UFCG/CCT/Unidade Acadêmica de Matemática e Estatística		NOTA:	
DISCIPLINA: Álgebra Linear I		PERÍODO): 2022.1
PROFESSOR:		TURNO: Tarde	
ALUNO(A):		DATA: _	_/02/2023
Curso de Graduação:	$N^{\underline{o}}$ da matrícula:		

Reposição do $2^{\underline{0}}$ ESTÁGIO

Atenção! 1)Não retire o grampo da prova. 2)Use apenas o papel da prova. 3)Não apague as contas. 4)Desligue o(s) seu(s) celular(es).

Q1.
$$(1,0 \ ponto)$$
 Seja $V=R^3$ e $W=\{(x,y,z)\in \mathbb{R}^3 \ /x+3y-z=0\}$.

Mostre que $W \stackrel{\bullet}{\mathbf{e}}$ um Subespaço Vetorial de V.

- **Q2.** $(1,5 \ pontos)$ Verifique se o vetor v=(4,1,2,3) é uma combinação linear dos vetores $v_1=(1,1,1,3)$, $v_2=(1,2,3,6)$ e $v_3=(1,-1,2,2)$. Apresente todas as contas.
- **Q3.** (1,5 pontos) O conjunto $A = \{t^2 t + 3, 4t^2 + 5t + 6, 3t^2 + 6t + 3\}$ é uma base ordenada de $V = P_2(\mathbb{R})$? Justifique!
- **Q4.** Sejam $V = \mathbb{R}^3$, $W_1 = [(0,1,2), (1,2,0), (1,3,2)]$ e $W_2 = \{(x,y,z) \in \mathbb{R}^3/x y = 0 \text{ e } z 2x = 0\}$ subespaços de V. Determine:
 - (a) $(1,0 \ ponto)$ Uma base de W_1 e os geradores de W_2 .
 - (b) $(1, 0 \ ponto) \ \dim (W_1 + W_2)$.
 - (c) $(1, 0 \ ponto) \ \dim (W_1 \cap W_2)$.
- **Q5.** $(1,0 \ ponto) \ V = \mathbb{R}^3$ é a soma direta dos subespaços vetoriais $S_1 = \{(x,y,0) \ / \ x,y \in \mathbb{R}\}$ e $S_2 = \{(0,a,b) \ / \ a,b \in \mathbb{R}\}$? Justifique!
- **Q6.** Sejam $\beta = \{(1,2,3), (0,2,3), (0,0,3)\}$ e $\alpha = \{(0,0,1), (1,2,3), (0,1,0)\}$ bases ordenadas de $V = \mathbb{R}^3$. Determine:
 - (a) $(1,5 \ pontos) [I]^{\beta}_{\alpha}$.
 - $(b)\ \left(0,5\ ponto\right)\,\left[\left(2,3,4\right)\right]_{\scriptscriptstyle\alpha}\ \ \text{sabendo-se que}\,\left[\left(2,3,4\right)\right]_{\scriptscriptstyle\beta}=\left[\begin{array}{c}2\\-1/2\\-1/6\end{array}\right].$

Boa Prova!