WHAT IS CLAIMED IS:

- 1. A method of mapping a set of *n*-dimensional input patterns to an *m*-dimensional space using locally defined neural networks, comprising the steps of:
- (a) creating a set of locally defined neural networks trained according to a mapping of a subset of the *n*-dimensional input patterns into an *m*-dimensional output space;
- (b) mapping additional n-dimensional input patterns using the locally defined neural networks.
 - 2. The method of claim 1, wherein step (a) comprises the steps of:
- (i) selecting k patterns from the set of input patterns, $\{x_i, i = 1, 2, ..., k, x_i \in \mathbb{R}^n\}$;
- (ii) mapping the patterns $\{x_i\}$ into an *m*-dimensional space $(x_i \rightarrow y_i, i = 1, 2, ..., k, y_i \in \mathbb{R}^m)$, to form a training set $T = \{(x_i, y_i), i = 1, 2, ..., k\}$;
- (iii) determining c n-dimensional reference points, $\{c_i, i = 1, 2, ..., c, c_i \in \mathbb{R}^n\};$
- (iv) partitioning T into c disjoint clusters C_j based on a distance function d, $\{C_j = \{(\mathbf{x}_i, \mathbf{y}_i): d(\mathbf{x}_i, \mathbf{c}_j) \le d(\mathbf{x}_i, \mathbf{c}_k) \text{ for all } k \ne j; j = 1, 2, ...$ c; i = 1, 2, ... $k\}$; and
- (v) training c independent local networks {Net_i^L, i = 1, 2, ... c}, with the respective pattern subsets C_i .
- 3. The method of claim 2, wherein said step (iii) is performed using a clustering methodology.
- 4. The method of claim 2, wherein said step (b) comprises the steps of:

- (i) for an additional *n*-dimensional input pattern $\mathbf{x} \in \mathbb{R}^n$, determining the distance to each reference point in $\{\mathbf{c}_i\}$;
- $\mbox{(ii)} \qquad \mbox{identifying the reference point } c_j \mbox{ closest to the} \\ \mbox{input pattern } x; \mbox{ and } \\$
- (iii) mapping $x \to y$, $y \in \mathbb{R}^m$, using the local neural network Net_j^L associated with the reference point \mathbf{c}_j identified in step (ii).
 - 5. The method of claim 1, wherein step (a) comprises the steps of:
- (i) selecting k patterns of the set of n-dimensional input patterns, $\{\mathbf{x}_i, i = 1, 2, ..., k, \mathbf{x}_i \in \mathbb{R}^n\}$;
- (ii) mapping the patterns $\{\mathbf{x}_i\}$ into an *m*-dimensional space $(\mathbf{x}_i \to \mathbf{y}_i, i = 1, 2, ..., k, \mathbf{y}_i \in \mathbb{R}^m)$, to form a training set $T = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, 2, ..., k\}$;
- (iii) determining c m-dimensional reference points, $\{\mathbf{c_i}, i=1,2,...\,c,\,\mathbf{c_i}\in\mathbb{R}^m\};$
- (iv) partitioning T into c disjoint clusters C_j based on a distance function d, $\{C_j = \{(\mathbf{x}_i, \mathbf{y}_i): d(\mathbf{y}_i, \mathbf{c}_j) \le d(\mathbf{y}_i, \mathbf{c}_k) \text{ for all } k \ne j; j = 1, 2, ...$ c; $i = 1, 2, ... k\}\};$
- (v) training c independent local networks {Net_i^L, i = 1, 2, ... c}, with the respective pattern subsets C_i ; and
- (vi) training a global network Net^G using all the patterns in T.
- 6. The method of claim 5, wherein said step (iii) is performed using a clustering methodology.
- 7. The method of claim 5, wherein step (b) comprises the steps of:
- (i) for an additional *n*-dimensional pattern $x \in \mathbb{R}^n$, mapping $x \to y', y' \in \mathbb{R}^m$, using Net^G;

- (ii) determining the distance of y' to each reference point in $\{c_i\}$;
- (iii) identifying the reference point \mathbf{c}_j closest to \mathbf{y} ',and
 - (iv) mapping $\mathbf{x} \to \mathbf{y}$, $\mathbf{y} \in \mathbb{R}^m$, using the local neural network Net_j^L associated with the reference point \mathbf{c}_i identified in step (iii).
- 8. A computer program product comprising a computer usable medium having computer readable program code means embodied in said medium for causing an application program to execute on a computer that maps a set of *n*-dimensional input patterns to an *m*-dimensional space using locally defined neural networks, said computer readable program code means comprising:
- a first computer readable program code means for causing the computer to create a set of locally defined neural networks trained according to a mapping of a subset of the *n*-dimensional input patterns into an *m*-dimensional space;
- a second computer readable program code means for causing the computer to project additional *n*-dimensional patterns of the input set using the locally defined neural networks.
- 9. The computer program product of claim 8, wherein said first computer readable code means comprises:
- (i) computer readable program code means for selecting k patterns from the set of input patterns, $\{x_i, i = 1, 2, ..., k, x_i \in \mathbb{R}^n \}$;
- (ii) computer readable program code means for mapping the patterns $\{x_i\}$ into an *m*-dimensional space $(x_i \rightarrow y_i, i = 1, 2, ... k, y_i \in \mathbb{R}^m)$, to form a training set $T = \{(x_i, y_i), i = 1, 2, ... k\}$;

- (iii) computer readable program code means for determining c n-dimensional reference points, $\{c_i, i = 1, 2, ..., c, c_i \in \mathbb{R}^n\}$;
- (iv) computer readable program code means for partitioning T into c disjoint clusters C_j based on a distance function d, $\{C_j = \{(\mathbf{x}_i, \mathbf{y}_i): d(\mathbf{x}_i, \mathbf{c}_i) \le d(\mathbf{x}_i, \mathbf{c}_k) \text{ for all } k \ne j; j = 1, 2, ... c; i = 1, 2, ... k\}\}$; and
- (v) computer readable program code means for training c independent local networks {Net_i^L, i = 1, 2, ... c}, with the respective pattern subsets C_i .
- 10. The computer program product of claim 9, wherein said computer readable program code means uses a clustering methodology.
- 11. The computer program product of claim 9, wherein said second computer readable code means comprises:
- $\mbox{(i)} \quad \mbox{for an additional n-dimensional pattern $x \in R^n$,}$ computer readable program code means for determining the distance to each reference point in $\{c_i\}$;
- (ii) computer readable program code means for identifying the reference point \mathbf{c}_j closest to the input pattern \mathbf{x} ; and
- (iii) computer readable program code means for mapping $x \to y$, $y \in R^m$, using the local neural network Net_j^L associated with the reference point c_j identified in step (ii).
- 12. The computer program product of claim 8, wherein said first computer readable program code means comprises:
- (i) computer readable program code means for selecting k patterns of the set of n-dimensional input patterns, $\{x_i, i = 1, 2, ... k, x_i \in \mathbb{R}^n\}$;

- (ii) computer readable program code means for mapping the patterns $\{x_i\}$ into an *m*-dimensional space $(x_i \rightarrow y_i, i = 1, 2, ... k)$, to form a training set $T = \{(x_i, y_i), i = 1, 2, ... k\}$;
- (iii) computer readable program code means for determining c m-dimensional reference points, $\{\mathbf{c}_i, i = 1, 2, ..., c, \mathbf{c}_i \in \mathbb{R}^m\}$;
- (iv) computer readable program code means for partitioning T into c disjoint clusters C_j based on a distance function d, $\{C_j = \{(\mathbf{x}_i, \mathbf{y}_i): d(\mathbf{y}_i, \mathbf{c}_i) \le d(\mathbf{y}_i, \mathbf{c}_k) \text{ for all } k \ne j; j = 1, 2, ... c; i = 1, 2, ... k\}\};$
- (v) computer readable program code means for training c independent local networks $\{\text{Net}_{i}^{L}, i = 1, 2, ... c\}$, with the respective pattern subsets C_{i} ; and
- (vi) computer readable program code means for training a global network Net^G using all the patterns in T.
- 13. The computer program product of claim 12, wherein said computer readable program code means uses a clustering methodology.
 - 14. The computer program product of claim 12, wherein said second computer readable program code means comprises:
 - (i) for an additional *n*-dimensional pattern $x \in \mathbb{R}^n$, computer readable program code means for mapping $x \to y'$, $y' \in \mathbb{R}^m$, using Net^G;
 - $\cdot \qquad \text{(ii)} \qquad \text{computer readable program code means for} \\ \text{determining the distance of } y\text{' to each reference point in } \{c_i\};$
 - (iii) computer readable program code means for identifying the reference point \mathbf{c}_i closest to \mathbf{y} ',and
 - (iv) computer readable program code means for mapping $\mathbf{x} \to \mathbf{y}$, $\mathbf{y} \in \mathbb{R}^m$, using the local neural network Net_j^L associated with the reference point \mathbf{c}_i identified in step (iii).