课程性质与教学目标

课程性质:深入了解计算机"内核"的一门最关键的基础课程。

教学目标: 要求掌握对数字系统硬件进行分析、设计和开发的基本技能。

教学时数: 64学时

课堂教学: 48 +实验: 16

考核:

实验×20% 十 (作业+课堂)×10% +期中×10% + 期末×60%

教学内容:

第一章 环关理论基础

§ 1.1 数字系统

一、数字系统:

处理数字信号的实体。

电子电路中的信号

模拟信号 幅度随时间连续变化的信号

数字信号 幅度随时间离散变化的二值信号

数字信号

高电平(1)

负逻辑: 高电平为"0", 低电平为"1"。

数字电路的特点:

- 1) 二值信号, 抗干扰能力强, 保密性好;
- 2) 通用性强,具有极强的信息处理和控制能力;

二、模拟电路与数字电路的区别

1、工作任务不同:

模拟电路: 大小、相位、失真等;

数字电路:逻辑关系(因果关系)。

2、晶体管的工作状态不同:

模拟电路:工作在线性放大区,是放大管;

数字电路:工作在饱和或截止状态,是开关管。

数字系统与模拟信号联系时,必须经过模/数(A/D)、数/模(D/A) 电路。

3、数字电路含有两种运算:

- 1) 数的算术运算;
- 2) 逻辑(控制)运算;

三、数字信号的表示

§1.2 数制与码制

1、数制

- 多位数码中每一位的构成方法
- 从低位到高位的进位规则

复习

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

二、常用编码

编码:用文字、符号或数码来表示某种信息的过程。

N项信息进行编码,要求二进制代码的位数n应满足

$$2^n \ge N$$

ASCII 码 (用7位二进制数进行编码)

1. 二~十进制编码(BCD码)

用四位二进制代码表示一位十进制数的计数符号的编码方法。

1.1. 有权 BCD 码

每一位都有固定权值的BCD码。 < 2421码

8421码 2421码 5421码

1) 8421 码

用0000~1001(自然二进制)代表0~9。权值从高往低分别为8,4,2,1。 冗余1010--1111。

8421码是一种人机联系时广泛使用的中间形式

十进制数	8421码
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

直接按位转换

(28)
$$_{10}$$
 = (00101000) $_{8421}$

(28)
$$_{10} = (11100)_{2}$$

Decimal	Binary	BCD
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001
10	1010	00010000
11	1011	00010001
12	1100	00010010
13	1101	00010011
14	1110	00010100
15	1111	00010101

8421码的特点:

- 1) 1010—1111为冗余码
- 2) 运算时按逢10进1的原则,并且要进行调整。

调整原则:有进位或出现冗余码(和>9)时,+6调整。

判9加6

2) 2421 码

权值由高到低分别为: 2,4,2,1。

- 不允许出现0101~1010的6种状态。
- 取对9的自补码

执行十进制数相加时,能正确地产生进位信号。

十进制	2.4.2.1 码
0	0000
1	0001
2	0010
3	0011
4	0100
5	1011
6	1100
7	1101
8	1110
9	1111

1.2. 无权 BCD 码 (余3码)

将8421码的每个码都加0011。

- 是一种无权码。
- 有六个冗余码。(0000、0001、0010、1101、1110、1111)
- 对9的自补码。

十进制	余 3 码	
0	0011	
1	0100	
2	0101	
3	0110	
4	0111	
5	1000	
6	1001	
7	1010	
8	1011	
9	1100	

执行十进制数相加时,能正确地产生进位信号。

2、可靠性编码

为减少错误的产生,或者能检测出错误的发生, 所设定的码制。

2.1. 循环码(典型格雷码)

多种编码方案,相邻的两个代码只有1位取值 不同。减少传输错误。

$$\begin{cases} G_{n-1} = B_{n-1} \\ G_i = B_i \oplus B_{i+1} & \text{o \leq i \leq n-2} \end{cases}$$

例:13的格雷码:

G:	1	0	1	1
	ļ,		<u>ر</u> ل	#
D	1	1		\
B :	I	1	U	

Decimal	Binary	Gray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

十进制	余 3 码	10进制余3格雷码
0	0011	0010
1	0100	0110
2	0101	0111
3	0110	0101
4	0111	0100
5	1000	1100
6	1001	1101
7	1010	1111
8	1011	1110
9	1100	1010

2.2、奇偶校验码

用来检验在传送过程中是否产生错误的代码。码中1的个数强制为奇数(或偶数)。

1) 组成(两部分):

2) 编码方式 (两种):

信息位(7位)	采用奇检验的检验位(1位)	采用偶检验的检验位 (1位)
1001101	1 1001101	0 1001101

3)特点

- (1) 编码简单、容易实现;
- (2) 奇偶检验码只有检错能力,没有纠错能力;
- (3) 只能发现单错,不能发现双错。

§1.3 逻辑函数及其描述工具

真值表:

逻辑代数式

$$\mathbf{F} = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{B}$$

逻辑图:

卡诺图

波形图

硬件描述语言

六种表示方法

一、基本逻辑运算及逻辑门

逻辑代数表示逻辑思维,将逻辑归结为一种代数演算的数学工具。(George Boole、Shannon)。是数字系统的理论基础和重要数学工具!

逻辑代数不表示数量的大小关系,而是逻辑因果关系。它的三种基本运算式:与、或、非。

1. 与运算(逻辑乘)

开关(A, B, C) 断开为0、闭合为1; 灯F灭为0; 亮为1;

A、B、C都具备时,事件F才发生。

(1) 函数式:

输入与输出之间的关系写成与、或、非等运算的组合式。

$$\mathbf{F} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$$

(2) 真值表:

将变量的所有取值组合与相应函数F的值列成的表。

真值表具有唯一性。

逻辑功能:输入有0,输出为0

(3) 逻辑图:

用逻辑符号表示形成的逻辑电路图。

(a) 国家标准 (b) 国外流行 (c) 国际标准

A	В	С	F
0	0	0	0
0	1	1	0
0	1	0	0
1	0	1	0
1	0	0	0
1	1	1	1

(4) 波形图:

 $F = A \cdot B \cdot C$

用电平的高低表示逻辑变量变化的图形。

F = A & B & C

A	В	C	F
0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	0 1 1 1 1 1

A、B、C只要有一个具备时,事件F就发生。

$$F = A + B + C$$

逻辑功能:输入有1,输出为1

$$F = A \mid B \mid C$$

3. 非运算

$$F = \overline{A}$$

A	F	
0	1	
1	0	

$$\mathbf{F} = \sim \mathbf{A}$$
 (verilog)

A=0011时x=1,则?=

- 4. 复合逻辑运算
- 1) 与非、或非逻辑
- 与非:

$$\mathbf{F} = \overline{\mathbf{A}\mathbf{B}}$$

$$F = \sim (A \& B)$$
 (verilog)

运算规则: 先与/后非

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F = \overline{A + B}$$

$$\mathbf{F} = \sim (\mathbf{A} \mid \mathbf{B})$$
 (verilog)

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

运算规则: 先或/后非

2) 与或非运算

$$F = \overline{AB + CD}$$

运算规则: 先与/后或/再非

A=0011时x=0,则?=

飞机着陆功能检测系统

3) 异或逻辑

• 两变量异或:

A、B相异,输出为1。"按位加"

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F = A \oplus B = A\overline{B} + \overline{A}B$$

$$F = A \wedge B$$
 (verilog)

• 多变量的"异或"

$$Y = A \oplus B \oplus C \oplus D$$

• "异或"电路的特殊功能

> 奇偶检测电路

输入变量有奇数个1,则输出为1;

否则,输出为0。

$$A \oplus \emptyset = A \qquad A \oplus 1 = \overline{A}$$

$$C = 0$$
 时, $F = A$ $C = 1$ 时, $F = \overline{A}$

$$C=1$$
时, $F=\overline{A}$

Binary to Gray

$$\begin{cases} G_3 = B_3 \\ G_2 = B_3 \oplus B_2 \\ G_1 = B_2 \oplus B_1 \\ G_0 = B_1 \oplus B_0 \end{cases}$$

Gray to Binary

$$\begin{cases} B_3 = G_3 \\ B_2 = B_3 \oplus G_2 \\ B_1 = B_2 \oplus G_1 \\ B_0 = B_1 \oplus G_0 \end{cases}$$

4) 同或 (异或非):

A、B相同,输出为1。

$$F = A \odot B = AB + AB == A \oplus B$$

偶数个变量: 同或、异或互为非;

奇数个变量: 同或、异或相等。

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

A=B (?)

比较器

§ 补1 两类特殊门电路

一. 三态门(TSL 门)

TSL 门(Three State Logic):输出有0、1两种状态外,还有高阻状态

F

高阻

B

X

0

Α

0

(禁止态)。

1. 基本概念:

(1) 使能端高电平有效:

E (Enable) 使能端。

E=1 时,输出 $F=\overline{AB}$;

E=0时,与非门禁止,输出呈现高阻状态。

(2) 使能端低电平有效:

E	A	В	F
1	X	X	高阻
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0

当
$$E=0$$
 时, $F=\overline{AB}$;

当 E=1时,与非门禁止,输出呈现高阻状态。

2. 基本应用

是在数字系统中构成总线(Bus)。

(1) 单向总线

信号的分时传送 (选择传送)

E_1	E_2	E_3	Y
0	1	1	$\overline{\mathbf{A}_1}$
1	0	1	$\overline{\mathrm{A}_2}$
1	1	0	\overline{A}_3
1	1	1	高阻

任何时刻,发送数据时,只允许一个三态门使能,其余为高阻态。

(2) 双向总线

两个不同系统间信号的双向传送

E_N	信号传输方向
0	$\overline{D} \longrightarrow Y$
1	$\overline{Y} \longrightarrow D$

二. 集电极开路与非门(OC门 open-collector)

