- Memorijske tehnologije
 - Osnovne tehnologije: SRAM, DRAM, Flash
 - SRAM Static RAM, upotreba za keš
 - ne treba osvežavati sadržaj
 - vreme pristupa blisko vremenu kloka
 - tipično 6 tranzistora po bitu
 - širina linija podataka obično odgovara veličini bloka (linije), oznake se nalaze uz svaki blok
 - vreme pristupa je proporcinalno broju blokova
 - potrošnja energije proporcinalna ukupnom broju bita (statička snaga) i broju blokova (dinamička snaga)

- Memorijske tehnologije
 - DRAM Dynamic RAM, upotreba za glavni RAM
 - multipleksiranje adresnih linija radi jednostavnijeg i jeftinijeg pakovanja, organizacija u obliku matrice gde svaka lokacija ima svoj red i kolonu
 - slanje adrese iz dva dela:
 - RAS (row access strobe)
 - CAS (column access strobe)
 - bafer koji sadrži celu kolonu (zgodno za sukcesivna čitanja)

- DRAM Dynamic RAM, upotreba za glavni RAM
 - Jedan tranzistor za 1 bit, čitanje je destruktivno, pa zahteva ponovni upis
 - Zbog struje curenja, napon na tranzistoru opada, pa sadržaj treba periodično osvežavati (što se svodi na čitanje i ponovni upis)

Istorijat

- prvi DRAM čipovi su bili asinhroni, odnosno moralo se čekati na sinhronizaciju sa kontrolerom memorije
- 1990 se pojavio sinhroni DRAM SDRAM, uvođenje burst režima gde se pošalje jedna adresa reda, pa se čita sve iz zadate kolone (sukcesivne lokacije)
- 2000 se pojavio double data rate DDR, slanje podataka i na rastuću i na opadajuću ivicu kolka
- uvođenje banki, odnosno više čipova na jednom modulu, što je omogućilo preplitanje memorije (interleaving) - sukcesivne grupe lokacija se nalaze u različitim čipovima, RAS se deli na adresu banke i dresu reda

- DRAM Dynamic RAM, upotreba za glavni RAM
 - Rast brzine i kapaciteta se znatno usporio posle 2010
 - Danas dolaze u DIMM (dual inline memory module) pakovanjima, sa 4-16 DRAM čipova
 - Radi smanjenja potrošnje, smanjivao se napon, pa danas DDR4 radi na naponu od oko 1.2V
 - GDRAM prilagođen većoj propusnosti koju zahtevaju grafičke kartice
 - imaju širi data bus
 - rade na višim frekvencijama, direktno je povezan na GPU (zalemljen na istoj štampanoj ploči)
 - GDDR5, zasnovan na DDR3, ima 2-5 veći propusni opseg od DDR3
 - HBM (high bandwidth memory) slaganje DRAM pločica jedna na drugu (3D matrica), zasad uglavnom kod grafičkih kartica

- Flash

- Vrsta EEPROM-a (electronically erasable), danas se najviše koristi NAND varijanta
- Danas osnovna masovna memorija u prenosnimn uređajima

Karakteristike

- Čitanje je sekvencijalno i po blokovima (512B-4KiB), za prvi bajt se čeka malo duže, ostali stižu dosta brže. Oko 150 puta sporija od DDR4, ali i 200-500 puta brža od hard diska
- Pre ponovnog upisa se mora obrisati. Brisanje se radi po blokovima. Upis je oko 1500 puta sporiji nego DDR4, ali 8-15 puta brži od hard diska
- Sadržaj čuva i bez napajanja, te ne troši puno kada se ne koristi
- Blok se može brisati ograničen broj puta, oko 100k. Kontroler Flash-a se brine o tome da se blokovi ravnomerno pišu-brišu
- Jefininija od DRAM-a, skuplja od hard diska po jedinici kapaciteta
- Postojanje rezervnih blokova koji mogu zameniti defektne

- Povećanje pouzdanosti memorije
 - hard errors, permanent faults defekti u integrisanim kolima koje su stalnog karaktera i koji uvek izazivaju grešku
 - svaki čip ima jedan deo rezervnih ćelija koje se mogu koristiti umesto defektnih
 - soft errors, transient faults nenamerne promene u sadržaju ćelija
 - mogu se detektovati parity bitima ili kodovima za korekciju grešaka (EEC - error correcting codes), i jedno i drugo zahteva redundantne ćelije
 - EEC memorija uz dodatak od 8 bita na svaka 64, omogućava se detekcija greške na 2 bilo koja bita, kao i korekcija greške na 1 bitu

- Povećanje pouzdanosti memorije
 - u veoma velikim sistemima verovatnoća grešaka u memoriji značajno raste
 - Korišćenje Chipkill tehnologije slično RAID-u, ali za RAM
 - IBM-ova analiza za period od 3 godine, za sistem za 10k procesora i 4GB RAM po procesoru, broj nepopravljivih grešaka:
 - korišćenjem samo parity bita: oko 90k grešaka, ili 1 svakih 17 minuta
 - korišćenjem ECC memorije: oko 3500 grešaka, ili jedna svakih
 7.5 sati
 - Chipkill: otprilike jedna na svaka 2 meseca

Optimizacija keš memorije

- Šta se može popraviti?
 - smanjenje vremena pogotka
 - povećanje propusnosti
 - smanjenje vremena promašaja
 - smanjenje frekvencije promašaja
 - upotreba paralelizma za smanjenje vremena i/ili frekvencije promašaja
 - smanjenje potrošnje energije
- Kako se može popraviti?
 - unapređenje tehnologije integrisanih kola
 - unapređenje organizacije memorije i njenog korišćenja
 - korišćenje boljih kompajlera

• Optimizacija keš memorije

Technique	Hit time	Band- width	Miss penalty	Miss rate	Power consumption	Hardware cost/ complexity	Comment
Small and simple caches	+			_	+	0	Trivial; widely used
Way-predicting caches	+				+	1	Used in Pentium 4
Pipelined & banked caches	_	+				1	Widely used
Nonblocking caches		+	+			3	Widely used
Critical word first and early restart			+			2	Widely used
Merging write buffer			+			1	Widely used with write through
Compiler techniques to reduce cache misses				+		0	Software is a challenge, but many compilers handle common linear algebra calculations
Hardware prefetching of instructions and data			+	+	-	2 instr., 3 data	Most provide prefetch instructions; modern high- end processors also automatically prefetch in hardware
Compiler-controlled prefetching			+	+		3	Needs nonblocking cache; possible instruction overhead; in many CPUs
HBM as additional level of cache		+/-	-	+	+	3	Depends on new packaging technology. Effects depend heavily on hit rate improvements

- Virtuelna memorija
 - Ima ulogu sličnu ulozi keša kod RAM memorije: držanje u RAM-u neophodnih stranica za izvršavanje programa, čije se kompletne slike nalaze na masovnoj memoriji
 - Multiprogramiranje više procesa (programa) istovremeno dele resurse računara
 - zahtev za međusobnom izolacijom procesa
 - zašto?
 - Operativni sistem i hardver moraju ograničiti šta korisnički procesi mogu da koriste, dok s druge strane moraju omogućiti i rad sistemskih procesa

Virtuelna memorija

- Arhitektura mora obezbediti:
 - bar dva režima izvršavanja, jedan za korisničke procese (user), jedan za sistemske (kernel, supervisor) procese
 - obezbedi read pristup korisničkim programima za neke delove procesora
 - user/supervisor bit
 - podaci o zaštićenoj memoriji (npr. šta je dodeljeno procesu)
 - obezbedi mehanizme za prelazak procesora sa user na supervisor režim rada i nazad
 - sistemski pozivi
 - povratak iz sistemskog poziva
 - obezbedi mehanizme za ograničavanje prisupa memoriji
- Najčešće korišćena tehnika zaštite memorije je dodavanje podataka o ograničenjima za svaku stranicu virtuelne memorije
 - read/write/execute prava

Virtuelna memorija

- Informacije o tome koja virtuelna stranica odgovara kojoj fizičkoj se takođe nalaze u RAM-u
 - što znači da je svaki pristup memoriji duplo duži nego obično - prvo se pristupa tabeli stranica da bi de dobila adresa fizičke stranice, pa tek onda adresi u fizičkoj stranici
 - uvođenje keš memorije za ubrzanje prisupa fizičkim adresama
 - TLB translation lookaside buffer tag je virtuelna adresa, a sadržaj je
 - fizička adresa
 - podaci o zaštiti read/write/execution prava
 - protection bit zabrana odlaganja stranice u masovnu memoriju
 - valid bit da li se u sadržaju uopšte nalazi adresa
 - dirty bit da li je stranica menjana
 - use bit da li je stranica korištena u poslednje vreme

Virtuelna memorija

- Mehanizmi zaštite bi trebalo da omoguće poptunu međusobnu izolaciju procesa
 - Nažalost, nije tako, jer postoje greške i propusti kako u operativnim sistemima, tako i u arhitekturi i/ili hardveru. 2017-te su otkriveni meltdown i spectre propusti. Meltdown:
 - proces može čitati svu raspoloživu memoriju, čak i kada nema prava za to (Intel, AMD, Power, ARM)
 - napravi se niz od 256 stranica u memoriji (256*4KB), isprazni se keš čitanjem random lokacija po memoriji, a zatim se pokuša čitanje željene lokacije, a odmah zatim pristup elementu niza pomoću vrednosti lokacije pomnožene sa 4096
 - procesor će probati da izvrši prvu naredbu, ali će "pući" na proveri granica memorije/prava pristupa; međutim, takođe će i unapred izvršiti i drugu naredbu i keširati sadržaj jedne stranice niza
 - zatim se u petlji pokušava direktno pristupati prvom bajtu svake stranice niza i meri se vreme za koje se dobije podatak
 - kada se naleti na čitanje vrednosti koje se dobije brže (odnosno, iz stranice koja je keširana), redni broj stranice odgovara vrednosti lokacije koja je tražena
 - Spectre slična stvar, samo generalnija i bazirana na spekulativnom izvršavanju posle naredbi skoka

Virtuelne mašine

- Postoje još od 60-tih godina na mainframe računarima, od 80-tih su izgubile na poluparnosti, ali su u poslednjih 10-15 godina ponovo aktuelne
 - veća izolacija procesa
 - izbegavanje propusta u operativnim sistemima
 - deljenje resursa računara na više korisnika
 - overhead upotrebe virtuelnih mašina se znatno smanjio
- Najčešće je unutar VM podržana ista arhitektura kao na host računaru
 - Xen, KVM, VirtualBox, VMWare, ...
 - Ima i izuzetaka: QEMU, emulacija starih računara
- VMM (Virtual Machine Monitor) softver koji omogućava rad VM, mapira resurse guest sistema na host sistem

Virtuelne mašine

- Overhead zavisi od softvera koji se izvršava unutar guest sistema
 - ako je više zavisan od procesora, overhead je manji
 - ako je više zavisan od sistemskih poziva i generalno od I/O, overhead je veći
 - neke naredbe se mogu direktno izvršiti na host procesoru, neke se moraju emulirati (izvršiti programski kod koji daje efekat izvršavanja naredbe)

Dodatne mogućnosti VM

- Korišćenje (starijeg) softvera unutar VM se može instalirati kompletno okruženje potebno za neki zadatak, pa se multiplicirati bez uticaja na host sistem. Ovo uključuje i korišćenje softvera koji zahteva stariji OS i/ili biblioteke
- Bolje iskorištenje hardvera različiti delovi softvera koji zahtevaju različite verzije OS i/ili biblioteka se mogu pokrenuti unutar više VM na istom računaru, umesto na više računara