

Rappels et compléments sur les Premier et Second Principes - application aux systèmes ouverts en écoulement permanent

«The production of motion in steam-engines is always accompanied by the re-establishing of equilibrium in the caloric; that is, its passage from a body in which the temperature is more or less elevated, to another in which it is lower» (Réflexions on the Motive Power Of Heat - 1824) NICOLAS LÉONARD SADI CARNOT (1796-1832)

PLAN DU CHAPITRE

I	1^{er}	et 2 nd principes de thermodynamique	3
	I.1	Eléments fondamentaux sur le Premier Principe	3
		a - Expérience de Joule : principe d'équivalence travail-chaleur	3
		b - Energie interne et premier principe pour les systèmes immobiles	4
		c - Cas particulier des gaz parfaits : première loi de Joule	5
		d - Origine de l'énergie interne	6
		e - Premier principe pour les transformations isobares : fonction d'état enthalpie	6
		f - Cas particulier des gaz parfaits : seconde loi de Joule	6
		g - Premier principe pour les systèmes en mouvement et soumis à un champ de	
		force extérieur	7
		${\bf h}$ - ${\bf Cas}$ des transformations quasistatiques - transformation infinitésimale - conventions quasistatiques - conventions	
		tions d'écriture	7
	I.2	Eléments fondamentaux sur le Second Principe	8
		a - Nécessité d'un principe d'évolution	8
		b - Définition de l'entropie	8
		c - Enoncé de Thomson du second principe 1852	9

		d - Cas d'une transformation infinitésimale	9
	I.3	Identité thermodynamique (hors programme mais bien utile \rightarrow à retenir!)	9
		a - Enoncé	9
		b - Exemple d'application : l'énoncé de Clausius du second principe $\ \ldots \ \ldots$	10
II	The	rmodynamique des systèmes ouverts en régime permanent	11
	II.1	Reformulation du premier principe	11
	II.2	Reformulation du second principe	13
III	Exe	mples classiques d'application	14
	III.1	Détente de Joule-Kelvin	14
	III.2	Tuyère	15
	III.3	Echangeur thermique parallèle à contre courant	15
IV	Etuc	de des machines thermiques à l'aide du diagramme (P,h) de leur caloporteur	17
	IV.1	Le diagramme (P,h) : utilité et principe de lecture pour fluide monophasé	17
		a - Premier exemple élémentaire avec fluide monophasé : le détendeur	18
		b - Second exemple élémentaire avec fluide monophasé : le compresseur $\ .\ .\ .$.	18
	IV.2	Diagramme (P,h) des fluides diphasés $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	20
		a - Principe de lecture	20
		b - Exemple : le réfrigérateur à tétrafluoroéthane R134a	20

I 1er et 2nd principes de thermodynamique

I.1 Eléments fondamentaux sur le Premier Principe

a - Expérience de Joule : principe d'équivalence travail-chaleur

Supposons un système fermé S constitué d'eau dans un calorimètre dans un état initial E.I. simplement caractérisé par la température initiale T_i . On considère le calorimètre parfait, c'est à dire sans aucune perte thermique par sa paroi (paroi athermane).

<u>NB</u>: compte tenu du caractère condensé de l'eau, la pression est quasiment sans effet sur elle, et seul le paramètre température suffit à en décrire son état.

Joule procéda en 1845 à l'expérience décrite ci-dessous (cf. Publication dans Le Compte Rendu de l'Académie des sciences 1847) :

FIGURE XVIII.1 – Expérience de Joule : principe d'équivalence des transferts d'énergie

- ightharpoonup On communique à l'eau initialement à la température T_i le travail W>0 par l'intermédiaire d'une hélice mise en rotation par un moteur
- ightharpoonup La température du système augmente $T\uparrow$.
- ▶ On retire la paroi athermane du calorimètre pour le transformer en un récipient de paroi diathermane, c'est à dire perméable à la chaleur. On constate que la température diminue, le système cédant de l'énergie par transfert thermique Q à l'extérieur ("chaleur") $T \downarrow$
- ▶ En fin de "relaxation thermique", le système retrouve sa température initiale donc état initial = état final.

En résumé sous forme d'un cycle :

FIGURE XVIII.2 – Représentation cyclique de l'expérience de Joule

Joule établit alors expérimentalement que : W+Q=0

A RETENIR:

Propriété I-1: TRAVAIL ET CHALEUR -

- \blacktriangleright Travail W et énergie échangée par transfert thermique Q ("chaleur") sont deux formes équivalentes de transferts d'énergie.
- ▶ Pour un système fermé subissant une série de transformations physiques (pas de réactions chimiques) qui le ramènent dans son état initial i.e. constituant un cycle, on a :

$$W_{cycle} + Q_{cycle} = 0$$

b - Energie interne et premier principe pour les systèmes immobiles

On considère :

- ightharpoonup un système fermé et immobile dans un état initial E.I.
- lacktriangle diverses transfomations $\{1,2,\ldots\}$ de ce système par échange de chaleur et travail : $(W_{i_1},Q_{i_1}),(W_{i_2},Q_{i_2}),\ldots$ l'amenant toutes dans le même état final E.F.
- lacktriangle une dernière transformation (W_f,Q_f) , seule cette fois, ramenant le système en état initial E.I.

FIGURE XVIII.3 – Illustration du principe d'équivalence

Par principe d'équivalence, on peut écrire :

$$\begin{array}{c} W_{i_1} + Q_{i_1} + W_f + Q_f = 0 \\ W_{i_2} + Q_{i_2} + W_f + Q_f = 0 \\ & \dots \\ W_{i_n} + Q_{i_n} + W_f + Q_f = 0 \\ & \dots \end{array} \\ \\ \Longrightarrow W_{i_1} + Q_{i_1} = W_{i_2} + Q_{i_2} = \dots = W_{i_n} + Q_{i_n} = \dots = \underbrace{W}_{\text{=fct(chemin)}} + \underbrace{Q}_{\text{=fct(chemin)}} = -W_f - Q_f = \underbrace{cste}_{\text{=f(EI, EF)}} \\ \\ = C_f + C_f +$$

Ainsi, alors que les quantités W et Q dépendent du chemin de transformation (cf MPSI), leur somme est indépendante de celui-ci, et ne dépend que des états initial E.I. et final E.F. du système caractérisés par leurs variables d'état respectives.

Définition I-1: Energie interne —

On pose alors l'existence d'une fonction d'état du système appelée énergie interne et notée U représentant l'énergie microscopique du système (cinétique et potentielle) et vérifiant la relation appelée **Premier principe de thermodynamique**:

A RETENIR: (RAPPELS!!)

$$\Delta U = U_{E.F.} - U_{E.I.} = Q + W \quad \Leftrightarrow \quad \text{La variation d'énergie interne d'un système au cours} \\ \text{d'une transformation est la somme des échanges} \\ \text{énergétiques de ce système avec l'extérieur} \\ Q \text{ Energie échangée par transfert thermique avec l'extérieur ("chaleur")} \\ \text{avec}: \\ W = W_{pression} + W'_{autre} \text{ travail échangé avec l'extérieur avec} : \\ W_{pression} = -\int\limits_{E.I.}^{E.F} P_{ext} \cdot dV$$

(XVIII.1)

$$W_{pression} = -\int\limits_{E.I.}^{E.F} P_{ext} \cdot dV$$

 $\frac{\text{Convention}}{\text{Convention}}: \text{ on compte } \begin{cases} W \text{ ou } Q > 0 & \text{lorsque le système reçoit cette énergie} \\ W \text{ ou } Q < 0 & \text{lorsque le système cède cette énergie} \end{cases}$

Propriété l-2: Extensivité de l'énergie interne —

- $\bullet \ \, U \, \, \text{est une fonction d'état} \Longrightarrow U = fct(\text{paramètres d'état du système}) \, ; \, \text{ex} \, : P, T.$
- **9** La variation d'énergie interne ne dépend que des états initial et final du système (fct d'état) $\Longrightarrow \Delta U \neq$ chemin de transformation
- $oldsymbol{0}$ Pour définir U il faut que ses paramètres d'état soient définis,i.e. système à l'équilibre $\Longrightarrow U$ d'un système défini uniquement à l'équilibre de celui-ci.
- \bullet U est extensive:

Si U_1 est l'énergie interne d'un système Σ_1 et U_2 l'énergie interne d'un système Σ_2 , alors l'énergie interne du système formé par la mise en contact des deux systèmes est :

$$U_{1+2} = U_1 + U_2 + U_{inter,12}$$

avec $U_{inter.12}$ l'énergie interne d'interaction entre les deux systèmes.

On montre que dans le cas de systèmes macroscopiques à haute température (limite thermodynamique) $U_{inter.12} \stackrel{\mathsf{taille} \ \Sigma \ \uparrow}{\longrightarrow} 0$, donc:

A RETENIR:

$$U_{1+2} = U_1 + U_2$$

<u>IDÉE DE DÉMONSTRATION</u>: en live!

c - Cas particulier des gaz parfaits : première loi de Joule

A RETENIR:

Propriété I-3: 1ère loi de Joule —

L'énergie interne d'un gaz parfait ne dépend que de la température (vu en MPSI) :

$$U_{G.P.} = U(T)$$

Conséquence :

$$\Delta U_{G.P.}(E.I. \to E.F.) = nc_v \cdot (T_F - T_I) = nc_v \cdot \Delta T$$

avec c_v capacité thermique molaire à volume constant du GP.

d - Origine de l'énergie interne

Le bilan d'énergie effectué dans la démonstration du premier principe ci-dessus s'appuie sur l'hypothèse d'un système immobile aucune énergie cinétique macroscopique dans le premier principe (ex : mouvement de translation du centre de masse du système).

On suppose également que le système n'est soumis à aucun champ de force potentielle extérieur \implies aucune énergie potentielle extérieure dans le premier principe (ex : particules d'un gaz en champ de pesanteur).

A RETENIR:

CONCLUSION:

L'énergie interne U d'un système de N particules est la somme de l'énergie cinétique et de l'énergie d'interaction $\mathbf{microscopiques}$ du système de N particules :

$$U = \sum_{i=1}^N \frac{1}{2} m_i v_i^2 + \sum_i^N \sum_{j>i} \underbrace{\epsilon_{p_{ij}}}_{\text{énergie pot. entre 2 particules i et j}}$$

e - Premier principe pour les transformations isobares : fonction d'état enthalpie

Définition I-2: FONCTION ENTHALPIE —

On définit la fonction d'état extensive enthalpie, noté H par :

$$H = U + PV$$

Sa variation entre les états E.I. et E.F. s'écrit donc :

$$\Delta H = \Delta U + \Delta (PV)$$

Propriété I-4: _

Dans le cas d'une transformation **isobare**, la variation d'enthalpie s'identifie au transfert thermique Q_p échangée par le système avec l'extérieur :

$$P = cste \quad \Leftrightarrow \quad \Delta H = \Delta U + \Delta (PV) = Q_p - P \cdot \Delta V + P\Delta V = Q_p$$

INTÉRÊT : en chimie où de nombreuses réactions se font de manière isobare ou quasi-isobare.

f - Cas particulier des gaz parfaits : seconde loi de Joule

A RETENIR:

Propriété I-5: 2^{NDE} LOI DE JOULE —

L'enthalpie d'un gaz parfait ne dépend que de la température (vu en MPSI) :

$$H_{G.P.} = H(T)$$

Conséquence :

$$\Delta H_{G.P.}(E.I. \to E.F.) = nc_p \cdot (T_F - T_I) = nc_p \cdot \Delta T$$

avec c_p capacité thermique molaire à pression constante du GP.

g - Premier principe pour les systèmes en mouvement et soumis à un champ de force extérieur

Si le système est en mouvement il possède une énergie cinétique macroscopique; si le système est soumis à un champ de force potentielle extérieure, il possède aussi une énergie potentielle extérieure. Ces énergies, susceptibles d'évoluer par échange de travail et de chaleur, doivent être comptabilisées dans l'expression du premier principe:

A RETENIR:

h - Cas des transformations quasistatiques - transformation infinitésimale - conventions d'écriture

On envisage un système fermé passant de l'état initial E.I. à l'état final E.F. par une transformation très lente, suffisamment pour être considérée comme une suite d'états d'équilibre : on parle de transformation quasistatique.

 $\Longrightarrow \left\{ \begin{array}{l} \text{les paramètres d'état sont définis en tout point du trajet de cette transformation lente, ex}: P,T\\ \\ \text{la fonction d'état énergie interne }U \text{ est définie en tout point de ce trajet de transformation lente.} \end{array} \right.$

FIGURE XVIII.4 – Transformation quasistatique

La "portion" du chemin de transformation entre deux états infiniment proches E_j et E_{j+1} est appelée <u>transformation infinitésimale</u>; ces deux états étant des équilibres, les variables thermodynamiques du système sont définies dessus \Longrightarrow on peut écrire le premier principe entre ces deux états :

<u>A RETENIR</u>: Premier principe pour une transformation infnitésimale

```
\delta Q_{j,j+1} = \text{ chaleur infinitésimale échangée pour la transfo. infinitésimale } \\ \delta W_{j,j+1} = \text{ travail infinitésimal échangé pour la transfo. infinitésimale } \\ dU_{j,j+1} = \text{ variation infinitésimale de } U \text{ pour la transfo. infinitésimale } \\ \\ \Longrightarrow \overline{dU_{j,j+1} = \delta Q_{j,j+1} + \delta W_{j,j+1} = \delta Q_{j,j+1} + \delta W_{j,j+1}(autre) - \underbrace{P_{ext}}_{=P \text{ car état d'équillibre}} \cdot dV_{j,j+1}}_{=P \text{ car état d'équillibre}}
```

Exemples de transformations infinitésimales :

► Compression isotherme d'un parfait gaz dans un cylindre par ajouts successifs de petites masselottes sur le piston de fermeture :

Dans ces conditions, la pression du gaz vaut toujours la pression extérieure et on a pour le travail des forces de pression :

$$\delta W_{j,j+1} = -P_{ext} \cdot dV \\ j, \\ j+1 = -P \cdot dV \\ j, \\ j+1 \implies W_{pression} = -\int\limits_{ini}^{final} P \cdot dV \\ = -nRT \int\limits_{ini}^{final} \frac{dV}{V} \\ = -nRT \ln \frac{V_{final}}{V_{init}} \\ = -\frac{1}{N} \int\limits_{ini}^{final} \frac{dV}{V} \\$$

Compression adiabatique du GP

Eléments fondamentaux sur le Second Principe

Nécessité d'un principe d'évolution

Certaines transformations qui satisfont naturellement au premier principe (conservation de l'énergie) ne se produisent pas en pratique; on peut citer:

- ▶ transfert spontané d'un corps chaud vers un corps froid mais transformation inverse impossible!
- freinage d'un véhicule qui transforme l'énergie cinétique en chaleur mais impossible de restituer du travail à partir de la chaleur dégagée par les freins!
- Dans le même style d'idée, un moteur "séduisant" mais qui n'existe manifestement pas (nous verrons pourquoi) serait :

FIGURE XVIII.5 – Moteur "séduisant"

b - Définition de l'entropie

Définition I-3: FONCTION ENTROPIE

On postule l'existence d'une fonction d'état d'un système appelée entropie et notée S telle que sa variation ΔS au cours d'une transformation quelconque du système vérifie :

$$\Delta S = S_{\uparrow}^{e} + S_{\uparrow}^{c}$$
 entropie échangée entropie créée ≥ 0 (XVIII.3)

$$S^e = \sum_i \frac{Q_i}{T_{S_i}} \implies \qquad \qquad \text{entropie échangée par contact lors de l'échange de chaleur Q_i avec des sources de température T_{S_i}}$$

$$S^{e} = \sum_{i} \frac{Q_{i}}{T_{S_{i}}} \implies \qquad \text{entropie échangée par contact lors de l'échange de chaleur } Q_{i} \text{ avec des sources de température } T_{S_{i}}$$

$$S^{c} \geq 0 \implies \text{entropie créée au cours de la transformation } \begin{cases} S^{c} > 0 \text{ transfo. irréversible} \\ S^{c} = 0 \text{ transfo. réversible} \end{cases}$$

Propriété I-6: —

- S est une fonction d'état donc S = fct(paramètres d'état du système)
- **Q** La variation d'entropie ne dépend que des états initial E.I. et final E.F. du système (fct d'état) $\Longrightarrow \Delta S \neq$ chemin de transformation
- $\mathbf{3}$ S^c et S^e ne sont pas des fonctions d'état : elles dépendent du chemin de transformation pour aller de E.I. à E.F.
- Pour toute transformation réversible et avec contact avec une seule source : $S^c = 0 \implies \Delta S^{rev} = \frac{Q}{T}$ (T température du système)
- $\textbf{9} \ \, \text{Pour toute transformation d'un système isolé}: Q_i = 0 \\ \forall i \Longrightarrow \ \, \Delta^{isol}S = S^c \begin{cases} =0 \text{ si transfo. réversible} \\ >0 \text{ si transfo. irréversible} \end{cases}$

c - Enoncé de Thomson du second principe 1852

Soit un système physique en contact avec une source de température T_S subissant un cycle. On a d'après la définition d'une fonction d'état :

$$\Delta_{cycle}U = Q + W = 0$$

$$\Delta_{cycle}S = \frac{Q}{T_S} + \underbrace{S^C}_{\geq 0} = 0$$

ce qui entraîne :

 $\left[\begin{array}{c} Q_{cycle} < 0 \\ W_{cycle} > 0 \end{array} \right. \Leftrightarrow \begin{array}{c} \text{Au cours d'un cycle, un système en contact avec une} \\ \Leftrightarrow \text{ seule source ne peut que recevoir du travail et céder} \\ \text{ de la chaleur} \end{array}$

Conséquence : le moteur de bateau présenté en introduction ne peut fonctionner puisqu'il ne dispose que d'une seule source thermique : l'eau qu'il serait censé transformer en glaçe pour produire du travail!!!

d - Cas d'une transformation infinitésimale

Comme pour l'énergie interne, on peut définir la variation infinitésimale d'entropie d'un système attachée à une transformation infinitésimale entre les états j et j+1:

A RETENIR:

$$\delta S_{j,j+1}^{ech} = \sum_i \frac{\delta Q_{i_j,j+1}}{T_{S_i}} \text{ entropie échangée avec les sources à } T_{S_i}$$

$$\delta S_{j,j+1}^c \geq 0 \text{ entropie créée par la transformation}$$

$$dS_{j,j+1} = \text{ variation infinitésimale de } S \text{ pour la transfo. infinitésimale}$$

$$\Rightarrow dS_{j,j+1} = \delta S^{ech} + \delta S^c = \sum_i \frac{\delta Q_{i_j,j+1}}{T_{S_i}} + \delta S_{j,j+1}^c$$

Si le système est en contact avec une seule source alors (à retenir) :

$$dS_{j,j+1} = \frac{\delta Q_{j,j+1}}{T_{source}} + \delta S_{j,j+1}^c \stackrel{\text{r\'ev.}}{=} \frac{\delta Q_{j,j+1}}{T_{source}}$$

I.3 Identité thermodynamique (hors programme mais bien utile \rightarrow à retenir!)

a - Enoncé

Soit un système en contact avec une source unique et subissant une transformation réversible; la température du système vaut obligatoirement la température de la source $T=T_S$ à tout instant, et on a pour une portion infinitésimale de cette transformation :

Le premier principe s'écrit alors :

$$dU = \delta Q - P \cdot dV = T \cdot dS_{rev} - P \cdot dV$$

Cette relation est en fait très générale, que la transformation soit réversible ou non; elle est appelée : identité thermodynamique

Identité thermodynamique (relation fondamentale 1)
$$\Leftrightarrow dU = T \cdot dS - P \cdot dV$$
 (XVIII.4)

 $\left(\frac{\partial U}{\partial S}\right)_V = T \;\Leftrightarrow\; \text{définition de la température thermodynamique} \\ \left(\frac{\partial U}{\partial V}\right)_S = -P \;\Leftrightarrow\; \text{définition de la pression thermodynamique}$

Identité thermodynamique (relation fondamentale 2) $\Leftrightarrow dS = \frac{1}{T} \cdot dU + \frac{P}{T} \cdot dV$ (XVIII.5)

 $\text{avec}: \left[\begin{array}{c} \left(\frac{\partial S}{\partial U}\right)_V = \frac{1}{T} \; \Leftrightarrow \; \text{d\'efinition de la temp\'erature thermodynamique} \\ \left(\frac{\partial S}{\partial V}\right)_U = \frac{P}{T} \; \Leftrightarrow \; \text{d\'efinition du rapport pression thermodynamique/temp\'erature thermodynamique} \end{array}\right]$

b - Exemple d'application : l'énoncé de Clausius du second principe

FIGURE XVIII.6 – Formulation de Clausius du second principe

Les parois séparant le système de la source sont perméables à la chaleur, le système va donc évoluer vers un état d'équilibre. En outre, les temps de relaxation thermiques étant très importants, on peut considérer le système comme constamment à l'équilibre, ce qui assure que les variables P et T, ainsi que les fonctions d'état sont définies 1

La transformation est donc supposée quasistatique, ce qui permet d'écrire l'identité thermodynamique pour le système :

$$dU = \underbrace{T}_{\text{définie}} \cdot dS - P \cdot \underbrace{dV}_{=0} = T \cdot dS$$

de même pour la source :

$$dU_{source} = T_0 \cdot dS_{source}$$

L'ensemble (source + système) étant isolé, on peut écrire :

$$dU_{total} = d(U + U_{source}) = 0 \implies dU = -dU_{source} \text{ soit}: TdS = -T_0 dS_{source} \implies dS_{source} = -\frac{T}{T_0} dS_{source}$$

et également

1. On rappelle qu'en l'absence d'équilibre, aucune variable intensive et aucune fonction d'état n'est définie.

$$dS_{tot} = \underbrace{\delta S_{tot}^c}_{\geq 0} = dS + dS_{source} = \underbrace{dS}_{=\frac{dU}{T} + \frac{\delta Q}{T}} \cdot \left(1 - \frac{T}{T_0}\right) = \delta Q \cdot \left(\frac{1}{T} - \frac{1}{T_0}\right) \geq 0$$

On en tire l'énoncé de Clausius du second principe : $\begin{cases} &\text{si } T > T_0 \text{ alors } dU = \delta Q < 0 \ \Rightarrow \text{le système perd de la chaleur} \\ &\text{si } T < T_0 \text{ alors } dU = \delta Q > 0 \ \Rightarrow \text{le système prend de la chaleur} \end{cases}$

NB: ces conclusions sont bien conformes aux observations que prévoyait le sens commun : un corps chaud réchauffe un corps froid en contact avec celui-ci et inversement.

Dans le cas d'une transformation non quasistatique, on doit écrire :

$$\Delta U_T = \underbrace{\Delta U}_{=Q} + \underbrace{\Delta U_{source}}_{=T_0 \Delta S_{source}} = 0 \implies \Delta S_{source} = -\frac{Q}{T_0}$$

La variation totale d'entropie étant alors :

$$\Delta S_{tot} = \Delta S + \Delta S_{source} = \Delta S - \frac{Q}{T_0} \ge 0$$

ce qui conduit finalement à :

 $\Delta S \geq rac{Q}{T_0}$ Enoncé de Clausius du second principe

Remarque I-2: Sources multiples —

Dans le cas où le système est en contact avec des sources multiples identifiées par leurs températures T_{0i} , le même raisonnement conduit naturellement à :

$$\Delta S \ge \sum_i \frac{Q_i}{T_{S_i}}$$

Ш Thermodynamique des systèmes ouverts en régime permanent

Reformulation du premier principe

Supposons, dans le référentiel d'étude considéré galiléen R, un système ouvert siège d'un écoulement de fluide, et de surface extérieure S, fixe dans R.

Hypothèses:

- lacktriangle le système ne comporte qu'une canalisation d'entrée A et une canalisation de sortie B
- lacksquare l'écoulement est permanent \implies $D_{m_A}=D_{m_B}=D_m$
- ▶ le système comporte à priori une machine sur le "trajet" des canalisations.

On appelle:

 Σ^o le système ouvert de masse m^o compris entre les sections S^O_A et S^O_B $\sum_{A}^{f} \text{ le système fermé de masse constante compris entre les sections } S_{A}^{f} \text{ ct } S_{B}^{f} \text{ (}t\text{)} = S_{B}^{O} \text{ à }t$ et entre les sections $S_{A}^{f}(t+dt) = S_{A}^{O} \text{ et } S_{B}^{f}(t+dt)$ à t+dt $\varepsilon^{f} = U + E_{p} + E_{c} \quad \text{l'énergie totale du système fermé (macro- et microscopique)}$ $\varepsilon^{o} \quad \text{l'énergie totale du système ouvert (macro- et microscopique)}$

NB: dans toute la suite, on notera en minuscule toute grandeur massique (énergie, énergie interne, enthalpie, énergie cinétique et potentielle etc..)

Le système fermé Σ^f étant de masse constante, on a par bilan de masse entre les instants t et t+dt:

$$m^f = m^o(t) + \delta m_A = m^o(t + dt) + \delta m_B = cste$$

or le régime est permanent, soit $m^o(t)=m^o(t+dt)$ ce qui conduit à $\delta m_A=\delta m_B=D_m\cdot dt$.

Le bilan d'énergie totale entre les instants t et t+dt est :

$$\begin{split} \varepsilon^f(t) &= \varepsilon^o(t) + \delta m_A \cdot \underbrace{e_A}_{\text{\'energie massique entr. tot.}} \\ \varepsilon^f(t+dt) &= \varepsilon^o(t+dt) + \delta m_B \cdot \underbrace{e_B}_{\text{\'energie massique sort. tot.}} \\ &\stackrel{d\varepsilon^f}{=} D_m \cdot [e_B - e_A] = D_m \cdot [(u_B + e_{c_B} + e_{p_B}) - (u_A + e_{c_A} + e_{p_A})] \end{split}$$

soit:

$$\frac{d\varepsilon^f}{dt} = D_m \cdot \left[\left(u_B + \frac{1}{2}c_B^2 + gz_B \right) - \left(u_A + \frac{1}{2}c_A^2 + gz_A \right) \right]$$

Ecrivons maintenant le premier principe pour le système fermé : $d\varepsilon^f = \delta W + \delta Q$

$$\frac{d\varepsilon^f}{dt} = \frac{\delta W}{dt} + \frac{\delta Q}{dt} = \underbrace{\mathcal{P}_u}_{\text{puissance "utile" machine}} + \underbrace{\mathcal{P}_p}_{\text{puissance forces pression ext}} + \underbrace{\mathcal{P}_{th}}_{\text{puissance thermique échangée}}$$

$$= \delta W_u + \delta W_p$$

(avec

$$V = \underbrace{\delta W_u} + \underbrace{\delta W_p}$$
)

Finalement:

$$D_m \cdot \left[(u_B + \frac{1}{2}c_B^2 + gz_B) - (u_A + \frac{1}{2}c_A^2 + gz_A) \right] = \mathcal{P}_u + \mathcal{P}_p + \mathcal{P}_{th}$$
 (XVIII.6)

EXPRESSION DE LA PUISSANCE DES FORCES DE PRESSION :

NB: les actions de pression n'agissent que sur les sections d'entrée et de sortie de la surface de contrôle et assurent ainsi le transfert de matière dans la "canalisation". Leurs travaux élémentaires pendant dt sont :

- ► En entrée : $\delta W_A = \overrightarrow{F_A} \cdot \overrightarrow{dOA} = P_A S_A \cdot dOA = P_A \cdot dV_A = P_A v_A \cdot \delta m_A = P_A v_A \cdot \delta m$ ► En sortie : $\delta W_B = \overrightarrow{F_B} \cdot \overrightarrow{dOB} = -P_B S_B \cdot dOB = -P_B \cdot dV_B = -P_B v_B \cdot \delta m$

soit finalement :

$$\mathcal{P}_p = \frac{\delta W_A + \delta W_B}{dt} = \frac{\delta m}{dt} \left[P_A v_A - P_B v_B \right] = D_m \left[P_A v_A - P_B v_B \right]$$

Ce dernier résultat injecté dans l'équation XVIII.6 donne :

$$D_m \cdot \left[\underbrace{(u_B + P_B v_B)}_{=h_B} + \frac{1}{2} c_B^2 + g z_B) - \underbrace{(u_A + P_A v_A)}_{=h_A} \frac{1}{2} c_A^2 + g z_A) \right] = \mathcal{P}_u + \mathcal{P}_{th}$$

et finalement :

A RETENIR:

$$D_m \cdot \left[(h_B + \frac{1}{2}c_B^2 + gz_B) - (h_A + \frac{1}{2}c_A^2 + gz_A) \right] = \mathcal{P}_u + \mathcal{P}_{th} \quad \equiv \quad \text{Bilan enthalpique pour les systèmes ouverts "version 1"}$$

$$(XVIII.7)$$

soit encore en notant que $\begin{bmatrix} \mathcal{P}_u = & \underbrace{w_u} & \cdot D_m \\ & \text{travail utile massique} \\ \mathcal{P}_{th} = & \underbrace{q} & \cdot D_m \\ & \text{chaleur massique} \end{bmatrix}$

$$\left[\left(h_B + \frac{1}{2}c_B^2 + gz_B\right) - \left(h_A + \frac{1}{2}c_A^2 + gz_A\right)\right] = w_u + q \quad \equiv \quad \text{Bilan enthalpique pour les systèmes ouverts "version 2"} \quad \text{(XVIII.8)}$$

Enfin, on considère souvent si le fluide est gazeux qu'il peut, aux températures hautes (typiquement > 100~K), être assimilé au gaz parfait correspondant et l'on a (également avec les phases condensées) :

$$\Delta h = h_B - h_A = c_n \cdot (T_B - T_A)$$

donc :

$$\left[c_p(T_B-T_A)+(\frac{1}{2}c_B^2+gz_B)-(\frac{1}{2}c_A^2+gz_A)\right]=w_u+q \quad \equiv \quad \text{Bilan enthalpique pour les systèmes ouverts "version 3"}$$
(XVIII.9)

II.2 Reformulation du second principe

Réalisons un bilan d'entropie pour le système fermé entre t et t+dt toujours en régime stationnaire et avec les mêmes conventions d'écriture :

$$\left. \begin{array}{l} \text{entropie à } t: S^f(t) = S^o(t) + \delta m_A \cdot s_A \\ \\ \text{entropie à } t + dt: S^f(t+dt) = S^o(t+dt) + \delta m_B \cdot s_B \end{array} \right\} \quad \Longrightarrow \quad \frac{dS^f}{dt} = \underbrace{\frac{dS^o}{dt}}_{\text{entropie acceptance}} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B = D_m \left[s_B - s_A \right] \\ \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right]_A^B \right] \\ \text{entropie acceptance} \left[\frac{dS^o}{dt} + \frac{1}{dt} \left[\delta m \cdot s \right$$

Le second principe appliqué au système fermé Σ^f donne entre les instants t et t+dt en supposant la température de frontière $T_{front.}$ homogène :

$$dS^f = \delta S^e + \delta S^c \stackrel{T_{front.}}{=} \stackrel{este}{=} \frac{\delta Q}{T_{front.}} + \delta S^c \quad \Longrightarrow \quad \frac{dS^f}{dt} = \frac{1}{dt} \left[\frac{\delta Q}{T_{front.}} \right] + \frac{\delta S^c}{dt}$$

et finalement en rapprochant les deux dernières relations :

A RETENIR:

$$D_m \left[s_B - s_A \right] = \frac{1}{dt} \left[\frac{\delta Q}{T_{front.}} \right] + \frac{\delta S^c}{dt}$$
 (XVIII.10)

soit encore en notant que
$$\left[\begin{array}{c} \delta S^e=\frac{\delta Q}{T_{front.}}=\delta ms^e=D_mdt\cdot s^e\\ \\ \delta S^c=\delta ms^c=D_mdt\cdot s^c \end{array}\right.$$

$$\Delta s_{A \to B} = s_B - s_A = s^e + \underbrace{s^c}_{\geq 0}$$
 (XVIII.11)

III Exemples classiques d'application

III.1 Détente de Joule-Kelvin

Supposons une conduite horizontale de parois adiabatiques dans laquelle on fait circuler un fluide compressible. On place sur le trajet du fluide un bouchon de matériau poreux tel que de la ouate, provoquant alors une diminution de la pression. En outre, la conduite ne comporte pas de machine

FIGURE XVIII.7 – Détente de Joule-Kelvin dans une conduite

► Bilan énergétique :

Appliquons la relation enthalpique établie plus haut entre l'entrée et la sortie de cette conduite ; il vient :

$$\left[(h_B+\frac{1}{2}c_B^2+gz_B)-(h_A+\frac{1}{2}c_A^2+gz_A)\right]=\underbrace{w_u}_{=0\text{ pas de machine}}+\underbrace{q}_{=0\text{ condutie adiab.}}=0$$
 Par ailleurs on a :
$$\begin{bmatrix} \text{Conduite horizontale} &\Longrightarrow & z_A=z_B\\ &&&&\\ \text{Ecoulement lent} &\Longrightarrow & c_B\simeq c_A\simeq 0 \end{bmatrix}$$

Remarque III-1: EXEMPLE D'UTILISATION —

Cette détente permet de savoir aisément si un gaz se rapproche du comportement du gaz parfait, puisque pour ce dernier subissant une détente isenthalpique, on doit avoir en vetu de la seconde loi de Joule (cf MPSI) :

$$\Delta h_{GP} = c_p \Delta T_{GP} = 0 \implies \boxed{\Delta T_{GP} = 0}$$

► BILAN ENTROPIQUE

La relation entropique est :

$$\Delta s_{A \to B} = s_B - s_A = s^e + \underbrace{s^c}_{\text{frott.} > 0} \xrightarrow{\text{adiab.} \Rightarrow s^e = 0} \underbrace{\Delta s_{A \to B} = s_B - s_A > 0} \implies \text{création d'entropie}$$

III.2 Tuyère

Les tuyères sont des dispositifs placés en aval des chambres de combustion des fusées, et permettent une accélération violente des gaz résultant de la combustion. La troisième loi de Newton fait le reste ²!!!! On considère un gaz circulant dans un canalisation de section variable évasée vers la sortie, et dont la forme est adaptée pour assurer la plus forte augmentation de vitesse en sortie du "divergent" (sortie de tuyère) :

FIGURE XVIII.8 – Schéma et photographie d'une tuyère de fusée V2 1944

► Bilan énergétique :

$$\left[(h_B + \frac{1}{2}c_B^2 + gz_B) - (h_A + \frac{1}{2}c_A^2 + gz_A)\right] = \underbrace{w_u}_{=0 \text{ pas de machine}} + \underbrace{q}_{=0 \text{ tuyère adiab.}} = 0$$
 Par ailleurs on a :
$$\begin{bmatrix} \text{tuyère horizontale} & \Longrightarrow & z_A = z_B \\ \text{Vitesse nulle dans le réservoir} & \Longrightarrow & c_A \simeq 0 \end{bmatrix}$$
 donc
$$\underbrace{c_B = \sqrt{2(h_A - h_B)}}_{\text{can adiab.}} \Leftrightarrow \text{ accélération du gaz en sortie}$$

Remarque III-2: ___

En supposant le gaz parfait , la seconde loi de Joule donne : $h_B - h_A = c_p(T_B - T_A) = \frac{\gamma}{\gamma - 1} r(T_B - T_A)$ (avec r = R/M) donc :

$$c_B = \sqrt{2 \frac{\gamma}{\gamma - 1} r (T_A - T_B)}$$

Exercice de cours: (III.2) - n° 1. Montrer que si la tuyère fonctionne de manière réversible, on peut exprimer la vitesse de sortie des gaz uniquement en fonction des pressions amont et aval avec : $c_B = \sqrt{2\frac{\gamma}{\gamma-1}rT_A\left[1-\left(\frac{P_B}{P_A}\right)^{\frac{\gamma-1}{\gamma}}\right]}$

► BILAN ENTROPIQUE

La relation entropique est :

$$\Delta s_{A \to B} = s_B - s_A = s^e + \underbrace{s^c}_{\mathsf{r\'ev.} = 0} \quad \overset{\mathsf{adiab.} \Rightarrow s^e = 0}{\Longrightarrow} \quad \underbrace{\Delta s_{A \to B} = s_B - s_A = 0} \quad \Longrightarrow \quad \mathsf{fonctionnement isentropique}$$

III.3 Echangeur thermique parallèle à contre courant

Un échangeur thermique est un dispositif permettant l'échange de chaleur entre deux circuits de fluides physiquement séparés, mais dont les canalisations sont en contact thermique "intime".

2. Pouvez-vous rigoureusement en expliquer le principe?

On envisage un échangeur thermique horizontal à contre courant d'axe [Ox), les deux circuits de même débit massique D_m sont parcourus par le même liquide 3 de capacité thermique c .

FIGURE XVIII.9 – Echangeur thermique à contre-courant (schéma de principe et photo)

Hypothèses:

- \blacktriangleright On note $(D_{1m},c_1,T_1(x))$ et $(D_{2m},c_2,T_2(x))$ respectivement débits massiques, capacités thermiques massiques, et températures locales des fluides 1 et 2. Avec $D_{m_1} = D_{m_2}$
- Les échanges entre les deux fluides dans les canalisations se font selon un loi supposée linéaire avec la puissance élémentaire cédée par le fluide 1 au fluide 2 sur un tronçon dx qui vaut :

$$d\mathcal{P}_{th_{1\to 2}} = G(T_1 - T_2) \cdot dx$$

QUESTION : expression de la température $T_2(x=0)$ en sortie du circuit 2?

Les relations enthalpiques pour chaque fluide sur un tronçon compris entre les abscisses x et x+dx (analyse locale nécessaire car T = T(x)!!!) s'écrivent :

$$\begin{cases} D_m \left[h_1(x+dx) - h_1(x) \right] = D_m c \left[T_1(x+dx) - T_1(x) \right] = -G(T_1(x) - T_2(x)) \cdot dx \ \Rightarrow \ \frac{dT_1(x)}{dx} = -\frac{1}{\lambda} (T_1(x) - T_2(x)) \ (1) \\ D_m \left[h_2(x) - h_2(x+dx) \right] = D_m c \left[T_2(x) - T_2(x+dx) \right] = +G(T_1(x) - T_2(x)) \cdot dx \ \Rightarrow \ \frac{dT_2(x)}{dx} = -\frac{1}{\lambda} (T_1(x) - T_2(x)) \ (2) \end{cases}$$

 $\underline{\text{R\'esolution}}$: méthode "classique" en posant : $u(x) = T_1(x) - T_2(x)$ et $v(x) = T_1(x) + T_2(x)$

- $(1) (2) \implies u(x) = K_u = cste$

$$\bullet \quad (1) - (2) \implies u(x) = K_u = cste$$

$$\bullet \quad (1) + (2) \implies v(x) = K_v - \frac{2K_u}{\lambda}x$$

$$\text{ce qui donne finalement} : \begin{cases} T_1(x) = \frac{u(x) + v(x)}{2} = \frac{1}{2}(K_u + K_v) - \frac{K_u}{\lambda}x \\ T_2(x) = \frac{v(x) - u(x)}{2} = \frac{1}{2}(K_v - K_u) - \frac{K_u}{\lambda}x \end{cases}$$

$$\text{cen exploitant les } CL \left[\begin{array}{c} T_1(0) = T_{1A} \end{array} \right]$$

la résolution (un peu longue mais simple) permet de dégager la température en sortie du circuit 2 :

$$T_2(x=0) = rac{T_{1A}rac{L}{\lambda} + T_{2B}}{1 + rac{L}{\lambda}}$$

Exercice de cours: (III.3) - n° 2. Commenter les paramètres influençant l'efficacité du dispositif.

^{3.} il s'agit en général d'eau additivée de glycol permettant un effet antigel et une augmentation substantielle de la capacité thermique massique.

IV Etude des machines thermiques à l'aide du diagramme (P,h) de leur caloporteur

IV.1 Le diagramme (P,h) : utilité et principe de lecture pour fluide monophasé

Les diagrammes (P , h) regroupent toutes les caractéristiques thermodynamiques d'un fluide ainsi que ses diffépression enthalpie massique

rents états sur un graphique portant l'enthalpie massique h en abscisse et la pression P en ordonnée.

<u>UTILITÉ</u>: ce diagramme permet de représenter toutes les transformations mono- ou diphasées que peuvent subir les fluides caloporteurs impliqués dans les machines thermiques (ou pas!!), et d'en tirer des informations très variées (chaleur, travail utile, capacité thermique, rendement, efficacité, etc...).

Les courbes abaques figurant sur le diagramme sont les suivantes :

- ullet isothermes T=cste
- isobares P = cste (forcément des droites horizontales)
- isenthalpiques massiques h = cste «isenthalpes» (forcément des droites verticales)
- isentropiques massiques s = cste appelées «isentropes»
- isochores massiques v = cste

FIGURE XVIII.10 – Allure d'un diagramme (P, h) de fluide monophasé

Ci-dessous, le diagramme (P,h) de l'air (fluide monophase) accompagné de quelques commentaires :

FIGURE XVIII.11 – Diagramme (P, h) monophasé de l'air

A RETENIR:

En résumé : le diagramme enthalpique (P,h) constitue "la carte d'identité" thermodynamique d'un fluide.

<u>Exercice de cours:</u> (IV.1) - n° 3. On cherche à exploiter le diagramme (P,h) de l'air pour déterminer sous quelles conditions ce gaz suit correctement le modèle du GP.

- Evaluer le volume massique du GP sous $T=20^{0}C$ pour P=1 bar. Comparer avec la valeur donnée grossièrement par le diagramme.
- Quelle propriété possède l'enthalpie massique d'un GP vis à vis de la température? Comparer avec le comportement de l'air donné par son diagramme.

a - Premier exemple élémentaire avec fluide monophasé : le détendeur

Un détendeur de gaz est un dispositif couramment utilisé pour abaisser la pression des gaz contenues dans des enceintes pressurisées; ex : bouteille de butane/propane, bouteille d'air comprimé de plongée etc...

PRINCIPE: on fait «frotter» le gaz sur les parois du détendeur supposé adiabatique (fines lamelles très proches les unes des autres) afin qu'il perde de la pression par suite des actions de viscosité \Longrightarrow détente type J.K. donc isenthalpique

QUESTION : de l'air comprimé est stocké à température ambiante $T_e = T_a = 20^{\circ} C$ dans une bouteille à la pression $P_e = 200 \ bar$. Ce gaz est envoyé dans un détendeur pour atteindre en sortie la pression atmosphérique de $1 \ bar$. Déterminer à l'aide du diagramme (P,h) de l'air la température de sortie T_s du gaz.

RÉPONSE : la détente est de type Joule-Kelvin donc isenthalpique (attention : les parois sont athermanes par hypothèse), donc :

 $h_s - h_e = 0 \implies$ la détente entre e et s est une droite verticale dans le diagramme (P,h)

FIGURE XVIII.12 – Détente isenthalpique dans un détendeur d'air comprimé

b - Second exemple élémentaire avec fluide monophasé : le compresseur

Un compresseur est un dispositif capable d'augmenter la pression d'un gaz en écoulement en lui fournissant du travail mécanique par l'intermédiaire d'un moteur.

Le schéma de principe est le suivant :

FIGURE XVIII.13 – Schéma de principe d'un compresseur à moteur électrique (source : Wikipédia)

<u>Hypothèse</u>: on supposera que le compresseur fonctionne de manière adiabatique et réversible \Rightarrow la transformation se lit le long d'une isentrope dans le diagramme (P, h)

 $\frac{\text{QUESTION:}}{\text{déterminer le travail massique d'un compresseur admettant de l'air à la pression } P_e = 1 \ bar \text{ sous la température } T_e = 20^{0} C \text{ et le compriment à } P_s = 2 \ bar$

La relation enthalpique pour le compresseur (adiabatique) s'écrit :

$$h_s - h_e = w_u$$

Ainsi, le travail massique fourni au gaz par le compresseur est directement déterminé par la lecture de la variation d'enthalpie massique entre les deux points (P_e, h_e) et (P_s, h_s) sur une isentrope :

FIGURE XVIII.14 – Détermination du travail massique d'un compresseur d'air

$$w_u = 575 - 520 = 55 \ kJ.kg^{-1}$$

Remarque IV-1: -

- On observe que $w_n > 0$ ce qui confirme que le système admet du travail du compresseur.
- On peut également lire sur le diagramme la température du gaz en fin de compression : $T_s = 72^{\circ}C$
- Dans un compresseur réel, le caractère "rapide" de la compression, ainsi que les frottements du gaz sur les parois du système engendre naturellement une création d'entropie; ainsi, la transformation réelle ne se lit pas sur une isentrope; cela entraine une augmentation du travail massique nécessaire pour le compresseur travaillant entre les mêmes valeurs de pression que le compresseur idéal (cf exemple sur le diagramme ci-dessus).

IV.2 Diagramme (P,h) des fluides diphasés

a - Principe de lecture

Lorsque le fluide est diphasé dans les conditions de l'expérience ou bien de l'étude, on ajoute sur le diagramme (P,h) (à l'instar des diagramme de Clapeyron (P,v)) les frontières de domaine (L; L+G; G), ainsi que le

réseau de courbes "isotitres" donnant le titre massique de la phase gaz :

TITRE EN GAZ (TAUX DE VAPEUR) : $x_G = \frac{m_g}{m} = \frac{m_g}{m_l + m_g}$

FIGURE XVIII.15 – Allure générale du diagramme (P, h) d'un fluide diphasé

b - Exemple : le réfrigérateur à tétrafluoroéthane R134a

On propose ici de montrer la puissance des diagrammes (P,h) dans l'étude d'un réfrigérateur utilisant du tétrafluoroéthane comme liquide caloporteur appelé ici $\mathbf{liquide}$ frigorigène. Le principe général de cette machine thermique est décrit sur le schéma ci-dessous :

Hypothèses:

- Le condenseur condense le gaz en liquide en cédant de la chaleur à la source chaude, soit l'extérieur du réfrigérateur, et fonctionne de manière isobare jusqu'en 3(et isotherme ⁴); il subit ensuite un sous-refroidissement vers 3'

 | a "ligne de fonctionnement" entre 2 et 3' est une isobare (horizontale).
- Le détendeur détend partiellement le liquide en un système diphasique *liquide+gaz* et fonctionne de manière isenthalpique la "ligne de fonctionnement" entre 3' et 4 est une isenthalpe (verticale).
- Enfin, l'évaporateur vaporise totalement le mélange diphasique en gaz en captant de la chaleur à la source froide, soit l'intérieur du réfrigérateur, et fonctionne de manière isobare jusqu'en 1 (donc isotherme là-encore); il subit ensuite une surchauffe vers 1'

 | a "ligne de fonctionnement" entre 4 et 1' est une isobare (horizontale).

Les données de fonctionnement sont les suivantes :

^{4.} il n'y a qu'un seul degré de liberté en zone diphasique (variance=1) ce qui a pour conséquence de fixer la température lorsque l'on fixe la pression; cf cours chimie

FIGURE XVIII.16 – Schéma de principe d'un réfrigérateur

$T_c(^0C)$	$T_f(^0C)$	$T_{condens}(^{0}C) = T_{3}$	$\Delta T_{3-3'}(ssrefroid)(^0C)$	$T_{\'evap}(^0C) = T_1$	$\Delta T_{1-1'}(surch)(^0C)$	
+20	-18	+40	-10	-30	+10	

Représentons maintenant le cycle frigorifique dans le diagramme enthalpique du tétrafluoroéthane R134a : A partir du cycle, on peut mesurer ou visualiser directement :

P_{evap}	$P_{condens}$	$T_{compr} = T_2$	q_f	q_c	w_u	Efficacité (COP) $e = \frac{q_f}{w_u}$
$0,85 \ bar$	10 bar	$60^{0}C$	$140 \ kJ.kg^{-1}$	$-200 \ kJ.kg^{-1}$	$55 \ kJ.kg^{-1}$	2,54

Définition IV-1: C.O.P. –

On appelle coefficent de performance ou COP d'une machine frigorifique le rapport :

$$COP = \frac{q_f}{w_u}$$

avec

 $q_f>0$ chaleur massique échangée avec la source froide (à refroidir)

 $w_u>0$ travail massique cédé par le moteur au caloporteur

FIGURE XVIII.17 – Représentation du cycle frigorifique dans le diagramme (P, h) du caloporteur