The Landscape of Distributed Time Complexity

Dennis Olivetti
Aalto University, Finland

Topic: distributed graph problems

- Family of graph problems: LCLs
- Focus on *locality*
 - How much does an entity need to know about the graph in order to solve a graph problem?
 - How local can these problems be?
 - When can randomness help?

- Graph = communication network
- Synchronous rounds
- Time complexity = number of rounds required to solve the problem
- Nodes have IDs
- No bounds on the computational power of the entities and on the bandwidth

- Initial knowledge of a node:
 - *n* = the total number of nodes in the graph
 - \triangle = the maximum degree of the graph
 - Its unique ID
 - A port numbering of its incident edges
 - Sequence of random bits

- After *t* rounds:
 - knowledge of the graph up to distance t
- Focus on locality:
 - time = number of rounds = distance

- After *t* rounds:
 - knowledge of the graph up to distance t
- Focus on locality:
 - time = number of rounds = distance

Everything can be solved in Diameter time!

A family of graph problems that includes many important problems

Maximal Independent Set, Maximal Matching, vertex coloring, edge coloring...

Input

- Graph of constant maximum degree Δ
- Node labels from a constant-size set X

Input

- Graph of constant maximum degree Δ
- Node labels from a constant-size set X

Output

 Node labels from a constant-size set Y, such that each node satisfies some local constraints

Input

- Graph of constant maximum degree Δ
- Node labels from a constant-size set X

Output

 Node labels from a constant-size set Y, such that each node satisfies some local constraints

Correctness

 A solution is globally correct if it is correct in all constant-radius neighborhoods

Two algorithms:

Two algorithms:

 Prover: runs for some time and produces an output, plus a certificate of correctness

Two algorithms:

- Prover: runs for some time and produces an output, plus a certificate of correctness
- Verifier: checks, in constant time, if the certificate is correct

Example: weak 2-coloring

- Output: color nodes from a palette of 2 colors
- Constraint: each node must have a different color from at least 1 neighbor

Landscape of LCLs

- Which time complexities are possible for LCLs?
- How local are LCLs?
- Does randomness help in solving an LCL faster?

Paths/Cycles

Gaps

- $\omega(1) o(\log * n)$ gap:
 - Every algorithm A that solves an LCL P in o(log* n) rounds can be automatically sped up into an algorithm A' that solves P in O(1) rounds
- $\omega(\log^* n) o(n)$ gap:
 - Every algorithm A that solves an LCL P in o(n) rounds can be automatically sped up into an algorithm A' that solves P in O(log* n) rounds

Using gaps for proving lower bounds

- The $\omega(\log^* n) o(n)$ gap gives also a normalized way to solve LCLs:
 - Find a distance-k coloring in O(log*n) time
 - Use the coloring in constant time
- **Easy** way to prove an $\Omega(n)$ lower bound:
 - Prove that, for any k, a problem can not be solved in O(1) rounds given a distance-k coloring!

Trees and general graphs? log n ??? log* n Deterministic

Trees and n general graphs? log n log* n Deterministic

Lots of progress since 2016

- Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto STOC 2016
- Chang, Kopelowitz, Pettie [FOCS 2016]
- Ghaffari, Su [SODA 2017]
- Brandt, Hirvonen, Korhonen, Lempiäinen, Östergård, Purcell, Rybicki, Suomela, Uznański [PODC 2017]
- Fischer, Ghaffari [DISC 2017]
- Chang, Pettie [FOCS 2017]
- Chang, He, Li, Pettie, Uitto [SODA 2018]
- Balliu, Hirvonen, Korhonen, Lempiäinen, O., Suomela [STOC 2018]
- Ghaffari, Hirvonen, Kuhn, Maus [PODC 2018]
- Balliu, Brandt, O., Suomela [DISC 2018]
- Balliu, Brandt, O., Suomela [Unpublished 2019]

[Balliu, Hirvonen, O., Suomela 2019]

Homogeneous

LCLs

Artificial problems

• How to get an LCL with complexity $\Theta(n^{3/5})$?

Artificial problems

- How to get an LCL with complexity $\Theta(n^{3/5})$?
- Define the following problem:
 - Solve some global problem if the diameter is $O(n^{3/5})$, or
 - Prove that the diameter is $\omega(n^{3/5})$

Artificial problems

- How to get an LCL with complexity $\Theta(n^{3/5})$?
- Define the following problem:
 - Solve some global problem if the diameter is $O(n^{3/5})$, or
 - Prove that the diameter is $\omega(n^{3/5})$
- Challenge:
 - It should not be possible to prove that the diameter is too high when it is not
 - It must always be possible to prove that the diameter is too high if it is true, no matter what the graph is
 - The number of labels must be constant

