(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. Juli 2004 (29.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/063359 A2

- (51) Internationale Patentklassifikation⁷: C12N 1/15, 15/80, C12P 23/00, A23J 1/00, 3/00, A23L 1/28, 1/275
- (21) Internationales Aktenzeichen: PCT/EP2004/000099
- (22) Internationales Anmeldedatum:

9. Januar 2004 (09.01.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 00 649.4 103 41 271.9 9. Januar 2003 (09.01.2003) DE 8. September 2003 (08.09.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MATUSCHEK, Markus [DE/DE]; Karolinenstr. 5, 69469 Weinheim (DE). KLEIN, Daniela [DE/DE]; M 7, 2, 68161 Mannheim (DE). HEINEKAMP, Thorsten [DE/DE]; Alte Ziegelei 1B, 30419 Hannover (DE). SCHMIDT, Andre [DE/DE]; Magdeburger Str. 11, 31832 Springe (DE). BRAKHAGE, Axel [DE/DE]; Schneiderberg 58, 30167 Hannover (DE). ACHATZ, Brigitte [DE/DE]; Windeckstr. 26, 68163 Mannheim (DE).
- (74) Anwalt: FITZNER, Uwe; Lintorfer Str. 10, 40878 Ratingen (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCING CAROTENOIDS OR THEIR PRECURSORS USING GENETICALLY MODIFIED ORGANISMS OF THE *BLAKESLEA* GENUS, CAROTENOIDS OR THEIR PRECURSORS PRODUCED BY SAID METHOD AND USE THEREOF

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON CAROTINOIDEN ODER DEREN VORSTUFEN MITTELS GENTECHNISCH VERÄNDERTER ORGANISMEN DER GATTUNG BLAKESLEA, MIT DEM VERFAHREN HERGESTELLTE CAROTINOIDE ODER DEREN VORSTUFEN UND DEREN VERWENDUNG

Vektor pANsCos1

(57) Abstract: The invention relates to a method for producing carotenoids or their precursors using genetically modified organisms of the *Blakeslea* genus. Said method comprises the following steps (i) transformation of at least one of the cells, (ii) optional homokaryotic conversion of the cells obtained in step (i) to produce cells, in which one or more genetic characteristics of the nucleii are all modified in an identical manner and said modification manifests itself in the cells, (iii) selection and reproduction of the genetically modified cell or cells, (iv) cultivation of the genetically modified cells, (v) preparation of the carotenoids produced by the genetically modified cells or the carotenoid precursor produced by said genetically modified cells. The invention also relates to carotenoids or their precursors produced according to said method and to the use thereof.

WO 2004/063359

WO 2004/063359 A2

FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. WO 2004/063359 PCT/EP2004/000099

Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderter Organismen der Gattung Blakeslea, mit dem Verfahren hergestellte Carotinoide oder deren Vorstufen und deren Verwendung

5

10

15

Die Erfindung betrifft ein Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderten Organismen der Gattung Blakeslea, mit dem Verfahren hergestellte Carotinoide oder deren Vorstufen und deren Verwendung und Bereitstellung, besonders als hochreine Carotinoide, als Nahrungsmittel, enthaltend Carotinoide-produzierende Organismen und mindestens ein Carotinoid, insbesondere Tierfuttermittel, Tierfutterergänzungsmittel und Nahrungsergänzungsmittel, sowie die Verwendung der aus dem Verfahren erhältlichen Carotinoide zur Herstellung von kosmetischen, pharmazeutischen, dermatologischen Zubereitungen, Nahrungsmitteln oder Nahrungsergänzungsmitteln.

Blakeslea trispora ist als Produktionsorganismus für β-Carotin (Ciegler, 1965, Adv Appl Microbiol. 7:1) und Lycopin bekannt (EP 1201762, EP 1184464, WO 03/038064).

20

Von Blakeslea trispora sind bisher verschiedene DNA-Sequenzen bekannt, insbesondere die DNA-Sequenz, die für die Gene der Carotinoid-biosynthese von Geranylgeranylpyrophosphat bis β -Carotin codiert (WO 03/027293).

25 -

Insbesondere aufgrund der hohen Produktivität, die mit Blakeslea in der Produktion von Lycopin und β -Carotin erreicht werden, bietet sich dieser Organismus zur fermentativen Herstellung von Carotinoiden an.

30 Es ist auch von Interesse die Produktivitäten der bisher natürlicherweise produzierten Carotine und deren Vorstufen weiter zu steigern und die Her-

10

15

20

25

30

stellung weiterer Carotinoide, wie z. B. Xanthophylle zu ermöglichen, die von Blakeslea bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

Carotinoide werden Futtermitteln, Nahrungsmitteln, Nahrungsergänzungsmitteln, Kosmetika und Arzneimitteln zugesetzt. Die Carotinoide dienen vor allem als Pigmente zur Färbung. Daneben werden die antioxidative Wirkung der Carotinoide und andere Eigenschaften dieser Substanzen genutzt. Man unterteilt die Carotinoide in die reinen Kohlenwasserstoffe, die Carotine und die sauerstoffhaltigen Kohlenwasserstoffe, die Xanthophylle. Xanthophylle wie Canthaxanthin und Astaxanthin werden beispielsweise zur Pigmentierung von Hühnereiern und Fischen eingesetzt (Britton et al. 1998, Carotinoids, Vol 3, Biosynthesis and Metabolism). Die Carotine β-Carotin und Lycopin werden vor allem in der Humanernährung eingesetzt. β -Carotin wird beispielsweise als Getränkefarbstoff verwendet. Lycopin hat eine krankheitsvorbeugende Wirkung (Argwal und Rao, 2000, CMAJ 163:739-744; Rao und Argwal 1999, Nutrition Research 19:305-323). Die farblose Carotinoidvorstufe Phytoen kommt vor allem für Anwendungen als Antioxidans in kosmetischen, pharmazeutischen oder dermatologischen Zubereitungen in Frage.

Der überwiegende Teil der Carotinoide und deren Vorstufen, die als Zusatzstoffe für die oben genannten Anwendungen eingesetzt werden, wird durch chemische Synthese hergestellt. Die chemische Synthese ist technisch sehr aufwendig und verursacht hohe Herstellkosten. Fermentative Verfahren sind demgegenüber technisch verhältnismäßig einfach und basieren auf kostengünstigen Einsatzstoffen. Fermentative Verfahren zur Herstellung von Carotinoiden und deren Vorstufen können dann wirtschaftlich attraktiv und wettbewerbsfähig zur chemischen Synthese sein, wenn die Produktivität der bisherigen fermentativen Verfahren gesteigert würde oder neue Carotinoide auf Basis der bekannten

• 5

10

15

20

30

würde oder neue Carotinoide auf Basis der bekannten Produktionsorganismen hergestellt werden könnten.

Hierzu ist eine gentechnische, d. h. gezielte genetische Veränderung von Blakeslea erforderlich. Insbesondere, wenn Xanthophylle produziert werden sollen, da diese Verbindungen natürlicherweise vom Wildtyp der Blakeslea nicht synthetisiert werden.

- Z. B. zur Herstellung von Phytoen mittels Fermentation von Blakesles trispora sind bisher zwei Methoden bekannt:
 - (i) Durch zufallsabhängige Mutagenese mit chemischen Agenzien wie MNNG können Mutanten erzeugt werden, in denen Phytoen nicht zu Lycopin und somit nicht weiter zu ß-Carotin umgesetzt werden kann (Mehta und Cerdá-Olmedo, 1995, Appl. Microbiol. Biotechnol. 42:836-838).
 - (ii) Durch Zugabe von Inhibitoren des Enzyms Phytoendesaturase wie z.B. Diphenylamin und Zimtalkohol kann die weitere Umsetzung von Phytoen blockiert werden, so dass es sich anreichert (Cerdá-Olmedo, 1989, In: E. Vandamme, ed. Biotechnoiogy of vitamin, growth factorand pigment production. London: Eisevier Applied Science, S. 27-42).

Die genannten Methoden zur Herstellung von Phytoen mit Blakeslea 25 trispora weisen jedoch eine Reihe von Nachteilen auf.

Die zufallsabhängie Mutagenese betrifft in der Regel nicht nur die Gene der Carotinoidbiosynthese zur weiteren Umsetzung von Phytoen, sondern auch weitere wichtige Gene. Daher sind Wachstum und Syntheseleistung der Mutanten oft beeinträchtigt. Die Erzeugung z. B. von Phytoenüberpro-

25

duzenten durch zufallsabhängige Mutagenese von Lycopinüberproduzenten oder ß-Carotinüberproduzenten ist daher entweder nicht oder nur mit großem experimentellem Aufwand zu erreichen. Die Zugabe von Inhibitoren verursacht eine Erhöhung der Produktionskosten und gegebenenfalls eine Verunreinigung des Produktes. Daneben kann das Zellwachstum durch den Inhibitor beeinträchtigt werden, so dass die Produktion von Carotinoiden oder deren Vorstufen, insbesondere Phytoen eingeschränkt wird.

- Durch eine gentechnische Veränderung könnten die oben genannten Nachteile der zufallsabhängigen Mutagenese und der Inhibitorzugabe vermieden werden.
- Allerdings sind bisher keine Methoden zur gentechnischen, d. h. gezielten gentechnischen Veränderung von Blakeslea, insbesondere Blakeslea trispora bekannt.

Als Methode zur Herstellung von gentechnisch veränderten Pilzen wurde in einigen Fällen die Agrobacterium-vermittelte Transformation erfolgreich eingesetzt. So sind z. B. folgende Organismen durch Agrobakterien transformiert worden: Saccharomyces cerevisiae (Bundock et al., 1995, EMBO Journal, 14:3206–3214), Aspergillus awamori, Aspergillus nidulans, Aspergillus niger, Colletotrichum gloeosporioides, Fusarium solani pisi, Neurospora crassa, Trichoderma reesei, Pleurotus ostreatus, Fusarium graminearum (van der Toorren et al., 1997, EP 870835), Agraricus bisporus, Fusarium venenatum (de Groot et al., 1998, Nature Biotechnol. 16:839–842), Mycosphaerella graminicola (Zwiers et al. 2001, Curr. Genet, 39:388–393), Glarea lozoyensis (Zhang et al., 2003, Mol. Gen. Genet.

15

nomics 268:645–655), Mucor miehei (Monfort et al. 2003, FEMS Microbiology Lett. 244:101 – 106).

Von Interesse ist besonders eine homologe Rekombination, bei der zwischen der einzuführenden DNA und der Zell-DNA möglichst viele Sequenzhomologien bestehen, so dass eine ortsspezifische Einführung bzw. Ausschaltung von genetischer Information im Genom des Empfängerorganismus möglich ist. Andernfalls wird die Spender-DNA durch illegitime bzw. nicht-homologe Rekombination ins Genom des Empfängerorganismus integriert, was nicht ortsspezifisch erfolgt.

Eine durch Agrobacterium vermittelte Transformation und anschließende homologe Rekombination der transferierten DNA wurde bisher bei folgenden Organismen nachgewiesen: Aspergillus awamori (Gouka et al. 1999, Nature Biotech 17:598-601), Glarea lozoyensis (Zhang et al., 2003, Mol. Gen. Genomics 268:645-655), Mycosphaerella graminicola ((Zwiers et al. 2001, Curr. Genet. 39:388-393).

Als weitere Methode zur Transformation von Pilzen ist die Elektroporation bekannt. Die integrative Transformation von Hefe durch Elektroporation wurde von Hill, Nucl. Acids. Res. 17:8011 gezeigt. Für filamentöse Pilze wurde die Transformation durch Chakaborty und Kapoor beschrieben (1990, Nucl. Acids. Res. 18:6737).

Eine "biolistische" Methode, d.h. die Übertragung von DNA durch Beschuss von Zellen mit DNA-beladenen Partikeln wurde beispielsweise für Trichoderma harzianum und Gliocladium virens beschrieben (Lorito et al. 1993, Curr. Genet. 24:349–356).

30

Diese Methoden konnten bisher jedoch nicht erfolgreich zur gezielten genetischen Veränderung von Blakeslea und insbesondere Blakeslea trispora eingesetzt werden.

- Eine besondere Schwierigkeit bei der Herstellung von gentechnisch veränderten Blakeslea und Blakeslea trispora, ist die Tatsache, dass deren Zellen in allen Stadien des sexuellen und des vegetativen Zellzyklus mehrkernig sind. In Sporen von Blakeslea trispora Stamm NRRL2456 und NRRL2457 wurden z. B. im Durchschnitt 4,5 Kerne pro Spore nachgewiesen (Metha und Cerdá-Olmedo, 1995, Appl. Microbiol. Biotechnol. 42:836–838). Dies hat zur Folge, dass die gentechnische Veränderung in aller Regel nur in einem oder wenigen Kernen vorliegt, die Zellen also heterokaryotisch sind.
- Sollen die genetisch veränderten Blakeslea, insbesondere Blakeslea trispora zur Produktion eingesetzt werden, so ist es insbesondere bei einer Gendeletion wichtig, dass in den Produktionsstämmen die gentechnische Veränderung in allen Kernen vorliegt, so dass eine stabile und hohe Syntheseleistung ohne Nebenprodukte möglich wird. Die Stämme müssen folglich in Bezug auf die gentechnische Veränderung homokaryotisch sein.

Lediglich für Phycomyces blakesleeanus ist ein Verfahren beschrieben worden, um homokaryotische Zellen zu erzeugen (Roncero et al., 1984, Mutat. Res. 125:195). Durch Zugabe des mutagenen Agens MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) werden nach dem dort beschriebenen Verfahren Kerne in den Zellen eliminiert, so dass statistisch eine gewisse Anzahl von Zellen mit nur noch einem funktionellem Kern vorliegt. Die Zellen werden dann einer Selektion unterzogen, in der nur einkernige Zellen mit einem rezessiven Selektionsmarker zu einem Mycel auswachsen können. Die Nachkommen dieser selektierten Zellen sind mehrkernig und homokaryotisch. Ein rezessiver Selektionsmarker für Phycomyces blakes-

WO 2004/063359 PCT/EP2004/000099

7

leanus ist z. B. dar. dar⁺-Stämme nehmen das toxische Riboflavin-Analog 5-Carbon-5-deazariboflavin auf; dar⁻-Stämme dagegen nicht (Delbrück et al. 1979, Genetics 92:27). Die Selektion von rezessiven Mutanten erfolgt durch Zugabe von 5-Carbon-5-deazariboflavin (DARF).

5

Allerdings ist dieses Verfahren nicht für Blakeslea, insbesondere Blakeslea trispora bekannt und insbesondere nicht mit im Zusammenhang mit einer Transformation oder der Produktion von Carotinoiden oder deren Vorstufen beschrieben worden.

10

15

Auch die Isolierung aus natürlichen Quellen wird durchgeführt. Beispielsweise ist es für die Gewinnung von Phytoen bekannt, ein Gemisch aus Carotinoiden, Vitamin E und anderen Komponenten, welches auch Phytoen enthält, aus Tomaten, Karotten oder Palmöl usw. zu extrahieren. Problematisch ist hierbei die Trennung der einzelnen Carotinoide voneinander. So ist beispielsweise das Phytoen nach diesem Verfahren nicht in reiner Form erhältlich. Insbesondere ist die natürlich vorkommende Menge der Carotinoiden in den Pflanzen gering.

20

25

30

Fermentative Verfahren sind demgegenüber technisch verhältnismäßig einfach und basieren auf kostengünstigen Einsatzstoffen. Fermentative Verfahren zur Herstellung von Carotinoiden können dann wirtschaftlich attraktiv und wettbewerbsfähig zur chemischen Synthese sein, wenn die Produktivität der bisherigen fermentativen Verfahren gesteigert würde oder neue Carotinoide auf Basis der bekannten Produktionsorganismen hergestellt werden könnten. Problematisch bei der fermentativen Herstellung von Carotinoiden sind allerdings die Aufarbeitungsverfahren, die nur geringe Mengen an hochreinen Carotinoiden bereitstellen. Zudem sind dafür meist aufwendige Vielschritt-Prozesse ggf. unter Verwendung großer Lösungsmittelmengen erforderlich. So fallen große Mengen Abfall an oder es

10

15

20

25

30

muss ein hoher Aufwand zur Wiederverwertung (Recycling) betrieben werden.

Die Produktion von Carotinoiden durch verschiedene Mikroorganismen ist an sich bekannt. So ist z. B. in der WO 00/13654 A2 offenbart, ein Gemisch aus Phytoen und Phytofluen aus Algen der Art Dunaliella sp. zu extrahieren. Auch nach diesem Verfahren ist das Phytoen nicht in reiner Form erhältlich und muss von den anderen Produkten getrennt werden. Zudem handelt es sich um gentechnisch unveränderte Algen, deren Biosynthese mittels eines hinzugefügten Inhibitors beeinflusst werden muss.

Blakeslea trispora als Produktionsorganismus für β -Carotin ist auch aus der WO 98/03480 A1. bekannt. Hier werden β -Carotin Kristalle aus Biomasse von Blakeslea trispora mittels Extraktion erhalten. Allerdings müssen in dem beschriebenen Verfahren große Mengen unterschiedlicher Lösungsmittel eingesetzt werden, um Kristalle mit hoher Reinheit durch mehrere Extraktions- und Waschschritte zu erhalten. Auch sind die erhaltenen Mengen β -Carotin bezogen auf die eingesetzte Menge Biomasse klein.

Aus der WO 01/83437 A1 ist ein Verfahren zur Extraktion von Astaxanthin aus Hefe bekannt, bei dem die Kulturbrühe zur Sterilisation und zum Zell-aufschluss mit Mikrowellenstrahlung behandelt wird. Der Zellaufschluss mittels Mikrowellenstrahlung ist danach nötig, um Astaxanthin aus Hefe zu gewinnen, ohne es dabei zu zerstören. Anschließend soll Astaxanthin mittels Methanol, Ethanol oder Aceton oder deren Mischungen extrahiert werden. Hierzu sind allerdings große Mengen Lösungsmittel (5 bis 20 Teile Lösungsmittel auf 1 Teil Suspension) und ein langer Zeitraum (24h) erforderlich. Zudem sind keine Reinheiten des Astaxanthins angegeben und die erhaltenen Mengen sind klein. Versuche der Anmelderin und andere Veröffentlichungen bestätigen jedoch, dass eine Extraktion mittels Methanol oder Ethanol nicht durchführbar ist.

Aus der WO 98/50574 ist ebenfalls die Isolierung von Carotinoid Kristallen aus Biomasse von Mikroorganismen bekannt, wobei hiernach im Gegensatz zur WO 01/83437 A1 Methanol, Ethanol, Aceton nur zum Entfernen von Lipiden aus der Biomasse d. h. zum Waschen verwendet werden kann. Als Lösungsmittel zur Extraktion von Carotinoiden wird demnach Ethylacetat, Hexan oder ein Öl verwendet. Anschließend sind mehrere Reinigungs- und Waschschritte mit großen Mengen Ethanol und Wasser nötig, wobei lediglich eine Reinheit von 93,3 % bei einer Ausbeute von 35 % erreicht wird.

10

15

20

25

30

Die WO 03/038064 A2 beschreibt die fermentative Produktion von Lycopin durch Co-Kultivierung von mutiertem Blakeslea trispora Paarungstyp (–) und Blakeslea trispora Paarungstyp (+), die ohne Zusatz von Inhibitoren der Carotinoid Biosynthese Lycopin herstellen. Die Erzeugung der zur Fermentation eingesetzten Mutante wird durch unselektive chemische Mutation und anschließendes Screening vorgenommen. Die Aufarbeitung der Kulturbrühe erfolgt mittels Zellaufschluss und anschließender Reinigung mit unterschiedlichen wässrigen Medien mit verschiedenem Salzgehalt und pH-Wert und mit Wasser nicht mischbaren organischen Lösungsmitteln wie Ethylacetat, Hexan und 1- Butanol zur Entfernung von Lipiden. Alternativ ist eine Extraktion mittels großer Mengen Ethylacetat beschrieben. Angaben zur Reinheit fehlen. Da Ethylacetat und Hexan Lösungsmittel für Lycopin sind, ist davon auszugehen, dass ein Teil des Lycopins herausgewaschen und so die theoretische mögliche Ausbeute verringert wird.

Auch aus der WO 01/55100 A1 ist die Isolierung von Carotinoiden allgemein bzw. β -Carotin im speziellen aus der Biomasse durch Anwendung mehrerer Wasch- und Reinigungsschritte auf die aufgeschlossene Biomasse ohne Extraktion mittels Lösungsmittel beschrieben. Hierzu wird

aufgeschlossene Biomasse von Blakeslea trispora mit Wasser, Lauge, Säure, Butanol und Ethanol gewaschen, so daß eine große Zahl unterschiedlicher Lösungsmittel und wässriger Medien verwendet werden muss. Die Reinheit des erhaltenen β -Carotins beträgt 96 – 98 %. Angaben zur Ausbeute fehlen jedoch.

Die WO 97/36996 A2 beschreibt allgemein eine Verfahren zur Isolierung von Substanzen (u. a. Carotinoide) aus Mikroorganismen, wobei die Substanzen aus der Biomasse mittels Fest/Flüssig-Extraktion isoliert werden. Ein Zellaufschluß soll hierbei nicht nötig sein, jedoch muss die Biomasse zunächst durch Extrusion in eine granulierte, poröse Gestalt gebracht werden. Wie nur Carotinoide isoliert werden können und wie deren Reinheit bzw. Ausbeute ist, ist nicht angegeben. Der Rückstand der Extrusion kann anschließend als Futtermittelzusatz verwendet werden.

15

20

25

30

5

10

In allen oben beschriebenen Verfahren müssen große Mengen Lösungsmittel zur Extraktion eingesetzt werden, um die isolierte Menge an Carotinoid durch vollständige Extraktion zu erhöhen, und/oder große Mengen wässriger Medien zur Reinigung und zum Waschen eingesetzt werden. Dies bedingt hohe Kosten und aufwendige Maßnahmen zur Wiederverwendung bzw. ggf. Abfälle.

Zudem werden die nahrhafte Kulturbrühe und die darin enthaltene Biomasse nach Extraktion bzw. Isolierung der Carotinoide als Abfall behandelt. Die oben angegebenen Verfahren haben neben diesen vordergründigen Nachteilen einen entscheidenden weiteren Nachteil. Es ist nämlich danach notwendig, die Carotinoide den Nahrungsmitteln nachträglich zuzusetzen, d. h. sie sind nicht Bestandteil der Nahrungsmittel an sich bzw. nicht in ausreichender Menge. Von großem Vorteil wäre daher, wenn der Gehalt an Carotinoiden in den Nahrungsmitteln bereits durch die eigentlichen Nahrungsmittel selbst gedeckt würde.

WO 2004/063359 PCT/EP2004/000099

11

Es ist ebenfalls nötig die Produktivitäten der bisher natürlicherweise produzierten Carotine und deren Vorstufen weiter zu steigern und die Herstellung weiterer Carotinoide, wie z. B. Xanthophylle besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin zu ermöglichen, die von den Wildtypen der Mikroorganismen bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

Aufgabe der Erfindung ist es gentechnisch veränderte Zellen von Blakeslea-Stämmen, insbesondere Blakeslea trispora bereitzustellen, die Carotinoide oder deren Vorstufen, insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin produzieren.
Zudem soll das Verfahren die Steigerung der Carotinoid-Produktivität der
veränderten Zellen gegenüber den korrespondierenden Wildtypen erlauben. Ferner soll das Verfahren die Erzeugung neuer Zellen oder aus ihnen
bestehendes Mycel erlauben, die sich für die Verwendung zur Herstellung
von Carotinoiden oder deren Vorstufen eignen, die bisher nicht in wirtschaftlich interessanten Mengen aus den natürlich vorkommenden Pilzen
gewinnbar waren, insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin. Das Verfahren soll dabei
eine gentechnische Veränderung von Blakeslea-Stämmen, insbesondere
Blakeslea trispora möglich machen und die Herstellung homokaryotischer
gentechnisch veränderter Produktions-Stämme erlauben.

Des weiteren soll das Verfahren die Herstellung weiterer Carotinoide, wie z. B. Xanthophylle, insbesondere Astaxanthin oder Zeaxanthin und Phytoen oder Bixin ermöglichen, die von den Wildtypen der Mikroorganismen bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

5

10

15

20

20

25

Ferner ist es Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung von Carotinoiden aus gentechnisch veränderte Zellen von Blakeslea-Stämmen, insbesondere Blakeslea trispora, zur Verfügung zu stellen, welches den Einsatz geringerer Lösungsmittelmengen erlaubt und im wesentlichen ohne Abfälle auskommt und zudem eine hohe Reinheit und höhere Ausbeuten erlaubt.

In diesem Zusammenhang soll ein möglichst großer Anteil der im Fermenter vorliegenden Nährstoffe, sowohl Carotinoide als auch weitere sich in den Mikroorganismen befindende, verwertet werden.

10 Somit ist es auch Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Carotinoid-haltigen Nahrungsmittels bereitzustellen, wobei das Nahrungsmittel selbst den Bedarf an Carotinoiden ohne Zusätze deckt. Insbesondere soll der Nährstoffgehalt der nach dem Verfahren erhältlichen Nahrungsmittel gegenüber den bisher erhältlichen Nahrungsmittel teln zumindest gleichwertig sein. Ferner soll das Verfahren die effiziente Verwertung der produzierten Carotinoide ermöglichen.

Diese Aufgabe wird durch ein Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderten Organismen der Gattung Blakeslea gelöst, umfassend

- (i) Transformation mindestens einer der Zellen,
- (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder in mehreren genetischen Merkmalen alle gleichartig verändert sind und diese genetische Veränderung zur Ausprägung bringen, und
- (iii) Selektion und Vermehrung der gentechnisch veränderten Zelle oder Zellen,
- (iv) Kultivierung der gentechnisch veränderten Zellen,

- (v) Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe.
- Mit der erfindungsgemäßen Methode ist es möglich, Blakeslea gezielt und stabil genetisch zu verändern, um so Mycel aus Zellen mit einheitlichen Kernen zu gewinnen, das Carotinoide oder deren Vorstufen, insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin produziert. Vorzugsweise handelt es sich um Zellen von Pilzen der Art Blakeslea trispora. Die produzierten Carotinoiden oder deren Vorstufen sind dabei im wesentlichen frei von Verunreinigungen erhältlich und es können hohe Konzentrationen der Carotinoiden oder deren Vorstufen im Kulturmedium erzielt werden.

20

25

- Unter Transformation wird die Übertragung einer genetischen Information in den Organismus, insbesondere Pilz verstanden. Darunter sollen alle dem Fachmann bekannten Möglichkeiten zur Einschleusung der Information, insbesondere DNA fallen, z. B. Beschuss mit DNA-beladenen Partikeln, Transformation mittels Protoplasten, Mikroinjektion von DNA, Elektroporation, Konjugation oder Transformation kompetenter Zellen, Chemikalien oder Agrobakterien vermittelte Transformation. Als genetische Information werden ein Genabschnitt, ein Gen oder mehrere Gene verstanden. Die genetische Information kann z. B. mit Hilfe eines Vectors oder als freie Nukleinsäure (z. B. DNA, RNA) und auf sonstige Weise in die Zellen eingebracht und entweder durch Rekombination ins Wirtsgenom eingebaut oder in freier Form in der Zelle vorliegen. Besonders bevorzugt ist hierbei die homologe Rekombination.
- Bevorzugte Transformationsmethode ist die Agrobacterium tumefaciensvermittelte Transformation. Hierzu wird zunächst die zu transferierende

Spender-DNA in einen Vektor eingefügt, der (i) flankierend zu der zu transferierenden DNA die T-DNA-Enden trägt, der (ii) einen Selektionsmarker enthält und der (iii) ggf. Promotoren und Terminatoren für die Genexpression der Spender-DNA aufweist. Dieser Vektor wird in einen Agrobacterium-tumefaciens-Stamm übertragen, der ein Ti-Plasmid mit den vir-Genen enthält. vir-Gene sind für den DNA-Transfer in Blakeslea verantwortlich. Mit diesem Zwei-Vektor-System wird die DNA von Agrobacterium in Blakeslea übertragen. Hierzu werden die Agrobakterien zunächst in Gegenwart von Acetosyringone inkubiert. Acetosyringone induziert die vir-Gene. Anschließend werden Sporen von Blakeslea trispora zusammen mit den induzierten Zellen von Agrobacterium tumefaciens auf Acetosyringone-haltigem Medium inkubiert und dann auf Medium übertragen, das eine Selektion der Transformanten, d.h. der gentechnisch veränderten Stämme von Blakeslea ermöglicht.

15

20

25

30

10

Der Begriff Vector wird in der vorliegenden Anmeldung als eine Bezeichnung für ein DNA-Molekül verwendet, das zum Einschleusen und ggf. zur Vermehrung von Fremd-DNA in eine Zelle dient (siehe auch "Vector" in Römpp Lexikon Chemie – CDROM Version 2.0, Stuttgart/New York: Georg Thieme Verlag 1999). In der vorliegenden Anmeldung sollen unter dem begriff "Vector" auch Plasmide, Cosmide usw. verstanden werden, die dem gleichen Zweck dienen.

Unter Expression wird in der vorliegenden Anmeldung die Übertragung einer genetischen Information ausgehend von DNA oder RNA in ein Gen-Produkt (hier vorzugsweise Enzyme zur Herstellung von Carotinoiden und insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zea-xanthin und Phytoen oder Bixin) verstanden und soll auch den Begriff der Überexpression beinhalten, womit eine verstärkte Expression gemeint ist, so dass ein bereits in der nicht transformierten Zelle (Wildtyp) hergestell-

tes Genprodukt verstärkt produziert wird oder einen großen Teil des gesamten Gehaltes der Zelle ausmacht.

Unter gentechnische Veränderung soll die Einschleusung genetischer Information in einen Empfängerorganismus, so dass diese stabil exprimiert und bei der Zellteilung weitergegeben wird, verstanden werden. In diesem Zusammenhang ist die Homokaryotisierung, die Herstellung von Zellen, die nur einheitliche Kerne enthalten, d. h. Kerne mit gleichem genetischem Informationsgehalt.

10

5

Diese Homokaryotisierung ist nur notwendig, wenn die durch Transformation eingeführte genetische Information rezessiv vorliegt, d. h. nicht zur Ausprägung gelangt. Führt die Transformation aber zu einem dominanten Vorliegen der genetischen Information, d. h. wird sie ausgeprägt, so ist eine Homokaryotisierung nicht unbedingt nötig.

15

20

Vorzugsweise wird zur Homokaryotisierung eine Selektion der einkernigen Sporen durchgeführt. Von Natur aus ist ein geringer Anteil der Sporen von Blakeslea trispora einkernig, so dass sich diese ggf. nach spezifischer Markierung z. B. Färbung der Zellkerne aussortieren lassen. Dies wird bevorzugterweise mittels FACS (Fluorescence Activated Cell Sorting) anhand der geringeren Fluoreszenz der einkernigen Zellen durchgeführt.

25

30

Alternativ kann zur Homokaryotisierung zunächst eine Kernreduktion durchgeführt werden. Hierzu kann ein mutagenes Agens eingesetzt werden, wobei es sich insbesondere um N-Methyl-N'-nitro-nitrosoguanidin (MNNG) handelt. Auch die Verwendung von energiereichen Strahlen, wie UV- oder Röntgen-Strahlen zur Kernreduktion ist möglich. Anschließend kann zur Selektion auf das FACS Verfahren oder rezessive Selektionsmarker zurückgegriffen werden.

Unter Selektion wird die Auswahl von Zellen verstanden, deren Kerne dieselbe genetische Information beinhalten, d. h. Zellen die die gleichen Eigenschaften aufweisen, wie Resistenzen oder die Herstellung bzw. vermehrte Herstellung eines Produktes. In der Selektion werden neben der FACS Methode bevorzugt 5-Carbon-5-deazariboflavin (DARF) und Hygromycin (hyg) oder 5'-Fluororotat (FOA) und Uracil eingesetzt.

Der in der Transformation (i) eingesetzte Vector kann derart gestaltet sein, dass die im Vector enthaltene genetische Information in das Genom mindestens einer Zelle integriert wird. Dabei kann genetische Information in der Zelle ausgeschaltet werden. Dies kann direkt, d. h. durch eine Deletion erfolgen. Es ist aber auch möglich, daß der in der Transformation (i) eingesetzte Vector derart ausgestaltet ist, dass die im Vector enthaltene genetische Information in der Zelle exprimiert wird, d. h. genetische Information eingefügt wird, die im korrespondierenden Wildtyp nicht vorhanden ist oder die durch die Transformation verstärkt bzw. überexprimiert wird und deren Produkt das Gen ausschaltet. Die eingeführte genetische Information kann aber auch indirekt eine genetische Information in der Zelle ausschalten, z. B. durch Produktion eines Inhibitors.

20

15

5

10

Der eingesetzte Vector enthält genetische Informationen oder Teile der genetischen Information zur Herstellung von Carotinoiden oder deren Vorstufen, insbesondere Carotinen oder Xanthophyllen oder deren Vorstufen. Der eingesetzte Vector enthält vorzugsweise genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β -Cryptoxanthin, β -Carotin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, Lutein, Bixin oder Phytoen. Ganz besonders bevorzugt enthält der Vector Informationen zur Herstellung von Bixin, Phytoen, Canthaxanthin, Astaxanthin oder Zeaxanthin.

25

Der Vector kann beliebige genetische Informationen zur genetischen Veränderungen von Organismen der Gattung Blakeslea enthalten.

Unter "genetischer Information" werden vorzugsweise Nukleinsäuren verstanden, deren Einbringung in den Organismus der Gattung Blakeslea zu einer genetischen Veränderung in Organismen der Gattung Blakeslea, also beispielsweise zu einer Verursachung, Erhöhung oder Reduzierung von Enzymaktivitäten im Vergleich zum Ausgangsorganismus führen.

10 Der Vector kann beispielsweise genetische Information zur Herstellung lipophiler Substanzen enthalten wie z.B. Carotinoide und deren Vorstufen, Phospholipide, Triacylglyceride, Steroide, Wachse, fettlösliche Vitamine, Provitamine und Cofaktoren oder genetische Information zur Herstellung hydrophiler Substanzen wie z.B. Eiweiße, Aminosäuren, Nukleotide und wasserlösliche Vitaminen, Provitamine und Cofaktoren.

Bevorzugterweise enthält der eingesetzte Vector genetische Informationen zur Herstellung von Carotinoiden oder Xanthophyllen oder deren Vorstufen.

20

5

Bevorzugterweise enthält der Vektor genetische Information, die eine Lokalisierung der Carotinoidbiosynthese-Enzyme in dem Zellkompartiment bewirkt, in dem die Carotinoidbiosynthese stattfindet.

Besonders bevorzugt sind genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3- und 3'-Hydroxyechinenon, Lycopin, Lutein, β-Carotin, Phytoen und/oder Phytofluen. Ganz besonders bevorzugt sind genetische Informationen zur Herstellung von Phytoen, Bixin, Lycopin, Zeaxanthin, Canthaxanthin und/oder Astaxanthin.

Entsprechend werden in einer bevorzugten Variante der Erfindung Organismen hergestellt und kultiviert, die über eine erhöhte Syntheserate für Zwischenprodukte der Carotinoidbiosynthese verfügen und folglich eine erhöhte Produktivität für Endprodukte der Carotinoidbiosynthese aufweisen. Zur Erhöhung der Syntheserate für Zwischenprodukte der Carotinoidbiosynthese werden insbesondere die Aktivitäten der Enzyme 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase (HMG-CoA-Reduktase), Isopentenylpyrophosphat-Isomerase und Geranylpyrophosphatsynthase gesteigert.

10

20

25

30

5

Entsprechend werden in einer besonders bevorzugten Variante der Erfindung Organismen hergestellt und kultiviert, die gegenüber dem Wildtypeine erhöhte HMG-CoA-Reduktase-Aktivität aufweisen.

Unter HMG-CoA-Reduktase—Aktivität wird die Enzymaktivität einer HMG-CoA-Reduktase (3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase) verstanden.

Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwandeln.

Dementsprechend wird unter HMG-CoA-Reduktase-Aktivität die in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. gebildete Menge Mevalonat verstanden.

Bei einer erhöhten HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase die umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. die gebildete Menge Mevalonat erhöht.

Vorzugsweise beträgt diese Erhöhung der HMG-CoA-Reduktase-Aktivität mindestens 5%, weiter bevorzugt mindestens 20%, weiter bevorzugt mindestens 50%, weiter bevorzugt mindestens 100%, besonders bevorzugt mindestens 300%, noch bevorzugter mindestens 500%, insbesondere mindestens 600% der HMG-CoA-Reduktase-Aktivität des Wildtyps.

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp durch eine Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase.

10

15

20

5

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase indem man ein Nukleinsäurekonstrukt, enthaltend eine Nukleinsäure codierend eine HMG-CoA-Reduktase in den Organismus einbringt, deren Expression in dem Organismus, verglichen mit dem Wildtyp, einer reduzierten Regulation unterliegt.

Unter einer reduzierten Regulation verglichen mit dem Wildtyp, wird eine im Vergleich zum vorstehend definierten Wildtyp verringerte, vorzugsweise keine Regulation auf Expressions- oder Proteinebene verstanden.

Die reduzierte Regulation kann vorzugsweise durch einen im Nukleinsäurekonstrukt mit der kodierenden Sequenz funktionell verknüpften Promotor erreicht werden, der in dem Organismus verglichen mit dem Wildtyp-Promoter einer reduzierten Regulation unterliegt.

Beispielsweise unterliegen die Promotoren ptef1 aus Blakeslea trispora und pgpdA aus Aspergillus nidulans nur einer reduzierten Regulation und sind daher insbesondere als Promotoren bevorzugt.

25

Diese Promotoren zeigen eine annähernd konstitutive Expression in Blakeslea trispora, so dass die transkriptionelle Regulation nicht mehr über die Intermediate der Carotinoidbiosynthese abläuft.

Die reduzierte Regulation kann in einer weiteren bevorzugten Ausführungsform dadurch erreicht werden, dass man als Nukleinsäure codierend eine HMG-CoA-Reduktase eine Nukleinsäure verwendet, deren Expression in dem Organismus, verglichen mit der Organismus eigenen, orthologen Nukleinsäure, einer reduzierten Regulation unterliegt.

10

15

20

25

Besonders bevorzugt ist die Verwendung einer Nukleinsäure, die nur den katalytischen Bereich der HMG-CoA-Reduktase kodiert (trunkierte (t-)HMG-CoA-Reduktase). Die für die Regulation verantwortliche Membran-Domäne fehlt. Die verwendete Nukleinsäure unterliegt somit einer reduzierten Regulation und führt zu einer Erhöhung der Genexpression der HMG-CoA-Reduktase.

In einer besonders bevorzugten Ausführungsform bringt man Nukleinsäuren in Blakeslea trispora ein, welche die Sequenz SEQ ID. NO. 75 enthalten.

Weitere Beispiele für HMG-CoA-Reduktasen und damit auch für die auf den katalytischen Bereich reduzierten t-HMG-CoA-Reduktasen bzw. die kodierenden Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Homologievergleiche der Sequenzen aus Datenbanken mit der SEQ ID. NO. 75 leicht auffinden.

Weitere Beispiele für HMG-CoA-Reduktasen und damit auch für die auf den katalytischen Bereich reduzierten t-HMG-CoA-Reduktasen bzw. die kodierenden Gene lassen sich weiterhin beispielsweise ausgehend von

der Sequenz SEQ ID. NO. 75 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer besonders bevorzugten Ausführungsform wird die reduzierte Regulation dadurch erreicht, dass man als Nukleinsäure codierend eine HMG-CoA-Reduktase eine Nukleinsäure verwendet, deren Expression in dem Organismus, verglichen mit der Organismus eigenen, orthologen Nukleinsäure, einer reduzierten Regulation unterliegt und einen Promotor verwendet, der in dem Organismus, verglichen mit dem Wildtyp-Promoter einer reduzierten Regulation unterliegt.

Entsprechend wird in einer bevorzugten Variante der Erfindung durch die Transformation die Genexpression der Phytoendesaturase ausgeschaltet, so dass das von den Organismen produzierte Phytoen gewonnen werden kann. Der in der Transformation (i) eingesetzte Vector umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für ein Fragment des Gens der Phytoendesaturase, insbesondere carB aus Blakeslea trispora mit der SEQ ID NO: 69.

20

25

15

Entsprechend wird in einer bevorzugten Variante der Erfindung durch Transformation die Genexpression der Lycopincyclase ausgeschaltet, so dass das von den Organismen produzierte Lycopin gewonnen werden kann. Der in der Transformation eingesetzte Vektor umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für ein Fragment des Gens der Lycopincyclase, insbesondere carR aus Blakeslea trispora.

30 In einer bevorzugten Ausführungsform werden die Organismen der Gattung Blakeslea beispielsweise dadurch in die Lage versetzt Xanthophylle, wie beispielsweise Canthaxanthin, Zeaxanthin oder Astaxanthin herzustellen, Bixin oder Phytoen, indem in den genetisch veränderten Organismen der Gattung Blakeslea im Vergleich zum Wildtyp eine Hydroxylase-Aktivität und/oder Ketolase-Aktivität verursacht wird.

5

Der in der Transformation (i) eingesetzte Vector enthält also in einer weiteren, bevorzugten Variante der Erfindung genetische Informationen, die nach Expression eine Ketolase- und/oder Hydroxylase-Aktivität entfalten, so dass die Organismen Zeaxanthin oder Astaxanthin produzieren.

10

Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

l In

Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -lonon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Canthaxanthin umzuwandeln.

20

15

Dementsprechend wird unter Ketolase–Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β -Carotin bzw. gebildete Menge Canthaxanthin verstanden.

25 l

Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende nicht genetisch veränderte Ausgangsorganismus der Gattung Blakesleaa verstanden.

30

Je nach Zusammenhang kann unter dem Begriff "Organismus" der Ausgangsorganismus (Wildtyp) der Gattung Blakesleaa oder ein erfindungs-

WO 2004/063359

gemäßer, genetisch veränderter Organismus der Gattung Blakesleaa oder beides verstanden werden.

23

PCT/EP2004/000099

Vorzugsweise wird unter "Wildtyp" für die Verursachung der Ketolase-Aktivität und für die Verursachung der Hydroxylase-Aktivität jeweils eine Referenz Organismus verstanden.

Dieser Referenzorganismus der Gattung Blakeslea ist Blakeslea trispora ATCC 14271 oder ATCC 14272, die sich lediglich im Paarungstyp unterscheiden.

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen der Gattung Blakesleaa und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

15

20

25

30

10

Die Bestimmung der Ketolase-Aktivität in Organismen der Gattung Blakeslea erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

Der erfindungsgemäße genetisch veränderte Organismus der Gattung Blakesleaa weist in dieser, bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren.

In einer weiter bevorzugten Ausführungsform erfolgt die Verursachung der Ketolase-Aktivität in den Organismen der Gattung Blakesleaa durch Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase.

In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren in die Ausgangsorganismus der Gattung Blakesleaa.

Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäuren die eine Ketolase codiert verwendet werden.

Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.

Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das der Wirtsorganismus der Gattung Blakesleaa nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

20 Beispiele für Nukleinsäuren, kodierend eine Ketolase und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise Sequenzen aus:

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; Nukleinsäure: SEQ ID NO: 11, Protein SEQ ID NO: 12),

Haematoccus pluvialis, NIES-144 (Accession NO: D45881; Nukleinsäure: SEQ ID NO: 13, Protein SEQ ID NO: 14),

5

15

Agrobacterium aurantiacum (Accession NO: D58420; Nukleinsäure: SEQ ID NO: 15, Protein SEQ ID NO: 16),

Alicaligenes spec. (Accession NO: D58422; Nukleinsäure: SEQ ID NO: 17, Protein SEQ ID NO: 18),

Paracoccus marcusii (Accession NO: Y15112; Nukleinsäure: SEQ ID NO: 19, Protein SEQ ID NO: 20).

Synechocystis sp. Strain PC6803 (Accession NO: NP442491; Nukleinsäure: SEQ ID NO: 21, Protein SEQ ID NO: 22).

Bradyrhizobium sp. (Accession NO: AF218415; Nukleinsäure: SEQ ID NO: 23, Protein SEQ ID NO: 24).

15

25

30

Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 25, Protein SEQ ID NO: 26),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No.

20 NZ_AABC01000195, Basenpaar 55,604 bis 55,392 (SEQ ID NO: 27); Protein: Acc.-No. ZP_00111258 (SEQ ID NO: 28) (als putatives Protein annotiert),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No.
NZ_AABC01000196, Basenpaar 140,571 bis 139,810 (SEQ ID NO: 29),
Protein: (SEQ ID NO: 30) (nicht annotiert),

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der

entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO: 12, 26 und/oder 33 leicht auffinden.

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 12,
26 und/oder 30 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.

20

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50_C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50_C, bevorzugt bei 65_C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.

25

Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

10

- (1) Hybridiserungsbedingungen mit zum Beispiel
- ^o(i) 4X SSC bei 65°C, oder
- (ii) 6X SSC bei 45°C, oder
- (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
- 15 (iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
 - (v) 6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder
 - (vi) 50 % Formamid, 4X SSC bei 42°C, oder
- (vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll,
 0.1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM
 NaCl, 75 mM Natriumcitrat bei 42°C, oder
 - (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
- (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (moderate Be-25 dingungen).
 - (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
 - (i) 0.015 M NaCl/0.0015 M Natriumcitrat/0.1 % SDS bei 50°C, oder
 - (ii) 0.1X SSC bei 65°C, oder
- 30 (iii) 0.1X SSC, 0.5 % SDS bei 68°C, oder
 - (iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder

25

30

- (v) 0.2X SSC, 0.1 % SDS bei 42°C, oder
- (vi) 2X SSC bei 65°C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen genetisch veränderten Organismen der Gattung Blakeslea bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30%, 40%, 50%, 60%, bevorzugt mindestens 70%, 80%, besonders bevorzugt mindestens 90%, insbesondere 91%, 92%; 93%, 94%, 95%, 96%, 97%, 98% oder 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 12 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30%, 40%, 50%, 60%, bevorzugt mindestens 70%, 80%, besonders bevorzugt mindestens 90%, insbesondere 91%, 92%; 93%, 94%, 95%, 96%, 97%, 98% oder 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 26 und die enzymatische Eigenschaft einer Ketolase aufweist.

10

15

30

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 26 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, 40 %, 50 %, bevorzugt mindestens 60 %, 70 %, bevorzugter mindestens 80 %, 85 % besonders bevorzugt mindestens 90 %, insbesondere 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % auf Aminosäureebene mit der Sequenz SEQ ID NO 30 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 30 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat

wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gin durch Asn, Val durch IIe, Leu durch IIe, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren wird. ersetzt

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter: 20

10

15

10 Gap penalty 10 Gap length penalty Pairwise alignment parameter: 1 K-tuple

3 Gap penalty 25 5 Window 5 Diagonals saved

Unter einem Protein, das eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 oder 26 oder 30 aufweist, 30 wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 12 oder 26 oder 30, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 20 %, bevorzugt 30%, 40%, 50%, besonders bevorzugt 60%, 70%, 80%, insbesondere 85%, 90, 95% aufweist.

5

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Blakesleaaspezifischen codon usage häufig verwendet werden. Die codon

usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene von Organismen der Gattung Blakesleaa leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 11 in die Organismus der Gattung ein.

In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 25 in die Orga-

nismus der Gattung ein. 20

> In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 29 in die Organismus der Gattung ein.

25

30

15

Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

Der in der Transformation (i) eingesetzte Vector umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für eine Ketolase, insbesondere der Ketolase Nostoc punctiforme aus mit der SEQ ID NO: 72.

Unter Hydroxylase-Aktivität die Enzymaktivität einer Hydroxylase verstanden.

15

30

10

5

Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Zeaxanthin oder Cantaxanthin in Astaxanthin umzuwandeln.

Dementsprechend wird unter Hydroxyase–Aktivität die in einer bestimmten

Zeit durch das Protein Hydroxylase umgesetzte Menge β-Carotin oder

Cantaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein

WO 2004/063359 PCT/EP2004/000099

Hydroxylase die umgesetzte Menge β-Carotin oder Cantaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.

Vorzugsweise beträgt diese Erhöhung der Hydroxylase–Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase–Aktivität des Wildtyps.

Die Bestimmung der Hydroxylase–Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. ReferenzOrganismen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) *in vitro* bestimmt. Es wird zu einer bestimmten Menge an Organismenextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta-Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.

20 Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase–Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):

25

30

15

Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Mono- und Digalaktosylglyzeriden, (1:1),

0.2 mg Rinderserumalbumin und Organismenextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.

5

Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):

10

Der in-vitro Assay wird in einem Volumen von 250 □I Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Organismenextrakt, 20 nM Lycopin, 250 □g an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

20

15

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).

25

Die Erhöhung der Hydroxylase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp.

30

Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp kann ebenfalls durch verschiedene

Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase in denb Organismus der Gattung Blakesleaa.

5

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase in den Organismus der Gattung Blakesleaa.

10

Dazu kann prinzipiell jedes Hydroxylase–Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine β -Cyclase codiert, verwendet werden.

15 B di

Bei genomischen Hydroxylase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

20

25

Ein Beispiel für ein Hydroxylase-Gen ist eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis mit der Accession No. AX038729 (WO 0061764; Nukleinsäure: SEQ ID NO: 31, Protein: SEQ ID NO: 32), aus Erwinia uredovora 20D3 (ATCC 19321, Accession No. D90087; Nukleinsäure: SEQ ID NO: 33, Protein: SEQ ID NO: 34) oder Hydroxylase aus Thermus thermophilus (DE 102 34 126.5) kodiert durch die Sequenz mit der SEQ ID NO 76.

30

sowie Hydroxylasen der folgenden Accession Nummern: |emb|CAB55626.1, CAA70427.1, CAA70888.1, CAB55625.1, AF499108_1, AF315289_1, AF296158_1, AAC49443.1, NP_194300.1,

10

15

20

25

30

NP_200070.1, AAG10430.1, CAC06712.1, AAM88619.1, CAC95130.1, AAL80006.1, AF162276_1, AAO53295.1, AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1, AAC44852.1, BAC77670.1, NP_745389.1, NP_344225.1, NP_849490.1, ZP_00087019.1, NP_503072.1, NP_852012.1, NP_115929.1, ZP_00013255.1

In den erfindungsgemäßen bevorzugten transgenen Organismen der Gattung Blakeslea liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase—Gen vor.

In dieser bevorzugten Ausführungsform weist die genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase auf.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 80 %, am bevorzugtesten mindestens 90%, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76 und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch HomologievergleiWO 2004/063359 PCT/EP2004/000099

che der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID. NO: 31, 33 oder 76 leicht auffinden.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 31, 33 oder 76 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

10

15

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

- 20 Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
- In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 31, 33 oder 76 in den Organismus ein.
- Alle vorstehend erwähnten Hydroxylase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender,

komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

10

5

Der in der Transformation (i) eingesetzte Vector umfasst daher in weiteren Ausführungsformen der Erfindung bevorzugterweise eine Sequenz codierend für eine Hydroxlase, insbesondere eine Hydroxlase aus Haematococcus pluvialis mit der SEQ ID NO: 70 oder eine Hydroxlase aus Erwinia uredova mit der SEQ ID NO: 71. oder eine Hydroxylase aus Thermus thermophilus kodiert durch die Sequenz mit der SEQ ID NO 76.

Vorzugsweise wird durch die Transformation das Gen der Phytoendesaturase ausgeschaltet.

20

30

15

Der in der Transformation (i) eingesetzte Vector enthält vorzugsweise ferner die Expression regelnde und unterstützende Bereiche, insbesondere Promotoren und Terminatoren.

Der in der Transformation (i) eingesetzte Vector enthält vorzugsweise den gpd und/oder den ptef1 Promotor und/oder den trpC Terminator. Diese

haben sich zur Transformation der Blakeslea besonders bewährt. Auch der Einsatz von dem Fachmann geläufigen "inverted repeats" (IR, Römpp Lexikon der Biotechnologie 1992, Thieme Verlag Stuttgart, Seite 407 "Invers repetitive Sequenzen") zur Regelung der Expression bzw. Transkrip-

tion liegt im Rahmen der Erfindung.

15

20

Vorteilhafterweise weist der im Vector eingesetzte gpd Promotor die Sequenz SEQ ID NO: 1 auf. Vorteilhafterweise weist der im Vector eingesetzte trpC Terminator die Sequenz SEQ ID NO: 2 auf. Vorteilhafterweise weist der im Vector eingesetzte ptef1 Promotor die Sequenz SEQ ID NO: 35 auf.

Insbesondere werden dabei der gpd Promotor und der trpC Terminator aus Aspergillus nidulans und der ptef1 Promotor aus Blakeslea trispora eingesetzt.

Insbesondere enthält der in der Transformation (i) eingesetzte Vector ein Resistenzgen. Bevorzugterweise handelt es sich um ein Hygromycin-Resistenzgen (hph), insbesondere eines aus E. coli. Dieses Resistenzgen hat sich bei dem Nachweis der Transformation und Selektion der Zellen als besonders geeignet herausgestellt.

Als Promotor für hph wird also bevorzugt p-gpdA, der Promotor der Glycerinaldehyd-3-phosphatdehydrogenase aus Aspergillus nidulans genutzt. Als Terminator für hph wird bevorzugt t-trpC, der Terminator des Gens trpC, codierend für Anthranilatsynthasekomponenten aus Aspergillus nidulans genutzt.

Als Vectoren haben sich Abkömmlinge des pBinAHyg Vectors als besonders geeignet herausgestellt. Der zur Transformation eingesetzte Vector umfasst also bevorzugterweise die SEQ ID NO: 3.

Hinzu kommen je nach gewünschtem Carotinoid oder dessen Vorstufe eine Sequenz codierend für eine Hydroxylase, Ketolase, Phytoendesaturase usw. wie diese zuvor beschrieben wurden. Die Vectoren umfassen also in einer Ausführugsform der Erfndung die Sequenz SEQ ID NO: 69 codierend für die Phytoendesaturase. Die Vectoren umfassen ferner in

einer weiteren Ausführugsform der Erfndung die Sequenz SEQ ID NO: 72 codierend für eine Ketolase. Die Vectoren umfassen weiter in einer weiteren Ausführugsform der Erfndung die Sequenz SEQ ID NO: 70 oder 71 oder 76 codierend für eine Hydoxylase. Entsprechende Kombinationen der zuvorgenannten Sequenzen liegen ebenso im Rahmen der Erfindung. So umfasst der Vector in einer Ausführungsform sowohl eine Sequenz SEQ ID NO: 72 codierend für eine Ketolase als auch die Sequenz SEQ ID NO: 70 oder 71 oder 76 codierend für eine Hydoxylase und ermöglicht so die Herstellung von Astaxanthin.

10

15

20

30

Insbesondere sind Vectoren ausgewählt aus der Gruppe bestehend aus den SEQ ID NO: 37 bis 51 und 62 im Rahmen der Erfindung einsetzbar.

Die genetisch veränderten Organismen können zur Produktion von Carotinoiden, Xanthophyllen oder deren Vorstufen, insbesondere Bixin, Phytoen, Astaxanthin, Zeaxanthin und Canthaxanthin verwendet werden. Auch können neue, im Wildtyp natürlicherweise nicht vorkommende Carotinoide durch Einbringung der entsprechenden genetischen Information von den gezielt genetisch veränderten Zellen bzw. dem durch sie gebildeten Mycel erzeugt und anschließend isoliert werden.

Die gentechnisch verändertern Zellen werden nach der Selektion kultiviert, so daß Carotinoiden oder deren Vorstufen bereitgestellt werden können.

Bevorzugterweise ist die Gewinnung von Carotinoiden oder deren Vorstufen mit den gezielt genetisch veränderten Zellen bzw. das durch sie gebildete Mycel möglich.

Die Kultivierung der Organismen unterliegt keinen Besonderheiten. Vorteilhafterweise werden, insbesondere bei der Verwendung von Blakeslea

trispora, entgegengesetzte Paarungstypen gemeinsam kultiviert, da dies zu besserem Wachstum und Produktion führt.

Wird die gentechnische Veränderung nur in Zellen eines der vorkommenden Paarungstypen (bei Blakeslea trispora (+) oder (-)) durchgeführt, so wird zur Kultivierung der entsprechend andere, nicht veränderte Paarungstyp zugesetzt, da so eine gute Produktion der Carotinoide oder deren Vorstufen aufgrund der von dem zweiten, nicht veränderten Paarungstyp abgegebenen Substanzen (z. B. Trisporsäuren) zu erreichen ist. Vorteilhafterweise wird jedoch die gentechnische Veränderung in Zellen beider Paarungstypen vorgenommen und diese zusammen kultiviert. Hierdurch wird ein besonders gutes Wachstum und eine optimale Produktion der Carotinoiden oder deren Vorstufen erreicht. Auch eine (künstliche) Zugabe der Trisporsäuren ist möglich und sinnvoll.

15

5

Trisporsäuren sind Sexualhormone in Mucorales Pilzen, wie Blakeslea, welche die Bildung von Zygophoren und die Produktion von β-Carotin stimulieren (van den Ende 1968, J. Bacteriol. 96:1298 - 1303, Austin et al. 1969, Nature 223:1178 – 1179, Reschke Tetrahedron Lett. 29:3435 – 3439, van den Ende 1970, J. Bacteriol. 101:423 – 428).

25

30

20

Es können alle dem Fachmann geläufigen Medien eingesetzt werden, so weit sich diese zur Kultivierung der eingesetzten Organismen und deren Carotinoid Produktion eigenen. Insbesondere müssen bei Einsatz der GVO keine Carotinoidbiosynthese Inhibitoren eingesetzt werden. Die eingesetzten Medien beinhalten vorzugsweise Zusätze, wie eine oder mehrere Kohlenstoffquellen, eine oder mehrere Stickstoffquellen, Mineralsalze und Thiamine. Bevorzugterweise werden Zusätze eingesetzt, wie sie aus der WO 03/038064 A2, Seite 4, Zeile 30 bis Seite 5 Zeile 7 hervorgehen. Besonders bevorzugt wird als Kohlenstoffquelle Glukose und als Stick-

10

15

20

30

stoffquelle Asparagin, pflanzliche oder tierische Extrakte, wie Baumwollsaatöl. Sojaöl, Baumwollsamenmehl oder Hefe-Extrakt zugesetzt.

Die Kultivierung kann entweder unter aeroben oder anaeroben Bedingungen durchgeführt werden. Auch eine gemischte, zunächst aerobe und anschließend anaerobe Kultivierung, wie sie aus der DE 101 30 323 bekannt ist, ist möglich. Temperatur und Luftfeuchtigkeit werden dabei jeweils zum optimalen Wachstum eingestellt. Bevorzugterweise liegt die Temperatur bei der Kultivierung zwischen ca. 20 und ca. 34 °C, insbesondere zwischen ca. 26°C und ca. 28°C. Die Kultivierung kann ferner kontinuierlich, batch- oder satzweise erfolgen.

Die Kultivierung erfolgt vorzugsweise bis zu einem Feststoffgehalt zwischen etwa 1 und etwa 20 %, bevorzugt 3 und 15 % und besonders bevorzugt 4 und 11 %. Insbesondere ist wichtig dass die Kulturbrühe pumpbar bleibt, so dass sie in den nachfolgenden Verfahrensschritten ver- und bearbeitbar bleibt. Ist der Feststoffgehalt zu klein, so muss ein großer Aufwand bei der Aufkonzentrierung oder Trocknung betrieben werden.

Die Kultivierung bzw. Fermentation kann in den üblichen Apparaturen durchgeführt werden. Hierzu kommen alle für die jeweils eingesetzten Mikroorganismen und deren Produkte geeigneten Apparaturen in Betracht. Insbesondere solche, wie sie aus dem Römpp Lexikon Biotechnologie (1992 Georg Thieme Verlag, Stuttgart) unter dem Stichwort "Bioreaktor" auf Seiten 123 - 126 angegeben sind. Besonders bevorzugt ist der Einsatz 25 von Rührkesselreaktoren mit versch. Einbauten, Blasensäulen verschiedener Bauarten, etc.

Die nach dem erfindungsgemäßen Verfahren bereitgestellten Carotinoiden oder deren Vorstufen, insbesondere Bixin, Phytoen oder Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin eignen sich besonders zur Herstellung von Zusätzen für Futter-, Nahrungs- und Nahrungsergänzungsmittel, kosmetischen, pharmazeutischen oder dermatologischen Zubereitungen.

Die Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe aus der Kultur der gentechnisch veränderten Mikroorganismen erfolgt nach zwei Varianten a) oder b), becorzugt ist auch eine Kombination aus a) und b);

10

15

20

a:

- 1) Abtrennung der Biomasse,
 - IA) ggf. Waschen der Biomasse mit einem Carotinoide nicht lösenden Lösungsmittel, insbesondere Wasser,
 - IB) Sterilisation und Zellaufschluß der Biomasse,
 - IC) ggf. Trocknung und/oder homogene Verteilung und
- II) partielle Extraktion der Carotinoide aus der aufgeschlossenen Biomasse mittels eines Carotinoide lösenden Lösungsmittels und Trennung des Lösungsmittels von der Biomasse,
 IIA)

IIA)

- Entfernung von Lösemittelresten aus der Carotinoidhaltigen Biomasse,
- ggf. homogene Suspension der Biomasse mit einem
 Biomasse-Feststoffgehalt > 2 % und < 50 %, und
- Trocknung der Biomasse bzw. Suspension zur Herstellung des Nahrungsmittels,

IIB)

 Kristallisation der Carotinoide aus dem verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration;

25

30

oder b): Homogene Suspendierung der Feststoffe der Kulturbrühe I) und 5 bei einem Feststoffgehalt der Kulturbrühe von > 2 % IIA) ggf. Konzentration der Kulturbrühe auf einen Fest-1) stoffgehalt < 50 % und Trocknung der Kulturbrühe zur Herstellung des Nah-2) 10 rungsmittels oder bei einem Feststoffgehalt von < 2 % der Kulturbrühe, IIB) Konzentration der Kulturbrühe auf einen Feststoffge-1) 15 halt > 2 % und < 50 % und 2) Trocknung der Suspension zur Herstellung des Nahrungsmittels, oder 20 unabhängig vom Feststoffgehalt der Kulturbrühe, IIC) Abtrennung der Biomasse, 1) ggf. Waschen der Biomasse mit Carotinoide nicht lö-2) senden Lösungsmitteln, insbesondere Wasser, Sterilisation und Zellaufschluß, 3) 25 agf. Trocknung und homogene Verteilung, 4) partielle Extraktion der Carotinoide aus der Biomasse 5) mittels eines Carotinoide lösendes Lösungsmittels, Abtrennung der Carotinoid-haltigen Biomasse vom 5a) Carotinoid-haltigen Lösungsmittel,

- 5b) Entfernung von Lösemittelresten aus der Biomasse und
- 5c) Trocknung der Biomasse zur Herstellung des Nahrungsmittels,
- 6) Kristallisation der Carotinoide aus dem in 5a) verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration.
- Die erfindungsgemäße Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe aus der Kultur der gentechnisch veränderten Mikroorganismen erfolgt nach zwei Varianten a) oder b) ermöglicht die gleichzeitige Herstellung von zwei Produkten.

20

25

5

- Durch die erfindungsgemäße Kombination der Herstellung von zwei Produkten, insbesondere bei der Bereitstellung gemäß Variante a), nämlich dem mindestens einem Carotinoid und dem Carotinoid-haltigem Nahrungsmittel ist keine vollständige Extraktion der Carotinoide aus der Biomasse nötig, so dass der Aufwand bei der Extraktion geringer ausfällt. Das Carotinoid muss trotz vollständiger Verwertung nur partiell extrahiert werden, ohne dass es zu Produktverlusten kommt. Dies bedingt geringere Lösungsmittelmengen und damit einhergehend einen geringeren Aufwand bei den Maßnahmen zu deren Wiederverwendung. Zudem werden Abfälle weitestgehend vermieden, da die Biomasse nicht als Abfall anfällt, sondern zum hochwertigen Nahrungsmittel weiterverarbeitet wird. Somit ergeben sich geringere Kosten für die Verfahren durch Ausnutzen von Synergien.
- Nach dem erfindungsgemäßen Verfahren mit Bereitstellung gemäß Variante b) erhältliche Nahrungsmittel enthalten also bereits nach der Herstel-

10

15

20

25

30

lung große Mengen an Carotinoiden, die nicht zugesetzt werden müssen. Dadurch, dass das Nahrungsmittel neben dem mindestens einen Carotinoid auch Blakeslea trispora enthält ist sein Nährstoffgehalt zudem gesteigert. Insbesondere ist der Nährstoffgehalt nach den bevorzugten Alternativen IIA und IIB stark gesteigert, da es neben dem mindestens einen Carotinoid und Blakeslea trispora zusätzlich alle Medienbestandteile der Fermentation enthält. Ferner benötigt das Verfahren keine zusätzlichen, aufwendigen Aufarbeitungs- und Herstellungsschritte, sondern die homogenisierte und ggf. entwässerte Blakeslea trispora-haltige Kulturbrühe kann direkt ohne Umwege zur Herstellung des Nahrungsmittels getrocknet werden. Es fallen demnach praktisch keine Abfälle an, abgesehen vom wässrigem Medium bei der Alternative IIB, welches jedoch unproblematisch in einer Kläranlage gereinigt werden kann. Zusätzlich wird in allen drei Alternativen die gesamte Produktionsmenge Carotinoide ohne oder mit nur marginalen Verlusten verwertet, da gemäß IIA und IIB keine verlustreichen Trenn- bzw. Aufarbeitungsschritte vorgenommen werden müssen. Bei der Alternative IIIC wird ebenfalls die gesamte Produktionsmenge Carotinoide ohne oder mit nur marginalen Verlusten verwertet, da ein Teil in der Biomasse zum Nahrungsmittel verarbeitet wird und der andere Teil zur Gewinnung reiner Carotinoide extrahiert wird. Durch die erfindungsgemäße Kombination der Herstellung von zwei Produkten gemäß IIC, nämlich dem Carotinoid-haltigem Nahrungsmittel und den Carotinoiden an sich, ist vorteilhaft, dass wiederum im wesentlichen keine Abfälle entstehen und eine vollständige Extraktion der Carotinoide aus der Biomasse unnötig ist, so dass sonst bei der Extraktion anfallende Aufwand geringer ausfällt. Das oder die wertvollen Carotinoide müssen trotz vollständiger Verwertung nur partiell extrahiert werden, ohne dass es zu Produktverlusten kommt. Dies bedingt geringere Lösungsmittelmengen und damit einhergehend einen geringeren Aufwand bei den Maßnahmen zu deren Wiederverwendung. Zudem werden Abfälle weitestgehend vermieden, da die Biomasse nicht als Abfall anfällt, sondern zum hochwertigen Nahrungsmittel verarbeitet

10

15

20

25

30

wird. Somit ergeben sich geringere Kosten für die Verfahren durch Ausnutzen von Synergien.

Unter "hochrein" soll in der vorliegenden Anmeldung eine Reinheit des mindestens einen Carotinoids von mindestens 95%, bevorzugt > 95%, vorzugsweise > 96%, besonders bevorzugt > 97%, ganz besonders bevorzugt > 98%, höchst bevorzugt > 99% verstanden werden.

Als nach dem erfindungsgemäßen Verfahren herstellbare Carotinoide kommen alle natürlichen und künstlichen Carotine und Xanthophylle in Betracht. Insbesondere ist das mindestens eine Carotinoid aus der Gruppe bestehend aus Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, Lutein, Phytofluen, Bixin und Phytoen ausgewählt. Bevorzugterweise handelt es sich um Astaxanthin oder Zeaxanthin. Die Carotinoide können nach dem erfindungsgemäßen Verfahren einzeln oder als Gemische von zwei oder mehrerer der zuvor genannten Carotinoide erhalten werden. Insbesondere bei Einsatz der weiter unten angegebenen gentechnisch veränderten Organismen (GVO) kann das oder können die Carotinoide gezielt hergestellt werden.

Als Nahrungsmittel werden Zusammensetzungen angesehen, die der Ernährung dienen. Darunter fallen auch Zusammensetzungen für die Ergänzung der Ernährung. Insbesondere werden als Nahrungsmittel Tierfuttermittel und Tierfutterergänzungsmittel angesehen.

Nach der Kultivierung kann, gemäß Variante a) der Bereitstellung, die Biomasse von der Kulturbrühe abgetrennt. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden zur fest/flüssig-Trennung eingesetzt werden. Hierunter fallen insbesondere die mechanischen Verfahren, wie Filtration und Zentrifugation, die auf der

15

20

25

30

Ausnutzung von Schwerkraft, Zentrifugalkraft, Druck oder Vakuum beruhen. Zu den einsetzbaren Verfahren und Apparaten gehören daneben u. a. Querstromfiltration bzw. Mebrantechniken wie Osmose, umgekehrte Osmose, Mikrofiltration, Ultrafiltration, Nanofiltration, Kuchenfiltrationsverfahren (z.B. mittels Pressfilterautomaten, (Membran-, Rahmen- oder Kammer-)Filterpressen, (Rühr-)drucknutschen, Saugnutschen, (Vakuum-)bandfiltern, (Vakuum-)Trommelfiltern, Drehfiltern, Kerzenfiltern), Zentrifugationsverfahren mittels kontinuierlich oder diskontinuierlich betriebener Zentrifugen oder Filterzentrifugen (z.B. Stülpfilterzentrifugen, Schälzentrifugen, Schubzentrifugen, Siebschneckenzentrifugen, Gleitzentrifugen, Separatoren oder Dekantern), Verfahren unter Ausnutzung der Schwerkraft wie Flotation, Sedimentation, Sink-Schwimm-Aufbereitung und Klären. Bevorzugterweise erfolgt die Abtrennung der Biomasse von der Kulturbrühe durch Zentrifugation mittels eines Dekanters oder durch Filtration, mittels einer Mebranfiltrationseinheit durchgeführt.

In dem zweiten Schritt der Bereitstellung nach Variante b) wird eine homogen verteilte Suspension der Feststoffe in der Kulturbrühe erzeugt. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden verwendet werden. Insbesondere kommen dazu Dispergiergeräte, wie ein Ultra-Turrax® (im Labormaßstab) zum Einsatz. Ein Zellaufschluss ist nicht notwendig, kann aber vorgenommen werden.

Falls notwendig, kann die Kulturbrühe entwässert werden, um einen geeigneten Feststoffgehalt zwischen > 2 % und < 50 % zu erreichen. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden zur fest/flüssig-Trennung eingesetzt werden. Hierunter fallen insbesondere die mechanischen Verfahren, wie Filtration und Zentrifugation, die auf der Ausnutzung von Schwerkraft, Zentrifugalkraft, Druck oder Vakuum beruhen. Zu den einsetzbaren Verfahren und Apparaten gehören daneben u. a. Querstromfiltration bzw. Mebrantechniken wie Osmose,

umgekehrte Osmose, Mikrofiltration, Ultrafiltration, Nanofiltration, Kuchenfiltrationsverfahren (z.B. mittels Pressfilterautomaten, (Membran-, Rahmen- oder Kammer-)Filterpressen, (Rühr-)drucknutschen, Saugnutschen, (Vakuum-)bandfiltern, (Vakuum-)Trommelfiltern, Drehfiltern, Kerzenfiltern), Zentrifugationsverfahren mittels kontinuierlich oder diskontinuierlich betriebener Zentrifugen oder Filterzentrifugen (z.B. Stülpfilterzentrifugen, Schälzentrifugen, Schubzentrifugen, Siebschneckenzentrifugen, Gleitzentrifugen, Separatoren oder Dekantern), Verfahren unter Ausnutzung der Schwerkraft wie Flotation, Sedimentation, Sink-Schwimm-Aufbereitung und Klären. Bevorzugterweise erfolgt die Abtrennung der Biomasse von der Kulturbrühe durch Zentrifugation mittels eines Dekanters oder wird durch Filtration, mittels einer Mebranfiltrationseinheit durchgeführt. Anschließend wird die Kulturbrühe getrocknet. Hierzu können wiederum alle dem Fachmann bekannten Verfahren und Apparate eingesetzt werden.Insbesondere eignen sich Apparate zur thermischen Trocknung wie Konvektions-, Kontakt- und Strahlungstrocknung, z.B. Horden-, Kammer-, Kanal-, Flachbahn-, Teller-, Drehtrommel-, Rieselschacht-, Siebband-, Strom-, Wirbelschicht-, Fließbett-, Schaufel-, Kugelbett-, , Heizteller-, Dünnschicht-, Walzen-, Band-, Siebtrommel-, Schnecken-, Taumel-, Kontakt-Scheiben-, Infrarot-, Mikrowellen- und Gefriertrockner, Sprühtrockner oder Sprühtrockner mit integrierter Wirbelschicht, die durch Dampf, Öl, Gas oder elektrischen Strom ggf. beheizt und ggf. unter Vakuum betrieben werden. Die Betriebsweie kann dabei je nach Apparat kontinuierlich oder diskontinuierlich sein. Daneben oder damit in Kombination können die oben bereits angegeben mechanischen Verfahren zur Fest/flüssig-Trennung verwendet werden.

Eine Granulierung durch Extrusion wie dies aus der WO 97/36996 A2 hervorgeht ist jedoch nicht notwendig. Durch die Trocknung wird das Nahrungsmittel haltbar und lagerfähig.

10

15

20

25

Insbesondere wird die Kulturbrühe sprühgetrocknet. Bevorzugt wird zur Trocknung die Sprühtrocknung eingesetzt, wie sie aus der DE 101 04 494 A1, DE-A-12 11 911 oder EP 0 410 236 A1 bekannt sind. Ergänzend wird auf vgl. Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Sprühtrocknung" und Römpp Lexikon Biotechnologie, Georg Thieme Verlag, 1992, "Zerstäubungstrocknung" verwiesen. Die Sprühtrocknung bietet den Vorteil der kurzen Verweilzeit des Produkts in der heißen Zone des Trockners, so dass eine besonders schonende Trocknung erzielt wird.

10

Bei der Sprühtrocknung werden Eingangstemperaturen von ca. 115°C – 180°C, bevorzugt 120°C –130°C, und Ausgangstemperaturen von ca. 50°C – 80°C, bevorzugt 55°C – 70°C gewählt. Als Trocknungsgas wird vorzugsweise Stickstoff eingesetzt.

15

20

Gegebenenfalls können zur Erzielung einer besseren Rieselfähigkeit Rieselhilfsmittel, wie Kieselsäuren etc. zugesetzt werden. Der Einsatz von inerten Trägermaterialien, d.h. niedermolekularen anorganischen Trägern wie NaCl, CaCO3, Na2SO4 oder MgSO4, organischen Trägern wie Glucose, Fructose, Saccharose, Dextrine oder Stärkeprodukten (Roggen-, Gersten-, Hafermehl, Weizengrießkleie) ist denkbar.

Das getrocknete Produkt weist bevorzugt eine Restfeuchte von weniger als 10 %, bevorzugt weniger als 5 % bezogen auf die Trockenmasse auf. Sein Carotinoidgehalt liegt zwischen 0,05 und 20 %, insbesondere 1 und 10 % bezogen auf die Trockenmasse.

25

Das so hergestellte Nahrungsmittel kann entweder direkt verwendet werden oder mittels weiterer Zusätze aufbereitet werden, so wie dies ebenfalls aus der DE 101 04 494 A1 bekannt ist.

WO 2004/063359 PCT/EP2004/000099

Gemäß der Alternative IIC wird nach der Kultivierung und vor der Trocknung der Biomasse, die Biomasse von der Kulturbrühe zunächst abgetrennt. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden zur fest/flüssig-Trennung eingesetzt werden, wie sie bereits oben bei der Entwässerung genannt wurden. Bevorzugterweise erfolgt die Abtrennung der Biomasse von der Kulturbrühe durch Zentrifugation mittels eines Dekanters oder durch Membranfiltration durchgeführt.

5

20

25

30

Anschließend erfolgt optional das Waschen der Biomasse mit einem Carotinoide nicht lösenden Lösungsmittel, insbesondere Wasser, wodurch insbesondere Wasser lösliche Komponenten entfernt werden. Dieser Schritt
kann gegebenenfalls unter Verwendung weiterer Carotinoide nicht lösenden Lösungsmittel (z. B. Alkohole) ergänzt werden, was aber im Rahmen
der Erfindung nicht notwendig ist und zur Vermeidung von Abfällen nicht
bevorzugt ist.

Anschließend erfolgen die Sterilisation und der sich anschließende oder gleichzeitige Zellaufschluß der Zellen in der Biomasse. Durch die Sterilisation werden die Mikroorganismen abgetötet und gegebenenfalls vorhandene Enzymaktivität beendet. Dies ist zur Verhinderung des Abbaus der Biomasse bzw. der darin enthaltenen Stoffe, insbesondere der Carotinoide und für die Haltbarkeit von Bedeutung.

Die Sterilisation kann mit einem üblichen, dem Fachmann geläufigen Verfahren durchgeführt werden. Hierzu gehören die Sterilisation mittels Dampf, insbesondere bei Temperaturen größer 120 °C unter Druck (≥ 1 bar) und Zeitdauern von ≥ ca. 20 min. sowie die Behandlung mit energiereichen Strahlen, wie UV-, Mikrowellen, Gamma- oder Beta-Strahlen. Bevorzugterweise erfolgt die Sterilisation im Rahmen des erfindungsgemäßen Verfahrens mittels Dampf oder Mikrowellenstrahlung.

Durch den nachfolgenden oder gleichzeitigen Zellaufschluß, werden die innerhalb der Zellen vorliegenden Carotinoide freigesetzt. Der Zellaufschluß kann ebenfalls mit allen dem Fachmann bekannten üblichen Verfahren erfolgen. Hierzu gehören mechanische und nicht mechanische Methoden. Zu den mechanischen Methoden zählen Trockenmahlen, Naßmahlen, Rühren, Homogenisieren (z.B. im Hochdruckhomogenisator) und die Verwendung von Ultraschall oder Mikrowellen. Als nicht mechanische Methoden kommen physikalische, chemische und biochemische Methoden in Betracht. Hierzu gehören Kurzzeiterhitzen, Kurzzeitgefrieren, Osmotischer Schock, Trocknung, Behandlung mit Säuren oder Laugen sowie ein enzymatischer Aufschluss. Günstiger Weise wird zum Zellaufschluss jedoch das zur Sterilisation verwendete Verfahren eingesetzt. Bevorzugterweise wird also ebenfalls der Zellaufschluss mittels Dampf oder Mikrowellen Strahlung durchgeführt.

15

20

10

Die Sterilisation und/oder der Zellaufschluss können kontinuierlich oder diskontinuierlich durchgeführt werden.

Die Sterilisation und/oder der Zellaufschluss können im zur Kultivierung eingesetzten Bioreaktor oder in anderen Apparaturen, wie Autoklaven usw. durchgeführt werden. Bei kontinuierlicher Durchführung kann das aus der WO 01/83437 A1 bekannte Mikrowellen verwendende Verfahren und entsprechende Apparaturen eingesetzt werden.

Vor der Extraktion wird die Biomasse gegebenenfalls getrocknet und/oder homogenisiert. Hierzu können wiederum alle dem Fachmann bekannten üblichen Verfahren und Geräte eingesetzt werden. Insbesondere eignen sich Apparate zur thermischen Trocknung wie Konvektions-, Kontakt- und Strahlungstrocknung, z.B. Horden-, Kammer-, Kanal-, Flachbahn-, Teller-, Drehtrommel-, Rieselschacht-, Siebband-, Strom-, , Wirbelschicht-, Fließbett-, Schaufel-, Kugelbett-, , Heizteller-, Dünnschicht-, Walzen-, Band-,

15

20

Siebtrommel-, Schnecken-, Taumel-, Kontakt-Scheiben-, Infrarot-, Mikrowellen- und Gefriertrockner, Sprühtrockner oder Sprühtrockner mit integrierter Wirbelschicht, die durch Dampf, Öl, Gas oder elektrischen Strom ggf. beheizt und ggf. unter Vakuum betrieben werden. Die Betriebsweise kann dabei je nach Apparat kontinuierlich oder diskontinuierlich sein. Daneben oder damit in Kombination können die oben bereits angegeben mechanischen Verfahren zur Fest/flüssig-Trennung verwendet werden.

Eine Granulierung durch Extrusion wie dies aus der WO 97/36996 A2 hervorgeht ist jedoch nicht notwendig.

Anschließend erfolgt die partielle Extraktion der Carotinoide aus der aufgeschlossenen Biomasse mittels eines Carotinoide lösenden Lösungsmittels und Trennung des Lösungsmittels von der Biomasse. Sowohl in dem Lösungsmittel als auch in der Biomasse sind nun Carotinoide enthalten, wobei sich in dem Lösungsmittel bevorzugterweise der Großteil der Carotinoide befindet.

Aus dem Lösungsmittel werden anschließend die hochreinen Carotinoide isoliert, wohingegen die Biomasse zu einem hochwertigen, Carotinoidhaltigen Nahrungsmittel weiterverarbeitet wird, welches durch den vorhergehenden Zellaufschluss auch eine gute Bioverfügbarkeit der Carotinoide aufweist.

- 25 Unter partieller Extraktion soll demnach die bewusst unvollständige Extraktion der Carotinoiden aus der Biomasse verstanden werden (vgl. oben). Bevorzugterweise wird im Rahmen der Erfindung durch die Extraktion also weniger als 100 % der in der Biomasse enthaltenen Gesamtmenge der Carotinoide aus dieser extrahiert.
- Dies ist von großem Vorteil, da der Aufwand zur Extraktion mit der abnehmenden Menge Carotinoid in der Biomasse überproportional zunimmt.

10

15

20

Zur Extraktion werden Lösungsmittel eingesetzt, die Carotinoide lösen, wie z. B. Hexan, Ethylacetat, Dichlormethan oder überkritisches Kohlendioxid. Bevorzugterweise wird erfindungsgemäß als Lösungsmittel Dichlormethan oder überkritisches Kohlendioxid eingesetzt, wobei beim Einsatz von überkritischem Kohlendioxid die darin enthaltenen Carotinoide anschließend in Dichlormethan überführt werden können oder das Wertprodukt direkt durch Entspannung des Kohlendioxids gewonnen werden kann. Dabei werden die Mengen der Lösungsmittel und Durchmischungszeiten derart gewählt, dass die gewünschte Menge Carotinoide aus der Biomasse extrahiert wird. Insbesondere wird der Extraktionsschritt nur einmal durchgeführt, was technisch und wirtschaftlich sinnvoll ist (vgl. oben).

Zur Durchführung der Extraktion können alle üblichen Verfahren und Apparaturen eingesetzt werden. Insbesondere wird bei nicht getrockneter, aber aufgeschlossener Biomasse eine flüssig/flüssig (Carotinoid liegt in flüssigen Zellbestandteilen gelöst vor und wird daraus extrahiert und bei getrockneter Biomasse eine fest/flüssig Extraktion durchgeführt. Es können Kalt- und Heißextraktion in bestimmten Temperaturbereichen, sowohl kontinuierliche (z.B. Soxhlet-Extraktion, Perforation und Perkolation) als auch diskontinuierliche Verfahren, zu denen beispielsweise Ausschütteln, Auslaugen, Auskochen und Digerieren gehören, verwendet werden. Sie können auch im Gegenstromverfahren durchgeführt werden.

Für die flüssig/flüssig Extraktion können beispielsweise Blasensäulen, , pulsierende Kolonnen, Kolonnen mit rotierenden Einbauten, Mixer-Settler-Batterien oder Rührkessel usw. verwendet werden.

Die fest/flüssig Extraktion kann mittels üblicher Apparaturen durchgeführt werden. Vorzugsweise werden Rührkessel oder Mixer-Settler-Apparate eingesetzt.

Alternativ kann der Zellaufschluß ohne vorherige Abtrennung des Fermentaionsmediums erfolgen und sich dann eine direkte Trennung einer sich bildenden Carotinoidsuspension von der Biomasse z. B. mittels eines Dekanters durchgeführt werden. Anschließend wird die Carotinoidsuspension in Dichlormethan aufgenommen und weiterverarbeitet oder alternativ durch Wäschen mit verschiedenen wässrigen Lösungen aufgereinigt.

Zur Isolierung der hochreinen Carotinoide aus dem Lösungsmittel wird eine Kristallisation der Carotinoide aus dem verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration durchgeführt. Die verbleibende Mutterlauge kann nach Destillation dem Verfahren erneut zugeführt werden, so dass Produktverluste trotz geringem Aufwand minimiert werden.

15

30

10

5

Die Kristallisation kann wie üblich erfolgen. Ergänzend wird auf vgl. Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Kristallisation" verwiesen.

Bevorzugterweise erfolgt die Kristallisation durch graduellen Lösungsmittelaustausch gegen ein Carotinoide nicht lösendes Lösungsmittel. Es wird also kontinuierlich die Löslichkeit der Carotinoide erniedrigt, bis diese als reine Kristalle ausfallen. Hierbei wird vorzugsweise ein "niederer Alkohol" oder Wasser verwendet. Als niederer Alkohol werden aliphatische Alkohole mit 1 bis 4 Kohlenstoffatomen angesehen. Hierzu gehören Methanol, Ethanol, Propanol, Isopropanol, 1-Butanol, tert.-Butanol und sec.-Butanol. Bevorzugterweise wird Methanol eingesetzt.

Die Carotinoid-Lösung kann dabei erwärmt werden, wobei die Temperatur vorzugsweise < 100 °C, insbesondere < 60 °C gehalten wird, so dass Dichlormethan abdestilliert wird. Auch der Einsatz von Vakuum ist denk-

bar. Anschließend werden die CarotinoidKristalle isoliert, welches durch übliche Maßnahmen, insbesondere durch Filtration erfolgen kann. Es können sich, falls gewünscht, weitere optionale Trocknungs- und/oder Reinigungsschritte anschließen. Notwendig sind diese jedoch nicht, da die Carotinoid Kristalle bereits hochrein sind.

Die Carotinoide fallen als hochreine Kristalle an und weisen eine Reinheit von mindestens 95%, bevorzugt > 95%, vorzugsweise > 96%, besonders bevorzugt > 97%, ganz besonders bevorzugt > 98%, höchst bevorzugt > 99% auf.

Die erzielbaren Ausbeuten liegen zwischen 45% und 95%, bevorzugt zwischen 70% und 95% bezogen auf die in der Kulturbrühe vorliegende Menge (0.5 - 15 g/L), bevorzugt 1 - 10 g/L).

15

20

25

30

10

5

Zur Weiterverarbeitung der ebenfalls Carotinoid-haltigen Biomasse zu einem hochwertigen Nahrungsmittel wird zunächst eine Entfernung von Lösemittelresten aus der Carotinoid-haltigen Biomasse vorgenommen. Hierzu erfolgt bevorzugterweise eine Wasserdampfdestillationen bzw. ein so genanntes Strippen mit Wasserdampf (vgl. Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Strippen").

Danach kann gegebenenfalls die Biomasse in der oben abgetrennten Kulturbrühe homogen suspendiert werden, wobei ein Feststoffgehalt > 100 g/L und < 600 g/L eingehalten werden sollte, so daß die nachfolgende Trocknung der Biomasse bzw. Suspension zur Herstellung des Nahrungsmittels ohne technische Schwierigkeiten erfolgen kann. D.h. die Suspension muß pumpbar sein. Als Trocknungsverfahren kommen alle bereits genannten Verfahren und Apparaturen in Frage. Insbesondere wird zur Trocknung die Sprühtrocknung eingesetzt. Dabei kann wie aus der DE 101 04 494 A1 bekannt verfahren werden.

Bei der Sprühtrocknung werden Eingangstemperaturen von ca. 100°C – 180°C, bevorzugt 120°C –130°C, und Ausgangstemperaturen von ca. 50 – 80°C, bevorzugt 55°C – 70°C gewählt. Als Trocknungsgas wird vorzugsweise Stickstoff eingesetzt.

Das so hergestellte Nahrungsmittel kann entweder direkt verwendet werden oder mittels weiterer Zusätze aufbereitet werden, so wie dies ebenfalls aus der DE 101 04 494 A1 bekannt ist.

10

15

20

25

30

Als Nahrungsmittel werden Zusammensetzungen angesehen, die der Ernährung dienen. Darunter fallen auch Zusammensetzungen für die Ergänzung der Ernährung. Insbesondere werden als Nahrungsmittel Tierfuttermittel und Tierfutterergänzungsmittel angesehen. Ergänzend wird auf Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Nahrungsmittel" verwiesen.

Das trockene Produkt weist bevorzugt eine Restfeuchte von weniger als 5 % bezogen auf die Trockenmasse auf. Sein Carotinoidgehalt liegt zwischen 0,05 und 20 %, insbesondere 1 und 10 % bezogen auf die Trokkenmasse. Der gewünschte Carotinoidgehalt ist über das Ausmaß der Extraktion steuerbar (vgl. oben).

Nach dem erfindungsgemäßen Verfahren erhältliche Nahrungsmittel enthalten also bereits nach der Herstellung große Mengen an Carotinoiden, die nicht zugesetzt werden müssen. Dadurch, dass das Nahrungsmittel neben dem mindestens einen Carotinoid auch Biomasse enthält ist sein Nährstoffgehalt zudem gesteigert. Insbesondere ist der Nährstoffgehalt nach der bevorzugten Alternative stark gesteigert, im dem es neben dem mindestens einen Carotinoid und Biomasse zusätzlich alle Medienbestandteile der Fermentation enthält. Es fallen demnach praktisch keine

Abfälle an, abgesehen von wässrigen Medien, welche jedoch unproblematisch in einer Kläranlage gereinigt werden können. Zusätzlich wird die gesamte Produktionsmenge Carotinoide ohne oder mit nur marginalen Verlusten verwertet, da keine verlustreichen Trenn- bzw. Aufarbeitungsschritte vorgenommen werden müssen, um die gesamte Menge Carotinoid zu extrahieren.

Die in dem oben beschriebenen, erfindungsgemäßen Verfahren eingesetzten Lösungsmittel werden alle soweit wie möglich aufbereitet und anschließend wieder verwendet bzw. dem Verfahren erneut zugeführt. Insbesondere wird das eingesetzte Dichlormethan bereits beim Lösungmittelaustausch gereinigt und steht anschließend zur erneuten Verwendung bereit. Der niedere Alkohol bzw. das Methanol wird z. B. destillativ gereinigt und ebenfalls wieder verwendet. Als Abfall fallen lediglich der Destillationssumpf an, der zusammen mit den wässrigen Medien gefahrlos einer Kläranlage zugeführt werden kann, wo letztendlich nur eine geringe Menge Klärschlamm als tatsächlicher Abfall anfällt. Somit ist das beschriebene Verfahren im wesentlichen abfallfrei.

20

30

15

10

Die Erfindung wird nachfolgend an Hand von Beispielen näher ausgeführt.

25 A) Kultivierung von Blakeslea trispora

Folgende Medien wurden zur Fermentation von Blakeslea trispora zur Produktion der Carotinoide eingesetzt:

Medium 1:

Glucose 10,00 g/l
Baumwollsaatoel 30,00 g/l
Sojaoel 30,00 g/l

	Dextrin	60,00 _, g/l
	Baumwollsamenmehl	75,00 g/l
	Triton X 100	1,20 g/l
	Ascorbinsäure	6,00 g/l
. 5	Milchsäure	2,00 g/l
	KH₂PO₄	0,50 g/l
	MnSO₄ x H2O	100 mg/l
	Thiamin-HCI	2 mg/l
	Isoniazid (Isonicotinsäurehydrazid)	0,75 g/l
10	Der pH wurde auf 6,5 eingestellt.	
		•
	Medium 2:	
	Glucose	20 g/l
	Asparagin	2,00 g/l
15	KH ₂ PO ₄	5,00 g/l
	MgSO ₄ x 7 H₂O	0,50 g/l
	CaCl ₂	28 mg/l
	Thiamin-HCl	1,00 mg/l
	Citronensäure	2,00 mg/l
20	Fe(NO ₃) ₃ x 9 H ₂ O	1,50 mg/l
	ZnSO ₄ x 7 H ₂ O	1,00 mg/l
	MnSO₄ x H₂O	0,30 mg/l
	CuSO ₄ x 5 H ₂ O	0,05 mg/l
	Na ₂ MoO ₄ x 2 H ₂ O	0,05 mg/l
25		
	Medium 3	
	Glucose	70,00 g/l
30	Asparagin	2,00 g/l
	Hefe Extrakt	1,00 g/l

KH ₂ PO ₄	1,50 g/l
MgSO ₄ x 7 H₂O	0,50 g/l
Span 20	1,00 g/l
Thiamin-HCl	5,0 mg/l

5 Der pH wurde auf 5,5 eingestellt.

Mit Sporensuspensionen von Blakeslea trispora ATCC 14272 Mating Type (–) die 10⁸ (für Medium 2) bzw. 10⁷ (für Medium 1 und 3) Sporen enthielten, wurden je 200 ml der beschriebenen Medien angeimpft. Die Kultivierung erfolgte jeweils in 1-l-Erlenmeyerkolben mit Schikanen. Mit jedem Medium wurden sechs identische Kolben angesetzt und über 7 Tage bei 28°C und 140 UpM im Schüttler inkubiert.

B) Gentechnische Veränderung von Blakeslea Trispora

15

10

Material und Methoden

Molekulargenetische Arbeiten wurden, wenn nicht anders beschrieben, nach den Methoden in Current Protocols in Molecular Biology (Ausubel et al., 1999, John Wiley & Sons) durchgeführt.

20

25

30

Stämme und Wachstumsbedingungen

Die Blakeslea trispora Stämme ATCC 14271 (Paarungstyp(+)) und ATCC14272 (-) (ein Wildtyp) wurde erhaltenPaarungstyp (-)) wurden von der American Type Culture Collection. erhalten. Die Anzucht von B. trispora erfolgte in MEP-Medium (Malzextrakt-Pepton-Medium): 30 g/l Malzextrakt (Difco), 3 g/l Pepton (Soytone, Difco), 20 g/l Agar, Einstellung pH 5,5, ad 1000 ml mit H₂O bei 28 °C.

Die Anzucht von Agrobacterium tumefaciens LBA4404 erfolgte nach Hoekema et al. (1983, Nature 303:179-180) bei 28 °C für 24 h in Agrobacterien-Minimal Medium (AMM): 10 mM K₂HPO₄, 10 mM KH₂PO₄, 10 mM Glu-

20

25

30

cose, MM-Salze (2,5 mM NaCl, 2 mM MgSO₄, 700 μ M CaCl₂, 9 μ M FeSO₄, 4 mM (NH₄)₂SO₄).

Transformation von Agrobacterium tumefaciens

Das Plasmid pBinAHyg wurde in den Agrobakterienstamm LBA 4404 (Hoekema et al., 1983, Nature 303:179-180) elektroporiert (Mozo and Hooykaas, 1991, Plant Mol. Biol. 16:917-918). Zur Selektion wurden bei der Agrobakterienanzucht folgende Antibiotika verwendet: Rifampicin 50 mg/l (Selektion auf das *A. tumefaciens* Chromosom), Streptomycin 30 mg/l (Selektion auf das Helferplasmid) und Kanamycin 100 mg/l (Selektion auf den binären Vektor).

Transformation von Blakeslea trispora

Zur Transformation wurden die Agrobakterien nach 24 h Anzucht in AMM auf eine OD $_{600}$ von 0,15 in Induktionsmedium (IM: MM-Salze, 40 mM MES (pH 5,6), 5 mM Glucose, 2 mM Phosphat, 0,5% Glycerol, 200 μ M Acetosyringone) verdünnt und erneut über Nacht in IM bis zu einer OD $_{600}$ von ca. 0,6 angezogen.

Zur Co-Inkubation von *Blakeslea* ATCC 14271 bzw. ATCC14272 und *Agrobacterium* wurden 100 μl Agrobakteriensuspension mit 100 μl Blakeslea Sporensuspension (10⁷ Sporen/ml in 0,9% NaCl) gemischt und steril auf einer Nylon Membran (Hybond N, Amersham) auf IM-Agarose Platten (IM + 18 g/l Agar) verteilt. Nach 3 Tagen Inkubation bei 26 °C wurde die Membran auf eine MEP-Agarplatte (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) überführt. Zur Selektion auf transformierte Blakesleazellen enthielt das Medium Hygromycin in einer Konzentration von 100 mg/l sowie zur Selektion gegen Agrobakterien 100 mg/l Cefotaxim. Die Inkubation erfolgte für ca. 7 Tage bei 26 °C. Anschließend erfolgte der Transfer von Mycel auf frische Selektionsplatten. Gebildete Sporen wurden mit 0,9% NaCl abgespült und auf CM17-1-Agar (3 g/l Glucose, 200 mg/l L-

Asparagin, 50 mg/l MgSO₄ x 7H₂O, 150 mg/l KH₂PO₄, 25 μg/l ThiaminHCl, 100 mg/l Yeast Extract, 100 mg/l Na-desoxycholat, 100 mg/L Hygromycin, 100 mg/L Cefotaxim, pH 5,5,18 g/l Agar) ausplattiert. Zur Isolierung einzelner gentechnisch veränderter Sporen wurden die Sporen durch ein FACS Gerät der Fa. BectonDickson (Modell Vantage+Diva Option) einzeln auf Selektivmedium abgelegt.

Mutagenese mit MNNG

Zur Reduzierung der Anzahl von Kernen pro Spore wurde eine Behandlung von Sporensuspensionen mit MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) durchgeführt. Hierfür wurde zunächst eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCl-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 μg/ml zugegeben. Die Zeit der Inkubation in MNNG wurde so gewählt, dass die Überlebensrate der Sporen ca. 5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7,0 gewaschen und plattiert.

Selektion homonukleater Zellen

Die Selektion homonukleater Zellen von Blakeslea trispora carB⁻ erfolgte analog zum Versuchsprotokoll für Phycomyces blakesleeanus (Roncero et al., 1984, Mutation Research, 125:195-204), modifiziert durch Wachstum in Gegenwart von 5-Carbon-5-Deazariboflavin (1 μg/ml) und Hygromycin 100 (μg/ml).

25

10

15

Herstellung genetisch veränderter Blakeslea trispora durch Agrobacterium-vermittelte Transformation

15

Herstellung des rekombinanten Plasmids pBinAHyg

Aus dem Plasmid pANsCos1 (Fig.1, Osiewacz, 1994, Curr. Genet. 26:87-90, SEQ ID NO: 4) wurde die gpdA-hph-trpC-Kassette als BgIII/HindIII Fragment isoliert und in das mit BamHI/HindIII geöffnete binäre Plasmid pBin19 (Bevan, 1984, Nucleic Acids Res. 12:8711-8721) ligiert. Der so erhaltene Vektor wurde als pBinAHyg bezeichnet (Fig. 2, SEQ ID NO: 3) und enthielt das *E. coli* Hygromycin-Resistenzgen (hph) unter Kontrolle des gpd Promotors (SEQ ID NO: 1) und des trpC Terminators (SEQ ID NO: 2) aus *Aspergillus nidulans* sowie die entsprechenden Bordersequenzen, die für den DNA-Transfer von *Agrobacterium* notwendig sind. Die in den weiter unten beschriebenen Ausführungsbeispielen genannten Vektoren sind Abkömmlinge von pBinAHyg.

Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Agrobacterium tumefaciens

Nachfolgend wird beispielhaft die Übertragung des Plasmids pBinAHyg in Agrobacterien beschrieben. Die Übertragung der Abkömmlinge erfolgte analog.

Das Plasmid pBinAHyg wurde in den Agrobakterienstamm LBA 4404 (Hoekema et al., 1983, Nature 303:179-180) elektroporiert (Mozo and Hooykaas, 1991, Plant Mol. Biol. 16:917-918). Zur Selektion wurden bei der Agrobakterienanzucht folgende Antibiotika verwendet: Rifampicin 50 mg/l (Selektion auf das A. tumefaciens Chromosom), Streptomycin 30 mg/l (Selektion auf das Helferplasmid) und Kanamycin 100 mg/l (Selektion auf den binären Vektor).

Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora

30 Zur Transformation wurden die Agrobakterien nach 24 h Anzucht in AMM auf eine OD₆₆₀ von 0,15 in Induktionsmedium (IM: MM-Salze, 40 mM MES

20

25

(pH 5,6), 5 mM Glucose, 2 mM Phosphat, 0,5% Glycerol, 200 μ M Acetosyringone) verdünnt und erneut über Nacht in IM bis zu einer OD₆₆₀ von ca. 0,6 angezogen.

Zur Co-Inkubation von Blakeslea trispora (B.t.) und Agrobacterium tume-faciens (A.t.) wurden 100 μl Agrobakteriensuspension mit 100 μl Blakeslea Sporensuspension (10⁷ Sporen/ml in 0,9% NaCl) gemischt und steril auf einer Nylon Membran (Hybond N, Amersham) auf IM-Agarose Platten (IM + 18 g/l Agar) verteilt. Nach 3 Tagen Inkubation bei 26 °C wurde die Membran auf eine MEP-Agarplatte (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) überführt.

Zur Selektion auf transformierte Blakeslea-Zellen enthielt das Medium Hygromycin in einer Konzentration von 100 mg/l sowie zur Selektion gegen Agrobakterien 100 mg/l Cefotaxim. Die Inkubation erfolgte für ca. 7 Tage bei 26 °C. Anschließend erfolgte der Transfer von Mycel auf frische Selektionsplatten. Gebildete Sporen wurden mit 0,9% NaCl abgespült und auf CM17-1-Agar (3 g/l Glucose, 200 mg/l L-Asparagin, 50 mg/l MgSO₄ x 7H₂O, 150 mg/l KH2PO4, 25 µg/l Thiamin-HCl, 100 mg/l Yeast Extract, 100 mg/l Na-desoxycholat, pH 5,5, 100 mg/l Cefotaxim, 100 mg/l Hygromycin, 18 g/l Agar) ausplattiert. Die Übertragung von Sporen auf frische Selektionsplatten wurde dreimal wiederholt. Auf diese Weise wurde die Transformante Blakeslea trispora GVO 3005 isoliert. Alternativ erfolgte zur Selektion der GVO (gentechnisch veränderten Organismen) die Einzelablage der Sporen durch den BectonDickinson FacsVantage+Diva Option auf CM-17 Agar mit 100 mg/l Cefotaxim, 100 mg/l Hygromycin. In diesem Fall wurde nur dort Pilzmycel gebildet, wo die Sporen gentechnisch verändert waren.

Nachweis der genetischen Veränderung durch Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora Nachfolgend wird beispielhaft der Nachweis der Übertragung für pBinA-Hyg in Blakeslea trispora beschrieben. Der Nachweis der Übertragung der Abkömmlinge erfolgte analog.

5 200 ml MEP-Medium (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5) wurden mit 10⁵ bis 10⁷ Sporen der Transformante Blakeslea trispora GVO 3005 beimpft und 7 Tage bei 26 °C mit 200 Upm auf einem Rundschüttler inkubiert. Zum Nachweis der erfolgreichen Transformation wurde DNA aus dem Mycel isoliert (Peqlab Fungal DNA Mini Kit) und in einer PCR (Programm: 94 °C 1 min, dann 30 Zyklen mit 1 min. 94°C, 1 min. 58 °C, 1 min. 72 °C) eingesetzt.

Zum Nachweis des Hygromycinresistenzgens (hph) wurden die Primer hph-forward (5'-CGATGTAGGAGGGCGTGGATA, SEQ ID NO: 5) und hph-reverse (5'-GCTTCTGCGGGCGATTTGTGT, SEQ ID NO: 6) verwendet. Das erwartete Fragment von hph wies eine Länge von 800 bp auf.

Zur Amplifikation des Kanamycinresistenzgens nptlll und damit als Kontrolle auf Agrobakterien wurden die Primer nptlll-forward (5'-TGAGAATATCACCGGAATTG, SEQ ID NO: 7) und nptlll-reverse (5'-AGCTCGACATACTGTTCTTCC, SEQ ID NO: 8) verwendet. Das erwartete Fragment von nptlll wies eine Länge von 700 bp auf.

Glycerinaldehyd-3-Fragmentes des Amplifikation eines Zur phosphatdehydrogenasegens gpd1 und damit als Kontrolle auf Blakeslea (5'-**MAT292** wurden die Primer trispora GTGAATGGAAATCCCATCGCTGTC, SEQ ID NO: 9) und MAT293 (5'-AGTGGGTACTCTAAAGGCCATACC, SEQ ID NO: 10) verwendet. Das erwartete Fragment von gpd1 wies eine Länge von 500 bp auf.

25

15

20

Das Ergebnis der PCR der Blakeslea trispora DNA ist in Fig. 3 anhand eines Standard-Gels gezeigt. Die Spuren des Gels wurden folgendermaßen belegt:

5 1) 100 bp Größenmarker (100 bp - 1 kb)

2) B.t. GVO 3005 primer nptlll-for / nptlll-rev
3) B.t. GVO 3005 primer hph-for / hph-rev
4) B.t. GVO 3005 primer MAT292 / MAT293 (gpd)
5) A.t. mit Plasmid pBinAHyg primer nptlll-for / nptlll-rev
10 6) A.t. mit Plasmid pBinAHyg primer hph-for / hph-rev

7) B.t. 14272 WT primer nptlll-for / nptlll-rev

8) B.t. 14272 WT primer hph-for / hph-rev

9) B.t. 14272 WT primer MAT292 / MAT293 (gpd)

In der DNA von Blakeslea trispora wurde das Hygromycinresistenzgens (hph) und als Positivkontrolle Glycerinaldehyd-3-phosphatdehydrogenasegen (gpd1) nachgewiesen. nptlll konnte demgegenüber nicht nachgewiesen werden.

20 Somit wurde die genetische Veränderung von Blakeslea trispora durch Agrobacterium-vermittelte Transformation nachgewiesen.

Isolierung homokaryotischer GVO von Blakeslea trispora:

25 Herstellung homonukleater Stämme

30

Durch erfolgreichen Transfer des Vectors pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora entstandenentstehen genetisch veränderte Organismen. In GVO von Blakeslea trispora. Jedoch liegen in Blakeslea liegen in allen Stadien des vegetativen und des sexuellen Zellzyklus mehrkernige Zellen vor. Daher erfolgte erfolgt die Insertion der VectorFremd-DNA in der Regel nur in einem Kern. Ziel ist es aber, dass,

20

25

30

Stämme von Blakeslea zu erhalten, bei denen die Insertion der Vector-Fremd-DNA in allen Kernen vorliegt., d.h. Ziel ist ein homonukleates rekombinantes Pilzmycel.

Zur Herstellung solcher homokaryotischer Zellen wurden zunächst Sporensuspensionen der rekombinanten Stämme mit MNNG behandelt. Hierfür wurde eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCl-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 μg/ml zugegeben. Die Dauer der Inkubation mit MNNG wurde so gewählt, dass die Überlebensrate der Sporen ~5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7.0 gewaschen und plattiert.

1) Herstellung homonukleater rekombinanter Stämme durch FACS (fluorescence-activated cell sorting)

Ein geringer Anteil der Sporen von Blakeslea trispora bzw. der gentechnisch veränderten Stämme von Blakeslea trispora ist von Natur aus einkernig. Zur Herstellung homonukleater rekombinanter Stämme, die Fremd-DNA von pBinAHyg oder pBinAHyg-Abkömmlingen enthielten, wurden die einkernigen Sporen durch FACS aussortiert und auf MEP (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin plattiert. Die hier gebildten Mycelien waren homonukleat. Zur Sortierung mit FACS wurden die Sporen eines 3 Tage alten Ausstriches mit 10 ml Tris-HCl 50mMol + 0,1% Span20 pro Agar-Platte abgeschwemmt. Die Sporenkonzentration betrug 0,5 bis 0,8 x 10⁷ Sporen pro ml. Zu 9 ml Sporensuspension wurden 1ml DMSO und 10 µl Syto 11 (Farbstoff-Stammlösung in DMSO Molecular Probes Nr.S-7573) zugegeben. Danach wurde 2 h bei 30°C gefärbt. Die Selektion und Ablage erfolgte mittels eines BectonDickinson FacsVantage+Diva Option. Die Selektion erfolgt zuerst nach Größe, um einzelne Sporen von Aggregaten und Verunreinigungen zu trennen. Dann wurden diese Sporen nach ihrer Fluoreszenz (Anregung = 488nm Emission = 530 nm) sortiert abgelegt. Die linke Schulter der Gauß-Kurve der Fluoreszenzhäufigkeitsverteilung enthielt die einkernigen Sporen.

5 Anschließend wurden die Sporen auf MEP-Agarplatten ausplattiert und neue Sporen erzeugt.

Diese Sporen wurden analog zur Vorschrift von Roncero et al. auf Medium mit 5-Carbon-5-deazariboflavin plattiert, das zusätzlich Hygromycin enthielt.

Hierdurch wurden homokaryonte Zellen des Genotyps hyg^R und dar⁻ selektiert.

15

20

25

10

2) Herstellung homonukleater Stämme durch Kernreduktion und Selektion mit FACS

Zur Reduzierung der Anzahl von Kernen pro Spore wurde vor der Selektion eine Behandlung von Sporensuspensionen mit MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) durchgeführt, und so durch chemische Mutagenese eine Kernreduktion erzielt.

Hierfür wurde zunächst eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCl-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 µg/ml zugegeben. Die Zeit der Inkubation in MNNG wurde so gewählt, dass die Überlebensrate der Sporen ca. 5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7,0 gewaschen und nach der unter 1) beschriebenen Methode sortiert bzw. selektiert.

Alternativ konnten zur Reduktion der Kernzahl in den Sporen auch Röntgen – und UV-Strahlen eingesetzt werden, wie es von Cerdá-Olmedo und Patricia Reau in Mutation Res., 9 (1970), 369-384 beschrieben wurde.

5

10

3) Herstellung homonukleater Stämme durch Selektion auf rezessive Selektionsmarker

Als rezessiver Selektionsmarker zur Selektion homonukleater Mycelien kommt beispielsweise der rezessive Selektionsmarker pyrG in Frage. Wildtyp-Stämme von Blakeslea trispora sind pyrG⁺. Diese Stämme können nicht in Gegenwart des Pyrimidin-Analogs 5-Fluororotat (FOA) wachsen, weil sie FOA durch die Orotidin-5'-monophosphatdecarboxylase zu lethalen Metaboliten umsetzen. Gentechnisch veränderte Blakesleaa, die ho-Orotidin-5'-Enzymaktivität die pvrG⁻ sind, fehlt monukleat monophosphatdecarboxylase. Folglich können diese pyrG-Stämme 5-Fluororotat nicht verwerten. Die Stämme wachsen daher in Gegenwart von FOA und Uracil. Im Fall der Kopplung der Mutation pyrG- und der Insertion von Fremd-DNA auf dem Kern einer einkernigen Spore, kann aus dieser Spore homonukleates rekombinantes Pilzmycel gebildet werden.

20

25

15

Zunächst wurde durch Insertion eines Fragentes von pyrG (SEQ ID NO: 65) aus Blakeslea trispora in pBinAHyg das Plasmid pBinAHygBTpyrG-SCO (SEQ ID NO: 36, Fig. 4) erzeugt. Dieses Plasmid wurde in Blakelea trispora transformiert und führte dort durch homologe Rekombination zur Disruption von pyrG.

30

Homonukleate GVO von Blakeslea trispora mit dem Phänotyp pyrG⁻ wurden folgendermaßen selektiert. Zur Agrobakterium-vermittelten Transformation von pBinAHygBTpyrG-SCO wurde wie oben beschrieben auf MEP (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin plattiert. Die Sporen der Transformanten

wurden mit 10 ml Tris-HCl 50mM + 0,1% Span20 pro Agar-Platte abgeschwemmt. Die Sporenkonzentration betrug 0,5 bis 0,8 x 10⁷ Sporen pro ml. Die Sporen wurden anschließend auf FOA-Medium mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin ausplattiert. FOA-Medium enthielt pro Liter 20 g Glucose, 1 g FOA, 50 mg Uracil, 200 ml Citrat-Puffer (0,5 M, pH 4,5) und 40 ml Spurensalzlösung nach Sutter, 1975, PNAS, 72:127). Homonukleate pyrG⁻-Mutanten zeigten Wachstum auf dem Uracil-haltigen FOA-Medium; aber kein Wachstum bei Plattierung auf FOA-Medium ohne Uracil. Auf die gleiche Weise wurden aus den im folgenden beschriebenen GVO von Blakeslea trispora zur Herstellung von Xanthophyllen homonukleate GVO hergestellt.

Alternativ ist es möglich die Sporen analog zur Vorschrift von Roncero et al. auf Medium mit 5-Carbon-5-deazariboflavin zu plattieren, das zusätzlich Hygromycin enthält (Roncero et al., 1984, Mutation Research, 125: 195 - 204). Hierdurch werden homokaryonte Zellen des Genotyps hyg^R und dar selektiert. Nach diesem Prinzip werden homokaryonte Stämme von Blakeslea trispora mit dem Phänotyp hyg^R und dar erzeugt.

20

25

30

15

10

Ausführungsbeispiele zur Herstellung von gentechnisch veränderten Organismen von Blakeslea trispora für die Herstellung von Carotinoiden und Carotinoidvorstufen

Die Erzeugung der im folgenden genannten Plasmide erfolgte durch die Methode "overlap-extension PCR" und durch anschließende Insertion der Amplifikationsprodukte in das Plasmid pBinAHyg. Die Methode "overlapextension PCR" erfolgte wie in Innis et al. (Eds.) PCR protocols: a guide to methods and applications, Academic Press, San Diego beschrieben. Die Transformation der pBinAHyg-Abkömmlinge und die Herstellung homonukleater gentechnisch veränderter Stämme von Blakeslea trispora erfolgte wie oben beschrieben.

30

Gentechnisch veränderte Stämme von Blakeslea trispora zur Herstellung von Zeaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Zeaxanthin verwendet, codieren also u.a. Hydroxylasen (crtZ):

- p-tef1-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ (SEQ ID NO: 70) aus Haematococcus pluvialis Flotow NIES-144 (Accession No. AF162276) unter Kontrolle des ptef1 Promotors aus Blakeslea trispora (Seq. pBinAHygBTpTEF1-HPcrtZ, SEQ ID NO: 37, Fig. 5);
- p-carRA-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHyg-BTpcarRA-HPcrtZ, SEQ ID NO: 38, Fig. 6)
- p-carB-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-HPcrtZ, SEQ ID NO: 39, Fig. 7)
- p-carRA-HPcrtZ-TAG-3'carA-IR, enthaltend Gen der Hydroxylase
 HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora. Stromabwärts des Gens der Hydroxylase ist eine Inverted-Repeat-Struktur lokalisiert, die aus dem 3'-Ende von carA und der stromabwärts von carA gelegenen Region stammt (IR, SEQ ID NO: 74, ,Inverted Repeat 1' ca. 350 bp von carA, dann ca. 200 bp ,Loop' und anschließend ca. 350 bp ,Inverted Repeat 2') (Seq. pBinAHyg-BTpcarRA-HPcrtZ-TAG-3'carA-IR, SEQ ID NO: 40, Fig. 8);
 - p-carRA-HPcrtZ-GCG-3'carA-IR, enthaltend Gen der Hydroxylase
 HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora. Das Gen der

20

25

Hydroxylase ist mit einer Inverted-Repeat-Struktur fusioniert, die aus dem 3'-Ende von carA und der stromabwärts von carA gelegenen Region stammt (IR, SEQ ID NO: 74, "Inverted Repeat 1' ca. 350 bp von carA, dann ca. 200 bp "Loop" und anschließend ca. 350 bp "Inverted Repeat 2"). Das abgeleitete Fusionsprotein besteht folglich aus der Hydroxylase von Haematococcus pluvialis und dem Carboxyterminus von CarA aus Blakeslea trispora (Seq. pBinAHyg-BTpcarRA-HPcrtZ-GCG-3'carA-IR, SEQ ID NO: 41, Fig. 9);

- p-tef1-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ (SEQ ID NO: 71) aus Erwinia uredova 20D3 (Accession No. D90087) unter Kontrolle des ptef1 Promotors (Seq. pBinAHygBTpTEF1-EUcrtZ, SEQ ID NO: 42, Fig. 10);
- p-carRA-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ aus Erwinia uredova 20D3 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-EUcrtZ, SEQ ID NO: 43, Fig. 11);
 - p-carB-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ aus Erwinia uredova 20D3 unter Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-EUcrtZ, SEQ ID NO: 44, Fig. 12);
 - p-gpdA-HPcrtZ-t-crtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des gpdA Promotors und des Terminators t-crtZ; d.h. des stromabwärts von crtZ aus Haematococcus pluvialis Flotow NIES-144 gelegenen Sequenzabschnitts (SEQ ID NO: 73) (Seq. pBinAHyg-gpdA-HPcrtZtcrtZ, SEQ ID NO: 45, Fig. 13).
 - p-gpdA-BTcarR-HPcrtZ-BTcarA, enthaltend Genfusion aus Genen der Lycopincyclase carR aus Blakeslea trispora, der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 und der

Phytoensynthase carA aus Blakeslea trispora unter Kontrolle des gpdA Promotors aus Aspergillus nidulans (Seq. pBinAHyg-carR_crtZ_carA, SEQ ID NO: 46, Fig. 14);

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Canthaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Canthaxanthin verwendet, codieren also u.a. Ketolasen (crtW):

- p-tef1-NPcrtW, enthaltend das Gen der Ketolase NPcrtW (SEQ ID NO: 72) aus Nostoc punctiforme PCC73102 (ORF148, Accesion No. NZ_AABC01000196) unter Kontrolle des ptef1 Promotors aus Blakeslea trispora (Seq. pBinAHygBTpTEF1-NpucrtW, SEQ ID NO: 47, Fig. 15);
- p-carRA-NPcrtW, enthaltend das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 unter der Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-NpucrtW, SEQ ID NO: 48, Fig. 16);
- p-carB-NPcrtW, enthaltend das Gen der Ketolase NPcrtW aus No stoc punctiforme PCC73102 unter der Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-NpucrtW, SEQ ID NO: 49, Fig. 17);

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Astaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Astaxanthin verwendet, codieren also u.a. für Hydroxylasen (crtZ) und Ketolasen (crtW):

- p-carRA-HPcrtZ-pcarRA-NPcrtW, enthaltend das Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 und das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 (ORF148, Accesion No. NZ_AABC01000196) beide jeweils unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-HPcrtZ-BTpcarRA-NpucrtW, SEQ ID NO: 50, Fig. 18);
- p-carRA-EUcrtZ-pcarRA-NPcrtW, enthaltend das Gen der Hydroxy-lase EUcrtZ aus Erwinia uredova20D3 (Accession No. D90087) und
 das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 beide jeweils unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-EUcrtZ-BTpcarRA-NpucrtW, SEQ ID NO: 51, Fig. 19);

15 Klonierung und Sequenzanalyse von Genen und Promotoren, die beispielhaft für die gentechnische Veränderung von Blakeslea trispora genutzt werden können.

Nachfolgend werden beispielhaft die Klonierung und Sequenzierung verschiedener Gene und Promotoren aus Blakeslea trispora beschrieben.

20

25

30

Klonierung und Sequenzanalyse ptef1

Die Klonierung von p-tef aus Blakeslea trispora erfolgte auf der Grundlage einer bereits in GenBank veröffentlichten Sequenz des Strukturgens für den Translations-Elongationsfaktor 1-α aus Blakeslea trispora (AF157235). Ausgehend von dem Sequenzeintrag AF157235 wurden Primer für die inverse PCR ausgewählt, um die stromaufwärts des Strukturgens gelegene Promotoregion zu amplifizieren und zu sequenzieren. In der inversen nested PCR an 200 ng Xhol-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272 wurde ein 3000-bp-Fragment in folgendem Ansatz erhalten: Matrizen-DNA (1 μg genomi-

sche DNA von Blakeslea trispora ATCC 14272) Primer MAT344 5'-GGCGTACTTGAAGGAACCCTTACCG-3' (SEQ ID NO: 63) und MAT 345 5'-ATTGATGCTCCCGGTCACCGTGATT-3' (SEQ ID NO: 64) je 0,25 μM, 100 μM dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s. 72 °C, 60 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus). Der Sequenzabschnitt, der stromaufwärts des vermutlichen Startcodons des Gens tef1 innerhalb 3000-bp-Fragmentes liegt, wurde als Promotor ptef1 bezeichnet.

10

15

20

25

Klonierung Sequenzanalyse des Gens der HMG-CoA-Reduktase aus Blakeslea trispora

Zunächst wurde mit dem Cosmidvektor pANsCos1 eine Genbank von Blakeslea trispora ATCC 14272, Mating Type (-) hergestellt. Der Vektor wurde durch Spaltung mit Xbal linearisiert und anschließend dephosphoryliert. Eine weitere Spaltung mit mit BamHl schuf die Insertionsstelle, in welche die mit Sau3Al partiell gespaltene und dephosphorylierte genomische DNA von Blakeslea trispora ligiert wurde. Die derart gebildeten Cosmide wurden anschließend in vitro verpackt und in Escherichia coli übertragen. Auf der Grundlage der bekannten Sequenz eines Fragmentes des HMG-CoA-Reduktase codierenden Gens aus Blakeslea trispora (Eur. J. Biochem 220, 403-408 (1994)) wurde eine 315-bp-DNA-Sonde durch folgende PCR hergestellt. Reaktionsansatz: 1 µg genomische DNA von Blakes-**MAT314** 5'-ATCC 14272, Primer lea trispora CCGATGGCGACGACGGAAGGTTGTT-3' [SEQ ID NO 79] und MAT315 5'-CATGTTCATGCCCATTGCATCACCT-3' [SEQ ID NO 80] je 0,25 μM, 100 μM dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zvklus); 85 °C, 5 min (1 Zyklus); 58 °C, 30 s. 72 °C, 30 s, 95 °C, 30 s (30

30 Zyklen); 72 °C, 10 min (1 Zyklus).

10

15

25

Mit dieser DNA-Sonde wurde die Cosmid-Genbank durchmustert. Es wurde ein Klon identifiziert, dessen Cosmid mit der DNA-Sonde hybridisierte. Die Insertion dieses Cosmids wurde sequenziert. Die DNA-Sequenz enthielt einen Abschnitt, der dem Gen einer HMG-CoA-Reduktase zugeordnet wurde [HMG-CoA-Red.gb].

Klonierung und Sequenzanalyse carB

(carB = Gen der Phytoendesaturase aus Blakeslea trispora)

Aus dem Sequenzvergleich der Peptidsequenzen von Phytoendesaturasen und dem Vergleich der zugehörigen DNA-Sequenzen von Phycomyces blakesleeanus, Cercospora nicotianae, Phaffia rhodozyma und Neurospora crassa wurden die degenerierten Primer MAT182 5'-5'-52) **MAT192 GCNGARGGNATHTGGTA-3**' (SEQ ID und TCNGCNAGRAADATRTTRTG-3 (SEQ ID 53) abgeleitet. Die PCR wurde in 100 µl Ansätzen durchgeführt. Diese enthielten 200 ng genomische DNA von Blakeslea trispora ATCC14272, 1 µM MAT182, 1 µM MAT192, 100 µM dNTP, 10 µl Pfu-Polymerasepuffer 10x, 2,5 U Pfu-Polymerase (Zugabe bei 85 °C), H₂O ad 100 μl.

20 Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 40 °C, 30 s, 72 °C, 30 s, 95 °C, 30 s (35 Zyklen); 72 °C, 10 min (1 Zyklus).

Hiermit wurde ein 358-bp-Fragment erhalten, dessen abgeleitete Peptidsequenz Ähnlichkeit zu den Sequenzen der Phytoendesaturasen aufwies. Durch die Methode der inversen PCR (Innis et al. in PCR protocols: a guide to methods and applications. 1990. S. 219-227) wurden nach dem Prinzip des Chromosome-Walking die Genregionen stromaufwärts und stromabwärts des 350-bp-Fragmentes folgendermaßen amplifiziert, kloniert und sequenziert:

30 (i) ein 1,1-kbp-Fragment durch PCR mit den Primern MAT219 5'-AAGTGACACCGGTTACACGCTTGTCTT-3' (SEQ ID 54) und MAT

20

25

220 5'-GCTTATCACCATCTGTTACCTCCTTGC-3' (SEQ ID 55) erhalten aus 200 ng EcoRI-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272, 0,25 μM MAT219, 0,25 μM MAT220, 100 μM dNTP, 10 μI Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s. 72 °C, 60 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus),

ein 2,9-kbp-Fragment durch PCR mit den Primern MAT219 und MAT220 erhalten aus 200 ng Xbal-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272, 0,25 μΜ MAT219, 0,25 μΜ MAT220, 100 μΜ dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s, 72 °C, 3 min, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus);

Der klonierte Sequenzabschnitt ist schematisch in Fig. 20 (SEQ ID NO 77) dargestellt. Die Sequenzierung erfolgte in Strang- und Gegenstrangrichtung mit den klonierten Fragmenten sowie mit den PCR-Produkten. Die Sequenz des klonierten Sequenzabschnitts ist in Fig. 21 (SEQ ID NO 78) gezeigt.

Sequenzvergleiche

Die Nukleotidsequenz von carB und die Peptidsequenz des abgeleiteten Proteins CarB wurden mit den bekannten Sequenzen verwandter Proteine verglichen. Zum Sequenzvergleich wurden die Programme GAP und BESTFIT eingesetzt.

30 CarB - Identische Aminoacylreste nach GAP

Programmeinstellungen:

Gap Weight: 8 Length Weight:

2

Average Match:

2.912

Average Mismatch: -2.003

Dabei wurde folgende Werte für die Übereinstimmung der Aminosäuren zu 5

CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 72,491

Phaffia rhodozyma:

50,460

Neurospora crassa:

47,943

Cercospora nicotianae: 10

47,740

CarB -Identische Aminoacylreste nach BESTFIT

Programmeinstellungen:

Gap Weight: 8

Length Weight: 15

2

Average Match:

2.912

Average Mismatch: -2.003

Dabei wurde folgende Werte für die Übereinstimmung der Aminosäuren zu

CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 73,380 20

Phaffia rhodozyma:

53,175

Neurospora crassa:

51,896

Cercospora nicotianae:

50,791

carB - Identische Basen nach GAP 25

Programmeinstellungen:

Gap Weight:

50

Length Weight:

3

Average Match:

10.000

Average Mismatch: 0.000 30

Dabei wurde folgende Werte für die Übereinstimmung der Basen zu CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 64,853

Cercospora nicotianae:

50,143

5 Phaffia rhodozyma: 43,179

Neurospora crassa:

42,130

carB -Identische Basen nach BESTFIT

Programmeinstellungen:

Gap Weight: 10

50

Length Weight:

3

Average Match:

10.000

Average Mismatch: -9.000

Dabei wurde folgende Werte für die Übereinstimmung der Basen zu CarB

aus Blakeslea trispora ATCC14272 in % gefunden: 15

Phycomyces blakesleeanus: 68,926

Phaffia rhodozyma:

62,403

Neurospora crassa:

60,230

Cercospora nicotianae:

56,884

20

25

30

Klonierung zur Expression von carB

Zur Klonierung und Expression von carB aus Blakeslea trispora wurden von dem oben beschriebenen klonierten Sequenzabschnitt aus Blakeslea trispora in sechs Leserastern die möglichen Proteinsequenzen abgeleitet. Diese Proteinsequenzen wurden mit den Sequenzen der Phytoendesaturasen aus Phycomyces blakesleeanus, Phaffia rhodozyma, Neurospora crassa, Cercospora nicotianae verglichen. Auf der Grundlage des Sequenzvergleiches wurden im klonierten Sequenzabschnitt der genomischen DNA von Blakeslea trispora drei Exons identifiziert, die zusammengefügt eine codierende Region ergeben, deren abgeleitetes Genprodukt über die gesamte Länge 72,7% identische Aminoacylreste mit der Phy-

15

20

25

30

toendesaturase CarB aus Phycomyces blakesieeanus aufweist. Dieser Sequenzabschnitt aus drei möglichen Exons und zwei möglichen Introns wurde daher als Gen carB bezeichnet. Zur Überprüfung der vorhergesagten Genstruktur wurde die codierende Sequenz von carB aus Blakeslea trispora durch PCR mit cDNA von Blakeslea trispora als Matrize und mit 5'-Bol1425 Primern den AGAGAGGGATCCTTAAATGCGAATATCGTTGC-3' (SEQ ID 56) und Bol1426 5'-AGAGAGGGATCCATGTCTGATCAAAAGAAGCA-3' (SEQ ID 57) erzeugt. Das erhaltene DNA-Fragment wurde sequenziert. Die Lokalisation von Exons und Introns wurde durch Vergleich der cDNA mit der genomischen DNA von carB bestätigt. In Fig. 21 ist die codierende Sequenz von carB schematisch dargestellt. Zur Expression von carB in Escherichia coli wurde zunächst die Ndel-Schnittstelle in carB durch die Methode overlap extension PCR entfernt sowie am 5'-Ende des Gens eine Ndel-Schnittstelle und am 3'-Ende eine BamHI-Schnittstelle eingefügt. Das erhaltene DNA-Fragment wurde mit dem Vektor pJOE2702 ligiert. Das erhaltene Plasmid wurde als pBT4 bezeichnet und zusammen mit pCAR-AE in Escherichia coli XL1-Blue kloniert. Die Expression erfolgte durch Induktion mit Rhamnose. Der Nachweis der Enzymaktivität erfolgte durch Nachweis der Lycopinsynthese via HPLC. Die Klonierungsschritte sind im folgenden beschrieben:

PCR 1.1:

Temperaturprofil:

Ca. 0,5 μg cDNA von Blakeslea trispora, 0,25 μM MAT350 5'ACTTTATTGGATCCTTAAATGCGAATATCGTTGCTGC-3' (SEQ ID 58),
0,25 μΜ MAT244 5'GTTCCAATTGGCCACATGAAGAGTAAGACAGGAAACAG-3' (SEQ ID
59), 100 μM dNTP, 10 μl Pfu-Polymerase-Puffer (I0x), 2,5 U PfuPolymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100μL.

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 40 °C 30s, 4. 72 °C 1 min 30 s, 5. 95 °C 30 s, 6. 50 °C 30 s, 7. 72 °C 1 min 30 s, 8. 95 °C 30 s, 9. 72 °C 10min Zyklen: (1-2.) 1x, (3-5.) 5x, (6-8.) 25x, (9.) 1x

5 **PCR1.2**:

10

15

Ca. 0,5 μ g cDNA von Blakeslea trispora, 0,25 μ M MAT243 5'-CCTGTCTTACTCTTCATGTGGCCAATTGGAACCAACAC-3' (SEQ ID 60), 0,25 μ M MAT353 5'-CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3' (SEQ ID 61), 100 μ M dNTP, 10 μ l Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100 μ L.

Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 40 °C 30s, 4. 72 °C 1 min 30 s, 5. 95 °C 30 s, 6. 50 °C 30 s, 7. 72 °C 1 min 30 s, 8. 95 °C 30s, 9. 72 °C 10min Zyklen: (1 -2.) 1x, (3-5.) 5x, (6-8.) 25x, (9.) 1x

Reinigung der PCR-Fragmente aus PCR 1.1, 1.2

Dazu wurde PCR 2 zur Herstellung der codierenden Sequenz von carB aus Blakeslea trispora für die Klonierung in pJOE2702 durchgeführt:

- Ca. 50 ng Produkt aus PCR 1.1 und ca. 50 ng Produkt aus PCR1.2 mit 0,25 μ M MAT350 5'-ACTTTATTGGATCCTTAAATGCGAATATCGTTGCTGC-3' (SEQ ID NO 58), 0,25 μ M MAT353 5'-CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3' (SEQ ID NO
- 25 61), 100 μM dNTP, 10 μL Pfu-Polymerase-Puffer (l0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H_2O ad 100 μL.

Temperaturprofil:

- 1. 95°C 10 min, 2. 85 °C 5 min, 3. 59 °C 30 s, 4. 72 °C 2 min, 5. 95 °C 30 s, 6.72°C 10 min
- 30 Zyklen: (1-2.) 1x, (3-5.) 22x, (6.) 1x

15

20

25

Anschließend erfolgte eine Reinigung des erhaltenen Fragmentes (~ 1,7 kbp), eine Ligation in Vektor pPCR-Script-Amp, eine Klonierung in Escherichia coli XL1-Blue, Sequenzierung der Insertion, Spaltung mit Ndel und BamHI sowie eine Ligation in pJOE2702. Das erhaltene Plasmid wurde als pBT4 bezeichnet.

Charakterisierung und Nachweis der Enzymaktivität von CarB (Phytoendesaturase)

Das von carB abgeleitete Genprodukt wurde als CarB bezeichnet. CarB weist auf Grundlage der Peptidsequenzanalyse folgende Eigenschaften auf:

Länge: 582 Aminoacylreste

Molekulare Masse: 66470

Isoelektrische Punkt: 6,7

Katalytische Aktivität: Phytoendesaturase

Edukt: Phytoen
Produkt: Lycopin

EC-Nummer: EC 1.14.99-

Der Nachweis der Enzymaktivität erfolgte in vivo. Wenn das Plasmid (pCAR-AE) in Escherichia coli XL1-Blue übertragen wird, entsteht der Stamm Escherichia coli XL1-Blue (pCAR-AE). Dieser Stamm synthetisiert Phytoen. Wenn zusätzlich das Plasmid pBT4 in Escherichia coli XL1-Blue übertragen wird, entsteht der Stamm Escherichia coli XL1-Blue (pCAR-AE)(pBT4). Da ausgehend von carB eine enzymatisch aktive Phytoendesaturase gebildet wird, produziert dieser Stamm Lycopin.

Die Plasmide pCAR-AE und pBT4 wurden daher in Escherichia coli übertragen. Nach Wachstum in Flüssigkultur wurden die Carotinoide aus den Zellen extrahiert und charakterisiert (vgl. oben).

Durch HPLC Analyse wurde nachgewiesen, daß der Stamm Escherichia coli XL1-Blue (pCAR-AE) Phytoen und der Stamm Escherichia coli XL1-Blue (pCAR-AE)(pBT4) Lycopin produziert. CarB weist folglich die Enzymaktivität einer Phytoendesaturase auf.

5

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Phytoen

Nachfolgend werden beispielhaft die Herstellung von gentechnisch veränderten Organismen zur Herstellung von Phytoen beschrieben.

10

15

20

25

Vector pBinAHyg∆carB zur Erzeugung von carB⁻ -Mutanten von Blakeslea trispora

Für die Deletion von carB in Blakeslea trispora wurde der Vektor pBinA-Hyg∆carB (SEQ. ID. NO:62, Fig. 22) konstruiert. Der Vorläufer von pBinAHyg∆carB ist pBinAHyg (SEQ. ID. NO:3, Fig. 2). pBinAHyg wurde folgendermaßen konstruiert:

Aus dem Plasmid pANsCos1 (SEQ. ID. NO:4, Fig. 1, Osiewacz, 1994, Curr. Genet. 26:87-90) wurde die gpdA-hph Kassette als BgIII/HindIII Fragment isoliert und in das BamHI/HindIII geöffnete binäre Plasmid pBin19 (Bevan, 1984, Nucleic Acids Res. 12:8711-8721) ligiert. Der so erhaltene Vektor wurde als pBinAHyg bezeichnet und enthält das *E. coli* Hygromycin-Resistenzgen (hph) unter Kontrolle des gpd Promotors und des trpC Terrminators aus *Aspergillus nidulans* sowie die entsprechenden Bordersequenzen, die für den DNA-Transfer von *Agrobacterium* notwendig sind.

Die Amplifikation der codierenden Sequenz von carB mit den Primern MAT350 (SEQ ID NO 58) und MAT353 (SEQ ID NO 61) mittels PCR wurde mit den folgenden Parametern durchgeführt:

30 50 ng pBT4 mit 0,25 μ M MAT350 5'-ACTTTATTGGATCCTTAAAT-GCGAATATCGTTGCTGC-3', 0,25 μ M MAT353 5'-

WO 2004/063359 PCT/EP2004/000099

84

CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3', 100 μ M dNTP, 10 μ L Pfu-Polymerase-Puffer, 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ L H₂O

Temperaturprofil:

10

15

25

30

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 58 °C 30s, 4. 72°C 2 min, 5. 95 °C 30s,
6. 72 °C 10 min.

Zyklen: (1.-2.) 1x, (3-5.) 30x, (6.) 1x

Anschließend erfolgte eine Reinigung des erhaltenen Fragmentes (~ 1,7 kbp), eine Spaltung mit Hindlll, eine weitere Reinigung des 364-bp-Hindlll-Fragments-carB, gefolgt von einer Spaltung von pBinAHyg mit Hindlll, eine Ligation von 364-bp-Hindlll-Fragments-carB in pBinAHyg, eine Transformation des Vektors in Escherichia coli und eine Isolierung des Konstruktes und Bezeichnung als pBinAHyg∆carB wie oben beschrieben. Alternativ erfolgte eine partielle Spaltung mit Hindlll und die Klonierung eines größeren Hindill-Fragmentes aus carB in pBinAHyg zur Herstellung von pBinA-Hyg∆carB.

20 Erzeugung von carB - Mutanten von Blakeslea trispora

Zunächst wurde das Plasmid pBinAHyg∆carB in den Agrobakterienstamm LBA 4404 übertragen, z. B. durch Elektroporation (vgl. oben). Anschließend wurde das Plasmid von Agrobacterium tumefaciens LBA 4404 in Blakeslea trispora ATCC 14272 und in Blakeslea trispora ATCC 14271 übertragen (vgl. oben). Der erfolgreiche Nachweis des Gentransfers in Blakesleslea trispora erfolgte über Polymerase-Kettenreaktion nach folgendem Protokoll:

Ca. 0,5 ug DNA aus Blakeslea trispora ATCC 14272 carB- bzw. ATCC 14271 carB- wurden mit 0,25 μ M Primer hph forward 5'-CGATGTAGGAGGCGTGGATA-3' (SEQ ID NO 5), 0,25 μ M Primer hph reverse 5'-GCTTCTGCGGGCGATTTGTGT-3' (SEQ ID NO 6), 100 μ M

dNTP, 10 μ L Herculase-Polymerase-Puffer, 2,5 U Herculase-DNA-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ l H₂O umgesetzt. Temperaturprofil:

1. 95°C 10 min, 2. 85 °C 5 min, 3. 58 °C 1 min, 4. 72 °C 1 min, 5. 94 °C 1 min, 6.72°C 10 min.

Zyklen: (1.-2.) 1x, (3-5.) 30x, (6.) 1x

10

15

Als Negativkontrolle wurde eine Amplifikation des Kanamycinresistenzgens aus Agrobacterium versucht. Dazu wurden folgende PCR-Bedingungen verwendet:

Ca. 0,5 μ g DNA aus Blakesiea trispora ATCC 14272 carB⁻ bzw. ATCC 14271 carB⁻ wurden mit 0,25 μ M Primer nptlll forward 5'-TGAGAATATCACCGGAATTG-3' (SEQ ID NO 7), 0,25 μ M Primer nptlll reverse 5'-AGCTCGACATACTGTTCTTCC-3' (SEQ ID NO 8), 100 μ M dNTP, 10 μ L Herculase-Polymerase-Puffer, 2,5 U Herculase-DNA-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ L H₂O umgesetzt. Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 58 °C 1 min, 4. 72 °C 1 min, 5. 94 °C 1 min, 6. 72 °C 10 min-

20 Zyklen: (1-2.) 1x, (3-5.) 30x, (6.) 1x

C) Produktion von Carotinoiden und Carotinoidvorstufen mit Blakeslea trispora

Zur Produktion der Carotinoide Zeaxanthin, Canthaxanthin, Astaxanthin und Phytoen wurden die entsprechenden gentechnisch veränderten Blakeslea trispora (+) und (-) Stämme fermentiert, das produzierte Carotinoid mittels HPLC Analyse nachgewiesen und isoliert.

Das Flüssigmedium zur Produktion von Carotinoiden enthielt pro Liter: 19 g Maismehl, 44 g Sojamehl, 0,55 g KH₂PO₄, 0,002 g Thiaminhydochlorid, 10 % Sonnenblumenöl. Der pH wurde mit KOH auf 7,5 eingestellt.

Zur Herstellung der Carotinoiden wurden Schüttelkolben mit Sporensuspensionen von (+) und (-) Stämmen der GVO von Blakeslea trispora beimpft. Die Schüttelkolben wurden bei 26 °C mit 250 rpm für 7 Tage inkubiert. Alternativ wurde zu Mischungen der Stämme nach 4 Tagen Trisporsäuren zugegeben und weitere 3 Tage inkubiert. Die Endkonzentration der Trisporsäuren betrug 300 - 400 μg/ml.

Extraktion und Analytik

Extraktion:

- 1. Entnahme von 10 ml Kultursuspension
- 15 2. Zentrifugation, 10 min, 5.000 x g
 - 3. Verwerfen des Überstandes
 - 4. Resuspendierung des Pellets in 1 ml Tetrahydrofuran (THF) durch Vortexen
 - 5. Zentrifugation, 5 min, 5.000 x g
- 20 6. Abnahme der THF-Phase
 - 7. Wiederholung der Schritte 4.-6. (2 x)
 - 8. Vereinigung der THF-Phasen
 - 9. Zentrifugation der vereinigten THF-Phasen 5 min bei 20.000 x g, um Reste der wäßrigen Phase abzutrennen

25

Analytik

Messung von Phytoen mittels HPLC

Säule:

ZORBAX Eclipse XDB-C8, 5 um, 150*4,6 mm

30 Temperatur:

40 °C

Flußrate:

0,5 ml/min

Injektionsvolumen:10 µl

Detektion:

UV 220 nm

Stoppzeit:

12 min

Nachlaufzeit:

0 min

5 Maximaldruck:

350 bar

Eluent A:

50 mM NaH₂PO₄, pH 2,5 mit Perchlorsäure

Eluent B:

Acetonitril

Gradient:

	Zeit [min]	A [%]	B [%]	Fluß [ml/min]
10	0	50	50	0,5
	12	50	50	0,5

Als Matrix wurden Extrakte der Fermentationsbrühen verwendet. Vor der HPLC wurde jede Probe wird durch ein 0,22 µm Filter filtriert. Die Proben wurden kühl gehalten und vor Licht geschützt. Zur Kalibrierung wurden jeweils 50 - 1000 mg/l eingewogen und in THF gelöst. Als Standard wurde Phytoen verwendet, welches unter den gegebenen Bedingungen eine Retentionszeit von 7,7 min. aufweist.

Messung von Lycopin, β-Carotin, Echinenon, Canthaxanthin, Cryptoxanthin, Zeaxanthin und Astaxanthin mittels HPLC

Säule:

15

Nucleosil 100-7 C18, 250*4,0 mm (Macherey & Nagel)

Temperatur:

25 °C

Flußrate:

1,3 ml/min

25 Injektionsvolumen:10 μl

Detektion:

450 nm

Stoppzeit:

15min

Nachlaufzeit:

2 min

Maximaldruck:

250 bar

30 Eluent A:

10% Aceton, 90% H₂O

Eluent B:

Aceton

Gra	d	i	n	+	•
しつじた	ш	ı	! !	Ł	

15

20

25

30

	Zeit [min]	A [%]	B [%]	Fluß [ml/min]
	0	30	70	1,3
	10	5	95	1,3
5	. 12	5 .	95	1,3
	13	30	70	1,3

Als Matrix wurden Extrakte der Fermentationsbrühen verwendet. Vor der HPLC wurde jede Probe wird durch ein 0,22 μm Filter filtriert. Die Proben wurden kühl gehalten und vor Licht geschützt. Zur Kalibrierung wurden jeweils 10 mg eingewogen und in 100 ml THF gelöst. Als Standard wurden folgende Carotinoide mit folgenden Retentionszeiten eingesetzt β-Carotin (12,5 min), Lycopin (11,7 min), Echinenon (10,9 min), Cryptoxanthin (10,5 min), Canthaxanthin (8,7 min), Zeaxanthin (7,6 min) und Astaxanthin (6,4 min) [s. Fig. 23].

Produktion von Zeaxanthin mit gentechnisch veränderten Stämmen von Blakeslea trispora

Nachfolgend wird beispielhaft die Herstellung von Zeaxanthin mit gentechnisch veränderten Organismen (GVO) von Blakeslea trispora beschrieben.

Durch Agrobakterium-vermittelte Transformation wurde der Vektor pBinA-HygBTpTEF1-HPcrtZ in Blakeslea trispora übertragen (s.o.). Ein Hygromycin-resistenter Klon wurde isoliert und auf eine Kartoffel-Glucose-Agarplatte (Merck KGaA, Darmstadt) übertragen.

Nach drei Tagen Inkubation bei 26°C wurde ausgehend von dieser Platte ein Sporensuspension hergestellt. Ein 250-ml-Erlenmeyerkolben ohne Schikanen mit 50 ml Growth-Medium (Maismehl 47 g/l, Sojamehl 23 g/l, KH₂PO₄ 0,5 g/l, Thiamin-HCl 2.0 mg/l, pH mit NaOH vor der Sterilisation auf 6,2–6,7 eingestellt) wurde mit 1x10⁵ Sporen beimpft. Diese Vorkultur inkubierte 48 Stunden bei 26 °C und 250 upm. Für die Hauptkultur

15

20

30

wurde ein 250-ml-Erlenmeyerkolben ohne Schikane enthaltend 40 ml Produktionsmedium mit 4 ml der Vorkultur beimpft und 8 Tage bei 26 °C und 150 upm inkubiert. Das Produktionsmedium enthielt Glucose 50 g/l, Casein Acid Hydrolisate 2 g/l, Hefeextrakt 1 g/l, L-Asparagin 2 g/l, KH₂PO₄ 1,5 g/l, MgSO₄ x 7 H₂O 0,5 g/l, Thiamin-HCl 5 mg/l, Span20 10 g/l, Tween 80 1 g/l, Linolsäure 20 g/l, Maisquellwasser 80 g/l. Nach 72 Stunden erfolgte die Zugabe von Kerosin in einer Endkonzentration von 40 g/l Kerosin.

Nach der Ernte der Kulturen werden die verbliebenen ungefähr 35 ml Kultur mit Wasser auf 40 ml aufgefüllt. Anschließend werden die Zellen im Hochdruckhomogenisator, Typ Micron Lab 40, Fa. APV Gaulin, 3 x bei 1500 bar aufgeschlossen.

Die Suspension mit den aufgeschlossenen Zellen wurde mit 35 ml THF versetzt und 60 min bei RT im Dunkeln bei 250 upm geschüttelt. Danach wurden 2 g NaCl zugegeben und das Gemisch nochmals geschüttelt. Der Extraktionsansatz wurde dann 10 min bei 5000 x g zentrifugiert. Die gefärbte THF-Phase wurde abgenommen, die Zellmasse war vollständig entfärbt.

Die THF-Phase wurde am Rotationsverdampfer bei 30 mbar und 30 °C auf 1 ml eingeengt und danach nochmals in 1 ml THF aufgenommen. Nach Zentrifugation 5 min bei 20 000 x g wurde ein Aliquot der oberen Phase entnommen und durch HPLC analysiert (Fig. 24, Fig. 23).

25 <u>D) Aufarbeitung und Isolierung der Carotinoide bzw. des Nahrungs-</u> mittels

Die oben unter A) angegebenen Kulturbrühen wurden wie nachfolgend aufgearbeitet, um hochreine Carotinoide und ein entsprechendes Nahrungsmittel zu erhalten.

Der Carotinoidgehalt der Kulturbrühen 1, 2, 3 betrug zwischen 0,5 und 1,5 g/L.

D1) Beispiel gemäß Varainte a) IIA und Variante b) IIA bzw. IIB

5 Die Kulturen mit identischen Medien (insgesamt ca. 1 L) wurden am Ende des Kultivierungszeitraums vereinigt und mit Hilfe eines Dispergiergeräts (Ultra.Turrax ®) homogenisiert.

Die Feststoffkonzentration in den Medien 1 und 2 betrug 37 g/l bzw. 11 g/L. Die Entwässerung der Kulturbrühe erfolgte durch eine Zentrifuge. Bei hohen Zellkonzentrationen bzw. hohem Feststoffgehalt des Mediums kann dieKulturbrühe auch ohne vorherige fest-flüssig-Trennung weiterverarbeitet werden (Medium 3: 127 g Feststoff/L. Nach vorheriger Homogenisation mit einem Dispergiergerät (Ultra-Turrax ®) und unter ständigem Rühren der Suspension wurde die Zellmasse über eine Schlauchpumpe auf den Trockner aufgegeben. Die Eindüsung in den Zylinder des Laborsprühtrockners erfolgte dabei über eine Zweistoffdüse mit dem Durchmesser 2,0 mm. Eingedüst wurde mit 2 bar und 4,5 Nm³/h Stickstoff. Die Temperatur am Eintritt betrug ca. 125°C bis 127°C. Das Trocknungsgas war Stickstoff mit einer Flussrate von 22 Nm³/h. Die Austrittstemperatur betrug zwischen 59°C und 61°C. Bei jeder der drei Fermentationsbrühen konnte am Zyklon des Sprühtrockners rieselfähiges Produkt abgeschieden werden. Die Wandbeläge im Turm (sofern vorhanden) platzten automatisch von der Gefäßwand ab und werden als unproblematisch eingestuft.

25

10

15

20

Es wurden zwischen 8 und 100 g pulvriges Nahrungsmittel erhalten, welches direkt als Tierfuttermittel verwendet werden könnte. Es enthielt ca. 1-10 % Carotinoide bezogen auf das Trockengewicht. Die Restfeuchte betrug weniger als 5%.

10

20

25

30

Beispiel gemäß Variante b) IIC

D2) Extraktion mit Tetrahydrofuran

Die Zellen aus je 40 ml der Kulturbrühen 1, 2, 3 wurden 3 x bei 1500 bar durch einen Hochdruckhomogenisator, Typ Micron Lab 40, Fa. APV Gaulin aufgeschlossen. Je 20 ml der Suspensionen mit den aufgeschlossenen Zellen wurden mit 20 ml Tetrahydrofuran versetzt und 30 min, bei 30°C im Rundschüttler bei 200 Upm geschüttelt. Danach wurden 2 g NaCl zugesetzt und zur Phasentrennung 5 min bei 5000 x g zentrifugiert. Die THF-Phase wurde abgenommen. Danach wurde die wässrige Phase nochmals mit 20 ml THF extrahiert. Die Extrakte wurde vereinigt. Die Carotinoidkonzentration wurde durch HPLC quantifiziert.

D3) Extraktion mit Methylenchlorid

Die Biomassenabtrennung aus der Kulturbrühe (200 mL) erfolgte durch Zentrifugation bei 5.000 x g für 10 min. in einer Laborzentrifuge.

Die abgetrennte Biofeuchtmasse (jeweils ca. 10 g bis 100 g) wurde mit 10 - 100 mL Wasser vermischt, um wasserlösliche Komponenten zu entfernen. Die Biomasse wurde abgetrennt (Laborzentrifuge) und danach mit Dampf (T = 121, t = 30 min, 1 bar) im Autoklaven sterilisiert und so die Zellen aufgeschlossen.

Zu den Zelltrümmern wurden 25 - 250 g Methylenchlorid zugegeben und das Carotinoid aus der Biomasse mittels Ausschütteln extrahiert. Die Biomasse wurde in einer Laborzentrifuge abgetrennt.

Es wurde ein Lösungsmitteltausch von Methylenchlorid zu Methanol durchgeführt, wozu die Carotinoidlösung ca. vier Stunden bei 40°C bis 60°C gehalten und über diesen Zeitraum kontinuierlich mit insgesamt 20 - 200 mL Methanol versetzt wurde. Methylenchlorid wurde dabei als Lö-

30

sungsmittel zurückgewonnen. Erste Carotinoid Kristalle fielen aus. Anschließend wurde langsam, über 6 h auf ca. 10 °C abgekühlt, wobei die Carotinoid Kristalle an Größe und Anzahl zunahmen. Danach wurde die Mutterlauge abfiltriert und die Carotinoid Kristalle getrocknet. Ein Teil der Mutterlauge kann zum Lösungsmitteltausch wiederverwendet werden. Der andere Teil wird destilliert und das so gereinigte Methanol im Lösungsmitteltausch wiederverwendet.

Es wurden 0,0,08 g bis 0,24 g Carotinoid Kristalle erhalten, welche eine Reinheit (HPLC, vgl. oben) von 95 % aufwiesen. Die Ausbeute an Carotinoid Kristallen betrug 80 % bezogen auf die Konzentration an Carotinoid in der Biomasse.

Die abgetrennte methylenchloridfeuchte Biomasse wurde nach Wasserdampfdestillation sprühgetrocknet (T_E = 125 °C, T_A = 60 °C) und kann als Tierfuttermitteladditiv eingesetzt werden.

Hierzu wurde nach vorheriger Homogenisation mit einem Dispergiergerät
(Ultra-Turrax) und unter ständigem Rühren der Suspension die Zellmasse
über eine Schlauchpumpe auf den Trockner aufgegeben.

Die Eindüsung in den Zylinder des Laborsprühtrockners erfolgte dabei über eine Zweistoffdüse mit dem Durchmesser 2,0 mm. Eingedüst wurde mit 2 bar und 4,5 Nm³/h Stickstoff. Die Temperatur am Eintritt betrug ca. 125°C bis 127°C. Das Trocknungsgas war Stickstoff mit einer Flussrate von 22 Nm³/h. Die Austrittstemperatur betrug zwischen 59°C und 61°C. Bei jeder der drei Fermentationsbrühen konnte am Zyklon des Sprühtrockners rieselfähiges Produkt abgeschieden werden. Die Wandbeläge im Turm (sofern vorhanden) platzten automatisch von der Gefäßwand ab und wurden als unproblematisch eingestuft.

Es wurden ca. 2,5 – 25 g pulvriges Nahrungsmittel erhalten, welches direkt als Tierfuttermittel verwendet werden könnte. Es enthielt ca. 0,5% - 1,5% Carotinoide bezogen auf das Trockengewicht. Die Restfeuchte betrug weniger als 5%.

Insgesamt (einschließlich des aufgereinigeten Carotinoid-Nahrungsmittels betrug die Ausbeute an Carotinoid ca, 95 % bezogen auf die Ausgangsmenge Carotinoid in der Kulturbrühe.

10

<u>Patentansprüche</u>

- Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderter Organismen der Gattung Blakeslea umfassend
 - (i) Transformation mindestens einer der Zellen,
 - (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder in mehreren genetischen Merkmalen alle gleichartig verändert sind und diese genetische Veränderung zur Ausprägung bringen, und
 - (vi) Selektion und Vermehrung der gentechnisch veränderten Zelle oder Zellen,
 - (vii) Kultivierung der gentechnisch veränderten Zellen,
- (viii) Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich um Zellen von Pilzen der Art Blakeslea trispora handelt.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in
 der Transformation (i) ein Vector oder freie Nukleinsäuren verwendet werden.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector in das Genom mindestens einer der Zellen integriert wird.

PCT/EP2004/000099 WO 2004/063359

- 95
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector einen Promotor und/oder einen Terminator enthält.
- 6. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 5, dadurch gekennzeichnet, dass in der Transformation (i) ein Vector ent-5 haltend den gpd, pcarB, pcarRA und/oder ptef1 Promotor und/oder den trpC Terminator eingesetzt wird.
- 7. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, dass in der Transformation (i) ein Vector ent-10 haltend ein Resistenzgen eingesetzt wird.
 - 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der in Transformation (i) eingesetzte Vector ein Hygromycin-Resistenzgen (hph), insbesondere aus E. coli enthält.
- 9. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch 15 gekennzeichnet, dass der gpd Promotor die Sequenz SEQ ID NO: 1 aufweist.
 - 10. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der trpC Terminator die Sequenz SEQ ID NO: 2 aufweist.

- 11. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der tef1 Promotor die Sequenz SEQ ID NO: 35 aufweist.
- 12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass der gpd Promotor und der trpC Terminator aus Asper-25 gillus nidulans stammen.

- 13. Verfahren nach einem Ansprüche 3 bis 12, dadurch gekennzeichnet, dass der Vector die SEQ ID NO: 3 umfasst.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Transformation (i) mittels Agrobakterien, Konjugation, Chemikalien, Elektroporation, Beschuss mit DNA-beladenen Partikeln, Protoplasten oder Mikroinjektion durchgeführt wird.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Homokaryontisierung (ii) ein mutagenes Agens eingesetzt wird.
- 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass als mutagenes Agens N-Methyl-N'-nitro-nitrosoguanidin (MNNG), UV-Strahlung oder Röntgenstrahlung eingesetzt wird.
 - 17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Selektion durch Markierung und/oder Auswahl der einkernigen Zellen erfolgt.
 - 18. Verfahren nach einem der vorhergehenden Ansprüche 1 17, **dadurch gekennzeichnet, dass** in der Selektion 5-Carbon-5-deazariboflavin (darf) und Hygromycin (hyg) oder 5-Fluororotat (FOA) und Uracil und Hygromycin eingesetzt werden.
- 19. Verfahren nach einem der Ansprüche 3 bis 18, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Carotinoiden oder deren Vorstufen enthält.
- 20. Verfahren nach einem der Ansprüche 3 bis 19, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Carotinen oder Xanthophyllen enthält.

21. Verfahren nach einem der Ansprüche 3 bis 20, **dadurch gekennzeichnet**, **dass** der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, α-Carotin, Lutein, Phytofluen, Bixin oder Phytoen enthält.

10

15

20

25

- 22. Verfahren zur Bereitstellung mindestens eines hochreinen Carotinoids und eines Nahrungsmittels, enthaltend Carotinoide-produzierende Organismen und mindestens das eine Carotinoid, umfassend nach der Kultivierung von Carotinoide-produzierenden Organismen der Gattung Blakeslea die Schritte
 - I) Abtrennung der Biomasse,
 - IA) ggf. Waschen der Biomasse mit einem Carotinoide nicht lösenden Lösungsmittel, insbesondere Wasser,
 - IB) Sterilisation und Zellaufschluß der Biomasse,
 - IC) ggf. Trocknung und/oder homogene Verteilung und
 - partielle Extraktion der Carotinoide aus der aufgeschlossenen Biomasse mittels eines Carotinoide lösenden Lösungsmittels und Trennung des Lösungsmittels von der Biomasse,
 IIA)

10

15

25

- 1) Entfernung von Lösemittelresten aus der Carotinoidhaltigen Biomasse,
- ggf. homogene Suspension der Biomasse mit einem Biomasse-Feststoffgehalt > 10
- 3) Trocknung der Biomasse bzw. Suspension zur Herstellung des Nahrungsmittels,

IIB)

- 1) Kristallisation der Carotinoide aus dem verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration.
- 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass das mindestens eine Carotinoid aus der Gruppe bestehend aus Carotinen und Xanthophyllen ausgewählt ist.
- 24. Verfahren nach Anspruch 22 oder 23, **dadurch gekennzeichnet**, **dass** das mindestens eine Carotinoid aus der Gruppe bestehend aus Asta-xanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, Lutein, Phytofluen, Bixin und Phytoen ausgewählt ist.
- 25. Verfahren nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass das mindestens eine Carotinoid Astaxanthin, Zeaxanthin, Bixin oder Phytoen ist.
 - 26. Verfahren nach einem der Ansprüche 22-25, dadurch gekennzeichnet, dass die Sterilisation und der Zellaufschluß mittels Wasserdampf oder Mikrowellenstrahlung durchgeführt werden.
 - 27. Verfahren nach einem der Ansprüche 22-26, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse mittels Me-

- thylenchlorid oder überkritischem Kohlendioxid oder Tetrahydrofuran durchgeführt wird.
- 28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass die im überkritischen Kohlendioxid gelösten Carotinoide direkt isoliert werden oder in Methylenchlorid aufgenommen werden.
- 29. Verfahren nach einem der Ansprüche 22-28, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse ein oder ggf. mehrstufig erfolgt.
- 30. Verfahren nach einem der Ansprüche 22-29, dadurch gekennzeichnet, dass die Entfernung von Lösungsmitteln aus der Biomasse im
 Schritt IA1) mittels Wasserdampf-Destillation.
 - 31. Verfahren nach einem der Ansprüche 22-30, dadurch gekennzeichnet, dass die Trocknung in Schritt IIA3) mittels Sprühtrocknung oder Kontakttrocknung durchgeführt wird.
- 32. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kristallisation im Schritt IIB1) durch graduellen Lösungsmittelaustausch gegen ein Carotinoide nicht lösendes Lösungsmittel erfolgt.
- 33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, dass der Austausch des verwendeten Lösungsmittels gegen Wasser oder einen niederen Alkohol, insbesondere Methanol erfolgt.
 - 34. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der gentechnisch veränderte Organismus der Gattung Blakeslea durch Transformation mit einem Vector, der eine Sequenz aus der Gruppe bestehend aus den SEQ ID NO: 37 51 und 62 aufweist, herstellbar ist.

- 35. Verfahren zur Herstellung eines Nahrungsmittels enthaltend Organismen der Gattung Blakeslea und mindestens ein Carotinoid, umfassend nach der Kultivierung von Carotinoide-produzierenden Organismen der Gattung Blakeslea die Schritte
- I) Homogene Suspendierung der Feststoffe der Kulturbrühe und
 - IIA) bei einem Biomasse-Feststoffgehalt der Kulturbrühe von > 2 %
 - 1) ggf. Konzentration der Kulturbrühe auf einen Feststoffgehalt < 50 % und
 - Trocknung der Kulturbrühe zur Herstellung des Nahrungsmittels

oder

15

10

- IIB) bei einem Feststoffgehalt von < 2 % der Kulturbrühe,
 - 1) Konzentration der Kulturbrühe auf einen Feststoffgehalt > 2 % und < 50 % und
 - Trocknung der Suspension zur Herstellung des Nahrungsmittels,

oder

- IIC) unabhängig vom Feststoffgehalt der Kulturbrühe,
 - 1) Abtrennung der Biomasse,

25

30

- 2) ggf. Waschen der Biomasse mit Carotinoide nicht lösenden Lösungsmitteln, insbesondere Wasser,
- 3) Sterilisation und Zellaufschluß,
- 4) ggf. Trocknung und homogene Verteilung,
- partielle Extraktion der Carotinoide aus der Biomasse mittels eines Carotinoide lösendes Lösungsmittels,

15

- 5a) Abtrennung der Carotinoid-haltigen Biomasse vom Carotinoid-haltigen Lösungsmittel,
- 5b) Entfernung von Lösemittelresten aus der Biomasse und
- 5c) Trocknung der Biomasse zur Herstellung des Nahrungsmittels,
- 6) Kristallisation der Carotinoide aus dem in 5a) verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration.
- 36. Verfahren nach Anspruch 35, dadurch gekennzeichnet, dass das mindestens eine Carotinoid aus der Gruppe bestehend aus Carotinen und Xanthophyllen ausgewählt ist.
 - 37. Verfahren nach Anspruch 35 oder 36, **dadurch gekennzeichnet, dass** das mindestens eine Carotinoid aus der Gruppe bestehend aus Asta-xanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, Lutein, Bixin, Phytoen ausgewählt ist.
 - 38. Verfahren nach einem der Ansprüche 35-37, dadurch gekennzeichnet, dass das mindestens eine Carotinoid Astaxanthin, Zeaxanthin, *Bi-xin* oder Phytoen ist.
 - 39. Verfahren nach einem der Ansprüche 35-38, dadurch gekennzeichnet, dass die Sterilisation und der Zellaufschluß im Schritt II3) mittels Wasserdampf oder Mikrowellenstrahlung durchgeführt wird.
- 40. Verfahren nach einem der Ansprüche 35-39, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse im Schritt
 IIC5) mittels Methylenchlorid oder überkritischen Kohlendioxid durchgeführt wird.

- 41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass die im überkritischen Kohlendioxid gelösten Carotinoide direkt isoliert werden oder in Methylenchlorid aufgenommen werden..
- 42. Verfahren nach einem der Ansprüche 35-41, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse ein- oder ggf. mehrstufig erfolgt.
 - 43. Verfahren nach einem der Ansprüche 35-42, dadurch gekennzeichnet, dass die Entfernung von Lösungsmitteln aus der Biomasse im Schritt IIC5b) mittels Wasserdampf-Destillation.
- 44. Verfahren nach einem der Ansprüche 35-43, dadurch gekennzeichnet, dass die Trocknung in einem der Schritte IIA1), IIB2) oder IIC5c) mittels Sprühtrocknung oder Kontakt durchgeführt wird.
 - 45. Verfahren nach einem der Ansprüche 35-44, dadurch gekennzeichnet, dass die Kristallisation im Schritt IIC6) durch graduellen Lösungsmittelaustausch gegen ein Carotinoide nicht lösendes Lösungsmittel erfolgt.

- 46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, dass der Austausch des verwendeten Lösungsmittels gegen Wasser oder einen niederen Alkohol, insbesondere Methanol erfolgt.
- 47. Verfahren nach einem der Ansprüche 35-46, dadurch gekennzeichnet, dass der gentechnisch veränderte Organismus der Gattung Blakeslea durch Transformation mit einem Vector, der eine Sequenz aus der Gruppe bestehend aus den SEQ ID NO: 37 51 und 62 aufweist, herstellbar ist.
- 48. Nahrungsmittel, insbesondere Tierfuttermittel herstellbar nach einem der Verfahren der Ansprüche 1 bis 47.

10

- 49. Nahrungsergänzungsmittel, insbesondere Tierfutterergänzungsmittel herstellbar nach einem der Verfahren der Ansprüche 1 bis 47.
- 50. Verfahren nach einem der Ansprüche 1-49 dadurch gekennzeichnet, daß Nahrungsmittel und Tierfuttermittel aus einer Fermentation erhältlich sind.
- 51. Verfahren nach einem der Ansprüche 1-49 dadurch gekennzeichnet, daß Nahrungsergänzungsmittel und Tierfutterergänzungsmittel aus einer Fermentation erhältlich sind.
- 52. Verfahren nach einem der Ansprüche 1-49 dadurch gekennzeichnet, daß mindestens zwei Produkte aus der Gruppe Nahrungsmittel, Nahrungsergänzungsmittel, Tierfuttermittel und Tierfutterergänzungsmittel aus einer Fermentation erhältlich sind.
 - 53. Verwendung der nach einem der Verfahren der Ansprüche 1 bis 14 erhältlichen Carotinoide zur Herstellung von kosmetischen, pharmazeutischen, dermatologischen Zubereitungen, Nahrungsmitteln, Nahrungsergänzungsmitteln, Tierfuttermittel oder Tierfutterergänzungsmittel.

Fig. 1: Vektor pANsCos1

Fig. 2: Vektor pBinAHyg

Fig. 3: Gels des Ergebnis einer PCR Spur:

1 2 3 4 5

Fig. 4: Plasmid pBinAHygBTpyrG-SCO

Fig. 5: Plasmid pBinAHygBTpTEF1-HPcrtZ

Fig. 6: Plasmid pBinAHyg-BTpcarRA-HPcrtZ

Fig. 7: Plasmid pBinAHygBTpcarB-HPcrtZ

Fig. 8: Plasmid p-carRA-HPcrtZ-TAG-3'carA-IR

Fig. 9: Plasmid p-carRA-HPcrtZ-GCG-3'carA-IR

Fig. 10: Plasmid pBinAHygBTpTEF1-EUcrtZ

Fig. 11: Plasmid pBinAHygBTpcarRA-EUcrtZ

Fig. 12: Plasmid pBinAHygBTpcarB-EUcrtZ

Fig. 13: Plasmid p-BinAHyg-gpdA-HPcrtZ

Fig. 15: Plasmid pBinAHyg-BTpTEF1-NPcrtW

Fig. 16: Plasmid pBinAHyg_BTpcarRA_NPcrtW

Fig. 17: Plasmid pBinAHyg-BTpcarB-NPcrtW

Fig. 18: Plasmid pBinAHygBTpcarRA-HPcrtZ-BTpcarRA-NpucrtW

Fig. 19: Plasmid pBinAHygBTpcarRA-EUcrtZ-BTpcarRA-NpucrtW

Fig. 20: carB

Fig. 21: CDS von carB

Fig. 22: Vektor pBinAHyg∆carB

Fig. 23: HPLC Standard

Fig. 24: HPLC

1/357

SEQUENCE LISTING

<110>	BAS	SF AG		•			
<120>	mit	tels gented	hnisch verä	nderter Org	inoiden oder ganismen der cellte Carot	Gattung	-
			deren Verwe		elice carou	.inoide oder	aeren
<130>	BAS	F/NAE877/03					
·							
<160>	80						
<170>	Pat	entIn versi	on 3.2				
<210>	1						
<211>	216	0	•				
<212>	DNA						
<213>	Art	ificial					
<220>	D						•
<223>	Pro	motor					
<400>	1.						
ctttcga	acac	tgaaatacgt	cgagcctgct	ccgcttggaa	gcggcgagga	gcctcgtcct	60
gtcacaa	acta	ccaacatgga	gtacgataag	ggccagttcc	gccagctcat	taagagccag	120
						_	
tcatgg	gcg	ttggcatgat	ggccgtcatg	catctgtact	tcaagtacac	caacgctctt	.180
ergatec	agt	· ·	ctgaaggcgc	tttcgaatct	ggttaagatc	cacgtcttcg	240
gaagco	agc	gactggtgac	ctccagcgtc	cctttaaggc	tgccaacagc	tttctcagcc	300
igggcca	gcc	caagaccgac	aaggeeteee	tccagaacgc	cgagaagaac	tggaggggtg	360
ıtgtcaa	gga	ggagtaagct	ccttattgaa	gtcggaggac	ggagcggtgt	caagaggata	420
-			3	_ 55.55			
tcttcg	act	ctgtattata	gataagatga	tgaggaattg	gaggtagcat	agcttcattt	480

ggatttgctt tccaggctga gactctagct tggagcatag agggtccttt ggctttcaat

WO 2004/063359 PCT/EP2004/000099 2/357

attctcaagt	atctcgagtt	tgaacttatt	ccctgtgaac	cttttattca	ccaatgagca	. 600
ttggaatgaa	catgaatctg	aggactgcaa	tcgccatgag	gttttcgaaa	tacatccgga	. 660
tgtcgaaggc	ttggggcacc	tgcgttggtt	gaatttagaa	cgtggcacta	ttgatcatcc	720
gatagetetg	caaagggcgt	tgcacaatgc	aagtcaaacg	ttgctagcag	ttccaggtgg	780
aatgtťatga	tgagcattgt	attaaatcag	gagatatagc	atgatctcta	gttagctcac	840
cacaaaagtc	agacggcgta	accaaaagtc	acacaacaca	agctgtaagg	atttcggcac	900
ggctacggaa	gacggagaag	ccaccttcag	tggactcgag	taccatttaa	ttctatttgt	960
gtttgatcga	gacctaatac	agcccctaca	acgaccatca	aagtcgtata	gctaccagtg	1020
aggaagtgga	ctcaaatcga	cttcagcaac	atctcctgga	taaactttaa	gcctaaacta	1080
tacagaataa	gataggtgga	gägcttatac	cgagctccca	aatctgtcca	gatcatggtt	1140
gaccggtgcc	tggatcttcc	tatagaatca	tccttattcg	ttgacctagc	tgattctgga	1200
gtgacccaga	gggtcatgac	ttgagcctaa	aatccgccgc	ctccaccatt	tgtagaaaaa	1260
tgtgacgaac	tcgtgagctc	tgtacagtga	ccggtgactc	tttctggcat	gcggagagac	1320
ggacggacgc	agagagaagg	gctgagtaat	aagccactgg	ccagacagct	ctggcggctc	1380
tgaggtgcag	tggatgatta	ttaatccggg	accggccgcc	cetecgecee	gaagtggaaa	1440
ggctggtgtg	cccctcgttg	accaagaatc	tattgcatca	tcggagaata	tggagcttca	1500
tcgaatcacc	ggcagtaagc	gaaggagaat	gtgaagccag	gggtgtatag	ccgtcggcga	1560
aatagcatgc	cattaaccta	ggtacagaag	tccaattgct	tccgatctgg	taaaagattc	1620
acgagatagt	accttctccg	aagtaggtag	agcgagtacc	cggcgcgtaa	gctccctaat	1680
tggcccatcc	ggcatctgta	gggcgtccaa	atatcgtgcc	teteetgett	tgcccggtgt	1740
atgaaaccgg	aaaggccgct	caggagctgg	ccagcggcgc	agaccgggaa	cacaagctgg	1800

agetttgece egtetgteeg eeeggtgtgt eggeggggtt gacaaggteg ttgegteagt 1920

ccaacatttg ttgecatatt tteetgetet eeecaacage tgetettte ttttetettt 1980

ctttteecat etteagtata tteatettee eatecaagaa eetttatte eeetaagtaa 2040

gtaetttget acatecatae teeateette eeateetta tteetttgaa eettteagtt 2100

egagetttee eactteateg eagettgaet aacagetaee eeggttgage agacateace 2160

<210> 2

<211> 774

<212> DNA

<213> Artificial

<220>

<223> Terminator

<220>

<221> misc_feature

<222> (267)..(267)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (475)..(475)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (566)..(566)

<223> n is a, c, g, or t

<400> 2

cgatccactt aacgttactg aaatcatcaa acagcttgac gaatctggat ataagatcgt

tggtgtcgat gtcagctccg gagttgagac aaatggtgtt caggatctcg ataagatacg

120

4/351

ttcatttgtc caagcagcaa agagtgcctt ctagtgattt aatagctcca tgtcaacaag 180 240 aataaaacgc gttttcgggt ttacctcttc cagatacagc tcatctgcaa tgcattaatg cattgactgc aacctagtaa cgccttncag gctccggcga agagaagaat agcttagcag 300 agctattttc attttcggga gacgagatca agcagatcaa cggtcgtcaa gagacctacg 360 420 agactgagga atccgctctt ggctccacgc gactatatat ttgtctctaa ttgtactttg 480 acatgetect ettetttaet etgatagett gactatgaaa atteegteae eageneetgg gttcgcaaag ataattgcat gtttcttcct tgaactctca agcctacagg acacacattc 540 600 -atcqtaggta taaacctcga aatcanttcc tactaagatg gtatacaata gtaaccatgc 660 atgqttqcct agtgaatgct ccgtaacacc caatacgccg gccgaaactt ttttacaact ctcctatgag tcgtttaccc agaatgcaca ggtacacttg tttagaggta atccttcttt 720 774 ctagctagaa gtcctcgtgt actgtgtaag cgcccactcc acatctccac tcga

<210> 3

<211> 15739

<212> DNA

<213> Artificial

<220>

<223> Vector

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 3

gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt 60 120 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 180 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea 360 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 420 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca 480 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc aatattetea agtatetega gtttgaaett atteeetgtg aacettttat teaccaatga 600 gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc 660 720 ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 780 tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct 840 900 caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg cacggctacg gaagacggag aagccacctt cagtggactc gagtaccatt taattctatt 960 tgtgtttgat cgagacctaa tacagcccct acaacgacca tcaaagtcgt atagctacca 1020 gtgaggaagt ggactcaaat cgacttcagc aacatctcct ggataaactt taagcctaaa 1080

WO 2004/063359 PCT/EP2004/000099 6/357

ctatacagaa	taagataggt	ggagagctta	taccgagete	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	.1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgeggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tagccgtcgg	1560
cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca	tccggcatct	gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	. 1800
tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tcgttgcgtc	1920
agtccaacat	ttgttgccat	attttcctgc	tctccccacc	agctgctctt	ttcttttctc	1980
tttctttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	, 2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340

tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agagcctgac	ctattgcatc	tcccgccgtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tcgcggaggc	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	cattcggacc	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gcgtccgtcg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	eggeaceteg	tgcacgcgga	tttcggctcc	2760
aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	ategeegegg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	teeggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggctccg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaateege	tettggetee	acgcgactat	3600

WO 2004/063359 PCT/EP2004/000099 8/357

atatttgtct ctaattgtac tttgacatgc tcctcttctt tactctgata gcttgactat 3660 gaaaattccg tcaccagcnc ctgggttcgc aaagataatt gcatgtttct tccttgaact 3720 ctcaagccta caggacacac attcatcgta ggtataaacc tcgaaatcan ttcctactaa 3780 gatggtatac aatagtaacc atgcatggtt gcctagtgaa tgctccgtaa cacccaatac 3840 geeggeegaa aettttttac aacteteeta tgagtegttt aeccagaatg cacaggtaca 3900 cttgtttaga ggtaatcctt ctttctagct agaagtcctc gtgtactgtg taagcgccca 3960 ctccacatct ccactcgacc tgcaggcatg caagcttggc gtaatcatgg tcatagctgt 4020 ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa 4080 agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac 4140 tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg 4200 cggggagagg cggtttgcgt attgggccaa agacaaaagg gcgacattca accgattgag 4260 ggagggaagg taaatattga cggaaattat tcattaaagg tgaattatca ccgtcaccga 4320 cttgagccat ttgggaatta gagccagcaa aatcaccagt agcaccatta ccattagcaa 4380 ggccggaaac gtcaccaatg aaaccatcga tagcagcacc gtaatcagta gcgacagaat 4440 caagtttgcc tttagcgtca gactgtagcg cgttttcatc ggcattttcg gtcatagccc 4500 ccttattagc gtttgccatc ttttcataat caaaatcacc ggaaccagag ccaccaccgg 4560 aaccgcctcc ctcagagccg ccaccctcag aaccgccacc ctcagagcca ccaccctcag 4620 4680 agccgccacc agaaccacca ccagagccgc cgccagcatt gacaggaggc ccgatctagt aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct 4740 atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct cataaataac 4800 gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata 4860

WO 2004/063359 PCT/EP2004/000099 9/357

atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	aatgtttgaa	4920
cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	acgcagcaag	4980
atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	gatgtggacg	5040
ccgggcccga	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	cgttgctgtc	5100
gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tecegtggge	gaagaactcc	5160
agcatgagat	cecegegetg	gaggatcatc	cageeggegt	cccggaaaac	gattccgaag	5220
cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	gttgggcgtc	5280
gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	agaaggcgat	5340
agaaggcgat	gcgctgcgaa	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	5400
cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	5460
ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	5520
tgatattcgg	caagcaggca	tcgccatggg	tcacgacgag	atcatcgccg	tegggeatge	5580
gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	tegtecagat	5640
catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	5700
cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	5760
ccatgatgga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	5820
cttcgcccaa	tagcagccag	tecetteceg	cttcagtgac	aacgtcgagc	acagetgege	5880
aaggaacgcc	cgtcgtggcc	agccacgata	geegegetge	ctcgtcctgc	agttcattca	5940
gggcaccgga	caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	6000
acacggcggc	atcagagcag	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	6060
ccacccaagc	ggccggagaa	cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	6120

WO 2004/063359 PCT/EP2004/000099 10/357

cagatccggt	gcagattatt	tggattgaga	gtgaatatga	gactctaatt	ggataccgag	6180
gggaatttat	ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgatagtg	6240
accttaggcg	acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	6300
actccagaaa	cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	gttccaaacg	6360
taaaacggct	tgtecegegt	categgeggg	ggtcataacg	tgactccctt	aattctccgc	6420
tcatgatcag	attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	6480
ttggcgggta	aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	6540
gtgaaaaggt	ttatccgttc	gtccatttgt	atgtgcatgc	caaccacagg	gttccccaga	6600
tetggegeeg	gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	ccgacagcgc	6660
gcccagcaca	ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	gaatgccata	6720
gtgggcggtg	acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	gcaccggcat	6780
aatcaggccg	atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	tcaggggtat	6840
gttgggtttc	acgtctggcc	tccggaccag	cctccgctgg	tccgattgaa	cgcgcggatt	6900
ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	gtcaagcatg	6960
acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	cgaggtegge	7020
gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	gccggcgctt	7080
tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	catgctggcg	7140
gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	tctgatcggg	7200
aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	catccatgcc	7260
ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	cttcctctgc	7320
gaggcgggtt	tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	ctacttcact	7380

WO 2004/063359 PCT/EP2004/000099 11/357

gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	cggcggcacc	7440
gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	7500
ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	ggcgaaaagg	7560
aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	aggaccgctg	7620
ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	7680
accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	cctagcgtcc	7740
aagcctcacg	gccgcgctcg	gcctctctgg	cggccttctg	gcgctcttcc	gcttcctcgc	7800
tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	7860
cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	7920
gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	cataggetee	7980
gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	8040
gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	cctgttccga	8100
ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgcttttcc	8160
gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	atcctttttc	8220
gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	tatccaacgg	8280
cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	cttcttcact	8340
gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	ctggccggct	8400
accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	aaccaggaag	8460
ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	tgaggaaaag	8520
gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	gggctacaaa	8580
atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	tggcgacctg	8640

WO 2004/063359 PCT/EP2004/000099 12/357

ggccgcctgg	geggeetget	gaaactctgg	ctcaccgacg	acccgcgcac	ggcgcggttc	8700
ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	cgagcttggc	8760
aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	gccgctaaaa	8820
cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	agaagagcga	8880
cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	gcctttgcga	8940
cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	cctgcaaacg	9000
cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	tgtggatacc	9060
tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	tgaggggccg	9120
actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	gcgacgtgga	9180
gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	ccacagatga	9240
tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	gcgactactg	9300
acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	tgaggggege	9360
acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	aagggtttcc	9420
gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc.	ttttaaacca	atatttataa	9480
accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	aaggggggtg	9540
ccccccttc	tcgaaccctc	ecggcccgct	aacgcgggcc	teccatecee	ccaggggctg	9600
cgcccctcgg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	ccttgccatt	9660
gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	cggaagcatt	9720
gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	tgagggcggc	9780
ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	cttcatggcg	9840
gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tegegggtge	cgtgctcgtg	9900

WO 2004/063359 PCT/EP2004/000099 13/357

ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	ataccgaggt	9960
atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	ttaaaaagct	10020
accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	attgacaata	10080
ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	tttcaggggg	10140
caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	taaaaacttg	10200
catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	ctatcataat	10260
tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	gatgactttg	10320
tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	tgccaggtgc	10380
tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	ategettget	gattacgtgc	10440
agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	tatcaccacg	10500
tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	ttcaccgaat	10560
acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	gcgctggcgc	10620
gatttagccc	cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	gacgtcactg	10680
cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	ttttaagtga	cgtaaaatcg	10740
tgttgaggcc	aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	ttcatggcca	10800
tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	tgcagttgcc	10860
atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	ttgccgttac	10920
gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	gccactggag	10980
cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	cataattgtg	11040
gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	aactttgaaa	11100
aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	gagttcgtct	11160

WO 2004/063359 PCT/EP2004/000099

tgttataatt agcttcttgg ggtatcttta aatactgtag aaaagaggaa ggaaataata 11220 aatggctaaa atgagaatat caccggaatt gaaaaaactg atcgaaaaat accgctgcgt 11280 aaaagatacg gaaggaatgt ctcctgctaa ggtatataag ctggtgggag aaaatgaaaa 11340 cctatattta aaaatgacgg acagccggta taaagggacc acctatgatg tggaacggga 11400 aaaggacatg atgctatggc tggaaggaaa gctgcctgtt ccaaaggtcc tgcactttga 11460 acggcatgat ggctggagca atctgctcat gagtgaggcc gatggcgtcc tttgctcgga 11520 agagtatgaa gatgaacaaa gccctgaaaa gattatcgag ctgtatgcgg agtgcatcag 11580 gctctttcac tccatcgaca tatcggattg tccctatacg aatagcttag acagccgctt 11640 agccgaattg gattacttac tgaataacga tctggccgat gtggattgcg aaaactggga 11700 agaagacact ccatttaaag atccgcgcga gctgtatgat tttttaaaga cggaaaagcc 11760 cgaagaggaa cttgtctttt cccacggcga cctgggagac agcaacatct ttgtgaaaga 11820 tggcaaagta agtggcttta ttgatcttgg gagaagcggc agggcggaca agtggtatga 11880 cattgccttc tgcgtccggt cgatcaggga ggatatcggg gaagaacagt atgtcgagct 11940 attttttgac ttactgggga tcaagcctga ttgggagaaa ataaaatatt atattttact 12000 ggatgaattg ttttagtacc tagatgtggc gcaacgatgc cggcgacaag caggagcgca 12060 ccgacttctt ccgcatcaag tgttttggct ctcaggccga ggcccacggc aagtatttgg 12120 gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac gagaaggacg 12180 gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg gacaccaagg 12240 caccaggegg gtcaaatcag gaataagggc acattgeeec ggegtgagte ggggcaatce 12300 cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa gaactgatcg 12360 acgcggggtt ttccgccgag gatgccgaaa ccatcgcaag ccgcaccgtc atgcgtgcgc 12420

WO 2004/063359 PCT/EP2004/000099 15/357

			13/33/			
cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	aagatcgagc	12480
gcgacagcgt	gcaactggct	cccctgccc	tgcccgcgcc	ateggeegee	gtggagcgtt	12540
cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	gacacgcgag	12600
gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	caggtcagcg	12660
aggccaagca	ggccgcgttg	ctgaaacaca	cgaagcagca	gatcaaggaa	atgcagcttt	12720
ccttgttcga	tattgcgccg	tggccggaca	cgatgcgagc	gátgccaaac	gacacggccc	12780
gctctgccct	gttcaccacg	cgcaacaaga	aaatcccgcg	cgaggcgctg	caaaacaagg	12840
tcattttcca	cgtcaacaag	gacgtgaaga	tcacctacac	cggcgtcgag	ctgcgggccg	12900
acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagcgcacc	cctatcggcg	12960
agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	atcaatggcc	13020
ggtattacac	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	atgggcttca	13080
cgtccgaccg	cgttgggcac ·	ctggaatcgg	tgtcgctgct	gcaccgcttc	cgcgtcctgg	13140
accgtggcaa	gaaaacgtcc	cgttgccagg	tcctgatcga	cgaggaaatc	gtcgtgctgt	13200
ttgctggcga	ccactacacg	aaattcatat	gggagaagta	ccgcaagctg	tcgccgacgg	13260
cccgacggat	gttcgactat	ttcagctcgc	accgggagcc	gtacccgctc	aagctggaaa	13320
ccttccgcct	catgtgcgga	teggatteca	cccgcgtgaa	gaagtggcgc	gagcaggtcg	13380
gcgaagcctg	cgaagagttg	cgaggcagcg	gcctggtgga	acacgcctgg	gtcaatgatg	13440
acctggtgca	ttgcaaacgc	tagggccttg	tggggtcagt	tccggctggg	ggttcagcag	13500
ccagcgcttt	actggcattt	caggaacaag	cgggcactgc	tcgacgcact	tgcttcgctc	13560
agtatcgctc	gggacgcacg	gcgcgctcta	cgaactgccg	ataaacagag	gattaaaatt	13620
gacaattgtg	attaaggete	agattcgacg	gcttggagcg	gccgacgtgc	aggatttccg	13680

WO 2004/063359 PCT/EP2004/000099 16/357

			20,001			
cgagatccga	ttgtcggccc	tgaagaaagc	tccagagatg	ttcgggtccg	tttacgagca	13740
cgaggagaaa	aagcccatgg	aggcgttcgc	tgaacggttg	cgagatgccg	tggcattcgg	13800
cgcctacatc	gacggcgaga	tcattgggct	gtcggtcttc	aaacaggagg	acggccccaa	13860
ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	gaggccgagg	13920
ggţcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	tgatcgtccg	13980
acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	ttaatatttc	14040
gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	tcgcggcgac	14100
ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	taggtagccc	14160
gatacgattg	atggcggtcc	tgggggctat	ttgcggaact	gcgggcgtgg	cgctgttggt	14220
gttgacacca	aacgcagcgc	tagatcctgt	cggcgtcgca	gcgggcctgg	cgggggcggt	14280
ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	ctctgctcac	14340
ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	ctttagtgtt	14400
tgatccgcca	atcccgatgc	ctacaggaac	caatgttctc	ggcctggcgt	ggctcggcct	14460
gatcggagcg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	tcgaacctac	14520
agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	cggggatgca	14580
tcaggccgac	agtcggaact	tegggteece	gacctgtacc	attcggtgag	caatggatag	14640
gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	ttcctcagcg	14700
gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	gcctgtcacg	14760
gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	agatgatatt	14820
tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	ccgcgagatc	14880
atccgtgttt	caaacccggc	agcttagttg	cegttettee	gaatagcatc	ggtaacatga	14940

WO 2004/063359 PCT/EP2004/000099 17/357

gcaaagtctg ccgccttaca acggctctcc cgctgacgcc gtcccggact gatgggctgc 15000 ctgtatcgag tggtgatttt gtgccgagct gccggtcggg gagctgttgg ctggctggtg 15060 gcaggatata ttgtggtgta aacaaattga cgcttagaca acttaataac acattgcgga 15120 cgtttttaat gtactggggt ggtttttctt ttcaccagtg agacgggcaa cagctgattg 15180 cccttcaccg cctggccctg agagagttgc agcaagcggt ccacgctggt ttgccccagc 15240 aggcgaaaat cctgtttgat ggtggttccg aaatcggcaa aatcccttat aaatcaaaag 15300 aatageeega gatagggttg agtgttgtte eagtttggaa caagagteea etattaaaga 15360 acqtqqactc caacqtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg 15420 aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc 15480 ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg 15540 aagggaagaa agcgaaagga gcgggcgca ttcaggctgc gcaactgttg ggaagggcga 15600 teggtgeggg cetetteget attacgeeag etggegaaag ggggatgtge tgeaaggega 15660 ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgaa 15720 15739 ttcgagctcg gtacccggg

<210> 4

<211> 11611

<212> DNA

<213> Artificial

<220>

<223> Vector

<220>

<221> misc_feature

<222> (227)..(227)

<223> n is a, c, g, or t

<220> <221> misc_feature <222> (318)..(318) <223> n is a, c, g, or t <220> <221> misc_feature <222>- (526)..(526) <223> n is a, c, g, or t <220> <221> misc_feature <222> (8946)..(8946) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10028)..(10028) <223> n is a, c, g, or t <400> 4 60 agettgeatg cetgeaggte gagtggagat gtggagtggg cgettacaca gtacacgagg acttctagct agaaagaagg attacctcta aacaagtgta cctgtgcatt ctgggtaaac 120 gactcatagg agagttgtaa aaaagtttcg gccggcgtat tgggtgttac ggagcattca 180 ctaggcaacc atgcatggtt actattgtat accatcttag taggaantga tttcgaggtt 240 300 tatacctacg atgaatgtgt gtcctgtagg cttgagagtt caaggaagaa acatgcaatt 360 atctttgcga acccaggngc tggtgacgga attttcatag tcaagctatc agagtaaaga agaggagcat gtcaaagtac aattagagac aaatatatag tcgcgtggag ccaagagcgg 420 480 attectcagt ctcgtaggtc tcttgacgac cgttgatctg cttgatctcg tctcccgaaa 540 atgaaaatag ctctgctaag ctattcttct cttcgccgga gcctgnaagg cgttactagg ttgcagtcaa tgcattaatg cattgcagat gagctgtatc tggaagaggt aaacccgaaa 600

WO 2004/063359 PCT/EP2004/000099 19/357

acgcgtttta	ttcttgttga	catggagcta	ttaaatcact	agaaggcact	ctttgctgct	660
tggacaaatg	aacgtatctt	atcgagatcc	tgaacaccat	ttgtctcaac	teeggagetg	720
acatcgacac	caacgatctt	atatccagat	tegteaaget	gtttgatgat	ttcagtaacg	780
ttaagtggat	cgatcccgcg	gtcggcatct	actctattcc	tttgccctcg	gacgagtgct	840
ggggcgtcgg	tttccactat	cggcgagtac	ttctacacag	ccatcggtcc	agacggccgc	900
gcttctgcgg	gcgatttgtg	tacgcccgac	agtcccggct	ccggatcgga	cgattgcgtc	960
gcatcgaccc	tgcgcccaag	ctgcatcatc	gaaattgccg	tcaaccaagc	tctgatagag	1020
ttggtcaaga	ccaatgcgga	gcatatacgc	ccggagccgc	ggcgatcctg	caagctccgġ	1080
atgectcege	tcgaagtagc	gegtetgetg	ctccatacaa	gccaaccacg	gcctccagaa	1140
gaagatgttg	gegaeetegt	attgggaatc	cccgaacatc	gcctcgctcc	agtcaatgac	1200
cgctgttatg	cggccattgt	ccgtcaggac	attgttggag	ccgaaatccg	cgtgcacgag	1260
gtgccggact	tcggggcagt	cctcggccca	aagcatcagc	tcatcgagag	cctgcgcgac	1320
ggacgcactg	acggtgtcgt	ccatcacagt	ttgccagtga	tacacatggg	gatcagcaat	1380
cgcgcatatg	aaatcacgcc	atgtagtgta	ttgaccgatt	ccttgcggtc	cgaatgggcc	1440
gaacccgctc	gtctggctaa	gateggeege	agcgatcgca	tccatggcct	ccgcgaccgg	1500
ctgcagaaca	gcgggcagtt	cggtttcagg	caggtcttgc	aacgtgacac	cctgtgcacg	1560
gcgggagatg	caataggtca	ggeteteget	gaattcccca	atgtcaagca	cttccggaat	1620
cgggagcgcg	gccgatgcaa	agtgccgata	aacataacga	tctttgtaga	aaccatcggc	1680
gcagctattt	acccgcagga	catatccacg	ccctcctaca	tcgaagctga	aagcacgaga	1740
ttcttcgccc	teegagaget	gcatcaggtc	ggagacgctg	tcgaactttt	cgatcagaaa	1800
cttctcgaca	gacgtcgcgg	tgagttcagg	catggtgatg	tctgctcaag	cggggtagct	1860

WO 2004/063359 PCT/EP2004/000099 20/357

			20,00,			
gttagtcaag	ctgcgatgaa	gtgggaaagc	tcgaactgaa	aggttcaaag	gaataaggga	1920
tgggaaggat	ggagtatgga	tgtagcaaag	tacttactta	ggggaaataa	aggttcttgg	1980
atgggaagat	gaatatactg	aagatgggaa	aagaaagaga	aaagaaaaga	gcagctggtg	2040
gggagagcag	gaaaatatgg	caacaaatgt	tggactgacg	caacgacctt	gtcaaccccg	2100
ccgacacacc	gggcggacag	acggggcaaa	gctgcctacc	agggactgag	ggacctcagc	2160
aggtcgagtg	cagagcaccg	gatgggtcga	ctgccagctt	gtgttcccgg	tetgegeege	2220
tggccagctc	ctgagcggcc	tttccggttt	catacaccgg	gcaaagcagg	agaggcacga	2280
tatttggacg	ccctacagat	gccggatggg	ccaattaggg	agcttacgcg	ccgggtactc	2340
gctctaccta	cttcggagaa	ggtactatct	cgtgaatctt	ttaccagatc	ggaagcaatt	2400
ggacttctgt	acctaggtta	atggcatgct	atttcgccga	cggctataca	cccctggctt	2460
cacattctcc	ttcgcttact	gccggtgatt	cgatgaagct	ccatattctc	cgatgatgca	2520
atagattctt	ggtcaacgag	gggcacacca	gcctttccac	ttcggggcgg	aggggcggcc	2580
ggtcccggat	taataatcat	ccactgcacc	tcagageege	cagagetgte	tggccagtgg	2640
cttattactc	agcccttctc	tctgcgtccg	teegtetete	cgcatgccag	aaagagtcac	2700
cggtcactgt	acagagctca	cgagttcgtc	acatttttct	acaaatggtg	gaggcggcgg	2760
attttaggct	caagtcatga	ccctctgggt	cactccagaa	tcagctaggt	caacgaataa	2820
ggatgattct	ataggaagat	ccaggcaccg	gtcaaccatg	atctggacag	atttgggagc	2880
tcggtataag	ctctccacct	atcttattct	gtatagttta	ggcttaaagt	ttatccagga	2940
gatgttgctg	aagtcgattt	gagtccactt	cctcactggt	agctatacga	ctttgatggt	3000
cgttgtaggg	gctgtattag	gtctcgatca	aacacaaata	gaattaaatg	gtactcgagt	3060
ccactgaagg	tggcttctcc	gtcttccgta	gccgtgccga	aatccttaca	gcttgtgttg	3120

WO 2004/063359 PCT/EP2004/000099 21/357

tgtgactttt	ggttacgccg	tctgactttt	gtggtgagct	aactagagat	catgctatat	3180
ctcctgattt	aatacaatgc	tcatcataac	attccacctg	gaactgctag	caacgtttga	3240
cttgcattgt	gcaacgccct	ttgcagagct	atcggatgat	caatagtgcc	acgttctaaa	3300
ttcaaccaac	gcaggtgccc	caagccttcg	acatccggat	gtatttcgaa	aacctcatgg	3360
cgattgcagt	cctcagattc	atgttcattc	caatgctcat	tggtgaataa	aaggttcaca	3420
gggaataagt	tcaaactcga	gatacttgag	aatattgaaa	gccaaaggac	cctctatgct	3480
ccaagctaga	gtctcagcct	ggaaagcaaa	tccaaatgaa	gctatgctac	ctccaattcc	3540
tcatcatctt	atctataata	cagagtcgaa	gaatateete	ttgacaccgc	tccgtcctcc	3600
gacttcaata	aggagcttac	tcctccttga	caccacccct	ccagttcttc	tcggcgttct	3660
ggagggaggc	cttgtcggtc	ttgggctggc	cctggctgag	aaagctgttg	gcagccttaa	3720
agggacgctg	gaggtcacca	gtcgctggct	tcccgaagac	gtggatctta	accagattcg	3780
aaagcgcctt	cageggatga	tcgactggat	cagaagagcg	ttggtgtact	tgaagtacag	3840
atgcatgacg	gccatcatgc	caacgcccat	gaactggctc	ttaatgagct	ggcggaactg	3900
gcccttatcg	tactccatgt	tggtagttgt	gacaggacga	ggctcctcgc	cgcttccaag	3960
cggagcaggc	tcgacgtatt	tcagtgtcga	aagatctgat	caagagacag	gatgaggatc	4020
gtttcgcatg	attgaacaag	atggattgca	cgcaggttct	ccggccgctt	gggtggagag	4080
gctattcggc	tatgactggg	cacaacagac	aatcggctgc	tctgatgccg	ccgtgttccg	4140
gctgtcagcg	caggggcgcc	cggttctttt	tgtcaagacc	gacctgtccg	gtgccctgaa	4200
tgaactgcag	gacgaggcag	cgcggctatc	gtggctggcc	acgacgggcg	ttccttgcgc	4260
agctgtgctc	gacgttgtca	ctgaagcggg	aagggactgg	ctgctattgg	gcgaagtgcc	4320
ggggcaggat	ctcctgtcat	ctcaccttgc	tcctgccgag	aaagtatcca	tcatggctga	4380

WO 2004/063359 PCT/EP2004/000099 22/357

tgcaatgcgg	cggctgcata	cgcttgatcc	ggctacctgc	ccattcgacc	accaagcgaa	4440
acatcgcatc	gagcgagcac	gtactcggat	ggaagccggt	cttgtcgatc	aggatgatct	4500
ggacgaagag	catcaggggc	tegegecage	cgaactgttc	gccaggctca	aggcgcgcat	4560
gcccgacggc	gaggatctcg	tcgtgaccca	tggcgatgcc	tgcttgccga	atatcatggt	4620
	cgcttttctg	gattcatcga	ctgtggccgg	ctgggtgtgg	cggaccgcta	4680
tcaggacata	gcgttggcta	cccgtgatat	tgctgaagag	cttggcggcg	aatgggctga	4740
ccgcttcctc	gtgctttacg	gtatcgccgc	tcccgattcg	cagcgcatcg	ccttctatcg	4800
ccttcttgac	gagttcttct	gagcgggact	ctggggttcg	aaatgaccga	ccaagcgacg	4860
cccaacctgc	catcacgaga	tttcgattcc	accgccgcct	tctatgaaag	gttgggcttc	4920
ggaatcgttt	tccgggacgc	cggctggatg	atcctccagc	gcggggatct	catgctggag	4 980
ttcttcgccc	accccgggct	cgatcccctc	gcgagttggt	tcagctgctg	cctgaggctg	5040
gacgacctcg	cggagttcta	ccggcagtgc	aaatccgtcg	gcatccagga	aaccagcagc	5100
ggctatccgc	gcatccatgc	ccccgaactg	caggagtggg	gaggcacgat	ggccgctttg	5160
gtccggatct	ttgtgaagga	accttacttc	tgtggtgtga	cataattgga	caaactacct	5220
acagagattt	aaagctctaa	ggtaaatata	aaatttttaa	gtgtataatg	tgttaaacta	5280
ctgattctaa	ttgtttgtgt	attttagatt	ccaacctatg	gaactgatga	atgggagcag	5340
tggtggaatg	cctttaatga	ggaaaacctg	ttttgctcag	aagaaatgcc	atctagtgat	5400
gatgaggcta	ctgctgactc	tcaacattct	actcctccaa	aaaagaagag	aaaggtagaa	5460
gaccccaagg	actttccttc	agaattgcta	agttttttga	gtcatgctgt	gtttagtaat	5520
agaactcttg	cttgctttgc	tatttacacc	acaaaggaaa	aagctgcact	gctatacaag	5580
aaaattatgg	aaaaatattc	tgtaaccttt	ataagtaggc	ataacagtta	taatcataac	5640

atactgtttt	ttcttactcc	acacaggcat	agagtgtctg	ctattaataa	ctatgctcaa	5700
aaattgtgta	cctttagctt	tttaatttgt	aaaggggtta	ataaggaata	tttgatgtat	5760
agtgccttga	ctagagatca	taatcagcca	taccacattt	gtagaggttt	tacttgcttt	5820
aaaaaacctc	ccacacctcc	ccctgaacct	gaaacataaa	atgaatgcaa	ttgttgttgt	5880
taacttgttt	attgcagctt	ataatggtta	caaataaagc	aatagcatca	caaatttcac	5940
aaataaagca	ttttttcac	tgcattctag	ttgtggtttg	tccaaactca	tcaatgtatc	6000
ttatcatgtc	tggatctgac	gggtgcgcat	gatcgtgctc	ctgtcgttga	ggacccggct	6060
aggctggcgg	ggttgcctta	ctggttagca	gaatgaatca	ccgatacgcg	agcgaacgtg	6120
aagcgactgc	tgctgcaaaa	cgtctgcgac	ctgagcaaca	acatgaatgg	tcttcggttt	6180
ccgtgtttcg	taaagtctgg	aaacgcggaa	gtcagcgctc	ttccgcttcc	tcgctcactg	6240
actegetgeg	ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	6300
tacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	6360
aaaaggccag	caaaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	6420
gctccgcccc	cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	6480
gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	tccctcgtgc	gctctcctgt	6540
tccgaccctg	ccgcttaccg	gatacctgtc	cgcctttctc	ccttcgggaa	gcgtggcgct	6600
ttctcatagc	tcacgctgta	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	6660
ctgtgtgcac	gaaccccccg	ttcagcccga	cegetgegee	ttatccggta	actatcgtct	6720
tgagtccaac	ccggtaagac	acgacttatc	gccactggca	gcagccactg	gtaacaggat	6780
tagcagagcg	aggtatgtag	gcggtgctac	agagttcttg	aagtggtggc	ctaactacgg	6840

WO 2004/063359 PCT/EP2004/000099 24/357

ctacactaga	aggacagtat	ttggtatctg	cgctctgctg	aagccagtta	ccttcggaaa	6900
aagagttggt	agctcttgat	ccggcaaaca	aaccaccgct	ggtagcggtg	gtttttttgt	6960
ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	gaagatcctt	tgatcttttc	7020
tacggggtct	gacgctcagt	ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgagatt	7080
atcaaaaagg	atcttcacct	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	7140
aagtatatat	gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagtg	aggcacctat	7200
ctcagcgatc	tgtctatttc	gttcatccat	agttgcctga	ctccccgtcg	tgtagataac	7260
tacgatacgg	gagggcttac	catctggccc	cagtgctgca	atgataccgc	gagacccacg	7320
ctcaccggct	ccagatttat	cagcaataaa	ccagccagcc	ggaagggccg	agcgcagaag	7380
tggtcctgca	actttatccg	cctccatcca	gtctattaat	tgttgccggg	aagctagagt	7440
aagtagttcg	ccagttaata	gtttgcgcaa	cgttgttgcc	attgctgcag	gcatcgtggt	7500
gtcacgctcg	tcgtttggta	tggcttcatt	cageteeggt	tcccaacgat	caaggcgagt	7560
tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	tteggteete	cgatcgttgt	7620
cagaagtaag	ttggccgcag	tgttatcact	catggttatg	gcagcactgc	ataattctct	7680
tactgtcatg	ccatccgtaa	gatgcttttc	tgtgactggt	gagtactcaa	ccaagtcatt	7740
ctgagaatag	tgtatgcggc	gaccgagttg	ctcttgcccg	gcgtcaacac	gggataatac	7800
cgcgccacat	agcagaactt	taaaagtgct	catcattgga	aaacgttctt	cggggcgaaa	7860
actctcaagg	atcttaccgc	tgttgagatc	cagttcgatg	taacccactc	gtgcacccaa	7920
ctgatcttca	gcatctttta	ctttcaccag	cgtttctggg	tgagcaaaaa	caggaaggca	7980
aaatgccgca	aaaaagggaa	taagggcgac	acggaaatgt	tgaatactca	tactcttcct	8040
ttttcaatat	tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	acatatttga	8100

WO 2004/063359 PCT/EP2004/000099 25/357

atgtatttag	aaaaataaac	aaataggggt	tccgcgcaca	tttccccgaa	aagtgccacc	8160
tgacgtctaa	gaaaccatta	ttatcatgac	attaacctat	aaaaataggc	gtatcacgag	8220
gccctttcgt	cttcaagaat	tcgcggccgc	aattaaccct	cactaaagga	tccctatagt	8280
gagtcgtatt	atgcggccgc	gaattctcat	gtttgaccgc	ttatcatcga	taagctctgc	8340
tttttgttga	cttccattgt	tcattccacg	gacaaaaaca	gagaaaggaa	acgacagagg	8400
ccaaaaagct	cgctttcagc	acctgtcgtt	teetttettt	tcagagggta	ttttaaataa	8460
aaacattaag	ttatgacgaa	gaagaacgga	aacgccttaa	accggaaaat	tttcataaat	8520
agcgaaaacc	cgcgaggtcg	ccgccccgta	acaaggcgga	tcgccggaaa	ggacccgcaa	8580
atgataataa	ttatcaattg	catactateg	acggcactgc	tgccagataa	caccaccggg	8640
gaaacattcc	atcatgatgg	ccgtgcggac	ataggaagcc	agttcatcca	tcgctttctt	8700
gtctgctgcc	atttgctttg	tgacatccag	cgccgcacat	tcagcagcgt	ttttcagcgc	8760
gttttcgatc	aacgtttcaa	tgttggtatc	aacaccaggt	ttaactttga	acttatcggc	8820
actgacggtt	accttgttct	gcgctggctc	atcacgcagg	ataccaaggc	tgatgttgta	8880
gatattggtc	accggctgag	ggttttcgat	tgccgctgcg	tggatagcac	catttgcgat	8940
caggengtee	ttgatgaatg	acactccatt	gcgaataagt	tcgaaggaga	cggtgtcacg	9000
aatgegetgg	tccagctcgg	tcgattgcct	tttgtgcagc	agaggtatca	atctcaacgc	9060
caaggctcat	cgaagcgcaa	tattgctgct	caccaaaacg	cgtattgacc	aggtgttcaa	9120
cggcaaattt	ctgcccttct	gatgtcagaa	aggcaaagtg	attttctttc	tggtattcag	9180
ttgctgtgtg	teggttteag	caaaaccaag	ctcgcgcaat	teggetgtge	agatttagaa	9240
ggcagatcac	cagacagcaa	cggccaacgg	aaaacagcgc	atacagaaca	teegtegeeg	9300
cgccgacaac	gtgataattt	ttatgaccca	tgatttattt	ccttttagac	gtgagcctgt	9360

WO 2004/063359 PCT/EP2004/000099 26/357

cgcacagcaa	agccgccgaa	agtteetega	agctagcttc	agacgtgtct	agatacgtct	9420
gctttttgtt	gacttccatt	gttcattcca	cggacaaaaa	cagagaaagg	aaacgacaga	9480
ggccaaaaag	ctcgctttca	gcacctgtcg	tttcctttct	tttcagaggg	tattttaaat	9540
aaaaacatta	agttatgacg	aagaagaacg	gaaacgcctt	aaaccggaaa	attttcataa	9600
atagcgaaaa	cccgcgaggt	cgccgccccg	taacaaggcg	gatcgccgga	aaggacccgc	9660
aaatgataat	aattatcaat	tgcatactat	cgacggcact	gctgccagat	aacaccaccg	9720
gggaaacatt	ccatcatgat	ggccgtgcgg	acataggaag	ccagttcatc	catcgctttc	9780
ttgtctgctg	ccatttgctt	tgtgacatcc	agcgccgcac	attcagcagc	gtttttcagc	9840
gcgttttcga	tcaacgtttc	aatgttggta	tcaacaccag	gtttaacttt	gaacttatcg	9900
gcactgacgg	ttaccttgtt	ctgcgctggc	tcatcacgca	ggataccaag	gctgatgttg	9960
tagatattgg	tcaccggctg	agggttttcg	attgccgctg	cgtggatagc	accatttgcg	10020
atcaggcngt	ccttgatgaa	tgacactcca	ttgcgaataa	gttcgaagga	gacggtgtca	10080
cgaatgcgct	ggtccagctc	ggtcgattgc	cttttgtgca	gcagaggtat	caatctcaac	10140
gccaaggctc	atcgaagcgc	aatattgctg	ctcaccaaaa	cgcgtattga	ccaggtgttc	10200
aacggcaaat	ttctgccctt	ctgatgtcag	aaaggcaaag	tgattttctt	tctggtattc	10260
agttgctgtg	tgtcggtttc	agcaaaacca	agctcgcgca	atteggetgt	gcagatttag	10320
aaggcagatc	accagacagc	aacggccaac	ggaaaacagc	gcatacagaa	catccgtcgc	10380
cgcgccgaca	acgtgataat	ttttatgacc	catgatttat	ttccttttag	acgtgagcct	10440
gtcgcacagc	aaagccgccg	aaagttcctc	gaccgatgcc	cttgagagcc	ttcaacccag	10500
tcagctcctt	ccggtgggcg	cggggcatga	ctatcgtcgc	cgcacttatg	actgtcttct	10560
ttatcatgca	actcgtagga	caggtgccgg	cagcgctctg	ggtcattttc	ggcgaggacc	10620

WO 2004/063359 PCT/EP2004/000099 27/357

getttegetg gagegegaeg atgateggee tgtegettge ggtattegga atettgeaeg 10680 ccctcgctca agccttcgtc actggtcccg ccaccaaacg tttcggcgag aagcaggcca 10740 ttatcgccgg catggcgcc gacgcgctgg gctacgtctt gctggcgttc gcgacgcgag 10800 getggatgge etteceeatt atgattette tegetteegg eggeateggg atgeeeggt 10860 tgcaggccat gctgtccagg caggtagatg acgaccatca gggacagctt caaggatcgc 10920 tegeggetet taccageeta acttegatea ttggaceget gategteaeg gegatttatg 10980 ccgcctcggc gagcacatgg aacgggttgg catggattgt aggcgccgcc ctataccttg 11040 tetgeeteee egegttgegt egeggtgeat ggageeggge eacetegace tgaatggaag 11100 ccggcggcac ctcgctaacg gattcaccac tccaagaatt ggagccaatc aattcttgcg 11160 gagaactgtg aatgcgcaaa ccaaccettg gcagaacata tccatcgcgt ccgccatctc 11220 cagcagccgc acgcggcgca tctcgggcag cgttgggtcc tgcagatccg gctgtggaat 11280 gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag caggcagaag tatgcaaagc 11340 atgcatctca attagtcagc aaccaggtgt ggaaagtccc caggctcccc agcaggcaga 11400 agtatgcaaa gcatgcatct caattagtca gcaaccatag tcccgcccct aactccgccc 11460 atcccgccc taactccgcc cagttccgcc cattctccgc cccatggctg actaattttt 11520 tttatttatg cagaggccga ggccgcctcg gcctctgagc tattccagaa gtagtgagga 11580 11611 ggcttttttg gaggcctagg cttttgcaaa a

<210> 5

<211> 21

<212> DNA

<213> Artificial

	28/357	
<223>	Primer	•
<400>	5	
cgatgt	agga gggcgtggat a .	21
<210>	6	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Primer	
<400>	6	
gcttct	gcgg gcgatttgtg t	21
<210>	7	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>	·	
<223>	Primer	
<400>	7	
tgagaal	tatc accggaattg	20
<210>		
<211>	21	
	DNA	
<213>	Artificial	
<220>		
<223>	Primer	
<400>	8	

PCT/EP2004/000099

21

WO 2004/063359

agctcgacat actgttcttc c

W	O 200	04/063359			PCT/EI	PCT/EP2004/000099		
				29/357				
	9							
	24							
.>	DNA							
T3>	Art:	ificial						
				•				
<220>								
<223>	Pri	ner						
	:							
<400>								
gtgaat	ggaa	atcccatcgc	tgtc				24	
٠								
<210>	10							
<211>	24							
<212>	DNA							
\212 >	DINA							
<213>	Arti	ficial						
72157	111 03	110101			·			
<220>								
<223>	Prin	ner						
<400>	10							
agtggg	tact	ctaaaggcca	tacc				24	
<210>	11							
<211>	1771							
<212>	DNA							
<213>	Haen	natococcus p	oluvialis					
<220>								
<221>	CDS							
<222>	(166	5)(1155)	٠					
.400:	4.4		•					
<400>	11	L	+an-manaa	anachanaca	aataaaatta	00.00.00.00.	60	
ggcacga	agct	cgcacgcaag	Leagegegeg	caayicaaca	eergeeggte	cacageetea	. 60	
22+22+	a =	anchassass	tttatacaca	tegaegtege	cagtctgcac	tacattassa	120	
aatadta	aay	ayeteaayeg	Linguaged	cegacycyge	cagiciguat	cyccicyaac	120	

ccgcgagtct cccgccgcac tgactgccat agcacagcta gacga atg cag cta gca 177

Met Gln Leu Ala

1

gcg aca gta atg ttg gag cag ctt acc gga agc gct gag gca ctc aag 225 Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala Glu Ala Leu Lys .10 15 gag aag gag gag gtt gca ggc agc tct gac gtg ttg cgt aca tgg 273 Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val Leu Arg Thr Trp 25 30 gcg acc cag tac tcg ctt ccg tca gaa gag tca gac gcg gcc cgc ccg 321. Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp Ala Ala Arg Pro 40 45 50 gga ctg aag aat gcc tac aag cca cct tcc gac aca aag ggc atc 369 . Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp Thr Lys Gly Ile 55 60 65 aca atg gcg cta cgt gtc atc ggc tcc tgg gcc gca gtg ttc ctc cac . 417 Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala Val Phe Leu His 70 75 80 gcc att ttt caa atc aag ctt ccg acc tcc ttg gac cag ctg cac tgg 465 Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp Gln Leu His Trp 85 90 95 100 ctg ccc gtg tca gat gcc aca gct cag ctg gtt agc ggc acg agc agc 513 Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser Gly Thr Ser Ser 105 110 115 ctg ctc gac atc gtc gta gta ttc ttt gtc ctg gag ttc ctg tac aca 561 Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu Phe Leu Tyr Thr 120 125 130 ggc ctt ttt atc acc acg cat gat gct atg cat ggc acc atc gcc atg 609 Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly Thr Ile Ala Met 135 · 140 145 aga aac agg cag ctt aat gac ttc ttg ggc aga gta tgc atc tcc ttg 657 Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val Cys Ile Ser Leu 150 155 160

31/357

									31	331						
tac	gcc	tgg	ttt	gat	tac	aac	atg	ctg	cac	cgc	aag	cat	tgg	gag	cac	705
Tyr	Ala	Trp	Phe	Asp	Tyr	Asn	Met	Leu	His	Arg	Lys	His	Trp	Glu	His	
165					170					175					180	
cac	aac	cac	act	ggc	gag	gtg	ggc	aag	gac	cct	gac	ttc	cac	agg	gga	753
												Phe				
-				185			,	_	190					195		
220	cct	aac	att	ata	ccc	taa	ttt	acc	agc	ttc	atg	tcc	agc	tac	atg	801
												Ser				
ASII	FIO	GLY	200	vai	110		1110	205					210			
			200					205								
		.					aba	~~~	+ aa	+~~	200	gtg	ata	atro	cac	849
_																0.25
Ser	Met		GIN	Pne	Ala	Arg		Ala	тър	пр	TIIT	Val	vai	Mec	GIII	
		215					220					225			٠	
																007
												atg				897
Leu	Leu	Gly	Ala	Pro	Met	Ala	Asn	Leu	Leu	Val		Met	Ala	Ala	Ala	
	230					235					240					
												acg				945
Pro	Ile	Leu	Ser	Ala	Phe	Arg	Leu	Phe	Tyr	Phe	Gly	Thr	Tyr	Met	Pro	
245					250					255					260	
cac	aag	cct	gag	cct	ggc	gcc	gcg	tca	ggc	tct	tca	cca	gcc	gtc	atg	993
His	Lys	Pro	Glu	Pro	Gly	Ala	Ala	Ser	Gly	Ser	Ser	Pro	Ala	Val	Met	
				265					270					275		
										•			•			
aac	tgg	tgg	aag	tcg	cgc	act	agc	cag	gcg	tcc	gac	ctg	gtc	agc	ttt	1041
												Leu				
	_		280					285					290			
cta	acc	tac	tac	cac	ttc	gac	ctg	cac	tgg	gag	cac	cac	cgc	tgg	ccc	1089
															Pro	
Doa	****	295					300		-			305				
		275														
++~	~~~	000	taa	taa	. uau	cta	מכר	aac	tac	can	cac	cta	tct	gac	cga	1137
															Arg	
rne			ıτb	rrp	GIU			11011	-13 -13	9	320			1	3	
	310					315					220					
								a na	+~~~	at ~~	.aa a	ataa	taca	а		1185
						ctg	gaca	cac	Lyca	gugg	ge c	ctgc	Lycc	·u		1100
Gly	Leu	. Val	Pro	Ala	L											

WO 2004/063359 PCT/EP2004/000099 32/357

325

gctgggcatg caggttgtgg	caggactggg	tgaggtgaaa	agctgcaggc	gctgctgccg	1245
gacacgctgc atgggctacc	ctgtgtagct	gccgccacta [,]	ggggaggggg	tttgtagctg	1305
tcgagcttgc cccatggatg	aagctgtgta	gtggtgcagg	gagtacaccc	acaggccaac	1365
accettgcag gagatgtett	gcgtcgggag	gagtgttggg	cagtgtagat	gctatgattg	1425
tatcttaatg ctgaagcctt	taggggagcg	acacttagtg	ctgggcaggc	aacgccctgc	1485
aaggtgcagg cacaagctag	gctggacgag	gactcggtgg	caggcaggtg	aagaggtgcg	1545
ggagggtggt gccacaccca	ctgggcaaga	ccatgctgca	atgctggcgg	tgtggcagtg	1605
agagctgcgt gattaactgg	gctatggatt	gtttgagcag	tctcacttat	tctttgatat	1665
agatactggt caggcaggtc	aggagagtga	gtatgaacaa	gttgagaggt	ggtgcgctgc	1725
ccctgcgctt atgaagctgt	aacaataaag	tggttcaaaa	aaaaaa		1771

<210> 12

<211> 329

<212> PRT

<213> Haematococcus pluvialis

<400> 12

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15

Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val
20 25 30

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp 35 40 45

33/357

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp 50 55 60

Thr Lys Gly Ile Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala 65 70 75 80

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110

Gly Thr Ser Ser Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu
115 120 125

Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly .

130 135 140

Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys
165 170 175

His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp 180 185 190

Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met
195 200 205

Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr

34/357

210 215 220

Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe
225 230 235 240

Met Ala Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly
245 250 255

Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 260 265 270

Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 275 280 285

Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 290 295 300

His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 305 310 315 320

Leu Ser Gly Arg Gly Leu Val Pro Ala 325

<210> 13

فتين الله الما

<211> 1662

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (168)..(1130)

<400> 13

35/357																
cgg	ggca	act	caag	aaat	tc a	acag	ctgc	a ag	cgcg	cccc	agc	ctca	cag	cgcc	aagtga	60
gct	atcg	acg	tggt	tgtg	ag c	gete	gacg	t gg	tcca	ctga	cgg	gcct	gtg	agcc	tctgcg	120
ctc	cgtc	ctc	tgcc.	aaat	ct c	gcgt	cggg	g cc	tgee	taag	tcg	aaga		cac His		176
gca	tcg	gca	cta	atg	gtc	gag	cag	aaa	ggc	agt	gag	gca	gct	gct	tcc	224
Ala	Ser 5	Ala	Leu	Met	Val	Glu 10	Gln	Lys	Gly	Ser	Glu 15	Ala	Ala	Ala	Ser	
agc	cca	gac	atc	tta	апа	aca	taa	aca	aca	cag	tat	cac	atα	cca	tcc	272
_		_	_	_	_								_	Pro		2,2
20					25					30					35	
gag	tcg	tca	gac	gca	gct	cgt	cct	gcg	cta	aag	cac	gcc	tac	aaa	cct	320
Glu	Ser	Ser	Asp	Ala 40	Ala	Arg	Pro	Ala	Leu 45	Lys	His	Ala	Tyr	Lys 50	Pro	
cca	gca	tct	gac	gcc	aag	ggc	atc	acg	atg	gcg	ctg	acc	atc	att	ggc	368
Pro	Ala	Ser	Asp	Ala	Lys	Gly	Ile	Thr	Met	Ala	Leu	Thr	Ile	Ile	Gly	
			55					60					65			
			_					_						cta	_	416
Thr	Trp		Ala	Val	Phe	Leu		Ala	Ile	Phe	Gln		Arg	Leu	Pro	
		70					75					80				
aca	tcc	atg	gac	cag	ctt	cac	tgg	ttg	cct	gtg	tcc	gaa	gcc	aca	gcc	464
Thr	Ser	Met	Asp	Gln	Leu	His	Trp	Leu	Pro	Val	Ser	Glu	Ala	Thr	Ala	
	85					90					95					
cag	ctt	ttg	ggc	gga	agc	agc	agc	cta	ctg	cac	atc	gct	gca	gtc	ttc	512
Gln	Leu	Leu	Gly	Gly	Ser	Ser	Ser	Leu	Leu	His	Ile	Ala	Ala	Val	Phe	
100					105					110					115	
att	at a	ctt	nan	ttc	cta	tac	act	aat	cta	ttc	atc	acc	aca	cat	aac	560
	_				-									His	_	300
				120		-		-	125					130	-	
gca	atg	cat	ggc	acc	ata	gct	ttg	agg	cac	agg	cag	ctc	aat	gat	ctc	608
31.	Mat	ui a	C1	mb	T1.	7 J ~	T	3	774 -	7	01 -	T	7	7	T	

Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu Asn Asp Leu

135 140 145

					4											
															atg	656
ьeu	GIĀ		TTE	Cys	TIE	Ser		Tyr	Ala	Trp	Phe	Asp	Tyr	Ser	Met	
		150					155					160				
				_								ggc				704
Leu		Arg	Lys	His	Trp	Glu	His	His	Asn	His	Thr	Gly	Glu	Val	Gly	
	165					170					175					
aaa	gac	cct	gac	ttc	cac	aag	gga	aat	,ccc	ggc	ctt	gtc	ccc	tgg	ttc	752
Lys	Asp	Pro	Asp	Phe	His	Lys	Gly	Asn	Pro	Gly	Leu	Val	Pro	Trp	Phe	
180					185					190					195	
gcc	agc	ttc	atg	tcc	agc	tac	atg	tcc	ctg	tgg	cag	ttt	gcc	cgg	ctg	800
Ala	Ser	Phe	Met	Ser	Ser	Tyr	Met	Ser	Leu	Trp	Gln	Phe	Ala	Arg	Leu	
				200					205					210		
gca	tgg	tgg	gca	gtg	gtg	atg	caa	atg	ctg	ggg	gcg	ccc	atg	gca	aat	848
Ala	Trp	Trp	Ala	Val	Val	Met	Gln	Met	Leu	Gly	Ala	Pro	Met	Ala	Asn	
			215					220					225			
ctc	cta	gtc	ttc	atg	gct	gca	gcc	cca	atc	ttg	tca	gca	ttc	cgc	ctc	896
Leu	Leu	Val	Phe	Met	Ala	Ala	Ala	Pro	Ile	Leu	Ser	Ala	Phe	Arg	Leu	
		230					235					240				
												•				
ttc	tac	ttc	ggc	act	tac	ctg	cca	cac	aag	cct	gag	cca	ggc	cct	gca	944
Phe	Tyr	Phe	Gly	Thr	Tyr	Leu	Pro	His	Lys	Pro	Glu	Pro	Gly	Pro	Ala	
	245					250					255					
gca	ggc	tct	cag	gtg	atg	ġcc	tgg	ttc	agg	gcc	aag	aca	agt	gag	gca	992
Ala	Gly	Ser	Gln	Val	Met	Ala	Trp	Phe	Arg	Ala	Lys	Thr	Ser	Glu	Ala	
260					265					270					275	
tct	gat	gtg	atg	agt	ttc	ctg	aca	tgc	tac	cac	ttt	gac	ctg	cac	tgg	1040
Ser	Asp	Val	Met	Ser	Phe	Leu	Thr	Суз	Tyr	His	Phe	Asp	Leu	His	Trp	
				280					285					290		
gag	cac	cac	agg	tgg	ccc	ttt	gcc	ccc	tgg	tgg	cag	ctg	ccc	cac	tgc	1088
Glu												_			-	
			295					300					305		-	

WO 2004/063359 PCT/EP2004/000099 37/357

cgc cgc ct	g tee ggg	cgt ggc	ctg gtg	cct gcc	ttg gca	tga	1130
Arg Arg Le	ı Ser Gly	Arg Gly	Leu Val	Pro Ala	Leu Ala		
310)		315		320		
cctggtccct	ccgctggt	ga cccag	cgtct go	acaagagt	gtcatgct	ac. agggtgctgc	1190

ggccagtggc agcgcagtgc actctcagcc tgtatggggc taccgctgtg ccactgagca 1250 ctgggcatgc cactgagcac tgggcgtgct actgagcaat gggcgtgcta ctgagcaatg 1310 ggcgtgctac tgacaatggg cgtgctactg gggtctggca gtggctagga tggagtttga 1370 tgcattcagt agcggtggcc aacgtcatgt ggatggtgga agtgctgagg ggtttaggca 1430 gccggcattt gagagggcta agttataaat cgcatgctgc tcatgcgcac atatctgcac 1490 acagccaggg aaatcccttc gagagtgatt atgggacact tgtattggtt tcgtgctatt 1550 gttttattca gcagcagtac ttagtgaggg tgagagcagg gtggtgagag tggagtgagt 1610 gagtatgaac ctggtcagcg aggtgaacag cctgtaatga atgactctgt ct 1662

<210> 14

<211> 320

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met His Val Ala Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala 1 5 10 15

Ala Ala Ser Ser Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His
20 25 30

Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala 35 40 45

Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr
50 55 60

Ile Ile Gly Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile 65 70 75 80

Arg Leu Pro Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu 85 90 95

Ala Thr Ala Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala

100 105 110

Ala Val Phe Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr
115 120 125

Thr His Asp Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu 130 135 140

Tyr Ser Met Leu His Arg Lys His Trp Glu His His Asn His Thr Gly
165 170 175

Glu Val Gly Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Val 180 185 190

Pro Trp Phe Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe 195 200 205

Ala Arg Leu Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro

WO 2004/063359 PCT/EP2004/000099

39/357

210 215 220

Met Ala Asn Leu Leu Val Phe Met Ala Ala Pro Ile Leu Ser Ala 225 230 235 240

Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Leu Pro His Lys Pro Glu Pro 245 250 255

Gly Pro Ala Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr 260 265 270

Ser Glu Ala Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp 275 280 285

Leu His Trp Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu 290 295 300

Pro His Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 305 310 315 320

<210> 15

<211> 729

<212> DNA

<213> Agrobacterium aurantiacum

<220>

<221> CDS

<222> (1)..(729)

<400> 15

atg age gca cat gcc ctg ccc aag gca gat ctg acc gcc acc age ctg

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 5 10 15

48

atc	gtc	tcg	ggc	ggc	atc	atc	gcc	gct	tgg	ctg	gcc	ctg	cat	gtg	cat	96
Ile	Val	Ser	Gly	Gly	Ile	Ile	Ala	Ala	Trp	Leu	Ala	Ĺeu	His	Val	His	
	•		20					25					30			
gcg	ctg	tgg	ttt	ctg	gac	gça	gcg	gcg	cat	ccc	atc	cta	aca	atc	qca	144
		Trp														
		35			_		40					45				
	.1															
aat	ttc	ctg	aaa	cta	acc	taa	cta	tea	ata	aaa	++~	++0	at a	ato	aaa	192
		Leu														192
	50	200	013	200	~111	55	пец	Der	Vai	GIY		File	TTE	тте	AIA	
	50					22					60					
ant	~ 2 ~	~~~	- t	a > a	~~~	.										
		gcg														240
	Asp	Ala	Met	HIS		ser	Val	Val	Pro		Arg	Pro	Arg	Ala	Asn	
65					70					75					80	
		atg														288
Ala	Ala	Met	Gly	Gln	Leu	Val	Leu	Trp	Leu	Tyr	Ala	Gly	Phe	Ser	Trp	
				85					90					95		
cgc	aag	atg	atc	gtc	aag	cac	atg	gcc	cat	cac	cgc	cat	gcc	gga	acc	336
Arg	Lys	Met	Ile	Val	Lys	His	Met	Ala	His	His	Arg	His	Ala	Gly	Thr	
			100					105					110			
gac	gac	gac	ccc	gat	ttc	gac	cat	ggc	ggc	ccg	gtc	cgc	tgg	tac	gcc	384
Asp	Asp	Asp	Pro	Asp	Phe	Asp	His	Gly	Gly	Pro	Val	Arg	Trp	Tyr	Ala	
		115					120					125	_	-		
cgc	ttc	atc	aac	acc	tat	ttc	aac	taa	cac	gag	aaa	cta	cta	cta	CCC	432
		Ile														4J2
	130		_			135	2		9		140		LCu	БСС	110	
						133					740					
atc	atc	gtg	aca	ata	+=+	~~~	ata	240	a++	~~~	~~ t	~~~	-		L	400
																480
Val 145	116	vai	TIIL	vaı		Ala	ьęи	тте	ьеи		Asp	Arg	Trp	met		•
147					150					155					160	
~+~	~+ -	+ +-	- ~-				.	_1								
gtg																528
Val	val	rue			Leu	Pro	Ser	TTe		Ala	Ser	Ile	Gln		Phe	
				165					170					175		
		ggc													_	576
Val	Phe	Gly	Thr	Trp	Leu	Pro	His	Arg	Pro	Gly	His	Asp	Ala	Phe	Pro	

WO 2004/063359		PCT/EP2004/000099
	41/357	

	W	20 04	1/0633	59											PCT/EP20	04/00009
									41/3	3 57						
			180					185					190			
œ.c	cac	cac	a a t	aca	caa	tca	tca	caa	ato	200	aac.	ccc	ata	tea	ata	624
		His														024
nap	9	195		HΙα	**** 9		200	my	116	Der	nop	205	Vul	DCI	neu	
ctg	acc	tgc	ttt	cac	ttt	ggc	ggt	tat	cat	cac	gaa	cac	cac	ctg	cac	672
Leu	Thr	Cys	Phe	His	Phe	Gly	Gly	Tyr	His	His	Glu	His	His	Leu	His	
	210					215					220					
ccg	acg	gtg	ccg	tgg	tgg	cgc	ctg	ccc	agc	acc	cgc	acc	aag	ggg	gac	720
Pro	Thr	Val	Pro	Trp	Trp	Arg	Leu	Pro	Ser	Thr	Arg	Thr	Lys	Gly	Asp	
225					230					235					240	
																700
	_	tga														729
Thr	A⊥a								•							
<210	>	16														
<211	.>	242														
<212	>	PRT														

<212> PRT

<213> Agrobacterium aurantiacum

<400> 16

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala

42/357

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp

43/357

225 230 235 240

Thr Ala

<210> 17

<211> 1631

<212> DNA

<213> Alcaligenes sp.

<220>

<221> CDS

<222> (99)..(827)

<400> 17

ctgcaggccg ggcccggtgg ccaatggtcg caaccggcag gactggaaca ggacggcggg 60

ccggtctagg ctgtcgccct acgcagcagg agtttcgg atg tcc gga cgg aag cct 116

Met Ser Gly Arg Lys Pro

L :

ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc 164
Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile

10 15 20

ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat 212 Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp

25 30 35

gcg gcc gcg cat ccg ctg ctt gcc gtg ctg tgc ctg gct ggg ctg acc 260

Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr

40 45 50

tgg ctg tcg gtc ggg ctg ttc atc atc gcg cat gac gca atg cac ggg 308
Trp Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly

55 60 65 70

tcc gtg gtg ccg ggg ccg ccg cgc gcc aat gcg gcg atc ggg caa ctg 356 Ser Val Val Pro Gly Arg Pro Arg Ala Asn Ala Ile Gly Gln Leu

WO 2004/063359		PCT/EP2004/000099
	44/357	

75 80 85

														-		
acc	g ctg	tac	c ctc	tat	aca	~~~	++~	taa	taa		224	ata	2+2			404
	Leu															404
1120	L		90	TYL	AIG	Gry	rne	95	ırp	FIO	цуъ	neu	100	Ала	ьуѕ	
			50					93					100			
cac	atg	aco	cat	'cac	caa	cac	acc	aac	acc	gac	aac	σat	ccc	cat	ttc	452
	Met													_		432
		105			9		110	رس		110E	21011	115	110	пор	rne	
ggt	cac	gga	ggg	ccc	gtg	cgc	tgg	tac	ggc	agc	ttc	gtc	tcc	acc	tat	500
	His															
	120					125					130				-	
ttc	ggc	tgg	cga	gag	gga	ctg	ctg	cta	ccg	gtg	atc	gtc	acc	acc	tat	548
Phe	Gly	Trp	Arg	Glu	Gly	Leu	Leu	Leu	Pro	Val	Ile	Val	Thr	Thr	Tyr	
135					140					145					150	٠
gcg	ctg	atc	ctg	ggc	gat	cgc	tgg	atg	tat	gtc	atc	ttc	tgg	ccg	gtc	596
Ala	Leu	Ile	Leu	Gly	Asp	Arg	Trp	Met	Tyr	Val	Ile	Phe	Trp	Pro	Val	
				155					160					165		
ccg	gcc	gtt	ctg	gcg	tcg	atc	cag	att	ttc	gtc	ttc	gga	act	tgg	ctg	644
Pro	Ala	Val	Leu	Ala	Ser	Ile	Gln	Ile	Phe	Val	Phe	Gly	Thr	Trp	Leu	
			170					175					180			
	cac													_		692
Pro	His		Pro	Gly	His	Asp		Phe	Pro	Asp	Arg		Asn	Ala	Arg	
		185					190					195				
taa	200	~~~	24-	~~-			L. L	.								
	acc															740
per	Thr 200	дтλ	116	ату	Asp		ьeu	ser	ьeu	ьeu		Cys	Pne	His	Phe	
	200					205					210					
aac	ggc	tat	cac	cac	αaa	cat	cac.	cta	cat	cca	cat	ata	000	taa	+~~	700
	Gly															788
215					220			200		225	*****	Val	110	115	230	
															200	
cgc	ctg	cct	cgt	aca	cgc	aag	acc	gga	ggc	cgc	gca	tga	cgca	atto	:ct	837
	Leu											-	-			-
				235					240	-						

cattgtcgtg	gcgacagtcc	tcgtgatgga	gctgaccgcc	tattccgtcc	accgctggat	897
tatgcacggc	cccctaggct	ggggctggca	caagtcccat	cacgaagagc	acgaccacgc	957
gttggagaag	aacgacctct	acggcgtcgt	cttcgcggtg	ctggcgacga	tcctcttcac	1017
cgtgggcgcc	tattggtggc	cggtgctgtg	gtggatcgcc	ctgggcatga	cggtctatgg	1077
gttgatctat	ttcatcctgc	acgacgggct	tgtgcatcaa	cgctggccgt	ttcggtatat	1137
teegeggegg	ggctatttcc	gcaggctcta	ccaagctcat	cgcctgcacc	acgcggtcga	1197
ggggcgggac	cactgcgtca	gcttcggctt	catctatgcc	ccacccgtgg	acaagctgaa	1257
gcaggatctg	aagcggtcgg	gtgtcctgcg	ccccaggac	gagcgtccgt	cgtgatctct	1317
gatcccggcg	tggccgcatg	aaatccgacg	tgctgctggc	aggggccggc	cttgccaacg	1377
gactgatcgc	gctggcgatc	cgcaaggcgc	ggcccgacct	tegegtgetg	ctgctggacc	1437
gtgcggcggg	cgcctcggac	gggcatactt	ggtcctgcca	cgacaccgat	ttggcgccgc	1497
actggctgga	ccgcctgaag	ccgatcaggc	gtggcgactg	gcccgatcag	gaggtgcggt	1557
tcccagacca	ttcgcgaagg	ctccgggccg	gatatggctc	gatcgacggg	cgggggctga	1617
tgcgtgcggt	gacc					1631

<210> 18

<211> 242

<212> PRT

<213> Alcaligenes sp.

<400> 18

Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu 1 5 10 15

Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe

46/357

20 25 30

Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu 35 40 45

Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala
50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr 100 105 110

Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly
115 120 125

Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro 130 135 140

Val Ile Val Thr Thr Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr
145 150 155 160

Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Asp Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu 195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly 225 230 235 240

Arg Ala

<210> 19

<211> 729

<212> DNA

<213> Paracoccus marcusii

<220>

<221> CDS

<222> (1)..(729)

<400> 19

atg age gea cat gee etg eec aag gea gat etg ace gee aca age etg 48 Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 10 15

atc gtc tcg ggc ggc atc atc gcc gca tgg ctg gcc ctg cat gtg cat 96 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30

gcg ctg tgg ttt ctg gac gcg gcc cat ccc atc ctg gcg gtc gcg 144 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 35 40 45

aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg 192 Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala

cat gac gcg atg cac ggg tcg gtc gtg ccg ggg cgt ccg cgc gcc aat 240

50 55 60

Hi	s Asp) Ala	Met	His	Gly	Ser	Val	Val	Pro	Gly	Arg	Pro	Arg	Ala	Asn		
65					70			•		75					80	•	
מכו	g gcg	r ato	aac	caa	att	ata	a+~	h		.			4. 1. 1.				
	a Ala																288
			011	85	Dou	vui	Deu	пр	90	ı yı	ATA	СТУ	FIIE	95	Trp		
									2.0					,,			
cgo	c aag	atg	atc	gtc	aag	cac	atg	gcc	cat	cac	cgc	cat	gcc	gga	acc		336
Arg	J Lys	Met	Ile	Val	Lys	His	Met	Ala	His	His	Arg	His	Ala	Gly	Thr		
			100					105					110				
	gac																384
AS <u>I</u>	Asp	115	Pro	Asp	Phe	Asp		Gly	Gly	Pro	Val		Trp	Tyr	Ala		
		113					120					125					
cgc	ttc	atc	ggc	acc	tat	ttc	aac	taa	cac	gag	aaa	cta	cta	cta	CCC		432
	, Phe																452
	130					135			_		140						
														•			
gto	atc	gtg	acg	gtc	tat	gcg	ctg	atc	ctg	ggg	gat	cgc	tgg	atg	tac		480
	Ile	Val	Thr	Val	Tyr	Ala	Leu	Ile	Leu	Gly	Asp	Arg	Trp	Met	Tyr		
145	•				150					155					160		
ata	· ata	++-	+~~	~~~			.										
	gtc Val																528
V 4.2	, ,,,	1110	ııp	165	пеп	FIO	ger	тте	170	Ald	ser	тте	GIN	175	Pne		
									1,0					175			
gtg	ttc	ggc	act	tgg	ctg	ccg	cac	cgc	ccc	ggc	cac	gac	gcg	ttc	ccg		576
	Phe																
			180					185					190			•	
	cgc -														_		624
Asp	Arg		Asn	Ala	Arg			Arg	Ile	Ser	Asp		Val	Ser	Leu		
		195					200					205					
cta	acc	tgc	ttt	cat	ttt	aac	aat.	tat	cat.	cac	gaa	cac	cac	cta	cac		672
	Thr																012
	210					215	-	-			220	_ _					

WO 2004/063359 PCT/EP2004/000099

49/357

ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gac 720
Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp

225 230 235 240

acc gca tga 729

Thr Ala

<210> 20

<211> 242

<212> PRT

<213> Paracoccus marcusii

<400> 20

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 5 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His
20 25 30

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp

85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr
100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe
165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro
180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His
210 215 220

Pro Thr Val Pro Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235

Thr Ala

<210> 21

<211> 1629

<212> DNA

<213> Synechocystis sp.

<22	0>																
<22	1> (CDS															
<22	2>	(1).	. (16	29)													
		•															
<40	0> :	21															
atg	atc	acc	acc	gat	gtt	gtc	att	att	ggg	gcg	ggg	cac	aat	ggċ	tta	48	
Met	Ile	Thr	Thr	Asp	Val	Va1	Ile	Ile	Gly	Ala	Gly	His	Asn	Gly	Leu		
1				5					10					15	4,		
gtc	tgt	gca	gcc	tat	ttg	ctc	caa	cgg	ggc	ttg	ggg	gtg	acg	tta	cta	96	
Val	Cys	Ala	Ala	Tyr	Leu	Leu	Gln	Arg	Gly	Leu	Gly	Val	Thr	Leu	Leu		
			20					25			`		30				
gaa	aag	cgg	gaa	gta	cca	ggg	ggg	gcg	gcc	acc	aca	gaa	gct	ctc	atg	144	
Glu	Lys	Arg	Glu	Val	Pro	Gly	Gly	Ala	Ala	Thr	Thr	Glu	Ala	Leu	Met		
		35					40					45					
ccg	gag	cta	tcc	ccc	cag	ttt	cgc	ttt	aac	cgc	tgt	gcc	att	gac	cac	192	
Pro	Glu	Leu	Ser	Pro	Gln	Phe	Arg	Phe	Asn	Arg	Суѕ	Ala	Ile	Asp	His		
	50					55					60						
gaa	ttt	atc	ttt	ctg	ggg	ccg	gtg	ttg	cag	gag	cta	aat	tta	gcc	cag	240	
Glu	Phe	Ile	Phe	Leu		Pro	Val	Leu	Gln	Glu	Leu	Asn	Leu	Ala	Gln		
65					70					75					80		
tat	ggt	ttg	gaa	tat	tta	ttt	tgt	gac	ccc	agt	gtt	ttt	tgt	ccg	aaa	288	
Tyr	Gly	Leu	Glu	Tyr	Leu	Phe	Cys	Asp	Pro	Ser	Val	Phe	Cys	Pro	Gly		
				85					90					95			
			caa												_	336	
Leu	Asp		Gln	Ala	Phe	Met	Ser		Arg	Ser	Leu.	Glu	Lys	Thr	Cys		
			100					105					110				
			gcc													384	
Ala	His		Ala	Thr	Tyr	Ser		Arg	Asp	Ala	Glu		Tyr	Arg	Gln		
		115					120					125					
			.	L =			L L	~ -								420	
LLT	gtc	aat	tat	cgg	acg	gat	ctg	CLC	aac	gct	gtc	cag	CCI	gct	LEC	432	

Phe	Val		Tyr	Trp	Thr	Asp 135		Leu	ı Asn	Ala	Val		Pro	Ala	Phe	
	Ala					Leu					Leu				tgg Trp	480
gaa	aac				gtg	ctg				ggg	tcg				gcg	528
ttg	gat	ttt	atc	165 cgc	act	atg	atc	ggc	170	ccg	gaa	gat	gtg	175		576
Leu	Asp	Phe	Ile 180	Arg	Thr	Met	Ile	Gly 185	Ser	Pro	Glu	Asp	Val 190	Leu	Asn	
		Phe											_		_	624
		att Ile													_	672
		gtg Val														720
		gga Gly														768
		aaa Lys														816
	Asn	cag Gln 275														864
		aaa Lys													_	912

300

295

-290

450

455

460

caa	ttg	gtg	gaa	ccg	aaa	gcc	cta	gcc	aag	gtg	aat	caa	aac	cta	ggg	960
Gln	Leu	Val	Glu	Pro	Gly	Ala	Leu	Ala	Lys	Val	Asn	Gln	Asn	Leu	Gly	
305					310					315					320	
								•								
gaa	cga	ctg	gaa	cgg	cgc	act	gtg	aac	aat	aac	gaa	gcc	att	tta	aaa	1008
Glu	Arg	Leu	Glu	Arg	Arg	Thr	Val	Asn	Asn	Asn	Glu	Ala	Ile	Leu	Lys	
				325	٠				330		•			335		
4					.											
						ggt										1056
тте	ASD	cys	340	теп	ser	Gly	ьеи		HIS	Pne	Thr	ATA		Ala	GTĀ	
			240					345					350			
cca	σασ	gat	cta	aca	gga	act	att	tta	att	acc	gac	tca	σta	cac	cat	1104
						Thr		_		-	•	_	_	_		1104
		355			-		360					365		3		
gtc	gag	gaa	gcc	cac	gcc	ctc	att	gcc	ttg	ggg	caa	att	ccc	gat	gct	1152
Val	Glu	Glu	Ala	His	Ala	Leu	Ile	Ala	Leu	Gly	Gln	Ile	Pro	Asp	Ala	
	370					375				·	380					
aat	ccg	tct	tta	tat	ttg	gat	att	ccc	act	gta	ttg	gac	ccc	acc	atg	1200
Asn	Pro	Ser	Leu	Tyr	Leu	Asp	Ile	Pro	Thr	Val	Leu	Asp	Pro	Thr	Met	
385					390					395					400	
gcc	CCC	cct	ggg	cag	cac	acc	ctc	tgg	atc	gaa	ttt	ttt	gcc	ccc	tac	1248
Ala	Pro	Pro	Gly		His	Thr	Leu	Trp		Glu	Phe	Phe	Ala		Tyr	
				405					410					415		
222	ata	~~~	~~~	++~	~	~~~		~~~		a+~	~~~			h		1206 :
						ggg Gly										1296
n.a	116	ALG	420	пеп	Giu	Gry		425	neu	Mec	СТА	1111	430	пр	THE	
			140					123					100			
gat	gag	tta	aag	gaa	aaa	gtg	gcg	gat	cgg	gtg	att	gat	aaa	tta	acq	1344
						Val									_	
		435					440					445				
gac	tat	gcc	cct	aac	cta	aaa	tct	ctg	atc	att	ggt	cgc	cga	gtg	gaa	1392
Asp	Tyr	Ala	Pro	Asn	Leu	Lys	Ser	Leu	Ile	Ile	Gly	Arg	Arg	Val	Glu	

agt ccc gcc gaa ctg gcc caa cgg ctg gga agt tac aac ggc aat gtc 1440 Ser Pro Ala Glu Leu Ala Gln Arg Leu Gly Ser Tyr Asn Gly Asn Val 465 470 475 480 tat cat ctg gat atg agt ttg gac caa atg atg ttc ctc cgg cct cta 1488 Tyr His Leu Asp Met Ser Leu Asp Gln Met Met Phe Leu Arg Pro Leu 485 490 495 ccg gaa att gcc aac tac caa acc ccc atc aaa aat ctt tac tta aca 1536 Pro Glu Ile Ala Asn Tyr Gln Thr Pro Ile Lys Asn Leu Tyr Leu Thr 500 505 510 ggg gcg ggt acc cat ccc ggt ggc tcc ata tca ggt atg ccc ggt aga 1584 Gly Ala Gly Thr His Pro Gly Gly Ser Ile Ser Gly Met Pro Gly Arg 515 520 525 aat tgc gct cgg gtc ttt tta aaa caa cgt cgt ttt tgg taa 1629 Asn Cys Ala Arg Val Phe Leu Lys Gln Gln Arg Arg Phe Trp 530 535 540

<210> 22

<211> 542

<212> PRT

<213> Synechocystis sp.

<400> 22

Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu 5 10 15

Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu 20 25 30

Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met

35 40 45

Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His

Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu Ala Gln

Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly 90 .

Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys

Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln

Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe

Asn Ala Pro Pro Gln Ala Leu Leu Asp Leu Ala Leu Asn Tyr Gly Trp

Glu Asn Leu Lys Ser Val Leu Ala Ile Ala Gly Ser Lys Thr Lys Ala

Leu Asp Phe Ile Arg Thr Met Ile Gly Ser Pro Glu Asp Val Leu Asn

Glu Trp Phe Asp Ser Glu Arg Val Lys Ala Pro Leu Ala Arg Leu Cys

Ser Glu Ile Gly Ala Pro Pro Ser Gln Lys Gly Ser Ser Ser Gly Met

220

210 215

Met Met Val Ala Met Arg His Leu Glu Gly Ile Ala Arg Pro Lys Gly
225 230 235 240

Gly Thr Gly Ala Leu Thr Glu Ala Leu Val Lys Leu Val Gln Ala Gln
245 250 255

Gly Gly Lys Ile Leu Thr Asp Gln Thr Val Lys Arg Val Leu Val Glu 260 265 270

Asn Asn Gln Ala Ile Gly Val Glu Val Ala Asn Gly Glu Gln Tyr Arg 275 280 285

Ala Lys Lys Gly Val Ile Ser Asn Ile Asp Ala Arg Arg Leu Phe Leu 290 295 300

Gln Leu Val Glu Pro Gly Ala Leu Ala Lys Val Asn Gln Asn Leu Gly 305 310 315 320

Glu Arg Leu Glu Arg Arg Thr Val Asn Asn Asn Glu Ala Ile Leu Lys
. 325 330 335

Ile Asp Cys Ala Leu Ser Gly Leu Pro His Phe Thr Ala Met Ala Gly
340 345 350

Pro Glu Asp Leu Thr Gly Thr Ile Leu Ile Ala Asp Ser Val Arg His
355 360 365

Val Glu Glu Ala His Ala Leu Ile Ala Leu Gly Gln Ile Pro Asp Ala 370 375 380

Asn Pro Ser Leu Tyr Leu Asp Ile Pro Thr Val Leu Asp Pro Thr Met

Ala Pro Pro Gly Gln His Thr Leu Trp Ile Glu Phe Phe Ala Pro Tyr

Arg Ile Ala Gly Leu Glu Gly Thr Gly Leu Met Gly Thr Gly Trp Thr

Asp Glu Leu Lys Glu Lys Val Ala Asp Arg Val Ile Asp Lys Leu Thr

Asp Tyr Ala Pro Asn Leu Lys Ser Leu Ile Ile Gly Arg Arg Val Glu

Ser Pro Ala Glu Leu Ala Gln Arg Leu Gly Ser Tyr Asn Gly Asn Val

Tyr His Leu Asp Met Ser Leu Asp Gln Met Met Phe Leu Arg Pro Leu

Pro Glu Ile Ala Asn Tyr Gln Thr Pro Ile Lys Asn Leu Tyr Leu Thr

Gly Ala Gly Thr His Pro Gly Gly Ser Ile Ser Gly Met Pro Gly Arg

Asn Cys Ala Arg Val Phe Leu Lys Gln Gln Arg Arg Phe Trp

<211> 776

<212> DNA

<213> Bradyrhizobium sp.

<220>

<221> CDS

<222> (1)..(774)

<400> 23

atg cat gca gca acc gcc aag gct act gag ttc ggg gcc tct cgg cgc

Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg

1 10 15

gac gat gcg agg cag cgc cgc gtc ggt ctc acg ctg gcc gcg gtc atc 96
Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile
20 25 30

atc gcc gcc tgg ctg gtg ctg cat gtc ggt ctg atg ttc ttc tgg ccg

144

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro

35

40

45

acc tgg ctc tat gta ggc ctg ttc atc atc gcg cat gac tgc atg cac

Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His

70

75

80

ggc tcg ctg gtg ccg ttc aag ccg cag gtc aac cgc cgt atc gga cag 288
Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln
85 90 95

ctc tgc ctg ttc ctc tat gcc ggg ttc tcc ttc gac gct ctc aat gtc 336
Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
100 105 110

gag cac cac aag cat cac cgc cat ccc ggc acg gcc gag gat ccc gat

384
Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp

115
120
125

									371	331						
tc	gac	gag	gtg	ccg	ccg	cac	ggc	ttc	tgg	cac	tgg	ttc	gcc	agc	ttt	432
he	Asp	Glu	Val	Pro	Pro	His	Gly	Phe	Trp	His	Trp	Phe	Ala	Ser	Phe	
	130					135					140					
tc	ctg	cac	tat	ttc	ggc	tgg	aag	cag	gtc	gcg	atc	atc	gca	gcc	gtc	480
he	Leu	His	Tyr	Phe	Gly	Trp	Lys	Gln	Val	Ala	Ile	Ile	Ala	Ala	Val	
.45					150					155					160	
																528
er	Leu	Val	Tyr	Gln	Leu	Val	Phe	Ala	Val	Pro	Leu	Gln	Asn	Ile	Leu	
				165					170		٠			175	•	
																576
eu	Phe	Trp	Ala	Leu	Pro	Gly	Leu	Leu	Ser	Ala	Leu	Gln	Leu	Phe	Thr	
			180					185		•			190			
																624
he	Gly	Thr	Tyr	Leu	Pro	His	Lys	Pro	Ala	Thr	Gln	Pro	Phe	Ala	Asp	
		195					200					205				
							_					_	_	_	J	672
rg		Asn	Ala	Arg	Thr	Ser	Glu	Phe	Pro	Ala	Trp	Leu	Ser	Leu	Leu	
	210					215					220					
															•	
												_			•	720
	Cys	Phe	His	Phe		Phe	His	His	Glu		His	Leu	His	Pro	Asp	
25					230					235					240	
												_	_	_		768
Lа	Pro	Trp			Leu	Pro	Glu	Ile		Arg	Arg	Ala			Arg	
				245					250					255		
		tа														776
rg	Asp															
	Phe stc he sc rg cc rg c	tc ctg he Leu tg ttc eu Phe tc ggc he Gly gc cac rg His 210 cc tgc hr Cys 25 cg ccg la Pro	tc ctg cac the Leu His 45 cg ctg gtt er Leu Val tg ttc tgg eu Phe Trp tc ggc acc he Gly Thr 195 gc cac aac rg His Asn 210 cc tgc ttc hr Cys Phe 25 cg ccg tgg la Pro Trp	The Asp Glu Value 130 ctc ctg cac tat the Gly Thr Tyr 195 ctg cac aac gcg rg His Asn Ala 210 ctc tgc ttc cac hr Cys Phe His 25 ctg cac tat the Phe Trp Trp Trp Trp Trp Trp Trp Trp	The Asp Glu Val Pro 130 The Ctg cac tat ttc the Leu His Tyr Phe A55 The Leu His Tyr Phe A55 The Leu Val Tyr Gln 165 The Ctg cac tat ctg tag tag tag tag tag tag tag tag tag t	The Asp Glu Val Pro Pro 130 The Cet Cac tat ttc ggc Che Leu His Tyr Phe Gly 150 The Leu His Tyr Gln Leu 165 The Leu Val Tyr Gln Leu 165 The Cet Cac tat ctg ccc cu Phe Trp Ala Leu Pro 180 The Gly Thr Tyr Leu Pro 195 The Gly Thr Tyr Leu Pro 195 The Cac tac aac gcg cgg acg rg His Asn Ala Arg Thr 210 The Cys Phe His Phe Gly 230 The Cys Tyr Tyr Arg Leu 245 The Cys Tyr	Phe Pro	The Asp Glu Val Pro Pro His Gly 130	The Asp Glu Val Pro Pro His Gly Phere 130	the gae gag gtg ccg ccg cac ggc ttc tgg the Asp Glu Val Pro Pro His Gly Phe Trp 130	The Asp Glu Val Pro Pro His Gly Phe Trp His I30 Atc Ctg Cac tat ttc ggc tgg aag cag gtc gcg gcg tgg aag cag gtc gcg gcg gtc ggg tgg aag cag gtc gcg gcg gtc gcg tgg Trp Lys Gln Val Ala 155 155 Ads	the gas gag gtg ccg ccg cac ggc ttc tcg cac tgg the Asp Glu Val Pro His Gly Phe Trp His Trp 130	the Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe 130	tec gac gag gtg ccg ccg cac ggc ttc tgg cac tgg ttc gcc ctg cac at ttc ggc tgg aag cag gtc gcg atc atc gca ctg ctg tat cag ctc gtc ttc gcc gtg ttat cag ctc gtc ttc gcc gtg ttat cag ctc gtc ttc gcc gtg ttat cag ctc gtc ttc gcc gtg ctg gtg aag cag gtc gcg atc atc gca atc atc gca ctg ctg gtt tat cag ctc gtc ttc gcc gtt ccc ttg cag aac car Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn 165	the gac gag gtg ccg ccg cac ggc ttc tgg cac tgg ttc gcc agc che Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser 130	the gac gag gtg ccg ccg cac gge ttc tgg cac tgg ttc gcc age ttt the Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140 tc ctg cac tat ttc ggc tgg aag cag gtc gcg atc atc gca gcc gtc the Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 45 150 155 160 cg ctg gtt tat cag ctc gtc ttc gcc gtt ccc ttg cag aac atc ctg ter Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu 165 170 175 tg ttc tgg gcg ctg ccc ggg ctg ctg tcg gcg ctg cag ctg ttc acc eu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr 180 185 190 tc ggc acc tat ctg ccg cac aag ccg gcc acg cag ccc ttc gcc gat the Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp 195 200 205 gc cac aac gcg cgg acg acg agc gaa ttt ccc gcg tgg ctg tcg ctg ctg rg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Leu Ser Leu Leu 210 215 220 cc tgc ttc cac ttc ggc ttt cat cac gag cat cat ctg cat cc gat thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp 25 230 235 240 cg ccg tgg tgg cgg ctg ccg gag atc aag cgg ccc ctg gaa agg la Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg 245 250 255

<210> 24

<211> 258

<212> PRT

<213> Bradyrhizobium sp.

<400> 24

Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg

1 10 15

Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile 20 25 30

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro 35 40 45

Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln 50 55 60

Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 75 80

Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95

Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
100 105 110

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp 115 120 125

Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140

 WO 2004/063359 PCT/EP2004/000099

61/357

Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu 165 170 175

Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr
180 185 190

Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp 195 200 205

Arg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Lèu Ser Leu Leu 210 215 220

Thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp 225 230 235 240

Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg 245 250 255

Arg Asp

<210> 25

<211> 777

<212> DNA

<213> Nostoc sp.

<220>

<221> CDS

<222> (1)..(777)

<400> 25

atg gtt cag tgt caa cca tca tct ctg cat tca gaa aaa ctg gtg tta Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu

1 5 10 15

ttg	tca	tcg	aca	atc	aga	gat	gat	aaa	aat	att	aat	aag	ggt	ata	ttt	96
Leu	Ser	Ser	Thr	Ile	Arg	Asp	Asp	Lys	Asn	Ile	Asn	Lys	Gly	Ile	Phe	
			20					25		•			30			
att	gcc	tgc	ttt	atc	tta	ttt	tta	tgg	gca	att	agt	tta	atc	tta	tta	144
Ile	Ala	Cys	Phe	Ile	Leu	Phe	Leu	Trp	Ala	Ile	Ser	Leu	Ile	Leu	Leu	
		35					40					45				
ctc	tca	ata	gat	aca	tcc	ata	att	cat	aag	agc	tta	tta	ggt	ata	gcc	192
Leu	Ser	Ile	Asp	Thr	Ser	Ile	Ile	His	Lvs	Ser	Leu	Leu	Glv	Ile	Ala	
	50					55			-		60		_			
ato	ctt	taa	caq	acc	ttc	tta	tat	aca	aat	tta	+++	att	act	act	cat	240
					Phe											240
65	Dea	110	0.111	1111	70	Бец	TYL	1111	GLY		FIIE	116	1111	нта		
0.5					70					75					80	
	~~~	24~				ما ماند	L_L			4_					,	000
					gta											288
Asp	Ala	Met	HIS		Val	vaı	Tyr	Pro		Asn	Pro	Arg	Ile		Asn	
				85					90					95		
					act											336
Phe	Ile	Gly	Lys	Leu	Thr	Leu	Ile	Leu	Tyr	Gly	Leu	Leu	Pro	Tyr	ГÀЗ	
			100					105					110			
gat	tta	ttg	aaa	aaa	cat	tgg	tta	cac	cac	gga	cat	cct	ggt	act	gat	384
Asp	Leu	Leu	Lys	Lys	His	Trp	Leu	His	His	Gly	His	Pro	Gly	Thr	Asp	
		115					120					125				
tta	gac	cct	gat	tat	tac	aat	ggt	cat	ccc	caa	aac	ttc	ttt	ctt	tgg	432
Leu	Asp	Pro	Asp	Tyr	Tyr	Asn	Gly	His	Pro	Gln	Asn	Phe	Phe	Leu	Trp	
	130					135					140					
tat	cta	cat	ttt	atg	aag	tct	tat	tgg	cga	tgg	acg	caa	att	ttc	gga .	480
Tyr	Leu	His	Phe	Met	Lys	Ser	Tyr	Trp	Arg	Trp	Thr	Gln	Ile	Phe	Gly	
145					150					155					160	
tta	gtg	atg	att	ttt	cat	gga	ctt	aaa	aat	ctg	gtg	cat	ata	cca	qaa	528
					His										_	-
				165		-		_	170		•	=		175		
									-					•		
aat	aat	tta	att	ata	ttt	taa	ato	ata	cct	tet	att	tta	agt	tca	gta	576
						-55	9						-y c	Jua	gcu	5,0

WO 2004/063359 PCT/EP2004/000099 63/357

Asn	Asn	Leu	Ile	Ile	Phe	Trp	Met	Ile	Pro	Ser	Ile	Leu	Ser	Ser	Val

180 185 190

caa cta ttt tat ttt ggt aca ttt ttg cct cat aaa aag cta gaa ggt 624 Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly 195 200 205

ggt tat act aac ccc cat tgt gcg cgc agt atc cca tta cct ctt ttt 672

Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe
210 215 220

tgg tct ttt gtt act tgt tat cac ttc ggc tac cac aag gaa cat cac 720

Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His

230 235 240

gaa tac cct caa ctt cct tgg tgg aaa tta cct gaa gct cac aaa ata 768
Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile
245 250 255

tct tta taa 777
Ser Leu

<210> 26 ·

<211> 258

<212> PRT

<213> Nostoc sp.

<400> 26

Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu 1 5 10 15

Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe 20 25 30

Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu 35 40 45

Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 

Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 

Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 

Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys 

Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 

Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp

Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly 

Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu 

Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val 

Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly 

WO 2004/063359 PCT/EP2004/000099 65/357

Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe 210 215 220

Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 240

Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile 245 250 255

Ser Leu

<210> 27

<211> 789

<212> DNA

<213> Nostoc punctiforme

<220>

<221> CDS

<222> (1)..(789)

<400> 27

ttg aat ttt tgt gat aaa cca gtt agc tat tat gtt gca ata gag caa 48 Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 5 10 15

tta agt gct aaa gaa gat act gtt tgg ggg ctg gtg att gtc ata gta 96
Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val
20 . 25 . 30

att att agt ctt tgg gta gct agt ttg gct ttt tta cta gct att aat

144

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn

35

40

45

tat gcc aaa gtc cca att tgg ttg ata cct att gca ata gtt tgg caa 192
Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln
50 55 60

atg ttc ctt tat aca ggg cta ttt att act gca cat gat gct atg cat Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His ggg tca gtt tat cgt aaa aat ccc aaa att aat aat ttt atc ggt tca Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser cta gct gta gcg ctt tac gct gtg ttt cca tat caa cag atg tta aag Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys aat cat tgc tta cat cgt cat cct gct agc gaa gtt gac cca gat Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp ttt cat gat ggt aag aga aca aac gct att ttc tgg tat ctc cat ttc Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe atg ata gaa tac tcc agt tgg caa cag tta ata gta cta act atc cta Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu ttt aat tta gct aaa tac gtt ttg cac atc cat caa ata aat ctc atc Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile tta ttt tgg agt att cct cca att tta agt tcc att caa ctg ttt tat Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr ttc gga aca ttt ttg cct cat cga gaa ccc aag aaa gga tat gtt tat Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr ccc cat tgc agc caa aca ata aaa ttg cca act ttt ttg tca ttt atc 

gct tgc tac cac ttt ggt tat cat gaa gaa cat cat gag tat ccc cat 720

Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile

WO 2004/063359		PCT/EP2004/000099
	67/357	

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

gta cct tgg tgg caa ctt cca tct gta tat aag cag aga gta ttc aac

768

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn

245

250

255

aat toa gta acc aat tog taa 789
Asn Ser Val Thr Asn Ser
260

<210> 28

<211> 262

<212> PRT

<213> Nostoc punctiforme

<400> 28

Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln

1 5 10 15

Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 20 25 30

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 35 40 45

Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln
50 55 60

Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80

Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95

Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys 

Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 

Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 

Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 

Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 

Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr 

Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr 

Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile 

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 

260

<210> 29 <211> 762 <212> DNA <213> Nostoc punctiforme <220> <221> CDS <222> (1)..(762) <400> 29 gtg atc cag tta gaa caa cca ctc agt cat caa gca aaa ctg act cca 48 Val Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 5 10 gta ctg aga agt aaa tct cag ttt aag ggg ctt ttc att gct att gtc 96 Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val 20 25 30 att gtt agc gca tgg gtc att agc ctg agt tta tta ctt tcc ctt gac 144 Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Ser Leu Asp 35 40 atc tca aag cta aaa ttt tgg atg tta ttg cct gtt ata cta tgg caa 192 Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln 50 55 60 aca ttt tta tat acg gga tta ttt att aca tct cat gat gcc atg cat 240 Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 ggc gta gta ttt ccc caa aac acc aag att aat cat ttg att gga aca 288 Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 90 85 ttg acc cta tcc ctt tat ggt ctt tta cca tat caa aaa cta ttg aaa 336 Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys 100 105 110

			tta Leu												-	384
Lys	1125	115	пеа	1173	nrs	nis	120		Ald	ser	Ser	125	ASD	FLO	Asp	
ttt	cac	aat	ggt	aaa	cac	caa	agt	ttc	ttt	gct	tgg	tat	ttt	cat	ttt	432
Phe	His	Asn	Gly	Lys	His	Gln	Ser	Phe	Phe	Ala	Trp	Tyr	Phe	His	Phe	
	130					135					140					
atg	aaa	ggt	tac	tgg	agt.	tgg	ggg	caa	ata	att	gcg	ttg	act	att	att	480
	Lys	Gly	Tyr	Trp		Trp	Gly	Gln	Ile	Ile	Ala	Leu	Thr	Ile	Ile	
145					150					155					160	
			gct													528
Tyr	Asn	Phe	Ala		Tyr	Ile	Leu	Hìs	Ile	Pro	Ser	Asp	Asn	Leu	Thr	
				165	•				170					175		
tac	ttt	tgg	gtg	cta	ccc	tcg	ctt	tta	agt	tca	tta	caa	tta	ttc	tat	576
Tyr	Phe	Trp	Val	Leu	Pro	Ser	Leu	Leu	Ser	Ser	Leu	Gln	Leu	Phe	Tyr	
			180					185					190		•	
ttt	ggt	act	ttt	tta	ccc	cat	agt	gaa	cca	ata	ggg	ggt	tat	gtt	cag	624
Phe	Gly	Thr	Phe	Leu	Pro	His	Ser	Glu	Pro	Ile	Gly	Gly	Tyr	Val	Gln	
		195					200					205				
cct	cat	tgt	gcc	caa	aca	att	agc	cgt	cct	att	tgg	tgg	tca	ttt	atc	672
Pro	His	Cys	Ala	Gln	Thr	Ile	Ser	Arg	Pro	Ile	Trp	Trp	Ser	Phe	Ile	
	210					215					220					
acg	tgc	tat	cat	ttt	ggc	tac	cac	gag	gaa	cat	cac	gaa	tat	cct	cat	720
Thr	Cys	Tyr	His	Phe	Gly	Tyr	His	Glu	Glu	His	His	Glu	Tyr	Pro	His	
225					230					235					240	
att	tct	tgg	tgg	cag	tta	cca	gaa	att	tac	aaa	gca	aaa	tag			762
Ile	Ser	Trp	Trp	Gln	Leu	Pro	Glu-	Ile	Tyr	Lys	Ala	Lys				
				245					250							

<210> 30

<211> 253

<212> PRT

<213> Nostoc punctiforme

<400> 30

Val Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 

Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val

Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Ser Leu Asp 

Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln 

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 

Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Lys 

Lys His Trp Leu His His Asn Pro Ala Ser Ser Ile Asp Pro Asp 

Phe His Asn Gly Lys His Gln Ser Phe Phe Ala Trp Tyr Phe His Phe 

Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile 

Tyr Asn Phe Ala Lys Tyr Ile Leu His Ile Pro Ser Asp Asn Leu Thr 165 170 175

Tyr Phe Trp Val Leu Pro Ser Leu Leu Ser Ser Leu Gln Leu Phe Tyr 180 185 190

Phe Gly Thr Phe Leu Pro His Ser Glu Pro Ile Gly Gly Tyr Val Gln
195 200 205

Pro His Cys Ala Gln Thr Ile Ser Arg Pro Ile Trp Trp Ser Phe Ile 210 215 220

Thr Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250

<210> 31

<211> 1608

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (3)..(971)

<400> 31

ct aca ttt cac aag ccc gtg agc ggt gca agc gct ctg ccc cac atc

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile

1 5 10 15

95

ggc cca cct cct cat ctc cat cgg tca ttt gct gct acc acg atg ctg

Gly	Pro	Pro	Pro	His 20	Leu	His	Arg	Ser	Phe 25	Ala	Ala	Thr	Thr	Met 30	Leu	
tcg	aag	ctg	cag	tca	atc	agc	gtc	aag	gcc	cgc	cgc	gtt	gaa	cta	gcc	143
Ser	Lys	Leu	Gln	Ser	Ile	Ser	Val	Lys	Ala	Arg	Arg	Val	Glu	Leu	Ala	
	_		35					40		_	_		45			
cgc	gac	atc	acg	cgg	ccc	aaa	gtc	tgc	ctg	cat	gct	cag	cgg	tgc	tcg	191
Arg	Asp	Ile	Thr	Arg	Pro	Lys	Val	Cys	Leu	His	Ala	Gln	Arg	Cys	Ser	
_	_	50		_		_	55	_				60	_	_		
tta	gtt	cgg	ctg	cga	gtg	gca	gca	cca	cag	aca	gag	gag	gcg	ctg	gga	239
Leu	Val	Arg	Leu	Arg	Va1	Ala	Ala	Pro	Gln	Thr	Glu	Glu	Ala	Leu	Gly	
	65					70					75					
acc	gtg	cag	gct	gcc	ggc	gcg	ggc	gat	gag	cac	agc	gcc	gat	gta	gca	287
Thr	Val	Gln	Ala	Ala	Gly	Ala	Gly	Asp	Glu	His	Ser	Ala	Asp	Val	Ala	
80					85					90					95	
ctc	cag	cag	ctt	gac	cgg	gct	atc	gca	gag	cgt	cgt	gcc	cgg	cgc	aaa	335
Leu	Gln	Gln	Leu	Asp	Arg	Ala	Ile	Ala	Glu	Arg	Arg	Ala	Arg	Arg	Lys	
				100					105					110		
cgg	gag	cag	ctg	tca	tac	cag	gct	gcc	gcc	att	gca	gca	tca,	att	ggc	383
Arg	Glu	Gln	Leu	Ser	Tyr	Gln	Ala	Ala	Ala	Ile	Ala	Ala	Ser	Ile	Gly	
			115					120					125			
gtg	tca	ggc	att	gcc	atc	ttc	gcc	acc	tac	ctg	aga	ttt	gcc	atg	cac	431
Val	Ser	Gly	Ile	Ala	Ile	Phe	Ala	Thr	Tyr	Leu	Arg	Phe	Ala	Met	His	
		130					135					140				
atg	acc	gtg	ggc	ggc	gca	gtg	cca	tgg	ggt	gaa	gtg	gct	ggc	act	ctc	479
Met	Thr	Val	Gly	Gly	Ala	Val	Pro	Trp	Gly	Glu	Val	Ala	Gly	Thr	Leu	
	145					150					155					
ctc	ttg	gtg	gtt	ggt	ggc	gcg	ctc	ggc	atg	gag	atg	tat	gcc	cgc	tat	527
Leu	Leu	Val	Val	Gly	Gly	Ala	Leu	Gly	Met	Glu	Met	Tyr	Ala	Arg	Tyr	
160					165					170					175	
gca	cac	aaa	gcc	atc	tgg	cat	gag	tcg	cct	ctg	ggc	tgg	ctg	ctg	cac	575
* 7 -																
Ala	His	Lys	Ala	Ile	Trp	His	Glu	Ser	Pro	Leu	Gly	Trp	Leu	Leu	His	

aag	agc	cac	cac	aca	cct	cgc	act	gga	ccc	ttt	gaa	gcc	aac	gac	ttg	623
Lys	Ser	His	His	Thr	Pro	Arg	Thr	Gly	Pro	Phe	Glu	Ala	Asn	Asp	Leu	
			195					200					205			
٠																
		atc														671
Phe	Ala	Ile	Ile	Asn	Gly	Leu	Pro	Ala	Met	Leu	Leu	Сув	Thr	Phe	Gly	
		210					215					220				
<b></b>	<b>.</b>															
		ctg													-	719
Pne	225	Leu	Pro	ASN	vaı		Gly	Ala	Ala	Cys		Gly	Ala	Gly	Leu	
	223					230					235					
aac	atc	acg	cta	tac	aac	ata	ac.	+=+	250		~				_1	5.55
		Thr													_	767
240				-1-	245	-100	nia	TYT	Mec	250	Val	птр	мър	GTĀ	255	
										250					233	
gtg	cac	agg	cgc	ttt	ccc	acc	ggg	ccc	atc	act	aac	cta	CCC	tac	ato	815
Val																013
				260			_		265					270		
aag	cgc	ctg	aca	gtg	gcc	cac	cag	cta	cac	cac	agc	ggc	aag	tac	ggt	863
Lys	Arg	Leu	Thr	Val	Ala	His	Gln	Leu	His	His	Ser	Gly	Lys	Tyr	Gly	
			275					280					285			
ggc	gcg	ccc	tgg	ggt	atg	ttc	ttg	ggt	cca	cag	gag	ctg	cag	cac	att	911
Gly	Ala	Pro	Trp	Gly	Met	Phe	Leu	Gly	Pro	Gln	Glu	Leu	Gln	His	Ile	
		290					295					300				
cca -																959
Pro		Ala	Ala	Glu	Glu		Glu	Arg	Leu	Val	Leu	Glu	Leu	Asp	Trp	
	305					310					315					
ton	224	~~~	<b>.</b>													
tcc   Ser			cag	ggtg	cgga	ac c	aggc	acgc	t gg	tttc	acac	ctc	atgc	ctg		1011
320	Lys .	ar g														
tgata	aagg	tg t	ggct	agag	с са	taca	tata	aga	caaa	tat (	atca	caat	ca a	ctaa	tctga	1071
		- •			J	5-3	J-3	5-	- 223		, u	-390	-9 u	99	Joega	1011
tggc	caat	gg ca	atcg	gcca	t gt	ctgg	tcat	cac	gggc	tgg ·	ttgc	ctgg	gt g	aagg	tgatg	1131
									-	-	-		J			
caca	tcat	ca t	gtgc	ggtt	g ga	gggg(	ctgg	caca	agtg	tgg (	gctga	aact	gg a	gcag	ttgtc	1191

catattctat ttgtggggc tgagatgatg gcatgcttgg gatgtgcatg gatcatggta 1311
gtgcagcaaa ctatattcac ctagggctgt tggtaggatc aggtgaggcc ttgcacattg 1371
catgatgtac tcgtcatggt gtgttggtga gaggatggat gtggatggat gtgtattctc 1431
agacgtagac cttgactgga ggcttgatcg agagagtggg ccgtattctt tgagagggga 1491
ggctcgtgcc agaaatggtg agtggatgac tgtgacgctg tacattgcag gcaggtgaga 1551
tgcactgtct cgattgtaaa atacattcag atgcaaaaaa aaaaaaaa aaaaaaaa 1608

<210> 32

<211> 322

<212> PRT

<213> Haematococcus pluvialis

<400> 32

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile Gly

1 10 15

Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser 20 25 30

Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala Arg 35 40 45

Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser Leu 50 55 60

Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly Thr 65 70 75 80

Val Gln Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala Leu 85 90 95

Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys Arg 100 105 110

Glu Gln Leu Ser Tyr Gln Ala Ala Ile Ala Ala Ser Ile Gly Val 115 120 125

Ser Gly Ile Ala Ile Phe Ala Thr Tyr Leu Arg Phe Ala Met His Met 130 135 140

Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu Leu 145 150 155 160

Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr Ala 165 170 175

His Lys Ala Ile Trp His Glu Ser Pro Leu Gly Trp Leu Leu His Lys 180 185 190

Ser His His Thr Pro Arg Thr Gly Pro Phe Glu Ala Asn Asp Leu Phe 195 200 205

Ala Ile Ile Asn Gly Leu Pro Ala Met Leu Leu Cys Thr Phe Gly Phe 210 215 220

Trp Leu Pro Asn Val Leu Gly Ala Ala Cys Phe Gly Ala Gly Leu Gly 225 230 235 240

Ile Thr Leu Tyr Gly Met Ala Tyr Met Phe Val His Asp Gly Leu Val

WO 2004/063359 PCT/EP2004/000099 77/357

255

245 250

His Arg Arg Phe Pro Thr Gly Pro Ile Ala Gly Leu Pro Tyr Met Lys 260 265 270

Arg Leu Thr Val Ala His Gln Leu His His Ser Gly Lys Tyr Gly Gly 275 280 285

Ala Pro Trp Gly Met Phe Leu Gly Pro Gln Glu Leu Gln His Ile Pro 290 295 300

Gly Ala Ala Glu Glu Val Glu Arg Leu Val Leu Glu Leu Asp Trp Ser 305 310 315 320

Lys Arg

<210> 33

<211> 528

<212> DNA

<213> Erwinia uredovora

<220>

<221> CDS

<222> (1)..(528)

<400> 33

atg ttg tgg att tgg aat gcc ctg atc gtt ttc gtt acc gtg att ggc 48 Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly 10

atg gaa gtg att gct gca ctg gca cac aaa tac atc atg cac ggc tgg 96 Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20

25

									_		_	gcg Ala		144
		aac							_	tta	_	atc Ile	_	192
_	att		_	 _	aca	 _	-	_	ctc	_		att Ile	33	240
												gac Asp 95		288
												ggc Gly		336
			_	-		•	_			_	_	agg Arg		384
										-		ctg Leu		432
											_	ggc Gly	_	480
gcc								ccc				aag Lys 175		528

<210> 34

<211> 175

<212> PRT

<213> Erwinia uredovora

<400> 34

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly

1 5 10 15

Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp
20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ 

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly
115 120 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160

### WO 2004/063359 PCT/EP2004/000099 80/357

Ala Arg Asp Ala Gln Gly Gly Glu Asp Glu Pro Ala Ser Gly Lys 165 170 175

<210> 35

<211> 1520

<212> DNA

<213> Artificial

<220>

<223> Promotor

<400> 35

ctcgagtacc gaggcggaac ggcaggaatg tttccctctc ttttagaggg caattcttta 60 tecaatgtea tgttgatget agatatttet gtetettata ataaggegaa tacceatttt 120 tgaattgaag ttgagataaa aaaaaagggg gcccaatttg tcaacgccaa agagtcaagc 180 tttttctttg gctttagccg aacaatctaa gacttattgt ttttgaagat atttgacctt 240 ttctagatat tccttcaagt aaagcttttt tcgagttttt ttttttttc tttgtgaagg 300 atttattgtt attggtatcc attttttatt ggaagacaag ataagttaat attgattttg 360 cttaaagatt aaaaggaaat cagaaaacga caataaaaaa tgtaacggac aaactatggt 420 gtcgattata agtctaaatc cttaaaaaat gacaacgagt tgctttcctc tgaaaacaat 480 tettttgtet ttgcaagaaa ggtttetttt ttgtttgett geattaetta aacateaaat 540 caaatgaaag gaataaagca gatttgaggg cgaataagga ttttctggtc aacaagatgt 600 gagtgacacc taaggaacta aatgccattc atttgtttta aaacgacatc aaagattgat 660 gatcaacagg attgagagag agaaaaagaa ctcgtgtcat ttatttctgt tgactgaaat 720 tttatattta gaaaaaatgt caaatctata gctttagcta tattacataa catttgaaat 780 aataataata aaaaaagaca cattagagac acttttcaaa ctctaaataa ctgtctataa 840

acacaaagaa aacaaagacc tctataacaa cttattagat ttttctcgta cttttgtcta 900 aagatgatgt attettgtta teccaeaett ettteatttg ttettgatge taetaaatat 960 acaaaatttc ttttttgcaa gagatattat tccaaaaatt ttcaaaaaga aatttttttc 1020 acaatagcag ttgatcgtgt aacccaaaga ggttctttgt tattttgcac ttccgctttg 1080 cggtgatgca tattcaaagt aatatatgga ataaacaacg tgtttaagca tgaaagaaag 1140 gaaacaaagg ccgctttgaa caaatgcata atatttcaga caaaaatgat ctaaagcaag 1200 cagtaaatca aacaagaaac attgctgatt cgcgttagaa aacgataaaa gtctaataag 1260 ccactaagta tacttcaatg aactttttgt atgettatgg tccaatcaga ccaataattt 1320 gtgaccattc ctgaggtggc tttggtgatg cggaaacaga aaaaaatttt ctcaccaatc 1380 gatttaaaaa acaatttctg ctttgaacca aaactttttt tttctcttta atcattaact 1440 ttatcaagta tgtacctacc ctcaaagtcc tcactcaagc acaattatgc taacattgtt 1500 1520 ccaccttctc tttagaaatg

<210> 36

<211> 16245

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 36

cegggetggt tgecetegee getgggetgg eggeegteta tggeeetgea aacgegeeag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc 600 ettetegaae eeteeeggee egetaaegeg ggeeteeeat eeceeeaggg getgegeeee 660 tcggccgcga acggcctcac cccaaaaatg gcagcgctgg cagtccttgc cattgccggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020

# WO 2004/063359 PCT/EP2004/000099 83/357

acgagaatto	gacetttaca	gaattactct	atgaagcgco	: atatttaaaa	agctaccaag	1080
acgaagagga	ı tgaagaggat	gaggaggcag	, attgccttga	atatattgac	: aatactgata	1140
agataatata	ı tcttttatat	agaagatato	: gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agetecaceg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattegetge	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280

# WO 2004/063359 PCT/EP2004/000099 84/357

				04/33/			
•	taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
1	tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
1	tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
(	catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
ţ	tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
ł	cgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
t	cactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
ē	attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
c	cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ç	gaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
ā	ıgtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
c	ttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctatttt	3000
t	gacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
ć	ittgttttag	tacctagatg	tggcgcaacg	atgeeggega	caagcaggag	cgcaccgact	3120
t	cttccgcat	caagtgtttt	ggeteteagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ç	gtegetggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
c	ggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
g	cgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
g	agggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
g	gttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gegeeeegeg	3480
а	aaccttcca	gteegtegge	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540

### WO 2004/063359 PCT/EP2004/000099 85/357

gegtgeaact ggeteeceet geeetgeeeg egeeategge egeegtggag egttegegte 3600 gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta 3660 tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca 3720 agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt 3780 3840 tegatattgc geegtggceg gacacgatgc gagegatgcc aaacgacacg geeegetetg 3900 ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt 3960 tecaegteaa caaggaegtg aagateaeet acaeeggegt egagetgegg geegaegatg acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga 4020 4080 tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt 4140 acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg 4200 accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg 4260 gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac 4320 4380 ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag 4440 cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg 4500 tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg 4560 ctttactggc atttcaggaa caagegggca ctgctcgacg cacttgcttc gctcagtatc 4620 4680 gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat 4740 tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat 4800 ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga

			00,007			
gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagegaggee	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	egcageggge	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagetttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gegtggeteg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	geceeagate	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagetteete	agcggcttta	5760
tccagcgatt	tcctattatg	teggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatetetgeg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060

# WO 2004/063359 PCT/EP2004/000099 87/357

cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggegettte	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320

#### WO 2004/063359 PCT/EP2004/000099 88/357

tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggettgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580

# WO 2004/063359 PCT/EP2004/000099 89/357

cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tectteceat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gteeggeace	tcgtgcacgc	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagettge	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840

### WO 2004/063359 PCT/EP2004/000099 90/357

ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gegggatega	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tetecaeteg	acctgcaggc	atgcaagctt	aatctataca	10800
atgctccata	gactcacatt	gatattgtcg	aagatttcga	tgctgactta	gtagagcaac	10860
tacaaaagtt	agcagagaag	catgatttct	taatctttga	agaccgcaag	tttgcagata	10920
tcggtatgtg	aattctatct	atttttttc	tgatgtgtgc	atggatgact	catgatcata	10980
ttcttaggta	atactgtcaa	gcatcaatat	ggcaagggcg	tttacaagat	tgcttcttgg	11040
tctcatatta	ctaatgctca	cacagttcct	ggagaaggta	ttatcaaggg	acttgccgaa	11100

### WO 2004/063359 PCT/EP2004/000099 91/357

gtcggcctcc	ctcttggtcg	tggcttgctt	ttgctagcag	aaatgtcatc	tcaaggtgca	11160
ttaactaagg	gtatttacac	tgccgaatct	gtcaatatgg	ctcgccgcaa	caaagatttc	11220
gtttttggct	ttattgcaca	acacaaaatg	aatcagtatg	atgatgagga	ttttgttgtc	11280
atgtcgcctg	aagcttggcg	taatcatggt	catagctgtt	tcctgtgtga	aattgttatc	11340
cgctcacaat	tccacacaac	atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgcct	11400
aatgagtgag	ctaactcaca	ttaattgcgt	tgcgctcact	gcccgctttc	cagtcgggaa	11460
acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	11520
ttgggccaaa	gacaaaaggg	cgacattcaa	ccgattgagg	gagggaaggt	aaatattgac	11580
ggaaattatt	cattaaaggt	gaattatcac	cgtcaccgac	ttgagccatt	tgggaattag	11640
agccagcaaa	atcaccagta	gcaccattac	cattagcaag	gccggaaacg	tcaccaatga	11700
aaccatcgat	agcagcaccg	taatcagtag	cgacagaatc	aagtttgcct	ttagcgtcag	11760
actgtagcgc	gttttcatcg	gcattttcgg	tcatagcccc	cttattagcg	tttgccatct	11820
tttcataatc	aaaatcaccg	gaaccagagc	caccaccgga	accgcctccc	tcagagccgc	11880
caccctcaga	accgccaccc	tcagagccac	caccctcaga	gccgccacca	gaaccaccac	11940
cagageegee	gccagcattg	acaggaggcc	cgatctagta	acatagatga	caccgcgcgc	12000
gataatttat	cctagtttgc	gcgctatatt	ttgttttcta	tcgcgtatta	aatgtataat	12060
tgcgggactc	taatcataaa	aacccatctc	ataaataacg	tcatgcatta	catgttaatt	12120
attacatgct	taacgtaatt	caacagaaat	tatatgataa	tcatcgcaag	accggcaaca	12180
ggattcaatc	ttaagaaact	ttattgccaa	atgtttgaac	gatcggggat	catccgggtc	12240
tgtggcggga	actccacgaa	aatatccgaa	cgcagcaaga	tatcgcggtg	catctcggtc	12300
ttgcctgggc	agtegeegee	gacgccgttg	atgtggacgc	cgggcccgat	catattgtcg	12360

## WO 2004/063359 PCT/EP2004/000099 92/357

			921331			
ctcaggatco	g tggcgttgtg	cttgtcggco	gttgctgtcg	taatgatato	ggcaccttcg	12420
accgcctgtt	ccgcagagat	cccgtgggcg	aagaactcca	gcatgagato	: cccgcgctgg	12480
aggateated	agccggcgtc	ccggaaaacg	attccgaagc	ccaacctttc	: atagaaggcg	12540
gcggtggaat	: cgaaatcteg	tgatggcagg	ttgggcgtcg	cttggtcggt	catttcgaac	12600
cccagagtcc	cgctcagaag	aactcgtcaa	gaaggcgata	gaaggcgatg	cgctgcgaat	12660
cgggagcggc	gataccgtaa	agcacgagga	agcggtcagc	ccattcgccg	ccaagctctt	12720
cagcaatatc	acgggtagcc	aacgctatgt	cctgatagcg	gtccgccaca	cccagccggc	12780
cacagtcgat	gaatccagaa	aagcggccat	tttccaccat	gatattcggc	aagcaggcat	12840
cgccatgggt	cacgacgaga	tcatcgccgt	cgggcatgcg	cgccttgagc	ctggcgaaca	12900
gttcggctgg	cgcgagcccc	tgatgctctt	cgtccagatc	atcctgatcg	acaagaccgg	12960
cttccatccg	agtacgtgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	aatgggcagg	13020
tagccggatc	aagcgtatgc	agccgccgca	ttgcatcage	catgatggat	actttctcgg	13080
caggagcaag	gtgagatgac	aggagatcct	gccccggcac	ttcgcccaat	agcagccagt	13140
cccttcccgc	ttcagtgaca	acgtcgagca	cagctgcgca	aggaacgccc	gtcgtggcca	13200
gccacgatag	ccgcgctgcc	tcgtcctgca	gttcattcag	ggcaccggac	aggtcggtct	13260
tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggeggea	tcagagcagc	13320
cgattgtctg	ttgtgcccag	tcatagccga	atagcctctc	cacccaagcg	gccggagaac	13380
ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	agatccggtg	cagattattt	13440
ggattgagag	tgaatatgag	actctaattg	gataccgagg	ggaatttatg	gaacgtcagt	13500
ggagcatttt	tgacaagaaa	tatttgctag	ctgatagtga	ccttaggcga	cttttgaacg	13560
cgcaataatg	gtttctgacg	tatgtgctta	gctcattaaa	ctccagaaac	ccgcggctga	13620

### WO 2004/063359 PCT/EP2004/000099 93/357

gtggctcctt	caacgttgcg	gttctgtcag	ttccaaacgt	aaaacggctt	gtcccgcgtc	13680	
atcggcgggg	gtcataacgt	gactccctta	attctccgct	catgatcaga	ttgtcgtttc	13740	
ccgccttcag	tttaaactat	cagtgtttga	caggatatat	tggcgggtaa	acctaagaga	13800	
aaagagcgtt	tattagaata	atcggatatt	taaaagggcg	tgaaaaggtt	tatccgttcg	13860	
tccatttgta	tgtgcatgcc	aaccacaggg	ttccccagat	ctggcgccgg	ccagcgagac	13920	
gagcaagatt	ggccgccgcc	cgaaacgatc	cgacagcgcg	cccagcacag	gtgcgcaggc	13980	•
aaattgcacc	aacgcataca	gcgccagcag	aatgccatag	tgggcggtga	cgtcgttcga	14040	
gtgaaccaga	tcgcgcagga	ggcccggcag	caccggcata	atcaggccga	tgccgacagc	14100	
gtcgagcgcg	acagtgctca	gaattacgat	caggggtatg	ttgggtttca	cgtctggcct	14160	
ccggaccagc	ctccgctggt	ccgattgaac	gcgcggattc	tttatcactg	ataagttggt	14220	
ggacatatta	tgtttatcag	tgataaagtg	tcaagcatga	caaagttgca	gccgaataca	14280	
gtgatccgtg	ccgccctgga	cctgttgaac	gaggtcggcg	tagacggtct	gacgacacgc	14340	
aaactggcgg	aacggttggg	ggttcagcag	ccggcgcttt	actggcactt	caggaacaag	14400	
cgggcgctgc	tcgacgcact	ggccgaagcc	atgctggcgg	agaatcatac	gcatteggtg	14460	
ccgagagccg	acgacgactg	gcgctcattt	ctgatcggga	atgcccgcag	cttcaggcag	14520	
gcgctgctcg	cctaccgcga	tggcgcgcgc	atccatgccg	gcacgcgacc	gggcgcaccg	14580	
cagatggaaa	cggccgacgc	gcagcttcgc	ttcctctgcg	aggcgggttt	tteggeeggg	14640	
gacgccgtca	atgegetgat	gacaatcagc	tacttcactg	ttggggccgt	gcttgaggag	14700	
caggccggcg	acagcgatgc	cggcgagcgc	ggcggcaccg	ttgaacaggc	teegeteteg	14760	
ccgctgttgc	gggccgcgat	agacgccttc	gacgaagccg	gtccggacgc	agcgttcgag	14820	
cagggactcg	cggtgattgt	cgatggattg	gcgaaaagga	ggctcgttgt	caggaacgtt	14880	

#### WO 2004/063359 PCT/EP2004/000099 94/357

gaaggaccga gaaagggtga cgattgatca ggaccgctgc cggagcgcaa cccactcact 14940 acagcagage catgtagaca acateceete eccettteca eegegteaga egecegtage 15000 agecegetae gggettttte atgeeetgee etagegteea ageeteaegg eegegetegg cctctctggc ggccttctgg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tegttegget geggegageg gtateagete acteaaagge ggtaataegg ttatecaeag aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg ccccctgac gagcatcaca 15300 aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 15360 ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 15420 tgtccgcctt tctcccttcg ggaagcgtgg cgcttttccg ctgcataacc ctgcttcggg 15480 gtcattatag cgatttttc ggtatatcca tcctttttcg cacgatatac aggattttgc 15540 caaagggttc gtgtagactt tccttggtgt atccaacggc gtcagccggg caggataggt 15600 gaagtaggcc caccegegag egggtgttcc ttetteactg teeettatte geacetggeg 15660 gtgctcaacg ggaatcctgc tctgcgaggc tggccggcta ccgccggcgt aacagatgag 15720 ggcaagegga tggctgatga aaccaageca accaggaagg gcageceaee tateaaggtg 15780 tactgccttc cagacgaacg aagagcgatt gaggaaaagg cggcggcggc cggcatgagc 15840 ctgtcggcct acctgctggc cgtcggccag ggctacaaaa tcacgggcgt cgtggactat 15900 gagcacgtcc gcgagctggc ccgcatcaat ggcgacctgg gccgcctggg cggcctgctg 15960 aaactctggc tcaccgacga cccgcgcacg gcgcggttcg gtgatgccac gatcctcgcc 16020 ctgctggcga agatcgaaga gaagcaggac gagcttggca aggtcatgat gggcgtggtc 16080 cgcccgaggg cagagccatg acttttttag ccgctaaaac ggccgggggg tgcgcgtgat 16140

tgccaagcac gtcccatgc gctccatcaa gaagagcgac ttcgcggagc tggtgaagta 16200

catcaccgac gagcaaggca agaccgagcg cctttgcgac gctca 16245

<210> 37

<211> 17877

<212> DNA

<213> Artificial

<220>

<223> Promotor

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 37

ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60

aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120

aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180

ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240

cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300

caageetggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat

360

## WO 2004/063359 PCT/EP2004/000099 96/357

•			701331			
gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	gcgcacctat	420
tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	ttccgcccgt	480
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccçc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	getgegeeee	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtecttge	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	eggeggeetg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaattttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagegae	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620

## WO 2004/063359 PCT/EP2004/000099 97/357

gcaacaaccg	tetteeggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agececaetg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
	tantnanata	natanatana	++			2100
aaaaacacca	tcatacacta	aaccagcaag	Liggeagear	Cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagetgee	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880

#### WO 2004/063359 PCT/EP2004/000099 98/357

agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt 3000 tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga 3060 attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact 3120 tetteegeat caagtgtttt ggeteteagg cegaggeeca eggeaagtat ttgggeaagg 3180 ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga 3240 3300 cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca atcccgcaag 3360 gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg 3420 ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg 3480 3540 aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca 3600 gegtgeaact ggeteeect geeetgeeeg egecategge egeegtggag egttegegte gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta 3660 3720 tgacgaccaa gaagegaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca 3780 agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt tegatattge geogtggeeg gacacgatge gagegatgee aaacgacaeg geoegetetg 3840 3900 ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg 3960 4020 acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt 4080 acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg 4140

#### WO 2004/063359 PCT/EP2004/000099 99/357

accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg 4200 gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg 4260 gegaceacta cacgaaatte atatgggaga agtacegeaa getgtegeeg aeggeeegae 4320 ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc 4380 gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag 4440 cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg 4500 4560 tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg 4620 ctttactggc atttcaggaa caagegggca ctgctcgacg cacttgcttc gctcagtatc gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat 4680 tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat 4740 4800 ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta categacgge gagateattg ggetgteggt etteaaacag gaggacggee ceaaggacge 4980 tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc 5040 cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt 5100 5160 ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg 5220 5280 attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac 5340 accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat 5400 ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac

cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg 5520 agegggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt 5580 ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc 5640 cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt 5700 tgatategte aacgtteact tetaaagaaa tagegeeact cagetteete ageggettta 5760 tecagegatt tectattatg teggeatagt teteaagate gacageetgt caeggttaag 5820 cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca 5880 caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt 5940 gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag 6000 tetgeegeet tacaaegget etceegetga egeegteeeg gaetgatggg etgeetgtat 6060 cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga 6120 tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt 6180 taatgtactg gggtggtttt tetttteacc agtgagaegg geaacagetg attgeeette 6240 accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga 6300 aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc 6360 ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg 6420 actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag 6540 ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga 6600

## WO 2004/063359 PCT/EP2004/000099 101/357

agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860

#### WO 2004/063359 PCT/EP2004/000099 102/357

ctttaagcct aaactataca gaataagata ggtggagagc ttataccgag ctcccaaatc 7920 tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga 7980 cctagctgat tctggagtga cccagagggt catgacttga gcctaaaatc cgccgcctcc 804Ò accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc 8100 tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag 8160 acagctctgg cggctctgag gtgcagtgga tgattattaa tccgggaccg gccgccctc 8220 cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg 8280 agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt 8340 gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg 8400 atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc 8460 gegtaagete eetaattgge eeateeggea tetgtaggge gteeaaatat egtgeetete 8520 ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac 8580 cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc 8640 teagteett gtaggeaget ttgeeeegte tgteegeeeg gtgtgtegge ggggttgaea 8700 aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct 8760 cttttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt 8820 tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc 8880 tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctacccgc 8940 ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga 9000 aaagttegae agegteteeg acetgatgea geteteggag ggegaagaat etegtgettt 9060 cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt 9120

#### WO 2004/063359 PCT/EP2004/000099 103/357

						•
ctacaaaga	t cgttatgttt	atcggcactt	tgcatcggcc	gegeteeega	ttccggaagt	9180
gcttgacat	t ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgtt	g caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatgga	t gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagg	a atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgta	t cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
tctcgatga	g ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcgg	c tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggc	g atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggc	t tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgcc	g eggeteeggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttga	c ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgg	a gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatgg	c tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaa	g gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaac	a gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaa	a tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttct	a gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttcca	g atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggo	t ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcġggagac	10320
gagatcaag	c agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380

# WO 2004/063359 PCT/EP2004/000099 104/357

tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgeteeg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ttttcgagtt	10800
ttttttttt	ttctttgtga	aggatttatt	gttattggta	tccattttt	attggaagac	10860
aagataagtt	aatattgatt	ttgcttaaag	attaaaagga	aatcagaaaa	cgacaataaa	10920
aaatgtaacg	gacaaactat	ggtgtcgatt	ataagtctaa	atccttaaaa	aatgacaacg	10980
agttgctttc	ctctgaaaac	aattcttttg	tctttgcaag	aaaggtttct	tttttgtttg	11040
cttgcattac	ttaaacatca	aatcaaatga	aaggaataaa	gcagatttga	gggcgaataa	11100
ggattttctg	gtcaacaaga	tgtgagtgac	acctaaggaa	ctaaatgcca	ttcatttgtt	11160
ttaaaacgac	atcaaagatt	gatgatcaac	aggattgaga	gagagaaaaa	gaactcgtgt	11220
catttatttc	tgttgactga	aattttatat	ttagaaaaaa	tgtcaaatct	atagctttag	11280
ctatattaca	taacatttga	aataataata	ataaaaaaag	acacattaga	gacacttttc	11340
aaactctaaa	taactgtcta	taaacacaaa	gaaaacaaag	acctctataa	caacttatta	11400
gatttttctc	gtacttttgt	ctaaagatga	tgtattcttg	ttatcccaca	cttctttcat	11460
ttgttcttga	tgctactaaa	tatacaaaat	ttctttttg	caagagatat	tattccaaaa	11520
attttcaaaa	agaaattttt	ttcacaatag	cagttgatcg	tgtaacccaa	agaggttctt	11580
tgttattttg	cacttccgct	ttgcggtgat	gcatattcaa	agtaatatat	ggaataaaca	11640

### WO 2004/063359 PCT/EP2004/000099 105/357

acgtgtttaa	gcatgaaaga	aaggaaacaa	aggccgcttt	gaacaaatgc	ataatatttc	11700
agacaaaaat	gatctaaagc	aagcagtaaa	tcaaacaaga	aacattgctg	attegegtta	11760
gaaaacgata	aaagtctaat	aagccactaa	gtatacttca	atgaactttt	tgtatgctta	11820
tggtccaatc	agaccaataa	tttgtgacca	ttcctgaggt	ggctttggtg	atgcggaaac	11880
agaaaaaaat	tttctcacca	atcgatttaa	aaaacaattt	ctgctttgaa	ccaaaacttt	11940
ttttttctct	ttaatcatta	actttatcaa	gtatgtacct	accctcaaag	tcctcactca	12000
agcacaatta	tgctaacatt	gttccacctt	ctctttagaa	atgctgtcga	agctgcagtc	12060
aatcagcgtc	aaggcccgcc	gcgttgaact	agcccgcgac	atcacgcggc	ccaaagtctg	12120
cctgcatgct	cagcggtgct	cgttagttcg	gctgcgagtg	gcagcaccac	agacagagga	12180
ggcgctggga	accgtgcagg	ctgeeggege	gggcgatgag	cacagegeeg	atgtagcact	12240
ccagcagctt	gaccgggcta	tcgcagagcg	tegtgeeegg	cgcaaacggg	agcagctgtc	12300
ataccaggct	gccgccattg	cagcatcaat	tggcgtgtca	ggcattgcca	tettegecae	12360
ctacctgaga	tttgccatgc	acatgaccgt	gggcggcgca	gtgccatggg	gtgaagtggc	12420
tggcactctc	ctcttggtgg	ttggtggcgc	gctcggcatg	gagatgtatg	cccgctatgc	12480
acacaaagcc	atctggcatg	agtegeetet	gggctggctg	ctgcacaaga	gccaccacac	12540
acctcgcact	ggaccctttg	aagccaacga	cttgtttgca	atcatcaatg	gactgcccgc	12600
catgctcctg	tgtacctttg	gcttctggct	gcccaacgtc	ctgggggcgg	cctgctttgg	12660
agcggggctg	ggcatcacgc	tatacggcat	ggcatatatg	tttgtacacg	atggcctggt	12720
gcacaggcgc	tttcccaccg	ggcccatcgc	tggcctgccc	tacatgaagc	gcctgacagt	12780
ggcccaccag	ctacaccaca	gcggcaagta	cggtggcgcg	ccctggggta	tgttcttggg	12840
tccacaggag	ctgcagcaca	ttccaggtgc	ggcggaggag	gtggagcgac	tggtcctgga	12900

#### WO 2004/063359 PCT/EP2004/000099 106/357

actggactgg tccaagcggt agaagcttgg cgtaatcatg gtcatagctg tttcctgtgt 12960 gaaattgtta teegeteaca atteeacaca acatacgage eggaageata aagtgtaaag 13020 cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt 13080 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 13140 gcggtttgcg tattgggcca aagacaaaag ggcgacattc aaccgattga gggagggaag 13200 gtaaatattg acggaaatta ttcattaaag gtgaattatc accgtcaccg acttgagcca 13260 tttgggaatt agagccagca aaatcaccag tagcaccatt accattagca aggccggaaa 13320 cgtcaccaat gaaaccatcg atagcagcac cgtaatcagt agcgacagaa tcaagtttgc 13380 ctttagcgtc agactgtagc gcgttttcat cggcattttc ggtcatagcc cccttattag 13440 cgtttgccat cttttcataa tcaaaatcac cggaaccaga gccaccaccg gaaccgcctc 13500 ceteagagee gecaceetea gaacegecae ecteagagee accaceetea gageegecae 13560 cagaaccacc accagagecg cegecageat tgacaggagg ceegatetag taacatagat 13620 gacaccgcgc gcgataattt atcctagttt gcgcgctata ttttgttttc tatcgcgtat 13680 taaatgtata attgcgggac tctaatcata aaaacccatc tcataaataa cgtcatgcat 13740 tacatgttaa ttattacatg cttaacgtaa ttcaacagaa attatatgat aatcatcgca 13800 agaceggeaa caggatteaa tettaagaaa etttattgee aaatgtttga aegategggg 13860 atcatccggg tctgtggcgg gaactccacg aaaatatccg aacgcagcaa gatatcgcgg 13920 tgcatctcgg tcttgcctgg gcagtcgccg ccgacgccgt tgatgtggac gccgggcccg 13980 atcatattgt cgctcaggat cgtggcgttg tgcttgtcgg ccgttgctgt cgtaatgata 14040 teggeacett egacegeetg tteegeagag atecegtggg egaagaacte cageatgaga 14100

### WO 2004/063359 PCT/EP2004/000099 107/357

teccegeget	ggaggatcat	ccagccggcg	tcccggaaaa	cgattccgaa	gcccaacctt	14160
tcatagaagg	cggcggtgga	atcgaaatct	cgtgatggca	ggttgggcgt	cgcttggtcg	14220
gtcatttcga	accccagagt	cccgctcaga	agaactcgtc	aagaaggcga	tagaaggcga	14280
tgcgctgcga	atcgggagcg	gcgataccgt	aaagcacgag	gaagcggtca	gcccattcgc	14340
cgccaagctc	ttcagcaata	tcacgggtag	ccaacgctat	gtcctgatag	cggtccgcca	14400
cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	attttccacc	atgatattcg	14460
gcaagcaggc	atcgccatgg	gtcacgacga	gatcatcgcc	gtcgggcatg	cgcgccttga	14520
gcctggcgaa	cagttegget	ggcgcgagcc	cctgatgctc	ttcgtccaga	tcatcctgat	14580
cgacaagacc	ggcttccatc	cgagtacgtg	ctcgctcgat	gcgatgtttc	gcttggtggt	14640
cgaatgggca	ggtagccgga	tcaagcgtat	gcagccgccg	cattgcatca	gccatgatgg	14700
atactttctc	ggcaggagca	aggtgagatg	acaggagatc	ctgccccggc	acttcgccca	14760
atagcagcca	gtcccttccc	gcttcagtga	caacgtcgag	cacagetgeg	caaggaacgc	14820
ccgtcgtggc	cagccacgat	agccgcgctg	cctcgtcctg	cagttcattc	agggcaccgg	14880
acaggtcggt	cttgacaaaa	agaaccgggc	gcccctgcgc	tgacagccgg	aacacggcgg	14940
catcagagca	gccgattgtc	tgttgtgccc	agtcatagcc,	gaatagcctc	tccacccaag	15000
cggccggaga	acctgcgtgc	aatccatctt	gttcaatcat	gcgaaacgat	ccagatccgg	15060
tgcagattat	ttggattgag	agtgaatatg	agactctaat	tggataccga	ggggaattta	15120
tggaacgtca	gtggagcatt	tttgacaaga	aatatttgct	agctgatagt	gaccttaggc	15180
gacttttgaa	cgcgcaataa	tggtttctga	cgtatgtgct	tagctcatta	aactccagaa	15240
acccgcggct	gagtggctcc	ttcaacgttg	cggttctgtc	agttccaaac	gtaaaacggc	15300
ttgtcccgcg	tcatcggcgg	gggtcataac	gtgactccct	taattctccg	ctcatgatca	15360

# WO 2004/063359 PCT/EP2004/000099 108/357

			100/05/			
gattgtcgtt	tecegeette	agtttaaact	atcagtgttt	gacaggatat	attggcgggt	15420
aaacctaaga	gaaaagagcg	tttattagaa	taatcggata	tttaaaaggg	cgtgaaaagg	15480
tttatccgtt	cgtccatttg	tatgtgcatg	ccaaccacag	ggttccccag	atctggcgcc	15540
ggccagcgag	acgagcaaga	ttggccgccg	cccgaaacga	tccgacagcg	cgcccagcac	15600
aggtgcgcag	gcaaattgca	ccaacgcata	cagegeeage	agaatgccat	agtgggcggt	15660
gacgtcgttc	gagtgaacca	gategegeag	gaggcccggc	agcaccggca	taatcaggcc	15720
gatgccgaca	gcgtcgagcg	cgacagtgct	cagaattacg	atcaggggta	tgttgggttt	15780
cacgtctggc	ctccggacca	gcctccgctg	gtccgattga	acgcgcggat	tctttatcac	15840
tgataagttg	gtggacatat	tatgtttatc	agtgataaag	tgtcaagcat	gacaaagttg	15900
cagccgaata	cagtgatccg	tgccgccctg	gacctgttga	acgaggtcgg	cgtagacggt	15960
ctgacgacac	gcaaactggc	ggaacggttg	ggggttcagc	agccggcgct	ttactggcac	16020
ttcaggaaca	agcgggcgct	gctcgacgca	ctggccgaag	ccatgctggc	ggagaatcat	16080
acgcattcgg	tgccgagagc	cgacgacgac	tggcgctcat	ttctgatcgg	gaatgcccgc	16140
agcttcaggc	aggcgctgct	cgcctaccgc	gatggcgcgc	gcatccatgc	cggcacgcga	16200
ccgggcgcac	cgcagatgga	aacggccgac	gcgcagcttc	gcttcctctg	cgaggcgggt	16260
ttttcggccg	gggacgccgt	caatgcgctg	atgacaatca	gctacttcac	tgttggggcc	16320
gtgcttgagg	agcaggeegg	cgacagcgat	gccggcgagc	geggeggeae	cgttgaacag	16380
gctccgctct	cgccgctgtt	gcgggccgcg	atagacgcct	tegaegaage	cggtccggac	16440
gcagcgttcg	agcagggact	cgcggtgatt	gtcgatggat	tggcgaaaag	gaggetegtt	16500
gtcaggaacg	ttgaaggacc	gagaaagggt	gacgattgat	caggaccgct	gccggagcgc	16560
aacccactca	ctacagcaga	gccatgtaga	caacatcccc	tcccctttc	caccgcgtca	16620

#### WO 2004/063359 PCT/EP2004/000099 109/357

g	acgcccgta	gcagcccgct	acgggctttt	tcatgccctg	ccctagcgtc	caagcctcac	16680
g	gccgcgctc	ggcctctctg	geggeettet	ggcgctcttc	cgcttcctcg	ctcactgact	16740
C	gctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	gcggtaatac	16800
g	gttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	16860
a	ggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	cgcccccctg	16920
a	cgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	16980
g	ataccaggc	gtttccccct	ggaagctccc	tegtgegete	tcctgttccg	accctgccgc	17040
t	taccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgcttttc	cgctgcataa	17100
C	cctgcttcg	gggtcattat	agcgattttt	tcggtatatc	catccttttt	cgcacgatat	17160
a	caggatttt	gccaaagggt	tcgtgtagac	tttccttggt	gtatccaacg	gcgtcagccg	17220
g	gcaggatag	gtgaagtagg	cccacccgcg	agcgggtgtt	ccttcttcac	tgtcccttat	17280
t	cgcacctgg	cggtgctcaa	cgggaatcct	gctctgcgag	gctggccggc	taccgccggc	17340
g	taacagatg	agggcaagcg	gatggctgat	gaaaccaagc	caaccaggaa	gggcagccca	17400
C	ctatcaagg	tgtactgcct	tccagacgaa	cgaagagcga	ttgaggaaaa	ggeggeggeg	17460
		gcctgtcggc					17520
							17580
g	tegtggaet	atgagcacgt	cegegagerg	geeegeacea	acggegaeec	gggeegeerg	1/360
g	gcggcctgc	tgaaactctg	gctcaccgac	gacccgcgca	cggcgcggtt	cggtgatgcc	17640
a	cgatecteg	ccctgctggc	gaagatcgaa	gagaagcagg	acgagcttgg	caaggtcatg	17700
a	tgggcgtgg	teegeeegag	ggcagagcca	tgacttttt	agccgctaaa	acggccgggg	17760
g	gtgcgcgtg	attgccaagc	acgtccccat	gcgctccatc	aagaagagcg	acttcgcgga	17820
g	ctggtgaag	tacatcaccg	acgagcaagg	caagaccgag	cgcctttgcg	acgctca	17877

WO 2004/063359 PCT/EP2004/000099

<210> 38 <211> 17238 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 38 cegggetggt tgccctegce getgggetgg eggeegteta tggccetgea aacgegecag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aacgeetgat tttacgegag ttteccacag atgatgtgga 300 caagectggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgccgt 480

## WO 2004/063359 PCT/EP2004/000099 111/357

ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgcccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tetteeggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740

# WO 2004/063359 PCT/EP2004/000099 112/357

tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940

### WO 2004/063359 PCT/EP2004/000099 113/357

			110,00			
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	cccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggctcccct	gccetgcccg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	tcggtgtcgc	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200

# WO 2004/063359 PCT/EP2004/000099 114/357

gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	ageggeegae	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctčtgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460

## WO 2004/063359 PCT/EP2004/000099 115/357

•			112/32/			
gċcaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggateteg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggageceeeg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720

### WO 2004/063359 PCT/EP2004/000099 116/357

tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacetee	agcgtccctt	taaggetgee	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	.7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980

cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	·acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	geegeeeete	8220
cgcccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240

#### WO 2004/063359 PCT/EP2004/000099 118/357

tgtcacgttg	g caagacctgo	: ctgaaaccga	actgeceget	gttctgcago	: cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeaege	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggategeeg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500

### WO 2004/063359 PCT/EP2004/000099 119/357

tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttectae	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactete	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ctaccgcttg	10800
gaccagtcca	gttccaggac	cagtcgctcc	acctcctccg	ccgcacctgg	aatgtgctgc	10860
agctcctgtg	gacccaagaa	cataccccag	ggcgcgccac	cgtacttgcc	gctgtggtgt	10920
agctggtggg	ccactgtcag	gcgcttcatg	tagggcaggc	cagcgatggg	cccggtggga	10980
aagcgcctgt	gcaccaggcc	atcgtgtaca	aacatatatg	ccatgccgta	tagcgtgatg	11040
cccagccccg	ctccaaagca	ggccgccccc	aggacgttgg	gcagccagaa	gccaaaggta	11100
cacaggagca	tggcgggcag	tccattgatg	attgcaaaca	agtcgttggc	ttcaaagggt	11160
ccagtgcgag	gtgtgtggtg	gctcttgtgc	agcagccagc	ccagaggcga	ctcatgccag	11220
atggctttgt	gtgcatagcg	ggcatacatc	tccatgccga	gcgcgccacc	aaccaccaag	11280
aggagagtgc	cagccacttc	acccçatggc	actgegeege	ccacggtcat	gtgcatggca	11340
aatctcaggt	aggtggcgaa	gatggcaatg	cctgacacgc	caattgatgc	tgcaatggcg	11400
gcagcctggt	atgacagctg	ctcccgtttg	cgccgggcac	gacgctctgc	gatagcccgg	11460
tcaagctgct	ggagtgctac	ateggegetg	tgctcatcgc	ccgcgccggc	agcctgcacg	11520
gttcccagcg	cctcctctgt	ctgtggtgct	gccactcgca	gccgaactaa	cgagcaccgc	11580
tgagcatgca	ggcagacttt	gggccgcgtg	atgtcgcggg	ctagttcaac	gcggcgggcc	11640
ttgacgctga	ttgactgcag	cttcgacagc	atagagataa	aataaaaaga	gaagaaaaga	11700
aagtttgtac	aatttcttt	tgtttatata	acatacacgc	tatgtcaaca	tttagaataa	11760

# WO 2004/063359 PCT/EP2004/000099 120/357

gggggaaaaa	atcttccatc	atattcgaat	gcacaagatt	atttctttgt	tcgctctttt	11820
tggtcgggtc	atcgagattt	agagtgtaat	Caaagatact	gtcatctcga	gagcgttgca	11880
caggetgetg	tttgccaaat	tggatgtttg	ccgaattagt	aaaatacgca	agcatttctt	11940.
acctttccgc	tcccttttcc	taattctccc	aaagactaaa	tgaggaaaga	taaaggacaa	12000
agaaaatgta	aagacaaaga	aattgaaaac	gatataaact	tgcagcacgt	aagaccaaag	12060
caaattggta	actattcttg	tgtacaaaca	tgtataaaaa	aaaacttttt	tttgctcctg	12120
gaggacaaaa	tttcaaactc	cttgaagaag	attgcttgta	tatctatcat	atgcatatat	12180
catatcgatg	gaaaaagaaa	gtcaggcatg	tatttataaa	aagaagaatg	tgccatgctt	12240
ccgaatttct	tttcactttc	ttttccttat	ctattttaat	ctcaagcttg	gcgtaatcat	12300
ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	12360
ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc	acattaattg	12420
cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	12480
tcggccaacg	cgcggggaga	ggcggtttgc	gtattgggcc	aaagacaaaa	gggcgacatt	12540
caaccgattg	agggagggaa	ggtaaatatt	gacggaaatt	attcattaaa	ggtgaattat	12600
caccgtcacc	gacttgagcc	atttgggaat	tagagccagc	aaaatcacca	gtagcaccat	12660
taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12720
tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	tcggcatttt	12780
cggtcatagc	ccccttatta	gcgtttgcca	tcttttcata	atcaaaatca	ccggaaccag	12840
agccaccacc	ggaaccgcct	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12900
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12960
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	13020

## WO 2004/063359 PCT/EP2004/000099 121/357

attttgttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	13080
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13140
aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13200
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13260
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13320
ttgatgtgga	cgccgggccc	gatcatattg	tegeteagga	tcgtggcgtt	gtgcttgtcg	13380
gccgttgctg	tcgtaatgat	atcggcacct	tcgaccgcct	gttccgcaga	gatcccgtgg	13440
gcgaagaact	ccagcatgag	atccccgcgc	tggaggatca	tecageegge	gtcccggaaa	13500
acgattccga	agcccaacct	ttcatagaag	gcggcggtgg	aatcgaaatc	tcgtgatggc	13560
aggttgggcg	tegettggte	ggtcatttcg	aaccccagag	tecegeteag	aagaactcgt	13620
caagaaggcg	atagaaggcg	atgegetgeg	aatcgggagc	ggcgataccg	taaagcacga	13680
ggaagcggtc	agcccattcg	ccgccaagct	cttcagcaat	atcacgggta	gccaacgcta	13740
tgtcctgata	geggteegee	acacccagcc	ggccacagtc	gatgaatcca	gaaaagcggc	13800
cattttccac	catgatattc	ggcaagcagg	categecatg	ggtcacgacg	agatcatcgc	13860
cgtcgggcat	gcgcgccttg	agcctggcga	acagttegge	tggcgcgagc	ccctgatgct	13920
cttcgtccag	atcatcctga	tcgacaagac	cggcttccat	ccgagtacgt	gctcgctcga	13980
tgcgatgttt	cgcttggtgg	tcgaatgggc	aggtagccgg	atcaagcgta	tgcagccgcc	14040
gcattgcatc	agccatgatg	gatactttct	cggcaggagc	aaggtgagat	gacaggagat	14100
cctgccccgg	cacttcgccc	aatagcagcc	agtcccttcc	cgcttcagtg	acaacgtcga	14160
gcacagetge	gcaaggaacg	cccgtcgtgg	ccagccacga	tagccgcgct	gcctcgtcct	14220
gcagttcatt	cagggcaccg	gacaggtcgg	tcttgacaaa	aagaaccggg	cgcccctgcg	14280

## WO 2004/063359 PCT/EP2004/000099 122/357

ctgacagccg	gaacacggcg	gcatcagagc	agccgattgt	ctgttgtgcc	cagtcatagc	14340
cgaatagcct	ctccacccaa	gcggccggag	aacctgcgtg	caatccatct	tgttcaatca	14400
tgcgaaacga	tccagatccg	gtgcagatta	tttggattga	gagtgaatat	gagactctaa	14460
ttggataccg	aggggaattt	atggaacgtc	agtggagcat	ttttgacaag	aaatatttgc	14520
tagctgatag	tgaccttagg	cgacttttga	acgcgcaata	atggtttctg	acgtatgtgc	14580
ttagctcatt	aaactccaga	aacccgcggc	tgagtggctc	cttcaacgtt	gcggttctgt	14640
cagttccaaa	cgtaaaacgg	cttgtcccgc	gtcatcggcg	ggggtcataa	cgtgactccc	14700
ttaattctcc	gctcatgatc	agattgtcgt	ttcccgcctt	cagtttaaac	tatcagtgtt	14760
tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	ataatcggat	14820
atttaaaagg	gcgtgaaaag	gtttatccgt	tcgtccattt	gtatgtgcat	gccaaccaca	14880
gggttcccca	gatctggcgc	cggccagcga	gacgagcaag	attggccgcc	gcccgaaacg	14940
atccgacagc	gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagcgccag	15000
cagaatgcca	tagtgggcgg	tgacgtcgtt	cgagtgaacc	agategegea	ggaggcccgg	15060
cagcaccggc	ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	15120
gatcaggggt	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	15180
aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15240
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15300
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15360
cageeggege	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15420
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	15480
tttctgatcg	ggaatgcccg	cagetteagg	caggcgctgc	tegeetaceg	cgatggcgcg	15540

. .....

#### WO 2004/063359 PCT/EP2004/000099 123/357

cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15600
	gcgaggcggg	4				15660
agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15720
cgcggcggca	ccgttgaaca	ggeteegete	tegeegetgt	tgcgggccgc	gatagacgcc	15780
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tegeggtgat	tgtcgatgga	15840
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15900
tcaggaccgc	tgccggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	15960
ctcccccttt	ccaccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	16020
gccctagcgt	ccaagcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	16080
cegetteete	gctcactgac	tegetgeget	cggtcgttcg	gctgcggcga	gcggtatcag	16140
ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	16200
tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcġtttt	16260
tccataggct	ccgccccct	gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	16320
gaaacccgac	aggactataa	agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	16380
ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tegggaageg	16440
tggcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	16500
ccatccttt	tcgcacgata	tacaggattt	tgccaaaggg	, ttcgtgtaga	ctttccttgg	16560
tgtatccaac	ggcgtcagcc	: gggcaggata	ggtgaagtag	geceaceego	: gagcgggtgt	16620
tccttcttca	ı ctgtccctta	ı ttcgcacctg	geggtgetea	acgggaatco	: tgctctgcga	16680
ggctggccgg	g ctaccgccgg	g cgtaacagat	: gagggcaago	ggatggctga	a tgaaaccaag	16740
ccaaccagga	a agggcagcco	e acctatcaag	gtgtactgco	c ttccagacga	a acgaagagcg	16800

attgaggaaa aggeggegge ggeeggeatg ageetgtegg eetacetget ggeeggee 16860
cagggetaca aaateaeggg egtegtggae tatgageaeg teeggaget ggeeeggee 16920
aatggegace tgggeeget gggeggeetg etgaaactet ggeteaeega egaceegge 16980
aeggegeggt teggtgatge eaegateete geeetgetgg egaagatega agagaageag 17040
gaegagettg geaaggteat gatgggeggt gteegeega gggeagagee atgaetttt 17100
tageegetaa aaeggeeggg gggtgeget gattgeeaag eaegteeeaa tgegeteeat 17160
caagaagage gaettegegg agetggtgaa gtaeateaee gaegageaag geaagaeega 17220
gegeetttge gaegetea

<210> 39

<211> 17238

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

#### WO 2004/063359 PCT/EP2004/000099 125/357

<400> 39 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgccc 660 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 1200 agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga 1260

### WO 2004/063359 PCT/EP2004/000099 126/357

•						
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgeegete	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	teegegeaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacago	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	g ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ı ggaacagtga	attggagtto	gtcttgttat	2220
aattagcttc	ttggggtato	: tttaaatact	gtagaaaaga	a ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	g aattgaaaaa	a actgatcgaa	a aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	g ctaaggtata	a taagctggtg	g ggagaaaat	g aaaacctata	2400
tttaaaaatg	acggacagco	ggtataaag	g gaccacctat	t gatgtggaa	c gggaaaagga	2460
catgatgcta	tggctggaag	g gaaagctgc	c tgttccaaa	g gtcctgcac	t ttgaacggca	2520

# WO 2004/063359 PCT/EP2004/000099 127/357

tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	: cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gteegtegge	tcgatggtcc	agcaagctac	ggccaagato	gagcgcgaca	3540
gcgtgcaact	ggeteecet	gecetgeceg	cgccatcggc	cgccgtggag	g egttegegte	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	categacaeg	g cgaggaacta	3660
tgacgaccaa	ı gaagcgaaaa	accgccggcg	g aggacetgge	c aaaacaggto	c agcgaggcca	3720
agcaggccgc	gttgctgaaa	a cacacgaago	: agcagatca	a ggaaatgca	g ctttccttgt	3780

togatattgo googtggcog gacacgatgo gagogatgoo aaacgacacg goocgototg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa teggtgtege tgetgeaccg etteegegte etggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag geteagatte gaeggettgg ageggeegae gtgeaggatt teegegagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800 [°]
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040

tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gecegataeg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttegggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	teggeatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggo	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	: caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaaco	e eggeagetta	gttgccgttd	ttccgaatag	g catcggtaac	c atgagcaaag	6000
tctgccgcct	: tacaacggct	cteceget <u>g</u> a	a cgccgtcccg	g gactgatggg	g ctgcctgtat	6060
cgagtggtga	a ttttgtgccg	g agetgeegg	cggggagctg	g ttggctggct	t ggtggcagga	6120
tatattgtgg	g tgtaaacaaa	a ttgacgctta	a gacaacttaa	a taacacatt	g cggacgtttt	6180
taatgtact	g gggtggttt	t tottttcac	c agtgagacg	g gcaacagct	g attgcccttc	6240
accgcctgg	c cctgagaga	g ttgcagcaa	g cggtccacg	c tggtttgcc	c cagcaggcga	6300

#### WO 2004/063359 PCT/EP2004/000099 130/357

aaatcctgtt	tgatggtggt	tecgaaateg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagttttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
egggeetett	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	<b>7</b> 560

### WO 2004/063359 PCT/EP2004/000099 131/357

tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaạcatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	teegggaeeg	geegeeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	. agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	: cgacccatco	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	g gtaggcagct	: ttgccccgtc	: tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	: catattttcc	tgctctcccc	accágctgct	8760
cttttcttt	ctetttett	teceatette	agtatattca	tetteceate	: caagaacctt	8820

### WO 2004/063359 PCT/EP2004/000099

tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tectteccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agegteteeg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080

### WO 2004/063359 PCT/EP2004/000099 133/357

ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	, gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	agagataaaa	10800
taaaaagaga	agaaaagaaa	gtttgtacaa	tttctttttg	tttatataac	atacacgcta	10860
tgtcaacatt	tagaataagg	gggaaaaaat	cttccatcat	attcgaatgc	acaagattat	10920
ttctttgttc	gctctttttg	gtcgggtcat	cgagatttag	agtgtaatca	aagatactgt	10980
catctcgaga	gcgttgcaca	ggctgctgtt	tgccaaattg	gatgtttgcc	gaattagtaa	11040
aatacgcaag	catttcttac	ctttccgctc	ccttttccta	attctcccaa	agactaaatg	11100
aggaaagata	. aaggacaaag	aaaatgtaaa	gacaaagaaa	ttgaaaacga	tataaacttg	11160
cagcacgtaa	gaccaaagca	aattggtaac	tattcttgtg	tacaaacatg	tataaaaaaa	11220
aactttttt	tgctcctgga	ggacaaaatt	tcaaactcct	tgaagaagat	tgcttgtata	11280
tctatcatat	gcatatatca	tatcgatgga	aaaagaaagt	caggcatgta	tttataaaaa	11340

#### WO 2004/063359 PCT/EP2004/000099 134/357

gaagaatgtg	ccatgcttcc	gaatttcttt	tcactttctt	ttccttatct	attttaatct	11400
catgctgtcg	aagctgcagt	caatcagcgt	caaggcccgc	cgcgttgaac	tagcccgcga	11460
catcacgcgg	cccaaagtct	gcctgcatgc	tcagcggtgc	tcgttagttc	ggctgcgagt	11520
ggcagcacca	cagacagagg	aggcgctggg	aaccgtgcag	gctgccggcg	cgggcgatga	11580
gcacagcgcc	gatgtagcac	tccagcagct	tgaccgggct	atcgcagagc	gtcgtgcccg	11640
gcgcaaacgg	gagcagctgt	cataccaggc	tgccgccatt	gcagcatcaa	ttggcgtgtc	11700
aggcattgcc	atcttcgcca	cctacctgag	atttgccatg	cacatgaccg	tgggcggcgc	11760
agtgccatgg	ggtgaagtgg	ctggcactct	cctcttggtg	gttggtggcg	cgctcggcat	11820
ggagatgtat	gcccgctatg	cacacaaagc	catctggcat	gagtcgcctc	tgggctggct	11880
gctgcacaag	agccaccaca	cacctcgcac	tggaccettt	gaagccaacg	acttgtttgc	11940
aatcatcaat	ggactgcccg	ccatgctcct	gtgtaccttt	ggcttctggc	tgcccaacgt	12000
cctgggggcg	gcctgctttg	gagegggget	gggcatcacg	ctatacggca	tggcatatat	12060
gtttgtacac	gatggcctgg	tgcacaggcg	ctttcccacc	gggcccatcg	ctggcctgcc	12120
ctacatgaag	cgcctgacag	tggcccacca	gctacaccac	agcggcaagt	acggtggcgc	12180
gccctggggt	atgttcttgg '	gtccacagga	gctgcagcac	attccaggtg	cggcggagga '	12240
ggtggagcga	ctggtcctgg	aactggactg	gtccaagcgg	tagaagcttg	gcgtaatcat	12300
ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	12360
ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc	acattaattg	12420
cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	12480
teggecaaeg	cgcggggaga	ggcggtttgc	gtattgggcc	aaagacaaaa	gggcgacatt	12540
caaccgatto	ı agggagggaa	ggtaaatatt	gacggaaatt	attcattaaa	ggtgaattat	12600

#### WO 2004/063359 PCT/EP2004/000099 135/357

caccgtcacc	gacttgagcc	atttgggaat	tagagccagc	aaaatcacca	gtagcaccat	12660
taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12720
tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	tcggcatttt	12780
cggtcatagc	ccccttatta	gcgtttgcca	tcttttcata	atcaaaatca	ccggaaccag	12840
agccaccacc	ggaaccgcct	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12900
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12960
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	13020
attttgtttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	13080
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13140
aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13200
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13260
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13320
ttgatgtgga	cgccgggccc	gatcatattg	tcgctcagga	tegtggegtt	gtgcttgtcg	13380
gccgttgctg	tcgtaatgat	ateggeacet	tcgaccgcct	gttccgcaga	gatcccgtgg	13440
gcgaagaact	. ccagcatgag	ateceegege	tggaggatca	tccagccggc	gtcccggaaa	13500
acgattccga	agcccaacct	ttcatagaag	gcggcggtgg	aatcgaaatc	tegtgatgge	13560
aggttgggcg	; tegettggte	ggtcatttcg	aaccccagag	tcccgctcag	aagaactcgt	13620
caagaaggcg	g atagaaggcg	atgegetgeg	aatcgggagc	ggcgataccg	, taaagcacga	13680
ggaagcggto	ageceattes	g ccgccaagct	cttcagcaat	atcacgggta	gccaacgcta	13740
tgtcctgata	a geggteeged	acacccagco	ggccacagto	gatgaatcca	a gaaaagcggc	13800
cattttcca	c catgatatto	ggcaagcagg	categecate	ggtcacgacg	g agatcatcgc	13860

#### WO 2004/063359 PCT/EP2004/000099 136/357

cgtcgggcat	gcgcgccttg	agcctggcga	acagttegge	tggcgcgagc	ccctgatgct	13920
cttcgtccag	atcatcctga	tcgacaagac	cggcttccat	ccgagtacgt	gctcgctcga	13980
tgcgatgttt	cgcttggtgg	tcgaatgggc	aggtagccgg	atcaagcgta	tgcagccgcc	14040
gcattgcatc	agccatgatg	gatactttct	cggcaggagc	aaggtgagat	gacaggagat	14100
cctgccccgg	cacttcgccc	aatagcagcc	agtecettee	cgcttcagtg	acaacgtcga	14160
gcacagctgc	gcaaggaacg	cccgtcgtgg	ccagccacga	tagccgcgct	gcctcgtcct	14220
gcagttcatt	cagggcaccg	gacaggtcgg	tcttgacaaa	aagaaccggg	egecectgeg	14280
ctgacagccg	gaacacggcg	gcatcagagc	agccgattgt	ctgttgtgcc	cagtcatagc	14340
cgaatagcct	ctccacccaa	gcggccggag	aacctgcgtg	caatccatct	tgttcaatca	14400
tgcgaaacga	tccagatccg	gtgcagatta	tttggattga	gagtgaatat	gagactctaa	14460
ttggataccg	aggggaattt	atggaacgtc	agtggagcat	ttttgacaag	aaatatttgc	14520
tagctgatag	tgaccttagg	cgacttttga	acgcgcaata	atggtttctg	acgtatgtgc	14580
ttagctcatt	aaactccaga	aacccgcggc	tgagtggctc	cttcaacgtt	gcggttctgt	14640
cagttccaaa	cgtaaaacgg	cttgtcccgc	gtcatcggcg	ggggtcataa	cgtgactccc	14700
ttaattctcc	gctcatgatc	agattgtcgt	ttcccgcctt	cagtttaaac	tatcagtgtt	14760
tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	ataatcggat	14820
atttaaaagg	gcgtgaaaag	gtttatccgt	tegtecattt	gtatgtgcat	gccaaccaca	14880
gggttcccca	gatctggcgc	cggccagcga	gacgagcaag	attggccgcc	gcccgaaacg	14940
atccgacago	: gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagegeeag	15000
cagaatgcca	tagtgggcgg	tgacgtcgtt	cgagtgaacc	agategegea	ggaggcccgg	15060
cagcaccggc	c ataatcaggo	: cgatgccgac	agcgtcgagc	gcgacagtgc	: tcagaattac	15120

#### WO 2004/063359 PCT/EP2004/000099 137/357

gatcaggggt	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	15180
aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15240
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15300
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15360
cageeggege	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15420
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	15480
tttctgatcg	ggaatgcccg	cagcttcagg	caggegetge	tegectaceg	cgatggcgcg	15540
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15600
cgcttcctct	gcgaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	15660
agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15720
cgcggcggca	ccgttgaaca	ggctccgctc	tegeegetgt	tgcgggccgc	gatagacgcc	15780
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tegeggtgat	tgtcgátgga	15840
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15900
tcaggaccgc	tgccggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	15960
ctccccttt	ccaccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	16020
gccctagcgt	ccaagcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	16080
ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	gctgcggcga	gcggtatcag	16140
ctcactcaaa	. ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	16200
tgtgagcaaa	. aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	16260
tccataggct	: cegececect	gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	16320
gaaacccgac	aggactataa	agataccagg	cgtttcccc	tggaagctcc	ctcgtgcgct	16380

ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tegggaageg	16440
tggcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	16500
ccatcctttt	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16560
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16620
tccttcttca	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	16680
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16740
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16800
attgaggaaa	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggecgtegge	16860
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	16920
aatggcgacc	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	16980
acggcgcggt	teggtgatge	cacgatecte	gccctgctgg	cgaagatcga	agagaagcag	17040
gacġagcttg	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	17100
tagccgctaa	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	17160
caagaagagc	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	17220
gcgcctttgc	gacgctca					17238

<210> 40

<211> 18449

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3770)..(3770) <223> n is a, c, g, or t <400> 40 gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tcgggaagcc agcgactggt gacctccagc gtccctttaa ggctgccaac agctttctca 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 420 atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca 480 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc 540 600 aatattctca agtatctcga gtttgaactt attccctgtg aaccttttat tcaccaatga gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc 660 ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 720 tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg 780 840

tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct

### WO 2004/063359 PCT/EP2004/000099 140/357

caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagetta	taccgagctc	ccaaatctgt	ccagatcatg.	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	geceeteege	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tageegtegg	1560
cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca	teeggeatet	gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaad	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	cegeeeggtg	tgtcggcggg	gttgacaagg	tegttgegte	1920
agtccaacat	ttgttgccat	attttcctgd	tctcccacc	agctgctctt	ttcttttctc	1980
tttctttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatco	: ttcccatccc	ttattccttt	gaacctttca	2100

#### WO 2004/063359 PCT/EP2004/000099 . 141/357

gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	atcggccgcg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agagcctgac	ctattgcatc	tcccgccgtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tcgcggaggc	catggatgcg	2520
ategetgegg	ccgatcttag	ccagacgagc	gggttcggcc	catteggace	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gcgtccgtcg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	ttteggetee	2760
aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	: tcgccgatag	tggaaaccga	cgcccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	geegaeegeg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tegttggtgt	cgatgtcago	tccggagttg	g agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	ı gcaaagagt <u>ç</u>	g cettetagtg	3360

atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cageteatet	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tectettett	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagcnc	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	actttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caaagcttga	gattaaaata	gataaggaaa	4020
agaaagtgaa	aagaaattcg	gaagcatggc	acattcttct	ttttataaat	acatgcctga	4080
ctttctttt	ccatcgatat	gatatatgca	tatgatagat	atacaagcaa	tcttcttcaa	4140
ggagtttgaa	attttgtcct	ccaggagcaa	aaaaaagttt	ttttttatac	atgtttgtac	4200
acaagaatag	ttaccaattt	gctttggtct	tacgtgctgc	aagtttatat	cgttttcaat	4260
ttctttgtct	ttacattttc	tttgtccttt	atctttcctc	: atttagtctt	: tgggagaatt	4320
aggaaaaggg	agcggaaagg	ı taagaaatgo	: ttgcgtattt	: tactaattcg	g gcaaacatcc	4380
aatttggcaa	acagcagcct	gtgcaacgct	ctcgagatga	a cagtatetti	gattacactc'	4440
taaatctcga	tgacccgacc	aaaaagagcg	g aacaaagaaa	a taatcttgt	y cattcgaata	4500
tgatggaaga	ttttttccc	cttattctaa	a atgttgacai	agcgtgtat	g ttatataaac	4560
aaaaagaaat	tgtacaaact	ttetttett	ctctttta	tttatctct	a tgctgtcgaa	4620

### WO 2004/063359 PCT/EP2004/000099 143/357

gctgcagtca	atcagcgtca	aggcccgccg	cgttgaacta	gcccgcgaca	tcacgcggcc	4680
caaagtctgc	ctgcatgctc	ageggtgete	gttagttcgg	ctgcgagtgg	Cagcaccaca	4740
gacagaggag	gegetgggaa	ccgtgcaggc	tgccggcgcg	ggcgatgagc	acagcgccga	4800
tgtagcactc	cagcagcttg	accgggctat	cgcagagcgt	cgtgcccggc	gcaaacggga	4860
gcagctgtca	taccaggctg	ccgccattgc	agcatcaatt	ggcgtgtcag	gcattgccat	4920
cttcgccacc	tacctgagat	ttgccatgca	catgaccgtg	ggcggcgcag	tgccatgggg	4980
tgaagtggct	ggcactctcc	tcttggtggt	tggtggcgcg	ctcggcatgg	agatgtatgc	5040
ccgctatgca	cacaaagcca	tctggcatga	gtcgcctctg	ggctggctgc	tgcacaagag	5100
ccaccacaca	cctcgcactg	gaccctttga	agccaacgac	ttgtttgcaa	tcatcaatgg	5160
actgcccgcc	atgctcctgt	gtacctttgg	cttctggctg	cccaacgtcc	tgggggcggc	5220
ctgctttgga	gcggggctgg	gcatcacgct	atacggcatg	gcatatatgt	ttgtacacga	5280
tggcctggtg	cacaggcgct	ttcccaccgg	gcccatcgct	ggcctgccct	acatgaagcg	5340
cctgacagtg	gcccaccagc	tacaccacag	cggcaagtac	ggtggcgcgc	cctggggtat	5400
gttcttgggt	ccacaggagc	tgcagcacat	tccaggtgcg	gcggaggagg	tggagcgact	5460 ·
ggtcctggaa	ctggactggt	ccaagcggta	gattgtgact	gatagcgaga	ctctgggtcg	5520
atgttatctg	cctcaacaat	ggcttagaaa	agaagaaaca	gaacaaatac	agcaaggcaa	5580
cgcccgtagc	ctaggtgatc	aaagactgtt	gggcttgtct	ctgaagcttg	taggaaaggc	5640
agacgctatc	atggtgagag	ctaagaaggg	cattgacaag	ttgccggcaa	actgtcaagg	5700
cggtgtacga	gctgcttgcc	aagtatatgc	tgcaattgga	tctgtactca	agcagcagaa	5760
gacaacatat	cctacaagag	ctcatctaaa	aggaagcgaa	cgtgccaaga	ttgctctgtt	5820
gagtgtatac	aacctctatc	aatctgaaga	caagcctgtg	gctctccgtc	aagctagaaa	5880

gattaagagt	ttttttgttg	attagtgaat	ttttgtttta	tttatgtctg	atagttcaat	5940
aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	6000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttctttttt	ggcttgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	ttccttttag	atgagctctt	gtaggatatg	ttgtcttctg	ctgcttgagt	6240
acagatccaa	ttgcagcata	tacttggcaa	gcagctcgta	caccgccttg	acagtttgcc	6300
ggcaacttgt	caatgccctt	cttagctctc	accatgatag	cgtctgcctt	tcctacaagc	6360
ttcagagaca	agcccaacag	tctttgatca	cctaggctac	gggegttgee	ttgctgtatt	6420
tgttctgttt	cttcttttct	aagccattgt	tgaggcagat	aacatcgacc	caacațecte	6480
gagccatact	acagcataaa	aggatacgtt	ttctttaaca	gaaatttacc	cttttgttat	6540
cagcacatac	aaaaaaaaag	aaatttaaga	tgagtaggac	ttccattctc	tcaaaaattt	6600
tattcaatcc	ataaatgaat	tatttttgga	caaaaaagaa	agattatgcc	tgattttctc	6660
tattttttt	ttttttacaa	ctccaccaat	actttctagc	ccagcttggc	: gtaatcatgg	6720
tcatagctgt	ttcctgtgtg	aaattgttat	ccgctcacaa	ttccacacaa	a catacgagcc	6780
ggaagcataa	agtgtaaagc	ctggggtgcc	taatgagtga	gctaactcac	e attaattgcg	6840
ttgcgctcac	: tgcccgcttt	: ccagtcggga	aacctgtcgt	: gccagctgca	a ttaatgaatc	6900
ggccaacgco	g cggggagagg	g eggtttgegt	: attgggccaa	agacaaaagg	g gegacattca	6960
accgattgaç	g ggagggaagg	g taaatattga	cggaaattat	tcattaaag	g tgaattatca	7020
ccgtcaccga	a cttgagccat	ttgggaatta	gagccagcaa	a aatcaccag	t agcaccatta	7080
ccattagca	a ggccggaaa	c gtcaccaate	g aaaccatega	a tagcagcac	c gtaatcagta	7140

### WO 2004/063359 PCT/EP2004/000099 145/357

gcgacagaat	caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	7200
gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260
ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	ctcagagcca	7320
ccaccctcag	agccgccacc	agaaccacca	ccagagccgc	cgccagcatt	gacaggaggc	7380
ccgatctagt	aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	7440
tttgttttct	atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	7500
cataaataac	gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	7560
ttatatgata	atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	7620
aatgtttgaa	cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	7680
acgcagcaag	atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	7740
gatgtggacg	cegggceega	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	7800
cgttgctgtc	gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tcccgtgggc	7860
gaagaactcc	agcatgagat	ccccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	7920
gattccgaag	cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	7980
gttgggcgtc	gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	8040
agaaggcgat	agaaggcgat	gegetgegaa	tcgggagcgg	cgataccgta	aagcacgagg	8100
aagcggtcag	cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	8160
tcctgatagc	ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	8220
ttttccacca	tgatattcgg	caagcaggca	tcgccatggg	tcacgacgag	atcatcgccg	8280
tegggeatge	gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgàtgctct	8340
tcgtccagat	catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgc	togctogatg	8400

### WO 2004/063359 PCT/EP2004/000099 146/357

cgatgtttcg	cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cagccgccgc	8460
attgcatcag	ccatgatÿga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	8520
tgccccggca	cttcgcccaa	tagcagccag	tecetteceg	cttcagtgac	aacgtcgagc	8580
acagctgcgc	aaggaacgcc	cgtcgtggcc	agccacgata	gccgcgctgc	ctcgtcctgc	8640
agttcattca	gggcaccgga	caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	8700
gacagccgga	acacggcggc	atcagagcag	ccgattgtct	gttgtgccca	gtcatagccg	8760
aatagcctct	ccacccaagc	ggccggagaa	cctgcgtgca	atccatcttg	ttcaatcatg	8820
cgaaacgatc	cagatccggt	gcagattatt	tggattgaga	gtgaatatga	gactctaatt	8880
ggataccgag	gggaatttat	ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	8940
gctgatagtg	accttaggcg	acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	9000
agctcattaa	actccagaaa	cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	9060
gttccaaacg	taaaacggct	tgtcccgcgt	categgeggg	ggtcataacg	tgactccctt	9120 '
aattctccgc	tcatgatcag	attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	9180
acaggatata	ttggcgggta	aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	9240
ttaaaagggc	gtgaaaaggt	ttatccgttc	gtccatttgt	atgtgcatgc	caaccacagg	9300
gttccccaga	tctggcgccg	gecagegaga	. cgagcaagat	tggccgccgc	ccgaaacgat	9360
ccgacagcgc	geceageaca	ggtgcgcagg	caaattgcac	: caacgcatac	agcgccagca	9420
gaatgccata	ı gtgggcggtg	g acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	9480
gcaccggcat	: aatcaggccg	g atgccgacag	r cgtcgagcgo	gacagtgete	: agaattacga	9540
tcaggggtat	: gttgggtttc	acgtctggcc	tccggaccag	g ceteegetgg	g teegattgaa	9600
cgcgcggatt	ctttatcact	gataagttgg	g tggacatatt	atgtttatca	gtgataaagt	9660

### WO 2004/063359 PCT/EP2004/000099 147/357

gtcaagcatg	acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	9720
cgaggtcggc	gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	9780
geeggegett	tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	9840
catgctggcg	gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	9900
tctgatcggg	aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	9960
catccatgcc	ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	10020
cttcctctgc	gaggcgggtt	tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	10080
ctacttcact	gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	10140
cggcggcacc	gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	10200
cgacgaagcc	ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	10260
ggcgaaaagg	aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	10320
aggaccgctg	ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	10380
cccctttcc	accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	10440
cctagcgtcc	aagcctcacg	gccgcgctcg	gcctctctgg	cggccttctg	gegetettee	10500
gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	10560
cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	10620
tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	10680
cataggctcc	geeceeetga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	10740
aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	10800
cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	10860
gcgcttttcc	gctgcataac	cctgcttcgg	ggtcattata	. gcgattttt	cggtatatcc	10920

atcetttte geaegatata caggattttg ceaaagggtt egtgtagaet tteettggtg 10980	0
tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga gcgggtgttc 1104	0
cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg ctctgcgagg 1110	0
ctggccggct accgccggcg taacagatga gggcaagcgg atggctgatg aaaccaagcc 1116	0
aaccaggaag ggcagcccac ctatcaaggt gtactgcctt ccagacgaac gaagagcgat 1122	0
tgaggaaaag geggeggegg eeggeatgag eetgteggee tacetgetgg eegteggeea 1128	0
gggctacaaa atcacgggcg tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa 1134	.0
tggcgacctg ggccgcctgg geggcctgct gaaactctgg ctcaccgacg acccgcgcac 1140	0
ggcgcggttc ggtgatgcca cgatcctcgc cctgctggcg aagatcgaag agaagcagga 1146	0
cgagcttggc aaggtcatga tgggcgtggt ccgcccgagg gcagagccat gacttttta 1152	20
gccgctaaaa cggccggggg gtgcgcgtga ttgccaagca cgtcccatg cgctccatca 1158	30
agaagagcga cttcgcggag ctggtgaagt acatcaccga cgagcaaggc aagaccgagc 1164	10
geetttgega egeteaeegg getggttgee etegeegetg ggetggegge egtetatgge 1170	00
cctgcaaacg cgccagaaac gccgtcgaag ccgtgtgcga gacaccgcgg ccgccggcgt 1176	60
tgtggatacc tcgcggaaaa cttggccctc actgacagat gaggggcgga cgttgacact 1182	20
tgaggggccg actcacccgg cgcggcgttg acagatgagg ggcaggctcg atttcggccg 118	80
gcgacgtgga gctggccagc ctcgcaaatc ggcgaaaacg cctgatttta cgcgagtttc 119	40
ccacagatga tgtggacaag cctggggata agtgccctgc ggtattgaca cttgaggggc 120	00
gcgactactg acagatgagg ggcgcgatcc ttgacacttg aggggcagag tgctgacaga 120	60
tgaggggggc acctattgac atttgagggg ctgtccacag gcagaaaatc cagcatttgc 121	20
aagggtttcc gcccgttttt cggccaccgc taacctgtct tttaacctgc ttttaaacca 121	.80

#### WO 2004/063359 PCT/EP2004/000099 149/357

atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	12240
aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	12300
ccaggggctg	egecectegg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	12420
cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
tgagggcggc	ggcctgggtg	gcggcctgcc	cttcacttcg	gccgtcgggg	cattcacgga	12540
cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	12600
cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
ataccgaggt	atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	12720
ttaaaaagct	accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	12780
attgacaata	ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	12840
tttcaggggg	caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	12900
taaaaacttg	catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	12960
ctatcataat	tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	13020
gatgactttg	tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	13080
tgccaggtgc	tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	13140
gattacgtgc	agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	13200
tatcaccacg	tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	13260
ttcaccgaat	acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	13320
gcgctggcgc	gatttagccc	cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	13380
gacgtcactg	cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	ttttaagtga	13440

#### WO 2004/063359 PCT/EP2004/000099 150/357

cgtaaaatcg	tgttgaggcc	aacgcccata	atgegggetg	ttgcccggca	tccaacgcca	13500
ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggeggtgett	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	agettettgg	ggtatcttta	aatactgtag	aaaagaggaa	13920
ggaaataata	aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	13980
accgctgcgt	aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	14040
aaaatgaaaa	cctatattta	aaaatgacgg	acageeggta	taaagggacc	acctatgatg	14100
tggaacggga	aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtcc	14160
tgcactttga	acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	14220
tttgctcgga	agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	14280
agtgcatcag	gctctttcac	tccatcgaca	tatcggattg	tccctatacg	aatagcttag	14340
acagccgctt	agccgaattg	gattacttac	tgaataacga	tctggccgat	gtggattgcg	14400
aaaactggga	agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	tttttaaaga	14460
cggaaaagcc	cgaagaggaa	cttgtcttt	cccacggcga	. cctgggagac	agcaacatct	14520
ttgtgaaaga	tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggcggaca	14580
agtggtatga	cattgcctto	: tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	14640
atgtcgagct	atttttgad	: ttactgggga	tcaagcctga	ı ttgggagaaa	ataaaatatt	14700

#### WO 2004/063359 PCT/EP2004/000099 151/357

atattttact ggatgaattg ttttagtacc tagatgtggc gcaacgatgc cggcgacaag 14	4760
caggagegea eegaettett eegeateaag tgttttgget eteaggeega ggeeeaegge 14	4820
aagtatttgg gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac 14	4880
gagaaggacg gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg 14	4940
gacaccaagg caccaggegg gtcaaatcag gaataaggge acattgeece ggegtgagte 15	5000
ggggcaatcc cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa 15	5060
gaactgateg acgeggggtt tteegeegag gatgeegaaa ceategeaag eegeacegte 15	5120
atgcgtgcgc cccgcgaaac cttccagtcc gtcggctcga tggtccagca agctacggcc 1	5180
aagategage gegacagegt geaactgget ecceetgeee tgeeegegee ateggeegee 19	5240
gtggagcgtt cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc 1	5300
gacacgcgag gaactatgac gaccaagaag cgaaaaaccg ccggcgagga cctggcaaaa 1	.5360
caggtcagcg aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa 1	.5420
atgcagettt cettgttega tattgegeeg tggeeggaea egatgegage gatgeeaaac 1	5480
gacacggccc gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg 1	.5540
caaaacaagg tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag 1	15600
ctgcgggccg acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc 1	L5660
cctatcggcg agccgatcac cttcacgttc tacgagcttt gccaggacct gggctggtcg 1	15720
atcaatggcc ggtattacac gaaggccgag gaatgcctgt cgcgcctaca ggcgacggcg 1	15780
atgggcttca cgtccgaccg cgttgggcac ctggaatcgg tgtcgctgct gcaccgcttc 1	15840
cgcgtcctgg accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc 1	15900
gtcgtgctgt ttgctggcga ccactacacg aaattcatat gggagaagta ccgcaagctg 1	15960

#### WO 2004/063359 PCT/EP2004/000099 152/357

tegeegaegg ceegaeggat gttegaetat tteagetege acegggagee gtaceegete 16020 aagetggaaa cetteegeet catgtgegga teggatteea eeegegtgaa gaagtggege 16080 gagcaggtcg gcgaagcctg cgaagagttg cgaggcagcg gcctggtgga acacgcctgg 16140 gtcaatgatg acctggtgca ttgcaaacgc tagggccttg tggggtcagt tccggctggg 16200 ggttcagcag ccagcgcttt actggcattt caggaacaag cgggcactgc tcgacgcact 16260 tgcttcgctc agtatcgctc gggacgcacg gcgcgctcta cgaactgccg ataaacagag 16320 gattaaaatt gacaattgtg attaaggctc agattcgacg gcttggagcg gccgacgtgc 16380 aggatttccg cgagatccga ttgtcggccc tgaagaaagc tccagagatg ttcgggtccg 16440 tttacgagca cgaggagaaa aagcccatgg aggcgttcgc tgaacggttg cgagatgccg 16500 tggcattcgg cgcctacatc gacggcgaga tcattgggct gtcggtcttc aaacaggagg 16560 acggccccaa ggacgctcac aaggcgcatc tgtccggcgt tttcgtggag cccgaacagc 16620 gaggccgagg ggtcgccggt atgctgctgc gggcgttgcc ggcgggttta ttgctcgtga 16680 tgatcgtccg acagattcca acgggaatct ggtggatgcg catcttcatc ctcggcgcac 16740 ttaatatttc gctattctgg agcttgttgt ttatttcggt ctaccgcctg ccgggcgggg 16800 tcgcggcgac ggtaggcgct gtgcagccgc tgatggtcgt gttcatctct gccgctctgc 16860 taggtagccc gatacgattg atggcggtcc tgggggctat ttgcggaact gcgggcgtgg 16920 cgctgttggt gttgacacca aacgcagcgc tagatcctgt cggcgtcgca gcgggcctgg 16980 cggggggggt ttccatggcg ttcggaaccg tgctgacccg caagtggcaa cctcccgtgc 17040 ctctgctcac ctttaccgcc tggcaactgg cggccggagg acttctgctc gttccagtag 17100 ctttagtgtt tgatccgcca atcccgatgc ctacaggaac caatgttctc ggcctggcgt 17160 ggctcggcct gatcggagcg ggtttaacct acttcctttg gttccggggg atctcgcgac 17220

### WO 2004/063359 PCT/EP2004/000099 153/357

tegaacetae a	gttgtttcc 1	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	17280
cggggatgca t	caggccgac a	agtcggaact	tegggteecc	gacctgtacc	attcggtgag	17340
caatggatag g	ggagttgat a	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	17400
ttcctcagcg g	rctttatcca (	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	17460
gcctgtcacg g	rttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	17520
agatgatatt t	gatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	17580
ccgcgagatc a	tccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	17640
ggtaacatga g	gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	17700
gatgggctgc c	ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	17760
ctggctggtg ç	gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	17820
acattgegga (	cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	17880
cagctgattg (	cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	17940
ttgccccagc a	aggcgaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	18000
aaatcaaaag a	aatagcccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	18060
ctattaaaga a	acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	18120
ccactacgtg a	aaccatcacc	caaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	18180
aatcggaacc	ctaaagggag	ccccgattt	agagcttgac	ggggaaagco	ggcgaacgtg	18240
gcgagaaagg	aagggaagaa	agcgaaagga	gcgggcgcca	ttcaggctgc	: gcaactgttg	18300
ggaagggcga	teggtgeggg	cctcttcgct	attacgccag	ctggcgaaag	g ggggatgtgc	18360
tgcaaggcga	ttaagttggg	taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	18420
ggccagtgaa	ttcgagctcg	gtacccggg				18449

<210> 41 <211> 18449 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3770)..(3770) <223> n is a, c, g, or t a gr <400> 41 gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegactggt gacetecage gteeetttaa ggetgecaae agetttetea 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 420 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca 480

#### WO 2004/063359 PCT/EP2004/000099 155/357

tttggatttg	ctttccaggc	tgagactcta	gcttggagca	tagagggtcc	tttggctttc	540
aatattctca	agtatctcga	gtttgaactt	attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagctta	taccgagete	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	getetggegg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaago	caggggtgta	tagccgtcgg	1560
cgaaatagca	. tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	: tggtaaaaga	1620
ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acccggcgcg	taageteeet	1680
aattggccca	ı teeggeatet	gtagggcgtc	caaatatcgt	geeteteetg	g ctttgcccgg	1740

### WO 2004/063359 PCT/EP2004/000099 156/357

tgtatgaaac	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tcgttgcgtc	1920
agtccaacat	ttgttgccat	attttcctgc	tetececace	agetgetett	ttcttttctc	1980
tttcttttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	togcagettg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	atcggccgcg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agageetgae	ctattgcatc	tecegeegtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tcgcggaggc	catggatgcg	2520
ategetgegg	ccgatcttag	ccagacgagc	gggttcggcc	cattcggacc	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gcgtccgtcg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	tttcggctcc	2760
aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000

#### WO 2004/063359 PCT/EP2004/000099 157/357

aatttcgatg a	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tectettett	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagcnc	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	acttttttac	aactctccta	tgagtcgttt	acccagaatg	r cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagteete	gtgtactgtg	g taagegeeca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caaagcttga	gattaaaata	a gataaggaaa	4020
agaaagtgaa	aagaaattcg	gaagcatggc	acattcttct	: ttttataaat	acatgcctga	4080
ctttctttt	ccatcgatat	gatatatgca	ı tatgatagat	: atacaagcaa	a tottottoaa	4140
ggagtttgaa	attttgtcct	ccaggagcaa	a aaaaaagttt	: ttttttata	c atgtttgtac	4200
acaagaatag	ttaccaatti	getttggtet	tacgtgctgc	c aagtttata	t cgttttcaat	4260

## WO 2004/063359 PCT/EP2004/000099 158/357

ttctttgtct	ttacattttc	tttgtccttt	atctttcctc	atttagtctt	tgggagaatt	4320
aggaaaaggg	agcggaaagg	taagaaatgc	ttgcgtattt	tactaattcg	gcaaacatcc	4380
aatttggcaa	acagcagcct	gtgcaacgct	ctcgagatga	cagtatcttt	gattacactc	4440
taaatctcga	tgacccgacc	aaaaagagcg	aacaaagaaa	taatcttgtg	cattcgaata	4500
tgatggaaga	tttttcccc	cttattctaa	atgttgacat	agcgtgtatg	ttatataaac	4560
aaaaagaaat	tgtacaaact	ttcttttctt	ctctttttat	tttatctcta	tgctgtcgaa	4620
gctgcagtca	atcagcgtca	aggcccgccg	cgttgaacta	gcccgcgaca	tcacgcggcc	4680
caaagtctgc	ctgcatgctc	agcggtgctc	gttagttcgg	ctgcgagtgg	cagcaccaca	4740
gacagaggag	gcgctgggaa	ccgtgcaggc	tgccggcgcg	ggcgatgagc	acagegeega	4800
tgtagcactc	cagcagcttg	accgggctat	cgcagagcgt	cgtgcccggc	gcaaacggga	4860
gcagctgtca	taccaggctg	ccgccattgc	agcatcaatt	ggcgtgtcag	gcattgccat	4920
cttcgccacc	tacctgagat	ttgccatgca	catgaccgtg	ggcggcgcag	tgccatgggg	4980
tgaagtggct	ggcactctcc	tcttggtggt	tggtggcgcg	ctcggcatgg	agatgtatgc	5040
ccgctatgca	cacaaagcca	tctggcatga	gtcgcctctg	ggctggctgc	tgcacaagag	5100
ccaccacaca	cctcgcactg	gaccctttga	agccaacgac	ttgtttgcaa	tcatcaatgg	5160
actgcccgcc	atgctcctgt	gtacctttgg	cttctggctg	cccaacgtcc	tgggggcggc	5220
ctgctttgga	geggggetgg	gcatcacgct	atacggcatg	gcatatatgt	ttgtacacga	5280
tggcctggtg	cacaggeget	ttcccaccgg	gcccatcgct	ggeetgeeet	acatgaagcg	5340
cctgacagtg	gcccaccagc	tacaccacag	cggcaagtac	ggtggcgcgc	cctggggtat	5400
gttcttgggt	ccacaggagc	tgcagcacat	tccaggtgcg	gcggaggagg	tggagcgact	5460
ggtcctggaa	ctggactggt	ccaagcgggc	gattgtgact	gatagcgaga	ctctgggtcg	5520

#### WO 2004/063359 PCT/EP2004/000099 159/357

atgttatctg	cctcaacaat	ggcttagaaa	agaagaaaca	gaacaaatac	agcaaggcaa	5580
cgcccgtagc	ctaggtgatc	aaagactgtt	gggcttgtct	ctgaagcttg	taggaaaggc	5640
agacgctatc	atggtgagag	ctaagaaggg	cattgacaag	ttgccggcaa	actgtcaagg	5700
cggtgtacga	gctgcttgcc	aagtatatgc	tgcaattgga	tctgtactca	agcagcagaa	5760
gacaacatat	cctacaagag	ctcatctaaa	aggaagcgaa	cgtgccaaga	ttgctctgtt	5820
gagtgtatac	aacctctatc	aatctgaaga	caagcctgtg	gctctccgtc	aagctagaaa	5880
gattaagagt	ttttttgttg	attagtgaat	ttttgtttta	tttatgtctg	atagttcaat	5940
aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	6000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttctttttt	ggcttgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	ttccttttag	atgagctctt	gtaggatatg	ttgtcttctg	ctgcttgagt	6240
acagatccaa	ttgcagcata	tacttggcaa	gcagctcgta	caccgccttg	acagtttgcc	6300
ggcaacttgt	caatgccctt	cttagctctc	accatgatag	cgtctgcctt	tcctacaagc	6360
ttcagagaca	agcccaacag	tctttgatca	cctaggctac	gggcgttgcc	ttgctgtatt	6420
tgttctgttt	cttcttttct	aagccattgt	tgaggcagat	aacatcgacc	caacatcctc	6480
gagccatact	acagcataaa	aggatacgţt	ttctttaaca	gaaatttacc	cttttgttat	6540
cagcacatac	aaaaaaaag	aaatttaaga	tgagtaggac	ttccattctc	tcaaaaattt	6600
tattcaatco	ataaatgaat	tatttttgga	caaaaaagaa	agattatgcc	tgattttctc	6660
tattttttt	tttttacaa	ctccaccaat	actttctago	ccagcttggc	gtaatcatgg	6720
tcatagctgt	ttcctgtgtg	, aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	6780

# WO 2004/063359 PCT/EP2004/000099 160/357

ggaagcataa	agtgtaaagc	ctggggtgcc	taatgagtga	gctaáctcac	attaattgcg	6840
ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	6900
ggccaacgcg	cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gcgacattca	6960
accgattgag	ggagggaagg	taaatattga	cggaaattat	tcattaaagg	tgaattatca	7020
ccgtcaccga	cttgagccat	ttgggaatta	gagccagcaa	aatcaccagt	agcaccatta	7080
ccattagcaa	ggccggaaac	gtcaccaatg	aaaccatcga	tagcagcacc	gtaatcagta	7140
gcgacagaat	caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	7200
gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260
ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aacegccace	ctcagagcca	7320
ccaccctcag	agccgccacc	agaaccacca	ccagagccgc	cgccagcatt	gacaggaggc	7380
ccgatctagt	aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	7440
tttgttttct	atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	7500
cataaataac	gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	7560
ttatatgata	atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	7620
aatgtttgaa	cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	7680
acgcagcaag	atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	7740
gatgtggacg	cegggeeega	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	7800
cgttgctgtc	gtaatgatat	cggcaccttc	gaccgcctgt	teegeagaga	tecegtggge	7860
gaagaactco	: agcatgagat	ceeegegetg	gaggatcatc	cagccggcgt	cccggaaaac	7920
gattccgaag	g cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	: gtgatggcag	7980
gttgggcgtd	gettggtegg	tcatttcgaa	ccccagagtc	ccgctcagaa	a gaactcgtca	8040

### WO 2004/063359 PCT/EP2004/000099

8100 agaaggcgat agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg 8160 aagcggtcag cccattcgcc gccaagctct tcagcaatat cacgggtagc caacgctatg 8220 tcctgatage ggtccgccac acccagccgg ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca tcgccatggg tcacgacgag atcatcgccg 8280 tegggeatge gegeettgag eetggegaae agtteggetg gegegageee etgatgetet 8340 8400 tegtecagat cateetgate gacaagaceg gettecatee gagtacgtge tegetegatg 8460 cgatgtttcg cttggtggtc gaatgggcag gtagccggat caagcgtatg cagccgccgc 8520 attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc 8580 acagetgege aaggaaegee egtegtggee ageeaegata geegegetge etegteetge 8640 8700 agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct gacageegga acaeggegge ateagageag ecgattgtet gttgtgeeca gteatageeg 8760 8820 aatagcctct ccacccaagc ggccggagaa cctgcgtgca atccatcttg ttcaatcatg 8880 cgaaacgatc cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt 8940 ggataccgag gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta 9000 gctgatagtg accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt ageteattaa aeteeagaaa eeegeggetg agtggeteet teaacgttge ggttetgtea 9060 9120 gttccaaacg taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt aattctccgc tcatgatcag attgtcgttt cccgccttca gtttaaacta tcagtgtttg 9180 9240 acaggatata ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat 9300 ttaaaagggc gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg

#### WO 2004/063359 PCT/EP2004/000099 162/357

gttccccaga	tctggcgccg	gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	9360
ccgacagcgc	gcccagcaca	ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	9420
gaatgccata	gtgggcggtg	acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	9480
gcaccggcat	aatcaggccg	atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	9540
tcaggggtat	gttgggtttc	acgtctggcc	tccggaccag	cctccgctgg	tccgattgaa	9600
cgcgcggatt	ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	9660
gtcaagcatg	acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	9720
cgaggtcggc	gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	9780
gccggcgctt	tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	9840
catgctggcg	gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	9900
tctgatcggg	aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	9960
catccatgcc	ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	10020
cttcctctgc	gaggcgggtt	tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	10080
ctacttcact	gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	10140
cggcggcacc	gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	10200
cgacgaagco	ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	10260
ggcgaaaagg	aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	10320
aggaccgctg	ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	10380
cccctttcc	: accgcgtcac	acgcccgtag	cagecegeta	egggetttt	catgecetge	10440
cctagcgtcc	aagcctcacg	geegegeteg	gcctctctgg	gggeettetg	gegetettee	10500
gatteataga	tcactgacto	getgegeteg	gtcgttcggc	: tgcggcgagc	ggtatcagct	10560

#### WO 2004/063359 PCT/EP2004/000099 163/357

cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	10620
tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	10680
cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	10740
aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	10800
cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	10860
gcgcttttcc	gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	10920
atcctttttc	gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	10980
tatccaacgg	cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	11040
cttcttcact	gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	11100
ctggccggct	accgccggcg	taacagatga	gggcaagegg	atggctgatg	aaaccaagcc	11160
aaccaggaag	ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	11220
tgaggaaaag	geggeggegg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	11280
gggctacaaa	atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	11340
tggcgacctg	ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	accegegeae	11400
ggcgcggttc	ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	11460
cgagcttggc	: aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	11520
gccgctaaaa	cggccggggg	gtgcgcgtga	ttgccaagca	. cgtccccatg	cgctccatca	11580
agaagagcga	t cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	11640
gcctttgcga	a cgctcaccgg	getggttgee	: ctcgccgctg	ggctggcggc	: cgtctatggc	11700
cctgcaaacq	g cgccagaaad	geegtegaag	g ccgtgtgcga	ı _, gacaccgcgg	g cegeeggegt	11760
tgtggataco	c togoggaaaa	a cttggcccto	actgacagat	gaggggcgga	a cgttgacact	11820

# WO 2004/063359 PCT/EP2004/000099 164/357

tgaggggccg	actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	11880
gcgacgtgga	gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	11940
ccacagatga	tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	12000
gcgactactg	acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	12060
tgaggggcgc	acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	12120
aagggtttcc	gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	12180
atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gegegtgace	gcgcacgccg	12240
aaggggggtg	ccccccttc	tcgaaccctc	ceggeceget	aacgcgggcc	tcccatcccc	12300
ccaggggctg	cgcccctcgg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	12420
cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
tgagggcggc	ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	12540
cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	12600
cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
ataccgaggt	atgaaaacga	gaattggaco	tttacagaat	tactctatga	. agcgccatat	12720
ttaaaaagct	accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	12780
attgacaata	ı ctgataagat	aatatatct	: ttatatagaa	gatatcgccg	, tatgtaagga	12840
tttcaggggg	g caaggcatag	gcagcgcgct	: tatcaatata	tctatagaat	gggcaaagca	12900
taaaaactto	g catggactae	ı tgcttgaaac	c ccaggacaat	aaccttatag	g cttgtaaatt	12960
ctatcataat	: tgggtaatga	e ctccaactta	ı ttgatagtgt	tttatgttca	a gataatgece	13020
gatgacttt	g tcatgcagct	: ccaccgatti	tgagaacgad	agegaette	gteceageeg	13080

### WO 2004/063359 PCT/EP2004/000099 165/357

tgccaggtgc	tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	13140
gattacgtgc	agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	13200
tatcaccacg	tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	13260
ttcaccgaat	acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	13320
gegetggege	gatttagccc	cgacatagcc	ccactgttcg	tccatttccg	cgcagacgat	13380
gacgtcactg	cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	ttttaagtga	13440
cgtaaaatcg	tgttgaggcc	aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	13500
ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgäaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	13920
ggaaataata	aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	13980
accgctgcgt	aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	14040
aaaatgaaaa	cctatattta	aaaatgacgg	acagccggta	taaagggacc	acctatgatg	14100
tggaacggga	aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtcc	14160
tgcactttga	acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	14220
tttgctcgga	. agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	14280
agtgcatcag	gctctttcac	tccatcgaca	tatcggattg	tccctatacg	aatagcttag	14340

#### WO 2004/063359 PCT/EP2004/000099 166/357

acageegett	agccgaattg	gattacttac	tgaataacga	tctggccgat	gtggattgcg	14400
aaaactggga	agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	ttttaaaga	14,460
cggaaaagcc	cgaagaggaa	cttgtctttt	cccacggcga	cctgggagac	agcaacatct	14520
ttgtgaaaga	tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggcggaca	14580
agtggtatga	cattgccttc	tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	14640
atgtcgagct	attttttgac	ttactgggga	tcaagcctga	ttgggagaaa	ataaaatatt	14700
atattttact	ggatgaattg	ttttagtacc	tagatgtggc	gcaacgatgc	cggcgacaag	14760
caggagcgca	ccgacttctt	ccgcatcaag	tgttttggct	ctcaggccga	ggcccacggc	14820
aagtatttgg	gcaaggggtc	gctggtattc	gtgcagggca	agattcggaa	taccaagtac	14880
gagaaggacg	gccagacggt	ctacgggacc	gacttcattg	ccgataaggt	ggattatctg	14940
gacaccaagg	caccaggcgg	gtcaaatcag	gaataagggc	acattgcccc	ggcgtgagtc	15000
ggggcaatcc	cgcaaggagg	gtgaatgaat	cggacgtttg	accggaaggc	atacaggcaa	15060
gaactgatcg	acgcggggtt	ttccgccgag	gatgccgaaa	ccatcgcaag	ccgcaccgtc	15120
atgcgtgcgc	cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	. agctacggcc	15180
aagatcgago	gcgacagcgt	gcaactggct	cccctgccc	tgcccgcgcc	ateggeegee	15240
gtggagcgtt	cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	15300
gacacgcgag	gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	15360
caggtcagcg	g aggccaagca	a ggccgcgttg	ctgaaacaca	cgaagcagca	a gatcaaggaa	15420
atgcagcttt	: ccttgttcga	a tattgcgccg	tggccggaca	cgatgcgago	gatgccaaac	15480
gacacggcc	getetgeeet	gttcaccacg	g cgcaacaaga	aaatcccgcg	g cgaggcgctg	15540
caaaacaagg	g tcattttcca	a cgtcaacaag	g gacgtgaaga	tcacctacac	c cggcgtcgag	15600

#### WO 2004/063359 PCT/EP2004/000099 167/357

ctgcgggccg	acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagegeaee	15660
cctatcggcg	agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	15720
atcaatggcc	ggtattacac	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	15780
atgggcttca	cgtccgaccg	cgttgggcac	ctggaatcgg	tgtcgctgct	gcaccgcttc	15840
cgcgtcctgg	accgtggcaa	gaaaacgtcc	cgttgccagg	tcctgatcga	cgaggaaatc	15900
gtcgtgctgt	ttgctggcga	ccactacacg	aaattcatat	gggagaagta	ccgcaagctg	15960
tcgccgacgg	cccgacggat	gttcgactat	ttcagctcgc	accgggagcc	gtacccgctc	16020
aagctggaaa	ccttccgcct	catgtgcgga	teggatteca	cccgcgtgaa	gaagtggcgc	16080
gagcaggtcg	gcgaagcctg	cgaagagttg	cgaggcagcg	gcctggtgga	acacgcctgg	16140
gtcaatgatg	acctggtgca	ttgcaaacgc	tagggccttg	tggggtcagt	teeggetggg	16200
ggttcagcag	ccagcgcttt	actggcattt	caggaacaag	cgggcactgc	tcgacgcact	16260
tgcttcgctc	agtatcgctc	gggacgcacg	gegegeteta	cgaactgccg	ataaacagag	16320
gattaaaatt	gacaattgtg	attaaggctc	agattcgacg	gcttggagcg	gccgacgtgc	16380
aggatttccg	cgagatccga	ttgtcggccc	tgaagaaagc	tccagagatg	ttcgggtccg	16440
tttacgagca	cgaggagaaa	aagcccatgg	aggcgttcgc	tgaacggttg	cgagatgccg	16500
tggcattcgg	cgcctacatc	gacggcgaga	tcattgggct	gtcggtcttc	aaacaggagg	16560
acggccccaa	ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	16620
gaggccgagg	ggtcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	16680
tgatcgtccg	acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	16740
ttaatatttc	gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	16800
tegeggegae	ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	16860

#### WO 2004/063359 PCT/EP2004/000099 168/357

taggtagccc	gatacgattg	atggeggtee	tgggggctat	ttgcggaact	gcgggcgtgg	16920
cgctgttggt	gttgacacca	aacgcagcgc	tagatcctgt	cggcgtcgca	gcgggcctgg	16980
cgggggcggt	ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	17040
ctctgctcac	ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	17100
ctttagtgtt	tgatccgcca	atcccgatgc	ctacaggaac	caatgttctc	ggcctggcgt	17160
ggctcggcct	gateggageg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	17220
tcgaacctac	agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	17280
cggggatgca	tcaggccgac	agteggaact	tegggteece	gacctgtacc	attcggtgag	17340
caatggatag	gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	17400
ttcctcagcg	gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	17460
gcctgtcacg	gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	17520
agatgatatt	tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	17580
cegegagate	: atccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	17640
ggtaacatga	ı gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	17700
gatgggctgo	ctgtatcgag	tggtgatttt	gtgccgagct	geeggteggg	gagctgttgg	17760
ctggctggtg	g gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	17820
acattgcgga	a cgtttttaat	gtactggggt	ggtttttctt	ttcaccagts	g agacgggcaa	17880
cagctgatt	g cccttcacc <u>c</u>	g cetggeeetg	agagagttgo	: agcaagcggt	ccacgctggt	17940
ttgccccag	c aggcgaaaat	cctgtttgat	ggtggttccg	g aaatcggcaa	a aatcccttat	18000
aaatcaaaa	g aatageeega	a gatagggttg	g agtgttgttd	cagtttgga:	a caagagtcca	18060
ctattaaag	a acgtggacto	c caacgtcaaa	a gggcgaaaaa	a ccgtctate	a gggcgatggc	18120

18449

60

ccactacgtg aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta 18180

aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaaggc ggcgaacgtg 18240

gcgagaaagg aagggaagaa agcgaaagga gcgggcgcca ttcaggctgc gcaactgttg 18300

ggaagggcga tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc 18360

tgcaaggcga ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac 18420

<210> 42

<211> 17593

<212> DNA

<213> Artificial

ggccagtgaa ttcgagctcg gtacccggg

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 42

cegggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag

aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120

### WO 2004/063359 PCT/EP2004/000099 170/357

aaaacttggc	cctcactgac	agatgagggg	cggacgttga	cacttgaggg	gccgactcac	180
ccggcgcggc	gttgacagat	gaggggcagg	ctcgatttcg	gccggcgacg	tggagctggc	240
cageetegea	aatcggcgaa	aacgcctgat	tttacgcgag	tttcccacag	atgatgtgga	300
caagcctggg	gataagtgcc	ctgcggtatt	gacacttgag	gggcgcgact	actgacagat	360
gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	gcgcacctat	420
tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	ttccgcccgt	480
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggçctcccat	cccccaggg	getgegeece	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	tteggeegte	ggggcattca	cggacttcat	ggcggggccg	900
gcaattttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga ·	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380

### WO 2004/063359 PCT/EP2004/000099 171/357

agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cageggeeag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagetgtat	gcggagtgca	tcaggctctt	2640

# WO 2004/063359 PCT/EP2004/000099

tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gteegtegge	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggetececet	gecetgeceg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ı ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	ı gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggto	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaago	: agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgo	geegtggeeg	gacacgatgo	: gagegatgee	aaacgacacg	gcccgctctg	3840
ccctgttcac	c cacgcgcaad	: aagaaaatco	cgcgcgaggc	gctgcaaaac	: aaggtcattt	3900

# WO 2004/063359 PCT/EP2004/000099 173/357

tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	ageggeetgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tegetgaaeg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catectegge	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160

# WO 2004/063359 PCT/EP2004/000099 174/357

cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt	5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc eggeagetta gttgeegtte tteegaatag categgtaac atgageaaag	6000
tetgeegeet tacaaegget etecegetga egeegteeeg gaetgatggg etgeetgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tetttteace agtgagaegg geaacagetg attgeeette	6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga	6300
aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc	6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420

### WO 2004/063359 PCT/EP2004/000099 175/357

actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat 6480 6540 cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag 6600 ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga 6660 agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg 6720 cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt 6780 tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg 6840 6900 cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca gctcattaag agccagttca tgggcgttgg catgatggcc gtcatgcatc tgtacttcaa 6960 7020 gtacaccaac gctcttctga tccagtcgat catccgctga aggcgctttc gaatctggtt aagatccacg tcttcgggaa gccagcgact ggtgacctcc agcgtccctt taaggctgcc 7080 aacagettte teagecaggg ceageceaag acegacaagg ceteceteea gaacgeegag 7140 aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag 7200 7260 cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg tagcatagct tcatttggat ttgctttcca ggctgagact ctagcttgga gcatagaggg 7320 tcctttggct ttcaatattc tcaagtatct cgagtttgaa cttattccct gtgaaccttt 7380 tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt 7440 7500 tcgaaataca tccggatgtc gaaggcttgg ggcacctgcg ttggttgaat ttagaacgtg gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc 7560 7620 tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga tctctagtta gctcaccaca aaagtcagac ggcgtaacca aaagtcacac aacacaagct 7680

# WO 2004/063359 PCT/EP2004/000099 176/357

gtaaggattt cggcacggct acggaagacg gagaagccac cttcagtgga ctcgagtacc	7740
atttaattct atttgtgttt gatcgagacc taatacagcc cctacaacga ccatcaaagt	7800
cgtatageta ccagtgagga agtggaetea aategaette ageaacatet eetggataaa	7860
ctttaagcet aaactataca gaataagata ggtggagage ttatacegag eteccaaate	7920
tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga	7980
cctagctgat tetggagtga eccagagggt catgaettga geetaaaate egeegeetee	8040
accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc	8100
tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag	8160
acagetetgg eggetetgag gtgeagtgga tgattattaa teegggaeeg geegeeeete	8220
cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg	8280
agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt	8340
gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg	8400
atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc	8460
gegtaagete eetaattgge eeateeggea tetgtaggge gteeaaatat egtgeetete	8520
ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac	8580
cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc	8640
tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca	8700
aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct	8760
ctttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt	8820
tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc	8880
tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctaccccgc	8940

# WO 2004/063359 PCT/EP2004/000099 177/357

ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt	9060
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gettgacatt ggggaattca gegagageet gacetattge atetecegee gtgeacaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgattte atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggategeeg eggeteeggg egtatatget eegeattggt ettgaceaae tetateagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200

#### WO 2004/063359 PCT/EP2004/000099 178/357

cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tetecaeteg	acctgcaggc	atgcaagctt	ttttcgagtt	10800
tttttttt	ttctttgtga	aggatttatt	gttattggta	tccattttt	attggaagac	10860
aagataagtt	aatattgatt	ttgcttaaag	attaaaagga	aatcagaaaa	cgacaataaa	10920
aaatgtaacg	gacaaactat	ggtgtcgatt	ataagtctaa	atccttaaaa	aatgacaacg	10980
agttgctttc	ctctgaaaac	aattcttttg	tctttgcaag	aaaggtttct	tttttgtttg	11040
cttgcattac	ttaaacatca	aatcaaatga	aaggaataaa	gcagatttga	gggcgaataa	11100
ggattttctg	gtcaacaaga	tgtgagtgac	acctaaggaa	ctaaatgcca	ttcatttgtt	11160
ttaaaacgac	atcaaagatt	gatgatcaac	aggattgaga	gagagaaaaa	gaactcgtgt	11220
catttatttc	tgttgactga	aattttatat	ttagaaaaaa	tgtcaaatct	atagctttag	11280
ctatattaca	taacatttga	aataataata	ataaaaaaag	acacattaga	gacacttttc	11340
aaactctaaa	taactgtcta	taaacacaaa	gaaaacaaag	acctctataa	caacttatta	11400
gatttttctc	gtacttttgt	ctaaagatga	tgtattcttg	ttatcccaca	cttctttcat	11460

### WO 2004/063359 PCT/EP2004/000099 179/357

ttgttcttga	tgctactaaa	tatacaaaat	ttcttttttg	caagagatat	tattccaaaa	11520
attttcaaaa	agaaattttt	ttcacaatag	cagttgatcg	tgtaacccaa	agaggttett	11580
tgttattttg	cacttccgct	ttgcggtgat	gcatattcaa	agtaatatat	ggaataaaca	11640
acgtgtttaa	gcatgaaaga	aaggaaacaa	aggccgcttt	gaacaaatgc	ataatatttc	11700
agacaaaaat	gatctaaagc	aagcagtaaa	tcaaacaaga	aacattgctg	attcgcgtta	11760
gaaaacgata	aaagtctaat	aagccactaa	gtatacttca	atgaactttt	tgtatgctta	11820
tggtccaatc	agaccaataa	tttgtgacca	ttcctgaggt	ggctttggtg	atgcggaaac	11880
agaaaaaaat	tttctcacca	atcgatttaa	aaaacaattt	ctgctttgaa	ccaaaacttt	11940
ttttttctct	ttaatcatta	actttatcaa	gtatgtacct	accctcaaag	tcctcactca	12000
agcacaatta	tgctaacatt	gttccacctt	ctctttagaa	atgttgtgga	tttggaatgc	12060
cctgatcgtt	ttcgttaccg	tgattggcat	ggaagtgatt	gctgcactgg	cacacaaata	12120
catcatgcac	ggctggggtt	ggggatggca	tctttcacat	catgaaccgc	gtaaaggtgc	12180
gtttgaagtt	aacgatettt	atgccgtggt	ttttgctgca	ttatcgatcc	tgctgattta	12240
tctgggcagt	acaggaatgt	ggccgctcca	gtggattggc	gcaggtatga	cggcgtatgg	12300
attactctat	tttatggtgc	acgacgggct	ggtgcatcaa	cgttggccat	tccgctatat	12360
tccacgcaaç	g ggctacctca	aacggttgta	tatggcgcac	cgtatgcatc	acgccgtcag	12420
gggcaaagaa	a ggttgtgttt	cttttggctt	cctctatgcg	cegeecetgt	caaaacttca	12480
ggcgacgcto	c cgggaaagac	atggcgctag	agcgggcgct	gccagagatg	cgcagggcgg	12540
ggaggatga	g cccgcatccg	ggaagtaagg	geetgaeeag	aggcggccag	cagcagcgtt	12600
aatttttcg	g gcgtggtcgt	tgactgccgc	tgatcccaaa	gcttggcgta	atcatggtca	12660
tagctgttt	c ctgtgtgaaa	ttgttatccg	ctcacaatto	: cacacaacat	acgagccgga	12720

agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 12780 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 12840 caacgcgcgg ggagaggcgg tttgcgtatt gggccaaaga caaaagggcg acattcaacc 12900 gattgaggga gggaaggtaa atattgacgg aaattattca ttaaaggtga attatcaccg 12960 tcaccgactt gagccatttg ggaattagag ccagcaaaat caccagtagc accattacca 13020 ttagcaaggc cggaaacgtc accaatgaaa ccatcgatag cagcaccgta atcagtagcg 13080 acagaatcaa gtttgccttt agcgtcagac tgtagcgcgt tttcatcggc attttcggtc 13140 atagccccct tattagcgtt tgccatcttt tcataatcaa aatcaccgga accagagcca 13200 ccaccggaac cgcctccctc agagccgcca ccctcagaac cgccaccctc agagccacca 13260 ccctcagagc cgccaccaga accaccacca gagccgccgc cagcattgac aggaggcccg 13320 atctagtaac atagatgaca ccgcgcgcga taatttatcc tagtttgcgc gctatatttt 13380 gttttctatc gcgtattaaa tgtataattg cgggactcta atcataaaaa cccatctcat 13440 aaataacgtc atgcattaca tgttaattat tacatgctta acgtaattca acagaaatta 13500 tatgataatc atcgcaagac cggcaacagg attcaatctt aagaaacttt attgccaaat 13560 gtttgaacga tcggggatca tccgggtctg tggcgggaac tccacgaaaa tatccgaacg 13620 cagcaagata tegeggtgea teteggtett geetgggeag tegeegeega egeegttgat 13680 gtggacgccg ggcccgatca tattgtcgct caggatcgtg gcgttgtgct tgtcggccgt 13740 tgctgtcgta atgatatcgg caccttcgac cgcctgttcc gcagagatcc cgtgggcgaa 13800 gaactecage atgagatece egegetggag gateatecag eeggegteee ggaaaaegat 13860 tccgaagccc aacctttcat agaaggcggc ggtggaatcg aaatctcgtg atggcaggtt 13920 gggcgtcgct tggtcggtca tttcgaaccc cagagtcccg ctcagaagaa ctcgtcaaga 13980

# WO 2004/063359 PCT/EP2004/000099 181/357

aggcgataga	aggcgatgcg	ctgcgaatcg	ggagcggcga	taccgtaaag	cacgaggaag	14040
cggtcagccc	attcgccgcc	aagctcttca	gcaatatcac	gggtagccaa	cgctatgtcc	14100
tgatageggt	ccgccacacc	cageeggeea	cagtcgatga	atccagaaaa	gcggccattt	14160
tccaccatga	tattcggcaa	gcaggcatcg	ccatgggtca	cgacgagatc	atcgccgtcg	14220
ggcatgcgcg	ccttgagcct	ggcgaacagt	teggetggeg	cgagcccctg	atgctcttcg	14280
tccagatcat	cctgatcgac	aagaccggct	tccatccgag	tacgtgctcg	ctcgatgcga	14340
tgtttcgctt	ggtggtcgaa	tgggcaggta	gccggatcaa	gcgtatgcag	ccgccgcatt	14400
gcatcagcca	tgatggatac	tttctcggca	ggagcaaggt	gagatgacag	gagatcctgc	14460
cccggcactt	cgcccaatag	cagecagtee	cttcccgctt	cagtgacaac	gtcgagcaca	14520
gctgcgcaag	gaacgcccgt	cgtggccagc	cacgatagcc	gegetgeete	gtcctgcagt	14580
tcattcaggg	caccggacag	gtcggtcttg	acaaaaagaa	ccgggcgccc	ctgcgctgac	14640
agccggaaca	cggcggcatc	agagcagccg	attgtctgtt	gtgcccagtc	atagccgaat	14700
agcctctcca	cccaagcggc	cggagaacct	gcgtgcaatc	catcttgttc	aatcatgcga	14760
aacgatccag	atccggtgca	gattatttgg	attgagagtg	aatatgagac	tctaattgga	14820
taccgagggg	aatttatgga	acgtcagtgg	agcatttttg	acaagaaata	tttgctagct	14880
gatagtgacc	ttaggcgact	tttgaacgcg	caataatggt	ttctgacgta	tgtgcttagc	14940
tcattaaact	ccagaaaccc	gcggctgagt	ggctccttca	acgttgcggt	tctgtcagtt	15000
ccaaacgtaa	aacggcttgt	cccgcgtcat	cggcgggggt	cataacgtga	ctcccttaat	15060
tctccgctca	tgatcagatt	gtcgtttccc	gccttcagtt	taaactatca	gtgtttgaca	15120
ggatatattg	gcgggtaaac	ctaagagaaa	agagcgttta	ttagaataat	cggatattta	15180
aaagggcgtg	aaaaggttta	teegttegte	catttgtatg	tgcatgccaa	ccacagggtt	15240

# WO 2004/063359 PCT/EP2004/000099 182/357

ccccagatct	ggegeeggee	agcgagacga	gcaagattgg	ccgccgcccg	aaacgatccg	15300
acagegegee	cagcacaggt	gcgcaggcaa	attgcaccaa	cgcatacagc	gccagcagaa	15360
tgccatagtg	ggcggtgacg	tcgttcgagt	gaaccagatc	gcgcaggagg	cccggcagca	15420
ccggcataat	caggccgatg	ccgacagcgt	cgagcgcgac	agtgctcaga	attacgatca	15480
ggggtatgtt	gggtttcacg	tetggeetee	ggaccagcct	ccgctggtcc	gattgaacgc	15540
gcggattctt	tatcactgat	aagttggtgg	acatattatg	tttatcagtg	ataaagtgtc	15600
aagcatgaca	aagttgcagc	cgaatacagt	gatccgtgcc	gccctggacc	tgttgaacga	15660
ggtcggcgta	gacggtctga	cgacacgcaa	actggcggaa	cggttggggg	ttcagcagcc	15720
ggcgctttac	tggcacttca	ggaacaagcg	ggcgctgctc	gacgcactgg	ccgaagccat	15780
gctggcggag	aatcatacgc	attcggtgcc	gagagccgac	gacgactggc	gctcatttct	15840
gatcgggaat	gcccgcagct	tcaggcaggc	gctgctcgcc	taccgcgatg	gcgcgcgcat	15900
ccatgccggc	acgcgaccgg	gcgcaccgca	gatggaaacg	gccgacgcgc	agcttcgctt	15960
cctctgcgag	gcgggtttt	cggccgggga	cgccgtcaat	gcgctgatga	caatcagcta	16020
cttcactgtt	ggggccgtgc	ttgaggagca	ggccggcgac	agcgatgccg	gegagegegg	16080
cggcaccgtt	gaacaggctc	cgctctcgcc	gctgttgcgg	gccgcgatag	acgccttcga	16140
cgaagccggt	ccggacgcag	cgttcgagca	gggactcgcg	gtgattgtcg	atggattggc	16200
gaaaaggagg	ctcgttgtca	ggaacgttga	aggaccgaga	aagggtgacg	attgatcagg	16260
accgctgccg	gagcgcaacc	cactcactac	agcagagcca	tgtagacaac	atcccctccc	16320
cctttccacc	gcgtcagacg	cccgtagcag	cccgctacgg	gctttttcat	gccctgccct	16380
agcgtccaag	cctcacggcc	gcgctcggcc	tetetggegg	ccttctggcg	ctcttccgct	16440
tectegetea	ctgactcgct	gcgctcggtc	gttcggctgc	ggcgagcggt	atcagctcac	16500

# WO 2004/063359 PCT/EP2004/000099 183/357

tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	16560
gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	16620
aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac _.	16680
ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	getecetegt	gcgctctcct	16740
gttccgaccc	tgccgcttac	cggatacctg	teegeettte	tecetteggg	aagcgtggcg	16800
cttttccgct	gcataaccct	gcttcggggt	cattatagcg	attttttcgg	tatatccatc	16860
ctttttcgca	cgatatacag	gattttgcca	aagggttcgt	gtagactttc	cttggtgtat	16920
ccaacggcgt	cageegggea	ggataggtga	agtaggccca	cccgcgagcg	ggtgttcctt	16980
cttcactgtc	ccttattcgc	acctggcggt	gctcaacggg	aatcctgctc	tgcgaggctg	17040
gccggctacc	gccggcgtaa	cagatgaggg	caagcggatg	gctgatgaaa	ccaagccaac	17100
caggaagggc	agcccaccta	tcaaggtgta	ctgccttcca	gacgaacgaa	gagcgattga	17160
ggaaaaggcg	geggeggeeg	gcatgagcct	gtcggcctac	ctgctggccg	tcggccaggg	17220
ctacaaaatc	acgggcgtcg	tggactatga	gcacgtccgc	gagctggccc	gcatcaatgg	17280
cgacctgggc	cgcctgggcg	gcctgctgaa	actctggctc	accgacgacc	cgcgcacggc	17340
gcggttcggt	gatgccacga	tectegecet	gctggcgaag	atcgaagaga	agcaggacga	17400
gcttggcaag	gtcatgatgg	gegtggteeg	cccgagggca	gagccatgac	ttttttagcc	17460
gctaaaacgg	ccggggggtg	cgcgtgattg	ccaagcacgt	ccccatgcgc	tccatcaaga	17520
agagcgactt	cgcggagctg	gtgaagtaca	tcaccgacga	gcaaggcaag	accgagcgcc	17580
tttgcgacgc	tca					17593

<210> 43

<211> 16954

184/357 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 43 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aacgeetgat tttacgegag tttcccacag atgatgtgga 300 360 caagectggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat gaggggegeg atcettgaca ettgagggge agagtgetga eagatgaggg gegeacetat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480

ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg

tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc

540

600

# WO 2004/063359 PCT/EP2004/000099 185/357

cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	tteggeegte	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tecatateae	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gecagegetg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	teegegeaga	cgatgacgto	: actgcccggc	1740
tgtatgcgcg	g aggttaccga	ctgcggcctg	g agtttttaa	a gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	getgttgeed	ggcatccaac	gccattcato	gccatatcaa	1860

#### WO 2004/063359 PCT/EP2004/000099 186/357

tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagctto	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	ı tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	g agcaatctgo	: tcatgagtga	ggccgatggc	gtcctttgct	. cggaagagta	2580
tgaagatgaa	a caaagccctg	_r aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccate	c gacatatogo	attgtcccta	tacgaatagc	ttagacagco	gettageega	2700
attggatta	c ttactgaata	a acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccatt	t aaagatccg	c gcgagctgta	tgattttta	aagacggaaa	a agcccgaaga	2820
ggaacttgt	c ttttcccac	g gcgacctggg	g agacagcaac	: atctttgtg:	a aagatggcaa	2880
agtaagtgg	c tttattgat	c ttgggagaag	g cggcagggcg	gacaagtgg	t atgacattgc	2940
cttctgcgt	c cggtcgatc	a gggaggatal	cggggaagaa	a cagtatgtc	g agctattttt	3000
tgacttact	g gggatcaag	c ctgattggg	a gaaaataaa	a tattatatt	t tactggatga	3060
attgtttta	ıg tacctagat	g tggcgcaac	g atgeeggega	a caagcagga	g cgcaccgact	3120

#### WO 2004/063359 PCT/EP2004/000099 187/357

tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagegegaca	3540
gcgtgcaact	ggctccccct	gecetgeeeg	cgccatcggc	cgccgtggag	cgttcgcgtc	3.600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gecegetetg	3840
ccctgttcac	: cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	ı caaggacgtg	· aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctato	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggo	cgaggaatgo	: ctgtcgcgcc	tacaggcgac	ggcgatgggc	: ttcacgtccg	4140
accgcgttgg	g gcacctggaa	tcggtgtcgc	: tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaa	c gtcccgttg0	c caggtcctga	tcgacgagga	aatcgtcgtg	g ctgtttgctg	4260
gcgaccact	a cacgaaatto	e atatgggaga	agtaccgcaa	ı getgtegeeç	g acggcccgac	4320
ggatgttcg	a ctatttcago	c tegeaceggg	g agcegtaced	gctcaagcto	g gaaaccttcc	4380

# WO 2004/063359 PCT/EP2004/000099 188/357

gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcgg	cgaag 4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatga	cctgg 4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagc	cagcg 4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctca	gtatc 4620
gctegggaeg caeggegege tetaegaaet geegataaae agaggattaa aattg	acaat 4680
tgtgattaag geteagatte gaeggettgg ageggeegae gtgeaggatt teege	gagat 4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcac	gagga 4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggc	gccta 4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaag	gacgc 4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggg	gtege 4980
cggtatgctg ctgcgggggt tgccggcggg tttattgctc gtgatgatcg tccga	cagat 5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcg	ctatt 5100
ctggagettg ttgtttattt eggtetaeeg cetgeeggge ggggtegegg egaeg	gtagg 5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccg	atacg 5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtg	ttgac 5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtt	tccat 5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacc	tttac 5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgttt	gatec 5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctg	gatogg 5520
agegggttta acetaettee tttggtteeg ggggateteg egaetegaac etaea	agttgt 5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcat	cagge 5640

# WO 2004/063359 PCT/EP2004/000099 189/357

(	cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
1	tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagetteets	agcggcttta	5760
†	tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
,	cgagaaatga	ataagaaggc	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
,	caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	cecteegega	gatcatccgt	5940
!	gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
	tetgeegeet	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
,	cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
	tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
	taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
	accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
	aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
	ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
	actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
	cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
	ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
	agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
	cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
	tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	. cgacggccag	tgaattcgag	6780
	ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cetgeteege	: ttggaagcgg	6840
	cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggco	agttccgcca	6900

# WO 2004/063359 PCT/EP2004/000099 190/357

gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatecaeg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
teetttgget	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	: aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	a gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	: cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattci	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	a ccagtgagga	agtggactca	aatcgactto	: agcaacatct	cctggataaa	7860
ctttaagcc	t aaactataca	ı gaataagat	ı ggtggagagc	: țtataccgag	g ctcccaaatc	7920
tgtccagat	c atggttgaco	ggtgcctgga	a tcttcctata	gaatcatcct	tattcgttga	7980
cctagctga	t tctggagtga	a cccagagggt	catgacttga	a gootaaaato	c cgccgcctcc	8040
accatttgt	a gaaaaatgtç	g acgaactcgt	t gagctctgta	a cagtgaccg	g tgactctttc	8100
tggcatgcg	g agagacggad	c ggacgcaga	g agaagggctq	g agtaataag	c cactggccag	8160

#### WO 2004/063359 PCT/EP2004/000099 191/357

acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	ateggeactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	. atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420

ccatgtgtat c	actggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
tctcgatgag (	tgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttegge t	ccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagegaggeg a	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct 1	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg (	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac (	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatago	ttagcagago	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tegteaagag	g acctacgaga	ctgaggaato	e egetettgge	10380
tccacgcgac	tatatatttg	tctctaattg	g tactttgaca	tgeteetett	ctttactctg	10440
atagettgae	tatgaaaatt	: ccgtcaccag	g cncctgggtt	: cgcaaagata	a attgcatgtt	10500
tcttccttga	actctcaago	ctacaggaca	a cacattcato	gtaggtataa	a acctcgaaat	10560
canttcctac	taagatggta	a tacaatagta	a accatgcat	g gttgcctagi	t gaatgctccg	10620
taacacccaa	tacgccggc	gaaactttt	t tacaactct	c ctatgagtc	g tttacccaga	10680

# WO 2004/063359 PCT/EP2004/000099 193/357

atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tetecaeteg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattett	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaagt	tttttttat	10980
acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttca	atttctttgt	ctttacattt	tctttgtcct	ttatctttcc	tcatttagtc	11100
tttgggagaa	ttaggaaaag	ggagcggaaa	ggtaagaaat	gcttgcgtat	tttactaatt	11160
cggcaaacat	ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	gacagtatct	11220
ttgattacac	tctaaatctc	gatgacccga	ccaaaaagag	cgaacaaaga	aataatcttg	11280
tgcattcgaa	tatgatggaa	gattttttcc	cccttattct	aaatgttgac	atagcgtgta	11340
tgttatataa	acaaaaagaa	attgtacaaa	ctttctttc	ttctctttt	attttatctc	11400
tatgttgtgg	atttggaatg	ccctgatcgt	tttcgttacc	gtgattggca	tggaagtgat	11460
tgctgcactg	gcacacaaat	acatcatgca	cggctggggt	tggggatggc	atctttcaca	11520
tcatgaaccg	cgtaaaggtg	cgtttgaagt	taacgatctt	tatgccgtgg	tttttgctgc	11580
attatcgatc	ctgctgattt	atctgggcag	tacaggaatg	tggccgctcc	agtggattgg	11640
cgcaggtatg	acggcgtatg	gattactcta	ttttatggtg	cacgacgggc	tggtgcatca	11700
acgttggcca	ttccgctata	ttccacgcaa	gggctacctc	aaacggttgt	atatggcgca	11760
ccgtatgcat	cacgccgtca	ggggcaaaga	aggttgtgtt	tcttttggct	tectetatge	11820
geegeeeetg	tcaaaacttc	aggcgacgct	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat	gcgcagggcg	gggaggatga	gcccgcatcc	gggaagtaag	ggcctgacca	11940

### WO 2004/063359 PCT/EP2004/000099 194/357

gaggcggcca	gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	12060
ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	12120
taactcacat	taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	12180
cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggccaaag	12240
acaaaagggc	gacattcaac	cgattgaggg	agggaaggta	aatattgacg	gaaattattc	12300
attaaaggtg	aattatcacc	gtcaccgact	tgagccattt	gggaattaga	gccagcaaaa	12360
tcaccagtag	caccattacc	attagcaagg	ccggaaacgt	caccaatgaa	accatcgata	12420
gcagcaccgt	aatcagtagc	gacagaatca	agtttgcctt	tagcgtcaga	ctgtagcgcg	12480
ttttcatcgg	cattttcggt	catagecee	ttattagcgt	ttgccatctt	ttcataatca	12540
aaatcaccgg	aaccagagcc	accaccggaa	ccgcctccct	cagagccgcc	acceteagaa	12600
ccgccaccct	cagagccacc	accctcagag	ccgccaccag	aaccaccacc	agagccgccg	12660
ccagcattga	caggaggccc	gatctagtaa	catagatgac	accgcgcgcg	ataatttatc	12720
ctagtttgcg	cgctatattt	tgttttctat	cgcgtattaa	atgtataatt	gegggaetet	12780
aatcataaaa	acccatctca	taaataacgt	catgcattac	atgttaatta	ttacatgctt	12840
aacgtaatto	: aacagaaatt	atatgataat	: catcgcaaga	. ccggcaacag	gattcaatct	12900
taagaaactt	: tattgccaaa	. tgtttgaacg	g atcggggato	atccgggtct	gtggcgggaa	12960
ctccacgaaa	atateegaac	gcagcaagat	atcgcggtgc	atctcggtct	tgcctgggca	13020
gtegeegeeg	g acgccgttga	tgtggacgco	gggcccgatc	: atattgtcgc	tcaggatcgt	13080
ggcgttgtg	ttgtcggccg	g ttgctgtcgt	: aatgatatcg	gcaccttcga	a ccgcctgttc	13140
cgcagagato	c ccgtgggcga	agaactccag	g catgagatco	cegegetgga	a ggatcatcca	13200

### WO 2004/063359 PCT/EP2004/000099 195/357

gccggcgtcc	cggaaaacga	ttccgaagcc	caacctttca	tagaaggcgg	cggtggaatc	13260
gaaatctcgt	gatggcaggt	tgggcgtcgc	ttggtcggtc	atttcgaacc	ccagagtccc	13320
gctcagaaga	actcgtcaag	aaggcgatag	aaggcgatgc	gctgcgaatc	gggagcggcg	13380
ataccgtaaa	gcacgaggaa	gcggtcagcc	cattegeege	caagctcttc	agcaatatca	13440
cgggtagcca	acgctatgtc	ctgatagcgg	teegecacac	ccagccggcc	acagtcgatg	13500
aatccagaaa	agcggccatt	ttccaccatg	atattcggca	agcaggcatc	gccatgggtc	13560
acgacgagat	catcgccgtc	gggcatgcgc	gccttgagcc	tggcgaacag	ttcggctggc	13620
gcgagcccct	gatgctcttc	gtccagatca	tcctgatcga	caagaccggc	ttccatccga	13680
gtacgtgctc	gctcgatgcg	atgtttcgct	tggtggtcga	atgggcaggt	agccggatca	13740
agcgtatgca	gccgccgcat	tgcatcagcc	atgatggata	ctttctcggc	aggagcaagg	13800
tgagatgaca	ggagatcctg	ccccggcact	tcgcccaata	gcagccagtc	ccttcccgct	13860
tcagtgacaa	cgtcgagcac	agctgcgcaa	ggaacgcccg	tcgtggccag	ccacgatagc	13920
cgcgctgcct	cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggtctt	gacaaaaaga	13980
accgggcgcc	: cctgcgctga	cagccggaac	acggcggcat	cagagcagcc	gattgtctgt	14040
tgtgcccagt	: catageegaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	14100
ccatcttgtt	: caatcatgcg	aaacgatcca	gatccggtgc	agattatttg	gattgagagt	14160
gaatatgaga	a ctctaattgg	ataccgaggg	gaatttatgg	aacgtcagtg	gagcattttt	14220
gacaagaaal	atttgctago	: tgatagtgac	cttaggcgac	: ttttgaacgc	: gcaataatgg	14280
tttctgacg	t atgtgcttag	ctcattaaac	tccagaaacc	: cgcggctgag	g tggctccttc	14340
aacgttgcg	g ttctgtcagt	tccaaacgta	aaacggcttg	g teeegegtea	tcggcggggg	14400
tcataacgt	g actcccttaa	ttctccgctc	e atgatcagat	tgtcgtttcc	c cgccttcagt	14460

# WO 2004/063359 PCT/EP2004/000099 196/357

ttaaactatc,	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	aagagcgttt	14520
attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccgttcgt	ccatttgtat	14580
gtgcatgcca	accacagggt	tccccagatc	tggcgccggc	cagcgagacg	agcaagattg	14640
geegeegeee	gaaacgatcc	gacagcgcgc	ccagcacagg	tgcgcaggca	aattgcacca	14700
acgcatacag	cgccagcaga	atgccatagt	gggcggtgac	gtcgttcgag	tgaaccagat	14760
cgcgcaggag	gcccggcagc	accggcataa	tcaggccgat	gccgacagcg	tcgagcgcga	14820
cagtgctcag	aattacgatc	aggggtatgt	tgggtttcac	gtetggeete	cggaccagcc	14880
teegetggte	cgattgaacg	cgcggattct	ttatcactga	taagttggtg	gacatattat	14940
gtttatcagt	gataaagtgt	caagcatgac	aaagttgcag	ccgaatacag	tgatccgtgc	15000
cgccctggac	ctgttgaacg	aggtcggcgt	agacggtctg	acgacacgca	aactggcgga	15060
acggttgggg	gttcagcagc	cggcgcttta	ctggcacttc	aggaacaagc	gggcgctgct	15120
cgacgcactg	gccgaagcca	tgctggcgga	gaatcatacg	catteggtge	cgagagccga	15180
cgacgactgg	cgctcatttc	tgatcgggaa	tgcccgcagc	ttcaggcagg	egetgetege	15240
ctaccgcgat	ggegegegea	tccatgccgg	cacgcgaccg	ggegeaeege	agatggaaac	15300
ggccgacgcg	cagcttcgct	tectetgega	ggcgggtttt	tcggccgggg	acgccgtcaa	15360
tgcgctgatg	acaatcagct	acttcactgt	tggggccgtg	cttgaggagc	aggccggcga	15420
cagcgatgcc	ggcgagcgcg	geggeacegt	tgaacaggct	cegetetege	cgctgttgcg	15480
ggccgcgata	gacgccttcg	acgaagccgg	teeggaegea	gcgttcgagc	agggactcgc	15540
ggtgattgtc	gatggattgg	cgaaaaggag	gctcgttgtc	aggaacgttg	aaggaccgag	15600
aaagggtgac	gattgatcag	gaccgctgcc	ggagcgcaac	ccactcacta	cagcagagcc	15660
atgtagacaa	catecected	ceetttccae	cgcgtcagac	gcccgtagca	gcccgctacg	15720

## WO 2004/063359 PCT/EP2004/000099 197/357

ggctttttca	tgccctgccc	tagcgtccaa	geeteaegge	cgcgctcggc	ctctctggcg	15780
gccttctggc	gctcttccgc	ttcctcgctc	actgactcgc	tgegeteggt	cgttcggctg	15840
cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	15900
aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	15960
gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	16020
tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	16080
agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	16140
ctcccttcgg	gaagcgtggc	gcttttccgc	tgcataaccc	tgcttcgggg	tcattatagc	16200
gattttttcg	gtatatccat	cctttttcgc	acgatataca	ggattttgcc	aaagggttcg	16260
tgtagacttt	ccttggtgta	tccaacggcg	tcagccgggc	aggataggtg	aagtaggccc	16320
acccgcgagc	gggtgttcct	tcttcactgt	cccttattcg	cacctggcgg	tgctcaacgg	16380
gaatcctgct	ctgcgaggct	ggccggctac	cgccggcgta	acagatgagg	gcaagcggat	16440 .
ggctgatgaa	accaagccaa	ccaggaaggg	cagcccacct	atcaaggtgt	actgccttcc	16500
agacgaacga	agagcgattg	aggaaaaggc	ggeggeggee	ggcatgagcc	tgtcggccta	16560
cctgctggcc	gtcggccagg	gctacaaaat	cacgggcgtc	gtggactatg	agcacgtccg	16620
cgagctggcc	cgcatcaatg	gcgacctggg	ccgcctgggc	ggcctgctga	aactctggct	16680
caccgacgac	ccgcgcacgg	cgcggttcgg	tgatgccacg	atcctcgccc	tgctggcgaa	16740
gatcgaagag	aagcaggacg	agcttggcaa	ggtcatgatg	ggcgtggtcc	gcccgagggc	16800
agagccatga	cttttttagc	cgctaaaacg	gccggggggt	gcgcgtgatt	gccaagcacg	16860
tecceatgeg	ctccatcaag	aagagcgact	tcgcggagct	ggtgaagtac	atcaccgacg	16920
agcaaggcaa	gaccgagcgc	ctttgcgacg	ctca			16954

<210> 44 <211> 16954 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 44 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 240 ccggcgcgc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat

tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt

480

•						
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	ı tcttttatat	agaagatato	: gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagco	g cgcttatcaa	. tatatctata	a gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	g aaacccagga	caataacctt	: atagcttgta	a aattctatca	a taattgggta	1320
atgactccaa	a cttattgata	gtgttttatg	y ttcagataat	gecegatgad	tttgtcatgc	1380
agctccacc	g attttgagaa	ı cgacagcga	c ttccgtccc	a gccgtgccag	g gtgctgcctc	1440
agattcagg	t tatgccgcto	aattcgctg	c gtatatcgc	t tgctgatta	gtgcagcttt	1500
cccttcagg	c gggattcata	a cagcggcca	g ccatccgtca	a tccatatca	c cacgtcaaag	1560
ggtgacagc	a ggctcataa	g acgccccag	c gtcgccata	g tgcgttcac	c gaatacgtgc	1620
gcaacaacc	g tetteegga	g actgtcata	c gcgtaaaac	a gccagcgct	g gcgcgattta	1680
gccccgaca	t agccccact	g ttcgtccat	t teegegeag	a cgatgacgt	c actgcccggc	1740

## WO 2004/063359 PCT/EP2004/000099 200/357

tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagateege	gcgagctgta	. tgattttta	aagacggaaa	agcccgaaga	2820
ggaacttgto	ttttcccacg	gegaeetggg	agacagcaac	: atctttgtga	aagatggcaa	2880
agtaagtggo	: tttattgato	: ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	ı gggaggatat	: cggggaagaa	cagtatgtcg	agctattttt	3000

## WO 2004/063359 PCT/EP2004/000099 201/357

tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tetggacace	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggctccccct	gecetgeeeg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	r ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggo	: cgaggaatgo	: ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	g gcacctggaa	teggtgtege	: tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaa	gtcccgttgc	caggtcctga	a tegaegagga	aatcgtcgtg	ctgtttgctg	4260

gegaccacta cacgaaatte atatgggaga agtacegeaa getgtegeeg aeggeeegae 4320 4380 ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag 4440 4500 cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg 4560 ctttactggc atttcaggaa caagegggca ctgctcgacg cacttgcttc gctcagtatc 4620 4680 gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat 4740 4800 ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta 4860 4920 categaegge gagateattg ggetgteggt etteaaacag gaggaeggee eeaaggaege 4980 tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat 5040 tecaaeggga atetggtgga tgegeatett cateetegge geaettaata tttegetatt 5160 ctggagettg ttgtttattt eggtetaceg cetgeeggge ggggtegegg egaeggtagg cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac 5280 accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat 5340 ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac 5400 cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc 5460 5520 gccaatcccg atgcctacag gaaccaatgt teteggeetg gcgtggeteg gcctgatcgg

# WO 2004/063359 PCT/EP2004/000099 203/357

agcgggttta	acctacttcc	tttggttccg	ggggateteg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tetgeegeet	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	65 <b>4</b> 0
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	. cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780

atematacee	ggggatettt	coacactoaa	atacqtcqag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	. ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	ı caatgcaagt	caaacgttgc	7560
tagcagttco	aggtggaatg	ttatgatgag	g cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	a gctcaccaca	aaagtcagad	: ggcgtaacca	a aaagtcacac	aacacaagct	7680
gtaaggatti	cggcacggct	acggaagacg	g gagaagccad	c cttcagtgga	a ctcgagtacc	7740
atttaattc	t atttgtgttt	gategagae	taatacagc	c cctacaacga	a ccatcaaagt	7800
cgtatagcta	a ccagtgagga	a agtggactc	a aatcgactto	c agcaacate	t cctggataaa	7860
ctttaagcc	t aaactataca	a gaataagat	a ggtggagag	c ttataccga	g ctcccaaatc	7920
tgtccagat	c atggttgac	c ggtgcctgg	a tcttcctat	a gaatcatcc	t tattcgttga	7980
cctagctga	t tctggagtg	a cccagaggg	t catgacttg	a gcctaaaat	c cgccgcctcc	8040

# WO 2004/063359 PCT/EP2004/000099 205/357

accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	teegggaeeg	geegeeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tegttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
ctttcttt	ctctttcttt	teccatette	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tectteccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaaçtcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	ateggeaett	tgcatcggcc	gegetecega	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300

					•	
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeacge	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagegaggeg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960.
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	, atacagetea	tctgcaatgc	attaatgcat	: tgactgcaac	: ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagago	: tattttcatt	ttcgggagac	10320
gagatcaago	agatcaacgg	, tegtcaagag	acctacgaga	a ctgaggaato	c cgctcttggc	10380
tccacgcgad	c tatatatttg	g tetetaattg	tactttgace	a tgctcctctt	: ctttactctg	10440
atagcttgad	tatgaaaatt	ccgtcaccag	cncctgggtt	t cgcaaagata	a attgcatgtt	10500
tetteettga	a actctcaago	c ctacaggaca	cacattcato	c gtaggtata:	a acctcgaaat	10560

# WO 2004/063359 PCT/EP2004/000099 207/357

canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaactttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	agagataaaa	10800
taaaaagaga	agaaaagaaa	gtttgtacaa	tttctttttg	tttatataac	atacacgcta	10860
tgtcaacatt	tagaataagg	gggaaaaaat	cttccatcat	attcgaatgc	acaagattat	10920
ttctttgttc	gctctttttg	gtcgggtcat	cgagatttag	agtgtaatca	aagatactgt	10980
catctcgaga	gcgttgcaca	ggctgctgtt	tgccaaattg	gatgtttgcc	gaattagtaa	11040
aatacgcaag	catttcttac	ctttccgctc	ccttttccta	attctcccaa	agactaaatg	11100
aggaaagata	aaggacaaag	aaaatgtaaa	gacaaagaaa	ttgaaaacga	tataaacttg	11160
cagcacgtaa	gaccaaagca	aattggtaac	tattcttgtg	tacaaacatg	tataaaaaaa	11220
aactttttt	tgctcctgga	ggacaaaatt	tcaaactcct	tgaagaagat	tgcttgtata	11280
tctatcatat	gcatatatca	tatcgatgga	aaaagaaagt	caggcatgta	tttataaaaa	11340
gaagaatgtg	ccatgcttcc	gaatttcttt	tcactttctt	ttccttatct	attttaatct	11400
catgttgtgg	atttggaatg	ccctgatcgt	tttcgttacc	gtgattggca	tggaagtgat	11460
tgctgcactg	gcacacaaat	acatcatgca	cggctggggt	tggggatggc	atctttcaca	11520
tcatgaaccg	cgtaaaggtg	cgtttgaagt	taacgatctt	tatgccgtgg	tttttgctgc	11580
attatcgatc	ctgctgattt	atctgggcag	tacaggaatg	tggccgctcc	agtggattgg	11640
cgcaggtatg	acggcgtatg	gattactcta	ttttatggtg	cacgacgggc	tggtgcatca	11700
acgttggcca	ttccgctata	ttccacgcaa	gggctacctc	aaacggttgt	atatggcgca	11760
ccgtatgcat	cacgccgtca	ggggcaaaga	aggttgtgtt	tcttttggct	tcctctatgc	11820

# WO 2004/063359 PCT/EP2004/000099 208/357

geegeeeetg teaaaaet	tc aggcgacgct	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat gcgcaggg	og gggaggatga	gcccgcatcc	gggaagtaag	ggcctgacca	11940
gaggcggcca gcagcagc	gt taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttggcgt aatcatgg	tc atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	12060
ccacacaaca tacgagcc	gg aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	12120
taactcacat taattgcg	tt gegeteactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	12180
cagctgcatt aatgaatc	gg ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggccaaag	12240
acaaaagggc gacattca	ac cgattgaggg	agggaaggta	aatattgacg	gaaattattc	12300
attaaaggtg aattatca	cc gtcaccgact	tgagccattt	gggaattaga	gccagcaaaa	12360
tcaccagtag caccatta	cc attagcaagg	ccggaaacgt	caccaatgaa	accatcgata	12420
gcagcaccgt aatcagta	gc gacagaatca	agtttgcctt	tagcgtcaga	ctgtagcgcg	12480
ttttcatcgg cattttcg	gt catagecee	ttattagcgt	ttgccatctt	ttcataatca	12540
aaatcaccgg aaccagag	cc accaccggaa	cegeeteeet	cagageegee	accctcagaa	12600
ccgccaccct cagagcca	cc accctcagag	ccgccaccag	aaccaccacc	agagccgccg	12660
ccagcattga caggaggo	cc gatctagtaa	. catagatgac	accgcgcgcg	ataatttatc	12720
ctagtttgcg cgctatat	tt tgttttctat	. cgcgtattaa	atgtataatt	gegggaetet	12780
aatcataaaa acccatct	ca taaataacgt	: catgcattac	atgttaatta	ttacatgctt	12840
aacgtaattc aacagaaa	att atatgataat	: catcgcaaga	. ccggcaacag	gattcaatct	12900
taagaaactt tattgcca	aaa tgtttgaacg	g atcggggatc	atccgggtct	gtggcgggaa	12960
ctccacgaaa atatccg	aac gcagcaagat	ategeggtge	atctcggtct	tgcctgggca	13020
gtcgccgccg acgccgt	tga tgtggacgc	gggcccgatc	: atattgtcgc	: tcaggatcgt	13080

## WO 2004/063359 PCT/EP2004/000099 209/357

ggcgttgtgc	ttgtcggccg	ttgctgtcgt	aatgatatcg	gcaccttcga	ccgcctgttc	13140
cgcagagatc	ccgtgggcga	agaactccag	catgagatcc	ccgcgctgga	ggatcatcca	13200
geeggegtee	cggaaaacga	ttccgaagcc	caacctttca	tagaaggcgg	cggtggaatc	13260
gaaatctcgt	gatggcaggt	tgggcgtcgc	ttggtcggtc	atttcgaacc	ccagagtccc	13320
gctcagaaga	actcgtcaag	aaggcgatag	aaggcgatgc	gctgcgaatc	gggagcggcg	13380
ataccgtaaa	gcacgaggaa	gcggtcagcc	cattcgccgc	caagctcttc	agcaatatca	13440
cgggtagcca	acgctatgtc	ctgatagcgg	teegecacae	ccagccggcc	acagtcgatg	13500
aatccagaaa	agcggccatt	ttccaccatg	atattcggca	agcaggcatc	gccatgggtc	13560
acgacgagat	catcgccgtc	gggcatgcgc	gccttgagcc	tggcgaacag	tteggetgge	13620
gcgagcccct	gatgctcttc	gtccagatca	tcctgatcga	caagaccggc	ttccatccga	13680
gtacgtgctc	gctcgatgcg	atgtttcgct	tggtggtcga	atgggcaggt	agccggatca	13740
agcgtatgca	gccgccgcat	tgcatcagcc	atgatggata	ctttctcggc	aggagcaagg	13800
tgagatgaca	ggagatcctg	ccccggcact	tegeccaata	gcagccagtc	ccttcccgct	13860
tcagtgacaa	cgtcgagcac	agctgcgcaa	ggaacgcccg	tegtggccag	ccacgatagc	13920
cgcgctgcct	cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggtctt	gacaaaaaga	13980
accgggcgcc	cctgcgctga	cagccggaac	acggcggcat	cagagcagcc	gattgtctgt	14040
tgtgcccagt	catagccgaa	tageetetee	acccaagcgg	ccggagaacc	tgcgtgcaat	14100
ccatcttgtt	caatcatgcg	aaacgatcca	gateeggtge	agattatttg	gattgagagt	14160
gaatatgaga	ctctaattgg	ataccgaggg	gaatttatgg	aacgtcagtg	gagcattttt	14220
gacaagaaat	atttgctagc	tgatagtgac	cttaggcgac	: ttttgaacgo	gcaataatgg	14280
tttctgacgt	atgtgcttag	ctcattaaac	tccagaaaco	: cgcggctgag	, tggctccttc	14340

aacgttgcgg	ttctgtcagt	tccaaacgta	aaacggcttg	tcccgcgtca	tcggcggggg	14400
tcataacgtg	actcccttaa	ttctccgctc	atgatcagat	tgtcgtttcc	cgccttcagt	14460
ttaaactatc	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	aagagcgttt	14520
attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccgttcgt	ccatttgtat	14580
gtgcatgcca	accacagggt	tececagate	tggcgccggc	cagcgagacg	agcaagattg	14640
geegeegeee	gaaacgatcc	gacagcgcgc	ccagcacagg	tgcgcaggca	aattgcacca	14700
acgcatacag	cgccagcaga	atgccatagt	gggcggtgac	gtcgttcgag	tgaaccagat	14760
cgcgcaggag	gcccggcagc	accggcataa	tcaggccgat	gccgacagcg	tcgagcgcga	14820
cagtgctcag	aattacgatc	aggggtatgt	tgggtttcac	gtctggcctc	cggaccagcc	14880
tccgctggtc	cgattgaacg	cgcggattct	ttatcactga	taagttggtg	gacatattat	14940
gtttatcagt	gataaagtgt	caagcatgac	aaagttgcag	ccgaatacag	tgatccgtgc	15000
cgccctggac	ctgttgaacg	aggtcggcgt	agacggtctg	acgacacgca	aactggcgga	15060
acggttgggg	gttcagcagc	cggcgcttta	ctggcacttc	aggaacaagc	gggcgctgct	15120
cgacgcactg	gccgaagcca	tgctggcgga	gaatcatacg	catteggtge	cgagagccga	15180
cgacgactgg	cgctcatttc	tgatcgggaa	tgcccgcagc	ttcaggcagg	cgctgctcgc	15240
ctaccgcgat	ggegegegea	. tccatgccgg	cacgcgaccg	ggcgcaccgc	agatggaaac	15300
ggccgacgcg	g cagetteget	tectetgega	ggcgggtttt	teggeeggg	g acgccgtcaa	15360
tgcgctgatç	g acaatcagct	acttcactgt	: tggggccgtg	cttgaggago	aggeeggega	15420
cagcgatgc	ggegagegeg	geggeaeegt	tgaacaggct	cegetetege	e egetgttgeg	15480
ggccgcgata	a gacgccttco	g acgaagccgg	j teeggaegea	a gegttegage	e agggactege	15540
ggtgattgt	c gatggattgg	g cgaaaaggag	getegttgte	aggaacgtt	g aaggaccgag	15600

# WO 2004/063359 PCT/EP2004/000099 211/357

aaagggtgac	gattgatcag	gaccgctgcc	ggagcgcaac	ccactcacta	cagcagagcc	15660
atgtagacaa	catcccctcc	ccctttccac	cgcgtcagac	gcccgtagca	gcccgctacg	15720
ggctttttca	tgccctgccc	tagcgtccaa	gcctcacggc	cgcgctcggc	ctctctggcg	15780
gccttctggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	15840
cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	15900
aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	15960
gegttgetgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	16020
tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	16080
agctccctcg	tgegetetee	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	16140
ctcccttcgg	gaagcgtggc	gcttttccgc	tgcataaccc	tgcttcgggg	tcattatagc	16200
gattttttcg	gtatatccat	cctttttcgc	acgatataca	ggattttgcc	aaagggttcg	16260
tgtagacttt	ccttggtgta	tccaacggcg	tcagccgggc	aggataggtg	aagtaggccc	16320
acccgcgagc	gggtgttcct	tcttcactgt	cccttattcg	cacctggcgg	tgctcaacgg	16380
gaatcctgct	ctgcgaggct	ggccggctac	cgccggcgta	acagatgagg	gcaagcggat	16440
ggctgatgaa	accaagccaa	ccaggaaggg	cagcccacct	atcaaggtgt	actgccttcc	16500
agacgaacga	agagcgattg	aggaaaaggc	ggcggcggcc	ggcatgagcc	tgtcggccta	16560
cctgctggcc	gtcggccagg	gctacaaaat	cacgggcgtc	gtggactatg	agcacgtccg	16620
cgagetggee	cgcatcaatg	gcgacctggg	ccgcctgggc	ggcctgctga	aactctggct	16680
caccgacgac	ccgcgcacgg	cgcggttcgg	tgatgccacg	atcctcgccc	tgctggcgaa	16740
gatcgaagag	aagcaggacg	agcttggcaa	ggtcatgatg	ggcgtggtcc	gcccgagggc	16800
agagccatga	cttttttago	cgctaaaacg	gccggggggt	gcgcgtgatt	gccaagcacg	16860

16954

tececatgeg etecateaag aagagegaet tegeggaget ggtgaagtae ateacegaeg 16920

agcaaggcaa gaccgagcgc ctttgcgacg ctca

<210> 45 <211> 19491 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (18970)..(18970) <223> n is a, c, g, or t <220> <221> misc_feature <222> (19178)..(19178) <223> n is a, c, g, or t <220> <221> misc_feature <222> (19269)..(19269) <223> n is a, c, g, or t <400> 45 60 · agcttggtac cgagctcgga tccactagta acggccgcca gtgtgctgga attcgccctt 120 gacggccagt gaattcgagc tcggtacccg gggatctttc gacactgaaa tacgtcgagc 180 ctgctccgct tggaagcggc gaggagcctc gtcctgtcac aactaccaac atggagtacg ataagggcca gttccgccag ctcattaaga gccagttcat gggcgttggc atgatggccg 240 300 tcatgcatct gtacttcaag tacaccaacg ctcttctgat ccagtcgatc atccgctgaa 360 ggcgctttcg aatctggtta agatccacgt cttcgggaag ccagcgactg gtgacctcca

#### WO 2004/063359 PCT/EP2004/000099 213/357

gegteeettt	aaggctgcca	acagctttct	cagccagggc	cagcccaaga	ccgacaaggc	420
ctccctccag	aacgccgaga	agaactggag	gggtggtgtc	aaggaggagt	aagctcctta	480
ttgaagtcgg	aggacggagc	ggtgtcaaga	ggatattctt	cgactctgta	ttatagataa	540
gatgatgagg	aattggaggt	agcatagett	catttggatt	tgctttccag	gctgagactc	600
tagcttggag	catagagggt	cctttggctt	tcaatattct	caagtatctc	gagtttgaac	660
ttattccctg	tgaacctttt	attcaccaat	gagcattgga	atgaacatga	atctgaggac	720
tgcaatcgcc	atgaggtttt	cgaaatacat	ccggatgtcg	aaggcttggg	gcacctgcgt	780
tggttgaatt	tagaacgtgg	cactattgat	catccgatag	ctctgcaaag	ggcgttgcac	840
aatgcaagtc	aaacgttgct	agcagttcca	ggtggaatgt	tatgatgagc	attgtattaa	900
atcaggagat	atagcatgat	ctctagttag	ctcaccacaa	aagtcagacg	gcgtaaccaa	960
aagtcacaca	acacaagctg	taaggatttc	ggcacggcta	cggaagacgg	agaagccacc	1020
ttcagtggac	tcgagtacca	tttaattcta	tttgtgtttg	atcgagacct	aatacagccc	1080
ctacaacgac	catcaaagtc	gtatagctac	cagtgaggaa	gtggactcaa	atcgacttca	1140
gcaacatctc	ctggataaac	tttaagccta	aactatacag	aataagatag	gtggagagct	1200
tataccgagc	tcccaaatct	gtccagatca	tggttgaccg	gtgcctggat	cttcctatag	1260
aatcatcctt	attcgttgac	ctagctgatt	ctggagtgac	ccagagggtc	atgacttgag	1320
cctaaaatcc	geegeeteea	ccatttgtag	aaaaatgtga	cgaactcgtg	agctctgtac	1380
agtgaccggt	gactctttct	ggcatgcgga	gagacggacg	gacgcagaga	gaagggctga	1440
gtaataagcc	actggccaga	cagctctggc	ggctctgagg	tgcagtggat	gattattaat	1500
ccgggaccgg	ccgcccctcc	gccccgaagt	ggaaaggctg	gtgtgcccct	cgttgaccaa	1560
gaatctattg	catcatcgga	gaatatggag	cttcatcgaa	tcaccggcag	taagcgaagg	1620

## WO 2004/063359 PCT/EP2004/000099 214/357

agaatgtgaa gccaggggtg tatagccgtc ggcgaaatag catgccatta acctaggtac	1680
agaagtccaa ttgcttccga tctggtaaaa gattcacgag atagtacctt ctccgaagta	1740
ggtagagcga gtacceggeg egtaagetee etaattggee cateeggeat etgtagggeg	1800
tccaaatatc gtgcctctcc tgctttgccc ggtgtatgaa accggaaagg ccgctcagga	1860
gctggccagc ggcgcagacc gggaacacaa gctggcagtc gacccatccg gtgctctgca	1920
ctcgacctgc tgaggtccct cagtccctgg taggcagctt tgccccgtct gtccgcccgg	1980
tgtgtcggcg gggttgacaa ggtcgttgcg tcagtccaac atttgttgcc atattttcct	2040
getetececa ecagetgete ttttettte tetttettt eccatettea gtatatteat	2100
cttcccatcc aagaaccttt atttccccta agtaagtact ttgctacatc catactccat	2160
ccttcccatc ccttattcct ttgaaccttt cagttcgagc tttcccactt catcgcagct	2220
tgactaacag ctaccccgct tgagcagaca tcaccatgct gtcgaagctg cagtcaatca	2280
gcgtcaaggc ccgccgcgtt gaactagccc gcgacatcac gcggcccaaa gtctgcctgc	2340
atgctcagcg gtgctcgtta gttcggctgc gagtggcagc accacagaca gaggaggcgc	2400
tgggaaccgt gcaggctgcc ggcgcgggcg atgagcacag cgccgatgta gcactccagc	2460
agettgaceg ggetategea gagegtegtg eeeggegeaa aegggageag etgteatace	2520
aggetgeege cattgeagea teaattggeg tgteaggeat tgeeatette geeacetace	2580
tgagatttgc catgcacatg accgtgggcg gcgcagtgcc atggggtgaa gtggctggca	2640
ctctcctctt ggtggttggt ggcgcgctcg gcatggagat gtatgcccgc tatgcacaca	2700
aagccatctg gcatgagtcg cctctgggct ggctgctgca caagagccac cacacacctc	2760
gcactggacc ctttgaagcc aacgacttgt ttgcaatcat caatggactg cccgccatgc	2820
teetgtgtae etttggette tggetgeeca aegteetggg ggeggeetge tttggagegg	2880

## WO 2004/063359 PCT/EP2004/000099 215/357

ggctgggcat	cacgctatac	ggcatggcat	atatgtttgt	acacgatggc	ctggtgcaca	2940
ggcgctttcc	caccgggccc	atcgctggcc	tgccctacat	gaagcgcctg	acagtggccc	3000
accagctaca	ccacagcggc	aagtacggtg	gegegeeetg	gggtatgttc	ttgggtccac	3060
aggagctgca	gcacattcca	ggtgcggcgg	aggaggtgga	gcgactggtc	ctggaactgg	3120
actggtccaa	gcggtagggt	gcggaaccag	gcacgctggt	ttcacacctc	atgcctgtga	3180
taaggtgtgg	ctagagcgat	gcgtgtgaga	cgggtatgtc	acggtcgact	ggtctgatgg	3240
ccaatggcat	cggccatgtc	tggtcatcac	gggctggttg	cctgggtgaa,	ggtgatgcac	3300
atcatcatgt	gcggttggag	gggctggcac	agtgtgggct	gaactggagc	agttgtccag	3360
gctggcgttg	aatcagtgag	ggtttgtgat	tggcggttgt	gaagcaatga	ctccgcccat	3420
attctatttg	tgggagctga	gatgatggca	tgcttgggat	gtgcatggat	catggtagtg	3480
cagcaaacta	tattcaccta	gggctgttgg	taggatcagg	tgaggccttg	cacattgcat	3540
gatgtactcg	tcatggtgtg	ttggtgagag	gatggatgtg	gatggatgtg	tattctcaga	3600
cgtagacctt	gactggaggc	ttgatcgaga	gagtgggccg	tattctttga	gaggggaggc	3660
tegtgecaga	aatggtgagt	ggatgactgt	gacgctgtac	attgcaggca	ggtgagatgc	3720
actgtctcga	ttgtaaaata	cattcagatg	caagcttggc	gtaatcatgg	tcatagctgt	3780
ttcctgtgtg	aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	ggaagcataa	3840
agtgtaaagc	ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	ttgcgctcac	3900
tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	3960
cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gcgacattca	accgattgag	4020
ggagggaagg	taaatattga	cggaaattat	tcattaaagg	tgaattatca	ccgtcaccga	4080
cttgagccat	ttgggaatta	gagccagcaa	aatcaccagt	agcaccatta	ccattagcaa	4140

# WO 2004/063359 PCT/EP2004/000099 216/357

ggccggaaac	gtcaccaatg	aaaccatcga	tagcagcacc	gtaatcagta	gcgacagaat	4200
caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	gtcatagccc	4260
ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	ccaccaccgg	4320
aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	ctcagagcca	ccaccctcag	4380
agccgccacc	agaaccacca	ccagagccgc	cgccagcatt	gacaggaggc	ccgatctagt	4440
aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	tttgttttct	4500
atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	cataaataac	4560
gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	ttatatgata	4620
atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	aatgtttgaa	<b>4</b> 680
cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	acgcagcaag	4740
atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	gatgtggacg	4800
ccgggcçcga	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	cgttgctgtc	4860
gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tecegtggge	gaagaactcc	4920
agcatgagat	ccccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	gattccgaag	4980
cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	gttgggcgtc	5040
gcttggtcgg	tcatttcgaa	cccagagtc	ccgctcagaa	. gaactcgtca	agaaggcgat	5100
agaaggcgat	gcgctgcgaa	. tcgggagcgg	cgataccgta	aagcacgagg	g aageggteag	5160
cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctate	g teetgatage	5220
ggtccgccac	: acccagccgg	, ccacagtega	tgaatccaga	aaagcggcca	a ttttccacca	5280
tgatattcgg	g caagcaggca	ı tegecatggg	tcacgacgag	g atcatcgccg	g tegggeatge	5340
gcgccttgag	g cctggcgaac	agttcggctg	gegegageed	c ctgatgctc	t tegtecagat	5400

# WO 2004/063359 PCT/EP2004/000099 217/357

catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	5460
cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	5520
ccatgatgga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	5580
cttcgcccaa	tagcagccag	tecetteceg	cttcagtgac	aacgtcgagc	acagctgcgc	5640
aaggaacgcc	cgtcgtggcc	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	5700
gggcaccgga	caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	5760
acacggcggc	atcagagcag	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	5820
ccacccaagc	ggccggagaa	cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	5880
cagatccggt	gcagattatt	tggattgaga	gtgaatatga	gactctaatt	ggataccgag	5940
gggaatttat	ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgatagtg	6000
accttaggcg	acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	6060
actccagaaa	cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	gttccaaacg	6120
taaaacggct	tgtcccgcgt	categgeggg	ggtcataacg	tgactccctt	aattctccgc	6180
tcatgatcag	attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	6240
ttggcgggta	aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	6300
gtgaaaaggt	ttatccgttc	gtccatttgt	atgtgcatgc	caaccacagg	gttccccaga	6360
tctggcgccg	gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	ccgacagcgc	6420
gcccagcaca	ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	gaatgccata	6480
gtgggcggtg	acgtcgttcg	agtgaaccag	ategegeagg	aggcccggca	gcaccggcat	6540
aatcaggccg	atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	tcaggggtat	6600
gttgggtttc	acgtctggcc	teeggaceag	cctccgctgg	tccgattgaa	cgcgcggatt	6660

ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	gtcaagcatg	6720
acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	cgaggtcggc	6780
gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	gccggcgctt	6840
tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	catgctggcg	6900
gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	tctgatcggg	6960
aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	catccatgcc	7020
ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	cttcctctgc	7080
gaggcgggtt	tttcggccgg	ggacgccgtc	aatgegetga	tgacaatcag	ctacttcact	7140
gttggggccg	tgcttgagga	gcaggccggc	gacagċgatg	ccggcgagcg	cggcggcacc	7200
gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	7260
ggtccggacg	cagegttega	gcagggactc	gcggtgattg	tegatggatt	ggcgaaaagg	7320
aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgato	aggaccgctg	7380
ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	7440
accgcgtcag	g acgcccgtag	cagcccgcta	cgggcttttt	catgeeetge	cctagcgtcc	7500
aagcctcac	g geegegeteg	gcctctctgg	g eggeettetg	gegetetted	getteetege	7560
tcactgacto	getgegeteg	gtcgttcggc	: tgcggcgagc	ggtatcagct	cactcaaagg	7620
cggtaatac	g gttatccaca	gaatcagggg	g ataacgcagg	g aaagaacat	g tgagcaaaag	7680
gccagcaaa	a ggccaggaac	cgtaaaaagg	g ccgcgttgct	ggcgttttt	c cataggetee	7740
gccccctg	a cgagcatcad	c aaaaatcgad	c gctcaagtca	a gaggtggcg	a aacccgacag	7800
gactataaa	g ataccaggc	g tttccccct;	g gaageteect	t egtgegete	t cctgttccga	7860
ccctgccgc	t taccggata	c ctgtccgcc	t tteteeette	c gggaagcgt	g gcgcttttcc	7920

## WO 2004/063359 PCT/EP2004/000099 219/357

gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	atcctttttc	7980
gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	tatccaacgg	8040
cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	cttcttcact	8100
gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	ctggccggct	8160
accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	aaccaggaag	8220
ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	tgaggaaaag	8280
gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	gggctacaaa	8340
atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	tggcgacctg	8400
ggccgcctgg	geggeetget	gaaactctgg	ctcaccgacg	accegegeae	ggcgcggttc	8460
ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	cgagcttggc	8520
aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	gccgctaaaa	8580
cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	agaagagcga	8640
cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	gcctttgcga	8700
cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	cctgcaaacg	8760
cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	tgtggatacc	8820
tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	tgaggggccg	8880
actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	gcgacgtgga	8940
gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	ccacagatga	9000
tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	gcgactactg	9060
acagatgagg	ggegegatee	ttgacacttg	aggggcagag	tgctgacaga	tgaggggcgc	9120
acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	aagggtttcc	9180

# WO 2004/063359 PCT/EP2004/000099 220/357

gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	atatttataa	9240
accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	aaggggggtg	9300
ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	teccatecee	ccaggggctg	9360
egeceetegg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	ccttgccatt	9420
gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	cggaagcatt	9480
gacgtgccgc	aggtgctggc	atcgacattc	agegaccagg	tgccgggcag	tgagggcggc	9540
ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	cttcatggcg	9600
gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tegegggtge	cgtgctcgtg	9660
ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	ataccgaggt	9720
atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	ttaaaaagct	9780
accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	attgacaata	9840
ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	tttcaggggg	9900
caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	taaaaacttg	9960
catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	ctatcataat	10020
tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	gatgactttg	10080
tcatgcagct	: ccaccgattt	tgagaacgac	agegaettee	gteccageeg	tgccaggtgc	10140
tgcctcagat	: tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	gattacgtgc	10200
agctttccct	: tcaggcggga	ttcatacago	ggccagccat	: ccgtcatcca	a tatcaccacg	10260
tcaaagggtg	g acagcaggct	cataagacgo	cccagcgtcg	g ccatagtgcg	g ttcaccgaat	10320
acgtgcgcaa	a caaccgtctt	ceggagaetg	tcatacgcgt	aaaacagcca	a gegetggege	10380
gatttagcc	c cgacatagco	: ccactgttcg	tccatttccg	g cgcagacga	t gacgtcactg	10440

#### WO 2004/063359 PCT/EP2004/000099 221/357

cccggctgta tgcgcgaggt taccgactgc ggcctgagtt ttttaagtga cgtaaaatcg 10500 tgttgaggcc aacgcccata atgcgggctg ttgcccggca tccaacgcca ttcatggcca 10560 tatcaatgat tttctggtgc gtaccgggtt gagaagcggt gtaagtgaac tgcagttgcc 10620 atgttttacg gcagtgagag cagagatagc gctgatgtcc ggcggtgctt ttgccgttac 10680 gcaccacccc gtcagtagct gaacaggagg gacagctgat agacacagaa gccactggag 10740 cacctcaaaa acaccatcat acactaaatc agtaagttgg cagcatcacc cataattgtg 10800 gtttcaaaat cggctccgtc gatactatgt tatacgccaa ctttgaaaac aactttgaaa 10860 aagctgtttt ctggtattta aggttttaga atgcaaggaa cagtgaattg gagttcgtct 10920 tgttataatt agcttcttgg ggtatcttta aatactgtag aaaagaggaa ggaaataata 10980 aatggctaaa atgagaatat caccggaatt gaaaaaactg atcgaaaaat accgctgcgt 11040 aaaagatacg gaaggaatgt ctcctgctaa ggtatataag ctggtgggag aaaatgaaaa 11100 cctatattta aaaatgacgg acagccggta taaagggacc acctatgatg tggaacggga 11160 aaaggacatg atgctatggc tggaaggaaa gctgcctgtt ccaaaggtcc tgcactttga 11220 acggcatgat ggctggagca atctgctcat gagtgaggcc gatggcgtcc tttgctcgga 11280 agagtatgaa gatgaacaaa gccctgaaaa gattatcgag ctgtatgcgg agtgcatcag 11340 gctctttcac tccatcgaca tatcggattg tccctatacg aatagcttag acagccgctt 11400 agccgaattg gattacttac tgaataacga tctggccgat gtggattgcg aaaactggga 11460 agaagacact ccatttaaag atccgcgcga gctgtatgat tttttaaaga cggaaaagcc 11520 cgaagaggaa cttgtctttt cccacggcga cctgggagac agcaacatct ttgtgaaaga 11580 tggcaaagta agtggcttta ttgatcttgg gagaagcggc agggcggaca agtggtatga 11640 cattgeette tgegteeggt egateaggga ggatateggg gaagaacagt atgtegaget 11700

# WO 2004/063359 PCT/EP2004/000099 222/357

attttttgac	ttactgggga	tcaagcctga	ttgggagaaa	ataaaatatt	atattttact	11760
ggatgaattg	ttttagtacc	tagatgtggc	gcaacgatgc	cggcgacaag	caggagcgca	11820
ccgacttctt	ccgcatcaag	tgttttggct	ctcaggccga	ggcccacggc	aagtatttgg	11880
gcaaggggtc	gctggtattc	gtgcagggca	agattcggaa	taccaagtac	gagaaggacg	11940
gccagacggt	ctacgggacc	gacttcattg	ccgataaggt	ggattatctg	gacaccaagg	12000
caccaggcgg	gtcaaatcag	gaataagggc	acattgcccc	ggcgtgagtc	ggggcaatcc	12060
cgcaaggagg	gtgaatgaat	cggacgtttg	accggaaggc	atacaggcaa	gaactgatcg	12120
acgcggggtt	ttccgccgag	gatgccgaaa	ccatcgcaag	ccgcaccgtc	atgcgtgcgc	12180
cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	aagatcgagc	12240
gcgacagcgt	gcaactggct	ccccctgccc	tgecegegee	atcggccgcc	gtggagcgtt	12300
cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	gacacgcgag	12360
gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	caggtcagcg	12420
aggccaagca	ggccgcgttg	ctgaaacaca	cgaagcagca	gatcaaggaa	atgcagcttt	12480
ccttgttcga	tattgcgccg	tggccggaca	cgatgcgagc	gatgccaaac	gacacggccc	12540
gctctgccct	gttcaccacg	cgcaacaaga	aaatcccgcg	cgaggcgctg	caaaacaagg	12600
tcattttcca	cgtcaacaag	gacgtgaaga	tcacctacac	cggcgtcgag	ctgcgggccg	12660
acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagcgcacc	cctatcggcg	12720
agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	atcaatggcc	12780
ggtattacac	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	atgggcttca	12840
cgtccgaccg	cgttgggcac	ctggaatcgg	tgtcgctgct	gcaccgcttc	cgcgtcctgg	12900
accgtggcaa	gaaaacgtcc	cgttgccagg	tectgatega	cgaggaaatc	gtcgtgctgt	12960

# WO 2004/063359 PCT/EP2004/000099 223/357

ttgctggcga	ccactacacg	aaattcatat	gggagaagta	ccgcaagctg	tcgccgacgg	13020
cccgacggat	gttcgactat	ttcagctcgc	accgggagcc	gtacccgctc	aagctggaaa	13080
ccttccgcct	catgtgcgga	tcggattcca	cccgcgtgaa	gaagtggcgc	gagcaggtcg	13140
gcgaagcctg	cgaagagttg	cgaggcagcg	gcctggtgga	acacgcctgg	gtcaatgatg	13200
acctggtgca	ttgcaaacgc	tagggccttg	tggggtcagt	teeggetggg	ggttcagcag	13260
ccagcgcttt	actggcattt	caggaacaag	cgggcactgc	tcgacgcact	tgcttcgctc	13320
agtatcgctc	gggacgcacg	gcgcgctcta	cgaactgccg	ataaacagag	gattaaaatt	13380
gacaattgtg	attaaggctc	agattcgacg	gcttggagcg	gccgacgtgc	aggatttccg	13440
cgagatccga	ttgtcggccc	tgaagaaagc	tccagagatg	ttcgggtccg	tttacgagca	13500
cgaggagaaa	aagcccatgg	aggcgttcgc	tgaacggttg	cgagatgccg	tggcattcgg	13560
cgcctacatc	gacggcgaga	tcattgggct	gtcggtcttc	aaacaggagg	acggccccaa	13620
ggacgctcac	aaggcgcatc	tgtccggcgt	tttcgtggag	cccgaacagc	gaggccgagg	13680
ggtcgccggt	atgctgctgc	gggcgttgcc	ggcgggttta	ttgctcgtga	tgatcgtccg	13740
acagattcca	acgggaatct	ggtggatgcg	catcttcatc	ctcggcgcac	ttaatatttc	13800
gctattctgg	agcttgttgt	ttatttcggt	ctaccgcctg	ccgggcgggg	tegeggegae	13860
ggtaggcgct	gtgcagccgc	tgatggtcgt	gttcatctct	gccgctctgc	taggtagccc	13920
gatacgattg	atggcggtcc	tgggggctat	ttgcggaact	gcgggcgtgg	cgctgttggt	13980
gttgacacca	aacgcagcgc	tagatectgt	cggcgtcgca	gcgggcctgg	cgggggcggt	14040
ttccatggcg	ttcggaaccg	tgctgacccg	caagtggcaa	cctcccgtgc	ctctgctcac	14100
ctttaccgcc	tggcaactgg	cggccggagg	acttctgctc	gttccagtag	ctttagtgtt	14160
tgatccgcca	atcccgatgc	ctacaggaac	caatgttctc	ggcctggcgt	ggctcggcct	14220

gateggageg	ggtttaacct	acttcctttg	gttccggggg	atctcgcgac	tcgaacctac	14280
agttgtttcc	ttactgggct	ttctcagccc	cagatctggg	gtcgatcagc	cggggatgca	14340
tcaggccgac	agtcggaact	tegggteece	gacctgtacc	attcggtgag	caatggatag	14400
gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	ttcctcagcg	14460
gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	gcctgtcacg	14520
gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	agatgatatt	14580
tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	ccgcgagatc	14640
atccgtgttt	caaacccggc	agcttagttg	cegttettee	gaatagcatc	ggtaacatga	14700
gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	gatgggctgc	14760
ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	ctggctggtg	14820
gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	acattgcgga	14880
cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	cagctgattg	14940
cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	ttgccccagc	15000
aggcgaaaat	: cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	aaatcaaaag	15060
aatagcccga	ı gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	15120
acgtggacto	c caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	15180
aaccatcac	c caaatcaagt	tttttggggt	. cgaggtgccg	, taaagcacta	a aatcggaacc	15240
ctaaagggag	g cccccgattt	. agagettgae	ggggaaagco	ggcgaacgtg	g gcgagaaagg	15300
aagggaagaa	a agcgaaagga	a gegggegeea	ttcaggctgc	gcaactgttg	g ggaagggcga	15360
teggtgegg	g cetetteget	: attacgccaç	g ctggcgaaag	g ggggatgtg	c tgcaaggcga	15420
ttaagttgg	g taacgccagg	g gttttccca	g tcacgacgtt	t gtaaaacgad	c ggccagtgaa	15480

## WO 2004/063359 PCT/EP2004/000099 225/357

ttcgagctcg	gtacccgggg	atctttcgac	actgaaatac	gtcgagcctg	ctccgcttgg	15540
aagcggcgag	gagcctcgtc	ctgtcacaac	taccaacatg	gagtacgata	agggccagtt	15600
ccgccagctc	attaagagcc	agttcatggg	cgttggcatg	atggccgtca	tgcatctgta	15660
cttcaagtac	accaacgctc	ttctgatcca	gtcgatcatc	cgctgaaggc	gctttcgaat	15720
ctggttaaga	tccacgtctt	cgggaagcca	gcgactggtg	acctccagcg	tccctttaag	15780
gctgccaaca	gctttctcag	ccagggccag	cccaagaccg	acaaggcctc	cctccagaac	15840
gccgagaaga	actggagggg	tggtgtcaag	gaggagtaag	ctccttattg	aagtcggagg	15900
	gtcaagagga					15960
	atagcttcat			•		16020
	ttggctttca					16080
	caccaatgag					16140
	aatacatccg					16200
	tattgatcat					16260
					aggagatata	16320
	•				tcacacaaca	16380
			•			16440
					agtggactcg	16500
					caacgaccat	16560
					acateteetg	16620
					accgagetee	16680
					catccttatt	
cgttgaccta	a gctgattctg	gagtgaccca	gagggtcato	g acttgagcct	aaaatccgcc	16740

# WO 2004/063359 PCT/EP2004/000099 226/357

gcctccacca	tttgtagaaa	aatgtgacga	actcgtgagc	tctgtacagt	gaccggtgac	16800
tetttetgge	atgcggagag	acggacggac	gcagagagaa	gggctgagta	ataagccact	16860
ggccagacag	ctctggcggc	tctgaggtgc	agtggatgat	tattaatccg	ggaccggccg	16920
cccctccgcc	ccgaagtgga	aaggctggtg	tgcccctcgt	tgaccaagaa	tctattgcat	16980
categgagaa	tatggagctt	catcgaatca	ccggcagtaa	gcgaaggaga	atgtgaagcc	17040
aggggtgtat	agccgtcggc	gaaatagcat	gccattaacc	taggtacaga	agtccaattg	17100
cttccgatct	ggtaaaagat	tcacgagata	gtaccttctc	cgaagtaggt	agagcgagta	17160
cccggcgcgt	aagctcccta	attggcccat	ccggcatctg	tagggcgtcc	aaatatcgtg	17220
cctctcctgc	tttgcccggt	gtatgaaacc	ggaaaggccg	ctcaggagct	ggccagcggc	17280
gcagaccggg	aacacaagct	ggcagtcgac	ccatccggtg	ctctgcactc	gacctgctga	17340
ggtccctcag	tccctggtag	gcagctttgc	cccgtctgtc	cgcccggtgt	gtcggcgggg	17400
ttgacaaggt	cgttgcgtca	gtccaacatt	tgttgccata	ttttcctgct	ctccccacca	17460
getgetettt	tettttetet	ttcttttccc	atcttcagta	tattcatctt	cccatccaag	17520
aacctttatt	tecectaagt	aagtactttg	ctacatccat	actccatcct	teccatecet	17580
tattcctttg	aacctttcag	ttcgagcttt	cccacttcat	cgcagcttga	ctaacagcta	17640
ccccgcttga	gcagacatca	ccatgcctga	actcaccgcg	acgtctgtcg	agaagtttct	17700
gatcgaaaag	ttcgacagcg	tctccgacct	gatgcagcto	tcggagggcg	aagaatctcg	17760
tgctttcago	: ttcgatgtag	gagggcgtgg	atatgtcctg	cgggtaaata	getgegeega	17820
tggtttctac	: aaagatcgtt	atgtttatcg	gcactttgca	teggeegege	tcccgattcc	17880
ggaagtgctt	gacattgggg	aattcagcga	gageetgaee	: tattgcatct	cccgccgtgc	17940
acagggtgto	acgttgcaag	acctgcctga	aaccgaactg	ceegetgtte	tgcagccggt	18000

# WO 2004/063359 PCT/EP2004/000099 227/357

cgcggaggcc	atggatgcga	tegetgegge	cgatcttagc	cagacgagcg	ggttcggccc	18060
attcggaccg	caaggaatcg	gtcaatacac	tacatggcgt	gatttcatat	gcgcgattgc	18120
tgatccccat	gtgtatcact	ggcaaactgt	gatggacgac	accgtcagtg	cgtccgtcgc	18180
gcaggctctc	gatgagctga	tgctttgggc	cgaggactgc	cccgaagtcc	ggcacctcgt	18240
gcacgcggat	ttcggctcca	acaatgtcct	gacggacaat	ggccgcataa	cagcggtcat	18300
tgactggagc	gaggcgatgt	tcggggattc	ccaatacgag	gtcgccaaca	tettettetg	18360
gaggccgtgg	ttggcttgta	tggagcagca	gacgcgctac	ttcgagcgga	ggcatccgga	18420
gcttgcagga	tegeegege	tccgggcgta	tatgctccgc	attggtcttg	accaactcta	18480
tcagagcttg	gttgacggca	atttcgatga	tgcagcttgg	gcgcagggtc	gatgcgacgc	18540
aatcgtccga	tccggagccg	ggactgtcgg	gcgtacacaa	ategeeegea	gaagcgcggc	18600
cgtctggacc	gatggctgtg	tagaagtact	cgccgatagt	ggaaaccgac	gccccagcac	18660
tcgtccgagg	gcaaaggaat	agagtagatg	ccgaccgcgg	gatcgatcca	cttaacgtta	18720
ctgaaatcat	caaacagctt	gacgaatctg	gatataagat	cgttggtgtc	gatgtcagct	18780
ccggagttga	gacaaatggt	gttcaggatc	tcgataagat	acgttcattt	gtccaagcag	18840
caaagagtgc	cttctagtga	tttaatagct	ccatgtcaac	aagaataaaa	cgcgttttcg	18900
ggtttacctc	ttccagatac	agctcatctg	caatgcatta	atgcattgac	tgcaacctag	18960
taacgccttn	caggctccgg	cgaagagaag	aatagcttag	cagagctatt	ttcattttcg	19020
ggagacgaga	tcaagcagat	caacggtcgt	caagagacct	acgagactga	ggaatccgct	19080
cttggctcca	cgcgactata	tatttgtctc	taattgtact	ttgacatgct	cctcttcttt	19140
actctgatag	cttgactatg	aaaattccgt	caccagence	tgggttcgca	aagataattg	19200
catgtttctt	ccttgaactc	tcaagcctac	aggacacaca	ttcatcgtag	gtataaacct	19260

cgaaatcant teetactaag atggtataca atagtaacca tgcatggttg ectagtgaat 19320
geteegtaac acceaatacg eeggeegaaa etttttaca acteteetat gagtegttta 19380
eecagaatge acaggtacae ttgtttagag gtaateette tttetageta gaagteeteg 19440
tgtactgtgt aagegeecae teeacatete eactegacet geaggeatge a 19491

<210> 46

<211> 21300

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 46

gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60

cetgteacaa etaecaacat ggagtaegat aagggeeagt teegeeaget cattaagage 120

cagtteatgg gegttggeat gatggeegte atgeatetgt actteaagta caecaacget 180

240

cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct

# WO 2004/063359 PCT/EP2004/000099 229/357

tcgggaagcc	agcgactggt	gacctccagc	gtccctttaa	ggctgccaac	agctttctca	300
gccagggcca	gcccaagacc	gacaaggcct	ccctccagaa	cgccgagaag	aactggaggg	360
gtggtgtcaa	ggaggagtaa	gctccttatt	gaagtcggag	gacggagcgg	tgtcaagagg	420
atattcttcg	actctgtatt	atagataaga	tgatgaggaa	ttggaggtag	catagettea	480
tttggatttg	ctttccaggc	tgagactcta	gcttggagca	tagagggtcc	tttggctttc	540
aatattctca	agtatctcga	gtttgaactt	attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagetta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500

					-
tcatcgaatc accggcag	ta agcgaaggag	aatgtgaagc	caggggtgta	tageegtegg	1560
cgaaatagca tgccatta	ac ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat agtacctt	ct ccgaagtagg	tagagcgagt	acccggcgcg	taageteest	1680
aattggccca tccggcat	ct gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac cggaaagg	cc gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga cccatccg	gt gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg ccccgtct	gt ccgcccggtg	tgtcggcggg	gttgacaagg	tegttgegte	1920
agtccaacat tigttgcc	at attttcctgc	tctccccacc	agctgctctt	ttcttttctc	1980
tttcttttcc catcttca	gt atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt gctacatc	cca tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt tcccactt	cca togcagettg	actaacagct	accccgcttg	agcagacatc	2160
accatgeetg aacteace	ege gaegtetgte	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc tgatgca	get eteggaggge	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg gatatgt	cct gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc ggcactt	tgc atcggccgcg	ctecegatte	cggaagtgct	tgacattggg	2400
gaattcageg agageet	gac ctattgcato	tcccgccgtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg aaaccga	act gcccgctgtt	: ctgcagccgg	tegeggagge	catggatgcg	2520
ategetgegg cegatet	tag ccagacgago	gggtteggee	: cattcggacc	gcaaggaatc	2580
ggtcaataca ctacatg	gcg tgatttcata	tgcgcgattg	r ctgatcccca	tgtgtatcac	2640
tggcaaactg tgatgga	cga caccgtcagt	t gegteegteg	g cgcaggctct	: cgatgagctg	2700
atgetttggg eegagga	ctg ccccgaagt	c cggcacctcg	g tgcacgcgga	ttteggetee	2760

# WO 2004/063359 PCT/EP2004/000099 231/357

aacaatgtcc	tgacggacaa	tggccgcata	acageggtea	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagegegg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tectettett	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagene	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	. caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	actttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	: ccactcgacc	: tgcaggcatg	caagcttgaa	ttcgagctcg	gtacccgggg	4020

### WO 2004/063359 PCT/EP2004/000099 232/357

atctttcgac	actgaaatac	gtcgagcctg	ctccgcttgg	aagcggcgag	gagcctcgtc	4080
ctgtcacaac	taccaacatg	gagtacgata	agggccagtt	cegecagete	attaagagcc	4140
agttcatggg	cgttggcatg	atggccgtca	tgcatctgta	cttcaagtac	accaacgete	4200
ttctgatcca	gtcgatcatc	cgctgaaggc	gctttcgaat	ctggttaaga	tccacgtctt	4260
cgggaagcca	gcgactggtg	acctccagcg	tecetttaag	gctgccaaca	gctttctcag	4320
ccagggccag	cccaagaccg	acaaggcctc	cctccagaac	gccgagaaga	actggagggg	4380
tggtgtcaag	gaggagtaag	ctccttattg	aagtcggagg	acggagcggt	gtcaagagga	4440
tattcttcga	ctctgtatta	tagataagat	gatgaggaat	tggaggtagc	atagcttcat	4500
ttggatttgc	tttccaggct	gagactctag	cttggagcat	agagggtcct	ttggctttca	4560
atattctcaa	gtatctcgag	tttgaactta	ttccctgtga	accttttatt	caccaatgag	4620
cattggaatg	aacatgaatc	tgaggactgc	aatcgccatg	aggttttcga	aatacatccg	4680
gatgtcgaag	gcttggggca	cctgcgttgg	ttgaatttag	aacgtggcac	tattgatcat	4740
ccgatagete	tgcaaagggc	gttgcacaat	gcaagtcaaa	cgttgctagc	agttccaggt	4800
ggaatgttat	gatgagcatt	gtattaaatc	aggagatata	gcatgatctc	tagttagctc	4860
accacaaaag	tcagacggcg	taaccaaaag	tcacacaaca	caagctgtaa	ggatttcggc	4920
acggctacgg	aagacggaga	agccaccttc	agtggactcg	agtaccattt	aattctattt	4980
gtgtttgatc	gagacctaat	acageceeta	caacgaccat	caaagtcgta	tagctaccag	5040
tgaggaagtg	gactcaaatc	gacttcagca	acatctcctg	gataaacttt	aagcctaaac	5100
tatacagaat	aagataggtg	gagagcttat	accgagctcc	caaatctgtc	cagatcatgg	5160
ttgaccggtg	cctggatctt	cctatagaat	catccttatt	cgttgaccta	gctgattctg	5220
gagtgaccca	gagggtcatg	acttgagcct	aaaatccgcc	gcctccacca	tttgtagaaa	5280

#### WO 2004/063359 PCT/EP2004/000099 233/357

aatgtgacga actcgtgagc tctgtacagt gaccggtgac tctttctggc atgcggagag	5340
acggacggac gcagagagaa gggctgagta ataagccact ggccagacag ctctggcggc	5400
tctgaggtgc agtggatgat tattaatccg ggaccggccg cccctccgcc ccgaagtgga	5460
aaggctggtg tgcccctcgt tgaccaagaa tctattgcat catcggagaa tatggagctt	5520
catcgaatca ccggcagtaa gcgaaggaga atgtgaagcc aggggtgtat agccgtcggc	5580
gaaatagcat gccattaacc taggtacaga agtccaattg cttccgatct ggtaaaagat	5640
tcacgagata gtaccttctc cgaagtaggt agagcgagta cccggcgcgt aagctcccta	5700
attggcccat ceggcatetg tagggcgtcc aaatatcgtg ceteteetge tttgceeggt	5760
gtatgaaacc ggaaaggccg ctcaggagct ggccagcggc gcagaccggg aacacaagct	5820
ggcagtcgac ccatccggtg ctctgcactc gacctgctga ggtccctcag tccctggtag	5880
gcagctttgc cccgtctgtc cgcccggtgt gtcggcgggg ttgacaaggt cgttgcgtca	5940
gtccaacatt tgttgccata ttttcctgct ctccccacca gctgctcttt tcttttctct	6000
ttcttttccc atcttcagta tattcatctt cccatccaag aacctttatt tcccctaagt	6060
aagtactttg ctacatccat actccatcct tcccatccct tattcctttg aacctttcag	6120
ttcgagcttt cccacttcat cgcagcttga ctaacagcta ccccgcttga gcagacatca	6180
ccatgtcaat actcacttat ctggaatttc atctctacta tacactacct gtccttgcgg	6240
cattgtgttg gctgctaaag ccgtttcact cacagcaaga caatctcaag tataaatttt	6300
taatgttgat ggccgcctct accgcatcga tttgggacaa ttatatcgtt tatcatcgcg	6360
cttggtggta ctgtcctact tgtgttgtgg ctgtcattgg ctatgtacct ctagaagaat	6420
acatgttctt tatcatcatg actttaatga ctgtcgcgtt ctcaaacttt gttatgcgtt	6480
ggcacttgca tactttcttt attagaccca acacttcttg gaagcaaaca ctattagtac	6540

### WO 2004/063359 PCT/EP2004/000099 234/357

gccttgtgcc tgtttcagct ttattggcaa tcacttatca tgcttggcac ttgacactgc	6600
caaataaacc ttcattttat ggttcatgca tcctttggta tgcttgtcct gtgttggcta	6660
ttctttggct gggtgctggc gaatatatct tgcgtcgacc tgtggctgtc cttttgtcta	6720
ttgttatccc tagtgtatac ctatgttggg ctgatatcgt cgctattagt gctggcacat	6780
ggcatatttc tcttagaaca agcactggca aaatggtagt acccgattta cctgtagaag	6840
aatgcctgtt ttttactttg atcaacacag tcttggtttt tgctacctgt gctatagacc	6900
gcgctcaggc catcctccat gtgagcgcgc gtaatacgac tcactatagg gcgaattgga	6960
gctccaccgc ggtggcggcc gctctagaac tagtggatcc cccgggctgc aggaattcgg	7020
cacgagetae attteacaag eeegtgageg gtgeaagege tetgeeecae ateggeeeae	7080
ctcctcatct ccatcggtca tttgctgcta ccacgatgct gtcgaagctg cagtcaatca	7140
gegteaagge eegeegegtt gaactageee gegacateae geggeeeaaa gtetgeetge	7200
atgctcagcg gtgctcgtta gttcggctgc gagtggcagc accacagaca gaggaggcgc	7260
tgggaaccgt gcaggctgcc ggcgcgggcg atgagcacag cgccgatgta gcactccagc	7320
agcttgaccg ggctatcgca gagcgtcgtg cccggcgcaa acgggagcag ctgtcatacc	7380
aggetgeege cattgeagea teaattggeg tgteaggeat tgeeatette geeacetace	7440
tgagatttgc catgcacatg accgtgggcg gcgcagtgcc atggggtgaa gtggctggca	7500
ctctcctctt ggtggttggt ggcgcgctcg gcatggagat gtatgcccgc tatgcacaca	7560
aagccatctg gcatgagtcg cetetggget ggetgetgea caagageeac cacacacete	7620
gcactggacc ctttgaagcc aacgacttgt ttgcaatcat caatggactg cccgccatgc	7680
tectgtgtae etttggette tggetgeeca acgteetggg ggeggeetge tttggagegg	7740
ggctgggcat cacgctatac ggcatggcat atatgtttgt acacgatggc ctggtgcaca	7800

### WO 2004/063359 PCT/EP2004/000099 235/357

ggcgctttcc caccgggccc atcgctggcc tgccctacat gaagcgcctg acagtggccc	7860
accagctaca ccacagcggc aagtacggtg gcgcgccctg gggtatgttc ttgggtccac	7920
aggagctgca gcacattcca ggtgcggcgg aggaggtgga gcgactggtc ctggaactgg	<b>798</b> 0 .
actggtccaa gcgggctcag gccatcctcc atctgtacaa atcatctgtt caaaatcaaa	8040
accctaaaca agccatttcc cttttccagc atgtcaaaga gctagcatgg gccttctgtc	8100
ttcctgacca aatgctcaac aatgaattgt ttgatgatct tactatcagc tgggatattt	8160
tacgtaaagc ctcaaagtca ttctatactg catctgccgt ttttccaagt tatgtacgtc	8220
aagacttggg tgttctctat gctttctgca gagctaccga tgacctgtgc gatgatgaat	8280
ccaaatctgt tcaagaaaga agagaccaat tagatcttac tcgacaattt gttcgtgatc	8340
tctttagcca aaagaccagt gcgcctattg tgattgattg ggaattgtat caaaaccaac	8400
ttcctgcttc ttgtatatca gcctttagag cctttactcg ccttcgccat gtccttgaag	8460
tagaccctgt agaagaacta ttagatggtt acaaatggga tcttgagcgt cgtcctatcc	8520
ttgatgaaca agacttggag gcatactctg cttgtgtggc cagtagtgtg ggtgaaatgt	8580
gcacacgtgt gattcttgct caagaccaaa aggaaaatga tgcttggata attgaccgtg	8640
cacgtgagat ggggctggtg ctacaatacg ttaacattgc tcgagacatt gtgactgata	8700
gcgagactct gggtcgatgt tatctgcctc aacaatggct tagaaaagaa gaaacagaac	8760
aaatacagca aggcaacgcc cgtagcctag gtgatcaaag actgttgggc ttgtctctga	8820
agcttgtagg aaaggcagac gctatcatgg tgagagctaa gaagggcatt gacaagttgc	8880
cggcaaactg tcaaggcggt gtacgagctg cttgccaagt atatgctgca attggatctg	8940
tactcaagca gcagaagaca acatatccta caagagctca tctaaaagga agcgaacgtg	9000
ccaagattgc tetgttgagt gtatacaace tetateaate tgaagacaag cetgtggete	9060

### WO 2004/063359 PCT/EP2004/000099 236/357

teegteaage	tagaaagatt	aagagtttt	ttgttgatta	gtgaatttt	gttttattta	9120
tgtctgatag	ttcaataaag	agacaacaca	tacaatataa	aatcattgtc	tttaaatgtt	9180
aatttagtag	agtgtaaagc	ctgcattttt	tttgtacgca	taaacaatga	gttcaccccg	9240
cttctggttt	ttaaataatt	atgtcaaact	agggaaaatt	ctttttttc	tcttcgttct	9300
ttttttggct	tgttgtggag	tcacaggett	gtcttcagat	tgatagaggt	tgtatacact	9360
caacagagca	atcttggcac	gttcgcttcc	ttttagatga	gctcttgtag	gatatgttgt	9420
cttctgctgc	ttgagtacag	atccaattgc	agcatatact	tggcaagcag	ctcgtacacc	9480
gccttgacag	tttgccggca	acttgtcaat	gcccttctta	gctctcacca	tgatagcgtc	9540
tgcctttcct	acaagcttgg	cgtaatcatg	gtcatagctg	tttcctgtgt	gaaattgtta	9600
teegeteaca	attccacaca	acatacgagc	cggaagcata	aagtgtaaag	cctggggtgc	9660
ctaatgagtg	agctaactca	cattaattgc	gttgcgctca	ctgcccgctt	tccagtcggg	9720
aaacctgtcg	tgccagctgc	attaatgaat	cggccaacgc	gcggggagag	geggtttgeg	9780
tattgggcca	aagacaaaag	ggcgacattc	aaccgattga	gggagggaag	gtaaatattg	9840
acggaaatta	ttcattaaag	gtgaattatc	accgtcaccg	acttgagcca	tttgggaatt	9900
agagccagca	aaatcaccag	tagcaccatt	accattagca	. aggccggaaa	cgtcaccaat	9960
gaaaccatcg	atagcagcac	cgtaatcagt	agcgacagaa	tcaagtttgo	ctttagcgtc	10020
agactgtagc	gcgttttcat	cggcattttc	ggtcatagco	cccttattag	g cgtttgccat	10080
cttttcataa	tcaaaatcac	: cggaaccaga	gccaccaccg	gaaccgccto	cctcagagcc	10140
gccaccctca	gaaccgccac	: cctcagagcc	: accaccctca	gageegeeac	c cagaaccacc	10200
accagagecg	g ccgccagcat	: tgacaggagg	cccgatctag	g taacatagat	gacaccgcgc	10260
gcgataattt	atcctagttt	gegegetata	ttttgttttc	tategegtat	taaatgtata	10320

### WO 2004/063359 PCT/EP2004/000099 237/357

attgcgggac	tctaatcata	aaaacccatc	tcataaataa	cgtcatgcat	tacatgttaa	10380
ttattacatg	cttaacgtaa	ttcaacagaa	attatatgat	aatcatcgca	agaccggcaa	10440
caggattcaa	tcttaagaaa	ctttattgcc	aaatgtttga	acgatcgggg	atcatccggg	10500
tetgtggegg	gaactccacg	aaaatatccg	aacgcagcaa	gatatcgcgg	tgcatctcgg	10560
tettgeetgg	gcagtcgccg	ccgacgccgt	tgatgtggac	gccgggcccg	atcatattgt	10620
cgctcaggat	cgtggcgttg	tgcttgtcgg	ccgttgctgt	cgtaatgata	teggeacett	10680
cgaccgcctg	ttccgcagag	atcccgtggg	cgaagaactc	cagcatgaga	teceegeget	10740
ggaggatcat	ccagccggcg	tcccggaaaa	cgattccgaa	gcccaacctt	tcatagaagg	10800
cggcggtgga	atcgaaatct	cgtgatggca	ggttgggcgt	cgcttggtcg	gtcatttcga	10860
accccagagt	cccgctcaga	agaactcgtc	aagaaggcga	tagaaggcga	tgcgctgcga	10920
atcgggagcg	gcgataccgt	aaagcacgag	gaagcggtca	gcccattcgc	cgccaagctc	10980
ttcagcaata	tcacgggtag	ccaacgctat	gtcctgatag	cggtccgcca	cacccagccg	11040
gccacagtcg	atgaatccag	aaaagcggcc	attttccacc	atgatattcg	gcaagcaggc	11100
atcgccatgg	gtcacgacga	gatcatcgcc	gtcgggcatg	cgcgccttga	gcctggcgaa	11160
cagttcggct	ggcgcgagcc	cctgatgctc	ttcgtccaga	tcatcctgat	cgacaagacc	11220
ggcttccatc	cgagtacgtg	ctcgctcgat	gcgatgtttc	gcttggtggt	cgaatgggca	11280
ggtagccgga	tcaagcgtat	gcagccgccg	cattgcatca	gccatgatgg	atactttctc	11340
ggcaggagca	aggtgagatg	acaggagatc	ctgccccggc	acttcgccca	atagcagcca	11400
gtcccttccc	gcttcagtga	caacgtcgag	cacagctgcg	caaggaacgc	ccgtcgtggc	11460
cagccacgat	agccgcgctg	cctcgtcctg	cagttcattc	agggcaccgg	acaggtcggt	11520
cttgacaaaa	agaaccgggc	gcccctgcgc	tgacagccgg	aacacggcgg	catcagagca	11580

# WO 2004/063359 PCT/EP2004/000099 238/357

gccgattgtc	tgttgtgccc	agtcatagcc	gaatagcctc	tccacccaag	cggccggaga	11640
acctgcgtgc	aatccatctt	gttcaatcat	gcgaaacgat	ccagatccgg	tgcagattat	11700
ttggattgag	agtgaatatg	agactctaat	tggataccga	ggggaattta	tggaacgtca	11760
gtggagcatt	tttgacaaga	aatatttgct	agctgatagt	gaccttaggc	gacttttgaa	11820
cgcgcaataa	tggtttctga	cgtatgtgct	tagctcatta	aactccagaa	acccgcggct	11880
gagtggctcc	ttcaacgttg	eggttetgte	agttccaaac	gtaaaacggc	ttgtcccgcg	11940
tcatcggcgg	gggtcataac	gtgactccct	taattctccg	ctcatgatca	gattgtcgtt	12000
teeegeette	agtttaaact	atcagtgttt	gacaggatat	attggcgggt	aaacctaaga	12060
gaaaagagcg	tttattagaa	taatcggata	tttaaaaggg	cgtgaaaagg	tttatccgtt	12120
cgtccatttg	tatgtgcatg	ccaaccacag	ggttccccag	atctggcgcc	ggccagcgag	12180
acgagcaaga	ttggccgccg	cccgaaacga	teegacageg	cgcccagcac	aggtgcgcag	12240
gcaaattgca	ccaacgcata	cagcgccagc	agaatgccat	agtgggcggt	gacgtcgttc	12300
gagtgaacca	gategegeag	gaggeeegge	agcaccggca	taatcaggcc	gatgccgaca	12360
gcgtcgagcg	cgacagtgct	cagaattacg	atcaggggta	tgttgggttt	cacgtctggc	12420
ctccggacca	gcctccgctg	gtccgattga	acgcgcggat	tctttatcac	tgataagttg	12480
gtggacatat	tatgtttatc	agtgataaag	tgtcaagcat	gacaaagttg	cagccgaata	12540
cagtgatccg	tgeegeeetg	gacctgttga	acgaggtcgg	cgtagacggt	ctgacgacac	12600
gcaaactggc	ggaacggttg	ggggttcagc	agccggcgct	ttactggcac	ttcaggaaca	12660
agcgggcgct	gctcgacgca	ctggccgaag	ccatgctggc	ggagaatcat	acgcattcgg	12720
tgccgagagc	cgacgacgac	: tggcgctcat	ttctgatcgg	gaatgeeege	agcttcaggc	12780
aggcgctgct	cgcctaccgc	gatggcgcgc	gcatccatgo	eggcacgcga	ccgggcgcac	12840

# WO 2004/063359 PCT/EP2004/000099 239/357

cgcagatgga	aacggccgac	gcgcagcttc	gcttcctctg	cgaggcgggt	ttttcggccg	12900
gggacgccgt	caatgcgctg	atgacaatca	gctacttcac	tgttggggcc	gtgcttgagg	12960
agcaggccgg	cgacagcgat	gccggcgagc	gcggcggcac	cgttgaacag	gctccgctct	13020
cgccgctgtt	gcgggccgcg	atagacgcct	tegaegaage	cggtccggac	gcagcgttcg	13080
agcagggact	cgcggtgatt	gtcgatggat	tggcgaaaag	gaggctcgtt	gtcaggaacg	13140
ttgaaggacc	gagaaagggt	gacgattgat	caggaccgct	gccggagcgc	aacccactca	13200
ctacagcaga	gccatgtaga	caacatcccc	tcccctttc	caccgcgtca	gacgcccgta	13260
gcagcccgct	acgggctttt	tcatgccctg	ccctagcgtc	caagcctcac	ggccgcgctc	13320
ggcctctctg	gcggccttct	ggcgctcttc	cgcttcctcg	ctcactgact	cgctgcgctc	13380
ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	gcggtaatac	ggttatccac	13440
agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	13500
ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	egeceeetg	acgagcatca	13560
caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	13620
gtttccccct	ggaagctccc	tegtgegete	tectgtteeg	accctgccgc	ttaccggata	13680
cctgtccgcc	tttctccctt	cgggaagcgt	ggcgcttttc	cgctgcataa	ccctgcttcg	13740
gggtcattat	agcgattttt	teggtatate	catccttttt	cgcacgatat	acaggatttt	13800
gccaaagggt	tegtgtagac	tttccttggt	gtatccaacg	gcgtcagccg	ggcaggatag	13860
gtgaagtagg	cccacccgcg	agcgggtgtt	ccttcttcac	tgtcccttat	tegeacetgg	13920
cggtgctcaa	cgggaatcct	gctctgcgag	getggeegge	taccgccggc	gtaacagatg	13980
agggcaagcg	gatggctgat	gaaaccaagc	caaccaggaa	gggcagccca	cctatcaagg	14040
tgtactgcct	tccagacgaa	cgaagagcga	ttgaggaaaa	ggcggcggcg	gccggcatga	14100

#### WO 2004/063359 PCT/EP2004/000099 240/357

geetgtegge etacetgetg geegteggee agggetacaa aateaeggge gtegtggaet 14160 atgagcacgt ccgcgagctg gcccgcatca atggcgacct gggccgcctg ggcggcctgc 14220 tgaaactetg geteacegae gaceegegea eggegeggtt eggtgatgee aegateeteg 14280 ccctgctggc gaagatcgaa gagaagcagg acgagcttgg caaggtcatg atgggcgtgg 14340 teegeeegag ggeagageea tgaetttttt ageegetaaa aeggeegggg ggtgegegtg 14400 attgccaage aegteeecat gegeteeate aagaagageg aettegegga getggtgaag 14460 tacatcaccg acgagcaagg caagaccgag cgcctttgcg acgctcaccg ggctggttgc 14520 cctcgccgct gggctggcgg ccgtctatgg ccctgcaaac gcgccagaaa cgccgtcgaa 14580 gccgtgtgcg agacaccgcg gccgccggcg ttgtggatac ctcgcggaaa acttggccct 14640 cactgacaga tgagggggg acgttgacac ttgaggggcc gactcacccg gcgcggcgtt 14700 gacagatgag gggcaggctc gatttcggcc ggcgacgtgg agctggccag cctcgcaaat 14760 cggcgaaaac gcctgatttt acgcgagttt cccacagatg atgtggacaa gcctggggat 14820 aagtgeeetg eggtattgae aettgagggg egegactaet gaeagatgag gggegegate 14880 cttgacactt gaggggcaga gtgctgacag atgaggggcg cacctattga catttgaggg 14940 gctgtccaca ggcagaaaat ccagcatttg caagggtttc cgcccgtttt tcggccaccg 15000 ctaacctgtc ttttaacctg cttttaaacc aatatttata aaccttgttt ttaaccaggg 15060 ctgcgccctg tgcgcgtgac cgcgcacgcc gaaggggggt gccccccctt ctcgaaccct 15120 cccggcccgc taacgcgggc ctcccatccc cccaggggct gcgcccctcg gccgcgaacg 15180 gcctcacccc aaaaatggca gcgctggcag tccttgccat tgccgggatc ggggcagtaa 15240 cgggatgggc gatcagcccg agcgcgacgc ccggaagcat tgacgtgccg caggtgctgg 15300 catcgacatt cagcgaccag gtgccgggca gtgagggcgg cggcctgggt ggcggcctgc 15360

# WO 2004/063359 PCT/EP2004/000099 241/357

ccttcacttc	ggccgtcggg	gcattcacgg	acttcatggc	ggggccggca	atttttacct	15420
tgggcattct	tggcatagtg	gtcgcgggtg	ccgtgctcgt	gttcgggggt	gcgataaacc	15480
cagcgaacca	tttgaggtga	taggtaagat	tataccgagg	tatgaaaacg	agaattggac	15540
ctttacagaa	ttactctatg	aagcgccata	tttaaaaagc	taccaagacg	aagaggatga	15600
agaggatgag	gaggcagatt	gccttgaata	tattgacaat	actgataaga	taatatatct	15660
tttatataga	agatategee	gtatgtaagg	atttcagggg	gcaaggcata	ggcagcgcgc	15720
ttatcaatat	atctatagaa	tgggcaaagc	ataaaaactt	gcatggacta	atgcttgaaa	15780
cccaggacaa	taaccttata	gcttgtaaat	tctatcataa	ttgggtaatg	actccaactt	15840
attgatagtg	tttatgttc	agataatgcc	cgatgacttt	gtcatgcagc	tccaccgatt	15900
ttgagaacga	cagcgacttc	cgtcccagcc	gtgccaggtg	ctgcctcaga	ttcaggttat	15960
gccgctcaat	tcgctgcgta	tatcgcttgc	tgattacgtg	cagetttece	ttcaggcggg	16020
attcatacag	cggccagcca	tccgtcatcc	atatcaccac	gtcaaagggt	gacagcaggc	16080
tcataagacg	ccccagcgtc	gccatagtgc	gttcaccgaa	tacgtgcgca	acaaccgtct	16140
tccggagact	gtcatacgcg	taaaacagcc	agcgctggcg	cgatttagcc	ccgacatagc	16200
cccactgttc	gtccatttcc	gcgcagacga	tgacgtcact	gcccggctgt	atgcgcgagg	16260
ttaccgactg	cggcctgagt	tttttaagtg	acgtaaaatc	gtgttgaggc	caacgcccat	16320
aatgcgggct	gttgcccggc	atccaacgcc	attcatggcc	atatcaatga	ttttctggtg	16380
cgtaccgggt	tgagaagegg	tgtaagtgaa	ctgcagttgc	catgttttac	ggcagtgaga	16440
gcagagatag	cgctgatgtc	cggcggtgct	tttgccgtta	cgcaccaccc	cgtcagtagc	16500
tgaacaggag	ggacagctga	tagacacaga	agccactgga	gcacctcaaa	aacaccatca	16560
tacactaaat	cagtaagttg	gcagcatcac	ccataattgt	ggtttcaaaa	teggeteegt	16620

# WO 2004/063359 PCT/EP2004/000099 242/357

cgatactatg	ttatacgcca	actttgaaaa	caactttgaa	aaagctgttt	tctggtattt	16680
aaggttttag	aatgcaagga	acagtgaatt	ggagttcgtc	ttgttataat	tagcttcttg	16740
gggtatcttt	aaatactgta	gaaaagagga	aggaaataat	aaatggctaa	aatgagaata	16800
tcaccggaat	tgaaaaaact	gatcgaaaaa	taccgctgcg	taaaagatac	ggaaggaatg	16860
tctcctgcta	aggtatataa	gctggtggga	gaaaatgaaa	acctatattt	aaaaatgacg	16920
gacagccggt	ataaagggac	cacctatgat	gtggaacggg	aaaaggacat	gatgctatgg	16980
ctggaaggaa	agctgcctgt	tccaaaggtc	ctgcactttg	aacggcatga	tggctggagc	17040
aatctgctca	tgagtgaggc	cgatggcgtc	ctttgctcgg	aagagtatga	agatgaacaa	17100
agccctgaaa	agattatcga	gctgtatgcg	gagtgcatca	ggctctttca	ctccatcgac	17160
atatcggatt	gtccctatac	gaatagctta	gacagccgct	tagccgaatt	ggattactta	17220
ctgaataacg	atctggccga	tgtggattgc	gaaaactggg	aagaagacac	tccatttaaa	17280
gateegegeg	agctgtatga	ttttttaaag	acggaaaagc	ccgaagagga	acttgtcttt	17340
tcccacggcg	acctgggaga	cagcaacatc	tttgtgaaag	atggcaaagt	aagtggcttt	17400
attgatcttg	ggagaagcgg	cagggcggac	aagtggtatg	acattgcctt	ctgcgtccgg	17460
tcgatcaggg	aggatatcgg	ggaagaacag	tatgtcgagc	tattttttga	cttactgggg	17520
atcaagcctg	attgggagaa	aataaaatat	tatattttac	tggatgaatt	gttttagtac	17580
ctagatgtgg	cgcaacgatg	ccggcgacaa	gcaggagcgc	accgacttct	teegeateaa	17640
gtgttttggc	tctcaggccg	aggcccacgg	caagtatttg	ggcaaggggt	cgctggtatt	17700
cgtgcagggc	aagattcgga	ataccaagta	cgagaaggac	ggccagacgg	tctacgggac	17760
cgacttcatt	gccgataagg	tggattatct	ggacaccaag	gcaccaggcg	ggtcaaatca	17820
ggaataaggg	cacattgccc	cggcgtgagt	cggggcaatc	ccgcaaggag	ggtgaatgaa	17880

#### WO 2004/063359 PCT/EP2004/000099 243/357

teggaegttt	gaccggaagg	catacaggca	agaactgatc	gacgcggggt	tttccgccga	17940
ggatgccgaa	accatcgcaa	gccgcaccgt	catgcgtgcg	ccccgcgaaa	ccttccagtc	18000
cgtcggctcg	atggtccagc	aagctacggc	caagatcgag	cgcgacagcg	tgcaactggc	18060
tececetgee	ctgcccgcgc	categgeege	cgtggagcgt	tegegtegte	tcgaacagga	18120
ggcggcaggt	ttggcgaagt	cgatgaccat	cgacacgcga	ggaactatga	cgaccaagaa	18180
gcgaaaaacc	gccggcgagg	acctggcaaa	acaggtcagc	gaggccaagc	aggccgcgtt	18240
gctgaaacac	acgaagcagc	agatcaagga	aatgcagctt	tecttgtteg	atattgcgcc	18300
gtggccggac	acgatgcgag	cgatgccaaa	cgacacggcc	cgctctgccc	tgttcaccac	18360
gcgcaacaag	aaaatcccgc	gcgaggcgct	gcaaaacaag	gtcattttcc	acgtcaacaa	18420
ggacgtgaag	atcacctaca	ccggcgtcga	gctgcgggcc	gacgatgacg	aactggtgtg	18480
gcagcaggtg	ttggagtacg	cgaagcgcac	ccctatcggc	gagccgatca	ccttcacgtt	18540
ctacgagett	tgccaggacc	tgggctggtc	gatcaatggc	cggtattaca	cgaaggccga	18600
ggaatgcctg	tcgcgcctac	aggcgacggc	gatgggcttc	acgtccgacc	gcgttgggca	18660
cctggaatcg	gtgtcgctgc	tgcaccgctt	ccgcgtcctg	gaccgtggca	agaaaacgtc	18720
ccgttgccag	gtcctgatcg	acgaggaaat	cgtcgtgctg	tttgctggcg	accactacac	18780
gaaattcata	tgggagaagt	accgcaagct	gtcgccgacg	gcccgacgga	tgttcgacta	18840
tttcagctcg	caccgggagc	cgtacccgct	caagctggaa	accttccgcc	tcatgtgcgg	18900
atcggattcc	acccgcgtga	agaagtggcg	cgagcaggtc	ggcgaagcct	gcgaagagtt	18960
gcgaggcagc	ggcctggtgg	aacacgcctg	ggtcaatgat	gacctggtgc	attgcaaacg	19020
ctagggcctt	gtggggtcag	ttccggctgg	gggttcagca	gccagcgctt	tactggcatt	19080
tcaggaacaa	gcgggcactg	ctcgacgcac	ttgcttcgct	cagtatcgct	cgggacgcac	19140

### WO 2004/063359 PCT/EP2004/000099 244/357

ggcgcgctct acgaactgcc gata	aacaga ggattaaaat	tgacaattgt	gattaaggct	19200
cagattcgac ggcttggagc ggcc	gacgtg caggatttcc	gcgagatccg	attgtcggcc	19260
ctgaagaaag ctccagagat gttc	gggtcc gtttacgagc	acgaggagaa	aaagcccatg	19320
gaggegtteg etgaaeggtt gega	gatgce gtggcattcg	gcgcctacat	cgacggcgag	19380
atcattgggc tgtcggtctt caaa	caggag gacggcccca	aggacgctca	caaggcgcat	19440
ctgtccggcg ttttcgtgga gccc	gaacag cgaggccgag	gggtcgccgg	tatgctgctg	19500
cgggcgttgc cggcgggttt attg	ctcgtg atgatcgtcc	gacagattcc	aacgggaatc	19560
tggtggatgc gcatcttcat cctc	ggcgca cttaatattt	cgctattctg	gagcttgttg	19620
tttatttegg tetacegeet geeg	ggeggg gtegeggega		tgtgcagccg	19680
ctgatggtcg tgttcatctc tgcc	egetetg etaggtagee	cgatacgatt	gatggcggtc	19740
ctgggggcta tttgcggaac tgcg	gggcgtg gcgctgttgg	tgttgacacc	aaacgcagcg	19800
ctagatectg teggegtege ageg	gggeetg gegggggegg	tttccatggc	gttcggaacc	19860
gtgetgaeee geaagtggea acet	cccgtg cctctgctca	cctttaccgc	ctggcaactg	19920
gcggccggag gacttctgct cgtt	ccagta gctttagtgt	ttgatccgcc	aatcccgatg	19980
cctacaggaa ccaatgttct cggc	ectggeg tggetegged	: tgatcggagc	gggtttaacc	20040
tacttccttt ggttccgggg gato	ctegega etegaaceta	cagttgtttc	cttactgggc	20100
tttctcagcc ccagatctgg ggtc	cgatcag ccggggatgo	: atcaggccga	cagtcggaac	20160
ttcgggtccc cgacctgtac catt	tcggtga gcaatggata	ggggagttga	tatcgtcaac	20220
gttcacttct aaagaaatag cgc	cactcag cttcctcago	ggctttatcc	agcgatttcc	20280
tattatgtcg gcatagttct caa	gatcgac agcctgtcac	ggttaagcga	gaaatgaata	20340
agaaggetga taatteggat ete	tgcgagg gagatgatat	ttgatcacag	gcagcaacgc	20400

tctgtcatcg	ttacaatcaa	catgctaccc	tccgcgagat	catccgtgtt	tcaaacccgg	20460
cagcttagtt	gccgttcttc	cgaatagcat	cggtaacatg	agcaaagtct	geegeettae	20520
aacggctctc	ccgctgacgc	cgtcccggac	tgatgggctg	cctgtatcga	gtggtgattt	20580
tgtgccgagc	tgccggtcgg	ggagctgttg	gctggctggt	ggcaggatat	attgtggtgt	20640
aaacaaattg	acgcttagac	aacttaataa	cacattgcgg	acgtttttaa	tgtactgggg	20700
tggtttttct	tttcaccagt	gagacgggca	acagctgatt	gcccttcacc	gcctggccct	20760
gagagagttg	cagcaagcgg	tccacgctgg	tttgccccag	caggcgaaaa	tcctgtttga	20820
tggtggttcc	gaaatcggca	aaatccctta	taaatcaaaa	gaatagcccg	agatagggtt	20880
gagtgttgtt	ccagtttgga	acaagagtcc	actattaaag	aacgtggact	ccaacgtcaa	20940
agggcgaaaa	accgtctatc	agggcgatgg	cccactacgt	gaaccatcac	ccaaatcaag	21000
ttttttgggg	tcgaggtgcc	gtaaagcact	aaatcggaac	cctaaaggga	gcccccgatt	21060
tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	gaagggaaga	aagcgaaagg	21120
agcgggcgcc	attcaggctg	cgcaactgtt	gggaagggcg	atcggtgcgg	gcctcttcgc	21180
tattacgcca	gctggcgaaa	gggggatgtg	ctgcaaggcg	attaagttgg	gtaacgccag	21240
ggttttccca	gtcacgacgt	tgtaaaacga	cggccagtga	attcgagctc	ggtacccggg	21300

<210> 47

<211> 17756

<212> DNA

<213> Artificial

<220>

<223> Plasmid

WO 2004/063359
246/357

<221> misc_feature
<222> (10264)..(10264)
<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 47

ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 240 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc cagcetegea aateggegaa aacgeetgat tttaegegag ttteecacag atgatgtgga 300 caagectggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 360 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 480 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 540 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 660 teggeegega acggeeteac eccaaaaatg geagegetgg eagteettge cattgeeggg 720 780 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg

#### WO 2004/063359 PCT/EP2004/000099 247/357

ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaattttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagegac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100

### WO 2004/063359 PCT/EP2004/000099 248/357

aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	cţgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggeteteagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtegetggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgatá	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360

### WO 2004/063359 PCT/EP2004/000099 249/357

gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gtccgtcggc	tegatggtee	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggctccccct	gccctgcccg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	categacaeg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gecegetetg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege.	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tegcaceggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagegggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620

### WO 2004/063359 PCT/EP2004/000099 250/357

	÷		•			
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	ageggeegae	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	teegtttaeg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagegaggee	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg .	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	teteggeetg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagato	tggggtcgat	cageegggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatategte	: aacgttcact	. tctaaagaaa	tagegeeact	cagetteete	ageggettta	5760
tccagcgatt	: tcctattatç	ı teggeatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggo	: tgataattcg	gatetetgeg	agggagatga	tatttgatca	5880

#### WO 2004/063359 PCT/EP2004/000099 251/357

						5040
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tetgeegeet	tacaacggct	ctcccgctga	egeegteeeg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga ·	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagttttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggegettte	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agegteeett	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140

# WO 2004/063359 PCT/EP2004/000099 252/357

aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
togaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	. gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataago	cactggccag	8160
acagetetgg	g eggetetgag	gtgcagtgga	ı tgattattaa	teegggaeeg	geegeeete	8220
cgccccgaag	ı tggaaaggct	ggtgtgccc	: tcgttgacca	ı agaatctatt	gcatcatcgg	8280
agaatatgga	a gcttcatcga	atcaccggca	ı gtaagcgaag	gagaatgtga	a agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	ı cagaagtcca	attgcttccg	8400

#### WO 2004/063359 PCT/EP2004/000099 253/357

atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actegacetg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tectteccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gegeteeega	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeaege	9540
ggatttegge	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660

# WO 2004/063359 PCT/EP2004/000099 254/357

gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagettge	9720
aggategeeg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagctca	tctgcaatgc	attaatgcat	tgactgcaac	·ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	: tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagettgae	: tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	: taagatggta	tacaatagta	. accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	ı tacgccggcc	gaaactttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaato	: cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgo	c ccactccace	tctccactcg	g acctgcaggo	: atgcaagctt	cattttgctt	10800
tgtaaattt	c tggtaactgo	caccaagaaa	a tatgaggata	ttcgtgatgt	tectegtggt	10860
agccaaaat	g atagcacgto	g ataaatgaco	c accaaatagg	g acggctaatt	gtttgggcac	10920

### WO 2004/063359 PCT/EP2004/000099 255/357

aatgaggctg	aacataaccc	cctattggtt	cactatgggg	taaaaaagta	ccaaaataga	10980
ataattgtaa	tgaacttaaa	agcgagggta	gcacccaaaa	gtaagttaga	ttatcacttg	11040
ggatatggag	tatgtattta	gcaaagttat	aaataatagt	caacgcaatt	atttgccccc	11100
aactccagta	acctttcata	aaatgaaaat	accaagcaaa	gaaactttgg	tgtttaccat	11160
tgtgaaaatc	cgggtctatt	gagcttgctg	gattgtggtg	gtgtaaccaa	tgttttttca	11220
atagtttttg	atatggtaaa	agaccataaa	gggatagggt	caatgttcca	atcaaatgat	11280
taatcttggt	gttttgggga	aatactacgc	catgcatggc	atcatgagat	gtaataaata	11340
atcccgtata	taaaaatgtt	tgccatagta	taacaggcaa	taacatccaa	aattttagct	11400
ttgagatgtc	aagggaaagt	aataaactca	ggctaatgac	ccatgcgcta	acaatgacaa	11460
tagcaatgaa	aagcccctta	aactgagatt	tacttctcag	tactggagtc	agttttgctt	11520
gatgactgag	tggttgttct	aactggatca	tttctaaaga	gaaggtggaa	caatgttagc	11580
ataattgtgc	ttgagtgagg	actttgaggg	taggtacata	cttgataaag	ttaatgatta	11640
aagagaaaaa	aaaagttttg	gttcaaagca	gaaattgttt	tttaaatcga	ttggtgagaa	11700
aattttttc	tgtttccgca	tcaccaaagc	cacctcagga	atggtcacaa	attattggtc	11760
tgattggacc	ataagcatac	aaaaagttca	ttgaagtata	cttagtggct	tattagactt	11820
ttatcgtttt	ctaacgcgaa	tcagcaatgt	ttcttgtttg	atttactgct	tgctttagat	11880
catttttgtc	tgaaatatta	tgcatttgtt	caaagcggcc	tttgtttcct	ttctttcatg	11940
cttaaacacg	ttgtttattc	catatattac	tttgaatatg	catcaccgca	aagcggaagt	12000
gcaaaataac	aaagaacctc	tttgggttac	acgatcaact	gctattgtga	aaaaaatttc	12060
tttttgaaaa	tttttggaat	aatatctctt	gcaaaaaaga	aattttgtat	atttagtagc	12120
atcaagaaca	aatgaaagaa	gtgtgggata	acaagaatac	atcatcttta	gacaaaagta	12180

# WO 2004/063359 PCT/EP2004/000099 256/357

cgagaaaaat ctaataagtt gttatagagg tctttgtttt ctttgtgttt atagacagtt 122	40
atttagagtt tgaaaagtgt ctctaatgtg tcttttttta ttattattat ttcaaatgtt 123	00
atgtaatata gctaaagcta tagatttgac attttttcta aatataaaat ttcagtcaac 123	60
agaaataaat gacacgagtt etttteetet eteteaatee tgttgateat caatetttga 124	20
tgtcgtttta aaacaaatga atggcattta gttccttagg tgtcactcac atcttgttga 124	80
ccagaaaatc cttattcgcc ctcaaatctg ctttattcct ttcatttgat ttgatgttta 125	40
agtaatgcaa gcaaacaaaa aagaaacctt tcttgcaaag acaaaagaat tgttttcaga 126	00
ggaaagcaac tcgttgtcat tttttaagga tttagactta taatcgacac catagtttgt 126	60
ccgttacatt ttttattgtc gttttctgat ttccttttaa tctttaagca aaatcaatat 127	'20
taacttatet tgtetteeaa taaaaaatgg ataccaataa caataaatee tteacaaaga 127	80
aaaaaaaaaa aaactcgaaa aaagcttggc gtaatcatgg tcatagctgt ttcctgtgtg 128	340
aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc 129	<del>)</del> 00
ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgcttt 129	<del>)</del> 60
ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 130	)20
cggtttgcgt attgggccaa agacaaaagg gcgacattca accgattgag ggagggaagg 130	080
taaatattga eggaaattat teattaaagg tgaattatea eegteacega ettgageeat 131	140
ttgggaatta gagccagcaa aatcaccagt agcaccatta ccattagcaa ggccggaaac 132	200
gtcaccaatg aaaccatcga tagcagcacc gtaatcagta gcgacagaat caagtttgcc 132	260
tttagcgtca gactgtagcg cgttttcatc ggcattttcg gtcatagccc ccttattagc 133	320
gtttgccatc ttttcataat caaaatcacc ggaaccagag ccaccaccgg aaccgcctcc 13	380
ctcagagecg ccaeceteag aacegecaee etcagageca ccaeceteag ageegecaee 13	440

# WO 2004/063359 PCT/EP2004/000099 257/357

agaaccacca	ccagagccgc	cgccagcatt	gacaggaggc	ccgatctagt	aacatagatg	13500
acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	tttgttttct	atcgcgtatt	13560
aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	cataaataac	gtcatgcatt	13620
acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	ttatatgata	atcatcgcaa	13680
gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	aatgtttgaa	cgatcgggga	13740
tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	acgcagcaag	atatcgcggt	13800
gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	gatgtggacg	ccgggcccga	13860
tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	cgttgctgtc	gtaatgatat	13920
cggcaccttc	gaccgcctgt	tccgcagaga	tecegtggge	gaagaactcc	agcatgagat	13980
cccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	gattccgaag	cccaaccttt	14040
catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	gttgggcgtc	gcttggtcgg	14100
tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	14160
gegetgegaa	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	14220
gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	14280
acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	14340
caagcaggca	tegecatggg	tcacgacgag	atcatcgccg	tegggcatge	gcgccttgag	14400
cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catectgate	14460
gacaagaccg	gcttccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	cttggtggtc	14520
gaatgggcag	gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	14580
tactttctcg	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	14640
tagcagccag	tecetteceg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	14700

# WO 2004/063359 PCT/EP2004/000099 258/357

cgtcgtggcc	agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	14760
caggtcggtc	ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	14820
atcagagcag	ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	14880
ggccggagaa	cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	cagatccggt	14940
gcagattatt	tggattgaga	gtgaatatga	gactctaatt	ggataccgag	gggaatttat	15000
ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgatagtg	accttaggcg	15060
acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	actccagaaa	15120
cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	gttccaaacg	taaaacggct	15180
tgtcccgcgt	catcggcggg	ggtcataacg	tgactccctt	aattctccgc	tcatgatcag	15240
attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	ttggcgggta	15300
aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	gtgaaaaggt	15360
ttatccgttc	gtccatttgt	atgtgcatgc	caaccacagg	gttccccaga	tetggegeeg	15420
gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	ccgacagcgc	gcccagcaca	15480
ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	gaatgccata	gtgggcggtg	15540
acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	gcaccggcat	aatcaggccg	15600
atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	tcaggggtat	gttgggtttc	15660
acgtctggcc	teeggaeeag	cctccgctgg	tccgattgaa	cgcgcggatt	ctttatcact	15720
gataagttgg	tggacatatt	atgtttatca	gtgataaagt	gtcaagcatg	acaaagttgc	15780
agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	cgaggtcggc	gtagacggtc	15840
tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	geeggegett	tactggcact	15900
tcaggaacaa	gegggegetg	ctcgacgcac	tggccgaago	catgctggcg	gagaatcata	15960

# WO 2004/063359 PCT/EP2004/000099 259/357

cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	tctgatcggg	aatgcccgca	16020
gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	catccatgcc	ggcacgcgac	16080
cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	cttcctctgc	gaggcgggtt	16140
tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	ctacttcact	gttggggccg	16200
tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	cggcggcacc	gttgaacagg	16260
ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	ggtccggacg	16320
cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	ggcgaaaagg	aggctcgttg	16380
tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	aggaccgctg	ccggagcgca	16440
acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	accgcgtcag	16500
acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	cctagcgtcc	aagcctcacg	16560
gccgcgctcg	geetetetgg	cggccttctg	gegetettee	gcttcctcgc	tcactgactc	16620
gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	16680
gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	gccagcaaaa	16740
ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	cataggctcc	gccccctga	16800
cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	gactataaag	16860
ataccaggcg	tttccccctg	gaageteeet	cgtgcgctct	cctgttccga	ccctgccgct	16920
taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgcttttcc	gctgcataac	16980
cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	atccttttc	gcacgatata	17040
caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	tatccaacgg	cgtcagccgg	17100
gcaggatagg	tgaagtaggc	ccacccgcga	gegggtgtte	cttcttcact	gtcccttatt	17160
cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	ctggccggct	accgccggcg	17220

taacagatga gggcaagegg atggctgatg aaaccaagec aaccaggaag ggcageccac 17280
ctatcaaggt gtactgcett ccagacgaac gaagagegat tgaggaaaaag geggeggegg 17340
ceggcatgag cetgteggee taectgetgg cegteggeea gggctacaaa ateaegggeg 17400
tegtggacta tgagcaegte egegagetgg eeegeateaa tggegaeetg ggeegeetgg 17460
geggeetget gaaactetgg etcacegaeg accegegeae ggegeggtte ggtgatgeea 17520
egatectege eetgetggeg aagategaag agaageagga egagettgge aaggteatga 17580
tgggegtggt eegeeegagg geagageeat gaettttta geegetaaaa eggeeggggg 17640
gtgegegtga ttgecaagea egteeecatg egeteeatea agaagagega ettegegag 17700
ctggtgaagt acateaecga egageaagge aagacegage geetttgega egetea 17756

```
<210> 48
```

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<211> 17118

<212> DNA

<223> n is a, c, g, or t

<400> 48 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 300 caqcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 480 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 540 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 600 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc 660 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 720 tcggccgcga acggcctcac cccaaaaatg gcagcgctgg cagtccttgc cattgccggg 780 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 900 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 960 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 1080 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 1200 agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo

### WO 2004/063359 PCT/EP2004/000099 262/357

ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380
agctccaccg attttgagaa cgacagcgac ttccgtccca gccgtgccag gtgctgcctc	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tcttccggag actgtcatac gcgtaaaaca gccagcgctg gcgcgattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagette ttggggtate tttaaataet gtagaaaaga ggaaggaaat aataaatgge	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460

### WO 2004/063359 PCT/EP2004/000099 263/357

catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaateggaeg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggeteecet	gccctgcccg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720

agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggegae	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tecaceegeg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	: atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	. aagctccaga	gatgttcggg	teegtttaeg	agcacgagga	4800
gaaaaagcco	atggaggcgt	tegetgaaeg	gttgcgagat	geegtggeat	teggegeeta	4860
categaegge	gagatcattg	ggctgtcggt	: cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggc	g catctgtccg	gegttttegt	ggagcccgaa	cagegagge	gaggggtege	4980

# WO 2004/063359 PCT/EP2004/000099 265/357

cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag.	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggateteg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatategte	aacgttcact	tctaaagaaa	tagegecact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	toggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatetetgeg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tetgeegeet	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tettttcace	agtgagacgg	gcaacagctg	attgcccttc	6240

#### WO 2004/063359 PCT/EP2004/000099 267/357

gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	teegggaeeg	geegeeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgetetge	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760

cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaaçctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	egegaegtet	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeaege	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggategeeg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcago	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtad	: acaaatcgcc	: cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	ı tagtggaaac	: cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgaco	gegggatega	tecaettaac	gttactgaaa	10020

#### WO 2004/063359 PCT/EP2004/000099 269/357

tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattctt	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaaagt	tttttttat	10980
acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttca	atttctttgt	ctttacattt	tetttgteet	ttatctttcc	tcatttagtc	11100
tttgggagaa	. ttaggaaaag	ggagcggaaa	ggtaagaaat	gcttgcgtat	tttactaatt	11160
cggcaaacat	. ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	gacagtatct	11220
ttgattacac	tctaaatctc	gatgacccga	ccaaaaagag	cgaacaaaga	aataatcttg	11280

# WO 2004/063359 PCT/EP2004/000099 270/357

tgcattcgaa	tatgatggaa	gattttttcc	cccttattct	aaatgttgac	atagcgtgta	11340
tgttatataa	acaaaagaa	attgtacaaa	ctttctttc	ttctctttt	attttatctc	11400
tatgatccag	ttagaacaac	cactcagtca	tcaagcaaaa	ctgactccag	tactgagaag	11460
taaatctcag	tttaaggggc	ttttcattgc	tattgtcatt	gttagcgcat	gggtcattag	11520
cctgagttta	ttactttccc	ttgacatctc	aaagctaaaa	ttttggatgt	tattgcctgt	11580
tatactatgg	caaacatttt	tatatacggg	attatttatt	acatctcatg	atgccatgca	11640
tggcgtagta	tttccccaaa	acaccaagat	taatcatttg	attggaacat	tgaccctatc	11700
cctttatggt	cttttaccat	atcaaaaact	attgaaaaaa	cattggttac	accaccacaa	11760
tccagcaagc	tcaatagacc	cggattttca	caatggtaaa	caccaaagtt	tetttgettg	11820
gtattttcat	tttatgaaag	gttactggag	ttgggggcaa	ataattgcgt	tgactattat	11880
ttataacttt	gctaaataca	tactccatat	cccaagtgat	aatctaactt	acttttgggt	11940
gctaccctcg	cttttaagtt	cattacaatt	attctatttt	ggtacttttt	taccccatag	12000
tgaaccaata	gggggttatg	ttcagcctca	ttgtgcccaa	acaattagcc	gtcctatttg	12060
gtggtcattt	atcacgtgct	atcattttgg	ctaccacgag	gaacatcacg	aatatcctca	12120
tatttcttgg	tggcagttac	cagaaattta	caaagcaaaa	tagaagcttg	gcgtaatcat	12180
ggtcatagct	gtttcctgtg	tgaaattgtt	ateegeteae	aattccacac	aacatacgag	12240
ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagetaaete	acattaattg	12300
cgttgcgctc	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	12360
teggecaaeg	cgcggggaga	ggcggtttgc	gtattgggcc	aaagacaaaa	gggcgacatt	12420
caaccgattg	agggagggaa	. ggtaaatatt	gacggaaatt	attcattaaa	ggtgaattat	12480
caccgtcacc	gacttgagco	atttgggaat	tagagccagc	aaaaţcacca	gtagcaccat	12540

# WO 2004/063359 PCT/EP2004/000099 271/357

taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12600
tagcgacaga	•					12660
						12720
cggtcatagc .	CCCCLLALLA	gegeeegeea	CCCCCCCCCC	accadacca	ocggaacoag	
agccaccacc	ggaacegeet	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12780
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12840
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	12900
attttgtttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	12960
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13020
aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13080
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13140
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13200
ttgatgtgga	cgccgggccc	gatcatattg	tcgctcagga	tegtggegtt	gtgcttgtcg	13260
gccgttgctg	tcgtaatgat	atcggcacct	tegacegeet	gttccgcaga	gatecegtgg	13320
gcgaagaact	ccagcatgag	atccccgcgc	tggaggatca	tccagccggc	gtcccggaaa	13380
acgattccga	agcccaacct	ttcatagaag	gcggcggtgg	aatcgaaatc	tegtgatgge	13440
aggttgggcg	tegettggte	ggtcatttcg	aaccccagag	tecegeteag	aagaactcgt	13500
caagaaggcg	atagaaggcg	atgcgctgcg	aatcgggagc	ggcgataccg	taaagcacga	13560
ggaagcggtc	agcccattcg	ccgccaagct	cttcagcaat	atcacgggta	gccaacgcta	13620
tgtcctgata	geggteegee	acacccagcc	ggccacagtc	gatgaatcca	gaaaagcggc	13680
cattttccac	catgatatto	ggcaagcagg	catcgccatg	ggtcacgacg	agatcatcgc	13740
cgtcgggcat	gcgcgccttg	agcctggcga	acagttcggc	tggcgcgagc	ccctgatgct	13800

# WO 2004/063359 PCT/EP2004/000099 272/357

cttcgtccag	atcatcctga	tcgacaagac	cggcttccat	ccgagtacgt	gctcgctcga	13860
tgcgatgttt	cgcttggtgg	tcgaatgggc	aggtagccgg	atcaagcgta	tgcagccgcc	13920
gcattgcatc	agccatgatg	gatactttct	cggcaggagc	aaggtgagat	gacaggagat	13980
cctgccccgg	cacttcgccc	aatagcagcc	agtecettee	cgcttcagtg	acaacgtcga	14040
gcacagctgc	gcaaggaacg	cccgtcgtgg	ccagccacga	tageegeget	gcctcgtcct	14100
gcagttcatt	cagggcaccg	gacaggtcgg	tcttgacaaa	aagaaccggg	cgcccctgcg	14160
ctgacagecg	gaacacggcg	gcatcagagc	agccgattgt	ctgttgtgcc	cagtcatagc	14220
cgaatagcct	ctccacccaa	geggeeggag	aacctgcgtg	caatccatct	tgttcaatca	14280
tgcgaaacga	tccagatccg	gtgcagatta	tttggattga	gagtgaatat	gagactctaa	14340
ttggataccg	aggggaattt	atggaacgtc	agtggagcat	ttttgacaag	aaatatttgc	14400
tagctgatag	tgaccttagg	cgacttttga	acgcgcaata	atggtttctg	acgtatgtgc	14460
ttagctcatt	aaactccaga	aacccgcggc	tgagtggctc	cttcaacgtt	gcggttctgt	14520
cagttccaaa	cgtaaaacgg	cttgtcccgc	gtcatcggcg	ggggtcataa	cgtgactccc	14580
ttaattctcc	gctcatgatc	agattgtcgt	ttcccgcctt	cagtttaaac	tatcagtgtt	14640
tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	ataatcggat	14700
atttaaaagg	gcgtgaaaag	gtttatccgt	tcgtccattt	gtatgtgcat	gccaaccaca	14760
gggttcccca	a gatetggege	cggccagcga	gacgagcaag	attggccgcc	geeegaaaeg	14820
atccgacago	gegeeeagea	caggtgcgca	ggcaaattgc	: accaacgcat	: acagcgccag	14880
cagaatgcca	a tagtgggcgg	tgacgtcgtt	cgagtgaaco	: agatcgcgca	a ggaggcccgg	14940
cagcaccggo	c ataatcaggo	cgatgccgad	: agcgtcgagc	gcgacagtgo	c tcagaattac	15000
gatcagggg	t atgttgggtt	: tcacgtctgg	g cctccggaco	agceteege	t ggtccgattg	15060

#### WO 2004/063359 PCT/EP2004/000099 273/357

aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15120
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15180
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15240
cageeggege	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15300
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	15360
tttctgatcg	ggaatgcccg	cagcttcagg	caggcgctgc	tcgcctaccg	cgatggcgcg	15420
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15480
cgcttcctct	gcgaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	15540
agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15600
cgcggcggca	ccgttgaaca	ggctccgctc	tegeegetgt	tgcgggccgc	gatagacgcc	15660
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tegeggtgat	tgtcgatgga	15720
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15780
tcaggaccgc	tgccggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	15840
ctcccccttt	ccaccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	15900
gccctagcgt	ccaagcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	15960
ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	gctgcggcga	gcggtatcag	16020
ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	16080
tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	16140
tccataggct	ccgccccct	gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	16200
gaaacccgac	aggactataa	agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	16260
ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tegggaageg	16320

tggcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	16380
ccatcctttt	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16440
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16500
tecttettea	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	16560
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16620
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16680
attgaggaaa	aggeggegge	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	16740
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	16800
aatggcgacc	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	16860
acggcgcggt	teggtgatge	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	16920
gacgagcttg	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	16980
tagccgctaa	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	17040
caagaagagc	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	17100
gegeetttge	gacgctca					17118

<210> 49

<211> 18449

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 49

60 gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 420 atattetteg actetgtatt atagataaga tgatgaggaa ttggaggtag catagettea 480 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc 540 600 aatattctca agtatctcga gtttgaactt attccctgtg aaccttttat tcaccaatga gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc 660 ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 720 780 tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct 840 caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg 900

# WO 2004/063359 PCT/EP2004/000099 276/357

				•		
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagctta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tagccgtcgg	1560
cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat	agtacettet	ccgaagtagg	tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca	tccggcatct	gtagggcgtc	caaatategt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac	cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tegttgegte	1920
agtccaacat	ttgttgccat	attttcctgc	tctccccacc	agctgctctt	ttcttttctc	1980
tttctttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160

#### WO 2004/063359 PCT/EP2004/000099 277/357

accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agetgegeeg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agagcctgac	ctattgcatc	tecegeegtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tegeggagge	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	catteggace	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gegteegteg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	tttcggctcc	2760
aacaatgtcc	tgacggacaa	tggccgcata	acageggtea	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcateegg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	teeggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420

# WO 2004/063359 PCT/EP2004/000099 278/357

cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tcttggctcc	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tcctcttctt	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagcnc	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	acttttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caaagcttga	gattaaaata	gataaggaaa	4020
agaaagtgaa	aagaaattcg	gaagcatggc	acattcttct	ttttataaat	acatgcctga	4080
ctttctttt	ccatcgatat	gatatatgca	tatgatagat	atacaagcaa	tcttcttcaa	4140
ggagtttgaa	attttgtcct	ccaggagcaa	aaaaaagttt	ttttttatac	atgtttgtac	4200
acaagaatag	ttaccaattt	gctttggtct	tacgtgctgc	aagtttatat	cgttttcaat	4260
ttctttgtct	ttacattttc	tttgtccttt	atctttcctc	atttagtctt	tgggagaatt	4320
aggaaaaggg	agcggaaagg	taagaaatgc	ttgcgtattt	tactaattcg	gcaaacatcc	4380
aatttggcaa	acagcagcct	gtgcaacgct	ctcgagatga	cagtatcttt	gattacactc	4440
taaatctcga	tgacccgacc	aaaaagagcg	aacaaagaaa	taatcttgtg	cattcgaata	4500
tgatggaaga	tttttcccc	cttattctaa	atgttgacat	agcgtgtatg	ttatataaac	4560
aaaaagaaat	tgtacaaact	ttcttttctt	ctctttttat	tttatctcta	tgctgtcgaa	4620
gctgcagtca	atcagcgtca	aggecegeeg	cgttgaacta	gcccgcgaca	tcacgcggcc	4680

#### WO 2004/063359 PCT/EP2004/000099 279/357

caaagtetge etgeatgete	agcggtgctc	gttagttcgg	ctgcgagtgg	cagcaccaca	4740
gacagaggag gcgctgggaa	ccgtgcaggc	tgccggcgcg	ggcgatgagc	acagcgccga	4800
tgtagcactc cagcagcttg	accgggctat	cgcagagcgt	cgtgcccggc	gcaaacggga	4860
gcagctgtca taccaggctg	ccgccattgc	agcatcaatt	ggcgtgtcag	gcattgccat	4920
cttcgccacc tacctgagat	ttgccatgca	catgaccgtg	ggcggcgcag	tgccatgggg	4980
tgaagtgget ggeactetee	tcttggtggt	tggtggcgcg	ctcggcatgg	agatgtatgc	5040
ccgctatgca cacaaagcca	tctggcatga	gtcgcctctg	ggctggctgc	tgcacaagag	5100
ccaccacaca cctcgcactg	gaccctttga	agccaacgac	ttgtttgcaa	tcatcaatgg	5160
actgcccgcc atgctcctgt	gtacctttgg	cttctggctg	cccaacgtcc	tgggggcggc	5220
ctgctttgga gcggggctgg	gcatcacgct	atacggcatg	gcatatatgt	ttgtacacga	5280
tggcctggtg cacaggcgct	ttcccaccgg	gcccatcgct	ggcctgccct	acatgaagcg	5340
cctgacagtg gcccaccagc	tacaccacag	cggcaagtac	ggtggcgcgc	cctggggtat	5400
gttettgggt ccacaggage	tgcagcacat	tccaggtgcg	gcggaggagg	tggagcgact	5460
ggtcctggaa ctggactggt	ccaagcgggc	gattgtgact	gatagcgaga	ctctgggtcg	5520
atgttatctg cctcaacaat	ggcttagaaa	agaagaaaca	gaacaaatac	agcaaggcaa	5580
cgcccgtagc ctaggtgatc	aaagactgtt	gggcttgtct	ctgaagcttg	taggaaaggc	5640
agacgetate atggtgagag	ctaagaaggg	cattgacaag	ttgccggcaa	actgtcaagg	5700
cggtgtacga gctgcttgcc	aagtatatgc	tgcaattgga	tctgtactca	agcagcagaa	5760
gacaacatat cctacaagag	ctcatctaaa	aggaagcgaa	cgtgccaaga	ttgctctgtt	5820
gagtgtatac aacctctatc	aatctgaaga	caagcctgtg	gctctccgtc	aagctagaaa	5880
gattaagagt ttttttgttg	attagtgaat	ttttgtttta	tttatgtctg	atagttcaat	5940

aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	6000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttctttttt	ggcttgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	ttccttttag	atgagctctt	gtaggatatg	ttgtcttctg	ctgcttgagt	6240
acagatccaa	ttgcagcata	tacttggcaa	gcagctcgta	caccgccttg	acagtttgcc	6300
ggcaacttgt	caatgccctt	cttagctctc	accatgatag	cgtctgcctt	tcctacaagc	6360
ttcagagaca	agcccaacag	tetttgatca	cctaggctac	gggcgttgcc	ttgctgtatt	6420
tgttctgttt	cttctttct	aagccattgt	tgaggcagat	aacatcgacc	caacatcctc	6480
gagccatact	acagcataaa	aggatacgtt	ttctttaaca	gaaatttacc	cttttgttat	6540
cagcacatac	aaaaaaaaag	aaatttaaga	tgagtaggac	ttccattctc	tcaaaaattt	6600
tattcaatcc	ataaatgaat	tatttttgga	caaaaaagaa	agattatgcc	tgattttctc	6660
tattttttt	ttttttacaa	ctccaccaat	actttctagc	ccagcttggc	gtaatcatgg	6720
tcatagctgt	ttcctgtgtg	aaattgttat	ccgctcacaa	ttccacacaa	catacgagcc	6780
ggaagcataa	agtgtaaagc	ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	6840
ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	6900
ggccaacgcg	cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gcgacattca	6960
accgattgag	ggagggaagg	taaatattga	cggaaattat	tcattaaagg	tgaattatca	7020
ccgtcaccga	cttgagccat	ttgggaatta	gagccagcaa	aatcaccagt	agcaccatta	7080
ccattagcaa	ggccggaaac	gtcaccaatg	aaaccatcga	tagcagcacc	gtaatcagta	7140
gcgacagaat	caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	7200

#### WO 2004/063359 PCT/EP2004/000099 . 281/357

gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260
ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	ctcagagcca	7320
ccaccetcag	agccgccacc	agaaccacca	ccagagecge	cgccagcatt	gacaggaggc	7380
ccgatctagt	aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	7440
tttgttttct	atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	7500
cataaataac	gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	7560
ttatatgata	atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	7620
aatgtttgaa	cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	7680
acgcagcaag	atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	7740
gatgtggacg	ccgggcccga	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	7800
cgttgctgtc	gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tcccgtgggc	7860
gaagaactcc	agcatgagat	ccccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	7920
gattccgaag	cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	7980
gttgggcgtc	gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	8040
agaaggcgat	agaaggcgat	gcgctgcgaa	tcgggagcgg	cgataccgta	aagcacgagg	8100
aagcggtcag	cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	8160
tcctgatagc	ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	8220
ttttccacca	tgatattcgg	caagcaggca	tcgccatggg	tcacgacgag	atcategeeg	8280
tegggeatge	gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	8340
tegtecagat	catcctgatc	gacaagaccg	gcttccatcc	gagtacgtgo	tegetegatg	8400
cgatgtttcg	cttggtggtc	gaatgggcag	gtagccggat	caagcgtatg	cageegeege	8460

# WO 2004/063359 PCT/EP2004/000099 282/357

attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc	8520
tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc	8580
acagctgcgc aaggaacgcc cgtcgtggcc agccacgata gccgcgctgc ctcgtcctgc	8640
agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct	8700
gacagccgga acacggcggc atcagagcag ccgattgtct gttgtgccca gtcatagccg	8760
aatageetet ecaceeaage ggeeggagaa eetgegtgea ateeatettg tteaateatg	8820
cgaaacgatc cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt	8880
ggataccgag gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta	8940
gctgatagtg accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt	9000
agctcattaa actccagaaa cccgcggctg agtggctcct tcaacgttgc ggttctgtca	9060
gttccaaacg taaaacgget tgtcccgcgt catcggcggg ggtcataacg tgactccctt	9120
aatteteege teatgateag attgtegttt eeegeettea gtttaaaeta teagtgtttg	9180
acaggatata ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat	9240
ttaaaagggc gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg	9300
gttccccaga tctggcgccg gccagcgaga cgagcaagat tggccgccgc ccgaaacgat	9360
ccgacagcgc gcccagcaca ggtgcgcagg caaattgcac caacgcatac agcgccagca	9420
gaatgccata gtgggcggtg acgtcgttcg agtgaaccag atcgcgcagg aggcccggca	9480
gcaceggcat aatcaggccg atgccgacag cgtcgagcgc gacagtgctc agaattacga	9540
tcaggggtat gttgggtttc acgtctggcc tccggaccag cctccgctgg tccgattgaa	9600
cgcgcggatt ctttatcact gataagttgg tggacatatt atgtttatca gtgataaagt	9660
gtcaagcatg acaaagttgc agccgaatac agtgatccgt gccgccctgg acctgttgaa	9720

#### WO 2004/063359 PCT/EP2004/000099 283/357

cgaggtcggc	gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	9780
geeggegett	tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	9840
catgctggcg	gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	9900
tctgatcggg	aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	9960
catccatgcc	ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	10020
cttcctctgc	gaggcgggtt	tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	10080
ctacttcact	gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	10140
cggcggcacc	gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	10200
cgacgaagcc	ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	10260
ggcgaaaagg	aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	10320
aggaccgctg	ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	10380
cccctttcc	accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	10440
cctagcgtcc	aagcctcacg	geegegeteg	gcctctctgg	cggccttctg	gcgctcttcc	10500
gettectege	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	10560
cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	10620
tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	10680
cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	10740
aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	10800
cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	10860
gcgcttttcc	gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	10920
atcctttttc	gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	10980

# WO 2004/063359 PCT/EP2004/000099 284/357

tatccaacgg	cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	11040
cttcttcact	gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	11100
ctggccggct	accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	11160
aaccaggaag	ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	11220
tgaggaaaag	gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	11280
gggctacaaa	atcacgggcg	tegtggaeta	tgagcacgtc	cgcgagctgg	cccgcatcaa	11340
tggcgacctg	ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	acccgcgcac	11400
ggcgcggttc	ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	11460
cgagcttggc	aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gactttttta	11520
gccgctaaaa	cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	11580
agaagagcga	cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	11640
gcctttgcga	cgctcaccgg	gctggttgcc	ctcgccgctg	ggetggegge	cgtctatggc	11700
cctgcaaacg	cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	11760
tgtggatacc	tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	11820
tgaggggccg	actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	11880
gcgacgtgga	gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	11940
ccacagatga	tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	12000
gcgactactg	acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	12060
tgaggggcgc	acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	12120
aagggtttco	gcccgttttt	cggccaccgc	taacctgtct	tttaacctgc	ttttaaacca	12180
atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gegeaegeeg	12240

#### WO 2004/063359 PCT/EP2004/000099 285/357

aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	12300
ccaggggctg	egeceetegg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	12420
cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
tgagggcggc	ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	12540
cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tegegggtge	12600
cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
ataccgaggt	atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	12720
ttaaaaagct	accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	12780
attgacaata	ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	12840
tttcaggggg	caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	12900
taaaaacttg	catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	12960
ctatcataat	tgggtaatga	ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	13020
gatgactttg	tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	13080
tgccaggtgc	tgcctcagat	tcaggttatg	ccgctcaatt	cgctgcgtat	atcgcttgct	13140
gattacgtgc	agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	13200
tatcaccacg	f tcaaagggtg	acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	13260
ttcaccgaat	: acgtgcgcaa	caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	13320
gcgctggcgc	gatttagccc	cgacatagcc	ccactgttcg	tccatttccg,	cgcagacgat	13380
gacgtcacto	g cccggctgta	tgcgcgaggt	taccgactgo	ggcctgagtt	tttaagtga	13440
cgtaaaatcg	g tgttgaggco	aacgcccata	atgcgggctg	ttgcccggca	ı tccaacgcca	13500

ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	13920
ggaaataata	aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	13980
accgctgcgt	aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	14040
aaaatgaaaa	cctatattta	aaaatgacgg	acagccggta	taaagggacc	acctatgatg	14100
tggaacggga	aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtcc	14160
tgcactttga	acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	14220
tttgctcgga	agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	14280
agtgcatcag	gctctttcac	tccatcgaca	tatcggattg	tccctatacg	aatagcttag	14340
acageegett	agccgaattg	gattacttac	tgaataacga	tctggccgat	gtggattgcg	14400
aaaactggga	. agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	tttttaaaga	14460
cggaaaagcc	: cgaagaggaa	cttgtcttt	cccacggcga	cctgggagac	agcaacatct	14520
ttgtgaaaga	tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggcggaca	14580
agtggtatga	cattgcctto	tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	14640
atgtcgagct	: attttttgac	: ttactgggga	tcaagcctga	ttgggagaaa	ataaaatatt	14700
atattttact	ggatgaattg	tttagtaco	: tagatgtggc	gcaacgatgo	: cggcgacaag	14760

#### WO 2004/063359 PCT/EP2004/000099 287/357

caggagcgca	ccgacttctt	ccgcatcaag	tgttttggct	ctcaggccga	ggeceaegge	14820
aagtatttgg	gcaaggggtc	gctggtattc	gtgcagggca	agattcggaa	taccaagtac	14880
gagaaggacg	gccagacggt	ctacgggacc	gacttcattg	ccgataaggt	ggattatctg	14940
gacaccaagg	caccaggcgg	gtcaaatcag	gaataagggc	acattgcccc	ggcgtgagtc	15000
ggggcaatcc	cgcaaggagg	gtgaatgaat	cggacgtttg	accggaaggc	atacaggcaa	15060
gaactgatcg	acgcggggtt	ttccgccgag	gatgccgaaa	ccatcgcaag	ccgcaccgtc	15120
atgcgtgcgc	cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	15180
aagatcgagc	gcgacagcgt	gcaactggct	cccctgccc	tgcccgcgcc	ateggeegee	15240
gtggagcgtt	cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	15300
gacacgcgag	gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	15360
caggtcagcg	aggccaagca	ggccgcgttg	ctgaaacaca	cgaagcagca	gatcaaggaa	15420
atgcagcttt	ccttgttcga	tattgcgccg	tggccggaca	cgatgcgagc	gatgccaaac	15480
gacacggccc	gctctgccct	gttcaccacg	cgcaacaaga	aaatcccgcg	cgaggcgctg	15540
caaaacaagg	tcattttcca	cgtcaacaag	gacgtgaaga	tcacctacac	cggcgtcgag	15600
ctgcgggccg	acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagcgcacc	15660
cctatcggcg	agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	15720
atcaatggco	ggtattacac	gaaggccgag	gaatgcctgt	. cgcgcctaca	ggcgacggcg	15780
atgggcttca	cgtccgaccg	cgttgggcac	ctggaatcgg	tgtcgctgct	gcaccgcttc	15840
cgcgtcctgg	accgtggcaa	gaaaacgtco	: cgttgccagg	tcctgatcga	cgaggaaatc	15900
gtcgtgctgt	: ttgctggcga	ccactacacg	aaattcatat	: gggagaagta	a ccgcaagctg	15960
tcgccgacgg	cccgacggat	gttcgactat	ttcagctcgc	accgggagco	gtacccgctc	16020

aagctggaaa ccttccgcct catgtgcgga tcggattcca cccgc	cgtgaa gaagtggcgc 16080
gagcaggtcg gcgaagcctg cgaagagttg cgaggcagcg gcctg	ggtgga acacgeetgg 16140
gtcaatgatg acctggtgca ttgcaaacgc tagggccttg tggg	gtcagt tccggctggg 16200
ggttcagcag ccagcgcttt actggcattt caggaacaag cggg	cactge tegaegeact 16260
tgcttcgctc agtatcgctc gggacgcacg gcgcgctcta cgaa	ctgccg ataaacagag 16320
gattaaaatt gacaattgtg attaaggctc agattcgacg gctt	ggagcg gccgacgtgc 16380
aggatttccg cgagatccga ttgtcggccc tgaagaaagc tcca	gagatg ttcgggtccg 16440
tttacgagca cgaggagaaa aagcccatgg aggcgttcgc tgaa	cggttg cgagatgccg 16500
tggcattcgg cgcctacatc gacggcgaga tcattgggct gtcg	gtcttc aaacaggagg 16560
acggccccaa ggacgctcac aaggcgcatc tgtccggcgt tttc	gtggag cccgaacagc 16620
gaggccgagg ggtcgccggt atgctgctgc gggcgttgcc ggcg	ggttta ttgctcgtga 16680
tgatcgtccg acagattcca acgggaatct ggtggatgcg catc	ettcatc ctcggcgcac 16740
ttaatatttc gctattctgg agcttgttgt ttatttcggt ctac	egectg cegggegggg 16800
tegeggegae ggtaggeget gtgeageege tgatggtegt gtte	eatetet geegetetge 16860
taggtagccc gatacgattg atggcggtcc tgggggctat ttgc	eggaact gegggegtgg 16920
cgctgttggt gttgacacca aacgcagcgc tagatcctgt cggc	egtegea gegggeetgg 16980
cgggggcggt ttccatggcg ttcggaaccg tgctgacccg caag	gtggcaa cctcccgtgc 17040
ctctgctcac ctttaccgcc tggcaactgg cggccggagg act	tetgete gttecagtag 17100
ctttagtgtt tgatccgcca atcccgatgc ctacaggaac caa	tgttete ggeetggegt 17160
ggctcggcct gatcggagcg ggtttaacct acttcctttg gtt	ccggggg atctcgcgac 17220
togaacetae agttgtttee ttactggget tteteageee cag	atctggg gtcgatcagc 17280

# WO 2004/063359 PCT/EP2004/000099 289/357

cggggatgca	tcaggccgac	agtcggaact	tcgggtcccc	gacctgtacc	attcggtgag	17340
caatggatag	gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	17400
ttcctcagcg	gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	17460
gcctgtcacg	gttaagcgag	aaatgaataa	gaaggctgat	aatteggate	tctgcgaggg	17520
agatgatatt	tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	17580
ccgcgagatc	atccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	17640
ggtaacatga	gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	17700
gatgggctgc	ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	17760
ctggctggtg	gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	17820
acattgcgga	cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	17880
cagctgattg	cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	17940
ttgccccagc	aggcgaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	18000
aaatcaaaag	aatagcccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	18060
ctattaaaga	acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	18120
ccactacgtg	aaccatcacc	caaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	18180
aatcggaacc	ctaaagggag	ccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	18240
gcgagaaagg	aagggaagaa	agcgaaagga	gegggegeea	ttcaggctgc	gcaactgttg	18300
ggaagggcga	tcggtgcggg	cctcttcgct	attacgccag	ctggcgaaag	ggggatgtgc	18360
tgcaaggcga	ttaagttggg	taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	18420
ggccagtgaa	ttcgagctcg	gtacccggg				18449

290/357 <210> 50 <211> 18617 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 50 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 300 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480

ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg

540

#### WO 2004/063359 PCT/EP2004/000099 291/357

tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agececactg	ttcgtccatt	teegegeaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800

ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	: cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060

# WO 2004/063359 PCT/EP2004/000099 293/357

•						
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tetggacace	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggctcccct	gecetgeceg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agegaggeea	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acącgaaggo	cgaggaatgo	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	: caggtcctga	tegaegagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaatto	: atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320

# WO 2004/063359 PCT/EP2004/000099 . 294/357

ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tecaceegeg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	, gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580

#### WO 2004/063359 PCT/EP2004/000099 295/357

tteettactg ggetttetea geeceagate tggggtegat eageegggga tgeateagge 5640 cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt 5700 tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta 5760 tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag 5820 cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca 5880 caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt 5940 gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag 6000 totgoogect tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat 6060 6120 cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga 6180 tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc 6240 6300 accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga 6360 aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc 6420 ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat 6480 6540 cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag 6600 ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg 6660 6720 cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt 6780 tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg 6840

# WO 2004/063359 PCT/EP2004/000099 296/357

					•	
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
teetttgget	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100

#### WO 2004/063359 PCT/EP2004/000099 297/357

tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	teegggaeeg	geegeeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaceggea	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	teteegaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagctgct	8760 -
cttttcttt	ctctttcttt	teccatette	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	. gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	. ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	g caagacetge	ctgaaaccga	actgcccgct	gttctgcago	cggtcgcgga	9300
ggccatggat	gegategetg	gegeegatet	tagccagacg	agcgggttcg	gcccattcgg	9360

#### WO 2004/063359 PCT/EP2004/000099 298/357

accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tegtgeaege	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatetegata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tetgeaatge	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	. ccggcgaaga	gaagaatago	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaago	: agatcaacgg	togtcaagag	acctacgaga	. ctgaggaatc	: cgctcttggc	10380
tccacgcgac	: tatatattt <u>c</u>	, tctctaattg	r tactttgaca	tgctcctctt	ctttactctg	10440
atagettgad	: tatgaaaatt	cegteaceag	cncctgggtt	: cgcaaagata	attgcatgtt	10500
tcttccttga	a actctcaago	ctacaggaca	cacattcatc	gtaggtataa	a acctcgaaat	10560
canttecta	c taagatggta	a tacaatagta	a accatgcato	gttgcctagt	gaatgeteeg	10620

#### WO 2004/063359 PCT/EP2004/000099 299/357

taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tetecacteg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattctt	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaaagt	tttttttat	10980
acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttca	atttctttgt	ctttacattt	tctttgtcct	ttatctttcc	tcatttagtc	11100
tttgggagaa	ttaggaaaag	ggagcggaaa	ggtaagaaat	gcttgcgtat	tttactaatt	11160
cggcaaacat	ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	gacagtatct	11220
ttgattacac	tctaaatctc	gatgacccga	ccaaaaagag	cgaacaaaga	aataatcttg	11280
tgcattcgaa	tatgatggaa	gattttttcc	cccttattct	aaatgttgac	atagcgtgta	11340
tgttatataa	acaaaaagaa	attgtacaaa	ctttctttc	ttctctttt	attttatctc	11400
tatgctgtcg	aagctgcagt	caatcagcgt	caaggcccgc	cgcgttgaac	tagcccgcga	11460
catcacgcgg	cccaaagtct	gcctgcatgc	tcagcggtgc	tcgttagttc	ggctgcgagt	11520
ggcagcacca	cagacagagg	aggcgctggg	aaccgtgcag	gctgccggcg	cgggcgatga	11580
gcacagegee	gatgtagcac	tccagcagc.t	tgaccgggct	atcgcagagc	gtcgtgcccg	11640
gcgcaaacgg	gagcagctgt	cataccaggc	tgccgccatt	gcagcatcaa	ttggcgtgtc	11700
aggcattgcc	atcttcgcca	cctacctgag	atttgccatg	cacatgaccg	tgggcggcgc	11760
agtgccatgg	ggtgaagtgg	ctggcactct	cctcttggtg	gttggtggcg	cgctcggcat	11820
ggagatgtat	gcccgctatg	cacacaaagc	catctggcat	gagtcgcctc	tgggctggct	11880

# WO 2004/063359 PCT/EP2004/000099 300/357

gctgcacaag	agccaccaca	cacctcgcac	tggacccttt	gaagccaacg	acttgtttgc	11940
aatcatcaat	ggactgcccg	ccatgctcct	gtgtaccttt	ggcttctggc	tgcccaacgt	12000
cctgggggcg	gcctgctttg	gagcggggct	gggcatcacg	ctatacggca	tggcatatat	12060
gtttgtacac	gatggcctgg	tgcacaggcg	ctttcccacc	gggcccatcg	ctggcctgcc	12120
ctacatgaag	cgcctgacag	tggcccacca	gctacaccac	agcggcaagt	acggtggcgc	12180
gccctggggt	atgttcttgg	gtccacagga	gctgcagcac	attccaggtg	cggcggagga	12240
ggtggagcga	ctggtcctgg	aactggactg	gtccaagcgg	tagaagcttg	agattaaaat	12300
agataaggaa	aagaaagtga	aaagaaattc	ggaagcatgg	cacattcttc	tttttataaa	12360
tacatgcctg	actttcttt	tccatcgata	tgatatatgc	atatgataga	tatacaagca	12420
atcttcttca	aggagtttga	aattttgtcc	tccaggagca	aaaaaaagtt	ttttttata	12480
catgtttgta	cacaagaata	gttaccaatt	tgctttggtc	ttacgtgctg	caagtttata	12540
tcgttttcaa	tttctttgtc	tttacatttt	ctttgtcctt	tatettteet	catttagtct	12600
ttgggagaat	taggaaaagg	gagcggaaag	gtaagaaatg	cttgcgtatt	ttactaattc	12660
ggcaaacatc	caatttggca	aacagcagcc	tgtgcaacgc	tctcgagatg	acagtatett	12720
tgattacact	ctaaatctcg	atgacccgac	caaaaagagc	gaacaaagaa	. ataatcttgt	12780
gcattcgaat	atgatggaag	attttttccc	ccttattcta	aatgttgaca	tagcgtgtat	12840
gttatataaa	caaaaagaaa	ttgtacaaac	tttcttttct	tetetttta	tttatctct	12900
atgatccagt	: tagaacaacc	actcagtcat	caagcaaaac	tgactccagt	: actgagaagt	12960
aaatctcagt	: ttaaggggct	tttcattgct	attgtcattg	ttagcgcatg	ggtcattagc	13020
ctgagtttat	tactttccct	: tgacatctca	aagctaaaat	: tttggatgtt	attgcctgtt	13080
atactatggo	aaacattttt	atatacggga	ttatttatta	catctcatga	a tgccatgcat	13140

# WO 2004/063359 PCT/EP2004/000099 301/357

ggcgtagtat	ttccccaaaa	caccaagatt	aatcatttga	ttggaacatt	gaccctatcc	13200
ctttatggtc	ttttaccata	tcaaaaacta	ttgaaaaaac	attggttaca	ccaccacaat	13260
ccagcaagct	caatagaccc	ggattttcac	aatggtaaac	accaaagttt	ctttgcttgg	13320
tattttcatt	ttatgaaagg	ttactggagt	tgggggcaaa	taattgcgtt	gactattatt	13380
tataactttg	ctaaatacat	actccatatc	ccaagtgata	atctaactta	cttttgggtg	13440
ctaccctcgc	ttttaagttc	attacaatta	ttctattttg	gtacttttt	accccatagt	13500
gaaccaatag	ggggttatgt	tcagcctcat	tgtgcccaaa	caatțagccg	tectatttgg	13560
tggtcattta	tcacgtgcta	tcattttggc	taccacgagg	aacatcacga	atatcctcat	13620
atttcttggt	ggcagttacc	agaaatttac	aaagcaaaat	agaagcttgg	cgtaatcatg	13680
gtcatagctg	tttcctgtgt	gaaattgtta	tccgctcaca	attccacaca	acatacgagc	13740
cggaagcata	aagtgtaaag	cctggggtgc	ctaatgagtg	agctaactca	cattaattgc	13800
gttgcgctca	ctgcccgctt	tccagtcggg	aaacctgtcg	tgccagctgc	attaatgaat	13860
cggccaacgc	gcggggagag	gcggtttgcg	tattgggcca	aagacaaaag	ggcgacattc	13920
aaccgattga	gggagggaag	gtaaatattg	acggaaatta	ttcattaaag	gtgaattatc	13980
accgtcaccg	acttgagcca	tttgggaatt	agagccagca	aaatcaccag	tagcaccatt	14040
accattagca	aggccggaaa	cgtcaccaat	gaaaccatcg	atagcagcac	cgtaatcagt	14100
agcgacagaa	tcaagtttgc	ctttagcgtc	agactgtagc	gcgttttcat	cggcattttc	14160
ggtcatagcc	cccttattag	cgtttgccat	cttttcataa	tcaaaatcac	cggaaccaga	14220
gccaccaccg	gaaccgcctc	cctcagagcc	gccaccctca	gaaccgccac	cctcagagcc	14280
accaccctca	gagccgccac	cagaaccacc	accagagccg	ccgccagcat	tgacaggagg	14340
cccgatctag	taacatagat	gacacegege	gcgataattt	atcctagttt	gcgcgctata	14400

# WO 2004/063359 PCT/EP2004/000099 302/357

ttttgtttc	tatcgcgtat	taaatgtata	attgcgggac	tctaatcata	aaaacccatc	14460
tcataaataa	cgtcatgcat	tacatgttaa	ttattacatg	cttaacgtaa	ttcaacagaa	14520
attatatgat	aatcatcgca	agaccggcaa	caggattcaa	tcttaagaaa	ctttattgcc	14580
aaatgtttga	acgatcgggg	atcatccggg	tetgtggegg	gaactccacg	aaaatatccg	14640
aacgcagcaa	gatatcgcgg	tgcatctcgg	tettgeetgg	gcagtcgccg	ccgacgccgt	14700
tgatgtggac	gccgggcccg	atcatattgt	cgctcaggat	cgtggcgttg	tgcttgtcgg	14760
ccgttgctgt	cgtaatgata	teggeacett	cgaccgcctg	ttccgcagag	atcccgtggg	14820
cgaagaactc	cagcatgaga	teceegeget	ggaggatcat	ccagccggcg	tcccggaaaa	14880
cgattccgaa	gcccaacctt	tcatagaagg	cggcggtgga	atcgaaatct	cgtgatggca	14940
ggttgggcgt	cgcttggtcg	gtcatttcga	accccagagt	cccgctcaga	agaactcgtc	15000
aagaaggcga	tagaaggcga	tgcgctgcga	atcgggagcg	gcgataccgt	aaagcacgag	15060
gaagcggtca	gcccattcgc	cgccaagctc	ttcagcaata	tcacgggtag	ccaacgctat	15120
gtcctgatag	cggtccgcca	cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	15180
attttccacc	atgatattcg	gcaagcaggc	atcgccatgg	gtcacgacga	gatcatcgcc	15240
gtcgggcatg	cgcgccttga	gcctggcgaa	cagttcggct	ggcgcgagcc	cctgatgctc	15300
ttcgtccaga	tcatcctgat	cgacaagacc	ggcttccatc	cgagtacgtg	ctcgctcgat	15360
gcgatgtttc	gcttggtggt	cgaatgggca	ggtagccgga	tcaagcgtat	gcagccgccg	15420
cattgcatca	gccatgatgg	atactttctc	ggcaggagca	aggtgagatg	acaggagatc	15480
ctgccccggc	acttcgccca	atagcagcca	gtcccttccc	gcttcagtga	caacgtcgag	15540
cacagetgeg	caaggaacgc	ccgtcgtggc	cagecaegat	agccgcgctg	cctcgtcctg	15600
cagttcattc	agggcaccgg	acaggtcggt	cttgacaaaa	agaaccgggc	gcccctgcgc	15660

#### WO 2004/063359 PCT/EP2004/000099 303/357

tgacagccgg	aacacggcgg	catcagagca	gccgattgtc	tgttgtgccc	agtcatagcc	15720
gaatageete	tccacccaag	cggccggaga	acctgcgtgc	aatccatctt	gttcaatcat	15780
gcgaaacgat	ccagatccgg	tgcagattat	ttggattgag	agtgaatatg	agactctaat	15840
tggataccga	ggggaattta	tggaacgtca	gtggagcatt	tttgacaaga	aatatttgct	15900
agctgatagt	gaccttaggc	gacttttgaa	cgcgcaataa	tggtttctga	cgtatgtgct	15960
tagctcatta	aactccagaa	acccgcggct	gagtggctcc	ttcaacgttg	cggttctgtc	16020
agttccaaac	gtaaaacggc	ttgtcccgcg	tcatcggcgg	gggtcataac	gtgactccct	16080
taattctccg	ctcatgatca	gattgtcgtt	tecegeette	agtttaaact	atcagtgttt	16140
gacaggatat	attggcgggt	aaacctaaga	gaaaagagcg	tttattagaa	taatcggata	16200
tttaaaaggg	cgtgaaaagg	tttatccgtt	cgtccatttg	tatgtgcatg	ccaaccacag	16260
ggttccccag	atctggcgcc	ggccagcgag	acgagcaaga	ttggccgccg	cccgaaacga	16320
tccgacagcg	cgcccagcac	aggtgcgcag	gcaaattgca	ccaacgcata	cagegeeage	16380
agaatgccat	agtgggcggt	gacgtcgttc	gagtgaacca	gatcgcgcag	gaggcccggc	16440
agcaccggca	taatcaggcc	gatgccgaca	gcgtcgagcg	cgacagtgct	cagaattacg	16500
atcaggggta	tgttgggttt	cacgtctggc	ctccggacca	gcctccgctg	gtccgattga	16560
acgcgcggat	tetttateae	tgataagttg	gtggacatat	tatgtttatc	agtgataaag	16620
tgtcaagcat	gacaaagttg	cageegaata	cagtgatccg	tgccgccctg	gacctgttga	16680
acgaggtcgg	cgtagacggt	ctgacgacac	gcaaactggc	ggaacggttg	ggggttcagc	16740
agccggcgct	ttactggcac	ttcaggaaca	agcgggcgct	gctcgacgca	. ctggccgaag	16800
ccatgctggc	ggagaatcat	acgcattcgg	tgccgagagc	cgacgacgac	: tggcgctcat	16860
ttctgatcgg	gaatgcccgc	agcttcaggc	aggegetget	cgcctaccgc	: gatggcgcgc	16920

#### WO 2004/063359 PCT/EP2004/000099 304/357

gcatccatgc	cggcacgcga	ccgggcgcac	cgcagatgga	aacggccgac	gcgcagcttc	16980
gcttcctctg	cgaggcgggt	ttttcggccg	gggacgccgt	caatgegetg	atgacaatca	17040
gctacttcac	tgttggggcc	gtgcttgagg	agcaggccgg	cgacagcgat	gccggcgagc	17100
geggeggeae	cgttgaacag	gctccgctct	cgccgctgtt	gcgggccgcg	atagacgcct	17160
tcgacgaagc	cggtccggac	gcagcgttcg	agcagggact	cgcggtgatt	gtcgatggat	17220
tggcgaaaag	gaggctcgtt	gtcaggaacg	ttgaaggacc	gagaaagggt	gacgattgat	17280
caggaccgct	gccggagcgc	aacccactca	ctacagcaga	gccatgtaga	caacatcccc	17340
tececettte	caccgcgtca	gacgcccgta	gcagcccgct	acgggctttt	tcatgccctg	17400
ccctagcgtc	caagcctcac	ggccgcgctc	ggcctctctg	geggeettet	ggcgctcttc	17460
cgcttcctcg	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	17520
tcactcaaag	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	17580
gtgagcaaaa	ggccagcaaa	aggccaggaa	ccgtaaaaag	geegegttge	tggcgttttt	17640
ccataggctc	cgccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	17700
aaacccgaca	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	tegtgegete	17760
tcctgttccg	accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	17820
ggcgcttttc	cgctgcataa	ccctgcttcg	gggtcattat	agcgatttt	teggtatate	17880
catcctttt	cgcacgatat	acaggatttt	gccaaagggt	tegtgtagae	tttccttggt	17940
gtatccaacg	gcgtcagccg	ggcaggatag	gtgaagtagg	cccacccgcg	agegggtgtt	18000
ccttcttcac	tgtcccttat	tcgcacctgg	cggtgctcaa	. cgggaatcct	gctctgcgag	18060
gctggccggc	taccgccggc	gtaacagatg	agggcaagcg	gatggctgat	gaaaccaagc	18120
caaccaggaa	gggcagccca	cctatcaagg	tgtactgcct	tccagacgaa	a cgaagagcga	18180

ttgaggaaaa	ggcggcggcg	gccggcatga	gcctgtcggc	ctacctgctg	gccgtcggcc	18240
agggctacaa	aatcacgggc	gtcgtggact	atgagcacgt	ccgcgagctg	gcccgcatca	18300
atggcgacct	gggccgcctg	ggcggcctgc	tgaaactctg	gctcaccgac	gaccegegea	18360
cggcgcggtt	cggtgatgcc	acgatcctcg	ccctgctggc	gaagatcgaa	gagaagcagg	18420
acgagcttgg	caaggtcatg	atgggcgtgg	tccgcccgag	ggcagagcca	tgacttttt	18480
agccgctaaa	acggccgggg	ggtgcgcgtg	attgccaagc	acgtccccat	gcgctccatc	18540
aagaagagcg	acttcgcgga	gctggtgaag	tacatcaccg	acgagcaagg	caagaccgag	18600
cgcctttgcg	acgctca				•	18617

```
<210> 51
```

<213> Artificial

#### <220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<211> 18333

<212> DNA

#### WO 2004/063359 PCT/EP2004/000099 306/357

<400> 51 cogggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 180 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 240 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 540 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc 600 660 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat ccccccaggg gctgcgcccc 720 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 780 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta cettgggcat tettggcata gtggtegegg gtgeegtget egtgtteggg 960 1020 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 1200 agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga 1260

# WO 2004/063359 PCT/EP2004/000099 307/357

ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gecegatgae	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc.	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520

#### WO 2004/063359 PCT/EP2004/000099 308/357

tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgatttttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	cgaggatgcc	gaaaccatcg	caageegeae	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gtccgtcggc	tegatggtcc	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact	ggeteecet	gecetgeceg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	. ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780

#### WO 2004/063359 PCT/EP2004/000099 309/357

tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gcccgctctg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tegeaeeggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	: atggaggcgt	tegetgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggo	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	g catctgtccg	gegttttegt	ggagcccgaa	cagegaggee	gaggggtcgc	4980
cggtatgctg	g ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	g teegacagat	5040

#### WO 2004/063359 PCT/EP2004/000099 310/357

tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt 5100 5160 ctggagettg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg 5220 5280 attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat 5340 ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac 5400 5460 cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc 5520 gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt 5580 ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc 5640 5700 cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta 5760 5820 tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag 5880 cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca 5940 caggeageaa egetetgtea tegttacaat caacatgeta eeeteegega gateateegt gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag 6000 totgoogcot tacaacggot otcocgotga cgccgtcccg gactgatggg ctgcctgtat 6060 6120 cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt 6180 taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc 6240 6300 accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga

# WO 2004/063359 PCT/EP2004/000099 311/357

aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagttttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tegactetgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggettgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560

tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagetetgg	g cggctctgag	gtgcagtgga	. tgattattaa	tccgggaccg	geegeeete	8220
cgccccgaag	g tggaaaggct	ggtgtgccc	: tcgttgacca	. agaatctatt	gcatcatcgg	8280
agaatatgg	a getteatega	atcaccggca	ı gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccg	t cggcgaaata	a gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaa	a agattcacga	a gatagtacci	tctccgaagt	: aggtagagcg	g agtacccggc	8460
gcgtaagct	c cctaattgg	e ccatccggca	a tctgtagggd	gtccaaatat	cgtgcctctc	8520
ctgctttgc	c cggtgtatg	a aaccggaaa	g geegeteagg	g agctggcca	g <b>cggcgcaga</b> c	8580
cgggaacac	a agctggcag	t cgacccatc	c ggtgctctgo	c actegacet	g ctgaggtece	8640
tcagtccct	g gtaggcagc	t ttgccccgt	c tgtccgccc	g gtgtgtegg	c ggggttgaca	8700
aggtcgttg	c gtcagtcca	a catttgttg	c catattttc	c tgctctccc	c accagctgct	8760
cttttcttt	t ctctttctt	t tcccatctt	c agtatattc	a tcttcccat	c caagaacctt	8820

# WO 2004/063359 PCT/EP2004/000099 313/357

tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	• gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tetggaggee	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcage	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080

# WO 2004/063359 PCT/EP2004/000099 314/357

ttgagacaaa	tggtgttcag	gatetegata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tecaegegae	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagettgae	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattctt	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaaagt	tttttttat	10980
acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttca	atttctttgt	ctttacattt	tctttgtcct	ttatctttcc	tcatttagtc	11100
tttgggagaa	ttaggaaaag	ggagcggaaa	ggtaagaaat	gcttgcgtat	tttactaatt	11160
cggcaaacat	: ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	gacagtatct	11220
ttgattacac	tctaaatctc	gatgacccga	. ccaaaaagag	cgaacaaaga	aataatcttg	11280
tgcattcgaa	a tatgatggaa	gatttttcc	cccttattct	aaatgttgac	atagcgtgta	11340

# WO 2004/063359 PCT/EP2004/000099 315/357

tgttatataa	acaaaaagaa	attgtacaaa	ctttctttc	ttctcttttt	attttatctc	11400
tatgttgtgg	atttggaatg	ccctgatcgt	tttcgttacc	gtgattggca	tggaagtgat	11460
tgctgcactg	gcacacaaat	acatcatgca	cggctggggt	tggggatggc	atctttcaca	11520
tcatgaaccg	cgtaaaggtg	cgtttgaagt	taacgatctt	tatgccgtgg	tttttgctgc	11580
attatcgatc	ctgctgattt	atctgggcag	tacaggaatg	tggccgctcc	agtggattgg	11640
cgcaggtatg	acggcgtatg	gattactcta	ttttatggtg	cacgacgggc	tggtgcatca	11700
acgttggcca	ttccgctata	ttccacgcaa	gggctacctc	aaacggttgt	atatggcgca	1,1760
ccgtatgcat	cacgccgtca	ggggcaaaga	aggttgtgtt	tettttgget	tcctctatgc	11820
geegeeeetg	tcaaaacttc	aggegaeget	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat	gcgcagggcg	gggaggatga	gecegeatee	gggaagtaag	ggcctgacca	11940
gaggcggcca	gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttgagat	taaaatagat	aaggaaaaga	aagtgaaaag	aaattcggaa	gcatggcaca	12060
ttcttcttt	tataaataca	tgcctgactt	tctttttcca	tcgatatgat	atatgcatat	12120
gatagatata	caagcaatct	tcttcaagga	gtttgaaatt	ttgtcctcca	ggagcaaaaa	12180
aaagttttt	tttatacatg	tttgtacaca	agaatagtta	ccaatttgct	ttggtcttac	12240
gtgctgcaag	tttatatcgt	tttcaatttc	tttgtcttta	cattttcttt	gtcctttatc	12300
tttcctcatt	tagtctttgg	gagaattagg	aaaagggagc	ggaaaggtaa	gaaatgcttg	12360
cgtattttac	taattcggca	aacatccaat	ttggcaaaca	gcagcctgtg	caacgctctc	12420
gagatgacag	tatctttgat	tacactctaa	atctcgatga	cccgaccaaa	aagagcgaac	12480
aaagaaataa	tcttgtgcat	tcgaatatga	tggaagattt	tttccccctt	attctaaatg	12540
ttgacatagc	gtgtatgtta	tataaacaaa	aagaaattgt	acaaactttc	ttttcttctc	12600

# WO 2004/063359 PCT/EP2004/000099 316/357

tttttattt	atctctatga	tccagttaga	acaaccactc	agtcatcaag	caaaactgac	12660
tccagtactg	agaagtaaat	ctcagtttaa	ggggcttttc	attgctattg	tcattgttag	12720
cgcatgggtc	attagcctga	gtttattact	ttcccttgac	atctcaaagc	taaaattttg	12780
gatgttattg	cctgttatac	tatggcaaac	atttttatat	acgggattat	ttattacatc	12840
tcatgatgcc	atgcatggcg	tagtatttcc	ccaaaacacc	aagattaatc	atttgattgg	12900
aacattgacc	ctatcccttt	atggtctttt	accatatcaa	aaactattga	aaaaacattg	12960
gttacaccac	cacaatccag	caagctcaat	agacccggat	tttcacaatg	gtaaacacca	13020
aagtttcttt	gcttggtatt	ttcattttat	gaaaggttac	tggagttggg	ggcaaataat	13080
tgcgttgact	attatttata	actttgctaa	atacatactc	catatcccaa	gtgataatct	13140
aacttacttt	tgggtgctac	cctcgctttt	aagttcatta	caattattct	attttggtac	13200
tittttaccc	catagtgaac	caataggggg	ttatgttcag	cctcattgtg	cccaaacaat	13260
tagccgtcct	atttggtggt	catttatcac	gtgctatcat	tttggctacc	acgaggaaca	13320
tcacgaatat	cctcatattt	cttggtggca	gttaccagaa	atttacaaag	caaaatagaa	13380
gcttggcgta	atcatggtca	tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	13440
cacacaacat	acgagccgga	agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgagct	13500
aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	13560
agctgcatta	atgaatcggc	caacgcgcgg	ggagaggcgg	tttgcgtatt	gggccaaaga	13620
caaaagggcg	acattcaacc	gattgaggga	gggaaggtaa	atattgacgg	aaattattca	13680
ttaaaggtga	attatcaccg	tcaccgactt	gagccatttg	ggaattagag	ccagcaaaat	13740
caccagtago	accattacca	ttagcaaggc	cggaaacgtc	accaatgaaa	ccatcgatag	13800
cagcaccgta	atcagtagcg	acagaatcaa	gtttgccttt	agcgtcagac	tgtagcgcgt	13860

## WO 2004/063359 PCT/EP2004/000099 317/357

tttcatcggc	atttteggte	atagececet	tattagcgtt	tgccatcttt	tcataatcaa	13920
aatcaccgga	accagagcca	ccaccggaac	cgcctccctc	agagccgcca	ccctcagaac	13980
cgccaccctc	agagccacca	ccctcagagc	cgccaccaga	accaccacca	gagccgccgc	14040
cagcattgac	aggaggcccg	atctagtaac	atagatgaca	ccgcgcgcga	taatttatcc	14100
tagtttgcgc	gctatatttt	gttttctatc	gcgtattaaa	tgtataattg	cgggactcta	14160
atcataaaaa	cccatctcat	aaataacgtc	atgcattaca	tgttaattat	tacatgctta	14220
acgtaattca	acagaaatta	tatgataatc	atcgcaagac	cggcaacagg	attcaatctt	14280
aagaaacttt	attgccaaat	gtttgaacga	tcggggatca	tccgggtctg	tggcgggaac	14340
tccacgaaaa	tatccgaacg	cagcaagata	tcgcggtgca	tctcggtctt	gcctgggcag	14400
tegeegeega	cgccgttgat	gtggacgccg	ggcccgatca	tattgtcgct	caggatcgtg	14460
gcgttgtgct	tgtcggccgt	tgctgtcgta	atgatatcgg	caccttcgac	cgcctgttcc	14520
gcagagatec	cgtgggcgaa	gaactccagc	atgagatccc	cgcgctggag	gatcatccag	14580
ccggcgtccc	ggaaaacgat	tccgaagccc	aacctttcat	agaaggcggc	ggtggaatcg	14640
aaatctcgtg	atggcaggtt	gggcgtcgct	tggtcggtca	tttcgaaccc	cagagtcccg	14700
ctcagaagaa	ctcgtcaaga	aggcgataga	aggcgatgcg	ctgcgaatcg	ggagcggcga	14760
taccgtaaag	cacgaggaag	cggtcagccc	attcgccgcc	aagctcttca	gcaatatcac	14820
gggtagccaa	cgctatgtcc	tgatagcggt	ccgccacacc	cagccggcca	cagtcgatga	14880
atccagaaaa	gcggccattt	tccaccatga	tattcggcaa	gcaggcatcg	ccatgggtca	14940
cgacgagatc	atcgccgtcg	ggcatgcgcg	ccttgagcct	ggcgaacagt	teggetggeg	15000
cgagcccctg	atgctcttcg	tccagatcat	cctgatcgac	aagaccggct	tccatccgag	15060
tacgtgctcg	ctcgatgcga	tgtttcgctt	ggtggtcgaa	tgggcaggta	gccggatcaa	15120

# WO 2004/063359 PCT/EP2004/000099 318/357

gcgtatgcag	ccgccgcatt	gcatcagcca	tgatggatac	tttctcggca	ggagcaaggt	15180
gagatgacag	gagateetge	cceggcactt	cgcccaatag	cagccagtcc	cttcccgctt	15240
cagtgacaac	gtcgagcaca	gctgcgcaag	gaacgcccgt	cgtggccagc	cacgatagcc	15300
gegetgeete	gtcctgcagt	tcattcaggg	caccggacag	gtcggtcttg	acaaaaagaa	15360
ccgggcgccc	ctgcgctgac	ageeggaaca	cggcggcatc	agagcagccg	attgtctgtt	15420
gtgcccagtc	atagccgaat	agcctctcca	cccaagcggc	cggagaacct	gcgtgcaatc	15480
catcttgttc	aatcatgcga	aacgatccag	atccggtgca	gattatttgg	attgagagtg	15540
aatatgagac	tctaattgga	taccgagggg	aatttatgga	acgtcagtgg	agcatttttg	15600
acaagaaata	tttgctagct	gatagtgacc	ttaggcgact	tttgaacgcg	caataatggt	15660
ttctgacgta	tgtgcttagc	tcattaaact	ccagaaaccc	geggetgagt	ggctccttca	15720
acgttgcggt	tctgtcagtt	ccaaacgtaa	aacggcttgt	cccgcgtcat	cggcgggggt	15780
cataacgtga	ctcccttaat	teteegetea	tgatcagatt	gtcgtttccc	gccttcagtt	15840
taaactatca	gtgtttgaca	ggatatattg	gegggtaaac	ctaagagaaa	agagcgttta	15900
ttagaataat	cggatattta	aaagggcgtg	aaaaggttta	teegttegte	catttgtatg	15960
tgcatgccaa	ccacagggtt	ccccagatct	ggcgccggcc	agegagaega	gcaagattgg	16020
ccgccgcccg	aaacgatccg	acagegegee	cagcacaggt	gcgcaggcaa	attgcaccaa	16080
cgcatacagc	gccagcagaa	tgccatagtg	ggcggtgacg	tegttegagt	gaaccagatc	16140
gcgcaggagg	cccggcagca	ccggcataat	caggccgatg	ccgacagcgt	cgagcgcgac	16200
agtgctcaga	attacgatca	ggggtatgtt	gggtttcacg	tetggeetee	ggaccagcct	16260
cegetggtee	gattgaacgc	gcggattctt	tatcactgat	aagttggtgg	acatattatg	16320
tttatcagtg	ataaagtgtc	aagcatgaca	aagttgcagc	cgaatacagt	gatecgtgee	16380

#### WO 2004/063359 PCT/EP2004/000099 319/357

gccctggacc	tgttgaacga	ggtcggcgta	gacggtctga	cgacacgcaa	actggcggaa	16440
cggttggggg	ttcagcagcc	ggcgctttac	tggcacttca	ggaacaagcg	ggcgctgctc	16500
gacgcactgg	ccgaagccat	gctggcggag	aațcatacgc	attcggtgcc	gagagccgac	16560
gacgactggc	gctcatttct	gatcgggaat	gcccgcagct	tcaggcaggc	gctgctcgcc	16620
taccgcgatg	gcgcgcgcat	ccatgccggc	acgcgaccgg	gcgcaccgca	gatggaaacg	16680
gccgacgcgc	agcttcgctt	cctctgcgag	gcgggttttt	cggccgggga	cgccgtcaat	16740
gcgctgatga	caatcagcta	cttcactgtt	ggggccgtgc	ttgaggagca	ggccggcgac	16800
agcgatgccg	gcgagcgcgg	cggcaccgtt	gaacaggctc	cgctctcgcc	gctgttgcgg	16860
gccgcgatag	acgccttcga	cgaagccggt	ccggacgcag	cgttcgagca	gggactcgcg	16920
gtgattgtcg	atggattggc	gaaaaggagg	ctcgttgtca	ggaacgttga	aggaccgaga	16980
aagggtgacg	attgatcagg	accgctgccg	gagcgcaacc	cactcactac	agcagagcca	17040
tgtagacaac	atcccctccc	cctttccacc	gcgtcagacg	cccgtagcag	cccgctacgg	17100
gctttttcat	gccctgccct	agcgtccaag	cctcacggcc	gcgctcggcc	tctctggcgg	17160
ccttctggcg	ctcttccgct	teetegetea	ctgactcgct	gcgctcggtc	gttcggctgc	17220
ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	17280
acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	17340
cgttgctggc	gtttttccat	aggeteegee	.cccctgacga	gcatcacaaa	aatcgacgct	17400
caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	ccccctggaa	17460
gctccctcgt	gegeteteet	gttccgaccc	tgccgcttac	cggatacctg	teegeettte	17520
tecetteggg	aagcgtggcg	cttttccgct	gcataaccct	gcttcggggt	cattatagcg	17580
attttttcgg	tatatccatc	ctttttcgca	cgatatacag	gattttgcca	aagggttcgt	17640

### WO 2004/063359 PCT/EP2004/000099 320/357

gtagactttc	cttggtgtat	ccaacggcgt	cagccgggca	ggataggtga	agtaggccca	17700
cccgcgagcg	ggtgttcctt	cttcactgtc	ccttattcgc	acctggcggt	gctcaacggg	17760
aatcctgctc	tgcgaggctg	gccggctacc	gccggcgtaa	cagatgaggg	caagcggatg	17820
gctgatgaaa	ccaagccaac	caggaagggc	agcccaccta	tcaaggtgta	ctgccttcca	17880
gacgaacgaa	gagcgattga	ggaaaaggcg	geggeggeeg	gcatgagcct	gtcggcctac	17940
ctgctggccg	teggecaggg	ctacaaaatc	acgggcgtcg	tggactatga	gcacgtccgc	18000
gagetggeec	gcatcaatgg	cgacctgggc	cgcctgggcg	gcctgctgaa	actctggctc	18060
accgacgacc	cgcgcacggc	gcggttcggt	gatgccacga	tectegeeet	gctggcgaag	18120
atcgaagaga	agcaggacga	gcttggcaag	gtcatgatgg	gcgtggtccg	cccgagggca	18180
gagccatgac	ttttttagcc	gctaaaacgg	ccggggggtg	cgcgtgattg	ccaagcacgt	18240
ccccatgcgc	tccatcaaga	agagcgactt	cgcggagctg	gtgaagtaca	tcaccgacga	18300
gcaaggcaag	accgagcgcc	tttgcgacgc	tca			18333

```
<210> 52
```

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3)..(3)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<211> 17

<212> DNA

<213> Artificial

321/357

<222> (9)..(9)

<223> n is a, c, g, or t

<400> 52

gengarggna thtggta 17

<210> 53

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3)..(3)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (6)..(6)

<223> n is a, c, g, or t

<400> 53

tengenagra adatrttrtg 20

27

<210> 54

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 54

aagtgacacc ggttacacgc ttgtctt

V	VO 2004/063359	322/357	PCT/EP2004/000099
<210>	55		
	27		
<212>.			
	Artificial		
<220>			
<223>	Primer .		
<400>	55		
gcttate	cacc atctgttacc tecttgc		27
<210>			
<211>	32		
<212>			
<213>	Artificial		
<220>			•
<223>	Primer		
<400>	EG		•
	ggat cettaaatge gaatategtt ge		32
ayayay	ggat certaaatge gaatategte ge		32
<210>	57		•
<211>	32		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	Primer		
	57		n -
agagag	ggat ccatgtctga tcaaaagaag ca		32
<210>	58		
<211>	37		
~~~~	<b>5</b> ,		

<220>

<212> DNA

<213> Artificial

38

<223> Primer

ctattttaat catatgtctg atcaaaagaa gcatattg

<400> 61

WO 2004/063359 PCT/EP2004/000099

<210> 62

<211> 16103

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 62

gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 180 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegactggt gacetecage gteeetttaa ggetgeeaae agetttetea 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 420 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 480 atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc 540

WO 2004/063359 PCT/EP2004/000099 325/357

aatattctca	agtatctcga	gtttgaactt	attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacageceet	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagctta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaatc	accggcagta	agcgaaggag	aatgtgaagc	caggggtgta	tagccgtcgg	1560
cgaaatagca	tgccattaac	ctaggtacag	aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat	agtaccttct	ccgaagtagg	tagagcgagt	acceggegeg	taagctccct	168Ò
aattggccca	tccggcatct	gtagggcgtc	caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac	: cggaaaggcc	gctcaggagc	tggccagcgg	cgcagaccgg	gaacacaagc	1800

WO 2004/063359 PCT/EP2004/000099 326/357

tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	ccccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tcgttgcgtc	1920
agtccaacat	ttgttgccat	attttcctgc	tctccccacc	agctgctctt	ttcttttctc	1980
tttcttttcc	catcttcagt	atattcatct	tcccatccaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	22,80
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttatc	ggcactttgc	atcggccgcg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agagectgae	ctattgcatc	tcccgccgtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tegeggagge	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	catteggace	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gegteegteg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	ttteggetee	2760
aacaatgtcc	tgacggacaa	tggccgcata	acageggtea	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagett	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060

WO 2004/063359 PCT/EP2004/000099 327/357

gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	togoogatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tegttggtgt	cgatgtcagc	teeggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cageteatet	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tectettett	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagene	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	acttttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagcgccca	3960
ctccacatct	ccactcgacc	tgcaggcatg	caagcttgag	tctatcgcct	ccaaaaagta	4020
cggtgctgaa	ttcagatatc	aatcgcctgt	tgctaaaatt	aacactgtcg	ataaagacaa	4080
gcgtgtaacc	ggtgtcactt	tggaaagcgg	agaagtcatt	gaagccgatg	cagtcgtatg	4140
taatgcggat	cttgtttatg	cttatcacca	tctgttacct	ccttgcaatt	ggacaaagaa	4200
gacattagcc	tcaaagaaac	tcacttcatc	atctatttcg	ttttattggt	ccatgtcaac	4260
aaaggtgcct	caattagacg	tacacaatat	cttcttggct	gaagcctaca	aggaaagttt	4320

WO 2004/063359 PCT/EP2004/000099 328/357

tgatgagatt	ttcaacgact	teggtttgce	ctctgaagct	tggcgtaatc	atggtcatag	4380
ctgtttcctg	tgtgaaattg	ttatccgctc	acaattccac	acaacatacg	agccggaagc	4440
ataaagtgta	aagcctgggg	tgcctaatga	gtgagctaac	tcacattaat	tgcgttgcgc	4500
tcactgcccg	ctttccagtc	gggaaacctg	tegtgecage	tgcattaatg	aatcggccaa	4560
cgcgcgggga	gaggcggttt	gcgtattggg	ccaaagacaa	aagggcgaca	ttcaaccgat	4620
tgagggaggg	aaggtaaata	ttgacggaaa	ttattcatta	aaggtgaatt	atcaccgtca	4 680
ccgacttgag	ccatttggga	attagagcca	gcaaaatcac	cagtagcacc	attaccatta	4740
gcaaggccgg	aaacgtcacc	aatgaaacca	tcgatagcag	caccgtaatc	agtagcgaca	4800
gaatcaagtt	tgcctttagc	gtcagactgt	agcgcgtttt	catcggcatt	ttcggtcata	4860
gccccttat	tagcgtttgc	catcttttca	taatcaaaat	caccggaacc	agagccacca	4920
ccggaaccgc	ctccctcaga	geegeeaeee	tcagaaccgc	caccctcaga	gccaccaccc	4980
tcagagcege	caccagaacc	accaccagag	ccgccgccag	cattgacagg	aggcccgatc	5040
tagtaacata	gatgacaccg	cgcgcgataa	tttatcctag	tttgcgcgct	atattttgtt	5100
ttctatcgcg	tattaaatgt	ataattgcgg	gactctaatc	ataaaaaccc	atctcataaa	5160
taacgtcatg	cattacatgt	taattattac	atgcttaacg	taattcaaca	gaaattatat	5220
gataatcatc	gcaagaccgg	caacaggatt	caatcttaag	aaactttatt	gccaaatgtt	5280
tgaacgatcg	gggatcatcc	gggtctgtgg	cgggaactcc	acgaaaatat	ccgaacgcag	5340
caagatatcg	cggtgcatct	cggtcttgcc	tgggcagtcg	ccgccgacgc	cgttgatgtg	5400
gacgccgggc	ccgatcatat	tgtcgctcag	gatcgtggcg	ttgtgcttgt	cggccgttgc	5460
tgtcgtaatg	atateggeae	cttcgaccgc	ctgttccgca	gagatecegt	gggcgaagaa	5520
ctccagcatg	agateceege	gctggaggat	catccagccg	gcgtcccgga	aaacgattcc	5580

WO 2004/063359 PCT/EP2004/000099 329/357

gaagcccaac	ctttcataga	aggcggcggt	ggaatcgaaa	tctcgtgatg	gcaggttggg	5640
cgtcgcttgg	tcggtcattt	cgaaccccag	agtcccgctc	agaagaacte	gtcaagaagg	5700
cgatagaagg	cgatgcgctg	cgaatcggga	gcggcgatac	cgtaaagcac	gaggaagcgg	5760
tcagcccatt	cgccgccaag	ctcttcagca	atatcacggg	tagccaacgc	tatgtcctga	5820
tagcggtccg	ccacacccag	ccggccacag	tcgatgaatc	cagaaaagcg	gccattttcc	5880
accatgatat	tcggcaagca	ggcatcgcca	tgggtcacga	cgagatcatc	gccgtcgggc	5940
atgcgcgcct	tgagcctggc	gaacagttcg	gctggcgcga	gcccctgatg	ctcttcgtcc	6000
agatcatcct	gatcgacaag	accggcttcc	atccgagtac	gtgctcgctc	gatgcgatgt	6060
ttcgcttggt	ggtcgaatgg	gcaggtagcc	ggatcaagcg	tatgcagccg	ccgcattgca	6120
tcagccatga	tggatacttt	ctcggcagga	gcaaggtgag	atgacaggag	atcctgcccc	6180
ggcacttcgc	ccaatagcag	ccagtccctt	cccgcttcag	tgacaacgtc	gagcacagct	6240
gcgcaaggaa	cgcccgtcgt	ggccagccac	gatageegeg	ctgcctcgtc	ctgcagttca	6300
ttcagggcac	cggacaggtc	ggtcttgaca	aaaagaaccg	ggcgcccctg	cgctgacagc	6360
cggaacacgg	cggcatcaga	gcagccgatt	gtctgttgtg	cccagtcata	gccgaatagc	6420
ctctccaccc	aagcggccgg	agaacctgcg	tgcaatccat	cttgttcaat	catgcgaaac	. 6480
gatccagatc	cggtgcagat	tatttggatt	gagagtgaat	atgagactct	aattggatac	6540
cgaggggaat	ttatggaacg	tcagtggagc	atttttgaca	agaaatattt	gctagctgat	6600
agtgacctta	ggcgactttt	gaacgcgcaa	taatggtttc	tgacgtatgt	gcttagctca	6660
ttaaactcca	gaaacccgcg	gctgagtggc	tccttcaacg	ttgcggttct	gtcagttcca	6720
aacgtaaaac	ggcttgtccc	gcgtcatcgg	cgggggtcat	aacgtgactc	ccttaattct	6780
ccgctcatga	tcagattgtc	gtttcccgcc	ttcagtttaa	actatcagtg	tttgacagga	6840

WO 2004/063359 PCT/EP2004/000099 330/357

tatattggcg	ggtaaaccta	agagaaaaga	gcgtttatta	gaataatcgg	atatttaaaa	6900
gggcgtgaaa	aggtttatcc	gttcgtccat	ttgtatgtgc	atgccaacca	cagggttccc	6960
cagatctggc	gccggccagc	gagacgagca	agattggccg	ccgcccgaaa	cgatccgaca	7020
gcgcgcccag	cacaggtgcg	caggcaaatt	gcaccaacgc	atacagcgcc	agcagaatgc	7080
catagtgggc	ggtgacgtcg	ttcgagtgaa	ccagatcgcg	caggaggccc	ggcagcaccg	7140
gcataatcag	gccgatgccg	acagegtega	gcgcgacagt	gctcagaatt	acgatcaggg	7200
gtatgttggg	tttcacgtct	ggcctccgga	ccagcctccg	ctggtccgat	tgaacgcgcg	7260
gattctttat	cactgataag	ttggtggaca	tattatgttt	atcagtgata	aagtgtcaag	7320
catgacaaag	ttgcagccga	atacagtgat	ccgtgccgcc	ctggacctgt	tgaacgaggt	7380
cggcgtagac	ggtctgacga	cacgcaaact	ggcggaacgg	ttgggggttc	agcagccggc	7440
gctttactgg	cacttcagga	acaagcgggc	gctgctcgac	gcactggccg	aagccatgct	7500
ggcggagaat	catacgcatt	cggtgccgag	agccgacgac	gactggcgct	catttctgat	7560
cgggaatgcc	cgcagcttca	ggcaggcgct	getegeetae	cgcgatggcg	cgcgcatcca	7620
tgccggcacg	cgaccgggcg	caccgcagat	ggaaacggcc	gacgcgcagc	ttcgcttcct	7680
ctgcgaggcg	ggtttttcgg	ccggggacgc	cgtcaatgcg	ctgatgacaa	tcagctactt	7740
cactgttggg	gccgtgcttg	aggagcaggc	cggcgacagc	gatgccggcg	agegeggegg	7800
caccgttgaa	caggeteege	tctcgccgat	gttgcgggcc	gcgatagacg	ccttcgacga	7860
agccggtccg	gacgcagcgt	tcgagcaggg	actcgcggtg	attgtcgatg	gattggcgaa	7920
aaggaggctc	gttgtcagga	acgttgaagg	accgagaaag	ggtgacgatt	gatcaggacc	7980
gctgccggag	cgcaacccac	tcactacage	agagccatgt	agacaacatc	ccctcccct	8040
ttccaccgcg	tcagacgccc	gtagcagccc	gctacgggct	ttttcatgcc	ctgccctagc	8100

WO 2004/063359 PCT/EP2004/000099 331/357

gtccaagcct	caeggeegeg	ctcggcctct	ctggcggcct	tetggegete	ttccgcttcc	8160
tegeteactg	actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	8220
aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	8280
aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	tgctggcgtt	tttccatagg	8340
ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	gcgaaacccg	8400
acaggactat	aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	ctctcctgtt	8460
ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	cttcgggaag	cgtggcgctt	8520
ttccgctgca	taaccctgct	tcggggtcat	tatagcgatt	ttttcggtat	atccatcctt	8580
tttcgcacga	tatacaggat	tttgccaaag	ggttcgtgta	gactttcctt	ggtgtatcca	8640
acggcgtcag	ccgggcagga	taggtgaagt	aggcccaccc	gcgagcgggt	gttccttctt	8700
cactgtccct	tattcgcacc	tggcggtgct	caacgggaat	cctgctctgc	gaggctggcc	8760
ggctaccgcc	ggcgtaacag	atgagggcaa	gcggatggct	gatgaaacca	agccaaccag	8820
gaagggcagc	ccacctatca	aggtgtactg	ccttccagac	gaacgaagag	cgattgagga	8880
aaaggcggcg	gcggccggca	tgagcctgtc	ggcctacctg	ctggccgtcg	gccagggcta	8940
caaaatcacg	ggcgtcgtgg	actatgagca	cgtccgcgag	ctggcccgca	tcaatggcga	9000
cctgggccgc	ctgggcggcc	tgctgaaact	ctggctcacc	gacgacccgc	gcacggcgcg	9060
gttcggtgat	gccacgatcc	tegeeetget	ggcgaagatc	gaagagaagc	aggacgagct	9120
tggcaaggtc	atgatgggcg	tggtccgccc	gagggcagag	ccatgacttt	tttagccgct	9180
aaaacggccg	gggggtgcgc	gtgattgcca	agcacgtccc	catgcgctcc	atcaagaaga	9240
	ggagctggtg					9300
gcgacgctca	ccgggctggt	tgccctcgcc	gctgggctgg	cggccgtcta	tggccctgca	9360

WO 2004/063359 PCT/EP2004/000099 332/357

aacgcgccag	aaacgccgtc	gaagccgtgt	gcgagacạcc	geggeegeeg	gcgttgtgga	9420
tacctcgcgg	aaaacttggc	cctcactgac	agatgagggg	cggacgttga	cacttgaggg	9480
gccgactcac	ccggcgcggc	gttgacagat	gaggggcagg	ctcgatttcg	gccggcgacg	9540
tggagctggc	cagcctcgca	aatcggcgaa	aacgcctgat	tttacgcgag	tttcccacag	9600
atgatgtgga	caagcctggg	gataagtgcc	ctgcggtatt	gacacttgag	gggcgcgact	9660
actgaçagat	gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	9720
gcgcacctat	tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	9780
ttccgcccgt	ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	9840
ataaaccttg	tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	9900
ggtgececee	cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	9960
getgegeece	teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	10020
cattgccggg	atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	10080
cattgacgtg	ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	10140
cggcggcctg	ggtggcggcc	tgcccttcac	tteggeegte	ggggcattca	cggacttcat	10200
ggcggggccg	gcaattttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	10260
cgtgttcggg	ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	10320
aggtatgaaa	acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	10380
agctaccaag	acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	10440
aatactgata	agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	10500
ggggcaaggc	ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	10560
cttgcatgga	ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	10620

WO 2004/063359 PCT/EP2004/000099 333/357

taattgggta atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac 10680 tttgtcatgc agctccaccg attttgagaa cgacagcgac ttccgtccca gccgtgccag 10740 gtgctgcctc agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac 10800 gtgcagcttt cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac 10860 cacgtcaaag ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc 10920 gaatacgtgc gcaacaaccg tcttccggag actgtcatac gcgtaaaaca gccagcgctg 10980 gcgcgattta gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc 11040 actgcccggc tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa 11100 atcgtgttga ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg 11160 gccatatcaa tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt 11220 tgccatgttt tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg 11280 ttacgcacca ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact 11340 ggagcacctc aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat 11400 tgtggtttca aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt 11460 gaaaaagctg ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc 11520 gtcttgttat aattagcttc ttggggtatc tttaaatact gtagaaaaga ggaaggaaat 11580 aataaatggc taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct 11640 gcgtaaaaga tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg 11700 aaaacctata tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac 11760 gggaaaagga catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact 11820 ttgaacggca tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct 11880

WO 2004/063359 PCT/EP2004/000099 334/357

cggaagagta tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca 11940 traggetett tracterate garatategg attgtereta targaatage ttagaragec 12000 gcttagccga attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact 12060 gggaagaaga cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa 12120 agcccgaaga ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga 12180 aagatggcaa agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt 12240 atgacattgc cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg 12300 agctattttt tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt 12360 tactggatga attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag 12420 cgcaccgact tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat 12480 ttgggcaagg ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag 12540 gacggccaga cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc 12600 aaggcaccag gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca 12660 atcccgcaag gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg 12720 atcgacgcgg ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt 12780 gcgcccgcg aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc 12840 gagcgcgaca gcgtgcaact ggctcccct gccctgcccg cgccatcggc cgccgtggag 12900 cgttcgcgtc gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg 12960 cgaggaacta tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc 13020 agcgaggcca agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag 13080 ctttccttgt tcgatattgc gccgtggccg gacacgatgc gagcgatgcc aaacgacacg 13140

WO 2004/063359 PCT/EP2004/000099 335/357

geeegetetg	ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	13200
aaggtcattt	tccacgtcaa	caaggacgtg	aagatcacct	acaceggegt	cgagctgcgg	13260
geegaegatg	acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	13320
ggcgagccga	tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	13380
ggccggtatt	acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	13440
ttcacgtccg	accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	13500
ctggaccgtg	gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	13560
ctgtttgctg	gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	13620
acggcccgac	ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	13680
gaaaccttcc	gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	13740
gtcggcgaag	cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	13800
gatgacctgg	tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	13860
gcagccagcg	ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	13920
gctcagtatc	gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	13980
aattgacaat	tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	14040
tccgcgagat	ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	14100
agcacgagga	gaaaaagccc	atggaggcgt	tcgctgaacg	gttgcgagat	gccgtggcat	14160
teggegeeta	catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	14220
ccaaggacgc	tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	14280
gaggggtege	cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	14340
tccgacagat	tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	14400

WO 2004/063359 PCT/EP2004/000099 336/357

tttcgctatt	ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	14460
cgacggtagg	cgctgtgcag	ccgctgatgg	tcgtgttcat	ctetgccgct	ctgctaggta	14520
gcccgatacg	attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	14580
tggtgttgac	accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	14640
cggtttccat	ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	14700
tcacctttac	cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	14760
tgtttgatcc	gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	14820
gcctgatcgg	agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	14880
ctacagttgt	ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	14940
tgcatcaggc	cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	15000
ataggggagt	tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagetteete	15060
agcggcttta	tccagcgatt	tcctattatg	teggeatagt	tetcaagate	gacageetgt	15120
cacggttaag	cgagaaatga	ataagaaggc	tgataattcg	gatetetgeg	agggagatga	15180
tatttgatca	caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	15240
gatcatccgt	gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	categgtaac	15300
atgagcaaag	tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	15360
ctgcctgtat	cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	15420
ggtggcagga	tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	15480
cggacgtttt	taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	15540
attgcccttc	accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	15600
cagcaggcga	aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	15660

WO 2004/063359 PCT/EP2004/000099

aaagaatagc ccgagatagg gttgagtgt gttccagttt ggaacaagag tccactatta 15720
aagaacgtgg actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta 15780
cgtgaaccat cacccaaatc aagtttttg gggtcgaggt gccgtaaagc actaaatcgg 15840
aaccctaaag ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga 15900
aaggaaggga agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg 15960
gcgatcggtg cgggctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag 16020
gcgattaagt tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag 16080
tgaattcgag ctcggtaccc ggg

<210> 63

<211> 25

<212> · DNA

<213> Artificial

<220>

<223> Primer

<400> 63

ggcgtacttg aaggaaccct taccg

<210> 64

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 64

attgatgctc ccggtcaccg tgatt

25

<210> 65				•		
<211> 500						
<212> DNA	•				•	
<213> Blak	eslea trisp	oora				
<400> 65						
aatctataca	atgctccata	gactcacatt	gatattgtcg	aagatttcga	tgctgactta	60
gtagagcaac	tacaaaagtt	agcagagaag	catgatttct	taatctttga	agaccgcaag	120
tttgcagata	tcggtatgtg	aattctatct	atttttttc	tgatgtgtgc	atggatgact	180
catgatcata	ttcttaggta	atactgtcaa	gcatcaatat	ggcaagggcg	tttacaagat	240
tacttettaa	totoatatta	ctaatoctca	cacagttcct	ggagaaggta	ttatcaaggg	300
tgettettgg		•••••		33.3	-	
acttgccgaa	gtcggcctcc	ctcttggtcg	tggcttgctt	ttgctagcag	aaatgtcatc	360
tcaaggtgca	ttaactaagg	gtatttacac	tgccgaatct	gtcaatatgg	ctcgccgcaa	420
caaagatttc	gtttttggct	ttattgcaca	acacaaaatg	aatcagtatg	atgatgagga	480
ttttgttgtc	atgtcgcctg					500
<210> 66						
<211> 611						
<212> DNA						
<213> Blal	keslea tris	pora				
<400> 66						
	tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattctt	60
gagaooaaaa		gg			_	
ctttttataa	atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	120
atatacaagc	aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaagt	180
tttttttat	acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	240
gcaagtttat	atcgttttca	atttctttgt	ctttacattt	tctttgtcct	ttatctttcc	300

tcatttagtc tttgggagaa ttaggaaaag ggagcggaaa ggtaagaaat gcttgcgtat

360

WO 2004/063359 PCT/EP2004/000099 339/357

339/357					
tttactaatt cggcaaacat ccaatttggc aaacagcagc ctgtgcaacg ctctcgagat	420				
gacagtatet ttgattacae tetaaatete gatgaceega eeaaaaagag egaacaaaga	480				
aataatcttg tgcattcgaa tatgatggaa gattttttcc cccttattct aaatgttgac	540				
atagcgtgta tgttatataa acaaaaagaa attgtacaaa ctttcttttc ttctcttttt	600				
attttatctc t	611				
<210> 67					
<211> 720 .					
<212> DNA					
<213> Blakeslea trispora					
.400. 67					
<pre><400> 67 atgtcaatac tcacttatct ggaatttcat ctctactata cactacctgt ccttgcggca</pre>	60				
ttgtgttggc tgctaaagcc gtttcactca cagcaagaca atctcaagta taaattttta	120				
atgttgatgg ccgcctctac cgcatcgatt tgggacaatt atatcgttta tcatcgcgct	180				
tggtggtact gtcctacttg tgttgtggct gtcattggct atgtacctct agaagaatac	240				
atgttcttta tcatcatgac tttaatgact gtcgcgttct caaactttgt tatgcgttgg	300				

cacttgcata ctttctttat tagacccaac acttcttgga agcaaacact attagtacgc

cttgtgcctg tttcagcttt attggcaatc acttatcatg cttggcactt gacactgcca

aataaacctt cattttatgg ttcatgcatc ctttggtatg cttgtcctgt gttggctatt

ctttggctgg gtgctggcga atatatcttg cgtcgacctg tggctgtcct tttgtctatt

gttatcccta gtgtatacct atgttgggct gatatcgtcg ctattagtgc tggcacatgg

catatttctc ttagaacaag cactggcaaa atggtagtac ccgatttacc tgtagaagaa

tgcctgtttt ttactttgat caacacagtc ttggtttttg ctacctgtgc tatagaccgc

360

420

480

540

600

660

720

<210> 68

<211> 1089

<212> DNA

<213> Blakeslea trispora

<400> 68

ctgtacaaat	catctgttca	aaatcaaaac	cctaaacaag	ccatttccct	tttccagcat	60
gtcaaagagc	tagcatgggc	cttctgtctt	cctgaccaaa	tgctcaacaa	tgaattgttt	120
gatgatctta	ctatcagctg	ggatatttta	cgtaaagcct	caaagtcatt	ctatactgca	180
tctgccgttt	ttccaagtta	tgtacgtcaa	gacttgggtg	ttctctatgc	tttctgcaga	240
gctaccgatg	acctgtgcga	tgatgaatcc	aaatctgttc	aagaaagaag	agaccaatta	300
gatcttactc	gacaatttgt	tcgtgatctc	tttagccaaa	agaccagtgc	gcctattgtg	360
attgattggg	aattgtatca	aaaccaactt	cctgcttctt	gtatatcagc	ctttagagcc	420
tttactcgcc	ttcgccatgt	ccttgaagta	gaccctgtag	aagaactatt	agatggttac	480
aaatgggatc	ttgagcgtcg	tectatectt	gatgaacaag	acttggaggc	atactctgct	540
tgtgtggcca	gtagtgtggg	tgaaatgtgc	acacgtgtga	ttcttgctca	agaccaaaag	600
gaaaatgatg	cttggataat	tgaccgtgca	cgtgagatgg	ggctggtgct	acaatacgtt	660
aacattgctc	gagacattgt	gactgatagc	gagactctgg	gtcgatgtta	tctgcctcaa	720
caatggctta	gaaaagaaga	aacagaacaa	atacagcaag	gcaacgcccg	tagcctaggt	780
gatcaaagac	tgttgggctt	gtctctgaag	cttgtaggaa	aggcagacgc	tatcatggtg	840
agagctaaga	agggcattga	caagttgccg	gcaaactgtc	aaggcggtgt	acgagctgct	900
tgccaagtat	atgctgcaat	tggatctgta	ctcaagcagc	agaagacaac	atatcctaca	960
agageteate	taaaaggaag	cgaacgtgcc	aagattgctc	tgttgagtgt	atacaacctc	1020
tatcaatctg	aagacaagcc	tgtggctctc	cgtcaagcta	gaaagattaa	gagtttttt	1080

341/357

gttgattag	1089
<210> 69 <211> 611 <212> DNA <213> Blakeslea trispora	
<400> 69 agagataaaa taaaaagaga agaaaagaaa gtttgtacaa tttctttttg tttatataac	60
atacacgcta tgtcaacatt tagaataagg gggaaaaaat cttccatcat attcgaatgc	120
acaagattat ttctttgttc gctctttttg gtcgggtcat cgagatttag agtgtaatca	180
aagatactgt catctcgaga gcgttgcaca ggctgctgtt tgccaaattg gatgtttgcc	240
gaattagtaa aatacgcaag catttcttac ctttccgctc ccttttccta attctcccaa	300
agactaaatg aggaaagata aaggacaaag aaaatgtaaa gacaaagaaa ttgaaaacga	360
tataaacttg cagcacgtaa gaccaaagca aattggtaac tattcttgtg tacaaacatg	420
tataaaaaaa aactttttt tgctcctgga ggacaaaatt tcaaactcct tgaagaagat	480
tgcttgtata tctatcatat gcatatatca tatcgatgga aaaagaaagt caggcatgta	540
tttataaaaa gaagaatgtg ccatgettee gaatttettt teaetttett tteettatet	600
atttaatct c	611
<210> 70 <211> 882 <212> DNA <213> Haematococcus pluvialis	
<400> 70 atgctgtcga agctgcagtc aatcagcgtc aaggcccgcc gcgttgaact agcccgcgac	60
atcacgcggc ccaaagtctg cctgcatgct cagcggtgct cgttagttcg gctgcgagtg	120

WO 2004/063359 PCT/EP2004/000099 342/357

gcagcaccac	agacagagga	ggcgctggga	accgtgcagg	ctgccggcgc	gggcgatgag	180
cacagcgccg	atgtagcact	ccagcagctt	gaccgggcta	tcgcagagcg	tegtgeeegg	240
cgcaaacggg	agcagctgtc	ataccaggct	gccgccattg	cagcatcaat	tggcgtgtca	300
ggcattgcca	tcttcgccac	ctacctgaga	tttgccatgc	acatgaccgt	gggcggcgca	360
gtgccatggg	gtgaagtggc	tggcactctc	ctcttggtgg	ttggtggcgc	gctcggcatg	420
gagatgtatg	cccgctatgc	acacaaagcc	atctggcatg	agtegeetet	gggctggctg	480
ctgcacaaga	gccaccacac	acctcgcact	ggaccctttg	aagccaacga	cttgtttgca	540
atcatcaatg	gactgcccgc	catgeteetg	tgtacctttg	gcttctggct	gcccaacgtc	600
ctgggggcgg	cctgctttgg	agcggggctg	ggcatcacgc	tatacggcat	ggcatatatg	660
tttgtacacg	atggcctggt	gcacaggcgc	tttcccaccg	ggcccatcgc	tggcctgccc	720
tacatgaagc	gcctgacagt	ggcccaccag	ctacaccaca	gcggcaagta	cggtggcgcg	780
ccctggggta	tgttcttggg	tccacaggag	ctgcagcaca	ttccaggtgc	ggcggaggag	840
gtggagcgac	tggtcctgga	actggactgg	tccaagcggt	ag		882

<210> 71

<211> 528

<212> DNA

<213> Erwinia uredovora

<400> 71

atgttgtgga tttggaatge eetgategtt ttegttaceg tgattggeat ggaagtgatt 60 getgeactgg cacacaaata catcatgeac ggetggggtt ggggatggea tettteacat 120 catgaacege gtaaaggtge gtttgaagtt aacgatettt atgeegtggt ttttgetgea 180 ttategatee tgetgattta tetgggeagt acaggaatgt ggeegeteea gtggattgge 240

WO 2004/063359		PCT/EP2004/000099
	343/357	

gcaggtatga (eggegtatgg	attactctat	tttatggtgc	acgacgggct	ggtgcatcaa	300
cgttggccat (tccgctatat	tccacgcaag	ggctacctca	aacggttgta	tatggcgcac	360
cgtatgcatc a	acgccgtcag	gggcaaagaa	ggttgtgttt	cttttggctt	cctctatgcg	420
cegeceetgt (caaaacttca	ggcgacgctc	cgggaaagac	atggcgctag	agegggeget	480
gccagagatg (cgcagggcgg	ggaggatgag	cccgcatccg	ggaagtaa		528

<210> 72

<211> 762

<212> DNA

<213> Nostoc sp. PCC73102

<400> 72

atgatccagt tagaacaacc actcagtcat caagcaaaac tgactccagt actgagaagt 60 aaatctcagt ttaaggggct tttcattgct attgtcattg ttagcgcatg ggtcattagc 120 ctgagtttat tactttccct tgacatctca aagctaaaat tttggatgtt attgcctgtt 180 atactatggc aaacattttt atatacggga ttatttatta catctcatga tgccatgcat 240 ggcgtagtat ttccccaaaa caccaagatt aatcatttga ttggaacatt gaccctatcc 300 360 ctttatggtc ttttaccata tcaaaaacta ttgaaaaaac attggttaca ccaccacaat 420 ccagcaagct caatagaccc ggattttcac aatggtaaac accaaagttt ctttgcttgg tattttcatt ttatgaaagg ttactggagt tgggggcaaa taattgcgtt gactattatt 480 tataactttg ctaaatacat actccatatc ccaagtgata atctaactta cttttgggtg 540 ctaccctcgc ttttaagttc attacaatta ttctattttg gtactttttt accccatagt 600 gaaccaatag ggggttatgt tcagcctcat tgtgcccaaa caattagccg tcctatttgg 660 tggtcattta tcacgtgcta tcattttggc taccacgagg aacatcacga atatcctcat 720 762 atttcttggt ggcagttacc agaaatttac aaagcaaaat ga

<210> 73 <211> 617 <212> DNA <213> Haematococcus pluvialis <400> 73 tagggtgegg aaccaggcac gctggtttca cacctcatgc ctgtgataag gtgtggctag 60 agcgatgcgt gtgagacggg tatgtcacgg tcgactggtc tgatggccaa tggcatcggc 120 catgtctggt catcacgggc tggttgcctg ggtgaaggtg atgcacatca tcatgtgcgg 180 ttggaggggc tggcacagtg tgggctgaac tggagcagtt gtccaggctg gcgttgaatc 240 agtgagggtt tgtgattggc ggttgtgaag caatgactcc gcccatattc tatttgtggg 300 agetgagatg atggeatget tgggatgtge atggateatg gtagtgeage aaactatatt 360 420 cacctagggc tgttggtagg atcaggtgag gccttgcaca ttgcatgatg tactcgtcat ggtgtgttgg tgagaggatg gatgtggatg gatgtgtatt ctcagacgta gaccttgact 480 540 ggaggcttga tcgagagagt gggccgtatt ctttgagagg ggaggctcgt gccagaaatg 600 gtgagtggat gactgtgacg ctgtacattg caggcaggtg agatgcactg tctcgattgt aaaatacatt cagatgc 617 <210> 74 <211> 1208 <212> DNA <213> Haematococcus pluvialis <400> 74 60 attgtgactg atagcgagac tctgggtcga tgttatctgc ctcaacaatg gcttagaaaa gaagaaacag aacaaataca gcaaggcaac gcccgtagcc taggtgatca aagactgttg 120 ggettgtete tgaagettgt aggaaaggea gaegetatea tggtgagage taagaaggge 180

WO 2004/063359 PCT/EP2004/000099 345/357

attgacaagt tgccggcaaa	ı ctgtcaaggc	ggtgtacgag	ctgcttgcca	agtatatgct	240
gcaattggat ctgtactcaa	ı gcagcagaag	acaacatatc	ctacaagagc	tcatctaaaa	300
ggaagcgaac gtgccaagat	tgctctgttg	agtgtataca	acctctatca	atctgaagac	360
aagcctgtgg ctctccgtca	agctagaaag	attaagagtt	tttttgttga	ttagtgaatt	420
tttgttttat ttatgtctga	ı tagttcaata	aagagacaac	acatacaata	taaaatcatt	480
gtctttaaat gttaatttag	r tagagtgtaa	agcctgcatt	ttttttgtac	gcataaacaa	540
tgaattcacc ccgcttctgg	, tttttaaata	attatgtcaa	actagggaaa	attcttttt	600
ttctcttcgt tctttttttç	gcttgttgtg	gagtcacagg	cttgtcttca	gattgataga	660
ggttgtatac actcaacaga	gcaatcttgg	cacgttcgct	tccttttaga	tgagctcttg	720
taggatatgt tgtcttctgo	: tgcttgagta	cagatccaat	tgcagcatat	acttggcaag	780
cagetegtae acegeettga	cagtttgccg	gcaacttgtc	aatgcccttc	ttagctctca	840
ccatgatage gtctgccttt	: cctacaagct	tcagagacaa	gcccaacagt	ctttgatcac	900
ctaggctacg ggcgttgcct	tgctgtattt	gttctgtttc	ttcttttcta	agccattgtt	960
gaggcagata acatcgacco	aacatcctcg	agccatacta	cagcataaaa	ggatacgttt	1020
tetttaacag aaatttacco	: ttttgttatc	agcacataca	aaaaaaaga	aatttaagat	1080
gagtaggact tecattetet	: caaaaatttt	attcaatcca	taaatgaatt	atttttggac	1140
aaaaaagaaa gattatgcc	gattttctct	atttttttt	tttttacaac	tccaccaata	1200
ctttctag					1208

<210> 75

<211> 6316

<212> DNA

<213> Blakeslea trispora

<220> <221> misc_feature <222> (2694)..(2694) <223> n is a, c, g, or t <220> <221> misc_feature <222> (4263)..(4263) <223> n is a, c, g, or t <400> 75 aaggatgaag aatccaactc taataaaaat cttatggata tctttgatcg actcaaaaag 60 120 gctttcaatg ctattgctat taaaaaaaaa gagagagaga gaactatgag caaaaggact 180 ctatgccaag atggcaaaaa ggcaccagaa acccttagtt tattattgca taatccagtc gagctagtac ttctgtagct caagcttaac cgaggatctt ggaatcaact cgtctcgtca 240 ctcttgccga tgatcctaga aatggtatct atggatgtta tactaacatt gttatctttc 300 360 aaggcctcga agatgttatt gttgcggtga taaataggct gctatgtact gaagttgctc tgtaaaatga atctagttca ctgcctactc agcaaatggt tgtttctaat gtctttaaag 420 aaagaaaaaa agatacatat agactaccct teettteaag actgtaateg agaateggee 480 gatggtttat tacaattaga cgctgggaat aagcaaaagg attcatcttt gtaaataaga 540 gactggtgca tatgaaagca aggatcgtat caaggaatag ttttgatcga gcatcaccag 600 caaatgctgc taatgttggc ttcttctttg cttcctgaga ttgaatggga tgtgcctaga 660 gcattgctat ttttaagtgt atactttaga tttgtgtctt tagatttgtg tcattttatt 720 780 tagtcaagaa agatccccct ttctctatgt atgctaagaa gaaggagcaa gaagtgtatt tacaagttgg aatgagattg aaatattgta cataataata ataaaaagaa aggtagatca 840

aaaaaaatgt tctgcctatt gtaagaaatc gggaccaaca ggtgcttgat aaccagaagt

900

WO 2004/063359 PCT/EP2004/000099 347/357

agcttccaat	tcaggtagag	gctctaggga	caaatacaca	attatgacag	gaattttctt	960
gttgacttga	acactacaag	agaaacgggt	cagcacaaaa	tccgaaaaaa	aaaagaaacg	1020
gaccattcat	gtcttaccta	tctagctctt	tgtcttcaat	tgcatcccat	tgctcaacca	1080
cagatacgct	tcccaattga	gtatattgat	gaagtgttcc	ctgcattttt	cgcttgacta .	1140
attccactac	agtcacagtc	ttattaatgt	tttgtccttt	accagtcagg	ataatatgat	1200
ctttttgctt	cttctatcaa	aaaaataatt	cttgttttga	ataaaaaaaa	caaatattta	1260
aagaaactac	tttgatgacg	gtacctggaa	taactcgaga	cacacatcta	catatgcgtt	1320
gattttattg	tggctaattc	gaacctcatt	ttctgctggt	gggggctgtt	gactttcagt	1380
tgctgagacg	tecttettge	ttcttttata	gtcttccact	atgattttaa	tcaagaaagt	1440
aagtcagtga	tgattgttac	aagctatata	tcttgaaaaa	gaacagagag	gtattattat	1500
cagatgcaac	atggttttct	gtatcatttt	catttcagtt	tctctgttca	aaaaaaaaaa	1560
gaacactttc	tctttccact	cctcaaattt	tttctgctaa	actcctcgca	aaacatgtat	1620
ttgctttaaa	ctacaagttg	caattgtctg	atttagcaat	ttcaatatgc	cttttgtgaa	1680
tccacccaaa	aataaacaag	tgcttgagta	tacttgggtt	cagttcaaaa	gaaagcaagc	1740
tttttttt	ctttcttggg	aaagaaaaaa	aaatattgtt	gagccatcct	ttaccagcag	1800
tatgcgagct	acgacatagc	tggtctaaca	atgactgcaa	gcaatagatc	gagcttagtc	1860
tttctattgc	ttcyttgttt	gatctatgtt	cggccttacg	ctgacctatc	caatactcga	1920
gataggcaac	aagatttcga	acagtaatga	aataaatttc	ggataacagt	tgtggatgag	1980
gaagagaaag	cgacttgaac	tcgagaaact	ttgttgaaat	gaaatccgac	cttttacgtg	2040
atcatcatgt	attatcctct	ttttctttt	tttcgtagtg	aattacttac	tgattgcgct	2100
caagtcgcgt	ctttataaag	aagaaaaaaa	aatattagaa	ctttcaaaaa	atataactga	2160

WO 2004/063359 PCT/EP2004/000099 348/357

aaataaaagt gtggctcgga gagcaaatac cacatccttt gtcttcgctt tggtaacacg	2220
gttaataagc cactataggt gaataatgat catttctgag aataaagcgc ggcttgaagc	2280
ttatatccat atcaggattc atattaggca caactcacaa ttgaggttcc agaagtgcca	2340
atttttttt cctgatagcc tgtccaatta agatcaaaaa ccactgagtt ttctctatat	2400
attititt ticataatic tiaactette tiectetete tetetetete tetetittig	2460
gcttgcaaaa aaaatettta gtaataccaa agaaagcaaa cetttteett ttettattte	2520
cttgcttgtt ttttaatttt tgatttctct atgctttaaa tacccatttc tttctttctt	2580
ctgctattac ctatctttc attcctctcc cccctctctc tcttggtcta taaacatcat	2640
gaagteetet tttaaaagtt egettgacat ttatgetgtt tatatacage atentgtgtt	2700
ttccaagtgg ttcattcttg cttttgttct ttcgattttc ctcaacactt atctactgaa	2760
cgcttcgaag caacagccca aagtgataat caaaaaggtt attgagcggg tagaagtacc	2820
aagtagagaa caacctaaat cagtcataaa gccctcctcc aagaaacact cttctcatca	2880
tcagtctgat gtcattcgcc ctcttgatga agtattgggt ttgctcggaa cacccgaggc	2940
cttgactgat gaagagatca tetetattgt teaagetggt aaaatggeee eetatgetet	3000
tgaaaaggtc ttgggcgatt tagagcgcgc tgtccatatc cgtcgtgctt tgatctcccg	3060
tgactctcgt acgaaaactt tggaagacag tatgcttccc gtgaaaaact atcattatga	3120
taaagtcatg ggtgcttgtt gtgaaaatgt cattggttat atgcctattc cagtaggtgt	3180
cgcaggtaag aagttcaaca agtcgcgata tttgacaagt tgctcatcat tttcgaaaca	3240
ggtcctttgg tgattgatgg tgattctatt catattccca tggcaactac ggaaggttgt	3300
ttagttgctt ctactgccag aggttgtaaa gcaatcaatg ctggtggtgg tgccaacaca	3360
attgttgttg ctgatggtat gactcgaggt ccttgtgtcg aatttcctac aatcactcgc	3420

WO 2004/063359 PCT/EP2004/000099 349/357

gctgctgact	gtaaacgatg	gattgaacaa	gagggtgaag	ctatcgtgac	cgaggcattc	3480
aattcaactt	ctcgttttgc	tcgtgttcgt	aaattgaaag	ttgctcttgc	cggtcgtcta	3540
gtctacatcc	gtttctctac	cactacaggt	gatgcaatgg	gcatgaacat	gatctccaag	3600
ggttgtgaaa	aggctttaag	caagattgct	gagagatatc	ctgatatgca	gatcatttct	3660
ctttctggta	actattgtac	tgacaagaaa	cctgctgcta	tcaactggat	tgaaggacgt	3720
ggtaaatctg	ttgttgctga	sgctgtcatc	cctggtacgg	ttgtcgaaaa	ggtattgaag	3780
acctctgtta	gtgctttggt	tgagctgaac	atctctaaaa	acctggttgg	ttctgctatg	3840
gctggctccg	tcggtggctt	taacgctcat	gctgctaata	ttctaactgc	catttacctt	3900
gctactggtc	aagatcctgc	tcaaaatgta	sagagttcta	actgtattac	tttgatgaaa	3960
gctgtcaatg	gcgaaagaga	ccttcatatc	tcttgtacaa	tgccctgtat	tgaagtaggc	4020
accattggtg	gtggtactat	tttgcctcct	caacaagcca	tgttggattt	cattggtgtg	4080
cgtggtcctc	accctaccga	acctggtgcc	aatgcccgwc	gccttgctcg	tgttatctgt	4140
gcctctgtga	tggctggtga	attgtcttta	tgtgcagctt	tggctgctgg	tcatcttgta	4200
aaggcacaca	tggctcataa	tcgtaatacc	actgctgctg	ccgctgttgt	tectgecect	4260
aanggcatag	ttgatgtctc	tacacctcct	gctacacctg	cagaaaagaa	tgatcctatt	4320
cctggaagtt	gtatcaagtc	atagaattaa	tattatatat	atatcatata	caaaaaaaag	4380
aaaaaaaaa	cactacatct	atttatattt	ctccatgtac	acacacacac	acacatataa	4440
aaactcttta	ttttccaata	ttttgctttt	ataaataatc	ttatttcatt	ctaaataaac	4500
tgttttttt	tattaatcat	caaaccctgc	tgagagctgt	gcaatatcat	ctatgttttc	4560
atggtttaac	tctggtatcg	gwcgagcctc	ctctgtactt	gaagtttgta	ggcagttttt	4620
atttaaggct	gctggtcgat	catgatcatc	akcaaacctg	acagcatgaa	gttttgactg	4680

atgagcaatt	tcactaaggg	cagaatctga	actctttcgc	ttcctactat	tgaccatatt	4740
gtctttaggt	ggaatgagtg	aatagcgtct	tgtcatatgt	aacacagaat	caacaatatc	4800
ctggtgatga	aactcggcca	aacatagcgc	ctttctcccc	caacaattat	aataatcaaa	4860
atgagaatga	catgtacggt	tttcctcgat	gacaatatcc	aacgtcttgt	cataatcctc	4920
tgtgcgyata	ccattcatct	tttggaagaa	cgcacggtag	ctctcacaag	ctgtcctcag	4980
agagttccgt	gccatgtttc	ccaatgctcc	tggcaagtcg	aaatgaagtt	gtcgaatctg	5040
gcgatgtatg	tctacaatgt	cgcctgtttc	tttcattaga	tcaagcattc	gtgtagccca	5100
aatgatgtct	atgttatgat	tttctttcat	tccagtaata	actatagttt	ctcggcaaat	5160
cgaatgastg	atggagtaaa	ttcatcaaaa	gtgcaagtaa	tacatacagt	gcttgaagaa	5220
atcttgtgta	gcacgcctat	attatgtaat	ataggatcga	ttctcgaaac	tcgacataac	5280
caccaggctt	tagcaagcgt	tttatttcat	tcatgacaag	ctattgttaa	ttcytgctta	5340
ataaaacaaa	atgaaaaaaa	cataccccc	tcmaaactta	cttcccactc	ttgattggaa	5400
aaacaggtat	agacgtgacg	catatgtata	taatcaaaac	actcatcagg	atagggtaaa	5460
ccattgagca	catcgcattg	ggtgaagaaa	gtattaggag	gcttgatggc	tgtaggatat	5520
ataggtgcaa	tatcaatacc	gtaaaactca	gcatttggga	attetgtage	catctccaga	5580
atccaagtac	ctgtgccaca	agcaacatca	agcactttag	gtaagggtat	acattgttgt	5640
tcttgttgtt	gttgttgaca	. atcacttgag	tctgagtttc	gttttgattg	ttttaatgac	5700
aataattctt	ttacaggtgc	tgagaaatta	ccgtcaaata	gatacttgta	aataaaatgc	5760
taaaaataaa	ı aacaatagaa	aaaaaaattg	acgeteattt	cattactatg	gaaataactg	5820
caaaatctta	ccacttgtac	: aagtctatct	: tgctcaatct	catcgtttgg	cagaatgtat	5880
ttattgttgt	: agtattgata	tcttctacca	ttcatgatat	aactgtcgct	tctaatgctc	5940

WO 2004/063359 PCT/EP2004/000099 351/357

tgaggtgaag	tacttgtagg	tgaaggtgga	agtgacgcaa	ttttgtcaag	cttaacagga	6000
tcctctcggc	tacatgtttt	ctgcatatca	ggaaaatctt	gtttatttga	aacatcaaca	6060
gtagatgtgg	tgtgatcttt	tttgaaaata	tcgatgcctt	cctttgaaag	ccttttgaaa	6120
ggctctttta	acttttttga	gtgagagcta	cccatgatag	cttatgaaga	attaaaaaga	6180
aaaaagcaaa	aaaaattaaa	aaaaaaaaaa	gtagcaaaaa	attctgtcgt	aattatacaa	6240
gccaatcaaa	atcgaaattc	atgcaaggca	tagatgttca	cgtggatttg	atggttgatc	6300
cttttttt	gcaaga					6316

<210> 76

<211> 1170

<212> DNA

<213> Thermus thermophilus

<400> 76

atgaagcgcc tttccctgag ggaggcctgg ccctacctga aagacctcca gcaagatccc 60 120 ctegecgtee tgetggegtg gggeegggee cacceegge tetteettee eetgeeeege 180 🔨 ttccccctgg ccctgatctt tgaccccgag ggggtggagg gggcgctcct cgccgagggg 240 accaccaagg ccaccttcca gtaccgggcc ctctcccgcc tcacggggag gggcctcctc 300 accgactggg gggaaagctg gaaggaggcg cgcaaggccc tcaaagaccc cttcctgccg 360 aagaacgtcc gcggctaccg ggaggccatg gaggaggagg cccgggcctt cttcggggag tggcgggggg aggagcggga cctggaccac gagatgctcg ccctctccct gcgcctcctc 420 gggcgggccc tcttcgggaa gcccctctcc ccaagcctcg cggagcacgc ccttaaggcc 480 540 ctggaccgga tcatggccca gaccaggagc cccctggccc tcctggacct ggccgccgaa gcccgcttcc ggaaggaccg gggggccctc taccgcgagg cggaagccct catcgtccac 600

WO 2004/063359 PCT/EP2004/000099 352/357

ccgcccctct	cccaccttcc	ccgagagcgc	gccctgagcg	aggccgtgac	cetectggtg	660
gegggeeaeg	agacggtggc	gagcgccctc	acctggtcct	ttetectect	ctcccaccgc	720
ccggactggc	agaagcgggt	ggccgagagc	gaggaggcgg	ccctcgccgc	cttccaggag	780
gecetgagge	tctaccccc	cgcctggatc	ctcacccgga	ggctggaaag	gcccctcctc	840
ctgggagagg	accggctccc	cccgggcacc	accctggtcc	tctcccccta	cgtgacccag	900
aggctccact	tccccgatgg	ggaggccttc	cggcccgagc	gcttcctgga	ggaaaggggg	960
accccttcgg	ggcgctactt	cccctttggc	ctggggcaga	ggctctgcct	ggggcgggac	1020
ttcgccctcc	tcgagggccc	catcgtcctc	agggccttct	teegeegett	ccgcctagac	1080
cccctcccct	tcccccgggt	cctcgcccag	gtcaccctga	ggcccgaagg	cgggcttccc	1140
gcgcggccta	gggaggaggt	gcgggcgtga		·		1170

<210> 77

<400> 77

60 tctagaattc attccattcg aaaggatcaa cataaccaat ttaatgacta ctagctaatg 120 gatacaaata tacgcacaaa aaaagaaaga attctatgat caaagagaac acagacacag agtgatacat ttaaatggtt aagttcttat gatgttaaaa tggtaacttt attattgaat 180 240 taaatgcgaa tatcgttgct gctttgtact tggaaaacgt taggtaaaag ttggttaatg 300 aaagaagcag gagttgtagt atcatctctt gggaagaaat agaaaaagag gaaagtaaca aagtaacaag caagacaata atagatccaa tggctttcgg tcttacgagt ttgttcagga 360 gcatacttct tttggctatc ttgtaacttt cttggtaagg gattctggcc aaagctttta 420 480 cagacttggt cggaagtaag cttacttcca gcaagaacga taggaacacc agtacctgga

<211> 2981

<212> DNA

<213> Blakeslea trispora

WO 2004/063359 PCT/EP2004/000099 353/357

tgtgtactac	aaagaaaaga	gaaatgagta	cgtgcgttat	taaaaaaaag	aaaaaaagag	540
ggcaaaagta	ttacctagct	ccgacaaaga	aaagattatc	ataacggttt	gtggaatcct	600
tggtactagg	tctgaaccag	agaacttgga	acacatcatg	agaaagacca	agaatagaac	660
ctctccaaag	gttaaacttg	ctttgccaaa	cactaggatc	attcacttct	tcatgttcaa	720
tcaaattagc	aaagttgttt	actcccaaac	gacgttcgat	aacttccaga	accatcttgc	780
gtgcacggtt	taccaactca	ggataatttt	cttcagcact	gtttcctgtc	ttactcttca	840
tatggccaat	tggaaccaac	acaataatgg	agtccttgtt	gggaggtgcg	gcagattcat	900
caattcgaga	tggaacgttg	acatagaatg	aagcttcaga	gggcaaaccg	aagtcgttga	960
aaatctcatc	aaaactttcc	ttgtaggctt	cagccaagaa	gatattgtgt	acgtctaatt	1020
gaggcacctt	tgttgacatg	gaccaataaa	acgaaataga	tgatgaagtg	agtttctttg	1080
aggctaatgt	cttctttgtc	caattgcaag	gaggtaacag	atggtgataa	gcataaacaa	1140
gatccgcatt	acatacgact	gcatcggctt	caatgacttc	tccgctttcc	aaagtgacac	1200
cggttacacg	cttgtcttta	tcgacagtgt	taattttagc	aacaggcgat	tgatatctga	1260
attcagcacc	gtactttttg	gaggcgatag	actcaagctt	ctgaacaacc	atgttgaaac	1320
caccacgagg	ataccagata	ccttcagcaa	actcggtgta	ttgtaacaaa	ctgtaaactg	1380
ctggagcatc	ataaggcgac	atactatatt	ccaaaaatag	aaaatagaac	aatgaatatc	1440
aaaattcctt	tcacttgccc	tttttcacat	ttctcttttc	ccacccccga	ccggtctcac	1500
tcatttttt	ttcatcccac	accacgcgtt	gtatgtgtac	ttaccccata	tacattgttt	1560
gaaaagtaaa	agccatacgc	attttcttgg	tttggaaata	tttactggct	cggtcataga	1620
tcttaccaaa	caagtgcaag	cgaaagattt	caggcacata	ctgaagacga	atcaaatccc	1680
aaatggtttc	aaagttgcgc	ttgatagcaa	taaatgtacc	ttgttcataa	tggacatgtg	1740

WO 2004/063359 PCT/EP2004/000099 354/357

					•	
tttccttcat	gaaatccaag	aatctaccaa	atccaagggg	accctcaata	cggtccaatt	1800
cgcccttcat	cttggttaaa	tcggaagaga	gttgtacggc	atcaccgtcg	tcaaaatgaa	1860
ccttatagtt	attgtcacag	cgaagcaaat	ccaaatgatc	accaatacgt	tcatccaaat	1920
cagcaaatgc	atcttcaaaa	agcttaggca	tcaaatagag	tgagggaccc	tgatcaaagc	1980
gatgaccatc	gtgatgaatg	aatgaacaac `	ggccaccgga	aaagtcgttc	ttttcaacaa	2040
cagtaactcg	aaaaccttca	cgagcaagac	gagcagcagt	agcagttccg	ccaataccgg	2100
caccaatgac	aacaatatgc	ttcttttgat	cagacatgag	attaaaatag	ataaggaaaa	2160
gaaagtgaaa	agaaattcgg	aagcatggca	cattettett	tttataaata	catgcctgac	2220
tttcttttc	catcgatatg	atatatgcat	atgatagata	tacaagcaat	cttcttcaag	2280
gagtttgaaa	ttttgtcctc	caggagcaaa	aaaaagtttt	tttttataca	tgtttgtaca	2340
caagaatagt	taccaatttg	ctttggtctt	acgtgctgca	agtttatatc	gttttcaatt	2400
tctttgtctt	tacattttct	ttgtccttta	tctttcctca	tttagtcttt	gggagaatta	2460
ggaaaaggga	gcggaaaggt	aagaaatgct	tgcgtatttt	actaattcgg	caaacatcca	2520
atttggcaaa	cagcagcctg	tgcaacgctc	tcgagatgac	agtatctttg	attacactct	2580
aaatctcgat	gacccgacca	aaaagagcga	acaaagaaat	aatcttgtgc	attcgaatat	2640
gatggaagat	tttttcccc	ttattctaaa	tgttgacata	gcgtgtatgt	tatataaaca	2700
aaaagaaatt	gtacaaactt	tetttette	tetttttatt	ttatctctat	gtcaatactc	2760
acttatctgg	aatttcatct	ctactataca	ctacctgtcc	ttgcggcatt	gtgttggctg	2820
ctaaagccgt	ttcactcaca	gcaagacaat	ctcaagtata	aatttttaat	gttgatggcc	2880
gcctctaccg	catcgatttg	ggacaattat	atcgtttatc	atcgcgcttg	gtggtactgt	2940
cctacttgtg	ttgtggctgt	cattggctat	gtacctctag	a		2981

<210> 78

<211> 1749

<212> DNA

<213> Blakeslea trispora

<400> 78

atgtctgatc	aaaagaagca	tattgttgtc	attggtgccg	gtattggcgg	aactgctact.	60
gctgctcgtc	ttgctcgtga	aggttttcga	gttactgttg	ttgaaaagaa	cgacttttcc	120
ggtggccgtt	gttcattcat	tcatcacgat	ggtcatcgct	ttgatcaggg	tccctcactc	180
tatttgatgc	ctaagctttt	tgaagatgca	tttgctgatt	tggatgaacg	tattggtgat	240
catttggatt	tgcttcgctg	tgacaataac	tataaggttc	attttgacga	cggtgatgcc	300
gtacaactct	cttccgattt	aaccaagatg	aagggcgaat	tggaccgtat	tgagggtccc	360
cttggatttg	gtagattctt	ggatttcatg	aaggaaacac	atgtccatta	tgaacaaggt	420
acatttattg	ctatcaagcg	caactttgaa	accatttggg	atttgattcg	tcttcagtat	480
gtgcctgaaa	tctttcgctt	gcacttgttt	ggtaagatct	atgaccgagc	cagtaaatat	5 4 0
ttccaaacca	agaaaatgcg	tatggctttt	acttttcaaa	caatgtatat	gggtatgtcg	600
ccttatgatg	ctccagcagt	ttacagtttg	ttacaataca	ccgagtttgc	tgaaggtatc	660
tggtatcctc	gtggtggttt	caacatggtt	gttcagaagc	ttgagtctat	cgcctccaaa	720
aagtacggtg	ctgaattcag	atatcaatcg	cctgttgcta	aaattaacac	tgtcgataaa	780
gacaagcgtg	taaccggtgt	cactttggaa	agcggagaag	tcattgaagc	cgatgcagtc	840
gtatgtaatg	cggatcttgt	ttatgcttat	caccatctgt	tacctccttg	caattggaca	900
aagaagacat	tagcctcaaa	gaaactcact	tcatcatcta	tttcgtttta	ttggtccatg	960
tcaacaaagg	tgcctcaatt	agacgtacac	aatatcttct	tggctgaagc	ctacaaggaa	1020

WO 2004/063359 PCT/EP2004/000099 356/357

agttttgatg	agattttcaa	cgacttcggt	ttgccctctg	aagcttcatt	ctatgtcaac	1080
gttccatctc	gaattgatga	atctgccgca	cctcccaaca	aggactccat	tattgtgttg	1140
gttccaattg	gccatatgaa	gagtaagaca	ggaaacagtg	ctgaagaaaa	ttatcctgag	1200
ttggtaaacc	gtgcacgcaa	gatggttctg	gaagttatcg	aacgtcgttt	gggagtaaac	1260
aactttgcta	atttgattga	acatgaagaa	gtgaatgatc	ctagtgtttg	gcaaagcaag	1320
tttaaccttt	ggagaggttc	tattcttggt	ctttctcatg	atgtgttcca	agttctctgg	1380
ttcagaccta	gtaccaagga	ttccacaaac	cgttatgata	atcttttctt	tgtcggagct	1440
agtacacatc	caggtactgg	tgttcctatc	gttcttgctg	gaagtaagct	tacttccgac	1500
caagtctgta	aaagctttgg	ccagaatccc	ttaccaagaa	agttacaaga	tagccaaaag	1560
aagtatgctc	ctgaacaaac	tcgtaagacc	gaaagccatt	ggatctatta	ttgtcttgct	1620
tgttactttg	ttactttcct	ctttttctat	ttcttcccaa	gagatgatac	tacaactcct	1680
gcttctttca	ttaaccaact	tttacctaac	gttttccaag	tacaaagcag	caacgatatt	1740
cgcatttaa						1749

<210> 79

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 79

ccgatggcga cgacggaagg ttgtt

25

<210> 80

<211> 25

<212> DNA

WO 2004/063359

PCT/EP2004/000099

357/357

<213> Artificial

<220>

<223> Primer

<400> 80

catgttcatg cccattgcat cacct

25