Optimization Model for SCRUM-Based Software Development

AI Assistant

September 4, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Goals	3
4	Conditions	4
5	DecisionVariables	6

1 Sets (Entities)

- Project = $\{p_1, p_2, ..., p_n\}$ based on Entity **E0**
- Team = $\{t_1, t_2, ..., t_n\}$ based on Entity **E1**
- Worker = $\{w_1, w_2, ..., w_n\}$ based on Entity **E2**
- Feature = $\{f_1, f_2, ..., f_n\}$ based on Entity **E3**
- Skill = $\{s_1, s_2, ..., s_n\}$ based on Entity **E4**
- Role = $\{r_1, r_2, ..., r_n\}$ based on Entity **E5**
- ProductBacklog = $\{pb_1, pb_2, ..., pb_n\}$ based on Entity **E8**
- Sprint = $\{sp_1, sp_2, ..., sp_n\}$ based on Entity **E9**
- UserStory = $\{us_1, us_2, ..., us_n\}$ based on Entity **E17**
- Task = $\{tsk_1, tsk_2, ..., tsk_n\}$ based on Entity **E18**
- Blocker = $\{bl_1, bl_2, ..., bl_n\}$ based on Entity **E20**
- Stakeholder = $\{sh_1, sh_2, ..., sh_n\}$ based on Entity **E21**
- Velocity = $\{vel_1, vel_2, ..., vel_n\}$ based on Entity **E22**
- SprintBacklog = $\{sbl_1, sbl_2, ..., sbl_n\}$ based on Entity **E14**

2 Indices

- $p, p' \in \text{Project}$
- $t, t' \in \text{Team}$
- $w, w' \in Worker$
- $f, f' \in \text{Feature}$
- $s \in Skill$
- $r \in \text{Role}$
- $sp \in Sprint$

- $us, us' \in UserStory$
- $tsk \in Task$
- $bl \in Blocker$
- $sh \in Stakeholder$
- $vel \in Velocity$
- $sg \in SprintGoal$
- $sbl \in SprintBacklog$

3 Goals

• **G0:** minimize_total_budget - Minimize the total budget consumed by all projects.

Minimize
$$Z_0 = \sum_{p \in \text{Project}} \text{budget}(p)$$

• **G1:** maximize_team_utilization - Maximize the average utilization of teams.

Maximize
$$Z_1 = \frac{1}{|\text{Team}|} \sum_{t \in \text{Team}} \text{team_status}(t)$$

• **G2:** maximize_feature_completion - Maximize the number of features with status 'Done'.

$$\text{Maximize } Z_2 = \sum_{f \in \text{Feature}} I(\text{status}(f) = \text{'Done'})$$

• G3: minimize_blocker_impact - Minimize the number of unresolved high-severity blockers.

Minimize
$$Z_3 = \sum_{bl \in \text{Blocker}} I(\text{severity}(bl) = '\text{High'} \land \text{status}(bl) \neq '\text{Resolved'})$$

• **G4:** maximize_velocity_consistency - Maximize the team's minimum velocity.

Maximize
$$Z_4 = \min_{t \in \text{Team}} (\text{avg_story_points}(vel_t))$$

• **G5:** minimize_sprint_overhead - Minimize the total time spent in ceremonies.

Minimize
$$Z_5 = \sum_{sp \in \text{Sprint}} \text{duration}_{\text{planning}}(sp) + \text{duration}_{\text{review}}(sp) + \text{duration}_{\text{retrospective}}(sp)$$

• G6: maximize_stakeholder_satisfaction - Maximize the average influence level of satisfied stakeholders.

$$\text{Maximize } Z_6 = \frac{1}{|\text{Stakeholder}|} \sum_{sh \in \text{Stakeholder}} (\text{influence_level}(sh) \cdot I(\text{satisfied}(sh)))$$

• G7: minimize_context_switching - Minimize the number of different features a team works on in one sprint.

Minimize
$$Z_7 = \sum_{t \in \text{Team } sp \in \text{Sprint}} |\{f : \operatorname{assign}(f, t, sp) = 1\}|$$

• **G8:** maximize_skill_application - Maximize the use of certified skills across the workforce.

Maximize
$$Z_8 = \sum_{w \in \text{Worker}} \sum_{s \in \text{Skill}} I(\text{certified}(w, s) = \text{True})$$

• **G9:** minimize_project_delay - Minimize the delay between planned and actual project end dates.

$$\text{Minimize } Z_9 = \sum_{p \in \text{Project}} \max(0, \text{actual_end}(p) - \text{planned_end}(p))$$

4 Conditions

• C0: team_availability - A team's status must be 'Available' to be assigned to a new project.

team_status
$$(t)$$
 = 'Available' $\forall t \in \text{Team where assign}(t, p) = 1$

• C1: sprint_goal_must_be_met - The Sprint Goal achievement_status must be 'Achieved'.

achievement_status(
$$sg_{sp}$$
) = 'Achieved' $\forall sp \in Sprint$

• **C2:** worker_availability - A worker can only be assigned to tasks if their availability > 0.

availability $(w) > 0 \quad \forall w \in \text{Worker where assign}(w, tsk) = 1$

• C3: budget_not_exceeded - The total cost of a project must not exceed its allocated budget.

$$\sum_{f \in \text{Feature}_p} \text{cost}(f) \le \text{budget}(p) \quad \forall p \in \text{Project}$$

• C4: story_points_per_sprint - The total story points in a Sprint Backlog must not exceed 1.5x the team's velocity.

 $\sum_{us \in \text{UserStory}_{sbl}} \text{story_points}(us) \leq 1.5 \cdot \text{avg_story_points}(vel_t) \quad \forall sbl \in \text{SprintBacklog}$

• C5: cross_functional_team - Each team must have at least one member with each required role.

$$\sum_{w \in \text{Worker}_t} I(\text{role}(w, r) = 1) \geq 1 \quad \forall t \in \text{Team}, \forall r \in \text{RequiredRoles}$$

• C6: definition_of_done - A User Story can only be marked 'Done' if all its acceptance criteria are met.

$$\operatorname{status}(us) = \operatorname{'Done'} \implies \bigwedge_{c \in \operatorname{acceptance_criteria}(us)} c = \operatorname{True} \quad \forall us \in \operatorname{UserStory}$$

• C7: no_active_blockers - A task cannot be marked 'Done' if it has an active blocker.

$$\operatorname{status}(tsk) = \operatorname{'Done'} \implies \not\exists bl \in \operatorname{Blocker}_{tsk} : \operatorname{status}(bl) \neq \operatorname{'Resolved'} \quad \forall tsk \in \operatorname{Task}$$

• C8: feature_dependency - Feature B cannot start until Feature A is complete.

 $\operatorname{status}(f_B) \neq \operatorname{'In Progress'}$ until $\operatorname{status}(f_A) = \operatorname{'Done'} \quad \forall (f_A, f_B) \in \operatorname{Dependencies}$

• **C9:** maximum_team_size - A team cannot have more than 10 members.

$$\sum_{w \in \text{Worker}} \operatorname{assign}(w, t) \le 10 \quad \forall t \in \text{Team}$$

5 DecisionVariables

- **DV0:** $x_{t,p} \in \{0,1\}$ Binary assignment of Team t to Project p.
- DV1: $x_{w,t} \in \{0,1\}$ Binary assignment of Worker w to Team t.
- DV2: $x_{us,sp} \in \{0,1\}$ Binary inclusion of UserStory us in Sprint sp.
- **DV4:** $p_{us} \in Z^+$ Story points for UserStory us, where $1 \le p_{us} \le 20$.
- **DV5:** $d_{sp} \in Z^+$ Duration of Sprint sp in days, where $7 \le d_{sp} \le 21$.
- **DV6:** $v_{t,sp} \in Z^+$ Planned velocity for Team t in Sprint sp, where $0 \le v_{t,sp} \le 50$.
- **DV7:** $pri_p \in Z^+$ Priority level of Project p, where $1 \leq pri_p \leq 10$.
- **DV8:** $pri_f \in \mathbb{Z}^+$ Priority level of Feature f, where $1 \leq pri_f \leq 100$.
- **DV9:** $a_{w,sp} \in R$ Availability of Worker w in Sprint sp, where $0.0 \le a_{w,sp} \le 1.0$.
- **DV10:** $c_{sp,ceremony} \in Z^+$ Duration of a ceremony in Sprint sp, where $15 \le c_{sp,ceremony} \le 240$.
- **DV11:** $l_{w,s} \in \mathbb{Z}^+$ Skill level of Worker w for Skill s, where $1 \leq l_{w,s} \leq 5$.