Use of Trilinos for Stellar Hydrodynamics

T. Goffrey, J. Pratt, C. Geroux, M. Viallet, I. Baraffe, M. Popov, D. Folini, R. Walder

t.goffrey@exeter.ac.uk

Tuesday 3rd March, 2015

Challenges of Stellar Interiors

Challenges of Stellar Interiors

Stellar physics involves many complex processes characterised by vastly different:

- ► Time scales (solar values):
 - $au_{
 m therm} \sim 10^7$ years,
 - $ightharpoonup au_{
 m nucl} > 10^9$ years,
 - $au_{\mathrm{Dyn}} \sim$ 30 mins
- Length scales,
 - $ightharpoonup H_P = \frac{dr}{d \ln P}$
 - ► $10^{-5}R_*^{a...} \le H_p \le R_*$
- Mach numbers,
 - $M_s = \frac{|\vec{u}|}{C}$
 - ▶ $10^{-10} \le M_s \le 1$

Image source:

http://solarscience.msfc.nasa.gov/images/cutaway.jpg

Challenges of Stellar Interiors

Stellar physics involves many complex processes characterised by vastly different:

- ► Time scales (solar values):
 - $au_{
 m therm} \sim 10^7$ years,
 - ightharpoonup $au_{
 m nucl} > 10^9$ years,
 - ightharpoonup $au_{
 m Dyn}\sim$ 30 mins
- Length scales,
 - $H_P = \frac{dr}{d \ln P}$
 - $10^{-5}R_*^{a \ln P} \leq R_*$
- Mach numbers,
 - $M_s = \frac{|\vec{u}|}{C},$
 - $10^{-10} < M_s < 1$

1D Stellar Evolution

- ► Stellar evolution dependent on 1D, spherically symmetric simulations
- Parametrise multidimensional phenomena:
 - Shear Mixing
 - Turbulent convection (Mixing length theory)
 - Accretion
 - Rotation
- Many free parameters-hinder predictive capabilities
- ▶ However, it is these results we must link to observations

3D Stellar Physics

- Test the 1D formalism
 - Improve predictive capability
- Lots of data becoming available (Gaia, CoRoT, Kepler)
- Existing work often uses explicit or Boussinesq or anelastic approximations
 - Inappropriate for modelling entire stellar interior
 - Explicit methods severely restrict time of simulation
- ► MUSIC offers fully compressible, implicit, hydrodynamics

Spatial Discretisation

$$\begin{split} &\frac{\partial}{\partial t}\rho = -\nabla \cdot (\rho \vec{u}) \\ &\frac{\partial}{\partial t}\rho e = -\nabla \cdot (\rho e \vec{u}) - P\nabla \cdot \vec{u} - \nabla \cdot (\chi \nabla T) \\ &\frac{\partial}{\partial t}\rho \vec{u} = -\nabla \cdot (\rho \vec{u} \otimes \vec{u}) - \nabla P + \rho \vec{g} \end{split}$$

- Finite volume discretisation
- Total variation diminishing
- Second order in space

$$P = P(\rho, e)$$

$$T = T(\rho, e)$$

$$\chi = \frac{16\sigma T^3}{3\kappa\rho}$$

$$\kappa = \kappa(T, \rho)$$

Temporal Discretisation

- ► Crank-Nicolson, 2nd order in time
- ▶ Use Newton-Raphson method to solve non-linear problem
- Linear Solve-Trilinos, JFNK
- Preconditioner, approximate semi-implicit system
- Semi-implicit system-Trilinos, Matrix based.

Preconditioner

- ▶ Use approximate solution of full implicit system as preconditioning operator.
- Purpose written semi-implicit (SI) scheme:
 - Linearisation, advection treated explicitly.
 - First order in time&space.
 - Treats sound waves, and optionally thermal diffusion implicitly.
 - ▶ Stability based on $\frac{\Delta x}{|\vec{u}|}$, not, $\frac{\Delta x}{C_s + |\vec{u}|}$
 - ▶ Designed to be Mach number independent.

Preconditioner

- Use approximate solution of full implicit system as preconditioning operator.
- Purpose written semi-implicit (SI) scheme.
- Resulting linear problem smaller and more sparse.
- Solve using GMRES, ML-Preconditioner

Typical Time Step

Mach Number Independence

- Key numerical challenge
- Motivation behind time-implicit methods
- Calibrate MUSIC using ideal gas problems
- lacktriangle Seek range, $10^{-6} \le \mathrm{M_s} \le 10^{-1}$

2D Vortex Advection

Problem definition:

$$\rho = (T_{\infty} + \delta T)^{\frac{1}{\gamma - 1}} \qquad e = \frac{\rho^{\gamma - 1}}{\gamma - 1}.$$

$$u = u_{\infty} + \delta u \qquad v = v_{\infty} + \delta v$$

- ▶ Vary Mach number by fixing u_{∞}, v_{∞} , and varying T_{∞} .
- ▶ Calculate L_1, L_2, L_∞ norms on velocity
- Simulate problem for range of fixed timesteps.

2D Vortex Problem - Errors

Taylor Green Vortex Decay

Problem definition:

$$\begin{array}{l} u_x(x,y,z) = u_0 \sin x \cos y \cos z, \\ u_y(x,y,z) = -u_0 \cos x \sin y \cos z, \\ u_z(x,y,z) = 0 \qquad \rho = 1.0, \\ p(x,y,z) = p_0 + \frac{1}{16} \rho_0 u_0^2 (2 + \cos 2z) (\cos 2x + \cos 2y) \end{array}$$

- ▶ Vary Mach number by fixing $u_0 = 1.0$, and varying p_0 .
- ▶ Investigate Mach number dependency, by measuring $\frac{dK}{dt}$

Taylor Green Vortex Decay

Taylor Green Vortex Decay

Maximum difference in peak dissipation: 0.2%

Trilinos Settings

- useNewPerturbation=false
 - $\lambda = 10^{-7}$
- But very code specific, see also:
 - ► Non-linear settings
 - Scaling/Normalisation
- Probably degenerate problem

Shear Mixing

- ▶ Important process in terms of:
 - Stellar Evolution
 - Extension of stellar life time
 - ▶ Linking to observations
- Try to quantify mixing using:
 - Tracer Particles
 - Passive Scalars (additional linear solve!)

Scalar-Particle Test

Accretion(C. Geroux)

- Modelling of interaction of star and environment
- Consider already formed star
- Accretion modelled can be described as:
 - Bursts/Short Term
 - ▶ Hot
- Effectively simulated as inflow boundary condition.

Accretion Control Run

Hot Accretion

Convective Stability Control Run

Convective Stability with Accretion

Convective-Radiative Zone Interaction (J. Pratt)

- Convective flows can displace fluid from convectively unstable to stable zones
- Penetration refers to a permanent displacement of this boundary
- Overshooting is a short-time ballistic process
- ► Convective-Radiative boundary can be important for:
 - Chemical Mixing
 - Angular Momentum Transport
 - Dynamo Processes

Overshooting 3D

Overshooting 2D

Questions?

