Vision par ordinateur

Modèle de la caméra

Alain Boucher - IFI

Modèle de sténopé (pinhole)

- Modèle sans lentille qui date du 15° siècle
 - on prend une boite de carton
 - on perce un trou (sténopé) d'un côté
 - on place une vitre translucide de l'autre côté (plan image)
- Les objets apparaissent inversés sur le plan image

Caméra : effets de la perspective

Plus les objets sont éloignés et plus ils sont petits dans l'image

Projection perspective

Projection perspective

Caméra : point de fuite

Les lignes parallèles se rejoignent en un point de l'image (point de fuite)

Point de fuite et ligne d'horizon

- Toutes les lignes parallèles se rejoignent au point de fuite
 - Parallèle = origine différente même direction
 - Le point de fuite vaut pour cette direction
 - Il peut y avoir plusieurs points de fuite dans une image
- La <u>ligne d'horizon</u> est l'intersection du plan image et d'un plan, passant par le Centre de Projection, qui est parallèle à un plan contenant un ensemble d'éléments observés des droites d'un plan 3D par exemple.

Points de fuite et ligne d'horizon

Une image peut contenir plusieurs points de fuite

La perspective et l'histoire de l'art

Giotto, **Fondation de l'ordre des Franciscains**, Fresque de la Basilique supérieure d'Assise (1295-1300)

Las Meninas (1656) par Diego Velàzquez

Illusions d'optique avec la perspective

Equations de la perspective (sténopé)

(x,y,z): coordonnées du point 3D dans la scène (z toujours négatif)

(x',y'): coordonnées du point 2D sur le plan image

f': distance entre l'ouverture (sténopé) et le plan image (remarque : différent de la distance focale - pas de lentille ici)

Perpective affine (modèle simple)

• Si la scène observée est relativement peu profonde selon z (Δ z est petit), alors on considère m constant (perspective faible).

Projection orthographique

- Si la caméra est à une distance (presque) constante de la scène, alors on prend m=1.
- Il s'agit d'un cas très particulier de la perspective (faible).
- Peu utilisée en pratique, mais il existe des lentilles utilisant ce modèle
 - lentilles télécentriques en vision industrielle

Comparaison des projections

Projection orthographique

Projection perspective 2 points de fuite

Modèle continu de la projection

Source: Marc Pollefeys, Class 09: Camera Calibration, Multiple View Geometry, Univ. of NC (USA)

Inconvénients du sténopé

- Petite ouverture -> peu de lumière
- Effet de diffraction, i.e. courbure des rayons à cause des rebords d'objets opaques. La diffraction crée un flou. L'effet augmente si le diamètre de l'ouverture diminue.
- Si on augmente la taille de l'ouverture, la profondeur de champ diminue.

Inconvénients du sténopé

- Taille de l'ouverture ↑
 - Profondeur de champ ↓
 - Flou ↑
- Taille de l'ouverture ↓
 - Effet de diffaction
 - Flou ↑
- Images sombres

Flou créé par l'augmentation de l'ouverture

Solution : caméra avec lentille

- avantage : modèle équivalent au sténopé
- inconvénient: seuls des points à une distance donnée de la lentille sont au focus
 - profondeur de champ limitée
- Profondeur de champ : intervalle de profondeur sur lequel les objets sont projetés avec une netteté suffisante
 - Critère de netteté (exemple) :
 - disque flou a un diamètre inférieur à 1 pixel

Profondeur de champ

Faible profondeur de champ

Grande profondeur de champ

Profondeur de champ

Même profondeur de champ Variation de la distance focale

Source: Benoit Telle.

Lentille mince convergente

F: point focal

f : distance focale

O : centre de projection

axe optique (axe z)

$$\begin{cases} x' = z' \frac{x}{z} \\ y' = z' \frac{y}{z} \end{cases}$$

avec

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

Les défauts des lentilles

- Aberrations: caractéristiques d'une lentille qui l'empêche de former l'image d'un point objet en un seul point du plan image. Un point a plutôt comme image une petite région floue.
- Aberrations sphériques : s'appliquent aux points qui devraient être imagés sur l'axe optique (netteté -, dépend de l'ouverture).
 - Les réfractions loins de l'axe optique de la lentille ont tendance à ne pas bien être focalisée.
- Distorsion radiale: souvent importante pour les grands angles indépendant de l'ouverture, n'affecte pas la netteté.
 - Les longues lignes droites apparaîtront comme des lignes courbes.
- Aberration chromatique : liée à la dépendance de l'indice de réfraction à la longueur d'onde.
 - Cela signifie par exemple que la lumière bleue sera déviée différemment de la lumière rouge.

Les défauts des lentilles

Distorsions radiales

Aberrations chromatiques

Exemple de distorsion spatiale

Exemple de distorsion radiale

A ne pas confondre avec les effets de la perspective (lignes droites)

Correction de la distorsion radiale

Distorsion radiale

correction

Image linéaire

Lentilles complexes

- Problème : les lentilles dévient les rayons et causent un déplacement ainsi qu'un flou pour le point idéal.
- But : réduire les aberrations
- Solution : un arrangement de plusieurs lentilles

Lentilles complexes

- Compromis : le vignettage
- Effet : l'illuminance décroît vers la périphérie de l'image

Références (voir aussi la page web du cours)

- Cours INF2701 Infographie et CAO, Ecole Polytechnique de Montréal (Canada).
 - http://www.cours.polymtl.ca/inf2701/
- Kostas Daniilidis, Machine Perception (CIS 580 Fall 2007), University of Pennsilvania (USA).
 - http://www.seas.upenn.edu/~cis580/home.html
- Marc Pollefeys, Multiple View Geometry (comp290-89 Spring 2003), University of North Carolina (USA).
 - Class 09 Camera calibration: http://www.cs.unc.edu/~marc/mvg/course09.ppt