?$

Metodo 1: $\forall b>1$ ho che $n!>b^n$ (per il teo di permanenza del segno: $\frac{b^n}{n!}\to 0 \implies$ definitivamente $\frac{b^n}{n!}<1 \implies b^n< n!$ definitivamente) $\implies \sqrt[n]{n!}>b$ definitivamente $\forall b>1n \implies \sqrt[n]{n!}\to +\infty$.

Metodo 2:

$$\lim_{n \to +\infty} \sqrt[n]{n!} = \lim_{n \to +\infty} \frac{(n+1)!}{n!} = \lim_{n \to +\infty} n + 1 = +\infty$$

Es: $\lim_{n\to+\infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n\to+\infty} \sqrt[n]{\frac{n!}{n^n}} = ?$

$$= \frac{1}{\left(\frac{n+1}{n}\right)^n} \to \frac{1}{e}$$

Oss: per *n* molto grandi, *n*! assomiglia a $\left(\frac{n}{e}\right)^n$.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{2^{n^2}}{n!}} = \frac{(2^{n^2})^{\frac{1}{n}}}{(n!)^{\frac{1}{n}}} = \dots$$

10.6 Dimostrazione del criterio della radice

Supponiamo che $\sqrt[n]{a_n} \to \ell > 1$, allora la media sarà un numero tra 1 e ℓ

$$1 < \frac{ell+1}{2} < \ell \implies \text{ definitivamente } \sqrt[n]{a_n} \ge \frac{\ell+1}{2} \implies a_n \ge \left(\frac{\ell+1}{2}\right)^n$$

e poiché $\frac{\ell+1}{2} > 1$, $\left(\frac{\ell+1}{2}\right)^n \to +\infty$. Quindi per il confronto a 2, ho che $a_n \to +\infty$.

Se invece $0 \le \ell < 1$, allora $0 \le \frac{\ell+1}{2} < 1 \implies$ definitivamente $\sqrt[n]{a_n} \le \frac{\ell+1}{2}$, inoltre $0 \le \sqrt[n]{a_n} \le \frac{\ell+1}{2} \implies 0 \le a_n \le \left(\frac{\ell+1}{2}\right)^n$ definitivamente e $0 < \frac{\ell+1}{2} < 1 \implies \left(\frac{\ell+1}{2}\right)^n \to 0$, dunque, per il teo del confronto a 3, $a_n \rightarrow 0$.

11 Principio di induzione

$$\mathbb{N} = \{0, 1, 2, 3, ...\}$$

 $\mathcal{P}(n)$ = affermazione a prop. di n che può essere vera o falsa

Es: $n^2 = n + 6$ (definitivamente vera)

- n = 0: falsa
 n = 1: falsa
 n = 2: falsa
 n = 3: vera!
 n = 4: falsa

Es: se l'insieme A ha n elementi, allora $\mathcal{P}(A)$ ha 2^n elementi (definitivamente vera).

Principio di induzione: supponiamo di sapere che

- 1. $\mathcal{P}(0)$ è vera (passo base)
- 2. $\mathcal{P}(n) \implies \mathcal{P}(n+1) \ \forall \ n \geq 0 \ (passo\ induttivo)$

allora $\mathcal{P}(n)$ è vera per ogni $n \in \mathbb{N}$.

Es: dimostrare che $0 + 1 + \dots + n = \frac{n(n+1)}{2}$.

Dimostrazione per induzione:

1.
$$n = 0$$
: $0 = \frac{0(0+1)}{2} = 0 \longrightarrow \text{vero}$

2. Ipotesi(passo
$$n$$
) : $0+1+\cdots+n=\frac{n(n+1)}{2}$. Voglio dire che $0+1+\cdots+n+(n+1)=\frac{(n+1)(n+2)}{2}$. $0+1+\cdots+(n+1)=0+1+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$. $(n+1)(\frac{n}{2}+1)=\frac{(n+1)(n+2)}{2}$.

Ese: da fare a casa #todo-compito

1.
$$0^2 + 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2. $0^3 + 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$

2.
$$0^3 + 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

11.1 Disuguaglianza di Bernoulli (dimostrazione)

$$\forall n \in \mathbb{N}, \ \forall x \ge -1 \text{ si ha } (1+x)^n \ge 1+nx$$

Dimostrazione per induzione su n

1. Passo base:

$$n = 0 \quad (1+x)^0 > 1 \qquad \forall x > -$$

$$n = 0$$
 $(1+x)^0 \ge 1$ $\forall x > -1$
 $n = 1$ $(1+x)^1 \ge 1+x$ $\forall x \ge -1$

2. Passo induttivo:

Ipotesi(passo
$$n$$
): $(1+x)^n \ge 1 + nx$

Tesi(passo $n+1$): $(1+x)^{n+1} \ge 1 + (n+1)x$
 $(1+x)^{n+1} = (1+x)^n \cdot (1+x) \ge (1+nx)(1+x) =$
 $= 1 + nx + x + nx^2 =$
 $= 1 + (n+1)^x + nx^2 \ge 1 + (n+1)x \longrightarrow \text{Vero!} \implies$

La disug è dimostrata $\forall n \in \mathbb{N}, \ \forall x \ge -1$

11.2 Coeff. binomiali

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

 $\binom{n}{k}$ è l'elemento in posizione k nella riga n del **triangolo di Tartaglia** (si conta da 0).

Sviluppo del binomio:

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} \cdot a^{n-j} \cdot b^j$$

12 Successioni monotone

Sia a_n una successione. Diciamo che a_n è

- 1. **strettamente crescente** se $a_{n+1} > a_n \ \forall \ n \in \mathbb{N}$
- 2. **strettamente decrescente** se $a_{n+1} < a_n \ \forall \ n \in \mathbb{N}$
- 3. **debolmente crescente** se $a_{n+1} \ge a_n \ \forall \ n \in \mathbb{N}$
- 4. **debolmente decrescente** se $a_{n+1} \leq a_n \ \forall \ n \in \mathbb{N}$

Oss: similmente si definiscono i corrispondenti concetti per successioni definitivamente monotone.

Teo delle successioni monotone: sia a_n una successione debolmente crescente, allora a_n ha limite $\ell \in \mathbb{R} \cup \{+\infty\}$. Più precisamente $a_n \to \sup\{a_n \mid n \in \mathbb{N}\}$. Lo stesso vale per

le successioni debolmente decrescenti $(a_n \to \inf\{a_n \mid n \in \mathbb{N}\})$.

Dim (caso crescente):

Primo caso: $\sup\{a_n\mid n\in\mathbb{N}\}=+\infty \implies \forall M\in\mathbb{R}\ \exists\ n_0\in\mathbb{N}\ \text{t.c.}\ a_{n_0}\geq M.$ Ma se la succ. è debolmente crescente \implies \forall $n \ge n_0$, $a_n \ge a_{n_0} \ge M \implies a_n \to \infty$.

Secondo caso: $\sup \{a_n \mid n \in \mathbb{N}\} = \ell \in \mathbb{R} \implies$

- $\forall n \in \mathbb{N}$, $a_n \leq \ell$ (ℓ è un maggiorante)
- $\forall \varepsilon > 0 \; \exists \, n_0 \in \mathbb{N} \; \mathrm{t.c.} \; \ell \varepsilon \leq a_{n_0} \; (\ell \; \grave{e} \; il \; minimo \; tra \; i \; maggioranti)$

 $\mathsf{Ma}\ a_n\ \grave{\mathsf{e}}\ \mathsf{debolmente}\ \mathsf{crescente}\ \Longrightarrow\ \ \forall\ n\geq n_0\ \mathsf{ho}\ \mathsf{che}\ \ell-\varepsilon\leq a_{n_0}\leq a_n\leq\ell\ \Longrightarrow\ a_n\to\ell^-$

| Caso decrescente: #todo-compito

Oss:

- 1. Se a_n è debolmente crescente e superiormente limitata, allora $a_n o \ell \in \mathbb{R}$
- 2. Se a_n è definitivamente debolmente crescente (o decrescente) allora $a_n \to \ell \in$ $\mathbb{R} \cup \{+\infty\}$ (o $\mathbb{R} \cup \{-\infty\}$), ma non posso dire che $\ell = \sup\{a_n \mid n \in \mathbb{N}\}$

Es: Sia $a_n = \left(1 + \frac{1}{n}\right)^n$. Allora $1. \ 2 \le a_n \quad \forall n \in \mathbb{N}$ $2. \ a_n \le 3 \quad \forall n \in \mathbb{N}$ $3. \ a_n \le a_{n+1} \quad \forall n \in \mathbb{N}$

Per il teo sulle successioni monotone, $a_n \to \ell \in \mathbb{R}$ e $2 \le \ell \le 3$.

Dim:

- 1. Per Bernoulli: $\left(1 + \frac{1}{n}\right)^n \ge 1 + n \cdot \frac{1}{n} = 2 \quad \forall n \in \mathbb{N} \setminus \{0\}$ 2. $\left(1 + \frac{1}{n}\right)^n = \sum_{j=0}^n \binom{n}{j} \cdot 1^{n-j} \cdot \frac{1}{n^j} \longrightarrow guardare \ le \ slide$ 3. $\left(1 + \frac{1}{n+1}\right)^{n+1} \ge \left(1 + \frac{1}{n}\right)^n \Rightarrow a_n \ e \ decrescente \longrightarrow guardare \ le \ slide$

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{n\to+\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to+\infty} \left(\frac{n-1}{n}\right)^n = \lim_{n\to+\infty} \frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1} \cdot \left(\frac{n}{n-1}\right)} = \frac{1}{e}$$

$$\lim_{n\to+\infty} \left(1+\frac{1}{2n}\right)^n = \lim_{n\to+\infty} \left(\left(1+\frac{1}{2n}\right)^{2n}\right)^{\frac{1}{2}} = \sqrt{e}$$

13 Successioni per ricorrenza

Una successione per ricorrenza si presenta così:

- Un punto di partenza: $a_0 = 2$
- Una regola per calcolare il valore di un elemento dati i precedenti: $a_n = a_{n-1}^2 + \frac{1}{n+2}$

Possono essere dimostrate per induzione.

Es 1:

$$\begin{cases} a_0 = 1 & (I) \\ a_n = n \cdot a_{n-1} & (II) \end{cases}$$

Se voglio calcolare $a_4 = 4 \cdot a_3 = 4 \cdot 3 \cdot a_2 = 4 \cdot 3 \cdot 2 \cdot a_1 = 4 \cdot 4 \cdot 2 \cdot 1 \cdot a_0 = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 24$. In questo caso si ha $a_n = n!$.

Es 2:

$$\begin{cases} a_0 = 3 & (I) \\ a_n = 2a_{n-1} - 1 & (II) \end{cases}$$

Calcolando un po' di valori trovo guess: $a_n=2^{n+1}+1$. Si può dimostrare per induzione:

- P.B.: n=0 per (I), $a_0=3=2^{0+1}+1$ (Ok!)
 P.I.: se $a_n=2^{n+1}+1$ allora $a_{n+1}=2\cdot a_n-1=2(2^{n+1}+1)-1=2^{(n+1)+1}+1$ (Ok!)

Attenzione: Poter trovare una formula esplicita per le successioni per ricorrenza è *rarissimo*!

Terminologia: una successione per ricorrenza che dipende dai k termini precedenti si dice di **ordine** k. Una successione per ricorrenza senza una dipendenza esplicita da n si dice **autonoma**.

Tratteremo quasi esclusivamente successioni per ricorrenza di ordine 1, autonome.

$$\begin{cases} a_0 = a \\ a_n = f(a_{n-1}) & n \ge 1 \end{cases}$$

Es 3:

$$\begin{cases} a_0 = 2 \\ a_n = a_{n-1}^2 - 1 \quad n \ge 1 \end{cases}$$

$$a_n = f(a_{n-1})$$

$$f(x) = x^2 - 1$$

Intersezioni con la bisettrice y = x: $x = \frac{1 \pm \sqrt{5}}{2}$.

Guess: la successione è crescente e tende $a + \infty$.

Strategia:

Dim 3.: segue dal punto 2. per il teo sulle successioni monotone.

Dim 4.: Se $\ell \in \mathbb{R}$, allora posso passare al limite la relazione ricorsiva:

$$\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} a_n^2 - 1$$

$$\implies \ell = \ell^2 - 1$$

$$\implies \ell = \frac{1 + \sqrt{5}}{2} \text{ oppure } \frac{1 - \sqrt{5}}{2}$$

 $\mbox{Ma $a_n \geq 2$ $\forall n$ (per 1.)} \implies \ell \geq 2 \mbox{ (permanenza del segno)} \implies \mbox{nessuno dei valori} \\ \mbox{trovati \`e accettabile} \implies \ell = +\infty.$

Dim 1.: $a_n \ge 2 \ \forall n$. Per induzione:

• P.B.: $a_n = 2 \ge 2$ (Ok!)
• P.I.: se $a_n \ge 2$, allora $a_{n+1} = a_n^2 - 1 \ge 4 - 1 = 3 \ge 2$ (Ok!)

Dim 2.: $a_n \le a_{n+1} \ \forall \, n$. Per induzione:

• P.B.: $a_1 = a_0^2 - 1 = 4 - 1 = 3 \ge a_0$ (Ok!)
• P.I.: se $a_n \le a_{n+1}$, allora $f(a_n) \le f(a_{n+1})$ perché $f(x) = X^2 - 1$ è crescente su $[0, +\infty)$.

14 Serie numeriche

14.1 Definizione SBAGLIATA

Data una successione a_n , indico con

$$\sum_{n=0}^{\infty} a_n$$

la somma di tutti i termini della successione (che sono infiniti).

Questo non ha senso

14.2 Definizione CORRETTA

Def: data una successione a_n , dato $k \in \mathbb{N}$, la **somma parziale** k-esima di a_n è

$$S_k = a_0 + a_1 + \dots + a_k = \sum_{n=0}^k a_n$$

Def: una **serie numerica** $\sum_{n=0}^{\infty} a_n (\sum a_n)$ è il limite della successione S_k , per $k \to \infty$. Cioè

$$\sum_{n=0}^{\infty} a_n = \lim_{k \to +\infty} S_k = \lim_{k \to +\infty} (a_0 + a_1 + \dots + a_n)$$

14.3 Carattere di una serie (comportamento)

Essendo un limite, $\sum_{n=0}^{\infty} a_n$ ha 4 possibili comportamenti:

- 1. Converge a $\ell \in \mathbb{R}$ se $S_k \to \ell$
- 2. **Diverge** a $+\infty$ se $S_k \to +\infty$
- 3. **Diverge** a $-\infty$ se $S_k \to -\infty$
- 4. È **indeterminata** se S_k non ha limite

14.4 Serie telescopiche

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - n} = \sum_{n=2}^{\infty} \frac{1}{n - 1} - \frac{1}{n}$$
• $S_2 = a_2 = 1 - \frac{1}{2} = \frac{1}{2}$
• $S_3 = a_2 + a_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$

•
$$S_2 = a_2 = 1 - \frac{1}{2} = \frac{1}{2}$$

•
$$S_3 = a_2 + a_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

•
$$S_4 = a_2 + a_3 + a_4 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 - \frac{1}{4}$$

• $S_k = 1 - \frac{1}{k}$ (dimostrato per induzione)

•
$$S_k = 1 - \frac{1}{k}$$
 (dimostrato per induzione)

$$\lim_{k \to +\infty} S_k = 1 \implies \sum_{n=2}^{\infty} \frac{1}{n^2 - n} \text{ converge a } 1$$

14.5 Serie geometriche

La serie geometrica di ragione $a \in \mathbb{R}$ è

$$\sum_{n=0}^{\infty} a^n$$

Lemma:
$$a^0 + a^1 + \dots + a^k = \frac{a^{k+1}-1}{a-1}$$
 se $a \ne 1$

Dim:

$$(a^{0} + a^{1} + \dots + a^{k}) \cdot a = a^{1} + a^{2} + \dots + a^{k+1} + (a^{0} + a^{1} + \dots + a^{k})(-1) = -a^{0} - a^{1} - \dots - a^{k} = (a^{0} + a^{1} + \dots + a^{k})(a - 1) = -a^{0} + a^{k+1}$$

Poiché $a \neq 1$, posso dividere ed ottengo il teo.

Oss: se
$$a = 1$$
, $a^0 + \dots + a^k = k + 1$.

Dunque si ha

$$S_k = \begin{cases} k+1 & \text{se } a = 1\\ \frac{a^{k+1}-1}{a-1} & \text{se } a \neq 1 \end{cases}$$

 $\lim_{k\to+\infty} S_k = ?$

- 1. Se -1 < a < 1 la serie converge a $\frac{1}{1-a}$
- 2. Se a = 1 vedere esempio 2.
- 3. Se a > 1 diverge a $+\infty$
- 4. Se a < -1 non ha limite

5. Se a = -1 vedere esempio stupido 4

Dimostrazioni nelle slide #view-slide

14.6 Strumenti per lo studio delle serie

Il problema è determinare il carattere di una serie senza poter ricavare un'espressione esplicita per le somme parziali. Per farlo abbiamo:

- Teoremi algebrici
- · Condizione necessaria alla convergenza
- · Serie "note"
- · Criteri di convergenza
 - Serie a termini di segno costante ($a_n \le 0$ def. o $a_n \le 0$ def.)
 - * Radice
 - * Rapporto
 - * Confronto
 - * Confronto asintotico
 - * Condensazione di Cauchy
 - Serie a termini di segno alterno
 - * Leibniz
 - Serie a termini di segno qualunque
 - * Assoluta convergenza

14.6.1 Teoremi algebrici

1. Sia a_n una successione e sia $\lambda \in \mathbb{R}, \lambda \neq 0$. Allora (come operazione in $\overline{\mathbb{R}}$)

$$\sum_{n=0}^{\infty} (\lambda \cdot a_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n \text{ (come operazione in } \overline{\mathbb{R}}\text{)}$$

2. Se a_n, b_n sono successioni, allora (con tutte le attenzioni delle operazioni nella retta reale estesa)

$$\sum_{n=0}^{\infty} (a_n + b_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

3. Attenzione!

$$\sum_{n=0}^{\infty} a_n \cdot b_n \neq \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$$

14.6.2 Condizione necessaria

$$\sum_{n=0}^{\infty} a_n \text{ converge } \implies a_n \to 0$$

Dim: $a_n = S_n - S_{n-1}$. Se $\sum_{n=0}^{\infty} a_n$ converge, allora $S_n \to \ell \in \mathbb{R}$. Quindi $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (S_n - S_{n-1}) = \lim_{n \to +\infty} S_n - \lim_{n \to +\infty} S_{n-1} = \ell - \ell = 0$.

Dunque se a_n non tende a 0, la serie non può convergere (può divergere o essere indeterminata). Se $a_n \to 0$, potrebbe convergere.

14.6.3 Serie note

- 1. Serie geometriche
- 2. Serie armoniche generalizzate

$$\sum_{n=1}^{\infty} \frac{1}{n^a} = \begin{cases} \text{diverge a } + \infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

3. Parenti dell'armonica

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^a} = \begin{cases} \text{diverge a } + \infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

14.6.4 Serie a termini di segno costante

Lemma: sia a_n una successione def. ≥ 0 . Allora la successione $S_k = (a_0 + \dots + a_k)$ delle somme parziali è def. debolmente crescente.

Dim:

$$\exists n_0 \in \mathbb{N} \text{ t.c. } \forall n \geq n_0, \ a_n \geq 0 \implies$$
 $\forall n \geq n_0, \ S_n = a_n + S_n \geq S_{n-1}$

Teo: Se a_n è una succ. def. ≥ 0 , allora $\sum_{n=0}^{\infty} a_n$ ha due comportamenti possibili: converge o diverge a $+\infty$.

Dim: teo sulle successioni monotone applicato a S_k .

Oss: vale lo stesso risultato se $a_n \le 0$ def. In quel caso $\sum_{n=0}^{\infty} a_n$ converge oppure diverge $a - \infty$.

14.6.4.1 Criterio della radice

Sia $a_n \geq 0$ def. Supponiamo che $\sqrt[n]{a_n} \rightarrow \ell \in \overline{\mathbb{R}}$. Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???

Dim: #view-slide

Se $a_n \geq 0$ def. e $\sqrt[n]{a_n} \rightarrow \ell \in \mathbb{R} \cup \{+\infty\}$, allora

- 1. $\ell < 1 \iff \sum a_n$ converge
- 2. $\ell > 1 \iff \sum a_n$ diverge a $+\infty$

Dim 2.: se $\ell > 1$, per il criteri odella radice per successioni, $a_n \to +\infty$. Quindi non è rispettata la condizione necessaria per la convergenza. Poiché al serie è a termini def. ≥ 0 , può solo convergere o divergere a $+\infty$. Dunque $\sum a_n$ diverge a $+\infty$.

Dim 1.:

$$\ell < 1 \implies \varepsilon = \frac{1 - \ell}{2} \implies \ell + \varepsilon < 1 e \varepsilon > 0$$

$$\exists n_0 \in \mathbb{N} \text{ t.c.} \quad \forall n \ge n_0 \quad \sqrt[n]{a_n} \le \ell + \varepsilon < 1$$

$$\implies \forall n \ge n_0 \quad a_n \le (\ell + \varepsilon)^n < 1$$

$$\implies \forall k \ge n_0 \quad S_k = 0$$

Ho dimostrato che $\exists\,M\in\mathbb{R}$ t.c. $S_k\leq M\,\mathrm{def.}$. Ma poiché $a_n\geq 0\,\mathrm{def.}$, S_k è una successione cresente \implies per il teo sulle successioni monotone, $S_k\to L\in\mathbb{R}$ $\implies \sum a_n$ converge.

14.6.4.2 Criterio del rapporto

Sia $a_n>0$ def. Supponiamo che $\frac{a_{n+1}}{a_n} o \ell \in \overline{\mathbb{R}}.$ Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se ℓ < 1 la serie converge
- 3. Se $\ell = 1$???

14.6.4.3 Confronto per serie numeriche

Siano a_n, b_n successioni.

Def: se $0 \le a_n \le b_n$ def., allora:

- 1. $\sum a_n$ diverge a $+\infty \implies \sum b_n$ diverge a $+\infty$
- 2. $\sum b_n$ converge $\implies \sum a_n$ converge

Occhio: ogni altra implicazione è ILLEGALE!

Dim:

A meno di cambiare le serie per un *numero finito* di termini, posso supporre che la disuguaglianza $0 \le a_n \le b_n$ valga per $\forall n \in \mathbb{N}$.

$$S_k^a = a_0 + \dots + a_k$$
 $S_k^b = b_0 + \dots + b_k$

allora $0 \le S_k^a \le S_k^b \ \forall \ k \in \mathbb{N}$.

- 1. Se $S^a_k \to +\infty$, per il confronto tra successioni, $S^b_k \to +\infty$. Ovvero, se $\sum a_n$ diverge
- $a + \infty, \text{ allora } \sum b_n \text{ diverge a} + \infty.$ 2. Se $\sum b_n$ converge, allora $S_k^b \to \ell \in \mathbb{R}$, ma $b_n \ge 0 \ \forall \, n \in \mathbb{N} \implies S_k^b \ \text{è deb. crescente}$ verso $\ell \implies S_k^b \le \ell \ \forall \, k \in \mathbb{N} \implies S_k^a \ \text{deb. crescente} \ \text{e}$ limitata ⇒ convergente.

14.6.4.4 Confronto asintotico per serie numeriche

Siano a_n, b_n successioni con $a_n \ge 0, b_n > 0$ def..

Def: se

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\ell\in (0,+\infty) \qquad \left[\ell\neq 0,\ell\neq +\infty\right]$$

allora $\sum a_n$, $\sum b_n$ hanno lo stesso comportamento.

14.6.4.4.1 Casi limite del confronto asintotico

- Se $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, allora $0\leq a_n\leq b_n$ def. \Longrightarrow applico il confronto
 - 1. $\sum a_n$ diverge a $+\infty \implies \sum b_n$ diverge a $+\infty$
 - 2. $\sum b_n$ converge $\implies \sum a_n$ converge
- Se $\lim_{n\to\infty}\frac{a_n}{b_n}=+\infty$, allora $0\leq b_n\leq a_n$ def. \Longrightarrow applico il confronto
 - 1. $\sum b_n$ diverge a $+\infty \implies \sum a_n$ diverge a $+\infty$
 - 2. $\sum a_n$ converge $\implies \sum b_n$ converge

14.6.4.5 Esempi

$$a_n = \frac{1}{3^n + 1} > 0 \ \forall n \in \mathbb{N}$$

Condizione necessaria: $\lim a_n = 0$

Radice:

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{3^n + 1}}$$

$$= \lim_{n \to +\infty} \frac{1}{\sqrt[n]{3^n}} \cdot \frac{1}{\sqrt[n]{1 + \frac{1}{3^n}}}$$

$$= \frac{1}{3} \implies \sum a_n \text{ converge perchè } \ell < 1$$

Rapporto:

$$\begin{split} \lim_{n\to+\infty} \frac{a_{n+1}}{a_n} &= \lim_{n\to+\infty} \frac{1}{3^{n+1}+1} \cdot \frac{1}{\frac{1}{3^n+1}} \\ &= \frac{1}{3} \implies \sum a_n \operatorname{converge} \operatorname{perchè} \ell < 1 \end{split}$$

Confronto: $0 \le a_n = \frac{1}{3^n + 1} \le \frac{1}{3^n}$

$$\sum \frac{1}{3^n}$$
 è geometrica di ragione $\frac{1}{3} \implies$ converge $\implies \sum \frac{1}{3^n+1}$ converge per il confronto

Confronto asintotico: $a_n = \frac{1}{3^n+1}$, $b_n = \frac{1}{3^n}$

$$\lim_{n\to +\infty} \frac{a_n}{b_n} = \lim_{n\to +\infty} \frac{3^n}{3^n+1} = 1 \in (0,+\infty)$$

$$\Longrightarrow \sum a_n, \sum b_n \text{ hanno lo stesso comp. per il confr. asint.}$$

$$\Longrightarrow \sum b_n \text{ converge perchè geom di rag. } \frac{1}{3}$$

Es: $\sum \frac{3}{n^2+1}$

$$a_n = \frac{3}{n^2 + 1} > 0 \ \forall n \in \mathbb{N} \ \land \ a_n \to 0$$

Occhio: radice e rapporto sono inconcludenti ($\ell = 1$)!

Confronto: $b_n = \frac{3}{n^2} \ge \frac{3}{n^2+1} = a_n$

$$\sum \frac{3}{n^2} = 3 \sum \frac{1}{n^2} \text{ è convergente (arm. gener.)}$$

$$\implies \text{ per il confr. anche } \sum a_n \text{ converge}$$

Confronto asintotico: $b_n = \frac{3}{n^2}$

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\frac{3}{n^2 + 1}}{\frac{1}{n^2}}$$

$$= \lim_{n \to +\infty} \frac{3n^2}{n^2 + 1}$$

$$= 3 \in (0, +\infty)$$

$$\implies \sum b_n \in \sum a_n \text{ hanno stesso carattere}$$

$$\implies \sum a_n \text{ conv. perchè } \sum b_n \text{ conv.}$$

Es:
$$\sum \frac{n^2-7}{n+1}$$

$$a_n=\frac{n^2}{n+1}>0 \ {\rm definitivamente}$$

$$a_n\to +\infty \implies \sum a_n \ {\rm diverge} \ {\rm a} \ +\infty$$

Es:
$$\sum \frac{n^3-8}{3^n}$$

$$a_n = \frac{n^3 - 8}{3^n} > 0$$
 definitivamente $a_n \to +\infty = 0$

Confronto e confronto asintotico sono complicati da usare.

Crit. del rapporto:

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^3 - 8}{3^{n+1}}$$

$$= \frac{1}{3} \cdot \frac{(n+1)^3 - 8}{n^3 - 8}$$

$$\lim_{n \to +\infty} \frac{1}{3} \cdot \frac{(n+1)^3 - 8}{n^3 - 8} = \lim_{n \to +\infty} \frac{1}{3} \cdot \frac{(n+1)^3}{n^3} \cdot \frac{1 - \frac{8}{(n+1)^3}}{1 - \frac{8}{n^3}}$$

$$= \frac{1}{3} < 1 \implies \sum a_n \text{ converge}$$

Es:
$$\sum \frac{\cos^2(n)}{n^2}$$

Es: $\sum \frac{\cos^2(n)}{n^2}$ Occhio: radice e rapporto non funzionano. Confronto asintotico con $\frac{1}{n^2}$ non funziona

$$a_n=rac{\cos^2(n)}{n^2}\geq 0$$
 def. $a_n o 0$ per il teo del confr. a $3:0\leq rac{\cos^2(n)}{n^2}\leq rac{1}{n^2}$

So che $\sum \frac{1}{n^2}$ converge (armonica generalizzata di esponente > 1). Dunque per il confronto tra serie a termini positivi, $\sum a_n$ converge.

Es:
$$\sum \frac{\cos^2(n)}{n}$$

Boh! (per quello che ne sappiamo noi).

Es:
$$\sum \frac{n^2 - n + 2}{\sqrt{n} \cdot n^3 - n + 7}$$

$$a_n = \frac{n^2 - n + 2}{\sqrt{n} \cdot n^3 - n + 7} > 0 \text{ def.}$$

$$a_n = \frac{1}{\sqrt{n} \cdot n} \cdot \frac{1 - \frac{1}{n} + \frac{2}{n^2}}{1 - \frac{1}{\sqrt{n} \cdot n^2} + \frac{7}{\sqrt{n} \cdot n^3}} \to 0$$

Posso applicare il **confronto asintotico** con $b_n=\frac{1}{\sqrt{n\cdot n}}$ e ho

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{1 - \frac{1}{n} + \frac{2}{n^2}}{1 - \frac{1}{\sqrt{n} \cdot n^2} + \frac{7}{\sqrt{n} \cdot n^3}}$$

$$= 1 \in (0, +\infty)$$

$$\implies \sum a_n, \sum b_n \text{ hanno lo stesso carattere}$$

$$\implies \text{converge}$$

Es:
$$\sum \frac{2^n}{n!}$$

$$a_n = \frac{2^n}{n!} > 0 \quad \forall n \in \mathbb{N}$$

Crit. del rapporto:

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{2}{n+1}$$

$$= 0 < 1$$

$$\implies \sum a_n \text{ converge}$$

Es per casa: determinare per quali a > 0 la seguente serie converge

$$\sum \frac{n^a + 2}{n\sqrt{n} + 2n - \sqrt[3]{n} + 8}$$

Per altri esempi consultare le slide #view-slide

14.6.5 Assoluta convergena per serie a termini di segno variabile

Teo: se $\sum |a_n|$ converge, allora $\sum a_n$ converge.

Se voglio studiare $\sum a_n$ con termini a segno variabile, provo a studiare $\sum |a_n|$ che è a termini \geq 0: 1. $\sum |a_n|$ converge $\implies \sum a_n$ converge (per il crit. di conv. assoluta) 2. $\sum |a_n|$ diverge $a + \infty \implies Il criterio fallisce!$

Terminologia: se $\sum |a_n|$ converge, si dice che $\sum a_n$ converge assolutamente.

Es:
$$\sum \frac{\cos(n)}{n^2}$$

Provo a studiare $\sum \frac{|\cos(n)|}{n^2}$.

$$\forall n \qquad 0 \le \frac{|\cos(n)|}{n^2} \le \frac{1}{n^2}$$

Poiché $\sum \frac{1}{n^2}$ converge, $\sum \frac{|\cos(n)|}{n^2}$ converge per il criterio di assoluta convergenza.

14.6.6 Criterio di Leibniz per serie a termini alterni

Sia a_n una successioni dalla forma $a_n=(-1)^n\alpha_n$ tale che

- 1. $\alpha_n \ge 0$ definitivamente
- 2. α_n decrescente definitivamente

3.
$$\alpha_n \rightarrow 0$$

allora $\sum a_n = \sum (-1)^n \alpha_n$ converge.

Occhio: se manca anche solo una delle 3 ipotesi il criterio fallisce!

$$a_n = \frac{(-1)^n}{n} \implies \alpha_n = \frac{1}{n}$$

- $a_n = \frac{1}{n}$ 1. $\alpha_n > 0 \ \forall n \ge 1$ 2. $\alpha_n \ \text{\'e} \ \text{decrescente:} \ \frac{1}{n+1} < \frac{1}{n} \ \forall n$ 3. $\alpha_n \to 0$

Posso dunque applicare Leibniz $\implies \sum \frac{(-1)^n}{n}$ converge $| \text{Oss: } \sum \frac{(-1)^n}{n} \text{ non converge } \text{assolutamente } \text{cioè } \sum \left| \frac{(-1)^n}{n} \right| \text{ diverge.}$

Copiare anche altro esempio #todo-uni

15 Limiti di Funzione

 $A \subseteq \mathbb{R}, f : A \to \mathbb{R}$ (A è di solito un'unione di intervalli). Voglio definire $\lim_{x \to x_0} f(x)$ $(x \in \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}).$

Per le successioni, facevamo i limiti solo per $n \to +\infty$, ora abbiamo 3 casi da distinguere:

- 1. $\lim_{x\to+\infty} f(x)$
- 2. $\lim_{x\to-\infty} f(x)$
- $3. \lim_{x \to x_0} f(x)$

15.1 $\lim_{x\to +\infty} f(x)$

Possono esserci quattro risultati per $\lim_{x\to+\infty} f(x)$:

- 1. $\ell \in \mathbb{R}$: Si dice che $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R}$ t.c. $\ell \varepsilon \leq f(x) \leq \ell + \varepsilon \ \forall x \geq k$
 - 1. $\lim_{x \to +\infty} f(x)o = \ell^+$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R}$ t.c. $\ell < f(x) \le \ell + \varepsilon \ \forall x \ge k$
 - 2. $\lim_{x\to +\infty} f(x)o = \ell^-$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R} \ \text{t.c.} \ \ell \varepsilon \le f(x) < \ell \ \forall x \ge k$
- 2. $+\infty$: Si dice che $\lim_{x\to +\infty} f(x) = +\infty$ se $\forall M \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \geq M \ \forall x \geq k$
- 3. $-\infty$: Si dice che $\lim_{x\to +\infty} f(x) = -\infty$ se $\forall m \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \leq m \ \forall x \geq k$
- 4. **N.E.**: Si dice che $\nexists \lim_{x \to +\infty} f(x)$ se non è nessuno degli altri casi

15.2 $\lim_{x\to -\infty} f(x)$

Possono esserci quattro risultati per $\lim_{x\to-\infty} f(x)$:

- 1. $\ell \in \mathbb{R}$: Si dice che $\lim_{x \to -\infty} f(x) = \ell \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R}$ t.c. $\ell \varepsilon \leq f(x) \leq \ell + \varepsilon \ \forall x \leq k$
 - 1. $\lim_{x \to -\infty} f(x)o = \ell^+$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R} \ \text{t.c.} \ \ell < f(x) \le \ell + \varepsilon \ \forall x \le k$
 - 2. $\lim_{x\to-\infty} f(x)o = \ell^- \text{ se } \forall \, \varepsilon > 0 \, \exists \, k \in \mathbb{R} \, \text{t.c. } \ell \varepsilon \leq f(x) < \ell \, \forall \, x \leq k$
- 2. $+\infty$: Si dice che $\lim_{x\to-\infty} f(x) = +\infty$ se $\forall M \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \geq M \ \forall x \leq k$
- 3. $-\infty$: Si dice che $\lim_{x\to-\infty} f(x) = -\infty$ se $\forall m \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \leq m \ \forall x \leq k$
- 4. N.E.: Si dice che $\nexists \lim_{x \to -\infty} f(x)$ se non è nessuno degli altri casi

15.3 $\lim_{x\to x_0} f(x)$

Possono esserci quattro risultati per $\lim_{x\to x_0} f(x)$:

- 1. $\ell \in \mathbb{R}$: Si dice che $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{t.c.} \ \ell \varepsilon \leq f(x) \leq \ell + \varepsilon \text{ se } 0 < |x x_0| < \delta \ (\forall x \in [x_0 \delta, x_0 + \delta] \setminus \{x_0\})$
 - 1. $\lim_{x \to x_0} f(x)o = \ell^+ \text{ se } \forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \text{t.c. } \ell < f(x) \leq \ell + \varepsilon \, \text{se } 0 < |x x_0| < \delta$ $(\forall \, x \in [x_0 \delta, x_0 + \delta] \setminus \{x_0\})$
 - 2. $\lim_{x \to x_0} f(x)o = \ell^- \operatorname{se} \forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \text{t.c.} \, \ell \varepsilon \leq f(x) < \ell \operatorname{se} 0 < |x x_0| < \delta$ $(\forall \, x \in [x_0 \delta, x_0 + \delta] \setminus \{x_0\})$
- 2. $+\infty$: Si dice che $\lim_{x \to x_0} f(x) = +\infty$ se $\forall M \in \mathbb{R} \ \exists \delta > 0 \ \text{t.c.} \ f(x) \ge M \text{se } 0 < |x x_0| < \delta \ (\forall x \in [x_0 \delta, x_0 + \delta] \setminus \{x_0\})$

3. $-\infty$: Si dice che $\lim_{x\to x_0} f(x) = -\infty$ se $\forall m \in \mathbb{R} \ \exists \, \delta > 0 \text{ t.c. } f(x) \leq m \text{ se } 0 < |x-x_0| < \delta \, (\forall \, x \in [x_0-\delta,x_0+\delta] \setminus \{\, x_0\, \})$

15.3.1 $\lim_{x\to x_0^+} f(x)$

 $\lim_{x\to x_0^+} f(x)$ vuol dire x tende a x_0 da destra. Ciò significa che la condizione è se $x_0 < x \le x_0 + \delta (\forall x \in (x_0, x_0 + \delta])$.

15.3.2
$$\lim_{x \to x_0^-} f(x)$$

 $\lim_{x \to x_0^-} f(x)$ vuol dire x tende a x_0 da sinistra. Ciò significa che la condizione è se $x_0 - \delta \le x < x_0 \ (\forall \ x \in [x_0 - \delta, x_0))$.

Occhio: al limite non frega nulla del valore di $f(x_0)$

15.4 Note tecniche

Quando possiamo calcolare il limite $\lim_{x\to x_0} f(x)$ ($x\in \overline{\mathbb{R}}$)? Quando x_0 è **punto di accumulazione** del dominio di f.

 $f:A\to\mathbb{R},A$ è unione di intervalli e semirette *localmente finita*, cioè vicino a un qualunque punto di \mathbb{R} trovo un numero finito di intervalli che compongono A.

Contresempio:

$$f(x) = \frac{1}{\sin\left(\frac{1}{x}\right)}$$

$$A = \left(-\infty, -\frac{1}{\pi}\right) \cup \left(-\frac{1}{\pi}, -\frac{1}{2\pi}\right) \cup \dots \cup \left(\frac{1}{2\pi}, \frac{1}{\pi}\right) \cup \left(\frac{1}{\pi}, +\infty\right)$$

 x_0 è un **punto interno ad** A se sta dentro ad uno degli intervalli che compongono A (*gli esterni non vanno bene*).

 x_0 è un **punto di accumulazione di** A se è un punto interno o è un estremo di un intervallo o semiretta che compone A.

Es: $f:(0,+\infty)\to\mathbb{R}$ $f(x)=\ln x$.

Posso calcolare:

- $\lim_{x \to x_0} f(x)$ $\forall x_0 > 0$ $\lim_{x \to 0^+} f(x)$ $\lim_{x \to +\infty} f(x)$

15.5 Caratterizzazione del limite per succesioni

Teo: sia $f:A\to\mathbb{R}$ una funzione e sia $x_0\in\overline{\mathbb{R}}$ un punto di acc. di A. Allora $\lim_{x\to x_0} f(x) = \ell \in \overline{\mathbb{R}} \iff \forall a_n \text{ successione con: } a_n \in A \ \forall n \in \mathbb{N}, a_n \neq x_0 \text{ def. }, a_n \to x_0 \text{ def. } a$ x_0 si ha $f(a_n) \to \ell$

Conseguenza: tutti i risultati generali sulle successioni valgono anche per i limiti di funzione:

- 1. Unicità del limite
- 2. Teoremi algebrici (e forme indeterminate)
- 3. Teoremi di confronto a 2 e a 3

Oss: $\lim_{x\to x_0^+}$ e $\lim_{x\to x_0^-}$ si ottengono usando successioni a_n tale che $a_n\to x_0^+$ o e

16 Tecniche di Calcolo dei Limiti

- 1. Continuità
- 2. Teoremi algebrici
- 3. Teoremi di confronto a 2 e a 3
- 4. Cambi di variabile
- 5. Limiti notevoli
- 6. Criterio funzioni successioni
- 7. Confronto tra ordini di infiniti (gerarchia degli infiniti)

16.1 Continuità

Def: $x_0 \in A$ punto di accumulazione, $f: A \to \mathbb{R}$ si dice **continua** in x_0 se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Una funzione è continua su A se è continua in x_0 per ogni $x_0 \in A$.

Oss: se $\lim_{x\to x_0^+} f(x) = f(x_0)$, f si dice continua in x_0 da destra. Se $\lim_{x\to x_0^-} f(x) = f(x_0)$, f si dice continua in x_0 da sinistra.

16.1.1 Come trovare funzioni continue

Tutte le funzioni elementari (potenze, esponenziali, logaritmi, radici, trig., trig. inverse) e quelle ottenute da loro tramite operazioni algebriche e composizione sono continue dove non hanno *problemi burocratici* di definizione (denominatore = 0, radice < 0, ...).

16.2 Limiti notevoli

I limiti notevoli sono limiti che si dimostrano una volta per tutte *e poi si ricordano per la vita*!

16.2.1 Patriarchi

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

16.2.2 Prima generazione

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

16.2.3 Seconda generazione

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \quad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1 \quad \lim_{x \to 0^+} x \ln x = 0$$

$$\lim_{x\to 0}\frac{\arcsin x}{x}=1$$

16.3 Cambi di variabile

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right)^{x^2}$$

 $\lim_{x\to 0} \left(1+\frac{1}{x^2}\right)^{x^2}$ Pongo $x^2=y$. Se $x\to 0$, allora $y\to 0$ ($\tan x$ è continua in x=0).

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right)^{x^2} = \lim_{x \to 0} \left(1 + \frac{1}{y} \right)^y = e$$

| Es: copiare #todo-uni

17 O-piccolo e Equivalenza asintotica

Siano f(x), g(x) funzioni, $x_0 \in \overline{\mathbb{R}}$ in cui posso calcolare i loro limiti.

Def: si dice che f(x) è **o-piccolo** di g(x) per $x \to x_0$ e si scrive f(x) = o(g(x)) per $x \to x_0$ se esiste una funzione $\omega(x)$ tale che

•
$$f(x) = g(x) \cdot \omega(x)$$

•
$$\lim x \to x_0 \omega(x) = 0$$

Cioè f(x) = g(x) · [roba che tende a 0 in x_0].

Def quasi equivalente: se posso dividere per g(x) vicino a x_0 (cioè se $\exists \delta > 0$ t.c. $g(x) \neq 0$ $0 \ \forall \ x \in [x_0 - \delta, x_0 + \delta] \setminus \{x_0\}$), allora f(x) = o(g(x)) per $x \to x_0$ se e solo se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

Questo permette di esprimere le gerarchie degli infiniti.

Es:
$$x^2 = o(x) \text{ per } x \to 0$$

Es:
$$x^2 = o(x)$$
 per $x \to 0$
Verifica: $x^2 = x \cdot x$ ($x = \omega(x) \to 0$)

Terminologia: f(x) si dice **infinitesima** per $x \to x_0$ se il suo limite è 0.

Oss:
$$\lim_{x\to x_0} f(x) = 0 \iff f(x) = o(1) \quad x\to x_0$$

17.1 Proprietà algebriche degli o-piccoli

Se $f_1 = o(g)$, $f_2 = o(g)$ per $x \to x_0$, allora

1.
$$f_1 \pm f_2 = o(g)$$

2.
$$a \cdot f_1 = o(g)$$
 $a \in \mathbb{R}$

3.
$$f_1 \cdot f_2 = o(g^2)$$

4.
$$\frac{f_1}{f_2}$$
 non funziona!

1.
$$o(f_1) \pm o(f_2) = o(f_1 + f_2)$$

2.
$$o(a \cdot f_1) = o(f_1)$$

3.
$$o(f_1) \cdot o(f_2) = o(f_1 \cdot f_2)$$

4.
$$f_1 \cdot o(f_2) = o(f_1 \cdot f_2)$$

5.
$$o(f_1 + o(f_1)) = o(f_1)$$

17.2 Transitività degli o-piccoli

$$f = o(g), g = o(h)$$
 per $x \to x_0 \implies f = o(h)$ per $x \to x_0$

17.3 Limiti notevoli espressi in o-piccoli

$$\sin x = x + o(x) \qquad \text{per } x \to 0$$

$$\tan x = x + o(x) \qquad \text{per } x \to 0$$

$$e^x = 1 + x + o(x) \qquad \text{per } x \to 0$$

$$\ln(1+x) = x + o(x) \qquad \text{per } x \to 0$$

$$(1+x)^{\alpha} = 1 + \alpha x + o(x) \qquad \text{per } x \to 0$$

$$\cos x = 1 + \frac{x^2}{2} + o(x^2) \qquad \text{per } x \to 0$$

17.4 Equivalenza asintotica

Def: si dice che f(x) e g(x) sono **asintoticamente equivalenti per** $x \to x_0$ e si scrive $f(x) \sim g(x)$ per $x \to x_0$ se esiste

•
$$f(x) = \omega(x) \cdot g(x)$$

•
$$\lim_{x\to x_0} \omega(x) = 1$$

Definizione quasi equivalente: $f \sim g \operatorname{per} x \to x_0 \operatorname{se} \operatorname{e} \operatorname{solo} \operatorname{se} \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$

| Es:
$$\sin x \sim x \operatorname{per} x \to x_0$$

Es:
$$\cos x \sim 1 \text{ per } x \rightarrow x_0$$

 $\cos x - 1 \sim -\frac{x^2}{2} \text{ per } x \rightarrow x_0$

18 Differenziabilità e Derivabilità

Domanda generale: data una funzione f(x) e $x_0 \in \mathbb{R}$ in cui ha senso fare il limite di f(x), quando posso trovare $a \in \mathbb{R}$, tale che

$$f(x) = f(x_0) + a \cdot (x - x_0) + o((x - x_0))$$

?

Es

$$f(x) = \sin x$$
 $x_0 = 0$ $\implies a = 1$
 $f(x) = \ln x$ $x_0 = 1$ $\implies a = 1$
 $f(x) = \sqrt[3]{1+x}$ $x_0 = 0$ $\implies a = \frac{1}{3}$

Sto cercando la retta che approssima meglio il grafico di f(x) vicino a x_0 (Migliore approssimazione lineare).

Def: f(x) è **differenziabile** in $x_0 \in \mathbb{R}$ se esiste $a \in \mathbb{R}$ tale che

$$f(x_0 + h) = f(x_0) + a \cdot h + o(h)$$
 per $h \to 0$

In tal caso, la retta $y = f(x_0) + a \cdot (x - x_0)$ si dice **retta tangente** al grafico di f(x) nel punto $(x_0, f(x_0))$.

Come calcolare a?

Oss: f(x) è diffenziabile in $x_0 \iff \exists a \in \mathbb{R} \text{ t.c. } f(x_0 + h) = f(x_0) + a \cdot h + o(h) \text{ con}$ $h \to 0 \iff \exists a \in \mathbb{R} \text{ t.c. } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = a.$

Def: f(x) è derivabile in x_0 se il limite $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ esiste finito (cioè $\in \mathbb{R}$).

Teo: fo è differenziabile in $x_0 \iff f$ è derivabile in x_0 .

Terminologia:

- $\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}$ si dice **rapporto incrementale**
- il limite $\lim_{h\to 0} \frac{f(x_0+hf(x_0))}{h}$, quando esiste finito, si denota con $f'(x_0)$ oppure $\frac{df}{dx}(x_0)$ oppure $f^{(1)}(x_0)$
- f'(x) è la **derivata** di f(x) in x_0 e la funzione f'(x) è la **derivata** di f(x)

La retta tangente al grafico nel punto $(x_0, f(x_0))$ è $y = f(x_0) + f'(x_0) \cdot (x - x_0)$

| Oss:
$$f(x) - f(x_0) \sim f'(x_0) \cdot (x - x_0)$$

18.1 Esempi di non derivabilità

1. f(x) = |x| non è derivabile in $x_0 = 0$

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to +0} \frac{f(h) - 0}{h} = \lim_{h \to 0} \frac{|h|}{h} \text{ N.E.}$$

2. $f(x) = \sqrt[3]{x}$ non è derivabile in $x_0 = 0$

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to +0} \frac{f(h) - 0}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h}}{h} = +\infty \notin \mathbb{R}$$

Teo: f derivabile in $x_0 \implies f$ continua in x_0

Dim: f derivabile in $x_0 \implies \exists a \in \mathbb{R}$ tale che $f(x) = f(x_0)o + a \cdot (x - x_0) + o(x - x_0)$ per $x \to x_0 \implies \lim_{x \to x_0} f(x) = f(x_0) \implies f$ continua in x_0 .

18.2 Derivate delle funzioni elementari

1.

$$f(x)$$
 costante

$$f'(x) = 0$$

2.

$$f(x) = x^{\alpha}$$
$$f'(x) = x^{\alpha - 1} \cdot \alpha$$

3.

$$f(x) = e^x$$
$$f'(x) = e^x$$

4.

$$f(x) = \sin x$$
$$f'(x) = \cos x$$

5.

$$f(x) = \cos$$
$$f'(x) = -\sin x$$

6.

$$f(x) = \ln x$$
$$f'(x) = \frac{1}{x}$$

19 Regole di derivazione

Siano f(x), g(x) due funzioni derivabili in x_0 :

•
$$S(x) = f(x) \pm g(x) \implies S'(x_0) = f'(x_0) \pm g'(x_0)$$

•
$$P(x) = f(x) \cdot g(x) \implies P'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

• Se
$$g(x) \neq 0$$
 per $x \in (x_0 - \delta, x_0 + \delta)$, $R(x) = \frac{1}{g(x)} \implies R'(x_0) = -\frac{g'(x_0)}{(g(x_0))^2}$

• Se $g(x) \neq 0$ per $x \in (x_0 - \delta, x_0 + \delta)$, $Q(x) = \frac{f(x)}{g(x)} \implies Q'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{(g(x_0))^2}$

| Dim: sulle slide #view-slide

Es: $f(x) = \tan x$

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

$$\implies f'(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

| Oss (caso particolare): $(c \cdot f(x))' = c \cdot f'(x) \quad \forall c \in \mathbb{R}$.

19.1 Derivata della composizione

Siano f(x), g(x) funzioni per cui abbia senso scrivere la composizione C(x) = f(g(x)). Inoltre chiediamo che

- g(x) sia derivabile in x_0
- f(x) si derivabile in $g(x_0)$

$$C'(x_0) = f'(g(x_0)) \cdot g'(x_0)$$

Aggiungere esempio $f(x) = 2^x$

19.2 Derivata della funzione inversa

Se f(x) e g(x) sono inverse l'una dell'altra e se f è derivabile in $g(x_0)$, allora

$$f(g(x)) = x$$

$$\implies f'(g(x_0)) \cdot g'(x_0) = 1$$

$$\implies g'(x_0) = \frac{1}{f'(g(x_0))}$$

Ovvero

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Es:
$$f(x) = e^x$$
, $g(x) = \ln x$

$$f'(x) = e^x \implies (\ln x)' = \frac{1}{x}$$

Es:

$$(\arctan x)' = \frac{1}{1+x^2}$$

Es:

$$(\arcsin x)' = \sqrt{1 - x^2}$$

Es:

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

19.3 Trucco dell'esponenziale

$$[f(x)]^{g(x)} = e^{g(x) \cdot \ln f(x)}$$

$$\implies ([f(x)]^{g(x)})' = e^{g(x) \cdot \ln f(x)}$$

. . .

| Es:
$$f(x) = x^x = e^{x \ln x}$$

19.4 Teorema di L'Hopital

Siano f(x), g(x) funzioni derivabili vicino a x_0 . Suppongo che

- 1. $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ sia forma indet. $\frac{0}{0}$ o $\frac{\infty}{\infty}$
- 2. g'(x) non si annulli vicino a x_0
- 3. $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \in \overline{\mathbb{R}}$

Allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$ (lo stesso del punto 3.).

Oss: se $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ non esiste, allora FAIL.

20 L'Hopital e Taylor

20.1 Esempi di applicazione del teo. di L'Hopital

Es 1.:

$$\lim_{x \to 0^+} x \ln x = [0 \cdot (-\infty)] = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} =_H \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0^-$$

Es 2.:

$$\lim_{x \to +\infty} x \left(\frac{\pi}{2} - \arctan x \right) = \lim_{x \to +\infty} \frac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}} = \left[\frac{0}{0} \right]$$
$$=_{H} \lim_{x \to +\infty} \frac{-\frac{1}{1+x^{2}}}{-\frac{1}{x^{2}}} = \lim_{x \to +\infty} \frac{x^{2}}{o} x^{2} + 1$$

Es 3.:

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \left[\frac{0}{0}\right] =_H \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = -\frac{1}{6}$$

20.2 Formula di Taylor con centro in $x_0 = 0$

Sia f(x) una funzione e sia $n \in \mathbb{N}$. Sotto opportune ipotesi, esiste un polinomio Pn(x) di grado $\leq n$ tale che

$$f(x) = Pn(x) + o(x^n)$$
 per $x \to 0$

Inoltre

$$Pn(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2 + \frac{f'''(0)}{6} \cdot x^3 + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^n$$

è il polinomio di Taylor di f(x) di grano n centrato in 0.

Notazione: data f(x), se f'(x) esiste per ogni x in un intervallo contenente x_0 , posso calcolare la derivata di f'(x) in x_0 e così via.

Opportune ipotesi: $f(x), f'(x), ..., f^{(n-1)}(x)$ devono esistere in un intervallo contenente 0 ed inoltre deve esistere $f^{(n)}(0)$.

Resto: la differenza f(x) - Pn(x) si dice resto. La formula $f(x) = Pn(x) + o(x^n)$ $x \to 0$ si dice formula di Taylor con resto di Peano.

20.3 Sviluppi di Taylor

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{7!} + \dots + \frac{(-1)^k \cdot x^{2k+1}}{(2k+1)!} + o(x^2k)$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{6!} + \dots + \frac{(-1)^k \cdot x^{2k}}{(2k)!} + o(x^2k)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n+1} \cdot x^n}{n} + o(x^n)$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{(-1)^k \cdot x^{2k+1}}{2k+1} + o(x^{2k+1})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + \dots + \frac{\alpha(\alpha-1)(\dots)(\alpha-n+1)}{n!}x^n$$

Es

$$\lim_{x \to 0} \frac{\sin x - x \cos x}{x \ln(1 + x^2)}$$

Visto che il denominatore è asintotico a $x^3+o(x^3)$, utilizzo Taylor fino al terzo grado per il numeratore

$$\sin x - x \cos x \sim \frac{x^3}{3} + o(x^3)$$

dunque

$$\lim_{x \to 0} \frac{\frac{x^3}{3} + o(x^3)}{x^3 + o(x^3)} = \frac{1}{3}$$

Es: Taylor per $\tan x$ in x = 0

$$\tan x = \frac{\sin x}{\cos x}$$

$$= \frac{x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)}{1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6)}$$

$$= \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)\right) \cdot \frac{1}{1 - \left(\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6)\right)}$$

Riscriviamo il denominatore come 1-t

Finire con le slide #view-slide #todo-uni

Mi sono perso...

Dimostrazione formula di Taylor:

Troppa roba, guardati le slide #view-slide

20.4 Taylor con centro qualsiasi

Sia f(x) una funzione derivabile abbastanza volte in un intervallo contenente x_0 . Allora esiste un polinomio Pn(x) di grano $\leq n$ tale che

$$f(x) = Pn(x - x_0) + o((x - x_0)^n)$$
 per $x \to x_0$

dove

$$Pn(x - x_0) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

21 Funzioni continue

Def: $A \subseteq \mathbb{R}, x_0 \in A, f : A \to \mathbb{R}$. Si dice che f(x) è continua in x_0 se

- 1. x_0 è un punto *isolato* (un punto che non ha vicino nessun altro punto) di A (ovvero se $\exists \varepsilon > 0$ t.c. $(x_0 \varepsilon, x_0 + \varepsilon) \cap A = \{x_0\}$).
- 2. $\lim_{x \to x_0} f(x) = f(x_0)$

Metateorema: le funzioni elementari, le loro somme, differenze, prodotti, quozienti e composizioni sono continue dove definitie.

Somme, prodotti, quozienti e composizioni di funzioni continue sono continue dove definite.

21.1 Tipi di discontinuità

f non continua in x_0 .

1.: x_0 è una discontinuità eliminabile se

$$\lim_{x \to x_0} f(x) = \ell \neq f(x_0) \qquad \ell \in \mathbb{R}$$

È possibile eliminarla con

$$\tilde{f}(x) = \begin{cases} f(x) & x \neq x_0 \\ \ell & x = x_0 \end{cases}$$

2.: x_0 è una discontinuità di **salto** se

$$\lim_{x \to x_0^+} f(x) = \ell_1 \neq \lim_{x \to x_0^-} f(x) = \ell_2 \qquad \ell_1, \ell_2 \in \mathbb{R}$$

3.: x_0 è una discontinuità di **2ª specie** negli altri casi.

Def: $f: A \setminus \{x_0\} \to \mathbb{R}$, se $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$, si dice che f è prolungabile con continuità in x_0 e il suo prolungamento è

$$\tilde{f}(x) = \begin{cases} f(x) & x \neq x_0 \\ \ell & x = x_0 \end{cases}$$

21.2 Discontinuità delle funzioni monotone

 $f:A
ightarrow \mathbb{R}$ monotona crescente, $x_0 \in \overline{\mathbb{R}}$ pt. di accumulazione di A. Allora

- 1. $\lim_{x \to x_0^+} f(x) = \inf\{f(x) : x \in A, x > x_0\}$
- 2. $\lim_{x \to x_0^-} f(x) = \sup\{f(x) : x \in A, x < x_0\}$

Corollario: $-\infty < \lim_{x \to x_0^-} f(x) \le f(x_0) \le \lim_{x \to x_0^+} f(x) < +\infty \implies$ tutte le discontinuità di una funz. monotona sono a salto.

Def: $f:A\to\mathbb{R}$ è continua in A (o su A) se è continua per ogni $x\in A$. $\mathscr{C}^0(A)$ è l'insieme delle funzioni $f:A\to\mathbb{R}$ continue su A.

Teorema di permanenza del segno: se $f:A\to\mathbb{R}$ è continua in $x_0\in A$ e $f(x_0)>0$, allora $\exists\, \varepsilon>0$ t.c. f(x)>0 $\forall\, x\in(x_0-\varepsilon,x_0+\varepsilon)$.

Teorema degli zeri: sia $f:[a,b]\to\mathbb{R}$ continua. Se $f(a)\cdot f(b)<0$ allora $\exists c\in(a,b)$ tale che f(c)=0.

Se i limiti inf e sup hanno segno opposto, la funzione si annulla in almeno un punto.

Teorema dei valori intermedi: (corollario del teo. degli zeri) $f:[a,b] \to \mathbb{R}$ continua. Se $f(a) \le \lambda \le f(b)$ (oppure $f(b) \le \lambda \le f(a)$) allora $\exists c \in [a,b]$ tale che $f(c) = \lambda$. **Corollario:** $f,g:[a,b] \to \mathbb{R}$ continue tali che f(a) < g(a) e g(b) < f(b) allora

 $\exists c \in (a, b) \text{ tale che } f(c) = g(c)$

22 Studio locale di funzioni

L'obiettivo è capire come è fatta una funzione (cioè come è fatto il suo grafico) vicino ad un punto x_0 .

 $\mathscr{C}^k(A)$ sono funzioni $f:A\to\mathbb{R}$ derivabili k volte in ogni punto di A e tali che la derivata k-esima sia continua.

Primo teorema di monotonia: sia $f:A\to\mathbb{R}$ derivabile in $x_0\in A$, con $f'(x_0)>0$, allora $\exists\,\delta>0$ tale che

- $f(x) > f(x_0) \quad \forall x \in (x_0, x_0 + \delta)$
- $f(x) < f(x_0) \quad \forall x \in (x_0 \delta, x_0)$

Esempio:

$$f(x) = \begin{cases} x + 1000 \cdot x^2 \sin\left(\frac{1}{x}\right) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

- 1. $f(x) \in \mathcal{C}^0(\mathbb{R})$ continua
- 2. fè derivabile in x = 0 (f'(0) = 1)
- 3. fè derivabile anche in $x \neq 0$ (ma $\lim_{x \to 0} f'(x)$ N.E.) dunque $f(x) \notin \mathscr{C}^1(\mathbb{R})$ perchè la derivata non è continua
- 4. $f'(0) = 1 > 0 \implies \text{per il teo di monotonia } 1., \exists \delta > 0 \text{ tale che}$
 - f(x) > 0 se $0 < x < \delta$
 - $f(x) < 0 \text{ se } -\delta < x < 0$

f(x) non è crescente in nessun intervallo contenente 0.

Variante ovvia: se $f'(x_0) < 0$ allora $\exists \delta > 0$ tale che

- $f(x) < f(x_0) \quad \forall x \in (x_0, x_0 + \delta)$
- $f(x) > f(x_0) \quad \forall x \in (x_0 \delta, x_0)$

Invece se $f'(x_0) = 0$ abbiamo 5 possibilità:

- 1. Minimo locale: $\exists \delta > 0$ t.c. $\forall x \in (x_0 \delta, x_0 + \delta)$ $f(x) \ge f(x_0)$
- 2. Massimo locale: $\exists \delta > 0$ t.c. $\forall x \in (x_0 \delta, x_0 + \delta)$ $f(x) \le f(x_0)$
- 3. Flesso ascendente a tangente orizzontale: $\exists \delta > 0 \text{ t.c. } f(x) \leq f(x_0) \ \forall x \in (x_0 \delta, x_0) \quad f(x) \geq f(x_0) \ \forall x \in (x_0, x_0 + \delta)$
- 4. Flesso discendente a tangente orizzontale: $\exists \delta > 0 \text{ t.c. } f(x) \geq f(x_0) \ \forall x \in (x_0 \delta, x_0) \quad f(x) \leq f(x_0) \ \forall x \in (x_0, x_0 + \delta)$
- 5. Nessuna delle precedenti

Criterio delle derivate successive: se $f'(x_0) = 0$ cerco la prima derivata che non si annulla in x_0 .

Se esiste $k \in \mathbb{N}, k \geq 2$ tale che f(x) è derivabile k volte in x_0 e $f'(x_0) = \cdots = f^{(k-1)}(x_0) = 0$ ma $f^{(k)}(x_0) \neq 0$ allora

- 1. Se $k \in pari$ e $f^{(k)}(x_0) > 0 \implies$ minimo locale
- 2. Se $k \grave{e} pari e f^{(k)}(x_0) < 0 \implies$ massimo locale
- 3. Se $k \ \dot{e} \ dispari \ e \ f^{(k)}(x_0) > 0 \implies$ flesso ascendente a tangente orizzontale
- 4. Se k è dispari e $f^{(k)}(x_0) < 0 \implies$ flesso discendente a tangente orizzontale

Il caso 5. può succedere solo se $f^{(k)}(x_0) = 0 \ \forall k \ge 2$ oppure se f ammette di essere derivabile prima di trovare una derivata $\ne 0$.

La dimostrazione viene lasciata come esercizio al lettore.

Dunque f(x) si comporta come il primo termine non banale del proprio sviluppo di Taylor.

Esempio: $\sin(x^{200}) = x^{200} + o(x^{200}) \implies x = 0$ è un minimo locale.

Esempio: $e^{\tan(x^2)} = 1 + \tan(x^2) + o(\tan(x^2)) = 1 + x^2 + o(x^2) \implies x = 0$ è un minimo locale.

23 Massimi e Minimi

$$f: A \to \mathbb{R}$$

- Il massimo di f su A è $M = \max_A f = \max \{ f(x) \mid x \in A \}$
- Il **minimo** di f su A è $m = \min_A f = \min \{ f(x) \mid x \in A \}$
- Il **punto di massimo** è $x \in A$ tale che f(x) = M
- Il **punto di minimo** è $x \in A$ tale che f(x) = m

Oss: massimo e minimo di f su A se esistono sono unici, mentre i punti di massimo e di minimo possono essere quanti vogliono.

23.1 Teorema di Weierstrass

Sia $f:[a,b] \to \mathbb{R}$ **continua**, allora f ammette massimo e minimo su [a,b] (non (a,b)!).

23.2 Ricerca dei punti di Max/Min

 $f:[a,b] \to \mathbb{R}$ continua. Per W. so che esistono \max e \min . I punti di massimo e minimo vanno cercati in 3 tipologie:

- Stazionari interni: $x_0 \in (a,b)$ tali che $f'(x_0) = 0$
- Singolari interni: $x_0 \in (a,b)$ tali che f non è derivabile in x_0
- **Bordo:** $x_0 = a, x_0 = b$

23.3 Teorema di Fermat

 $f:A\to\mathbb{R}$ derivabile in x_0,x_0 punto di massimo o minimo locale, allora $f'(x_0)=0$.

23.4 Teorema di Rolle

Teorema di Rolle: sia $f:[a,b] \to \mathbb{R}$ tale che

- 1. f(x) continua su [a,b]
- 2. f(x) derivabile su (a, b)

3.
$$f(a) = f(b)$$

Allora $\exists c \in (a, b)$ tale che f'(c) = 0.

Dim:

- 1. Per 1., grazie al teo. di Weierstrass, f(x) ha un massimo e un minimo in [a,b]. Siano x_1 pt. di massimo e x_2 pt. di minimo.
- 2. Per 2., non ci sono pt. singolari \implies se uno dei due punti è interno ad (a,b), abbiamo trovato c.
- 3. Altrimenti, x_1, x_2 sono estremi di [a, b], ma allora per 3., $f(x_1) = f(x_2) \implies f$ è costante $\implies \forall c \in (a, b), f'(c) = 0$.

Oss:

- 1. c non è detto che sia unico
- 2. f deve essere derivabile su tutto (a, b)

23.5 Teorema di Cauchy

Teorema di Cauchy: siano $f:[a,b] \to \mathbb{R}, g:[a,b] \to \mathbb{R}$ tali che

- 1. f, g continue su [a, b]
- 2. f, g derivabili su (a, b)

allora $\exists c \in (a, b)$ tale che

$$(f(a) - f(b)) \cdot g'(c) = (g(a) - g(b)) \cdot f'(c)$$

Se inoltre

3.
$$g'(x) \neq 0 \ \forall x \in (a, b)$$

allora

$$g(a) \neq g(b) e \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Dim: considero la funzione

$$\varphi(x) = (f(a) - f(b)) \cdot g(x) - (g(a) - g(b)) \cdot f(x)$$

allora

- 1. $\varphi(x)$ è continua su [a,b]
- 2. $\varphi(x)$ è derivabile su (a,b)
- 3. $\varphi(a) = \varphi(b) \implies \text{per Rolle } \exists c \in (a,b) \text{ tale che } \varphi'(c) = 0 \implies \exists c \in (a,b) \text{ tale } \text{che } (f(a) f(b)) \cdot g'(c) (g(a) g(b)) \cdot f'(c) = 0 \text{ ovvero } (f(a) f(b)) \cdot g'(c) = (g(a) g(b)) \cdot f'(c)$

Se poi $g'(a) \neq 0 \ \forall x \in (a, b)$, allora per Rolle $g(a) \neq g(b) \implies$

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

23.6 Teorema di Lagrange

Teorema di Lagrange: sia $f:[a,b] \to \mathbb{R}$ tale che

- 1. f(x) continua su [a,b]
- 2. f(x) derivabile su (a, b)

allora $\exists c \in (a, b)$ tale che $f(a) - f(b) = f'(c) \cdot (a - b)$

23.7 Teorema di monotonia 2

Secondo teorema di monotonia: sia $f:[a,b] \to \mathbb{R}$, continua su [a,b], derivabile su (a,b). Allora

- 1. f debolmente crescente su $[a,b] \implies f'(x) \ge 0 \ \forall x \in (a,b)$
- 2. $f'(x) \ge 0 \ \forall x \in (a,b) \implies f$ debolmente crescente su [a,b]
- 3. $f'(x) > 0 \ \forall x \in (a,b) \implies f$ strettamente crescente su [a,b]

Oss:

- 1. Stessa cosa con deb./strett. decrescente e $f'(x) < 0/f'(x) \le 0$
- 2. f può essere strettamente crescente, ma avere punti a derivata nulla

23.8 Teorema de L'Hopital

Teorema de L'Hopital: ha vari casi

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

a seconda che $x_0 \in \mathbb{R}$, $x_0 = \pm \infty$, o a seconda della forma indeterminata $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \pm \infty \\ +\infty \end{bmatrix}, \begin{bmatrix} \pm \infty \\ -\infty \end{bmatrix}, \begin{bmatrix} -\infty \\ \pm \infty \end{bmatrix}, \begin{bmatrix} -\infty \\ -\infty \end{bmatrix}$.

24 Studio globale di funzione

Tracciare un grafico approssimativo di una funzione f(x) ottenuta da funzioni elementari, per studiarne proprietà qualitative.

Esempio: $f(x) = \frac{e^x}{x}$

1. Insieme di definizione e simmetrie

 $\mathbb{R} \setminus \{0\}$ insieme di definizione e non ha particolare simmetrie.

2. Continuità e limiti

f(x) è rapporto di funzioni continue, quindi è continua dove è definita. $\mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, +\infty)$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ per gerarchia}$$

$$\lim_{x \to -\infty} \frac{e^x}{x} = 0^- \text{ per teo algebrici}$$

$$\lim_{x \to 0^+} \frac{e^x}{x} = +\infty \text{ per teo algebrici}$$

$$\lim_{x \to 0^-} \frac{e^x}{x} = -\infty \text{ per teo algebrici}$$

3. Segno e zeri

Risolvo se possibile f(x) = 0, f(x) > 0, f(x) < 0.

$$f(x) > 0$$
 se $x > 0$
 $f(x) = 0$ mai

$$f(x) < 0 \quad \text{se } x < 0$$

4. Derivata e monotonia

f(x) è rapporto di funzioni derivabili \implies è derivabile dove definita.

$$f'(x) = e^x \frac{(x-1)}{x^2}$$

Calcolando la positività della derivata trovo crescenza, decrescenza e minimi/massimi locali.

f(1) = e minimo locale.

Applicazioni:

- $\inf/\sup/\max/\min di f([a,b]) o di f^{-1}([a,b])$
- Trattare graficamente equazioni/disequazioni
- · Passare Analisi I

Altre info utili nello studio di funzione:

- Asintoti
- Convessità/concavità/flessi
- max/min locali e globali

24.1 Punti di non derivabilità

Se f(x) è continua in x_0 , ma non derivabile, possono succedere varie cose, tra cui

- 1. $\lim_{h\to 0^+} \frac{f(x+h)-f(x)}{h} = m_1, \lim_{h\to 0^-} \frac{f(x+h)-f(x)}{h} = m_2 e m_1, m_2 \in \mathbb{R}, m_1 \neq m_2 \implies$ x_0 è detto punto angoloso
- 2. $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = +\infty$ (oppure $-\infty$) $\implies x_0$ è detto flesso a tangente verticale

 3. $\lim_{h\to 0^+} \frac{f(x+h)-f(x)}{h} = \pm \infty$, $\lim_{h\to 0^-} \frac{f(x+h)-f(x)}{h} = \mp \infty \implies x_0$ è detto punto di
- cuspide

25 Asintoti

25.1 Asintoti orizzontali

Una retta y=k è un **asintoto orizzontale** di f(x) per $x\to +\infty$ se $\lim_{x\to +\infty} f(x)=k$.

È invece un asintoto orizzontale di f(x) per $x \to -\infty$ se $\lim_{x \to -\infty} f(x) = k$.

Oss: ci possono essere al più 2 asintoti orizzontali, che si trovano calcolando i limiti di f(x) a $\pm \infty$.

25.2 Asintoti verticali

Una retta $x = x_0$ è un **asintoto verticale** di f(x) se si verifica almeno una delle seguenti condizioni:

- $\lim_{x\to x_0^+} f(x) = +\infty$
- $\lim_{x \to x_0^+} f(x) = -\infty$
- $\lim_{x \to x_0^-} f(x) = +\infty$
- $\lim_{x \to x_0^-} f(x) = -\infty$

Oss: f(x) può avere quanti asintoti verticali vuole, ma tutti nei punti di discontinuità oppure agli estremi *finiti* dell'insieme di definizione.

25.3 Asintoti obliqui

y = mx + qè un **asintoto obliquo** di f(x) per $x \to +\infty$ se

$$\lim_{x \to +\infty} (f(x) - mx - q) = 0$$

Stessa cosa per $x \to -\infty$.

Per trovare m e q:

- 1. $m = \lim_{x \to +\infty} \frac{f(x)}{x}$
- $2. \ q = \lim_{x \to +\infty} f(x) mx$

Oss:

• m = 0 è l'asintoto orizzontale

- · Gli asintoti obliqui sono incompatibili con asintoti orizzontali
- È possibile che esista m ma non q, allora niente asintoto obliquo
- Se $\lim_{x\to +\infty} f(x) = +\infty$, posso applicare L'Hopital, dunque $\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} f'(x)$ se questo esiste. Posso trovare i candidati m facendo il limite della derivata
- y = mx + qè asintoto obliquo di f(x) per $x \to +\infty$ se e solo se f(x) = mx + q + o(1)per $x \to +\infty$

26 Taylor con resto di Lagrange

Data f(x) definita vicino a 0, dato $n \in \mathbb{N}$, se f(x) è derivabile n+1 volte in un intervallo (a,b) contenente 0 (quindi con a < 0 < b).

Allora $\forall x \in (a, b) \exists c \text{ tale che}$

$$f(x) = \mathcal{P}_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

con c tra 0 e x (cioè, se x > 0, 0 < c < x, se x < 0, x < c < 0).

Sembra un altro pezzo del pol. di Taylor ma non viene calcolato in x o in 0, ma in un punto in mezzo.

 $\mathscr{P}_n(x)$ è il solito polinomio di Taylor $\sum_{k=0}^n \frac{f^{(k)}(o)}{k!} x^k$.

Oss: con n = 0

$$f(x) = f(0) + \frac{f'(c)}{1!} \cdot x \implies f(x) - f(0) = f'(c)(x - 0)$$

ovvero il teo. di Lagrange.

Versione centrata in x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

con c compreso tra x e x_0 (cioè se $x_0 < x$, $x_0 < c < x$, se $x_0 > x$, $x < c < x_0$).

26.1 Utilità

26.1.1 Approssimazioni

Esempio: $\sin\left(\frac{1}{10}\right) = ?$

$$f(x) = \sin(x)$$

$$\sin(x) = x + \frac{x^3}{1 + x^5} + \frac{f^{(7)}(x)}{1 + x^5} + \frac$$

$$f(x) = \sin(x)$$

$$\sin(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{f^{(7)}(x)}{7!} \cdot x^7$$
Se $x = \frac{1}{10} \implies 0 < c < \frac{1}{10}$, inoltre $f^{(7)}(x) = -\cos(x)$. Ma in particolare $|f^{(7)}(x)| \le 1$.
$$\implies \sin\left(\frac{1}{10}\right) = \frac{1}{10} - \frac{\left(\frac{1}{10}\right)^3}{6} + \frac{\left(\frac{1}{10}\right)^5}{120} + \frac{f^{(7)}(c)}{7!} \left(\frac{1}{10}\right)^7$$

$$\left|\sin\left(\frac{1}{10}\right) - \left(\frac{1}{10} - \frac{1}{6} \cdot \frac{1}{1000} + \frac{1}{120} \cdot \frac{1}{100000}\right)\right| \le \frac{1}{7!} \cdot \frac{1}{10^7}$$
Ciò vuol dire che il seno è approssimato con un errore al massimo alla 9ª cifra decimale.

Ciò vuol dire che il seno è approssimato con un errore al massimo alla 9^a cifra decimale.

26.1.2 Confrontare la funzione con il suo sviluppo di Taylor

Dim: TRdL $\implies e^x = 1 + x + \frac{f''(c)}{2} \cdot x^2 = 1 + x + \frac{e^c}{2} \cdot x^2$. Sapendo che l'ultimo termine $\frac{e^c}{2} \cdot x^2 > 0 \implies e^x \ge 1 + x \ \forall \ x \in \mathbb{R}$.

27 Convessità

Sia $I \subseteq \mathbb{R}$

- 1. intervallo ([a, b], (a, b), [a, b), (a, b])
- 2. semiretta ($[a, +\infty)$, $(a, +\infty)$, $(-\infty, b]$, $(-\infty, b)$)
- 3. R

27.1 Convessità geometrica

Sia $f: I \to \mathbb{R}$ una funzione.

Si dice che f(x) è **convessa** in I se, comunque presi due punti del suo grafico sopra I, il segmento che li congiunge sta tutto sopra al grafico di f(x).

Si dice **strettamente convessa** se gli unici punti in comune tra il grafico e il segmento sono gli estremi del segmento. (Se il grafico non contiene segmenti).

f(x) si dice **concava** (rispettivamente **strettamente concava**) se valgono le stesse condizioni di prima, ma con il segmento *sotto* al grafico.

Occhio: $f(x) = \frac{1}{x}$ è definita su $\mathbb{R} \setminus \{0\}$. Non possiamo parlare di convessità su $\mathbb{R} \setminus \{0\}$, ma solo su $(-\infty, 0)$ e su $(0, +\infty)$.

27.2 Definizione analitica

P, Q punti nel grafico di f(x)

$$P = (x_1, f(x_1))$$
 $Q = (x_2, f(x_2))$

Dunque il segmento per P e Q è fatto dai punti

$$\left(\frac{x_1 + tx_2}{1 + t}, \frac{f(x_1) + tf(x_2)}{1 + t}\right)$$

Questo punto sta sopra al grafico di f(x) se e solo se

$$\frac{f(x_1) + tf(x_2)}{1 + t} \ge f\left(\frac{x_1 + tx_2}{1 + t}\right)$$

o utilizzando a, b

$$a = \frac{1}{1+t}$$
$$b = \frac{t}{1+t}$$

diventa

$$af(x_1) + bf(x_2) \ge f(ax_1 + bx_2)$$
 $\forall 0 \le a, b \le 1, a + b = 1$

Questa è la disuguaglianza di Jensen.

f(x) convessa in $I \iff$ la dis. di Jensen vale $\forall x_1, x_2 \in I, \ \forall a, b \in [0, 1], a + b = 1.$

Es: $f(x) = x^2$ è convessa in \mathbb{R} .

$$ax_1^2+bx_2^2\geq_?(ax_1+bx_2)^2 \quad \text{con } a,b\in[0,1], a=1-b$$

$$x_1^2+x_2^2\geq_?2x_1x_2$$

$$(x_1-x_2)^2\geq 0 \text{ che è vera}$$

Proposizione: f(x) derivabile in I. Allora f(x) è convessa in I se e solo se $f(x) \ge f(x_0) + f'(x_0)(x - x_0) \quad \forall \, x, x_0 \in I$.

Oss: f(x) concava $\iff f(x) \le f(x_0) + f'(x_0)(x - x_0) \quad \forall x, x_0 \in I$

Teorema di convessità: sia f(x) derivabile due volte in I. Allora f(x) è convessa in $I \iff f''(x) \ge 0 \quad \forall x \in I$.

- 1. Se $f''(x) > 0 \quad \forall x \in I$, allora f(x) è strettamente convessa in I
- 2. Se $f''(x) \ge 0 \quad \forall x \in I$, allora f(x) è convessa in I
- 3. Se f(x) è convessa in I, allora $f''(x) \ge 0 \quad \forall x \in I$

| Oss: lo stesso con concava e $f''(x) \le 0$

II contrario di 1. non vale.

Oss:

- f(x) convessa in $I \iff f'(x)$ crescente in I
- f(x) concava in $I \iff f'(x)$ decrescente in I

Def: x_0 si dice **punto di flesso** se f(x) è concava da un lato di x_0 e convessa dall'altro.

28 Successioni per ricorrenza - pt 2

29 Contrazioni e Metodo di Newton