

d da

davidcorzo@ufm.edu (sign out)

Home My Assignments Grades Communication Calendar

My eBooks

← MC 113, section A, Spring 2020

14.5 Regla Cadena y Derivación Implicita (Homework)

INSTRUCTOR
Christiaan Ketelaar
Universidad Francisco
Marroquin

3/6/2020 14.5 Regla Cadena y Derivación Implicita - MC 113, section A, Spring 2020 | WebAssign

2. _/1 points 🗸

<u>dw</u> _

SCALCET8 14.5.005.

Ask Your Teacher 💙

Use the Chain Rule to find dw/dt.

 $w = xe^{y/z}$, $x = t^5$, y = 4 - t, z = 2 + 3t

SCALCET8 14.5.012.

Ask Your Teacher 🗸

Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$.

3/6/2020 SAI, WAK /, ZUZU

11:59 PM CST

14.5 Regla Cadena y Derivación Implicita - MC 113, section A, Spring 2020 | WebAssign

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

1. -/1 points 🗸

SCALCET8 14.5.001.

My Notes

Ask Your Teacher 🗸

Use the Chain Rule to find dz/dt.

$$z = xy^9 - x^2y, \quad x = t^2 + 1, \quad y = t^2 - 1$$

$$\frac{dz}{dt} =$$

https://www.webassign.net/web/Student/Assignment-Responses/last?dep=22834897

.

3/6/2020

14.5 Regla Cadena y Derivación Implicita - MC 113, section A, Spring 2020 | WebAssign

. _-/2 points 🗸

SCALCET8 14.5.023.

My Notes

Ask Your Teacher 🗸

Use the Chain Rule to find the indicated partial derivatives.

$$\frac{w = xy + yz + zx, \quad x = r\cos(\theta), \quad y = r\sin(\theta), \quad z = r\theta;}{\frac{\partial w}{\partial r}, \quad \frac{\partial w}{\partial \theta} \quad \text{when } r = \frac{6}{6}, \theta = \frac{\pi}{2}}$$

$$\frac{\partial w}{\partial \theta} = \frac{\partial w}{\partial \theta} = \frac{\partial w}{\partial \theta}$$

SCALCET8 14.5.027.

My Notes

Ask Your Teacher 🗸

Use this equation to find dy/dx.

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{dy}{dx} \right)^2 = \frac{1}{2} \left(\frac{dy}$$

SCALCET8 14.5.029.

My Notes

Ask Your Teacher 🗸

Use this equation to find dy/dx.

$$\frac{dy}{dx} = \frac{1}{1} (x^2y) = x + xy^2$$

-/1 points ∨

SCALCET8 14.5.031.

My Notes

Ask Your Teacher 🗸

Use the <u>equations</u> to find $\partial z/\partial x$ and $\partial z/\partial y$.

https://www.webassign.net/web/Student/Assignment-Responses/last?dep=22834897

3/6/2020

14.5 Regla Cadena y Derivación Implicita - MC 113, section A, Spring 2020 | WebAssign

11. -/1.5 points **∨**

SCALCET8 14.5.512.XP.

My Notes

Ask Your Teacher 🗸

Use the Chain Rule to find the indicated partial derivatives.

$$z = x^{3} + xy^{4}, \quad x = uv^{4} + w^{3}, \quad y = u + ve^{w}$$

$$\frac{\partial z}{\partial u}, \quad \frac{\partial z}{\partial v}, \quad \frac{\partial z}{\partial w} \quad \text{when } u = 1, \quad v = 1, \quad w = 0$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial v} = \frac{\partial z}{\partial w} =$$

-/1 points ∨

3/6/2020

SCALCET8 14.5.035.MI.

My Notes

Ask Your Teacher 🗸

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{2 + t}$, $y = 4 + \frac{1}{2}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 5) = 8$ and $T_y(2, 5) = 5$. How fast is the temperature rising on the bug's path after 2 seconds? (Round your answer to two decimal places.)

-/1 points ∨

SCALCET8 14.5.502.XP.

My Notes

Ask Your Teacher 🗸

Use the Chain Rule to find dz/dt.

$$z = \cos(x + 7y), \quad x = 2t^3, \quad y = 4/t$$

$$\frac{dz}{dt} = \frac{1}{2t^3}$$

-/0 points ∨

SCALCET8 14.5.509.XP.

My Notes

Ask Your Teacher 🗸

If z = f(x, y), where f is differentiable, and

https://www.webassign.net/web/Student/Assignment-Responses/last?dep=22834897

3/6/2020

14.5 Regla Cadena y Derivación Implicita - MC 113, section A, Spring 2020 | WebAssign

12. -/2.5 points ∨

SCALCET8 14.5.AE.002.

My Notes

Ask Your Teacher 💙

Video Example (1)

EXAMPLE 2 The pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation PV = 8.31T. Find the rate at which the pressure is changing when the temperature is 200 K and increasing at a rate of 0.3 K/s and the volume is 100 L and increasing at a rate of 0.4 L/s.

SOLUTION If *t* represents the time elapsed in seconds, then at the given instant, we have T = 200, dT/dt = 0.3, V = 100, dV/dt = 0.4. Since

$$P = 8.31 \frac{T}{V}$$

the Chain Rule gives the following. (Round your final answer to five decimal places.)

$$\frac{dP}{dt} = \frac{\partial P}{\partial T} \frac{dT}{dt} + \frac{\partial P}{\partial V} \frac{dV}{dt}$$

$$= \frac{8.31}{V} \frac{dT}{dt} - \left(\frac{1}{V} \frac{dV}{dt} \right)$$

$$= \frac{8.31}{100} \left(\frac{1}{V} \right) - \frac{8.31(200)}{100^2} \left(\frac{1}{V} \right)$$

$$= \frac{8.31}{100} \left(\frac{1}{V} \right) - \frac{8.31(200)}{100^2} \left(\frac{1}{V} \right)$$

The pressure is decreasing at a rate, rounded to three decimal places, of about kPA/s.

Use these equations to find $\partial z/\partial x$ and $\partial z/\partial y$ for the following.

Submit Assignment | Save Assignment Progress

Copyright 2020 Cengage Learning, Inc. All Rights Reserved