Supplementary Material

Formation control of differential-drive robots with input saturation and constraint on formation size

Ayush Agrawal¹, Mukunda Bharatheesha² and Shishir Kolathaya³

Abstract—This piece of work is a supplementary material to the original work in [1] submitted to ACC 2023. This supplementary material discusses the proof of those arguments/expressions/equations for which this material was cited in [1]. Note that the proofs here are continuation of the proofs given in [1]. Here, the tags/labels of sections, subsections and equations are kept the same as given in the original work. Section III contains discussion to provide additional clarity to the arguments presented in [1].

II. TRAJECTORY TRACKING CONTROLLER WITH INPUT CONSTRAINTS

II-B. Upper bound of $\left|\hat{\theta_d}\right|$

We begin by obtaining an upper bound on $\dot{\theta}_d$ by starting with (6) of [1]. We substitute expressions of e_x , e_y , \dot{e}_x , \dot{e}_y in (6) from (15), (16) of [1].

$$\begin{aligned}
\dot{\theta_d} &| = \left| \frac{e_x \dot{e_y} - e_y \dot{e_x}}{D^2} \right| \\
&= \left| \frac{e_x v \sin(\theta) - e_y v \cos(\theta) + e_y \dot{x_d} - e_x \dot{y_d}}{D^2} \right| \\
&= \left| \frac{-D v_{max} \sin(2e_\theta) \frac{\eta_v D}{2(1 + \eta_v D)} - D(v_{traj}^{\perp L})}{D^2} \right| \\
&= \left| -v_{max} \sin(2e_\theta) \frac{\eta_v}{2(1 + \eta_v D)} - \frac{v_{traj}^{\perp L}}{D} \right| \\
&\leq \left| v_{max} \frac{\eta_v}{2(1 + \eta_v D)} \right| + \frac{\left| v_{traj}^{\perp L} \right|}{D} \end{aligned}$$
(29)

In the region outside the ultimate bound: $D(t) \ge b_D$. Also,

$$b_D > \mu_D > \frac{\left|v_{traj}^{sup}\right|}{\eta_v\left(v_{max}\delta_{\theta}^2 - \left|v_{traj}^{sup}\right|\right)} \ge \frac{\left|v_{traj}^{sup}\right|}{\eta_v\left(v_{max} - \left|v_{traj}^{sup}\right|\right)}$$
(30)

¹ Ayush Agarwal has received his Bachelor's degree from the Department of Mechanical Engineering at the Indian Institute of Technology Bombay, India. ayush.agrawal.c2021@iitbombay.org, aayush.agrawal149@gmail.com

²Mukunda Bharatheesha is a guest faculty at Robert Bosch Centre for Cyber Physical Systems and a Senior Member of Techinal Staff at ARTPARK, Indian Institute of Science, Bengaluru, India mukundab@iisc.ac.in, mukunda@artpark.in

³Shishir Kolathaya is an Assistant Professor at Robert Bosch Centre for Cyber Physical Systems and the department of Computer Science and Automation (CSA), Indian Institute of Science, Bengaluru, India shishirk@iisc.ac.in

Fig. 1: Cartesian components of v_{traj} (Green): $(\dot{x_d}, \dot{y_d})$, Components of v_{traj} along and \bot to L (Blue): $(v_{traj}^L, v_{traj}^{\bot L})$. D denotes the distance between (x, y) and (x_d, y_d)

Continuing with the result of (29), (30)

$$\begin{aligned} \left| \dot{\theta_{d}} \right| &\leq \left| v_{max} \frac{\eta_{v}}{2(1 + \eta_{v} b_{D})} \right| + \frac{\left| v_{traj}^{\perp L} \right|}{b_{D}} \\ &\leq \left| \frac{\eta_{v} (v_{max} \delta_{\theta}^{2} - \left| v_{traj}^{sup} \right|)}{2\delta_{\theta}^{2}} \right| + \eta_{v} (v_{max} \delta_{\theta}^{2} - \left| v_{traj}^{sup} \right|) \end{aligned}$$

$$\left| \dot{\theta_{d}} \right| &\leq \frac{3\eta_{v} v_{max}}{2}$$

$$\left| \dot{\theta_{d}} \right| &\leq \frac{3\eta_{v} v_{max}}{2}$$

Now, using (8) and upper bound on $|\dot{\theta}_d|$ in (31), we get

$$\left|\hat{\theta}_{d}\right| \leq \left|\hat{\theta}_{d}\right| + \varepsilon_{\theta} \implies \left|\hat{\theta}_{d}\right| < \frac{3\eta_{v}v_{max}}{2} + \varepsilon_{\theta}$$
 (32)

If we choose η_{ν} as per (13), then choosing $\Omega_{max} = \frac{3\eta_{\nu}\nu_{max}}{2} + \varepsilon_{\theta}$ will satisfy (14).

Even if D(t) goes arbitrarily close to zero, $\left|\hat{\theta_d}\right|$ will remain upper bounded because

$$\lim_{D \to 0} \frac{\left| v_{traj}^{\perp L} \right|}{D} = 0 \tag{33}$$

The proof of (33) is as follows.

By definition, $D \to 0 \Longrightarrow e_x \to 0$, $e_y \to 0$. Therefore, we can apply L'Hospital's rule to $\lim_{\substack{D \to 0 \ e_x}} \frac{e_y}{e_x}$. From (16) it is clear that $e_x, e_y \to 0 \Longrightarrow \dot{e_x} \to \dot{x_d}$, $\dot{e_y} \to \dot{y_d}$. We also define slope of reference trajectory as

$$\tan\left(\theta_{traj}^{slope}\right) = \frac{\dot{y_d}}{\dot{x_d}} \tag{34}$$

Fig. 2: Stable tracking achieved by differential drive robot using controller

From (16) of the main paper, we can write the following limits

$$D \to 0 \implies e_x \to 0, \ e_y \to 0$$

 $\lim_{D \to 0} \dot{e}_x = -\dot{x}_d, \quad \lim_{D \to 0} \dot{e}_y = -\dot{y}_d$

With the above limits, we can simplify the limit in (34)

$$\lim_{D\to 0} \tan(\theta_d) = \lim_{D\to 0} \frac{e_y}{e_x} = \lim_{D\to 0} \frac{\dot{e_y}}{\dot{e_x}} = \frac{\dot{y_d}}{\dot{x_d}} = \tan\left(\theta_{traj}^{slope}\right) \quad (35)$$

The result of (35) implies

$$\lim_{D \to 0} (\tan(\theta_d) - \tan(\theta_{traj}^{slope})) = 0 \implies \lim_{D \to 0} (\theta_d - \theta_{traj}^{slope}) = 0$$
(36)

By Assumption 1, the $\dot{\theta}_{traj}^{slope}$ is uniformly continuous, and $\dot{\theta}_{d}$ is also uniformly continuous as defined in (6). Therefore by Lemma 8.2: Barbalat's Lemma of [1], we get

$$\lim_{D \to 0} (\dot{\theta}_d - \dot{\theta}_{traj}^{slope}) = 0 \tag{37}$$

We can also write $v_{traj}^{L} = v_{traj} \cos \left(\theta_{traj}^{slope} - \theta_{d}\right)$ and $v_{traj}^{\perp L} = v_{traj} \sin \left(\theta_{traj}^{slope} - \theta_{d}\right)$. A magnified view of Fig.1 is given here for reference. Therefore, (37) implies $\lim_{D \to 0} \left|v_{traj}^{\perp L}\right| = 0$.

Applying L'Hospital's rule to $\lim_{D\to 0} \frac{|v_{traj}^{\perp L}|}{D}$ we get

$$\lim_{D \to 0} \frac{\left| v_{traj}^{\perp L} \right|}{D} \leq \lim_{D \to 0} \frac{\left| v_{traj}^{sup} \right| \left| \sin \left(\theta_{traj}^{slope} - \theta_{d} \right) \right|}{D}$$

$$\leq \lim_{D \to 0} \frac{\left| v_{traj}^{sup} \right| \left| \cos \left(\theta_{traj}^{slope} - \theta_{d} \right) \right| (\dot{\theta_{d}} - \dot{\theta}_{traj}^{slope})}{\dot{D}}$$
(38)

We rewrite (18) from the main paper here

$$\dot{V}_{D} = D\dot{D} = e_{x}\dot{e}_{x} + e_{y}\dot{e}_{y}
\dot{V}_{D} = -v_{max}\frac{\eta_{v}}{1 + \eta_{v}D}\cos^{2}(e_{\theta})(e_{x}^{2} + e_{y}^{2}) - \dot{x}_{d}e_{x} - \dot{y}_{d}e_{y}
\dot{D} = -v_{max}\frac{\eta_{v}D}{1 + \eta_{v}D}\cos^{2}(e_{\theta}) - (\dot{x}_{d}\cos(e_{\theta}) + \dot{y}_{d}\sin(e_{\theta}))
\dot{D} = -v_{max}\frac{\eta_{v}D}{1 + \eta_{v}D}\cos^{2}(e_{\theta}) - v_{traj}^{L}$$
(39)

We know $D \to 0 \implies e_x \to 0$, $e_y \to 0$. Following (39) we get

$$\lim_{D \to 0} \dot{D} \to \left| v_{traj}^L \right| \tag{40}$$

and $\left|v_{traj}^{L}\right| = v_{traj}\cos\left(\theta_{traj}^{slope} - \theta_{d}\right)$. Therefore, proceeding further with (38)

$$\lim_{D \to 0} \frac{\left| v_{traj}^{\perp L} \right|}{D} \leq \lim_{D \to 0} \frac{\left| v_{traj}^{sup} \right| \left| \cos \left(\theta_{traj}^{slope} - \theta_{d} \right) \right| (\dot{\theta}_{d} - \dot{\theta}_{traj}^{slope})}{\left| v_{traj} \right| \left| \cos \left(\theta_{traj}^{slope} - \theta_{d} \right) \right|}$$

$$\leq \lim_{D \to 0} \frac{\left| v_{traj}^{sup} \right| (\dot{\theta}_{d} - \dot{\theta}_{traj}^{slope})}{\left| v_{traj} \right|} = 0$$
(41)

The above analysis proves that $\left|\hat{\theta}_{d}\right|$ is upper bounded for all $D \in [0, \infty)$. From the results of II-A, II-B, we conclude that stable tracking, as defined in (9), is guaranteed without exceeding actuator limits.

III. DISCUSSION

III-A. Selecting values of v_{max} , ω_{max}

In the controller proposed (11), (12) of the main paper, v(t) is a function of D, e_{θ} , and $\omega(t)$ is a function of e_{θ} , θ_d .

$$v = -v_{max}\cos(e_{\theta})\frac{\eta_{\nu}D}{1 + \eta_{\nu}D}$$
 (42)

$$\omega = -(\omega_{max} - \Omega_{max}) \tanh(\eta_{\omega} e_{\theta}) + \hat{\theta}_{d}$$
 (43)

Now consider a possible scenario where $D=20m,\ e_{\theta}=\pi,\ \hat{\theta}_{d}\rightarrow-\Omega_{max}$ and $\eta_{v}=10,\ \eta_{\omega}=20$. Then in this case both $v(t)\rightarrow v_{max},\ \omega(t)\rightarrow-\omega_{max}$. If we choose $v_{max},\ \omega_{max}$

$$v_{max} = \frac{R\omega_{r, l}^{max}}{2}, \quad \omega_{max} = \frac{R\omega_{r, l}^{max}}{L}$$
 (44)

Then as per (1) of main paper, either ω_r or ω_l will reach $\omega_{r, l}^{max}$. Hence, the limits on motor angular velocities will be obeyed at all time, $t \ge 0$.

III-B. Error in estimation of $\hat{\theta}_d$

To estimate the error in $\hat{\theta}_d$ relative to $\dot{\theta}_d$, we expand $\theta_d(t-\tau)$ using Taylor's series expansion about current time instance, t>0,

$$\Rightarrow \theta_{d}(t-\tau) = \theta_{d}(t) - \dot{\theta}_{d}(t)\tau + \frac{\ddot{\theta}_{d}\tau^{2}}{2!} - \frac{\ddot{\theta}_{d}\tau^{3}}{3!} \dots$$

$$\Rightarrow \frac{\theta_{d}(t) - \theta_{d}(t-\tau)}{\tau} - \dot{\theta}_{d}(t) = -\frac{\ddot{\theta}_{d}\tau}{2!} + \frac{\ddot{\theta}_{d}\tau^{2}}{3!} \dots$$

$$\Rightarrow |\hat{\theta}_{d} - \dot{\theta}_{d}| \le M|\tau + \tau^{2} + \tau^{3} + \dots|$$

$$\Rightarrow |\hat{\theta}_{d} - \dot{\theta}_{d}| \le M|\frac{\tau}{1-\tau}|$$

Here, $M = \max\left\{\frac{\ddot{\theta}_d \tau}{2!}, \frac{\dddot{\theta}_d \tau^2}{3!}, \ldots\right\}$. Hence, for a small time step or sampling time (e.g. $\tau = 0.01s$), the measurement error of $\dot{\theta}_d$ is upper bounded by

$$|\hat{\theta}_d - \dot{\theta}_d| \leq M\tau$$

Now, lets choose a small positive number $\varepsilon_{\theta} > 0$ such that

$$|\hat{\theta}_d - \dot{\theta}_d| \le M\tau \le \varepsilon_\theta \tag{45}$$

where $\varepsilon_{\theta} = \Omega(\tau) > 0$. Here, Ω is the Big- Ω notation respectively which adhere to convention mentioned in cited reference [2].

Note: The value of M defined above depends on the sensor resolution, robot's specification, the reference trajectory, etc. In the simulation shown in section III.C of [1], we have chosen $\varepsilon_{\theta} = 0.1$ for $\tau = 0.01s$ based on above discussion. Even if a higher value for ε_{θ} is chosen, the ultimate bound on e_{θ} would not increase much in magnitude due to the presence of natural logarithm, 'ln', in the expression of $b_{e_{\theta}}$.

III-C. Significance of adjustable scalar ζ

In section II.A of the main paper, we have defined ζ such that $0 < \zeta \ll 1$. ζ was used in defining upper and lower bounds on the Lyapunov function V_D, V_{e_θ} defined in (17), (23) of the main paper. At the end of the stability analysis, we have derived ultimate bounds on D, e_θ .

$$\mu_{D} \leq D = \|e_{x}, e_{y}\|_{2} \leq b_{D} \quad \forall t \geq T = \max\{T_{D}, T_{e_{\theta}}\}$$

$$\mu_{e_{\theta}} \leq |e_{\theta}| \leq b_{e_{\theta}} \quad \forall t \geq T = \max\{T_{D}, T_{e_{\theta}}\}$$
(46)

The ultimate bounds depend on various parameters other than ζ . The expressions for these ultimate bounds are as follows.

$$\mu_{D} = (1+\zeta) \frac{|v_{traj}^{sup}|}{\eta_{v}(v_{max}\delta_{\theta}^{2} - |v_{traj}^{sup}|)}$$

$$b_{D} = \frac{\sqrt{2+\zeta}}{\sqrt{2-\zeta}} \mu_{D}$$

$$\mu_{e_{\theta}} = \frac{(1+\zeta)}{2\eta_{\omega}} \ln\left(\frac{\omega_{max} - \Omega_{max} + \varepsilon_{\theta}}{\omega_{max} - \Omega_{max} - \varepsilon_{\theta}}\right)$$

$$b_{e_{\theta}} = \frac{\sqrt{2+\zeta}}{\sqrt{2-\zeta}} \mu_{e_{\theta}}$$

$$(47)$$

These parameters and their value are listed below.

Controller parameters			
Parameter	Value	Parameter	Value
R	0.02m	η_{v}	10
L	0.09m	η_{ω}	10
$\omega_{r, l}^{max}$	$52^{rad}/s$	τ	0.01
v _{max}	0.52 m/s	ε_{θ}	$0.1^{rad}/s$
ω_{max}	$11.5^{rad}/s$	Ω_{max}	$7.9^{rad}/s$

TABLE I

From (47), it is apparent that as $\zeta \to 0$, the upper bound will approach lower bound, the lower bound will approach

a constant value depending on the parameters listed above.

$$\lim_{\zeta \to 0} b_D = \lim_{\zeta \to 0} \mu_D = \frac{|v_{traj}^{sup}|}{\eta_v \left(v_{max} \delta_\theta^2 - |v_{traj}^{sup}|\right)} = 0.1524$$

$$\lim_{\zeta \to 0} b_{e_\theta} = \lim_{\zeta \to 0} \mu_{e_\theta} = \frac{1}{2\eta_\omega} \ln\left(\frac{\omega_{max} - \Omega_{max} + \varepsilon_\theta}{\omega_{max} - \Omega_{max} - \varepsilon_\theta}\right) = 2.7 \times 10^{-3}$$
(48)

From above discussion, it is clear that the primary role of ζ was to show the existence of ultimate bounds on error terms. More importantly, adjusting the value of ζ closer to 0 showed us that upper and lower bounds on error terms decrease in value, approach each other, and eventually converge to a constant value that depends on parameters listed in TABLE I. Fig.3, 4 illustrate this graphically.

Fig. 3: Error bands for D(t) shrinks and approach a radius of 0.1524 as the values of ζ is reduced

Fig. 4: Error bands for $e_{\theta}(t)$ shrinks and approach 2.7×10^{-3} as the values of ζ is reduced

III-D. Alternate proposal for linear velocity control v(t)

The following linear velocity control can also be used in place of controller proposed in (11) of main paper.

$$v(t) = -v_{max}\cos(e_{\theta})\tanh(\eta_{\nu}D) \tag{49}$$

The stability analysis for this controller can be done in the same way as done in section II-A of the main paper. Bounds of η_v , $\hat{\theta}_d$ can be obtained for this controller as well.

REFERENCES

- [1] Ayush Agrawal, Mukunda Bharatheesha, Shishir Kolathaya, "Formation control of differential-drive robots with input saturation and constraint on formation size." Submitted to IEEE American Control Conference 2023.
- [2] Hassan K. Khalil, 2002, Nonlinear Systems, Prentice Hall, 3rd ed.
- [3] Donald E. Knuth, The art of computer programming. Vol. 1. Fundamental algorithms, third edition, Addison Wesley Longman, 1997. Section 1.2.11.1.