I Questions de cours

- 1 Démontrer qu'un fermé relatif d'un compact est compact.
- 2 Démontrer qu'un produit fini de compacts est compact.
- 3 Démontrer que l'image d'un compact par une application continue est compact.

II Exercices sur la compacité et la connexité par arcs

Exercice 1:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'un espace vectoriel normé $(E,\|\cdot\|)$ de dimension finie qui converge de limite notée ℓ .

Montrer que $\Gamma = \{x_n, n \in \mathbb{N}\} \cup \{\ell\}$ est compact.

Exercice 2:

Soit $n \in \mathbb{N}^*$.

- 1 Montrer que le groupe orthogonal $O_n(\mathbb{R})$ est fermé. Est-il compact?
- 2 Le groupe orthogonal $O_n(\mathbb{R})$ est-il connexe par arcs?
- 3 Montrer que le groupe spécial orthogonal $SO_n(\mathbb{R})$ est compact.
- 4 Montrer que $SO_n(\mathbb{R})$ est connexe par arcs.

Exercice 3:

On considère $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé.

1 - On suppose que ${\cal E}$ est de dimension finie.

Montrer que les parties compactes de E sont exactement les parties fermées bornées.

- 2 Montrer que le résultat est faux en dimension infinie.
- 3 Soit M un sous-espace vectoriel fermé strict de ${\cal E}.$

 $Montrer\ que:$

$$\forall \varepsilon > 0, \ \exists u \in E \ \mathrm{tq} \ \|u\| = 1 \ \mathrm{et} \ d(u, M) \ge 1 - \varepsilon$$

4 - Démontrer que E est de dimension finie si, et seulement si, la boule unité fermée $\mathcal{B}_f(0,1)$ de $(E,\|\cdot\|)$ est compacte.

Indication : Pour le sens réciproque, on raisonnera par contraposée et on itérera la question précédente à une suite d'espaces vectoriels inclus les uns dans les autres strictement.

Exercice 4:

On dit que deux parties A et B de deux espaces vectoriels normés E et F sont homéomorphes lorsqu'il existe une bijection $f:A\longrightarrow B$ telle que f et f^{-1} soient continues.

- 1 Démontrer que $\mathbb{R}^2 \setminus \{(0,0)\}$ est connexe par arcs.
- 2 Démontrer que \mathbb{R} et \mathbb{R}^2 ne sont pas homéomorphes.
- 3 Démontrer que le cercle trigonométrique n'est homéomorphe à aucun segment de $\mathbb{R}.$

III Exercices sur les endomorphismes autoadjoints

$\underline{Exercice\ 5}$:

On pose $E = \mathbb{R}_n[X]$.

- 1 Montrer que l'application $<\cdot;\cdot>:(P,Q)\longmapsto \int_0^1 P(t)Q(t)\mathrm{d}t$ est un produit scalaire sur E.
- 2 Montrer que la relation :

$$u(P)(x) = \int_0^1 (x+t)^n P(t) dt$$

définit un endomorphisme u de l'espace E.

3 - Vérifier que l'endomorphisme u est autoadjoint.

Indication: On admettra que l'on peut permuter les deux intégrales.

4 - Calculer la trace de $\boldsymbol{u}.$

Exercice 6:

Justifier que la matrice

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

est diagonalisable, et trouver $P \in \mathcal{O}_3(\mathbb{R})$ tel que $P^{\mathsf{T}}AP$ soit diagonale.