

D<u>ržav</u>ni izpitni center

SPOMLADANSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Petek, 10. junij 2016

SPLOŠNA MATURA

IZPITNA POLA 1

Naloga	Odgovor
1	◆ B
7	□ •
ဗ	□•
4	0
9	₽
9	□•
2	₽
8	∀ ♦
6	○

Odgovor	٧.	0 +	A *	0 •	0	Q •	0	□ •	○
Naloga	10	11	12	13	14	15	16	41	18
		•	•	•		•			

Naloga	Odgovor
19	۰ ۵
20	₽
21	₽
22	₽
23	₽
77	□ •
22	4 B
76	• D
22	○

0 0 0

Naloga 28 29 30 31 32 33 34 35

⋖ •

Odgovor • D

∀ ∪ ∪ .

točka.
$\overline{}$
dgovor
6
ŏ
ро
ilen
prav
~
vsal
g

Skupno število točk IP 1: 35

IZPITNA POLA 2

1. Merjenje

Dodatna navodila	Izračun cos $lpha$ 1 točka.	Izračun $a_{\rm g}-a_{\rm d}$ 1 točka.	Za posamezno točko je lahko v vsaki koloni en napačen rezultat.							Pravilno označene osi in izbira enot 1 točka.	Premica, ki se točkam najbolje prilega 1 točka.		Postopek 1 točka.	izračun i točka.	
Rešitev	•	$_{lpha}$ $_{[\circ]}$ $_{a_{g}}$ $[{ m ms^{-2}}]$ $_{a_{d}}$ $[{ m ms^{-2}}]$ ${ m cos}_{lpha}$ $_{a_{g}}$ $_{a_{g}}$ $_{a_{g}}$ $[{ m ms^{-2}}]$	10 3,2 0,28 0,98 2,9	20 4,8 2,0 0,94 2,8	30 6,3 3,7 0,87 2,6	40 7,6 5,3 0,77 2,3	50 8,6 6,7 0,64 1,9	60 9,4 7,9 0,50 1,5	70 9,9 8,9 0,34 1,0	♦ graf $a_{n} - a_{n} \text{ [m s}^{-2}] \spadesuit$		3,0 2,0 1,0 0 0,20 0,40 0,60 0,80 1,00 cos \alpha	$lacktriangle$ koeficient: $k=3.0~{ m ms^{-2}}$	$k = \frac{3.0 \text{ m s}^{-2}}{1.0} = 3.0 \text{ m s}^{-2}$	$lacktriangle$ zveza: $k=2\cdot g\cdot k_{ m t}$
Vpr	1.1									1.2 3			1.3 2		1.4

2

1.5	-	• koeficient trenja: $k_{ m t}=0,15$	
		$k_{ m t} = rac{k}{2 \cdot g} = rac{3.0 \; { m m s}^{-2}}{2 \cdot 9.8 \; { m m s}^{-2}} = 0.15$	
1.6	7	$lacktriangle$ absolutna napaka: $\Delta k_{\rm t}=0.01$ $\delta k_{\rm t}=\delta k+\delta q=9$ %	Relativna napaka 1 točka. Absolutna napaka 1 točka.
		$\Delta k_{ m t} = \delta k_{ m t} \cdot k_{ m t} = 9 \% \cdot 0,15 = 0,01$	
1.7	7	• kot pri strmem klancu: $\alpha = 90^\circ$	Izračun pri $lpha=90^\circ\dots$ 1 točka
		$a_{\rm g} - a_{ m d} = 0~{ m ms}^{-2}$	Izračun pri $lpha=0^\circ\dots$ 1 točka.
		$lacktriangle$ kot pri majhnem klancu: $lpha=0^\circ$	
		$a_{ m g} - a_{ m d} = 3,0~{ m ms^{-2}}$	
1.8	7	 Napaka merilnika ne vpliva na izračun koeficienta trenja. Utemeljitev: koeficient trenja je treba izračunati iz razlike 	Odgovor 1 točka Utemeljitev 1 točka.
		pospeškov. Posamezni izmerek pospeška ima sistematično	
		napako, ki se pri odštevanju pospeškov odšteje, in zato ta napaka ne vnliva na izračiju koeficienta trenia	
		וופ ילטוועם וומ ובומכמוו הספווטופוונם מפווקם.	

9

2. Mehanika

Vpr.	Točke	Rešitev	Dodatna navodila
2.1	~	• enačba: $v = v_0 + at$ ali $v^2 = v_0^2 + 2ax$ • količine: $x - \text{lega}$, $v - \text{hitrost}$, $a - \text{pospešek}$	
2.2	8	$lacktriangle$ začetna hitrost: $v_0=8,0~{ m ms^{-1}}$ $lacktriangle$ čas: $t=0,80~{ m s}$	Začetna hitrost 1 točka. Čas 1 točka.
2.3	-	\bullet pospešek: $a = -9.81 \mathrm{m s^{-2}} = -10 \mathrm{m s^{-2}}$	
2.4	-	◆ Ploščina predstavlja premik telesa.	
2.5	-	lacktriangle premik telesa: $x=3,2$ m	
		$x = (8 \text{ m s}^{-1} \cdot 0, 80 \text{ s})/2 = 3,2 \text{ m}$	
2.6	က	$lacktriangle$ največja višina: $h_{\max}=7,2~\mathrm{m}$	Največja višina1 točka.
		$lacktriangle$ začetna višina: $h_0=4,0~\mathrm{m}$	Začetna visina $h_0 \dots 1$ točka.
		$h_{\text{max}} = (12 \text{ m s}^{-1} \cdot 1, 2 \text{ s})/2 = 7, 2 \text{ m}$	Izracun 1 tocka.
		$h_0 = 7.2 \text{ m} - 3.2 \text{ m} = 4.0 \text{ m}$	
2.7	7	◆ časovni potek lege žoge	Začetna višina in največja višina 1 točka.
		h [m] 8,0	Graf 1 tocka.
		0,4	
		$0 \ 0.80 \ 1.6 \ 2.4 \ t \ [s]$	
2.8	7	• hitrost po prvem odboju: $v_1 = 10 \text{ m s}^{-1}$	Pravilen odgovor z utemeljitvijo 2 točki.
		\bullet hitrost pred drugim odbojem: $v_2 = -10 \text{ m s}^{-1}$	Sallo declare viediosi I tocka.
		Delo sile zračnega upora je bilo zanemarljivo, ker je bila velikost hitrosti no prvem odboju enaka velikosti hitrosti pred drugim	
		odbojem.	
2.9	7	• sila: $F = 22 \text{ N}$	Izraz 1 točka.
		$F\Delta t = \Delta { m G}$, $F = 0.01~{ m kg}~(10+12)~{ m ms}^{-1}/0.01{ m s} = 22~{ m N}$	Izracun 1 tocka.

3. Termodinamika

Vpr.	Točke	Rešitev	Dodatna navodila
3.1	2	$ \bullet \ \text{enačba za specifično toploto:} \ c = \frac{Q}{m\Delta T} $	Izraz 1 točka. Poimenovanja 1 točka.
3.2	7	ullet masa: $m= ho V=$ 0,75 kg ullet temperatura: $T=$ 293 K	Masa 1 točka. Temperatura 1 točka.
3.3	-	$lacktriangle$ sprememba temperature vode: 32 K $\Delta T = rac{Q}{mc} =$ 31,7 K	
3.4	-	• toplota: 252 kJ $Q = mc(T_{\rm v} - T_{\rm l}) = 0,75~{\rm kg} \cdot 4200~{\rm Jkg^{-1}K^{-1}} \cdot 80~{\rm K} = 252~{\rm kJ}$	
ა. ზ	м	$lack \bullet$ stanje: 683 g vode pri 373 K in 67 g pare pri 373 K preostanek toplote po segrevanju vode do vrelišča: $Q_2=400~\mathrm{kJ}-252~\mathrm{kJ}=148~\mathrm{kJ}$ masa izparele vode pri 373 K: $m_1=\frac{Q_2}{q}=67~\mathrm{g}$ masa preostanka vode pri 373 K: $m_2=m-m_1=682~\mathrm{g}$	Preostanek toplote po segrevanju do vrelišča 1 točka. Masa izparele vode 1 točka. Masa preostanka vode 1 točka.
3.6	4	• sprememba prostornine: $\Delta V = V_2 - V_1 = 115 \ \mathrm{dm}^3$ prostornina kapljevinske vode $V_1 = \frac{m_1}{\rho} = 67 \ \mathrm{ml}$ kilomolska masa vode $M = 18 \ \mathrm{kg kmol^{-1}}$ prostornina pare $V_2 = \frac{m_1 RT}{Mp} = 0,115 \ \mathrm{m}^3$	Prostornina kapljevinske vode 1 točka. Kilomolska masa vode 1 točka. Izračun prostornine pare 1 točka. Rezultat 1 točka.
3.7	7	$lacktriangledown$ delo: $A=p\Delta V=$ 11,5 kJ	Izraz 1 točka. Rezultat 1 točka.

α

4. Elektrika in magnetizem

Vpr.	Točke	Rešitev	Dodatna navodila
4.1	2	• silnice: vodoravno od plusa k minusu (v levo), polje je homogeno • ekvipotencialna črta: vzporedno s ploščama	Silnice 1 točka. Ekvipotencialna črta 1 točka.
4.2	-	$lacktriangle$ kapaciteta: 0,71 nF $C=arepsilon_0 rac{a^2}{d}=7,1\cdot 10^{-10} \; { m F}$	
4.3	~	$lacktriangle$ naboj: 0,43 μ As $e=CU=4,3\cdot10^{-7}~{ m As}$	
4.4	-	$lacktriangle$ energija: 1, $3\cdot 10^{-4}$ J $W_{_{\!C}}=rac{1}{2}CU^2=1,3\cdot 10^{-4}$ J	
4.5	က	• sila: 1,9·10 ⁻¹³ N $F = eE = e_0 \frac{U}{d} = 1,9\cdot10^{-13} \text{ N}$ • pospešek: 2,1·10 ¹⁷ m s ⁻² $a = \frac{F}{m} = 2,1\cdot10^{17} \text{ m s}^{-2}$	Jakost električnega polja 1 točka. Sila 1 točka. Pospešek 1 točka.
4.6	7	• hitrost: 1,5·10 ⁷ m s ⁻¹ $e_0 U = \frac{m_{\rm e} v_{\rm e}^2}{2} \rightarrow v_{\rm e} = \sqrt{\frac{2 e_0 U}{m_{\rm e}}} = 1,5\cdot 10^7 \ {\rm m s^{-1}}$	Postopek 1 točka. Izračun 1 točka.
4.7	7	• čas: 6,9·10 ⁻¹¹ s $d = \frac{v_{\rm e}}{2}t \to t = \frac{2d}{v_{\rm e}} = 6,9\cdot 10^{-11} \text{ s}$	Postopek 1 točka. Izračun 1 točka.

|--|

5. Nihanje, valovanje in optika

Dodatna navodila	Hitrost 1 točka. Valovne dolžine 1 točka.	Lomni kot 1 točka. Sprememba kota 1 točka.	Vsaj en par žarkov pravilno narisan 1 točka. Oba para 1 točka.		Žarki in slika predmeta 1 točka. Slikovna razdalja 1 točka. Velikost slike 1 točka. Opis slike 1 točka.
Točke Rešitev	2 • hitrost: $c = 3.0 \cdot 10^8 \text{ m s}^{-1}$ • valovne dolžine: 400 nm–700 nm	2 * Iomni kot: 21° * sprememba kota: 14°	slika žarkov po prehodu skozi lečo	tan $\alpha=\frac{p}{f}=\frac{0,50~\text{mm}}{250~\text{mm}}=0,002 \rightarrow \alpha=0,11^\circ$	* slika tipičnih žarkov $\frac{\mathbb{E}}{\mathbb{E}}$ $\frac{\mathbb{E}}{\mathbb{E}}$ \mathbb{E}
Vpr.	5.1	5.2	e.	5.4	r.

	Postopek 1 točka. Postopek in rezultat 2 točki.
• velikost slike: $s=p\frac{b}{a}=1,7$ mm • Slika je prava (realna). 1 • žarka iz zgornje točke predmeta E O T * Kot žarka: 0,57° tan $\alpha_L = \frac{p}{f_L} \rightarrow \alpha_L = 0,57^\circ$	2 • faktor: 5 $M_{L} = \frac{\tan \alpha_{L}}{\tan \alpha_{0}} = \frac{p \cdot x_{0}}{f_{L} \cdot p} = \frac{x_{0}}{f_{L}} = 5,0 \text{ ali } M_{L} \approx \frac{\alpha_{L}}{\alpha_{0}} = \frac{0,57^{\circ}}{0,115^{\circ}} = 5$
5.6	5.8

12

6. Moderna fizika in astronomija

Vpr.	Točke	Rešitev	Dodatna navodila
6.1	-	$ \bullet \text{ definicija: } j = \frac{P}{S_{\perp}} $ $ \bullet \text{ količine: } P - \text{svetlobni tok; } S_{\perp} - \text{površina ploskve, skozi katero prehaja svetlobni tok } P \text{, ploskev mora ležati pravokotno na smer potovanja svetlobe } $	
6.2	7	• gostota svetlobnega toka: $6,4\cdot10^7~{\rm W}{\rm m}^{-2}$ $j=\sigma T^4=5,67\cdot10^{-8}~{\rm W}{\rm m}^{-2}{\rm K}^{-4}\cdot\left(5,8\cdot10^3~{\rm K}\right)^4=6,4\cdot10^7~{\rm W}{\rm m}^{-2}$	Postopek 1 točka. Izračun 1 točka.
6.3	-	• svetlobni tok: $4,0.10^{26}$ W $P = 4\pi r^2 j = 4\pi (7,0.10^8 \text{ m})^2 6,42.10^7 \frac{W}{\text{m}^2} = 3,95.10^{26} \text{ W}$	
6.4	8	\bullet sproščena energija: 26,7 MeV $\Delta m=4m_{\rm p}+2m_{\rm e}-m_{\rm He}=0.0287~{\rm u}$ $W=\Delta mc^2=0.0287\cdot 9315~{\rm MeV}=26,7~{\rm MeV}$	Postopek 1 točka. Izračun 1 točka.
6.5	7	• gostota svetlobnega toka: 1,4 kW m ⁻² $j = \frac{P}{4\pi r^2} = \frac{3.9 \cdot 10^{26} \text{ W}}{4\pi (1.5 \cdot 10^{11} \text{ m})^2} = 1,4 \frac{\text{kW}}{\text{m}^2}$	Postopek 1 točka. Izračun 1 točka.
6.6	7 -	♦ prejeta energija: 1,8·10¹² J $W=j\pi r^2t=1,38~{\rm kWm}^{-2}\cdot\pi\cdot(6400~{\rm km})^2\cdot1~{\rm s}=1,8\cdot10^{17}~{\rm J}$	Postopek 1 točka. Izračun 1 točka.
8.9	. 4	• energija fotona: 2,55 eV $W = \frac{hc}{\lambda} = \frac{6.6 \cdot 10^{-34} \text{ Js} \cdot 3.0 \cdot 10^8 \text{ m s}^{-1}}{486 \cdot 10^{-9} \text{ m}} = 4,07 \cdot 10^{-19} \text{ J} = 2,55 \text{ eV}$	Postopek 1 točka. Izračun 1 točka.
6.9	2	$^{\bullet}$ energija fotona ustreza prehodu med stanjema $n=2$ in $n=4.$ Izračun: 3,4 eV $-$ 0,85 eV $=$ 2,55 eV	Energijski stanji 1 točka. Izračun 1 točka.

Skupno število točk IP 2: 45