DIALOG(R) File 351: Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv. **Image available** WPI Acc No: 2002-556618/200259 XRAM Acc No: C02-157780 XRPX Acc No: N02-440548 Zinc oxide film formation method for photovoltaic device, involves dipping counter electrode and substrate into aqueous solution containing polycarboxylic acid of specified concentration Patent Assignee: CANON KK (CANO); MIYAMOTO Y (MIYA-I); SONODA Y (SONO-I); TOYAMA N (TOYA-I); TSUZUKI H (TSUZ-I) Inventor: MIYAMOTO Y; SONODA Y; TOYAMA N; TSUZUKI H Number of Countries: 002 Number of Patents: 003 Patent Family: Patent No Kind Date Applicat No Kind Date Week US 20020063065 A1 20020530 US 2001953256 20010917 Α 200259 B JP 2002167695 A 20020611 JP 2001285215 20010919 200259 Α US 6576112 B2 20030610 US 2001953256 Α 20010917 200340 Priority Applications (No Type Date): JP 2000283065 A 20000919 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes US 20020063065 A1 19 H01L-031/00 JP 2002167695 A 15 C25D-009/08 US 6576112 В2 C23C-028/00 Abstract (Basic): US 20020063065 A1 NOVELTY - The conductive substrate (103) and a counter electrode (104) are dipped in an aqueous solution (102) containing polycarboxylic acid in which a carboxyl radical is bonded to multiple carbons having sp2 hybrid orbital or its ester in addition to nitric ion and zinc acid ion. The concentration of the polycarboxylic acid or its ester is set to 0.5-500 mumol/L. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for photovoltaic device manufacturing process. USE - For forming zinc oxide film used as reflecting film in photovoltaic device e.g. solar cell. ADVANTAGE - Zinc oxide film with excellent texture and optical confinement effect, is formed on a conductive substrate. Increases short circuit current density, conversion efficiency and reliability of the photovoltaic device. Enhances the yield characteristics, quality and durability of photovoltaic device, thereby contributing for the full scale proliferation of solar electric power generation at a low cost. DESCRIPTION OF DRAWING(S) - The figure shows a schematic view of the zinc oxide film forming apparatus. Aqueous solution (102) Conductive substrate (103) Counter electrode (104) pp; 19 DwgNo 1/6 Title Terms: ZINC; OXIDE; FILM; FORMATION; METHOD; PHOTOVOLTAIC; DEVICE; DIP; COUNTER; ELECTRODE; SUBSTRATE; AQUEOUS; SOLUTION; CONTAIN; ACID; SPECIFIED; CONCENTRATE Derwent Class: L03; M11; U12; X15 International Patent Class (Main): C23C-028/00; C25D-009/08; H01L-031/00

International Patent Class (Additional): C25D-009/00; C25D-011/00; C25D-011/02; G01J-001/00; H01J-040/00; H01L-021/00; H01L-025/00;

H01L-031/04; H01L-031/18; H02N-006/00

File Segment: CPI; EPI
Manual Codes (CPI/A-N): L04-E05D; M11-B
Manual Codes (EPI/S-X): U12-A02A2; U12-A02A3; U12-A02A4; U12-A02A4D;

X15-A02A

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-167695 (P2002-167695A)

(43)公開日 平成14年6月11日(2002.6.11)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコート*(参考)

C25D 9/08 H01L 31/04 C 2 5 D 9/08

5F051

H01L 31/04

F

審査請求 未請求 請求項の数7 OL (全 15 頁)

(21)出願番号	特顧2001-285215(P2001-285215)	(71)出顧人	000001007
			キヤノン株式会社
(22)出顧日	平成13年9月19日(2001.9.19)		東京都大田区下丸子3丁目30番2号
		(72)発明者	園田 雄一
(31)優先権主張番号	特願2000-283065 (P2000-283065)		東京都大田区下丸子3丁目30番2号 キヤ
(32)優先日	平成12年9月19日(2000.9.19)		ノン株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	遠山 上
			東京都大田区下丸子3丁目30番2号 キヤ
			ノン株式会社内
		(74)代理人	100096828
			弁理士 渡辺 敬介 (外2名)

最終頁に続く

(54) 【発明の名称】 酸化亜鉛膜の形成方法、それを用いた光起電力素子の製造方法

(57)【要約】

【課題】 低コスト化に有利な電解析出法により、光閉 じ込め効果のあるテクスチャー構造の薄膜を短時間で形 成でき、堆積膜の異常成長を防止でき、成膜面の均一性 及び密着性に優れていて、光起電力素子の積層構造へ適 用する事で、光電特性を向上できて量産性を高め得る酸 化亜鉛薄膜の形成方法を提供する。

【解決手段】 導電性基体103と対向電極104とを少なくとも硝酸イオンと亜鉛イオンとを含有する水溶液102に浸漬してこれらの電極間に通電することにより該導電性基体上に酸化亜鉛膜を形成する酸化亜鉛膜の形成方法において、水溶液102として、sp2混成軌道を有する炭素のそれぞれにカルボキシル基が結合した多価カルボン酸又はそのエステルを0.5μmo1/1~500μmo1/1含有する水溶液102を用いる酸化亜鉛膜の形成方法を提供する。

【特許請求の範囲】

【請求項1】 導電性基体と対向電極とを少なくとも硝酸イオンと亜鉛イオンとを含有する水溶液に浸漬し、該導電性基体と対向電極との間に通電することにより該導電性基体上に酸化亜鉛膜を形成する酸化亜鉛膜の形成方法において、

前記水溶液として、sp2混成軌道を有する複数の炭素にカルボキシル基が結合した多価カルボン酸又はそのエステルを $0.5\mu mo1/1\sim500\mu mo1/1$ 含有する水溶液を用いることを特徴とする酸化亜鉛膜の形成方法。

【請求項2】 前記多価カルボン酸又はそのエステルが、隣接したsp2混成軌道を有する炭素のそれぞれにカルボキシル基が結合した多価カルボン酸又はそのエステルであることを特徴とする請求項1に記載の酸化亜鉛膜の形成方法。

【請求項3】 前記多価カルボン酸又はそのエステルが、フタル酸又はそのエステルであることを特徴とする請求項1に記載の酸化亜鉛膜の形成方法。

【請求項4】 前記水溶液の亜鉛イオン濃度を0.05 mo1/1以上とすることを特徴とする請求項1乃至3のいずれかに記載の酸化亜鉛膜の形成方法。

【請求項5】 前記水溶液として、サッカロースまたは デキストリンを含有してなる水溶液を用いることを特徴 とする請求項1乃至4のいずれかに記載の酸化亜鉛膜の 形成方法。

【請求項6】 前記導電性基体として、予め酸化亜鉛膜を堆積した導電性基体を使用することを特徴とする請求項1乃至5のいずれかに記載の酸化亜鉛膜の形成方法。

【請求項7】 酸化亜鉛膜を有する光起電力素子の製造 方法において、該酸化亜鉛膜を請求項1乃至6のいずれ かに記載の方法で形成する工程と、該酸化亜鉛膜上に半 導体層を形成する工程と、を有することを特徴とする光 起電力素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は酸化亜鉛薄膜の形成 方法及びそれを用いた光起電力素子の製造方法に関す る。

[0002]

【従来の技術】従来、水素化非晶質シリコン、水素化非晶質シリコンゲルマニウム、水素化非晶質シリコンカーバイド、微結晶シリコンまたは多結晶シリコンなどからなる光起電力素子は、長波長における集電効率を改善するために、裏面の反射層が利用されてきた。かかる反射層は、半導体材料のバンド端に近くその吸収の小さくなる波長、即ち800nmから1200nmで有効な反射特性を示すのが望ましい。この条件を十分に満たすのは、金・銀・銅・アルミといった金属である。また、光閉じ込めとして知られる所定の波長範囲で光学的に透明

なテクスチャー層を設けることも行なわれていて、一般的には前記金属層と半導体活性層の間に設けて、反射光を有効に利用して短絡電流密度Jscを改善することもある。さらに、シャントパスによる特性低下を防止するため、この金属層と半導体層の間に導電性を示す透光性の材料による層、即ち透明導電性層を設けることが行なわれている。極めて一般的にはこれらの層は、真空蒸着やスパッタといった方法にて堆積され、短絡電流密度Jscにして1mA/cm²以上の改善を示している。

【0003】その例として、先行技術1:「29p-M F-2ステンレス基板上のa-SiGe太陽電池におけ る光閉じ込め効果」(1990年秋季)第51回応用物 理学会学術講演会講演予稿集 p 7 4 7、先行技術 2:" P-IA-15a-SiC/a-Si/a-SiGe Multi-Bandgap Stacked Sol ar Cells With Bandgap Pro filing, "Sannomiya et al., Technical Digest of the I nternatioal PVSEC-5, Kyot o, Japan, p381, 1990、などに、銀原子 から構成される反射層について反射率とテクスチャー構 造について検討されている。これらの例においては、反 射層を基板温度を変えた、銀の2層堆積とすることで有 効なテクスチャーを形成し、これによって酸化亜鉛層と のコンビネーションにて、光明じ込め効果による短絡電 流の増大を達成したとしている。

[0004]

【発明が解決しようとする課題】これらの光閉じ込め層として用いられる透明層は、抵抗加熱や電子ビームによる真空蒸着法、スッパッタリング法、イオンプレーティング法、CVD法などによって堆積されているが、ターゲット材料などの作成工賃が高いことや、真空装置の償却費の大きいことや、材料の利用効率が低いことは、これらの技術を用いる光起電力素子のコストを極めて高いものとして、太陽電池を産業的に応用しようとする上で大きな障害となっている。

【0005】これらの対策として液相堆積法による酸化 亜鉛作製技術として、特開平10-140373号公報 には、光起電力素子(太陽電池)の反射層として適用さ れる、金属層と透明導電層との組み合わせが説明されて いる。

【0006】これらの方法によれば高価な真空装置、高価なターゲットが不要であるため、酸化亜鉛の製造コストを飛躍的に削減することができる。また大面積基板上にも堆積することができるため、太陽電池のような大面積光起電力素子には有望である。しかし、これらの電気化学的に析出する方法は、以下の問題点を有している。【0007】(1)より最適な光閉じ込め効果のあるテクスチャー構造を備えた堆積膜については、更なる検討が必要である。

【0008】(2)球状や樹枝状などの形状をした異常成長が生成しやすく、密着性の低下の原因となる。更にはこの酸化亜鉛膜を光起電力素子の一部として用いた場合には、これらの異常成長が光起電力素子のシャントバスを誘発する原因となる。

【0009】(3)酸化亜鉛結晶粒の大きさにばらつきが生じやすく、大面積化したときの均一性に問題があった。

【0010】本発明は、かかる事情に鑑みてなされたものであって、低コスト化技術である酸化亜鉛電解析出方法の新技術を確立し、量産性に優れ、高性能かつ低コストな素子、さらには基板密着性にも優れる素子を安定的に提供するものであり、これらの素子を太陽電池モジュールに組み入れることにより、太陽光発電の本格的な普及に寄与することを目的とする。

[0011]

【課題を解決するための手段】本発明者等は、上記の目的を達成すべく、導電性基体上への光閉じ込め効果の高いテクスチャー形状を有する酸化亜鉛膜の作製技術、更には密着性や膜均一性を改善する技術について鋭意研究を重ねた結果、以下の構成を有する本発明に至ったものである。

- (1) 導電性基体と対向電極とを少なくとも硝酸イオンと亜鉛イオンとを含有する水溶液に浸漬し、該導電性基体と対向電極との間に通電することにより該導電性基体上に酸化亜鉛膜を形成する酸化亜鉛膜の形成方法において、前記水溶液として、sp2混成軌道を有する複数の炭素にカルボキシル基が結合した多価カルボン酸又はそのエステルを0.5μmo1/1~500μmo1/1含有する水溶液を用いる。これにより、光閉じ込め効果に優れたテクスチャー構造の酸化亜鉛を効率良く堆積できる。なお、本明細書でカルボン酸とは、イオン化したカルボン酸も含有する概念である。
- (2)前記多価カルボン酸又はそのエステルとして、隣接したsp2混成軌道を有する炭素のそれぞれにカルボキシル基が結合した多価カルボン酸又はそのエステルを用いる。これにより、より効果的に光閉じ込め効果に優れたテクスチャー構造の酸化亜鉛を効率良く堆積できる。
- (3)前記多価カルボン酸又はそのエステルとして、フタル酸又はそのエステルを用いる。これにより、より効果的に光閉じ込め効果に優れたテクスチャー構造の酸化亜鉛を効率良く堆積できる。
- (4)前記水溶液の亜鉛イオン濃度を0.05mol/ 1以上とする。これにより、より効果的に光閉じ込め効果に優れたテクスチャー構造の酸化亜鉛を効率良く堆積できる。
- (5)前記水溶液として、サッカロースまたはデキストリンを含有してなる水溶液を用いる。これにより、異常成長の少ない密着性に優れた酸化亜鉛膜を長時間に渡り

効率良く堆積できる。

- (6)前記導電性基体として、予め酸化亜鉛膜を堆積した導電性基体を使用する。これにより、異常成長の少ない密着性に優れた酸化亜鉛膜を効率良く堆積できる。また、予め堆積しておく酸化亜鉛膜の結晶性(結晶性を高く、もしくは大きくした酸化亜鉛膜の上に電析することで、結晶粒形を大きく、逆は結晶粒形を小さくできる。結晶性に影響する因子は、たとえば成膜温度や成膜速度や膜厚などがある。)を制御することで、より効果的に光閉じ込め効果に優れたテクスチャー構造の酸化亜鉛を効率良く堆積できる。
- (7)酸化亜鉛膜を有する光起電力素子の製造方法において、該酸化亜鉛膜を上記の方法で形成し、その上に半導体層を形成する。これにより、品質が高く(短絡電流、変換効率、密着性に優れた)、電力コストが安い光起電力素子を提供することが出来る。

【0012】このように本発明によれば、太陽電池特性の向上に有効な、光閉じ込め効果が高く、信頼性の高い酸化亜鉛膜の形成を工業的に安く安定して行うことができ、光起電力素子の集電効率および信頼性の向上に寄与するものである。

[0013]

【発明の実施の形態】次に、本発明の実施形態例を添付 図面に基づいて説明する。

【0014】[電解析出による酸化亜鉛膜の形成方法] 図1は、酸化亜鉛膜を形成するため電解析出を行なう製造装置の構成図である。図中、101は耐腐食容器、102は水溶液、103は導電性基体、104は対向電極、105は電源、106は負荷抵抗、107は溶液射出口、108は溶液吸入口、109は吸入溶液パイプ、110は射出溶液パイプ、111は溶液循環ポンプ、112はヒーターである。

【0015】電解析出水溶液102は、少なくとも硝酸イオンと亜鉛イオンとを含有する水溶液であり、この硝酸イオン、亜鉛イオン濃度は好ましくは、0.002m o 1/1 ~ 3.0 m o 1/1 、より好ましくは0.01 m o 1/1 ~ 1.5 m o 1/1 、 さらに好ましくは0.05 m o 1/1 ~ 0.7 m o 1/1 である。

【0016】本発明による電解析出水溶液102に添加するsp2混成軌道を有する複数の炭素にカルボキシル基が結合した多価カルボン酸又はそのエステルとしては、-C=C-基を有しこれらの炭素それぞれにカルボキシル基又はエステル基が結合したものや、芳香環(ベンゼン環や複素芳香環など)中の複数の炭素にカルボキシル基が結合したものが挙げられる。より具体的には、フタル酸、イソフタル酸、マレイン酸、ナフタル酸あるいはこれらのエステルなどが挙げられる。これらの多価カルボン酸の濃度は、0.5μmol/1~500μmol/1とすることが好ましく、150μ

mo1/1~500μmo1/1とすることがさらに好ましい。多価カルボン酸の濃度をこのように制御することにより、光閉じ込め効果に適したテクスチャー構造の酸化亜鉛膜を効率よく形成できる。

【0017】詳細は不明であるが、一分子中にsp2混成軌道を有する複数の炭素にカルボキシル基が結合する構造、特に

[0018]

【化1】

(注:C---C は、s p 2 炭素間の結合を表す。) という構造が酸化亜鉛結晶の成長過程に大きく寄与して いると、本発明者らは推定している。

【0019】尚、図5にフタル酸添加量を 10μ mol/1、 70μ mol/1、 100μ mol/1として製造した本発明による酸化亜鉛膜のSEM写真を、図6に従来技術による酸化亜鉛膜のSEM写真を示した。

【0020】また、サッカロースまたはデキストリンを水溶液 102に含有させると、これら添加剤が電解析出反応を適正化するように働いて酸化亜鉛膜の異常成長を抑制することができ、成膜面の均一性及び密着性を良好にできる。このようにすることで、光閉じ込め効果の高い、テクスチャー構造の酸化亜鉛膜を、歩留りよく形成することができる。また、水溶液 102内にサッカロースまたはデキストリンを含ませる場合は、サッカロースの濃度は好ましくは、1g/1~500g/1、さらに好ましくは3g/1~100g/1に設定し、デキストリン濃度は好ましくは0.01g/1~10g/1、さらに好ましくは0.025g/1~1g/1に設定する。

【0021】導電性基体103、対向電極104は、負荷抵抗106を経て電源105に接続されている。導電性基体103と対向電極104との間に流す電流値としては、好ましくは0.1mA/cm²~100mA/cm²、さらに好ましくは1mA/cm²~30mA/cm²、最適には4mA/cm²~20mA/cm²である。【0022】また、浴中のpHは3以上、電気伝導度は10mS/cm以上、溶液温度は60℃以上とすることで、異常成長の少ない均一な酸化亜鉛膜を効率よく形成できる。溶液全体を撹拌するために、溶液吸入口108、溶液射出口107、溶液循環ポンプ111、吸入溶液パイプ109、射出溶液パイプ110とからなる溶液循環系を用いている。小規模な装置であれば磁気撹拌子を用いることができる。

【0023】本発明によって形成される酸化亜鉛膜のテ

クスチャー構造は以下の測定項目によって評価すること ができる。

【0024】(傾斜角 θ)傾斜角 θ は、酸化亜鉛の表面と基板(基体)の主面とのなす角の平均値である。ここで、主面とは基板表面にもともと存在する凸凹を取り除いた仮想の平面である。よって乱反射率と正の相関があり、その値が大きい程(90° 以下で)太陽電池の効率向上に寄与する。すなわち光閉じ込め効果に有効なテクスチャー構造となる。傾斜角 θ は具体的には、arctan(df/dx)(但しdxはサンプルリング長、dfは酸化亜鉛層の表面と基板の主面との距離の変化量)により求められる。

【0025】(表面荒さRa)太陽電池特性に対しては、表面荒さRaが増加しすぎるとシリーズ抵抗Rsの増加、FFの低下が起こる。現時点ではRaが10nm~120nmの範囲で本発明による、テクスチャー構造の光閉じ込めによる太陽電池特性の効果が確認されている。

【0026】(粒形)粒形は、酸化亜鉛の表面ピーク間 (バレー間)距離の平均値である。太陽電池の特性に対しては、現時点では10nm~150nmで本発明による、テクスチャー構造の光閉じ込めによる太陽電池特性の効果が確認されている。

【0027】〔光起電力素子〕図2は、本発明にかかる 光起電力素子の積層構成を示す断面図である。図中に示 す素子は太陽電池であり、図中201は基板(支持 体)、202は金属層(裏面反射層)、203は六方晶 系多結晶からなる酸化亜鉛層(透明導電層)、204は 半導体層、205は透明電極層、206は集電電極であ る。なお、透明基板側から光が入射する構成の場合、基 板を除いて各層が逆の順番で形成される。

【0028】次に本発明のその他の構成要素について説明する。

【0029】(基板)基板201としては、金属または 導電性材料をコーティングした樹脂、ガラス、セラミックス等が用いられる。その表面には微細なテクスチャー を有してもよい。透明基板を用いて基板側から光が入射 する構成としてもよい。また、ステンレス、ポリイミド 等可撓性を有する基板を用いることで、長尺な形状とす ることができ、連続成膜に対応させることができる。

【0030】(金属層)金属層202は電極としての役割と、基板201にまで到達した光を反射して半導体層で再利用させる反射層としての役割がある。A1、Cu、Ag、Auなどを蒸着、スパッタ、電解析出、印刷等の方法で形成する。その表面にテクスチャーを有することにより反射光の半導体層内での光路長を延ばし、短絡電流を増大させる作用がある。基板が導電性を有する場合には金属層は形成しなくてもよい。

【0031】(透明導電層)透明導電層203は、入射 光及び反射光の乱反射を増大し、半導体層内での光路長 を延ばす。また、金属層202の元素が半導体層204 への拡散あるいはマイグレーションをおこし、光起電力 素子がシャントすることを防止する。さらに、適度な抵 抗を持つことにより、半導体層のピンホール等の欠陥に よるショートを防止する。さらに、金属層と同様にその 表面に光閉じ込め効果に有効なテクスチャーを有してい ることが好ましい。

【0032】(半導体層)半導体層204の材料としては、アモルファスあるいは微結晶のSi、C、Ge、またはこれらの合金が用いられる。同時に、水素および/またはハロゲン原子が含有される。その好ましい含有量は0.1から40原子%である。さらに酸素、窒素などを含有してもよい。これらの不純物濃度は5×10^{19 c m-3}以下が望ましい。さらにp型半導体とするにはIII属元素、n型半導体とするにはV属元素を含有する。【0033】スタックセルの場合、光入射側に近いpin接合のi型半導体層はバンドギャップが広く、遠いpin接合になるに従いバンドギャップが狭くなるのが好ましい。また、i層の内部ではその膜厚の中央よりもp層寄りにバンドギャップの極小値があるのが好ましい。【0034】光入射側のドープ層は光吸収の少ない結晶性の半導体か、またはバンドギャップの広い半導体が適

【0035】半導体層を形成するには、マイクロ波(MW)プラズマCVD法または高周波(RF)CVD法が 適している。

【0036】この半導体堆積技術としては「i 層はGr aded SiGe でGe 組成 $20\sim70$ atm%」 (特開平4-119843 号公報) などを用いることができる。

【0037】(透明電極層)透明電極層 205 はその膜厚を適当に設定することにより反射防止膜の役割を兼ねることが出来る。透明電極層は ITO、ZnO、 In_2O_3 等の材料を、蒸着、CVD、スプレー、スピンオン、浸漬などの方法を用いて形成される。これらの化合物に導電率を変化させる物質を含有してもよい。

【0038】(集電電極)集電電極206は集電効率を向上させるために設けられる。その形成方法として、マスクを用いてスパッタによって集電パターンの金属を形成する方法や、導電性ペーストあるいは半田ペーストを印刷する方法、金属線を導電性ペーストで固着する方法などがある。

【0039】なお、必要に応じて光起電力素子の両面に 保護層を形成することがある。同時に鋼板等の補強材を 併用してもよい。

[0040]

している。

【実施例】以下、本発明の実施例を説明するが、本発明 はこれらの実施例に限定されるものではない。

【0041】(実施例1)実験には、図1に示される装置を用いた。負側の電極(導電性基体)103として

は、厚さ0.12mmのステンレス430BAに、銅を200nmスパッタしたものを用い裏面をテープで覆い、正側の電極(対向電極)104としては、厚さ1mm、4-Nの亜鉛を使用した。水溶液102は85℃、0.25mol/1の酢酸亜鉛水溶液に60%硝酸(比重1.38)を5.5ccmえ、更に100 μ mol/1のフタル酸水素カリュウム濃度となるようにフタル酸水素カリュウムを添加した。印加電流は、4.0mA/ cm^2 (0.4A/ dm^2)とし10分間通電した。

【0042】負極側の基体103上に得られた酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO. Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した(通常は原子間力顕微鏡にそのような測定モードが設定されている)。以上の結果を表1に示す。

【0043】(実施例2)水溶液を85℃、0.25m o1/1の酢酸亜鉛水溶液に60%硝酸(比重1.38)を5.5cc加え、更に100μmo1/1のフタル酸アンモニュウム濃度となるようにフタル酸アンモニュウム粉末を添加した以外は実施例1と同様に電解析出を行なった。

【0044】負極側の基体103上に得られた酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO. Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した。以上の結果を表1に示す。

【0045】(実施例3)水溶液を85℃、0.25m o1/1の酢酸亜鉛水溶液に60%硝酸(比重1.38)を5.5cc加え、更に100μmo1/1のフタル酸ジエチル濃度となるようにフタル酸ジエチルを添加した以外は実施例1と同様に電解析出を行なった。

【0046】負極側の基体103上に得られた酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO. Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した。以上の結果を表1に示す。

【0047】(実施例4)水溶液を85℃、0.25m ○1/1の酢酸亜鉛水溶液に60%硝酸(比重1.3 8)を5.5cc加え、更に100μmo1/1のマレイン酸濃度となるようにマレイン酸を添加した以外は実 施例1と同様に電解析出を行なった。

【0048】負極側の基体103上に得られた酸化亜鉛の薄膜については、波長800nmにおける全反射率、 乱反射率を測定した(日本分光V-570)。次に原子 間力顕微鏡(Quesant CO. Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した。以上の結果を表1に示す。

【0049】(比較例1)水溶液を85℃、0.25m o1/1の酢酸亜鉛水溶液に60%硝酸(比重1.3 8)を5.5cc加えた以外は実施例1と同様に電解析 出を行なった。

【0050】負極側の基体103上に得られた酸化亜鉛

の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO.nQscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した。以上の結果を表1に示す。

【0051】 【表1】

		T			
	実施例1	実施例 2	実施例3	実施例 4	比較例1
全反射率(%)	85	83	84	84	84
乱反射率(%)	80	80	78	70	55
傾斜角 θ (°) (比較例 1 との相対比較)	1. 5	1. 6	1.5	1. 3	1
表面荒さ Ra (nm)	70	74	72	65	45
粒形(μπ)	0.60	0.59	0. 61	0, 57	0. 55

【0052】表1より以下のことが言える。sp2混成 軌道を有する炭素のそれぞれにカルボキシル基が結合した多価カルボン酸を含有する水溶液の添加により乱反射 率、傾斜角 θ が増加する。特に、隣接するsp2混成軌道を有する炭素のそれぞれにカルボキシル基が結合した多価カルボン酸又はそのエステルを含有する水溶液の添加により傾斜角 θ が増加する。中でもフタル酸及びフタル酸エステルの添加による効果(乱反射率、傾斜角 θ が増加)は絶大である。

【0053】(実施例5)実験には、図1に示される装置を用いた。負側の電極(導電性基体)103としては、厚さ0.12mmのステンレス430BAに、銀を800nmスパッタしたものを用い裏面をテープで覆い、正側の電極(対向電極)104としては、厚さ1mmの4-Nの亜鉛を使用した。水溶液102は75 $^{\circ}$ 0.2mo1/1の硝酸亜鉛水溶液とし、フタル酸水素カリュウムの濃度を0.1 $^{\circ}$ 1、0.5 $^{\circ}$ 2mo1/1、150 $^{\circ}$ 2mo1/1、300 $^{\circ}$ 1、1000 $^{\circ}$ 2mo1/1、800 $^{\circ}$ 2mo1/1、1000 $^{\circ}$ 1と順に変化させ電解析出を行なった。この時の印加電流は、8.0mA/cm

2(0.8A/dm²)とし5分間通電した。

【0054】負極側の基体103上に得られたそれぞれの酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO.Qscope Mode1250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形、表面積を測定した。以上の結果を表2に示す。

【0055】(比較例2)水溶液を75℃、0.2mo 1/1の硝酸亜鉛の水溶液とした以外は実施例5と同様 に電解析出を行なった。

【0056】負極側の基体103上に得られたそれぞれの酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形、表面積を測定した。以上の結果を表2に示す。

【0057】 【表2】

				実施	例 5				比較例2
750酸濃度 (μ no l/l)	0. 1	0. 5	50	150	300	500	800	1000	0
全反射率(%)	92	92	93	92	91	92	83	83	92
乱反射率(%)	63	75	80	88	88	87	83	83	61
傾斜角θ(゚) (比較例2との 相対比較)	1. 03	1. 2	1. 3	1.6	1. 5	1.6	1.6	1. 6	1
表面荒さ Ra (non)	50	55	61	65	72	80	115	110	50
粒形(μm)	0. 61	0. 63	0. 68	0. 69	0. 60	0. 62	0. 66	0. 65	0. 51

【0058】表2から以下のことが言える。sp2混成 軌道を有する炭素のそれぞれにカルボキシル基が結合し た多価カルボン酸又はそのエステルを含有する水溶液の

添加により乱反射率、傾斜角θが増加する。特に添加量 0.5μmol/lから500μmol/lの範囲では 全反射率が低下することなく、また表面荒さRa、粒形 の大幅な上昇を押さえつつ、乱反射率、傾斜角 θ が増加する。

【0059】また、特に $50\mu mo1/1$ から $500\mu mo1/1$ 、とりわけ $150\mu mo1/1$ から $500\mu mo1/1$ が好ましいことが、表2から明らかとなっている。かかる変化は前述したように、一分子中にsp2混成軌道を有する複数の炭素にカルボキシル基が結合する構造、特に

[0060]

【化2】

(注:C---Cは、sp2 炭素間の結合を表す。) の構造に起因すると考えられるので、好ましい範囲はフタル酸水素カリュウムのみならず、他の多価カルボン酸又はそのエステル (特に、上記隣接した sp2 混成軌道を有する炭素のそれぞれにカルボキシル基が結合した構造を有する多価カルボン酸又はそのエステル)でも同様と考えられる。

1/1として、硝酸亜鉛濃度を0.03mo1/1、0.05mo1/1、0.1mo1/1、0.2mo1/1、0.3mo1/1と順に変化させ電解析出を行なった。この時の印加電流は、5.0mA/cm²(0.5A/dm²)とし5分間通電した。

【0062】負極側の基体103上に得られたそれぞれの酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形、表面積を測定した。以上の結果を表3に示す。

【0063】(比較例3)水溶液102にマレイン酸を添加しなかった以外は、実施例6と同様にして硝酸亜鉛 濃度を0.03 mol/1.0.05 mol/1.0.2 mol/1.0.3 mol/1.0.3 mol/1.0.3 mol/1.0.3 順に変化させて電化析出を行なった。この時の印加電流は、5.0 mA/1 c m² 1.0.3 mol/1.0.3 mol/1

【0064】負極側の基体103上に得られたそれぞれの酸化亜鉛の薄膜については、波長800nmにおける全反射率、乱反射率を測定した(日本分光V-570)。次に原子間力顕微鏡(Quesant CO、Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形、表面積を測定した。以上の結果を表3に示す。

[0065]

【表3】

		:	実施例 (5				比較例:	3	
硝酸亜鉛濃度 (nol/1)	0. 03	0. 05	6. 1	0. 2	0. 3	0. 03	0. 05	0. 1	0. 2	0. 3
全反射率(%)	40	39	40	41	40	40	40	41	40	40
乱反射率(%)	6	24	27	31	33	5	12	17	19	20
傾斜角 6 °) (比較例 3 のそれ ぞれの硝酸亜鉛 濃度に対する 相対比較)	1. 03	1. 15	1. 3	1. 35	1. 35	1	1	1	ı	1
表面荒さ Ra (min)	7	66	63	70	86	6	25	30	40	50
粒形(µm)	0. 12	0. 47	0. 53	0.59	0. 62	0. 11	0. 42	0.46	0. 51	0. 58

【0066】表3から以下のことが言える。sp2混成 軌道を有する炭素のそれぞれにカルボキシル基が結合した多価カルボン酸を含有する水溶液の添加により乱反射率、傾斜角 θ が増加する。特に硝酸亜鉛濃度0.05m $o1/1以上で、乱反射率、傾斜角<math>\theta$ の増加率が高く、格別の効果がある。

【0067】(実施例7)実験には、図1に示される装置を用いた。負側の電極(導電性基体)103としては、厚さ0.12mmのステンレス430BAに銀を400nmスパッタしたものを用い裏面をテープで覆っ

た。正側の電極(対向電極)104としては、厚さ1 m m04-Nの亜鉛を使用した。水溶液は90 $^{\circ}$ $^{\circ}$

【0068】負極側の基体103上に得られた酸化亜鉛 薄膜の波長800nmにおける全反射率、乱反射率(日本分光V-570)を測定した。次に原子間力顕微鏡 (Quesant CO. Qscope Model2 50)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した。次に目視により異常成長の数を測定した(3cm×3cmの範囲)。更に、SEM観察(日立製作所S-4500)により、異常成長の数を10mm×10mmの範囲で数を数えた。 更にこのサンプルを、温度85℃湿度85%の環境下に1000時間放置し碁盤目テープ法(JIS K54008.5.2)の剥離試験を行った。以上の結果を表4に示す。

【0069】(実施例8)水溶液として90℃、0.15mol/1の硝酸亜鉛水溶液に、200μmol/1のフタル酸水素カリュウムとなるようにフタル酸水素カリュウムを添加し、更に、サッカロース12g/1を添加した以外は実施例7と同様に電解析出を行った。

【0070】負極側の基体103上に得られた酸化亜鉛薄膜の波長800nmにおける全反射率、乱反射率(日本分光V-570)を測定した。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 の、表面荒さRa、粒形を測定した。次に目視により異常成長の数を測定した(3cm×3cmの範囲)。更に、SEM観察(日立製作所S-4500)により、異常成長の数を10mm×10mmの範囲で数を数えた。更にこのサンプルを、温度85℃温度85%の環境下に1000時間放置し碁盤目テープ法(JIS K54008.5.2)の剥離試験を行った。以上の結果を表4に示す。

【0071】 (実施例9) 水溶液として、90°、0. 15 $m \circ 1/1$ の硝酸亜鉛に、200 $\mu m \circ 1/1$ のフタル酸水素カリュウムとなるようにフタル酸水素カリュウムを添加し、更にデキストリン0.1g/1を添加した以外は実施例7と同様に電解析出を行った。

【0072】負極側の基体103上に得られた酸化亜鉛薄膜の波長800nmにおける全反射率、乱反射率(日本分光V-570)を測定した。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角の、表面荒さRa、粒形を測定した。次に目視により異常成長の数を測定した(3cm×3cmの範囲)。更に、SEM観察(日立製作所S-4500)により、異常成長の数を10mm×10mmの範囲で数を数えた。更にこのサンプルを、温度85℃湿度85%の環境下に1000時間放置し碁盤目テーブ法(JIS K54008.5.2)の剥離試験を行った。以上の結果を表4に示す。

【0073】(実施例10)水溶液として、90℃、 0.15mol/1の硝酸亜鉛に200μmol/1の フタル酸水素カリュウム濃度となるようにフタル酸水素 カリュウムを添加し、更にデキストリン濃度0.1g/ 1となるようにデキストリンを添加した。負側の基体1 03として、厚さ0.12mmのステンレス430BAに、銀を400nmスパッタし、さらにZnOを200nm(基板温度100℃成膜速度2nm/sec)スパッタしたものを用いた以外は実施例7と同様に電解析出を行った。

【0074】負極側の基体103上に得られた酸化亜鉛薄膜の波長800nmにおける全反射率、乱反射率(日本分光V-570)を測定した。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角 θ 、表面荒さRa、粒形を測定した。次に目視により異常成長の数を測定した(3cm \times 3cmの範囲)。更に、SEM観察(日立製作所S-4500)により、異常成長の数を10mm \times 10mmの範囲で数を数えた。更にこのサンプルを、温度85%の環境下に1000時間放置し碁盤目テープ法(JIS K54008.5.2)の剥離試験を行った。以上の結果を表4に示す。

【0075】(実施例11)水溶液として、90℃、0.15mol/1の硝酸亜鉛に200μmol/1のフタル酸水素カリュウムとなるよう添加し、更にデキストリン0.1g/1を添加した。負側の基体103として、厚さ0.12mmのステンレス430BAに、銀を400nmスパッタし、さらにZnOを200nm(基板温度300℃成膜速度2nm/sec)スパッタしたものを用いた以外は実施例7と同様に電解析出を行った。

【0076】負極側の基体103上に得られた酸化亜鉛薄膜の波長800nmにおける全反射率、乱反射率(日本分光V-570)を測定した。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角の、表面荒さRa、粒形を測定した。次に目視により異常成長の数を測定した(3cm×3cmの範囲)。更に、SEM観察(日立製作所S-4500)により、異常成長の数を10mm×10mmの範囲で数を数えた。更にこのサンプルを、温度85℃湿度85%の環境下に1000時間放置し碁盤目テープ法(JIS K54008.5.2)の剥離試験を行った。以上の結果を表4に示す。

【0077】(実施例12)水溶液として、90℃、0.15mol/1の硝酸亜鉛に200μmol/1のフタル酸水素カリュウムとなるようにフタル酸水素カリュウムを添加し、更にデキストリン濃度0.1g/1となるようにデキストリンを添加した。負側の基体103として、厚さ0.12mmのステンレス430BAに、銀を400nmスパッタし、さらにZnOを200nm(基板温度300℃成膜速度10nm/sec)スパッタしたものを用いた以外は実施例7と同様に電解析出を行った。

【0078】負極側の基体103上に得られた酸化亜鉛 薄膜の波長800nmにおける全反射率、乱反射率(日本分光V-570)を測定した。次に原子間力顕微鏡(Quesant CO.Qscope Model250)を用いて、針先の動きの平均角を以って傾斜角の、表面荒さRa、粒形を測定した。次に目視により異常成長の数を測定した(3cm×3cmの範囲)。更に、SEM観察(日立製作所S-4500)により、異

常成長の数を10mm×10mmの範囲で数を数えた。 更にこのサンプルを、温度85℃温度85%の環境下に 1000時間放置し碁盤目テープ法(JIS K540 0 8.5.2)の剥離試験を行った。以上の結果を表 4に示す。

【0079】 【表4】

	実施例7	実施例 8	実施例 9	実施例10	実施例11	奥炮例 12
全反射率(%)	91	91	91	90	91	91
乱反射率(%)	83	83	82	86	90	87
傾斜角(*) (実施例7との 相対比較)	1	0. 99	1. 01	1. 04	1. 13	1.09
表面荒さ Ra (nna)	58	58	57	56	78	72
粒形(μ≡)	0. 46	0. 45	0. 46	0. 45	0. 68	0.64
目視觀察 (3cm×3cm)	120	0	0	0	0	0
SEM 観察 (10mm×10mm)	1080	18	15	1	0	2
春盤目テープ法	6点 僅かに はがれ あり	8点 僅かに けがれ あり	8点 僅かに はがれ あり	10 点 (満点) 剝がれ なし	10 点 (満点) 剝がれ なし	10点 (満点) 剝がれ なし

【0080】表4より以下のことが言える。sp2混成 軌道を有する炭素のそれぞれにカルボキシル基が結合し た多価カルボン酸又はそのエステルの添加と同時に、サ ッカロース、デキストリンを添加することにより、異常 成長を大幅に低減することができ、密着性を向上するこ とができる。

【0081】電解析出される基板の表面をZnOの層とすることにより、酸化亜鉛薄膜の密着性をさらに向上することができる。さらに乱反射率、傾斜角をより向上することができる。すなわち基板表面のZnO層を調整することで、酸化亜鉛薄膜の表面性を制御することができる。

【0082】(実施例13)実験には、図1に示される装置を用いた。負側の電極(導電性基体)103としては、厚さ0.12mmのステンレス4302Dに、銀を200nmスパッタしたものを用い裏面をテープで覆い、正側の電極(対向電極)104としては、厚さ1mmの4-Nの亜鉛を使用した。水溶液102は85℃、0.25mo1/1の硝酸亜鉛水溶液とし、更に100μmo1/1のフタル酸水素カリュウム濃度となるようにフタル酸水素カリュウムを添加した。印加電流は、4.0mA/cm²(0.4A/dm²)とし10分間通電した。

【0083】この後、半導体層としてCVD法により、 n型非晶質シリコン(a-Si)を20nm、ノンドー プ非晶質シリコン(a-Si)を200nm、p型微結 晶シリコン(μc-Si)を14nmの順に堆積した。 さらに酸素雰囲気の加熱蒸着でITOを65nm蒸着 し、反射防止効果のある上部電極としての透明導電膜と した。この上に銀によるグリッドを加熱蒸着により堆積 して上部取り出し電極とし、光起電力素子とした。

【0084】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した(HH試験)。以上の結果を表5に示す。

【0085】(実施例14)水溶液として、85℃、0.25mol/1の硝酸亜鉛に100μmol/1のフタル酸水素カリュウム濃度となるようにフタル酸水素カリュウムを添加し、更にデキストリン濃度0.1g/1となるようにデキストリンを添加した以外は実施例13と同様に形成し、光起電力素子とした。

【0086】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表5に示す。

【0087】(実施例15)水溶液として、85℃、0.25mo1/1の硝酸亜鉛に100μmo1/1のフタル酸水素カリュウムとなるようフタル酸水素カリュウムを添加し、更にデキストリン濃度0.1g/1となるようにデキストリンを添加した。負側の電極103として、厚さ0.12mmのステンレス4302Dに、銀を200nmスパッタし、さらにZnOを200nm(基板温度300℃成膜速度2nm/sec)スパッタしたものを用いた以外は実施例13と同様に形成し、光

起電力素子とした。

【0088】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表5に示す。

【0089】(比較例4)水溶液102にフタル酸水素カリュウムを添加しなかった以外は実施例13と同様に

形成し、光起電力素子とした。

【0090】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃湿度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表5に示す。

【0091】 【表5】

	実施例 13	実施例 14	実施例 16	比較例4
短絡電流(%) (比較例4との相対比較)	1.08	1.08	1. 09	1
変換効率(%) (比較例4との相対比較)	1. 03	1. 04	1. 08	1
田 試験による 変換効率低下率(%)	15	5	3	14

【0092】表5より以下のことが言える。本発明によって形成された酸化亜鉛薄膜を用いることにより、短絡電流、変換効率そして信頼性の優れた光起電力素子を作成できる。

【0093】(実施例16)図2に示したような光起電力素子の酸化亜鉛層(透明導電層)203を、図3に示すロール・ツー・ロール装置を用いて形成した。

【0094】本実施例では、ロール状のSUS4302 Dからなる支持体201に予め金属層(裏面反射層)2 02として銀200nm堆積し、この支持体201/金 属層202の上に図3に示すロール・ツー・ロール装置 を用いて酸化亜鉛層203を形成した。

【0095】まず支持体ロール303(支持体201上 に金属層202を設けたものをロール状に巻き、送り出 しローラー301にセットしたもの。ロール状に巻かれ た状態から引き出して処理し、巻き取りローラー302 に巻き取ることにより再びロール状に巻かれる。以下、 便宜的に、引き出された状態のものも支持体ロール30 3と呼ぶ)は、洗浄槽305にて純水を85℃に保った 温水浴306で基板表面のゴミ、ホコリを洗い流した 後、支持体ロール303は搬送ローラーを経て、酸化亜 鉛層形成槽307に搬送され、酸化亜鉛形成浴308は 水1リットル中に硝酸亜鉛・6水塩75g(O.25m o1/1)、100μmo1/1のフタル酸水素カリュ ウムが添加され、デキストリン〇.1gを含んでなり、 浴中を撹拌するために液循環処理がなされている。液温 は85℃の温度に保たれており、pHは4.0~6.0 に保持される。対向電極309には表面をブラスト処理 した亜鉛板が用いられており、ロール状の基板303 (前記の支持体201/金属層202)を負側の電極と してアースし、正側の対向電極309と負側の基板30 3との間でそれぞれ4. Om A/m²(0.4.A/d m²)として電解析出をおこなった。基板の搬送速度は 1000mm/分であり、膜厚2.5μmの酸化亜鉛薄 膜が形成された。

【0096】この後、半導体層204としてCVD法により、n型非晶質シリコン(a-Si)を20nm、ノ

ンドープ非晶質シリコン(a-Si)を200nm、p型微結晶シリコン($\mu c-Si$)を14nmの順に堆積した。さらに酸素雰囲気の加熱蒸着でITOを65nm蒸着し、反射防止効果のある上部電極としての透明導電層205とした。この上に銀によるグリッドを加熱蒸着により堆積して上部取り出し電極206とし、光起電力素子とした。

【0097】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した。

【0098】以上の結果を実施例16のサンプルの結果と比較して、短絡電流、変換効率、信頼性ともに同等レベルであることが確認できた。すなわち、ロール・ツー・ロール方式においても本発明の製造方法を適用でき、充分な特性であることが確認できた。

【0099】(実施例17)図2に示したような光起電力素子の酸化亜鉛層(透明導電層)203を、図4に示すロール・ツー・ロール装置を用いて形成した。

【0100】本実施例では、ロール状のSUS4302 Dからなる支持体201に、予め、ロール対応のDCマグネトロンスパッタ装置により銀200nm堆積し、その上に同様のロール対応のDCマグネトロンスパッタ装置により200nmの酸化亜鉛薄膜(基板温度300℃、成膜速度2nm/sec)を堆積して金属層(裏面反射層)202を形成した。この支持体201/金属層202の上に図4に示すロール・ツー・ロール装置を用いて酸化亜鉛層203を形成した。

【0101】支持体ロール403は搬送ローラー404を経て、酸化亜鉛層形成槽405に搬送される。酸化亜鉛形成浴406は、水1リットル中に硝酸亜鉛・6水塩75g(0.25mo1/1)が添加された後、100μmo1/1のフタル酸水素カリュウム濃度となるようにフタル酸水素カリュウムが添加され、デキストリン0.1gを含んでなり、浴中を撹拌するために液循環処理がなされている。液温は85℃の温度に保たれており、pHは4.0~6.0に保持される。対向電極40

7は表面をブラスト処理した亜鉛板が用いられており、ロール状の基板403(前記の支持体201/金属層202)を負側の電極とした。正側の対向電極407と負側の基板403との間でそれぞれ4.0mA/cm²(0.4A/dm²)として電解析出をおこなった。基板の搬送速度は1000mm/分であり、膜厚2.5 μ mの酸化亜鉛薄膜が形成された。

【0102】この上に実施例13と同じ方法で半導体層204、透明電極層205、電極206を作成し、光起電力素子とした。この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した。

【0103】以上の結果を実施例15のサンプルの結果と比較して、短絡電流、変換効率、信頼性ともに同等レベルであることが確認できた。すなわち、ロール・ツー・ロール方式においても本発明の製造方法を適用でき、充分な特性であることが確認できた。

【0104】(実施例18)図2に示したような光起電力素子の酸化亜鉛層(透明導電層)203を、図4に示すロール・ツー・ロール装置を用いて形成した。

【0105】本実施例では、ロール状のSUS4302 Dからなる支持体201に、子め、ロール対応のDCマグネトロンスパッタ装置により銀200nm堆積し、その上に同様のロール対応のDCマグネトロンスパッタ装置により100nmの酸化亜鉛薄膜(基板温度150℃、成膜速度5nm/sec)を堆積して金属層(裏面反射層)202を形成した。この支持体201/金属層202の上に図4に示すロール・ツー・ロール装置を用いて酸化亜鉛層203を形成した。

【0106】支持体ロール403は搬送ローラ404を 経て、酸化亜鉛層形成槽405に搬送される。酸化亜鉛 形成浴406は、水1リットル中に硝酸亜鉛・6水塩6 Og(0.20mo1/1)が添加された後、50μm o 1/1のフタル酸水素カリュウムとなるようフタル酸 水素カリュウムが添加され、デキストリン0.3gを含 んでなり、浴中を撹拌するために液循環処理がなされて いる。液温は80℃の温度に保たれており、pHは4. 0~5.0に保持される。対向電極407は表面をブラ スト処理した亜鉛板が用いられており、ロール状の基板 403(前記の支持体201/金属層202)を負側の 電極とした。正側の対向電極407と負側の基板403 との間でそれぞれ12mA/cm²(1.2A/dm²) として電解析出をおこなった。基板の搬送速度は200 Omm/分であり、膜厚1.8μmの酸化亜鉛薄膜が形 成された。

【0107】この後、半導体層204としてCVD法により、ボトムセルのn型微結晶シリコン(μc-Si)を10nm、ノンドープ微結晶シリコン(μc-Si)を2000nm、p型微結晶シリコン(μc-Si)を

30nmとして、トップセルのn型非晶質シリコン(aーSi)を10nm、ノンドープ非晶質シリコン(aーSi)を500nm、p型非晶質シリコン(aーSi)を30nmを順に堆積した。さらにスパッタ装置を用いてITOを65nm堆積して、反射防止効果のある上部電極としての透明導電層205とした。この上に銀によるグリッドを加熱蒸着により堆積して上部取り出し電極206とし、光起電力素子とした。

【0108】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表6に示す。

【0109】(比較例5)酸化亜鉛形成浴406にフタル酸水素カリュウムを添加しなかった以外は実施例18と同様に形成し、光起電力素子とした。

【0110】この光起電力素子を擬似太陽光の下で測定し、短絡電流密度二変換効率を測定した。さらに、この素子を温度85℃湿度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表6に示す。

[0111]

【表6】

	実施例 18	比較例 6
短絡電流(%) (比較例5との相対比較)	1. 08	1
変換効率(%) (比較例5との相対比較)	1. 03	1
HH 試験による 変換効率低下率(%)	1	14

【0112】表6より以下のことが言える。本発明により製造した酸化亜鉛薄膜を用いることにより、短絡電流、変換効率そして信頼性の優れた光起電力素子を作成できる。

【0113】(実施例19)実験には、図1に示される装置を用いた。負側の電極(導電性基体)103としては、厚さ0.12mmのステンレス4302Dに、銀を800nmスパッタしたものを用い裏面をテープで覆い、正側の電極(対向電極)104としては、厚さ1mmの4-Nの亜鉛を使用した。水溶液102は85 $\mathbb C$ 、0.25mol/lの硝酸亜鉛水溶液とし、更に100 μ mol/lのフタル酸水素カリュウム濃度となるようにフタル酸水素カリュウムを添加した。印加電流は、4.0mA/cm²(0.4A/dm²)とし10分間通電した。

【0114】その上に真空蒸着装置によりn型Si層を 20μ mの厚さで堆積させた。このときのSi層はX線回折により調べたところ非晶質Siであった。

【0115】このようなSUS基板上のSi層に対し、キャップ層として常圧CVD装置によりNSG膜を2μmの厚さで堆積した後に、ハロゲンランプでキャップ層側から光照射して非晶質のSi層を溶融、再結晶化を行

った。

【0116】光照射終了後、再結晶化Si層上のNSG 膜をHF水溶液で除去してSi結晶薄膜の表面にBを20keV、 $1\times10^{15}/cm^2$ の条件でイオン打ち込みし、800℃、30分でアニールしてp+層を形成し、その上にEB(Electron Beam)蒸着により集電電極(Ti/Pd/Ag(0.04 μ m/0.02 μ m/1 μ m))/ITO透明導電膜をp+層上に形成した。

【0117】この素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃温度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表7に示す。

【0118】(比較例6)水溶液102にフタル酸水素 カリュウムを添加しなかった以外は実施例19と同様に 形成し、素子とした。

【0119】この素子を擬似太陽光の下で測定し、短絡電流密度、変換効率を測定した。さらに、この素子を温度85℃湿度85%の環境下に1000時間放置し変換効率の劣化率を測定した。以上の結果を表7に示す。

[0120]

【表7】

	実施例 19	比較例 6
短絡電流(%) (比較例 6 との相対比較)	1. 05	1
変換効率(%) (比較例6との相対比較)	1. 02	1
田 試験による 変換効率低下率(%)	1	14

【0121】表7より以下の事が言える。本発明の酸化 亜鈴薄膜を用いる事により、短絡電流、変換効率そして 信頼性の優れた素子を作成できる。

[0122]

【発明の効果】本発明によれば導電性基体と対向電極とを少なくとも硝酸イオンと亜鉛イオンとを含有する水溶液に浸漬してこれらの電極間に通電することにより該導電性基体上に酸化亜鉛膜を形成する酸化亜鉛膜の形成方法において、太陽電池の光閉じ込めに効果的に機能するテクスチャー構造が得られる。

【0123】本発明の酸化亜鉛作成技術を裏面反射層として太陽電池作成プロセスに導入することにより、太陽電池の短絡電流密度、変換効率を増加させ、さらに収率特性及び耐久性を向上させる。また、スパッタ法や蒸着法と比べて材料コスト、ランニングコストが非常に有利(約200分の1のコスト)であるため、太陽光発電の本格的な普及に寄与することができる。

【図面の簡単な説明】

【図1】本発明が適用可能な水溶液からの酸化亜鉛析出 のための装置の一例を示す模式図である。

【図2】本発明による光起電力素子の一例を模式的に示す部分断面図である。

【図3】本発明が適用可能な水溶液からの酸化亜鉛析出

のための連続電解析出装置の一例を示す模式図。

【図4】本発明が適用可能な水溶液からの酸化亜鉛析出 のための連続電解析出装置の別の例を示す模式図。

【図5】本発明による電解析出による酸化亜鉛薄膜のS EM写真。

【図6】従来技術による酸化亜鉛薄膜のSEM写真。 【符号の説明】

- 101 耐腐食容器
- 102 水溶液
- 103 導電性基体
- 104 対向電極
- 105 電源
- 106 負荷抵抗
- 107 射出口
- 108 吸入口
- 109 吸入溶液パイプ
- 110 射出溶液パイプ
- 111 溶液循環ポンプ
- 112 ヒータ
- 113 温度計
- 201 支持体
- 202 金属層(裏面反射層)
- 203 酸化亜鉛層(透明導電層)
- 204 半導体層
- 205 透明電極層
- 206 集電電板
- 301 送り出しローラー
- 302 巻き取りローラー
- 303 支持体ロール
- 304 搬送ローラー
- 305 洗浄槽
- 306 洗浄浴
- 307 酸化亜鉛形成槽
- 308 酸化亜鉛形成浴
- 309 対向電極
- 310 電源
- 311 水洗槽
- 312 水洗浴
- 313 水洗シャワー
- 314 乾燥炉
- 315 赤外線ヒーター
- 401 送り出しローラー
- 402 巻き取りローラー
- 403 支持体ロール
- 404 搬送ローラー
- 405 酸化亜鉛形成槽
- 406 酸化亜鉛形成浴
- 407 対向電極
- 408 電源
- 409 水洗槽

410水洗浴411水洗シャワー

412 乾燥炉 413 赤外線ヒーター

【図3】

[図4] 【図6]

【図5】

(也5))02-167695 (P2002-16JL8

フロントページの続き

(72)発明者 宮本 祐介

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 都築 英寿

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

Fターム(参考) 5F051 AA04 AA05 BA14 CA14 DA04

FA02 FA14 FA18 FA19 FA23

-	