A WATER-FLOW ANALOGY FOR TEACHING DATA REUSE AND MEMORY HIERARCHIES

Tanvi Sharma

Kaushik Roy

Elmore Family School of Electrical

and Computer Engineering

Overview

Motivation

- Lowering the barrier to entry for AI hardware in one lecture for undergraduates
- Emphasis on the impact of data reuse on performance

Outline

- Examples of AI workloads
- A simple memory-compute model for AI hardware
- Introduction to water-flow analogy
- Memory- and compute- bound scenarios to understand data reuse
- Relation with roofline performance model
- Latency-bound scenario and implications
- Conclusion

Artificial Intelligence (AI) Workloads

- Artificial Intelligence (AI) is used everywhere in day-to-day applications such as chat-bots, text autocompletion, ad recommendations, summarization tasks and image recognition.
- Al model architectures Transformers (most common these days), CNNs, FFNs, RecSys, etc.

Dominant Computation in AI workloads

Softermax DAC 2021 NonGEMMBench. ISPASS 2025

Approximate Computing Al Acceleration. IBM Blog 2018.

- Most AI workloads are dominated by GEMMs (GEneral Matrix Multiplications).
- GEMMs are represented as GEMM(M, N, K).
- Al hardware is designed to maximize performance of GEMMs.

Common Examples of AI Hardware

- Graphics Processing Units (GPUs) started as domain specific ICs for accelerating graphics, now general-purpose programmable IC.
- Tensor Processing Units (TPUs) Domain specific IC specially designed for AI processing.
- Neural Processing Units (NPUs) Application Specific IC designed for one end system.

What do they have in common?

Simple Memory-Compute Model for AI Hardware

A simple analytical model of AI hardware consists of

- off-chip memory (say DRAM or HBM)
- on-chip memory (SRAM)
- some compute units (ALUs or SIMD or Systolic Arrays)

Focus of this lecture - understand how data reuse in GEMMs impacts the hardware performance through a water-analogy.

Waterflow-Analogy for Simple Memory-Compute Model

- Water Data (bytes)
- Rate of doing dishes –
 Performance (operations/sec)

Waterflow-Analogy for Simple Memory-Compute Model

Given the number of DNN operations and limited BW constraint, how to maximize R_{obs}?

Metric	Architecture Definition	Water analogy definition
Latency (sec) Bandwidth (BW)	Time bw initiating a data request until it is retrieved Rate of data transfer	Time bw turning the tap on to receiving water Rate of water flow
Data (L) OPs Data Reuse Reuse Factor (F _{reuse})	Byte Compute Operations Arithmetic Intensity (AI) or OPs per byte New AI = $AI_{\text{org}} \times F_{\text{reuse}}$	Water (liter) Number of dishes Total number of dishes done per liter of water No. of dishes reusing water
$T_{ m data} \ T_{ m comp} \ R_{ m obs}$	Total time to fetch data Ideal time to perform all OPs Operations/second (OPS or OPs/sec); Throughput	Total time to fetch water required to do all dishes Ideal time to do dishes with no water constraint Observed rate of washing dishes (dishes/s)

Waterflow-Analogy Model Illustration (1)

Latency = 0.1 sec

Assuming each dish requires 2L of water,

BW = 1L/sec Peak rate (R_{peak}) = 2 OPS * 2 L/op = 4 L/sec

Case 1: Reuse factor $(F_{reuse}) = 1$ OPs = 10Data (required) $= 2 * 10 / F_{reuse}$ = 20 L $T_{data} = L + Data/BW$ = 0.1 + 20/1= 20.1 sec $T_{comp} = Data/R_{peak}$ = 20/4= 5 sec $R_{obs} = 10/(20.1 + 0.5) OPS$ = 0.485 OPS

Say, Ops = 100.

How can we improve the performance?

Does rate-matching memory bandwidth and compute throughput help?

Waterflow-Analogy Model Illustration (2)

Case 2: Reuse factor $(F_{reuse}) = 1$ OPs = 100Data (effective) = 200 L Data (required) = $2 * 100 / F_{reuse}$ = 200 L $T_{data} = max(T_{tap}, T_{bucket})$ $= \max(200.1, 200/4)$ = 200.1 sec $T_{comp} = Data/R_{peak}$ = 50 sec $R_{obs} = 100/200.6 \text{ OPS} = 0.50 \text{ OPS}$ or dropping the tail latency, $R_{obs} = 100/200.1 \text{ OPS} = 0.50 \text{ OPS}$

Caches are useful only if there are data reuse opportunities.

Water Analogy with caches/bucket

Impact of Data Reuse on Performance (1)

(a) Water Analogy with caches/bucket

```
Case 3: Reuse factor (F_{reuse}) = 2
OPs = 100
Data (effective) = 200L
Data (required)
     = 2 *100 / F_{reuse}
      = 100 L
T_{data} = max(T_{tap}, T_{bucket})
      = \max(100.1, 200/4)
      = 100.1 sec
T_{comp} = Data/R_{peak}
      = 200/4
      = 50 sec
  (T_{tap} >> T_{comp})
R_{obs} = 100/100.1 \text{ OPS}
      = 0.99 OPS
```

Considering some dishes are not heavily soiled – can share same water for cleaning.

2L effectively acts as 4L for you.

Memory bound

Impact of Data Reuse on Performance (2)

Case 3: Reuse factor $(F_{reuse}) = 4$ OPs = 100Data (effective) = 200L Data (required) $= 2 *100 / F_{reuse}$ = 50 L $T_{data} = max(T_{tap}, T_{bucket})$ = max(50.1, 200/4)= 50.1 sec $T_{comp} = Data/R_{peak}$ = 200/4 = 50 sec $(T_{tap} \sim T_{comp})$ = 100/50.1 OPS

~ 2 OPS (R_{peak})

Considering
dishes are
soiled only
slightly –
more dishes
can share
same water
for cleaning.

2L effectively acts as 8L for you.

(a) Water Analogy with caches/bucket

Impact of Data Reuse on Performance (3)

(a) Water Analogy with caches/bucket

```
Case 3: Reuse factor (F_{reuse}) = 8
OPs = 100
Data (effective) = 200L
Data (required)
      = 2 *100 / F_{reuse}
      = 25 L
T_{data} = max(T_{tap}, T_{bucket})
      = max(25.1, 200/4)
      = 50 sec
T_{comp} = Data/R_{peak}
      = 200/4
      = 50 sec
  (T_{tap} < T_{comp})
R_{obs} = 100/50 \text{ OPS}
      = 2 \text{ OPS } (R_{peak})
```

Say some notorious kid have put already clean dishes in the sink – more water reuse.

2L effectively acts as 16L for you.

Compute bound

Roofline: Memory vs Compute intensive

A workload is considered memory intensive if

Time to fetch data > Time to perform computations

$$\frac{Data\ Accesses\ (B)}{Bandwidth\ (\frac{B}{sec})} > \frac{Total\ number\ of\ computations\ (ops)}{Peak\ Throughput\ (\frac{ops}{sec})}$$

Data Reuse affects the nature of workload

- Operations/Byte (Arithmetic Intensity)
- Low reuse -> memory bound region
 - Performance limited by memory bandwidth
- High reuse -> compute bound region
 - Performance limited by peak throughput

Observed Throughput (OPS)

Arithmetic Intensity of GEMMs (1)

- Theoretical (or algorithmic) AI for GEMMs = $\frac{2MNK}{(MK+KN+MN)}$
- Will the following GEMMs be in compute bound or memory bound region?
 - For a GPU with 130 TFLOPS peak throughput and 1000 GB/s DRAM bandwidth
 - o GEMM (1024, 1024, 1024)?
 - = 2M/3

Arithmetic Intensity of GEMMs (2)

- Theoretical (or algorithmic) AI for GEMMs = $\frac{2MNK}{(MK+KN+MN)}$
- Will the following GEMMs be in compute bound or memory bound region?
 - For a GPU with 130 TFLOPS peak throughput and 1000 GB/s DRAM bandwidth
 - o GEMM (1024, 1024, 1024)
 - o GEMM (4, 1024, 1024)?

Roofline: Memory vs Compute intensive

A workload is considered memory intensive if

- Time to fetch data > Time to perform computations
- $\frac{\textit{Data Accesses (B)}}{\textit{Bandwidth }(\frac{\textit{B}}{\textit{sec}})} > \frac{\textit{Total number of computations (ops)}}{\textit{Peak Throughput }(\frac{\textit{ops}}{\textit{sec}})}$

Observed Throughput (OPS)

Al or Data Reuse (Ops/L)

Al or Data reuse = $(1 \text{ Op}/2 \text{ L})^*F_{\text{reuse}}$ Ridge Point Al = 2 OPS/1 L/s = 2 Ridge Point $F_{\text{reuse}} = 2/(1/2) = 4$

Is it always necessary for a workload to be either in the memory bandwidth- or compute-bound region?

Factors affecting workload nature:

- Data Reuse or Arithmetic Intensity (AI)
 - Water shared by multiple dishes/how much they are soiled (GEMM shape)
- Hardware Specifications
 - physical limitations on how many dishes can be washed per second (peak throughput)
 - Limited tap water bandwidth (main memory bandwidth)

Examples of Memory-bound Scenarios

Latency

= 1 sec

Assuming each dish requires 2L of water,

BW

= 10 L/sec

Peak rate

= 200 OPS * 2 L/op

= 400 L/sec

BW

= 400 L/sec

Case 6: Reuse factor (F_{reuse}) = 1

OPs = 1000

Data (effective) = 2000 L

Data (required)

 $= 2 *1000 / F_{reuse}$

= 2000 L

 $T_{data} = max(T_{tap}, T_{bucket})$

= max(1+2000/10, 2000/400)

= 201 sec

 $T_{comp} = Data/R_{peak}$

= 2000/400

= 5 sec

 $(T_{data} >> T_{comp})$

 $R_{obs} = 1000/201 \text{ OPS}$

= 4.98 OPS << 200 OPS

(a) Memory-bandwidth bound

Case 7: Reuse factor $(F_{reuse}) = 4$

OPs = 4

Data (effective) = 8 L

Data (required)

 $= 2 *4 / F_{reuse}$

= 2

 $T_{data} = max(T_{tap}, T_{bucket})$

= max(1+2/10, 8/400)

= 1.2 sec

 $T_{comp} = Data/R_{peak}$

= 8/400

= 0.02 sec

 $(T_{data} >> T_{comp})$

 $R_{obs} = 4/1.2 \text{ OPS}$

= 3.33 OPS << 200 OPS

(b) Memory-Latency bound

Conclusion

- Proposed a simple waterflow-analogy for showcasing the impact of data reuse on AI hardware performance.
- Connected the concepts to the roofline performance model with worked-out examples.
- Used in the first offering of AI Hardware course at Purdue where students were from different backgrounds (from pure algorithm to circuit designers).
- The given slides can be used prior to introducing dataflow or scheduling strategies, lowering the barrier to AI hardware concepts.

Q&A

Thank you. Any feedback?

Recap: Evaluating DNNs

- Simple memory-compute model
- Arithmetic Intensity (data reuse)
- Roofline performance model
 - Memory bound region
 - Compute bound region

Question:

For a GPU with 130 TFLOPS peak throughput and 1000 GB/s DRAM bandwidth, what will be the minimum value of arithmetic intensity for it to be compute bound? (transition AI)

Recap: Matrix Multiplications in DNN Models (1)

- For a layer in MLP with Input dimension – din Output dimension – dout Ν din din W^Th dout X dout (matmul) Ν N Activation Weights Output
 - o Pytorch: nn.Linear

Recap: Matrix Multiplications in DNN Models (2)

- For a convolution layer with
 - Filter size R x S x C
 - Input fmap size H x W x C
 - Output fmap size P x Q x K
 - Batch size N

- Implicit GEMM algorithm using im2col transformation
 - (GEMM general matrix multiplication)

Recap: Matrix Multiplications in DNN Models (3)

- For an attention layer with
 - sequence length n
 - \circ embedding dimension $d_{k (=v=q)}$
 - o heads = h
 - Static matrix multiplications Q, K, V, Output
 - Dynamic matrix multiplications QK^T, QK^TV
 - o e.g.

Basic Computations in AI Workloads

- Dot Product ($\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^\mathsf{T} \mathbf{b} = \mathbf{c}$)
 - Product is a scalar value
 - Vectors typically treated as column vectors
 - Used to measure similarity, also referred as inner product

Basic Computations in AI Workloads

- Matrix Vector Multiplication (A^Tb = c)
 - Product is a vector
 - Each element in output vector is dot product of row of A^T and the vector b

a ₁₁	a ₁₂	•	a _{1m}
a ₂₁	a ₂₂	•	•
•		•	
•			
•			
•			
a _{n1}	a _{n2}	•	a _{nm}

$$A(n \times m)$$

Basic Computations in AI Workloads

- Matrix Vector Multiplication (A^Tb = c)
 - Product is a vector
 - o Each element in output vector is dot product of row of A and the vector b

							1	b1		c1	
a ₁₁	a ₂₁	•	•	•	•	a _{n1}		b2		c2	
a ₁₂	a ₂₂	•	•	•		a _{n2}		52	=	02	$\sum_{n=1}^{\infty}$
							X	•	_	•	$c_i = \sum_{j=1} (a_{ij}b_j)$
a _{1m}	a _{2m}					a _{nm}		•		·)—1
	•				•	•		•		cm	
								bn		(m V	1)
$A^{T}(m \times n)$					($n \times 1$		$(m \times$	1)		

Recap: Roofline Performance Model

- GFLOPS = GFLOP/s
 - Giga Flop Operations per second
 - Throughput
- Arithmetic Intensity (AI) = Reuse
 - $\frac{Total\ number\ of\ operations\ (ops)}{Data\ Accesses\ (B)}$
 - $\circ \quad \frac{\textit{Total FLOPs}}{\textit{Data data movement (B)}}$
 - FLOPs/Byte
- Transition @ AI
 - Time to fetch data = Time to compute

Transition @ AI = Peak GFLOPs/Peak GB/s