Modeling Sentiment Trends in Social Media Data

About Dataset ~ Twitter Sentiment Analysis Dataset

Introduction: Analyzing Public Sentiment on Twitter

In the age of digital communication, Twitter serves as a real-time reflection of public opinion. With users actively discussing brands, products, events, and trends, the platform provides a rich source of unstructured textual data. Analyzing sentiment on Twitter helps uncover how people feel about various topics, offering valuable insights for businesses, researchers, and policymakers.

This project explores a large-scale **Twitter Sentiment Analysis Dataset** consisting of over **74,000 tweets**, each labeled with a sentiment category — **Positive**, **Negative**, **Neutral**, or **Irrelevant** — and associated with a specific topic. The goal is to **analyze and visualize sentiment trends across topics** to understand engagement patterns and public attitudes.

Key components of the analysis include:

- Identifying **top trending topics** based on tweet frequency.
- Measuring **sentiment distribution** across the dataset.
- Investigating topic-specific sentiment patterns, especially for major tech brands like Google and Microsoft.
- Understanding **message length characteristics**, revealing how users communicate within Twitter's character limits.
- Utilizing data visualizations such as bar charts, box plots, pie charts, heatmaps, and word clouds for effective interpretation.

By processing and visualizing this data, the analysis aims to provide a data-driven overview of how various topics are perceived on Twitter — highlighting dominant sentiments, patterns of discussion, and content behavior.

```
In [2]: # Data manipulation
import pandas as pd
import numpy as np

# Data visualization
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

# Text processing
import re
Loading [MathJax]/extensions/Safe.js
```

```
import string
 import nltk
 from nltk.corpus import stopwords
 from nltk.stem import WordNetLemmatizer
 # Feature extraction
 from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
 # Model building
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.naive_bayes import MultinomialNB
 from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
 # Word cloud visualization
 from wordcloud import WordCloud
 # Download necessary NLTK resources
 nltk.download('stopwords')
 nltk.download('punkt')
 nltk.download('wordnet')
[nltk_data] Downloading package stopwords to
[nltk_data]
                C:\Users\Sarvesh\AppData\Roaming\nltk_data...
[nltk data] Unzipping corpora\stopwords.zip.
[nltk_data] Downloading package punkt to
[nltk_data]
                C:\Users\Sarvesh\AppData\Roaming\nltk_data...
[nltk_data] Unzipping tokenizers\punkt.zip.
[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\Sarvesh\AppData\Roaming\nltk_data...
```

Out[2]: True

Importing & reading the dataset

```
In [3]: cols=['ID', 'Topic', 'Sentiment', 'Text']
         train = pd.read_csv("twitter_training.csv",names=cols)
In [4]: train.head()
Out[4]:
               ID
                         Topic Sentiment
                                                                                       Text
         0 2401 Borderlands
                                    Positive
                                              im getting on borderlands and i will murder yo...
          1 2401 Borderlands
                                    Positive
                                                I am coming to the borders and I will kill you...
          2 2401 Borderlands
                                    Positive
                                                 im getting on borderlands and i will kill you ...
          3 2401 Borderlands
                                    Positive im coming on borderlands and i will murder you...
          4 2401 Borderlands
                                    Positive
                                               im getting on borderlands 2 and i will murder ...
```

Information about the dataframe

```
Out[5]: (74682, 4)
In [6]: train.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 74682 entries, 0 to 74681
        Data columns (total 4 columns):
            Column
                    Non-Null Count Dtype
                      74682 non-null int64
            Topic 74682 non-null object
         1
         2 Sentiment 74682 non-null object
         3 Text
                   73996 non-null object
        dtypes: int64(1), object(3)
        memory usage: 2.3+ MB
In [7]: train.describe(include=object)
Out[7]:
                               Topic Sentiment
                                                                                  Text
                                          74682
          count
                               74682
                                                                                 73996
         unique
                                  32
                                             4
                                                                                 69491
                 TomClancysRainbowSix
                                       Negative At the same time, despite the fact that there ...
            freq
                                2400
                                          22542
                                                                                   172
In [8]: train['Sentiment'].unique()
Out[8]: array(['Positive', 'Neutral', 'Negative', 'Irrelevant'], dtype=object)
         Check for null or missing values in the dataset
In [9]: train.isnull().sum()
Out[9]: ID
                        0
         Topic
                        0
         Sentiment
         Text
                      686
         dtype: int64
In [10]: train.dropna(inplace=True)
In [11]: train.isnull().sum()
Out[11]: ID
         Topic
         Sentiment
                      0
         Text
         dtype: int64
```

```
In [12]: train.duplicated().sum()
Out[12]: 2340
In [13]: train.drop_duplicates(inplace=True)
In [14]: train.duplicated().sum()
Out[14]: 0
```

Visualization of count of different topics

```
In [20]: plt.figure(figsize=(8, 8))
    train['Topic'].value_counts().plot(kind='barh', color='salmon')
    plt.xlabel("Tweet Count")
    plt.ylabel("Topics")
    plt.title("Distribution of Topics in Twitter Sentiment Dataset")
    plt.tight_layout()
    plt.show()
```


Sentiment Distribution

```
In [22]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Sentiment', data=train, hue='Sentiment', palette='pastel', legend=
    plt.title("Sentiment Distribution")
    plt.xlabel("Sentiment")
    plt.ylabel("Tweet Count")
    plt.tight_layout()
    plt.show()
```

Sentiment Distribution


```
In [26]: # Get pastel colors from Seaborn
         pastel_colors = sns.color_palette('pastel')[:4] # Get 4 pastel colors
         # Calculate sentiment counts
         sentiment_counts = train['Sentiment'].value_counts()
         # Create pie chart
         plt.figure(figsize=(6, 4))
         plt.pie(
             sentiment_counts,
             labels=sentiment_counts.index,
             autopct="%1.1f%%",
             startangle=140,
             colors=pastel_colors
         )
         plt.title('Sentiment Distribution')
         plt.axis('equal') # Keeps the pie circular
         plt.tight_layout()
         plt.show()
```


Observation: Most topic have negative sentiment

In [28]:	tr	ain.he	ad()		
Out[28]:	ID Topic		Sentiment	Text	
	0	2401	Borderlands	Positive	im getting on borderlands and i will murder yo
	1	2401	Borderlands	Positive	I am coming to the borders and I will kill you
	2	2401	Borderlands	Positive	im getting on borderlands and i will kill you
	3	2401	Borderlands	Positive	im coming on borderlands and i will murder you
	4	2401	Borderlands	Positive	im getting on borderlands 2 and i will murder

Sentiment Distribution Topic-wise

```
In [29]: plt.figure(figsize=(20, 12))
    sns.countplot(x='Topic', data=train, hue='Sentiment', palette='pastel')

plt.title("Sentiment Distribution by Topic", fontsize=16)
    plt.xlabel("Topic", fontsize=12)
    plt.ylabel("Tweet Count", fontsize=12)
    plt.xticks(rotation=90)
    plt.legend(title='Sentiment')
    plt.tight_layout()
    plt.show()
```



```
In [31]: ## Group by Topic and Sentiment
    topic_wise_sentiment = train.groupby(["Topic", "Sentiment"]).size().reset_index(nam
    ## Select Top 5 Topics
    topic_counts = train['Topic'].value_counts().nlargest(5).index
    top_topics_sentiment = topic_wise_sentiment[topic_wise_sentiment['Topic'].isin(topic)].
```

Top 5 Topics with Negative Sentiments

```
In [38]: plt.figure(figsize=(8, 6))
         # Set hue to match x, disable legend to avoid redundancy
         sns.barplot(
             data=top_topics_sentiment[top_topics_sentiment['Sentiment'] == 'Negative'],
             x='Topic',
             y='Count',
             hue='Topic',
             palette='pastel',
             dodge=False
         plt.legend([],[], frameon=False)
         plt.title('Top 5 Topics with Negative Sentiments')
         plt.xlabel('Topic')
         plt.ylabel('Tweet Count')
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
```


Top 5 Topics with Positive Sentiments

```
In [48]: plt.figure(figsize=(8, 6))

sns.barplot(
    data=top_topics_sentiment[top_topics_sentiment['Sentiment'] == 'Positive'],
    x='Topic',
    y='Count',
    hue='Topic',
    palette='Greens',
    dodge=False
)

plt.legend([], [], frameon=False)
plt.title('Top 5 Topics with Positive Sentiments')
plt.xlabel('Topic')
plt.ylabel('Tweet Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



```
In [54]: plt.figure(figsize=(8, 6))
         sns.barplot(
             data=top_topics_sentiment[top_topics_sentiment['Sentiment'] == 'Neutral'],
             x='Topic',
             y='Count',
             hue='Topic',
             palette='Blues',
             dodge=False
         plt.legend([], [], frameon=False)
         plt.title('Top 5 Topics with Neutral Sentiments')
         plt.xlabel('Topic')
         plt.ylabel('Count')
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
```



```
In [55]: plt.figure(figsize=(8, 6))

sns.barplot(
    data=top_topics_sentiment[top_topics_sentiment['Sentiment'] == 'Irrelevant'],
    x='Topic',
    y='Count',
    hue='Topic',
    palette='Purples',
    dodge=False
)

plt.legend([], [], frameon=False)
plt.title('Top 5 Topics with Irrelevant Sentiments')
plt.xlabel('Topic')
plt.ylabel('Count')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```

Top 5 Topics with Irrelevant Sentiments

Google: Sentiment Distribution

```
In [60]: # Filter for the topic 'Google'
         google_data = train[train['Topic'] == 'Google']
         # Count sentiment distribution
         sentiment_counts = google_data['Sentiment'].value_counts()
         # Plot pie chart
         plt.figure(figsize=(6, 5))
         colors = sns.color_palette('pastel')[:len(sentiment_counts)]
         plt.pie(
             sentiment_counts,
             labels=sentiment_counts.index,
             autopct='%1.1f%%',
             startangle=140,
             colors=colors
         plt.title('Sentiment Distribution for Topic: Google')
         plt.axis('equal')
         plt.tight_layout()
         plt.show()
```

Sentiment Distribution for Topic: Google

Microsoft: Sentiment Distribution

```
In [62]: # Filter the dataset for the topic 'Microsoft'
         ms_data = train[train['Topic'] == 'Microsoft']
         # Count sentiment occurrences
         sentiment_counts = ms_data['Sentiment'].value_counts()
         # Plot pie chart
         plt.figure(figsize=(6,5))
         colors = sns.color_palette('pastel')[:len(sentiment_counts)]
         plt.pie(
             sentiment_counts,
             labels=sentiment_counts.index,
             autopct='%1.1f%%',
             startangle=140,
             colors=colors
         plt.title('Sentiment Distribution for Topic: Microsoft')
         plt.axis('equal')
         plt.tight_layout()
         plt.show()
```

Sentiment Distribution for Topic: Microsoft


```
In [63]: train['msg_len'] = train['Text'].apply(len)
In [67]: train
```

Out[67]:		ID	Topic	Sentiment	Text	msg_len
	0	2401	Borderlands	Positive	im getting on borderlands and i will murder yo	53
	1	2401	Borderlands	Positive	I am coming to the borders and I will kill you	51
	2	2401	Borderlands	Positive	im getting on borderlands and i will kill you	50
	3	2401	Borderlands	Positive	im coming on borderlands and i will murder you	51
	4	2401	Borderlands	Positive	im getting on borderlands 2 and i will murder	57
	•••					
	74677	9200	Nvidia	Positive	Just realized that the Windows partition of my	128
	74678	9200	Nvidia	Positive	Just realized that my Mac window partition is	117
	74679	9200	Nvidia	Positive	Just realized the windows partition of my Mac	125
	74680	9200	Nvidia	Positive	Just realized between the windows partition of	159
	74681	9200	Nvidia	Positive	Just like the windows partition of my Mac is I	119

71656 rows × 5 columns

Plot of message length distribution for training data

```
In [68]: sns.histplot(train['msg_len'], bins=25,kde=True)
  plt.title('Message Length Distribution in Training Data')
  plt.ylabel('Frequency')
  plt.xlabel('Message Length')
  plt.show()
```

Message Length Distribution in Training Data

Plot message length distribution by sentiment for training data

```
In [70]: plt.figure(figsize=(8, 6))
         sns.boxplot(
             data=train,
             x='Sentiment',
             y='msg_len',
             hue='Sentiment',
             palette='pastel',
             order=['Positive', 'Negative', 'Neutral', 'Irrelevant'],
             dodge=False
         plt.legend([], [], frameon=False)
         plt.title('Message Length Distribution by Sentiment in Training Data')
         plt.xlabel('Sentiment')
         plt.ylabel('Message Length')
         plt.ylim(0, 300)
         plt.tight_layout()
         plt.show()
```



```
# Create the crosstab
In [71]:
         crosstab = pd.crosstab(index=train['Topic'], columns=train['Sentiment'])
         # Plot the heatmap
         plt.figure(figsize=(14, 10))
         sns.heatmap(
             crosstab,
             cmap='coolwarm',
             annot=True,
             fmt='d',
             linewidths=0.5,
             linecolor='gray',
             cbar_kws={'label': 'Tweet Count'}
         # Add labels and title
         plt.title('Heatmap of Topic vs Sentiment', fontsize=16)
         plt.xlabel('Sentiment', fontsize=12)
         plt.ylabel('Topic', fontsize=12)
         plt.xticks(rotation=45)
         plt.tight_layout()
         # Show the plot
         plt.show()
```



```
In [81]: from wordcloud import WordCloud
         # Join topic names into one string
         topic_list = ' '.join(crosstab.index)
         # Generate the WordCloud
         wc = WordCloud(
             width=1000,
             height=500,
             background_color='black',
             colormap='Pastel1'
         ).generate(topic_list)
         # Plot the WordCloud
         plt.figure(figsize=(12, 6))
         plt.imshow(wc, interpolation='bilinear')
         plt.axis('off')
         plt.title('Word Cloud of Topics')
         plt.tight_layout()
         plt.show()
```



```
In [80]: from wordcloud import WordCloud
         import matplotlib.pyplot as plt
         # Join all tweet texts into one string
         corpus = ' '.join(train['Text'].dropna())
         # Generate the WordCloud from the corpus
         wc2 = WordCloud(
             width=1200,
             height=500,
             background_color='black',
             colormap='Pastel2',
             max_words=200,
             stopwords=None
         ).generate(corpus)
         # Plot the WordCloud
         plt.figure(figsize=(14, 6))
         plt.imshow(wc2, interpolation='bilinear')
         plt.axis('off')
         plt.title('Word Cloud of All Tweet Texts')
         plt.tight_layout()
         plt.show()
```


Conclusion: Twitter Sentiment Analysis

The sentiment analysis of Twitter data revealed the following key insights:

Most Frequent Topic

• **TomClancyRainbowSix** emerged as the most frequently discussed topic, reflecting strong user engagement.

Sentiment Distribution

Negative: 30.3%
Positive: 27.5%
Neutral: 24.7%
Irrelevant: 17.5%

• The sentiment landscape shows a slight negative skew, though a fairly balanced range of opinions is evident.

Topic-Specific Sentiment

• Topics such as **Google** and **Microsoft** predominantly exhibited **neutral sentiment**, indicating that discourse around these brands is generally factual and objective.

Message Length

• The majority of tweets were under **400 characters**, consistent with Twitter's concise communication format.

Key Takeaway

This analysis offers valuable insights into public sentiment on social media, enabling better understanding of audience perspectives across different topics. The findings can support

Loading [MathJax]/extensions/Safe.js riven strategies in brand monitoring, communication, and engagement.