ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ 2018 1η ΕΡΓΑΣΙΑ ΓΙΩΡΓΟΣ ΓΙΑΜΟΥΡΙΔΗΣ Ε16024

Αποτελέσματα Πειρματισμού

Αρχείο "m500"

Ονομα Αρχείου	Cover's average execution time	Cost estimation of the best solution	Cover's cost
1. p500x1000	0.03345058877 sec	2374	2122
2. p500x3000	0.08957815221 sec	649	602
3. p500x5000	0.14046536781 sec	352	337
4. p500x7000	0.20418711209 sec	325	296
5. p500x9000	0.24712302674 sec	194	173

Αρχείο "n5000"

Ονομα Αρχείου	Cover's average execution time	Cost estimation of the best solution	Cover's cost
1. p1000x5000	1.05943923418 sec	10341	9751
2. p200x5000	0.05706003786 sec	186	178
3. p400x5000	0.1936295901 sec	921	853
4. p600x5000	0.44366257495 sec	2100	1929
5. p800x5000	0.74865105203 sec	6014	5612

Γραφική Αναπαράσταση Μέσων Χρόνων Εκτέλεσης

Περιγραφή Υλοποίησης των Μεθόδων

Cover

Η μέθοδος cover(MultiSet target) υλοποιεί τον άπληστο αλγόριθμο. Αρχικά δημιουργέι ένα αντικέιμενο MSetList το Ist1. Έπειτα ελέγχει αν η πληθικότητα του πολυσυνόλου target είναι μηδενική και όσο αυτή δεν είναι, εντοπίζει τον κόμβο με το ελάχιστο κλάσμα κόστους προς πληθικότητα τομής με το πολυσύνολο target και τον διαγράφει. Στη συνέχεια ελέγει αν το rm έιναι null και αν δεν είναι εισάγει στη λίστα Ist1 τον κόμβο που διέγραψε προηγουμένος. Αυξάνει το κόστος της βέλτιστης λύσης κατά cost (κόστος) και αναθέτει στο target την τιμή της διαφοράς του με το διεγραμένο κόμβο.

rmBestNode

Η μέθοδος rmBestNode(MultiSet target) Εντοπίζει και διαγράφει από τη λίστα στην οποία καλείται, τον κόμβο που αποθηκεύει το πολυσύνολο με το ελάχιστο κλάσμα κόστους προς πληθυκότητα τομής με το πολυσύνολο target. Αρχικά αρχικοποιεί τους δείκτες first και last της λίστας και επίσης δύο βοηθιτικούς δείκτες οι οποίοι θα δείχνουν στον κόμβο με το ελάχιστο ελάχιστο κλάσμα κόστους προς πληθυκότητα τομής με το πολυσύνολο target. Ελέγχεται αν η λίστα είναι άδια, αναθέτεται στο m το ελάχιστο κλάσμα κόστους προς πληθυκότητα τομής με το πολυσύνολο target και με ένα απλό αλγόριθμο εύρεσης ελαχίστου εντοπίζουμε το ζητούμενο κόμβο.

isect

Η μέθοδος isect(MultiSet mset) υπολογίζει την τομή του πολυσυνόλου με το πολυσύνολο mset. Ελέγχει αρχικά αν το μήκος του this.item είναι διαφορετικό από το μήκος του mset.item και αν αυτό δε συμβαίνει τότε δημιουργεί ένα πίνακα μεγέθους item.length και αποθηκεύει σε αυτόν την τομή του πολυσυνόλου με το πολυσύνολο mset που δίνεται από τον τύπο min $\{m_A(x), m_B(x)\}$.

minus

Η μέθοδος minus (MultiSet mset) υπολογίζει την διαφορά του πολυσυνόλου με το πολυσύνολο mset. Ελέγχει αρχικά αν το μήκος του this.item είναι διαφορετικό από το μήκος του mset.item και αν αυτό δε συμβαίνει τότε δημιουργεί ένα πίνακα μεγέθους item.length και αποθηκεύει σε αυτόν την τομή του πολυσυνόλου με το πολυσύνολο mset που δίνεται από τον τύπο min $\{0, m_A(x) - m_B(x)\}$.