1. Equivalence Relations

Definition 1. If A and B are nonempty sets, a binary relation from A to B is a subset of $A \times B$. In other words, a binary relation from A to B is a set R of ordered pairs, where the first element of each ordered pair comes from A and the second element of each ordered pair comes from B.

Notation 1. We use the notation $a \sim b$, or aRb to denote that the element $a \in A$ is related to the element $b \in B$. If $a \sim b$, we denote it as $(a, b) \in R$.

Definition 2. A relation on a set A is the relation from A to A.

Example 1. Let $A = \{1, 2, 3, 4\}$. Which order pairs are in the relation $R = \{(a, b) : a \mid b\}$? List them all.

Example 2. How many relations are there on a set with n elements?

Definition 3. A relation R on a set A is said to be

- (1) Reflextive: For all $a \in A$, $(a, a) \in R$, or $a \sim a$.
- (2) Symmetric: For all $a, b \in A$, if $a \sim b$, then $b \sim a$.
- (3) Transitive: For all $a, b, c \in A$, if $a \sim b$ and $b \sim c$, then $a \sim c$.

Definition 4. A binary relation "~" is said to be an equivalence relation, if the binary relation satisfies all three conditions in Definition 3

Example 3. Consider the relation defined in Example 1 Determine whether they are reflexive, symmetric, and transitive.

$$R = \frac{4(111)}{(112)}{(112)}{(113)}{(114)}{(212)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(214)}{(212)}{(212)}{(214)}{(212)}{(212)}{(214)}{(212)}{$$

2

Example 4. Let $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a - b \in \mathbb{Z}\}$. Is R an equivalence relation?

Reflexive: Let a & IR (a1a) & RXIR = a-a=0 & Z

Symmetric: Let a, b = R s,t, anb = a-b= KEZ (wTS that bra). Multiply by -1 => b-a=-kez => bra.

Transitive: Let a, b, c & IR s, t a ~ b and b ~ c. $a-b=k\in \mathbb{Z}$ and $b-c=m\in \mathbb{Z}$ then (a-b)+(b-c)=k+m= a-c=k+m e 7 = anc

Example 5. Let $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \equiv b \pmod{n}, n \in \mathbb{N}\}$. Is R an equivalence relation?

R: a=a (modn)

 $a = b \pmod{n} \Rightarrow b = a \pmod{n}$

T: $a = b \pmod{n}$, $b = c \pmod{n}$ a=b=c(mod n) =) a=c(mod n)

Equir. Relation.

2. Arithmetic Modulo n

Notation 2. We can define arithmetic operators on \mathbb{Z}_n the set of nonnegative inegers less than n. That is, $\mathbb{Z}_n = \{0, 1, ..., n-1\}.$

• We define addition on \mathbb{Z}_n with the notation $+_n$, where

$$a +_n b = (a + b) \mod n$$

In other words, the remainder when a + b is divided by n.

• We define multiplication on \mathbb{Z}_n with the notation \cdot_n where

$$a \cdot_n b = (a \cdot b) \mod n$$

In other words, the remainder when $a \cdot b$ is divided by n.

$$0.08 \quad N=4$$

$$3+47 = 10 \mod 4$$

$$= 2$$

$$I_n = {0, ..., n-1}$$

Example 6. List all elements in \mathbb{Z}_4

$$I_4 = \{0,11,2,39,$$

Example 7. Create an addition table for \mathbb{Z}_4 with $+_4$ and \cdot_4 .

Try imagining the addition table as sudoku

$+_{4}$	0	1	2	3
 . 0	0	ţ	2	3
1		2	3	0
2	2	3	D	
3	3	0	ţ	2

. 4	0	1	2	3
0	0	0	0	0
1	0	l	2	3
2	0	Q	0	2
3	0	3	J	l

Example 8. Compute the following:

$$(1) 7 +_{11} 9$$

$$7 +_{11} 9 = (7 + 9) \mod 11$$

= 16 mod 11

(2)
$$7 \cdot_{11} 9$$

$$7 \cdot 119 = (7 \cdot 9) \mod 11$$

= 63 mod 11
= 8.

3. Equivalence Classes

Definition 5. Let R be an equivalence relation on a set A. The set of all elements that are related to an element $a \in A$ is called an *equivalence class* of a. The equivalence class of a with respect to a relation R is denoted by [a]. In other words, if R is an equivalence relation on a set A, the equivalence class of the element a is:

$$[a] = \{s: (a,s) \in R\}$$

Example 9. What are the equivalence classes of 0, 1, 2, and 3 for congruence modulo 4? List at least five elements in the set, and write a generalized statement for the equivalence relation.

$$[0] = \{..., -4.0, 4.8, 12, ...\} = \{4k : k \in \mathbb{Z}\}$$

$$[1] = \{..., -3, 1.5, 9.13, ...\} = \{4k+1 : k \in \mathbb{Z}\}$$

$$[2] = \{..., -6, -3.2, 6, 10, ...\} = \{4k+2 : k \in \mathbb{Z}\}$$

$$[3] = \{..., -5, -1.3, 7.11.\} = \{4k+3 : k \in \mathbb{Z}\}$$