Factor Analysis comes in two forms:	Exploratory (EFA) and Confirmatory (CFA)

Factor Analysis comes in two forms: Exploratory (EFA) and	Confirmatory (CFA)

• EFA: see what factors might be in the data

Facto	r Anal	ysis	comes	in	two	forms:	Exp	loratory	y (EFA)) and	Conf	firmator	Ύ(CFA	١)
-------	--------	------	-------	----	-----	--------	-----	----------	-----	------	-------	------	----------	----	-----	----

• EFA: see what factors might be in the data

• CFA: write down a model and use the data to test it

Factor Analysis comes in two forms: Exploratory (EFA) and Confirmatory (CFA)

EFA: see what factors might be in the data

• CFA: write down a model and use the data to test it

In structural econometrics, we pretty much only do CFA

FA is used extensively in psychometrics
It is a natural tool for analyzing cognitive or behavioral tests

FA is used extensively in psychometrics
It is a natural tool for analyzing cognitive or behavioral tests
• Each test measures some set of skills, but does so noisily

_ · · · ·			
F V is used	OVEDNOUVOLV	ın	ncuchomotrice
1 / 15 useu	evrelizively	111	psychometrics
			1

It is a natural tool for analyzing cognitive or behavioral tests

• Each test measures some set of skills, but does so noisily

• Tests tend to measure the same set of skills, so they are correlated

Suppose our J columns of M correspond to measurements (e.g. test scores)	

Suppose our	I columns of M	correspond to	measurements (e g	test scores)

FA tries to find some underlying unobservables that commonly affect M

FA tries to find some underlying unobservables that commonly affect M

We assume that we cannot observe θ

FA tries to find some underlying unobservables that commonly affect M

We assume that we cannot observe heta

If we assume that M is standardized (mean-zero, unit-variance), then

$$M = \underbrace{\theta_k \Lambda_k + \varepsilon}_{H}$$

FA tries to find some underlying unobservables that commonly affect M

We assume that we cannot observe heta

If we assume that M is standardized (mean-zero, unit-variance), then

$$M = \underbrace{\theta_k \Lambda_k + \varepsilon}_{::}$$

 $m{u}$ is a composite error term (since both $m{ heta}$ and arepsilon are unobservable)

FA tries to find some underlying unobservables that commonly affect M

We assume that we cannot observe heta

If we assume that M is standardized (mean-zero, unit-variance), then

$$M=\underbrace{\theta_k\Lambda_k+\varepsilon}_{::}$$

 \boldsymbol{u} is a composite error term (since both $\boldsymbol{\theta}$ and ε are unobservable)

In FA, we call θ factors, and we call Λ factor loadings and ε uniquenesses

• When we drop components, both have error: $M = \theta_k \Lambda_k + \varepsilon$

- When we drop components, both have error: $M = \theta_k \Lambda_k + \varepsilon$
- But the θ_k , Λ_k , and ε are all different between PCA and FA

- When we drop components, both have error: $M = \theta_k \Lambda_k + \varepsilon$
- But the θ_k , Λ_k , and ε are all different between PCA and FA
- ullet PCA error: approximation from dimensionality reduction (o 0 as K o J)

- When we drop components, both have error: $M = \theta_k \Lambda_k + \varepsilon$
- But the θ_k , Λ_k , and ε are all different between PCA and FA
- ullet PCA error: approximation from dimensionality reduction (o 0 as K o J)
- FA error: measurement error (persists even with all factors retained)

- When we drop components, both have error: $M = \theta_k \Lambda_k + \varepsilon$
- But the θ_k , Λ_k , and ε are all different between PCA and FA
- PCA error: approximation from dimensionality reduction (\rightarrow 0 as $K \rightarrow J$)
- FA error: measurement error (persists even with all factors retained)

FA separates common variance from unique variance; PCA explains total variance

- When we drop components, both have error: $M = \theta_k \Lambda_k + \varepsilon$
- But the θ_k , Λ_k , and ε are all different between PCA and FA
- PCA error: approximation from dimensionality reduction (\rightarrow 0 as $K \rightarrow J$)
- FA error: measurement error (persists even with all factors retained)

FA separates common variance from unique variance; PCA explains total variance For many more excellent details, see Shalizi (2019)

We can extend FA to incorporate observable characteristics:

$$M = X\beta + \underbrace{\theta_k \Lambda_k + \varepsilon}_{n}$$

We can extend FA to incorporate observable characteristics:

$$M = X\beta + \underbrace{\theta_k \Lambda_k + \varepsilon}_{\mathbf{u}}$$

$$= \underbrace{X}_{N \times L} \times \underbrace{\beta}_{L \times J} + \underbrace{\theta_k}_{N \times K} \times \underbrace{\Lambda_k}_{K \times J} + \underbrace{\varepsilon}_{N \times J}$$

We can extend FA to incorporate observable characteristics:

$$M = X\beta + \underbrace{\theta_k \Lambda_k + \varepsilon}_{\mathbf{u}}$$

$$= \underbrace{X}_{N \times L} \times \underbrace{\beta}_{L \times J} + \underbrace{\theta_k}_{N \times K} \times \underbrace{\Lambda_k}_{K \times J} + \underbrace{\varepsilon}_{N \times J}$$

ullet The factors $oldsymbol{ heta}_k$ now capture common variation after conditioning on X

We can extend FA to incorporate observable characteristics:

$$M = X\beta + \underbrace{\theta_k \Lambda_k + \varepsilon}_{\mathbf{u}}$$

$$= \underbrace{X}_{N \times L} \times \underbrace{\beta}_{L \times J} + \underbrace{\theta_k}_{N \times K} \times \underbrace{\Lambda_k}_{K \times J} + \underbrace{\varepsilon}_{N \times J}$$

- ullet The factors $oldsymbol{ heta}_k$ now capture common variation after conditioning on X
- Key challenge: We need additional assumptions for identification