Planszówka

WWI 2024 – grupa 3 Dzień 5 – 20 sierpnia 2024

Kod zadania: **pla**Limit pamięci: **1024 MiB**

Bajtomil i Bitonella są ogromnymi fanami planszówek. Poświęcają na nie większość swojego dnia. Bitonella zaczęła również interesować się ostatnio programowaniem, w związku z tym postawiła sobie wyzwanie, że stworzy wersję elektroniczną ich ulubionej gry.

Gra odbywa się na ogromnej planszy o wymiarach 10^8+1 zapałek $\times 10^8+1$ zapałek, podzielonej na kwadraty jednostkowe o boku długości jednej zapałki. Gracze ruszają się po kolei: ruch polega na wybraniu jednego z boków kwadratu jednostkowego i położeniu tam swojej zapałki. Jeśli po ruchu gracza X jakiś obszar na planszy został otoczony (tzn. mały ludzik znajdujący się w środku tego obszaru nie umiałby z niego wyjść bez przechodzenia nad zapałką), to gracz X zdobywa tyle punktów, ile wynosi pole tego obszaru (w zapałkach kwadratowych), a następnie zabiera zapałkę, którą właśnie postawił. Nie można położyć zapałki w miejscu, w którym ktoś już położył zapałkę (nawet jeśli została ona później zabrana).

Po wielu godzinach i litrach potu został już tylko jeden, ostatni fragment implementacji, którego brakuje — policzyć ile dany ruch zdobywa punktów. Pomóż Bitonelli i napisz program, który dla danej sekwencji ruchów policzy, ile każdy z nich zdobywa punktów.

Wejście

W pierwszym wierszy wejścia znajduje się jedna liczna całkowita n ($1 \le n \le 3 \cdot 10^5$) oznaczająca ilość ruchów. Kolejne n wierszy opisuje sekwencje ruchów. i-ty wiersz składa się z dwóch liczb całkowitych x_i , y_i ($0 \le x_i$, $y_i \le 10^8$) oraz znaku x lub y oznaczające współrzędne końca zapałki oraz informacje czy została ona położona poziomo czy pionowo. Jeśli została położona poziomo (znak x) to łączy ona punkty o współrzędnych (x_i , y_i) oraz (x_i + 1, y_i), jeśli pionowo (znak y) to (x_i , y_i) oraz (x_i , x_i) oraz (x_i) ora

Wyjście

Na wyjściu powinno znaleźć się n wierszy, w i-tym z nich powinna być jedna liczba całkowita s_i ($0 \le s_i \le 10^8$) oznaczająca ilość punktów za i-ty ruch.

Przykład

Wejście dla testu pla0:

7		
1 1 x		
1 0 x		
2 0 y		
0 1 x		
1 0 y		
00 у		
0 0 x		

Wyjście dla testu pla0:

0 0 0 0 0 1 0 2

Wyjaśnienie do przykładu: Pierwsze cztery zapałki nie dostaną żadnych punktów, ponieważ położenie którejkolwiek z nich nie tworzy otoczonego obszaru. Piąta zapałka warta jest 1 punkt, gdyż tworzy ona obszar o polu 1. Zapałka siódma tworzy obszar o polu 2, dostaje ona zatem 2 punkty.

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$n \leqslant 30000, x_i, y_i \leqslant 10000$	6 s	30
2	$x_i, y_i \leqslant 10000$	6 s	25
3	<i>n</i> ≤ 30000	6 s	25
4	brak dodatkowych ograniczeń	4 s	20