Week 4

Literature Summary

Transformer Models

https://gigantic-jaguar-faa.notion.site/Transformer-Models-0588076e72884d7c8fe3 dcb272cb37cc

Transformer Accelerator Designs:

https://gigantic-jaguar-faa.notion.site/Transformer-Accelerators-6d11dec8b13744a a8aec4da0dbc56631

CIM-Based with Configurable Pipeline/Parallel Modes

- 2 static engines(SEngine), 1 dynamic engine(DEngine) (data source selection, output aggregation)
- Parallel mode: all engines store FFN weights, run in parallel
- Pipeline mode
 - QK^T: SE0, SE1 compute Q, K(first stage), DE computes A(A = Q*K^T, second stage), SIMD core for softmax, scaling A'
 - A'V: SE0, SE1 compute V, DE loads A' from global buffer and computes A'V
- Use pipeline for some kernels? (LayerNorm, softmax)

Eyeriss v2

- 2D hierarchical mesh network
 - a global buffer cluster(GLB, 12KB) is assigned for each PE cluster and connected to 2D mesh through a router
 - all-to-all network with two-level hierarchy (PE, cluster)
 - high-bandwidth: within cluster, unicast
 - high-reuse: broadcast to all PEs in another cluster
 - grouped/interleaved-multicast: multicast to some PEs in another cluster

Eyeriss v2

- Compressed sparse column(CSC):
 - Process data in compressed form: fewer bandwidth requirements, energy saving
 - o data vector: all non-zero data
 - count vector: # leading zeros from the previous non-zero value (additional overhead)
 - address vector: indicates the column address of each data (start with 1)
- PE arch with sparsity consideration
 - read address vector first
 - 7-stage pipeline: fetch non-zero iacts from SPads → fetch non-zero weights → MAC
 - compatible with normal format (low sparsity) → clock gate address SPads, set count to zero
- Results:
 - o TSMC 64nm, 200MHz, 192 PEs, 153.6GOPS

CSC Compressed Data:

data vector: {**a**, b, **c**, d, e, **f**, **g**, **h**, i, **j**, k, l} count vector: {1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0}

address vector: {0, 2, 5, 6, 6, 7, 9, 9, 12}

A LayerNorm Optimization Trick

- Standard: $var(i) = \frac{1}{K} * \sum_{k=1}^{K} (x_{ik} mean)^2$
 - Need to load xik twice, mean & variance stages
- Approximation: $var(i) = mean^2 \frac{1}{K} * \sum_{k=1}^{K} x_{ik}^2$
 - xij^2 can be calculated in the mean stage
- Accuracy effect (including quantization, softmax optimization):
 - BLEU score on "tst2014": 23.48

TED.tst2014			TEDX.tst.2014		
BLEU	TER	CTER	BLEU	TER	CTER
32.3	48.4	47.6	25.2	56.9	55.3
33.7	47.4	46.7	24.7	59.3	54.9
32.3	47.9	47.7	25.7	56.0	55.1
32.6	47.1	47.5	26.4	55.4	54.7
29.4	51.6	49.9	25.2	56.5	54.1
30.4	50.1	49.4	26.3	54.8	55.9
30.8	49.6	48.4	27.1	53.9	52.9
30.6	49.7	49.5	26.0	54.0	56.7
32.1	49.6	48.0	25.9	56.1	54.1
30.8	50.3	49.5	24.6	56.8	55.7
30.9	50.1	49.5	24.9	56.2	55.5
33.4	47.1	46.7	26.2	56.4	54.1
34.2	46.5	46.9	27.6	53.1	55.6
33.8	46.7	46.9	27.9	53.2	54.3