Grundbegriffe Mengenlehre und Logik

Analysis

für

Informatiker und Lehramt Mathematik MS/GS/FS

WS 2015/2016

Agnes Radl

Mengen

Georg Cantor (1895)

"Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die Elemente von M genannt werden) zu einem Ganzen."

Notation

- ▶ $m \in M$ oder $M \ni m$, falls m ein Element der Menge M ist.
- ▶ $m \notin M$ oder $M \not\ni m$, falls m kein Element der Menge M ist.

- ► $M = \{1, 2, 3, 5\}$; dann $5 \in M$, $4 \notin M$; beachte: $\{1, 2, 2\} = \{1, 2\}$
- N (Menge der natürlichen Zahlen);
- ▶ $\{m \in \mathbb{N} : m \text{ gerade}\}$

leere Menge

 \emptyset oder $\{\}$

Menge, die kein Element enthält.

Teilmenge, Obermenge

Seien A und B Mengen.

$$A \subseteq B$$
,

falls für alle $x \in A$ auch $x \in B$ gilt.

- ▶ A ist eine *Teilmenge* von B bzw.
- ▶ *B* ist eine *Obermenge* von *A*.

- ▶ $\{1,4\} \subseteq \{1,2,4,5\}$

Bemerkung

► Für jede Menge A gilt:

$$\emptyset \subseteq A$$
, $A \subseteq A$.

▶ A = B bedeutet $A \subseteq B$ und $B \subseteq A$.

Durchschnitt

Seien A und B Mengen.

Durchschnitt von A und B:

$$A \cap B = \{x : x \in A \text{ und } x \in B\}$$

Beispiel

- ► $A = \{1, 2, 5\}, B = \{1, 5, 12\}, A \cap B = \{1, 5\}$
- ► $A = \{1, 2, 5\}$, $B = \{3, 4\}$, $A \cap B = \emptyset$
- ▶ $A = \emptyset$, B beliebige Menge: $A \cap B = \emptyset$
- ▶ Ist $A \subseteq B$, dann ist $A \cap B = A$.
- \rightarrow $A \cap A = A$

Bemerkung

▶ A und B heißen disjunkt, falls $A \cap B = \emptyset$. Notation: $A \cup B$

Vereinigung

Seien A und B Mengen.

Vereinigung von A und B:

$$A \cup B = \{x : x \in A \text{ oder } x \in B\}$$

- ► $A = \{1, 2, 5\}, B = \{1, 5, 12\}, A \cup B = \{1, 2, 5, 12\}$
- ▶ $A = \emptyset$, B beliebige Menge: $A \cup B = B$
- \rightarrow $A \cup A = A$

Differenz

Seien A und B Mengen.

Differenz von A und B:

$$A \setminus B = \{x : x \in A \text{ und } x \notin B\}$$

- $A = \{1, 2, 5\}, B = \{1, 5, 12\}, A \setminus B = \{2\}$
- ► $A = \{1, 2, 5\}$, $B = \{1, 2, 3, 4, 5\}$, $A \setminus B = \emptyset$
- \triangleright $A \setminus \emptyset = A$
- Ø \ A =∅
- \rightarrow $A \setminus A = \emptyset$

Veranschaulichung durch Venn¹-Diagramme

¹John Venn (1834–1923), englischer Mathematiker

Potenzmenge

Sei A eine Menge.

Potenzmenge von A:

$$\mathbb{P}(A) = \{M : M \subseteq A\}$$

"Menge aller Teilmengen von A"

- $A = \{2,5\}, \quad \mathbb{P}(A) = \{\emptyset, \{2\}, \{5\}, \{2,5\}\}$
- $\blacktriangleright \mathbb{P}(\emptyset) = \{\emptyset\}$
- $\{1,3,7\} \in \mathbb{P}(\mathbb{N}), \{3n : n \in \mathbb{N}\} \in \mathbb{P}(\mathbb{N})$

kartesisches Produkt

Seien A und B Mengen.

Kartesisches¹ Produkt von A und B:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

- ► $A = \{2,5\}, B = \{1,2,3\},$ $A \times B = \{(2,1),(2,2),(2,3),(5,1),(5,2),(5,3)\}$
- ▶ $A = \emptyset$ oder $B = \emptyset$: $A \times B = \emptyset$

¹René Descartes (1596–1650); französischer Mathematiker

Bemerkung

▶ \cap und \cup kann man auch für endlich viele Mengen A_1, \dots, A_n definieren:

$$\bigcap_{k=1}^n A_k = A_1 \cap \cdots \cap A_n = \{x : x \in A_1 \text{ und } \ldots \text{ und } x \in A_n\},$$

$$\bigcup_{k=1}^{n} A_k = A_1 \cup \dots \cup A_n = \{x : x \in A_1 \text{ oder } \dots \text{ oder } x \in A_n\},$$

ebenso das kartesische Produkt:

$$A_1\times\cdots\times A_n=\{(x_1,\ldots,x_n):x_1\in A_1,\ldots,x_n\in A_n\}.$$

Eine mathematische Aussage A beschreibt einen mathematischen Sachverhalt, dem ein Wahrheitswert wahr (w) oder falsch (f) zugeordnet werden kann.

Beispiel

- "2 ist eine gerade Zahl." (w)
- "2 ist eine ungerade Zahl." (f)

Aus mathematischen Aussagen A und B kann man folgendermaßen neue mathematische Aussagen bilden.

Negation: $\neg A$, A gilt nicht."

$$\begin{array}{c|cc}
A & \neg A \\
\hline
w & f \\
f & w
\end{array}$$

```
A: ",2 ist eine gerade Zahl." (w) \neg A: ",Es gilt nicht, dass 2 eine gerade Zahl ist." (f)
```

Konjunktion (und): $A \wedge B$ "Sowohl A gilt als auch B."

Α	В	$A \wedge B$
W	W	W
W	f	f
f	W	f
f	f	f

Beispiel

A: "2 ist eine gerade Zahl." (w)

B: "3 ist eine gerade Zahl." (f)

 $A \wedge B$: "2 ist eine gerade Zahl und 3 ist eine gerade Zahl." (f)

Disjunktion (oder): $A \vee B$

"A gilt oder B gilt."

Beachte: Dies ist kein ausschließendes "oder".

Auch beide dürfen gelten.

Α	В	$A \vee B$
W	W	W
W	f	W
f	W	w
f	f	f
f	f	f

Beispiel

A: "2 ist eine gerade Zahl." (w)

B: "3 ist eine gerade Zahl." (f)

 $A \lor B$: ",2 ist eine gerade Zahl oder 3 ist eine gerade Zahl." (w)

Desweiteren

Implikation: $A \Rightarrow B$

"Wenn A, dann B."

"Aus A folgt B."

"A ist hinreichend für B."

"B ist notwendig für A."

Α	В	$A \Rightarrow B$				$ \neg A \lor$
W	w	W	W	W	f	W
W	f	f	W	f	f	f
f	W	W	f	W	W	w
f	f	w	f	f	W	w f w w

Äquivalenz: $A \Leftrightarrow B$

$$A \Leftrightarrow B \text{ bedeutet } (A \Rightarrow B) \land (B \Rightarrow A)$$

"A genau dann, wenn B."

"A ist notwendig und hinreichend für B."

"A und B sind äquivalent."

Α	В	$A \Rightarrow B$	$B \Rightarrow A$	$A \Leftrightarrow B$
W	W	W	W	W
W	f	f	W	f
f	W	W	f	f
f	f	w	w	w

Quantoren

Ist M eine Menge und A(m) eine Aussage über m, so schreibt man

- ▶ $\forall m \in M : A(m)$ "Für alle Elemente m der Menge M gilt A(m)."
- ▶ $\exists m \in M : A(m)$ "Es gibt (mindestens) ein Element m in der Menge M, für das A(m) gilt."

(Der Doppelpunkt wird manchmal weggelassen.)

∀ "Allquantor" ∃ "Existenzquantor"

Quantoren

Beispiel

A(m): "m ist durch 2 teilbar."

$$M = \{2, 8, 10, 11\}.$$

- ▶ $\forall m \in M : A(m)$ (falsch) "Jedes $m \in M$ ist durch 2 teilbar.",
- ► $\exists m \in M : A(m)$ (wahr) "Es gibt ein $m \in M$, das durch 2 teilbar ist."

$$\tilde{M} = \{2, 8, 10\}$$

- $\forall m \in \tilde{M} : A(m)$ "Jedes $m \in \tilde{M}$ ist durch 2 teilbar.", (wahr)
- ▶ $\exists m \in \tilde{M} : A(m)$ (wahr) "Es gibt ein $m \in \tilde{M}$, das durch 2 teilbar ist."

Quantoren

Beispiel

$$M = \{2, 8, 10, 11\}.$$

A(m): "m ist durch 2 teilbar."

▶ Negation von $\forall m \in M : A(m)$ $\exists m \in M : \neg A(m)$ (wahr) "Es gibt ein $m \in M$, welches nicht durch 2 teilbar ist."

▶ Negation von $\exists m \in M : A(m)$

$$\forall m \in M : \neg A(m)$$
 (falsch)

"Für jedes $m \in M$ gilt, dass es nicht durch 2 teilbar ist."

", Kein $m \in M$ ist durch 2 teilbar."

Allgemein

Negation von
$$\forall m \in M : A(m)$$

$$\exists m \in M : \neg A(m)$$

Negation von
$$\exists m \in M : A(m)$$

$$\forall m \in M : \neg A(m)$$

Literatur

C. Tretter, Analysis I, Birkhäuser, 2013.