Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2024-25

Αναπαράσταση Μη Αριθμητικών Δεδομένων

(αναπαραστάσεις κειμένου στον υπολογιστή)

https://mixstef.github.io/courses/csintro/

Μ. Στεφανιδάκης

Αναπαράσταση δεδομένων

- Ψηφιοποίηση
 - Διαδικασία μετατροπής συνεχών τιμών σε διακριτά σύμβολα
- Αναπαράσταση
 - Διαδικασία αντιστοίχισης συμβόλων σε δυαδικούς αριθμούς
- Κωδικοποίηση
 - Αποθήκευση δυαδικών αριθμών σε σειρές bits

Δεδομένα: ανεξάρτητα από τύπο και προέλευση, στον υπολογιστή υπάρχουν σε μία μορφή: 0 και 1

Η ερμηνεία της αναπαράστασης

- Κάπου στη μνήμη του υπολογιστή...
 - Βρίσκεται αποθηκευμένη η σειρά bits 0100110111010001
 - Πόσα σύμβολα αναπαριστά;
 - Πόσα bits ανά σύμβολο;
 - Ποιος ο τύπος των δεδομένων;
 - Ποια συγκεκριμένη ποσότητα συμβολίζει;
 - Πώς θα το χειριστεί ο υπολογιστής;
- Στα ερωτήματα αυτά μπορεί να απαντήσει μόνο ο προγραμματιστής της εφαρμογής που χειρίζεται τα δεδομένα!

Αναπαράσταση με δυαδικούς αριθμούς

- Σειρά από n bits
 - Δυαδικός αριθμός με n bits (n≥1) μπορεί να αναπαραστήσει
 2ⁿ διαφορετικά σύμβολα
- Μη αριθμητικά δεδομένα
 - Κείμενο, ήχος, εικόνα...
 - Σύνολο διαφορετικών αντικειμένων (συμβόλων)
 - Αντιστοίχιση κάθε συμβόλου σε μοναδικό δυαδικό αριθμό
 - «Αναπαράσταση»
 - Η ακριβής αντιστοίχιση ορίζεται σε ένα πρότυπο (standard)

Το απλουστευμένο μοντέλο μνήμης

- Πώς βλέπει ένα πρόγραμμα τη μνήμη
 - Ακολουθία αποθηκευτικών θέσεων
 - Σε κάθε θέση αποθηκεύεται (συνήθως) 1 byte
 - Κάθε θέση διαθέτει μοναδική διεύθυνση
 - Επιλογή θέσης κατά την προσπέλαση (ανάγνωση-εγγραφή)

Με διεύθυνση των n bits, πόσες διαφορετικές θέσεις μνήμης μπορούμε να προσπελάσουμε;

Το απλουστευμένο μοντέλο μνήμης

- Στην πραγματικότητα
 - Η «μνήμη» είναι μια σύνθετη ιεραρχία πολλών επιπέδων
 - Οι μεταφορές δεδομένων δεν γίνονται σε μεμονωμένα bytes αλλά σε ομάδες πολλών bytes μαζί

Αποθήκευση δυαδικών αριθμών στη μνήμη

- Όταν για έναν δυαδικό αριθμό χρειάζονται περισσότερα από ένα bytes για να αποθηκευτούν τα ψηφία του
- Παράδειγμα: 3FC (hex) = 11 1111 1100

Απαιτούνται 2 bytes για την αποθήκευση του αριθμού αυτού

0000 0011 1111 1100 περισσότερο λιγότερο σημαντικό byte σημαντικό byte

• Προφανώς σε συνεχόμενες θέσεις μνήμης

Αλλά: ποιο byte αποθηκεύεται πρώτο;

Αποθήκευση δυαδικών αριθμών στη μνήμη

αποθηκεύοντας το 03FC

00000011 11111100

"little-endian"

Το λιγότερο σημαντικό byte στη θέση μνήμης με μικρότερη διεύθυνση

"big-endian"

Το περισσότερο σημαντικό byte στη θέση μνήμης με μικρότερη διεύθυνση

Αρχικές αναπαραστάσεις κειμένου

- Οι πρώτες αναπαραστάσεις κειμένου
 - Στον υπολογιστή
 - 6-7 bits ανά χαρακτήρα
 - Πόσοι διαφορετικοί χαρακτήρες;
- Μη εκτυπώσιμοι χαρακτήρες
 - Χαρακτήρες ελέγχου
 - Ιδιαίτερα χρήσιμοι για τις συσκευές εξόδου της εποχής (εκτυπωτές, τηλέτυπα...)
 - Nέα γραμμή (LINE FEED LF)
 - Επιστροφή κεφαλής εκτύπωσης (CARRIAGE RETURN CR)
 - Καμπανάκι (BELL) κλπ

Κώδικας ASCII

(American Standard Code for Information Interchange)

- 7 bits ανά χαρακτήρα
 - 128 χαρακτήρες
 - Αναπαράσταση με τους αριθμούς 0...127
- Κανονικοί χαρακτήρες (εκτυπώσιμοι)
 - 32...47, 58...64, 91...96, 123...126 = σημεία στίξης κ.ά. (32 = SPACE)
 - 48...57 = ψηφία 0...9
 - 65...90 = κεφαλαία λατινικά (A-Z)
 - 97...122 = $\pi ε ζ ά λατινικά (a-z)$
- Χαρακτήρες ελέγχου (μη εκτυπώσιμοι)
 - 0...31, 127 τα πιο γνωστά σε εμάς είναι: 9 (TAB), 13/10 (CR/LF, σήμανση "νέας γραμμής")

Κείμενο σε κώδικα ASCII

• Παράδειγμα

H	đ	>	Ø		đ		n	i	U	Ø		d	a	У	•
72	97	118	101	32	97	32	110	105	99	101	32	100	97	121	33

- Κωδικοποίηση με 1 byte ανά χαρακτήρα
 - Δεν τίθεται θέμα "little-" ή "big-endian" αποθήκευσης γιατί κάθε χαρακτήρας είναι 1 byte

Μεταγενέστερες επεκτάσεις κώδικα ASCII

- Χρήση του ενός επιπλέον bit του byte (bit7)
 - 128 αρχικοί + 128 νέοι χαρακτήρες
 - 0...127 αρχικός ASCII, 128...255: επεκταμένα αλφάβητα
- Επέκταση αλφαβήτων
 - Χαρακτήρες που δεν υπάρχουν στον ASCII
 - Αρχικά: ad hoc (μη πρότυπες) λύσεις
 - Για Windows, Mac ...
 - Στη συνέχεια: διαφορετικά πρότυπα ανά γλώσσα, π.χ.:
 - ISO-8859-1: Δυτική Ευρώπη (Å, Ñ, Æ,ä, ø κλπ)
 - ISO-8859-7: Νέα Ελληνικά
 - ...και πολλά άλλα πρότυπα για τις υπόλοιπες γλώσσες
 - Δεν μπορούν να συνυπάρχουν δύο διαφορετικά πρότυπα στο ίδιο κείμενο

Κείμενο σε κώδικα ISO-8859-7

• Παράδειγμα

Г	ε	-	α		ь	0	ט	
195	229	233	225	32	243	239	245	33

- Επέκταση κώδικα ASCII
 - 0...127 όπως στον ASCII
 - 128...159 πρόσθετοι χαρακτήρες ελέγχου
 - 160...255 ελληνικά και σχετικά σύμβολα

Πρότυπο Unicode

- Για την αναπαράσταση όλων των αλφαβήτων
 - Καλύπτει ιδεογράμματα, φωνητικές αναπαραστάσεις και διάφορα σύμβολα (~100.000 χαρακτήρες έχουν οριστεί)
 - Θεωρητικά μπορεί να καλύψει πάνω από 1 εκ. χαρακτήρες
- Κάθε χαρακτήρας αναπαρίσταται με έναν δυαδικό αριθμό (codepoint)
 - 0 έως 10FFFF
 - Χρειάζονται περισσότερα από ένα bytes για την αποθήκευση ενός τέτοιου αριθμού
 - Με περισσότερα από 1 bytes ανά χαρακτήρα τίθεται θέμα σειράς αποθήκευσης των bytes (little- ή big-endian)

Πρότυπο Unicode

- Το πρότυπο Unicode περιέχει επίσης
 - Πληροφορία ισοδύναμων ή παρόμοιων χαρακτήρων
 - Συνδυασμούς τόνων/διακριτικών και γραμμάτων
 - Οδηγίες για την ταξινόμηση των γραμμάτων ανά γλώσσα

Ελληνικά και Unicode

Κωδικοποίηση Unicode

- Το πρότυπο Unicode αναθέτει έναν αριθμό (codepoint)
 σε κάθε χαρακτήρα των αλφαβήτων που υποστηρίζει
 - Π.χ. ο λατινικός χαρακτήρας L αντιστοιχεί στον αριθμό 4C
 - Και ο ελληνικός χαρακτήρας ψ στον αριθμό 3C8
- Κατά την αποθήκευση όμως σε αρχείο χρησιμοποιείται κάποιας μορφής κωδικοποίηση
 - Μετατρέπει τους αριθμούς Unicode σε μια σειρά από bytes με καθορισμένη μορφή και σειρά
 - Η αντίστροφη μετατροπή από τα bytes ενός αρχείου σε αριθμούς Unicode ονομάζεται αποκωδικοποίηση.

Κείμενο σε Unicode

• Παράδειγμα

Κωδικοποίηση big-endian

Κωδικοποίηση little-endian

Unicode σε κωδικοποίηση UTF-8

• Αναπαράσταση μεταβλητού μήκους

Unicode	Κωδικοποίηση UTF-8
007F	0xxxxxxx
807FF	110xxxxx 10xxxxxx
800FFFF	1110xxxx 10xxxxxx 10xxxxxx
1000010FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

- Το βασικό λατινικό αλφάβητο χρησιμοποιεί 1 byte ανά χαρακτήρα
 - Προς τα πίσω συμβατότητα με τον κώδικα ASCII
- Τα ελληνικά, 2 bytes
- Αλφάβητα Άπω Ανατολής, 3+ bytes