# Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 2 Tuesday 6 February 2024

#### Topics:

- §2.1: Linear spaces with a norm
- §2.2: Properties of norms

# Functional analysis > linear algebra!

Key word: topology

Using metrics induced by norms or inner products we can study:

- sequences, limits
- open, closed, compact sets
- continuity
- completeness

#### Normed linear spaces

**Definition:** a norm on a linear space X is a real-valued function

$$x \mapsto ||x||$$

which satisfies:

1. 
$$||x|| \ge 0$$
 and  $||x|| = 0 \Leftrightarrow x = 0$ 

2. 
$$||x + y|| \le ||x|| + ||y||$$

3. 
$$\|\lambda x\| = |\lambda| \cdot \|x\|$$
 for all  $\lambda \in \mathbb{K}$ 

Note: d(x, y) = ||x - y|| is a metric on X

#### Normed linear spaces

**Example:** possible norms on  $\mathbb{K}^n$  are:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \quad 1 \le p < \infty$$

$$||x||_{\infty} = \max\{|x_i| : i = 1, \dots, n\}$$

Proof of triangle inequality nontrivial for p > 1!

# Young's inequality

**Lemma:** if  $1 and <math>a, b \ge 0$ , then

$$\frac{1}{p} + \frac{1}{q} = 1 \quad \Rightarrow \quad ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

**Proof:** if  $f:[0,\infty)\to\mathbb{R}$  is strictly increasing and f(0)=0, then

$$ab \le \int_0^a f(x) dx + \int_0^b f^{-1}(y) dy$$

Apply with  $f(x) = x^{p-1}$ 



[Exercise: show that  $f^{-1}(y) = y^{q-1}$  using that (p-1)(q-1) = 1]

## Hölder's inequality

**Lemma:** let 1 , then

$$\frac{1}{p} + \frac{1}{q} = 1 \quad \Rightarrow \quad \sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}$$

**Proof:** apply Young's inequality:

$$\frac{|x_i|}{(\sum |x_i|^p)^{1/p}} \cdot \frac{|y_i|}{(\sum |y_i|^q)^{1/q}} \le \frac{|x_i|^p}{p(\sum |x_i|^p)} + \frac{|y_i|^q}{q(\sum |y_i|^q)}$$

Sum over  $i = 1, \ldots, n$ :

$$\frac{\sum |x_i y_i|}{(\sum |x_i|^p)^{1/p} (\sum |y_i|^q)^{1/q}} \leq \frac{\sum |x_i|^p}{p(\sum |x_i|^p)} + \frac{\sum |y_i|^q}{q(\sum |y_i|^q)} = 1$$

# Minkowski's inequality

**Lemma:** let 1 , then

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$$

Proof (p > 1):

$$|x_i + y_i|^p = |x_i + y_i| \cdot |x_i + y_i|^{p-1} \le (|x_i| + |y_i|) |x_i + y_i|^{p-1}$$

$$\sum_{i=1}^{n} |x_i + y_i|^p \leq \sum_{i=1}^{n} |x_i| |x_i + y_i|^{p-1} + \sum_{i=1}^{n} |y_i| |x_i + y_i|^{p-1}$$

## Minkowski's inequality

**Proof (ctd):** apply Hölder and note that q(p-1) = p

$$\sum |x_i||x_i + y_i|^{p-1} \le \left(\sum |x_i|^p\right)^{1/p} \left(\sum |x_i + y_i|^p\right)^{1/q}$$

Hence

$$\sum |x_i + y_i|^p \le \left[ \left( \sum |x_i|^p \right)^{1/p} + \left( \sum |y_i|^p \right)^{1/p} \right] \left( \sum |x_i + y_i|^p \right)^{1/q}$$

## Normed linear spaces

#### **Examples:**

$$\ell^{p} = \left\{ x = (x_{1}, x_{2}, x_{3}, \dots) : x_{i} \in \mathbb{K}, \quad \sum_{i=1}^{\infty} |x_{i}|^{p} < \infty \right\}, \quad p \ge 1$$

$$\|x\|_{p} = \left( \sum_{i=1}^{\infty} |x_{i}|^{p} \right)^{1/p}$$

$$\ell^{\infty} = \left\{ x = (x_1, x_2, x_3, \dots) : x_i \in \mathbb{K}, \quad \sup_{i \in \mathbb{N}} |x_i| < \infty \right\}$$
$$\|x\|_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$$

## Normed linear spaces

#### **Example:**

$$\mathbb{C}([a,b],\mathbb{K}) = \{f : [a,b] \to \mathbb{K} : f \text{ is continuous}\}$$

Possible norms:

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$
$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

#### Reverse triangle inequality

**Lemma:** if X is a normed linear space, then

$$|||x|| - ||y||| \le ||x - y||$$
 for all  $x, y \in X$ 

Proof:

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||$$

$$||x|| - ||y|| \le ||x - y||$$

$$||y|| - ||x|| \le ||y - x|| = ||x - y||$$
 (swap x and y)

Use that  $|a| = \max\{a, -a\}$  for all  $a \in \mathbb{R}$ 

#### Convergence of sequences

Let X be a linear space with a norm  $\|\cdot\|$ 

**Definition:** a sequence  $(x_n)$  in X converges to  $x \in X$  if

$$||x_n - x|| \to 0$$
 as  $n \to \infty$ 

Formally:

$$\forall \varepsilon > 0 \quad \exists N > 0 \quad \text{such that} \quad n \geq N \quad \Rightarrow \quad ||x_n - x|| \leq \varepsilon$$

**Notation:**  $x_n \to x$  in X (make sure w.r.t. which norm!)

#### Convergence of sequences

**Lemma:** 
$$x_n \to x$$
 in  $X \Rightarrow ||x_n|| \to ||x||$  in  $\mathbb{R}$ 

**Proof:** by reverse triangle inequality

$$\left| \|x_n\| - \|x\| \right| \le \|x_n - x\| \to 0 \quad \text{as } n \to \infty$$

**Note:** in this case  $||x_n||$  is also bounded in  $\mathbb{R}$ 

## Algebraic properties of limits

**Lemma:**  $x_n \to x$ ,  $y_n \to y$  in  $X \Rightarrow x_n + y_n \to x + y$  in X

**Proof:** the triangle inequality gives

$$\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\|$$
  
 $\leq \|x_n - x\| + \|y_n - y\| \to 0$ 

# Algebraic properties of limits

**Lemma:**  $x_n \to x$  in X and  $\lambda_n \to \lambda$  in  $\mathbb{K} \quad \Rightarrow \quad \lambda_n x_n \to \lambda x$  in X

**Proof:** taking  $M = \sup ||x_n||$  gives

$$\|\lambda_{n}x_{n} - \lambda x\| = \|\lambda_{n}x_{n} - \lambda x_{n} + \lambda x_{n} - \lambda x\|$$

$$\leq \|\lambda_{n}x_{n} - \lambda x_{n}\| + \|\lambda x_{n} - \lambda x\|$$

$$= |\lambda_{n} - \lambda|\|x_{n}\| + |\lambda|\|x_{n} - x\|$$

$$\leq |\lambda_{n} - \lambda|M + |\lambda|\|x_{n} - x\| \to 0$$

## Equivalent norms induce the same topology

**Definition:** two norms  $\|\cdot\|_1$  and  $\|\cdot\|_2$  on X are called equivalent

if there exist m, M > 0 such that

$$m||x||_1 \le ||x||_2 \le M||x||_1 \qquad \forall x \in X$$

**Important:** if  $\|\cdot\|_1$  and  $\|\cdot\|_2$  are equivalent, then

$$||x_n - x||_1 \to 0$$
  $\iff$   $||x_n - x||_2 \to 0$ 

**Theorem:** dim  $X < \infty \Rightarrow$  all norms on X are equivalent

**Proof:** write  $X = \text{span}\{e_1, \dots, e_n\}$  and define the norm

$$||x||_+ = \left(\sum_{i=1}^n |\lambda_i|^2\right)^{1/2}$$
 where  $x = \lambda_1 e_1 + \dots + \lambda_n e_n$ 

For any norm  $\|\cdot\|$  we have

$$||x|| \le \sum_{i=1}^{n} |\lambda_i| \, ||e_i|| \le \left(\sum_{i=1}^{n} |\lambda_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} ||e_i||^2\right)^{1/2} =: M||x||_+$$

Proof (ctd): the function

$$f: \mathbb{K}^n \to [0, \infty), \quad \lambda = (\lambda_1, \dots, \lambda_n) \mapsto \|\lambda_1 e_1 + \dots + \lambda_n e_n\|$$

is continuous since

$$|f(\lambda) - f(\mu)| = |\|x\| - \|y\||$$

$$\leq \|x - y\|$$

$$\leq M\|x - y\|_{+}$$

$$= M\left(\sum_{i=1}^{n} |\lambda_i - \mu_i|^2\right)^{1/2}$$

#### **Proof (ctd):** the unit sphere $\mathbb{S}$ is compact in $\mathbb{K}^n$

[In finite-dimensional spaces: closed & bounded ⇒ compact!]

Hence, f attains a minimum on  $\mathbb{S}$ 

$$\exists \mu \in \mathbb{S}$$
 such that  $0 \le m := f(\mu) \le f(\lambda) \quad \forall \lambda \in \mathbb{S}$ 

Note: m > 0 for if m = 0 then

$$f(\mu) = \|\mu_1 e_1 + \dots + \mu_n e_n\| = 0 \quad \Rightarrow \quad \mu_1 e_1 + \dots + \mu_n e_n = 0$$

but  $|\mu_1|^2 + \cdots + |\mu_n|^2 = 1$ . Contradicts that  $\{e_1, \dots, e_n\}$  is a basis!

#### Proof (ctd):

$$||x||_+ = 1 \quad \Rightarrow \quad ||x|| = f(\lambda) \ge m > 0$$

Hence, for all  $x \neq 0$  we have

$$\left\| \frac{x}{\|x\|_{+}} \right\|_{\perp} = 1 \quad \Rightarrow \quad \left\| \frac{x}{\|x\|_{+}} \right\| \ge m \quad \Rightarrow \quad \|x\| \ge m \|x\|_{+}$$

**Theorem:** dim  $X < \infty \Rightarrow$  all norms on X are equivalent

**Warning:** this is NOT TRUE in  $\infty$ -dimensional spaces!

#### Example:

$$\mathfrak{C}([0,1],\mathbb{K}) = \{ \mathsf{all} \; \mathsf{continuous} \; \mathsf{functions} \; f : [0,1] o \mathbb{K} \}$$

We have:

$$||f||_1 = \int_0^1 |f(x)| dx \le \sup_{x \in [0,1]} |f(x)| = ||f||_{\infty}$$

There is no m > 0 such that  $||f||_{\infty} \le m||f||_1$  holds for all f:

$$f_n(x) = x^n \quad \Rightarrow \quad \|f_n\|_{\infty} = 1 \quad \text{but} \quad \|f_n\|_1 = \frac{1}{n+1}$$