

Московский ордена Ленина, ордена Октябрьской революции

и ордена Трудового Красного Знамени

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н. Э. Баумана

ДОМАШНЕЕ ЗАДАНИЕ

по курсу:

" Надежность технических систем"

ПЛАНИРОВАНИЕ УСКОРЕННЫХ ИСПЫТАНИЙ

Выполнил:

студент группы РЛ6-38(М)

Линник Д.А.

Преподаватель:

Ветрова Н.А.

Содержание

Содержание	2
Описание принципиальной схемы	3
Расчёт коэффициента ускорения	5
Расчёт интенсивностей отказов по группам элементов	6
Предварительные испытания.	7
Форсированные испытания	9
Приложение	12

Описание принципиальной схемы

Источник: http://radiostorage.net/?area=news/64

Рис. 1. Принципиальная схема стабилизатора напряжения

При выходном напряжении 12 В и токе нагрузки до 1А его коэффициент стабилизации и коэффициент подавления пульсаций превышает 2000, а выходное сопротивление составляет 20 мОм. При появлении перегрузок стабилизатор ограничивает ток на уровне в 2...2,5 раза больше номинального тока и предохранитель успевает сгореть раньше, чем температура перехода транзистора V3 превысит максимально допустимую. Стабилизатор содержит регулирующий транзистор (V3), усилитель постоянного тока (V4) и устройство сравнения (V6). Стабилитрон V5 и резистор R6 образуют источник опорного напряжения. Цепочка R7C1 и конденсатор C2 устраняют возможное самовозбуждение стабилизатора на высоких частотах.

Коллекторный ток транзистора V6 задается резистором R5 и составляет 1...1,5 мА. Резистор R3 служит для ограничения коллекторного тока транзистора V4 при переходных процессах и перегрузках стабилизатора. Поскольку источник опорного напряжения питается выходным напряжением, отсутствующим в момент включения стабилизатора, введена

специальная цепочка запуска из резистора R1, стабилитрона V1 с напряжением стабилизации, равным или несколько меньшим, чем у стабилитрона V5, и развязывающего диода V2. Когда на стабилизатор подают напряжение, через резистор R1, диод V2 и транзистор V6 протекает ток, достаточный для открывания транзисторов V3 и V4. После того как стабилизатор войдет в нормальный режим работы, диод V2 отключает цепь запуска.

Транзистор V3 (а при больших точках нагрузки и V4) следует установить на радиатор. Если стабилизатор возбуждается на высоких частотах, подбирают детали цепочки R7C1. В случае плохого запуска стабилизатора при подключенной нагрузке и минимальном напряжении на его входе, подбирают резистор R1 (уменьшают его сопротивление). Подбором резистора R3 устанавливают уровень ограничения тока (2...2,5 A). Стабилизатор подключают к выпрямителю, рассчитанному на ток нагрузки не менее 1 A.

При моделировании схемы были использованы аналоги элементов.

Элемент в принципиальной схеме	Аналог для моделирования
KC156A	1N752A
KC168A	1N4099
КТ817Б	2SC790
KT626A	2SA1356
КТ315Б	2N2712
Д220	1N3121

Расчёт коэффициента ускорения

Коэффициент ускорения испытаний:

$$K=\frac{t_{\rm H}}{t_{\rm y}},$$

где: $t_{\rm H}$ – срок службы в нормальном режиме,

 $t_{\rm y}$ – срок службы при ускоренных испытаниях.

Согласно ТУ срок службы в нормальном режиме:

24 месяцев × 30 суток × 8 часов = 5760 ч.

Коэффициентным методом можно рассчитать интенсивность отказов при нормальных и ускоренных испытаниях. Ускоренные испытания включают следующие форсирующие факторы:

- температура окружающей среды Т;
- входное напряжение $U_{\mbox{\tiny BX}}$.

По справочнику можно определить комплексную интенсивность отказов для каждого из режимов, выбирая температуру окружающей среды и напряжение питания при нормальной эксплуатации и при форсированном режиме.

$$\Lambda_{\mathrm{PAA}} = K_a * \sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{\mathrm{s}\,ij},$$

где: K_a – коэффициент качества производства аппаратуры;

 $\lambda_{\ni ij}$ — интенсивность отказов *i*-го типа изделий *j*-ой группы;

n — количество изделий j-ой группы;

т – количество групп изделий.

 $K_a = 0.2$ по положению РК — ... (см. справочник «Надежность ЭРИ»)

Расчёт интенсивностей отказов по группам элементов.

1. Полупроводниковые приборы.

				<u> </u>							
Наим. λ_6 , $10^{-6} \frac{1}{4} K_{\Phi} K$	$\lambda_{c} 10^{-6} \frac{1}{-6}$	K_{Φ}	$K_{\mathfrak{B}}$	K_{np}	K	$K_{\mathcal{S}}$		$\lambda_3, 10^{-6} \frac{1}{4}$			
	3	пр	HP	ФР	HP	ФР	HP	ФР			
KC156A	0,0024	1,5	4		0,2553	1,0143	0,7	0,8	0,0026	0,0117	
KC168A	0,0024	1,5	4		0,3782	0,9998	0,7	0,8	0,0038	0,0114	
Д220	0,09	0,6	4	1	0,2553	0,6543	0,7	0,8	0,0386	0,1131	
КТ817Б	0,044	1,0	4	1	0,3552	1,0143	0,8	1,0	0,0905	0,2954	
KT626A	0,044	0,7	5		0,2499	0,3968	0,8	1,0	0,0273	0,0542	
КТ315Б	0,044	0,7	5		0,2986	0,5243	0,8	1,0	0,0368	0,0807	

$$\lambda_3 = \lambda_6 * K_p * K_{\phi} * K_{S} * K_{9} * K_{\pi p}$$

2. Резисторы.

Тип	$\lambda_6, 10^{-6} \frac{1}{4}$	K_R	$K_{\mathfrak{B}}$	$K_{\pi p}$	K_{p}		$\lambda_{3}, 10^{-6} \frac{1}{4}$	
					HP	ФР	HP	ФР
Постоянные металлизированные 9 шт.	0,039	1,0	3	1	0,72	1,29	0,0842	0,1509

$$\lambda_{\mathfrak{I}} = \lambda_{\mathfrak{G}} \cdot K_{\mathfrak{p}} \cdot K_{\mathfrak{R}} \cdot K_{\mathfrak{I}} \cdot K_{\mathfrak{I}\mathfrak{p}}$$

3. Конденсаторы.

Тип	$\lambda_{6}, 10^{-6} \frac{1}{4}$	K_C	K_{2}	$K_{\rm np}$	$K_{\rm p}$		λ_{3} , $10^{-6} \frac{1}{4}$	
	Ч	C	3		HP	ФР	HP	ФР
Керамические постоянной емкости на номинальное напряжение <1600 В	0,0207	0,86	3	1	0,527	2,599	0,0285	0,1404
Оксидно- электролитические	0,173	0,43	3	1	0,765	3,224	0,0365	0,1804

$$\lambda_{
m 3} = \lambda_{
m 6} \cdot K_{
m p} \cdot K_{
m C} \cdot K_{
m 3} \cdot K_{
m np}$$
 $K_{
m C} = 0.4 \cdot C^{0.12} \; ({\it C}1 = 200 \; {\rm Mk\Phi}, {\it C}2 = 100 {\rm Mk\Phi})$

4. Печатная плата.

а. Для проводников печатной платы интенсивность потока отказов:

HP:
$$\lambda_{\Pi\Pi} = 0.7 * 10^{-6} \frac{1}{4}$$
;

$$\Phi P: \lambda_{\Pi\Pi} = 2.1 * 10^{-6} \frac{1}{9}$$

b. Для монтажных и паяных соединений:

HP:
$$\lambda_{\rm M} = 0.01 * 10^{-6} \frac{1}{4}$$
;

$$\Phi P: \lambda_{M} = 0.03 * 10^{-6} \frac{1}{4}.$$

Всего соединений:

$$n = 2 * 14 + 3 * 3 = 37$$
:

HP:
$$\lambda_{M\Sigma} = \lambda_{M} * n = 0.44 * 10^{-6} \frac{1}{4}$$
;

$$\Phi P: \lambda_{M\Sigma} = \lambda_{M} * n = 1.32 * 10^{-6} \frac{1}{4};$$

Интенсивности отказов для всей системы:

HP:
$$\Lambda_{P9A HP} = 2,0341 * 0,2 = 0,4068 * 10^{-6} \frac{1}{4}$$

$$\Phi P: \Lambda_{P3A \Phi P} = 5,7230 * 0,2 = 1,1446 * 10^{-6} \frac{1}{4}$$

Коэффициент ускорения испытаний в данном случае можно выразить как:

$$K = \frac{\Lambda_{\rm P3A \, \Phi P}}{\Lambda_{\rm P3A \, HP}} = 2.81.$$

Предварительные испытания.

Усечение по времени.

$$t_{\text{и}} < 0.2T_0 = 1152 \text{ ч}.$$

Объем выборки: 100 изделий.

Отказом изделия считают такое состояние, при котором значение контролируемого параметра вышло за пределы установленного поля допусков.

7

Контролируемый параметр: выходное напряжение: $12B \pm 1\%$.

На испытания представляют образцы изделий, прошедших электротермотренировку и техническую проверку в объеме приемосдаточных испытаний.

Время испытаний при заданной температуре отсчитывают с момента достижения этой температуры. Допускаются перерывы в отдельных видах испытаний, но без сокращения продолжительности каждого вида испытаний.

Условия и порядок проведения испытаний.

Для проведения испытаний применяют испытательное оборудование, которое обеспечивает диапазон выбранных режимов.

Испытуемые блоки разбивают на две выборки объёмом 50 блоков.

Каждое изделие первой выборки испытывают сначала в нормальном режиме до наступления условного отказа (0.2 * Uкрит.). По наступлению отказа изделие переключают в первый форсированный режим $\epsilon *$. Испытания продолжаются 1152 часов.

Вторую выборку испытывают в нормальном режиме в течение 1152 часов.

Отказавшие блоки не восстанавливаются.

Параметры нормального режима испытаний:

- относительная влажность воздуха 20% (при $T=40^{0C}$);
- атмосферное давление 760 мм.рт.ст.;
- температура окружающей среды T=80°C;
- сигнал на входе U = 16 .. 20 B.

Параметры форсированного режима испытаний:

- относительная влажность воздуха 20% (при $T=40^{0}$ C);
- атмосферное давление 760 мм.рт.ст.;
- температура окружающей среды для режима $\varepsilon^*(1)$: T=120⁰C;
- сигнал на входе $\varepsilon^*(2)$: U = 14 .. 22 В.

В процессе испытаний контролируют амплитуду выходного напряжения, замеры которой в нормальном и форсированном режимах осуществляют 100 раз в одни и те же моменты времени.

Результаты замеров фиксируют в журнале испытаний.

Оцениваемым показателем является коэффициент ускорения Ку, достижимый при выбранных форсированных режимах.

Обработку, анализ и оценку результатов испытаний осуществляют с использованием следующей модели:

- 1. Выбирают первое значение коэффициента К=1,1.
- 2. Используя зарегистрированные в журнале испытаний данные о значениях контролируемого параметра определяют прогнозируемые значения параметра в режиме ε_0 .
- 3. Для каждого момента времени составляют объединённый вариационный ряд, расположив в порядке возрастания значения контролируемого параметра обеих выборок в нормальном режиме.
- 4. Преобразовывают данные и вычисляют статистику для K=1,1 с использованием модели вычисления расстояния Махаланобиса между двумя выборками.
- 5. Задают новое значение коэффициента K, увеличив его значение на величину выбранного шага ΔK =0,1 и выполняют операции пп.1-4.
- 6. Последовательно, с выбранным шагом ΔK =0,1, перебирают разные значения Ki=1.1+i· ΔK , i=1, 2, ..., и для каждого из них выполняют операции π 1.1-4.
- 7. Вычисления продолжают до того значения $K=K_0$, после которого начинает возрастать значение статистики T и принимают это значение K_0 в качестве коэффициента ускорения $K_v(1)$.

Оборудование:

- трансформатор, выпрямитель, фильтр НЧ для получения колебаний в диапазонах от 14 до 22 $B(\Phi P)$ и от 16 до 20 B(HP),
 - термокамера,
 - набор инструментов для измерения напряжений и токов.

Форсированные испытания.

ФИ проводят всегда ЭМ в лабораторных (заводских) условиях с использованием испытательных камер (стендов). Планирование, проведение, обработку, анализ и оценку результатов этих испытаний осуществляют по ГОСТ 27-410-87*) в соответствии с выбранным планом статистического контроля в следующем порядке:

- 1. План контроля требований по безотказности в НР выбирают по ГОСТ 27.410-87*) (как правило, из числа приведенных в нем базовых планов) в соответствии с видом и уровнем контролируемого показателя безотказности и установленными в ТТЗ (ТЗ, ТУ).
- 2. Испытания в ФР проводят в порядке, предусмотренном для выбранного плана контроля ПБО в НР, путем многократного повторения сформированной циклограммы ΦР ДΟ момента (момента пересечения прекращения испытаний ступенчатым границ областей графиком отказов соответствия ИЛИ несоответствия).
- 3. При контроле ПБО вида "Т" (T_{cp} , T_0) перед каждым вхождением в график плана контроля суммарная наработка испытуемых в ФР образцов пересчитывается на НР в соответствии с выбранной моделью пересчета (умножается на K_y если модель линейная), а затем пересчитывается в единицы T_α (делится на T_α).

В качестве исходных данных используют данные, полученные на стадии предварительных исследований: ΦP , ϵ^* - любой из множества E, определенную циклограмму ΦP и функциональную зависимость $X0(t)=X*(\phi(t,\epsilon^*))$, $\epsilon^*\in E$.

Рис. 2. Примеры циклограмм

Объем выборки ОИ (n) и время t испытаний в HP устанавливают по ГОСТ 27.402-95 или ГОСТ 27.403-95 в соответствии с выбранным (заданным) планом статистического контроля.

Для определения $P(t_{6,p})$ проводят испытания выборки объема n в режиме $\epsilon*$ в течение времени $t*_{u} = \phi(t)$ (t - среднее время испытания выборки того же объема n в нормальном режиме, равное $t_{6,p}$).

Для определения T_{cp} в режиме ε_0 выборку объема n испытывают в ΦP ε^* до отказы всех ОИ (если вид закона распределения неизвестен).

ТМ № Ф.3 ФИ на БО предназначены для разработки на их основе рабочих методик оценки единичных показателей БО (T_0 , T_{cp} , $P(t_{6,p})$), заданных для нормальных условий и режимов эксплуатации изделий, по результатам испытаний, проводимых в форсированных условиях и (или) режимах функционирования.

Вероятность $P(t_{6,p})$ рассчитывают по формуле

$$P(t_{6.p.}) = 1 - \frac{R^*}{n}$$

где R^* - число отказавших ОИ за время $t^*_{\ u}$.

Величину T_{cp} рассчитывают по формуле

$$T_{\rm cp} = \frac{1}{n} \sum_{i=1}^{n} \phi(\xi_*^i)$$

где $\xi_*^{\ i}$ - наработка до отказа і-го образца, $i=1,\,n.$

Приложение