Sécurité des Systèmes d'Information Masters Course

Theory: Wednesdays 2pm - 4pm (Battelle A 316-318) Exercises: Wednesdays 4pm - 6pm (Battelle A 316-318)

Theory: Eduardo Solana < Eduardo. Solana @ unige.ch>

Exercises: Joakim Tutt < Joakim. Tutt@unige.ch>

Alexandre-Quentin Berger Alexandre-Quentin.Berger@unige.ch

Course Objectives

- Learn the basics of information systems security.
- Understand the cryptographic framework allowing to implement security services.
- Describe algorithms, protocols and integrated solutions currently used and understand their weaknesses and how to address them.
- Discover the latest trends on cryptography and information security and the challenges they are facing.
- Learn the terminology enabling access to scientific publications and research reports.
- Motivate students to investigate selected topics on information security and present them to the class in individual presentations.

Tentative Agenda

- Basic Concepts
 - Security Services
 - Internet related Risks
 - Classification of Cryptosystems and Attacks
 - Entropy
 - Random Oracle Model
 - Probabilistic vs. Deterministic Algorithms
 - Computational Security vs. Perfect Secrecy
- Basic Tools
 - (Pseudo-)Random Generation
 - Hash Functions
 - MACs
 - Crypto Algorithms:
 - Stream and Block
 - Symmetric / Asymmetric
 - Certificates
- Access Control and Transaction Security
 - Authentication Protocols
 - Key Establishment Protocols
 - Key and Password Management and Assurance

Tentative Agenda (II)

- Framework
 - Security Policies (BlP, BIBA, Chinese Wall, etc.)
 - MLS
 - OS Security
 - PKI
 - Virtualization and Trusted Computing
- Topology
 - Perimeter/Perimeter-less Security
 - Network Security Protocols
 - Cloud Security
- Topics to be covered (eventually...)
 - Homomorphic Encryption
 - Side Channel Attacks
 - ...

Bibliography

- [Ros08] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems (2nd Edition). Wiley 2008.
- [Sta10] Williams Stallings. Cryptography and Network Security: Principles and Practice (5th Edition). Prentice Hall, 2010.
- [Men97]: Menezes, A et al. *Handbook of Applied Cryptography*. CRC series on discrete mathematics and its applications. 1997.

 URL: http://cacr.math.uwaterloo.ca/hac/
- [Wag03]: Samuel S. Wagstaff, Jr. Cryptanalysis of Number Theoretic Ciphers. Computational Mathematic Series. Chapman & Hall /CRC, 2003.
- [Sti06]: Douglas R. Stinson. Cryptography Theory and Practice. (3rd Edition). Chapman & Hall /CRC, 2006.
- [Del07] Hans Delfs and Helmut Knebl. Introduction to Cryptography. Principles and Applications (2nd Edition). Springer 2007.
- [Kat07] J.Katz and Y. Lindell. Introduction to Modern Cryptography. CRC Press 2007.

Services de Sécurité

- Confidentialité: Protection de l'information d'une divulgation non autorisée
- Intégrité: Protection contre la modification non autorisée de l'information
- Disponibilité: S'assurer que les ressources sont accessibles aux utilisateurs légitimes
- Authentification:
 - Authentification d'entités: (entity authentication) procédé permettant à une entité d'être sûre de l'identité d'une seconde entité à l'appui d'une évidence corroborant (p.ex.: présence physique, cryptographique, biométrique, etc.). Le terme identification est parfois utilisé pour désigner également ce service.
 - Authentification de l'origine de données: (data origin authentication) procédé permettant à une entité d'être sûre qu'une deuxième entité est la source original d'un ensemble de données. Par définition, ce service assure également l'intégrité de ces données.
- Non-répudiation: Offre la garantie qu'une entité ne pourra pas nier être impliquée dans une transaction
- Non-Duplication: Protection contre les copies illicites
- Anonymat (d'entité ou d'origine de données): Permet de préserver l'identité d'une entité, de la source d'une information ou d'une transaction.

Dangers et Attaques: Synthèse

Services	Dangers	Attaques
Confidentialité	fuite d'informations	écoutes illicites, analyse du trafic
Intégrité	modification de l'information	création, altération ou destruction illicite
Disponibilité	denial of service, usage illicite	virus, accès répétés visant à inutiliser un système
Authentification d'entités	accès non autorisés	Vol de mot de passe, faille dans le protocole d'authentification
Authentification de données	falsification d'informations	falsification de signature, faille dans le protocole d'authentification
Non-répudiation	nier la participation à une transaction	prétendre un vol de clé ou une faille dans le protocole de signature
Non-duplication	duplication	falsification, imitation
Anonymat	identification	analyse d'une transaction, accès non autorisés permettant l'identification

Mécanismes de Protection

Services	Mécanismes classiques	Mécanismes digitaux
Confidentialité	scellés, coffre-forts, cadenas	cryptage, autorisation logique
Intégrité	encre spéciale, hologrammes	fonctions à sens unique + cryptage
Disponibilité	contrôle d'accès physique, surveillance vidéo	contrôle d'accès logique, audit, anti-virus
Auth. d'entités	présence, voix, pièce d'identité, reconnaissance biométrique	secret + protocole d'authentification, adresse réseau + userid carte à puce + PIN
Auth. de données	sceaux, signature, empreinte digitale	fonctions à sens unique + cryptage
Non- répudiation	sceaux, signature, signature notariale, envoi recommandé	fonctions à sens unique + cryptage + signature digitale
Non-duplication	encre spéciale, hologrammes, tatouage	tatouage digital (watermarks), verrouillage cryptographique
Anonymat	brouilleur de voix, déguisement, argent liquide	mixers, remailers, argent électronique, deep web

Risques Liés à Internet

- Programmes malveillants transmis par e-mail (*e-mail malware*)
- Programmes malveillants transmis sur le web (web malware)
- Hameçonnage (*Phising*)
- Pourriels (spam)
- Rançongiciels (ransomware)
- Attaques sur les dispositifs "Internet des Objets" (Internet of Things/ IoT related attacks)
- Modification illicite des informations publiées (information spoofing and website defacement)
- Attaques dénis de service (denial of service ou DDoS)

• ...

Liste Non Exhaustive!

Excellente source d'information pour le sujet: Centrale d'enregistrement et d'analyse pour la sûreté de l'information - MELANI (<u>https://www.melani.admin.ch</u>)

Programmes Malveillants Transmis par *E-Mail*

- Aussi appelés maliciels ou malware
- E-mails conçus pour inciter le destinataire à ouvrir une pièce jointe ou à suivre un lien contenant de la publicité non souhaitée, des informations offensives, des programmes à risque, etc.
- Souvent **ciblés** sur la base des intérêts de la victime (travail préliminaire d'ingénierie sociale (*social engineering*))
- Conséquences:
 - Installation de *malware* (*ransomware*, *keyloggers*, etc.) dans le système de la victime (*ordinateur*, *tablette*, *smartphone*, *smartwatch*, *etc.*)
 - Destruction de données contenues dans l'ordinateur
 - Vol d'informations ou de données personnelles
 - Détournement du système pour des fins malicieuses (p.ex.: minage illicite de *bitcoins*)
 - Diffusion de *malware* (éventuellement à d'autres utilisateurs)

Programmes Malveillants Transmis sur le Web

- Cette technique, souvent appelée *drive-by download*, permet d'infecter le système (ordinateur, tablette, smartphone, smartwatch, etc.) sur lequel s'exécute un client web lors de la simple visite d'un site
- Il peut s'agir soit
 - d'un site malicieux qui contient le malware
 - d'un site web légitime qui aurait été infecté au préalable (par exemple, moyennant une technique appelée *cross-site scripting*). L'infection pouvant affecter seulement certaines pages...
- La sensibilisation des utilisateurs (ne pas visiter des sites douteux) diminue l'efficacité de cette technique dans la transmission de *malware*
- Les conséquences sont semblables à celle des transmissions par e-mail (voir page 10)
- L'exécution restreinte des scripts (*java/javascript*) dans le navigateur peut limiter la portée de l'infection mais risque de contraindre la navigation dans certains sites...

Hameçonnage (Phising)

- Le mot *phising* se compose des mots anglais "*password*" (mot de passe), "*harvesting*" (moisson) et "*fishing*" (pêche)
- Cette composition de mots illustre le but principal de cette technique qui consiste à récolter un maximum d'informations privées des utilisateurs via des mécanismes de "pêche indiscriminée"
- Lorsque la pêche aux informations est ciblée vers une personne ou organisation spécifique, la technique est dénommée *spear phising* (qui provient de *spear fishing* ou pêche au harpon)
- Le vecteur de transmission consiste normalement dans un **e-mail avec une adresse d'expédition falsifiée** (mais souvent indétectable...) qui demande à la victime de fournir des informations privées: adresses e-mail, identifiants (*twitter*, *facebook*, etc.), mots de passe, numéros d'identité, numéros de comptes bancaires, etc.
- Les prétextes utilisés sont variés (mise à jour du système informatique, arrêt du service, retrait d'un envoi, etc.) et vont jusqu'à menacer l'utilisateur en cas de refus

Pourriels (Spam)

- Englobe tous les **e-mails indésirables** (souvent publicitaires) reçus par les personnes et les organisations
- Terme utilisé également pour désigner les pages/fenêtres pop-up affichées sans le consentement de l'utilisateur lors de la navigation web
- On estime que 60% des e-mails qui circulent dans le monde appartiennent à cette catégorie
- Les conséquences sont souvent limitées à la consommation de ressources de calcul et stockage ainsi qu'au gaspillage de temps associé à la lecture et traitement de ces messages mais...
- ... certains e-mails spam peuvent également constituer des vecteurs de transmission de malware
- Ils ont tendance à cibler plus particulièrement les adresses e-mail courtes (p.ex: abc@gmail.com) mais fonctionnent également sur la base des listes (souvent échangées / vendues) contenant tous types d'adresses
- Les opérations de filtrage *anti-spam* entraînent des coûts considérables pour les organisations

Rançongiciels (Ransomware)

- Cette famille spécifique de malware appartient à la catégorie appelée Chevaux de Troie (*Trojan Horses*)
- Leur comportement plus habituel consiste à chiffrer les données de la victime (locaux et distants) afin de les rendre totalement inaccessibles
- Un message apparait ensuite pour demander le paiement d'une rançon (souvent en *bitcoins* ou une autre monnaie virtuelle) permettant potentiellement de récupérer l'accès aux fichiers chiffrés
- Ils peuvent rester en état *dormant* dans le système infecté et être déclenchés par un événement spécifique ou à une date donnée (attaques synchronisées)
- Leurs vecteurs d'infection sont variés mais les e-mails contenant des pièces jointes malicieuses sont souvent mis en cause lors des infections primaires
- Des nombreuses variantes existent et continuent à se développer
- On observe parfois d'autres comportements associés à ces *malware*: **dénis de service**, **extorsions ciblées**, **menaces**, etc.

Attaques sur les Dispositifs *Internet of Things (IoT)*

- Ciblent les **objets connectés** de toute sorte (caméras, TVs, frigos, capteurs et interrupteurs domotiques, installations d'alarme, etc.)
- Ils sont souvent plus faciles à pirater que les systèmes traditionnels par cause de:
 - nombreuses failles de sécurité souvent connues des attaquants
 - mots de passe par défaut
 - négligence de la part des utilisateurs qui ignorent les risques qui leurs sont propres
- La **prise de contrôle à distance** de ces appareils par une entité malveillante implique:
 - Une porte d'entrée au réseau domestique/corporatif
 - Un dispositif pouvant être utilisé pour des activités illicites (hacking, attaques DDoS, minage de bitcoins, etc.)
- L'établissement d'un répertoire précis de tous les dispositifs de ce type connectés au réseau est nécessaire!

Modification Illicite des Informations Publiées Information Spoofing and Website Defacement

- Attaques visant **l'intégrité** de l'information publiée dans les sites web, les réseaux sociaux, etc.
- Elles portent atteinte à la réputation et peuvent provoquer d'importants dommages économiques pour les sociétés ayant une présence Internet
- Dans le cas des sites web, la sécurisation du système hôte est essentielle ainsi qu'une configuration aussi restrictive que possible. Des audits des sécurité récurrents sont vivement recommandés.
- La protection des informations affichées dans les réseaux sociaux dépend directement du processus d'authentification permettant d'accéder au profil à risque:
 - Éviter les mots de passe trop simples
 - Privilégier l'authentification forte, si possible *multi-facteur*
 - Fermer proprement les sessions
 - Effacer les cookies

Attaques **Dénis de Dervice** (*Denial of Service | DDoS*)

- Attaques destinées à rendre inaccessibles des systèmes informatiques de toute sorte visant surtout les organisations privées ou étatiques
- Le terme **DDoS** (*Distributed Denial of Service*) désigne une famille d'attaques dans laquelle des multiples (**souvent des dizaines de milliers**) de dispositifs ciblent simultanément le(s) système(s) victime(s)
- Le trafique généré atteint plusieurs centaines de gigabits / seconde
- L'efficacité des mécanismes de protection traditionnels (*firewalls*, sondes de prévention et de détection d'intrusion, etc.) est limitée
- L'indisponibilité d'un service peut engendrer:
 - des problèmes réputationnels
 - d'importantes **pertes financières** (des **demandes de rançon** peuvent être exigées pour les désactiver)
 - des hauts risques de sécurité (même physique!) lorsque des infrastructures critiques (hôpitaux, centrales électriques, *backbone* de l'Internet, etc.) sont ciblées

Méthodes Digitales de Sécurité

Problème: Protéger des informations digitales

- dans un environnement distribué
- globalement accessible
- sans frontière matérielle

Solution:

Cryptographie

Symétrique

Asymétrique

- + fonctions à sens unique
- + générateurs (pseudo) aléatoires

Fonctions de Hachage Cryptographiques

Fonctions faciles à calculer dans un sens mais virtuellement impossibles à calculer dans le sens contraire

- Toute modification (*même insignifiante*) du document source se traduit par un *digest* fondamentalement différent.
- Il est virtuellement impossible de retrouver le document source à l'aide seulement du digest (*one-way*).
- Il est virtuellement impossible de retrouver un deuxième document source produisant le même digest (*collision-free*).
- Longueur habituelle des digests: 160 à 512 bits.
- Les algorithmes à sens unique sont très performants.
- Exemples de fonctions de hachage cryptographiques: SHA-1, SHA-256, SHA-3, etc.

Générateurs (Pseudo) Aléatoires

- La génération de nombre aléatoire est un processus très important pouvant compromettre la sécurité d'un bon nombre de systèmes de cryptage.
- Entre autres applications on trouve la génération de clés de session, les vecteurs d'initialisation (DES CBC mode), des secrets nécessaires à la génération de signatures (ElGamal), etc.
- Un générateur aléatoire (*random generator*) est un dispositif capable de générer des nombres de façon *aléatoire*, *imprévisible* et *non reproductible*. Un tel générateur est normalement doté d'un dispositif externe mesurant des phénomènes physiques connus par leur non-déterminisme (p.ex., une source radioactive ou quantique).
- Les générateurs pseudo-aléatoires sont des procédés déterministes développés à partir d'une séquence aléatoire initial (*seed*) pouvant être obtenue par des méthodes diverses (la fréquence de frappe d'un utilisateur, le nombre d'accès disque, le nombre de paquets reçus par une interface réseau, etc.)
- R. Pitkin dans [Kau95]: "The use of pseudo-random processes to generate secret quantities can result in pseudo-security"...
- Description des principaux algorithmes pseudo-aléatoires dans [Sti95].

Cryptographie Symétrique

Aussi appelée cryptographie conventionnelle ou à clés secrètes (I av. JC, Julius Cesar)

Idée: Sur la base d'une seule clé secrète, réaliser une transformation capable respectivement de rendre illisible et de restituer une pièce d'information

Cryptographie Symétrique: Caractéristiques

- Il existe des nombreux systèmes de cryptage symétriques (AES, DES, IDEA, RC4, RC5, etc.) dont certains gratuits et de libre accès.
- Services supportés: Confidentialité, Authentification, Intégrité.
- La clé étant connue des deux intervenants, cette technologie n'offre pas de support direct pour des signatures digitales
- La clé étant secrète, elle doit être échangée entre les intervenants par un canal confidentiel alternatif (courrier postal, téléphone, etc.)

Se prête mieux à la protection de documents personnels qu'à des transactions impliquant des grandes populations (commerce électronique)

Cryptographie Asymétrique

Aussi appelée cryptographie publique ou à clés publiques

(1976, W. Diffie & M. Hellman)

- **Idée**: Utiliser deux clés différentes une *secrète* et une *publique* respectivement pour les opérations de cryptage et décryptage
- Chaque utilisateur dispose d'un *porte-clés* (*keyring*) contenant, au moins, sa clé publique et sa clé privée

Cryptographie Asymétrique: Confidentialité

- L'expéditeur crypte l'information avec la clé publique du destinataire (globalement disponible)
- Le destinataire décrypte l'information avec sa clé privée (connue de lui seul)

Seulement les clés (publique et privée) du destinataire sont impliquées dans l'échange confidentiel!

Cryptographie Asymétrique: Signature Digitale

- L'expéditeur signe l'information avec sa clé privée (connue de lui seul)
- Le destinataire vérifie la signature avec la clé publique de l'expéditeur (globalement disponible)

Seulement les clés (publique et privée) de l'expéditeur sont impliquées dans les processus de signature et vérification!

Signature Digitale (II)

Problème: La signature de tout un document est très coûteuse en temps

Solution: Appliquer la signature uniquement au *digest* résultant d'une fonction à sens unique sur tout le document

Exemple d'un Message Signé

----BEGIN SIGNED MESSAGE----

Dear Alice:

I'm getting very tired of cryptographers talking about us all the time. Why can't they keep their noses in their own affairs?!
Sincerely,

Bob

----BEGIN SIGNATURE----

Version: XYZ n.m

iB2FHFbSU7RpAQEqsQMAvo3mETurtUnLBLzCj9/U8oOQg/T7iQcJ

vM8srMV+3VRid64o2h2XwlKAWpfVcC+2v5pba+BPvd86KIP1xRFI

eipmDnMaYP+iVbxxBPVELundZZw7IRE=Xvrc

----END SIGNATURE----

Signatures digitales: Caractéristiques

- La signature change si le document change. La clé privée est toujours la même
- En cas de modification du document ou de la signature, la signature ne sera pas vérifiée (**Intégrité** garantie)
- Il est virtuellement impossible (même pour le détenteur de la clé privée) de générer un deuxième document avec la même signature (la fonction à sens unique est sans collisions)
- Seul le détenteur de la clé privée peut générer une signature qui se vérifie avec la clé publique correspondante

Authentification + Non Répudiation

Crypto asymétrique + Crypto symétrique

Idée: Utiliser la cryptographie publique uniquement pour échanger des clés symétriques

- A génère une clé aléatoire Ks et la transmet à B en l'encryptant avec la clé publique de B (confidentialité)
- A & B communiquent en utilisant la clé Ks pour protéger la confidentialité des échanges

Crypto asymétrique: Fonctionnement (RSA)

Soit n := pq avec p et q deux nombres premiers grands (> 1024 bits)

Soit

$$\phi(\mathbf{n}) = (\mathbf{p}\mathbf{-}1)(\mathbf{q}\mathbf{-}1)$$

Soit e et d tels que

$$ed \equiv 1 \bmod \phi(n)$$

Par définition des congruences:

$$ed = 1 + k\phi(n)$$

Théorème d'Euler:

$$a^{\phi(n)} \equiv 1 \mod n$$

Encryption:

$$C = P^e \mod n$$

Clé publique: (n,e)

L'inverse de cette opération est considéré virtuellement impossible à calculer lorsque des grandes nombres son impliqués

Décryption:

$$P = C^d \mod n$$

Clé privée: (d)

Preuve:

$$(P^{ed} \equiv P^{1+k}^{\phi(n)} \equiv (P \text{ mod } n) (P^{\phi(n)} \text{ mod } n)^k \equiv P \text{ mod } n) \text{ mod } n$$

Cryptographie Asymétrique: Conclusions

- Il existe quelques systèmes de cryptage asymétrique (Rabin, ElGamal, etc.) mais le plus utilisé est **RSA**.
- Services supportés: Confidentialité, Authentification, Intégrité, Signature Digitale & Non-Refus, (Non Duplication).
- Les opérations liées à la crypto. asymétrique sont jusqu'à 50 fois (!) plus lentes que celles de la crypto. symétrique.

 Une combinaison des deux méthodes est souvent souhaitable
- La distribution des clés est simplifiée par le fait que seules des clés publiques doivent être échangées entre les intervenants (pas besoin d'un canal *confidentiel* alternatif) mais...
- ... il est nécessaire de vérifier que la clé publique appartient réellement au destinataire:
 - Soit le canal d'acquisition de la clé publique est protégé contre toute modification (*authentifié*)
- Soit la clé est certifiée exacte par un tiers

Cryptographie Symétrique vs. Asymétrique

- Il existe des centaines d'algorithmes symétriques et asymétriques capables de fournir un niveau de confidentialité suffisant.
- Les solutions symétriques offrent les avantages suivants:
 - rapidité (jusqu'à 100 fois plus rapide que les solutions asymétriques)
 - facilité d'implantation en hardware
 - longueur de clé réduite: 128 bits (= 16 caractères => mémorisable !) au lieu de 1024 bits pour des équivalents asymétriques.
- Les solutions asymétriques ont comme arguments principaux:
 - Echange de clés simplifié: les clés doivent être échangées par un canal authentifié mais non-confidentiel.
 - Gestion de clés simplifiée: une seule paire de clés publique/privé suffit à un utilisateur pour recevoir des messages confidentiels de n utilisateurs (au lieu de n clés différentes dans le cas symétrique).
- Problèmes propres aux deux techniques
 - La gestion de clés par l'utilisateur reste le maillon le plus faible
 - Sécurité (normalement) basée sur des arguments empiriques plutôt que théoriques
 - Restrictions légales d'usage et d'exportation

Cryptographie Symétrique vs. Asymétrique (II)

Activité	Recommandation	Remarques
Protection de documents personnels	Crypto symétrique	Vitesse, clés facilement mémorisables
Protection de documents dans un groupe d'utilisateurs proches	Crypto symétrique	Vitesse, facilité d'échange des clés confidentielles
Etablissement de canaux confidentiels entre utilisateurs distants (inconnus)	Crypto asymétrique	Pas besoin d'avoir un canal confidentiel: authenticité suffit
Transactions entre deux utilisateurs distants, Protection de logiciel (distribution <i>multicast</i>)	Crypto asym. pour protection de clé sym. + Crypto sym. pour protection des données	Vitesse, Seule la clé sym. doit être ré-encryptée pour chaque correspondant Copie cryptée du logiciel peut être rendue publique
Protection des segments réseaux	Crypto symétrique	Vitesse, Environnement stable → échange confidentiel des clés facile entre sysadmins.

Dissection d'une Attaque: Ransomware

"Un ransomware, rançongiciel ou logiciel de rançon est un logiciel malveillant qui prend en otage des données personnelles. Pour ce faire, un rançongiciel chiffre des données personnelles puis demande à leur propriétaire d'envoyer de l'argent en échange de la clé qui permettra de les déchiffrer." (Wikipedia 21 juin 2017).

- Définition incomplète car les ransomware portent sur un vaste spectre de l'infrastructure informatique.
- Exemple: l'attaque ransomware par *déni de service distribué* (*DDoS*) sur *Protonmail* en Novembre 2015¹.
- "Ransomware Everywhere" est globalement considérée la menace la plus directe, visible et dangereuse pour utilisateurs et entreprises en 2018!

^{1.}https://www.theguardian.com/technology/2015/nov/05/protonmail-service-held-ransom-by-hackers

Ransomware: Quelques Chiffres Globaux^{1 2}

- Les attaques recensées en 2016 ont augmenté de plus de **6'000%** par rapport à 2015 et ont encore **doublé** en 2017.
- Des traces de ransomware étaient trouvées dans 40% des e-mails spam circulant globalement.
- 70% des entreprises ont payé la rançon exigée par les malfaiteurs. Parmi elles, 50% ont payé plus de 10'000 US\$ et 20% plus de 40'000 US\$.
- Le chiffre d'affaires du ransomware est estimé à 1 milliard US\$ en 2016 mais seul 25% des attaques sont rendues publiques.
- Le **59%** des infections étaient causées par an e-mail (*Wannacry* se propageait également comme un *ver* via une faille de l'OS).

^{2.}Osterman Research Inc.

^{1.}IBM via CNBC: http://www.cnbc.com/2016/12/13/ransomware-spiked-6000-in-2016-and-most-victims-paid-the-hackers-ibm-finds.html

L'Univers du Ransomware¹

1.2017 State of Cybersecurity. F-Secure Inc.

Ransomware: Vue Intégrale

- Prévision, Remédiation et Réaction
 - Patching
 - Détection active et passive (Firewalls, WAFs, IDS, IPS, e-mail malware scan, etc.)
 - Backups offline!
 - Politique de Sécurité Règles de bon usage de la messagerie
 - Formation!
 - Payer ou pas payer...
- Dissection Technique de l'Attaque
 - Infection et propagation
 - Exécution
 - Paiement (Crypto-currencies / Bitcoin)
 - Occultation (Obfuscation, TOR Networks/Deep Web)

Schéma Générique d'un Ransomware Cryptolocker

- Les clés privées de déchiffrement sont stockées dans les serveurs de l'attaquant
- Elles sont envoyées à la victime après paiement en bitcoins
- La trace est broyée à l'aide des réseaux TOR

Ransomware Cryptolocker: Cibles¹

.jin, .xls, .xlsx, .pdf, .doc, .docx, .ppt, .pptx, .txt, .dwg, .bak, .bkf, .pst, .dbx, .zip, .rar, .mdb, .asp, .aspx, .html, .htm, .dbf, .3dm, .3ds, .3fr, .jar, .3g2, .xml, .png, .tif, .3gp, .java, .jpe, .jpeg, .jpg, .jsp, .php, .3pr, .7z, .ab4, .accdb, .accde, .accdr, .accdt, .ach, .kbx, .acr, .act, .adb, .ads, .agdl, .ai, .ait, .al, .apj, .arw, .asf, .asm, .asx, .avi, .awg, .back, .backup, .backupdb, .pbl, .bank, .bay, .bdb, .bgt, .bik, .bkp, .blend, .bpw, .c, .cdf, .cdr, .cdr3, .cdr4, .cdr5, .cdr6, .cdrw, .cdx, .ce1, .ce2, .cer, .cfp, .cgm, .cib, .class, .cls, .cmt, .cpi, .cpp, .cr2, .craw, .crt, .crw, .phtml, .php5, .cs, .csh, .csl, .tib, .csv, .dac, .db, .db3, .dbjournal, .dc2, .dcr, .dcs, .ddd, .ddoc, .ddrw, .dds, .der, .des, .design, .dgc, .djvu, .dng, .dot, .docm, .dotm, .dotx, .drf, .drw, .dtd, .dxb, .dxf, .dxg, .eml, .eps, .erbsql, .erf, .exf, .fdb, .ffd, .fff, .fh, .fmb, .fhd, .fla, .flac, .flv, .fpx, .fxg, .gray, .grey, .gry, .h, .hbk, .hpp, .ibank, .ibd, .ibz, .idx, .iif, .iiq, .incpas, .indd, .kc2, .kdbx, .kdc, .key, .kpdx, .lua, .m, .m4v, .max, .mdc, .mdf, .mef, .mfw, .mmw, .moneywell, .mos, .mov, .mp3, .mp4, .mpg, .mrw, .msg, .myd, .nd, .ndd, .nef, .nk2, .nop, .nrw, .ns2, .ns3, .ns4, .nsd, .nsf, .nsg, .nsh, .nwb, .nx2, .nxl, .nyf, .oab, .obj, .odb, .odc, .odf, .odg, .odm, .odp, .ods, .odt, .oil, .orf, .ost, .otg, .oth, .otp, .ots, .ott, .p12, .p7b, .p7c, .pab, .pages, .pas, .pat, .pcd, .pct, .pdb, .pdd, .pef, .pem, .pfx, .pl, .plc, .pot, .potm, .potx, .ppam, .pps, .ppsm, .ppsx, .pptm, .prf, .ps, .psafe3, .psd, .pspimage, .ptx, .py, .qba, .qbb, .qbm, .qbr, .qbw, .qbx, .qby, .r3d, .raf, .rat, .raw, .rdb, .rm, .rtf, .rw2, .rwl, .rwz, .s3db, .sas7bdat, .say, .sd0, .sda, .sdf, .sldm, .sldx, .sql, .sqlite, .sqlite3, .sqlitedb, .sr2, .srf, .srt, .srw, .st4, .st5, .st6, .st7, .st8, .std, .sti, .stw, .stx, .svg, .swf, .sxc, .sxd, .sxg, .sxi, .sxi, .sxm, .sxw, .tex, .tga, .thm, .tlg, .vob, .war, .wallet, .wav, .wb2, .wmv, .wpd, .wps, .x11, .x3f, .xis, .xla, .xlam, .xlk, .xlm, .xlr, .xlsb, .xlsm, .xlt, .xltm, .xltx, .xlw, .ycbcra, .yuv

^{1.}Intel Security. Advanced Threat Research. http://www.intelsecurity.com

