ROTEIRO

AUXILIAR

Embedding - CBoW

Embedding - Skip-gram

CLASSIFICADORES (KNN (K-Nearest Neighbor))

Classifica novas amostras de acordo com as K (5) amostras do conjunto de treinamento mais próximas a essas novas amostras. O KNN usa uma medida de distância (Euclidiana) para definir a semelhança (proximidade) de uma amostra com outra. ¹

¹DUDA, R. O.; HART, P. E.; STORK, D. G. Pattern classification and scene analysis 2nd ed. ed: Wiley Interscience, 1995.

CLASSIFICADORES (SVM (Support Vector Machines))

Se baseia na margem de separação das classes, onde o objetivo do treinamento é encontrar um hiperplano separador ótimo, aquele em que a distância de separação entre as classes é máxima - hiperplano de margem máxima ². *Kernel*: RBF.

²DUTRA, L. P. Detecção das doenças olho de boi e mancha de sarna em maçãs utilizando máquina de vetores de suporte. 2017.

CLASSIFICADORES (*DT* (*Decision Tree*))

É constituído essencialmente uma série de decisões *if-else*. Os dados vão sendo particionados em subconjuntos e alguma medida de pureza (gini) dos subconjuntos vai sendo avaliada para decidir quando parar. ³

Algoritmo de construção utilizado:

► CART (Classification and Regression Trees)

³CARACIOLO, M. P. Introdução a AD para classificação e MD. 2009.

CLASSIFICADORES (*RF* (*Random Forest*))

Tem o objetivo de efetuar a criação de várias árvores de decisão usando um subconjunto de atributos selecionados aleatoriamente a partir do conjunto original, contendo todos os atributos e que estes possuem um tipo de amostragem chamado de *bootstrap*, a qual é do tipo com reposição, possibilitando assim melhor análise dos dados.

Precision e Recall

