Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liv.ac.uk

v.selis@liv.ac.uk

Digital 10: ASM: Encoded State and One Hot State

Outline

- ASM charts v State graphs
- State transition tables
- ASM design / implementation
- Encoded state representation
- One Hot state representation

Previous material

Sequential circuits ✓

State tables ✓

Next-state maps ✓

ASM charts ✓

State graphs ✓

Use VITAL!:

Course textbook – 7th ed. available as e-book!

Logic gates & combinational logic

Combining logic gates to implement multiplexers, decoders; ROM, PLA, PAL

Latches. Concepts of clock, timing, memory. Sequential logic. Timing diagrams, glitches

Flip-flops → registers for data storage/transfer
Flip-flops → sequential circuits with output & feedback

Extending latches into flip-flops.

CPLDs / FPGAs from flip-flops, MUX, gates, LUTs. The concept of 'state'

State Machines with output and next-state logic. **Design of state**machines

- State Graphs
- ASM charts
- State (Transition)
 Tables
 - Next-state maps

- State Graphs
- ASM charts
- State (Transition)Tables
- Next-state maps

Notes:

Example of a state table

- [Algorithmic] State Machine - really another name for a sequential circuit

[State] transition table

00

- ASM chart ≡ 'SM chart'
- State graph ≡ State diagram
- State Table, Transition table/State transition table

Example of a state table						[State] transition table				
Present State	Input	Next State	Outputs			Present State	Input	Next State	Out	puts
	Z		CMD1	CMD2		ВА	Z	D_BD_A	CMD1	CMD2
S_0	0	S ₁	1	1		00	0	10	1	1
S_0	1	S_2	1	0		00	1	11	1	0
S ₁	-	S_0	0	0		01	-	-	-	-
S_2	-	S_0	0	1		10	-	00	0	0
						4.4				

11

Process Model

Design Implementation

Design Implementation

Input is Z

 $Z/_{CMD1CMD2}$

Outputs are CMD1, CMD2

State Graphs v ASM Charts

Accounts for all values of input/output

Scaling up is a problem – quickly becomes messy

Clearer depiction of algorithmic structure Less cluttered (ignore 'don't care' inputs or false outputs

Higher level – allows 'top down' design Arguably easier to interpret for implementation

State	State
name	name
S ₀	Р
S ₁	Q
S ₂	R

Traditional Design Implementation

Use flip-flops as state memory (either D, J-K, or T types)

There are two ways to represent the present state in flip-flop memory.

Assign a unique binary number to each state (Encoding Method).

Assign one flip-flop to each state (One Hot Method).

Traditional Design Implementation

Using the Encoding method, n state variables are required for encoding 2^n states.

The state assignment is arbitrary.

Given the present state, we need to compute the new state code to load into the state flip flops.

State Transition Table

Present State	Input	Next State	Outputs	
BA	Z	D_BD_A	CMD1	CMD2
00	0	10	1	1
00	1	11	1	0
01	-	-	-	-
10	-	00	0	0
11	-	00	0	1

Logic Implementation

Present State	Input	Next State	Outputs	
BA	Z	D_BD_A	CMD1	CMD2
00	0	10	1	1
00	1	11	1	0
11	-	00	0	1
10	-	00	0	0
01	-	_	-	_

D_{B} , Z			$D_{A\setminus Z}$		
BA	0	1	BA	0	1
00	1	1	00	0	1
01	X	X	01	X	X
11	0	0	11	0	0
10	0	0	10	0	0

$$D_B = B'$$
 CMD1 = B'

$$D_A = Z.B'$$
 CMD2 = A + Z'.B'

ASM Implementation

Question

??

Implement the following ASM using D type flip flops. Use state

variables BA.

The question requires us to design simplified Boolean equations for the outputs and next state logic

Answer

D _B X BA	0	ı1 ı
00	0	1
01	0	0
11	0	0
10		1

D _A X BA	0	յ 1 լ
00	$\overline{\Box}$	
01	0	0
11	0	0
10	0	1
,		

Present State	Input	Next State	Out	puts
BA	X	D_BD_A	Υ	Z
00	0	01	0	0
00	1	11	0	1
01	-	00	0	1
10	0	10	0	0
10	1	11	0	0
11	-	00	1	0

Answer...

$$D_B = B.\bar{A} + X.\bar{A}$$

$$D_A = \bar{B}.\bar{A} + X.\bar{A}$$

$$Y = B.A$$

$$Z = \bar{B}.A + X.\bar{B}$$

ASM Implementation? → Y You try at A home... В Next Present State State State Flip-flops Address Address System Clock

Sequential Design: One Hot Method

- The 'one hot' method uses *n* flip flops for *n* states with 1 'hot' flip flop per state.
- This is different from the 'encoded' method where a sequential system with up to 2^n states would use a register with n flip-flops.
- A n-to-2ⁿ-line decoder would provide an output corresponding to each of the states for the 'encoded' method.
- A decoder is not needed if the one-hot method (one flip-flop per state) is used.

One-Hot Design: One Flip-Flop per State

Only one of the flip-flops contains a **1** at any time; all others are reset to **0**. The single **1** propagates from one flip-flop to another under the control of decision logic. Each state needs a flip-flop, therefore the system cost looks higher.

The combinational part can be simpler (as decoder is not needed) so the circuit can operate at higher frequencies. This method offers simplicity so that the logic can be designed by inspection of the ASM chart or the state diagram.

ASM – One Hot Implementation

State	Transition	Table

Present State	Input	Next State	Outputs	
PQR	Z	$D_P D_Q D_R$	C1	C2
001	-	100	0	0
010	-	100	0	1
100	0	001	1	1
100	1	010	1	0

Next state logic

 $D_P = Q + R$ $D_Q = Z.P$ $D_R = Z'.P$

Outputs

C1 = P C2 = Q + Z'.P

Implement the following ASM using D type flip flops. Use the one hot method.

The question requires us to design simplified Boolean equations for the outputs and next state logic

Answer

Present Inpu		Next State	Out	puts
PQRS	X	$D_P D_Q D_R D_S$	Y	Z
1000	0	0010	0	0
1000	1	0001	0	1
0100	0	0100	0	0
0100	1	0001	0	0
0010	-	1000	0	1
0001	-	1000	1	0

logic

Next state
$$D_P = R + S D_Q = X'.Q$$

$$D_R = X'.P$$
 $D_S = X.(P + Q)$

Outputs

$$Y = S$$

$$Y = S$$
 $Z = R + X.P$

Summary and suggested reading

Section 19.1-2 [A]SM Charts

Section 19.3 ASM realisation

Roth and Kinney Fundamentals of Logic Design

UNIVERSITY OF LIVERPOOL

..... 7th ed. is available as an e-book!

Next lecture:

More on ASM design Serial communications.

