

11.2 三种保守力的功

一、重力的功

由元功表达式 $d'W = F_x dx + F_y dy + F_z dz$

物体的重力 G在坐标轴系上的投影为

$$F_{x} = F_{y} = 0 , \qquad F_{z} = -G$$

得重力的元功

$$d'W = -Gdz$$

故重力在曲线路程 A_1A_2 上的功为

$$W = -\int_{z_1}^{z_2} G dz = G(z_1 - z_2) = Gh$$

故重力在曲线路程 A₁A₂ 上的功为

$$W = -\int_{z_1}^{z_2} G dz = G(z_1 - z_2) = Gh$$

式中 z_1 和 z_2 分别是重心的路程起点和终点的纵坐标; $h = z_1 - z_2$ 是物体重心降落的高度, 称为高度降。

有结论

- (1) 重力的功等于重力与重心高度降的乘积。
- (2) 重力的功与运动路径无关。
- (3)重心下降,重力作正功;否则,重力做负功。

二、弹性力的功

设弹簧未变形时长度是 l_0 ,刚度系数是k。弹簧的一端 O 固定 ,而另一端 A 作任意曲线运动 ,且弹簧始终处于直线状态。

当点 A 由位置 A_1 沿某一路线运动到位置 A_2 时,该路程中弹性力

所作的功为:

$$W = \frac{k}{2} (\lambda_1^2 - \lambda_2^2)$$

式中 $\lambda_1 = r_1 - l_0$, $\lambda_2 = r_2 - l_0$ 分别表示路程始末端 A_1 和 A_2 处弹簧的变形量。

弹性力F在曲线路程 A_1A_2 中的功

$$W = \frac{k}{2} (\lambda_1^2 - \lambda_2^2)$$

有结论

- (1)弹性力的功,等于弹簧初变形的平方 和末变形的平方之差与弹簧刚度系数 乘积的一半。
- (2)弹性力的功与运动路径无关。
- (3)弹簧的变形量减小弹性力作正功;否则,做负功。

三、牛顿引力的功

由牛顿万有引力定律知,若两个质点的质量分别是 M 和 m,相互间的距离是r,则相互间的引力 F 和 F '的大小等于

$$F = f \frac{Mm}{r^2}$$

式中的引力常数 $f = 6.673 \times 10^{-11} \text{m}^3 \text{ kg}^{-1} \text{s}^{-2}$ 。

设在路程始末端质点 A 到力心 O 的距离(称为极径)分别为 r_1 和 r_2 , 于是 M, m 间一对牛顿引力在这段路程的功

$$W = -\int_{r_1}^{r_2} f \frac{Mm}{r^2} dr = fMm(\frac{1}{r_2} - \frac{1}{r_1})$$

牛顿引力的功与运动路径无关。

$$W = -\int_{z_1}^{z_2} G dz = G(z_1 - z_2) = Gh$$

弹性力的功

$$W = \frac{k}{2}(\lambda_1^2 - \lambda_2^2)$$
 做功都和路径无关-保守力

$$W = -\int_{r_1}^{r_2} f \frac{Mm}{r^2} dr = fMm(\frac{1}{r_2} - \frac{1}{r_1})$$

谢谢!