LINEAR MODEL NOTES

CARSON JAMES

Contents

1.	Matrix Algebra	1
1.1.	Column and Null Space	1
1.2.	Generalized Inverses	3
1.3.	Projections	4
1.4.	Solving Linear Equations	7
1.5.	Moore-Penrose Pseudoinverse	8
1.6.	Differentiation	11
1.7.	Quadratic Forms and Eigendecomposition	12
2.	The Linear Model	13
2.1.	Model Description	13
2.2.	Least Squares Optimization	14
2.3.	Estimation	15
2.4.	Imposing Restictions for a Unique Solution	18
2.5.	Constrained Parameter Space	20
2.6.	The Gauss-Markov Model	20
2.7.	The Aitken Model	23
3.	Distribution Theory	23
3.1.	Introduction	23
3.2.	Multivariate Normal	23
3.3.	Chi-Square	25
3.4.	Quadratic Forms	26

1. Matrix Algebra

1.1. Column and Null Space.

Exercise 1.1. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{N}(X) = \mathcal{N}(X^TX)$.

Proof. Let $a \in \mathcal{N}(X)$. Then Xa = 0. So $X^TXa = 0$. Thus $a \in \mathcal{N}(X^TX)$. Conversely, suppose that $a \in \mathcal{N}(X^TX)$. Then $X^TXa = 0$. So

$$0 = a^{T} X^{T} X a$$
$$= (Xa)^{T} (Xa)$$
$$= ||Xa||^{2}$$

Hence Xa = 0 and $a \in \mathcal{N}(X)$.

Exercise 1.2. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{C}(X^T) = \mathcal{C}(X^TX)$.

Proof.

$$C(X^T) = \mathcal{N}(X)^{\perp}$$
$$= \mathcal{N}(X^T X)^{\perp}$$
$$= C(X^T X)$$

Exercise 1.3. Let $X \in \mathcal{M}_{m,n}$. If $X^TX = 0$, then X = 0.

Proof. Suppose that $X^TX = 0$. Then

$$rank(X^{T}) = \dim \mathcal{C}(X^{T})$$

$$= \dim \mathcal{C}(X^{T}X)$$

$$= rank(X^{T}X)$$

$$= 0$$

So $X^T = X = 0$.

Exercise 1.4. Let $X \in \mathcal{M}_{m,n}$ and $A, B \in \mathcal{M}_{n,p}$. Then $X^TXA = X^TXB$ iff XA = XB.

Proof. Clearly if XA = XB, then $X^TXA = X^TXB$. Conversely, suppose that $X^TXA = X^TXB$. Then $X^TX(A - B) = 0$. So for each $i = 1, \dots, p$, $X^TX(A - B)e_i = 0$. Thus for each $i = 1, \dots, p$ $X(A - B)e_i \in \mathcal{N}(X^T) \cap \mathcal{C}(X) = \{0\}$. Hence X(A - B) = 0 and XA = XB.

Theorem 1.5. Let $X \in \mathcal{M}_{m,n}$. Then

$$nullity(X) + rank(X) = n$$

.

Exercise 1.6. Let $X \in \mathcal{M}_{m,n}$. Then

$$rank(X^T) = rank(X)$$

Proof. We have that

$$rank(X^{T}) = rank(X^{T}X)$$

$$= n - nullity(X^{T}X)$$

$$= n - nullity(X)$$

$$= rank(X)$$

Definition 1.7. Let $X \in \mathcal{M}_{m,n}$. Then X is said to have **full column rank** if rank(X) = n**Exercise 1.8.** Let $X \in \mathcal{M}_{m,n}$. If X has full column rank, then

$$\mathcal{N}(X) = \{0\}$$

Proof. Suppose that X has full column rank. Then rank(X) = n Hence nullity(X) = 0 and $\mathcal{N}(X) = \{0\}.$

1.2. Generalized Inverses.

Definition 1.9. Let $A \in \mathcal{M}_{m,n}$ and $G \in \mathcal{M}_{n,m}$. Then G is said to be a **generalized** inverse of A if AGA = A.

Theorem 1.10. Let $A \in \mathcal{M}_{m,n}$. Suppose that rank(A) = r. Then there exists $P \in \mathcal{M}_{m,m}$, $Q \in \mathcal{M}_{n,n}$, $C \in \mathcal{M}_{r,r}$ such that P, Q, C are non-singular, rank(C) = r and

$$A = P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

Exercise 1.11. Let

$$A = P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

as in the previous theorem and $D \in \mathcal{M}_{r,m-r}$, $E \in \mathcal{M}_{n-r,r}$, $F \in \mathcal{M}_{n-r,m-r}$. Put

$$G = Q^{-1} \begin{pmatrix} C^{-1} & D \\ E & F \end{pmatrix} P^{-1}$$

Then G is a generalized inverse of A.

Proof.

$$AGA = \begin{bmatrix} P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q \end{bmatrix} \begin{bmatrix} Q^{-1} \begin{pmatrix} C^{-1} & D \\ E & F \end{pmatrix} P^{-1} \end{bmatrix} \begin{bmatrix} P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q \end{bmatrix}$$

$$= P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C^{-1} & D \\ E & F \end{pmatrix} \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

$$= P \begin{pmatrix} I & CD \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

$$= P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

$$= A$$

Note 1.12. The previous exercise and theorem guarantee the existence of a generalized inverse for all matrices. We will take $G = A^-$ to mean that G is a generalized inverse of A. Unless otherwise specified, A^- will refer to a generic generalized inverse of A, that is, unless otherwise specified, any statement about A^- will apply to all generalized inverses of A.

Theorem 1.13. Let $A \in \mathcal{M}_{m,n}$. Suppose that rank(A) = r. Let $P \in \mathcal{M}_{mm}$, $Q \in \mathcal{M}_{n,n}$ permutation matrices and $C \in \mathcal{M}_{r,r}$. Suppose that rank(C) = r and $PAQ = \begin{pmatrix} C & D \\ E & F \end{pmatrix}$ Then

$$Q\begin{pmatrix} C^{-1} & 0\\ 0 & 0 \end{pmatrix} P = A^{-}.$$

Exercise 1.14. Let $X \in \mathcal{M}_{m,n}$. Then $(X^T)^- = (X^-)^T$.

Proof.

$$X^{T}(X^{-})^{T}X^{T} = (XX^{-}X)^{T}$$
$$= X^{T}$$

Exercise 1.15. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{C}(XX^-) = \mathcal{C}(X)$.

Proof. Clearly $\mathcal{C}(XX^-) \subset \mathcal{C}(X)$. Let $b \in \mathcal{C}(X)$. Then there exists $a \in \mathbb{R}^n$ such that Xa = b. Then

$$XX^{-}b = XX^{-}Xa$$
$$= Xa$$
$$= b$$

So
$$b \in \mathcal{C}(XX^-)$$
. Thus $\mathcal{C}(X) \subset \mathcal{C}(XX^-)$ and $\mathcal{C}(X) = \mathcal{C}(XX^-)$

Exercise 1.16. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{N}(X) = \mathcal{N}(X^-X)$

Proof. From the previous exercise, we have that

$$\mathcal{N}(X) = \mathcal{C}(X^T)^{\perp}$$

$$= \mathcal{C}(X^T(X^T)^{-})^{\perp}$$

$$= \mathcal{C}(X^T(X^{-})^T)^{\perp}$$

$$= \mathcal{C}((X^{-}X)^T)^{\perp}$$

$$= \mathcal{N}(X^{-}X)$$

Exercise 1.17. Let $X \in \mathcal{M}_{m,n}$. Then $X^- = (X^T X)^- X^T$.

Proof. By definition, $X^TX(X^TX)^-X^TX = X^TX$. A previous exercise implies that $X(X^TX)^-X^TX = X$. Thus $X^- = (X^TX)^-X^T$.

1.3. Projections.

Definition 1.18. Let $A \in \mathcal{M}_{m,m}$. Then X is said to be **idempotent** if $A^2 = A$.

Exercise 1.19. Let $X \in \mathcal{M}_{m,n}$. Then XX^- and X^-X are idempotent

Proof.

$$(XX^{-})(XX^{-}) = (XX^{-}X)X^{-}$$

= XX^{-}

The case is similar for X^-X .

Exercise 1.20. Let $A \in \mathcal{M}_{m.m}$. If X is idempotent, then I - A is idempotent.

Proof. Suppose that A is idempotent. Then

$$(I - A)(I - A) = I^2 - IA - AI + A^2$$
$$= I - 2A + A$$
$$= I - A$$

Theorem 1.21. Let $A \in \mathcal{M}_{m,m}$. If A is idempotent, then rank(A) = tr(A).

Definition 1.22. Let $P \in \mathcal{M}_{m,m}$ and $S \subset \mathbb{R}^m$ a subspace. Then P is said to be a **projection** matrix onto S if

- (1) P is idempotent
- (2) $\mathcal{C}(P) \subset S$
- (3) for each $x \in S$, Px = x

Note 1.23. In the previous definition, (2) and (3) imply that C(X) = S, so to say that X projects "onto" S is accurate.

Exercise 1.24. Let $S \subset \mathbb{R}^m$ and P, Q projection matrices onto S. Then PQ = Q.

Proof. Let
$$x \in \mathbb{R}^m$$
. Then $Qx \in \mathcal{C}(Q) = S$. So $PQx = Qx$. Thus $PQ = Q$.

Exercise 1.25. Let $X \in \mathcal{M}_{m,n}$. Then XX^- is a projection onto $\mathcal{C}(X)$.

Proof. A previous exercises tells us that XX^- is idempotent. Another previous exercise tells us that $\mathcal{C}(XX^-) = \mathcal{C}(X)$. Let $b \in \mathcal{C}(X)$. Then there exists $a \in \mathbb{R}^n$ such that Xa = b. So

$$XX^{-}b = XX^{-}Xa$$
$$= Xa$$
$$= b$$

Exercise 1.26. Let $X \in \mathcal{M}_{m,n}$. Then $I - X^-X$ is a projection onto $\mathcal{N}(X)$

Proof. Since X^-X is idempotent, so is $I - X^-X$. Let $b \in \mathcal{C}(I - X^-X)$. Then there exists $a \in \mathbb{R}^n$ such that $(I - X^-X)a = b$. Then

$$Xb = X(I - X^{-}X)a$$

$$= (X - XX^{-}X)a$$

$$= (X - X)a$$

$$= 0a$$

$$= 0$$

So $\mathcal{C}(I - X^- X) \subset \mathcal{N}(X)$. Let $a \in \mathcal{N}(X)$. Then Xa = 0 and

$$(I - X^{-}X)a = a - X^{-}Xa$$
$$= a$$

So for each $a \in \mathcal{N}(X)$, $(I - X^{-}X)a = a$.

Exercise 1.27. Let $S \subset \mathbb{R}^m$ be a subspace and $P \in \mathcal{M}_{m,m}$ be a symmetric projection matrix onto S. Then P is unique.

Proof. Let $Q \in \mathcal{M}_{m,m}$ be a symmetric projection matrix onto S. Then

$$(P - Q)^{T}(P - Q) = P^{T}P - P^{T}Q - Q^{T}P + Q^{T}Q$$

= $P^{2} - PQ - QP + Q^{2}$
= $P - Q - P + Q$
= 0

Thus P - Q = 0 and P = Q.

Definition 1.28. Let $X \in \mathcal{M}_{m,n}$. We define P_X by

$$P_X = X(X^T X)^- X^T$$

Exercise 1.29. Let $X \in \mathcal{M}_{m,n}$. Then P_X is well defined, that is, P_X is independent of the choice of $(X^TX)^-$.

Proof. Suppose that G, H are generalized inverses of X^TX . By definition, we have

$$\begin{split} X^TXGX^TX &= X^TXHX^TX \Rightarrow XGX^TX = XHX^TX \\ &\Rightarrow X^TXG^TX^T = X^TXHX^T \\ &\Rightarrow XG^TX^T = XHX^T \\ &\Rightarrow XGX^T = XHX^T = P_X \end{split}$$

Note 1.30. Recall that $X^- = (X^TX)^-X^T$. So that $P_X = XX^-$ is indeed a projection onto C(X). Recall that $[(X^TX)^-]^T$ is a generalized inverse of $(X^TX)^T = (X^TX)$. Hence $P_X^T = X[(X^TX)^-]^TX^T = P_X$. Since P_X is symmetric, it is the unique symmetric projection onto C(X).

Exercise 1.31. Let $X \in \mathcal{M}_{m,n}$. Then $(X^T)^- = X(X^TX)^-$.

Proof. We know that $P_X X = X$. Transposing both sides, we get that

$$X^{T} = X^{T} P_{X}$$
$$= X^{T} X (X^{T} X)^{-} X^{T}$$

So

$$(X^T)^- = X(X^TX)^-$$

Note 1.32. Recall that $(X^T)^- = X(X^TX)^-$. So that $P_X = (X^T)^-X^T$. A previous exercises tells us that $I - P_X$ is a projection on $\mathcal{N}(X^T)$. Since $I - P_X$ is symmetric, it is the unique symmetric projection onto $\mathcal{N}(X^T)$.

Exercise 1.33. Let $X_1, X_2 \in \mathcal{M}_{m,n}$. Suppose that $C(X_1) = C(X_2)^{\perp}$. Then $P_{X_1}P_{X_2} = P_{X_2}P_{X_1} = 0$.

Proof. Since $I - P_{X_1}$ is the unique symmetric projection onto $\mathcal{N}(X_1^T) = \mathcal{C}(X_1)^{\perp} = \mathcal{C}(X_2)$, we have that $I - P_{X_1} = P_{X_2}$. Thus $P_{X_1}P_{X_2} = P_{X_1}(I - P_{X_1}) = 0$. Similarly, $P_{X_2}P_{X_1} = 0$. \square

Exercise 1.34. Let $X \in \mathcal{M}_{m,n}$. For each $z \in \mathcal{N}(X^T)$, $P_X z = 0$.

Proof. Let $z \in \mathcal{N}(X^T)$. Then $P_X z = X(X^T X)^-(X^T z) = 0$.

Exercise 1.35. Let $X_1, X_2 \in \mathcal{M}_{m,n}$. If $\mathcal{C}(X_1) \subset \mathbb{C}(X_2)$, then $P_{X_2} - P_{X_1}$ is the unique projection onto $\mathcal{C}((I - P_{X_1})X_2)$.

Proof. Clearly $P_{X_2} - P_{X_1}$ is symmetric. Since $\mathcal{C}(X_1) \subset \mathbb{C}(X_2)$, we have that $P_{X_2}P_{X_1} = P_{X_1}$. Also, by symmetry,

$$(P_{X_1}P_{X_2})^T = P_{X_2}^T P_{X_1}^T = P_{X_2}P_{X_1} = P_{X_1}$$

So $P_{X_1}P_{X_2} = P_{X_1}^T = P_{X_1}$. Now we have that (1)

$$(P_{X_2} - P_{X_1})^2 = (P_{X_2} - P_{X_1})(P_{X_2} - P_{X_1})$$

$$= P_{X_2}^2 + P_{X_1}^2 - P_{X_2}P_{X_1} - P_{X_1}P_{X_2}$$

$$= P_{X_2} + P_{X_1} - P_{X_1} - P_{X_1}$$

$$= P_{X_2} - P_{X_1}$$

So $P_{X_2} - P_{X_1}$ is idempotent.

(2) Let $x \in \mathbb{R}^m$. Then there exist unique $y \in \mathcal{C}(X_2)$ and $z \in \mathcal{C}(X_2)^{\perp} = \mathcal{N}(X_2^T)$ such that x = y + z. So there exists $e \in \mathbb{R}^n$ such that $y = X_2 e$ Since $z \in \mathcal{N}(X_2^T)$, $P_{X_2}z = 0$. Then

$$(P_{X_2} - P_{X_1})x = P_{X_2}x - P_{X_1}x$$

$$= P_{X_2}x - P_{X_1}P_{X_2}x$$

$$= y - P_{X_1}y$$

$$= X_2e - P_{X_1}X_2e$$

$$= (I - P_{X_1})X_2e$$

$$\in \mathcal{C}((I - P_{X_1})X_2)$$

(3) Let $x \in \mathcal{C}((I - P_{X_1})X_2)$. Then there existe $e \in \mathbb{R}^n$ such that $x = (I - P_{X_1})X_2e$. So

$$(P_{X_2} - P_{X_1})x = P_{X_2}(I - P_{X_1})x$$

$$= P_{X_2}(I - P_{X_1})(I - P_{X_1})X_2e$$

$$= P_{X_2}(I - P_{X_1})X_2e$$

$$= (P_{X_2} - P_{X_1})X_2e$$

$$= P_{X_2}X_2e - P_{X_1}X_2e$$

$$= X_2e - P_{X_1}X_2e$$

$$= (I - P_{X_1})X_2e$$

$$= x$$

1.4. Solving Linear Equations.

Definition 1.36. Let $A \in \mathcal{M}_{m,n}$ and $b \in \mathbb{R}^m$. Then the system Ax = b is said to be consistent if $b \in \mathcal{C}(A)$.

Exercise 1.37. Let $A \in \mathcal{M}_{m,n}$ and $G \in \mathcal{M}_{n,m}$. Then $G = A^-$ iff for each $b \in \mathcal{C}(A)$, Gb solves Ax = b.

Proof. Suppose that $G = A^-$. Let $b \in \mathcal{C}(A)$. Then there exists $x^* \in \mathbb{R}^n$ such that $Ax^* = b$. So

$$A(Gb) = AG(Ax^*)$$

$$= (AGA)x^*$$

$$= Ax^*$$

$$= b$$

So Gb solves Ax = b. Conversely, Suppose that for each $b \in \mathcal{C}(A)$, Gb solves Ax = b. Let $z \in \mathbb{R}^n$. So $Az \in \mathcal{C}(A)$. Then

$$(AGA)z = A[G(Az)]$$
$$= Az$$

Since for each $z \in \mathbb{R}^n AGAz = Az$, AGA = A and $G = A^-$.

Exercise 1.38. Let $b \in C(A)$. Then

$${x \in \mathbb{R}^n : Ax = b} = {A^-b + (I - A^-A)z : z \in \mathbb{R}^n}$$

.

Proof. Let $x \in \{A^-b + (I - A^-A)z : z \in \mathbb{R}^n\}$. Then there exists $z \in \mathbb{R}^n$ such that $x = A^-b + (I - A^-A)z$. Since $(I - A^-A)$ is a projection onto $\mathcal{N}(A)$,

$$Ax = AA^{-}b$$
$$= b$$

So $x \in \{x \in \mathbb{R}^n : Ax = b\}$. Conversely, let $x \in \{x \in \mathbb{R}^n : Ax = b\}$. Then

$$x = A^{-}(Ax) + (x - A^{-}Ax)$$

$$= A^{-}(b) + (I - A^{-}A)x$$

$$\in \{A^{-}b + (I - A^{-}A)z : z \in \mathbb{R}^{n}\}$$

1.5. Moore-Penrose Pseudoinverse.

Theorem 1.39. Singular Value Decomposition:

Let $A \in \mathcal{M}_{m,n}$. Suppose that rank(A) = r. Then there exist $U \in \mathcal{M}_{m,m}V \in \mathcal{M}_{n,n}$, and $D_0 \in \mathcal{M}_{r,r}$ such that

- $(1) \ A = U \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} V^T$
- $(2) \ U^T U = I$
- $(3) V^T V = I$
- (4) $D_0 = diagonal(d_1, d_2, \dots, d_r)$ with $d_1 \ge d_2 \ge \dots \ge d_r > 0$

Note 1.40. Put $D = \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{m,n}$

- (1) Since D_0 is symmetric, $D^T = \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{n,m}$
- (2) Since D_0 is diagonal, D_0^{-1} is also diagonal and symmetric

Definition 1.41. Let $A \in \mathcal{M}_{m,m}$ and $A^+ \in \mathcal{M}_{n,m}$. Then A^+ is said to be a **Moore-Penrose pseudoinverse** of A if

- $(1) AA^{+}A = A$
- $(2) A^{+}AA^{+} = A^{+}$
- (3) AA^+ is symmetric
- (4) A^+A is symmetric

Note 1.42. We have that $P_X = XX^+ = X(X^TX)^-X^T$.

Exercise 1.43. Let $A \in \mathcal{M}_{m,n}$ and $S, T \in \mathcal{M}_{n,m}$. If S and T are m-p pseudoinverses of A, then S = T.

Proof. Suppose that S, T satisfy properties (1)-(4). Then

$$S = SAS$$

$$= (SA)^{T}S$$

$$= A^{T}S^{T}S$$

$$= (ATA)^{T}S^{T}S$$

$$= A^{T}T^{T}A^{T}S^{T}S$$

$$= (TA)^{T}(SA)^{T}S$$

$$= (TA)(SA)S$$

$$= TA(SAS)$$

$$= TAS$$

and

$$T = TAT$$

$$= T(AT)^{T}$$

$$= TT^{T}A^{T}$$

$$= TT^{T}(ASA)^{T}$$

$$= TT^{T}A^{T}S^{T}A^{T}$$

$$= T(AT)^{T}(AS)^{T}$$

$$= T(AT)(AS)$$

$$= (TAT)AS$$

$$= TSA$$

So
$$S = T$$

Exercise 1.44. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T = U \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} V^T$.

Define $D^+ = \begin{pmatrix} D_0^{-1} & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{n,m}$. Then D^+ is the m-p pseudoinverse of D.

Proof.

(1)

$$DD^{+}D = \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D_{0}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= D$$

(2) Similar to (1).

(3)

$$(DD^{+})^{T} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}^{T}$$
$$= \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
$$= DD^{+}$$

(4) Similar to (3).

Exercise 1.45. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T$. So $A^T \in \mathcal{M}_{n,m}$ has singular value decomposition $A^T = VD^TU^T$. Then $(D^T)^+ = (D^+)^T$

Proof. Since
$$D^T = \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{n,m}$$
, we have that $(D^T)^+ = \begin{pmatrix} D_0^{-1} & 0 \\ 0 & 0 \end{pmatrix} = (D^+)^T$

Exercise 1.46. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T$. Define $A^+ = VD^+U^T$. Then A^+ is the m-p pseudoinverse of A.

Proof. (1)

$$AA^{+}A = (UDV^{T})(VD^{+}U^{T})(UDV^{T})$$

$$= UDD^{+}DV^{T}$$

$$= UDV^{T}$$

$$= A$$

(2) Similar to (1)

(3)

$$(AA^+)^T = [(UDV^T)(VD^+U^T)]^T$$

$$= (UDD^+U^T)^T$$

$$= U(DD^+)^TU^T$$

$$= UDD^+U^T$$

$$= (UDV^T)(VD^+U^T)$$

$$= AA^+$$

(4) Similar to (3).

Exercise 1.47. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T$. Then $(A^T)^+ = (A^+)^T$.

Proof.

$$(A^{T})^{+} = [(UDV^{T})^{T}]^{+}$$

$$= (VD^{T}U^{T})^{+}$$

$$= U(D^{T})^{+}V^{T}$$

$$= U(D^{+})^{T}V^{T}$$

$$= (VD^{+}U^{T})^{T}$$

$$= (A^{+})^{T}$$

Exercise 1.48. Let $A \in \mathcal{M}_{m,n}$. Then there exists a unique matrix $A^+ \in \mathcal{M}_{n,m}$ such that A^+ is the m-p pseudoinverse of A.

Proof. The existence of and uniqueness of A^+ are shown in the previous exercises.

Exercise 1.49. Let $A \in \mathcal{M}_{m,m}$. Then $(A^+)^+ = A$.

Proof. We observe that A satisfies properties (1)-(4) for A^+ . By uniqueness, $(A^+)^+=A$.

Exercise 1.50. Let $A \in \mathcal{M}_{m,n}$ and $b \in \mathcal{C}(A)$. Pur $S = \{x \in \mathbb{R}^n : Ax = b\}$. Then

$$||A^+b|| = \min_{x \in S} ||x||$$

Proof. Let $x \in S$. A previous exercise tells us that there exists $z \in \mathbb{R}^n$ such that $x = A^+b + (I - A^+A)z$. Then

$$\begin{split} \|x\|^2 &= \|A^+b + (I-A^+A)z\|^2 \\ &= (A^+b + (I-A^+A)z)^T (A^+b + (I-A^+A)z) \\ &= \|A^+b\|^2 - 2z^T (I-A^+A)^T (A^+b) + \|(I-A^+A)z\|^2 \\ &= \|A^+b\|^2 - 2z^T (I-A^+A)A^+b + \|(I-A^+A)z\|^2 \\ &= \|A^+b\|^2 + \|(I-A^+A)z\|^2 \\ &\geq \|A^+b\|^2 \end{split}$$

1.6. Differentiation.

Definition 1.51. Let $Q: \mathbb{R}^n \to \mathbb{R}$ given by $b \mapsto Q(b)$. Suppose that $Q \in C^1(\mathbb{R}^n)$. We define

$$\frac{\partial Q}{\partial b} = \begin{pmatrix} \frac{\partial Q}{\partial b_1} \\ \vdots \\ \frac{\partial Q}{\partial b_n} \end{pmatrix}$$

Exercise 1.52. Let $a, b \in \mathbb{R}_n$ and $A \in \mathcal{M}_{n,n}$. Then

$$\frac{\partial a^T b}{\partial b} = a$$

$$\frac{\partial b^T A b}{\partial b} = (A + A^T) b$$

Proof.

(1) Since $a^T b = \sum_{i=1}^n a_i b_i$ We have that

$$rac{\partial a^T b}{\partial b_i} = a_i$$

and therefore $\frac{\partial a^T b}{\partial b} = a$

(2) Since
$$b^{T}Ab = \sum_{i=1}^{n} b_{i} \sum_{j=1}^{n} A_{i,j}b_{j}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i}A_{i,j}b_{j}$$

The terms containing b_i are

$$A_{i,i}b_i^2 + \sum_{\substack{j=1\\j\neq i}}^n (A_{i,j} + A_{j,i})b_ib_j$$

This implies that

$$\frac{\partial b^T A b}{\partial b_i} = 2A_{i,i}b_i + \sum_{\substack{j=1\\j\neq i}}^n (A_{i,j} + A_{j,i})b_j$$
$$= \sum_{j=1}^n (A_{i,j} + A_{i,j}^T)b_j$$
$$= [(A + A^T)b]_i$$
$$\frac{\partial b^T A b}{\partial b} = (A + A^T)b$$

So

1.7. Quadratic Forms and Eigendecomposition.

Definition 1.53. Let $A \in \mathcal{M}_{n,n}$. Then A is said to be **postive semi-definite** if for each $x \in \mathbb{R}^n$,

$$x^T A x \ge 0$$

Definition 1.54. Let $A \in \mathcal{M}_{n,n}$. Then A is said to be **postive-definite** if for each $x \in \mathbb{R}^n$, $x \neq 0$ implies that

$$x^T A x > 0$$

Exercise 1.55. Let $A \in \mathcal{M}_{n,n}$. If A is positive-definite, then A is invertible.

Exercise 1.56. Let $A \in \mathcal{M}_{n,n}$. Then A is invertible iff for each eigenvalue λ of A, $\lambda \neq 0$.

Proof. Suppose that A is invertible. Let $x \in \mathbb{R}^n$. Suppose that Ax = 0. Then x = 0. So x is not an eigenvector of A. So 0 is not an eigenvalue of A. Conversely. Suppose that A is not invertible. Then there exists $x \in \ker A$ such that $x \neq 0$. Then Ax = 0 = 0x. So 0 is an eigenvalue of A.

Proof. Suppose that A is positive definite. Let $x \in \ker A$. Suppose that $x \neq 0$. Then $x^T A x = x^T 0 = 0$, which is a contradiction. Hence $\ker A = \{0\}$. So $\operatorname{rank}(A) = n$ and A is invertible.

Exercise 1.57. Let $A \in \mathcal{M}_{n,n}$. If A is positive semi-definite (respectively positive definite), then the eigenvalues of A are nonnegative (respectively positive).

Proof. Let $\lambda \in \mathbb{C}$ be an eigenvalue of A and x $in\mathbb{R}^n$ a corresponding eigenvector. Then $x \neq 0$. So $x^T x \geq 0$. If A is positive semi-definite, then

$$0 \le x^T A x$$
$$= \lambda x^T x$$

Hence $\lambda \geq 0$. The case is similar for A positive definite.

Definition 1.58. Let $U \in \mathcal{M}_{n,n}$. Then U is said to be **orthogonal** if $U^TU = UU^T = I$

Theorem 1.59. Let $A \in \mathcal{M}_{n,n}$ be a symmetric matrix and $\lambda_1, \dots, \lambda_n$ the eigenvalues of A. Then

- (1) $\lambda_1, \dots, \lambda_n \in \mathbb{R}$
- (2) for $i, j \in \{1, \dots, n\}$ if $i \neq j$ and x_i, x_j are eigenvectors corresponding to λ_i, λ_j respectively, then $x_i^T x_j = 0$.
- (3) there exist $U, D \in \mathcal{M}_{n,n}$ such that U is orthogonal, $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ and $A = UDU^T$.

Note 1.60. We will be dealing with covariance matrices which are positive semi-definite symmetric matrices and thus have nonnegative eigenvalues.

2. The Linear Model

2.1. Model Description.

Definition 2.1. Given $y \in \mathbb{R}_m$ a vector of observed responses to the matrix $X \in \mathcal{M}_{m,n}$ of observed inputs, we will consider the model

$$y = Xb + e$$

where $b \in \mathbb{R}_n$ is a vector of unknown parameters and $e \in \mathbb{R}^m$ is a random vector of unobserved errors with zero mean.

Definition 2.2. For a parameter vector $b \in \mathbb{R}^n$, we have that e = y - Xb. For this reason, e is called the **residual vector** or simply the "residuals".

Note 2.3. The goal will be to find a parameter vector $b \in \mathbb{R}^n$ that makes the causes the residuals to be as small as possible.

2.2. Least Squares Optimization.

Definition 2.4. We define the **cost function**, $Q: \mathbb{R}^n \to \mathbb{R}$ by

$$Q(b) = ||y - Xb||^{2}$$

= $(y - Xb)^{T}(y - Xb)$

Definition 2.5. Let $b \in \mathbb{R}^n$. Then b is said to be a **least squares solution** for the model if

$$Q(b) = \inf_{c \in R^n} Q(c)$$

Exercise 2.6. If b is a least squares solution for the model, then $X^TXb = X^Ty$.

Proof. Suppose that b is a least squares solution for the model, then Q has a global minimum at b. Since Q is convex in b, this global minimum is also a local minimum. Thus

$$\frac{\partial Q}{\partial b}(b) = 0$$

By definition,

$$Q(b) = y^T y - y^T X b - b^T X^T y + b^T X^T X b$$
$$= y^T y - 2y^T X b + b^T X^T X b$$

Thus

$$0 = \frac{\partial Q}{\partial b}(b)$$
$$= -2X^{T}y + 2X^{T}Xb$$

Hence $X^T X b = X^T y$.

Definition 2.7. For $y \in \mathbb{R}^m$ and $X \in \mathcal{M}_{m,n}$, we define the **normal equation** to be

$$X^T X b = X^T y$$

Exercise 2.8. The normal equation is consistent.

Proof. We have that
$$X^T y \in \mathcal{C}(X^T) = \mathcal{C}(X^T X)$$
.

Exercise 2.9. Let $b \in \mathbb{R}^n$. Then b is a least squares solution for the model iff b satisfies the normal equation.

Proof. The previous exercises tells us that if b is a least squares solution for the model, then b satisfies the normal equation. Conversely, suppose that b satisfies the normal equation.

Then

$$Q(c) = (y - Xc)^{T}(y - Xc)$$

$$= (y - Xb + Xb - Xc)^{T}(y - Xb + Xb - Xc)$$

$$= (y - Xb)^{T}(y - Xb) - (y - Xb)^{T}(X(b - c)) - (b - c)^{T}X^{T}(y - Xb) + (b - c)^{T}X^{T}(X(b - c))$$

$$= Q(b) - 2(b - c)^{T}X^{T}(y - Xb) + ||X(b - c)||^{2}$$

$$= Q(b) + ||X(b - c)||^{2}$$

Thus b minimizes Q.

Exercise 2.10. Let $b \in \mathbb{R}^n$ be a least squares solution for the model. Then $||y||^2 = ||Xb||^2 + ||e||^2$

Proof. Since b satisfies the normal equation, we have that $X^{T}(y - Xb) = 0$. Thus

$$Xb \cdot e = b^T X^T e$$

$$= b^T X^T (y - Xb)$$

$$= b^T 0$$

$$= 0$$

So Xb and e are orthogonal. Therefore

$$||y||^2 = ||Xb + e||^2$$

= $||Xb||^2 + ||e||^2$

2.3. Estimation.

Note 2.11. In what follows we are considering the model y = Xb + e with $y, e \in \mathbb{R}^n$, $b \in \mathbb{R}^p$, $X \in \mathcal{M}_{n,p}$ and $\mathbb{E}[e] = 0$.

Definition 2.12. Let Then $\lambda \in \mathbb{R}^p$. The function t(y) is said to be a linear unbiased estimator for the function $f(b) = \lambda^T b$ if there exists $a \in \mathbb{R}^n$, $c \in \mathbb{R}$ such that $t(y) = c + a^T y$ and for each $b \in \mathbb{R}^p$, $\mathbb{E}[t(y)] = \lambda^T b$.

Exercise 2.13. Let Then $\lambda \in \mathbb{R}^p$ and $a \in \mathbb{R}^n$, $c \in \mathbb{R}$. Suppose that $t(y) = c + a^T y$ is an unbiased linear estimator for $f(b) = \lambda^T b$. Then c = 0 and $\lambda = X^T a$.

Proof. We have that for each $b \in \mathbb{R}^p$,

$$\lambda^T b = \mathbb{E}[c + a^T y]$$
$$= c + a^T \mathbb{E}[y]$$
$$= c + a^T X b$$

Taking b=0, we get that c=0. So for each $b\in\mathbb{R}^p$, $\lambda^Tb=a^TXb$. This implies that $\lambda^T=a^TX$ and $\lambda=X^Ta$.

Definition 2.14. Let $\lambda \in R^p$. Then the function $f(b) = \lambda^T b$ is said to be **linearly estimable** if there exists a linear, unbiased estimator for f(b). Equivalently, $f(b) = \lambda^T b$ is linearly estimable if there exists $a \in \mathbb{R}^n$ such that for each $b \in \mathbb{R}^p$ $\mathbb{E}[a^T y] = \lambda^T b$

Exercise 2.15. Let $\lambda \in \mathbb{R}^p$. Then the following are equivalent:

- (1) $f(b) = \lambda^T b$ is linearly estimable
- (2) $\lambda \in \mathcal{C}(X^T)$
- (3) for each $G \in X^-$ of X, $\lambda^T = \lambda^T G X$
- (4) there exists $G \in X^-$ of X such that $\lambda^T = \lambda^T G X$

 $f(b) = \lambda^T b$ is linearly estimable iff $\lambda \in \mathcal{C}(X^T)$.

Proof. $(1) \Rightarrow (2)$

Suppose that f(b) is linearly estimable. Then there exists $a \in \mathbb{R}^n$ such that for each $b \in \mathbb{R}^p$ $\mathbb{E}[a^Ty] = \lambda^T b$. Then for each $b \in \mathbb{R}^p$,

$$\lambda^T b = a^T \mathbb{E}[y] = a^T X b$$

Hence $\lambda^T = a^T X$ and $X^T a = \lambda$. So $\lambda \in \mathcal{C}(X^T)$.

 $(2) \Rightarrow (3)$

Suppose that $\lambda \in \mathcal{C}(X^T)$. Let $G \in X^-$. Then $G^T \in (X^T)^-$ Since $\lambda \in \mathcal{C}(X^T)$, there exists $a \in \mathbb{R}^n$ such that $X^T a = \lambda$. A previous exercise tells us that there exists $z \in \mathbb{R}^n$ such that

$$a = G^T \lambda + (I - G^T X^T) z$$

So

$$\lambda = X^{T} a$$

$$= X^{T} [G^{T} \lambda + (I - G^{T} X^{T}) z]$$

$$= X^{T} G^{T} \lambda$$

Hence $\lambda^T = \lambda^T G X$.

 $(3) \Rightarrow (4)$

Trivial.

 $(4) \Rightarrow (1)$

Suppose that there exists $G \in X^-$ such that $\lambda^T = \lambda^T G X$. Choose $a = G^T \lambda \in \mathbb{R}^n$. Let $b \in \mathbb{R}^p$. Then

$$E[a^T y] = a^T \mathbb{E}[y]$$

$$= \lambda^T G \mathbb{E}[y]$$

$$= \lambda^T G X b$$

$$= \lambda^T b$$

So $f(b) = \lambda^T b$ is linearly estimable.

Definition 2.16. Let $\hat{b} \in \mathbb{R}^p$ be a least squares solution and $\lambda \in \mathbb{R}^n$. Then $\hat{f} = \lambda^T \hat{b}$ is said to be a least squares estimator of $f(b) = \lambda^T b$.

Exercise 2.17. Let $\hat{b} \in \mathbb{R}^p$ be a least squares solution and $\lambda \in \mathbb{R}^p$. Then $\hat{f} = \lambda^T \hat{b}$ is the unique least squares estimator of $f(b) = \lambda^T b$ iff f(b) is linearly estimable.

Proof. Suppose that $f(b) = \lambda^T b$ is linearly estimable. Then $\lambda \in \mathcal{C}(X^T)$. So there exists $a \in \mathbb{R}^n$ such that $\lambda^T = a^T X$. Let b' be a least squares solution. Then there exists $z \in \mathbb{R}^p$ such that

$$b' = (X^T X)^{-} X^T y + (I - (X^T X)^{-} (X^T X))z$$

Then

$$\lambda^{T}b' = \lambda^{T} \left[(X^{T}X)^{-}X^{T}y + (I - (X^{T}X)^{-}(X^{T}X))z \right]$$

$$= a^{T}X(X^{T}X)^{-}X^{T}y + a^{T}X(I - (X^{T}X)^{-}X^{T}X)z$$

$$= a^{T}P_{X}y + a^{T}(X - P_{X}X)z$$

$$= a^{T}P_{X}y$$

In particular, $\lambda^T b' = a^T P_X y = \lambda^T \hat{b}$.

Conversely, suppose that $\hat{f} = \lambda^T \hat{b}$ is the unique least squares estimator of $f(b) = \lambda^T b$. Then for each $z \in \mathbb{R}^p$,

$$\lambda^T \hat{b} = \lambda^T (X^T X)^- X^T y + \lambda^T (I - (X^T X)^- X^T X) z$$

So for each $z \in \mathbb{R}^p$,

$$\lambda^T (X^T X)^- X^T y + \lambda^T (I - (X^T X)^- X^T X) z = 0$$

and thus

$$\lambda^T (I - (X^T X)^- X^T X) = 0$$

Therefore

$$\lambda^T = \lambda^T (X^T X)^- X^T X$$

Transposing both sides, we obtain that

$$\lambda = X^T X [(X^T X)^-]^T \lambda \in \mathcal{C}(X^T)$$

So $f(b) = \lambda^T b$ is linearly estimable

Exercise 2.18. Let $\lambda \in \mathbb{R}^p$ and $\hat{b} \in \mathbb{R}^p$ a least squares solution. If $f(b) = \lambda^T b$ is linearly estimable, then the unique least squares estimator $\hat{f} = \lambda^T \hat{b}$ of f(b) is a linear unbiased estimator of f(b).

Proof. Suppose that $f(b) = \lambda^T b$ is linearly estimable. Then there exists $a \in \mathbb{R}^n$ such that $\lambda^T = a^T X$. The previous exercise tells us that

$$\lambda^T \hat{b} = \lambda^T (X^T X)^- X^T y$$

Thus for each $b \in \mathbb{R}^p$,

$$\mathbb{E}[\lambda^T \hat{b}] = \mathbb{E}[\lambda^T (X^T X)^- X^T y]$$

$$= \lambda^T (X^T X)^- X^T \mathbb{E}[y]$$

$$= \lambda^T (X^T X)^- X^T X b$$

$$= a^T X (X^T X)^- X^T X b$$

$$= a^T P_X X b$$

$$= a^T X b$$

$$= \lambda^T b$$

2.4. Imposing Restictions for a Unique Solution.

Definition 2.19. Let $X \in \mathcal{M}_{n,p}$ with rank(X) = r, let s = p - r and $C \in \mathcal{M}_{s,p}$ with rank(C) = s and $\mathcal{C}(X^T) \cap \mathcal{C}(C^T) = \{0\}$ and let $y \in \mathbb{R}^n$. We consider the system

$$\begin{pmatrix} X^T X \\ C \end{pmatrix} b = \begin{pmatrix} X^T y \\ 0 \end{pmatrix}$$

or equivalently the system

$$\begin{pmatrix} X \\ C \end{pmatrix} b = \begin{pmatrix} P_X y \\ 0 \end{pmatrix}$$

These systems are the restricted normal equations with restrictions C.

Note 2.20. Requiring rank(C) = s means that the rows of C (i.e. the restrictions) are linearly independent. To have a unique solution to

$$\begin{pmatrix} X \\ C \end{pmatrix} b = \begin{pmatrix} P_X y \\ 0 \end{pmatrix}$$

we must have

$$\mathcal{N}\left(\begin{pmatrix} X \\ C \end{pmatrix}\right) = \{0\}$$

or equivalently,

$$\mathcal{C}((X^T \ C^T)) = \mathbb{R}^p$$

Since $rank(X^T) = rank(X) = r$, we have that $\mathcal{C}((X^T C^T)) = \mathbb{R}^p$ iff $\mathcal{C}(X^T) \cap \mathcal{C}(C^T) = \{0\}$.

Exercise 2.21. Under the assumptions for the restricted normal equations, the following systems are equivalent:

(1)

$$\begin{pmatrix} X^T X \\ C \end{pmatrix} b = \begin{pmatrix} X^T y \\ 0 \end{pmatrix}$$

(2)

$$\begin{pmatrix} X^T X \\ C^T C \end{pmatrix} b = \begin{pmatrix} X^T y \\ 0 \end{pmatrix}$$

(3)

$$(X^TX + C^TC)b = X^Ty$$

Proof. (1) \Rightarrow (2) We need to show that for each $b \in \mathbb{R}^p$ Cb = 0 implies that $C^TCb = 0$. This is immediate since $\mathcal{N}(C^TC) = \mathcal{N}(C)$.

 $(2) \Rightarrow (3)$ Let $b \in \mathbb{R}^p$ be a solution to system (1). Then we have that

$$(X^{T}X + C^{T}C)b = X^{T}Xb + C^{T}Cb = X^{T}y + 0 = X^{T}y$$

(3) \Rightarrow (1) Suppose that $(X^TX + C^TC)b = X^Ty$. This implies that $C^TCb = X^T(y - Xb)$. So $C^TCb \in \mathcal{C}(C^TC) \cap \mathcal{C}(X^T) = \mathcal{C}(C^T) \cap \mathcal{C}(X^T) = \{0\}$

Hence $b \in \mathcal{N}(C^TC) = \mathcal{N}(C)$. So Cb = 0 and $X^TXb = (X^TX + C^TC)b = X^Ty$, or quivalently,

$$\begin{pmatrix} X^T X \\ C \end{pmatrix} b = \begin{pmatrix} X^T y \\ 0 \end{pmatrix}$$

Exercise 2.22. Under the assumptions for the restricted normal equations, we have the following:

- (1) $X^TX + C^TC$ is invertible
- (2) $(X^TX + C^TC)^{-1}X^Ty$ is the unique solution to $X^TXb = X^Ty$ and Cb = 0.
- (3) $(X^TX + C^TC)^{-1}$ is a generalized inverse of X^TX (4) $C(X^TX + C^TC)^{-1}X^T = 0$ (5) $C(X^TX + C^TC)^{-1}C^T = I$

Proof.

(1)

$$\mathbb{R}^{p} = \mathcal{C}((X^{T} \quad C^{T}))$$

$$= \mathcal{C}((X^{T} \quad C^{T})\begin{pmatrix} X \\ C \end{pmatrix})$$

$$= \mathcal{C}(X^{T}X + C^{T}C)$$

Since $X^TX + C^TC \in \mathcal{M}_{p,p}$ and $rank(X^TX + C^TC) = p$, we have that $X^TX + C^TC$ is invertible.

(2) Put $b = (X^TX + C^TC)^{-1}X^Ty$. Then $(X^TX + C^TC)b = X^Ty$. A previous exercise tells us that b is a solution to the system

$$\begin{pmatrix} X^T X \\ C \end{pmatrix} b = \begin{pmatrix} X^T y \\ 0 \end{pmatrix}$$

which implies that $X^T X b = X^T y$ and C b = 0.

(3) From (2), we know that

$$X^{T}X[(X^{T}X + C^{T}C)^{-1}X^{T}y] = X^{T}y$$

Since $y \in \mathbb{R}^n$ is arbitrary, we have

$$X^{T}X(X^{T}X + C^{T}C)^{-1}X^{T} = X^{T}$$

Multiplying both sides on the right by X tells us that $(X^TX + C^TC)^{-1}$ is a generalized inverse of X^TX .

(4) From (2), we know that

$$C(X^TX + C^TC)^{-1}X^Ty = 0$$

Since $y \in \mathbb{R}^n$ is arbitrary,

$$C(X^TX + C^TC)^{-1}X^T = 0$$

(5)

2.5. Constrained Parameter Space.

Definition 2.23. Let $P \in \mathcal{M}_{p,q}$ and $\delta \in \mathbb{R}^q$. Suppose that P has full column rank. We define the **constrained parameter space** $\mathcal{T} = \{b \in \mathbb{R}^p : P^Tb = \delta\}$.

Note 2.24. Since P has full column rank, $C(P^T) = \mathbb{R}^q$ and for each $\delta \in \mathbb{R}^q$, $P^Tb = \delta$ is consistent. We now fix P, δ so that \mathcal{T} is fixed.

Definition 2.25. Let $\lambda \in \mathbb{R}^p$. The function t(y) is said to be a **linear unbiased estimator** in \mathcal{T} for $f(b) = \lambda^T b$ if there exists $a \in \mathbb{R}^n$, $c \in \mathbb{R}$ such that $t(y) = c + a^T y$ and for each $b \in \mathcal{T}$, $\mathbb{E}[t(y)] = \lambda^T b$

Definition 2.26. Let $\lambda \in \mathbb{R}^p$. The function $f(b) = \lambda^T b$ is said to be **linearly estimable in** \mathcal{T} if there exists a linear unbiased estimator in \mathcal{T} for $f(b) = \lambda^T b$. Equivalently $\lambda^T b$ is linearly estimable in \mathcal{T} if there exist $a \in \mathbb{R}^n$, $c \in \mathbb{R}$ such that for each $b \in \mathcal{T}$, $\mathbb{E}[c + a^T y] = \lambda^T b$.

Theorem 2.27. Let $\lambda \in \mathbb{R}^p$ and $a \in \mathbb{R}^n$. Then $t(y) = c + a^T y$ is a linear unbiased estimator for $f(b) = \lambda^T b$ iff if there exists $d \in \mathbb{R}^q$ such that $\lambda = X^T a + P d$ and $c = d^T \delta$.

Definition 2.28. We define the normal equations with restrictions $\mathcal T$ to be

$$\begin{pmatrix} X^T X & P \\ P^T & 0 \end{pmatrix} \begin{pmatrix} b \\ \theta \end{pmatrix} = \begin{pmatrix} X^T y \\ \delta \end{pmatrix}$$

Theorem 2.29. We have the following:

- (1) The restricted normal equations are consistent.
- (2) Let \hat{b} be the first component of a solution to the restricted normal equations. Then $Q(\hat{b}) = \min_{b \in \mathcal{T}} Q(b)$.
- (3) Let \hat{b} be the first component of a solution to the restricted normal equations and $b \in \mathcal{T}$. Then $Q(b) = Q(\hat{b})$ iff b is the first component of a solution of to the restricted normal equations.

2.6. The Gauss-Markov Model.

Definition 2.30. Let $X \in \mathcal{M}_{n,p}$, $y \in \mathbb{R}^n$. We consider the model y = Xb + e where $\mathbb{E}[e] = 0$, $Var(e) = \sigma^2 I_n$. This model is called the **Gauss-Markov model**. Note that E[y] = Xb and $Var(y) = \sigma^2 I$.

Theorem 2.31. Let $a, c \in \mathbb{R}^n$, $A \in \mathcal{M}_{p,n}$ and y a random vector in \mathbb{R}^n . Then

- $(1) \ \mathbb{E}[a^T y] = a^T \mathbb{E}[y]$
- $(2) Var(a_{\underline{}}^{T}y) = a^{T}Var(y)a$
- (3) $Cov(a^Ty, c^Ty) = a^TVar(y)c$
- $(4) Var(Ay) = A^{T}Var(y)A$

Exercise 2.32. Let $\lambda^T \in \mathbb{R}^p$ and $\hat{b} \in \mathbb{R}^p$ a least squares solution. Suppose that $f(b) = \lambda^T b$ is linearly estimable. Then the unique least squares estimator $\hat{f} = \lambda^T \hat{b}$ satisfies

$$Var(\hat{f}) = \sigma^2 \lambda^T (X^T X)^{-} \lambda$$

Proof. Uniqueness of \hat{f} tells us that $\hat{f} = \lambda^T (X^T X)^- X^T y$. A previous exercise tells us that for each gen. inv. X^- of X, $\lambda^T = \lambda^T X^- X$. Recall that $(X^T X)^- X^T$ is a gen. inv. of X.

Then

$$\begin{split} Var(\hat{f}) &= Var(\lambda^T(X^TX)^-X^Ty) \\ &= \lambda^T(X^TX)^-X^TVar(y)(\lambda^T(X^TX)^-X^T)^T \\ &= \sigma^2\lambda^T(X^TX)^-X^T(\lambda^T(X^TX)^-X^T)^T \\ &= \sigma^2\lambda^T(X^TX)^-\left(\lambda^T(X^TX)^-X^TX\right)^T \\ &= \sigma^2\lambda^T(X^TX)^-(\lambda^T)^T \\ &= \sigma^2\lambda^T(X^TX)^-\lambda \end{split}$$

Exercise 2.33. Let $\lambda \in \mathbb{R}^p$. Suppose that $f(b) = \lambda^T b$ is linearly estimable. Then $\hat{f} = \lambda^T \hat{b}$ is the minimum variance linear unbiased estimator for f(b).

Proof. Let $t(y) = c + a^T y$ be a linear unbiased estimator for $f(b) = \lambda^T b$. Recall that c = 0 and $\lambda = X^T a$, $\hat{f} = \lambda^T (X^T X)^- X^T y$ and for each generalized inverse X^- of X, $\lambda^T X^- X = \lambda^T$. Then

$$\begin{split} Var(t(y)) &= Var(a^T y) \\ &= Var(\hat{f} + (a^T y - \hat{f})) \\ &= Var(\hat{f}) + Var(a^T y - \hat{f}) + 2Cov(\hat{f}, a^T y - \hat{f}) \end{split}$$

Now

$$\begin{split} Cov(\hat{f}, a^T y - \hat{f}) &= Cov(\lambda^T (X^T X)^- X^T y, a^T y - \lambda^T (X^T X)^- X^T y) \\ &= \lambda^T (X^T X)^- X^T Var(y) \left[a^T - \lambda^T (X^T X)^- X^T \right]^T \\ &= \sigma^2 \lambda^T (X^T X)^- X^T \left[a^T - \lambda^T (X^T X)^- X^T \right]^T \\ &= \sigma^2 \lambda^T (X^T X)^- \left[a^T X - \lambda^T (X^T X)^- X^T X \right]^T \\ &= \sigma^2 \lambda^T (X^T X)^- \left[a^T X - \lambda^T (X^T X)^- X^T X \right]^T \\ &= \sigma^2 \lambda^T (X^T X)^- \left[a^T X - \lambda^T \right]^T \\ &= \sigma^2 \lambda^T (X^T X)^- (X^T a - \lambda) \\ &= 0 \end{split}$$

Hence $Var(t(y)) = Var(\hat{f}) + Var(a^Ty - \hat{f}) \ge Var(\hat{f})$

Theorem 2.34.

- (1) For each $A, B \in \mathcal{M}_{n,n}$ and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$.
- (2) For each $A \in \mathcal{M}_{n,p}$ and $B \in \mathcal{M}_{p,n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- (3) For each random matrix $Z \in \mathcal{M}_{n,n}$, $\mathbb{E}[\operatorname{tr}(Z)] = \operatorname{tr}(\mathbb{E}[Z])$.

П

Exercise 2.35. Let $z \in \mathbb{R}^p$ be a random vector. Suppose that $\mathbb{E}[z] = \mu$ and $Var(z) = \Sigma$. Then for each $A \in \mathcal{M}_{p,p}$,

$$\mathbb{E}[z^T A z] = \mu^T A \mu + \operatorname{tr}(A\Sigma)$$

Proof. Note that

$$\mathbb{E}[z^T A z] = \mathbb{E}[(z - \mu)^T A (z - \mu)] + \mathbb{E}[\mu^T A (z - \mu)] + \mathbb{E}[z^T A \mu]$$

Observe that

$$\mathbb{E}[(z-\mu)^T A(z-\mu)] = \mathbb{E}[\operatorname{tr}((z-\mu)^T A(z-\mu))]$$

$$= \mathbb{E}[\operatorname{tr}((A(z-\mu)(z-\mu)^T)]$$

$$= \operatorname{tr}(\mathbb{E}[(A(z-\mu)(z-\mu)^T])$$

$$= \operatorname{tr}(A\mathbb{E}[(z-\mu)(z-\mu)^T])$$

$$= \operatorname{tr}(A\Sigma)$$

and that

$$\mathbb{E}[\mu^T A(z - \mu)] = \mathbb{E}[\mu^T A(z - \mu)]$$
$$= \mu^T A \mathbb{E}[z - \mu]$$
$$= 0$$

and that

$$\mathbb{E}[z^T A \mu] = \mathbb{E}[z^T] A \mu$$
$$= \mu^T A \mu$$

Thus $\mathbb{E}[z^T A z] = \mu^T A \mu + \operatorname{tr}(A \Sigma)$.

Definition 2.36. Put $\hat{e} = y - \hat{y} = (I - P_X)y$. Then the **sum of squares error**, SSE, is defined to be $SSE = \hat{e}^T \hat{e} = y^T (I - P_X)y$.

Exercise 2.37. Let r = rank(X). Define

$$\hat{\sigma}^2 = \frac{SSE}{n-r}$$

Then $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .

Proof. The previous exercise tells us that

$$\mathbb{E}[SSE] = \mathbb{E}[y^T(I - P_X)y]$$

$$= b^T X^T (I - P_X) X b + \sigma^2 \operatorname{tr}(I - P_X)$$

$$= \sigma^2 \operatorname{tr}(I - P_X)$$

$$= \sigma^2 \operatorname{rank}(I - P_X)$$

$$= \sigma^2 \operatorname{nullity}(X^T)$$

$$= \sigma^2 (n - r)$$

So
$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2$$
.

2.7. The Aitken Model.

Definition 2.38. Let $X \in \mathcal{M}_{n,p}$, $y \in \mathbb{R}^n$ and $V \in \mathcal{M}_{n,n}$. We consider the model y = Xb + e where $\mathbb{E}[e] = 0$, $Var(e) = \sigma^2 V$. This model is called the **Aitken model**. Note that E[y] = Xb and $Var(y) = \sigma^2 V$.

Definition 2.39. Let $R \in \mathcal{M}_{n,n}$. Suppose that R is invertible and $RVR^T = I$ or equivalently, $V = (R^TR)^{-1}$. We define the **transformed Aitken model** by z = Ry, U = RX, f = Re so that

$$z = Ub + f$$

Note that

$$E[z] = RXb = Ub$$

and

$$Var(f) = RVar(e)R^{T} = \sigma^{2}RVR^{T} = \sigma^{2}I$$

Definition 2.40. Under the transformed Aitken model, we can can look for solutions $b \in \mathbb{R}^p$ to the normal equations

$$U^T U b = U^T z$$

When we transform back to the Aitken model, we have the Aitken equations

$$X^T V^{-1} X b = X^T V^{-1} y$$

We denote a solution to the Aitken equations by \hat{b}_{GLS} and a solution to the normal equations by \hat{b}_{OLS}

3. Distribution Theory

3.1. Introduction.

Definition 3.1. Let $x \in \mathbb{R}^p$ be a random vector. Define $m_x : \mathbb{R}^p \to [0, \infty]$ by

$$m_x(t) = E[e^{t^T x}]$$

We call m_X the moment generating function of X.

Theorem 3.2. Let $x_1, x_2 \in \mathbb{R}^p$ be random vectors. Then $F_{x_1} = F_{x_2}$ iff $m_{x_1} = m_{x_2}$.

Theorem 3.3. Let $x_1 \in \mathbb{R}^{p_1}, \dots, x_n \in \mathbb{R}^{p_n}$ be random vectors. Put $p = \sum_{i=1}^n p_i$. For $t \in \mathbb{R}^p$, we can partition t as $t = (t_1^T, \dots, t_n^T)^T$ where $t_1 \in \mathbb{R}^{p_1}, \dots, t_n \in \mathbb{R}^{p_n}$. Put $x = (x_1^T, \dots, x_n^T)^T$. Then x_1, \dots, x_n are independent iff for each $t \in \mathbb{R}^p$, $m_x(t) = \prod_{i=1}^n m_{x_i}(t_i)$.

3.2. Multivariate Normal.

Definition 3.4. Let $x \in \mathbb{R}^p$ be a random vector, $\mu \in \mathbb{R}^p$ and $V \in \mathcal{M}_{p,p}$ be symmetric and positive semi-definite. Then x is said to have a **multivariate normal distribution** with mean μ and covariance matrix V, denoted $x \sim N_p(\mu, V)$, if for each $t \in \mathbb{R}^p$, $m_x(t) = e^{t^T \mu + \frac{1}{2}t^T V t}$.

Exercise 3.5. Let $x \sim N_p(\mu, V)$, $a \in \mathbb{R}^q$ and $B \in \mathcal{M}_{q,p}$. Define the random vector $y \in \mathbb{R}^q$ by y = a + Bx. Then $y \sim N_q(a + B\mu, BVB^T)$.

Proof. for $t \in \mathbb{R}^q$, we have that

$$m_{y}(t) = E[e^{t^{T}y}]$$

$$= E[e^{t^{T}(a+Bx)}]$$

$$= E[e^{t^{T}a} + t^{T}Bx]$$

$$= e^{t^{T}a}E[e^{t^{T}Bx}]$$

$$= e^{t^{T}a}m_{x}(B^{T}t)$$

$$= e^{t^{T}a}e^{t^{T}B\mu + \frac{1}{2}t^{T}BVB^{T}t}$$

$$= e^{t^{T}a+t^{T}B\mu + \frac{1}{2}t^{T}BVB^{T}t}$$

$$= e^{t^{T}(a+B\mu) + \frac{1}{2}t^{T}BVB^{T}t}$$

So $y \sim N_q(a + B\mu, BVB^T)$.

Exercise 3.6. Let $x \in \mathbb{R}^p$ be a multivariate normal random vector. Then any subvector of x is a multivariate normal random vector.

Proof. Let $x = (x_1, \dots, x_p)^T$. Suppose that $x \sim N_p(\mu, V)$. Let $x' = (x_{i_1}, \dots, x_{i_k})$ be a subvector of x. So $i_1 < \dots < i_q$ and $i_1, \dots, i_q \in \{1, \dots, p\}$. Choose a matrix $B \in \mathcal{M}_{q,p}$ such that x' = Bx. Then $x' \sim N_q(B\mu, BVB^T)$.

Theorem 3.7. Let
$$x = (x_1^T, \dots, x_n^T)^T$$
, $\mu = (\mu_1^T, \dots, \mu_n^T)^T \in \mathbb{R}^p$ and $V = \begin{pmatrix} V_{1,1} & \dots & V_{1,n} \\ & \vdots & \\ V_{n,1} & \dots & V_{n,n} \end{pmatrix} \in \mathbb{R}^p$

 $\mathcal{M}_{p,p}$ where $x_i, \mu_i \in \mathbb{R}^{p_i}$, $V_{i,j} \in \mathcal{M}_{p_i}$, p_j and $\sum_{i=1}^n p_i = p$. If $x \sim N_p(\mu, V)$ then x_1, \dots, x_n are independent iff for each $i, j \in \{1, \dots, n\}$, $i \neq j$ implies that $V_{i,j} = 0$.

Exercise 3.8. Let $z=(z_1,\cdots,z_p)\in\mathbb{R}^p$ be a random vector. Then $z\sim N_p(0,I)$ iff for each $i=1,\cdots,p,\ z_i\sim N_1(0,1)$ and z_1,\cdots,z_n are independent.

Proof. Suppose that $z \sim N_p(0, I)$. Since $z_i = e_i^T z$, the previous results tells us that for each $i = 1, \dots, p, z_i \sim N_1(0, 1)$ and z_1, \dots, z_n are independent. Conversely, suppose that for each $i = 1, \dots, p, z_i \sim N_1(0, 1)$ and z_1, \dots, z_n are independent. Then for each $t \in \mathbb{R}^p$,

$$m_z(t) = \prod_{i=1}^{p} m_{z_i}(t_i)$$

$$= \prod_{i=1}^{p} e^{\frac{1}{2}t_i^2}$$

$$= e^{\frac{1}{2}t^Tt}$$

Thus $z \sim N_p(0, I)$.

Exercise 3.9. Let $x \sim N_p(\mu, V)$, $a1, a_2 \in \mathbb{R}^q$, $B_1, B_2 \in \mathcal{M}_{q,p}$, $y_1 = a_1 + B_1 x$ and $y_2 = a_2 + B_2 x$. Then y_1, y_2 are independent iff $B_1 V B_2^T = 0$.

Proof. Put $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$. Since y = a + Bx We know that $y \sim N_{2q}(a + B\mu, BVB^T)$. Observe that $BVB^T = \begin{pmatrix} B_1VB_1^T & B_1VB_2^T \\ B_2VB_1^T & B_2VB_2^T \end{pmatrix}$ A previous result tells us that y_1, y_2 are independent iff $B_1VB_2^T = 0$

3.3. Chi-Square.

Definition 3.10. Let u be a random variable, $p \in \mathbb{N}$ and $\phi \geq 0$. Then u is said to have a χ^2 distribution with p degrees of freedom and noncentrality parameter ϕ , denoted $u \sim \chi_p^2(\phi)$, if for each $t \in \mathbb{R}$,

$$m_u(t) = (1 - 2t)^{p/2} e^{2\phi t/(1-2t)}$$

If $\phi = 0$, we say that u has a (central) chi-square distribution with p degrees of freedom, denoted $u \sim \chi_p^2$.

Exercise 3.11. Let $z \sim N_p(0, I)$. Then $z^T z \sim \chi_p^2$.

Proof. One can show that $m_{z_{\cdot}^{2}}(t) = (1-2t)^{1/2}$. By independence

$$m_{z^T z}(t) = m_{\sum_{i=1}^p z_i^2}(t) = (1 - 2t)^{p/2}$$

Exercise 3.12. Let $u_1 \sim \chi_{p_1}^2(\phi_1), \dots, u_n \sim \chi_{p_n}^2(\phi_n)$. Put $u = \sum_{i=1}^n u_i$, $p = \sum_{i=1}^n p_i$ and $\phi = \sum_{i=1}^n \phi_i$. If u_1, \dots, u_n are independent, then $u \sim \chi_p^2(\phi)$.

Proof. By independence, we have that for each $t \in \mathbb{R}$.

$$m_u(t) = \prod_{i=1}^n m_{u_i}(t)$$

$$= \prod_{i=1}^n (1 - 2t)^{p_i/2} e^{2\phi_i t/(1 - 2t)}$$

$$= (1 - 2t)^{p/2} e^{2\phi t/(1 - 2t)}$$

Theorem 3.13. Let $x \in \mathbb{R}^p$ be a random vector, $\mu \in \mathbb{R}^p$ and $V \in \mathcal{M}_{p,p}$ positive definite. If $x \sim N_p(\mu, V)$, then

$$x^T V^{-1} x \sim \chi_p^2(\mu^T V^{-1} \mu/2)$$

Definition 3.14. Let $p_1, p_2 \in \mathbb{N}$, $\phi \geq 0$, $u_1 \sim \chi_{p_1}^2(\phi)$ and $u_2 \sim \chi_{p_2}^2$. Then $\frac{u_1/p_1}{u_2/p_2}$ is said to have a F distribution with noncentrality parameter ϕ and p_1, p_2 degrees of freedom, denoted $\frac{u_1/p_1}{u_2/p_2} \sim F_{p_1,p_2}(\phi)$.

Definition 3.15. Let $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $u \sim N_1(\mu, 1)$ and $v \sim \chi_k^2$. Then $u/\sqrt{v/k}$ is said to have a t distribution with noncentrality parameter μ and k degrees of freedom, denoted $u/\sqrt{v/k} \sim t_k(\mu)$.

3.4. Quadratic Forms.

Exercise 3.16. Let $\mu \in \mathbb{R}^p$ and $A, V \in \mathcal{M}_{p,p}$. Suppose that A is symmetric, V is nonsingular, AV is idempotent and rank(AV) = s. Let $x \sim N_p(\mu, V)$. Then $x^T A x \sim \chi_s^2(\mu A \mu^T/2)$

Exercise 3.17.