Cyclistic Case Study

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for May 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                                 – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                        ✓ purrr
                                   0.3.5
## ✓ tibble 3.1.8

✓ dplyr

                                   1.0.10
## ✔ tidyr
             1.2.1

✓ stringr 1.4.1

## ✓ readr 2.1.3
                        ✓ forcats 0.5.2
## — Conflicts -
                                                           – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                     masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
May21 <- read_csv("C:/Users/theby/Documents/202105-divvy-tripdata.csv")</pre>
```

```
## Rows: 531633 Columns: 13
## — Column specification
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(May21)
 colnames (May21)
      [1] "ride_id"
                                   "rideable_type"
                                                            "started_at"
      [4] "ended_at"
                                   "start_station_name"
 ##
                                                            "start_station_id"
     [7] "end station name"
                                                            "start lat"
                                   "end station id"
 ## [10] "start lng"
                                   "end lat"
                                                            "end lng"
 ## [13] "member casual"
 nrow(May21)
 ## [1] 531633
 dim(May21)
 ## [1] 531633
                      13
 head (May21)
 ## # A tibble: 6 × 13
 ##
       ride_id
                         ridea...¹ start...² ended...³ start...⁴ start...⁵ end_s...6 end_s...7 start...8
 ##
                         <chr>
                                 <chr>
                                           <chr>
                                                    <chr>
                                                              <chr>
                                                                       <chr>
                                                                                 <chr>
                                                                                            <dbl>
 ## 1 C809ED75D6160... electr... 5/30/2... 5/30/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                             41.9
 ## 2 DD59FDCE0ACAC... electr... 5/30/2... 5/30/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 3 0AB83CB88C43E... electr... 5/30/2... 5/30/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 4 7881AC6D39110... electr... 5/30/2... 5/30/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
 ## 5 853FA701B4582... electr... 5/30/2... 5/30/2... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.9
                                                              <NA>
                                                                       <NA>
                                                                                 <NA>
 ## 6 F5E63DFD96B2A... electr... 5/30/2... 5/30/2... <NA>
                                                                                              41.9
 ## # ... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
         member casual <chr>, and abbreviated variable names ¹rideable type,
         <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
 ## #
         <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
 ## #
 tail(May21)
 ## # A tibble: 6 × 13
 ##
       ride id
                        ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...⁶ start...௧
 ##
                                <chr>
                                           <chr>
                                                                                            <dbl>
                         <chr>
                                                    <chr>
                                                                       <chr>
 ## 1 D0B8E59E2B3C4... electr... 5/2/20... 5/2/20... Blacks... 13398
                                                                       <NA>
                                                                                 <NA>
                                                                                             41.8
                                                                       <NA>
                                                                                 <NA>
                                                                                              41.8
 ## 2 EF56D7D1D612A... electr... 5/20/2... 5/20/2... Blacks... 13398
 ## 3 745191CB9F21D... classi... 5/29/2... 5/29/2... Sherid... TA1307... Michig... 13042
                                                                                              42.0
```

summary(May21)

```
##
     ride id
                     rideable_type
                                        started at
                                                           ended at
##
   Length:531633
                     Length:531633
                                                         Length:531633
                                       Lenath:531633
   Class :character Class :character
                                                         Class :character
##
                                       Class :character
##
   Mode :character Mode :character
                                       Mode :character
                                                         Mode :character
##
##
##
##
##
   start station name start station id
                                      end station name
                                                         end station id
##
   Length:531633
                   Length:531633
                                       Length:531633
                                                         Length:531633
   Class :character Class :character
                                       Class :character
                                                         Class :character
##
##
   Mode :character Mode :character
                                      Mode :character
                                                         Mode :character
##
##
##
##
##
     start_lat
                    start_lng
                                     end lat
                                                     end lng
                  Min. :-87.78
                                  Min. :41.56
   Min. :41.65
##
                                                 Min. :-87.85
##
   1st Qu.:41.88
                  1st Qu.:-87.66
                                  1st Qu.:41.88
                                                  1st Qu.:-87.66
##
   Median :41.90
                  Median :-87.64
                                  Median :41.90
                                                  Median :-87.64
                  Mean :-87.64
                                  Mean :41.90
##
   Mean :41.90
                                                 Mean :-87.64
##
   3rd Qu.:41.93 3rd Qu.:-87.63
                                  3rd Qu.:41.93 3rd Qu.:-87.63
##
   Max. :42.07 Max. :-87.52
                                  Max. :42.09 Max. :-87.52
                                  NA's :452
                                                  NA's :452
##
##
   member casual
##
   Length: 531633
##
   Class :character
   Mode :character
##
##
##
##
##
```

str(May21)

```
## spc tbl [531,633 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:531633] "C809ED75D6160B2A" "DD59FDCE0ACACAF3" "0AB83CB88C43EFC2" "7881AC6D39110C
##
   $ ride_id
60"
##
   $ rideable type
                       : chr [1:531633] "electric bike" "electric bike" "electric bike" "electric bike" ...
                        : chr [1:531633] "5/30/2021 11:58" "5/30/2021 11:29" "5/30/2021 14:24" "5/30/2021 14:25"
   $ started_at
## $ ended_at
                        : chr [1:531633] "5/30/2021 12:10" "5/30/2021 12:14" "5/30/2021 14:25" "5/30/2021 14:41"
##
    $ start_station_name: chr [1:531633] NA NA NA NA ...
   $ start station id : chr [1:531633] NA NA NA NA ...
##
   $ end station name : chr [1:531633] NA NA NA NA ...
   $ end station id : chr [1:531633] NA NA NA NA ...
##
   $ start_lat
                       : num [1:531633] 41.9 41.9 41.9 41.9 ...
##
                       : num [1:531633] -87.6 -87.6 -87.7 -87.7 -87.7 ...
    $ start_lng
                        : num [1:531633] 41.9 41.8 41.9 41.9 41.9 ...
##
    $ end lat
                        : num [1:531633] -87.6 -87.6 -87.7 -87.7 -87.7 ...
##
    $ end lng
                       : chr [1:531633] "casual" "casual" "casual" "casual" ...
##
    $ member casual
##
    - attr(*, "spec")=
##
    .. cols(
##
     .. ride_id = col_character(),
##
          rideable_type = col_character(),
     . .
##
          started_at = col_character(),
     . .
##
          ended_at = col_character(),
     . .
          start_station_name = col_character(),
##
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Columns started_at and ended_at need to be convert from character data type to date data type. **Str()** syntax confirms changes.

```
May21$started_at <- mdy_hm(May21$started_at)
May21$ended_at <- mdy_hm(May21$ended_at)
str(May21)</pre>
```

```
## spc_tbl_[531,633 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:531633] "C809ED75D6160B2A" "DD59FDCE0ACACAF3" "0AB83CB88C43EFC2" "7881AC6D39110C
## $ ride_id
60" ...
                       : chr [1:531633] "electric bike" "electric bike" "electric bike" ...
## $ rideable_type
                       : POSIXct[1:531633], format: "2021-05-30 11:58:00" "2021-05-30 11:29:00" ...
##
   $ started at
                       : POSIXct[1:531633], format: "2021-05-30 12:10:00" "2021-05-30 12:14:00" ...
##
    $ ended at
##
   $ start station name: chr [1:531633] NA NA NA NA ...
## $ start_station_id : chr [1:531633] NA NA NA NA ...
## $ end station name : chr [1:531633] NA NA NA NA ...
## $ end_station_id : chr [1:531633] NA NA NA NA ...
##
                     : num [1:531633] 41.9 41.9 41.9 41.9 ...
   $ start lat
##
    $ start_lng
                       : num [1:531633] -87.6 -87.6 -87.7 -87.7 -87.7 ...
##
    $ end_lat
                       : num [1:531633] 41.9 41.8 41.9 41.9 41.9 ...
##
    $ end_lng
                       : num [1:531633] -87.6 -87.6 -87.7 -87.7 -87.7 ...
                       : chr [1:531633] "casual" "casual" "casual" "casual" ...
##
    $ member casual
    - attr(*, "spec")=
##
##
     .. cols(
##
         ride_id = col_character(),
     . .
         rideable_type = col_character(),
##
     . .
##
         started_at = col_character(),
     . .
##
         ended at = col character(),
     . .
##
         start station name = col character(),
     . .
##
         start station id = col character(),
     . .
##
         end_station_name = col_character(),
     . .
##
         end station id = col character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
         member_casual = col_character()
     . .
##
     ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
May21$date <- as.Date(May21$started_at)
May21$month <- format(as.Date(May21$date), "%m")
May21$day <- format(as.Date(May21$date), "%d")
May21$year <- format(as.Date(May21$date), "%Y")
May21$day_of_week <- format(as.Date(May21$date), "%A")
May21$ride_length <- difftime(May21$ended_at,May21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(May21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
May21$ride_length <- as.numeric(as.character(May21$ride_length))
is.numeric(May21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
May21 <- na.omit(May21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
May21 <- subset(May21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
May21 <- subset (May21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride length.

```
mean(May21$ride_length)
 ## [1] 1602.389
 median(May21$ride_length)
 ## [1] 840
 max(May21$ride_length)
 ## [1] 3235260
 min(May21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(May21$ride_length)
 ##
       Min. 1st Qu.
                      Median
                                 Mean 3rd Qu.
                                                  Max.
 ##
                 480
                         840
                                 1602
                                         1560 3235260
Compare the members and casual users
 aggregate(May21$ride length ~ May21$member casual, FUN = mean)
      May21$member_casual May21$ride_length
 ##
 ## 1
                    casual
                                    2390.6105
 ## 2
                    member
                                     869.2645
 aggregate(May21$ride_length ~ May21$member_casual, FUN = median)
 ##
      {\tt May21\$ member\_ casual \ May21\$ ride\_ length}
 ## 1
                    casual
 ## 2
                    member
 aggregate(May21$ride_length ~ May21$member_casual, FUN = max)
 ##
      May21$member_casual May21$ride_length
 ## 1
                    casual
                                      3235260
 ## 2
                                        88020
                    member
 aggregate(May21$ride_length ~ May21$member_casual, FUN = min)
 ##
      May21$member_casual May21$ride_length
 ## 1
                    casual
 ## 2
                    member
                                            60
Aggregate the average ride length by each day of the week for members and users.
 aggregate(May21$ride_length ~ May21$member_casual + May21$day_of_week, FUN = mean)
```

```
##
      May21$member_casual May21$day_of_week May21$ride_length
## 1
                                    Friday
                                                  2206.7040
                   casual
## 2
                   member
                                     Friday
                                                     820.7301
## 3
                   casual
                                    Monday
                                                    2347.8264
## 4
                                    Monday
                   member
                                                    841.3280
## 5
                                                    2411.8294
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                    974.1453
## 7
                                                    2896.2811
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                    1015.8313
                                   Thursday
## 9
                   casual
                                                   2022.9587
## 10
                                                    801.6089
                   member
                                   Thursday
## 11
                   casual
                                    Tuesday
                                                    1909.6763
## 12
                   member
                                    Tuesday
                                                     764.5276
## 13
                   casual
                                  Wednesday
                                                    1932.2563
## 14
                                                    813.2399
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
May21$day_of_week <- ordered(May21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(May21$ride_length ~ May21$member_casual + May21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
    May21$member_casual May21$day_of_week May21$ride_length
## 1
                  casual
                                    Sunday
                                                    2896.2811
## 2
                  member
                                     Sunday
                                                    1015.8313
                                                    2347.8264
## 3
                  casual
                                     Monday
## 4
                  member
                                    Monday
                                                     841.3280
## 5
                                   Tuesday
                                                    1909.6763
                  casual
## 6
                  member
                                   Tuesday
                                                     764.5276
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                                        2896.
                                      53812
                         1
                                      28810
## 2 casual
                         2
                                                        2348.
## 3 casual
                         3
                                      14919
                                                        1910.
## 4 casual
                         4
                                      18823
                                                        1932.
## 5 casual
                                      18488
                                                        2023.
## 6 casual
                         6
                                      24824
                                                        2207.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(May21$member_casual)
```

```
##
## casual member
## 215596 231799
```

```
table(May21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 305709 43155 98531
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

```
May21 %>%
  mutate(day_of_week) %>%
  group_by(member_casual,day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")+
labs(x = "Day of Week",
    y= "Number of Rides",
    title= "Days of the Week")
```

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(May21$day_of_week,May21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 53812
## 2
          Monday
                        casual 28810
         Tuesday
                        casual 14919
## 3
## 4
       Wednesday
                        casual 18823
## 5
        Thursday
                         casual 18488
                        casual 24824
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(May21$rideable_type,May21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
                                  Freq
## 1 classic bike
                         casual 122706
## 2
      docked bike
                         casual 43155
## 3 electric_bike
                         casual 49735
## 4 classic_bike
                         member 183003
## 5
      docked bike
                         member
## 6 electric_bike
                         member 48796
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(May21, "May21.csv")