### STA4030: Categorical Data Analysis Loglinear Models for Contingency Tables

Instructor: Bojun Lu

School of Data Science CUHK(SZ)

December 1, 2020



# Agenda

- 10.1 Introduction
- 2 10.2 Loglinear Model for Two-way Tables
- 3 10.3 Loglinear Models for Three-way Tables
- 4 10.4 The Loglinear-Logit Connection
- 5 10.5 Model Selection and Comparison

### 10.1 Introduction

In Chapter 7, we introduced loglinear models as generalized linear models (GLMs) using the log link function with a Poisson response. Their most common use is modeling cell counts in contingency tables.

The models specify how the expected count depends on levels of the categorical variables for that cell as well as associations and interactions among those variables.

The purpose of loglinear modeling is the analysis of associations and interactions patterns. Loglinear models are of use primarily when at least two variables are response variables.

### 10.2.1 Independence model in two way table

Loglinear models express logarithms of expected cell frequency  $\mu_{ij} = n\pi_{ij}$  in additive terms. Consider an  $I \times J$  table:

| $X \setminus Y$ | 1          | 2          |       | J          |            |
|-----------------|------------|------------|-------|------------|------------|
| 1               | $\mu_{11}$ | $\mu_{12}$ |       | $\mu_{1J}$ | $\mu_{1+}$ |
| 2               | $\mu_{21}$ | $\mu_{22}$ | • • • | $\mu_{2J}$ | $\mu_{2+}$ |
| :               | :          | ÷          |       | ÷          | ÷          |
| I               | $\mu_{I1}$ | $\mu_{I2}$ | • • • | $\mu_{IJ}$ | $\mu_{I+}$ |
| Total           | $\mu_{+1}$ | $\mu_{+2}$ |       | $\mu_{+J}$ | $\mu$      |

Under an independence model, we have

for 
$$\forall i, j$$
,  $\pi_{ij} = \pi_{i+}\pi_{+j}$ , or equivalently  $\mu_{ij} = \mu_{i+}\mu_{+j}/n$ , or equivalently  $\log \mu_{ij} = \log \mu_{i+} + \log \mu_{+j} - \log n$ .

This additive form suggests we should express  $\log \mu_{ij}$  as

$$\log \mu_{ij} = \mu + \lambda_i^X + \lambda_j^Y, \ i = 1, \dots, I; \ j = 1, \dots, J.$$
 (10.1)

The parameter  $\lambda_i^X$  represents the effect of classification in row i for variable X. The larger the value of  $\lambda_i^X$ , the larger each expected frequency is in row i of the table. When  $\lambda_h^X = \lambda_i^X$ , each expected frequency in row i equals the corresponding expected frequency in row i.

Similarly, the parameter  $\lambda_j^Y$  represents the effect of classification in column j for variable Y.

#### 10.2.2 Parameter constraints

For the independence model (10.1), one  $\{\lambda_i^X\}$  parameter is redundant, and one  $\{\lambda_j^Y\}$  parameter is redundant. This is analogous to ANOVA and multiple regression models with factors, which require one fewer dummy variable than the number of factor levels.

Section 8.3.2 showed three ways of eliminating the redundancy:

- (1) set the parameter for the last level of each factor equal to 0;
- (2) set the parameter for the first level of each factor equal to 0;
- (3) let the parameters for each factor sum to 0, e.g. for  $2 \times 2$  tables,  $\lambda_1^X + \lambda_2^Y = 0$ ,  $\lambda_1^Y + \lambda_2^Y = 0$ .

The choice of constraints is arbitrary. Some software for loglinear models set a parameter equal to 0, others have parameters sum to 0.

### 10.2.3 Interpretation of parameters

Loglinear models for contingency tables are examples of GLMs. For  $I \times J$  tables, this GLM treats the N = IJ cell counts as N independent observations of a Poisson random component.

For loglinear GLMs, the data are the *N* cell counts rather than the individual classifications of the n subjects. The expectations  $\{\mu_{ii}\}$  of the cell counts are linked to the explanatory terms using the log link.

As formula (10.1) illustrates, loglinear models for contingency tables do not distinguish between response and explanatory classification variables. They treat all variables jointly as responses, modeling the cell count for all combinations of their levels.

7/39

Parameter interpretation is simplest for binary responses. Consider the independence model (10.1) for  $I \times 2$  tables, with two columns being levels of a response Y. In row i, the logit for the probability  $\pi$  that Y = 1 equals

$$\log\left(\frac{\pi}{1-\pi}\right) = \log\left(\frac{\mu_{i1}}{\mu_{i2}}\right) = \log\mu_{i1} - \log\mu_{i2}$$
$$= (\mu + \lambda_i^X + \lambda_1^Y) - (\mu + \lambda_i^X + \lambda_2^Y) = \lambda_1^Y - \lambda_2^Y.$$

The final term is a constant that does not depend on i; that is, the logit for Y does not depend on the level of X. The loglinear model of independence corresponds to the simple logit model having form  $\log \operatorname{it}(\pi) = \alpha$ , where  $\alpha = \lambda_1^Y - \lambda_2^Y$ .

In each row, the odds of response in column 1 equal  $\exp(\alpha)$ . The chance of classification in a particular column is the same in all rows.

### Example 10.1: Belief in Afterlife.

The following Table 10.1 shows a  $2 \times 2$  table of cell counts and the corresponding fitted value  $\hat{\mu}_{ij}$  for the independence loglinear model:

$$\log \mu_{ij} = \mu + \lambda_i^X + \lambda_j^Y,$$

where X = gender (Female, Male),

*Y* = belief in the afterlife (Yes, No or Undecided)

Since the fitted values satisfy independence, they have an odds ratio of 1  $(\theta = (432.10 \times 131.10)/(377.90 \times 149.90) = 1)$ .

They are close to the observed counts, and the goodness-of-fit statistics for testing that the independence loglinear model holds equal  $X^2 = 0.2$  and  $G^2 = 0.2$ , with df = 1, the chi-squared P-value = 0.66. The independence model is plausible for the data.

**Table 10.1** Loglinear parameter estimates for the independence model, relating belief in the afterlife (columns) to gender (rows)

| Observed      | Fit    | ted             | Log I  | Log Fitted |  |
|---------------|--------|-----------------|--------|------------|--|
| Frequency     | Va     | lue             | Va     | Value      |  |
| 435 147       | 432.10 | 149.90          | 6.069  | 5.010      |  |
| 375 134       | 377.90 | 131.10          | 5.935  | 4.876      |  |
| Parameter     | Set 1  | Set 1 Set 2 Set |        | t 3        |  |
| $\mu$         | 4.876  | 6.069           | 5.472  |            |  |
| $\lambda_1^X$ | 0.134  | 0               | 0.067  |            |  |
| $\lambda_2^X$ | 0      | -0.134          | -0.067 |            |  |
| $\lambda_1^Y$ | 1.059  | 0               | 0.529  |            |  |
| $\lambda_2^Y$ | 0      | -1.059          | -0.529 |            |  |

The difference between two main effect parameters of a particular type is not changed!

E.g. for each set of estimates in Table 10.1 and for each i,

$$\log\left(\frac{\hat{\mu}_{i1}}{\hat{\mu}_{i2}}\right) = (\hat{\mu} + \hat{\lambda}_i^X + \hat{\lambda}_1^Y) - (\hat{\mu} + \hat{\lambda}_i^X + \hat{\lambda}_2^Y) = \hat{\lambda}_1^Y - \hat{\lambda}_2^Y = 1.059.$$

Thus, for each gender, the estimated odds of belief in the afterlife equal  $\exp(1.059) = 2.9$ .

Let  $\pi = P(Y = 1) = P(\text{with belief in the afterlife})$ , then

$$\operatorname{logit}(\hat{\pi}) = \log\left(\frac{\hat{\pi}}{1 - \hat{\pi}}\right) = 1.059.$$

Thus, the estimated probability of belief in the afterlife

$$\hat{\pi} = \frac{\exp(1.059)}{1 + \exp(1.059)} = 0.74.$$



#### 10.2.4 Saturated model

Saturated model: when a model has as many independent parameters as table has cells. Saturated model provides a perfect fit for any set of frequencies. It is the most general model for two-way contingency tables.

The saturated model for  $I \times J$  table is given by

$$\log \mu_{ij} = \mu + \lambda_i^X + \lambda_j^Y + \lambda_{ij}^{XY}, I = 1, \dots, I; j = 1, \dots, J.$$

Number of parameters:

$$\mu \quad \lambda_i^X \quad \lambda_j^Y \quad \lambda_{ij}^{XY}$$

$$1 \quad I-1 \quad J-1 \quad IJ-I-J+1$$

- $\therefore$  Total number of parameters = IJ = number of cells.
- $\therefore$  Model saturated,  $\hat{\mu}_{ii} = n_{ii}$ .

The  $\lambda_{ij}^{XY}$  can be interpreted as the association parameters or the interaction terms that reflect deviations from independence of X and Y. If X and Y are independent,  $\lambda_{ij}^{XY} = 0 \ \forall \ i$  and j.

Direct relationships exist between log odds ratios and the  $\lambda_{ij}^{XY}$  association parameters. For instance, the saturated model for  $2\times 2$  tables has log odds ratio

$$\log \theta = \log \left(\frac{\mu_{11}\mu_{22}}{\mu_{12}\mu_{21}}\right)$$

$$= \log \mu_{11} + \log \mu_{22} - \log \mu_{12} - \log \mu_{21}$$

$$= (\mu + \lambda_1^X + \lambda_1^Y + \lambda_{11}^{XY}) + (\mu + \lambda_2^X + \lambda_2^Y + \lambda_{22}^{XY})$$

$$- (\mu + \lambda_1^X + \lambda_2^Y + \lambda_{12}^{XY}) - (\mu + \lambda_2^X + \lambda_1^Y + \lambda_{21}^{XY})$$

$$= \lambda_{11}^{XY} + \lambda_{22}^{XY} - \lambda_{12}^{XY} - \lambda_{21}^{XY}.$$

Thus,  $\lambda_{ii}^{XY}$  determine the log odds ratio.

Example 10.2 (Example 10.1 continued): In Table 10.1

$$\hat{\theta} = (435 \times 134)/(147 \times 375) = 1.057$$
 and  $\log \hat{\theta} = 0.056$ .

The following Table 10.2 shows possible association parameter estimates that have a log odds ratio of

$$\hat{\lambda}_{11}^{XY} + \hat{\lambda}_{22}^{XY} - \hat{\lambda}_{12}^{XY} - \hat{\lambda}_{21}^{XY} = 0.056.$$

Table 10.2 Equivalent association parameter estimates for saturated loglinear model

| Association Parameter       | Set 1 | Set 2 | Set 3  |
|-----------------------------|-------|-------|--------|
| $\lambda_{11}^{XY}$         | 0.056 | 0.0   | 0.014  |
| $\lambda_{12}^{XY}$         | 0.0   | 0.0   | -0.014 |
| $\lambda_{21}^{ar{X}ar{Y}}$ | 0.0   | 0.0   | -0.014 |
| $\lambda_{22}^{XY}$         | 0.0   | 0.056 | 0.014  |

In  $I \times J$  tables, only (I-1)(J-1) association parameters are nonredundant. These "interaction" parameters in the saturated model are coefficients of cross-products of (I-1) dummy variables for X with (J-1) dummy variables for Y. Tests of independence analyze whether these (I-1)(J-1) parameters are equal to zero, so they have df = (I-1)(J-1).

When I = J = 2, a single nonredundant parameter determines the odds ratio. For example, for Set 3 of eliminating the redundancy we have the constraints:

$$\lambda_{1i}^{XY} + \lambda_{2i}^{XY} = \lambda_{i1}^{XY} + \lambda_{i2}^{XY} = 0.$$

Then

$$\lambda_{11}^{XY} = -\lambda_{12}^{XY} = -\lambda_{21}^{XY} = \lambda_{22}^{XY}.$$

Thus,

$$\log \theta = 4 \lambda_{11}^{XY} \quad \text{or} \quad \lambda_{11}^{XY} = \frac{1}{4} \log \theta.$$

### 10.3.1 The general three-way model

Any type of model for three-way contingency tables can be expressed as a special case of the following general loglinear model:

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy} + \lambda_{ik}^{xz} + \lambda_{jk}^{yz} + \lambda_{ijk}^{xyz}.$$

Parameter interpretation:

 $\begin{array}{lll} \mu \colon & \text{overall mean} \\ \lambda_i^x, \, \lambda_j^y, \, \lambda_k^z \colon & \text{marginal effect} \\ \lambda_{ij}^{xy}, \, \lambda_{ik}^{xz}, \, \lambda_{jk}^{yz} \colon & \text{partial association, 2-factor effect,} \\ & \text{or the first order interaction} \\ \lambda_{iik}^{xyz} & \text{3-factor effect, or the second order interaction} \end{array}$ 

When certain parameters in the general model are set to zero, models with special structures are obtained.

We will consider only hierarchical models: higher order terms may be included only if the related lower order terms are included.

e.g.

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ijk}^{xyz}$$

is not a hierarchical model.

There are five types of these models in a three dimensional table.

### 10.3.2 The five types of model

**Model 1:** Complete Independence Model: (X, Y, Z)

$$Pr(X = x, Y = y, Z = z) = Pr(X = x) Pr(Y = y) Pr(Z = z)$$

This suggests the following loglinear model:

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z$$

with appropriate constraints and df = IJK - I - J - K + 2.

**Model 2:** Independence of X and (Y,Z) jointly: (X,YZ)

$$\Pr(X = x, Y = y, Z = z) = \Pr(X = x) \Pr(Y = y, Z = z)$$

This suggests the following loglinear model:

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{jk}^{yz}$$

with appropriate constraints and df = (I - 1)(JK - 1).

There are two other versions of Model 2:

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy}$$
$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ik}^{xz}$$

**Model 3:** Conditional Independence Model: (XZ, YZ)

$$\Pr(X = x, Y = y \mid Z = z) = \Pr(X = x \mid Z = z) \Pr(Y = y \mid Z = z)$$

This suggests the following loglinear model:

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ik}^{xz} + \lambda_{jk}^{yz}$$

with appropriate constraints and df = (I - 1)(J - 1)K.

There are two other versions of this type of model:

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy} + \lambda_{jk}^{yz}$$
$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy} + \lambda_{ik}^{xz}$$

#### The relationship of three independence:

Table 10.3 Summary of loglinear independence models

|       | Probabilistic                  | Association terms                       |                                      |
|-------|--------------------------------|-----------------------------------------|--------------------------------------|
| Model | form of $\pi_{ijk}$            | in loglinear model                      | Interpretation                       |
| 1     | $\pi_{i++}\pi_{+j+}\pi_{++k}$  | None                                    | Variables are mutually independent   |
| 2     | $\pi_{i++}\pi_{+jk}$           | $\lambda^{YZ}_{ik}$                     | X is independent of $Y$ and $Z$      |
| 3     | $\pi_{i+k}\pi_{+jk}/\pi_{++k}$ | $\lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}$ | X and $Y$ are independent, given $Z$ |



*Model 4:* No second order interaction model: (XY, YZ, XZ)

Pairwise associations exist among the three variables, with each two variables' interaction unaffected by the value of the third variable. That is

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy} + \lambda_{ik}^{xz} + \lambda_{jk}^{yz}$$

with appropriate constraints and df = (I-1)(J-1)(K-1).

#### Note:

For a  $2 \times 2 \times 2$  table, the model of no second order interaction is equivalent to the model that specifies the equality of the odds ratios in levels of each variable.

Since 
$$\mu_{ijk} = \exp(\mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy} + \lambda_{ik}^{xz} + \lambda_{jk}^{yz})$$
, we have  $\frac{\mu_{111}\mu_{221}}{\mu_{121}\mu_{211}} = \frac{\mu_{112}\mu_{222}}{\mu_{122}\mu_{212}}$ ,  $\theta_{XY(1)} = \theta_{XY(2)}$ , equality of odds ratios for levels of 3<sup>rd</sup> variable  $\frac{\mu_{111}\mu_{212}}{\mu_{112}\mu_{211}} = \frac{\mu_{121}\mu_{222}}{\mu_{122}\mu_{221}}$ ,

$$\mu_{112}\mu_{211}$$
  $\mu_{122}\mu_{221}$ ,  $\theta_{XZ(1)}=\theta_{XZ(2)},$  equality of odds ratios for levels of 2<sup>nd</sup> variable

$$\frac{\mu_{111}\mu_{122}}{\mu_{112}\mu_{121}} = \frac{\mu_{211}\mu_{222}}{\mu_{212}\mu_{221}},$$

 $\theta_{YZ(1)} = \theta_{YZ(2)}$ , equality of odds ratios for levels of 1<sup>st</sup> variable

The equivalence can be verified by direct substitution.

For this model, each pair has homogeneous association. Model 4 is called the loglinear model of *homogeneous association*.

### *Model 5:* Second-order interaction model: (XYZ)

A second-order interaction (three-factor effect) relates all three variables, so the interaction between any two variables does depend on the value of the third variable. The model is

$$\log \mu_{ijk} = \mu + \lambda_i^x + \lambda_j^y + \lambda_k^z + \lambda_{ij}^{xy} + \lambda_{ik}^{xz} + \lambda_{jk}^{yz} + \lambda_{ijk}^{xyz}$$

with appropriate constraints and df = 0.

This is a saturated model, it describes all possible  $\{\mu_{ijk}\}$ :

$$\hat{\mu}_{ijk} = n_{ijk}$$

Total No. of parameters = IJK = No. of cells.

$$\begin{array}{lll} \mu: 1 & & & \lambda_i^x: I-1 & & \lambda_j^y: J-1 & & \lambda_k^z: K-1 \\ \lambda_{ij}^{xy}: (I-1)(J-1) & & \lambda_{ik}^{xz}: (I-1)(K-1) & & \lambda_{jk}^{yz}: (J-1)(K-1) \\ \lambda_{ijk}^{xyz}: (I-1)(J-1)(K-1) & & & \end{array}$$

The  $\lambda_{ijk}^{XYZ}$  term in Model 5 refers to the three-factor interaction. It describes how the odds ratio between two variables changes across categories of the third.

Table 10.4 Summary of loglinear models for three-dimensional tables

| Loglinear Model                                                                                                                                                                                  | Symbol       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z$                                                                                                                             | (X,Y,Z)      |
| $\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z + \lambda_{ik}^{YZ}$                                                                                                         | (X, YZ)      |
| $\log \mu_{ijk} = \lambda + \lambda_i^X + \lambda_i^Y + \lambda_k^Z + \lambda_{ik}^{XZ} + \lambda_{ik}^{YZ}$                                                                                     | (XZ, YZ)     |
| $\log \mu_{ijk} = \lambda + \lambda_i^{X} + \lambda_j^{Y} + \lambda_k^{Z} + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{ik}^{YZ}$                                                           | (XY, XZ, YZ) |
| $\log \mu_{ijk} = \lambda + \lambda_i^{\dot{X}} + \lambda_j^{\dot{Y}} + \lambda_k^{\dot{Z}} + \lambda_{ij}^{\dot{X}Y} + \lambda_{ik}^{\dot{X}Z} + \lambda_{jk}^{\dot{Y}Z} + \lambda_{ijk}^{XYZ}$ | (XYZ)        |

### 10.3.3 Alcohol, Cigarette, and Marijuana Use Example

**Example 10.3:** In a survey study, 2,276 students are asked whether they had ever used alcohol (A), cigarettes (C), or marijuana (M) in their final year of high school in a nonurban area near Dayton, Ohio.

Table 10.5 Alcohol (A), cigarette (C), and marijuana (M) use for high school seniors.

| Alcohol | Cigarette | Marijuana Use |     |
|---------|-----------|---------------|-----|
| Use     | Use       | Yes           | No  |
| Yes     | Yes       | 911           | 538 |
|         | No        | 44            | 456 |
| No      | Yes       | 3             | 43  |
|         | No        | 2             | 279 |

Table 10.6 Fitted values for several loglinear models

|     |     |     | Loglinear Model |        |         |            |       |  |  |
|-----|-----|-----|-----------------|--------|---------|------------|-------|--|--|
| Α   | С   | M   | (A,C,M)         | (AC,M) | (AM,CM) | (AC,AM,CM) | (ACM) |  |  |
| Yes | Yes | Yes | 540.0           | 611.2  | 909.24  | 910.4      | 911   |  |  |
|     |     | No  | 740.2           | 837.8  | 438.84  | 538.6      | 538   |  |  |
|     | No  | Yes | 282.1           | 210.9  | 45.76   | 44.6       | 44    |  |  |
|     |     | No  | 386.7           | 289.1  | 555.16  | 455.4      | 456   |  |  |
| No  | Yes | Yes | 90.6            | 19.4   | 4.76    | 3.6        | 3     |  |  |
|     |     | No  | 124.2           | 26.6   | 142.16  | 42.4       | 43    |  |  |
|     | No  | Yes | 47.3            | 118.5  | 0.24    | 1.4        | 2     |  |  |
|     |     | No  | 64.9            | 162.5  | 179.84  | 279.6      | 279   |  |  |

Only the fit for model (AC, AM, CM) is close to the observed data (ACM).

Table 10.7 illustrates association patterns for these models by presenting estimated odds ratios for their marginal and conditional associations.

Table 10.7 Estimated odds ratios for the loglinear models in Table 10.6.

|               | Conditional Association |      |      | Marginal Association |      |      |
|---------------|-------------------------|------|------|----------------------|------|------|
| Model         | A-C                     | A-M  | C-M  | A-C                  | A-M  | C-M  |
| (A,C,M)       | 1.0                     | 1.0  | 1.0  | 1.0                  | 1.0  | 1.0  |
| (AC,M)        | 17.7                    | 1.0  | 1.0  | 17.7                 | 1.0  | 1.0  |
| (AM,CM)       | 1.0                     | 61.9 | 25.1 | 2.7                  | 61.9 | 25.1 |
| (AC,AM,CM)    | 7.8                     | 19.8 | 17.3 | 17.7                 | 61.9 | 25.1 |
| (ACM) Level 1 | 13.8                    | 24.3 | 17.5 | 17.7                 | 61.9 | 25.1 |
| (ACM) Level 2 | 7.7                     | 13.5 | 9.7  |                      |      |      |

For (AM, CM) model, from Table 10.6,

$$\hat{\theta}_{AC(1)} = \frac{909.24 \times 0.24}{45.76 \times 4.76} = 1 = \frac{438.84 \times 179.84}{555.16 \times 142.16} = \hat{\theta}_{AC(2)}.$$

The model (AM, CM) implies conditional independence between alcohol use and cigarette use, controlling for marijuana use.

The entry 2.7 for the A-C marginal association for this model is the fitted odds ratio for the marginal A-C fitted table. i.e., For (AM, CM) model:

$$\hat{\theta}_{AC} = \frac{(909.24 + 438.84)(0.24 + 179.84)}{(45.76 + 555.16)(4.76 + 142.16)} = 2.7.$$

Model (AC, AM, CM) permits all pairwise associations but maintains homogeneous odds ratios between two variables at each level of the third variable. For (AC, AM, CM) model:

For each level of M, students who have smoked cigarettes have estimated odds of having drunk alcohol that are 7.8 times the estimated odds for students who have not smoked cigarettes.

For (AC, AM, CM) model, ignoring the third factor (M), the A-C marginal odds ratio is

$$\hat{\theta}_{AC} = \frac{(910.4 + 538.6)(1.4 + 279.6)}{(44.6 + 455.4)(3.6 + 42.4)} = 17.7.$$

For (ACM) model:

Table 10.7 shows that estimated conditional odds ratios equal 1.0 for the A-C association in the model (AM, CM). But for that model, the estimated marginal A-C odds ratio differs from 1.0, which reconfirms that conditional independence does not imply marginal independence!

Table 10.7 also shows that estimates of conditional and marginal odds ratios are highly dependent on the model. This highlights the importance of model selection.

Loglinear models for contingency tables do not distinguish between response and explanatory variables. They treat all variables as response variables.

Logit models, by contrast, describe how a binary response depends on a set of explanatory variables.

The model types seem distinct, but strong connections exist between them. A logit model is always corresponding to a loglinear model. For a loglinear model, one can construct logits for one response to help interpret the model. Moreover, logit models with categorical explanatory variables have equivalent loglinear models.

### 10.4.1 Using logit models to interpret loglinear models

To understand implications of a loglinear model formula, it can help to form a logit that treats one variable as a response and the others as explanatory. We illustrate with the loglinear model of homogeneous association in three-way tables (XY, XZ, YZ):

$$\log \mu_{ijk} = \mu + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}. \tag{10.2}$$

Suppose Y is binary, and we treat it as a response and X and Z as explanatory. Let  $\pi$  denote the probability that Y=1, which depends on the levels of X and Z. The logit for Y is

$$\log \operatorname{it}(\pi) = \log \left(\frac{\pi}{1 - \pi}\right) = \log \frac{P(Y = 1 \mid X = i, Z = k)}{P(Y = 2 \mid X = i, Z = k)}$$
$$= \log \left(\frac{\mu_{i1k}}{\mu_{i2k}}\right) = \log(\mu_{i1k}) - \log(\mu_{i2k}).$$

Substitution (10.2), we have

$$\operatorname{logit}(\pi) = (\lambda_1^Y - \lambda_2^Y) + (\lambda_{i1}^{XY} - \lambda_{i2}^{XY}) + (\lambda_{1k}^{YZ} - \lambda_{2k}^{YZ}).$$

The first parenthetical term is a constant, which does not depend on i or k. The second parenthetical term depends on the level i of X. The third parenthetical term depends on the level k of Z. The logit has the additive form

$$logit(\pi) = \alpha + \beta_i^X + \beta_k^Z$$
 (10.3)

When Y is binary, loglinear model (10.2) is equivalent to logit model (10.3).

**Note:** It might seem as if the model (XY,YZ) omitting term  $\lambda_{ik}^{XZ}$  is also equivalent to model (10.3). Indeed, forming the logit on Y for loglinear model (XY,YZ) results in a logit model of the same form. However, the loglinear model that has the same fit as the logit model is the one containing a general interaction term for relationships among the explanatory variables.

### 10.4.2 Equivalent loglinear and logit models

Table 10.8 summarizes equivalent logit and loglinear models for three-way tables when Y is a binary response.

| Т   | a | h | е | 1   | O |   | 8 |
|-----|---|---|---|-----|---|---|---|
| - 1 | а | v |   | - 1 | v | • | U |

| Loglinear Symbol    | Logit Model                                        | Logit Symbol |
|---------------------|----------------------------------------------------|--------------|
| $\overline{(Y,XZ)}$ | α                                                  | (-)          |
| (XY, XZ)            | $\alpha + \beta_i^X$                               | (X)          |
| (YZ, XZ)            | $\alpha + \beta_k^Z$                               | (Z)          |
| (XY, YZ, XZ)        | $\alpha + \beta_i^X + \beta_k^Z$                   | (X+Z)        |
| (XYZ)               | $\alpha + \beta_i^X + \beta_k^Z + \beta_{ik}^{XZ}$ | (X * Z)      |

Loglinear models are most natural when at least two variables are response variables. When only one is response, it is more sensible to use logit models directly.

### 10.5.1 Testing goodness-of-fit (Model comparison)

Chi-square statistic:

$$X^2 = \sum_{\text{cells}} \frac{(O_i - E_i)^2}{E_i}$$

Likelihood ratio test statistic:

$$G^2 = 2\sum_{\text{cells}} O_i \log \left(\frac{O_i}{E_i}\right)$$

When n is large and the proposed model is correct, both  $X^2$  and  $G^2$  are chi-square distributed with

$$df = No.$$
 of cells  $-No.$  of parameters.

Reject the proposed model if  $X^2$  or  $G^2$  is too large.  $X^2$  and  $G^2$  are asymptotically equivalent.

#### 10.5.2 Model selection

**Example 10.4** (Example 10.3 continued): For the student survey, the following table shows results of testing fit for several loglinear models. Models that lack any association term fit poorly. The model (AC, AM, CM) fits well (*P*-value = 0.54).

Table 10.9

| Model      | $G^2$  | $X^2$  | df | P-value for $G^2$ |
|------------|--------|--------|----|-------------------|
| (A,C,M)    | 1286.0 | 1411.4 | 4  | < 0.001           |
| (AC,M)     | 843.8  | 704.9  | 3  | < 0.001           |
| (AM,C)     | 939.6  | 824.2  | 3  | < 0.001           |
| (CM,A)     | 534.2  | 505.6  | 3  | < 0.001           |
| (AM,CM)    | 187.8  | 177.6  | 2  | < 0.001           |
| (AC,AM)    | 497.4  | 443.8  | 2  | < 0.001           |
| (AC,CM)    | 92.0   | 80.8   | 2  | < 0.001           |
| (AC,AM,CM) | 0.4    | 0.4    | 1  | 0.54              |
| (ACM)      | 0.0    | 0.0    | 0  | _                 |

**Example 10.5** (Automobile Accident Example): Table 10.10 refers to observations of 68,694 passengers in autos and light trucks involved in accidents in the state of Maine in 1991. The table classifies passengers by gender (G), location of accident (L), seat-belt use (S), and injury (I).

Table 6.10 Injury (I) by Gender (G), Location (L), and Seat Belt Use (S).

|        |          |           | Injury |      | (GLS,G  | I,IL,IS) |
|--------|----------|-----------|--------|------|---------|----------|
| Gender | Location | Seat Belt | No     | Yes  | No      | Yes      |
| Female | Urban    | No        | 7287   | 996  | 7273.2  | 1009.8   |
|        |          | Yes       | 11587  | 759  | 11632.6 | 713.4    |
|        | Rural    | No        | 3246   | 973  | 3254.7  | 964.3    |
|        |          | Yes       | 6134   | 757  | 6093.5  | 797.5    |
| Male   | Urban    | No        | 10381  | 812  | 10358.9 | 834.1    |
|        |          | Yes       | 10969  | 380  | 10959.2 | 389.8    |
|        | Rural    | No        | 6123   | 1084 | 6150.2  | 1056.8   |
|        |          | Yes       | 6693   | 513  | 6697.6  | 508.4    |

Table 10.11 Goodness-of-fit tests for several loglinear models

|                          |        |    | 0       |
|--------------------------|--------|----|---------|
| Model                    | $G^2$  | df | P-value |
| (G, I, L, S)             | 2792.8 | 11 | < 0.001 |
| (GI, GL, GS, IL, IS, LS) | 23.4   | 5  | < 0.001 |
| (GIL, GIS, GLS, ILS)     | 1.3    | 1  | 0.25    |
| (GIL, GS, IS, LS)        | 18.6   | 4  | 0.001   |
| (GIS, GL, IL, LS)        | 22.8   | 4  | < 0.001 |
| (GLS, GI, IL, IS)        | 7.5    | 4  | 0.11    |
| (ILS, GI, GL, GS)        | 20.6   | 4  | < 0.001 |
|                          |        |    |         |

Model (G, I, L, S) and (GI, GL, GS, IL, IS, LS) have lack of fit (P-value < 0.001). Model (GIL, GIS, GLS, ILS) seems to fit well (P-value = 0.25), but is quite complex and difficult to interpret. This suggests studying models that are more complex than (GI, GL, GS, IL, IS, LS) but simpler than (GIL, GIS, GLS, ILS). Thus, the selecting model is (GLS, GI, IL, IS).