Corso di Laurea in Informatica - Fisica A AA 2018/19

Esercitazione 3

Esercizi svolti in aula

- 1. Quattro cariche $Q_1 = Q_2 = 5q$, $Q_3 = Q_4 = -5q$ sono disposte come in Fig. 1.
- Calcolare il potenziale elettrico nei punti P1 e P2, nell'ipotesi che questo valga 0 quando le quattro cariche si trovano a distanza infinita da P1 e P2.
- Calcolare il lavoro compiuto dal campo elettrico generato dalle quattro cariche su una carica q_0 , mentre questa si sposta da P_1 al punto P_2 e discutere il significato fisico del risultato ottenuto, al variare del prodotto q_0q .
- Calcolare il potenziale elettrico nei punti P1 e P2, nell'ipotesi che questo valga V_0 quando le quattro cariche si trovano a distanza infinita da P1 e P2.

Figure 1: problema 1

$$[V_1 = 5q/(8\pi\epsilon_0 d) , V_2 = (6\sqrt{2}-5)5q/(24\pi\epsilon_0 d) ; L_{\mathbf{E}} = 5q_0 q (8-6\sqrt{2})/(24\pi\epsilon_0 d) ; V_1 = V_0 + 5q/(8\pi\epsilon_0 d) , V_2 = V_0 + (6\sqrt{2}-5)5q/(24\pi\epsilon_0 d)]$$

2. Due piastre conduttrici piane sono poste a distanza d = 10 cm una dall'altra. I punti B e C sono posti uno su una piastra, l'altro sull'altra. Calcolare modulo e direzione del campo elettrico tra le due piastre sapendo che la differenza di potenziale V_C - V_B vale 120 V. Sia A il punto intermedio tra B e C: calcolare le differenze di potenziale V_A - V_B e V_A - V_C .

[1.2 kV/m, direzione perpendicolare alle piastre e verso da C a B; V_A-V_B = 60 V; V_A-V_C = -60 V]

3. Un condensatore piano ha armature di superficie di 500 cm² ed ha una capacità in aria di 20 pF. Trovare la distanza d fra le armature. Per caricarlo si è fatto un lavoro di 10^{-5} J. Trovare la carica Q del condensatore, la differenza di potenziale V tra le armature e il campo elettrico E tra le armature. Nelle vicinanze dell'armatura negativa viene posto un elettrone fermo. Calcolare la velocità v con cui arriva sull'armatura positiva. Mantendendo costante la carica sulle armature, si interpone tra esse un dielettrico con costante dielettrica relativa $\epsilon_R = 2.5$. Calcolare la variazione ΔU di energia accumulata fra le armature del condensatore.

[
$$d=2.2$$
 cm; $Q=20$ nC; $V=1$ kV; $E=45$ kV/m; $v=1.86\times 10^7$ m/s; $\Delta U=-6~\mu {\rm J}]$

4. Tre condensatori di capacità $C_1 = 12~\mu F$, $C_2 = 5.3~\mu F$, $C_3 = 4.5~\mu F$ sono disposti come in Fig. 2. Calcolare la capacità equivalente del circuito. Viene applicata una differenza di potenziale di 12.5 V ai capi del circuito: calcolare la carica nel condensatore C_1 e l'energia immagazzinata nel condensatore C_3 .

Figure 2: problema 3

$$[C_{eq} = 3.57 \ \mu F; Q_1 = 31 \ \mu C; U_3 = 221 \ \mu J]$$

5. Un condensatore di capacità 100 pF presenta una differenza di potenziale tra le armature di 50 V. Viene ad esso collegato un secondo condensatore in parallelo e si osserva che la differenza di potenziale scende a 35 V. Quanto vale la capacità del secondo condensatore?

[43 pF]