Bike Sharing

BY - ROHIT PANDEY

Problem Statement

A US Bike Sharing provider BoomBikes has recently suffered considerable dips in their revenues due to the ongoing Corona Pandemic. The company is finding it very difficult to sustain the current market situation. In such as attempt, BoomBikes aspires to understand the demand for shared bikes among the people. They have planned this to prepare themselves to cater to the people's needs once the situation gets better all around and stand out from other service providers and make huge profit.

Business Goal

The Company wants to know -

- i). Variables that are significant in predicting the demand.
- ii). How well those variables describe the bike demand.

Solution Context

For this business problem we need to understand the data. The data anomalies needs to be rectified. We need to model the demand of the bikes with the variables identified.

- We need to prepare the data by analyzing the datasets and data dictionary.
- Prepare the data by Data by identifying variables.
- Build the data model to identify which variables are significant for the demand of the shared bikes.
- Evaluate the data model to meet the demand level and customer expectations.

Analysis

р	ping th	e colu	mns						andling Missing Values Handling	ξΟι
	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	nstant 0 instant	,
eason	1.000000e+00	-2.248195e- 17	8.310321e-01	-0.010868	-0.003081	0.013762	0.021306	0.333361	teday 0 dteday	
yr	-2.248195e- 17	1.000000e+00	-2.470170e- 17	0.008195	-0.005466	-0.002945	-0.050322	0.048789	eason 0 season	
mnth	8.310321e-01	-2.470170e- 17	1.000000e+00	0.018905	0.009523	-0.004688	0.045613	0.219083	r 0 yr nth 0 mnth	
oliday	-1.086804e- 02	8.195345e-03	1.890483e-02	1.000000	-0.101962	-0.252948	-0.034395	-0.028764	oliday 0 holiday	
ekday	-3.081198e- 03	-5.466369e- 03	9.522969e-03	-0.101962	1.000000	0.035800	0.031112	-0.000168	eekday 0 weekday orkingday 0 workingday	
ngday	1.376178e-02	-2.945396e- 03	-4.687953e- 03	-0.252948	0.035800	1.000000	0.060236	0.053470	orkingday 0 workingday eathersit 0 weathersit	
thersit	2.130636e-02	-5.032247e- 02	4.561335e-02	-0.034395	0.031112	0.060236	1.000000	-0.119503	emp 0 temp	
temp	3.333607e-01	4.878919e-02	2.190833e-01	-0.028764	-0.000168	0.053470	-0.119503	1.000000	temp 0 atemp	
atemp	3.420139e-01	4.721519e-02	2.264302e-01	-0.032703	-0.007539	0.052940	-0.120559	0.991696	um 0 hum	
hum	2.082196e-01	-1.125471e- 01	2.249368e-01	-0.015662	-0.052290	0.023202	0.590277	0.128565	indspeed 0 windspeed asual casual	
ispeed	-2.296069e- 01	-1.162435e- 02	-2.080131e- 01	0.006257	0.014283	-0.018666	0.039769	-0.158186	egistered 0 registered	
cnt	4.045838e-01	5.697285e-01	2.781909e-01	-0.068764	0.067534	0.062542	-0.295929	0.627044	nt 0 cnt	
ays_old	4.135867e-01	8.660262e-01	4.982507e-01	0.016275	-0.000023	-0.004619	-0.021862	0.150738	type: int64 dtype: int	54

Categorical Vs Target Variables

Models

Dep. Variable:	cnt	R-squared:	0.836
Model:	OLS	Adj. R-squared:	0.831
Method:	Least Squares	F-statistic:	167.9
Date:	Sun, 24 Jan 2021	Prob (F-statistic):	4.52e-183
Time:	21:24:26	Log-Likelihood:	-4131.1
No. Observations:	511	AIC:	8294
Df Residuals:	495	BIC:	8362
Df Model:	15		
Covariance Type:	nonrobust		

	Error Terms
0.0007	
0.0006 -	
0.0005	
0.0004	
.0003 -	
0002	1
.0001	
0000	-4000 -3000 -2000 -1000 0 1000 2000 3000
	Errors

	OLS Regres	sion Results	
Dep. Variable:	cnt	R-squared:	0.836
Model:	OLS	Adj. R-squared:	0.831
Method:	Least Squares	F-statistic:	180.2
Date:	Sun, 24 Jan 2021	Prob (F-statistic):	3.59e-184
Time:	21:24:28	Log-Likelihood:	-4131.2
No. Observations:	511	AIC:	8292.
Df Residuals:	496	BIC:	8356.
Df Model:	14		
Covariance Type:	nonrobust		

Conclusion

Temperature had positive correlation with demand of bikes.

On holidays there is decrease in demand. There is continuous growth in demand till June. September month has highest.

With increase in humidity demand gets decreases.

Count has correlation with Temp and Atemp.

Difference between R-Square and Adjusted R-Square values are minimal hence, it would be safe to say no additional parameters can be removed.

Variables which can be used to predict the demand are holiday, temp, windspeed, hum, season, months

