

 $TEP4105:\ Fluidmekanikk$

Øving 12: Høst 2015

Oppgave 1:

Det komplekse potensialet

$$w(z) = Uz^{\frac{\pi}{\alpha}} \tag{1}$$

er gitt, hvor U(>0) er en konstant. α er en gitt vinkel i området $0<\alpha<\pi/2$. Potensialet beskriver en todimensjonal ideell strømning inne i en kile med åpningsvinkel α .

 \mathbf{a}

Sett $z = r \exp(i\theta)$ og finn hastighetspotensialet Φ og strømfunksjonen Ψ , samt hastighetskomponentene v_r og v_θ ; alle som funksjoner av r og θ . Skisser strømbildet.

 \mathbf{b}

Anta så at én av strømlinjene (ABC på figuren ovenfor) erstattes av en fast flate. Avstanden mellom kilens toppunkt O og det nærmeste punkt B på flaten (tilsvarende $\theta = \alpha/2$) er gitt lik b. Finn volumgjennomstrømningen Q i kanalen, uttrykt ved U, b og α .

 \mathbf{c}

Finn trykket p i væsken, når trykket i O er kjent, lik p_0 . Væskens tetthet er antatt kjent, lik p, og tyngden neglisjeres. Er svaret realistisk for store verdier av r?

Oppgave 2:

En rekke kilder er plassert i posisjonene $(0,0),(0,\pm a),(0,\pm 2a),\ldots$, som vist i figuren under.

Sett opp uttrykket for det komplekse potensial w(z) i form av en rekke, og vis ved hjelp av formelen

$$\sinh\left(\frac{\pi z}{a}\right) = \frac{\pi z}{a} \prod_{n=1}^{\infty} \left(\frac{z^2 + n^2 a^2}{n^2 a^2}\right),\tag{2}$$

at w(z) kan skrives som

$$w(z) = \mathcal{C} \ln \sinh \frac{\pi z}{a},\tag{3}$$

hvor $\mathcal C$ er en reell konstant. Hva blir Φ og Ψ ?

Oppgitt:

$$\sinh z = \sqrt{\left(\frac{1}{2}\left(\cosh 2x - \cos 2y\right)\right)} \exp\left[i\arctan\frac{\tan y}{\tanh x}\right],\tag{4}$$

hvor z = x + iy.