Grundbegriffe der Informatik Aufgabenblatt 3

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	6. November 2013
Abgabe:	15. November 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sierechtzeitig,in Ihrer eigenen Handschrift,	
mit dieser Seite als Deckblatt undin der oberen linken Ecke zusammengeheftet	
abgegeben v	verden.
Vom Tutor au	szufüllen:
erreichte Punkte	
Blatt 3:	/ 18
Blätter 1 – 3:	/ 54

Aufgabe 3.1 (1+1=2 Punkte)

Es sei A ein Alphabet und $L \subseteq A^*$.

- a) Geben Sie eine notwendige und hinreichende Bedingung dafür an, dass L^* endlich ist.
- b) Geben Sie eine notwendige und hinreichende Bedingung dafür an, dass $L^* = A^*$ ist.

Lösung 3.1

- a) $L = \{\}$ oder $L = \{\epsilon\}$.
- b) $A \subseteq L$

Aufgabe 3.2 (1+1+2+2=6 Punkte)

Es sei $A = \{a, b\}$. Beschreiben Sie jede der folgenden formalen Sprachen $L_i \subseteq A^*$ durch einen Ausdruck, in dem nur die Zeichen

a b
$$\{\ \}$$
 , \cup \cdot *

(unter Umständen mehrfach) vorkommen.

- a) L_1 : alle Wörter, in denen mindestens ein a und mindestens ein b vorkommt
- b) L_2 : alle Wörter, in denen nirgends ein a vorkommt
- c) L₃: alle Wörter, in denen nirgends das Teilwort bb vorkommt
- d) L4: alle Wörter, in denen nirgends das Teilwort aab vorkommt

Lösung 3.2

Für jeden der Fälle gibt es viele Lösungsmöglichkeiten.

Nachfolgend einige Beispiele:

- a) $L_1 = \{a\}^* \{ab\} \{a, \bar{b}\}^* \cup \{b\}^* \{ba\} \{a, b\}^*$
- b) $L_2 = \{b\}^*$
- c) L_3 : eine mögliche Herangehensweise: Wörter, in denen nirgends das Teilwort bb vorkommt, haben die Eigenschaft, dass gar kein b vorkommt, oder wenn doch, vor jedem b mit Ausnahme des ersten, mindestens ein a steht: $L_3 = \{a\}^* \cup \{a\}^* \{b\} \{a,ab\}^*$
- d) L_4 : eine mögliche Herangehensweise: Wörter, in denen nirgends das Teilwort aab vorkommt, haben die Eigenschaft, dass vor jedem b höchstens ein a kommt. Daher:

$$L_4 = \{ab, b\}^* \{a\}^*.$$

Aufgabe 3.3 (1+1+2=4 Punkte)

Eine Zahl $p \in \mathbb{N}_0$ heißt *Primzahl* (oder kurz *prim*), wenn $p \geq 2$ ist und nicht als Produkt zweier Zahlen $r, s \in \mathbb{N}_0$ geschrieben werden kann, die beide *echt* kleiner als p sind. Mit anderen Worten: p ist prim, wenn 1 und p die einzigen positiven Teiler von p sind.

Es sei $A = \{a\}$ und $P \subseteq A^*$ die formale Sprache $P = \{a^p \mid p \text{ ist prim}\}.$

a) Gibt es eine formale Sprache $L \subseteq A^*$ mit der Eigenschaft $L^* = P$?

- b) Gibt es eine formale Sprache $L \subseteq A^*$ mit der Eigenschaft $L^+ = P$?
- c) Beweisen Sie Ihre Antwort aus Teilaufgabe b).

Lösung 3.3

- a) Nein. (nicht geforderte Erklärung: $\varepsilon \in L^*$ aber 0 nicht prim)
- b) Nein.
- c) Indirekter Beweis: Angenommen für ein L gilt $L^+ = P$. Da 2 prim ist, muss dann aa in L^+ sein. Das geht nur, wenn a $\in L$ oder aa $\in L$. In beiden Fällen ist dann aaaa $\in L^+$, aber 4 ist nicht prim. Widerspruch zur Annahme $L^+ = P$.

Aufgabe 3.4 (4 Punkte)

Für nichtnegative ganze Zahlen $k, n \in \mathbb{N}_0$ benutzen wir im folgenden die Schreibweise "k|n" um auszudrücken, dass k ein Teiler von n ist, d. h. dass ein $m \in \mathbb{N}_0$ existiert mit $k \cdot m = n$.

Beweisen Sie durch vollständige Induktion:

$$\forall n \in \mathbb{N}_0 : 3 \mid (n^3 - n)$$
.

Lösung 3.4

Induktionsanfang: n = 0:

Dann ist
$$n^3 - n = 0^3 - 0 = 0 = 3 \cdot 0$$
, also gilt $3 \mid 0^3 - 0$.

Induktionsvoraussetzung: Für ein beliebiges aber festes n gelte: $3 \mid (n^3 - n)$, es gebe also ein $m \in \mathbb{N}_0$ mit $3 \cdot m = n^3 - n$

Induktionsschluss $n \rightsquigarrow n+1$: zu zeigen ist: $3 \mid ((n+1)^3 - (n+1))$, d. h. es gibt ein $m' \in \mathbb{N}_0$ mit $3 \cdot m' = ((n+1)^3 - (n+1))$.

Man rechnet:

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$$

= $n^3 - n + 3(n^2 + n)$
= $3m + 3(n^2 + n)$ nach Induktionsvoraussetzung
= $3(m + n^2 + n)$

Also hat $(n + 1)^3 - (n + 1)$ den Teiler 3 (m.a.W. $m' = m + n^2 + n$).

Aufgabe 3.5 (2 Punkte)

Wo steckt der Fehler in dem folgenden "Induktionsbeweis":

Zu zeigen ist die Behauptung: Für alle $n \in \mathbb{N}_+$ gilt: In jeder Menge, die genau n Vögel enthält, haben alle Vögel die gleiche Farbe.

Induktionsanfang n = 1: Wenn eine Menge genau 1 Vogel enthält, dann haben offensichtlich alle Vögel die gleiche Farbe.

Induktionsschritt $n \rightarrow n + 1$:

Induktionsvoraussetzung: Für ein beliebiges aber festes *n* gelte: In jeder Menge, die genau *n* Vögel enthält, haben alle Vögel die gleiche Farbe.

Induktionsschluss: Man zeige die Aussage für n + 1: Sei also M eine Menge, die genau n + 1 Vögel enthalte. Man stelle sich vor, dass die Vögel alle nebeneinander sitzen:

Die Vögel 1, 2, ..., n bilden eine Menge mit genau n Vögeln. Also haben sie nach Induktionsvoraussetzung alle die gleiche Farbe. Die Vögel 2, 3, ..., n + 1 bilden auch eine Menge mit genau n Vögeln. Also haben nach Induktionsvoraussetzung auch diese alle die gleiche Farbe.

Folglich haben auch die Vögel 1 und n + 1 die gleiche Farbe, also haben alle Vögel die gleiche Farbe.

Lösung 3.5

Das Bild ist zwar außerordentlich hübsch, suggeriert aber leider etwas, was nicht immer stimmt: Für n=2 überlappen sich die Teilmengen "ohne den ersten" und "ohne den letzten" Vogel *nicht*. Es ist also nicht erzwungen, dass beide Vögel die gleiche Farbe haben.

(Und das macht "alles weitere" auch kaputt: Wenn nicht immer 2 Vögel die gleiche Farbe haben, dann auch nicht immer 3 Vögel, usw.)