Correction Contrôle continu numéro 1 (1h)

Exercice 1. Questions de cours. (4 points)

Cours polycopié Théorème 30.

Exercice 2. To be or not to be. (6 points)

Applications linéaires.

- 1) Il n'existe pas d'application linéaire injective de \mathbb{R}^4 dans \mathbb{R}^3 . En effet, supposons qu'il en existe une que l'on note f. L'espace de départ \mathbb{R}^4 est de dimension finie on peut donc appliquer le théorème du rang : $\dim \mathbb{R}^4 = \dim \operatorname{Ker} f + \operatorname{rg} f$. Or $\operatorname{Ker} f = \{0\}$ car f est injective. Donc $\operatorname{rg} f = 4$ ce qui est impossible car $\operatorname{Im} f$ est un sous espace de \mathbb{R}^3 et donc $\operatorname{rg} f \leq 3$.
- 2) il existe de telles application par exemple. φ est évidement linéaire et surjective

$$\varphi: \begin{array}{ccc} \mathbb{R}^4 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z, t) & \longmapsto & (x, y, z) \end{array}$$

3)Il existe de telles applications. Par exemple l'application nulle.

$$\psi: \begin{array}{ccc} \mathbb{R}^4 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z, t) & \longmapsto & 0_{\mathbb{R}^3} \end{array}$$

4)Ceci est impossible d'après le théorème 31 du cours. Une application linéaire entre deux sous espaces de même dimension (finie) est injective si et seulement si elle est surjective.

Vecteurs.

- 1) Pas la peine d'aller chercher très loin on se rappelle qu'une famille formée d'un vecteur est libre si et seulement si ce vecteur est non nul. (Proposition 38) la famille $\{(1,1,1,1)\}$ convient donc.
- 2) On se souvient qu'une sous famille d'une famille libre est libre (Proposition 39 b). La base canonique de \mathbb{R}^4 est une famille libre à quatre éléments puisque c'est une base. Il suffit d'enlever un vecteur, le dernier par exemple, la famille suivante convient donc $\{(1,0,0,0),(0,1,0,0),(0,0,1,0)\}$.
- 3) une famille génératrice de \mathbb{R}^4 a au moins quatre vecteurs (Proposition 45). Donc une famille libre à 1 élément convient prendre la solution du 1).
- 4) On sait qu'une famille libre de \mathbb{R}^4 a au plus 4 éléments (Proposition 45) et que tout famille contenant une famille génératrice est elle même génératrice (Proposition 36). On peut donc prendre la base canonique de \mathbb{R}^4 qui est donc génératrice et lui ajouter n'importe quel vecteur :

$$\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,1,1)\}$$

Exercice 3. L'hyperplan des matrices de trace nulle (4 points).

1) On définit l'application

$$tr: M_n(\mathbb{C}) \longrightarrow \mathbb{C}$$

 $M = (m_{i,j})_{1 \le i,j \le n} \longmapsto \sum_{k=1}^n m_{k,k}$

tr est bien une application linéaire sur $\mathbb C$ (rappelons que $M_n(\mathbb C)$ est un $\mathbb C$ espace vectoriel cf Exemple 29). En effet, soient $M=(m_{i,j})_{1\leq i,j\leq n}$, $N=(n_{i,j})_{1\leq i,j\leq n}$ deux éléments de $M_n(\mathbb C)$ et λ,μ deux complexes.

$$tr(\lambda M + \mu N) = \sum_{k=1}^{n} (\lambda M + \mu N)_{k,k}$$
$$= \sum_{k=1}^{n} \lambda m_{k,k} + \mu n_{k,k}$$
$$= \lambda \sum_{k=1}^{n} m_{k,k} + \mu \sum_{k=1}^{n} n_{k,k}$$
$$= \lambda tr(M) + \mu tr(N).$$

Il est clair que $H = \operatorname{Ker} tr$.

2) Im $tr \subset \mathbb{C}$ donc $\operatorname{rg} tr = 0$ ou $\operatorname{rg} tr = 1$. Montrons que $\operatorname{rg} tr \neq 0$ donc $\operatorname{rg} tr = 1$ et donc on obtiendra que $\operatorname{Im} tr = \mathbb{C}$ c'est à dire que tr est surjective.

Si $\operatorname{rg} tr = 0$ cela voudrait dire que $\operatorname{Im} tr = \{0\}$ et donc que $\forall M, tr(M) = 0$. Or ceci n'est pas le cas puisque par exemple, $\operatorname{tr}(I_n) = n \neq 0$.

3)H est un espace vectoriel comme noyau d'une application linéaire. H est un sous espace vectoriel de $M_n(\mathbb{C})$ (qui est de dimension finie égale à n^2 cf Exemple 72) donc H est également de dimension finie. L'espace de départ de l'application tr est un espace de dimension finie on peut donc appliquer le théorème du rang. $\dim M_n(\mathbb{C}) = \dim H + \operatorname{rg} tr$. Par conséquent $\dim H = n^2 - 1$.

Exercice 4. Somme directe dans \mathbb{R}^3 (3 points).

 $1)F_2 = Vect\{(1,1,1)\}$ donc F_2 est un sous espace vectoriel de \mathbb{R}^3 (cf Exemple 32). F_1 est un sous espace vectoriel de \mathbb{R}^3 .

- $F_1 \subset \mathbb{R}^3$.
- $(0,0,0) \in F_1$.
- soient $u = (u_1, u_2, u_3) \in F_1$ et $v = (v_1, v_2, v_3) \in F_1$ ainsi que λ et μ deux réels, On a $\lambda u + \mu v \in F_1$. En effet, $\lambda u + \mu v = (\lambda u_1 + \mu v_1, \lambda u_2 + \mu v_2, \lambda u_3 + \mu v_3)$. Et, $(\lambda u_1 + \mu v_1) + (\lambda u_2 + \mu v_2) + (\lambda u_3 + \mu v_3) = \lambda (u_1 + u_2 + u_3) + \mu (u_1 + u_2 + u_3) = \lambda 0 + \mu 0 = 0$.
- 2) Démontrons d'abord que la somme F_1+F_2 est directe, c'est à dire montrons que $F_1\cap F_2=\{0\}$. On a évidement $\{0\}\subset F_1\cap F_2$. Montrons donc l'autre inclusion soit $u\in F_1\cap F_2$, $u\in F_2$ donc il existe $\lambda\in\mathbb{R}$ tel que $u=(\lambda,\lambda,\lambda)$ mais comme $u\in F_1$ on a $\lambda+\lambda+\lambda=0$ par conséquent u=0. Finalement, $F_1\cap F_2=\{0\}$ la somme F_1+F_2 est directe on peut écrire $F_1\oplus F_2$.

On a donc $F_1 \oplus F_2 \subset \mathbb{R}^3$, il suffit de démontrer que $\dim(F_1 \oplus F_2) = 3$ pour obtenir l'égalité des deux ensembles. D'après la formule sur la dimension d'une somme directe (cf Théorème 26) on a que $\dim(F_1 \oplus F_2) = \dim F_1 + \dim F_2$.

On a dim $F_1 = 2$ car $F_1 = Vect\{(1, -1, 0), (1, 0, -1)\}$ donc la famille $\{(1, -1, 0), (1, 0, -1)\}$ est génératrice, on vérifie très rapidement que cette famille est libre. Cette famille est donc une base, elle a deux éléments donc dim $F_1 = 2$.

Il est évident que $\{(1,1,1)\}$ est une base de F_2 donc F_2 est de dimension 1.

Ceci prouve bien que $\dim(F_1 \oplus F_2) = 3$.