MTH 101-Calculus

Spring-2021

Assignment-12: Line and Surface Integrals, Green's /Stokes' /Gauss' Theorems

1. Let \mathcal{C} denotes a differentiable parametric curve, non intersecting curve parametrised by some vector valued function $\gamma:[a,b]\to\mathbb{R}^3$. Also let $\tilde{\mathcal{C}}$ denotes the same curve \mathcal{C} but oriented in reverse direction. Then prove that

$$\int_{\mathcal{C}} f_1 dx + f_2 dy + f_3 dz = -\left(\int_{\tilde{\mathcal{C}}} f_1 dx + f_2 dy + f_3 dz\right)$$

whenever the integral exists.

- 2. What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$. What is the integral of the given function taken throughout the volume of the cylinder.
- 3. Find the line integral of the vector field $F(x,y,z) = y\vec{i} x\vec{j} + \vec{k}$ along the path $\mathbf{c}(t) = (\cos t, \sin t, \frac{t}{2\pi}), \quad 0 \le t \le 2\pi$ joining (1,0,0) to (1,0,1).
- 4. Evaluate $\int_C T \cdot dR$, where C is the circle $x^2 + y^2 = 1$ and T is the unit tangent vector.
- 5. Show that the integral $\int_C yzdx + (xz+1)dy + xydz$ is independent of the path C joining (1,0,0) and (2,1,4).
- 6. Use Green's Theorem to compute $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region $\{(x,y): x,y \geq 0 \& x^2 + y^2 \leq 1\}$.
- 7. Use Stokes' Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.
- 8. Let $\overrightarrow{F} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|^3}$ where $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_S \overrightarrow{F} \cdot n \ d\sigma = 4\pi$.
- 9. Let D be the domain inside the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2. If $\vec{F} = (x^2 + ye^z, y^2 + ze^x, z + xe^y)$, use the divergence theorem to evaluate $\iint_{\partial D} F \cdot \mathbf{n} \ d\sigma$.