

Representación de la Información en los Sistemas Digitales

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid

Introducción a los computadores

Computador: Máquina que procesa información

Sistemas analógicos y digitales

- Sistemas analógicos: aquellos cuyas variables toman valores continuos en el tiempo
 - Las magnitudes físicas son en su mayoría analógicas
- Sistemas digitales: aquellos cuyas variables toman valores discretos en el tiempo
 - Se utilizan valores discretos llamados dígitos
 - Precisión limitada
 - Las cantidades digitales son más fáciles de manejar
 - Las magnitudes analógicas se pueden convertir a magnitudes digitales mediante muestreo

Sistemas analógicos y digitales

Sistema Analógico

Sistema digital

Sistemas binarios

- Sistemas binarios: sistemas digitales que sólo utilizan dos posibles valores
 - Los digitos binarios se denominan bits (Binary digiT)
 - Se representan mediante los símbolos 0 y 1, ó L y H
 - Los sistemas binarios son casi los únicos utilizados. Por extensión, se utiliza el término digital como sinónimo de binario
- ¿Por qué binario?
 - Más fiable: mayor inmunidad frente al ruido
 - Más sencillo de construir: sólo hay que distinguir entre dos valores

Índice

- Sistemas de Numeración
- Conversiones entre sistemas de numeración
- Códigos Binarios:
 - Códigos BCD
 - Códigos progresivos y cíclicos
 - Códigos alfanuméricos
 - Códigos detectores y códigos correctores de errores
 - Representación de números enteros y reales

Sistemas de Numeración

- Permiten representar los números mediante dígitos
- El sistema que utilizamos habitualmente es el sistema decimal:

• N =
$$a_n 10^n + a_{n-1} 10^{n-1} + ... + a_1 10 + a_0$$

- Ejemplo: $272_{10} = 2*10^2 + 7*10 + 2$
- Se puede hacer lo mismo pero utilizando bases diferentes a 10:

Dígito Peso
$$N = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b + a_0$$
Base

Sistemas de Numeración

- En un sistema con base b los dígitos posibles son:
 - 0, 1, ..., b-1
- Con n dígitos se pueden representar bⁿ números posibles, desde el 0 hasta el bⁿ-1
- Esta representación sirve también para números que no sean naturales:
 - Ejemplo: $727,23_{10} = 7*10^2 + 2*10 + 7 + 2*10^{-1} + 2*10^{-2}$
- Los sistemas que se utilizan en los sistemas digitales son: binario (b=2), octal (b=8) y hexadecimal(b=16)

Sistema Binario

- En este sistema la base es 2. Permiten representar perfectamente la información en los sistemas digitales.
 - Los dígitos posibles son 0 y 1. Un dígito en sistema binario se denomina "bit".
 - Con n bits se pueden representar 2ⁿ números
- El bit de mayor peso se denomina bit más significativo o MSB ("Most Significant Bit"), y el bit de menor peso se denomina bit menos significativo o LSB ("Least Significant Bit")

Habitualmente el MSB se escribe a la izquierda y el LSB a la derecha

• Ejemplo: $1001010_2 = 1*2^6 + 1*2^3 + 1*2^1 = 74_{10}$

Sistema Octal

- En este sistema la base es 8.
 - Los dígitos son 0,1,2,3,4,5,6,7
 - Con n dígitos se pueden representar 8ⁿ números
- Está muy relacionado con el sistema binario (8 es una potencia de 2, en concreto 2³=8)
 - Esto permite convertir fácilmente de octal a binario y de binario a octal
- Ejemplo:

$$137_8 = 1*8^2 + 3*8^1 + 7*8^0 = 95_{10}$$

Sistema Hexadecimal

- En este sistema la base es 16.
 - Los dígitos son 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
 - Está relacionado con el sistema binario (2⁴=16)
 - Un dígito hexadecimal permite representar lo mismo que 4 bits (ya que 2⁴=16). Un dígito hexadecimal se denomina también "nibble".
 - Dos dígitos hexadecimales equivalen por tanto a 8 bits. El conjunto de 8 bits o dos dígitos hexadecimales, se denomina "byte".
- Notaciones: 23AF₁₆ = 23AF_{hex} = 23AFh = 0x23AF = 0x23 0xAF.
- Ejemplo: $23AFh = 2*16^3 + 3*16^2 + 10*16 + 15 = 9135_{10}$

Conversiones entre sistemas de numeración

Pasar de cualquier sistema a sistema decimal:

•
$$N = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b + a_0$$

- Ejemplos:
 - $1001010_2 = 1*2^6 + 1*2^3 + 1*2^1 = 74_{10}$
 - $137_8 = 1*8^2 + 3*8^1 + 7*8^0 = 95_{10}$
 - 23AFh = $2*16^3 + 3*16^2 + 10*16 + 15 = 9135_{10}$

Para pasar de decimal a otro sistema:

- Método de descomposición en pesos
- Método de divisiones sucesivas por la base

Método de descomposición en pesos

- Consiste en descomponer el número en potencias de la base.
 - Se busca la potencia de la base (menor) más cercana al número.
 - Se van buscando potencias sucesivamente para que la suma de todas ellas sea el número decimal que se quiere convertir.
 - Finalmente los pesos de las potencias utilizadas se utilizan para representar el número en la base buscada.
- Éste método es útil sólo para sistemas donde las potencias de la base son conocidas. Por ejemplo para sistema binario: 1, 2, 8, 16, 32, 64, 128, 256, ...
- Ejemplo:

$$25_{10} = 16 + 8 + 1 = 2^4 + 2^3 + 2^0 = 11001_2$$

Método de divisiones sucesivas por la base

- Consiste en dividir el número decimal a convertir sucesivamente por la base y los cocientes obtenidos en las divisiones anteriores
 - El último cociente obtenido es el MSB del resultado
 - Los restos obtenidos son el resto de dígitos, siendo el primero de los restos obtenidos el LSB
- Ejemplo:

 Este método es más general que el anterior. Sirve para convertir de decimal a cualquier otra base.

Conversión de números reales

 La conversión de binario a decimal se hace igual que para números enteros (utilizando pesos negativos para la parte decimal):

$$101,011_2 = 1*2^2 + 0*2^1 + 1*2^1 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = 4 + 1 + 0,25 + 0,125 = 5,375_{10}$$

- La conversión de decimal a binario, se hace en dos partes:
 - Se convierte primero la parte entera por el método de divisiones sucesivas por la base (o por descomposición de pesos)
 - Luego se convierte la parte decimal por un método análogo, multiplicaciones sucesivas por la base.

Método de multiplicaciones sucesivas por la base (parte decimal)

- Consiste en multiplicar la parte decimal del número por la base sucesivamente.
 - Se multiplica la parte decimal del número por 2. La parte entera del resultado es el primer dígito (MSB de la parte decimal) de la conversión
 - Se vuelve a tomar la parte decimal, y se multiplica por 2 otra vez, y nuevamente la parte entera es el siguiente dígito.
 - Se itera tantas veces como se quiera, según la precisión que se quiera obtener en la conversión.
- Ejemplos:

```
0,3125<sub>10</sub> = 0,0101<sub>2</sub>
0,3125 x 2 = 0,625 => 0
0,625 x 2 = 1,25 => 1
0,25 x 2 = 0,5 => 0
0,5 x 2 = 1 => 1
```

```
0,1_{10} = 0,0 \ 0011 \ 0011 \dots 2

0,1 \times 2 = 0,2 \Rightarrow 0

0,2 \times 2 = 0,4 \Rightarrow 0

0,4 \times 2 = 0,8 \Rightarrow 0

0,8 \times 2 = 1,6 \Rightarrow 1

0,6 \times 2 = 1,2 \Rightarrow 1

0,2 \times 2 = 0,4 \Rightarrow 0 < - se repiten las cuatro cifras, periódicamente

0,4 \times 2 = 0,8 \Rightarrow 0

0,8 \times 2 = 1,6 \Rightarrow 1
```


Otros métodos de conversión

- Los sistemas octal y hexadecimal están relacionados con el binario, ya que sus bases son potencias exactas de 2 (la base binaria). Esto permite convertir entre estos sistemas de forma muy sencilla:
 - OCTAL a BINARIO: Convertir cada dígito en 3 bits
 - Ejemplo: $735_8 = 111 \ 011 \ 101_2$
 - BINARIO a OCTAL: Agrupar en grupos de 3 bits y convertirlos de forma independiente a octal.
 - Ejemplo: $1011100011_2 = 1343_8$
 - HEXADECIMAL a BINARIO: Convertir cada dígito en 4 bits
 - Ejemplo: $3B2h = 0011 1011 0010_2$
 - BINARIO a HEXADECIMAL: Agrupar en grupos de 4 bits y convertirlos de forma independiente a octal
 - Ejemplo: $10 \ 1110 \ 0011_2 = 2E3h$

Códigos Binarios

- Los códigos binarios son códigos que utilizan únicamente 0s y 1s para representar la información
- La información que se puede representar con códigos binarios puede ser de múltiples tipos:
 - Números naturales
 - Números enteros
 - Números reales
 - Caracteres alfabéticos y otros símbolos
- Una misma información (por ejemplo un número natural) se puede representar utilizando diferentes códigos.
 - Es importante especificar siempre qué código que se está utilizando cuando se representa una información en un código binario.

Código Binario Natural

- Es un código binario en el que se representa un número natural mediante su representación en sistema binario
 - Es el código binario más simple
 - Aprovecha que la representación en sistema binario de un número natural utiliza únicamente 0s y 1s
- Notación: Utilizaremos el indicador "BIN" para indicar que un código binario es el código binario natural:
 - \bullet 1001_{BIN} = 1001₂

Códigos BCD ("Binary-Coded Decimal")

Permiten representar números naturales de una forma
alternativa al binario natural.

- Se asigna un código de 4 bits a cada dígito decimal. Un número decimal se codifica en BCD dígito a dígito.
- El código BCD más habitual es el BCD natural (existen otros códigos BCD).

- Ejemplo:
 - $98_{10} = 0111 \ 1000_{BCD}$
- La codificación BCD de un número no tiene por qué coincidir con el código binario natural:
 - $98_{10} = 1001110_{BIN}$
- INCONVENIENTE: No todas las combinaciones corresponden a un código BCD. Por ejemplo,1110_{BCD} no existe.
- VENTAJA: Facilidad de conversión decimal-binario.

decimal	BCD								
0	0	0	0	0					
1	0	0	0	1					
2	0	0	1	0					
3	0	0	1	1					
4	0	1	0	0					
5	0	1	0	1					
6	0	1	1	0					
7	0	1	1	1					
8	1	0	0	0					
9	1	0	0	1					

dígita Cádiga

Códigos progresivos y cíclicos

- Dos codificaciones binarias se dice que son adyacentes si sólo hay bit diferente entre ambas.
 - 0000 y 0001 son adyacentes, ya que sólo difieren en el último bit
 - **0001** y **0010** no son adyacentes, ya que los dos últimos bits son diferentes
- Un código se dice que es progresivo si todas las codificaciones consecutivas son adyacentes.
 - El código binario natural no es progresivo, ya que 0001 y 0010 no son adyacentes.
- Un código se dice que es cíclico si además la primera y la última codificación son adyacentes.
- Los códigos progresivos y cíclicos más utilizados son:
 - Código Gray
 - Código Johnson

Código Gray

- El Código Gray es un código progresivo y cíclico
- Ejemplo de Código Gray de 3 bits:

Decimal		ódię Gra			
0	0	0	0	-	
1	0	0	1		Tadaalaa
2	0	1	1	—	Todas las codificaciones
3	0	1	0	-	consecutivas son
4	1	1	0	`	adyacentes
5	1	1	1		
6	1	0	1		
7	1	0	0		

Código Gray

- Construcción del código Gray de n bits:
 - Primero se copian los códigos de n-1 bits y se añaden otros n-1 copiando los anteriores en orden inverso
 - Luego se añade un cero a la izquierda en los de arriba y un uno en los de abajo
- Código de 1 bit:

Código Gray

Código de 3 bits:

Iterando se pueden construir los códigos Gray de n bits

Conversión entre los códigos Gray y Binario Natural

Se puede convertir directamente de Gray a Binario y de Binario a Gray, sin necesidad de construir toda la tabla:

BINARIO A GRAY:

$$(A_0A_1A_2 \dots A_n)_{BIN} \rightarrow (B_0B_1B_2 \dots B_n)_{GRAY}$$

$$\bullet$$
 B₀ = A₀

•
$$B_1 = A_0 + A_1$$

•
$$B_2 = A_1 + A_2$$

•
$$B_n = A_{n-1} + A_{n-2}$$

Ejemplo:

1011_{BIN} → 1110_{GRAY}

GRAY A BINARIO:

$$(A_0A_1A_2...A_n)_{GRAY} \rightarrow (B_0B_1B_2...B_n)_{BIN}$$

•
$$B_0 = A_0$$

•
$$B_1 = A_1 + B_0$$

•
$$B_2 = A_2 + B_1$$

•

•
$$B_n = A_n + B_{n-1}$$

Ejemplo:

1011_{GRAY} → 1101_{BIN}

	В	IN		GRAY						
0	0	0	0	0	0	0	0			
0	0	0	1	0	0	0	1			
0	0	1	0	0	0	1	1			
0	0	1	1	0	0	1	0			
0	1	0	0	0	1	1	0			
0	1	0	1	0	1	1	1			
0	1	1	0	0	1	0	1			
0	1	1	1	0	1	0	0			
1	0	0	0	1	1	0	0			
1	0	0	1	1	1	0	1			
1	0	1	0	1	1	1	1			
1	0	1	1	1	1	1	0			
1	1	0	0	1	0	1	0			
1	1	0	1	1	0	1	1			
1	1	1	0	1	0	0	1			
1	1	1	1	1	0	0	0			

Código Johnson

- Es otro código progresivo y cíclico
- En cada codificación aparecen agrupados los ceros a la izquierda y los unos a la derecha, o viceversa.
- Ejemplo código Johnson de 3 bits:

Decimal	Johnson						
0	0	0	0				
1	0	0	1				
2	0	1	1				
3	1	1	1				
4	1	1	0				
5	1	0	0				

Códigos alfanuméricos

- Representan símbolos, que pueden ser:
 - Dígitos
 - Letras mayúsculas y minúsculas
 - Signos de puntuación
 - Caracteres de control (espacio, salto de línea, retorno de carro, etc.)
 - Otros símbolos gráficos (operadores matemáticos, etc.)
- Un código alfanumérico mínimo que contenga los 10 dígitos, las 26 letras del alfabeto inglés, mayúsculas y minúsculas (52), necesita al menos 6 bits.
- Los códigos más utilizados en la actualidad son:
 - Código ASCII (7 bits)
 - Códigos ASCII extendidos (8 bits)
 - Códigos unicode (8-32 bits)

Códigos ASCII y ASCII extendidos

- El código ASCII ("American Standard Code for Information Interchange") fue publicado por primera vez en 1963.
- Es un código de 7 bits (128 códigos) estándar que contiene:
 - Dígitos
 - Letras mayúsculas y minúsculas del alfabeto inglés internacional
 - Signos de puntuación
 - Caracteres básicos de control
- Los códigos ASCII extendidos se utilizan para añadir caracteres adicionales:
 - No son estándar, difieren de una región a otra
 - Los 128 primeros códigos coinciden con el ASCII estándar por compatibilidad

Código ASCII Estándar

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	٠.	р
1	SOH	DC1 XON	Ţ	1	Α	Q	а	q
2	STX	DC2	п	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	٧
7	BEL	ЕТВ	1	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*		J	Ζ	j	Z
В	VT	ESC	+	1	K	[k	{
С	FF	FS	231	<	L	1	1	
D	CR	GS	82 <u>1</u> 88	=	М]	m	}
E	so	RS	· ·	>	N	۸	n	~
F	SI	US	1	?	0	_	0	del

Códigos ASCII Extendidos

EJEMPLO:

ACII extendido LATIN-1

(ISO 8859-1)

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		0001	0002	0003	0004	0006	0006	0007	0008	0009	000A	D00B	000C	0000	000E	000F
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	0018	001C	001D	001E	001F
2-	0020	0021	0022	# 0023	\$ 0024	% 0025	& 0026	0027	(0028	0029	₩	+ 002B	9 002C	- 002D	• 002E	/ 002F
3-	0	1	2	3	4	5	6	7	8	9	003A	• 003B	< 003C	= 003D	> 003E	? 003F
4-	@	A	B 0042	C 0043	D 0044	E 0045	F 0046	G	H 0048	I 0049	J	K 0048	L 004C	M 004D	N 004E	O 004F
5-	P 0050	Q	R	S 0053	T 0064	U	V 0056	W 0057	X 0058	Y 0059	Z	0058	0050]	∧ 005E	005F
6-	0060	a	b	C	d	e 0065	f	g	h	i 0069	j	k	0060	m	n 006E	O 006F
7-	p	q	r 0072	S	t	u	V 0076	W	X	y	Z	{ 007B	007C	}	~ 007E	007F
8-	080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	0088	008C	008D	008E	008F
9-	0090	0091	0092	0093	D094	0095	0096	0097	0098	0099	009A	0098	009C	009D	009E	009F
A-	00A0	00A1	¢ □00A2	£	X	¥ 00A5	I 00A6	§ 00A7	•• 00A8	© 00A9	<u>a</u>	≪ 00AB	- 00AC	- 00AD	® ODAE	
B-	O 0080	<u>+</u>	2	3 00B3	0084	μ	¶ 0086	• 0087	5 00B8	1 0089	<u>0</u>	>> 0088	1/4 00BC	1/2 00BD	3/4 00BE	¿ ₀₀⊌F
C-	À	Á 0001	Â	Ã 0003	Ä 00C4	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
D-	Ð	Ñ	Ò	Ó	Ô 00D4	Õ	Ö	X 0007	Ø	Ù	Ú	Û	Ü	Ý	þ	ß
E-	à	á	â	ã 00E3	ä	å	æ 00E6	Ç	è 00E8	é	ê OOEA	ë	Ì 00EC	Í OOED	î ODEE	ï OOEF
F-	ð	ñ	Ò	ó	ô	Õ	ö	• 00F7	Ø 00F8	ù 00F9	ú ODFA	û OOFB	ü oofc	ý	p	ÿ

Códigos ASCII Extendidos

EJEMPLO:

ASCII extendido Cirílico

ISO 8859-5

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		0001	0002	0003	0004	0006	0006	0007	0008	0009	000A	DOOR	000C	0000	000E	000F
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	0018	001C	001D	001E	001F
2-	0020	0021	0022	# 0023	\$ 0024	% 0025	& 0026	0027	(0028)	₩	+ 002B	9 002C	- 002D	• 002E	/ 002F
3-	0	1	2	3	4	5	6	7	8	9	003A	• • • •	< 003C	= 003D	> 003E	? 003F
4-	@	A 0041	B 0042	C 0043	D 0044	E 0045	F 0046	G	H 0048	I 0049	J	K 0048	L	M 004D	N 004E	O 004F
5-	P 0050	Q	R	S 0053	T 0064	U	V 0058	W 0057	X 0058	Y 0059	Z	0058	\ 005C	005D	∧ 005E	005F
6-	0060	a	b	C	d	e 0065	f	g	h	i 0069	j	k	1 0060	m	n 006E	O 006F
7-	p	q	r 0072	S	t 0074	u 0075	V 0076	W	X	y	Z	{ 0078	007C	}	~ 007E	007F
8-	0800	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	0088	008C	008D	008E	008F
9-	0090	0091	0092	0093	0094	0096	0096	0097	0098	0099	009A	0098	009C	009D	009E	009F
A-	00A0	Ë	Ъ	Ѓ	E 0404	S 0405	I 0408	Ï 0407	J 0408	Љ	Њ	h	Ќ	- 00AD	ў	Ц 040F
B-	A 0410	Б 0411	B ₀₄₁₂	Г 0413	Д	E 0415	Ж	3	И 0418	Й	K 041A	Л	M 0410	H 041D	O 041E	П 041F
C-	P ₀₄₂₀	C 0421	T 0422	y	Ф	X 0425	Ц	4	Ш 0428	Щ	Ъ	Ы 0428	Ь 0420	Э	Ю	Я
D-	a 0430	б 0431	B	Γ 0433	Д 0434	e 0435	Ж 0436	3	И 0438	Й	K	Л	M 043C	H 043D	O 043E	П 043F
E-	p	C 0441	T 0442	y 0443	ф	X 0445	Ц 0446	प 0447	Ш 0448	Щ	Ъ 044A	Ы 044В	Ь	Э 044D	Ю 044Е	Я 044F
F-	N º 2116	ë 0451	ђ 0452	Ϋ́ 0453	€ 0454	S 0455	i 0456	Ϊ 0457	j 0458	Љ 0459	њ 045A	ħ 045B	Ќ 0450	§	ў 045E	U 045F

Códigos Unicode

- Los códigos Unicode ("Universal Code") fueron creados en 1991 para tener códigos alfanuméricos estándar, comunes en todas las regiones
 - Se utiliza el mismo código unicode para idiomas Chino, Árabe, etc.
- Como máximo necesitan 32 bits
 - Los primeros 7 bits permiten la compatibilidad con ASCII
 - Con 1 byte se puede representar el código US-ASCII
 - Con 2 bytes: caracteres latinos y alfabetos árabes, griego, cirílico, armenio, hebreo, sirio y thaana.
 - Con 3 bytes: resto de caracteres utilizados en todos los lenguajes
 - Con 4 bytes: caracteres gráficos y poco comunes
- Diferentes versiones de representación. Las más comunes:
 - **UTF-8**: Códigos de 1 byte, pero son de longitud variable (se pueden utilizar 4 grupos de 1 byte para representar un símbolo)
 - UCS-2: Códigos de 2 bytes de longitud fija
 - **UTF-16**: Códigos de 2 bytes, de longitud variable (se pueden utilizar 2 grupos de 2 bytes para representar un símbolo)
 - UTF-32: Códigos de 4 bytes

Códigos Unicode

EJEMPLO:

 Parte del Unicode correspondiente al alfabeto cirílico

Se necesita el segundo byte para la representación

 Las codificaciones completas se pueden encontrar en:

http://www.unicode.org/charts

0	400							Cyr	illic							04FF
L	040	041	042	043	044	045	046	047	048	049	04A	04B	04C	04D	04E	04F
0	È	A 0410	P 0420	a 0490	p	è	W 0460	¥ ′	$\mathbf{G}_{\text{\tiny 0480}}$	Г 0490	K	¥	I 0400	Ă	3	ÿ 04F0
1	Ë	Б	C 0421	б	C 0441	ë	W 0461	Y	G odes	Г 0491	K	¥	Ж ж	ă	3	ÿ
2	Ъ	B	T 0422	B 0432	T 0442	ђ 0452	Ъ	O 472	‡ 0482	F 0492	H 0442	X 0482	ж ••с2	Ä	П	Ӳ 0€2
3	Ĺ œ	Г 0413	y 0423	Г 0433	y 0443	Ѓ 0453	Ъ 0463	O	ි 0483	F 0493	H 0443	X 0483	К	ä	Й	Ϋ́ 04F3
4	E	Д	Ф	Д	ф	E 0454	Ю	V 0474	ி	5	Н	TI	К	Æ	Ü очеч	Ӵ
5	S 0405	E 0415	X 0425	e 0435	X 0445	S 0455	Ю	V 0475	် 0485	5	H 0445	TI 0485	Д	æ	Ё	Ϋ 04F5
6	I	Ж	<u>Ц</u>	Ж	Ц 0446	i 0496	A.	V	ै	Ж	П	4	Л 0408	Ĕ	Ö	Г 04F6
7	Ï	3	Y	3	Ч	ï 0457	A. 0467	°	ි 0487	Ж,	Пъ	Ч 0487	Н	ě	Ö	Г 04F7
8	J	И	Ш 0428	И 0438	III 0448	j	I -∕A	Оу	9488 30%	3	Q	Ч	Н	G	0468	Ӹ ѹӻӿ
9	Љ	Й	Щ	й	Щ	Љ	I-A	ОУ	\$\$. 0489	3	Q	Ч 0489	H	ea G	0469	: Ы 04F9
A	Ж	K	Ъ	K 043A	Ъ	Њ	XX.	O47A	Й	K	Ç	h	H,	Ë	Ö	F
В	Th	Л 041В	Ы	Л 0438	Ы	ħ	XX 0468	O478	Й	K,	Ç	h	Ч	Ë	Ö	F 04FB
С	K 0400	M	Ь	M	Ь	K	₩	င်္သာ	Ь	K 0490	T	C	Ч	Ж	Ë	X
D	Й	Н	Э	H	Э	ѝ	HX.	ධි	Ь	K 0490	T	е	M,	ж	Ë	X 04FD
E	ÿ	O	Ю	O 043E	Ю	ÿ 04€	Š	W 047E	P	K	Y	Ç	M,	3	ÿ o4EE	X
F	II 040F	II 041F	Я	П 043F	R	Ц 049F	Ž 046F	Ü 047F	p 048F	ţ.	Y	ę	I 04CF	3	Ţ ŒF	X 04FF

Códigos detectores y correctores de errores

- En los sistemas digitales pueden aparecer errores
 - Errores físicos de los circuitos
 - Interferencias electromagnéticas (EMI)
 - Fallos de alimentación eléctrica
 - Etc.
- Códigos detectores de error:
 - Pueden permitir detectar un error en la codificación
- Códigos correctores de error:
 - Permiten detectar un error y además corregirlo
- Los códigos detectores de error y los códigos correctores de error no utilizan las 2ⁿ posibles codificaciones con n bits

Códigos detectores de error

Códigos de paridad:

- Añaden un bit adicional (paridad del número) que permite detectar errores simples en la codificación (error en 1 bit)
- La paridad que se considera es la de la suma de los n bits de la codificación
 - NOTA: la paridad no tiene nada que ver con si la codificación binaria es par o impar (un número binario es par si acaba en 0 e impar si acaba en 1).
- Dos posibles convenios:
 - Añadir un 0 cuando la paridad sea par y 1 cuando sea impar: Se denomina código de paridad par (ya que considerando la suma de los n bits + el bit de paridad la paridad siempre es par)
 - Añadir un 1 cuando la paridad sea par y 0 cuando sea impar: Se denomina código de paridad impar (ya que la suma de los n bits + bit paridad es siempre impar)

Códigos detectores de error

Ejemplo de paridad:

Código detector de errores (código de paridad impar) a partir del código binario natural de dos bits:

Ejemplo de utilidad del código detector:

Si utilizamos este código en una comunicación entre dos sistemas binarios, el sistema receptor podría detectar si hay un error comprobando la paridad.

Ejemplo: Se transmite la codificación 001, y el receptor recibe la codificación 000 (error en el último bit).

Paridad de 001: impar Paridad de 000: par

No coinciden: Error detectado

Códigos detectores de error

- Existen más códigos detectores de error:
 - Número de unos:
 - Se añade a la codificación la suma de unos de la codificación (no sólo la paridad de la suma, sino la suma completa)
 - Número de transiciones:
 - Se añade a la codificación el número de transiciones de 0 a 1 y de 1 a 0 en la codificación
 - Códigos CRC (Cyclic Redundancy Checking):
 - Buscan añadir el menor número posible de bits que permitan detectar el mayor número posible de fallos
 - Estos códigos también permiten corregir algunos errores
- Los códigos más utilizados son los de paridad (por su sencillez) y CRC (por su eficacia)

Códigos correctores de error

- Los códigos correctores permiten no sólo detectar sino también pueden corregir un error.
- Para que un código permita corregir errores, la distancia mínima (número mínimo de bits diferentes entre dos codificaciones) debe ser mayor de 2.
 - Se puede corregir la codificación buscando la codificación más cercana perteneciente al código
- Hamming describió un método general para construir códigos con distancia mínima de 3, conocidos como códigos de Hamming
- Estos códigos son importantes, a partir de ellos se obtienen muchos de los utilizados en sistemas de comunicaciones (por ejemplo los códigos de bloque Reed-Solomon)

Codificación de números enteros y reales

- Además de los códigos binarios vistos hasta ahora, hay otros códigos importantes que se utilizan para representar números enteros y números reales:
 - Números enteros: Códigos de signo y magnitud, Complemento a Uno, Complemento a Dos
 - Números reales: Códigos de Punto fijo y Coma Flotante
- Estos códigos se estudiarán en detalle en el Tema 4:
 Aritmética Binaria

Referencias

- Fundamentos de Sistemas Digitales. Thomas
 L. Floyd. Pearson Prentice Hall
- Introducción al Diseño Lógico Digital. John P. Hayes. Addison-Wesley
- Diseño Digital. John F. Wakerly. Pearson Prentice Hall