Nous avons choisi notre moteur à partir d'un catalogue du fournisseur de MSC Concept comportant des centaines de moteurs différents.

Voici toutes les gammes de moteurs qui sont chacune composée de différents modèles faisant varier les caractéristiques techniques.

0.0	0.90	C. 9c	∕ o~
Fin de cours	e mécanique		
M04	СМ	М	Moteur de volet roulant et protection solaire avec fin de course mécanique
М05	нк	НК	Moteur de volet roulant et protection solaire avec commande de secours
M06	G	G	Moteur à courant continu 12 – 24 V, diamètre 58 mm
M07	GHK	GHK	Moteur à courant continu avec commande de secours
M17			Moteur de volet roulant pour fenêtre étroite
M19			Moteur à courant continu 12 V, diamètre 35 mm Pico
Fin de cours	e électronique		
E01	C PRO+	C PR+, PR+, Pico R+	Moteur de volet roulant universel avec fin de course électronique
E02	RO+		Moteur de volet roulant avec fin de course électronique
E03	ROP+	RP, RP+, R, R+	Moteur de volet roulant avec fin de course électronique
E12	C PS, C PS+, SE B0	PS, PS+, S, S+	Moteur pour protection solaire universel avec fin de course électronique
E14			Moteurs de volets roulants avec fin de course électronique
E15			Moteurs pour protections solaires avec fin de course électronique
E16	C SE I1		Moteur pour protection solaire avec système de verrouillage avec fin de course électronique
E18			Moteur pour protection solaire « ZIP » avec fin de course électronique
Moteurs rad	io avec fin de coι	ırse électroniqu	e – Centronic
C01	C PROF+	PROF+, PRF+	Moteur de volet roulant avec récepteur radio intégré Centronic
C12	C PSF+, C PSF	PSF+, PSF	Moteur de protection solaire avec récepteur radio intégré Centronic
C16	C SEF I1		Moteur pour protection solaire avec systèmes de verrouillage et avec récepteur radio intégré Centronic
C18			Moteur pour protection solaire « Zip » avec récepteur radio intégré Centronic
Moteurs rad	io bidirectionnels	avec fin de cou	rrse électronique – B-Tronic
B01	C PROF+ KNX		Moteur de volet roulant avec récepteur radio intégré B-Tronic
Moteurs ave	c technologie SN	41	
S01	C PR+ SMI		Moteur de volet roulant avec fin de course SMI
S12	C PS SMI, C PS+ SMI		Moteur de protection solaire avec fin de course SMI
S18			Moteur pour protection solaire « ZIP » avec fin de course SMI

Nous ne nous intéressons essentiellement aux moteurs pour protection solaire et aux moteurs volets roulant.

Il nous reste donc les moteurs de type :

M04/M05/E01/E02/E03/E12/E13/E14/E15/E16/E18/C01/C12/C16/C18/B01/S01/S12/S18

La technologie SMI (pour commander plusieurs moteurs à la fois) et ne nous intéressent pas pour notre produit. On peut donc retirer les modèles : S01/S12/S18

L'objectif est que le moteur permette une automatisation complète de l'enroulement de la voile.

On cherche donc un moteur avec une fin de course électronique.

On peut retirer les modèles M04/M05 qui nécessite une fin de course mécanique.

Notre produit doit permettre une facilité d'utilisation et une rapidité au niveau de la pose. La technologie Centronic est la plus pertinente pour notre produit. En effet la technologie B.tronic, du modèle B01 permet à l'utilisateur d'avoir des informations supplémentaires et un plus grand contrôle sur son moteur engendrant un prix plus élevé. Cette technologie n'est pas nécessaire pour les produits d' ESPACE OMBRAGE.

On cherche donc un moteur parmi les modèles suivant :

C01/C12/C16/C18

Les moteurs sont déterminés par :

- Leur couple;
- Leur vitesse angulaire;
- Leur vitesse angulaire maximum;
- Leur puissance absorbée;
- L'intensité.

Ils sont tous soumis à une tension de 230V à la fréquence 50Hz.

Ex : ensemble des produits du modèle CO1 :

Caractéristiques techniques	Reference Pee City	References been clip	Couple	Alesse I	Caracit	de la cage Intensité	puisan puisan	cather)	Connexion
P5-16-C01	2009 120 120 0	2009 120 121 0	5	16	64	0,36	85	*	
P9-16-C01	2009 120 122 0	2009 120 123 0	9	16	64	0,47	110	*	
R8-17-C01	2010 120 163 0		8	17	64	0,45	100	*	
R12-17-C01	2010 120 164 0		12	17	64	0,50	110	*	
R20-17-C01	2020 120 132 0		20	17	64	0,75	160	*	
R30-17-C01	2030 120 132 0		30	17	64	0,90	205	*	
R40-17-C01	2040 120 119 0		40	17	64	1,15	260	*	

Tension nominale: 230 V CA/50 Hz Type de fonctionnement: S2 4 min Indice de protection: IP44

Le temps d'utilisation ne doit pas dépasser 4min. Autrement, le moteur risque d'être endommagé. On considère que, pour une surface totale maximum de $60m^2$, une voile d'ombrage ne peut dépasser 4m*15m. Par conséquent, une voile de 2m*30m est absurde.

Pour tous les moteurs, il existe des vitesses angulaires différentes mais les plus courants sont 17tr/min et 11 tr/min.

A travers le tableau ci-dessous, nous apercevons que :

- pour des moteurs de diamètre supérieur à 64mm, les deux vitesses angulaires sont possibles.
- Pour des moteurs de diamètre inférieur à 35mm, les aucune vitesse angulaire n'est envisageable.
- Pour des moteurs de diamètre entre 35mm et 64mm, seule la vitesse angulaire de 17tr/min est possible.

En jaune, les durées inférieures à 4min pour la dimension 4m*15m:

Dimension voile d'ombrage pour 30 m ²							
		Pour 64mm de diamètre		Pour 45mm de diamètre		Pour 54m	m de diamètre
base (m)	hauteur (m)	Temps pour 11 tr/min	Temps pour 17 tr/min	Temps pour 11 tr/min	Temps pour 17 tr/min	Temps pour 11 tr/mir	Temps pour 17 tr/min
2	30	6,78561089	4,3906894	9,645754127	6,241370317	8,038128439	5,201141931
4	15	3,39280544	2,1953447	4,822877063	3,120685159	4,019064219	2,600570966
6	10	2,2618703	1,46356313	3,215251376	2,080456772	2,679376146	1,733713977
10	6	1,35712218	0,87813788	1,929150825	1,248274063	1,607625688	1,040228386

Pour 70mm	de diamètre	Pour 50m	m de diamètre	Pour 35mm de diamètre		
Temps pour 11 tr/min	Temps pour 17 tr/min	Temps pour 11 tr/m	Temps pour 17 tr/min	Temps pour 11 tr/min	Temps pour 17 tr/min	
6,200841939	4,01230949	8,681178714	5,617233286	12,40168388	8,024618979	
3,100420969	2,006154745	4,340589357	2,808616643	6,200841939	4,01230949	
2,066947313	1,337436497	2,893726238	1,872411095	4,133894626	2,674872993	
1,240168388	0,8024618979	1,736235743	1,123446657	2,480336775	1,604923796	

A partir de la formule $P = C * \Omega$ avec P la puissance (W), C le couple (Nm) et Ω la vitesse angulaire (rad/s) :

- Le couple maximum doit être inférieur au couple du moteur pour ne pas l'endommager.
- La puissance absorbée doit être inférieur à la puissance total (Ptot = U*I).

On peut éliminer les moteurs qui ne respectent pas ces conditions.

Voici l'ensemble des moteurs des modèles CO1. En jaune les moteurs respectant les deux conditions.

	Moteur de la gamme CO1						
Désignation	intensité (A)	Pa (W)	Ptot (W)	η	Couple (Nm)	Couple Max (Nm)	Diamètre (mm)
P5-16-C01	0,36	85	82,8	1,026570048	5	12,35440246	35
P9-16-C01	0,47	110	108,1	1,017576318	9	16,12935876	35
R8-17-C01	0,45	100	103,5	0,9661835749	8	15,44300307	45
R12-17-C01	0,5	110	115	0,9565217391	12	17,1588923	45
R20-17-C01	0,75	160	172,5	0,9275362319	20	25,73833845	45
R30-17-C01	0,9	205	207	0,9903381643	30	30,88600614	45
R40-17-C01	1,15	260	264,5	0,9829867675	40	39,46545229	45

Voici l'ensemble des moteurs des modèles C12. En jaune les moteurs respectant les deux conditions.

	Moteur de la gar	mme C12					
Désignation	intensité (A)	Pa (W)	Ptot (W)	η	Couple (Nm)	Couple Max (Nm)	Diamètre (mm)
P5-20-C12	0,47	115	108,1	1,063829787	5	16,12935876	35
P5-30-C12	0,47	115	108,1	1,063829787	5	16,12935876	35
P9-16-C12	0,47	110	108,1	1,017576318	9	16,12935876	35
R8-17-C12	0,45	100	103,5	0,9661835749	8	15,44300307	45
R12-17-C12	0,5	100	115	0,8695652174	12	17,1588923	45
R20-17-C12	0,75	160	172,5	0,9275362319	20	25,73833845	45
R30-17-C12	0,9	205	207	0,9903381643	30	30,88600614	45
R40-17-C12	1,15	230	264,5	0,8695652174	40	39,46545229	45
R50-11-C12	1,2	240	276	0,8695652174	50	41,18134153	45
L50-17-C12	1,4	315	322	0,9782608696	50	48,04489845	58
L60-11-C12	1,2	265	276	0,9601449275	60	41,18134153	58
L60-17-C12	1,75	380	402,5	0,9440993789	60	60,05612306	58
L70-17-C12	1,9	430	437	0,9839816934	70	65,20379075	58
L80-17-C12	1,4	310	322	0,9627329193	80	48,04489845	58
L120-17-C12	1,9	435	437	0,995423341	120	65,20379075	58

Voici l'ensemble des moteurs des modèles C16. En jaune les moteurs respectant les deux conditions.

	Moteur de la gamme C16						
Désignation	intensité (A)	Pa (W)	Ptot (W)	η	Couple (Nm)	Couple Max (Nm)	Diamètre (mm)
P5-20-C16	0,47	115	108,1	1,063829787	5	16,12935876	35
P9-16-C16	0,47	110	108,1	1,017576318	9	16,12935876	35
R8-17-C16	0,45	100	103,5	0,9661835749	8	15,44300307	45
R12-17-C16	0,5	100	115	0,8695652174	12	17,1588923	45
R20-17-C16	0,75	160	172,5	0,9275362319	20	25,73833845	45
R30-17-C16	0,9	205	207	0,9903381643	30	30,88600614	45
R40-17-C16	1,15	230	264,5	0,8695652174	40	39,46545229	45
L50-17-C16	1,4	315	322	0,9782608696	50	48,04489845	58
L70-17-C16	1,9	430	437	0,9839816934	70	65,20379075	58
L80-11-C16	1,4	310	322	0,9627329193	80	48,04489845	58
L100-11-C16	1,9	435	437	0,995423341	100	65,20379075	58
L120-11-C16	1,9	435	437	0,995423341	120	65,20379075	58

Voici l'ensemble des moteurs des modèles C18. En jaune les moteurs respectant les deux conditions.

	Moteur de la gamme C18						
Désignation	intensité (A)	Pa (W)	Ptot (W)	η	Couple (Nm)	Couple Max (Nm)	Diamètre (mm)
P5-20-C18	0,47	115	108,1	1,063829787	5	16,12935876	35
P5-30-C18	0,47	115	108,1	1,063829787	5	16,12935876	35
P9-16-C18	0,47	110	108,1	1,017576318	9	16,12935876	35
R8-17-C18	0,45	100	103,5	0,9661835749	8	15,44300307	45
R12-17-C18	0,5	100	115	0,8695652174	12	17,1588923	45
R20-17-C18	0,75	160	172,5	0,9275362319	20	25,73833845	45
R30-17-C18	0,9	205	207	0,9903381643	30	30,88600614	45
R40-17-C18	1,15	260	264,5	0,9829867675	40	39,46545229	45

Dans ce sens, il faut que le rendement soit le plus élevé mais inférieur à 1.

C'est-à-dire η = Pa/Ptot.

Avec :

- η : le rendement,

- Pa la puissance absorbée (W),

- Ptot: la puissance total (W)(= U*I).

On peut donc retirer les moteurs ayant moins de 98% de rendement pour choisir le plus efficace possible. Voici la liste des moteurs respectant ces conditions :

	Moteur où le ren	dement est le plus éle	vé				
Désignation	intensité (A)	Pa (W)	Ptot (W)	η	Couple (Nm)	Couple Max (Nm)	Diamètre (mm)
R40-17-C01	1,15	260	264,5	0,9829867675	40	39,46545229	45
L70-17-C16	1,9	430	437	0,9839816934	70	65,20379075	58
L70-17-C12	1,9	430	437	0,9839816934	70	65,20379075	58
L120-17-C12	1,9	435	437	0,995423341	120	65,20379075	58
R40-17-C18	1,15	260	264,5	0,9829867675	40	39,46545229	45

C'est 5 moteurs répondent à notre besoin. Ils ont des caractéristiques techniques différentes mais permettent tous d'enrouler une voile d'ombrage sans endommager le mécanisme.

Monsieur Leveillé a eu des échanges avec un commercial de Becker© il y a quelque temps pour connaître le type de moteur à utiliser. Il présenta deux moteurs différèrent dont l'un des 5 que nous avons retenu.

Voici les caractéristiques techniques des 2 moteurs présentés par le commercial :

Rated voltage: 230 V/AC/50Hz Degree of protection: IP44

La gamme C23 et la gamme C12 sont similaires à quelques améliorations prêts qui n'affectent pas l'utilisation du moteur que nous avons.

On a donc choisit d'utiliser le moteur L70-17-C23.