一、 选择题

- 1、若理想气体的体积为 V, 压强为 p, 温度为 T, 一个分子的质量为 m, k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为:
- (A) pV/m.
- (B) pV/(kT).
- (C) pV/(RT).
- (D) pV/(mT).

Γ 7

- 2、一定量某理想气体所经历的循环过程是:从初态(V_0,T_0)开始,先经绝热膨胀使其体积增 大 1 倍,再经等体升温回复到初态温度 T_0 ,最后经等温过程使其体积回复为 V_0 ,则气体在 此循环过程中.
- (A) 对外作的净功为正值. (B) 对外作的净功为负值.
- (C) 内能增加了.
- (D) 从外界净吸的热量为正值.

Γ ٦

- 3、一定量的理想气体向真空作绝热自由膨胀,体积由 V_1 增至 V_2 ,在此过程中气体的
- (A) 内能不变, 熵增加.
- (B) 内能不变, 熵减少.
- (C) 内能不变, 熵不变.
- (D) 内能增加,熵增加.

Ε]

4、单色平行光垂直照射在薄膜上,经上下两表面反射的两束 光发生干涉,如图所示,若薄膜的厚度为 e,且 $n_1 < n_2 > n_3$, λ_1 为入射光在 n_1 中的波长,则两束反射光的光程差为

- (A) $2n_2e$.
- (B) $2n_2e \lambda_1/(2n_1)$.
- (C) $2n_2e n_1 \lambda_1 / 2$.
- (D) $2n_2 e n_2 \lambda_1 / 2$.

]

- 5、两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射. 若上面的平玻璃慢 慢地向上平移,则干涉条纹
- (A) 向棱边方向平移,条纹间隔变小.
- (B) 向棱边方向平移,条纹间隔变大.
- (C) 向棱边方向平移,条纹间隔不变.
- (D) 向远离棱边的方向平移,条纹间隔不变.
- (E) 向远离棱边的方向平移,条纹间隔变小.

Γ] 6、一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯 特角 io,则在界面 2 的反射光

- (A) 是自然光.
- (B) 是线偏振光且光矢量的振动方向垂直于入射面.
- (C) 是线偏振光且光矢量的振动方向平行于入射面.
- (D) 是部分偏振光.

Γ 7

- (A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.
- (B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.
- (C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与 散射体性质有关.
- (D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射 光波长相同. 这都与散射体的性质无关.

Γ ٦

10、在氢原子的 K 壳层中,电子可能具有的量子数 (n, l, m_l, m_s) 是

(A)
$$(1, 0, 0, \frac{1}{2}).$$

(A)
$$(1, 0, 0, \frac{1}{2})$$
. (B) $(1, 0, -1, \frac{1}{2})$.

(C)
$$(1, 1, 0, -\frac{1}{2})$$
.

(C)
$$(1, 1, 0, -\frac{1}{2})$$
. (D) $(2, 1, 0, -\frac{1}{2})$.

Γ 7

二、 填空题

1、若某容器内温度为 300 K 的二氧化碳气体(视为刚性分子理想气体)的内能为 3.74×10^3 J,

则该容器内气体分子总数为 (玻尔兹曼常量 $k=1.38\times10^{-23}\,\mathrm{J\cdot K^{-1}}$,阿伏伽德罗常量 $N_{\mathrm{A}}=6.022\times10^{23}\,\mathrm{mol}^{-1}$)

2、现有两条气体分子速率分布曲线(1)和(2),如图所示. 若两条曲线分别表示同一种气体处于不同的温度下的速率分 布,则曲线 表示气体的温度较高. 若两条曲线分别表示 同一温度下的氢气和氧气的速率分布,则曲线 表示的是 氧气的速率分布.

3、已知一定量的理想气体经历p-T图上所示的循环过程,图 中各过程的吸热、放热情况为:

4、	惠更斯引入
----	-------

_的概念提出了惠更斯原理,

菲涅耳再用

的思想补充了惠更斯原理,发展成了惠更斯一菲涅耳原理.

- 5、使光强为 I_0 的自然光依次垂直通过三块偏振片 P_1 , P_2 和 P_3 . P_1 与 P_2 的偏振化方向成
- 45° 角, P_2 与 P_3 的偏振化方向成 45° 角.则透过三块偏振片的光强 I 为______
- 6、将方解石晶体磨制成薄片,其光轴平行于表面,且厚度 d 满足下式:

$$(n_0 - n_a)d = k\lambda + \lambda/4$$

- 8、设大量氢原子处于 n=4 的激发态,它们跃迁时发射出一簇光谱线.这簇光谱线最多可能
- 有 ______ 条,其中最短的波长是 ______ Å (普朗克常量 $h=6.63\times10^{-34}\,\mathrm{J\cdot s}$)
- 9、如果电子被限制在边界 x 与 x + Δx 之间, Δx =0.5 Å,则电子动量 x 分量的不确定量近似 地为 kg·m/s. (不确定关系式 $\Delta x \cdot \Delta p \ge h$,普朗克常量 h =6.63×10⁻³⁴ J·s)
- 10、粒子在一维无限深方势阱中运动(势阱宽度为a), 其波函数为

$$\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{3\pi x}{a} \qquad (0 < x < a),$$

三、 计算题

- 1、一定量的某种理想气体进行如图所示的循环过程.已 知气体在状态 A 的温度为 $T_A = 300$ K,求
- (1) 气体在状态 $B \setminus C$ 的温度;
- (2) 各过程中气体对外所作的功;
- (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).

- 2、氢放电管发出的光垂直照射在某光栅上,在衍射角 φ =41°的方向上看到 λ_1 =656.2 nm 和 λ_2 =410.1 nm(1nm=10⁻⁹ μ)的谱线相重合,求光栅常数最小是多少?
- 4、图中所示为在一次光电效应实验中得出的曲线
- (1) 求证:对不同材料的金属, AB 线的斜率相同.
- (2) 由图上数据求出普朗克恒量 h. (基本电荷 e =1.60×10⁻¹⁹ C)

参考答案

- 一. 选择题
- 1. (B) 2. (B) 3. (A) 4. (C) 5. (C) 6. (B) 9. (D) 10. (A)
- 二. 填空题
- 1. 3.01×10^{23} \uparrow
- (2)(1)
- 3. 吸热 放热 放热
- 4. 子波 子波干涉(或答"子波相干叠加")
- 5. $I_0 / 8$
- 6. 四分之一波 (或 λ / 4)
- 8. 6973
- 9. 1.33×10^{-23}
- 10. a/6, a/2, 5a/6.

三. 计算题

- 1. 解: 由图, p_A =300 Pa, p_B = p_C =100 Pa; V_A = V_C =1 m³, V_B =3 m³.
 - (1) $C \rightarrow A$ 为等体过程,据方程 $p_A/T_{A=} p_C/T_C$ 得 $T_C = T_A p_C/p_A = 100 \text{ K}$. $B \rightarrow C$ 为等压过程,据方程 $V_B/T_B = V_C/T_C$ 得 $T_B = T_C V_B/V_C = 300 \text{ K}$.
 - (2) 各过程中气体所作的功分别为

$$A \rightarrow B$$
: $W_1 = \frac{1}{2} (p_A + p_B)(V_B - V_C) = 400 \text{ J.}$
 $B \rightarrow C$: $W_2 = p_B (V_C - V_B) = -200 \text{ J.}$
 $C \rightarrow A$: $W_3 = 0$

(3) 整个循环过程中气体所作总功为

 $W = W_1 + W_2 + W_3 = 200 \text{ J.}$

因为循环过程气体内能增量为 $\triangle E=0$,因此该循环中气体总吸热 $Q=W+\triangle E=200$ J.

$$(a+b)\sin\varphi = k\lambda$$

在 φ =41°处,

$$k_1\lambda_1 = k_2\lambda_2$$

 $k_2/k_1 = \lambda_1/\lambda_2 = 656.2/410.1 = 8/5 = 16/10 = 24/15 = \dots$ 取 $k_1=5$, $k_2=8$, 即让 λ_1 的第 5 级与 λ_2 的第 8 级相重合 $a+b=k_1\lambda_1/\sin\varphi=5\times 10^{-4}\,\mathrm{cm}$

$$a+b=k_1\lambda_1/\sin\varphi=5\times10^{-4}$$
 cm

4. 解: (1) 由

$$e|U_a| = h v - A$$

得

$$|U_a| = h v / e - A / e$$

$$d|U_a|/dv = h/e$$
 (恒量)

由此可知,对不同金属,曲线的斜率相同.

(2)
$$h = e \operatorname{tg} \theta = e \frac{2.0 - 0}{(10.0 - 5.0) \times 10^{14}}$$
$$= 6.4 \times 10^{-34} \, \text{J} \cdot \text{s}$$