From Bound Majorization to Stochastic Bound Majorization

Yunian Pan

ECE department

May. 7th 2019

From Bound Majorization to Stochastic Bound Majorization

- Theoretical development
- Convergence Guarantee
- Evaluations

Outline

Conclusion

Outperforming state-of-the-art first- and second-order optimization methods on various learning tasks

For a given i.i.d. dataset $\{(x_1, y_1), \dots, (x_t, y_t)\}$, $y \in \Omega$ where $|\Omega| = K$, setting linear predictors for every data point:

$$\ln \Pr(y_i|y_i=1,x_i) = \theta_1^\top \cdot x_i - \ln Z$$

$$\ln \Pr(y_i|y_i=2,x_i) = \theta_2^\top \cdot x_i - \ln Z$$

.

$$\ln \Pr(y_i|y_i = K, x_i) = \theta_K^\top \cdot x_i - \ln Z$$

$$\ln \Pr(y_i|y_i = 1, x_i) = \theta_1^{\mathsf{T}} \cdot x_i - \ln Z$$

$$\ln \Pr(y_i|y_i = 2, x_i) = \theta_2^{\mathsf{T}} \cdot x_i - \ln Z$$

$$\dots \dots$$

$$\ln \Pr(y_i|y_i = K, x_i) = \theta_{\mathsf{F}}^{\mathsf{T}} \cdot x_i - \ln Z$$

normalizer Z, prior $\Pr(y = k) = h(y)$, score $\theta_k^{\mathsf{T}} x_i \to \theta^{\mathsf{T}} \mathbf{f}_{x_i}(y)$ Resulting soft-max partition function:

$$Z_{x_i}(\theta) = \sum_{y \in \Omega} h(y) \exp(\theta^{\mathsf{T}} \mathbf{f}_{x_i}(y))$$
 (1)

Upper bound of Partition

Notation setting:

- ① $\pi(\cdot): \Omega \to \{1, ..., n\}$ s.t. $h(y) = h(\pi^{-1}(j)) = h_j$ and $\mathbf{f}(y) = \mathbf{f}(\pi^{-1}(j)) = \mathbf{f}_j$
- **3** $Z(\theta) = \sum_{j=1}^{n} \alpha_j \exp(\lambda^{\top} \mathbf{f}_j)$, where $\alpha_j = h(j) \exp(\tilde{\theta}^{\top} \mathbf{f}_j)$.

Notation setting:

①
$$\pi(\cdot): \Omega \to \{1, ..., n\}$$
 s.t. $h(y) = h(\pi^{-1}(j)) = h_j$ and $\mathbf{f}(y) = \mathbf{f}(\pi^{-1}(j)) = \mathbf{f}_j$

$$\lambda = \theta - \tilde{\theta}$$

3
$$Z(\theta) = \sum_{j=1}^{n} \alpha_j \exp(\lambda^{\top} \mathbf{f}_j)$$
, where $\alpha_j = h(j) \exp(\tilde{\theta}^{\top} \mathbf{f}_j)$.

In order to construct the monotonicity we denote $Z_i(\theta) = \sum_{j=1}^i \alpha_j \exp(\lambda^{\top} \mathbf{f}_j)$, and a trivial bound holds for i = 0:

$$Z_0(\theta) = 0 \le z_0 \exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_0\lambda + \lambda^{\mathsf{T}}\mu_0)$$

Where $z_0 = 0^+$, $\mu_0 = 0$, $\Sigma_0 = zI$.

Construct bound

As we add another term $\alpha_1 \exp(\lambda^T \mathbf{f_1})$, on both side of the above inequality, the bound still holds,

$$Z_1(\theta) \le z_0 \exp(\frac{1}{2}\lambda^{\mathsf{T}} \Sigma_0 \lambda + \lambda^{\mathsf{T}} \mu_0) + \alpha_1 \exp(\lambda^{\mathsf{T}} \mathbf{f_1})$$

Construct bound

As we add another term $\alpha_1 \exp(\lambda^T \mathbf{f_1})$, on both side of the above inequality, the bound still holds,

$$Z_1(\theta) \le Z_0 \exp(\frac{1}{2}\lambda^{\mathsf{T}} \Sigma_0 \lambda + \lambda^{\mathsf{T}} \mu_0) + \alpha_1 \exp(\lambda^{\mathsf{T}} \mathbf{f_1})$$

Goal: Transform the RHS into quadratic form.

$$Z_1(\theta) \leq z_1 \exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_1\lambda + \lambda^{\mathsf{T}}\mu_1)$$

Construct bound

As we add another term $\alpha_1 \exp(\lambda^T \mathbf{f_1})$, on both side of the above inequality, the bound still holds,

$$Z_1(\theta) \le z_0 \exp(\frac{1}{2}\lambda^{\mathsf{T}} \Sigma_0 \lambda + \lambda^{\mathsf{T}} \mu_0) + \alpha_1 \exp(\lambda^{\mathsf{T}} \mathbf{f_1})$$

Goal: Transform the RHS into quadratic form.

$$Z_1(\theta) \le z_1 \exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_1\lambda + \lambda^{\mathsf{T}}\mu_1)$$

Same recurssive procedure for $Z_2(\theta), \dots, Z_n(\theta)$.

Algebra Work

Logarithmic transformation:

$$\log Z_1(\theta) \leq \log z_0 + \log(\exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_0\lambda + \lambda^{\mathsf{T}}\mu_0) + \frac{\alpha_1}{z_0}\exp(\lambda^{\mathsf{T}}\mathbf{f}_1))$$

$$= \log z_0 + \log(\exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_0\lambda + \lambda^{\mathsf{T}}(\mu_0 - \mathbf{f}_1)) + \frac{\alpha_1}{z_0}) + \lambda^{\mathsf{T}}\mathbf{f}_1$$

Logarithmic transformation:

$$\log Z_1(\theta) \leq \log z_0 + \log(\exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_0\lambda + \lambda^{\mathsf{T}}\mu_0) + \frac{\alpha_1}{z_0}\exp(\lambda^{\mathsf{T}}\mathbf{f}_1))$$

$$= \log z_0 + \log(\exp(\frac{1}{2}\lambda^{\mathsf{T}}\Sigma_0\lambda + \lambda^{\mathsf{T}}(\mu_0 - \mathbf{f}_1)) + \frac{\alpha_1}{z_0}) + \lambda^{\mathsf{T}}\mathbf{f}_1$$

seperate
$$\frac{1}{2} w^{\mathsf{T}} w = \frac{1}{2} (\mathbf{f}_1 - \mu_0)^{\mathsf{T}} \Sigma_0^{-1} (\mathbf{f}_1 - \mu_0)$$

$$RHS = \log z_0 + \lambda^{\mathsf{T}} \mathbf{f}_1 - \frac{1}{2} w^{\mathsf{T}} w + \log \exp \frac{1}{2} w^{\mathsf{T}} w \cdot \exp(\frac{1}{2} \lambda^{\mathsf{T}} \Sigma_0 \lambda + \lambda^{\mathsf{T}} \mu_0) + \frac{\alpha_1}{z_0}$$

$$= \log z_0 + \lambda^{\mathsf{T}} \mathbf{f}_1 - \frac{1}{2} w^{\mathsf{T}} w + \log(\exp(\frac{1}{2} u^{\mathsf{T}} u) + \gamma)$$
Where $u^{\mathsf{T}} u = \frac{1}{2} (\mathbf{f}_1 - \mu_0)^{\mathsf{T}} \Sigma_0^{-1} (\mathbf{f}_1 - \mu_0) + \frac{1}{2} \lambda^{\mathsf{T}} \Sigma_0 \lambda + \lambda^{\mathsf{T}} \mu_0$, and

 $\gamma = \frac{\alpha}{20} \exp(\frac{1}{2} \mathbf{W}^{\mathsf{T}} \mathbf{W})$

Lemma

For all $u \in \mathbb{R}^d$ and $v \in \mathbb{R}^d$ and any $\gamma \ge 0$, the bound $\log(\exp(\frac{1}{2}\|u\|^2) + \gamma) \le$

$$\log(\exp(\frac{1}{2}\|v\|^2) + \gamma) + \frac{v^{\top}(u - v)}{1 + \gamma \exp(-\frac{1}{2}\|v\|^2)} + \frac{1}{2}(u - v)^{\top}(I + \Gamma v v^{\top})(u - v)$$

holds when the scalar term $\Gamma = \frac{\tanh(\frac{1}{2}\log(\gamma\exp(-\frac{1}{2}\|v\|^2)))}{2\log(\gamma\exp(-\frac{1}{2}\|v\|^2))}$, equality is achieved when u = v.

Proof.

see T. Jebara. Multitask sparsity via maximum entropy discrimination. JMLR, 12:75110, 2011.

Applying Lemma

$$\log Z_{1}(\theta) \leq \log Z_{0} + \lambda^{T} \mathbf{f}_{1} - \frac{1}{2} (\mathbf{f}_{1} - \mu_{0})^{T} \Sigma_{0}^{-1} (\mathbf{f}_{1} - \mu_{0})$$

$$+ \log(\exp(\frac{1}{2} \|v\|^{2}) + \gamma) + \frac{v^{T}(u - v)}{1 + \gamma \exp(-\frac{1}{2} \|v\|^{2})} + \frac{1}{2} (u - v)^{T} (I + \Gamma v v^{T}) (u - v)$$

Use undetermined coefficients method, recall the goal 2:

$$\begin{split} & z_1 = z_0 + \alpha_1 \\ & \mu_1 = \mu_0 + \frac{\alpha_1}{z_0 + \alpha_1} (\mathbf{f}_1 - \mu_0) \\ & \Sigma_1 = \Sigma_0 + \frac{\tanh(\frac{1}{2}\log(\frac{\alpha_1}{z_0})}{2\log(\frac{\alpha_1}{z_0})} (\mathbf{f}_1 - \mu_0) (\mathbf{f}_1 - \mu_0)^{\mathsf{T}} \end{split}$$

Algorithm 1: Compute Bound

Input: Parameters $\tilde{\theta}$, $\mathbf{f}(y)$, h(y)

Initialize: $z \leftarrow 0^+, \ \mu \leftarrow 0, \ \Sigma \leftarrow zI$;

for each $y \in \Omega$ do

$$\alpha = h(y) \exp(\tilde{\theta}^{T} f(y))$$

$$\mu = \mu + \frac{\alpha}{z + \alpha} (\mathbf{f}(y) - \mu)$$

$$\Sigma = \Sigma + \frac{\tanh(\frac{1}{2} \log(\frac{\alpha}{z})}{2 \log(\frac{\alpha}{z})} (\mathbf{f}(y) - \mu) (\mathbf{f}(y) - \mu)^{T}$$

$$z = z + \alpha$$

end

Output: z, μ , Σ

Going back to the loglikelihood of multi-class logistic regression:

$$J(\theta) = \sum_{i=1}^{t} \left[\log \frac{h_{x_i}(y_i)}{Z_{x_i}(\theta)} + \theta^{\mathsf{T}} \mathbf{f}_{x_i}(y_i) - \frac{\lambda}{2} \|\theta\|^2 \right]$$
 (2)

$$J(\theta) = \sum_{i=1}^{t} \left[\log \frac{h_{x_i}(y_i)}{Z_{x_i}(\theta)} + \theta^{\mathsf{T}} \mathbf{f}_{x_i}(y_i) - \frac{\lambda}{2} \|\theta\|^2 \right]$$
(2)

As we drop the terms unrelated to θ , the maximization problem becomes $\arg\min_{\theta} Q(\theta, \tilde{\theta})$:

$$Q(\theta, \tilde{\theta}) = \frac{1}{2} (\theta - \tilde{\theta})^{\top} (\sum_{i} (\sum_{i} + \lambda I)) (\theta - \tilde{\theta}) + \sum_{i} \theta^{\top} (\mu_{i} - \mathbf{f}_{x_{i}}(y_{i}) + \lambda \tilde{\theta}) - \mathsf{const}$$

Bound Majorization

Algorithm 2: BM

```
Input: Input x_i, y_i and functions h_{x_i}, \mathbf{f}_{x_i} for i = 1, 1, ..., t, regularizer \lambda \in R^+ and convex hull \Lambda \subseteq R^d, tolerance \epsilon
```

Initialize: θ_0 anywhere inside Λ and set $\tilde{\theta} = \theta_0$; while $\theta_{new} - \theta_{old} \ge \epsilon$ do

for
$$i = 1, ..., t$$
 do

Get $\mu_i, \; \Sigma_i, \; \text{from} \; h_{x_i}, \; \mathbf{f}_{x_i}, \; \widetilde{\theta} \; \text{via Algorithm 1}$

end

Set
$$\tilde{\theta}$$
 =

$$\arg\min_{\theta} \frac{1}{2} (\theta - \tilde{\theta})^{\top} (\sum_{i} \sum_{i} + \lambda I) (\theta - \tilde{\theta}) + \theta^{\top} (\sum_{i} \mu_{i} - \mathbf{f}_{x_{i}}(y_{i}) + \lambda \tilde{\theta})$$
Which means: $\tilde{\theta} = \tilde{\theta} - (\sum_{i} \sum_{i} + \lambda I)^{-1} (\sum_{i} \mu_{i} - \mathbf{f}_{x_{i}}(y_{i}) + \lambda \tilde{\theta})$

end

Output: $\hat{\theta} = \tilde{\theta}$

Algorithm 3: Stochastic Bound Majorization

Input: prior $h(\cdot)$, function $\mathbf{f}(\cdot)$, regularizer $\lambda \in R^+$ and convex hull $\Lambda \subseteq R^d \in \mathbf{Initialize}$: θ_0 anywhere inside Λ and set $\tilde{\theta} = \theta_0$;

while $\theta_{new} - \theta_{old} \ge \epsilon$ do

randomly select p mini-batch x_i, y_i 's

for i = 1, ..., p do

Get $\mu_i, \; \Sigma_i, \; \text{from} \; h_{\mathsf{x}_i}, \; \mathbf{f}_{\mathsf{x}_i}, \, \widetilde{\theta} \; \text{via Algorithm 1}$

end

Set

 $\tilde{\theta} = \arg\min_{\theta} \frac{1}{2} (\theta - \tilde{\theta})^{\mathsf{T}} (\sum_{i} \sum_{i} + \lambda I) (\theta - \tilde{\theta}) + \theta^{\mathsf{T}} (\sum_{i} \mu_{i} - \mathbf{f}_{\mathsf{X}_{i}}(y_{i}) + \lambda \tilde{\theta})$ Which means: $\tilde{\theta} = \tilde{\theta} - (\sum_{i} \sum_{i} + \lambda I)^{-1} (\sum_{i} \mu_{i} - \mathbf{f}_{\mathsf{X}_{i}}(y_{i}) + \lambda \tilde{\theta})$

end

Output: $\hat{\theta} = \tilde{\theta}$

Can we do better? Yes.

Notice a linear system

$$\left(\sum_{j} \Sigma_{j}(\theta_{n-1}) + \lambda I\right)(\theta_{n} - \theta_{n-1}) = \sum_{j} \mu_{j}(\theta_{n-1})$$
 (3)

Applying Sherman-Morrison formula:

$$\left(\Sigma + \left(\sqrt{\beta}I\right)^{\top} \left(\sqrt{\beta}I\right)\right)^{-1} = \Sigma^{-1} - \frac{\Sigma^{-1} (\sqrt{\beta}I)^{\top} (\sqrt{\beta}I)\Sigma^{-1}}{1 + (\sqrt{\beta}I)^{\top} \Sigma^{-1} (\sqrt{\beta}I)},$$

$$M_{n+1} = M_n - \frac{\beta M_n I^{\mathsf{T}} I M_n}{1 + \beta I^{\mathsf{T}} M_n I} \tag{4}$$

Algorithm 4: SBM

```
Input: h(\cdot), \mathbf{f}(\cdot), \lambda \in \mathbb{R}^+, \Lambda \subseteq \mathbb{R}^d, n. \epsilon
Initialize: \theta_0 \in \Lambda and set \tilde{\theta} = \theta_0, \phi = 0, M = \frac{1}{\lambda}I, \mu = 0;
while \theta_{new} - \theta_{old} \ge \epsilon do
        randomly select p mini-batch x_i, y_i's
        for i = 1, \ldots, p do
                 z \leftarrow 0^{+}: a = 0
                 for each y \in \Omega do
                          \alpha = h(y) \exp(\tilde{\theta}^{\mathsf{T}} f(y)) \quad I = f(y) - g \quad \beta = \frac{\tanh(\frac{1}{2} \log(\frac{\alpha}{z}))}{2 \log(\frac{\alpha}{z})}
                           Z = Z + \alpha \kappa = \frac{\alpha}{2}
                         M = M - \frac{\beta M I^T I M}{1 + \beta I^T M I}
                        \phi = \phi + M(\kappa I - f_{x_i}(y) + \frac{\lambda \tilde{\theta}}{t}) - \frac{\beta M I^T I M}{1 + \beta I^T M} \mu
                     \mu = \mu + \kappa I - f_{x_i}(y) + \frac{\lambda \tilde{\theta}}{\hbar}
                         q = q + \kappa I
                 end
        end
        \tilde{\theta} = \tilde{\theta} - \eta \phi
end
```

Output: $\hat{\theta} = \tilde{\theta}$

Lemma

Define a mapping $L(\theta) \coloneqq \theta - \eta V(\theta^*)$ which is equivalent to applying gradient operator $T(\theta) \coloneqq \theta - \eta \nabla Q(\theta|\theta^*)$ z_{θ} times, i.e. $L(\theta) = T^{z_{\theta}}(\theta)$, where z_{θ} is a finte integer, and $\nabla Q(\theta|\theta^*)$ is the gradient w.r.t population, under strong convexity condition and smoothness assumption which already hold with stepsize $\eta = \frac{2}{\epsilon + l}$, and because $T(\theta)$ is contractive, we have:

$$\|L(\theta) - \theta^*\|_2 \le \left(\frac{l - \epsilon}{l + \epsilon}\right)^{z_\theta} \|\theta - \theta^*\|_2 \tag{5}$$

Proof.

To prove the lemma 2, leverage several truths:

- ► The standard result $||T(\theta) \theta^*||_2 \le (\frac{l-\epsilon}{l+\epsilon}) ||\theta \theta^*||_2$
- $ightharpoonup z_{\theta}$ is the number of iteration that we perform to optimize a quadratic problem which is theoretically finite.
- $T^{z_{\theta}}(\theta_{z_{\theta}}) = TT^{z_{\theta}-1}(\theta_{z_{\theta}-1})$

Follows the inequality 8

Definition

 $V(\theta)$ stability

The functions $\{Q(\cdot|\theta), \theta \in \Omega\}$ statisfy VS(γ) condition, where $\gamma \ge 0$, over Euclidean ball $B_2(d, \theta^*)$, if

$$\|\Sigma(\theta)^{-1}\mu(\theta) - \Sigma(\theta^*)^{-1}\mu(\theta^*)\|_{2} \le \gamma \|\theta - \theta^*\|_{2}$$
 (6)

for all $\theta \in B_2(d, \theta^*)$

$$\|G(\theta) - \theta^*\|_{2} = \|\theta - \eta V(\theta) - \theta^*\|_{2}$$

$$\leq \|\theta - \eta V(\theta^*) - \theta^*\|_{2} + \eta \|V(\theta) - V(\theta^*)\|_{2}$$

$$= \|L(\theta) - \theta^*\|_{2} + \eta \|V(\theta) - V(\theta^*)\|_{2}$$

$$\|G(\theta) - \theta^*\|_{2} \leq \left(\left(\frac{l - \epsilon}{l + \epsilon}\right)^{z(\theta)} + \eta \gamma\right) \|\theta - \theta^*\|_{2}$$
(7)

the term $(\frac{l-\epsilon}{l+\epsilon})^{z(\theta)} + \eta \gamma < 1$ under a loose condition $\epsilon > \gamma$, resulting in the convergence of Bound Algorithm.

For any $\theta_0 \in \Lambda$ all $\|\mathbf{f}_{x_i}(y)\| \le r$ and all $|\Omega| \le n$, Algorithm 2 outputs a θ s.t. $J(\theta_\tau) - J(\theta_\tau) \le \epsilon(J(\theta^*) - J(\theta_\tau))$ with more than $\tau = \left[\frac{\log(\epsilon)}{\log(\kappa-1) - \log\kappa}\right]$ epochs of training. $\kappa = \frac{w+\lambda}{\lambda}$, and upper bound of Σ is $\omega I = (2r^2 \sum_{i=2}^n \frac{\tanh(\frac{1}{2}\log i)}{\log i})I$.

Proof.

See Jebara, Tony, and Anna Choromanska. "Majorization for CRFs and latent likelihoods." Advances in Neural Information Processing Systems. 2012.

This is a measure of how far we have to go to achieve some accuracy.

Lemma

Define a mapping $L(\theta) \coloneqq \theta - \eta V(\theta^*)$ which is equivalent to appling gradient operator $T(\theta) \coloneqq \theta - \eta \nabla Q(\theta|\theta^*)$ z_{θ} times, i.e. $L(\theta) = T^{z_{\theta}}(\theta)$, where z_{θ} is a finte integer, and $\nabla Q(\theta|\theta^*)$ is the gradient w.r.t population, under strong convexity condition and smoothness assumption which already hold with stepsize $0 \le \eta \le \frac{2}{\epsilon + 1}$, and because $T(\theta)$ is contractive, we have:

$$\|L(\theta) - \theta^*\|_2 \le \left(1 - \frac{2\eta I\epsilon}{I + \epsilon}\right)^{z_\theta} \|\theta - \theta^*\|_2 \tag{8}$$

Similarly using the exactly the same technique as before we can get:

$$\|G(\theta) - \theta^*\|_2 \le \left(\left(1 - \frac{2\eta I \epsilon}{I + \epsilon}\right)^{z_\theta} + \eta \gamma \right) \|\theta - \theta^*\|_2 \tag{9}$$

Denote $\Delta_{t+1} := \theta_{t+1} - \theta^*$, we have that:

$$\begin{split} & \left\| \Delta_{t+1} \right\|_2^2 - \left\| \Delta_t \right\|_2^2 \leq \left(\eta_t \right)^2 \left\| \hat{V}(\theta_t) \right\|_2^2 + 2 \eta_t \left\| \hat{V}(\theta_t) \cdot \Delta_t \right\|_2 \\ \Longrightarrow & E[\left\| \Delta_{t+1} \right\|_2^2] \leq E[\left\| \Delta_t \right\|_2^2] + (\eta_t)^2 E[\left\| \hat{V}(\theta_t) \right\|_2^2] + 2 \eta_t E[\left\| \hat{V}(\theta_t) \cdot \Delta_t \right\|_2] \end{split}$$

Since
$$\hat{V}(\theta^*) = 0$$
, we have: $E[\|\Delta_{t+1}\|_2^2] \le E[\|\Delta_t\|_2^2] + (\eta_t)^2 E[\|\hat{V}(\theta_t)\|_2^2] + 2\eta_t E[\|(\hat{V}(\theta_t) - \hat{V}(\theta^*)) \cdot \Delta_t\|_2]$ Then we upper bound the last term using $(\|G(\theta) - \theta^*\|_2 \le (1 - \frac{2\eta l \epsilon}{l + \epsilon})^{z_\theta} + \eta \gamma) \|\theta - \theta^*\|_2$, which is: $2\eta_t E[\|(\hat{V}(\theta_t) - \hat{V}(\theta^*)) \cdot \Delta_t\|_2 \le (1 - \frac{2\eta l \epsilon}{l + \epsilon})^{z_\theta} + \eta \gamma - 1) \|\theta_t - \theta^*\|_2$ and we get:

$$E[\|\Delta_{t+1}\|_{2}^{2}] \leq E[\|\Delta_{t}\|_{2}^{2}] + (\eta_{t})^{2} E[\|\hat{V}(\theta_{t})\|_{2}^{2}]$$

$$-2((1 - \frac{2\eta_{t}I\epsilon}{I + \epsilon})^{z_{\theta}} + \eta_{t}\gamma - 1)E[\|\Delta_{t}\|_{2}^{2}]$$

For simplicity it's safe to set $z(\theta) = 1$ as the inequality still holds and we get:

$$E[\|\Delta_{t+1}\|_2^2] \leq E[\|\Delta_t\|_2^2] + (\eta_t)^2 E[\|\hat{V}(\theta_t)\|_2^2] - 2\eta_t \xi E[\|\Delta_t\|_2^2]$$

where $\xi = \frac{2l\epsilon}{l+\epsilon} - \gamma$, combining all the previous results and upper bounding the second term $\sup_{\theta \in \Lambda} E[\|\hat{V}(\theta_t)\|_2^2] = \sigma_V^2$:

$$E[\|\Delta_{t+1}\|_{2}^{2}] \leq (1 - 2\eta_{t}\xi)E[\|\Delta_{t}\|_{2}^{2}] + (\eta_{t})^{2}E[\|\hat{V}(\theta_{t})\|_{2}^{2}]$$

$$\leq (1 - \eta_{t}\xi)E[\|\Delta_{t}\|_{2}^{2}] + (\eta_{t})^{2}\sigma_{V}^{2}$$

$$E[\|\Delta_{t+1}\|_{2}^{2}] \leq \frac{9\sigma_{V}^{2}}{\xi^{2}} \frac{1}{t+2} + (\frac{2}{t+2})^{\frac{3}{2}} \|\Delta_{0}\|_{2}^{2}$$
 (10)

Which summarize the guarantee of convergence.

t = 4000 and n = 4, We simply choose $h(y) = \frac{\mathbb{1}(y=k)}{\sum_{k=1}^4 \mathbb{1}(y=k)}$ to be the prior, and $f_x(y) = \left[\mathbb{1}(y=1)x^{\mathsf{T}}\mathbb{1}(y=2)x^{\mathsf{T}}, \mathbb{1}(y=3)x^{\mathsf{T}}, \mathbb{1}(y=4)x^{\mathsf{T}}\right]^{\mathsf{T}}$ to be the mapping.

Table 1: parameter setting

<i>p</i> : k	oatch size	m: number of vectors in LBFGS		
ВМ	SBM	LBFGS	GD	SGD
$\lambda = 1e - 2$	<i>p</i> = 40	η : line search	$\lambda = 1e - 2$	<i>p</i> = 40
ϵ = 1e – 6	ϵ = 1e – 6	ϵ = 1e – 5	ϵ = 1 e – 5	ϵ = 1 e – 5
η = 1	η = 1e – 2	m = 4	η = 1e – 2	η = 1e – 2

Figure 1: iteration comparison

Figure 2: time comparison

Figure 3: training accuracy comparison

Figure 4: testing accuracy comparison

Conclusion

- ▶ Requiring very few parameters tuning, (stepsize η or convex hull Λ);
- Bound is very tight, which makes it extremely efficient;
- Only applicable to log-linear models, CRFs, Latent Likelihoods etc.
- The assumptions and conditions has to be satisfied properly, otherwise it may diverge.

Thank You!