Situação	Finalizada
Iniciado	sexta-feira, 29 ago. 2025, 22:00
Concluído	sexta-feira, 29 ago. 2025, 22:30
Duração	30 minutos 23 segundos
Notas	4,00/4,00
Nota	10,00 de um máximo de 10,00(100 %)
Questão 1	
Correto	
Atingiu 1,00 de 1,00	

Considere o algoritmo de ordenação abaixo e selecione o seu custo de pior caso. Sua análise deve ser a mais justa possível.

```
void sort (int n, int v[]) {
  int i, j, min, x;
  for (i = 0; i < n-1; i++) {
    min = i;
    for (j = i+1; j < n; j++)
        if (v[j] < v[min]) min = j;
        x = v[i]; v[i] = v[min]; v[min] = x;
  }
}</pre>
```

- \bigcirc a. $\mathcal{O}(\lg n)$
- lacksquare b. $\mathcal{O}(n^2)$ \checkmark
- \bigcirc c. $\mathcal{O}(n)$
- \bigcirc d. $\mathcal{O}(n^3)$
- \bigcirc e. $\mathcal{O}(n \lg n)$

Sua resposta está correta.

A resposta correta é: $\mathcal{O}(n^2)$

```
Questão 2
```

Correto

Atingiu 1,00 de 1,00

Marque o custo de pior caso do algoritmo abaixo. Sua análise deve ser a mais justa possível.

```
void multiply(int n, int m, int matrix[][m], int vector[],int result[]) {
    for (int i = 0; i < n; i++) {
        result[i] = 0;
        for (int j = 0; j < m; j++) {
            result[i] += vector[j] * matrix[j][i];
        }
    }
}</pre>
```

- lacksquare a. $\mathcal{O}(m imes n)$ \checkmark
- \odot b. $\mathcal{O}(m^2 imes n^2)$
- \bigcirc c. $\mathcal{O}(n+m)$
- \bigcirc d. $\mathcal{O}(n)$
- igcup e. $\mathcal{O}(n^2)$

Sua resposta está correta.

A resposta correta é:

 $\mathcal{O}(m imes n)$

Questão **3**Correto

Atingiu 1,00 de 1,00

Marque o custo de pior caso do algoritmo abaixo. Sua análise deve ser a mais justa possível.

```
int binarySearch(int arr[], int size, int element) {

int start = 0;

int end = size - 1;
   int middle;
   while (start <= end) {
        middle = start + (end - start) / 2;

        if (arr[middle] == element) {
            return middle;
        }

        if (arr[middle] < element) {
            start = middle + 1;
        }

        else {
            end = middle - 1;
        }
    }

    return -1;
}</pre>
```

- \bigcirc a. $O(\log n) \checkmark$
- \bigcirc b. $\Omega(n \log n)$
- \odot c. $O(n^2)$
- \bigcirc d. O(n)
- \bigcirc e. $O(\sqrt{\log n})$

Sua resposta está correta.

A resposta correta é:

 $O(\log n)$

Questão	4

Correto

Atingiu 1,00 de 1,00

Considere a função $128n^{2367} + 45n^{2366} \lg n$. Qual a sua ordem de crescimento? Sua análise deve ser a mais justa possível.

- igcup a. $\mathcal{O}(n^{2366})$
- \bigcirc b. $\mathcal{O}(n^{2366} \lg n)$
- \odot c. $\mathcal{O}(n^{2367})$ \checkmark
- \odot d. $\mathcal{O}(n^{2366} + \lg^2 n)$
- igcup e. $\mathcal{O}(n^{2367}/\lg n)$

Sua resposta está correta.

A resposta correta é: $\mathcal{O}(n^{2367})$

→ Forum de discussões

Seguir para...