Discrete Mathematics, Section 001, Fall 2016 Lecture 13: Sequences generated by polynomials

Zsolt Pajor-Gyulai zsolt@cims.nyu.edu

Courant Institute of Mathematical Sciences

October 26, 2016

Outline

Sequences generated by polynomials

Consider the following identities:

$$0^2 + 1^2 + \dots + n^2 = \frac{(2n+1)(n+1)n}{6}$$

$$0^3 + 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

- These are all polynomial expressions.
- Proving them is simple by induction.
- How do we come up with them in the first place?

We are going to learn:

- How to decide whether a sequence of numbers is generated by a polynomial expression.
- How to determine the polynomial in question.

The difference operator

Let a_0, a_1, a_2, \ldots be a sequence of numbers. We can form the new sequence

$$a_1 - a_0, \qquad a_2 - a_1, \qquad a_3 - a_2, \qquad \dots$$

Definition

If a is a sequence, then Δa is a sequence defined by

$$\Delta a_n = a_{n+1} - a_n.$$

 Δ is called the **difference operator**.

For example

a: 0 2 7 15 26 40 57 Δa: 2 5 8 11 14 17

The difference operator

What does Δ do to sequences given by polynomials. For example if $a_n = n^3 - 5n + 1$,

$$\Delta a_n = a_{n+1} - a_n =$$

$$= [(n+1)^3 - 5(n+1) + 1] - [n^3 - 5n + 1] =$$

$$= n^3 + 3n^2 + 3n + 1 - 5n - 5 + 1 - n^3 + 5n - 1 =$$

$$= 3n^2 + 3n - 4$$

△ took a degree-3 polynomial and turned it into a degree-2 polynomial.

The difference operator

Proposition

Let a be a sequence of numbers in which a_n is given by a degree-d polynomial in n where $d \ge 1$. Then Δa is a sequence given by a polynomial of degree d-1.

Proof

Suppose

$$a_n = c_d n^d + c_{d-1} n^{d-1} + \cdots + c_1 n + c_0, \qquad c_d \neq 0.$$

Then

$$\Delta a_n = a_{n+1} - a_n =$$

$$= \left[c_d (n+1)^d + c_{d-1} (n+1)^{d-1} + \dots + c_1 (n+1) + c_0 \right] -$$

$$- \left[c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0 \right].$$

[...]

Proposition

Let a be a sequence of numbers in which a_n is given by a degree-d polynomial in n where $d \ge 1$. Then Δa is a sequence given by a polynomial of degree d-1.

Proof

$$\Delta a_{n} = \left[c_{d}(n+1)^{d} + c_{d-1}(n+1)^{d-1} + \dots c_{1}(n+1) + c_{0} \right] - \left[c_{d}n^{d} + c_{d-1}n^{d-1} + \dots + c_{1}n + c_{0} \right] =$$

$$= c_{d} \left[(n+1)^{d} - n^{d} \right] + c_{d-1} \left[(n+1)^{d-1} - n^{d-1} \right] + \dots + c_{1}[(n+1) - n] + c_{0}[1-1]$$
[...]

Proposition

Let a be a sequence of numbers in which a_n is given by a degree-d polynomial in n where $d \ge 1$. Then Δa is a sequence given by a polynomial of degree d-1.

Proof

[...]

$$\Delta a_n = c_d \left[(n+1)^d - n^d \right] + c_{d-1} \left[(n+1)^{d-1} - n^{d-1} \right] + \dots + c_1 \left[(n+1) - n \right] + c_0 \left[1 - 1 \right]$$

Note that by the Binomial theorem,

$$(n+1)^{j} = n^{j} + \sum_{k=0}^{j-1} {j \choose k} n^{k}$$
 $j = 0, \dots d$

and therefore $(n+1)^j - n^j$ is a polynomial of degree j-1. This proves the claim.

Multiple applications of Δ

a :	0		2		7		15		26		40		57
∆a:		2		5		8		11		14		17	
$\Delta^2 a$:			3		3		3		3		3		
Δ^3a :				0		0		0		0			

Corollary

If a sequence a is generated by a polynomial of degree d, then $\Delta^{d+1}a$ is the all-zeros sequence.

Now we seek to prove the converse of this!

Properties of Δ

Proposition

Let a, b, be sequences of numbes and let s be a number.

- If, for all n, then $\Delta(a_n + b_n) = \Delta a_n + \Delta b_n$.
- 2 If, for all n, then $\Delta(sa_n) = s\Delta a_n$.

Proof.

(1),(2) are simple (Worksheet Problem 1).

Binomial coefficients as polynomials

Let

$$a_n = \binom{n}{3} = \frac{n!}{(n-3)!3!} = \frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1} = \frac{1}{6}n(n-1)(n-2)$$

Strictly speaking we only proved this for n > 3. Note, however that it applies perfectly to n = 0, 1, 2 as well.

This is a polynomial!

a :	0		0		0		1		4		10		20		35
∆a :		0		0		1		3		6		10		15	
$\Delta^2 a$:			0		1		2		3		4		5		6
Δ^3a :				1		1		1		1		1		1	
Δ^4a :					0		0		0		0		0		0

You can find Pascal's triangle in this in the / direction

Binomial coefficients as polynomials

$$a:$$
 0
 0
 0
 1
 4
 10
 20
 35

 $\Delta a:$
 0
 0
 1
 3
 6
 10
 15

 $\Delta^2 a:$
 0
 1
 2
 3
 4
 5
 6

 $\Delta^3 a:$
 1
 1
 1
 1
 1
 1
 1

 $\Delta^4 a:$
 0
 0
 0
 0
 0
 0
 0

$$\Delta \binom{n}{3} = \binom{n+1}{3} - \binom{n}{3}$$

$$= \frac{1}{6}(n+1)n(n-1) - \frac{1}{6}n(n-1)(n-2)$$

$$= \frac{(n^3 - n) - (n^3 - 3n^2 + 2n)}{6} = \frac{3n^2 - 3n}{6}$$

$$= \frac{1}{2}n(n-1) = \binom{n}{2}$$

Binomial coefficients as polynomials

Proposition

If k > 0 and $a_n = \binom{n}{k}$, then

- 1) $\Delta a_n = \binom{n}{k-1}$.
- 2) $a_0 = \Delta a_0 = \Delta^2 a_0 = \cdots = \Delta^{k-1} a_0 = 0$ but $\Delta^k a_0 = 1$.

Proof.

To see 1), note that.

$$\Delta \binom{n}{k} = \binom{n+1}{k} - \binom{n}{k} = \binom{n}{k-1} \qquad k \ge n.$$

by Pascal's identity. For k > n, all three binomial coefficients are zero and therefore the identity holds again.

2) is homework.

For the sequence $a_n = \binom{n}{k}$, we know

- $\Delta^{k+1} a_0 = 0$ for all *n*.
- The value of a_0 .
- The value of $\Delta^j a_0$ for all $1 \le j < k$.

This is enough to determine a polynomial sequence $a_n!$

Proposition

Let a and b be sequences of numbers and let k be a positive integer. Suppose that

- $\Delta^k a_n$ and $\Delta^k b_n$ are zero for all n,
- $a_0 = b_0$,
- $\Delta^j a_0 = \Delta^j b_0$ for all $1 \le j < k$.

Then $a_n = b_n$.

Proposition

Let a and b be sequences of numbers and let k be a positive integer. Suppose that

- $\Delta^k a_n$ and $\Delta^k b_n$ are zero for all n,
- $a_0 = b_0$,
- $\Delta^j a_0 = \Delta^j b_0$ for all $1 \le j < k$.

Then $a_n = b_n$.

Proof

We prove this by induction on k. The basis case is k = 1, in which case we already have

$$\Delta a_n = \Delta b_n = 0$$

which means that both sequences are constants. Since we have $a_0 = b_0$, this means that the sequences are identical.[...]

Hypotheses:

- $\Delta^k a_n$ and $\Delta^k b_n$ are zero for all n,
- $a_0 = b_0$,
- $\Delta^j a_0 = \Delta^j b_0$ for all $1 \le j < k$.

Proof.

[...]Suppose now that the result is true for k = l and let a and b be sequences satisfying the hypotheses of the theorem with k = l + 1. Form the new sequences

$$a'_n = \Delta a_n, \qquad b'_n = \Delta b_n.$$

Clearly, a'_n and b'_n satisfies the hypotheses with k = l and therefore a' = b'.

Proof.

$$a'_n = \Delta a_n, \quad b'_n = \Delta b_n.$$

Then $a'_n = b'_n$ for every n.

Now we show that $a_n = b_n$ for every n. Suppose FTSC that a and b were different. Then there is a smallest m such that

$$a_m \neq b_m$$

Note that $m \neq 0$ because $a_0 = b_0$ and that by the minimality of m, we have $a_{m-1} = b_{m-1}$. Then

$$a_m - a_{m-1} = a'_{m-1} = b'_{m-1} = b_m - b_{m-1}$$

which implies

$$a_m - b_m = a_{m-1} - b_{m-1} = 0.$$

This means $a_m = b_m \Rightarrow \Leftarrow$.

Theorem

Let a be a sequence of numbers. The terms a_n can be expressed as a polynomial expression in n if and only if there is a non-negative integer k such that for all $n \ge 0$, we have $\Delta^{k+1}a_n = 0$. In this case,

$$a_n = a_0 \binom{n}{0} + (\Delta a_0) \binom{n}{1} + (\Delta^2 a_0) \binom{n}{2} + \cdots + (\Delta^k a_0) \binom{n}{k}.$$

Proof.

We have already proved that a_n is a polynomial of degree d, then $\Delta^{d+1}a_n=0$, we only have to prove the other direction and the formula. This is going to be a reading exercise on your homework.

An example

$$a:$$
 0
 2
 7
 15
 26
 40
 57

 $\Delta a:$
 2
 5
 8
 11
 14
 17

 $\Delta^2 a:$
 3
 3
 3
 3
 3

 $\Delta^3 a:$
 0
 0
 0
 0

Then by the theorem with k = 3,

$$a_n = 0 \binom{n}{0} + 2 \binom{n}{1} + 3 \binom{n}{2} = 0 + 2n + 3 \frac{n(n-1)}{2} = \frac{n(3n+1)}{2}.$$

Do problems 2-3 from the worksheet!