

Status report for sensitivity studies of $B^0 o K^0_s K^0_s K^0_s$

Paul Jaeger | 1.02.2015

INSTITUT OF EXPERIMENTAL NUCLEAR PHYSICS (IEKP)

Motivation

- First part of my thesis: set up K_s^0 training and selection.
- Do we want experiment wide "standard-cuts" and particle lists?
- General cuts (like BDToutput on Figure of Merit) might not be optimized for a specific measurement → continue with analysis driven approach.
- Idea: Measure the time dependent CP-Violation parameters S_f and A_f . Then refeed the uncertainty of these parameters to optimize the B^0 -selection and study implicit effects on K_S^0 selection.
- $B^0 \to K_s^0 K_s^0 K_s^0$ channel of choice, since the B-Vertex only depends on Ks information without further constraints.

Current default cuts on K_S^0 in basf2

inside V0-module:

- $\sim \chi^2 < 50$ cut on vertex quality
- cut on Extrapolation to cylinder: "This is intended to reject tracks that curl away before meeting"
- cut on V0 mass inside beampipe r < 1 cm: 60 MeV mass window

at analysis stage:

- 400MeV mass window at FillParticleList (before KFit)
- 40MeV mass window after KFit

Ideas:

- First take out all cuts for validation and debugging
- One visible and accesable place for cuts instead of several hidden ones.

$$B^0
ightarrow \mathit{K}^0_s \mathit{K}^0_s \mathit{K}^0_s$$

- Branching fraction: $6.0 * 10^{-6}$.
- Start with Signal MC only
 - Described cuts in in the V0-module make centrally produced Signal MC not usable → better to have all cuts on analysis-level.
 - Self-Production of Signal MC necessary
- basf2 version: 2015-12-04

Flowchart

Flavor-Tagger

- Self-training of Flavour-Tagger was performed.
- Effective tagging efficiency according to Belle binning: $Q = \sum_{i=1}^{6} \epsilon_i (1 2w_i)^2 = 0.335$

Δt Distribution

Asymmetry

CP-Violation measurement

■ In order to measure the parameters S_f and A_f , we need to perform a Maximum Likelihood-Fit to the Δt distribution using the following model:

$$P_{sig}(\Delta t) = rac{e^{-|\Delta t|/ au_{B0}}}{4 au_{B0}}*\left[1+q(S_f sin(\Delta m_d \Delta t)+A_f cos(\Delta m_d \Delta t))
ight]$$

This model is convoluted with the proper-time resolution function R_{sig} , in order to take into account the finite vertex resolution:

$$P_i = \int [P_{sig}(\Delta t')R_{sig}(\Delta t_i - \Delta t')]d(\Delta t')$$

Resolution function

To model the signal resolution a triple Gaussian is used.

Fit-Results and uncertainty

	\mathcal{S}_f	A_f
Truth	-0.7	0
B ⁰ McMatched	-0.680 ± 0.005	0.006 ± 0.005
B ⁰ AllCandidates	-0.652 ± 0.023	0.001 ± 0.017

Outlook

- Optimize B_S^0 -selection according to uncertainty and study implicit effects on K_S^0 -selection.
- Include Background MC in correct scaling. Also extend fit with $P_{bg}(\Delta t)$ and $R_{bg}(\Delta t)$:

$$P_i = \sum_k f_k \int [P_k(\Delta t')R_k(\Delta t_i - \Delta t')]d(\Delta t')$$

- Look at systematics
- Implement $K_S^0 \to \pi^0 \pi^0$ -cases. Currently B^0 Vertex-Fit not possible with Rave.

[WARNING] Error Matrix is not 7x7 { module: ParticleVertexFitter K S0:ks00