RworksheetMirabuena#4

Jessa Mae Mirabuena BSIT 2A

2022-11-22

1. The table below shows the data about shoe size and height. Create a data frame..

##		Shoe_size	Height	${\tt Gender}$	Shoe_size.1	Height.1	Gender.1
##	1	13.0	77	M	13.0	77	M
##	2	11.5	72	M	11.5	72	M
##	3	8.5	59	F	8.5	59	F
##	4	5.0	62	F	5.0	62	F
##	5	10.0	72	M	10.0	72	M
##	6	6.5	66	F	6.5	66	F
##	7	7.5	64	F	7.5	64	F
##	8	8.5	67	M	8.5	67	M
##	9	10.5	73	M	10.5	73	M
##	10	8.5	69	F	8.5	69	F
##	11	10.5	72	M	10.5	72	M
##	12	11.0	70	M	11.0	70	M
##	13	9.0	69	M	9.0	69	M
##	14	13.0	70	M	13.0	70	M

#a. Describe the data. #The data shows the gender and the shoe size however the shoe size vary on gender #if the it is female the smaller the shoe size.

#b. Find the mean of shoe size and height of the respondents. #Copy the codes and results.

```
mean(Shoe_size)
## [1] 9.5
mean(Height)
```

[1] 68.71429

#c. Is there a relationship between shoe size and height? Why # As I evaluate there is a relationship between shoe size and height the #higher the height the bigger shoe size

#2. Construct character vector months to a factor with factor() and assign the result to #fac-

tor_months_vector. Print out factor_months_vector and assert that R prints out #the factor levels below the actual values.

```
months <-c("March", "April", "January", "November", "January",</pre>
             "September", "October", "September", "November", "August",
             "January", "November", "November", "February", "May", "August",
             "July", "December", "August", "August", "September", "November", "February", "April")
 months
    [1] "March"
                      "April"
                                   "January"
##
                                                "November"
                                                             "January"
                                                                          "September"
    [7] "October"
                      "September"
                                   "November"
                                                "August"
                                                             "January"
                                                                          "November"
                      "February"
                                   "May"
                                                                          "December"
## [13] "November"
                                                "August"
                                                             "July"
## [19] "August"
                      "August"
                                   "September" "November"
                                                             "February"
                                                                          "April"
 factor months vector <- factor(months)</pre>
 factor_months_vector
    [1] March
                   April
                              January
                                         November
                                                    January
                                                               September October
    [8] September November
                              August
                                          January
                                                               November
                                                                          February
                                                    November
## [15] May
                   August
                              July
                                         December
                                                    August
                                                               August
                                                                          September
## [22] November February
                              April
## 11 Levels: April August December February January July March May ... September
#3. Then check the summary() of the months vector and factor months vector. | #Interpret the results of
both vectors. Are they both equally useful in this case?
 summary( factor_months_vector)
##
       April
                 August December
                                     February
                                                               July
                                                 January
                                                                         March
                                                                                      May
##
                       4
                                                        3
                                                                             1
                October September
##
    November
##
            5
summary(months)
##
                  Class
                              Mode
      Length
##
           24 character character
#4. Create a vector and factor for the table below.
factor_data \leftarrow c(1,4,3)
new_order_data <- factor(factor_data,levels = c("East","West","North"))</pre>
print(new order data)
## [1] <NA> <NA> <NA>
## Levels: East West North
#5. Enter the data below in Excel with file name = import_march.csv
#a. Import the excel file into the Environment Pane using read.table() function. #Write the code.
 readdata <- read.table("/cloud/project/Worksheet4/import_march.csv", header = TRUE, sep = ",")</pre>
 readdata
     Students Strategy1 Strategy2 Strategy3
##
## 1
                        8
                                  10
                        4
                                              6
## 2
                                   8
                        0
## 3
                                   6
                                              4
```

## 4	Female	14	4	15
## 5		10	2	12
## 6		6	0	a

b. View the dataset. Write the code and its result.

read.csv ("/cloud/project/Worksheet4/import_march.csv")

##		${\tt Students}$	Strategy1	Strategy2	Strategy3
##	1	Male	8	10	8
##	2		4	8	6
##	3		0	6	4
##	4	Female	14	4	15
##	5		10	2	12
##	6		6	0	9