NASA Technical Paper 2176

October 1983

Low-Speed Aerodynamic Characteristics of a Highly Swept, Untwisted, Uncambered Arrow Wing

Paul L. Coe, Jr., Scott O. Kjelgaard, and Garl L. Gentry, Jr.

NASA Technical Paper 2176

1983

Low-Speed Aerodynamic Characteristics of a Highly Swept, Untwisted, Uncambered Arrow Wing

Paul L. Coe, Jr., Scott O. Kjelgaard, and Garl L. Gentry, Jr. Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

SUMMARY

An investigation was conducted in the Langley 4- by 7-Meter Tunnel to provide a detailed study of wing pressure distributions and forces and moments acting on a highly swept arrow-wing model at low Mach numbers (0.25). A limited investigation of the effect of spoilers at several locations was also conducted.

Analysis of the pressure data shows that for the configuration with undeflected leading edges, vortex separation occurs on the outboard wing panel for angles of attack on the order of only 3°, whereas conventional leading-edge separation occurs at a nondimensional semispan station of 0.654 for the same incidence angle. The pressure data further show that vortex separation exists at wing stations more inboard for angles of attack on the order of 7° and that these vortices move inboard and forward with increasing angle of attack. The force and moment data show the expected nonlinear increments in lift and pitching moment and the increased drag associated with the vortex separation.

The pressure data confirm that deflecting the entire wing leading edge uniformly to 30° is effective in forestalling the onset of flow separation to angles of attack greater than 8.6°. The corresponding force and moment data show that deflecting the leading edge yields improvements in lift and pitching-moment linearity with marked improvements in drag characteristics. Previous investigations have indicated that in this deflected condition, the inboard portion of the leading edge is overdeflected and results in a lift decrement and a drag increment. The pressure data confirm that with 30° deflection, the inboard portion of the leading edge is overdeflected. The investigation further identifies the contribution of the trailing-edge flap deflection to the leading-edge upwash field.

Spoilers located ahead of the trailing-edge flap system produce substantial reductions in lift and positive increments in pitching moment which accompany the increase in drag. However, a spoiler located outboard of the trailing-edge flap system was effective in producing equivalent increases in drag with only a minimal effect on lift and pitching moment.

INTRODUCTION

This investigation is part of an overall research effort by the National Aeronautics and Space Administration (NASA) to investigate the aerodynamic characteristics of advanced aircraft concepts designed for sustained cruise at supersonic speeds. To achieve high levels of supersonic-cruise efficiency, many of these conceptual designs employ highly swept, twisted, and cambered arrow wings. (See refs. 1 and 2.) Such designs typically incorporate a reduced sweep on the outer wing panel, which is intended to alleviate deficiencies in subsonic aerodynamic performance, stability, and control. However, experimental results indicate that these subsonic aerodynamic deficiencies are the result of flow separation along the entire leading edge and that reducing the outboard-panel sweep is only partially effective. Previous experiments with highly swept wings have demonstrated partial success in developing leading-edge treatments which are effective for inhibiting leading-edge flow separation. (See refs. 3 to 8.) These experiments were conducted with models of supersonic-cruise configurations which had wings with representative thickness,

twist, and camber distributions, in addition to deflectable leading-edge devices. For this reason, the separate effects of these geometric variables on leading-edge flow separation are not well understood.

The primary objective of the investigation reported herein was to provide a detailed study of wing pressure distributions and forces and moments acting on a highly swept arrow-wing model. The data were obtained to aid in understanding the effects of leading-edge deflection. To provide a more fundamental experiment than those previously conducted, the wing used in this investigation had a representative thickness distribution and neither twist nor camber were incorporated. The results of this study are intended to provide a base line for future assessments of various leading-edge geometries and for determinations of the detailed effects of twist and camber.

In addition to the primary concern with leading-edge flow separation, the investigation also included a limited study of the effects of spoiler location. Spoiler locations which result in increased drag with minimum change in lift and pitching moment are of interest. Deployment of spoilers in these locations would be useful for obtaining steeper landing-approach angles (and thereby potential reductions in community-noise exposure).

SYMBOLS

The longitudinal data are referred to the stability system of axes illustrated in figure 1. The moment reference center for the tests was located at 59.16 percent of the reference mean aerodynamic chord. The reference wing area and chord are based on the wing planform which results from extending the inboard (74°) leading-edge sweep angle and the outboard (41.46°) trailing-edge sweep angle to the model center line. (See fig. 2.)

The dimensional quantities are given in both the International System of Units (SI) and the U.S. Customary Units. The computer symbols enclosed in parentheses are used in a tabular listing of data in the appendix.

A		aspect ratio
b		wing span, m (ft)
C_{D}	(CD)	drag coefficient, Drag/qS _{ref}
C _{D,o}		drag coefficient at zero-lift condition
$C_{\mathbf{L}}$	(CL)	lift coefficient, Lift/qS _{ref}
$^{\text{C}}_{_{\text{L}_{\alpha}}}$		$= \partial C_{L} / \partial \alpha$
C _m	(CPM)	pitching-moment coefficient, Pitching moment/qSrefc
c_p		pressure coefficient, (p - p _w)/q
С		chord length at wing span station y, m (ft)
c		mean aerodynamic chord, m (ft)

p	static pressure, Pa (lbf/ft ²)
p_{∞}	free-stream static pressure, Pa (lbf/ft ²)
q	free-stream dynamic pressure, Pa (lbf/ft ²)
S	leading-edge suction parameter
Sref	reference wing area, m^2 (ft ²)
s ₁ ,s ₂ ,s ₃ ,s ₄	spoiler elements (see fig. 3)
t ₁ ,t ₃	trailing-edge flap elements (see fig. 3)
X,Y,Z	body-axis system
x,y,z	coordinates in body-axis system, m (ft)
α (ALPHA)	angle of attack, deg
Υ	spanwise distance from center line nondimensionalized by local wing semispan
Δ	increment
$\delta_{ t f}$	angular deflection of wing trailing-edge flap segments t ₁ and t ₃ , measured perpendicular to hinge line, positive downward, deg (see fig. 3)
δ ie	angular deflection of wing leading edge, measured perpendicular to hinge line, positive downward, deg (see fig. 3)
δ _s	angular deflection of spoiler segment, measured perpendicular to segment hinge line, positive upward, deg (see fig. 3)
η	distance aft of leading edge, nondimensionalized by local chord length
ξ	distance aft of wing apex, nondimensionalized by wing root chord
Abbreviations:	
L.E.	leading edge
T.E.	trailing edge

MODEL

The principal dimensional characteristics of the model used in the present study are listed in table I and shown in figures 2 and 3. In addition, a listing of the computer cards required for a numerical model is given in table II. The format for the listing provided in table II is described in reference 9. A photograph of the model in the Langley 4- by 7-Meter Tunnel is presented in figure 4.

The model incorporated a high-lift system comprised of plain leading- and trailing-edge flaps (see fig. 2); however, the model did not incorporate either nacelles or an aft fuselage. Spoilers were simulated by using sheet metal as sketched in figure 3.

TEST AND CORRECTIONS

The investigation was conducted in the Langley 4- by 7-Meter Tunnel at subsonic speeds. Forces and moments were measured with a standard six-component strain-gage balance mounted internal to the model. Wing-surface static pressures were measured by using 48-port scanning valves also mounted internal to the model. The tests were conducted at a dynamic pressure of 4309.2 Pa (90 lbf/ft 2). This value of dynamic pressure resulted in a Reynolds number (based on the wing mean aerodynamic chord) of 4.8 \times 10 6 at a corresponding Mach number of 0.25. The angle of attack ranged from about -4° to 16°.

Jet-boundary corrections to the angle of attack and drag were applied in accordance with reference 10. Blockage corrections were applied to the data by the method of reference 11. Balance chamber pressure and model base pressure were measured and the drag measurements were adjusted to correspond to conditions of free-stream static pressure acting over the base of the model.

In accordance with the method of reference 12, 0.16-cm-wide (0.0625-in.) transition strips of No. 70 carborundum grains were placed 3.81 cm (1.5 in.) aft of the leading edges of the wing and outboard vertical tails. Similarly, No. 80 carborundum grains were placed 3.81 cm (1.5 in.) aft of the model nose.

RESULTS AND DISCUSSION

The present investigation was intended to examine the wing flow field and the detailed effects of leading-edge deflection for a highly swept arrow-wing configuration. In addition, a limited investigation of the effect of spoiler placement was conducted. Experimentally measured force and pressure data were also compared with theoretical predictions for some cases. A run schedule and a tabular listing of data (see tables AI and AII, respectively) are provided in the appendix.

Configuration With Undeflected Leading Edge

The experimental longitudinal aerodynamic characteristics of the basic configuration with undeflected leading and trailing edges are presented in figure 5. Also presented for purposes of comparison are theoretical lift and pitching-moment characteristics computed by using a planar vortex-lattice theoretical model. Reference 13 presents a discussion of the particular vortex-lattice mathematical model and computer code used for the theoretical prediction. Previous studies (ref. 7) have used a vortex-lattice model in an attempt to predict the aerodynamic characteristics for conditions with separated vortex flows. However, the underlying intent of the present work is toward the attainment of attached flow and, therefore, the theoretical results presented are representative of the attached-flow condition. As expected, the experimental lift data at low-angle-of-attack attached-flow conditions agree well

with the theoretical predictions (e.g., $C_{L_{\alpha}} = 0.036$). However, as in previous stud-

ies (ref. 6), the theoretical prediction of the pitching-moment characteristics is not quite as accurate. Analysis of the experimental data indicates that the configuration neutral point is at 0.548c, whereas the theoretically predicted location is at 0.534c. This lack of agreement between theoretical and experimental pitching-moment coefficients arises because of the inability of the vortex-lattice models to predict detailed load distributions accurately for highly swept wings. Since the model is symmetrical, the small nonzero values of C_L and C_m at $\alpha=0^\circ$ are attributed to experimental inaccuracies. The nonlinear increase in the experimental values of C_L and C_m with increasing α , which occurs for $\alpha>2^\circ$, is caused by the formation of wing vortices and the stall of the outboard wing panel, as has been discussed in references 4, 5, and 7. Two theoretical bounding drag polars are also presented which correspond to the following conditions: (1) minimum induced drag (100-percent leading-edge suction) and (2) full leading-edge separation (0-percent leading-edge suction). These drag polars are defined for condition (1) as

$$C_{D} = C_{D,O} + C_{L}^{2}/\pi A \tag{1}$$

and for condition (2) as

$$C_{D} = C_{D,O} + C_{L} \tan \left(C_{L} / C_{L_{\alpha}} \right)$$
 (2)

Equations (1) and (2) are presented herein to permit the aerodynamic performance to be quantified. The leading-edge suction parameter S can be written as (see ref. 14 for a comprehensive discussion of leading-edge suction)

$$S = \frac{C_D - \left[C_{D,O} + C_L \tan\left(C_L/C_{L_{\alpha}}\right)\right]}{C_L^2/\pi A - C_L \tan\left(C_L/C_{L_{\alpha}}\right)}$$
(3)

where $C_{L}^{}_{\alpha}$ is the theoretical value determined to be 0.036, and the zero lift-drag

coefficient $C_{D,0}$ is experimentally determined for the present tests to be 0.0090. The quantity C_L $\tan \begin{pmatrix} C_L/C_L \\ \alpha \end{pmatrix}$ has been used in place of the more customary C_L $\tan \alpha$.

This was done to provide a common basis for comparison. Use of the quantity C_L tan α is often misleading when vortex separation occurs. For the type of vortex separation occurring with the present model, the angle of attack at which a particular value of C_L is achieved is dependent on the intensity of the separated vortices. Therefore, when considering leading-edge devices which are partially effective in reducing vortex separation, differing values of C_L tan α are obtained. Thus, if this quantity is used to define S, a common basis for comparison does not exist.

Figure 6 presents a comparison of data from figure 5 for the untwisted, uncambered wing with data from reference 7 for a geometrically similar wing which is

twisted and cambered and also employs geometric anhedral. The increment in $\rm C_L$ at α = 0° is found experimentally to be 0.082, and the increment in $\rm C_m$ at zero lift is 0.012. The corresponding values obtained for the vortex-lattice theoretical model are 0.0835 and 0.0167, respectively. For the limited range of α over which fully attached flow exists on the twisted and cambered wing (i.e., -2° \leq α \leq 2°), the static longitudinal stability parameter $\rm \partial C_m/\partial C_L$ is, as expected, unaffected by twist and camber. Comparison of the experimental drag polars shows that the effect of twist and camber is quite favorable.

Figure 7 presents the measured and predicted chordwise pressure distributions along the four semispan stations illustrated in figure 2. These pressure distributions are presented for eight angles of attack (fig. 7) and are compared with theoretical estimates calculated by using a potential-flow surface-panel representation of the configuration. (See ref. 15 for a description of the surface-panel computer code.) As shown at the lowest angle of attack ($\alpha = 0.87^{\circ}$), the agreement between theory and experiment is good. However, as the angle of attack is increased to only $\alpha = 2.96^{\circ}$, the measured pressure distributions indicate flow separation at the nondimensional wing semispan stations of 0.654 and 0.862. As α is further increased, it becomes apparent that the separation at y/(b/2) = 0.862 is typical of a vortex separation; whereas inboard at y/(b/2) = 0.654, plain separation is in evidence. α is still further increased to $\alpha \geqslant 6.99^{\circ}$, vortex separation is evidenced at y/(b/2) = 0.425. This vortex-separation phenomenon is also observed at y/(b/2) = 0.174 for $\alpha \ge 9.05^{\circ}$. To aid in the interpretation of these data, figure 8 presents corresponding experimental spanwise pressure distributions measured along the wing-body stations indicated in figure 2. Based on the data of figures 7 and 8, the spanwise and chordwise locations of the vortex cores can be approximated. These results are presented as a function of α in table III and are sketched in figure 9. The xy-planar location of the vortex which forms on the outboard panel for $\alpha \geqslant 0.87^{\circ}$ is relatively independent of α . By contrast, the vortex which forms on the inboard portion of the wing for $\alpha \geqslant 2.96^{\circ}$ apparently moves inboard and forward with increasing α . It is significant to note that the flow at station y/(b/2) = 0.654 is separated for all angles of attack greater than 2.96°. Although the detailed mechanism is not understood, the plain flow separation observed at y/(b/2) = 0.654 is thought to be related to the inboard wing crank where the sweep changes from 74° to 70°. This flow separation might be thought to be related to the outboard vertical fin; however, previous experiments have shown that the outboard vertical fin helps to contain the separated region and prevents it from spreading to the outboard wing panel.

Configuration With Deflected Leading Edge

Previous experimental investigations (see refs. 5 and 7) have shown that deflecting the entire leading edge results in a significant reduction in flow separation and delays the onset of vortex formation to higher angles of attack. These flow-field changes result in improved performance and a reduction in pitch-up. The investigation of reference 5, which was limited to consideration of uniformly deflected leading-edge conditions, indicated that $\delta_{\rm le}=30^{\circ}$ was the preferred angle for the leading-edge deflections considered. However, the study also indicated that for this uniformly deflected condition, the inboard portion of leading edge may have been overdeflected and, hence, did not provide optimum performance. Based on this result, a continuously warped leading edge was devised to align the leading edge with the incoming flow along the entire span. (See ref. 7.) Although successful from an aerodynamic viewpoint, the mechanical complexity associated with implementing the

continuously warped leading edge may make the uniformly deflected leading edge a more viable concept.

Figure 10 presents the effect of leading-edge deflection on the longitudinal aerodynamic characteristics obtained for the present untwisted, uncambered model. As has been previously reported for the twisted and cambered configuration (see ref. 5), deflecting the leading edge through 30° extends the linear region of the pitching-moment coefficient to approximately α = 10° and results in substantial reductions in induced drag. However, this beneficial effect is accompanied by a reduction in the vortex-lift increment.

The leading-edge suction parameter S (see eq. (3)) is presented in figure 11 for δ_{le} = 0° and 30°. These results are compared with corresponding results for the twisted and cambered wing as published in reference 7. These data show that both twist and camber with leading-edge deflection result in marked improvements in leading-edge suction or correspondingly reduced drag. (For a representative climb lift coefficient, such as C_L = 0.4, a 1-percent increase in S is equivalent to a reduction in C_D of 0.00052.) Furthermore, these results indicate that the effects of twist and camber with leading-edge deflection, although not linearly additive, are favorable in combination.

Pressure data for the untwisted, uncambered configuration with δ_{le} = 30° are presented in figure 12. A summary of the interpretation of these data is provided in table IV. It should be noted that the pressure distributions presented in figure 12 show the existence of suction peaks on the flap shoulder. These suction peaks occur as a result of the increased curvature produced by simply deflecting the leading edges about the hinge line illustrated in figure 2.

For $\alpha=2.51^\circ$, the data of figure 12(a) show that the entire leading edge is overdeflected and that it experiences an upper-surface stagnation point. The data further show that for y/(b/2)=0.174, the 30°-deflected leading edge remains over-deflected for $\alpha \leq 4.55^\circ$, but it appears to align with the incoming flow for $\alpha=6.64^\circ$. The pressure data further indicate that with $\delta=30^\circ$, the separation problem previously discussed for the wing semispan stations of 0.654 and 0.862 (for $\delta=0^\circ$) is postponed to $\alpha \geq 8.59^\circ$. These results are in good agreement with qualitative results from previous investigations for the twisted and cambered wing. In particular, in reference 7, it was reported that for the configuration with $\delta_1=30^\circ$, flow separation was first observed for $\alpha=8^\circ$ and occurred outboard at y/(b/2)=0.5.

Effect of Trailing-Edge Flap Deflection

Previous investigations have shown a strong aerodynamic interaction between leading- and trailing-edge systems. For example, reference 5 indicated that the improvements in the wing flow field, which result from leading-edge deflection, are accompanied by increased trailing-edge flap effectiveness. The effect of trailing-edge flap deflection was examined in the present investigation to explore optimization of the high-lift system comprised of both leading- and trailing-edge flaps. For this experiment, the trailing-edge flap system was limited to segments to and to as sketched in figures 2 and 3. It should be noted that previous studies have included another flap segment located just inboard of the outboard vertical fins (see ref. 5) as part of the trailing-edge flap system; however, in recognition of lateral-control requirements (see ref. 16), this segment is now considered as a dedicated aileron.

Figure 13 presents the longitudinal aerodynamic characteristics of the present configuration with trailing-edge flap deflection as a parameter. For increasing values of C_L , improvements in untrimmed performance in terms of lift-drag polars are achieved with increased trailing-edge deflection for $0 \le \delta_f \le 20^\circ$. In particular, at nominal take-off and climb lift coefficients of $C_L = 0.4$, a flap deflection of $\delta_f = 10^\circ$ results in the lowest untrimmed drag. Furthermore, for values of δ_f greater than 20°, the performance is seen to be degraded (fig. 13(b)) for the entire range of lift coefficients considered.

The increment in lift produced by trailing-edge deflection (for the linear region of C_L plotted against α) is summarized in figure 14. Also presented for purposes of comparison is the theoretically predicted variation of ΔC_L with δ_f . As can be seen, the experimental flap effectiveness is linear for $\delta_f \leqslant 20^\circ$ and is approximately 83 percent of the theoretical result. For flap deflections above $\delta_f = 20^\circ$, the experimental increment in C_L becomes nonlinear. The overall trend for trailing-edge flap effectiveness as presented in figure 14 is similar to that determined for the twisted and cambered wing. (See ref. 16.) The variation of C_m with respect to α shown in figure 13 indicates that the onset of pitch-up occurs at lower angles of attack as flap deflection increases. This result was observed in reference 5 where it was hypothesized that the increased circulation accompanying trailing-edge deflection results in increased leading-edge separation and/or vortex formation.

Detailed pressure distributions are presented in figure 15 for the model with the various trailing-edge flap conditions investigated. The two inboard chordwise pressure rows (i.e., y/(b/2) = 0.174 and 0.425) are approximately centered on the trailing-edge segments t₁ and t₃. (See fig. 2.) Pressure data obtained for these inboard semispan stations clearly show the upper-surface suction peaks associated with simply deflecting the trailing edge about the hinge line. Most important, however, the data show that the leading-edge flow field at the two inboard stations is essentially unaffected by the deflection of segments t₁ and t₃, but that the leading-edge flow field at the two outboard stations (i.e., y/(b/2) = 0.654 and 0.862) is significantly influenced. For example, at y/(b/2) = 0.862 (fig.15(d)), the pressure data show that deflecting the trailing-edge segments t₁ and t₃ from $\delta_f = 0^\circ$ to 30° results in a pressure distribution which is equivalent to that obtained by increasing α approximately 2°. The fact that deflecting trailing-edge flap segments t₁ and t₃ results in an increased upwash for the portion of the wing outboard of segments t₁ and t₃ is not surprising when the spanload distribution in the Trefftz plane is considered.

Optimization of the High-Lift System

The results of the preceding section indicate that for values of $\rm C_L$ on the order of 0.4 (i.e., typical climb $\rm C_L$), the configuration with $\delta_{\rm le}=30^{\circ}$ achieves the lowest untrimmed drag with $\delta_{\rm f}=10^{\circ}.$ However, it should be noted that this leading-edge deflection ($\delta_{\rm le}=30^{\circ}$) was selected based on previous studies for which $\delta_{\rm le}$ was varied while the trailing edge remained undeflected (i.e., $\delta_{\rm f}=0^{\circ}).$ Furthermore, as pointed out in a prior section, deflection of the trailing edge will alter the leading-edge flow field to some extent. Therefore, the high-lift condition, consisting of $\delta_{\rm le}=30^{\circ}$ and $\delta_{\rm f}=10^{\circ},$ would not necessarily be the optimum. To help define the best combination of $\delta_{\rm le}$ and $\delta_{\rm f},$ a brief investigation was conducted in which the leading-edge deflection was varied while the trailing-edge deflection was held constant at $\delta_{\rm f}=10^{\circ}.$ Figure 16 presents the longitudinal aerodynamic characteristics of the configuration with $\delta_{\rm f}=10^{\circ}$ and

 δ_{le} = 20°, 30°, and 40°. As shown in figure 16 at the representative climb lift coefficient c_{L} of 0.4, δ_{le} = 30° results in slightly smaller values of untrimmed drag than either δ_{le} = 20° or 40°. Furthermore, the longitudinal stability characteristics (as indicated by the onset of pitch-up) of the configuration with δ_{le} = 30° are equal to or better than those achieved with either δ_{le} = 20° or 40°. Consequently, of the variables considered, it appears that δ_{le} = 30° and δ_{f} = 10° results in the best untrimmed aerodynamic performance.

Figure 17 presents corresponding pressure data for the various deflected leading-edge conditions discussed in the preceding paragraph. These data illustrate the effect of increasing leading-edge deflection. The data substantiate the statement of reference 5 which indicated that with $\delta_{\rm le}=30\,^{\circ}$, the inboard portion of the leading edge is overdeflected. For example, over the angle-of-attack range for which data are presented, it can be seen that $\delta_{\rm le}=20\,^{\circ}$ is effective in inhibiting separation at the innermost semispan station (i.e., y/(b/2)=0.174). It should be noted that a segmented leading-edge system would permit reduced deflections at inboard stations; however, such a system would also introduce surface discontinuities. Segmented leading-edge systems have been considered in previous investigations (see refs. 5 and 7), and the results showed that the drag penalty associated with the surface discontinuities overshadowed the beneficial effect of reducing the inboard leading-edge deflection.

Of particular interest is the pressure data for semispan station y/(b/2) = 0.654 which is located just forward of the wing leading-edge crank. (See fig. 2.) As can be seen from the data for $\alpha > 6.6^{\circ}$, this semispan station experiences flow separation for all leading-edge deflections considered. As mentioned previously, the fluid mechanical phenomenon responsible for this separation is not understood; however, it is believed to be related to the inboard wing leading-edge crank. As noted in reference 16, elimination of this wing-planform discontinuity may alleviate this separation problem and thereby provide substantially improved aerodynamic performance.

SPOILER EFFECTIVENESS

Recent analytical studies (see ref. 17) have indicated potential benefits of steeper approach angles. The implementation of steeper approach angles, of course, depends on the ability to generate increased drag (e.g., with the use of spoilers) with minimum changes in lift and pitching moment. Most previous investigations of spoilers (e.g., ref. 8) have been limited to spoiler elements located just forward of the trailing-edge flap segments. Analysis of the data from these investigations reveals that spoiler deployment at this location would result in large changes in lift and pitching moment and thereby render such devices inappropriate for glide-path control.

The present investigation was conducted with individual spoiler elements s₁, s₂, s₃, and s₄, as depicted in figure 3. The wing leading edge was deflected 30° and tests were conducted for trailing-edge flap (segments t₁ and t₃) deflections of δ_f = 10° and 30°. Inasmuch as the results were similar for both trailing-edge flap deflections considered, the following discussion is limited to the δ_f = 30° condition. Information for the δ_f = 10° condition is contained in the tabulated data.

Figure 18 compares the longitudinal aerodynamic characteristics for the configuration with and without spoiler elements s_1 , s_2 , s_3 , and s_4 individually

deployed. As expected, deflection of spoiler elements s_1 or s_3 , located just ahead of the trailing-edge flap segments, results in a loss in lift and a change in pitching moment. Additionally, deflecting spoiler segment s_2 (located between the flap segments) results in an effect similar, but reduced, to that of deflecting either s_1 or s_3 . Apparently, the aerodynamic interference produced by deflection of element s_2 is sufficient to spoil the flow partially over flap segments t_1 and t_3 . (See fig. 3.) Most importantly, however, deployment of spoiler segment s_4 , located just outboard of flap segment t_3 , results in a substantial increment in drag with only a minimal change in the lift and pitching moment. (See figure 18(d).) Hence, spoiler segment s_4 appears to produce the desired aerodynamic qualities that would permit steeper approach angles to be achieved with minimum trim change.

SUMMARY OF RESULTS

An investigation was conducted to examine the wing flow field and the detailed effects of wing leading-edge deflection for a highly swept arrow-wing configuration. Limited tests were also conducted to determine the effects of spoiler deployment at various wing locations. The results may be summarized as follows:

- 1. Vortex separation is first observed on the outboard wing panel, and plain separation is first observed at a nondimensional semispan station of 0.654 for the configuration with undeflected leading edges and for angles of attack α as low as 3°. Vortex separation occurs at wing stations more inboard for angles of attack on the order of 7°, and these vortices move inboard and forward with increasing angle of attack.
- 2. Deflecting the entire wing leading edge to 30° is effective in delaying the onset of flow separation to $\alpha \geqslant 8$ °. However, the data show that the inboard portion of the leading edge is overdeflected for this condition.
- 3. Deflecting the trailing-edge flaps results in an increase in the leading-edge upwash flow field on the portion of the wing outboard of the trailing-edge flap system.
- 4. Spoilers located ahead of the trailing-edge flap system produce substantial reductions in lift and positive increments in pitching moment which accompany the increase in drag. However, a spoiler located outboard of the trailing-edge flap system was effective in producing equivalent increases in drag with only a minimal effect on lift and pitching moment.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 July 12, 1983

APPENDIX

WIND-TUNNEL TEST SCHEDULE AND DATA TABULATION

As an aid to the reader, the appendix provides the wind-tunnel test schedule and tabulated longitudinal aerodynamic data.

TABLE AI.- TEST PROGRAM

Run	δ _{le,} deg	δ _f , deg	δs,1, deg	δs,2, deg	δs,3, deg	δs,4, deg
1	0	0	0	0	0	0
46	30	20	1		1	1
57	1	0				
58		40				
61		10				
62	*	30				
67	40	10				
68	20	1	*			
69	30		60			
70	1		90		+	
71			0		60	
72			1	*	90	
73	1 1 1			60	0	
74				90		+
75				. 0		60
76				0		90
77				60		60
78		*	+	90		90
94		30	60	0	Berthell Charles	0
95		1	90		*	
96			0		60	
97	1986		1	*	90	
98				60	0	
99				90	1	*
100				0		60
101	*	*	*	0	+	90

APPENDIX

TABLE AII.- TABULATED DATA

RUN 1	CL	CD	CPM	RUN 46	CL	CD	CPM
-7.21	2980	.0431	0239	-3.57	0275	.0300	0566
-5.16 -3.12	2035 1108	.0242	0117	-2.60 -1.58	0011 .0483	.0270	0531 0492
-1.11	0346	.0095	0040	58	.0885	.0217	0443
2.96	.1156	.0133	.0027	1.62	.1691	.0231	0376
4.95 6.99	.2032 .2988 .3964	.0401	.0144	3.60	.2168 .2406 .2794	.0248	0341 0338
9.05 11.04	.4947	.0956	.0264	4.57 5.58	.3229	.0311	0304
13.10	.5981 .6981	.1825	.0569	6.70 7.59	.3627	.0423	0277 0258
17.08	.8002	.2378	.0995	8.70 9.70	.4372	.0576	0255 0238
				10.75	.5237 .5612	.0812 .0948	0196 0170
				12.64	.6057 .6734	.1114	0119 0054
				14.74	./180	.1568	.0017
RUN 57				PUN 58			
ALPHA	CL	CD	CPM	ALPHA	CL	CD	CPM
-7.57 -6.52	3589 2884	.0725	0551 0427	-7.60 -6.61	0637 0426	.0771	1185 1119
-5.59 -4.62	2643 2137	.0481	0398 0327	-5.53 -4.41	0006	.0657 .0619	0953 0870
-3.59 -2.60	1776 1399	.0302	0260	-3.38 -2.48	.0744	.0573	0793 0744
-1.60 46	0956 0385	.0190	0149 0094	-1.54 50	.1558 .1901	.0535 .0541	0695 0658
1.51	0002 .0458	.0129	0082 0061	.55 1.53	.2270 .2689	.0557	0629
2.44	.0783	.0118	0042 0018	2.56	.2969	.0610 .0653	0569 0546
2.51	0019	.0129	0081 0040	4.61 5.67	.3711	.0706	0531 0516
4.55	.1546 .1955	.0146 .0176	0004	6.61	.4513	.0834	0515 0506
6.64 7.54	.2296	.0209	.0041	7.59 8.62	.4856 .5334	.0913	0507 0506
8.59 9.72	.3032	.0310	.0085	9.70	.5704	.1143	0475 0418
10.63	.3868	.0489	.0129	11.69	.6543 .7025	.1436 .1629	0360 0297
12.71	.4866 .5423	.0783	.0198	13.68	.7537	.1856	0222
14.72	.5889	.1160	.0320				
RUN 61				PUN 62			
ALPHA	CL	CD	CPM	ALPHA	CL	CD	CPM
-7.54	2682	.0612	0794	-7.57	1048	.0617	1081
-6.65 -5.58	2235 1912	.0509	0685 0638	-6.53 -5.58	0754 0380	.0557	1027 0827
-4.54 -3.48	1313 1019	.0330	0489 0421	-4.55 -3.46	0134 .0332	.0455	0782 0698
-2.50 -1.51	0586 0129	.0217	0364 0321	-2.43 -1.40	.0642	.0377	0666
47	.0345	.0154	0285 0259	43	.1484	.0350	0597 0550
1.51 2.58	.1014	.0148	0239	1.59	.2279 .2597	.0368	0514 0493
3.49 4.60	.1782 .2190	.0175	0182 0161	3.58 4.69	.2913 .3372	.0430	0468
6.63	.2950 .2886	.0287	0116 0120	5.59 6.57	.3685	.0531 .0598	0434
7.56 8.60	.3286	.0340	0099 0083	7.58 8.59	.4469	.0678	0416 0375
9.68	.4178 .4545	.0513	0057 0035	9.65	.5372 .5741	.0896	0386
11.71 12.75	.5087 .5530	.0779	.0003	11.70	.6740	.1210 .1390	0294 0252
13.69	.6007	.1127 .1359	.0086 .0178	13.60	.7185 .7793	.1583 .1846	0207 0105
RUN 67				RUN 68			
ALPHA	CL	CD	CPM	AL PHA	CL	CD	CPM
-7.64 -6.69	2714 2315	.0682	0845 0777	-7.45 -6.64	2565 2284	.0532 .0452	0681 0625
-5.71 -4.54	1898 1428	.0486	0691 0594	-5.58 -4.43	1796 1153	.0359	0527 0419
-3.57 -2.61	1123 0687	.0328	0533	-3.45 -2.51	0887 0343	.0217	0363 0302
-1.53 60	0118	.0217	0360 0351	-1.55 55	.0020	.0143	0260 0262
.58 1.51	.0642	.0181	0297 0271	.47	.0751	.0128	0223
2.52	.1438 .1715	.0183	0250 0224	2.48	.1482	.0152	0185 0163
4.52 5.62	.2162 .2564	.0223	0197 0175	4.51 5.57	.2189	.0206	0143 0121
6.63 7.60	.2921	.0307	0151 0125	6.56 7.56	.2988 .3471	.0307	0121 0108 0097
8.60 9.59	.3672 .4054	.0426	0107 0083	8.60 9.55	.3861 .4269	.0484	0047
10.63	. 4459	.0601	0083 0053 0033	10.69	.4866 .5425	.0764	.0002 .0054
11.61	.4800 .5271	.0703	.0014	11.68 12.71	.5916	.1121	.0054
	E 4 00	1005	0040	12 74	44.53		
13.70 14.50	.5698 .6179	.1005 .1181	.0049	13.74 14.53	.6451 .6841	.1332 .1506	.0183 .0237

TABLE AII. - Continued

RUN 69				RUN 70			
ALPHA	CL	CD	CPM	ALPHA	CL	CO	CPM
		.0776	0758	-7.58	3069	.0777	0785
~7.68 ~6.51	3182 2688	.0636	0668	-6.62	2703	*0677	0710
~5.34	1961 1928	.0498	0495 0497	-5.59 -4.56	2240 1867	.0563 .0481	0625 0550
~3.57	1381	.0377	0392	-3.54	1387	.0402	0435
~2.52	1024 0725	.0321	0328	-2.59 -1.55	1203	.0360	0401 0313
~1.55 54	0244	.0239	0241	56	0156	.0262	0269
.52	.0183	.0221	0205 0181	1.50	.0281	.0240	0237 0215
2.45	.1011	.0216	0164	2.50	.1006	.0239	0187
3.32 4.53	.1307	.0228	0137 0111	3.52 4.48	.1461 .1692	.0256	0162 0146
5.64	.2146	.0282	0069	5.56		.0306	0115
6.53 7.54	.2278	.0312	0066	7.61	.2366 .2719	.0334	0092 0060
8.53	.3107	.0423	0007	8.60	.3168	.0448	0029 0007
9.67	.3631	.0513	.0001 .0033	9.58	.3471	.0525	0000
11.76	.4420	.0750	.0060	11.67	.4426	.0762	.0039
12.77	.5601	.1129	.0182	13.57	.5391	.1090	.0144
14.77	.6129	.1330	.0264	14.75	.5898	.1294	.0210
RUN 71				RUN 72			
ALPHA	CL	CD	CPM	AL PHA	CL	CD	CPM
~7.58	2512	.0660	0885	-7.46	2311	.0643	0877
~6.66	2193	.0570	0777	-6.64	2115	.0577	0831
~5.54	1856 1324	.0480	0710 0562	-5.65 -4.59	1693 1452	.0482	0709 0628
~3.51	1008	.0331	0463	-3.55	1014	.0354	0501
~2.53	0681 0172	.0284	0415 0363	-2.56 -1.50	0663 0075	.0306	0431 0360
51	.0092	.0227	0333	53	.0146	+0242	0342
1.46	.0725	.0209	0270 0258	1.44	.0947	.0231	0283
2.47	.1365	.0221	0229 0214	2.51 3.47	.1324 .1672	.0239	0243 0231
3.53	.2055	.0271	0189	4.54	.2161	.0287	0197
5.52	.2477	.0299	0156 0140	5.48	.2372	.0321	0187 0153
7.57	.3227	.0403	0108	7.61	.3181	.0410	0121
9.61	.3575	.0457	0096	8.61 9.59	.3511 .3851	.0476	0096 0086
10.70	. 4540	.0683	0044	10.63	.4368	.0675	0060
11.67	.4896 .5574	.0808	0031	11.70	.5022	.1019	0046
13.63	.5829	.1169	.0044	13.72	.6027 .6559	.1252	.0014
14.67	.6382	.1397	.0094	14.77	.0334	.1444	.0110
RUN 73				RUN 74			
ALPHA	CL	CD	CPM	AL PHA	CL	CD	. CPM
-7.64	2671	.0708	0850	-3.51	1062 0315	.0381	0487 0379
~6.59 ~5.64	2243 1871	.0595	0743 0639	-1.52			0379
-4.67	1548	.0440	0560	2.47	.1326	.0254	0248
~3.51	1137 0750	.0367	0477 0401	6.63	.2709	.0371	0146
-1.54 47	0244	.0271	0341 0321	8.59	.4020	.0485	0090 0027
.42	.0512	.0230	0293	12.56	.5090	.0952	.0017
2.65	.0876	.0232	0245 0231	14.55	.6214	.1351	.0141
3.52	.1615	.0249	0207				
5.45	.1922	.0271	0179 0159				
6.47	.2590	.0348	0145				
7.42 8.59	.2925	.0387	0119 0094				
9.52	.3795	.0538	0053				
10.70	.4295	.0669	0029				
12.68	.5158 .5650	.0946	.0026				
14.70	.6346	.1361	.0169				
RUN 75				RUN 76			
ALPHA	CL	CD	CPM	AL PHA	CL	CD	CPM
~3.56	0955	.0360	0474	-3.59	0838	.0383	0433
-1.59	0107	.0257	0335	-1.52	0240	.0304	0347
2.52	.0692	.0227	0258 0208	2.49	.0659 .1401	.0242	0272 0226
4.48	.2014	.0283	0171	4.64	.2199	.0315	0179
6.58 8.54	.2798	.0367	0128 0074	8.68	.2930 .3629	.0401	0136 0081
10.53	.4438	.0679	0036	10.61	.4462	.0715	0047
12.51	.5583	.0985	.0031 .0186	12.64	.5499	.0977 .1357	.0034

TABLE AII.- Concluded

RUN 77				PUN 78			
ALPHA	. CL	CD	CPM	AL PHA	CL	C D	CPM
		7.5					
-3.58	1207	.0463	0489	-3.56	1120	.0500	0484
-1.55	0248	.0339	0329	-1.22	0157	.0383	0333
. 45	.0461	.0297	0284	.50	.0416	.0345	0306
2.94	.1290	.0308	0222	2.50	.1226	.0352	0254
4.59	.1898	.0347	0180	4.53	.1848	.0395	0210
6.67	.2578	.0428	0120	6.58	.2608	.0474	0139
8.59	.3266	.0528	0066	8.50	.3233	.0575	0069
10.59	.4089	.0709	0003	10.63	.4147	.0773	.0001
12.57	.5025	.0965	.0017	12.65	.5173	.1004	.0021
14.61	.6113	.1296	.0149	14.63	.6354	.1361	.0175
RUN 94							
				RUN 95			
ALPHA	CL	CD	CPM	AL PHA	CL	CD	CPM
-3.67	0666	.0518	0621	-3.63	0610	.0540	0625
-1.43	.0381	.0411	0446	-1.54	.0292	.0440	0490
.49	.1026	.0395	0406	.43	.0983	.0417	0427
2.64	.1776	.0413	0337	2.58	.1780	.0430	0357
4.62	.2460	.0469	0295	3.53	.2088	.0454	0339
6.67	.3156	.0557	0257	4.60	.2494	.0487	0306
8.53	.3995	.0700	0229	6.57	.3072	.0567	0271
10.66	.4782	.0915	0174	8.63	.3900	.0712	0248
12.59	.5628	.1211	0110	10.55	.4672	.0912	0191
14.50	.6668	.1615	.0044	12.65	.5673	.1247	0121
				14.45	.6606	.1610	.0040
RUN 96				RUN 97			
ALPHA	CL	CD	CPM	ALPHA	CL	CD	CPM
-3.53	.0167	.0462	0722	-3.63	.0101	.0484	0754
-1.50	.0898	.0411	0625	-1.48	.1018	.0416	0619
.49	.1670	.0406	0534	.60	.1732	.0420	0543
2.59	.2374	.0444	0460	2.57	.2342	.0455	0479
4.48	.2958	.0514	0420	4.56	.2940	.0526	
6.54	.3774	.0620	0362	6.54		.0636	0425
8.55	.4690	.0795	0337	8.59	.3675 .4558	.0630	0378
10.61	.5476	.1042	0301	10.58	.5256	.0808	
	.6406	.1398			.2226	.1029	0312
12.71	.0406	.1398	0210	12.67	.6338	.1405	0238
14.65	.7401	.1860	0060	14.68	.7279	.1871	0104
RUN 98				RUN 99			
ALPHA	CL	CD	CPM	ALPHA	CL	CD	CPM
-3.65	0165	.0507	0720	-3.63	.0012	.0500	0718
-1.49	.0791	.0428	0586	-1.52	.0691	.0444	0624
.40	.1401	.0420	0532	.54	.1553	.0433	0530
2.56	.2228	.0448	0444	2.82	.2147	.0477	0467
4.50	.2860	.0514	0395	4.68	.2894	.0529	0404
6.45	.3606	.0604	0346	6.66	.3607	.0621	0354
0.49	. 3000					.0021	
8.55	.4387	.0766	0327	8.57	.4374	.0774	0339
10.63	.5087	.0993	0265	10.92	.5290	.1065	0243
12.90	.6496	.1442	0153	12.53	.6031	.1334	0195
14.70	.7174	.1775	0039	13.85	.6747	.1605	0107
				14.60	. 7043	.1758	0037
RUN 100				RUN 101			
ALPHA	CL	CD	CPM	ALPHA	CL	CD	CPM
-3.61	.0208	.0479 .0431 .0443	0777	-3.57	.0276	.0499	0772
-1.58	.0999	.0431	0636	-1.56	.1045	.0453	0643
.50	.1709	.0443	0582	.50	.1830	.0467	0585
2.59	.2539	.0481	0497	2.44	.2513	.0511	0516
4.59	.3294	.0572	0437	4.62	.3218	.0601	0465
6.64	.3940	.0681	0401	6.65	.3919	.0709	0415
8.65	.4659	.0863	0366	8.69	.4624	.0885	0380
10.67	.5620	.1101	0350	10.54	.5498	.1108	0349
12.68	.6738	.1455	0270	12.68	.6630	.1439	0258
14.61	.7763	.1829	0270	15.00	.0030	.1437	0238
14.01		. 1027	*0117				

REFERENCES

- Robins, A. Warner; Morris, Odell A.; and Harris, Roy V., Jr.: Recent Research Results in the Aerodynamics of Supersonic Vehicles. J. Aircr., vol. 3, no. 6, Nov.-Dec. 1966, pp. 573-577.
- 2. Robins, A. Warner; Lamb, Milton; and Miller, David S.: Aerodynamic Characteristics at Mach Numbers of 1.5, 1.8, and 2.0 of a Blended Wing-Body Configuration With and Without Integral Canards. NASA TP-1427, 1979.
- 3. Coe, Paul L., Jr.; McLemore, H. Clyde; and Shivers, James P.: Effects of Upper-Surface Blowing and Thrust Vectoring on Low-Speed Aerodynamic Characteristics of a Large-Scale Supersonic Transport Model. NASA TN D-8296, 1976.
- 4. Coe, Paul L., Jr.; Smith, Paul M.; and Parlett, Lysle P.: Low-Speed Wind Tunnel Investigation of an Advanced Supersonic Cruise Arrow-Wing Configuration. NASA TM-74043, 1977.
- 5. Coe, Paul L., Jr.; and Weston, Robert P.: Effects of Wing Leading-Edge Deflection on Low-Speed Aerodynamic Characteristics of a Low-Aspect-Ratio Highly Swept Arrow-Wing Configuration. NASA TP-1434, 1979.
- 6. Coe, Paul L., Jr.; and Thomas, James L.: Theoretical and Experimental Investigation of Ground-Induced Effects for a Low-Aspect-Ratio Highly Swept Arrow-Wing Configuration. NASA TP-1508, 1979.
- 7. Coe, Paul L., Jr.; Huffman, Jarrett K.; and Fenbert, James W.: Leading-Edge Deflection Optimization for a Highly Swept Arrow-Wing Configuration. NASA TP-1777, 1980.
- 8. Gentry, Garl L., Jr.; and Coe, Paul L., Jr.: Low-Speed Aerodynamic Characteristics of a Highly Swept Arrow-Wing Configuration With Several Deflected Leading-Edge Concepts. NASA TM-80180, 1980.
- 9. Craidon, Charlotte B.: Description of a Digital Computer Program for Airplane Configuration Plots. NASA TM X-2074, 1970.
- 10. Gillis, Clarence L.; Polhamus, Edward C.; and Gray, Joseph L., Jr.: Charts for Determining Jet-Boundary Corrections for Complete Models in 7- by 10-Foot Closed Rectangular Wind Tunnels. NACA WR L-123, 1945. (Formerly NACA ARR L5G31.)
- 11. Pope, Alan; and Harper, John J.: Low-Speed Wind Tunnel Testing. John Wiley & Sons, Inc., c.1966.
- 12. Braslow, Albert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From 0 to 5. NACA TN 4363, 1958.
- 13. Tulinius, J.: Unified Subsonic, Transonic, and Supersonic NAR Vortex Lattice. TFD-72-523, Los Angeles Div., North American Rockwell, Apr. 27, 1972.
- 14. Henderson, William P.: Studies of Various Factors Affecting Drag Due to Lift at Subsonic Speeds. NASA TN D-3584, 1966.

- 15. Hess, John L.: Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies. Rep. No. MDC J5679-01 (Contract N00019-71-C-0524), McDonnell Douglas Corp., Oct. 1972. (Available from DTIC as AD 755 480.)
- 16. Coe, Paul L., Jr.; Thomas, James L.; Huffman, Jarrett K.; Weston, Robert P.; Schoonover, Ward E., Jr.; and Gentry, Garl L., Jr.: Overview of the Langley Subsonic Research Effort on SCR Configurations. Supersonic Cruise Research '79 - Part 1, NASA CP-2108, 1980, pp. 13-33.
- 17. Grantham, William D.; Smith, Paul M.; and Deal, Perry L.: A Simulator Study for the Development and Evaluation of Operating Procedures on a Supersonic Cruise Research Transport To Minimize Airport-Community Noise. NASA TP-1742, 1980.

TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Wing:
Aspect ratio 1.904
Reference area, m ² (ft ²) 0.834 (8.972)
Gross area, m^2 (ft ²) 0.919 (9.889)
Span, m (ft) 1.260 (4.133)
Root chord, m (ft) 1.674 (5.492)
Tip chord, m (ft) 0.161 (0.529)
Reference mean aerodynamic chord, m (ft) 0.880 (2.887)
Gross mean aerodynamic chord, m (ft) 1.038 (3.406)
Leading-edge sweep, deg:
At body station 0.530 m (1.738 ft)
At body station 1.569 m (5.149 ft)
At body station 2.027 m (6.651 ft)
At body Station 2.027 in (0.031 it)
Vertical fin (each):
Span, m (ft) 0.107 (0.350)
Span, m (it)
Root chord, m (ft) 0.326 (1.069)
Tip chord, m (ft) 0.048 (0.158)
Leading-edge sweep, deg 73.4
Taper ratio 0.148

(a) SI Units; all dimensions are given in centimeters

		PEED MO		03259		UNCAMBE	RED (CO	E) (8/2)		0
0.	-1 1 •125	1 1 -1 .25	.5	.75	1.0	1.5	2.5	5.0	10.	XAF 10
15.	20.	25.	30.	35.	40.	45.	50.	55.	60.	XAF 20
65. 52.979	0.000	0.000	80. 167.406	85.	90.	95.	100.			XAF 28 ₩DRG 1
58.471	1.575	0.000	161.884	•						WORG 2
63.965			156.357 148.547							WORG 3 WORG 3A
74.948	6.299	0.000	145.306)						WORG 4
85.931	9.449		134.259							WORG 5 WORG 6
107.899			112.161							WORG 7
126.324			93.624							WDRG 8
140.851			80.239							WORG 9
170.619	34.564	0.000	53.030)						WORG 11
179.913			46.586							WORG 12 WORG 13
202.717		0.000	30.785	j						WORG 14
202.717			30.785							WORG 15
203.817			26.820							WORG 15A WORG 16
221.722	56.693	0.000	21.476	5						WORG 17
232.634	62.992	.180	.242	.298	.339	.413	.521	.726	.996	WORG 18 WORD1.1
1.181	1.318	1.419	1.490	1.532	1.543	1.543	1.543	1.543	1.543	WORD1.2
	1.213	1.021	.819	.615	.413	.212	0.	724	004	WORD1.3
0.	.137 1.318	.180 1.419	.242	.298 1.532	.339 1.543	.413 1.543	.521 1.543	.726 1.543	.996	WORD2.1
1.388	1.213	1.021	.819	.615	.413	.212	0.			WORD2.3
0.	.137 1.318	.180 1.419	.242	.298 1.532	.339 1.543	.413 1.543	.521 1.543	.726 1.543	.996	WORD3.1 WORD3.2
1.388	1.213	1.021	.819	.615	.413	.212	0.			WORD3.3
0.	.137 1.315	.179 1.416	.241	.297 1.528	.339 1.539	.412 1.539	.523 1.539	.724 1.539	1.539	WORD3A.2
	1.210	1.018	.817	.614	.412	.211	0.	1.,,,,	1,000	WORD3A.3
0.	.136	.178	.237 1.461	.291	.333	.405 1.512	.514 1.512	.712	.978	WORD4.1 WORD4.2
1.363	1.292	1.391	.806	.606	.406	.208	0.	1.512	1.512	WORD4.2
0.	.128	.168	.225	.277	.316	.386	.490	.679	.931	WORD5.1
1.103	1.232	1.326	1.392 .765	1.430 .576	.385	1.441	1.441	1.441	1.437	WORD5.2 WORD5.3
0.	.118	.160	.216	.266	.304	.370	.470	.651	.894	WORD6.1
1.059	1.182	.889	1.336	1.373	1.383	1.383	1.383	1.383	1.341	WORD6.2 WORD6.3
0.	.110	.153	.208	.257	.294	.358	. 455	.631	.866	WORD7.1
1.025	1.144	.848	1.293 .681	.512	1.338	1.338	1.338	1.338	1.277	WORD7.2 WORD7.3
1.171	1.000	• 0 = 0	.001	• > 1 1	.343	• • • •	•			WOKD 1.5
0.	.101	.145	.200	.247	.283	.344	.438	.607	.833	WORD8.1
.987	1.101	1.184	1.244	1.278	1.287	1.287	1.287	1.287	1.186	WORD8.2
1.069	.935	.788	.633	.476	.319	.163	.435	.602	.827	WORD8.3 WORD9.1
.979	1.092	1.175	1.234	1.268	1.277	1.277	1.277	1.260	1.161	WORD9.2
1.046	.915	.771	.619	.466	.312	.159	.440	.609	.836	WDRD9.3
.990	1.105	1.189	.201	.248	.284	.345 1.292	1.292	1.247	1.149	WORD10.1
1.035	.906	.763	.613	.461	.309	.156	0.		04.0	WORD10.3
0.	1.148	.154 1.235	.209	.258 1.330	.295	.359 1.342	.457 1.342	.632 1.263	.868	WORD11.1 WORD11.2
1.049	.917	.773	.621	.467	.313	.160	0.			WORD11.3
0.	.118	1.272	.216	.266 1.372	.304	.370 1.382	.470 1.382	.651 1.300	.894 1.198	WORD12.1 WORD12.2
1.080	.945	.796	.639	.481	.322	.164	0.			WORD12.3
0.	.125 1.216	.166	.222 1.375	.274	.313	.381 1.423	1.423	.670 1.339	.920	WORD13.1 WORD13.2
1.112	.972	.819	.658	.495	.331	.169	0.			WORD13.3
0.	.138	.177	.235	.289	.330	.402	.510	.706	.969	WDRD14.1
1.148	1.282	.862	.692	.521	1.500	1.500 .178	1.500	1.411	1.300	WORD14.2 WORD14.3
0.	.0069	.0144	.0294	.0440	.0590	.0884	.1462	.2853	.541	WORD15.1
.766 1.365	.961	1.126	.961	1.365 .766	1.440	1.485 .285	1.500	1.485	1.440	WORD15.2 WORD15.3
0.	.0069	.0144	.0294	.0440	.0590	.0884	.1462	.2853	.541	WORD15A.
.766	.961	1.126	1.261	1.365	1.440	1.485	1.500	1.485	1.440	WORD15A.
1.365	.0069	.0144	.961	.766	.541 .0590	.285 .0884	.1462	.2853	.541	WORD16.1
.766	.961	1.126	1.261	1.365	1.440	1.485	1.500	1.485	1.440	WORD16.2
1.365	.0069	.0144	.961	.766	.541 .0590	.285 .0884	0. .1462	.2853	.541	WORD16.3 WORD17.1
.766	.961	1.126	1.261	1.365	1.440	1.485	1.500	1.485	1.440	WORD17.2
1.365	1.261	1.126	.961	.766	.541 .0590	.285	0. .1462	.2853	.541	WORD17.3 WORD18.1
.766	.0069 .961	.0144	1.261	1.365	1.440	1.485	1.500	1.485	1.440	WORD18.2
1.365	1.261	1.126	.961	.766	.541	.285	0.			WORD18.3
0.000									9 89.403	XFUS 10 XFUS 20
99.337										
198.674	208.608	3218.542	2228.47	6	1 7/ 0	2 05 65	0104 45	11100 22	E104 F00	XFUS 10
198.674	7.00	19.53	5 35.03	2 53.58	1 74.99	93 95.81 5113.67	9106.67	71109.33	5104.503 6118.413	AFUS 10 AFUS 20

TABLE II. - Concluded

(b) U.S. Customary Units; all dimensions are given in inches

	00 LOW-	SPEED M	DDEL	.03259	SCALE	UNCAMBE	ERED (C	DE) (8/		
0.	-1 1 .125	1 1 -	.5	.75	1.0	1.5	2.5	2 20	10.	10 XAF 10
65.	780.	755.	80.	85.	9000	95.	188:	55.	60.	XAF 28
20.85			. 65.90		90.	95.	100.			WORG 1
23.02	0 .62		. 63.73							WORG 2
25.18			. 61.55							WORG 3
28.24			. 58.48							WORG 3A
33.83			. 52.85							WORG 5
38.15		0 0	. 48.50	7						WORG 6
42.48	0 6.20		. 44.15							WORG 7
55.45			. 31.59							WORG 8
61.78	7 11.73	6 0	. 25.75							WORG 10
67.17			. 20.87							WORG 11
	2 14.880		 18.34 15.86 							WORG 12 WORG 13
	0 18.00		. 12.12							WDRG 13 WDRG 14
	0 18.00		. 12.12							WORG 15
	3 18.250 6 19.840		 11.90 10.55 							WORG 15A
	2 22.320									WORG 16 WORG 17
91.58	8 24.800	0 0	. 6.35	0						WORG 18
0.	.137	.180	.242	.298	.339	.413	.521	.726	.996	WORD1.1
1.388	1.318	1.419	1.490 .819	1.532	1.543	1.543	1.543	1.543	1.543	WORD1.2 WORD1.3
0.	.137	.180	.242	.298	.339	.413	.521	.726	.996	WORD2.1
1.181	1.318	1.419	1.490	1.532	1.543	1.543	1.543	1.543	1.543	WORD2.2
1.388	1.213	.180	.819	.615	.413	.212	0.	724	.996	WORD2.3
1.181	1.318	1.419	1.490	1.532	1.543	1.543	1.543	.726	1.543	WORD3.1 WORD3.2
1.388	1.213	1.021	.819	.615	.413	.212	0.			WORD3.3
0.	.137	.179	.241	.297	.339	.412	.523	.724	.994	WORD3A.1
1.384	1.315	1.416	1.487	1.528	1.539	.211	1.539	1.539	1.539	WORD3A.2 WORD3A.3
0.	.136	.178	.237	.291	.333	.405	.514	.712	.978	WORD4.1
1.157	1.292	1.391	1.461	1.501	1.512	1.512	1.512	1.512	1.512	WORD4.2
1.363	1.192	1.003	.806	.606	.406 .316	.386	0.	.679	.931	WORD4.3
1.103	1.232	1.326	1.392	1.430	1.441	1.441	1.441	1.441	1.437	WORD5.1 WORD5.2
1.294	1.132	. 953	.765	.576	.385	.197	0.			WORD5.3
0.	.118	.160	.216	.266	.304	.370	.470	.651	.894	WDRD6.1
1.208	1.182	1.273 .889	.714	1.373	1.383	1.383	1.383	1.383	1.341	WORD6.2 WORD6.3
0.	.110	.153	.208	.257	. 294	.358	.455	.631	.866	WORD7.1
1.025	1.144	1.231	1.293	1.328	1.338	1.338	1.338	1.338	1.277	WORD7.2
1.151	1.006	.848	.681	.512	.343	.175	0.			WORD7.3
0.	.101	.145	.200	.247	.283	.344	.438	.607	.833	WORD8.1
.987 1.069	.935	.788	.633	1.278 .476	1.287 .319	1.287	1.287	1.287	1.186	WORD8.2
0.	.100	.144	.198	.245	.280	.341	.435	.602	.827	WORD8.3
.979		1.175	1.234	1.268	1.277	1.277	1.277	1.260	1.161	WDRD9.2
1.046	.915	.771	.619	.466	.312	.159	0.	600	024	WORD9.3
.990		1.189	1.248	1.283	.284	.345	1.292	1.247	.836	WDRD10.1 WDRD10.2
1.035		.763	.613	.461	.309	.156	0.			WORD10.3
0.		.154 1.235	.209	.258	.295	.359	. 457	.632	.868	WORD11.1
1.049		.773	.621	.467	.313	.160	1.342	1.263	1.164	WORD11.2 WORD11.3
0.	.118	.160	.216	.266	.304	.370	.470	.651	.894	WORD12.1
1.059		1.272 .796	1.335	1.372	1.382	1.382	1.382	1.300	1.198	WORD12.2
0.		.166	.639	.481	.322	.164	0.	.670	.920	WORD12.3 WORD13.1
1.090			1.375	1.413	1.423	1.423	1.423	1.339	1.234	WORD13.2
1.112		.819	.658	.495	.331	.169	0.			WORD13.3
1.148		.177 1.380	.235	.289	1.500	1.500	.510	.706	.969	WORD14.1
1.171		.862	.692	.521	.349	.178	0.	1.411	1.300	WORD14.2 WORD14.3
0.	.0069	.0144	.0294	.0440	.0590	.0884	.1462	.2853	.541	WORD15.1
1.365			1.261 .961	1.365	1.440	1.485	1.500	1.485	1.440	WORD15.2
0.			.0294	.766 .0440	.0590	.285 .0884	.1462	.2853	.541	WORD15.3
.766			1.261	1.365	1.440	1.485	1.500	1.485	1.440	WORD15A.
			.961	.766	.541	·285·	0.			WORD15A.
.766			.0294	1.365	.0590	.0884	.1462	.2853	.541	WORD16.1
1.365		1.126	.961	.766	.541	.285	1.500	1.485	1.440	WORD16.2 WORD16.3
	.0069	.0144	.0294	.0440	.0590	.0884	.1462	.2853	.541	WORD17.1
			1.261 .961	1.365	1.440	1.485	1.500	1.485	1.440	WORD17.2
			.0294	.766	.541	.285	.1462	.2853	.541	WORD17.3 WORD18.1
.766	.961	1.126	1.261	1.365	1.440	1.485	1.500	1.485	1.440	WORD18.2
0.000	3.911	7.822	.961	.766	.541	.285	0.	21 200	7 35.198	WORD18.3
39.109	43.020	46.931	50.842	54.753	58.664	62.575	66-484	70-30	7 35.198	XFUS 10
78.218	82.129	86.040	89.951							XFUS 20 XFUS
0.000	1.086	3.028	5.430	8.305	11.624	14.852	16.534	16.947	7 16.198	AFUS 10
18.324	18.079	17.437	16.412	10.244	16.871	17.620	18.094	18.232	18.354	AFUS 20
										AFUS

TABLE III.- SUMMARY OF EXPERIMENTAL VORTEX CORE LOCATIONS

α, deg	فينافيه والمالي		on of vortex i		vortex	γ at loc intersection row located	on with
	$y / \frac{b}{2} = 0.170$	$y / \frac{b}{2} = 0.425$	$y / \frac{b}{2} = 0.654$	$y \bigg/ \frac{b}{2} = 0.862$	$\xi = 0.472$	ξ = 0.731	ξ = 0.98
0.87	None	None	None	None	None	None	None
2.96		None	Plain separation	0.225	None	None	0.95
4.95		0.025			0.94	0.96	
6.99	→ - , ,	•28			.86	.78	
9.05	0.04	.30			.86	.78	
11.04	.04	•36			.76	.78	
13.10	.06	.40			.76	.78	187
15.09	.07	.43	+	\	.76	.62	+

TABLE IV.- SPANWISE LEADING-EDGE CHARACTERISTICS BASED ON INTERPRETATION OF PRESSURE DATA WITH δ_{1e} = 30°

	Leading-edge characteristics at semispan station -							
α, deg	$y / \frac{b}{2} = 0.170$	$y/\frac{b}{2} = 0.425$	$y/\frac{b}{2} = 0.654$	$y \left/ \frac{b}{2} = 0.862$				
2.51	Over deflected	Over deflected	Over deflected	Over deflected				
4.55	Over deflected	Attached	Attached	Attached				
6.64	Aligned		Attached	Attached				
8.59	Attached		Separated	Separation bubble at leading edge				
10.63								
12.71	+	+	+	1 2 2 2 4				

Figure 1.- System of axes.

Figure 2.- Geometric characteristics. Dimensions are given in meters (feet) unless otherwise specified.

Figure 3.- Sketch of flaps and spoilers. Dimensions are given in centimeters (inches).

Figure 4.- Photograph of model in Langley 4- by 7-Meter Tunnel.

Figure 5.- Longitudinal aerodynamic characteristics of configuration. δ_{le} = 0°; δ_{f} = 0°.

Figure 6.- Experimental results of effect of twist and camber on longitudinal aerodynamic characteristics of basic configuration. δ_{le} = 0°; δ_{f} = 0°.

Figure 7.- Comparison of theoretical and experimental chordwise wing pressure distributions. $\delta_{1e} = 0 ^{\circ}; \quad \delta_{f} = 0 ^{\circ}.$

----Theory

- O Experiment, upper surface
- ⊕ Experiment, lower surface

Figure 7.- Continued.

Theory

- Experiment, upper surface
- ⊕ Experiment, lower surface

(c) $\alpha = 4.95^{\circ}$.

Figure 7.- Continued.

- Experiment, upper surface
- ⊕ Experiment, lower surface

(d) $\alpha = 6.99^{\circ}$.

Figure 7.- Continued.

Figure 7.- Continued.

- Experiment, upper surface
- ⊕ Experiment, lower surface

(f) $\alpha = 11.04^{\circ}$.

Figure 7.- Continued.

Figure 7.- Continued.

- Experiment, upper surface
- ⊕ Experiment, lower surface

(h) $\alpha = 15.09^{\circ}$.

Figure 7.- Concluded.

Figure 8.- Spanwise wing pressure distributions. δ_{le} = 0°; δ_{f} = 0°.

(b) $\alpha = 11.04^{\circ}$, 13.09°, and 15.09°.

Figure 8.- Concluded.

Figure 9.- Sketch of experimentally determined vortex locations. Dashed portion of curve indicates extrapolated result. δ_{le} = 0°; δ_{f} = 0°.

Figure 10.- Effect of leading-edge deflection on longitudinal aerodynamic characteristics of configuration. $\delta_{\rm f} = 0^{\circ}$.

Figure 11.- Effect of twist and camber with leading-edge deflection on leading-edge suction parameter.

- \circ Experiment, upper surface
- \oplus Experiment, lower surface

Figure 12.- Chordwise wing pressure distributions. δ_{le} = 30°; δ_{f} = 0°.

- O Experiment, upper surface
- $\ensuremath{\oplus}$ Experiment, lower surface

The state of the s

Figure 12.- Continued.

- Experiment, upper surface
- \oplus Experiment, lower surface

(c) $\alpha = 6.64^{\circ}$.

Figure 12.- Continued.

- O Experiment, upper surface
- ⊕ Experiment, lower surface

(d) $\alpha = 8.59^{\circ}$.

Figure 12.- Continued.

- O Experiment, upper surface
- \oplus Experiment, lower surface

(e) $\alpha = 10.63^{\circ}$.

Figure 12.- Continued.

- O Experiment, upper surface
- ⊕ Experiment, lower surface

(f) $\alpha = 12.71^{\circ}$.

Figure 12.- Concluded.

Figure 13.- Effect of trailing-edge flap deflection. δ_{le} = 30°.

(b) $\delta_{f} = 20^{\circ}$, 30°, and 40°.

Figure 13.- Concluded.

Figure 14.- Comparison of theoretical and experimental trailing-edge flap effectiveness. Segments t_1 and t_3 .

- o Experiment, upper surface
- ⊕ Experiment, lower surface

Figure 15.- Effect of trailing-edge flap deflection on wing chordwise pressure distributions. δ_{1e} = 30°.

(a) Concluded.

Figure 15.- Continued.

- o Experiment, upper surface
- ⊕ Experiment, lower surface

(b) $y/\frac{b}{2} = 0.425$.

Figure 15.- Continued.

- Experiment, upper surface
- ⊕ Experiment, lower surface

(b) Concluded.

Figure 15.- Continued.

- o Experiment, upper surface
- ⊕ Experiment, lower furface

(c) $y/\frac{b}{2} = 0.654$.

Figure 15. - Continued.

- o Experiment, upper surface
- ⊕ Experiment, lower surface

(c) Concluded.

Figure 15.- Continued.

- Experiment, upper surface
- ⊕ Experiment, lower surface

(d) $y/\frac{b}{2} = 0.862$.

Figure 15.- Continued.

⊕ Experiment, lower surface

(d) Concluded.

Figure 15.- Concluded.

Figure 16.- Effect of leading-edge deflection on longitudinal aerodynamic characteristics. δ_{f} = 10°.

Figure 17.- Effect of wing leading-edge deflection on wing chordwise pressure distributions. δ_{f} = 10°.

⊕ Experiment, lower surface

(b) $\alpha = 4.5^{\circ}$.

Figure 17.- Continued.

Figure 17. - Continued.

Figure 17.- Continued.

Figure 17.- Continued.

Figure 17.- Concluded.

Figure 18.- Effect of spoiler deflection on longitudinal aerodynamic characteristics. δ_{le} = 30°; δ_{f} = 30°.

(b) Spoiler element s2.

Figure 18.- Continued.

(c) Spoiler element s3.

Figure 18.- Continued.

(d) Spoiler element s₄.

Figure 18.- Concluded.

1. Report No.	2. Government Ad	ccession No.	3. Recipient's Catalog No.		
NASA TP-2176 4. Title and Subtitle		5. Report Date			
LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A HIGHLY SWEPT, UNTWISTED, UNCAMBERED ARROW WING			October 1983 6. Performing Organization Code		
			505-45-43-02	505-45-43-02	
7. Author(s) Paul L. Coe, Jr., Scott O. Kjelgaard, and Garl L. Gentry, Jr.			8. Performing Organization Report No. L-15240 10. Work Unit No.		
					9. Performing Organization Na
NASA Langley Research Center Hampton, VA 23665			11. Contract or Grant No.		
			13. Type of Report and Period Cove	ered	
12. Sponsoring Agency Name and Address			Technical Paper		
National Aeronautics and Space Administration Washington, DC 20546			14. Sponsoring Agency Code		
15. Supplementary Notes					
16. Abstract					
separation occur only 3°, wherea semispan station show that vorted on the order of angle of attack lift and pitching tion. The presideflecting the of the onset of flainboard portion	rs on the outboard wing s conventional leading-end of 0.654 for the same at separation exists at ward and that these vorting moment and the increasure data and correspondentire wing leading edge ow separation to angles of the leading edge is	panel for angledge separation incidence angleving stations makes move inboardata show the ased drag associng force and a uniformly to of attack greatoverdeflected.	andeflected leading edges, votes of attack on the order of occurs at a nondimensional deflection and forward for angles of a first and forward with increass expected nonlinear increment viated with the vortex separated moment data confirm that 30° is effective in forestal attention 8.6°; however, the office of the investigation further of deflection to the leading-	er er ettac sing ets i ra-	
7. Key Words (Suggested by Author(s))		18. Distribution S	18. Distribution Statement		
Arrow wings Highly swept wings Leading-edge devices		Unclassified - Unlimited			
			Subject Category	02	
19. Security Classif. (of this re	port) 20. Security Classif. (of	this page) 21.	No. of Pages 22. Price		
Unclassified	Unclassified	a E	68 A04		