APPENDIX

A. Reproducibility and detailed experimental Setup

Implementation Details. To reproduce results including results of baselines, we present implementation details as follows:

- All methods are implemented in C11, a C standard revision, language with Python2.7 as a wrapper. The experiments are executed in a cluster with 5 nodes. Each node has 28 CPUs and 250Gb memory. For each method, we only use 1 CPU at a time.
- The random seeds for all trials are np.random.seed(17), which makes results of AUC scores and sparse ratios reproducible.
- Critical operations of all baseline methods are scale product c· x and the inner product $\langle x, y \rangle = x^\top y$, which are calculated by cblas_dscal() and cblas_ddot() respectively. These two functions are provided by OpenBLAS [42] ⁵, an optimized BLAS library.
- For SPAM- ℓ^1 , SPAM- ℓ^2 , and SPAM- ℓ^1/ℓ^2 , since they need to estimate \widehat{p}_T , $a(\boldsymbol{w}_t)$, $b(\boldsymbol{w}_t)$, and $\alpha(\boldsymbol{w}_t)$, in our experiments, we estimate them by using p_t , $a_t(\boldsymbol{w}_t)$, $b_t(\boldsymbol{w}_t)$, and $\alpha_t(\boldsymbol{w}_t)$ defined in (8).
- For FSAUC, there exists a projection step onto a ℓ^1 -norm ball. The projection used in the original implementation is the method proposed in [43]. However, there exists a much faster version of ℓ^1 -ball projection [44] as claimed has $\mathcal{O}(d)$ run time in practice ⁶.

Fig. 8: Convergence rate with respect to the number of training samples seen

Parameter Tuning. We list parameter tuning of all methods including the baseline methods as follows:

• FTRL-AUC, it has two parameters. The ℓ^1 -regularization parameter λ which is from a sufficient large range $\{10^{-8},10^{-7},\ldots,\ 10^{-3},\ 0.005,\ 0.01,\ 0.05,\ 0.1,\ 0.3,\ 0.5,\ 0.7,\ 1.0,\ 3.0,\ 5.0\}$, and the initial learning rate γ is from $\{10^{-5},5\cdot 10^{-5},\ 0.0001,\ 0.0005,\ 0.001,\ 0.005,\ 0.01,\ 0.5,\ 1.0,\ 5.0\}$.

- SPAM- ℓ^1 has two parameters. The initial learning rate ξ is from $\{10^{-3}, 10^{-2}, 10^{-1}, 10^0, 10^1, 10^2, 10^3\}$. The ℓ^1 -regularization parameter is the same as FTRL-AUC's.
- SPAM- ℓ^2 has two parameters. The initial learning rate ξ is from $\{10^{-3}, 10^{-2}, 10^{-1}, 10^0, 10^1, 10^2, 10^3\}$. The ℓ^2 -regularization parameter is the same as λ .
- SPAM- ℓ^1/ℓ^2 has 3 main parameters. To avoid large cross-validation time, the parameter ξ and λ^2 is used by the parameter tuned from SPAM- ℓ^2 . We only tune the ℓ^1 parameter λ_1 which is the same λ .
- FSAUC has 2 parameters. The ℓ^1 -norm ball which is from $\{10^{-1}, 10^0, \dots, 10^5\}$. The corresponding initial learning rate is from $\{2^{-10}, 2^{-9}, 2^{-8}, \dots, 2^8, 2^9, 2^{10}\}$ as suggested in [18].
- SOLAM has two parameters. The ℓ^2 -norm ball diameter which is from $\{10^{-1}, 10^0, \dots, 10^5\}$ and the initial learning rate $\xi \in \{1.0, 10.0, 19.0, 28.0, \dots, 100.0\}$ as suggested in [16].
- SPAUC has two parameters. The initial learning rate parameter is from $\{10^{-7.0}, 10^{-6.5}, 10^{-6.0}, \dots, 10^{-2.5}\}$. Since we use the ℓ^1 -regularization and it is the same λ .
- FTRL-PRO has the same parameter tuning strategy as FTRL-AUC.
- RDA- ℓ^1 has three parameters. It has an initial learning rate from the range $\{10.0, 50.0, 100.0, 500.0, 1000.0, 5000.0\}$. The sparsity-enhancing parameter is from $\{0.0, 0.005\}$, where 0.0 corresponding to non-enhancing sparsity. The λ is the same as FTRL-AUC's.
- ADAGRAD has three parameters. 10^{-8} by fixed to to avoid the divided zero learning rate parameter is $\{0.001, 0.01, 0.1, 1.0, 10.0, 50.0, 100.0, 500.0, 1000.0, 5000.0\}$ while λ is the same as others.

B. More Results

We first provide the experimental details for Figure 2. We fix the initial learning rate $\gamma=1.0$ and the sparsity parameter $\lambda=0.5$. The convergence curves illustrate in Figure 2 and 9 are the AUC scores averaged on 10 trials.

Fig. 9: Comparison of with and without "lazy update"

The convergence curve with respect to the number training samples seen are illustrated in Figure 8. In general, the performance of FTRL-AUC on the convergence is better than SPAM-based. Figure 10 illustrates the convergence curve as a function the number of training samples seen for the datasets

⁵https://github.com/xianyi/OpenBLAS with version 0.3.1 (Accessed in February 2020)

⁶The C version code can be download from https://lcondat.github.io/download/condat_11ballproj.c(AccessedinFebruary2020).

of imbalance ratio $T_+/T=0.05$. Figure 11 illustrate the sparse ratio and corresponding AUC scores as a function of the parameter λ for the datasets of imbalance ratio $T_+/T=0.05$.

Fig. 10: Convergence curve with respect to the number of training samples seen

Fig. 11: Sparse Ratio as a function of the AUC score.