N_1 Vecteur

D Définition : vecteur

Un **vecteur** \overrightarrow{u} est associé à une translation. Le point B est le symétrique du point A par la translation de vecteur \overrightarrow{u} quand $\overrightarrow{AB} = \overrightarrow{u}$ c'est à dire :

ullet les vecteurs \overrightarrow{AB} et \overrightarrow{u} ont même longueur. On parle de **norme** pour un vecteur et on note

$$AB = ||\overrightarrow{AB}|| = ||\overrightarrow{u}||$$

- les vecteurs \overrightarrow{AB} et \overrightarrow{u} ont la même direction c'est à dire qu'ils sont portés par deux droites parallèles.
- les vecteurs \overrightarrow{AB} et \overrightarrow{u} ont le même sens.

D Définition : vecteur nul

Le vecteur associé à la translation qui transforme un point en lui-même est le **vecteur nul** que l'on note 0.

$$\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{MM}$$

D Définition : opposé

Le vecteur \overrightarrow{BA} associé à la translation qui transforme B en A est le **vecteur opposé** à \overrightarrow{AB} .

$$\overrightarrow{BA} = -\overrightarrow{AB}$$
 ou $\overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{0}$

P Propriété : parallélogramme

 $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABCD est un parallélogramme.

P Propriété : milieu

 $\overrightarrow{AI} = \overrightarrow{IB}$ si et seulement si I est le milieu du segment [AB] .

- lacktriangledown Soit $oldsymbol{2}$ parallélogrammes $oldsymbol{ABCD}$ et $oldsymbol{DCEF}$.
 - a) Faire une figure.
 - **b)** Démonter que $\overrightarrow{AB} = -\overrightarrow{EF}$
- Soient $oldsymbol{6}$ points $oldsymbol{G}$, $oldsymbol{H}$, $oldsymbol{I}$, $oldsymbol{I}$, $oldsymbol{K}$, $oldsymbol{L}$ tel que $\overrightarrow{GH}=\overrightarrow{JI}$ et $\overrightarrow{IJ}=-\overrightarrow{KL}$.
 - a) Faire une figure.
 - b) Donner tous les parallélogrammes présents. Justifier.
- Soit O milieu de [AB] et le point D est le symétrique du point C par rapport à O.
 - a) Faire une figure.
 - **b)** Démontrer que $\overrightarrow{AC} = \overrightarrow{DB}$ ou que $\overrightarrow{AD} = \overrightarrow{CB}$
- Soit le point A tel que $\overrightarrow{AB} = -\overrightarrow{AC}$. Faire une figure puis indiquer la position du point A. Justifier.
- Soit le point M tel que $\overrightarrow{ME} + \overrightarrow{MF} = \overrightarrow{0}$. Faire une figure puis indiquer la position du point M. Justifier.

 N_2

Addition de deux vecteurs

P Propriétés

Addition

Soient \overrightarrow{AB} et \overrightarrow{CD} $\mathbf{2}$ vecteurs :

$$\bullet \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{CD} + \overrightarrow{AB}$$

$$\bullet \ \overrightarrow{AB} + \overrightarrow{0} = \overrightarrow{AB}$$

Relation de Chasles

Soient A, B et C trois points

alors :
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Propriété du parallélogramme

Soient A, B, C et D quatre points.

ABCD est un parallélogramme si et seulement si $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$

Démontrer la propriété du parallélogramme.

N₃ Coordonnées d'un vecteur

D Définition

Dans un repère d'origine O, le point M a pour coordonnées (a;b) alors le vecteur $\overrightarrow{u} = \overrightarrow{OM}$ a les mêmes coordonnées que le point M et on note : $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$

P Propriété : unicité

Deux vecteurs $\overrightarrow{u} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$ sont égaux si et seulement si ils ont les mêmes coordonnées c'est à dire $a_1 = a_2$ et $b_1 = b_2$.

P Propriété

Dans un repère, $A(x_A;y_A)$ et $B(x_B;y_B)$ alors : $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

- Dans un repère orthonormé, on a A(1;2) , B(5,6) , C(8;9) et D(10;67) :
 - a) Placer ces 4 points.
 - ${f b}$) Démontrer que ABCD est un parallélogramme.
 - c) Donner les coordonnées de \overrightarrow{AD} puis \overrightarrow{BC} .
- Dans un repère orthonormé, on a A(1;2) , B(5,6) , C(8;9) :
 - a) Placer ces 3 points.
 - **b)** Placer un point D pour que ABCD est un parallélogramme.
 - c) Donner les coordonnées de CD.
 - **d)** Donner les coordonnées de \overrightarrow{AD} puis de \overrightarrow{BC} .

N₄ Norme d'un vecteur

 $oxed{ egin{array}{c} oxed{ egin{array}{c} oxed{ eta} \ oxed{ Definition} } oxed{ Si} oxed{ u} oxed{ x} \ u \ u \ y \ \end{pmatrix} ext{dans un repère orthonormé alors } || \overrightarrow{u} || = \sqrt{x^2 + y^2} \ || = \sqrt{x^2 + y^2} \$

Calculer la norme des vecteurs :

1 \overrightarrow{u} $\begin{pmatrix} -1\\4 \end{pmatrix}$

 \overrightarrow{AB} avec A(-1;8) et B(6;12).

 $\begin{array}{c} \rightarrow \\ w \end{array} \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix}$

N₅ Propriétés

P Addition de deux vecteurs

Soient deux vecteurs $\overrightarrow{u}egin{pmatrix}a_1\\b_1\end{pmatrix}$ et $\overrightarrow{v}egin{pmatrix}a_2\\b_2\end{pmatrix}$ et $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$ alors $\overrightarrow{w}egin{pmatrix}a_1+a_2\\b_1+b_2\end{pmatrix}$

P Multiplication par un réel

Soit un vecteur $\overrightarrow{u}ig(egin{array}{c} a_1 \\ b_1 \end{array}ig)$ et λ un réel et $\overrightarrow{w}=\lambda\overrightarrow{u}$ alors $\overrightarrow{w}ig(egin{array}{c} \lambda imes a_1 \\ \lambda imes b_1 \end{array}ig)$

P Propriétés

Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} et λ un réel tels que $\overrightarrow{AB} = \lambda \overrightarrow{CD}$ alors :

- ullet Si $\lambda>0$ alors $\stackrel{\frown}{AB}$ et $\stackrel{\frown}{CD}$ ont le même sens et $AB=\lambda CD$
- ullet Si $\lambda < 0$ alors \overrightarrow{AB} et \overrightarrow{CD} sont de sens contraire et $AB = -\lambda CD$
- Soient $\overrightarrow{AB} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\overrightarrow{BC} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$. Déterminer les coordonnées de $\overrightarrow{AB} 2\overrightarrow{BC}$.
- Soient E(-1;2); F(2;-3) et G(-3;4). Déterminer les coordonnées de $2\overrightarrow{EF}-3\overrightarrow{FG}$.

Colinéarité de deux vecteurs

D Définition

Deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont **colinéaires** quand il existe un réel \overrightarrow{k} tel que $\overrightarrow{u} = \overrightarrow{k} \overrightarrow{v}$

P Propriété

Soient deux vecteurs $\overset{
ightarrow}{u} \left(egin{matrix} x \\ y \end{matrix}
ight)$ et $\overset{
ightarrow}{v} \left(egin{matrix} x' \\ y' \end{matrix}
ight)$

 \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si leurs coordonnées sont **proportionnelles** c'est à dire xy'=x'y ou xy'-x'y=0. C'est les produits en croix des coordonnés de \overrightarrow{u} et \overrightarrow{v} .

Déterminer si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Si oui, déterminer le réel \overrightarrow{k} tel que $\overrightarrow{u} = \overrightarrow{k} \overrightarrow{v}$ (a et b sont deux réels) :

$$\overrightarrow{u} \stackrel{
ightarrow}{u} \left(egin{array}{c} 3 \ -2 \end{array}
ight)$$
 et $\overrightarrow{v} \left(egin{array}{c} -11 \ 5 \end{array}
ight)$

$$\overset{2}{u} \stackrel{\rightarrow}{u} \left(\frac{5}{2} \atop 3 \right) \text{ et } \vec{v} \left(\frac{\frac{15}{4}}{\frac{9}{2}} \right)$$

$$\overrightarrow{u} \left(egin{array}{c} -\sqrt{2} \ -3 \end{array}
ight) ext{ et } \overrightarrow{v} \left(egin{array}{c} -2 \ -3\sqrt{2} \end{array}
ight)$$

N₇ Droites parallèles

P Propriété

Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires si et seulement si les droites (AB) et (CD) sont parallèles.

Tracer les droites (AB) et (CD) puis déterminer si elles sont parallèles :

- lacksquare A(3;-2) , B(-1;-1) , C(-3;2) et D(1;3)
- $oxed{2}$ A(-9;-2) , B(1;-3) , C(3;-2) et D(1;-3)
- $oxed{3}$ A(-1;2) , B(-1;3) , C(3;2) et D(4;2)
- A(-1;2) , B(-1;3) , C(3;2) et D(4;2)

N₈ Points alignés

P Propriété

Les points A , B et C sont alignés si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Déterminer si les points sont alignés:

- lacksquare $F\Big(rac{2}{3}\,;1\Big)$, $G\Big(-2;rac{1}{3}\,\Big)$,et H(5;2)
- $oxed{2} B(0;0)$, $C(\sqrt{2};\sqrt{6})$ et $D(4;4\sqrt{3})$

lacksquare E(1;2) , F(-3;8) et G(3;-1)

- $oxed{4} A(-9;4)$, B(1;-1) et C(4;-2)
- lacksquare A(-4;4) , T(-4;-6) et P(-3;2)
- $oxed{6}$ $C(\pi;\pi)$, $D(1;2-\pi)$ et $H(\pi-4;\pi-2)$

N₉ | Vecteurs directeurs

D Définition

Un vecteur \overrightarrow{u} est un vecteur directeur de la droite (AB) quand les vecteurs \overrightarrow{u} et \overrightarrow{AB} sont colinéaires.

P Propriété

Deux droites sont parallèles si et seulement si un vecteur directeur de l'une est colinéaire à un vecteur directeur de l'autre.

- Soient A(3;2) et B(6;3). Tracer (AB).
- Donner $oldsymbol{3}$ vecteurs directeurs de la droite (AB).

3 Placer C(1,0)

- Placer un point D pour que (AB) et (CD) soient parallèles.
- Donner 3 vecteurs directeurs de la droite (CD).

N_{10} | équation de droite

P Propriétés

- Soit a et b deux réels. Le vecteur $\overrightarrow{u} \begin{pmatrix} 1 \\ a \end{pmatrix}$ est un vecteur directeur de la droite d'équation y = ax + b avec a qui est le **coefficient directeur** de cette droite.
- ullet Soit k un réel. Le vecteur $\overrightarrow{u}ig(egin{array}{c} 0 \ 1 \end{array}$ est un vecteur directeur de la droite verticale d'équation x=k
- Déterminer l'équation d'une droite de vecteur directeur $\overrightarrow{u} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ et passant par A(3;5).
- Déterminer l'équation d'une droite de vecteur directeur \overrightarrow{u} $\begin{pmatrix} 2 \\ 8 \end{pmatrix}$ et passant par B(1;-2).

N_{11} équation réduite de droite

P Propriétés

• Soit $A(x_A;y_A)$ et $B(x_B;y_B)$ deux points tels que $x_A \neq x_B$. Le vecteur $\overrightarrow{u} \left(\begin{array}{c} 1 \\ \underline{y_B - y_A} \\ \overline{x_B - x_A} \end{array} \right)$ est un vecteur directeur de la droite (AB) d'équation réduite :

 $y=rac{y_B-y_A}{x_B-x_A}x+rac{x_By_A-y_Bx_A}{x_B-x_A}$ avec $rac{y_B-y_A}{x_B-x_A}$ qui est **le coefficient directeur** de la droite (AB).

ullet Soit $A(x_A;y_A)$ et $B(x_B;y_B)$ deux points tels que $x_A=x_B$. Le vecteur $\overrightarrow{u}\begin{pmatrix} 0 \\ x_A \end{pmatrix}$ est un vecteur directeur de la droite verticale d'équation $x=x_A$

P Corrolaire

Deux droites non-verticales sont parallèles si et seulement si elles ont le même coefficient directeur.

- Déterminer l'équation d'une droite de vecteur directeur $\overset{
 ightarrow}{u} \left(egin{array}{c} 1 \ -3 \end{array}
 ight)$ et passant par A(3;5) .
- Déterminer l'équation d'une droite de vecteur directeur $\overrightarrow{u}inom{2}{8}$ et passant par B(1;-2) .
- On considère les points A(2;3); B(4;7) et C(4;7). Tracer (AB) puis déterminer son équation réduite. Déterminer une équation réduite de la droite parallèle à (AB) et passant par C, la tracer.
- Dans un repère orthonormé, on a E(-2;3) et F(-2;-1). Tracer (EF) puis déterminer son équation réduite.

$\overline{N_{12}}$ équation cartésienne de droite

D Définition

Une équation d'une droite (d) de la forme ax + by + c = 0 est appelée une équation cartésienne de (d).

P Propriétés

- Soit A un point et \overrightarrow{u} un vecteur non nul et (d) la droite de vecteur directeur \overrightarrow{u} et passant par A. Un point M appartient à (d) si et seulement si les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.
- La droite d'équation ax + by + c = 0 a pour vecteur directeur $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ et passe par le point de coordonnées $\left(1; \frac{a-c}{b}\right)$.
- ullet Réciproquement une droite de vecteur directeur $\dfrac{
 ightarrow}{u} \left(\dfrac{-b}{a}
 ight)$ a pour équation ax+by+c=0
- Déterminer l'équation cartésienne d'une droite de vecteur directeur $\overrightarrow{u}inom{2}{-3}$ et passant par A(2;5).
- Déterminer l'équation cartésienne d'une droite de vecteur directeur $\overrightarrow{u}igg(rac{\sqrt{2}}{\sqrt{5}}igg)$ et passant par C(0;2).
- On considère les points A(2;3); B(4;7) et C(4;7). Tracer (AB) puis déterminer son équation cartésienne. Déterminer une équation cartésienne de la droite parallèle à (AB) et passant par C, la tracer.
- Dans un repère orthonormé, on a E(-2;3) et F(-2;-1). Tracer (EF) puis déterminer son équation cartésienne.

N_{13} Intersection de deux droites

P Par le calcul

On considère deux droites (d_1) et (d_2) d'équation cartésienne $a_1x+b_1y+c_1=0$ (ou réduite $y=a_1x+b_1$) et $a_2x+b_2y+c_2=0$ (ou réduite $y=a_2x+b_2$). Le point d'intersection (s'il existe) a pour coordonnées la solution du système :

$$\left\{ egin{array}{lll} a_1 x + b_1 y + c_1 & = & 0 \ a_2 x + b_2 y + c_2 & = & 0 \end{array}
ight.$$
 Ou $\left\{ egin{array}{lll} y & = & a_1 x + b_1 \ y & = & a_2 x + b_2 \end{array}
ight.$

P Graphiquement

On considère deux droites (d_1) et (d_2) . Il suffit de tracer ces deux droites et de lire les coordonnées du point d'intersections. Attention, les coordonnées sont toujours des valeurs approchées.

- On considère les points A(2;3); B(4;7); C(4;7) et D(4;7). Tracer (AB) et (CD) puis déterminer les coordonnées du point d'intersection de (AB) et (CD) (en utilisant les équations cartésiennes). Vérifier graphiquement.
- On considère les points A(2;3); B(4;7); C(4;7) et D(4;7). Tracer (AB) et (CD) puis déterminer les coordonnées du point d'intersection de (AB) et (CD) (en utilisant les équations réduites). Vérifier graphiquement.

$n^{\circ}1$ Triangle EFG

- On considère un triangle EFG et H tel que : $\overrightarrow{EH}=rac{2}{3}\overrightarrow{EG}+rac{1}{3}\overrightarrow{EF}$. Faire une figure.
- En écrivant $\overrightarrow{FH} = \overrightarrow{FE} + \overrightarrow{EH}$, démontrer que \overrightarrow{FH} et \overrightarrow{FG} sont colinéaires.
- ${ t 3}$ Que peut-on en déduire concernant le point ${m H}$?

$n^{\circ}2$ Une génération de droites

On considère le vecteur \overrightarrow{u} $\begin{pmatrix} 1 \\ m \end{pmatrix}$ où m est un nombre réel et le point A(-2;0). Soit (d_m) la droite passant par A et de vecteur directeur \overrightarrow{u} .

- Déterminer une équation cartésienne de (d_m) .
 - Peut-on trouver m tel que le point B(3;2) appartienne à (d_m) ?
 - $oxed{3}$ Peut-on trouver m tel que (d_m) soit parallèle à la droite (D) d'équation -5x+2y-7=0 ?
 - Peut-on trouver m tel que (d_m) soit parallèle à la droite (D') d'équation -4x+12=0 ?
 - lacksquare Quels sont les points du plan qui n'appartiennent à aucune droite (d_m) ?

$n^{\circ}3$ Vecteurs directeurs de norme 1

Déterminer tous les vecteurs directeurs de norme 1 de la droite :

 $oxed{1}$ (d_1) d'équation x-8=2

 $oxed{2} (d_2)$ d'équation 2x+3y+5=0

 $oxed{3}$ (d_3) d'équation y=5x+3

 $oxed{4} (d_3)$ d'équation y=5x+3

ullet (d_3) d'équation y=5x+3

 $\left[egin{array}{c} 6 \end{array}
ight](d_3)$ d'équation y=5x+3

 $7\pmod{d_3}$ d'équation y=5x+3

 $oxed{8} \hspace{0.1in} (d_3)$ d'équation y=5x+3

$n^{\circ}4$ Droites parallèles

Dans chacun des cas suivants, déterminer une équation de la droite (d') parallèle à (d) passant par A.

- A(2;1) et (d) d'équation -3x+y=0
- A(-1;3) et A(-
- $egin{aligned} 3 & A(1;1) ext{ et } (d) ext{ d'équation } -rac{x}{3}+rac{y}{6}+4=0 \end{aligned} \qquad egin{aligned} 4 & A\Big(rac{1}{2};rac{1}{3}\Big) ext{ et } (d) ext{ d'équation } -x+y-2=0 \end{aligned}$

Alignement $n^{\circ}5$

On considère un parallélogramme ABCD et les points E et F définis par : \bullet $\overrightarrow{AE} = \overrightarrow{2AD}$ \bullet $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AC}$

- Faire une figure.
- Que peut-on conjecturer sur les points B, F et E?
- Calculer \overrightarrow{BE} en fonction de \overrightarrow{CD} et \overrightarrow{AC}
- Calculer \overrightarrow{BF} en fonction de \overrightarrow{CD} et \overrightarrow{AC}
- En déduire que \overrightarrow{BE} et \overrightarrow{BF} sont colinéaires.
- 6 Conclure.

$n^{\circ}6$ Parallélisme et calcul vectoriel

On considère trois points non alignés A, B et C. Le point E est défini par $\overrightarrow{AE} = \overrightarrow{2AB} + \overrightarrow{AC}$.

- Faire une figure.
- Établir une conjecture sur les droites (CE) et (AB).
- Démontrer que $\overrightarrow{CE} = \overrightarrow{2AB}$
- Conclure.

Milieu et calcul vectoriel

On considère trois points non alignés A, B et C.

Les points P et Q sont définis par : $\overrightarrow{AP} = 2\overrightarrow{AB} - \overrightarrow{AC}$ et $\overrightarrow{AQ} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$

- Faire une figure.
- Que peut-on conjecturer sur le point Q ? Et sur B ?
- Démontrer que $\overrightarrow{PC} = -2\overrightarrow{AB} + 2\overrightarrow{AC}$. En déduire la position du point B.
- Exprimer BQ en fonction de BC. En déduire la position du point C.

Droites parallèles

On considère le point A(-7;1) et la droite (D) d'équation réduite y=-5x+1. Déterminer x, abscisse du point B de coordonnées (x;8) tel que les droites (AB) et (D) soient parallèles.

Points alignés

On considère les points A et B de coordonnées respectives (1, -5) et (-1, 3). Déterminer y, ordonnée du point C de coordonnées (2; y) tel que A, B et C soient alignés.