Trabajo estadistica

Anccasi Garcia, Roy 27182301 alumno 1 Dalquerre Garcia, Luis 27180119

alumno 2

alumno 3

Auucapuclla Barrientos, Paul 27170502

Robles Garibay, Bill 27180108

alumno 4

alumno 5

Zamudio Castro, Antony 27170110 Huaman Landa Leonel 27180701

September 15, 2019

- $1.\ \,$ Un taller tiene 5 empleados. Los salarios diarios en dolares de cada uno de ellos seon: $5,\,7,\,8,\,10,\,10$
- a) Determine la media y la varianza de la poblacion

Salarios			
x_i	valor		
x_1	5		
x_2	7		
x_3	8		
x_4	10		
x_5	10		

Table 1: Tabla de salarios.

Hallamos la media

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{n} = \frac{5 + 7 + 8 + 10 + 10}{5} = \frac{40}{5}$$

tenemos que , $\bar{x}=8$ Para la varianza

$$\sigma^2 = \sum_{i=1}^n \frac{(x_i - \bar{x})^2 x}{n} = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + (x_4 - \bar{x})^2 + (x_5 - \bar{x})^2}{n}$$

$$=\frac{(5-8)^2+(7-8)^2+(8-8)^2+(10-8)^2+(10-8)^2}{5}=\frac{9+1+0+4+4}{5}=\frac{18}{5}=3.6$$

tenemos que , $\sigma^2=3.6$

3. Si \bar{x} denota la media de la muestra aleatoria $x_1, x_2, ..., x_9$ de tamano 9 escogida de la poblacion (X) normal $N(6, 6^2)$.

a) Describa la deistribución de probabilidades de la variable \bar{X}

b) Halle el percentil 80 de la distribucion de \bar{X}

$$P(\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \le \frac{k - \mu}{\frac{\sigma}{\sqrt{n}}}) = 0.8$$

$$P(\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \le \frac{k - 6}{\frac{6}{\sqrt{n}}}) = 0.8$$

teniendo,

$$\frac{k-6}{\frac{6}{\sqrt{9}}} = 0.84$$

$$\frac{k-6}{2} = 0.84$$

$$k - 6 = 1,68$$

k = 7,68

c) Si Y=3X-5, calcular P[$\bar{Y} > 28$]. entonces,

$$P[\bar{Y} > 28] = P[3\bar{X} - 5 > 28] = P[3\bar{X} > 33] = P[\bar{X} > 11] = 1 - P[\bar{X} \le 11]$$
$$= 1 - P(\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{p}}} \le \frac{11 - 6}{\frac{6}{\sqrt{p}}}) = 1 - P(Z \le 2, 5) = 1 - 0.9938 = 0.0062$$

4. Una compania agroindustrial ha logrado estableer el siguiente modelo de probabilidad discreta de los sueldos(X) en cientos de dolares de su personal:

X	1	2	3	4	5
f(x) = P[X = x]	0.1	0.2	0.4	0.2	0.1

Table 2: Sueldos en cientos de dolares.

Si de esta pobalcion de sueldos se toman 30 sueldos al azar.

a) Halle la media y la varianza de la media muestral. Entonces para calcular μ ,

$$\lambda = \sum_{i=1}^{n} x_i f(x_1) = 0.1 + 0.4 + 1.2 + 0.8 + 0.5 = 3$$

x_i	f(x)	xf(x)	$x^2 f(x)$
1	0.1	0.1	0.1
2	0.2	0.4	0.8
3	0.4	1.2	3.6
4	0.2	0.8	3.2
5	0.1	0.5	2.5

Table 3: xf(x).

Para la varianza,

$$\sigma_x^2 = \sum_{i=1}^n (x_i)^2 - \mu^2 = 0.1 + 0.8 + 3.6 + 3.2 + 2.5 - 9 = 10.2 - 9 = 1.2$$

entonces,

$$\sigma_{\bar{x}}^2 = \frac{\sigma_x^2}{n} = \frac{1,2}{30} = 0.04$$

b) Calcule la probabilidad de que la media muestral este entre 260 y 330 dolares.// Recoredemos que los sueldos estan en base 100, entonces debemos hallar, $P(2.6 \le \bar{x} \le 3.3)//$

$$\begin{split} P(2.6 \leq \bar{x} \leq 3.3) &= P(\bar{x} \leq 3.3) - P(\bar{x} \leq 2.6) \\ &= P(\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \leq frac3.3 - 30.2) - P(\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \leq \frac{2.6 - 3}{0.2}) = P(Z \leq 1.5) - P(Z \leq -2) \\ &= 0.9332 - 0.0183 = 0.9149 \end{split}$$