ECE 443/518 – Computer Cyber Security Lecture 16 Cryptocurrency

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

October 24, 2022

Outline

Proof of Work

Proof of Stake

Reading Assignment

- ► This lecture: Cryptocurrency
- Next lecture: Smart Contract, Oblivious Transfer

Outline

Proof of Work

Proof of Stake

BFT Meets Cryptocurrency

- Consensus on what the next block should be is a must for cryptocurrency.
 - Otherwise adversaries can create branches for double spending.
- ▶ Many BFT protocols are too weak to be useful here.
 - ► E.g. both the ones without or with digital signatures need to know how many traitors are there, but in our case one adversary can create arbitrary number of "traitor" accounts.
- ▶ The BFT propocol need to weight the participants differently.
 - So adversaries cannot simply overwhelm the protocol by creating more accounts, a.k.a. Sybil attack.

Proof of Work (PoW)

- Each account willing to generate the next block needs to perform certain amount of work before it could join the BFT protocol.
 - ▶ Typical work: for a block of hash s, find x so that h(s||x) is smaller than a threshold.
 - If h is preimage resistant, one can only find such x via brute-force.
 - Block time: the expected time for some account to find a solution x.
 - ▶ When more computational power are available, the threshold is reduced such that the block time remains unchanged.
- PoW consensus: the branch with the most of work is the valid one.
 - The consensus can be reached as long as honest account owners can provide majority of work.

Obtaining the Blockchain

- Consider an account that want to generate the next block.
 - By using a program together with its private key.
- ▶ The program connects to Internet to query the blockchain.
 - ► However, there could be adversaries so the program must decide if the chain it receives is valid or not.
- ▶ The genesis block: the first block of the blockchain.
 - ► The genesis block is assumed to be well-known, usually coded into the program directly.
 - ► The genesis block could contain data like cryptocurrency parameters and initial balances for certain accounts.
- ▶ The program need to validate past transactions.
 - ▶ It is necessary to accumulate balances for all accounts to decide if transactions are valid – this is possible now since our computers are actually quite powerful.
- However, recall that valid transactions along cannot prevent branches (and thus double spending).

PoW Fork Choice

- ► Fork: the program may receive multiple valid blockchains all with the same correct genesis block.
 - ► They diverge somewhere back in the history.
 - Resulting from a temporary network partitioning or an attack.
- ► Choice: with PoW, the program should pick the blockchain with the most of the work as the correct one.
 - ► The work is measured as the total effort to solve the problems for all the blocks along the chain.
- ▶ 51% attack: attackers controlling more than half of the computational power could collude to cause a successful fork.
 - Suppose currently the honest accounts are at the chain $A \rightarrow B \rightarrow \cdots \rightarrow C$ from an earlier block A.
 - ▶ The attackers make a fork $A \rightarrow B'$ and continue.
 - No matter how many blocks are there between A and C, the attackers can eventually reach D' as $A \to B' \to \cdots \to D'$, that contains more work than the chain created by the honest accounts now as $A \to B \to \cdots \to C \to \cdots \to D$

PoW Finality

- ▶ With 51% attack, powerful attackers can revert transactions by creating successful forks.
 - ▶ It may take some time but 100% the attack will be successful.
- ► Can attackers with less computational power revert a block?
 - Finality: we need to define when a block is considered "final" and thus is not supposed to be changed or reverted.
 - ► Fake check scams are classical examples of attacks on finality for our banking system.
- Consider an attacker controlling 25% of computational power
 - ▶ Suppose the current chain is $A \rightarrow B$ and honest accounts are working on the block C.
 - ▶ If B is considered final immediately, the attacker will attempt to make a fork $A \rightarrow B' \rightarrow C'$ when A was ready.
 - If C' can be generated ahead of C in time, honest accounts may simply follow the chain $A \to B' \to C'$.
 - With 25% of computational power, this may happen with a probability of $(\frac{25\%}{75\%})^2 = \frac{1}{9}$.

Economic Incentives

- How could PoW cryptocurrencies actually survive when finality is always probablistic, and when powerful adversaries could have the majority of computational power?
- Economic incentives to attract honest accounts to participate in the BFT protocol.
 - Transaction fees: the account creates the next block will take all the transaction fees.
 - When there is more transactions than what the next block can hold, payers compete by paying more transaction fees.
 - Mining: the account creates the next block is allowed to award itself a predefined amount of money.
 - As a transaction with no payer.
- As a consequence, powerful adversaries have economic incentives to not cheat.
 - It is more rewarding to participate honestly than to make the cryptocurrency useless by attacking it.

Outline

Proof of Work

Proof of Stake

Proof of Stake (PoS)

- PoW consensus achieves a great success and enables a lot of honest account owners to participate.
 - For a fixed block time, need to increase complexity of work.
 - So more energy is needed to generate one block.
 - hardware depreciation + energy cost + profit = mining income
- Proof of stake: accounts stake a certain amount of the cryptocurrency itself to participate in the consensus process.
 - Without the need of computing complex works (and thus consume less energy) to resist Sybil attacks.
 - ▶ Honest accounts are rewarded with transaction fees.
 - Attackers may have their staked cryptocurrency burned.

GASPER

- PoS consensus mechanism for Ethereum, consisting of
 - ► Finality: Casper the Friendly Finality Gadget (Casper-FFG)
 - Fork choice: the LMD-GHOST algorithm
- Validators
 - An account who want to participate in PoS consensus need to deposit 32 ETH first to become a validator.
 - Each validator will need to vote for the next block.
- ▶ Unlike PoW where block time is an expectation, time in PoS is devided into 12-second slots and 32-slot epochs.
 - For each slot, a randomly chosen validator will create a block, and a randomly chosen committee of validators will verify the block.

Casper the Friendly Finality Gadget (Casper-FFG)

- ► Checkpoint blocks are blocks created at the first slot of each epoch (every 12*32=384 seconds).
- A checkpiont block is marked as "justified" when two-thirds of the total staked ETH vote so.
- ► When another block is marked as justified after a previous justified block, the previous block is marked "finalized".
 - ➤ So it takes two-thirds of the total staked ETH in 32 blocks to vote to finalize a block.
- Attackers controlling two-thirds of staked ETH can manupulate the block, e.g. to include or exclude transactions.
- Attackers controlling one-thirds of staked ETH can double-vote two different justified blocks to cause a fork.
 - ▶ But double-voting can be detected and punished.
- Attackers controlling more than one-thirds of staked ETH can simply remain silent to prevent any progress.
 - ▶ Punish inactivities when there is no progress for more than four epochs until a two-thirds majority can be reached.

Fork Choice with LMD-GHOST

- Latest Message-Driven Greedy Heaviest Observed Sub-Tree
- ▶ When fork happens, the situation can be much more complicated than where a block is forked into two – there could be multiple levels of fork forming a tree of many levels of branches from a root block.
- The algorithm picks a path from the root block by always choosing the justified block with more votes whenever there is a branch.
 - If a validator justifies multiple blocks in the tree, only the last one counts.
 - Ties are broken deterministically, e.g. by comparing the hash of the block.

Summary

▶ Both proof of work (PoW) and proof of stake (PoS) work as the consensus mechanism for cryptocurrencies.