6.6 Gaussian Quadrature

1. Approximate the value of each of the following integrals using the two-point Gaussian quadrature rule (the basic formula, not the composite rule). Verify that the theoretical error bound holds in each case.

that the theoretical error bound holds in each case.
(a)
$$\int_{-1}^{1} e^{-x} dx$$
 (b) $\int_{-1}^{1} \frac{1}{1+x^2} dx$ (c) $\int_{0}^{\pi} \sin x dx$ (d) $\int_{0}^{1} \tan^{-1} x dx$

Recall that the two-point Gaussian quadrature rule gives

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \left[f\left(\frac{a+b}{2} - \sqrt{\frac{1}{3}} \frac{b-a}{2}\right) + f\left(\frac{a+b}{2} + \sqrt{\frac{1}{3}} \frac{b-a}{2}\right) \right].$$

Moreover, the theoretical error bound associated with the two-point Gaussian quadrature rule is

$$\frac{(b-a)^5}{4320} \max_{a \le x \le b} |f^{(4)}(x)|.$$

(a) With $f(x) = e^{-x}$, a = -1 and b = 1,

$$\int_{-1}^{1} e^{-x} dx \approx \frac{1 - (-1)}{2} \left[e^{\sqrt{1/3}} + e^{-\sqrt{1/3}} \right] \approx 2.342696.$$

The error in this approximation is

$$\left| \frac{e^2 - 1}{e} - 2.342696 \right| \approx 0.007706,$$

which is smaller than the theoretical error bound

$$\frac{(1-(-1))^5}{4320} \max_{-1 \le x \le 1} e^{-x} = \frac{e}{135} = 0.020135.$$

(b) With $f(x) = \frac{1}{1+x^2}$, a = -1 and b = 1,

$$\int_{-1}^{1} \frac{1}{1+x^2} \, dx \approx \frac{1-(-1)}{2} \left[\frac{3}{4} + \frac{3}{4} \right] = \frac{3}{2}.$$

The error in this approximation is

$$\left|\frac{\pi}{2} - \frac{3}{2}\right| \approx 0.070796,$$

$$\frac{(1-(-1))^5}{4320} \max_{-1 \le x \le 1} \frac{24(5x^4 - 10x^2 + 1)}{(1+x^2)^5} = \frac{24}{135} = 0.177778.$$

(c) With $f(x) = \sin x$, a = 0 and $b = \pi$,

$$\int_0^{\pi} \sin x \, dx \approx \frac{\pi}{2} \left[\sin \left(\frac{\pi}{2} - \sqrt{\frac{1}{3}} \frac{\pi}{2} \right) + \sin \left(\frac{\pi}{2} + \sqrt{\frac{1}{3}} \frac{\pi}{2} \right) \right]$$
$$\approx 1.935820.$$

The error in this approximation is

$$|2 - 1.935820| \approx 0.064180$$
,

which is smaller than the theoretical error bound

$$\frac{(\pi - 0)^5}{4320} \max_{0 \le x \le \pi} \sin x = \frac{\pi^5}{4320} = 0.070838.$$

(d) With $f(x) = \tan^{-1} x$, a = 0 and b = 1,

$$\int_0^1 \tan^{-1} x \, dx \approx \frac{1}{2} \left[\tan^{-1} \left(\frac{1}{2} - \sqrt{\frac{1}{3}} \frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{2} + \sqrt{\frac{1}{3}} \frac{1}{2} \right) \right]$$

$$\approx 0.438029.$$

The error in this approximation is

$$\left| \frac{\pi}{4} - \frac{1}{2} \ln 2 - 0.438029 \right| \approx 0.000796,$$

which is smaller than the theoretical error bound

$$\frac{(1-0)^5}{4320} \max_{0 \le x \le 1} \frac{24x(1-x^2)}{(1+x^2)^4} = \frac{4.7}{4320} = 0.001088.$$

2. Derive the composite two-point Gaussian quadrature rule:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \sum_{j=1}^{n} \left[f\left(x_{j} - \frac{h}{2} - \sqrt{\frac{1}{3}} \frac{h}{2}\right) + f\left(x_{j} - \frac{h}{2} + \sqrt{\frac{1}{3}} \frac{h}{2}\right) \right] + \frac{(b-a)h^{4}}{4320} f^{(4)}(\xi),$$

where h = (b - a)/n, $x_j = a + jh$ and $a < \xi < b$.

Apply the basic two-point Gaussian quadrature rule over each subinterval $[x_{j-1}, x_j]$ for $j = 1, 2, 3, \ldots, n$ and note that

$$\frac{x_j - x_{j-1}}{2} = \frac{h}{2},$$

while

$$\frac{x_j + x_{j-1}}{2} = \frac{2x_j - (x_j - x_{j-1})}{2} = x_j - \frac{h}{2}.$$

Thus,

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \sum_{j=1}^{n} \left[f\left(x_{j} - \frac{h}{2} - \sqrt{\frac{1}{3}} \frac{h}{2}\right) + f\left(x_{j} - \frac{h}{2} + \sqrt{\frac{1}{3}} \frac{h}{2}\right) \right] + \frac{h^{5}}{4320} \sum_{j=1}^{n} f^{(4)}(\xi_{j}),$$

where $a < \xi_j < b$. To transform the error term, suppose f has four continuous derivatives. Then the Extreme Value Theorem guarantees that there exist two constants $c_1, c_2 \in [a, b]$ such that

$$f^{(4)}(c_1) = \max_{a \le x \le b} f^{(4)}(x)$$

$$f^{(4)}(c_2) = \min_{a \le x \le b} f^{(4)}(x).$$

It then follows that for each j

$$f^{(4)}(c_2) \le f^{(4)}(\xi_j) \le f^{(4)}(c_1).$$

Summing over each subinterval $[x_{i-1}, x_i]$, we find that

$$nf^{(4)}(c_2) \le \sum_{j=1}^n f^{(4)}(\xi_j) \le nf^{(4)}(c_1),$$

or

$$f^{(4)}(c_2) \le \frac{1}{n} \sum_{j=1}^{n} f^{(4)}(\xi_j) \le f^{(4)}(c_1).$$

We can now conclude, by the Intermediate Value Theorem, that there exists $\xi \in [a,b]$ such that $f^{(4)}(\xi) = \frac{1}{n} \sum_{j=1}^n f^{(4)}(\xi_j)$. This implies that the error for the composite two-point Gaussian quadrature rule can be written as

$$\frac{nh^5}{4320}f^{(4)}(\xi) = \frac{(b-a)h^4}{4320}f^{(4)}(\xi),$$

where we have used the fact that hn = b - a.

- **3.** Approximate the value of each of the following integrals using the composite two-point Gaussian quadrature rule with the specified number of subintervals. Verify that the theoretical error bound holds in each case.
 - (a) $\int_{-1}^{1} e^{-x} dx$, n = 2(c) $\int_{0}^{\pi} \sin x dx$, n = 3
- (b) $\int_{-1}^{1} \frac{1}{1+x^2} dx$, n = 2(d) $\int_{0}^{1} \tan^{-1} x dx$, n = 3

- (a) With $f(x) = e^{-x}$, a = -1, b = 1 and n = 2,

$$h = \frac{1 - (-1)}{2} = 1,$$

and

$$\int_{-1}^{1} e^{-x} dx \approx \frac{1}{2} \left[\exp\left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{3}}\right) + \exp\left(\frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{3}}\right) \right] + \frac{1}{2} \left[\exp\left(-\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{3}}\right) + \exp\left(-\frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{3}}\right) \right] \approx 2.349875.$$

The error in this approximation is

$$\left| \frac{e^2 - 1}{e} - 2.349875 \right| \approx 0.000527,$$

which is smaller than the theoretical error bound

$$\frac{(1-(-1))(1)^4}{4320} \max_{-1 \le x \le 1} e^{-x} = \frac{e}{2160} = 0.001258.$$

(b) With $f(x) = \frac{1}{1+x^2}$, a = -1, b = 1 and n = 2,

$$h = \frac{1 - (-1)}{2} = 1,$$

and

$$\int_{-1}^{1} \frac{1}{1+x^2} dx \approx \frac{1}{2} \left[\left(1 + \left(-\frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{3}} \right)^2 \right)^{-1} + \left(1 + \left(-\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{3}} \right)^2 \right)^{-1} \right]$$

$$+ \frac{1}{2} \left[\left(1 + \left(\frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{3}} \right)^2 \right)^{-1} + \left(1 + \left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{3}} \right)^2 \right)^{-1} \right]$$

$$\approx 1.573770.$$

The error in this approximation is

$$\left| \frac{\pi}{2} - 1.573770 \right| \approx 0.002974,$$

which is smaller than the theoretical error bound

$$\frac{(1 - (-1))(1)^4}{4320} \max_{-1 \le x \le 1} \frac{24(5x^4 - 10x^2 + 1)}{(1 + x^2)^5} = \frac{24}{2160} = 0.011111.$$

(c) With $f(x) = \sin x$, a = 0, $b = \pi$, and n = 3,

$$h = \frac{\pi - 0}{3} = \frac{\pi}{3},$$

and

$$\int_0^{\pi} \sin x \, dx \approx \frac{\pi}{6} \left[\sin \left(\frac{\pi}{6} - \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) + \sin \left(\frac{\pi}{6} + \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) \right]$$

$$+ \frac{\pi}{6} \left[\sin \left(\frac{\pi}{2} - \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) + \sin \left(\frac{\pi}{2} + \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) \right]$$

$$+ \frac{\pi}{6} \left[\sin \left(\frac{5\pi}{6} - \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) + \sin \left(\frac{5\pi}{6} + \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) \right]$$

$$\approx 1.999423.$$

The error in this approximation is

$$|2 - 1.999423| \approx 0.000577$$

which is smaller than the theoretical error bound

$$\frac{(\pi - 0)(\pi/3)^4}{4320} \max_{0 \le x \le \pi} \sin x = \frac{\pi^5}{349920} = 0.000875.$$

(d) With $f(x) = \tan^{-1} x$, a = 0, b = 1, and n = 3,

$$h = \frac{1-0}{3} = \frac{1}{3},$$

and

$$\int_{0}^{1} \tan^{-1} x \, dx \approx \frac{1}{6} \left[\tan^{-1} \left(\frac{1}{6} - \sqrt{\frac{1}{3}} \frac{1}{6} \right) + \tan^{-1} \left(\frac{1}{6} + \sqrt{\frac{1}{3}} \frac{1}{6} \right) \right]$$

$$+ \frac{1}{6} \left[\tan^{-1} \left(\frac{1}{2} - \sqrt{\frac{1}{3}} \frac{1}{6} \right) + \tan^{-1} \left(\frac{1}{2} + \sqrt{\frac{1}{3}} \frac{1}{6} \right) \right]$$

$$+ \frac{1}{6} \left[\tan^{-1} \left(\frac{5}{6} - \sqrt{\frac{1}{3}} \frac{1}{6} \right) + \tan^{-1} \left(\frac{5}{6} + \sqrt{\frac{1}{3}} \frac{1}{6} \right) \right]$$

$$\approx 0.438817.$$

The error in this approximation is

$$\left| \frac{\pi}{4} - \frac{1}{2} \ln 2 - 0.438817 \right| \approx 0.000007,$$

$$\frac{(1-0)(1/3)^4}{4320} \max_{0 \le x \le 1} \frac{24x(1-x^2)}{(1+x^2)^4} = \frac{4.7}{349920} = 0.000013.$$

4. Let $x_1 = -\sqrt{1/3}$ and $x_2 = \sqrt{1/3}$. Show that

(a)
$$\int_{-1}^{1} f[x_1, x_2, x_1](x - x_1)(x - x_2)dx = 0;$$

(b)
$$\int_{-1}^{1} f[x_1, x_2, x_1, x_2](x - x_1)^2 (x - x_2) dx = 0$$
; and

(c)
$$\int_{-1}^{1} f[x_1, x_2, x_1, x_2, x](x - x_1)^2 (x - x_2)^2 dx = \frac{1}{135} f^{(4)}(\xi)$$
, where $a < \xi < b$.

(a)

$$\int_{-1}^{1} f[x_1, x_2, x_1](x - x_1)(x - x_2) dx = f[x_1, x_2, x_1] \int_{-1}^{1} \left(x^2 - \frac{1}{3}\right) dx$$
$$= f[x_1, x_2, x_1] \left(\frac{x^3}{3} - \frac{1}{3}x\right)\Big|_{-1}^{1}$$
$$= f[x_1, x_2, x_1](0 - 0) = 0.$$

(b)

$$\int_{-1}^{1} f[x_1, x_2, x_1, x_2](x - x_1)^2 (x - x_2) dx$$

$$= f[x_1, x_2, x_1, x_2] \int_{-1}^{1} \left(x^3 + \sqrt{\frac{1}{3}} x^2 - \frac{1}{3} x - \frac{1}{3} \sqrt{\frac{1}{3}} \right) dx$$

$$= f[x_1, x_2, x_1, x_2] \left(\frac{x^4}{4} + \frac{1}{3} \sqrt{\frac{1}{3}} x^3 - \frac{x^2}{6} - \frac{1}{3} \sqrt{\frac{1}{3}} x \right) \Big|_{-1}^{1}$$

$$= f[x_1, x_2, x_1, x_2] \left(\frac{1}{12} - \frac{1}{12} \right) = 0.$$

(c) By the weighted Mean Value Theorem for Integrals, there exsits $\hat{\xi} \in [a,b]$ such that

$$\int_{-1}^{1} f[x_1, x_2, x_1, x_2, x](x - x_1)^2 (x - x_2)^2 dx$$

$$= f[x_1, x_2, x_1, x_2, \hat{\xi}] \int_{-1}^{1} \left(x^2 - \frac{1}{3} \right)^2 dx$$

$$= f[x_1, x_2, x_1, x_2, \hat{\xi}] \left(\frac{x^5}{5} - \frac{2x^3}{9} + \frac{x}{9} \right) \Big|_{-1}^{1}$$

$$= f[x_1, x_2, x_1, x_2, \hat{\xi}] \left(\frac{4}{45} + \frac{4}{45} \right)$$

$$= \frac{1}{4!} \cdot \frac{8}{45} f^{(4)}(\xi) = \frac{1}{135} f^{(4)}(\xi),$$

where $a < \xi < b$.

5. (a) Derive the three-point Gaussian quadrature rule

$$\int_{-1}^{1} f(x)dx = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) + \frac{1}{15750}f^{(6)}(\xi),$$

where $-1 < \xi < 1$.

- (b) Convert the quadrature rule from part (a) to the general integration interval [a, b].
- (c) Derive the composite three-point Gaussian quadrature rule. (Note: The rate of convergence should be $O(h^6)$.)
- (a) Since the three-point Gaussian quadrature rule is to have degree of precision equal to 2(3)-1=5, the weights and abscissas must satisfy

$$\begin{split} f(x) &= 1: & w_1 + w_2 + w_3 = \int_{-1}^1 dx = 2 \\ f(x) &= x: & w_1 x_1 + w_2 x_2 + w_3 x_3 = \int_{-1}^1 x dx = 0 \\ f(x) &= x^2: & w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2 = \int_{-1}^1 x^2 dx = \frac{2}{3} \\ f(x) &= x^3: & w_1 x_1^3 + w_2 x_2^3 + w_3 x_3^3 = \int_{-1}^1 x^3 dx = 0 \\ f(x) &= x^4: & w_1 x_1^4 + w_2 x_2^4 + w_3 x_3^4 = \int_{-1}^1 x^2 dx = \frac{2}{5} \\ f(x) &= x^5: & w_1 x_1^5 + w_2 x_2^5 + w_3 x_3^5 = \int_{-1}^1 x^3 dx = 0. \end{split}$$

The symmetry of the integration interval about zero suggests $x_2=0,\ x_3=-x_1$ and $w_1=w_3$. Substituting these relations into the system, the equations for $f(x)=x,\ f(x)=x^3$ and $f(x)=x^5$ are satisfied exactly, and the remaining equations take the form $2w_1+w_2=2,\ 2w_1x_1^2=2/3$ and $2w_1x_1^4=2/5$. The solution of the system is then $w_1=w_3=5/9,\ w_2=8/9,\ x_1=-\sqrt{3/5},\ x_2=0$ and $x_3=\sqrt{3/5},\$ giving the quadrature rule

$$\int_{-1}^{1} f(x) dx \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right).$$

To determine the error term associated with the three-point Gaussian quadrature rule, we start from

$$\int_{-1}^{1} f[x_1, x_2, x_3, x](x - x_1)(x - x_2)(x - x_3) dx.$$

Since

$$\frac{f[x_1, x_2, x_3, x] - f[x_1, x_2, x_3, x_1]}{x - x_1} = f[x_1, x_2, x_3, x_1, x],$$

we may replace $f[x_1,x_2,x_3,x]$ by $f[x_1,x_2,x_3,x_1]+f[x_1,x_2,x_3,x_1,x](x-x_1)$. This replacement transforms the error term to

$$\int_{-1}^{1} f[x_1, x_2, x_3, x_1](x - x_1)(x - x_2)(x - x_3) dx +$$

$$\int_{-1}^{1} f[x_1, x_2, x_3, x_1, x](x - x_1)^2 (x - x_2)(x - x_3) dx.$$

The first of these integrals is equal to zero. In the second integral, we use the equation

$$\frac{f[x_1, x_2, x_3, x_1, x] - f[x_1, x_2, x_3, x_1, x_2]}{x - x_2} = f[x_1, x_2, x_3, x_1, x_2, x]$$

to replace $f[x_1,x_2,x_3,x_1,x]$ by $f[x_1,x_2,x_3,x_1,x_2]+f[x_1,x_2,x_3,x_1,x_2,x](x-x_2)$. Now the error term takes the form

$$\int_{-1}^{1} f[x_1, x_2, x_3, x_1, x_2](x - x_1)^2 (x - x_2)(x - x_3) dx +$$

$$\int_{-1}^{1} f[x_1, x_2, x_3, x_1, x_2, x](x - x_1)^2 (x - x_2)^2 (x - x_3) dx.$$

The first of these integrals is again equal to zero. In the second integral, we use the equation

$$\frac{f[x_1, x_2, x_3, x_1, x_2, x] - f[x_1, x_2, x_3, x_1, x_2, x_3]}{x - x_3} = f[x_1, x_2, x_3, x_1, x_2, x_3, x_1]$$

to replace $f[x_1, x_2, x_3, x_1, x_2, x]$ by $f[x_1, x_2, x_3, x_1, x_2, x_3] + f[x_1, x_2, x_3, x_1, x_2, x_3, x](x - x_3)$. The error term then takes the form

$$\int_{-1}^{1} f[x_1, x_2, x_3, x_1, x_2, x_3](x - x_1)^2 (x - x_2)^2 (x - x_3) dx +$$

$$\int_{-1}^{1} f[x_1, x_2, x_3, x_1, x_2, x_3, x](x - x_1)^2 (x - x_2)^2 (x - x_3)^2 dx.$$

The first of these integrals is again equal to zero. Finally, an application of the weighted mean-value theorem for integrals to the remaining integral leads to

$$\int_{-1}^{1} f(x)dx = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) + \frac{1}{15750}f^{(6)}(\xi),$$

where $-1 < \xi < 1$.

(b) Converting this rule back to the more general integration interval $\left[a,b\right]$ produces

$$\int_{a}^{b} f(x) dx$$

$$= \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{a+b}{2}\right) dt$$

$$= \frac{b-a}{2} \left[\frac{5}{9} f \left(\frac{a+b}{2} - \sqrt{\frac{3}{5}} \frac{b-a}{2} \right) + \frac{8}{9} f \left(\frac{a+b}{2} \right) + \frac{5}{9} f \left(\frac{a+b}{2} + \sqrt{\frac{3}{5}} \frac{b-a}{2} \right) \right.$$

$$\left. + \frac{1}{15750} \frac{d^6 f}{dt^6} (\xi) \right]$$

$$= \frac{b-a}{2} \left[\frac{5}{9} f \left(\frac{a+b}{2} - \sqrt{\frac{3}{5}} \frac{b-a}{2} \right) + \frac{8}{9} f \left(\frac{a+b}{2} \right) + \frac{5}{9} f \left(\frac{a+b}{2} + \sqrt{\frac{3}{5}} \frac{b-a}{2} \right) \right]$$

$$\left. + \frac{(b-a)^7}{2016000} \frac{d^6 f}{dx^6} (\hat{\xi}) \right.$$

where $a < \hat{\xi} < b$ and, in the last line, the chain rule has been used to convert derivatives with respect to t in the error term to derivatives with respect to x:

$$\frac{d}{dt} = \frac{d}{dx}\frac{dx}{dt} = \frac{b-a}{2}\frac{d}{dx} \quad \Rightarrow \quad \frac{d^6}{dt^6} = \left(\frac{b-a}{2}\right)^6\frac{d^6}{dx^6}.$$

(c) Apply the basic three-point Gaussian quadrature rule over each subinterval $[x_{j-1},x_j]$ for $j=1,2,3,\ldots,n$ and note that

$$\frac{x_j - x_{j-1}}{2} = \frac{h}{2},$$

while

$$\frac{x_j + x_{j-1}}{2} = \frac{2x_j - (x_j - x_{j-1})}{2} = x_j - \frac{h}{2}.$$

Thus,

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \sum_{j=1}^{n} \left[\frac{5}{9} f\left(x_{j} - \frac{h}{2} - \sqrt{\frac{3}{5}} \frac{h}{2}\right) + \frac{8}{9} f\left(x_{j} - \frac{h}{2}\right) + \frac{5}{9} f\left(x_{j} - \frac{h}{2} + \sqrt{\frac{3}{5}} \frac{h}{2}\right) \right] + \frac{h^{7}}{2016000} \sum_{j=1}^{n} f^{(6)}(\xi_{j}),$$

where $a < \xi_j < b$. To transform the error term, suppose f has six continuous derivatives. Then the Extreme Value Theorem guarantees that there exist two constants $c_1, c_2 \in [a,b]$ such that

$$f^{(6)}(c_1) = \max_{a \le x \le b} f^{(6)}(x)$$

$$f^{(6)}(c_2) = \min_{a \le x \le b} f^{(6)}(x).$$

It then follows that for each j

$$f^{(6)}(c_2) \le f^{(6)}(\xi_j) \le f^{(6)}(c_1).$$

Summing over each subinterval $[x_{j-1}, x_j]$, we find that

$$nf^{(6)}(c_2) \le \sum_{j=1}^n f^{(6)}(\xi_j) \le nf^{(6)}(c_1),$$

10

or

$$f^{(6)}(c_2) \le \frac{1}{n} \sum_{j=1}^n f^{(6)}(\xi_j) \le f^{(6)}(c_1).$$

We can now conclude, by the Intermediate Value Theorem, that there exists $\xi \in [a,b]$ such that $f^{(6)}(\xi) = \frac{1}{n} \sum_{j=1}^n f^{(6)}(\xi_j)$. This implies that the error for the composite three-point Gaussian quadrature rule can be written as

$$\frac{nh^7}{2016000}f^{(6)}(\xi) = \frac{(b-a)h^6}{2016000}f^{(4)}(\xi),$$

where we have used the fact that hn = b - a.

6. Use the three-point Gaussian quadrature rule to approximate the value of the definite integral $\int_{1}^{2} \frac{1}{x} dx$. What is the absolute error in this approximation?

With
$$f(x) = \frac{1}{x}$$
, $a = 1$ and $b = 2$,

$$\int_{1}^{2} \frac{1}{x} dx \approx \frac{2-1}{2} \left[\frac{5}{9} \left(\frac{3}{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \right)^{-1} + \frac{8}{9} \cdot \frac{2}{3} + \frac{5}{9} \left(\frac{3}{2} + \frac{1}{2} \sqrt{\frac{3}{5}} \right)^{-1} \right]$$
$$\approx 0.6931216933.$$

The absolute error in this approximation is

$$|\ln 2 - 0.6931216933| \approx 2.549 \times 10^{-5}.$$

7. Repeat Exercise 1 using the three-point Gaussian quadrature rule.

Recall that the three-point Gaussian quadrature rule gives

$$\int_a^b f(x)\,dx \approx \frac{b-a}{2} \left\lceil \frac{5}{9} f\left(\frac{a+b}{2} - \sqrt{\frac{3}{5}} \frac{b-a}{2}\right) + \frac{8}{9} f\left(\frac{a+b}{2}\right) + \frac{5}{9} f\left(\frac{a+b}{2} + \sqrt{\frac{3}{5}} \frac{b-a}{2}\right) \right\rceil.$$

Moreover, the theoretical error bound associated with the three-point Gaussian quadrature rule is

$$\frac{(b-a)^7}{2016000} \max_{a \le x \le b} |f^{(6)}(x)|.$$

(a) With $f(x) = e^{-x}$, a = -1 and b = 1,

$$\int_{-1}^{1} e^{-x} dx \approx \frac{1 - (-1)}{2} \left[\frac{5}{9} e^{\sqrt{3/5}} + \frac{8}{9} e^{0} + \frac{5}{9} e^{-\sqrt{3/5}} \right] \approx 2.350337.$$

The error in this approximation is

$$\left| \frac{e^2 - 1}{e} - 2.350337 \right| \approx 0.000065,$$

which is smaller than the theoretical error bound

$$\frac{(1-(-1))^7}{2016000} \max_{-1 \le x \le 1} e^{-x} = \frac{e}{15750} = 0.000173.$$

(b) With $f(x) = \frac{1}{1+x^2}$, a = -1 and b = 1,

$$\int_{-1}^{1} \frac{1}{1+x^2} \, dx \approx \frac{1-(-1)}{2} \left[\frac{5}{9} \cdot \frac{5}{8} + \frac{8}{9} \cdot 1 + \frac{5}{9} \frac{5}{8} \right] = \frac{19}{12}.$$

The error in this approximation is

$$\left| \frac{\pi}{2} - \frac{19}{12} \right| \approx 0.012537,$$

which is smaller than the theoretical error bound

$$\frac{(1-(-1))^7}{2016000} \max_{-1 \le x \le 1} \frac{720(7x^6 - 35x^4 + 21x^2 - 1)}{(1+x^2)^7} = \frac{720}{15750} = 0.045714.$$

(c) With $f(x) = \sin x$, a = 0 and $b = \pi$,

$$\int_0^{\pi} \sin x \, dx \approx \frac{\pi}{2} \left[\frac{5}{9} \sin \left(\frac{\pi}{2} - \sqrt{\frac{3}{5}} \frac{\pi}{2} \right) + \frac{8}{9} \sin \frac{\pi}{2} + \frac{5}{9} \sin \left(\frac{\pi}{2} + \sqrt{\frac{3}{5}} \frac{\pi}{2} \right) \right]$$

$$\approx 2.001389.$$

The error in this approximation is

$$|2 - 2.001389| \approx 0.001389$$

which is smaller than the theoretical error bound

$$\frac{(\pi - 0)^7}{2016000} \max_{0 \le x \le \pi} \sin x = \frac{\pi^7}{2016000} = 0.001498.$$

(d) With $f(x) = \tan^{-1} x$, a = 0 and b = 1,

$$\int_0^1 \tan^{-1} x \, dx \approx \frac{1}{2} \left[\frac{5}{9} \tan^{-1} \left(\frac{1}{2} - \sqrt{\frac{3}{5}} \frac{1}{2} \right) + \frac{8}{9} \tan^{-1} \frac{1}{2} + \frac{5}{9} \tan^{-1} \left(\frac{1}{2} + \sqrt{\frac{3}{5}} \frac{1}{2} \right) \right]$$

$$\approx 0.438838.$$

The error in this approximation is

$$\left| \frac{\pi}{4} - \frac{1}{2} \ln 2 - 0.438838 \right| \approx 0.000014,$$

$$\frac{(1-0)^7}{2016000} \max_{0 \le x \le 1} \left| \frac{240x(3x^4 - 10x^2 + 3)}{(1+x^2)^6} \right| = \frac{100.5}{2016000} = 0.000050.$$

8. Repeat Exercise 3 using the composite three-point Gaussian quadrature rule.

(a) With
$$f(x) = e^{-x}$$
, $a = -1$, $b = 1$, and $n = 2$,
$$h = \frac{1 - (-1)}{2} = 1$$
,

and

$$\int_{-1}^{1} e^{-x} dx \approx \frac{1}{2} \left[\frac{5}{9} \exp\left(\frac{1}{2} + \frac{1}{2}\sqrt{\frac{3}{5}}\right) + \frac{8}{9}e^{1/2} + \frac{5}{9} \exp\left(\frac{1}{2} - \frac{1}{2}\sqrt{\frac{3}{5}}\right) \right] + \frac{1}{2} \left[\frac{5}{9} \exp\left(-\frac{1}{2} + \frac{1}{2}\sqrt{\frac{3}{5}}\right) + \frac{8}{9}e^{-1/2} + \frac{5}{9} \exp\left(-\frac{1}{2} - \frac{1}{2}\sqrt{\frac{3}{5}}\right) \right] \approx 2.350401260$$

The error in this approximation is

$$\left| \frac{e^2 - 1}{e} - 2.350401260 \right| \approx 1.127 \times 10^{-6},$$

which is smaller than the theoretical error bound

$$\frac{(1-(-1))(1)^6}{2016000} \max_{-1 \le x \le 1} e^{-x} = \frac{2e}{2016000} = 2.697 \times 10^{-6}$$

(b) With $f(x) = \frac{1}{1+x^2}$, a = -1, b = 1, and n = 2,

$$h = \frac{1 - (-1)}{2} = 1,$$

and

$$\int_{-1}^{1} \frac{1}{1+x^{2}} dx \approx \frac{1}{2} \left[\frac{5}{9} \left(1 + \left(-\frac{1}{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \right)^{2} \right)^{-1} + \frac{8}{9} \cdot \frac{4}{5} + \frac{5}{9} \left(1 + \left(-\frac{1}{2} + \frac{1}{2} \sqrt{\frac{3}{5}} \right)^{2} \right)^{-1} \right] + \frac{1}{2} \left[\frac{5}{9} \left(1 + \left(\frac{1}{2} - \frac{1}{2} \sqrt{\frac{3}{5}} \right)^{2} \right)^{-1} + \frac{8}{9} \cdot \frac{4}{5} + \frac{5}{9} \left(1 + \left(\frac{1}{2} + \frac{1}{2} \sqrt{\frac{3}{5}} \right)^{2} \right)^{-1} \right] \right] \approx 1.570534070.$$

The error in this approximation is

$$\left| \frac{\pi}{2} - 1.570534070 \right| \approx 2.623 \times 10^{-4},$$

$$\frac{(1-(-1))(1)^6}{2016000} \max_{-1 \le x \le 1} \frac{720(7x^6 - 35x^4 + 21x^2 - 1)}{(1+x^2)^7} = \frac{720}{1008000} = 7.143 \times 10^{-4}.$$

(c) With $f(x) = \sin x$, a = 0, $b = \pi$, and n = 3,

$$h = \frac{\pi - 0}{3} = \frac{\pi}{3},$$

and

$$\begin{split} \int_0^\pi \sin x \, dx &\approx \frac{\pi}{6} \left[\frac{5}{9} \sin \left(\frac{\pi}{6} - \sqrt{\frac{3}{5}} \frac{\pi}{6} \right) + \frac{8}{9} \sin \frac{\pi}{6} + \frac{5}{9} \sin \left(\frac{\pi}{6} + \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) \right] \\ &+ \frac{\pi}{6} \left[\frac{5}{9} \sin \left(\frac{\pi}{2} - \sqrt{\frac{3}{5}} \frac{\pi}{6} \right) + \frac{8}{9} \sin \frac{\pi}{2} + \frac{5}{9} \sin \left(\frac{\pi}{2} + \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) \right] \\ &+ \frac{\pi}{6} \left[\frac{5}{9} \sin \left(\frac{5\pi}{6} - \sqrt{\frac{3}{5}} \frac{\pi}{6} \right) + \frac{8}{9} \sin \frac{5\pi}{6} + \frac{5}{9} \sin \left(\frac{5\pi}{6} + \sqrt{\frac{1}{3}} \frac{\pi}{6} \right) \right] \\ &\approx 2.000001359. \end{split}$$

The error in this approximation is

$$|2 - 2.000001359| \approx 1.359 \times 10^{-6},$$

which is smaller than the theoretical error bound

$$\frac{(\pi - 0)(\pi/3)^6}{2016000} \max_{0 \le x \le \pi} \sin x = \frac{\pi^7}{1469664000} = 2.055 \times 10^{-6}$$

(d) With $f(x) = \tan^{-1} x$, a = 0, b = 1, and n = 3,

$$h = \frac{1-0}{3} = \frac{1}{3},$$

and

$$\int_{0}^{1} \tan^{-1} x \, dx \approx \frac{1}{6} \left[\frac{5}{9} \tan^{-1} \left(\frac{1}{6} - \sqrt{\frac{3}{5}} \frac{1}{6} \right) + \frac{8}{9} \tan^{-1} \frac{1}{6} + \frac{5}{9} \tan^{-1} \left(\frac{1}{6} + \sqrt{\frac{3}{5}} \frac{1}{6} \right) \right]$$

$$+ \frac{1}{6} \left[\frac{5}{9} \tan^{-1} \left(\frac{1}{2} - \sqrt{\frac{3}{5}} \frac{1}{6} \right) + \frac{8}{9} \tan^{-1} \frac{1}{2} + \frac{5}{9} \tan^{-1} \left(\frac{1}{2} + \sqrt{\frac{3}{5}} \frac{1}{6} \right) \right]$$

$$+ \frac{1}{6} \left[\frac{5}{9} \tan^{-1} \left(\frac{5}{6} - \sqrt{\frac{3}{5}} \frac{1}{6} \right) + \frac{8}{9} \tan^{-1} \frac{5}{6} + \frac{5}{9} \tan^{-1} \left(\frac{5}{6} + \sqrt{\frac{3}{5}} \frac{1}{6} \right) \right]$$

$$\approx 0.4388245935.$$

The error in this approximation is

$$\left| \frac{\pi}{4} - \frac{1}{2} \ln 2 - 0.4388245935 \right| \approx 2.038 \times 10^{-8},$$

$$\frac{(1-0)(1/3)^6}{2016000} \max_{0 \le x \le 1} \left| \frac{240x(3x^4-10x^2+3)}{(1+x^2)^6} \right| = \frac{100.5}{1469664000} = 6.838 \times 10^{-8}.$$

In Exercises 9 - 16, verify that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$ by approximating the value of the indicated definite integral.

9.
$$\int_0^1 \sqrt{1+x^3} dx$$

Consider the definite integral

$$I(f) = \int_0^1 \sqrt{1 + x^3} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratios

$$\frac{GQ2_h(f) - GQ2_{h/2}(f)}{GQ2_{h/2}(f) - GQ2_{h/4}(f)} \quad \text{and} \quad \frac{GQ3_h(f) - GQ3_{h/2}(f)}{GQ3_{h/2}(f) - GQ3_{h/4}(f)}$$

approach 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$\frac{GQ2_h - GQ2_{h/2}}{GQ2_{h/2} - GQ2_{h/4}}$	$GQ3_h$	$\frac{GQ3_{h} - GQ3_{h/2}}{GQ3_{h/2} - GQ3_{h/4}}$
1/2	1.11150449274959	16.085	1.11144794625511	15.537
1/4	1.11145148456449	16.080	1.11144796904255	63.627
1/8	1.11144818912461	16.020	1.11144797050916	64.028
1/16	1.11144798417831	16.005	1.11144797053221	
1/32	1.11144797138518		1.11144797053257	
1/64	1.11144797058587			

10. $\int_0^{\pi} \sin x dx$

Consider the definite integral

$$I(f) = \int_0^\pi \sin x \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ for the composite two-point Gaussian quadrature rule and the composite three-point Gaussian quadrature rule approaches 16 and 64, respectively as h is decreased. This provides numerical

evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$ e_{2h}/e_h $	$GQ3_h$	$ e_{2h}/e_h $
$\pi/2$	1.99694522680823		2.00001624311100	
$\pi/4$	1.99982033353979	17.002	2.00000023782199	68.299
$\pi/8$	1.99998893591628	16.239	2.00000000365746	65.024
$\pi/16$	1.99999931103436	16.059	2.00000000005693	64.245
$\pi/32$	1.99999995697919	16.015	2.00000000000091	62.560
$\pi/64$	1.99999999731180	16.004		

11. $\int_1^2 \frac{1}{x} dx$

Consider the definite integral

$$I(f) = \int_1^2 \frac{1}{x} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ for the composite two-point Gaussian quadrature rule and the composite three-point Gaussian quadrature rule approaches 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$ e_{2h}/e_h $	$GQ3_h$	$ e_{2h}/e_h $
1/2	0.693076638282120		0.693146495829060	
1/4	0.693142292755208	14.432	0.693147167412299	52.080
1/8	0.693146865923081	15.535	0.693147180341331	60.141
1/16	0.693147160743247	15.877	0.693147180556478	63.056
1/32	0.693147179318989	15.969	0.693147180559892	65.415
1/64	0.693147180482342	15.991		

12. $\int_0^1 e^{-x} dx$

Consider the definite integral

$$I(f) = \int_0^1 e^{-x} dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for

several values of h. Observe that the ratio $|e_{2h}/e_h|$ for the composite two-point Gaussian quadrature rule and the composite three-point Gaussian quadrature rule approaches 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$ e_{2h}/e_h $	$GQ3_h$	$ e_{2h}/e_h $
1/2	0.632111485668375		0.632120553970708	
1/4	0.632119988381842	15.905	0.632120558752169	63.594
1/8	0.632120523122588	15.976	0.632120558827362	63.870
1/16	0.632120556596116	15.994	0.632120558828537	56.952
1/32	0.632120558689011	15.998		
1/64	0.632120558819834	15.996		

13. $\int_0^1 \tan^{-1} x dx$

Consider the definite integral

$$I(f) = \int_0^1 \tan^{-1} x \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ for the composite two-point Gaussian quadrature rule and the composite three-point Gaussian quadrature rule approaches 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$ e_{2h}/e_h $	$GQ3_h$	$ e_{2h}/e_h $
1/2	0.438784449480132		0.438824858188918	
1/4	0.438822261882139	17.360	0.438824576581524	82.294
1/8	0.438824431067464	16.271	0.438824573169261	66.893
1/16	0.438824564275297	16.065	0.438824573118275	64.812
1/32	0.438824572565395	16.016	0.438824573117486	79.900
1/64	0.438824573082979	16.004		

14.
$$\int_{1}^{2} \frac{\sin x}{x} dx$$

Consider the definite integral

$$I(f) = \int_{1}^{2} \frac{\sin x}{x} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratios

$$\frac{GQ2_h(f) - GQ2_{h/2}(f)}{GQ2_{h/2}(f) - GQ2_{h/4}(f)} \quad \text{and} \quad \frac{GQ3_h(f) - GQ3_{h/2}(f)}{GQ3_{h/2}(f) - GQ3_{h/4}(f)}$$

approach 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$\frac{GQ2_h - GQ2_{h/2}}{GQ2_{h/2} - GQ2_{h/4}}$	$GQ3_h$	$\frac{GQ3_h - GQ3_{h/2}}{GQ3_{h/2} - GQ3_{h/4}}$
1/2	0.659329036510860	16.059	0.659329906707278	64.281
1/4	0.659329852253922	16.015	0.659329906439741	62.119
1/8	0.659329903052094	16.004	0.659329906435579	
1/16	0.659329906224094	15.993	0.659329906435512	
1/32	0.659329906422294			
1/64	0.659329906434687			

15. $\int_0^1 \frac{1}{\sqrt{1+x^4}} dx$

Consider the definite integral

$$I(f) = \int_0^1 \frac{1}{\sqrt{1+x^4}} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratios

$$\frac{GQ2_h(f) - GQ2_{h/2}(f)}{GQ2_{h/2}(f) - GQ2_{h/4}(f)} \quad \text{and} \quad \frac{GQ3_h(f) - GQ3_{h/2}(f)}{GQ3_{h/2}(f) - GQ3_{h/4}(f)}$$

approach 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$\frac{GQ2_h - GQ2_{h/2}}{GQ2_{h/2} - GQ2_{h/4}}$	$GQ3_h$	$\frac{GQ3_{h} - GQ3_{h/2}}{GQ3_{h/2} - GQ3_{h/4}}$
1/2	0.926954926629315	21.215	0.927039130551673	266.763
1/4	0.927033398245520	16.329	0.927037345460651	57.478
1/8	0.927037097122281	16.092	0.927037338768985	63.307
1/16	0.927037323637350	16.023	0.927037338652563	
1/32	0.927037337713652		0.927037338650724	
1/64	0.927037338592141			

16.
$$\int_0^4 x \sqrt{x^2 + 9} dx$$

Consider the definite integral

$$I(f) = \int_0^4 x \sqrt{x^2 + 9} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations and composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ for the composite two-point Gaussian quadrature rule and the composite three-point Gaussian quadrature rule approaches 16 and 64, respectively as h is decreased. This provides numerical evidence that the composite two-point Gaussian quadrature rule has rate of convergence $O(h^4)$ and the composite three-point Gaussian quadrature rule has rate of convergence $O(h^6)$.

h	$GQ2_h$	$ e_{2h}/e_h $	$GQ3_h$	$ e_{2h}/e_h $
2	32.6704688953288		32.6666385097827	
1	32.6668849176940	17.421	32.6666663389949	85.930
1/2	32.6666800802555	16.271	32.6666666618553	68.103
1/4	32.6666675016764	16.064	32.6666666665926	64.931
1/8	32.6666667188034	16.016	32.6666666666656	67.364
1/16	32.6666666699244	16.004		

In Exercises 17 - 24, approximate the value of the indicated definite integral using the composite two-point Gaussian quadrature rule and the composite three-point Gaussian quadrature rule. For each method, use the smallest value of n which will guarantee an absolute error of no greater than 5×10^{-5} .

17.
$$\int_1^2 \frac{1}{x} dx$$

Let $f(x) = \frac{1}{x}$. Then

$$\max_{x \in [1,2]} |f^{(4)}(x)| = 24 \quad \text{and} \quad \max_{x \in [1,2]} |f^{(6)}(x)| = 720.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of $\it n$ must be selected to satisfy the inequality

$$\frac{(2-1)^5}{4320n^4} \cdot 24 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 3.25$; therefore, we use n = 4. With n = 4, the composite two-point Gaussian quadrature rule gives

$$\int_{1}^{2} \frac{1}{x} dx \approx 0.693142.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of $\it n$ must be selected to satisfy the inequality

$$\frac{(2-1)^7}{2016000n^6} \cdot 720 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 1.39$; therefore, we use n = 2. With n = 2, the composite three-point Gaussian quadrature rule gives

$$\int_{1}^{2} \frac{1}{x} dx \approx 0.693146.$$

18.
$$\int_0^1 e^{-x} dx$$

Let
$$f(x) = e^{-x}$$
. Then

$$\max_{x \in [0,1]} |f^{(4)}(x)| = 1 \quad \text{and} \quad \max_{x \in [0,1]} |f^{(6)}(x)| = 1.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of n must be selected to satisfy the inequality

$$\frac{(1-0)^5}{4320n^4} \cdot 1 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 1.47$; therefore, we use n=2. With n=2, the composite two-point Gaussian quadrature rule gives

$$\int_0^1 e^{-x} \, dx \approx 0.632111.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of \emph{n} must be selected to satisfy the inequality

$$\frac{(1-0)^7}{2016000n^6} \cdot 1 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 0.46$; therefore, we use n = 1. With n = 1, the composite three-point Gaussian quadrature rule gives

$$\int_0^1 e^{-x} dx \approx 0.632120.$$

19.
$$\int_0^1 \tan^{-1} x dx$$

Let
$$f(x) = \tan^{-1} x$$
. Then

$$\max_{x \in [0,1]} |f^{(4)}(x)| < 4.7 \quad \text{and} \quad \max_{x \in [0,1]} |f^{(6)}(x)| < 100.5.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of n must be selected to satisfy the inequality

$$\frac{(1-0)^5}{4320n^4} \cdot 4.7 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 2.16$; therefore, we use n = 3. With n = 3, the composite two-point Gaussian quadrature rule gives

$$\int_0^1 \tan^{-1} x \, dx \approx 0.438817.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of \emph{n} must be selected to satisfy the inequality

$$\frac{(1-0)^7}{2016000n^6} \cdot 100.5 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 0.9995$; therefore, we use n = 1. With n = 1, the composite three-point Gaussian quadrature rule gives

$$\int_0^1 \tan^{-1} x \, dx \approx 0.438838.$$

20. $\int_{1}^{2} \frac{\sin x}{x} dx$

Let $f(x) = \frac{\sin x}{x}$. Then

$$\max_{x \in [1,2]} |f^{(4)}(x)| < 0.14 \quad \text{and} \quad \max_{x \in [1,2]} |f^{(6)}(x)| < 0.10.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of $\it n$ must be selected to satisfy the inequality

$$\frac{(2-1)^5}{4320n^4} \cdot 0.14 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \geq 0.90$; therefore, we use n=1. With n=1, the composite two-point Gaussian quadrature rule gives

$$\int_{1}^{2} \frac{\sin x}{x} dx \approx 0.659316.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of \emph{n} must be selected to satisfy the inequality

$$\frac{(2-1)^7}{2016000n^6} \cdot 0.10 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 0.32$; therefore, we use n = 1. With n = 1, the composite three-point Gaussian quadrature rule gives

$$\int_{1}^{2} \frac{\sin x}{x} \, dx \approx 0.659330.$$

21.
$$\int_0^1 \frac{1}{\sqrt{1+x^4}} dx$$

Let
$$f(x) = \frac{1}{\sqrt{1+x^4}}$$
. Then

$$\max_{x \in [0,1]} |f^{(4)}(x)| < 29.0 \quad \text{and} \quad \max_{x \in [0,1]} |f^{(6)}(x)| < 1482.0.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of $\it n$ must be selected to satisfy the inequality

$$\frac{(1-0)^5}{4320n^4} \cdot 29.0 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \geq 3.40$; therefore, we use n=4. With n=4, the composite two-point Gaussian quadrature rule gives

$$\int_0^1 \frac{1}{\sqrt{1+x^4}} \, dx \approx 0.927033.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of n must be selected to satisfy the inequality

$$\frac{(1-0)^7}{2016000n^6} \cdot 1482.0 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 1.57$; therefore, we use n=2. With n=2, the composite three-point Gaussian quadrature rule gives

$$\int_0^1 \frac{1}{\sqrt{1+x^4}} \, dx \approx 0.927039.$$

22.
$$\int_0^4 x \sqrt{x^2 + 9} dx$$

Let
$$f(x) = x\sqrt{x^2 + 9}$$
. Then

$$\max_{x \in [0,4]} |f^{(4)}(x)| < 0.4 \quad \text{and} \quad \max_{x \in [0,4]} |f^{(6)}(x)| < 0.62.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of n must be selected to satisfy the inequality

$$\frac{(4-0)^5}{4320n^4} \cdot 0.4 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 6.60$; therefore, we use n = 7. With n = 7, the composite two-point Gaussian quadrature rule gives

$$\int_0^4 x \sqrt{x^2 + 9} \, dx \approx 32.666690.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of \emph{n} must be selected to satisfy the inequality

$$\frac{(4-0)^7}{2016000n^6} \cdot 0.62 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 2.16$; therefore, we use n = 3. With n = 3, the composite three-point Gaussian quadrature rule gives

$$\int_0^4 x\sqrt{x^2 + 9} \, dx \approx 32.666665.$$

23.
$$\int_0^1 \sqrt{1+x^3} dx$$

Let
$$f(x) = \sqrt{1+x^3}$$
. Then

$$\max_{x \in [0,1]} |f^{(4)}(x)| < 7.1 \quad \text{and} \quad \max_{x \in [0,1]} |f^{(6)}(x)| < 123.2.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of $\it n$ must be selected to satisfy the inequality

$$\frac{(1-0)^5}{4320n^4} \cdot 7.1 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 2.39$; therefore, we use n = 3. With n = 3, the composite two-point Gaussian quadrature rule gives

$$\int_0^1 \sqrt{1+x^3} \, dx \approx 1.111459.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of \emph{n} must be selected to satisfy the inequality

$$\frac{(1-0)^7}{2016000n^6} \cdot 123.2 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 1.03$; therefore, we use n=2. With n=2, the composite three-point Gaussian quadrature rule gives

$$\int_0^1 \sqrt{1+x^3} \, dx \approx 1.111448.$$

24.
$$\int_0^1 e^{-x^4} dx$$

Let
$$f(x) = e^{-x^4}$$
. Then

$$\max_{x \in [0,1]} |f^{(4)}(x)| < 92.8 \quad \text{and} \quad \max_{x \in [0,1]} |f^{(6)}(x)| < 5244.2.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite two-point Gaussian quadrature rule, the value of n must be selected to satisfy the inequality

$$\frac{(1-0)^5}{4320n^4} \cdot 92.8 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 4.55$; therefore, we use n = 5. With n = 5, the composite two-point Gaussian quadrature rule gives

$$\int_0^1 e^{-x^4} \, dx \approx 0.844831.$$

To guarantee an absolute error of no greater than 5×10^{-5} from the composite three-point Gaussian quadrature rule, the value of $\it n$ must be selected to satisfy the inequality

$$\frac{(1-0)^7}{2016000n^6} \cdot 5244.2 \le 5 \times 10^{-5}.$$

The solution of this inequality is $n \ge 1.93$; therefore, we use n = 2. With n = 2, the composite three-point Gaussian quadrature rule gives

$$\int_0^1 e^{-x^4} \, dx \approx 0.844851.$$

- **25.** Consider the definite integral $\int_a^b \sin(\sqrt{\pi x}) dx$. Numerically determine the rate of convergence of the composite two-point Gaussian quadrature rule for each of the following integration intervals.
 - (a) [a,b] = [0,1]
- **(b)** $[a,b] = [\pi/4, 9\pi/4]$ **(c)** $[a,b] = [\pi, 2\pi]$
- (d) Explain any variation among the rates of convergence obtained in parts (a), (b) and (c).
- (a) Consider the definite integral

$$I(f) = \int_0^1 \sin(\sqrt{\pi x}) \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio

$$\frac{GQ2_{h}(f) - GQ2_{h/2}(f)}{GQ2_{h/2}(f) - GQ2_{h/4}(f)}$$

approaches 2.83 as h is decreased. Because $\log_2 2.84 \approx 1.5$, numerical evidence suggests that the rate of convergence is $O(h^{1.5})$.

h	$GQ2_h$	$\frac{GQ2_h - GQ2_{h/2}}{GQ2_{h/2} - GQ2_{h/4}}$
1/2	0.854508322568907	2.908
1/4	0.851379931972743	2.870
1/8	0.850304226137719	2.850
1/16	0.849929449443126	2.839
1/32	0.849797929964849	
1/64	0.849751604319729	

(b) Consider the definite integral

$$I(f) = \int_{\pi/4}^{9\pi/4} \sin(\sqrt{\pi x}) dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio

$$\frac{GQ2_{h}(f) - GQ2_{h/2}(f)}{GQ2_{h/2}(f) - GQ2_{h/4}(f)}$$

approaches 16 as h is decreased. Because $16=2^4$, numerical evidence suggests that the rate of convergence is $O(h^4)$.

h	$GQ2_h$	$\frac{GQ2_{h}-GQ2_{h/2}}{GQ2_{h/2}-GQ2_{h/4}}$
π	-1.25496822449584	9.893
$\pi/2$	-1.27142961706763	12.250
$\pi/4$	-1.27309355637776	14.305
$\pi/8$	-1.27322939205092	15.431
$\pi/16$	-1.27323888792771	
$\pi/32$	-1.27323950329387	

(c) Consider the definite integral

$$I(f) = \int_{\pi}^{2\pi} \sin(\sqrt{\pi x}) \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio

$$\frac{GQ2_{h}(f) - GQ2_{h/2}(f)}{GQ2_{h/2}(f) - GQ2_{h/4}(f)}$$

approaches 16 as h is decreased. Because $16=2^4$, numerical evidence suggests that the rate of convergence is $O(h^4)$.

h	$GQ2_h$	$\frac{GQ2_{h}-GQ2_{h/2}}{GQ2_{h/2}-GQ2_{h/4}}$
$\pi/2$	-1.86041349191865	15.417
$\pi/4$	-1.86054637950929	15.841
$\pi/8$	-1.86055499901941	15.959
$\pi/16$	-1.86055554314014	15.990
$\pi/32$	-1.86055557723447	
$\pi/64$	-1.86055557936673	

- (d) The rate of convergence is lower than expected in part (a) because the derivatives of $f(x) = \sin(\sqrt{\pi x})$ are not bounded at x = 0.
- 26. Repeat Exercise 25 for the composite three-point Gaussian quadrature rule.
 - (a) Consider the definite integral

$$I(f) = \int_0^1 \sin(\sqrt{\pi x}) \, dx.$$

The table below lists composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio

$$\frac{GQ3_h(f) - GQ3_{h/2}(f)}{GQ3_{h/2}(f) - GQ3_{h/4}(f)}$$

approaches 2.83 as h is decreased. Because $\log_2 2.83 \approx 1.5$, numerical evidence suggests that the rate of convergence is $O(h^{1.5})$.

h	$GQ3_h$	$\frac{GQ3_h - GQ3_{h/2}}{GQ3_{h/2} - GQ3_{h/4}}$
1/2	0.851333027346831	2.864
1/4	0.850288801352870	2.846
1/8	0.849924214462598	2.837
1/16	0.849796118235109	2.833
1/32	0.849750970679828	
1/64	0.849735033500504	

(b) Consider the definite integral

$$I(f) = \int_{\pi/4}^{9\pi/4} \sin(\sqrt{\pi x}) \, dx.$$

The table below lists composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio

$$\frac{GQ3_h(f) - GQ3_{h/2}(f)}{GQ3_{h/2}(f) - GQ3_{h/4}(f)}$$

approaches 64 as h is decreased. Because $64=2^6$, numerical evidence suggests that the rate of convergence is ${\cal O}(h^6)$.

h	$GQ3_h$	$\frac{GQ3_{h} - GQ3_{h/2}}{GQ3_{h/2} - GQ3_{h/4}}$
π	-1.27232688815450	19.457
$\pi/2$	-1.27319353902208	31.119
$\pi/4$	-1.27323808142235	45.627
$\pi/8$	-1.27323951280182	56.724
$\pi/16$	-1.27323954417302	62.001
$\pi/32$	-1.27323954472607	
$\pi/64$	-1.27323954473499	

(c) Consider the definite integral

$$I(f) = \int_{-\pi}^{2\pi} \sin(\sqrt{\pi x}) \, dx.$$

The table below lists composite three-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio

$$\frac{GQ3_h(f) - GQ3_{h/2}(f)}{GQ3_{h/2}(f) - GQ3_{h/4}(f)}$$

approaches 64 as h is decreased. Because $64=2^6$, numerical evidence suggests that the rate of convergence is $O(h^6)$.

h	$GQ3_h$	$\frac{GQ3_h - GQ3_{h/2}}{GQ3_{h/2} - GQ3_{h/4}}$
$\pi/2$	-1.86055512087582	58.004
$\pi/4$	-1.86055557161124	62.211
$\pi/8$	-1.86055557938199	63.730
$\pi/16$	-1.86055557950690	65.333
$\pi/32$	-1.86055557950886	
$\pi/64$	-1.86055557950889	

- (d) The rate of convergence is lower than expected in part (a) because the derivatives of $f(x) = \sin(\sqrt{\pi x})$ are not bounded at x = 0.
- 27. Consider the definite integral $\int_a^b x^2 e^{-x} dx$. Numerically determine the rate of convergence of the composite two-point Gaussian quadrature rule for each of the following integration intervals.
 - (a) [a,b] = [0,2] (b) $[a,b] = [3-\sqrt{3},3+\sqrt{3}]$ (c) [a,b] = [-1,1]
 - (d) Explain any variation among the rates of convergence obtained in parts (a), (b) and (c).
 - (a) Consider the definite integral

$$I(f) = \int_0^2 x^2 e^{-x} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ approaches 16 as h is decreased. Because $16=2^4$, numerical evidence suggests that the rate of convergence is $O(h^4)$.

h	$GQ2_h$	$ e_{2h}/e_h $
1	0.645331215600540	
1/2	0.646558650567028	14.867
1/4	0.646641532332866	15.708
1/8	0.646646813798006	15.926
1/16	0.646647145493594	15.982
1/32	0.646647166249708	15.995

(b) Consider the definite integral

$$I(f) = \int_{3-\sqrt{3}}^{3+\sqrt{3}} x^2 e^{-x} \, dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ approaches 64 as h is decreased. Because $64=2^6$, numerical evidence suggests that the rate of convergence is $O(h^6)$.

h	$GQ2_h$	$ e_{2h}/e_h $
$\sqrt{3}$	1.43104403050920	
$\sqrt{3}/2$	1.43064437633748	54.361
$\sqrt{3}/4$	1.43063700872440	61.358
$\sqrt{3}8$	1.43063688858679	63.324
$\sqrt{3}/16$	1.43063688668936	63.808
$\sqrt{3}/32$	1.43063688665962	64.277

(c) Consider the definite integral

$$I(f) = \int_{-1}^{1} x^2 e^{-x} dx.$$

The table below lists composite two-point Gaussian quadrature rule approximations to I(f) for several values of h. Observe that the ratio $|e_{2h}/e_h|$ approaches 16 as h is decreased. Because $16=2^4$, numerical evidence suggests that the rate of convergence is $O(h^4)$.

h	$GQ2_h$	$ e_{2h}/e_h $
1	0.871352205208655	
1/2	0.878387796141952	15.161
1/4	0.878853145558671	15.784
1/8	0.878882648565369	15.946
1/16	0.878884499119244	15.986
1/32	0.878884614882527	15.997

(d) The rate of convergence is better than expected in part (b) because $f'''(3 - \sqrt{3}) = f'''(3 + \sqrt{3})$.

Optional Material

28. (a) Find the abscissas, x_i , and the weights, w_i , of the three-point Gauss-Hermite quadrature formula

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3).$$

Use the fact that the Hermite polynomials, $H_n(x)$, are orthogonal in the corresponding inner product

$$(f,g) = \int_{-\infty}^{\infty} e^{-x^2} f(x)g(x)dx$$

and that $H_3(x) = 8x^3 - 12x$. Find the weights by undetermined coefficients using the values:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \quad \int_{-\infty}^{\infty} x e^{-x^2} dx = 0 \quad \int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

(b) Use your results from part (a) to evaluate both

$$\int_{-\infty}^{\infty} \frac{e^{-x^2}}{1+x^2} dx \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx.$$

(a) The abscissas for the three-point Gauss-Hermite quadrature rule are the roots of $H_3(x)$. As

$$H_3(x) = 8x^3 - 12x = 4x(2x^2 - 3),$$

it follows that

$$x_1 = -\sqrt{\frac{3}{2}}, \quad x_2 = 0, \quad \text{and} \quad x_3 = \sqrt{\frac{3}{2}}.$$

To determine the weights, we note that the three-point Gauss-Hermite quadrature rule has degree of precision equal to five; thus, the quadrature rule must integrate polynomials of degree up to five exactly. In particular, the quadrature rule must integrate $f(x)=1,\,f(x)=x$ and $f(x)=x^2$ exactly. This produces the system of equations

$$w_1 + w_2 + w_3 = \sqrt{\pi}$$

$$-\sqrt{\frac{3}{2}}w_1 + \sqrt{\frac{3}{2}}w_3 = 0$$

$$\frac{3}{2}w_1 + \frac{3}{2}w_3 = \frac{\sqrt{\pi}}{2},$$

whose solution is

$$w_1 = \frac{\sqrt{\pi}}{6}, \quad w_2 = \frac{2\sqrt{\pi}}{3}, \quad \text{and} \quad w_3 = \frac{\sqrt{\pi}}{6}.$$

Thus,

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx \frac{\sqrt{\pi}}{6} f\left(-\sqrt{\frac{3}{2}}\right) + \frac{2\sqrt{\pi}}{3} f(0) + \frac{\sqrt{\pi}}{6} f\left(\sqrt{\frac{3}{2}}\right).$$

(b) For

$$\int_{-\infty}^{\infty} \frac{e^{-x^2}}{1+x^2} \, dx,$$

 $f(x) = \frac{1}{1+x^2}$. Thus,

$$\int_{-\infty}^{\infty} \frac{e^{-x^2}}{1+x^2} dx \approx \frac{\sqrt{\pi}}{6} \cdot \frac{2}{5} + \frac{2\sqrt{\pi}}{3} \cdot 1 + \frac{\sqrt{\pi}}{6} \cdot \frac{2}{5}$$
$$= \frac{4\sqrt{\pi}}{5} \approx 1.417963081.$$

For

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{\infty} e^{-x^2} \frac{e^{x^2}}{1+x^2} \, dx,$$

 $f(x) = \frac{e^{x^2}}{1+x^2}$. Thus,

$$\begin{split} \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx &\approx \frac{\sqrt{\pi}}{6} \cdot \frac{2e^{3/2}}{5} + \frac{2\sqrt{\pi}}{3} \cdot 1 + \frac{\sqrt{\pi}}{6} \cdot \frac{2e^{3/2}}{5} \\ &= \frac{2\sqrt{\pi}}{3} + \frac{2\sqrt{\pi}}{15} e^{3/2} \approx 2.240780841. \end{split}$$

29. (a) Find the abscissas, x_i , and the weights, w_i , of the three-point Gauss-Chebyshev quadrature formula

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3).$$

Use the fact that the Chebyshev polynomials, $T_n(x)$, are orthogonal in the corresponding inner product

$$(f,g) = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$$

and that $T_3(x) = 4x^3 - 3x$. Find the weights by undetermined coefficients using the values:

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \pi \qquad \int_{-1}^{1} \frac{x}{\sqrt{1-x^2}} dx = 0 \qquad \int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} dx = \frac{\pi}{2}.$$

(b) Use your results from part (a) to evaluate

$$\int_{-1}^{1} \frac{\cos x}{\sqrt{1 - x^2}} dx.$$

(a) The abscissas for the three-point Gauss-Chebyshev quadrature rule are the roots of $T_3(x)$. As

$$T_3(x) = 4x^3 - 3x = x(4x^2 - 3),$$

it follows that

$$x_1 = -\frac{\sqrt{3}}{2}$$
, $x_2 = 0$, and $x_3 = \frac{\sqrt{3}}{2}$.

To determine the weights, we note that the three-point Gauss-Chebyshev quadrature rule has degree of precision equal to five; thus, the quadrature rule must integrate polynomials of degree up to five exactly. In particular, the quadrature rule must integrate f(x)=1, f(x)=x and $f(x)=x^2$ exactly. This produces the system of equations

$$w_1 + w_2 + w_3 = \pi$$

$$-\frac{\sqrt{3}}{2}w_1 + \frac{\sqrt{3}}{2}w_3 = 0$$

$$\frac{3}{4}w_1 + \frac{3}{4}w_3 = \frac{\pi}{2}$$

whose solution is

$$w_1 = w_2 = w_3 = \frac{\pi}{3}.$$

Thus,

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{3} f\left(-\frac{\sqrt{3}}{2}\right) + \frac{\pi}{3} f(0) + \frac{\pi}{3} f\left(\frac{\sqrt{3}}{2}\right).$$

(b) For

$$\int_{-1}^{1} \frac{\cos x}{\sqrt{1-x^2}} \, dx,$$

 $f(x) = \cos x$. Thus,

$$\int_{-1}^{1} \frac{\cos x}{\sqrt{1 - x^2}} dx \approx \frac{\pi}{3} \cos \left(-\frac{\sqrt{3}}{2} \right) + \frac{\pi}{3} \cdot 1 + \frac{\pi}{3} \cos \left(\frac{\sqrt{3}}{2} \right)$$
$$= \frac{\pi}{3} + \frac{2\pi}{3} \cos \left(\frac{\sqrt{3}}{2} \right) \approx 2.404070990.$$

30. (a) Find the abscissas, x_i , and the weights, w_i , of the three-point Gauss-Laguerre quadrature formula

$$\int_0^\infty e^{-x} f(x) dx \approx w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3).$$

Use the fact that the Laguerre polynomials, $L_n(x)$, are orthogonal in the corresponding inner product

$$(f,g) = \int_0^\infty e^{-x} f(x)g(x)dx$$

and that $L_3(x) = -x^3 + 9x^2 - 18x + 6$. Find the weights by undetermined coefficients using the values:

$$\int_0^\infty e^{-x} = 1 \qquad \int_0^\infty x e^{-x} = 1 \qquad \int_0^\infty x^2 e^{-x} = 2.$$

(b) Use your results from part (a) to evaluate both

$$\int_0^\infty \frac{e^{-x}}{1+x^2} dx \quad \text{and} \quad \int_0^\infty \frac{1}{1+x^2} dx.$$

(a) The abscissas for the three-point Gauss-Laguerre quadrature rule are the roots of $L_3(x)$. As

$$L_3(x) = -x^3 + 9x^2 - 18x + 6,$$

we find

$$x_1 = 0.4157745568$$
, $x_2 = 2.294280360$, and $x_3 = 6.289945083$.

To determine the weights, we note that the three-point Gauss-Laguerre quadrature rule has degree of precision equal to five; thus, the quadrature rule must integrate polynomials of degree up to five exactly. In particular, the quadrature rule must integrate f(x)=1, f(x)=x and $f(x)=x^2$ exactly. This produces the system of equations

$$w_1 + w_2 + w_3 = 1$$

$$w_1 x_1 + w_2 x_2 + w_3 x_3 = 1$$

$$w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2 = 2,$$

whose solution is

$$w_1 = 0.7110930099, \quad w_2 = 0.2785177336, \quad \text{and} \quad w_3 = 0.01038925651.$$

Thus

$$\int_0^\infty e^{-x} f(x) dx \approx 0.7110930099 f(0.4157745568) + 0.2785177336 f(2.294280360) + 0.01038925651 f(6.289945083).$$

$$\int_0^\infty \frac{e^{-x}}{1+x^2} \, dx,$$

$$f(x) = \frac{1}{1+x^2}$$
. Thus,

$$\int_0^\infty \frac{e^{-x}}{1+x^2} \, dx \approx 0.6510067114.$$

For

$$\int_0^\infty \frac{1}{1+x^2} \, dx = \int_0^\infty e^{-x} \frac{e^x}{1+x^2} \, dx,$$

$$f(x) = \frac{e^x}{1+x^2}$$
. Thus,

$$\int_0^\infty \frac{1}{1+x^2} \, dx \approx 1.497909385.$$

31. Let w be a weight function on [a, b], let $\{\phi_0, \phi_1, \phi_2, ... \phi_n\} \subset \Pi_n$ be an orthogonal family with respect to w with degree of $\phi_k = k$ for each k and let $x_1, x_2, x_3, ..., x_n$ be the roots of $\phi_n(x)$. Show that

$$\int_{a}^{b} w(x) \prod_{i=1}^{n} (x - x_i) dx = 0$$

and

$$\int_{a}^{b} w(x) \prod_{i=1}^{k} (x - x_{i})^{2} \prod_{j=k+1}^{n} (x - x_{j}) dx = 0$$

for k = 1, 2, 3, ..., n - 1.

Suppose the leading coefficient of $\phi_n(x)$ is a_n . Then

$$\phi_n(x) = a_n \prod_{i=1}^n (x - x_i)$$
 or $\prod_{i=1}^n (x - x_i) = \frac{1}{a_n} \phi_n(x)$.

Because $\phi_0(x)$ is a constant, we find

$$\int_{a}^{b} w(x) \prod_{i=1}^{n} (x - x_i) dx = \frac{1}{a_n \phi_0(x)} \int_{a}^{b} w(x) \phi_0(x) \phi_n(x) dx = 0,$$

by the orthogonality of the family $\{\phi_0,\phi_1,\phi_2,...\phi_n\}$. Next, consider

$$\int_{a}^{b} w(x) \prod_{i=1}^{k} (x - x_{i})^{2} \prod_{j=k+1}^{n} (x - x_{j}) dx$$

for k = 1, 2, 3, ..., n - 1. Because

$$\prod_{i=1}^{k} (x - x_i)$$

is a polynomial of degree k < n, there exist constants $c_1, c_2, c_3, ..., c_k$ such that

$$\prod_{i=1}^{k} (x - x_i) = \sum_{j=1}^{k} c_j \phi_j(x).$$

Thus.

$$\int_{a}^{b} w(x) \prod_{i=1}^{k} (x - x_{i})^{2} \prod_{j=k+1}^{n} (x - x_{j}) dx = \frac{1}{a_{n}} \int_{a}^{b} w(x) \left(\sum_{j=1}^{k} c_{j} \phi_{j}(x) \right) \phi_{n}(x) dx$$
$$= \frac{1}{a_{n}} \sum_{j=1}^{k} c_{j} \int_{a}^{b} w(x) \phi_{j}(x) \phi_{n}(x)$$
$$= 0.$$

again by the orthogonality of the family $\{\phi_0, \phi_1, \phi_2, ... \phi_n\}$.

32. Let w be a weight function on [a, b], let n be a positive integer, let $\{\phi_0, \phi_1, \phi_2, ..., \phi_n\} \subset \Pi_n$ be an orthogonal family with respect to w with degree of $\phi_k = k$ for each k and let $I_n(f)$ denote the corresponding Gaussian quadrature rule for approximating

$$I(f) = \int_{a}^{b} f(x)w(x)dx.$$

Suppose f has 2n continuous derivatives. Show there exists $\xi \in [a,b]$ such that

$$I(f) = I_n(f) + \frac{\alpha_n}{a^2 (2n)!} f^{(2n)}(\xi),$$

where $\alpha_n = \int_a^b \phi_n^2(x) w(x) dx$ and a_n is the leading coefficient of $\phi_n(x)$.

Following the procedure used to derive the error term for the two-point Gaussian quadrature rule in the text and for the three-point Gaussian quadrature rule in Exercise 5(a) and using the results from Exercise 31, we find

$$I(f) = I_n(f) + \int_a^b w(x)f[x_1, x_2, \dots, x_n, x] \prod_{i=1}^n (x - x_i) dx$$

$$= I_n(f) + \int_a^b w(x)f[x_1, x_2, \dots, x_n, x_1, x] (x - x_1)^2 \prod_{i=2}^n (x - x_i) dx$$

$$= I_n(f) + \int_a^b w(x)f[x_1, x_2, \dots, x_n, x_1, x_2, x] \prod_{i=1}^2 (x - x_i)^2 \prod_{j=3}^n (x - x_j) dx$$

$$= I_n(f) + \int_a^b w(x)f[x_1, x_2, \dots, x_n, x_1, x_2, x_3, x] \prod_{i=1}^3 (x - x_i)^2 \prod_{j=4}^n (x - x_j) dx$$

$$= \cdots$$

$$= I_n(f) + \int_a^b w(x)f[x_1, x_2, \dots, x_n, x_1, x_2, \dots, x_n, x] \prod_{i=1}^n (x - x_i)^2 dx.$$

If a_n is the leading coefficient of $\phi_n(x)$, then

$$\phi_n^2(x) = a_n^2 \prod_{i=1}^n (x - x_i)^2$$
 or $\prod_{i=1}^n (x - x_i)^2 = \frac{1}{a_n^2} \phi_n^2(x)$.

Thus, by the weighted Mean Value Theorem for Integrals,

$$I(f) = I_n(f) + \frac{1}{a_n^2} f[x_1, x_2, \dots, x_n, x_1, x_2, \dots, x_n, \hat{\xi}] \int_a^b w(x) \phi_n^2(x) dx$$
$$= I_n(f) + \frac{\alpha_n}{a_n^2 (2n)!} f^{(2n)}(\xi),$$

where $\hat{\xi} \in [a,b]$, $\xi \in [a,b]$ and $\alpha_n = \int_a^b \phi_n^2(x) w(x) dx$.