Université des Sciences et de la Technologie Houari Boumediene Faculté d'Informatique

TP Fouille de données

Rapport TP: Les algorithmes de l'apprentissage automatique (Machine Learning)

Fait par:

Nom et prénom : ABDELMALEK BENMEZIANE

Matricule: 171731046778

Spécialité : M2 BIOINFO

Section: A

Contents

1	Intr	oducti	ion générale	1		
	1.1	Introd	luction générale	1		
2	Le preprocessing					
	2.1	Le pre	eprocessing et ses techniques	2		
		2.1.1	Définition de preprocessing	2		
		2.1.2	Les techniques du preprocessing	2		
	2.2	Défini	tion de l'apprentissage non supervisé	3		
	2.3	Défini	tion de l'apprentissage supervisé	4		
3	Les	techni	iques et caractéristiques	5		
	3.1	Les al	gorithmes de clustering non supervisés	5		
		3.1.1	K-Means	5		
		3.1.2	K-Medoids	5		
		3.1.3	AGNES	5		
		3.1.4	DIANA	6		
		3.1.5	DBSCAN	6		
	3.2	Les al	gorithmes de classification supervisés	6		
		3.2.1	K-Nearest Neighbors (KNN)	6		
		3.2.2	Naive Bayes	6		
		3.2.3	Arbre de décision	7		
		3.2.4	Réseau de neurones (NN)	7		
		3 2 5	Machine à vecteurs de support (SVM)	7		

	3.3	La rég	ression
		3.3.1	Définition
		3.3.2	Fonctionnement d'une régression
		3.3.3	Exemple
		3.3.4	Les principaux objectifs des régressions
		3.3.5	Applications de le régression
		3.3.6	Les différents types de régression
4	Inte	erfaces	10
	4.1	L'inter	face principale
	4.2	L'inter	face clustering
	4.3	L'inter	face classification
	4.4	L'inter	face regression
5	Les	resulta	ats obtenus - clustering - 14
	5.1	L'impo	ortation d'un dataset
	5.2	Le pre	processing
	5.3	La cou	rbe d'elbow
	5.4	Kmear	ns
		5.4.1	L'inertie intra-classe
		5.4.2	L'inertie inter-classe
	5.5	Kmedo	oids
		5.5.1	L'inertie intra-classe
		5.5.2	L'inertie inter-classe
	5.6	AGNE	S
		5.6.1	L'inertie intra-classe
		5.6.2	Coefficient de silhouette
	5.7	DIANA	A
		5.7.1	L'inertie intra-classe
		5.7.2	Coefficient de silhouette
	5.8	DBSC.	AN

LCD	result	ats obtenus - classification -
6.1	L'imp	ortation d'un dataset
6.2	Le pre	eprocessing
6.3		hage du dataset
6.4	K-Nea	arest Neighbors (KNN)
	6.4.1	Confusion matrix
	6.4.2	Accuracy
	6.4.3	F1 score
6.5	Naive	Bayes
	6.5.1	Confusion matrix
	6.5.2	Accuracy
	6.5.3	F1 score
6.6	Arbre	de décision
	6.6.1	Generated tree
	6.6.2	Confusion matrix
	6.6.3	Accuracy
	6.6.4	F1 score
6.7	Machi	ne à vecteurs de support (SVM)
	6.7.1	Report
	6.7.2	Confusion matrix
	6.7.3	Accuracy
	6.7.4	F1 score
6.8	Résea	u de neuronnes (NN)
	6.8.1	Confusion matrix
	6.8.2	Accuracy
	6.8.3	F1 score

	8.1 Apprentissage supervisé VS Apprentissage non supervisé					
8	Con	clusio	on générale		53	
		7.3.2	Regression report		52	
		7.3.1	Accuracy		51	
	7.3	Logist	tic Regression		50	
	7.2	La div	vision d'un dataset		49	

List of Figures

4.1	Interface principale	10
4.2	Interface clustering	11
4.3	Interface classification	12
4.4	Interface regression	13
5.1	Importer dataset	14
5.2	Le dataset diabetes	14
5.3	Output	15
5.4	Preprocessing	15
5.5	Output	16
5.6	Elbow	16
5.7	Output	17
5.8	Kmeans	17
5.9	Output	18
5.10	Inertie intra-classe	18
5.11	Output	19
5.12	Inertie inter-classe	19
5.13	Output	20
5.14	kmedoids	20
5.15	Output	21
5.16	Inertie intra-classe	21
5.17	Output	22
5 18	Inertia inter-classe	22

5.19	Output	23
5.20	Agnes	23
5.21	Output	24
5.22	Inertie intra-classe	24
5.23	Output	25
5.24	Silhouette	25
5.25	Output	26
5.26	Diana	26
5.27	Output	27
5.28	Inertie intra-classe	27
5.29	Output	28
5.30	Silhouette	28
5.31	Output	29
5.32	Dbscan	29
5.33	Output	30
5.34	Performances	30
5.35	Output	31
6.1	Importer dataset	32
6.2	Output	33
6.3	Preprocessing	33
6.4	Output	34
6.5	Affichage	34
6.6	Output	35
6.7	Apply KNN	35
6.8	Confusion matrix KNN	36
6.9	Accuracy KNN	37
6.10	F1 score KNN	37
6.11	Apply Naive Bayes	38
6.12	Confusion matrix Naive Bayes	38

6.13	Accuracy Naive Bayes	39
6.14	F1 score Naive Bayes	39
6.15	Apply Decision tree	40
6.16	Generated tree	40
6.17	Confusion matrix Decision tree	41
6.18	Accuracy Decision tree	42
6.19	F1 score Decision tree	42
6.20	Apply SVM	43
6.21	Report SVM	43
6.22	Confusion matrix SVM	44
6.23	Accuracy SVM	45
6.24	F1 score SVM	45
6.25	Apply NN	46
6.26	Confusion matrix NN	46
6.27	Accuracy NN	47
6.28	F1 score NN	47
7.1	Importer dataset	48
7.2	Output	49
7.3	Importer dataset	49
7.4	Output	50
7.5	Apply LR	50
7.6	Accuracy regression	51
7 7	Regression report	52

Chapter 1

Introduction générale

1.1 Introduction générale

Le data mining désigne le processus d'analyse de volumes massifs de données et du Big Data sous différents angles afin d'identifier des relations entre les data et de les transformer en informations exploitables. Ce dispositif rentre dans le cadre de la Business Intelligence et a pour but d'aider les entreprises à résoudre des problèmes, à atténuer des risques et à identifier et saisir de nouvelles opportunités business.

En français, ce processus porte différents noms :

- Exploration de données.
- Fouille de données.
- Forage de données.
- Ou encore extraction de connaissances à partir de données.

Le data mining n'est pas un concept récent. Déjà au XVIIème siècle, les individus cherchaient des solutions pour analyser les données et identifier des caractéristiques communes.

Chapter 2

Le preprocessing

2.1 Le preprocessing et ses techniques

2.1.1 Définition de preprocessing

Le preprocessing des données dans le machine learning (ML) est une étape cruciale qui permet d'améliorer la qualité des données afin de promouvoir l'extraction d'informations significatives à partir des données. Le preprocessing des données dans Machine Learning fait référence à la technique de préparation (nettoyage et organisation) des données brutes pour les rendre adaptées à la construction et à la formation de modèles Machine Learning.

2.1.2 Les techniques du preprocessing

L'ouverture du dataset (open dataset)

Il faut ouvrir la dataset voulu pour pouvoir appliquer le preprocessing.

Le nettoyage du dataset (Data Cleaning)

• Convertir les attributs catégoriels en numérique (Encodage des données catégorielles)

Les données catégorielles font référence aux informations qui ont des catégories spécifiques dans l'ensemble de données.

Les modèles d'apprentissage automatique sont principalement basés sur des équations mathématiques. Ainsi, vous pouvez intuitivement comprendre que le fait de conserver les données catégorielles dans l'équation causera certains problèmes puisque vous n'auriez besoin que de nombres dans les équations.

• Identifier et traiter les valeurs manquantes (missing values)

Dans le preprocessing des données, il est essentiel d'identifier et de gérer correctement les valeurs manquantes, fondamentalement, il existe deux façons de gérer les données manquantes :

Suppression d'une ligne particulière: Dans cette méthode, vous supprimez une ligne spécifique qui a une valeur nulle pour une caractéristique ou une colonne particulière où plus de 75% des valeurs sont manquantes. Cependant, cette méthode n'est pas efficace à 100%.

Calcul de la moyenne : Cette méthode est utile pour les fonctionnalités contenant des données numériques telles que l'âge, le salaire, l'année, etc. Ici, vous pouvez calculer la moyenne, la médiane ou le mode d'une colonne.

La normalisation du dataset (Data Normalization)

La normalisation des données est une technique utilisée dans l'exploration de données pour transformer les valeurs d'un ensemble de données en une échelle commune. Ceci est important car de nombreux algorithmes d'apprentissage automatique sont sensibles à l'échelle des caractéristiques d'entrée et peuvent produire de meilleurs résultats lorsque les données sont normalisées.

2.2 Définition de l'apprentissage non supervisé

L'apprentissage non supervisé est une branche du machine learning, caractérisée par l'analyse et le regroupement de données non-étiquetées. Pour cela, ces algorithmes apprennent à trouver des schémas ou des groupes dans

les données, avec très peu d'intervention humaine. En termes mathématiques, l'apprentissage non supervisé implique l'observation de plusieures occurrences d'un vecteur X and l'apprentissage de la probabilité de distribution p(X) pour ces occurrences.

2.3 Définition de l'apprentissage supervisé

L'apprentissage supervisé utilise un jeu d'entraînement pour apprendre aux modèles à produire les résultats souhaités. Ce jeu de données d'apprentissage comprend des entrées et des sorties correctes, qui permettent au modèle d'apprendre au fil du temps.

Chapter 3

Les techniques et caractéristiques

3.1 Les algorithmes de clustering non supervisés

3.1.1 K-Means

K-Means est l'un des algorithmes de clustering les plus répandus. Il permet d'analyser une dataset caractérisées par un ensemble de descripteurs, afin de regrouper les données "similaires" en terme de "distance" en groupes (ou clusters).

3.1.2 K-Medoids

K-Medoids est un algorithme de clustering ressemblant à la technique de clustering K-Means, il diffère principalement de l'algorithme K-Means par la manière dont il sélectionne les centres des clusters.

3.1.3 AGNES

AGNES (Agglomerative Nesting) est l'un des algorithmes de clustering hiérarchique les plus populaires utilisés dans l'exploration de données.

L'algorithme AGNES utilise une approche "ascendante" pour le clustering hiérarchique. L'algorithme forme des clusters singleton de chacun des points de données. Il les regroupe ensuite de bas en haut dans la structure arborescente (appelée dendrogramme) jusqu'à ce que tous les points similaires forment un seul cluster (représenté par la racine du dendrogramme).

3.1.4 DIANA

DIANA est également connu sous le nom d'algorithme de clustering DIvisie ANAlysis. Il s'agit de la forme d'approche descendante du clustering hiérarchique où tous les points de données sont initialement affectés à un seul cluster. De plus, les clusters sont divisés en deux clusters les moins similaires.

3.1.5 DBSCAN

DBSCAN signifie Density-Based Spatial Clustering of Applications with Noise, est un algorithme qui regroupe des points de données « densément groupés » dans un seul cluster. DBSCAN ne requiert que deux paramètres : epsilon et minPoints. Epsilon est le rayon du cercle à créer autour de chaque point de données pour vérifier la densité et minPoints est le nombre minimum de points de données requis à l'intérieur de ce cercle pour que ce point de données soit classé comme point central.

3.2 Les algorithmes de classification supervisés

3.2.1 K-Nearest Neighbors (KNN)

L'algorithme des k-voisins les plus proches, également connu sous le nom de KNN ou k-NN, est un classificateur d'apprentissage supervisé non paramétrique, qui utilise la proximité pour effectuer des classifications ou des prédictions sur le regroupement d'un point de données individuel.

3.2.2 Naive Bayes

Le classificateur Naïve Bayes est un algorithme d'apprentissage automatique supervisé populaire utilisé pour les tâches de classification telles que la classification de texte. Il appartient à la famille des algorithmes d'apprentissage génératif, ce qui signifie qu'il modélise la distribution des intrants pour une classe ou une catégorie donnée. Cette approche repose sur l'hypothèse que les caractéristiques des données d'entrée sont conditionnellement indépendantes compte tenu de la classe, ce qui permet à l'algorithme de faire des prédictions rapides et précises.

3.2.3 Arbre de décision

Un arbre de décision est un schéma représentant les résultats possibles d'une série de choix interconnectés. Il permet à une personne ou une organisation d'évaluer différentes actions possibles en fonction de leur coût, leur probabilité et leurs bénéfices.

3.2.4 Réseau de neurones (NN)

Un réseau neuronal est l'association, en un graphe plus ou moins complexe, d'objets élémentaires, les neurones formels. Les principaux réseaux se distinguent par l'organisation du graphe (en couches,complets...), c'est-à-dire leur architecture, son niveau de complexité (le nombre de neurones, présence ou non de boucles de rétroaction dans le réseau), par le type des neurones (leurs fonctions de transition ou d'activation) et en fin par l'objectif visé:apprentissage supervisé ou non,optimisation,systèmes dynamiques...etc.

3.2.5 Machine à vecteurs de support (SVM)

SVM (Support Vector Machine ou Machine à vecteurs de support) est un algorithme d'apprentissage automatique supervisé qui peut être utilisé pour les problèmes de classification ou de régression. Toutefois, il est surtout utilisé dans les problèmes de classification.

3.3 La régression

3.3.1 Définition

La régression est une technique statistique de modélisation des relations entre différentes variables (dépendantes et indépendantes). Utilisée pour décrire et analyser les valeurs ou données, la régression linéaire a pour objectif de réaliser des prédictions ou des prévisions.

3.3.2 Fonctionnement d'une régression

La régression utilise une technique d'estimation choisie, une variable dépendante et une ou plusieurs variables explicatives pour former une équation linéaire estimant les valeurs de la variable dépendante. Ceci en supposant qu'il existe une relation de causalité entre les deux variables.

3.3.3 Exemple

À titre d'exemple : vous cherchez à déterminer comment vos investissements publicitaires agissent sur le niveau de vos ventes. Pour ce faire, on utilisera une régression linéaire pour examiner la relation entre les deux variables (investissements et ventes). Elle servira de prévision si cette relation est clairement représentée.

3.3.4 Les principaux objectifs des régressions

- Identifier les variables explicatives qui sont associées à la variable dépendante.
- Comprendre la relation entre les variables dépendantes et explicatives.
- Faire des prévisions.

3.3.5 Applications de le régression

- La modélisation des accidents de la circulation en fonction de la vitesse, de l'état des routes et autres pour informer les services de la police routière.
- La modélisation des taux de maintien au lycée pour mieux comprendre les facteurs qui contribuent à l'abandon scolaire.
- La modélisation des pertes immobilières par incendie comme fonction de variables : le degré d'implication des pompiers, le temps de réaction ou les valeurs mobilières.

3.3.6 Les différents types de régression

- La régression simple
- La régression multiple
- La régression linéaire
- La régression non-linéaire

Chapter 4

Interfaces

4.1 L'interface principale

Figure 4.1: Interface principale

4.2 L'interface clustering

Figure 4.2: Interface clustering

4.3 L'interface classification

Figure 4.3: Interface classification

4.4 L'interface regression

Figure 4.4: Interface regression

Chapter 5

Les resultats obtenus - clustering -

5.1 L'importation d'un dataset

Figure 5.1: Importer dataset

Figure 5.2: Le dataset diabetes

Figure 5.3: Output

5.2 Le preprocessing

Figure 5.4: Preprocessing

Figure 5.5: Output

5.3 La courbe d'elbow

Figure 5.6: Elbow

Figure 5.7: Output

Le nombre optimale des clusters est égale à : $2\,$

5.4 Kmeans

Figure 5.8: Kmeans

Figure 5.9: Output

5.4.1 L'inertie intra-classe

Figure 5.10: Inertie intra-classe

Figure 5.11: Output

5.4.2 L'inertie inter-classe

Figure 5.12: Inertie inter-classe

Figure 5.13: Output

5.5 Kmedoids

Figure 5.14: kmedoids

Figure 5.15: Output

5.5.1 L'inertie intra-classe

Figure 5.16: Inertie intra-classe

Figure 5.17: Output

5.5.2 L'inertie inter-classe

Figure 5.18: Inertie inter-classe

Figure 5.19: Output

5.6 AGNES

Figure 5.20: Agnes

Figure 5.21: Output

5.6.1 L'inertie intra-classe

Figure 5.22: Inertie intra-classe

Figure 5.23: Output

5.6.2 Coefficient de silhouette

Figure 5.24: Silhouette

Figure 5.25: Output

5.7 DIANA

Figure 5.26: Diana

Figure 5.27: Output

5.7.1 L'inertie intra-classe

Figure 5.28: Inertie intra-classe

Figure 5.29: Output

5.7.2 Coefficient de silhouette

Figure 5.30: Silhouette

Figure 5.31: Output

5.8 DBSCAN

Figure 5.32: Dbscan

Figure 5.33: Output

5.8.1 Afficher les performanes

Figure 5.34: Performances

Figure 5.35: Output

Chapter 6

Les resultats obtenus - classification -

6.1 L'importation d'un dataset

Figure 6.1: Importer dataset

Figure 6.2: Output

6.2 Le preprocessing

Figure 6.3: Preprocessing

Figure 6.4: Output

6.3 L'affichage du dataset

Figure 6.5: Affichage

P	Normalized Dat	a								_	X
	preg	plas	pres	skin	insu	mass	pedi	age	class		
	0.639947	0.848324	0.149641	0.907270	-0.692891	0.204013	0.468492	1.425995	1.365896		
	-0.844885	-1.123396	-0.160546	0.530902	-0.692891	-0.684422	-0.365061	-0.190672	-0.732120		
	1.233880	1.943724	-0.263941	-1.288212	-0.692891	-1.103255	0.604397	-0.105584	1.365896		
	-0.844885	-0.998208	-0.160546	0.154533	0.123302	-0.494043	-0.920763	-1.041549	-0.732120		
	-1.141852	0.504055	-1.504687	0.907270	0.765836	1.409746	5.484909	-0.020496	1.365896		
	0.342981	-0.153185	0.253036	-1.288212	-0.692891	-0.811341	-0.818079	-0.275760	-0.732120		
	-0.250952	-1.342476	-0.987710	0.719086	0.071204	-0.125977	-0.676133	-0.616111	1.365896		
	1.827813	-0.184482	-3.572597	-1.288212	-0.692891	0.419775	-1.020427	-0.360847	-0.732120		
	-0.547919	2.381884	0.046245	1.534551	4.021922	-0.189437	-0.947944	1.681259	1.365896		
	1.233880	0.128489	1.390387	-1.288212	-0.692891	-4.060474	-0.724455	1.766346	1.365896		
)	0.046014	-0.340968	1.183596	-1.288212	-0.692891	0.711690	-0.848280	-0.275760	-0.732120		
L	1.827813	1.474267	0.253036	-1.288212	-0.692891	0.762457	0.196681	0.064591	1.365896		
2	1.827813	0.566649	0.563223	-1.288212	-0.692891	-0.620962	2.926869	2.021610	-0.732120		
3	-0.844885	2.131507	-0.470732	0.154533	6.652839	-0.240205	-0.223115	2.191785	1.365896		
4	0.342981	1.411672	0.149641	-0.096379	0.826616	-0.785957	0.347687	1.511083	1.365896		
5	0.936914	-0.653939	-3.572597	-1.288212	-0.692891	-0.252897	0.036615	-0.105584	1.365896		
6	-1.141852	-0.090591	0.770014	1.660007	1.304175	1.752428	0.238963	-0.190672	1.365896		
7	0.936914	-0.434859	0.253036	-1.288212	-0.692891	-0.303664	-0.658012	-0.190672	1.365896		
3	-0.844885	-0.560048	-2.021665	1.095454	0.027790	1.435129	-0.872441	-0.020496	-0.732120		
9	-0.844885	-0.184482	0.046245	0.593630	0.140667	0.330932	0.172520	-0.105584	1.365896		
0	-0.250952	0.159787	0.976805	1.283638	1.347590	0.927452	0.701041	-0.531023	-0.732120		
L	1.233880	-0.685236	0.770014	-1.288212	-0.692891	0.432467	-0.253316	1.425995	-0.732120		
2	0.936914	2.350587	1.080200	-1.288212	-0.692891	0.990912	-0.063049	0.660206	1.365896		
3	1.530847	-0.059293	0.563223	0.907270	-0.692891	-0.379816	-0.630831	-0.360847	1.365896		
4	2.124780	0.691838	1.286991	0.781814	0.574812	0.584771	-0.658012	1.511083	1.365896		
5	1.827813	0.128489	0.046245	0.342717	0.305642	-0.113285	-0.805998	0.660206	1.365896		
5	0.936914	0.817027	0.356432	-1.288212	-0.692891	0.940144	-0.648952	0.830381	1.365896		
7	-0.844885	-0.747831	-0.160546	-0.347291	0.522715	-1.115947	0.045675	-0.956462	-0.732120		
3	2.718712	0.754432	0.666618	-0.096379		-1.242867					
9			1.183596				-0.407342		-0.732120		
)		-0.372265		0.342717			0.223862		-0.732120		
Ĺ	-0.250952		0.356432	0.969998		-0.049826					
2						-0.912877					

Figure 6.6: Output

6.4 K-Nearest Neighbors (KNN)

Figure 6.7: Apply KNN

6.4.1 Confusion matrix

Figure 6.8: Confusion matrix KNN

6.4.2 Accuracy

Figure 6.9: Accuracy KNN

6.4.3 F1 score

Figure 6.10: F1 score KNN

6.5 Naive Bayes

Figure 6.11: Apply Naive Bayes

6.5.1 Confusion matrix

Figure 6.12: Confusion matrix Naive Bayes

6.5.2 Accuracy

Figure 6.13: Accuracy Naive Bayes

6.5.3 F1 score

Figure 6.14: F1 score Naive Bayes

6.6 Arbre de décision

Figure 6.15: Apply Decision tree

6.6.1 Generated tree

Figure 6.16: Generated tree

6.6.2 Confusion matrix

Figure 6.17: Confusion matrix Decision tree

6.6.3 Accuracy

Figure 6.18: Accuracy Decision tree

6.6.4 F1 score

Figure 6.19: F1 score Decision tree

6.7 Machine à vecteurs de support (SVM)

Apply Support Vector Machine

Figure 6.20: Apply SVM

6.7.1 Report

Figure 6.21: Report SVM

6.7.2 Confusion matrix

Figure 6.22: Confusion matrix SVM

6.7.3 Accuracy

Figure 6.23: Accuracy SVM

6.7.4 F1 score

Figure 6.24: F1 score SVM

6.8 Réseau de neuronnes (NN)

Figure 6.25: Apply NN

6.8.1 Confusion matrix

Figure 6.26: Confusion matrix NN

6.8.2 Accuracy

Figure 6.27: Accuracy NN

6.8.3 F1 score

Figure 6.28: F1 score NN

Chapter 7

Les resultats obtenus - regression -

7.1 L'importation d'un dataset

Figure 7.1: Importer dataset

Figure 7.2: Output

7.2 La division d'un dataset

Figure 7.3: Importer dataset

Figure 7.4: Output

7.3 Logistic Regression

Figure 7.5: Apply LR

7.3.1 Accuracy

Figure 7.6: Accuracy regression

7.3.2 Regression report

Figure 7.7: Regression report

Chapter 8

Conclusion générale

8.1 Apprentissage supervisé VS Apprentissage non supervisé

L'apprentissage non supervisé consiste à inférer les connaissances des classes sur la seule base des échantillons d'apprentissage, et sans savoir a priori à quelles classes ils appartiennent. Contrairement à l'apprentissage supervisé, on ne dispose que d'une base d'entrées et c'est le système qui doit déterminer ses sorties en fonction des similarités détectées entres les différentes entrées (règle d'auto organisation). On pourrait imaginer que l'algorithme d'apprentissage décide lui-même des classes qui existent et de la classification de chaque exemple.

Contrairement à l'apprentissage supervisé, dans l'apprentissage nonsupervisé il n'y a pas d'oracle qui explicite les étiquettes. L'utilisation de ce type d'algorithme permet de trouver des structures, des dépendances entre descripteurs qui nous sont inconnues.