Fundamentals of Computer Vision

Unit 6: Feature Extraction

Jorge Bernal

Index

01

1. Introduction

02

2. Corner detectors

03

3. Edge detectors

04

4. Blob detectors

1

Definition of feature:

- Piece of information that is useful to solve a given task
- Interesting part of the image

Types of features:

- Global: global properties of the whole image
 - Mean grey level, mean colour, main colours, histogram
- Local: properties of a part of the image with their own entity
 - Points, edges, regions

GLOBAL LOCAL

Local features:

- Part of an image that differs from its surroundings.
- They are associated to a change in a certain property (intensity, color, texture)
- Examples:
 - Points (corners, interest points)
 - Edges, ridges
 - Small regions (blobs)

- How can we find local features?
 - Feature detection/extraction algorithms
- Detection/Extraction: locate the position of the feature
- Description (Unit 7): measures that are taken from the detected feature that allow us to distinguish it or compare with others

- Why do we use features?
 - They have been used with success in several disciplines and applications:
 - Edge detection associated to roads in aerial images
 - Quality control
 - Polyp Detection
 - Interest points play a key role for certain Applications:
 - Tracking
 - 3D reconstruction
 - They are a first step to achive a robust image representation:
 - Object recognition
 - Scene classification
 - Texture analysis
 - Image search

- Ideal properties:
 - Repeteability:
 - Invariance to transformations
 - Robustness
 - Differentiation (highly different from another)
 - Precise localization
 - Enough points for the needed task
 - Efficient
- Scale: very important factor to achieve robustness, invariance and precision. Allows us to work with different images at several distances.

				Rotation	Scale	Affine		Localization		
Feature Detector	Corner	Blob	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	√			√			+++	+++	+++	++
Hessian		\checkmark		\checkmark			++	++	++	+
SUSAN	\checkmark			\checkmark			++	++	++	+++
Harris-Laplace	√	(√)		√	\checkmark		+++	+++	++	+
Hessian-Laplace	(√)	\checkmark		\checkmark	\checkmark		+++	+++	+++	+
DoG	(√)	\checkmark		\checkmark	\checkmark		++	++	++	++
SURF	(√)	\checkmark		\checkmark	\checkmark		++	++	++	+++
Harris-Affine	√	(√)		√	\checkmark	\checkmark	+++	+++	++	++
Hessian-Affine	(√)	\checkmark		\checkmark	\checkmark	\checkmark	+++	+++	+++	++
Salient Regions	(√)	\checkmark		\checkmark	\checkmark	()	+	+	++	+
Edge-based	\checkmark			\checkmark	\checkmark	\checkmark	+++	+++	+	+
MSER				√	\checkmark	\checkmark	+++	+++	++	+++
Intensity-based			\checkmark	\checkmark	\checkmark	\checkmark	++	++	++	++
Superpixels			\checkmark	\checkmark	()	()	+	+	+	+

Corner Detection

Corner Detection

Plain region
No changes in all directions

EdgeNo change in edge direction

CornerSignificant changes in all directions

Corner Detection

- Harris (1988): Based on the analysis of the 2D structural tensor (second derivative matrix, second moment matrix)
- SUSAN (Smallest Univalue Segment Assimilating Nucleos): morphologic focus
- Harris-Laplace: Use of Harris for a first detection; scale is fixed using laplacian
- Harris-Affine: Use of Harris-Laplace; then it tries to estimate the most affine shape (with an ellipse that is later normalized to a circle)

- In an image intensity corner, intensity changes significantly in all directions.
- Here we are focused in intensity changes in a local window.
- We use SSD: sum of squared differences

Shifted intensity is approximated using a Taylor Expansion:

$$I(u+x,v+y) \approx I(u,v) + I_x(u,v)x + I_y(u,v)y$$

So, at the end:

$$S(x,y) \approx \sum_{u} \sum_{v} w(u,v) \left(I_x(u,v)x + I_y(u,v)y \right)^2,$$

We can write this in matrix format as:

$$S(x,y) \approx \begin{pmatrix} x & y \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix}$$

, where A is the 2D structural tensor

$$A = \sum_{x} \sum_{y} w(u, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{bmatrix}$$

We change the problem of examining intensity changes due to traslations to analyze the behaviour of matrix A \rightarrow analysis of eigenvalues

 λ_1, λ_2 eigenvalues of A

Classification of image points according to A "Corner" eigenvalues: λ_1 and λ_2 big, $\lambda_1 \sim \lambda_2$; S grows in all directions λ_1 and λ_2 small; "Plain" S almost constant in region all directions

 λ_1

17

Response function at corners (*R*):

$$R = \det(A) - k \text{ (trace } A)^2$$

$$R = \lambda_1 \lambda_2 - k (\lambda_1 + \lambda_2)^2$$

where k is a constant value (empiric) k = [0.04,0.06]

- *R* depends only of *A* eigenvalues
- R is big at corners
- *R* is negative with high value at edges
- |R| is small at plain regions

First derivatives at an image point(u,v):

$$I_{x}(u,v) = \frac{\partial I}{\partial x}(u,v)$$
$$I_{y}(u,v) = \frac{\partial I}{\partial y}(u,v)$$

We can compute:

$$A(u,v) = I_x^2(u,v),$$

$$B(u,v) = I_y^2(u,v),$$

$$C(u,v) = I_x(u,v) \cdot I_y(u,v)$$

Local structre matrix (M)[a.k.a. *A*]

$$M = \begin{pmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{pmatrix} = \begin{pmatrix} A & C \\ C & B \end{pmatrix}$$

Smoothing with a gaussian (G)
$$\overline{M} = \begin{pmatrix} A*G & C*G \\ C*G & B*G \end{pmatrix} = \begin{pmatrix} \overline{A} & \overline{C} \\ \overline{C} & \overline{B} \end{pmatrix}$$

• Diagonal of \overline{M}

$$\overline{M} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

• Where λ_1 , λ_2 are the eigenvalues of \overline{M} defined by:

$$\frac{1}{2} \left(\overline{A} + \overline{B} \pm \sqrt{\overline{A}^2 - 2\overline{A}\overline{B} + \overline{B}^2 + 4\overline{C}^2} \right)$$

Describes a point according to eigenvalues, using corners response function

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2 \right)^2$$

 A good corner has big changes of intensity in all directions → R should be big and positive.

Original

Points with R > threshold

R local maxima

Final result

Corner Detection: Harris-Laplace

- Properties:
 - Rotation invariant:

- Partial invariance to affine intensity changes (derivatives):

Corner Detection: Harris-Laplace

- Combines Harris with a gaussian scale-space.
- We use gaussian Windows with predetermined scales
- We choose the scale that maximizes LoG in this range

 We obtain both the corners and the scale in which it is better represented

Corner Detection: Harris-Affine

- Initial detection using Harris-Laplace
- Affine shape estimated using 2D structure matrix
- Normalize affine regions to a circular shape
- Detect new corner position and scales in the previous image
- If eigenvalues change, go back to point 2

Harris Corner Detector in OpenCV

```
import numpy as np
import cv2 as cv
filename = 'chessboard.png'
img = <u>cv.imread</u>(filename)
gray = <u>cv.cvtColor</u>(img,cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = <u>cv.cornerHarris</u>(gray,2,3,0.04)
dst = cv.dilate(dst,None)
# Threshold for an optimal value, it may vary depending on the image.
img[dst>0.01*dst.max()]=[0,0,255]
cv.imshow('dst',img)
if \underline{\text{cv.waitKey}}(0) \& \text{Oxff} == 27:
           cv.destroyAllWindows()
```


Why do contours appear in images?

- Change in Depth
- Change in Orientation
- Change in Reflectance
- Change in Illumination

- Boundaries (edges)
 - Image regions where gradient magnitude has maximum value
- Valleys / Creasts (ridges)
 - Curve that represents a local maxima or mínima

• Valley

- Gradient
 - Vector that points in the direction of the highest change

grad
$$(I) = \nabla(I) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right) = (I_x, I_y)$$

• We can calculate its magnitude and orientation

$$|\nabla| = \sqrt{I_x^2 + I_y^2}$$

$$\theta = \arctan(I_y/I_x)$$

Boundaries are associated to high magnitude grdients

- Smoothing / Regularization
 - Allows us to decrease noise and control analysis scale
 - First derivative increases noise. We can smooth before derivating (regularization)
 - Smoothing can be done using a Gaussian with good properties (certain frequencies are not amplified)
 - We can also derivate the convolution with the derivative of the gaussian

- Algorithms
 - Differential gradient operator
 - Roberts
 - Sobel
 - Prewitt
 - Laplacian of Gaussian
 - Canny

$$Prewitt(im) = \left(im * \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}, im * \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}\right)$$

$$Sobel(im) = \left(im * \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, im * \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}\right)$$

$$Roberts(im) = \left(im * \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, im * \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right)$$

$$Sobel(im) = \sqrt{\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}}^{2} + \begin{bmatrix} im* \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \end{pmatrix}^{2}$$

Original

Sobel

Original

Sobel

Laplacian

$$Laplacian(I) = \Delta(I) = \nabla^{2}(I) = \frac{\partial^{2} I}{\partial x^{2}} + \frac{\partial^{2} I}{\partial y^{2}}$$

Numerical approximation

$$Laplacian(im) = im * \begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

• Laplacian's zero crossings provide us image boundaries

- Laplacian
 - Disadvantage: result is noisier

• Solution: smoothing with a gaussian

• Advantage: provides as result closed contours

- Canny Edge Detector:
 - We calculate the gradient with gaussian derivatives
 - We apply non maximum suppression
 - Selection of a single entity out of many overlapping ones
 - Join and binarize
 - We define upper and lower thresholds
 - We accept all contours above the lower threshold that are connected to other boundaries above the upper threshold

• Canny Edge Detector:

1.- Original

3.- Thresholding

2.- Norm of the gradient

4.- Thinning (non-maximum suppression)

- Canny Edge Detector:
 - Scale

original

 $low \sigma$

high σ

- Choice σ of depends of the desired behaviour
 - High σ detects high scale boundaries
 - Low σ detects low scale boundaries (noisier appearance)

• Grouping:

- Primitive detection from boundary parts or a set of points
 - Hough Transform for lines (SLHT)
 - Hough Transform for circles (CHT)
 - Generalized Hough Transform (GHT)

- Hough Transform for lines
 - Transform points associated to a pattern within a parameter space where they can be represented in a compact shape
 - Example for lines y = ax + b

• Solution: $\lim \rightarrow \rho = x \sin \theta + y \cos \theta$

- Straight Line Hough Transform
 - Key point detections: pixel selection according to local properties (gradient magnitude, orientation)
 - Transformation mapping: each keypoint is mapped in the feature space (accumulation or voting array)
 - Peak detection: local/global binarization in accumulation array

• Example

- Another Hough Transforms
 - Circles (CHT):
 - Tridimensional voting space (x,y,r)
 - Each point contributes to this voting space within a cone
 - General (GHT):
 - Model definition:
 - For an object (closed or open boundary) we define an inner center
 - For each boundary point we calculate the gradient (contour direction)
 - From the center to each point we calculate radii and angle
 - We store for each direction all radii-angle pairs
 - Voting
 - We generate image either of boundaries or from boundaries. We calculate gradients
 - For each point we vote all radii-angle associated to a particular direction

- Python implementation
 - Canny
 - edge = cv2.Canny(image, low_th, high_th)
 - Sobel
 - edge = cv2.Sobel(image,precision_out_image,d_x,d_y)
 - d_x and d_y specify if the first derivative of a specific direction is computed
 - Laplacian
 - edge = cv.Laplacian(src_gray, precision_out_image, ksize)
 - ksize: kernel size of the Sobel operator to be applied internally (commonly 3)
 - Hough Transform lines
 - lines = cv.HoughLines(edges, rho, np.pi / 180, 150, None, 0, 0)
 - edges: output of edge detector
 - rho: resolution of the parameter r in pixels (commonly 1)
 - theta: resolution of the parameter θ in radians (commonly 1 degree, pi/180)
 - threshold: minimum number of intersections to detect a line
 - srn and stn: set to 0

Fundamentals of Computer Vision

Unit 6: Feature Extraction

Jorge Bernal