Complex Analysis Lecture Notes

Hand written summary from lectures

Acknowledgment

Special thanks to my professor MR.BAKIR FARHI, who gave the lectures and explanations, this work wouldn't exist without his teaching. here is the link to his website:

http://farhi.bakir.free.fr/home/index-fr.html

Disclaimer

These notes were written in real-time during the lectures, this is not the final version, yet. so they may contain:

- Incomplete or incorrect information
- Typos, transcription mistakes, or missing content
- Interpretations or notations that reflect my own understanding at the moment

Please double check anything important with official material or trusted sources.

if you spot an error feel free	to open an issue or submit a pull request, or contact me via gmail:						
kara.abderahmane@nhsm.edu.dz							
	kara.abueranmanewnnsm.edu.dz						
Notes on Contribution :							
	ative effort. students who contribute by reporting errors or helping						
to complete the content will be credited in the next page as contributors in future versions, your							
help is appreciated and helps improve this document for everyone.							

My Github Page Last Update: 2025-09-28					
Main Drawer			Haddar Noured	dine	
	ARMWRESTL				

Contents 1 Power Series 2 1.1 Formulas for Calculating the Radius of Convergence 5

Chapter 1

Power Series

Lecture 1

08:06 AM Mon, Sep 29 2025

Definition 1.0.1 (Power Series) : A power series is a formal series of the form $\sum_{n=1}^{\infty} a_n z^n$, where $a_n \in \mathbb{C}$ for all $n \in \mathbb{N}_0$.

More generally, given $z_0 \in \mathbb{C}$, a power series centered at z_0 is a formal series of the form:

$$\sum_{n=1}^{\infty} a_n (z - z_0)^n$$

where $a_n \in \mathbb{C} \quad (\forall n \in \mathbb{N})$

Remark:

The set of all complex power series (centered at 0) is denoted by $\mathbb{C}[[z]]$. More generally, given $z_0 \in \mathbb{C}$, the set of all complex power series at z_0 is denoted by $\mathbb{C}[[z-z_0]]$

Operations on Formal Power Series:

Given $z_0 \in \mathbb{C}$, we equip $\mathbb{C}[[z-z_0]]$, with the following operations:

1. Additions: For all $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\in\mathbb{C}$:

$$\sum_{n=1}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^n = \sum_{n=1}^{\infty} (a_n + b_n) (z - z_0)^n$$

2. Multiplictation:

$$\sum_{n=1}^{\infty} a_n (z - z_0)^n \times \sum_{n=1}^{\infty} b_n (z - z_0)^n = \sum_{n=1}^{\infty} c_n (z - z_0)^n$$

where, $c_n = \sum_{k=1}^n a_k b_{n-k}$ for all $n \in \mathbb{N}_0$. Also $(c_n)_{n \in \mathbb{N}}$ is called the covolution of the two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$.

3. Scalar Multiplication: For all $\lambda \in \mathbb{C}$, and all $(a_n)_{n \in \mathbb{N}} \subset \mathbb{C}$:

$$\lambda \sum_{n=1}^{\infty} a_n (z - z_0)^n = \sum_{n=1}^{\infty} (\lambda a_n) (z - z_0)^n$$

It's straight forward to verify that $\mathbb{C}[[z-z_0]]$ equipped with these operations forms a commutative algebra over \mathbb{C} . The Multiplicative identity is the constant power series:

$$1 = 1 + 0 \cdot (z - z_0) + 0 \cdot (z - z_0)^2 + \dots$$

Definition 1.0.2 (Domain of Convergence) : The domain of convergence of a power series $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ is the set of all points $z \in \mathbb{C}$ for which the series converge the structure of this domain is very specific. Its a disk (possibly with some points in its boundary) centered at z_0 .

Proposition 1.0.1 (Abel's Lemma): Let $\sum_{n=1}^{\infty} a_n(z-z_0)^n$ be a power series and let $z_1 \in \mathbb{C} \setminus \{z_0\}$. Suppose that the sequence $\{a_n(z_1-z_0)^n\}_{n\in\mathbb{N}}$ is bounded. Then, the power series in question converges absolutely (so converges) for every $z\in\mathbb{C}$, such that:

$$|z-z_0| < |z_1-z_0|$$

Proof. By hypothesis, $\exists M > 0$ such that $\forall n \in \mathbb{N}_0$:

$$|a_n(z_1-z_0)^n| \le M$$

Then, for all $z \in \mathbb{C}$ such that $|z - z_0| < |z_1 - z_0|$ we have:

$$|a_{n}(z-z_{0})^{n}| = \underbrace{|a_{n}(z_{1}-z_{0})^{n}|}_{\leq M} \cdot \underbrace{\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n}}_{\leq 1}$$

$$\leq M \underbrace{\left|\frac{z-z_{0}}{z_{1}-z_{0}}\right|^{n}}_{\leq 1}$$

since $\left|\frac{z-z_0}{z_1-z_0}\right| < 1$ then the geometric series

$$\sum_{n=1}^{\infty} M \left| \frac{z - z_0}{z_1 - z_0} \right|^n \text{ Converges}$$

Thus, the series $\sum_{n=1}^{\infty} |a_n(z-z_0)^n|$ also converges, that is $\sum_{n=1}^{\infty} a_n(z-z_0)^n$ is absolutely convergent.

Corollary 1.0.2: Let $\sum_{n=1}^{\infty} a_n(z-z_0)^n$ be a power series which converges at some $z=z_1\in \mathbb{C}\setminus\{z_0\}$, then the power series in question converges absolutely (so converges), for every $z\in\mathbb{C}$ such that:

 $\hat{z_0}$

$$|z - z_0| < |z - z_1|$$

Proof. $\sum_{n=1}^{\infty} a_n (z_1 - z_0)^n$ converges implies that $a_n (z - z_0)^n \to 0$ as $n \to \infty$, which implies that the sequence $\{a_n (z_1 - z_0)^n\}_{n \ge 0}$ is bounded. Lemma 1 (proposition 1) permits us to conclude the required result.

Theorem 1.0.3 (Radius of Convergence) : Let $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ be a power series then there exists a unique $R \in [0, \infty]$, called the radius of convergence with the following properties:

- 1. The power series converges absolutely for every $z \in \mathbb{C}$ with $|z z_0| < R$.
- 2. The power series diverges for every $z \in \mathbb{C}$ with $|z-z_0| > R$, the disk $D(z_0,R) = \{z \in \mathbb{C} : |z-z_0| < R\}$ is called the disk of convergence.

Proof. Define the set $A \subset \mathbb{R}_{\geq 0}$ of nonegative real numbers for which the sequence $\{|a_n| r^n\}_{n \in \mathbb{N}_0}$ is bounded.

$$A := \left\{ r \ge 0 : \sup_{n \in \mathbb{N}} |a_n| \, r^n < \infty \right\}$$

we have $A \neq \emptyset$ because $0 \in A$.

Define $R := \sup A \in [0, \infty]$, we now show that R has the stated properties.

- 1. Let $z \in D(z_0, R)$. By definition of the supremum, there exists $r \in A$, (i.e., $|a_n| r^n$ is bounded) such that $|z z_0| < r \le R$, since $|z z_0| < r$ and $\{|a_n| r^n\}_{n \ge 0}$ is bounded. then by Abel's lemma, we deduce that the series $\sum_{n=1}^{\infty} a_n (z z_0)^n$ converges absolutely.
- 2. Let $z \in \mathbb{C}$ such that $|z-z_0| > R$, suppose for contradictions that the power series converges at z. Then by the corollary 2, it would converge absolutely for any ω with $|\omega-z_0| < |z-z_0|$, In particular, for any r such that:

$$R < r < |z - z_0|$$

The series would converge at points on the circle $C(z_0, r)$ implying $r \in A$. This contradicts the fact that $R = \sup A$, Therefore. the power series diverges.

The Uniqueness of R:

If another $R \in [0, \infty]$ satisfies the same properties, a point z such that $|z - z_0|$ lies between R and R' would lead to a contradiction regarding the converges or divergence of the power series.

1.1 Formulas for Calculating the Radius of Convergence

Proposition 1.1.1 (Hadamard's Formula): Let $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ be a power series centered at $z_0 \in \mathbb{C}$. Denote by R its radius of convergence. Then:

$$\frac{1}{R} = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$$

with the convention $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$

Proof. Let $L := \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} \in [0, \infty]$, we must show that $R = \frac{1}{L}$. Let $z \in \mathbb{C} \setminus \{z_0\}$, we distinguish three cases:

1. if (L = 0). In this case, we have:

$$0 \le \lim_{n \to \infty} \inf |a_n|^{\frac{1}{n}} \le \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = 0$$

Thus, $\lim_{n\to\infty}\inf|a_n|^{\frac{1}{n}}=\lim_{n\to\infty}\sup|a_n|^{\frac{1}{n}}=0$ This implies that $\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$ exists and equals to 0, so for all n sufficiently large, we have:

$$|a_n|^{\frac{1}{n}}<\frac{1}{z\,|z-z_0|}$$

That is

$$|a_n(z-z_0)^n|<\frac{1}{z^n}$$

for all n sufficiently large, since the geometric series $\sum_{n=1}^{\infty} \frac{1}{z^n}$ converges then the series $\sum_{n=1}^{\infty} |a_n(z-z_0)^n|$ converges $\forall z \in \mathbb{C}$, thus $R = +\infty = \frac{1}{L}$

2. $(L = +\infty)$, we have $L = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = +\infty$ is equivalent to the fact the sequence $\left\{|a_n|^{\frac{1}{n}}\right\}_{n \in \mathbb{N}}$ is bounded. Therefore, the sequence:

$$|a_n(z-z_0)^n|^{\frac{1}{n}} = |a_n|^{\frac{1}{n}} |z-z_0|$$

is also unbounded. This implies that $|a_n(z-z_0)^n|$ is unbounded, thus $|a_n(z-z_0)^n|$ does not converge to 0 as $n \to \infty$. Hence $\sum_{n=1}^{\infty} a_n(z-z_0)^n$ diverges. Hence R=0

- 3. $(L \in (0, \infty))$, Let $z \in \mathbb{C}$. We consider two subcases:
 - (a) if $|z z_0| < r < \frac{1}{L}$, choose r such that $|z z_0| < r < \frac{1}{L}$, thus $L < \frac{1}{r}$. By defintion of a $\lim_{n \to \infty} \sup$, for all n sufficiently large we have:

$$|a_n|^{\frac{1}{n}} < \frac{1}{r}$$

which implies that:

$$|a_n(z-z_0)^n| < \underbrace{\left(\frac{|z-z_0|}{r}\right)^n}_{<1}$$

since $\left|\frac{z-z_0}{r}\right| < 1$, the geometric series $\sum_{n=1}^{\infty} \left|\frac{z-z_0}{r}\right|^n$ converges, by comparison, the power series $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ converges absolutely

(b) if $(|z-z_0| > \frac{1}{L})$, in this case, we have:

$$\lim_{n \to \infty} \sup |a_n(z - z_0)^n|^{\frac{1}{n}} = \lim_{n \to \infty} \sup \left(|a_n|^{\frac{1}{n}} |z - z_0| \right)$$
$$= L |z - z_0| > 1$$

Thus, $\{a_n(z-z_0)^n\}_{n\in\mathbb{N}}$ is unbounded, hence $|a_n(z-z_0)^n|$ does not converge to zero as $n\to\infty$, implying that $\sum_{n=1}^{\infty}a_n(z-z_0)^n$ diverges therefore:

$$R = \frac{1}{L}$$