

Навчальна програма

Інформація про курс

Обговорення

Прогрес

Конспект лекцій

Будь ласка, зверніть увагу! Фінальний іспит оцінюється в 30 балів, які враховуються для отримання сертифікату.

Іспит складається з 30 тестових питань. Ви відповідаєте на кожне питання окремо. Зверніть особливу увагу на те, що у вас є лише одна спроба відповіді для кожного питання. Тому будьте максимально уважні!

Вкінці після всіх запитань ви можете знайти посилання на обговорення у форумі питань з іспиту. Якщо ви не впевнені у формулюванні питання або вважаєте, що ваша відповідь коректна, то звертайтесь на форум.

ПИТАННЯ 1 (1/1 бал)

Згадайте процедуру Partition методу швидкого сортування. Припустимо, що наступний масив був щойно розбитий відповідно до цієї процедури по відношенню до деякого опорного елементу: [3, 1, 2, 4, 5, 8, 7, 6, 9]. І цей опорний елемент вже зайняв своє відповідне місце в масиві.

Який з цих елементів міг бути обраним в якості опорного? Оберіть всі можливі варіанти.

2

 \Box 3

🛂 4 💙

🛂 5 💙

<u>v</u> 9

ПИТАННЯ 2 (1/1 бал)

Вам задано k відсортованих масивів, кожний з яких містить n елементів, і ви хочете об'єднати їх в один масив з kn елементів. Розглянемо наступний підхід. Розділимо k масивів на k/2 пар масивів та використаємо процедуру злиття Merge алгоритму сортування злиттям. Тепер у вас залишиться k/2 відсортованих масивів, кожний з яких буде містити 2n елементів. Будемо повторювати ці кроки до тих пір, поки не отримаємо один масив з kn елементів.

Який час роботи цієї процедури як функції k і n?

- $\Theta(nk \log k)$
- $\bigcirc \Theta(nk^2)$
- $\bigcirc \Theta(n \log k)$
- $\bigcirc \Theta(nk \log n)$

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 3 (1/1 бал)

Як виглядає рекурентне рівняння для найгіршого випадку процедури швидкого сортування QuickSort та яка часова складність в цьому випадку?

- \bigcirc $T(n) = T(n-2) + \Theta(n)$ і часова складність $T(n) = \Theta(n^2)$
- ullet $T(n) = T(n-1) + \Theta(n)$ і часова складність $T(n) = \Theta(n^2)$

```
\bigcirc T(n)=2T(n/2)+\Theta(n) і часова складність T(n)=\Theta(n\log n) \bigcirc T(n)=T(n/10)+T(9n/10)+\Theta(n) і часова складність T(n)=\Theta(n\log n)
```

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 4 (1/1 бал)

Розглянемо функцію

```
Function(ціле число n):
    count = 0
    i = n
    while i>0:
        for j від 0 до i-1:
            count = count + 1
        i = i/2
    return count
```

Яка часова складність цієї функції?

- $\bigcirc \Theta(n^2)$
- $\bigcirc \Theta(n \log n)$
- $\Theta(n)$
- $\bigcirc \Theta(n \log n \log n)$

пояснення відповіді

Якщо розписати суму кількостей ітерацій для зовнішнього циклу, то отримаємо: $n+n/2+n/4+\ldots+1$. Це є сума геометричної прогресії:

$$n/2^0 + n/2^1 + n/2^2 + \dots + n/2^{\log_2 n} = n \cdot \frac{1 - 1/2^{\log_2 n + 1}}{1 - 1/2} = n \cdot \frac{1 - 1/2n}{1/2} = 2n - 1 = \Theta(n)$$

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 5 (1/1 бал)

Позначимо через W(n) та A(n) час роботи деякого алгоритму в найгіршому та середньому випадках відповідно, коли розмірність вхідних даних становить n.

Яке з наступних співвідношень завжди є правильним?

- $\bigcirc A(n) = \Omega(W(n))$
- $\bigcirc A(n) = \Theta(W(n))$

ПОЯСНЕННЯ ВІДПОВІДІ

Час роботи алгоритму в найгіршому випадку завжди є більшим або рівним середньому часу роботи.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 6 (1/1 бал)

В деякому змаганні розглядається чотири функції. Кожна з функцій має один цикл for і всередині цього циклу кожна функція має один й той самий набір інструкцій.

Нижче наведені чотири варіанти циклів for. Для вхідних даних розмірності n (додатне число), яка з функцій буде більш ефективною? Зміст самої задачі, яку розв'язують функції, не є важливим.

$$\bigcap$$
 for(i = 0; i < n; i = i + 1)

$$\bigcirc$$
 for(i = 0; i < n; i = i + 2)

ПОЯСНЕННЯ ВІДПОВІДІ

Часова складність першого циклу - $\Theta(n)$. Часова складність другого циклу - $\Theta(n/2) = \Theta(n)$. Часова складність третього циклу - $\Theta(\log n)$. Четвертий цикл ніколи не завершиться.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 7 (1/1 бал)

Оберіть ті твердження, які є правильними.

$$igspace (n+k)^m = \Theta(n^m)$$
, де k і m - константи

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

Приховати Відповідь

ПИТАННЯ 8 (1/1 бал)

Розглянемо наступні дві функції.

```
Fun1(ціле число n):
   if n ≤ 1 return n
   else return 2 * Fun1(n - 1)
```

```
Fun2(ціле число n):
   if n ≤ 1 return n
   else return Fun2(n-1) + Fun2(n-1)
```

Яка часова складність цих двох функцій?

- $\Theta(2^n)$ для обох функцій
- $igodots \Theta(n)$ для Fun1 та $\Theta(2^n)$ для Fun2
- \bigcirc $\Theta(2^n)$ для Fun1 та $\Theta(n)$ для Fun2
- $\bigcirc \Theta(n)$ для обох функцій

пояснення відповіді

Часова складність для Fun1 може бути записана як T(n) = T(n-1) + C, звідки $T(n) = \Theta(n)$. Часова складність для Fun2 може бути записана як T(n) = 2T(n-1) + C, звідки $T(n) = \Theta(2^n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 9 (1/1 бал)

Невідсортований масив містить n різних елементів. Як оцінюється кількість порівнянь у випадку пошуку будь-якого елементу в масиві, який не є ані мінімальним, ані максимальним?

- $\bigcirc \Theta(n \log n)$
- $\bigcirc \Theta(n)$
- $\bigcirc \Theta(\log n)$
- $\mathbf{O}\Theta(1)$

пояснення відповіді

Для пошуку такого елементу достатньо обрати перші три елементи масиву та порівняти їх між собою. Той, який буде ані мінімальним, ані максимальним серед трьох, і є шуканий елемент. Час його пошуку не залежить від довжини масиву і становить $\Theta(1)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 10 (1/1 бал)

Розглянемо ситуацію, коли у вас немає функції для обрахунку степеню (наприклад, аналог функції роw() у мові C) і вам потрібно обрахувати x^n , де x - довільне число і n - ціле додатне число. Яким може бути найкращий час роботи вашої степеневої функції?

```
\Theta(n \log n)
\Theta(\log n) 
\Theta(\log(\log n))
```

пояснення відповіді

Наведена нижче функція працює за принципом декомпозиції. Її рекурентне співвідношення можна представити як $T(n) = T(n/2) + \Theta(1)$, розв'язок якого становить $T(n) = \Theta(\log n)$.

```
Power(x, y):
    if y = 0:
        return 1
    temp = Power(x, y/2)
    if y mod 2 = 0:
        return temp*temp
    else
        return x*temp*temp
```

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 11 (1/1 бал)

Розглянемо задачу пошуку підмасиву з максимальною сумою. На вхід подається деякий масив чисел A. Потрібно знайти таку неперервну послідовність чисел в масиві A, що їх сума буде найбільшою. Наприклад, для масиву [12, -13, -5, 25, -20, 30, 10] найбільша сума неперервної послідовності елементів буде становити 45, де сама послідовність - [25, -20, 30, 10].

Очевидний розв'язок цієї задачі полягає в тому, щоб рахувати суми всіх підмасивів починаючи з кожного елементу вхідного масиву та повернути підмасив з максимальною сумою. Проте можна застосувати метод декомпозиції та розробити алгоритм, який буде працювати краще, аніж згаданий вище. Який буде час роботи цього нового алгоритму?

пояснення відповіді

Для поставленої задачі можна використати наступний алгоритм, який заснований на принципі декомпозиції.

- 1) Розбити вхідний масив на дві половини
- 2) Повернути максимальний з наступних трьох випадків:
 - а) Максимальну суму підмасиву з лівої половини (рекурсивний виклик)
 - b) Максимальну суму підмасиву з правої половини (рекурсивний виклик)
 - с) Максимальну суму підмасиву, в якого початок знаходиться в лівій половині, а кінець в правій.

Для пошуку значення на пункті с) ми можемо скористатись наступною процедурою. Рухатись від середньої точки вліво і шукати підмасив з максимальною сумою. Потім рухатись від середньої точки вправо і також шукати підмасив з максимальною сумою. В кінці додати ці дві суми.

Рекурентне співвідношення становить: $T(n) = 2T(n/2) + \Theta(n)$, а його розв'язок - $T(n) = \Theta(n \log n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 12 (1/1 бал)

Припустимо, ми маємо алгоритм для пошуку медіани в масиві, який працює за час $\Theta(n)$. Розглянемо метод швидкого сортування, в якому спочатку знаходиться медіана масиву із використанням згаданого алгоритму, а потім ця медіана використовується в якості опорного елементу процедури розбиття. Який буде час роботи такого модифікованого алгоритму швидкого сортування в найгіршому випадку?

- $\bigcirc \Theta(n^2 \log n)$
- $\bigcirc \Theta(n^2)$
- $\bigcirc \Theta(n \log n \log n)$
- $\Theta(n \log n)$

ПОЯСНЕННЯ ВІДПОВІДІ

Рекурентне співвідношення для такого модифікованого алгоритму має вигляд $T(n) = 2T(n/2) + \Theta(n)$. Його розв'язок - $T(n) = \Theta(n \log n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 13 (1/1 бал)

Розглянемо модифікацію методу сортування злиттям, коли вхідний масив розбивається у співвідношенні 1 до 2, тобто одна частина буде містити третину вхідного масиву, а друга - решти дві третини. Який час роботи цієї модифікації алгоритму в найгіршому випадку?

- $\bigcirc \Theta(n \log_3 n)$
- $\bigcirc \Theta(n \log_{2/3} n)$
- $\bigcirc \Theta(n \log_{1/3} n)$
- $\Theta(n \log_{3/2} n)$

пояснення відповіді

Рекурентне співвідношення для такого модифікованого алгоритму має вигляд $T(n) = T(n/3) + T(2n/3) + \Theta(n)$. Його розв'язок - $T(n) = \Theta(n \log_{3/2} n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 14 (1/1 бал)

Який з наступних алгоритмів буде працювати найменший час, якщо вхідний масив складається тільки з однакових елементів? Припускаємо, що розглядаються стандартні реалізації алгоритмів.

- O Сортування включенням (Insertion Sort)
- Пірамідальне сортування (Heap Sort)
- Сортування злиттям (Merge Sort)
- Швидке сортування (Quick Sort)

пояснення відповіді

Алгоритм сортування включенням потребує час $\Theta(n)$, коли всі елементи вхідного масиву однакові. Також за час $\Theta(n)$ буде працювати алгоритм Heap Sort, проте приховані константи в цьому випадку будуть більші, аніж в Insertion Sort, через витрати часу на побудову піраміди.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 15 (1/1 бал)

Масив з n символьних рядків, кожний з яких має довжину n, відсортовується в лексикографічному порядку за допомогою методу сортування злиттям. Який час роботи цього алгоритму для даної задачі в найгіршому випадку?

- $\bigcirc O(n \log n)$
- $O(n^2 \log n)$
- $\bigcirc O(n \log n \log n)$
- $\bigcirc O(n^2)$

пояснення відповіді

Рекурентне дерево для методу сортування злиттям буде мати висоту $O(\log n)$. Час роботи алгоритму на кожному рівні дерева буде становити $O(n^2)$: кожний рівень потребує n порівнянь і кожне порівняння займає час O(n) в найгіршому випадку. Тож, час роботи алгоритму загалом становитиме: $O(n^2 \log n)$

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 16 (1/1 бал)

Нехай Р - це програма, яка реалізує алгоритм швидкого сортування для сортування масиву чисел у зростаючому порядку, при цьому в якості опорного використовується перший елемент масиву. Позначимо через t_1 і t_2 кількість порівнянь елементів в програмі Р, які виконуються для вхідних масивів [1, 2, 3, 4, 5] і [4, 1, 5, 3, 2] відповідно. Оберіть правильне твердження з нижче наведених.

- $\bigcirc t_1 = t_2 = 4$
- $\bigcirc t_1 = t_2 = 5$
- $\bigcirc t_1 < t_2$
- $oldsymbol{0} t_1 > t_2$
- $\bigcirc t_1 = t_2$

пояснення відповіді

Найгірший випадок для алгоритму швидкого сортування при виборі опорним елементом першого або останнього стається, коли масив вже є відсортованим. Тоді на кожному кроці рекурсії масив розбивається відповідно до співвідношення $T(n) = T(n-1) + \Theta(n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 17 (1/1 бал)

Який розв'язок має наступне рекурентне співвідношення: $T(n) = T(n/4) + T(n/2) + cn^2$, де T(1) = c, T(0) = 0 і c - деяка додатня константа?

```
\bigcirc \Theta(n^3)
\Theta(n^2)
\bigcirc \Theta(n^2 \log n)
\bigcirc \Theta(n \log n)
```

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 18 (1/1 бал)

Яка часова складність наступної рекурсивної функції?

```
DoSomething (ціле число n):
   if n \le 2:
        return 1
   else:
        return DoSomething (floor(sqrt(n)))
```

тут $sqrt(n) = \sqrt{n}$, a floor - функція, яка повертає цілу частину аргументу.

- $\bigcirc \Theta(n)$
- $\bigcirc \Theta(n \log n)$
- $\bigcirc \Theta(\log n)$
- $\Theta(\log(\log n))$

пояснення відповіді

Рекурентне співвідношення для цієї функції виглядає наступним чином: $T(n) = T(\sqrt{n}) + C$ для n > 2. Введемо заміну: $n = 2^m$ і тоді $T(n) = T(2^m) = S(m)$. Тоді рекурентне співвідношення можна переписати як S(m) = S(m/2) + C. Його розв'язок за основною теоремою - $S(m) = \Theta(\log m) = \Theta(\log \log n) = T(n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 19 (1/1 бал)

Оберіть правильну асимптотичну часову складність для алгоритму з часом роботи T(n,n), де

$$T(x,c) = \Theta(x)$$
 для $c \le 2$,

$$T(c, y) = \Theta(y)$$
 для $c \le 2$,

$$T(x, y) = \Theta(x + y) + T(x/2, y/2)$$

- $\bigcirc \Theta(n \log n)$
- $\bigcirc \Theta(n^2)$
- $\Theta(n)$
- $\bigcirc \Theta(n^2 \log n)$

пояснення відповіді

Рекурентне співвідношення $T(x,y) = \Theta(x+y) + T(x/2,y/2)$ може бути переписане як $T(x,y) = \Theta(x+y) + \Theta(\frac{x+y}{2}) + \Theta(\frac{x+y}{4}) + \Theta(\frac{x+y}{8}) + \ldots = \Theta((x+y) + \frac{x+y}{2} + \frac{x+y}{4} + \frac{x+y}{8} + \ldots)$. Це буде сума спадної геометричної прогресії із модулем знаменника рівним 1/2 і вона буде дорівнювати $T(x,y) = \Theta(2(x+y)) = \Theta(x+y)$. А отже $T(n,n) = \Theta(n+n) = \Theta(n)$.

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 20 (1/1 бал)

Обхід графу відрізняється від обходу дерева тим, що (оберіть всі можливі варіанти):

✓ В графі можуть бути цикли, тому нам потрібно для кожної вершини зберігати чи відвідали ми її вже,
 чи ні

- □ Обхід вглиб в графі використовує стек, але внутрішній обхід дерева є рекурсивним
- □ Обхід вшир в графі використовує чергу, але ефективний обхід вшир в дереві використовує рекурсію

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 21 (1/1 бал)

Граф G має n вершин та m ребер. Якою є точна верхня межа часу роботи алгоритму пошуку вглиб, якщо в ньому використовується матриця суміжностей?

- $\bigcirc O(n)$
- $\bigcirc O(n+m)$
- $O(n^2)$
- $\bigcirc O(nm)$

пояснення відповіді

Алгоритм пошуку вшир працює за час O(n+m), якщо граф представлений списком суміжностей. У випадку використання матриці суміжностей, яка має розмірність $n \times n$, нам для кожної поточної вершини в алгоритмі потрібно переглянути відповідний їй рядок в матриці - тобто n елементів. Таким чином загальний час роботи становитиме $O(n^2)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 22 (1/1 бал)

Якщо до орієнтованого графу G додати додаткове одне ребро, то кількість компонент сильної зв'язності...? (Оберіть найбільш строге твердження)

- Не може збільшитись, але може зменшитись
- Може залишитись тією самою або може змінитись (залежить від графу)
- Не може зменшитись більше ніж на 1
- Не зміниться

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 23 (1/1 бал)

Щоб реалізувати версію алгоритму Дейкстри, яка на незважених графах буде працювати за лінійний час, необхідно використати:

Стек

○Піраміду	
Бінарне	церево пошуку

пояснення відповіді

Найкоротший шлях у незваженому графі інтерпретується в термінах мінімальної кількості ребер між двома вершинами. Це однаково, якщо приписати всім ребрам вагу 1. Якщо в алгоритмі Дейкстри використовувати звичайну чергу (FIFO), а не чергу з пріоритетами (на основі пірамід), ми зможемо знайти найкоротший шлях за лінійний час O(n+m). Фактично алгоритм Дейкстри в цьому випадку буде працювати аналогічно до алгоритму обходу графу вшир.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 24 (1/1 бал)

Для заданого зваженого графу G та двох вершин s і t було обраховано найкоротший шлях. Серед нижче наведених тверджень оберіть ті, які виконуються:

\square Якщо збільшити вагу всіх ребер у G на 1, то знайдений найкоротший шлях все-одно залишиться
тим самим
\square Якщо збільшити вагу всіх ребер у G на 10, то знайдений найкоротший шлях все-одно залишиться
тим самим
ullet Якщо збільшити вагу всіх ребер у G вдвічі, то знайдений найкоротший шлях все-одно залишиться
тим самим
П Жолне з перепіченого

пояснення відповіді

Якщо збільшити вагу всіх ребер вдвічі, то найкоротший шлях збережеться, адже це те саме, як перейти з вимірювання довжини в метрах до вимірювання в сантиметрах. Інші варіанти неправильні - див. лекцію 14.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 25 (1/1 бал)

Для заданих двох незростаючих пірамід, кожна з яких має розмірність n, яким є максимальний час побудови незростаючої піраміди, що буде містити всі елементи з обох пірамід?

 $\Theta(n \log n)$ $\Theta(n \log(\log n))$ $\Theta(n)$ $\Theta(n^2)$

пояснення відповіді

Ми можемо побудувати незростаючу піраміду з 2n елементів за час $\Theta(n)$ використовуючи наступні кроки. Спочатку створити масив вмісткості 2n та скопіювати туди елементи з обох пірамід. Потім запустити процедуру BuildMaxHeap для цього масиву, час роботи якої $\Theta(n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 26 (1/1 бал)

У незростаючій піраміді (Мах-Неар), яка містить n елементів, найменший елемент можна знайти за час:

 $\Theta(n)$ $\bigcirc \Theta(\log n)$ $\bigcirc \Theta(\log(\log n))$ $\Theta(1)$

Показати відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 27 (1/1 бал)

Тернарна незростаюча піраміда (Мах-Неар) аналогічна до бінарної незростаючої піраміди, але в ній кожний внутрішній вузол має не два нащадки, а три. Тернарна піраміда може бути представлена у вигляді масиву А наступним чином. Корінь дерева зберігається в елементі А[1], вузли наступного рівня у порядку зліва направо зберігаються в елементах А[2], ..., А[4]. Вузли другого рівня зберігаються у порядку зліва направо починаючи з елемента А[5] і так далі.

Який з наступних масивів представляє правильну тернарну незростаючу піраміду?

- \bigcirc [1, 3, 5, 6, 8, 9]
- [9, 6, 3, 1, 8, 5]
- [9, 3, 6, 8, 5, 1]
- **○**[9, 5, 6, 8, 3, 1] **✓**

В корені (елемент А[1]) зберігається найбільше значення - 9. Наступний рівень містить елементи 5, 6, 8. Елемент 5 має двох нащадків - 3 та 1, які менші за нього. Це задовольняє умові незростаючих пірамід.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 28 (1/1 бал)

Розглянемо схему представлення бінарних дерев за допомогою масиву X. Корінь дерева зберігається в першому елементі масиву X[1]. Для внутрішнього вузла дерева, який зберігається в елементі X[i], його лівий нащадок розміщується в елементі X[2i], а правий - в елементі X[2i+1]. Зверніть увагу, що ця схема використовується також для представлення пірамід. Яка повинна бути мінімальна розмірність масиву X для збереження довільного бінарного дерева з n вершин (тут враховані як внутрішні вузли, так і листки).

 $\bigcirc \log n$

 $\bigcirc 2^n + 1$

 $\circ 2^n - 1$

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 29 (1/1 бал)

Необхідно обрати структуру даних для збереження множини цілих чисел і при цьому обидві нижче наведені операції повинні виконуватись за час $\Theta(\log n)$, де n - кількість елементів в множині:

- Видалення найменшого елементу
- Вставка елементу в множину, якщо його ще немає в множині

Яка з нижче наведених структур даних може використовуватись для цього?

		_	~ ·
IVIONO DIAICODIACTORIADIACI		20211222222122	
TYORE BURDDUCTORVBATULE	з нирамила.	але не зоалансоване	OIRADRE MEDEBO HOIIIVKV
🦳 Може використовуватись	, , a , a ,	ario ilo ocarianteca	oape доровоe= ,,

- О Може використовуватись збалансоване бінарне дерево пошуку, але не піраміда
- Може використовуватись як піраміда, так і збалансоване бінарне дерево пошуку
- Ані піраміда, ані збалансоване бінарне дерево пошуку не можуть використовуватись

пояснення відповіді

Збалансоване бінарне дерево пошуку може знаходити, додавати та видаляти елементи за час $\Theta(\log n)$. Видалення найменшого елементу в такому дереві також буде займати той самий час.

Піраміда - це також збалансоване бінарне дерево, в якому видалення мінімального елементу виконується за час $\Theta(\log n)$, так само як і вставка елементу. Проте для перевірки, чи елемент існує в піраміді потрібно витратити час $\Theta(n)$.

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

ПИТАННЯ 30 (1/1 бал)

Хеш-таблиця має 10 комірок та використовує відкриту адресацію для уникнення колізій. Хеш-функція $h(k) = k \mod 10$ і при цьому застосовується лінійне дослідження. Після вставки шести елементів в початково порожню хеш-таблицю, вона має наступний вигляд:

0	
1	
3	42
3	23
4	34
5	52 46
6	46
7	33
8	
9	

Яка з наступних послідовностей вставки ключів у хеш-таблицю є правильною?

- **46**, 42, 34, 52, 23, 33
- 34, 42, 23, 52, 33, 46
- 46, 34, 42, 23, 52, 33
- **42, 46, 33, 23, 34, 52**

Приховати Відповідь

Ви використали 1 з 1 можливостей надіслати свої матеріали на розгляд.

Показати обговорення

Нове Повідомлення

Про нас Преса FAQ Контакти

© 2015 Prometheus, some rights reserved

- Умови надання послуг та Кодекс Честі

