UMA201: Combinatorics

Naman Mishra

August 2023

Contents

1	Bijections	1
2	Cardinality	3
3	Binomial Coefficients	5

1 Bijections

Definition 1.1 (Bijection). Let A and B be sets. A function f: $A \to B$ is a *bijection* if it is both injective and surjective.

Notation. $A \sim B$ denotes that there exists a bijection from A to B.

Proposition 1.2 (Reflexivity). For any set $A, A \sim A$.

Proof. Let $f: A \to A$ be the identity function. Then, f is a bijection. \square

Proposition 1.3 (Inverse). Let $f: A \to B$ be a bijection. Then, there exists a unique function $g: B \to A$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

Proof. We define $g \subseteq B \times A$ as

$$g = \{ P \in B \times A \mid \exists a \in A \exists b \in B (P = (b, a) \land (a, b) \in f) \}.$$

We claim that g is a function.

• Let $b \in B$. Since f is surjective, there exists $a \in A$ such that $(a, b) \in f$. Thus, $(b, a) \in g$.

• Let $(b_0, a_0), (b_0, a_1) \in g$. Then, there exist $a, a' \in A$ and $b, b' \in B$ such that $(b_0, a_0) = (b, a), (b_0, a_1) = (b', a'),$ and $(a, b), (a', b') \in f$. But then $b = b' = b_0$. Since f is injective, a = a', and so $a_0 = a_1$.

Let $a \in A$, and let b = f(a). That is, $(a, b) \in f$. Then, $(b, a) \in g$. Thus g(f(a)) = g(b) = a and so $g \circ f = \mathrm{id}_A$.

Let $b \in B$, and let a = g(b). That is, $(b, a) \in g$. Then, $(a, b) \in f$. Thus f(g(b)) = f(a) = b and so $f \circ g = \mathrm{id}_B$.

Suppose $g': B \to A$ is a function such that $g' \circ f = \mathrm{id}_A$. Let $b \in B$. Since f is surjective, there exists $a \in A$ such that f(a) = b. Then, g'(b) = g'(f(a)) = a = g(f(a)) = g(b). Thus, g = g'. This proves the uniqueness.

Theorem 1.4. Let $f: A \to B$ and $g: B \to A$ be functions such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$. Then, f is a bijection.

Proof. Let $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$. Then, $a_1 = g(f(a_1)) = g(f(a_2)) = a_2$. Thus, f is injective.

Let $b \in B$. Then, b = f(g(b)). Thus, f is surjective.

Proposition 1.5 (Symmetry). If $A \sim B$, then $B \sim A$.

Proof. By proposition 1.3 and theorem 1.4.

Proposition 1.6 (Composition). If $f: A \to B$ and $g: B \to C$ are bijections, then $g \circ f: A \to C$ is a bijection.

Proof. Let $a_1, a_2 \in A$ with $g(f(a_1)) = g(f(a_2))$. Since g is injective, $f(a_1) = f(a_2)$. Since f is injective, $a_1 = a_2$. Thus, $g \circ f$ is injective.

Let $c \in C$. Since g is surjective, there exists $b \in B$ such that g(b) = c. Since f is surjective, there exists $a \in A$ such that f(a) = b. Thus, $g \circ f$ is surjective.

Corollary 1.7 (Transitivity). If $A \sim B$ and $B \sim C$, then $A \sim C$.

Theorem 1.8 (Equivalence). \sim is an equivalence relation on any set of sets.

Proof. By propositions 1.2 and 1.5 and corollary 1.7.

Notation.

(i) ω denotes the minimal inductive set.

Theorem 1.9. Let $m, n \in \omega$. Then, $m \sim n$ if and only if m = n.

Proof. We prove this by induction on m. Let

$$U = \{ m \in \omega \mid \forall n \in \omega (m \sim n \iff m = n) \}.$$

We first show that $\varnothing \in U$. Let $n \in \varnothing$ such that $\varnothing \sim n$. Then, there exists a bijection $f: \varnothing \to n$. Since f is surjective, $\forall n_0 \in n \exists m_0 \in \varnothing$ such that $(m_0, n_0) \in f$. But $f \subseteq \varnothing \times n = \varnothing$ and so $f = \varnothing$. Thus $n = \varnothing$.

Now suppose $m \in U$. Let $n \in \omega$ such that $m^+ \sim n$. We know that $m^+ \neq \emptyset$ and so $n \neq \emptyset$ (by the base case). Thus there exists $n^- \in n$ such that $n = (n^-)^+ = n^- \cup \{n^-\}$.

Let f be a bijection from m^+ to n. Then there exists an $m_0 \in m^+$ such that $f(m_0) = n^-$. We have two cases.

$$(m_0 = m)$$
 Let $f' = f \setminus \{(m, n^-)\}.$

$$(m_0 \neq m)$$
 Let $f' = f \setminus \{(m, f(m)), (m_0, n^-)\} \cup \{(m_0, f(m))\}.$

Then, $f': m \to n^-$ is a bijection. Thus by the induction hypothesis, $m = n^-$ and so $m^+ = n$.

By induction,
$$U = \omega$$
.

2 Cardinality

Definition 2.1 (Finite Cardinality). Let A be a set. We say that A is finite if there exists an $n \in \omega$ such that $A \sim n$. We say that the *cardinality* of A is n and write #A = n.

Remarks. n is guaranteed to be unique by theorems 1.8 and 1.9.

Lemma 2.2 (Disjoint Union). Let A and B be disjoint finite sets. Then, $\#(A \cup B) = \#A + \#B$.

Proof. Let n = #A and m = #B. Then, there exist bijections $f: A \to n$

and $g: B \to m$. Let $h: A \cup B \to n + m$ be defined as

$$h(x) = \begin{cases} f(x) & x \in A \\ n + g(x) & x \in B \end{cases}$$

Then, h is a bijection.

Corollary 2.3 (Difference). Let *A* and *B* be finite sets with $B \subseteq A$. Then $\#(A \setminus B) = \#A - \#B$.

Proof.
$$A \setminus B \cup B = A$$
 and $A \setminus B \cap B = \emptyset$. Thus

Theorem 2.4 (Union). Let A and B be finite sets. Then, $\#(A \cup B) = \#A + \#B - \#(A \cap B)$.

Proof. We have $A \cup B = (A \setminus (A \cap B)) \cup B$ where $A \setminus (A \cap B)$ and B are disoint. Thus

$$\#(A \cup B) = \#(A \setminus (A \cap B)) + \#B$$
$$= \#A + \#B - \#(A \cap B).$$

Theorem 2.5 (Product). Let A and B be finite sets with cardinalities n and m respectively. Then, $\#(A \times B) = n \times m$.

Proof. We prove this by induction over m. The case m=0 is trivial.

Let m = 1. Then, $B = \{b\}$ for some b. Let $f = a \in A \mapsto (a, b) \in A \times B$. f is a bijection and so $\#(A \times B) = \#A = n = n \times 1$.

Suppose $m \in \omega \setminus \{0,1\}$ and the theorem holds for m. Let A be a set with cardinality n and B be a set with Cardinality m^+ . Then $B \sim m \cup \{m\}$.

Let $f: m \cup \{m\} \to B$ be a bijection. Consider $B' = B \setminus f(m)$. Then, $B' \sim m$ and so $\#(A \times B') = n \times m$.

We have

$$A\times B=\{x\in\mathscr{P}(\mathscr{P}(A\cup B))\mid \exists\ a\in A\exists\ b\in B(x=(a,b))\}$$

and

$$A \times B' = \{ x \in \mathscr{P}(\mathscr{P}(A \cup B)) \mid \exists \ a \in A \exists \ b \in B'(x = (a, b)) \}.$$
$$A \times \{ f(m) \} = \{ x \in \mathscr{P}(\mathscr{P}(A \cup B)) \mid \exists \ a \in A(x = (a, f(m))) \}.$$

We first note that $A \times B'$ and $A \times \{f(m)\}$ are disjoint. This is since $x \in A \times \{f(m)\}$ implies x = (a, f(m)) for some $a \in A$, but $f(m) \notin B'$ and so $x \notin A \times B'$.

We now prove that $A \times B = (A \times B') \cup (A \times \{f(m)\}).$

- Let $x \in A \times B$. Then there exist $a \in A$ and $b \in B$ such that x = (a, b). If $b \in B'$, then $x \in A \times B'$. Else b = f(m) and so $x \in A \times \{f(m)\}$.
- Let $x \in (A \times B') \cup (A \times \{f(m)\})$. Then $x \in A \times B'$ or $x \in A \times \{f(m)\}$. In either case, $x \in A \times B$.

Thus

$$A \times B = (A \times B') \cup (A \times \{f(m)\})$$

$$\#(A \times B) = \#(A \times B') + \#(A \times \{f(m)\})$$

$$= n \times m + n$$

$$= n \times m^{+}.$$

By induction, the theorem holds for all $m \in \omega$.

Theorem 2.6 (Power Set). Let A be a finite set with cardinality n. Then, $\#\mathscr{P}(A) = 2^n$.

3 Binomial Coefficients

Definition 3.1. The number of subsets of n with cardinality k is denoted by $\binom{n}{k}$ and is called "n choose k".

Lemma 3.2. For any $n \in \mathbb{N}$, $k \in [0..n]$,

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Proof. Let A_j be the set of subsets of n with cardinality j. Let B_j be the set of subsets of n+1 with cardinality j.

Note that for $i \neq j$, $A_i \cap A_j = \emptyset$. Let $f: A_k \cup A_{k+1} \to B_{k+1}$ be defined as

$$f(S) = \begin{cases} S \cup \{n\} & S \in A_k \\ S & S \in A_{k+1} \end{cases}$$

and let $g: B_{k+1} \to A_k \cup A_{k+1}$ be defined as

$$g(T) = T \setminus \{n\}.$$

Let $h = g \circ f$. Then

$$h(S) = \begin{cases} S \cup \{n\} & S \in A_k \\ S & S \in A_{k+1} \end{cases} \setminus \{n+1\}$$
$$= \begin{cases} S & S \in A_k \\ S & S \in A_{k+1} \end{cases}$$
$$= S.$$

Thus f is an injection.

Let $T \in B_{k+1}$. If $n \notin T$, then $T \in A_{k+1}$ and so f(T) = T. If $n \in T$, then $T \setminus \{n\} \in A_k$ and so $f(T \setminus \{n\}) = T$. Thus f is a surjection.

Therefore f is a bijection and so $\#(A_k \cup A_{k+1}) = \#B_{k+1}$. Since $A_k \cap A_{k+1} = \emptyset$,

$$\#(A_k \cup A_{k+1}) = \#A_k + \#A_{k+1}$$

$$\#B_{k+1} = \#A_k + \#A_{k+1}$$

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}.$$

Theorem 3.3 (Binomial Expansion). For any $n \in \mathbb{N}$,

$$(1+x)^n = \sum_{j=0}^n \binom{n}{j} x^j.$$

Proof. Let P(n) be the given statement for some n. For n=0, the statement is trivial.

Suppose P(k) is true. Then

$$(1+x)^{k+1} = (1+x)(1+x)^k$$

$$= (1+x)\sum_{j=0}^k \binom{k}{j}x^j$$

$$= \sum_{j=0}^k \binom{k}{j}x^j + \sum_{j=0}^k \binom{k}{j}x^{j+1}$$

$$= \binom{k}{0}x^0 + \sum_{j=1}^k \binom{k}{j}x^j + \sum_{j=1}^k \binom{k}{j-1}x^j + \binom{k}{k}x^{k+1}$$

$$= \binom{k+1}{0}x^0 + \sum_{j=1}^k \left[\binom{k}{j} + \binom{k}{j-1}\right]x^j + \binom{k+1}{k+1}x^{k+1}$$

$$= \sum_{j=0}^{k+1} \binom{k+1}{j}x^j.$$

Thus, P(k+1) is true.

By induction, P(n) is true for all $n \in \mathbb{N}$.