Epreuve Physique Chimie : Chimie & Thermodynamique & Transfert thermique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-16	Les aciers inoxydables et la corrosion		
01-05	Autour de l'élément chrome		
1	Le principe d'exclusion de Pauli : dans un atome, deux électrons ne peuvent pas avoir leurs quatre nombres quantiques (n, l, m, s) identiques (ils ne peuvent pas être dans le même état : n niveau d'énergie, l moment cinétique, m moment magnétique, s spin). Les règles de Klechkowsky : remplissage par $(n + l)$ croissants $(n \text{ nombre quantique principal}, l \text{ nombre quantique secondaire})$; pour $(n + l)$ identiques, remplissage par n croissants. La règle de Hund : précise que lorsque plusieurs orbitales de même énergie sont disponibles $(n \text{ et } l \text{ donnés})$, les électrons occupent le maximum d'orbitales différentes avec des spins parallèles.	1	
2	La structure électronique du molybdène (Z = 42) est $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^4$ Le chrome, situé juste au dessus a donc une structure électronique qui se termine en $4s^23d^4$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$ Son numéro atomique est donc $Z = 24$. Il se situe dans la 4^e ligne et la 6^e colonne du tableau périodique à 18 colonnes.	1	
3	En réalité la configuration se termine en $4s^13d^5$. Stabilisation énergétique lorsqu'une orbitale d est à moitié ou totalement remplie.	1	
4	Deux isotopes sont deux noyau d'un même élément chimique (même nombre de protons) qui diffèrent par leur nombre de neutrons (même numéro atomique Z mais nombres de masse A différents). isotope $50 \Rightarrow 24$ protons et 26 neutrons isotope $52 \Rightarrow 24$ protons et 28 neutrons isotope $53 \Rightarrow 24$ protons et 29 neutrons	1	
5	isotope $54 \Rightarrow 24$ protons et 30 neutrons. La masse atomique du chrome à l'état naturel est $m_{Cr} = x_{50}m_{50} + x_{52}m_{52} + x_{53}m_{53} + x_{54}m_{54}$ où x_A est la fraction molaire du chrome A Cr de masse atomique m_A . l'application numérique donne : $m_{Cr} = 51,996$ u.m.a. L'indication sur le carbone nous dit qu'une uma est égale à $1/N_A$ g. La masse molaire atomique du chrome $M_{Cr} = m_{Cr}N_A = 51,996$ g.mol $^{-1}$	1	

06-10	Corrosion intergranulaire d'un acier inoxydable		
06-07	Corrosion généralisée et acier inoxydable		
6	Il faut établir les nombres d'oxydations de chaque espèces : $ \begin{array}{c} \operatorname{Cr}(0) ; \operatorname{Cr}^{2+}(+\operatorname{II}) ; \operatorname{Cr}^{3+}(+\operatorname{III}) ; \operatorname{Cr}_2 O_3(+\operatorname{III}) ; \operatorname{Cr}_2 O_7^{2-}(+\operatorname{VIII}) ; \\ \operatorname{Cr}O_4^{2-}(+X) \\ \text{Il faut aussi établir les couples acides/bases à degré d'oxydation voisins.} \\ \operatorname{Cr}^{3+} + 3\operatorname{H}_2 O = \operatorname{Cr}_2 O_3 + 6\operatorname{H}^+ \\ \operatorname{Cr}_2 O_7 + \operatorname{H}_2 O = 2\operatorname{Cr}O_4^{2-} + 2\operatorname{H}^+ \\ \text{On classe de bas en haut du diagramme les espèces par nombre d'oxydation croissant de l'élément chrome et de gauche à droite, les espèces par caractère basique croissant.} \\ \operatorname{F} = \operatorname{Cr} ; \operatorname{E} = \operatorname{Cr}^{2+} ; \operatorname{C} = \operatorname{Cr}^{3+} ; \operatorname{D} = \operatorname{Cr}_2 O_3 ; \operatorname{A} = \operatorname{Cr}_2 O_7^{2-} ; \operatorname{B} = \operatorname{Cr}O_4^{2-}. \end{array} $	1	
7	Avec les pression standard en O_2 et H_2 et la concentration standard en H^+ on a les droites :	1	
	dard en H^+ on a les droites : $E = -0.06V \times pH$ relative au couple H^+/H_2		
	$E = 1,23V-0,06V \times pH$ relative au couple O_2/H_2O ;		
08-10	Prévenir le risque de corrosion intergranulaire		
8	schéma d'un cubique faces centrées, avec tous les sites octa- édriques occupés. Il y a un site au centre de la maille et les milieux des arêtes sont aussi des sites octaédriques qui sont partagés entre 4 mailles. Il	1	
	y a a donc $1 + 12 \times \frac{1}{4} = 4$ sites octaédriques donc 4 atomes de carbone par maille. Il y a également 4 atomes de titane par maille : $8 \times \frac{1}{8} = 1$ aux sommets et $6 \times \frac{1}{2} = 3$ au milieu de chaque face. La stoechiométrie du cristal est donc de 1 pour 1 (TiC).		
9	On a contact entre un atome de carbone et un atome de titane plus proche voisin selon une arrête de la maille, $a = 2(r_{Ti} + r_C) = 444$ pm.	1	
10	La masse volumique du carbure de titane est $\rho_{TiC} = \frac{4(M_{Ti} + M_C)}{N_A a^3} = 4,6 \times 10^3 \text{ kg.m}^{-3}$	1	
11-16	Etude thermodynamique de la formation des carbures de chrome		
11	$\begin{aligned} &2\text{Cr}_{(s)} + \frac{3}{2}\text{O}_{2(g)} = \text{Cr}_2\text{O}_{3(s)} \\ &K_1^\circ = \exp\left(-\frac{\Delta G_1^\circ}{RT}\right) = 2,49 \times 10^{32} \text{ à } T = 1273 \text{ K.} \\ &\text{De } K_1^\circ = \left(\frac{p^\circ}{p_{O_2}^{eq_1}}\right)^{3/2}, \text{ on déduit la pression en dioxygène à l'équilibre} \\ &\text{libre} \\ &p_{O_2}^{eq_1} = p^\circ \left(K_1^\circ\right)^{-2/3} = 2,5 \times 10^{-22} \text{ bar} \end{aligned}$	1	

12	$12C_{(s)} + 23Cr_2O_{3(s)} = \frac{69}{2}O_{2(g)} + 2Cr_23C_{6(s)}$	1	
13	$\Delta G_3^\circ = 2\Delta G_2^\circ - 23\Delta G_1^\circ = 2,49440 \times 10^7 - 6053,32T \text{ (J.mol}^{-1}\text{)}.$	1	
10	$ \dot{A} 1273 \text{ K}, \Delta G_3^{\circ} = 17,2381 \times 10^6 \text{ J.mol}^{-1} \text{ et} $	1	
	$K_3^{\circ} = \exp\left(-\frac{\Delta G_3^{\circ}}{RT}\right) = \exp\left(-1629\right)$		
	La pression en dioxygène à l'équilibre est donc		
	$\begin{array}{c} p_{O_2}^{eq_3} = p^{\circ} \left(K_3^{\circ} \right)^{-2/69} = 3,1 \times 10^{-21} \text{ bar} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_3^{\circ} = 2\Delta H_2^{\circ} - 23\Delta H_1^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{-21} \\ \text{L'enthalpie standard de réaction } \Delta H_2^{\circ} = 2,5 \times 10^{$		
14	L'enthalpie standard de réaction $\Delta H_3^\circ = 2\Delta H_2^\circ - 23\Delta H_1^\circ = 2, 5 \times 10^5 \text{ J.mol}^{-1}$	1	
	10° J.moi $d \ln K = \Delta_r H^{\circ}$		
	est positive. La loi de Van't Hoff $(\frac{d \ln K}{dT} = \frac{\Delta_r H^{\circ}}{RT^2})$ nous assure		
	alors que la constante d'équilibre est une fonction croissante de		
	la température. On favorise ainsi la réduction de Cr_2O_3 par le carbone graphite en augmentant la température.		
15	En imposant une pression en dioxygène supérieure à sa valeur à	1	
		_	
	l'équilibre (3), on impose un quotient réactionnel $Q = \left(\frac{p_{O_2}}{p^{\circ}}\right)^{69/2}$		
	supérieur à la constante d'équilibre et donc une enthalpie libre de		
	réaction $\Delta_r G_3^{\circ} = RT \ln \left(\frac{\dot{Q}}{K_3^{\circ}} \right)$ positive. La réaction (3) avance		
	alors dans le sens indirect. C'est Cr_2O_3 qui est stable à cette		
	température et sous cette pression.		
16	À 1273 K, le diagramme de prédominance est constitué de :	1	
	Cr pour $p_{O_2} < p_{O_2}^{eq_1}$		
	puis de Cr_{23}C_6 pour $p_{O_2}^{eq_1} < p_{O_2} < p_{O_2}^{eq_3}$ puis de Cr_2O_3 pour $p_{O_2}^{eq_3} < p_{O_2}$		
	buls de Cl_2O_3 pour $p_{O_2} < p_{O_2}$ La pression en O_2 dans l'air est de l'ordre de $0,2$ bar $\gg p_{O_2}^{eq_3}$. C'est		
	donc Cr_2O_3 qui est stable.		
17-41	Autour de l'eau		
17-23	Propriétés physiques de l'eau		
17-19	Quelques propriétés de la glace		
17	• • • • • • • • • • • • • • • • • • •	1	
18		1	
19		1	
20-23	Quelques propriétés de la vapeur d'eau		
20		1	
21		1	
22		1	
23		1	
24-28	Échangeur thermique		
24-26	Bilan d'enthalpie		
24		1	
25		1	
26		1	
27-28	Bilan d'entropie		
27		1	

28		1	
29-41	Isolation thermique d'une canalisation d'eau		
29		1	
30		1	
31		1	
32		1	
33		1	
34		1	
35		1	
36		1	
37		1	
38		1	
39		1	
40		1	
41		1	