(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2006 年4 月6 日 (06.04.2006)

PCT

(10) 国際公開番号 WO 2006/035636 A1

(51) 国際特許分類:

F02B 63/04 (2006.01) **F02M** 21/02 (2006.01) **F01P** 5/06 (2006.01) **F02M** 21/06 (2006.01)

(21) 国際出願番号: PCT/JP2005/017294

(22) 国際出願日: 2005年9月20日(20.09.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2004-285036 2004 **年**9 月29 日 (29.09.2004) J

- (71) 出願人(米国を除く全ての指定国について): 本田技研工業株式会社(HONDA MOTOR CO., LTD.) [JP/JP]; 〒1078556 東京都港区南青山2丁目1番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 杉本 康弘 (SUGI-MOTO, Yasuhiro) [JP/JP]; 〒3510193 埼玉県和光市中央1丁目4番1号株式会社本田技術研究所内 Saitama (JP). 小嶋 洋明 (KO,JIMA, Hiroaki) [JP/JP]; 〒3510193 埼玉県和光市中央1丁目4番1号株式会社本田技術研究所内 Saitama (JP). 竹村一仁 (TAKEMURA, Kazuhito) [JP/JP]; 〒3510193 埼玉県和光市中央1丁目4番1号株式会社本田技術研究所内 Saitama (JP). 中

川 勝博 (NAKAGAWA, Katsuhiro) [JP/JP]; 〒3510193 埼玉県和光市中央1丁目4番1号株式会社本田技術研究所内 Saitama (JP).

- (74) 代理人: 江原 望, 外(EHARA, Nozomu et al.); 〒 1010046 東京都千代田区神田多町 2 丁目 4 番地 第 二滝ビル 江原特許事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類: — 国際調査報告書

/続葉有/

(54) Title: ENGINE GENERATOR

(54) 発明の名称: エンジン発電機

AA LATERAL DIRECTION

(57) Abstract: An engine generator (1), comprising an engine (30), a generator (40) driven by the engine (30), and a power control unit (41) controlling a power generated by the generator (40). A gas fuel stored, in a liquefied state, in cassette cylinders (61) stored in the case (C) of the engine generator (1) is supplied to the engine (30) through a fuel pressure regulator (62). The cassette cylinders (61) and the fuel pressure regulator (62) are disposed in proximity to the power control unit (41) so that the heat exchange thereof with the power control unit (41) with an inverter can be performed. As a result, heat can be

mutually utilized between at least one of the cassette cylinders (61) as fuel containers and the fuel pressure regulator (62) and the power control unit (41) in the engine generator (1).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

エンジン発電機(1)は、エンジン(30)と、エンジン(30)により駆動される発電機(40)と、発電機(40)が発生する電力を制御する電力制御ユニット(41)とを備える。エンジン(30)へは、エンジン発電機(1)のケース(C)内に収容されたカセットボンベ(61)に液化状態で貯蔵されたガス燃料が燃料圧調整器(62)を介して供給される。カセットボンベ(61)および燃料圧調整器(62)は、インバータを備える電力制御ユニット(41)との熱交換が可能となるように、電力制御ユニット(41)において、燃料容器であるカセットボンベ(61)および燃料圧調整器(62)の少なくとも一方と電力制御ユニット(41)との間で、相互に熱が利用される。

明細書

エンジン発電機

技術分野

- [0001] 本発明は、燃料容器に液化状態で貯蔵されたガス燃料が供給されるエンジンと、 該エンジンにより駆動される発電機とを備えるエンジン発電機に関する。 背景技術
- [0002] エンジン発電機は屋外での臨時の電源とか非常時の電源として広く使用されている。そして、エンジン発電機が、例えばレジャー用品または防災用品として使用される場合には、小型の燃料容器、例えばカセットボンベに貯蔵されたガス燃料を燃料とするガスエンジンが使用されることも多い。
- [0003] ところで、ガス燃料は、燃料容器に液化状態で貯蔵されており、ガスエンジンに供給される際には、気化した状態で供給される。このため、ガスエンジンが運転されてガス燃料が供給され始めると、燃料容器では、液相と気相との平衡状態を維持するために、ガス圧の低下に伴って液状のガス燃料が気化することから、大量の気化熱が奪われて、燃料容器の温度が低下する。また、ガス燃料の圧力を調整する燃料圧調整器においても、気化した直後の冷却されたガス燃料の流入やガス燃料の減圧に起因して、その温度が低下する。
- [0004] そして、燃料容器などの温度が過度に低下すると、ガス燃料の気化が不十分になることなどにより圧力が低下して、ガス燃料の供給が円滑に行われなくなる。これを防止するために、燃料容器の温度やガス圧に応じて燃料容器を加熱することが知られている。(例えば、特許文献1,2参照)
 - 一方、エンジン発電機において、発電機が発生した電力を制御する電力制御ユニットは、その作動による発熱量が大きいため、電力制御ユニットを冷却するための種々の構造が知られている。例えば、特許文献3には、エンジン、発電機および制御回路ユニット(電力制御ユニットに相当)を収容する防音ケースを備えるエンジン発電機において、制御回路ユニットを収納する箱体に放熱フィンが設けられ、該放熱フィンは、冷却風を取り入れる取風口に臨むと共に、取風口が形成された端壁に当接する

技術が開示されている。

[0005] 特許文献1:日本国特開平10-131810号公報

特許文献2:日本国特許第2671015号公報

特許文献3:日本国実開昭63-171632号公報

発明の開示

発明が解決しようとする課題

[0006] ガス燃料が貯蔵された燃料容器をヒータにより加熱する場合には、ヒータの設け方や加熱の仕方を工夫する等、構成や制御方法の複雑化を伴うといった問題がある。 さらに、電力制御ユニットを冷却風により冷却する場合には、電力制御ユニットおよび その周辺部品の配置の制約や構造の複雑化を伴うといった問題がある。

[0007] 本発明は、このような事情に鑑みて、エンジン発電機の運転に伴って、液化状態で 貯蔵されたガス燃料の燃料容器は温度が低下する傾向にある一方で、電力制御ユニットは温度が上昇する傾向にあることに着目してなされたものであり、その主目的は、エンジン発電機において、燃料容器および燃料圧調整器の少なくとも一方と電力 制御ユニットとの間で、相互の熱を利用し合うことにある。本発明は、さらに、燃料容器による電力制御ユニットの冷却および電力制御ユニットによる燃料容器の加熱を効率よく行うことを可能にすること、および燃料容器および電力制御ユニットの配置の自由度を大きくすることを目的とする。本発明の他の目的は、燃料容器および燃料圧調整器の少なくとも一方による電力制御ユニットの冷却効果および電力制御ユニットによる燃料容器および燃料圧調整器の少なくとも一方の加熱効果を一層向上させること、冷却風による電力制御ユニット、発電機およびエンジンの冷却効果を向上させること、スイッチング損失が大きく発熱量の大きなインバータを冷却すると共に、電力制御ユニットのインバータの熱を利用して燃料容器および燃料圧調整器の少なくとも一方を効果的に加熱することにある。

課題を解決するための手段

[0008] 上記目的を達成するため、本発明のエンジン発電機は、ガス燃料を液化状態で貯蔵する燃料容器と、該燃料容器からガス燃料を供給されるエンジンと、前記燃料容器から前記エンジンに供給されるガス燃料の圧力を調整する燃料圧調整器と、前記エ

ンジンにより駆動される発電機と、前記発電機が発生する電力を制御する電力制御 ユニットとを備えるエンジン発電機において、前記燃料容器および前記燃料圧調整 器の少なくとも一方は、前記電力制御ユニットとの熱交換がなされるように、前記電力 制御ユニットに近接して配置されることを特徴とする。

- [0009] これによれば、エンジン発電機の運転中、燃料の気化などにより低温となる燃料容器および燃料圧調整器の少なくとも一方が、電力制御ユニットと熱交換可能な位置に近接して配置されるため、電力制御ユニットからの放熱量が増加して、換言すれば、燃料容器および燃料圧調整器の少なくとも一方により電力制御ユニットの冷却が促進されて、電力制御ユニットの温度上昇が抑制される。同時に、燃料容器および燃料圧調整器の少なくとも一方は、電力制御ユニットにより加熱されて、その温度低下が抑制される。
- [0010] 本発明のエンジン発電機において、前記燃料容器が収容される収容室を備え、前記燃料容器と前記収容室の室壁とが熱の良導体からなる伝熱部材を介して熱的に接続され、前記室壁は、前記電力制御ユニットとの熱交換が可能となるように、前記電力制御ユニットに近接して配置される構成を採ることができる。
- [0011] これによれば、燃料容器における電力制御ユニットからの受熱、そして電力制御ユニットの放熱は、燃料容器の熱が伝達される室壁を通じて行われるので、燃料容器および電力制御ユニット間での熱交換を行うために、燃料容器および電力制御ユニットの配置が制約されることが少なくなる。また、室壁を大きくすることや室壁を電力制御ユニットにより接近させることなど、室壁の形状または配置により、燃料容器および電力制御ユニット間での伝熱量を増加させることができ、燃料容器および電力制御ユニットの相互の熱の利用度を高めることが可能になる。
- [0012] 好適には、前記電熱部材は、前記燃料容器と前記収容室の室壁とに接するように 前記電熱部材と前記収容室の室壁の間に介在する複数の柱状部材である。
- [0013] 本発明のエンジン発電機において、前記燃料容器および前記燃料圧調整器の少なくとも一方と前記電力制御ユニットとが、熱の良導体からなる伝熱部材を介してまたは直接、熱的に接続されるものとすることができる。
- [0014] これによれば、燃料容器および燃料圧調整器の少なくとも一方と電力制御ユニット

との間の伝熱が、伝熱部材を介して熱伝導により行われるので、相互の熱の利用度 がより高められる。

- [0015] 前記電力制御ユニットはインバータを備えるものとすることができる。
- [0016] これによれば、インバータはスイッチング損失が大きく発熱量が大きいため、その作動により高温になるインバータは、燃料容器および燃料圧調整器の少なくとも一方により効果的に冷却されて、その温度上昇が抑制され、燃料容器および燃料圧調整器の少なくとも一方は、高温のインバータにより効果的に加熱されて、その温度低下が抑制される。
- [0017] 好適には、本発明のエンジン発電機は、前記燃料容器、前記エンジンおよび前記 発電機が収容される内部空間を形成するケースを備え、前記内部空間に導入された 冷却風が、前記燃料容器および前記電力制御ユニットをこの順番で冷却した後、前 記発電機および前記エンジンを冷却するように冷却風通路が形成される。
- [0018] これによれば、ケースの内部空間に導入された冷却風は、燃料容器により冷却されてより低温となり、その低温となった冷却風が、まず電力制御ユニットを冷却した後、発電機およびエンジンを冷却する。また、電力制御ユニットは、燃料容器および燃料圧調整器の少なくとも一方との熱の相互利用により、その相互利用が行われない場合に比べて低温になっているので、電力制御ユニットを冷却した後の冷却風の温度もより低温になる。
- [0019] 好ましくは、前記収容室の室壁に関して前記収容室の反対側に、前記燃料圧調整器および前記電力制御ユニットが配置され、前記電力制御ユニットは前記燃料圧調整器の下側に位置するよう構成が採られる。

また、前記ケースはその一側壁の上部に沿って空気導入口を有し、前記燃料圧調整器は前記空気導入口の直下流に設けられるようにすることができる。

発明の効果

[0020] 本発明によれば、次の効果が奏される。すなわち、燃料容器および燃料圧調整器の少なくとも一方と電力制御ユニットとの間で、相互の熱を利用し合うことにより、電力制御ユニットの温度上昇が抑制されるので、電力制御ユニットの放熱構造を小型化することができ、また燃料容器および燃料圧調整器の少なくとも一方の温度低下が

抑制されるので、燃料容器または燃料圧調整器を加熱する加熱装置が不要になるか、または加熱装置による加熱量を減少させることができて、比較的低温の加熱源を利用できるなど、加熱源の選択肢が増え、また加熱源が電気ヒータである場合は、その消費電力を減少させることができる。

- [0021] 本発明の好ましい実施形態によれば、上記効果に加えて、次の効果が奏される。 すなわち、室壁により、燃料容器および電力制御ユニットの熱が相互に利用されたう えで、燃料容器および電力制御ユニットの配置の自由度が大きくなり、また燃料容器 および電力制御ユニットの相互の熱の利用度を高めることが可能になって、燃料容 器による電力制御ユニットの冷却および電力制御ユニットによる燃料容器の加熱を一 層効率よく行うことが可能になる。
- [0022] 本発明の実施形態では、さらに、次の効果が奏される。すなわち、燃料容器および 燃料圧調整器の少なくとも一方と電力制御ユニットとの間の相互の熱の利用度がより 高められるので、燃料容器および燃料圧調整器の少なくとも一方による電力制御ユニットの冷却効果および電力制御ユニットによる燃料容器および燃料圧調整器の少なくとも一方の加熱効果が一層向上する。
- [0023] 本発明の実施形態では、さらに、次の効果が奏される。すなわち、より低温となった 冷却風により、電力制御ユニットをより効果的に冷却することができると共に、発電機 およびエンジンについてもより高い冷却効果が得られる。
- [0024] 本発明の実施形態では、さらに、次の効果が奏される。すなわち、発熱量が大きいインバータが効果的に冷却され、かつインバータにより燃料容器および燃料圧調整器の少なくとも一方が効果的に加熱される。

図面の簡単な説明

[0025] [図1]本発明の第1実施形態を示し、本発明が適用されたエンジン発電機の概念的 構成図である。

[図2]図1のエンジン発電機の斜視図である。

[図3]図2のエンジン発電機において、左カバーを外したときの左側面図であり、前カバー、後カバーおよび上カバーについては、図4のIII-III線断面図である。

[図4]図2のエンジン発電機において、上カバーを外したときの平面図である。

[図5]図2のエンジン発電機の前面図である。

[図6]図2のエンジン発電機の燃料切換コックおよび加熱装置における回路図である。

[図7]図2のエンジン発電機の燃料切換コックの操作位置と、燃料供給装置および点 火装置との関係を示す表である。

「図8]本発明の第2実施形態を示し、図3に相当する図である。

[図9]本発明の第2実施形態において、図4に相当する図である。

「図10]本発明の別の実施形態を示し、図3の部分図に相当する図である。

符号の説明

[0026] 1...エンジン発電機、3...下カバー、4...上カバー、5...前カバー、6...後カバー、7... たカバー、8...右カバー、9...内部空間、12...燃料切換コック、16, 17, 90...把持部、18, 19, 92...導入口、20...排出口、23, 24, 91...凹部、28, 29, 93...把持用空間、30... エンジン、40...発電機、41...電力制御ユニット、42...点火栓、44...点火コイル、45... 冷却ファン、46...リコイルスタータ、47...シュラウド、48...ファンカバー、49...スタータカバー、50, 51...流入口、60...収容部、61...カセットボンベ、62...燃料圧調整器、63... 燃料遮断弁、65...収容室、66...室壁、68...装着センサ、70...伝熱部材、71...外部ボンベ、73...燃料圧センサ、74...キルスイッチ、75...メインスイッチ、80...加熱装置、89... .ECU、C...ケース、Fa...燃料供給装置。

発明を実施するための最良の形態

- [0027] 以下、本発明の実施形態を図1~図10を参照して説明する。
- [0028] 図1~図7は、第1実施形態を示す。図1を参照すると、本発明が適用された携帯型のエンジン発電機1は、該エンジン発電機1の外部に設けられる外部燃料系統Fbと適宜接続可能である。
- [0029] 図2, 図3を併せて参照すると、エンジン発電機1は、ほぼ直方体の箱状のケースCと、ケースCに設けられてエンジン発電機1を持ち運ぶ際に把持される持ち運び用の 1対の把持部16,17と、燃焼エンジンであるガスエンジンからなるエンジン30と、エンジン30にガス燃料を供給する燃料供給装置Faと、エンジン30により駆動される作業 機としての発電機40と、発電機40が発生した電力を制御する電力制御ユニット41と、

エンジン30および燃料供給装置Faを制御する制御装置としての電子制御ユニット89 (以下、ECU89という。)と、を備える。エンジン30、燃料供給装置Fa、発電機40、電力制御ユニット41およびECU89は、ケースCに囲まれて、該ケースCにより形成される内部空間9に収容される。これにより、ケースCは、エンジン30の運転騒音が外部に漏れるのを抑制する防音型のケースCを構成する。

- [0030] なお、明細書および特許請求の範囲において、把持部16,17を把持するとは、把 持部16,17を手で握る場合および把持部16,17に手を掛ける場合を含む。
- [0031] 図2~図5を参照すると、ケースCは、基準方向としての上下方向で対向する下カバー3および上カバー4と、上下方向に直交する第1方向で対向する1対の側部カバーとしての前カバー5および後カバー6と、上下方向および第1方向に直交する第2方向または横方向で対向する1対の側部カバーとしての左カバー7および右カバー8とを備え、これらカバー3~8はいずれも合成樹脂製である。
- [0032] この実施形態において、第1方向は前後方向と一致し、第1方向での一方の側方または他方の側方が、前方または後方であり、また第2方向は左右方向と一致し、第2 方向での一方の側方または他方の側方が、左方または右方である。
- [0033] ケースCを下方、上方、前方、後方、左方および右方から見たときのケースCの下面、上面、前面、後面、左面および右面は、前述のカバー3~8により構成されるケース Cにおけるケース下部C3、ケース上部C4、ケース前部C5、ケース後部C6、ケース 左部C7およびケース右部C8のそれぞれの外面である。それゆえ、下カバー3、上カバー4、前カバー5、後カバー6、左カバー7および右カバー8が、主に、ケース下部 C3、ケース上部C4、ケース前部C5、ケース後部C6、ケース左部C7およびケース右部C8をそれぞれ構成する。そして、前面、後面、左面および右面は、ケースCの4つの側面であり、ケース前部C5、ケース後部C6、ケース左部C7およびケース右部C8 は、ケースCの4つのケース側部である。
- [0034] 前カバー5および後カバー6は、内側に配置されて下カバー3に結合される1対の 金属製の補強部材としての補強パネル10,11にそれぞれ結合される。そして、左カバ ー7は各補強パネル10,11に結合され、開閉可能な右カバー8は、下端部8bにおい て下カバー3に枢支され、上端部8aにおいて係止手段(図示されず)により上カバー

4に係止可能である。また、各補強パネル10,11には、補強パネル10,11よりも内側に位置する前カバー5または後カバー6に一部(例えば、凹部23,24)が貫通する孔(図3参照)が形成されている。ここで、内側および外側は、それぞれ、内部空間9寄りおよびケースCの外部寄りを意味する。

- [0035] 図3, 図5を参照すると、操作パネル部5eを構成する前カバー5には、燃料切換コック12、電気的な外部負荷に電流を供給する出力用のコンセント13、エンジン発電機1の外部に配置される外部ボンベ71(図1参照)が接続される外部燃料用コネクタ14および表示ランプ15a, 15b, 15cなどが設けられる。
- [0036] 図2~図5を参照すると、前カバー5の上部に含まれる上端部5aには、第1把持部16と共同して、エンジン30の運転中に外気を冷却風としてケースCの内部空間9に導入する1つの導入口18が設けられる。一方、エンジン発電機1および電力制御ユニット41を挟んで前カバー5と前後方向で対向する後カバー6には、電力制御ユニット41、発電機40およびエンジン30を冷却した後の冷却風を外部に排出する排出口20と、エンジン30の排気ガスを外部に排出する排気口21とが形成される。
- [0037] エンジン発電機1を持ち上げて運ぶ際に、運搬者の手により把持される部分である第1,第2把持部16,17は、それぞれ、ケース前部C5およびケース後部C6の上部C5 a,C6aに含まれる上端部に設けられる。第1把持部16は、上カバー4とほぼ同じ高さ位置で上カバー4の前方であって前カバー5の上方に設けられる第1コーナ部材として設けられ、第2把持部17は、上カバー4とほぼ同じ高さ位置で上カバー4の後方であって後カバー6の上方に設けられる第2コーナ部材として設けられる。ケースCの前上隅部および後上隅部に設けられる前記両コーナ部材は、その全体が第1把持部16および第2把持部17を形成する把持部形成部材である。
- [0038] 第1, 第2把持部16, 17は、いずれも、合成樹脂製の同一の部材であって、それぞれ、上カバー4にシール部材22(図3参照)を介して突き合わされると共にケース上部 C4の前後方向での両端部を構成する上部16a, 17aと、上部16a, 17aから前カバー5 および後カバー6に対向するように下方に延びる垂下部16b, 17bとを有する。垂下部 16b, 17bは、エンジン発電機1が持ち上げられる際に、外側部分16b1, 17b1から最下端16b2, 17b2を経て内側部分16b3, 17b3まで手で握られるように下方に延びる。

そして、両最下端16b2,17b2は、それぞれ、前カバー5および後カバー6の上端部5a,6aと、該上端部5a,6aの横方向での全長において上下方向で重なる位置にあり、この実施形態では、前カバー5および後カバー6の後述する凹部23,24と、該凹部23,24の横方向での全体において上下方向で重なる位置にある。

- [0039] 第1把持部16は、ケース前部C5の横方向での両端部C5c, C5dに達するように設けられ、横方向での両端部において前カバー5に溶着等により結合されて一体化される。そして、第2把持部17は、ケース後部C6の横方向での両端部C6c, C6dに達するように設けられ、横方向での両端部において後カバー6に溶着等により結合されて一体化される。ケース前部C5およびケース後部C6の横方向での両端部C5c, C5d; C6c, C6dは、それぞれ、左カバー7および右カバー8により構成される部分または横方向でケース左部C7およびケース右部C8に対応する部分である。図4に示されるように、第1, 第2把持部16, 17全体の横方向での幅(以下、横方向での幅を横幅という。)は、それぞれ、前カバー5の横幅および後カバー6の横幅にほぼ等しく、また、横方向での左カバー7と左カバー7との間隔にほぼ等しい。
- [0040] 第1把持部16は、前カバー5の上端部5aに形成された凹部23と共同して導入口18を形成する。凹部23は、第1把持部16よりも内部空間9寄りに位置すると共に内部空間9に入り込んでいる。凹部23は、操作パネル部5eから上方に向かうにつれて前後方向で内部空間9に向かって傾斜する傾斜部23aと、傾斜部23aからほぼ上下方向に平行に上方に延びる奥部23bとを有する。凹部23は、第1把持部16の横方向での両端部にほぼ達するように延びており、第1把持部16の横幅に比べて僅かに小さいものの、ほぼ等しい横幅を有する。
- [0041] そして、最下端16b2は、傾斜部23aとの間に前方に向かって斜め下方に開放する 導入口18の入口18a(図3に二点鎖線で示される。)を形成し、第1把持部16の上部1 6aは、奥部23bの上端部との間に導入口18の出口18b(図3に二点鎖線で示される。)を形成する。また、入口18aは第1把持部16の下方に形成され、導入口18は、ケース 前部C5の横方向での両端部C5c, C5dにほぼ達するように設けられる。導入口18の 横幅は、前カバー5の横幅、および左カバー7と左カバー7との左右方向での間隔に ほぼ等しい。したがって、入口18aから流入した冷却風は、前後方向で内部空間9に

向けて流れた後、垂下部16bの内側部分16b3および奥部23bに沿って上方に偏向して流れ、さらに上部16aにより前後方向で内部空間9に向けて偏向した後、出口18bから内部空間9に流出する。このように、第1把持部16と凹部23とは、導入口18を複数箇所で屈曲した迷路状の通路に形成する。

- [0042] また、第1把持部16は、前カバー5において操作パネル部5eよりも前方に突出する 左右の側縁部5c, 5dよりも僅かに突出している。そして、ケース前部C5の下部C5b は、両側縁部5c, 5dよりも内部空間9寄りに位置する。
- [0043] この実施形態では、補強パネル10の一部が、導入口18に配置されて、冷却風が円滑に流れて内部空間9に導入されるように、冷却風の案内部10aを構成している。
- [0044] 導入口18は、エンジン発電機1を持ち運ぶ際に、手で第1把持部16を把持するために使用される第1把持用空間28を構成する。そして、導入口18は、第1把持部16の下方に形成され、さらに、主として奥部23bにより形成される導入口18の下流部分18cは、内部空間9に入り込んだ空間となる.よって、この把持用空間28の一部は、ケース上部C4よりも下方に位置すると共に、内部空間9に入り込んだ空間である。
- [0045] 一方、第2把持部17は、後カバー6の上端部6aに形成された凹部24と共同して、エンジン発電機1を持ち運ぶ際に、第1把持用空間28と共に、手で第2把持部17を把持するために使用される第2把持用空間29を形成する。第2把持部17よりも内部空間9寄りに位置すると共に内部空間9に入り込んだ凹部24は、排出口20から上方に向からにつれて前後方向で内部空間9に向かって傾斜する傾斜部24aと、傾斜部24aからほぼ上下方向に平行に上方に延びる奥部24bとを有する。凹部24は、第2把持部17の横方向での両端部にほぼ達するように延びており、第2把持部17の横幅に比べて僅かに小さいものの、ほぼ等しい横幅を有する。
- [0046] 補強パネル11の一部が、上カバー4と接触する位置まで延びて、前後方向で第2 把持用空間29の、前後方向での内部空間9寄りの部分をほぼ閉塞する閉塞部11bを構成している。それゆえ、実質的に、外気は第2把持用空間29を通じて冷却風として内部空間9に導入されない。
- [0047] そして、第1把持部16および第2把持部17は、ケースCにおいて前後方向に直交する平面を対称面として有するように配置され、凹部23および凹部24、そして第1把持

用空間28および第2把持用空間29は、該対称面に対してほぼ面対称となるように配置される。

- [0048] 図1,図3を参照すると、エンジン30は、単気筒で、OHC型の4ストロークの空冷エンジンであり、ピストン35が往復動可能に嵌合するシリンダ31と、シリンダ31の下端部に結合されるクランクケース32と、シリンダ31に一体成形されてピストン35との間に燃焼室を形成するシリンダヘッド33と、シリンダヘッド33の上端部に結合されるヘッドカバー34とから構成されるエンジン本体30aを備え、エンジン本体30aは、下カバー3に固定される。シリンダ31およびクランクケース32は、前後方向に平行な回転中心線を有するように配置されるクランク軸36を回転可能に支持し、該クランク軸36は、ピストン35により回転駆動される。
- [0049] 併せて図2,図4を参照すると、エンジン30に備えられる吸気装置37は、キャブレタ37bと、シリンダヘッド33に接続されて燃焼室に吸気を導く吸気管37cとを備える。キャブレタ37bは、導入口18から内部空間9に導入された冷却風の一部を取り入れる取入口37a1が設けられたエアクリーナ37aからの空気と燃料供給装置Faまたは外部燃料系統Fbから供給されたガス燃料との混合気を形成する混合気形成装置である。キャブレタ37bに設けられるスロットル弁37b1は、マイクロコンピュータを備えるECU89により制御されるステップモータ37dにより駆動されて、クランク軸36が予め設定された回転速度で回転するようにエンジン30の出力を制御する。
- [0050] エンジン30に備えられる排気装置38は、シリンダヘッド33に接続されて燃焼室からの排気ガスが流入する排気管38aと、排気管38aに接続されるマフラ38bとを備える。
- [0051] そして、シリンダヘッド33に設けられる動弁装置により開閉される吸気弁39aを経て 燃焼室に流入した混合気は、ホルダ44(図3参照)に保持される点火栓42により点火 されて燃焼し、発生する燃焼圧によりピストン35が駆動されてクランク軸36が回転駆 動される。燃焼ガスは、排気ガスとして動弁装置により開閉される排気弁39bを経た後、排気管38aを通ってマフラ38bに流入し、マフラ38bで排気音が低減された後、後カバー6に形成された排気口21に臨むテールパイプ38cを経て外気中に放出される。
- [0052] 図1, 図3を参照すると、エンジン30により回転駆動される発電機40は、磁石を有すると共にエンジン30の出力軸としてのクランク軸36の軸端部に固定されたロータ40aと

、コイルを有すると共にロータ40aの径方向内方に配置されてクランクケース32に固定されるステータとを備える。点火栓42を備える点火装置は、発電機40で発生した電力がコンデンサに充電された後に1次側に供給される点火コイル44(図6参照)を備え、クランク軸36の特定の回転位置で発生する点火信号に応じて点火コイル44に発生する高電圧が点火栓42に印加される。

- [0053] また、クランク軸36により回転駆動される冷却ファン45は、ロータ40aに結合されてロータ40aと一体に回転し、エンジン30の運転中に導入口18を経て外気を冷却風としてケースC内に吸引する。さらに、エンジン30は、始動手段としてのリコイルスタータ46の作動により始動される。リコイルスタータ46は、冷却ファン45に連結されていて、そのロープ46aに接続されたノブでロープ46aを引く操作により、クランク軸36を回転駆動する。
- [0054] 図2~図4を参照すると、エンジン本体30aおよび排気管38aは、運転騒音の防音効果および冷却風による冷却効果を向上させるために、エンジン本体30aおよび排気管38aとの間に冷却風の導風路を形成するシュラウド47により覆われる。合成樹脂製のシュラウド47は、エンジン本体30aに固定されると共に、シュラウド47に一体成形されたブラケット47aにおいて上カバー4に固定される。また、冷却ファン45は、シュラウド47の前端部に結合される合成樹脂製のファンカバー48により覆われ、リコイルスタータ46は、ファンカバー48の前端部に結合されるスタータカバー49により覆われる。冷却ファン45は、スタータカバー49に形成された流入口50およびスタータカバー49とファンカバー48との間に形成

される流入口51から、内部空間9の空気を吸引して、冷却風をシュラウド47内に送る。 [0055] 冷却ファン45およびリコイルスタータ46の前方に配置されて発電機40が発生した電力を制御する電力制御ユニット41は、その電圧や周波数を制御するインバータ41a(図6参照)と、インバータ41aを含む電気部品が発生する熱を放熱するためのヒートシンクとしての放熱フィン41bとを備える。

[0056] そして、ケースCの内部空間9では、全体として導入口18から排出口20に向かう冷 却風の流れ方向でもある後方に向かって、電力制御ユニット41、リコイルスタータ46、 冷却ファン45、発電機40、エンジン本体30aおよびマフラ38bが、この順番で、クランク 軸36の回転中心線上で直列に配置される。

- [0057] 図1を参照すると、エンジン30に燃料としてのガス燃料を供給する燃料系統Fは、ケースCまたはケースCの内部空間9に配置されてエンジン発電機1に備えられる内部燃料系統である燃料供給装置Faと、ケースCの外部に配置される外部燃料系統Fbとから構成される。
- [0058] 図1~図4を参照すると、燃料供給装置Faは、ケースC内に設けられる燃料容器設置部としての収容部60に配置される単数または複数の第1燃料源(または、本体側燃料源)である第1燃料容器としてのカセットボンべ61と、燃料圧調整器62とを備える。燃料圧調整器62は、この実施形態では、2つのカセットボンべ61および後述する外部ボンベ71から流出したガス燃料の圧力を減圧すると共にエンジン30の負荷に応じた燃料量がキャブレタ18bに供給されるようにガス燃料の圧力を調整する。燃料供給装置Faは、さらに、カセットボンベ61および燃料圧調整器62を加熱する加熱装置80と、操作パネル部5eに設けられる燃料切換手段としての燃料切換コック12と、コネクタ14を含むと共にケースCの内部空間9でカセットボンベ61、燃料圧調整器62およびキャブレタ18bなどを相互に接続する燃料配管群と、燃料系統Fからエンジン30へのガス燃料の供給を停止する燃料遮断弁63と、を備える。
- [0059] カセットボンベ61には、沸点が比較的高いガス燃料、例えばブタンが、液化状態で 貯蔵される。そして、カセットボンベ61の燃料供給部が収容部60に設けられるコネクタ 64(図2参照)に差し込まれることにより、カセットボンベ61が収容部60に着脱可能に 支持される。
- [0060] 外部燃料系統Fbは、エンジン発電機1の外部に設けられる第2燃料源(または、外部燃料源)としての第2燃料容器である外部ボンベ71と、外部ボンベ71とコネクタ14とを接続する配管A5、と減圧器72とを備える。カセットボンベ61よりも燃料容量が大きい(すなわち、貯蔵される燃料量が多い)外部ボンベ71には、第1ガス燃料よりも沸点が低い第2ガス燃料、例えばプロパンが液化状態で貯蔵される。この外部ボンベ71は、例えば家庭用のプロパンガスボンベである。
- [0061] 収容部60は、両カセットボンべ61を収容する収容室65を形成する室壁66により構成 される。室壁66は、熱の良導体、例えばアルミニウムなどの金属からなる第1側壁66a

と、右カバー8の一部からなる第2側壁66bと、底壁66cとにより構成され、収容室66の上部は内部空間9に開放している。両カセットボンベ61および収容部60は、前後方向で電力制御ユニット41,燃料圧調整器62および流入口50,51と重なる位置で、右カバー8寄りに設けられる。カセットボンベ61と電力制御ユニット41および燃料圧調整器62との間に配置される第1側壁66aは、冷却風に関して、その上部が導入口18の出口18bの直下流に位置するように、かつ上下方向で出口18bと重なる位置に設けられる。そして、第1側壁66aの上端部は、内部空間9のほぼ最上部に位置する。また、カセットボンベ61、第1側壁66a、燃料圧調整器62および電力制御ユニット41は、左右方向で、出口18bと重なる位置にある。

- [0062] 第1, 第2側壁66a, 66bには、エンジン30の運転による振動がカセットボンベ61に伝達されてカセットボンベ61が振動するのを防止または抑制するために、弾性材からなる防振部材としてのホルダ67がカセットボンベ61の外周面に接触するように設けられる。
- [0063] 収容部60には、カセットボンベ61の有無または装着状態を検出する装着センサ68 が設けられる。装着センサ68は、収容室65外に設けられた取付部材69に取り付けられて、第1側壁66aを貫通して収容室65内に位置する。装着センサ68は、例えば接触片68aを有するマイクロスイッチから構成され、接触片68aがカセットボンベ61に接触することにより、カセットボンベ61が適正に装着されていることを検出する。
- [0064] 各カセットボンべ61は、電力制御ユニット41との熱交換が可能となるように、電力制御ユニット41に近接して配置される。より具体的には、カセットボンべ61は、第1側壁66aと熱の良導体、例えばアルミニウムなどの金属からなる伝熱部材70を介して熱的に接続される。複数の柱状部材である伝熱部材70は、その一端部でカセットボンべ61に接触し、その他端部で第1側壁66aに接触する。そして、第1側壁66aは、内部空間9での冷却風を介しての熱伝達により、電力制御ユニット41との間で熱交換が可能となるように、電力制御ユニット41に隣接した状態で近接して配置される。それゆえ、各カセットボンべ61は、伝熱部材70により熱的に接続された第1側壁66aを介して、電力制御ユニット41と熱交換可能となるように配置される。
- [0065] カセットボンべ61からの第1ガス燃料が液化状態で供給されると共に外部ボンベ71

からの第2ガス燃料がガス状態で供給される燃料圧調整器62は、両カセットボンべ61、収容部60の第1側壁66a、電力制御ユニット41および流入口50,51と前後方向で重なるように、かつ電力制御ユニット41および流入口50,51の真上に配置される。しかも、燃料圧調整器62は、内部空間9での冷却風を介しての熱伝達により、電力制御ユニット41との熱交換が可能となるように、電力制御ユニット41に隣接した状態で近接して配置される。(図4には、便宜上、燃料圧調整器62が二点鎖線で示されている。)そして、燃料圧調整器62は、液化状態で流入した第1ガス燃料を気化させるベーパライザとしての機能を有する。

- [0066] 図1を参照すると、燃料供給装置Faにおいて、両カセットボンべ61と、両カセットボンべ61と燃料切換コック12とを接続する配管A1、燃料切換コック12と燃料圧調整器62とを接続する配管A2、燃料圧調整器62、燃料圧調整器62とキャブレタ18bとを接続する配管A3、および配管A3に設けられる燃料遮断弁63により、カセットボンべ61から第1ガス燃料をエンジン30に供給する第1燃料系統が構成され、また、コネクタ14と燃料切換コック12とを接続する配管A4、燃料切換コック12と燃料圧調整器62とを接続する配管A2、燃料圧調整器62とキャブレタ18bとを接続する配管A3、および燃料遮断弁63により、外部ボンベ71から第2ガス燃料をエンジン30に供給する第2燃料系統が構成される。
- [0067] それゆえ、ケースC内の配管A1~A4は、燃料配管群を構成する。また、燃料圧調整器62、配管A3および燃料遮断弁63は、第1,第2燃料系統に共通する共通燃料系統である。
- [0068] 燃料遮断手段としての燃料遮断弁63は、例えば駆動電流が供給されていないときに開弁する常開電磁弁により構成されて、第1ガス燃料の圧力に応じてECU89により開閉制御される。より具体的には、カセットボンベ61からの圧力を検出するために、カセットボンベ61から燃料圧調整器62に至るまでの第1ガス燃料の圧力を検出する燃料圧センサ73が、燃料圧調整器62に設けられる。そして、燃料圧センサ73により圧力が上限圧力P1を越える圧力が検出されたとき、ECU89は、燃料遮断弁63を閉弁して、共通燃料系統を遮断する。この上限圧力P1は、カセットボンベ61が過熱状態にあるときなどにカセットボンベ61内の第1燃料ガスの圧力が過大になる状態でのエ

ンジン30の運転を回避して、エンジン

発電機1が安全に使用されるための観点から予め設定される。

- [0069] 燃料切換コック12は、エンジン30に供給されるガス燃料を、第1燃料系統を通じて供給される第1ガス燃料と第2燃料系統を通じて供給される第2ガス燃料との間で切り換える。燃料切換コック12は、第1燃料系統とエンジン30とを接続して第1ガス燃料をエンジン30に供給する第1位置(図5において、「カセット」の位置であり、一点鎖線で示される。)と、第2燃料系統とエンジン30とを接続して第2ガス燃料をエンジン30に供給する第2位置(図5において、「外部」の位置であり、二点鎖線で示される。)と、第1燃料系統および第2燃料系統とエンジン30とを遮断してエンジン30へのガス燃料の供給を停止する停止位置(図5において、「OFF」の位置であり、実線で示される。)とに操作可能であり、第1位置および第2位置間の切換は常に停止位置を経て行われる。
- [0070] 図6を併せて参照すると、また、燃料切換コック12は、第1ガス燃料および第2ガス 燃料間の燃料の切換を行うと共に、エンジン30の運転および停止を制御するエンジン運転スイッチ、および点火装置および加熱装置80の作動および非作動を制御する制御スイッチを兼ねる。そのため、燃料切換コック12は、その操作位置に応じて、点火装置の作動・非作動を制御するキルスイッチ74を開閉し、加熱装置80の作動・非作動を制御するメインスイッチ75を開閉する。
- [0071] 加熱装置80は、カセットボンべ61毎に収容部60に設けられる加熱源としての電気ヒータ81a, 81bと、燃料圧調整器62に設けられる加熱源としての電気ヒータ82と、各カセットボンべ61の温度および燃料圧調整器62の温度をそれぞれ検出する温度センサ83a, 83b, 84と、電気ヒータ81a, 81b, 82の温度をそれぞれ検出する温度センサ85a, 85b, 86と、温度センサ83a, 83b, 84および温度センサ85a, 85b, 86により検出される温度に応じて、ECU89の指令により電気ヒータ81a, 81b, 82のヒータ回路を開閉するリレー87a, 87b, 88と、電気ヒータ81a, 81bの作動状態を表示する表示ランプ15a, 15b(図5も参照)とを備える。
- [0072] 電気ヒータ81a, 81b, 82は、2つのカセットボンベ61および燃料圧調整器62をそれ ぞれ加熱して、液化状態の第1ガス燃料の気化を促進する。これにより、第1ガス燃

料の気化等に起因して、カセットボンベ61および燃料圧調整器62の温度が過度に低下して、第1ガス燃料の圧力が過度に低下することが防止され、第1ガス燃料がエンジン30に安定して供給される。

[0073] 図7を併せて参照すると、燃料切換コック12が第1位置または第2位置を占めるときは、エンジン30への第1ガス燃料または第2ガス燃料の供給が可能な状態にあり、しかもキルスイッチ74が開かれることから点火装置が作動可能な状態にあって、エンジン30が運転可能な状態である。(すなわち、燃料切換コック12がエンジン運転スイッチとしてON状態になる。)また、燃料切換コック12が停止位置を占めるときは、エンジン30への第1ガス燃料または第2ガス燃料の供給が停止され、しかもキルスイッチ74が閉じられることから点火装置が非作動になって、エンジン30が停止される。(すなわち、燃料切換コック12がエンジン運転スイッチとしてOFF状態になる。)

一方、加熱装置80は、燃料切換コック12が第1位置を占めるときのみ、メインスイッチ75が閉じられて、作動可能となり、カセットボンベ61および燃料圧調整器62を加熱する各電気ヒータ81a,81b,82による、カセットボンベ61および燃料圧調整器62の温度に基づく加熱制御が行われる。また、燃料切換コック12が、第2位置および停止位置を占めるとは、第1ガス燃料がエンジン30に供給されないので、メインスイッチ75が開かれて、加熱装置80が非作動状態になり、カセットボンベ61および燃料圧調整器62の加熱が停止される。

次に、前述のように構成された実施形態の作用および効果について説明する。

- [0074] 燃料切換コック12が停止位置から第1位置に操作されて、第1ガス燃料がエンジン3 0に供給可能な状態で、リコイルスタータ46が操作されて、エンジン30が始動し、その後自力運転を開始する。そして、エンジン30より駆動される発電機40が発生した電力が電力制御ユニット41により制御されて、コンセント13に接続される電気機器に供給される。同時にエンジン30により駆動される冷却ファン45は流入口50,51を通じて内部空間9の空気を吸引する。この冷却ファン45の吸引作用により、導入口18を通じて外気が冷却風として内部空間9に導入される。
- [0075] 導入口18からの冷却風は、内部空間9の最上部から内部空間9に流入し、その一部は、熱伝達により第1側壁66aおよび燃料圧調整器62と熱交換した後、下方に流れ

て電力制御41bを冷却し、さらに第1側壁66aおよび燃料圧調整器62と熱交換した後、流入口50,51を通じて冷却ファン45に吸引される。その後、冷却風は、冷却ファン45によりシュラウド47内に送られ、シュラウド47でエンジン本体30aおよび排気管38aを冷却した後、マフラ38bを冷却して、排出口20から外部に放出される。

- [0076] エンジン30の運転により、カセットボンベ61の第1ガス燃料の残量が僅少になるなどして、外部ボンベ71の第2ガス燃料に切り換える必要が生じたときには、燃料切換コック12が一旦停止位置に操作されて、エンジン30が停止される。このとき、キルスイッチ74の作動によりエンジン30を速やかに停止することができる。次に、燃料切換コック12が第2位置に操作される。これにより、第2ガス燃料がエンジン30に供給可能な状態になり、リコイルスタータ46の操作によりエンジン30が始動する。
- [0077] ここで、エンジン発電機1の前カバー5には、第1把持部16よりも内部空間9寄りに 位置する凹部23が形成され、第1把持部16および凹部23は共同して導入口18を形成し、導入口18は第1把持用空間28を構成し、さらに後カバー6には、第2把持部17 よりも内部空間9寄りに位置する凹部24が形成され、第2把持部17および凹部24は共同して第2把持用空間29を構成する。
- [0078] これにより、冷却風の導入口18が把持用空間28を兼ねることから、第1把持用空間28が内部空間9を形成する前カバー5自体に形成されることになり、しかも第1,第2把持用空間28,29を形成する一方の部分は、ケースCの内部空間9に入り込んだ凹部23,24であるので、把持用空間の全体がエンジン発電機のケースの外部に形成される場合に比べて、第1,第2把持部16,17がケースCの前カバー5および後カバー6から突出することが防止または抑制されて、第1,第2把持部16,17が特別大きな空間を占有することがないので、エンジン発電機1が小型化され、保管のスペースが小さくて済む。しかも第1,第2把持部16,17が目立たない存在となるので、第1,第2把持部16,17がエンジン発電機1の美観を損なうことが少なくなって、エンジン発電機1の外観性が向上する。さらに、冷却風の導入口18が第1把持用空間28を兼ねることから、導入口18と第1把持用空間28とを別個に設ける必要がないので、把持用空間が導入口とは別個に設けられる場合に比べて、ケースCの外観のデザインに対する制約が減少する。さらに、第1,第2把持用空間28,29が、ケース側部である前カバー5お

よび後カバー6に位置するので、エンジン発電機の持ち運びが容易になる。

- [0079] また、エンジン30の運転中、第1把持部16は、導入口18を通る冷却風に晒されて冷却されるので、第1,第2把持部16,17を把持して運転中のエンジン発電機1を持ち運ぶ場合にも、あまり加熱されることはなく、エンジン発電機1の運転中も把持部16,17の把持が可能である。
- [0080] 第1, 第2把持部16, 17は、外側部分16b1, 17b1から最下端16b2, 17b2を経て内側部分16b3, 17b3まで握られるように下方に延びる垂下部16b, 17bを有することにより、垂下部16b, 17bを握ることができ、したがって、第1, 第2把持部16, 17の把持が容易になり、それによりエンジン発電機1の持ち運びが容易になる。
- [0081] また、垂下部16bを有する第1把持部16および凹部23を利用することにより、導入口18が迷路状の通路に形成されることから、導入口18を迷路状にするための構造が複雑化することがない。そして、内部空間9は迷路状の導入口18を介して外部に通じるので、運転騒音の漏出量を大幅に低減することが可能になる。この結果、コストを増加させることなく、導入口18を通じて外部に漏れる運転騒音が低減される。
- [0082] 第1把持部16はケース前部C5に設けられ、導入口18の入口18aは第1把持部16の下方に形成され、第1把持部16および導入口18は、ケース前部C5の横方向での両端部に達するように設けられる。これにより、横方向で第1把持部16を把持する位置の自由度が大きくなるので、把持しやすい位置を選択できて、エンジン発電機1の持ち運びが容易になる。また、外観上の美観を損ねることなく導入口18における冷却風の吸気面積を大きくすることができるうえ、横方向の広い範囲に渡って内部空間9に流入する冷却風により、内部空間9での空気の滞留を抑制することが可能になるので、エンジン30、発電機40および電力制御ユニット41の冷却効果が向上する。
- [0083] 導入口18は、前カバー5の上部に設けられることにより、エンジン停止直後のホット ソーク時に、エンジン30、発電機40および電力制御ユニット41の周囲の熱気は、対流 により内部空間9の上部に上昇する。したがって、熱気が導入口18から流出しやすく 、ケースCの内部空間9の自然換気が促進され、それにより、エンジン停止直後のエ ンジン30、発電機40および電力制御ユニット41の冷却が促進される。
- [0084] 第1把持部16は、前カバー5において操作パネル部5eよりも前方に突出する左右

の側縁部5c,5dよりも僅かに突出し、ケース前部C5の下部C5bは、両側縁部5c,5dよりも内部空間9寄りに位置する。それゆえ、エンジン発電機1が、前カバー5が壁などの外部部材に接触する状態で置かれたときにも、左右の側縁部5c,5dの間で下方に向かって開放する空間および垂下部16b,17bが両側縁5c,5dよりも突出することで側縁部5c,5dと前記外部部材との間に形成される隙間から、冷却風として十分な量の外気を導入口18に導くことができる。

- [0085] カセットボンベ61および燃料圧調整器62は、電力制御ユニット41との熱交換が可能となるように、電力制御ユニット41に近接して配置される。それゆえ、エンジン発電機1の運転中、燃料の気化などにより低温となるカセットボンベ61および燃料圧調整器62が、冷却風を介しての熱伝達により電力制御ユニット41と熱交換可能である、したがって、電力制御ユニット41からの放熱量が増加して、換言すれば、カセットボンベ61および燃料圧調整器62により電力制御ユニット41の冷却が促進されて、電力制御ユニット41の温度上昇が抑制される。同時に、カセットボンベ61および燃料圧調整器62は、電力制御ユニット41により加熱されて、その温度低下が抑制される。この結果、カセットボンベ61および燃料圧調整器62と電力制御ユニット41との間で、相互の熱を利用し合うことにより、電力制御ユニット41の温度上昇が抑制されるので、電力制御ユニット41の放熱構造としての放熱フィン41bを小型化することができる。また、カセットボンベ61および燃料圧調整器62の温度低下が抑制されるので、加熱装置80による加熱量を減少させることができて、加熱源である電気ヒータ81a,81b,82の消費電力を減少させることができる。
- [0086] カセットボンベ61と収容室65を形成する第1側壁66aとが伝熱部材70を介して熱的に接続され、第1側壁66aは、電力制御ユニット41との熱交換が可能となるように、電力制御ユニット41に近接して配置されることにより、カセットボンベ61における電力制御ユニット41からの受熱、そして電力制御ユニット41の放熱は、カセットボンベ61の熱が伝達される第1側壁66aを通じて行われる。したがって、カセットボンベ61および電力制御ユニット41間での熱交換を行うために、カセットボンベ61および電力制御ユニット41の配置が制約されることが減少する。また、第1側壁66aを大きくすることや第1側壁66aを電力制御ユニット41により接近させることなど、第1側壁66aの形状または

配置により、カセットボンベ61および電力制御ユニット41間での伝熱量を増加させることができ、カセットボンベ61および電力制御ユニット41の相互の熱の利用度を高めることが可能になる。この結果、第1側壁66aにより、カセットボンベ61および電力制御ユニット41の熱が相互に利用されたうえで、カセットボンベ61および電力制御ユニット41の配置の自由度が大きくなり、またカセットボンベ61および電力制御ユニット41の相互の熱の利用度を高めることが可能になって、カセットボンベ61による電力制御ユニット41の冷却および電力制御ユニット41によるカセットボンベ61による電力制御ユニット41の冷却および電力制御ユニット41によるカセットボンベ61の加熱を一層効率よく行うことが可能になる。

- [0087] 導入口18を経て内部空間9に導入された冷却風の少なくとも一部が、第1側壁66a を介してカセットボンべ61、燃料圧調整器62および電力制御ユニット41をこの順番で冷却した後、発電機40およびエンジン30を冷却することにより、内部空間9に導入された冷却風は、カセットボンべ61および燃料圧調整器62により冷却されてより低温となり、その低温となった冷却風が、まず電力制御ユニット41を冷却した後、発電機40およびエンジン30を冷却する。したがって、電力制御ユニット41をより効果的に冷却することができると共に、発電機40およびエンジン30についてもより高い冷却効果が得られる。
- [0088] インバータ41aはスイッチング損失が大きく発熱量が大きいため、その作動により高温になるインバータ41aがカセットボンベ61および燃料圧調整器62により効果的に冷却されて、インバータ41aの温度上昇が抑制され、カセットボンベ61および燃料圧調整器62は、高温のインバータ41aにより効果的に加熱されて、その温度低下が抑制される。この結果、発熱量が大きいインバータ41aが効果的に冷却され、かつインバータ41aによりカセットボンベ61および燃料圧調整器62が効果的に加熱される。
- [0089] 燃料圧調整器62は、上下方向および左右方向で導入口18と重なる位置にあり、かつ電力制御ユニット41の真上に配置されることにより、導入口18から内部空間9に流入する冷却風が、燃料圧調整器62により電力制御ユニット41に向かうように偏向されるので、導入口18から内部空間9に流入した直後の冷却風により、電力制御ユニット41の冷却が一層促進される。
- [0090] 流入口50,51が、前後方向で第1側壁66aおよび燃料圧調整器62と重なる位置に

あることにより、流入口50,51からは第1側壁66aおよび燃料圧調整器62との熱交換により冷却された冷却風が流入するので、エンジン本体30aおよびマフラ38bの冷却が促進される。

- [0091] 次に、図8,図9を参照して、本発明の第2実施形態を説明する。この第2実施形態は、第1実施形態とは第2把持部17が冷却風の導入口を形成する点で相違し、その他は基本的に同一の構成を有するものである。そのため、同一の部分についての説明は省略または簡略にし、異なる点を中心に説明する。なお、第1実施形態の部材と同一の部材または対応する部材については、必要に応じて同一の符号を使用した。
- [0092] 第2把持部17は、凹部24と共同して第2導入口としての導入口19を形成する。垂下部17bの最下端17b2は、傾斜部24aとの間に後方に向かって後方に平行に開放する導入口19の入口19aを形成し、第2把持部17の上部17aは、奥部24bの上端部との間に導入口19の出口19bを形成する。また、入口19aは、第2把持部17の下方に形成され、導入口19は、ケース後部C6の横方向での両端部C6c, C6dにほぼ達するように設けられる。導入口19の横幅は、第1導入口としての導入口18の横幅に等しく、さらに後カバー6の横幅にほぼ等しい。
- [0093] したがって、入口19aから流入した冷却風は、前後方向で内部空間9に向けて流れた後、垂下部17bの内側部分17b3および奥部24bに沿って上方に偏向して流れ、さらに上部17aにより前後方向で内部空間9に向けて偏向した後、出口19bから内部空間9に流出する。このように、第2把持部17と凹部24とは、第2導入口19を複数箇所で屈曲した迷路状の通路に形成する。
- [0094] また、補強パネル11の一部は、導入口19に配置されて、冷却風が円滑に流れて内部空間9に導入されるように、冷却風の案内部11aを構成している。
- [0095] そして、導入口19は、エンジン発電機1を持ち運ぶ際に、手で第2把持部17を把持 するために使用される第2把持用空間29を構成する。導入口19は、第2把持部17の 下方に形成され、さらに、主として奥部24bにより形成される導入口19の下流部分19c は、内部空間9に入り込んだ空間となることから、第2把持用空間29の一部は、ケース 上部C4よりも下方に位置すると共に、内部空間9に入り込んだ空間である。
- [0096] この第2実施形態によれば、第1実施形態と同様の作用および効果が奏されるほか

、次の作用および効果が奏される。

[0097] すなわち、第1,第2把持部16,17は、ケースCにおいて発電機40およびエンジン30を挟んで対向する前カバー5および後カバー6にそれぞれ設けられ、第1,第2把持部16,17と前カバー5の凹部23および後カバー6の凹部24とが共同してそれぞれ1対の導入口18,19を形成することにより、冷却風は、エンジン30および発電機40を挟んで両側から内部空間9に流入することから、導入口が1つの場合に比べて、内部空間9に流入した直後の比較的低温の冷却風がエンジン30および発電機40の周囲を流通するので、エンジン30および発電機40の冷却が促進される。また、エンジン停止直後のホットソーク時などに、エンジン30、発電機40および電力制御ユニット41の周囲の熱気は、対流により内部空間9の上

部に上昇するので、ケース前部C5およびケース後部C6の上部C5a, C6aにそれぞれ位置する両導入口18, 19から外部に流出しやすく、しかも導入口が一つの場合に比べて、一層流出しやすく、ケースCの内部空間9の自然換気が一層促進される。この結果、1対の導入口18, 19からの冷却風によりエンジン30, 発電機40および電力制御ユニット41の冷却が見上し、しかもエンジン停止直後のエンジン30、発電機40および電力制御ユニット41の冷却が促進される。

- [0098] 両導入口18,19は、電力制御ユニット41、発電機40、エンジン本体30aおよびマフラ38bが直列に配列された方向で対向して設けられることにより、電力制御ユニット41寄りの導入口18からの冷却風は、第1実施形態と同様に、電力制御ユニット41、発電機40、エンジン本体30aおよびマフラ38bを順次冷却する一方、エンジン30寄りの導入口19からの冷却風の大部分は、シュラウド47の周囲を流通して流入口50,51から冷却ファン45に吸引された後、シュラウド47内に送られて発電機40、エンジン本体30aおよびマフラ38bを順次冷却する。この結果、発電機40およびエンジン30は、電力制御ユニット41により殆ど加熱されることがない冷却風により冷却されるので、発電機40、エンジン本体30aおよびマフラ38bの冷却効果が向上する。
- [0099] 以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
- [0100] 前記実施形態のように、第1把持用空間28がほぼ導入口18のみにより構成されるこ

となく、図10に示されるように、内部空間9の一部および第1導入口92により第1把持用空間93が構成されてもよい。より具体的には、第1把持部90は、前カバー5の凹部91との共同により第1導入口92を形成すると共に、前カバー5やケースCを構成する他のカバー4などと同様に内部空間9をも形成する。すなわち、手で握られる部分である垂下部90bの内側部分90b1は、内部空間9を形成する。このとき、第2把持部および後カバーにより形成される第2把持用空間は、第1実施形態と同様に閉塞されていてもよいし、第1把持用空間93と同様に、内部空間9の一部と、第2把持部および後カバーの凹部の共同により形成される第2導入口とにより構成されてもよい。また、図10おいて、二点鎖線で例示されるように、前カバー5および後カバーには、それぞれ第1導入口および第2導入口を形成するための凹部が形成されていなくてもよい。

- [0101] これによれば、冷却風の導入口92が第1把持用空間93を兼ねることから、第1把持用空間93が内部空間9を形成する前カバー5自体に形成されることになり、さらに第1把持用空間93の一部としてケースCの内部空間9が利用されるので、把持用空間の全体がケースCの外部に形成される場合に比べて、第1把持部90がケースCの前カバー5から突出することが防止または抑制される。この結果、エンジン発電機1の小型化および保管のスペースの縮小の点をはじめ、ケースCの外観のデザインに対する制約の減少などの点で、第1実施形態と同様の効果が奏される。
- [0102] 前記実施形態では、ケースCは、主として6つのカバーにより構成されたが、6以外の数のカバーにより構成されてもよい。
- [0103] 第1,第2把持部16,17および導入口18,19,92は、ケース前部C5またはケース後部C6において、上端部以外の上部、下部、または上下方向で上部と下部との中間部に設けられてもよく、さらにはケース上部C4に設けられてもよい。導入口18,19,92は、第1,第2把持用空間28,29,93が形成されることを前提として、横方向で複数に分割されてもよい。
- [0104] 前記実施形態では、第1,第2把持部は把持部形成部材の全体により構成されたが、各把持部は、ケースCを構成するケース構成部材、例えば前カバー5、後カバー6または上カバー4を把持部形成部材として、把持部形成部材に一体成形されてその一部により構成されてもよく、あるいは前記ケース構成部材とは別個の部材から構

成されて、該ケース構成部材に一体に結合されてもよい。第1,第2把持部は、手が掛けられるような形状であってもよい。

- [0105] カセットボンベ61、室壁66または燃料圧調整器62の少なくとも1つが、熱の良導体からなる伝熱部材を介して、または直接、電力制御ユニット41の放熱フィン41bと熱的に接続されてもよい。これにより、カセットボンベ61および燃料圧調整器62の少なくとも一方と電力制御ユニット41との間の伝熱が、伝熱部材を介して熱伝導により行われるので、相互の熱の利用度がより高められる。この結果、カセットボンベ61および燃料圧調整器62の少なくとも一方と電力制御ユニット41との間の相互の熱の利用度がより高められるので、カセットボンベ61および燃料圧調整器62の少なくとも一方による電力制御ユニット41の冷却効果および電力制御ユニット41によるカセットボンベ61および燃料圧調整器62の少なくとも一方の加熱効果が一層向上する。
- [0106] カセットボンベ61および燃料圧調整器62のいずれかが、電力制御ユニット41との熱 交換が可能となるように電力制御ユニット41に対して配置されてもよい。
- [0107] カセットボンベ61が配置される燃料配置部は、収容部60により構成される必要はなく、したがって電力制御ユニット41との間に室壁66が設けられていなくてもよい。
- [0108] 第1ガス燃料は、気化した状態で燃料圧調整器62に供給されてもよい。第2ガス燃料は、プロパン以外のガス燃料、例えば都市ガスであってもよく、また第2燃料源は、第2ガス燃料が供給される管であってもよい。
- [0109] 加熱装置80の加熱源は電気ヒータ以外のものであってもよく、例えばエンジンの排気ガスの熱など、エンジンの廃熱を利用するものでもよい。また、カセットボンベ61および燃料圧調整器62と電力制御ユニット41との間で、相互の熱を利用し合うことから、電力制御ユニット41の熱によりカセットボンベ61および燃料圧調整器62の温度低下が抑制されるので、比較的低温の加熱源を利用できるなど、加熱源の選択肢が増え、さらにはカセットボンベ61または燃料圧調整器62を加熱する加熱装置が不要になる

請求の範囲

[1] ガス燃料を液化状態で貯蔵する燃料容器と、該燃料容器からガス燃料を供給される エンジンと、前記燃料容器から前記エンジンに供給されるガス燃料の圧力を調整す る燃料圧調整器と、前記エンジンにより駆動される発電機と、前記発電機が発生する 電力を制御する電力制御ユニットとを備えるエンジン発電機において、

前記燃料容器および前記燃料圧調整器の少なくとも一方は、前記電力制御ユニットとの熱交換がなされるように、前記電力制御ユニットに近接して配置されることを特徴とするエンジン発電機。

- [2] 前記燃料容器が収容される収容室を備え、前記燃料容器と前記収容室の室壁とが 熱の良導体からなる伝熱部材を介して熱的に接続され、前記室壁は、前記電力制御 ユニットとの熱交換が可能となるように、前記電力制御ユニットに近接して配置される ことを特徴とする請求項1記載のエンジン発電機。
- [3] 前記伝熱部材は、前記燃料容器と前記収容室の室壁とに接するように前記伝熱部 材と前記収容室の室壁の間に介在する複数の柱状部在であることを特徴とする請求 項2記載のエンジン発電機。
- [4] 前記燃料容器および前記燃料圧調整器の少なくとも一方と前記電力制御ユニットとが、熱の良導体からなる伝熱部材を介して、または直接、熱的に接続されることを特徴とする請求項1記載のエンジン発電機。
- [5] 前記電力制御ユニットはインバータを備えることを特徴とする請求項1から請求項4の いずれか1項記載のエンジン発電機。
- [6] 前記燃料容器、前記エンジンおよび前記発電機が収容される内部空間を形成する ケースを備え、前記内部空間に導入された冷却風が、前記燃料容器および前記電 力制御ユニットをこの順番で冷却した後、前記発電機および前記エンジンを冷却す るように冷却風通路が形成されていることを特徴とする請求項1から請求項4のいず れか1項記載のエンジン発電機。
- [7] 前記収容室の室壁に関して前記収容室の反対側に、前記燃料圧調整器および前記電力制御ユニットが配置され、前記電力制御ユニットは前記燃料圧調整器の下側に位置していることを特徴とする請求項6記載のエンジン発電機。

[8] 前記ケースはその一側壁の上部に沿って空気導入口を有し、前記燃料圧調整器は前記空気導入口の直下流に設けられていることを特徴とする請求項7記載のエンジン発電機。

[図1]

[図2]

[図3]

[図4]

[図5]

[図7]

	燃料切換コック			
	第1位置	停止位置	第2位置	
エンジンへの ガス燃料供給状態	カセットボンベ のガス燃料 (ブタン)供給	供給停止	外部ガス容器 のガス燃料 (プロパン)供給	
点火装置の 作動状態	作動 (キルスイッチ) OFF	非作動 (キルスイッチ) ON	作動 (キルスイッチ) OFF	
加熱装置の 作動状態	作動 (ヒータのメイン) スイッチ ON	非作動 (ヒータのメイン) スイッチ OFF	非作動 (ヒータのメイン) スイッチ OFF	

[図8]

[図9]

WO 2006/035636 PCT/JP2005/017294 10/10

[図10]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/017294

		i -	CI/UFZUUJ/UI/ZJ4			
A. CLASSIFICATION OF SUBJECT MATTER F02B63/04 (2006.01), F01P5/06 (2006.01), F02M21/02 (2006.01), F02M21/06 (2006.01)						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) F02B63/04 (2006.01), F01P5/06 (2006.01), F02M21/02 (2006.01), F02M21/06 (2006.01)						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap		0			
A	JP 11-241653 A (Kabushiki Ka 07 September, 1999 (07.09.99) Full text; all drawings (Family: none)		, 1-8			
A	JP 2003-314372 A (Mitsubishi Heavy Industries, Ltd.), 06 November, 2003 (06.11.03), Full text; all drawings (Family: none)					
A	JP 61-155655 A (Yamaha Motor 15 July, 1986 (15.07.86), Full text; all drawings (Family: none)	Co., Ltd.),	1-8			
Further do	nex.					
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance			after the international filing date or priority th the application but cited to understand derlying the invention			
"E" earlier application or patent but published on or after the international filing			evance; the claimed invention cannot be not be considered to involve an inventive			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		step when the document is				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family				
Date of the actual completion of the international search 20 December, 2005 (20.12.05)			rnational search report 2006 (10.01.06)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Eggainnila No		Telephone No				

発明の属する分野の分類(国際特許分類(IPC)) A.

Int.Cl. F02B63/04 (2006.01), F01P5/06 (2006.01), F02M21/02 (2006.01), F02M21/06 (2006.01)

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

F02B63/04 (2006.01), F01P5/06 (2006.01), F02M21/02 (2006.01), F02M21/06 (2006.01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献						
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
A	JP 11-241653 A (株式会社フジテック) 1999.09.07, 全文、全図 (ファミリーなし)	1-8				
A	JP 2003-314372 A (三菱重工業株式会社) 2003. 11. 06,全文、全図 (ファミリーなし)	1-8				
A	JP 61-155655 A (ヤマハ発動機株式会社) 1986.07.15,全文、全図 (ファミリーなし)	1-8				

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって
- 「E」国際出願目前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 20. 12. 2005 10.01.2006 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 3 T 9333 日本国特許庁(ISA/JP) 佐藤 正浩 郵便番号100-8915 電話番号 03-3581-1101 内線 東京都千代田区霞が関三丁目4番3号 3395