Intro to Crypto

Two Party Communication

Quick Definitions

To keep a message secret we **encrypt** it

- The message is called the plaintext
- Encrypted, it is the ciphertext

Cryptanalysis - the art or process of deciphering coded messages without being told the key.

Cryptography - the art of writing or solving codes

Cryptology = Cryptanalysis + Cryptography

Cryptographic Goals

Confidentiality - Message is secret to everyone except the recipient

Integrity - Message has not been altered

Authentication - Identify the sender

Non-repudiation - Sender cannot deny sending the message

Cryptographic Primitives

Building blocks of a cryptographic system

Unkeyed = 0 keys

Symmetric = 1 Key

Asymmetric = 2 Keys

Caesar Cipher

Plain: ABCDEFGHIJKLMNOPARSTUVWXYZ

585555555555555555

Cipher: YZABCDEFGHIJKLMNOPARSTUVWX

Encryption

Cyclically Shift each letter k places forward

$$k = 3$$

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	С

For k = 3, the plaintext HELLO is encrypted as KHOOR

WARNING

Maths Ahead

Some Extra information

$$E_k(i) = i + k \pmod{26}$$

$$D_k(j) = j - k \pmod{26}$$

$$|K| = 26$$

Or 25 if you don't count k = 0

Decryption

Brute force is best force

Only 25 possible keys to check, let's just check them all!

JGNNQ	ZWDDG	PMTTW
IFMMP	YVCCF	OLSSV
HELLO	XUBBE	NKRRU
GDKKN	WTAAD	MJQQT
FCJJM	VSZZC	LIPPS
EBIIL	URYYB	
DAHHK	TQXXA	
CZGGJ	SPWWZ	
BYFFI	ROVVY	
AXEEH	QNUUX	

Activity

unswsecurity.com/crypto

- A. Decrypt by hand or use an online tool to help you
- B. H4CK3RZ Edition: Write a script to brute force through all decryptions

SImple Substitution Cipher

```
ጭየ®♦ ኈቋ∛ቇ፝ዀ窓ኈ ®♦ ጭኬ ♦የኬቀ Φኬቲ ጭየኈ ዀዀቀኈጏ
This example is to show you the power
```

ውዕውንት ተውጀል¢ โፀው ቋዋው ⊗ውቋቋውዕ ው ∅ጁኞ ቋ≪ୀ FREQUENCY OF THE LETTER E AND T.

Encryption

Permute the alphabet for a key, then map letters to encrypt.

Mapped alphabet to a scrambled version

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	O	Р	Q	R	S	Т	U	V	W	X	Y	Z
Р	Q	S	Т	U	V	W	X	Y	Z	С	0	D	Е	В	R	Α	K	ı	N	G	F	Н	J	L	М

The plaintext HELLO is encrypted as XUOOB

WARNING

Maths Ahead

Some Extra information

$$E_{\pi}(i) = \pi(i)$$

$$D_{\pi}(j) = \pi^{-1}(j)$$

$$|K| = 26! \approx 4 \times 10^{26}$$

Decryption - The magic of frequency

Decryption - More letters the better

N-grams, like letters but more of them!

Bigrams - TH is common, QU normally appear together...

Trigrams - THE, AND, ING are common

Example time:

ZKTAQOFU MIT LWZLMOMWMOGF EOHITK CGKQL ZTLM CITF MITKT OL A SGM GY EOHITKMTVM MG CGKQ COMI. BGW EAF WLT YKTJWTFEB AFASBLOL MG ITSH RTMTKDOFT MIT QTB

Decryption - Like, totally

But Cameron! - don't we like, need like, lots of like, letters for frequency to be effective?

Yes.

Unicity Distance: the length of an original ciphertext needed to break the cipher using brute-force.

Substitution Cipher = 28 characters.

Need even more characters in order to decipher with frequency analysis.

Activity

unswsecurity.com/crypto

- A. Decrypt by hand / use an online tool to help you
- B. H4CK3RZ Edition: Write some code to calculate frequency and produce a possible key

Encryption

r different Caesar Ciphers applied periodically

Key

Plaintext

Ciphertext

С	0	D	Е	С	0	D	С	0	D	Е	С	0	D	Е
Т	Н	I	S	I	S	Α	N	Е	X	Α	М	Р	L	Е
V	V	L	W	K	G	D	R	G	L	D	Q	R	Z	Н

$$A = 0, B = 1, C = 2$$

$$T + 2 = V$$

WARNING

Maths Ahead

Some Extra information

$$E_k(M_i) = (M_i + K_i) \mod 26$$

 $D_k(C_i) = (C_i - K_i) \mod 26$
 $|K| = 26^r$

Decryption - That don't look right

Decryption - Frequency can still save us

Remember back to the frequency when encrypting with Substitution / Caesar, it did not change!

If the key length was 4...

HNQD

LVY0

POKF

ACCE

KYAT

Frequency of each column should look like the frequency of english.

Decryption - What a coincidence!

So I'm meant to ~feel~ whether or not the frequency is similar to English?

I didn't come here to feel.

Index of Coincidence - A summary of frequency

The probability of two letters randomly selected being the same.

$$I.C. = \frac{\sum_{i=A}^{i=Z} f_i(f_i - 1)}{N(N - 1)}$$

f, is the count of the letter i.

N is total number of letters in the ciphertext

Decryption - I.C of English

Text	I.C
English	0.066
Substitution Cipher	0.066
Vigenère Cipher	0.042

Activity

unswsecurity.com/crypto

A. Just decrypt it, this is a tough one.

Bonus Round

Non-periodic polyalphabetic substitution ciphers

Cracking vigenere relied on a key which repeats! What about ciphers that use keys that don't repeat?

- Feeding (plaintext / ciphertext) back into key
- Rotation Ciphers (very long period)
- Key from an external source (like using an entire book text)

Is there any cipher that can't be broken?

Yes!

Common Patterns

We could learn something about the key, and the plaintext from the ciphertext for the previous ciphers.

What if we tried a key that never repeats and we only use once?

One Time Pad

A key the size of the message we want to send that is generated randomly and we never ever use again. Theoretically cannot be cracked!

WARNING

Serious Maths Ahead

This is just to freak you out

Some Extra information

$$H(X) = -\sum_{i=1}^{n} P(x_i) log_b P(x_i)$$

$$H(M) = H(M|C)$$

Let

- M be the set of possible plaintext messages
- C be the set of possible ciphertexts

$$I(M,C) = H(M) - H(M|C) = 0$$

Where can I learn more?

- http://practicalcryptography.com/
- http://overthewire.org/wargames/krypton/
- https://www.crypto101.io/
- https://cryptopals.com/

Best Caesar / Substitution Cipher Solver (for now) http://quipqiup.com/

- Handbook of applied cryptography Menezes, Oorschot, Vanstone
- Cryptography Engineering Bruce Schneier

Thank You!

