3. Perancangan Sistem

3.1 Deskripsi Sistem

Pada bab ini akan dibahas mengenai analisa dan perancangan perangkat lunak untuk pembangunan daftar *stopword* secara otomatis yang akan digunakan untuk proses kategorisasi dokumen. Perancangan implementasinya berupa diagram aliran data (DAD). Diagram aliran data dipakai sebagai alat bantu pengembangan sistem yang memiliki level-level sesuai dengan tingkat kedalamannya. Diagram aliran data dipakai karena mempunyai sifat yang dapat menjamin kejelasan sistem yang digambarkan, kelengkapan penggambaran dan menghindari keambiguan.

3.2 Analisa sistem

Pada tugas akhir ini akan dibangun sebuah perangkat lunak yang akan digunakan untuk pembangunan daftar *stopword* secara otomatis dan akan digunakan juga Weka sebagai *tool* Data Mining untuk proses pengkategorisasian dokumen, guna menguji tingkat keakuratan dari daftar *stopword* yang dibangun dengan melihat nilai F-measure.

Metode yang digunakan untuk pembangunan daftar *stopword* adalah *Term-Based Random Sampling*. Algoritma *Term-Based Random Sampling* ini didasarkan pada seberapa informatifnya suatu term dalam suatu dokumen. Dengan ini bisa ditentukan tingkat kepentingan dari term-term yang ada dalam dokumen, term dengan tingkat kepentingan yang kecil maka akan cenderung dikategorikan ke dalam daftar *stopword*. Untuk menghitung tingkat kepentingan dari term-term yang ada, maka digunakan *Kullback-Leibler divergence measure* untuk menghitung nilainya.

Pada aplikasi ini akan dilakukan proses stemming terlebih dahulu yaitu pengembalian kata-kata yang ada dalam dokumen kedalam bentuk dasarnya. Kemudian dilakukan pembangunan daftar *stopword* dengan melihat bobot masing-masing term dan juga memperhatikan nilai thresholdnya.

3.3 Kebutuhan Fungsionalitas Sistem

- a. Penggunaan sistem menentukan direktori utama penyimpanan data mentah berupa file txt yang akan digunakan dalam proses pembangunan daftar *stopword*.
- b. Pengguna sistem menginputkan jumlah sampel/iterasi.
- c. Pengguna menentukan menentukan threshold untuk jumlah feature yag akan dipilih dalam penentuan daftar *stopword*.

3.4 Konfigurasi Sistem

3.4.1 Spesifikasi Perangkat Keras

Berikut merupakan daftar spesifikasi perangkat keras yang digunakan dalam pembangunan sistem :

- a. Processor AMD Athlon(tm) 64 X2 Dual Core Processor 5200+
- b. Memori 2 GB RAM
- c. Harddisk Seagate 7200 RPM 80 GB
- d. Monitor LG 17"
- e. Keyboard dan Mouse

3.4.2 Spesifikasi Perangkat Lunak

Berikut perangkat lunak yang digunakan saat menjalankan sistem ini:

- a. Windows XP Service Pack 2
- b. XAMPP Version 1.5.1
- c. PHP Version 5.2.1
- d. MySQL versi 5.0.21
- e. Apache
- f. Dreamweaver MX 2004

3.5 Perancangan Sistem

3.5.1 Diagram Aliran Data

Pada bagian ini akan membahas mengenai perancangan sistem menggunakan Diagram Aliran Data (DAD) karena sifatnya yang menjamin kejelasan sistem yang digambarkan dan kelengkapan penggambaran. Diagram aliran data tersebut dapat terlihat pada level 0 yang menggambarkan sistem perangkat lunak secara global dan DAD level 1 sebagai pecahan dari DAD level 0 dan begitu seterusnya.

3.5.2 Diagram Konteks

Diagram konteks dapat juga disebut dengan Diagram Aliran Data level 0. Diagram kontekas berisi penjelasan umum atau global tentang proses yang terjadi dalam sistem yang menggunakan interaksi antara sistem dan entity luar. Adapun diagram konteks dari sistem yang akan dibangun dapat dilihat pada gambar dibawah ini

Gambar 3-1 Diagram Konteks

Diagram konteks diatas secara umum bisa dijelaskan bahwa sistem pembangunan daftar *stopword* pada kategorisasi dokumen berinteraksi dengan satu entitas luar yaitu user. User berperan untuk memberikan masukan kepada sistem berupa koleksi dokumen yang berformat txt, yang digunakan sebagai data untuk memperoleh daftar *stopword*.

3.5.3 **DFD** level 1

Gambar 3-2 DFD level 1

3.5.4 DFD level 2 proses 1

Gambar 3-3 DFD level 2 proses 1

3.5.5 DFD Level 2 proses 2

Gambar 3-4 DFD Level 2 proses 2

3.5.6 DFD Level 2 proses 3

Gambar 3-5 DFD Level 2 proses 3

3.5.5 Kamus Data

Kamus data merupakan suatu daftar yang mendefenisikan semua elemen data yang terlibat dalam sistem. Kamus data merupakan spesifikasi lebih rinci dari data yang terlibat dalam aliran informasi adapun kamus data yang digunakan pada sistem diatas adalah sebagai berikut:

```
Dokumen = Id dok + Frasa + jml frasa kata + kategori
Nama file
                             {daftar frasa kata}
Kelas berita
                             Id kelas + kelas
Kata/feature
                             {karakter}
Jml kata
                             {number}
Id dok
                     =
                             {number}
Id kelas
                     =
                             {number}
Kelas
                     =
                             {karakter}
                             {'0'..'9' |'A'..'Z' | 'a'..'z'}
Karakter
                     =
Number
                             {0..9}
                     =
```

3.5.6 Spesifikasi Proses

Spesifikasi proses proses digunakan untuk menjelaskan level terendah dari suatu proses yang ada pada diagram aliran data. Spesifikasi dari proses-proses yang terlibat dalam perancangan sistem ini adalah sebagai berikut :

Tabel 3-1 Spesifikasi proses baca direktori

No. Proses	1.1
Nama Proses	Baca directori
Deskripsi	Proses di sini merupakan pembacaan tiap direktori tempat
	dokumen disimpan dan kemudian akan disimpan dalam storage
	device
Input	Dokumen pada direktori
Output	Daftar kategori dokumen
Logika proses	For each (dir pad direktori)
	Opendir ← (tiap direktori pada path yang telah ditentukan)
	While (List_dir \neq Null)
	Readdir ← (nama direktori)
	Endwhile
	<u>Endfor</u>
	Input(nama berita)

Tabel 3-2 Spesifikasi proses daftar Kelas Dokumen

No. Proses	1.2
Nama Proses	Daftar kelas dokumen
Deskripsi	Proses untuk menyimpan kata sebagai label tiap berita
Input	Nama direktori
Output	Daftar kelas/kategori
Logika proses	Input(nama direktori sebagai kategori label dokumen)
	Read(nama dir) as kategori

Tabel 3-3 Spesifikasi proses parsing

No. proses	2.1
Nama proses	Parsing
Deskripsi	Pembacaaan terhadap setiap kata-kata yang ada pada masing-
	masing dokumen
Input	Dokumen txt
Output	Dokumen terparsing
Logika proses	Input(doukumen)
	While(!Eof)
	Read(dokumen)
	parsing
	Input to Database
	<u>Endwhile</u>

Tabel 3-4 Spesifikasi proses segmen feature dokumen

No. proses	2.2
Nama proses	Segmen Feature Dokumen
Deskripsi	Melakukan pemisahan isi dokumen per <i>feature</i> atau kata

Input	terparsing
Output	Feature atau kata
Logika proses	Input(text)
	While(!Eof)
	If space found ← explode(text)
	Input to database
	Endwhile

Tabel 3-5 Spesifikasi proses stemming

No. proses	2.3
Nama Proses	Stemming
Deskripsi	Pengembalian kata-kata kedalam bentuk dasarnya pada tiap teks
Input	Feature atau kata
Output	Feature dalam bentuk kata dasar
Logika proses	Input (term)
	While(!Eof)
	If term not (tidak bentik dasar)
	Stem_porteer(term)
	Endwhile

Tabel 3-6 Spesifikasi proses Sampling

No. proses	3.1
Nama Proses	Sampling
Deskripsi	Memilih sampel dokumen secara random
Input	Feature atau kata
Output	Feature yang termasuk sampel dokumen
Logika proses	for (y=1 to jumlah_sampel)
	w_random ← random_choose (feature)
	<pre>if (feature_in_doc = w_random) retrieve_all_in_doc_contain_w_random (feature) endif</pre>
	endfor

Tabel 3-7 Spesifikasi Hitung Node Importance

No. proses	3.2
Nama Proses	Hitung Node Importance
Deskripsi	Proses penghitungan bobot tiap-tiap term dalam dokumen yang
	terambil untuk melihat tingkat kepentingan suatu term dalam
	sampel dokumen
Input	term dalam sampel dokumen atau kata
Output	Term dan bobot
Logika proses	input(term,frek)

count ←
$\omega(t) = Px * \log_2 \frac{Px}{Pc}$

Tabel 3-8 Spesifikasi proses Normalisasi

No. proses	3.3
Nama Proses	Normalisasi
Deskripsi	Membagi masing-masing bobot dengan bobot maksimum,
	sehingga bobot masing-masing term berada dalam renatang [1,0]
Input	Term dan bobot
Output	Term dan bobot ternormalisasi
Logika proses	Normalisasi (bobot term)
	For i = 1 to jumlah_term
	Bobot_norm ← Bobot/bobot_max
	<u>Endfor</u>

Tabel 3-9 Spesifikasi proses sorting

No. proses	3.4
Nama Proses	Sorting
Deskripsi	Proses mengurutkan bobot term secara ascending
Input	term dan bobot
Output	term terurut ascending sesuai bobot
Logika proses	Ranking (bobot term)

Tabel 3-10 Spesifikasi proses merging

No. proses	3.5
Nama Proses	Merging
Deskripsi	Menggabungkan term-term yang sama, dengan menghitung
	bobot rata-rata dari term tersebut sebagai bobot term yag baru
Input	term dan bobot
Output	term dengan kondisi telah di merging
Logika proses	Read (term[i])
	While (term[i] ⇔ Null)
	Check(term[i] per dokumen)
	If $(term[i] = term[i+1])$
	$A \leftarrow Merge(term[I, i+1])$
	Endif
	Count(bobot(A))

Tabel 3-11 Spesifikasi proses simpan daftar stopword

No. proses	5.6
Nama Proses	Simpan daftar stopword

Deskripsi	Proses pengambilan daftar stopword
Input	Term atau bobot
Output	term dan bobot
Logika proses	Read (term,bobot)
	If (id_urut > threshold)
	Simpan_to_database
	Endif