

User manual

LDkit: a parallel computing toolkit for linkage disequilibrium analysis

Version 1.0

03-10-2019

Contents

Pre-requirement	2
Installation	3
File Format	
Genotype:	
Subgroup:	
Usage:	
Run using Graphic User Interface (GUI):	
Steps for LD analysis:	
Step1: choose input files	
Step2: set parameters for filtering variants	
Step3: choose LD types	
Step4: set parameters for plotting	
Step5: choose LD measurements	
Step5: checking your settings	
Step6: Run	
Notes:	
Run using command line	
Step1: LD analysis:	
Step 2: Plot	
Examples:	

JDK1.8 or above. It can be downloaded at:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html

Installation

LDkit is free of installation.

GUI package is under the GUI folder, please double-click the LDkit_GUI.jar to start.

Executable file **LDkit.jar** for command line users is on the executable folder

File Format

Genotype:

Both PLINK ped and map format and VCF format are supported. VCF format could be compressed or uncompressed.

Subgroup:

Subgroup should be formatted as:

[subgroup1Name]:sample1,sample2,sample3...

[subgroup2Name]:sample4,sample5,sample6...

Usage:

Run using Graphic User Interface (GUI):

GUI of LDkit is very easy to use. The main interface is like below:

Figure1: Interface of LDkit

Steps for LD analysis:

Step1: choose input files

1. Genotype file could be dragged into the window;

- 2. Multiple genotype files could be put in the same folder, and then choose the folder as input
- 3. Other files must choose from disk.

Step2: set parameters for filtering variants

্ঠ্য Parameter	• •
o,	Parameter
Windows Size:	100 KB
Missing Rate:	0.2
Thread num:	4
MAF:	0.005
Result File Name:	result
Result File Path:	Choose
	default
Chorm:	ullet $all ullet$ $input$
	CANCEL OK

Window size: max distance between two variants (kb) for LD decay.

Missing rate: max ration of missing allele in the population;

Thread num: number of threads. Default is half of the available resources.

MAF: minor allele frequency

Output file: save output.

Step3: choose LD types

Three types of LD analysis are supported by LDkit. LD site refer to the LD between a given site and a given region.

Step4: set parameters for plotting

- 1. This step could be skipped if you want to plot with other software.
- 2. If you want to plot with previous results, you could just input the previous results and adjust the parameters here. You needn't to run step1-step3 again.

InFile: none or previous results generated by LDkit.

Merge: if your input is a folder with multiple files, you could merge them all together as one population;

Mergechr: If your input is a file with multiple chromosomes, you could plot each chromosome by choosing *no*.

Bin: the size of bin for calculating mean r^2 or D'.

ResultName: file name for output.

Step5: choose LD measurements

r² or D' could be chose here.

Step5: checking your settings

Before you click start, you could check your parameters at right bottom.

```
Pop File: none
Windows Size: 100 Thread: 4
Missing Rate: 0.2 Plating: yes
Chrom: all Result Name: result
r-square LD decay MAF:0.005
Chrom: none Chr: none
Start: none Pos:none
End:none
```

Step6: Run

After clicking the start button, the dynamic DNA strand shown above will run.

Notes:

- 1. If your input is a folder, you should make sure there is only file format. If more than one format in the folder, only the first appeared one will be used;
- 2. Do not support multiple files input for PLINK format;
- 3. PLINK format must be .ped and .map file suffix;

Run using command line

Step1: LD analysis:

java -jar LDkit.jar --input <input files> --output <output file> [parameters]

Parameters:

- --input: input file or folder
- --output: output file
- --ws: max distance between two variants (kb) for LD decay. Default is 100 Kb.
- --subpop: input of subgroup files;
- --chr: chromosome name if you just want to calculate one or some of them. Multiple chromosomes should be separated by comma. Default is all.
- --maf: minor allele frequency filter. Default is 0.005;
- --threads: number of threads, default is 1.
- --type: measurements of LD. 1 for r-sqaure, 2 for D prime. Default is 1.
- --Intermediate save the LD file for LD block or not. Default is no.
- --block: chr:start-end. Region for LD block or LD site. For example: chr1:1000-20000;
- --site: chr:start-end chr:site. Given site for LD site. For example: chr1:1000-2000 chr1:24556-
- -h: help

Step 2: Plot

java -jar LDkit.jar --plot --input <input files> --output <output file> [parameters]

Parameters:

- --inp: input file for plot
- --merge: plot all subgroups in one figure or not. Default is yes.
- --mergechr: plot all chromosomes or not. Default is yes.
- --bin: the size of bin for calculating mean r2 or D'.

Examples:

- 1. LD decay for one population
- 2. LD decay for partial chromosomes in a population
- 3. LD decay for multiple subpopulations
- 4. LD block analysis
- 5. LD site analysis