Outils Informatiques pour le Multimédia

Master 1 informatique Tronc commun

Département d'informatique Université Paul Sabatier

Outils Informatiques pour le Multimédia

- Introduction
- Perception humaine
- Notion de fréquence
- Programmation d'applications multimédia
- 5 Courbes de remplissage de l'espace

Introduction

- Données multimédia
 - Données numériques représentant un son, une image ou une vidéo
- Origine des données
 - Mesures à partir du monde réel.
 - Synthétisées par ordinateur.
- Application multimédia
 - Procédé informatique de traitement d'un phénomène physique.
 - Utilise des outils mathématique pour la modélisation.

Exemple : formation et synthèse d'une image

Exemple : formation et synthèse d'une image

Modélisation mathématique

$$R = \int V(\lambda)F(\lambda)E(\lambda)d\lambda$$

Exemple : formation et synthèse d'une image

Procédé informatique

for(
$$\lambda = 400$$
; $\lambda < 780$; ++ λ)

$$R+=V(\lambda) * F(\lambda) * E(\lambda);$$

Concepts fondamentaux du multimédia

Phénomène physique

Réel ou simulé, fournisseur d'une information

Modélisation mathématique

Transcription du phénomène physique et modélisation de l'information

Procédé informatique

Développement logiciel et matériel pour le traitement de l'information

Concepts fondamentaux du multimédia

Une application multimédia, c'est :

- Une chaîne d'acquisition/traitement/restitution d'informations
- Intégrée dans des espaces discrets de représentation de l'information
- Automatisation ou accélération de tâches répétitives

Concepts fondamentaux du multimédia

Une application multimédia, c'est :

- Une chaîne d'acquisition/traitement/restitution d'informations
- Intégrée dans des espaces discrets de représentation de l'information
- Automatisation ou accélération de tâches répétitives

Quelle est la définition de l'informatique?

Concepts fondamentaux du multimédia

Quelques termes utiles

Une information multimédia c'est une suite de valeurs x(k) = x(0), x(1), ... x(n) où :

- x(k): grandeur (nombre) mesurée.
- k : dimension de mesure.
- distance entre x(k) et x(k+1): résolution.
- nombre de bits pour coder x(k): précision.

Perception humaine

Pourquoi étudier la perception humaine ?

Perception humaine

Perception du son

Un son, c'est quoi?

Perception humaine

Perception du son

Un son, c'est quoi?

- Résultat de la perception de la vibration de l'air, engendrée par une source, se propageant sous la forme d'une onde
- Caractéristiques importantes :
 - Fréquence
 - Intensité

Perception du son

Fréquence sonore

- Unité : Hertz
- Zone optimale de perception : 1500 à 4000Hz

Perception du son

Intensité sonore

- Unité : dB
- Seuil audition humaine : 0dB
- Seuil de la douleur : 130dB
- Perception non linéaire de l'intensité en fonction de la fréquence

Tronc commun

Perception du son

Intensité sonore

Perception humaine

Perception des couleurs

Une couleur, c'est quoi?

Perception humaine

Perception des couleurs

Une couleur, c'est quoi?

- Résultat de la perception d'une onde électromagnétique.
- Caractéristiques importantes :
 - Fréquence
 - Intensité

Perception des couleurs

 Plage visible du spectre : 400 à 700nm (750000 à 430000 GHz)

Perception des couleurs

Espace de couleurs XYZ

Perception des couleurs

Espace de couleurs XYZ

- Toute couleur doit avoir 3 composantes positives
- La composante Y correspond à la sensibilité photopique

$$X = k \int_{380}^{720} P(\lambda)\bar{x}(\lambda)d\lambda \qquad X = \frac{X}{X + Y + Z}$$

$$Y = k \int_{380}^{720} P(\lambda)\bar{y}(\lambda)d\lambda \qquad Y = \frac{Y}{X + Y + Z}$$

$$Z = k \int_{380}^{720} P(\lambda)\bar{z}(\lambda)d\lambda$$

Perception des couleurs

Espace de couleurs XYZ

Perception des couleurs

Espace de couleurs RGB

- Espace utilisé pour l'affichage
- Souvent utilisé (à tort) comme espace de calcul
- Conversion RGB vers XYZ

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix} \cdot \begin{bmatrix} R \\ V \\ B \end{bmatrix}$$

Avec $[X_rY_rZ_r]$, $[X_gY_gZ_g]$, $[X_bY_bZ_b]$ les coordonnées XYZ des luminophores R, G et B de l'afficheur

Perception des couleurs

Espace de couleur CIE L* a* b*

- Fondé sur XYZ
- Objectif de linéarisation de la différence de couleur

$$L^{*} = \begin{cases} 116 \left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}} - 16 \text{ if } \frac{Y}{Y_{n}} > 0.008856 \\ 903.3 \left(\frac{Y}{Y_{n}}\right) \text{ if } \frac{Y}{Y_{n}} \leq 0.008856 \end{cases}$$

$$a^{*} = 500 * \left(f\left(\frac{X}{X_{n}}\right) - f\left(\frac{Y}{Y_{n}}\right)\right)$$

$$b^{*} = 500 * \left(f\left(\frac{Y}{Y_{n}}\right) - f\left(\frac{Z}{Z_{n}}\right)\right)$$

$$avec f(t) = \begin{cases} t^{\frac{1}{3}} & \text{if } t > 0.008856 \\ 7.787t + \frac{16}{116} & \text{if } t \leq 0.008856 \end{cases}$$

Métrique pour comparaison de couleurs

 Dans les espaces L*u*v* et L*a*b*, distance euclidienne

$$\Delta E^* = \sqrt{(L_1^* - L_2^*)^2 + (a_1^* - a_2^*)^2 + (b_1^* - b_2^*)^2}$$

- Une différence $\Delta E^* \approx 1$ est tout juste perceptible : norme TetraPack
- Attention : problème si appliquée par pixel pour comparer des images

Perception des couleurs

Métrique pour comparaison de couleurs

Fréquence, fréquence ... pourquoi tant de fréquences ?

Notion de fréquence

Fréquences et musique

Notion de fréquence

Transformée de Fourier

- Outil d'analyse mathématique
- Décomposition d'une fonction f(x) comme somme pondérée de fonctions trigonométriques de toutes fréquences.
- Associe à une fonction f(x) un spectre en fréquences

Notion de fréquence

Transformée de Fourier Discrète

- Une information multimédia = s(n) avec n discret
- Utilisation de la Transformée de Fourier Discrète

$$S(k) = \sum_{n=0}^{N-1} s(n) \times e^{-2i\pi k \frac{n}{N}}$$

La transformée inverse est :

$$s(n) = \frac{1}{N} \sum_{k=0}^{N-1} S(k) \times e^{2i\pi n \frac{k}{N}}$$

Notion de fréquence

Transformée de Fourier Discrète

Notion de fréquence Applications

Notion de fréquence Applications

Fréquence, perception ... et si on combinait pour compresser?

Chaîne de compression/décompression JPEG

Compression JPEG

Découpage en blocs

- Découpage de l'image en blocs de 64 (8x8) ou 256 (16*16) pixels
 - extraction de blocs cohérents de l'image

Transformation des couleurs

- Passage de l'espace RGB à l'espace YUV
 - œil humain assez sensible à la luminance mais peu à la chrominance.

Sous-échantillonnage

- Appliqué sur les canaux UV de l'image
 - tire parti de la perception pour réduire la taille de l'image.

Compression JPEG

Transformée DCT

- Variante de la transformée de Fourier
 - Par canal, remplace chaque bloc de l'image par un bloc de fréquence

Transformée DCT:

$$F(i,j) = \frac{2}{N}C(i)C(j)$$

$$\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} pix(x,y)cos\left(\frac{(2x+1)i\pi}{2N}\right)cos\left(\frac{(2y+1)j\pi}{2N}\right)$$

Transformée DCT:

$$f = \begin{bmatrix} 139 & 144 & 149 & 153 & 155 & 155 & 155 & 155 \\ 144 & 151 & 153 & 156 & 159 & 156 & 156 & 156 \\ 150 & 155 & 160 & 163 & 158 & 156 & 156 & 156 \\ 159 & 161 & 162 & 160 & 160 & 159 & 159 & 159 \\ 159 & 160 & 161 & 162 & 162 & 155 & 155 & 155 \\ 161 & 161 & 161 & 161 & 160 & 157 & 157 & 157 \\ 162 & 162 & 161 & 163 & 162 & 158 & 158 & 158 \end{bmatrix} \\ F = \begin{bmatrix} 1260 & -1 & -12 & -5 & 2 & -2 & -3 & 1 \\ -23 & -17 & -6 & -3 & -3 & 0 & 0 & -1 \\ -11 & -9 & -2 & 2 & 0 & -1 & -1 & 0 \\ -7 & -2 & 0 & 1 & 1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 2 & 0 & -1 & 1 & 1 \\ 2 & 0 & 2 & 0 & -1 & 1 & 1 & -1 \\ -1 & 0 & 0 & -1 & 0 & 2 & 1 & -1 \\ -3 & 2 & -4 & -2 & 2 & 1 & -1 & 0 \end{bmatrix}$$

(36/54)

Quantification

• Etape de réduction (et de perte) de l'information

$$F^*(u, v) = E\left(\frac{F(u, v)}{Q(u, v)}\right)$$

Q(u, v) matrice de quantification

Quantification

Compression JPEG

Codage, compression RLE et Huffman

 Transformation de la matrice en un vecteur selon un parcours précis

79, 0, -2, -1, -1, -1, 0, 0, -1, EOB

Vecteurs, matrices, tableaux ... vive les TAD?

Programmation d'applications multimédia Types abstraits de données

- Vecteurs et matrices
 - Avec opérateurs algébriques et d'analyse
 - Très utilisés donc très optimisés

Programmation d'applications multimédia Types abstraits de données

- Vecteurs et matrices
 - Avec opérateurs algébriques et d'analyse
 - Très utilisés donc très optimisés
- Couleurs
 - Avec opérateurs algébriques
 - Avec fonction de conversion

Programmation d'applications multimédia Types abstraits de données

- Vecteurs et matrices
 - Avec opérateurs algébriques et d'analyse
 - Très utilisés donc très optimisés
- Couleurs
 - Avec opérateurs algébriques
 - Avec fonction de conversion
- Tableaux uni et multidimensionnels
 - Avec opérateurs algébriques
 - Avec fonction de conversion

Programmation d'applications multimédia Types abstraits de données

- Tableaux de structures
 - Naturels pour le stockage de données spectrales ou multidimensionnelles

• Peuvent limiter les performances de traitement

Programmation d'applications multimédia Types abstraits de données

- Structures de tableaux
 - Favorisent les traitement parallèles

Accès aux données moins direct

des tableaux, ca se parcours de 1000 façons différentes ...

Courbes de remplissage de l'espace

 Ligne continue passant par tous les points d'un espace, dans un ordre particulier.

The Z-Order Curve

First Order

Second Order

Third Order

Courbes de remplissage de l'espace Définition

 Ligne continue passant par tous les points d'un espace, dans un ordre particulier.

The Hilbert Curve

Courbes de remplissage de l'espace Propriétés

- Passent par chaque point une et une seule fois.
- Permettent une indexation simple du contenu.
- Préservent la localité spatiale des données.
- Aspect fractal : algorithmes efficaces par gestion d'état ou systèmes de réécriture.

Construction d'une courbe de Hilbert 2D

- Courbe de Hilbert : maximise la localité de ses éléments dans l'espace de départ.
 - Deux points voisins dans l'espace de départ son le plus souvent voisins sur la courbe
- Courbe fractale construite efficacement à partir d'une table de transition
 - Courbe fractale : peut être exprimée par un système de réécriture
 - Notion de grammaire en traduction des langages
 - Une table de transition est une représentation particulière d'un système de réécriture

Construction d'une courbe de Hilbert 2D

Construction d'une courbe de Hilbert 2D

Début

Ajouter espace initial dans pile de région P_R **Tantque** nonvide(P_R) faire

```
(regionCourante, etatCourant) \leftarrow P_{-}R.dépiler() Si taille(regionCourante) = 4 alors
```

Ajouter les 4 éléments terminaux en fin de vecteur de sortie selon leur numéro de séquence

Sinon

Subdiviser la région en 4 sous région et leur affecter l'état donné par la table de transition Ajouter les 4 éléments terminaux dans *P_R* selon l'ordre inverse de leur numéro de séquence

Fin si

Fin

Courbes de remplissage de l'espace Applications

La construction d'une courbe de Hilbert est utilisée dans les domaines :

- Systèmes répartis
 - Associe des données voisines à des unités de traitements voisines
 - Réduit les coûts de communication.
- Base de données Entrepôts de données
 - Indexation de données multidimensionnelles

Courbes de remplissage de l'espace Applications

La construction d'une courbe de Hilbert est utilisée dans les domaines :

- Architecture
 - Contrôleur mémoire et mémoire cache
- Compression de données
 - Maximise les performances RLE

Courbes de remplissage de l'espace Applications

La construction d'une courbe de Hilbert est utilisée dans les domaines :

- Robotique
 - Planification
 - Recherche de chemins
- Graphique et multimedia
 - Organisation des données en mémoire
 - Ordre de traitement des pixels
 - •

Bibliographie

Norme JPEG.

Wikipedia, the free encyclopedia. http://fr.wikipedia.org/wiki/JPEG.

Courbe de Hilbert.

Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Hilbert_curve.

