Rec'd PCT/PTO 21 OCT 2005

(12)特許協力条約に基づいて公開された国

(19) 世界知的所有権機関 国際事務局

10/ 554156

(43) 国際公開日 2004年11月11日(11.11.2004)

PCT

(10) 国際公開番号 WO 2004/096775 A1

(51) 国際特許分類7: C07D 223/16, 401/06, 401/12, 403/06, 403/12, 417/06, A61K 31/55, A61P 13/02, 43/00

(SAITOH, Chikashi) [JP/JP]; 〒3058585 茨城県つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP).

(21) 国際出願番号:

PCT/JP2004/005998

(74) 代理人: 長井 省三, 外(NAGAI, Shozo et al.); 〒 1748612 東京都板橋区蓮根三丁目 1 7 番 1 号 山之内製薬株式会社 特許部内 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が

可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) 国際出願日:

2004年4月26日(26.04.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-123032 特願2003-401126 2003 年4 月28 日 (28.04.2003) JP 2003 年12 月1 日 (01.12.2003) JP

(71) 出願人(米国を除く全ての指定国について): 山之内 製薬株式会社(YAMANOUCHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒1038411 東京都中央区日本橋本 町二丁目3番11号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 古塩 裕之 (KOSHIO, Hiroyuki) [JP/JP]; 〒3058585 茨城県つくば 市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 塚本 一成 (TSUKAMOTO, Issei) [JP/JP]; 〒3058585 茨城県つくば市御幸が丘21 山之内製薬株式会社 内 Ibaraki (JP). 掛札 昭夫 (KAKEFUDA, Akio) [JP/JP]; 〒3058585 茨城県つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 赤松 清二郎 (AKAMATSU, Seijiro) [JP/JP]; 〒3058585 茨城県つくば市御幸が丘21 山之内製薬株式会社内 Ibaraki (JP). 齋藤 親

BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: 4,4-DIFLUORO-1,2,3,4-TETRAHYDRO-5H-1-BENZAZEPINE DERIVATIVE OR SALT THEREOF

(54) 発明の名称: 4, 4-ジフルオロー1, 2, 3, 4-テトラヒドロー5H-1-ベンゾアゼピン誘導体又はその塩

(57) Abstract: A novel 4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepine derivative represented by the following formula (I) or a pharmaceutically acceptable salt of the derivative. They are useful as a therapeutic or preventive agent for night pollakisuria and/or diabetes insipidus.

(57) 要約:

夜間頻尿及び/又は尿崩症の治療又は予防剤として有用な、下記式 (I) で示される新規な4, 4-ジフルオロ-1, 2, 3, 4-テト ラヒドロー 5 H-1-ベンゾジアゼピン誘導体又はその製薬学的に許 容される塩を提供する。

$$R^3$$
 R^3
 R^3
 R^3
 R^3
 R^2
 R^3
 R^2

明 細 書

4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその塩

技術分野

本発明は、医薬、殊に中枢性尿崩症、夜間頻尿治療薬として有用な新規 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその塩及び該化合物を有効成分とする医薬に関する。

背景技術

アルギニンバソプレシン(AVP)は、視床下部一下垂体系にて生合成・分泌される9個のアミノ酸からなるペプチドである。AVP の受容体は、 V_{1a} 、 V_{1b} 及び V_2 の3種類のサブタイプに分類され、末梢における AVP の主な薬理作用には V_{1a} 受容体を介する血管収縮作用と、 V_2 受容体を介する抗利尿作用が知られている。 V_2 受容体選択的作動薬としてはペプチドであるデスモプレシン(AVP の1位のシステインのアミノ基を削除し、8 位のアルギニンを d型に変換したもの)が合成されており、中枢性尿崩症の治療に用いられている(非特許文献 1)。しかしながら、デスモプレシンの経口剤は生物学的利用率が非常に低く、効果を得るためには高い用量が必要である。このため、デスモプレシン製剤は高価であり、また個体間の吸収のばらつきに基づく副作用の発生がしばしば認められる。従って、 V_2 受容体を選択的に刺激する、生物学的利用率の高い非ペプチド性の抗利尿薬の開発が期待されている。

一方、医療の多様化、高齢化に伴い、薬物が単独で使用されることの方が稀 となり、多くの場合は複数の薬物が同時に、あるいは時間をずらして投与され ている。これは AVP 受容体作動薬の分野でも同様である。薬物は、肝臓において薬物代謝酵素の作用を受けて不活性化され、代謝産物へと変換されるが、この薬物代謝酵素の中でも最も重要であるのがチトクローム P450 (CYP) である。 CYP には多数の分子種が存在するが、同じ分子種の CYP により代謝される複数の薬物がその代謝酵素上で競合すると、その薬物の CYP への親和性により異なるものの、何らかの代謝阻害を受けることが考えられる。その結果、血中濃度上昇や血中半減期延長等の薬物相互作用が発現する。

このような薬物相互作用は、相加作用、相乗作用を意図して使用される場合を除き好ましくない作用であり、予期せぬ副作用を呈する場合がある。従って、 CYP に対する親和性が低く、薬物相互作用の懸念の小さい医薬の創製が望まれている。

従来、 V_2 受容体選択的作動薬であり、抗利尿作用を示す非ペプチド性化合物 としては、一般式 (A)、一般式 (B) 又は一般式 (C) で示される 3 環性化合物が知られている (特許文献1、特許文献2、特許文献3)。

$$X = G$$

$$A =$$

(式中の記号は、該公報参照)

また、 V_2 受容体選択的作動薬として、一般式(D)で示される縮合アゼピン 誘導体が知られている(特許文献 4)。

(式中の記号は、該公報参照)

また、一般式(E)で示されるベンゾアゼピン誘導体(特許文献 5、特許文献 6)、及び一般式(F)又は一般式(G)で示されるベンゾへテロ環化合物(特許文献 7、特許文献 8、特許文献 9)が V_2 受容体選択的作動薬として知られている。

(式中の記号は、該公報参照)

しかし、いずれの公報にも本発明に係る 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体に関する開示は一切ない。

また、AVP 受容体又はオキシトシン受容体に対する拮抗作用を有する、4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体が知られているが、 V_2 受容体作動作用並びに中枢性尿崩症及び夜間頻尿との関連については一切知られていない(特許文献10、特許文献11、特許文献12)。なお、特許文献10及び特許文献12には、本発明に係るベンゾアゼピン1位に置換するベンゾイル2位に CF_3 、若しくはハロゲンが置換した4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン1位に置換するカルボニルに結合したヘテロアリール基には、ベンゾアゼピン1位に置換するカルボニルに結合したヘテロアリール基

に、直接芳香環が結合した化合物のみが開示されており、本発明に係るベンゾ アゼピン1位に置換するカルボニルに結合した環に-O-、-S-、-NH-、若しくは-N(低 級アルキル)-を含む置換基を有する 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体については開示がない。

このような状況下、中枢性尿崩症及び/又は夜間頻尿の治療を目的とした生物学的利用率の高い非ペプチド性の抗利尿薬の開発が切望されている。

【非特許文献 1 】日本内分泌学会雑誌,54,676-691,1978.

【特許文献1】国際公開第99/06409 号パンフレット

【特許文献2】国際公開第99/06403 号パンフレット

【特許文献3】国際公開第 00/46224 号パンフレット

【特許文献4】国際公開第01/49682 号パンフレット

【特許文献 5 】国際公開第 97/22591 号パンフレット

【特許文献 6】日本国特許第 2926335 号公報

【特許文献7】日本国特許第3215910号公報

【特許文献8】日本国特許出願公開特開平 11-349570 号公報

【特許文献9】日本国特許出願公開特開2000-351768号公報

【特許文献10】国際公開第95/06035 号パンフレット

【特許文献11】国際公開第98/39325 号パンフレット

【特許文献12】日本国特許出願公開特開平9-221475号公報

発明の開示

本発明者等は、中枢性尿崩症及び/又は夜間頻尿に対する有効性が期待できる V_2 受容体作動作用を有する化合物について鋭意研究したところ、新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体が優れた該効果を有することを見出し、本発明を完成させた。また、本発明化合物が、従来知ら

れていた V_2 受容体作動作用を有するベンゾアゼピン誘導体に比べ、薬物代謝酵素 CYP3A4 及び CYP2C9 に対する阻害作用が極めて低いことを見出した。

即ち、本発明によれば、中枢性尿崩症及び/又は夜間頻尿治療薬として有用な下記一般式(I)で示される、新規な4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩;及びこれらの化合物のいずれかを有効成分とする医薬;特にアルギニンバソプレシン V_2 受容体作動薬である上記の医薬;夜間頻尿治療剤、若しくは中枢性尿崩症治療剤である上記の医薬が提供される。

$$R^3$$
 R^3
 R^3
 R^3
 R^3
 R^3
 R^2
 R^1
 R^1
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

[式中の記号は以下の意味を示す。

 R^1 : 置換されていてもよいアミノ、-OH、若しくは-O-低級アルキル。

 $R^2: CF_3$ 、若しくはハロゲン。

 $R^3: H$ 、若しくはハロゲン。

a、b: それぞれ単結合又は二重結合を示し、一方が単結合、他方が二重結合。 -X-:

(1)a が単結合、b が二重結合である場合、-CH=CH-、-CH=N-、-N=CH-、-N=N-、若しくは-S-。

(2) a が二重結合、b が単結合である場合、-N-。

Y:

- (1) aが単結合、bが二重結合である場合、CH、若しくはN。
- (2) a が二重結合、b が単結合である場合、S。

-A-:-O-、-S-、-NH-、若しくは-N(低級アルキル)-。

B: それぞれ置換されていてもよい低級アルキル、低級アルケニル、低級アルキニル、シクロアルキル、若しくはアリール。]

本発明化合物は、置換されたメチリデン基が置換したベンゾアゼピン環炭素原子に隣接する環炭素原子にジフルオロ基を有する点に化学構造上の特徴を有しており、従来知られていた V_2 受容体選択的作動薬と構造を全く異にするものである。なお、本発明化合物はジフルオロ基を有するため、カルボニル基に共役した二重結合が異性化することなく、生体内においても十分な安定性を有する。

これらの化合物のうち、好ましくは R^1 が式 $(I\ I\ I)$ 、式 $(I\ I\ I\ I)$ 、-OH、若 しくは-O-低級アルキルで示される基である上記一般式 $(I\ I)$ で示される、新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩であり、その中でも R^1 が式 $(I\ I\ I)$ 、若しくは式 $(I\ I\ I\ I)$ で示される基である上記一般式 $(I\ I)$ で示される、新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩が好ましい。

$$-N^{Z_{-R}^{12}}$$
 $-N^{R_{-R}^{14}}$ R^{13} (III)

[式中の記号は以下の意味を示す。

 Z^1 : 単結合、低級アルキレン、若しくは-低級アルキレン-C(=O)-。

 R^{11} : -OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、及び1つ若しくは2

つの低級アルキルで置換されていてもよいカルバモイルからなる群より選択される基で置換されていてもよい低級アルキル、又は-H。 \mathbb{R}^{12} :

(1) Z^1 が単結合、又は低級アルキレンを示す場合、

-H、-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。

(2) Z¹ が-低級アルキレン-C(=O)-を示す場合、

式(III)、若しくは式(IV)で示される基。

$$-N^{R^{14}}$$
 $-N^{Z^{2}}R^{15}$ R^{13} (III) R^{11} (IV)

[式中の記号は以下の意味を示す。

 Z^2 : 単結合、若しくは低級アルキレン。

R¹⁵:-H、-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、1つ若しくは2 つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。]

 R^{13} 、 R^{14} : 隣接する窒素原子と一体となって、置換されていてもよい非芳香族環状アミノ基。]

より好ましくは、 R^1 が式(II)、若しくは式(III)で示される基であり; a が単結合であり;b が二重結合であり;-X-が-CH=CH-であり;-Y-が-CH-である、上記一般式(I)で示される、新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩である。

さらに好ましくは、 R^1 が式(II)で示される基であり; a が単結合であり;

b が二重結合であり; -X-が-CH=CH-であり; -Y-が-CH-である、上記一般式(I)で示される、新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩である。

特に好ましくは、R¹が式(II)で示される基であり;aが単結合であり;b が二重結合であり;-X-が-CH=CH-であり;-Y-が-CH-であり;-A-が-O-である、 上記一般式(I)で示される、新規な4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩である。

もっとも好ましくは、 R^1 が式(II)で示される基であり; a が単結合であり; b が二重結合であり; -X-が-CH=CH-であり; -Y-が-CH-であり; -A-が-O-であり; -B が置換されていてもよい低級アルキルである、上記一般式(I)で示される、新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩である。

その中でも特に、 R^2 がトリフルオロメチルであり; R^3 が-H 若しくは-F である 新規な 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベングアゼピン誘導体又はそ の製薬学的に許容される塩が好ましい。

これらの化合物の中でも、特に好ましい化合物は、化合物群 P 及び化合物群 Q からなる群より選択される化合物若しくはその製薬学的に許容される塩であり、その中でも化合物群 P より選択される化合物若しくはその製薬学的に許容される塩が好ましい。

ここで、「化合物群 P」とは、

(2Z)-N-(2-アミノ-2-オキソエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、

(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-

ベンゾアゼピン-5-イリデン}アセトアミド、

(2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、

(2Z)-2-{4,4-ジフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-[(2S)-2,3-ジヒドロキシプロピル]アセトアミド、

3-[((2Z)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチル)アミノ]プロパンアミド、及び、

(2Z)-N-[(2R)-2,3-ジヒドロキシプロピル]-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、

からなる群であり、「化合物群 Q」とは、

(2Z)-N-(2-アミノ-2-オキソエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、

(2Z)-2-{1-[4-(2,2-ジフルオロプロポキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-(2-ヒドロキシエチル)アセトアミド、

(2Z)-2-{4,4-ジフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-(2-ヒドロキシエチル)アセトアミド、

(2Z)-2-{4,4-ジフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフル オロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデ ン}-N-(2-ヒドロキシエチル)アセトアミド、

(2Z)-2-{1-[4-(2,2-ジフルオロプロポキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-(2-ヒドロキシエチル)アセトアミド、

(2Z)-N-[(2R)-2,3-ジヒドロキシプロピル]-2-{4,4,7-トリフルオロ-1-[4-プロポキシ-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベングアゼピン-5-イリデン}アセトアミド、

(2Z)-2-{4,4-ジフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-[(2S)-2,3-ジヒドロキシプロピル]アセトアミド、

(2Z)-2-{4,4-ジフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフル オロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベングアゼピン-5-イリデ ン}-N-[(2R)-2,3-ジヒドロキシプロピル]アセトアミド、

3-[((2Z)-2-{4,4,7-トリフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチル)アミノ]プロパンアミド、

(2Z)-N-[(2R)-2,3-ジヒドロキシプロピル]-2-{4,4,7-トリフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、

3-[((2Z)-2-{1-[4-(2,2-ジフルオロプロポキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4,7-トリフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベングアゼピン-5-イリデン} アセチル)アミノ]プロパンアミド、

(2Z)-2-{4,4-ジフルオロ-1-[4-プロポキシ-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-[(2R)-2,3-ジヒドロキシプロピル]アセトアミド、及び、

(2Z)-2-{4,4-ジフルオロ-1-[4-プロポキシ-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-[(2S)-2,3-ジヒドロキシプロピル]アセトアミド、

からなる群である。

なお、 R^1 としては、上記式(II)若しくは上記式(III)で示される基が好ましく; L^1 が単結合であり、 R^{12} が-H であり、 R^{11} が置換されていてもよい低級アルキルである、上記式(II)で示される基がさらに好ましく; L^1 が単結合であり、 L^{12} が-H であり、 L^{12} が-H であり、 L^{13} が-OH 及びカルバモイルからなる群より選択される 1 つ以上の置換基で置換されていてもよい低級アルキルである、上記式(LII)で示される基が特に好ましい。

また、 R^2 としては、トリフルオロメチル若しくはクロロが好ましく;トリフルオロメチルが特に好ましい。

また、 R^3 としては、-H若しくはフルオロが好ましく; -H若しくは 7-フルオロが特に好ましい。

また、a、b、-X-及び-Y-としては、a が単結合、b が二重結合、-X-が-CH=CH-、かつ、-Y-が-CH-が好ましい。

また、-A-としては、-O-が好ましい。

また、-B としては、置換されていてもよい低級アルキルが好ましく;F で置換されていてもよい低級アルキルが特に好ましい。

本発明化合物をさらに説明すると次の通りである。

本明細書中、「低級アルキル」とは、 C_{1-6} の直鎖又は分枝状の炭素鎖の 1 価基を意味し、具体的には例えば、メチル、エチル、プロピル、ブチル、ペンチル若しくはヘキシル、又はイソプロピル、tert-ブチル等のこれらの構造異性体であり、好ましくは C_{1-4} アルキルのメチル、エチル、プロピル、ブチル、イソブチ

ルである。

「低級アルキレン」とは、 C_{1-6} の直鎖又は分枝状の炭素鎖の 2 価基を意味し、 具体的には例えば、メチレン、エチレン、トリメチレン、メチルメチレン、メ チルエチレン、ジメチルメチレン等が挙げられる。

「低級アルケニル」とは、 C_{2-6} の直鎖又は分枝状の少なくとも1つの二重結合を有する炭素鎖の1価基を意味し、具体的には例えば、ビニル、アリル、1-ブテニル、2-ブテニル、1-ヘキセニル若しくは3-ヘキセニル、又は2-メチルアリル等のこれらの構造異性体であり、好ましくはアリル、2-メチル-1-プロペン-3-イルである。

「低級アルキニル」とは、 C_{26} の直鎖又は分枝状の少なくとも1つの三重結合を有する炭素鎖の1価基を意味し、具体的には例えば、エチニル、プロパルギル、1-ブチニル、3-ブチニル、1-ヘキシニル若しくは3-ヘキシニル、又は3-メチル-1-ブチニル等のこれらの構造異性体であり、好ましくはプロパルギル、1-ブチン-4-イルである。

「シクロアルキル」とは、部分的に不飽和結合を有していてもよい C₃₋₈ の非 芳香族の炭化水素環の 1 価基を意味し、具体的には例えば、シクロプロピル、シクロペンチル、シクロヘキシル、シクロオクチル、シクロヘキセニル、シクロオクタンジエニル等が挙げられる。

「アリール」とは、単環乃至 3 環の C_{6-14} の芳香族の炭化水素環の 1 価基を意味し、具体的には例えば、フェニル、ナフチル等が挙げられ、好ましくはフェニルである。

「芳香族へテロ環」とは、単環乃至 3 環の窒素、酸素、硫黄等のヘテロ原子を有する芳香環の 1 価基を意味し、具体的には例えば、ピリジル、チエニル、フリル、ピラジニル、ピリダジニル、チアゾリル、ピリミジニル、ピラゾリル、ピロリル、オキサゾリル、イソチアゾリル、イソオキサゾリル、イミダゾリル

等が挙げられ、好ましくはピリジルである。

「非芳香族へテロ環」とは、部分的に不飽和結合を有していてもよく、アリール若しくは芳香族へテロ環と縮合していてもよい窒素、酸素、硫黄等のヘテロ原子を有する 5 乃至 7 員環の 1 価基を意味し、具体的には例えば、ピロリジニル、イミダブリジニル、ピペリジニル、ピペラジニル、アゼピニル、モルホニル、チオモルホニル、テトラヒドロフリル、テトラヒドロチエニル等が挙げられ、好ましくはピロリジニル、ピペラジニル、モルホニルである。

「非芳香族環状アミノ基」とは、部分的に不飽和結合を有していてもよく、窒素、酸素、硫黄を含んでいてもよい 3 乃至 10 員環の非芳香族の環状アミン、好ましくは 5 乃至 7 員環の非芳香族の環状アミンの 1 価基を意味し、具体的には例えば、ピロリジニル、ピペリジニル、アゼピニル、モルホニル、チオモルホニル、ピペラジニル、ピラゾリジニル、ジヒドロピロリル等が挙げられ、好ましくはピロリジニル、ピペリジニル、ピペラジニル、モルホニルである。

「ハロゲン」とは、ハロゲン原子の 1 価基を意味し、具体的には例えばフルオロ、クロロ、ブロモ、ヨード等が挙げられる。

本明細書において、「置換されていてもよい」の語の許容される置換基としては、それぞれの基の置換基として通常用いられる置換基であればいずれでもよく、各々の基に1つ以上の置換基を有していてもよい。

R¹ における「置換されていてもよいアミノ」とは、具体的には、上記一般式 (II) 及び (III) で示される基を挙げることができる。

Bにおける「置換されていてもよいシクロアルキル」、「置換されていてもよいアリール」; R^{12} 、 R^{15} における「置換されていてもよいアリール」、「置換されていてもよい芳香族へテロ環」、「置換されていてもよい芳香族へテロ環」、「置換されていてもよい非芳香族へテロ環」;並びに R^{13} 、 R^{14} における「置換されていてもよい非芳香族環状アミノ基」;において許容される置換基としては、以下の

- (a) 乃至(h) に示される基が挙げられる。なお、R²は、-OH、-O-低級アルキル、1 つ又は 2 つの低級アルキルで置換されていてもよいアミノ、1 つ又は 2 つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へテロ環及びハロゲンからなる群より選択される 1 つ以上の基で置換されていてもよい低級アルキルを示す。
- (a) ハロゲン;
- (b) -OH、-O-R^Z、-O-アリール、-OCO-R^Z、オキソ (=O);
- (c) -SH、-S-R^Z、-S-アリール、-SO-R^Z、-SO-アリール、-SO₂-R^Z、-SO₂-アリール、1 つ又は 2 つの R^Zで置換されていてもよいスルファモイル;
- (d) 1 つ又は 2 つの R^Z で置換されていてもよいアミノ、-NHCO- R^Z 、-NHCO-アリール、-NHSO $_2$ -R Z 、-NHSO $_2$ -アリール、ニトロ;
- (e) -CHO、-CO- R^Z 、-CO₂H、-CO₂- R^Z 、1 つ又は 2 つの R^Z で置換されていて もよいカルバモイル、シアノ;
- (f)-OH、-O-低級アルキル、1つ又は2つの低級アルキルで置換されていてもよいアミノ、1つ又は2つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へテロ環、ハロゲン及び R^2 からなる群より選択される1つ以上の基でそれぞれ置換されていてもよいアリール若しくはシクロアルキル;
- (g)-OH、-O-低級アルキル、1つ又は2つの低級アルキルで置換されていてもよいアミノ、1つ又は2つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へテロ環、ハロゲン及び R²からなる群より選択される1つ以上の基でそれぞれ置換されていてもよい芳香族へテロ環若しくは非芳香族へテロ環;
- (h)上記(a)乃至(g)に示される置換基より選択される 1 つ以上の基で それぞれ置換されていてもよい低級アルキル若しくは低級アルケニル。

また、Bにおける「置換されていてもよい低級アルキル」「置換されていても

よい低級アルケニル」「置換されていてもよい低級アルキニル」において許容される置換基としては、上記の(a)乃至(g)に示される基が挙げられる。

一般式(I)で示される本発明の化合物には、置換基の種類によっては、不 斉炭素原子を含む場合があり、これに基づく光学異性体が存在しうる。本発明 はこれらの光学異性体の混合物や単離されたものをすべて包含する。また、本 発明化合物は互変異性体が存在する場合があるが、本発明にはこれらの異性体 の分離したもの、あるいは混合物が含有される。

また、本発明の化合物は、塩を形成する場合もあり、かかる塩が製薬学的に 許容されうる塩である限りにおいて本発明に包含される。具体的には、塩酸、 臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの無機酸や、ギ酸、酢酸、 プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、 リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、p-トルエ ンスルホン酸、アスパラギン酸又はグルタミン酸などの有機酸との酸付加塩、 ナトリウム、カリウム、カルシウム、マグネシウム等の金属を含む無機塩基、 メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン等の有。 機塩基との塩やアンモニウム塩等が挙げられる。さらに、本発明は本発明化合 物及びその製薬学上許容される塩の各種の水和物や溶媒和物及び結晶多形を有 する物質も包含する。なお、本発明化合物には、生体内において代謝されて前 記一般式(I)を有する化合物又はその塩に変換される化合物、いわゆるプロ ドラッグもすべて包含される。本発明のプロドラッグを形成する基としては、 Prog. Med., 5; 2157-2161, 1985.に記載されている基や、廣川書店 1990 年刊「医薬 品の開発」第7巻 分子設計 163-198 ページに記載されている基が挙げられる。 (製造法)

本発明化合物及びその製薬学的に許容される塩は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造するこ

とができる。以下に代表的な製法を例示する。なお、官能基の種類によっては、 当該官能基を原料乃至中間体の段階で適当な保護基、すなわち容易に当該官能 基に転化可能な基に置き換えておくことが製造技術上効果的な場合がある。し かる後、必要に応じて保護基を除去し、所望の化合物を得ることができる。こ のような官能基としては例えば水酸基やカルボキシル基、アミノ基などを挙げ ることができ、それらの保護基としては例えばグリーン(Greene)及びウッツ (Wuts) 著、「Protective Groups in Organic Synthesis (third edition)」に記載の保護 基を挙げることができ、これらを反応条件に応じて適宜用いればよい。

<中間体の製法>

(式中、 R^2 、a、b、X、Y、A は前記の意味を示し; Lv は脱離基を示し; B^1 は前記の B 又は水酸基、アミノ基若しくはスルファニル基の保護基を示し; R^a はカルボキシル基、低級アルキルオキシカルボニル基又はシアノ基を示す。以下同様。)

本製法は、化合物(a)の脱離基 Lv を化合物(b)で置換し、化合物(c)を製造し、 必要に応じて加水分解することにより化合物(d)を製造する方法である。

(第一工程)

化合物(a)における脱離基 Lv としては、例えばフルオロ、クロロ、メタンスルホニルオキシ、p-トルエンスルホニルオキシ、トリフルオロメタンスルホニルオ

キシが挙げられ、好ましくはフルオロ、クロロ、メタンスルホニルオキシである。

反応は、無溶媒中、あるいはベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル類;ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類;N,N-ジメチルホルムアミド(DMF);ジメチルアセトアミド(DMA);N-メチルピロリドン;ジメチルスルホキシド(DMSO);酢酸エチル(EtOAc)等のエステル類;アセトニトリル等反応に不活性な溶媒、又はメタノール(MeOH)、エタノール(EtOH)、2-プロパノール(iPrOH)等のアルコール類中、化合物(a)と化合物(b)とを等モル乃至一方を過剰量用い、室温乃至加熱還流下に行うことができる。化合物によっては、有機塩基(好ましくは、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン)又は金属塩塩基(好ましくは、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水素化ナトリウム)の存在下に行うのが有利な場合がある。

(第二工程)

反応は、化合物(c)に対し、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類、アルコール系溶媒、DMF、DMA、DMSO、ピリジン、水等反応に不活性な溶媒中、硫酸、塩酸、臭化水素酸等の鉱酸、ギ酸、酢酸等の有機酸又は水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウムあるいはアンモニア等の塩基存在下、冷却下乃至加熱還流下に行うことができる。反応温度は化合物により適宜選択することができる。

<第一製法>

(式中、 R^1 は前記の意味を、 R^b は低級アルキルを示す。以下同様。)

本製法は、上記中間体の製法で製造した化合物(d)を化合物(la)と縮合して化合物(lb)を製造し、加水分解することにより化合物(lc)を製造し、化合物(ld)を縮合することにより、 B^1 がBである本発明化合物(I)若しくは B^1 が水酸基、アミノ基若しくはスルファニル基の保護基である化合物(le)を製造する方法である。

(第一工程)

化合物(d)は遊離酸として反応に用いることもできるが、その反応性誘導体を反応に用いることもできる。化合物(d)の反応性誘導体としては、メチルエステル、エチルエステル、tert-ブチルエステルなどの通常のエステル;酸クロリド、

酸ブロミド等の酸ハライド;酸アジド;N-ヒドロキシベンゾトリアゾール、p-ニトロフェノールや N-ヒドロキシスクシンイミド等との活性エステル;対称型酸無水物;アルキル炭酸ハライド等のハロカルボン酸アルキルエステル、ピバロイルハライド、p-トルエンスルホン酸クロリド等との混合酸無水物;塩化ジフェニルホスホリル、N-メチルモルホリンとを反応させて得られるリン酸系混合酸無水物等の混合酸無水物等が挙げられる。

化合物 (d) を遊離酸で反応させる場合、あるいは活性エステルを単離せずに 反応させる場合等は、ジシクロヘキシルカルボジイミド (DCC)、1,1'-カルボニ ルビス-1H-イミダゾール (CDI)、ジフェニルホスホリルアジド (DPPA)、ジェ チルホスホリルシアニドや 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイ ミド塩酸塩 (WSCD) などの縮合剤を使用するのが好適である。

特に本発明においては、酸クロリド法、活性エステル化剤と縮合剤との共存 下に反応させる方法、通常のエステルをアミン処理する方法が、簡便容易に本 発明化合物としうるので便利である。

反応は使用する反応性誘導体や縮合剤によっても異なるが、ハロゲン化炭化水素類、芳香族炭化水素類、エーテル類、エステル類、アセトニトリル、DMFや DMSO などの反応に不活性な有機溶媒中、冷却下、冷却乃至室温下あるいは室温乃至加熱下に行われる。

なお、反応に際して、化合物 (1a) を過剰に用いたり、N-メチルモルホリン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、ピコリン、ルチジンなどの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。また、ピリジン塩酸塩、ピリジン p-トルエンスルホン酸塩、N,N-ジメチルアニリン塩酸塩などの弱塩基と強酸からなる塩を用いてもよい。ピリジンは溶媒とすることもできる。

特に、アセトニトリル、DMF等の溶媒中、ピリジン、N,N-ジメチルアニリン等の塩基、又はピリジン塩酸塩等の塩の存在下に反応させるのが好適である。

(第二工程)

反応は、中間体の製法第二工程に準じて行うことができる。

(第三工程)

反応は、第一製法第一工程に準じて行うことができる。

化合物(1e)は、必要に応じて保護基を除去することにより、又は、さらに必要な側鎖を常法に従って導入することにより、本発明化合物 (I) に導くことができる。必要な側鎖の導入は、後述の第二製法第三工程に準じて行うこともできる。

<第二製法>

(式中、 B^2 は水酸基、アミノ基若しくはスルファニル基の保護基を示す。以下同様。)

本製法は、上記中間体の製法で製造した、 B^2 がBでない化合物(dd)を化合物(1a)

と縮合して化合物(2a)を製造し、保護基 B²を除去して化合物(2b)を製造し、化合物(2c)若しくは(2d)と縮合して化合物(2e)を製造し、加水分解することにより化合物(2f)を製造し、化合物(1d)と縮合することにより、本発明化合物(I) を製造する方法である。

(第一工程)

反応は、第一製法第一工程に準じて行うことができる。

(第二工程)

水酸基、アミノ基若しくはスルファニル基の保護基としては、前述の「Protective Groups in Organic Synthesis (third edition)」に記載の保護基を挙げることができる。反応は、「Protective Groups in Organic Synthesis (third edition)」に記載の方法に準じて行うことができる。

特に、水酸基の保護基としてベンジル基を用いる場合、トリフルオロ酢酸等 の強酸性溶液中、ペンタメチルベンゼンを作用させてベンジル基を除去する方 法を用いることもできる。

(第三工程)

化合物(2c)における脱離基 Lv としては、例えばクロロ、ブロモ、ヨード、メタンスルホニルオキシ、p-トルエンスルホニルオキシ、トリフルオロメタンスルホニルオキシが挙げられ、好ましくはプロモ、メタンスルホニルオキシ、p-トルエンスルホニルオキシである。

化合物(2c)を用いる反応は、通常のアルキル化反応を用いることができ、好ましくはアセトニトリル、DMF、DMSO、エーテル類等の反応に不活性な溶媒中、化合物(2b)と(2c)を等モル乃至一方を過剰量用い、冷却下、冷却乃至室温下、あるいは室温乃至加熱下に、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム等の塩基の存在下に行うことができる。

化合物(2d)を用いる反応は、エーテル類、DMF、N-メチルピロリドン等の非プ

ロトン性の反応に不活性な溶媒中、トリフェニルホスフィン等の有機ホスフィン、及びアゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル等のアゾジカルボン酸ジアルキルの存在下、光延反応条件下にて行うことができる(Synthesis, 1981, pp.1)。

(第四工程)

反応は、第一製法第二工程に準じて行うことができる。

(第五工程)

反応は、第一製法第一工程に準じて行うことができる。

さらに、式(I)で示されるいくつかの本発明化合物は、第一製法若しくは 第二製法により得られた本発明化合物から、公知のアルキル化、アシル化、置 換反応、酸化、還元、加水分解等、当業者が通常採用しうる工程を任意に組み 合わせることにより製造することができる。具体的には、例えばメタクロロ過 安息香酸等の酸化剤による硫黄原子の酸化等を挙げることができ、このような 反応は「実験化学講座 第4版」(丸善株式会社、1990-1992 年)に記載の方法 を適用して、又は準じて行うことができる。また、これらの当業者が通常採用 しうる工程は、本発明化合物に対する適用に限定されず、製造中間体に対して 適用することもできる。具体的には、例えば第二製法第三工程で得られる化合 物に対して適用することもでき、その後、次の工程に進むこともできる。

このようにして製造された本発明化合物は、遊離のまま、又は常法による造塩処理を施し、その塩として単離・精製される。単離・精製は抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は異性体間の物理化学的性質の差を利用して常法により単離できる。例えばラセミ混合物は、例えば酒石酸等の一般的な光学活性酸とのジアステレオマー塩に導き光学分割する方法などの一般的なラセミ体分割法により、

光学的に純粋な異性体に導くことができる。また、ジアステレオ混合物は、例 えば分別結晶化又は各種クロマトグラフィーなどにより分離できる。また、光 学活性な化合物は適当な光学活性な原料を用いることにより製造することもで きる。

産業上の利用可能性

本発明化合物はアルギニンバソプレシン V₂受容体に対して優れた作動作用を有する。従って、本発明化合物は、本作用に基づくプロフィールの抗利尿作用を有し、排尿障害、大量尿に有用であり、頻尿、尿失禁、遺尿症、中枢性尿崩症、夜間頻尿、夜尿症の予防及び/又は治療に有効である。また、これら以外にも、V₂受容体作動作用に基づき、血液凝固第 VIII 因子及び von Willebrand 因子放出作用を有し、様々な出血状態に有用であり、自然発生性出血、血友病、von Willebrand 病、尿毒症、先天的又は後天的血小板機能障害、外傷性及び手術時出血、肝硬変等の診断、予防及び治療に有効である。

また、本発明化合物は薬物代謝酵素 CYP3A4 及び CYP2C9 に対する阻害作用が極めて小さいため、CYP3A4 若しくは CYP2C9 を介して代謝される他の薬物への薬物相互作用の懸念が従来知られているアルギニンバソプレシン V_2 受容体作動作用を有するベンゾアゼピン誘導体に比べて少なく、他剤との併用療法にも安全に使用できる点で優れている。

CYP3A4 により代謝される薬物としては、シンバスタチン、ロバスタチン、フルバスタチン、ミダプラム、ニフェジピン、アムロジピン、ニカルジピン等が、また、CYP2C9 により代謝される薬物としては、ジクロフェナク、イブプロフェン、インドメタシン、トルブタミド、グリベンクラミド、ロサルタン等が挙げられる(総合臨床, 48(6), 1427-1431, 1999.)。

本発明化合物の薬理作用は以下の試験方法により確認された。

(1) V2 受容体結合試験

田原らの方法(British Journal of Pharmacology, Vol 125, p.1463-1470, 1998)に準じて、ヒト V_2 発現 CHO 細胞膜標本を調製した。膜標本 $2~\mu g$ を $[^3H]$ -アルギニン-バソプレシン(以下、単に「 $[^3H]$ -バソプレシン」という。)(0.5 nM, Specific activity = 75 Ci / mmol)及び試験化合物($10^{-10}\sim10^{-5}$ M)と共に、10~mM MgCl₂、0.1% ウシ血清アルプミン(BSA)を含有する 50 mM トリスー塩酸緩衝液(pH=7.4)の総量 250 μ 1 中で 60 分間、25~Cでインキュベーションした。その後、セルハーベスターを用いて遊離型 $[^3H]$ -バソプレシンと受容体結合型 $[^3H]$ -バソプレシンを分離し、ユニフィルタープレート GF/B ガラスフィルター上に受容体結合型 $[^3H]$ -バソプレシンを分離し、ユニフィルタープレート GF/B ガラスフィルター上に受容体結合型 $[^3H]$ -バソプレシンを吸着させた。十分に乾燥させた後、マイクロプレートシンチレーションカクテルと混合し、受容体結合型 $[^3H]$ -バソプレシン量をトップカウントを用いて測定し、阻害率を次式より算出した。

阻害率 (%) = $100 - (C_1 - B_1) / (C_0 - B_1) \times 100$

 C_1 : 既知濃度の試験化合物と $[^3H]$ -バソプレシンとが共存して受容体膜標本と処理するとき、 $[^3H]$ -バソプレシンが膜標本と結合する量

 C_0 : 試験化合物非存在下で、 $[^3H]$ -バソプレシンと受容体膜標本とを処理するとき、 $[^3H]$ -バソプレシンが膜標本と結合する量

 B_1 : 過剰量のバソプレシン(10^{-6} M)と $[^3$ H]-バソプレシンとが共存して受容体膜標本と処理するとき、 $[^3$ H]-バソプレシンが膜標本と結合する量

上記式より阻害率が 50%となる試験化合物の濃度 (IC_{50} 値)を算出し、これから 試験化合物の受容体に対する親和性、即ち解離定数 (Ki)を次式より算出した。 解離定数 (Ki) = IC_{50} / (1+IL)/Kd)

[L]: [³H]-バソプレシンの濃度

Kd: 飽和結合実験より求めた[3H]-バソプレシンの受容体に対する解離定数

(表1)

V2 受容体に対する親和性

化合物	Ki (nM)	化合物	Ki (nNi)
実施例 3	11	実施例 31	10
実施例 9	19	実施例 54	17
実施例 14	18	実施例 55	16
実施例 24	4.3	実施例 134	12
実施例 46	5.8	実施例 136	11
実施例 98	6.2	比較化合物	68

なお、比較化合物とは、国際公開第 WO 97/22591 号記載の実施例 3 2 の化合物 (化合物名: 2-[(5R)-1-(2-クロロ-4-ピロリジン-1-イルベンゾイル)-2,3,4,5-テトラヒドロベンゾアゼピン-5-イル]-N-イソプロピルアセトアミド) を示す。

表1に示すように、本発明化合物は V2 受容体に対する高い親和性を有することが明らかとなった。

(2) 抗利尿試験(静脈内投与)

実験には、各群 5 例のウィスター系の雄性ラット(10~12 週齢)を用いた。 群 A には実施例 3 の化合物 0.3 mg/kg、群 B には実施例 9 の化合物 0.3 mg/kg を それぞれ溶媒(DMSO を含む生理食塩水)に溶解したものを、群 C には比較と して溶媒のみをそれぞれ 1 ml/kg で静脈内投与し、15 分後に蒸留水 30 ml/kg を強 制経口投与した(水負荷)。水負荷 2 時間後までの尿を代謝ケージにて採取し、 水負荷量を 100%としたときの尿量を尿排泄率として算出した。なお、評価には、 1 時間後までの尿排泄率と 2 時間後までの尿排泄率のそれぞれの群における平均 値を用いた。その結果を表 2 に示す。 (表2)

抗利尿作用(静脈内投与)

	化合物	尿排泄率(%)	
		1時間後	2時間後
群A	実施例3	1.3	6.2
群B	実施例 9	0	5.3
群C	溶媒	64.0	80.0

表 2 に示すように、本発明化合物は優れた抗利尿作用を有することが明らか となった。

(3) 抗利尿試験(経口投与)

実験には、ウィスター系の雄性ラット(10~12 週齢)を用いた。試験化合物を経口投与し、15分後に蒸留水 30 ml/kg を強制経口投与した(水負荷)。水負荷4時間後までの尿を代謝ケージにて採取し、水負荷量を 100%としたときの尿量を尿排泄率として算出した。なお、評価には尿排泄率を 50%減少させるのに必要な試験化合物の用量 (ED₅₀)を用いた。その結果、本発明化合物は静脈内投与のみならず、経口投与によっても優れた抗利尿作用を有することが明らかとなった。

(4) チトクローム P450 (3A4) 酵素阻害試験

Crespi らの方法(Analytical Biochemistry, 248, 188-190, 1997)に準じて実験を行った。

96 ウェルプレートを用いて、基質として 7-ベンジルオキシ-4-(トリフルオロメ チル)クマリン (5×10⁻⁵ M)、試験化合物 (4.9×10⁻⁸~5×10⁻⁵ M) および酵素 (5×10⁻⁹ M) を、8.2 μ M NADP+、0.41 mM グルコース-6-ホスフェート、0.41 mM MgCl₂ および 0.4 Units/ml グルコース-6-ホスフェート デヒドロゲナーゼを含む 200 mM リン酸緩衝液(pH=7.4)の総量 200 μ1 中で、30 分間 37℃でインキュベーションした。その後、アセトニトリル 80%含有 0.5 M 2-アミノ-2-ヒドロキ

シメチル-1,3-プロパンジオール水溶液を加えて反応を停止させ、蛍光プレートリーダーで蛍光強度(励起波長;409nm、蛍光波長;530nm)を測定した。阻害率を次式より算出し、阻害率が50%となる試験化合物濃度 (IC_{50}) を求めた。その結果を表3に示す。

阻害率 (%) =100-(C₁-B₁)/(C₀-B₁)×100

C1: 既知濃度の試験化合物と酵素及び基質存在下での蛍光強度

Co: 試験化合物非存在下、酵素及び基質存在下での蛍光強度

B₁:ブランクウェルの蛍光強度

(5) チトクローム P450 (2C9) 酵素阻害作用

Crespi らの方法(Analytical Biochemistry, 248, 188-190, 1997)に準じて実験を行った。

96 ウェルプレートを用いて、基質として 7-メトキシ-4-(トリフルオロメチル) クマリン (7.5×10⁻⁵ M)、試験化合物 (4.9×10⁻⁸~5×10⁻⁵ M) および酵素 (10⁻⁸ M)を、8.2 μ M NADP+、0.41 mM グルコース-6-ホスフェート、0.41 mM MgCl₂ および 0.4 Units/ml グルコース-6-ホスフェート デヒドロゲナーゼを含む 200 mM リン酸緩衝液 (pH=7.4) の総量 200 μ1 中で、45 分間 37 ℃でインキュベーションした。その後、アセトニトリル 80%含有 0.5 M 2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール水溶液を加えて反応を停止させ、蛍光プレートリーダーで蛍光強度 (励起波長;409 nm、蛍光波長;530 nm)を測定した。阻害率を上記 (4)と同じ式により算出し、阻害率が 50%となる試験化合物濃度 (IC₅₀)を求めた。その結果を表 3 に示す。

(表3)

CYP(3A4 及び 2C9)阻害作用

化合物	IC ₅₀ (μW)		
10 110	CYP3A4	CYP2C9	
実施例3	>50	>50	
実施例 9	13	11	
実施例 51	>50	34	
実施例 54	>50	43	
実施例 130	>50	>50	
実施例 136	>50	>50	
比較化合物	<0.091	<0.091	

表3に示すように、本発明化合物は薬物代謝酵素 CYP3A4 及び CYP2C9 に対して極めて低い阻害作用を示した。なお、比較化合物とは、表1に示す比較化合物と同一である。

本発明の医薬は、一般式(I)で示される本発明化合物の1種以上と、通常 製剤化に用いられる、薬剤用単体、賦形剤、その他添加剤を用いて、通常使用 されている方法によって調製することができる。投与は錠剤、丸剤、カプセル 剤、顆粒剤、散剤、液剤等による経口投与、静注、筋注等の注射剤、又は座剤、 経鼻、経粘膜、経皮などによる非経口投与のいずれの形態であってもよい。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、1種以上の活性物質が、少なくとも 1種の不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等と混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤、繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤等を含有して

いてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の糖衣又は 胃溶性若しくは腸溶性のフィルムで被覆してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁 剤、乳濁剤を含有する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水 及び生理食塩水が含まれる。非水性の溶液剤、懸濁剤としては、例えばプロピ レングリコール、ポリエチレングリコール、オリーブ油のような植物油、EtOH のようなアルコール類、ポリソルベート80等がある。このような組成物は、さ らに防腐剤、湿潤剤、乳化剤、分散剤、例えばラクトースのような安定剤、例 えばグルタミン酸やアスパラギン酸のような溶解補助剤等のような補助剤を含 んでいてもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌 剤の配合又は照射によって無菌化される。これらはまた無菌の固体組成物を製 造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。 通常経口投与の場合、1 日の投与量は、体重あたり約 0.0001~50 mg/kg、好ま しくは約 0.001~10 mg/kg が適当で、さらに好ましくは 0.01~1 mg/kg が適当で あり、これを1回であるいは2乃至4回に分けて投与する。静脈投与される場 合は、1日の投与量は体重あたり約0.0001~1 mg/kg、好ましくは約0.0001~0.1 mg/kg が適当で、1 日 1 回乃至複数回に分けて投与する。投与量は症状、年齢、 性別等を考慮して個々の場合に応じて適宜決定される。但し、投与量は種々の 条件で変動するので、上記投与量より少ない量で十分な場合もある。

発明を実施するための最良の形態

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、実施例において使用される原料化合物には新規な物質も含まれており、そのような原料化合物の公知物からの製造法を参考例として説明する。

参考例1

60%水素化ナトリウム油分散体 $5.2\,\mathrm{g}$ を DMF $50\,\mathrm{ml}$ に懸濁し、氷冷下ベンジルアルコール $6.73\,\mathrm{ml}$ を加えた。室温に昇温後、4-フルオロ-2-トリフルオロメチル安息香酸 $12.3\,\mathrm{g}$ を加え、室温にて 6 時間攪拌した。反応液に 1M 塩酸水溶液を加え、析出した結晶を濾取し、 $16.39\,\mathrm{g}$ の 4-(ベンジルオキシ)-2-(トリフルオロメチル)安息香酸を得た。

MS(+);297.

参考例1と同様に、表4に示す参考例 $2\sim4$ を、それぞれ対応する原料を用いて製造した。

なお、表中の記号は以下の意味を示す (以下同様)。

Rf: 参考例番号、

Data: 物理化学的データ (NMR: (CH₃) $_4$ Si を内部標準とし、特に記載がない場合には DMSO-d $_6$ を測定溶媒とする 1 H-NMR におけるピークの δ (ppm)を示す、

MS(+): $FAB-MS[M+H]^+$, MS(-): $FAB-MS[M-H]^+$, EMS(+): $ESI-MS[M+H]^+$,

 $EMS(-): ESI-MS[M-H]^+)$,

R^A、R^B:一般式中の置換基、

nPr: ノルマルプロピル、cPr: シクロプロピル。

なお、NMRデータについては、化合物により2種以上のコンフォマーの存在 による複雑なデータを与えることがあるが、そのうち、主に存在していると考 えられるコンフォマーに対応するピークのみを記載した。また、これらのピー クは、加温下で測定することにより、1種類の化合物を示すピークに収束した。 (表4)

$$R^{B}$$
 $CO_{2}H$
 R^{A}

Rf	R ^A	R ^B	Data
2	CF ₃	cPr-CH ₂ O-	EMS(-): 259
3	CI	nPr-S-	MS(+): 231
4	CF ₃	nPr-S-	MS(-): 263

参考例5

メチル 4-フルオロ-2-トリフルオロベンゾアート 4.44 g を DMF 40 ml に溶解し、炭酸カリウム 3.32 g 及び N-メチル-N-プロピルアミン 4.10 ml を加え、80 $^{\circ}$ にて 14 時間攪拌した。反応液を冷却後、水及び EtOAc を加え分液操作を行った。 有機層を飽和食塩水にて洗浄後、無水硫酸ナトリウムにて乾燥し、溶媒を留去して得られた粗生成物をシリカゲルカラムクロマトグラフィーに付し、ヘキサン-EtOAc(4:1)で溶出し減圧下濃縮して、4.79 g のメチル 4-[メチル(プロピル)アミノ]-2-(トリフルオロメチル)ベンゾアートを得た。

MS(+): 276.

参考例6

参考例 5 の化合物 4.78 g を MeOH 20 ml に溶解し、5M 水酸化ナトリウム水溶液 6.94 ml を加え、70 $^{\circ}$ Cにて 5 時間攪拌した。反応液を冷却後、減圧下濃縮した。得られた残渣を 1M 塩酸水にて中和し、析出した結晶を濾取して、4.36 g の 4-[メチル(プロピル)アミノ]-2-(トリフルオロメチル)安息香酸を得た。

MS(+): 262.

参考例7

参考例 1 の化合物 8.0 g を THF 80 ml に溶解し、氷冷下塩化チオニル 8 ml、DMF 3 滴を加えた後室温にて 3 時間攪拌した。反応溶媒を留去後乾燥し酸クロリド体

を得た。これに(Z)-メチル(4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート 6.84 g を加え氷冷下ピリジン 50 ml を加え、室温にて12時間攪拌した。反応終了後、溶媒を留去し1M塩酸水溶液と EtOAc を加え分液操作を行った。有機層を水及び飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られた残渣を EtOH より再結晶を行い、9.12g のメチル (2Z)-{1-[4-(ベンジルオキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン 5-イリデン}アセタートを得た。

EMS(+): 532.

参考例7と同様に、表5に示す参考例8~11を、それぞれ対応する原料を 用いて製造した。

なお、表中の記号は以下の意味を示す (以下同様)。

Me:メチル。

(表5)

Rf	R ^A	R ^B	Data
8	CF ₃	cPr-CH ₂ O-	EMS(+): 496
9	C1	nPr-S-	MS(+): 466
10	CF ₃	nPr-S-	MS(+): 500
11	CF ₃	nPr-N(Me)-	MS(+): 497

参考例12

参考例7の化合物9.1gをトリフルオロ酢酸100mlに溶解し、ペンタメチルベ

ンゼン 5.1 g を加え室温にて 12 時間攪拌した。不溶物を濾過後、濾液を減圧下 濃縮した。得られた残渣にジエチルエーテルを加え、析出した結晶を濾取し、 6.22 g のメチル (2Z)-{4,4-ジフルオロ-1-[4-ヒドロキシ-2-(トリフルオロメチル) ベンプイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン 5-イリデン}アセタート を得た。

EMS(+): 442.

参考例13

参考例12の化合物3.89 gを DMSO 20 ml に溶解し、これにプロモ酢酸 tert-ブチル2.06 g及び炭酸カリウム1.46 gを加え室温にて2時間攪拌した。不溶物を濾過後、水と EtOAc を加え分液操作を行った。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム-MeOH(80:1)溶出部より、3.55 g のメチル (2Z)-{1-[4-(2-tert-ブトキシ-2-オキソエトキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタートを得た。

EMS(+): 556.

参考例14

参考例 1 3 の化合物 3.75 g をトリフルオロ酢酸 20 ml に溶解し、室温にて 30 分間攪拌した。減圧下溶媒を留去し、3.25 g の[4-{[(5Z)-4,4-ジフルオロ-5-(2-メトキシ-2-オキソエチリデン)-2,3,4,5-テトラヒドロ-1H-1-ベンゾアゼピン-1-イル]カルボニル}-3-(トリフルオロメチル)フェノキシ]酢酸を得た。

MS(+):450.

参考例15

参考例 1 4 の化合物 1.09 g を DMF 10 ml に溶解し、HOBt 324 mg、WSCD 460 mg、ジメチルアミン (2.0 M THF 溶液) 1.20 ml 及びトリエチルアミン 0.335 ml

を加えた後、室温にて 6 時間攪拌した。反応液に炭酸水素ナトリウム水溶液を加え、析出した沈殿物を濾取することで得られた組成生物を水で洗浄後、減圧下乾燥し、1.14gのメチル (2Z)-{1-[4-(2-ジメチルアミノ-2-オキソエトキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセタートを得た。

MS (+): 527.

参考例16

参考例12の化合物1.00gをTHF15mlに溶解し、1-ブタノール0.415ml、トリフェニルホスフィン1.19g及びアゾジカルボン酸ジエチル2.08mlを加えた後、室温にて17時間攪拌した。反応液に水とEtOAcを加え分液操作を行った。有機層を水及び飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を留去して得られた粗生成物をシリカゲルカラムクロマトグラフィーに付し、クロロホルム-MeOH(50:1)で溶出し、減圧下濃縮して、1.41gの粗メチル(22)-{1-[4-ブトキシ-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベングアゼピン-5-イリデン}アセタートを得た。

上記で得られた化合物を MeOH 5 ml-THF 10 ml に溶解し、1M 水酸化ナトリウム水溶液を加えた後室温にて 2 時間攪拌した。溶媒を留去した後、1M 塩酸及びクロロホルム-iPrOH (3:1 混合溶媒) を加え分液操作を行った。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して、1.01 g の(2Z)-{1-[4-ブトキシ-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸を得た。

MS (+): 484.

参考例16と同様に、表6に示す参考例 $17\sim19$ を、それぞれ対応する原料を用いて製造した。

なお、表中の記号は以下の意味を示す(以下同様)。

iBu:イソブチル。

(表6)

Rf	R ^A	R ^B	Data
17	CF ₃	nPr-O-	MS(+): 470
18	CF ₃	iBu-O-	MS(+): 483
19	C1	iBu-O-	MS(+): 450

参考例20

参考例 7 の化合物 1.43 g を MeOH 15 ml-THF 25 ml の混合溶媒に溶解し、1M 水酸化ナトリウム水溶液 10 ml を加え室温にて 2 時間攪拌した。有機溶媒を留去後、1M 塩酸を加え液性を酸性とした後、析出した白色固体を濾取、減圧乾燥し、1.39 g の(2Z)-{1-[4-(ベンジルオキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}酢酸を得た。 MS(+): 518.

参考例20と同様に、表7に示す参考例 $21\sim25$ を、それぞれ対応する原料を用いて製造した。

(表7)

Rf	R ^A	R ^B .	Data
21	CF ₃	cPr-CH ₂ O-	EMS(+): 482
22	Cl	nPr-S-	MS(+): 452
23	CF ₃	nPr-S-	MS(+): 486
24	CF ₃	nPr-N(Me)-	MS(+): 483
25	CF ₃	Me ₂ NOCCH ₂ -O-	MS(+): 513

参考例26

参考例 1 の化合物の MeOH 溶液に濃硫酸を加え、3 日間加熱還流を行った。 反応溶媒を氷水にあけエーテルにて抽出操作を行った。溶媒を留去後得られた 残渣を EtOH に溶解し、10%パラジウム担持炭素を加え水素雰囲気下、室温にて 24 時間攪拌し、メチル 4-ヒドロキシ-2-(トリフルオロメチル)ベンゾアートを得 た。

MS(+):221

参考例27

参考例 2 6 の化合物のアセトニトリル溶液にプロモアセトン及び炭酸カリウムを加え、60 ℃で 1 時間攪拌しメチル 4-(2-オキソプロポキシ)-2-(トリフルオロメチル)ベンゾアートを得た。

 $ESI-MS(+): 299[M+23]^{+}$

参考例28

参考例 2 7 の化合物の塩化メチレン溶液に-78 ℃にて(ジエチルアミノ)サルファ トリフルオリドを加え、室温で 24 時間攪拌しメチル 4-(2,2-ジフルオロプ

ロポキシ)-2-(トリフルオロメチル)ベンゾアートを得た。

EI-MS: 298[M]⁺

参考例29

参考例 2 8 の化合物の MeOH 溶液に 5M 水酸化ナトリウム水溶液を加え、90 ℃で 2.5 時間攪拌し 4-(2,2-ジフルオロプロポキシ)-2-(トリフルオロメチル)安息香酸を得た。

MS(-):283

参考例30

(2S)-プロパン-1,2-ジオールの塩化メチレン溶液にトリエチルアミンを加えた後、-20 ℃にてパラトルエンスルフォニルクロライドの塩化メチレン溶液を加え、室温にて18時間攪拌し、(2S)-2-ヒドロキシプロピル-4-メチルベンゼンスルフォナートを得た。

MS(+): 231

参考例30A

参考例 3 0 の化合物の THF 溶液に、N,N-ジメチルアニリン及び無水酢酸を加え 0 \mathbb{C} で 1 時間攪拌し(1S)-1-メチル-2-{[(4-メチルフェニル)スルフォニル]オキシ}エチルアセタートを得た。

MS(+): 273

参考例30B

参考例 3 0 Aの化合物の DMF 溶液に、参考例 2 6 の化合物及び炭酸カリウムを加え 70 ℃で 17 時間攪拌しメチル 4-{[(2S)-2-(アセチルオキシ)プロピル]オキシ}-2-(トリフルオロメチル)ベングアートを得た。

MS(+):321

参考例31

参考例30Bの化合物の MeOH 溶液に、1M 水酸化カリウム-MeOH 溶液を

0 ℃にて加え、室温にて 1 時間攪拌しメチル 4-{[(2S)-2-ヒドロキシプロピル]オキシ}-2-(トリフルオロメチル)ベングアートを得た。

MS(+): 279

参考例32

参考例31の化合物の塩化メチレン溶液に-78 ℃にて(ジエチルアミノ)サルファ トリフルオリドを加え、室温で15時間攪拌しメチル 4-{[(2R)-2-フルオロプロピル]オキシ}-2-トリフルオロメチル)ベングアートを得た。

 $FAB-MS(+): 280[M]^{+}$

参考例33

参考例32の化合物の MeOH 溶液に 5M 水酸化ナトリウム水溶液を加え、70℃で6時間攪拌し、4-{[(2R)-2-フルオロプロピル]オキシ}-2-トリフルオロメチル)安息香酸を得た。

MS(+): 267

参考例34

参考例27の化合物のEtOH溶液に水素化ホウ素ナトリウムを0℃にて加え、 室温にて1時間攪拌しメチル 4-(2-ヒドロキシプロポキシ)-2-(トリフルオロメチル)ベンゾアートを得た。

 $ESI-MS(+): 301[M+23]^{+}$

参考例35

参考例30と同様に、(2R)-2-ヒドロキシプロピル-4-メチルベンゼンスルフォナートを、(2R)-プロパン-1,2-ジオールを用いて製造した。

MS(+): 231

参考例35A

参考例30Aと同様に、(1R)-1-メチル-2-{[(4-メチルフェニル)スルフォニル] オキシ}エチルアセタートを、参考例35の化合物を用いて製造した。

MS(+): 273

参考例35B

参考例30Bと同様に、メチル 4-{[(2R)-2-(アセチルオキシ)プロピル]オキシ}-2-(トリフルオロメチル)ベンゾアートを、参考例35Aの化合物を用いて製造した。

MS(+):321

参考例 3 6

参考例31と同様に、メチル 4-{[(2R)-2-ヒドロキシプロピル]オキシ}-2-(トリフルオロメチル)ベンゾアートを、参考例35Bの化合物を用いて製造した。

MS(+): 279

参考例37

参考例32と同様に、メチル 4-{[(2S)-2-フルオロプロピル]オキシ}-2-トリフルオロメチル)ベングアートを、参考例36の化合物を用いて製造した。

MS(+):281

参考例38

参考例33と同様に、4-{[(2S)-2-フルオロプロピル]オキシ}-2-トリフルオロメ チル)安息香酸を、参考例37の化合物を用いて製造した。

MS(+);267

参考例7と同様に、表8に示す参考例39~41を、それぞれ対応する原料を用いて製造した。

(表8)

$$R^{D}$$
 $CO_{2}Me$
 R^{D}
 F
 CF_{3}

Rf	R ^B	R ^D	Data
39	(S)-O-CH ₂ CHFCH ₃	Н	EMS(+): 502
40	(R)-O-CH ₂ CHFCH ₃	Н	EMS(+): 502
41	(S)-O-CH ₂ CHFCH ₃	F	MS(+): 520
42	(R)-O-CH ₂ CHFCH ₃	F	MS(+): 520
41	-O-CH ₂ CF ₂ CH ₃	H	MS(+): 520

参考例20と同様に、表9に示す参考例42~46を、それぞれ対応する原料を用いて製造した。

(表9)

Rf	R ^B	R ^D	Data
42	(S)-O-CH ₂ CHFCH ₃	Н	MS(+): 488
43	(R)-O-CH ₂ CHFCH ₃	Н	MS(+): 488
44	(S)-O-CH ₂ CHFCH ₃	. F	MS(+): 506
45	(R)-O-CH ₂ CHFCH ₃	F	MS(+): 506
46	-O-CH ₂ CF ₂ CH ₃	Н	MS(+): 506

実施例1

参考例20の化合物 150 mg を DMF 5 ml に溶解し、HOBt 43 mg、WSCD 61 mg、

実施例1と同様に、表10に示す実施例2~16を、それぞれ対応する原料 を用いて製造した。

実施例17

参考例 2 0 の化合物 150 mg を THF 3.5 ml に溶解し、塩化チオニル 0.3 ml 及び 2~3 滴の DMF を加え室温にて 1 時間攪拌した。減圧下溶媒を留去し、さらにトルエンを用いて塩化チオニルを共沸留去した。得られた残渣を THF に溶解し、この溶液をアンモニア水に滴下した。反応液に EtOAc を加え分液操作を行った。有機層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。得られた粗生成物を iPrOH-ジイソプロピルエーテル混合溶媒から再結晶し、126 mg の(2Z)-2-{1-[4-(ベンジルオキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンズアゼピン-5-イリデン}アセトアミドを得た。

実施例17と同様に、表10に示す実施例18を、それぞれ対応する原料を 用いて製造した。また、参考例12と同様に、表10に示す実施例19~20 を、それぞれ対応する原料を用いて製造した。

実施例21

実施例 6 の化合物 325 mg を 1,2-ジクロロエタン 5 ml に溶解し、氷冷下メタクロロ過安息香酸 148 mg を加え室温にて 4 時間攪拌した。反応液に 10% (w/v)

エチル)-2-{4,4-ジフルオロ-1-[4-(プロピルスルフィニル)ベンゾイル]-1,2,3,4-テト

ラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミドを得た。

実施例21と同様に、表10に示す実施例22を、それぞれ対応する原料を 用いて製造した。また、表11~18に示す実施例23~147を、それぞれ 対応する原料を用いて、上記の製造法や実施例記載の方法、及び当業者にとっ て自明である方法、又はこれらの変法により製造した。

なお、表中の記号は以下の意味を示す (以下同様)。

Ex: 実施例番号、

R^C:一般式中の置換基、

(表10)

Ex	R ^A	R ^B	R ^C	MS(+)
1	-CF ₃	Bn-O-	-CH ₂ -CONH ₂	574
2	-CF ₃	Bn-O-	-(CH ₂) ₂ -OH	561
3	-CF ₃	cPr-CH ₂ O-	-CH ₂ -CONH ₂	538
4	-CF ₃	cPr-CH ₂ O-	-(CH ₂) ₂ -OH	525
5	-Cl	nPr-S-	-CH ₂ -CONH ₂	508
6	-CF ₃	nPr-S-	-CH ₂ -CONH ₂	542
7	-CF ₃	nPr-O-	-CH ₂ -CONH ₂	526
8	-CF ₃	nPr-O-	-(CH ₂) ₂ -OH	513
9	-CF ₃	nBu-O-	-CH ₂ -CONH ₂	540
10	-CF ₃	nBu-O-	-(CH ₂) ₂ -OH	527
11	-CF ₃	iBu-O-	-CH ₂ -CONH ₂	540
12	-CF ₃	iBu-O-	-(CH ₂) ₂ -OH	527
13	-Cl	iBu-O-	-CH ₂ -CONH ₂	506
14	-CF ₃	nPr-N(Me)-	-CH ₂ -CONH ₂	539
15	-CF ₃	Me ₂ NOCCH ₂ -O-	-CH ₂ -CONH ₂	569
16	-CF ₃	nPr-O-	-H	469
. 17	-CF ₃	Bn-O-	-H	517
18	-CF ₃	nPr-N(Me)-	-H	482
19	-CF ₃	HO-	-CH ₂ -CONH ₂	484
20	-CF ₃	НО-	-H	427
21	-CF ₃	nPr-S(≃O)-	-CH ₂ -CONH ₂	558
22	-CF ₃	nPr-S(=O) ₂ -	-CH ₂ -CONH ₂	574

Ex	R ^B	R ^D	MS(+)
23	-OnPr	F	544
24	-OnPr	Cl	560
25	-OnPr	Br	604,606
26	-O-CH ₂ C(CH ₃)=CH ₂	Н	538
27	-O-(CH ₂) ₂ CH ₂ F	H	544
28	(S)-O-CH ₂ CHFCH ₃	H	544
29	(R)-O-CH ₂ CHFCH ₃	Н	544
30	(S)-O-CH ₂ CHFCH ₃	F	562
31	(R)-O-CH ₂ CHFCH ₃	F	562
32	-O-CH ₂ CHFCH ₃	H	544
33	-O-CH ₂ CF ₂ CH ₃	H	562
34	-O-CH ₂ CF ₂ CH ₃	F	580
35	-N(Me)Et	Н	525
36	-N(Et)nPr	Н	553
37	-N(Me)nBu	H	553
38	-N(Me)iBu	Н	553
39	-NnPr ₂	Н	567
40	-SEt	Н	528
41	-SiBu	Н	556
42	-SCH=CH ₂	Н	526
43	-SCH ₂ CH ₂ F	Н	546
44	-S(CH ₂) ₂ CH ₂ F	Н	560
45	-SCH ₂ CHFCH ₃	H	560

46

(表12)

Ex	. R ^B	R ^D	MS(+)
46	-OnPr	F	531
47	-OnPr	Cl	547
48	-O-CH ₂ cPr	H	525
49	-O-(CH ₂) ₂ CH ₂ F	H	531
50	-O-CH₂CHFCH₃	Н	531
51	-O-CH ₂ CF ₂ CH ₃	Н	549
52	(S)-O-CH ₂ CHFCH ₃	H	531
53	(R)-O-CH ₂ CHFCH ₃	Н	531
54	(S)-O-CH ₂ CHFCH ₃	F	549
55	(R)-O-CH2CHFCH3	F	549
56	-O-CH ₂ CF ₂ CH ₃	F	567
57	-N(Me)(CH ₂) ₂ CH ₂ F	Н	544
58	-N(Et)nPr	Н	540
59	-SCH=CH ₂	H	513
60	-SCH ₂ CH ₂ F	Н	533
61	-S(CH ₂) ₂ CH ₂ F	Н	547

47

(表13)

Ex	R ^B .	R ^D	MS(+)
62	-OnPr	· F	487
63	-OnPr	Cl	503
64	-OnPr	Br	547,549
65	-O-(CH ₂) ₂ CH ₂ F	Н	487
66	-O-CH₂CHFCH₃	Н	487
67	-O-CH ₂ CF ₂ CH ₃	H	505
68	-O-CH ₂ CF ₂ CH ₃	F	523
69	(S)-O-CH ₂ CHFCH ₃	Н	487
70	(R)-O-CH ₂ CHFCH ₃	Н	487
. 71	(S)-O-CH ₂ CHFCH ₃	F	505
72	(R)-O-CH ₂ CHFCH ₃	F	505
73	-N(Me)(CH ₂) ₂ CH ₂ F	Н	500
74	-N(Me)CH ₂ CF ₂ CH ₃	H	518
-75	-N(Et)nPr	H	496
76	-N(Et)(CH ₂) ₂ CH ₂ F	H	514
. 77	-NnPr ₂	H	510

(表14)

Ex	R ^C	R ^D	MS(+)
78	-NH(CH ₂) ₂ OMe	Н	527
79	-NHC(Me) ₂ CH ₂ OH	H	541
80	-NH(CH ₂) ₂ F	H	515
81	-NH(CH ₂) ₃ OH	H	527
82	-NH(CH ₂) ₃ F	Н	529
83	-NHCH2CH(OH)CH2OH	Н	543
84	-NHCH2CH(R-OH)CH2OH	Н	543
85	-NHCH2CH(S-OH)CH2OH	H	543
86	-NHCH2CH(R-OH)CH2OH	F	561
87	-NH(CH ₂) ₂ O(CH ₂) ₂ OH	Н	557
88	-NH(CH ₂) ₂ NMe ₂	Н	540
89	-NH(CH ₂) ₂ CONH ₂	Н	540
90	-NHCH(CONH ₂) ₂	Н	569
91	-NHCH₂CONHMe	Н	540
92	-NHCH ₂ CONMe ₂	Н	554
93	-NH(CH ₂) ₂ NHCOCH ₃	Н	554
94	-N(CH ₂ CH ₂ OH) ₂	Н	557
95	-N(CH ₂ CONH ₂) ₂	Н	583
96	-NHPh	Н	545
97	-NHPh(2-OH)	Н	561
98	-NHPh(3-OH)	Н	561
99	-NHPh(4-OH)	Н	561
100	-NHPh(2-CONH ₂)	Н	588
101	-NHPh(3-CONH ₂)	Н	588
102	-NHPh(4-CONH ₂)	Н	588
103	-NHPh(3-SO ₂ NH ₂)	Н	624
104	-NHPh(4-SO ₂ NH ₂)	H	624
105	-NHPh(3-NHCOMe)	Н	602

49

(表15)

Ex	R ^c	R ^D	MS(+)
106	-NHCH ₂ Ph(3-OH)	H	575
107	-NHCH ₂ Ph(4-OH)	Н	575
108	-NHCH ₂ Ph(4-SO ₂ NH ₂)	H	638
109	-NHCH₂(2-Py)	H	560
110	-H-0	н	580
111	-Н о	Н	596
112	-H_0	н	594
113	-H-0	Н	610

(表16)

Ex	R ^c	R ^D	MS(+)
114	-N→OH	Н	539
115	-v◯OH	н	553
116	CONH ₂	н	580
117	-N CONH₂	·H	580
118	_NF	Н	555
119	-N F	Н	573
120	-NOH	Н	567
121	-N NH	н	552
122	-n_0	н	539

(表17)

Ex	R ^B	R ^c	R ^D	MS(+)
123	-O-(CH ₂) ₂ CH ₂ F	-NHCH2CH(R-OH)CH2OH	H	561
124	-O-(CH ₂) ₂ CH ₂ F	-NHCH2CH(S-OH)CH2OH	H	561
125	-O-(CH ₂) ₂ CH ₂ F	-NH(CH ₂) ₂ CONH ₂	H	558
126	-O-(CH ₂) ₂ CH ₂ F	-H 0	н	628
127	(S)-O-CH ₂ CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	Н	558
128	(R)-O-CH ₂ CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	Н	558
129	(S)-O-CH ₂ CHFCH ₃	-NHCH2CH(S-OH)CH2OH	Н	561
130	(R)-O-CH ₂ CHFCH ₃	-NHCH2CH(S-OH)CH2OH	Н	561
131	(S)-O-CH ₂ CHFCH ₃	-NHCH2CH(R-OH)CH2OH	Н	561
132	(R)-O-CH ₂ CHFCH ₃	-NHCH2CH(R-OH)CH2OH	H	561
133	(S)-O-CH ₂ CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	F	576
134	(R)-O-CH ₂ CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	F	576
135	(S)-O-CH2CHFCH3	-NHCH2CH(R-OH)CH2OH	F	579
136	(R)-O-CH ₂ CHFCH ₃	-NHCH2CH(R-OH)CH2OH	F	579
137	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(R-OH)CH2OH	H	579
138	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(S-OH)CH2OH	H	579
139	-O-CH ₂ CF ₂ CH ₃	-NH(CH ₂) ₂ CONH ₂	Н	576
140	-O-CH ₂ CF ₂ CH ₃	-NH(CH ₂) ₂ CONH ₂	F	594
141	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(S-OH)CH2OH	F	597
142	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(R-OH)CH2OH	F	597
143	-SEt	-NH(CH ₂) ₂ CONH ₂	Н	542
144	-SEt	-NHCH(CONH ₂) ₂	Н	571
145	-SEt	-NHPh(3-CONH ₂)	Н	590

(表18)

Ex	R ^{1A}	MS(+)	
146	Gly	493	
147	Car	436	

以下、表19にいくつかの実施例化合物のNMRデータを示す。

(表」)	
Ex	NMR
1	2.35-2.55(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.76(2H,s),4.75-4.90(1H,br),5.09(2H,s),6.45(1H,s),6.73(1H,d,J=7.8Hz),6.87(1H,d,J=7.8Hz),7.03(1H,dd,J=7.8,2.4Hz),7.10-7.19(2H,m),7.24-7.40(9H,m),8.68(1H,t,J=5.7Hz).
2	2.25-2.55(1H,br),2.60-2.80(1H,br),3.05-3.20(1H,br),3.20-3.25(2H,m),3.42-3.50(2H,m),4.72(1H,t,J=5.4Hz),4.75-4.90(1H,br),5.09(2H,s),6.39(1H,s),6.72(1H,d,J=7.8Hz),6.87(1H,d,J=7.3Hz),7.04(1H,dd,J=2.0,8.3Hz),7.16(1H,t,J=7.6Hz),7.22-7.42(8H,m),8.46(1H,t,J=5.4Hz).
3	0.24-0.30(2H,m),0.49-0.58(2H,m),1.08-1.20(1H,m),2.33-2.45(1H,br),2.60-2.97(1H,br),3.02-3.29(1H,br),3.68-3.88(4H,m),4.60-5.05(1H,br),6.44(1H,s),6.71(1H,d,J=8.8Hz),6.85(1H,d,J=8.8Hz),6.93(1H,dd,J=2.0,8.8Hz),7.11-7.38(6H,m),8.48(1H,t,J=5.4Hz).
4	0.24-0.31(2H,m),0.48-0.56(2H,m),1.09-1.21(1H,m),2.27-2.46(1H,br),2.65-2.90(1H,br),3.00-3.26(3H,m),3.43-3.52(2H,m),3.80(2H,d,J=6.8Hz),4.73(1H,d,J=5.3Hz),4.75-4.92(1H,br),6.39(1H,s),6.71(1H,d,J=7.3Hz),6.84(1H,d,J=8.8Hz),6.93(1H,dd,J=2.5,8.8Hz),7.13-7.18(2H,m),7.24(1H,t,J=7.3Hz)7.30-7.34(1H,m),8.48(1H,t,J=5.3Hz).
5	0.92(3H,t,J=7.6Hz),1.46-1.55(2H,m),2.24-2.50(1H,br),2.65-2.84(1H,br),2.89-2.93(2H, m),3.04-3.22(1H,br),3.75(2H,s),4.70-4.92(1H,br),6.37(1H,s),6.87(1H,s),6.94(1H,d,J=7.6Hz),7.01(1H,d,J=8.0Hz),7.14-7.53(6H,m),8.62(1H,s).
6	0.93(3H,t,J=7.2Hz),1.48-1.57(2H,m),2.28-2.52(1H,br),2.63-2.87(1H,br),2.94-2.97(2H, m),3.08-3.20(1H,br),3.73-3.76(2H,m),4.73-4.88(1H,br),6.48(1H,s),6.73(1H,d,J=8.0Hz),6.84(1H,d,J=8.0Hz),7.14-7.76(7H,m),8.69(1H,t,J=5.2Hz).
7	0.92(3H,t, <i>J</i> =7.3Hz),1.62-1.72(2H,m),2.30-2.50(1H,br),2.60-2.80(1H,br),3.00-3.10(1H,br),3.76(2H,s),3.90(2H,t, <i>J</i> =6.6Hz),4.70-4.90(1H,br),6.45(1H,s),6.72(1H,d, <i>J</i> =7.8Hz),6.85(1H,d, <i>J</i> =7.8Hz),6.94(1H,dd, <i>J</i> =2.1,7.6Hz),7.10-7.38(6H,m),8.68(1H,t, <i>J</i> =5.4Hz).
8	0.92(3H,t, <i>J</i> =7.3Hz),1.62-1.72(2H,m),2.30-2.50(1H,br),2.60-2.80(1H,br),3.00-3.20(1H,br),3.23(2H,t, <i>J</i> =5.9Hz),3.44-3.50(2H,m),3.90(2H,t, <i>J</i> =6.6Hz),4.72(1H,t, <i>J</i> =5.4Hz),4.75-4.86(1H,br),6.40(1H,s),6.71(1H,d, <i>J</i> =7.8Hz),6.85(1H,d, <i>J</i> =8.3Hz),6.95(1H,dd, <i>J</i> =2.5,8.8 Hz),7.10-7.18(2H,m),7.25(1H,t, <i>J</i> =7.1Hz),7.30-7.34(1H,m),8.46(1H,t, <i>J</i> =5.6Hz).
9	0.89(3H,t,J=7.3Hz),1.31-1.42(2H,m),1.57-1.67(2H,m),2.30-2.50(1H,br),2.70-2.85(1H,br),3.00-3.20(1H,br),3.76(2H,s),3.94(2H,t,J=6.6Hz),4.65-4.95(1H,br),6.45(1H,s),6.72(1H,d,J=7.8Hz),6.85(1H,d,J=8.8Hz),6.94(1H,dd,J=2.4,8.8Hz),7.10-7.20(3H,m),7.22-7.32(2H,m),7.33-7.37(1H,m),8.68(1H,t,J=5.3Hz).
10	0.89(3H,t,,J=7.4Hz),1.32-1.42(2H,m),1.58-1.67(2H,m),2.25-2.45(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.20-3.30(2H,m),3.44-3.50(2H,m),3.94(2H,t,,J=6.4Hz),4.73(1H,t,J=5.2Hz),4.75-4.87(1H,br),6.39(1H,s),6.71(1H,d,,J=7.8Hz),6.84(1H,d,,J=8.8Hz),6.95(1H,dd,,J=2.5,8.8Hz),7.12-7.18(2H,m),7.21-7.26(1H,m),7.30-7.33(1H,m),8.46(1H,t,,J=5.6Hz).
11	0.92(6H,d, <i>J</i> =6.8Hz),1.89-2.00(1H,m),2.30-2.50(1H,br),2.60-2.80(1H,br),3.00-3.20(1H,br),3.70-3.82(4H,m),4.75-4.85(1H,br),6.45(1H,s),6.72(1H,d, <i>J</i> =7.9Hz),6.86(1H,d, <i>J</i> =8.8Hz),6.95(1H,dd, <i>J</i> =2.4,8.3Hz),7.12-7.19(3H,m),7.23-7.30(2H,m),7.36(1H,dd, <i>J</i> =7.8Hz, 1.5Hz),8.68(1H,t, <i>J</i> =5.6Hz).

(表19続き)

Ex	NMR
l	0.92(6H,d,J=6.4Hz),1.89-2.00(1H,m),2.30-2.50(1H,br),2.60-2.80(1H,br),3.00-3.15(1H br),3.19-3.25(2H m),3.44-3.50(2H m),3.72(2H d, F6.2Hz),4.72(4Hz),7.52(4Hz)
12	br),3.19-3.25(2H,m),3.44-3.50(2H,m),3.72(2H,d, J=6.3Hz),4.73(1H,t, J=5.1Hz),4.76-4.
l	88(1H,br),6.40(1H,s),6.71(1H,d,J=7.3Hz),6.85(1H,d,J=8.8Hz),6.96(1H,dd,J=2.5,8.3Hz),7.13-7.18(2H m),7.22-7.27(1H m),7.22-7.27(1
	z),7.13-7.18(2H,m),7.22-7.27(1H,m),7.32(1H,dd, J=7.8Hz,1.5Hz),8.46(1H,t, J=5.6Hz).
13	0.91(6H,d,J=6.8Hz),1.86-1.98(1H,m),2.25-2.50(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.67(2H,d,J=6.3Hz),3.70.3.78(2H,br),4.73.4.00(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.67(2H,d,J=6.3Hz),3.70.3.78(2H,br),4.73.4.00(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3.60-2.80(1H,br),3.00-3.15(1H,br),3
'	br),3.67(2H,d,J=6.3Hz),3.70-3.78(2H,br),4.73-4.90(1H,br),6.35(1H,s),6.63-6.69(1H,m),6.89-6.96(3H,m),7.11-7.20(2H,m),7.22.7.23(2H,m),8.62(3H,m),
),6.89-6.96(3H,m),7.11-7.20(2H,m),7.22-7.33(3H,m),8.62(1H,s).
14	0.80(3H,t,J=7.2Hz),1.40-1.45(2H,m),2.27-2.53(1H,br),2.55-2.77(1H,br),2.86(3H,s),2.9
	2-3.15(1H,br),3.24(2H,s),3.75(2H,s),4.71-5.05(1H,br),6.44(1H,s),6.58(1H,d,J=8.4Hz),
	6.67(1H,d,J=8.4Hz),6.71(1H,d,J=7.6Hz),6.77(1H,s),7.14-7.36(5H,m),8.64(1H,s).
	2.30-2.50(1H,br),2.65-2.85(1H,br),2.80(3H,s),2.92(3H,s),3.00-3.20(1H,br),3.70-3.82(2 H m) 4.75-4.90(1H br) 4.86(2H s) 6.44(1H s) 6.73(1H br) 4.75-4.90(1H br) 4.86(2H s) 6.44(1H s) 6.73(1H br) 6.73(1
15	H,m),4.75-4.90(1H,br),4.86(2H,s),6.44(1H,s),6.73(1H,d, =7.8Hz),6.83(1H,d, =8.3Hz)
	,6.90(1H,dd, J=2.4,8.3Hz),7.11-7.20(3H,m),7.24-7.30(2H,m),7.36(1H,dd, J=7.3Hz,1.4H z),8.68(1H,t,J=5.7Hz).
	0.92(3H,t,=7.8Hz),1.61-1.71(2H,m),2.35-2.55(1H,br),2.60-2.80(1H,br),3.00-3.20(1H,br),3.90(2H,t,=6.4Hz),4.70-4.90(1H,br),6.38(1H,c),6.72(1H,d, E-6.4Hz),4.70-4.90(1H,br),6.38(1H,c),6.72(1H,d, E-6.4Hz),6.04(3Hz),6.72(1H,d, E-6.4Hz),6.04(3Hz),6.72(1H
16	br),3.90(2H,t,=6.4Hz),4.70-4.90(1H,br),6.38(1H,s),6.72(1H,d,,=7.8Hz),6.84(1H,d,,=8.7Hz),6.96(1H,dd,=2.5.8,6Hz),7.10-7.18(2H,m),7.22-7.27(1H,m),7.20-7.21(1H,d,,=8.7Hz),6.96(1H,dd,=2.5.8,6Hz),7.10-7.18(2H,m),7.22-7.27(1H,m),7.22-7.27(1H,m),7.22-7.27(1H,dd,=8.7Hz),6.96(1H,dd,=8.7Hz
	8.7Hz),6.96(1H,dd, J=2.5,8.6Hz),7.10-7.18(2H,m),7.22-7.27(1H,m),7.28-7.31(1H,m),7.35(1H,s),7.87(1H,s).
]	2.30-2.55(1H,br),2.60-2.80(1H,br).3.05-3.25(1H,br),4.75-4.95(1H,br),5.09(2H,s),6.38(
17	1H,s),6.73(1H,d, <i>J</i> =7.8Hz),6.86(1H,d, <i>J</i> =8.7Hz),7.05(1H,dd, <i>J</i> =2.4,8.4Hz),7.13-7.18(1H,
j	m),7.22-7.42(9H,m),7.88(1H,s).
	0.81(3H,t,J=7.2Hz),1.40-1.46(2H,m),2.24-2.52(1H,br),2.57-2.78(1H,br),2.85(3H,s),2.9
18	5-3.17(1H,br),3.23(2H,s),4.70-5.02(1H,br),6.36(1H,s),6.62-6.76(4H,m),7.16-7.34(4H,
	m),7.84(1H,s).
	2.30-2.50(1H,br),2.55-2.80(1H,br),3.00-3.20(1H,br),3.75(2H,s),4.70-4.90(1H,br),6.47(
19	1H,s),6.66-6.76(3H,m),7.00(1H,d, <i>J</i> =1.5Hz),7.10-7.19(2H,m),7.22-7.30(2H,m),7.35(1
	H,d,J=7.8Hz),8.65(1H,t,J=5.6Hz),10.3(1H,s).
	2.30-2.50(1H,br),2.55-2.80(1H,br),3.00-3.20(1H,br),4.70-4.90(1H,br),6.41(1H,s),6.67-
20	6.74(3H,m),7.00(1H,s),7.15(1H,tdJ=1.4,7.8Hz),7.24(1H,t,J=7.6Hz),7.27-7.32(1H,m),7.
	34(1H,s),7.85(1H,s),10.3(1H,s).
	0.87(3H,t,J=7.2Hz),1.19-1.27(1H,m),1.45-1.58(1H,m),2.18-2.52(1H,br),2.65-2.78(1H,
21	br),2.93-3.00(2H,m),3.06-3.25(1H,br),3.74-3.76(2H,m),4.75-4.92(1H,br).6.55(1H,s).6
~ '	73(1H,d,J=7.6Hz),7.12-7.15(3H,m),7.24-7.33(2H,m),7.36(1H,dd,J=1.6.7.2Hz),7.71(1
	H,d,J=8.0Hz,7.98(1 H,s),8.70(1 H,s).
	0.84(3H,t,J=7.6Hz),1.38-1.47(2H,m),2.15-2.54(1H,br),2.67-2.90(1H,br),3.15-3.30(1H,
22	br),3.34-3.52(2H,m),3.75-3.77(2H,m),4.75-4.90(1H,br),6.61(1H,s),6.74(1H,d,I=8.0Hz)
	7.13-7.17(3H,m),7.26-7.39(2H,m),7.37-7.39(1H,m),7.97(1H,d,J=8.4Hz),8.16(1H.s).8.
	/1(1H,s).
	1.32(3H,dd,J=6.4,29.2Hz),2.31-2.43(1H,br),2.60-2.80(1H,br),3.18-3.27(1H,br),3.20-3.
30	34(2H,m),4.00-4.37(2H,m),4.64-5.10(2H,m),6.56(1H,s),6.73-6.80(1H,m),6.87(1H,d) = 1
	8.8Hz),7.02-7.08(2H,m),7.14(1H,s),7.24-7.26(2H,m),7.32(1H,s),8.60-8.64(1H,br).

(表19続き)

	9続き)
Ex	NMR
31	1.33(3H,ddJ=6.3,29.3Hz),2.33-2.47(1H,br),2.59-2.83(1H,br),3.03-3.25(1H,br),3.72-3.8 5(2H,m),4.02-4.24(2H,m),4.72-4.84(1H,br),4.86-5.07(1H,m),6.56(1H,s),6.74-6.80(1H,m),6.88(1H,d,J=8.8Hz),7.00-7.08(2H,m),7.14(1H,s),7.21-7.26(2H,m),7.32(1H,s),8.65(1H,t,J=5.4Hz).
51	1.67(3H,t,J=19.5Hz),2.30-2.48(1H,br),2.46-2.90(1H,br),3.08-3.34(3H,m),3.39-4.00(2H,m),4.32(2H,t,J=12.7Hz),4.70-4.78(2H,m),6.38(1H,s),6.72(1H,d,J=7.8Hz),6.89(1H,d,J=8.8Hz),7.04(1H,dd,J=2.4,8.8Hz),7.15(1H,dt,J=1.5,7.8Hz),7.22-7.34(3H,m),8.47(1H,t,J=5.3Hz).
52	1.32(3H,dd,J=6.4,23.5Hz),2.36-2.47(1H,br),2.65-2.76(1H,br),3.18-3.30(3H,m),3.43-3. 49(2H,m),4.00-4.20(2H,m),4.68-5.06(3H,m),6.39(1H,s),6.72(1H,d,J=8.8Hz),6.87(1H,d,J=8.8Hz),6.98(1H,dd,J=2.4,8.8Hz),7.15(1H,dt,J=1.4,8.8Hz),7.21-7.27(2H,m),7.32(1H,dd,J=1.4,8.8Hz),8.46(1H,t,J=5.8Hz).
53	1.32(3H,dd,J=6.8,23.9Hz),2.37-2.46(1H,br),2.65-2.83(1H,br),3.19-3.28(3H,m),3.44-3. 50(2H,m),4.00-4.20(2H,m),4.69-5.05(3H,m),6.39(1H,s),6.73(1H,d,J=8.8Hz),6.87(1H,d,J=8.8Hz),6.99(1H,dd,J=2.4,8.8Hz),7.15(1H,dt,J=1.4,8.8Hz),7.21-7.27(2H,m),7.32(1H,dd,J=1.4,8.8Hz),8.46(1H,t,J=5.4Hz).
54	1.33(3H,dd,J=5.9,29.8Hz),2.31-2.46(1H,br),2.61-2.84(1H,br),3.18-3.26(2H,m),3.44-3. 50(2H,m)4.01-4.22(2H,m),4.74(1H,t,J=5.3Hz),4.76-4.85(1H,br),4.96-5.06(1H,m),6.51 (1H,s),6.70-6.77(1H,m),6.86(1H,d,J=8.8Hz),7.01-7.08(1H,m),7.19(2H,dd,J=2.9,8.8Hz),7.25(1H,d,J=2.9Hz),7.66(1H,d,J=8.8Hz),8.46(1H,t,J=5.9Hz).
55	1.32(3H,dd,J=5.9,29.8Hz),2.32-2.46(1H,br),2.61-2.84(1H,br),3.03-3.27(2H,m),3.44-3. 51(2H,m),4.02-4.22(2H,m),4.74(1H,t,J=5.3Hz),4.76-4.85(1H,br),4.87-5.06(1H,m),6.52 (1H,s),6.70-6.78(1H,m),6.87(1H,d,J=8.8Hz),7.00-7.08(1H,m),7.19(2H,dd,J=2.9,8.8Hz),7.24(1H,d,J=2.9Hz),7.67(1H,d,J=8.8Hz),8.47(1H,t,J=5.4Hz).
56	1.69(3H,t,J=19.6Hz),2.31-2.46(1H,br),2.61-2.83(1H,br),3.05-3.27(3H,m),3.43-3.50(2H,m),4.34(2H,t,J=12.7Hz),4.68-4.86(2H,m),6.50(1H,s),6.73-6.78(1H,m),6.89(1H,d,J=8.8Hz),7.01-7.13(2H,m),7.20(1H,dd,J=2.9,8.8Hz),7.31(1H,d,J=2.9Hz),8.43(1H,t,J=5.4Hz).
84	0.97(3H,t,J=7.3Hz),1.61-1.72(2H,m),2.31-2.47(1H,br),2.65-2.81(1H,br),2.99-3.17(3H, m),3.32-3.40(2H,m),3.52-3.61(1H,m),3.90(2H,t,J=7.3Hz),4.54(1H,t,J=5.9Hz),4.75-4.8 7(2H,m),6.40(1H,s),6.71(1H,d,J=8.8Hz),6.85(1H,d,J=8.8Hz),6.95(1H,dd,J=2.5,8.8Hz),7.12-7.19(2H,m),7.24(1H,t,J=8.8Hz),7.34(1H,dd,J=1.4,8.8Hz),8.45(1H,t,J=5.4Hz).
85	0.98(3H,t,J=7.3Hz),1.61-1.71(2H,m),2.30-2.46(1H,br),2.65-2.80(1H,br),2.99-3.20(3H, m),3.32-3.39(2H,m),3.51-3.62(1H,m),3.90(2H,t,J=7.3Hz),4.54(1H,t,J=5.9Hz),4.76-4.9 0(2H,m),6.40(1H,s),6.71(1H,d,J=8.8Hz),6.86(1H,d,J=8.8Hz),6.94(1H,dd,J=2.5,8.8Hz),7.12-7.19(2H,m),7.24(1H,t,J=8.8Hz),7.34(1H,dd,J=1.4,8.8Hz),8.45(1H,t,J=5.4Hz),
86	0.93(3H,t,J=6.8Hz),1.61-1.72(2H,m),2.31-2.46(1H,br),2.61-2.83(1H,br),3.00-3.21(3H, m),3.31-3.39(2H,m),3.52-3.63(1H,m),3.92(2H,t,J=6.8Hz),4.56(1H,t,J=5.9Hz),4.52-4.8 6(2H,m),6.53(1H,s),6.71-6.77(1H,m),6.85(1H,d,J=8.8Hz),6.99(1H,dd,J=2.0,8.8Hz),7.0 4(1H,dt,J=2.0,8.8Hz),7.17(1H,d,J=2.0Hz),7.21(1H,dd,J=2.0,8.8Hz),8.42(1H,t,J=5.3Hz).

(表19続き)

Ex	NMR
	1.32(3H,dd,J=6.3,23.4Hz),2.34-2.46(1H,br),2.55-2.83(1H,br),3.20-3.32(3H,m),3.35-3.
400	40(2H,m),3.52-3.60(1H,m),4.00-4.20(2H,m),4.50-4.59(1H,m),4.73-5.05(3H,m),6.39(1
129	H,s),6.72(1H,d,J=8.8Hz),6.87(1H,d,J=8.8Hz),6.98(1H,dd,J=2.5,8.8Hz),7.15(1H,dt,J=2.
Ì	5,8.8Hz),7.19-7.27(2H,m),7.34(1H,dd,J=1.4,8.8Hz),8.47(1H,t,J=5.4Hz).
	1.31(3H,dd,J=6.3,23.4Hz),2.26-2.47(1H,br),2.62-2.84(1H,br),3.00-3.23(3H,m),3.32-3.
100	38(2H,m),3.53-3.62(1H,m),4.00-4.20(2H,m),4.45(1H,t,J=5.4Hz),4.76-5.05(3H,m),6.40
130	(1H,s),6.72(1H,d,J=7.8Hz),6.88(1H,d,J=8.8Hz),6.99(1H,dd,J=2.5,8.8Hz),7.15(1H,dt,J
l	=1.4,7.8Hz),7.20-7.28(2H,m),7.34(1H,dd,J=1.4,7.8Hz),8.47(1H,t,J=5.9Hz).
	1.31(3H,dd,J=6.4,23.4Hz),2.30-2.46(1H,br),2.54-2.80(1H,br),3.00-3.32(3H,m),3.34-3.
400	40(2H,m),3.52-3.61(1H,m),4.00-4.20(2H,m),4.51-4.60(1H,m),4.72-5.05(3H,m),6.40(1
132	H,s),6.72(1H,d,J=8.8Hz),6.87(1H,d,J=8.8Hz),6.99(1H,dd,J=2.5,8.8Hz),7.15(1H,dd,J=2
Í	.5,8.8Hz),7.19-7.29(2H,m),7.31-7.36(1H,m),8.46(1H,t,J=5.4Hz).
	1.33(3H,dd,J=6.3,23.9Hz),2.27-2.46(3H,m),2.60-2.84(1H,br),3.22-3.34(1H,br),3.34-3.
400	40(2H,m),4.00-4.22(2H,m),4.70-5.06(2H,m),6.44(1H,s),6.71-6.76(1H,m),6.81-6.89(2
133	H,m),7.01-7.07(2H,m),7.19(1H,dd,J=2.9,8.8Hz),7.24(1H,d,J=2.9Hz),7.33-7.38(1H,br),
Ĺ	8.45-8.52(1H,br).
	1.33(3H,dd,J=6.4,29.8Hz),2.26-2.46(3H,m),2.64-2.87(1H,br),3.00-3.23(1H,br),3.27-3.
134	42(2H,m),4.01-4.22(2H,m),4.66-5.07(2H,m),6.49(1H,s),6.71-6.78(1H,m),6.87(2H,d,J=
1 134	8.8Hz),7.00-7.08(2H,m),7.19(1H,dd,J=2.9,8.8Hz),7.24(1H,d,J=2.9Hz),7.33-7.39(1H,br
),8.50(1H,t,J=5.4Hz).
}	1.32(3H,dd,J=6.3,23.9Hz),2.32-2.46(1H,br),2.63-2.84(1H,br),3.00-3.24(3H,m),3.33-3.
135	40(2H,m),3.52-3.61(1H,m),4.01-4.21(2H,m),4.57(1H,t,J=5.3Hz),4.73-5.06(3H,m),6.52
, , , ,	(1H,s),6.72-6.78(1H,m),6.87(1H,d,J=8.8Hz),7.00-7.08(2H,m),7.18-7.26(2H,m),8.38-8.
	48(1H,m).
	1.33(3H,dd,J=6.3,13.4Hz),2.34-2.47(1H,br),2.56-2.82(1H,br),3.01-3.32(3H,m),3.33-3.
136	39(2H,m),3.52-3.61(1H,m),4.02-4.22(2H,m),4.57(1H,t,J=5.4Hz),4.75-4.85(2H,m),4.87
	-5.07(1H,m),6.51(1H,s),6.71-6.77(1H,m),6.87(1H,d,J=8.3Hz),7.01-7.08(2H,m),7.19-7.
	25(2H,m),8.43(1H,t,J=5.4Hz).
ļ	1.69(3H,t,J=19.3Hz),2.26-2.47(3H,m),2.62-2.83(1H,br),3.05-3.22(1H,br),3.25-3.44(2H
140	,m),4.34(2H,t,J=12.4Hz),4.68-4.92(1H,br),6.48(1H,s),6.72-6.77(1H,m),6.83-6.95(2H,
	m),7.01-7.13(2H,m),7.19(1H,dd,J=2.9,8.8Hz),7.30(1H,d,J=2.9Hz),7.34-7.40(1H,br),8.
	50(1H,t,J=5.3Hz).

以下、表20~36に本発明の別の化合物の構造を示す。これらは、上記の 製造法や実施例記載の方法、及び当業者にとって自明である方法、又はこれら の変法を用いることにより合成されたか、合成することができる。

なお、表中の記号は以下の意味を示す。

No:化合物番号。

R^{IA}、-A^A-B^A、X、Y:一般式中の置換基、

iPr:イソプロピル、tBu:tert-ブチル、cBu:シクロブチル、nPen:ノルマルペンチル、cPen:シクロペンチル、iAm:イソアミル、nHex:ノルマルヘキシル、pyrr:ピロリジン-1-イル、pipe:ピペリジン-1-イル、pipa:ピペラジン-1-イル、mor:モルホリン-4-イル、Ac:アセチル、Ms:メタンスルホニル、cyano:シアノ。(表20)

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
A1	Gly	-O-Me	A30	Car	-O-(CH ₂) ₂ -cyano
A2	Gly	-O-Et	A31	Etha	-O-CH ₂ CH(Me)OMe
A3	Etha	-O-Et	A32	Etha	-O-CH ₂ CH(Me)OMe
A4	Car	-O-Et	A33	Car	-O-CH ₂ CH(Me)OMe
A5	Etha	-O-iPr	A34	Etha	-O-CH ₂ CF ₂ CF ₃
A6	Car	-O-nBu	A35	Car	-O-CH ₂ CF ₂ CF ₃
A7	Car	-O-iBu	A36	Etha	-O-CH ₂ CF ₂ CHF ₂
A8	Gly	-O-tBu	A37	Car	-O-CH ₂ CF ₂ CHF ₂
A9	Gly	-O-iAm	A38	Gly	-O-(CH ₂) ₂ OH
A10	Gly	-O-nPen	A39	Etha	-O-(CH ₂) ₂ OH
A11	Etha	-O-nHex	A40	Car	-O-(CH ₂) ₂ OH
A12	Gly	-O-cPen	A41	Gly	-O-CH ₂ CO ₂ H
A13	Gly	-O-Ph	A42	Etha	-O-CH ₂ CO ₂ H
A14	Car	-O-Ph	A43	Car	-O-CH ₂ CO ₂ H
A15	Gly	-O-CH ₂ CF ₃	A44	Etha	-N(Me)-iBu
A16	Gly	-O-CH ₂ CHF ₂	A45	Car	-N(Me)-iBu
A17	Gly	-O-CH ₂ CH≡CH	A46	Etha	-S-Et
A18	Gly	-O-(CH ₂) ₂ CH≡CH	A47	Car	-S-Et
A19	Gly	-O-(CH ₂) ₂ OMe	A48	Gly	-S-iPr
A20	Car	-O-CH₂cPr	A49	Etha	-S-iPr
A21	Gly	-O-CH₂cBu	A50	Car	-S-iPr
A22	Car	-O-CH₂cBu	A51	Gly	-N(Me)-CH ₂ CH ₂ OMe
A23	Gly	-O-CH₂tBu	A52	Etha	-N(Me)-CH ₂ CH ₂ OMe
A24	Etha	-O-CH₂tBu	A53	Car	-N(Me)-CH ₂ CH ₂ OMe
A25	Gly	-O-CH ₂ CONH ₂	A55	Gly	-N(Me)-nBu
A27	Gly	-O-CH ₂ CONHMe	A56	Etha	-N(Me)-nBu
A28	Gly	-O-(CH ₂) ₂ -cyano	A57	Car	-N(Me)-nBu
A29	Etha	-O-(CH ₂) ₂ -cyano	A58	Etha	-N(nPr)-nPr

No	R ^{1A}	-A ^A -B ^A	
A59	-NHCH2CH(S-OH)CH2OH	(S)-O-CH ₂ CHFCH ₃	
A60	-NHCH2CH(S-OH)CH2OH	(R)-O-CH ₂ CHFCH ₃	

(表22)

No	R ^{1A}	-A ^A -B ^A	
A61	Gly	-O-Et	
A62	Car	-O-nPr	
A63	Gly	-O-iPr	
A64	Etha	-O-nBu	

(表23)

No	R ^{1A}	-X-	Y	-A ^A -B ^A
B1	Gly	-N=C-	N	-O-nPr
B2	Etha	-N=C-	N	-O-nPr
B3	Car	-N=C-	N	-O-nPr
B4	Gly	-N=C-	N	-O-iBu
B5	Etha	-N=C-	N	-O-iBu
_B6	Car	-N=C-	N	-O-iBu
B7	Gly	-N=C-	N	-S-nPr
B8	Etha	-N=C-	N	-S-nPr
B9	Car	-N=C-	N	S-nPr
B10	Gly	-N=C-	N	-N(Me)-nPr
B11	Etha	-N=C-	N	-N(Me)-nPr
B12	Car	-N=C-	N	-N(Me)-nPr
B13	Gly	-N=N-	CH	-O-nPr
B14	Etha	-N=N-	CH	-O-nPr
B15	Car	-N=N-	CH	-O-nPr
B16	Gly	-N=N-	CH	-O-iBu
B17	Etha	-N=N-	CH	-O-iBu
B18	Car	-N=N-	CH	-O-iBu
B19	Gly	-N=N-	CH	-S-nPr
B20	Etha	-N=N-	CH	-S-nPr
B21	Car	-N=N-	CH	-S-nPr
B22	Gly	-N=N-	CH	-N(Me)-nPr
B23	Etha	-N=N-	CH	-N(Me)-nPr
B24	Car	-N=N-	CH	-N(Me)-nPr
B25	Gly	-S-	N	-O-nPr
B26	Etha	-S-	N	-O-nPr
B27	Car	-S-	N	-O-nPr
B28	Gly	-S-	N	-O-iBu
B29	Etha	-S-	N	-O-iBu
B30	Car	-S-	N	-O-iBu
B31	Gly	-S-	N	-S-nPr
B32	Etha	-S-	N	-S-nPr
B33	Car	-S-	N	-S-nPr
B34	Gly	-S-	N	-N(Me)-nPr
B35	Etha	-S-	N	-N(Me)-nPr

(表24)

No	R ^{1A}	-X-	Υ	-A ^A -B ^A
B36	Car	-S-	N	-N(Me)-nPr
B37	Gly	-N=C-	CH	-O-nPr
B38	Etha	-N=C-	CH	-O-nPr
B39	Car	-N=C-	CH	-O-nPr
B40	Gly	N=C-	CH	-O-iBu
B41	Etha	-N=C-	CH	-O-iBu
B42	Car	-N=C-	CH	-O-iBu
B43	Gly	-N=C-	CH	-S-nPr
B44	Etha	-N=C-	CH	-S-nPr
B45	Car	-N=C-	CH	-S-nPr
B46	Gly	-N=C-	CH	-N(Me)-nPr
B47	Etha	-N=C-	CH	-N(Me)-nPr
B48	Car	-N=C-	CH	-N(Me)-nPr

No	R ^{1A}	-X-	Υ	-A ^A -B ^A
B49	Etha	-C=C-	N	-O-nPr
B50	Gly	-C=C-	N	-O-iBu
B51	Etha	-C=C-	N	-O-iBu
B52	Car	-C=C-	N	-O-iBu
B53	Gly	-C=C-	N	-S-nPr
B54	Etha	-C=C-	N_	-S-nPr
B55	Car	-C=C-	N	-S-nPr
B56	Gly	-C=C-	N	-N(Me)-nPr
B57	Etha	-C=C-	N	-N(Me)-nPr
B58	Car	-C=C-	N	-N(Me)-nPr
B59	Gly	-S-	CH	-O-nPr
B60	Etha	-S-	CH	-O-nPr
B61	Car	-S-	CH	-O-nPr
B62	Gly	S-	CH	-O-iBu
B63_	Etha	-S-	CH	-O-iBu
B64	Car	-S-	CH	-O-iBu
B65	Gly	-S-	CH	-S-nPr
B66	Etha	-S-	CH	-S-nPr
B67	Car	-S-	CH	-S-nPr

(表26)

No	R ^{1A}	X	Υ	-A ^A -B ^A
B68	Gly	N	S	-N(Me)-nPr
B69_	Etha	N	S	-N(Me)-nPr
B70	Car	N	S	-N(Me)-nPr

(表27)

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C1	Gly	-O-iBu	C10	Gly	-S-iPr
C2	Etha	-O-iBu	C11	Etha .	-S-iPr
C3	Car	-O-iBu	C12	Car	-S-iPr
C4	Gly	-O-nBu	C13	Gly	-S-Et
C5	Etha	-O-nBu	C14	Etha	-S-Et
. C6	Car	-O-nBu	C15	Car	-S-Et
C7	Gly	-S-nPr	C16	Gly	-N(Me)-nPr
C8	Etha	-S-nPr	C17	Etha	-N(Me)-nPr
C9	Car	-S-nPr	C18	Car	-N(Me)-nPr

(表28)

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C19	Gly	-O-nPr	C30	Car	-S-nPr
C20	Etha	-O-nPr	C31	Gly	-S-iPr
C21	Car	-O-nPr	C32	Etha	-S-iPr
C22	Gly	-O-iBu	C33	Car	-S-iPr
C23	Etha	-O-iBu	C34	Gly	-S-Et
C24	Car	-O-iBu	C35	Etha	-S-Et
C25	Gly	-O-nBu	C36	Car	-S-Et
C26	Etha	-O-nBu	C37	Gly	-N(Me)-nPr
C27	Car	-O-nBu	C38	Etha	-N(Me)-nPr
C28	Gly	-S-nPr	C39	Car	-N(Me)-nPr
C29	Etha	-S-nPr			

(表29)

No	R.1A	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C40	Gly	-O-iBu	C49	Gly	-S-iPr
C41	Etha	-O-iBu	C50	Etha	-S-iPr
C42	Car	-O-iBu	C51	Car	-S-iPr
C43	Gly	-O-nBu	C54	Gly	-S-Et
C44	Etha	-O-nBu	_C55	Etha	-S-Et
C45	Car	-O-nBu	C56	Car	-S-Et
C46	Gly	`-S-nPr	C57	Gly	-N(Me)-nPr
C47	Etha	-S-nPr	C58	Etha	-N(Me)-nPr
C48	Car	-S-nPr	C59	Car	-N(Me)-nPr

(表30)

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C60	Etha	-O-nPr	C70	Gly	-S-iPr
C61	Gly	-O-iBu	C71	Etha	-S-iPr
C62	Etha	-O-iBu	C72	Car	-S-iPr
C63	Car	-O-iBu	C73	Gly	-S-Et
C64	Gly	-O-nBu	C74	Etha	-S-Et
C65	Etha	-O-nBu	C75	Car	-S-Et
C66	Car	-O-nBu	C76	Gly	-N(Me)-nPr
C67	Gly	-S-nPr	C77	Etha	-N(Me)-nPr
C68	Etha	-S-nPr	C78	Car	-N(Me)-nPr
C69	Car	-S-nPr			

(表31)

No	R ^{1A}	No	R ^{1A}
D1	NHCH ₂ -(2-Py)	D33	4-H ₂ NOC-pipe
D2	NHPh	D34	NHCH2CO-pyrr
D3	NHCH₂Ph	D35	NHCH ₂ CO-(3-HO-pyrr)
D4	NHCH ₂ -(2-HO-Ph)	D36	NHCH ₂ CO-(3-HO-pipe)
D5	NHCH ₂ -(3-HO-Ph)	D37	NHCH ₂ CO-(4-HO-pipe)
D6	NHCH ₂ -(4-HO-Ph)	D38	NH-(3-Ac-Ph)
D7	NHCH ₂ -(2-H ₂ NOC-Ph)	D39	NH-(3-MeHNOC-Ph)
D8	NHCH ₂ -(3-H ₂ NOC-Ph)	D40	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
D9	NHCH ₂ -(4-H ₂ NOC-Ph)	D41	NH-(3-Ms-Ph)
D10	NH-(2-HO-Ph)	D42	NHCH ₂ CO-mor
D11	NH-(3-HO-Ph)	D43	NHCH ₂ -(6-HO-2-Py)
D12	NH-(4-HO-Ph)	D44	NHCH ₂ -(6-MeO-2-Py)
D13	NH-(2-H ₂ NOC-Ph)	D45	NHCH ₂ -(6-H ₂ NOC-2-Py)
D14	NH-(3-H ₂ NOC-Ph)	D46	NHCH ₂ -(6-cyano-2-Py)
D15	NH-(4-H ₂ NOC-Ph)	D47 ·	NHCH ₂ -(6-Me ₂ NOC-2-Py)
D16	NH-(CH ₂) ₂ OMe	D48	NHCH ₂ -(6-H ₂ N-2-Py)
D17	NH-(CH ₂) ₃ OH	D49	NHCH ₂ -(6-Me ₂ N-2-Py)
D18	N(CH ₂ CH ₂ OH) ₂	D50	NHCH ₂ -(6-F-2-Py)
D19	NHCH2CH(CH2OH)OH	D51	NHCH ₂ -(6-Cl-2-Py)
D20	N(Me)CH ₂ CH ₂ OH	D52	NHCH ₂ -(6-Me-2-Py)
D21	3-HO-pyrr	D53	NHCH ₂ -(pyrazol-2-yl)
D22	3-HO-pipe	D54	NHCH ₂ -(pyridazine-2-yl)
D23	4-HO-pipe	D55	NHCH ₂ -(pyrimidine-2-yl)
D24	NHCH₂CONHMe	D56	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
D25	NHCH ₂ CONMe ₂	D57	NHCH(Me)CH ₂ OH
D26	N(Me)CH ₂ CONH ₂	D58	NHCH ₂ CH(Me)OH
D27	N(Me)CH₂CONHMe	D59	NHC(Me) ₂ CH ₂ OH
D28	N(Me)CH ₂ CONMe ₂	D60	NHCH ₂ C(Me) ₂ OH
D29	NH(CH ₂) ₂ CONH ₂	D61	3-oxo-pipa
D30	N(CH ₂ CONH ₂) ₂	D62	NHCH ₂ CO-(3-H ₂ NOC-pipe)
D31	NHCH(CONH ₂)CH ₂ OH	D63	NHCH ₂ CO-(4-H ₂ NOC-pipe)
D32	3-H ₂ NOC-pipe	D64	NHCH(CH ₂ OH) ₂

(表32)

No	R ^{1A}	No	R ^{1A}
E1	NHCH ₂ Ph	E20	NHCH ₂ -(6-H ₂ NOC-2-Py)
E2	NHCH ₂ -(2-HO-Ph)	E21	NHCH ₂ -(6-cyano-2-Py)
E3	NHCH ₂ -(2-H ₂ NOC-Ph)	E22	NHCH ₂ -(6-Me ₂ NOC-2-Py)
E4	NHCH ₂ -(3-H ₂ NOC-Ph)	E23	NHCH ₂ -(6-H ₂ N-2-Py)
E5	NHCH ₂ -(4-H ₂ NOC-Ph)	E24	NHCH ₂ -(6-Me ₂ N-2-Py)
E6	N(Me)CH ₂ CH ₂ OH	E25	NHCH ₂ -(6-F-2-Py)
E7	4-HO-pipe	E26	NHCH ₂ -(6-Cl-2-Py)
E8	N(Me)CH ₂ CONH ₂	E27	NHCH ₂ -(6-Me-2-Pý)
_E9	N(Me)CH ₂ CONHMe	E28	NHCH ₂ -(pyrazol-2-yl)
E10	N(Me)CH ₂ CONMe ₂	E29	NHCH ₂ -(pyridazine-2-yl)
E11	NHCH(CONH ₂)CH ₂ OH	E30	NHCH ₂ -(pyrimidine-2-yl)
E12	NHCH ₂ CO-(3-HO-pipe)	E31	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
E13	NH-(3-Ac-Ph)	E32	NHCH(Me)CH ₂ OH
E14	NH-(3-MeHNOC-Ph)	E33	NHCH ₂ CH(Me)OH
E15	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)	E34	NHCH ₂ C(Me) ₂ OH
E16	NH-(3-Ms-Ph)	E35	NHCH ₂ CO-(3-H ₂ NOC-pipe)
E17	NHCH ₂ CO-mor	E36	NHCH ₂ CO-(4-H ₂ NOC-pipe)
E18	NHCH ₂ -(6-HO-2-Py)	E37	NHCH(CH ₂ OH) ₂
E19	NHCH ₂ -(6-MeO-2-Py)		

(表33)

No	R ^{1A}	No	R ^{1A}
_F1	NHCH ₂ -(2-Py)	F33	4-H ₂ NOC-pipe
F2	NHPh	F34	NHCH ₂ CO-pyrr
F3	NHCH₂Ph	F35	NHCH ₂ CO-(3-HO-pyrr)
F4	NHCH ₂ -(2-HO-Ph)	F36	NHCH ₂ CO-(3-HO-pipe)
F5	NHCH ₂ -(3-HO-Ph)	F37	NHCH ₂ CO-(4-HO-pipe)
F6	NHCH ₂ -(4-HO-Ph)	F38	NH-(3-Ac-Ph)
F7	NHCH ₂ -(2-H ₂ NOC-Ph)	F39	NH-(3-MeHNOC-Ph)
F8	NHCH ₂ -(3-H ₂ NOC-Ph)	F40	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
F9	NHCH ₂ -(4-H ₂ NOC-Ph)	F41	NH-(3-Ms-Ph)
F10	NH-(2-HO-Ph)	F42	NHCH ₂ CO-mor
F11	NH-(3-HO-Ph)	F43	NHCH ₂ -(6-HO-2-Py)
F12	NH-(4-HO-Ph)	F44	NHCH ₂ -(6-MeO-2-Py)
F13	NH-(2-H ₂ NOC-Ph)	F45	NHCH ₂ -(6-H ₂ NOC-2-Py)
F14	NH-(3-H ₂ NOC-Ph)	F46	NHCH ₂ -(6-cyano-2-Py)
F15	NH-(4-H ₂ NOC-Ph)	F47	NHCH ₂ -(6-Me ₂ NOC-2-Py)
F16	NH-(CH ₂) ₂ OMe	F48	NHCH ₂ -(6-H ₂ N-2-Py)
F17	NH-(CH ₂)₃OH	F49	NHCH ₂ -(6-Me ₂ N-2-Py)
F18	N(CH ₂ CH ₂ OH) ₂	F50	NHCH ₂ -(6-F-2-Py)
F19	NHCH2CH(CH2OH)OH	F51	NHCH ₂ -(6-Cl-2-Py)
F20	N(Me)CH ₂ CH ₂ OH	_F52	NHCH ₂ -(6-Me-2-Py)
F21	3-HO-pyrr	F53	NHCH ₂ -(pyrazol-2-yl)
F22	3-HO-pipe	_F54	NHCH ₂ -(pyridazine-2-yl)
F23	4-HO-pipe	F55	NHCH ₂ -(pyrimidine-2-yl)
F24	NHCH₂CONHMe	_F56	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
F25	NHCH ₂ CONMe ₂	_F57	NHCH(Me)CH ₂ OH
F26	N(Me)CH ₂ CONH ₂	F58	NHCH ₂ CH(Me)OH
F27	N(Me)CH ₂ CONHMe	F59	NHC(Me) ₂ CH ₂ OH
F28	N(Me)CH ₂ CONMe ₂	F60	NHCH ₂ C(Me) ₂ OH
F29	NH(CH ₂) ₂ CONH ₂	F61	3-oxo-pipa
F30	N(CH ₂ CONH ₂) ₂	F62	NHCH ₂ CO-(3-H ₂ NOC-pipe)
F31	NHCH(CONH ₂)CH ₂ OH	F63	NHCH ₂ CO-(4-H ₂ NOC-pipe)
F32	3-H ₂ NOC-pipe	F64	NHCH(CH ₂ OH) ₂

(表34)

No	R ^{1A}	No	R ^{1A}
G1	NHCH ₂ -(2-Py)	G32	NHCH₂CO-pyrr
G2	NHPh	G33	NHCH ₂ CO-(3-HO-pyrr)
G3	NHCH₂Ph	G34	NHCH ₂ CO-(3-HO-pipe)
G4	NHCH ₂ -(2-HO-Ph)	G35	NHCH ₂ CO-(4-HO-pipe)
G5	NHCH ₂ -(3-HO-Ph)	G36	NH-(3-Ac-Ph)
G6	NHCH ₂ -(4-HO-Ph)	G37	NH-(3-MeHNOC-Ph)
G7	NHCH ₂ -(2-H ₂ NOC-Ph)	G38	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
G8	NHCH ₂ -(3-H ₂ NOC-Ph)	G39	NH-(3-Ms-Ph)
G9	NHCH ₂ -(4-H ₂ NOC-Ph)	G40	NHCH ₂ CO-mor
G10	NH-(2-HO-Ph)	G41	NHCH ₂ -(6-HO-2-Py)
G11	NH-(3-HO-Ph)	G42	NHCH ₂ -(6-MeO-2-Py)
G12	NH-(4-HO-Ph)	G43	NHCH ₂ -(6-H ₂ NOC-2-Py)
G13	NH-(2-H ₂ NOC-Ph)	G44	NHCH ₂ -(6-cyano-2-Py)
G14	NH-(4-H ₂ NOC-Ph)	G45	NHCH ₂ -(6-Me ₂ NOC-2-Py)
G15	NH-(CH ₂) ₂ OMe	G46	NHCH ₂ -(6-H ₂ N-2-Py)
G16	NH-(CH ₂) ₃ OH	G47	NHCH ₂ -(6-Me ₂ N-2-Py)
G17	N(CH ₂ CH ₂ OH) ₂	G48	NHCH ₂ -(6-F-2-Py)
G18	NHCH₂CH(CH₂OH)OH	G49	NHCH ₂ -(6-Cl-2-Py)
G19	N(Me)CH ₂ CH ₂ OH	G50	NHCH ₂ -(6-Me-2-Py)
G20	3-НО-ругг	G51	NHCH ₂ -(pyrazol-2-yl)
G21	3-HO-pipe	G52	NHCH ₂ -(pyridazine-2-yl)
G22	4-HO-pipe	G53	NHCH ₂ -(pyrimidine-2-yl)
G23	NHCH₂CONHMe	_G54	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
G24	NHCH ₂ CONMe ₂	G55	NHCH(Me)CH ₂ OH
G25	N(Me)CH ₂ CONH ₂	G56	NHCH ₂ CH(Me)OH
G26	N(Me)CH ₂ CONHMe	G57	NHC(Me) ₂ CH ₂ OH
G27	N(Me)CH ₂ CONMe ₂	G58	NHCH ₂ C(Me) ₂ OH
G28	N(CH ₂ CONH ₂) ₂	G59	3-oxo-pipa
G29	NHCH(CONH ₂)CH ₂ OH	G60	NHCH ₂ CO-(3-H ₂ NOC-pipe)
G30	3-H ₂ NOC-pipe	G61	NHCH ₂ CO-(4-H ₂ NOC-pipe)
G31	4-H ₂ NOC-pipe	G62	NHCH(CH ₂ OH) ₂

No	R ^{1A}	T	_10
		No	R ^{1A}
H1	NHCH ₂ -(2-Py)	H33	4-H ₂ NOC-pipe
H2	NHPh	H34	NHCH₂CO-pyrr
H3	NHCH₂Ph	H35	NHCH ₂ CO-(3-HO-pyrr)
H4	NHCH ₂ -(2-HO-Ph)	H36	NHCH ₂ CO-(3-HO-pipe)
H5	NHCH ₂ -(3-HO-Ph)	H37	NHCH ₂ CO-(4-HO-pipe)
H6	NHCH ₂ -(4-HO-Ph)	H38	NH-(3-Ac-Ph)
H7	NHCH ₂ -(2-H ₂ NOC-Ph)	H39	NH-(3-MeHNOC-Ph)
H8	NHCH ₂ -(3-H ₂ NOC-Ph)	H40	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
H9	NHCH ₂ -(4-H ₂ NOC-Ph)	H41	NH-(3-Ms-Ph)
H10	NH-(2-HO-Ph)	H42	NHCH ₂ CO-mor
H11	NH-(3-HO-Ph)	H43	NHCH ₂ -(6-HO-2-Py)
H12	NH-(4-HO-Ph)	H44	NHCH ₂ -(6-MeO-2-Py)
H13	NH-(2-H ₂ NOC-Ph)	H45	NHCH ₂ -(6-H ₂ NOC-2-Py)
H14	NH-(3-H ₂ NOC-Ph)	H46	NHCH ₂ -(6-cyano-2-Py)
H15	NH-(4-H ₂ NOC-Ph)	H47	NHCH ₂ -(6-Me ₂ NOC-2-Py)
H16	NH-(CH ₂) ₂ OMe	H48	NHCH ₂ -(6-H ₂ N-2-Py)
H17	NH-(CH ₂)₃OH	H49	NHCH ₂ -(6-Me ₂ N-2-Py)
H18	N(CH ₂ CH ₂ OH) ₂	H50	NHCH ₂ -(6-F-2-Py)
H19	NHCH2CH(CH2OH)OH	H51	NHCH ₂ -(6-Cl-2-Py)
H20	N(Me)CH ₂ CH ₂ OH	H52	NHCH ₂ -(6-Me-2-Py)
H21	3-НО-ругг	H53	NHCH ₂ -(pyrazol-2-yl)
H22	3-HO-pipe	H54	NHCH ₂ -(pyridazine-2-yl)
H23	4-HO-pipe	H55	NHCH ₂ -(pyrimidine-2-yl)
H24	NHCH ₂ CONHMe	H56	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
H25	NHCH ₂ CONMe ₂	H57	NHCH(Me)CH ₂ OH
H26	N(Me)CH ₂ CONH ₂	H58	NHCH ₂ CH(Me)OH
H27	N(Me)CH ₂ CONHMe	H59	NHC(Me) ₂ CH ₂ OH
H28	N(Me)CH ₂ CONMe ₂	H60	NHCH ₂ C(Me) ₂ OH
H29	NH(CH ₂) ₂ CONH ₂	H61	3-oxo-pipa
H30	N(CH ₂ CONH ₂) ₂	H62	NHCH ₂ CO-(3-H ₂ NOC-pipe)
H31	NHCH(CONH ₂)CH ₂ OH	H63	NHCH ₂ CO-(4-H ₂ NOC-pipe)
H32	3-H ₂ NOC-pipe	H64	NHCH(CH ₂ OH) ₂

(表36)

No	R ^{1A}	No	R ^{1A}
11	NHCH ₂ -(2-Py)	133	4-H ₂ NOC-pipe
12	NHPh	134	NHCH ₂ CO-pyrr
13	NHCH₂Ph	135	NHCH ₂ CO-(3-HO-pyrr)
14	NHCH ₂ -(2-HO-Ph)	136	NHCH ₂ CO-(3-HO-pipe)
15	NHCH ₂ -(3-HO-Ph)	137	NHCH ₂ CO-(4-HO-pipe)
16	NHCH ₂ -(4-HO-Ph)	138	NH-(3-Ac-Ph)
17	NHCH ₂ -(2-H ₂ NOC-Ph)	139	NH-(3-MeHNOC-Ph)
18	NHCH ₂ -(3-H ₂ NOC-Ph)	140	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
19	NHCH ₂ -(4-H ₂ NOC-Ph)	141	NH-(3-Ms-Ph)
110	NH-(2-HO-Ph)	142	NHCH ₂ CO-mor
111	NH-(3-HO-Ph)	143	NHCH ₂ -(6-HO-2-Py)
112	NH-(4-HO-Ph)	144	NHCH ₂ -(6-MeO-2-Py)
113	NH-(2-H ₂ NOC-Ph)	145	NHCH ₂ -(6-H ₂ NOC-2-Py)
114	NH-(3-H ₂ NOC-Ph)	146	NHCH ₂ -(6-cyano-2-Py)
115	NH-(4-H ₂ NOC-Ph)	147	NHCH ₂ -(6-Me ₂ NOC-2-Py)
116	NH-(CH ₂) ₂ OMe	148	NHCH ₂ -(6-H ₂ N-2-Py)
117	NH-(CH ₂) ₃ OH	149	NHCH ₂ -(6-Me ₂ N-2-Py)
118	N(CH ₂ CH ₂ OH) ₂	150	NHCH ₂ -(6-F-2-Py)
119	NHCH2CH(CH2OH)OH	151	NHCH ₂ -(6-Cl-2-Py)
120	N(Me)CH ₂ CH ₂ OH	152	NHCH ₂ -(6-Me-2-Py)
121	3-НО-ругг	153	NHCH ₂ -(pyrazol-2-yl)
122	3-HO-pipe	154	NHCH ₂ -(pyridazine-2-yl)
123	4-HO-pipe	155	NHCH ₂ -(pyrimidine-2-yl)
124	NHCH₂CONHMe	156	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
125	NHCH ₂ CONMe ₂	157	NHCH(Me)CH ₂ OH
126	N(Me)CH ₂ CONH ₂	158	NHCH ₂ CH(Me)OH
127	N(Me)CH₂CONHMe	159	NHC(Me) ₂ CH ₂ OH
128	N(Me)CH ₂ CONMe ₂	160	NHCH ₂ C(Me) ₂ OH
129	NH(CH ₂) ₂ CONH ₂	161	3-oxo-pipa
130	N(CH ₂ CONH ₂) ₂	162	NHCH ₂ CO-(3-H ₂ NOC-pipe)
131	NHCH(CONH ₂)CH ₂ OH	163	NHCH ₂ CO-(4-H ₂ NOC-pipe)
132	3-H ₂ NOC-pipe	164	NHCH(CH ₂ OH) ₂

請 求 の 範 囲

1. 式(I)で示される 4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩。

$$R^3$$
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

[式中の記号は以下の意味を示す。

R¹: 置換されていてもよいアミノ、-OH、若しくは-O-低級アルキル。

 R^2 : CF_3 、若しくはハロゲン。

 R^3 : H、若しくはハロゲン。

a、b: それぞれ単結合又は二重結合を示し、一方が単結合、他方が二重 結合。

-X-:

- (1) aが単結合、bが二重結合である場合、-CH=CH-、-CH=N-、-N=CH-、-N=N-、若しくは-S-。
- (2) a が二重結合、b が単結合である場合、-N-。

Y:

- (1) aが単結合、bが二重結合である場合、CH、若しくはN。
- (2) aが二重結合、bが単結合である場合、S。
- -A-: -O-、-S-、-NH-、若しくは-N(低級アルキル)-。

R¹が式(II)、式(III)で示される基、-OH、若しくは-O-低級アルキルである、請求の範囲1記載の化合物。

$$-N^{Z_{-}^{1}}R^{12}$$
 $-N^{R_{-}^{14}}$

[式中の記号は以下の意味を示す。

 Z^1 : 単結合、低級アルキレン、若しくは-低級アルキレン-C(=O)-。

R^{II}: -OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、及び1つ 若しくは2つの低級アルキルで置換されていてもよいカルバモ イルからなる群より選択される基で置換されていてもよい低級 アルキル、又は-H。

R^{12} :

- (1) Z¹が単結合、又は低級アルキレンを示す場合、
 -H、-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。
- (2) Z¹が-低級アルキレン-C(=O)-を示す場合、

式(III)、若しくは式(IV)で示される基。

$$-N^{R^{14}}$$
 $-N^{Z^2-R^{15}}$ R^{13} (III) R^{11} (IV)

[式中の記号は以下の意味を示す。

 Z^2 : 単結合、若しくは低級アルキレン。

R¹⁵: -H、-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。]

- R¹³、R¹⁴: 隣接する窒素原子と一体となって、置換されていてもよ い非芳香族環状アミノ基。]
- R¹が式(II)、若しくは式(III)で示される基である、請求の範囲2記載の化合物。
- 4. a が単結合であり、b が二重結合であり、-X-が-CH=CH-であり、-Y-が-CH-である、請求の範囲 3 記載の化合物。
- 5. R¹が式(II)で示される基である、請求の範囲 4 記載の化合物。
- 6. -A-が-O-である、請求の範囲5記載の化合物。
- 7. -B が置換されていてもよい低級アルキルである、請求の範囲 6 記載の 化合物。
- 8. R^2 がトリフルオロメチルであり、 R^3 が-H 若しくは-F である請求の範囲 7記載の化合物。
- 9. 請求の範囲1記載の化合物のうち、
 - (2Z)-N-(2-アミノ-2-オキソエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトア

ミド、

- (2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2S)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、
- (2Z)-N-(2-ヒドロキシエチル)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フル オロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセトアミド、
- (2Z)-2-{4,4-ジフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}-N-[(2S)-2,3-ジヒドロキシプロピル]アセトアミド、
- 3-[((2Z)-2-{4,4,7-トリフルオロ-1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン}アセチル)アミノ]プロパンアミド、若しくは、
- (2Z)-N-[(2R)-2,3-ジヒドロキシプロピル]-2-{4,4,7-トリフルオロ -1-[4-{[(2R)-2-フルオロプロピル]オキシ}-2-(トリフルオロメチル)ベ ンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベングアゼピン-5-イリデン}ア セトアミド、

又はその製薬学的に許容される塩。

- 10. 請求の範囲1記載の化合物を有効成分とする医薬組成物。
- 11. アルギニンバソプレシン V_2 受容体刺激薬である、請求の範囲 10 記載の医薬組成物。
- 12. 夜間頻尿治療剤、若しくは中枢性尿崩症治療剤である請求の範囲10記載の医薬組成物。

International application No.

PCT/JP2004/005998

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D223/16, 401/06, 401/12, A61K31/55, A61P13/02, 43/00	403/06, 403/12, 417/06,	•
According to International Patent Classification (IPC) or to both nation	onal classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by Int.Cl ⁷ C07D223/16, 401/06, 401/12, A61K31/55, A61P13/02, 43/00	403/06, 403/12, 417/06	,
Documentation searched other than minimum documentation to the ex		
Electronic data base consulted during the international search (name of CAPLUS (STN), CAOLD (STN), REGISTRY (ST	of data base and, where practicable, search t	erms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where	_ _	Relevant to claim No.
A JP 9-221476 A (Otsuka Pharm 26 August, 1997 (26.08.97), Full text (Family: none)	aceutical Co., Ltd.),	1-12
& WO 95/34540 A1 & E1 & US & EP 1221440 A1 & US & US 6335327 B1 & US 6642223 B2 & AU & AU & EI & E	Accutical Co., Ltd.), P 2000-351768 A P 765314 A1 S 6096735 A S 2002/0049194 A1 U 9526293 A R 97703317 A N 1313280 A	. 1-12
X Further documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"T" later document published after the interdate and not in conflict with the application the principle or theory underlying the in document of particular relevance; the considered novel or cannot be consisted when the document is taken alone "Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the document member of the same patent for the principle.	ation but cited to understand invention claimed invention cannot be dered to involve an inventive laimed invention cannot be step when the document is documents, such combination art
Date of the actual completion of the international search 02 July, 2004 (02.07.04)	Date of mailing of the international search 27 July, 2004 (27.0	ch report 7.04)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer	
Facsimile No. orm PCT/ISA/210 (second sheet) (January 2004)	Telephone No.	

International application No.
PCT/JP2004/005999

Category*	Citation of document, with indication, where approp	orists of the misses	T
A	WO 95/06035 Al (Yamanouchi Pha	onate, of the relevant passages	Relevant to claim I
	02 March, 1995 (02.03.95), Full text & EP 716083 A1 & US 57 & AU 9475084 A & TW 26 & FI 9600867 A & NO 96	710150 A	1-12
		.98437 A	
A	WO 98/39325 A1 (Yamanouchi Phar Ltd.), 11 September, 1998 (11.09.98), Full text	cmaceutical Co.,	1-12
	& EP 987264 A1 & US 63 & AU 9861204 A	40678 B1	
	•		
	·		
	·		
			·
			·
	•	·	

				
A. 発明の原 Int. Cl' C07	属する分野の分籟(国際特許分類 (I P C)) D223/16, 401/06, 401/12, 403/06, 403/12, 4	117/06, A61K31/55, A61P13/02, 43/00		
B. 調査を行			·.	
調査を行った	最小限資料(国際特許分類(IPC))			
Int. C1' C07	D223/16, 401/06, 401/12, 403/06, 403/12, 4	17/06, A61K31/55, A61P13/02, 43/00		
最小限資料以外	外の資料で調査を行った分野に含まれるもの			
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN), CAOLD (STN), REGISTRY (STN)				
	ると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	レきけ その関連する箇所の表示	関連する	
A	JP 9-221476 A (大塚製薬株式会社) (ファミリーなし)		請求の範囲の番号 1-12	
A	JP 8-301848 A (大塚製薬株式会社) & JP 11-349570 A & JP 2000-351768 & EP 765314 A1 & EP 1221440 A1 & & US 6335327 B1 & US 2002/0049194 & AU 9526293 A & MX 9606510 A & R & CN 1150799 A & CN 1313280 A & T	8 A & WO 95/34540 A1 US 6096735 A 4 A1 & US 6642223 B2 KR 97703317 A	1-12	
x C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願		の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献		
国際調査を完了	した日 02.07.2004	国際調査報告の発送日 27.7	. 2004	
日本国 興	0名称及びあて先 特許庁(ISA/JP) 現番号100-8915 千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 新 留 素 子 電話番号 03-3581-1101	4P 2939 内線 3490	

	四际配置者 一	国際出願番号(1/ JP20	04/005998
C (続き) 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 95/06035 A1 (山之内製薬株式会社) & EP 716083 A1 & US 5710150 A & AU 9 & TW 266207 A & FI 9600867 A & NO 96 & CN 1129934 A & CN 1198437 A	1995. 03. 02,全文 475084 A	1-12
A	WO 98/39325 A1 (山之内製薬株式会社) & EP 987264 A1 & US 6340678 B1 & AU		1-12
			,
	·		
, ,			
	· 		
		,	
	, 		
	·		