4. Základní materiálové charakteristiky

Modelovým materiálem v PP je **kontinuum** – spojité prostředí, matematická abstrakce, která s realitou nemá nic společného, protože materiál má diskrétní korpuskulární charakter.

Teorie fyziky materiálu – zahrnuje strukturu materiálu, vzájemné vazby mezi atomy, zrna a různé poruchy – makro-pohled, který vyžaduje formulovat pro každý materiál vhodný **konstitutivní model** – kvalitativní závislost mezi napjatostí a deformací.

Pro konkrétní materiál pak je nutné zvolený model vybavit konkrétními **materiálovými charakteristikami** – lze stanovit pouze **experimentálně** na základě vhodně uspořádaných zkoušek.

4.1. Tahová a tlaková zkouška

závislost F, Δl , Δa a Δb v měrné části vzorku (homogenní jednoosá napjatost)

4.1.1. Tahová zkouška materiálu v houževnatém stavu

 $\begin{array}{ll} 0-{\rm nezatížen\acute{y}\ stav} & D-{\rm doln\acute{i}\ mez\ kluzu} \\ L-{\rm hranice\ line\acute{a}rn\acute{i}\ z\acute{a}vislosti} & P-{\rm maxim\acute{a}ln\acute{i}\ zat\acute{i}\check{z}en\acute{i}} \end{array}$

E-hranice pružného chování F-počátek lomu

H-horní mez kluzu T-úplné porušení celistvosti

I. oblast pružných deformací

II. oblast rovnoměrných pružně plastických deformací

III. oblast nerovnoměrných pružně plastických deformací

I. Oblast pružných deformací

 $-\sigma(\varepsilon)$ shoda zatěžování a odlehčování,

$$- \quad \sigma_x = E\varepsilon_x,$$

$$E \in (1, 9; 2, 4) \cdot 10^5 \text{ MPa},$$

- ohraničena mezí kluzu σ_K ,

$$- \varepsilon_y = \varepsilon_z = -\mu \varepsilon_x, \quad \mu = 0, 3,$$

$$\varepsilon_x = \varepsilon = \frac{l - l_0}{l_0}, \quad \varepsilon_y = \frac{a - a_0}{a_0}, \quad \varepsilon_z = \frac{b - b_0}{b_0}$$

^{*4.1 [}PPI, 45-54]

II. Oblast rovnoměrných pružně plastických deformací

- deformace měrné části vzorku zůstává homogenní.
- napětí nelze určovat z výchozího nedeformovaného stavu.
- $-\sigma(\varepsilon)$ při zatěžování nelineární.
- $-\sigma(\varepsilon)$ při odlehčování lineární.
- $P \sim R_m$ (rovnoměrné deformace \rightarrow nerovnoměrné).

III. Oblast nerovnoměrných pružně plastických deformací

 $\sigma(\varepsilon)$ klesající charakter

místní zúžení (krček), nerovnoměrná trojosá napjatost

kontrakce
$$z = \frac{S_0 - S}{S_0}$$

oblast končí přetržením tyče – mezní stav porušení

4.1.2. Tlaková zkouška materiálu v houževnatém stavu

- vyloučit změnu přímosti tyče $(l_0 < 1, 5d)$,
- rovnoměrná deformace \to rovnoměrná napjatost \Rightarrow rovnoměrné zatížení čel (problém: vznik smykových napětí \Rightarrow obecná napjatost)

- u většiny materiálů $\sigma_{Kt} \doteq \sigma_{Kd}$,
- E a μ přibližně stejné jako u tahu,
- nedochází k lokalizaci plastických deformací,
- síla potřebná k rozvíjení plastických deformací trvale vzrůstá,
- u vysoce tvárných materiálů nevzniká při tlaku tvárný lom.

4.1.3. Tahová zkouška materiálu v křehkém stavu

Materiály

-s charakteristickou strukturou – šedá litina, keramické materiály,

– oceli s tranzitním chováním.

Rychlost šíření křehké trhliny vysoká (u oceli cca 1000 ms⁻¹),

 σ_{Rt} – mez křehké pevnosti v tahu.

4.1.4. Tlaková zkouška materiálu v křehkém stavu

- 1. $\sigma_{Rd} > \sigma_{Rt}$,
- 2. křehký lom \parallel s osou vzorku. Není-li odstraněno tření mezi čelem vzorku a čelistí zařízení \rightarrow lomy pod určitým úhlem (cca 45°).

