计算机组成原理

傅颖勋

北方工业大学计算机科学与技术系

邮箱: fuyx@ncut.edu.cn

电话: Mobile:13488717987

学习指南

- 本课程的性质
 - >专业核心基础课程
 - ▶计算机硬件基础课程
 - >考研硬件基础课程(四门之一,30%)
- 本课程在专业体系中的地位
 - ▶本课程在计算机科学与技术学科中处于承上启下的地位
 - ,要求先修计算机导论,数字逻辑,程序设计基础
- 本课程的主要任务

通过学习本课程,掌握计算机各大部件的原理、逻辑实现及其互连构成整机系统的技术。为后继课程的学习打好基础

主要内容

- 第一章 计算机系统概述
- 第二章 运算方法与运算器
- 第三章 指令系统
- 第四章 中央处理器
- 第五章 主存储器与存储系统
- 第六章 辅助存储器
- 第七章 输入输出设备与系统

学习要点

- 从复杂的计算机系统抽象出主要模型
- 各部分构成原理(重点控制器、运算器、存储器)
- 学习后希望掌握高级语言程序怎么转换成机器语言程序,硬件如何执行这些程序
- 通过硬件设计怎样提高计算机系统的性能
- 什么是并行处理?(结合多核系统发展状况引出并行系 统的重要性)
- 能够理解计算机体系结构与高级语言、编译系统、操作系统的关系

学习指南

- 学习目标
 - >具有对计算机硬件系统的认知能力;
 - ➤ 在认知能力的基础上, 学会运算部件、存储部件、指令 系统、控制单元以及整机硬件系统的设计方法;
 - ▶ 在认知和设计能力的基础上,为具备一定的创新意识和 创新能力打下基础
- 课程安排
 - > 64学时=48(理论教学)+16(实验)
 - > 考核:平时成绩(40%)+期末考试(60%)
 - ➤ 平时:出勤(0.3)、作业(0.2)、期中(0.2)、实验(0.3)

参考书籍

- 唐朔飞.计算机组成原理(第二版) 高等教育出版社.2010
- 蒋本珊,计算机组成原理,清华大学出版社. 2013
- 白中英.计算机组成原理.科学出版社.2013

参考书籍

- 马礼.计算机组成原理与系统设计.机械工业出版社.2011
- David Patterson, John Hennessy. 王党辉,康继昌等译.计算机组成与设计/硬件软件接口,机械工业出版社, 2015
- Randal E. Bryant. 龚奕利,贺莲译.深入理解计算机系统,机械工业出版社,2016

第一章计算机系统概述

- 1.1 电子数字计算机与存储程序控制
- 1.2 计算机的类型和应用
- 1.3 计算机系统的硬件组成
- 1.4 计算机系统的层次结构
- 1.5 计算机的工作过程和主要性能指标

在本章中我们将从存储程序的概念入手,讨论电子数字计算机的基本组成与工作原理,使大家对于计算机系统先有一个简单的整体概念,为今后深入讨论各个部件打下基础。

电子数字计算机

- 电子计算机是一种不需要人工直接干预,能够自动、 高速、准确地处理和存储各种信息的电子设备。
- 可以有非电子计算机如: 量子计算机。
- 可以有非数字计算机如: 模拟计算机。
- 世界上第一台电子数字计算机是1946年2月15日问世的ENIAC。(宾夕法尼亚大学)
 - > 莫齐利(1907-1980): 首席顾问
 - > 艾克特(1919-1995): 首席工程师
 - ➤ ENIAC的设计开始于1943年, 一直使用到1955年。

第一台电子计算机一ENIAC

超级计算机 (2016.11)

_												
	Rank	Name	Site	Country	Year	Rmax	Rpeak	Nmax	Power	Mflops/W att	Processor	System Model
	1	Sunway TaihuLight	National Supercomputing Center in Wuxi	China	2016	9301459	125435904	1 2288 00 0	15371	6051.3	Sunway SW26010 260C 1.45GHz	Sunway MPP
	2	Tianhe-2 (MilkyWay- 2)	National Super Computer Center in Guangzhou	China	2013	3386270 0	54902400	9960000	17808	1901.54	Intel Xeon E5- 2692v2 12C 2.2GHz	TH-IVB- FEP Cluster
	3	Titan	DOE/SC/Oak Ridge National Laboratory	United States	2012	1759000	27112550	O	8209	2142.77	Opteron 6274 16C 2.2GHz	Cray XK7
	4	Sequoia	DOE/NNSA/LLN L	United States	2011	17173224	20132659.2	O	7890	2176.58	Power BQC 16C 1.6GHz	BlueGene/ Q
	5	Cori	DOE/SC/LBNL/N ERSC	United States	2016	14014700	27880653	6984960	3939	3557.93	Intel Xeon Phi 7250 68C 1.4GHz	Cray XC40
	6	Oakforest- PACS	Joint Center for Advanced High Performance Computing	Japan	2016	13554600	24913459	9938880	2718.7	4985.69	Intel Xeon Phi 7250 68C 1.4GHz	PRIMERG Y CX1640 M1
	7	Trubuty	RIKEN Advanced Institute for Computational Science (AICS)	Japan	2011	10510000	11280384	11870208	12659.8 9	830.18	SPARC64 VIIIfx 8C 2GHz	K computer
	8	Piz Daint	Swiss National Supercomputing Centre (CSCS)	Switzerl and	2016	9779000	15987968	2488320	1312	7453.51	Xeon E5- 2690v3 12C 2.6GHz	Cray XC50
	9	Mira	DOE/SC/Argonne National Laboratory	United States	2012	8586612	10066330	О	3945	2176.58	Power BQC 16C 1.6GHz	BlueGene/ Q
	10	Trinity	DOE/NNSA/LAN L/SNL	United States	2015	8100900	11078861	8847936	4232.63	1913.92	Xeon E5- 2698v3 16C 2.3GHz	Cray XC40

一些理念(思考)

- Abstraction (Layers of Representation/Interpretation)
- Moore's Law (Designing through trends)
- Principle of Locality (Memory Hierarchy)
- Parallelism & Amdahl's law (which limits it)
- Dependability via Redundancy
- 思考问题
 - 1) 计算机由哪些部分组成?
 - 2) 各部分之间什么关系?
 - 3) 为什么能够自动运行程序?

存储程序概念

- 冯·诺依曼等人在1946年6月提出存储程序概念:
 - ▶ 计算机(指硬件)应由运算器、存储器、控制器、输入设备 和输出设备五大基本部件组成;
 - > 计算机内部采用二进制来表示指令和数据;
 - ▶ 将编好的程序和原始数据事先存入存储器中,然后再启动计算机工作,使计算机在不需要人工干预的情况下,自动、高速地从存储器中取出指令加以执行。
 - ▶目前绝大多数计算机仍建立在存储程序概念的基础上, 称冯·诺依曼型计算机。也出现了一些突破冯·诺依曼结构的计算机, 统称非冯结构计算机, 如:数据驱动的数据流计算机、需求驱动的归约计算机和模式匹配驱动的智能计算机等。

冯·诺依曼计算机硬件框图

以存储器为中心的硬件框图

第一章计算机系统概述

- 1.1 电子数字计算机与存储程序控制
- 1.2 计算机的类型和应用
- 1.3 计算机系统的硬件组成
- 1.4 计算机系统的层次结构
- 1.5 计算机的工作过程和主要性能指标

计算机的类型与应用

- 国内分类
 - ▶小型机、中型机
 - >大型机、巨型机
- 美国分类
 - ▶PMD、桌面计算机
 - ▶服务器、集群/仓库级、嵌入式
- 计算机应用
 - ▶科学计算、数据处理、过程控制
 - ▶计算机辅助设计与制造、人工智能

系列机

- 系列机是指一个厂家生产的,具有相同的体系结构, 但具有不同组成和实现的一系列不同型号的机器。
- 系列机应在指令系统、数据格式、字符编码、中断系统、控制方式、输入/输出操作方式等方面保持统一, 从而保证软件的兼容性。
- 软件兼容
 - ▶向上兼容
 - ▶向下兼容

- > 向前兼容
- ▶向后兼容

第一章计算机系统概述

- 1.1 电子数字计算机与存储程序控制
- 1.2 计算机的类型和应用
- 1.3 计算机系统的硬件组成
- 1.4 计算机系统的层次结构
- 1.5 计算机的工作过程和主要性能指标

输入输出设备

• 输入设备

▶输入设备的任务是把人们编好的程序和原始数据送到计算机中去,并且将它们转换成计算机内部所能识别和接受的信息方式。常用的有键盘、鼠标、扫描仪等。

• 输出设备

▶输出设备的任务是将计算机的处理结果以人或其他设备 所能接受的形式送出计算机。常用的有显示器、打印机 、绘图仪等。

存储器

• 存储器是用来存放程序和数据的部件,它是一个记忆 装置,是计算机能够实现"存储程序控制"的基础。

存储器

• 存储器是用来存放程序和数据的部件,它是一个记忆 装置,是计算机能够实现"存储程序控制"的基础。

存储器

• 存储器是用来存放程序和数据的部件,它是一个记忆 装置,是计算机能够实现"存储程序控制"的基础。

主存储器

• 可由CPU直接访问,用来存放当 前正在执行的程序和数据。

辅助存储器

• 设置在主机外部,CPU不能直接访问,用来存放暂时不参与运行的程序和数据,需要时再传送到主存。

高速缓冲存储器

• CPU可以直接访问,用来存放当前正在执行的程序中的活跃部分,以便快速地向CPU提供指令和数据。

运算器与控制器

• 运算器

- ➤运算器是对信息进行处理和运算的部件,经常进行的运 算是算术运算和逻辑运算,因此运算器的核心是算术逻 辑运算部件ALU。
- >运算器中有若干个寄存器(累加寄存器、暂存器等)。
- 控制器
 - ▶控制器是整个计算机的指挥中心。
 - ▶控制器中主要包括时序控制信号形成部件和一些专用的 寄存器。

计算机总线结构

- 将各大基本部件,按某种方式连接起来就构成了计算机的硬件系统。
- •目前许多计算机(主要指小、微型计算机)的各大基本 部件之间是用总线(Bus)连接起来的。
- 总线是一组能为多个部件服务的公共信息传送线路, 它能分时地发送与接收各部件的信息,具有共享性和 分时性等特点
- 小型、微型机的设计目标是以较小的硬件代价组成具有较强功能的系统,总线结构正好能满足这一要求。

单总线结构

提高了CPU的工作效率,外设连接灵活。但信息传送的吞吐率受到限制,控制逻辑比专用存储复杂。

以CPU为中心的双总线结构

结构简单。但外设与主存间必须通过CPU进行信息交换, 降低了CPU的工作效率。

面向存储器的双总线结构

保留了单总线结构的优点,而存取速度大大提高。但硬件的代价随之增加。

大、中型机的典型结构

- 大、中型计算机系统的设计目标更着重于系统功能的 扩大与效率的提高。
- 主机可以连接多个通道,每个通道可以接一台或几台 设备控制器,每个设备控制器又可接一台或几台外部 设备,这样整个系统就可以连接很多的外部设备。
- 通道是承担I/O操作管理的主要部件,能使CPU的数据 处理和外部设备交换信息这两项操作同时进行。

大、中型机的典型结构

第一章计算机系统概述

- 1.1 电子数字计算机与存储程序控制
- 1.2 计算机的类型和应用
- 1.3 计算机系统的硬件组成
- 1.4 计算机系统的层次结构
- 1.5 计算机的工作过程和主要性能指标

计算机系统

计算机的实体, 如主机、外设等。 软件 由具有各类特殊功能 的信息(程序)组成。

硬件与软件

- 计算机系统=硬件系统+软件系统
 - ▶ 硬件是计算机系统的物质基础,软件是计算机系统的灵魂。 硬件和软件是相辅相成的,不可分割的整体。
 - ▶ 当前计算机的硬件和软件正朝着互相渗透,互相融合的方向 发展,在计算机系统中没有一条明确的硬件与软件的分界线
 - 。硬件和软件之间的界面是浮动的,对于程序设计人员来说
 - ,硬件和软件在逻辑上是等价的。
 - ▶ 硬件软化:原来由硬件实现的操作改由软件来实现。它可以 增强系统的功能和适应性。
 - ▶ 软件硬化:原来由软件实现的操作改由硬件来实现。它可以显著降低软件在时间上的开销。

固件

• 固件是指那些存储在能永久保存信息的器件(如ROM)中的程序,是具有软件功能的硬件。固件的性能指标介于硬件与软件之间,吸收了软、硬件各自的优点,其执行速度快于软件,灵活性优于硬件,是软、硬件结合的产物,计算机功能的固件化将成为计算机发展中的一个趋势。

计算机软件

用来管理整个计算机系统 系统软件 语言处理程序 操作系统 服务性程序 数据库管理系统 网络软件 应用软件 按任务需要编制成的各种程序

计算机解题过程

计算机

计算机解题示例

现代计算机系统是一个硬件与 软件组成的综合体,我们可以 把它看成是按功能划分的多级 层次结构。

虚拟计算机是指这个计算机只对该级的观察者存在。对某一层次的观察者来说,他只能是通过该层次的语言来了解和使用计算机,至于下层是如何工作和实现的就不必关心了。简而言之,虚拟计算机即是由软件实现的机器。

应用语言级(虚拟机器) 应用程序 高级语言级(虚拟机器) 编译程序 汇编语言级(虚拟机器) 汇编程序 操作系统级(虚拟机器) 操作系统 机器语言级 (实际机器) 微程序 微程序级(实际机器)

硬操作肘序 (实际机器)

硬联逻辑

一般解析的一般。如果有人是不知识,不是不知识。

系统集成专 业用户观察 到的计算机 硬件系统

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - > Small fast SRAM memory for immediate access to data

Inside the Processor

Apple A7

Apple A8

主板、芯片组与BIOS

CPU插座 CPU调压器 主板芯片组 存储器插座 总线插槽 两块特殊的集成电路芯片

打印机接口 USB接口

计算机设计者 观察到的计算 机硬件系统

第一章计算机系统概述

- 1.1 电子数字计算机与存储程序控制
- 1.2 计算机的类型和应用
- 1.3 计算机系统的硬件组成
- 1.4 计算机系统的层次结构
- 1.5 计算机的工作过程和主要性能指标

例:设变量a、b、c分别存储在存储单元中(存储地址为005、006、007),试编程计算a+b-c的值,并将其存储在008地址单元中。以此程序执行为例说明计算机内部执行过程。

解: Load 005

Add 006

Sub 007

Store 008

HLT

基本字长

- 基本字长是指参与运算的数的基本位数,它是由加法器、寄存器、数据总线的位数决定的。
- 在计算机中为了更灵活地表达和处理信息,许多计算机又以字节(Byte)为基本单位,一个字节等于8位二进制位(bit)。
- 不同的计算机,字(Word)可以不相同,但对于系列机来说,在同一系列中,字却是固定的,如80X86系列中,一个字等于16位;IBM303X系列中,一个字等于32位。

数据通路宽度

- 数据总线一次所能并行传送的位数,称为数据通路宽度。它影响到信息的传送能力,从而影响计算机的有效处理速度。CPU内部的数据通路宽度一般等于基本字长,而外部数据通路宽度则取决于系统总线。
- 内、外数据通路宽度相等的CPU有: Intel 8086、80286、80486等;
- 外部<内部的CPU有: 8088、80386SX;
- 外部>内部的CPU有: Pentium等。

主存容量

- 一个主存储器所能存储的全部信息量称为主存容量。衡量主存容量单位有两种:
 - ▶①字节数。这类计算机称为字节编址的计算机。每1024个字节称为1K字节(210=1K),每1024K字节称为1M字节(220=1M),每1024M字节称为1G字节(230=1G)。
 - ▶②字数×字长。这类计算机称为字编址的计算机。如: 4096×16表示存储器有4096个存储单元,每个存储单元字长为16位。
- 计算机的主存容量越大,存放的信息就越多,处理问题的能力就越强。

常用的容量单位

十进制术语	缩写	数值	二进制术语	缩写	数值	数值差别
Kilobyte	KB	10^3	Kibibyte	KiB	210	2%
Megabyte	MB	10^{6}	Mebibyte	MiB	2^{20}	5%
Gigabyte	GB	109	Gibibyte	GiB	2^{30}	7%
Terabyte	TB	1012	Tebibyte	TiB	2 ⁴⁰	10%
Petabyte	PB	10^{15}	Pebibyte	PiB	2 ⁵⁰	13%
Exabyte	EB	10^{18}	Exbibyte	EiB	2^{60}	15%
Zettabyte	ZB	10^{21}	Zebibyte	ZiB	2 ⁷⁰	18%
Yottabyte	YB	10 ²⁴	Yobibyte	YiB	280	21%

运算速度

- 常用MIPS和MFLOPS来衡量运算速度。
- MIPS表示每秒百万条指令,多用于衡量标量机。
- MFLOPS每秒表示百万次浮点运算, MFLOPS比较适 用于衡量向量机。
- 主频/时钟周期:主时钟的频率。
- CPU执行时间:表示CPU执行一段程序所占用的时间

远算速度

- CPU执行时间:表示CPU执行一段程序所占用的时间,可用下式计算:
 - CPU时钟周期数×CPU时钟周期
 - ▶ CPI: 每条指令的周期数,即执行一条指令所需要的平均时钟周期数。
 - > CPI=执行某段程序所需的CPU时钟周期数:指令条数
 - ➤ CPU执行时间=CPI ×IC ×CPU时钟周期 =CPI ×IC /CPU时钟频率

运算速度

练习:某计算机的CPU主频为500MHz,CPI为5(即执行每条指令平均需要5个时钟周期)。假定某外设的数据传输率为0.5MB/s,采用中断方式与主机进行数据传送,以32位为传输单位,对应的中断服务程序包含18条指令,中断服务的其他开销相当于2条指令的执行时间。请回答下列问题,要求给出计算过程。在中断方式下,CPU用于该外设I/O的时间占整个CPU时间的百分比是多少?

解:

中断一次所用的时间t=4B/r=4B/0.5(MB/s)=8us

CPU时间: t_{CPU}=指令条数×CPI/主频=(18+2)×5/500M=0.2us

比例: P=t_{CPU}/t=0.2/8=2.5%

工作频率

- 工作频率是衡量计算机速度的重要参数。
- 工作频率又可以细分为内频和外频。
 - ▶ 内频,就是CPU的内部工作频率,内频也可称为内部时钟。
 - > 外频, 即外部工作频率, 也就是主板的总线速度或系统时钟。
 - ▶ 早期,CPU的内频就等于外频。
 - ▶ 目前,CPU的内频越来越高,外频与内频不再是一比一的同步关系
 - ,从而出现了所谓的内部倍频技术,导致了"倍频"的出现。
- 内频、外频和倍频三者之间的关系是:
 - ▶ 内频=外频×倍频

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2013	Ultra large scale IC	250,000,000,000

第一章小结

- 1.1 电子数字计算机与存储程序控制
- 存储程序概念
- 主机
- 1.2 计算机的类型和应用
- 系列机概念
- 软件兼容
- 1.3 计算机系统的硬件组成
- 计算机的五大基本部件
- 总线

第一章小结

- 1.4 计算机系统的层次结构
- 计算机系统
- 硬件和软件的关系
- 固件的概念
- 虚拟机概念
- 1.5 计算机的工作过程和主要性能指标
- 主要性能指标

基本字长、数据通路宽度、主存容量

作业:

P19: 1, 2, 4, 6, 8

谢谢!