





# Zero-resource Language Recognition

Jiawei Yu, Jinsong Zhang

Speech Acquisition and Intelligent Technology Lab (SAIT)
Beijing Language and Culture University

Nov 21st 2019

#### Table of Contents

- Introduction
- □ Zero-resource LRE System
- Experimental Setup
- Results
- Conclusion

### Introduction: Applications of LRE



- multilingual speech processing applications
  - spoken language translation
  - multilingual speech recognition

#### Introduction: The LRE Problems



#### Introduction: The LRE Problems

□ The majority of the world's languages do not have enough speech resource.

Need massive amounts of speech data.

# Zero-resource LRE System



# Difference between traditional LRE and zero-resource LRE

#### Overlap of languages

Training and test portions

Traditional LRE system

#### Overlap of languages



Zero-resource LRE system

## Experimental Setup

- Baseline: traditional LRE
- Zero-resource LRE
  - Different test utterance duration
  - Different enroll utterance duration
- □ Model
  - I-vector (400 dim)
  - D-vector(650 dim)

#### Data set

#### ☐ AP18-OLR(tang, 2018)

#### Baseline

|          | languages | utterance   | hours     |
|----------|-----------|-------------|-----------|
| Training | 10        | 93285/92285 | 193h/191h |
| test     | 10        | 1000/2000   | 2h/4h     |

#### Zero-resource

|          | languages | utterance | hours       |
|----------|-----------|-----------|-------------|
| Training | 10        | 94285     | 196h        |
| enroll   | 8         | 80/160    | 10min/20min |
| test     | 8         | 1184/1104 | 2.4h/2.3h   |

#### Results: Baseline

EER(%) RESULTS OF THE CLOSE-SET LRE SYSTEMS.

|                            |          |         | EER%                 |                      |                       |
|----------------------------|----------|---------|----------------------|----------------------|-----------------------|
| Total Numbers <sup>a</sup> | Systems  | Scoring | test_1s <sup>b</sup> | test_3s <sup>b</sup> | test_all <sup>b</sup> |
|                            |          | Cosine  | 13.90                | 4.50                 | 2.10                  |
|                            | I-vector | LDA     | 13.20                | 4.00                 | 2.00                  |
| 1000                       |          | PLDA    | 12.30                | 3.70                 | 1.70                  |
| 1000                       | D-vector | Cosine  | 7.70                 | 6.20                 | 6.10                  |
|                            |          | LDA     | 0.50                 | 0.20                 | 0.10                  |
|                            |          | PLDA    | 1.90                 | 0.90                 | 0.60                  |
|                            | I-vector | Cosine  | 13.71                | 4.00                 | 2.05                  |
|                            |          | LDA     | 12.86                | 3.95                 | 2.20                  |
| 2000                       |          | PLDA    | 12.01                | 3.60                 | 2.00                  |
| 2000                       |          | Cosine  | 8.20                 | 7.10                 | 7.05                  |
|                            | D-vector | LDA     | 0.80                 | 0.10                 | 0.10                  |
|                            |          | PLDA    | 1.50                 | 0.80                 | 0.60                  |

 LDA plays an important role for d-vector system

D-vector based method better than i-vector based method

<sup>&</sup>lt;sup>a</sup> The Total Number represents the total number of utterances in the test set.

<sup>&</sup>lt;sup>b</sup> Test\_1s, test\_3s and test\_all represent that the test sentence is 1 second, 3 second and full length (about 7 seconds).

#### Results: Different test duration

EER(%) RESULTS OF THE ZR-LRE SYSTEMS.

|                         |          | EER%    |         |         |          |
|-------------------------|----------|---------|---------|---------|----------|
| Enrollment <sup>a</sup> | Systems  | Scoring | test_1s | test_3s | test_all |
|                         | I-vector | Cosine  | 21.71   | 14.02   | 10.64    |
|                         |          | LDA     | 26.60   | 19.76   | 16.47    |
| 10                      |          | PLDA    | 34.46   | 29.73   | 26.60    |
| 10                      | D-vector | Cosine  | 19.93   | 17.40   | 15.88    |
|                         |          | LDA     | 20.27   | 15.37   | 13.85    |
|                         |          | PLDA    | 28.89   | 25.59   | 22.97    |
| 20                      | I-vector | Cosine  | 18.03   | 10.69   | 8.70     |
|                         |          | LDA     | 23.91   | 14.86   | 12.77    |
|                         |          | PLDA    | 33.79   | 30.34   | 27.45    |
|                         | D-vector | Cosine  | 19.66   | 17.57   | 16.76    |
|                         |          | LDA     | 18.21   | 14.22   | 12.41    |
|                         |          | PLDA    | 30.80   | 26.90   | 24.91    |

<sup>&</sup>lt;sup>a</sup> The Enrollment represents the number of utterances enrolled in each language.

- The more number of enrollment utterance, the more better system performance.
- The i-vector based method are better than the d-vector based method

#### Results: Different enroll duration

EER(%) RESULTS OF THE ZR-LRE SYSTEMS.

|                                         |          |         | EER%    |          |       |
|-----------------------------------------|----------|---------|---------|----------|-------|
| Enrollment <sup>a</sup> Systems Scoring |          | test_1s | test_3s | test_all |       |
|                                         |          | Cosine  | 21.71   | 14.02    | 10.64 |
|                                         | I-vector | LDA     | 26.60   | 19.76    | 16.47 |
| 10                                      |          | PLDA    | 34.46   | 29.73    | 26.60 |
| 10                                      | D-vector | Cosine  | 19.93   | 17.40    | 15.88 |
|                                         |          | LDA     | 20.27   | 15.37    | 13.85 |
|                                         |          | PLDA    | 28.89   | 25.59    | 22.97 |
|                                         | I-vector | Cosine  | 18.03   | 10.69    | 8.70  |
|                                         |          | LDA     | 23.91   | 14.86    | 12.77 |
| 20                                      |          | PLDA    | 33.79   | 30.34    | 27.45 |
|                                         | D-vector | Cosine  | 19.66   | 17.57    | 16.76 |
|                                         |          | LDA     | 18.21   | 14.22    | 12.41 |
|                                         |          | PLDA    | 30.80   | 26.90    | 24.91 |

<sup>&</sup>lt;sup>a</sup> The Enrollment represents the number of utterances enrolled in each language.

EER(%) RESULTS ON THE DIFFERENT DURATION OF ENROLLMENT UTTERANCES ZR-LRE SYSTEMS.

|             |          |         | EER%                   |            |                         |  |
|-------------|----------|---------|------------------------|------------|-------------------------|--|
| Enrollmenta | Systems  | Scoring | enroll_1s <sup>b</sup> | enroll_3sb | enroll_all <sup>b</sup> |  |
|             | I-vector | Cosine  | 13.21                  | 11.82      | 10.64                   |  |
|             |          | LDA     | 23.60                  | 19.76      | 16.47                   |  |
| 10          |          | PLDA    | 30.46                  | 26.73      | 26.60                   |  |
| 10          | D-vector | Cosine  | 16.39                  | 16.22      | 15.88                   |  |
|             |          | LDA     | 16.81                  | 15.21      | 13.85                   |  |
|             |          | PLDA    | 23.90                  | 23.48      | 22.97                   |  |
|             |          | Cosine  | 12.21                  | 9.59       | 8.70                    |  |
| 20          | I-vector | LDA     | 18.93                  | 14.58      | 12.77                   |  |
|             |          | PLDA    | 30.17                  | 27.53      | 27.45                   |  |
|             | D-vector | Cosine  | 16.85                  | 16.76      | 16.76                   |  |
|             |          | LDA     | 13.50                  | 12.50      | 12.41                   |  |
|             |          | PLDA    | 22.83                  | 25.27      | 24.91                   |  |

<sup>&</sup>lt;sup>a</sup> The Enrollment represents the number of utterances enrolled in each language.

- The i-vector based method are still better than the d-vector based method
- Enroll utterance duration has little effect compare to the condition of different test duration

b Enroll\_1s, Enroll\_3s and Enroll\_all represent that the enrollment utterances is 1 second, 3 second and full length (about 7 seconds).

#### Conclusion

- □ ZR-LRE system can effectively recognize the "unseen" language of training set.
- I-vector method is better than d-vector method in ZR-LRE system when test utterance duration is long enough (more than 3s).
- Enroll utterance duration has little effect in ZR-LRE system when the number of enroll utterance is enough (more than 10 utterance)

# Thank you very much! Questions?