Artificial Intelligence

INTRODUCTION TO

ARTIFICIAL INTELLIGENCE

Outline

- What is Artificial Intelligence (AI)?
- The foundations of AI
- A brief history of Al
- Al applications in various fields
- What are we going to learn?

What is AI?

Al: Dreams for everyone

Al Innovations: Personal robots

Source: https://www.youtube.com/watch?v=QdQL11uWWcI

Al Innovations: Humanoid robots

Source: https://www.youtube.com/watch?v=9DaTZQxg21U

Al Innovations: Deep Blue - AlphaGo

AlphaGo vs. Lee Sedol (03/2016)

Deep Blue vs. Kasparov (02/1996 and 05/1997)

The complexity of Chess and GO

Source: https://www.youtube.com/watch?v=SUbqykXVx0A

Al Innovations: OpenAl Five

Source: https://openai.com/projects/five/

Intelligence vs. Artificial Intelligence

Intelligence includes the capacity for logic, understanding, learning, reasoning, creativity, and problem solving, etc.

Artificial intelligence (AI) attempts not just to understand but also to build intelligent entities.

The field of Artificial Intelligence

- Al is one of the newest fields in science and engineering. Work started in earnest soon after World War II
 - The name was coined at a conference at Dartmouth College in 1956.

John McCarthy (1927 – 2011) Marvin Minsky (1927 -

 2016)
 1992)
 1990)

 Allen
 Arthur
 Herbert

 Newell
 Samuel
 Simon (1916)

 (1927 –
 (1901 –
 – 2001)

The field of Artificial Intelligence

 Al research builds intelligent entities that simulate humans in different aspects.

- ✓ Thinking: learning, planning, and refining knowledge
- ✓ Perception: see, hear, feel, etc. ✓
- Communication in natural languages✓

12

What is Artificial Intelligence?

What is Artificial Intelligence?

Thought processes and reasoning

Systems that	Systems that		
think	think		
like humans	rationally		
	Systems that		
Systems that	Systems that		
Systems that act	Systems that act		

Rationalit y

Behavior 14

Systems that act like humans

The Turing Test approach (Alan Turing, 1950)

A computer passes the test if a human interrogator, after posing several written questions, cannot tell whether the written responses come from a person or from a computer.

Systems that act like humans

Problems with the Turing Test

```
nin ig n hu n
h io
n ig n h io hu n on
o
```

Variations

- Reverse Turing Test: CAPTCHA
 - Total Turing Test: additionally examine the perceptual (computer vision) and the objects manipulation (robotics) abilities of the subject.

A better Turing Test?

 Al researchers have devoted little effort to pass the test. elligence more im than to Sheep dog or mop?

Systems that think like humans

- General Problem Solver GPS (Newell and Simon, 1961)
 Not merely solve problems correctly
 - Compare the trace of its reasoning steps to traces of human subjects while solving the same problems
 - Cognitive Science
 - Computer models from Al

- Experimental techniques from
- psychology These approaches

precise and testable theories of

- Share the available theories but do not explain anything resembling human intelligence
- All share a principal direction

Systems that think rationally

• The laws of thought approach

"Righ hinking" = irrefutable reasoning processes

18

• E.g., A i o 'syllogisms provided patterns for argument structures that always yielded correct conclusions when given correct premises.

Aristotle (381BC - 322BC) $\forall x. man(x) \Rightarrow mortal(x)$ man(Socrates)

Therefore,

Socrates is mortal.

mortal (Socrates)

Systems that think rationally

- Problems with the logicist approach
 - Not all intelligence is mediated by logic behavior
 - Solving a problem "in p incip" is different from doing in practice
 Both obstacles apply to any attempt to build computational reasoning systems

Systems that act rationally

- The rational agent approach
- Rational behavior = "oing the right thing",
 - "Right thing": what is expected to maximize goal achievement given the available information
- An agent is just something that perceives and then acts

- A rational agent acts to achieve the best outcome or, when there is uncertainty, the best expected outcome.
 - Include thinking, inference as a part of being rational agent

• Include more: action without thinking, e.g., reflexes

21

Systems that act rationally

More general than the "w of hough" approach • Correct inference is not all of rationality.

- In some situations, there is no provably correct thing to do, but something must still be done.
- Amenable to scientific development than those based on human behavior or human thought

Major roles and Goals of Al

Al studies the intelligent part concerned with humans and represents those actions using computers.

Rational? Intelligence?

A man withdraws his fingers from a hot

spreading flu to others.
A newborn baby grasps his/her o h' finger.

A girl wears a mask to avoid Two people cross the street at the zebra crossing.

Foundations of Al

Research fields related to Al

Research fields related to Al

	Logic, methods of reasoning, mind as physical
Philosophy	
	system, foundations of learning, language, rationality.
	Formal representation and proof, algorithms,
Mathematics	
	computation, (un)decidability, (in)tractability,
	probability.
Economics Utility, decision theory, rational economic agents	
Neuroscience Neurons as information processing units.	
Psychology/	
	How do people behave, perceive, process
Cognitive Science	
	information, represent knowledge.
Computer Engineering Building fast computers	

Control Theory Design systems that maximize an objective function over time

Linguistic Knowledge representation, grammar₂₇

Research fields related to Al

28

Al and related concepts

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning deep-learning-ai/

29

Pros and Cons of Al

- More powerful and more useful computers

 New and improved interfaces

 Solve new problems

 Better handling of information

 Relieve information overload

 Conversion of information into knowledge
- Increased costs
- Difficulty with software development slow and expensive
- Few experienced programmers

A brief history of Al

A brief history of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Co pu ing Machinery and n ig nc "

- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "A ifici n ig nc" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems booms
 - 1988—93: Expert systems busts: "A Win"

A brief history of Al

- 1990—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "A Sp ing"?
- 2000—: Where are we now?

A demo of artificial neural network

Source: https://www.youtube.com/watch?v=3JQ3hYko51Y

Al Applications

Autonomous Planning and Scheduling

Medicine

Classification on medical images

I recommend gentamycin using a doze of ...

Have you obtained positive cultures? Yes.

What type of infection is it?
Primary bacteremia.
When did the symptoms first appear?
May 5

Diagnosis system (e.g. MYCIN)

Games and Entertainment

37

What are we going to learn?

Main topics in Al

- Search (includes Game Playing)
- Representing knowledge and reasoning with it

- Planning
- Learning
- Natural language processing
- Expert systems
- Interacting with the Environment
 - E.g. Vision, Speech recognition, Robotics, etc.
- An o ...

We won't have time in this course to consider all of these.

Solving problems by searching

40

- Search is the fundamental technique of AI.
 - Possible answers, decisions or courses of action are structured into an abstract space, which we then search.
 - Search is either "uninfo" or "info"
 - Uninformed: we move through the space without worrying about what is coming next, but recognizing the answer if we see it Informed: we guess what is ahead and use that information to decide where to look next.
 - We may want to search for the first answer that satisfies our goal or keep searching until we find the best answer.

Solving problems by

searching

- Uninformed and informed strategies
- Global vs. local search

Solving problems by searching

- Adversarial search
- Constraint satisfaction problems

Knowledge and reasoning

- The second most important concept in AI
- If we are going to act rationally in our environment, then we must have some way to describe the given environment and draw inferences from that representation.
 - How do we describe what we know about the world?
 - How do we describe it concisely?
 - How do we describe it so that we can get hold of the right piece of knowledge when we need it?
 - How do we generate new pieces of knowledge?
 - How do we deal with uncertain knowledge?

44

Propositional logic and predicate logic

Inference techniques: forward chaining, backward

chaining, and resolution

Uncertain knowledge and reasoning

Machine learning

• If a system is going to act truly appropriately, then it must be able to change its actions in the light of

- experience. How do we generate new facts from old?
- How do we generate new concepts?
- How do we learn to distinguish different situations in new environments?

Machine learning

Classification with ID3 Decision tree and Naïve

Bayes • Artificial neural networks

47

THE END