

Stochastic Processes

CSE-5605

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 1

Model of a Physical System

- > Model: Approximate representation of physical situation
 - □ Mathematical model: Set of assumptions about how system works
 - Deterministic model: Offers repeatability of results, (e.g. Ohm's Laws)
 - o Stochastic model: Characterizes randomness and uncertainty
 - □ Simulation model: Imitation of real system
 - o Deterministic model: No random component involved, (e.g. chemical reaction)
 - Stochastic model: Must have random input component

Random Experiment

- > Random Experiment: The result varies in random manner
- > Sample Space: Set of all possible experiment results
- > Outcome: A single element of sample space
- > Event: A subset of sample space
- > Example: An urn containing three balls, one is drawn
 - ☐ How probable it is that a ball withdrawn at random is labeled '1'?
 - □ Can you quantify this 'chance'?
 - Everyone of you should be able to write the sample space for this experiment!

}

Set Theory

- > Representation of events by sets
- > Capital letters for names S, A, B, ...
- \triangleright Small letters for elements a, b, x, y, ...
- > Venn diagram illustrates sets and their interrelationship

Set Theory (cont.)

Axioms of Probability

> Axiom: Universally accepted principle or rule

$$0 \le P[A] \le 1$$

$$P[S] = 1$$

 \triangleright If $A \cap B = \emptyset$

$$P[A \cup B] = P[A] + P[B]$$

ightharpoonup If $A_i \cap A_j = \emptyset$ for all $i \neq j$

$$P\left[\bigcup_{k=1}^{\infty} A_k\right] = \sum_{k=1}^{\infty} P[A_k]$$

Corollaries

$$P[A^c] = 1 - P[A]$$

$$P[\emptyset] = 0$$

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

$$P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[A \cap B]$$
$$-P[B \cap C] - P[A \cap C] + P[A \cap B \cap C]$$

Conditional Probability

- > Are two events A and B related?
- > Is the occurrence of one event effecting the likelihood of other?
- \triangleright Conditional probability of event A given that B has occurred

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]}$$

- \succ Knowledge of occurrence of event B reduces sample space
 - $lue{}$ Occurrence of event A now depends on $A \cap B$
 - \square If $A \cap B = \emptyset$, occurrence of A is ruled out, given B occurred

Conditional Probability (cont.)

ightharpoonup If A = B, then due to the reduced sample space

$$P[B \mid B] = 1$$

> Similarly

$$P[A \cap B] = P[A \mid B]P[B]$$

$$P[A \cap B] = P[B \mid A]P[A]$$

Theorem on Total Probability

- ightharpoonup Let B_1, B_2, \ldots, B_n be mutually exclusive events
- \triangleright Union of all these events is S (partitions of S)
- Let A be union of events

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup B_3 \cup ... \cup B_n)$$

Theorem on Total Probability (cont.)

$$A = (A \cap B_1) \cup (A \cap B_2) \cup ... \cup (A \cap B_n)$$

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + ... + P[A \cap B_n]$$

$$P[A] = P[A | B_1]P[B_1] + P[A | B_2]P[B_2] + ... + P[A | B_n]P[B_n]$$

$$P[A] = \sum_{k=1}^{n} P[A | B_k] P[B_k]$$

Bayes' Rule

- ightharpoonup Let B_1, B_2, \ldots, B_n be mutually exclusive events
- \triangleright If event A occurs, what is probability of B_i ?

$$P[B_{j} \mid A] = \frac{P[A \cap B_{j}]}{P[A]} = \frac{P[A \mid B_{j}]P[B_{j}]}{P[A]} = \frac{P[A \mid B_{j}]P[B_{j}]}{\sum_{k=1}^{n} P[A \mid B_{k}]P[B_{k}]}$$

> Simple case of Bayes' Rule is

$$P[B \mid A] = \frac{P[A \mid B]P[B]}{P[A]}$$

- > Bayes' Rule
 - \square Method of calculating P[B|A]
 - \square Provided P[A|B] available

Independence of Events

- > An event occurs
 - □ But probability of a second event remains unchanged
 - ☐ Then the second event is independent of first
- > Occurrence of one has no impact on probability of other

$$P[A] = P[A \mid B] = \frac{P[A \cap B]}{P[B]}$$

 \triangleright What if P[B] = 0?

$$P[A]P[B] = P[A \cap B]$$

 \triangleright Event A and B are said to be independent

