

Цифровая обработка сигналов

Лабораторная работа № 1 Генерация тонов

Содержание

1 Теоретические сведения	3
1.1 Базовые детерминированные сигналы	3
1.2 Относительная циклическая частота	3
1.3 Логарифмическая шкала	4
2 Практические сведения	5
3 Задание на лабораторную работу	6
3.1 Генерация чистого тона	6
3.2 Генерация затухающего составного тона	6
3.3 Творческая часть	8
4 Формат сдачи	9
5 Контрольные вопросы	q

Ты слышишь музыку в гудении осы И в шорохе опавшего листочка. Пусть капают минуты и часы И разбивают время на кусочки,

Но музыку разъять нельзя никак,
Она течет единою волною,
И, как морской прилив, за тактом такт,
Всё заполняет музыка собою.

Татьяна Зубкова, <u>«Ты и музыка»</u>

1 Теоретические сведения

1.1 Базовые детерминированные сигналы

Название	Обозначение	Определение
Единичный импульс	$\delta[n]$	$\int 1, n=0;$
		0, иначе.
Единичный скачок	u[n]	$\int 1, n \ge 0;$
		0, иначе.
Прямоугольный импульс	$\Pi_N[n]$	$\int 1, 0 \le n < N;$
		0, иначе.
Правосторонняя экспонента	_	$\int a^n, n \ge 0;$
		$\begin{cases} a^n, & n \ge 0; \\ 0, & \text{иначе.} \end{cases} = a^n u[n]$
Гармонический сигнал	_	$\cos(\omega n + \varphi)$
(синусоида или косинусоида)		
Комплексная экспонента	_	$e^{j\omega n} = \cos(\omega n) + j\sin(\omega n)$

1.2 Относительная циклическая частота

Рассмотрим непрерывный периодический сигнал $\cos(\Omega t)$. Данный сигнал характеризуется циклической (угловой, круговой) частотой $\Omega\left[\frac{\mathrm{рад}}{\mathrm{c}}\right]$. Если косинус рассматривать как проекцию равномерного вращательного движения, то эта частота численно равна углу [в радианах], на который вращаемое тело поворачивается за 1 с. Поделив угол полного оборота 2π на Ω , можно найти период сигнала $T=\frac{2\pi}{\Omega}$ [c].

Линейной частотой f $[\Gamma {\bf u}]$ называют количество колебаний (повторений, периодов) совершаемых объектом за 1 с. Напомним очевидные соотношения: $\Omega = 2\pi f$, $T = \frac{1}{f}$. Обозначение f происходит от английского слова «frequency» (частота).

Шаг дискретизации Δ — время между замерами отсчётов при равномерной дискретизации сигнала. Измеряется в [c]. Например, если непрерывный сигнал $\cos(\Omega t)$ дискретизируется с равномерным шагом Δ , начиная с момента времени t=0 с, то получается дискретный сигнал $x[n]=\cos(\Omega\cdot\Delta\cdot n)$. Отметим, что получаемый дискретный сигнал в зависимости от значения $\Omega\cdot\Delta$ может оказаться как периодическим, так и непериодическим.

Частота дискретизации f_s — количество производимых замеров в секунду при равномерной дискретизации. Измеряется в $\left[\frac{\text{отсчёт}}{c} = \Gamma_{\text{H}}\right]$. Индекс s в обозначении происходит от английского слова «sampling» (дискретизация). Шаг дискретизации связан с частотой дискретизации соотношением $\Delta = \frac{1}{f_s}$.

Вернёмся к дискретному гармоническому сигналу $\cos(\Omega\cdot\Delta\cdot n)$. Часто такая форма записи, требующая знание шага дискретизации, оказывается неудобной. Поэтому вводят понятие относительной циклической частоты $\omega=\Omega\cdot\Delta$. Такую частоту иногда ещё называют нормированной к частоте дискретизации, т. к. $\Omega\cdot\Delta=2\pi\frac{f}{f_s}$. Эта величина измеряется в $\left[\frac{\mathrm{pag}}{\mathrm{otc}\,\mathrm{ee}}\right]$, является безразмерной и для равномерного вращательного движения численно равна углу [в радианах], на который тело поворачивается за один дискретный отсчёт. Обратим внимание на отличие от обычной циклической частоты — привязка к физической шкале времени, измеряемой в секундах, заменена на привязку к безразмерным номерам отсчётов. Относительная циклическая частота позволяет оперировать дискретным гармоническим сигналом, записанный в форме $\cos(\omega n)$, без привязки к физической шкале времени и без знания частоты/шага дискретизации (однако знание частоты/шага дискретизации потребуется, если понадобится перейти от отсчётов к физической шкале времени).

1.3 Логарифмическая шкала

Диапазон амплитуд звукового давления, воспринимаемый человеческим ухом, крайне широк и изменяется примерно от $20~{
m Mk}\Pi a$ (порог слышимости) до $60~\Pi a$ (сирена, мотоцикл без глушителя). Верхний и нижний порог отличаются в $\frac{60}{20\cdot 10^{-6}}=3\cdot 10^6 \ ({\rm миллионы!}) \ {\rm pas}, \ {\rm что} \ {\rm делает} \ {\rm неудобным} \ {\rm использование} \ {\rm линейной} \ {\rm шкалы} \ {\rm для} \ {\rm измерения} \ {\rm громкости} \ {\rm звука}.$

Бел $[{\rm B}]$ — единица логарифмического отношения двух физических величин, выражающая отношение двух мощностей как десятичный логарифм этого отношения: $1~{\rm B}=\lg\frac{P_2}{P_1}$. Если вместо энергетической величины P (мощности, интенсивности звука) нужно использовать силовую F (звуковое давление), то с учётом $P\propto F^2$ получаем $1~{\rm B}=\lg\frac{F_2^2}{F_1^2}=2\lg\frac{F_2}{F_1}$.

Если выразить F_2 через F_1 , то получим $F_2=F_1\cdot 10^{B/2}$. Таким образом, изменение звукового давления на $1~\mathrm{B}$ означает увеличение звукового давления в

 $10^{\frac{1}{2}} = \sqrt{10} \approx 3,16$ раза. На практике целый Бел практически не употребляется, вместо него используется десятая часть Бела — децибел [дБ].

Часто в качестве знаменателя F_1 выступает некая общепринятая исходная (опорная) величина. Тогда отношение принято называть уровнем. Для уровня звукового давления опорное значение составляет $20~{\rm M}{\rm K}\Pi a$. Например, уровень звукового давления $40~{\rm д}{\rm B}$ означает амплитуду звукового давления, равную $20~{\rm M}{\rm K}\Pi a \cdot 10^{\frac{4}{2}} = 2~{\rm M}\Pi a$ и примерно соответствует тихому разговору/шуму компьютера или кондиционера.

2 Практические сведения

Пакет	Функция
matplotlib	<pre>matplotlib.pyplot.stem</pre>
	matplotlib.pyplot.show
numpy	numpy.linspace
	<u>numpy.cos</u> или <u>numpy.sin</u>
scipy	scipy.io.wavfile.write
	scipy.signal.sawtooth
	scipy.signal.square

В приведённом фрагменте кода не соблюдены принципы хорошего кода и он предназначен исключительно для иллюстрации работы некоторых функций.

```
import matplotlib.pyplot as plt
import numpy as np
from scipy.io.wavfile import write
# Создаём массив с моментами времени: 0, 1/16000, 2/16000, ..., 15999/16000, 1 с
# Частоту дискретизации полагаем равной 16 кГц
t = np.linspace(0, 1, 16000 + 1)
# Вычисляем гармонический сигнал sin с циклической частотой 2700 рад/с
# При частоте дискретизации 16 кГц это примерно соответствует 430 Гц
x = np.sin(2700 * t)
# Сохраняем полученный сигнал в аудиофайл со значением частоты дискретизации 16 кГц
write('example.wav', 16000, x)
# Рисуем график полученного сигнала на интервале от 0 до 5 мс
# Для ускорения отображения большого количества точек можно использовать plot вместо stem
plt.xlim(0, 0.005)
plt.stem(t, x, use_line_collection=True)
plt.show()
```

3 Задание на лабораторную работу

3.1 Генерация чистого тона

Напишите функцию tone для генерации звукового тона. Функция должна иметь следующие параметры:

- f частота сигнала (в герцах);
- 2) t длительность сигнала (в секундах);
- 3) waveform <u>форма</u> сигнала (значение по умолчанию: гармоническая);
- 4) fs частота дискретизации (в герцах, значение по умолчанию: 44100).

Параметр формы сигнала передавать в виде строки или перечисления. Функция должна поддерживать как минимум следующие формы:

- 1) гармоническая (см. cos или sin);
- 2) меандр со скважностью 2 (см. <u>square</u>);
- 3) треугольная (см. sawtooth с нужным значением параметра width);
- 4) пила (см. sawtooth со значением параметра width по умолчанию).

Функция должна возвращать numpy-массив значений типа np.float. Амплитуда создаваемого сигнала должна равняться 1 (значения сигнала изменяются от -1 до +1).

Проверьте корректность реализации:

- 1) визуально, нарисовав сигнал или его часть с помощью stem;
- 2) аудиально, сохранив сигнал с помощью <u>write</u> в wav-файл и проверив на слух полученный аудиофайл с использованием онлайн-сервиса <u>Tone Generator</u>.

3.2 Генерация затухающего составного тона

Напишите функцию musical_tone для генерации затухающего составного тона. Об обязательных параметрах функции см. в конце данного подраздела.

В составном тоне присутствует ряд чистых тонов с частотами f, 2f, 3f, 4f и т. д. Частоту f называют основной частотой, кратные ей частоты 2f, 3f и т. д. — обертонами.

Для генерации сигнала составного тона необходимо создать сигналы нужных чистых тонов и сложить их. Амплитуду основного тона выбрать равной 1. Относительная интенсивность обертонов (значения их амплитуд) может быть различной — в частности, именно благодаря этому обеспечивается специфика звучания разных музыкальных инструментов. Значения этих амплитуд выбрать по своему усмотрению. Некоторые возможные примеры приведены на рисунке 1. На приведённой ил-

люстрации используется понятие амплитудного спектра — графика, показывающего зависимость амплитуды гармоники от её частоты. Учтите, что частота последнего обертона не должна превышать 20 кГц (порог слышимости человека).

Рисунок 1 — Особенности музыкальных звуков

Источник: Сворень Р. А., «Электроника шаг за шагом» (рисунок 14.3)

После сложения всех чистых тонов должен получиться незатухающий периодический сигнал сложной формы с периодом $\frac{1}{f}$. Поскольку амплитуда полученного сигнала будет превышать 1, необходимо его нормировать (привести амплитуду к 1).

Затухание сигнала с течением времени можно обеспечить умножением полученного сигнала на правостороннюю экспоненту. Так как при программировании все операции производятся с конечными по длительности сигналами, то формально умножение происходит на правостороннюю экспоненту, ограниченную прямоугольным импульсом — $a^n \cdot \Pi_N[n]$, где $0 < a \le 1$ — параметр затухания, N — количество отсчётов в сигнале.

С учётом всего вышеизложенного, функция musical_tone должна иметь следующие параметры:

- f частота основного тона (в герцах);
- 2) t длительность сигнала (в секундах);
- 3) waveform форма сигнала, используемая для генерации чистых тонов (значение по умолчанию: гармоническая):
 - 4) fs частота дискретизации (в герцах, значение по умолчанию: 44100);
- 5) db уровень затухания (в децибелах) амплитуды в конце сигнала относительно единичный амплитуды (предоставить значение по умолчанию, которое подобрать по своему вкусу).

Примечание 1. Значение параметра затухания a для правосторонней экспоненты должно вычисляться на основе значений параметров функции t, fs и db.

Примечание 2. Уровень затухания db — неположительное число (при нуле обеспечить отсутствие затухания). При передаче положительного числа допускается как генерировать исключение, так и обеспечить противоположный эффект (усиление вместо затухания).

Примечание 3. Опционально можно предусмотреть параметры, позволяющие регулировать тембровую окраску звука (относительную интенсивность обертонов) и/ или более тонко задавать параметры нарастания и спада (см. рисунок 1). Допускается обеспечение затухания не на всей длительности сигнала, а только на некой концевой части (т. е. умножение на затухающую экспоненту происходит не для всего сигнала целиком, а только для какого-то количества последних секунд). Данный пункт не является обязательным к выполнению.

3.3 Творческая часть

Используя функцию musical_tone, написать код, который создаёт простень-кое музыкальное произведение небольшой длительности (ориентировочно от 8 до 20 секунд). Для стыковки фрагментов, звучащих в разные моменты времени, могут быть полезными функции <u>numpy.concatenate</u>, <u>numpy.roll</u>, <u>numpy.zeros</u>.

Возможный вариант выполнения:

- 1. На сайте https://virtualpiano.net зайти в раздел Music Sheets, подобрать произведение по вкусу (рекомендуется выбрать произведение не выше 4-го уровня сложности) и перейти на страницу этого произведения (пример страницы: Fur Elise; разумеется, вы должны использовать любое другое произведение).
- 2. На странице отображается список нот в виде клавиш английской раскладки клавиатуры. Объяснение используемой нотации можно посмотреть в секции «Semantics of music sheets» раздела <u>Learn/Teach</u>.
- 3. Внизу страницы можно нажать на кнопку «Play this song», чтобы загрузить указанные ноты в виртуальное пианино, прослушать произведение (кнопка «Auto Play») и выбрать небольшую часть композиции для воспроизведения в собственном скрипте. Пример виртуального пианино с загруженными нотами: Fur Elise.
- 4. Для того, чтобы узнать значения основных частот используемых клавиш, необходимо включить американскую стандартную систему нотации. Это делается с помощью переключателя «Note Labels». На странице произведения этот переключатель находится внизу, после нот; на странице виртуального пианино в меню «Кеу

Assist». В итоге должны появиться обозначения в американской системе нотации — в виде букв C, D, E, F, G, A, B с цифрой (буква означает ноту, цифра — октаву).

5. Используя сопоставление нот с соответствующими основными частотами (например: <u>Table of note frequencies</u>), реконструировать часть композиции в собственном скрипте с использованием функции musical_tone.

4 Формат сдачи

Предоставить скрипт и wav-файл, содержащий музыкальное произведение из творческой части задания.

Скрипт должен содержать:

- 1) реализованную функцию tone;
- 2) реализованную функцию musical_tone;
- 3) код генерации предоставляемого wav-файла с музыкальным произведением.

5 Контрольные вопросы

- 1. Определение единичного импульса, единичного скачка, правосторонней экспоненты, комплексной экспоненты, гармонического сигнала.
- 2. Запишите единичный скачок в виде импульсной декомпозиции (в виде линейной комбинации единичных импульсов). Подсказка: нужно использовать знак \sum .
 - 3. Запишите комплексную экспоненту в виде импульсной декомпозиции.
 - 4. Запишите импульсные декомпозиции для следующих сигналов:

- 5. Определение частоты: линейной, циклической, относительной циклической.
- 6. Дан дискретный сигнал $x[n]=(-1)^n$. Какой линейной частоте может соответствовать такой сигнал, если частота дискретизации равна $4~\Gamma \mathrm{u}$?
- 7. Для дискретного сигнала $x[n] = \cos(\omega n)$ приведите примеры конкретных значений циклической частоты ω , при которых дискретный сигнал будет: 1) периодическим; 2) непериодическим.
- 8. Почему для частоты дискретизации используют весьма специфическое значение $44,1~{\rm k}\Gamma{\rm H}$, а не, например, «красивое» круглое значение $40~{\rm k}\Gamma{\rm H}$?

- 9. Амплитуда звукового давления некоторого сигнала равна 50 мкПа. Сигнал был усилен на $2~\mathrm{B}$. Чему равна амплитуда звукового давления усиленного сигнала?
- 10. Оцените, какая сила действует на барабанную перепонку при уровне звукового давления $100~{\rm д}$ Б? Площадь барабанной перепонки принять равной $65~{\rm mm}^2$. Ответ выразить в ньютонах. Справочно: указанный уровень звукового давления примерно соответствует громкому автомобильному сигналу на расстоянии $5~{\rm m}$.
- 11. Как можно на пальцах объяснить тот факт, что сигналы чистых тонов 1 Γ ц, 5 Γ ц, 9 Γ ц и т. д., генерируемых функцией tone при $f_s=4$ Γ ц, являются неразличимыми? Поясните наблюдаемый эффект на схематичном графике. Как с учётом этого эффекта может измениться ответ на задачу № 6?