20-P-MOM-DY-43
A m=10kg mass is tethered to a centre ade we
a spring with the spring constant to 10 N/m Determine the
a spring with the spring constant k=10 N/m. Determine the steady state velocity of the mass, r. = 0.5 m
$V_1 = 2 m/s$
0 MM m
C_{1}
Solution: Hy + ZSMdt = Hz
anvy + ES Mdt = rmvz
$(1 - r_2 m v_2 - r_1 m v_3 = 0 $
$\frac{7}{7}$ F : $\frac{1}{2}$ ($\frac{1}{2}$) - $\frac{1}{2}$
ZF: le (ar) = maz = m k²
$K(\overline{f_2-f_1}) = m \frac{V_1^2}{f_2^2}$
$k\left(\frac{1}{\sqrt{2}}-0.5\right)=m V_2^3$
mv24 + 0.5 v2 - K = 0 v7 = 0.967 m/s
m V24 + 0.5 V2 - K= 0 V2 = 0.967 m/s
0.86742
$\left(\frac{\Gamma_1 V_1}{V_2} - \Gamma_1\right) = M \frac{V_2^3}{\Gamma_1^2 V_2}$
Love d
$\frac{C_1V_1}{C_1V_1} - k_{11}V_1 + k_{11}V_2 = 0$