Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Ziwei Fan*, Zhiwei Liu*
Department of Computer Science,
University of Illinois at Chicago
USA
{zfan20,zliu213}@uic.edu

Jiawei Zhang
IFM Lab, Department of Computer
Science, University of California,
Davis
USA
jiawei@ifmlab.org

Yun Xiong
Shanghai Key Laboratory of Data
Science, School of Computer Science,
Fudan University
China
yunx@fudan.edu.cn

Lei Zheng
Pinterest Inc.
USA
lzheng@pinterest.com

Philip S. Yu
Department of Computer Science,
University of Illinois at Chicago
USA
psyu@uic.edu

Problem Formulation

• Continuous-Time Sequential Recommendation: Given user set U, item set I, and a set of feature timestamps $\mathcal{T}_u > T$, For a specific user u, the continuous-time sequential recommendation is to generate a ranking list of items from $I \setminus I_u(t)$ for every timestamp $t \in \mathcal{T}_u$, where the items that u is interested will be ranked top in the list.

Motivation

Figure 1: A toy example of temporal collaborative signals. Given the items that users u_1, u_2, u_3 and u_4 like in the past timestamps t_1, t_2, t_3 and t_4 , the target is to recommend an item to u_4 at t_5 as the next item after i_2 .

- How to encode collaborative signals and sequential patterns simultaneously?
- How to express the temporal effects of collaborative signals effectively?

Continuous Time Bipartite Graph (CTBG)

Figure 2: The associated CTBG of Figure 1 and the inference of temporal embeddings of u_4 and i_4 at t_5 .

- Based on timestamps and neighbor items of user preserve sequential patterns, the CTBG is constructed for sequential patterns and collaborative signals unification.
- Devising Temporal Collaborative Transformer (TCT) layer, which adopts collaborative attention among user-item interactions to capture temporal collaborative signals.

Temporal Graph Sequential Recommender (TGSRec)

Figure 3: The framework of TGSRec. The query node is u_4 , whose final temporal embedding at time t_5 is $h_{u_4}^{(2)}(t_5)$. The TCT layer samples its neighbor nodes and edges. Timestamps on edges are encoded as vectors by using mapping function Φ . Node embeddings for the first TCT layer are long-term embeddings. Node embeddings for other TCT layers (e.g. layer 2) are propagated from the previous TCT layer, thus being temporal node embeddings.

Embedding Layer

User/Item Embeddings

The user(item) node is parameterized by a vector $e_u(e_i) \in \mathbb{R}^d$, which can be generated by indexing an embedding table $E = [E_u; E_I] \in \mathbb{R}^{d \times |\mathcal{V}|}$, where $\mathcal{V} = \mathcal{U} \cup I$. Note that E can be optimized in CTBG.

Continuous-Time Embedding

To explicitly representing the temporal feature, the temporal embedding can be represented by:

$$\Phi(t) \mapsto \sqrt{\frac{1}{d_T}} [\cos(\omega_1 t), \sin(\omega_1 t), \dots, \cos(\omega_{d_T} t), \sin(\omega_{d_T} t)]^T$$

where $\omega = [\omega_1, ..., \omega_{d_T}]^T$ are learnable and d_T is the dimension.

• Information Construction

 \triangleright For user u, the information representation can be formulated by:

$$\boldsymbol{h}_{u}^{(l-1)}(t) = \boldsymbol{e}_{u}^{(l-1)}(t)||\Phi(t)||$$

where l = 1, 2, ..., L. $\boldsymbol{h}_u^{(l-1)}(t) \in \mathbb{R}^{d+d_T}$ is the information for user u at t, $\boldsymbol{e}_u^{(l-1)}(t) \in \mathbb{R}^d$ is the temporal embedding of u. When l = 1, the temporal embedding $\boldsymbol{e}_u^{(0)}(t) = \boldsymbol{E}_u$.

 \triangleright Randomly sampling S different interactions of u before time t as $\mathcal{N}_u(t) = \{(i, t_s) | (u, i, t_s) \in \mathcal{E}_t \text{ and } t_s < t\}$. For pair (i, t_s) , the information representation can be formulated by:

$$\boldsymbol{h}_{i}^{(l-1)}(t_{s}) = \boldsymbol{e}_{i}^{(l-1)}(t_{s})||\Phi(t_{s})|$$

where $h_i^{(l-1)}(t_s)$ is the information for item i at t_s . $e_i(t_s)$ denotes the temporal embedding of i at t_s . Again, when l=1, $e_i^{(0)}(t_s)=E_i$.

• Information Propagation

The temporal embedding $e_{\mathcal{N}_u}^{(l)}(t)$ can be inferred via propagating the information of sampled neighbors $\mathcal{N}_u(t)$,

$$\boldsymbol{e}_{\mathcal{N}_{u}}^{(l)}(t) = \sum_{(i,t_{s})\in\mathcal{N}_{u}(t)} \pi_{t}^{u}(i,t_{s}) \, \boldsymbol{W}_{v}^{(l)} \boldsymbol{h}_{i}^{(l-1)}(t_{s})$$

where $\pi_t^u(i, t_s)$ represents the impact of a historical interaction (u, i, t_s) to the temporal inference of user u at time t, which is calculated by the temporal collaborative attention. $\mathbf{W}_v \in \mathbb{R}^{d \times (d+d_T)}$ is the linear transformation matrix.

Temporal Collaborative Attention

The attention weight $\pi_t^u(i, t_s)$ is formulated as follows:

$$\pi_t^u(i, t_s) = \frac{1}{\sqrt{d + d_T}} (\mathbf{W}_k^{(l)} \mathbf{h}_i^{(l-1)}(t_s)) \, \mathbf{W}_q^{(l)} \mathbf{h}_u^{(l-1)}(t)$$

where $W_k^{(l)}$ and $W_q^{(l)}$ are both linear transformation matrices. If we ignore the transformation matrices and the scalar factor, the right-hand side of above equation can be rewritten as:

$$\boldsymbol{e}_{u}^{(l-1)}(t) \cdot \boldsymbol{e}_{i}^{(l-1)}(t_{s}) + \Phi(t) \cdot \Phi(t_{s})$$

where the first term denotes the user-item collaborative signal, and the second term models the temporal effect according to the temporal kernel trick $\psi(t_1 - t_2) = \mathcal{K}(t_1, t_2) = \Phi(t_1) \cdot \Phi(t_2)$.

• Temporal Collaborative Attention

The attention weights across all sampled interactions can be normalized by employing a softmax function:

$$\pi_t^u(i, t_s) = \frac{\exp(\pi_t^u(i, t_s))}{\sum_{(i', t_s') \in N_u(t)} \exp(\pi_t^u(i', t_s'))}$$

To be more specific, denoting $\mathbf{q}_u^{(l-1)}(t) = \mathbf{W}_q^{(l)} \mathbf{h}_u^{(l-1)}(t)$, $\mathbf{K}_u^{(l-1)}(t) = \mathbf{W}_k^{(l)} \mathbf{H}_{N_u}^{(l-1)}(t)$, and $\mathbf{V}_u^{(l-1)}(t) = \mathbf{W}_v^{(l)} \mathbf{H}_{N_u}^{(l-1)}(t)$ are respectively the key, value, and query input for the temporal

collaborative attention module. $H_{N_u}^{(l-1)}(t) \in \mathbb{R}^{(d+d_T) \times S}$ is the stacked information of all

sampled interaction $h_i^{(l-1)}(t_s)$. Then, e_{N_u} can be rewritten as:

$$\boldsymbol{e}_{N_u} = \boldsymbol{V}_u \cdot Softmax(\boldsymbol{K}_u^T \boldsymbol{q}_u / \sqrt{d + d_T})$$

• Information Aggregation

A feed-forward neural network (FFN) is applied for information aggregation:

$$\boldsymbol{e}_{u}^{(l)}(t) = FFN\left(\boldsymbol{e}_{\mathcal{N}_{u}}^{(l)}(t)||\boldsymbol{h}_{u}^{(l-1)}(t)\right)$$

where $e_u^{(l)}(t)$ is the temporal embedding of u at t on l-th layer, and FFN consists two linear transformation layers with a ReLU activation function.

Model Prediction and Optimization

Model Prediction

For each test triplet (u, i, t), it yields temporal embeddings for both u and i at t on the last TCT layer, denoting as $\mathbf{e}_u^{(L)}(t)$ and $\mathbf{e}_i^{(L)}(t)$, respectively. Then, the prediction score r(u, i, t) is:

$$r(u,i,t) = \boldsymbol{e}_u^{(L)}(t) \cdot \boldsymbol{e}_i^{(L)}(t)$$

Model Optimization

The BRP loss is used for model optimization,

$$\mathcal{L}_{bpr} = \sum_{(u,i,j,t) \in \mathcal{O}_T} -log\sigma(r(u,i,t) - r(u,j,t)) + \lambda ||\Theta||_2^2$$

where $\mathcal{O}_T = \{(u,i,j,t) | (u,i,t) \in \mathcal{E}_T, j \in I \setminus I_u(t)\}$. The positive interaction (u,i,t) comes from the edge set \mathcal{E}_T of CTBG, the negative item j is sampled from unobserved items $I \setminus I_u(t)$ of user u at timestamp t. Θ denotes the training samples.

Experiments

Table 2: Overall Performance w.r.t. Recall@{10,20} and MRR.

Datasets	Metric	BPR	LightGCN	SR-GNN	GRU4Rec	Caser	SSE-PT	BERT4Rec	SASRec	TiSASRec	CDTNE	TGSRec	Improv.
Toys	Recall@10 Recall@20 MRR	0.0021 0.0036 0.0024	0.0016 0.0026 0.0018	0.0020 0.0033 0.0018	0.0274 0.0288 0.0277	0.0138 0.0238 0.0082	0.1213 0.1719 0.0595	0.1273 0.1865 0.0643	$\begin{array}{r} 0.1452 \\ \hline 0.2044 \\ \hline 0.0732 \end{array}$	0.1361 0.1931 0.0671	0.0016 0.0045 0.0025	0.3650 0.3714 0.3661	0.2198 0.1670 0.2929
Baby	Recall@10	0.0028	0.0036	0.0030	0.0036	0.0077	0.0911	0.0884	0.0975	0.1040	0.0218	0.2235	0.1195
	Recall@20	0.0039	0.0045	0.0062	0.0048	0.0193	0.1418	0.1634	0.1610	0.1662	0.0292	0.2295	0.0663
	MRR	0.0019	0.0024	0.0024	0.0028	0.0071	0.0434	0.0511	0.0455	0.0521	0.0157	0.2147	0.1626
Tools	Recall@10	0.0023	0.0021	0.0051	0.0048	0.0077	0.0775	0.1296	0.0913	0.0946	0.0186	0.2457	0.1161
	Recall@20	0.0036	0.0035	0.0092	0.0059	0.0161	0.1155	0.1784	0.1337	0.1356	0.0271	0.2559	0.0775
	MRR	0.0026	0.0023	0.0028	0.0051	0.0068	0.0419	0.0628	0.0460	0.0480	0.0203	0.2468	0.1840
Music	Recall@10 Recall@20 MRR	0.0122 0.0152 0.0057	0.0142 0.0183 0.0064	0.0051 0.0092 0.0028	0.0549 0.0589 0.0540	0.0183 0.0346 0.0106	0.0915 0.1494 0.0423	0.1352 0.2093 0.0824	$\begin{array}{c} 0.1372 \\ \hline 0.2094 \\ 0.0768 \end{array}$	0.1372 0.1951 0.0681	0.0071 0.0163 0.0037	0.5935 0.5986 0.3820	0.4563 0.3892 0.2996
ML100k	Recall@10	0.0461	0.0565	0.0045	0.0996	0.0246	0.1079	0.1116	0.09450	0.1332	0.0350	0.3118	0.1786
	Recall@20	0.0766	0.0960	0.0060	0.1168	0.0417	0.1801	0.1786	0.1808	0.2232	0.0536	0.3252	0.1020
	MRR	0.0213	0.0252	0.0012	0.0938	0.0147	0.0519	0.0600	0.0448	0.0605	0.0162	0.2416	0.1478

Figure 4: NDCG@10 Performance in all Datasets. We ignore other methods because of their low values.

Experiments

Figure 5: Recall@10 w.r.t. L, d and S on 5 datasets.

Experiments

Table 3: Ablation analysis (Recall@10) on five datasets. Bold score indicates performance better than the default version, while \downarrow indicates a performance drop more than 50%.

Architecture	Toys	Baby	Tools	Music	ML100K
(0) Default	0.3649	0.2235	0.3623	0.5935	0.3118
(1) Mean (2) LSTM	0.0027↓ 0.0991↓	0.0210↓ 0.1237	0.0055↓ 0.1266↓	0.0051↓ 0.3740	0.0647↓ 0.3088
(3) Fixed ω (4) Position (5) Empty	0.0854↓ 0.0380↓ 0.0139↓	$0.0944 \downarrow \\ 0.0243 \downarrow \\ 0.0240 \downarrow$	0.0910↓ 0.0209↓ 0.0018↓	0.3679 0.0742↓ 0.0346↓	0.2789 0.0878↓ 0.0603↓
(6) BCELoss	0.2200	0.1916	0.1763↓	0.4624	0.3542

Table 4: Variants of Temporal Information Construction

Variant	Toys	Baby	Tools	Music	ML100K
TGSRec	0.3649	0.2235	0.3623	0.5935	0.3118
$\mathcal U$ w/o T	0.0103	0.0138	0.0106	0.0112	0.1555
\mathcal{I} w/o T	0.1013	0.0961	0.0836	0.2785	0.2336