```
import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print("Setup Complete")
```

Setup Complete

```
# Set up code checking
from learntools.core import binder
binder.bind(globals())
from learntools.data_viz_to_coder.ex5 import *
print("Setup Complete")
```

Setup Complete

```
# Path of the files to read
cancer_filepath = "../input/cancer.csv"

# Fill in the line below to read the file into a variable cancer_data
cancer_data = pd.read_csv(cancer_filepath,index_col="Id")

# Run the line below with no changes to check that you've loaded the data correctly
step_1.check()
```

## Step2:Print 前五筆資料

|         | Diagnosis | Radius<br>(mean) | Texture<br>(mean) | Perimeter<br>(mean) | Area<br>(mean) | Smoothness<br>(mean) | Compactness<br>(mean) | Concavity<br>(mean) | Concave<br>points<br>(mean) | Symmetry<br>(mean) | <br>Radius<br>(worst) | Texture<br>(worst) | Perimeter<br>(worst) | (wor |
|---------|-----------|------------------|-------------------|---------------------|----------------|----------------------|-----------------------|---------------------|-----------------------------|--------------------|-----------------------|--------------------|----------------------|------|
| Id      |           |                  |                   |                     |                |                      |                       |                     |                             |                    |                       |                    |                      |      |
| 8510426 | В         | 13.540           | 14.36             | 87.46               | 566.3          | 0.09779              | 0.08129               | 0.06664             | 0.047810                    | 0.1885             | <br>15.110            | 19.26              | 99.70                | 71   |
| 8510653 | В         | 13.080           | 15.71             | 85.63               | 520.0          | 0.10750              | 0.12700               | 0.04568             | 0.031100                    | 0.1967             | <br>14.500            | 20.49              | 96.09                | 63   |
| 8510824 | В         | 9.504            | 12.44             | 60.34               | 273.9          | 0.10240              | 0.06492               | 0.02956             | 0.020760                    | 0.1815             | <br>10.230            | 15.66              | 65.13                | 31   |
| 854941  | В         | 13.030           | 18.42             | 82.61               | 523.8          | 0.08983              | 0.03766               | 0.02562             | 0.029230                    | 0.1467             | <br>13.300            | 22.81              | 84.46                | 54   |
| 5713702 | В         | 8.196            | 16.84             | 51.71               | 201.9          | 0.08600              | 0.05943               | 0.01588             | 0.005917                    | 0.1769             | <br>8.964             | 21.96              | 57.26                | 242  |

Step3:使用下方代碼單元建立兩個直方圖,分別顯示良性和惡性腫瘤的「面積 (平均值)」值的分佈。

```
# Histograms for benign and maligant tumors
sns.histplot(data=cancer_data, x='Area (mean)', hue='Diagnosis')
# Check your answer
step_3.a.check()
```



惡性腫瘤的「面積(平均值)」平均數值較高。惡性腫瘤的潛在值範圍較大。

Step4:使用下方代碼單元建立兩個 KDE 圖,分別顯示良性和惡性腫瘤的「半徑(最差)」值的分佈。(為了方便比較,請在下方程式碼單元中建立一個包含兩個 KDE 圖的圖形。)

```
# KDE plots for benign and malignant tumors
sns.kdeplot(data=cancer_data, x='Radius (worst)', hue='Diagnosis', shade=True)

# Check your answer
step_4.a.check()
```



該演算法更有可能將腫瘤歸類為惡性腫瘤。這是因為惡性腫瘤的曲線遠高於良性腫瘤的曲線,其值在 25 左右——而準確率高的演算法很可能會根據數據中的這種模式做出決策。