Конспект лекций курса ФН-12 «Математический анализ»

Жихарев Кирилл ИУ7-24Б

Содержание

1	Осн	ювы математического анализа	4
	1.1	Математическая логика	4
		1.1.1 Логические символы	4
	1.2	Теория множеств	4
		1.2.1 Символы теории множеств	4
		1.2.2 Операции со множествами	Ę
		1.2.3 Способы задания множества	Ę
		1.2.4 Числовые множества	Ę
		1.2.5 Виды промежутков	6
		1.2.6 Конечные и бесконечные окрестности	6
2	Чис	словая последовательность	7
	2.1	Предел последовательности	8
		2.1.1 Геометрический смысл	8
	2.2	Свойства сходящихся последовательность	ç
		2.2.1 Предел последовательности $x_n = (1 + \frac{1}{n})$	11
3	Пре	едел функции	12
•	3.1	Ограниченная функция	13
	3.2	Основные теоремы о пределах	14
4	Foo	конечно малые функции	18
-	4.1	1	18
5		ифметические операции над функциями, имеющими ко-	9.1
	неч	ный предел	21
6	Оди	осторонние пределы	2 4
	6.1	Пределы на бесконечности	24
	6.2	Бесконечные пределы	25
	6.3	Сравнение бесконечно малых и бесконечно больших функцих	26
7	Сра	внение бесконечно малых и бесконечно больших функ-	
	ций		33
	7.1	Свойства эквивалентных бесконечно малых функций	34
8	Her	прерывность функции. Точки разрыва	37
	8.1	Односторонняя непрерывность	38
	8.2	Классификация точек разрыва	39
	8.3	Свойства непрерывных функций в точке	41
	8.4	Непрерывность элементарных функций	42
	8.5	Свойства функций, непрерывных на промежутке	43
9	Пт	фференциальное исчисление функции одной переменной	45
J	9.1	Односторонние производные	46
	9.1 9.2	Уравнение касательной и нормали к графику функции	48
	3.4	в рависиие касательной и пормали к графику функции	+ C

10	Дифференцируемость функции в точке	51
	10.1 Правила дифференцирования	52
	10.2 Производные высших порядков	56
	10.3 Дифференциал функции	
	10.4 Геометрический смысл дифференциала	57
	10.5 Инвариантность формы первого дифференциала	58
	10.6 Дифференциалы высшего порядка	59
	10.7 Основные теоремы дифференциального исчисления	59
11	Правило Лопиталя-Бернулли	63
	11.1 Сравнение показательной, степенной и логарифмической функ-	
	ции на бесконечности	64
12	Формула Тейлора. Многочлен Тейлора	66
	12.0.1 Формула Тейлора с остаточным членом в форме Пеано	68
	12.0.2 Формула Тейлора с остаточным членом в форме Лан-	
	гранжа	68
	12.1 Формулы Маклорена	68
	12.2 Разложение основных элементарных функций по формулам	
	Маклорена	69
	12.3 Лекция 13.12.23	72
13	Вертикальные, наклонные, горизонтальные ассимптоты	73
14	Исследование по первой производной	75
	14.1 Экстремумы функции	78
15	Исследование по второй производной	81

1 Основы математического анализа

Математический анализ - изучение через размышление

Объект математического анализа - функция

В математическом анализе используются символы из математической логики и теории множеств.

1.1 Математическая логика

Объект изучения математической логики - высказывание.

Определение 1.1. Высказывание - повествовательное предложение, относительно которого можно сказать, истинно оно или ложно. Обозначаются заглавными буквами латинского алфавита.

Пример. 2+3=5 - истинно, 3<0 - ложно

1.1.1 Логические символы

- \wedge конъюнкция (логическое "И")
- ∨ дизъюнкция (логическое "ИЛИ")
- ⇒ импликация ("если А то В")
- 👄 эквивалетность или равносильность ("тогда и только тогда")

Кванторы - общее название для логических операций

- ∃ существует
- # не существует
- ! ∃ существует единствуенный элемент
- ∀ для каждого

1.2 Теория множеств

Определение 1.2. Множество - совокупность объектов, связанных одним и тем же свойством. Обозначаются заглавными латинскими буквами. Элементы множества обозначаются строчными латинскими буквами.

1.2.1 Символы теории множеств

- ∈ принадлежит
- ∉ не принадлежит
- С включает
- ullet \subseteq включает, возможно равенство
- = тожденственное равенство (для любого значения переменной)
- Ø пустое множество

1.2.2 Операции со множествами

- U объединение множеств
- ∩ пересечение множеств

Замечание.

$$A \cup B = \{x : x \in A \land x \in B\} \\ A \cap B = \{x : x \in A \lor x \in B\}.$$

Определение 1.3. Подмножество - множество A называется подмножеством B, если каждый элемент множества A является элементом множества B.

Определение 1.4. Универсальное множество - такое множество, подномножествами которого являются все рассматриваемые множества.

1.2.3 Способы задания множества

1. Перечислить все элементы:

$$A = \{1, 2, 3, 4 \dots\}.$$

2. Указание свойства, которым обладают все элементы множества:

$$B = \{x : Q(x)\}.$$

1.2.4 Числовые множества

- $\mathbb{N} = \{1, 2, 3, 4\}$ множество натуральных чисел
- $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ множество целых чисел
- $\mathbb{Q}=\{x: x=\frac{m}{n}, m\in \mathbb{Z}n\in \mathbb{N}\}$ множество рациональных чисел
- $I = \{\pi, \sqrt{2}...\}$ множество иррациональных чисел
- ullet $\mathbb{R}=\mathbb{Q}\cup I$ множество действительных чисел

Замечание. Порядок вложенности:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Промежутки

Определение 1.5. Промежуток - подножество X множества \mathbb{Q} , где $\forall x_1, x_2 \in X$ этому множеству принадлежат все x, где $x_1 < x < x_2$.

1.2.5 Виды промежутков

- 1. Отрезок $[a; b] = \{x \in \mathbb{R} : a \le x \le b\}$
- 2. Интервал $(a; b) = \{x \in \mathbb{R} : a < x < b\}$
- 3. Полуинтервал $[a; b) = \{x \in \mathbb{R} : a < x < b\}$

1.2.6 Конечные и бесконечные окрестности

Пусть $x_0 \in \mathbb{R}, \ \delta$ и ϵ - малые положительные величины

Определение 1.6. Окрестностью точки x_0 называется любой интервал, содержащий эту точку

Определение 1.7. δ - окрестностью $(S(x_0, \delta))$ точки x_0 называется интервал с центром в точке x_0 и длиной 2δ .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 1.8. ε - окрестностью $(S(x_0,\varepsilon))$ точки x_0 называется интервал с центром в точке x_0 и длиной 2ε .

$$S(x_0; \varepsilon) = (x_0 - \varepsilon; x_0 + \varepsilon)$$

Определение 1.9. Окрестностью $+\infty$ называется любой интервал ви-

$$S(+\infty) = (a; +\infty), a \in \mathbb{R}, a > 0.$$

Определение 1.10. Окрестностью $-\infty$ называется любой интеграл вида:

$$S(-\infty) = (-\infty; -a), a \in \mathbb{R}, a > 0.$$

Определение 1.11. Окрестностью ∞ называется любой интервал вида

$$S(\infty) = (-\infty; -a) \cup (a; +\infty), a \in \mathbb{R}, a > 0.$$

2 Числовая последовательность

Определение 2.1. Числовая последовательность - это <u>бесконечное</u> множество числовых значений, которое можно упорядочить (перенумеровать).

Задать последовательность - указать формулу или правило, по которой $\forall n \in \mathbb{N}$ можно записать соответствующий элемент последовательности.

Замечание. Множество значений последовательности может быть конечным или бесконечным, но число число элементов последовательности всегда бесконечно.

Пример.

$$1, -1, 1, -1, 1 \dots$$

Число элементов бесконечно

• Значенией последовательности два

Пример.

$$x_n = (-1)^{n+1}$$

Число элементов бесконечно

• Значенией последовательности одно

Пример.

$$x_n = 2 * 1^n$$

1, 2, 3, 4, 5 . . .

Число элементов бесконечно

• Значений последовательности бесконечно

$$x_n = n, \forall n \in \mathbb{N}.$$

Последовательность чисел $\{x_n\}$ называется неубывающей, если каждый последующий член $x_{n+1} \geq x_n, \forall n \in \mathbb{N}$.

Пример.
$$1, 2, 3, 4, 4, 5, 5...$$

Последовательность чисел $\{x_n\}$ называется возрастающей, если каждый последующий член $x_{n+1}>x_n, \forall n\in\mathbb{N}.$

Пример. 1, 2, 3, 4, 5, 6, 7...

Последовательность чисел $\{x_n\}$ называется невозрастающей, если каждый последующий член $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$.

Пример. $\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4} \dots$

Последовательность чисел $\{x_n\}$ называется убывающей, если каждый последующий член $x_{n+1} < x_n, \forall n \in \mathbb{N}.$

Пример. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \dots$

Возрастающие и убывающие последовательности называются строго монотонными.

Неубывающие, возрастающие, невозрастающие и убывающие последовательности называются **монотонными**.

Немонотонная последовательность:

Пример. 1, 2, 3, 2, 1...

Постоянная последовательность

Пример. 1, 1, 1, 1, 1...

2.1 Предел последовательности

Определение 2.2. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ϵ найдется натуральное число $N\left(\epsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\epsilon)$, то имеет место неравенство $|x_n-a|<\epsilon$.

$$\lim_{x \to \infty} x_n = a \quad \iff \quad (\forall \epsilon > 0)(\exists N(\epsilon) \in \mathbb{N}) : (\forall n > N(\epsilon)) \implies |x_n - a| < \epsilon.$$

Замечание. Т.е. начиная с номера $N(\epsilon)+1$ все элементы последовательности $\{x_n\}$ попадают в ϵ -окрестность точки a.

2.1.1 Геометрический смысл

$$|x_n - a| < \epsilon$$

$$-\epsilon < x_n - a < \epsilon$$

$$a - \epsilon < x_n < a + \epsilon$$

$$\forall n > N(\epsilon)$$

Какой бы малый ϵ мы не взяли, бесконечное количество элементов последовательности $\{x_n\}$ попадают в ϵ -окрестность точки a, причем чем $\epsilon \downarrow$, тем $N(\epsilon) \uparrow$.

Пример. Рассмотрим последовательность $x_n = \frac{1}{n+1} = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \dots \}$

$$\lim_{n \to \infty} x_n = a \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Пусть $\epsilon = 0.3$, $x_n \in (a - \epsilon; a + \epsilon)$, т.е. (-0.3; 0.3) Получается два элемента $x_1, x_2 \notin (-0.3, 0.3)$

$$\implies N(\epsilon) = 2$$

$$N(\epsilon) + 1 = 3$$

$$x_3, x_4, x_5 \dots \in (-0.3, 0.3)$$

Определение 2.3. Последовательность, имеющая предел, назыается *сходящейся*.

Определение 2.4. Последовательность $\{x_n\}$ называется ограниченной снизу (сверху), если $\exists m \in \mathbb{R}(M \in \mathbb{R})$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \geq m \ (x_n \leq M)$

Определение 2.5. Последовательность x_n называется ограниченной, если она ограничена и сверху, и снизу, т.е. $\forall n \in \mathbb{N}, m \le x_n \le M$ или $|x_n| \le M$.

Определение 2.6. Последовательность $\{x_n\}$ называется $\mathit{фундаментальной}$, если для любого $\epsilon>0$ \exists свой порядковый номер $N(\epsilon)$ такой, что при всех $n\geq N(\epsilon)$ и $m\geq N(\epsilon)$ выполнено неравенство $|x_n-x_m|<\epsilon$.

$$\forall \epsilon > 0 \exists N(\epsilon) \quad \forall n \ge N(\epsilon) \quad \forall m \ge N(\epsilon) \implies |x_n - x_m| < \epsilon$$

Теорема 2.1. Критерий Коши существования предела последовательности

Для того, чтобы последовательность была сходящейся, необходимо и достаточно она была фундаментальной.

$$\{x_n\}$$
 - сходится \iff $\{x_n\}$ - фундаментальная.

2.2 Свойства сходящихся последовательность

Теорема 2.2. О существовании единственности предела последовательности

Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Аналитическое доказательство. Пусть $\{x_n\}$ - сходящаяся последовательность.

Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a$$

$$\lim_{n \to \infty} = b$$

$$a \neq b$$

$$\lim_{n \to \infty} = a \iff (\forall \epsilon_1 > 0)(\exists N_1(\epsilon_1) \in N)(\forall n > N_1(\epsilon_1) \implies |x_n - a| < \epsilon_1)$$
(1)

$$\lim_{n \to \infty} = b \iff (\forall \epsilon_2 > 0)(\exists N_2(\epsilon_2) \in N)(\forall n > N_2(\epsilon_2) \implies |x_n - b| < \epsilon_2)$$
(2)

Выберем $N = max\{N_1(\epsilon_1), N_2(\epsilon_2)\}.$ Пусть

$$\epsilon_1 = \epsilon_2 = \epsilon = \frac{|b-a|}{3}$$

$$3\epsilon = |b - a| = |b - a + x_n - x_n| = = |(x_n - a) - (x_n - b)| \le |x_n - a| + |x_n - b| < \epsilon_1 + \epsilon_2 = 2\epsilon 3\epsilon < 2\epsilon$$

Противоречие. Значит, предоположение не является верным \implies последовательность x_n имеет единственный предел.

Доказательство. Геометрическое доказательство

Нельзя уложить бесконечное число членов последовательности x_n в две непересекающиеся окрестности.

Теорема 2.3. Об ограниченности сходящейся последовательности. Любая сходящаяся последовательность ограничена.

Доказательство. По определению сходящейся последовательности

$$\implies \lim_{n \to \infty} = a \iff (\forall \epsilon > 0)(\exists N(\epsilon) \in \mathbb{N})(\forall n > N(\epsilon) \implies |x_n - a| < \epsilon).$$

Выберем в качестве $M=\max\{|x_1|,|x_2|,\dots|x_n|,|a-\epsilon|,|a+\epsilon|\}.$ Тогда для $\forall n\in\mathbb{N}$ будет верно $|x_n|\leq M$ - это и означает, что последовательность x_n - ограниченная.

2 ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ

Теорема 2.4. *Признак сходимости Вейерштрасса.* Ограниченная монотонная последовательность сходится.

2.2.1 Предел последовательности $x_n = \left(1 + \frac{1}{n}\right)$

Теорема 2.5. Последовательность $x_n = \left(1 + \frac{1}{n}\right)$ имеет предел равный e.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e$$

3 Предел функции

Определение 3.1. Окрестностью, из которой исключена точка x_0 называется *проколотой окрестностью*.

$$\mathring{S}(x_0; \delta) = S(x_0; \delta) \setminus x_0$$

Определение 3.2. Определение функции по Коши или на языке ϵ и δ

Число a называется пределом функции y = f(x) в точке x_0 , если $\forall \epsilon > 0$ найдется δ , зависящее от ϵ такое что $\forall x \in \mathring{S}(x_0; \delta)$ будет верно неравенство $|f(x) - a| < \epsilon$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \epsilon > 0)(\exists \delta(\epsilon) > 0)(\forall x \in \mathring{S}(x_0; \delta) \implies |f(x) - a| < \epsilon)$$

Эквивалентные записи определения

$$\dots \forall x \in \mathring{S}(x_0; \delta) \Longrightarrow \dots$$
$$\dots \forall x \neq x_0, |x - x_0| < \epsilon \Longrightarrow \dots$$
$$\dots \forall x, 0 < |x - x_0| < \delta \Longrightarrow \dots$$

$$\dots \implies |f(x) - a| < \epsilon$$
$$\dots \implies f(x) \in \mathring{S}(a, \epsilon)$$

Геометрический смысл предела функции

Если для $\forall \mathring{S}(a;\epsilon)$ найдется $\mathring{S}(x_0;\delta)$, то соответствующее значение функции лежат в $\mathring{S}(a;\epsilon)$ (полоса 2ϵ):

$$\forall x_1 \in \mathring{S}(x_0; \delta) \implies |f(x_1) - a| < \epsilon$$

Определение 3.3. Определение предела функции по Гейне или на языке последовательностей.

Число a называется пределом y = f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти x_n из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \iff (\forall x_n \in D_f)(\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = a)$$

Геометрический смысл

$$\forall x_n \lim_{n \to \infty} x_n = x_0$$

Для любых точек x, достаточно близких к точке x_0 (на языке математики $\lim_{n\to\infty}x_n=x_0$) соответствующие значения $f(x_n)$ достаточно близко расположены к a (на языке математики - $\lim_{n\to\infty}f(x_n)=a$)

Теорема 3.1. Определение предела функции по Коши и по Гейне *эквивалентны*.

3.1 Ограниченная функция

Определение 3.4. Функция называется **ограниченной** в данной области изменения аргумента x, если $\exists M \in \mathbb{R}, M > 0, |f(x)| \leq M$.

Если $\not\exists M \in \mathbb{R}, M > 0$, то функция f(x) называется неограниченной.

Определение 3.5. Функция называется локально ограниченной при $x \to x_0$, если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

3.2 Основные теоремы о пределах

Теорема 3.2. О локальной ограниченности функции, имеющей конечный предел.

Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a$$
 $\iff (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$

Распишем:

$$\begin{array}{ll} -\varepsilon < f(x) - a < \varepsilon \\ a - \varepsilon < f(x) < a + \varepsilon \end{array} \qquad \forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M = max\{|a - \varepsilon|, |a + \varepsilon|\}$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Теорема 3.3. О единственности предела функции.

Если функция имеет конечный предел, то он единственный.

Доказательство. Предположим, что функция имеет более одного предела, например 2 - *a* и *b*. Тогда:

$$\lim_{x \to x_0} = a \tag{1}$$

$$\lim_{x \to x_0} = b \tag{2}$$

 $a \neq b$, пусть b > a

$$(1) \iff (\forall \varepsilon_1 > 0)(\exists \delta_1(\varepsilon_1) > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |f(x) - a| < \varepsilon_1)$$

$$(2) \iff (\forall \varepsilon_2 > 0)(\exists \delta_2(\varepsilon_2) > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \implies |f(x) - b| < \varepsilon_2)$$

Распишем:

$$(1) \implies a - \varepsilon_1 < f(x) < a + \varepsilon_1, \forall x \in \mathring{S}(x_0, \delta_1)$$

$$(2) \implies b - \varepsilon_2 < f(x) < b + \varepsilon_2, \forall x \in \mathring{S}(x_0, \delta_2)$$

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда $\forall x \in \mathring{S}(x_0, \delta)$ будет верно (1) и (2) одновременно.

Пусть $\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{b-a}{2}$:

$$(1) \implies f(x) < a + \varepsilon_1 = a + \frac{b - a}{2} = \frac{a + b}{2}$$

$$(2) \implies f(x) > b - \varepsilon_2 = b - \frac{b - a}{2} = \frac{a + b}{2}$$

$$\forall x \in \mathring{S}(x_0, \delta)$$

Мы получили противоречие. Это означает, что предположение не является верным. Функция имеет единственный предел.

Теорема 3.4. О сохранении функцей знака своего предела Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x \to x_0} f(x) = a \neq 0 \to \begin{cases} a > 0 \\ a < 0 \end{cases} \implies \begin{cases} f(x) > 0 \\ f(x) < 0 \end{cases} \quad \forall x \in \mathring{S}(x_0, \delta)$$

Доказательство. Пусть a > 0. Выберем $\varepsilon = a > 0$.

$$\lim_{x\to x_0} = a \iff (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$

$$\boxed{0 < f(x) < 2a}$$

Знак у функции f(x) и числа a - одинаковые.

Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$
$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые.

Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Вывод. Если функция y=f(x) имеет предел в точке x_0 и знакопостояна в $\mathring{S}(x_0,\delta)$, тогда её предел не может иметь с ней противоположные

знак.

Теорема 3.5. О предельном переходе в неравенстве.

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in \mathring{S}(x_0, \delta)$ верно f(x) < g(x). Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Доказательство. По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta).$

Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(X) имеет конечный предел в точке x_0 (как разность f(x) и g(x)).

По следствию из предыдущей теоремы $\implies \lim_{x \to x_0} F(x)$

Подставим F(x) = f(x) - g(x):

$$\lim_{x \to x_0} \left(f(x) - g(x) \right) \le 0 \implies \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \le 0 \implies \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Пример. Пусть f(x) = 0, $g(x) = x^2$ и $x_0 = 0$.

$$\forall x \in \mathring{S}(x_0, \delta) \qquad 0 < x^2$$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

$$\lim_{x \to 0} f(x) \le \lim_{x \to 0} g(x)$$

В теореме знак строгий переходит в нестрогий!

Теорема 3.6. О пределе промежуточной функции.

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x\to x_0} f(x) = a$ и $\lim_{x\to x_0} g(x) = a$, $\forall x\in \mathring{S}(x_0,\delta)$ верно неравенство $f(x)\leq h(x)\leq g(x)$. Тогда $\lim_{x\to x_0} h(x)=a$.

Доказательство. По условию:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$
(1)

$$\lim_{x \to x_0} g(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |g(x) - a| < \varepsilon)$$
(2)

Выберем $\delta_0=min\{\delta,\delta_1,\delta_2\}$, тогда (1), (2) и $f(x)\leq h(x)\leq g(x)$ верны

одновременно $\forall x \in \mathring{S}(x_0, \delta_0).$

(1)
$$a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$\begin{split} f(x) & \leq h(x) \leq g(x) \\ \implies a - \varepsilon_1 < f(x) \leq h(x) \leq g(x) < a + \varepsilon_2 \\ \implies \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon \end{split}$$

В итоге:

$$(\forall \varepsilon>0)(\exists \delta_0(\varepsilon)>0)(\forall x\in \mathring{S}(x_0,\delta_0\implies |h(x)-a|<\varepsilon)$$
 \Longrightarrow по определению предела
$$\lim_{x\to x_0}h(x)=a$$

Теорема 3.7. О пределе сложной функции.

Если функция y=f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тода сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$y = f(x)$$

$$\lim_{x \to x_0} f(x) = a$$

$$\lim_{x \to x_0} \varphi(f(x)) = C$$

$$\lim_{x \to x_0} \varphi(f(x)) = C$$

Доказательство.

$$\lim_{y \to a} \varphi(y) \iff (\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall y \in \mathring{S}(a, \delta_1) \implies |\varphi(y) - a| < \varepsilon) \quad (1)$$

Выберем в качестве ε в пределе найденное δ_1 :

$$\lim_{x \to x_0} f(x) = a \iff (\forall \delta_1 > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |f(x) - a| < \delta_1$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |\varphi(f(x)) - c| < \varepsilon)$$

Что равносильно:

$$\lim_{x \to x_0} \varphi(f(x)) = c$$

4 Бесконечно малые функции

Определение 4.1. Функция называется бесконечно малой при $x \to x_0$, если предел функции в этой точке равен 0. Кратко - б.м.ф. или б.м.в.

$$\lim_{x \to x_0} f(x) = 0$$

$$(\forall \varepsilon > 0) (\exists \delta(\varepsilon)) (\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| < \varepsilon)$$

Замечание. Стремление аргумента может быть *любое*, главное, чтобы предел был равен нулю.

Бесконечно малые функции обозначаются $\alpha(x), \beta(x), \gamma(x) \dots$

Пример.

$$y = x - 2$$

$$\lim_{x \to 2} (x - 2) = 0$$

y=x-2 при $x \to 2$ является бесконечно малой.

Пример.

$$y = \sin(x)$$

$$\lim_{x \to 0} \sin(x) = 0$$

 $y = \sin(x)$ при $x \to 0$ является бесконечно малой.

Пример.

$$y = \sin(\frac{1}{x})$$
$$\lim_{x \to \infty} \sin(\frac{1}{x}) = 0$$

 $y = \sin(\frac{1}{x})$ при $x \to \infty$ является бесконечно малой.

4.1 Свойства бесконечно малых функций

Теорема 4.1. О сумме конечного числа бесконечно малых функций. Конечная сумма бесконечно малых функции есть бесконечно малая функция.

Доказательство. Пусть дано конечное число бесконечно малых функций, например две: $\alpha(x)$, $\beta(x)$. Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) = 0 \qquad \lim_{x \to x_0} \beta(x) = 0$$

Нужно доказать, что:

$$\lim_{x \to x_0} (\alpha(x) + \beta(x)) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff (\forall \varepsilon_1 = \frac{\varepsilon}{2} > 0)(\exists \delta_1 > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |\alpha(x)| < \frac{\varepsilon}{2}) \qquad (1)$$

$$\lim_{x \to x_0} \beta(x) = 0 \iff (\forall \varepsilon_2 = \frac{\varepsilon}{2} > 0)(\exists \delta_2 > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \implies |\beta(x)| < \frac{\varepsilon}{2}) \qquad (2)$$

Выберем $\delta=min\{\delta_1,\delta_2\}.$ Тогда (1) и (2) верны одновременно. Получаем:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta)$$

$$\implies |\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon)$$

Тогда по определнию бесконечно малой функции:

$$\lim_{x \to x_0} (\alpha(x) + \beta(x)) = 0$$

Теорема 4.2. О произведении бесконечно малой функций на локально ограниченную.

Произведение бесконечно малой функции на локальной ограниченную есть величина бесконечно малая.

Доказательство. Пусть $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, а функция f(x) при $x \to x_0$ является локально ограниченной. Доказываем, что:

$$\alpha(x) \cdot f(x) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0$$

$$\iff (\forall \varepsilon_1 = \frac{\varepsilon}{M} > 0)(\exists \delta_1 > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |\alpha(x)| < \varepsilon_1 = \frac{\varepsilon}{M})$$

$$M \in \mathbb{R}, M > 0$$

$$\forall x \in \mathring{S}(x_0, \delta_2) \implies |f(x)| < M$$
(2)

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда (1) и (2) верны одновременно. В итоге получаем:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{\varepsilon}{M} \cdot M < \varepsilon$$

Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) \cdot f(x) = 0$$

Пример.

$$\lim_{x \to \infty} \frac{\sin(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \sin(x) = 0$$

Т.к. $\sin(x)$, при $x \to \infty$ является локально ограниченной $\sin(x) \le 1$.

Теорема 4.3. О связи функции, её предела и бесконечно малой. Функция y = f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

$$\lim_{x o x_0} f(x) = a \iff f(x) = a + lpha(x),$$
где $lpha(x)$ – б.м.ф при $x o x_0$

Доказательство. Необходимость.

Дано:

$$\lim_{x \to x_0} f(x) = a$$

Доказать:

$$f(x)=a+lpha(x),$$
где $lpha(x)$ - б.м.ф. при $x o x_0$

Распишем:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

5 АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД ФУНКЦИЯМИ, ИМЕЮЩИМИ КОНЕЧНЫЙ ПРЕДЕЛ

Обозначим $f(x) - a = \alpha(x)$, тогда:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

По определению бесконечно малой функции $\alpha(x)$ - бесконечно малая функция. Из обозначения следует, что:

$$f(x) = a + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to x_0$. $\mathcal{A}ocmamoчность$.

Дано:

$$f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to x_0$

Доказать:

$$\lim_{x \to x_0} f(x) = a$$

По определению б.м.ф.:

$$\lim_{x\to x_0}\alpha(x)=0\iff (\forall \varepsilon>0)(\exists \delta>0)(\mathring{S}(x_0,\delta)\implies |\alpha(x)|<\varepsilon$$

С учётом введённого обозначения:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon \iff \lim_{x \to x_0} f(x) = a$$

Вывод. Т.к. любая бесконечно малая функция локально ограничена, то произведение двух бесконечно малых функций есть бесконечно малая функция.

Вывод. Произведение бесконечно малой функции на константу есть величина бесконечно малая.

5 Арифметические операции над функциями, имеющими конечный предел

Пусть f(x) и g(x) имеют конечные пределы в точке x_0 .

Теорема 5.1. Предел суммы (разности) двух функций, имеющих конечные пределы равен сумме (разности) пределов.

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

5 АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД ФУНКЦИЯМИ, ИМЕЮЩИМИ КОНЕЧНЫЙ ПРЕДЕЛ

Теорема 5.2. О пределе отношения функций.

Предел отношения двух функций, имеющих конечный предел, равен частному их пределов при условии, что предел в знаменателе отличен от нуля.

 $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \lim_{x \to x_0} g(x) \neq 0$

Теорема 5.3. О пределе произведения функций.

Предел произведения функций равен произведению пределов.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Доказательство. Пусть:

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = b \tag{2}$$

По теореме о связи функции, её предела и бесконечно малой функции:

$$(1) \implies f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф.

$$(2) \implies f(x) = b + \beta(x)$$
, где $\beta(x)$ - б.м.ф.

Рассмотрим:

$$f(x) \cdot g(x) = (a + \alpha(x))(b + \beta(x))$$

$$= ab + \underbrace{a \cdot \beta(x) + b\alpha(x) + \alpha(x) \cdot \beta(x)}_{\gamma(x)}$$

$$= ab + \gamma(x)$$

По следствию из теоремы 15:

$$a\cdot eta(x)=$$
 б.м.ф. при $x o 0$ $b\cdot lpha(x)=$ б.м.ф. при $x o 0$ $lpha(x)\cdot eta(x)=$ б.м.ф. при $x o 0$

По теореме о сумме конечного числа с б.м.ф.:

$$\gamma(x) =$$
б.м.ф. при $x \to 0$

5 АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД ФУНКЦИЯМИ, ИМЕЮЩИМИ КОНЕЧНЫЙ ПРЕДЕЛ

Далее расписываем предел:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} (f(x) \cdot g(x))$$

$$= \lim_{x \to x_0} ab + \lim_{x \to x_0} \gamma(x)$$

$$= ab + 0$$

$$= ab$$

Вывод.

$$\lim_{x \to x_0} (c \cdot f(x)) = c \cdot \lim_{x \to x_0} f(x)$$

6 Односторонние пределы

Определение 6.1. Число A_1 называется пределом функции y=f(x) в точке x_0 **слева**, если:

$$\lim_{x \to x_0 -} f(x) = A_1 \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in (x_0 - \delta, x_0) \implies |f(x) - A_1| < \varepsilon)$$

Определение 6.2. Число A_2 называется пределом функции y = f(x) в точке x_0 справа, если:

$$\lim_{x \to x_0 +} f(x) = A_2 \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in (x_0, x_0 + \delta) \implies |f(x) - A_2| < \varepsilon)$$

Пределы справа и слева называют односторонними пределами.

Теорема 6.1. О существовании предела функции в точке. Функция y = f(x) в точке x_0 имеет конечный предел тогда и только тогда, когда существуют пределы справа и слева и они равны между собой

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x)$$

6.1 Пределы на бесконечности

Определение 6.3. Число a называется пределом функции y=f(x) при $x\to +\infty,$ если:

$$\lim_{x \to +\infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x > N \implies |f(x) - a| < \varepsilon)$$

где N - большое число, $N>0, N\in\mathbb{R}.$

Определение 6.4. Число a называется пределом функции y=f(x) при $x\to -\infty,$ если:

$$\lim_{x \to -\infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x < -N) \implies |f(x) - a| < \varepsilon)$$

где N - большое число, $N>0, N\in\mathbb{R}.$

Замечание.

$$\lim_{x \to +\infty} f(x) = a \iff$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x > N \implies |f(x) - a| < \varepsilon)$$

$$\lim_{x \to -\infty} f(x) = a \iff$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x < -N) \implies |f(x) - a| < \varepsilon$$

$$\lim_{x \to \infty} f(x) = a \iff$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x \in |x| > N \implies |f(x) - a| < \varepsilon)$$

6.2 Бесконечные пределы

Определение 6.5. Функция y = f(x) имеет бесконечный предел при $x \to x_0$, если:

$$\lim_{x \to x_0} f(x) = \infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| > M)$$

где M - большое число, $M>0, M\in\mathbb{R}$, а δ - малое число.

Замечание.

$$\lim_{x \to x_0} f(x) = +\infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies f(x) > M)$$
$$\lim_{x \to x_0} f(x) = -\infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies f(x) < -M)$$

Пример.

$$y = \arctan(x), \qquad x \to \infty$$

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$$

$$\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$$

Пример.

$$y = \ln(x), \quad x \to 0$$

$$\lim_{x \to 0-} = \mathbb{A}$$

$$\lim_{x \to 0+} = -\infty$$

Пример.

$$y = \sqrt{-x}, \qquad x \to 0$$

$$\lim_{x \to 0+} = \cancel{\exists}$$

$$\lim_{x \to 0-} = 0$$

Пример.

$$y = \frac{1}{|x-2|}, \qquad x \to 2$$
$$\lim_{x \to 2+} \frac{1}{|x-2|} = +\infty$$
$$\lim_{x \to 2-} \frac{1}{|x-2|} = +\infty$$

Определение 6.6. Функция y = f(x) называется бесконечно большой функцией (далее - б.б.ф. если:

$$\lim_{x \to x_0} f(x) = \infty$$

Бесконечный предел на бесконечности

$$\lim_{x \to \infty} = \infty \iff (\forall M > 0)(\exists N(M) > 0)(\forall x \in |x| > N \implies |f(x)| > M)$$

6.3 Сравнение бесконечно малых и бесконечно больших функцих

Теорема 6.2. O связи бесконечно малой и бесконечно большой функции.

Если $\alpha(x)$ - бесконечно большая функция при $x\to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x\to x_0$.

Доказательство. По условию $\alpha(x)$ - б.б.ф при $x \to x_0$. По определению:

$$\lim_{x \to x_0} \alpha(x) = \infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| > M)$$

Рассмотрим неравенство:

$$|\alpha(x)| > M, \forall x \in \mathring{S}(x_0, \delta)$$

Обозначим $\varepsilon = \frac{1}{M}$.

$$\begin{aligned} |\alpha(x) > M| &\implies \frac{1}{|\alpha(x)|} < \frac{1}{M} \\ &\implies |\frac{1}{\alpha(x)}| < \frac{1}{M} < \varepsilon \end{aligned}$$

В итоге получаем:

$$\forall x \in \mathring{s}(x_0, \delta) \implies \left| \frac{1}{\alpha(x)} \right| < \varepsilon$$

Что по определению является бесконечно малой функцией.

1-ый замечательный предел

Теорема 6.3.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Доказательство. Рассмотрим $\lim_{x\to 0+}\frac{\sin(x)}{x}=1$. Потом $\lim_{x\to 0-}\frac{\sin(x)}{x}=1$.

Пусть α - угол в радианах, $x \to 0, x \in (0, \frac{\pi}{2})$.

Тут должен быть рисунок, но его пока нет :(.

Окружность R=1.

Отложим луч OK под углом к оси oX равным x, где $O(0,0), K \in$ окружности.

 $KH \perp OA$.

Рассмотрим $\triangle OKH$. OA=1 как радиус. $\sin(x)=\frac{KH}{OA}=KH$. Рассмотрим $\triangle OLA$. OA=1 как радиус. $\operatorname{tg}(x)=\frac{LA}{OA}=LA$.

Из геометрических построений (да будут они когда-нибудь...):

$$S_{\triangle OKA} < S_{secOKA} < S_{\triangle OLA}$$

$$S_{\triangle OKA} = \frac{1}{2}OA \cdot KH = \frac{1}{2}\sin(x) = \frac{\sin(x)}{2}$$
$$S_{secOKA} = \frac{1}{2}OA \cdot OK \cdot KA = \frac{1}{2} \cdot x = \frac{x}{2}$$
$$S_{\triangle OLa} = \frac{1}{2}OA \cdot LA = \frac{1}{2} \cdot 1 \cdot \operatorname{tg}(x) = \frac{\operatorname{tg}(x)}{2}$$

$$\frac{\sin(x)}{2} < \frac{x}{2} < \frac{\operatorname{tg}(x)}{2} \quad | \cdot 2$$

$$\sin(x) < x < \operatorname{tg}(x)$$

$$x \to 0+ \implies \begin{cases} \sin(x) > 0 \\ \operatorname{tg}(x) > 0 \end{cases} \implies \sin(x) < x < \operatorname{tg}(x) \quad | : \sin(x)$$

$$1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

$$\cos(x) < \frac{\sin(x)}{x} < 1$$

По теореме о предельном переходе в неравенстве:

$$\lim_{x \to 0+} \cos(x) \le \lim_{x \to 0+} \frac{\sin(x)}{x} \le 1$$

По теореме о промежуточной функции:

$$\lim_{x \to 0+} \cos(x) = 1 \implies \lim_{x \to 0+} \frac{\sin(x)}{x} = 1$$

Аналогично для $\lim_{x\to 0-}\frac{\sin(x)}{x}=1.$ Т.к. односторонние пределы равны:

$$\lim_{x \to 0+} \frac{\sin(x)}{x} = \lim_{x \to 0-} \frac{\sin(x)}{x} = 1 \iff \lim_{x \to x_0} \frac{\sin(x)}{x} = 1$$

Вывод.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = \frac{\sin(x)}{\cos(x)}$$

$$= \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{x}{\cos(x)}$$

$$= \lim_{x \to 0} \frac{1}{\cos(x)}$$

$$= 1$$

6 ОДНОСТОРОННИЕ ПРЕДЕЛЫ

Вывод.

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = \begin{vmatrix} t = \arcsin(x) \\ x \to 0, t \to 0 \end{vmatrix}$$

$$= \lim_{t \to 0} \frac{t}{\sin(t)}$$

$$= \lim_{t \to 0} \frac{1}{\frac{\sin(t)}{t}}$$

$$= \frac{1}{1} = 1$$

Вывод.

$$\lim_{x\to 0}\frac{\arctan(x)}{x}$$

Доказательство.

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = \begin{vmatrix} x = \operatorname{tg}(t) \\ x \to 0, t \to \infty \end{vmatrix}$$

$$= \lim_{t \to \infty} \frac{t}{\operatorname{tg}(t)}$$

$$= \lim_{t \to \infty} \frac{1}{\frac{tg(t)}{t}}$$

$$= \frac{1}{1} = 1$$

Вывод.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

Доказательство.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \left| \frac{\sin^2 \frac{x}{2} = \frac{1 - \cos(x)}{2}}{1 - \cos(x) = 2\sin^2 \frac{x}{2}} \right|$$

$$= \lim_{x \to 0} \frac{2\sin^2 x - 2}{x^2}$$

$$= 2\lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} \cdot \frac{\left(\frac{x}{2}\right)^2}{x^2}$$

$$= 2 \cdot \frac{1}{4} = \frac{1}{2}$$

Второй замечательный предел

Теорема 6.4.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Вывод.

$$\lim_{x \to 0} (1+x)^{\left(\frac{1}{x}\right)} = e$$

Доказательство.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \begin{vmatrix} x = \frac{1}{t} \\ x \to 0, t \to \infty \end{vmatrix}$$
$$= \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^t$$
$$= e$$

Вывод.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}$$
$$= \ln e = 1$$

6 ОДНОСТОРОННИЕ ПРЕДЕЛЫ

Вывод.

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

Доказательство.

$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \frac{1}{x} \log_a (1+x)$$

$$= \lim_{x \to 0} \log_a (1+x)^{\frac{1}{x}}$$

$$= \log_a e = \frac{1}{\ln a}$$

Вывод.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \begin{vmatrix} e^x - 1 = t \\ x = \ln(t+1) \\ x \to 0, t \to 0 \end{vmatrix}$$

$$= \lim_{t \to 0} \frac{t}{\ln(1+t)}$$

$$= \frac{1}{\lim_{t \to 0} \frac{\ln(1+t)}{t}}$$

$$= \frac{1}{1} = 1$$

Вывод.

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

Доказательство.

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \begin{vmatrix} a^x - 1 = t \\ x = \log_a(1 + t) \\ x \to 0, t \to 0 \end{vmatrix}$$

$$= \lim_{t \to 0} \frac{t}{\log_a(1 + t)}$$

$$= \frac{1}{\lim_{t \to 0} \frac{\log_a(1 + t)}{t}}$$

$$= \frac{1}{\frac{1}{\ln a}} = \ln a$$

7 Сравнение бесконечно малых и бесконечно больших функций

Пусть даны функции $\alpha(x)$ и $\beta(x)$, которые являются б.м.ф. при $x \to x_0$.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Рассмотрим варианты:

.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$$

 $\alpha(x)$ имеет более высокий порядок малости, чем $\beta(x)$.

$$\alpha(x) = o(\beta(x))$$
, при $x \to x_0$

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \infty$$

 $\beta(x)$ имеет более высокий порядок малости, чем $\alpha(x)$.

$$\beta(x) = o(\alpha(x))$$
, при $x \to x_0$

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

 $\alpha(x)$ и $\beta(x)$ - эквивалентны.

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

•

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const$$

 $\alpha(x)$ и $\beta(x)$ - одного порядка малости.

$$\begin{vmatrix} \alpha(x) = O(\beta(x)) \\ \beta(x) = O(\alpha(x)) \end{vmatrix}$$
 при $x \to x_0$

•

$$\exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

 $\alpha(x)$ и $\beta(x)$ - несравнимы.

7 СРАВНЕНИЕ БЕСКОНЕЧНО МАЛЫХ И БЕСКОНЕЧНО БОЛЬШИХ ФУНКЦИЙ

Определение 7.1. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются одного порядка малости, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const \neq 0$$

Определение 7.2. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *несравнимыми* , если:

$$\exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Определение 7.3. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *эквивалентными* , если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Определение 7.4. Если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$$

где $\alpha(x)$ и $\beta(x)$ – б.м.ф. при $x\to x_0$, то говорят, что функция $\alpha(x)$ имеет более высокий порядок малости, чем $\beta(x)$.

Определение 7.5. Б.м.ф. $\alpha(x)$ имеет порядок малости k относительно функции б.м.ф. $\beta(x)$, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = const \neq 0$$

где k – порядок малости.

7.1 Свойства эквивалентных бесконечно малых функ-

Теорема 7.1. Если $\alpha(x) \sim \beta(x)$, а $\beta(x) \sim \gamma(x)$, при $x \to x_0$, то $\alpha(x) \sim \gamma(x)$ при $x \to x_0$.

Доказательство

$$\lim_{x \to x_0} \frac{\alpha(x)}{\gamma(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \beta(x)}{\gamma(x) \cdot \beta(x)} = \lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} \cdot \frac{\beta(x)}{\gamma(x)} = 1 \cdot 1 = 1$$

$$\implies \alpha(x) \sim \gamma(x), \text{ при } x \to x_0$$

Теорема 7.2. *Необходимое и достаточное условие экваивалентных бесконечно малых функий.*

Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

$$\alpha(x),\beta(x)$$
 - б.м.ф при $x\to x_0$
$$\alpha(x)\sim\beta(x)\iff \alpha(x)-\beta(x)=o(\alpha(x)) \\ \alpha(x)-\beta(x)=o(\beta(x))$$
при $x\to x_0$

Доказательство. Необходимость.

Дано:

$$\alpha(x), \beta(x)$$
 - б.м.ф при $x \to x_0$

Доказать:

$$\alpha(x) - \beta(x) = o(\alpha(x))$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = \lim_{x \to x_0} \left(1 - \frac{\beta(x)}{\alpha(x)} \right)$$
$$= 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)}$$
$$= 1 - \frac{1}{1} = 0$$

Достаточность.

Дано:

$$\alpha(x) - \beta(x) = o(\beta(x))$$
, при $x \to x_0$

Доказать:

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 = 0$$

$$\implies \lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=1$$

$$\implies \alpha(x)\sim\beta(x), \text{при } x\to x_0$$

Теорема 7.3. *О суммы бесконечно малых разного порядка.* Сумма бесконечно малых функций разных порядком малости эквива-

7 СРАВНЕНИЕ БЕСКОНЕЧНО МАЛЫХ И БЕСКОНЕЧНО БОЛЬШИХ ФУНКЦИЙ

лентно слагаемому низшего порядка малости.

$$\left. \begin{array}{l} \alpha(x),\beta(x) \text{ - 6.м.ф при } x \to x_0 \\ \alpha(x) = o(\beta(x)), \text{ при } x \to x_0 \end{array} \right\} \implies \alpha(x) + \beta(x) \sim \beta(x), \text{ при } x \to x_0$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x) + \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} + 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} + 1$$
$$= 0 + 1 = 1$$

Вывод. Сумма б.б.ф. разного порядка роста эквивалентна слагаемому высшего порядка роста.

Теорема 7.4. О замене функции на эквивалентную под знаком предела.

Предел **отношения** двух б.м.ф. (б.б.ф) не изменится, если заменить эти функции на эквивалентные.

$$\left.\begin{array}{l} \alpha(x),\beta(x)\text{ - б.м.ф. при }x\to x_0\\ \alpha(x)\sim\alpha_0(x)\\ \beta(x)\sim\beta_0(x) \end{array}\right\}\implies\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\frac{\alpha_0(x)}{\beta(x)}$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \alpha_0(x) \cdot \beta_0(x)}{\beta(x) \cdot \alpha_0(x) \cdot \beta_0(x)}$$

$$= \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_0(x)} \cdot \lim_{x \to x_0} \frac{\beta_0(x)}{\beta(x)} \cdot \lim_{x \to x_0} \frac{\alpha_0(x)}{\beta_0(x)}$$

$$= 1 \cdot 1 \cdot 1 \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Таблица 1: Таблица эквивалентных б.м.ф 1-ый замечательный предел 2-ой замечательный предел

$$\sin(x) \sim x \text{ при } x \to 0$$

$$\tan(x) \sim x \text{ при } x \to 0$$

$$\arctan(x) \sim x \text{ при } x \to 0$$

$$\arctan(x) \sim x \text{ при } x \to 0$$

$$\arctan(x) \sim x \text{ при } x \to 0$$

$$\arctan(x) \sim x \text{ при } x \to 0$$

$$1 - \cos(x) \sim \frac{x^2}{2} \text{ при } x \to 0$$

$$1 - \cos(x) \sim \frac{x^2}{2} \text{ при } x \to 0$$

$$1 - \cos(x) \sim \frac{x^2}{2} \text{ при } x \to 0$$

Сумма б.м.ф. и б.б.ф.

$$a_0+a_1x+a_2x^2+\ldots+a_nx^n\sim a_nx^n$$
 при $x o\infty$ $a_1x+a_2x^2+\ldots+a_nx^n\sim a_1x$ при $x o0$

Непрерывность функции. Точки разрыва 8

Определение 8.1. Функция f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке если:

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Множество непрерывных функций в точке x_0 обозначается $C(x_0)$

$$f(x) \in C(x_0) \iff$$
 - функция непрерывна в точке x_0

$$\lim_{x \to 0} \sin(x) = \sin(x) = 0 \iff \sin(x) \in C(0)$$

$$sgnx = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases} \implies sgn \notin C(0)$$

Определение 8.2. Функция y = f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке, если в достаточно малой окрестности точки x_0 значение функции близки к

$$y = f(x) \in C(x_0)$$

$$\iff$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - f(x_0)| < \varepsilon)$$

Определение 8.3. Функция y = f(x) в некоторой окрестности точки x_0 называется непрерывной в этой точке, если выполняются условия:

$$1. \quad \exists \lim_{x \to x_0 +} f(x)$$

2.
$$\exists \lim_{x \to x_0} f(x)$$

2.
$$\exists \lim_{x \to x_0 -} f(x)$$
3.
$$\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x) = f(x)$$

Пусть y = f(x) определена в некоторой точке в окрестности x_0 . Выберем произвольный x в этой окрестности. Тогда:

$$\Delta x = x - x_0$$
 - приращение аргумента $\Delta y = f(x) - f(x_0)$ - соответствующее приращение функции

Определение 8.4. Функция y = f(x) называется непрерывной в точке x_0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

8.1 Односторонняя непрерывность

Определение 8.5. Функция y = f(x) определённая в правосторонней окрестности точки x_0 (математическим языком - $[x_0, x_0 + \delta)$) называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 +} = f(x_0)$$

Определение 8.6. Функция y = f(x) определённая в левосторонней окрестности точки x_0 (математическим языком - $(x_0 - \delta, x_0]$) называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 -} = f(x_0)$$

Теорема 8.1. Для того, чтобы функция y = f(x) была непрерывна в точке x_0 необходимо и достаточно, чтобы она была непрерывна в этой точке справа и слева.

Определение 8.7. Функция y = f(x) называется непрерывной на интервале (a, b), если она непрерывна в каждой точке этого интервала.

Определение 8.8. Функция y = f(x) называется непрерывной на отрезке [a,b], если:

- 1. Непрерывна на интервале (a,b)
- 2. Непрерывна в точке a справа
- 3. Непрерывна в точке b слева
- \bullet C(a,b) множество функций, непрерывных на интервале.
- ullet C[a,b] множество функций, непрерывных на отрезке.
- \bullet C(X) множество функций, непрерывных на промежутке X.

8.2 Классификация точек разрыва

Определение 8.9. Пусть функция y=f(x) определена в некоторой точке проколотой окрестности точки x_0 непрерывна в любой точке этой окрестности (за исключением самой точки x_0). Тогда точка x_0 называется точкой разрыва функции.

Пусть точка x_0 - точка разрыва. Её можно классифицировать как:

- І-ого рода
 - Основное условие

$$\exists \lim_{x \to x_0 + -}$$

- Точка конечного разрыва

$$\lim_{x \to x_0 +} \neq \lim_{x \to x_0 -}$$

- Точка устранимого разрыва

$$\lim_{x o x_0+}=\lim_{x o x_0-}
eq f(x_0)$$
 или $ot\equiv f(x_0)$

• ІІ рода

$$\exists \lim_{x \to x_0 + -}$$

Определение 8.10. Если точка x_0 – точка разрыва функции y=f(x) и существуют конечные пределы $\lim_{x\to x_0+}f(x)$ и $\lim_{x\to x_0-}f(x)$, то x_0 называют точкой І-го рода.

Определение 8.11. Если точка x_0 – точка разрыва функции y=f(x) и не существуют конечные пределы $\lim_{x\to x_0+} f(x)$ и $\lim_{x\to x_0-} f(x)$ или $\lim_{x\to x_0} f(x)=\infty$, то x_0 называется точкой разрыва II-го рода.

Определение 8.12. Если точка x_0 – точка разрыва первого рода функции y = f(x), и предел $\lim_{x \to x_0 +} f(x) \neq \lim_{x \to x_0 -} f(x)$, то x_0 называется точкой конечного разрыва или точкой *скачка*.

Определение 8.13. Если точка x_0 – точка разрыва первого рода функции y=f(x), и предел $\lim_{x\to x_0+}f(x)=\lim_{x\to x_0-}f(x)$, но $\neq f(x_0)$, то точка x_0 называется точкой устранимого разрыва.

Примеры

Пример.

$$y = \frac{|x-1|}{x-1}$$

$$D_f = \mathbb{R} \setminus \{1\}$$

$$x = 1 \text{ - точка разрыва}$$

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} \frac{|x-1|}{x-1} = \frac{x-1}{x-1} = 1$$

$$\lim_{x \to 1-} f(x) = \lim_{x \to 1-} \frac{|x-1|}{x-1} = \frac{1-x}{x-1} = -1$$

$$\lim_{x \to 1+} f(x) \neq \lim_{x \to 1-} f(x)$$

$$\implies x = 1 \text{ - т.р. I рода, точка скачка}$$

$$\Delta f = |\lim_{x \to 1+} f(x) - \lim_{x \to 1-} f(x)| = |1 - (-1)| = 2$$

Пример.

$$y = \frac{\sin(x)}{x}$$

$$D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0-} f(x)$$

$$\implies x = 0 - \text{ т.р. I рода, устранимая точка разрыва}$$

$$g(x) = \begin{cases} \frac{\sin(x)}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$$

$$f(x) \not\in C(0)$$

$$g(x) \in C(0)$$

Пример.

$$y = e^{\frac{1}{x}}$$

$$D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} e^{\frac{1}{x}} = e^{+\infty} = \infty$$

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} e^{\frac{1}{x}} = e^{-\infty} = 0$$

$$\lim_{x \to 0+} f(x) = \infty$$

$$\implies x = 0 \text{ - т.р. II рода}$$

8.3 Свойства непрерывных функций в точке

Теорема 8.2. Пусть функции:

$$y = f(x) y = g(x)$$
 $\in C(x_0)$

Тогда:

$$f(x) + g(x) \in C(x_0)$$
$$(f \cdot g)(x) \in C(x_0)$$

Доказательство. По определению непрерывной функции:

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Рассмотрим:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) + f(x_0) = g(x_0)$$

$$\implies f(x) + g(x) \in C(x_0)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$$

$$\implies (f \cdot g)(x) \in C(x_0)$$

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x_0)}$$

Теорема 8.3. Пусть

$$g(y) \in C(y_0), \quad y_0 = \lim_{x \to x_0} f(x)$$

Тогда:

$$\lim_{x\to 0}g(f(x))=g(\lim_{x\to 0}f(x))$$

Доказательство. Т.к. функция $g(y) \in C(y_0)$, то $\lim_{y \to y_0} g(y) = g(y_0)$. С другой стороны, по условию $\lim_{x \to x_0} f(x) = y_0$. По теореме "О пределе сложной функции" $\exists \lim_{x \to x_0} g(f(x))$. Подставим в последнее равенство $y_0 = \lim_{x \to x_0} f(x)$:

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x))$$

Теорема 8.4. О непрерывности сложной функции. Пусть функция $y = f(x) \in C(x_0)$, а функция $g(y_0) \in C(y_0)$, причем $y_0 = f(x_0)$. Тогда сложная функция $F(x) = g(f(x)) \in C(x_0)$.

Доказательство. Т.к. $y=f(x)\in C(x_0)$, то по определению непрерывности $\implies \lim_{x\to x_0} f(x)=f(x_0)$. Аналогично для $f(x)\in C(x_0)$ – по определению непрерывности $\implies \lim_{y\to y_0} g(y)=g(y_0)$. Рассмотрим $\lim_{x\to x_0} F(x)=\lim_{x\to x_0} g(f(x))$. По теореме 29:

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x)) =$$

По непрерывности функции:

$$= g(f(x_0)) = F(x_0) \implies g(f(x)) \in C(x_0)$$

Теорема 8.5. О сохранении знака непрерывной функции в окрестности точки.

Если функция $f(x) \in C(x_0)$ и $f(x_0) \neq 0$, то $\exists S(x_0)$, в которой знак значения функции совпадает со знаком $f(x_0)$.

Доказательство. Т.к. функция $y=f(x)\in C(x_0)$, то $\lim_{x\to x_0}f(x)=f(x_0)$. По теореме о сохранении функции знака своего предела $\Longrightarrow \exists S(x_0)$, в которой знак значений функции совпадает со знаком $f(x_0)$.

Замечание. На экзамене требуется доказать также и теорему о сохранении функции знака своего предела!

8.4 Непрерывность элементарных функций

Теорема 8.6. Основные элементарные функции непрерывные в области определения.

Доказательство. Это теорема доказывается для каждой элементарной функции отдельно. Докажем её для функций $y = \sin(x), y = \cos(x)$:

$$y=\sin(x), D_y=\mathbb{R}$$
 $x_0=0, \lim_{x\to x_0}\sin(x)=\sin(0) \implies y=\sin(x)\in C(0)$ $\forall x\in D_y=\mathbb{R}, \quad \Delta x$ — приращение функции
$$x=x_0+\Delta x, \quad x\in D_f=\mathbb{R}$$
 $\Delta y=y(x)-y(x_0)=y(x_0+\Delta x)-y(x_0)$
$$=\sin(x_0+\Delta x)-\sin(x_0)=2\sin\left(\frac{x_0+\Delta x-x_0}{2}\right)\cos\left(\frac{x_0+\Delta x+x_0}{2}\right)$$

$$=2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)$$

$$\lim_{\Delta x\to 0}\Delta y=\lim_{\Delta x\to 0}2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)=0$$
 — по т. об произв. огр. на б.м.ф.

Т.к. $\lim_{\Delta x \to 0} \Delta y = 0$ по опр. непр. функции $\Longrightarrow y = \sin(x)$ непрерывна в точке x_0 . Т.к. x_0 – произвольная точка из области определения, то $y = \sin(x)$ непрерывна на всей области произведения.

Теорема 8.7. Элементарные функции непрерывны в области определения

Доказательство. Доказательство данной теоремы следует из определения элементарных функций с помощью операций *сложения*, *вычитания*, *умножения*, *композиции*, предыдущей теоремы, теоремы об алгебраических свойствах непрерывной функции и теоремы о композиции непрерывных функций.

8.5 Свойства функций, непрерывных на промежутке

Теорема 8.8. Об ограниченности непрерывной функции или Первая теорема Вейеритрасса. .

Если функция y=f(x) непрерывна на отрезке ab, то она на этом отрезке ограниченна.

$$f(x) \in C[a,b] \implies \exists M \in \mathbb{R}, M > 0, \forall x \in [a,b] : |f(x)| < M$$

Теорема 8.9. О достижении непрерывной функции наибольшего и наименьшего значений или Вторая теорема Вейерштрасса.

Если функция $y=f(x)\in C[a,b],$ то она достигает на этом отрезке своего наибольшего и наименьшего значения.

$$f(x) \in C[a, b]$$

$$\Longrightarrow$$

$$\exists x_*, x^* \in [a, b] : \forall x \in [a, b] \implies m = f(x_*) \le f(x) \le f(x^*) = M$$

Теорема 8.10. О существовании нуля непрерывной функции или Первая теорема Бальцана-Коши.

Если функция $y=f(x)\in C[a,b],$ и на концах отрезка принимает значения разных знаков, то $\exists c\in (a,b): f(c)=0.$

$$f(x) \in S[a,b] \land f(a) \cdot f(b) < 0 \implies \exists c \in (a,b) : f(c) = 0$$

Теорема 8.11. О промежуточном значении непрерывной функции или Вторая теорема Бальцана-Коши.

Если функция $y = f(x) \in C[a,b]$ и принимает на границах отрезка различные значения $f(a) = A \neq f(b) = B$, то $\forall C \in [A,B] \exists c \in (a,b)$, в которой f(c) = C.

$$f(x) \in C[a,b] \land f(a) = A \neq f(b) = B \implies \exists C \in (A,B) \implies \exists c \in (a,b) : f(c) = C$$

Теорема 8.12. O существовании обратной κ непрерывной функции. Пусть $y=f(x)\in C(a,b)$ и строго монотонна на этом интервале. Тогда в соответствующем (a,b) интервале значений функции существует обратная функция $x=f^{-1}(y)$, которая так же строго монотонна и непрерывна.

9 Дифференциальное исчисление функции одной переменной

Рассмотрим y = f(x) определённую в $S(x_0)$. Пусть x – произвольная точка из $S(x_0)$. Обозначим:

• Δx – приращение аргумента

$$x = x_0 + \Delta x \implies \Delta x = x - x_0$$

• Δy – приращение функции

$$\Delta y = y(x_0 + \Delta x) - y(x_0)$$

Определение 9.1. Производной функции y=f(x) в точке x_0 называется предел отношения приращения функции и предел приращения аргумента при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Если предел конечен, то функция y = f(x) в точке x_0 имеет конечную производную. Если предел бесконечен, то функция y = f(x) в точке x_0 имеет бесконечную производную.

Дифференцирование – процесс получения производной.

Пример.

$$y = e^{x}, D_{f} = \mathbb{R}$$

$$x = x_{0} + \Delta x, \forall x \in D_{f}$$

$$\Delta y = y(x_{0} + \Delta x) - y(x_{0}) = e^{x_{0} + \Delta x} - e^{x_{0}} = e^{x_{0}} \left(e^{\Delta x} - 1 \right)$$

$$y'(x_{0}) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_{0}} \left(e^{\Delta x} - 1 \right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_{0}} \Delta x}{\Delta x} = e^{x_{0}}$$

Пример

$$y = \sin(x), D_f = \mathbb{R}$$

$$x = x_0 + \Delta x, \forall x \in D_f$$

$$\Delta y = y(x_0 + \Delta x) + y(x_0) = \sin(x_0 + \Delta x) - \sin(x_0) =$$

$$2 \sin \frac{x_0 + \Delta x - x_0}{2} \cos \frac{x_0 + \Delta x + x_0}{2} = 2 \sin \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2}\right)$$

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2 \sin \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$\lim_{\Delta x \to 0} \frac{2 \cdot \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} = \lim_{\Delta x \to 0} \cos \left(x_0 + \frac{\Delta x}{2}\right) = \cos x_0$$

9.1 Односторонние производные

Определение 9.2. Производной функции y = f(x) в точке x_0 справа или правосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа.

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x}$$

Определение 9.3. Производной функции y=f(x) в точке x_0 слева или левосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю слева.

$$y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

Теорема 9.1. О существовании производной функции в точке. Функция y=f(x) в точке x_0 имеет производную тогда и только тогда, коогда она имеет производные и справа, и слева, и они равны между собой.

$$y'(x_0) = y'_+(x_0) = y'_-(x_0)$$

Пример.

$$y = |x|, x_0 = 0$$

$$y = \begin{cases} x, x > 0 \\ 0, x = 0 \\ -x, x < 0 \end{cases} \implies y' = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

 $y'_+(0)=1$ $y'_-(0)=-1$ — т.к. производные конечные, но различные, то $x_0=0$ называется точкой излома

9 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Геометрический смысл: \exists касательной к функции в точке излома.

Пример.

$$y = x^{\frac{1}{3}}, z_0 = 0$$
$$y' = \frac{1}{3}x - \frac{2}{3}$$

9.2 Уравнение касательной и нормали к графику функции.

Пусть f(x) опредена в $S(x_0)$. Обозначим:

- $f(x_0) = y_0, M(x_0, y_0)$
- Δx приращение функции
- $x = x_0 + \Delta x$
- $N(x0 + \Delta x, y(x_0 + \Delta x))$
- MN секущая

При $\Delta x \to 0$ точка N движется вдоль графика функции y = f(x), а секущая MN вращается вдоль графика.

В пределе $\lim_{\Delta x \to 0}$ секущая MN становиться *касательной*.

Определение 9.4. Если существует предельное секущей MN, когда точка N перемещается вдоль графика функции к точке M, это положение называется *касательной* к графику функции в точке M.

$$\Delta MNK : \operatorname{tg} \alpha = \frac{\Delta y}{\Delta x}$$

$$\lim_{\Delta x \to 0} \operatorname{tg} \alpha_0$$

$$\lim_{\Delta x \to 0} y'(x_0) \right\} \implies \boxed{\operatorname{tg} \alpha_0 = y'(x_0)}$$

где α – угол между секущей и положительным направлением оси ОХ, а α_0 – угол между касательной и положительным направлением оси ОХ.

С другой стороны, прямая, проходящая через точку $M_0(x_0, y_0)$ с заданным угловым коэффициентом k имеет вид:

$$y - y_0 = k(x - x_0)$$

где k – тангенс угла наклона прямой к положительному направлению оси Ox.

$$tg \alpha_0 = y'(x_0) = k$$

Рассмотрим $\forall P(x,y)$ на касательной к графику функции y=f(x) в точке $M(x_0,y_0)$:

$$\triangle MPK : \operatorname{tg} \alpha = \frac{PK}{MK}$$

$$\operatorname{tg} \alpha_0 = \frac{y - y_0}{x - x_0}$$

$$y'(x_0) = \operatorname{tg} \alpha_0$$

$$y'(x_0) = \frac{y - y_0}{x - x_0}$$

Получаем:

$$y - y_0 = y'(x_0)(x - x_0)$$

– уравнение касательной к графику функции y=f(x) в точке $M(x_0,y_0)$ Выводы:

9 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

1. Геометрический смысл производной: производная функции y = f(x) в точке x_0 равна тангенсу угла наклона касательной к положительному направлению оси Ох или угловому коэффициенту касательной.

$$y'(x_0) = \operatorname{tg} \alpha_0 = k$$

2. Механический смысл производной функции s=f(t) в точке t_0 равна мгновенной скорости в момент t_0

$$V(t_0) = s'(t_0)$$

Определение 9.5. *Нормалью* к графику функции y = f(x) называется прямая, перпендикулярная касательной к графику функции в данной точке.

$$l_1: y_1 = k_1 x + b_1$$

 $l_2: y_2 = k_2 x + b_2$
 $l_1 \perp l_2 \iff k_1 \cdot k_2 = -1$

$$y - y_0 = y'(x)(x - x_0)$$

$$k_1 = y'(x) \implies k_2 = -\frac{1}{y'(x)} \implies$$

$$y - y_0 = -\frac{1}{y'(x)}(x - x_0)$$

Замечание. Касательная к графику функции существует не в любой точке (точка излома и точка заострения).

Определение 9.6. Кривая, имеющая касательную в любой точке рассматриваемого промежутка, называется *гладкой*.

Вывод. Если $y'(x_0) = \infty$, то касательная к графику функции y = f(x) в точке x_0 , параллельно оси ординат и имеет вид $x = x_0$ (нормаль имеет вид $y = y_0$).

Если $y'(x_0)=0$, то касательная к графику функции y=f(x) в точке x_0 имеет вид $y=y_0$ (нормаль имеет вид $x=x_0$).

Определение 9.7. Углом между двумя пересекающимися кривыми в точке с абциссой x_0 называется угол между касательными, проведёнными в этой точке.

9 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Вывод.

$$\begin{array}{ccc}
 y &= f_1(x) \\
 y &= f_2(x)
 \end{array} \implies f_1 \cap f_2 = M_0(x_0, y_0) \quad \begin{array}{ccc}
 y_1 &= k_1 x + b_1 \\
 y_2 &= k_2 x + b_2
 \end{array}$$

$$\varphi - \text{угол между } f_1, f_2 \varphi = \alpha_2 - \alpha_1$$

$$\operatorname{tg} \alpha_1 = k_1 = f_1(x_0)$$

$$\operatorname{tg} \alpha_2 = k_2 = f_2(x_0)$$

$$\operatorname{tg} \varphi = \operatorname{tg}(\alpha_2 - \alpha_1) = \frac{\operatorname{tg} \alpha_2 - \operatorname{tg} \alpha_1}{1 + \operatorname{tg} \alpha_2 \cdot \operatorname{tg} \alpha_1} \frac{k_2 - k_1}{1 + k_2 k_1} = \frac{f_2'(x_0) f_1(x_0)}{1 + f_1(x_0) \cdot f_2'(x_0)}$$

$$\operatorname{tg} \varphi = |\frac{f_2'(x_0) - f_1'(x_0)}{1 + f_2'(x_0) f_1'(x_0)}|$$

10 Дифференцируемость функции в точке

Определение 10.1. Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$, $\Delta x > 0$.

Теорема 10.1. *Необходимое и достаточное условие дифференцируемо*сти функции в точке.

Функция y = f(x) в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

Доказательство. .

Необходимость.

Дано: y = f(x) – дифференцируема в точке x_0 .

Доказать: $\exists y'(x)$ – конечное число

Т.к. y = f(x), то $\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где $\alpha(\Delta x)$ – бесконечно малая функция при $\Delta x \to 0$.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A \Delta x + \alpha(\Delta x) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \alpha(\Delta x) \right) =$$

$$A + \lim_{\Delta x \to 0} \alpha(\Delta x) = A + 0 = A$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0) - \text{по определению}$$

$$\implies y'(x_0) = A = const \implies \exists y'(x_0) - \text{конечное число.}$$

Достаточность.

Дано: $\exists y'(x_0)$ – конечное число.

Доказать: y = f(x) – дифференцируема в этой точке.

Доказательство:

Т.к. $\exists y'(x)$, то по определению производной

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

По теореме "О связи функции, её предела и некоторой бесконечно малой функции":

$$\frac{\Delta y}{\Delta x} = y'(x_0) + \alpha(\Delta x)$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$.

$$\Delta y = y'(x_0)\Delta x + \alpha(\Delta x)\Delta x$$

 $\Delta y=y'(x_0)\Delta x+\alpha(\Delta x)\Delta x$ где $A=y'(x_0)\implies y=f(x)$ дифференцируема в данной точке. **Вывод.** Формула, выражающая дифференцируемость функции y = f(x) в точке x_0 примет вид:

$$\Delta y = y'(x_0)\Delta x + \alpha(\Delta x)\Delta x$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$

Теорема 10.2. Связь дифференцируемости и непрерывности функции. Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

Доказательство. Т.к. y=f(x) дифференцируема в точке x_0 , то $\Delta y=y'(x_0)\Delta x+\alpha(\Delta x)\Delta x$, где $y'(x_0)=const,\ \alpha(\Delta x)$ – бесконечно малая функция при $\Delta x\to 0$. Вычислим:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (y'(x)\Delta x + \alpha(\Delta x)\Delta x)$$

$$= y'(x_0) \lim_{\Delta x \to 0} \Delta x + \lim_{\Delta x \to 0} \alpha(\Delta x) \lim_{\Delta x \to 0} \Delta x$$

$$= y'(x_0) \cdot 0 + 0 \cdot 0 = 0$$

По определению непрерывной функции y=f(x) является непрерывной в точке x_0 .

Замечание. Если функция непрерывна, она не обязательно дифференцируема!

10.1 Правила дифференцирования

Теорема 10.3. *Арифметические операции.*

Пусть функции u=u(x) и v=v(x) дифференцируемы в точке x. Тогда в этой точке дифференцируемая их сумма, разность, произведение, частное (при условии знаменателя не равного нулю), справедливо равенство:

$$(u \pm v)' = u' \pm v'$$
$$(u \cdot v)' = u'v + v'u$$
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

Доказательство. Распишем приращения каждой из функций:

$$\begin{cases} \Delta u = u(x + \Delta x) - u(x) \\ \Delta v = v(x + \Delta x) - v(x) \end{cases} \implies \begin{cases} u(\Delta x + x) = \Delta u + u(\Delta x) \\ v(\Delta x + x) = \Delta v + v(\Delta x) \end{cases}$$

Доказательство. Пусть y = uv, тогда:

$$\begin{split} \Delta y &= y(x+\Delta x) - y(x) = u(x+\Delta x)v(x+\Delta x) - u(x)v(x) = \\ &= (\Delta u + u(x))(\Delta v + v(x)) - u(x)v(x) = \Delta u\Delta v + \Delta uv(x) + \\ &\quad + \Delta vu(x) + u(x)v(x) = \\ &\quad \Delta u\Delta v + \Delta uv(x) + \Delta vu(x). \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u \Delta v + \Delta u v(x) + \Delta v u(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\Delta u \frac{\Delta v}{\Delta x} + v(x) \frac{\Delta u}{\Delta x} + u(x) \frac{\Delta v}{\Delta x} \right) =$$

$$= \lim_{\Delta x \to 0} \Delta u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} =$$

$$= v(x)u'(x) + v'(x)u(x) + v'(x) \cdot 0 =$$

$$= \left[v(x)u'(x) + u(x)v'(x) \right]$$

Т.к. функции $u=u(x),\ v=v(x)$ дифференцируемы в точке x, то по теореме о связи дифференцируемости и непрерывности функции $\implies u=u(x)$ и v=v(x) непрерывны в точке $x\implies$ по определению непрерывности функции:

$$\begin{cases} \lim_{\Delta x \to 0} \Delta u = 0 \\ \lim_{\Delta x \to 0} \Delta v = 0 \end{cases}$$

Доказательство. Пусть $y = \frac{u}{v}$, тогда:

$$\begin{split} \Delta y &= y(x + \Delta x) - y(x) = \\ &= \frac{u(x + \Delta x}{v(x + \Delta x} - \frac{u(x)}{v(x)} = \\ &= \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{v(x + \Delta x)v(x)} = \\ &= \frac{(u(x) + \Delta u)v(x) - u(x)(v(x) + \Delta v)}{(\Delta v + v(x))v(x)} = \\ &= \frac{u(x) + \Delta uv(x) - u(x)v(x) - u(x)\Delta v}{v^2(x) + v(x)\Delta v} = \\ &= \frac{\Delta uv(x) - \Delta vu(x)}{v^2(x) + v(x)\Delta v} \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\frac{\Delta uv(x) - \Delta vu(x)}{v^2(x) + v(x)\Delta v}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{v(x)\frac{\Delta u}{\Delta x} - v(x_0\frac{\Delta v}{\Delta x})}{v^2(x) + v(x)\Delta v} =$$

$$= \frac{v(x)\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u(x)\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v^2(x) - v(x)\lim_{\Delta x \to 0} \Delta v} =$$

$$= \frac{v(x)u'(x) - u(x)v'(x)}{v^2(x)}$$

Для доказательства использовали:

- $\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = u'(x)$
- $\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = v'(x)$
- т.к v(x) дифференцируема, то по теореме о связи дифференцируемости и непрерывности v(x) непрерывна, \Longrightarrow по определению непрерывности $\lim_{\Delta x \to 0} \Delta v = 0$

Теорема 10.4. Производная от постоянной равна нулю.

$$(c)' = 0, \quad c = const$$

Вывод. Константу можно выносить за знак производной.

$$(c \cdot f)' = c \cdot f', \quad c = const$$

Вывод. Производная функции $y=\frac{1}{v(x)}$ имеет вид:

$$\left(\frac{1}{v(x)}\right)' = -\frac{1}{v^2(x)}v'(x)$$

Определение 10.2. Функция y = f(x) называется *дифференцируемой* на интервале, если она дифференцируема в каждой точке этого интервала.

Теорема 10.5. Производная сложной функции.

Пусть функция u = g(x) дифференцируема в точке x = a, а функция y = f(u) дифференцируема в соответствующей точке b = g(a). Тогда сложная функция F(x) = f(g(x)) дифференцируема в точке x = a.

$$F'(x)|_{x=a} = (f(g(x))')_{x=a} = f'_u(b) \cdot g'_x(a)$$

Доказательство. Т.к. функция u=g(x) дифференцируема в точке x=a, то по определению \Longrightarrow

$$\Delta u = g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Т.к. функция y = f(x) дифференцируема в точке b, то по определению дифференцируемости \Longrightarrow

$$\Delta y = f'(b) \cdot \Delta u + \beta(\Delta u) \cdot \Delta u \tag{2}$$

где $\beta(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Подставим (1) в (2). Тогда:

$$\Delta y = f'(b) \cdot (g'(a)\Delta x + \alpha(\Delta x)\Delta x) + \beta(\Delta u) (g'(a)\Delta x + \alpha(\Delta x)\Delta x) =$$

$$= f'(b) \cdot g'(a)\Delta x + \Delta x (f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(\Delta x)) = \Delta F$$

Обозначим: $\gamma(\Delta x) = f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(x)$. В итоге получаем $\Delta F = f'(b)g'(a)\Delta x + \gamma(\Delta x)\Delta x$.

 $f(b)\alpha(\Delta x)$ — б.м.ф при $\Delta x \to 0$ (как производная постоянной на б.м.ф.). Т.к. u=g(x) дифференцируема в точке x=a, то по теореме о связи дифференцируемости и непрерывности функции u=g(x) непрерывна в точке $x=a \Longrightarrow$ по определению непрерывности $\lim_{\Delta x \to 0} \Delta u = 0$ или при $\Delta x \to 0$, $\Delta u \to 0$. $g'(a)\beta(\Delta u)$ — б.м.ф при $\Delta x \to 0$ как производная на б.м.ф. $\beta(\Delta u)\alpha(\Delta x)$ — б.м.ф при $\Delta x \to 0$ (как производная двую б.м.ф). Следовательно, $\gamma(x)$ — б.м.ф при $x \to 0$ как сумма конечного числа б.м.ф.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = \lim_{\Delta x \to 0} \left(f'(b)g'(a) + \gamma(\Delta x) \right) = f(b)g'(a) + 0 = f'(b)g'(a).$$

Теорема 10.6. *Производная обратной функции.*

Пусть функция y=f(x) в точке x=0 имеет конечную и отличную от нуля производную f'(a) и пусть для неё существует однозначная обратная функция x=g(y), непрерывная в соответствующей точке b=f(a). Тогда существует производная обратной функции и она равна:

$$g'(b) = \frac{1}{f'(a)}$$

Доказательство. Т.к. функция x=g(y) однозначно определена, то соответственно при $\Delta y \neq 0, \, \Delta x \neq 0$. Т.к. функция x=g(y) непрерывна в соответствующей точке b, то $\lim_{\Delta y \to 0} \Delta x = 0$ или $\Delta x \to 0$ при $\Delta y \to 0$.

$$g'(b) = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(a)}$$

Пример.

$$y = \arcsin(x), \quad x = \sin(y), y' = \frac{1}{x'}$$

$$y' = (\arcsin(x))' = \frac{1}{\sqrt{1 - x^2}}$$

$$x' = \cos(y)$$

$$\cos^2(y) + \sin^2(y) = 1$$

$$\cos^2(y) = 1 - \sin^2(y)$$

$$\cos(y) = \pm \sqrt{1 - \sin^2(y)}$$

$$y = \arcsin(x)$$

$$D_f = [-1, 1], E_f = [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$y \in [-\frac{\pi}{2}]$$

10.2 Производные высших порядков

Пусть y=f(x) дифференцируема на (a,b). Тогда $\forall x\in (a,b)$ существует производная y'=f'(x). Функция:

$$y'' = (y')' = f''(x)$$

называется производной второго порядка или второй производной.

Определение 10.3. Производной n-ого порядка или n-производной функции y=f(x) называется производная от (n - 1)-ой производной функции y=f(x).

$$y^{(n)} = \left(y^{(n-1)}\right)'$$

C[a,b] — множество непрерывных функций на [a,b] $C^1[a,b]$ — множество функций непрерывных вместе со своей производной на [a,b] или непрерывно-дифференцируемых функций.

Определение 10.4. Производная порядка выше первого называется *производной высшего порядка*.

10.3 Дифференциал функции

Пусть функция y=f(x) определена в окрестности точки x_0 и дифференцируема в этой точке. Тогда по определению дифференцируемой функции приращение:

$$\Delta y = f'(x_0)\Delta x + \alpha(\Delta x)\Delta x \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$. Если $f'(x_0) \neq 0$, то $f'(x_0)\Delta X$ – имеет один порядок малости, то $\alpha(\Delta x)\Delta x$ – б.м.ф более высокого порядка малости, чем $f'(x_0)\Delta x$. Тогда по теореме о сумме б.м.ф разного порядка малости $\Longrightarrow \Delta y \sim f'(x_0)\Delta x$ при $\Delta x \to 0$. По определению главной части $\Longrightarrow f'(x_0)\Delta x$ – главная часть равенства (1) приращения функции Δy .

Определение 10.5. Дифференциалом функции $y = f(x_0)$ называется главная часть приращения функции Δy или первое слагаемое в равенстве (1).

$$dy = f'(x_0)\Delta x \tag{2}$$

Если $f'(x_0) = 0$, то dy = 0, но $f'(x_0)\Delta x$ уже не является главной частью приращения функции Δy .

Пусть y=x. Тогда по определению дифференциала получится $\Longrightarrow dy=(x)'\Delta x=1\Delta x$. С другой стороны, $y=x\implies dx=\Delta x$. Отсюда получаем вывод, что дифференциал независимой переменной равен её приращению.

Подставляем $\Delta x = dx$ в (2) \Longrightarrow

$$dy = f'(x_0)dx$$
(3)

Если y = f(x) дифференцируема на интервале (a, b), тогда:

$$\forall x \in (a,b) : \boxed{dy = f'(x)dx} \tag{4}$$

$$f'(x) = \frac{dy}{dx} \tag{5}$$

Вывод: производная функции представима в виде отношения дифференциалов функции и независимой переменной.

10.4 Геометрический смысл дифференциала

Дифференциал функции y=f(x) в точке x_0 равен приращению ординаты касательной к графику функции в этой точке.

$$M(x_0,y_0), \quad M(x,y), \quad \Delta x$$
 — приращение аргумента $MK = \Delta y, \quad M_0K = \Delta x$ $PK = dy$ $dy = f'(x_0)\Delta x + \alpha(\Delta x)\Delta x$ $\alpha(\Delta x) - 6$.м.ф. при $\Delta x \to 0$ $dy = f'(x_0)\Delta x$
$$\boxed{y-y_0 = f'(x_0)(x-x_0)}$$
 — уравнение касательной $y-y_0 = \Delta y$ $f'(x_0)(x-x_0) - f'(x_0)\Delta x = f'(x_0)dx = dy$ $dy = \Delta y$

10.5 Инвариантность формы первого дифференциала

Формула первого дифференциала

$$dy = f'(x)dx$$
 (3)

х - независимая переменная.

Докажем, что формула (3) верна и в том случае, когда x – функция от некоторой другой переменной.

Теорема 10.7. Инвариантность формы записи первого дифференциала.

Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

Доказательство. Пусть $y=f(x),\, x=\varphi(t).$ Тогда можно задать сложную функцию:

$$F(t) = y = f(\varphi(t))$$

По определению дифференциала функции:

$$dy = F'(t)dt (6)$$

По теореме о производной сложной функции:

$$F'(t) = f'(x) \cdot \varphi'(t) \tag{7}$$

Подставим (7) в (6):

$$dy = f'(x)\varphi'(t)dt \tag{8}$$

По определению дифференциала функции $dx=\varphi'(t)dt$ (9). Подставим (9) в (8):

$$dy = f'(x)dx$$

Получили формулу (3).

10.6 Дифференциалы высшего порядка

Пусть функция y = f(x) дифференцируема на (a,b), тогда $\forall x \in (a,b) \implies dy = f'(x)dx$. Дифференциал – это функция:

$$dy = y(x)$$

Вторым дифференциалом или дифференциалом второго порядка называется дифференциал от первого дифференциала.

$$d^2y = d(dy)$$

Определение 10.6. n-ым дифференциалом или дифференциалом n-ого nopядка называется дифференциал от дифференциала n-1 порядка.

$$d^n y = d\left(d^{n-1}y\right), \quad n = 2, 3\dots$$

Вывод. Свойством инвариантности обладает только первый дифференциал

10.7 Основные теоремы дифференциального исчисления

Теорема 10.8. Теорема Ферма или теорема о нулях производной. Пусть функция y = f(x) определена на промежутке X и во внутренней точке C этого промежутка достигает наибольшего или наименьшего значения. Если в этой точке существует f'(c), то f'(c) = 0.

Доказательство. Пусть функция y=f(x) в точке x=c принимает наибольшее значение на промежутке X. Тогда $\forall x \in X \implies f(x) \leq f(c)$. Дадим приращение Δx точке x=c. Тогда $f(c+\Delta x) \leq f(c)$. Пусть

$$\exists f'(c) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y(c + \Delta x) - y(c)}{\Delta x}$$

Рассмоотрим два случая:

$$\begin{split} 1)\Delta x &> 0, \Delta x \to 0+, x \to c+ \\ f'_+(c) &= \lim_{\Delta x \to 0+} \frac{y(c+\Delta x) - y(c)}{\Delta x} = \begin{pmatrix} -\\+ \end{pmatrix} \leq 0 \\ 2)\Delta x &< 0, \Delta x \to 0-, x \to c- \\ f'_-(c) &= \lim_{\Delta x \to 0-} \frac{y(c+\Delta x) - y(c)}{\Delta x} = \begin{pmatrix} -\\-\\- \end{pmatrix} \geq 0 \end{split}$$

По теореме о существовании производной функции в точке:

$$f'_{+}(c) = -f'_{-}(c) = 0$$

Геометрический смысл

Касательная к графику функции y = f(x) в точке с координатами M(c, f(c))параллельна оси абцисс. f(c) – наибольшее значение функции.

Теорема 10.9. *Теорема Ролля.* Пусть функция y = f(x):

- 1. Непрерывна на отрезке (a, b)
- 2. Дифференцируема на интервале (a,b) 3. f(a)=f(b)

Доказательство. Т.к. функция y = f(x) непрерывна на отрезке (a, b), то по теореме Вейерштрасса она достигает на этом отрезке своего наибольшего и наименьшего значения. Возможны два случая:

- 1. Наибольше и наименьшее значение достигаются на границе, т.е. в точке a и в точке b. Это означает, что m = M, где m – наименьшее значение, а M – наибольшее. Из этого следует, что функция y =f(x) = const на (a, b). Соответственно $\forall x \in (a, b), f'(x) = 0$
- 2. Когда наибольшее или наименьшее значение достигаются во внутренней точке (a,b). Тогда для функции y=f(x) справедлива теорема Ферма, согласно которой $\exists c \in (a, b), f'(c) = 0.$

Вывод. Между двумя нулями функции существует хотя бы один нуль производной.

Теорема 10.10. Теорема Лагранжа.

Пусть функция y = f(x):

- 1. Непрерывна на отрезке [a,b]
- 2. Дифференцируема на интервале (a, b)

Тогда $\exists c \in (a, b)$, в которой выполняется равенство:

$$f(b) - f(a) = f'(c)(b - a)$$

Доказательство. Рассмотрим вспомогательную функция F(x) = f(x) $f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$. F(x) непрерывна на отрезке [a, b] как сумма непрерывных функций. Существует конечная проивзодная функции

F(x):

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

следовательно по необходимому и достаточному условию дифференцируемости будет верно F(x) – дифференцируема на (a,b). Покажем, что F(a) = F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a)$$

$$= f(b) - f(b) + f(a) - f(a) = 0$$

Значит функция F(x) удовлетворяет условиям теоремы Ролля. Тогда по теореме Ролля $\exists c \in (a, b), F'(c) = 0.$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(c)(b - a)$$

Геометрический смысл

$$A(a, f(a)), \quad B(b, f(b))$$

 $\operatorname{tg} \alpha = \frac{BC}{AC} \quad \operatorname{tg} \alpha' = \operatorname{tg} \alpha$

Теорема 10.11. Теорема Коши.

Пусть функции f(x) и $\varphi(x)$ удовлетворяют условиям:

- 1. Непрерывны на отрезке [a, b]
- 2. Дифференцируемы на интервале (a,b) 3. $\forall x \in (a,b)f'(x) \neq 0$ Тогда $\exists c \in (a,b),$ такое что:

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

Доказательство. Рассмотрим вспомогательную функцию:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{\varphi(a) - \varphi(b)} (\varphi(x) - \varphi(a))$$

Докажем применимость Теоремы Ролля:

- 1. F(x) непрервына на [a,b] как линейная комбинация непрерывных функций.
- 2. F(x) дифференцируема на [a,b] как линейная комбинация дифференцируемых функций.
- 3. F(a) = F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} (\varphi(a) - \varphi(a)) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} (\varphi(b) - \varphi(a)) = 0$$

Значит, функция F(x) удовлетворяет условию теоремы Ролля, $\Longrightarrow \exists c \in (a,b): F'(c) = 0.$ Вычислим:

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(x)$$
$$F'(c) = f'(c) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = 0$$

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = f'(c)$$
$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

11 Правило Лопиталя-Бернулли

Теорема 11.1. Пусть f(x) и $\varphi(x)$ удовлетворяют условиям:

• Определены и дифференцируемы в $\mathring{S}(x_0)$ • $\lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} \varphi(x) = 0$ • $\forall x \in \mathring{S}(x_0) \quad \varphi'(x) \neq 0$ • $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$ Тогда $\exists \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$.

Доказательство. Доопределим функции f(x) и $\varphi(x)$ в точке x_0 нулём:

$$f(x_0) = 0 \quad \varphi(x_0) = 0$$

По условию:

$$\lim_{x \to x_0} f(x) = 0 = f(x_0) \qquad \lim_{x \to x_0} \varphi(x) = 0 = \varphi(x_0)$$

f(x) и $\varphi(x)$ непрерывны в точке x_0 .

По условию функция f(x) и $\varphi(x)$ дифференцируемы в точке $\mathring{s}(x_0) \Longrightarrow$ по теореме о связи дифференцируемости и непрерывности $\implies f(x)$ и $\varphi(x)$ непрерывны в $\mathring{s}(x_0)$. Таким образом f(x) и $\varphi(x)$ непрерывны в $S(x_0)$.

Функции f(x) и $\varphi(x)$ удовлетворяют условию т.Коши на $[x_0, x]$. Тогда по теореме Коши ⇒

$$\exists c \in [x_0, x] : \frac{f(x) - f(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{f'(c)}{\varphi'(c)} \tag{*}$$

Т.к. $f(x_0) = 0$ и $\varphi(x_0) = 0$ \Longrightarrow $(*) \qquad \boxed{\frac{f(x_0)}{f(x_0)}}$

(*)
$$\frac{f(x)}{\varphi(x)} = \frac{f'(c)}{\varphi(c)}$$

Т.к. $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A \implies$ правая часть (*): $\lim_{c \to x_0} \frac{f'(c)}{\varphi'(c)} = A$

$$\lim_{c \to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

Получаем:

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$

П

Теорема 11.2. Пусть f(x) и $\varphi(x)$ удовлетворяют условиям:

• Определены и дифференцируемы в $\mathring{S})(x_0)$ • $\lim_{x\to x_0} f(x) = \infty, \lim_{x\to x_0} \varphi(x) = \infty$ • $\forall x \in \mathring{S}(x_0) \quad \varphi'(x) \neq 0$ • $\exists \lim_{x\to x_0} \frac{f'(x)}{\varphi'(x)} = A$ Тогда $\exists \lim_{x\to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x\to x_0} \frac{f'(x)}{\varphi'(x)} = A$.

11.1 Сравнение показательной, степенной и логарифмической функции на бесконечности

Пусть:

$$f(x) = x^n$$
$$g(x) = a^x$$
$$h(x) = \ln x$$

Найдём предел при стремлении к бесконечности:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^n}{a^x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +\infty} \frac{n \cdot x^{n-1}}{a^x \ln a}$$
$$= \left(\frac{\infty}{\infty}\right) = \dots = \lim_{x \to +\infty} \frac{n(n-1)(n-2)\dots \cdot 1}{a^x(\ln a)^n} =$$
$$= \frac{n!}{\ln^n a} \lim_{x \to +\infty} \frac{1}{a^x} = \frac{n!}{\ln^n a} = 0.$$

Значит a^x растёт быстрее, чем x^n при $x \to \infty$ или $x^n = o(a^x)$ при $x \to \infty$

Найдём предел при стремлении к бесконечности:

$$\lim_{x \to +\infty} \frac{h(x)}{f(x)} = \lim_{x \to +\infty} \frac{\ln x}{x^n} = \left(\frac{\infty}{\infty}\right)$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{n \cdot x^{n-1}} = \frac{1}{n} \lim_{x \to +\infty} \frac{1}{x^n} = \frac{1}{n} \cdot 0 = 0$$

Значит, x^n растёт быстрее, чем $\ln x$ при $x \to +\infty$ $\ln x = o(x^n)$ при $x \to \infty$

Вывод: на бесконечности функции расположены в таком порядке:

11 ПРАВИЛО ЛОПИТАЛЯ-БЕРНУЛЛИ

- 1. $g(x) = a^x$ самая быстрорастущая функция
- $2. \ f(x) = x^n$
- $3. \ h(x) = \ln x$

12 Формула Тейлора. Многочлен Тейлора

Теорема 12.1. Пусть функция y = f(x) дифференцируема n раз в точке x_0 и определена в некоторой окрестности этой точки. Тогда $\forall x \in$ $S(x_0)$ имеет место формула Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!}(x - x_0)^n + R_n(x)$$

$$f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\ldots+\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x)$$
 Или кратко: $f(x)=P_n(x)+R_n(x)$, где:
$$P_n(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\ldots+\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x)$$

- $P_n(x)$ называют многочленом или полиномом Тейлора.
- $R_n(x)$ называют остаточным членов формулы Тейлора.

Доказательство. Покажем, что многочлен $P_n(x)$ существует. Будем искать многочлен Тейлора в виде:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots + a_n(x - x_0)^n$$
 (2)

где $a_1, a_2, a_3 \dots a_n$ – некоторые константы.

Пусть выполнены условия:

$$P_n(x_0) = f(x_0) \quad P'_n(x) = f'(x) \quad \dots \quad P_n^{(n)}(x) = f^{(n)}(x)$$
 (3)

 $f'(x_0), f''(x_0), \dots f^{(n)}(x)$ существуют т.к. y = f(x) дифференцируема n раз в точке x_0 .

Вычислим $P'_n(x), P''_n(x), \dots P_n^{(n)}(x)$:

Вычислим
$$P_n(x), P_n^{-1}(x), \dots P_n^{-1}(x)$$
:
$$P'_n(x) = a_1 \cdot 1 + a_2 \cdot 2(x - x_0) + a_3 \cdot 3(x - 0)^2 + \dots + a_n \cdot n(x - x_0)^{(n-1)}$$

$$P''_n(x) = a_2 \cdot 1 + a_3 \cdot 3 \cdot 2(x - x_0)$$

$$+ a_4 \cdot 4 \cdot 3(x - 0)^2 + \dots + a_n \cdot n \cdot (n - 1)(x - x_0)^{(n-2)}$$

$$\dots$$

$$P_n^{(n)}(x) = a_n n(n - 1)(n - 2) \dots 1 = a_n \cdot n!$$

$$P_n(x_0) = a_0 = f(x_0)$$

$$P'_n(x_0) = 1 \cdot a_1 = f'(x_0)$$

$$P''_n(x_0) = 1 \cdot 2 \cdot a_2 = 2f''(x_0)$$

$$P_n^{(n)}(x) = a_n n(n-1)(n-2) \dots 1 = a_n \cdot n!$$

$$P_n(x_0) = a_0 = f(x_0)$$

$$P'_n(x_0) = 1 \cdot a_1 = f'(x_0)$$

$$P''_n(x_0) = 1 \cdot 2 \cdot a_2 = 2f''(x_0)$$

$$P_n^{(n)}(x_0) = n!a_n = n! \cdot f^{(n)}(x_0)$$

Выразим $a_0, a_1, a_2, \dots a_3$:

$$a_0 = f(x_0)$$
 $a_1 = \frac{f'(x_0)}{1!}$ $a_2 = \frac{f''(x_0)}{2!}$... $a_n = \frac{f^{(n)}(x_0)}{n!}$

$$a_0 = f(x_0) \quad a_1 = \frac{f'(x_0)}{1!} \quad a_2 = \frac{f''(x_0)}{2!} \quad \dots \quad a_n = \frac{f^{(n)}(x_0)}{n!}$$
 Подставим значения $a_1, a_2, a_3, \dots a_n$ в (2):
$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}}{n!} (x - x_0)^n + R_n(x)$$

Теорема 12.2. Пусть функция y = f(x) дифференцируема n раз в точке x_0 , тогда $x \to x_0$:

$$R_n(x) = o((x - x_0)^n)$$

Доказательство. Формула Тейлора:

$$f(x) = P_n(x) - R_n(x)$$

$$R_n(x) = f(x) - P_n(x)$$

В силу условия (3):

$$R_n(x) = f(x_0) - P_n(x_0) = f(x_0) - f(x_0) = 0$$

$$R'_n(x) = f'(x_0) - P'_n(x_0) = f'(x_0) - f'(x_0) = 0$$

$$\dots$$

$$R_n^{(n)}(x) = f^{(n)}(x_0) - P_n^{(n)}(x_0) = f^{(n)}(x_0) - f^{(n)}(x_0) = 0$$

Вычислим:

IM:

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =$$

$$= \lim_{x \to x_0} \frac{R'_n(x)}{n(x - x_0)^{n-1}}$$
...
$$= \lim_{x \to x_0} \frac{R^{(n)}}{n(n-1)(n-2)\dots 1}$$

$$= \frac{1}{n!} \lim_{x \to x_0} R_n^{(n)}(x) = \frac{1}{n!} \cdot 0 = 0$$

Теорема 12.3. Пусть функция y=f(x) (n+1) дифференцируема в $\mathring{S}(x_0), \, \forall x \in \mathring{S}(x_0) \, f^{(n+1)}(x_0) \neq 0.$ Тогда:

$$R_n(c) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

где $c \in \mathring{S}(x_0)$. Такая форма записи остаточного члена называется формой Лагранжа.

Доказательство.

$$f(x) = P - n(x) + R_n(x)$$

Будем считать $R_n(x)=rac{arphi(x)}{(n+1)!}(x-x_0)^{n+1},$ где arphi(x) – неизвестная функция. Введём вспомогательную функцию:

$$F(t) = P_n(t) + R_n(t) - f(x)$$

$$= f(t) + \frac{f'(t)}{1!}(x - t) + \frac{f''(t)}{2!}(x - t)^2 + \dots$$

$$+ \frac{f^{(n)(t)}}{n!}(x - t)^n + \frac{\varphi(x)}{(n + 1)!}(x - t)^{n+1}$$

ДОДЕЛАТЬ ДОКАЗАТЕЛЬСТВО!

12.0.1 Формула Тейлора с остаточным членом в форме Пеано

$$f(x) = f(x_0) + \frac{f'(x)}{1!} + \frac{f''(x)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!} + o((x - x_0)^n)$$

12.0.2 Формула Тейлора с остаточным членом в форме Лангранжа

$$f(x) = f(x_0) + \frac{f''(x)}{1!} + \frac{f'''(x)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!} + \frac{f^{(n+1)}(x_0\theta(x - x_0))}{n+1}(x - x_0)^{n+1}$$

12.1 Формулы Маклорена

Частный случай формулы Тейлора при $x_0 = 0$.

$$f(x) = f(x_0) + \frac{f'(x)}{1!}x + \frac{f''(x)}{2!}x^2 + \dots + \frac{f^{(n)}}{n!}x^n + R_n(x)$$

Остаточный член в форме Пеано:

$$R_n(x) = o(x^n)$$

Остаточный член в формет Лагранжа:

$$R_n(x) = \frac{f^{(n+1)}}{(n+1)!}x^{n+1}$$

12.2 Разложение основных элементарных функций по формулам Маклорена

1)
$$y = e^x$$
, $x_0 = 0$

$$f'(x) = f''(x) = f^{(n)}(x) = f^{(n+1)}(x) = e^x$$

$$f'(0) = f''(0) = f^{(n)}(0) = f^{(n+1)}(0) = 1$$

$$e^x - 1 + \frac{1}{2}x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots + \frac{1}{2}x^n + R (x)$$

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + R_{n}(x)$$

$$R_{n}(x) = \frac{e^{\theta x}}{(n+1)!}x^{n+1}$$

Вывод.
$$e^{-x}=1-\frac{1}{1!}x+\frac{1}{2!}x^2-\frac{1}{3!}x^3+\ldots+R_n(x)$$

Вывод.
$$\operatorname{sh} x = \frac{1}{2} (e^x - e^{-x}) = \frac{1}{1!} x + \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \ldots + \frac{1}{(2n-1)} x^{2n-1} + R_{2n}$$

Вывод.
$$\operatorname{ch} x = \frac{1}{2}(e^x + e^{-x}) = 1 + \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \ldots + \frac{1}{2n}x^{2n} + R_{2n+1}(x)$$

Вывод.
$$a^x = 1 + \frac{\ln(a)}{1!} x + \frac{\ln^2(a)}{2!} x^2 + \ldots + \frac{\ln^{n+1}}{n!} x^n$$

Вывод.
$${\rm sh}^2\,x = \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{1}{2}\,({\rm ch}\,2x - 1)$$
 Вывод.

Вывод.
$$\operatorname{ch} x = \left(\frac{e^x + e^{-x}}{2}\right) = \frac{1}{2}\left(\operatorname{ch} 2x + 1\right)$$

2)
$$y = f(x) = \sin(x), x_0 = 0$$

$$f'(x) = \cos x = \sin\left(x + 1\frac{\pi}{2}\right)$$

$$f'''(x) = -\sin x = \sin\left(x + 2\frac{\pi}{2}\right)$$

$$f''''(x) = -\cos x = \sin\left(x + 3\frac{\pi}{2}\right)$$

$$f''''(x) = \sin x = \sin\left(x + 4\frac{\pi}{2}\right) = \sin(x)$$

$$f(0) = 0$$

$$f'(x) = 1$$

$$f''(x) = 0$$

$$f'''(x) = -1$$

$$f''''(x) = 0$$

$$\sin x = 0 + \frac{1}{1!}x + \frac{0}{2!}x^2 - \frac{1}{3!}x^3 + \frac{0}{4!}x^4 + \dots + \frac{\left(\sin\frac{2n}{2}\right)}{n!}x^n + R_n(x)$$

$$\sin x = \frac{1}{1!}x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots + \frac{\left(-1\right)^k + 1}{\left(\frac{2k-1}{2}\right)^k}x^{2k-1} + R_{2k}(x)$$

Остаточны член в форме Лагранжа

$$y = f(x) = \sin(x), x_0 = 0$$

$$R_{2k}(x) = \frac{f^{(2k-1)}(\theta x)}{(2k+1)} x^{2k+1} = \frac{\sin(\theta x + (2k+1))\frac{\pi}{2}}{(2k+1)!} x^{2k+1} = \frac{\sin(\theta x - \pi k + \frac{\pi}{2})}{(2k+1)!} x^{2k+1} = \frac{(-1)^k \cos \theta x}{(2k+1)!} x^{2k+1}$$

$$3) \ y = f(x) = \cos(x), \ x_0 = 0$$

$$f'(x) = -\sin x = \cos\left(x + 1\frac{\pi}{2}\right)$$

$$f''(x) = -\cos x = \cos\left(x + 2\frac{\pi}{2}\right)$$
$$f'''(x) = \sin x = \cos\left(x + 3\frac{\pi}{2}\right)$$
$$f''''(x) = \cos x = \cos\left(x + 4\frac{\pi}{2}\right) = \cos(x)$$

$$f''''(x) = \cos x = \cos\left(x + 4\frac{\pi}{2}\right) = \cos(x)$$

12 ФОРМУЛА ТЕЙЛОРА. МНОГОЧЛЕН ТЕЙЛОРА

$$f(0) = 1$$

$$f'(0) = 0$$

$$f''(0) = -1$$

$$f'''(0) = 0$$

$$f''''(0) = 1$$

$$\cos x = 1 + \frac{0}{1!}x - \frac{1}{2!}x^2 + \frac{0}{3}x^3 - \frac{1}{4}x^4 - \frac{0}{5}x^5 + \dots + \frac{\cos\frac{\pi n}{2}}{n!}x^n + R_n(x)$$
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \dots + \frac{(-1)^k}{(2k)!}x^2k$$

Остаточный член в форме Лагранжа

$$R_{2k+1}(x) = \frac{f^{(2k+2)}(\theta x)}{(2k+1)!} x^{2n+1} = \frac{-\cos(\theta x + \pi k)}{(2k+2)!} x^{2k+2} = \frac{(-1)(-1)\cos\theta x}{(2k+2)!} x^{2k+2} = \frac{(-1)^{k+1}\cos\theta x}{(2k+2)!} x^{2k+2}$$

12.3 Лекция 13.12.23

4.
$$f(x) = (1+x)^{\alpha}, \alpha \in \mathbb{R}$$
.

5. $y = f(x) = \ln(1+x)$

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$$
...
$$f^{(n)} = \alpha(\alpha-1)\dots(\alpha-(n-1))(1+x)^{\alpha-n}$$

$$f^{(n+1)} = \alpha(\alpha-1)\dots(\alpha-n)(1+x)^{\alpha-(n+1)}$$

$$f(0) = 1$$

$$f'(0) = \alpha$$

$$f''(0) = \alpha(\alpha - 1)$$

$$f'''(0) = \alpha(\alpha - 1)(\alpha - 2)$$

$$\dots$$

$$f^{(n)} = \alpha(\alpha - 1) \dots (\alpha - (n - 1))$$

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(x)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-(n-1))}{n!}x^n + R_n(x)$$

$$R_n(x) = o(x^n)$$

$$R_n(x) = \left\{\frac{f^{(n+1)}\theta x}{(x+1)!}x^{(n+1)}\right\}$$

$$= \frac{\alpha(\alpha-1)\dots(\alpha-n)}{(n+1)!}(1+\theta x)^{\alpha+1}x^{n+1}$$

$$f'(x) = \frac{1}{1+x} = (1+x)^{-1}$$
$$f''(x) = -1 \cdot \frac{1}{(1+x)^2} = -1 \cdot (1+x)^{-2}$$
$$f'''(x) = -1 \cdot (-2) \cdot \frac{1}{(1+x)^3} = -1 \cdot (-2) \cdot (1+x)^{-3}$$

$$f^{(n)} = (-1)^{n+1}(n-1)!(1-x)^{-n}$$

$$f'(0) = 1 = 0!$$

$$f''(0) = -1 = (-1)1!$$

$$f'''(0) = 2 = 2!$$

$$f''(0) = (-1)3!$$
...
$$f^{(n)} = (-1)^{n+1}(n-1)!(1+x)^{-n}$$

$$\ln(1+x) = 0 + \frac{0!}{1!}x - \frac{1}{2!}x^2 + \frac{2!}{3!}x^3 - \frac{3!}{4!}x^4 + \dots + \frac{(-1)^{n+1}(n-1)!}{n!} + R_n(x)$$

$$\ln(1+x) = \frac{1}{1}x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + \frac{(-1)^{n+1}}{n}x^n + R_n(x)$$

$$R_n(x) = o(x^n)$$

$$R_n(x) = o(x^n)$$

$$R_n(x) = \left\{\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}\right\} = \frac{(-1)^{n+1}n!(1+\theta x)^{-(n+1)}}{(n+1)!}x^{n+1} = \frac{(-1)^{n+2}(1+\theta x)^{-(n+1)}}{n+1}x^{n+1}$$

13 Вертикальные, наклонные, горизонтальные ассимптоты

Определение 13.1. *Ассимптотой* графика функции y=f(x) называется прямая расстояние до которой от точки, лежащей на графике, стремится к нулю при удалении от начала координат.

Определение 13.2. Прямая x=a называется вертикальной ассимптотой графика функции y=f(x), если хотя бы один из пределов $\lim_{x\to a+} f(x)$, $\lim_{x\to a-} f(x)$ равен ∞ .

Пример

$$y = \frac{1}{x - a}$$

$$\lim_{x \to a -} \frac{1}{x - a} = -\infty$$

$$\lim_{x \to a +} \frac{1}{x - a} = +\infty$$

x=a – вертикальная ассимптота.

Пример.

$$y = \ln x$$
, $D_f = (0, +\infty)$

$$\lim_{x \to 0+} \ln x = -\infty$$

x = 0 — вертикальная ассимптота правая.

Вывод: вертикальные ассимптоты ищем среди точек разрыва функции и граничных точек.

Определение 13.3. Прямая y = kx + b называется наклонной ассимптотой графика функции y = f(x) при $x \to \pm \infty$, если сама функция представима в виде $f(x) = kx + b + \alpha(x)$, где $\alpha(x) - 6$.м.ф при $x \to \pm \infty$.

Теорема 13.1. *Необходимое и достаточной условие существования* наклонной ассимптоты.

График функции y=f(x) имеет при $x\to\pm\infty$ наклонную ассимптоту тогда и только тогда, когда существуют два конечных предела:

$$\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} \\ \lim_{x \to \pm \infty} (f(x) - kx) \end{cases}$$
 (*)

Доказательство. Необходимость.

Дано y=kx+b наклонная ассимптота. Доказать \exists пределы (*). По условию y=kx+b — наклонная ассимптота \Longrightarrow по определению $f(x)=kx+b+\alpha(x)$, где $\alpha(x)$ — 6.м.ф. при $x\to\pm\infty$. Рассмотрим:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{kx + b + \alpha(x)}{x} =$$

$$= \lim_{x \to \pm \infty} (k + b \cdot \frac{1}{x} + \frac{1}{x}\alpha(x))$$

$$= k + b \lim_{x \to \pm \infty} \frac{1}{x} + \lim_{x \to \pm \infty} \frac{1}{x}\alpha(x)$$

$$= k + b \cdot 0 + 0 = k$$

Рассмотрим выражение:

$$f(x) - kx = kx + b + \alpha(x) - kx = b + \alpha(x)$$
$$\lim_{x \to \pm \infty} (f(x) - kx)) = \lim_{x \to \pm \infty} (b + \alpha(x)) = b$$

Достаточность.

Дано \exists конечные пределы (*). Доказать y = kx + b – наклонная ассимптота.

 \exists конечный предел $\lim_{x \to \pm \infty} (f(x) - kx) = b$ По теореме о связи

функции, её предела и б.м.ф.

$$f(x) - kx = b + \alpha(x)$$

при $x \to \pm \infty$. Выразим f(x):

$$f(x) = kx + b + \alpha(x)$$

где $\alpha(x)$ б.м.ф при $x\to\pm\infty$. По определению $\implies y=kx+b-$ наклонная ассимптота к графику функции y=f(x)

Определение 13.4. Прямая y=b нельзя горизонтальной ассимптотой графика функции y=f(x) х, если $\lim_{x\to\pm\infty}f(x)=b$.

Вывод. Горизонтальные ассимптоты являются частным случаем наклонных при k=0.

14 Исследование по первой производной

Определение 14.1. Функция y = f(x), определённая на интервале (a,b) возрастает (y6ывает) на этом интервале, если для любых $x_1, x_2 \in (a,b)$ таких что $x_2 > x_1 \implies f(x_2) > f(x_1) \quad (f(x_2) < f(x_1)).$

Определение 14.2. Функция y = f(x), определённая на интервале (a,b) не убывает (не возрастает) на этом интервале, если для любых $x_1,x_2\in (a,b)$ таких что $x_2>x_1 \implies f(x_2)\geq f(x_1)$ $(f(x_2)\leq f(x_1))$.

Определение 14.3. Возрастающая + убывающая функция - называются $cmporo\ монотонными\ .$

Определение 14.4. Невозрастающая + неубывающая функция - называются *монотонными*.

Теорема 14.1. Необходимое и достаточное условие невозрастания (неубывания) дифференцируемой функции.

Дифференцируемая на интервале (a,b) не возрастает (не убывает) на этом интервале тогда и только тогда, когда $f'(x) \le 0$ $(f'(x) \ge 0)$ $\forall x \in (a,b)$.

Доказательство. Необходимость.

Дано: y = f(x) не возрастает на (a, b).

Доказать: $\forall x \in (a,b) \quad f'(x) \leq 0.$

$$\forall x \in (a, b)$$

 Δx – приращение аргумента

$$x \to x + \Delta x$$
$$\Delta y = y(x + \Delta x) - y(x)$$

– приращение функции.

1 случай: $\Delta x > 0$:

т.к. y = f(x) не возрастает на a, b.

$$y(x + \Delta x) \le y(x)$$

$$\Delta y = y(x + \Delta x) - y(x) \le 0.$$

Тогда $\frac{\Delta y}{\Delta x} = \left(\frac{\pm}{-}\right) \le 0.$

2 случай: $\Delta x < 0$: т.к. y = f(x) не возрастает на a, b.

$$y(x + \Delta x) \ge y(x)$$

$$\Delta y = y(x + \Delta x) - y(x) \ge 0.$$

Тогда $\frac{\Delta y}{\Delta x} = \left(\frac{\pm}{-}\right) \le 0.$

По теореме о предельном перехорде в неравенстве:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \le 0$$

По определению производной $f'(x) \leq 0$

Достаточность.

Дано: $\forall x \in (a,b) \quad f'(x) \leq 0$. Доказать: y = f(x) не возрастает на a,b.

$$\forall x_1, x_2 \in (a, b) : x_2 > x_1$$

Рассмотрим $[x_1, x_2]$. Функция на отрезке $[x_1, x_2]$ удовлетворяет условиям теоремы Лагранжа:

- 1. Непрерывность на $[x_1, x_2]$. По условию y = f(x) дифференцируема на интервале (a, b). По теореме о связи дифференцируемости и непрерывности функции $\implies y = f(x)$ непрерывна на $[x_1, x_2]$.
- 2. дифференцируемость на (x_1, x_2) т.к. функция по условию дифференцируема на отрезке $[x_1, x_2]$.

По теореме Лагранжа $\exists c \in (x_1, x_2)$:

$$f(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Т.к. $x_2>x_1\implies x_2-x_1>0.$ По условию $f'(x)\leq 0, \forall x\in(a,b)\implies f'(c)\leq 0.$

Тогда:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0$$

$$\implies f(x_2) - f(x_1) \le 0 \text{ при } x_2 > x_1$$

$$f(x_2) \le f(x_1) \text{ при } x_2 > x_1$$

 \implies по определению функция y = f(x) не возрастает на (a,b).

Для неубывающей функции:

Доказательство. Необходимость.

Дано: y = f(x) не убывает на (a, b).

Доказать: $\forall x \in (a, b) \quad f'(x) \ge 0.$

$$\forall x \in (a, b)$$

 Δx – приращение аргумента

$$x \to x + \Delta x \Delta y = y(x + \Delta x) - y(x)$$

– приращение функции.

1 случай: $\Delta x > 0$:

т.к. y = f(x) не убывает на a, b.

$$y(x + \Delta x) \ge y(x)$$

$$\Delta y = y(x + \Delta x) - y(x) \le 0.$$

Тогда $\frac{\Delta y}{\Delta x} = \left(\frac{-}{+}\right) \ge 0$

2 случай: $\Delta x < 0$: т.к. y = f(x) не возрастает на a, b.

$$y(x + \Delta x) \le y(x)$$

$$\Delta y = y(x + \Delta x) - y(x) \le 0.$$

Тогда $\frac{\Delta y}{\Delta x} = \left(\frac{-}{+}\right) \ge 0$

По теореме о предельном перехорде в неравенстве:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \le 0$$

По определению производной $f'(x) \leq 0$

Достаточность.

Дано: $\forall x \in (a,b) \quad f'(x) \geq 0$. Доказать: y = f(x) не убывает на a,b.

$$\forall x_1, x_2 \in (a, b) : x_2 > x_1$$

Рассмотрим $[x_1,x_2]$. Функция на отрезке $[x_1,x_2]$ удовлетворяет условиям теоремы Лагранжа:

- 1. Непрерывность на $[x_1, x_2]$. По условию y = f(x) дифференцируема на интервале (a, b). По теореме о связи дифференцируемости и непрерывности функции $\implies y = f(x)$ непрерывна на $[x_1, x_2]$.
- 2. Дифференцируемость на (x_1, x_2) т.к. функция по условию дифференцируема на отрезке $[x_1, x_2]$.

По теореме Лагранжа $\exists c \in (x_1, x_2)$:

$$f(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Т.к. $x_2 > x_1 \implies x_2 - x_1 > 0$. По условию $f'(x) \ge 0, \forall x \in (a,b) \implies f'(c) \ge 0$. Тогда:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0$$

$$\implies f(x_2) - f(x_1) \ge 0 \text{ при } x_2 > x_1$$

$$f(x_2) \ge f(x_1) \text{ при } x_2 > x_1$$

 \implies по определению функция y = f(x) не убывает на (a, b).

Теорема 14.2. Необходимое услоивие строгой монотонности. Если дифференцируемая на интервале (a,b) функция y=f(x) возрастает (убывает) на это м интервале, то $\forall x \in (a,b)$ верно неравенство $f'(x) \geq 0$ $(f'(x) \leq 0)$.

Теорема 14.3. Достаточное условие строгой монотонности. Если для дифференцируемой на интервале (a,b) функции y=f(x) выполнены условия:

- 1. $f'(x) \ge 0 \ (f'(x) \le 0) \ \forall x \in (a, b).$
- 2. f'(x) не обращается в ноль ни на каком промежутке $I\subseteq (a,b),$ то функция y=f(x) возрастает (убывает) на (a,b).

14.1 Экстремумы функции

Определение 14.5. Пусть y = f(x) определана на интервале $(a,b), \quad x_0 \in (a,b).$ Тогда:

- 1. Если $\exists \mathring{S}(x_0), \quad \forall x \in \mathring{S}(x_0), \quad f(x) \leq f(x_0), \text{ то } x_0$ точка локального максимумаю $y = y(x_0)$ локальный максимум.
- 2. Если $\exists \mathring{S}(x_0): \forall x \in \mathring{S}(x_0), f(x) \geq f(x_0)$, то x_0 точка локального минимума. $y = y(x_0)$ локальный максимум.

Определение 14.6. Точки локального максимума и минимума называются *точками экстремума*.

Определение 14.7. Локальный максимум и локальный минимум называются *экстремума*.

Теорема 14.4. *Необходимое условие существования экстремума.* Если y = f(x) дифференцируема на интервале (a,b) и $x_0 \in (a,b)$ существует экстремум, то $f'(x_0) = 0$.

Пример.

$$y = x^2, \quad x_0 = 0$$
$$y' = 2x \quad y'(0) = 0$$

Пример.

$$y=x^3, \quad x_0=0$$
 – не явл. т. экстремума! $y'=3x^2 \quad y'(0)=0$

Определение 14.8. Точки, в которых производная функции обращается в ноль называются *стационарными*.

$$f'(x_0) = 0 \implies x_0$$
 – стационарная точка

Определение 14.9. Точки, в которых производная функции обращается в ноль или не существует, называются *критическими точками первого порядка*.

Пример.

$$y=|x|, x_0=0$$
 – точка минимума
но $\not \exists y'$

Пример.

$$y=x^{rac{2}{3}}, \quad x_0=0$$
 – точка минимума $y'=rac{2}{3x^{-rac{1}{3}}}=rac{2}{3\sqrt{x}}, \quad
ot \!\!\!/ y'(x_0)$

Вывод: точки экстремума могут быть двух видов:

- 1. f'(x) = 0 гладкий экстремум.
- 2. $\not\exists f'(x)$ острый экстремум.

Теорема 14.5. Первый достаточный признак локального экстремума. Пусть функция y = f(x) непрерывна в $S(x_0)$, где x_0 – критическая точка первого порядка; функция дифференцируема в $\mathring{S}(x_0)$. Тогда если проивзодная функции меняет свой знак при переходе черех точку x_0 , то эта точка x_0 – точка экстремума. Причём:

- 1. Если при $x < x_0$ f'(x) > 0, а при $x > x_0$ f'(x) < 0, то x_0 точка максимума.
- 2. Если при $x < x_0$ f'(x) < 0, а при $x > x_0$ f'(x) > 0, то x_0 точка минимума.

Доказательство. $\forall x \in S(x_0)$. Пусть $x > x_0$, тогда рассматриваем отрезок $[x_0, x]$. Тогда функция y = f(x) удовлетворяет условиям теоремы Лагранжа:

- 1. Непрерывна на $[x_0, x]$, т.к. по условию функция непрерывна в $S(x_0)$, а следовательно y = f(x) будет непрерывна и на меньшем промежутке $[x_0, x]$.
- 2. Дифференцируема на (x_0,x) , т.к. по условия функция непрерывна в $\mathring{S}(x_0) \implies y = f(x)$ дифференцируема на (x_0,x)

По теореме Лагранжа $\exists c \in (x_0, x)$

$$f'(c) = \frac{f(x) - f(x_0)}{x - x_0}$$

При $x > x_0 \, x - x_0 > 0$. По условию

1) при $x>x_0$ f'(x)<0 \Longrightarrow $f'(c)=\frac{f(x)-f(x_0)}{x-x_0}<0$ \Longrightarrow $f(x)<f(x_0)$ по определению строгого x_0 — точка локального максимума. 2) при $x< x_0$ f'(x)>0 \Longrightarrow $f'(c)=\frac{f(x)-f(x_0)}{x-x_0}>0$ \Longrightarrow $f(x)>f(x_0)$ по определению строгого x_0 — точка локального минимума.

По теореме Лагранжа $\exists c \in (x, x_0)$:

$$f'(c) = \frac{f(x_0) - f(x)}{x_0 - x}$$

Т.к. $x < x_0$, то $x - x_0 < 0 \implies x_0 - x > 0$. По условию 1) при $x < x_0$ $f'(x) > 0 \implies f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} > 0 \implies f(x_0) > f(x)$ по определению строгого x_0 — точка локального максимума. 2) при $x > x_0$ $f'(x) > 0 \implies f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} < 0 \implies f(x) < f(x_0)$ по определению строгого x_0 — точка локального минимума.

Теорема 14.6. Второй достаточный признак локального экстремума.

Пусть функция y = f(x) дважды дифференцируема в точке x_0 , и

 $f'(x_0) = 0$. Тогда:

- 1. Если $f''(x_0) < 0$, то x_0 точка строго максимума.
- 2. Если $f''(x_0) > 0$, то x_0 точка строго минимума.

Доказательство. Разложим функцию y = f(x) в окрестности точки x_0 по формуле Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$

Т.к. $f'(x_0) = 0$, то

$$f(x) = f(x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$
$$f(x) - f(x_0) = \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$

Знак $f(x) - f(x_0)$ определяет $f''(x_0)$, т.к. $o((x - x_0)^2)$ – б.м.ф. при $x \to x_0$. Если $f(x) - f(x_0) < 0$ то $f(x) < f(x_0)$, $\forall x \in S(x_0)$ По определению x_0 – точка локального максимума.

 x_0 — точка локального максимума. Если $f(x)-f(x_0)>0$ то $f(x)< f(x_0), \quad \forall x\in S(x_0)$ По определению x_0 — точка локального минимума.

15 Исследование по второй производной

Определение 15.1. Говорят, что график функции y=f(x) на интервале (a,b) выпуклый (выпуклый вверх) на этом интервале, если касательная к нему в любой точке этого интервала (кроме точки касания) лежит выше графика функции.

Определение 15.2. Говорят, что график функции y=f(x) на интервале (a,b) вогнутый (выпуклый вниз) на этом интервале, если касательная к нему в любой точке этого интервала (кроме точки касания) лежит ниже графика функции.

Теорема 15.1. Достаточное условие выпуклости функции. Пусть функция y = f(x) дважды дифференцируема на интервале (a,b). Тогда:

- 1. Если $f''(x) < 0 \forall x \in (a,b)$, то график функции выпуклый вверх на этом интервале
- 2. Если $f''(x) > 0 \forall x \in (a,b)$, то график функции *выпуклый вниз* на этом интервале

Доказательство.

$$x_0 \in (a, b), y_0 = f(x_0) \implies M_0(x_0, y_0)$$

Построим в точке M_0 касательную к графику функции y=f(x). Запишем уравнение касательной:

$$y = y_0 = y'(x_0)(x - x_0)$$

Преобразуем:

$$y_k = f(x_0) + f'(x_0)(x - x_0) \tag{0}$$

Представим функцию y = f(x) по формуле Тейлора с остаточным членом в форме Лагранжа.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}x + \frac{f''(c)}{2!}(x - x_0)^2, \quad c \in S(x_0)$$
 (2)

Вычтем (1) из (2):

$$f(x) - y_k = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(c)}{2!}(x - x_0) - f(x_0) - f'(x_0)(x - x_0)^2$$
$$f(x) - y_k = \frac{f''(c)}{2!}(x - x_0)^2$$

1) По условию $f''(x) < 0 \forall x \in (a,b)$, то $f''(c) < 0 \implies f(x) - y_0 < 0 \implies f(x) < y_k$, а значит по определению выпуклой функции \implies график функции y = f(x) выпуклый вверх. 2) По условию $f''(x) > 0 \forall x \in (a,b)$, то $f''(c) > 0 \implies f(x) - y_0 > 0 \implies f(x) > y_k$, а значит по определению выпуклой функции \implies график функции y = f(x) выпуклый вниз.

Теорема 15.2. Необходимое условие существование точки перегиба. Пусть функция y = f(x) в точке x_0 имеет непрерывную вторую производную и $M(x_0, y_0)$ – точка перегиба графика функции y = f(x). Тогда $f''(x_0) = 0$.

Доказательство. Докажем методом от противного. Предположим, что $f''(x_0) > 0$. В силу непрерывности второй производной функции $y = f(x) \exists S(x_0) \forall x \in S(x_0) : f''(x) > 0$. Это противоречит тому, что $M_0(x_0, y_0)$

– точка перегиба. Предположим, что $f''(x_0) < 0$. В силу непрерывности второй производной функции $y = f(x) \exists S(x_0) \forall x \in S(x_0) : f''(x) < 0$. Это противоречит тому, что $M_0(x_0, y_0)$ – точка перегиба.

Определение 15.3. Точки из области определения функции, в которых вторая производная функции равна нулю или не существует, называются *критическими точками* второго порядка.

Теорема 15.3. Достаточное условие существования точки перегиба. Если функция y = f(x) непрерывна в точке x_0 , дважды дифференцируема в $S(x_0)$ и вторая производная меняет знак при переходе аргумента x через точку x_0 . Тогда $M_0(x_0, f(x_0))$ является точкой перегиба графика функции y = f(x).

Доказательство. По условию $\exists S(x_0)$ в которой вторая производная функции y=f(x) меняет знак при переходе аргумента x через точку x_0 (даёт достаточное условие выпуклости функции). Это означает, что график функции y=f(x) имеет различные направление выпуклости по разные стороны от точки x_0 . По определению точки перегиба $M(x_0,f(x_0))$ является точкой перегиба графика функции y=f(x). \square