(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-106358 (P2000-106358A)

(43)公開日 平成12年4月11日(2000.4.11)

(51) Int.Cl. ⁷	** **	j	識別記号	 . :		$\mathbf{F}(\mathbf{F})$		•	·	テーマコード(参考)
H'0 1 L	21/3065	,	4	٠٠.		H01L	21/302	•	N	5 F 0 0 4
	21/203			• •	٠.		21/203		Z	5 F 0 4 5
	21/205				-•		21/205			5 F 1 0 3

審査請求 未請求 請求項の数6 OL (全 12 頁)

	· ; · · ·	審査開求	不耐水 前	来項の数 6	OL (全 12	貝)
(21)出願番号 特	顧平10-275293	(71)出顧人	000006013			
(22)出願日 平	成10年9月29日(1998.9.29)		三菱電機株式 東京都千代		二丁目2番3号	
		(72)発明者	安田 徹			
(**			東京都千代	田区丸の内	二丁目2番3号	=
			菱電機株式	会社内		
		(74)代理人	100089233			
		C 131	弁理士 吉	田茂明	(外2名)	
	and the first of the state of t	· · ·	•	•	•	
	and the same of th					
Mark Contract Contrac	$\frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial x_{i}} = \frac{1}{2} \left(\frac{1}{x_{i}} + \frac{1}{x_{i}} \right) = \frac{1}{x_{i}} \left(\frac{1}{x_{i}} + \frac{1}{x_{i}} \right)$ $= \frac{1}{x_{i}} \left(\frac{1}{x_{i}} + \frac{1}{x_{i}} \right) = \frac{1}{x_{i}} \left(\frac{1}{x_{i}} + \frac{1}{x_{i}} \right)$					

最終頁に続く

(54) 【発明の名称】 半導体製造装置および半導体基板の処理方法

(57)【要約】

【課題】 人間の手を入れることなく内部を洗浄でき、 複雑な形状の部品や入り組んだ部分の洗浄度が高く、洗 浄作業の効率がよい半導体製造装置を提供する。

【解決手段】 ウェハ処理プロセスで用いられる物質が通る経路を洗浄時には遮断して内部に超臨界流体を流し込む機構を半導体製造装置に組み込む。ECRプラズマエッチング装置D1の場合、可動式隔壁110を上昇させウェハ処理槽100aをプロセスガス排気口106から遮断し、切り替えバルブ108によりガス導入口103を高圧ガス導入配管104から遮断する機構を備えている。コンプレッサー121で例えば二酸化炭素の高圧ガスをウェハ処理槽100aの内部に送り込み、ヒータ109によって加熱すれば高圧ガスは超臨界流体状態となり、しばらく放置するだけでウェハ処理槽100aの内部を洗浄できる。

DNICDOCID- < EDOCOTOCIDESERA

【特許請求の範囲】

【請求項1】 半導体基板を保持し得る基板保持部を内。 部に備えた、密閉可能な処理槽と、 前記処理槽の前記内部に、前記半導体基板に対し処理を 施すための処理物質を送入する第1の送入手段と。 前記処理槽の前記内部に、前記処理槽の前記内部を洗浄 するための洗浄溶媒を送入する第2の送入手段と、 前記処理物質及び前記洗浄溶媒を排出する排出手段と、 前記処理物質及び前記洗浄溶媒を排出する排出手段と、 前記処理槽とを隔絶する隔絶手段とを備える半導体 製造装置。

【請求項3】 前記処理槽を加熱することで前記洗浄溶媒の温度を制御し、前記洗浄溶媒を超臨界流体の状態にすることが可能な温度制御手段をさらに備える請求項1 記載の半導体製造装置。

【請求項4】 前記洗浄溶媒は、二酸化炭素と水分との 混合物である、請求項2または3記載の半導体製造装 置。

【請求項5】 前記排出手段は、前記処理槽の前記内部 に連通した排気口を備え、

前記隔絶手段は、前記処理槽を密閉して覆うことで前記 処理槽の前記内部と前記排気口との連通を遮断する隔壁 と、前記隔壁の位置を変化させる機構とを有し、 前記隔壁に並記其板似共紀が開業されている。 詩典項 1

前記隔壁に前記基板保持部が固着されている、請求項1 記載の半導体製造装置。

【請求項6】 半導体基板を保持し得る基板保持部を内部に備えた、密閉可能な処理槽と、

前記処理槽の前記内部に、前記半導体基板に対し処理を 施すための処理物質を送入する第1の送入手段と、

前記処理槽の前記内部に、前記処理槽の前記内部を洗浄するための洗浄溶媒を送入する第2の送入手段と、

前記処理物質及び前記洗浄溶媒を排出する排出手段と、前記洗浄溶媒で前記内部の洗浄を行う際に、前記排出手段と前記処理槽とを隔絶する隔絶手段とを備える半導体製造装置を用い、(a)前記半導体基板を、前記処理槽の前記内部の前記基板保持部に保持させる第1の工程と、(b)前記第1の送入手段により、前記処理物質を前記処理槽の前記内部に送入する第2の工程と、(c)前記排出手段により、前記処理物質を排出する第3の工程と、(d)前記隔絶手段により、前記排出手段と前記

入手段により、前記洗浄溶媒を前記処理槽の前記内部に 送入する第5の工程とを備える半導体基板の処理方法。

処理槽とを隔絶する第4の工程と、(e)前記第2の送

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置を製造する半導体製造装置および半導体基板の処理方法に関する。

【従来の技術】半導体装置を製造する半導体製造装置の一つち、例えばプラズマエッチング装置について考える。
 デフラズマエッチング装置の内部では半導体ウェハに対し、「てフォトレジストをマスクとしたドライエッチングが行けれれるので、フォトレジスト、半導体ウェハ材料および、プラズマガス成分等の微粉を原料とした高分子物質が生じ、装置の内壁や内部部品の表面に付着してしまう。例えば、プラズマにより分解されたフォトレジスト成分が温度の低い部分で再結合して、ハロゲン化ポリカーボネイトが生じることがある。このような付着物が生じると装置の内部の化学的雰囲気が変化し、それによってプロセス条件が変動してしまうため再現性のよいプロセスが行えない。したがって再現性のよいプロセスを実現するためには装置の内部を定期的に洗浄する必要がある。

【0003】このような洗浄は、プラズマエッチング装置に限らず、CVD装置やエピタキシャル成長装置などの他の半導体製造装置においても必要な作業である。

【0004】従来は装置の内部を洗浄するために、装置を開放して内部部品を装置外へ取り出した上で、洗浄用の有機溶媒を浸した不識布で装置の内壁を拭き、また、取り出した内部部品は純水により超音波洗浄するなどの方法を採っていた。そして洗浄後は、内部部品を装置内に再び組み込み、装置を密閉して数時間の真空ポンプによる減圧を行い、所望の真空度を達成したかどうか確認して装置の内壁や内部部品の表面に残留した洗浄用の溶媒を完全に蒸発させて、装置の内部の洗浄度を高めていた。

1.0005

【発明が解決しようとする課題】しかし、従来の半導体製造装置では複雑な形状の部品や装置内の入り組んだ部分を洗浄することが難しかった。また、装置の内部の洗浄度を高めるために長時間の真空ポンプによる減圧を洗浄後に行う必要があり、洗浄作業の効率を上昇させるにつは限界があった。また、洗浄作業者が洗浄作業中に有機治媒の蒸気を吸引しないようガスマスクを着用しなければならないという煩わしさがあったり、あるいは作業者でとの洗浄技術のばらつきによって洗浄度が異なったり、また、内部部品の取り外し時および組み込み時に作業ミスが起こりやすいといった問題もあった。

【0006】本発明は以上の問題点に鑑み、直接人間の手を入れることなく内部を洗浄でき、かつ、複雑な形状の部品や入り組んだ部分の洗浄度が高く、洗浄作業の効率もよい半導体製造装置を提供することを目的とする。この目的の実現のために、本発明にかかる半導体製造装置は洗浄溶媒を装置の内部に導入する機構を備える。また、洗浄溶媒として超臨界流体を採用する。

[0007]

【課題を解決するための手段】この発明のうち請求項1 にかかるものは、半導体基板を保持し得る基板保持部を 内部に備えた、密閉可能な処理槽と、前記処理槽の前記内部に、前記半導体基板に対し処理を施すための処理物質を送入する第1の送入手段と、前記処理槽の前記内部に、前記処理槽の前記内部を洗浄するための洗浄溶媒を透入する第2の送入手段と、前記処理物質及び前記洗浄溶媒を排出する排出手段と、前記洗浄溶媒で前記内部の洗浄を行う際に、前記排出手段と前記処理槽とを隔絶する隔絶手段とを備える半導体製造装置である。

【 0 0 0 8 】この発明のうち請求項2にかかるものは、 前記洗浄溶媒は超臨界流体である、請求項1記載の半導 体製造装置である。

【0009】この発明のうち請求項3にかかるものは、 前記処理槽を加熱することで前記洗浄溶媒の温度を制御 し、前記洗浄溶媒を超臨界流体の状態にすることが可能 な温度制御手段をさらに備える請求項1記載の半導体製 造装置である。

【0010】この発明のうち請求項4にかかるものは、 前記洗浄溶媒は、二酸化炭素と水分との混合物である、 請求項2または3記載の半導体製造装置である。

【0011】ごの発明のうち請求項5にかかるものは、前記排出手段は、前記処理槽の前記内部に連運した排気口を備え、前記隔絶手段は、前記処理槽を密閉して覆うことで前記処理槽の前記内部と前記排気口との連通を遮断する隔壁と下前記隔壁の位置を変化させる機構とを有に、前記隔壁に前記基板保持部が固着されている、請求項1記載の半導体製造装置である。

【0012】この発明のうち請求項6にかかるものは、 半導体基板を保持し得る基板保持部を内部に備えた、密 閉可能な処理槽と、前記処理槽の前記内部に、前記半導 体基板に対し処理を施すための処理物質を送入する第1 の送入手段と、前記処理槽の前記内部に、前記処理槽の 前記内部を洗浄するための洗浄溶媒を送入する第2の送り 入手段と、前記処理物質及び前記洗浄溶媒を排出する排 出手段と、前記洗浄溶媒で前記内部の洗浄を行う際に、 前記排出手段と前記処理槽とを隔絶する隔絶手段とを備 える半導体製造装置において、(a)前記半導体基板 を、前記処理槽の前記内部の前記基板保持部に保持させ る第1の工程と、(b)前記第1の送入手段により、前 記処理物質を前記処理槽の前記内部に送入する第2の工 程と、(c)前記排出手段により、前記処理物質を排出 する第3の工程と、(d)前記隔絶手段により、前記排 出手段と前記処理槽とを隔絶する第4の工程と、(e) 前記第2の送入手段により、前記洗浄溶媒を前記処理槽 の前記内部に送入する第5の工程とを備える半導体基板 の処理方法である。

[0013]

【発明の実施の形態】実施の形態1. 本実施の形態にかかる半導体製造装置は、超臨界流体を用いた洗浄機構を組み込んだECRプラズマエッチング装置である。超臨界流体とは、物質の温度と圧力を臨界温度以上かつ臨界

圧力以上にしたときにその物質がふるまう、液体とも気 体とも呼べない物理状態の流体のことである。臨界温度 と臨界圧力は物質によって固有であり、例えば二酸化炭 素の臨界温度は304.2K、臨界圧力は7.37MP aである。このような臨界状態においては、密度、拡散 係数、溶解力の各値は、気体と液体の中間の値となる。 また、超臨界流体は高い反応性を有するため、有機高分 子物質を分解することもできる。これらの性質は温度、 圧力の条件によって程度が異なるため所望の物質を選択 的に溶解、抽出、分解することも可能である。また、超 臨界流体は狭小な隙間にまで入り込むので装置の洗浄に 適している。このような超臨界流体を用いた洗浄自体に ついては、例えば特表昭59-502137号公報、特 開平10-94767号公報、特開平10-24270 号公報、特開平8-181050号公報、特開平9-4 3857号公報に開示されている。

【0014】本実施の形態にかかるECRプラズマエッチング装置D1は、ウェハに対しドライエッチングを行えるウェハ処理時の状態と、超臨界流体を内部に導入して洗浄を行える洗浄時の状態との二状態を採り得る。図1にこの装置D1の洗浄時の状態をそれぞれ示す。

【0015】図1および図2においてECRプラズマエッチング装置D1は、ウェハ処理槽100aには、ウェハ処理時に成される。ウェハ処理槽100aには、ウェハ処理時にプラズマエッチャントとして機能するプロセスガスを導入して内部でECRプラズマ状態を作り出す機構と、洗浄時に洗浄溶媒として機能する高圧ガスを導入して内部でその温度を上昇させ超臨界流体状態にする機構とが付加される。ウェハ処理槽100aは、ウェハ処理時には内部の圧力が数Pa程度に減圧された状態で用いられるので外部の大気圧に耐え得る強度が要求され、また、洗浄時には超臨界流体となる物質を高圧の状態でその内部に収めるので内部からの高い圧力に耐え得る強度も要求される。そのためウェハ処理槽100aの壁を厚くしたり、強度の高い材料を壁に用いたりすることが望ましい

【0016】外部とガスの送受を行うために、ウェハ処理槽100aはプロセスガスまたは超臨界流体となる高圧ガスを導入するガス導入口103と、超臨界流体となった高圧ガスを排出する超臨界流体排出口113とを備える。ガス導入口103は、プロセスガス導入配管104および高圧ガス導入配管105に接続されており、切り替えバルブ108によっていずれかの配管と導通する。もちろん、ガス導入口103および切り替えバルブ108なしに、プロセスガス導入配管104および高圧ガス導入配管105をそれぞれ別個にウェハ処理槽100aに直詰してもよい。ただしその場合は、それぞれの配管に開閉を司るバルブが必要となる。

【0017】さて、プロセスガス導入配管104の先に

はプロセスガスを送り込む機構が接続されている(図示 せず)。つまり、このプロセスガスを送り込む機構と、 プロセスガス導入配管104と、切り替えバルブ108 」と、ガス導入口103とが一体となって、プロセスガス をウェハ処理槽100aの内部へと送入する手段となっ ている。高圧ガス導入配管105の先には高圧ガスを送 り込む機構が接続される。つまり、この高圧ガスを送り 込む機構と、高圧ガス導入配管105と、切り替えバル ブ108と、ガス導入口103とが一体となって、高圧 ガスをウェハ処理槽100aの内部へと送入する手段と なっている。本実施の形態においては、一度ウェハ処理 槽100aの内部に導入された高圧ガスを、ドレインバ ルブ114を備えた超臨界流体排出口113から超臨界 流体状態のまま排出させ汚染物から分離して再び用いる 還流機構RMが高圧ガスを送り込む機構である。還流機 構RMについては後述する。

【0018】またさらにウェハ処理槽100aは、EC Rプラズマ発生用のマイクロ波を導入するマイクロ波導 波管116をも備えている。マイクロ波導波管116の 一端にはマイクロ波発生装置が接続され(図示せず)、 他端はウェハ処理槽100aの内部に開口してマイクロ 波を送り込むことができるようになっている。なお、そ の開口部には石英ガラス製のカバー118が取り付けら れており、マイクロ波はウェハ処理槽100aの内部に 送り込むことができるがプロセスガスはマイクロ波導波 管116の内部に侵入しないよう配慮されている。この カバー118は、洗浄時の超臨界流体状態の高圧ガスを も遮断する必要があるため、耐圧性の高いことが望まし い。カバー118の耐圧性が充分に得られない場合に は、洗浄時にのみカバー118を覆う耐圧性の高いスラ イド式のプレートをウェハ処理槽100a内部に設ける などの方法も考えられる。

【0019】ウェハ処理槽100aはその下部にウェハ ロード槽100bを備えており、両者は互いに連通して いる。ウェハロード槽100bは、プロセスガスを(還 流機構RMを作動させない場合は洗浄溶媒も)排出する プロセスガス排気口106と、ウェハ102の出し入れ を行えるようゲートバルブと呼ばれる開閉可能な扉(図 示せず)とを備えている。ゲートバルブはウェハロード 槽100bの側面に設けられているが、ウェハ処理槽1 00aにゲートバルブが設けられない理由は、ウェハ処 理槽100aの外部に取り付けられている機器を阻害し ないようにするためである。また、プロセスガス排気口 106には使用済みのプロセスガスおよび高圧ガスを引 き抜くための真空ポンプなどの排気装置が接続されてい る(図示せず)。つまり、この図示しない排気装置とプ ロセスガス排気口106とが一体となって、ウェハ処理 槽100a内部に導入されたプロセスガス及び高圧ガス をウェハロード槽100bを介して排出する手段になっ ているといえる。

【0020】ウェハ処理槽100aの外部には、ヒータ 109がウェハ処理槽100aを取り囲むようにして設 けられている。ヒータ109は、洗浄時にウェハ処理槽 100aを加熱することで、内部の高圧ガスの温度を臨 界温度以上になるよう制御して高圧ガスを超臨界流体状態にすることが可能な温度制御手段である。

【10021】さらにウェハ処理槽100aの外部には、 ウェハ処理時に内部の電子に磁界をかけるためのコイル 115も設けられている。

【0022】一方、ウェハ処理槽100aの内部には、 直径0.5~1mm程度の小さい穴が多数設けられたシ ャワープレート107と、処理対象となるウェハ102 を保持するためのウェハ保持台101と、図示しない排 気装置及びプロセスガス排気口106からウェハ処理槽 100aを隔絶するための可動式隔壁110とが設けら れている。ここでシャワープレート107は、ウェハ処 ・理槽100 a内部でのプロセスガスの各成分の濃度を均 一にし、かつウェハ102の表面全体にプロセスガスが 行き渡るようにするために設けられる。また、ウェハ保 持台101は支柱117により可動式隔壁110に固着 。されており、可動式隔壁110はジャッキ支柱112を ₁₇₇介して駆動力の強い油圧ジャッキ111に接続されてい る。この油圧ジャッキ111によって、ウェハ保持台1 - 01および可動式隔壁110の位置を変化させることが できる。位置を変化させる目的は、第一にウェハ102 を出し入れする場合にウェハ保持台101の高さをウェ ハロード槽100bの側面に設けられた図示しないゲー トバルブの高さに合わせるためであり、第二にウェハ処 **- 理時にウェハ102が最適な位置になるようウェバ保持** 台101の高さを調整するためであり、第三に可動式隔 . 壁110が洗浄時にウェハ処理槽100aとウェハロー . ド槽100bとの境界に存在する角部191へ密着する 」ことによって、図示しない排気装置及びプロセスガス排 気口106からウェハ処理槽100aを隔絶するためで ある。第三の上記目的について換言すれば、ウェハ処理 槽100aがウェハロード槽100bに向かって開口し - た部分(角部191のある部分)を可動式隔壁110が 密閉して覆うことで、ウェハ処理槽100aの内部とプ ロセスガス排気口106との連通を遮断するためという こともできる。駆動力の強い油圧ジャッキ111が採用 される理由は、超臨界流体となる高圧ガスがウェハ処理 槽100aの内部に導入された場合に、可動式隔壁11 〇が角部191と共に高圧に耐えてウェハ処理槽100 aの密閉を保持する必要があるからである。なお本実施 の形態において、第一及び第二の上記目的を達成するウ ェハ保持台101の可動機構と、第三の上記目的を達成 する可動式隔壁110の可動機構とが別々に設けられて いてもよい。

【0023】還流機構RMについては、超臨界流体排出 口113の先に配管を介して設けられた密閉可能な分離 槽119が中心となっている。分離槽119では内部に 収容した超臨界流体の温度および圧力のうち少なくとも 一方を調整して、超臨界流体を気体に戻し、汚染物は液 体または固体にして超臨界流体中に溶け込んだ汚染物質 を超臨界流体と分離する。一分離槽119には、分離した 汚染物質を排出するためのバルブ120が設けられてい る。このバルブ120は、超臨界流体となる物質を分離 槽119に最初に充填するときにも用いられる。また、 分離槽119には超臨界流体から気体に戻った物質を再 び高圧ガスにするコンプレッサー121が接続されてい る。そしてコンプレッサー121は高圧ガス導入配管1 05と接続されている。

【0024】この装置のウェハ処理時における動作を、 図1を用いて説明する。換言すれば、この装置を用いた ウェハの処理方法の説明である。まず、プロセスガスを 送り込む機構はまだ操作せずプロセスガスを送り込まな † い状態で、プロセスガス導入配管104とガス導入口1 03とが導通するように切り替えバルブ108をセット し、ドレインバルブ114は閉じておく。次に油圧ジャ ッキ111によりウェハ保持台10日が最も下になるま で下げて、図示しないゲートバルブを開きウェハ102 をウェハ保持台101にセットする。その後ゲートバル ブを閉め、ウェハ102をドライエッチングするのに最 **・適な位置、例えばウェハ処理槽100a内に入り込んだ** 位置へとウェハ保持台101を上昇させる。この状態を 「示すのが図1である。この状態では可動式隔壁110が 完全に上がっておらずウェハ処理槽100aの内部とプ ロセスガス排気口106とが連通しており、図示しない 排気装置及びプロセスガス排気口106がウェハ処理槽 100 aから隔絶されていないので、ウェハ処理槽10 〇 a内部の気体をウェハロード槽100bを介してプロ セスガス排気口106から排気できる。そこで次にプロ セスガス排気口106に接続された図示しない排気装置 を作動させ、ウェハ処理槽100aの内部の圧力が数P a程度になるまで排気する。

【0025】所望の真空度に達したら、次にプロセスガスを送り込む機構を操作してプロセスガス導入配管104にプロセスガスを送り込み、コイル115を通電し、マイクロ波導波管116からマイクロ波を照射する。ウェハ処理槽100aの内部に導入されたプロセスガスは、マイクロ波導波管116から入射されるマイクロ波と通電されたコイル115による磁界とによりサイクロトロン共鳴状態となった電子と反応してプラズマ状態になる。そして、このプラズマによってウェハ保持台101に保持されたウェハ102に対しドライエッチングが行える。その後、役目を終えたプロセスガスはプロセスガス排気口106から排気される。

【0026】一方、この装置の洗浄時における動作を、図2を用いて説明する。換言すれば、この装置の内部の洗浄方法の説明である。まず、バルブ120を介して分

離槽119の内部に超臨界流体となる物質を満たしてお く。このときはまだ高圧ガス導入配管105とガス導入 □103とは導通させないようにし、またドレインバル ブ114は閉めておく。次に、図1のように可動式隔壁 を下げた状態でプロセスガス排気日106に接続された 図示しない排気装置を作動させ、ウェハ処理槽100a の内部を排気する。ある程度の真空度に達したら、この 状態で可動式隔壁110を油圧ジャッキ111により角 部191に当接するまで上げ、ウェハ処理槽100aを 図示しない排気装置及びプロセスガス排気口106から 隔絶する。次にコンプレッサー121を作動させ、分離 槽119に満たされていた物質を高圧ガスにする。そし て、切り替えバルブ108により高圧ガス導入配管10 **5とガス導入口103とを導通させウェハ処理槽100** aの内部に高圧ガスを送り込む。この状態を示すのが図 2である。そして、ウェハ処理槽100aの内部に導入 された高圧ガスをヒータ109により温度制御して、超 臨界流体の状態へと変化させる。そしてこの状態でしば らく放置する。超臨界流体でウェハ処理槽100aの内 部を満たすと、超臨界流体は槽内の狭小な隙間にまで入 り込み、付着した高分子物質をウェハ処理槽100aか ら引き剥がし自己の溶質としてしまうので、放置するだ けでウェハ処理槽100aの内部が洗浄できる。

【0027】ここで、付着した高分子物質が常温で気体・となる低分子物質に分解できることが子め判明している場合には、高分子物質が低分子物質に分解するよう槽内の温度、圧力を設定しておく。そうすれば、コンプレッザー121およびヒータ109をOFFしてウェハ処理槽100aの内部を常温常圧に戻し、超臨界流体を常温常圧の気体に戻した後、可動式隔壁110を下げてウェハ処理槽100aとウェハロード槽100bとを連通させることにより、上記低分子物質となった分解物および超臨界流体は気体となってプロセスガス排気口106から排気できる。この場合は、還流機構RMの経路に超臨界流体を通さず、超臨界流体は使い捨てとなる。

【0028】一方、高分子物質が常温で気体となる低分子物質に分解できない場合は、可動式隔壁110は動かさずにドレインバルブ114を開け、高分子物質が溶け込んだ超臨界流体を分離槽119に導く。そしてこの分離槽119において、超臨界流体の温度もしくは圧力又はその両方を調整して、超臨界流体を気体に戻し、高分子物質は液体または固体にして超臨界流体と高分子物質とを分離する。そして、超臨界流体であった気体のみをコンプレッサー121に送り高圧ガスにしてウェハ処理槽100aに還流させる。一方、高分子物質はバルブ120を開けることで、その自重により排出させることができる。このようにして高圧ガスをウェハ処理槽100aの内部で超臨界流体にすることを繰り返せば、超臨界流体となる物質をリサイクルできる。

【0029】ここで、超臨界流体となる物質として、例

えば二酸化炭素を採用するとよい。二酸化炭素は、その臨界温度が比較的低く、常温で気体であり水素等のよう・に爆発する危険性もないので扱いやすく、また、それほとコストもかからず、フロンガスのようにオゾン層を破壊することもない。と利点が多いからである。上記のECRプラズマエッチング装置D1の超臨界流体に二酸化炭素を採用した場合、ウェハ処理槽100a内部に二酸化炭素が導入されて放置される際には、例えば320 K、15MPa程度の温度と圧力で15分以上保持されれば、槽内の付着物は超臨界流体状態の二酸化炭素に溶解する。また、分離槽119においては、二酸化炭素の臨界温度304.2Kをやや下回る温度か、臨界圧力フ・37MPaをやや下回る内部圧力に調整することで高分子物質と二酸化炭素とを分離できる。

【0030】またウェハ処理槽100a内部の洗浄の際に、エッチング終了後の使用済みレジストが付着したウェハをウェハ保持台101にセットしたまま洗浄すれば、レジストも同時に除去されるので、ECRプラズマエッチング装置D1はレジスト除去機能をも有することになる。このレジスト除去法ならば、ウェハ処理槽100aにウェハを複数枚収めれば短時間で効率よくレジストを除去できる。また、バッチ式プラズマアッシング装置を用いた場合に生じやすい帯電によるダメージも全くない。また、エッチング後のレジストは変質しておりプラズマアッシングだけでは除去できない場合がしばしばあるが、超臨界流体は変質したレジストであっても分解できるため、従来のように変質したレジストを除去するための強アルカリ溶液による湿式処理も必要がない。

【0031】またこのことから、上で説明したウェハの 処理方法によりウェハのエッチングを行った後、そのウェハをウェハ保持台101にセットしたまま引き続き、 上で説明した装置内部の洗浄方法により洗浄を行えば、 ウェハを外部に取り出すことなくエッチング工程とレジスト除去工程とを連続して行えることになる。

【0032】よって、このようなECRプラズマエッチング装置D1を用いたウェハの処理方法を用いれば、同一の装置でエッチング工程とレジスト除去工程とを連続して行うことができウェハの出し入れの手間が省け、作業能率を向上させることができる。

【0033】なお本実施の形態では、導入された高圧ガスをヒータ109により温度制御しでウェハ処理槽100aの内部において超臨界流体状態にしたが、高圧ガス導入配管105の先に接続される高圧ガスを送り込む機構または還流機構RMにおいて、高圧ガスをはじめから超臨界流体の状態にして高圧ガス導入配管105に導入してもよい。その場合はヒータ109は不要となる。

【0034】本実施の形態にかかる半導体製造装置を用いれば、半導体基板への処理機構のみならず装置内部の洗浄機構をも備えるので、直接人間の手を入れることなく内部を洗浄できる。よって、洗浄作業者がガスマスク

! を着用する必要がなくししかも作業者ごとの洗浄技術の ばらつきによって洗浄度が異なることはない。また、内。 部部品の取り外し時および組み込み時に作業ミスが起こ りやすいといった問題もない。また、一狭小な隙間にまで 入り込む性質を持つ超臨界流体を用いて内部を洗浄する ので、複雑な形状の部品や入り組んだ部分の洗浄度が高 い。超臨界流体は高い反応性を有するため有機高分子物 質を分解することもでき、特にレジスト等の有機物質を 備えた半導体基板を処理する処理槽の内部を高い洗浄度 で洗浄できる。また、洗浄後の超臨界流体は温度または 圧力を制御することで汚染物質を含んだ気体に変化させ られるため液体として内部に残留することはなく、洗浄 後の残留溶媒を蒸発させるための長時間の減圧が必要な い。よって洗浄作業の効率もよい。また、半導体基板上 の使用済みのレジストを容易に効率よく除去することも できる。また、超臨界流体となる物質をリサイクルでき るため資源の使用効率がよい。

【 0 0 3 5 】実施の形態 2 . 本実施の形態にかかる半導体製造装置は、超臨界流体を用いた洗浄機構を組み込んだ平行平板電極型プラズマエッチング装置である。本実一施の形態にかかる平行平板電極型プラズマエッチング装置 D 2 も実施の形態 1 に示したECRプラズマエッチング 芸置 D 1 と同様、ウェハに対しドライエッチングを行一えるウェム処理時の状態と、超臨界流体を内部に導入して洗浄を行える洗浄時の状態との二状態を採り得る。図 3 にこの装置のウェハ処理時の状態を、図4 にこの装置の洗浄時の状態をそれぞれ示す。

【0036】図3および図4において平行平板電極型プラズマエッチング装置D2は、ウェハ処理槽200を中心に構成される。このウェハ処理槽200も実施の形態1に示したECRプラズマエッチング装置D1のウェハ処理槽100aと同様に、ウェハ処理時にプロセスガスを導入して内部でプラズマ状態を作り出す機構と、洗浄時に洗浄溶媒として機能する高圧ガスを導入して内部で超臨界流体状態にする機構とが付加される。そのためウェパ処理槽200は、ウェハ処理槽100aと同様に外部の大気圧に耐え、かつ内部からの高圧にも耐え得る強度を要求され、その壁は厚く作られるか、または強度の高い材料で作られることが望ましい。

【0037】外部とガスの送受を行うために、ウェハ処理槽200はガス導入口203を有し、また排気口206が付設される。ガス導入口203は、プロセスガス導入配管204および高圧ガス導入配管205に接続されており、切り替えバルブ208によっていずれかの配管と導通する。もちろん、ガス導入口203および切り替えバルブ208なしに、プロセスガス導入配管204および高圧ガス導入配管205をそれぞれ別個にウェハ処理槽200に直結してもよい。ただしその場合は、それぞれの配管に開閉を司るバルブが必要となる。

【0038】また、プロセスガス導入配管204の先に

- 一はプロセスガスを送り込む機構が接続されている(図示 せず)。つまり、このプロセスガスを送り込む機構と、 プロセスガス導入配管204と、切り替えバルブ208 ともガス導入口203とが一体となって、プロセスガス をウェハ処理槽200の内部へと送入する手段となって いる。また、高圧ガス導入配管205の先には高圧ガス を送り込む機構が接続されている(図示せず)。つま **ヶり、この高圧ガスを送り込む機構と、高圧ガス導入配管・** 205と、切り替えバルブ208と、ガス導入口203 とが一体となって、高圧ガスをウェハ処理槽200の内 部へと送入する手段となっている。また、排気口206 には使用済みのプロセスガスおよび高圧ガスを引き抜く ための排気装置が接続されている(図示せず)。つま り、この図示しない排気装置と、排気口206とが一体 となって、ウェハ処理槽200内部に導入されたプロセ . スガス及び高圧ガスを排出する手段になっているともい える。

【0039】なお他にウェハ処理槽200は、ウェハ202の出し入れを行えるようにするためのゲートバルブ -213も備えている。

【0040】ウェハ処理槽200の外部には、ヒータ2 09がウェハ処理槽200を取り囲むようにして設けら れている。ビータ209は、洗浄時にウェバ処理槽20 0を加熱することで、内部の高圧ガスの温度を臨界温度 以上になるよう制御して高圧ガスを超臨界流体状態にす 一名ことが可能な温度制御手段である。

【0041】一方、ウェハ処理槽200の内部には、上 部電極の機能も併せ持つシャワープレート207と、ウ ェハ20.2を保持し、下部電極の機能も併せ持つウェハ 保持台201と、図示しない排気装置及び排気口206 からウェハ処理槽200を隔絶するための可動式隔壁2 1.0とが設けられている。また、可動式隔壁21:0はア クチュエータ支柱212を介してアクチュエータ211 。に接続されており、これによってウェハ保持台201お よび可動式隔壁2.10の位置を変化させることができ る。位置を変化させる目的は、ウェハ202を出し入れ 」する場合にウェハ保持台201の高さをゲートバルブ2 13の高さに合わせるため、および、ウェハ処理時にウ ェハ202が最適な位置になるようウェハ保持台201 の高さを調整するため、および、洗浄時に可動式隔壁2 10をウェハ処理槽200と排気口206との境界に存 - 在する角部291に当接させることによって、ウェハ処 理槽200を図示しない排気装置及び排気口206と隔 絶するため、の三つである。上記目的の最後のものにつ いて換言すれば、ウェハ処理槽200が排気口206に 向かって開口した部分(角部291のある部分)を可動 式隔壁210が密閉して覆うことで、ウェハ処理槽20 0の内部と排気口206との連通を遮断するためという こともできる。実施の形態1と異なり、駆動力の強い油 圧ジャッキではなくそれよりも駆動力の劣るアクチュエ

ータ211を採用し得る理由は、超臨界流体となる高圧 ガスがウェハ処理槽200の内部に導入された場合に、 可動式隔壁210はウェハ処理槽200の内部から外部 ・へ向かう圧力を受けて角部291に押し付けられる格好 になるので、外部からは強い駆動力で可動式隔壁210 ・を保持しなくともよいためである。

【0042】この装置のウェハ処理時における動作を、 図3を用いて説明する。換言すれば、この装置を用いた ウェハの処理方法の説明である。まず、プロセスガスを 送り込む機構はまだ操作せずプロセスガスを送り込まな い状態で、プロセスガス導入配管204とガス導入口2 03とが導通するように切り替えバルブ208をセット しておく。次にアクチュエータ211によりウェハ保持 台201がゲートバルブ213の高さになるよう調整し て、ゲートバルブ213を開きウェハ202をウェハ保 持台201にセットする。その後ゲートバルブ213を 閉め、ウェハ202をドライエッチングするのに最適な 位置になるようにウェハ保持台201を上昇させる。こ の状態を示すのが図るである。この状態では可動式隔壁 210が完全に下がっておらずウェハ処理槽200の内 部と排気口206とが連通しており、図示しない排気装 **「置及び排気口206がウェハ処理槽200から隔絶され** ていないので、ウェハ処理槽200内部の気体を排気目 「206から排気できる。そこで次に排気口206に接続 された図示しない排気装置を作動させ、ウェハ処理槽2 - 00の内部の圧力が100Pa程度になるまで排気す

【0043】所望の真空度に達したら、次にプロセスガスを送り込む機構を操作してプロセスガス導入配管204にプロセスガスを送り込み、上部電極であるシャワープレート207と下部電極であるウェハ保持台201との間に高周波電力を印加する。ウェハ処理槽200の内部に導入されたプロセスガスは、シャワープレート207とウェハ保持台201との間に生じた電界によりブラズマ状態になる。そして、このプラズマによってウェハ保持台201に保持されたウェハ202に対しドライエッチングが行える。その後、役目を終えたプロセスガスは排気口206から排気される。

【0044】一方、この装置の洗浄時における動作を、図4を用いて説明する。換言すれば、この装置の内部の洗浄方法の説明である。まず図3のように、プロセスガス導入配管204とガス導入口203とが導通するように切り替えバルブ208をセットし可動式隔壁210を上げた状態で、排気口206に接続された図示しない排気装置を作動させ、ウェハ処理槽200の内部の気体を抜く。ある程度の真空度に達したら、この状態で可動式隔壁210をアクチュエータ211により最も下になるまで下げ、ウェハ処理槽200を図示しない排気装置及び排気口206から隔絶する。次に図示しない高圧ガスを送り込む機構を作動させ、切り替えバルブ208によ

り高圧ガス導入配管205とガス導入口203とを導通させウェハ処理槽200の内部に高圧ガスを送り込む。この状態を示すのが図4である。そして、ウェハ処理槽つ200の内部に導入された高圧ガスをヒータ209により温度制御して、超臨界流体の状態へと変化させる。そこしてこの状態でしばらく放置する。

【0045】本実施の形態では実施の形態1と異なり、平行平板電極型プラズマエッチング装置D2が超臨界流体の湿流機構を備えていないので、超臨界流体は使い捨てとなる。つまり、図示しない高圧ガスを送り込む機構およびヒータ209をOFFし超臨界流体を常温常圧の気体に戻した後、可動式隔壁210を上げて、排気口2.0.6から汚染物質もろとも排出させて、ウェハ処理槽200の内部の洗浄が完了することになる。

【0046】ここで、超臨界流体となる物質として、例えば水分を重量にして10%程度添加した二酸化炭素を採用するとよい。このような水分を加えた二酸化炭素は、超臨界流体状態において溶解した高分子物質を加水分解して低分子物質にすることができるからである。このとき生成した低分子物質は常温での蒸気圧が高いために常温常圧で気体になりやすい。よって、ウェハ処理槽から洗浄済みの二酸化炭素を排出する際に一緒に排出されやすいので、ウェハ処理槽内部の洗浄度を高くすることができる。

【 0 0 4 7 】添加した水分は、反応せずウェハ処理槽ので内部に残留することもあるが、微量であり、また平行平板電極型プラズマエッチング装置の場合はウェハ処理時の内部圧力がECRプラズマエッチング装置などに比べて高く、水分の蒸気圧が相対的に低いのでウェハ処理に対してそれほどの悪影響はない。

【0.048】上記の平行平板電極型プラズマエッチングで装置D.2の超臨界流体に水分を添加した二酸化炭素を採用した場合、ウェハ処理槽200内部に二酸化炭素が導入されて放置される際には、例えば350K、20MPa程度の温度と圧力で15分以上保持されれば、槽内の付着物は超臨界流体状態の二酸化炭素に溶解する。実施の形態1における数値と若干異なる理由は水分による加水分解を促進させるためであり、もし二酸化炭素のみの場合は実施の形態1におけると同様の値でよい。

【0049】また実施の形態1におけるECRプラズマエッチング装置D1と同様、平行平板電極型プラズマエッチング装置D2もレジスト除去機能を有している。

【0050】またこのことから、上で説明したウェハの 処理方法によりウェハのエッチングを行った後、そのウェハをウェハ保持台201にセットしたまま引き続き、 上で説明した装置内部の洗浄方法により洗浄を行えば、 ウェハを外部に取り出すことなくエッチング工程とレジ スト除去工程とを連続して行えることになる。

【 0 0 5 1 】よって、このような平行平板電極型プラズマエッチング装置 D 2を用いたウェハの処理方法を用い

「れば、同一の装置でエッチング工程とレジスト除去工程 ・ とを連続して行うことができウェハの出し入れの手間が 省け、作業能率を向上させることができる。

⇒【0052】なお本実施の形態でも、導入された高圧ガースをヒータ209により温度制御してウェハ処理槽20 0の内部において超臨界流体状態にしたが、高圧ガスを ・送り込む機構において高圧ガスをはじめから超臨界流体 の状態にして高圧ガス導入配管205に導入してもよい。その場合はヒータ209は不要となる。

【0053】本実施の形態にかかる半導体製造装置を用いれば、実施の形態1と同様の効果がある。また、水分を添加した二酸化炭素を用いることで高分子物質の加水分解反応が生じるので、汚染物質が気体となって排出されやすくウェハ処理槽内部の洗浄度がより高くなる。

【0054】実施の形態3.本実施の形態にかかる半導体製造装置は、超臨界流体を用いた洗浄機構を組み込んだTCP(Transformer Coupled Plasma)型誘導結合プラズマエッチング装置である。本実施の形態にかかるTCP型誘導結合プラズマエッチング装置D3は、実施の形態1に示したECRプラズマエッチング装置D1または実施の形態2に示した平行平板電極型プラズマエッチング装置D2と同様、ウェバに対しドライエッチングを行えるウェハ処理時の状態と、超臨界流体を内部に導入して洗浄を行える洗浄時の状態との二状態を採り得る。図5にこの装置のウェハ処理時の状態を、図6にこの装置の洗浄時の状態をそれぞれ示す。

【0055】図5および図6においてTCP型誘導結合 プラズマエッチング装置D3は、ウェハ処理槽300を 中心に構成される。このウェハ処理槽300も実施の形 態1におけるウェハ処理槽100 aまたは実施の形態2 におけるウェハ処理槽200と同様に、ウェハ処理時に プロセスガスを導入して内部でプラズマ状態を作り出す - 機構と、洗浄時に洗浄溶媒として機能する高圧ガスを導 入して内部で超臨界流体状態にする機構とが付加され る。そのため、ウェハ処理槽300は、ウェハ処理槽1 00aまだは200と同様に外部の大気圧に耐え、かつ - 内部からの高圧にも耐え得る強度を要求され、その壁は 厚くされたり強度の高い材料で作られたりすることが望 ましい。また、TCP型誘導結合方式であるため外部の :渦巻きコイル状電極315への電界を遮断しないよう、 ウェハ処理槽300の上部は誘電体314となってい る。よって、この誘電体314も耐圧性を備えることが 望ましい。

【0056】外部とガスの送受を行うために、ウェハ処理槽300はガス導入口303を備え、また排気口306が付設される。ガス導入口303は、プロセスガス導入配管304および高圧ガス導入配管305に接続されており、切り替えバルブ308によっていずれかの配管と導通する。もちろん、ガス導入口303および切り替えバルブ308なしに、プロセスガス導入配管304お

よび高圧ガス導入配管305をそれぞれ別個にウェハ処 理槽300に直結してもよい。ただしその場合は、それ ぞれの配管に開閉を司るバルブが必要となる。 `【0057】また、プロセスガス導入配管304の先に ほプロセスガスを送り込む機構が接続されている(図示 せず)。つまり、このプロセスガスを送り込む機構と、 プロセスガス導入配管304と、切り替えバルブ308 と、ガス導入口303とが一体となって、プロセスガス をウェハ処理槽300の内部へと送入する手段となって いる。また、高圧ガス導入配管305の先には高圧ガス を送り込む機構が接続されている(図示せず)。つま り、この高圧ガスを送り込む機構と、高圧ガス導入配管 305と、切り替えバルブ308と、ガス導入口303 とが一体となって、高圧ガスをウェハ処理槽300の内 部へと送入する手段となっている。また、排気口306 には使用済みのプロセスガスおよび高圧ガスを引き抜く こための排気装置が接続されている(図示せず)。つま : り、この図示しない排気装置と、排気口306とが一体 上となって、ウェハ処理槽300内部に導入されたプロセ スガス及び高圧ガスを排出する手段になっているともい える。これにはいいというということは、またと

- 「【0060】ウェハ処理槽300の外部にはさらに、ウ

【0058】なお他にウェハ処理槽3.00は、ウェハ3

02の出し入れを行えるようにするためのゲートバルブ

ェハ処理槽300の内部に磁界を発生させ、かつ平行平板電極としての役割をも有する渦巻きコイル状上部電極315も誘電体314の上部に設けられている。 よ0061】一方、ウェハ処理槽300の内部には、シャワープレート30.7と、下部電極の機能も併せ持つウェハ保持台301とが設けられている。また排気口30.6に、油圧ジャッキ支柱312を介して油圧ジャッキ311に接続された可動式隔壁310が設けられている。

可動式隔壁310は、これによって可動式隔壁310の位置を変化させることができる。洗浄時に可動式隔壁310を排気口306とウェハ処理槽300との境界に存在する角部391に当接させることによってウェハ処理槽300を図示しない排気装置及び排気口306と隔絶するためである。換言すれば、ウェハ処理槽300が排気口306に向かって開口した部分(角部391のある部分)を可動式隔壁310が密閉して覆うことで、ウェハ処理槽300の内部と排気口306との連通を遮断す

【0062】この装置のウェハ処理時における動作を、

るためということもできる。

一図5を用いて説明する。換言すれば、この装置を用いた ウェハの処理方法の説明である。まず、プロセスガスを 送り込む機構はまだ操作せずプロセスガスを送り込まな い状態で、プロセスガス導入配管304とガス導入口3 0.3とが導通するように切り替えバルブ308をセット しておく。また、可動式隔壁310は下げておき、排気 口306とウェハ処理槽300とを連通させておく。次 『に、ゲートバルブ313を開きウェハ302をウェハ保 持台301にセットし、ゲートバルブ313を閉める。 この状態を示すのが図5である。この状態では可動式隔 壁310が下がっており、図示しない排気装置及び排気 口306がウェハ処理槽300から隔絶されていないの で、ウェハ処理槽300内部の気体を排気口306から 排気できる。そこで次に排気口306に接続された図示 しない排気装置を作動させ、ウェハ処理槽300の内部 の圧力が数Pa程度になるまで排気する。

【0063】所望の真空度に達したら、次にプロセスガスを送り込む機構を操作してプロセスガス導入配管304にプロセスガスを送り込み、渦巻きコイル状上部電極315の渦の中心と渦の末端との間に高周波電力を印加い、渦巻きコイル状上部電極315と下部電極であるウザェハ県持台301との間にも高周波電力を印加する。ウェハ処理槽300の内部に導入されたプロセスガスは、渦巻きコイル状上部電極315により発生した誘導磁界でよる誘導電界と、渦巻きコイル状上部電極315により発生した誘導磁界でよる誘導電界と、渦巻きコイル状上部電極315とウェハ保持台301との間に生じた電界とにより密度の高いプラズマ状態になる。そして、このプラズマによってでウェハ保持台301に保持されたウェハ302に対しドライエッチングが行える。その後、役目を終えたプロセスガスは排気口306から排気される。

【0064】一方、この装置の洗浄時における動作を、 図6を用いて説明する。換言すれば、この装置の内部の 洗浄方法の説明である。まず図5のように、プロセスガ ス導入配管304とガス導入口303とが導通するよう 「に切り替えバルブ308をセットし可動式隔壁310を 下げた状態で、排気口306に接続された図示しない排 気装置を作動させ、ウェハ処理槽300の内部の気体を 抜く。ある程度の真空度に達したら、この状態で可動式 隔壁310を油圧ジャッキ311により上げて角部39 ≒1に当接させ、ウェハ処理槽300を図示しない排気装 置及び排気口306と隔絶する。次に図示しない高圧が スを送り込む機構を作動させ、切り替えバルブ308に より高圧ガス導入配管305とガス導入口303とを導 通させウェハ処理槽300の内部に高圧ガスを送り込 む。この状態を示すのが図6である。そして、ウェハ処 理槽300の内部に導入された高圧ガスをヒータ309 により温度制御して、超臨界流体の状態へと変化させ る。そしてこの状態でしばらく放置する。

【0065】本実施の形態においても、TCP型誘導結合プラズマエッチング装置D3が超臨界流体の還流機構

を備えていないので、超臨界流体は使い捨てとなる。つまり、図示しない高圧ガスを送り込む機構およびヒータ309をOFFし超臨界流体を常温常圧の気体に戻した後、可動式隔壁310を下げて、排気口306から汚染物質もろとも排出させて、ウェハ処理槽300の内部の洗浄が完了することになる。

【0066】また、本実施の形態においても、超臨界流体となる物質として例えば二酸化炭素を採用するとよい。

【0067】また、本実施の形態にかかるTCP型誘導 結合プラズマエッチング装置D3もレジスト除去機能を 有している。

【0068】またこのことから、上で説明したウェハの 処理方法によりウェハのエッチングを行った後、そのウェハをウェハ保持台301にセットしたまま引き続き、 上で説明した装置内部の洗浄方法により洗浄を行えば、 ウェハを外部に取り出すことなくエッチング工程とレジ スト除去工程とを連続して行えることになる。

【0069】よって、このようなTCP型誘導結合プラズマエッチング装置D3を用いたウェハの処理方法を用いれば、同一の装置でエッチング工程とレジスト除去工程とを連続して行うことができウェハの出し入れの手間が省け、作業能率を向上させることができる。

【0070】なお本実施の形態でも、導入された高圧ガスをヒータ309により温度制御してウェハ処理槽300の内部において超臨界流体状態にしたが、高圧ガスを送り込む機構において高圧ガスをはじめから超臨界流体の状態にして高圧ガス導入配管305に導入してもよい。その場合はヒータ309は不要となる。

【0071】本実施の形態にかかる半導体製造装置を用いれば、実施の形態1と同様の効果がある。

【0072】その他、実施の形態1~3では、プラズマエッチング装置を例にして本発明にかかる半導体製造装置の例を説明したが、本発明は上記の実施の形態にのみ限定されるものではなく、他方式のプラズマエッチング装置はもちるん、CVD装置やエピタキシャル成長装置等にも適用可能である。特に、半導体装置製造プロセスにおいてレジスト等の有機物を用いる半導体製造装置に対して本発明は有効である。

【0073】また、超臨界流体となる物質として実施の 形態1~3では二酸化炭素を例として挙げたが、二酸化 炭素の代わりに一酸化炭素またはジメチルエーテルまた はメタン等を用いても同様の効果が得られる。

[0074]

【発明の効果】この発明のうち請求項1にかかる半導体。 製造装置を用いれば、第1の送入手段により送入された 処理物質によって、処理槽において半導体基板への処理 が行える。さらに、排出手段と処理槽とを隔絶した状態 で第2の送入手段により送入された洗浄溶媒を処理槽内 部に密閉して収容できるので、直接人間の手を入れるこ

となく、半導体基板への処理によって汚染された装置内 部を洗浄できる。よって、洗浄作業者がガスマスクを着 用する必要がなく、しかも作業者ごとの洗浄技術のばら つきによって洗浄度が異なることはない。また、内部部 品の取り外し時および組み込み時に作業ミスが起こりや すいといった問題もない。また、使用済みのレジストが のったままの半導体基板を基板保持部に置いて洗浄溶媒 を処理槽内部に送入すれば、半導体基板上の使用済みのレジストを容易に効率よく除去することもできる。

【0075】この発明のうち請求項2にかかる半導体製造装置を用いれば、狭小な隙間にまで入り込む性質を持つ超臨界流体を用いて内部を洗浄するので、複雑な形状の部品や入り組んだ部分の洗浄度が高い。また、超臨界流体は高い反応性を有するため有機高分子物質を分解することもでき、特にレジスト等の有機物質を備えた半導体基板を処理する処理槽の内部を高い洗浄度で洗浄できる。

【0076】この発明のうち請求項3にかかる半導体製造装置を用いれば、処理槽を加熱して処理槽内部に送入された洗浄溶媒の温度を制御することで、狭小な隙間にまで入り込む性質を持つ超臨界流体に洗浄溶媒を変化させて内部を洗浄するので、複雑な形状の部品や入り組んだ部分の洗浄度が高い。また、超臨界流体は高い反応性を有するなめ有機高分子物質を分解することもでき、特にレジスト等の有機物質を備えた半導体基板を処理する処理槽の内部を高い洗浄度で洗浄できる。また、洗浄後の超臨界流体は温度または圧力を制御することで汚染物質を含んだ気体に変化させて排出手段により排出することができるので液体として内部に残留することはなく、洗浄後の残留溶媒を蒸発させるための長時間の減圧が必要ない。よって洗浄作業の効率もよい。

【0077】この発明のうち請求項4にかかる半導体製造装置を用いれば、水分を加えた二酸化炭素を洗浄溶媒に採用するので、汚染物質が高分子物質を含む場合に高分子物質を加水分解して低分子物質にすることができる。このとき生成した低分子物質は常温常圧で気体になりやすいため処理槽から排出されやすく、処理槽内部の洗浄度を高くすることができる。

【0078】この発明のうち請求項5にかかる半導体製造装置を用いれば、隔壁と基板保持部とが固着されているので、隔壁の位置を変化させるとそれに伴って基板保持部の位置も変化させることができる。よって隔壁の位置を変化させる機構が、半導体基板の出し入れの際に基板保持部の位置を変化させる機能や、半導体基板に対して処理をする際に半導体基板が最適な位置になるよう基板保持部の位置を変化させる機能をも兼ね備えているので、基板保持部の位置を変化させるための機構を新たに設ける必要がない。

【0079】この発明のうち請求項6にかかる半導体基板の処理方法を用いれば、半導体基板への処理工程と半

. 導体基板上の使用済みレジストの除去工程とを連続して 一行うことができるので、半導体基板の出し入れの手間が 省け、作業能率を向上させることができる。

- 【図面の簡単な説明】

【図1】 本発明の実施の形態1にかかる半導体製造装置の構造を示す断面図である。

【図2】 本発明の実施の形態1にかかる半導体製造装置の構造を示す断面図である。

【図3】 本発明の実施の形態2にかかる半導体製造装 ・置の構造を示す断面図である。

【図4】 本発明の実施の形態2にかかる半導体製造装 置の構造を示す断面図である。

【図5】 本発明の実施の形態3にかかる半導体製造装置の構造を示す断面図である。

【図6】 本発明の実施の形態3にかかる半導体製造装置の構造を示す断面図である。

【符号の説明】 パニーニー

100a, 200, 300 ウェハ処理槽、102, 202, 302 ウェハ、103, 203, 303 ガス 導入口、104, 204, 304 プロセスガス導入配管、105, 205, 305 高圧ガス導入配管、106 プロセスガス排気口、206, 306 排気口、108, 208, 308 切り替えバルブ、109, 209, 309 ヒータ、110, 210, 310 可動式 隔壁、111, 311 油圧ジャッキ、211 アクチュエータ、113 超臨界流体排出口、114 ドレインバルブ、119 分離槽、120 バルブ、121コンプレッサー、RM 還流機構。

【図2】

DISCOUNTED - IDONONI NESERA I -

":【図3】;

-203

200:ウェハ処理権

203:ガス導入口

204:プロセスガス導入配管

202:ウェハ

206:排気口

208 205 BEガス

200 207 201 213

201 202 213

208 : 切り替えバルブ 209 : 上ータ 210 : 可動式開盤 211 : アクチュエータ

[24]

【図5】

207ر

<u>D2</u>

209

[26]

フロントページの続き

Fターム(参考) 5F004 AA13 AA14 AA15 BA04 BA08 BA11 BA14 BA16 BB11 BB18 BB26 BB28 BC08 BD01 BD07 CA01 CA09 DA00 DB23 DB26 FA08 5F045 AA08 AA10 AA13 CB06 DP01 DP02 DP03 EB06 EF05 EH03 EH05 EH11 EH13 EH16 EH17 EK06 HA22 5F103 BB45 BB46 BB57 HH03 PP01

PP18 RR01 RR02
