Independence of multiple π -systems and their conditions

Lu Jiaxin Student ID: 518030910412

April 25, 2020

Here is an lemma in *Probability with Martingales*.

This lemma shows us the independence of two π -systems and its approach of proof is also used below.

Lemma 1 (LEMMA 4.2(a)). Suppose that \mathcal{G} and \mathcal{H} are sub- σ -algebras of \mathcal{F} and that \mathcal{I} and \mathcal{J} are π -systems with

$$\sigma(\mathcal{I}) = \mathcal{G}, \quad \sigma(\mathcal{J}) = \mathcal{H}$$

Then $\mathcal G$ and $\mathcal H$ are independent if and only if $\mathcal I$ and $\mathcal J$ are independent in that

$$P(I \cap J) = P(I)P(J), \quad I \in \mathcal{I}, J \in \mathcal{J}.$$

Proof. Suppose that \mathcal{I} and \mathcal{J} are independent. For fixed I in \mathcal{I} ,

$$H \mapsto P(I \cap H)$$
 and $H \mapsto P(I)P(H)$

are measures(since they are maps $\mathcal{F} \to [0, \infty]$ on (Ω, \mathcal{F}) and by definition they are measures) on (Ω, \mathcal{H}) have the same total mass P(I), and agree on \mathcal{J} . By the uniqueness of extension(see in the same book **Lemma 1.6**), they therefore agree on $\sigma(\mathcal{J}) = \mathcal{H}$. Hence,

$$P(I \cap H) = P(I)P(H), \quad I \in \mathcal{I}, H \in \mathcal{H}.$$

Thus, for fixed H in \mathcal{H} , the measures

$$G \mapsto P(G \cap H)$$
 and $G \mapsto P(G)P(H)$

on (Ω, \mathcal{G}) have the same total mass P(H), and agree on \mathcal{I} . They therefore agree on $\sigma(\mathcal{I}) = \mathcal{G}$. Thus we finish our proof.

Now consider the case where there are three π -systems. This is the case in **Exercise 4.1**.

This exercise requires us to prove the independence of three π -systems. We can prove it with the approach above. But we'll have to face a problem that to complete the proof, we must add a condition.

I'll explain the reason in the remark below.

Exercise 2 (E4.1). Let (Ω, \mathcal{F}, P) be a probability triple. Let $\mathcal{I}_1, \mathcal{I}_2$ and \mathcal{I}_3 be three π -systems on Ω such that, for k = 1, 2, 3,

$$\mathcal{I}_k \subset \mathcal{F}$$

and

$$\Omega \in \mathcal{I}_k$$

Prove that if

$$P(I_1 \cap I_2 \cap I_3) = P(I_1)P(I_2)P(I_3)$$

whenever $I_k \in \mathcal{I}_k$ (k = 1, 2, 3) then $\sigma(\mathcal{I}_1), \sigma(\mathcal{I}_2), \sigma(\mathcal{I}_3)$ are independent.

Proof. Let $\sigma(\mathcal{I}_3) = \mathcal{J}_3$. Fix $I_1 \in \mathcal{I}_1$ and $I_2 \in \mathcal{I}_2$. Consider the maps

$$J_3 \mapsto P(I_1 \cap I_2 \cap J_3) \text{ and } J_3 \mapsto P(I_1)P(I_2)P(I_3),$$

for $J_3 \in \sigma(\mathcal{I}_3)$. We can verify that these are measures on the measure space $(\Omega, \sigma(\mathcal{I}_3))$. Note that since $\Omega \in \mathcal{I}_3$, we derive

$$P(I_1 \cap I_2) = P(I_1 \cap I_2 \cap \Omega) = P(I_1)P(I_2)P(\Omega) = P(I_1)P(I_2), \tag{1}$$

so these measures both have a total mass of

$$P(I_1 \cap I_2)$$
 and $P(I_1)P(I_2)$,

which are exactly the same, and agree on \mathcal{I}_3 .

By the uniqueness of extension(see in the same book **Lemma 1.6**), they therefore agree on $\sigma(\mathcal{I}_3) = \mathcal{J}_3$. Using this approach on k = 1, 2 we naturally have $\sigma(\mathcal{I}_1), \sigma(\mathcal{I}_2), \sigma(\mathcal{I}_3)$ are independent.

Remark 3. Although the approachs used in both proofs look the exactly the same, the conditions of two statements are different.

Exercise 2 requires the condition $\Omega \in \mathcal{I}_k$ while Lemma 1 doesn't. Here's my thought.

In the proof of Lemma 1, the sentence 'have the same total mass P(I)' comes naturally since when there are two π -systems,

$$P(I \cap \Omega) = P(I)P(\Omega)$$

holds vacuously. So including the hypothesis would be unnecessary.

While in the proof of Exercise 2, we have to use Eq. (1) to prove that

$$P(I_1 \cap I_2) = P(I_1)P(I_2)$$

under the condition $\Omega \in \mathcal{I}_k$. Because if $\Omega \notin \mathcal{I}_k$, we can't derive $P(I_1 \cap I_2) = P(I_1)P(I_2)$ from $P(I_1 \cap I_2 \cap I_3) = P(I_1)P(I_2)P(I_3)$.

This condition is also required if we want to extend this theorem to arbitary $n \in \mathbb{N}(n \geq 3)$ π -systems. Otherwise, we won't be able to apply the uniqueness of extension(see in the same book **Lemma 1.6**) to verify two measures we create agree on $\sigma(\mathcal{I}_k)$.