Markov Chains

Sequence: x_1, x_2, \ldots, x_L

Transition probabilities: $a_{st} = P(x_i = t | x_{i-1} = s)$

Probability of sequence

$$P(x) = P(x_L, x_{L-1}, \dots, x_1)$$

= $P(x_L | x_{L-1}, \dots, x_1) P(x_{L-1} | x_{L-2}, \dots, x_1) \cdots P(x_1)$

Markov property: probability of x_i depends only on x_{i-1}

$$P(x) = P(x_L|x_{L-1})P(x_{L-1}|x_{L-2})\cdots P(x_1) = P(x_1)\prod_{i=2}^{L} a_{x_{i-1}x_i}.$$

CpG Islands

Estimate of transition probabilities: $a_{st}^{+} = \frac{c_{st}^{+}}{\sum_{t'} c_{st'}^{+}}$,

+	A	С	G	Т		_	A	С	G	Τ
A	0.180	0.274	0.426	0.120	•	А	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188		С	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125		G	0.248	0.246	0.298	0.208
Т	0.171 0.161 0.079	0.355	0.384	0.182		Τ	0.177	0.239	0.292	0.292

$$S(x) = \log \frac{P(x|\text{model} +)}{P(x|\text{model} -)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

Hidden Markov Models

HMM Theory

Two stochastic processes:

A Markov chain over (hidden) states Emissions of letters in each state

State process:

transition from state k to l with probability a_{kl}

Emission process:

emit letter b in state k with probability $e_k(b)$

Probability of a path and a sequence:

$$P(x,\pi) = a_{0\pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

The occasionally dishonest casino, part 1

Viterbi algorithm

Most probable state path: $\pi^* = \underset{\pi}{\operatorname{argmax}} P(x, \pi)$

Calculate recursively: $v_l(i+1) = e_l(x_{i+1}) \max_k (v_k(i)a_{kl})$

Viterbi algorithm

Most probable state path:
$$\pi^* = \underset{\pi}{\operatorname{argmax}} P(x, \pi)$$

Calculate recursively:
$$v_l(i+1) = e_l(x_{i+1}) \max_k (v_k(i)a_{kl})$$

Algorithm:

Initialisation
$$(i = 0)$$
: $v_0(0) = 1$, $v_k(0) = 0$ for $k > 0$.

Recursion
$$(i = 1 \dots L)$$
: $v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl})$; $\operatorname{ptr}_i(l) = \operatorname{argmax}_k (v_k(i-1)a_{kl})$.

Termination:
$$P(x,\pi^*) = \max_k(v_k(L)a_{k0});$$

$$\pi_L^* = \operatorname{argmax}_k(v_k(L)a_{k0}).$$

Traceback (
$$i = L ... 1$$
): $\pi_{i-1}^* = ptr_i(\pi_i^*)$.

The occasionally dishonest casino, part 2

Rolls 315116246446644245311321631164152133625144543631656626566666 Die Rolls 651166453132651245636664631636663162326455236266666625151631 Die Rolls 222555441666566563564324364131513465146353411126414626253356 Die Rolls 366163666466232534413661661163252562462255265252266435353336 Die Rolls 233121625364414432335163243633665562466662632666612355245242 Die

Forward algorithm

Calculate the total probability of x:

$$P(x) = \sum_{\pi} P(x, \pi)$$

Define $f_k(i) = P(x_1 \dots x_i, \pi_i = k)$ and do recursion like Viterbi algorithm.

Forward algorithm

Calculate the total probability of *x*:

$$P(x) = \sum_{\pi} P(x, \pi)$$

Define $f_k(i) = P(x_1 \dots x_i, \pi_i = k)$ and do recursion like Viterbi algorithm.

Algorithm:

Initialisation
$$(i = 0)$$
: $f_0(0) = 1, f_k(0) = 0 \text{ for } k > 0.$

Recursion
$$(i = 1 ... L)$$
: $f_l(i) = e_l(x_i) \sum_k f_k(i-1) a_{kl}$.

Termination:
$$P(x) = \sum_{k} f_k(L) a_{k0}.$$

Backward algorithm

One can do exactly the same **backwards** with:

$$b_k(i) = P(x_{i+1} \dots x_L | \pi_i = k).$$

Backward algorithm

One can do exactly the same backwards with:

$$b_k(i) = P(x_{i+1} \dots x_L | \pi_i = k).$$

Algorithm:

Initialisation (i = L): $b_k(L) = a_{k0}$ for all k.

Recursion $(i = L - 1, \dots, 1)$:

$$b_k(i) = \sum_l a_{kl} e_l(x_{i+1}) b_l(i+1).$$

Termination:
$$P(x) = \sum_{l} a_{0l} e_l(x_1) b_l(1).$$

Posterior probability of a state

Probability that x_i is generated in state k:

$$P(\pi_i = k|x) = \frac{P(x, \pi_i = k)}{P(x)}$$

Calculate numerator:

$$P(x, \pi_i = k) = P(x_1 \dots x_i, \pi_i = k) P(x_{i+1} \dots x_L | x_1 \dots x_i, \pi_i = k)$$

$$= P(x_1 \dots x_i, \pi_i = k) P(x_{i+1} \dots x_L | \pi_i = k)$$

$$= f_k(i)b_k(i)$$

Result:

$$P(\pi_i = k|x) = \frac{f_k(i)b_k(i)}{P(x)}$$

The occasionally dishonest casino, part 3–4

Posterior probability of the two states for 300 random rolls of a die:

The occasionally dishonest casino, part 3–4

Posterior probability of the two states for 300 random rolls of a die:

Changing the probability of switching to the loaded die to 0.01:

Parameter estimation

Maximize the likelihood:

$$l(x^{1},...,x^{n}|\theta) = \log P(x^{1},...,x^{n}|\theta)$$
$$= \sum_{j=1}^{n} \log P(x^{j}|\theta)$$

When state sequences are known:

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$
 and $e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$

where A_{kl} and $E_k(b)$ are counts

When the paths are unknown

Estimate A_{kl} and $E_k(b)$ from current model:

$$A_{kl} = \sum_{j} \frac{1}{P(x^{j})} \sum_{i} f_{k}^{j}(i) a_{kl} e_{l}(x_{i+1}^{j}) b_{l}^{j}(i+1)$$

$$E_k(b) = \sum_j \frac{1}{P(x^j)} \sum_{\{i | x_i^j = b\}} f_k^j(i) b_k^j(i),$$

Baum-Welch algorithm

Initialisation: Pick arbitrary model parameters.

Recurrence:

Set all A and E to zero.

For each sequence $j = 1 \dots n$:

Calculate $f_k(i)$ by the forward algorithm.

Calculate $b_k(i)$ by the backward algorithm.

Add contribution to A and E.

Update parameters.

Calculate new log likelihood of model.

Termination:

Stop if log likelihood change is small or the maximum number of iterations is exceeded.

The occasionally dishonest casino, part 5

