1 Theoretical Basis

1.1 傅立叶分析

1.2 Some Problems and Solutions

- 端局接收到的我们的信号,是有一段很窄的通频带(比如300-3400 Hz)
- 所以不能直接把一个方波传过去,这样可能只能传一次谐波
- 所以是先将方波调制了,调制成2400Hz的,这样传就很好

1.3 Bandwidth

- 有两个意思:
 - 带宽: 比如说通频带在300-3400Hz, 带宽就是3100Hz
 - 速率: Data transmission(发送) rate, its unit is bps (bit per second) or b/s

1.4 The Maximum Data Rate of a Channel

1.4.1 香农定律

$$MaxDataRate(b/s) = H \cdot \log_2(1 + \frac{S}{N})$$
 (1)

- H代表带宽 (通频带宽度)
- $\frac{S}{N}$ 是信噪比, Decibel (DB) = $10\log 10$ S/N,单位是db,因此给的是db还要化一次得到S/N
- T1信号是1.5Mbps

1.4.2 奈奎斯特定律(理想情况)

 $MaximumDataRate \ (b/s) = 2H \cdot \log_2 V$ (2)

■ low -pass低通, noiseless无噪声, ideal channel, V discrete level分散水平(有几种码元), H--bandwidth

1.4.3 例题

- If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio S/N is 31, what is the maximum achievable data rate?
- A. 6 kbps B. 12 kbps C. 15 kbps D. 18 kbps
- 如果用香农定理,是15kbps
- 但是如果套入奈奎斯特定律, V=2(只有两种, 因此取2, 三种则取3), 是6kbps
- 有噪音的传输速率应该低于无噪音的,因此应该选A,选更小的那个
- 香农定理给出信噪比的限制,奈奎斯特给出电平(或者几种不同的电平)的限制,实际中两种情况都要考虑

2 Transmission Media

2.1 Twisted Pair and Unshielded Twisted Pair(UTP)双

■ Category3: 双绞线里有四对,一对传,一对收,另外两段空的

■ Category5: 双绞线里有四对,一对传,一对收,另外两段空的,有时候4对都用来接收

(b)

- 5类双绞线用得更多
- 直通双绞线和交叉双绞线

通常使用专用的 RJ45 接线钳连接双绞线和 RJ45 头,双绞线连接 RJ45 头时有两种接法: EIA/TIA 568B 标准和 EIA/TIA 568A 标准。具体接法如下:

(1) T568A 接线顺序:

插针号	1	2	3	4	5	6	7	8
铜线	绿白	绿	橙白	蓝	蓝白	橙	棕白	棕
功能	RD+	RD-	TD+	NC	NC	TD-	NC	NC
功能描述	接收+	接收-	发送+	不用	不用	发送-	不用	不用

注: 关于 RJ45 头引脚的发送和接收是基于这样的假定: RJ45 头插在主机的网卡中, 而不是插在交换机/集线器中。

(2) T568B 接线顺序:

插针号	1	2	3	4	5	6	7	8
铜线	橙白	橙	绿白	蓝	蓝白	绿	棕白	棕
功能	TD+	TD-	RD+	NC	NC	RD-	NC	NC
功能描述	发送+	发送-	接收+	不用	不用	接收-	不用	不用

直通线: 双绞线两个 RJ45 头都按 T568B 接线顺序连接,对于两个 RJ45 头 A 和 B 而言, A 的 1 # 针直连 B 的 1 # 针, A 的 2 # 针直连 B 的 2 # 针,, A 的 8 # 针直连 B 的 8 # 针,即 A 的每个引脚直连 B 的相应序号的引脚。

交叉线: 双绞线两个 RJ45 头中, 一头按 T568A 线序连接, 一头按 T568B 线序连接, 对于两个 RJ45 头 A 和 B 而言, A 的 1 #、2 # 针分别连接 B 的 3 #、6 # 针, A 的 3 #、6 # 分别连接 B 的 1 #、2 # 针。即: 一头的 TD+、TD-引脚连另一头的 RD+、RD-引脚, 一头的 RD+、RD-引脚连另一头的 TD+、TD-引脚。

交叉线常用来连接同类设备的以太网口,属于同类设备之间互连的有: 主机与主机、路由器与路由器、交换机/集线器与交换机/集线器、主机与路由器,因此,主机与主机连接要用交叉线,主机与路由器连接要用交叉线,集线器与交换机连接要用交叉线,交换机(或集线器)的 uplink 端口与交换机(或集线器)的 uplink 端口互连用交叉线,交换机(或集线器)的普通端口互连用交叉线。

直通线常用来连接非同类设备的以太网口,属于非同类设备之间互连的有: 主机与交换机/集线器、路由器与交换机/集线器, 因此, 主机与集线器连接要用直通线, 路由器与交换机连接要用直通线。值得注意的是: 交换机(或集线器)的 <u>uplink</u>端口与交换机(或集线器)的普通端口互连也要用直通线。

- 直通线: 两头一样T568B。不同设备互联。
- 交叉线: 一头T568A, 一头T568B。同类设备互联。电脑/路由属于同类。

2.2 Coaxial Cable 同位电缆

- 50Ω: 电缆端口一般都有个电阻(终结器),用来抵抗电磁波反射所造成的的乱码现象,还有不同的电阻类型
- 宽带同位电缆是正弦波
- 有线电视同位电缆是方波脉冲
 - 平分多路:不同电视的载波频率不同,比如我国的电视台间隔6MHz为一个频率,多个路都在 一个电缆上传

2.3 Fiber Optics 光纤

Fig. 2-5. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.

2.3.1 Data Communication:

56K(1980s) -> 1Gbps -> 50000Gb/s(Nowadays)

2.3.2 Multi-mode fiber

- 一个光纤里面可能有很多光线,里面不同的光线的入射角不同,全反射的形状/路径也不同
- 多模光纤只适合近距离传输

2.3.3 Single-mode fiber

当光纤的直径和光线的波长近似相等(甚至相差10倍也可),可以出现<mark>波导现象</mark>,直接直线传输,<mark>不用全反射</mark>,但速度大约 $\frac{2}{3}c$ 左右,和multi-mode、以太网之类的速度差不多

2.3.4 Three wavalengths are used

 $0.85 \mu m \ 1.3 \mu m \ 1.55 \mu m$

2.3.5 Attenuation

$$db = 10 \cdot log_{10} \frac{transmitted\ power}{received\ power} \tag{3}$$

衰减用db来衡量,就是分贝

比如衰减了50%, db=3

2.3.6 Connect methods

Connector/socket

mechanical splices: 机械接头,路由器上那种一条线插进去就好了

fuse(melt) 拢接,大型光缆,很长光缆

2.3.7 光源

LED vs 激光

Item	LED	Semiconductor laser	
Data rate	Low	High	
Mode	Multimode	Multimode or single mode	
Distance	Short	Long	
Lifetime	Long life	Short life	
Temperature sensitivity	Minor	Substantial	
Cost	Low cost	Expensive	

Fig. 2-8. A comparison of semiconductor diodes and LEDs as light sources.

电变成光信号: LED/激光

光变成电信号: 光敏二极管

Fig. 2-9. A fiber optic ring with active repeaters.

有时候信号会减弱,中间加一个signal regenerator 使信号加强

2.4 Wireless Transmission

Fig. 2-11. The electromagnetic spectrum and its uses for communication.

LF (Low Frequency), MF (Medium Frequency), HF(High Frequency)

VHF--Very High, UHF--Ultra High, SHF--Super High

EHF--Extremely High, THF--Tremendously High

2.4.1 Radio Transmission

above $100 \mathrm{MHz}$, travel in straight line , concentrating all the energy into a small beam, nice directionality

multipath fading is a serious problem: some waves may be refracted (折射) or reflected, travel longer distances. These delayed waves may arrive out of phase(不同相位) and cancel the directly arrived signal.

2.4.2 Microwave transmission

2.4.3 Infrared and millimeter waves

2.4.4 Lightwave transmission

■ 不能用空气介质来传数据,空气密度改变会导致传输的不稳定

3 Example of Communication System

3.1 Communication Satellites

3.1.1 Geosynchronous satellites

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowded
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

■ C波段用的最多

3.1.2 Medium-Earth Orbit Satellites

3.1.3 Low-Orbit Satellites

3.2 Public Switch Telephone System

3.2.1 Structure Switched telephone Network

■ 从1对1,到中心一个人工接线员,到很多个分局

End office、Toll office(长途局)、Intermediate switching office(中心交换局)、Toll connecting trunks

Constitute of Telephone System: Local loop, Trunks, Switching offices

Analog 、 Digital

■ 端局(End office)-用户的线路称Local loop(本地回路)

3.2.2 Modems(调制解调器)

- Amplitude modulation 振幅调制:1的时候有波形(f=2400Hz),0的时候无波形(也可以说振幅为0)
- Frequency modulation 频率调制:两种不同的频率,2400Hz代表1,1500Hz代表0
- Phase Modulation 相位调制:以相位区分

- 绝对相调:起点是0度角代表0,起点是180度角代表1
- 相对相调: 两个相邻的交点上,相位差180度代表1,相位差0度代表0
- 实际上运用是调幅和相调结合: 4种振幅*4种相位=16种, 1码元可以传4bit数据。

传输速率(比特率) =
$$4bit \cdot f = 9600bit \cdot s^{-1}$$
 (4)

- 波特(Baud)和比特率 (b/s 或 bps)是两个不同的传输速率概念.
 - 一个标准电话话路的通频带为300-3400Hz,即带宽为3100Hz。
 - 设一个码元(又称信号----Singal)可携带4bit的信息,一个标准电话话路 (带通矩形特性) 的带宽 W=3100 Hz, 采用2400HZ的正弦波为载波来 调制数据,则信息的传输速率为2400 Baud,对应的比特率为: 2400 Hz * 4bit = 9600b/s
 - 当采用16元制调制方法时,一个码元可携带4bit的信息。
- 对于3.1 kHz带宽的标准电话信道,如果信噪比S/N=2500,那么由香农公式可以知道,无论采用何种先进的编码技术,信息的传输速率一定不可能超过由数值V:

 $V = H*log_2(1+S/N)=3100*log_2(1+2500) = 3100*11.29=35 \text{ k b/s}.$

3.2.2.1 正交幅度调制 (实际上是幅度+相位)

- 不能无限大,不然出错率太高
- 有不同的调制解调规定来进行解调

3.2.2.2 full duplex(全双工), half duplex(半双工), simplex(单工)

- 全双工: 能互相发信号
- 半双工: 一会一会的, 只能同时一个发信号, 不能同时发
- 单工: 单向的
- 信噪比低,传输速率低;信噪比高,传输速率高
- 下行速率一般高于上行速率

3.2.3 Trunks and Multiplexing(自学 一定要看ppt!!!)

- 平分多路
- 每个信号需要m带宽,然后信号和信号之间又需要guard bands,比如10个信号就要9个guard bands
- 不同频率的信号可以理解成数电实验里面,一个方波就有很多的频率的信号组成,根据不同的滤波器可以把不同频率的正弦波滤出来,大概是这个原理

• FDM

- Standardization:
 - 12 4000-Hz voice channels multiplexed into the 60--108 KHz band, this unit is called a group(群)
 - 5 groups (60 voice channels) can be multiplexed to form a supergroup(超群) .
 - 5 supergroups (CCITT standard) or 10 supergroups (Bell system) can be multiplexed to form a mastergroup(主群) .

3.2.4 Switching

• Circuit Switching vs Packet Switching

- a中的交换机是电话系统的交换机,是实电路
- b中交换机是路由器
 - 虚电路子网: 先建立一个虚拟的最佳通路,和电话网络的实电路很像,确定了路径之后不会改变,也存在
 - 数据包子网: 最佳通路可能会变, 直接以数据包方式传递, 根据实际情况确定最佳通路
- comparison

ltem	Circuit-switched	Packet-switched	
Call setup	Required	Not needed	
Dedicated physical path	Yes	No	
Each packet follows the same route	Yes	No	
Packets arrive in order	Yes	No	
Is a switch crash fatal	Yes	No	
Bandwidth available	Fixed	Dynamic	
When can congestion occur	At setup time	On every packet	
Potentially wasted bandwidth	Yes	No	
Store-and-forward transmission	No	Yes	
Transparency	Yes	No	
Charging	Per minute	Per packet	

■ ABCD是路由器

■ a中的是电话网络的建立过程,先建立一个最佳通路,然后call accept signal代表通路已建立,然 后开始传输数据

3.3 The Mobile Telephone System Cellular Radio

3.4 Cable Television (自学)

- 基带传输baseband,是方波作为载波
- 频带传输passband,是正弦波作为载波

3.4.1, Spectrum Allocation

 Allocation scheme:introduce upstream channels in the 5-42MHz band and use the frequencies at the high end for the downstream

电视节目之间的载波频率不一样,相差大概2MHz,因此可以在自由空间同时接收,同位电缆平分多路