Framework: ETL Data Pipeline: Extract, Transform, Load

Languages: Python, pandas, ...

Input: Raw data file

Output: Updated data template - CSV

Solution: have consistent permanent titles names

Possible problems:

- loading data in the correct cells in an excel spreadsheet
- Sample ID's change depending on the sample

Random Thoughts:

• Have a button in the excel sheet which runs the program, could have input values which we might need to do some of the equation such as MDL etc.

Titles for every run:

- ICV
- ICB
- MDL
- CCV#... -> it will have CCV1, CCV2 ... CCV#, so we need to figure this out
- CCB#... -> it will have CCB1, CCB2 ... CCB#, so we need to figure this out

Other QC Sample names:

- QCS
- QCB
- MS
- MSD

Rows needed:

- Sample ID G
- Mean − I
- PPM L

Info needed for Calibration: -> doesn't run all the time, graph is using to check if calibration is correct, so if R^2 is close to 1

- Curve value -> found in between bracket [TOC] TOC 20 ppm CAL [0.4]
 - o In the calibration sheet, are these set in the template? -> YES
- Adjusted ABS -> values given to us depending if we do a calibration test
- Average -> Average of the two runs, we could use an equation in python
- %RPD -> ((absolute value of run1 run2)/ Average) * 100

Notes:

- %RPD < 10
- Will need to output graph

Info needed for Quality Control:

Sample ID's needed:

- MDL -> is it always 0.2?
- QCS -> is it always 18?
- CCV# -> # changes from 1 till ...
- QCB
- CCB# -> # changes from 1 till...

Mean PPM C:

• Average of the 2 runs of MDL, QCS, CCV1, CCV2, CCV#... etc.

%R:

- (Mean PPM C / Value) * 100
 - o Value depends on title, for example MDL(0.2), has 02, while CCV is 10

%RPD:

%RPD -> ((absolute value of run1 – run2)/ Mean PPM C) * 100

Average:

Average of All QCB and CCB values.

Notes:

- %R MDL-45-145
- %R 90 110? Mario said to change it to this