Hierarchical Clustering

```
In [1]: # Load the data
  data("USArrests")

# Standardize the data
  df <- scale(USArrests)

# Show the first 6 rows
  head(df, nrow = 6)</pre>
```

Out[1]:

A matrix: 6×4 of type dbl

	Murder	Assault	UrbanPop	Rape
Alabama	1.24256408	0.7828393	-0.5209066	-0.003416473
Alaska	0.50786248	1.1068225	-1.2117642	2.484202941
Arizona	0.07163341	1.4788032	0.9989801	1.042878388
Arkansas	0.23234938	0.2308680	-1.0735927	-0.184916602
California	0.27826823	1.2628144	1.7589234	2.067820292
Colorado	0.02571456	0.3988593	0.8608085	1.864967207

Similarity measures

```
In [2]: # Compute the dissimilarity matrix
# df = the standardized data
res.dist <- dist(df, method = "euclidean")</pre>
```

To see easily the distance information between objects, we reformat the results of the function dist() into a matrix using the as.matrix() function.

```
In [3]: as.matrix(res.dist)[1:6, 1:6]

Out[3]: A matrix: 6 × 6 of type dbl
```

	Alabama	Alaska	Arizona	Arkansas	California	Colorado
Alabama	0.000000	2.703754	2.293520	1.289810	3.263110	2.651067
Alaska	2.703754	0.000000	2.700643	2.826039	3.012541	2.326519
Arizona	2.293520	2.700643	0.000000	2.717758	1.310484	1.365031
Arkansas	1.289810	2.826039	2.717758	0.000000	3.763641	2.831051
California	3.263110	3.012541	1.310484	3.763641	0.000000	1.287619
Colorado	2.651067	2.326519	1.365031	2.831051	1.287619	0.000000

Linkage

The linkage function takes the distance information, returned by the function dist(), and groups pairs

of objects into clusters based on their similarity.

```
In [4]:
    res.hc <- hclust(d = res.dist, method = "ward.D2")</pre>
```

Dendrogram

```
In [5]: # cex: label size
    library("factoextra")
    fviz_dend(res.hc, cex = 0.5)

Loading required package: ggplot2

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
```

Out[5]: Cluster Dendrogram


```
In [6]: # Compute cophentic distance
  res.coph <- cophenetic(res.hc)

# Correlation between cophenetic distance and
  # the original distance
  cor(res.dist, res.coph)</pre>
```

Out[6]: 0.697526563237039

```
res.hc2 <- hclust(res.dist, method = "average")
cor(res.dist, cophenetic(res.hc2))</pre>
```

```
Out[7]: 0.718038237932047
```

we see that, the average linkage method gives better correlation.

Cut the dendrogram into different groups

```
In [8]:
           # Cut tree into 4 groups
           grp \leftarrow cutree(res.hc, k = 4)
           head(grp, n = 4)
 Out[8]: Alabama: 1 Alaska: 2 Arizona: 2 Arkansas: 3
 In [9]:
           # Number of members in each cluster
           table(grp)
 Out[9]: grp
           1 2 3 4
           7 12 19 12
In [10]:
           # Get the names for the members of cluster 1
           rownames(df)[grp == 1]
Out[10]: 'Alabama' · 'Georgia' · 'Louisiana' · 'Mississippi' · 'North Carolina' · 'South Carolina' · 'Tennessee'
In [11]:
           fviz_dend(res.hc, cex = 0.5, k = 4,
            color_labels_by_k = FALSE, rect = TRUE)
             Cluster Dendrogram
Out[11]:
            10-
```

Non Hierarchical Clustering

Computing K-means clustering

```
data("USArrests")  # Loading the data set
    df <- scale(USArrests) # Scaling the data

# View the firt 3 rows of the data
head(df, n = 3)</pre>
```

Out[12]:

A matrix: 3 × 4 of type dbl

	Murder	Assault	UrbanPop	Rape
Alabama	1.24256408	0.7828393	-0.5209066	-0.003416473
Alaska	0.50786248	1.1068225	-1.2117642	2.484202941
Arizona	0.07163341	1.4788032	0.9989801	1.042878388

```
In [13]: library(factoextra)
```

Determine the optimal number of clusters for k-means clustering:

```
In [14]:
# Elbow method
fviz_nbclust(df, kmeans, method = "wss") +
geom_vline(xintercept = 4, linetype = 2)+
labs(subtitle = "Elbow method")
```

```
Out[14]:
```

Optimal number of clusters


```
In [15]:
```

```
# Compute k-means with k = 4
           set.seed(123)
           km.res \leftarrow kmeans(df, 4, nstart = 25)
In [16]:
           # Print the results
           print(km.res)
          K-means clustering with 4 clusters of sizes 8, 13, 16, 13
          Cluster means:
                Murder
                           Assault
                                     UrbanPop
                                                       Rape
          1 1.4118898 0.8743346 -0.8145211 0.01927104
          2 -0.9615407 -1.1066010 -0.9301069 -0.96676331
          3 -0.4894375 -0.3826001
                                   0.5758298 -0.26165379
          4 0.6950701 1.0394414
                                    0.7226370
          Clustering vector:
                                                                              California
                 Alabama
                                  Alaska
                                                 Arizona
                                                                Arkansas
                Colorado
                             Connecticut
                                                Delaware
                                                                                  Georgia
                                                                 Florida
                                        3
                                                                                        1
                  Hawaii
                                   Idaho
                                                Illinois
                                                                 Indiana
                                                                                     Iowa
                        3
                                        2
                                                                                        2
                  Kansas
                                Kentucky
                                               Louisiana
                                                                    Maine
                                                                                Maryland
                        3
                                        2
                                                                        2
           Massachusetts
                                Michigan
                                               Minnesota
                                                             Mississippi
                                                                                Missouri
                 Montana
                                Nebraska
                                                  Nevada
                                                           New Hampshire
                                                                              New Jersey
                        2
                                        2
                                                                        2
                                                                                        3
              New Mexico
                                New York North Carolina
                                                            North Dakota
                                                                                     0hio
                                                                        2
                0klahoma
                                            Pennsylvania
                                                            Rhode Island South Carolina
                                  Oregon
                                                                        3
            South Dakota
                                                    Texas
                                                                     Utah
                               Tennessee
                                                                                  Vermont
                                        1
                                                                        3
                                                                                        2
                Virginia
                              Washington
                                           West Virginia
                                                               Wisconsin
                                                                                  Wyoming
                                        3
                                                                        2
                                                                                        3
          Within cluster sum of squares by cluster:
          [1] 8.316061 11.952463 16.212213 19.922437
           (between_SS / total_SS = 71.2 %)
          Available components:
                              "centers"
                                                                               "tot.withinss"
          [1] "cluster"
                                              "totss"
                                                              "withinss"
                              "size"
          [6] "betweenss"
                                              "iter"
                                                              "ifault"
In [17]:
           aggregate(USArrests, by=list(cluster=km.res$cluster), mean)
                        A data.frame: 4 × 5
Out[17]:
          cluster
                  Murder
                           Assault UrbanPop
                                                Rape
                   <dbl>
                             <dbl>
                                               <dbl>
           <int>
                                       <dbl>
              1 13.93750 243.62500
                                    53.75000 21.41250
                  3.60000
                          78.53846
                                    52.07692 12.17692
                  5.65625 138.87500
                                    73.87500 18.78125
                 10.81538 257.38462
                                    76.00000 33.19231
```

In [18]: dd <- cbind(USArrests, cluster = km.res\$cluster)
head(dd)</pre>

Out $\lceil 18 \rceil$: A data.frame: 6×5

	Murder	Assault	UrbanPop	Rape	cluster
	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<int></int>
Alabama	13.2	236	58	21.2	1
Alaska	10.0	263	48	44.5	4
Arizona	8.1	294	80	31.0	4
Arkansas	8.8	190	50	19.5	1
California	9.0	276	91	40.6	4
Colorado	7.9	204	78	38.7	4

In [19]:

Cluster number for each of the observations
km.res\$cluster

Out[19]: Alabama: 1 Alaska: 4 Arizona: 4 Arkansas: 1 California: 4 Colorado: 4 Connecticut: 3

Delaware: 3 Florida: 4 Georgia: 1 Hawaii: 3 Idaho: 2 Illinois: 4 Indiana: 3 Iowa: 2 Kansas: 3 Kentucky: 2 Louisiana: 1 Maine: 2 Maryland: 4 Massachusetts: 3 Michigan: 4 Minnesota: 2

Mississippi: 1 Missouri: 4 Montana: 2 Nebraska: 2 Nevada: 4 New Hampshire: 2

New Jersey: 3 New Mexico: 4 New York: 4 North Carolina: 1 North Dakota: 2 Ohio: 3

Oklahoma: 3 Oregon: 3 Pennsylvania: 3 Rhode Island: 3 South Carolina: 1 South Dakota: 2

Tennessee: 1 Texas: 4 Utah: 3 Vermont: 2 Virginia: 3 Washington: 3 West Virginia: 2

Wisconsin: 2 Wyoming: 3

In [20]: head(km.res\$cluster, 4)

Out[20]: Alabama: 1 Alaska: 4 Arizona: 4 Arkansas: 1

In [21]: # Cluster size km.res\$size

Out[21]: 8 · 13 · 16 · 13

In [22]:
Cluster means
km.res\$centers

Out [22]: A matrix: 4 × 4 of type dbl

	Murder	Assault	UrbanPop	Rape
1	1.4118898	0.8743346	-0.8145211	0.01927104
2	-0.9615407	-1.1066010	-0.9301069	-0.96676331
3	-0.4894375	-0.3826001	0.5758298	-0.26165379
4	0.6950701	1.0394414	0.7226370	1.27693964

Out[24]:

In [0]: