Meta-Analysis of Genome-Wide and Replication Association Studies on Prostate Cancer

Hong Liu, 1 Bo Wang, 2 and Chunsheng Han 1*

¹State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China ²Health Science Popularization Research Center, Chinese Academy of Medical Science, Beijing, China

BACKGROUND. Genome-wide and replication association studies (GWAs) have identified multiple loci at which common variants modestly influence the risk of developing prostate cancer (PCa). To enhance the power to identify loci associated with PCa, we constructed a meta-analysis of GWAs on PCa.

METHODS. Articles evaluating the effects of genome-wide SNPs on PCa were identified by searching the PubMed database. After extraction of relevant data, main and subgroup meta-analyses were performed to assess the effects of relevant SNPs on PCa.

RESULTS. 21 eligible articles containing 71 subgroups were included in this meta-analysis. Significant associations were found between 31 SNPs and PCa. They were rs445114, rs620861, rs983085, rs1016343, rs1447295, rs1859962, rs2660753, rs2710646, rs2735839, rs3760511, rs4242382, rs4430796, rs4962416, rs5945572, rs5945619, rs6470494, rs6501455, rs6983267, rs6983561, rs7000448, rs7214479, rs7501939, rs7920517, rs7931342, rs9364554, rs9623117, rs10090154, rs10486567, rs10896449, rs10993994, and rs16901979. The weighted odds ratios for above SNPs ranged between 0.64 and 1.88 (all P < 0.05). Subgroup analysis further indicated that the significant associations of some SNPs existed only in specific ancestry population ($P < 10^{-5}$).

CONCLUSIONS. The current meta-analysis demonstrated the moderate effects of above 31 SNPs on PCa and 14 independent PCa risk loci were identified. *Prostate 71: 209–224, 2011.* © 2010 Wiley-Liss, Inc.

KEY WORDS: genome-wide association; prostate cancer; meta-analysis

INTRODUCTION

In developed countries, prostate cancer (PCa) is the most common noncutaneous malignancy in men [1]. Age, African ancestry, and a positive family history of disease are the only established risk factors [1]. Twin studies and epidemiologic observations have suggested a substantial genetic contribution to disease development [2]. Linkage, admixture mapping, and genome-wide studies have identified variants with moderate effects on PCa risk at multiple loci in the 8q24 region [3–7]. These loci account for a proportion of the increased risk for relatives of individuals with PCa which suggest that additional loci exist [8].

Genome-wide association studies (GWAs) are not inspecting on prior information relating to candidate genes or pathways, and thus are able to identity important variants in genes not reported so far. On the other hand, the effect sizes of individual variants, the need for strict thresholds for statistical significance, and financial constraints on numbers of variants that can be followed up limit study power unavoidably. To enhance the power to detect PCa risk loci, we conducted a meta-analysis of genome-wide and replication case—control association studies on PCa.

Grant sponsor: National Basic Research Program of China; Grant numbers: 2005CB522502, 2006CB944004.

*Correspondence to: Chunsheng Han, PhD, Division of Bioinformatics, State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

E-mail: hancs@ioz.ac.cn

Received 26 March 2010; Accepted 18 June 2010

DOI 10.1002/pros.21235

Published online 5 August 2010 in Wiley Online Library (wileyonlinelibrary.com).

METHODS

Criteria of Considering Studies for This Review

Studies were selected for analysis according to the following criteria:

Types of studies. We included genome-wide association studies. We excluded genome-wide linkage studies.

Types of participants. Participants involved any population in which PCa were epidemic. We defined "PCa case" referring to American Cancer Society guidelines, that is a digital rectal exam (DRE) and a serum prostate-specific antigen (PSA) >4 ng/ml [9,10]. We defined "control" as those who were free of PCa.

Types of effect measures. We included studies that used odds ratio (OR) as the measure of effects. Also, the included studies should provide genotype or allele frequency and sample size in case and control groups so that the allele-based OR value for each study could be calculated.

Search Strategy for Identification of Studies

We searched the medical literature for genome-wide association studies on PCa. We searched PubMed database (National Library of Medicine, Bethesda, MD). Only published articles reported in English were considered. We did not specify any limitation on country, race, or publication year.

Methods of the Review

First, we searched genome-wide association studies through title or abstract if needed. Then, based on the inclusion and exclusion criteria, eligible studies were screened out through abstract or full text when necessary.

The summary results and characteristics of included studies were tabled for analysis. The estimate of the principal effect was defined as OR of minor allele over major allele. In order to compute the pooled effects, each study was assigned a weight defined as the reciprocal of its variance.

Estimates of the ORs and 95% CIs (confidence intervals) were calculated using fixed-effect models or random-effect models according to the results of the heterogeneity tests. We presented the results of random-effect models if the tests for heterogeneity were significant. Otherwise, the results of fixed-effect models were presented.

The assumption of heterogeneity may suggest that the association of a SNP with PCa could be resulted from the diversity in ethnic origin, age, and family disease history. To validate this hypothesis, we further administered a subgroup analyses based on ethnic background. Finally, we checked publication bias by applying the funnel plots of the SE (standard error) against their relevant effect size. We employed RevMan 4.2 software (Cochrane Collaboration, Oxford, UK) to undertake heterogeneity tests and meta-analysis.

RESULTS

Characteristics of Included Studies

Though comprehensive searching we found 80 original articles. 59 articles that did not meet the inclusion criteria were excluded. We therefore performed a meta-analysis consisted of 21 eligible articles [5,7,11–29]. Table I shows the selected characteristics of the 21 studies that met the inclusion criteria. These articles included 71 subgroups according to participant cohort. Of all subgroups, 2 were executed in Asian descent populations (Chinese and Japanese American), 4 in African origin populations, and 65 in European descents. Eligible subgroups included 24 genome-wide association studies and 47 replication case—control studies. The ages of participants of included studies ranged from 8 to 105 years.

Main Meta-Analysis

There were 37 SNPs in all reported in more than one included studies and were analyzed in this review (Table II). Using data from all PCa cases and controls of included studies, we obtained weighted OR and 95% CI, and associated P-value for each SNP. 31 SNPs, rs445114, rs620861, rs983085, rs1016343, rs1447295, rs1859962, rs2660753, rs2710646, rs2735839, rs3760511, rs4242382, rs4430796, rs4962416, rs5945572, rs5945619, rs6470494, rs6501455, rs6983267, rs6983561, rs7000448, rs7214479, rs7501939, rs7920517, rs7931342, rs9364554, rs9623117, rs10090154, rs10486567, rs10896449, rs10993994, and rs16901979, had statistical significance. The weighted ORs for above SNPs were ranged from 0.64 to 1.88 (all P < 0.05).

Figure 1 presented the weighted ORs (95% CIs) across the subgroups and the weights assigned to each subgroup for the 31 SNPs which showed significant associations with PCa in Table II. From the pooled samples, the weighted ORs for 9 SNPs of rs10486567, rs10486469, rs2735839, rs4430796, rs445114, rs620861, rs6983267, rs7931342, and rs983085 were ranged from 0.64 to 0.88 (all P < 0.05), therefore, these SNPs were significantly associated with PCa. And individuals carried minor allele of these SNPs may have a less risk to develop PCa compared with those major allele carriers. For the remaining 22 SNPs, the weighted ORs were ranged from 1.11 to 1.88 (all P < 0.05). So the

-	_	7
	r	
	9	
	+12	3
	c	•
	С	ī.
	٠	

	ABLE 1. Characteristics of included Studies	naed Studies						
				Num) Jans	Number of subjects	Median age (range)	n age ge)	Conotoning
Refs.	Cohort	Study name	General setting	Case	Control	Case	Control	Senotyping platform
Gudmundsson Iceland et al. [5]	Iceland	Prostate, Lung, Colon and Ovarian Cancer Screening (PLCO)	Population-based case and control; GWA study	1,453	3,064	71 (40–96)	62 (22–97)	Illumina HumanHap300 SNP chip
Gudmundsson et al. [5]	The Netherlands	Nijmegen Biomedical	Population-based controls; Replication study	367	1302	63 (49–83)	Match ^a	Centaurus (Nanogen)
Gudmundsson et al. [5]	Spain	Zaragoza Hospital Study	Hospital-based cases and controls; Replication study	385	892	71 (45–83)	ا ٩	Centaurus (Nanogen)
Gudmundsson et al. [5]	Chicago	Prostate Cancer Specialized Program of Research Excellence (SPORE)	Population-based controls; Replication study	458	251	59 (39–77)	I	Centaurus (Nanogen)
Gudmundsson et al. [5]	Baltimore	The African American study	Hospital-based cases and controls; Replication study	373	372	56 (36–74)	l	Centaurus (Nanogen)
Thomas et al. [11]	U.S. White	American Cancer Society Cancer Prevention Study II Nutrition Cohort (ACS)	Population-based controls; GWA study	1,760	1,775	63 (40–92)	Match	iSelect Infinium assay (Illumina)
Thomas et al. [11]	Finland Caucasian	Alpha-Tocopherol Beta-Carotene Cancer Prevention Study (ATBC)	Population-based cases and controls; GWA study	929	921	50-69	Match	iSelect Infinium assay (Illumina)
Thomas et al. [11]	French Paris, Brest, Nancy	French Prostate Cancer Case–Control Study (FPCC)	Population-based controls; GWA study	929	657	I	I	iSelect Infinium assay (Illumina)
Thomas et al. [11]	United States	Health Professional Follow -up Study (HPFS)	Population-based cases and controls; GWA study	596	611	40–75	Match	iSelect Infinium assay (Illumina)
Yeager et al. [7]	White, non- Hispanics European population	Prostate, Lung, Colon and Ovarian Cancer Screening (PLCO)	Population-based case and control; GWA study	1,172	1,157	55-74	Match	HumanHap 300; HumanHap 240; (Illumina)
Yeager et al. [7]	White U.S.	American Cancer Society Cancer Prevention Study II Nutrition Cohort (ACS)	Population-based cases and controls; Replication study	1,150	1,151	63 (40–92)	Match	TaqMan
Yeager et al. [7]	Southwestern Finland	Alpha-Tocopherol Beta-Carotene Cancer Prevention Study (ATBC)	Population-based cases and controls; Replication study	968	894	50–69	Match	TaqMan

TABLE I. (Continued)	tinued)							
				NumN	Number of subjects	Median age (range)	n age ge)	S. S
Refs.	Cohort	Study name	General setting	Case	Control	Case	Control	Senotypung platform
Yeager et al. [7]	French Paris, Brest Nancy	French Prostate Cancer Case-Control Study (FPCC)	Population-based controls; Replication study	455	459	l	Match	TaqMan
Yeager et al. [7]	United States	Health Professional Follow-up Study (HPFS)	Population-based cases and controls; Replication study	625	989	40-75	Match	TaqMan
Gudmundsson Iceland et al. [12]	Iceland	Prostate, Lung, Colon and Ovarian Cancer Screening (PLCO)	population-based case and control; GWA study	1,501	11,289	71 (40–96)	67 (22–102)	Illumina Infinium HumanHap300 SNP Chip
Gudmundsson et al. [12]	Nijmegen, The Netherlands	Nijmegen Biomedical Study	Population-based controls; Replication study	266	1,464	63 (43–83); 66 (43–75)	Match	Centaurus (Nanogen)
Gudmundsson et al. [12]	Zaragoza, Spain	Zaragoza Hospital Study	Hospital-based cases and controls; Replication study	456	1,078	70 (44–83)		Centaurus (Nanogen)
Gudmundsson et al. [12]	Chicago	Prostate Cancer Specialized Program of Research Excellence (SPORE)	Population-based controls; Replication study	536	514	59 (39–87)	I	Centaurus (Nanogen)
Duggan et al. [13]	Sweden	Cancer of the prostate in Sweden (CAPS)	Population-based cases and control; GWA study	498	494	I	Match	HumanHap500 Array set (Affymetrix)
Duggan et al. [13]	Iceland	Prostate, Lung, Colon and Ovarian Cancer Screening (PLCO)	Population-based case and control; GWA study	737	1,105	I	Match	HumanHap300 Bead Chip (Illumina)
Duggan et al. [13]	European American (JHH-EA)	Johns Hopkins Hospital Study (JHH)	Hospital-based cases and controls; Replication study	1,558	1,142	I	Match	Massy Array (Sequenom)
Duggan et al. [13]	African American (JHH-AA)	Johns Hopkins Hospital Study (JHH)	Hospital-based cases and controls; Replication study	363	692	I	Match	Massy Array (Sequenom)
Eeles et al. [14]	UK	UK Genetic Prostate Cancer Study (UK GPCS); ProtecT study;	Population-based cases and controls; GWA study	1,854	1,894	36–88	50-71	Illumina Infinium HumanHap550 array
Eeles et al. [14]	UK; Australia	Melbourne Collaborative Cohort Study (MCCS); Risk Factor for Prostate Cancer Study (RFPCS); Early Onset Prostate Cancer Study (EOPCS)	Population-based cases and controls; GWA study	3,650	3,940	36–89	Match	Illumina iSELECT

TaqMan	TaqMan; Iplex Sequenon MassArray; SNPLex Genotyping	HumanHap500 Array set (Affwmetrix)	iPLEX (Sequenom)	TaqMan	TaqMan	TaqMan	Illumina HumanHap300 SNP chin	TaqMan	Illumina HumanHap300 SNP chin	Illumina Infinium HumanHap550	TaqMan
I	I	Match	I	Match	Match	Match	62 (22–97)	Match	62 (22–97)	50-71	Match
I	I	1	I	20-69	I	40–75	71 (40–96)	63 (40–92)	71 (40–96)	36–88	36–89
14,821	7,370	1,722	482	917	929	610	1,100	1,774	9,135	1,894	2,104
16,229	5,742	2,899	1,527	924	929	594	1,175	1,759	10,286	1,854	1,960
Population- and Hospital-based; Replication study	Population- and Hospital-based; Replication study	Population-based cases andcontrol; GWA studv	Hospital-based case and control; Replication study	Population-based cases and controls; Replication	Population-based controls; Replication study	Population-based cases and controls; Replication	Population-based case andcontrol; GWA	Population-based cases andcontrols; Replication study	Population-based cases and controls; GWA	Population-based cases and controls; GWA	Ро
PRostate cancer AssoCiation group To Investigate Cancer Associated alterations in the genome (PRACTICAL Consortium)	PR	The Cancer of the Prostate in Sweden (CAPS)	Johns Hopkins Hospital Study (JHH)	Alpha-Tocopherol Beta-Carotene Cancer Prevention Study (ATRC)	French Prostate Cancer Case—Control	Health Professional Follow-up Study (HPFS)	Prostate, Lung, Colon and Ovarian Cancer Sereoming (PLCO)	American Cancer Society Cancer Prevention Study II Nutrition Cohort (ACS)	Cancer Genetic Markers of Susceptibility Project	UK Genetic Prostate Cancer Study (UK GPCS);	UK Genetic Prostate Cancer Study (UK GPCS); ProtecT study;
Multiethnic 21 studies	Multiethnic 21 studies	Sweden	European descent	Finland Caucasian	French Paris, Breet Nancy	United States	Iceland	White U.S.	European ancestry	UK	UK
Eeles et al. [14]	Kote-Jarai et al. [15]	Hsu et al. [16]	Hsu et al. [16]	Hsu et al. [16]	Hsu et al. [16]	Hsu et al. [16]	Hsu et al. [16]	Hsu et al. [16]	Yeager et al. [17]	Eeles et al. [18]	Eeles et al. [18]

TABLE I. (Continued)	tinued)							
				Numl	Number of subjects	Median age (range)	age e)	
Refs.	Cohort	Study name	General setting	Case	Control	Case	Control	Genotyping platform
Eeles et al. [18]	Australia	Melbourne Collaborative Cohort Study (MCCS); Risk Factor for Prostate Cancer Study (RFPCS); Early Onset Prostate Cancer Study (EOPCS)	Population-based cases and controls; GWA study	1,308	1,262	38-80	Match	TaqMan
Gudmundsson Iceland et al. [19]	Iceland	Icelandic Cancer Registry (ICR)	Population-based cases and controls; GWA study	1,968	35,227	40-96	8-105	Infinium II assay; Sentrix HumanHap 300BeadChip; Centaurus
Gudmundsson et al. [19]	Chicago	Prostate Cancer Specialized Program of Research Excellence (SPORE)	Population-based controls; Replication study	1,077	1,003	59(39–87)	I	
Gudmundsson Finland et al. [19]	Finland	Tampere University Hospital	Population-based controls; Replication study	2,638	1,716	43.1–94.9	1	1
Gudmundsson et al. [19]	The Netherlands	The Nijmegen Biomedical Study	Population-based control; Replication study	1,084	1,827	43-83	Match	I
Gudmundsson et al. [19]	Ž	Vanderbilt University Medical Center; VA Tennessee Valley Healthcare System	Family-based cases and controls; Replication study	596	289	60.3	63.0	I
Gudmundsson et al. [19]	Spain	Zaragoza University Hospital	Hospital-based cases and controls; Replication study	811	1,605	70 (44–83)	I	I
Gudmundsson et al. [19]	White U.S.	American Cancer Society Cancer Prevention Study II Nutrition Cohort (ACS)	Population-based cases andcontrols; Replication study	1,758	1,775	63 (40–92)	Match	TaqMan
Gudmundsson et al. [19]	Finland Caucasian	Alpha-Tocopherol Beta-Carotene Cancer Prevention Study (ATBC)	Population-based cases and controls; Replication study	928	921	50–69	Match	TaqMan
Gudmundsson et al. [19]	French Paris, Brest, Nancv	French Prostate Cancer Case–Control Study (FPCC)	Population-based controls; Replication study	654	657	I	Match	TaqMan
Gudmundsson United States et al. [19]	United States	Health Professional Follow-up Study (HPFS)	Population-based cases and controls; Replication study	595	609	40-75	Match	TaqMan

								ieta-Ana	IYSIS OI	Genom	e-wide Studies	on PCa	215
Illumina HumanHap300 SNP chin	HumanHap500 Array set	Sequenom MassArray Suctor	Human Mapping 500K Array;	Sequenom Iplex	TaqMan	TaqMan	TaqMan	HumanHap300; HumanHap240 assays	(munina) TaqMan	Illumina Infinium 550K	array Illumina Infinium array	Genomic DNA sample	Genomic DNA sample (Continued)
62 (22–97)	Match	Match	Match	Match	Match	Match	Match	62 (22–97)	Match	50-71	Match	45-77	45-77
71 (40–96)	l		I	l	50-69		40-75	71 (40–96)	63 (40–92)	36–88	36–89	44-78	44–78
1,093	494	1,072	1,678	462	920	655	610	1,100	1,775	1,894	3,940	575	419
1,167	498	1,088	2,836	1,449	747	929	507	1,175	1,595	1,854	3,650	098	468
Population-based case and control; GWA stricts	Population-based cases and control; GWA	Population-based cases and control; Replication	Population-based case and control; GWA study; Realization et et. dy	Hospital-based case and control; Replication	Population-based cases and controls; Replication	Population-based controls; Replication study	Population-based cases and controls; Replication	Population-based case and control; GWA study	Population-based cases and controls; Replication	Population-based cases and controls; GWA	Study Population-based cases and controls; GWA study	Population-based cases and controls; Replication	Population-based cases and controls; Replication study
Prostate, Lung, Colon and Ovarian Cancer	The Cancer of the Prostate in Sweden (CAPS)	Prostate Centers at the University of Toronto	The Cancer of the Prostate in Sweden (CAPS)	Johns Hopkins Hospital Study (JHH)	Alpha-Tocopherol Beta-Carotene Cancer Prevention Study (ATBC)	French Prostate Cancer Case–Control Study	Health Professional Follow-up Study (HPFS)	Prostate, Lung, Colon and Ovarian Cancer Screening (PLCO)	American Cancer Society Cancer Prevention Study	UK Genetic Prostate Cancer Study (UK GPCS);	Melbourne Collaborative Cohort Study (MCCS); Risk Factor for Prostate Cancer Study (RFPCS); Early Onset Prostate	The Multiethnic Cohort Study	The Multiethnic Cohort Study
Iceland	Sweden	Caucasian descent	Sweden	European Americans	Finland Caucasian	French Paris, Brost Naney	United States	European descent	White U.S.	UK	UK; Australia	African Americans	European Americans
Gudmundsson et al. [19]	Gudmundsson et al. [19]	Nam et al. [20]	Sun et al. [21]	Sun et al. [21]	Sun et al. [21]	Sun et al. [21]	Sun et al. [21]	Sun et al. [21]	Sun et al. [21]	Olama et al. [22]	Olama et al. [22]	Waters et al. [23]	Waters et al. [23]

,	`			Numl	Number of	Median age	n age	
				jdus	subjects	(range)	ge)	Cenotzmine
Refs.	Cohort	Study name	General setting	Case	Control	Case	Control	platform
Waters et al. [23]	Latinos	The Multiethnic Cohort Study	Population-based cases and controls; Replication	603	572	44–78	45-77	Genomic DNA sample
Waters et al. [23]	Japanese Americans	The Multiethnic Cohort Study	Population-based cases and controls; Replication	725	684	44–78	45-77	Genomic DNA sample
Waters et al. [23]	Native Hawaiians	The Multiethnic Cohort Study	Population-based cases and controls; Replication study	112	109	44–78	45–77	Genomic DNA sample
Pal et al. [24]	European	Washington University	Population-based control; Replication study	296	267	40-91	Match	Applied Biosystem SNPlex: TagMan
Ghoussaini et al. [25]	United Kingdom (TK)	UK Genetic Prostate Cancer Study (UK GPCS)	Population-based cases and control; Replication study	1,854	1,894	36–88	50-71	TaqMan
Hooker et al. [26]	African American	Howard University Hospital in Washingtin	Hospital-based cases and controls; Replication	454	301	40-85	Match	Sequenom Iplex; Illumina
Zheng et al. [27]	Shanghai, China	Shanghai Cancer Institute	Population-based case and control; Replication	288	155	>18	Match	MassARRAY iPLEX (Sequenom)
Sun et al. [28]	European Americans	Johns Hopkins Hospital	Hospital-based cases and controls; Replication	1,563	576	I	>55	Sequenom Iplex
Sun et al. [28]	African Americans	Johns Hopkins Hospital	Hospital-based cases and controls; Replication	364	353	I	V 55	Sequenom Iplex
Meyer et al. [29]	German	Hannover Medical School	Hospital-based cases and controls; Replicationn study	488	462	42-82	20–71	TaqMan

 $^{^{\}rm a} Match$ with control. $^{\rm b} No$ related information obtained from the original article.

PCa
o
tudies
S
Ø Ø Ø
papr
Inch
S.
٦
S
37 SNPs
for
esults
Ŗ
0
Summar
≓
3,5
4

1				No.	Location	Allele		GWA meta	eta	Replication meta	meta	All	All meta	
	SNP name	$Region^a$	Chr.	Chr. (study)	(pp)	Maj/Min	$\mathrm{MAF}^{\mathrm{b}}$	OR (95% CI)	P	OR (95% CI)	Ъ	OR (95% CI)	P	${P_{ m het}}^{ m c}$
1	rs10090154	8924	8	3	128,081,119	C/T	0.088	1.72 (1.58,1.87)	<0.001	1.73 (1.19,2.51)	0.004	1.72 (1.58,1.86)	<0.001	0.380
2	rs1016343	8924	8	4	128,162,479	C/T	0.196	1.30 (1.09, 1.56)	0.004	1.47 (1.19,1.83)	<0.001	1.36 (1.19,1.56)	<0.001	0.010
3	rs10486567	JAZFI	$^{\wedge}$	12	27,749,803	G/A	0.254	0.72 (0.63,0.83)	< 0.001	0.65 (0.53,0.81)	<0.001	0.68 (0.60,0.77)	< 0.001	< 0.001
4	rs10896469	11913	11	9	68,751,243	G/A	0.475	0.64 (0.60,0.68)	< 0.001	0.71 (0.57,0.87)	0.001	0.64 (0.60,0.68)	<0.001	0.490
Ŋ	rs10993994	MSMB	10	16	51,219,502	C/T	0.391	1.54 (1.09,1.27)	0.010	1.28 (1.17,1.40)	<0.001	1.37 (1.19,1.58)	< 0.001	<0.001
9	rs11649743	17 <i>q</i> 12	17	7	l	G/A	0.202	0.92 (0.84,1.00)	0.060	1.08 (0.95,1.24)	0.230	1.04(0.92,1.18)	0.540	0.010
^	rs13254738	8924	∞	2	128,173,525	A/C	0.330	I		1.20 (0.60,2.42)	0.610	1.20 (0.60,2.42)	0.610	< 0.001
∞	rs1447295	8924	∞	15	128,554,220	C/A	0.110	1.60 (1.49,1.71)	< 0.001	1.46 (1.28,1.67)	<0.001	1.50 (1.36,1.64)	<0.001	< 0.001
6	rs16901979	8924	∞	6	41,343,095	C/A	0.045	1.80 (1.61,2.00)	< 0.001	1.68 (1.50,1.89)	<0.001	1.74 (1.60,1.88)	<0.001	0.160
10	rs1859962	17924.3	17	13	3,035,025	T/G	0.452	1.16 (1.10,1.22)	< 0.001	1.17(1.11,1.23)	<0.001	1.16 (1.12,1.21)	< 0.001	0.340
111	rs2659056	KLK15/3	19	4	56,027,755	A/G	0.231	1.33 (1.20,1.48)	< 0.001	0.97 (0.90,1.05)	0.410	1.07 (0.88,1.31)	0.490	< 0.001
12	rs2660753	3P12.1	8	12	87,193,364	C/T	0.112	1.29 (0.96,1.75)	0.100	1.12(1.04,1.21)	0.003	1.15 (1.07,1.25)	<0.001	0.001
13	rs2710646	EHBP1	7	2	63,046,530	C/A	0.202	1.13 (1.05,1.23)	0.002	0.99 (0.59,1.68)	0.980	1.13 (1.04,1.22)	0.002	0.630
14	rs2735839	KLK2/3	19	12	56,056,435	G/A	0.151	0.70 (0.44,1.11)	0.130	0.88(0.78,0.99)	0.040	0.85 (0.74,0.96)	0.009	<0.001
15	rs3760511	17q12	17	9	1,380,465	T/C	0.334	1.17 (1.08,1.26)	< 0.001	1.17 (1.09,1.26)	<0.001	1.17 (1.11,1.23)	<0.001	0.340
16	rs4242382	8924	8	9	128,586,755	G/A	0.138	2.18 (1.57,3.02)	< 0.001	1.33 (1.02,1.72)	0.030	1.88 (1.43, 2.49)	<0.001	<0.001
17	rs4430796	HNF1B	17	18	33,172,153	A/G	0.485	0.67(0.57,0.80)	< 0.001	0.79 (0.72,0.88)	<0.001	0.75 (0.68,0.82)	<0.001	<0.001
18	rs445114	8924	8	6	128,392,363	T/C	0.341	0.86 (0.83,0.89)	< 0.001	0.89 (0.85,0.94)	<0.001	0.87 (0.85,0.90)	<0.001	0.220
19	rs4962416	CTBP2	10	^	126,686,862	T/C	0.225	1.28 (1.09,1.52)	0.004	1.02 (0.77,1.35)	0.880	1.25 (1.07,1.46)	0.004	<0.001
20	rs5945572	NUDT10/11	×	^	51,062,719	G/A	0.357	1.22 (1.14,1.3)	< 0.001	1.46 (1.33,1.59)	<0.001	1.38 (1.25,1.52)	<0.001	0.080
21	rs5945619	NUDT11	×	9	51,258,412	T/C	0.349	1.45 (1.32,1.59)	< 0.001	1.32 (1.13,1.54)	<0.001	1.35 (1.20,1.52)	<0.001	<0.001
22	rs620861			3	128,404,855	C/T	0.374	0.85 (0.79,0.92)	< 0.001	l	I	0.85 (0.79,0.92)	<0.001	0.010
23	rs6465657	LMTK2	^	12	97,654,263	T/C	0.451	1.16 (0.94,1.44)	0.160	1.05 (0.92,1.21)	0.440	1.08 (0.97,1.20)	0.160	< 0.001
24	rs6470494	8924	8	7	128,157,086	C/T	0.280	1.14 (1.10,1.20)	< 0.001	1.00 (0.83,1.20)	0.660	1.14 (1.09,1.19)	<0.001	0.170
25	rs6501455	17q24.3	17	9	3,128,083	T/A	0.512	1.16 (1.07,1.25)	< 0.001	1.09 (0.96,1.23)	0.190	1.11 (1.01,1.21)	0.030	0.020
26	rs6983267	8924	8	15	128,482,487	G/T	0.463	0.68(0.59,0.77)	< 0.001	0.76 (0.65,0.89)	<0.001	0.71 (0.65,0.78)	<0.001	<0.001
27	rs6983561	8924	∞	4	128,176,062	A/C	0.034	1.71 (1.49,1.96)	<0.001	2.04 (1.70,2.45)	<0.001	1.82 (1.63,2.03)	<0.001	0.350
28	rs7000448	8924	8	2	128,510,352	G/A	0.356	I	1	1.40 (1.28,1.53)	<0.001	1.40 (1.28,1.53)	<0.001	0.500
29	rs721048	EHBP1	7	_	63,043,382	G/A	0.086	1		0.99 (0.74,1.33)	0.960	0.99 (0.74,1.33)	0.960	<0.001
30	rs7214479	17924.3	17	9	3,117,221	C/T	0.413	1.16 (1.07,1.25)	<0.001	1.17 (1.09,1.25)	< 0.001	1.16 (1.11,1.23)	<0.001	0.960
31	rs7501939	HNF1B	17	^	33,175,269	T/C	0.575	1.17 (1.08,1.26)	< 0.001	1.21 (1.13,1.29)	<0.001		<0.001	0.350
32	rs7920517	MSMB	10	4	3,117,221	A/G	0.475	1.40(1.28,1.54)	<0.001	1.18(1.06,1.31)	0.003	1.23 (1.10,1.38)	<0.001	0.009
33	rs7931342	11q13.2	11	10	68,751,073	G/T	0.497	0.79 (0.72,0.86)	<0.001	0.85(0.71,1.01)	0.070	0.84 (0.72,0.97)	0.020	<0.001
34	rs902774	CpG	12	4	51,560,171	G/A	0.140	1.39 (1.23,1.57)	<0.001	1.02 (0.89,1.16)	0.810	1.09 (0.89,1.33)	0.400	<0.001
35	rs9364554	SLC22A3	9	12	160,804,075	C/T	0.297	1.14 (1.07,1.20)	<0.001	1.18 (1.13,1.23)	<0.001		<0.001	0.240
39	rs9623117	22q13	; 53	∞ (0	T/C	0.208	1.12 (0.98,1.27)	0.090	1.13 (1.03,1.24)	0.010	1.12 (1.05,1.21)	0.001	0.040
37	rs983085	1/924.3	-	3	06,723,656	A/C	0.497	0.87 (0.81,0.94)	<0.001	0.90 (0.80,1.01)	0.060	0.88 (0.83,0.94)	<0.001	0.680

 a SNPs are included in the region of a gene if they are located within 20 kb of its transcription start site or within 10 kb from its last exon. b MAF, minor allele frequency in controls (minor allele are defined based on European populations). c P-value for heterogeneity test.

Fig. 1. Forest plots of effect size and direction for SNPs associated with prostate cancer. Boxes denote allelic OR point estimate, their areas being proportional to the inverse variance weight of the estimate. Horizontal lines represent 95% CIs. The diamond represents the summary OR computed under a random-effect model or fixed-effect model, with the 95% CI given by its width. The unbroken vertical line is at the null value (OR = 1.0).

minor alleles of these SNPs may be a risk factor for PCa development.

Subgroup Analysis

Since the associations between some SNPs examined in this review and PCa risk showed evidence of between-study heterogeneity (heterogeneity tests, all P < 0.10), subgroup analysis were executed. Table III summarized the pooled estimates of weighted ORs in subgroups according to included participants' ethnicity origin. The associations of rs5945572, rs5945619, and rs6983267 with PCa were not found to be significant in Asian decent group (all P > 0.05). The associations of rs10993994, rs1447295, rs2735839, and rs4242382 were not significant in African descent populations (all P > 0.05), and the associations of rs2660753, rs4430796, rs4962416, and rs7920517 were only significant in European origin participants (all P < 0.05). The association between rs6501455 and PCa development disappeared in ethnicity subgroup analysis (P > 0.05).

Publication Bias

The funnel plots (data not shown) showed that the ORs for SNPs examined here seemed to be symmetry

which suggested that the effects of publication bias were perhaps negligible in the current meta-analysis.

DISCUSSION

By combining data from published GWAs and replication case-control studies, we have confirmed 31 SNPs (namely rs10090154, rs1016343, rs10486567, rs10896449, rs10993994, rs1447295, rs16901979, rs1859962, rs2660753, rs2710646, rs2735839, rs3760511, rs4242382, rs4430796, rs5945572, rs5945619, rs620861, rs6470494, rs6501455, rs6983267, rs6983561, rs7000448, rs7214479, rs7501939, rs7920517, rs7931342, rs9364554, rs9623117, and rs983085) impacting PCa susceptibility which have significance to public health. When we combined all of the original data according to participants' ethnic origin, the associations of some SNPs with PCa were evident in different ethnic groups. This suggested more that the variation may play a role in PCa development whereas it would be restricted to some ethnic group, rather than having a wide effect, as was also supported by the evidence that ethnicity is a confirmed impact factor of PCa [1]. The funnel plots analysis suggested that the effects of publication bias were probably minimal in current meta-analysis. Hence, the effects of these variations on PCa were

 IN. The Pooled Estimates of OR Based on Subgroup of Ethnicity

		Asian descent	cent			African descent	escent			European descent	scent	
Variables	Study	OR (95% CI)	<i>P</i> -value	$P_{ m het}^{\ a}$	Study	OR (95% CI)	<i>P</i> -value	$P_{ m het}^{ m a}$	Study	OR (95% CI)	<i>P</i> -value	$P_{ m het}^{ m a}$
rs1016343	1	1.69 (1.27,2.25)	<0.001			I		I	3	1.31 (1.15,1.50)	<0.001	0.020
rs10486567	2	0.50 (0.29,0.85)	0.010	0.020	7	0.83 (0.72,0.95)	0.007	0.390	∞	0.70 (0.63,0.79)	<0.001	< 0.001
rs10993994	2	1.50 (1.26,1.80)	< 0.001	0.220	2	1.10 (0.97,1.25)	0.130	0.560	11	1.40 (1.14,1.73)	0.001	< 0.001
rs13254738		1.74 (1.27,2.39)	0.006			I			1	0.85 (0.77,0.94)	0.002	
rs1447295	1	1.56 (1.08, 2.25)	0.020		1	1.01 (0.81,1.26)	0.940		13	1.45 (1.33,1.58)	<0.001	0.010
rs2660753	2	1.22 (0.85,1.75)	0.290	0.030	7	0.99 (0.87,1.13)	0.910	0.290	_	1.20 (1.08,1.32)	<0.001	0.050
rs2735839	2	0.78 (0.65,0.92)	0.004	0.240	2	1.05 (0.60,1.84)	0.870	< 0.001	_	0.80 (0.68,0.94)	0.008	< 0.001
rs4242382		1.58 (1.11,2.25)	0.010		1	1.20 (0.96,1.50)	0.110		4	2.18 (1.57,3.02)	<0.001	< 0.001
rs4430796	2	0.93 (0.81,1.07)	0.340	0.800	33	0.87 (0.72,1.05)	0.160	0.050	13	0.70 (0.64,0.78)	<0.001	< 0.001
rs4962416	Τ	1.89 (0.39,9.18)	0.430		1	1.00 (0.76,1.33)	0.660		гO	1.28 (1.09,1.52)	0.004	< 0.001
rs5945572	Τ	1.28 (0.99,1.66)	0.060		7	1.52 (1.32,1.74)	< 0.001	0.950	4	1.26 (1.19,1.34)	<0.001	0.170
rs5945619	1	1.54 (0.88,2.69)	0.130		1	1.34 (1.08, 1.65)	0.007		3	1.28 (1.11,1.47)	<0.001	0.002
rs6501455	I	I			1	1.10 (0.88,1.38)	0.400		гO	1.10 (1.00,1.22)	0.060	0.009
rs6983267		0.89 (0.68,1.18)	0.430			I			13	0.72 (0.65,0.79)	<0.001	< 0.001
rs7920517	I	1			1	0.94 (0.74,1.20)	0.630		8	1.21 (1.03,1.43)	0.020	0.003
rs7931342	1	2.30 (1.87,2.82)	< 0.001		2	0.85 (0.73,0.98)	0:030	0.670	9	0.74 (0.66,0.83)	<0.001	<0.001
$^{ m a}P$ -value for heterogeneity test	eterogenei	ity test.										

ethnically heterogeneous indeed. However, it was possible that the data obtained may have been inadequate to detect an association due to the small number of included studies as only 4 subgroups were executed in African descent population and 2 in Asian origins. For example, in subgroup analysis, the association of SNP rs6501455 with PCa did not reach the statistical significance (P > 0.05), while it was significant in pooled analysis [weighted OR = 1.11 (1.01, 1.21), P = 0.03].

Table II indicated that there were 14 independent risk loci for PCa risk. The locus and the corresponding SNPs are as follows.

Locus	SNP
8q24	rs10090154, rs1016343, rs1447295, rs16901979, rs4242382, rs445114, rs6470494, rs6983267, rs6983561, rs7000448
17q24.3	rs1859962, rs6501455, rs7214479, rs983085
11q13	rs10896469, rs7931342
MSMB	rs10993994, rs7920517
HNF1B	rs4430796, rs7501939
NUDT10/11	rs5945572, rs5945619
17q12	rs3760511
KLK2/3	rs2735839
JAZF1	rs10486567
3p12.1	rs2660753
EHBP1	rs2710646
CTBP2	rs4962416
SLC22A3	rs9364554
22q13	rs9623117

8q24 is the most frequently gained chromosomal region in prostate tumors [30]. rs1447295 is the most reported SNP on 8q24. rs6983267 is 70 kb centromeric to rs1447295, but they are not linkage disequilibrium (LD) [7]. rs16901979 and rs1447295 are separated by about 300 kb in the genome and are located in distinct LD blocks [5]. rs16901979 and rs6983561 are highly correlated, rs7000448 is weakly correlated with rs6983267 and rs1447295, rs10090154 is perfectly correlated with rs1447295 [25]. rs4242382 is in strong LD with rs1447295 [3-7]. rs1016343 and rs6983561 are weakly correlated [22]. rs4242382 and rs6983267 are LD [11]. r6470494 and rs1016342 are of the 14 SNP HapC, while HapC is located in a different LD block about 300 kb upstream from rs1447295, rs16901979 is strongly correlated with HapC [5].

The known genes that are closest to 8q24 are *FAM84B* and *c-MYC*. rs1447295 is 263 kb telomeric to the oncogene *c-MYC*. Overexpression of *c-MYC* occurs in both breast and PCa [31–33], and reduction of *c-MYC* expression inhibits tumor growth both in vivo and in vitro [34]. FAM84B is a breast cancer

membrane-associated protein, little is known about its function [32]. Although SNPs located in the c-MYC and FAM84B genes were not found to be associated with PCa [3-5,35], it is possible that the risk variant modifies c-MYC regulation by predisposing to genomic instability or altering long-range regulation of expression. Several other genes were predicted to exist in 8q24 [3,36], although there is no evidence for any proteincoding transcripts. One is a pseudogene of transcription factor POU5F1P1. Study has confirmed the expression of this transcript in cancer tissues, including colon cancer, although its physiological role is unknown [37]. rs445114 is correlated with the breast cancer variant rs13281615 [35]. rs445114 show very little correlation with any of the previously published prostate[3,5–7], colon [36–39] or bladder cancer [39] risk variants on 8q24 [19]. Tuupanen et al. [40] showed that rs6983267 affects a binding site for TCF4 and may enhance Wnt signaling, suggesting that other mechanisms may be important.

Gain in 8q24 region has been associated with aggressive tumors, hormone independence, and poor prognosis [41]. Although this region is frequently amplified in prostate tumors, it covered few known or predicted genes [33,42]. Hence, either there are multiple functional variants in the region, or these alleles are in strong LD with a presently unknown risk variant. Further work are needed to identify common and uncommon variants to determine the optimal candidates for functional studies designed to confirm the causal variants in the 8q24 region.

The SNP rs10486567 located on chromosome 7 is in the second intron of the JAZF zinc finger 1 gene (JAZF1). JAZF1 encodes a three C2-H2-type zinc finger protein that is a transcriptional repressor of NR2C2 (a nuclear orphan receptor that is highly expressed in prostate tissue) and interacts with the androgen receptor. JAZF1 is a component of a fusion gene with SUZ12 (also known as JJAZ1) which was found in endometrial stromal tumors [43].

rs10993994 and rs7920517 lie in a ~100-kb LD block on chromosome 10 which contains the microsemino-protein beta gene (*MSMB*). rs10993994 resides 2 bp upstream of the transcription start site of *MSMB* and functionally alters gene expression in vitro [44]. *MSMB* encodes PSP94, a 10.7-kDa nonglycosylated cysteinerich protein that is a member of the immunoglobulin binding factor family synthesized by epithelial cells in the prostate and secreted into seminal plasma. Loss of expression of PSP94 is associated with recurrence after radical prostatectomy [45]. PSP94 and PSPBP (its binding protein in serum) are potential serum markers for early detection of high-grade PCa [45,46]. *MSMB* can be silenced by *EZH2* (transcriptional repressor) in advanced, androgen-insensitive PCa [47]. So variants

in MSMB may predispose to PCa by altered gene expression.

SNP rs2735839 lies between the *KLK2* (encoding hK2) and *KLK3* (encoding PSA protein [18,48]) genes which have been reported to influence PCa risk [49,50]. PSA is a serine protease that liquefies semen and is used as a serum marker in screening and disease monitoring. There are also evidence that hK2 may also be useful for screening and prognosis [51,52]. Multiple SNPs in the promoter region of *KLK3* have been associated with PSA concentrations [49,53], and some have been suggested to be associated with risk of PCa [49,50].

rs4430796 and rs7501939 on 17q12 are located in the first and second intron of the HNF1B (a transcription factor, TCF2) gene, respectively. A third SNP rs3760511 lays \sim 1.2 kb upstream of the first exon of TCF2. rs7501939 and rs3760511 are in weak LD. Although sequence variants in TCF2 have not been implicated in the risk of PCa, more than 50 different exonic TCF2 mutations have been reported in individuals with renal cysts, maturity-onset diabetes of the young type 5 (MODY5), pancreatic atrophy, and genital tract abnormalities [54,55].

rs4962416 is in the fifth intron of *CTBP*2 which encodes a member of the C-terminal binding protein (CTBP) family that known to be transcriptional co repressors activated under metabolic stress. CTBP2 is highly expressed in prostate tissue, and its expression is associated with decreased *PTEN* expression and activation of the phosphatidylinositol 3-kinase pathway [56].

rs5945619 and rs5945572 are highly correlated [19]. rs5945619 is in a ~2-Mb LD block on Xp between *NUDT10* and *NUDT11* (nucleoside diphosphate linked moiety X-type motif 11) that is about 2 kb upstream of the latter. Eeles et al. [18] observed a weaker association with PSA concentrations, again in the same direction of PCa. rs5945572 located downstream of the *NUDT11* gene which was associated with increased PCa risk. These genes encode isoforms of diphosphoinositol polyphosphate phosphohydrolase that determine the rate of phosphorylation in DNA repair, stress responses, and apoptosis [57].

rs9364554 is in intron 5 of *SLC22A3*, one of the solute carrier family 22 (organic cation transporter, OCT) genes, and OCTs are critical for elimination of some drugs and environmental toxins.

rs9623117 is less than 2 kb from rs7291619 on 22q13 and is in strong LD with it. The two SNPs are within the *TNRC6B* gene. TNRC6B (trinucleotide repeat-containing gene 6b), a RNA recognition motif (RRM)-containing protein, were localized to the mRNA-degrading cytoplasmic P bodies, is functionally required to mediate miRNA-guided mRNA cleavage [58]. TNRC6B is expressed in many normal

tissues, including the prostate. TNRC6B expression was suppressed in hormone-refractory metastatic PCa compared to prostate carcinoma. Alteration in *TNRC6B* gene expression due to genetic variations might perturb the levels of mRNA species normally under its control and therefore contribute to carcinogenesis.

rs10896469 and rs7931342 lie in an LD block of 70 kb on chromosome 11 that is a gene desert [11,18]. The closest gene from rs10896449 is MYEOV, located \sim 67 kb away, and its expression has been shown to be unfavorable in multiple myeloma [59].

rs1859962, rs6501455, rs7214479, and rs983085 fall within a strong LD block on 17q24.3. rs3760511 is in weak LD with rs7501939. The two loci on 17q12 and 17q24.3 are separated by approximately 33 Mb and no LD were observed between them [12]. rs2660753 is in a gene-poor region on chromosome 3. SNP rs2710647 is within the *EHBP1* gene on 2p15 [14]. The next work should be to confirm the true causal variants or find other more SNPs related with PCa on these loci.

There are three limitations deserving consideration in our systematic review. First, the results of metaanalysis in this review came from heterogeneous data obtained from GWAs. Discrepancy in study characteristics, such as age group, ethnicity, and family disease history, might have contributed to heterogeneity among included studies. But, we believed that it was feasible and proper to integrate data from heterogeneous studies in random-effect meta-analyses because each study answered the same question of genomewide SNPs' effects on PCa. We also undertook subgroup analyses to explore whether ethnicity factor contributed to heterogeneity or not. Second, because included studies did not examined uniform set of SNPs, we could only combine data from the studies which reported results for the same SNP to assess the effect of each SNP on PCa. Third, most of all included studies were implemented in developed countries, and only a few studies were executed in Asian and African descent populations. Much more studies are required to confirm the associations of the SNPs examined in this review with PCa in other groups other than in European descent only.

From Table II, we can see that a high proportion of the population carried at-risk alleles, whereas individual alleles afford only small effects, much larger risks are seen in carriers of multiple risk alleles [8]. Therefore, the SNPs validated here potentially have public health purport when more susceptibility loci are identified. Additional researches are required to characterize genetic variations at these loci and ascertain their relationships with the functional consequences that leading to PCa. Further efforts to broaden the scale of GWAs meta-analyses, involved both sample size and SNP coverage, and to increase the number of SNP

applied to large-scale replication, may identify additional variants for PCa.

CONCLUSION

The current meta-analysis, using GWAs and replication studies, displayed significant associations of 31 SNPs (rs445114, rs620861, rs983085, rs1016343, rs1447295, rs1859962, rs2660753, rs2710646, rs2735839, rs3760511, rs4242382, rs4430796, rs4962416, rs5945572, rs5945619, rs6470494, rs6501455, rs6983267, rs6983561, rs7000448, rs7214479, rs7501939, rs7920517, rs7931342, rs9364554, rs9623117, rs10090154, rs10486567, rs10896449, rs10993994, rs16901979) with PCa. However, the associations of some SNPs with PCa were significant only in specific descent population. Thus, the pooled results supported the hypothesis that the effect of genetic factor on PCa may be heterogeneous among different ethnic populations. We also confirmed 14 independent PCa risk loci which are 8q24, MSMB, HNF1B, NUDT10/11, KLK2/3, JAZF1, CTBP2, SLC22A, EHBP1, 33p12.1, 11q13, 17q24.3, 17q12, and 22q13.

ACKNOWLEDGMENTS

We thank Pro Yonghua Hu (School of Public Health, Peking University, China) and Pro Siyan Zhan (School of Public Health, Peking University, China) for consultation and assistance in this system review. None of the authors had any conflicts of interest. This study was supported by the National Basic Research Program of China (2005CB522502 and 2006CB944004).

REFERENCES

- 1. Crawford ED. Epidemiology of prostate cancer. Urology 2003;62(6 Suppl 1):3–12.
- Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate 1990;17(4):337– 347.
- 3. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Cazier JB, Sainz J, Jakobsdottir M, Kostic J, Magnusdottir DN, Ghosh S, Agnarsson K, Birgisdottir B, Le Roux L, Olafsdottir A, Blondal T, Andresdottir M, Gretarsdottir OS, Bergthorsson JT, Gudbjartsson D, Gylfason A, Thorleifsson G, Manolescu A, Kristjansson K, Geirsson G, Isaksson H, Douglas J, Johansson JE, Balter K, Wiklund F, Montie JE, Yu X, Suarez BK, Ober C, Cooney KA, Gronberg H, Catalona WJ, Einarsson GV, Barkardottir RB, Gulcher JR, Kong A, Thorsteinsdottir U, Stefansson K. A common variant associated with prostate cancer in European and African populations. Nat Genet 2006;38(6):652–658.
- Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K, Steen RG, Ardlie K, John EM, Oakley-Girvan I, Whittemore AS, Cooney KA, Ingles SA, Altshuler D, Henderson BE, Reich D. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA 2006;103(38):14068– 14073

- 5. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson JT, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Xu J, Blondal T, Kostic J, Sun J, Ghosh S, Stacey SN, Mouy M, Saemundsdottir J, Backman VM, Kristjansson K, Tres A, Partin AW, Albers-Akkers MT, Godino-Ivan Marcos J, Walsh PC, Swinkels DW, Navarrete S, Isaacs SD, Aben KK, Graif T, Cashy J, Ruiz-Echarri M, Wiley KE, Suarez BK, Witjes JA, Frigge M, Ober C, Jonsson E, Einarsson GV, Mayordomo JI, Kiemeney LA, Isaacs WB, Catalona WJ, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007;39(5):631–637.
- 6. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, Neubauer J, Tandon A, Schirmer C, McDonald GJ, Greenway SC, Stram DO, Le Marchand L, Kolonel LN, Frasco M, Wong D, Pooler LC, Ardlie K, Oakley-Girvan I, Whittemore AS, Cooney KA, John EM, Ingles SA, Altshuler D, Henderson BE, Reich D. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007;39(5):638–644.
- 7. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K, Chatterjee N, Wang Z, Welch R, Staats BJ, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Gelmann EP, Tucker M, Gerhard DS, Fraumeni JF, Jr., Hoover R, Hunter DJ, Chanock SJ, Thomas G. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007;39(5):645–649.
- 8. Schaid DJ. The complex genetic epidemiology of prostate cancer. Hum Mol Genet 2004;13 (Spec No 1):R103–R121.
- Smith RA, Cokkinides V, Eyre HJ. American Cancer Society guidelines for the early detection of cancer, 2003. CA Cancer J Clin 2003;53(1):27–43.
- Carroll P, Coley C, McLeod D, Schellhammer P, Sweat G, Wasson J, Zietman A, Thompson I. Prostate-specific antigen best practice policy—Part I: Early detection and diagnosis of prostate cancer. Urology 2001;57(2):217–224.
- 11. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF, Jr., Hoover R, Hayes RB, Hunter DJ, Chanock SJ. Multiple loci identified in a genomewide association study of prostate cancer. Nat Genet 2008;40(3): 310–315.
- 12. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Blondal T, Stacey SN, Helgason A, Gunnarsdottir S, Olafsdottir A, Kristinsson KT, Birgisdottir B, Ghosh S, Thorlacius S, Magnusdottir D, Stefansdottir G, Kristjansson K, Bagger Y, Wilensky RL, Reilly MP, Morris AD, Kimber CH, Adeyemo A, Chen Y, Zhou J, So WY, Tong PC, Ng MC, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Tres A, Fuertes F, Ruiz-Echarri M, Asin L, Saez B, van Boven E, Klaver S, Swinkels DW, Aben KK, Graif T, Cashy J, Suarez BK, van Vierssen Trip O, Frigge ML, Ober C, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Palmer CN, Rotimi C, Chan JC, Pedersen O, Sigurdsson G, Benediktsson R, Jonsson E, Einarsson GV, Mayordomo JI, Catalona WJ, Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. Two

- variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39(8):977–983.
- 13. Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F, Robbins C, Isaacs SD, Cheng Y, Li G, Sun J, Chang BL, Marovich L, Wiley KE, Balter K, Stattin P, Adami HO, Gielzak M, Yan G, Sauvageot J, Liu W, Kim JW, Bleecker ER, Meyers DA, Trock BJ, Partin AW, Walsh PC, Isaacs WB, Gronberg H, Xu J, Carpten JD. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 2007;99(24):1836–1844.
- 14. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA, Schleutker J, Hamdy FC, Neal DE, Donovan JL, Stanford JL, Ostrander EA, Ingles SA, John EM, Thibodeau SN, Schaid D, Park JY, Spurdle A, Clements J, Dickinson JL, Maier C, Vogel W, Dork T, Rebbeck TR, Cooney KA, Cannon-Albright L, Chappuis PO, Hutter P, Zeegers M, Kaneva R, Zhang HW, Lu YJ, Foulkes WD, English DR, Leongamornlert DA, Tymrakiewicz M, Morrison J, Ardern-Jones AT, Hall AL, O'Brien LT, Wilkinson RA, Saunders EJ, Page EC, Sawyer EJ, Edwards SM, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Southey MC, Lophatananon A, Liu JF, Kolonel LN, Le Marchand L, Wahlfors T, Tammela TL, Auvinen A, Lewis SJ, Cox A, FitzGerald LM, Koopmeiners JS, Karyadi DM, Kwon EM, Stern MC, Corral R, Joshi AD, Shahabi A, McDonnell SK, Sellers TA, Pow-Sang J, Chambers S, Aitken J, Gardiner RA, Batra J, Kedda MA, Lose F, Polanowski A, Patterson B, Serth J, Meyer A, Luedeke M, Stefflova K, Ray AM, Lange EM, Farnham J, Khan H, Slavov C, Mitkova A, Cao G, Easton DF. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 2009;41(10):1116-1121.
- 15. Kote-Jarai Z, Easton DF, Stanford JL, Ostrander EA, Schleutker J, Ingles SA, Schaid D, Thibodeau S, Dork T, Neal D, Donovan J, Hamdy F, Cox A, Maier C, Vogel W, Guy M, Muir K, Lophatananon A, Kedda MA, Spurdle A, Steginga S, John EM, Giles G, Hopper J, Chappuis PO, Hutter P, Foulkes WD, Hamel N, Salinas CA, Koopmeiners JS, Karyadi DM, Johanneson B, Wahlfors T, Tammela TL, Stern MC, Corral R, McDonnell SK, Schurmann P, Meyer A, Kuefer R, Leongamornlert DA, Tymrakiewicz M, Liu JF, O'Mara T, Gardiner RA, Aitken J, Joshi AD, Severi G, English DR, Southey M, Edwards SM, Al Olama AA, Eeles RA. Multiple novel prostate cancer predisposition loci confirmed by an international study: The PRACTICAL Consortium. Cancer Epidemiol Biomarkers Prev 2008;17(8):2052–2061.
- Hsu FC, Sun J, Wiklund F, Isaacs SD, Wiley KE, Purcell LD, Gao Z, Stattin P, Zhu Y, Kim ST, Zhang Z, Liu W, Chang BL, Walsh PC, Duggan D, Carpten JD, Isaacs WB, Gronberg H, Xu J, Zheng SL. A novel prostate cancer susceptibility locus at 19q13. Cancer Res 2009;69(7):2720–2723.
- 17. Yeager M, Chatterjee N, Ciampa J, Jacobs KB, Gonzalez-Bosquet J, Hayes RB, Kraft P, Wacholder S, Orr N, Berndt S, Yu K, Hutchinson A, Wang Z, Amundadottir L, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman CA, Henderson B, Kolonel L, Le Marchand L, Siddiq A, Riboli E, Key TJ, Kaaks R, Isaacs W, Isaacs S, Wiley KE, Gronberg H, Wiklund F, Stattin P, Xu J, Zheng SL, Sun J, Vatten LJ, Hveem K, Kumle M, Tucker M, Gerhard DS, Hoover RN, Fraumeni JF, Jr., Hunter DJ, Thomas G, Chanock SJ. Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 2009; 41(10):1055–1057.

- 18. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008;40(3):316–321.
- 19. Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, Benediktsdottir KR, Magnusdottir DN, Orlygsdottir G, Jakobsdottir M, Stacey SN, Sigurdsson A, Wahlfors T, Tammela T, Breyer JP, McReynolds KM, Bradley KM, Saez B, Godino J, Navarrete S, Fuertes F, Murillo L, Polo E, Aben KK, van Oort IM, Suarez BK, Helfand BT, Kan D, Zanon C, Frigge ML, Kristjansson K, Gulcher JR, Einarsson GV, Jonsson E, Catalona WJ, Mayordomo JI, Kiemeney LA, Smith JR, Schleutker J, Barkardottir RB, Kong A, Thorsteinsdottir U, Rafnar T, Stefansson K. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 2009;41(10):1122–1126.
- Nam RK, Zhang WW, Loblaw DA, Klotz LH, Trachtenberg J, Jewett MA, Stanimirovic A, Davies TO, Toi A, Venkateswaran V, Sugar L, Siminovitch KA, Narod SA. A genome-wide association screen identifies regions on chromosomes 1q25 and 7p21 as risk loci for sporadic prostate cancer. Prostate Cancer Prostatic Dis 2008;11(3):241–246.
- 21. Sun J, Zheng SL, Wiklund F, Isaacs SD, Li G, Wiley KE, Kim ST, Zhu Y, Zhang Z, Hsu FC, Turner AR, Stattin P, Liu W, Kim JW, Duggan D, Carpten J, Isaacs W, Gronberg H, Xu J, Chang BL. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 2009;69(1):10–15.
- 22. Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G, Leongamornlert DA, Tymrakiewicz M, Jhavar S, Saunders E, Hopper JL, Southey MC, Muir KR, English DR, Dearnaley DP, Ardern-Jones AT, Hall AL, O'Brien LT, Wilkinson RA, Sawyer E, Lophatananon A, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper C, Donovan JL, Hamdy FC, Neal DE, Eeles RA, Easton DF. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet 2009;41(10):1058–1060.
- Waters KM, Le Marchand L, Kolonel LN, Monroe KR, Stram DO, Henderson BE, Haiman CA. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidemiol Biomarkers Prev 2009;18(4): 1285–1289.
- 24. Pal P, Xi H, Guha S, Sun G, Helfand BT, Meeks JJ, Suarez BK, Catalona WJ, Deka R. Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate 2009;69(14):1548–1556.
- 25. Ghoussaini M, Song H, Koessler T, Al OlamaAA, Kote-Jarai Z, Driver KE, Pooley KA, Ramus SJ, Kjaer SK, Hogdall E, DiCioccio RA, Whittemore AS, Gayther SA, Giles GG, Guy M, Edwards SM, Morrison J, Donovan JL, Hamdy FC, Dearnaley DP, Ardern-Jones AT, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Brown PM, Hopper JL, Neal DE, Pharoah PD, Ponder BA, Eeles RA, Easton DF, Dunning AM. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 2008;100(13):962–966.
- 26. Hooker S, Hernandez W, Chen H, Robbins C, Torres JB, Ahaghotu C, Carpten J, Kittles RA. Replication of prostate

- cancer risk loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate 2010;70(3):270–275.
- Zheng SL, Hsing AW, Sun J, Chu LW, Yu K, Li G, Gao Z, Kim ST, Isaacs WB, Shen MC, Gao YT, Hoover RN, Xu J. Association of 17 prostate cancer susceptibility loci with prostate cancer risk in Chinese men. Prostate 2010;70(4):425–432.
- Sun J, Purcell L, Gao Z, Isaacs SD, Wiley KE, Hsu FC, Liu W, Duggan D, Carpten JD, Gronberg H, Xu J, Chang BL, Partin AW, Walsh PC, Isaacs WB, Zheng SL. Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate 2008;68(7):691–697.
- 29. Meyer A, Schurmann P, Ghahremani M, Kocak E, Brinkhaus MJ, Bremer M, Karstens JH, Hagemann J, Machtens S, Dork T. Association of chromosomal locus 8q24 and risk of prostate cancer: A hospital-based study of German patients treated with brachytherapy. Urol Oncol 2009;27(4):373–376.
- Baudis M, Cleary ML. Progenetix.net: An online repository for molecular cytogenetic aberration data. Bioinformatics 2001; 17(12):1228–1229.
- 31. Sears RC. The life cycle of C-myc: From synthesis to degradation. Cell Cycle 2004;3(9):1133–1137.
- 32. Buttyan R, Sawczuk IS, Benson MC, Siegal JD, Olsson CA. Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 1987;11(4):327–337.
- 33. Nupponen NN, Kakkola L, Koivisto P, Visakorpi T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 1998;153(1):141–148.
- 34. Wang YH, Liu S, Zhang G, Zhou CQ, Zhu HX, Zhou XB, Quan LP, Bai JF, Xu NZ. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res 2005;7(2):R220–R228.
- 35. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE, Cox DR, Ponder BA. Genomewide association study identifies novel breast cancer susceptibility loci. Nature 2007;447(7148):1087-1093.
- 36. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E, Ferretti V, Laflamme P, Sundararajan S, Roumy S, Olivier JF, Robidoux F, Sladek R, Montpetit A, Campbell P, Bezieau S, O'Shea AM, Zogopoulos G, Cotterchio M, Newcomb P, McLaughlin J, Younghusband B, Green R, Green J, Porteous ME, Campbell H, Blanche H, Sahbatou M, Tubacher E, Bonaiti-Pellie C, Buecher B, Riboli E, Kury S, Chanock SJ, Potter J, Thomas G, Gallinger S, Hudson TJ, Dunlop MG. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 2007;39(8):989–994.

- 37. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W, Barclay E, Lubbe S, Martin L, Sellick G, Jaeger E, Hubner R, Wild R, Rowan A, Fielding S, Howarth K, Silver A, Atkin W, Muir K, Logan R, Kerr D, Johnstone E, Sieber O, Gray R, Thomas H, Peto J, Cazier JB, Houlston R. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 2007;39(8):984–988.
- 38. Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X, Kolonel LN, Wu AH, Reich D, Henderson BE. A common genetic risk factor for colorectal and prostate cancer. Nat Genet 2007; 39(8):954–956.
- 39. Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN, Gudmundsson J, Jakobsdottir M, Bergthorsson JT, Sigurdsson A, Blondal T, Witjes JA, Vermeulen SH, Hulsbergen-van de Kaa CA, Swinkels DW, Ploeg M, Cornel EB, Vergunst H, Thorgeirsson TE, Gudbjartsson D, Gudjonsson SA, Thorleifsson G, Kristinsson KT, Mouy M, Snorradottir S, Placidi D, Campagna M, Arici C, Koppova K, Gurzau E, Rudnai P, Kellen E, Polidoro S, Guarrera S, Sacerdote C, Sanchez M, Saez B, Valdivia G, Ryk C, de Verdier P, Lindblom A, Golka K, Bishop DT, Knowles MA, Nikulasson S, Petursdottir V, Jonsson E, Geirsson G, Kristjansson B, Mayordomo JI, Steineck G, Porru S, Buntinx F, Zeegers MP, Fletcher T, Kumar R, Matullo G, Vineis P, Kiltie AE, Gulcher JR, Thorsteinsdottir U, Kong A, Rafnar T, Stefansson K. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 2008;40(11):1307–1312.
- 40. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, Bjorklund M, Wei G, Yan J, Niittymaki I, Mecklin JP, Jarvinen H, Ristimaki A, Di-Bernardo M, East P, Carvajal-Carmona L, Houlston RS, Tomlinson I, Palin K, Ukkonen E, Karhu A, Taipale J, Aaltonen LA. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 2009;41(8):885–890.
- 41. El Gedaily A, Bubendorf L, Willi N, Fu W, Richter J, Moch H, Mihatsch MJ, Sauter G, Gasser TC. Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization. Prostate 2001;46(3):184–190.
- 42. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996;56(13):3091–3102.
- Koontz JI, Soreng AL, Nucci M, Kuo FC, Pauwels P, van Den Berghe H, Dal Cin P, Fletcher JA, Sklar J. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci USA 2001;98(11):6348–6353.
- 44. Buckland PR, Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O'Donovan MC. Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O'Donovan MC. Strong bias in the location of functional promoter polymorphisms. Hum Mutat 2005;26(3):214–223.
- Reeves JR, Dulude H, Panchal C, Daigneault L, Ramnani DM. Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy. Clin Cancer Res 2006;12(20 Pt 1):6018–6022.
- 46. Nam RK, Reeves JR, Toi A, Dulude H, Trachtenberg J, Emami M, Daigneault L, Panchal C, Sugar L, Jewett MA, Narod SA. A novel serum marker, total prostate secretory protein of 94 amino acids, improves prostate cancer detection and helps identify high grade cancers at diagnosis. J Urol 2006;175(4):1291–1297.
- 47. Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M. The gene encoding the prostatic tumor suppressor PSP94 is a target

- for repression by the Polycomb group protein EZH2. Oncogene 2007;26(31):4590–4595.
- 48. Ahn J, Berndt SI, Wacholder S, Kraft P, Kibel AS, Yeager M, Albanes D, Giovannucci E, Stampfer MJ, Virtamo J, Thun MJ, Feigelson HS, Cancel-Tassin G, Cussenot O, Thomas G, Hunter DJ, Fraumeni JF, Jr., Hoover RN, Chanock SJ, Hayes RB. Variation in KLK genes, prostate-specific antigen and risk of prostate cancer. Nat Genet 2008;40(9):1032–1034. Author reply 1035–1036.
- Lai J, Kedda MA, Hinze K, Smith RL, Yaxley J, Spurdle AB, Morris CP, Harris J, Clements JA. PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility. Carcinogenesis 2007; 28(5):1032–1039.
- 50. Severi G, Hayes VM, Neufing P, Padilla EJ, Tilley WD, Eggleton SA, Morris HA, English DR, Southey MC, Hopper JL, Sutherland RL, Boyle P, Giles GG. Variants in the prostate-specific antigen (PSA) gene and prostate cancer risk, survival, and circulating PSA. Cancer Epidemiol Biomarkers Prev 2006;15(6):1142–1147.
- 51. Steuber T, Helo P, Lilja H. Circulating biomarkers for prostate cancer. World J Urol 2007;25(2):111–119.
- 52. Steuber T, Vickers AJ, Haese A, Becker C, Pettersson K, Chun FK, Kattan MW, Eastham JA, Scardino PT, Huland H, Lilja H. Risk assessment for biochemical recurrence prior to radical prostatectomy: Significant enhancement contributed by human glandular kallikrein 2 (hK2) and free prostate specific antigen (PSA) in men with moderate PSA-elevation in serum. Int J Cancer 2006;118(5):1234–1240.
- 53. Cramer SD, Chang BL, Rao A, Hawkins GA, Zheng SL, Wade WN, Cooke RT, Thomas LN, Bleecker ER, Catalona WJ, Sterling DA, Meyers DA, Ohar J, Xu J. Association between genetic polymorphisms in the prostate-specific antigen gene promoter and serum prostate-specific antigen levels. J Natl Cancer Inst 2003;95(14):1044–1053.
- 54. Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, Douillard C, Dubois-Laforgue D, Dusselier L, Gautier JF, Jadoul M, Laloi-Michelin M, Jacquesson L, Larger E, Louis J, Nicolino M, Subra JF, Wilhem JM, Young J, Velho G, Timsit J. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes 2005;54(11):3126–3132.
- 55. Edghill EL, Bingham C, Ellard S, Hattersley AT. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 2006;43(1):84–90.
- Paliwal S, Kovi RC, Nath B, Chen YW, Lewis BC, Grossman SR.
 The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res 2007;67(19):9322–9329.
- 57. Hidaka K, Caffrey JJ, Hua L, Zhang T, Falck JR, Nickel GC, Carrel L, Barnes LD, Shears SB. An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem 2002;277(36):32730–32738.
- Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T. Identification of novel argonauteassociated proteins. Curr Biol 2005;15(23):2149–2155.
- 59. Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, Tomer R, Hofler H, Schuuring E, Kluin PM, Fend F, Quintanilla-Martinez L. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood 2004;104(4):1120–1126.