Assignment 2

Zheyan Liu

Contents

Intro and data preparation	2
(a) Perform exploratory data analysis using the training data $\ldots \ldots \ldots \ldots \ldots$	2
(b) Fit smoothing spline models using Terminal as the only predictor of Outstate	Ę
(c) Fit a generalized additive model (GAM) using all the predictors	8
(d) Train a multivariate adaptive regression spline (MARS) model using all the predictors	12
(e) Model selection	16

Intro and data preparation

we build nonlinear models using the "College" data. The dataset contains statistics for 565 US Colleges from a previous issue of US News and World Report. The response variable is the out-of-state tuition (Outstate).

Read data

Drop college column

```
df =
  read_csv('data/College.csv', show_col_types = FALSE) %>%
  janitor::clean_names() %>%
  select(-college)
```

Split the dataset into training and testing

Partition the dataset into two parts: training data (80%) and test data (20%).

```
trainRows <- createDataPartition(y = df$outstate, p = 0.8, list = FALSE)
training_df = df[trainRows, ]
testing_df = df[-trainRows, ]

x_train <- model.matrix(outstate~.,training_df)[,-1]
y_train <- training_df$outstate

x_test <- model.matrix(outstate~.,testing_df)[,-1]
y_test <- testing_df$outstate</pre>
```

(a) Perform exploratory data analysis using the training data

There are 17 variables in the data and 453 observations.

summary statistics

All variables are continuous

summary(training_df)

```
##
                       accept
                                       enroll
                                                     top10perc
        apps
##
                        : 72
                                   Min. : 35.0
   Min.
          :
              81
                   Min.
                                                   Min.
                                                          : 1.00
   1st Qu.: 627
                   1st Qu.: 503
                                   1st Qu.: 207.0
                                                   1st Qu.:16.00
  Median: 1130
                                   Median : 328.0
                   Median: 859
                                                   Median :25.00
##
         : 2035
                        : 1337
                                   Mean
                                        : 465.2
                                                          :29.06
   Mean
                   Mean
                                                   Mean
                   3rd Qu.: 1698
##
   3rd Qu.: 2308
                                   3rd Qu.: 523.0
                                                   3rd Qu.:36.00
          :14446
                          :10516
                                         :4615.0
                                                          :96.00
##
   Max.
                   Max.
                                   Max.
                                                   Max.
##
     top25perc
                     f_undergrad
                                    p_undergrad
                                                        outstate
          : 9.00
                    Min. : 139
                                               1.0
                                                            : 2340
##
   Min.
                                   Min. :
                                                     Min.
##
  1st Qu.: 42.00
                    1st Qu.: 836
                                    1st Qu.:
                                              74.0
                                                     1st Qu.: 9100
## Median : 55.00
                    Median: 1306
                                   Median : 217.0
                                                     Median :11200
                                          : 455.1
## Mean
         : 56.72
                          : 1925
                                                            :11801
                    Mean
                                    Mean
                                                     Mean
```

```
##
    3rd Qu.: 69.00
                      3rd Qu.: 2110
                                       3rd Qu.: 549.0
                                                          3rd Qu.:13970
           :100.00
                                                                  :20100
##
    Max.
                      Max.
                             :27378
                                       Max.
                                               :10221.0
                                                          Max.
                                         personal
      room board
##
                        books
                                                           ph_d
           :2370
                                             : 250
                                                                8.00
##
    Min.
                           : 250.0
                                      Min.
                                                              :
                    Min.
                                                      Min.
##
    1st Qu.:3730
                    1st Qu.: 450.0
                                      1st Qu.: 800
                                                      1st Qu.: 60.00
##
    Median:4400
                    Median : 500.0
                                      Median:1100
                                                      Median: 74.00
##
    Mean
           :4596
                           : 547.7
                                             :1195
                                                              : 71.24
                    Mean
                                      Mean
                                                      Mean
                    3rd Qu.: 600.0
                                      3rd Qu.:1500
                                                      3rd Qu.: 86.00
##
    3rd Qu.:5400
##
    Max.
           :8124
                    Max.
                           :2340.0
                                      Max.
                                              :4913
                                                      Max.
                                                              :100.00
##
       terminal
                       s_f_ratio
                                       perc_alumni
                                                            expend
##
    Min.
           : 24.0
                     Min.
                            : 2.50
                                      Min.
                                             : 2.00
                                                       Min.
                                                               : 3186
    1st Qu.: 68.0
                     1st Qu.:11.20
##
                                      1st Qu.:16.00
                                                       1st Qu.: 7440
    Median: 81.0
                     Median :12.80
                                      Median :26.00
##
                                                       Median: 8946
           : 78.7
                            :13.02
                                              :25.76
##
    Mean
                     Mean
                                      Mean
                                                       Mean
                                                               :10439
##
    3rd Qu.: 92.0
                     3rd Qu.:14.50
                                      3rd Qu.:34.00
                                                       3rd Qu.:11361
##
    Max.
           :100.0
                     Max.
                             :39.80
                                      Max.
                                              :63.00
                                                       Max.
                                                               :56233
##
      grad_rate
##
    Min.
           : 15.00
##
    1st Qu.: 58.00
    Median : 70.00
##
           : 69.03
##
    Mean
##
    3rd Qu.: 81.00
           :118.00
    Max.
##
```

histogram of response variable

Distribution of outstate is close to normal distribution, much outstate is around 10000 except a second peak around 17500

correlation of response vs. predictors

Correlation plot shows that some variables are highly correlated with outstate and there is multicollinearity.

```
corrplot::corrplot(cor(training_df %>% select(where(is.numeric)) %>% relocate(outstate)), method = "cir
```


Plot

scatterplot of response variables with selection of highly correlated predictors including top10perc, room_board, ph_d, terminal, s_f_ratio and expend. Only s_f_ratio is negatively correlated.

```
library(patchwork)
p1 = ggplot(training_df, aes(x=top10perc, y=outstate)) + geom_point(alpha=0.3)
p2 = ggplot(training_df, aes(x=room_board, y=outstate)) + geom_point(alpha=0.3)
p3 = ggplot(training_df, aes(x=ph_d, y=outstate)) + geom_point(alpha=0.3)
p4 = ggplot(training_df, aes(x=terminal, y=outstate)) + geom_point(alpha=0.3)
p5 = ggplot(training_df, aes(x=s_f_ratio, y=outstate)) + geom_point(alpha=0.3)
p6 = ggplot(training_df, aes(x=expend, y=outstate)) + geom_point(alpha=0.3)
```


(b) Fit smoothing spline models using Terminal as the only predictor of Outstate Fit on train data

of freedom is 4.3635782

Fit on test data

Degree

captures the trend of outstate on the test set as well.

Generalized cross-validation and visualize it

Set df candidates to a sequences from 2 to 20 with step as 2, fit and record the result

```
pred.ss.df <- data.frame(pred = pred.ss$y,</pre>
                           x = terminal.grid)
flag = TRUE
for (df in seq(2, 20, by=2)){
  fit.ss <- smooth.spline(training_df$terminal, training_df$outstate, df = df)</pre>
  pred.ss <- predict(fit.ss,</pre>
                    x = terminal.grid)
  pred.ss.df <- data.frame(pred = pred.ss$y,</pre>
                            x = terminal.grid,
                             df = df
  if (flag){
    pred.ss.df.all = pred.ss.df
    flag = FALSE
  }
  else{
    pred.ss.df.all = rbind(pred.ss.df.all, pred.ss.df)
  }
```

Model

Visualize it. The larger the df, the more non-linear fit.

```
p +
geom_line(aes(x = x, y = pred, group = df, color = df), data = pred.ss.df.all)
```


(c) Fit a generalized additive model (GAM) using all the predictors.

Training

```
library(mgcv)
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
##
##
       collapse
## This is mgcv 1.8-36. For overview type 'help("mgcv-package")'.
outcome = "outstate"
variables = colnames(x_train)
# fully parameterized
f = as.formula(
  paste(outcome,
        paste(variables, collapse = " + "),
        sep = " ~ "))
gam.m1 <- gam(f, data = training_df)</pre>
gam.m2 <- gam(outstate ~ apps + accept + enroll + top10perc + top25perc + f_undergrad +</pre>
```

```
p_undergrad + room_board + books + personal + ph_d + s(terminal) +
    s_f_ratio + perc_alumni + expend + grad_rate, data = training_df)
gam.m3 <- gam(outstate ~ apps + accept + enroll + top10perc + top25perc + f_undergrad +
    p_undergrad + room_board + books + personal + ph_d + s(terminal) +
    te(s_f_ratio, perc_alumni) + expend + grad_rate, data = training_df)
anova(gam.m1, gam.m2, gam.m3, test = "F")
## Analysis of Deviance Table
##
## Model 1: outstate ~ apps + accept + enroll + top10perc + top25perc + f_undergrad +
       p_undergrad + room_board + books + personal + ph_d + terminal +
##
       s_f_ratio + perc_alumni + expend + grad_rate
## Model 2: outstate ~ apps + accept + enroll + top10perc + top25perc + f_undergrad +
##
       p_undergrad + room_board + books + personal + ph_d + s(terminal) +
##
       s_f_ratio + perc_alumni + expend + grad_rate
## Model 3: outstate ~ apps + accept + enroll + top10perc + top25perc + f_undergrad +
##
       p_undergrad + room_board + books + personal + ph_d + s(terminal) +
##
       te(s_f_ratio, perc_alumni) + expend + grad_rate
##
    Resid. Df Resid. Dev
                             Df Deviance
                                               F
                                                    Pr(>F)
       436.00 1577792512
        432.79 1527728007 3.209 50064505 5.0774 0.001409 **
## 2
        418.98 1296186637 13.815 231541370 5.4547 1.478e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Fails to reject they have the same deviance.

Model result for the best GAM model: model3

summary(gam.m3)

```
## Family: gaussian
## Link function: identity
##
## Formula:
## outstate ~ apps + accept + enroll + top10perc + top25perc + f_undergrad +
##
      p_undergrad + room_board + books + personal + ph_d + s(terminal) +
##
      te(s_f_ratio, perc_alumni) + expend + grad_rate
##
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2543.26109 971.91399 2.617 0.009196 **
                          0.10744 0.504 0.614419
## apps
                0.05417
## accept
               1.09001
                          0.19560
                                  5.573 4.48e-08 ***
                        0.85080 -3.845 0.000139 ***
               -3.27164
## enroll
             28.56125 14.41426
                                  1.981 0.048189 *
## top10perc
            -1.58500 11.22486 -0.141 0.887776
## top25perc
               0.02982 0.12922 0.231 0.817604
## f_undergrad
## p_undergrad -0.22005 0.13161 -1.672 0.095269 .
              ## room_board
              -0.52390 0.50221 -1.043 0.297459
## books
```

```
## personal
                -0.37659
                            0.15121 -2.490 0.013141 *
## ph_d
                23.48824
                            9.95829 2.359 0.018796 *
                 0.21436
                            0.03014
                                     7.113 4.91e-12 ***
## expend
                15.76908
                            6.51363
                                      2.421 0.015902 *
## grad_rate
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                                              F p-value
##
                               edf Ref.df
## s(terminal)
                             2.451 3.112 3.086 0.0246 *
## te(s_f_ratio,perc_alumni) 14.701 16.912 5.993 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.779 Deviance explained = 79.4\%
## GCV = 3.2995e+06 Scale est. = 3.0726e+06 n = 453
```

Visualization

```
plot(gam.m2)
```



```
vis.gam(gam.m3, view = c("s_f_ratio", "perc_alumni"),
color = "topo")
```


###

Prediction on the test set

mae = mean(abs(pred_y - actual_y))

```
pred_y = predict.gam(gam.m3, newdata = as.tibble(x_test))

## Warning: 'as.tibble()' was deprecated in tibble 2.0.0.

## Please use 'as_tibble()' instead.

## The signature and semantics have changed, see '?as_tibble'.

actual_y = y_test

# Metrics
```

Final RMSE is 2079.5996225, MAE is 1592.099841, while the median in the test set is 1.126×10^4 . The predicton error is acceptable.

We can also see from the prediction compare plot that the model fits well.

rmse = sqrt(mean((pred_y - actual_y)^2)) # Calculate test MSE

(d) Train a multivariate adaptive regression spline (MARS) model using all the predictors

Training MARS

Product Degree → 1 → 2 → 3

```
# parameters for optimized result
mars.fit$bestTune
```

```
## nprune degree
## 9 10 1
```

```
# Final model
summary(mars.fit$finalModel)
```

```
## Call: earth(x=matrix[453,16], y=c(7440,12280,11...), keepxy=TRUE, degree=1,
##
               nprune=10)
##
##
                       coefficients
                         15341.9037
## (Intercept)
## h(apps-1910)
                             0.4314
## h(1580-accept)
                            -1.9431
## h(913-enroll)
                             5.1327
## h(enroll-913)
                            -2.3810
## h(1433-f_undergrad)
                            -1.7917
## h(4440-room_board)
                            -1.1082
## h(room_board-4440)
                             0.5022
## h(22-perc_alumni)
                          -101.2021
## h(15736-expend)
                            -0.6782
## Selected 10 of 21 terms, and 7 of 16 predictors (nprune=10)
## Termination condition: RSq changed by less than 0.001 at 21 terms
## Importance: expend, room_board, perc_alumni, f_undergrad, enroll, apps, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## GCV 2759994
                  RSS 1147597147
                                    GRSq 0.8020649
                                                       RSq 0.8175158
```

partial dependence

```
partial dependence between grad_rate and enroll
```

```
p1 <- pdp::partial(mars.fit, pred.var = c("terminal"), grid.resolution = 10) %>% autoplot()
p2 <- pdp::partial(mars.fit, pred.var = c("grad_rate", "enroll"),</pre>
                   grid.resolution = 10) %>%
      pdp::plotPartial(levelplot = FALSE, zlab = "yhat", drape = TRUE,
                       screen = list(z = 20, x = -60))
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
\# x\_train
grid.arrange(p1, p2, ncol = 2)
## Warning: Use of 'object[[1L]]' is discouraged. Use '.data[[1L]]' instead.
## Warning: Use of 'object[["yhat"]]' is discouraged. Use '.data[["yhat"]]'
## instead.
   11800.70
   11800.68
                                                                              14000
                                                                              12000
                                                                              10000
11800.65
                                               yha
                                                                              8000
                                                                              6000
                                                                              4000
                                                enro
                                                                              2000
   11800.62
                                                        grad rate
                                                                              0
                  40
                         60
                                80
                                      100
                       terminal
```

Prediction on the test set

###

```
pred_y = predict(mars.fit, newdata = as.tibble(x_test))
actual_y = y_test

# Metrics
rmse = sqrt(mean((pred_y - actual_y)^2)) # Calculate test MSE
mae = mean(abs(pred_y - actual_y))
```

Final RMSE is 2007.3293534, MAE is 1495.5303102, while the median in the test set is 1.126×10^4 . The predicton error is acceptable.

We can also see from the prediction compare plot that the model fits well.

```
y_compare_df =
  tibble(pred = pred_y,
         actual = actual_y) %>%
  arrange(actual) %>%
    pivot_longer(
      cols = pred:actual,
      names_to = 'type',
      values_to = 'outstate'
y_compare_df %>%
  mutate(
    num = seq(1, nrow(y_compare_df)),
    type = as.factor(type)
         ) %>%
  ggplot(aes(x = num, y = outstate), color = type) +
  geom_point(aes(colour = type)) +
  theme(legend.position="right")
```


(e) Model selection