Exercice 1^{**} : Profils d'engrenages

A. Profil en développante.

Considérons les deux engrenages à profil en développante ci-dessous qui sont identiques, excepté l'entraxe qui vaut a pour celui de gauche doté d'un angle de pression standard de 20° et $a'=a+\Delta a$ pour celui de droite.

Figure 1

Comparer ces deux transmissions en termes

- 1. d'homocinétisme;
- 2. de rapport de réduction;
- 3. d'angle de pression;
- 4. de rapport de conduite.

B. Profil cycloïdal.

Nous considérons maintenant le même cas de figure, mais pour deux profils en cycloïde. Comparer les deux transmissions en termes

- 1. d'homocinétisme;
- 2. de rapport de réduction;

Exercice 2[★] : Dimensions d'un engrenage en développante

Considérons l'engrenage de la Fig. 2 doté des dimensions suivantes :

- -m=5 mm
- -z = 30

Figure 2

$$-\alpha = 20^{\circ}$$

Dans le tableau ci-dessous, complétez les cotes manquantes :

Description	Paramètre	Valeur
Ø cercle primitif	d	
pas primitif	p	
Ø cercle de tête	d_a	•••
Ø cercle de pied	p_f	
Ø cercle de base	d_b	
hauteur de dent	h	•••
pas de base	p_b	•••

Exercice 3: Usinage des engrenages

A. Procédé Fellows

Un engrenage est fabriqué par procédé Fellows avec l'outil suivant :

- m = 1
- -z = 20
- $-\alpha = 20^{\circ}$

Figure 3

- 1. Quel est le plus petit nombre de dents que cet outil peut usiner sur un engrenage sans engendrer d'interférence?
- B. Engrenage à denture droite

Un engrenage à denture droite est usiné par la fraise-mère ci-dessous dont la vitesse de rotation est ω_f . Lorsque l'engrenage se fait tailler par la fraise-mère, celui-ci est incliné d'un angle α par rapport à la verticale et tourne autour de son axe à la vitesse ω_r (cf. Fig. 5).

(a) Vue de côté de la fraise-mère en train de tailler l'engrenage

(b) Vue de face de la fraise-mère avec son sens de rotation

Laquelle des configurations d'inclinaison et de rotation de l'engrenage montrées en Fig.5 est la bonne?

Figure 5 : Quatre possibilités d'inclinaison et rotation de l'engrenage

Exercice 4^{*} : Résistance de la denture des engrenages

Soit le jeu de roues dentées suivant :

- Roue menante : $z_1 = 20$
- Roue menée : $z_2 = 50$
- Module : m = 5 mm
- Angle de pressions $\alpha = 20^{\circ}$
- Largueur des dentures : b = 20 mm
- Matériau des dentures : acier C45 avec
 - contrainte admissible en flexion : $\sigma_{F,adm} = 200 \text{ MPa}$
 - contrainte admissible en pression hertzienne : $\sigma_{H,adm} = 590~\mathrm{MPa}$
 - module de Young $E=210~\mathrm{GPa}$
- A. Quel est le couple maximum que peut supporter l'engrenage 2 :
 - 1. Selon de critère de sollicitation en flexion?
 - 2. Selon le critère de la sollicitation en pression hertzienne?
- B. Quel est donc le couple maximum admissible sur l'engrenage 2?