



# Reflection of Light

The phenomenon of bouncing back of light into the same medium by the smooth surface is called **reflection**.

### Laws of Reflection

- The **law of reflection** defines that upon reflection from a smooth surface, the angle of the reflected ray is equal to the angle of the incident ray, with respect to the normal to the surface that is to a line perpendicular to the surface at the point of contact.
- incident ray, reflected ray and normal at a point of incidence ,all lie on the same plane..

### **Parameters of Mirror**

- **Center of Curvature:** The centre of hollow sphere of which mirror is a part.
- The radius of curvature: The radius of hollow sphere of which mirror is a part.
- Pole: The centre of mirror (middle point) is pole.
- Principal axis: The line joining the pole and center of curvature is called principal axis.
- **Aperture:** Size of mirror is called aperture of mirror.
- Principal Focus: The point on the principal axis, where all the incident rays parallel to principal axis converge or diverge after reflection through mirror.
- Focal Length: The distance between pole and focus point is focal length.

### **Total Internal Reflection**

When light passes from a denser medium to a rarer medium at an angle more than the critical angle required for refraction, then the light is reflected back into the denser medium. This is a phenomenon called **Total Internal Reflection.** 

# Spherical Mirror

If the reflecting surface is part of the hollow sphere then the mirror is a **spherical mirror**.

# Sign Conventions of Spherical Mirror

- All the distances are measured from the pole of the mirror as the origin.
- Distances measured in the direction of incident rays are taken as positive.
- Distances measured opposite to the direction of incident rays are taken as negative.
- Distances measured upward and perpendicular to the principal axis are taken as positive.
- Distances measured downward and perpendicular to the principal axis are taken as negative.

### Mirror formula

1/f=1/v+1/u ...where f, v and u are focal length, image distance, object distance.

# Linear magnification

- Linear Magnification: This is the ratio of the height of the image to the height of the object.
- m=h'/h = (-v/u)...where
   m = magnification, h' = height of image, h = height of object

### **Concave Mirror**

In this mirror reflecting surface is concave. It converges the light so it is also called **converging mirror.** 

### **Convex Mirror**

In this mirror reflecting surface is convex. It diverges the light so it is also called a **diverging mirror**.

# Virtual Image

When the rays of light, after reflection from a mirror, appear to meet at a point, then the image formed by these rays is said to be virtual. Virtual images can't be obtained on a screen.

# **Real Image**

When the rays of light, after reflection from a mirror, actually meet at a point, then the image formed by these rays is said to be real. Real images can be obtained on a screen.

# For Mirrors, The Following Results Hold

- •u is ve, if the object is in front of the mirror. (Real object)
- u is + ve, if the object is behind the mirror. (Virtual object)
- •v is ve, if the image is in front of the mirror. (Real image)
- v is +ve, if the image is behind the mirror. (Virtual image)

The transparent refracting medium bounded by two surfaces in which at

Lens

least one surface is curved is called

- Convex lens
- Concave lens

# **Refraction of Light**

The bending of light at the interface of two different mediums is called **Refraction of light.** 

If the velocity of light in medium is more, then medium is called optical rarer.

**Eg.** Air or vacuum is more optical rarer.

If the velocity of light in medium is less, then medium is called optical denser.

Eg. Glass is more denser than air.

### **Convex Lens**

A convex lens is a type of optical lens that is thicker in the center than at the edges and can converge light rays to a focal point. Convex lenses are also known as converging lenses, because they focus parallel rays of light to a single point.

### **Laws of Refraction**

According to this law

- The incident ray, refracted ray and normal at the point of incidence all lie in the same plane.
- •The ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant.
  sini/sinr = constant (μ)

### **Concave Lens**

A concave lens is a lens that diverges a straight light beam from the source to a diminished, upright, virtual image. It can form both real and virtual images. Concave lenses have at least one surface curved inside.

### Lens formula

•Lens formula 1/v-1/u = 1/f

# Linear magnification

- Linear Magnification: This is the ratio of the height of the image to the height of the object.
- m=h'/h = (v/u)...where m = magnification, h' = height of image, h = height of object

# For the two lenses, the sign conventions take the form

- u is- ve, if the object is in front of the lens. (Real object)
- · u is +ve, if the object is virtual.
- v is ve, if the image is on the same side as that of the object.
   (Virtual image)
- ·v is +ve, if the image is real.
- Focal length of a concave lens is taken as – ve.
- Focal length of a convex lens is taken as +ve.

### Refractive Index

It represents the amount or extent of bending of light when it passes from one medium to another.

Relative refractive index: Refractive index of medium with respect to other medium is called Relative Refractive Index.

Absolute refractive index: Refractive index of medium with respect to air or vacuum is called Absolute Refractive Index.