

119148 – Prática de Circuitos Eletrônicos 1

Experimento 10: Integrador e Diferenciador com Amplificador Operacional

1) Objetivos

Neste experimento, serão construídos e caracterizados, com diferentes formas de onda na entrada, circuitos diferenciadores e integradores utilizando amplificadores operacionais. Além disso, serão verificadas as frequências máxima e mínima de operação para cada circuito.

2) Estudo pré-laboratorial

Figura 2.1 – Circuito amplificador-diferenciador

Figura 2.2 - Circuito amplificador-integrador

2.1) Cálculos teóricos

- a) Esboce as seguintes formas de onda: senoidal, quadrada e triangular. Esboce a derivada e a integral de cada uma delas.
- b) Considere o circuito da Fig. 2.1. Utilizando Laplace, obtenha a expressão de $V_{out}(t)$ em função de $V_{in}(t)$ e assumindo $R_c=0$. Qual problema observamos se o sinal de entrada for de alta frequência?
- c) Obtenha a expressão para $V_{out}(t)$ no circuito da Fig. 2.1, em função de $V_{in}(t)$ e assumindo $R_c \neq 0$. Qual a função de R_c ?
- d) Obtenha a expressão para $V_{out}(t)$ no circuito da Fig. 2.2, em função de $V_{in}(t)$ e assumindo $R_0 \to \infty$. O que acontece com a realimentação na entrada inversora se o sinal de entrada for de baixa frequência? Qual a importância da realimentação no AmpOp ideal? (Pesquise sobre tensões DC de offset na saída de AmpOp reais).
- e) Obtenha a expressão para $V_{out}(t)$ no circuito da Fig. 2.2, em função de $V_{in}(t)$ e assumindo R_0 finito. Qual a função de R_0 ? Para as expressões de Vout(t) do circuito integrador (a apresentada na Fig. 2.2 e a obtida no item 2.1d), discuta o significado físico de k. Para o mesmo circuito, discuta o comportamento esperado antes e após a inserção do resistor R_0 .

2.2) Simulação

- a) Simule o circuito da Fig. 2.1 para $R_c=0$ e para $R_c=100\,\Omega$. Utilize $R=1\,\mathrm{k}\Omega$ e $C=1\,\mu\mathrm{F}$. Verifique a saída $V_{out}(t)$ para $V_{in}(t)$ ajustado em $2\,V_{pp}$ e $100\,\mathrm{Hz}$ nos seguintes formatos: senoidal, quadrada e triangular.
- b) Simule o circuito da Fig. 2.1 para $R_0 \to \infty$ e para $R_0 = 100\,\Omega$. Utilize $R = 1\,\mathrm{k}\Omega$ e $C = 1\,\mu\mathrm{F}$. Verifique a saída $V_{out}(t)$ para $V_{in}(t)$ ajustado em $2\,V_{pp}$ e $1\,\mathrm{kHz}$ nos seguintes formatos: senoidal, quadrada e triangular.
- c) Proponha um circuito com amplificadores operacionais <u>ideais</u>, utilizando integradores, diferenciadores e somadores que simule na forma de um <u>computador analógico</u> a seguinte equação diferencial:

$$y = 5x^{\cdot} + 2x + 1$$
,

onde x(t) é a entrada e y(t) é a saída, medidas em volts. Relacione os valores dos componentes (resistores, capacitores) em função das características do sistema proposto. Teste o seu projeto no simulador, verificando a saída do circuito para uma entrada do tipo onda quadrada com $2\ V_{pp}$ e $f=1\ \mathrm{kHz}$.

3) Experimento

Figura 3.1 – Circuito diferenciador modificado para montagem

Figura 3.2 – Circuito integrador modificado para montagem

3.1) Diferenciador com Amplificador Operacional

Monte o circuito da Fig. 3.1 com $V_{in}(t)$ representando o gerador de funções. Utilize $R=1~\mathrm{k}\Omega,\,C=1~\mu\mathrm{F}$ e $R_c=100~\Omega.$ O resistor de compensação evita oscilações e a amplificação de ruído em altas-frequências. Observe e documente as formas de onda na saída $V_{out}(t)$ para as entradas de $V_{in}(t)$ da Tabela 3.1. Verifique em que faixa de frequências e amplitudes o circuito se comporta como um bom diferenciador. Para isso, comece com um valor baixo e aumente **gradativamente** a frequência do sinal de entrada, observando atentamente o que acontece com o sinal de saída. Qual a frequência máxima e mínima de operação? E quais fatores limitam na prática a amplitude máxima do sinal de entrada?

3.2) Integrador com Amplificador Operacional

Monte o circuito da Fig. 3.2, com $V_{in}(t)$ representando o gerador de funções. Utilize $R=R'=1~{\rm k}\Omega$ e $C=1~{\rm \mu}{\rm F}$ e <u>não</u> coloque R_0 . Observe as formas de onda na saída $V_{out}(t)$ para as entradas de $V_{in}(t)$ da Tabela 3.2. Há algum problema no comportamento do circuito integrador?

Modifique o circuito, adicionando um resistor $R_0=100~\Omega$ em paralelo com o capacitor. Por que esta modificação é necessária? Verifique em que faixa de frequências e amplitudes o circuito se comporta como um bom integrador. Para isso, comece com um valor baixo e aumente **gradativamente** a frequência do sinal de entrada, observando atentamente o que acontece com o sinal de saída. Qual a frequência máxima e mínima de operação? E quais fatores limitam na prática a amplitude máxima do sinal de entrada?

4) Relatório

4.1 – Operação real dos circuitos

Em seu relatório, após realizar a análise dos dados experimentais, responda:

Quais fatores limitam na prática a faixa de frequências de operação dos circuitos das Figuras 3.1 e 3.2?

Quais fatores limitam na prática a **amplitude máxima do sinal de entrada** nos circuitos das Figuras 3.1 e 3.2?

Qual a necessidade de inserção do resistor R_0 no circuito integrador e qual o resultado após ter sido inserido?

4.2 – Questões abordadas no procedimento experimental

Discuta em seu relatório todas questões abordadas nos itens 3.1 e 3.2 do procedimento experimental. Inclua comparações com a previsão do que seria esperado em circuitos ideais.

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:	Data:/
Aluno:	Matrícula:

Experimento 10: Integrador e Diferenciador com Amplificador Operacional

3.1 - Circuito diferenciador com amplificador operacional

Anote:				
$R = \underline{\hspace{1cm}}$	±	$[\Omega]$ $RC =$	±	[Ω]

Tabela 3.1 – Resumo das formas de onda do diferenciador

Vin(t)	$V_{out}(t)$	fmín	fmáx
Senoidal			
Triangular			
Quadrada			

Procedimento 3.1 a): Diferenciador com onda Senoidal

Procedimento 3.1 b): Diferenciador com onda Quadrada

Procedimento 3.1 c): Diferenciador com onda Triangular

3.2 - Circuito integrador com amplificador operacional

Anote:

$$R = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} [\Omega]$$

$$R' =$$
 \pm Ω

$$R_O = \pm$$

Tabela 3.2 – Resumo das formas de onda do integrador

Vin(t)	$V_{out}(t)$	fmín	fmáx
Senoidal			
Triangular			
Quadrada			

Procedimento 3.2 a): Integrador com onda Senoidal

Procedimento 3.2 a): Integrador com onda Quadrada

Procedimento 3.2 a): Integrador com onda Triangular

