

Fundamentals of Computer Science (MCAC-0017)

COMBINATIONAL CIRCUITS

Overview

- Introduction to Combinational Circuits
- Adder
- Ripple Carry Adder
- Subtraction
- Adder/Subtractor

Combinational Circuits

variables

Digital logic circuits are basically categorized into two types:

- 1. Combinational circuits in which there are no feedback paths from outputs to inputs and there is no memory.
- 2. Sequential circuits in which feedback naths exist from or the combinational of the combination o

circuit

variables

Binary addition by hand

- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, 1 + 1 = 10 and you have to carry!

Adder

- Design an Adder for 2-bit numbers?
- 1. Specification:
 - 2 inputs (X,Y)
 - 2 outputs (C,S)

Adder

- Design an Adder for 2-bit numbers?
- 1. Specification:
 - 2 inputs (X,Y)
 - 2 outputs (C,S)
- 2. Formulation:

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Adder

- Design an Adder for 2-bit numbers?
- 1. Specification:
 - 2 inputs (X,Y)
 - 2 outputs (C,S)
- 2. Formulation:

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

3. Optimization/Circuit

Half Adder

- This adder is called a Half Adder
- Q: Why?

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

- A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit
- A truth table and sum of minterm equations for C and S are shown below.

$$C(X,Y,Z) = \Sigma m(3,5,6,7)$$

 $S(X,Y,Z) = \Sigma m(1,2,4,7)$

Full Adder

 A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit

X	Y	Z	C	S	Sum YZ	11 10
0	0	0	0	0	$\begin{array}{c cccc} X & 00 & 01 \\ \hline 0 & 0 & I \end{array}$	$\begin{array}{c cccc} & 11 & 10 \\ \hline & 0 & 1 \end{array}$
0	0	1	0	1	$1 \overline{)} 0$	
0	1	0	0	1		
0	1	1	1	0	Carry \ YZ	
1	0	0	0	1	X 00 01	11 10
1	0	1	1	0	0 0 0	1 0
1	1	0	1	0	$1 \qquad 0 \qquad \boxed{I}$	1
1	1	1	1	1		C = XY + Y

Full Adder = 2 Half Adders

Manipulating the Equations:

$$S = X \oplus Y \oplus Z$$
$$C = XY + XZ + YZ$$

Full Adder = 2 Half Adders

Manipulating the Equations:

$$S = (X \oplus Y) \oplus Z$$

$$C = XY + XZ + YZ$$

$$= XY + XYZ + XY'Z + X'YZ + XYZ$$

$$= XY(1 + Z) + Z(XY' + X'Y)$$

$$= XY + Z(X \oplus Y)$$

Full Adder = 2 Half Adders

Manipulating the Equations:

$$S = (X \oplus Y) \oplus Z$$

$$C = XY + XZ + YZ = XY + Z(X \oplus Y)$$

Bigger Adders

- How to build an adder for n-bit numbers?
 - Example: 4-Bit Adder
 - Inputs?
 - Outputs?
 - What is the size of the truth table?
 - How many functions to optimize?

Bigger Adders

- How to build an adder for n-bit numbers?
 - Example: 4-Bit Adder
 - Inputs ? 9 inputs
 - Outputs ? 5 outputs
 - What is the size of the truth table? 512 rows!
 - How many functions to optimize? 5 functions

Ripple Carry Adder

- To add n-bit numbers:
- Use n Full-Adders in parallel
- The carries propagates as in addition by hand
- Use Z in the circuit as a C_{in}

```
1 0 0 0
```

1011

Binary Parallel Adder

- To add n-bit numbers:
 - Use n Full-Adders in parallel
 - The carries propagates as in addition by hand

This adder is called *ripple carry adder*

Subtraction (2's Complement)

• How to build a subtractor using 2's complement?

Subtraction (2's Complement)

• How to build a subtractor using 2's complement?

Src: Mano's Book

$$S = A + (-B)$$

Adder/Subtractor

• How to build a circuit that performs both addition and subtraction?

Adder/Subtractor

Using full adders and XOR we can build an Adder/Subtractor!

Ahmad Almulhem, KFUPM 2009

Decoders

- $lue{\bullet}$ A decoder is a combinational circuit that converts binary information from the n coded inputs to a maximum of 2^n unique outputs.
- The decoders presented are called n-to-m line decoders, where $m \le 2^n$. Their purpose is to generate the 2^n (or fewer) binary combinations of the n input variables. A decoder has n inputs and m outputs and is also referred to as an n x m decoder

2 to 4 line decoder

• In the 2 to 4 line decoder, there is a total of three inputs, i.e., A_0 , and A_1 and E and four outputs, i.e., Y_0 , Y_1 , Y_2 , and Y_3 . For each combination of inputs, when the enable 'E' is set to 1, one of these four outputs will be 1.

Truth Table

Enable	INP	UTS	OUTPUTS					
E	A ₁	Ao	Y ₃	Y ₂	Y ₁	Υ ₀		
0	Х	Х	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

The logical expression of the term Y0, Y0, Y2, and Y3 is as follows:

Logical circuit of the above expressions is given below:

Applications of Decoders

- They may be used to route input data to a specified output line for example addressing for memory.
- Decoders are used in audio systems to convert analogue audio into digital data.
- Used as a decompressor to convert compressed data like images and videos into decompressed form.
- Decoders are also used as building blocks in implementing arbitrary switching functions.

Encoders

- An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n (or less) input lines and n outputs lines. The output lines generate the binary code corresponding to the input value.
- An example of an encoder is the octal-to-binary enco

Block diagram of encoder

TABLE 2-2 Truth Table for Octal-to-Binary Encoder

	Inputs							Outputs			
$\overline{D_7}$	D_6	D_5	D_4	D_3	D_2	D_1	D_0	$\overline{A_2}$	A_1	A_0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

$$A0 = D1 + D3 + D5 + D7$$

 $A1 = D2 + D3 + D6 + D7$
 $A2 = D4 + D5 + D6 + D7$

• The encoder can be implemented with three OR gates.

Multiplexer (Data Selectors)

- The term Multiplexer means many into one.
- Multiplexing is the process of transmitting a large number of information over a single line.
- A Digital Multiplexer (MUX) is a combinational Circuit that select one digital information from several sources and transmits the selected information on a single output line.
- A Multiplexer is also called a Data Selector.
- The Multiplexer has several data input line and a single output line.

- □MUX directs one of the inputs to its output line by using a control bit word (*selection line*) to its select lines.
- ☐ Multiplexer contains the followings:
- data inputs
- selection inputs
- * a single output
- ☐ Selection input determines the input that should be connected to the output.
- ☐ The multiplexer acts like an electronic switch that selects one from different.

Block diagram of Multiplexer

4 to 1 Multiplexer Logic Symbol

4 to 1 Multiplexer Logic diagram

- To demonstrate the operation of the circuit, consider the case when S₁ So =00.
- If Si So =00 is applied to the select lines, the AND gate associated with Do will have two of its input equal to i and the third input connected to Do.
- The other three AND gates have o in at least one of their inputs, which make their output equal to o.
- Hence, the OR output (Y) is equal to the value of Do.

- Thus, it provides a path from the selected input and the data on the input Do appears on the data-output line (Y).
- If S1 S0 =01 (binary 1) applied to the select lines, the data on the input D1 appears on the data output line.

- If S₁ So =₁₀ (binary 2) is applied, the data on the input D₂ appears on the output line (Y).
- Similarly, if S1 S0 =11 is applied, the data on D3 is switched to the output line (Y).
- The AND gates and the inverters resemble a decoder circuit,
 and indeed they decode the input select lines.
- In general, a 2ⁿ-to-1 multiplexer is constructed from n-to -2ⁿ decoder by adding to it 2ⁿ input lines, one each AND gate.

- The output of the AND gates are applied to a single OR gate to provide a single output.
- The size of the multiplexer is specified by the number 2ⁿ
 of input lines and the single output line.
- Multiplexer ICs have an enable input to control the operation of the unit.
- The enable input (also called strobe) can be used to cascade two or more multiplexer ICs to construct a multiplexer with larger number of inputs

Truth table of 4-to-1 Multiplexer

inputs	Output
So	Y
О	Do
1	Dı
0	D2
1	D3
	0 0

8-1 Multiplexer Circuit

De-Multiplexer

- The De-Multiplexer is a combinational logic circuit that performs the reverse operation of multiplexer (Several output lines, one input line).
- De -Multiplexer means one to many. A De-Multiplexer is a circuit with one input and many output. By applying control signal, we can steer any input to the output. Few types of De -Multiplexer are 1-to 2, 1-to-4, 1-to-8 and 1-to 16 De -Multiplexer.
- De-Multiplexer is the process of taking information from one input and transmitting the same over one of several outputs.

Block diagram of DeMultiplexer

1 to 4 DeMultiplexer Logic Symbol

1 to 4 DeMultiplexer Logic diagram

Truth Table of 1 to 4 DeMultiplexer

Data Input	Select	Inputs	iputs Ou			put		
D	Sı	So	Y3	Y2	Yı	Yo		
D	О	О	0	0	0	D		
D	О	1	0	О	D	0		
D	1	o	0	D	0	О		
D	1	1	D	0	0	0		

Thankyou Any Query

?