MATH 651: PROBLEM SET 3 SOLUTIONS ARE IN CLASS ON WED. OCT 10.

- 1. (10 points) Let (X, τ_X) and (Y, τ_Y) be topological spaces and let $f: X \to Y$. Let $\Gamma = \{(x, y) \in X \times Y : y = f(x)\}$ be the graph of f.
 - (i) Show that if Y is Hausdorff then f is continuous if and only if Γ is closed in $(X \times Y, \tau_X \times \tau_Y)$.
 - (ii) Assume X = Y. Show that if X is not Hausdorff then for the identity function, f(x) = x for all $x \in X$, the graph is not closed.
- 2. (10 points) Show that if a space is T3 then it is T2. Also show that there exists a space which is normal and T0 but not T4.
- 3. (5 points) Give an example of a topological space which is normal but not regular.
- 4. (15 points) Consider the following topological space. Let I = [0,1] and let $X = I \times \{1,2\}$. Let

$$\mathcal{B} = \{ (B(x,r) \times \{1,2\}) \setminus \{(x,2)\} : x \in I, r > 0 \} \cup \{ \{(x,2)\} : x \in I \} \cup \{\emptyset\}.$$

Here B(x,r) is the interval $(x-r,x+r)\cap I$. Show that

- (i) \mathcal{B} is a basis of topology; call it τ .
- (ii) (X, τ) is compact.
- (iii) (X, τ) is T4.
- (iv) (X, τ) is first countable, but not second countable.
- (v) (X, τ) is not separable.
- 5. (5 points) Let (X, τ) be a topological space. Prove that a set X is compact if and only if for every family $\{C_{\alpha}\}_{{\alpha}\in\Lambda}$ of closed subsets of X with the finite intersection property,

$$\bigcap_{\alpha \in \Lambda} C_{\alpha} \neq \emptyset.$$

- 6. (10 points) Let (X, τ) be a topological space and let $(X^{\infty}, \tau_{\infty})$ where $X^{\infty} = X \cup \{\infty\}$ be its one-point compactification.
 - (i) Prove that if $v \in C(X^{\infty})$ then $u := (v v(\infty))|_X \in C_0(X)$.
 - (ii) Conversely, show that if $u \in C_0(X)$ then the extension:

$$v(x) = \begin{cases} u(x) & \text{if } x \in X \\ 0 & \text{if } x = \infty \end{cases}$$

satisfies $v \in C(X^{\infty})$.

Here the set $C_0(X)$ is the closure (with respect to topology of C(X) with base of open balls $B(f,r)=\{g\in C(X):\sup_X|f-g|< r\}$) of the set of compactly supported functions, $C_c(X)$.