

XN297L 软件设计和调试参考

目录

一、示例程序功能	2
1.1 接收模式配置流程	
1.2 发送模式配置流程	
1.3 单载波模式配置流程	
、特殊寄存器配置	5
2.1 通信参数配置	5
2.2 单载波参数模式配置	5
2.3 RSSI 应用及寄存器设置	5
2.4 发射功率设置	6

版本	V 1.1
修订	2015. 07

一、示例程序功能

1.1 接收模式配置流程

下述流程都以重新上电复位后的芯片进入休眠模式为起点。

表1 接收模式配置流程

N	0	Action	Address
1		写命令进行软件复位(设置复位,释放复位)	0x53
2		清除 RX FIFO 和状态寄存器	0x07
3		设置 rf_cal、bb_cal、demo_cal、rf_cal2、dem_cal2 寄存器	0x1E 、 0x1F 、 0X19、0x1A、0x1B
4		打开接收通道 n(0-5)	0x02
5	}		0x03 $0x0A$
	初始	设置通道 n 的地址宽度(3-5 字节)和地址	0x0F
6	化	设置工作频点	0x05
7		设置发射功率、数据率模式	0x06
8		选择通信方式: 是否带自动重传、重传次数、重传时延、是否	0x04, 0x01
	带自动应答		
9		如为静态 payload,需要设置 payload 长度	0x11 ~ 0x16
10		设置 config 寄存器,控制 CE 脚为高,进入接收模式	0x00
11	13.	检查 IRQ 是否为低,或者状态寄存器的 RX_DR 是否为 1	0x07
12	接收	若第 11 点成立,则根据长度设置读取 payload	0x1D, 0x1C
13		清除状态寄存器	0x07

图 1 接收端工作流程

1.2 发送模式配置流程

表2 接收模式配置流程

	NO	Action	Address
1		写命令进行软件复位(设置复位,释放复位)	0x53
2		清除 TX FIFO 和状态寄存器	0x07
3		设置 rf cal、bb cal、demo cal、rf cal2、dem cal2 寄存	0x1E, 0x1F,
		図直11_ca1、DD_ca1、delilo_ca1、11_ca12、delil_ca12 可存 器	0X19、0x1A、
	初	40	0x1B
4	始	设置发送通道的地址宽度(3-5 字节)和地址	0x03, 0x10
5	化	设置工作频点	0x05
6		设置发射功率、数据率模式	0x06
7		选择通信方式: 是否带自动重传、重传次数、重传时延、是	0x04、0x01
		否带自动应答	UXU4, UXU1
8		设置 config 为发送状态	0x00
9		写入 TX payload	
10	发送	控制 CE 引脚为高,进入发送模式	
11	送	检查 IRQ 或状态寄存器,直到有中断	
12		判断中断类型,清除状态寄存器	0x07

图 2 发射端工作流程

1.3 单载波模式配置流程

单载波模式多用于初步判断硬件的功能和性能。

NO	Action	Address
1	进行软件复位(设置复位,释放复位)	0x53
2	配置为发送模式,设置发射功率、工作频点	0x00, 0x06, 0x05
3	设置rf_cal、bb_cal、demo_cal、rf_cal2、dem_cal2寄存器	0x1E, 0x1F, 0X19, 0x1A, 0x1B

二、特殊寄存器配置

XN297L 的寄存器有通用寄存器与特殊寄存器。通用寄存器包括一些和其它芯片兼容的寄存器,如 RF_SETUP 等,这里不再列出;特殊寄存器是 XN297L 芯片独有的寄存器,分为 BB_CAL (address: 0x1F), DEM_CAL (address: 0x19), RF_CAL (address: 0x1E), DEM_CAL2 (address: 0x1B), RF_CAL2 (address: 0x1A)。

BB CAL 是与状态机相关的寄存器;

DEM_CAL、DEM_CAL2 是与调制解调器相关的寄存器;

RF_CAL、RF_CAL2 是与射频收发机相关的寄存器。

2.1 通信参数配置

通信配置:

BB CAL: 0x0A, 0x6D, 0x67, 0x9C, 0x46

DEM CAL: 0x01

RF_CAL: 0xF6, 0x37, 0x5D DEM_CAL2: 0x0B, 0xDF, 0x02

RF_CAL2: 0x45, 0x21, 0xEF, 0xAC, 0x5A, 0x50

以上配置适用于 2M\1M 速率下的接收和发送, 250K 速率下需要 DEM_CAL 配置为 0x0F, 未经 panchip 公司确认请勿更改。

2.2 单载波参数模式配置

BB_CAL: 0x0A, 0x6D, 0x67, 0x9C, 0x46

DEM_CAL: 0xE1

RF_CAL: 0xF6, 0x37, 0x5D DEM_CAL2: 0x0B, 0xDF, 0x02

RF_CAL2: 0x45, 0x21, 0xEF, 0xAC, 0x5A, 0x50

2.3 RSSI 应用及寄存器设置

RSSI 用来指示接收信号的强度。将寄存器 RSSI_EN 和 RSSI_SEL 设置为高,DATAOUT_SEL 设置为低,就可以从寄存器 DATAOUT 读出 RSSI 的值。DATAOUT 低四位表示接收数据的信号强度,DATAOUT 高四位表示接收信号前干扰信号的强度。要求接收数据的信号强度需要在收到数据包后的 100ms 内读出。可以调节 RSSI_Gain_CTR 来适应待检

测信号功率范围。最小信号衰减情况(RSSI_Gain_CTR=00)下,接收数据的信号强度(x 轴,dBm)和 RSSI 输出值(y 轴,code)的对应关系,5dB 左右对应一档, $0\sim10$ 档对应 -100 $dBm\sim$ -45dBm。对于通信距离与信号辐射损耗的关系,理论上通信距离每增加一倍,信号损耗 6dB。

2.4 发射功率设置

PA_GC	RF_PA_PWR	输出功	电流
	0.00	率 (dBm)	(mA)
000	000	-30	9
001	000	-27	10
010	000	-24	12
111	000	-21	15
000	001	-18	10
001	001	-14	12
000	010	-10	12
001	010	-6	14
000	100	-2	15
001	011	0	18
000	101	2	19
000	110	4	23
101	100	5	27
000	111	7	29
010	101	8	31
001	111	10	37
011	111	12	48
111	111	13	53

注:需要近距离通信时,可以适当降低 0x1E 寄存器的 LNA_GC 设置。