

SRM Institute of Science and Technology College of Engineering and Technology

School of Computing

DEPARTMENT OF COMPUTING TECHNOLOGIES

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

 Academic Year:
 2021-2022 (EVEN)

 Test: CLAT-1
 Date: 4-4-2022

Course Code & Title: 18CSC205J: Operating systems

Vear & Sem: II & IV

Duration: 1 Period

Max. Marks: 25 Marks

Cours	se Outco	omes (Co	O):		At th	ne end of t	his co	ourse, lea	rners v	vill be able	to:				
CO-1: Express the fundamental cond						in operat	ing sy	stem							
			Program C	Outcom	es (PO)										
1	2	3	4	5	6	7	8	9	10	11	12	PSO			
eering Knowl		Desig n & Devel opmen t		rn	y & Cultur	Environ ment & Sustain ability		Individ ual & Team Work	munic	Project Mgt. & Finance	Life Long Learning	- 1	PSO - 2	PSO –	3
3		3										2			

			•			
Г	Part - A					
Ļ	(5 x 1 = 5 Marks) Instructions: Answer all	13.5	-		-	- D.T
Q	Question	Mar		ΙČ	P	PI
ľ		ks	L	ļυ	ļΟ	Co
1 1		l				de
0	Time Sharing technique handles	1	1	1	1	1.6.
*	a) Single Interactive Job b) Multiple Iterative Job	*	1	*	1	1.0.
l	c) Recent Interactive Job d) Old Interactive Job					•
2	Interrupts make an Operating System more	1	1	1	1	1.6.
l	a) Secure b) Slow c) Fast d) Flexible					1
3	Work can be while using multiprogramming batch processing.	1	1	1	1	1.6.
L	a) Rigid b) Expensive c) Reliable d) Flexible		L	L	L.	1
4	When you start up the computer the boot up storage at which the BIOS	1	1	1	1	1.6.
l	versions manufacturer and data are displayed on the monitor is called	l				1
l	a) Bootstrap b). Power on self-test (POST)	l				
5	c) System configuration d). Kernel loading What is dispatch latency?	1	1	1	1	1.6.
٦	A. The time taken by the dispatcher to stop one process and start		1	1	1	1.0.
l	another					•
l	B. The time taken by the processor to write a file into disk					
l	C. The whole time taken by all processor	l				
┕	D. None of Above					
l	Part – B					
⊢	$(5 \times 4 = 20 \text{ Marks}) \text{ Instructions: Answer any 5}$	<u> </u>	1	1	12	12.6
l	6 Compare Modes of operation in operating system. • User Mode	4	4	I	2	2.6. 4
l	User program executes in user mode	l				4
l	 Certain areas of memory are protected from user 	l				
l	access	l				
l	 Certain instructions may not be executed 			ĺ		
	•					
	Kernel Mode			l		
	Monitor executes in kernel mode			ĺ		
ட	 Privileged instructions may be executed 				<u> </u>	

	Protected areas of memory may be accessed					
	Write short notes on Multiprogramming Multiprogramming	4	3	1	1	1.7. 1
8	Relate Process Control Block with respect to process. Information associated with each process (also called task control block) Process state – running, waiting, etc Program counter – location of instruction to next execute CPU registers – contents of all process-centric registers CPU scheduling information- priorities, scheduling queue pointers Memory-management information – memory allocated to the process Accounting information – CPU used, clock time elapsed since start, time limits I/O status information – I/O devices allocated to process, list of open files	4	3	1	2	2.6.
9	With a neat sketch interpret addition of medium-term scheduling Medium-term scheduler can be added if degree of multiple programming needs to decrease Remove process from memory, store on disk, bring back in from disk to continue execution: swapping Swap in partially executed swapped-out processes ready queue CPU PO waiting queues	4	3	1	3	2.6.
10	Illustrate inter-process communication Processes within a system may be independent or cooperating Cooperating Process can affect or be affected by other processes, including sharing data Reasons for cooperating processes: Information sharing Computation speedup Modularity Convenience Cooperating processes need interprocess communication (IPC)	4	2	1	1	1.7. 1

	Two models of IPC o Shared memory					
	∘ Message passing					
11	With a suitable example illustrate IPC POSIX Producer #include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <sys shm.h=""> #include <sys stat.h=""></sys></sys></fcntl.h></string.h></stdlib.h></stdio.h>	4	2	1	2	1.7. 1
	<pre>int main() { /* the size (in bytes) of shared memory object int SIZE = 4096; /* name of the shared memory object */ const char *name = "OS"; /* strings written to shared memory */ const char *message_0 = "Hello"; const char *message_1 = "World!";</pre>					
	<pre>/* shared memory file descriptor */ int shm_fd; /* pointer to shared memory obect */ void *ptr;</pre>					
	<pre>/* create the shared memory object */ shm_fd = shm_open(name, O_CREAT O_RDWR</pre>					
	<pre>/* configure the size of the shared mem ftruncate(shm_fd, SIZE);</pre>					
	<pre>/* memory map the shared memory object ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHAR</pre>					
	<pre>/* write to the shared memory object */ sprintf(ptr,"%s",message_0); ptr += strlen(message_0); sprintf(ptr,"%s",message_1); ptr += strlen(message_1);</pre>					
	return 0;					