

Paper reading

段永杰

2020/6/11

Anchor related

k anchor boxes

- Anchor-based
 - Yolo V2/V3 \ Faster-RCNN \ SSD
- Anchor-free
 - CenterNet、CornerNet、ExtremeNet、FCOS

4k coordinates

2k scores

CenterNet

CornerNet

Region Proposal by Guided Anchoring

Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Lo, Dahua Lin

- 1. CUHK SenseTime Joint Lab, The Chinese University of Hong Kong
- 2. Amazon Recognition
- 3. Nanyang Technological University

CVPR 2019

Abstract

- Motivation
 - Anchor: 物体检测中人为设计的一组基准框
 - 现有anchor-based方法的问题
 - 超参
 - 特殊比例物体
 - Anchor 数目过多

Contribution

• Guided anchoring: 根据图像特征指导anchor的生成

• Feature adaption:修正特征图与anchor之间的匹配关系

Motivation

- 常见的anchor生成方法
 - 大量数据聚类,存在泛化问题
 - 一系列特定尺度和长宽比,anchor数目对物体比例敏感

• 根据图像特征生成稀疏的、形状根据位置可变的anchor

- Anchor位置预测
 - 1x1 conv + sigmoid
 - 滤除大量背景区域
- 训练样本
 - 三种区域采样
- Loss
 - Focal loss
 - 针对小区域、困难样本

• 训练样本

- 正样本:中心区域, σ_1 *bbox
- 忽略: σ_2 *bbox 除去中心区域
- 负样本: bbox外部

仅在对应尺度的特征层! 相邻尺度的对应位置忽略

- Anchor形状预测
 - 1x1 conv + transform layer

$$w = \sigma \cdot s \cdot e^{dw}, \quad h = \sigma \cdot s \cdot e^{dh}$$

- Loss函数
 - bounded IoU loss

$$\mathcal{L}_{shape} = \mathcal{L}_1(1 - \min(\frac{w}{w_g}, \frac{w_g}{w})) + \mathcal{L}_1(1 - \min(\frac{h}{h_g}, \frac{h_g}{h}))$$

• 本质和IoU loss类似

- Anchor assignment
 - 传统方法: 选取与GT的IoU最大的anchor来计算loss反传
 - Anchor的长宽是预测得到的,非固定

$$vIoU(a_{wh}, gt) = \max_{w>0, h>0} IoU_{normal}(a_{wh}, gt)$$

- 采样方式
 - 采样w和h,文章中设置为9组
 - 计算IoU最大的bbox作为当前anchor的GT
 - 计算loss优化w和h

Feature adaption

- 同一层特征图不同位置, 感受野大小/形状相同
- 使用同一层特征图/卷积核,却代表不同大小/形状的anchor
- 解决办法
 - 把 anchor 的形状信息直接融入到特征图中
 - 1x1 conv 得到 offset
 - 3x3 deformable conv

- 高质量proposal
 - Proposal的整体质量好了很多,但是在检测性能上却没有太大提升
 - 解决办法:
 - 减少proposal数目
 - 提高正样本的IoU阈值(!)

Table 7: Exploration of utilizing high-quality proposals.

proposal	num	IoU thr	AP	AP_{50}	AP_{75}
	1000	0.5	36.7	58.8	39.3
RPN	1000	0.6	37.2	57.1	40.5
KPN	300	0.5	36.1	57.6	39.0
	300	0.6	37.0	56.3	39.5
	1000	0.5	37.4	59.9	40.0
GA-RPN	1000	0.6	38.9	59.0	42.4
GA-KPN	300	0.5	37.5	59.6	40.4
	300	0.6	39.4	59.3	43.2

• 数据集: MS COCO 2017

• Bacbone: resnet-50, FPN

• AR: average recall, AP: average precision

• Detection 结果

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Fast R-CNN	37.1	59.6	39.7	20.7	39.5	47.1
GA-Fast-RCNN	39.4	59.4	42.8	21.6	41.9	50.4
Faster R-CNN	37.1	59.1	40.1	21.3	39.8	46.5
GA-Faster-RCNN	39.8	59.2	43.5	21.8	42.6	50.7
RetinaNet	35.9	55.4	38.8	19.4	38.9	46.5
GA-RetinaNet	37.1	56.9	40.0	20.1	40.1	48.0

• Region proposal 结果

Method	Backbone	AR ₁₀₀	AR ₃₀₀	AR_{1000}	AR_S	AR_M	AR_L	runtime (s/img)
SharpMask [24]	ResNet-50	36.4	-	48.2	6.0	51.0	66.5	0.76 (unfair)
GCN-NS [22]	VGG-16 (SyncBN)	31.6	-	60.7	-	-	-	0.10
AttractioNet [10]	VGG-16	53.3	-	66.2	31.5	62.2	77.7	4.00
ZIP [16]	BN-inception	53.9	-	67.0	31.9	63.0	78.5	1.13
	ResNet-50-FPN	47.5	54.7	59.4	31.7	55.1	64.6	0.09
RPN	ResNet-152-FPN	51.9	58.0	62.0	36.3	59.8	68.1	0.16
	ResNeXt-101-FPN	52.8	58.7	62.6	37.3	60.8	68.6	0.26
RPN+9 anchors	ResNet-50-FPN	46.8	54.6	60.3	29.5	54.9	65.6	0.09
RPN+Focal Loss [19]	ResNet-50-FPN	50.2	56.6	60.9	33.9	58.2	67.5	0.09
RPN+Bounded IoU Loss [29]	ResNet-50-FPN	48.3	55.1	59.6	33.0	56.0	64.3	0.09
RPN+Iterative	ResNet-50-FPN	49.7	56.0	60.0	34.7	58.2	64.0	0.10
RefineRPN	ResNet-50-FPN	50.2	56.3	60.6	33.5	59.1	66.9	0.11
GA-RPN	ResNet-50-FPN	59.2	65.2	68.5	40.9	67.8	79.0	0.13

• Region proposal 结果

Figure 4: Anchor prediction results. (a) input image and predict anchors; (b) predicted anchor location probability map; (c) predicted anchor aspect ratio.

• Region proposal 结果

RPN

Summary

- Anchor设计准则
 - Alignment
 - 每个anchor的中心就是当前像素点,即不做anchor中心的回归预测(仅预测形状)
 - Consistency
 - 对应两阶段检测器中的ROI pooling或者 ROI align 操作

ROI pooling

ROI align

Summary

• 方法

- Anchor设计中的alignment和consistency准则,分别对应两个分支及FA
- 高质量proposal,减少数量并提高IoU阈值
- Location预测不需要很精确
- 类似coarse-to-fine的思路

• 局限

- · 相邻很近的物体(FPN可缓解)
- 极端形状物体(anchor-based方法的问题)

RepPoints: Point Set Representation for Object Detection

Ze Yang^{1†*}, Shaohui Liu^{2,3†*}, Han Hu³, Liwei Wang¹, Stephen Lin³

- 1. Peking University
- 2. Tsinghua University
- 3. Microsoft Research Asia

ICCV 2019

Abstract

Motivation

- Bounding box: 规则且相对固定的框,定位粗糙
- 定义一组有代表性的点(representive points),对目标更精确表示

Contribution

- 通过一组点集提供更细粒度的位置表示和便于分类的信息
- 摆脱了bounding box 以及 anchor 的限制

Motivation

• 传统的bbox

- 表示为四维向量: *B* = (*x*, *y*, *w*, *h*)
- Feature map ->
- anchor ->
- proposal ->
- ROI pooling/align ->
- 优化**B**

$$\left(\frac{x_t - x_p}{w_p}, \frac{y_t - y_p}{h_p}, \log \frac{w_t}{w_p}, \log \frac{h_t}{h_p}\right).$$

bbox anchors $\xrightarrow{bbox reg.}$ bbox proposals (S1) $\xrightarrow{bbox reg.}$ bbox proposals (S2) $\xrightarrow{bbox reg.}$ bbox object targets

- BBox只考虑目标的矩形空间范围,不考虑形状、姿态和语义上重要的局部区域的位置
- 因此 RepPoints 建立一组自适应的特征点集代替B

$$\mathcal{R} = \{(x_k, y_k)\}_{k=1}^n$$

文章设定n=9

• BBox refinement -> RepPoints refinement

$$\mathcal{R}_r = \{(x_k + \Delta x_k, y_k + \Delta y_k)\}_{k=1}^n$$

- RepPoints 转换 pseudo-BBox
 - Min-max function
 - 所有点在XY方向上的极小值与极大值
 - Partial min-max function
 - 部分点在XY方向上的极小值与极大值
 - Moment-based function
 - 所有点均值作为中心点,二阶矩乘上系数作为长宽(类似方差概念)

- Learning RepPoints
 - 定位损失: pseudo-BBox的左上角和右下角,smooth L1 loss
 - 分类损失

- (类)两阶段方法
- 结合 deformable convolution

- Deformable convolution
 - 学习偏移量,集中至感兴趣区域

RPDet: an Anchor Free Detector

• 初始化: 预测物体中心点

offset field

- 第一组RepPoints点,距中心点的偏移
- 定位loss + 分类loss

- RPDet: an Anchor Free Detector
 - 第二组RepPoints点,距第一组点的偏移
 - Refinement
 - 仅定位loss
 - 目的在于预测更精确的位置

• 数据集: MS COCO 2017

• Bacbone: resnet-50, FPN

• AR: average recall

• AP: average precision

• Detection 结果

Representation	Backbone	AP	AP_{50}	AP_{75}
Bounding box	ResNet-50	36.2	57.3	39.8
RepPoints (ours)	ResNet-50	38.3	60.0	41.1
Bounding box	ResNet-101	38.4	59.9	42.4
RepPoints (ours)	ResNet-101	40.4	62.0	43.6

method	backbone	# anchors per scale	AP
RetinaNet [28]	ResNet-50	3×3	35.7
FPN-RoIAlign [27]	ResNet-50	3×1	36.7
YOLO-like	ResNet-50	-	33.9
RPDet (ours)	ResNet-50	-	38.3
RetinaNet [28]	ResNet-101	3×3	37.8
FPN-RoIAlign [27]	ResNet-101	3×1	39.4
YOLO-like	ResNet-101	-	36.3
RPDet (ours)	ResNet-101	-	40.4

Table 4. Comparison of the proposed method (RPDet) with an anchor-based method (RetinaNet, FPN-RoIAlign) and an anchor-free method (YOLO-like). The YOLO-like method is adapted from the YOLOv1 method [35] by additionally introducing FPN [27], GN [48] and focal loss [28] into the method for better accuracy.

• MS-COCO

	Backbone	Anchor-Free	$AP AP_{50} AP_{75}$	$AP_S AP_M AP_L$
YOLOv2 [36]	DarkNet-19		21.6 44.0 19.2	5.0 22.4 35.5
SSD [31]	ResNet-101		31.2 50.4 33.3	10.2 34.5 49.8
YOLOv3 [37]	DarkNet-53		33.0 57.9 34.4	18.3 35.4 41.9
DSSD [10]	ResNet-101		33.2 53.3 35.2	13.0 35.4 51.1
Faster R-CNN w. FPN [27]	ResNet-101		36.2 59.1 39.0	18.2 39.0 48.2
RefineDet [52]	ResNet-101		36.4 57.5 39.5	16.6 39.9 51.4
RetinaNet [28]	ResNet-101		39.1 59.1 42.3	21.8 42.7 50.2
Deep Regionlets [49]	ResNet-101		39.3 59.8 -	21.7 43.7 50.9
Mask R-CNN [14]	ResNeXt-101		39.8 62.3 43.4	22.1 43.2 51.2
FSAF [56]	ResNet-101		40.9 61.5 44.0	24.0 44.2 51.3
LH R-CNN [26]	ResNet-101		41.5	25.2 45.3 53.1
Cascade R-CNN [2]	ResNet-101		42.8 62.1 46.3	23.7 45.5 55.2
CornerNet [24]	Hourglass-104	✓	40.5 56.5 43.1	19.4 42.7 53.9
ExtremeNet [54]	Hourglass-104	\checkmark	40.1 55.3 43.2	20.3 43.2 53.1
RPDet	ResNet-101	\checkmark	41.0 62.9 44.3	23.6 44.1 51.7
RPDet	ResNet-101-DCN	\checkmark	42.8 65.0 46.3	24.9 46.2 54.7

• RepPoints 转换 pseudo-Bbox 方式

pseudo box converting function	AP	AP_{50}	AP_{75}
$\mathcal{T} = \mathcal{T}_1$: min-max	38.2	59.7	40.7
$\mathcal{T} = \mathcal{T}_2$: partial min-max	38.1	59.6	40.5
$\mathcal{T} = \mathcal{T}_3$: moment-based	38.3	60.0	41.1

• RepPoints 可视化

Summary

- 方法
 - 新的表示方式,能够对物体的形状、姿态等更精细地表达
 - RepPoints 与 deformable convolution 结合
 - 某种意义上的 anchor,但是点集是任意的
- 局限
 - 点集的语义性不足