

Stochastic Processes

IID Processes, Examples (Random Walk, Gaussian Process), Binary Pseudo-Random Number Generators

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

21 February 2025

Recap - Mean, Autocorrelation, and Autocovariance

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathcal{T}\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Mean, Autocorrelation, Autocovariance)

• The mean of the process $\{X_t: t \in \mathcal{T}\}$ is a function $M_X: \mathcal{T} \to [-\infty, +\infty]$ defined as

$$M_X(t) = \mathbb{E}[X_t], \qquad t \in \mathcal{T}.$$

• The autocorrelation and autocovariance of the process $\{X_t : t \in \mathcal{T}\}$ are functions $R_X, C_X : \mathcal{T} \times \mathcal{T} \to [-\infty, +\infty]$, defined as

$$R_X(t,s) = \mathbb{E}[X_tX_s], \qquad C_X(t,s) = \operatorname{Cov}(X_t,X_s), \qquad t,s \in \mathcal{T}.$$

Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t \geq 0\}$ is said to be (strictly) stationary if all FDDs are translation invariant, i.e., for any $n \in \mathbb{N}$, $\mathbf{t} \in \mathbb{R}^n_+$, and $h \in \mathbb{R}_+$,

$$F_{\mathbf{t}} = F_{\mathbf{t}+h}$$
.

Here, $\mathbf{t} + h$ is a vector with each coordinate incremented by h with respect to the corresponding coordinate in \mathbf{t} .

Weakly Stationary Process

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t\in \mathbb{R}_+\}$ is said to be weakly stationary (or wide-sense stationary) if for all $t_1,t_2\in \mathbb{R}_+$ and $h\in \mathbb{R}_+$:

- 1. $M_X(t_1) = M_X(t_2)$.
- 2. $C_X(t_1,t_2) = C_X(t_1+h,t_2+h)$.

Weakly Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t \in \mathbb{R}_+\}$ is said to be weakly stationary (or wide-sense stationary) if for all $t_1, t_2 \in \mathbb{R}_+$ and $h \in \mathbb{R}_+$:

- 1. $M_X(t_1) = M_X(t_2)$.
- 2. $C_X(t_1,t_2)=C_X(t_1+h,t_2+h)$.

Remarks:

• A process is weakly stationary iff it has constant mean, and $C_X(t, t+h) = C_X(0, h)$ for all $t, h \in \mathbb{R}_+$ (proof: exercise!)

Weakly Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t \in \mathbb{R}_+\}$ is said to be weakly stationary (or wide-sense stationary) if for all $t_1, t_2 \in \mathbb{R}_+$ and $h \in \mathbb{R}_+$:

- 1. $M_X(t_1) = M_X(t_2)$.
- 2. $C_X(t_1,t_2)=C_X(t_1+h,t_2+h)$.

Remarks:

- A process is weakly stationary iff it has constant mean, and $C_X(t, t+h) = C_X(0, h)$ for all $t, h \in \mathbb{R}_+$ (proof: exercise!)
- Every stationary process with finite variance is wide-sense stationary (proof: exercise!)

IID Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (IID Process)

 $\{X_t: t \in \mathbb{R}_+\}$ is said to be an IID process with the common CDF F if for any $n \in \mathbb{N}$ and $\mathbf{t} \in \mathbb{R}_+^n$,

$$F_{\mathbf{t}}(\mathbf{x}) = \prod_{i=1}^n F(x_i), \qquad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

In simple words, for any $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n)$, the random variables $(X_{t_1}, \dots, X_{t_n})$ are IID.

Some Results on IID Processes

Lemma

Suppose that $\{X_t : t \in \mathbb{R}_+\}$ is an IID process.

- 1. The FDDs of $\{X_t : t \in \mathbb{R}_+\}$ are consistent.
- 2. $\{X_t : t \in \mathbb{R}_+\}$ is strictly stationary. That is, every IID process is stationary.

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

— Determine M_S and C_S for the process $\{S_n\}_{n=0}^{\infty}$.

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

- Determine M_S and C_S for the process $\{S_n\}_{n=0}^{\infty}$.
- Is $\{S_n\}_{n=0}^{\infty}$ wide-sense stationary?

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

- Determine M_S and C_S for the process $\{S_n\}_{n=0}^{\infty}$.
- Is $\{S_n\}_{n=0}^{\infty}$ wide-sense stationary?
- Determine the joint PMF of S_1, \ldots, S_n .

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

- Determine M_S and C_S for the process $\{S_n\}_{n=0}^{\infty}$.
- Is $\{S_n\}_{n=0}^{\infty}$ wide-sense stationary?
- Determine the joint PMF of S_1, \ldots, S_n .
- If X_i 's are IID and \mathbb{R} -valued with a common PDF f_X , determine the joint PDF of S_1, \ldots, S_n .

• Let $\{X_t: t \in \mathbb{R}\}$ be a continuous-time process. For any $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, let $(X_{t_1}, \dots, X_{t_n})$ be jointly continuous, and in particular jointly Gaussian, with the joint PDF

$$f_{\mathbf{t}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(K_{\mathbf{t}})}} \, \exp\left(-\frac{1}{2} \, (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}})^{ op} K_{\mathbf{t}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}})\right), \qquad \mathbf{x} \in \mathbb{R}^n,$$

where $\mu_{\mathbf{t}}$ and $K_{\mathbf{t}}$ are given by

• Let $\{X_t: t \in \mathbb{R}\}$ be a continuous-time process. For any $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, let $(X_{t_1}, \dots, X_{t_n})$ be jointly continuous, and in particular jointly Gaussian, with the joint PDF

$$f_{t}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^{n} \det(K_{t})}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}_{t}\right)^{\top} K_{t}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{t})\right), \qquad \mathbf{x} \in \mathbb{R}^{n},$$

where $\mu_{\mathbf{t}}$ and $K_{\mathbf{t}}$ are given by

$$oldsymbol{\mu_t} = egin{bmatrix} \mathbb{E}[X_{t_1}] \ dots \ \mathbb{E}[X_{t_n}] \end{bmatrix} = egin{bmatrix} M_X(t_1) \ dots \ M_X(t_n) \end{bmatrix},$$

• Let $\{X_t: t \in \mathbb{R}\}$ be a continuous-time process. For any $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, let $(X_{t_1}, \dots, X_{t_n})$ be jointly continuous, and in particular jointly Gaussian, with the joint PDF

$$f_{\mathbf{t}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(K_{\mathbf{t}})}} \, \exp\left(-\frac{1}{2} \, (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}})^{\top} K_{\mathbf{t}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}})\right), \qquad \mathbf{x} \in \mathbb{R}^n,$$

where $\mu_{\mathbf{t}}$ and $K_{\mathbf{t}}$ are given by

$$oldsymbol{\mu_t} = egin{bmatrix} \mathbb{E}[X_{t_1}] \ dots \ \mathbb{E}[X_{t_n}] \end{bmatrix} = egin{bmatrix} M_X(t_1) \ dots \ M_X(t_n) \end{bmatrix}, \quad K_{\mathbf{t}} = egin{bmatrix} C_X(t_1,t_1) & C_X(t_1,t_2) & \cdots & C_X(t_1,t_n) \ C_X(t_2,t_1) & C_X(t_2,t_2) & \cdots & C_X(t_2,t_n) \ dots & dots & dots & dots \ C_X(t_n,t_1) & C_X(t_n,t_2) & \cdots & C_X(t_n,t_n) \end{bmatrix}$$

• Let $\{X_t: t \in \mathbb{R}\}$ be a continuous-time process. For any $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, let $(X_{t_1}, \dots, X_{t_n})$ be jointly continuous, and in particular jointly Gaussian, with the joint PDF

$$f_{\mathbf{t}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(K_{\mathbf{t}})}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}}\right)^{\top} K_{\mathbf{t}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}})\right), \qquad \mathbf{x} \in \mathbb{R}^n,$$

where μ_{t} and K_{t} are given by

$$oldsymbol{\mu_t} = egin{bmatrix} \mathbb{E}[X_{t_1}] \ dots \ \mathbb{E}[X_{t_n}] \end{bmatrix} = egin{bmatrix} M_X(t_1) \ dots \ M_X(t_n) \end{bmatrix}, \quad K_{\mathbf{t}} = egin{bmatrix} C_X(t_1,t_1) & C_X(t_1,t_2) & \cdots & C_X(t_1,t_n) \ C_X(t_2,t_1) & C_X(t_2,t_2) & \cdots & C_X(t_2,t_n) \ dots & dots & dots & dots \ C_X(t_n,t_1) & C_X(t_n,t_2) & \cdots & C_X(t_n,t_n) \end{bmatrix}$$

Remark

A wide-sense stationary Gaussian process is stationary, i.e., for any $n \in \mathbb{N}$, $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, and $h \in \mathbb{R}$,

• Let $\{X_t: t \in \mathbb{R}\}$ be a continuous-time process. For any $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, let $(X_{t_1}, \dots, X_{t_n})$ be jointly continuous, and in particular jointly Gaussian, with the joint PDF

$$f_{\mathbf{t}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(K_{\mathbf{t}})}} \exp\left(-\frac{1}{2} \left(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}}\right)^{\top} K_{\mathbf{t}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{t}})\right), \qquad \mathbf{x} \in \mathbb{R}^n,$$

where μ_{t} and K_{t} are given by

$$oldsymbol{\mu_t} = egin{bmatrix} \mathbb{E}[X_{t_1}] \ dots \ \mathbb{E}[X_{t_n}] \end{bmatrix} = egin{bmatrix} M_X(t_1) \ dots \ M_X(t_n) \end{bmatrix}, \quad K_{\mathbf{t}} = egin{bmatrix} C_X(t_1,t_1) & C_X(t_1,t_2) & \cdots & C_X(t_1,t_n) \ C_X(t_2,t_1) & C_X(t_2,t_2) & \cdots & C_X(t_2,t_n) \ dots & dots & dots & dots \ C_X(t_n,t_1) & C_X(t_n,t_2) & \cdots & C_X(t_n,t_n) \end{bmatrix}$$

Remark

A wide-sense stationary Gaussian process is stationary, i.e., for any $n \in \mathbb{N}$, $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$, and $h \in \mathbb{R}$, $f_{\mathbf{t}+h} = f_{\mathbf{t}}$.

Example - Back to Random Walk

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$.

Example - Back to Random Walk

- Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process.
 - Let $\mathcal{S}_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let $\mathcal{S}_n = \sum_{i=1}^n X_i$.
 - Show that $\{S_n\}_{n=0}^{\infty}$ has stationary increments, i.e., for any $n \in \mathbb{N}$ and $0 \le t_1 < t_2 < \cdots < t_n$,

$$(S_{t_2} - S_{t_1}, \ldots, S_{t_n} - S_{t_{n-1}}) \stackrel{\mathrm{d.}}{=} (S_{t_2+h} - S_{t_1+h}, \ldots, S_{t_n+h} - S_{t_{n-1}+h}) \quad \forall h \in \mathbb{N}.$$

− Show that $\{S_n\}_{n=0}^{\infty}$ has independent increments, i.e., for any $n \in \mathbb{N}$ and $0 \le t_1 < t_2 < \cdots < t_n$,

$$S_{t_2} - S_{t_1}, \ldots, S_{t_n} - S_{t_{n-1}}$$
 are independent.

Example - Back to Random Walk

- Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 := 0$, and for each $n \in \mathbb{N}$, let $S_n = \sum_{i=1}^n X_i$.
 - Show that $\{S_n\}_{n=0}^{\infty}$ has stationary increments, i.e., for any $n \in \mathbb{N}$ and $0 \le t_1 < t_2 < \cdots < t_n$,

$$(S_{t_2} - S_{t_1}, \ldots, S_{t_n} - S_{t_{n-1}}) \stackrel{\mathrm{d.}}{=} (S_{t_2+h} - S_{t_1+h}, \ldots, S_{t_n+h} - S_{t_{n-1}+h}) \quad \forall h \in \mathbb{N}.$$

− Show that $\{S_n\}_{n=0}^{\infty}$ has independent increments, i.e., for any $n \in \mathbb{N}$ and $0 \le t_1 < t_2 < \cdots < t_n$,

$$S_{t_2} - S_{t_1}, \ldots, S_{t_n} - S_{t_{n-1}}$$
 are independent.

Note

Independent + stationary increments property plays an important role in process theory.

Pseudo-Random Number Generators (PRNGs)

Figure: A four-stage, binary linear feedback shift register.

$S_0S_1S_2S_3$	Output
1111	1
	_

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0111	1

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
	'

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
	'

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
	ı

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
I	

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
	Output
1001	1
1100	0
0110	0
1011	1
0101	1
1010	0
1101	1
1110	0

$S_0S_1S_2S_3$	Output
1111	1
0111	1
0011	1
0001	1
1000	0
0100	0
0010	0

$S_0S_1S_2S_3$	Output
1001	1
1100	0
0110	0
1011	1
0101	1
1010	0
1101	1
1110	0

Output (one period): 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

Properties of the Binary PRNG

Output (one period): 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

- Number of zeros in one period ≈ number of ones in one period (desirable of uniform binary random number generator)
- Period = 15
 (not desirable of uniform binary random number generator)

Properties of the Binary PRNG

Output (one period): 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0

- Number of zeros in one period ≈ number of ones in one period (desirable of uniform binary random number generator)
- Period = 15
 (not desirable of uniform binary random number generator)

Possible Workaround for Periodicity in Output Increase the number of stages N.

N-Stage Binary PRNG

Figure: N-Stage, binary linear feedback shift register.