1

Assignment 2

Kotikalapudi Karthik (cs21btech11030)

ICSE class 12 2018

Question 5(b)

Verify Rolle's theorem for the following function:

$$f(x) = e^{-x} \sin x$$
 on $[0, \pi]$

Solution: Given, $f(x) = e^{-x} \sin x$ on $[0, \pi]$

For the function to satisfy the Rolle's theorem, the following conditions should be satisfied:

- 1) f(x) should be continuous in $[0, \pi]$
- 2) $f(0) = f(\pi) = 0$
- 3) f(x) should be differentiable in $(0, \pi)$

Here, e^{-x} is an exponential and continuous function and $\sin x$ is a trigonometric and continuous function $\therefore f(x) = e^{-x} \sin x$ is continuous on $[0, \pi]$. Also,

$$f(0) = e^0 \sin 0 = 0 \tag{1}$$

$$f(\pi) = e^{\pi} \sin \pi = 0 \tag{2}$$

$$\therefore f(0) = f(\pi) = 0 \tag{3}$$

By differentiating f(x),

$$f'(x) = e^{-x} (\cos x - \sin x) \tag{4}$$

f'(c) exists in $(0,\pi)$

$$\implies f(x)$$
 is differentiable in $(0,\pi)$

Thus, all the conditions of the Rolle's theorem are satisfied.

 \therefore \exists at least one value of x = c such that f'(c) = 0 \therefore f'(c) = 0, substituing f'(x) at x = c from equation (4),

$$e^{-c}\left(\cos c - \sin c\right) = 0\tag{5}$$

$$\implies \cos c - \sin c = 0 \tag{6}$$

$$\implies c = \frac{\pi}{4} \tag{7}$$

Clearly, $\frac{\pi}{4} \in (0, \pi)$

Hence, Rolle's theorem is verified.

Also, we can see from the graph clearly that all the necessary conditions for Rolle's theorem are satisfied and $f'(\frac{\pi}{4})=0$

Fig. 1. Graph of f(x) and f'(x) in $[0, \pi]$