Kuldeep Singh

ATOMIC & MOLECULAR PHYSICS

CONTENTS

ATOMIC & MOLECULAR PHYSICS

Previous Years' Question

	LEVEL-1	
Assignment Number	Name of Assignment	Pages
1.	Hydrogen Atom	01-05
2.	L-S and J-J Coupling	06-11
3.	Zeeman Effect	12-15
4.	X-ray Spectra, Alkalic Spectra, Hyperfine Structure and Broadening	16-19
6.	Rotational Spectra	20-24
7.	Vibrational Spectra	25-28
8.	Electronic and Raman Spectra	29-33
9.	Laser	34-38

LEVEL-2

Assignment

39-41

LEVEL-1

- 101 TEXT.

- **T**

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-1: Atomic Spectra (Hydrogen Atom)

	•				
1.		n the n = 3 state and the av before making a transiti		te is 10 ⁻⁴ sec. The number of revolution	į
	(a) 2.4×10^4	(b) 2.4×10 ⁵	(c) 2.4×10^6	(d) 2.4×10^7	
2.	The wavelength of several (a) 384 nm	enth line of the Balmer s (b) 424 nm	eries of hydrogen atom i (c) 456 nm	s (d) 512 nm	
3.	The energy required to (a) 0.213 eV	remove an electron from (b) 0.51 eV	m a singly-ionized Heliu (c) 0.85 eV	m atom which in the n = 8 state, is (d) 1.11 eV	
4.	The momentum of the = 10 to the ground state		lrogen atom making a di	rect transition from an excited state n	l
	(a) $2.8 \times 10^{-27} kg \ m \ s^{-1}$	¹ (b) 7.2×10 ⁻²⁷ kg m s ⁻	1 (c) $7.2 \times 10^{-26} kg \ m \ s^{-1}$	1 (d) $2.8 \times 10^{-26} kg \ m \ s^{-1}$	
(5.) (6.)	emiited. The electrons (a) 12.8 V	must have been accelara (b) 14.1 V	ted through a minimum (c) 16.7 V	and the first line of Paschen series is potential difference of (d) 19.1 V studied. The shift in wavelength for the	
	H_{α} lines of the two ki				
	(a) $2.4 A^0$	(b) $3.3 A^0$	(c) $5.4 A^0$	(d) $6.7 A^0$	
7./	The temparature at whe binding energy of the h		lar kinetic energy in the	gaseous hydrogen will be equal to the	<u> </u>
	(a) 10 ⁴ K	(b) $10^5 K$	(c) $10^6 K$	(d) $10^7 K$	
8.	shoertest wavelength	_		in the atoms and ions given below. The	2
	(a) Hydrogen atom (c) Singly ionized heliu	ım	(b) Deutron atom(d) Doubly ionized lith	ium	
9.	A gas of monochroma		ded with a stream of ele	ctrons that have been accelerated fron	n
10 -	(a) Lymam series	(b) Balmer Series	(c) Paschen Series	(d) Pfund Series	,
10-			-	n the relativistic model of the atom are 3 ms of the semi major axis 'a' is given b	
	(a) $b = a/3$		(c) $b = a/2$,
11	_	state energy of the hydr d state of an electron an	_	hen the ground state energy of positro [NET Dec. 2011]	-
	(a) 6.8 eV	(b) -6.8 eV	(c) -13.6 eV	(d) 13.6 eV	
12	A muon (μ^{-}) from c	osmic rays is trapped by	y a proton to form a hyd	lrogen-like atom. Given that a muon i	S
V		nes heavier than an electr of such an atom will be	on, the longest wavelen	gth of the spectral line (in the analogou [NET June 2013]	
	(a) $5.62 A^0$	(b) 6.67 A ⁰	(c) 3.75 A ^o	(d) $13.3 A^0$	

~;;:4;

.,					2
7179	The second	1 de la companya della companya della companya de la companya della companya dell			<u> </u>
13,	If R_1 is the value	of the Rydeberg const	ant assuming the mass of	the nucleus to be infini	tely large compared to
	that of an electro	on and R_2 is the value of	of the Rydeberg constant	taking the nuclear mas	ss to be 7500 times the
		R_2			
	mass of the elec	tron, then the ratio $\frac{R_2}{R_1}$	is		[GATE 2002]
	(a) a little less th		(b) a little more	than unity	
	(c) infinitely sma	11	(d) infinitely larg	ge	
14,			Balmer series in the hydro	gen spectrum is λ, the	n the wavelength of the
	first line of the L	yman series is			[GATE 2002]
	(a) $\frac{27}{5}\lambda$	$ab = \frac{5}{\lambda}$	(c) $\frac{32}{27}\lambda$	(d) $\frac{27}{32}\lambda$	
15	3	21	<i>2-1</i>	32	han the valenty of the
15.	electron in its lo		gen atom. If α is the fin	e structure constant, i	[JEST 2012]
			(1 ~) ~ () ~ 2	(1)	
	(a) $\frac{c}{1+\alpha}$	(b) $\frac{c}{1+\alpha^2}$ or ($(1-\alpha)^c$ (c) α^2c	(d) αc	
16.			m (electron bound to pro	ton) is 13.6 eV. The bir	
	•	oound to positron) is	-X7 (-) 12 (101	0.W (4) 12 C v 2	[JEST 2012]
	(a) 13.6/2 eV	• • •	eV (c) 13.6× 181	•	
17.	If a proton were	e ten times lighter, then	the ground state energy	of the electron in a hyd	rogen atom would be [JEST 2013]
	(a) less	(b) more	(c) same		[JEST 2013]
	` '	r equal depending on t	`.'	-	
18	A hydrogen ato	m in its ground state is	collided with an electro	n of kinetic energy 13.	377 eV. The maximum
		the radius of the atom		(1) (4	[JEST 2014]
_	(a) 7	(b) 8	(c) 49	(d) 64	
19.	Given that the	ionization energies of	Hydrogen $({}^{\scriptscriptstyle 1}H)$ and Litl	$\min {3Li}$ are 13.6 e	V and 5.39 eV respec-
	tively. The effec	ctive nuclear charge ex	perienced by the valence	electron of the 3Li at	
	terms of protor		() 100	(1) 0 (2	[TIFR 2011] late
	(a) 3.00 <i>e</i>	(b) 1.59 e	(c) 1.26 <i>e</i>	(d) 0.63 <i>e</i>	Rule
20.	·		ydrogen atom correspon	-	
		<u> </u>	fa photon emitted due to	,	_
	two such states	with consecutive value	es of n (i.e. $\psi_{n+1} \rightarrow \psi_n$)	is related to the wavel	ength λ_{α} of the K_{α} line

of hydrogen by [TIFR 2012]

(a) $\lambda = \frac{n^3}{9} \lambda_{\alpha}$

(b) $\lambda = \frac{3n^3}{8} \lambda_{\alpha}$ (c) $\lambda = n^2 \lambda_{\alpha}$

(d) $\lambda = \frac{4}{n^2} \lambda_{\alpha}$

The velocity of an electron in the ground state of a hydrogen atom is v_H . If v_p be the velocity of an electron in [TIFR 2013] the ground state of positronium, then

(a) $v_p = v_H$

(b) $v_p = 2v_H$ (c) $v_p = \frac{v_H}{2}$ (d) $v_p = \sqrt{2}v_H$

) b.

A sample of ordinary hydrogen $\binom{1}{1}H$ gas in a discharge tube was seen to emit the usual Balmer spectrum. On careful examination, however, it was found that the H_{α} line in the spectrum was split into two fine lines, one an intense line at 656.28 nm and the other a faint line at 656.04 nm. From this, one can conclude that the gas sample had a small impurity of [TIFR 2015]

(a) ${}_{1}^{3}H$

(b) ${}_{1}^{2}H$

(c) ${}_{2}^{4}He$

(d) H_2O

23	The electron in a hydro	ogen atom with a radius o	equal to first Bohr radiu	s has a velocity equal to
	(a) $\frac{C}{5}$	(b) $\frac{C}{10}$	(c) $\frac{C}{137}$	(d) $\frac{C}{8}$
	The numerical value of (a) 0.529 nm	f the radius of the first orb (b) 0.0529 Å	bit of hydrogen as (c) 5.29 Å	(d) 0.0529 nm
	When an electron jump (a) The first line of P f (c) Second line of Pas		o the second orbit, one (b) Second line of Lyr (d) Second line of Bal	nan series
26	The Bohr formula who experimental value bed (a) Electron- electron (c) Spin-spin interaction	cause of interaction	(b) Spin orbit interaction (d) None of above	und to yield a result higher than
27.	The first line of the Ly (a) 0.1 Å	man series of a ten times (b) 1 Å	ionized Na atom has a (c) 10Å	wavelength of about (d) 100Å
28.	If v is the velocity of the	ne electron in a stationary	y orbit of radius r, the or	bital frequency of the electron is:
	(a) $\frac{\upsilon}{2\pi r}$	(b) $\frac{v}{r}$	(c) $\frac{v}{\pi r}$	(d) $\frac{2\pi}{v}$
29	(a) only by the princip(b) only by the azimut	•	· ·	
30	When the azimuthal q	uantum number n _o is zer	ro	1
Ą	(a) The ellipse reduce(c) The ellipse reduce	•	(b) The ellipse reduce(d) none of these	es into a circle
31.	The doublets observe (a) Screening of the l (c) Pressure of isotop		ne to (b) Spin-orbit interact (d) None of these	tion of the electron
32.	(a) Allowed if both the(b) Allowed if both the(c) Allowed if the tw	n have definite parities. A he states have even parity he states have odd parity to states have opposite pa ess a static electric field is	y. arities.	tion between these states is:
33.	Let E ₁ , E ₂ , E ₃ be the	first three energy levels	of a hydrogen atom. Co	onsider the ratio $(E_3 - E_2)/(E_2 - E_1)$.
	Neglecting the fine st	ructure condition this rat) F, 1,
	(a) $\frac{27}{5}$	(b) $\frac{1}{27}$	(c) $\frac{27}{4}$	(d) $\frac{5}{27}$
34	The shortest waveler (a) transition from th (c) ionization form th		of the Hydrogen atom of (b) ionization from the (d) transition from 2s	ne 2s level
35,	A hydrogen atom is transition?	in the 2p state. To what	t state or states can it ş	go by radiating a photon in an allowed

: **1**:

(c) 2s, 3p, 3d

(d) 1s, 2s

(b) 1s, 2s, 3s, 3p

(a) 1s, 2s, 3p, 3d

	v eq.(43)	·	·		4
36,	An atom in an excite	ed sate $\psi_{n,m}$ can make a	radiative transition to a	state $\psi_{n'l'm}$, if	
	(a) $\int_{-\infty}^{\infty} \psi_{n''m}^{\bullet} \overline{r} \psi_{n''m}$, dV ≠ 0	(b) $\int_{-\infty}^{\infty} \psi_{n'\ell'm'}^{\bullet} \overline{r}^2 \psi_{n\ell n}$	$dV \neq 0$	
	(c) $\int_{-\infty}^{\infty} \Psi_{n'\ell'm'}^{\bullet} \Psi_{n\ell m}$	$dV = \delta_{m'} \delta_{\ell\ell'} \delta_{mm'}.$	(d) $\int_{-\infty}^{\infty} \psi_{n'\ell'm}^{*}, \overline{r} \psi_{n\ell m}$	dV = 0	
37.	The longest waveler (a) transition from 1 (c) transition from 2		of the Hydrogen atom or (b) ionization from 1s (d) ionization from n	level	
	Positronium is an at electron and its char is thus similar to the	ked Answer type Q. 38 om formed by an electror ge is equal in magnitude the hydrogen atom with the p	n and a positron. The man out opposite in sign to tha	at of an electron. T	
38.	(a) 13.6 eV	of a positronium atom is: (b) 6.8 eV	(c) 27.2 eV	(d) 3.4 eV	
39.	, ,	m makes a transition from	` '	• •	energy of the photon
	that is emitted in thi	s transition is closest to			I
	(a) 1.88 eV	(b) 0.94 eV	, -	(d) 2.27 eV	
40.	Which of the follow radiation selection r	ving transitions is NOT a ule?	lllowed in the case of an	atom, according	to the electric dipole [GATE 2016]
	(a) $2s-1s$	(b) $2p-1s$	(c) $2p - 2s$	(d) 3 <i>d</i> –	
41	electric dipole tran (a) $\Delta \ell = 0$, $\Delta m_{\ell} =$ (c) $\Delta \ell = \pm 1$, Δm_{ℓ}	$=0,\pm 1$	states requires that (b) $\Delta \ell = \pm 1$, $\Delta m_{\ell} =$ (d) $\Delta \ell = \pm 1$, $\Delta m_{\ell} =$	±1, ± 2 0, ± 2	·
42		lectron in the ground stat be 10 times the first ioniza		•	
43	The ratio of the nur $(n=1)$ is	the atmosphere of a star a nber of hydrogen atoms i	n the 2nd excited state (i = 3) to the numb	per in the ground state [TIFR 2017]
	(a) 3.16×10^{-11}	(b) 1.33×10^{-8}	(c) 3.16×10^{-8}	(d) 5.62×10^{-1}	-6
44.	radiation coming (a) Gamma rays (insitions to the adjacent (b) UV(λ~nm)		•
45.		ound state energy of the has an energy equal to	(d) RF(λ~m)Hydrogen atom is −13	.6 eV. The higher	st possible electronic [GATE 2017]
	(a) 0	(b) 1 eV	(c) +13.6 eV	(d) ∞	•
46.		tom made of an electron be 0.53 Angstroms, the l decimal places).			
47	Let T_g and T_e be th	e kinetic energies of the	electron in the ground ar	nd the third excite	d states of a hydrogen
	atom, respectively.	According to the Bohr m	nodel, the ratio $\frac{T_g}{T}$ is		[GATE 2018]
	(a) 3	(b) 4	Ε	(d) 16	
7		8-A/11, Jia Sarai, Near-I		Delhi-16, Ph : 011-	26851008, 26861009

North Delhi: 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

.....

) h.

- If the fine structure splitting between the 2 ²P_{3/2} and 2 ²P_{1/2} levels in the hydrogen atom is 0.4 cm⁻¹, the corresponding splitting in Li²⁺ will approximately be
 [NET Dec. 2017]

 (a) 1.2 cm⁻¹

 (b) 10.8 cm⁻¹

 (c) 32.4 cm⁻¹

 (d) 36.8 cm⁻¹
- The Hydrogen α line H_{α} of wavelength $\lambda = 656.3$ nm corresponds to a transition between the principal quantum states n=3 and n=2. The wavelength of the line H_{β} corresponding to the transition between n=4 and n=2 is
 - (a) 486.1nm
- (b) 886.0 nm
- (c) 437.5 nm
- (d) 1093.7 nm

		A	ANSWER KEY			
1. (c)	2. (a)	3. (c)	4. (b)	5. (a)	6. (a)	7. (b)
8. (d)	9. (d)	10. (a)	11. (b)	12. (b)	13. (a)	14. (b)
15. (d)	16. (a)	17. (b)	18. (c)	19. (c)	20. (b)	21. (a)
22. (a)	23. (c)	24. (d)	25. (d)	26. (a)	27. (c)	28. (d)
29. (a)	30. (a)	31. (b)	32(c)	33. (d)	34. (b)	35(d)
36. (a)	37. (d)	38. (b)	39. (b)	40. (a)	41. (c)	42. (246)
43. (d)	44. (d)	45. (d)	46. (1.06)	47. (c)	48. (c)	49. (a)

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009

444

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-2: Atomic Spectra (L-S and J-J Coupling)

<u></u>	The two possible orie	ntations of \vec{S} with respond	ect to an external r	magnetic field \vec{B} along z-axis,
	(a) $\cos^{-1}\left(\pm\frac{1}{\sqrt{2}}\right)$	(b) $\cos^{-1}\left(\pm\frac{1}{\sqrt{3}}\right)$	(c) $\cos^{-1}\left(\pm\frac{1}{3}\right)$	(d) $\cos^{-1}\left(\pm\frac{1}{2}\right)$
2/	The magnitude of ma	gnetic dipole moment co	orresponding to sp	oin of an electron is
	(a) $\mu_{\scriptscriptstyle R}$	(b) $2\mu_{B}$	(c) $\sqrt{2}\mu_{\rm R}$	(d) $\sqrt{3}\mu_{\scriptscriptstyle R}$
3				a uniform magnetic field B along z-axis. The d anti-parallel with magnetic field, is
	$(\bar{a})\frac{eB\hbar}{m}$	$(b)\frac{eB\hbar}{2m}$	(c) $\frac{eB\hbar}{4m}$	(d)0-
4.	The number of possil (a) 3	ble spectroscopic terms (b) 5	of a one electron (c) 7	atom corresponding to n=4 is (d) 9
5,	The angle between th	ne orbital angular momer	ntum and spin ang	ular momentum for the term $^2D_{3/2}$ is
	(a) 45°	(b) 62°	(c) 90°	(d) 135°
6.		ng spectroscopic term is	_	
	(a) $^{2}D_{3/2}$	(b) ${}^{2}F_{5/2}$	(c) $^{2}P_{3/2}$	(d) ${}^{2}D_{1/2}$
7.	Consider the state in	which $l = 4, s = 1/2.T$	he orientation of to	otal angular momentum w.r.t z-axis
	for the state with larg	gest possible j, m_j , is		
8.		(b) 39.8° and statements is NOT Conception to en	ORRECT?	(d) 74.8° spin-down and spin-up electron in a
	hydrogen like atom v (a) increase with incr (b) decrease with the (c) increase with print		iber	span down dia span up closu con mu
9.		ed transitions in the fine		line is
0	(a) 3	(b) 4	(c) 5	(d) 7
10.	Find the gound state	term of the following at	oms:	
	_	$^{16}_{8}O$ (iv) $^{24}_{11}Na$		(vi) <i>Na</i> *
11.				$3p^63d^54s^2$ The ground state term of Mn atom
	(a) $^{6}S_{5/2}$	(b) ⁶ P _{5/2}	(c) ${}^{1}S_{0}$	(d) ${}^{3}P_{0}$
12.		m of Mn ³⁺ ion will be	., ,	
	(a) ${}^{5}D_{0}$	(b) ⁵ D ₄	(c) $^6S_{5/2}$	(d) $^{6}P_{5/2}$

13.	If the doublet splitting of the first excited state $2^2D_{5/2}$ -	$-2^2 D_{3/2}$ of He^+ is 3	3.67 cm ⁻¹ , then the corresponding
	separation of H atom is	2 amri (di	\ 0.76 amil
14.	(a) 0.23 cm ⁻¹ (b) 0.36 cm ⁻¹ (c) 0.5 Sodium atom has 11 electrons. If the sequence in which		
	3d, the ground state of sodium is:	on the energy to tolk	чи о тисо и то, но, 2р, со, 5р, то,
	(a) ${}^{3}p_{1/2}$ (b) ${}^{2}p_{1/2}$ (c) ${}^{1}p$	_{1/2} (d)) ² s _{1/2}
15.	There are four electrons in the 3d shell of an isolated ato Bohr magneton is	om. The total magne	etic moment of the atom in units of [GATE 2016]
16.	The number of spectroscopic terms resulting from th	e L.S. coupling of	a 3p electron and a 3d electron is [GATE 2016]
17.	The orbital quantum numbers of two atomic electrons	are $\ell_1 = 1$ and $\ell_2 =$	2. The possible values of the total
	angular momentum quamtum number J under LS coupl	ling are	
	(a) -1 , 1 only (b) 1, 2, 3 only (c) 0,	1, 2, 3, 4 (d) -2, -1, 0, 1, 2
18.	Which of the following states exist?	2-	n - 2-
	(a) $2^{2}P_{1}$ (b) $2^{2}P_{3/2}$ (c) 2	· ·	
19.	Under the LS coupling scheme, the possible spectral to	erms $^{2s+1}L_J$ for the	electronic configuration 2s3s are
	(a) ${}^{2}S_{1/2}$, ${}^{2}P_{3/2}$, ${}^{2}P_{1/2}$ (b) ${}^{1}S_{0}$, ${}^{3}P_{1}$ (c) ${}^{1}S_{1}$		
20.	Which of the following is the spectroscopic ground states 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁴ predicted by Hund's rule?	ate for Mn ³ ions o	f electronic configuration
	(a) ${}^{5}D_{0}$ (b) ${}^{5}D_{4}$ (c) 5	D_3 (c	1) ⁵ D ₂
21.		_	e f-electron are
	(a) $j = \frac{7}{2}, \frac{5}{2}$ (b) $j = \pm 3, 2, 1, 0$ (c) $j = \pm 3, 2, 1, 0$		
22.	The electronic configuration (np)2 can have only which	one of the followin	g term
	(a) ${}^{2}D$, ${}^{3}P$ or ${}^{1}S$ (b) ${}^{1}D$, ${}^{3}P$ or ${}^{1}S$ (c) ${}^{3}I$	D, 3 P or 2 S (c	d) None of these
23.		- -	
	(a) ${}^{1}D_{2}$, ${}^{3}D_{2}$, ${}^{3}F_{2}$ (b) ${}^{3}F_{2}$, ${}^{3}D_{2}$, ${}^{1}D_{2}$ (c) ${}^{3}P_{2}$	$D_2, {}^3F_2, {}^1D_2$ (6	d) ${}^{1}D_{2}$, ${}^{3}F_{2}$, ${}^{3}D_{2}$
24.	The electronic configuration of the ground state of the	e Na atom is ² S _½ . T	his implies that
		S = 0, L = 1/2, J =	1/2
	(c) $S = 1/2$, $L = 0$, $J = 1/2$ (d) S	S = 0, L = 2, J = 2	
25.	The term symbol for a particular atomic state is ⁴ P _{s/2}	. The values of S (s	spin angular momentum), L (orbital
	angular momentum), J (total angular momentum) of the	he state are	
	(a) $S = \frac{3}{2}, L = 0, J = \frac{3}{2}$ (b) S	$1 = \frac{1}{2}, L = 1, J = \frac{3}{2}$	•
	(c) $S = \frac{1}{2}, L = 2, J = \frac{5}{2}$ (d) S	$S = \frac{3}{2}, L = 1, J = \frac{5}{2}$	
26	The spin-orbit interaction in an atom is given by $H =$	$a\vec{L}.\vec{S}$, where \vec{L} and	$d\vec{S}$ denote the orbital and spin an-

gular momenta respectively, of the electron. The splitting between the levels $^2P_{\rm 3/2}$ and $^2P_{\rm 1/2}$ is

	- 1	er ·			
 27.	How does the total ang	gular quantum number J	change in the transition	$Cr(3d^6)$ atom ion	tizes to $Cr^{2+}(3d^4)$?
			-1		[NET June 2014]
	(a) Increases by 2	(b) Decreases by 2	(c) Decreases by 4	(d) Does not ch	nange
28.		or the ³ P ₁ level of an ato		(4)	[GATE 2001]
	(a) 1/2	(b) 3/2	(c) 5/2	(d) 7/2	
29.	16956.2 and 16973.4		• •		nes of wave numbers [GATE 2003]
	(a) 15 cm ⁻¹	(b) 11.4 cm ⁻¹	(c) 12.5 cm ⁻¹	(d) 15.1 cm ⁻¹	
30.	The spectral term for	the atom with 70% subs	shell and only $s = 3/2$ is		[GATE 2003]
	(a) 3P_0	(b) ${}^4F_{9/2}$	(c) ${}^3F_{1/2}$	(d) ${}^4P_{1/2}$	
31.	The spectral terms for lowest energy is:	a certain electronic conf	iguration are given by 3	D, ¹ D, ³ P, ¹ P, ⁵ S,	³ S. The term with the [GATE 2004]
	(a) ⁵ S	(b) ³ P	(c) ³ D	(d) ³ S	
32.	The degeneracy of th	e spectral term 3F is:	,, –	_	[GATE 2004]
	(a) 7	(b) 9	(c) 15	(d) 21	
33.	The Lande g factor fo		ur.	. 1.1.	[GATE 2004]
					• •
	(a) $\frac{2}{3}$	(b) $\frac{3}{2}$	(c) $\frac{3}{4}$	(d) $\frac{4}{3}$	
34.	The L, S and J quantuare	ım numbers correspondi	ing to the ground state e	electronic configur	ration of Boron(Z= 5) [GATE 2004]
	(a) $L=1, S=\frac{1}{2}, J=\frac{1}{2}$	$\frac{3}{2}$	(b) $L = 1$, $S = \frac{1}{2}$, $J =$	$\frac{1}{2}$	
	(c) $L = 1, S = \frac{3}{2}, J =$	= 1/2	(d) $L = .0$, $S = \frac{3}{2}$, $J = .0$	$=\frac{3}{2}$	
35.	The LS configuration	ns of the ground state	of ¹² Mg, ¹³ Al, ¹⁷ Cl and	d ¹⁸ Ar are, respe	ctively.
	(a) ${}^{3}S_{1}$, ${}^{2}P_{1/2}$, ${}^{2}P_{1/2}$	and ${}^{1}S_{0}$	(b) 3S_1 , 2I	$S_{3/2}$, ${}^{2}P_{3/2}$ and ${}^{3}S_{1}$	[NET Dec. 2015]
c	(c) ${}^{1}S_{0}$, ${}^{2}P_{1/2}$, ${}^{2}P_{3/2}$	and ${}^{1}S_{0}$	(d) ${}^{1}S_{0}$, ${}^{2}H$	$S_{3/2}^{2}$, ${}^{2}P_{1/2}$ and ${}^{3}S_{1}$	
36.	The degeneracies of	the J-states arising from	the ³ P term with spin-or	rbit inteaction are	
	U				[GATE 2004]
	(a) 1, 3, 5	(b) 1, 2, 3	(c) 3, 5, 7	(d) 2, 6, 10	
37.		-	binations are	d L=1, S=1	ty. The corresponding [GATE 2004]
38.		-		= ±1, ±2	n numbers n, l, m, The [GATE 2005]

39. In a two electron atomic system having orbital and spin angular momenta ℓ_1 , ℓ_2 and s_1 s_2 respectively, the coupling strengths are defined as $\Gamma_{\ell_1\ell_2}$, $\Gamma_{s_1s_2}$, $\Gamma_{\ell_1s_1}$, $\Gamma_{\ell_2s_2}$, $\Gamma_{\ell_1s_2}$ and $\Gamma_{\ell_2s_1}$. For the J-J coupling scheme to be applicable, the coupling strengths MUST satisty the condition. [GATE 2005]

: 4<u>4</u>5

- (a) $\Gamma_{\ell_1\ell_2}, \Gamma_{s_1s_2} > \Gamma_{\ell_1s_1}, \Gamma_{\ell_2s_2}$
- (b) $\Gamma_{\ell_1 s_1}, \Gamma_{\ell_2 s_2} > \Gamma_{\ell_1 \ell_2}, \Gamma_{s_1 s_2}$

- (c) $\Gamma_{\ell_1 S_2}, \Gamma_{\ell_2 S_1} > \Gamma_{\ell_1 \ell_2}, \Gamma_{S_1 S_2}$
- (d) $\Gamma_{\ell_1 s_2}, \Gamma_{\ell_2 s_1} > \Gamma_{\ell_1 s_1}, \Gamma_{s_2 s_2}$
- 40. The allowed states for He(2p2) configuration are

[GATE 2007]

- (a) ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0,1,2}$ ${}^{1}D_{2}$ and ${}^{3}D_{1,2,3}$ (c) ${}^{1}P_{1}$ and ${}^{3}P_{0,1,2}$
- (b) ${}^{1}S_{0}$, ${}^{3}P_{0,1,2}$ and ${}^{1}D_{2}$ (d) ${}^{1}S_{0}$ and ${}^{1}P_{1}$

- In accordance with the selection rules of electric dipole transitions, the 43P, state of helium can decay by 41. photon emission to the states [GATE 2007]
 - (a) $2^{1}S_{0}$, $2^{1}P_{1}$ and $3^{1}D_{2}$

(c) $3^3P_2, 3^3D_3$ and 3^3P_0

- (b) 3¹P₁,3¹D₂ and 3¹S₀ (d) 2³S₁,3³D₂ and 3³D₁
- If an atom is in the 3D_3 state, the angle between its orbital and spin angular momentum vectors (\vec{L} and \vec{S}) is: 42.

[GATE 2007]

- (a) $\cos^{-1}\frac{1}{\sqrt{3}}$ (b) $\cos^{-1}\frac{2}{\sqrt{3}}$ (c) $\cos^{-1}\frac{1}{2}$
- (d) $\cos^{-1} \frac{\sqrt{3}}{2}$
- 43. The last two terms of the electronic configuration of manganese(Mn) atom is 3d⁵4s². The term factor of Mn⁴⁺ ion is : [GATE 2008]
 - (a) ${}^4D_{1/2}$
- (b) ${}^4F_{3/2}$
- (c) ${}^{3}F_{9/2}$
- (d) ${}^{3}D_{7/2}$
- 44. For a multi-electron atom, ℓ, L and S specify the one-electron orbital angular momentum, total orbital angular momentum and total spin angular momentum, respectively. The selection rules for electric dipole transition between the two electronic energy levels, specified by ℓ , L and S are

[GATE 2011]

- (a) $\Delta L = 0, \pm 1; \Delta S = 0; \Delta \ell = 0, \pm 1$
- (b) $\Delta L = 0, \pm 1; \Delta S = 0; \Delta \ell = \pm 1$
- (c) $\Delta L = 0, \pm 1; \Delta S = \pm 1; \Delta \ell = 0, \pm 1$
- (d) $\Delta L = 0, \pm 1; \Delta S = \pm 1; \Delta \ell = \pm 1$
- 45. The terms $\{j_1, j_2\}$, arising from 2s¹ 3d¹ electronic configuration in j-j coupling scheme are

[GATE 2012]

(a) $\left\{\frac{1}{2}, \frac{3}{2}\right\}_{1}$ and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{1}$

- (b) $\left\{\frac{1}{2}, \frac{1}{2}\right\}_{1}$ and $\left\{\frac{1}{2}, \frac{3}{2}\right\}_{2}$
- (c) $\left\{\frac{1}{2}, \frac{1}{2}\right\}_{10}$ and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{20}$
- (d) $\left\{\frac{3}{2}, \frac{1}{2}\right\}_{2}$ and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{12}$
- 46. The energy difference between the 3p and 3s levels in Na is 2.1 eV. Spin-orbit coupling splits the 3p level, resulting in two emission lines differing by 6 Å. The splitting of the 3p level is approximately,

[JEST 2015]

- (a) 2 eV
- (b) 0.2 eV
- (c) 0.02 eV
- (d) 2 meV
- Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration $1s^2 2s^2 2p^2$? [JEST 2015]
 - (a) ${}^{3}P < {}^{1}D < {}^{1}S$
- (b) ${}^{3}P < {}^{1}S < {}^{1}D$
- (c) ${}^{3}P < {}^{1}F < {}^{1}S$
- (d) ${}^{3}P < {}^{1}F < {}^{1}D$

[TIFR 2015]

(a)
$$L=1$$
, $S=\frac{1}{2}$, $J=\frac{1}{2}$

(b)
$$L=1$$
, $S=\frac{1}{2}$, $J=\frac{3}{2}$

(c)
$$L=0$$
, $S=\frac{1}{2}$, $J=\frac{1}{2}$

(d)
$$L = 0$$
, $S = \frac{3}{2}$, $J = \frac{3}{2}$

If an atom is in the 3D_3 state, the angle between its orbital and spin angular momentum vectors (\tilde{L} and \tilde{S}) is: 49.

(a)
$$\cos^{-1} \frac{1}{\sqrt{3}}$$

(b)
$$\cos^{-1}\frac{2}{\sqrt{3}}$$
 (c) $\cos^{-1}\frac{1}{2}$

(c)
$$\cos^{-1}\frac{1}{2}$$

(d)
$$\cos^{-1} \frac{\sqrt{3}}{2}$$

The Helium atom is excited into the 1s 2s configuration. The following spectral terms 2s+1 L are the only ones 50. allowed

(d)
$${}^{2}S$$
, ${}^{2}P$

The possible values of the total angular momentum J resulting from the addition of two angular momenta J_1 = 51. 1 and $J_2 = 2$ are

52. In a hydrogen atom, the accidental or Coulomb degeneracy for the n = 4 state is:

53. One Bohr magneton is approximately

(a)
$$10^{23}$$
 Am²

(b)
$$10^{-23}$$
 Am²

(c)
$$10^{10} \text{ Am}^2$$

(d)
$$10^{-10}$$
 Am²

54. The magnetic moment associated with the first orbit in hydrogen atom is given by

(a)
$$\frac{h}{4\pi me}$$

(b)
$$\frac{4\pi me}{he}$$

(c)
$$\frac{eh}{4\pi m} \times \sqrt{3}$$

(d)
$$\frac{\text{ehm}}{4\pi}$$

The terms $\{j_1,j_2\}$, arising from $2s^1$ $3d^1$ electronic configuration in j-j coupling scheme are 55.

(a)
$$\left\{\frac{1}{2}, \frac{3}{2}\right\}_{2}$$
 and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{2}$

(b)
$$\left\{\frac{1}{2}, \frac{1}{2}\right\}_{1,0}$$
 and $\left\{\frac{1}{2}, \frac{3}{2}\right\}_{2,1}$

(c)
$$\left\{\frac{1}{2}, \frac{1}{2}\right\}_{1,0}$$
 and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{3,2}$

(d)
$$\left\{\frac{3}{2}, \frac{1}{2}\right\}_{2,1}$$
 and $\left\{\frac{1}{2}, \frac{5}{2}\right\}_{3,2}$

The spatial part of a two-electron state is symmetric under exchange. If $|\uparrow\rangle$ and $|\downarrow\rangle$ represent the spin-up and spin-down states respectively of each particle, the spin-part of the two-particle state is

(a)
$$|\uparrow\rangle|\uparrow\rangle$$

(b)
$$|\uparrow\rangle |\downarrow\rangle$$

(c)
$$|\downarrow\rangle|\uparrow\rangle-|\uparrow\rangle|\downarrow\rangle/\sqrt{2}$$

(c)
$$|\downarrow\rangle|\uparrow\rangle-|\uparrow\rangle|\downarrow\rangle/\sqrt{2}$$
 (d) $|\downarrow\rangle|\uparrow\rangle+|\uparrow\rangle|\downarrow\rangle/\sqrt{2}$

The ground state electronic configuration for a carbon atom is $(1s)^2 (2s)^2 (2p)^2$

The first excited state of this atom would be achieved by

- (a) re-alignment of the electron spins within the 2p orbital
- (b) transition of an electron from the 2s orbital to the 2p orbital.
- (c) transition of an electron from the 2p orbital to the 3s orbital
- (d) transition of an electron from 2s orbital to the 3s orbital.

(a)
$$L=1$$
, $S=\frac{1}{2}$, $J=\frac{1}{2}$

(b)
$$L=1$$
, $S=\frac{1}{2}$, $J=\frac{3}{2}$

(c)
$$L=0$$
, $S=\frac{1}{2}$, $J=\frac{1}{2}$

(d)
$$L = 0$$
, $S = \frac{3}{2}$, $J = \frac{3}{2}$

59. Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration $1s^22s^22p^2$?

[JEST 2015]

(a)
$${}^{3}P < {}^{1}D < {}^{1}S$$

(b)
$${}^{3}P < {}^{1}S < {}^{1}D$$

(c)
$${}^{3}P < {}^{1}F < {}^{1}S$$

(d)
$${}^{3}P < {}^{1}F < {}^{1}D$$

60. Of the following term symbols of the np^2 atomic configurations, 1S_0 , 3P_0 , 3P_1 , 3P_2 and 1D_2 which is the grounded state?

(a)
$${}^{3}P_{0}$$

61. In the L-S coupling scheme, the terms arising from two non-equivalent p-electrons are

(a)
$${}^{3}S$$
, ${}^{1}P$, ${}^{3}P$, ${}^{1}D$, ${}^{3}D$

[NET Dec. 2016]

(c)
$${}^{1}S$$
, ${}^{3}S$, ${}^{3}P$, ${}^{3}D$

62. Using Hund's rule, the total angular momentum quantum number J for the electronic ground state of the nitrogen atom is [GATE 2017]

(a) 1/2

(b) 3/2

(c) 0

(d) 1

The term symbol for the electronic ground state of oxygen atom is

[GATE 2018]

(a)
$${}^{1}S_{0}$$

(b)
$${}^{1}D_{2}$$

(c)
$${}^{3}P_{0}$$

(d)
$${}^{3}P_{2}$$

The separations between the adjacent levels of a normal multiplet are found to be 22 cm⁻¹ and 33 cm⁻¹. Assume that the multiplet is described well by the L-S coupling scheme and the Lande's interval rule, namely E(J) - E(J-1) = AJ, where A is a constant. The term notations for this multiplet is

(a)
$${}^{3}P_{0.1.2}$$

(b)
$${}^{3}F_{2,3,4}$$

(c)
$${}^{3}G_{3,4,5}$$

(d)
$$^{3}D_{1,2,3}$$

[NET Dec. 2017]

	(1044 - 1160 Tradition (126)	A	NSWER KEY	and comments	The state of the s	Silver Carporator.
1. (b)	2. (d)	3. (a)	4. (c)	5. (d)	6. (d)	7. (a)
8. (c)	9. (7)	10. (*)	11. (a)	12. (a)	13. (a)	14. (d)
15. (0)	16. (12)	17. (c)	18. (b)	19. (c)	20. (a)	21. (a)
22. (b)	23. (b)	24. (c)	25. (d)	26. (a)	27. (c)	28. (b)
29. (b)	30. (b)	31. (a)	32. (d)	33. (d)	34. (b)	35. (c)
36. (a)	37. (c)	38. (c)	39. (b)	40. (b)	41. (d)	42. (a)
43. (b)	44. (b)	45. (a)	46. (d)	47. (a)	48. (d)	49. (a)
50. (c)	51. (d)	52. (b)	53. (b)	54. (c)	55. (a)	56. (c)
57. (a)	58. (d)	59. (a)	60. (a)	61. (d)	62. (b)	63. (d)
64. (d)						

14 (4.17)

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-3: Atomic Spectra (Zeeman Effect)

1.	-	ement is placed in a magr tral line of wavelength $ \lambda $		ength separation b	etween the Zeeman
	(a) $\frac{\mu_B B}{hc} \lambda$	(b) $\frac{\mu_B B}{hc\lambda}$	(c) $\frac{hc\lambda}{\mu_B B}$	(d) $\frac{\mu_{\scriptscriptstyle B}B}{hc}\lambda^2$	
2.	In the presence of exte	rnal weak magnetic field	, the number of substates	s into which the sta	te $^2D_{5/2}$ will split, is
	(a) 3	(b) 4	(c) 5	(d) 6	
3.	In the presence of wea	k magnetic field B, the se	eparation between the sp	litted sublevels of	the 3D_2 level will be
	(a) $\frac{7eB}{24\pi mc}$	(b) $\frac{7eB}{12\pi mc}$	(c) $\frac{7eB}{6\pi mc}$	(d) none of these	e
4.	The number of Zeema	in components for $^2D_{3/2}$	$-^2 P_{3/2}$ transition in one	-electron atom wil	l be
	(a) 6	(b) 8	(c) 10	(d) 12	
5.	The Zeeman pattern $^{2}P_{3/2}$. The lower state	of a line consists of six e	equidistant components	s. The upper state	term is known to be
	(a) ${}^{1}P_{1}$	(b) ${}^{2}S_{1/2}$	(c) 'S ₀	(d) none of thes	е
6.		ines are due to transition the total number of the al		evels to ² S _{1/2} level	l. On application of a
	(a) 4	(b) 6	(c) 8	(d) 10	,
7.	The spectroscopic sy	mbol for the ground state	te of 13Al is ² P _{1/2} . Unde	er the action of a s	strong magnetic field
8.	(when L-S coupling (a) 3 levels A spectral line due to	can be neglected) the g (b) 4 levels a transition from an elemagnetic field. At interme	round state energy levels (c) 5 levels ctronic state p to an s sta	el will split into (d) 6 leve ate splits into three	[NET Dec. 2013] els e Zeernan lines in the
					[NET June 2014]
	(a) 10	(b) 3	(c) 6	(d) 9	
9.	An atomic transition	$^{1}P \rightarrow {}^{1}S$ in a magnetic fi	eld 1 Tesla shows Zeema	an splitting. Given	that the Bohr magne-
	ton $\mu_B = 9.27 \times 10^{-24}$ Zeeman spectral lines	J/T, and the wavelength is approximately	n corresponding to the tr	ansition is 250 nm	, the separation in the [NET Dec. 2014]
10.	(a) 0.01 nm The total number of 2 weak field is:	(b) 0.1 nm Zeeman components obs			² P _{3/2} of an atom in a [GATE 2001]
	(a) 4	(b) 6	(c) 12	(d) 10	
	•				

Common data for Q.11 and Q.12

In the presence of an inhomogeneous weak magnetic field, spectral lines due to transitions between two sets of states were observed.

(1) ${}^{5}l_{5} \rightarrow {}^{5}H_{4}$ and (2) ${}^{2}D_{5/2} \rightarrow {}^{2}P_{3/2}$

[GATE 2003]

- 11. The types of Zeeman effect observed in (1) and (2) respectively are
 - (a) normal, normal

(b) anomalous, anomalous

JENERAL IN LAKE TO

(c) anomalous, normal

- (d) normal, anomalous
- 12. The number of levels into which each of the above four terms split into respectively is:
 - (a) 6, 4, 10, 8
- (b) 4, 6, 10, 12
- (c) 11, 9, 6, 4
- (d) 9, 5, 12, 10
- 13. The D₁ and D₂ lines of Na atom will split on the application of a weak magnetic field into
 - (a) 4 and 6 lines
- (b) 3 lines each
- (c) 6 and 4 lines
- (d) 6 lines each

Common Data Q. 14 and Q.15

Consider the Zeeman splitting of a single electron system for the 3d \rightarrow 3p electric dipole transition.

14. The Zeeman spectrum is:

[GATE 2009]

(a) Randomly polarized

(b) Only π polarized

(c) Only σ polarized

- (d) Both π and σ polarized
- 15. The fine structure line having the longest wavelength will split into:
 - (a) 17 components

(b) 10 components

(c) 8 components

(d) 4 components

Common Data for Q.16 and Q.17

In the presence of a weak magnetic field, atomic hydrogen undergoes the transition:

$$^{2}p_{\chi} \rightarrow \, ^{2}s_{\chi}$$

by emission of radiation.

[GATE 2010]

- 16. The number of distinct spectral lines that are observed in the resultant Zeeman spectrum is
 - (a) 2
- (b) 3
- (c) 4
- (d) 6

17. The spectral line corresponding to the transition

$${}^{2}P_{K}\left(m_{j}=+\frac{1}{2}\right) \rightarrow {}^{2}S_{K}\left(m_{j}=-\frac{1}{2}\right)$$

is observed along the direction of the applied magnetic field. The emitted electromagnetic field is:

- (a) Circularly polarized
- (b)Linearly polarized
- (c) Unpolarized
- (d) Not emitted along the magnetic field direction
- An atom with one outer electron having orbital angular momentum *l* is placed in a weak magnetic field. The funniber of energy levels into which the higher total angular momentum state splits, is **[GATE 2011]**

(a) $2\ell + 2$

- (b) $2\ell + 1$
- (c) 2*l*
- (d) $2\ell 1$
- In a normal Zeeman effect experiment, spectral splitting of the line at the wavelength 643.8 nm corresponding to the transition $5^1D_2 \rightarrow 5^1P_1$ of cadmium atom is to be observed. The spectrometer has a resolution of 0.01 nM. The minimum magnetic field needed to observe this is $(m_e = 9.1 \times 10^{-31} \text{ kg}, e = 1.6 \times 10^{-19} \text{ C}, c = 3 \times 10^8 \text{ m/s})$ [GATE 2013]
 - (a) 0.26 T
- (b) 0.52 T
- (c) 2.6 T
- (d) 5.2 T

- When a pure element is vaporised and placed in a uniform magnetic field B, it is seen that a particular spectral 20. line of wavelength I, corresponding to a $J = 1 \otimes J = 0$ transition, gets split into three components λ , $\lambda \pm \Delta \lambda$. It follows that the Lande g-factor for the transition $J = 1 \otimes = 0$ is given by [TIFR 2013]
 - (a) $g = \frac{hc}{\mu_B B_0} \frac{\Delta \lambda^2}{\lambda}$ (b) $g = \frac{hc}{\mu_B B_0} \frac{\lambda^2}{\Delta \lambda}$ (c) $g = \frac{hc}{\mu_B B_0} \frac{\lambda}{\Delta \lambda^2}$ (d) $g = \frac{hc}{\mu_B B_0} \frac{\Delta \lambda}{\lambda}$

- The D1 and D2 lines of Na $\left(3^2 P_{1/2} \rightarrow 3^2 S_{1/2}, 3^2 P_{3/2} \rightarrow 3^2 S_{1/2}\right)$ will split on the application of a weak magnetic 21. field into
 - (a) 4 and 6 lines respectively
- (b) 3 lines each
- (c) 6 and 4 lines respectively
- (d) 6 lines each
- 22. In Zeeman effect, a spectral-line, upon the application of magnetic field, splits into more than three componets because of
 - (a) Energy levels split into 2J + 1
 - (b) In magnetic field $\Delta m_1 = 0, \pm 1$ no longer holds
 - (c) Variation of Lande g-factor from one level to another
 - (d) None of the above
- 23. In the Zeeman effect the light emitted along and perpendicular to the applied magnetic field are respectively
 - (a) linearly and circularly polarized
- (b) circularly and linearly polarized

(c) both linearly polarized

- (d) both circularly polarized
- In a normal Zeeman effect experiment using a magnetic field of strength 0.3 T, the splitting between the compo-24.nents of a 660 nm spectral line is [NET June 2016]
 - (a) 12 pm
- (b) 10 pm
- (c) 8 pm
- (d) 6 pm
- 25. An atomic spectral line is observed to split into nine components due to Zeeman shift. If the upper state of the atom is 3D, then the lower state will be [NET June 2017]
 - (a) ${}^{3}F_{3}$
- (b) ³F,
- (c) ${}^{3}P_{1}$
- (d) ³P,
- Which one of the following is an allowed electric dipole transition?

[GATE 2018]

- (a) ${}^{1}S_{0} \rightarrow {}^{3}S_{1}$
- (b) ${}^2P_{3/2} \rightarrow {}^2D_{5/2}$ (c) ${}^2D_{5/2} \rightarrow {}^2P_{1/2}$ (d) ${}^3P_0 \rightarrow {}^5D_0$

Group-II

Given the following table,

[GATE 2018]

Group-I

- P. Stem-Gerlach experiment
- Zeeman effect _____
- R. Frank-Hertz experiment_
- S. Davisson-Germer experiment
- 1. Wave nature of particles
- 2. Quantization of energy of electrons in the atoms
- 3. Existence of electron spin
- Space quantization of angular momentum

Which one of the following correctly matches the experiments from Group-I to their inferences in Group-II?

(a) P-2, Q-3, R-4, S-1

(b) P-1, Q-3, R-2, S-4

(c) P-3, Q-4, R-2, S-1

- (d), P-2, Q-1, R-4, S-3
- 28. An atom in its single state is subjected to a magnetic field. The Zeeman splitting of its 650 nm spectral lines is 0.03 nm. The magnitude of the field is Tesla (up to two decimal places).

$$e = 1.60 \times 10^{-19} \text{ C}, m_e = 9.11 \times 10^{-31} \text{ kg}, c = 3.0 \times 10^8 \text{ ms}^{-1}$$

[GATE 2018]

29. The Zeeman shift of the energy of a state with quantum numbers L, S, J and m_J is

[NET Dec. 2017]

$$H_Z = \frac{m_J \mu_B B}{J(J+1)} \left(\langle L \cdot J \rangle + g_S \langle S \cdot J \rangle \right)$$

where B is the applied magnetic field, g_S is the g-factor for the spin and $\mu_B/h = 1.4$ MHz-G⁻¹, where h is the Planck constant. The approximate frequency shift of the S = 0, L = 1 and $m_J = 1$ state, at a magnetic field of 1 G, is

- (a) 10 MHz
- (b) 1.4 MHz
- (c) 5 MHz
- (d) 2.8 MHz
- 30. The ground state of sodium atom (11 Na) is a 2 S_{1/2} state. The difference in energy levels arising in the presence of a weak external magnetic field B, given in terms of Bohr magneton, μ_{B} , is
 - (a) $\mu_B B$
- (b) $2\mu_n B$
- (c) $4\mu_n B$
- (d) $6\mu_B B$
- 31. The value of the Lande g-factor for a fine structure level defined by the quantum numbers L=1 and J=2 and S=1, is [NET June 2018]
 - (a) 11/6
- (b) 4/3
- (c) 8/3
- (d) 3/2

		Α.	NSWER KEY			<u> </u>
1. (d)	2. (d)	3. (a)	4. (c)	5. (b)	6. (d)	7. (c)
8. (a)	9. (a)	10. (c)	11. (b)	12. (c)	13. (a)	14. (d)
15. (b)	16. (c)	17. (a)	18. (a)	19. (b)	20. (d)	21. (a)
22. (c)	23. (с)	24. (d)	25. (c)	26. (b)	27. (c)	28. (1.52)
29. (b)	30. (b)	31. (d)				

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-4: Atomic Spectra (X-ray Spectra, Alkalic Spectra, Hyperfine Structure & Broadening)

1.	The number of components in the hyperfine structure corresponding to the spectral line due to the transit								
	$^2D_{3/2} \rightarrow ^2P_{1/2}$ within a	a certain atom (having n	uclear spin $I = 9/2$), is						
	(a) 4	(b) 6	(c) 8	(d) 10					
	Common Data for Q.2 and Q.3								
		= -		levels. The distance between the two					
_	•			.471 cm ⁻¹ , 0.551 cm ⁻¹ respectively.					
2.	The nuclear spin quant (a) 1/2	um number of the atom i (b) 3/2	s (c) 7/2	(d) 9/2					
3.		constant of the molecul	` '	(u) 512					
	(a) 0.039 cm ⁻¹	(b) 0.078 cm ⁻¹	(c) 0.098 cm ⁻¹	(d) 0.112 cm ⁻¹					
4.	_	ine components observ	ed in the electronic tran	sition $^2p_{1/2} \rightarrow ^2S_{1/2}$ of an atom with					
	nuclear spin 1/2 is: (a) 3	(b) 4	(c) 6	(d) 5					
_		``	•	(d) 3					
5.		of the spectral lines of a een the spins of two or r							
		een the spins and the orl		fthe electron					
		een the electron spins ar	•						
	(d) The effect of extern	nal electromagnetic field	_						
		(-2-)							
6.	The hyperfine structur	$e ext{ of Na} \left(3^2 P_{\frac{3}{2}} \right)$ with n	suclear spin $I = 3/2$ has						
	(a) 1 state	(b) 2 states	(c) 3 states	(d) 4 states					
7.	In hyperfine interaction	n, there is coupling bet	ween the electron angu	lar momentum j and nuclear angular					
	 In hyperfine interaction, there is coupling between the electron angular momentum j and nuclear a momentum j, forming resultant angular momentum j. The selection rules for the corresponding qu 								
	momentum $\bar{1}$, forming		ientum F. The selection	rules for the corresponding quantum					
	momentum \bar{I} , forming number F in hyperfine	transitions are	-						
	momentum \bar{I} , forming number F in hyperfine (a) $\Delta F = \pm 2$ only	transitions are (b) $\Delta F = \pm 1$ only	(c) $\Delta F = 0, \pm 1$	(d) $\Delta F = \pm 1, \pm 2$					
8.	momentum \bar{I} , forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear s	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin	(c) $\Delta F = 0, \pm 1$ e spectrum of the D line	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of					
	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear state (a) 10 lines	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines	(c) ΔF = 0, ± 1 e spectrum of the D line (c) 6 lines	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines					
8.	momentum \bar{I} , forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a property of the state of the stat	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emiited from a m	 (c) ΔF = 0, ± 1 e spectrum of the D line (c) 6 lines noving source is appear 	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of					
	momentum \bar{I} , forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a property of the state of the stat	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a man. The speed and direction	 (c) ΔF = 0, ± 1 e spectrum of the D line (c) 6 lines noving source is appear 	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is					
	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a powerlength is 500 nm.	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a manner. The speed and directions on the observer	(c) ΔF = 0, ± 1 e spectrum of the D line (c) 6 lines noving source is appearant of the movement of the	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is					
9.	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a powerlength is 500 nm. (a) 30 km/sec, away fine (b) 30 km/sec, toward to the formula of	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a manner. The speed and direction of the observer is the observer	(c) $\Delta F = 0, \pm 1$ e spectrum of the D line (c) 6 lines noving source is appearant of the movement of the (b) 60 km/sec, away f (d) 60 km/sec, toward	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is from the observer					
	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a powerlength is 500 nm. (a) 30 km/sec, away fine (b) 30 km/sec, toward to the formula of	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a manner. The speed and direction of the observer is the observer	(c) $\Delta F = 0, \pm 1$ e spectrum of the D line (c) 6 lines noving source is appearant of the movement of the (b) 60 km/sec, away f (d) 60 km/sec, toward	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is					
9.	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a powerlength is 500 nm. (a) 30 km/sec, away find the dependence of Document (a) The minimum voltage	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a manner. The speed and direction com the observer is the observer oppler broadened line w (b) $T^{-1/2}$	(c) $\Delta F = 0, \pm 1$ e spectrum of the D line (c) 6 lines noving source is appear n of the movement of En (b) 60 km/sec, away f (d) 60 km/sec, toward idth of a laser transition (c) $T^{1/2}$	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is from the observer dis the observer on temperature T is given by					
9.	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a power wavelength is 500 nm. (a) 30 km/sec, away find (b) 30 km/sec, toward The dependence of Doc (a) T The minimum voltage is	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a manner. The speed and direction from the observer is the observer oppler broadened line w (b) $T^{-1/2}$ that must be applied to a	(c) $\Delta F = 0, \pm 1$ e spectrum of the D line (c) 6 lines noving source is appear n of the movement of the (b) 60 km/sec, away f (d) 60 km/sec, toward idth of a laser transition (c) $T^{1/2}$ a X-ray tube to produce	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is from the observer dis the observer on temperature T is given by (d) T^2 X-ray photons of wavelength 0.01 nm,					
9.	momentum $\bar{1}$, forming number F in hyperfine (a) $\Delta F = \pm 2$ only Cesium has a nuclear so (a) 10 lines The wavelength of a powerlength is 500 nm. (a) 30 km/sec, away find the dependence of Document (a) The minimum voltage	transitions are (b) $\Delta F = \pm 1$ only spin of 7/2. The hyperfin (b) 4 lines shoton emitted from a manner. The speed and direction com the observer is the observer oppler broadened line w (b) $T^{-1/2}$	(c) $\Delta F = 0, \pm 1$ e spectrum of the D line (c) 6 lines noving source is appear n of the movement of En (b) 60 km/sec, away f (d) 60 km/sec, toward idth of a laser transition (c) $T^{1/2}$	(d) $\Delta F = \pm 1, \pm 2$ s of the Cesium atom will consist of (d) 14 lines ed to be 500.1 nm, whereas the actual e source w.r.t the observer is from the observer dis the observer on temperature T is given by (d) T^2					

	(a) 19 (b) 25	(c) 31	· · · (d) 39	
13.	The Copper $(Z=29)$ target in an	n X-ray tube has some impuri	ty in it. In the X-ray spectrum emit	ted from the
	tube, there is an additional line impurity present in the target of		with the K_{α} line of wavelength 1	.54 A ⁰ . The
	(a) Na (b) K	(c) Cl	(d) Cd	
14.	The continuous X-ray spectrum (a) Photoelectric effect (c) Compton effect		hotoelectric effect ect	
15.	The energy E of $K_{\alpha}X$ -rays emits (a) Z^2 (b) $Z^{2/2}$		atomic number Z varies as (d) Z ^{1/2}	
16.	Which one of the following wo (a) Doppler effect (c) Absorption of e.m. radiation	(b) Heisenbe	g in spectral lines? rg's uncertainty	
17.	The linear Stark effect is possib	le in a hydrogen atom but not	in a sodium atom because	and all by dische forms
	 (a) The principal quantum number hydrogen atm in the ground (b) Spin-orbit interaction is stroic (c) The electronic energy levels (d) The electronic energy levels 	state nger in sodium than in hydrog of sodium exhibit orbital-deg	eneracy	ofthe
18.	The possible values of the total a_1 and $J_2 = 2$ are	angular momentum J resulting	g from the addition of two angular i	nomenta J _ı =
	(a) 1, 2 (b) 1, 3	(c) 0, 1, 2	(d) 1, 2, 3	
19.	The normal Zeeman effect is: (a) Observed only in atoms with (b) Observed only in atoms with (c) A confirmation of space qual (d) Not a confirmation of space	h an odd number of electron Intization		
20.	In a Stern-Gerlach experiment travel through (a) Homogeneous radio freque (b) Homogeneous static magnetic magn	ncy magnetic field etic field netic field	ular momentum state is to be dete	rmined, mus
21.	transition.		quantum numbers $n = 1, 2, 3,$ a $\Rightarrow n = 2$ (d) $n = 3 \rightarrow n = 2$	rises from the
22.	The principal series of spectral			
	(a) nS and 2P, n > 2(c) nP and 2S, n > 1	(b) nD and (d) nF and	•	

. Krule. . .

If the wavelength limit of the K-series for a certain element is about 0.1 nm, then the atomic number of the

12.

element will be

23.	(a) completely lifts the(b) Partially lifts the	ect, the application of a ne degeneracy of n = 2 level degeneracy of n = 2 level degeneracy of n = 2 level he n = 2 levels	evel on hydr cl on hydrog	ogen atom amo en atom amd sj	olits n = 2 level in	to three levels
24.	with the corresponding	rysical phenomena while ng parameter.			al parameters. M	latch the phenomena
	Goup I P. Doppler Broaden	nina.	Group I	nent of inertia		
	Q. Natural Broadeni	•		active index		•
	R. Rotational spectr	•		time of the ener	gy level	
	S. Total internal refle		4. Pres		5 , · · ·	
	(a) P-4, Q-3, R-1, S	3-2	(b) P-3,	Q-2, R-1, S-4	}	
	(c) P-2, Q-3, R-4, S	S-1	(d) P-1,	, Q-4, r-2, S-3		
25.	Cesium has a nuclear (a) 10 lines	spin of 7/2. The hyper (b) 4 lines	fine spectrur (c) 6 lin		of the Cesium at (d) 14 lines	om will consist of
26.	The ratio of intensit	ies of the D ₁ and D ₂ li	nes of sodiu	m at high tempe	erature	
	(a) 1:1	(b) 2:3	(c) 1:3		(d) 1:2	
27.		the interaction between	` '	's orbital angula	າະ momenhim and	the nuclearsnin, the
-7.		of the hydrogen atom stant amount	(b) split	s into two hype s into three hyp	rfine levels	a the nuclear span, the
28.		y levels in a hydrogen a made using a laser, the (b) 6.5 GHz	maximum a			the laser is
29.		sultant linewidth $\Delta \lambda$				s using some sort of [JEST 2016]
30.		nydrogen atom is due ture limit, the ratio of the (b) 3		f atoms in the s		
	• •	• •	` '		` '	
31.		gies of the electron in e kinetic energy of the A				NET June 2017]
	(a) 22 keV	(b) 9.3 keV			(d) 18.7 keV	
32.		effects and order of mag			L k ^à	here $\alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c}$ is
	fine structure consta	ant; m_e and m_p are element	ectron and p	roton mass, res	pectively.	•
	Group-I			oup-II		[GATE 2018]
	P. Lamb shift			$O(\alpha^2 m_e c^2)$		
	Q. Fine structure			$O(\alpha^4 m_e c^2)$		
	R. Bohr energy			$O(\alpha^4 m_e^2 c^2/m_p)$)	•
	S. Hyperfine struct	ure		$O(\alpha^5 m_e c^2)$	•	
	(a) P-3, Q-1, R-2,	•		2, Q-3, R-1, S		
	(c) P-4, Q-2, R-1,	S-3	(d) P-	2, Q-4, R-1, S	-3	

- 33. The intrinsic/permanent electric dipole moment in the ground state of hydrogen atom is (a_0 is the Bohr radius).
 - (a) $-3ea_0$
- (b) zero
- (c) ea₀
- (d) $3ea_0$

[GATE 2018]

- 34. The number of spectral lines allowed in the spectrum for the $3^2D \rightarrow 3^2P$ transitions in sodium are [GATE 2013]
- Which of the following transitions give rise to the K_{at} line of X-ray spectra? 35.
 - (a) $2^{2}S_{1/2} \rightarrow 1^{2}S_{1/2}$ (b) $2^{2}P_{1/2} \rightarrow 1^{2}S_{1/2}$ (c) $2^{2}P_{5/2} \rightarrow 1^{2}S_{1/2}$ (d) $2^{2}P_{3/2} \rightarrow 1^{2}S_{1/2}$

- A photon energy 115.62 keV ionizes a K-shell electron of a Be atom. One L-shell electron jumps to the K-36. shell to fill this vacancy and emits a photon of energy 109.2 keV in the process. If the ionization potential for the L-shell is 6.4 keV, the kinetic energy of the ionized electron is [NET June 2018]
 - (a) 6.42 keV
- (b) 12.82 keV
- (c) 20 eV
- (d) 32 eV

	<u></u>	Al	NSWER KEY			
1. (b)	2. (d)	3. (b)	4. (a)	5. (c)	6. (d)	7. (c)
8. (a)	9. (b)	10. (c)	11 . (d)	12. (c)	13. (d)	14. (b)
15. (a)	16. (c)	17. (d)	18. (d)	19. (c)	20. (c)	21. (a)
22. (c)	23. (c)	24. (a)	25. (a)	26. (d)	27. (b)	28. (c)
29. (1.91)	30. (b)	31. (d)	32. (c)	33. (b)	34. (3)	35. (d)
36. (c)						

CSIR-UGC-NET/JRF | GATE PHYSICS

		Assignment-5	: Rotational Spect	ra			
1.				.153×10 ¹¹ s ⁻¹ . (Given: The reduced mass			
				ne occurs at a frequency of 1.153×10 ¹¹ s ⁻¹			
	in ${}^{12}C^{16}O$ and at a frequency of $1.102 \times 10^{11} s^{-1}$ in ${}^{7}C^{16}O$. The mass number of the unknown isotope o carbon is						
	(a) 13	(b) 14	(c) 15	(d) 16			
		r Q.2, Q.3 and Q.4 ines in the microwave red s	spectrum of HCl is 20	0.68 cm ⁻¹ .			
	(Given: The reduce	ed mass of HCl molecule is	$1.62 \times 10^{-27} kg$				
2:	The $J = 14 \rightarrow J =$	15-transition occurs at					
	(a) $103.4 cm^{-1}$	(b) $206.8 cm^{-1}$	(c) $310.2 cm^{-1}$	(d) $413.6 cm^{-1}$			
3.	The moment of ine	rtia of the HCl molecule is					
4.	•	$-m^2$ (b) 2.7×10 ⁻⁴⁰ $kg - m^2$ stance of HCl molecule is	(c) $1.34 \times 10^{-47} kg$	$-m^2$ (d) $2.7 \times 10^{-47} kg - m^2$			
4.	(a) $0.48A^0$		(c) 1.30A ⁰ .	(d) 1.95A ⁰			
_	` '	()	()	(, ====================================			
5.	The wave numbers	s (in cm ⁻¹) of the lines of a b	and in the microwave $(i-1)$ for positive	•			
		•	, -				
	The moment of ine	= - 1000 (rtia of the emitter molecule	2n+1) for negative of the spectrum is	e n			
			-	$-m^2$ (d) $11.2 \times 10^{-49} kg - m^2$			
6.	_	ollowing molecule does not		_			
	(a) CCl ₄	(b) <i>HF</i>	(c) <i>HBr</i>	(d) O_2			
7.	The lines in the mic	rowave spretrum of 1 H127	I_I are separated by A	cm ⁻¹ . The lines in the microwave spectrum			
	of ${}^{2}H^{127}I$ will be	separated by		è			
	\cdot (a) $\frac{A}{4}$	(b) $\frac{A}{2}$	(c) $\frac{A}{\sqrt{2}}$	(d) A			
8.	The spacing between rotational lines in I	een the rotational lines of DF molecule is approximate	HF molecule is 40 c ly	m ¹ . The corresponding spacing between			
	(a) 20 cm ⁻¹	(b) 30 cm ⁻¹	(c) 60 cm ⁻¹	(d) 7.5 cm ⁻¹			
9.	J = 0 is 0.6, in sta tempararture will b	ate J = 1 is 0.3 and in state of Given: Rotational const	J = 2 is 0.1. The a tant of the rotator is E	•			
	(a) 6B	(b) 1.2 B	(c) 3.6 B	(d) 4.8 B			

10.	system is obtained fr	om the atomic masses o	of C and O. The rotation	ingth of 1.12 Å. The reduced mass hal energies are defined in terms of and ν_2 denotes the frequency of the	B(the
				espectively, their ratio v_1 / v_2 is ap	
	mately. (a) 1.5	(b) 1.1	(c) 0.9	(d) 1.01	
11.	In which of the follow	wing pairs do both mole	cules exhibit rotations	l spectra?	
	(a) CCl ₄ and HF	(b) CCl ₄ and O ₂	(c) HCN and HF	(d) HCN and CCl ₄	
12.	population in the sec	ond rotational state is		tive to the lowest state is 3e ² . The re	elative
13.	(a) 4e ⁻³ The relative populati	(b) 5e ⁻⁴ ion in two states with end		(d) 4e ⁻⁵ ng Boltzmann distribution is given l	Эу
		$\frac{n_1}{n_2} = \frac{3}{2} \exp \left[-\frac{3}{2} \exp \left[-$			
	The relative degenar (a) 2	racy g_2/g_1 is (b) 2/3	(c) 3/2	(d).3	
	• •		• ,	• •	
14.			•	level $\left(E_f\right)$ lying at energy 2 units	higher
	than a lower non-de	genarate energy level (E_i), will be (assuming	$k_B T = 1 \text{ unit }$	
	(a) $\frac{2}{e^2}$	(b) $\frac{1}{e^2}$	(c) e^2	(d) $2e^2$	
15.	The population of J	th rotational level is give	n by		
		$N_J = N_0 \left(2J + 1 \right) \epsilon$	$\exp\left[-\frac{BJ(J+1)}{k_BT}\right]$		
	where N_o is the population by,	ulation in the ground sta	te. The J value of the ro	stational level with maximum popul	ation is
	(a) $ \frac{\left[\frac{2kT}{B} - 1\right]}{\sqrt{2}} $	(b) $ \frac{\left[\sqrt{\frac{2kT}{B}} - 1\right]}{2} $	(c) $\frac{kT}{B}$	(d) $\frac{B}{kT}$	
16.		ines in the microwave sp m ¹ respectively. The rot (b) 5.2 cm ⁻¹	•	ule are found to be at 84.544 cm ¹ , 1 HBr molecule is (d) 8.5 cm ⁻¹	01.355
17.	The first absorption their moments of inc	n spectrum of 12 C16O is ertia is	at 3.842 cm ⁻¹ while th	at of 13 C 16 O is at 3.673cm $^{-1}$. The	ratio of 2012]
18.			le HD. If the mean di	(d) 1.038 stance between the two atoms is 0 gy difference ΔE between the two	
-	rotational states is (a) 10 ⁻¹ eV	approximately	(c) $2 \times 10^{-2} \text{eV}$	(NET June	
19.	Three values of rota	ational energies of molec	cules are given below i	different units	
	P: 10 cm ⁻¹	Q: 10 ⁻²³ J	R: 10⁴ MHz		
		arrangement in the incr		[GATE 200	3]
	(a) P, Q, R	(b) R, Q, P	(c) R, P, Q	(d) Q, R, P	

22 Consider the pure rotational spectrum of a diatomic rigid rotor, The separation between two consecutive lines 20. $(\Delta \overline{V})$ in the spectrum [GATE 2004] (a) Is directly proportional to the moment of inertial of the rotor (b) In inversely proportional to the moment of inertia of the rotor (c) Depends on the angular momentum (d) Is directly proportional to the square of the interatomic separation 21. In the microwave spectrum of identical rigid diatomic molecules, the separation between the spectral lines is recorded to be 0.7143 cm⁻¹. The moment of inertia of the molecule, in kg m², is [GATE 2006] (a) 2.3×10^{-36} (b) 2.3×10^{-40} (c) 7.8×10^{-42} (d) 7.8×10^{-46} 22. The allowed rotational energy levels of a rigid hetero-nuclear diatomic molecule are expressed as $\varepsilon_{J} = BJ(J+1)$, where B is the rotational constant and J is a rotational quantum number. In a system of such diatomic molecules of reduced mass μ , some of the atoms of one element are replaced by a heavier isotope, such that the reduced mass is changed to 1.05 \mu. In the rotational spectrum of the system, the shift in the spectral line, corresponding to a transition $J = 4 \rightarrow J = 5$, is [GATE 2007] (a) 0.475B (b) 0.50 B (c) 0.95 B (d) 1.0 B Three consecutive absorption lines at 64.275 cm⁻¹, 77.130 cm⁻¹ and 89.985 cm⁻¹ have been observed in a 23. microwave spectrum for a linear rigid diatomic molecule. The moments of inertia I, and I, are (I, is with respect to the bond axis passing through the centre of mass and I is with respect to an axis passing through the centre of mass and perpendicular to bond axis) [GATE 2008] (a) both equal to $\frac{\hbar^2}{12.855 \text{hc}} \text{gm cm}^2$ (b) zero and $\frac{\hbar^2}{12.855 \text{hc}} \text{gm cm}^2$ (c) both equal to $\frac{\hbar^2}{6.427 \text{hc}} \text{gm cm}^2$ (d) zero and $\frac{\hbar^2}{6.427 \text{hc}} \text{gm cm}^2$ The three principal moments of inertia of a methanol (CH₂OH) molecule have the property $I_x = I_y = I$ and I, ≠ I. The rotational energy eigenvalues are [GATE 2010] (a) $\frac{\hbar^2}{2I} \ell (\ell+1) + \frac{\hbar^2 m_1^2}{2} \left(\frac{1}{I} - \frac{1}{I} \right)$ (b) $\frac{\hbar^2}{2!}\ell(\ell+1)$ (d) $\frac{\hbar^2}{2I} \ell(\ell+1) + \frac{\hbar^2 m_1^2}{2} \left(\frac{1}{I_2} + \frac{1}{I} \right)$ (c) $\frac{\hbar^2 m_1^2}{2} \left(\frac{1}{1} - \frac{1}{1} \right)$ 25. CO, molecule has the first few energy levels uniformly separated by approximately 2.5 meV. At a temperature of 300 K, the ratio of the number of molecules in the 4th excited state to the number in the 2nd excited state is about. [GATE 2010] (a) 0.5 (b) 0.6(c) 0.8(d) 0.9 26. The moment of inertia of a rigid diatomic molecule A is 6 times that of another rigid diatomic molecule B. If the rotational energies of the molecules are equal, then the corresponding values of the roational quantum numbers J_A and J_R are **IGATE 2014** (a) $J_A = 2$, $J_B = 1$ (b) $J_A = 3$, $J_B = 1$ (c) $J_A = 5$, $J_B = 0$ (d) $J_A = 6$, $J_B = 1$ 27. In a rigid-rotator of mass M, if the energy of the first excited state is 1 meV, then the fourth excited state energy

(in meV) is

[GATE 2015]

28.	Typical energy of the	rotational modes in a no	olyatomic molecule like	NH is	
20.	(a) 10^{-6} eV	_	(c) 10 ⁻⁴ eV	(d) 1 eV	
29.			ot exhibit a rotational sp	• •	
	(a) H ₂	(b) CO	(c) HCl	(d) HBr	•
30.	Which one of the follo (a) Both the molecule (b) Both the molecule (c) O-C-O would she	ra of two linear molect owing statement is correct as would show absorpti as woulb not show absorption lines, but ow absorption lines, but	on lines orption lines at not O-C-S.	are recorded in the	e microwave region.
31.	The rotational ener	gy levels of a rigid d	iatomic molecules ar	re given by $E_j = B$	$B_{e}J(J+1)$ where J
	is the rotational qua the molecules there	antum number and B efore consists of	e is the constant. The	e rotational absorp	ption spectrum of
22					
32.	(a) solid	m lines in the microwa (b) liquid	ive rotational spectrum (c) liquid crystal	(d) gas	the sample is a
33.			35×10^{-28} kg and an equation the rotational quantum		ear distance $R = 0.742$
	(a) $E_{\text{rot}}(J) = 7J(J + I)$	– 1) meV	(b) $E_{\text{rot}}(J) = \frac{5}{2}J($,	[JEST 2016]
	(c) $E_{\text{rol}}(J) = 7J(J)$	+1) meV	(d) $E_{\text{rot}}(J) = \frac{5}{2}J$	(J-1) meV	
34.			nce different rotational s eads to the conclusion the		
			per (b) isobars, i.e. with ther (d) isomers, i.e. with		veight
35.	Which one of the foll (a) H ₂	owing molecules does to (b) CO	not exhibit a rotational s (c) HCl	spectrum? (d) HBr	
36.	F(J) is the energy of		ne far-infrared region fo h quantum number J an pectrum is :		
	(a) 2B	(b) 4B	(c) 6B	(d) 8B	
37.	You are shown a s	pectrum consisting o	of a series of equally	spaced lines. This	could be
	(a) The rotational (c) The NMR spec	spectrum CO. ctrum of CH ₄	(b) The vibration (d) The Mossbar	nal spectrum of N uer spectrum of Fe	
38.	(HBr) molecule is 2.	23 MeV. If this molecu	rption lines in a pure rot le is considered as a rig paration in deuterium t	id rotor and the ator	nic mass number of B
	(a) 2.234	(b) 1.115	(c) 1.128	(d) 4.461	•

h e

٠S

y.

(24)

- The strongest three lines in the emission of an interstellar gas cloud are found to have wavelengths λ_0 , $2\lambda_0$ and $6\lambda_0$ respectively, where λ_0 is a known wavelength. From this we can deduce that he radiating particles in the cloud behave like
 - (a) free particles

(b) Particles in a box

(c) Harmonic oscillators

(d) Rigid rotators

		A	NSWER KEY			
 1. (a)	2. (c)	3. (d)	4. (c)	5. (a)	6. (a,d)	7. (b)
8. (a)	9. (b)	10. (b)	11. (c)	12. (c)	13. (b)	14. (a)
15. (b)	16. (d)	17. (c)	18. (b)	19. (b)	20. (b)	21. (d)
22. (a)	23. (a)	24. (a)	25. (c)	26. (b)	27. (10)	28. (c)
29. (a)	30. (d)	31. (b)	32. (a)	33. (a)	34. (a)	35. (a)
36. (c)	37. (a)	38. (c)	39. (d)			

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-6: Vibrational Spectra

1	Which of the following	molecules has the lower	st vibrational frequency?							
	(a) ${}^4H^{35}Cl$	(b) ${}^{2}H^{35}Cl$	(c) ${}^4H^{36}Cl$	(d) ${}^4H^{37}Cl$						
2.	Linked Answer Type Q. 2 and Q. 3 The IR spectrum of a diatomic molecule exhibits transitions at 2144 cm ⁻¹ , 4262 cm ⁻¹ , 6354 cm ⁻¹ corresponding to the excitations from the ground state to the first, second, third vibration states respectively. The fundamental transition (in cm ⁻¹) of the diatomic molecule is at									
2.	(a) 2157	(b) 2170	(c) 2183	(d) 2196						
3.	The anharmonicity cor (a) 0.018	stant (in cm ⁻¹) of the dia (b) 0.012	tomic molecule is (c) 0.006	(d) 0.003						
4.	The vibrational energ	y levels $v'' = 0$ and $v' =$	=1 of a diatomic molec	rule are separated by 2143 cm ⁻¹ . It's						
	anharmonicity $(\omega_e x_e)$	is 14 cm ⁻¹ . The values	of ω_e (in cm ⁻¹) and first	vertone (in cm ⁻¹) of this molecule are						
5.	respectively (a) 2143, 4286 The Infrared spectrum	(b) 2157, 4286	(c) 2157, 4314 bsorption band centered							
6.	Overtones are observe (a) Anharmonicity is la (b) Anharmonicity is a	ed in the vibrational spec rge bsent ational modes are coupl	(c) 5.7730×10 ⁻²⁰ J etra of diatomic molecule							
	Common Data for Q	2. 7 and Q. 8								
	The fundamental ban	d and the first overtone	e for CO molecule is cer	ntered at 2143.3 cm ⁻¹ and 4259.7 cm ⁻¹						
			f CO molecule is 1.14×	$(10^{-26} kg)$						
7.	-	ency of CO molecule is	(1) 1100 =	(A) 0 486 -I						
•		(b) 2467 cm ⁻¹		(d) $3456 cm^{-1}$						
8.	_	nstant of CO molecule v								
9.	(a) 6.8 cm ⁻¹ The ratio between the	(b) 10.2 cm ⁻¹ fundamental vibrationa	(c) 13.5 cm ⁻¹ Il frequencies of HI and D	(d) 19.5 <i>cm</i> ⁻¹ DI is						
_	(a) $\frac{1}{2}$	(b) 2	(c) $\frac{1}{\sqrt{2}}$	(d) $\sqrt{2}$						
10.	Replacement of hydro		bound to a heavy atom X	in a polyatomic molecule would reduce						
	(a) ?	(b) /5	(c) 4	(d) 1.3						

ιg

26 The R branch in the vibrational spectra of AX molecule exhibits a set equally spaced lines with a separation of H. 10 cm⁻¹. The rotational constant of AX molecule is (a) 10 cm⁻¹ (b) 20 cm⁻¹ (d) 15 cm⁻¹ (c) 5 cm⁻¹ The vibartional-rotational energy of a diatomic molecule may be written as (where v is the frequency of 12. vibration and I is the moment of inertia of the molecule) (a) $\left(n + \frac{1}{2}\right)hv + \frac{h^2}{2I}J(J+1)$ $\left[n = 1, 2, 3, \dots \text{ and } J = 0, 1, 2, 3, \dots\right]$ (b) $\left(n + \frac{1}{2}\right)h\nu + \frac{h^2}{2I}J(J+1)$ $\left[n = 0, 1, 2, 3, \dots \text{ and } J = 0, 1, 2, 3, \dots\right]$ (c) $\left(n + \frac{1}{2}\right)hv + \frac{h^2}{2I}M^2$ $\left[n = 1, 2, 3, \dots \text{ and } M = 0, \pm 1, \pm 2, \pm 3, \dots\right]$ (d) $\left(n + \frac{1}{2}\right)hv + \frac{h^2}{2I}M^2$ $\left[n = 0, 1, 2, 3.... \text{ and } M = 0, 1, 2, 3....\right]$ The selection rules for the appearances of P branch in the rotational vibrational absorption spectra of a di-13. atomic molecule with rigid rotator-harmonic oscillator model are (a) $\Delta v = \pm 1, \Delta J = \pm 1$ (b) $\Delta v = +1, \Delta J = +1$ (c) $\Delta v = +1, \Delta J = -1$ (d) $\Delta v = -1, \Delta J = -1$ The roatational constant for CO molecule in the ground state and the first excited states are 1.9 cm⁻¹ and 1.6 14. cm⁻¹ respectively. The percentage change in the internuclear distance due to vibrational excitation is (c) 16 In the IR spectrum of $\left[C_0(CN), H\right]^{3-}$, the $C_0 - H$ streeth is observed at 1840 cm⁻¹. The $C_0 - D$ streeth in 15__ $\left[Co(CN)_5 D \right]^{3-}$ will appear at nearly (a) 1300 cm⁻¹ (b) 1400 cm⁻¹ (c) 1500 cm⁻¹ (d) 1600 cm⁻¹ The fundamental mode of HCl occurs at 2886 cm⁻¹. The fundamental mode of DCl will occur 16. (a) $1367 \, cm^{-1}$ (b) $2069 cm^{-1}$ (c) $2778 cm^{-1}$ (d) $3024 cm^{-1}$ The moment of inertia of the HCl^{35} molecule in the v = 0 and v = 1 levels is $20.8 \times 10^{-7} kg - m^2$. 17. The wave number difference between the R(0) and P(1) lines of the fundamental band for HCl^{35} molecule is (a) $4164 \, m^{-1}$ (b) 1041 m⁻¹ (c) 2082 m⁻¹ (d) $5205 \, m^{-1}$ For a diatomic molecule with the vibrational quantum number n and rotational quantum number J, the vibrational 18. level spacing $\Delta E_n = E_n - E_{n-1}$ and the rotational level spacing $\Delta E_J = E_J - E_{J-1}$ are approximately [GATE 2005] (b) $\Delta E_n = \cos \tan t$, $\Delta E_J \propto J$ (a) $\Delta E_n = \text{constant}, \Delta E_1 = \text{constant}$ (d) $\Delta E_n \propto n, \Delta E_1 \propto J^2$ (c) $\Delta E_n \propto n, \Delta E_1 \propto J$ Which one of the following statement is INCORRECT in vibrational spectroscopy with anharmonicity? (a) The selection rule for vibrational spectroscopy is $\Delta v = \pm 1, \pm 2,...$ [GATE 2008] (b) Anharmonicity leads to multiple absorption lines (c) The intensities of hot band lines are stronger than the fundamental absorption. (d) The frequencies of hot band lines are smaller than the fundamental absorption. The equilibrium vibration frequency for an oscillator observed at 2990cm⁻¹. The ratio of the frequencies 20. corresponding to the first and the fundamental spectral lines is 1.96. Considering the oscillator to be anharmonic, the anharmonicity constant is [GATE 2012]

(a) 0.005

(b) 0.02

(c) 0.05

(d) 0.1

21.	If the leading anharm	onic correction to the	energy of t	he n-th vibratio	nal level of	diatomic molecule is
	$-x_c \left(n + \frac{1}{2}\right)^2 \hbar \omega$ with	$x_e = 0.001$, the total	number of c	nergy levels poss	sible is appro	ximately
	(a) 500	(b) 1000	(c) 250	(d) 750	[NET Dec. 2014]
22.	There is no infrared a	bsorption for nitroger	molecule b	oecause:		
	(a) Its polarizability is(c) It has no rotational	• •		vibrational level ipole moment is		• ;
23.	Infrared absorption ca (a) N ₂	an be observed in which (b) O ₂	of the follo (c) HC		? (d) C ₂	
24.	All vibrations product (a) Raman spectra (c) Ultra-violet spect	ing a change in the elec ra	(b) Infr	noment of a mole ared spectra ay spectra	cule yield	
25.		•	molecules in	purely vibration	al and purely	rotational transitions are
	respectively in the reg (a) Infrared and visib (c) Infrared and micr	le	` '	ble and infrared rowave and infra	ared	
26/	Which of the diatomi	c molecules H ₂ , HD,	D ₂ and HT	has the highest	vibrational fi	requency?
	(a) HT	(b) D ₂	(c) HD		(d) H ₂	
27.	reduced mass of CO		anck's cons is		0 ⁻³⁴ Js and	10^{-2} eV. Given that the $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$. The 370 N/m
28.	A diatomic molecule	has vibrational states v	vith energies	$SE{v} = \hbar\omega \left(v + \frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$ and rotati	onal states with energies
	and final states are r		$j \le 2$ and s	subject to the se		in which both the initial $\Delta v = \pm 1$ and $\Delta j = \pm 1$. [NET June 2015]
29.	• •	can be observed in w	` '		` '	
	(a) N ₂	(b) O ₂	(c) H((d) C ₂	
30.	(a) Raman spectra	cing a change in the ele	(b) In	rared spectra	lecule yield	
31	respectively in the re	gths emitted by diatomic gion of	c molecules			y rotational transitions are
32.	(a) Presence of anha	crowave g in the vibrational ener armonic terms in the po	(d) M gy levels of		rared	e due to the
	(b) Finite mass of th (c) Frank-Condon p					
		of the potential energ	y.			

The expression for the second overtone frequency in the vibrational absorption spectra of a diatomic molecules in terms of the harmonic frequency ω_e and anharmonicity constant x_e is [GATE 2018]

- (a) $2\omega_e(1-x_e)$
- (b) $2\omega_e(1-3x_e)$
- (c) $3\omega_e(1-2x_e)$
- (d) $3\omega_e(1-4x_e)$

		A	NSWER KEY -	3. 2 3. e		
1. (d)	2. (b)	3. (c)	4. (d)	5. (b)	6. (a)	7. (a)
8. (c)	9. (d)	10. (d)	11. (b,c)	12. (b)	13. (c)	14. (a)
15. (a)	16. (b)	17. (d)	18. (b)	1 9. (c)	20. (b)	21. (b)
22. (d)	23. (c)	24. (b)	25. (c)	26. (d)	27. (c)	28. (c)
29. (c)	30. (b)	31. (c)	32. (c)	33. (d)		

} h,

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-7: Electronic and Raman Spectra

بلم	In an experiment, the The wavelength of the	exciting line of of a sample anti-stokes line is	le is observed at 5460 A ^o	and stokes line is	observed at 5520 A ^o
2.	(a) 5420 A ^o	(b) 5401 A ⁰ nan spectrum of <i>HCl</i> mole	` '	(d) 5580 A ^o from the exciting li	ine are
		$\Delta v = \pm (120 +$	$+80J)cm^{-1}$		
	The moment of inertia	a of the molecule is	,		
	(a) $1.4 \times 10^{-47} \ kg - n$	n^2	(b) $2.8 \times 10^{-47} \ kg - r$	n^2	
	(c) $4.2 \times 10^{-47} \ kg - r$	n^2	(d) $5.6 \times 10^{-47} \ kg - r$	n^2	
	Common Data for C The rotational Rama	Q.3 and Q.4 n displacement for HCl m	nolecule is 41.6 cm ⁻¹ .		
	(Given: The reduced	mass of HCl molecule is	$1.62 \times 10^{-27} kg$)		
3.	The moment of inerti	a of HCl molecule is			
4.		m^2 (b) $2.7 \times 10^{-40} kg - m^2$ ance between the atoms of		i^2 (d) $2.7 \times 10^{-47} k$	$kg - m^2$
√5 .	(a) 0.48 A ⁰ The selection rule for	(b) 0.84A ⁰ the allowed rotational R		(d) 1.95A ⁰	
6.	12 cm ⁻¹ . The stokes s	otational Raman spectra of shift for the second line is	3	ppears with a stok	,±2 ces shift of
-	(a) 36 cm ⁻¹		(c) 18 cm ⁻¹	(d) 20 cm ⁻¹	
7.	_			observed at 02 cm ⁻¹	e stokes and
	Common Data for	Q. 8 and Q. 9			
8.	The rotational const	ant of $^{14}N_2$ is 2cm^{-1} . The	e wave number of the in	cident radiation in	a Raman
	spectrometer is 204	87 cm ⁻¹ . The wave numb	er of the first scattered	Stokes line (in cm	1) of $^{14}N_{2}$ is
	(a) 20479	(b) 20475	(c) 20499	(d) 20495	-
9.	The rotational Stoke (a) 20467	es line is expected at (in c (b) 20469	m¹) (c) 20471	(d) 20475	
10.	A laser operating at	500 nm is used to excite	a molecule. If the Rama	an shift is observed	d at 770 cm ⁻¹ , the
	approximate position	ns of the ani-Stokes and	the Stokes lines are		[NET Dec. 2011]
	(a) 481.5 nm and 52 (c) 500 nm and 520	20 nm	(b) 481.5 nm and 50 (d) 500 nm and 600		

- Light of wavelength 1.5 μm incident on a material with a characteristic Raman frquency of 20×10¹² Hz 11. results in a stokes-shifted line of wavelength $\lceil \text{Given} : c = 3 \times 10^8 \text{ m.s}^{-1} \rceil$ [GATE 2002]
 - (a) 1.47 µm
- (b) 1.57 μm
- (c) 1.67 µm
- (d) 1.77 μm
- In the Raman scattering experiment, light of frequency v from a laser is scatteered by diatomic molecules having moment of inertia I. The typical Raman shifted frequency depends on [GATE 2005]
 - (a) ν and I
- (b) only ν
- (c) only I
- (d) neither v nor I
- A vibrational-electronic spectrum of homonuclear binary molecules, involving electronic ground state ε " and excited ε ', exhibits a continuum at \overline{v} cm⁻¹. If the total energy of the dissociated atoms in the excited state exceeds the total energy of the dissociated atoms in the ground state by Eexcm-1, then dissociation [GATE 2006] energy of the molecule in the ground state is:
 - (a) $(\overline{\upsilon} + E_{cx})/2$

- (b) $(\overline{\upsilon} E_{ex})/2$ (c) $(\overline{\upsilon} E_{ex})$ (d) $\sqrt{(\overline{\upsilon}^2 E_{ex}^2)}$
- 14. A pure rotational Raman spectrum of a linear diatomic molecule is recorded using electromagnetic radiation of frequency v_e . The frequency of two consecutive stokes lines are: [GATE 2008]
 - (a) $v_e 10B$, $v_e 14B$

(b) $v_e - 2B$, $v_e - 4B$

(c) $v_e + 10B, v_e + 14B$

- (d) $v_e + 2B$, $v_e + 4B$
- The separation between the first stokes and corresponding anti-stokes lines of the rotational Raman spectrum in terms of the rotational constant, B is: [GATE 2009]
 - (a) 2B

16.

- (b) 4B
- (c) 6B
- (d) 12B
- In a diatomic molecule, the internuclear separation of the ground and first excited electronic state are the same as shown in the figure. If the molecule is initially in the lowest vibrational state of the ground state, then the absorption spectrum will appear as

- [GATE 2009]
- The far infrared rotational absorption spectrum of diatomic molecule shows equidistant blines with spacing 20 cm⁻¹. The position of the first stokes line in the rotational Raman spectrum of the molecule is [GATE 2011]
- (a) 20 cm⁻¹
- (b) 40 cm⁻¹
- (c) 60 cm⁻¹
- (d) 120 cm⁻¹

Matte Cata No. 2) Dalhi-AQ Ph. 811-27653355 27654455

					(31)
18.		ne of a rotational Rame rotational constant is g	an spectrum is observed	at 12.96 cm ⁻¹ . Con	sidering rigid rotator [GATE 2012]
	(a) 6.48 cm ⁻¹	(b) 3.24 cm ⁻¹	(c) 2.16 cm ⁻¹	(d) 1.62 cm ⁻¹	
بول		_	aman effect experiment i i-Stokes line (in <i>cm</i> -1) is_	s 546 nm. If the Sto	kes line is observed at
<i>39.</i>	(a) Energy separa (b) Wavelength of	ition between vibrationa fthe incident light ition between vibrationa	ecutive stokes lines in Ra Al levels in the excited stat Al levels in the ground stat	e	[GATE 2015] ends on
21.			of HCI are 2937.5 cm ⁻¹	and 51.6 cm ⁻¹ . The f	first Raman stokes line
	will be observed a (a) 2989.1	it (in cm ⁻¹) (b) 2885.9	(c) 2834.3	(d) 3040.7	
22.	potential curve fo (a) at the same va (b) at a smaller va (c) at a larger val		lower potential curve	•	en the minimum of the
23.	(a) The electronic(b) The motion o(c) Collective spir	c structure of single defe f the spin or of the surro	ounding	about	
24.	weaker line at a strongly polarize (a) The molecula (b) The molecula (c) u ₁ arises from	frequency u ₂ . The frequency u ₃ ar			1
25/	P. CH ₄ does not Q: SF ₆ could be R: N ₂ shows inf S: CH ₃ CH ₃ sho T: H ₂ O ₂ shows	owing statements about t give pure rotational Rastudied by rotational Rarared absorption spectrus vibrational Raman apure rotational spectrus combination of correct (b) P, R and T	aman lines .aman spectroscopy um and infrared absorptin line m	es (d) Q and R	
26.	(a) The rotation	a spectrum consistir nal spectrum CO. spectrum of CH ₄		y spaced lines. Th onal spectrum of l auer spectrum of	N ₂ .

			32
27.	Match the following and choose the correct co	ombination	[GATE 2005]
	Group-l	Group-2	·
	P. Atomic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1. Na	
	Q. Strongly electropositive	2. Si	
	R. Strongly electronegative	3. Ar	
	S. Covalent bonding	4. Cl	
	(a) P-1, Q-2, R-3, S-4	(b) P-3, Q-2, R-4, S-1	
	(c) P-3, Q-1, R-4, S-2	(d) P-3, Q-4, R-1, S-2	-
28	Match the following:		[GATE 2007]
	P: Franck-Hertz experiment	_ 1. Electronic excitation of molecule	•
	Q: Hartree-Fock method 2	Wave function of atom	
	R: Stem-Gerlach experiment	3. Spin angular momentum of atom	S
	S: Franck-Condon principle	4. Energy levels in atoms	
	(a) (b) (c)	(d)	
	P-4 P-1 P-3	P-4	
	Q-2 Q-4 Q-2	Q-1	
	R-3 R-3 R-4	R-3	
	S-1 S-2 S-1	S-2	
29	The number of fundamental vibrational mode	es of CO ₂ molecule is :	•
	(a) Four: 2 are Raman active and 2 are infra	<u>~</u>	
	(b) Four: 1 is Raman active and 3 are infrare		
	(c) Three: 1 is Raman active and 2 are infrar		
	(d) Three: 2 are Raman active and 1 is infrar	red active	
30_	Match the typical spectra of stable mole	cules with the corresponding wave	-number mage
	1. Electronic spectra	i. 106 cm ⁻¹ and above	[GATE 2010]
	2. Rotational spectra	—ii. 10 ⁵ –10 ⁶ cm ⁻¹	
	3. Molecular dissociation	iii. 10°-10² cm ⁻¹	
	(a) 1-ii, 2-i, 3-iii	(b) 1-ii, 2-iii, 3-i	
	(c) 1–iii, 2–ii, 3–i	(d) 1–i, 2–ii, 3–iii.	
31,	If a molecule has a centre of symmetry then		
	(a) Raman active vibrations are infrared active		
	(b) Raman active vibrations are infrared inac		·
	(c) some, but not all, of the Raman active vi(d) all vibrations are Raman and infrared ina		
	• •		
32.	Match the typical spectroscopic regions spectroup II.	ecified in Group I With the correspond	ing type of transitions in [GATE 2012]
	•	Constant	
	Group I (P) Infra-red region —	Group II (i) electronic transitions involving values.	alence electrons
	(Q) Ultraviolet- visible region	(ii) nuclear transitions	WINNES OF OTHER PROPERTY.
	(R) X-ray region	(iii) vibrational transitions of molec	ules
	(S) γ-ray region	(iv) transitions involving inner shell	electrons
	(a) $(P,i);(Q,iii);(R,ii);(S,iv)$ (b)	(P,ii);(Q,iv);(R,i);(S,iii)	
		(P,iv);(Q,i);(R,ii);(S,iii)	•
33.	Raman effect is suppressed in	(, ,) (\- /) (/) (/)	
	(a) semiconductors (b) dielectric	s (c) metals (d) i	nsulators

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009

North Delhi: 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

33

				(3)
34	Match the phrases in Group I and Group Group I	II and identify the corre	ect option. Group	
	(P) Electron spin resonance (ESR)		(i) radio freq	uency
	(Q) Nuclear magnetic resonance (NMR)		— (ii) visible ran	ge frequency
	(R) Transition between vibrational states of	of a molecule	(iii) microwave	
	(S) Electronic transition	\sim	(iv) far-infrare	
	(a) (P-i), (Q-ii), (R-iii), (S-iv)	(b) (P-ii), (Q-i), (R-	` '	Ü
	(c) (P-iii), (Q-iv), (R-i), (S-ii)	(d) (P-iii), (Q-i), (R-		
3 5.	The molecule ¹⁷ O ₂ is		,,,	[GATE 2016]
	(a) Raman active but not NMR (nuclear	magnetic resonance) ac	tive	[
	(b) Infrared active and Raman active bu	•		
	•	n not with active		
	(c) Raman active and NMR active			
	(d) Only NMR active			
36.	Which one of the following gases of diat	tomic molecules is Rama	n infrared and N	MR active?
130.				
	(a) ${}^{1}H - {}^{1}H$ (b) ${}^{12}C - {}^{16}O$	(c) ¹ H - ³⁵ Cl	(d) ${}^{16}O - {}^{16}O$	[GATE 2017]

		ANS	WER KEY			
1. (b)	2. (a)	3. (a)	4. (c)	5. (a)	6. (d)	7. (d)
8. (b)	9. (a)	10. (b,c)	11. (c)	12. (c)	13. (c)	14. (a)
15. (d)	16. (a)	17. (c)	18. (c)	19. (18513	to 18519)	20. (c)
21. (c)	22. (a)	23. (a,b,c,d)	24. (a)	25. (c)	26. (a)	27. (c)
28. (a)	29. (b)	30. (b)	31. (b)	32. (c)	33. (c)	34. (d)
35. (c)	36. (c)					·

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009 North Delhi: 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-27653355, 27654455

CSIR-UGC-NET/JRF | GATE PHYSICS

Assignment-8: Laser

1.

Consider the energy level diagram (as shown in the figure below) of a typical three level ruby laser system with 1.6×10^{19} Chromium ions per cubic centimeter. All the atoms excited by the 0.4 μ m radiation decay rapidly to level E₂ which has a lifetime $\tau = 3$ ms [CSIR June 2011]

A. Assuming that there is no radiation of wavelength 0.7 µm present in the pumping cycle and that the pumping rate is R atoms per cm³, the population density in the level N, builds up as:

(a)
$$N_2(t) = R\tau(e^{t/\tau} - 1)$$

(b)
$$N_2(t) = R\tau (1 - e^{-t/\tau})$$

(c)
$$N_2(t) = \frac{Rt^2}{\tau} (1 - e^{-t/\tau})$$

(d)
$$N_2(t) = Rt$$

B. The minimum pump power required (per cubic centimeter) to bring the system to transparency, i.e. zero gain, is

Consider a hydrogen atom undergoing a $2P \rightarrow 1S$ transition. The lifetime t_{sp} of the 2P state for spontaneous emission is 1.6 ns and the energy difference between the levels is 10.2 eV. Assuming that the refractive index of the medium $n_0 = 1$, the ratio of the Einstein coefficients for stimulated emission $B_{21}(\omega)/A_{21}(\omega)$ is given by [CSIR Dec. 2012]

(a)
$$0.683 \times 10^{12} \text{ m}^3 \text{J}^{-1} \text{s}^{-1}$$

(b)
$$0.146 \times 10^{-12} \text{ J s m}^{-3}$$

(c)
$$6.83 \times 10^{12} \text{ m}^3 \text{ J}^{-1} \text{ s}^{-1}$$

(d)
$$1.463 \times 10^{-12}$$
 J s m⁻³

Consider the energy level diagram shown below, which corresponds to the molecular nitrogen laser.

[CSIR Dec. 2012]

If the pump rate R is 10^{20} atoms cm⁻³ s⁻¹ and the decay routes are as shown with $\tau_{21} = 20$ ns and $\tau_{1} = 1 \,\mu s$, the equilibrium populations of states 2 and 1 are, respectively,

- (a) 10^{14} cm⁻³ and 2×10^{12} cm⁻³
- (b) 2×10¹² cm⁻³ and 10¹⁴ cm⁻³
- (c) 2×10^{12} cm⁻³ and 2×10^{6} cm⁻³
- (d) zero and 10²⁰ cm⁻³

- Consider a He-Ne laser cavity consisting of two mirrors of reflectivities $R_1 = 1$ and $R_2 = 0.98$. The mirrors are separated by a distance d = 20 cm and the medium in between has a refractive index $n_n = 1$ and absorption coefficient $\alpha = 0$. The values of the separation between the modes δ_V and the width Δv_p of each mode of the laser cavity are: [NET Dec. 2012]]
 - (a) $\delta v = 75 \text{ kHz}$, $\Delta v_p = 24 \text{ kHz}$
- (b) $\delta v = 100 \text{ kHz}$, $\Delta v_p = 100 \text{ kHz}$
- (c) $\delta v = 750 \text{ MHz}$, $\Delta v_p = 2.4 \text{ MHz}$ (d) $\delta v = 2.4 \text{ MHz}$, $\Delta v_p = 750 \text{ MHz}$
- Consider the laser resonator cavity shown in the figure. If I₁ is the intensity of the radiation at mirror M₁ and α is the gain coefficient of the medium between the mirrors, then the energy density of photons in the plane P at a distance x from M₁ is

[NET June 2013]

- (a) $(I_1/c)e^{-\alpha x}$
- (b) $(I_1/c)e^{\alpha x}$
- $(c)(I_1/c)(e^{\alpha x} + e^{-\alpha x})$ (d) $(I_1/c)e^{2\alpha x}$
- The electronic energy levels in a hydrogen atom are given by $E_n = -13.6/n^2$ eV. If a selective excitation to the n = 100 level is to be made using a laser, the maximum allowed frequency line-width of the laser [NET June 2013]
 - (a) 6.5 MHz
- (b) 6.5 GHz
- (c) 6.5 Hz
- (d) 6.5 kHz
- Two monochromatic sources, L_1 , and L_2 , emit light at 600 and 700 nm, respectively. If their frequency bandwidths are 10^{-1} and 10^{-3} GHz, respectively, then the ratio of linewidth of L_1 and L_2 is approximately [NET Dec. 2013]
 - (a) 100:1
- (b) 1:85
- (c) 75:1
- (d) 1:75
- A gas laser cavity has been designed to operate at $\lambda = 0.5 \mu m$ with a cavity length of 1m. With this setup, the frequency is found to be larger than the desired frequency by 100 Hz. The change in the effective length of the cavity required to retune the laser is

[NET Dec. 2013]

(a) -0.334×10^{-12} m

(c) 0.167×10^{-12} m

- (b) 0.334×10^{-12} m (d) -0.167×10^{-12} m
- A three level system of atoms has N, atoms in level E, N, in level E, and N, in level $E_3(N_2 > N_1 > N_3)$ and $E_1 < E_2 < E_3$). Laser emission is possible between the levels

[GATE 2005]

- (a) $E_3 \rightarrow E_1$

- (b) $E_2 \rightarrow E_1$ (c) $E_3 \rightarrow E_2$ (d) $E_2 \rightarrow E_3$
- Which one of the following electronic transitions in Neon is NOT responsible for LASER action in a heliumneon labbr ? 🦸 [GATE 2006]
 - (a) $6s \rightarrow 5p$
- (b) $5s \rightarrow 4p$
- (c) $5s \rightarrow 3p$
- (d) $4s \rightarrow 3p$

In a He-Ne laser, the laser transition takes place in

[GATE 2007]

(a) He only

(b) Ne only

(c) Ne first, then in He.

(d) He first, then in Ne

The coherence length of laser light is:

[GATE 2008]

- (a) Directly proportional to the length of the active medium
- (b) Directly proportional to the width of the spectral line
- (c) Inversely proportional to the width of the spectral line
- (d) Inversely proportional to the length of the active lasing medium
- 13. When the refractive index μ of the active medium changes by $\Delta\mu$ in a laser resonator of length L, the change in the spectral spacing between the longitudinal modes of the laser is (c is the speed of light in free space)

[GATE 2008]

[GATE 2010]

(a)
$$\frac{c}{2(\mu + \Delta\mu)L}$$

(b)
$$\frac{c}{2\Delta\mu L}$$

(a)
$$\frac{c}{2(\mu + \Delta\mu)L}$$
 (b) $\frac{c}{2\Delta\mu L}$ (c) $\frac{c}{2L}\frac{\Delta\mu}{\mu(\mu + \Delta\mu)}$ (d) zero

A collection of N atoms is exposed to a strong resonant electromagnetic radiation with N atoms in the ground state and N_e atoms in the excited state, such that N_e + N_e = N. This collection of two-level atoms will have the following population distribution.

(a)
$$N_g \ll N_c$$

(b)
$$N_u >> N_c$$

(b)
$$N_g >> N_c$$
 (c) $N_g \approx N_c \approx \frac{1}{2}$ (d) $N_g - N_c \approx \frac{1}{2}$

(d)
$$N_g - N_e \approx \frac{N}{2}$$

The population inversion in a two level laser material CANNOT be achieved by optical pumping because [GATE 2011]

- (a) The rate of upward transitions is equal to the rate of downward transitions.
- (b) The upward transitions are forbidden but downward transitions are allowed.
- (c) The upward transitions are allowed but downward transitions are forbidden.
- (d) The spontaneous decay rate of the higher level is very low.

Five energy levels of a system including the ground state are shown below. Their lifetimes and the allowed electric dipole transitions are also marked.

Which one of the following transitions is the most suitable for a continuous wave (CW) laser?

(a)
$$1 \rightarrow 0$$

(b)
$$2 \rightarrow 0$$

(c)
$$4 \rightarrow 2$$

(d)
$$4 \rightarrow 3$$

For an atom with two energy levels placed in a cavity containing blackbody radiation, the ratio of the probabilities for spontaneous emission and stimulated emission is given by $\frac{A}{B} = \frac{8\pi v^3}{c^3}$, where A and B are the corresponding Einstein coefficients and ν is the frequency of the photon emitted. The probability of spontaneous emission.

- (a) Is independent of the energy difference between the two levels.
- (b) Increases with the energy difference between the two levels.
- (c) Decreases with the energy difference between the two levels.
- (d) Is zero.

The mirrors of a laser cavity are separated by a distance L. If T is the time taken by the light to travel from 18. one mirror to the other and back, the mode separation is:

(a)
$$\frac{1}{T}$$

(b)
$$\frac{2}{T}$$

(c)
$$\frac{1}{2T}$$

(c)
$$\frac{1}{2T}$$
 (d) $\frac{1}{\sqrt{2}T}$

The central wavelength of a 0.6 µm wavelength laser corresponds to the mth cavity mode of a resonator cavity of length 6 cm. The mode number m is

(a) 1000

(b) 2×10^4

(c) 2×10^5

(d) 200

20. The typical energy level diagram for Erbium ions in a glass is shown below.

For an Erbium ion concentration of ρ ions/cm³, the pump power needed for population inversion is

(a) $80 \rho eV / cm^3 s$

(b) $40 \rho \, eV / cm^3 s$

(c) $130 \rho \, eV / cm^3 s$

(d) $65 \rho \text{ eV} / \text{cm}^3 \text{s}$

A He-Ne laser on transition from 3s to 2p level gives a laser emission of wavelength 632.8 nm. If the 2p level has energy 9.5 eV. The minimum pumping energy required is (assume there is no loss)

(a) 6.7 eV

(b) 8.9 eV

(c) 11.5 eV

(d) 13.9 eV

A lamp emits a radiation of wavelength 500 nm at a temparature of 1000K. The ratio of the Stimulated emission rate and spontaneous emission rate will be of the order of

(a) 10^{-7}

(b) 10⁻⁹

(c) 10^{-11}

(d) 10^{-13}

23. The temparature at which stimulated emission rate and spontaneous emission rates are equal $(\lambda = 500 \text{ nm})$, is

(a) 41. 6 K

(b) 83.2 K

(c) 124.8 K

(d) 166.4 K

24. Consider an optical resonator of length 0.3 m. The number of the modes in the wavelength range 2 nm centered about 500 nm, will be

(a) 3600

(b) 4200

(c) 4800

(d) 5400

25. The number of photons emitted per second from a 1 Watt Ar-ion laser operating at 488.0 nm is approximately

(a) 10.23×10^{19}

(b) 2.46×10^{18}

(c) 10.23×10^{17}

(d) 2.46×10^{15}

Spectral line width of the He-Ne laser is 0.01 nm and the cross sectional area of the beam is 0.01 cm². If the output power is 1 milli Watt, the radiation intensity per unit wavelength (in Watt/cm³) is:

(a) 10^{10}

(b) 10⁸

(c) 10^{-8}

(d) 10^{-10}

27. In which of the following lasers can the wavelength not be tuned?

(a) semiconductor laser

(b) Dye laser

(c) Ti: Sapphire laser

(d) Ruby laser

28. The emission wavelength for the transition ${}^1D_2 \rightarrow {}^1F_3$ is 3122 Å. The ratio of populations of the final to the initial states at a temperature 5000 K is $(h = 6.626 \times 10^{-34} \ J.s, c = 3 \times 10^8 \ m/s$, $k_B = 1.380 \times 10^{-23} \ J/K)$

(a) 2.03×10^{-5}

(b) 4.02×10^{-5}

(c) 7.02×10^{-5}

(d) 9.83×10^{-5}

A He-Ne laser operates by using two energy levels of Ne separated by 2.26 eV. Under steady state conditions of optical pumping, the equivalent temperature of the system at which the ratio of the number of atoms in the upper state to that in the lower state will be 1/20, is approximately (the Boltzmann constant $k_B = 8.6 \times 10^{-5} \text{ eV/K}$). [NET June 2015]

(a) 10^{10} K

(b) 10^8 K

(c) 10⁶ K

(d) 10⁴ K

For a two levels system, the population of atoms in the upper and lower levels are 3 × 10¹⁸ and 0.7 × 10¹⁸, respectively. If the coefficient of stimulated emission is 3.0 × 10⁵ m³/W-s³ and the energy density is 9.0 J/m³-Hz, the rate of stimulated emission will be [NET Dec. 2015]

(a)
$$6.3 \times 10^{16} \text{ s}^{-1}$$

(b)
$$4.1 \times 10^{16} \text{ s}^{-1}$$

(c)
$$2.7 \times 10^{16} \text{ s}^{-1}$$

(d)
$$1.8 \times 10^{16} \text{ s}^{-1}$$

The separation between the energy levels of a two-level atom is 2 eV. Suppose that 4×10^{20} atoms are in the ground state and 7×10^{20} atoms are pumped into the excited state just before lasing starts. How much energy will be released in a single laser pulse?

[NET June 2016]

A two level system in a thermal (black body) environment can decay from the excited state by both spontaneous and thermally stimulated emission. At room temperature (300 K), the frequency below which thermal emission dominates over spontaneous emission is nearest to

[NET Dec. 2016]

33. If the coefficient of stimulated emission for a particular transition is 2.1 × 10¹⁹ m³ W⁻¹ s⁻³ and the emitted photon is at wavelength 3000 Å, then the lifetime of the excited state is approximately. [NET June 2017]

(a) 20 ns

(b) 40 ns

(c) 80 ns

(d) 100 ns

The electronic energy level diagram of a molecule is shown in the following figure. [NF

[NET June 2018]

Let Γ_{ij} denote the decay rate for a transition from the level i and j. The molecules are optically pumped from level 1 to 2. For the transition from level 3 to level 4 to be a lasing transition, the decay rates have to satisfy

(a)
$$\Gamma_{21} > \Gamma_{23} > \Gamma_{41} > \Gamma_{34}$$

(b)
$$\Gamma_{21} > \Gamma_{41} > \Gamma_{23} > \Gamma_{34}$$

(c)
$$\Gamma_{41} > \Gamma_{23} > \Gamma_{21} > \Gamma_{34}$$

(d)
$$\Gamma_{41} > \Gamma_{21} > \Gamma_{34} > \Gamma_{23}$$

		А	NSWER KEY			
1_A(b)	1_B(d)	2. (c)	3. (b)	4. (c)	5. (c)	6. (b)
7. (c)	8. (d)	9. (b)	10. (a)	11. (b)	12. (c)	13. (c)
14. (c)	15. (a)	16. (b)	17. (a)	18. (a)) 16. (c)	20. (d)
21. (c)	22. (d)	23. (a)	24. (c)	25. (b)	26. (b)	27. (d)
28. (c)	29. (d)	30. (c)	31. (d)	32. (a)	33. (c)	34. (c)

LEVEL-2

Solve Yourself

1 16

CSIR-UGC-NET/JRF | GATE PHYSICS

	·		LEVEL-2					
1.	••	Suppose E_H be the binding energy of hydrogen atom and E_p be the binding energy of the positronium atom which consists of a positron and an electron. Then, which of the following statements is true?						
	(a) $E_p = E_H$	(b) $E_p = \frac{1}{3} E_H$	(c) $E_p = \frac{1}{2}E_H$	(d) $E_p = 2E_H$				
2.	==	Suppose λ_H be the spectral wavelength of hydrogen atom and λ_P be the spectral wavelength of the positronium atom which consists of a positron and an electron. Then, which of the following statements is true?						
	(a) $\lambda_p = \lambda_H$	(b) $\lambda_P = 2\lambda_H$	(c) $\lambda_P = \frac{1}{2} \lambda_H$	(d) $\lambda_P = \frac{1}{3}\lambda_H$				
·	A μ^- meson (Charatom.	rge -e, Mass 207m _e) ca	n be captured by a proto	on to form a hydrogen-like atom muonic				
3.	The radius of the fit (a) 0.285 pm	rst Bohr orbit is (b) 0.345 pm	(c) 0.415 pm	(d) 455 pm				
4.	The binding energy (a) -1750 eV	of the atom is (b) -2140 eV	(c) -2530 eV	(d) -3120 eV				
5.	The first line of the (a) 6.5 A ⁰	Balmer series is (b) 18.3 A ⁰	(c) 25.3 A ⁰	(d) 35.3 A ⁰				
6	In the hydrogen sp (a) 5/48	ectrum, the ratio of the v (b) 1/3	vavelengths for Lyman- (c) 5/27	α radiation to Balmer- α radiation is (d) 3				
7.	If a proton were tended been (a) less (c) same	n times heavier, then the	ground state energy of th (b) more (d) depends on the	ne electron in a hydrogen atom would have [JEST 2014] electron mass				
8.	The Bohr model g	ives the value for the ion (b) 27.2 eV	isation potential of Li ²⁺ io (c) 40.8 eV	on as (d) 122.4 eV				
9./	If the wavelength of first line of the Lyn (a) (27/5)λ		ner series in the hydroger (c) (32 ± 27)	a spectrum is λ , then the wavelength of the (d) $(27/32)\lambda$				
10.	•	lrogen atom in its groun	•					
	(a) 10 ⁻⁴ cm	(b) 10 ⁻⁶ cm	(c) 10 ⁻⁸ cm	(d) 10 ⁻¹⁰ cm				

(a) Halfofits

(b) $\frac{e^2}{4\pi\epsilon_0 r^2}$

The total energy of the electron in the nth orbit of hydrogen atom is:

(c) $\frac{e^2}{8\pi\epsilon_0 r_n}$

(d) $-\frac{e^2}{8\pi\epsilon_0 r_n}$

12. The kinetic energy of an electron in atom is:

(a) Half of its potential energy

(b) Twice its potential energy

(c) Equal to its potential energy (d) Thrice its potential energy

					40
13.	The total energy of the (a) -(13.6/n)eV	he electron in hydrogen a (b) (13.6/n)eV	atom is: (c) -(13.6/n²)eV	(d) (13.6/n²)	eV
14.	The range of frequer	ncies of the lines of visible	e r <mark>egion in</mark> hydrogen s _l	pectrum is:	
	(a) $6000 \times 10^{14} \text{ S}^{-1}$	(b) $600 \times 10^{14} \text{ S}^{-1}$	(c) $60 \times 10^{14} \text{ S}^{-1}$	(d) 6×10 ¹⁴ S	-1
15.		ngth of Balmer series in l			
	(a) $\frac{1}{\lambda} = R_H \left(\frac{1}{4} - \frac{1}{9} \right)$	(b) $\frac{1}{\lambda} = R_H \left(\frac{1}{2} - \frac{1}{\infty} \right)$	(c) $\frac{1}{\lambda} = R_H \left(1 - \frac{1}{\infty} \right)$	(d) $\frac{1}{\lambda} = R_H$	$\frac{1}{4} - \frac{1}{\infty}$
16.		genergy of the electron is		e Hydrogen atom,	and both the charge and
	(a) 32 E _H	(b) 2 E _H	(c) 4 E _H	(d) 16 E _H	
ر .17	The degeneracy of a	n first excited state of ni	trogen atom having ele	etronic configurat	ion $1e^2 2e^2 2n^2 3d^1$ is
17.	(a) 6	(b) 10	(c) 15	(d) 150	[GATE 2011]
10		. ,	• /	` '	-
18.	is:	guration of the ground so	ate of a murogen is 18°2	s zp. The degene	racy of this configuration
	(a) 3	(b) 20	(c) 6	(d) 0	
19.	What is the maximu (a) 6	nm number of electrons v (b) 3	with spin +1/2 in a p or (c) 8	bital? (d) 1	
26	_	ectronic configuration o		Which state, in the	e standard spectroscopic [NET June 2016]
	(a) ${}^{1}F_{3}$	(b) ¹ S ₀	(c) ${}^{1}D_{2}$	(d) ${}^{3}P_{0}$	
21)	In the presence of e	xternal weak magnetic fi	ield, the number of sub	states into which t	he state $^4D_{1/2}$ will split, is
,	(a) 2	(b) 3	(c) 4	(d) none of	these
22.	The number of Zee	man components for 3 L	$P_3 = {}^3P_2$ transition in or	ne-electron atom v	vill be
	(a) 6	(b) 10	(c) 12	(d) 15	•
23.		n of a line consists of nir	ne equidistant compon	` '	ate term is
	known to be ${}^{3}P_{2}$.	The lower state term wil	I be		
	(a) ${}^{3}P_{0}$	(b) ${}^{2}S_{1/2}$	(c) ³ S ₁	(d) $^{3}P_{3/2}$	
124	The number of nor	rmal Zeeman splitting c	omnonents of 1p \	n transition is	[GATE 2014]
4	(a) 3	(b) 4	$\begin{array}{c} \text{components of } P \rightarrow \\ \text{(c)} \end{array}$		d) 9
25%		ermitted transitions fi	` '	•	a weak magnetic field [GATE 2015]
2					
	(b) No two electro	can have all the quantum ons can have all the quan integer and half integer s	tum numbers same	same state	
21.	•	symbol for the ground:	state of Alis ${}^{2}P_{1/2}$. U	Inder the action of	a strong magnetic field
		ng can be neglected) the			
	(a) 3 levels	(b) 4 levels	-	-	6 levels

- The excitation wavelength of laser in a Raman effect experiment is 546 nm. If the Stokes line is observed at 552 nm, then the wave number of the anti-Stokes line (in cm^{-1}) is [GATE 2015]
- The J = 0 to J = 1 rotational transition for ${}^{1}H^{79}Br$ occurs at 500.72 GHz. Assuming the moleule to be a rigid rotator, the J=3 to J=4transtition occurs at
 - (a) 50.1 cm⁻¹
- (b) 66.8 cm⁻¹
- (c) 16.7 cm⁻¹
- (d) 83.5 cm⁻¹
- Rotational energy of diaatomic molecule is given by $E_{rot} = BhJ(J+1)$ (in Joule). If the rotational constant for 30. H, molecule is given as $B = 1.83 \times 10^{12} Hz$, the rotational period of the H, molecule in J = 10 level will be
 - (a) 1.33×10^{-19} sec
- (b) 5×10^{-15} sec (c) 5.46×10^{-13} sec (d) 7.93×10^{-7} sec

and the second second	1.2	ANSWER KEY: LEVEL-2				
1. (c)	2. (b)	3. (a)	4. (c)	5. (d)	6. (c)	7. (b)
8. (d)	9. (b)	10. (c)	11. (d)	12. (a)	13. (c)	14. (d)
15. (đ)	16. (a)	17. (d)	18. (b)	19. (b)	20. (a)	21. (đ)
22. (d)	23. (c)	24. (a)	25. (6)	26. (b)	27. (c)	28. (185)
29. (b)	30. (b)					

South Delhi: 28-A/11, Jia Sarai, Near-IIT Metro Station, New Delhi-16, Ph: 011-26851008, 26861009