Einführung in die Funktionalanalysis

Jakob Schneider

3. Juli 2014

0.1 Kompaktheit

Definition 1.1 (kompakt). Ein Raum $\langle X, \tau \rangle \in \mathbf{Top}$ heißt kompakt, wenn für jede Überdeckung U (d.h. $U \subseteq \tau, \bigcup U = X$) eine endliche Teilüberdeckung $V \subseteq U$ existiert (d.h. $\bigcup V = X$).

Satz 1.1. Sei $\underline{X} = \langle X, \tau \rangle \in \mathbf{Top}$, dann sind äquivalent

- (I) X ist kompakt.
- (II) Für jedes System \mathcal{R} abgeschlossener Mengen in \underline{X} mit der endlichen Durchschnittseigenschaft, d.h. für jede endliche Menge $\mathcal{F} \subseteq \mathcal{R}$ gilt $\bigcap \mathcal{F} \neq \emptyset$, gilt $\bigcap \mathcal{R} \neq \emptyset$.
- (III) Jedes Netz in \underline{X} besitzt einen Häufungswert.

Beweis.

- $(I) \Leftrightarrow (II)$ Die zweite Aussage ist lediglich die Kontraposition der ersten.
- (II) \Rightarrow (III) Betrachte für ein Netz $(x_{\iota})_{\iota \in I}$ die Mengen $A_{\iota} := \operatorname{cl} \{x_{\kappa}\}_{\kappa \geq \iota}$. Dann hat $\{A_{\iota}\}_{\iota \in I}$ die endliche Durchschnittseigenschaft, wegen der Gerichtetheit von Netzen. Daher ist nach Annahme $\bigcap_{\iota \in I} A_{\iota}$ nicht-leer. Ein Element x dieser Menge stellt sich als Häufungspunkt von $(x_{\iota})_{\iota \in I}$ heraus, denn nach Voraussetzung gilt $x \in \operatorname{cl} \{x_{\kappa}\}_{\kappa \geq \iota}$, womit jede abgeschlossene Menge, die $\{x_{\kappa}\}_{\kappa \geq \iota}$ enthält auch x enthält und damit jede offene Menge die x enthält auch eine Element aus $\{x_{\kappa}\}_{\kappa \geq \iota}$ enthält. Somit ist x tatsächlich ein Häufungspunkt des Netzes $(x_{\iota})_{\iota \in I}$.

Bemerkung 1. Ist $\underline{I} = \langle I, \leq \rangle$ eine halbgeordnete gerichtete Menge, dann lässt sich \leq zu einer totalen Halbordnung fortsetzen. Damit genügt es total halbgeordnete Netze zu betrachten, um auf das Konvergenzverhalten von allen Netzen zu schließen. Weiterhin induziert jede Ordnung \leq auf I eine Äquivalenzrelation durch $a \sim b :\Leftrightarrow a \leq b, b \leq a$.

Definition 1.2. Sei $f: U \to V$ eine stetige Abbildung mit $U \subseteq X$, $V \subseteq Y$ (X, Y topologische Vektorräume). Dann heißt f differenzierbar in $u \in U$, falls es eine lineare Abbildung $Df|_{u}: X \to Y$ gibt mit

$$f(u+v) - f(u) - Df|_u v$$

wesentlich beschränkt.

Eine Abbildung $U\to V$ mit $0\in U$ heißt wesentlich beschränkt, falls für gegebene Umbgebungen $U_0\subseteq U$ und $V_0\subseteq V$ gilt

$$\limsup_{\lambda \downarrow 0} \inf \{ \mu > 0 : f(\lambda U_0) \subseteq \mu V_0 \} = 0.$$