a ranked alphabet

arity 2

arity 1

arity 0

a tree

substitute(t)

 x_1

input

3 6

number the non-port nodes in the input term according to their appearance in the pre-order traversal

use a copy of the corresponding node, with edges to the ports inherited, and other edges plugged by •

create a binary node for each non-port node in / the input term

output

a factorisation equivalence

If the root has arity n, and $1 \le i < j \le n$, then all ports of the *j*-th subterm of the root are after all ports of the *i*-th subterm of the root

satisfies (*)

violates (*)

a register update

its dual

Variable *i.j* represents register *i* in the *j*-th argument of the reigster update.

In the dual, this variable is mapped to the *i*-th edge which enters the *j*-th port of the reducer.

factors with branching nodes

input

output

λ-term of type *o*

 λx .

