Lección 3: Pruebas de hipótesis

Módulo 3: Inferencia Estadística

Magdalena Cornejo

Una parte muy útil de la estadística son las pruebas de hipótesis.

Una hipótesis estadística es una afirmación respecto a alguna característica desconocida de una población (generalmente parámetros como la media o la proporción). **Ejemplos:**

Una parte muy útil de la estadística son las pruebas de hipótesis.

Una hipótesis estadística es una afirmación respecto a alguna característica desconocida de una población (generalmente parámetros como la media o la proporción). **Ejemplos:**

 Un legislador afirma que el ingreso medio de la población es de al menos \$8000 mensuales.

Una parte muy útil de la estadística son las pruebas de hipótesis.

Una hipótesis estadística es una afirmación respecto a alguna característica desconocida de una población (generalmente parámetros como la media o la proporción). **Ejemplos:**

- Un legislador afirma que el ingreso medio de la población es de al menos \$8000 mensuales.
- La proporción de ciudadanos dispuestos a seguir apoyando al gobierno de turno en las próximas elecciones es del 65%.

Una parte muy útil de la estadística son las pruebas de hipótesis.

Una hipótesis estadística es una afirmación respecto a alguna característica desconocida de una población (generalmente parámetros como la media o la proporción). **Ejemplos:**

- Un legislador afirma que el ingreso medio de la población es de al menos \$8000 mensuales.
- La proporción de ciudadanos dispuestos a seguir apoyando al gobierno de turno en las próximas elecciones es del 65%.

Buscamos evaluar estas hipótesis para decidir si la afirmación se encuentra apoyada por la evidencia que se obtiene a través de una muestra.

Entonces, las pruebas de hipótesis se realizan respecto a los parámetros poblacionales. Utilizamos información muestral para evaluar si la evidencia empírica valida dichas hipótesis.

Veremos pruebas de hipótesis respecto de:

- Media poblacional (μ)
- Proporción poblacional (p)

Para ello, es necesario introducir primero algunos conceptos básicos...

Algunos conceptos básicos

• Hipótesis Nula: H₀

• Hipótesis Alternativa: H_1

Posibles decisiones que pueden tomarse respecto a la hipótesis nula:

	Decisión respecto a la H_0	
	Rechazar	No rechazar
verdadera	α	decisión correcta
	Error de Tipo I	$1-\alpha$
falsa	decisión correcta	β
	potencia $=1-eta$	Error de Tipo II

- No pueden cometerse ambos errores a la misma vez.
- Generalmente se achica uno, pero se agranda el otro.
- Entonces se fija α en 1%, 5% y 10%.

Un poco de humor...

Aunque esto es ex-post ya que aquí realmente sabemos si la hipótesis nula (no estar embarazada) es verdadera o falsa.

Type I error Type II error (false positive) (false negative) You're not pregnant You're pregnant

Algunos conceptos básicos

Definición

Una **prueba de hipótesis** con respecto a una característica desconocida de cualquier población es una regla para decidir si se rechaza o no la hipótesis nula.

- La decisión se basa en un estadístico que depende solo de información muestral.
- Para ciertos valores de este estadístico la decisión será rechazar la hipótesis nula.
- Estos valores se conocen como los valores críticos y determinan una región crítica.

Estructura de una prueba de hipótesis

- (1) Formulación de la hipótesis a contrastar.
- (2) Establecer el nivel de significación del test (α) .
- (3) Cálculo del estadístico de contraste.
- (4) Regla de decisión.
- (5) Conclusión

Regiones críticas

Si la hipótesis nula sobre el parámetro de interés θ (p. ej., μ o p) es:

$$H_0: \theta = \theta_0$$

y si la hipótesis alternativa es de la forma,

$$H_1: \theta > \theta_0$$
 o $H_1: \theta < \theta_0$

se dice que es una **hipótesis alternativa unilateral**. La región crítica también recibe el nombre de región de rechazo unilateral.

De otro modo, debe establecerse una hipótesis alternativa bilateral:

$$H_1: \theta \neq \theta_0$$

Una hipótesis alternativa bilateral implica la existencia de una región crítica bilateral (la cual es simétrica: las dos partes de la región se seleccionan de tal forma que el área bajo la curva de cada una de las regiones sea igual).

Regiones críticas

Si $\alpha = 0.05$, las regiones de rechazo en cada caso estarán dadas por:

Prueba de Hipótesis para la Media (μ)

Al igual que en la construcción de intervalos de confianza, hay dos casos posibles:

Caso 1: con varianza poblacional **conocida**. El estadístico de contraste a utilizar será:

$$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Caso 2: con varianza poblacional desconocida. El estadístico de

contraste a utilizar será:

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

Prueba de Hipótesis para la Media (μ)

¿Cómo determinamos si se puede rechazar o no la hipótesis nula?

Hay dos forma alternativas:

- Calcular el valor del estadístico de contraste (Z o T) y compararlo contra el valor crítico (de tabla de la normal estándar o de la t de Student).
- 2 Calcular el p-valor y comprarlo contra el α (1%, 5% o 10%).

Prueba de Hipótesis para la Media - Caso 1 (Z)

Ejemplo

Se sabe que, históricamente, los precios de una determinada canasta de productos se distribuyen normalmente con media \$1780 y un desvío estándar de \$110. Este año, una muestra de 40 observaciones proporcionó un precio promedio de \$1900. Con un nivel de significación del 5%, ¿se puede afirmar que el precio medio de estos productos es menor o igual que el precio medio histórico? (Asuma que $\sigma=110$).

Prueba de Hipótesis para la Media - Caso 1 (Z)

Ejemplo

Se sabe que, históricamente, los precios de una determinada canasta de productos se distribuyen normalmente con media \$1780 y un desvío estándar de \$110. Este año, una muestra de 40 observaciones proporcionó un precio promedio de \$1900. Con un nivel de significación del 5%, ¿se puede afirmar que el precio medio de estos productos es menor o igual que el precio medio histórico? (Asuma que $\sigma=110$).

$$H_0: \mu \leq 1780$$

 $H_1: \mu > 1780$ (inflación)

$$Z = \frac{1900 - 1780}{110/\sqrt{40}} = 6.899$$

 $z_{\alpha} = 1.645$.

Entonces, con un nivel de confianza del 95% se rechaza la hipótesis nula, es decir, el precio medio de los productos sería mayor que el precio medio histórico.

Prueba de Hipótesis para la Media

• En el ejemplo de recién comparamos el valor del estadístico contra el valor crítico (de la tabla de la normal estándar) para rechazar H_0 .

• Alternativamente, se puede usar el criterio del *p*-valor (¡muy útil cuando trabajamos con softwares!)

El p-valor

Definición

El **p-valor** es el nivel de significatividad más pequeño a partir del cual la hipótesis nula puede ser rechazada. En otras palabras, es la zona crítica que correspondería al valor del estadístico.

Supongamos otro ejemplo con las siguientes hipótesis:

 $H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$

El estadístico es: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = 1.52$

En la tabla de la distribución normal, podemos encontrar que si Z_{α} fuese 1.52, entonces $\alpha=0.0643$. Este es entonces el **p-valor** del test, que implica que la H_0 se puede rechazar para cualquier α mayor a 6,43%.

Regla de rechazo: si *p*-valor< $\alpha \Rightarrow$ rechazo H_0 .

Prueba de Hipótesis para la Media - Caso 2 (T)

Aplicación en Excel:

- Vuelva a trabajar sobre la base de datos de Excel que utilizó en el Módulo 1 en la cual calculó el retorno diario de IBM entre el 4 de enero de 2016 y 22 de julio de 2016.
- Utilice nuevamente el complemento de Excel "Herramientas para análisis", pero esta vez se le pide que evalúe la validez empírica de la siguiente hipótesis:

"El retorno medio diaria de IBM es de al menos 1%."

Prueba de Hipótesis para la Media - Caso 2 (T)

Aplicación en Excel:

- Vuelva a trabajar sobre la base de datos de Excel que utilizó en el Módulo 1 en la cual calculó el retorno diario de IBM entre el 4 de enero de 2016 y 22 de julio de 2016.
- Utilice nuevamente el complemento de Excel "Herramientas para análisis", pero esta vez se le pide que evalúe la validez empírica de la siguiente hipótesis:

"El retorno medio diaria de IBM es de al menos 1%."

• En este caso, la hipótesis a contrastar es:

$$H_0: \mu \geq 1\%$$

$$H_1: \mu < 1\%$$

Prueba de Hipótesis para la Proporción (p)

Si estamos interesados en formular una prueba de hipótesis respecto de la proporción poblacional (p):

$$H_0$$
: $p = p_0$
 H_1 : $p \neq p_0$

El estadístico de contraste que usamos es:

$$Z = rac{\widehat{P} - p_0}{\sqrt{rac{\widehat{P}(1-\widehat{P})}{n}}} \sim N(0,1)$$

Procederemos en forma análoga al caso de la media para decidir si hay evidencia suficiente para rechazar o no la hipótesis nula.

Prueba de Hipótesis para la Proporción (p)

Ejemplo

En una encuesta realizada sobre 871 adultos, el 53% de los entrevistados estuvieron a favor de un apoyo decidido al gobierno. Con una confianza del 95%, ¿se podría asegurar que la mayoría de los adultos de dicha ciudad está no está a favor de un apoyo decidido del gobierno?

Prueba de Hipótesis para la Proporción (p)

Ejemplo

En una encuesta realizada sobre 871 adultos, el 53% de los entrevistados estuvieron a favor de un apoyo decidido al gobierno. Con una confianza del 95%, ¿se podría asegurar que la mayoría de los adultos de dicha ciudad está no está a favor de un apoyo decidido del gobierno?

 $H_0: p \le 0.5$

 $H_1: p > 0.5$ (apoyo decidido al gobierno)

$$Z = \frac{0.53 - 0.5}{\sqrt{\frac{0.53 \times 0.47}{871}}} = 1.77$$

$$z_{\alpha} = z_{0.05} = 1.645$$

Entonces, con un nivel de confianza del 95% se rechaza la hipótesis nula. Es decir, hay evidencia estadística a favor de un apoyo decidido del gobierno.