```
In [ ]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Out[]:		Elements	Atomic_Number	Electronegativity	Atomic_Radius	Thermal_Conductivity	Density	Crystal_System
	0	Н	1	2.20	0.25	0.1805	0.09	HEX
	1	Не	2	0.00	1.20	0.1513	0.18	НСР
	2	Li	3	0.98	1.45	85.0000	530.00	ВСС
	3	Ве	4	1.57	1.05	190.0000	1850.00	НСР
	4	В	5	2.04	0.85	27.0000	2340.00	RHO
	•••				•••			
	90	U	92	1.38	1.75	27.0000	18950.00	ORTH
	91	Np	93	1.36	1.75	6.0000	20200.00	ORTH
	92	Pu	94	1.28	1.75	6.0000	19840.00	MON
	93	Am	95	1.30	1.75	10.0000	13670.00	НСР
	94	Cm	96	1.30	1.76	8.8000	13500.00	НСР

95 rows × 7 columns

Elements object
Atomic_Number int64
Electronegativity float64
Atomic_Radius float64
Thermal_Conductivity float64
Density float64
Crystal System object

Normalizing the data

Out[]:		Electronegativity	Atomic_Radius	Density	Thermal_Conductivity
	0	0.817528	0.080231	0.374366	0.694952
	1	0.259807	0.025388	0.543575	0.782250
	2	0.344477	0.212992	0.612142	0.443457
	3	0.546820	0.393159	0.749450	0.492883
	4	0.632594	0.189693	0.379998	0.495577
	•••		•••		
	90	0.236661	0.552660	0.066426	0.481104
	91	0.224927	0.548823	0.000000	0.505274
	92	0.215199	0.537514	0.014456	0.518756
	93	0.243397	0.414823	0.151665	0.427338
	94	0.241212	0.410118	0.152706	0.420631

95 rows × 4 columns

1. Decision Tree

```
In []: X_1 = data[['Electronegativity']]
    X_2 = data[['Density']]
    X_3 = data[['Electronegativity', 'Atomic_Radius', 'Density']]
    X_4 = data[['Electronegativity', 'Atomic_Radius', 'Density']]
    X = [X_1,X_2,X_3,X_4]
    Plot_Name = ['Electronegativity', 'Atomic_Radius', 'Density', 'Combined']
    Y = data[['Thermal_Conductivity']]
In []: from sklearn.model_selection import_train_test_split
    from sklearn.tree import_DecisionTreeRegressor
    from sklearn.metrics_import_r2_score
```

Y Actual vs Y Predicted for Test Data

Random Forest

```
Y test predicted = model.predict(X test)
     plt.scatter(Y test,Y test predicted, label=(f'{(Plot Name[i])} - R2: {r2 score(Y test,Y test predicted):.3f}'))
     plt.legend()
 plt.plot([Y.min(), Y.max()], [Y.min(), Y.max()], '--', color='gray')
 plt.xlabel('Y Actual')
 plt.vlabel('Y Predicted')
 plt.title('Y Actual vs Y Predicted for Test Data')
 plt.show()
c:\Users\manda\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:1351: DataConversionWarning: A column-
vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for example using ravel().
 return fit method(estimator, *args, **kwargs)
c:\Users\manda\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:1351: DataConversionWarning: A column-
vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for example using ravel().
 return fit method(estimator, *args, **kwargs)
c:\Users\manda\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:1351: DataConversionWarning: A column-
vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for example using ravel().
 return fit method(estimator, *args, **kwargs)
c:\Users\manda\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:1351: DataConversionWarning: A column-
vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for example using ravel().
 return fit method(estimator, *args, **kwargs)
```

Y Actual vs Y Predicted for Test Data

