Lecture 4: Intervals

Professor Alexander Franks

2025-10-13 *incertaints*?

Announcements

- Reading: Chapter 8.1 (intervals), 8.3 (posterior prediction)
- Homework 2 out today
- · Quiz / today.

Reminder: Frequentist confidence interval Non-Bayesian

- - Probability that the interval will cover the true value before the data are observed.
 - Interval is random since Y is random

Fixed,

Random

Reminder: Frequentist confidence interval

We expect $0.05 \times 50 = 2.5$ will *not* cover the true parameter 0.6

Posterior Credible Intervals

- ullet Frequentist interval: $Pr(l(Y) < heta < u(Y) \mid heta) = 0.95$
 - Probability that the interval will cover the true value before the data are observed.
 - Interval is random since Y is random
- Bayesian Interval: $Pr(l(y) < \theta > u(y) \mid Y = y) = 0.95$
 - lacksquare Information about the the true value of heta after observeing Y=y.
 - θ is random (because we include a prior), y is observed so interval is non-random.

Random.

2.5% P(314)~

Beta(218)

Quantile Broad Interval $l(y) \leftarrow gbeta(.025, x, B)$ Fixed $m(y) \leftarrow gbeta(1-.025, x, B)$ Avantities

Posterior Credible Intervals (Quantile-based)

• The easiest way to obtain a confidence interval is to use the quantiles of the posterior distribution.

If we want $100 imes (1-\alpha)$ interval, we find numbers $\theta_{\alpha/2}$ and $\theta_{1-\alpha/2}$ such that: $\mathcal{O}_{(b)} = \mathcal{O}_{(b)}$ 1. $p(\theta < \theta_{\alpha/2} \mid Y = y) = \alpha/2$ fower $\mathcal{O}_{(b)} = \mathcal{O}_{(b)}$ 2. $p(\theta > \theta_{1-\alpha/2} \mid Y = y) = \alpha/2$ for $p(\theta \in [\theta_{\alpha/2}, \theta_{1-\alpha/2}] \mid Y = y) = 1-\alpha$

• Use quantile functions in R, e.g. qbeta, qpois, qnormetc.

g gamma

Example: interval for shooting skill

 The posterior distribution for Covington's shooting percentage is a

$$Beta(49 + 478, 50 + 873) = Beta(528, 924)$$

- ullet For a 95% *credible* interval, lpha=0.05
 - Lower endpoint: qbeta(0.025, 528, 924)
 - Upper endpoint: qbeta(0.975, 528, 924)
 - $[\theta_{\alpha/2}, \theta_{1-\alpha/2}] = [0.34, 0.39]$
- Compared to frequentist *confidence* interval without prior information: [0.39, 0.59]
- ullet End-of-season percentage was 0.37
- Credible intervals and confidence intervals have different

Highest Posterior Density (HPD) region

Definition: (HPD region) A $100 imes (1-\alpha)$ HPD region consists of a subset of the parameter space, $R(y) \in \Theta$ such that

1.
$$\Pr(\theta \in R(y)|Y = y) = 1 - \alpha = 95\%$$

- ullet The probability that heta is in the HPD region is 1-lpha
- 2. If $heta_a \in R(y)$, and $heta_b
 otin R(y)$ then $p\left(heta_a | Y=y
 ight) > p\left(heta_b | Y=y
 ight)$
 - All points in an HPD region have a higher posterior density than points out- side the region.

12.590 APD Quantile

GION

Highest Posterior Density (HPD) region

1.
$$p(\theta \in s(y) \mid Y = y) = 1 - \alpha$$

- 2. If $heta_a \in s(y)$, and $heta_b
 otin s(y)$, then $p(heta_a \mid Y=y) > p(heta_b \mid Y=y)$.
 - All points in an HPD region have a higher posterior density than points out- side the region.

The HPD region is the *smallest* region with prob $(1-\alpha)\%$

Calibration: Frequentist Behavior of **Bayesian Intervals**

- A credible interval is calibrated if it has the right frequentist coverage
- Bayesian credible intervals usually won't have correct frequenty • If our prior was well-calibrated and the sampling model was
- correct, we'd have well-calibrated credible intervals
- Specifying nearly calibrated prior distributions is hard!

Calibration of political predictions

The best test of a probabilistic forecast is whether it's well calibrated. By that I mean: Out of all FiveThirtyEight forecasts that give candidates about a 75 percent shot of winning, do the candidates in fact win about 75 percent of the time over the long run? It's a problem if these candidates win only 55 percent of the time. But from a statistical standpoint, it's just as much of a problem if they win 95 percent of the time.

source: fivethirtyeight.com

Calibration of political predictions

Calibration for FiveThirtyEight "polls-plus" forecast

WIN PROBABILITY RANGE	NO. FORECASTS	EXPECTED NO. WINNERS	ACTUAL NO. WINNERS
95-100%	27	26.7	26
75-94%	15	13.1	14
50-74%	14	8.7	11
25-49%	13	4.8	3
5-24%	27	3.1	1
0-4%	88	0.8	1

source: https://fivethirtyeight.com/features/when-we-say-70-percent-it-really-means-70-percent/

The age guessing game*

*Bayesian edition

39/4/