Note: These sequential steps do not refer to specific functions. A single step may involve multiple function calls. The idea behind the steps is just to group the overarching tasks of the program together.

0) Set Constants

[One of the purposes of defining most of the constants up here at the top is to make it easy for Jiachen/others to find the constants they need to change in the future to adapt the model to new data]

1) Cluster NC data

- a) load+aggregate NC data (including weather), grouping by sensor ID fields [and 'unit'?]
 - i) ??? Would it make sense to save the aggregation to .csv and add in functionality to continue the most recent date so that we don't need to re-query if we already have the data? (Would a stretch goal if we have time)
- b) Encode and scale NC data
- c) cluster NC data to get df of sensor id fields + cluster group number
- d) Reload NC data + join cluster group num + aggregate, this time grouping by date, time, and clust_group_num

OUTPUT OF STEP1 = dataframe with 5 numbers (mean, stddev,min,max,update rate) per cluster group (shown below as c1, c2). 1 row per aggregated time period (below is by hour: 1 row per hour for every day in the date range. 30 days would be 30x24=720 rows)

NC DATA

Date	Hour	mean_ 0	std_0	min_0	max_0	urate _0	mean_ 1	std_1	min_1	max_1	urate _1	c n
2020- 05-01	0	55.2	24.1	0	100	15	10	.1	2	18	1000	
2020- 05-01	1	50.1	14.2	5	80	15	10	.1	2	18	1000	
	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	
2020- 05-01	23	37	19	1	64	15	5	.1	2	18	1000	
2020-	0	48	12	10	90	18	10	.1	2	18	1000	

05-02							
				1	1		

2) Model EC/NC relationship

a) Load+aggregate EC data, grouping by date, time, and sensor ID fields (no feature selection needed yet!)

EC DATA

uniqueID	date	hour	mean
AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR(kWh)	2020-05-01	16	4746.326782
AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR(kWh)	2020-05-01	17	4748.786743
AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR(kWh)	2020-05-01	20	4753.706665
AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR(kWh)	2020-05-01	21	4756.166992

b) Also create second DF by aggregating further just using sensor ID fields for the entire time range (end result = 1 row per sensor)

uniqueId	mean	max	min	std	update_rate
AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR (kWh)					
AHU-02 SF Air Systems Energy AHU1_SF_VFD_PWR (kWh)					
Rm 6203G EF-13 Floor 6 Energy EF_13_VFD_PWR(k Wh)					
Rm 6206B EF-11 Floor 6 Energy EF_11_VFD_PWR(k Wh)					

c) For each unique EC sensorID (i.e. each row in 2b_EC_data_df), create a Ridge Regression model using 2a_EC_data_df and step1_output_NC_data_df. Model is basically: Y=EC response of the unique EC sensor and Xn=NC data

These are a	ll the coeffi	cients	from the Ric	lge Regr	ession model	s		Unique EC SensorID	
0	1	2	3		17	18	19	uniqueID	
0.000037	-0.004377	0.0	-0.000041		5.876493	8.502804	20.087383	AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR(kWh)	
0.000039	-0.004622	0.0	-0.000044		6.537176	8.851925	20.473544	AHU-02 SF Air Systems Energy AHU2_SF_VFD_PWR(kWh)	

OUTPUT OF STEP2 = dataframe with EC sensor ID fields and all n coefficients from that unique EC sensor's Ridge Regression model. (a single row basically represents the results from a single Ridge Regression model)

3) Prep EC data for classification model

a) Load metadata and join with 2b_EC_data_df (inner join)

			2b_EC_c	data_df				metada	ta	
uniqueId	mean	max	min	std	update_rate	unit	energy	power	water	sensor
AHU-01 SF Air Systems Energy AHU1_SF_V FD_PWR(kW h)						kWh	yes_energy	no_power	no_water	yes_sensor
AHU-02 SF Air Systems Energy AHU1_SF_V FD_PWR(kW h)						kWh	no_energy	no_power	no_water	yes_sensor
•••						kWh	no_energy	no_power	no_water	yes_sensor
Rm 6203G EF-13 Floor 6 Energy EF_13_VFD _PWR(kWh)						kWh	yes_energy	no_power	no_water	yes_sensor
Rm 6206B EF-11 Floor 6 Energy EF_11_VFD _PWR(kWh)						kWh	yes_energy	no_power	no_water	yes_sensor

b) Apply feature selection function(s) to the joined EC+metadata (by joining with NRCan labels)

		2b	_EC_da	ta_df			met	adata			training	g data	
unique Id	me an	max	min	std	upda te_r ate	energ y	power	water	sensor	ALEX-NRC anLabelG uess	isGas	equipN ew	navNew
AHU-01 SF Air System s Energy AHU1_S F_VFD_ PWR(kW h)						yes_e nergy	no_po wer	no_wa ter	yes_sen sor	4_Auxill ary_Moto rs	no_ga s	Air_Eq uip	Energy
AHU-02 SF Air System s Energy AHU1_S F_VFD_ PWR(kW h)						no_en ergy	no_po wer	no_wa ter	yes_sen sor	4_Auxill ary_Moto rs	no_ga s	Air_Eq uip	Energy

c) Encode and scale the EC+metadata

		2b_	_EC_data	a_df		End	coding afte	r feature se	lection	NRCan labels
unique Id	mean	max	min	std	updat e_rat e	isGas _yes_ gas	energy_n o_energy	energy_ye s_energy	equipRef_A ir_Equip	ALEX-NRCanLabelGuess
AHU-01 SF Air System s Energy AHU1_S F_VFD_ PWR(kW h)						0.0	0.0	1.0	1.0	4_Auxillary_Motors
AHU-02 SF Air System s Energy AHU1_S F_VFD_ PWR(kW h)						0.0	0.0	1.0	1.0	4_Auxillary_Motors

d) Join the model coefficients from step2 output to the EC+metadata

OUTPUT OF STEP4 = dataframe with EC sensor ID fields, selected EC features, model coefficients

	A	\11 c	of the	encod	ed/scaled sel	columns ection	that pa	assed fe	ature	NRCan labels		These are all the coefficients from the Ridge Regression model		
uniqueId	m e a n	m a x	min	std	update _rate	isGas _yes_ gas	energ y_no_ energ y	energ y_yes _ener gy	equip Ref_A ir_Eq uip	ALEX-NRCa nLabelGue ss	0	1	•••	19
AHU-01 SF Air Systems Energy AHU1_SF_V FD_PWR(kW h)						0.0	0.0	1.0	1.0	4_Auxilla ry_Motors				
AHU-02 SF Air Systems Energy AHU1_SF_V FD_PWR(kW h)						0.0	0.0	1.0	1.0	4_Auxilla ry_Motors				

4) Classification model

- a) Run classification model on output from step 4
- b) ?
- c) PROFIT!

OUTPUT OF STEP5 = dataframe with EC sensor ID fields and end-use group

These are all	Our awesome final results					
groupRef	equipRef	siteRef	typeRef	navName	unit	EndUse
Pharmacy Air Systems	AHU-20	Pharmacy	AHU20_SF_VFD _PWR(kWh)_TL	Energy	_	Space Heating
Pharmacy	Cooling	Pharmacy	CHWP_P5A_VFD	5	_	Space

Hydronic Systems	Plant P-5A		_PWR(kWh)_TL			Cooling
•••						
Pharmacy Utilities	AHU-01 SF	Pharmacy	AHU1_SF_VFD_ PWR(kWh)	Energy	kWh	Space Heating