

Machine Learning Theory

Contents

Chapter 1 Introduction 1

Chapter 1 Introduction

Definition 1.1 (Probability triple)

A **probability triple** is $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- The sample space Ω is any non-empty set.
- The σ -algebra \mathcal{F} is a collection of subsets of Ω satisfies:
 - 1. Containing Ω and \emptyset .
 - 2. (closed under the complements) For any $A \in \mathcal{F}$, $A^C \in \mathcal{F}$.
 - 3. (closed under the countable unions) For any countable (or finite) collection $\{A_i\} \subseteq \mathcal{F}$, the union $\bigcup_i A_i \in \mathcal{F}$.
- The **probability measure** \mathbb{P} is a mapping from \mathcal{F} to [0,1] satisfies:
 - 1. $\mathbb{P}(\Omega) = 1$.
 - 2. (Countable additivity) For a countable disjoint collection $\{A_i\} \subseteq \mathcal{F}$, $\mathbb{P}(\bigcup_i A_i) = \sum_i \mathbb{P}(A_i)$.

Remark In general \mathcal{F} might not contain all subsets of Ω .

Corollary 1.1

- \bullet \mathcal{F} is closed under the countable intersections.
- $\mathbb{P}(\varnothing) = 0$.
- $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$.
- (Monotonicity) $\mathbb{P}(A) \leq \mathbb{P}(B)$ whenever $A \subseteq B$.
- (Principle of inclusion-exclusion) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- (Countable subadditivity) For a countable collection $\{A_i\} \subseteq \mathcal{F}$, $\mathbb{P}(\bigcup_i A_i) \leq \sum_i \mathbb{P}(A_i)$.

Theorem 1.1

Let

- ullet Ω be a finite or countable non-empty set.
- $p:\Omega \to [0,1]$ be ab function satisfying $\sum_{\omega \in \Omega} p(\omega) = 1$,

then there is a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F} = \mathbb{P}(\Omega)$, and for $A \in \mathcal{F}$, $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$.