代数学1 レポート

August 4, 2017

東京理科大学 理学部第一部 応用数学科 4年 学籍番号 1414059

瀧ヶ平 充

問題1

$$f(X) = X^4 + 4X^3 - 4X^2 + X - 3$$
 に対して、

- 1. f(X) のスツルム列を計算せよ。
- 2. f(X) の $0 < X \le 2$ における実根の個数を求めよ
- 3. f(X) の 2 < X < 4 における実根の個数を求めよ

解

$$f_0(X)=f(X), f_1(X)=f_0'(X)=4X^3+12X^2-8X+1$$
 で、 $f_0(X)=\frac{1}{4}(X+1)f_1(X)-5X^2+\frac{11}{4}X-\frac{13}{4}$ より $f_2(X)=-5X^2+\frac{11}{4}X-\frac{13}{4}$ $f_1(X)=-\frac{4}{5}(X+\frac{71}{5})f_2(X)-\frac{279}{100}X-\frac{823}{100}$ より $f_3(X)=-\frac{279}{100}X-\frac{823}{100}$ $f_2(X)=\frac{1}{279}(500X+\frac{488225}{279})f_3(X)-\frac{4271075}{77841}$ より $f_4(X)=-\frac{4271075}{77841}$ $f_0(0)<0,f_1(0)>0,f_2(0)<0,f_3(0)<0,f_4(0)<0$ より $V(0)=2$ $f_0(2)>0,f_1(2)>0,f_2(2)<0,f_3(2)<0,f_4(2)<0$ より $V(2)=1$ $f_0(4)>0,f_1(4)>0,f_2(4)<0,f_3(4)<0,f_4(4)<0$ より $V(4)=1$ よって $f(X)$ の $0< X \leq 2$ における実根の個数は $V(0)-V(2)=1$ 個よって $f(X)$ の $2< X \leq 4$ における実根の個数は $V(2)-V(4)=0$ 個

問題2

(1)

2つの有理数 $\frac{p_1}{q_1}, \frac{p_1}{q_1}$ にたいして、有理数 $f_1(\frac{p_1}{q_1}, \frac{p_1}{q_1})$ を以下のように定義する。 $f_1(\frac{p_1}{q_1}, \frac{p_1}{q_1}) = \frac{p_1}{q_2} + \frac{p_2}{q_1}$

(2)

空でない整数の有限集合 $A = \{a_1, \ldots, a_m\}B = \{b_1, \ldots, b_n\}$ にたいして、整数の有限集合 $f_2(A, B)$ を以下のように定義する。 $f_2(A, B) = \{a_1 + b_1, \ldots, a_1 + b_n, a_2 + b_1, \ldots, a_2 + b_n, \ldots, a_m + b_1, \ldots, a_m + b_m\}$

(3)

空でない整数の有限集合 $A = \{a_1, a_2\}B = \{b_1, b_2\}$ にたいして、整数の有限集合 $f_3(A, B)$ を以下のように定義する。 $f_3(A, B) = \{a_1 + b_1, a_2 + b_2\}$

解

 f_1 に対し、 $f_1(\frac{1}{2},\frac{1}{3})=\frac{1}{3}+\frac{1}{2} \neq f_1(\frac{2}{4},\frac{1}{3})=\frac{2}{3}+\frac{1}{4}$ これは、 $\frac{1}{2}=\frac{2}{4}$ に反するため、well-defined ではない。 f_2 に対し、A を異なる順序に入れ替えたの A' は $A\equiv A'$ で、任意の B に対して、 $f_2(A,B)\equiv f_2(A',B)$ となり、B を異なる順序に入れ替えた B' を考えるときも同様のことが言える。 よって、 f_2 は well-defined。 f_3 に対して、 $A=\{a_1,a_2\}\equiv\{a_2,a_1\}$ で、 $A'=\{a_2,a_1\}$ とすると $f_3(A,B)=\{a_1+b_1,a_2+b_2\}\neq\{a_2+b_1,a_1+b_2\}=f_3(A',B)$ となり、 $A\equiv A'$ に矛盾する。 よって f_3 は well-defined ではない。