Graph Theory: Homework #1

Due on January 9, 2015

 $Professor\ McGinley\ MWF\ 9:15$

Rick Sullivan

Problem 1

Prove or disprove: if every vertex of a simple graph G has degree two, the G is a cycle.

Solution

Consider the following graph:

Each node has degree two and the graph has cycles contained within it, but the graph as a whole is not a cycle.

Problem 2

Determine the maximum size of a clique and the maximum size of an independent set of the graph below.

Solution

The maximum clique size is 4, consisting of nodes 1, 6 and any other two adjacent nodes from the middle row.

The maximum size of an independent set is only 2, either the set $\{2, 4\}$ or the set $\{3, 5\}$.

Problem 3

Determine which pairs of graphs below are isomorphic.

Solution

Graphs A, B, and E are all isomorphic, as are graphs C and D.

The isomorphisms can be constructed using the following mappings:

A	В	A	E	\mathbf{C}	D
a1 a2 a3 a4 a5 a6 a7	b1	a1 a2 a3 a4 a5 a6 a7	e1	c1	d3
a2	b6	a2	e4	c2	d5
a3	b7	a3	e7	c2 c3 c4	d6
a4	b5	a4	e3	c4	d2
a5	b4	a5	e6	c5	d1
a6	b3	a6	e2	c6 c7	d7
a7	b2	a7	e5	c7	d4

Problem 4

Prove that $G_1 \times G_2$ is isomorphic to $G_2 \times G_1$.

Solution

Proof. Consider two graphs, G_1 and G_2 , with vertices $v_{a1}, v_{a2}, ..., v_{an}$ and $v_{b1}, v_{b2}, ..., v_{bn}$, and edges $e_{a1}, e_{a2}, ..., e_{an}$ and $e_{b1}, e_{b2}, ..., e_{bn}$, respectively.

The product $G_1 \times G_2$ will have vertices $(v_{a1}, v_{b1}), (v_{a1}, v_{b2}), ..., (v_{an}, v_{bn}), (v_{b1}, v_{a1}), ... (v_{bn}, v_{an})$. Edges will exist between any two vertices (v_1, w_1) and (v_2, w_2) if and only if either $v_1 = v_2$ and w_1 and w_2 shared an edge in G_2 , or vice versa.

The product $G_2 \times G_1$ follows a symmetrical pattern. In this case, the vertices of the product will be $(v_{b1}, v_{a1}), (v_{b1}, v_{a2}), ..., (v_{bn}, v_{an}), (v_{a1}, v_{b1}), ..., (v_{an}, v_{bn})$. Edges will similarly be symmetrical.

We can produce an isomorphism by mapping vertex pairs in one cartesian product to the same vertex in the other. For example, the vertex (v_{a1}, v_{b1}) in $G_1 \times G_2$ will actually map to (v_{a1}, v_{b1}) in $G_2 \times G_1$.

Problem 5

Prove that a p, q graph is complete if and only if $q = \binom{p}{2}$.

Proving completeness leads to $\binom{p}{2}$ edges

Proof. Assume that a graph G with p vertices is complete. By definition of graph completeness, all possible edges will exist. Edges, in a simple undirected graph, can be represented as a set of two vertices that make up the edge's endpoints. Therefore, the total number of possible edges is the total possible number of two-vertex sets from a vertex set of size p, or $\binom{p}{2}$. Therefore, complete graph G must have $\binom{p}{2}$ edges.

Proving $\binom{p}{2}$ edges leads to completeness

Proof. Assume that a graph G with p vertices has $q = \binom{p}{2}$ edges. The maximum possible number of edges in a graph of order p, as explained above, is $q = \binom{p}{2}$. Therefore, every possible edge in G exists. By definition, G is complete.