1

Chapitre 6 - Coniques CORRIGÉ DES NOTES DE COURS

Page 3 – Exemple

a)
$$2x + 0y - 4 = 0$$

b)
$$3x + 2y + 4 = 0$$

c)
$$0x + 0.5y + 1 = 0$$

Page 4 – Mise au point #1

1. a) droite oblique b) droite parallèle à l'axe des x c) droite parallèle à l'axe des y

2.
$$y = \frac{-3x}{4} + \frac{1}{4}$$
 ou $3x + 4y - 1 = 0$

3.
$$y = \frac{-7x}{3} + \frac{2}{3}$$
 ou $7x + 3y - 2 = 0$

4. (5,0); (-5,0); (0,5); (0,-5); $(\frac{5\sqrt{2}}{2},\frac{5\sqrt{2}}{2})$ (autres réponses possibles)

Page 5 – Mise au point #2

1. C(0, 0) et r = 7 unités

2. a) Oui, car
$$5^2 + 12^2 = 13^2$$
 b) Non, car $(-7)^2 + 11^2 \neq 13^2$ c) Oui, car $0^2 + (-13)^2 = 13^2$

3. a)
$$A = 81 - \frac{81\pi}{4} u^2 \approx 17,38 u^2$$
 b) $x^2 + y^2 = \frac{81}{4}$

Page 7 – Exemples

1.
$$x^2 + y^2 + 12x - 2y - 13 = 0$$

2.
$$(x-1)^2 + (y+6)^2 = 21$$
 centre (1, -6) rayon: $\sqrt{21}$ unités

Pages 7-8 – Mise au point #3

1. a)
$$x^2 + y^2 - 4x - 6y - 3 = 0$$

b)
$$x^2 + y^2 + 8x - 4y - 5 = 0$$

1. a)
$$x^2 + y^2 - 4x - 6y - 3 = 0$$
 b) $x^2 + y^2 + 8x - 4y - 5 = 0$ c) $x^2 + y^2 - 2\sqrt{2}x + 2y - 6 = 0$
2. a) $(x+1)^2 + y^2 = 5$ b) $(x-2)^2 + (y+4)^2 = 56$ c) $(x-3)^2 + (y-1)^2 = 9$

2. a)
$$(x+1)^2 + y^2 = 5$$

b)
$$(x-2)^2 + (y+4)^2 = 56$$

c)
$$(x-3)^2 + (y-1)^2 = 9$$

d)
$$(x-4)^2 + (y+2)^2 = 16$$
 e) $(x+3)^2 + (y-1)^2 = 8$

e)
$$(x+3)^2 + (y-1)^2 = 8$$

3. a) Oui, car A = C centre (-1, 3) et
$$r = \sqrt{5}$$
 b) Non, car A \neq C

b) Non, car
$$A \neq C$$

c) Oui, car
$$A = C$$
 centre $(0, 2)$ et $r = 2\sqrt{2}$ d) Oui, car $A = C$ centre $(3, 0)$ et $r = \sqrt{5}$

d) Oui, car A = C centre (3, 0) et
$$r = \sqrt{5}$$

e) Non, car
$$B \neq 0$$

f) Non, car
$$A \neq C$$

Page 9 – Exemple

Le point A est à l'intérieur du cercle, car $(-3-1)^2 + (7+2)^2 < 100$.

Pages 10-11 – Exercices

1. a)
$$x^2 + y^2 = 16$$

1. a)
$$x^2 + y^2 = 16$$
 b) $(x-5)^2 + (y-5)^2 = 25$

c)
$$(x-6)^2 + (y-4)^2 = 4$$

2. a)
$$C(0, 0)$$
; $r = 3 u$; Non b) $C(4, -3)$; $r = 5 u$; Oui

b)
$$C(4, -3)$$
; $r = 5 u$; Oui

3. a)
$$r = \sqrt{10} u$$
 b) $C(0, -1)$ c)

4. a) cercle:
$$(x+2)^2 + (y+1)^2 = 34$$
 tangente: $y = -\frac{5}{3}x + 7$

b) cercle:
$$(x-3)^2 + y^2 = 100$$
 tangente: $y = \frac{3}{4}x + \frac{41}{4}$

c) cercle:
$$(x + 1)^2 + (y - 5)^2 = 72$$
 tangente: $y = x - 6$

5.
$$(x-1)^2 + (y-3)^2 = 29$$

6.
$$\approx$$
 6,2 mètres

7. a)
$$(x + 4)^2 + y^2 = 16$$

C(-4, 0): $r = 4$ u

b)
$$x^2 + (y-2)^2 = 1$$

7. a)
$$(x+4)^2 + y^2 = 16$$
 b) $x^2 + (y-2)^2 = 1$ c) $(x-6)^2 + (y+3)^2 = 25$ C(-4, 0); $r = 4$ u C(0, 2); $r = 1$ u C(6, -3); $r = 5$ u

Pages 12-13 – Mise au point #4

1.
$$(x+2)^2 + (y-3)^2 = 49$$

2.
$$(x+1)^2 + (y-5)^2 = 25$$

3.
$$y = 6$$
 (autres réponses possibles)

4.
$$(x+5)^2 + (y-8)^2 = 25$$

5. a)
$$(x-6)^2 + (y-1)^2 = 73$$

b)
$$(x+2)^2 + y^2 = 20$$

6. a)
$$C(3, 1)$$
; $r = 3$ u

b)
$$C(4, -2)$$
; $r = 4$ u

c) C(-3, 1);
$$r = 2\sqrt{2} u$$

7.
$$(x+4)^2 + (y-5)^2 = 64$$

8.
$$y = \frac{-1}{2}x$$

9.
$$(0,5)$$
 et $\left(\frac{40}{17}, \frac{-75}{17}\right)$

10.
$$(0, -3)$$
 et $\left(\frac{50}{29}, \frac{-67}{29}\right)$

Pages 18-21 – Exercices

1. a)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

b)
$$\frac{x^2}{64} + \frac{y^2}{28} = 1$$

c)
$$\frac{x^2}{4} + \frac{y^2}{20} = 1$$

2.

d)

- 3. a) Sommets: (15, 0); (-15, 0); (0, 9); (0, -9); Foyers: (12, 0); (-12, 0); Grand axe: 30 u
 - b) Sommets : (2,0) ; (-2,0) ; (0,4) ; (0,-4) ; Foyers : $(0,2\sqrt{3})$; $(0,-2\sqrt{3})$; Grand axe : 8 u
 - c) Sommets: (7, 0); (-7, 0); $(0, \sqrt{13})$; $(0, -\sqrt{13})$; Foyers: (6, 0); (-6, 0); Grand axe: 14 u
- a) $(-4\sqrt{3}, 0)$ et $(4\sqrt{3}, 0)$ b) $(0, \sqrt{5})$ et $(0, -\sqrt{5})$

- a) C(0, 0)
- b) 6 u et $6\sqrt{2}$ u
- c) (0, 3) et (0, -3) d) $y = \pm 4$

6. a)
$$\frac{x^2}{25} + \frac{y^2}{1} = 1$$

b)
$$\frac{x^2}{9} + \frac{y^2}{25} = 1$$

c)
$$\frac{x^2}{36} + \frac{y^2}{20} = 1$$

7.
$$(-2\sqrt{13}, 0)$$
 et $(2\sqrt{13}, 0)$
8. 40 cm et 32 cm

9. a)
$$\approx 41,19$$
 mètres

b)
$$\approx 128$$
 mètres

Pages 22-23 – Exemples

- 2. Non. Par exemple, le point du cercle $(2+2\sqrt{10}, 0)$ est à l'extérieur de l'ellipse.
 - (voir graphique ci-contre)

3. a)
$$\frac{x^2}{26} + \frac{y^2}{16} > 1$$

b)
$$x = \pm \sqrt{\frac{195}{8}}$$
 ou $x \approx \pm 4.94$

Pages 25-26 – Exemples

- 1. a) C(-5, 2)
- b) 20 u et 16 u
- c) Verticale
- d) $100x^2 + 64y^2 + 1000x 256y 3644 = 0$
- 2. C(5, -2); Sommets: (7, -2); (3, -2); (5, -1); (5, -3); Foyers: $(5 \sqrt{3}, -2)$ et $(5 + \sqrt{3}, -2)$
- 3. a) $\frac{(x-6)^2}{34} + \frac{(y+4)^2}{9} = 1$ b) Aire = $3\pi\sqrt{34}$ km² c) (1,82; -1,91) et (10,18; -6,09)

Pages 30-31 – Exemples

1. a)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

b)
$$\frac{x^2}{12} - \frac{y^2}{4} = -1$$
 c) $\frac{x^2}{36} - \frac{y^2}{36} = 1$

c)
$$\frac{x^2}{36} - \frac{y^2}{36} = 1$$

- a) Sommets: (12, 0); (-12, 0); Foyers: (13, 0); (-13, 0); $y = \pm \frac{5x}{12}$
 - b) Sommets: $(2\sqrt{6}, 0)$; $(-2\sqrt{6}, 0)$; Foyers: (7, 0); (-7, 0); $y = \pm \frac{5\sqrt{6}x}{12}$
 - c) Sommets: (0, 3); (0, -3); Foyers: (0, 5); (0, -5); $y = \pm \frac{3x}{4}$
 - d) Sommets: (0, 4); (0, -4); Foyers: $(0, 2\sqrt{6})$; $(0, -2\sqrt{6})$; $y = \pm \sqrt{2} x$
 - e) Sommets: (1, 0); (-1, 0); Foyers: $(\sqrt{2}, 0)$; $(-\sqrt{2}, 0)$; $y = \pm x$
- $10\sqrt{10}$ cm (ou ≈ 31.62 cm)
- $v = \pm x$
- 6 mètres

Page 32 – Exemple

C(0, 0); Sommets: (3, 0); (-3, 0); Foyers: $(\sqrt{34}, 0)$; $(-\sqrt{34}, 0)$; $y = \pm \frac{5x}{3}$

b) C(0, 0); Sommets: $(0, 3\sqrt{5})$; $(0, -3\sqrt{5})$; Foyers: (0, 9); (0, -9); $y = \pm \frac{\sqrt{5}x}{2}$

Pages 34-35 – Exemples

- 1. a) C(7, -3)
- b) 16 u
- c) $2\sqrt{185}$ u
- d) Horizontale

- e) $121x^2 64y^2 1694x 384y 2391 = 0$
- 2. C(-2, 1); Sommets: (-2, -3); (-2, 5); Foyers: (-2, -4); (-2, 6); $y = \frac{4x}{3} + \frac{11}{3}$ et $y = \frac{-4x}{3} \frac{5}{3}$
- 3. $(x+2)^2 + (y-3)^2 = 5$

Pages 36-39 – Exercices récapitulatifs

1. a) droite b) hyperbole c) cercle d) ellipse

$$2. \quad \frac{x^2}{12} + \frac{y^2}{24} = 1$$

2.
$$\frac{x^2}{12} + \frac{y^2}{24} = 1$$
 3. $\frac{x^2}{64} - \frac{y^2}{36} = 1$

4. a)

b) Les coordonnées sont approximativement $(\pm 4,62;11,08).$

c)
$$x^2 + (y-13)^2 = 25$$

5. a)
$$(x-3)^2 + (y-8)^2 = 9$$

b)
$$6\sqrt{2} \approx 8,49$$
 unités

c) $(\sqrt{82}, 0)$ ou approximativement (9.06; 0)

6. a) Approx.
$$(3,52;4,05)$$
, $(-0,97;-4,93)$. b) Intersection vide (\emptyset) . c) Approx. $(-4,90;4,79)$, $(-1,77;-1,46)$. d) $(0,\sqrt{18})$

Pages 44-46 – Exercices

1. a)
$$y^2 = 8x$$

b)
$$x^2 = 16y$$

c)
$$y^2 = -24x$$

2. a)
$$y = 0$$
; $F(-4, 0)$; $x = 4$

b)
$$x = 0$$
; $F(0, 2)$; $y = -2$

2. a)
$$y = 0$$
; $F(-4, 0)$; $x = 4$ b) $x = 0$; $F(0, 2)$; $y = -2$ c) $y = 0$; $F(\frac{1}{2}, 0)$; $x = \frac{-1}{2}$

d)
$$x = 0$$
; $F\left(0, \frac{-3}{5}\right)$; $y = \frac{3}{5}$

3. a)
$$y^2 = -8x$$

b)
$$y^2 = -20x$$

c)
$$x^2 = -12y$$

d)
$$x^2 = -16y$$

b)
$$y^2 = -20x$$

e) $y^2 = \frac{25}{4}x$

4.
$$F\left(0, \frac{9}{2}\right)$$

b)
$$c = 2$$

c)
$$F(-1, 0)$$
; $S(-1, 2)$

d)
$$y = 4$$
; $x = -1$

6. a) Vers le bas b)
$$c = 2$$

d) $y = 4$; $x = -1$ e) Oui, car $(5 + 1)^2 = -8\left(\frac{-5}{2} - 2\right)$

7.
$$(y-1)^2 = -16(x-3)$$

8.
$$(x-4)^2 = 32(y-5)$$

10. a) S(0, 0);
$$F\left(0, \frac{1}{4}\right)$$
; $y = \frac{-1}{4}$ b) S(1, 5); $F\left(1, \frac{39}{8}\right)$; $y = \frac{41}{8}$ c) S(-1, -12); $F\left(-1, \frac{-143}{12}\right)$; $y = \frac{-145}{12}$

Page 47 – Exemple

Le point C(1, -2) se situe à l'intérieur de la parabole d'équation $x^2 = -4y$. Le point C vérifie l'inéquation $x^2 < -4y$.

Pages 48-49 – Méli-mélo de coniques!

1.	Équation sous forme canonique	Équation sous forme générale
a)	$\frac{x^2}{16} + \frac{y^2}{9} = 1$	$9x^2 + 16y^2 - 144 = 0$
b)	$\frac{x^2}{4} - \frac{y^2}{100} = -1 \text{ou} \frac{y^2}{100} - \frac{x^2}{4} = 1$	$25x^2 - y^2 + 100 = 0$
c)	$\frac{x^2}{15} + \frac{y^2}{10} = 1$	$2x^2 + 3y^2 - 30 = 0$
d)	$\frac{x^2}{25} - \frac{y^2}{50} = 1$	$2x^2 - y^2 - 50 = 0$

$$2. \quad \frac{x^2}{9} - \frac{y^2}{16} = 1$$

$$3. \quad \frac{x^2}{52} + \frac{y^2}{16} = 1$$

4. Les couples-solutions sont A(-1,52; 1,30) et B(1,52; 1,30).

On doit rejeter toute valeur de y inférieure à -1 à cause de la restriction sur $x^2 = y + 1$.

Pages 50-52 – Méli-mélo de coniques! (suite)

5. a) C'est une parabole. Équation de sa directrice : $y = -\frac{31}{8}$

Inéquation :
$$(x+1)^2 \ge -\frac{1}{2}(y+4)$$

b) C'est une parabole. Équation de sa directrice : $x = -\frac{1}{16}$

Inéquation :
$$4y^2 \ge x$$
 ou $y^2 \ge \frac{1}{4}x$

c) C'est un cercle. Centre (1, -2) Mesure du rayon : $\sqrt{\frac{25}{3}} = \frac{5\sqrt{3}}{3}$ unités

Inéquation :
$$(x-1)^2 + (y+2)^2 \ge \frac{25}{3}$$

d) C'est un cercle. Centre (0, 0) Mesure du rayon : $\frac{1}{2}$ unité

Inéquation :
$$x^2 + y^2 \ge \frac{1}{4}$$

e) C'est une parabole. Équation de sa directrice : $y = -\frac{23}{8}$

Inéquation:
$$y \ge -2(x+1)^2 - 3$$

f) C'est une parabole. Équation de sa directrice : $x = \frac{1}{4}$

Inéquation :
$$(y-2)^2 \le -3\left(x+\frac{1}{2}\right)$$

6. L'équation canonique de la parabole est $(x+5)^2 = -8(y+7)$.

a)
$$(x+5)^2 + (y+9)^2 = 16$$

b)
$$\begin{cases} (x+5)^2 \ge -8(y+7) \\ (x+5)^2 + (y+9)^2 \le 16 \end{cases}$$
 (on peut remplacer les symboles \le et \ge par $<$ et $>$)

7. $\frac{(x+3)^2}{576} - \frac{(y-4)^2}{144} = -1$

8. a)
$$y = \pm 1$$

b)
$$\frac{x^2}{36} - \frac{y^2}{4} > 1$$

Page 52 – Méli-mélo de coniques! (suite et fin)

- 9. a) PARABOLE
 - b) ELLIPSE
 - c) Droite
 - d) Hyperbole
 - e) CERCLE
- 10. a) ELLIPSE
 - b) Droite
 - c) Hyperbole
 - d) Point
 - e) CERCLE
 - f) PARABOLE