Gustavo Vianna França

Projeto 1 - Controle Digital

Gustavo Vianna França

Projeto 1 - Controle Digital

Relatório do projeto 1 para avaliação da disciplina de sistemas de controle 2 do curso de engenharia eletrônica do IFSC.

Professor: Flábio Alberto Bardemaker Batista

Instituto Federal de Santa Catarina

Departamento Acadêmico de Eletrônica

Curso de Engenharia Eletrônica

Florianópolis, SC 2021

Lista de ilustrações

Figura 1 –	Diagrama de blocos	8
Figura 2 -	Planta analógica	10
Figura 3 -	Valor experimental do tempo de pico	10
Figura 4 -	Valor experimental do sobressinal	11
Figura 5 -	Valor experimental do valor de regime permanente	11
Figura 6 -	Resposta ao degrau do sistema controlado pelo controlador discreto	16
Figura 7 –	Lugar das raízes do sistema controlado pelo controlador discreto	16
Figura 8 -	Resposta ao degrau do sistema controlado pelo controlador analógico	
	convertido para o domínio discreto	18
Figura 9 –	Lugar das raízes do sistema controlado pelo controlador analógico	
	convertido para o domínio discreto	19
Figura 10 -	Ação de controle para entrada de 1,5 V para o controlador discreto	19
Figura 11 –	Fluxograma do controlador discreto	20
Figura 12 –	Fluxograma do controlador analógico convertido para o domínio discreto.	21
Figura 13 –	Ação de controle para entrada de $1,5\mathrm{V}$ para o controlador analógico	
	convertido para o domínio discreto	22

Lista de tabelas

Tabela 1 -	Comparação de parâmetros do sistema original e controlado	16
Tabela 2 –	Comparação de parâmetros do sistema original e controlado pelo con-	
	trolador analógico convertido para o domínio discreto	18

Sumário

	Introdução	5
1	OBJETIVO	6
2	DESENVOLVIMENTO	7
2.1	Revisão de literatura	7
2.1.1	Sistema de segunda ordem	7
2.1.2	Controlador digital	8
2.2	Projeto do controlador digital	10
2.2.1	Função de transferência de um sistema contínuo	10
2.2.2	Projeto de controlador digital no plano discreto pelo método do lugar das	
	raízes	13
2.2.3	Projeto de controlador digital pela conversão de um controlador analógico .	17
2.2.4	Implementação do controlador digital	19
3	CONCLUSÃO	23
	REFERÊNCIAS	24

Introdução

Atualmente os controladores digitais são soluções comuns para o controle de sistemas. Eles são altamente flexíveis e possuem relativamente baixo custo.

No entanto devem ser apropriadamente dimensionados, tanto o período de amostragem desejado como o nível de amplitude da ação de controle são fatores determinantes para a escolha do controlador. O processo para que os parâmetros requisitados sejam atingidos é iterativo, em que pode ser necessário a reavaliação do projeto ao final dele.

1 Objetivo

Tem como objetivo projetar, analisar e simular controladores digitais:

- a) Determinar a função de transferência de um sistema contínuo a partir de informações do seu ensaio experimental;
- b) elaborar projetos dos controladores digitais no domínio discreto pelo lugar das raízes e pela conversão de um controlador analógico;
- c) desenvolver programas de simulação dos sistemas com controladores projetados no item anterior;
- d) comparar os valores obtidos das simulações;
- e) criar um fluxograma detalhado para a implementação do controle em um microcontrolador.

2 Desenvolvimento

2.1 Revisão de literatura

Uma vez que os projetos de controladores discretos requerem o conhecimento de sinais e sistemas contínuos, discretos e dos seus métodos de transformação entre domínios, uma breve contextualização dos conceitos relevantes à eles é disposta.

2.1.1 Sistema de segunda ordem

Toma-se conhecimento que os sistemas analógicos lineares podem ser representados por funções de transferência no domínio da frequência. Como demonstrado por Villaça e Silveira (2007), os sistemas de segunda ordem (Equação 2.1) são modelados em função dos seguintes parâmetros: frequência natural e fator de amortecimento, respectivamente, ω_n e ζ .

$$G(s) = \frac{\omega_n^2}{s^2 + 2 \cdot \zeta \cdot \omega_n \cdot s + \omega_n^2} \tag{2.1}$$

Ainda segundo Villaça e Silveira (2007), a partir da Equação 2.1 obtém-se algumas outras expressões: a do sobressinal (Equação 2.2), do instante de pico (Equação 2.3) e do tempo de acomodação à 5% do valor de regime permanente (Equação 2.4):

$$M_p = e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^2}}} \tag{2.2}$$

$$t_p = \frac{\pi}{\omega_n \cdot \sqrt{1 - \zeta^2}} \tag{2.3}$$

$$t_{s5\%} = \frac{3}{\omega_n \cdot \zeta} \tag{2.4}$$

Por meio dessas equações é possível determinar e modificar o comportamento do sistema para obter os parâmetros desejados. Porém na ocasião em que não se tenha a possibilidade de mudar esses parâmetros, deve ser projetado um controlador para que os requisitos do sistema sejam atingidos.

2.1.2 Controlador digital

Visto que há sistemas em que não se pode modificar a planta diretamente, uma opção para manipulação de sua resposta é o controlador digital. Um exemplo de projeto desse controlador utiliza a seguinte estrutura:

Figura 1 – Diagrama de blocos.

Fonte: Batista (2020).

Na Figura 1 o bloco C é a função de transferência do controlador digital, que pode ser implementado diretamente ou pela conversão de um controlador analógico. Para o primeiro caso, a função de transferência da planta, do bloco G, deve ser levantada e o controlador deve ser escolhido de forma apropriada, no que a escolha do período de amostragem também é crucial para o controle da sistema.

No início do projeto, a planta é amostrada por um dispositivo Sample and Hold (S/H) que é um amostrador ideal em cascata com um bloco Zero Order Hold (ZOH) de acordo com Trofino (20??), em que a sua função de transferência é dada pela Equação 2.5:

$$G(z) = (1 - z^{-1}) \cdot \mathcal{Z}\left[\frac{G(s)}{s}\right]$$
 (2.5)

Dessa maneira a função de transferência de C(z) pode ser modelada por um controlador de avanço de fase, por exemplo:

$$C(z) = K_c \cdot \frac{(z+\alpha)}{(z+\beta)} \tag{2.6}$$

E a função de transferência de malha fechada é dada por:

$$\frac{Y(z)}{R(z)} = \frac{C(z) \cdot G(z)}{1 + C(z) \cdot G(z)}$$

$$(2.7)$$

Sabe-se que a equação caraterística do sistema é dada pelo denominador da função de transferência de malha fechada e isso expõe um método para o cálculo dos coeficiente

do controlador. A Equação 2.8 permite calcular a contribuição da fase para os polos de malha fechada e a Equação 2.9 possibilita o cálculo do valor do ganho do controlador:

$$1 + C(z) \cdot G(z) = 0$$

$$C(z) \cdot G(z) = -1$$

$$C(z) \cdot G(z) = e^{\pm j \cdot \pi}$$

$$\angle C(z) + \angle G(z) = \pm 180^{\circ}$$

$$(2.8)$$

$$\begin{split} C(z)\cdot G(z) &= -1\\ |C(z)\cdot G(z)| &= |-1|\\ K_c\cdot \left|\frac{(z+\alpha)}{(z+\beta)}\cdot G(z)\right| &= 1 \end{split} \tag{2.9}$$

Com esses métodos os polos de malha fechada podem ser escolhidos previamente no plano contínuo e levados ao plano discreto, por meio da Equação 2.10 (OGATA, 1987). E a partir dessa relação o módulo e fase dos polos de malha fechada no plano discreto são computados, podendo estabelecer seu valor de acordo com os critérios do projeto.

$$\begin{split} s &= -\zeta \cdot \omega_n + j \cdot \omega_n \cdot \sqrt{1 - \zeta^2} \\ z &= e^{T \cdot s} \\ z &= e^{T \cdot \left(-\zeta \cdot \omega_n + j \cdot \omega_n \cdot \sqrt{1 - \zeta^2} \right)} \\ |z| &= e^{-T \cdot \zeta \cdot \omega_n} \end{split} \qquad \qquad \angle z = T \cdot \omega_n \cdot \sqrt{1 - \zeta^2} \tag{2.11}$$

Ademais, o período de amostragem deve ser escolhido de acordo com o sistema. Caso queira ter o mesmo comportamento da resposta em frequência, a frequência de amostragem deve ser 20 vezes maior do que a frequência de sua banda passante, se a resposta transitória for subamortecida deve-se amostrar de 8 a 10 vezes por ciclo das oscilações senoidais amortecidas da saída do sistema de malha fechada, e, se for sobre amortecido, a frequência de amostragem deve ser de 8 a 10 vezes o tempo de subida da saída para uma entrada degrau, ou ainda, o período de amostragem deve ser 10 a 15 vezes menor que o tempo de resposta desejado.

Já para o controlador digital feito pela conversão do controlador analógico, é utilizado um tempo de amostragem de, pelo menos, 30 vezes menos do que a frequência da largura de banda superior segundo Franklin, Powell e Emami-Naeini (2013).

2.2 Projeto do controlador digital

2.2.1 Função de transferência de um sistema contínuo

Dado o circuito da Figura 2 e sua resposta ao degrau unitário nas Figura 3, Figura 4 e Figura 5, o fator de amortecimento e a frequência natural do sistema foram obtidas a partir da Equação 2.2 e da Equação 2.3:

Figura 2 – Planta analógica.

Figura 3 – Valor experimental do tempo de pico.

Fonte: Batista (2020).

Figura 4 – Valor experimental do sobressinal.

Fonte: Batista (2020).

Fonte: Batista (2020).

Pela Figura 4 e Figura 5, o valor do sobressinal é:

$$M_{p} = \frac{\Delta 1}{\Delta 2}$$

$$M_{p} = e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^{2}}}}$$

$$\frac{\Delta 1}{\Delta 2} = e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^{2}}}}$$
(2.12)

Como $\Delta 1$ é igual a $144\,\mathrm{mV}$ e $\Delta 2$ é igual a $496\,\mathrm{mV}$:

$$\frac{144 \,\mathrm{mV}}{496 \,\mathrm{mV}} = e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^2}}}$$

$$0,290323 = e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^2}}}$$

$$\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^2}} = \ln 0,290323$$

$$\frac{\zeta}{\sqrt{1-\zeta^2}} = -\frac{\ln 0,290323}{\pi}$$

$$\left(\frac{\zeta}{\sqrt{1-\zeta^2}}\right)^2 = \left(-\frac{\ln 0,290323}{\pi}\right)^2$$

$$\frac{\zeta^2}{1-\zeta^2} = 0,1549790$$

$$\frac{\zeta^2}{1-\zeta^2} \cdot \frac{\zeta^{-2}}{\zeta^{-2}} = 0,1549790$$

$$\left(\frac{1}{\zeta^{-2}-1}\right)^{-1} = (0,1549790)^{-1}$$

$$\zeta^{-2} - 1 = \frac{1}{0,1549790}$$

$$\zeta^{-2} = \frac{1}{0,1549790} + 1$$

$$\zeta = \frac{1}{\sqrt{\frac{1}{0.1549790}+1}} \approx 0,3663106$$

E com o instante de pico de 19, 20 ms, o valor da frequência natural é:

$$\begin{split} t_p &= \frac{\pi}{\omega_n \cdot \sqrt{1-\zeta^2}} \\ 0,0192 &= \frac{\pi}{\omega_n \cdot \sqrt{1-\zeta^2}} \\ \omega_n &= \frac{\pi}{0,0192 \cdot \sqrt{1-\zeta^2}} \\ \omega_n &\approx 175,8472962 \, \mathrm{rad \, s^{-1}} \end{split}$$

Assim, por meio da Equação 2.1, a função de transferência da planta analógica é:

$$\begin{split} G(s) &= \frac{\omega_n^2}{s^2 + 2 \cdot \zeta \cdot \omega_n \cdot s + \omega_n^2} \\ G(s) &= \frac{30922,2715847}{s^2 + 128,829440328 \cdot s + 30922,2715847} \end{split}$$

E seu tempo de acomodação é:

$$t_{s5\%} = \frac{3}{\omega_n \cdot \zeta}$$

$$t_{s5\%} = 46,5732055 \,\mathrm{ms}$$

2.2.2 Projeto de controlador digital no plano discreto pelo método do lugar das raízes

Em seguida o controlador digital necessita das especificações mínimas da resposta ao degrau do sistema controlado para o seu projeto, elas são: degrau de referência de $1,0\,\mathrm{V}$ a $1,5\,\mathrm{V}$, tempo de acomodação à $5\,\%$ igual a $19\,\mathrm{ms}$, erro nulo em regime permanente para resposta ao degrau, valor de sobressinal percentual igual a $14\,\%$ e estabilidade.

Analisando o valores limites para a frequência natural e o fator de amortecimento:

$$\zeta \ge \frac{1}{\sqrt{\left(\frac{\pi}{\ln M_p}\right)^2 + 1}}$$

$$\zeta \ge 0,5305067$$

O valor de 0,6 foi escolhido para o fator de amortecimento para obter uma pequena margem, e o valor limite da frequência natural é:

$$\omega_n \ge \frac{3}{t_{s5\%} \cdot \zeta}$$

$$\omega_n \ge 263, 1578947 \, \text{rad s}^{-1}$$

E o valor de $250 \cdot \pi \,\mathrm{rad}\,\mathrm{s}^{-1}$ foi escolhido para a frequência natural. Desse modo as especificações de sobressinal e de tempo de acomodação do sistema controlado devem ser:

$$\begin{split} M_p &= e^{\frac{-\pi \cdot \zeta}{\sqrt{1-\zeta^2}}} \\ M_p &= 9,4780225 \,\% \\ t_{s5\%} &= \frac{3}{\zeta \cdot \omega_n} \\ t_{s5\%} &= 6,3661977 \,\mathrm{ms} \end{split}$$

Dessarte a sua frequência de amostragem deve ser de 8 a 10 vezes a sua frequência amortecida, já que a planta é subamortecida. Portanto foi escolhido o valor de 10 vezes, isso proporciona um período de amostragem igual a:

$$\begin{split} &\omega_d = \omega_n \cdot \sqrt{1 - \zeta^2} = 200 \cdot \pi \, \mathrm{rad} \, \mathrm{s}^{-1} \\ &\frac{\omega_a}{\omega_d} = 10 \\ &\omega_a = 2000 \cdot \pi \, \mathrm{rad} \, \mathrm{s}^{-1} \\ &T_a = \frac{2 \cdot \pi}{\omega_a} = 1 \, \mathrm{ms} \end{split}$$

Após terem sido calculadas a frequência natural, o fator de amortecimento e o período de amostragem, pode-se dar continuidade ao projeto do controlador. Por conseguinte foi escolhido um controlador que faz o cancelamento dos polos da planta, onde se precisa amostrar a planta por meio do S/H para obter seus polos:

$$G(z) = (1 - z^{-1}) \cdot \mathcal{Z} \left[\frac{G(s)}{s} \right]$$

$$G(z) = (1 - z^{-1}) \cdot \mathcal{Z} \left[\frac{30922,2715847}{s \cdot (s^2 + 128,829440328 \cdot s + 30922,2715847)} \right]$$

$$G(z) = \left(\frac{z - 1}{z} \right) \cdot (R(P_1) + R(P_2) + R(P_3))$$

$$G(z) = (z - 1) \cdot \left(\frac{1}{z - 1} + \frac{-z + 0,8649655}{z^2 - 1,8501853 \cdot z + 0,8791239} \right)$$

$$G(z) = \left(1 + \frac{(z - 1) \cdot (-z + 0,8649655)}{z^2 - 1,8501853 \cdot z + 0,8791239} \right)$$

$$G(z) = \frac{0,01478022 \cdot (z + 0,9579285)}{z^2 - 1,8501853 \cdot z + 0,8791239}$$

$$(2.13)$$

Com a função de transferência da planta discretizada, os coeficientes do controlador devem ser obtidos, em que a C(z) deve ter um dos polos igual a (z-1) para garantir que o erro seja nulo. Porém devem ser calculados para quando o polo de malha fechada tenha as especificações desejadas, usando as Equação 2.8, Equação 2.9 e Equação 2.12:

$$\begin{split} |z| &= e^{-T \cdot \zeta \cdot \omega_n} = 0,6242284 \\ \angle z &= T \cdot \omega_n \cdot \sqrt{1 - \zeta^2} = 0,6283185 \, \mathrm{rad} \, \mathrm{s}^{-1} \\ z_1 &= 0,5050114 + j \cdot 0,3669123 \\ C(z) &= K_c \cdot \frac{z^2 - 1,8501853 \cdot z + 0,8791239}{(z + \beta) \cdot (z - 1)} \\ G_1(z) &= \frac{K_c}{z + \beta} \\ G_2(z) &= \frac{0,01478022 \cdot (z + 0,9579285)}{z - 1} \end{split}$$

$$\begin{split} \angle G_1(z_1) + \angle G_2(z_1) &= -180^{\circ} \\ \angle G_1(z_1) - 129,3725294^{\circ} &= -180^{\circ} \\ \angle G_1(z_1) &= -50,6274706^{\circ} \end{split}$$

Com isso foi obtida a condição de ângulo, em que por análise trigonométrica, o valor de β é:

$$\beta = \frac{IM(z_1 - RE(z_1) \cdot tg(-\angle G_1(z_1))}{tg(-\angle G_1(z_1))} \approx -0,2039208 \tag{2.14}$$

E o valor de K_c é:

$$\begin{split} K_c \cdot \left| \frac{z^2 - 1,8501853 \cdot z + 0,8791239}{(z+\beta) \cdot (z-1)} \cdot G(z) \right| \bigg|_{z=z_1} = 1 \\ K_c \approx 13,1187485 \end{split}$$

Assim, a função de transferência do controlador é:

$$C(z) = 13,1187485 \cdot \frac{z^2 - 1,8501853 \cdot z + 0,8791239}{(z - 0,2039208) \cdot (z - 1)}$$
(2.15)

Depois de descoberta função de transferência do controlador, a função de transferência de malha fechada é obtida:

$$\frac{Y(z)}{R(z)} = \frac{C(z) \cdot G(z)}{1 + C(z) \cdot G(z)}$$

$$\frac{Y(z)}{R(z)} = \frac{0,1939 \cdot z + 0,1857}{z^2 - 1,01 \cdot z + 0,3897}$$
(2.16)

Onde seus polos são iguais a $0,5050114 \pm j \cdot 0,3669123$. E a sua resposta ao degrau na Figura 6 e seus parâmetros na Tabela 1 mostram a sua correspondência à especificação comparada a resposta do sistema original:

E sua estabilidade pode ser vista na Figura 7, onde os seus polos de malha fechada estão destacados por estrelas vermelhas. Como a região de convergência da função de transferência de malha fechada contém o circulo unitário, o sistema é estável.

Figura 6 – Resposta ao degrau do sistema controlado pelo controlador discreto.

Fonte: o autor.

Tabela 1 – Comparação de parâmetros do sistema original e controlado.

Sistema	$\mathbf{M}_{\mathbf{p}}(\%)$	$\mathbf{t_{s5\%}}(\mathrm{ms})$	$\mathbf{e_{ss}}$
Original	28,9414143	44,5409082	-
Especificação	14	19	0
Controlado	9,4780225	7	0

Fonte: o autor.

Figura 7 – Lugar das raízes do sistema controlado pelo controlador discreto.

Fonte: o autor.

2.2.3 Projeto de controlador digital pela conversão de um controlador analógico

Similar ao projeto anterior, o controlador analógico também pode ser realizado o cancelamento de polos e zeros da planta:

$$\begin{split} C(s) &= K_c \cdot \frac{s^2 + 128,829440328 \cdot s + 30922,2715847}{(s+\beta) \cdot s} \\ s_1 &= -\zeta \cdot \omega_n + j \cdot \omega_n \cdot \sqrt{1-\zeta^2} \\ s_1 &= -471,2388980 + j \cdot 628,3185307 \\ G_1(s) &= \frac{K_c}{s+\beta} \\ G_2(s) &= \frac{30922,2715847}{s} \\ \angle G_1(s_1) + \angle G_2(s_1) &= -180^\circ \\ \angle G_1(s_1) - 126,8698976^\circ &= -180^\circ \\ \angle G_1(s_1) &= -53,1301024^\circ \end{split}$$

Novamente foi obtida a condição de ângulo, em que por análise trigonométrica, o valor de β é:

$$\beta = \frac{IM(s_1 - RE(s_1) \cdot tg(-\angle G_1(s_1)))}{tg(-\angle G_1(s_1))} \approx 942,4777961$$
 (2.17)

E o valor de K_c é:

$$K_c \cdot \left| \frac{s^2 + 128,829440328 \cdot s + 30922,2715847}{(s+\beta) \cdot (s)} \cdot G(s) \right| \bigg|_{s=s_1} = 1$$

$$K_c \approx 19,9484139895$$

Assim, o controlador analógico é:

$$C(s) = 19,9484139895 \cdot \frac{s^2 + 128,829440328 \cdot s + 30922,2715847}{(z + 942,4777961) \cdot (s)}$$
(2.18)

Em que amostrando por S/H com um período de amostragem 4 vezes menor que o original $(250\,\mu s)$ resulta em:

$$C(z) = \frac{19,95 \cdot z^2 - 39,31 \cdot z + 19,39}{z^2 - 1,79 \cdot z + 0,7901}$$
(2.19)

E a função de transferência da planta nesse período de amostragem é:

$$G(z) = \frac{0,0009559 \cdot z + 0,0009457}{z^2 - 1,966 \cdot z + 0,9683}$$
 (2.20)

Com isso a função de transferência de malha fechada é:

$$\frac{Y(z)}{R(z)} = \frac{0,01907 \cdot z^3 - 0,01871 \cdot z^2 - 0,01863 \cdot z + 0,01834}{z^4 - 3,737 \cdot z^3 + 5,26 \cdot z^2 - 3,306 \cdot z + 0,7834}$$
(2.21)

A sua resposta ao degrau na Figura 8 e seus parâmetros na Tabela 2 mostram o sistema controlado comparado à especificação e à resposta do sistema original:

Figura 8 – Resposta ao degrau do sistema controlado pelo controlador analógico convertido para o domínio discreto.

Fonte: o autor.

Tabela 2 – Comparação de parâmetros do sistema original e controlado pelo controlador analógico convertido para o domínio discreto.

Sistema	$\mathbf{M}_{\mathbf{p}}(\%)$	$\mathbf{t_{s5\%}}(\mathrm{ms})$	$\mathbf{e_{ss}}$
Original	28,9414143	44,5409082	-
Especificação	14	19	0
Controlado	12,2045792	6	0

Fonte: o autor.

E sua estabilidade pode ser vista na Figura 9, onde os seus polos de malha fechada estão destacados por estrelas vermelhas. Como a região de convergência da função de transferência de malha fechada contém o circulo unitário, o sistema é estável.

Figura 9 – Lugar das raízes do sistema controlado pelo controlador analógico convertido para o domínio discreto.

Fonte: o autor.

2.2.4 Implementação do controlador digital

Para o controlador implementado diretamente no domínio discreto, a taxa de amostragem deve ser de 1 ms, como descrito no fluxograma da Figura 11. E como a entrada é um degrau que varia entre $1\,\mathrm{V}$ até $1,5\,\mathrm{V}$, a amplitude máxima da ação de controle é de $-4,61696\,\mathrm{V}$ até $19,67812\,\mathrm{V}$ como pode ser observado na Figura 10.

Figura 10 – Ação de controle para entrada de 1,5 V para o controlador discreto.

Fonte: o autor.

Figura 11 – Fluxograma do controlador discreto.

Fonte: o autor.

Já o controlador analógico convertido para o domínio discreto é implementado de

acordo com o seguinte fluxograma:

Figura 12 – Fluxograma do controlador analógico convertido para o domínio discreto.

Fonte: o autor.

A ação de controle desse controlador tem uma maior amplitude para ser aplicada. Com um sinal de entrada igual ao degrau que varia entre $1\,\mathrm{V}$ até $1,5\,\mathrm{V}$, a amplitude máxima da ação de controle é de $-6,56341\,\mathrm{V}$ até $29,92262\,\mathrm{V}$ como pode ser observado na Figura 13.

Figura 13 – Ação de controle para entrada de 1,5 V para o controlador analógico convertido para o domínio discreto.

Fonte: o autor.

3 Conclusão

Em virtude dos resultados, pode-se perceber que o controlador analógico convertido para o domínio discreto não possui exatamente as mesmas características do controlador discreto, ele necessita de um período de amostragem 4 menor para compensar o atraso atrelado a aproximação do método de conversão por ZOH. Entretanto, ambos os controladores estão dentro da faixa de valores da especificação desejada.

Dito isso, é de fundamental importância compreender os efeitos desses métodos. Já que a mudança dos coeficientes das funções de transferência implicam em diferentes limites de operação para o microcontrolador, que pode ou não os suportar. Logo, para um projeto satisfatório é de interesse do projetista adicionar margens aos coeficientes do seu projeto e avaliar os limites dos controladores digitais disponíveis.

Referências

BATISTA, F. A. B. **Especificação do projeto 1 2020_1**. 2020. Citado 3 vezes nas páginas 8, 10 e 11.

FRANKLIN, G. F.; POWELL, J. D.; EMAMI-NAEINI, A. **Sistemas de Controle para Engenharia**. 6. ed. Porto Alegre, RS: Bookman, 2013. Citado na página 9.

OGATA, K. **Discrete-Time Control Systems**. Australia, Sydney: Prentice Hall, 1987. Citado na página 9.

TROFINO, A. Sistemas Lineares. Florianópolis, SC, 20?? Citado na página 8.

VILLAÇA, M. V. M.; SILVEIRA, J. L. da. **Apostila de SISTEMAS DE CONTROLE**. 8. ed. Florianópolis, SC, 2007. Disponível em: https://drive.google.com/file/d/0BxvWhkAT-qOSaFR1aUpBQTA5Z1U/edit?usp=sharing. Acesso em: 18 jul 2021. Citado na página 7.