

Analog IC Design

Lecture 10 Current Mirrors

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

 $V_{DS}>V_{ov}$

Regions of Operation Summary

High Frequency Small Signal Model

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$
$$g_{mb} = \eta g_m \qquad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\partial I_{D}/\partial V_{DS}} = \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}}$$
 $V_{A} \propto L \leftrightarrow \lambda \propto \frac{1}{L}$ $V_{DS} \uparrow V_{A} \uparrow$ $C_{gb} \approx 0$ $C_{gs} \gg C_{gd}$ $C_{sb} > C_{db}$

Rin/out Shortcuts Summary

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D $v_{in} \circ V_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ v_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

Why Current Source?

- ☐ A current source is an ideal load
 - Sets DC bias point accurately
 - Infinite R_{out} (ac o.c.)
 - No DC voltage drop
 - Small chip area
- ☐ Simply, a large resistor without the large resistor drawbacks
- ☐ The current source is practically implemented using a MOSFET
 - Finite $R_{out} = r_o$ and subtracts V_{ov} from voltage headroom

Sink and Source Currents

- ☐ Use PMOS to source current (from VDD)
- Use NMOS to sink current (to GND)

BAD Current Source

$$I_B \approx \frac{\mu C_{ox}}{2} \frac{W}{L} (V_B - V_{TH})^2 = \frac{\mu C_{ox}}{2} \frac{W}{L} \left(\frac{R_1}{R_1 + R_2} V_{DD} - V_{TH} \right)^2$$

- ☐ Sensitive to PVT (process, voltage, and temperature) variations
 - P: V_{TH} may vary $\pm 50 \ mV$
 - V: V_{DD} may vary $\pm 10\%$
 - T: μ varies a lot with temperature
- \square Even if V_B is stable, I_B will not be stable

How to Generate Robust Currents?

- \Box The golden reference (I_{REF}) is designed to be PVT insensitive
 - I_{REF} is generated using a relatively complicated reference circuit
 - We cannot make a reference circuit for every biasing branch!
 - Solution: Make copies of I_{REF} .

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

How to Copy (Mirror) Currents?

- lacktriangle We normally use the transistor to convert V to I
- $oxedsymbol{\square}$ We now need to convert I to V: convert I_{REF} to V_B
 - How to convert *I* to *V*?

How to Copy (Mirror) Currents?

- \square We can convert I to V using a <u>diode connected transistor</u> (M1).
- \square M2 converts V back to I.
- \square M1 and M2 have the same V_{GS} and both work in saturation.
 - They will have the same current (if they are MATCHED).
- \square If sizing is different, we can scale I_{REF} up or down.
- \Box I_{out} is **insensitive** to PVT variations.
 - But V_B may change due to PVT variations.

$$\frac{I_{out}}{I_{REF}} = \frac{\frac{\mu C_{ox}}{2} \left(\frac{W}{L}\right)_2 (V_B - V_{TH})^2}{\frac{\mu C_{ox}}{2} \left(\frac{W}{L}\right)_1 (V_B - V_{TH})^2} = \frac{\left(\frac{W}{L}\right)_2}{\left(\frac{W}{L}\right)_1} \qquad M_I$$

$$\frac{I_{out}}{I_{out}} = \frac{V_{in}}{V_B}$$

Is This a Current Mirror?

Sink and Source Currents

- ☐ Use PMOS mirror to source current (from VDD)
- ☐ Use NMOS mirror to sink current (to GND)

Scale Current Up and Down

- Currents can be scaled up or down by connecting unit transistors in parallel (accurate) or series (not as accurate: why?)
- \square ALWAYS use matched unit transistors (same L, W, orientation, etc.)

V_{DS} Dependence

- \square Dependence of I_D on V_{DS} introduces two types of errors
 - 1. M2 has finite $R_{out} = \frac{\Delta V_{out}}{\Delta I_{out}} \rightarrow \text{If } V_{out} \text{ varies, } I_{out} \text{ will vary}$
 - 2. Even if V_{out} does not vary: $V_{DS1} \neq V_{DS2}$
- \blacksquare We usually scale W (unit transistors) and keep L equal: $\lambda_1 pprox \lambda_2$

$$\frac{I_{out}}{I_{REF}} = \frac{\frac{\mu C_{ox}}{2} \left(\frac{W}{L}\right)_2 (V_B - V_{TH})^2 (1 + \lambda_2 V_{DS2})}{\frac{\mu C_{ox}}{2} \left(\frac{W}{L}\right)_1 (V_B - V_{TH})^2 (1 + \lambda_1 V_{DS1})} = \frac{\left(\frac{W}{L}\right)_2 (1 + \lambda_2 V_{DS2})}{\left(\frac{W}{L}\right)_1 (1 + \lambda_1 V_{DS1})}$$

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

Cascode Current Mirror (1)

- \square R_{out} can be boosted by using cascode
 - Reduced $\Delta I_{out} = \frac{\Delta V_{out}}{R_{out}}$ for a given ΔV_{out}
- \square But still $V_{DS1} \neq V_{DS2} \rightarrow$ still have static error in the mirroring ratio
 - Set $V_B = V_{GS3} + V_{GS1} \rightarrow V_{DS2} = V_{DS1} = V_{GS1}$
- \square How to generate V_B ?

Cascode Current Mirror (2)

- \square M3 and M4 have the same V_{GS} .
 - Thus M1 and M2 will have the same V_{DS} .
- Note that the mirroring action is performed by M1 and M2 only.
 - The role of M3 and M4 is to guarantee $V_{DS1} = V_{DS2}$.
- \square If both V_{GS} and V_{DS} are equal, current will be perfectly mirrored.
 - Actually even if the transistors are not in saturation!

Quiz

- \Box Compliance range: V_{out} range where the CS behaves as a CS
- \square Assume $V_{TH1,2} = 0.4V$, $V_{TH3,4} = 0.45V$ (body effect), $V_{ov} = 0.1V$.
- ☐ Calculate the CS compliance range.

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

Cascode CM Wastes Headroom

- \Box We forced $V_{DS2} = V_{DS1} = V_{GS1} = V_{TH} + V_{ov1}$
- $oldsymbol{\square}$ But to remain in saturation we only need $V_{DS2} > V_{ov1}$
- \square V_{DS2} has an extra unneeded $V_{TH} \rightarrow$ waste of headroom
- \Box Solution: Do not set $V_{DS2} = V_{DS1}$
 - Instead, force $V_{DS1} = V_{DS2,min} = V_{ov1} \rightarrow$ wide-swing CM

Wide-swing Cascode CM

$$V_{TH3,4} + V_{ov3,4} + V_{ov1,2} < V_B < V_{TH3,4} + V_{TH1,2} + V_{ov1,2}$$

- oxdot As long as V_B is in the valid range, M1-4 will be in sat.
- ☐ The most widely used CM architecture
- A.k.a. low-voltage current mirror, low-compliance current mirror

Quiz

- \square Compliance range: V_{out} range where the CS behaves as a CS.
- □ Assume $V_{TH1,2} = 0.4V$, $V_{TH3,4} = 0.45V$ (body effect), $V_{ov} = 0.1V$.
- \square Assume V_B is set 50mV above its minimum value.
- ☐ Calculate the CS compliance range.

Quiz

- lacktriangle Compliance range: V_{out} range where the CS behaves as a CS.
- □ Assume $V_{TH1,2} = 0.4V$, $V_{TH3,4} = 0.45V$ (body effect), $V_{ov} = 0.1V$.
- \square Assume V_B is set 50mV above its minimum value.
- ☐ Calculate the CS compliance range.
- \square Practically, we don't bias M1-2 at the edge of saturation (why?).
- \square What is the magic battery that will generate V_B ?

The Magic Battery

- \Box To generate voltages we use *I*-to-*V*: diode connected transistor
- \square Assume M1-M4 have the same W/L: $V_B > V_{TH3,4} + 2V_{ov1-4}$

$$V_{ov5} > 2V_{ov1-4} \rightarrow L_5 > 4L_{1-4}$$

- \blacksquare Always select $V_B > V_{B.min}$ (e.g., $L_5 \sim 6L_{1-4}$)
 - Need to drive M1 and M2 a bit deeper into saturation
 - Account for body effect of M3 and M4

M5 is usually implemented as unit transistors in series

Outline

- 1. Recapping previous key results
- 2. Why current source?
- 3. How to copy (mirror) currents?
- 4. Cascode current mirror
- 5. Wide-swing current mirror
- 6. Super cascode current mirror

Regulated (Super) Cascode CM

 \Box Feedback keeps $V_{DS1} \approx V_{DS2}$ and boosts R_{out}

$$R_{out} \approx r_{o,super} \left(1 + g_{m,super} R_S\right) = r_{o3} (A_S g_{m3} r_{o2}) \sim A_S (g_m r_o^2)$$

 \blacksquare Since both V_{GS} and V_{DS} are equal, the mirror works even if M1 and M2 are not in saturation!

Thank you!

References

- ☐ B. Razavi, "Design Of Analog CMOS Integrated Circuit," McGraw-Hill, 2nd ed., 2017
- ☐ T. C. Carusone, D. Johns, and K. W. Martin. "Analog Integrated Circuit Design," Wiley, 2nd ed., 2012
- R. J. Baker, "CMOS circuit design," 3rd ed., Wiley, 2010

Replica Biasing

- ☐ To bias the CS amplifier (M2) a replica (M1) is used
- $lacktriangleq R_{big}$ and C_{big} will take a lot of area
 - Only practical for RF circuits (why?)
- ☐ For analog ICs a better trick is used
 - More when we study differential amplifier

Advanced Current Mirrors

- Can operate with 50mV compliance!
 - Amplifier gain compensate for low Rout in triode

