OOPython

Задача 6. Численное решение УрЧП.

- 1. Создать иерархию классов, реализующих численное интегрирование однородного уравнения теплопроводности с использованием следующих приближенных методов:
 - явный метод Эйлера 1-го порядка точности
 - метод Эйлера с пересчетом 2-го порядка точности
 - любой метод Рунге-Кутты 3-го порядка точности
 - метод Рунге-Кутты 4-го порядка точности (реализован в **lecture_9.ipynb**)

В качестве заготовки использовать иерархию классов, реализованную в Задаче 5.

Критерий корректности реализации иерархии: отсутствие или минимум повторяющихся строк кода.

2. **Тестирование** работы классов: провести численное интегрирование уравнения теплопроводности, для которого поставлена смешанная задача (см. **lecture_10.ipynb**).

Параметры смешанной задачи:

- коэффициент температуропроводности: $\kappa = 0.1$
- начальное условие: $u_0(x) = \begin{cases} 1, \text{ при } 0.4 \le x \le 0.6 \\ 0, \text{ при } 0 < x < 0.4, 0.6 < x < 1 \end{cases}$
- граничные условия: $b_l(t) \equiv 0, b_r(t) \equiv 0$.

Параметры расчетной сетки:

- значения шага по пространтсву: $h_i = \frac{1}{100 \cdot 2^i}$, i = 0,...,3
- соответствующие значения шага по времени: $\Delta t_i = \frac{h_i^2}{200\kappa}$, i = 0,...,3.

Построить графики:

- численных решений, полученных каждым из методов, при значениях шагов $h_3, \, \Delta t_3 \,$ в момент времени T=0.04
- норм погрешностей численных решений для каждого из методов в логарифмическом масштабе. $\| \boldsymbol{u}_h(T) \boldsymbol{U}(T) \| = \max_i \left(|u(x_i, T) U_i(T)| \right), \ \boldsymbol{u}_h(T)$

проекция аналитического решения на сетку по пространству в момент времени Т.

Примечание: в качестве «аналитического» решения взять численное, полученное при помощи явного метода Эйлера при значениях шагов h_4 , Δt_4 .