Data Science and Deep Learning (2024)

Lecture 4

Multilayer Perceptron

Stan Z. Li

Linear Projections $y = Px^T \triangleq f(x)$

PCA component axes that maximize the variance

LDA

maximizing the component axes for class-separation

Nonlinear: 1D Manifold in 3D Space

Nonlinear: 2D Manifold in 3D Space

The Best Representation:

Swiss Roll:

 $x=\phi\cos(\phi)$, $y=\phi\sin(\phi)$, $z=\psi$

 $1.5\pi \le \phi \le 4.5\pi$, $0 \le \psi \le 10$

Manifold: 2D rectangle generated by two latent variables φ, ψ

Separability in Classification Problems

 However, data samples are not always linearly separable, but may be nonlinearly separable

@2020 Stan Z. Li, Westlake University 5/90

Nonlinearly Separable

@2020 Stan Z. Li, Westlake University

Transformation Function y=f(x)

- $f: X \to Y$ is a mapping from $x \in X$ to $y \in Y$
- x can be a scalar number, a vector $(x_1,...,x_n)$, or a matrix $x_{i,j}$
- y can take value:
 - a real number (confidence, predicted stock value, etc),
 - a token value (decision, animal name, etc),
 - a vector (of confidences, 3D coordinates, etc)

What is a Function f(x | w) Determined by?

Parameterized Function: $f(x \mid w)$ parameterized by w

Example: $y = f(x \mid \omega) = \sin(\omega x)$ with the form of sine and parameter ω

A function is determined by

- 1. Functional form f
 - → neural network structure, nonlinear activation, etc
- 2. Parameters w in f

Nonlinearity in Neurons: Biological vs Artificial

Visual Neural Networks: Biological vs. Artificial

YouTube: Neural networks

Learned Weights at Different Layers

Visual Neural Networks: Biological vs. Artificial

Multilayer Perceptron

Composite Function and Neural Network

- Composition of two functions y=f(x) and z=g(y)
 - z=h(x)=g(f(x)) is the composite function of f and g
- Composite of *K* parametric functions

$$f_1(x \mid w_1)$$

This is the form of a K-layer Neural Network

Overall
$$y = f(x \mid w)$$
 where $w = \{w_1, w_2, ..., w_K\}$

Activation Function to Achieve Nonlinearity

@2020 Stan Z. Li, Westlake University

Supervised Learning of W

- 1. Design DNN structure, i.e. define the functional form $f(x \mid w)$
- 2. Design/define the loss function $L(w \mid f, \{(x,y)\})$, incorporating domain knowledge for solving the problem
- 3. Given a training set of $\{(x_i,y_i)\}_{i=1}^N$, each x_i with label y_i find best that minimizes the loss:

$$w^* = arg min_w L(w)$$

Minimizing Loss by Gradient Descent

• Gradiant (using all $\{x_i\}$)

$$\nabla_{w} L(w) = \sum_{i=1}^{N} \nabla_{w} L_{i}(w)$$

Gradiant Descent

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla_w L(w)$$

 $\eta > 0$: learning rate (step size)

Global vs Local Minima

Figure: Left: Illustration of SGD optimization with a typical learning rate schedule. The model converges to a minimum at the end of training. Right: Illustration of Snapshot Ensembling. The model undergoes several learning rate annealing cycles, converging to and escaping from multiple local minima. We take a snapshot at each minimum for test-time ensembling.

Summary: NN Training and Testing

Linear Transformation

$$n_1 = 0.32 \cdot x_1 - x_2 - 0.5 \ n_2 = -0.32 \cdot x_1 - x_2 + 0.6$$

@2020 Stan Z. Li, Westlake University

After f(n1) and f(n2) and recombine into y

@2020 Stan Z. Li, Westlake University

Learning W for Nonlinear Transformation

Learning W as Optimization

 z_1

$$L(W) = \sum_{i} ||y_i - X W_2||^2$$

Thank You