Prácticas de Matlab

Diagrama de eficiencia con métodos monopaso explícitos

Hoja 3

Nombre:

Apellido:

DNI:

Table of Contents

Prácticas de Matlab	1
Diagrama de eficiencia con métodos monopaso explícitos	
loja 3	
1. Diagrama de eficiencia	
Práctica 1 (El método de Euler explícito)	
Práctica 2 (Euler mejorado)	
Práctica 3 (Euler modificado)	
Práctica 4 (Runge-Kutta 4)	
Apéndice código: funciones de Euler, Euler modificado, Euler mejorado y Runge-Kutta 4, para calcular y pi	
el diagrama de eficiencia y el orden	

1. Diagrama de eficiencia

Práctica 1 (El método de Euler explícito)

Consideramos el siguiente problema lineal

$$y'(t) = Ay(t) + B(t)$$
 para $0 \le t \le 10$, $y(0) = (2,3)^T$,

$$A = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t) \end{pmatrix}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$

Se pide lo siguiente

1. Resuelve este sistema mediante el método de Euler explícito, almacena el máximo en valor absoluto de la diferencia entre la solución exacta y la solución numérica calculada. Indicación: piensa qué norma vas a usar, dependiendo del tipo de salida (vector columna o vector fila) que haya producido tu algoritmo. Efectúa este cálculo para varias elecciones

- 2. del paso h_j con $j=0,\ldots,7$ siendo $h_0=0.1$, $h_j=\frac{h_0}{2^j}$. Almacena los diferentes valores de h_i en un vector h_{vect} .
- 3. del número de puntos N siendo $N_0 = 100$, $N_i = 2^i N_0$. Almacena los diferentes valores de N_i en un vector N_{vect} .
- 4. número de las evaluaciones totales Ev_i que realiza cada algoritmo para cada valor de h_i . Almacena los valores en un vector Ev_{vect} .
- 5. Almacena los distintos errores en un vector de nombre error_euler

Además

- Dibuja, en una misma ventana, en escala logarítmica, el error almacenado en el apartado anterior frente al paso h, h_{vect} * Indicación:* usa el comando loglog en vez del comando plot.
- ullet Repite en otra figura lo mismo pero dibujando el error frente al vector N_{vect}
- Calcula la pendiente da la recta.
- Repite en otra figura lo mismo pero dibujando el error frente al vector Ev_{vect} .
- Interpreta el resultado.

Práctica 2 (Euler mejorado)

Repite el apartado anterior con el método de Euler mejorado

Práctica 3 (Euler modificado)

Repite el apartado anterior con el método de Euler modificado

Práctica 4 (Runge-Kutta 4)

Repite el apartado anterior con el método de Runge-Kutta de orden 4.

OJO: pon siempre el diagrama de eficiencia de Euler, Euler modificado, Euler mejorado y Runge Kutta 4 en una gráfica:

Error maximo vs h Problema no stiff intv=[0 10] y0=[2 3] N_{int}=200 M=7

Error maximo vs N Problema no stiff intv=[0 10] y0=[2 3] N_{int}=200 M=7

Error maximo vs Ev Problema no stiff intv=[0 10] y0=[2 3] N_{int}=200 M=7

Apéndice código: funciones de Euler, Euler modificado, Euler mejorado y Runge-Kutta 4, para calcular y pintar el diagrama de eficiencia y el orden