Elektrikernas kokbok

Björn Ögren

2022-11-15

Contents

In	trod	uction	5
\mathbf{Li}	kstr	ömskretsar	7
1	Ser	iekoppling	9
	1.1	Spänningsdelning	9
	1.2	Okänd delspäning	9
	1.3	Delresistans	10
	1.4	Ersättningsresistans	10
2	Par	earellkoppling	13
	2.1	Huvudström	13
	2.2	Okänd grenström	13
	2.3	Ersättningsresistans	14
3	Led	lare	15
	3.1	Ledarrresistans	15
4	Ack	sumulatorer	17
	4.1	Polspänning	17
	4.2	Spänningsfall	17
	4.3	EMK Total	18
	4.4	Resistans total	18
	4.5	Yttre resistans	18
	4.6	Seriekoppling	19
	4.7	Pararellkoppling	19
5	Effe	ekt	21
	5.1	Watt tid	21
	5.2	Kostnadsberäkning	22
V	ixels	strömskretsar	23

4		CONTENTS

6	Frek	xvenz 2	25
	6.1	Tidsintervall	25
			26
7	Spä	nning 2	29
	7.1	Y-Koppling	29
	7.2		30
8	Strö	im 3	3 1
	8.1	Y-Koppling	31
			31
9	Effe	m kt 3	3
	9.1	Trefaskretsar	33
	9.2	Reaktiva kretsar	34
10	Väx	elströmsmotstånd 3	87
	10.1	Impedans	37
		Kondensatorer	37
	10.3	Spolar	39

Introduction

This book is a guide to authoring books and technical documents with R Markdown [Allaire et al., 2022] and the R package **bookdown** [Xie, 2022]. It focuses on the features specific to writing books, long-form articles, or reports, such as:

- how to typeset equations, theorems, figures and tables, and cross-reference them;
- how to generate multiple output formats such as HTML, PDF, and e-books for a single book;
- how to customize the book templates and style different elements in a book;
- editor support (in particular, the RStudio IDE); and
- how to publish a book.

6 CONTENTS

Likströmskretsar

8 CONTENTS

Seriekoppling

Seriekoppling innebär att alla komponenter genomlöps av hela den strömstyrka som flyter genom ledningen, medan den elektriska spänningen över seriekopplingen fördelas över komponenterna i förhållande till deras resistans.

Kirchhoffs första strömlag beskriver hur strömmar förgrenar sig i en pararellkrets. Den andra beskriver hur spänningar fördelas i en seriekrets.

1.1 Spänningsdelning

Kirchhoff andra lag Summan av delspäningarna är lika med den totala spänningen.

Samband	Beteckning	Storhet	Enhet	Förkortning
$ \overline{U_{tot}} = U_1 + U_2 + U_3 $	U	Spänning	Volt	V

Exempel uträkning spänningsdelning (1)
$$U_{tot} = U_1 + U_2 + U_3$$

$$U_{tot} = 4 + 4 + 4$$

$$U_{tot} = 12 \ V$$

1.2 Okänd delspäning

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{U_{tot}} = \\ U_{tot} - \end{array}$	U	Spänning	Volt	V
$U_3 - U_2$				

Exempel uträkning okänd delspäning (1)

$$\begin{split} U_{tot} &= U_1 + U_2 + U_3 \\ U_3 &= 12 - 4 - 6 \\ U_3 &= 3 \ V \end{split}$$

1.3 Delresistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R_{//} \frac{R_{tot}}{R}$	R	Delresistans	Omega	Ω

Om alla delresistanser är lika

$$\begin{array}{c} R_{//} \frac{R_{tot}}{R} \\ R_{//} = \frac{100}{10} \\ R_{//} = 4, 2~\Omega \end{array}$$

Om delresestanerna är olika

$$R_1 = R_{tot} - R_1$$

$$R_1 = 10 - 6$$

$$R_1 = 6 \ \Omega$$

1.4 Ersättningsresistans

Ersättningsresistans är den resistans vilken man kan ersätta två eller flera resistorer i en krets med. För seriekopplingar är den totala resistansen $R_T \$ helt enkelt summan av de olika resistorernas resistans.

1.4. ERSÄTTNINGSRESISTANS

11

Exempel uträkning ersättningsresistans

$$\begin{split} R_{ers} &= R_1 + R_2 + R_3 \\ R_{ers} &= 10 + 12 + 18 \\ R_{ers} &= 40 \ \Omega \end{split}$$

Ersättningsresistansen går även att räkna ut från spänning totalt delat med strömen

$$\begin{split} R_{ers} &= \frac{U_{tot}}{I} \\ R_{ers} &= \frac{U_{tot}}{I} \\ R_{ers} &= 4, 2~\Omega \end{split}$$

Pararellkoppling

Kirchhoffs första strömlag beskriver hur strömmar förgrenar sig i en pararellkrets. Den andra beskriver hur spänningar fördelas i en seriekrets.

2.1 Huvudström

Huvudströmmen är lika med summan av grenströmmarna

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{I_h} =$	I_h	Ström	Ampere	A
$I_1 {+} I_2 {+} I_3$				

$$\frac{\text{Exempel uträkning huvudström (1)}}{I_h = I_1 + I_2 + I_3} \\ I_h = 2 + 2 + 2 \\ I_h = 6 \ A$$

2.2 Okänd grenström

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{I_3} = I_h - \overline{I_h}$	I	Ström	Ampere	\overline{A}
$I_1 - I_2$				

Exempel uträkning okänd grenström (1)

$$I_3 = I_h - I_1 - I_2 \\ I_3 = 6 - 3 - 2 \\ I_h = 1 \ A$$

2.3 Ersättningsresistans

Ersättningsresistans är den resistans vilken man kan ersätta två eller flera resistorer i en krets med.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{c} \frac{1}{R} = \\ \frac{1}{R}_1 + \frac{1}{R}_2 + \\ \frac{1}{R}_3 \cdots \end{array}$	R	Ersättningsresist	ans Omega	Ω

Exempel uträkning ersättningsresistans $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

 $\begin{array}{c} \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \\ \frac{1}{R} = \frac{1}{10} + \frac{1}{12} + \frac{1}{18} \\ R_{ers} = 40~\Omega \end{array}$

Ersättningsresistansen går även att räkna ut från spänning totalt delat med strömen

$$\begin{split} R_{ers} &= \frac{U_{tot}}{I} \\ R_{ers} &= \frac{U_{tot}}{I} \\ R_{ers} &= 4, 2~\Omega \end{split}$$

Ledare

3.1 Ledarrresistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R = \frac{p \times^L}{A}$	R	Ledarresistans	Omega	Ω

Exempel uträkning ledarresistans

$$R = \frac{p \times L}{A}$$

$$R = \frac{0.0175 \times 10}{1}$$

$$R = 0.0175 \Omega$$

3.1.1 Area

Samband	Beteckning	Storhet	Enhet	Förkortning
$A = \frac{p \times^L}{R}$	A	Cirkel	Area	mm^2

Exempel uträkning ledararea

$$A = \frac{p \times L}{R}$$

$$A = \frac{0.0175 \times 20}{0.466}$$

$$A = 0.75 \text{ } mm^2$$

3.1.2 Ledarlängd

Samband	Beteckning	Storhet	Enhet	Förkortning
$L = \frac{R \times^A}{P}$	L	Ledarlängd	Längd	\overline{m}

Exempel uträkning ledarlängd

$$L = \frac{R \times ^{A}}{P}$$

$$L = \frac{1,75 \times 1,0}{0,0175}$$

$$L = 100 \ m$$

3.1.3 Ledarresistivitet

Samband	Beteckning	Storhet	Enhet	Förkortning
$p = \frac{R \times^A}{L}$	p	Ledarresistivitet	Omega	Ω

Exempel uträkning ledarresistivitet

$$p = \frac{R \times A}{L}$$

$$p = \frac{2.67 \times 0.75}{20}$$

$$p = 0.0090, 1 \Omega mm^2/m$$

Ackumulatorer

4.1 Polspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{U = \atop E - R_i \times I}$	f	Frekvens	Hertz	Hz

$$\frac{\text{Exempel uträkning tid (1)}}{U=E-R_i\times I} \\ U=1, 5-0, 4\times 0, 9 \\ U=1, 14\ V$$

4.2 Spänningsfall

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{U_{drop}} = \\ R_i \times I \end{array}$	U	Spänning	Volt	V

 $\frac{\text{Exempel uträkning spänningsfall}}{U_{drop} = R_i \times I} \\ U_{drop} = 0, 6 \times 2, 2 \\ U_{drop} = 1, 32 \ V$

4.3 EMK Total

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{E_{tot}} =$	U	Spänning	Volt	V
$E_{batt} \times Antalet\ batt$	$terier\ i\ serie$			

 $\frac{\text{Exempel uträkning EMK Total}}{E_{tot} = E_{batt} \times Antalet \ batterier \ i \ serie}$ $E_{tot} = 4, 5 \times 3$ $E_{tot} = 13, 5 \ V$

4.4 Resistans total

Samband	Beteckning	Storhet	Enhet	Förkortning
$R_{tot} =$	R_{tot}	Resistans	Omega	Ω
$R_y + R_i$		total		

4.5 Yttre resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{R_y} =$	R_y	Resistans	Omega	Ω
$R_{tot} - R_i$				

 $\frac{\text{Exempel uträkning yttre resistans}}{R_y = R_{tot} - R_i}$ $\frac{R_y = 5 - 0, 4}{R_y = 4, 6~\Omega}$

19

4.6 Seriekoppling

4.6.1 Inre resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
	R_i	Inre resistans	Omega	Ω

Exempel uträkning inre resistans i strömkällan

$$\begin{aligned} R_{i~tot} &= Antal~Batt \times R_{I~Batt} \\ R_{i~tot} &= 3 \times 0, 3 \\ R_{i~tot} &= 0, 9~\Omega \end{aligned}$$

Vid seriekoppling adderas reistanserna sig

4.6.2 Kortslutningsström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I = I_{max}$	I_{max}	$\operatorname{Str\"{o}m}$	Ampere	A

Exempel uträkning kortslutningsström

$$\begin{split} I &= I_{max} \\ I &= I_{max} = 0, 5~A \\ I &= I_{max} = 0, 5~A \end{split}$$

Eftersom det vid seriekoppling är samma ström genom hela kretsen

4.7 Pararellkoppling

4.7.1 Inre resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R_{i\ tot} = \frac{R_{i\ Batt}}{Batt_{Antal}}$	R_{i-tot}	Inre resistans	Omega	Ω

Exempel uträkning inre resistans i strömkällan

$$R_{i~tot} = \frac{R_{i/Batt}}{Batt_{Antal}}$$

$$R_{i~tot} = \frac{0.3}{3}$$

$$R_{i~tot} = 0.1~\Omega$$
 Vid parallelkoppling delas resistansen sig

4.7.2 Kortslutningsström

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{I_{max}} = \\ Batt \ antal \times \\ I_i \end{array}$	I_{max}	Kortslutningsstr	röm Ampere	A

Exempel uträkning kortslutningsström

$$\begin{split} I_{max} &= Batt \ antal \times I_i \\ I_{max} &= 3 \times 0, 5 \ A \\ I_{max} &= 1, 5 \ A \end{split}$$

Eftersomm totalströmmen vid pararellkoppling blir summan av delströmmarna

Effekt

Effekt betecknas ofta med bokstaven P från engelskans power och kan bland annat yttra sig i form av ett värmeflöde eller mekaniskt arbete. SI-enheten för effekt är watt (W), där en watt motsvarar en energiomvandling på en joule per sekund (W=J/s). Utöver watt finns det ett flertal enheter som betecknar effekt, exempelvis enheten hästkraft, vilket i Sverige motsvarar en effekt på 735,5 watt.

Den momentana effektutvecklingen i en resistor är produkten av spänningen över komponenten och den elektriska strömmen genom komponenten.

Samband	Beteckning	Storhet	Enhet	Förkortning
$P = U \times I$	P	Effekt	Watt	\overline{W}

$$\frac{\text{Exemple uträkning Effekt}}{P = U \times I}$$

$$P = U \times I = 230 \times 0, 5$$

$$P = 115 \ W$$

5.1 Watt tid

Samband	Beteckning	Storhet	Enhet	Förkortning
W =	P	Effekt	Watt	\overline{W}
$P \times t$				

$$\frac{\text{Exemple uträkning watt tid}}{W = P \times t} \\ W = P \times t = 0,115 \times 10^3 \times 10 \\ W = 1,15 \ kWh$$

5.2 Kostnadsberäkning

Samband	Beteckning	Storhet	Enhet	Förkortning
$Kostnad = \\ kW \times \\ Pris$	Kostnad	Effekt	Watt	W

Exemple uträkning kostnad				
$Kostnad = kW \times Pris$				
$Kostnad = kW \times Pris = 1,15 \times 1,10$				
Kostnad = -: -Kr				

Växelströmskretsar

Frekvenz

6.1 Tidsintervall

Frekvens är en storhet för antalet repeterande händelser inom ett givet tidsintervall[1]. För att beräkna frekvensen fixerar man ett tidsintervall, räknar antalet förekomster av händelsen och dividerar detta antal med längden av tidsintervallet. Resultatet anges i enheten hertz (Hz) efter den tyske fysikern Heinrich Rudolf Hertz, där 1 Hz är en händelse som inträffar en gång per sekund. Alternativt kan man mäta tiden mellan två förekomster av händelsen ((tids)perioden) och därefter beräkna frekvensens reciproka värde.

6.1.1 Frekvens

Samband	Beteckning	Storhet	Enhet	Förkortning
$Frekvens = \frac{1}{Tid}$	f	Frekvens	Hertz	Hz

$$\frac{\text{Exempel uträkning frekvens }(1)}{Frekvens = \frac{1}{Tid}}$$

$$f = \frac{1}{38} \times 10^{3}$$

$$f = 26, 3 \; Hz$$

6.1.2 Tid

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{Tid} =$	f	Frekvens	Hertz	Hz
$\frac{1}{Frekvens}$				

$$\frac{\text{Exempel uträkning tid (1)}}{Tid = \frac{1}{Frekvens}} \\ Tid = \frac{1}{400} \times 10^{3} \\ T = 2, 5 \ ms$$

6.2 Toppvärden

6.2.1 Toppspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$\hat{u} = $	\hat{u}	Toppspänning	Volt	\overline{V}
$U_{eff} \times \sqrt{2}$				

$$\frac{\text{Exempel uträkning toppspänning}}{\hat{u} = U_{eff} \times \sqrt{2}} \\ \hat{u} = 415 \times \sqrt{2} \\ \hat{u} \approx 587 \; V$$

6.2.2 Toppström

Samband	Beteckning	Storhet	Enhet	Förkortning
$\hat{I} =$	\hat{I}	Toppström	Amper	\overline{A}
$I_{eff} \times \sqrt{2}$				

Exempel uträkning toppström
$\hat{I} = I_{eff} \times \sqrt{2}$
$\hat{I} = 20 \times \sqrt{2}$
$\hat{I} \approx 28, 3 A$

6.2. TOPPVÄRDEN

27

6.2.3 Topp till toppspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{\hat{u}} = \hat{u} \times 2$	$\hat{ec{u}}$	Toppspänning	Volt	\overline{V}

Exempel uträkning topp till toppspänning

$$\hat{\tilde{u}} = 587 \times 2$$

$$\hat{\tilde{u}} = 1174 V$$

6.2.4 Topp till toppvärde av ström

$$\hat{\tilde{I}}=\hat{I}\times 2$$

Exemple

$$\hat{\tilde{I}} = \hat{I} \times 2 \approx 28, 3 \times 2 = 56 A$$

Topp till toppvärd är således

$$\hat{\tilde{I}}\approx 56~A$$

Spänning

7.1 Y-Koppling

7.1.1 Linjespänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$U_L =$	U_l	Spänning	Volt	V
$U_f^- \times \sqrt{3}$				

 $\frac{E \text{xempel uträkning fasspänning}}{U_L = U_f \times \sqrt{3}} \\ U_L = 230 \times \sqrt{3} \\ U_L = 400 \ V$

7.1.2 Fasspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$U_f = \frac{U_L}{\sqrt{3}}$	U_l	Spänning	Volt	V

 $\underline{\underline{\text{Exempel uträkning fasspänning}}}$

$$U_f = \frac{U_L}{\sqrt{3}}$$

$$U_f = \frac{400}{\sqrt{3}}$$

Exempel	uträkning	fasspänning
	$U_f = 230$	\overline{V}

7.2 D-koppling

7.2.1 Linjespänning

7.2.2 Fasspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$U_f = U_L = 400V$	U_L	Spänning	Volt	V

Ström

8.1 Y-Koppling

8.1.1 Fasström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I_f = \frac{U_f}{R}$	I_f	Ström	Ampere	A

Exempel	uträkning	fasström
	$I_{f} = \frac{U_{f}}{R}$ $I_{f} \frac{400}{100}$ $I_{f} = 4 A$	

8.1.2 Linjeström

$$I_L = I_f = Fastrm \,$$

8.2 D-koppling

8.2.1 Fasström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I_f = \frac{U_h}{R}$	I_f	Ström	Ampere	A

Exempel uträkning fasström

$$\begin{split} I_f &= \frac{U_h}{R} \\ I_f &\frac{400}{100} \\ I_f &= 4~A \end{split}$$

8.2.2 Linjeström

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{c} I_L = \\ I_f \times \sqrt{3} \end{array}$	I_L	Ström	Ampere	A
$I_f \times \sqrt{3}$ $I_L = P$	I_L	Ström	Ampere	A
$\sqrt{3} \times U_h$				

Exempel uträkning linjeström (1)

$$\begin{split} I_L &= I_f \times \sqrt{3} \\ I_L &= 90 \times \sqrt{3} \\ I_L &= 2, 3~A \end{split}$$

Exempel uträkning linjeström (2)

$$I_{L} = \frac{P}{\sqrt{3} \times U_{h}}$$

$$I_{L} = \frac{6000^{h}}{\sqrt{3} \times 400}$$

$$I_{L} = 8,7 \text{ A}$$

Effekt

9.1 Trefaskretsar

Det finns en formel för beräkning av effekt och strömmar i trefaskretsar som gäller både för Y- och D-koppling. I praktiken är vi oftast intresserade av strömmarna som går i ledarna till en belastning, det vi kallar huvudström. Men i en D-koppling är det fasströmmarna genom belastningen som ger effektutvecklingen. Därför komplettear vi effektformeln med:

 $\sqrt{3}$

som beskriver sambandet mellan huvudström och fasström. Formeln utgör även grunden för beräkningar av effekten i reaktiva belastningar och den kompletteras då med

 $cos\phi$

.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{P_{trefas}} = \\ \sqrt{3} \times U \times \\$	P	Aktiv effekt	Watt	W

 $\frac{\text{Effekt i tre D-kopplade resistorer}}{P_{trefas} = \sqrt{3} \times U \times I_f} \\ P_{trefas} = \sqrt{3} \times U \times I_f} \\ P = 4800 \ W$

9.2 Reaktiva kretsar

9.2.1 Aktiv

Det är den aktivs effekt som vi kan omsätta till ljus, värme eller mekansik rörelse. Aktiva effekten har enheten watt och betecknas med P i effektriangeln.

Samband	Beteckning	Storhet	Enhet	Förkortning
$P = U \times$	P	Aktiv effekt	Watt	\overline{W}
$I \times cos\phi$				
$P_{trefas} =$	P	Aktiv effekt	Watt	W
$\sqrt{3} \times U \times$				
$I \times cos\phi$				

Exempel uträkning aktiv effekt

$$\begin{split} P &= U \times I \times cos\phi \\ P &= 230 \times 0, 78 \times 0, 78 \\ P &= 1640 \; W \end{split}$$

Exempel uträkning aktiv effekt trefas

$$\begin{split} P_{trefas} &= \sqrt{3} \times U \times I \times cos\phi \\ P_{trefas} &= \sqrt{3} \times ? \times ? \times ? \\ P_{trefas} &= W \end{split}$$

9.2.2 Skenbar

Skenbar effekt är produkten av strömmens och spänningens effektvärden. Skenbar effekt har enheten voltampere (VA).

Samband	Beteckning	Storhet	Enhet	Förkortning
S =	S	Skenbar effekt	Voltampere	VA
$U \times I = \\ \sqrt{P^2 + Q^2} \\ S_{trefas} = \\ \sqrt{3} \times U \times I$	S	Skenbar effekt	Voltampere	VA

35

Exempel uträkning skenbar effekt (1)

$$S = U \times I$$

$$S = 230 \times 9,05$$

$$S = 2081 \ W$$

Exempel uträkning skenbar effekt (2)

$$S = \sqrt{P^2 + Q^2} \\ S = \sqrt{2000^2 + 1000^2} \\ S = 2, 2 \; kVA$$

Exempel uträkning skenbar effekt trefas

$$S_{trefas} = \sqrt{3} \times U \times I$$

$$S_{trefas} = \sqrt{3} \times 230 \times 9,05$$

$$S_{trefas} = 2081 \; W$$

9.2.3 Reaktiv

Den reaktiva effekten uppstår på grund av fasförskjutningen som det reaktiva motståndet åstakomer. Den reaktiva effekten har enheten voltampere, VAr. Tillläget r står för reaktiv.

Samband	Beteckning	Storhet	Enhet	Förkortning
$Q = U \times I \times sin\phi = \sqrt{S^2 - P^2}$	Q	Reaktiv effekt	Voltampere reakt	VAr

Exempel uträkning reaktiv effekt (1)

$$\begin{aligned} Q &= U \times I \times sin\phi \\ Q &= U \times I \times sin\phi \\ Q &= VAr \end{aligned}$$

Exempel uträkning reaktiv effekt (2)

$$Q = \sqrt{S^2 - P^2} \\ Q = \sqrt{1000^2 - 607^2}$$

Exempel uträkning reaktiv effekt (2)

Q=795~VAr

Växelströmsmotstånd

10.1 Impedans

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{Z} =$	Z	Impedans	Ohm	Ω
$\sqrt{R^2 + (X_L)^2}$	$(-X_L)^2$			
$R = \frac{U}{I}$	R	Resistans	Ohm	Ω
$X_L =$	X_L	Induktiv	Ohm	Ω
$2\pi f L$		reaktans		
$X_C =$	X_C	kapacitiv	Ohm	Ω
$\begin{array}{c} X_C = \\ \frac{1}{2\pi fC} \end{array}$		reaktans		

$$\frac{Z = \sqrt{R^2 + (X_L)^2}}{Z = \sqrt{20^2 + (15,7)^2}}$$

$$Z = 25,4~\Omega$$

10.2 Kondensatorer

Kondensatorns förmåga att lagra elektrisk laddning kallas kapacitans, och betecknas C. Enheten för kapacitans är farad som betecknas F.

Prefixer	Förkortning	Tiopotens
$\frac{1}{1}$ $mikrofarad$	μF	10^{-6}
$1 \ nanofarad$	nF	10^{-9}

Prefixer	Förkortning	Tiopotens
$\overline{1\ picofarad}$	pF	10^{-12}

10.2.1 Kapacitans

Kapacitans beskriver hur mycket energi kondensatorn kan innehålla vid en viss spänning.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{C} =$	C	Kapacitans	Farad	$F^{As/V}$
$f = \frac{1}{T}$ $2 \times \pi =$ 3.14	$f \\ Pi$	Hertz Omkrets	Hz Radies	π

Exempel uträkning kapacitans

$$L = \frac{L = \frac{X_L}{2\pi f}}{\frac{1000}{(2\times3.14\times1.0\times10^3~\sqrt{3})}} \\ L = 0.16~H$$

10.2.2 Kapacitiv reaktans

Växelströmsmotståndet i kondensatorn minskar när frekvensen ökar. Då kommer ekvationen att minska när frekvesen ökar.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{X_C} = \\ \frac{1}{2\pi fC} \\ f = \frac{1}{T} \\ 2 \times \pi = \end{array}$	X_C	kapacitiv reaktans	Ohm	Ω
$f = \frac{1}{T}$	f	Hertz	Hz	
$2 \times \pi = 3.14$	Pi	Omkrets	Radies	π

Exempel uträkning kapacitiv reaktans

$$\begin{array}{c} X_C = \frac{1}{2\pi f C} \\ X_C = \frac{1}{2\times \pi \times 50 \times 0,0002} \\ X_C = 15,91~\Omega \end{array}$$

10.3. SPOLAR 39

10.2.3 Seriekopplade

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{C_{tot}} =$	C	Kapacitans	Farad	$F^{As/V}$
$C_1 + C_2$				

 $\frac{C_{tot} = C_1 + C_2}{C_{tot} = 12_1 + 12_2}$ $C_{tot} = 24 \ \mu F$

10.2.4 Parallellkopplade

Samband	Beteckning	Storhet	Enhet	Förkortning
$ \frac{\frac{1}{C_{tot}}}{\frac{1}{C_1}} = \frac{\frac{1}{C_1}}{\frac{1}{C_2}} + \frac{1}{C_3} \dots $	C	Kapacitans	Farad	$F^{As/V}$

Exempel uträkning kapacitiv reaktans $\frac{\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots}{\frac{1}{C_{tot}} = \frac{1}{1,8_1} + \frac{1}{16_2} + \frac{1}{32_3}}$ $C_{tot} = 4.5 \ nF$

10.3 Spolar

Spolens egenskaper kallas induktans, betecknas i formler L och mäts i enheten Henry (H).

Prefixer	Enhet	Förkostning
1 millihenry	mH	10^{-3}
$1\ mikrohenry$	μH	10^{-6}

10.3.1 Induktans

Induktansen beror på hur många varv spolen har, diametern, avståndet mellan ledarna och om spolen är försedd med järnkärna. Flera lindningsvarv och större diameter ger spolen större indutans.

Samband	Beteckning	Storhet	Enhet	Förkortning
$L = \frac{X_L}{2\pi f}$ $f = \frac{1}{T}$ $2 \times \pi =$	L	Induktans	Henry	$H^{Vs/A}$
$f = \frac{1}{T}$	f	Frekvens	Hertz	Hz
$2 \times \pi =$	Pi	?	?	π
3.14				

$$L = \frac{X_L}{2 \times \pi f}$$

$$L = \frac{1000}{(2 \times 3.14 \times 1.0 \times 10^3 \ \sqrt{3})}$$

$$L = 0.16 \ H$$

10.3.2 Induktiv reaktans

Växelströmsmotståndet är frekvensberoende och motståndet ökar när frekvensen ökar.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{X_L} = 2\pi f L$	X_L	Induktiv reaktans	Ohm	Ω
$f = \frac{1}{T}$	f	Frekvens	Hertz	Hz
$2 \times \pi = 3.14$	Pi	?	?	π

$$X_L = 2\pi f L$$

$$X_L = 2\times \pi \ 50 \ Hz \times 0,05 \ H$$

$$X_L = 15,7 \ \Omega$$

Bibliography

JJ Allaire, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone. *rmarkdown: Dynamic Documents for R*, 2022. URL https://CRAN.R-project.org/package=rmarkdown. R package version 2.16.

Yihui Xie. bookdown: Authoring Books and Technical Documents with R Markdown, 2022. URL https://CRAN.R-project.org/package=bookdown. R package version 0.29.