TREES, FORESTS AND BOOSTING KNOWLEDGE SHARING SESSION

Rostislav Stoyanov

May 28, 2025

Part I

TREES AND FORESTS

TREES AND FORESTS

1	Decis	ion trees
	1.1	Tree training
	1.2	Advantages of decision trees
	1.3	Issues with decision trees
2	Enser	nble learning
3	Baggi	ing
	3.1	Bootstraping
	3.2	Bagging algorithm
	3.3	Random forest
	3.4	Advantages of random forest
	3.5	Disadvantages of random forest

- ► Structure consisting of (root, internal and left) nodes connected with branches.
- ► Each node represents a test on a data feature and each branch from the node represent an outcome from the test.
- ► Nodes without children are called leafs. Each leaf represents a prediction outcome of the model.

Figure. Tree structure parts¹

¹Picture taken from: https://mlu-explain.github.io/decision-tree/

TREE TRAINING

- ► Trees are build in a top-down fashion by performing a greedy search. Multiple algorithms, which follow similar approach.
- ➤ Starting from the root node, a recursive algorithm is used to find the most optimal current split (test) at a node.
- ▶ The selection of a split at a node is based on a metric. Using the samples reaching the node, this metric is calculated in order to find which of all possible splits best optimizes the algorithm's objective.
- ► This process is repeated until some end condition is met (e.g. not enough data to split, maximum depth is reached).

TRAINING METRICS

Definition 1.1 (Shannon entropy)

Given a discrete random variable X, which takes values in the alphabet \mathcal{X} and is distributed according to $p: \mathcal{X} \to [0,1]$:

$$H(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)]$$
(1)

Definition 1.2 (Information gain)

Let T denote a set of training examples and α be an attribute describing the training examples. Furthermore, let $vals(\alpha)$ contains all possible values of a and $S_a(v) := \{x \in T | x_a = v\}$ be the set of training inputs for which the attribute $\alpha = v$.

$$IG(T,\alpha) := H(T) - \sum_{v \in vals(a)} \frac{|S_{\alpha}(v)|}{|T|} H(S_{\alpha}(v)) = H(T) - H(T \mid \alpha)$$
(2)

TRAINING VISUALIZED

ADVANTAGES OF DECISION TREES

- ► Can solve non-linear problems.
- ► Non-parametric models.
- ► Can handle various both categorical and numerical data. Furthermore, missing values are also supported.
- **Easy** to interpret.

ISSUES WITH DECISION TREES

- ► Have to re-calculate the tree for new examples.
- ► "Vanilla" decision trees can't extrapolate.
- ▶ Overfitting. Complex trees fit the training data too well and do not generalize to new data.
 - We can use pre-pruning or post-pruning to mitigate this problem.
- ▶ Unstable. Small changes in the training samples can lead to very different decision trees.

HIGH VARIANCE VISUALIZED

Figure. Example of trees build when changing the class of 5% of the training samples ²

 $^{^2} Source: \verb|https://mlu-explain.github.io/decision-tree/|$

ENSEMBLE LEARNING

- ▶ Use ensemble learning to mitigate the weaknesses of decision trees.
- ► Ensemble learning is a paradigm in which multiple "weak learners" are trained on the same problem to achieve better performance.
- ► We will explore two methods:
 - Bagging (random forest)
 - Boosting (AdaBoost, gradient boosting)

BAGGING BOOTSTRAPING

- Generate new samples of size B from a dataset with N samples using uniform sampling with replacement.
- ▶ Boostrapping needs two properties of the original dataset to work correctly (the samples are representative and independent samples of the true data distribution)¹:
 - Representativity The dataset is big enough to capture the underlying distributin.
 - Independence The dataset is big enough so samples aren't correlated much.

Figure. Bootstrap ¹

 $^{^{1}} Source: \verb|https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205| | Construction of the content of$

BAGGING

BAGGING ALGORITHM

- Given a training set D, |D| = n, bootstrap m new training sets $D_i, i = 1, ..., m, |D_i| = n'$.
- ▶ Using each of the training sets D_i train a machine learning model M_i .
- ► The output of the ensemble is the average of all model outputs (regression) or voting (classification).
- ▶ The final model has less variance than a single trained model.

BAGGING RANDOM FOREST

- ▶ Random forest uses bagging to train multiple decision trees. We are using bagging to minimize variance, so use deep trees.
- ► Additionally, for each decision tree trained keep only a part of the features. This has two advantages:
 - Reduce correlation of the trees if a feature is a very strong predictor it will be used in all trees making them correlated.
 - Increase robustness to missing data. Some of the trees will only have features without missing data.

BAGGING

ADVANTAGES OF RANDOM FOREST

- ▶ Similar to decision trees can handle different types of features and solve non-linear problems.
- ▶ Better performance than a single decision tree.
- ► Low risk of overfitting.

BAGGING

DISADVANTAGES OF RANDOM FOREST

- ▶ Loss of interpretability (compared to decision trees).
- Can't extrapolate.
- ► Typically higher bias than a single tree [Has+09].
- ▶ Very dependent on the bootstrapped datasets. Recreation of experiment would require the same sampling (keeping track of the seeds).
- ▶ Needs modifications to handle class imbalance.

Part II

BOOSTING

- ➤ Similarly to bagging uses many "weak" models to produce a strong ensemble model ("committee"). The two approaches, however, are fundamentally different.
- ▶ Models are fit iteratively (sequentially) so that they complement each other.
- ► Each new model attempts to improve prediction on samples for which the previous models have been wrong.

1	Boost	ing		
	1.1	AdaBoost		
2	Addi	tive modeling		
	2.1	Forward Stagewise Additive Modeling		
3	Functional gradient descent			
	3.1	Steepest descent		
	3.2			
4	Next	time		
5	Useful resources			

ADABOOST

Algorithm AdaBoost [Has+09]

- 1: Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2: **for** m = 1, ..., M **do**
- 3: Fit a classifier $G_m(x)$ to the training data using weights w_i .
- 4: Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)}{\sum_{i=1}^{N} w_{i}}.$$

- 5: Compute $\alpha_m = \log ((1 \operatorname{err}_m) / \operatorname{err}_m)$.
- 6: Set $w_i \leftarrow w_i \cdot \exp\left[\alpha_m \cdot I\left(y_i \neq G_m\left(x_i\right)\right)\right], i = 1, 2, \dots, N.$
- 7: end for
- 8: Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

ADABOOST

- ► On the right, AdaBoost fit for a toy example.
- ► Fit for 10 iterations.
- ► Weak learners are decision stumps with depth 1 and 2 leaf nodes.

Figure. AdaBoost on a toy example³

 $^{^{1}} Picture \ taken \ from: \ \texttt{https://xavierbourretsicotte.github.io/AdaBoost.html}$

BOOSTING ADABOOST

Figure. Visualization of the sequence of weak learners and the sample weights

ADABOOST

- ► Advantages:
 - Improves performance of weak classifiers fast.
 - Easy to use and tune, not a lot of parameters than a single classifier.
 - Less prone to overfitting.
- ► Drawbacks:
 - Sensitive to noisy data and outliers.
 - Hard to extend to other tasks.

ADDITIVE MODELING

▶ Boosting success comes from fitting an additive expansion:

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$
(3)

In the case of AdaBoost:

- $b(x; \gamma) \in \mathbb{R}$ are functions of multivariate argument x, with parameters γ . AdaBoost uses trees as basis functions, with γ being the split variables and points as well as the leaf predictions.
- The expansion coefficients β_m ; m = 1, 2, ..., M are the model weights α_m .
- ▶ Fitting is done by minimizing a loss over all training examples:

$$\min_{\{\beta_m, \gamma_m\}_1^M} \sum_{i=1}^N L\left(y_i, \sum_{m=1}^M \beta_m b\left(x_i; \gamma_m\right)\right). \tag{4}$$

ADDITIVE MODELING

FORWARD STAGEWISE ADDITIVE MODELING

▶ Fitting 4 is very expensive, so instead we can approximate by adding new functions without modifying the previous ones:

Algorithm Forward Stagewise Additive Modeling [Has+09]

- 1: Initialize $f_0(x) = 0$.
- 2: **for** m = 1, ..., M **do**
- 3: Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

- 4: Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.
- 5: end for
- ▶ It can be proven that AdaBoost is a forward stagewise additive modeling with loss function: L(y, f(x)) = exp(-y f(x))
- ▶ We need to be able to solve step 3 for general loss criteria.

- Explore numerical optimization approaches.
- ► Want to minimize:

$$J(f) = \sum_{i=1}^{N} L(y_i, f(x_i))$$

► However *J*(*f*) depends on f only on N training points (vector of model predictions on training points):

$$\mathbf{f} = \{f(x_1), f(x_2), \dots, f(x_N)\}^T.$$

 \blacktriangleright So we can rewrite J(f):

$$J(f) = \sum_{i=1}^{N} L(y_i, \mathbf{f})$$

STEEPEST DESCENT

► Perform gradient descent on:

$$J(f) = \sum_{i=1}^{N} L(y_i, \mathbf{f}) ,$$

where $\mathbf{f}_0 = \mathbf{h}_0$ is an initial guess, and each successive \mathbf{f}_m is induced based on the current parameter vector \mathbf{f}_{m-1} , which is the sum of the previously induced updates.

▶ The negative gradient direction at $\mathbf{f} = \mathbf{f}_{m-1}$ is \mathbf{g}_m :

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

- We also need a weight ρ_m to perform an update. Two options:
 - $\rho_m = \operatorname{arg\,min}_{\rho} L (\mathbf{f}_{m-1} \rho \, \mathbf{g}_m).$
 - Some constant value (e.g. 0.01).

STEEPEST DESCENT

- ► $-g_m \in \mathbb{R}$ is the direction in which we want to update our training data predictions.
- ► We need more than f, which is predictions on training data.
 - Might not be defined for test points.
 - Might not exist a hypothesis (tree) that generates this outcome on the training data.

Figure. Steepest descent illustration. The "risk" criterion R(f), is plotted as a function of f evaluated at two training data points x1 and x2. [SE10]

GRADIENT DESCENT

- \triangleright The gradient is defined only on the N training points and we want to generalize \mathbf{f}_m .
- ▶ A solution is to find the hypothesis $h \in \mathcal{H}$ that best approximates -g as out step direction.
- ▶ Approach this a least squares regression problem over \mathcal{H} :

$$\min_{h \in \mathcal{H}} \sum_{i=1}^{N} (-g - h(x_i))^2$$

In other words, we are fitting our model over the pseudo-residuals.

GRADIENT DESCENT

- ▶ $T(x;p) \in \mathcal{H}$ is the actual step direction (model) we are using.
- ightharpoonup Can think of it as projection of -g onto \mathcal{H} .

Figure. Surrogate-loss illustration. The base-learner most parallel to the negative gradient vector is chosen at every step of the gradient-descent algorithm [SE10]

GRADIENT DESCENT

Algorithm Gradient boosting [Fri01]

```
1: F_{0}(\mathbf{x}) = \arg\min_{\rho} \sum_{i=1}^{N} L(y_{i}, \rho)

2: for m = 1, ..., M do

3: \tilde{y}_{i} = -\left[\frac{\partial L(y_{i}, F(\mathbf{x}_{i}))}{\partial F(\mathbf{x}_{i})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}, i = 1, ..., N

4: \mathbf{a}_{m} = \arg\min_{\mathbf{a}, \beta} \sum_{i=1}^{N} \left[\tilde{y}_{i} - \beta h(\mathbf{x}_{i}; \mathbf{a})\right]^{2}

5: \rho_{m} = \arg\min_{\rho} \sum_{i=1}^{N} L(y_{i}, F_{m-1}(\mathbf{x}_{i}) + \rho h(\mathbf{x}_{i}; \mathbf{a}_{m}))

6: F_{m}(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_{m}h(\mathbf{x}; \mathbf{a}_{m})

7: end for
```

NEXT TIME

- ► XGBoost and friends.
- ► Handling categorical features.

USEFUL RESOURCES

- ► For trees [MM97]
- ► Random forest + boosting https://www.youtube.com/watch?v=fz1H03ZKvLM
- ► Gradient boosting https://www.youtube.com/watch?v=wPqtzj5VZus

REFERENCES I

- [Fri01] Jerome H Friedman. "Greedy function approximation: a gradient boosting machine". In: *Annals of statistics* (2001), pp. 1189–1232.
- [Has+09] Trevor Hastie et al. *The elements of statistical learning: data mining, inference, and prediction.* Vol. 2. Springer, 2009.
- [MM97] Tom M Mitchell and Tom M Mitchell. *Machine learning*. Vol. 1. 9. McGraw-hill New York, 1997.
- [SE10] Giovanni Seni and John F Elder. "Ensemble methods in data mining: improving accuracy through combining predictions". In: *Synthesis lectures on data mining and knowledge discovery* 2.1 (2010), pp. 1–126.