Customer Churn Prediction for a Subscription-Based Business

1. How would you handle imbalanced data if churned customers are fewer than active ones?

Solution

When dealing with imbalanced datasets (where churned customers are significantly fewer), several techniques can be employed:

- a) Resampling Techniques:
- Oversampling the minority class (churned customers):
 - Use SMOTE (Synthetic Minority Over-sampling Technique) to create synthetic examples of churned customers
 - Helps balance the dataset without simply duplicating existing data points
- Under sampling the majority class (active customers):
 - o Randomly remove some active customer records to balance the classes
 - o Can be combined with oversampling for more robust results

b) Class Weighting:

- Adjust the machine learning algorithm to give more weight to the minority class
- Particularly effective in algorithms like logistic regression, decision trees, and random forests
- Ensures the model pays more attention to the less frequent but critical churn instances

c) Ensemble Methods:

- Use algorithms specifically designed for imbalanced data
- · Random Forest with balanced class weights
- Gradient Boosting with scale pos weight parameter
- Enables better learning from the minority class

2. What features are the most important predictors of churn?

Solution

To identify the most important features, I would recommend:

Feature Importance Analysis:

- Correlation Analysis: Examine statistical correlation between features and churn
- Permutation Importance: Measure how much model performance drops when a feature is randomly shuffled
- SHAP (Shapley Additive explanations) Values: Provide a game-theoretic approach to explain feature contributions

Potential Key Predictors:

- Tenure: Likely a strong indicator (shorter tenure might correlate with higher churn)
- Monthly Usage Hours: Low engagement could signal potential churn
- Monthly Fee: Price sensitivity might impact subscription continuation
- Subscription Plan: Different plans might have varying churn rates
- Age: Different age groups might have different retention patterns

3. How would you explain the model's predictions to a non-technical business team?

Solution

Strategies for Making the Model Interpretable:

- Use interpretable models like Decision Trees or Logistic Regression initially
- Create visual dashboards showing:
 - Key risk factors for churn
 - o Probability of churn for different customer segments
 - Most influential features in prediction

Visualization Techniques:

- Confusion Matrix: Show model's prediction accuracy
- Feature Impact Charts: Graphically represent how different features influence churn probability
- Customer Segment Risk Profiles: Break down churn risk by different customer categories

4. What steps would you take to deploy this model into production?

Solution

Comprehensive Deployment Strategy:

- a) Model Preparation
 - Finalize and validate the most performant model
 - Ensure model meets business performance criteria (precision, recall)
 - Create a robust preprocessing pipeline

b) Infrastructure Setup

- Cloud Platform (AWS/Azure/GCP):
 - o Set up scalable model serving infrastructure
 - o Implement model versioning
 - o Create monitoring and logging system

c) Monitoring and Maintenance

- Implement model drift detection
- Regular retraining with new data
- A/B testing of model versions
- Create alerts for significant performance changes

d) Actionable Insights Integration

- Develop automated intervention strategies
- Create personalized retention campaigns
- Trigger proactive customer engagement based on predicted risk

Recommended Model Selection:

- 1. Gradient Boosting (XGBoost/LightGBM)
- 2. Random Forest
- 3. Logistic Regression with regularization

Performance Metrics to Track:

- Precision
- Recall
- F1 Score
- AUC-ROC
- Confusion Matrix