Bayesian inference

A: Frequentist versus Bayesian estimation

Inferring an unknown parameter

We get data $x_1, \ldots, x_n \sim p_\theta$ and would like to estimate θ .

• Frequentist: treat θ as an unknown, non-random quantity.

For instance, pick the maximum-likelihood value

$$\operatorname{arg\,max}_{\theta} \Pr(x_1, \dots, x_n | \theta) = \operatorname{arg\,max}_{\theta} \prod_{i=1}^n p_{\theta}(x_i).$$

• Bayesian: treat θ as a random variable with a prior distribution q_o .

Given the data, the posterior distribution of θ is

$$q_n(\theta) = \Pr(\theta|x_1,\ldots,x_n) \propto q_o(\theta)\Pr(x_1,\ldots,x_n|\theta).$$

Some good references

- Bradley Efron. A 250-year argument: Belief, behavior, and the bootstrap.
- Andrew Gelman, John Carlin, Hal Stern, Donald Rubin. Bayesian Data Analysis.
- Kevin Murphy. Machine Learning: A Probabilistic Perspective.

Inferring a binomial parameter

(From Gelman.) What fraction of human births are female?

• Laplace looked at children born in Paris, 1745–1770.

$$\# \text{ girls} = 241,945, \ \# \text{ boys} = 251,527, \ \text{total} = 493,472.$$

Female fraction = 0.490.

- Mathematical setup:
 - Let θ be the probability that a child is female.
 - Let *n* be the number of children observed.

Suppose we see F females and M males. Then $F \sim \text{binomial}(n, \theta)$.

- Bayesian inference: put a prior on θ . Simple choice: uniform prior, $q_o(\theta) = 1$ for all $\theta \in [0, 1]$.
- Laplace asked: What is the probability that $\theta < 0.5$?

- Uniform prior: $q_o \equiv 1$.
- What is the posterior q_n after seeing F = f, M = m?

B: Binomial and beta

The beta distribution

For $\alpha, \beta > 0$, the beta (α, β) distribution on [0, 1] has functional form

$$p(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

where $\Gamma(\cdot)$ is the gamma function.

Recall
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$
. Useful identity: $\Gamma(z+1) = z\Gamma(z)$.

Basic properties of the beta (α, β) distribution:

$$\begin{aligned} \mathsf{Mean} &= \frac{\alpha}{\alpha + \beta} \\ \mathsf{Mode} &= \frac{\alpha - 1}{\alpha + \beta - 2} \\ \mathsf{Variance} &= \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \end{aligned}$$

Beta pictures

An interesting case

Laplace's law of succession

Another question that Laplace considered: What is the probability that the sun will rise tomorrow, given that it has risen every day for the past 5000 years?

- Let θ be the probability that the sun rises on any given day.
- Place a uniform prior on θ .
- We have $n = 5000 \times 365 = 1,826,213$ observations.
- Recall: uniform prior + binomial likelihood \implies beta posterior.
- Posterior q_n is beta(n+1,1).

Answer:

$$\Pr(\text{sun rises tomorrow}) \ = \ \int_0^1 \theta \ q_n(\theta) \ d\theta \ = \ \mathbb{E}_{q_n} \theta \ = \ \frac{n+1}{n+2}.$$

Beta priors

Unknown probability $\theta \in [0,1]$ (of female child, sun rising, etc.)

- Prior $q_o = \text{beta}(\alpha, \beta)$
- ullet See n observations, of which s are successes
- What is the posterior q_n ?

The beta is a conjugate prior for the binomial

Conjugate prior: posterior is from the same family as the prior.

beta prior + binomial likelihood \implies beta posterior

- Prior beta (α, β)
- Observe s successes and f failures
- Posterior is beta $(\alpha + s, \beta + f)$

Equivalent sample size: prior beta (α, β) is the same as

- Uniform prior
- Seeing $\alpha-1$ successes and $\beta-1$ failures

Prior is eventually overwhelmed by observations.

C: Handling non-conjugate priors

Binomial with an arbitrary prior

Coin of unknown bias θ . Use any prior q_o on [0,1]:

See *n* observations, with *h* heads and *t* tails. Posterior:

$$q_n(\theta) \propto q_o(\theta) \cdot \theta^h \cdot (1-\theta)^t$$

How to answer questions like "What is $\Pr(\theta < 1/2)$?"

- 1 Fine gridding of [0,1], approximate q_o, q_n by discrete distribution over grid points.
- 2 Sample from q_n . Easy if q_n is beta. Otherwise, methods like rejection sampling.

Rejection sampling

Wish to sample from a distribution f, but we don't know how.

- There is a distribution g from which we know how to sample.
- f(x)/g(x) is bounded, say $\leq M$.

- Draw $X \sim g$ and $U \sim \mathsf{Unif}[0,1]$ If U < f(x)/Mg(x): output X and halt
- What is the probability this procedure outputs a given x?
- What is the expected number of trials before a sample is generated?

D: Conjugate priors for exponential families

Conjugate priors for exponential families

Take any exponential family

$$p_{\theta}(x) = e^{\theta \cdot T(x) - G(\theta)} \pi(x)$$

with features $T(x) = (T_1(x), \dots, T_k(x))$ and $\theta \in \Theta$.

Conjugate prior over Θ :

- Define features $U(heta) = (heta_1, \dots, heta_k, -G(heta)) \in \mathbb{R}^{k+1}$
- Gives a (k+1)-parameter family indexed by $\eta=(\eta_1,\ldots,\eta_k),\lambda$:

$$p_{\eta,\lambda}(\theta) = e^{(\eta,\lambda)\cdot U(\theta) - F(\eta,\lambda)} \nu(\theta)$$

with base measure ν on Θ .

Poisson with a gamma prior

Recall Poisson(θ) distribution over \mathbb{N} : $p_{\theta}(x) = e^{-\theta} \theta^{x}/x!$.

Conjugate prior: gamma(α, β) distribution over \mathbb{R}^+ :

$$\Pr(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \, \theta^{\alpha - 1} e^{-\beta \theta}.$$

• Mean: α/β

• Mode: $(\alpha - 1)/\beta$

• Variance: α/β^2

After seeing x_1, \ldots, x_n , what is the posterior?

• Poisson distribution $p_{\theta}(x) = e^{-\theta} \theta^x / x!$

• Gamma (α, β) prior: $\Pr(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}$

E: Multinomial and Dirichlet

Inference with the multinomial distribution

Collection of proteins from the same family (similar sequence, structure, function). Each is a sequence of amino acids over a 20-letter alphabet $S = \{a_1, \ldots, a_{20}\}$. You align them and you want to model the distribution over S at each position.

```
a_1 a_6 a_7 a_{20} \cdots a_3 a_8 a_7 a_8 \cdots a_1 a_9 a_7 a_{20} \cdots
```

Infer the distribution $\theta \in \Delta_{20}$ for the first position.

- Vector of counts at this position: $(x_1, \ldots, x_{20}) = (2, 0, 1, 0, \ldots, 0)$
- Here $(x_1,\ldots,x_{20})\sim \mathsf{multinomial}(n=3,\theta)$

What is the maximum-likelihood estimate θ_{ML} ?

Dirichlet distribution

For $\alpha \in \mathbb{R}_+^k$, Dirichlet (α) is the distribution

$$\Pr(\theta_1,\ldots,\theta_k) = \frac{\Gamma(\alpha_1+\cdots+\alpha_k)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_k)} \theta_1^{\alpha_1-1} \theta_2^{\alpha_2-1}\cdots\theta_k^{\alpha_k-1}$$

over the probability simplex $\Delta_k = \{(\theta_1, \dots, \theta_k) : \theta_i \geq 0, \sum_i \theta_i = 1\}.$

Properties:

$$\mathbb{E}\theta_{i} = \frac{\alpha_{i}}{\alpha_{1} + \dots + \alpha_{k}}$$

$$\mathsf{Mode:} \ \theta_{i} = \frac{\alpha_{i} - 1}{\alpha_{1} + \dots + \alpha_{k} - k}$$

$$\mathsf{var}(\theta_{i}) = \frac{\alpha_{i}(\alpha_{1} + \dots + \alpha_{k} - \alpha_{i})}{(\alpha_{1} + \dots + \alpha_{k})^{2}(\alpha_{1} + \dots + \alpha_{k} + 1)}$$

Dirichlet pictures

[1, 1, 1]

[2, 2, 2]

[4, 4, 4]

[8, 8, 8]

[1, 1, 2]

[2, 2, 4]

[3, 3, 6]

[6, 6, 12]

One more

Dirichlet as a conjugate prior for the multinomial

Bayesian inference for distribution $\theta \in \Delta_k$:

- Prior: Dirichlet $(\alpha_1, \ldots, \alpha_k)$
- Draw n samples, get counts (x_1, \ldots, x_k)

What is the posterior distribution?

Choosing the prior parameters

By analyzing databases of proteins, we find (hypothetically):

• 25% of positions are *highly conserved*: concentrated on a single amino acid.

 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19} a_{20}

• 12% of positions combine a particular set of amino acids with similar properties.

 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19} a_{20}

• 8% of positions combine a different set of amino acids.

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ a₉ a₁₀ a₁₁ a₁₂ a₁₃ a₁₄ a₁₅ a₁₆ a₁₇ a₁₈ a₁₉ a₂₀

But, how to combine these clusters?

F: Mixtures of conjugate priors

A mixture of conjugate priors is conjugate

Example: Beta-binomial. Coin of unknown bias $\theta \in [0,1].$

- Use prior w_1 beta $(\alpha_1, \beta_1) + w_2$ beta (α_2, β_2) .
- See n coin tosses, of which h are heads and t are tails.

What is the posterior?

Mixtures of conjugate priors, cont'd

Unknown parameter θ . Prior is a mixture:

$$\sum_{j=1}^{k} \Pr(J=j) \Pr(\theta|J=j).$$

After seeing data, posterior is a mixture:

$$\sum_{j=1}^k \Pr(J=j|\mathsf{data})\Pr(\theta|J=j,\mathsf{data}).$$