Name: Mehrdad Last name: Jabbari basir Person Code: 10695646

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.tal pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

	Т	he weath Monday,
	22:00	23:00
	∆ ∆ LightRain	∆ ∆ LightRain
Effective temperature	6°C	7 ° C
Perceived temperature	6°C	7 ° C
Rainfall	0 mm	0 mm
Humidity	96 %	95 %
Atmospheric pressure	1021 hPa	1020 hPa
Wind intensity	3 km / h	2 km / h
Wind direction	\hookrightarrow	\hookrightarrow

Humidity $\phi = 95\%$

The total air pressure P = 102 kPa

Effective temperature: 7 °C, i.e., the temperature in Kelvin temperature scale T = 280 K

the absolute humidity $\omega=0.0055$ the web-bulb temperature Twb= 6 °C $\omega{=}0.622Pv$ /Pa=0.622Pv /P-Pv =0.0055, P=102 kPa

$$\omega = \frac{0.622 \times P_{\text{v}}}{P - P_{\text{v}}} \quad 0.0055 = \frac{0.622 \times P_{\text{v}}}{102 - P_{\text{v}}} \quad \text{Pv} \approx 0.893 \text{ kPa}$$

Classroom volume: 300 m3 Dimension 5.10.6

$$R_{y} = 0.4615$$

$$m_{\rm V} = \frac{P_{\rm V}V}{R_{\rm V}T}$$
 $m_{\rm V} = \frac{0.893 \times 300}{0.4615 \times 280} \approx 2.07 \,\rm kg$

								BRINDIS	SI, Italy						WMO#:	163200					
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2	т	Time Zone: 1.00 (EU	W)	Period:	86-10	WBAN:	99999						
A	innual H	eating and H	lumidificati	ion Design C	onditions											- 4					
Г	Coldest	Heatin	- 00	Humidification DP/MCDB and HR					Coldest month WS/MCDB MI				MCWS	S/PCWD							
Г	Month			E management	99.6%		96	99%		0.4%	4%	1	%		.6% DB						
L	NACETOL	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1					
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)						
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250						
A	innual Co	ooling, Dehu	ımidificatio	in, and Entha	ilpy Design	Conditions	15									1					
г	0210770	Hottest		Cooling DB/MCWB Evaporation WB/MCDB MCWS/PCWD																	
	Hottest	Month	0.	4%		% I	29		0.	4%	1			2%	to 0.4						
L	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD					
_	(0)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)					
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180					
Г			Dehumidification DP/MCDB and HR							Enthalpy/MCDB						Hours					
С		0.4%			1%			2%			4%		1%	2	2%	8 to 4 &					
С	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6					
	(0)	(0)	(c)	(d)	(0)	(f)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)					
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236					
E	xtreme /	Annual Desig	gn Conditio	ms																	
_				Extreme		Extreme	Annual DB		_		e Vest De	tum Desired	Values of E	strome DB							
ı	Extreme Annual WS			Max Mean					n=5	5 years n=10 years			n=20 years		n=50	vears					
t	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max					
	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)	(p)					

qig, s=136+2.2Acf+22Noc=136+2.2 * 200+22 * 2=620 W

qig, l=20+0.22Acf +12Noc=20+0.22 * 200+12 * 2=88 W

for a house with a good construction quality, unit leakage area Aul=1.4cm2/m2 and the exposed surface Aes=Awall+Aroof=200+144=344 m2 thus, AL=Aes * Aul=344 * 1.4=481.6 cm2

cooling temperature Tooling =24 °C, and heating temperature Theating =20 °C

 Δ Toooling=31.1 °C –24 °C=7.1 °C=7.1 K

 Δ Theating=20 °C -(-4. 1 °C)=24.1 °C=24.1 K

 $DR = 7.1 \, ^{\circ}C = 7.1 \, K$

Given that IDFheating=0.073L/s * cm²,

IDFcooling=0.033L/s *cm²,

Calculate infiltration airflow rate,

Qi, heating=AL*IDFheating=481.6 * 0.073≈35.157L/s

Qi, cooling=AL * IDFcooling=481.6 * 0.033≈15.893L/s

The required miminum whole-building vetilation rate is

Qv=0.05Acf+3.5(Nbr+1)=0.05 * 200+3.5 * (1+1)=17L/s

Qi-v, heating =Qi, heating $+Qv \approx 35.157+17=52.157L/s$

Qi–v, cooling=Qi, cooling+Qv≈15.893+17=32.893L/s

Given that Csensible=1.23, Clatent=3010, ΔωCooling=0.0039

qinf-ventilation cooling sensible=CsensibleQi-v, cooling $\Delta TCooling\approx 1.23*32.893*7.1\approx 287.25 W$ qinf-ventilation cooling latent = ClatentQi-v, cooling $\Delta \omega Cooling\approx 3010*32.893*0.0039\approx 386.13 W$ qinf-ventilation heating sensible=CsensibleQi-v, heating $\Delta Theating\approx 1.23*52.157*24.1\approx 1546.09 W$