Soit $n \in \mathbb{N}^*$ et $S = \sum_{k=1}^n k \binom{n}{k}$. 1. On pose, pour tout x dans \mathbb{R} , $f(x) = \sum_{k=0}^n \binom{n}{k} x^k$. Calculer f(x).

2. En déduire, pour tout
$$x$$
 dans \mathbb{R} , la valeur de $g(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1}$, puis en déduire S .