What Is Claimed Is:

- 1. A motor vehicle (1) having at least one first crash sensor (S1) situated in a safety zone (4) of the motor vehicle (1), for measuring a motion variable of the motor vehicle (1), and having at least one second crash sensor (S2) situated in a crash zone (3) of the motor vehicle (1), for measuring a motion variable (aS2) of the motor vehicle (1), the motor vehicle (1) including an occupant protection device (15, 16) controllable via an ignition signal (CRASH, AIR, BELT) and a control unit (2) for ascertaining the ignition signal (CRASH, AIR, BELT) as a function of the measured motion variables (aS1, aS2) or, in each instance, as a function of a time average (vOS1, vOS2) of the measured motion variables (aS1, aS2) over at least a first time interval ([t₀-τ₀,t₀]).
- 2. The motor vehicle (1) as recited in Claim 1, wherein the control unit (2) includes
 - at least one first triggering relationship (30A) for ascertaining the ignition signal (CRASH, AIR, BELT) as a function of the measured motion variables (aS1, aS2) or, in each instance, as a function of a time average (v0S1, v0S2) of the measured motion variables (aS1, aS2) over the at least first time interval ($[t_0-\tau_0,t_0]$); and
 - at least one second triggering relationship (30D) for ascertaining the ignition signal (CRASH, AIR, BELT) as a function of the motion variable (aS1) measured by the first crash sensor (S1), or as a function of the time average (v0S1) of the motion variable (aS1) over the at least first time interval ([t_0 - τ_0 , t_0]), but not as a function of the motion variable (aS2) measured by the second crash sensor (S2) or the time average (v0S2) of the motion

variable (aS2) over the at least first time interval $([t_0-\tau_0,t_0])$.

- 3. The motor vehicle (1) as recited in Claim 2, wherein the control unit (2) includes a selection module (38) for selecting the first triggering relationship (30A) or the second triggering relationship (30D) for instantaneously ascertaining the ignition signal (CRASH, AIR, BELT).
- 4. The motor vehicle (1) as recited in Claim 1, 2, or 3, wherein the ignition signal (CRASH, AIR, BELT) is additionally ascertainable as a function of a time average (v1S) of the motion variable (aS1) measured by the first crash sensor (S1) over a second time interval $([t_0-\tau_0-\tau_1,t_0-\tau_1])$ different from the first time interval $([t_0-\tau_0,t_0])$.
- 5. The motor vehicle (1) as recited in one of the preceding claims, wherein the time intervals ($[t_0-\tau_0,t_0]$, $[t_0-\tau_0-\tau_1,t_0-\tau_1]$) are between 1 ms and 200 ms long.
- one first crash sensor (S1) for measuring a motion variable (aS1) of the motor vehicle being situated in a safety zone (4) of the motor vehicle (1), at least one second crash sensor (S2) for measuring a motion variable (aS2) of the motor vehicle (1) being situated in a crash zone (3) of the motor vehicle (1) being situated in a crash zone (3) of the motor vehicle (1), and an occupant protection device (15, 16) controllable via an ignition signal (CRASH, AIR, BELT) and a control unit (2) for ascertaining the ignition signal (CRASH, AIR, BELT) as a function of the measured motion variables (aS1, aS2) or, in each instance, as a function of a time average (vOS1, vOS2) of the measured motion variables (aS1, aS2) over at

least a first time interval ($[t_0-\tau_0,t_0]$), being situated in the motor vehicle (1).

- 7. The method as recited in Claim 6, wherein
 - at least one first triggering relationship (30A) for ascertaining the ignition signal (CRASH, AIR, BELT) is generated as a function of the measured motion variables (aS1, aS2) or, in each instance, as a function of a time average (v0S1, v0S2) of the measured motion variables (aS1, aS2) over the at least first time interval ([t₀-τ₀,t₀]); and
 - at least one second triggering relationship (30D) is generated for ascertaining the ignition signal (CRASH, AIR, BELT) as a function of the motion variable (aS1) measured by the first crash sensor (S1) or as a function of the time average (v0S1) of the motion variables (aS1) over the at least first time interval ($[t_0-\tau_0,t_0]$), but not as a function of the motion variable (aS2) measured by the second crash sensor (S2) or the time average (v0S2) of the motion variable (aS2) over the at least first time interval ($[t_0-\tau_0,t_0]$).
- 8. The method as recited in Claim 7, wherein the first triggering relationship(30A) or the second triggering relationship (30D) are automatically generated as a plurality of comparisons of the motion variables (aS1, aS2) or their time averages (v0S1, v0S2) over the at least first time interval ([t_0 - t_0 , t_0]) or over the at least first time interval ([t_0 - t_0 , t_0]) and a second time interval ([t_0 - t_0 - t_1 , t_0 - t_1]) different from the first time interval ([t_0 - t_0 , t_0]), to a plurality of limiting values (δ_{v0S1} , δ_{v1S1} , δ_{v0S2}),

- 9. The method as recited in Claim 8, wherein the limiting values $(\delta_{v0s1}, \, \delta_{v1s1}, \, \delta_{v0s2})$ are automatically ascertained, the number of comparisons is automatically set, the order of the comparisons is automatically selected, a measured motion variable (aS1, aS2) or its time average (v0S1, v0S2) over the at least first time interval ([t_0-\tau_0,t_0]) or over the at least first time interval ([t_0-\tau_0,t_0]) and the second time interval ([t_0-\tau_0-\tau_1,t_0-\tau_1]) is automatically selected for a comparison, or the age of the motion variables (aS1, aS2) or their time averages (v0S1, v0S2) over the at least first time interval ([t_0-\tau_0,t_0]) or the at least first time interval ([t_0-\tau_0,t_0]) and the second time interval ([t_0-\tau_0-\tau_1,t_0-\tau_1]) is automatically selected for the comparisons.
- The method as recited in Claim 7, 8, or 9, wherein the 10. first triggering relationship (30A) or the second triggering relationship (30D) is generated as a function of the measured motion variables (aS1, aS2) or their time averages (v0S1, v0S2) over the at least first time interval ($[t_0-\tau_0,t_0]$) or over the at least first time interval ($[t_0-\tau_0,t_0]$) and the second time interval ([$t_0-\tau_0-\tau_1,t_0-\tau_1$]) of a situation, for which a setpoint triggering time (t_z) of the occupant protection device (15,16) is known, but the measured motion variables (aS1, aS2) or their time averages (v0S1, v0S2) over the at least first time interval ($[t_0-\tau_0,t_0]$) or over the at least first time interval ($[t_0-\tau_0,t_0]$) and the second time interval ($[t_0-\tau_0-\tau_1,t_0-\tau_1]$) being disregarded in a training-suppression time interval (thole) prior to the setpoint triggering time (t_z) of the occupant protection device (15,16), around the setpoint triggering time (t_z) of the occupant protection device (15,16), or after the setpoint triggering time (t_z) of the occupant protection device (15,16) during the generation of the first

triggering relationship (30A) or the second triggering relationship (30B).

NY01 1151836 36