

Universidade do Minho Escola de Ciências

O Transistor

TRABALHO LABORATORIAL 4
ELETRÓNICA E INSTRUMENTAÇÃO EM FÍSICA

Afonso Costeira A89636 André Mouquinho A90129 Miguel Godinho A89624

27 de janeiro de 2021

1 Sumário

Esta atividade experimental tem como objetivo identificar as várias zonas de funcionamento de um transístor e polarizá-lo nas mesmas, procedendo-se à análise de circuitos constituídos por transístores, os quais funcionam como amplificadores de tensão.

2 Procedimento, Resultados e Análise

Tal como dito no sumário iremos proceder à análise de circuitos constituídos por transístores, no qual iremos proceder a duas montagens diferentes. Na primeira temos o objtivo de testar a sensibilidade do transístor a partir de uma resistência variável ou potenciómetro. Na segunda, iremos fazer a análise o efeito do transístor numa corrente alternada.

2.1 Montagem 1^1

Primeiramente, montámos o circuito da figura 1.

Figura 1: Montagem 1.

 $^{^1\}mathrm{Os}$ dados foram recolhidos através do Tinkercad.

De seguida, fomos medir os valores de V_{be} , I_c e I_b . Os dois primeiros conseguimos retirar experimentalmente, mas o ultimo não foi possível, pois o valor que apresentada era menor que o ultimo valor do multímetro. Sendo assim, fomos procurar o valor de I_b pela lei de ohm.

$$V_{be} = 0,673V$$
 $I_c = 5 \ mA$ $I_b = 18,3 \ \mu A$

Com os valores de ${\cal I}_c$ e ${\cal I}_b$ fomos calcular o ganho de correte do transístor.

$$Ganho = \frac{I_c}{I_b} = \frac{5,960 \text{ } mA}{18,3 \text{ } \mu A} = 27235$$

Para terminar esta montagem fomos ver a sensibilidade do transístor. Para tal variamos a resistência R_{bv} e vimos como alterava o V_{ce} . Os resultados obtidos encontram-se na tabela 1.

	Resistência	Unidade	Valor de V_{ce}	Unidade
mínimo	1	Ω	16	
	0,01		16	
	0,1	$k\Omega$	16,2	
	1		18,1	mV
	0,01		32,1	
	0,1	$M\Omega$	84,5	
	0,2		123	
	0,3		1,04	V
	0,4		3,25	
	0,5		4,58	
	0,6		5,48	
	0,7		6,12	
	0,8		6,6	
	0,9		6,97	
máximo	1		7,27	

Tabela 1: Valores de V_{ce} em função da resistência R_{bv} .

Aqui conseguimos verificar que à medida que a resistência aumenta, aumenta o valor de V_{CE} . Podemos também que o valor de V_{CE} está entre $0 < V_{CE} < V_{CC}$ e portanto a zona de funcionamento é ativa.

2.2 Montagem 2

Para esta montagem, repusemos o valor de V_{CE} nos 5 V e acrescentamos um gerador de função e um condensador como indica a figura 2.

Figura 2: Montagem 2.

Ligamos o gerador de função com uma onda sinusoidal com 1 Vpp e com 1 Hz e fomos ver a sinal que nos dava (figura 3).

Figura 3: Sinal da montagem 2.

A partir do osciloscópio obtemos os valores de V_{pp} para os sinais de entrada e saída e com os mesmo fomos calcular o ganho

$$V_{in} = 63,20 \ mV$$
 $V_{out} = 4,001 \ V$

$$Ganho = \frac{V_{out}}{V_{in}} = \frac{4,001}{0,06320} \approx 63,3$$

Aqui podemos verificar que acontece uma amplificação no sinal entrada que resulta no sinal de saída e que o transístor funciona como um amplificador.

3 Conclusão

Nesta experiência tínhamos como objetivo estudar as propriedades de um transístor em que exploramos a sensibilidade do mesmo fazendo variar a uma das resistência e ver como a mesma atuava na V_{ce} e depois fomos verificar como o transístor funcionava como amplificador e usamos uma corrente alterna e estudamos os sinais.