●新特器件应用

触摸屏控制器 ADS7846 的原理及应用

江南大学 赵芝璞 金小俊

Principle and Application of Touch - Screen Controller ADS7846

Zhao Zhipu

Jin Xiaojun

摘要:ADS7846是美国Burr-Brown公司推出的新一代4线制触摸屏控制器,当与触摸屏连用,只要笔或手指点触摸在屏上时,即可迅速得到该点的位置信号以达到在触摸屏表面寻址的目的。文中详细介绍了该芯片的基本原理、特点、引脚功能、主要参数及典型应用电路。

关键词:触摸屏控制器; ADS7846; 笔中断

分类号:TP273 文献标识码:B 文章编号:1006-6977(2002)05-0046-02

1 概述

ADS7846 是美国 Burr - Brown 公司推出的新一代 4 线制触摸屏控制器 ,它在与触摸屏连用时 ,一旦 笔或手指点触摸在屏上 ,可迅速得到该点的位置信号 ,从而达到在触摸屏表面上寻址的目的。ADS7846 是典型的逐步逼近寄存器型 A/D 变换器 ,其结构以 电容再分布为基础 ,包含了取样/保持功能。ADS7846 的引脚与以前产品 ADS7843 的引脚完全兼容 ,只是增加了片内温度测量、触摸压力测量和电池 电压测量三个功能。ADS7846 的其它主要特点如下:

- ●具有4线制触摸屏接口;
- ●可单电源工作 . 电压范围为 2.2~5.25V;
- ●内部自带 + 2.5V 参考电压;
- ●具有 125kHz 的转换速率;
- ●带有微处理器的串行接口;
- ●具有可编程 8 位或 12 位的分辨率;
- ●具有1路辅助模拟量输入。

ADS7846 可广泛用于有触摸屏的应用中,如个人数字助理(PDA)、笔记本电脑等。

2 引脚功能和内部结构

2.1 引脚功能

ADS7846 具有 TSSOP – 16 和 SSOP – 16 两种封 装形式 ,它的引脚排列如图 1 所示 ,表 1 为各引脚的 功能说明。

2.2 内部结构

图 2 为 ADS7846 的内部结构图,该芯片由 6 路通道选择器、逐步逼近式寄存器(SAR)、+ 2.5V 参考

电压、电容式 D/ A 转换器 (CDAC)、温度传感器等部分构成。 ADS7846 工作时需要一个外部参考 (VREF引脚)和一个外部时钟(DCLK 引脚)。其中外部基准电压的范围是 $1V \sim + V_{CC}$, 由它可以

图 1 ADS7846 的引脚排列

表 1 引脚描述

		N 1 311141314122
引脚	名称	功 能 描 述
1	+ Vcc	电源输入端
2	X +	X + 位置输入端
3	Y +	Y + 位置输入端
4	X –	X - 位置输入端
5	Y –	Y - 位置输入端
6	GND	接地
7	VBAT	电池监视输入端
8	IN	ADC 辅助输入通道
9	VREF	参考电压输入
10	+ Vcc	电源输入端
11	PENIRQ	笔中断输入。需外接 10kΩ ~ 100kΩ 的上拉电阻
12	DOUT	串行数据输出端。数据在 DCLK 的下降沿移出 ,当CS为高电平时为 高阻状态
13	BUSY	忙时信号线。当 $\overline{\mathrm{CS}}$ 为高电平时为高阻状态
14	DIN	串行数据输入端。当CS为低,数据在 DCLK 上升沿锁存进来
15	CS	片选信号
16	DCLK	外部时钟信号输入

直接设定 A/D 输入通道的输入范围,其平均基准输入电流取决于变换速率。外部时钟主要用于控制 SAR 变换过程和同步串行数据 I/O。

3 主要参数

ADS7846 的主要参数如下:

- ●工作电压:+2.2~+5.25V;
- ●AD 采样时间: $\geq 1.5\mu_s$ (在 $f_{DCIK} = 2MHz$ 情况下);
 - ●AD 转换时间: ≤ 6µs(条件同上);
 - ●开关延时时间:≤30ns;
 - ●参考电压范围:+1V~+Vcc:
 - ●温度范围:-40~+85℃;
 - ●功耗:≤1.8mW。

图 2 ADS7846 的内部结构图

表 2 控制字节各位

			P =	17.61.1	· H I		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
S	A2	A1	A0	MODE	SER/DFR	PD1	PD0

4 工作方式

ADS7846 的输入方式有差分输入和单端输入两

表 3 控制字节各位描述

位	名 称	功 能 描 述									
7	S	开始位。为 1 表示一个新的控制字节到来 ,为 0 则忽略 DIN 引脚上数据									
6 – 4	A2 – A0	通道选择位。参见表 4、表 5									
3	MODE	12 位/8 位转换分辨率选择位。为 1 选择 8 为转换分辨率 ,为 0 选择 12 位分辨率									
2	SER/DFR	单端输入方式/差分输入方式选择位。为1是单端输入方式,为0是差分输入方式									
1 – 0	PD1 – PD0	低功率模式选择位。若为 11 器件总处于供电状态 若为 00 器件在变换之间处于低功率模式									

表 4 单端基准模式输入配置

A2	A1	A0	VBAT	AUX	TEMP	Y –	X +	Y +	Y – POSIT ION	X – POSIT ION	Z1 – POSIT ION	Z2 – POSIT ION	X – DRIVE	Y – DRIVE
0	0	0			+ IN								OFF	OFF
0	0	1					+ IN		M				OFF	ON
0	1	0	+ IN										OFF	OFF
0	1	1					+ IN				M		X - ,ON	Y + ,ON
1	0	0				+ IN						M	X - ,ON	Y + ,ON
1	0	1						+ IN		M			ON	OFF
1	1	0		+ IN									OFF	OFF
1	1	1			+ IN								OFF	OFF

表 5 差分基准模式输入配置

A2	A1	A0	+ REF	REF	Y –	X +	Y +	Y – POSITION	X – POSITION	Z1 – POSITION	Z2 – POSITION	DRIVES ON
0	0	1	Y +	Y –		+ IN		Measure				Y + ,Y -
0	1	1	Y +	X –		+ IN				Measure		Y + ,X -
1	0	0	Y +	X –	+ IN						Measure	Y + ,X -
1	0	1	X +	X –			+ IN		Measure			X + ,X -

●新特器件应用

X5045 电路及其应用

山东大学 姜伟光 郝磊

Circuits and Application of X5045

Jiang Weiguang Hao Lei

摘要 :X5045 是一种集看门狗、电压监控和串行 EEPROM 三种功能于一身的可编程控制电路。文中介绍了它的主要特点和工作原理,同时结合 8051 单片机给出了 MPU 与 X5045 的接口电路与相应的读写程序。

关键词: 看门狗; EEPROM; 微控制器; X5045

分类号:IP332 文献标识码:B 文章编号:1006-697(2002)05-0048-04

X5045 是一种集看门狗、电压监控和串行 EEP-ROM 三种功能于一身的可编程电路。这种组合设计减少了电路对电路板空间的需求。

X5045 中的看门狗对系统提供了保护功能。当系统发生故障而超过设置时间时,电路中的看门狗将通过 RESET 信号向 CPU 作出反应。X5045 提供了三个时间值供用户选择使用。它所具有的电压监控功能还可以保护系统免受低电压的影响,当电源电压降到允许范围以下时,系统将复位,直到电源电压返回到稳定值为止。X5045 的存储器与 CPU 可通过串行通信方式接口,共有 4096 个位,可以按 512 ×8个字节来放置数据。

1 引脚介绍

X5045 的管脚排列如图 1 所示,它共有 8 个引脚,各引脚的功能如下:

- CS:电路选择端,低电平有效;
- SO:串行数据输出端;
- SI:串行数据输入端;

图 1 X5045 的管脚图 ちょうょうょうょうょうょうょうょうょうょうょうょう きょうしょう

种。当使用内部 + 2.5V 基准参考电压来测量电池电压、触摸点压力或片内温度时,通常采用单端输入方式,而在正常测量触摸点位置时,通常采用差分输入方式。

ADS7846 触摸屏控制器的工作方式是由控制字节决定的,控制字节在 DCLK 的上升沿由 DIN 引脚读入。控制字节中各位的描述如表 2、表 3 所列。表 4、表 5 分别给出了单端基准模式输入配置和差分基准模式输入配置的列表。其中的 M 表示测量操作。

5 典型应用

ADS7846 的典型应用电路如图 3 所示。在正常转换时 ,X+,Y+,X-,Y- 以及 V_{BAT} 、AUXIN 六路模拟信号需经过内部一个 6 路选择器方可进入模拟量输入通道进行转换。如当测量触摸屏

上某点的 Y 轴位置时,ADS7846 打开 Y + 和 Y – 驱动,即 Y + 接电源,Y – 接地,然后将 X + 输入端模拟信号送入输入通道进行 A/D 转换即可得到 Y 轴位置。在测 X 轴位置时 原理同上。

收稿日期 2001 - 10 - 08 咨询编号 :020519

图 3 ADS7846 典型应用电路图