Flow Past Objects (Denn Chapter 4)

LEARNING OBJECTIVES

- 1. Relate and calculate the Drag Coefficient (c_D) to fluid and object parameters for different Reynold's number regions.
- 2. Derive and apply terminal (settling) velocity as a function of fluid and object parameters.
- 3. Derive and apply a model for fluid flow through packed bed systems.

Introduction

Why do engineers care about flow past an object?

FLOW PAST A SPHERE

Consider flow past a sphere:

How does drag force F_D depend on...

DIMENSIONAL ANALYSIS

Re=

For the drag coefficient c_D , the general definition is

 $c_D =$

REPRESENTATION OF DATA

SMALL RE (<1)

Find that $c_D \propto \frac{1}{\mathrm{Re}}$. In fact, $c_D =$

Intermediate Region ($1 < Re < 10^3$)

$$c_D =$$

Large Re $(10^3 < \text{Re} < 2 \times 10^5)$

$$c_D \approx$$

For Re = 2×10^5 , sharp drop...

TERMINAL VELOCITY

Sphere falling/rising in fluid by gravitational force.

Stokes regime:

Newton regime:

OTHER SHAPES

HANDOUTS

Table 9.4 from Munson, Young, and Okiishi. Fundamentals of Fluid Mechanics, 5th edition. Comments

•

•

•

Flow Patterns/Discussion \rightarrow DVD-ROM

- •
- •
- •
- •

EXAMPLE

How much energy does the 1992 version of Professor Burghardt expend to overcome aerodynamic drag while running a complete marathon race on a day with no wind? Assume that he completed a marathon in 3 hours.

Now suppose that Professor Burghardt had used that energy instead to power a light bulb (100 watts). How long could he generate light for a family in India who doesn't have access to electricity?

PACKED BEDS

Uses:

- •
- •
- •

"Void Fraction" = ε =

"Superficial velocity" = v_{∞} =

How does Δp depend on...

Approach: Think of fluid's path through packing as a complicated "pipe"

For pipe flow, correlate data:

1.	
2.	Set $D_{\text{eff}} = D_H$ (hydraulic diameter)
	$V_{ m fluid}$ - Volume of the fluid $V_{ m solids}$ - Volume of the solid particles $V_{ m bed}$ - Volume of the bed ($V_{ m bed}=V_{ m fluid}+V_{ m solids}$)
	Let N_p be the number of particles in the bed
	$D_{ m eff}$ =

Problem: How do $D_{
m eff}$ and $v_{
m eff}$ relate to measurable variables?

Plug back into the correlation:

Normally drop numerical factors, and represent data according to:

$$f_p = f_p(Re_p)$$

Data correlation. Ergun Equation: $f_{\rm p}$ =

For low Re_p , we can neglect the constant term

FLUIDIZED BEDS

CHAPTER SUMMARY

In this chapter we consider flow past objects in technically relevant areas for engineers

- •
- •
- •

We developed a model to relate drag force F_D to fluid and object parameters. In particular, we use the dimensionless group c_D against Reynold's number (Re).

 $Re = 10^5$

C_D 1.9 2.5 2.2 2.2 1.6 1.6 1.3

\$60.1 0.5 0.65 1.0 2.0 3.0

A = bD

Rectangle

3

■ FIGURE 9.28 Typical drag coefficients for regular two-dimensional objects (Refs. 5, 6).

 $Re > 10^4$

1.0

A = bD

Hexagon

下いるからしいい、S*日の Source: Munson, Jours + Okinshi

Frankenskels of

APPENDIX A

Reynolds number Re = $\rho UD/\mu$

 $C_D = \frac{\mathfrak{D}}{\frac{1}{2}} \rho U^2 A$

Drag coefficient

Reference area A (b = length)

Shape

 $Re = 10^5$

Cp 22.2 2.0 1.2 1.2

0 0.02 0.17 0.33

A = bD

Square rod with rounded corners

~ ~

ł

Coefficients (Ref. 7) (Re = oIID/u, $A = \pi D^2/4$) TABLE 9.4

6		,			
		C_D	24.0/Re	•	22.2/Re ့
Low regulates number Drag Coefficients (ref. /) (re = $poD/p_0/A = nD/4$)		Object	c. Sphere	1 n	d. Hemisphere $U \longrightarrow U \longrightarrow U$
rag coemerants (rec.	$C_D = \mathfrak{D}/(\rho U^2 A/2)$	(for Re $\lesssim 1$)	20.4/Re		13,6/Re
LOW Keyllolus Ivaniust A		Object	a. Circular disk normal to flow		b. Circular disk parallel to flow $U \longrightarrow V \longrightarrow $

 $Re = 2 \times 10^4$

2.3

11

A = bD

Semicircular shell

 $Re = 10^5$

Co. 1.3

RID

1.132

0.02 0.08 0.25

A = bD

Roùnded equilateral triangle

 ${\rm Re} > 10^4$

2.15

↑↓

A = bD

Semicircular cylinder

-- a-

 ${\rm Re} > 10^4$

1,80 1,65

1

A = bD

T-beam

-A-

 $Re > 10^4$

2.05

A = bD

I-beam

| |----| |

 $Re > 10^4$

1.98

†↓

A = bD

Angle

-0-

0.18 D 10^{6} $Re = \frac{UD}{V}$ 10^{5} Flat plate Flat plate $C_D = \frac{\mathfrak{D}}{\frac{1}{2}\rho U^2 bD}$ b = length0.01 130 0.1 $C_{\mathcal{D}}$

MFIGURE 9.29	Streamlined body	Cube	D Cube	b Cone	→ € → Circular rod parallel to flow	Thin disk	Hollow hemisphere	Solid hemisphere	Shape
Typical drag co	$A = \frac{\pi}{4}D^2$	$A = D^2$	$A = D^2$	$A = \frac{\pi}{4}D^2$	$A = \frac{\pi}{4}D^2$	$A = \frac{\pi}{4}D^2$	$A = \frac{\pi}{4}D^2$	$A = \frac{\pi}{4}D^2$	Reference area
Typical drag coefficients for regular three-	0.04	0.80	1.05	$\begin{array}{c cccc} \theta, \ \text{degrees} & C_D \\ \hline 10 & 0.30 \\ 30 & 0.55 \\ 60 & 0.80 \\ 90 & 1.15 \\ \end{array}$	$\begin{array}{c c} \ell D & C_{D} \\ \hline 0.5 & 1.1 \\ 1.0 & 0.93 \\ 2.0 & 0.83 \\ 4.0 & 0.85 \\ \end{array}$	1.1	1.42 0.38	1.17	Drag coefficient $C_{\cal D}$
r three-	Re > 10 ⁵	Re > 10 ⁴	Re > 10 ⁴	Re > 10 ⁴	Re > 10 ⁵	Re > 10 ³	Re > 10 ⁴	Re > 10 ⁴	Reynolds number ${}^{\dagger}\text{Re} = \rho UD/\mu$

図FIGURE 9.30 (Refs. 5. 6. 15. 20).	Large	Dolphin	U = 10 m/s $U = 20 m/s$ $U = 30 m/s$	With fairing and gap seal	With fairing	Tractor-trailer tucks	Streamlined	CACCAC Drafting	Racing	Upright commuter	Bikes	Six-car passenger train	State Building	$\begin{array}{c c} & & \downarrow \\ D & \text{Fluttering} \\ & \downarrow & \text{flag} \end{array}$	Average person	Parous parabolic dish	Parachute	Shape
Typical drag coef	Frontal area	Wetted area	Frontal area	Frontal area	Frontal area	Frontal area	$A = 5.0 \text{ ft}^2$	$A = 3.9 \text{ ft}^2$	$A = 3.9 \text{ ft}^2$	$A = 5.5 \text{ ft}^2$		Frontal area	Frontal area	$A = \ell D$	Standing Sitting Crouching	Frontal area $A = \frac{\pi}{4}D^2$	Frontal area $A = \frac{\pi}{4}D^2$	Reference area
Typical drag coefficients for objects of interest	0.40	0.0036 at Re = 6×10^6 (flat plate has C_{Df} = 0.0031)	0.43 0.26 0.20	0.70	0.76	0.96	0.12	0.50	0.88	1.1		1.8	1.4	$\begin{array}{c cccc} & & & & & & & & \\ \hline & & & & & & & \\ \hline & 1 & & & & & & \\ \hline & 1 & & & & & & \\ \hline & 2 & & & & & & \\ \hline & 2 & & & & & & \\ \hline & 3 & & & & & & \\ \hline \end{array}$	$C_D A = 9 \text{ ft}^2$ $C_D A = 6 \text{ ft}^2$ $C_D A = 2.5 \text{ ft}^2$	Porosity 0 0.2 0.5 1.42 1.20 0.82 0.95 0.90 0.80 Porosity = open area/total area	1.4	Drag coefficient $C_{\mathcal{D}}$

PACKED BED EXAMPLE

Suppose cylindrically shaped particles with diameters of 0.5 mm and lengths of 1 mm are packed into a space with a diameter of 50 mm and length of 15 mm. The mass flow rate is 4×10^{-4} kg/s. The liquid density and viscosity are 1200 kg/m³ and 700 Pa s respectively. What's the pressure drop if the void fraction ε is 0.4?