Irrationals in (0,1) are uncountable.

(0,1) is uncountable (Cantor); $\mathbb{Q} \cap (0,1)$ is countable. If the irrationals $I=(0,1)\setminus \mathbb{Q}$ were countable, then $(0,1)=I\cup (\mathbb{Q}\cap (0,1))$ would be a countable union of countables \Rightarrow countable — contradiction.

Def (Distance to a set). $d(x,A) = \inf\{d(x,a) : a \in A\};$ $d(x,A) = 0 \iff x \in \overline{A}.$

Metric counterexamples. (1) $d(x,y) = |x^2 - y^2|$ fails identity of indiscernibles: d(1,-1) = 0 but $1 \neq -1$. (2) d(x,y) = |x-2y| fails symmetry: d(0,1) = 2 but d(1,0) = 1.

Finite codomain $\geq 2 \rightarrow$ uncountable. If D infinite countable, $|C| \geq 2$ finite, then C^D uncountable. Reason: inject $\{0,1\}^{\mathbb{N}}$ (already uncountable).

Counterexample style. "Functions $\mathbb{N} \to \{0,1\}$ are countable." False — diagonalization. "Functions $\mathbb{N} \to \{0\}$ are uncountable." False — only 1 function.

Encoding trick. Any function $f: \mathbb{N} \to A$ can be seen as an infinite sequence $(f(1), f(2), \dots)$. So $A^{\mathbb{N}}$ is the set of A-valued sequences.

Dense corollary. If A is uncountable, then $A^{\mathbb{N}}$ is also uncountable (since already true for 2-element subset).

Other common T/F. - $\mathbb{N}^{\mathbb{N}}$ is countable. (False, diag argument.) - $\mathbb{Q}^{\mathbb{N}}$ is countable. (False, inject $\{0,1\}^{\mathbb{N}}$.) - $\mathbb{N}^{\mathbb{Q}}$ is uncountable. (True, domain countable, codomain ≥ 2 .) - If D finite, A countable $\Rightarrow A^D$ countable. (True.)

Finite-support sequences countable. $E = \{(a_n): \exists N, \ a_n = 0 \ \forall n > N\}$. Then $E = \bigcup_N A^{N+1}$ (finite product of countables) \Rightarrow countable.

Polynomials \rightarrow **algebraic numbers countable.** Coeff tuples $\in \mathbb{Z}^{k+1}$ countable, union over k countable. Each polynomial has finitely many roots. Countable union of finite sets \Rightarrow algebraics countable.

Power set argument. $|\mathcal{P}(\mathbb{N})| = 2^{\aleph_0}$ uncountable. Each subset \leftrightarrow characteristic function $\mathbb{N} \to \{0,1\}$. So $2^{\mathbb{N}}$ uncountable. Generalizes: for $|A| \geq 2$, $A^{\mathbb{N}}$ uncountable.

 $d(x, A) = 0 \iff x \in \overline{A} \text{ (metric space)}.$

(\Rightarrow) Suppose d(x, A) = 0. For each n pick $a_n \in A$ with $d(x, a_n) < \frac{1}{n}$ (by def. of infimum). Then $a_n \to x$, hence every ball around x meets A; thus $x \in \overline{A}$.

 (\Leftarrow) If $x \in \overline{A}$, then for each n there exists $a_n \in A$ with $d(x, a_n) < \frac{1}{n}$, so $\inf\{d(x, a) : a \in A\} = 0$. Conclusion: d(x, A) = 0 iff $x \in \overline{A}$.

Finite codomain $\geq 2 \Rightarrow C^D$ uncountable (countable D).

Let $D \cong \mathbb{N}$ and $|C| \geq 2$. Choose distinct $c_0, c_1 \in C$. Map each binary sequence $b \in \{0,1\}^{\mathbb{N}}$ to $f_b : \mathbb{N} \to C$ by $f_b(n) = c_{b(n)}$. This is injective, so $|\{0,1\}^{\mathbb{N}}| \leq |C^{\mathbb{N}}|$. Since $\{0,1\}^{\mathbb{N}}$ is uncountable (Cantor diagonal), C^D is uncountable.

Finite-support sequences are countable.

Let A be countable and $E = \{(a_n) : \exists N \ \forall n > N, \ a_n = 0\}$. Then $E = \bigcup_{N \geq 0} A^{N+1}$ (the tail is forced zeros). Each A^{N+1} is a finite product of countables, hence countable; a countable union of countables is countable. Therefore E is countable.

Algebraic numbers are countable.

Fix a degree $k \geq 0$. Each polynomial $p(x) = a_k x^k + \cdots + a_0$ with $a_i \in \mathbb{Z}$ corresponds to a vector $(a_0, \ldots, a_k) \in \mathbb{Z}^{k+1}$; \mathbb{Z}^{k+1} is countable. Every nonzero degree-k polynomial has at most k roots, i.e. finitely many. Hence the set of roots of all degree-k polynomials is a countable union of finite sets \Rightarrow countable. Take the union over k to conclude: algebraic numbers form a countable set.

Dense corollary: if A uncountable then $A^{\mathbb{N}}$ uncountable.

Any uncountable A contains a 2-element subset $\{a_0, a_1\}$. The injection $\{0, 1\}^{\mathbb{N}} \hookrightarrow A^{\mathbb{N}}$ given by $b \mapsto (a_{b(n)})_{n \in \mathbb{N}}$ shows $A^{\mathbb{N}}$ is uncountable.

Finite domain + countable codomain \Rightarrow countable. If D is finite, C countable, then C^D is in bijection with a finite product of C's: $C^D \cong C^{|D|}$. Finite products of countables are countable; hence C^D is countable. Template use: Replace D by any finite set (e.g. $\{1,2,3\}$) and C by \mathbb{N} or \mathbb{Q} .

Countable domain + finite codomain with ≥ 2 elements \Rightarrow uncountable.

Let $D \cong \mathbb{N}$ and pick distinct $a, b \in C$ (with $|C| \geq 2$). Inject $\{0,1\}^{\mathbb{N}} \hookrightarrow C^D$ via $b \mapsto f_b$ with $f_b(n) = a$ if b(n) = 0, $f_b(n) = b$ if b(n) = 1. Since $\{0,1\}^{\mathbb{N}}$ is uncountable (Cantor), so is C^D . Template use: Any time the domain is countably infinite and the codomain has at least 2 elements.

Diagonalization template (prove $A^{\mathbb{N}}$ uncountable when $|A| \geq 2$).

Assume $f_1, f_2, ...$ list all $A^{\mathbb{N}}$. Choose distinct $a_0, a_1 \in A$. Define g by $g(n) = a_0$ if $f_n(n) \neq a_0$, else $g(n) = a_1$. Then $g \neq f_n$ for every n (differs at n). Contradiction. Template use: Works verbatim for binary/ternary/finite alphabets.

Eventually-zero (finite-support) sequences are countable.

Let A be countable and $E = \{(a_n) : \exists N \, \forall n > N, \ a_n = 0\}$. Then $E = \bigcup_{N \geq 0} A^{N+1}$, a countable union of countables \Rightarrow countable. Template use: Any "finitely non-default" objects (finite support, finite exceptions).

Eventually constant sequences over a finite alphabet are countable.

Fix finite C. For N, c, let $S_{N,c} = \{(x_n) : x_n = c \ \forall n \geq N\} \cong C^N$ (finite). Then $\bigcup_{N,c} S_{N,c}$ is a countable union of finite sets \Rightarrow countable.

When C^D is countable vs. uncountable (quick classifier).

Countable: (i) D finite, C countable; (ii) D finite, C finite. Uncountable: (i) D infinite countable, $|C| \geq 2$ finite; (ii) D infinite countable, C uncountable; (iii) D uncountable and C has ≥ 2 elements. Proof ideas: finite products, injections from $\{0,1\}^{\mathbb{N}}$, or direct diagonalization.

Apply in 1–2 lines.

- (1) $\{1, 2, 3\} \to \mathbb{N}$: finite domain + countable codomain \Rightarrow countable (or prime-coding).
- (3) $\mathbb{Q}^{\mathbb{N}}$: inject $\{0,1\}^{\mathbb{N}} \hookrightarrow \mathbb{Q}^{\mathbb{N}}$ via two rationals \Rightarrow uncountable.
- (3) $\mathbb{Q}^{\mathbb{N}}$: inject $\{0,1\}^{\mathbb{N}} \hookrightarrow \mathbb{Q}^{\mathbb{N}}$ via two rationals \Rightarrow uncountable.
- (4) $\mathbb{N}^{\mathbb{Q}}$: domain countable? No, codomain \mathbb{N} (\geq 2) and domain $uncountable \Rightarrow uncountable$ (even larger).
- (5) Functions $\mathbb{N} \to \{0\}$: only one function \Rightarrow finite (countable).