Machine Learning (CE 40717) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

October 13, 2024

- Optimization
- 2 The Loss Surface
- 3 Gradient Descent
- 4 Momentum

Optimization

- 2 The Loss Surface
- Gradient Descent

- Optimization **Problem Definition**
- 2 The Loss Surface
- Gradient Descent

Problem Definition

- Goal: Given a function f(x) of some variable x, find the value of x where f(x) is minimum or maximum
- In neural networks, the goal is to make the prediction error as small as possible
- We want to find the network weights W^* that result in the lowest loss

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, \hat{y}_i)$$

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \frac{1}{N} \sum_{i=1}^{n} \ell(y_i, \hat{y}_i)$$

s Surface Gradient D 0000000

Problem Definition

- Simply put, we want to find the direction to step in that will reduce our loss as quickly as possible
- In other words, which way is downhill?

- Optimization Convexity and Optimization
- 2 The Loss Surface
- Gradient Descent

Convexity and Optimization

- **Definition**: A function is **convex** if, for any two points on the curve, the line segment connecting them lies above or on the curve
 - **Example:** Bowl-shaped curves
- **Convex functions** are easier to optimize because they have only **one global minimum** (the lowest point)
 - Analytical solutions ($\nabla f(x) = 0$) and second-order methods ($\nabla^2 f(x) > 0$) can be used for faster and more accurate convergence
 - **Gradient descent** is guaranteed to converge to the global minimum in convex functions

Convexity and Optimization

- **Definition**: a function is **non-convex** if it has multiple local minima and maxima
 - Global Minimum: The very lowest point across the whole curve
 - Local Minimum: A point that's lower than nearby points, but not the lowest overall
 - Saddle Points: A flat region where the slope is almost zero. It can go up in some directions and down in others
- Non-convex functions make finding the **global minimum** complicated

- 2 The Loss Surface
- Gradient Descent

Definition

- The loss surface represents how the error changes based on the network's weights
- The loss surface of a neural network is typically **non-convex** due to multiple layers, nonlinear activation functions, and complex interactions between parameters, resulting in multiple local minima and saddle points
- In large networks, most local minima give similar error values and are close to the global minimum. This isn't true for smaller networks

Figure 1: ResNet56 from https: //github.com/tomgoldstein/loss-landscape

 ptimization
 The Loss Surface
 Gradient Descent
 Momentum

 00000
 00 ●
 0000000000
 0000000000

Loss Optimization

- How can we optimize a non-convex loss function?
- Strategy: Instead of randomly searching for a good direction, we calculate the best direction to reduce the loss
 - This is mathematically guaranteed to be the direction of the steepest descent

Figure 2: Gradient Descent visualization from https://blog.skz.dev/gradient-descent

- Optimization
- 2 The Loss Surface
- 3 Gradient Descent

- Optimization
- 2 The Loss Surface
- 3 Gradient Descent
 Recap of Gradient Descent
 Problems with Gradient Descent
- 4 Momentum

Gradient Descent

 As introduced earlier, Gradient Descent is an iterative method for minimizing the error by updating network weights in the direction of the steepest descent (negative gradient)

$$\theta_t = \theta_{t-1} - \eta \nabla_{\theta} J(\theta)$$

where:

- η is called the 'learning rate' or 'step size'
- The goal is to keep adjusting the weights until we reach a point where the error is as low as possible (a local or global minimum)

Types of Gradient Descent

- **Batch Gradient Descent**: Uses the entire dataset to calculate the gradient. This gives smooth updates but can be slow
- **Stochastic Gradient Descent (SGD)**: Uses one data point at a time, leading to faster but noisier updates
- Mini-batch Gradient Descent: Uses small groups (batches) of data points. This is a balance between batch and stochastic, combining speed with more stable updates

Types of Gradient Descent

Туре	Advantages	Disadvantages
Batch	Stable convergence Accurate gradient estimate	Computationally expensive Slow for large datasets
Stochastic (SGD)	Fast updates Can escape local minima	Noisy updates May not converge smoothly
Mini-Batch	Faster than batch, more stable than SGD Efficient for larger datasets	Requires tuning batch size Some noise remains

Gradient Descent

Table 1: Comparison of Gradient Descent Types

- Optimization
- 2 The Loss Surface
- 3 Gradient Descent
 Recap of Gradient Descent
 Problems with Gradient Descent
- 4 Momentum

The Loss Surface Gradient Descent Momentum

○○○

○○○○○○○○○○○○○○○

OOOO○○○○○

OOOO○○○○

OOO

Problem 1

- **SGD** is fast and can escape local minima, but it faces some issues
- What if the loss changes quickly in one direction but slowly in another?
 - Slow progress along the shallow dimension, jitter along the steep direction

Figure 3: SGD visualization from CS231n: Convolutional Neural Networks for Visual Recognition

Problem 2

- What if the loss function has a local minima or saddle point?
 - The algorithm may settle for sub-optimal solutions or take a long time to make significant progress

Figure 4: Saddle point from https://en.wikipedia.org/wiki/Saddle_point

Problem 3

 Gradients that come from single data points or mini-batches can be noisy

Stochastic Gradient Descent

Figure 5: SGD visualization from https://laptrinhx.com/understanding-optimization-algorithms-3818430905/

- Why not just use mini-batches?
 - Even though mini-batch gradient descent helps reduce the noise, It can still have a slow convergence and might get stuck in regions where the gradients are small (like plateaus or valleys), which makes learning inefficient

Gradient Descent

- In addition, using the same learning rate for all dimensions can lead to:
 - Smooth convergence in some directions
 - Oscillations or divergence in other directions

ss Surface Gradient Descent

Problem Definition

- So, how can we improve the vanilla Gradient Descent algorithm?
- Proposal:
 - Track oscillations in each direction
 - Increase steps in stable directions
 - Decrease steps in oscillating directions

Problem Definition

- **Goal**: Choose an appropriate learning rate to avoid slow convergence and getting stuck in local minima while not overshooting or becoming unstable
- Naive Approach: Try lots of different learning rates and see what works "just right"
 - This can be inefficient and time-consuming
- Smarter Approach: Design an adaptive learning rate that adapts to the loss surface
 - We can achieve this by incorporating Momentum

- Optimization
- 2 The Loss Surface
- 3 Gradient Descent
- 4 Momentum

Momentum Definition and Types Adam

- Optimization
- 2 The Loss Surface
- Gradient Descent
- 4 Momentum

 Momentum Definition and Types

 Adam

Momentum

- Goal: Speed up convergence by using past gradients to smooth out oscillations and avoid getting stuck
 - Keep moving in the same general direction as previous steps
- Benefit: Accelerates learning in important directions while reducing oscillations in irrelevant ones

Figure 6: SGD comparison from https://paperswithcode.com/method/sgd-with-momentum

First Momentum

• The first momentum, denoted as m_t , is essentially the moving average of the gradients. The update rule is:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} J(\theta_{t-1})$$
$$\theta_t = \theta_{t-1} - \eta m_t$$

where:

- m_t is the first moment
- β_1 is the decay rate, which controls how much of the past gradients to include (typically 0.9 or 0.99)
- $\nabla_{\theta} J(\theta_t)$ is the gradient

Why use the first moment?

• Inspired by physics, it keeps us moving due to accumulated momentum, like a ball rolling in a frictionless bowl

Second Momentum

- The second momentum, denoted as v_t , is a moving average of the squared gradients.
- It helps us track how large the gradients have been over time. The update rule is:

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_{\theta} J(\theta_t))^2$$
$$\theta_t = \theta_{t-1} - \eta v_t$$

where:

- v_t is the second moment
- β_2 is the decay rate
- $\nabla_{\theta} I(\theta_t)$ is the gradient

Why use the second moment?

• The second moment helps **control the size of updates** by adjusting for consistently large or small gradients, preventing overshooting or slow learning

Moment Bias Correction

- **Problem**: When we start training, both m_t and v_t are initialized to zero, causing their estimates to be biased toward zero in the early steps, especially when gradients are small.
- **Solution**: We use bias-corrected versions of m_t and v_t to fix this:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

• These corrections compensate for the bias by scaling m_t and v_t upward, especially in the early steps when t is small, ensuring more accurate estimates of the moments.

- Optimization
- 2 The Loss Surface
- Gradient Descent
- 4 Momentum Momentum Definition and Types Adam

Adam

- Adaptive Moment Estimation, or Adam, combines the concepts of momentum and adaptive learning rate by maintaining an exponentially decaying average of both past gradients and squared gradients
- Adam adapts the learning rate for each parameter based on the gradient history
 - Larger gradients lead to smaller update steps, and vice versa

Adam

• The update rule for Adam optimizer at step t is denoted by θ_t :

$$\theta_t = \theta_{t-1} - \eta \frac{\hat{m}_{t-1}}{\sqrt{\hat{v}_{t-1}} + \epsilon}$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} J(\theta_t)$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_{\theta} J(\theta_t) \odot \nabla J(\theta_t))$$
$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

where:

- m_t and v_t are the first and second moments
- β_1 and β_2 are decay rates for the first and second moments
- \hat{m}_t and \hat{v}_t are bias-corrected estimates of the first and second moments
- ϵ is a small constant to prevent division by zero

Momentum 000000000

Comparison of Momentum Methods

Figure 7: GD comparison from $\verb|https://github.com/ilguyi/optimizers.numpy| Figure~8: GD comparison on MNIST from$

kingma2014adam 4 D > 4 A > 4 B > 4 B