LITERATURE REVIEW BIRD SONG IDENTIFICATION

Thanyaporn Phinthuphan 3 Sep 2018

Outline

- Bird song classification in field recordings (Mario, 2013)
- Bird identification from audio recordings (Rafael, 2013)
- Clusterized MFCC & SVM for bird song identification (Olivier, 2013)

Introduction

- author: Mario Lasseck
- the winning Solution for NIPS4B 2013 Competition
- starting point is the solution for the MLSP 2013 Competition
- 87 sound classes of birds (call/song)
- 687 audio file (WAV format) in the training set

Preprocessing and Segmentation

- STFT using hanning window → normalized
- reducing background noise with median clipping
- closing & dilation → segmentation (size/position)

Feature Extraction

File-statistics

max, min, mean, std for all values of spectrogram + 16 divided spectrogram

Segment-statistics

count + max, min, mean, std for weight, height, frequency position

Segment-probabilities

highest matching all segments using normalized cross-correlation

• 68 + 13 + 9,198 (number of segments in training) features per file

Feature Selection

- \blacksquare multi-label classification problem \rightarrow 87 individual classification problems
- select seg-prob features from files which include same class only
- selected features for each class ~ 300 500 features

Classification

- using random forest (scikit-learn library)
- possible without file/seg-stat features and test recording segmentation
- score of 91.6% AUC
- performance for each class depends on character of importance segments

Classification

song of Cettia cetti

song of Phylloscopus collybita

call of Serinus serinus

Conclusion

Pros

can see the important segments for each class \rightarrow good for visualization and manually error checking

Cons

too many features \rightarrow may apply dimension reduction

Introduction

- author: Rafael Murcia & Victor Paniagua (Spain)
- rank 1 for the ICML 2013 Bird Challenge
- train data: 35 audio recordings labeled with single species (30 sec)
- test data: 90 audio recordings (150 sec) with possibly none or multiple species

Syllable Segmentation

- signal spectrogram using Kaiser-window
- 10th-order Butterworth band-pass filter
- syllable segmentation algorithm

Feature Extraction & Dimensionality Reduction

- features using the MFCCs & Delta-MFCCs
- group variables of adjacent samples into vector using sliding window to exploit the temporal relationship between the same class
- LDA for reducing dimension (using the train projection in test set too)

Classification

- 35 binary simultaneous classification problems
- using neural network
- which bird, if any, sings in instant T?
- answer using maximum score achieved during time instant
- score of 69.45% AUC

Conclusion

Pros

can extract some features that cannot be extracted by human

Cons

very hard algorithm

Clusterized MFCC & SVM for bird song identification Introduction

- author: Oliver Dufour and team
- rank 4 for the ICML 2013 Bird Challenge

Clusterized MFCC & SVM for bird song identification

Preprocessing

- 17 MFCC feature vectors, including energy per frame
- windowing → representative of longer segments
- silence removal using clustering by average energy of frames
- 6 math features for 17-MFCC → 102 features

$$f_1 = rac{\sum_{i=1}^n (|v_i|)}{n}$$
 $f_2 = \sqrt{rac{1}{n-1} \sum_{i=1}^n (v_i - ar{v_i})^2}$ $f_3 = \sqrt{rac{1}{n-2} \sum_{i=1}^n (d_i - ar{d_i})^2}$

$$f_4 = \sqrt{\frac{1}{n-3} \sum_{i=1}^{n} (D_i - \bar{D}_i)^2}$$

$$f_5 = \frac{\sum_{i=1}^{n-1} |d_i|}{n-1}$$

$$f_6 = \frac{\sum_{i=1}^{n-2} |D_i|}{n-2}$$

Clusterized MFCC & SVM for bird song identification Classification

- clustering to split call and sound for each species
- classification problem with 2K classes (K species)
- SVM in a one-versus-all fashion
- score of 64.64% AUC

Clusterized MFCC & SVM for bird song identification Conclusion

Pros

unsupervised learning (clustering) to handle noise

Cons

too many step to implement