Time-Mass Duality Theory (T0 Model) Derivation of Parameters κ , α and β

Johann Pascher

30. March 2025

Abstract

This document presents a complete theoretical analysis of the central parameters in the Time-Mass Duality Theory (T0 Model):

- 1. Fundamental derivations in natural units ($\hbar=c=G=1$)
- 2. Conversion to SI units for experimental predictions
- 3. Microscopic justification of the correlation length L_T
- 4. Perturbative derivation of β via Feynman diagrams

Contents

Fε	Feynman Diagram Analysis 1							
		ton Self-Energy with Higgs Loop	1					
1	Int	roduction	2					
2	Int	roduction	2					
3	Der	evivation of κ	2					
	3.1	Natural units $(\hbar = c = G = 1) \dots \dots \dots \dots \dots$	2					
		SI units	2					
4	Der	Derivation of α						
	4.1	Natural units $(\hbar = c = G = 1) \dots \dots \dots \dots \dots$	2					
		SI units	3					
5	Derivation of β							
	5.1	Natural units $(\hbar = c = G = 1) \dots \dots \dots \dots \dots$	3					
	5.2	Feynman diagram analysis	3					
	5.3	Perturbative result	3					
		Experimental consequences	3					

6	Summary			
	6.1	Microscopic justification of L_T		4
	6.2	Dimensional analysis		Δ

1 Introduction

The T0 Model postulates a duality between temporal and mass-based descriptions of physical processes. The key parameters are:

- κ : Modification of gravitational potential $\Phi(r) = -\frac{GM}{r} + \kappa r$
- α : Photon energy loss rate $(1 + z = e^{\alpha r})$
- β : Wavelength dependence of redshift $(z(\lambda) = z_0(1 + \beta \ln(\lambda/\lambda_0)))$

2 Introduction

The T0 Model postulates a duality between temporal and mass-based descriptions of physical processes. The key parameters are:

- κ : Modification of gravitational potential $\Phi(r) = -\frac{GM}{r} + \kappa r$
- α : Photon energy loss rate $(1 + z = e^{\alpha r})$
- β : Wavelength dependence of redshift $(z(\lambda) = z_0(1 + \beta \ln(\lambda/\lambda_0)))$

3 Derivation of κ

3.1 Natural units ($\hbar = c = G = 1$)

$$\kappa = \beta \frac{yv}{r_g}, \quad r_g = \sqrt{\frac{M}{a_0}}$$

where:

- y: Yukawa coupling (dimensionless)
- $v \approx 246$ GeV: Higgs vacuum expectation value

3.2 SI units

$$\kappa_{\rm SI} = \beta \frac{yvc^2}{r_g^2} \approx 4.8 \times 10^{-11} \text{ m/s}^2$$

4 Derivation of α

4.1 Natural units ($\hbar = c = G = 1$)

$$\alpha = \frac{\lambda_h^2 v}{L_T}, \quad L_T \sim \frac{M_{\rm Pl}}{m_h^2 v}$$

where:

• $\lambda_h \approx 0.13$: Higgs self-coupling

• $L_T \approx 10^{26}$ m: Cosmic correlation length

4.2 SI units

$$\alpha_{\rm SI} = \frac{\lambda_h^2 vc^2}{L_T} \approx 2.3 \times 10^{-18}~{\rm m}^{-1}$$

5 Derivation of β

5.1 Natural units ($\hbar = c = G = 1$)

$$\beta = \frac{\lambda_h^2 v^2}{4\pi^2 \lambda_0 \alpha_0}$$

where:

• $\lambda_0 \approx 500$ nm: Reference wavelength

• $\alpha_0 = \alpha$ (as above)

5.2 Feynman diagram analysis

5.3 Perturbative result

$$\beta = \frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{\rm Pl}^2 \lambda_0^4 \alpha_0} \approx 0.008$$

5.4 Experimental consequences

$$z(\lambda) = z_0 \left(1 + 0.008 \ln \frac{\lambda}{\lambda_0} \right)$$

Detectable with JWST ($\Delta z/z \sim 10^{-4}$).

6 Summary

Parameter	Natural form	SI value
κ	$\beta \frac{yv}{r_a}$	$4.8 \times 10^{-11} \text{ m/s}^2$
α	$\frac{\lambda_h^2 \overset{\circ}{v}}{L_T}$	$2.3\times 10^{-18}~{\rm m}^{-1}$
β	$\frac{(2\pi)^4 m_h^2}{16\pi^2 v^4 y^2 M_{\rm Pl}^2 \lambda_0^4 \alpha_0}$	0.008

Appendix: Detailed Explanations

6.1 Microscopic justification of L_T

• Higgs fluctuations:

$$\langle \delta \Phi(x) \delta \Phi(0) \rangle \sim \frac{m_h}{16\pi^2 M_{\rm Pl}} e^{-m_h|x|}$$

• Microscopic scale:

$$L_h = \frac{1}{m_h} \approx 1.58 \times 10^{-9} \text{ m}$$

• Cosmic scale:

$$L_T \sim \frac{M_{\rm Pl}}{m_h^2 v} \approx 6.3 \times 10^{27}~{\rm m}$$

6.2 Dimensional analysis

In natural units ($\hbar = c = G = 1$):

- $[m_h] = [v] = E = L^{-1}$
- $[M_{\rm Pl}] = E = L^{-1}$
- $\bullet \ \ [\alpha]=L^{-1},\, [\kappa]=L^{-2}$
- $[\beta] = 1$ (dimensionless)