Examen d'Analyse Numérique – 1ère année ISIMA

V. Barra, J. Koko et Ph. Mahey

06 février 2007

Durée : 2heures

Documents autorisés : cours, TD et TP de l'année.

Exercice 1 Soit $A = \begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}$

- 1. Faire la somme des éléments de chaque ligne de A. En déduire une valeur propre et un vecteur propre de A.
- 2. calculer les autres valeurs propres de A et les vecteurs propres associés.
- 3. Calculer A^n , pour tout $n \in \mathbb{N}$
- 4. Si $v^{(n)}$ est la suite définie par $v^{(0)}=(1\ 0\ 1)^T$ et $v^{(n+1)}=Av^{(n)}$, calculer $\lim_{n\to\infty}v^{(n)}$.

Exercice 2 Soit $s \neq 0$ fixé dans \mathbb{R}^n , $r \in \mathbb{R}$, et H_r l'hyperplan d'équation $s^T x = r$. Étant donné $v \in \mathbb{R}^n$, on se propose de déterminer la projection orthogonale v_r de v sur H_r .

1. Déterminer v_r en appliquant les conditions d'optimalité du problème de minimisation avec contraintes suivant

$$(P_r) \quad \min_{x \in H_r} \frac{1}{2} \parallel x - v \parallel^2.$$

On notera λ_r le multiplicateur de Lagrange associé à la contrainte d'appartenance à H_r . Vérifier, en utilisant les conditions d'optimalité du deuxième ordre, que v_r réalise bien le minimum.

2. On pose

$$d(r) := \frac{1}{2} \parallel v_r - v \parallel^2.$$

Vérifier que d est une fonction dérivable de r et que sa dérivée est, au signe près, le multiplicateur de Lagrange λ_r trouvé à la question 1.

Exercice 3 Soit f la fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$f(x) = \frac{1}{2}(5x_1^2 + 5x_2^2) + x_1x_2 - x_1 - x_2.$$

- 1. Montrer que f est convexe et déterminer son minimum global dans \mathbb{R}^2 .
- 2. Représenter les courbes de niveau de f.