Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/DE05/000156

International filing date:

01 February 2005 (01.02.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: DE

Number:

10 2004 013 952.0

Filing date:

22-March 2004 (22.03.2004)

Date of receipt at the International Bureau: 11 April 2005 (11.04.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 013 952.0

Anmeldetag:

22. März 2004

Anmelder/inhaber:

Infineon Technologies AG, 81669 München/DE

Bezeichnung:

Schaltkreis-Anordnung und Signalverarbeitungs-

Vorrichtung

IPC:

G 10 L, H 03 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 23. März 2005 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Stark

A 9161 03/00 EDV-L

Zusammenfassung

Schaltkreis-Anordnung und Signalverarbeitungs-Vorrichtung

Die Schaltkreis-Anordnung weist eine Mehrzahl von Filterstufen einer Filterbank auf sowie eine Mehrzahl von Resonator-Schaltkreisen. Ferner enthält die Schaltkreis-Anordnung einen Resonator-Steuer-Schaltkreis zum Steuern oder Regeln der Güte der Resonator-Schaltkreise, wobei der Resonator-Schaltkreis derart eingerichtet ist, dass er die Güte mindestens eines Resonator-Schaltkreises abhängig von der Amplitude des Eingabesignals und/oder des Ausgabesignals des Resonator-Schaltkreises steuert oder regelt.

15

Signifikante Figur 8

20

30

Ferner ist in [10] der biologische Aufbau der inneren Haarzellen beschrieben.

Der Erfindung liegt das Problem zugrunde, eine SchaltkreisAnordnung sowie eine Signalverarbeitungs-Vorrichtung
anzugeben zum Bereitstellen von Merkmalen zur Beschreibung
eines der Schaltkreis-Anordnung bzw. der SignalverarbeitungsVorrichtung zugeführten Signals, wobei die Merkmale robuster
sind gegen auftretende Störgeräusche.

Das Problem wird durch eine Schaltkreis-Anordnung sowie durch eine Signalverarbeitungs-Vorrichtung mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

Eine Schaltkreis-Anordnung weist eine Filterbank mit einer Mehrzahl von Filterstufen und einem Filterbank-Eingang, welchem ein Eingabesignal zuführbar ist, auf. Ferner weist die Schaltkreis-Anordnung eine Mehrzahl von Resonator-Schaltkreisen zum Generieren jeweils eines Teil-Ausgabesignals aus dem Eingabesignal auf, wobei jeder Resonator-Schaltkreis jeweils mindestens einer Filterstufe der Mehrzahl von Filterstufen zugeordnet und mit einem Ausgang der jeweiligen Filterstufe gekoppelt ist. Jeder Resonator-Schaltkreis weist auf eine Kapazität, eine Induktivität und einen Resonator-Ausgang, an dem das jeweilige Teil-Ausgabesignal bereitstellbar ist. Außerdem ist in der Schaltkreis-Anordnung mindestens ein Resonator-Steuer-Schaltkreis zum Steuern oder Regeln der Güte mindestens eines Resonator-Schaltkreises vorgesehen, wobei der Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des mindestens einen Resonator-Schaltkreises abhängig von dem Zeitverlauf der Signalamplitude des Eingabesignals und/oder

VOLWEINGEGEN FERNOGEN GEFENGENE WEEK.

.

stablier verstarker wirkt (kesonanzubernonung).

Unter der Güte des hier verwendeten Resonator-Schaltkreises wird das Verhältnis der Amplitude des Ausgabesignals bei der Resonanzfrequenz des Resonator-Schaltkreises zu der entsprechenden Amplitude des Eingangssignals verstanden. Die Güte eines Resonator-Schaltkreises hängt von dessen ohmschen Widerstand ab, so dass die Güte beispielsweise mittels Steuerns oder Regelns des ohmschen Widerstands des Resonator-Schaltkreises einstellbar ist.

10

In einem Szenario, in dem die Güte des ResonatorSchaltkreises basierend auf der Amplitude des in den
Resonator-Schaltkreis eingeführten Eingabesignals eingestellt
wird, kann die Funktionalität des Steuer-Schaltkreises als
ein "Steuern" bezeichnet werden. Wird dagegen die Güte des
Resonator-Schaltkreises basierend auf der Amplitude des
Ausgabesignals eingestellt, so erfüllt der Resonator-SteuerSchaltkreis eine "Regelungs"-Funktionalität, da er ein
rückgekoppeltes Anpassen der Güte durchführt.

20

30

35

15

Mit der erfindungsgemäßen Schaltkreis-Anordnung ist eine sichere und effektive Dynamikkompression eines Eingabesignals im Zeitbereich ermöglicht, ohne dass die Nachteile einer Fourier Transformation auftreten. Insbesondere entfallen die bei einer Fourier Transformation gemäß dem Stand der Technik auftretenden Probleme mit einem endlichen Zeitfenster. Darüber hinaus wird erfindungsgemäß ein dynamik-komprimiertes Ausgangssignal generiert, das z.B. im Vergleich zu der Rücktransformation des logarithmierten Fourierspektrums deutlich geringere störende Signalverzerrung aufweist.

'Gemäß der Erfindung ist eine ausreichend starke und intensitätsselektive (z.B. nichtlineare) Dämpfung eines Eingabesignals mittels selektiven Verringerns der Güte des Resonator-Schaltkreises ermöglicht.

20

30

Anschaulich weist die Schaltkreis-Anordnung einen Filter-Schaltkreis auf, wobei basierend auf dem Wert der Induktivität L und der Kapazität C des Resonator-Schaltkreises der Frequenzbereich festgelegt ist, für welchen der Resonator-Schaltkreis durchlässig ist. Somit ist mittels Einstellens der Werte L, C eine einfache Möglichkeit geschaffen, den Frequenz-Schwerpunkt des transmittierbaren Intervalls des Resonator-Schaltkreises einzustellen. Die Breite der Resonanzkurve des Resonator-Schaltkreises ist insbesondere mittels Einstellens seiner Güte justierbar. Der Resonator-Schaltkreis kann als Filter mit nichtlinearer Dämpfung angesehen werden, mit dem eine im Prinzip beliebig hohe Dynamikkompression erreicht werden kann. Aufgrund einer ausreichend schmalbandigen Verarbeitung können auch Verzerrungen, die durch eine zu starke Nichtlinearität entstehen können, ausreichend gering gehalten werden.

Die Schaltkreis-Anordnung kann einen Resonator-Schaltkreis zweiter Ordnung enthalten, wobei die Dämpfung nichtlinear mit steigendem Schallpegel ansteigt. Bei einer passiven Realisierung der Schaltkreis-Anordnung, das heißt bei einer Verwendung passiver Bauelemente (Spule L, Kondensator C, ohmscher Widerstand R) kann eine stabile Schaltung erhalten werden (im Gegensatz zu Systemen, die einen aktiven, rückgekoppelten Verstärker benötigen).

Die Resonator-Schaltkreise können einen mittels des Resonator-Steuer-Schaltkreises steuerbaren (bzw. regelbaren) ohmschen Widerstand aufweisen. Ein solcher steuerbarer oder regelbarer ohmscher Widerstand ist eine einfache Schaltkreis-Komponente, mittels welcher die Funktionalität des Regelns der Güte des Resonator-Schaltkreises mit geringem Aufwand und genau und stabil erfüllt werden kann.

35 Es ist anzumerken, dass der Resonator-Steuer-Schaltkreis gebildet werden kann aus einer Mehrzahl von Teil-Resonator-Steuer-Schaltkreisen, wobei jeweils ein Teil-Resonator-

Steuer-Schaltkreis jeweils die Güte eines ihm zugeordneten Resonator-Schaltkreises steuert oder regelt.

Das Eingabesignal kann zwischen einem ersten Anschluss des ohmschen Widerstands und einem ersten Anschluss der Kapazität bereitgestellt sein. Das Ausgabesignal kann zwischen dem ersten Anschluss der Kapazität und einem zweiten Anschluss der Kapazität bereitgestellt sein. Ein zweiter Anschluss des ohmschen Widerstands kann mit einem ersten Anschluss der Induktivität und ein zweiter Anschluss der Induktivität kann mit einem zweiten Anschluss der Kapazität gekoppelt sein.

Der Resonator-Steuer-Schaltkreis kann derart eingerichtet sein, dass er die Güte des mindestens einen Resonator-Schaltkreises basierend auf einer Boltzmann-Funktion steuert, 15 in welcher die Amplitude des Ausgabesignals als Parameter enthalten ist. Eine Boltzmann-Funktion ist bei geeigneter Wahl der darin enthaltenen Parameter gut geeignet, die Empfindlichkeitskurve der äußeren Haarsinneszellen im menschlichen Innenohr anzunähern. Eine besonders gute 20 Beschreibung dieser biologischen Abhängigkeit kann durch eine Boltzmann-Funktion zweiter Ordnung beschrieben werden. Dadurch ist es möglich, die Empfindlichkeitskurve im menschlichen Ohr anzunähern, was für Anwendungen der Schaltkreis-Anordnung im medizinischen Bereich (beispielsweise für ein Hörgerät) vorteilhaft ist.

Der Resonator-Steuer-Schaltkreis kann derart eingerichtet sein, dass er die Güte des mindestens einen ResonatorSchaltkreises in Abhängigkeit von der Amplitude des Ausgabesignals basierend auf einer für ein Ohr eines Menschen ermittelten Empfindlichkeitscharakteristik einstellt. Um die Empfindlichkeitscharakteristik im Innenohr eines Menschen besonders gut mittels einer erfindungsgemäßen SchaltkreisAnordnung nachzubilden, kann eine beispielsweise experimentell oder theoretisch ermittelte
Empfindlichkeitscharakteristik des menschlichen Ohrs in der

Form einer Datei oder Tabelle für den Steuer-Schaltkreis zugänglich abgelegt sein. In diesem Fall kann der Resonator-Steuer-Schaltkreis die Güte des mindestens einen Resonator-Schaltkreises derart steuern oder regeln, dass die darin abgelegte biologische Empfindlichkeitscharakteristik angenähert wird.

Der Resonator-Steuer-Schaltkreis kann derart eingerichtet sein, dass er die Güte des mindestens einen Resonator-Schaltkreises umso geringer einstellt, je höher die Amplitude des jeweiligen Teil-Ausgabesignals des jeweiligen Resonator-Schaltkreises ist.

Der Resonator-Steuer-Schaltkreis kann ferner derart
eingerichtet sein, dass er die Güte des mindestens einen
Resonator-Schaltkreises in einer nichtlinearen Abhängigkeit
von der Amplitude des jeweiligen Teil-Ausgabesignals
einstellt. D.h., dass Signalbereiche großer Amplitude
überproportional stark gegenüber Signalbereichen kleiner
Amplitude gedämpft werden. Somit kann auch bei einem extrem
hohen Bereich von Schallpegeln in einem Eingabesignal eine
Komprimierung auf einen ausreichend schmalen Bereich bei dem
Ausgabesignal erreicht werden.

Der Resonator-Steuer-Schaltkreis kann derart eingerichtet sein, dass er die Güte des mindestens einen Resonator-Schaltkreises derart einstellt, dass die Amplitude des jeweiligen Teil-Ausgabesignals innerhalb eines vorbestimmten Intervalls ist. Für bestimmte Anwendungen kann es vorteilhaft sein, die Amplitude eines Teil-Ausgabesignals auf jeden Fall innerhalb eines vorbestimmten Intervalls zu halten. Dies kann beispielsweise im Rahmen der Datenkomprimierung wichtig sein, wenn ein Signal mit einer hohen Intensitätsschwankung mit möglichst wenig Quantisierungsstufen erfasst werden soll. In diesem Fall kann der Resonator-Steuer-Schaltkreis derart eingerichtet sein, dass er die Güte des Resonator-Schaltkreises derart steuert oder regelt, dass das jeweilige

penatevierses dieten der prinanesbannund des jum

zusammennangendes frequenzintervall dutchtassig sind. Der

Frequenzbereich, für den das menschliche Gehör sensitiv ist, liegt ungefähr zwischen 20Hz und 20kHz. Um diesen Hörfrequenzbereich abzudecken, sind in der parallelen Anordnung von Resonator-Schaltkreisen in unterschiedlichen Kanälen die Frequenzbereiche transmittierbarer Signale in der Regel unterschiedlich. Der Frequenzbereich transmittierbarer Signale in einem Resonator-Schaltkreis ist eine Verteilungskurve um die Resonanzfrequenz herum mit einer gewissen Halbwertsbreite. Die Resonanzfrequenz ist anschaulich mittels Einstellens der Werte L, C des Resonator-10. Schaltkreises möglich, die Halbwertsbreite ist mittels Einstellens der jeweiligen Güte justierbar. Setzt man die unterschiedlichen Frequenz-Durchlassbereiche der unterschiedlichen Zweige von Resonator-Schaltkreisen zusammen, so ergibt sich ein vorzugsweise zusammenhängendes 15 Frequenzintervall, mittels welchem der Sensitivitätsbereich des menschlichen Gehörs oder ein sonstiger Frequenzbereich von Interesse erfassbar ist.

Vorzugsweise sind die Frequenzbereiche, für die unterschiedliche Zweige durchlässig sind, zumindest teilweise einander überlappend. In diesem Fall ist sichergestellt, dass alle Frequenzen erfasst werden, und es ist ein Zusammensetzen der Signalkomponenten einzelner Zweige möglich.

Vorzugsweise ist der Frequenzbereich, für den ein jeweiliger Zweig durchlässig ist, mittels Einstellens des Werts der Kapazität und/oder der Induktivität des mindestens einen Resonator-Schaltkreises des Zweigs vorgebbar. Dies beruht darauf, dass die Resonanzfrequenz eines Resonator-Schaltkreises von den Werten der Induktivität und der Kapazität abhängt.

Vorzugsweise ist die Schaltkreis-Anordnung der Erfindung zum 35 Verarbeiten eines akustischen Signals als Eingabesignal eingerichtet. In diesem Fall eignet sich die Schaltkreis-Anordnung der Erfindung für einen Einsatz in einem Sprachverarbeitungs-System. Ein solches kann beispielsweise auf pulsenden neuronalen Netzwerken beruhen, welche auf eine Reduktion des Dynamikbereichs angewiesen sind. Weitere Anwendungsgebiete sind Systeme zur Schallverarbeitung und (Audio-)Datenkomprimierung, wenn Signale mit hohen Amplituden mit möglichst wenig Quantisierungsstufen erfasst werden sollen. Darüber hinaus gibt es Anwendungen im medizinischen Bereich, insbesondere als Hörhilfe bei Patienten mit Lärm-Schwerhörigkeit.

10

15

30

Die erfindungsgemäße Schaltkreis-Anordnung kann in digitaler oder analoger Schaltungstechnik realisiert sein

Zumindest ein Teil der Schaltkreis-Anordnung, insbesondere die Filter, die Steuer- oder Regelungs-Funktionalität des Resonator-Steuer-Schaltkreises, kann als Computerprogramm realisiert sein. Die Erfindung kann sowohl mittels eines Computerprogramms, d.h. einer Software, als auch mittels einer oder mehrerer spezieller elektrischer Schaltungen, d.h. in Hardware oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden.

Eine Software-Realisierung insbesondere des Steuer-Schaltkreises kann beispielsweise in "C++" erfolgen. Eine Realisierung kann auf einem beliebigen Prozessor oder DSP (digitaler Signalprozessor) erfolgen, ebenso auf einem FPGA-Baustein. Ein FPGA ("Field Programmable Gate Array") ist ein integrierter programmierbarer Schaltkreis, der in der Regel eine Vielzahl programmierbarer Zellen auf einem Chip aufweist.

Gemäß einer anderen Ausgestaltung der Erfindung ist es vorgesehen, dass die, vorzugsweise lineare, Filterbank als lineares Willendigitalfilter ausgestaltet ist.

20

30

Ferner kann eine Mehrzahl von Hochpassfiltern vorgesehen sein, wobei jeder Filterstufe mindestens ein Hochpassfilter zugeordnet ist, wobei jeweils ein Hochpassfilter an den Ausgang eines jeweiligen Resonator-Schaltkreises gekoppelt ist. Diese Hochpassfilter bilden die Flüssigkeitsankopplung der Haarbündel der sensorischen Zellen im Innenohr an die Schwingung der Basilarmembran nach.

Mit mindestens einem Hochpassfilter pro Filterstufe, gekoppelt an den Ausgang des jeweiligen Resonator-Schaltkreises wird, wird erreicht, die ansonsten relativ flache hochfrequente Filterflanke der Filterbank verschärft wird. Vorzugsweise ist zumindest ein Teil der Hochpassfilter, vorzugsweise alle Hochpassfilter, als Hochpassfilter erster Ordnung ausgestaltet. Gemäß einer Weiterbildung der Erfindung ist die Eckfrequenz zumindest eines Teils der Hochpassfilter erster Ordnung derart gewählt, dass sie der Frequenz der maximalen Empfindlichkeit einer Basilarmembranschwingung eines Innenohrs eines Säugetiers entspricht.

Gemäß einer anderen Ausgestaltung der Erfindung ist eine Mehrzahl von Gleichrichter-Schaltungen, wobei jeweils eine Gleichrichter-Schaltung einer der Filterstufen und einem Hochpassfilter zugeordnet ist und mit einem Ausgang eines jeweiligen Hochpassfilters gekoppelt ist, sowie vorzugsweise eine Mehrzahl von Tiefpassfiltern, wobei jeweils ein Tiefpassfilter einer Gleichrichter-Schaltung zugeordnet und mit einem Ausgang einer jeweiligen Gleichrichter-Schaltung gekoppelt ist. Gemäß diesen Ausgestaltungen wird eine sehr gute Annäherung der Bildung des Rezeptorpotentials UM im menschlichen Hörsystem erreicht.

Weiterhin kann eine Mehrzahl von Aktivierungs-Schaltungen vorgesehen sein, wobei jeweils eine Aktivierungs-Schaltung einer der Filterstufen zugeordnet ist, wobei jede Aktivierungs-Schaltung eingerichtet ist zum Verstärken einer zeitlichen Veränderung eines der Aktivierungs-Schaltung

30

35

zugeführten Signals und zum Dämpfen von zeitlich im Wesentlichen konstanten Komponenten des der Aktivierungs-Schaltung zugeführten Signals.

- Weiterhin weist jede Aktivierungs-Schaltung bevorzugt eine Vesikel-Pool-Schaltung auf mit einer Vielzahl von Vesikel-Schaltungen.
- Im Weiteren wird die erfindungsgemäße Signalverarbeitungs-Vorrichtung, die eine erfindungsgemäße Schaltkreis-Anordnung aufweist, näher beschrieben. Ausgestaltungen der Signalverarbeitungs-Vorrichtung gelten auch für die Schaltkreis-Anordnung und umgekehrt.
- 15 Bei der Signalverarbeitungs-Vorrichtung kann die Weiterverarbeitungs-Einheit eine Spracherkennungs-Einrichtung oder ein Hörgerät sein.
 - Bei einer Realisierung der Weiterverarbeitungs-Einheit als Hörgerät kommt insbesondere eine Anwendung in Frage, bei der eine Dynamikkompression zum Ausgleich von Störungen der Lautstärke-Wahrnehmung von Schwerhörigen durchgeführt wird. Im gestörten Gehör können die äußeren Haarzellen in Mitleidenschaft gezogen sein, wodurch die Erhöhung der Empfindlichkeit bei niedrigen Schallpegeln ausfällt. Das Gehör arbeitet dann anschaulich stets mit der für hohe Schallpegel vorgesehenen Empfindlichkeit. Dieses führt dazu, dass der nutzbare Bereich an Schallpegeln zwischen der Hörschwelle (sehr leise) und der Unannehmlichkeits-Schwelle (sehr laut) kleiner wird (Recruitment). Zum Ausgleich dieses Phänomens kann mittels der erfindungsgemäßen Schaltkreis-Anordnung der Signalverarbeitungs-Vorrichtung eine Dynamikkompression durchgeführt werden, die den großen Schallpegelbereich der akustischen Umwelt auf den wahrzunehmenden Bereich des Patienten anschaulich zusammendrückt.

Die Signalverarbeitungs-Vorrichtung kann auch den Eingang für ein Spracherkennungssystem bilden, insbesondere in pulsender neuronaler Netzwerk Architektur.

5 Die Signalverarbeitungs-Vorrichtung kann als analoge- oder digitale Filterbank eingerichtet sein.

Anschaulich sind folgende Prinzipien im Rahmen der Erfindung herauszustellen:

10

- a) Es erfolgt eine Frequenzanalyse des der Schaltkreis-Anordnung bereitgestellten Eingabesignals mit nichtlinearer Dynamikkompression;
- b) es wird eine Informationsreduktion bereitgestellt durch "weiche" Einweggleichrichtung der gebildeten Frequenzkanäle mit Schwellwert und Sättigung;
- c) es wird eine Betonung sprachrelevanter

 Modulationsfrequenzen durch die Nachbildung der neuronalen
 Adaption in dem Hörsystem eines Säugetiers, insbesondere
 eines Menschen, erreicht.
 - Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Folgenden näher erläutert.

Es zeigen

30

- Figur 1 eine Schaltkreis-Anordnung gemäß einem bevorzugten Ausführungsbeispiel der Erfindung,
- Figur 2 einen Resonator-Schaltkreis gemäß einem Ausführungsbeispiel der Erfindung,
- 35 Figur 3 eine Realisierung des in Figur 2 gezeigten Resonator-Schaltkreises als Wellendigitalfilter,

15

- Figuren 4 und 5 Diagramme zum Veranschaulichen der Funktionalität der Schaltkreisanordnung gemäß Figur 1,
- 5 Figur 6a eine Teil-Schaltkreis-Anordnung gemäß einem anderen Ausführungsbeispiel der Erfindung,
 - Figur 6b eine Realisierung der in Figur 6a gezeigten .

 Resonator-Schaltkreise als Wellendigitalfilter,
 - Figur 7a eine Teil-Schaltkreis-Anordnung gemäß einem anderen Ausführungsbeispiel der Erfindung,
 - Figur 7b eine Realisierung der in Figur 7a gezeigten
 Resonator-Schaltkreise als Wellendigitalfilter,
 - Figur 8 ein Blockdiagramm eines Spracherkennungssystems gemäß einem Ausführungsbeispiel der Erfindung,
- 20 Figur 9 ein Schaltungsdiagramm einer linearen Filterbank und einer Mehrzahl einzelnen Filterstufen der Filterbank zugeordneter Resonator-Schaltkreise gemäß einem Ausführungsbeispiel der Erfindung,
 - Figur 10 ein Diagramm, in dem ein Erregungsmuster eines nichtlinearen Basilarmembranmodells für einen 1 KHzTon dargestellt ist,
- Figur 11 ein Schaltungsdiagramm eines Teil-Schaltkreises,

 welcher jeweils in Serie geschaltet ist mit einem
 jeweiligen Resonator-Schaltkreis zum Ausbilden der
 Schaltkreis-Anordnung gemäß einem Ausführungsbeispiel
 der Erfindung,
- 35 Figur 12 eine Darstellung modellierter Nerven-Aktionspotentiale, und

20

30

Figur 13 ein Diagramm, in dem unterschiedliche
Spracherkennungsraten für ein Spracherkennungssystem
gemäß einem Ausführungsbeispiel der Erfindung
verglichen mit einem Spracherkennungssystem gemäß dem
Stand der Technik dargestellt sind.

Fig.8 zeigt ein Spracherkennungssystem 800 gemäß einem Ausführungsbeispiel der Erfindung.

Im Rahmen des Spracherkennungssystems wird ein Merkmalsextraktions-System 801 verwendet, welche die im Rahmen der eigentlichen automatischen Spracherkennung (in Fig.8 dargestellt durch einen Spracherkennungs-Block 802) verwendeten Merkmale aus einem zugeführten analogen Sprachsignal extrahiert.

Das Merkmalsextraktions-System 801 weist insbesondere Komponenten zur Vorfilterung, eine Filterbank und Komponenten zur nichtlinearen Merkmalsextraktion auf.

Anschaulich bildet das Merkmalsextraktions-System 801 die Signalverarbeitungs-Strategie und den Signalverarbeitungs-Aufbau des menschlichen Hörsystems nach. Es ist analog zu dem Signalverarbeitungs-System des menschlichen Hörsystems in physikalische Einheiten skaliert.

Dem Merkmalsextraktions-System 801 wird ein Eingabesignal 803 (Eingangssignal) in analoger Form als Schalldrucksignal (gemessen In Pascal) zugeführt.

Eine erste Komponente 804 des Mermkalsextraktions-Systems 801 bildet ein Modell des Gehörgangs, welches jedoch optional ist und in der bevorzugten Realisierung vernachlässigt wird.

Das von dem Modell des Gehörgangs 804 aus dem Eingabesignal 803 gebildete Signal 805 wird einer Mittelohrmodell-Komponente 806 zugeführt.

30.

Die Mittelohrmodell-Komponente 806 weist, wie in Fig.9 dargestellt, eine Parallelschaltung einer idealen Federkomponente 901 und einer idealen Dämpfungskomponente 902 (realisiert in Form einer elektrischen Spule, das heißt Induktivität, für die ideale Feder bzw. in Form eines ohmschen Widerstands als Dämpfungskomponente). Die Mittelohrmodell-Komponente 906 ist derart eingerichtet, dass der sprachrelevante Bereich des Spektrums des Eingabesignals betont, das heißt verstärkt wird. In Analogie zu dem menschlichen Hörsystem wird das von der Mittelohrmodell-Komponente 806 bereitgestellte Signal 807 einer Innenohrmodell-Komponente 808 zugeführt.

Die von der Innenohrmodell-Komponente 808 gebildeten Signale 15 809 können optional unmittelbar zur Spracherkennung als extrahierte Spracherkennungs-Merkmale verwendet werden oder einer Sensorzellenmodell-Komponente 810 zugeführt werden, die im Weiteren noch näher beschrieben wird. Die von der Sensorzellenmodell-Komponente 810 erzeugten Signale 811 20 können ebenfalls direkt als Merkmalskomponenten im Rahmen der automatischen Spracherkennung verwendet werden oder weiterverarbeitet werden und im Rahmen dieser Weiterverarbeitung einer Synaptische-Modell-Komponente 812, welche den synaptischen Mechanismus des Hörsystems des Menschen nachbildet, zugeführt werden. Die von der Synaptische-Modell-Komponente 812 gebildeten Signale 813 werden erfindungsgemäß ebenfalls als Merkmale im Rahmen der automatischen Spracherkennung eingesetzt.

Es ist in diesem Zusammenhang anzumerken, dass gemäß alternativen Ausgestaltungen der Erfindung eine, zwei alle oder drei der oben beschriebenen Merkmalssignale 809, 811, 813 im Rahmen der Spracherkennung optional eingesetzt werden können.

Im Rahmen des menschlichen Hörsystems wird der am Trommelfell auftreffende Schalldruck (das Trommelfell hat eine Oberfläche $A_{\rm ed} = 55 \times 10^{-6} \, {\rm m}^2$) in eine mechanische Auslenkung der Mittelohrknochen (angegeben in m) umgesetzt.

5

Die Mittelohrmodell-Komponente 806 weist, wie oben beschrieben wurde, einen Tiefpassfilter auf, gemäß diesem Ausführungsbeispiel ein Tiefpassfilter erster Ordnung, vorzugsweise mit einer Tiefpassfilter-Eckfrequenz von 1 KHz.

10

Die mittels der Induktivität 901 nachgebildete Federkonstante beträgt etwa 1500 N/m und die mittels des ohmschen Widerstandes 902 dargestellte Dämpfungs-Komponente ist zu 0,25 Ns/m dimensioniert.

15

20

Das von der Mittelohrmodell-Komponente 806 erzeugte Signal 807 wird in die Innenohrmodell-Komponente 808 eingekoppelt, welche in Fig.9 im Detail dargestellt ist. Die Innenohrmodell-Komponente 808 ist als eine Filterbank 903 ausgebildet, gemäß diesem Ausführungsbeispiel in Form eines linearen Wellendigitalfilter-Modells.

Die Filterbank 903 weist eine Vielzahl von Filterstufen 904, 905, 906 auf, sowie einen ohmschen Abschlusswiderstand 907.

Jede Filterstufe 904, 905, 906 wird gebildet von einer Reihenschaltung einer Induktivität 904a, 905a, 906a, einem ohmschen Widerstand 904b, 905b, 906b und einer Kapazität 904c, 905c, 906c.

30

Die Geschwindigkeit der Basilarmembranschwingung im Innenohr eines Menschen entspricht jeweils der Strom in einer Filterstufe 904, 905, 906. Die Auslenkung der Basilarmembran kann also durch eine Integration der Geschwindigkeit berechnet werden. Um numerische Probleme bei der Integration zu umgehen, wird die Auslenkung jedoch sinnvollerweise auf eine andere Art berechnet: Bei einer Feder, die durch die Kapazitäten 904c, 905c, 906c repräsentiert sind, kann die instantane Auslenkung x berechnet werden als das Produkt der Federkraft und der Federkonstante. Diese Auslenkung x bildet den Eingang, d.h. das Eingangssignal für die Dynamikkompressionsstufen 101, gemäß diesem Ausführungsbeispiel der Erfindung jeweils eine Serienschaltung zweier Resonator-Schaltkreise 101, wie sie im Folgenden noch näher erläutert werden.

10

Die Resonator-Schaltkreise 101 bilden anschaulich, wie im Folgenden näher erläutert werden, Kompressionsstufen unter Verwendung von Resonatoren zweiter Ordnung.

15

In einer alternativen bevorzugten Ausführungsform sind vier Resonator-Schaltkreise 101 für jede Filterstufe 904, 905, 906 in einer Serienschaltung vorgesehen.

Wie im Folgenden ebenfalls näher erläutert wird, wird die Güte der Resonator-Schaltkreise 101 jeweils in einem Bereich 20 von 1 bis zu einem maximalen Gütewert $Q_{\mbox{max}}$ (abhängig von der Position im Innenohr des Menschen) instantan als Funktion des Ausgangssignals jeder Filterstufe 904, 905, 906 moduliert.

30

Im Folgenden wird bezugnehmend auf Fig.1 der Aufbau der Resonator-Schaltkreise 101 näher erläutert.

Die Schaltkreis-Anordnung 100 enthält eine Vielzahl von Resonator-Schaltkreisen 101, von denen jeder eine Kapazität und eine Induktivität aufweist (nicht gezeigt in Fig.1), sowie einen Eingang, an dem ein Eingabesignal bereitstellbar ist und einen Ausgang, an dem ein Ausgabesignal bereitstellbar ist. Jeweils drei der Resonator-Schaltkreise 101 sind entlang einer jeweiligen Zeile der matrixförmigen Anordnung hintereinander geschaltet, so dass ein jeweiliger Ausgang eines vorgeschalteten Resonator-Schaltkreises 101 mit einem jeweiligen Eingang eines ihm nachgeschalteten

Resonator-Schaltkreises 101 gekoppelt ist. Die Werte der Induktivität und der Kapazität der Resonator-Schaltkreise 101 einer Zeile sind jeweils derart gewählt, dass die jeweilige Zeile ein Signal eines entsprechenden Frequenzintervalls in einem Umgebungsbereich der Resonanzfrequenz der Resonator-Schaltkreise 101 der Zeile transmittieren kann. Die Resonator-Schaltkreise 101 unterschiedlicher Zeilen weisen jeweils unterschiedliche Werte für L, C auf, sodass zusammengenommen die einzelnen Zeilen oder Zweige von Resonator-Schaltkreisen 101 ein zusammenhängendes Frequenz-Intervall abdecken, welches dem Empfindlichkeitsbereich des menschlichen Gehörs entspricht (ungefähr 20Hz bis 20kHz).

Ein Resonator-Steuer-Schaltkreis 111 steht mit allen Resonator-Schaltkreisen 101 in einer Kommunikationsverbindung, d.h. der Steuer-Schaltkreis 111 ist mit allen Resonator-Schaltkreisen gekoppelt. Die Güte von jedem einzelnen der Resonator-Schaltkreise 101 ist mittels des Steuer-Schaltkreises 111 zum Steuern oder Regeln der Güte der Resonator-Schaltkreise 101 einstellbar, wobei der Steuer-20 Schaltkreis 111 derart eingerichtet ist, dass er die Güte der Resonator-Schaltkreise 101 abhängig von der Amplitude eines Ausgabesignals des letzten Resonator-Schaltkreises 101 einer jeweiligen Zeile einstellt. Beispielsweise wird die Güte der Resonator-Schaltkreise R_{11} , R_{12} , R_{13} mittels des Resonator-Steuer-Schaltkreises 111 basierend auf der Amplitude eines Signals am Ausgang des Resonator-Schaltkreises R_{13} eingestellt.

In Fig.1 ist ferner eine Schallquelle 103 gezeigt, welche ein akustisches Signal als globales Eingabesignal 102 emittiert. Dieses wird den Eingängen der Resonator-Schaltkreise 101 $(R_{11},\ R_{21},\ \ldots,\ R_{k1},\ \ldots,\ R_{n1}) \ der ersten Spalte von Resonator-Schaltkreisen 101 bereitgestellt.$

Im Weiteren wird der in der ersten Zeile und der ersten Spalte von Resonator-Schaltkreisen angeordnete Resonator-

. 15

20

.30

35

Schaltkreis 101 R_{11} betrachtet. Diesem wird an einem Eingang das globale Eingabesignal 102 der Schallquelle 103 bereitgestellt. Der Resonator-Schaltkreis 101 R₁₁ lässt eine von den ihm zugeordneten Werten L und C abhängige Frequenzkomponente des globalen Eingabesignals 102 hindurch, welche an einem Ausgang des Resonator-Schaltkreises R_{11} als erstes lokales Ausgabesignal 104 bereitgestellt ist. Ferner wird aufgrund der Funktionalität des Resonator-Schaltkreises 101 R₁₁ abhängig von seiner (gegenwärtigen) Güte Q das globale Eingabesignal 102 in seiner Amplitude verändert. Die Gute Q des Resonator-Schaltkreises 101 R_{11} wird mittels eines ohmschen Widerstands (nicht gezeigt in Fig.1) des Resonator-Schaltkreises 101 R_{11} geregelt, wobei der Steuer-Schaltkreis 111 diesem regelbaren ohmschen Widerstand ein entsprechendes Steuersignal bereitstellt, wodurch der Widerstand auf einen vorbestimmten Wert eingestellt wird. Dadurch wird die Güte des Resonator-Schaltkreises 101 eingestellt, so dass in einem nachfolgenden Verarbeitungs-Zyklus gemäß diesem Wert der Güte ein Eingabesignal stärker oder schwächer gedämpft wird. Da die Schaltkreis-Anordnung 100 zur Dynamikkompression des globalen Eingabesignals 102 eingerichtet ist, werden anschaulich Signalbereiche hoher Amplitude stärker geschwächt als Signalbereiche geringer Amplitude.

Das erste lokale Ausgabesignal 104 wird dem dem Resonator-Schaltkreis 101 R₁₁ nachgeschalteten Resonator-Schaltkreis 101 R₁₂ als erstes lokales Eingabesignal 105 bereitgestellt. Das erste lokale Eingabesignal 105 durchläuft den Resonator-Schaltkreis 101 R₁₂, wobei an einem Ausgang das zweite lokale Ausgabesignal 106 bereitgestellt wird. Das zweite lokale Ausgabesignal 106 dient als zweites lokales Eingabesignal 107 des dem Resonator-Schaltkreis 101 R₁₂ nachgeschalteten Resonator-Schaltkreises 101 R₁₃. An dessen Ausgang 108 ist ein drittes lokales Ausgabesignal 108 bereitgestellt. Dieses wird gemeinsam mit den jeweils auf ein separates Frequenzintervall bezogenen Ausgabesignalen der jeweils

letzten in einer Zeile angeordneten Resonator-Schaltkreisen 101 (R_{13} , R_{23} , ..., R_{k3} , ..., R_{n3}) zu einem globalen Ausgabesignal 109 zusammengesetzt (addiert).

Bei jedem der Resonator-Schaltkreise 101 einer jeweiligen Zeile von Resonator-Schaltkreisen (R_{k1} , R_{k2} , R_{k3}) wird die Güte aller Resonator-Schaltkreise 101 der Zeile basierend auf der Amplitude des Ausgabesignals an dem Ausgang des jeweils letzten Resonator-Schaltkreises (in der k-ten Zeile

10 Resonator-Schaltkreis R_{k3}) mittels des Resonator-Steuer-Schaltkreises 111 geregelt.

Das zusammengesetzte globale Ausgabesignal 109 ist somit gegenüber dem globalen Eingabesignal 102 einer

15 Dynamikkompression unterzogen.

Im Weiteren wird bezugnehmend auf Fig.2 der Resonator-Schaltkreis 101 aus Fig.1 beschrieben.

In Fig.2 ist ein Eingabesignal 200 als Spannungsquelle U
symbolisiert. Ferner ist ein Ausgabesignal 204 als Spannung
UC symbolisiert. Das Eingabesignal 200 ist zwischen einem
ersten Anschluss eines ohmschen Widerstands 203 und einem
ersten Anschluss einer Kapazität 201 bereitgestellt. Das
Ausgabesignal 204 ist zwischen dem ersten Anschluss der
Kapazität 201 und einem zweiten Anschluss der Kapazität 201
bereitgestellt. Ferner ist ein zweiter Anschluss des
regelbaren ohmschen Widerstands 203 mit einem ersten
Anschluss einer Induktivität 202 gekoppelt, und ein zweiter
Anschluss der Induktivität 202 ist mit dem zweiten Anschluss
der Kapazität 201 gekoppelt.

Der Wert des ohmschen Widerstands R 203 ist mittels des Steuer-Schaltkreises 111 einstellbar. Der Resonator-Schaltkreis 101 aus Fig.2 stellt somit anschaulich einen Filter mit regelbarer Dämpfung dar. Bei der erfindungsgemäßen Schaltkreis-Anordnung 100 sind in jeder Zeile drei (oder allgemein N) Resonator-Schaltkreise 101 als Filterelemente rückkopplungsfrei hintereinander geschaltet. Das zeitabhängige Ausgabesignal U_C(t), wobei t die Zeit ist, eines vorgeschalteten Filters definiert jeweils das Eingabesignal U 200 des dem vorgeschalteten Filter nachgeschalteten Filters.

- Der Widerstand R 203 kann in nichtlinearer Abhängigkeit von der Ausgangsspannung $U_C(t)$ verändert werden (Regelung), in Abhängigkeit von $U_C(t)$ des jeweils vorangeschalteten Filters (Steuerung), oder auch in für alle Filter gleichzeitig in Abhängigkeit von $U_C(t)$ der letzten Filterstufe einer Reihe.
- 15 Im Weiteren wird beschrieben, auf Basis welcher Rechenvorschrift gemäß dem beschriebenen Ausführungsbeispiel der Wert R eines jeweiligen ohmschen Widerstands R 203 eingestellt wird.
- 20 Hierfür wird zunächst eine einzustellende Güte Q berechnet.

Gemäß dem beschriebenen Ausführungsbeispiel wird die Güte Q des Filters gemäß einer Boltzmann-Funktion gedämpft:

$$Q(t) = (Q_0 - Q_{\min})(1 - \left[\frac{2}{1 + \exp\{-SAT \mid U_C(t)\}\}} - 1\right]) + Q_{\min}$$
 (1)

In Gleichung (1) ist Q(t) die Abhängigkeit der Güte Q von der Zeit t. Q_0 ist eine vorgebbare Maximalgüte des Resonator-Schaltkreises 101 (z.B. $Q_0=10$). Q_{\min} ist eine vorgebbare minimale Güte des Resonator-Schaltkreises (z.B. $Q_{\min}=1$). SAT ist eine vorgebbare Sättigungsschwelle, das heißt ein Parameter, mit dem anschaulich die Zeitabhängigkeit der Güte eingestellt werden kann (z.B. SAT = 1).

15

30

Die Boltzmann-Funktion (1) nähert die Empfindlichkeitskurve der äußeren Haarsinneszellen im Innenohr an. Die Funktion kann bei Bedarf durch eine Boltzmann-Funktion zweiter Ordnung ersetzt werden, die unter Einführung eines weiteren Parameters eine noch genauere Anpassung ermöglicht. In Gleichung (1) ist eine einfache Boltzmann-Funktion erster Ordnung verwendet, da sie nur einen freien Parameter (nämlich SAT) aufweist und somit mit geringem numerischen Aufwand verarbeitet werden kann.

Aus der Güte Q des Filters berechnet sich der einzustellende Wert des nichtlinearen Widerstands R zu:

$$R(t) = \sqrt{\frac{L}{C}}Q(t)$$
 (2)

Somit hängt der zeitabhängige Wert des ohmschen Widerstands R(t) von dem Wert der Induktivität L und der Kapazität C sowie der zeitabhängigen Güte Q(t) ab.

20 Anschaulich bilden Gleichungen (1) und (2) die Regelungsvorschrift für das Einstellen des Werts R des ohmschen Widerstands 203 mittels des Steuer-Schaltkreises 111.

Der von dem in Fig.2 gezeigten Resonator-Schaltkreis 101 gebildete Filter ist bei sehr geringen Amplituden $U_C(t)$ linear (mit $Q \to Q_0$ für $U_C(t) \to 0$). Ebenso ist er bei sehr großen Amplituden $U_C(t)$ näherungsweise linear ($Q \to Q_{min}$ für $U_C(t) \to \infty$). Die Dynamikkompression K erfolgt im Bereich der Sättigungsschwelle (SAT) und beträgt $K = Q_0/Q_{min}$. Im Falle von N = 4 hintereinander geschalteten Filterstufen (in Fig.1 sind allerdings nur drei Filterstufen mittels dreier Resonator-Schaltkreise in einer Zeile vorgesehen) und den Werten $Q_0 = 10$ und $Q_{min} = 1$ ist eine starke Kompression um 80dB $(K_N = (Q_0/Q_{min})^N)$ realisierbar.

15

20

Um den gesamten Hörbereich des Menschen abzudecken, wird eine Filterbank mit Resonanzfrequenzen im Bereich von ungefähr 20 Hz bis ungefähr 20 kHz realisiert, was durch typischerweise fünfzig bis hundert Zeilen von Resonator-Schaltkreisen 101 (d.h. n = 50 bis n = 100) realisiert wird. Gemäß dem beschriebenen Ausführungsbeispiel wird der Wert der Induktivität auf L = 1 H festgelegt. Der jeweilige Wert C wird dann für jede Zeile von Resonator-Schaltkreisen 101 gemäß der von dieser Zeile abgedeckten Filterfrequenz fo aus der Resonanzfrequenz des entsprechenden LC-Glieds berechnet:

$$C = (4\pi^2 f^2 L)^{-1}$$
 (3)

Es ist anzumerken, dass die nichtlineare Güte Q für jede Filterfrequenz f_0 , d.h. für jede Zeile von Resonator-Schaltkreisen 101, unabhängig berechnet wird. Bezugnehmend auf Fig.1 bedeutet dies, dass jeder Zeile von Oszillator-Schaltkreisen 101 eine entsprechende Filterfrequenz f_0 zugeordnet ist, für welche der Wert der Güte Q(t) berechnet wird.

Im Weiteren wird bezugnehmend auf Fig.3 ein Wellendigitalfilter 300 als Realisierung der in Fig.2 gezeigten Resonatorstufe 101 beschrieben.

Ein Wellendigitalfilter stellt eine Klasse von Digitalfiltern mit besonders günstigen Eigenschaften dar. Sie sind traditionellen Filtern aus den klassischen Bauelementen der Nachrichtentechnik nachgebildet und werden mit Hilfe moderner integrierter Digitalschaltungen betrieben. Gemäß der Technologie eines Wellendigitalfilters kann anschaulich ein analoges Modell digital realisiert werden (beispielsweise unter Verwendung eines Computers).

Im Weiteren werden anschaulich die Komponenten des Wellendigitalfilters 300 aus Fig.3 den Komponenten des

20

30

35

Resonator-Schaltkreises 101 aus Fig.2 anschaulich zugeordnet und die entsprechenden Größen definiert.

Ein erster Block 301 des Wellendigitalfilters 300 enthält einen reflexionsfreien seriellen Koppler mit den Impedanzen R11 und R13. Anschaulich repräsentiert R11 den regelbaren ohmschen Widerstand R 203, bezogen auf einen Referenzwiderstand. R12 repräsentiert einen korrigierten Widerstand (Impedanz) der Spule L 202 bezogen auf eine Basisfrequenz. Ein zweiter Block 302 enthält einen parallelen Koppler, der die parallele Verschaltung der Kapazität 201 wiedergibt, wobei in dem zweiten Block die Leitwerte G21, G22, G23 dargestellt sind. G21 ist ein Eingangs-Leitwert des zweiten Blocks (G12=1/R13) 302, G23 ist ein Ausgangs-Leitwert des zweiten Blocks 302. Mittels des Leitwerts G22 wird der Widerstand der Kapazität C 201 modelliert. Ein dritter Block 303 repräsentiert einen Speicher bzw. ein Filterregister für die Kapazität 201 und ein vierter Block 304 repräsentiert einen Speicher bzw. ein Filterregister für die Spule 202.

Im Weiteren werden die in Fig.3 gezeigten Variablen definiert. Es ergeben sich die Parameter für ein Wellendigitalfilter jede Filterfrequenz zu:

R11=R/R_B (4)

R12=2 π F_B L/(R_B tan[π F_B/f_s]) (5)

R13=R11+R12 (6)

G21=R13⁻¹ (7)

G22=2 π F_B C R_B/tan(π F_B/f_s) (8)

G23=G21+G22 (9)

Hierbei ist R der ohmsche Widerstand 203 und R_B ein vorgebbarer Bezugswiderstand. F_B ist eine vorgebbare Bezugsfrequenz. Die Werte R_B und F_B dienen zum Skalieren. Da die Realisation gemäß dem beschriebenen

Ausführungsbeispiel mit Double Precision Float-Variablen realisiert ist, ist diese Normierung nicht relevant, wohl aber, wenn Integer-Arithmetik verwendet wird. L ist die Induktivität der Spule 202. Der Wert f_s ist eine Sampling-Frequenz des abgetasteten Zeitsignals. Die Größen R11, R12, R13 sind ohmsche Widerstände, wohingegen die Größen G21, G22 und G23 Leitwerte, das heißt inverse ohmsche Widerstände

Filter-Koeffizienten gl, g2 ergeben sich zu:

15

sind.

$$g1=R11/R13$$
 (10)

$$g2=G21/G23$$
 (11)

20 Die Anfangswerte der Filterregister Zl (vierter Block 304) und Z2 (dritter Block 303) werden zu Null initialisiert.

Die Signale an den einzelnen Ports lassen sich sukzessive berechnen. Für die "Vorwärtswelle" des Signals, das heißt anschaulich die Koeffizienten an den gemäß Fig.3 nach rechts orientierten Pfeile, ergibt sich:

b13 = -(U+Z1) (12)

b20=-g2(Z2-b13) (13)

b23=b20+Z2 (14)

Die Größe U in Gleichung (12) ist das Eingabesignal 200.

35

30

30

Für die "Rückwärtswelle", das heißt anschaulich die gemäß Fig.3 nach links orientierten Pfeile, ergeben sich die Koeffizienten:

5 .	b22=b20+b23	(15)
	b21=b22+Z2-b13	(16)
10	a0=b21-b13	(17)
	b11=U-g1 a0	(18)
	b12=- (b11+b21)	(19)

15 Das Ausgabesignal U $_{
m C}$ 204 berechnet sich dann zu:

$$U_c = (b22 + Z2 [sec])/2$$
 (20)

Die Filterregister (Blöcke 303, 304) werden wie folgt aktualisiert:

$$Z1 = -b12$$
 (21)
 $Z2 = b22$ (22)

Das Ausgabesignal Uc 204 wird als Eingabesignal U 200 an die der betrachteten Filterstufe 101 nachgeschaltete Filterstufe 101 übergeben. Basierend, auf dem Ausgabesignal Uc 204 der letzten Filterstufe 101 einer Zeile von Filterstufen 101 wird die einzustellende Güte der hintereinander geschalteten Filter 101 gemäß Gleichung (1) neu ermittelt. Aus dem so ermittelten Wert für die Güte Q wird der Wert des die Dämpfung bestimmenden Widerstands R gemäß Gleichung (2) berechnet. Mit dem veränderten Wert des ohmschen Widerstands R 203 werden die Filterwiderstände (R11, R12, R13, G21, G22, G23) und Filterkoeffizienten (g1, g2) gemäß Gleichungen (4) bis (11) neu berechnet. Nach diesem Schritt wird das

Ausgabesignal für eine nächste Zeitscheibe berechnet. Mit anderen Worten kann das Zeitspektrum in mehrere Zeitscheiben zergliedert werden, die sukzessive numerisch berechnet werden.

5

10

Im Weiteren wird bezugnehmend auf Fig.4 ein Diagramm 400 erläutert, in dem die Funktionalität der erfindungsgemäßen Schaltkreis-Anordnung gemäß einem bevorzugten Ausführungsbeispiel der Erfindung gezeigt ist. Diagramm 400 bezieht sich auf eine Schaltkreis-Anordnung mit N=4 hintereinander geschalteten Resonator-Schaltkreisen. Als maximaler Q-Wert ist $Q_0=10$ angenommen, als minimaler Q-Wert ist $Q_{min}=1$ angenommen.

15

20

Entlang einer Abszisse 401 des Diagramms 400 ist in einer logarithmischen Darstellung die auf eine Referenzfrequenz $f_{\scriptscriptstyle 0}$ normierte Frequenz eines Signals aufgetragen. Entlang einer Ordinate 402 ist in einer logarithmischen Darstellung die Reaktion des Systems auf ein Eingabesignal einer bestimmten Intensität gezeigt. Erste bis achte Kurven 403 bis 410 stellen die Frequenzgang (d.h. hier den jeweiligen Wert der Maximalamplitude des Filterausgangs) der erfindungsgemäßen Schaltkreis-Anordnung für unterschiedliche Signal-Amplituden (bezogen auf eine Referenzamplitude) dar. Die erste Kurve 403 entspricht einer Amplitude von 1x10⁻⁹, die zweite Kurve 404 entspricht einer Amplitude von 1x10-4, die dritte Kurve 405 entspricht einer Amplitude von 1x10⁻³, die vierte Kurve 406 entspricht einer Amplitude von 1x10⁻², die fünfte Kurve 407 entspricht einer Amplitude von 1x10⁻¹, die sechste Kurve 408 entspricht einer Amplitude von 1x10°, die siebte Kurve 409 entspricht einer Amplitude von 1x10¹ und die achte Kurve 410 entspricht einer Amplitude von 1x106. Ferner ist als Eingabesignal eine Sinusschwingung angenommen, die mit einem cos²-Fenster gefenstert ist. Kurven 403 bis 410 ergeben sich für eine gesamte Filterbank aus N=4 rückkopplungsfrei hintereinander geschalteten Resonator-Schaltkreisen.

15

20

30

Zunächst ist aus dem Diagramm 400 ersichtlich, dass die Dämpfung des Eingabesignals umso stärker ist, je höher die Signalintensität bzw. Signalamplitude ist. Bei sehr kleinen Amplituden sind die Filter linear und die Resonanzüberhöhung 5 beträgt ungefähr 80dB. Die Antwort der Filterbank nimmt zu hohen tiefen Frequenzen sehr steil ab, da die Filter als Tiefpass realisiert sind (vgl. Fig. 2). Die hochfrequente Antwort der Filter fällt mit ungefähr 6dB pro Oktave ab, bedingt durch die Skalierung der Filterparameter mit. f_{0} . Die Kurven in Fig.4 bilden die stark asymmetrische Frequenz-Selektivität des menschlichen Gehörs in guter Näherung nach.

Im Weiteren wird bezugnehmend auf Fig.5 die Beziehung zwischen Amplituden des Eingabesignals und des Ausgabesignals einer erfindungsgemäßen Schaltkreis-Anordnung beschrieben.

In dem Diagramm 500 ist entlang einer Abszisse in logarithmischer Darstellung ein Schalldruckpegel A_{in} in dB aufgetragen, bezogen auf einen Schalldruck der Bezugsgröße 20μPa. Entlang einer Ordinate 502 ist in willkürlichen Einheiten die Stärke eines Ausgabesignals A_{OUT} in dB aufgetragen. Kurven 503 bis 507 zeigen für unterschiedliche Szenarien die Wachstumsfunktion einer Filterkaskade aus vier Resonator-Schaltkreisen (Hintereinanderschaltung von N=4Filtern) bei der Resonanzfrequenz f_{0} . Als minimale Güte ist $Q_{min} = 1$ angenommen.

Eine erste Kurve 503 zeigt eine lineare Wachstumsfunktion. Eine zweite Kurve 504 zeigt eine Wachstumsfunktion des Innenohrs, d.h. die Geschwindigkeit der Basilarmembran bezogen auf den Schalldruck gemessen vor dem Trommelfell. Die Daten der zweiten Kurve 504 sind aus [2] entnommen. Eine dritte Kurve 505 zeigt den Kurvenverlauf für eine Güte Q = 2, eine vierte Kurve 506 zeigt den Verlauf für Q = 4 und eine fünfte Kurve 507 zeigt den Verlauf für Q = 10.

Gemäß dem in Fig. 6A gezeigten Ausführungsbeispiel miteinander unmittelbar verkoppelter Resonator-Schaltkreise 601, 602 ist die Ausgabespannung UC1 des vorgeschalteten Resonator-Schaltkreises 601 gleich der Eingabespannung des folgenden Resonator-Schaltkreises 602. Ferner ist der Ausgabestrom des ersten Resonator-Schaltkreises 601 gleich dem Eingabestrom des zweiten Resonator-Schaltkreises 602.

Es ist anzumerken, dass die Werte der Widerstände R1 bzw. R2, der Induktivitäten L1 bzw. L2 sowie der Kapazitäten C1 bzw. C2 der Resonator-Schaltkreise 601, 602 voneinander unterschiedlich sein können bzw. unterschiedlich eingestellt/geregelt werden können.

15 Im Weiteren wird bezugnehmend auf Fig.6B eine Realisierung der in Fig.6A gezeigten Resonator-Schaltkreise 601, 602 als Wellendigitalfilter 650 beschrieben.

Anschaulich ist das Wellendigitalfilter 650 gebildet aus einer ersten Komponente 651, welche den ersten Resonator-Schaltkreis 601 repräsentiert, und aus einer zweiten Komponente 652, welche den zweiten Resonator-Schaltkreis 602 repräsentiert. Entsprechend der verkoppelten Konfiguration der Resonator-Schaltkreise 601, 602 gemäß Fig.6A sind die beiden Komponenten 651, 652 in der Fig.6B gezeigten Weise direkt miteinander gekoppelt. Der interne Aufbau jeder der Komponenten 651, 652 entspricht im Wesentlichen jener des Wellendigitalfilters 300 aus Fig.3.

30 Im Weiteren wird bezugnehmend auf Fig.7A eine Schaltkreis-Anordnung 700 gemäß noch einem anderen Ausführungsbeispiel der Erfindung beschrieben.

Die Schaltkreis-Anordnung 700 ist gebildet aus einem ersten
Resonator-Schaltkreis 701 und einem zweiten ResonatorSchaltkreis 702, welche in Serie geschaltet sind. Anschaulich
sind die Resonator-Schaltkreise 701, 702 in einer voneinander

Anordnung 700 aus Fig.7A beschrieben.

30

35

Das Wellendigitalfilter 750 ist in eine erste Komponente 751 und in eine zweite Komponente 752 aufgeteilt, wobei die erste Komponente 751 den ersten Resonator-Schaltkreis 701 repräsentiert, und wobei die zweite Komponente 752 den zweiten Resonator-Schaltkreis 702 repräsentiert. Aufgrund der Funktionalität des Operationsverstärkers 703 sind die beiden Komponenten 751, 752 voneinander anschaulich gekoppelt. Der interne Aufbau jeder der Komponenten 751, 752 entspricht im Wesentlichen der in Fig.3 gezeigten Konfiguration. Das Eingabesignal der ersten Komponente 751 ist U, das Eingabesignal der zweiten Komponente 752 ist UC1.

Die Kombination der linearen Filterbank 808 mit den nichtlinearen Kompressionsstufen 101 bildet erfindungsgemäß das nichtlineare Schwingungsverhalten des Innenohrs der Säugetiere sehr gut nach, wie in Zusammenhang mit Fig.5 oben erläutert wurde.

Insbesondere wird eine große Dynamikkompression von Schallpegeln im Bereich von 0 dBspL bis 120 dBspL auf einen Bereich von 1 nm bis 100 nm (dies entspricht ungefähr 40 dB) erreicht (vgl. Fig.10), was für die Weiterverarbeitung im Rahmen der Merkmalsextraktion und der Spracherkennung von sehr großer Bedeutung ist.

Fig.10 zeigt in einem Diagramm 1000, in welchen entlang einer Abszisse 1001 die Cochlea-Position dargestellt ist und entlang der Ordinate 1002 die an der jeweiligen Cochlea-Position auftretende Auslenkung der Basilarmembran.

Anschaulich stellt somit das Diagramm 1000 ein Erregungsmuster (RMS-Wert) des nichtlinearen Basilarmembran-Modells für einen 1 KHz-Ton dar. Die dargestellten Kurven 1003, 1004, 1005, 1006, 1007, 1008, 1009, sind an der Stelle 1010 mit der größten Empfindlichkeit (dargestellt in Figur 10 als gestrichelte Linie) in der üblicherweise an der Position von 21 mm bezogen auf die Null-Position der Cochlea, sehr

stark komprimiert. Ferner zeigt Fig.10 eine Erregungsschwelle 1011, oberhalb der das Gehör des menschlichen Hörsystems eine Signalauslenkung wahrnimmt.

Das von den jeweiligen Resonator-Schaltkreisen 101 am Ende einer jeweiligen Serienschaltung bereitgestellte
Basilarmembran-Signal x_{BM1} wird jeweils einer in Fig.11
dargestellten jeweiligen Filterausgangs-Schaltung 1100
zugeführt

10

20

Jede Filterausgangs-Schaltung 1100 weist einen Hochpassfilter 1101, eine dazu ausgangsseitig nachfolgend gekoppelte Gleichrichter-Schaltung 1102, einen in Signalflussrichtung nachfolgend gekoppelten Tiefpassfilter 1103, eine in Signalflussrichtung nachfolgend gekoppelte Aktivierungs-Schaltung 1104 sowie eine Vesikel-Pool-Schaltung 1105 und einer Neurotransmitter-Schaltung 1106 auf.

Das jeweilige Basilarmembran-Signal x_{BM1} , x_{BMi} , ..., x_{BMn} wird mittels des eine Kapazität 1107 und einen ohmschen Widerstand 1108 aufweisenden Hochpassfilters 1101 hochpassgefiltert und skaliert, so dass mittels einer Boltzmann-Funktion zweiter Ordnung nur der sprachrelevante jeweilige Dynamikbereich extrahiert wird. Mittels des Hochpassfilters 1101 erster Ordnung wird die noch relativ flache Flanke der Filterkurven des Innenohres, wie sie in Fig.10 dargestellt ist, etwas verschärft.

Gemäß diesem Ausführungsbeispiel der Erfindung entspricht die 30 Eckfrequenz des Hochpassfilters 1101 der Frequenz der maximalen Empfindlichkeit der Basilarmembran-Schwingung.

Die Asymmetrie der erfindungsgemäß verwendeten Boltzmann-Funktion bewirkt eine Gleichrichtung des Signals (realisiert gemäß diese Ausführungsbeispiel mittels der Gleichrichter-Schaltung 1102, das in der nächsten Stufe mittels des Tiefpassfilters 1103 tiefpassgefiltert wird, so dass am

30

35

Ausgang des Tiefpassfilters 1103 ein Rezeptorpotential-Signal U_{M} bereitgestellt wird.

Gemäß diesem Ausführungsbeispiel der Erfindung weist der ohmsche Widerstand 1109 des Tiefpassfilters 1103 in Analogie zu der Zellmembran einen Leitwert g $_{\rm M}$ = 60 nS auf und die Kapazität 1110 des Tiefpassfilters 1103 weist eine die Zellmembran nachbildende Kapazität von C $_{\rm M}$ = 12 pF auf.

- Die Aktivierung der jeweiligen Zelle, erfindungsgemäß nachgebildet durch die Vesikel-Pool-Schaltung 1105 und der Neurotransmitter-Schaltung 1106 wird aus dem Rezeptorpotential UM mit einer Boltzmann-Funktion erster Ordnung berechnet.
 - Die Tiefpassfilterung und die Gleichrichtung, wie oben beschrieben, haben mehrere Effekte:
- a) Bei niedrigen Signalfrequenzen erfolgt pro Zyklus der
 akustischen Anregung genau eine maximale Erregung der sensorischen Zellen,
 - b) akustische Signale im Frequenzbereich oberhalb der Grenzfrequenz der inneren Haarzellen führen zu einer Aktivierung entsprechend ihrer Hüllkurve, und
 - c) die Sensitivität und Sättigung der Boltzmann-Funktion bewirken eine Fokussierung der Schallverarbeitung auf sprachrelevante Information.
 - Die Weiterverarbeitung des Rezeptorpotential-Signals U_M erfolgt derart, anders ausgedrückt, die Vesikel-Pool-Schaltung 1105 und die Neurotransmitter-Schaltung 1106 sind derart eingerichtet, dass zeitliche Veränderungen des Schallsignals (das heißt des Eingabesignals) betont werden und gleich bleibende, im Wesentliche zeitlich konstante

20

30

35

Signalanteile des Eingabesignals werden vernachlässigt (adaptiert).

Auf diese Weise werden stationäre Signale (beispielsweise Störgeräusche) wirkungsvoll unterdrückt.

Die Adaption wird gemäß diesem Ausführungsbeispiel der Erfindung modelliert mittels der Vesikel-Pool-Schaltung 1105, wobei der nachgebildete Vesikel-Pool stetig (aber langsam) auf seinen Sollwert aufgefüllt wird. Von der Vesikel-Pool-Schaltung 1105 erfolgt, relativ zur aktuellen Vesikel-Pool-Größe und einer Wahrscheinlichkeit, die mit einer Boltzmann-Funktion vom Membranpotential der inneren Haarzelle abgeleitet wird, ein Neurotransmitter-Strom (gemäß diesem Ausführungsbeispiel der Erfindung mit einer Rate von 28.000/s).

Bei Schallsignalen mit großer Amplitude wird ein Großteil des Vesikel-Pools abgebaut, spätere Signalanteile generieren daher nur ein kleines Signal, das heißt ein Signal mit kleiner Amplitude.

In Phasen mit anliegendem Eingabesignal geringer Amplitude regeneriert sich der Vesikel-Pool wieder. Anders ausgedrückt bedeutet dies, dass die Vesikel-Pool-Schaltung 1105 die oben beschriebene Funktionalität nachbildet, wobei diese derart eingerichtet ist, dass zwei Zeitkonstanten realisiert sind, nämlich eine erste Zeitkonstante von τ_1 = 140 ms und einer zweiten Zeitkonstanten τ_2 = 3 ms).

Der Neurotransmitter-Strom fließt in den "synaptischen Spalt", wo er mit in der von dem Neurotransmitter, erfindungsgemäß nachgebildet mittels der Neurotransmitter-Schaltung 1106, mit einer Zeitkonstanten τ_3 = 1 ms abgebaut wird.

15

20

30

Neben der Vesikel-Funktion aus dem Vesikel-Pool entsteht ein weiterer Neurotransmitter-Strom, der nur von dem Membranpotential der inneren Haarzelle abhängt, weshalb in dem gewählten Modell von einer unendlichen Vesikel-Pool-Größe ausgegangen wird und von einer Rate von 9.000/s.

Die beiden Neurotransmitter-Ströme erlauben eine adäquate Codierung von stationären und transienten Schallsignalen, d.h. eine adäquate Codierung von Nervenaktions-Potentialen.

Der Vesikel-Pool 1105 kann sowohl kontinuierlich als auch aus diskreten Vesikeln bestehend modelliert werden. Bei einer diskreten Modellierung ergibt sich der Neurotransmitter-Strom als stochastischer Prozess. Dieses Vorgehen wird gewählt, um das Schaltsignal in diskrete Nervenaktions-Potentiale zu codieren.

Ein Nervenaktions-Potential ist in Fig.12 in einem Nervenaktions-Potential-Diagramm 1200 dargestellt und wird ausgelöst, wenn die Konzentration des jeweiligen Neurotransmitters in dem synaptischen Spalt einen vorgegebenen Schwellwert, gemäß diesem Ausführungsbeispiel 1,0 Vesikel, übersteigt.

Fig.12 zeigt die erzeugte modellierten Nervenaktions-Potentiale bei Anregung mit einem künstlichen Vokal "e".

Es ergeben sich bei beiden Formantfrequenzen des Vokals "e" Erregungen. Ferner ist auf die zeitliche Struktur (insbesondere beim zweiten Formanten) die mit der Sprach-Grundfrequenz (100 Hz entsprechen 10 ms) moduliert ist, erreicht.

Eine sehr vorteilhafte Eigenschaft der erfindungsgemäßen Merkmalsextraktions-Einheit 801 ist, dass sie anhand der erreichbaren Erkennungsleistung im Rahmen eines

Spracherkennungsverfahrens eines automatischen Spracherkennungssystems evaluiert und optimiert werden kann.

In Fig.13 ist in einem Diagramm 1300 die

5 Spracherkennungsleistung eines üblichen Fast Fourier
Transformations-basierten Spracherkennungsverfahren
(Wortfehlerrate-Kurve 1301) mit unterschiedlichen
erfindungsgemäßen Verarbeitungsstufen (nur InnenohrmodellKomponente), Wortfehlerrate-Kurve 1302) bzw. Sensorenzellen10 Wortfehlerrate-Kurve 1303 bei unterschiedlichen
Störgeräuschen (aufgetragen entlang der Abszisse)
dargestellt.

Entlang der Ordinate 1305 ist in Fig.13 die jeweils erreichte Wortfehler-Rate dargestellt.

Wie in Fig.13 gezeigt ist, ist ohne Existenz von Störgeräuschen die Erkennungsleistung der üblichen Fast Fourier Transformation-basierten Verfahren qualitativ höherwertiger, was insbesondere auf den Reifegrad der schon seit Jahren entwickelten Algorithmen zurückzuführen ist, jedoch ist bei wachsenden Störgeräuschen die Robustheit der erfindungsgemäß bereitgestellten Merkmale offensichtlich.

10

15

20

35

In diesem Dokument ist folgende Veröffentlichung zitiert:

- [1] E.G. Schukat-Talamazzini, Automatische Spracherkennung, Friedrich Vieweg & Sohn Verlagsgesellschaft, Braunschweig-Wiesbaden, ISBN 3-528-05492-1, Kapitel 1 bis 3, 1995;
- [2] S. Seneff, A Computational Model for the Perforal
 Auditory System: Application to Speech Recognition
 Research, Proceedings of IEEE ICASSP 1986, Tokyo, Seiten
 1983 bis 1986, Tokyo, 1986;
 - [3] M. Hunke und T. Holton, Training Machine Classifiers to Match the Performance of Human Listeners in a Natural Vowel Classification Task, ICSSLP, Seiten 574 bis 577, 1996;
 - [4] S. Sandhu und O. Ghitza, A Comparative Study of MEL Cepstra and EIH for Phone Classification under Adverse Conditions, IEEE, Seiten 409 bis 412, 1995;
 - [5] C. Sumner et al., A Revised Model of the Inner-Hair-Cell and Auditory Nerve Complex, Journal of Acoustic Society of America, Vol. 111, Seiten 2178 bis 2188, Mai 2002;
 - [6] T. Dau, Modell der effektiven Signalverarbeitung im Gehör, Einblicke, Nr. 29, Seiten 16 bis 18, April 1999;
- [7] V. Hohmann, Signalverarbeitung in digitalen Hörgeräten, 30 Einblicke, Nr. 33, Seiten 24 bis 26, Juni 2001;
 - [8] H. W. Strube, A Computationally Efficient Basilar-Membrane-Model, Acoustica, Vol. 58, Seiten 207 bis 214, 1985;
 - [9] M. A. Ruggero et al., Mechanical Basis of Frequency Tuning and Neural Exitation at the Base of the Cochlea:

Comparison of Basilar-Membrane-Vibration and Auditory Nerve-Fibre-Responses in Chinchilla, Proceedings of National Academy of Science USA, Vol. 97, Nr. 22, Seiten 11744 bis 11750, October 2000;

[10] P. Dallos et al., The Cochlea, ISBN 0387944494, Springer-Verlag, Kapitel 6, Seiten 318 bis 385, 1998.

Bezugszeichenliste

- 100 Schaltkreis-Anordnung
- 101 Resonator-Schaltkreise
- 102 globales Eingabesignal
- 103 (Schall-) Signal quelle
- 104 erstes lokales Ausgabesignal
- 105 erstes lokales Eingabesignal
- 106 zweites lokales Ausgabesignal
- 107 zweites lokales Eingabesignal
- 108 drittes lokales Ausgabesignal
- 109 globales Ausgabesignal
- 111 Steuer-Schaltkreis
- 200 Eingabesignal
- 201 Kapazität
- 202 Induktivität
- 203 regelbarer ohmscher Widerstand
- 204 Ausgabesignal
- 300 Wellendigitalfilter
- 301 erster Block (serieller Koppler)
- 302 zweiter Block (paralleler Koppler)
- 303 dritter Block (Speicherelement für Kapazität)
- 304 vierter Block (Speicherelement für Induktivität)
- 400 Diagramm
- 401 Abszisse
- 402 Ordinate
- 403 erste Kurve
- 404 zweite Kurve
- 405 dritte Kurve
- 406 vierte Kurve
- 407 fünfte Kurve
- 408 sechste Kurve

409 siebte Kurve

410 achte Kurve

500 Diagramm

501 Abszisse

502 Ordinate

503 erste Kurve

504 zweite Kurve

505 dritte Kurve

506 vierte Kurve

507 fünfte Kurve

- 600 Schaltkreis-Anordnung
- 601 erster Resonator-Schaltkreis
- 602 zweiter Resonator-Schaltkreis
- 650 Wellendigitalfilter
- 651 erste Komponente
- 652 zweite Komponente
- 700 Schaltkreis-Anordnung
- 701 erster Resonator-Schaltkreis
- 702 zweiter Resonator-Schaltkreis
- 703 Operationsverstärker
- 703a nichtinvertierender Eingang
- 703b invertierender Eingang
- 703c Ausgang
- 750 Wellendigitalfilter
- 751 erste Komponente
- 752 zweite Komponente

800	Spracherkennungs-System
801	Merkmalsextraktions-System
802	Spracherkennungs-Einrichtung
803	Eingabesignal
804	Gehörgangsmodell-Komponente

805	Signal
806	Mittelohrmodell-Komponente
807	Signal
808	Innenohrmodell-Komponente
809	Signal
810	Sensorzellenmodell-Komponente
311	Signal
312	Synaptische-Modell-Komponente
313	Signal
901	Induktivität
902	Ohmscher Widerstand
903	Filterbank

904b Ohmscher Widerstand Filterstufe

904c Kapazität Filterstufe

905 Filterstufe

905a Induktivität Filterstufe

905b Ohmscher Widerstand Filterstufe

905c Kapazität Filterstufe

906 Filterstufe

906a Induktivität Filterstufe

906b Ohmscher Widerstand Filterstufe

906c Kapazität Filterstufe

907 Ohmscher Abschluss-Widerstand

x_{BM} Basilarmembran-Signal

1000	Diagramm
1001	Abszisse
1002	Ordinate
1003	Erregungskurve
1004	Erregungskurve
1005	Erregungskurve
1006	Erregungskurve
1007	Erregungskurve
1008	Erregungskurve
1009	Erregungskurve

1010	Stelle mit der größten Empfindlichkeit
1011	Erregungsschwelle
1100	Filterausgangs-Verarbeitungs-Schaltung
1101	Hochpass
1102	Gleichrichter-Schaltung
1103	Tiefpass-Filter
1104	Aktivierungs-Schaltung
1105	Vesikel-Schaltung
1106	Neurotransmitter-Schaltung
1107	Kapazität Hochpassfilter
1108	Ohmscher Widerstand Hochpassfilter
1109	Ohmscher Widerstand Tiefpassfilter
1110	Kapazität Tiefpassfilter
•	
1200	Diagramm
,	
1300	Diagramm
1301	Wortfehlerraten-Kurve
1302	Wortfehlerraten-Kurve
1303	Wortfehlerraten-Kurve
1304	Abszisse

Ordinate

10

15

20

30

Patentansprüche

1. Schaltkreis-Anordnung

- mit einer Filterbank mit einer Mehrzahl von Filterstufen und einem Filterbank-Eingang, welchem ein Eingabesignal zuführbar ist,
- mit einer Mehrzahl von Resonator-Schaltkreisen zum Generieren jeweils eines Teil-Ausgabesignals aus dem Eingabesignal, wobei jeder Resonator-Schaltkreis jeweils einer Filterstufe der Mehrzahl von Filterstufen zugeordnet und mit einem Ausgang der jeweiligen Filterstufe gekoppelt ist,
- wobei jeder Resonator-Schaltkreis aufweist:
 - eine Kapazität,
 - eine Induktivität,
 - einen Resonator-Ausgang, an dem das jeweilige Teil-Ausgabesignal bereitstellbar ist;
- mindestens einen Resonator-Steuer-Schaltkreis zum Steuern oder Regeln der Güte mindestens eines Resonator-Schaltkreises, wobei der mindestens eine Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des Resonator-Schaltkreises abhängig von dem Zeitverlauf der Signalamplitude des Eingabesignals und/oder des Teil-Ausgabesignals des Resonator-Schaltkreises steuert oder regelt.
- 2. Schaltkreis-Anordnung gemäß Anspruch 1,
 - bei der jeder Resonator-Schaltkreis eine Mehrzahl von in Serie miteinander gekoppelten Teil-Resonator-Schaltkreisen aufweist, und
 - wobei zumindest einer der Teil-Resonator-Schaltkreise mit einem Ausgang des Resonator-Schaltkreises gekoppelt ist.
- 35 3. Schaltkreis-Anordnung gemäß Anspruch 1 oder 2, bei der die Filterbank als lineares Willendigitalfilter ausgestaltet ist.

15

20

30

35

- 4. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 3, bei dem zumindest einer der Resonator-Schaltkreise einen mittels des Resonator-Steuer-Schaltkreises steuerbaren ohmschen Widerstand aufweist.
- 5. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 4, mit einer Mehrzahl von Hochpassfiltern, wobei jeder Filterstufe mindestens ein Hochpassfilter zugeordnet ist, wobei jeweils ein Hochpassfilter an den Ausgang eines jeweiligen Resonator-Schaltkreises gekoppelt ist.
- 6. Schaltkreis-Anordnung gemäß Anspruch 5, bei dem zumindest ein Teil der Hochpassfilter als Hochpassfilter erster Ordnung ausgestaltet sind.
- 7. Schaltkreis-Anordnung gemäß Anspruch 6, bei dem die Eckfrequenz zumindest eines Teils der Hochpassfilter erster Ordnung derart gewählt ist, dass sie der Frequenz der maximalen Empfindlichkeit einer Basilarmembranschwingung eines Innenohrs eines Säugetiers entspricht.
- 8. Schaltkreis-Anordnung gemäß einem der Ansprüche 5 bis 7, mit einer Mehrzahl von Gleichrichter-Schaltungen, wobei jeweils eine Gleichrichter-Schaltung einer der Filterstufen und einem Hochpassfilter zugeordnet ist und mit einem Ausgang eines jeweiligen Hochpassfilters gekoppelt ist.
- 9. Schaltkreis-Anordnung gemäß Anspruch 8,
 mit einer Mehrzahl von Tiefpassfiltern, wobei jeweils ein
 Tiefpassfilter einer Gleichrichter-Schaltung zugeordnet
 und mit einem Ausgang einer jeweiligen GleichrichterSchaltung gekoppelt ist.
- 10. Schaltkreis-Anordnung gemäß Anspruch 9,

30

35

mit einer Mehrzahl von Aktivierungs-Schaltungen, wobei jeweils eine Aktivierungs-Schaltung einer der Filterstufen zugeordnet ist, wobei jede Aktivierungs-Schaltung eingerichtet ist zum Verstärken einer zeitlichen Veränderung eines der Aktivierungs-Schaltung zugeführten Signals und zum Dämpfen von zeitlich im Wesentlichen konstanten Komponenten des der Aktivierungs-Schaltung zugeführten Signals.

- 10 11. Schaltkreis-Anordnung gemäß Anspruch 10,
 bei der jede Aktivierungs-Schaltung eine Vesikel-PoolSchaltung aufweist mit einer Vielzahl von VesikelSchaltungen.
- 15 12. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 11, bei der der Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des mindestens einen Resonator-Schaltkreises basierend auf einer Boltzmann-Funktion und/oder deren Ableitung steuert, wobei die Boltzmann-Funktion die Amplitude des jeweiligen Teil-Ausgabesignals als Parameter enthält.
 - 13. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 12, bei der der Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des mindestens einen Resonator-Schaltkreises in Abhängigkeit von der Amplitude des jeweiligen Teil-Ausgabesignals basierend auf einer für ein Ohr eines Menschen ermittelten Empfindlichkeitscharakteristik einstellt.
 - 14. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 13, bei der der Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des mindestens einen Resonator-Schaltkreises um so geringer einstellt, je höher die Amplitude des jeweiligen Teil-Ausgabesignals ist.
 - 15. Schaltkreis-Anordnung gemäß Anspruch 14,

15

20

bei der der Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des mindestens einen Resonator-Schaltkreises in einer nichtlinearen Abhängigkeit von der Amplitude des jeweiligen Teil-Ausgabesignals einstellt.

- 16. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 15, bei der der Resonator-Steuer-Schaltkreis derart eingerichtet ist, dass er die Güte des mindestens einen Resonator-Schaltkreises derart einstellt, dass die Amplitude des jeweiligen Teil-Ausgabesignals innerhalb eines vorbestimmten Intervalls ist.
- 17. Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 16, eingerichtet zum Verarbeiten eines akustischen Signals als Eingabesignal der Filterbank.
- 18. Signalverarbeitungs-Vorrichtung
 - mit einer Schaltkreis-Anordnung gemäß einem der Ansprüche 1 bis 17, und
 - mit einer Weiterverarbeitungs-Einheit zum Weiterverarbeiten des von der Schaltkreis-Anordnung bereitgestellten Signals.
- 19. Signalverarbeitungs-Vorrichtung gemäß Anspruch 18, bei der die Weiterverarbeitungs-Einheit eine Spracherkennungs-Einrichtung oder ein Hörgerät ist.

