Álgebra Lineal Tarea-Exámen1

González Montiel Luis Fernando

17 de marzo de 2020

- 1. Para los siguientes ejercicios considere V un espacio vectorial.
 - (a) Sean W_1 , $W_2 \leq V$ de dimensiones m y n, respectivamente, tales que m \geq n.

Demuestre que $\dim(W_1 \cap W_2) \le n \ y \ \dim(W_1 + W_2) \le m + n$

DEMOSTRACIÓN:

Como W_1 tiene dimensión m por la definición, esto implica que existe una base para W_1 , es decir, sea una $\beta_1 = \{u_1,...,u_m\}$, tomando de igual forma a W_2 , una base $\beta_2 = \{v_1,...,v_n\}$, por la definición principal, tenemos que $(W_1 \cap W_2) = \{u_1 \in \beta_1 \text{ y } v_1 \in \beta_2 \text{ tal que } u_1 = v_1\}$.

Dado ésto, tenemos dos casos que tenemos que revisar.

Primero el caso donde $(W_1 \cap W_2) = \emptyset \leq n$.

Y en el caso donde $(W_1 \cap W_2) \neq \emptyset$, donde podemos suponer que para todo $u_i \in \beta_1$ y para todo $v_i \in \beta_2$, $u_i = v_i$, con $1 \le i \le n$, es decir que cada elemento que esta en β_1 , están también en β_2 y como ya sabemos que que $|\beta_1| = \dim(W_1) = n$ con eso podemos estar seguros que a lo más los n elementos que estan β_1 , van a estar en β_2 .

 $\therefore (W_1 \cap W_2) \leq n.$

- 2. Sean V un espacio vectorial
- 3. (a) Demuestre que W_1 y W_2 son subespacios vectoriales de $\Im(\Re \to \Re)$

DEMOSTRACIÓN:

Tenemos que checar tres cosas para demostrar que es subespacio vectorial, es decir, ver si contiene al cero y si la suma y el producto por escalar son cerrados.

Primero probaremos W_1 . Tomamos una $f_0 = \{ f(x) = 0 \mid x \in \Re \}$ está en W_1 .

Y sabemos que por la definición $f_0(x) = 0 = f(-x)$, entonces f_0 está en W_1 .

Probaremos que ahora que la suma es cerrada, sea f,g $\in W_1$

Entonces (f+g)(x) = f(x)+g(x) = f(-x)+g(-x) = (f+g)(-x), por lo tanto la suma es cerrada en W_1 .

Ahora checaremos que la multiplicación por escalar es cerrada en W_1 .

Tomamos $f \in W_1 \ y \ \lambda \in F$.

Entonces $(\lambda f)(x) = \lambda f(x) = \lambda f(-x) = (\lambda f)(-x)$.

Asi sabemos que la multiplicación por escalar es cerrada en W_1 .

 $\therefore W_1$ es subesacio vectorial.

Tomamos una $f_0 = \{ f(x) = 0 \mid x \in \Re \} \text{ está en } W_2.$

Y sabemos que por la definición $f_0(-x) = 0 = -(0) = -f(x)$, entonces f_0 está en W_2 .

Probaremos que ahora que la suma es cerrada, sea f,g $\in W_2$

Entonces (f+g)(-x) = f(-x)+g(-x) = -f(x)+(-g(x)) = (-1)(f+g)(x), por lo tanto la suma es cerrada en W_2 .

Ahora checaremos que la multiplicación por escalar es cerrada en W_1 .

Tomamos $f \in W_2$ y $\lambda \in F$.

Entonces $(\lambda f)(-x) = \lambda f(-x) = \lambda(-f(x)) = \lambda((-1)f(x)) = (-1)\lambda f(x) = -(\lambda f)(x)$.

Asi sabemos que la multiplicación por escalar es cerrada en W_2 .

 $\therefore W_2$ es subesacio vectorial.