Dieses Dokument wurde unter der Creative Commons - Namensnennung-Nicht
Kommerziell-Weitergabe unter gleichen Bedingungen ($\bf CC$ by-nc-sa) veröffentlicht. Die Bedingungen finden sich unter diesem Link.

./../cc-by-nc-sa.png

⊙_⊙ Find any errors? Please send them back, I want to keep them!

Basic Principle

given:

- \bullet Software Model M
- \bullet Property Specification S

does $M \models S$

Classification of Software Systems

Transformational Systems transforms set of (empty) input data into output data, function from state S_i to S_k correctness:

- termination
- correctness of function $S_i \to S_k$
- correctness of input output transformation

Reactive Systems ongoing interaction with environment, driven by environment correctness:

- non-termination (normally)
- correctness of stimuli-response pairs

Embedded Systems usually reactive, directly connected to hardware

Cyber-Physical Systems integration of computation and physical processes

Real-Time Systems systems, where correctness depends on time a result is delivered

Soft Real-Time Systems missed deadlines will decrease result, not lead to failure, propabilities Hard Real-Time Systems missed deadlines will lead to failure

Hybrid Systems state is characterized by discrete and continuous variables

Safety-Critical Systems systems failure may entail, death, serious injury, environmental harm, damage to property/assets

Requirement Specification

Natural Language

- very expressive
- + understood by all parties

→ ambiguous

Formal Language

- + unambigous
- ◆ machine-analyzeable
- → limited expressiveness
- ➤ hard to understand

Software Verification Method

Requirements

- formal foundation (automatic procedures)
- should be capable of relating artifacts from different stages in design cycle (formal vs informal req, design vs req, ...)
- should be easy to integrate in design cycle (high degree of automation, low degree of interaction)
- scalable

Model Checking Process

- 1. provide model (e.g. Promela), involves abstraction
- 2. simulate (check if model does, what you want)
- 3. elicit and formalize requirements \Rightarrow property specification
- 4. model execution: run model checker with model and specification outcome:
 - property is valid (check next property)
 - property is invalid (counterexample, check model for errors, check properties for errors, rethink design)
 - exhaust of memory (use more abstraction, state space reduction, incomplete methods)
 - exhaust of time (smaller model, faster computer)

SPIN

- designed for communication protocols
- Open Source
- still in development
- Promela (PROTOCOL/PROCESS META LANGUAGE)
 - concurrent modeling language
 - guarded commands
 - modeling of reactive systems

State-Based Modeling

State

- salient features of a system at given point of observation
- states can be observed, as long as features of interest unchanged

• features of interest

point of control "program counter" (of all processes)values of local and global variablescommunication channels (messages sent but not received)

• state vector (byte-wise representation of features of interest)

PC	variables	communication channels
----	-----------	------------------------

State Transition

- instantaneous change of observed features of the system ("something happens")
- represents computation step
- sequence of state transitions characterize system computation

- in real-time systems, time passes in states
- in stochastic systems, transitions are labeled with probability distributions
- in hybrid systems, continuous and discrete state variables change during state transition
- transitions show the possible events
- transition sequences are valid computations sequences
- transitions encode history (S_0 has been visited before S_1)

Devising State-Machines

- "programm a model"
- abstraction: focus on relevant, can lead to non-determinism
- simplicity: find most simple abstraction that still reveals phenomena

Deadlock

- concurrent processes wait for each other in a circular wait with no pre-emption
- highly undesired

Closed System Modeling

- ullet model checker can only validate all possible system executions under assumed environment
- model includes also environment

Transition Systems

Transition System TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

S	is a set of states
Act	is a set of actions
$\rightarrow \subseteq S \times Act \times S$	is a transition relation
$I \subseteq S$	is a set of initial states
AP	is a set of atomic propositions
$L:S o 2^A P$	is a labeling function

• we write $s \to^{\alpha} s'$ for $(s, \alpha, s') \in \to$

• Atomic Propositions: Facts that we want to observer/that are observable in the system in any given state.

• where S and Act are finite or countably infinte

• Labeling Function: shows, which atomic propositions hold in given state.

$$\begin{split} Post(s,\alpha) &= \left\{ s' \in S \middle| s \xrightarrow{\alpha} s' \right\} &\qquad Post(s) &= \bigcup_{\alpha \in Act} Post(s,\alpha) \\ Pre(s,\alpha) &= \left\{ s' \in S \middle| s' \xrightarrow{\alpha} s \right\} &\qquad Pre(s) &= \bigcup_{\alpha \in Act} Pre(s,\alpha) \\ Post(C,\alpha) &= \bigcup_{s \in C} Post(s,\alpha), &\qquad Post(C) &= \bigcup_{s \in C} Post(s) \text{ for } C \subseteq S \\ Pre(C,\alpha) &= \bigcup_{s \in C} Pre(s,\alpha), &\qquad Pre(C) &= \bigcup_{s \in C} Pre(s) \text{ for } C \subseteq S \end{split}$$

a state is **terminal** or **final** iff $Post(s) = \emptyset$

0.0.1 (Non)Determinism

A transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is **action-deterministic**, iff for all s, α

- $|I| \le 1$ and
- $|Post(s), \alpha)| \le 1$

else it is action-nondeterministic

there is at most one outgoing transition from each state labeled α

A transition system $TS = (S, Act, \rightarrow, I, AP, L)$ is **AP-deterministic**, iff for all $s, A \in 2^{AP}$

- $|I| \leq 1$ and
- $\bullet \ |Post(s) \cap \{s' \in S | L(s') = A\} \,| \leq 1$

else it is AP-nondeterministic

every successor of a state s has a unique AP labeling

- Nondeterminism can lead to potentially smaller representation.
- in Software Engineering/Modeling: Abstraction
 - avoid overspecification
 - what does the system do, not how is it done
 - concurrency
 - * simulate concurrency by nondeterminsm
 - * either nondeterministic action can be executed first

System Execution

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$

finite execution fragment ϱ of TS is an alternating sequence of states and actions ending with a state:

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$$
 s.t. $s_i \to^{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$

infinite execution fragment ρ of TS is an infinite, alternating sequence of states and actions:

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$$
 s.t. $s_i \to^{\alpha_{i+1}} s_{i+1}$ for all $0 \le i$

execution of TS is an inital, maximal execution fragment

- an execution fragment is maximal, iff it is either
 - finite and ending in a terminal state

or

- infinite

• an execution fragment is initial, iff $s_0 \in I$

reachable state is a state $s \in S$ if there exists an initial, finite execution fragment $s_0 \alpha_1 s_1 \dots \alpha_n s_n$ so that $s_n = s$

Reach(TS) denotes the set of all reachable states in TS

Reach(TS)

not reachable

Program Graphs Pg

- want to include things like variables, assignements, etc \Rightarrow Program Graphs
- introduce conditional transitions (transition can only be exectured, if condition is true)

$$g:\alpha$$

- g: a boolean condition on data variables ("guard")
- $-\alpha$: an action, that is possible, if g is satisfied
- assume domain of variables as infinite
 - practical implementations use variables over finite domains
- Stepwise unfolding of PGs lead to TS

valuation: assign values to variables (e.g. $\eta(x) = 17$)

propositional logic formulae

effect of actions:

$$Effect: Act \times Eval(Var) \rightarrow Eval(Var)$$

Effects define operational semantics

A **program graph** PG over set Var of typed variables is a tuple $(Loc, Act, Effect, \rightarrow, Loc_0, g_0)$ where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- \bullet *Act* is a set of actions
- $Effect: Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
- $\rightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc$, transition relation cond = boolean condition
- $g_0 \in Cond(Var)$ is the inital condition

Notation $\ell \xrightarrow{g:\alpha} \ell'$ denotes $(\ell, g, \alpha, \ell') \in \longrightarrow$

Semantics for Program Graphs

- \bullet Unfolding: Transformation of PG to equivalent TS
 - states:
 - * state $\langle l, \eta \rangle$: current control location $l + \text{data valuation } \eta$
 - * initial state: initial location satisfying condition g_0
 - propositions:
 - * at l: control is at location l
 - * $x \in D$ iff $D \subseteq dom(x)$
 - labeling
 - $* < l, \eta >$ is labeled with at l and all conditions that hold in η
- from transitions in PG to transitions in TS
 - if $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η , then $\langle l, \eta \rangle \rightarrow^{\alpha} \langle l', Effect(\alpha, \eta) \rangle$

Structured Operational Semantics Sos

- definition of **operational semantics** of a program in terms f computations steps defined by a transition system
- whether a step happens is determined by inference rules:

$$\frac{premise}{conclusion}$$

- if the premise holds, the conclusion holds (and can trigger further inference rules)
- if the premise is a **tautology**, it may be omited the rule is then called an **axiom**
- semantics is structural, because it applies inference rules recursively to syntactic structure

Transition Systems for Program Graphs

The transition system TS(PG) of program graph

$$PG = (Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$$

over set Var of variables is the tuple

$$(S, Act, \longrightarrow, I, AP, L)$$

where

- $S = Loc \times Eval(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by $\frac{\ell \xrightarrow{g:\alpha} \ell' \land \eta \models g}{<\ell, \eta > \xrightarrow{\alpha} < \ell', Effect(\alpha, \eta) >}$
- $I = \{ \langle \ell, \eta \rangle | \ell \in Loc_0, \eta \models g_0 \}$
- $\bullet \ AP = Loc \cup Cond(Var) \ \text{and} \ L\left(<\ell, \eta>\right) = \{\ell\} \cup \{g \in Cond(Var) | \eta \models g\}$

Data in Transition Systems

- ullet TS do not possess data variables, data values and their changes need to be encoded in states
- assume i = 1, ..., n variables of domain $s_i \Rightarrow \prod_{i=1}^n s_i$ combinatorial, exponential state space explosion
- \bullet variables over infinite domains \Rightarrow infinite number of states