本族及時界 E= セス耐SVD分4. (Slam +四i科 Plus) [ORBSIAM3中Two View Reconstruction. a Reconstruct F()]

3D视觉工坊知识星球

- ▶ 课程PPT和注释代码
- ◆ 补充知识点 PDF版和视频版
- ◆ 答器

口 闪频描述.

本质矩阵巨求出后,如門通过 SUD 分母得到 R. t

山棉寺 (超降细版)

其中七个表示平移向量七的反对称矩阵

$$t^{2} = \begin{pmatrix} x \\ y \\ x \end{pmatrix}^{2} = \begin{pmatrix} 0 & -8 & y \\ x & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

由反对抓阵的性质, 存在 1 阶 已交降 1 , 使得

性质5:若△为o於空反对称矩阵 则存在o於正态矩阵C 使组

将分析为对角阵

$$S = \begin{pmatrix} 0 & b_1 & 0 \\ -b_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} b_1 & 0 & 0 \\ 0 & b_1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1000/ 1000/1001/ = diag(b) b) W - diag(b) b) W

t^ = Vdiag(bi,bi,o) W VT

回到日,日是方阵. 在在西阵AB获得 E=AZBT 2是6的夸导值组成的对角阵 URB 16

方阵的有异值是 EET/ETE 的特征值升为

$$EE^{T} = (t^{R})(t^{R})^{T}$$

= $t^{R}R^{T}t^{T}$
= t^{T}

tr的特征值是b.b.b.o.因此E的特征值也是两个相处理整的数与o

日的SUD分母形式为 E=Adiag(ししの)B C省表尺度,因为不影响结果]

$$E = A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0$$

$$t = A \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} A^{\mathsf{T}} \qquad R = A \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} B^{\mathsf{T}}$$

或
$$t'=A\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} A^{T} R=A\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} B^{T}$$