Lecture 18: Overfitting

Core 109S IDWT?, Spring 2017 Michael Hay

Logistics

- Homework due tonight!
 - You must scan and upload
- Exam next W in class
- Let's take questions at the end of class today...

Evaluating Netflix prize contestants

- Available data: movie-user pairs with ratings
- Leaderboard:
 - Movie-user pairs (without ratings)
 - Contestant submits ratings for each pair
 - Get back total score
- Final winner: top 5 leaders were evaluated on secret dataset hidden from contestants. Why?

Today

- Overfitting
 - What it is
 - Why it's bad
 - How to avoid it

Overfitting

- "Fitting the data more than is warranted."
 - Abu-Mostafa, Learning From Data
- "Finding chance occurrences in data that look like interesting patterns but which do not generalize [to previously unseen data points]."
 - Provost & Fawcett, Data Science for Business

Overfitting illustration: decision trees

- Suppose we include features such as: "Name of sender"
- What could go wrong...
 - ... with decision tree?
 - ... with perceptron? (assume *m* binary features, for *m* names in training data)
- Alternative feature that capture same idea but less likely to overfit?

Hypothesis complexity

- Informally, "complexity" is how finely hypothesis can be fit to the data
- Most machine learning techniques provide one or more "knobs" or "sliders" to adjust complexity

Let's look at some examples...

The best algorithms have knobs that go to eleven!

https://en.wikipedia.org/wiki/Up_to_eleven

Number of decision nodes, or maximum tree height

Perceptron | !!!

Number of weights w_i such that $w_i \neq 0$

$$h(x) = \operatorname{sign}\left(\sum_{i=0}^{d} w_i x_i\right)$$

- Alternative "knob": sum of weights (after taking absolute value)
- Note: Same knob applicable to other linear models such as linear regression, logistic regression

- Feature engineering is a "knob" applicable to any approach
- **New** features:
 - number of !!, ALL CAPS, SenderInContacts, # misspellings
- *Transformations* of existing features:
 - Dataset: inseparable by perceptron in original feature space

• Becomes separable when we add second feature $x_{new} = x^2$

Overfitting revisited

(e.g. Number of decision nodes)

Today

- Overfitting
 - What it is
 - Why it's bad
 - How to detect it
 - How to avoid it

 $3/16 \approx 19\%$ of population has $A=a_1$, $B=b_1$, and T=yes

Example

Sample

	-	
A	В	Т
a ₁	b ₁	У
a ₁	b ₁	У
a ₁	b ₁	У
a_2	b ₂	n
a ₁	b ₂	n
a_2	b ₁	n
a ₂	b ₂	n
a 0	h₁	n

- Suppose we want to predict T based on two binary attributes A and B
- Suppose we wiltrain a decision tree on a sample from the population

Population

A	В	T=yes	T=no
a ₁	b ₁	3/16	1/16
	b ₂	3/16	1/16
a ₂	b ₁	1/16	3/16
	b ₂	1/16	3/16

A	T=yes	T=no
a ₁	6/16	2/16
a ₂	2/16	6/16

When $A=a_1$, T will be yes 6/(6+2)=75% of the time

When $A=a_2$, T will be yes 2/(6+2)=25% of the time

B vs. T

В	T=yes	T=no
b ₁	4/16	4/16
b ₂	4/16	4/16

Knowing B is not helpful for predicting T

Exercise: Fit Trees 1 and 2 to this data. You should be able to "eyeball" the solution without computing info gain.

Example, Continuous computing info gain.

- Given sample of records from population
- Train three decision trees of varying complexity
 - Tree 0: at most zero decision nodes
 - Tree 1: at most one decision node
 - Tree 2: no constraints
- (Shown on board)

Sample (Training data)

Α	В	T
a ₁	b ₁	У
a_1	b ₁	У
a_1	b_1	У
a_2	b_2	n
a_1	b_2	n
a_2	b ₁	n
a_2	b ₂	n
a_2	b_1	n

- Error on sample (training data)
- Error on population

Overfitting...

- ...is not due to "pathological" sample: spurious "patterns" are likely to occur by chance
- ... isn't unique to trees: all algorithms fit patterns in the data and can be fooled
- ... can hurt: spurious patterns can cause hypothesis to make incorrect decisions

Today

- Overfitting
 - What it is
 - Why it's bad
 - How to detect it
 - How to avoid it

Train/test split

Available data

Train

Test

- Lesson learned: measuring error on the data that was used to fit hypothesis may not be indicative of "true" error
- Solution: split data into two parts
 - Train: use this for learning algorithm
 - Test: use this to judge accuracy of final learned hypothesis
- If training error is (a lot) lower than test error, overfitting has likely occurred.

Today

- Overfitting
 - What it is
 - Why it's bad
 - How to detect it
 - How to avoid it

How to avoid overfitting

- Two high level approaches
 - Regularization: add a "penalty" for hypothesis complexity, adjust learning algorithm to find hypothesis that minimizes: training error + penalty
 - Validation set: fit hypotheses of varying complexity, set aside a portion of training data to judge the best overall

Validation set

- Break training data into two parts: (Sub)Train and Validation
- Break hypothesis set into subsets of increasing complexity H₁, H₂, H₃, ..., H_C
- Use (Sub)Train to find best hypothesis in each hypothesis group: h_{H1}, h_{H2}, ..., h_{HC}
- Use validation to compare these hypotheses and pick overall best

Drawbacks of splitting into train/validation/test

- A fixed amount of labeled examples are now divided into three subsets
- We want each subset to be as big as possible
 - Bigger (sub)train: more information for training
 - Bigger validation and test: more reliable estimates of "true" error

Cross validation

- Applicable for splitting a dataset into two parts:
 - Example: train/test
 - Example: (sub)train/validate
- Idea: use every example as a test example
- Extreme version: Leave one out cross validation
 - Learn on n-1 examples, test on nth example, record result
 - Repeat this n times! Average the results.

Cross validation

