Álgebra Universal e Categorias

1. Sejam

- $R = \{a, b, c, d, e, f, g, h, i\};$
- $\mathcal{R}_1 = (R; \wedge^{\mathcal{R}_1}, \vee^{\mathcal{R}_1})$ o reticulado correspondente ao diagrama de Hasse representado na figura 1. e tal que $\wedge^{\mathcal{R}_1}$ e $\vee^{\mathcal{R}_1}$ representam, respetivamente, as operações de ínfimo (\wedge) e supremo (\vee);
- $\mathcal{R}_2 = (\mathcal{P}(R); \wedge^{\mathcal{R}_2}, \vee^{\mathcal{R}_2})$ o reticulado onde $\mathcal{P}(R) = \{X \mid X \subseteq R\}$ e $\wedge^{\mathcal{R}_2}$ e $\vee^{\mathcal{R}_2}$ representam, respetivamente, a interseção e a união de conjuntos.

figura 1.

- (a) Para cada um dos conjuntos A_i , $i \in \{1, 2\}$, a seguir indicados, diga se A_i é um subuniverso de \mathcal{R}_1 e determine $Sg^{\mathcal{R}_1}(A_i)$. Justifique a sua resposta.
 - i. $A_1 = \{r \in R : r \land f = f\} \cup \{r \in R : r \land g = g\}.$

Tem-se

$$A_1 = \{r \in R : r \land f = f\} \cup \{r \in R : r \land g = g\} = \{r \in R : f \le r\} \cup \{r \in R : g \le r\} = \{f, h, e\} \cup \{g, i, e\} = \{f, g, h, i, e\}.$$

O conjunto A_1 é um subuniverso de \mathcal{R}_1 se $A_1\subseteq R$ e, para quaisquer $x,y\in A_1$, $x\wedge y\in A_1$ e $x\vee y\in A_1$. Então, como $h,i\in A_1$ e $h\wedge i=d\not\in A_1$, concluímos que A_1 não é um subuniverso de \mathcal{R}_1 .

Por definição, $Sg^{\mathcal{R}_1}(A_1)$ é o menor subuniverso de \mathcal{R}_1 que contém A_1 . Assim, $A_1 \subseteq Sg^{\mathcal{R}_1}(A_i)$ e, uma vez que $Sg^{\mathcal{R}_1}(A_1)$ é fechado para as operações \wedge e \vee , os elementos

$$h \wedge i = d, f \wedge g = a, d \wedge f = b$$

pertencem a $Sg^{\mathcal{R}_1}(A_1)$. Logo $\{a,b,d,e,f,g,h,i\}\subseteq Sg^{\mathcal{R}_1}(A_1)$. Atendendo a que c não é infimo nem supremo de qualquer dos elementos do conjunto $\{a,b,d,e,f,g,h,i\}$, conclui-se que $\{a,b,d,e,f,g,h,i\}$ é um subuniverso de \mathcal{R}_1 . Claramente, qualquer outro subuiverso de \mathcal{R}_1 que contenha A_1 tem de conter $\{a,b,d,e,f,g,h,i\}$. Portanto, $Sg^{\mathcal{R}_1}(A_1)=\{a,b,d,e,f,g,h,i\}$.

ii. $A_2 = \{r \in R : r \land (f \lor g) = f \lor g\}.$

Tem-se

$$A_{2} = \{r \in R : r \land (f \lor g) = f \lor g\} = \{r \in R : (f \lor g) \le r\}$$
$$= \{r \in R : e \le r\}$$
$$= \{e\}.$$

Obviamente, $A_2 \subseteq R$ e A_2 é fechado para as operações \land e \lor , uma vez que

$$e \wedge e = e \ \mathbf{e} \ e \vee e = e.$$

Logo A_2 é um subuniverso de \mathcal{R}_1 .

Uma vez que A_2 é um subuniverso de \mathcal{R}_1 é imediato que $Sg^{\mathcal{R}_1}(A_2) = A_2$.

(b) Considere a aplicação $\alpha: R \to \mathcal{P}(R)$ definida por $\alpha(x) = \{r \in R \mid r \land x = x\}$, para cada $x \in R$. Diga, justificando, se α é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 .

A aplicação α é um homomorfismo \mathcal{R}_1 em \mathcal{R}_2 se, para quaisquer $x,y\in R$,

$$\alpha(x \wedge^{\mathcal{R}_1} y) = \alpha(x) \wedge^{\mathcal{R}_2} \alpha(y) \in \alpha(x \vee^{\mathcal{R}_1} y) = \alpha(x) \vee^{\mathcal{R}_2} \alpha(y).$$

Ora, atendendo à alínea anterior, conclui-se de imediato que α não é um homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 , uma vez que

$$\alpha(f \vee^{\mathcal{R}_1} g) = A_2 \neq A_1 = \alpha(f) \cup \alpha(g) = \alpha(f) \vee^{\mathcal{R}_2} \alpha(g).$$

(c) Diga se \mathcal{R}_1 é um reticulado modular. Justifique a sua resposta.

Um reticulado é modular se e só se não tem qualquer subreticulado isomorfo ao reticulado N_5 .

Então, uma vez que o reticulado

é um subreticulado de \mathcal{R}_1 (pois, $\{b,c,d,h,f\}\subseteq R$ e $\{b,c,d,h,f\}$ é fechado para as operações \land e \lor) e é isomorfo ao N_5 , conclui-se que \mathcal{R}_1 não é modular.

2. Seja $(R; \land, \lor)$ um reticulado. Um subconjunto não vazio F de R diz-se um filtro de R se:

- **(F1)** $\forall x, y \in R \ (x, y \in F \Rightarrow x \land y \in F)$;
- **(F2)** $\forall x \in F, \forall y \in R \ (x \lor y = y \Rightarrow y \in F).$

Mostre que todo o filtro de R é um subniverso de R.

Um subconjunto S de R diz-se um subuniverso de R se $S\subseteq R$ e, para quaisquer $a,b\in S$, $a\wedge b\in S$ e $a\vee b\in S$.

Dado um filtro F de R, facilmente se verifica que F é um subuniverso de R. De facto, pela definição de F é imediato que $F \subseteq R$. Além disso, para quaisquer $a,b \in F$,

- $a \wedge b \in F$, atendendo a (F1);
- $a \lor b \in F$, uma vez que $a \in F$, $a \lor b \in R$, $a \lor (a \lor b) = a \lor b$ e atendendo a (F2).

3. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo e $\alpha: \mathcal{A} \to \mathcal{B}$ e $\beta: \mathcal{B} \to \mathcal{C}$ homomorfismos.

(a) Mostre que $\beta \circ \alpha$ é um homomorfismo de \mathcal{A} em \mathcal{C} .

Uma vez que α é uma aplicação de A em B e β é uma aplicação de B em C, por definição de composição de β e α segue que $\beta \circ \alpha$ é uma aplicação de A em C. Além disso, para qualquer símbolo de operação n-ário f e para quaisquer $a_1,\ldots,a_n\in A$,

$$\begin{array}{lll} (\beta \circ \alpha)(f^{\mathcal{A}}(a_1, \ldots, a_n)) & = & \beta(\alpha(f^{\mathcal{A}}(a_1, \ldots, a_n))) \\ & = & \beta(f^{\mathcal{B}}(\alpha(a_1), \ldots, \alpha(a_n))) & (\mathsf{pois} \ \alpha \in \mathrm{Hom}(\mathcal{A}, \mathcal{B})) \\ & = & f^{\mathcal{C}}(\beta(\alpha(a_1)), \ldots, \beta(\alpha(a_n))) & (\mathsf{pois} \ \beta \in \mathrm{Hom}(\mathcal{B}, \mathcal{C})) \end{array}$$

Desta forma, provámos que $\beta \circ \alpha$ é um homomorfismo de \mathcal{A} em \mathcal{C} .

(b) Mostre que $\ker \alpha$ é uma congruência em A.

A relação

$$\ker \alpha = \{(x,y) \in A^2 \,|\, \alpha(x) = \alpha(y)\}$$

é uma congruência em ${\mathcal A}$ se é uma relação de equivalência em A e satisfaz a propriedade de substituição.

Comecemos por verificar que $\ker \alpha$ é uma relação de equivalência em A, i.e., que é uma relação reflexiva, simétrica e transitiva:

- Para qualquer $a \in A$, $\alpha(a) = \alpha(a)$. Logo, para todo $a \in A$, $(a,a) \in \ker \alpha$ e, portanto, $\ker \alpha$ é reflexiva.
- Para quaisquer $a, b \in A$,

$$(a,b) \in \ker \alpha \Rightarrow \alpha(a) = \alpha(b) \Rightarrow \alpha(b) = \alpha(a) \Rightarrow (b,a) \in \ker \alpha.$$

Logo $\ker \alpha$ é simétrica.

- Para quaisquer $a, b, c \in A$,

$$\begin{array}{ll} (a,b) \in \ker \alpha \, \, \mathsf{e} \, \, (b,c) \in \ker \alpha & \Rightarrow & \alpha(a) = \alpha(b) \, \, \mathsf{e} \, \, \alpha(b) = \alpha(c) \\ & \Rightarrow & \alpha(a) = \alpha(c) \\ & \Rightarrow & (a,c) \in \ker \alpha. \end{array}$$

Portanto, $\ker \alpha$ é transitiva.

Também é simples verificar que $\ker \alpha$ satisfaz a propriedade de substituição. De facto, para qualquer símbolo de operação n-ário f e para quaisquer $a_1, \ldots a_n, b_1, \ldots, b_n \in A$,

$$(\forall i \in \{1, \dots, n\}, (a_i, b_i) \in \ker \alpha) \quad \Rightarrow \quad \alpha(a_1) = \alpha(b_1), \dots, \alpha(a_n) = \alpha(b_n)$$

$$\Rightarrow \quad f^{\mathcal{B}}(\alpha(a_1), \dots, \alpha(a_n)) = f^{\mathcal{B}}(\alpha(b1), \dots, \alpha(b_n))$$

$$\Rightarrow \quad \alpha(f^{\mathcal{A}}(a_1, \dots a_n)) = \alpha(f^{\mathcal{A}}(b_1, \dots b_n))$$

$$\Rightarrow \quad (f^{\mathcal{A}}(a_1, \dots a_n), (f^{\mathcal{A}}(b_1, \dots b_n)) \in \ker \alpha.$$

(c) Mostre que $\ker \alpha \subseteq \ker(\beta \circ \alpha)$. Conclua que se $\beta \circ \alpha$ é um monomorfismo, então α é um monomorfismo.

Para quaisquer $a, b \in A$,

$$(a,b) \in \ker \alpha \quad \Rightarrow \quad \alpha(a) = \alpha(b)$$

$$\Rightarrow \quad \beta(\alpha(a)) = \beta(\alpha(b))$$

$$\Rightarrow \quad (\beta \circ \alpha)(a) = (\beta \circ \alpha)(b)$$

$$\Rightarrow \quad (a,b) \in \ker(\beta \circ \alpha).$$

Logo $\ker \alpha \subseteq \ker(\beta \circ \alpha)$.

Se $\beta \circ \alpha$ é um monomorfismo, tem-se $\ker(\beta \circ \alpha) = \triangle_A$. Então, uma vez que $\ker \alpha \subseteq \ker(\beta \circ \alpha)$, tem-se $\ker \alpha = \triangle_A$ e, portanto, α é um monomorfismo.

- 4. (a) Sejam \mathcal{A} uma álgebra e $\theta, \theta^* \in \mathrm{Con}\mathcal{A}$. Mostre que (θ, θ^*) é um par de congruências fator em \mathcal{A} se e só se $\theta \cap \theta^* = \triangle_{\mathcal{A}}$ e $\theta \circ \theta^* = \nabla_{\mathcal{A}}$.
 - (\Rightarrow) Seja (θ, θ^*) um par de congruências fator em \mathcal{A} . Então θ e θ^* são permutáveis, $\theta \cap \theta^* = \triangle_A$ e $\theta \vee \theta^* = \nabla_A$. Uma vez que $\theta \cap \theta^* = \triangle_A$, resta provar que $\theta \circ \theta^* = \nabla_A$. Esta prova é imediata. De facto, como θ e θ^* são permutáveis, tem-se $\theta \vee \theta^* = \theta \circ \theta^*$, pelo que $\theta \circ \theta^* = \nabla_A$.
 - $(\Leftarrow) \text{ Sejam } \theta \in \theta^* \text{ congruências em } \mathcal{A} \text{ tais que } \theta \cap \theta^* = \triangle_A \in \theta \circ \theta^* = \nabla_A. \text{ Então } \theta^* \circ \theta \subseteq \theta \circ \theta^* = \triangle_A,$ donde resulta que $\theta^* \circ \theta = \theta \circ \theta^*$ e, portanto, $\theta \in \theta^* \text{ são permutáveis}.$ Atendendo a que $\theta \in \theta^* \text{ são permutáveis}$ tem-se $\theta \vee \theta^* = \theta \circ \theta^*$, pelo que $\theta \vee \theta^* = \nabla_A$. Logo $\theta \in \theta^* \text{ são congruências permutáveis}$ e tais que $\theta \cap \theta^* = \triangle_A \in \theta \vee \theta^* = \nabla_A$, i.e., (θ, θ^*) é um par de congruências fator.
 - (b) Seja $\mathcal{A}=(\{a,b,c,d\},f^{\mathcal{A}})$ a álgebra de tipo (1) onde $f^{\mathcal{A}}:\{a,b,c,d\}\to\{a,b,c,d\}$ é a operação definida por

i. Sejam $\theta_1 = \theta(a,b)$ e $\theta_2 = \theta(a,c) \vee \theta(b,d)$. Determine θ_1 e θ_2 . Justifique que (θ_1,θ_2) é um par de conguências fator.

A relação $\theta(a,b)$ é a menor relação de congruência em $\mathcal A$ que contém $\{(a,b)\}$. Então $(a,b)\in\theta(a,b)$ e, uma vez que $\theta(a,b)$ é uma relação reflexiva, tem-se

$$\triangle_A = \{(a, a), (b, b), (c, c), (d, d)\} \subseteq \theta(a, b).$$

Atendendo a que $\theta(a,b)$ é simétrica, transitiva e satisfaz a propriedade de substituição, verifica-se também o seguinte

$$\begin{aligned} &(a,b) \in \theta(a,b) \Rightarrow (b,a) \in \theta(a,b), \\ &(a,b) \in \theta(a,b) \Rightarrow (f(a),f(b)) = (d,c) \in \theta(a,b), \\ &(b,a) \in \theta(a,b) \Rightarrow (f(b),f(a)) = (c,d) \in \theta(a,b), \\ &(d,c) \in \theta(a,b) \Rightarrow (f(d),f(c)) = (c,d) \in \theta(a,b), \\ &(c,d) \in \theta(a,b) \Rightarrow (f(c),f(d)) = (d,c) \in \theta(a,b). \end{aligned}$$

Logo

$$\triangle_A \cup \{(a,b), (b,a), (c,d), (d,c)\} \subseteq \theta(a,b).$$

Uma vez que $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$ é uma congruência em \mathcal{A} e qualquer outra congruência que contenha $\{(a,b)\}$ tem de conter $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$, tem-se

$$\theta_1 = \theta(a, b) = \triangle_A \cup \{(a, b), (b, a), (c, d), (d, c)\}.$$

Atendendo a que $\theta_2 = \theta(a,c) \vee \theta(b,d)$ é a menor relação de congruência em $\mathcal A$ que contem $\{(a,c),(b,d)\}$, tem-se

$$\{(a,c),(b,d)\} \subseteq \theta_2, \\ \triangle_A \subseteq \theta_2, \\ (a,c) \in \theta_2 \Rightarrow (c,a) \in \theta_2, \\ (b,d) \in \theta_2 \Rightarrow (d,b) \in \theta_2, \\ (a,c) \in \theta_2 \Rightarrow (f(a),f(c)) = (d,d) \in \theta_2, \\ (c,a) \in \theta_2 \Rightarrow (f(c),f(a)) = (d,d) \in \theta_2, \\ (b,d) \in \theta_2 \Rightarrow (f(b),f(d)) = (c,c) \in \theta_2, \\ (d,b) \in \theta_2 \Rightarrow (f(d),f(b)) = (c,c) \in \theta_2,$$

donde se conclui que $\triangle_A \cup \{(a,c),(c,a),(b,d),(d,b)\} \subseteq \theta_2$. Uma vez que $\triangle_A \cup \{(a,c),(c,a),(b,d),(d,b)\}$ é uma congruência em \mathcal{A} e qualquer outra congruência que contenha $\{(a,c),(b,d)\}$ tem de conter $\triangle_A \cup \{(a,c),(c,a),(b,d),(d,b)\}$, tem-se

$$\theta_2 = \triangle_A \cup \{(a, c), (c, a), (b, d), (d, b)\}.$$

Claramente,

$$\theta_1 \cap \theta_2 = \triangle_A$$

е

$$\begin{array}{lll} \theta_1 \circ \theta_2 & = & \{(x,z) \in A^2 \, | \, \exists y \in A, (x,y) \in \theta_2 \; \mathsf{e} \; (y,z) \in \theta_1 \} \\ & = & \triangle_A \cup \{(a,b), (b,a)(c,d), (d,c), (a,c), (c,a), (b,d), (d,b), (a,d), (d,a), (b,c), (c,b) \} \\ & = & \nabla_A. \end{array}$$

Logo, pela alínea anterior, concluímos que (θ_1, θ_2) é um par de congruências fator.

ii. Justifique que a álgebra \mathcal{A} não é diretamente indecomponível. Dê exemplo de álgebras $\mathcal{A}_1 = (A_1, f^{\mathcal{A}_1})$ e $\mathcal{A}_2 = (A_2, f^{\mathcal{A}_2})$ não triviais tais que $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$.

A álgebra $\mathcal A$ é diretamente indecomponível se e só se \triangle_A e ∇_A são as únicas congruências fator de $\mathcal A$. Então, como θ_1 e θ_2 são congruências fator de $\mathcal A$ e $\theta_1, \theta_2 \not\in \{\triangle_A, \nabla_A\}$, conclui-se que $\mathcal A$ não é diretamente indecomponível. Uma vez que θ_1 e θ_2 são congruências fator de $\mathcal A$, tem-se $\mathcal A \cong \mathcal A/\theta_1 \times \mathcal A/\theta_2$, onde

- $\mathcal{A}/\theta_1=(A/\theta_1,f^{\mathcal{A}/\theta_1})$ é a álgebra tal que $A/\theta_1=\{[a]_{\theta_1},[c]_{\theta_1}\}$ e $f^{\mathcal{A}/\theta_1}:A/\theta_1\to A/\theta_1$ é a operação definida por $f^{\mathcal{A}/\theta_1}([a]_{\theta_1})=[f(a)]_{\theta_1}=[c]_{\theta_1}$ e $f^{\mathcal{A}/\theta_1}([c]_{\theta_1})=[f(c)]_{\theta_1}=[c]_{\theta_1}$,
- $\mathcal{A}/\theta_2=(A/\theta_2,f^{\mathcal{A}/\theta_2})$ é a álgebra tal que $A/\theta_2=\{[a]_{\theta_2},[b]_{\theta_2}\}$ e $f^{\mathcal{A}/\theta_2}:A/\theta_2\to A/\theta_2$ é a operação definida por $f^{\mathcal{A}/\theta_2}([a]_{\theta_2})=[f(a)]_{\theta_2}=[b]_{\theta_2}$ e $f^{\mathcal{A}/\theta_2}([b]_{\theta_2})=[f(b)]_{\theta_2}=[a]_{\theta_2}$,
- 5. Considere os operadores H e P. Mostre que:
 - (a) H é um operador idempotente.

Pretendemos mostrar que, para qualquer classe de álgebras \mathbf{K} , $H^2(\mathbf{K}) = H(\mathbf{K})$.

 $[H(\mathbf{K}) \subseteq H^2(\mathbf{K})]$ Para qualquer operador $O \in \{H, I, S, P, Ps\}$ e para qualquer classe \mathbf{K} de álgebras do mesmo tipo, tem-se $\mathbf{K} \subseteq O(\mathbf{K})$. Logo $\mathbf{K} \subseteq H(\mathbf{K})$, donde segue que $H(\mathbf{K}) \subseteq H^2(\mathbf{K})$.

 $[H^2(\mathbf{K}) \subseteq H(\mathbf{K})]$ Seja $\mathbf{A} \in H^2(\mathbf{K})$. Então $A = \alpha(\mathcal{B})$, para algum epimorfismo $\alpha : \mathcal{B} \to \mathcal{A}$, onde $\mathcal{B} \in H(\mathbf{K})$. Uma vez que $\mathcal{B} \in H(\mathbf{K})$, então $\mathcal{B} = \gamma(\mathcal{C})$, para algum epimorfismo $\gamma : \mathcal{C} \to \mathcal{B}$, onde $\mathcal{C} \in \mathbf{K}$. Logo $\mathcal{A} = (\alpha \circ \gamma)(\mathcal{C})$, onde $\alpha \circ \gamma$ é um epimorfismo de \mathcal{A} em \mathcal{C} e $\mathcal{C} \in \mathbf{K}$. Logo $\mathcal{A} \in H(\mathbf{K})$.

Desta forma, provámos que $H^2(\mathbf{K}) = H(\mathbf{K})$ e, portanto, H é idempotente.

(b) HP é um operador de fecho.

HP é um operador de fecho se, para quaisquer classes \mathbf{K}_1 e \mathbf{K}_2 de álgebras do mesmo tipo,

- (i) $\mathbf{K}_1 \subseteq HP(\mathbf{K}_1)$,
- (ii) $(HP)^2(\mathbf{K}_1) = HP(\mathbf{K}_1)$,
- (iii) $\mathbf{K}_1 \subseteq \mathbf{K}_2 \Rightarrow HP(\mathbf{K}_1) \subseteq HP(\mathbf{K}_2)$,

- (i) Para qualquer operador $O \in \{H, I, S, P, Ps\}$ e para qualquer classe \mathbf{K} de álgebras do mesmo tipo, tem-se $\mathbf{K} \subseteq O(\mathbf{K})$. Logo $\mathbf{K}_1 \subseteq P(\mathbf{K}_1)$ e $P(\mathbf{K}_1) \subseteq HP(\mathbf{K}_1)$, donde segue que $\mathbf{K}_1 \subseteq HP(\mathbf{K}_1)$.
- (ii) Por um lado, de (i) segue que, para qualquer classe \mathbf{K}_1 de álgebras do mesmo tipo, $P(\mathbf{K}_1) \subseteq PHP(\mathbf{K}_1)$, donde $HP(\mathbf{K}_1) \subseteq HPHP(\mathbf{K}_1) = (HP)^2(\mathbf{K}_1)$. Por outro lado,

$$\begin{array}{lll} (HP)^2(\mathbf{K}_1) & = & HPHP(\mathbf{K}_1) \\ & \subseteq & H^2PP(\mathbf{K}_1) & (\mathsf{pois}\ PH \le HP) \\ & = & HPP(\mathbf{K}_1) & (\mathsf{pois}\ H^2 = H) \\ & \subseteq & HIPIP(\mathbf{K}_1) & (\mathsf{pois}\ P \le IP) \\ & = & HIP(\mathbf{K}_1) & (\mathsf{pois}\ (IP)^2 = IP) \\ & \subseteq & HHP(\mathbf{K}_1) & (\mathsf{pois}\ I \le H) \\ & = & HP(\mathbf{K}_1) & (\mathsf{pois}\ H^2 = H) \end{array}$$

 $\mathsf{Logo}\ (HP)^2 = HP.$

(iii) Se $\mathbf{K}_1 \subseteq \mathbf{K}_2$, então $P(\mathbf{K}_1) \subseteq P(\mathbf{K}_2)$, donde $HP(\mathbf{K}_1) \subseteq HP(\mathbf{K}_2)$.

Do provado em (i), (ii) e (iii) conclui-se que HP é um operador de fecho.