

An Illustrative Example

Apple/Banana Sorter

Prototype Vectors

Measurement Vector

$$\mathbf{p} = \begin{bmatrix} \text{shape} \\ \text{texture} \\ \text{weight} \end{bmatrix}$$

Shape: {1 : round ; -1 : eliptical} Texture: {1 : smooth; -1 : rough} Weight: $\{1 : > 1 \text{ lb.}; -1 : < 1 \text{ lb.}\}$

Prototype Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \qquad \mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Prototype Apple

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Perceptron

Two-Input Case

Inputs Two-Input Neuron

$$a = hardlims(n) = hardlims(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \mathbf{p} + (-2))$$

Decision Boundary

$$\mathbf{W}\mathbf{p} + b = 0 \qquad \begin{bmatrix} 1 & 2 \end{bmatrix} \mathbf{p} + (-2) = 0$$

Apple/Banana Example

$$a = hardlims \left[w_{1,1} \ w_{1,2} \ w_{1,3} \right] \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b$$

The decision boundary should separate the prototype vectors.

$$p_1 = 0$$

The weight vector should be orthogonal to the decision boundary, and should point in the direction of the vector which should produce an output of 1. The bias determines the position of the boundary

$$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + 0 = 0$$

Testing the Network

Banana:

$$a = hardlims \left[\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = 1 \text{(banana)}$$

Apple:

$$a = hardlims \left[\begin{bmatrix} 1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = -1 \text{ (apple)}$$

"Rough" Banana:

$$a = hardlims \left[\begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + 0 \right] = 1 \text{(banana)}$$

Hamming Network

Feedforward Layer

Feedforward Layer

For Banana/Apple Recognition

$$S = 2$$

$$\mathbf{W}^{1} = \begin{bmatrix} \mathbf{p}_{1}^{\mathrm{T}} \\ \mathbf{p}_{2}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$\mathbf{b}^1 = \begin{bmatrix} R \\ R \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$\mathbf{a}^{1} = \mathbf{W}^{1}\mathbf{p} + \mathbf{b}^{1} = \begin{bmatrix} \mathbf{p}_{1}^{T} \\ \mathbf{p}_{2}^{T} \end{bmatrix} \mathbf{p} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{1}^{T}\mathbf{p} + 3 \\ \mathbf{p}_{2}^{T}\mathbf{p} + 3 \end{bmatrix}$$

Recurrent Layer

$$a^{2}(0) = a^{1}$$
 $a^{2}(t+1) = poslin(W^{2}a^{2}(t))$

$$\mathbf{W}^2 = \begin{bmatrix} 1 & -\varepsilon \\ -\varepsilon & 1 \end{bmatrix} \qquad \varepsilon < \frac{1}{S-1}$$

$$\mathbf{a}^{2}(t+1) = \mathbf{poslin}\left[\begin{bmatrix} 1 & -\varepsilon \\ -\varepsilon & 1 \end{bmatrix} \mathbf{a}^{2}(t)\right] = \mathbf{poslin}\left[\begin{bmatrix} a_{1}^{2}(t) - \varepsilon a_{2}^{2}(t) \\ a_{2}^{2}(t) - \varepsilon a_{1}^{2}(t) \end{bmatrix}\right]$$

Hamming Operation

First Layer

Input (Rough Banana)

$$\mathbf{p} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\mathbf{a}^{1} = \begin{bmatrix} -1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} (1+3) \\ (-1+3) \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Hamming Operation

Second Layer

$$\mathbf{a}^{2}(1) = \mathbf{poslin}(\mathbf{W}^{2}\mathbf{a}^{2}(0)) = \begin{cases} \mathbf{poslin}\begin{pmatrix} 1 & -0.5 \\ -0.5 & 1 \end{pmatrix} \begin{bmatrix} 4 \\ 2 \end{pmatrix} \\ \mathbf{poslin}\begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\mathbf{a}^{2}(2) = \mathbf{poslin}(\mathbf{W}^{2}\mathbf{a}^{2}(1)) = \begin{cases} \mathbf{poslin}\left[\begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix}\right) \\ \mathbf{poslin}\left[\begin{bmatrix} 3 \\ -1.5 \end{bmatrix}\right] = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Hopfield Network

Apple/Banana Problem

$$\mathbf{W} = \begin{bmatrix} 1.2 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 0.9 \\ -0.9 \end{bmatrix}$$

$$a_1(t+1) = satlins(1.2a_1(t))$$

$$a_2(t+1) = satlins(0.2a_2(t) + 0.9)$$

$$a_3(t+1) = \text{satlins}(0.2a_3(t) - 0.9)$$

Test: "Rough" Banana

$$\mathbf{a}(0) = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\mathbf{a}(1) = \begin{bmatrix} -1 \\ 0.7 \\ -1 \end{bmatrix}$$

$$\mathbf{a}(2) = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

$$\mathbf{a}(0) = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \qquad \mathbf{a}(1) = \begin{bmatrix} -1 \\ 0.7 \\ 1 \end{bmatrix} \qquad \mathbf{a}(2) = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{a}(3) = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \quad \text{(Banana)}$$

Summary

Perceptron

- Feedforward Network
- Linear Decision Boundary
- One Neuron for Each Decision

Hamming Network

- Competitive Network
- First Layer Pattern Matching (Inner Product)
- Second Layer Competition (Winner-Take-All)
- # Neurons = # Prototype Patterns

Hopfield Network

- Dynamic Associative Memory Network
- Network Output Converges to a Prototype Pattern
- # Neurons = # Elements in each Prototype Pattern