Test Report No.: 30DE0169-SH-01-B
Page : 14 / 56

26dB Bandwidth and 99% Occupied Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room

Date 2010/6/3

Temperature / Humidity 24deg.C. , 41%

Engineer Tatsuya Arai

Mode 11a, Tx, Main Antenna

11a, 9Mbps

114, 7111000		
Frequency	26dB Bandwidth	99% Occupied
[MHz]	[MHz]	Bandwidth [MHz]
5180	20.137	17.811
5220	20.285	17.904
5240	20.338	17.859
5260	20.293	17.750
5300	20.467	17.826
5320	20.137	17.781

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 15 / 52

26dB Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 16 / 52

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 17 / 52

Peak Output Power (Conducted)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room

Date 2010/5/26

Temperature / Humidity 23deg.C. , 47%

Engineer Tatsuya Arai

Mode 11a, Tx, Main Antenna

11a, 9Mbps

Ch	Freq.	S/A (PK)	Cable	Atten.	Re	sult	Li	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low band, Low	5180.0	-0.85	2.83	9.86	11.84	15.28	16.99	50	5.15
Low band, Mid	5220.0	-0.54	2.85	9.87	12.18	16.52	16.99	50	4.81
Low band, High	5240.0	-0.91	2.85	9.87	11.81	15.17	16.99	50	5.18
Mid band, Low	5260.0	-0.95	2.83	9.87	11.75	14.96	23.98	250	12.23
Mid band, Mid	5300.0	-0.79	2.81	9.88	11.90	15.49	23.98	250	12.08
Mid band, High	5320.0	-0.76	2.79	9.88	11.91	15.52	23.98	250	12.07

Sample Calculation:

Result = Reading + Cable Loss (Including customer's cable loss) + Atten. Loss

[Pre check]

Main Antenna

Data Rate	Freq.	S/A (PK)	Cable	Atten.	Re	sult	Liı	mit	Margin
		Reading	Loss	Loss					
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
6	5180.0	-1.48	2.83	9.86	11.21	13.21	16.99	50	5.78
9	5180.0	-0.85	2.83	9.86	11.84	15.28	16.99	50	5.15
12	5180.0	-0.88	2.83	9.86	11.81	15.17	16.99	50	5.18
18	5180.0	-1.64	2.83	9.86	11.05	12.74	16.99	50	5.94
24	5180.0	-0.93	2.83	9.86	11.76	15.00	16.99	50	5.23
36	5180.0	-1.63	2.83	9.86	11.06	12.76	16.99	50	5.93
48	5180.0	-0.97	2.83	9.86	11.72	14.86	16.99	50	5.27
54	5180.0	-1.00	2.83	9.86	11.69	14.76	16.99	50	5.30

Sub Antenna

Data Rate	Freq.	S/A (PK)	Cable	Atten.	Result		Li	mit	Margin
		Reading	Loss	Loss					
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
9	5180.0	-2.12	2.83	9.86	10.57	11.40	16.99	50	6.42

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*} In the above table, factor 0.0dB represents no use of Atten. and/or Filter.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 30DE0169-SH-01-B Page : 18 / 52

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 19 / 52

Peak Output Power (Conducted)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 20 / 52

Peak Output Power (Conducted)

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B 21 / 52

Peak Output Power (Conducted) Reference data for SAR testing

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room

Date 2010/5/26 Temperature / Humidity 23deg.C. , 47% Engineer Tatsuya Arai Mode Tx, 11a, 9Mbps

Main Antenna

Ch	Freq.	P/M (AV)	Cable	Atten.	Re	sult
		Reading	Loss	Loss		
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	5180.0	-0.97	3.03	9.93	11.99	15.81
Mid	5220.0	-0.84	3.03	9.94	12.13	16.33
High	5240.0	-1.29	3.00	9.94	11.65	14.62
Low	5260.0	-1.00	3.03	9.93	11.96	15.70
Mid	5300.0	-1.08	3.03	9.94	11.89	15.45
High	5320.0	-1.21	3.00	9.94	11.73	14.89

Sub Antenna

Ch	Freq.	P/M (AV)	Cable	Atten.	Re	sult
		Reading	Loss	Loss		_
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	5180.0	-2.41	3.03	9.93	10.55	11.35
Mid	5220.0	-2.32	3.03	9.94	10.65	11.61
High	5240.0	-2.14	3.00	9.94	10.80	12.02
Low	5260.0	-1.98	3.03	9.93	10.98	12.53
Mid	5300.0	-2.05	3.03	9.94	10.92	12.36
High	5320.0	-1.66	3.00	9.94	11.28	13.43

Sample Calculation:

Result = Reading + Cable Loss + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

: +81 463 50 6400 Telephone Facsimile : +81 463 50 6401

Test Report No.: 30DE0169-SH-01-B 22 / 52 :

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber 2010/5/28 2010/5/26 2010/5/29 Date 25deg.C., 49% Shinichi Takano Temperature / Humidity 23deg.C., 46% 25deg.C., 49% Engineer Tatsuya Arai Tatsuya Arai

Tx, 11a, 9Mbps 5180 MHz Mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	479.559	QP	25.6	17.0	9.2	31.9	19.9	46.0	26.1	100	36	Axis:Y
Hori.	583.734	QP	26.9	18.7	9.6	31.9	23.3	46.0	22.7	100	28	Axis:Y
Hori.	639.253	QP	24.2	19.5	9.8	31.9	21.6	46.0	24.4	100	346	Axis:Y
Hori.	5150.000	PK	48.5	31.5	15.0	39.7	55.3	74.0	18.7	100	190	Axis:X
Hori.	15540.000	PK	43.1	39.6	0.1	37.1	45.7	74.0	28.3	100	0	Axis:Y
Hori.	20720.000	PK	43.7	40.2	-2.3	44.1	37.5	74.0	36.5	100	0	Axis:Y
Hori.	5150.000	AV	35.5	31.5	15.0	39.7	42.3	54.0	11.7	100	190	Axis:X
Hori.	15540.000	AV	31.7	39.6	0.1	37.1	34.3	54.0	19.7	100	0	Axis:Y
Hori.	20720.000	AV	32.1	40.2	-2.3	44.1	25.9	54.0	28.1	100	0	Axis:Y
Vert.	479.559	QP	24.3	17.0	9.2	31.9	18.6	46.0	27.4	100	324	Axis:Y
Vert.	583.734	QP	24.6	18.7	9.6	31.9	21.0	46.0	25.0	100	78	Axis:Y
Vert.	639.250	QP	23.5	19.5	9.8	31.9	20.9	46.0	25.1	100	296	Axis:Y
Vert.	5150.000	PK	47.6	31.5	15.0	39.7	54.4	74.0	19.6	100	141	Axis:Z
Vert.	15540.000	PK	42.9	39.6	0.1	37.1	45.5	74.0	28.5	100	0	Axis:Z
Vert.	20720.000	PK	44.5	40.2	-2.3	44.1	38.3	74.0	35.7	100	0	Axis:Z
Vert.	5150.000	AV	35.4	31.5	15.0	39.7	42.2	54.0	11.8	100	141	Axis:Z
Vert.	15540.000	AV	31.2	39.6	0.1	37.1	33.8	54.0	20.2	100	0	Axis:Z
Vert.	20720.000	AV	32.3	40.2	-2.3	44.1	26.1	54.0	27.9	100	0	Axis:Z

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 13GHz)) - Gain(Amprifier)

13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB Distance factor:

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 30DE0169-SH-01-B Page : 23 / 52

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test placeUL Japan, Inc.Shonan EMC Lab.No.3 Semi Anechoic ChamberDate2010/5/262010/5/282010/5/29Temperature / Humidity23deg.C., 46%25deg.C., 49%25deg.C., 49%EngineerTatsuya AraiShinichi TakanoTatsuya Arai

Mode Tx, 5220 MHz

11a, 9Mbps

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	479.559	QP	25.6	17.0	9.2	31.9	19.9	46.0	26.1	100	29	Axis:Y
Hori.	583.762	QP	24.7	18.7	9.6	31.9	21.1	46.0	24.9	100	29	Axis:Y
Hori.	639.253	QP	25.3	19.5	9.8	31.9	22.7	46.0	23.3	100	86	Axis:Y
Hori.	15660.000	PK	44.5	39.2	0.3	37.1	46.9	74.0	27.1	100	0	Axis:Y
Hori.	20880.000	PK	43.9	40.1	-2.4	44.3	37.3	74.0	36.7	100	0	Axis:Y
Hori.	15660.000	AV	33.2	39.2	0.3	37.1	35.6	54.0	18.4	100	0	Axis:Y
Hori.	20880.000	AV	31.8	40.1	-2.4	44.3	25.2	54.0	28.8	100	0	Axis:Y
Vert.	479.559	QP	24.8	17.0	9.2	31.9	19.1	46.0	26.9	100	264	Axis:Y
Vert.	583.756	QP	26.9	18.7	9.6	31.9	23.3	46.0	22.7	100	37	Axis:Y
Vert.	639.250	QP	26.5	19.5	9.8	31.9	23.9	46.0	22.1	100	254	Axis:Y
Vert.	15660.000	PK	45.6	39.2	0.3	37.1	48.0	74.0	26.0	100	0	Axis:Z
Vert.	20880.000	PK	43.9	40.1	-2.4	44.3	37.3	74.0	36.7	100	0	Axis:Z
Vert.	15660.000	AV	33.4	39.2	0.3	37.1	35.8	54.0	18.2	100	0	Axis:Z
Vert.	20880.000	AV	31.9	40.1	-2.4	44.3	25.3	54.0	28.7	100	0	Axis:Z

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 13GHz)) - Gain(Amprifier)

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 30DE0169-SH-01-B 24 / 52 :

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber 2010/5/28 2010/5/26 2010/5/29 Date 25deg.C., 49% Shinichi Takano Temperature / Humidity 23deg.C., 46% 25deg.C., 49% Engineer Tatsuya Arai Tatsuya Arai

Tx, 11a, 9Mbps 5240 MHz Mode

Hori. 479.559 QP 23.2 17.0 9.2 31.9 17.5 46.0 28.5 100 19 Axis:Y	 Remark	Angle	Height	Margin	Limit	Result	Gain	Loss	Ant.Fac.	Reading	Detector	Frequency	Polarity
Hori. 583.762 QP 25.8 18.7 9.6 31.9 22.2 46.0 23.8 100 0 Axis:Y Hori. 639.253 QP 25.1 19.5 9.8 31.9 22.5 46.0 23.8 100 0 Axis:Y Hori. 15720.000 PK 45.9 39.0 0.3 37.1 48.1 74.0 25.9 100 0 Axis:Y Hori. 20960.000 PK 44.1 40.1 -2.4 44.5 37.3 74.0 36.7 100 0 Axis:Y Hori. 15720.000 AV 32.9 39.0 0.3 37.1 35.1 54.0 18.9 100 0 Axis:Y Hori. 20960.000 AV 31.8 40.1 -2.4 44.5 25.0 54.0 29.0 100 0 Axis:Y Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y <tr< td=""><td></td><td>[deg.]</td><td>[cm]</td><td>[dB]</td><td>[dBuV/m]</td><td>[dBuV/m]</td><td>[dB]</td><td>[dB]</td><td>[dB/m]</td><td>[dBuV]</td><td></td><td>[MHz]</td><td></td></tr<>		[deg.]	[cm]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[dB/m]	[dBuV]		[MHz]	
Hori. 639.253 QP 25.1 19.5 9.8 31.9 22.5 46.0 23.5 100 275 Axis:Y Hori. 15720.000 PK 45.9 39.0 0.3 37.1 48.1 74.0 25.9 100 0 Axis:Y Hori. 20960.000 PK 44.1 40.1 -2.4 44.5 37.3 74.0 36.7 100 0 Axis:Y Hori. 15720.000 AV 32.9 39.0 0.3 37.1 35.1 54.0 18.9 100 0 Axis:Y Hori. 20960.000 AV 31.8 40.1 -2.4 44.5 25.0 54.0 29.0 100 0 Axis:Y Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y Vert. 583.756 QP 26.2 18.7 9.6 31.9 22.6 46.0 23.4 100 24 Axis:Y Vert. 639.250 QP 26.1 19.5 9.8 31.9 23.5 46.0 22.5 100 10 Axis:Y Vert. 15720.000 PK 45.8 39.0 0.3 37.1 48.0 74.0 26.0 100 0 Axis:Z Vert. 20960.000 PK 43.3 40.1 -2.4 44.5 36.5 74.0 37.5 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	19	100	28.5	46.0	17.5	31.9	9.2	17.0	23.2	QP	479.559	Hori.
Hori. 15720.000 PK 45.9 39.0 0.3 37.1 48.1 74.0 25.9 100 0 Axis:Y Hori. 20960.000 PK 44.1 40.1 -2.4 44.5 37.3 74.0 36.7 100 0 Axis:Y Hori. 15720.000 AV 32.9 39.0 0.3 37.1 35.1 54.0 18.9 100 0 Axis:Y Hori. 20960.000 AV 31.8 40.1 -2.4 44.5 25.0 54.0 29.0 100 0 Axis:Y Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y Vert. 583.756 QP 26.2 18.7 9.6 31.9 22.6 46.0 23.4 100 24 Axis:Y Vert. 639.250 QP 26.1 19.5 9.8 31.9 23.5 46.0 22.5 100 10	Axis:Y	0	100	23.8	46.0	22.2	31.9	9.6	18.7	25.8	QP	583.762	Hori.
Hori. 20960.000 PK 44.1 40.1 -2.4 44.5 37.3 74.0 36.7 100 0 Axis:Y Hori. 15720.000 AV 32.9 39.0 0.3 37.1 35.1 54.0 18.9 100 0 Axis:Y Hori. 20960.000 AV 31.8 40.1 -2.4 44.5 25.0 54.0 29.0 100 0 Axis:Y Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y Vert. 583.756 QP 26.2 18.7 9.6 31.9 22.6 46.0 23.4 100 24 Axis:Y Vert. 639.250 QP 26.1 19.5 9.8 31.9 23.5 46.0 22.5 100 10 Axis:Y Vert. 15720.000 PK 45.8 39.0 0.3 37.1 48.0 74.0 26.0 100 0 Axis:Z Vert. 20960.000 PK 43.3 40.1 -2.4 44.5 36.5 74.0 37.5 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	275	100	23.5	46.0	22.5	31.9	9.8	19.5	25.1	QP	639.253	Hori.
Hori. 15720.000 AV 32.9 39.0 0.3 37.1 35.1 54.0 18.9 100 0 Axis:Y Hori. 20960.000 AV 31.8 40.1 -2.4 44.5 25.0 54.0 29.0 100 0 Axis:Y Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y Vert. 583.756 QP 26.2 18.7 9.6 31.9 22.6 46.0 23.4 100 24 Axis:Y Vert. 639.250 QP 26.1 19.5 9.8 31.9 23.5 46.0 22.5 100 10 Axis:Y Vert. 15720.000 PK 45.8 39.0 0.3 37.1 48.0 74.0 26.0 100 0 Axis:Z Vert. 20960.000 PK 43.3 40.1 -2.4 44.5 36.5 74.0 37.5 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	0	100	25.9	74.0	48.1	37.1	0.3	39.0	45.9	PK	15720.000	Hori.
Hori. 20960.000 AV 31.8 40.1 -2.4 44.5 25.0 54.0 29.0 100 0 Axis:Y Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y Vert. 583.756 QP 26.2 18.7 9.6 31.9 22.6 46.0 23.4 100 24 Axis:Y Vert. 639.250 QP 26.1 19.5 9.8 31.9 23.5 46.0 22.5 100 10 Axis:Y Vert. 15720.000 PK 45.8 39.0 0.3 37.1 48.0 74.0 26.0 100 0 Axis:Z Vert. 15720.000 PK 43.3 40.1 -2.4 44.5 36.5 74.0 37.5 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	0	100	36.7	74.0	37.3	44.5	-2.4	40.1	44.1	PK	20960.000	Hori.
Vert. 479.559 QP 25.4 17.0 9.2 31.9 19.7 46.0 26.3 100 32 Axis:Y Vert. 583.756 QP 26.2 18.7 9.6 31.9 22.6 46.0 23.4 100 24 Axis:Y Vert. 639.250 QP 26.1 19.5 9.8 31.9 23.5 46.0 22.5 100 10 Axis:Y Vert. 15720.000 PK 45.8 39.0 0.3 37.1 48.0 74.0 26.0 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	0	100	18.9	54.0	35.1	37.1	0.3	39.0	32.9	AV	15720.000	Hori.
Vert. 583.756 QP 26.2 QP 18.7 QP 9.6 31.9 QP 22.6 Asis:Y 46.0 QP 23.4 QP 100 QP 24 Axis:Y Vert. 639.250 QP 26.1 QP 9.8 31.9 QP 23.5 Asis:Y 46.0 QP 22.5 QP 100 QP 10 Axis:Y Vert. 15720.000 PK 45.8 QP 39.0 QP 0.3 QP 23.5 QP 46.0 QP 22.5 QP 100 QP 100 QP Axis:Y Vert. 20960.000 PK 43.3 QP 40.1 QP -2.4 QP 44.5 QP 36.5 QP 74.0 QP 37.5 QP 100 QP Axis:Z Vert. 15720.000 QP 32.6 QP 39.0 QP 37.1 QP 34.8 QP 54.0 QP 19.2 QP 100 QP Axis:Z	Axis:Y	0	100	29.0	54.0	25.0	44.5	-2.4	40.1	31.8	AV	20960.000	Hori.
Vert. 639.250 QP 26.1 PK 19.5 PK 9.8 PK 31.9 PK 23.5 PK 46.0 PK 22.5 PK 100 PK 10 PK Axis:Y Vert. 15720.000 PK 45.8 PK 39.0 PK 0.3 PK 37.1 PK 48.0 PK 74.0 PK 26.0 PK 100 PK Axis:Z Vert. 15720.000 PK 43.3 PK 40.1 PK -2.4 PK 44.5 PK 36.5 PK 74.0 PK 37.5 PK 100 PK Axis:Z Vert. 15720.000 PK 32.6 PK 39.0 PK 37.1 PK 34.8 PK 54.0 PK 19.2 PK 100 PK Axis:Z	Axis:Y	32	100	26.3	46.0	19.7	31.9	9.2	17.0	25.4	QP	479.559	Vert.
Vert. 15720.000 PK 45.8 39.0 0.3 37.1 48.0 74.0 26.0 100 0 Axis:Z Vert. 20960.000 PK 43.3 40.1 -2.4 44.5 36.5 74.0 37.5 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	24	100	23.4	46.0	22.6	31.9	9.6	18.7	26.2	QP	583.756	Vert.
Vert. 20960.000 PK 43.3 40.1 -2.4 44.5 36.5 74.0 37.5 100 0 Axis:Z Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Y	10	100	22.5	46.0	23.5	31.9	9.8	19.5	26.1	QP	639.250	Vert.
Vert. 15720.000 AV 32.6 39.0 0.3 37.1 34.8 54.0 19.2 100 0 Axis:Z	Axis:Z	0	100	26.0	74.0	48.0	37.1	0.3	39.0	45.8	PK	15720.000	Vert.
	Axis:Z	0	100	37.5	74.0	36.5	44.5	-2.4	40.1	43.3	PK	20960.000	Vert.
	Axis:Z	0	100	19.2	54.0	34.8	37.1	0.3	39.0	32.6	AV	15720.000	Vert.
Vert. 20960.000 AV 31.4 40.1 -2.4 44.5 24.6 54.0 29.4 100 0 Axis:Z	Axis:Z	0	100	29.4	54.0	24.6	44.5	-2.4	40.1	31.4	AV	20960.000	Vert.

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 13GHz)) - Gain(Amprifier)

13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB Distance factor:

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 30DE0169-SH-01-B 25 / 52 :

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber 2010/5/26 2010/5/28 2010/5/29 Date 25deg.C., 49% Shinichi Takano Temperature / Humidity 23deg.C., 46% 25deg.C., 49% Engineer Tatsuya Arai Tatsuya Arai

Tx, 11a, 9Mbps 5260 MHz Mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	479.559	QP	26.1	17.0	9.2	31.9	20.4	46.0	25.6	100	34	Axis:Y
Hori.	583.755	QP	23.2	18.7	9.6	31.9	19.6	46.0	26.4	100	22	Axis:Y
Hori.	639.251	QP	25.4	19.5	9.8	31.9	22.8	46.0	23.2	100	54	Axis:Y
Hori.	15780.000	PK	46.0	38.9	0.5	37.2	48.2	74.0	25.8	100	0	Axis:Y
Hori.	21040.000	PK	44.2	40.1	-2.4	44.5	37.4	74.0	36.6	100	0	Axis:Y
Hori.	15780.000	AV	33.6	38.9	0.5	37.2	35.8	54.0	18.2	100	0	Axis:Y
Hori.	21040.000	AV	32.2	40.1	-2.4	44.5	25.4	54.0	28.6	100	0	Axis:Y
Vert.	479.559	QP	26.1	17.0	9.2	31.9	20.4	46.0	25.6	100	111	Axis:Y
Vert.	583.756	QP	23.8	18.7	9.6	31.9	20.2	46.0	25.8	100	75	Axis:Y
Vert.	639.259	QP	24.4	19.5	9.8	31.9	21.8	46.0	24.2	100	54	Axis:Y
Vert.	15780.000	PK	45.6	38.9	0.5	37.2	47.8	74.0	26.2	100	0	Axis:Z
Vert.	21040.000	PK	43.7	40.1	-2.4	44.5	36.9	74.0	37.1	100	0	Axis:Z
Vert.	15780.000		33.6	38.9	0.5	37.2	35.8	54.0	18.2	100		Axis:Z
Vert.	21040.000	AV	32.1	40.1	-2.4	44.5	25.3	54.0	28.7	100	0	Axis:Z

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 13GHz)) - Gain(Amprifier)

13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB Distance factor:

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 30DE0169-SH-01-B Page : 26 / 52

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test placeUL Japan, Inc.Shonan EMC Lab.No.3 Semi Anechoic ChamberDate2010/5/262010/5/282010/5/29Temperature / Humidity23deg.C., 46%25deg.C., 49%25deg.C., 49%EngineerTatsuya AraiShinichi TakanoTatsuya Arai

Mode Tx, 5300 MHz

11a, 9Mbps

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	479.559	QP	28.2	17.0	9.2	31.9	22.5	46.0	23.5	100		Axis:Y
Hori.	583.762	QP	24.4	18.7	9.6	31.9	20.8	46.0	25.2	100	24	Axis:Y
Hori.	639.262	QP	23.8	19.5	9.8	31.9	21.2	46.0	24.8	100	68	Axis:Y
Hori.	10600.000	PK	57.6	39.9	7.8	37.5	67.8	74.0	6.2	129	359	Axis:Y
Hori.	15900.000	PK	45.6	38.5	0.5	37.2	47.4	74.0	26.6	100	0	Axis:Y
Hori.	21200.000	PK	44.5	40.1	-2.4	44.5	37.7	74.0	36.3	100	0	Axis:Y
Hori.	10600.000	AV	43.6	39.9	7.8	37.5	53.8	54.0	0.2	129	359	Axis:Y
Hori.	15900.000	AV	32.8	38.5	0.5	37.2	34.6	54.0	19.4	100	0	Axis:Y
Hori.	21200.000	AV	32.4	40.1	-2.4	44.5	25.6	54.0	28.4	100	0	Axis:Y
Vert.	479.559	QP	28.4	17.0	9.2	31.9	22.7	46.0	23.3	100	210	Axis:Y
Vert.	583.756	QP	25.2	18.7	9.6	31.9	21.6	46.0	24.4	100	32	Axis:Y
Vert.	639.259	QP	26.1	19.5	9.8	31.9	23.5	46.0	22.5	100	75	Axis:Y
Vert.	10600.000	PK	56.6	39.9	7.8	37.5	66.8	74.0	7.2	100	39	Axis:Z
Vert.	15900.000	PK	47.8	38.5	0.5	37.2	49.6	74.0	24.4	100	0	Axis:Z
Vert.	21200.000	PK	44.8	40.1	-2.4	44.5	38.0	74.0	36.0	100	0	Axis:Z
Vert.	10600.000	AV	42.5	39.9	7.8	37.5	52.7	54.0	1.3	100	39	Axis:Z
Vert.	15900.000	AV	33.5	38.5	0.5	37.2	35.3	54.0	18.7	100	0	Axis:Z
Vert.	21200.000	AV	32.5	40.1	-2.4	44.5	25.7	54.0	28.3	100	0	Axis:Z

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 13GHz)) - Gain(Amprifier)

Distance factor: 13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 30DE0169-SH-01-B : 27 / 52

Radiated Emission (below 1GHz and above 1GHz Inside of the restricted band)

Test place UL Japan, Inc. Shonan EMC Lab. No.3 Semi Anechoic Chamber 2010/5/28 2010/5/26 2010/5/29 Date 25deg.C., 49% Shinichi Takano Temperature / Humidity 23deg.C., 46% 25deg.C., 49% Engineer Tatsuya Arai Tatsuya Arai

Tx, 5320 MHz 11a, 9Mbps Mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg.]	
Hori.	479.559	QP	27.1	17.0	9.2	31.9	21.4	46.0	24.6	100	76	Axis:Y
Hori.	583.762	QP	24.3	18.7	9.6	31.9	20.7	46.0	25.3	100	45	Axis:Y
Hori.	639.248	QP	24.9	19.5	9.8	31.9	22.3	46.0	23.7	100	65	Axis:Y
Hori.	5350.000	PK	51.0	31.8	15.1	39.3	58.6	74.0	15.4	100	174	Axis:X
Hori.	10640.000	PK	56.1	39.9	7.8	37.6	66.2	74.0	7.8	127	356	Axis:Y
Hori.	15960.000	PK	45.4	38.3	0.6	37.3	47.0	74.0	27.0	100	0	Axis:Y
Hori.		PK	44.3	40.1	-2.4	44.5	37.5	74.0	36.5	100	0	Axis:Y
Hori.		AV	35.8	31.8	15.1	39.3	43.4	54.0	10.6	100	174	Axis:X
Hori.		AV	43.5	39.9	7.8	37.6	53.6	54.0	0.4	127	356	Axis:Y
Hori.		AV	32.5	38.3	0.6	37.3	34.1	54.0	19.9	100		Axis:Y
Hori.		AV	32.8	40.1	-2.4	44.5	26.0	54.0	28.0	100		Axis:Y
Vert.		QP	24.1	17.0	9.2	31.9		46.0	27.6	100		Axis:Y
Vert.		QP	24.7	18.7	9.6	31.9	21.1	46.0	24.9	100		Axis:Y
Vert.		QP	26.7	19.5	9.8	31.9	24.1	46.0	21.9	100		Axis:Y
Vert.		PK	52.3	31.8	15.1	39.3	59.9		14.1	100		Axis:Z
Vert.		PK	56.6	39.9	7.8	37.6	66.7	74.0	7.3	100		Axis:Z
Vert.		PK	45.8	38.3	0.6	37.3	47.4	74.0	26.6	100		Axis:Z
Vert.		PK	44.5	40.1	-2.4	44.5	37.7	74.0	36.3	100		Axis:Z
Vert.		AV	36.2	31.8	15.1	39.3	43.8	54.0	10.2	100		Axis:Z
Vert.		AV	43.5	39.9	7.8	37.6	53.6		0.4	100		Axis:Z
Vert.	15960.000		33.5	38.3	0.6	37.3	35.1	54.0	18.9	100		Axis:Z
Vert.	21280.000	AV	32.7	40.1	-2.4	44.5	25.9	54.0	28.1	100	0	Axis:Z

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 13GHz)) - Gain(Amprifier)

13GHz-40GHz 20log(3.0m/1.0m)= 9.5dB Distance factor:

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^{*}Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Test Report No.: 30DE0169-SH-01-B Page : 28 / 52

Data of Spurious Emissions (Substitution)(above 1GHz Outside of the restricted band)

UL Japan, Inc.

Shonan EMC Lab. Semi Anechoic Chamber: No3

 MODE
 Tx
 5180 MHz
 REGULATION
 FCC
 15.407(b)

 11a, 9Mbps, Main Antenna
 TEST DISTANCE
 3m (below13GHz) Im (above13GHz)

 EUT Position
 H: Y-axis / V: Z-axis
 DATE
 5/28/10
 5/29/10

TEMPERATURE 25deg.C. 25deg.C.

Tx Antenna Height 0.8m HUMIDITY 49% 49% 49% ENGINEER Shinichi Takano Tatsuya Arai

Freq	quency	Rx, T/I	R or S/A	Tx,	SG	Tx	Tx	Tx, Ant.	RESUL	Γ (EIRP)	LIMIT	MAI	RGIN	Horz	ontal	Ver	tical	Remarks
		Rea	ding	Read	ding	Cable	Ant.	Atten.						Rx, Ant.	Turn	Rx, Ant.	Turn	
[M	IHz]	[dB	uV]	[dB	sm]	Loss	Gain	Loss	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
		HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER	(EIRP)	HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
51	50.00	48.50	47.6	-50.5	-52.1	9.1	12.7	0.0	-46.90	-48.50	-27.00	19.90	21.50	100	190	100	141	Hor:X, Ver:Z
103	60.00	61.80	60.9	-26.5	-29.1	13.1	11.4	0.0	-28.20	-30.80	-27.00	1.20	3.80	133	357	100	146	Hor:Y, Ver:Z
259	00.00	44.90	45.5	-68.1	-66.7	21.1	11.6	0.0	-77.60	-76.20	-27.00	50.60	49.20	100	0	100	0	Hor:Y, Ver:Z

CALCULATION RESULT = SG Reading - Tx Loss + Tx Ant. Gain - Tx Ant. ATT. Loss

Rx-ANTENNA : Horn Antenna(1G-40GHz) Tx-ANTENNA : Horn Antenna(1G-40GHz)

All other emissions were at least 20dB below the specification limit.

With the result above, the equivalent isotropic radiated power was calculated on the basis of the reference value

Detector: Above 1GHz: S/A PK(RBW:1MHz/VBW:3MHz)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa, Japan 259-1220

⁻ for the calibration data on the substitution measurement.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 30DE0169-SH-01-B Page : 29 / 52

Data of Spurious Emissions (Substitution)(above 1GHz Outside of the restricted band)

UL Japan, Inc.

Shonan EMC Lab. Semi Anechoic Chamber: No.

 MODE
 Tx
 5220 MHz
 REGULATION
 FCC
 15.407(b)

 11a, 9Mbps, Main Antenna
 TEST DISTANCE
 3m (below13GHz) Im (above13GHz)

 EUT Position
 H: Y-axis / V: Z-axis
 DATE
 5/28/10
 5/29/10

TEMPERATURE 25deg.C. 25deg.C.

Tx Antenna Height 0.8m HUMIDITY 49% 49%
ENGINEER Shinichi Takano Tatsuya Arai

Frequency	Rx, T/	R or S/A	Tx,	SG	Tx	Tx	Tx, Ant.	RESUL'	T (EIRP)	LIMIT	MAI	RGIN	Horz	ontal	Vert	tical	Remarks
	Rea	ding	Rea	ding	Cable	Ant.	Atten.						Rx, Ant.	Turn	Rx, Ant.	Turn	
[MHz]	[dB	uV]	[dE	Bm]	Loss	Gain	Loss	[dF	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER	(EIRP)	HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
10440.00	62.20	61.0	-25.6	-30.9	13.2	11.3	0.0	-27.50	-32.80	-27.00	0.50	5.80	131	359	100	50	Hor:Y, Ver:Z
26100.00	45.40	45.7	-67.5	-66.7	21.2	11.7	0.0	-77.00	-76.20	-27.00	50.00	49.20	100	0	100	0	Hor:Y, Ver:Z

CALCULATION RESULT = SG Reading - Tx Loss + Tx Ant. Gain - Tx Ant. ATT. Loss

Rx-ANTENNA : Horn Antenna(1G-40GHz) Tx-ANTENNA : Horn Antenna(1G-40GHz)

All other emissions were at least 20dB below the specification limit.

With the result above, the equivalent isotropic radiated power was calculated on the basis of the reference value

- for the calibration data on the substitution measurement.

Detector: Above 1GHz: S/A PK(RBW:1MHz/VBW:3MHz)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa, Japan 259-1220

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 30DE0169-SH-01-B 30 /

Data of Spurious Emissions (Substitution)(above 1GHz Outside of the restricted band)

UL Japan, Inc.

Shonan EMC Lab. Semi Anechoic Chamber:

MODE 5240 MHz REGULATION 15.407(b) FCC 11a, 9Mbps, Main Antenna TEST DISTANCE 3m (below13GHz)/ 1m (above13GHz) EUT Position H: Y-axis / V: Z-axis DATE 5/28/10 5/29/10 TEMPERATURE 25deg.C. 25deg.C. Tx Antenna Height HUMIDITY 0.8m 49% 49%

Shinichi Takano ENGINEER Tatsuya Arai

Frequency	Rx, T/I	R or S/A	Tx,	SG	Tx	Tx	Tx, Ant.	RESUL	T (EIRP)	LIMIT	MAI	RGIN	Horz	ontal	Vert	ical	Remarks
	Rea	ding	Rea	ding	Cable	Ant.	Atten.						Rx, Ant.	Turn	Rx, Ant.	Turn	
[MHz]	[dB	uV]	[dE	Bm]	Loss	Gain	Loss	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER	(EIRP)	HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
10480.00	61.30	60.7	-27.3	-30.0	13.2	11.2	0.0	-29.30	-32.03	-27.00	2.30	5.03	131	359	100	43	Hor:Y, Ver:Z
26200.00	46.10	46.3	-68.3	-67.1	21.2	11.8	0.0	-77.70	-76.50	-27.00	50.70	49.50	100	0	100	0	Hor:Y, Ver:Z

CALCULATION RESULT = SG Reading - Tx Loss + Tx Ant. Gain - Tx Ant. ATT. Loss

 $Rx\hbox{-}ANTENNA: Horn\ Antenna (1G\hbox{-}40GHz)$ Tx-ANTENNA: Horn Antenna(1G-40GHz)

All other emissions were at least 20dB below the specification limit.

With the result above, the equivalent isotropic radiated power was calculated on the basis of the reference value

Detector: Above 1GHz: S/A PK(RBW:1MHz/VBW:3MHz)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa, Japan 259-1220

:+81-(0) 463-50-6400 Telephone Facsimile : +81- (0) 463-50-6401

⁻ for the calibration data on the substitution measurement.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 30DE0169-SH-01-B Page : 31 / 52

Data of Spurious Emissions (Substitution)(above 1GHz Outside of the restricted band)

UL Japan, Inc.

Shonan EMC Lab. Semi Anechoic Chamber: No.

 MODE
 Tx
 5260 MHz
 REGULATION
 FCC
 15.407(b)

 11a, 9Mbps, Main Antenna
 TEST DISTANCE
 3m (below13GHz) 1m (above13GHz)

 EUT Position
 H: Y-axis / V: Z-axis
 DATE
 5/28/10
 5/29/10

TEMPERATURE 25deg.C. 25deg.C.

Tx Antenna Height 0.8m HUMIDITY 49% 49%
ENGINEER Shinichi Takano Tatsuya Arai

F	Frequency	Rx, T/I	R or S/A	Tx,	SG	Tx	Tx	Tx, Ant.	RESUL	T (EIRP)	LIMIT	MAI	RGIN	Horz	ontal	Vert	tical	Remarks
		Read	ding	Read	ding	Cable	Ant.	Atten.						Rx, Ant.	Turn	Rx, Ant.	Turn	
	[MHz]	[dB	uV]	[dB	sm]	Loss	Gain	Loss	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
		HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER	(EIRP)	HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
1	0520.00	61.60	59.5	-26.7	-30.8	13.2	11.2	0.0	-28.71	-32.82	-27.00	1.71	5.82	129	359	100	44	Hor:Y, Ver:Z
2	26300.00	46.60	46.6	-66.7	-65.3	21.2	11.9	0.0	-76.00	-74.60	-27.00	49.00	47.60	100	0	100	0	Hor:Y, Ver:Z

CALCULATION RESULT = SG Reading - Tx Loss + Tx Ant. Gain - Tx Ant. ATT. Loss

Rx-ANTENNA : Horn Antenna(1G-40GHz) Tx-ANTENNA : Horn Antenna(1G-40GHz)

All other emissions were at least 20dB below the specification limit.

With the result above, the equivalent isotropic radiated power was calculated on the basis of the reference value

- for the calibration data on the substitution measurement.

Detector: Above 1GHz: S/A PK(RBW:1MHz/VBW:3MHz)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa, Japan 259-1220

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 30DE0169-SH-01-B Page : 32 / 52

Data of Spurious Emissions (Substitution)(above 1GHz Outside of the restricted band)

UL Japan, Inc.

Shonan EMC Lab. Semi Anechoic Chamber: No.

REGULATION 15.407(b) MODE 5300 MHz FCC 11a, 9Mbps, Main Antenna TEST DISTANCE 3m (below13GHz)/ 1m (above13GHz) EUT Position H: Y-axis / V: Z-axis DATE 5/29/10 5/28/10 TEMPERATURE 25deg.C. 25deg.C.

Tx Antenna Height 0.8m HUMIDITY 49% 49% 49% ENGINEER Shinichi Takano Tatsuya Arai

Freq	quency	Rx, T/	R or S/A	Tx,	SG	Tx	Tx	Tx, Ant.	RESUL	T (EIRP)	LIMIT	MAI	RGIN	Horz	ontal	Vert	tical	Remarks
		Rea	ding	Rea	ding	Cable	Ant.	Atten.						Rx, Ant.	Turn	Rx, Ant.	Turn	
[N	MHz]	[dB	uV]	[dF	Bm]	Loss	Gain	Loss	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
		HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER	(EIRP)	HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
265	500.00	53.00	52.5	-61.1	-60.2	21.2	12.1	0.0	-70.20	-69.30	-27.00	43.20	42.30	100	0	100	0	Hor:Y, Ver:Z

CALCULATION RESULT = SG Reading - Tx Loss + Tx Ant. Gain - Tx Ant. ATT. Loss

Rx-ANTENNA : Horn Antenna(1G-40GHz) Tx-ANTENNA : Horn Antenna(1G-40GHz)

All other emissions were at least 20dB below the specification limit.

With the result above, the equivalent isotropic radiated power was calculated on the basis of the reference value

- for the calibration data on the substitution measurement.

Detector: Above 1GHz: S/A PK(RBW:1MHz/VBW:3MHz)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa, Japan 259-1220

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

Test Report No.: 30DE0169-SH-01-B Page : 33 / 52

Data of Spurious Emissions (Substitution)(above 1GHz Outside of the restricted band)

UL Japan, Inc.

Shonan EMC Lab. Semi Anechoic Chamber: No3

MODE 5320 MHz REGULATION 15.407(b) FCC 11a, 9Mbps, Main Antenna TEST DISTANCE 3m (below13GHz)/ 1m (above13GHz) EUT Position H: Y-axis / V: Z-axis DATE 5/28/10 5/29/10 TEMPERATURE 25deg.C. 25deg.C.

Tx Antenna Height 0.8m HUMIDITY 49% 49% 49% ENGINEER Shinichi Takano Tatsuya Arai

F	requency	Rx, T/I	R or S/A	Tx,	SG	Tx	Tx	Tx, Ant.	RESUL	Γ (EIRP)	LIMIT	MAI	RGIN	Horz	ontal	Vert	ical	Remarks
		Rea	ding	Rea	ding	Cable	Ant.	Atten.						Rx, Ant.	Turn	Rx, Ant.	Turn	
	[MHz]	[dB	uV]	[dE	Bm]	Loss	Gain	Loss	[dE	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
		HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER	(EIRP)	HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
	5350.00	51.00	52.3	-45.6	-43.5	9.3	12.8	0.0	-42.11	-40.03	-27.00	15.11	13.03	100	174	100	94	Hor:X, Ver:Z
2	6600.00	63.20	63.3	-62.3	-61.8	21.3	12.2	0.0	-71.40	-70.90	-27.00	44.40	43.90	100	0	100	0	Hor:Y, Ver:Z

CALCULATION RESULT = SG Reading - Tx Loss + Tx Ant. Gain - Tx Ant. ATT. Loss

Rx-ANTENNA : Horn Antenna(1G-40GHz) Tx-ANTENNA : Horn Antenna(1G-40GHz)

All other emissions were at least 20dB below the specification limit.

With the result above, the equivalent isotropic radiated power was calculated on the basis of the reference value

Detector: Above 1GHz: S/A PK(RBW:1MHz/VBW:3MHz)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa, Japan 259-1220

⁻ for the calibration data on the substitution measurement.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

30DE0169-SH-01-B Test Report No.: Page 34 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Telephone : +81 463 50 6400 : +81 463 50 6401 Facsimile

Test Report No.: 30DE0169-SH-01-B Page : 35 / 52

Spurious emission (Conducted)

11a, 9Mbps

Tx, 5180MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 36 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

30DE0169-SH-01-B Test Report No.: Page 37 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

: +81 463 50 6400 Telephone : +81 463 50 6401 Facsimile

30DE0169-SH-01-B Test Report No.: Page 38 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Telephone : +81 463 50 6400 : +81 463 50 6401 Facsimile

Test Report No.: 30DE0169-SH-01-B Page : 39 / 52

Spurious emission (Conducted)

11a, 9Mbps

Tx, 5240MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 40 / 52

Spurious emission (Conducted)

11a, 9Mbps

Tx, 5260MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 41 / 52

Spurious emission (Conducted)

11a, 9Mbps

Tx, 5260MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 42 / 52

Spurious emission (Conducted)

11a, 9Mbps Tx, 5300MHz

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 43 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

30DE0169-SH-01-B Test Report No.: Page 44 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Telephone : +81 463 50 6400 : +81 463 50 6401 Facsimile

Test Report No.: 30DE0169-SH-01-B Page : 45 / 52

Spurious emission (Conducted)

11a, 9Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

30DE0169-SH-01-B Test Report No.: 46 / 52 Page

Spurious emission (Conducted) Band Edge compliance

11a, 9Mbps

Test Report No.: 30DE0169-SH-01-B Page : 47 / 52

Peak Power Spectral Density

Test place UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room

Date 2010/6/3

Temperature / Humidity 24deg.C. , 41%

Engineer Tatsuya Arai

Mode 11a, Tx, Main Antenna

11a, 9Mbps

,							
Ch. Freq.	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
			Loss				
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
5180	5177.00	-12.42	2.83	9.86	0.27	4.00	3.73
5220	5215.17	-13.24	2.85	9.87	-0.52	4.00	4.52
5240	5246.00	-12.86	2.85	9.87	-0.14	4.00	4.14
5260	5256.38	-12.22	2.83	9.87	0.48	11.00	10.52
5300	5297.29	-13.32	2.81	9.88	-0.63	11.00	11.63
5320	5318.12	-13.38	2.79	9.88	-0.71	11.00	11.71

Sample Calculation:

Result = Reading + Cable Loss (Including customer's cable loss)+ Attenuator

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page 48 / 52

Peak Power Spectral Density

11a, 9Mbps

: +81 463 50 6401 Facsimile

Test Report No.: 30DE0169-SH-01-B Page 49 / 52

Peak Power Spectral Density

11a, 9Mbps

Facsimile

Test Report No.: 30DE0169-SH-01-B Page : 50 / 52

Peak Excursion Ratio

Test place UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room

Date 2010/6/3

Temperature / Humidity 24deg.C. , 41%

Engineer Tatsuya Arai

Mode 11a, Tx, Main Antenna

11a, 9Mbps

Freq.	Peak Power	Limit
	Excursion	
[MHz]	[dB]	[dB]
5180.0	8.470	=< 13.0
5220.0	7.968	=< 13.0
5240.0	7.825	=< 13.0
5260.0	8.343	=< 13.0
5300.0	7.960	=< 13.0
5320.0	7.661	=< 13.0

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No.: 30DE0169-SH-01-B Page : 51 / 52

Peak Excursion Ratio

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No :30DE0169-SH-01-B

APPENDIX 3 Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2010/02/06 * 12
SAT6-03	Attenuator	JFW	50HF-006N	-	RE	2010/02/06 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2010/03/22 * 12
SCC-C1/C2/C 3/C4/C5/C10/ SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhne r/Suhner/Suhner/Suhn er/TOYO	8D2W/12DSFA/14 1PE/141PE/141PE /141PE/NS4906		RE	2010/04/02 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0901	RE	2010/03/22 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2010/02/09 * 12
STR-03	Test Receiver	Rohde & Schwarz	ESI40	100054/040	RE	2010/04/12 * 24
SJM-07	Measure	PROMART	SEN1935	-	RE	-
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2009/09/18 * 12
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV	-	RE	-
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2010/03/09 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2010/04/16 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2010/05/27 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2009/08/23 * 12
SAT10-05	Attenuator(above1GHz)	Agilent	8493C-010	74864	RE	2010/03/05 * 12
SFL-03	Highpass Filter	MICRO-TRONICS	HPM50112	028	RE	2009/12/04 * 12
SHA-05	Horn Antenna	ETS LINDGREN	3160-09	LM4210	RE	2010/03/29 * 12
SAF-09	Pre Amplifier	TOYO Corporation	HAP18-26W	00000018	RE	2010/03/02 * 12
SCC-G18	Coaxial Cable	Suhner	SUCOFLEX 104A	46292/4A	RE	2010/03/02 * 12
SHA-06	Horn Antenna	ETS LINDGREN	3160-10	LM3459	RE	2010/04/09 * 12
SAF-10	Pre Amplifier	TOYO Corporation	HAP26-40W	00000010	RE	2009/06/29 * 12
SCC-G19	Coaxial Cable	Suhner	SUCOFLEX 102A	1188/2A	RE	2010/03/09 * 12
SHA-07	Horn Antenna	ETS-LINDGREN	3116	00108256	RE	2010/03/29 * 12
SCC-G16	Coaxial Cable	Suhner	SUCOFLEX 102	32704/2	RE	2010/03/09 * 12
SSG-02	Signal Generator	Agilent	E8257D-540	MY48051404	RE	2010/02/01 * 12
SHA-02	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-726	RE	2009/08/23 * 12
SAT10-08	Attenuator	Weinschel	W54-10	-	AT	2010/03/05 * 12
SCC-G12	Coaxial Cable	Suhner	SUCOFLEX 102	30790/2	AT	2010/03/09 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	AT	2010/02/17 * 12
SSA-03	Spectrum Analyzer	Agilent	E4448A	MY48250152	AT	2009/06/09 * 12
SOS-04	Humidity Indicator	A&D	AD-5681	4061512	AT	2010/02/17 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2010/02/17 * 12

The expiration date of the calibration is the end of the expired month . As for some calibrations performed after the tested dates , those test equipment have been controlled by means of an unbroken chains of calibrations .

All equipment is calibrated with traceable calibrations . Each calibration is traceable to the national or international standards .

Test Item:

RE: Radiated emission,

AT: Antenna terminal conducted test

UL Japan, Inc. Page: 52/52