

NTP75N03L09, NTB75N03L09

Power MOSFET

75 Amps, 30 Volts, N-Channel TO-220 and D²PAK

This Logic Level Vertical Power MOSFET is a general purpose part that provides the “best of design” available today in a low cost power package. Avalanche energy issues make this part an ideal design in. The drain-to-source diode has a ideal fast but soft recovery.

Features

- Pb-Free Packages are Available
- Ultra-Low $R_{DS(on)}$, Single Base, Advanced Technology
- SPICE Parameters Available
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and $V_{DS(on)}$ Specified at Elevated Temperatures
- High Avalanche Energy Specified
- ESD JEDAC Rated HBM Class 1, MM Class B, CDM Class 0

Typical Applications

- Power Supplies
- Inductive Loads
- PWM Motor Controls
- Replaces MTP75N03HDL and MTB75N03HDL in Many Applications

ON Semiconductor®

<http://onsemi.com>

75 AMPERES, 30 VOLTS
 $R_{DS(on)} = 8 \text{ m}\Omega$

MARKING DIAGRAMS

75N03L09 = Device Code
A = Assembly Location
Y = Year
WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

NTP75N03L09, NTB75N03L09

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	30	Vdc
Drain-to-Gate Voltage (RGS = 10 MΩ)	V_{DGB}	30	Vdc
Gate-to-Source Voltage – Continuous	V_{GS}	±20	Vdc
Non-repetitive ($t_p \leq 10 \text{ ms}$)	V_{GS}	±24	Vdc
Drain Current – Continuous @ $T_C = 25^\circ\text{C}$ – Continuous @ $T_C = 100^\circ\text{C}$ – Single Pulse ($t_p \leq 10 \mu\text{s}$)	I_D I_D I_{DM}	75 59 225	Adc Apk
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C Total Power Dissipation @ $T_A = 25^\circ\text{C}$ (Note 1)	P_D	125 1.0 2.5	W W/ $^\circ\text{C}$ W
Operating and Storage Temperature Range	T_J and T_{stg}	-55 to 150	$^\circ\text{C}$
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^\circ\text{C}$ ($V_{DD} = 38 \text{ Vdc}$, $V_{GS} = 10 \text{ Vdc}$, $L = 1 \text{ mH}$, $I_L(\text{pk}) = 55 \text{ A}$, $V_{DS} = 40 \text{ Vdc}$)	E_{AS}	1500	mJ
Thermal Resistance – Junction-to-Case – Junction-to-Ambient – Junction-to-Ambient (Note 1)	$R_{\theta JC}$ $R_{\theta JA}$ $R_{\theta JA}$	1.0 62.5 50	$^\circ\text{C}/\text{W}$
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	$^\circ\text{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- When surface mounted to an FR4 board using the minimum recommended pad size.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP75N03L09	TO-220	50 Units/Rail
NTP75N03L09G	TO-220 (Pb-Free)	50 Units/Rail
NTB75N03L09	D ² PAK	50 Units/Rail
NTB75N03L09G	D ² PAK (Pb-Free)	50 Units/Rail
NTB75N03L09T4	D ² PAK	800 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTP75N03L09, NTB75N03L09

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain–Source Breakdown Voltage (Note 2) ($V_{GS} = 0 \text{ Vdc}$, $I_D = 250 \mu\text{Adc}$) Temperature Coefficient (Negative)	$V_{(\text{BR})\text{DSS}}$	30	34 -57	-	Vdc mV°C
Zero Gate Voltage Drain Current ($V_{DS} = 30 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 30 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$, $T_J = 150^\circ\text{C}$)	I_{DSS}	-	-	1.0 10	μAdc
Gate–Body Leakage Current ($V_{GS} = \pm 20 \text{ Vdc}$, $V_{DS} = 0 \text{ Vdc}$)	I_{GSS}	-	-	± 100	nAdc
ON CHARACTERISTICS (Note 2)					
Gate Threshold Voltage (Note 2) ($V_{DS} = V_{GS}$, $I_D = 250 \mu\text{Adc}$) Threshold Temperature Coefficient (Negative)	$V_{GS(\text{th})}$	1.0 -	1.6 -6	2.0 -	Vdc mV°C
Static Drain-to-Source On-Resistance (Note 2) ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 37.5 \text{ Adc}$)	$R_{DS(\text{on})}$	-	6.5	8.0	$\text{m}\Omega$
Static Drain-to-Source On Resistance (Note 2) ($V_{GS} = 10 \text{ Vdc}$, $I_D = 75 \text{ Adc}$) ($V_{GS} = 10 \text{ Vdc}$, $I_D = 37.5 \text{ Adc}$, $T_J = 125^\circ\text{C}$)	$V_{DS(\text{on})}$	- -	0.52 0.35	0.68 0.50	Vdc
Forward Transconductance (Notes 2 & 4) ($V_{DS} = 3 \text{ Vdc}$, $I_D = 20 \text{ Adc}$)	g_{FS}	-	58	-	$\text{m}\Omega$
DYNAMIC CHARACTERISTICS (Note 4)					
Input Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0,$ $f = 1.0 \text{ MHz})$	C_{iss}	-	4398	5635
Output Capacitance		C_{oss}	-	1160	1894
Transfer Capacitance		C_{rss}	-	317	430
SWITCHING CHARACTERISTICS (Notes 3 & 4)					
Turn-On Delay Time	$(V_{GS} = 5.0 \text{ Vdc},$ $V_{DD} = 20 \text{ Vdc}, I_D = 75 \text{ Adc},$ $R_G = 4.7 \Omega)$ (Note 2)	$t_{d(\text{on})}$	-	16	30
Rise Time		t_r	-	130	200
Turn-Off Delay Time		$t_{d(\text{off})}$	-	65	110
Fall Time		t_f	-	105	175
Gate Charge	$(V_{GS} = 5.0 \text{ Vdc},$ $I_D = 75 \text{ Adc},$ $V_{DS} = 24 \text{ Vdc})$ (Note 2)	Q_T	-	57	75
		Q_1	-	11	15
		Q_2	-	34	50
SOURCE–DRAIN DIODE CHARACTERISTICS					
Forward On–Voltage	$(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^\circ\text{C})$ (Note 2)	V_{SD}	- -	1.19 1.09	1.25 -
Reverse Recovery Time (Note 4)		t_{rr}	-	37	-
Reverse Recovery Stored Charge (Note 4)	$(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(dI_S/dt = 100 \text{ A}/\mu\text{s})$ (Note 2)	t_a	-	20	-
		t_b	-	17	-
		Q_{RR}	-	0.023	-

- 2. Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2\%$.
- 3. Switching characteristics are independent of operating junction temperatures.
- 4. From characterization test data.

NTP75N03L09, NTB75N03L09

NTP75N03L09, NTB75N03L09

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Avalanche Energy vs. Starting Junction Temperature

PACKAGE DIMENSIONS

TO-220
CASE 221A-09
ISSUE AA

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 5:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

NTP75N03L09, NTB75N03L09

PACKAGE DIMENSIONS

D²PAK CASE 418AA-01 ISSUE O

NOTES:
 1. DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.340	0.380	8.64	9.65
B	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.83
D	0.020	0.036	0.51	0.92
E	0.045	0.055	1.14	1.40
F	0.310	---	7.87	---
G	0.100	BSC	2.54	BSC
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
M	0.280	---	7.11	---
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

STYLE 2:
 PIN 1. GATE
 2. DRAIN
 3. SOURCE
 4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NTP75N03L09, NTB75N03L09

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada

Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center

2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website: <http://onsemi.com>

Order Literature: <http://www.onsemi.com/litorder>

For additional information, please contact your local Sales Representative.

NTP75N03L09/D