

# Universidade Federal de Campina Grande - UFCG

# INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS PARCIAIS

**Discente: Michell Lucena Dias** 

Orientador: Prof. Alânnio Barbosa Nóbrega

Área: Matemática

#### **Título**

Introdução às Equações Diferenciais Parciais

#### Introdução

Pretendemos neste projeto fazer um estudo introdutório das equações diferenciais parciais, destacando os problemas envolvendo pequenas oscilações, propagação de calor num fio e os associados à equação do potencial.

# **Objetivos**

- 1. Desenvolver a capacidade do aluno de trabalhar com tópicos mais abstratos de matemática, visando a complementação de sua formação acadêmica.
- 2. Estudar Séries de Fourier e sua aplicação na solução de equações diferenciais parciais.
  - 3. Estudar as equações da onda, do calor e do potencial.

## Programa de estudo

- 1. Equação Diferencial para Pequenas Oscilações de uma Corda e de uma Membrana
  - 1.1 Método de d'Alembert
  - 1.1.1. Equação Diferencial das Pequenas Oscilações de uma Corda
  - 1.1.2. Interpretação da Solução de d'Alembert
  - 1.1.3. Domínios de Dependência e Influência
  - 1.1.4. Equação não Homogênea
  - 1.2 Método de Fourier
  - 1.2.1 Noções sobre Séries de Fourier

- 1.2.2 Pequenas Oscilações de uma Corda
- 1.2.3 Pequenas Oscilações de uma Membrana
- 1.2.4 Membranas Retangulares
- 1.2.5 Membranas Circulares
- 1.3 Equações de Ondas no  $R^2$  e  $R^3$
- 1.3.1 Ondas Esféricas
- 1.3.2 Ondas Cilíndricas
- 133 Ondas Circulares
- 2. Equações de Transferência de Calor
- 2.1 Fluxo de calor de um fio
- 2.2 Propriedades da integral de Poisson e Solução do Problema da Propagação de Calor em um Fio
- 2.3 Princípio do Máximo e Unicidade
- 3. Equação de Laplace
- 3.1 Introdução
- 3.2 Representação integral de funções de classe  $\mathcal{C}^2$  ( $\Omega$ ) contínuas no fecho  $\Omega$
- 3.3 Função de Green
- 3.4 Fórmula e Teorema de Poisson
- 3.5 Funções Harmônicas, Propriedades da Média e do Máximo
- 3.6 Problema de Dirichlet e Teorema de Harnack
- 3.7 Problema de Dirichlet e Fórmula de Poisson para o círculo

# Metodologia

A metodologia utilizada consiste em exposições semanais com duas horas de duração, em que o aluno expõe os conteúdos estudados para o orientador, e ambos planejam as atividades da semana seguinte.

### Cronograma

|                                | Se | Ou | No | De | Ja | Fe | Ma | Ab | Ma | Ju | Ju | Ag |
|--------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
|                                | t  | t  | V  | Z  | n  | V  | r  | r  | i  | n  | 1  | 0  |
| Levantamento Bibliográfico     | X  |    |    |    |    |    |    |    |    |    |    |    |
| Equações Diferenciais Parciais | X  | X  | X  | X  |    |    |    |    |    |    |    |    |
| para Pequenas Oscilações       |    |    |    |    |    |    |    |    |    |    |    |    |
| Equações de Transferêmcia de   |    |    |    |    | X  | X  | X  |    |    |    |    |    |
| Calor                          |    |    |    |    |    |    |    |    |    |    |    |    |
| Equação de Laplace             |    |    |    |    |    |    |    | X  | X  | X  | X  |    |
| Relatório Parcial              |    |    |    |    |    | X  |    |    |    |    |    |    |
| Relatório Final                |    |    |    |    |    |    |    |    |    |    |    | X  |

### **Bibliografia**

MEDEIROS, L. A. ANDRADE, N. G. Iniciação às equações diferenciais parciais. Rio de Janeiro: Livros Técnicos e Científicos Editora – 1978.

FIGUEIREDO, D. G. Análise de Fourier e Equações Diferenciais Parcial –  $4^a$  edição. Rio de Janeiro: IMPA – 2005.

IÓRIO, V. EDP, Um Curso de Graduação - 2ª edição. Rio de Janeiro: IMPA - 2005.

-----

\_\_\_\_\_

Discente: Michell Lucena Dias