CLAIMS

1.

What is claimed is:

a public key cryptosystem having a predetermined number of prime factors used for the

generation of a modulus N and an exponent e;

wherein a proper subset of the prime factors of the modulus N, along with the exponent e,

are required to decrypt messages that are encrypted using the public exponent e and the

public modulus N, where e and N are calculated using RSA methods, and encryption

occurs using RSA methods.

A system for encrypting/decrypting messages, comprising:

- 2. A method for encrypting/decrypting messages comprising the steps of: providing a public key cryptosystem having a predetermined number of prime factors used for the generation of a modulus N and an exponent e; wherein a proper subset of the prime factors of the modulus N are required to decrypt messages that are encrypted using the public exponent e and the public modulus N, where e and N are calculated using RSA methods, and encryption occurs using RSA methods.
 - A method for encrypting/decrypting messages comprising the steps of:
 Encrypting a plaintext message M into a ciphertext message C using any method that
 produces a value equivalent to C = M^e mod N, where 0 ≤ M < N_d, such that the ciphertext
 C can be decrypted into the plaintext message M using only e and the prime factors of N_d
 N being the product of all of the numbers in the set S;
 - S being a set of at least two prime numbers, $p_1...p_k$, where k is an integer greater than 1;

e being a number;

20

10

S_d being a proper subset of S;

N_d being the product of all of the numbers in the set S_d.

- 4. The method of claim 3, wherein the step of generating the exponent e includes calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N minus 1, $(N_1 1)^* ... (N_j 1)$ for distinct prime factors of N 1 to j, where j is the number of distinct prime factors in N, or choosing the exponent e as a small prime number.

calculating the number Z_d as the product of each prime factor of N_d minus 1, $(N_{d1} - 1)^*...(N_{dj} - 1)$ for prime factors of N_d 1 to j, where j is the number of prime factors in N_d ;

- generating the exponent d such that the following relationship is satisfied: $e^*d = 1$ mod Z_d .
 - 6. The method according to claim 5, further including the step of: $\\ \text{directly calculating } M = C^d \bmod N_d.$
 - 7. The method according to claim 5, further including the steps of:
- calculating separate decryption exponents $d_{nd1}...d_{ndj}$ for all prime factors of N_d 1 to j, where j is the number of prime factors in N_d so that the following relationship is satisfied for each member of N_d : $e^*d_{ndi} = 1 \mod (N_{di} 1)$; and

10

15

20

performing decryptions of the form $M_i = C^{d_{ndi}} \mod N_{di}$ for all prime factors of N_d from 1 to j, where j is the number of prime factors in N_d , and then using the values of each M_i and N_{di} to reconstruct M.

- 8. The method of claim 7, wherein the values of each M_i and N_{di} restore the plaintext message M using the Chinese Remainder Theorem and/or Garner's algorithm.
 - 9. A method for decrypting encrypted messages, comprising the steps of: decrypting the ciphertext message C to the plaintext message M by determining if the derived modulus N_d is squareful number, and if so; calculating separate decryption exponents d_{nd1}...d_{ndj} for all distinct prime factors of N_d 1 to j, where j is the number of distinct prime factors in N_d so that the following

for each distinct prime factor of N_d , N_{di} , calculating a value b_{di} as the number of times that N_{di} occurs as a prime factor in N_d ;

relationship is satisfied for each distinct member of N_d : $e^*d_{ndi} = 1 \mod (N_{di} - 1)$;

calculating M_i for each distinct prime factor of N_d, N_{di};

and using all values of M_i, N_{di}, d_{ndi}, and b_{di} to restore the plaintext message M.

- 10. The method of claim 9, further including the steps of: using Hensel Lifting to calculate M_i for each distinct prime factor of N_d , N_{di} .
- 11. The method of claim 9, further including using techniques such as the Chinese Remainder Theorem and/or Garner's algorithm to use all value of M_i , N_{di} , d_{ndi} , and b_{di} to restore the plaintext message M.
- 12. A public key cryptosystem where messages are decrypted using a set of prime numbers S and the public exponent e, and messages are encrypted using a modulus N_p that is calculated as the product of a set of numbers that is a proper superset of S, and

encryption occurs with standard RSA methods using the public exponent e and the modulus N_p .

13. A method for encrypting/decrypting messages, comprising the steps of:

Encrypting a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N_p$, where $0 \le M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the prime factors of N

N being the product of all of the numbers in the set S;

S being a set of at least one prime number, $p_1...p_k$, where k is an integer greater than 0;

S_p being a proper superset of S;

 N_p being the product of all of the numbers in the set S_p ; e being a number.

- 14. The method of claim 13, wherein the step of generating the exponent e includes
 15 calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, (N_{p1} 1)*...(N_{pj} 1) for distinct prime factors of N_p
 1 to j, where j is the number of distinct prime factors in N_p.
 - 15. The method of claim 13, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.
- 20 16. A method for decrypting encrypted messages, including the steps of:
 Decrypting the ciphertext message C to the plaintext message M by:
 determining if the derived modulus N is squareful number; if so then, calculating separate
 decryption exponents d_{n1}...d_{nj} for all distinct prime factors of N 1 to j, where j is the

number of distinct prime factors in N so that the following relationship is satisfied for each distinct member of N: $e^*d_{ni} = 1 \mod (N_i - 1)$;

for each distinct prime factor of N, N_i , calculating a value b_i as the number of times that N_i occurs as a prime factor in N;

- calculating M_i for each distinct prime factors of N, N_i ; and using each value of M_i , N_i , b_i and d_{ni} to restore the plaintext message M;
 - 17. The method of claim 16, where Hensel Lifting is used to calculate M_i for each distinct prime factor of N, N_i.
- 18. The method of claim 16, further including using techniques such as the Chinese

 Remainder Theorem and/or Garner's algorithm to use all value of M_i, N_i, d_{ni}, and

 b_i to restore the plaintext message M.
 - 19. A method of decrypting encrypted messages, including the steps of:
 Decrypting the ciphertext message C into the plaintext message M by:
 determining if the modulus N is a squarefree number; and if so then,
- decrypting ciphertext C into message M using any method that produces a value equivalent to $M = C^d \mod N$, where d is generated using the following steps:

Calculating the number Z as the product of each prime factor of N minus 1, $(N_1 - 1)^*...(N_j - 1)$ for prime factors of N 1 to j, where j is the number of prime factors in N; then generating the decryption exponent d such that the following relationship is satisfied: $e^*d = 1 \mod Z$.

- 20. The method according to claim 19, further including the step of: directly calculating $M = C^d \mod N$
- 21. The method according to claim 19, further including the steps of:

10

20

calculating separate decryption exponents $d_1...d_j$ for all prime factors of N 1 to j, where j is the number of prime factors in N so that the following relationship is satisfied for each member of N: $e^*d_i = 1 \mod (N_i - 1)$; and performing decryptions of the form $M_i = C^{d_i} \mod N_i$ for all prime factors of N from 1 to j, where j is the number of prime factors in N, and then using the values of each M_i and N_i to reconstruct M.

- 22. The method of claim 21, wherein the values of each M_i and N_i reconstruct M using the Chinese Remainder Theorem and/or Garner's algorithm.
- 23. A method for encrypting/decrypting messages comprising the steps of: Encrypting a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N_p$, where $0 \le M < N$, such that the ciphertext C can be decrypted into the plaintext message M using e and the prime factors of N.

N being the product of all of the members of set S;

S being a set of at least two numbers, $p_1...p_k$ where k is an integer greater than 1 and all members of S are equal to p_s , which is a prime number;

- 15 S_p being a superset of S;
 - N_p being the product of all of the numbers in the set S_p ; e being a number.
 - 24. The method of claim 23, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of all of the distinct prime factors of N_p minus 1, $(N_{p1} 1)^* ... (N_{pj} 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .
 - 25. The method of claim 23, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.

20

26. A method of decrypting encrypted messages, including the steps of:

Decrypting the ciphertext message C to the plaintext message M by:

Calculating b as the number of times that the number p_s occurs as a prime factor in N;

5 Generating an exponent d such that the following equation is satisfied:

 $e*d = 1 \mod (p_s - 1);$

Using Hensel Lifting to transform C into M with d, p_s, and b as input values.

27. A method for encrypting/decrypting messages, comprising the steps of:

Encrypting a plaintext message M into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod N_p$, where $0 \le M < p$, such that the ciphertext C can be decrypted into the plaintext message M using e and p

p being a prime number;

S being a set containing only the number p;

 S_p being a superset of S;

- N_p being the product of all members of the set S_p ; e being a number.
 - 28. The method of claim 27, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N_p minus 1, $(N_{p1} 1)^* ... (N_{pj} 1)$ for distinct prime factors of N_p 1 to j, where j is the number of distinct prime factors in N_p .
 - 29. The method of claim 27, wherein the step of generating the exponent e includes choosing the exponent e as a small prime number.
 - 30. A method for decrypting encrypted messages, comprising the steps of:

Decrypting using any method that produces a value equivalent to as $M = C^d \mod p$, where d is generated using the following step:

Calculating d such that the following equation is satisfied:

$$e*d = 1 \mod (p - 1).$$

5 31. A method for establishing cryptographic communications, comprising the steps of:

calculating a composite number N, which is formed from the product of distinct prime numbers S, $p_1,...p_k$ where $k \ge 1$.

Encoding a plaintext message M, to a ciphertext C, where M corresponds to a number representative of a message and $0 \le M < S$;

generating an exponent e;

transforming said plaintext, M, into said ciphertext, C, where C is developed using any method that produces a value equivalent to $C = M^e \mod N$, such that ciphertext C can be decrypted into plaintext M using only e and S.

- 15 32. The method of claim 31, wherein the step of generating the exponent e further includes: Calculating the exponent e as a number that is relatively prime to the product of each distinct prime factor of N minus 1, (N₁ − 1),...(N_j − 1) for distinct prime factors of N 1 to j, where j is the number of distinct prime factors in N.
- 33. The method of claim 31, wherein the step of generating the exponent e includeschoosing the exponent e as a small prime number.
 - 34. A method for decrypting encrypted messages, comprising the steps of: decoding the ciphertext message C to the plaintext message M, wherein said decoding comprises the step of: transforming said ciphertext message C to plaintext M, using any

method that produces a value equivalent to $M = C^d \mod S$, where d is generated using the following step:

generating d such that $e^*d = 1 \mod (S - 1)$.

- 35. A system for encrypting and decrypting electronic communications including a network of computers and/or computer-type devices, such as personal data assistants (PDAs), mobile phones and other devices, in particular mobile devices capable of communicating on the network; generating at least one private key and at least one public key, wherein the at least one private key is determined based upon any one of a multiplicity of prime numbers that when multiplied together produce N, which is the modulus for at least one of the public keys.
 - 36. A method for public key decryption where less than all of the distinct prime factors of a number N are used to decrypt a ciphertext message C into plaintext message M, where encryption occurs with the public key $\{e, N\}$ using any method that produces a value equivalent to $C = M^e \mod N$.
- 15 37. A method for public key encryption with a public key $\{e, N\}$ where a plaintext message M is encrypted into a ciphertext message C using any method that produces a value equivalent to $C = M^e \mod (N*X)$, where N is the public modulus and X is any integer greater than 1.
- 38. A method for public key decryption of a message that has been encrypted with the 20. public key {e, N} where a ciphertext message C is decrypted into a plaintext message M using any method that produces a value equivalent to M = C^d mod N_d, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the

equation $e^*d = 1 \mod Z$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 - 1)^* \dots (p_k - 1)$.

- 39. A method for public key decryption of a message that has been encrypted using any method that produces a value equivalent to $C = M^e \mod N$, where a ciphertext message C is decrypted into a plaintext message M using any method that produces a value equivalent to $M = C^d \mod N_d$, where N_d is the product of less than all of the prime factors of the public modulus N and d satisfies the equation $e^*d = 1 \mod Z$, where Z is the product of each of the k prime factors of N_d minus 1, $(p_1 1)^*...(p_k 1)$.
- 10

5