Integer Pragramming
Integer Prægramming Præblems " (1PP)
Optimize (Min/Man) = C, M, ++Cnxn
8.t. $a_{11}n_{1} + a_{12}n_{2} + + a_{1n}n_{n} \leq \geq =$ $a_{11}n_{1} + + a_{1n}n_{n} \leq \geq = b_{2}$
$a_{m_1}u_1 + + a_{m_n}u_n \leq \geq = b_m$
$\chi_1, M_2, M_3, \dots M_n \geq 0$
El n, n, n, n, un are integer (some or all)
* Types of IPP
1. Pure IPP when ni EZ ti- 2. Mined IPP ni EZ for some i
3. zero-one IPP niez Vi; ni= {0,1}
* Methods to solve IPP
1. Branch Bound tech> IPP with 2 variable
2. Fractional Cut Method -> (2007 more than (Gomory's roustraints) 2 decision variables)

Branch El Bound Technique two decision variable. LPP: opt z = CTX $AX = \{ \} \geq , \leq b$ IPP: add n, no are integer. step 1: 801ve the associated upp with graphical method. of decision variables are integer then it is the optimal scell for IPP too, if not move to step 2. Step 2: $n, \neq z$, $n, \neq z$ or $n, \epsilon e n, \neq z$ Do the branching with respect to any decision variables are integers then having non-integeral value. Suppose $n_1 \neq Z$; $n_2 = 4$ $5/2 \rightarrow 2.5$ $n_1 \neq Z$; $n_1 \in Rational no.$ $n \leq 2$ ($n_1 n_2$)

other > $n_2 \geq 3$ (3, 4)

possibility — Step 3: Repeat step 2, until au DV are integers. Q. Man Z = 72, +922 S.t - 21, + 32, ≤ 6 $721 + 21 \leq 35$ 1,12 € 2 m., n2 20

 $n_1 = \frac{7}{2} \quad n_2 = \frac{1}{2} \quad n_3 = 0$

Zman = 10 n=4 22 = 3

Q. Mon
$$z = n_1 + 4n_2$$

St. $2n_1 + 4n_2 \le 7$
 $5n_1 + 3n_2 \le 15$
 $n_1, n_2 \ge 0 \le 2$.
Sol.

Simplex vertical on LPP associated with IPP.

Optimal Simplex table is

CB BV $n_1, n_2 \le 1$ S2 XB

 $z = 1 = 0 = 1 = 0$
 $z = 1 = 0 = 0$
 $z = 1 = 0$
 z

CB	BV	21,	71,	3,	32	Xo	XG2	LXB.	
	2	-	-	1/2		2		11/2	
4	212	0	1	0	0	1	0	1	
0	Sz	0	0	-42	1	7	0	9/2	
1	21	-1	0	1/2	0	-2	0	3/2	
0	Xa	0	0	-1/2	0	0	1	-1/2	1
	2					11111			-1(2)

Св	BV	211	212	31	S2	XG,	YG2	XB
	2	0	0	0	0	2	1	5
4	212	0	1	0	0	1	0	1
0	82	0	0	0	1	7	-5	7
10	ni	1	0	0	0	-2	11	1
0	81	0	0	1	0	0	-2	1

optimal 2man = 5at $n_1 = 1$ $n_2 = 1$