PROYECTO JUEGO LASER

Introducción

- 1. Materiales
- 2. Diagrama de flujo
- 3. Esquema eléctrico
- 4. Programación en mBlock
- 5. Video resumen

Introducción

El proyecto consiste en crear un juego contador láser. Se dispone de un sensor LDR que se está moviendo por un servo motor y cuando el sensor es alcanzado por un puntero láser, el contador suma una unidad. El movimiento del sensor es errático.

1. Materiales

- 1 Placa de arduino 1
- 1 Protoboard
- 9 latiguillos
- 1 resistencia
- 1 sensor LDR
- 1 servomotor

Para realizar el montaje correctamente en nuestra placa de prototipado, necesitaremos conectar una resistencia al circuito (Pull-Down o Pull-Up). Estas dos resistencias son un mecanismo básico y habitual dentro del mundo de la electrónica.

- La resistencia de Pull-Up fuerza HIGH cuando el pulsador está abierto.
 Cuando está cerrado el PIN se pone a LOW, la intensidad que circula se ve limitada por esta resistencia.
- La resistencia de Pull-Down fuerza LOW cuando el pulsador está abierto.
 Cuando está cerrado el PIN se pone a HIGH, y la intensidad que circula se ve limitada por esta resistencia.

Sensor LDR	
Polarizado	No
Resistencia mínima (con luz)	100Ω
Resistencia máxima (sin luz)	1ΜΩ

El valor de la resistencia viene condicionado por la intensidad que pasa por el sensor LDR. En este caso podemos tomar una resistencia de $10K\Omega$.

Por otro lado, hay añadir un led al circuito con su respectiva resistencia como hemos calculado en prácticas anteriores.

V = 1,7V I = 20mA $V = I \times R ; R = V / I$ $R = 1,7V / 0,02A = 85\Omega$

Redondeamos el resultado obtenido a un valor de resistencia conocido (siempre por encima de su resistencia ideal), obtenemos un valor de 100Ω (marrón-negro-marrón).

2. Diagrama de flujo

El diagrama de flujo del proyecto es el siguiente:

3. Esquema eléctrico

4. Programación en mBlock

Fijándonos en el diagrama de flujo programamos la práctica mediante lenguaje de programación por bloques mblock.

```
al presionar 🎮
fijar Contador ▼ a 0
fijar ángulo ▼ a 0
fijar dirección 🔻 a 1
mostrar variable Contador
por siempre
 repetir 18
   decir leer pin analógico (A) 0
    si leer pin analógico (A) 0 > 200 entonces
      fijar ángulo ▼ a 0
      cambiar Contador v por 1
     tocar sonido eat 🔻
      esperar hasta que (leer pin analógico (A) 0) < 200
    cambiar ángulo ▼ por (dirección) * 5)
    fijar ángulo del pin 9 del servo a ángulo
    esperar 0.02 segundos
  fijar dirección 🔻 a (dirección) * -1)
```

5. Video resumen