→

import modules and dataset

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

 $\label{thm:local_csv("C:\Users\hp\Downloads\prodigy infotech\task 2\Mall_Customers.csv")} $$ df.head()$

,		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 200 entries, 0 to 199

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64
dtyp	es: int64(4), object(1)		

dtypes: int64(4), object(3
memory usage: 7.9+ KB

df['Gender']=pd.get_dummies(df['Gender'],drop_first=True) df.head() # male = 1 , female = 0

₹		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	1	19	15	39
	1	2	1	21	15	81
	2	3	0	20	16	6
	3	4	0	23	16	77
	4	5	0	31	17	40

df['Gender']=df['Gender'].astype(int)
df.info()

<< class 'pandas.core.frame.DataFrame'>
 RangeIndex: 200 entries, 0 to 199

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype			
0	CustomerID	200 non-null	int64			
1	Gender	200 non-null	int32			
2	Age	200 non-null	int64			
3	Annual Income (k\$)	200 non-null	int64			
4	Spending Score (1-100)	200 non-null	int64			
dtypes: int32(1), int64(4)						

memory usage: 7.2 KB

df.drop('CustomerID',axis=1,inplace=True)

df.head()

₹		Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	19	15	39
	1	1	21	15	81
	2	0	20	16	6
	3	0	23	16	77
	4	0	31	17	40

df.isnull().sum()

```
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

 $\hbox{\#finding value of } k$

from sklearn.cluster import KMeans

```
sse=[]
k_rng=range(1,10)
```

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[['Gender','Age','Annual Income (k$)','Spending Score (1-100)']])
    sse.append(km.inertia_)
```

C:\Users\hp\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows warnings.warn(

```
•
```

plt.scatter(k_rng,sse)
plt.plot(k_rng,sse)

plt.plot(df)

#k=4 is best fit

#fit models

km=KMeans(n_clusters=4)
yp=km.fit_predict(df)
yp

df['cluster']=yp

df.head()

_ →		Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
	0	1	19	15	39	0
	1	1	21	15	81	0
	2	0	20	16	6	3
	3	0	23	16	77	0
	4	0	31	17	40	3

df.cluster.unique()

→ array([0, 3, 2, 1])

df.head()

```
Gender Age Annual Income (k$) Spending Score (1-100) cluster
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
df4=df[df.cluster==3]
             0 31
                                     17
                                                             40
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
df4=df[df.cluster==3]
plt.scatter(df1['Annual Income (k$)'],df1['Spending Score (1-100)'],color='blue')
plt.scatter(df2['Annual Income (k$)'],df2['Spending Score (1-100)'],color='red')
plt.scatter(df3['Annual Income (k$)'],df3['Spending Score (1-100)'],color='black')
plt.scatter(df4['Annual Income (k$)'],df4['Spending Score (1-100)'],color='yellow')
```

<matplotlib.collections.PathCollection at 0x215ed6aaf10>

 $\hbox{\tt\#this algorithm used to to group customers of a retail store based on their purchase history.}$

Start coding or generate with AI.