FINAL PROJECT

Python week 9

The dataset I've chosen describes the births in Spain, along the year 2015. It has information about the province of the mother, her age, if the birth is the first one or not, if a cesarean was needed, if the newborn died in the 24 hours after the birth, the weight of the newborn, number of weeks of the pregnancy and more...

Research:

- 1. has the age of the mother any relationship with the need of cesarean?
- 2. Is there any province where the number of cesarean is bigger than others?
- 3. Is there any patron in the circumstances of the cesarean?

Step 1: Find a dataset or datasets

The dataset I've chosen describes the births in Spain, along the year 2015. It has information about the province of the mother, her age, if the birth is the first one or not, if a cesarean was needed, if the newborn died in the 24 hours after the birth, the weight of the newborn, number of weeks of the pregnancy and more...

Import Data Files

```
In [1]:
```

```
import pandas as pd
import numpy as np
import csv
import matplotlib.pyplot as plt
```

Una vez conseguidos los ficheros csv los cargo en dataframes

```
In [2]:
```

```
mydata12=pd.read_csv('nacimientos12.csv', sep=';')
mydata13=pd.read_csv('nacimientos13.csv', sep=';')
mydata14=pd.read_csv('nacimientos14.csv', sep=';')
mydata15=pd.read_csv('nacimientos15.csv', sep=';')
mydata16=pd.read_csv('nacimientos16.csv', sep=';')
```

```
In [3]:
```

```
mydata= pd.concat([mydata12, mydata13,mydata14, mydata15,mydata16])
```

In [193]:

```
mydata.shape
mydata.head (5)
```

Out[193]:

	provincia	municipio	mespar	anopar	propar	munpar	lugarpa	multipli	norma
0	1		10	2012	1	059	1	1	1
1	1		9	2012	1		2	1	1
2	1	002	10	2012	48	013	1	1	1
3	1	002	9	2012	48	013	1	1	1
4	1	002	10	2012	48	013	1	1	2

5 rows × 26 columns

In [194]:

```
# cambiar a dato texto, pero manteniendo el original por si acaso
mydata['cesareaB']= mydata['cesareaB'].replace( 1, 'Y')
mydata['cesareaB']= mydata['cesareaB'].replace( 2, 'N')
```

In [195]:

```
mydata['peson'].describe()
#mydata['peson'].max()
mydata['PesoNacido']=pd.to_numeric(mydata['peson'].replace(' ',''))
mydata['PesoNacido'].describe()
```

Out[195]:

```
2.033092e+06
count
         3.212397e+03
mean
std
         5.433492e+02
         1.000000e+01
min
25%
         2.920000e+03
50%
         3.240000e+03
75%
         3.550000e+03
         6.580000e+03
max
```

Name: PesoNacido, dtype: float64

In [196]:

```
mydata['PesoNacido'].mean()
```

Out[196]:

3212.397449303819

```
mydata['Sexo_lit']=mydata['sexo'].replace(6,'M')
mydata['Sexo lit']=mydata['Sexo lit'].replace(1,'V')
mydata['Sexo_lit'].head(5)
Out[197]:
0
     Μ
     V
2
     Μ
     Μ
     V
Name: Sexo lit, dtype: object
research questions
Research:
 1. has the age of the mother any relationship with the need of cesarean?
 2. Is there any province where the number of cesarean is bigger than others?
 3. Is there any patron in the circumstances of the cesarean?
Vamos a analizar los partos con cesarea
In [198]:
fcesarea=mydata['cesarea']==1
fNOcesarea=mydata['cesarea']==2
In [199]:
mydata[fcesarea]['PesoNacido'].mean()
Out[199]:
3126.41968910975
In [200]:
mydata[fNOcesarea]['PesoNacido'].mean()
Out[200]:
3244.279567507213
In [201]:
mydata['semanas']=mydata['semanas'].replace(' ','')
```

mydata['Weeks']=pd.to_numeric(mydata['semanas'])

In [197]:

```
In [202]:
mydata[fcesarea]['Weeks'].mean()
Out[202]:
38.45772750215738
In [203]:
mydata[fNOcesarea]['Weeks'].mean()
Out[203]:
39.159822969065154
In [204]:
Normal=mydata['norma']==1
NotNormal=mydata['norma']==2
In [205]:
mydata[fcesarea].hist(column='PesoNacido', figsize=(10,10))
mydata[fNOcesarea].hist(column='PesoNacido', figsize=(10,10))
Out[205]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000000
00E69B8D0>]], dtype=object)
```


In [206]:

```
mydata.boxplot(column='edadm', figsize=(8,8))
```

Out[206]:

<matplotlib.axes._subplots.AxesSubplot at 0xe6fe4a8>

In [207]:

```
falive=mydata['v24hn']==1
```

In [208]:

```
fdead=mydata['v24hn']==2
```

In [209]:

```
mydata[falive]['Weeks'].mean()
```

Out[209]:

38.973152412641724

```
In [210]:
```

mydata[fdead]['Weeks'].mean()

Out[210]:

31.8328530259366

In [211]:

mydata[falive].boxplot(column='Weeks',figsize=(10,10))

Out[211]:

<matplotlib.axes._subplots.AxesSubplot at 0xe6fe5f8>

In [212]:

mydata[fdead].boxplot(column='Weeks',figsize=(10,10))

Out[212]:

<matplotlib.axes._subplots.AxesSubplot at 0xe7a4588>

In [213]:

```
Avg_wight_week = mydata[['PesoNacido','Weeks']].groupby('Weeks').mean()
Avg_wight_week
```

Out[213]:

	PesoNacido
Weeks	
14.0	2390.000000
15.0	2410.000000
18.0	3520.000000
19.0	1605.000000

20.0 2245.000000 21.0 1259.777773 22.0 999.486486 23.0 712.686275 24.0 925.669656 25.0 907.423383 26.0 1164.571743 27.0 1520.096956 28.0 1318.890913 29.0 1467.868263 30.0 1606.682493 31.0 1785.818223 32.0 1778.464233
22.0 999.486486 23.0 712.686275 24.0 925.669656 25.0 907.423383 26.0 1164.57174 27.0 1520.09695 28.0 1318.89091 29.0 1467.86826 30.0 1606.68249 31.0 1785.81822
23.0 712.686275 24.0 925.669656 25.0 907.423383 26.0 1164.571743 27.0 1520.096956 28.0 1318.890918 29.0 1467.868268 30.0 1606.682498 31.0 1785.818228
24.0 925.669656 25.0 907.423383 26.0 1164.571745 27.0 1520.096956 28.0 1318.890915 29.0 1467.868265 30.0 1606.682495 31.0 1785.818225
25.0 907.423383 26.0 1164.571745 27.0 1520.096956 28.0 1318.890915 29.0 1467.868266 30.0 1606.682495 31.0 1785.818225
26.0 1164.57174 27.0 1520.09695 28.0 1318.89091 29.0 1467.86826 30.0 1606.68249 31.0 1785.81822
27.0 1520.096956 28.0 1318.890918 29.0 1467.868268 30.0 1606.682498 31.0 1785.818228
28.0 1318.890918 29.0 1467.868268 30.0 1606.682498 31.0 1785.818228
29.0 1467.86826 30.0 1606.68249 31.0 1785.81822
30.0 1606.682493
31.0 1785.81822
32.0 1778 /6/239
1770.40425
33.0 1962.25999
34.0 2184.84779
35.0 2398.73092
36.0 2635.53582
37.0 2889.23649
38.0 3099.74601
39.0 3259.56999
40.0 3386.28182
41.0 3501.90548
42.0 3560.83704
43.0 3508.12210
44.0 3392.01219
45.0 3432.06603
46.0 3547.17500

In [214]:

```
plt.plot(Avg_wight_week)
```

Out[214]:

[<matplotlib.lines.Line2D at 0x1bca6c88>]

In [215]:

```
print('Partos con cesárea:',mydata[fcesarea].shape[0])
print('Partos sin cesárea:',mydata[fNOcesarea].shape[0])
print('Proporcion de partos con cesárea:',100*mydata[fcesarea].shape[0]/mydata
[fNOcesarea].shape[0])
```

Partos con cesárea: 577462 Partos sin cesárea: 1561369

Proporcion de partos con cesárea: 36.98433874375628

In [216]:

```
ffirst=mydata['numhv']==0
fsec=mydata['numhv']==1
fthird=mydata['numhv']==2
mydata['numhv'].head()
print('Edad media para el primer hijo:',mydata[ffirst]['edadm'].mean())
print ('Edad media para el segundo hijo:',mydata[fsec]['edadm'].mean())
print('Edad media para el tercer hijo:', mydata[fthird]['edadm'].mean())
```

Edad media para el primer hijo: 31.164650090194048 Edad media para el segundo hijo: 33.27590793061067 Edad media para el tercer hijo: 33.844967488198186

In [217]:

```
cesa_primer=mydata[fcesarea&ffirst]
cesa_primer.head()
```

Out[217]:

	provincia	municipio	mespar	anopar	propar	munpar	lugarpa	multipli	norma
12	1		10	2012	26	089	1	1	1
20	7	040	10	2012	7	040	1	1	2
25	8		10	2012	8	113	1	1	1
36	8		9	2012	8	035	1	1	1
69	8	279	10	2012	8	019	1	1	2

5 rows × 30 columns

In [218]:

```
cesa_secd=mydata[fcesarea&fsec]
cesa_secd.head()
```

Out[218]:

	provincia	municipio	mespar	anopar	propar	munpar	lugarpa	multipli	norma
15	1		10	2012	1	059	1	1	2
42	8	194	10	2012	8	019	1	1	2
43	8	194	10	2012	8	019	1	1	2
45	8	194	10	2012	8	019	1	1	2
47	8	194	10	2012	8	015	1	1	1

5 rows × 30 columns

In [219]:

```
print('shape:', cesa_secd.shape)
print('filas:',cesa_secd.shape[0])
print('columnas:',cesa_secd.shape[1])
cesa_secd.shape[0]/cesa_primer.shape[0]
```

shape: (182307, 30)

filas: 182307
columnas: 30

Out[219]:

0.5235968545186138

```
In [220]:
```

```
print('Partos: ',mydata.shape[0])
print('Partos 1º hijo: ',mydata[ffirst].shape[0])
print('Partos 2º hijo: ',mydata[fsec].shape[0])
print ('% cesareas en el primer parto:',100*cesa_primer.shape[0]/mydata[ffirst].shape[0])
print ('% cesareas en el segundo parto:',100*cesa_secd.shape[0]/mydata[fsec].shape[0])
```

```
Partos: 2138831
Partos 1º hijo: 1136993
Partos 2º hijo: 782714
```

% cesareas en el primer parto: 30.62305572681626
% cesareas en el segundo parto: 23.29164931252028

In [221]:

```
naci_mes=mydata[['provincia','mespar']].groupby('mespar').count()
naci_mes.rename(columns={'provincia':'Partos'}, inplace = True)
naci_mes
```

Out[221]:

	Partos
mespar	
1	181226
2	163368
3	178316
4	171119
5	178155
6	173529
7	184853
8	183491
9	185805
10	187381
11	175765
12	175823

In [222]:

```
naci_mes_ces=mydata[fcesarea][['provincia','mespar']].groupby('mespar').count(
)
# cambiar nombre de una columna
naci_mes_ces.rename(columns={'provincia':'Cesareas'}, inplace = True)
naci_mes_ces
```

Out[222]:

	Cesareas
mespar	
1	49423
2	45222
3	48274
4	45482
5	47465
6	47088
7	50412
8	48737
9	48575
10	51004
11	47400
12	48380

In [223]:

Out[223]:

Text(0.5,0,'Meses')

In [224]:

Out[224]:

Jul

Meses

Aug Sep Oct Npv Dec

Jan Feb Mar Apr May Jun

In [225]:

```
partos=pd.concat([naci_mes, naci_mes_ces], axis=1)
partos
```

Out[225]:

	Partos	Cesareas
mespar		
1	181226	49423
2	163368	45222
3	178316	48274
4	171119	45482
5	178155	47465
6	173529	47088
7	184853	50412
8	183491	48737
9	185805	48575
10	187381	51004
11	175765	47400
12	175823	48380

Media de edad de la madre en partos con/sin cesárea

In [226]:

```
print('Edad media de la madre en partos CON cesarea:', mydata[fcesarea]['edadm
'].mean())
print('Edad media de la madre en partos SIN cesarea:', mydata[fNOcesarea]['eda
dm'].mean())
```

```
Edad media de la madre en partos CON cesarea: 33.263915201346585 Edad media de la madre en partos SIN cesarea: 31.852830432780465
```

Hacer estudio por grupo de edades, para ver la proporcion de cesareas

In [227]:

```
PartosPerE = mydata[['edadm', 'mespar']].groupby('edadm').count()
PartosPerE.rename(columns={'mespar':'Partos'}, inplace = True)
PartosPerE.head(5)
```

Out[227]:

	Partos
edadm	
12	9
13	66
14	552
15	1883
16	4263

In [228]:

```
CesareaPerE = mydata[fcesarea][['edadm', 'mespar']].groupby('edadm').count()
CesareaPerE.rename(columns={'mespar':'Cesareas'}, inplace = True)
CesareaPerE.head(5)
```

Out[228]:

	Cesareas
edadm	
12	1
13	12
14	77
15	271
16	623

In [229]:

PercPerE=pd.concat([PartosPerE, CesareaPerE], axis=1)
PercPerE.head(5)

Out[229]:

	Partos	Cesareas
edadm		
12	9	1
13	66	12
14	552	77
15	1883	271
16	4263	623

In [230]:

```
PercPerE['Porcent'] = PercPerE['Cesareas'] * 100 / PercPerE['Partos']
PercPerE['Rango'] = PercPerE.index / 5
PercPerE['Rango'] = PercPerE['Rango'].apply(int)
PercPerE
```

Out[230]:

	Partos	Cesareas	Porcent	Rango
edadm				
12	9	1	11.111111	2
13	66	12	18.181818	2
14	552	77	13.949275	2
15	1883	271	14.391928	3
16	4263	623	14.614122	3
17	7685	1174	15.276513	3
18	11905	1821	15.296094	3
19	17274	2960	17.135579	3
20	21890	3812	17.414344	4
21	25816	4693	18.178649	4
22	30538	5774	18.907591	4
23	36463	7206	19.762499	4
24	43219	8703	20.136977	4
25	52583	10903	20.734838	5

26	62935	13769	21.878128	5
27	75631	17226	22.776375	5
28	91048	21365	23.465644	5
29	109031	26408	24.220634	5
30	129279	32279	24.968479	6
31	146079	37159	25.437606	6
32	159517	41704	26.143922	6
33	166793	44136	26.461542	6
34	169034	46134	27.292734	6
35	163523	46234	28.273699	7
36	147994	43258	29.229563	7
37	126005	38264	30.367049	7
38	102864	32833	31.918844	7
39	79486	26361	33.164331	7
40	58504	20792	35.539450	8
41	39150	14939	38.158365	8
42	24754	10060	40.639897	8
43	14390	6298	43.766505	8
44	8498	4131	48.611438	8
45	4710	2531	53.736730	9
46	2428	1479	60.914333	9
47	1219	787	64.561116	9
48	745	513	68.859060	9
49	488	377	77.254098	9
50	305	215	70.491803	10
51	140	94	67.142857	10
52	60	36	60.000000	10
53	35	22	62.857143	10
54	37	26	70.270270	10
55	3	2	66.666667	11

In [231]:

```
fig, ax = plt.subplots(figsize=(15, 15))
plt.bar(PercPerE.index,PercPerE['Porcent'], 0.8, color='#a42328')
plt.ylabel('Porcent')
plt.title('Porcentaje de cesareas por edad')
plt.xticks(PercPerE.index)
plt.xlabel('Edad')
```

Out[231]:

Text(0.5,0,'Edad')

In [232]:

```
PercPerE['Rango'].max()
```

Out[232]:

In [233]:

PerRango= PercPerE[['Porcent', 'Rango']].groupby('Rango').mean()
PerRango

Out[233]:

	Porcent
Rango	
2	14.414068
3	15.342847
4	18.880012
5	22.615124
6	26.060857
7	30.590697
8	41.343131
9	65.065068
10	66.152415
11	66.666667

```
In [234]:
```

Out[234]:

Text(0.5,0,'Rango de edad')

Estudio por provincias

In [235]:

```
PartosPerP = mydata[['provincia', 'mespar']].groupby('provincia').count()
PartosPerP.rename(columns={'mespar':'Partos'}, inplace = True)
PartosPerP.head(5)
```

Out[235]:

	Partos
provincia	
1	15692
2	17901
3	79734
4	39249
5	5694

In [236]:

```
CesareaPerP = mydata[fcesarea][['provincia', 'mespar']].groupby('provincia').c
ount()
CesareaPerP.rename(columns={'mespar':'Cesarea'}, inplace = True)
CesareaPerP.head(5)
```

Out[236]:

	Cesarea
provincia	
1	2170
2	5132
3	23411
4	10060
5	1537

In [237]:

```
PercentageCes=CesareaPerP['Cesarea']*100/PartosPerP['Partos']
PercentageCes.head()
```

Out[237]:

provincia

- 1 13.828703
- 2 28.668789
- 3 29.361377
- 4 25.631226
- 5 26.993326

dtype: float64

In [238]:

Out[238]:

Numero de partos por provincia

In [239]:

Out[239]:

In [240]:

```
fig, ax = plt.subplots(figsize=(20, 20))
plt.barh(PercentageCes.index, PercentageCes)
plt.ylabel('Provincias')
plt.title('Porcentaje de cesareas por provincia')
plt.yticks( PercentageCes.index,(
   'Araba/Álava',
   'Albacete',
   'Alicante/Alacant',
   'Almería',
   'Ávila',
   'Badajoz',
   'Balears, Illes',
   'Barcelona'.
```

```
'Burgos',
'Cáceres',
'Cádiz',
'Castellón/Castelló',
'Ciudad Real',
'Córdoba',
'Coruña, A',
'Cuenca',
'Girona',
'Granada',
'Guadalajara',
'Gipuzkoa',
'Huelva',
'Huesca',
'Jaén',
'León',
'Lleida',
'Rioja, La',
'Lugo',
'Madrid',
'Málaga',
'Murcia',
'Navarra',
'Ourense',
'Asturias',
'Palencia',
'Palmas, Las',
'Pontevedra',
'Salamanca',
'Santa Cruz de Tenerife',
'Cantabria',
'Segovia',
'Sevilla',
'Soria',
'Tarragona',
'Teruel',
'Toledo',
'Valencia/València',
'Valladolid',
'Bizkaia',
'Zamora',
'Zaragoza',
'Ceuta',
'Melilla',
))
plt.xticks(np.arange(0, 100, 10))
plt.xlabel('Porcentaje')
#plt.legend(('Porcentaje'))
```

Out[240]:

Text(0.5,0,'Porcentaje')

In [241]:

PercentageCes.describe()

Out[241]:

count52.000000mean25.964726std4.101285min13.82870325%23.79940850%26.25981875%28.845317max33.054545

dtype: float64

```
In [242]:
```

```
plt.boxplot(PercentageCes)
```

```
Out[242]:
```


Aunque se mantiene la tonica alrededor de la media, hay una diferencia considetable entre las provincias con menos cesareas y las que mas. Por ejemplo entre las 3 provincias vascas: Alava, Gipuzkoa, Bizkaia y Valencia o Caceres

In [243]:

```
print('Alava: ',PercentageCes[1])
print('Guipuzkoa: ',PercentageCes[20])
print('Bizkaia: ',PercentageCes[48])
print('Caceres: ',PercentageCes[10])
print('Valencia: ',PercentageCes[46])
print('Porcentage medio: ',PercentageCes.mean())
```

Alava: 13.8287025236 Guipuzkoa: 17.2805145808 Bizkaia: 17.1351911702 Caceres: 32.4696577117 Valencia: 33.0545454545

Porcentage medio: 25.964725500252385

Machine Learning, Classification

```
In [244]:
```

```
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [245]:

In [290]:

dtype='object')

```
data=mydata.copy()
data.columns
```

```
Out[290]:
```

```
In [291]:
del data['municipio']
del data['mespar']
del data['anopar']
del data['propar']
del data['munpar']
del data['lugarpa']
del data['inha']
del data['mesnacm']
del data['anonacm']
del data['ecivm']
del data['anoca']
del data['semanas']
del data['Sexo_lit']
del data['cesareaB']
del data['meshan']
del data['anohan']
In [292]:
data.columns
Out[292]:
Index(['provincia', 'multipli', 'norma', 'cesarea', 'numh', 'numhv
', 'edadm',
       'sexo', 'peson', 'v24hn', 'nacvn', 'numhvt', 'PesoNacido',
'Weeks'],
      dtype='object')
In [293]:
before rows = data.shape[0]
print(before_rows)
2138831
In [294]:
data = data.dropna()
In [295]:
after_rows = data.shape[0]
print(after_rows)
1759546
In [296]:
before rows - after rows
Out[296]:
379285
```

```
In [297]:
y=data[['cesarea']].copy()
y.head()
Out[297]:
  cesarea
0
  2
1
  2
2 2
3
  2
  2
In [298]:
data['cesarea'].head()
Out[298]:
0
     2
     2
2
     2
     2
Name: cesarea, dtype: int64
In [299]:
X=data.copy()
In [312]:
del X['cesarea']
X.columns
Out[312]:
Index(['provincia', 'multipli', 'norma', 'numh', 'numhv', 'edadm',
'sexo',
       'peson', 'v24hn', 'nacvn', 'numhvt', 'PesoNacido', 'Weeks']
      dtype='object')
In [313]:
y.columns
Out[313]:
Index(['cesarea'], dtype='object')
```

Training phase

```
In [314]:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, rand
om_state=324)

Fit on Train Set
```

sklearn.tree.tree.DecisionTreeClassifier

array([2, 2, 2, 2, 1, 2, 2, 2, 2], dtype=int64)

Predict on Test Set

```
In [317]:
predictions = cesarean_classifier.predict(X_test)

In [318]:
predictions[:10]
Out[318]:
```

```
In [319]:
y_test['cesarea'][:10]
Out[319]:
246782
          1
390682
          2
154879
          2
161622
          2
2728
          1
374184
          2
332798
          1
395069
          2
296036
          2
56671
          2
Name: cesarea, dtype: int64
In [320]:
accuracy_score(y_true = y_test, y_pred = predictions)
Out[320]:
0.8002517863570372
In [ ]:
```