Homework - 4 Group 26

Venkata Akshith Reddy Kasireddy(A20455209) Sai Vishal Kodimela (A20453006) Atharva Kadam (A20467229)

1.

- a. For state $\sigma = \{x = \alpha, y = \beta\}$, after a single iteration of the loop, do $x \neq 0 \rightarrow x := x-1$; $y := y+1 \square x \neq 0 \rightarrow x := x-1$; y := y+2 od M(DO, $\{x = \alpha, y = \beta\}$) = $\{\{x = \alpha-1, y = \beta+1\}, \{x = \alpha-1, y = \beta+2\}\}$
- b. For the first two iterations,

$$\rightarrow^{2}\langle DO, \sigma'[x \mapsto \alpha-1][i \mapsto \beta+1], \ \sigma''[x \mapsto \alpha-1][i \mapsto \beta+2]\rangle$$
$$\rightarrow^{3}\langle DO, \sigma'[x \mapsto \alpha-2][i \mapsto \beta+2], \ \sigma''[x \mapsto \alpha-2][i \mapsto \beta+4]\rangle$$

Thus, the 4 final states are
$$\{x = \alpha - 1, y = \beta + 1\}$$
, $\{x = \alpha - 1, y = \beta + 2\}$, $\{x = \alpha - 2, y = \beta + 2\}$.

c. For k iterations where $1 < k \le \alpha$ will follow the similar pattern to the first two iterations we did.

Thus,
$$\Sigma'$$
 such that $\langle DO, \sigma \rangle \rightarrow_{\kappa} \langle DO, \tau \rangle$ iff $\tau \in \Sigma'$ will be $\rightarrow_{\kappa} \langle DO, \sigma'[x \rightarrow \alpha - k][i \rightarrow \beta + k], \sigma''[x \rightarrow \alpha - k][i \rightarrow \beta + 2k] \rangle$

There will be 2 states, one for each condition of the non-deterministic loop which are.

$$T = \{ \{ x = \alpha - k, y = \beta + k \}, \{ x = \alpha - k, y = \beta + 2k \} \}$$

- 2. If $\sigma \models \{p\} S \{q\}$ and $\sigma \not\models p$, then $\bot \subseteq M(S, \sigma)$ may or may not occur.
- 3. If $\sigma \models \{p\} S \{q\}$ and $\sigma \not\models p$, then $M(S, \sigma) \{\bot\} \models q$ may or may not occur.
- 4. If $\sigma \models \{p\} \ S \ \{q\}$ and $\sigma \models p$, then $\bot \subseteq M(S, \sigma)$ may or may not occur.
- 5. If $\sigma \models \{p\} S \{q\}$ and $\sigma \models p$, then $M(S, \sigma) \{\bot\} \models q$ may or may not occur.
- 6. If ⊨tot {p} S {q} then ⊨tot {p} S {T} must occur.
- 7. If \vdash tot $\{p\}$ S $\{T\}$ then \vdash tot $\{p\}$ S $\{q\}$ may or may not occur.
- 8. If $\sigma \not\models \{p\}$ S $\{q\}$ and S is deterministic, then $\sigma \models p$ and $\bot \notin M(S, \sigma)$ and $M(S, \sigma) \models \neg q$ must occur.
- 9. If $\bot \notin M(S, \sigma)$, $M(S, \sigma) \not\models q$, and S is deterministic, then $M(S, \sigma) \models \neg q$ must occur.

- 10. If $\bot \notin M(S, \sigma)$, $M(S, \sigma) \nvDash q$, and S is nondeterministic, then $M(S, \sigma) \vDash \neg q \text{ may or } may$ not occur.
- 11. If $M(S, \sigma) \neq q, \tau \in M(S, \sigma)$, and S is nondeterministic, then $\tau \neq q$ may or may not occur.
- 12. If $\sigma \models \{p\} S \{q\}$, then $\sigma \models \{p\} S \{\neg q\}$ may or may not occur.
- 13. If $\sigma \not= \text{tot } \{p\} \ S \ \{q\} \ \text{and } S \ \text{is deterministic, then } \sigma \models \{p\} \ S \ \{\neg q\} \ \underline{\text{must}} \ \text{occur.}$
- 14. If $\sigma \not\models tot \{p\} \ S \{q\}$ and S is nondeterministic, then $\sigma \models \{p\} \ S \{\neg q\}$ may or may not occur.
- 15. If $\sigma \not\models \{p\}$ S $\{q\}$ and S is deterministic, then $\sigma \models \text{tot } \{p\}$ S $\{\neg q\}$ **must** occur.
- 16. If $\sigma \not\models \{p\}$ S $\{q\}$ and S is non-deterministic, then $\sigma \not\models tot \{p\}$ S $\{\neg q\}$ may or may not occur.