SDNSOC: Object Oriented SDN Framework

Ankur Chowdhary, Dijiang Huang, Gail-Joon Ahn, Myong Kang, Anya Kim and Alexander Velazquez

Arizona State University
US Naval Research Lab
SDNNFVSec, March 27 2019

Agenda

1. Introduction

- Policy Composition Challenged
- OpenFlow rule conflicts
- Need for programmatic framework
- 2. Motivation and Background
- 3. SDNSOC Architecture
- 4. Object Oriented Framework
- 5. Implementation and Evaluation
- 6. Conclusion and Future Work

Service Function Chaining

- Abstract Ordered List of Service Function types.
- Service Function: Function responsible for specific treatment of received packets.
- E.g. DPI, FW, NAT

Service Function Path (SFP)

- Provides directional details about SFC.
- Underlay and overlay transport details (VxLAN-NSH, Eth-NSH).
- Concrete SFs and Service Function Forwarders (SFFs).

Rendered Service Path (RSP)

- Actual service chain combining SFC and SFP
- Runtime representation of SFC.

Service Chain Classification

- Traffic flow matching based on Access Control List (ACL).
- Subscriber-tenant traffic flows to Service Chain mapping.
- Service Chain Encapsulation (NSH).

Service Function Chain: Use Case

SFC Issues

- Ordering and Application of SFs
- Security Considerations
- Topological Dependencies
- Configuration Complexity
- Constrained SF availability
- Transport Dependencies
- Traffic Selection Criteria

CONTRIBUTION

- SUPC utilizes packet header fields and traffic steering of SFs and to composes a set of OpenFlow rules with no duplicates.
- SFC Ordering and Placement Preservation using SFC Composition.
- SUPC identifies four major type of rule conflicts based on important network and security properties.

OpenFlow Table and Flow Rule

Flow Rule: $r_i = (p_i, \rho_i, h_i, a_i, s_i)$

Field	Interpretation
p_i	Rule Priority
$ ho_i$	Traffic Protocol – TCP/UDP
$h_i = (\alpha_{s_i}, \alpha_{d_i}, \beta_{s_i}, \beta_{d_i}, \gamma_{s_i}, \gamma_{d_i})$	Packet header = (L2 srcmac, L2 dstmac, L3 srcip, L3 dstip, L4 sport, L4 dport)
a_i	Action for the flow rule
s_i	Flow rule Statistics – packets/sec, bytes/sec.

SFC Requirements

- 1. Traffic coming into the network should be classified into different categories based on source IP address using Classifier SF.
- 2. Any traffic not part of data network security domain should be processed via Intrusion Detection System.
- 3. Data network traffic and SDN controller traffic should go through Load balancing SF.
- 4. Control plane traffic from SDN controller should be encrypted using public key encryption scheme.

SFC Example in Cloud

SFC Deployment Strategies

Strategy 1 Order: $C \rightarrow VPN \rightarrow IDS \rightarrow LB$.

Strategy 2 Order: $C \rightarrow LB \rightarrow IDS \rightarrow VPN$.

Strategy 3 Order: $C \rightarrow IDS \rightarrow VPN \rightarrow LB$.

SF Placement Issue

SFC Flow Composition Analysis

action protocol LOG tcp	srcip 192.168.1.0/24	srcpor	•	stport 5000-6010	- (1) IDS Rule Format - (2) IDS Rule
target protocol DROP tcp	opt in	out	srcip	dstip	- (3) Firewall Rule Format
	*	*	192.168.1.0/28	*	-(4) Firewall Rule

Source	Protocol	L ₂ Src	L ₂ Dst	L ₃ Src	L ₃ Dst	L ₄ Src	L ₄ Dst	Action	Priority
IDS	tcp	*	*	192.168.1.0/24	*	*	!6000-6010	LOG	1
Firewall	tcp	*	*	192.168.1.0/28	*	*	*	DROP	2

(a) OpenFlow rules before priority inversion

Source	Protocol	L ₂ Src	L ₂ Dst	L ₃ Src	L₃Dst	L ₄ Src	L ₄ Dst	Action	Priority
Firewall	tcp	*	*	192.168.1.0/24	*	*	*	DROP	1
IDS	tcp	*	*	192.168.1.0/24	*	*	!6000-6010	LOG	2

(b) OpenFlow rules after priority inversion

SFC Flow Conflict Analysis

(a) Intersection

$$\{ match(R_1) \cap match(R_2) \} \ \widehat{\&} \ \{ A(R_1) \neq A(R_2) \}$$

 $\{ match(R_1) \cap match(R_2) \} \ \widehat{\&} \ \{ A(R_1) = A(R_2) \}$

(b) Subsumption

 $\{ match(R_1) \subseteq match(R_2) \} \ \widehat{\&} \ \{ A(R_1) \neq A(R_2) \}$ $\{ match(R_1) \subseteq match(R_2) \} \ \& \ \{ A(R_1) = A(R_2) \}$

SFC Flow Conflict Analysis

(c) Transitivity

(d) Symmetry

 $P(Symmetry) \leftarrow \\ \{match(R_1), A(R_1)\} \cup \{match(R_2), A(R_2)\}$

Flow Rule Conflict Example

Rule-ID	Prot	L2 Src	L2 Dst	L3 Src	L3 Dst	L4 Src	L4 Dst	Action
1	tcp	*	*	192.168.1.0/24	192.168.2.20	*	*	ALLOW
2	tcp	*	*	192.168.1.16	192.168.2.0/24	*	*	ALLOW
3	tcp	*	*	192.168.1.18	192.168.2.0/24	*	*	DENY
4	tcp	*	*	192.168.1.0/24	192.168.2.0/28	*	*	ALLOW
5	tcp	*	*	192.168.1.0/28	192.168.2.0/28	443	443	DENY
6	tcp	*	*	192.168.2.0/24	192.168.3.0/24	*	*	ALLOW
7	tcp	*	*	192.168.1.0/24	192.168.3.0/24	80	80	DENY
8	tcp	*	*	192.168.2.0/24	192.168.1.0/24	*	*	ALLOW
9	tcp	*	*	192.168.2.12	192.168.1.0/24	*	80	DENY

EXPERIMENTAL ANALYSIS

Rule Composition Analysis

Time (s)	IDS+Netfilter Rules	Flow Rules
5	2056	54
10	4014	85
15	7166	104
20	9686	171
25	12241	179
30	13472	201

Table I

IDS AND NETFILTER OPENFLOW RULE COMPOSITION

SCALABILITY OF RULE COMPOSITION ALGORITHM

Number of Rules vs Composition Time - SUPC, PGA [8],

Figure 6.

FLOW RULE CONFLICT ANALYSIS RESULTS

CONCLUSION

- SUPC translates traffic and security policies of various SF into common OpenFlow format.
- Our experimental results on the dataset of Netfilter firewall rules and Bro IDS achieved a significant reduction in matching rules.
- SUPC identified four class of conflicts among the rules of various SFs which can cause security violations and service disruption.

References

Ч	rieutz, Diego, et al. Software-defined networking. A comprehensive survey.
	Proceedings of the IEEE 103.1 (2015): 14-76
	Fayazbakhsh, Seyed Kaveh, et al. "Flowtags: Enforcing network-wide policies in the
	presence of dynamic middlebox actions." Proceedings of the second ACM SIGCOMM

☐ Gember-Jacobson, Aaron, et al. "OpenNF: Enabling innovation in network function control." *ACM SIGCOMM Computer Communication Review*. Vol. 44. No. 4. ACM, 2014.

workshop on Hot topics in software defined networking. ACM, 2013...

- ☐ Gember-Jacobson, Aaron, et al. "OpenNF: Enabling innovation in network function control." *ACM SIGCOMM Computer Communication Review*. Vol. 44. No. 4. ACM, 2014.
- ☐ Joseph, Dilip A., Arsalan Tavakoli, and Ion Stoica. "A policy-aware switching layer for data centers." *ACM SIGCOMM Computer Communication Review*. Vol. 38. No. 4. ACM, 2008.
- ☐ McKeown, Nick, et al. "OpenFlow: enabling innovation in campus networks." *ACM SIGCOMM Computer Communication Review* 38.2 (2008): 69-74.

References

- □ Pisharody, Sandeep, et al. "Brew: A security policy analysis framework for distributed SDN-based cloud environments." *IEEE Transactions on Dependable and Secure Computing* (2017).
- □ Prakash, Chaithan, et al. "Pga: Using graphs to express and automatically reconcile network policies." *ACM SIGCOMM Computer Communication Review*. Vol. 45. No. 4. ACM, 2015.
- □ Sendi, Alireza Shameli, et al. "Efficient provisioning of security service function chaining using network security defense patterns." *IEEE Transactions on Services Computing* (2016).
- ☐ Trajkovska, Irena, et al. "SDN-based service function chaining mechanism and service prototype implementation in NFV scenario." *Computer Standards & Interfaces* 54 (2017): 247-265.
- □ Wang, Huazhe, et al. "SICS: Secure In-Cloud Service Function Chaining." *arXiv preprint arXiv:1606.07079* (2016).

THANK YOU

