Vol. 63 No. 1 JUCHE106(2017).

(자연과학)

주체106(2017)년 제63권 제1호

(NATURAL SCIENCE)

표지방의 고층풍력에네르기의 분포특징에 대한 연구

김 수 성

고층바람은 지면바람보다 속도가 빠르고 풍향도 일정하여 풍력에네르기의 리용효률이 아주 높다. 특히 고층바람을 리용하는 고층풍력발전기의 발전효률은 평균 60%이상이며 원가도 지상풍력발전기의 절반수준에 불과할만큼 경제적효과성이 높은것으로 하여 현재 세계적으로 주목되고있는 다음세대 동력설비의 하나이다.

이러한 고층풍력에네르기는 일반적으로 풍력밀도를 리용하여 평가한다.[1, 2]

풍력밀도는 수평방향에서 단위시간동안에 단위면적을 통하여 흐른 공기량으로 결정되는데 다음과 같이 계산한다.

$$W = V^3 \rho / 2$$

여기서 V는 해당한 높이에서 바람속도, ρ 는 공기밀도(표준공기밀도, 1.225kg/m^3 , 6~000 m이상에서 약 0.44kg/m^3)이다.

선행연구[3, 4]에서 풍력밀도는 지역에 따라 다른데 가장 높은 지역에서는 100m이상의 높이에서는 6kW/m², 1 000m이상의 높이에서는 10kW/m²이상에 달한다고 하였다. 특히 1979 ~2006년까지의 위성 및 고층기상관측자료에 기초한 세계적인 고층풍력자원평가에 의하면 지면으로부터 2km이상의 높이에서부터 풍력밀도는 급격히 증가하며 대류권과 성층권경계층에 해당한 대류권계면에 최대풍력밀도가 존재한다는것이다.

론문에서는 고지방 기상관측소의 지면(1981-2010년) 및 고층(2009-2011년)바람관측 자료를 리용하여 고지방의 고층풍력자원에 대한 분포특성에 대하여 서술하였다.

지난 30년간의 지면바람관측자료를 분석해보면 고지방의 년평균바람속도는 1.5m/s(최대 2.2m/s, 최소 1.4m/s)로서 풍력밀도로 환산하면 약 2.06W/m²정도이다. 이것은 풍력발전을 위한 시동풍속이 5m/s이상이라는것을 고려할 때 고지방에 지상풍력발전기의 정상운영에 필요한 바람자원이 절대적으로 부족하다는것을 말해준다. 한편 년평균무풍출현빈도률은 8.7%로서 리용가능한 지상풍력자원이 지난 기간에 비하여 약간 감소되고있다. 지난 3년간(2009 -2011년)의 고층바람관측자료를 분석한 결과는 표 1과 같다.

표 1. 표지방의 높이에 따르는 계절 및 년평균바람속도(m/s)

높이/m	겨울	봄	여름	가을	년평균
150	3.2	3.0	2.5	3.0	2.9
1 500	9.0	8.1	5.7	5.5	7.0
3 000	17.5	12.4	7.8	8.5	11.5
5 500	23.3	18.9	12.5	17.5	18.1
7 000	30.1	22.7	17.4	23.9	23.5
9 500	34.7	26.4	21.2	33.8	29.1
12 000	47.8	28.5	32.0	35.6	35.9

표 1에서 보는바와 같이 바람속도는 높이에 따라 점차적으로 증가하는데 12 000m에서는 무려 47.8m/s에 달한다. 계절별로 볼 때 바람세기는 가을과 겨울철에 강하고 여름철에 비교적 약하며 봄과 여름철에 높이에 따르는 평균바람속도는 년평균바람속도와 류사하지만 겨울과 여름철에는 명백한 차이를 가진다. 이러한 특성은 풍력밀도의 세기에 그대로 반영된다.

한편 지상으로부터 300m~500m높이에서의 평균바람속도는 5.6m/s(평균풍력밀도 132W/m²) 로서 지면바람에 비하여 약 4배정도 강하다. 특히 겨울철평균바람속도는 7m/s, 평균풍력밀

도는 209W/m²로서 년중 제일 큰 값을 가진다. 교지방에서 높이에 따르는 바람속도의 증가와 함께 평균풍력밀도는 3km이상의 높이에서부터 kW급으로 급격히 증가(표 2)하는데 이것은 세계적인 공중풍력밀도분포와도 비교적 잘 일치된다.

표 2. 표지방의 높이에 따르는 풍력밀도분포 $/(W\cdot m^{-2})$

				,	
높이/m	겨울	봄	여름	가을	평균풍력 밀도
150	20.1	16.5	9.5	16.5	14.9
1 500	446.1	325.2	109.4	101.8	245.6
3 000	3 279	1 166.8	290.4	375.8	1 278
5 500	7 741.4	4 131.7	1 195.3	3 279.9	4 087.1
7 000	5 999.5	2 573.3	1 158.9	3 003.4	3 183.7
9 500	13 579.1	5 979.9	3 009.8	12 549.4	8 779.5
12 000	35 494.9	7 523.5	10 649.6	14 664.1	17 083.0

표 2에 기초하여 계산한 결 과 교지방의 높이에 따르는 년평

균풍력밀도는 4 953W/m²정도인데 계절별로 보면 겨울철에 9 508W/m², 봄철에 3 102W/m², 여름철에 2 346W/m², 가을철에 4 855W/m²이다. 년평균고층풍력밀도는 겨울과 가을철에 봄과 여름철보다 크며 특히 겨울철인 경우 고층풍력밀도는 봄철의 3배, 여름철의 5배에 달한다. 바람방향은 계절에 따라 변하는데 겨울과 봄철에는 주로 북서풍이, 여름과 가을철에는 주로 남서풍이 우세하다.(표 3)

표 3사용의 표이에 따르는 바람66(/								
<u></u> 높이/m	겨울	봄	여름	가을	년평균			
150	223	213	152	195	195.7			
1 500	282	258	189	190	229.7			
3 000	294	275	207	223	249.7			
5 500	289	282	257	268	274			
7 000	293	283	256	275	276.7			
9 500	279	278	257	275	272.2			
12 000	277	290	262	272	275.2			
평균바람방향	276.7	268.4	225.7	242.5	253.3			

표 3. 표지방의 높이에 따르는 바람방향(°)

맺 는 말

고지방의 고층평균바람속도는 300m~500m이상에서 5m/s이상으로서 지면바람속도에 비하여 4배이상 높으며 고지방에서 리용가능한 고층풍력밀도는 다른 계절에 비하여 겨울철에 약 2~3배정도 높다.

참 고 문 헌

- [1] C. L. Archer et al.; Energies, 2, 2, 307, 2009.
- [2] G. Ren; Geographical Reasearch, 28, 6, 1583, 2009.
- [3] M. G. Bronstein; Technological Forecasting and Social Change, 78, 4, 736, 2011.
- [4] L. M. Miller; Earth Syst. Dynam., 2, 201, 2011.

Distribution Feature of Higher Layer Wind Energy in "고" Area

Kim Su Song

According to assay about higher layer wind distribution feature of " $\underline{\pi}$ " area, the speed of the average wind at the height of $300\sim500\text{m}$ is above 5m/s and it is 4 times faster than the speed of the wind in the ground.

In " π " area, the higher layer wind force to be used is $2\sim3$ times denser in winter specially than the other seasons.

Key words: higher layer wind, wind force density