Non-Higgsable clusters

\-3	-3	
5u(3), 50(8), fu	-2	_3
e6, e7, e8 /-2 2 (+) Su(2)	g2⊕ 20(2)	2(1) ⊕ 20(7)⊕ 2(12)

Table 2:

Diagram	Algebra	matter	(f,g, \Delta)	△Tnax
- 3	Su(3)	0	(2, 2, 4)	1/3
-4	SO (8)	0	(1,3,6)	l
- 5	f4	0	(3, 4, 8)	16/9
- 6	e_6	0	(3,4,8)	8/3
-7	C7	± 56	(3,5,9)	57/16
- 8	e ₇	0	(3, 5, 9)	9/2
-12	e _g	0	(4,5,10)	25/3
-), -1	92 D SU(2)	(7+1,12)	(2,3,6),(1,2,3)	3/8
-3, -2, -2	92 B SU(2)	(7+1, 12)	(2,3,6), (2,2,4),	5/12
-71-5/- 7	54(2)650(7) 63 40	(1,8, ½2) +(½1,8,1)	(1,1,2) (1,2,3),(2,4,6), (1,2,3)	V ₂

Connecting Clusters with (-1)-curves

Clusters can be connected by (-1)-curves but not always:

$$\operatorname{deg}(f,g,\Delta)|_{\mathbb{B}} = (3,4,8) \operatorname{deg}(f,g,\Delta)|_{\mathbb{C}} = 2,2,4$$

For a (-1)-curve A we have:

where $X \cdot A \ge 0$, $C_i \ge 0$

$$X \cdot A \ge 0 \implies a \ge \sum_{i} c_i p_i - N$$

For $\sum c_i p_i \le n$ this condition can be satisfied with a=0 -> (-1)-curve A does not affect
gauge group+ matter content of the

$$E \times amples:$$
 $(1,9,1)=(0,0,0)$
 $(1,9,1)=(0,0,0)$
 $(1,9,1)=(0,0,0)$

Bounding the number of tensors

· theories without vector multiplets

 \rightarrow no irreducible divisors with $C \cdot C < -2$ $\Rightarrow -K \cdot C = 2 - m \ge 0$

bound: T<10 (for trivial gange group G) proof:

 $-K = \sum_{i} l_{i} C_{i}, l_{i} > 0$

if K.K<0 -> for some i:-K.Ci<0

-> non-abelian gange group
factor

 \rightarrow K. K = 9-T \geq 0 so T<10 Also possible to understand from gravitational anomaly cancellation: H-V=273-29T • bound for given gauge algebra

example: cansider SO(8) gauge factor
associated with (-4)-curve C

Since -12K = 6C+X and -12K·C=-24

→ 144K² = 36C²+X²=-144+X²

where we used X·C=0

since X²≥0 (G=SO(8)) → K²>-1

=> of = SO(8) → T ≤ 10

-> each additional SO(8) summand

raises bound an T by 1.

see table 2 for other NHC's.

Bounds on linear chains of curves

Consider linear chains of divisors C;

with C: Ci+1 = 1

example: (---,-4,-1,-4,-1,-4,...)

blow-down:

- 3 properties:
 - 1) Each link allowed in F-th
 - 2) locally maximal, self-intersections cannot be increased without violating property 1)
 - 3) blow-down of all (-1)-curves possible -> removes all non-abelian gange groups

F-theory causistency - blow-down all the way to

Start with a (-1,-4,-1,-.,-1,-4,-1) -configuration with N (-4)-curves

 \rightarrow order $\sim N+N=2N$ blow-downs (-1) (-2)

necessary

-> T~ 2N < 9+N

3 other possibilities:

 χ_{6} : (---, -6, -1, -3, -1, -6, -1, -3, ---)

 χ_8 : (--, -8, -1, -2, -3, -2, -1, -8, -1, -2, -3, -2, --)

 χ_{12} : (---, -12, -1, -2, -2, -3, -1, -5, -1, -3, -2, -2, -1, -12)

For X6, the gange algebra is N(e6 @ 20(3)) or (N+1)e6 @ N(20(3)) From table 2 DT(e6) = & , DT(84B)) = = (-6,-1,-3,-1,-1,-6,-1,-3,-1)3 blow-down's (-2) - - - (-2)-> T~ 6(4H) -> T~4H 63H+9 -> N~ O(3) $\mathcal{N}_{g}: \mathcal{C}_{7} \oplus \mathcal{S} \mathcal{O}(7) + \mathcal{S} \mathcal{O}(2) \longrightarrow \Delta \overline{1} = 5 \text{ N}$ \rightarrow $T \sim 6N \leq 5N + 9 \rightarrow N \sim O(9)$ This entry = 1 (920 su(2)) -> DT= 10 17 11 blow-downs (-1)-curve > of = (N+1)e8 €N(f4) €2N(92 € SYL2)) -> T = 9+N × 197 + 25 from es at end 12 N max = 52 + 197 N max => N < N max = 16.4 -> N=16, T= 193 largest Known T!