Practice for Determinants

Why?

Exercise 1 Compute the determinant of the following matrices:

$$b) \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$

$$c) \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

$$e) \begin{bmatrix} 2 & 1 & 0 \\ -2 & 7 & -3 \\ 0 & 2 & 0 \end{bmatrix}$$

$$f) \begin{bmatrix} 2 & 1 & 3 \\ 8 & 6 & 3 \\ 7 & 9 & 7 \end{bmatrix}$$

$$g) \begin{bmatrix} 0 & 2 & 5 & 7 \\ 0 & 0 & 2 & -3 \\ 3 & 4 & 5 & 7 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$h) \begin{bmatrix} 0 & 1 & 2 & 0 \\ 1 & 1 & -1 & 2 \\ 1 & 1 & 2 & 1 \\ 2 & -1 & -2 & 3 \end{bmatrix}$$

Exercise 2 % Compute the determinant of the following matrices:

$$b) \begin{bmatrix} 2 & -2 \\ 1 & 3 \end{bmatrix}$$

$$c) \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$d) \begin{bmatrix} 2 & 9 & -11 \\ 0 & -1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$

$$e) \quad \begin{bmatrix} 2 & 1 & 0 \\ -2 & 7 & 3 \\ 1 & 1 & 0 \end{bmatrix}$$

$$f) \begin{bmatrix} 5 & 1 & 3 \\ 4 & 1 & 1 \\ 4 & 5 & 1 \end{bmatrix}$$

$$g) \begin{bmatrix} 3 & 2 & 5 & 7 \\ 0 & 0 & 2 & 0 \\ 0 & 4 & 5 & 0 \\ 2 & 1 & 2 & 4 \end{bmatrix}$$

$$h) \begin{bmatrix} 0 & 2 & 1 & 0 \\ 1 & 2 & -3 & 4 \\ 5 & 6 & -7 & 8 \\ 1 & 2 & 3 & -2 \end{bmatrix}$$

Exercise 3 For which x are the following matrices singular (not invertible).

a)
$$\begin{bmatrix} 2 & 3 \\ 2 & x \end{bmatrix}$$

$$b) \begin{bmatrix} 2 & x \\ 1 & 2 \end{bmatrix}$$

$$c) \quad \begin{bmatrix} x & 1 \\ 4 & x \end{bmatrix}$$

$$d) \begin{bmatrix} x & 0 & 1 \\ 1 & 4 & 2 \\ 1 & 6 & 2 \end{bmatrix}$$

Exercise 4 % For which x are the following matrices singular (not invertible).

a)
$$\begin{bmatrix} 1 & 3 \\ 1 & x \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & x \\ 1 & 3 \end{bmatrix}$$

$$c) \quad \begin{bmatrix} x & 3 \\ 3 & x \end{bmatrix}$$

$$d) \begin{bmatrix} x & 1 & 0 \\ 1 & 4 & 0 \\ 1 & 6 & 2 \end{bmatrix}$$

Exercise 5 % Consider the matrix

$$A = \begin{bmatrix} 0 & -1 & 0 \\ -5 & -4 & -5 \\ 2 & 3 & 4 \end{bmatrix}.$$

- a) Compute the determinant of A using cofactor expansion along row 1.
- b) Compute the determinant of A using cofactor expansion along column 2.
- c) Compute the determinant using row reduction.

Exercise 6 % Consider the matrix

$$A = \begin{bmatrix} -1 & 0 & -3 \\ 1 & 2 & 1 \\ 3 & 3 & 3 \end{bmatrix}.$$

- a) Compute the determinant of A using cofactor expansion along row 1.
- b) Compute the determinant of A using cofactor expansion along column 3.
- c) Compute the determinant using row reduction.

Exercise 7 % Consider the matrix

$$A = \begin{bmatrix} -2 & 0 & 1 & 0 \\ 0 & -1 & 1 & -2 \\ -5 & 3 & 1 & 3 \\ -3 & 4 & 1 & 3 \end{bmatrix}.$$

- a) Compute the determinant of A using cofactor expansion along row 1.
- b) Compute the determinant of A using cofactor expansion along column 4.
- c) Compute the determinant using row reduction.

Exercise 8 Is the matrix A below invertible? How do you know?

$$A = \begin{bmatrix} 4 & 0 & 3 & 1 \\ 2 & 1 & -2 & 0 \\ 0 & 0 & 1 & -3 \\ 3 & 2 & 1 & -5 \end{bmatrix}$$

Exercise 9 % Compute the determinant of the matrix

$$A = \begin{bmatrix} 5 & 4 & 3 \\ -4 & -3 & -4 \\ -5 & -5 & 4 \end{bmatrix}$$

using row reduction. What does this say about the solutions to $A\vec{x} = 0$?

Exercise 10 % Compute the determinant of the matrix

$$A = \begin{bmatrix} -5 & -3 & -5 & -1 \\ 4 & 0 & -5 & 4 \\ 0 & -2 & -1 & -2 \\ -1 & -5 & -4 & -4 \end{bmatrix}$$

using row reduction. What does this say about the columns of A?

Exercise 11 % Compute the determinant of the matrix

$$A = \begin{bmatrix} 4 & 1 & -3 & 0 \\ -1 & 4 & 2 & -2 \\ -1 & -3 & 3 & 2 \\ -5 & -4 & 1 & 1 \end{bmatrix}$$

using row reduction. What does this say about the solutions to $A\vec{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

Exercise 12 Compute

$$\det \left(\begin{bmatrix} 2 & 1 & 2 & 3 \\ 0 & 8 & 6 & 5 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \right)$$

without computing the inverse.

Exercise 13 % Compute

$$\det \left(\begin{bmatrix} 3 & 4 & 7 & 12 \\ 0 & -1 & 9 & -8 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix}^{-1} \right)$$

without computing the inverse.

Exercise 14 Suppose

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 7 & \pi & 1 & 0 \\ 2^8 & 5 & -99 & 1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 5 & 9 & 1 & -\sin(1) \\ 0 & 1 & 88 & -1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Let A = LU. Compute $\det(A)$ in a simple way, without computing what is A. Hint: First read off $\det(L)$ and $\det(U)$.

Exercise 15 Consider the linear mapping from \mathbb{R}^2 to \mathbb{R}^2 given by the matrix $A = \begin{bmatrix} 1 & x \\ 2 & 1 \end{bmatrix}$ for some number x. You wish to make A such that it doubles the area of every geometric figure. What are the possibilities for x (there are two answers).

Exercise 16 % Consider the matrix

$$A(x) = \begin{bmatrix} 1 & 2 \\ 1 & x \end{bmatrix}^{-1}$$

as a function of the variable x.

- a) Find all the x so that A(x) and the matrix inverse $A(x)^{-1}$ have only integer entries (no fractions). Note that there are two answers.
- b) Find all the x so that the matrix inverse $A(x)^{-1}$ has only integer entries (no fractions). (You should get more answers here than the previous part.)

Exercise 17 Suppose A and S are $n \times n$ matrices, and S is invertible. Suppose that $\det(A) = 3$. Compute $\det(S^{-1}AS)$ and $\det(SAS^{-1})$. Justify your answer using the theorems in this section.

Exercise 18 Let A be an $n \times n$ matrix such that det(A) = 1. Compute det(xA) given a number x. Hint: First try computing det(xI), then note that xA = (xI)A.