

Departamento de Matemática, Universidade de Aveiro

Cálculo I — Exame da Época Normal

11 de Janeiro de 2010 Duração: **2h30m**

Classificação:	

Justifique todas as respostas e indique os cálculos efectuados.

65 Pontos 1. Considere a função f definida por

$$f(x) = \begin{cases} \frac{2}{\pi} \operatorname{arctg}\left(\frac{1}{x}\right), & \text{se } x < 0, \\ x^2 - x - 1, & \text{se } x \ge 0. \end{cases}$$

- (a) Estude f quanto à continuidade.
- (b) A função f é diferenciável em x = 0? Justifique.
- (c) Determine, caso existam, as assimptotas do gráfico de f.
- (d) Estude f quanto à existência de extremos
- (e) Considere a função g definida em $]-\infty,0[$ por $g(x)=\frac{\pi}{2}f(x)=\arctan(\frac{1}{x}).$ Justifique que g é invertível e caracterize a sua função inversa.

20 Pontos

- 2. Seja f a função dada por $f(x) = \ln \sqrt{x}$.
 - (a) Determine o Polinómio de Taylor de 3^a ordem de f, $p_3(x)$, relativamente ao ponto x=1.
 - (b) Mostre que o erro que se comete ao aproximar f(x) por $p_3(x)$ no intervalo]0,8;1,2[é inferior a $\frac{1}{2} \times 10^{-3}$.

30 Pontos

- 3. Seja f uma função primitivável num intervalo $I \subset \mathbb{R}$.
 - (a) Mostre que se F_1 e F_2 são duas quaisquer primitivas de f (em I), então existe $C \in \mathbb{R}$ tal que $F_2(x) = F_1(x) + C$, para todo $x \in I$.
 - (b) Considere $f(x)=\frac{x}{\sqrt{1-x^4}}$ no intervalo $]-1,\,1[$. Determine a função F tal que F'(x)=f(x), para todo $x\in]-1,\,1[$, e cujo gráfico passa no ponto de coordenadas $(\frac{\sqrt{2}}{2},\,0)$.

40 Pontos 4. Calcule os seguintes integrais (simplificando o mais possível o resultado apresentado):

(a)
$$\int_0^{1/2} (x+1) e^{2x} dx$$
.

(b)
$$\int \frac{1}{x^2 \sqrt{1+x^2}} \, dx$$
.

20 Pontos 5. Seja $f:\mathbb{R} \to \mathbb{R}$ uma função contínua. Considere a função φ dada por

$$\varphi(x) = \int_{e^x}^{1+x^2} f(t) dt, \quad x \in \mathbb{R}.$$

- (a) Justifique que φ é diferenciável em \mathbb{R} e determine $\varphi'(x)$.
- (b) Mostre que $\lim_{x\to 0} \frac{\varphi(x)}{x} = -f(1)$.

25 Pontos 6.

- (a) Mostre que sen $x \le x$, para todo $x \ge 0$.
- (b) Calcule a área da região delimitada pelas rectas verticais x=0 e $x=\pi$, e pelos gráficos das funções f e g, sendo f(x)=x e $g(x)=\sin x$.