

TOWARDS UNIVERSAL SPEECH DISCRETE TOKENS: A CASE STUDY FOR ASR AND TTS

Yifan Yang*,1, Feiyu Shen*,1, Chenpeng Du1, Ziyang Ma1, Kai Yu1, Daniel Povey†,2, Xie Chen†,1

MoE Key Lab of Artificial Intelligence, AI Institute
 X-LANCE Lab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
 Xiaomi Corporation, Beijing, China

yifanyeung@sjtu.edu.cn 2024.04.17

Motivation

Why speech discrete tokens?

- Lower bandwidth: 1 int vs 80-dim float
- Akin to BPE used in NLP tasks

Method at a Glance

Semantic and acoustic discrete tokens from speech:

- Speech-based SSL models
 - e.g. vq-wav2vec; HuBERT; WavLM
- Neural Codec
 - e.g. EnCodec; DAC

Two way to discretize speech:

- K-means
- VQ

Method at a Glance

Discrete tokens for speech tasks:

- ASR
- · TTS

ASR with Discrete Tokens

ASR with Discretized Input

- Random initialized embedding
- If multiple groups exist:
 - Concatenate
 - Linear projection to compress
- Interpolated to a uniform 100 Hz rate

ASR with Discrete Tokens

Discretized Input Augmentation Policy

- Time Warping
- Time Masking
- Embedding Masking
- Gaussian Noise

ASR with Discrete Tokens on LibriSpeech 100h

Method	Feature	# Units	Bandwidth	test	
Method	reature	# Ullits	(kbps)		other
Chang et al. (2023) [12]	FBank	-	256.00	8.30	22.20
Chang et al. (2023) [12]	WavLM-Large	2000	0.55	5.90	12.80
Ours	FBank		256.00	6.27	16.67
	WavLM-Large	2000	0.55	5.22	11.85
	HuBERT-Large	2000	0.55	5.19	11.94
	EnCodec	1024^{8}	6.00	7.16	22.04
	vq-wav2vec	320^{2}	1.66	11.76	33.08

- Discrete tokens outperform FBank on small-scale data
- Discrete tokens from WavLM work best

ASR with Discrete Tokens on LibriSpeech 960h

Method	Feature	# TIm:4a	test	
Method	reature	# Units	clean	other
Chang et al. (2023) [12]	FBank		2.60	6.20
Chang et al. (2023) [12]	WavLM-Large	2000	3.00	7.00
// (FBank	FEE	2.23	5.15
	WavLM-Large	2000	2.29	5.50
Ours	HuBERT-Large	2000	2.29	5.73
	EnCodec	1024^{8}	2.57	6.81
1 =	vq-wav2vec	320^{2}	3.19	9.44

- Discrete tokens are competitive with FBank
- Discrete tokens from WavLM still work best

ASR on GigaSpeech 1000h & AISHELL-1

Dataset	Feature	# Units	WER		
Dataset	reature	ature # Omis		test	
GigaSpeech	FBank	-	12.24	12.19	
	WavLM-Large	2000	13.20	13.05	
	HuBERT-Large	2000	14.45	14.79	
AISHELL-1	FBank	-	4.27	4.49	
	WavLM-Large	2000	8.41	8.83	

Two reserved problems:

- Noise robostness still need to be improved
- Language generalization is highly associated with SSL model

TTS with Discrete Tokens on LibriTTS

Feature	# Units	Bandwidth MOS		OS	SECS
reature	# Units	(kbps)	Naturalness	Similarity	SECS
Ground-truth	-	د - ما	4.48	4.18	0.843
Mel spectrogram	- //	256.00	4.36	4.17	0.834
Encodec	1024^{8}	6.00	3.83	3.85	0.834
DAC	1024^{8}	4.00	4.41	4.30	0.841
vq-wav2vec	320^{2}	1.66	4.36	4.21	0.842
HuBERT Large	2000	0.55	4.26	4.18	0.833
WavLM Large	2000	0.55	4.18	4.18	0.836

- Discrete tokens outperform mel-spectrogram features on subject & object metrics
- Discrete tokens from DAC work best

TTS with Discrete Tokens on LibriTTS: Demo

[Transcription] The investors in the enterprise were ready and anxious to meet the extra cost of putting the wires underground.

vq-wav2vec

Encodec

HuBERT

DAC

WavLM

Mel-spectrogram

Recent Advance about ASR with Discrete Tokens

Dataset	Benchmark	WER		
Dataset	Dencimark	test-clean	test-other	
LibriSpeech 960h	FBank	2.21	4.79	
LibriSpeech 960h	Discrete Tokens	2.00	4.12	
Dataset	Benchmark	WER		
Dataset	Delicililai K	dev	test	
GigaSpeech 1000h	FBank	12.12	12.08	
GigaSpeech 1000h	Discrete Tokens	11.24	11.27	
GigaSpeech 10000h	FBank	10.31	10.50	
GigaSpeech 10000h	Discrete Tokens	10.30	10.53	

- Discrete tokens achieve SOTA based on our recent advance (68M)
 - LibriSpeech 960h
 - GigaSpeech 1000h & GigaSpeech 10000h

Conclusion

Discrete tokens outperform continuous features in ASR and TTS

Discrete tokens source matter

- Discrete tokens from WavLM work best for ASR
- Discrete tokens from DAC work best for TTS

Generalization of discrete tokens across languages is yet to be improved

Thank You! Q&A

Feel free to contact me for any question

Yifan Yang Shanghai Jiao Tong University

> yifanyeung@sjtu.edu.cn 2024.04.17

