

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

Отчет по лабораторной работе №2

РАСЧЕТ НАДЕЖНОСТИ СИСТЕМ ПО СТАТИСТИЧЕСКИМ ДАННЫМ Вариант №19

Выполнил:

студент МИН21

Урывский Д.В.

Ростов-на-Дону

2020

Цель работы

Ознакомление с методами статистического анализа надежности систем.

Задание 1

На испытании находилось $N_0 = 100$ образцов техники. Вычислить показатели надежности P(t), f(t), $\lambda(t)$, T_0 , и занести их в таблицу.

Таблица 1. Исходные данные

Интервал, час	0–120	120-	240-	360-	480-	600-	720-	840-
		240	360	480	600	720	840	960
Длина Δt , час	120	120	120	120	120	120	120	120
Число отказавших образцов $n(t, t+ \Delta t)$	2	3	2	2	1	1	2	3

Среднее время работы элемента до отказа равно среднему арифметическому времени, т. е.

$$\widehat{T} = \frac{1}{N_0} \sum_{i=1}^{N_0} t_i$$

$$T = \frac{960}{100} = 9,6$$
(4ac)

Вероятность безотказной работы P(t) определяется следующей статистической оценкой:

$$\widehat{P}_{cm}(t) = \frac{N(t)}{N_0} = \frac{N_0 - n(t)}{N_0},$$

где N_0 — общее число образцов, находящихся на испытании, N(t) — число исправно работающих образцов в момент времени t, n(t) — число отказавших образцов в течение времени t.

$$P_{\rm CT}(t) = \frac{100 - (2 + 3 + 2 + 2 + 1 + 1 + 2 + 3)}{100} = \frac{100 - 16}{100} = 0.84$$

Частота отказов определяется следующей формулой:

$$\widehat{f}_{cm} = \frac{n(t, t + \Delta t)}{N_{\circ} \Delta t},$$

где $n(t,t+\Delta t)$ — число отказавших образцов за промежуток времени $[t;t+\Delta t];$ N_0 — число образцов, первоначально поставленных на испытания.

$$f_{\rm CT} = \frac{16}{100} = 0.16$$

Интенсивность отказов статистически определяется как отношение числа отказавших образцов техники в единицу времени к среднему числу образцов, исправно работающих на интервале $[t;t+\Delta t]$:

$$\lambda_{cm}(t) = \frac{n(t, t + \Delta t)}{N_{cp} \Delta t},$$

где $N_{cp}(t) = \frac{N(t) + N(t + \Delta t)}{2}$ — среднее число исправно работающих образцов на интервале $[t; t + \Delta t]$.

$$\lambda_{\rm ct}(t) = \frac{16}{(100 - 16) * 120} \sim 0,0016(\frac{1}{\text{vac}})$$

Запишем полученные данные в таблицу

P(t)	f(t)	$\lambda(t)$	T_0
0,84	0,16	0,0016(1/ча	9,6(час)
		c)	

Контрольные вопросы:

- 1. Невосстанавливаемым называют такой элемент, который после работы до первого отказа заменяют на такой же элемент, так как его восстановление в условиях эксплуатации невозможно. В качестве примеров невосстанавливаемых элементов можно назвать диоды, конденсаторы, триоды, микросхемы, гидроклапаны, пиропатроны и т.п.
- 2. Восстанавливаемый элемент элемент, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния предусмотрено в нормативнотехнической и/или конструкторской (проектной) документации. (генератор тока, колесо автомобиля, телевизор, ЭВМ и т. п.).
- 3. Показателями надежности восстанавливаемых элементов являются показатели, которые характеризуют надежность техники не только до первого отказа, но и между отказами:

- $\cdot \omega(t)$ параметр потока отказов в момент времени t;
- Т среднее время работы между отказами (наработка на отказ).
- 4. Показателями надежности невосстанавливаемых элементов являются:
 - \cdot P (t) вероятность безотказной работы элемента в течение времени t ;
 - · Т 1 среднее время безотказной работы (наработка до отказа);
 - · f (t) плотность распределения времени до отказа;
 - \cdot $\lambda(t)$ интенсивность отказа в момент t .

5.
$$\sqrt{\hat{T}} = \frac{1}{N_0} \sum_{i=1}^{N_0} t_i$$
, $\hat{P}_{cm}(t) = \frac{N(t)}{N_0} = \frac{N_0 - n(t)}{N_0}$, $\hat{f}_{cm} = \frac{n(t, t + \Delta t)}{N_0 \Delta t}$, $\hat{\lambda}_{cm}(t) = \frac{n(t, t + \Delta t)}{N_{cm} \Delta t}$, $\hat{Q}_{cm}(t) = \frac{v(t)}{N} = 1 - P(t)$

- 6. Возможны три способа регистрации отказов элементов.
 - · Первый способ регистрации. Элементы, поставленные на испытания, являются невосстанавливаемыми. При возникновении отказа некоторого элемента фиксируется момент времени его отказа.
 - · Второй способ регистрации. Элементы, поставленные на испытания, являются восстанавливаемыми. После отказа какого-либо элемента он заменяется новым.
 - · Третий способ регистрации. Элементы, поставленные на испытания, являются восстанавливаемыми. После отказа какого-либо элемента он заменяется новым, однако не известен номер отказавшего элемента.