234053

Numer indeksu
Paweł Galewicz

Imię i nazwisko

 $\frac{Numer\ indeksu}{\text{Bartosz}\ Jurczewski}}{Imię\ i\ nazwisko}$

234067

234102

Numer indeksu

Zbigniew Nowacki

Imię i nazwisko

234106

Numer indeksu

 $\frac{\text{Karol Podlewski}}{\textit{Imię i nazwisko}}$

 $\frac{234128}{Numer\ indeksu}$ Piotr Wardęcki $\frac{Imię\ i\ nazwisko}{}$

Kierunek Informatyka Stosowana

Stopień II

Specjalizacja Data Science

Semestr 1

Data oddania 6 maja 2020

Metody uczenia maszynowego Problem set 3

Spis treści

1	Cel		3			
2	Opis implementacji					
3	Opis zbiorów danych		3			
	3.1 Klasyfikacja		3			
	3.2 Klasteryzacja		3			
4	Ewaluacja modeli klasyfikacyjnych		3			
	4.1 Wartości podstawowych metryk ewaluacyjnych		4			
	4.2 Krzywe ROC		7			
	4.3 Krzywe uczenia się		9			
5	Ewaluacja modeli analizy skupień	1	.1			
	5.1 Analiza wyznaczonych skupień	1	l 1			
	5.2 Analiza zbioru danych A - "Mall Customer Segmentation"	1	12			
	5.3 Analiza zbioru danych B - "Red Wine Quality"	1	14			
6	6 Wyniki	1	.7			

1 Cel

Zadanie polegało na ocenie jakości modeli, które przygotowane były w poprzednich zadaniach – klasyfikacji oraz analizy skupień. Do oceny tej wykonane zostały różne testy z wykorzystaniem odpowiednich miar ewaluacyjnych oraz metod walidacji.

2 Opis implementacji

Algorytmy oraz przygotowane do nich testy zostały zaimplementowane za pomocą języka Python w wersji 3.8.2. Wykorzystano w nim biblioteki NumPy, Sklearn i Pandas.

3 Opis zbiorów danych

3.1 Klasyfikacja

Bazowaliśmy na trzech zestawach danych, przeznaczonych do klasyfikacji binarnej:

- A. League of Legends Diamond Ranked Games (10 min) zbiór zawierający dane dotyczące meczy rankingowych na wysokim poziomie w grze League of Legends, składający się z 38 cech, po 19 dla każdej drużyny. Zebrane wartości to informacje o między innymi zgromadzonym złocie, zniszczonych wieżach, zgładzonych potworach czy przeciwnikach na przestrzeni pierwszych 10 minut mapy. Do cech tych przypisana jest informacja o zwycięstwie danej drużyny.
- B. Rain in Australia historia danych pogodowych z 10 lat (data, lokalizacja, temperatury, opady, wiatr, ciśnienie, wilgotność, nasłonecznienie itp). Na podstawie 23 cech należy określić, czy kolejnego dnia wystąpią opady.
- C. Pima Indians Diabetes Database zbiór danych zawierający 8 niepowiązanych ze sobą pomiarów diagnostycznych (m. in. ilość ciąż, poziom glukozy, ciśnienie, bmi, wiek) na podstawie których dokonywana jest ocena, czy kobieta choruje na cukrzyce.

3.2 Klasteryzacja

Bazowaliśmy na trzech zestawach danych:

- A. Mall Customer Segmentation Zawiera informacje zbierane od klientów centrum handlowego uczestniczących w programie lojalnościowym. Są to między innymi dane o wieku, płci, rocznym przychodzie. Każdy klient ma też wyliczoną ocenę wydatków w sklepie w przedziale od 1 do 100.
- B. Wine quality selection Zestaw danych przedstawiający współczynniki wina wraz z przyporządkowaną ich jakością.
- C. Credit Card Dataset Zbiór opisujący zachowania aktywnych klientów bankowych, agregowanych przez 6miesięcy.

4 Ewaluacja modeli klasyfikacyjnych

Model klasyfikacji przygotowany został w ramach zadania 1. Zawiera on implementacje następujących metod:

- 1. Algorytm drzew decyzyjnych
- 2. Naiwny klasyfikator Bayesa
- 3. Maszyna wektorów nośnych
- 4. Klasyfikator k-najbliższych sąsiadów
- 5. Algorytm sztucznych sieci neuronowych

Na każdej z metod przeprowadzone zostały testy, które miały na celu sprawdzenie jak dobrze spełniają one swoje zadanie. Za każdym razem wykorzystano 75% danych jako część treningową.

4.1 Wartości podstawowych metryk ewaluacyjnych

Pierwszy test zakładał stworzenie macierzy pomyłek dla każdej metody klasyfikacji i na jej podstawie wyliczenie podstawowych metryk ewaluacyjnych:

- Dokładność Określa jak duży odsetek obserwacji został prawidłowo zaklasyfikowany.
- Precyzja Oznacza jak dużo zaklasyfikowanych do danej klasy obserwacji rzeczywiście do niej należy.
- Czułość Stosunek liczby obserwacji oznaczonych jako true positive do sumy true positive i false negative. Jej wartość interpretować można jako zdolność do prawidłowego zakwalifikowania obserwacji do odpowiedniej klasy.
- Specyficzność Stosunek liczby obserwacji true negative do sumy true negative i false positive. Określa jak dobrze model rozpoznaje, że dana obserwacja nie należy do danej klasy.

Zbiór A

Tabela 1: Macierz pomyłek dla algorytmu drzew decyzyjnych, dla zbioru A

	0 0	•	, , ,
		Klasa pre	dykowana
		Pozytywna	Negatywna
Klasa	Pozytywna	785	461
rzeczywista	Negatywna	457	766

Tabela 2: Macierz pomyłek dla naiwnego klasyfikatora Bayesa, dla zbioru A

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	879	338
rzeczywista	Negatywna	331	921

Tabela 3: Macierz pomyłek dla maszyny wektorów nośnych, dla zbioru A

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	889	378
rzeczywista	Negatywna	304	898

Tabela 4: Macierz pomyłek dla klasyfikatora k-nn, dla zbioru A

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	832	411
rzeczywista	Negatywna	373	853

Tabela 5: Macierz pomyłek dla sztucznej sieci neuronowej, dla zbioru A

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	1207	22
rzeczywista	Negatywna	1079	161

Tabela 6: Wartości metryk ewaluacyjnych dla zbioru A

Algorytm	Precyzja	Dokładność	Czułość	Specyficzność
Drzew decyzyjnych	0.632	0.628	0.63	0.626
Naiwny klasyfikator Bayesa	0.726	0.729	0.722	0.736
Maszyna wektorów nośnych	0.745	0.724	0.702	0.747
Klasyfikator k-nn	0.69	0.682	0.669	0.696
Sztucznych sieci neuronowych	0.528	0.554	0.982	0.13

Zbiór B

Tabela 7: Macierz pomyłek dla algorytmu drzew decyzyjnych, dla zbioru B

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	3115	0
rzeczywista	Negatywna	0	10989

Tabela 8: Macierz pomyłek dla naiwnego klasyfikatora Bayesa, dla zbioru B

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	3036	1
rzeczywista	Negatywna	812	10255

Tabela 9: Macierz pomyłek dla maszyny wektorów nośnych, dla zbioru B

		Klasa predykowana	
		Pozytywna Negatyw	
Klasa	Pozytywna	485	2644
rzeczywista	Negatywna	1	10974

Tabela 10: Macierz pomyłek dla klasyfikatora k-nn, dla zbioru B

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	1589	1497
rzeczywista	Negatywna	405	10613

Tabela 11: Macierz pomyłek dla sztucznej sieci neuronowej, dla zbioru B

		Klasa predykowana	
Pozytywn		Pozytywna	Negatywna
Klasa	Pozytywna	3108	6
rzeczywista	Negatywna	147	10843

Tabela 12: Wartości metryk ewaluacyjnych dla zbioru B

Algorytm	Precyzja	Dokładność	Czułość	Specyficzność
Drzew decyzyjnych	1.0	1.0	1.0	1.0
Naiwny klasyfikator Bayesa	0.789	0.942	1.0	0.927
Maszyna wektorów nośnych	0.998	0.812	0.155	1.0
Klasyfikator k-nn	0.797	0.865	0.515	0.963
Sztucznych sieci neuronowych	0.955	0.989	0.998	0.987

Zbiór C

Tabela 13: Macierz pomyłek dla algorytmu drzew decyzyjnych, dla zbioru C

		Klasa predykowana	
		Pozytywna Negatyw	
Klasa	Pozytywna	40	30
rzeczywista	Negatywna	24	97

Tabela 14: Macierz pomyłek dla naiwnego klasyfikatora Bayesa, dla zbioru C

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	36	33
rzeczywista	Negatywna	20	102

Tabela 15: Macierz pomyłek dla maszyny wektorów nośnych, dla zbioru C

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	36	29
rzeczywista	Negatywna	10	116

Tabela 16: Macierz pomyłek dla klasyfikatora k-nn, dla zbioru C

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	39	29
rzeczywista	Negatywna	23	100

Tabela 17: Macierz pomyłek dla sztucznej sieci neuronowej, dla zbioru C

		Klasa predykowana	
		Pozytywna	Negatywna
Klasa	Pozytywna	41	14
rzeczywista	Negatywna	40	96

Tabela 18: Wartości metryk ewaluacyjnych dla zbioru C

Algorytm	Precyzja	Dokładność	Czułość	Specyficzność
Drzew decyzyjnych	0.625	0.717	0.571	0.802
Naiwny klasyfikator Bayesa	0.643	0.723	0.522	0.836
Maszyna wektorów nośnych	0.783	0.796	0.554	0.921
Klasyfikator k-nn	0.629	0.728	0.574	0.813
Sztucznych sieci neuronowych	0.506	0.717	0.745	0.706

4.2 Krzywe ROC

Drugim testem było wyznaczenie krzywych ROC dla każdej zaimplementowanej metody. Pokazuje ona zależność między czułością, a dopełnieniem specyficzności (1 - specificity) dla różnych progów alfa. Pole pod stworzonym wykresem pozwala wyliczyć jakość klasyfikatora.

W celu jaśniejszego porównania wszystkie krzywe zostały przedstawione na jednym, zbiorczym wykresie.

Rysunek 1: Krzywe ROC dla zbioru A

Rysunek 2: Krzywe ROC dla zbioru B

Rysunek 3: Krzywe ROC dla zbioru C

4.3 Krzywe uczenia się

Kolejną częścią ewaluacji modelu było wyznaczenie krzywych uczenia się metod klasyfikacji. Wykres ten prezentuje proces zdobywania informacji przez klasyfikator w czasie. Dzięki temu określić można szybkość, z jaką dana metoda "uczy się". Dla każdego zestawu danych wygenerowane zostały wykresy porównujące wyniki na zbiorze treningowym oraz testowym. Każdy z klasyfikatorów był trenowany kolejno na 60, 65, 70, 75, 80, 85 i 90 procentach całego zbioru danych.

Rysunek 4: Zestawienie krzywych dla wszystkich klasyfikatorów, dla zbioru A

Rysunek 5: Zestawienie krzywych dla wszystkich klasyfikatorów, dla zbioru B

Rysunek 6: Zestawienie krzywych dla wszystkich klasyfikatorów, dla zbioru C

5 Ewaluacja modeli analizy skupień

Zadanie 2 wymagało stworzenia modelu analizy skupień opartego o następujące metody:

- 1. Algorytm EM,
- 2. Algorytm k-średnich,
- 3. Algorytm hierarchiczne aglomeracyjnego,
- 4. Metoda gestościowej DBSCAN,
- 5. Metoda optics.

Ocenie poddane zostały wyznaczone w ramach danych metod skupienia.

5.1 Analiza wyznaczonych skupień

Ewaluacja modelu analizy skupień zakładała po pierwsze sprawdzenie, wyznaczonych różnymi metodami, liczby skupień przyjmowanych w algorytmach. Do tego celu został wykorzystana metoda łokcia która polega na wykreśleniu zmiany w funkcji liczby skupień i wybraniu krzywej jako liczby używanych skupień oraz metoda statystyki luk która określa liczbę klastrów w zbiorze danych. Następnie wygenerowane skupienia zostały poddane analizie jakości. Ze względu na specyfikę zbiorów danych - brak etykiet - wykorzystane zostały następujące miary wewnętrzne:

- Silhouette jest miarą podobieństwa obiektu do własnego skupienia w porównaniu do innych skupień. Metoda silhouette ma przedział od -1 do +1, gdzie wysoka wartość wskazuje, że obiekt jest dobrze dopasowany do własnego klastra i słabo dopasowany do sąsiednich klastrów. Jeśli wiele punktów ma niską lub ujemną wartość, konfiguracja grupowania może mieć za dużo lub za mało klastrów.
- Calinski-Harabasz metoda ta używa grupowania k-średnich, aby uzyskać wyniki dla różnych wartości k. Przebiegi k-średnich są losowo inicjowane i dlatego muszą być uruchamiane wiele razy, aby zapewnić optymalne grupowanie.
- Davies-Bouldin jest to metoda w której sprawdzanie poprawności grupowania odbywa się przy użyciu ilości cech charakterystycznych dla zestawu danych.

5.2 Analiza zbioru danych A - "Mall Customer Segmentation"

Rysunek 7: Metoda "łokcia" dla zbioru danych A

Rysunek 8: Metoda statystyki luk dla zbioru danych A

Tabela 19: Wartości metryk ewaluacyjnych dla zbioru A

klaster	Silhouette	Calinski-Harabasz	Davies-Bouldin
2	0.479	301.014	0.765
3	0.374	255.565	0.900
4	0.422	260.833	0.858
5	0.421	253.831	0.866
6	0.410	269.849	0.809
7	0.408	272.036	0.773
8	0.405	283.170	0.816
9	0.395	277.426	0.822
10	0.388	275.874	0.868

Rysunek 9: Metoda Silhouette dla zbioru danych A

Rysunek 10: Metoda Calinski-Harabasz dla zbioru danych A

Rysunek 11: Metoda Davies-Bouldin dla zbioru danych A

5.3 Analiza zbioru danych B - "Red Wine Quality"

Rysunek 12: Metoda "łokcia" dla zbioru danych B

Rysunek 13: Metoda statystyki luk dla zbioru danych B

Tabela 20: Wartości metryk ewaluacyjnych dla zbioru B

klaster	Silhouette	Calinski-Harabasz	Davies-Bouldin
2	0.602	2816.875	0.617
3	0.518	3058.177	0.664
4	0.483	3051.568	0.715
5	0.444	3036.735	0.758
6	0.446	3103.100	0.652
7	0.392	3103.871	0.734
8	0.393	3028.415	0.763
9	0.382	3040.573	0.774
10	0.380	3116.814	0.793

Rysunek 14: Metoda Silhouette dla zbioru danych B

Rysunek 15: Metoda Calinski
 $_{H}arabaszdlazbiorudanychB$

Rysunek 16: Metoda Davies $_{B}ould ind laz biorudanych B$

6 Wyniki

- Dla największego zbioru danych B wszystkie klasyfikatory odznaczały się zauważalnie wyższą sprawnością, co przekładało się na wyniki uzyskiwane na zbiorze testowym. Algorytm drzew decyzyjnych nie popełnił błędu podczas klasyfikacji danych na tym zbiorze.
- Algorytm sztucznej sieci neuronowej popełnia zdecydowanie więcej błędów pierwszego rodzaju niż inne algorytmy. Jest to widoczne w Czułości, której wartość jest zawsze wysoka dla tego algorytmu. Dla dużego zbioru danych algorytm Bayesa także popełnił więcej błędów pierwszego rodzaju.
- Na krzywych ROC widoczne jest, że algorytm drzew decyzyjnych najlepiej sobie radzi dla
 dużych zbiorów jego pole zauważalnie maleje przy zbiorach A oraz C. W przypadku algorytmów maszyny wektorów nośnych oraz k-nn większa liczba przypadków treningowych
 nie wpływa tak zauważalnie na poprawę pola pod krzywą.
- Na postawie krzywych uczenia można zaobserwować, że zjawisko niedouczenia wystąpiło w przypadku zbioru danych A o małej wielkości przy metodach drzew decyzyjnych oraz k najbliższych sąsiadów; Dla najmniejszego zbioru C wystąpiło również dla metody sieci neuronowej, a także w mniejszym stopniu dla naiwnego Bayesa oraz wektorów; Dla największego zbioru B jedynie metoda k najbliższych sąsiadów miała niższą sprawność dla danych testowych niż treningowych.
- Wszystkie przetestowane metody wyboru optymalnej liczby klastrów wskazały podobne wyniki.
- Dla dużych zbiorów danych najlepszymi metodami do oceny liczby skupień jest metoda łokcia oraz metoda luki.