

# AmM-Ordinario-18-w.pdf



Fibonacci\_



Ampliación de Matemáticas



3º Grado en Ingeniería Aeroespacial



Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio Universidad Politécnica de Madrid



## Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.









18[

Ver mis op

### Continúa do

| • | Principal Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Arts Enclosiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | And and the second seco |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | No. of Street, |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Tring on trings own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

405416 arts esce ues2016juny.pdf

#### Top de tu gi





Rocio



pony



Asignatura:

## Ampliación de Matemáticas (Versión 1),

(25-01-2019)

2 💳

3 🗀

4 💳

5 📟

6 🗀

9 🗀 10 🗀

11 ==

12

13 🗀

15 🗀

16 ==

17 🗀

18 === 19 🗀 20 💳

21 🗀 22 🗀 23 == 24 💳 25 💳 26 =

27 📥 29 💳 30 🗀 31 ===

32 🗀

33 💳 35 🗀

36 🗀 37 ===

38 39 💳

41 🗀

42 💳 43 🚃

44 💳 45 🗀 46 💳

47 📥 48 💳 49 💳 50 💳 51 \_\_\_ 52 💳

53 🚃

55 ===

56 == 57 💳 58 == 59 60 🗀 62 🗀 63 === 64 🗀 A. Sea  $u: \mathbb{R} \times ]0, +\infty[ \to \mathbb{R}$  la solución del problema de Cauchy definido

$$\begin{split} \frac{\partial u}{\partial t} &= (1 + \ln(1+t)) \frac{\partial^2 u}{\partial x^2} + u \quad \text{en } (x,t) \in \mathbb{R} \times ]0, +\infty[, \\ & u(x,0) = \exp(-x^2) \quad x \in \mathbb{R}, \\ & u(x,t) \text{ acotada en } \mathbb{R} \text{ para cada } t \in ]0, +\infty[. \end{split}$$

Sea  $\hat{u}: \mathbb{R} \times ]0, +\infty[ \to \mathbb{C}$  la transformada de Fourier de la función u con respecto a la variable x, es decir,  $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$ . La función u verifica que:

(1) 
$$u(1, e^2 - 1) = \frac{1}{\sqrt{1 + 2e^2}}$$
  $\exp(-\frac{1}{1 + 2e^2} - 1 + e^2)$ .  $(2)$   $u(2, e^3 - 1) = \frac{1}{\sqrt{1 + 12e^3}}$   $\exp(-\frac{4}{1 + 12e^3} - 1 + e^3)$ .

(2) 
$$u(2, e^3 - 1) = \frac{1}{\sqrt{1 + 12e^3}}$$
  
 $\exp(-\frac{4}{1 + 12e^3} - 1 + e^3)$ 

(3) 
$$u(3, e^4 - 1) = \frac{1}{\sqrt{1 + 4e^4}}$$
 (4) No es cierta ninguna de  $\exp(-\frac{9}{1 + 4e^4} - 1 + e^4)$ .

Nota. 
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde  $b \in \mathbb{R}$  y  $b > 0$ .

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 2\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 8w(t) = g(t) \text{ en } ]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1,$$

donde  $g:[0,+\infty[ \to \mathbb{R}$  es la función definida por  $g(t)=\pi-t$  si  $t\in[0,\pi[$ y  $g(t) = \sin(t)$  si  $t \in [\pi, +\infty[$ . La transformada de Laplace de la función  $w:[0,+\infty[\to\mathbb{R} \text{ es tal que:}$ 

$$\mathcal{L}[w(t)](4) = \frac{1}{2^9} (15 + \frac{\exp(-4\pi)}{17}).$$

$$(6) \quad \mathcal{L}[w(t)](4) = \frac{1}{2^9} (15 + \frac{\exp(-4\pi)}{17}).$$

$$4\pi - \frac{33 \exp(-4\pi)}{17}).$$

(6) 
$$\mathcal{L}[w(t)](4) = \frac{1}{2^9} (15 + 4\pi - \frac{33 \exp(-4\pi)}{17})$$

(7) 
$$\mathcal{L}[w(t)](4) = \frac{1}{2^9} (19 + \frac{33 \exp(-4\pi)}{17})$$

(8) No es cierta ninguna de las otras tres respuestas.





| - 1      |     | 1 |    | - 1 |   |    |
|----------|-----|---|----|-----|---|----|
| <u> </u> |     | 0 | 0  | 2   | 6 | ۵  |
| _ = =    | 1 1 |   | _1 | _1  | 4 | É  |
| نے کے    |     |   |    |     |   |    |
| _3 _3    | 3 3 | 3 | 3  | 3   | 3 | کے |
| 4 4      |     |   |    |     |   |    |
| 5 3      |     |   |    |     |   |    |
| 6        |     |   |    |     |   |    |
| Z :      |     |   |    |     |   |    |
| 8 2      |     |   |    |     |   |    |
| 9 2      |     |   |    |     |   |    |



| ĺ |             | (           | Srup           | ю      |              |
|---|-------------|-------------|----------------|--------|--------------|
|   | 1<br>6<br>A | 2<br>7<br>B | 3<br>8<br>€    | 4 2 0  | 5<br>19<br>E |
|   | £           | G           | $\blacksquare$ | $\bot$ | ٢            |

|    |   | Au | cilia    | r |   |
|----|---|----|----------|---|---|
| 1  | a | ь  | c        | d | е |
| 2  | - |    | c        | 4 | 8 |
| 3  | 2 | Ь  | <u>_</u> | ₫ | e |
| 4  | 3 | ь  | c        | ₫ |   |
| 5  | 4 | Ь  | c        | d | е |
| 6  | 4 | b  | c        | 4 | 0 |
| 7  | 8 | b  | <u>c</u> | d | e |
| 8  | - | b  | c        | ₫ | 0 |
| 9  | 1 | Ь  | <u>_</u> | d | е |
| 10 | - | b  | C        | d | 0 |

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

### Ampliación de Matemáticas (Versión 1)

C. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - z^5 \frac{dw}{dz} - z^4 w = 0 \text{ en } \mathbb{C}, \ w(0) = 1, \ \frac{dw}{dz}(0) = 0.$$

La solución del problema anterior es una función entera  $w:\mathbb{C}\to\mathbb{C}$ , cuyo desarrollo en serie de Taylor es  $w(z)=\sum\limits_{k=0}^{+\infty}c_kz^k$ . La función w y los coeficientes  $c_k$  de su desarrollo cumplen que:

- (9) Los coeficientes  $c_{3j+1}$ , para todo  $j \in \mathbb{N}$ , son nulos y  $c_{12} = \frac{7}{2}$ . La función w no está acotada en  $\mathbb{C}$ .
- $\frac{7}{12 \cdot 11 \cdot 6 \cdot 5}$ . La función w no está acotada en  $\mathbb{C}$ . (10) Los coeficientes  $c_{7j+1}$ , para todo  $j \in \mathbb{N}$ , son nulos y  $c_{12} = \frac{7}{12 \cdot 11 \cdot 6 \cdot 5}$ . La función w no está acotada en  $\mathbb{C}$ .
- $\frac{7}{12\cdot 11\cdot 6\cdot 5}$ . La función w no está acotada en  $\mathbb{C}$ . (11) Los coeficientes  $c_{6j+1}$ , para todo  $j\in\mathbb{N}$ , son nulos y la función w está acotada en  $\mathbb{C}$ .
- (12) No es cierta ninguna de las otras tres respuestas.

D. Considérese la ecuación diferencial

$$z\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{1}{3}\frac{\mathrm{d}w}{\mathrm{d}z} - \exp(z)w = 0.$$

Las soluciones de la ecuación anterior, en  $D\subset \mathbb{C}$ , verifican que:

- (13) Existe una solución de la ecuación del enunciado,  $w_a$ , tal que  $w_a(z) = 1 + \text{Ln}(z) + o(z)$ .
- Existe una solución de la ecuación del enunciado,  $w_b$ , distinta de la función nula, tal que  $w_b(z) = 3 + \sqrt[3]{z^2} + o(\sqrt[3]{z^2})$ .
- (15) Existe una solución de la ecuación del enunciado,  $w_c$ , distinta de la función nula, tal que  $w_c(z) = o(\sqrt[3]{z^2})$ .
- (16) No es cierta ninguna de las otras tres respuestas.

### E. Considérese el límite

$$\lim_{x \to 0} \frac{J_2(4x) - xJ_1(x) + x^2J_0(x)}{1 - J_0(x)}.$$

El límite anterior existe y vale:

(17) -8.

(18) 8.

(19)10.

(20) No es cierta ninguna de las otras tres respuestas.

Nota. 
$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(\nu+k+1)} (\frac{x}{2})^{2k+\nu}$$
.



$$\frac{2\hat{u}}{2t}(w, t) = (1 + \ln(1+t)) \left(-w^2 \hat{u}(w, t)\right) + \hat{u}(w, t)$$

$$\frac{d\hat{u}}{\hat{u}} = (1 - w^2 - w^2 \ln(1+t)) dt$$

$$\int_{u: \ln(1-u)} \ln(1+t) dt = t \ln(1-\int_{t+1}^{t} dt) = \int_{u: \ln(1-u)} \frac{1}{1+t} dt$$

$$F(u(x,0))(w) = \hat{u}(w,0) = F(exp(-x^2)) = [\Pi exp(-\frac{w^2}{u})] = G_1$$

Algrenzia Pexplor axplaining dx 3 fexplox 2 fe

$$\widehat{u}(w,t) = \prod \exp(-\frac{w^2}{u}) \exp(t - w^2(t+1) \ln(1+t))$$

[Therefore explt) = explt)

$$\int_{\infty} \left[ \exp(-px_{5}) \right] (m) : \left[ \frac{p}{u} \exp(-\frac{np}{m_{5}}) \right]$$

$$\hat{u}(w,t) = \sqrt{\Pi} \exp\left[-w^2(|t+1||x||/1+t) + \frac{\pi}{u}\right]$$

$$F(\overline{n}) = \overline{\Pi} = \sqrt{\frac{\pi}{b}} \exp(-\frac{x^2}{4b})$$





Scanned by CamScanner



# Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.







## Ver mis op

#### Continúa do













B. 
$$\int \frac{d^2w}{dt^2} (t) + 2 \frac{dw}{dt} (t) + 8w(t) = g(t)$$
  
 $w(0) = (0=0), \frac{dw}{dt} (0) = C_1 = 1$ 

= 
$$(n-t)H(t) + (t-n)H(t-n) + \frac{cen(t-n+n)}{-cen(t-n)}H(t-n)$$
  
 $= \frac{d^2w}{dt^2}[iz_1 + 2\sqrt{\frac{dw}{dt}}]iz_1 + 8\sqrt{\frac{w}{iz_1}} = \sqrt{\frac{g(t)}{iz_1}}$ 

$$(2 - \lambda \left[\frac{d\omega}{dt}\right](2) - \frac{d\omega}{dt}(0)) + 2(2 - \lambda \left[\omega\right](2) - \omega(0)) + 8\lambda \left[\omega\right](2) = \lambda \left[g(1)\right](2)$$

$$\frac{2 \cdot \angle [w](z) - w(0)}{(z^{2} + 2z + 8)} \angle [w](z) = \frac{z \cdot w(0)}{ct} + \frac{2 \cdot w(0)}{ct} + \frac{dw}{ct}(0) + \angle [g(t)](z)}{\frac{z^{2} + 2z + 8}{ct}}$$

$$\frac{|(z^{2} + 2z + 8)}{|(z^{2} + 2z + 8)} \angle [w](z) + \frac{dw}{ct}(0) + \frac{dw}{c$$

$$2(w(+))(u) = \frac{1}{29}(15+4n+\exp(-4n)\cdot\frac{1}{17})$$

C. 
$$\frac{d^{2}u}{dl^{2}} \cdot 2^{5} \frac{du}{dl} - z^{4}uu = 0 \text{ an } C$$

$$\frac{d^{2}u}{dl^{2}} \cdot 2^{5} \frac{du}{dl} - z^{4}uu = 0 \text{ an } C$$
Funcion antera: 
$$u(z) : \frac{du}{dz} = 0$$

$$- \text{Sushitumal al discredia onterior on } u \text{ ecución:}$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2} \cdot (K - 2) = 0$$

$$\frac{d^{2}u}{dl} \cdot (K - 1)C_{K} z^{2}$$

D. 
$$z \cdot \frac{d^2 \omega}{dt^2} + \frac{1}{3} \frac{d\omega}{dt} - \exp(t) \omega = 0$$

$$\int \frac{d^2 \omega}{dt^2}(1) = \frac{b(1)}{2} \frac{d\omega}{dt} (2) + \frac{o(1)}{2} \omega(t)$$

$$\frac{d^2 \omega}{dt^2} = -\frac{1}{3} \frac{d\omega}{dt} - \frac{(2 + xp(1))}{2} \omega$$

$$\Rightarrow \text{ Et punto } z = 0 \text{ as un pto singular regular. Lata } dt \text{ $t = 0$ elementary of autovalue } dt \text{ as solution on the determinate por autovalue } dt \text{ lata matrix: } C = \begin{pmatrix} 0 & 4 \\ 0 & 2/5 \end{pmatrix} C = \begin{pmatrix} 0 & 4 \\ 0 & 2/5 \end{pmatrix}$$

$$-\lambda \left(\frac{2}{3} - \lambda\right) = 0 \quad \Rightarrow \lambda_1 = 0; \lambda_1 = \frac{2}{3}$$

$$\Rightarrow como \quad \lambda_1 \neq \lambda_2 \quad \text{y} \quad \lambda_1 - \lambda_2 \neq \text{N} \text{ i}$$

$$\int u_1 = 2 \frac{\lambda_1}{2} p_1(2) \quad \Rightarrow u_2 = p_1(2)$$

$$u_2 = 2 \frac{\lambda_2}{2} p_2(2) \quad \Rightarrow u_3 = p_1(2)$$

$$u_4 = 2 \frac{\lambda_1}{2} p_2(2) \quad \Rightarrow u_4 = p_1(2)$$

$$u_5 = q_1 u_1(2) + q_2 u_2(1) \Rightarrow u_4 u_3 = q_1(2) + q_2 \frac{3}{3} \frac{7}{4} p_2(2)$$

$$v_4 = q_1 u_4(2) + q_2 u_2(1) \Rightarrow u_4 u_3 = q_1(2) + q_2 \frac{3}{3} \frac{7}{4} p_2(2)$$

$$v_4 = q_1 u_4(2) + q_2 u_2(1) \Rightarrow u_4 u_3 = q_1(2) + q_2 \frac{3}{4} \frac{7}{4} \frac{1}{4} \frac{1$$

Scanned by CamScanner

 $\lim_{x \to 0} \frac{2x^2 - \frac{x^2}{2} + x^2 + o(x^2)}{\frac{x^2}{2} + o(x^2)} = \lim_{x \to 0} \frac{4(5x^4)}{2x^4} = 10$