

SEDIMENT RETENTION MODEL

MODEL OVERVIEW

Drinking water

Stream health

AIM

Understand the spatial patterns of sediment sources and transport to assess the value of sediment retention by natural landscapes

Supply: Sediment retention

Service: Water purification

Value: avoided treatment/ dredging

MODEL OVERVIEW

AIM

Understand the spatial patterns of sediment sources and transport to assess the value of sediment retention by natural landscapes

Supply: Sediment retention

Service: Water purification

Value: avoided treatment/ dredging

UNIVERSAL SOIL LOSS EQUATION

natural capital

CONCEPTS UNIVERSAL SOIL LOSS EQUATION

- Very popular method!
- BUT:
 - Only for rill-inter-rill erosion
 - Uncertainty in parameters:
 - LS factor for high slopes
 - · C,P factors, etc.
- LOT of literature!

natural capital

- SOIL LOSS
- Soil eroded from a parcel
- Some of this soil is deposited and does not reach the stream

 $SedimentExport = USLE \times SDR$

Attenuation factor [0;1]

CONCEPTS TRANSPORT/RETENTION

natural capital

CONCEPTS TRANSPORT/RETENTION

- Calibration parameters:
 - $-k_b, IC_0$
 - SDR_{max}

natural capital PROJECT

- VALUATION
- Very context-specific!
- Two main options:
 - Replacement and avoided cost approaches

, a vhower plant

Recover the lost storage capacity

natural capital

VALUATION

- Very context-specific!
- Two main options:
 - Replacement and avoided cost approaches

Contingent valuation (Willingness to pay)

- In InVEST: retention is calculated using a reference scenario of bare soil
 - $Retention = Export_{bare_soil} Export_{current_land_use}$

In practice

MODEL INPUTS/OUTPUTS

MODEL INPUTS

ClimateRainfall erosivity

Watersheds
Main and sub-watersheds
for point of interest

SoilsSoil erodibility

TopographyDEM, Threshold flow accumulation

Land Use/Land Cover
Crop factor and Practice factor
(retention attenuation)

EconomicDredging cost, treatment cost

MODEL INPUTS DATA SOURCES

Climate
Rainfall erosivity

SoilsSoil erodibility

Land Use/Land Cover
Crop factor and Practice factor
(retention attenuation)

References in User Guide

Erosivity maps! (USGS)

Rain gauges (relationships between precipitation and erosivity in the literature

Harmonized World Soil Database

SOTER

SSURGO (US)

MODIS (NASA)
Global Land Cover Facility
NLCD (US-EPA)

MODEL OUTPUTS

MAIN OUTPUT FOLDER

 Shapefile with attribute table (for each subwatershed):

Name	ws_id	subws_id	Area_km2	sed_retent	sed_export	usle_tot
Sagana	1	1	2050	168555021.39	8949835.8121	100331790.84
Up_hydro	2	2	1452	98877762.077	4606155.1569	52748729.642
Gura	3	3	108	12718757.728	514065.29002	6769660.2423

- Sediment export (ton/yr)
- Sediment retention (ton/yr)
 - Retention = Export_{bare_soil} Export_{current_land_use}
- Soil loss (USLE) (ton/yr)

natural capital

MODEL OUTPUTS

MAIN OUTPUT FOLDER

- Rasters:
 - Sediment export (ton/pixel)
 - USLE (ton/pixel)
 - Sediment retention index

LIMITATIONS

natural capital

- Considers only one type of erosion (sheetwash/rill): no consideration of gully erosion, landslides, etc.
- Requires calibration data to increase confidence in quantitative exports (relative differences are better captured)
- Valuation methods are highly contextual (e.g. treatment type, local regulations)

MODEL TESTING

natural capital

- Sensitivity analyses
- If observed data is available:
 - Model calibration

Testing of model performance for predicting

land use change (need several gauges)

Eg. Cape Fear basin

QUESTIONS?