

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Question Number	Scheme	Marks	
1. (a)(i)	$X \sim B(50, 0.4)$ $P(X = 26) = 0.9686 - 0.9427 \text{ or } {}^{50}C_{26} (0.4)^{26} (0.6)^{24}$ awrt 0.0259	M1 A1 (2)	
(ii)	$P(X \ge 26) = 1 - P(X \le 25)$ = 1 - 0.9427 = awrt <u>0.0573</u>	M1 A1	
(iii)	(From tables) $k = \underline{19}$	B1 (2)	
(b)(i)		M1A1 (1)	
	$P(X \le 222) \sim P(J < 222.5) = P\left(Z < \frac{222.5 - 240}{\sqrt{144}}\right)$	M1M1	
	$P(Z < -1.46) = 1 - 0.9279 = \text{ awrt } \underline{0.0721 - 0.0724}$	A1 (5)	
(ii)	n is large (oe) and p is close to 0.5	B1 (1)	
	Natar	[11 marks]	
()(•)	Notes		
(a)(i)	M1 Use of tables or ${}^{50}\text{C}_{26}(p)^{26}(1-p)^{24}$ with $0 allow alternative notations for {}^{50}\text{C}_{26}$		
	A1 awrt 0.0259 (correct answer scores 2 out of 2)		
(ii)	M1 writing or using $1 - P(X \le 25)$		
()	A1 awrt 0.0573 (calc 0.0573437) (correct answer scores 2 our	t of 2)	
(iii)	B1 19 cao $k \le 19$ or $k \ge 19$ is B0		
(b)(i)	1st M1 For writing or using N(240,) (May be seen in standardisation) 1st A1 For writing or using N(240, 144) (May be seen in standardisation) 2nd M1 use of continuity correction 222 ± 0.5 3rd M1 $\pm \left(\frac{222 \text{ or } 222.5 \text{ or } 221.5 - their mean}{their sd}\right)$ if distribution not clearly stated,		
	then the mean and sd must be correct in the standardisation to score this mark 2 nd A1 awrt 0.0721 through to awrt 0.0724 (calc 0.0723743) Answer in the range implies all previous marks unless clearly comes from wrong method [NB: Use of binomial distribution gives 0.0719]		
(ii)	B1 both conditions required for n is large allow in words e.g. 'sample is large' allow 0.4 in place of p condone ' $n > 30$ ' (or any number > 30) Ignore comments about np		

Question Number	Scheme	Marks	
2. (a)	e.g. Population is small	B1	
		(1)	
(b)(i)	list/register/database of all members (of the leisure centre)	B1	
(ii)	A member (of the leisure centre)	B1	
		(2)	
(c)	C is the statistic as it is (a quantity) based only on <u>values</u> (oe) taken	B1	
	from the sample/it contains no unknown parameters/population	(1)	
	<u>values</u>		
		[4 marks]	
	Notes		
(a)	B1 any correct characteristic of the population that makes a census a practical		
(b)(i)	alternative to a sample (accessible, finite, well-defined) B1 idea of list (oe) and idea of all members (e.g. list of each member of the leisure centre))		
(ii)	B1 a single member		
	Condone members Also condone One of the members in the sample The opinion/view of one of the members is B0		
(c)	B1 choosing <i>C</i> (or clearly identifying <i>C</i> in words) only with a correct supporting reason which must include value (oe) and sample <u>or</u> no unknown parameters For values allow e.g. information, observations, calculations, function, numerical data, etc.		

Question Number	Scheme	Marks
3. (a)	$\int_{2}^{5} \frac{1}{48} \left(x^2 - 8x + c \right) dx = 1$	M1
	$1 = \frac{1}{48} \left[\frac{x^3}{3} - 4x^2 + cx \right]_2^5$	M1
	$1 = \frac{1}{48} \left(\left(\frac{5^3}{3} - 4(5^2) + 5c \right) - \left(\frac{2^3}{3} - 4(2^2) + 2c \right) \right) \underline{\text{or}} 48 = 39 - 84 + 3c$ $(\Rightarrow 3c = 93 \Rightarrow) c = 31 *$	A1cso*
(b)	$P(2 < X < 3) = \frac{1}{48} \left[\frac{x^3}{3} - 4x^2 + 31x \right]_2^3$	M1
	$\frac{1}{48} \left(\left(\frac{3^3}{3} - 4(3^2) + 31(3) \right) - \left(\frac{2^3}{3} - 4(2^2) + 31(2) \right) \right) = \frac{13}{36} (=\text{awrt } 0.361)$	A1
(c)	Less than 3 since " $\frac{13}{36}$ " > 0.25	B1 (2)
(d)	x = 4 leads to the minimum/lowest value of $f(x) / f(x)$ is a positive	B1 (1)
(e)	quadratic Considers $x = 2$ and $x = 5$ by e.g.	M1 (1)
	• $f(2) = 0.39(583) \left[= \frac{19}{48} \right]$ and $f(5) = 0.3 \left[= \frac{16}{48} \right]$ (so $f(2) > f(5)$) • Sketch of $f(x)$ from $x = 2$ to $x = 5$	
	• $x = 2$ is further than $x = 4$ (then $x = 5$)	A1
	Mode is $x = 2$	(2)
	Notes	[9 marks]
(a)	Notes 1 st M1 setting up integral and equating to 1 (condone missing dx) limits not needed 2^{nd} M1 attempting to integrate $f(x)$ at least one term $x^n \to x^{n+1}$ (need not be = 1) Use of integration of $f(x)$ with $F(2) = 0$ and $F(5) = 1$ can score M1M1 A1* cso including use of correct limits. There should be at least one line of working between scoring the 2^{nd} M1 and arriving at the given answer. Allow a verification method 1^{st} M1 setting up integral 2^{nd} M1 attempting to integrate A1cso use of correct limits to show that it integrates to 1 and concluding that $c = 31$	
(b)	M1 for use of integration of $f(x)$ $x^n \to x^{n+1}$ with correct limits 2 and 3 (ft from their (a)) A1 allow awrt 0.361 (correct answer scores 2 out of 2)	
(c)	B1 less than 3 with correct reasoning. May use their part (b), but must be consistent with 'less than 3' If the lower quartile is found awrt 2.67, allow LQ/2.67 < 3	
(d)	B1 correct reason why the method does not give the correct mode. Allow a sketch of $f(x)$. Also allow, e.g. 'Kei's method did not consider the end-points'	
(e)	M1 considers end-points A1 mode is 2 cao Answer only scores M0A0. Must have some justificat	ion.

Question Number	Scheme	Marks	
4. (a)	p is small	B1	
(b)	Let $N =$ number of candles not suitable for sale	(1)	
	$N \sim B(125, 0.02)$	M1	
	$\approx C \sim \text{Po}(2.5)$	A1	
	$P(C \leqslant 6)$	M1 A1	
	= 0.9858 awrt 0.986	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(c)(i)	$H_0: p = 0.05$ $H_1: p < 0.05$	B1	
	$D \sim B(30, 0.05)$	M1	
	P(D=0) = 0.2146	A1 M1	
	Do not reject H ₀ / not significant	1911	
	The <u>manufacturer</u> 's claim is not supported/There is not enough evidence to suggest that the <u>proportion(oe)</u> of candle <u>holders</u> with minor <u>defects</u> is less than 5%/ <u>Charlie</u> 's claim is supported	A1	
(**)		(5)	
(ii)	Impossible to reject H_0 (since $P(D=0) > 0.05$)	B1 (1)	
(d)	0.95^{50} [=0.0769] or $X \sim B(50, 0.05)$, $P(X = 0)$ (is still) > 0.05	M1	
	(so still not possible to reject H_0) hence Ashley's change does not	A1	
	make the test appropriate.	(2)	
	Notes	[13 marks]	
(a)		a loss than	
(a)	B1 correct condition allow 'p is close to 0' allow 'p < 0.1' or any value less than 0.1 (condone $np < 10$ or $np \le 10$)		
(b)	1 st M1 recognising Binomial distribution (may be implied by Po(2.5))		
	1 st A1 correct distribution Po(2.5) 2 nd M1 writing or using P($C \le 6$) from Poisson distribution		
	2^{nd} A1 awrt 0.986 from correct distribution used (calc : 0.9858126)		
	[NB: Use of binomial gives 0.98678] Answer only 0.9858 or bett		
	out of 4, but answer of 0.986 must see Po(2.5) to award full marks.		
(c)(i)			
	1 st M1 writing or using B(30, 0.05) (may be implied by 1 st A1)		
	1 st A1 awrt 0.215		
	2 nd M1 a correct ft statement consistent with their <i>p</i> -value and 0.05 No context needed but do not allow contradicting non contextual comments.		
	2^{nd} A1 correct conclusion in context which must be not rejecting H ₀ .		
	Must use underlined words (oe) No hypotheses then A0		
	Condone e.g. '5% of candle holders have minor defects'		
(ii)	B1 correct reasoning which implies there is no critical region/H ₀ cannot be rejected		
	Sample size is too small on its own is B0.		
(d)	M1 for 0.95^{50} or for $X \sim B(50, 0.05)$ and $P(X = 0) > 0.05$		
	A1 test is (still) not appropriate with M1 scored		

Question Number	Scheme	Marks	
5. (a)	$F(3) = 0 \rightarrow \frac{1}{16} (3^2 - 6(3) + a) = 0$	M1	
	a = 9	A1	
	$F(10) = 1 \rightarrow \frac{1}{12} (100(10) - (5)10^2 + c) = 1$	M1	
<i>a</i>)	c = -488	A1 (4)	
(b)	$\frac{1}{16} \left(5^2 - 6(5) + "9" \right) = \frac{1}{12} \left(5 + b \right) \qquad \left \frac{1}{12} \left(9 + b \right) \right = \frac{1}{12} \left(100(9) - 5(9^2) + "-488" \right)$	M1	
	b = -2	A1 (2)	
(c)	$P(6 < Y \le 9) = F(9) - F(6)$	M1 M1	
	$=\frac{1}{12}(9+"-2")-\frac{1}{12}(6+"-2")$	A1	
	$=\frac{1}{4}$	(3)	
(d)	$f(y) = \frac{1}{12}$	B1 (1)	
(e)	$E(6Y-5) = [26.5+] \int_{5}^{9} (6y-5)'' \frac{1}{12}'' dy$	M1	
	$= [26.5+] \frac{1}{12} [(3y^2 - 5y)]_5^9$	dM1	
	$=26.5+\frac{1}{12}[(3(9^2)-5(9))-(3(5^2)-5(5))]$	dM1	
	$=\frac{233}{6}$	A1 (4)	
		[Total 14]	
(-)	Notes		
(a)	1^{st} M1 writing or use of F(3) = 0 1^{st} A1 $a = 9$ cao 2^{nd} M1 writing or use of F(10) = 1 2^{nd} A1 $c = -488$ cao		
(b)	M1 use of F(5) = F(5) [= $\frac{1}{4}$] or F(9) = F(9) [= $\frac{7}{12}$] ft their values from (a)		
(c)	A1 $b = -2$ cao 1 st M1 writing or using F(9) – F(6) (may be implied by 2 nd M1)		
	2^{nd} M1 substituting 9 and 6 into $F(x)$ with their value of b		
	allow $\frac{1}{12} (100(9) + 5(9^2) + "-488") - \frac{1}{12} (6 + "-2")$ with their value of b and their value of c		
	A1 $\frac{1}{4}$ oe		
	B1 $\frac{1}{12}$		
(e)	1 st M1 use of $\int_{5}^{9} (6y-5)'' \frac{1}{12}'' dy$ (ignore limits)		
	2^{nd} M1 (dep on 1^{st} M1) attempt to integrate $(6y - 5)'' \frac{1}{12}''$ with at least one $y^n \to y^{n+1}$		
	$3^{\text{rd}} \text{ M1 (dep on } 1^{\text{st}} \text{ M1) } 26.5 + \int_{5}^{9} (6y-5)^{"\frac{1}{12}} dy$		
~~	A1 awrt 38.8		
SC:	Answer only or correct answer not using given information scores M0M1M1	Al	

Question Number	Scheme	Marks	
6. (a)	$P(17 < W < k) = P(W < k) - P(W < 17) = \frac{53}{60} - \left(1 - \frac{1}{5}\right) = \frac{1}{12}$	M1 A1 (2)	
(b)(i)	$\frac{(b-a)^2}{12} = 75$, $\frac{b-17}{b-a} = \frac{1}{5}$ or $\frac{17-a}{b-a} = \frac{4}{5}$	B1, B1	
	$\frac{(b-a)^2}{12} = 75 \to (b-a) = 30 \qquad \frac{b-17}{30} = \frac{1}{5}$	M1	
	b = 23 and $a = -7$	A1	
(ii)	$P(W < k) = \frac{k - ("-7")}{"23" - ("-7")} = \frac{53}{60} \text{ or } P(17 < W < k) = \frac{k - 17}{30} = \frac{1}{12} \text{ or } P(W > k) = \frac{"23" - k}{"23" - ("-7")} = \frac{7}{60}$	M1 (4)	
	k = 19.5	A1	
(c)	5-(-5) 1	(2)	
	$P(-5 < W < 5) = \frac{5 - (-5)}{"23" - ("-7")} = \frac{1}{3}$	M1A1ft (2)	
(d)	$E(W^2) = Var(W) + E(W)^2 = 75 + \left(\frac{"23" + "-7"}{2}\right)^2 = 139$	M1 A1 (2)	
		[Total 12]	
(a)	Notes M1 for writing or using $P(W < k) - P(W < 17)$ allow $<$ or \le		
(-)	Allow equivalent expressions e.g. $P(W > 17) - P(W > k) = \frac{1}{5} - \left(1 - \frac{53}{60}\right)$		
	3 (00)		
	A1 oe condone awrt 0.0833 condone $\frac{1}{12}$ coming from $\frac{13}{12} - 1$ or $\left -\frac{1}{12} \right $		
(b) (i)	1 st B1 correct equation for variance 2^{nd} B1 either correct probability equation. Allow e.g. k in place of $(b-a)$ 1 st M1 eliminating $(b-a)$ which must appear in both equations. A1 both $b=23$ and $a=-7$ correct answers imply all 4 marks		
(ii)	M1 probability expression using uniform distribution ft their values A1 $k = 19.5$ oe cao		
(c)	M1 for $10/(\text{their } b - \text{their } a)$		
	A1ft $\frac{1}{3}$ oe condone awrt 0.333 (Allow ft $\frac{10}{their(b-a)}$ as exact fraction or evaluated to		
(4)	3sf or better provided $a < -5$ and $b > 5$)		
(d)	M1 use of $E(W^2) = Var(W) + (E(W))^2$ with values substitued for $Var(W)$ and $E(W)$ ft their values of a and b allow any rearrangement. Must have a correct (ft) expression or value for $E(W)$		
	Also allow $\int_{0}^{\infty} \frac{1}{23''-7''} w^2 dw$		
	A1 139 cao		

Question Number	Scheme		Marks	
7. (a)	$R \sim \text{Po}(8)$ $P(4 \le R \le 8) = P(R \le 8) - P(R \le 3) = 0.5925 - 0.0424$ = 0.5501 = awrt 0.550		B1 M1 A1	
(b)	$H \sim \text{Po}(4)$ $P(H \le 2) = 0.2381$ $Y \sim \text{B}(5, \text{``}0.2381\text{''})$ $P(Y = 2) = {}^{5}\text{C}_{2}(\text{"`}0.2381\text{"'})^{2}(1 - \text{"`}0.2381\text{"'})^{3}$ = 0.25073 = awrt 0.251		(3) B1 B1 M1 M1 A1 (5)	
(c)	$W =$ number sold in first fifteen minutes $X =$ number sold in last forty five minutes $P(W > X \mid R = 4) = \frac{P(W = 4)P(X = 0) + P(W = 3)P(X = 1)}{P(R = 4)}$	F = number of muffins sold in first 15 minutes $F \sim B(4, 0.25)$ P(F > 2) =	M1	
	$=\frac{\frac{e^{-2}2^{4}}{4!}\frac{e^{-6}6^{0}}{0!} + \frac{e^{-2}2^{3}}{3!}\frac{e^{-6}6^{1}}{1!}}{\frac{e^{-8}8^{4}}{4!}}$	$P(F = 3) + P(F = 4)$ $= {}^{4}C_{3}(0.25)^{3}(0.75) + 0.25^{4}$	M1 M1	
	$=\frac{13}{256}$	(awrt 0.0508 or awrt 0.0509)	A1 (4) [Total 12]	
	Notes			
(a)	B1 writing or using Po(8) (may be implied by one correct probability from 0.5925, 0.0424 0.4530 or 0.0996) M1 writing or using $P(R \le 8) - P(R \le 3)$ A1 awrt 0.550 (cale: 0.55016) correct answer scores 3 out of 3			
(b)	1^{st} B1 writing or using Po(4) 2^{nd} B1 awrt 0.238 1^{st} M1 choosing binomial distribution with $n = 5$ and their p 2^{nd} M1 5 C ₂ $p^{2}(1-p)^{3}$ with $0A1 awrt 0.251$			
(c)	1 st M1 attempt at either correct product $P(W = 4)P(X = 0)$ or $P(W = 3)P(X = 1)$			
	from $W \sim Po(2)$ and $X \sim Po(6)$			
	implied by awrt 0.0902×awrt 0.0025 or awrt 0.180×awrt 0.0149 or awrt 0.0029			
	2^{nd} M1 conditional probability with $P(R = 4)$ from $R \sim Po(8)$ on denominator implied by awrt 0.0573 seen in the denominator of a probability expression			
	3 rd M1 complete expression for the required probability implied (awrt 0.0902×awrt 0.0025+awrt 0.180×awrt 0.0149)/awrt	0.0573 for 3 rd M1		
	A1 allow awrt 0.0508 or awrt 0.0509 from use of tables	, 0,00, 6 101 6 1,11		
ALT	1 st M1 identifying B(4, 0.25)			
	$2^{\text{nd}} \text{ M1 P}(F = 3) + P(F = 4) \text{ from B}(4, 0.25)$ $3^{\text{rd}} \text{ M1 } 4p^3q + p^4 \text{ from B}(4, 0.25)$			