Урок 67 Другий закон Ньютона

Мета уроку: сформувати знання учнів про другий закон Ньютона як закон, що дозволяє визначити умову рівноприскореного руху тіла.

Очікувані результати: учні повинні розуміти, від яких чинників залежить прискорення руху тіла; формулювати другий закон Ньютона, записувати його математичний вираз для випадків, коли на тіло діє одна сила та кілька сил; усвідомлювати, якою є умова рівноприскореного руху тіла.

Тип уроку: комбінований.

Наочність і обладнання: навчальна презентація, комп'ютер, підручник; на кожного учня чи пару учнів — лінійка і два бруски різної маси

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

1. Провести бесіду за матеріалом § 30

Бесіда за питаннями

- 1. За яких умов тіло зберігає швидкість свого руху? Наведіть приклади.
- 2. Сформулюйте закон інерції.
- 3. Які СВ називають інерціальними? неінерціальними? Наведіть приклади таких систем.
 - 4. Сформулюйте перший закон Ньютона. Що він постулює?
 - 5. Сформулюйте принцип відносності Ґалілея.
 - 2. Перевірити виконання вправи № 30 (4)

ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Що змушує тіло змінити свою швидкість або напрямок руху? За яких умов тіло рухається рівноприскорено? Від чого залежить прискорення руху тіла?

ІІІ. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Повторення

Сила \vec{F} – векторна фізична величина, яка є мірою дії одного тіла на інше (мірою взаємодії).

Одиниця сили в CI – **ньютон:** [F] = 1 H

Сила характеризується:

- точкою прикладання;
- напрямком;
- значенням (модулем).

Рівнодійна сила — це сила, яка діє так само, як декілька окремих сил, прикладених до тіла.

Рівнодійна дорівнює векторній сумі сил, прикладених до тіла.

Інертність – властивість тіла, яка полягає в

тому, що для зміни швидкості руху тіла внаслідок взаємодії потрібен час.

Маса m – фізична величина, яка є мірою інертності тіла.

Одиниця маси в СІ – кілограм:

$$[m] = 1 \, кг$$

2. Другий закон Ньютона

Проведемо дослід

На рухомий візок установимо чутливий динамометр, за допомогою якого визначатимемо прикладену до візка силу F, та акселерометр — прилад для вимірювання прискорення візка a. Підвішений до перекинутої через блок нитки тягарець діє із силою \vec{F}_1 і змушує візок рухатися з прискоренням \vec{a}_1 .

Повернемо візок у початкове положення й підвісимо до нитки два тягарці. Отже, тепер прикладена до візка сила $\vec{F}_2 = 2\vec{F}_1$. Дослід показує, що удвічі зросло й прискорення візка, $\vec{a}_2 = 2\vec{a}_1$.

У скільки разів збільшується сила, у стільки ж разів збільшується прискорення, якого набуває тіло в результаті дії цієї сили.

$$a \sim F$$

Проведемо дослід

Змінимо умови досліду. Залишимо прикладену силу \vec{F}_1 незмінною, а змінюватимемо масу візка. Якщо масу візка збільшити у 2 рази, його прискорення зменшується удвічі. Збільшення маси візка у 3 рази зменшує прискорення утричі.

Якщо однаковою силою подіяти на тіла різної маси, то чим більшою ϵ маса тіла, тим меншим буде його прискорення.

$$a \sim \frac{1}{m}$$

Другий закон Ньютона:

Прискорення, якого набуває тіло внаслідок дії сили, прямо пропорційне цій силі та обернено пропорційне масі тіла.

$$\vec{a} = \frac{\vec{F}}{m}$$

Проблемне питання

• Як записати другий закон Ньютона, якщо на тіло діють кілька сил?

У такому випадку силу \vec{F} розуміють як рівнодійну всіх сил, прикладених до тіла:

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n$$

$$\vec{a} = \frac{\vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n}{m} \text{ also } \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n = m\vec{a}$$

3. Наслідки з другого закону Ньютона

1) 1 H — це сила, яка, діючи на тіло масою m=1 кг, надає йому прискорення $a=1\frac{M}{c^2}$

$$1 H = 1 κr \cdot \frac{M}{c^2}$$

2) Напрямок прискорення руху тіла завжди збігається з напрямком рівнодійної сил, прикладених до тіла.

$$a = \frac{F}{m}; \vec{a} \uparrow \uparrow \vec{F}$$

- 3) Тіло рухається рівноприскорено прямолінійно тільки в тому випадку, якщо рівнодійна сил, прикладених до тіла, не змінюється з часом.
- 4) Тіло перебуває у стані спокою або рухається рівномірно прямолінійно, якщо сили, що діють на тіло, скомпенсовані.

IV. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ І ВМІНЬ

1. Якого прискорення набуває тіло масою 4 кг під дією сили 16 Н?

Дано: m=4 кг $F = 16 \, \text{H}$

Розв'язання

Згідно із II законом Ньютона:

$$a = \frac{F}{m}$$

$$[a] = \frac{H}{\kappa \Gamma} = \frac{\kappa \Gamma \cdot \frac{M}{c^2}}{\kappa \Gamma} = \frac{M}{c^2}$$

$$a = \frac{16}{4} = 4\left(\frac{M}{c^2}\right)$$

Biδnoεiδь: $a = 4 \frac{M}{a^2}$

2. Іграшковий автомобіль масою 200 г рухається з прискоренням 1 м/ c^2 . Визначте модуль рівнодійної сил, які діють на автомобіль.

Розв'язання

Згідно із II законом Ньютона:

$$a = \frac{F}{m} = F = ma$$
$$[F] = \kappa \Gamma \cdot \frac{M}{C^2} = H$$

$$F = 0.2 \cdot 1 = 0.2 \text{ (H)}$$

 $Bi\partial noвi\partial b$: F=0.2 H.

3. Швидкість прямолінійного руху тіла під дією сили 12 Н змінюється за законом $v_x = 10 - 3t$ (значення величин у формулі наведено в CI). Визначте масу тіла.

Дано: F = 12 H $\frac{v_x = 10 - 3t}{m - ?}$

Розв'язання

$$v_x = v_{0x} + a_x t$$

$$v_x = 10 - 3t$$

$$a_x = -3\frac{M}{c^2} \implies a = 3\frac{M}{c^2}$$

Згідно із II законом Ньютона:

но із II законом Ньютона:
$$a = \frac{F}{m} = > m = \frac{F}{a}$$

$$[m] = \frac{H}{\frac{M}{c^2}} = \frac{\kappa \Gamma \cdot \frac{M}{c^2}}{\frac{M}{c^2}} = \kappa \Gamma \qquad m = \frac{12}{3} = 4(\kappa \Gamma)$$

 $Bi\partial noвi\partial b: m = 4$ кг.

4. Якщо візок тягнути із силою 4 H, то його прискорення буде 0,3 м/с². З якою силою потрібно його тягнути в тому ж напрямку, щоб прискорення візка стало 1,2 м/ c^2 ? Тертя не враховувати.

Дано: $F_1 = 4 \text{ H}$ $a_1 = 0.3 \frac{M}{c^2}$ $a_2 = 1.2 \frac{M}{c^2}$ $F_2 - ?$

Розв'язання

Згідно із II законом Ньютона:

$$F_1 = ma_1;$$
 $F_2 = ma_2$ $\frac{F_1}{F_2} = \frac{a_1}{a_2} = >$ $F_2 = \frac{F_1 a_2}{a_1}$ $F_3 = \frac{H \cdot \frac{M}{C^2}}{\frac{M}{C^2}} = H;$ $F_4 = \frac{4 \cdot 1.2}{0.3} = 16$ (H)

Відповідь: $F_2 = 16 \text{ H}.$

V. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Від яких чинників залежить прискорення руху тіла?
- 2. Сформулюйте другий закон Ньютона, запишіть його математичний вираз.
- 3. Як записати другий закон Ньютона, якщо на тіло діють кілька сил?
- 4. Що можна сказати про напрямки рівнодійної та прискорення, якого рівнодійна надає тілу?
 - 5. Якою ϵ умова рівноприскореного руху тіла?

VI. ДОМАШНЄ ЗАВДАННЯ

Опрацювати § 31, Вправа № 31 (1-3)

Виконане д/з відправте на Нитап,

Або на елетрону адресу Kmitevich.alex@gmail.com