MAT2002 Ordinary Differential Equations System of first order linear equations V

Dongdong He

The Chinese University of Hong Kong (Shenzhen)

April 8, 2021

Overview

- 1 Non-homogeneous linear systems
 - Method of undetermined coefficients
 - Variation of parameters

Outline

- Non-homogeneous linear systems
 - Method of undetermined coefficients
 - Variation of parameters

Non-homogeneous linear systems

We now study for $\mathbf{A} \in \mathbb{R}^{n \times n}$ the non-homogeneous system

$$\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t) + \mathbf{g}(t), \tag{1}$$

and if $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are n linearly independent solutions to the homogeneous system $\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t)$, and $\mathbf{Y}(t)$ is a particular solution to the non-homogeneous system, then the general solution is

$$\mathbf{y}(t) = c_1 \mathbf{y}_1(t) + \cdots + c_n \mathbf{y}_n(t) + \mathbf{Y}(t),$$

where $\mathbf{y}_c(t) = c_1 \mathbf{y}_1(t) + \cdots + c_n \mathbf{y}_n(t)$ is the complementary solution.

Dongdong He (CUHK(SZ))

If we have a non-homogeneous term $\mathbf{g}(t)$ where each component has a sum or product of exponentials, cosine, sine and polynomials, then we can use the method of undetermined coefficients to obtain a particular solution to the non-homogeneous system

$$\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t) + \mathbf{g}(t).$$

One difference compared to second order equations and n—th order equations is that now the undetermined coefficients are **vectors**.

We now list the trial solutions for specific examples of g:

$\mathbf{g}(t)$	Particular solution form $\mathbf{Y}(t)$	value of s
$P_m(t)e^{lpha t}$	$Q_{m+s}(t)e^{lpha t}$	alg. mult. of $lpha$
$P_m(t)e^{\alpha t}\cos(\beta t)$	$Q_{m+s}(t)e^{\alpha t}\cos(\beta t) + R_{m+s}(t)e^{\alpha t}\sin(\beta t)$	alg. mult. of $lpha+ieta$
$P_m(t)e^{\alpha t}\sin(\beta t)$	$Q_{m+s}(t)e^{\alpha t}\cos(\beta t) + R_{m+s}(t)e^{\alpha t}\sin(\beta t)$	alg. mult. of $\alpha+i\beta$

alg. mult. of α means the multiplicity of α as the eigenvalue of ${\bf A}$.

alg. mult. of $\alpha + i\beta$ means the multiplicity of $\alpha + i\beta$ as the eigenvalue of **A**.

Here, we use the notation

$$P_m(t) = a_m t^m + a_{m-1} t^{m-1} + \cdots + a_1 t + a_0,$$

where $\mathbf{a}_0, \dots, \mathbf{a}_m$ are constant vectors, so that $\mathbf{P}_m(t)$ is a vector-valued polynomial of degree m.

Remark 1

In constrast to n-th order linear equations, where the form of the trial solution is $t^s \mathbf{Q}_m(t)$, so that the lowest order term is t^s , for linear systems we have to use a trial solution of the form $\mathbf{Q}_{m+s}(t)$, which is a polynomial of degree m+s which includes all lower order terms $t^{s-1}, t^{s-2}, \ldots, t^1, t^0$.

In fact, if we try:

$$\mathbf{Y}(t) = e^{\alpha t} \left(\mathbf{q}_{m+s} t^{m+s} + \cdots + \mathbf{q}_1 t + \mathbf{q}_0 \right)$$

as the particular solution. One has

$$\mathbf{Y}'(t) = \alpha e^{\alpha t} (\mathbf{q}_{m+s} t^{m+s} + \dots + \mathbf{q}_1 t + \mathbf{q}_0) + e^{\alpha t} ((m+s) \mathbf{q}_{m+s} t^{m+s-1} + \dots + \mathbf{q}_1)$$

$$= A e^{\alpha t} (\mathbf{q}_{m+s} t^{m+s} + \dots + \mathbf{q}_1 t + \mathbf{q}_0) + (\mathbf{a}_m t^m + \mathbf{a}_{m-1} t^{m-1} + \dots + \mathbf{a}_1 t + \mathbf{a}_0) e^{\alpha t}$$

Then one has:

$$\begin{split} A\mathbf{q}_{m+s} &= \alpha \mathbf{q}_{m+s}, \quad \text{coefficient of term } t^{m+s} \\ A\mathbf{q}_{m+s-1} &= \alpha \mathbf{q}_{m+s-1} + (m+s)\mathbf{q}_{m+s}, \quad \text{coefficient of term } t^{m+s-1} \\ A\mathbf{q}_{m+s-2} &= \alpha \mathbf{q}_{m+s-2} + (m+s-1)\mathbf{q}_{m+s-1}, \quad \text{coefficient of term } t^{m+s-2} \\ &\vdots \\ A\mathbf{q}_{m+1} &= \alpha \mathbf{q}_{m+1} + (m+2)\mathbf{q}_{m+2}, \quad \text{coefficient of term } t^{m+1} \\ A\mathbf{q}_m + \mathbf{a}_m &= \alpha \mathbf{q}_m + (m+1)\mathbf{q}_{m+1}, \quad \text{coefficient of term } t^m \\ &\vdots \\ A\mathbf{q}_0 + \mathbf{a}_0 &= \alpha \mathbf{q}_0 + \mathbf{q}_1, \quad \text{coefficient of term } t^0 \end{split}$$

The first s equations indeed gives that $\mathbf{q}_{m+s}, \cdots, \mathbf{q}_{m+1}$ all satisfies the linear system

$$(A - \alpha I)^s \mathbf{x} = \mathbf{0}$$

Dongdong He (CUHK(SZ))

One can prove that $\mathbf{q}_{m+s}, \cdots, \mathbf{q}_{m+1}$ are linearly independent, and they are generalized eigenvectors. Since $dim(Null((A-\alpha I)^I))=I$, where I is the alg. mult. of α as the eigenvalue of A. Therefore, one can take s to be I (the alg. mult. of α as the eigenvalue of A), so that $\mathbf{q}_{m+I}, \cdots, \mathbf{q}_{m+1}$ are linearly independent, and they are generalized eigenvectors. In the same time, one can see that the lower order terms $t^{s-1}, t^{s-2}, \ldots, t^1, t^0$ are needed.

Example 13.1

Example Consider

$$\mathbf{y}'(t) = \left(egin{array}{cc} -2 & 1 \ 1 & -2 \end{array}
ight) \mathbf{y}(t) + \left(egin{array}{cc} 2\mathrm{e}^{-t} \ 3t \end{array}
ight).$$

We set

$$\mathbf{g}(t) = \begin{pmatrix} 2e^{-t} \\ 3t \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix},$$

and first find the solution to the homogeneous system. The characteristic equation for ${\bf A}$ is

$$\det(\mathbf{A} - r\mathbf{I}) = (r+3)(r+1) = 0 \Rightarrow r_1 = -3, \qquad r_2 = -1.$$

Computing

$$\mathbf{A} + 3\mathbf{I} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \qquad \mathbf{A} + \mathbf{I} = \left(\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array} \right).$$

Example 13.1

So we can take as eigenvectors

$$\xi_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad \xi_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Therefore, the complementary solution to the homogeneous system $\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t)$ is

$$\mathbf{y}_c(t) = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}.$$

Next, observe that

$$\mathbf{g}(t) = \underbrace{\begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{-t}}_{\mathbf{g}_1(t)} + \underbrace{\begin{pmatrix} 0 \\ 3 \end{pmatrix} t}_{\mathbf{g}_2(t)}.$$

◆ロト ◆部ト ◆意ト ◆意ト ・意・ 釣り○

Example 13.1

Since we have a term $\mathbf{g}_1(t)$ involving e^{-t} , which forms part of the complementary solution, recalling the theory for second order equations - where if we encounter a non-homogeneous equation $ay'' + by' + cy = e^{\alpha t}$ and α is a root of the characteristic equation $ar^2 + br + c = 0$ we should try $Y(t) = Ate^{\alpha t}$, let's try a trial solution to the non-homogeneous system with $\mathbf{g}_1(t)$ of the form

$$\mathbf{x}(t) = \mathbf{a}te^t$$

for some undetermined vector **a**. Substituting this into the equation gives

$$\mathbf{x}'(t) - \mathbf{A}\mathbf{x}(t) = -te^{-t}(\mathbf{A}\mathbf{a} + \mathbf{a}) + \mathbf{a}e^{-t} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{-t}.$$

Comparing the coefficients, naturally we choose $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ からぐ

Example 13.1

But, we also need to ensure that $\mathbf{A}\mathbf{a} + \mathbf{a} = \mathbf{0}$. A short computation shows that

$$\mathbf{A}\mathbf{a}+\mathbf{a}=\left(\begin{array}{c}-2\\2\end{array}\right)\neq\mathbf{0}.$$

Therefore, the solution cannot be of the form ate^{-t} .

To remedy this, let's try

$$\mathbf{x}(t) = \mathbf{a}te^{-t} + \mathbf{b}e^{-t},$$

and then

$$\mathbf{x}'(t) - \mathbf{A}\mathbf{x}(t) - te^{-t}(\mathbf{A}\mathbf{a} + \mathbf{a}) - e^{-t}(\mathbf{b} + \mathbf{A}\mathbf{b} - \mathbf{a}) = \mathbf{g}_1(t).$$

This means we should have

$$\mathbf{A}\mathbf{a}+\mathbf{a}=\mathbf{0},\qquad \mathbf{b}+\mathbf{A}\mathbf{b}-\mathbf{a}=\left(\begin{array}{c} -2\\ \mathbf{0} \end{array}\right).$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

Example 13.1

That is, **a** should be an eigenvector to the eigenvalue r=-1, and so we take $\mathbf{a}=\begin{pmatrix}1\\1\end{pmatrix}$. Then

$$\mathbf{Ab} + \mathbf{b} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Rightarrow -b_1 + b_2 = -1.$$

We can take $b_1=0, b_2=-1$ and so a particular solution to $\mathbf{y}'(t)=\mathbf{A}\mathbf{y}(t)+\mathbf{g}_1(t)$ is

$$\mathbf{x}(t) = \left(egin{array}{c} 1 \\ 1 \end{array}
ight) t e^{-t} + \left(egin{array}{c} 0 \\ -1 \end{array}
ight) e^{-t}.$$

For a particular solution to $\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t) + \mathbf{g}_2(t)$, we try a trial solution of the form

$$z(t) = ct + d.$$

40.40.41.41.1 1 000

Example 13.1

Then,

$$\mathbf{z}'(t) - \mathbf{A}\mathbf{z}(t) = (\mathbf{c} - \mathbf{A}\mathbf{d}) - t\mathbf{A}\mathbf{c} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} t.$$

Hence, we require

$$\mathbf{Ac} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}, \quad \mathbf{Ad} = \mathbf{c}.$$

Solving these equations gives

$$\mathbf{c} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} -4/3 \\ -5/3 \end{pmatrix} \quad \Rightarrow \mathbf{z}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} -4/3 \\ -5/3 \end{pmatrix}.$$

Dongdong He (CUHK(SZ))

Example 13.2

Find a particular solution to

$$\mathbf{y}'(t) = \left(egin{array}{cc} 1 & 4 \ 1 & -2 \end{array}
ight) \mathbf{y}(t) + \left(egin{array}{c} e^{-2t} \ -2e^t \end{array}
ight).$$

The eigenvalues of the matrix **A** are $r_1 = -3$, $r_2 = 2$ with corresponding eigenvectors

$$\xi_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad \xi_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}.$$

So the general solution to the homogeneous system is

$$oldsymbol{y}_c(t) = c_1 \left(egin{array}{c} 1 \ -1 \end{array}
ight) e^{-3t} + c_2 \left(egin{array}{c} 4 \ 1 \end{array}
ight) e^{2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Example 13.2

Writing the term $\mathbf{g}(t)$ as

$$\mathbf{g}(t) = e^{-2t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^t \begin{pmatrix} 0 \\ -2 \end{pmatrix},$$

and since neither -2 nor 1 are eigenvalues of A, we try a trial solution of the form

$$\mathbf{z}(t) = \mathbf{a}e^{-2t} + \mathbf{b}e^t.$$

Then, computing

$$\mathbf{z}'(t) - \mathbf{A}\mathbf{z}(t) = e^{-2t}(-2\mathbf{a} - \mathbf{A}\mathbf{a}) + e^{t}(\mathbf{b} - \mathbf{A}\mathbf{b}) = e^{-2t}\begin{pmatrix} 1\\0 \end{pmatrix} + e^{t}\begin{pmatrix} 0\\-2 \end{pmatrix}$$

and upon comparing coefficients we need

$$(-2\mathbf{I}-\mathbf{A})\mathbf{a}=\left(egin{array}{c} 1 \\ 0 \end{array}
ight), \qquad (\mathbf{I}-\mathbf{A})\mathbf{b}=\left(egin{array}{c} 0 \\ -2 \end{array}
ight).$$

Example 13.2

Solving these equations gives

$$\mathbf{a} = \begin{pmatrix} 0 \\ -0.25 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$

and so a particular solution is

$$\mathbf{Y}(t) = \begin{pmatrix} 0 \\ -0.25 \end{pmatrix} e^{-2t} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{t}.$$

Dongdong He (CUHK(SZ))

Exercise: Find a particular solution to

$$\mathbf{y}'(t) = \left(egin{array}{cc} 1 & 5 \ -1 & 1 \end{array}
ight) \mathbf{y}(t) + \left(egin{array}{c} e^{2t} \ \sin(2t) \end{array}
ight).$$

We now consider more general non-homogeneous first order systems of the form

$$\mathbf{y}'(t) = \mathbf{P}(t)\mathbf{y}(t) + \mathbf{g}(t),$$

where the matrix $\mathbf{P}(t) = (p_{ij}(t))_{n \times n}$, and $p_{ij}(t), i, j = 1, \dots, n$ are continuous on the interval I. First, we neglect the non-homogeneous term and study the homogeneous system $\mathbf{y}'(t) = \mathbf{P}(t)\mathbf{y}(t)$.

Definition 13.3

(Fundamental matrix). Let $\mathbf{y}_1(t), \dots, \mathbf{y}_n(t)$ be a fundamental set of solutions to the homogeneous system $\mathbf{y}'(t) = \mathbf{P}(t)\mathbf{y}(t)$. The matrix \mathbf{F} defined as

$$\mathbf{F}(t) = \begin{pmatrix} & | & & \dots & | \\ & \mathbf{y}_1(t) & \mathbf{y}_2(t) & \dots & \mathbf{y}_n(t) \\ & | & & & | \end{pmatrix} = \begin{pmatrix} y_{11}(t) & y_{12}(t) & \dots & y_{1n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1}(t) & y_{n2}(t) & \dots & y_{nn}(t) \end{pmatrix}$$

is called a **fundamental matrix** for the system $\mathbf{y}'(t) = \mathbf{P}(t)\mathbf{y}(t)$.

Note that the fundamental matrix $\mathbf{F}(t)$ is invertible for all $t \in I$ since its columns forms a fundamental set of solutions(Wronskian

$$W(\mathbf{y}_1,\ldots,\mathbf{y}_n)[t]=\det(\mathbf{F}(t))\neq 0).$$

Dongdong He (CUHK(SZ)) Slides 13 April 8, 2021 20 / 31

Propery:

Let $\mathbf{y}_1(t),\ldots,\mathbf{y}_n(t)$ be a fundamental set of solutions to the homogeneous system $\mathbf{y}'(t)=\mathbf{P}(t)\mathbf{y}(t)$. The matrix \mathbf{F} defined as

$$\mathbf{F}(t) = \left(egin{array}{cccc} \mid & \mid & \ldots & \mid \\ \mathbf{y}_1(t) & \mathbf{y}_2(t) & \ldots & \mathbf{y}_n(t) \\ \mid & \mid & \ldots & \mid \end{array}
ight)$$

satisfies the property

$$\frac{d\mathbf{F}(t)}{dt} = \mathbf{P}(t)\mathbf{F}(t)$$

Proof.

$$\frac{d}{dt}\mathbf{F}(t) = \frac{d}{dt} \begin{pmatrix} | & | & \dots & | \\ \mathbf{y}_1(t) & \mathbf{y}_2(t) & \dots & \mathbf{y}_n(t) \\ | & | & \dots & | \end{pmatrix} = \begin{pmatrix} | & | & \dots & | \\ \frac{d}{dt}\mathbf{y}_1(t) & \frac{d}{dt}\mathbf{y}_2(t) & \dots & \frac{d}{dt}\mathbf{y}_n(t) \\ | & | & \dots & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & \dots & | \\ \mathbf{P}(t)\mathbf{y}_1(t) & \mathbf{P}(t)\mathbf{y}_2(t) & \dots & \mathbf{P}(t)\mathbf{y}_n(t) \\ | & | & \dots & | \end{pmatrix} = \mathbf{P}(t)\mathbf{F}(t).$$

Now Return to the non-homogeneous system

$$\mathbf{y}'(t) = \mathbf{P}(t)\mathbf{y}(t) + \mathbf{g}(t).$$

Assume we have a fundamental matrix $\mathbf{F}(t)$ to the homogeneous system with complementary solution

$$\mathbf{y}_c(t) = \mathbf{F}(t)\mathbf{c},$$

where ${\bf c}$ is a constant vector. The method of variation of parameters is to consider a trial solution

$$\mathbf{z}(t) = \mathbf{F}(t)\mathbf{u}(t),$$

where $\mathbf{u}(t)$ is a vector of functions. Then, if \mathbf{z} is a solution to the non-homogeneous system, we find that

$$P(t)F(t)u(t) + g(t) = z'(t) = F(t)u'(t) + F'(t)u(t).$$

Since $\mathbf{F}(t)$ is a fundamental matrix, i.e., $\mathbf{F}'(t) = \mathbf{P}(t)\mathbf{F}(t)$, we see that

$$\mathbf{F}(t)\mathbf{u}'(t) = \mathbf{g}(t) \Rightarrow \mathbf{u}'(t) = \mathbf{F}^{-1}(t)\mathbf{g}(t).$$

($\mathbf{F}(t)$ is invertible for any $t \in I$.)

Integrating this gives

$$\mathbf{u}(t) = \int \mathbf{F}^{-1}(t)\mathbf{g}(t)dt.$$

The particular solution is

$$\mathbf{z}(t) = \mathbf{F}(t) \int \mathbf{F}^{-1}(t)\mathbf{g}(t)dt.$$

Therefore the general solution to the non-homogeneous system is

$$\mathbf{y}(t) = \mathbf{y}_c(t) + \mathbf{z}(t) = \mathbf{F}(t)\mathbf{c} + \mathbf{F}(t) \left[\int \mathbf{F}^{-1}(t)\mathbf{g}(t)dt \right].$$

Dongdong He (CUHK(SZ))

If we are also given initial conditions $\mathbf{y}(t_0) = \mathbf{v}$, then in the integral we write

$$\int_{t_0}^t \mathbf{F}^{-1}(s)\mathbf{g}(s)ds$$

so that

$$\mathbf{v} = \mathbf{y}(t_0) = \mathbf{F}(t_0)\mathbf{c} \Rightarrow \mathbf{c} = \mathbf{F}^{-1}(t_0)\mathbf{v}.$$

Hence, the unique solution to the IVP in the interval I is

$$\mathbf{y}(t) = \mathbf{F}(t)\mathbf{F}^{-1}(t_0)\mathbf{v} + \mathbf{F}(t)\left[\int_{t_0}^t \mathbf{F}^{-1}(s)\mathbf{g}(s)ds\right].$$

Example 13.4

Find a particular solution to

$$\mathbf{y}'(t) = \left(egin{array}{cc} -2 & 1 \ 1 & -2 \end{array}
ight) \mathbf{y}(t) + \left(egin{array}{cc} 2\mathrm{e}^{-t} \ 3t \end{array}
ight).$$

Using the method of undetermined coefficients, we have that one particular solution is

$$\mathbf{Y}(t) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) t \mathrm{e}^{-t} - \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \mathrm{e}^{-t} + \left(\begin{array}{c} 1 \\ 2 \end{array}\right) t - \frac{1}{3} \left(\begin{array}{c} 4 \\ 5 \end{array}\right).$$

Recalling that the complementary solution to the homogeneous system is

$$\mathbf{y}_c(t) = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}.$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

Example 13.7

Computing the fundamental matrix

$$\mathbf{F}(t) = \left(\begin{array}{cc} e^{-3t} & e^{-t} \\ -e^{-3t} & e^{-t} \end{array} \right),$$

its determinant det $\mathbf{F}(t) = 2e^{-4t}$ and its inverse

$$\mathbf{F}^{-1}(t) = \frac{1}{2} \left(\begin{array}{cc} e^{3t} & -e^{3t} \\ e^t & e^t \end{array} \right)$$

we can then compute for the unknown coefficients by solving

$$\mathbf{u}'(t) = \mathbf{F}^{-1}(t)\mathbf{g}(t) \Rightarrow \left\{ egin{array}{l} u_1'(t) = e^{2t} - rac{3}{2}te^{3t}, \\ u_2'(t) = 1 + rac{3}{2}te^t. \end{array}
ight.$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Example 13.7

This gives

$$u_1(t) = \frac{1}{2}e^{2t} - \frac{1}{2}te^{3t} + \frac{1}{6}e^{3t}, \qquad u_2(t) = t + \frac{3}{2}te^t - \frac{3}{2}e^t,$$

where we used

$$\int t e^{\alpha t} dt = \frac{\alpha t - 1}{\alpha^2} e^{\alpha t}.$$

Hence, a particular solution is

$$\mathbf{Z}(t) = \mathbf{F}(t)\mathbf{u}(t) = t\mathrm{e}^{-t} \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \frac{1}{2} \left(\begin{array}{c} 1 \\ -1 \end{array}\right) \mathrm{e}^{-t} + t \left(\begin{array}{c} 1 \\ 2 \end{array}\right) - \frac{1}{3} \left(\begin{array}{c} 4 \\ 5 \end{array}\right).$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Example 13.7

Note that $\mathbf{Y}(t)$ obtained from the method of undetermined coefficients is different from the particular solution $\mathbf{Z}(t)$ obtained from the variation of parameters:

$$\mathbf{Y}(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \frac{1}{3} \begin{pmatrix} 4 \\ 5 \end{pmatrix},$$

$$\mathbf{Z}(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} t - \frac{1}{3} \begin{pmatrix} 4 \\ 5 \end{pmatrix}.$$

One can check that both ${\bf Y}$ and ${\bf Z}$ are particular solutions, but the corresponding general solutions to the non-homogeneous system are equivalent:

$$\mathbf{y}(t) = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + \mathbf{Y}(t) = d_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{3t} + d_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + \mathbf{Z}(t)$$

if we choose

$$c_1=d_1, \qquad c_2=d_2+\frac{1}{2}.$$

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久

Example 13.5

Find a particular solution to

$$\mathbf{y}'(t) = \begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix} \mathbf{y}(t) + \begin{pmatrix} e^{-2t} \\ -2e^t \end{pmatrix}.$$

From before, the eigenvalues of **A** are $r_1 = -3$ and $r_2 = 2$ with eigenvectors

$$\xi_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad \xi_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}.$$

From this we can write down the fundamental matrix

$$\mathbf{F}(t) = \left(\begin{array}{cc} e^{-3t} & 4e^{2t} \\ -e^{-3t} & e^{2t} \end{array} \right).$$

The determinant is $\det \mathbf{F}(t) = 5e^{-t}$, with inverse

$$\mathbf{F}(t)^{-1} = \frac{1}{5} \begin{pmatrix} e^{3t} & -4e^{3t} \\ e^{-2t} & e^{-2t} \end{pmatrix}.$$

Example 13.8

Then, for the unknown coefficients, we solve

$$\mathbf{u}'(t) = \mathbf{F}^{-1}(t)\mathbf{g}(t) \Rightarrow \begin{cases} u_1'(t) = \frac{1}{5}(e^t + 8e^{4t}), \\ u_2'(t) = \frac{1}{5}(e^{-4t} - 2e^{-t}). \end{cases}$$

This gives

$$u_1(t) = \frac{1}{5}e^t + \frac{2}{5}e^{4t}, \qquad u_2(t) = -\frac{1}{20}e^{-4t} + \frac{2}{5}e^{-t},$$

and the particular solution is

$$\mathbf{Z}(t) = \mathbf{F}(t)\mathbf{u}(t) = \begin{pmatrix} 2e^t \\ -0.25e^{-2t} \end{pmatrix},$$

which coincides with particular solution obtained from the method of undetermined coefficients.