HW3 (Corrections) (CSCI-C241)

Lillie Donato

4 February 2024

	O	\sim
•	Question	(Ino
•	Question	One

-1c

This proof is valid

- 1e

This proof is not valid, as they are doing proof by cases, with cases that are part of an implication premise (meaning it's something that they do not have).

• Question Two

-2d

Claim:
$$(A \land B) \to C, B \vdash (A \land \neg D) \to (C \land \neg D)$$

Goal: $(A \land \neg D) \to (C \land \neg D)$

Pf: Assume $(A \wedge B) \rightarrow C, B$.

- 1. Subproof
- 2. Assume $A \wedge \neg D$.
- 3. From $A \wedge \neg D$, we can conclude A and $\neg D$. $(\wedge Elimination)$
- 3. From A and B, we can conclude $A \wedge B$. $(\wedge Introduction)$
- 4. From $A \wedge B$, we can apply $(A \wedge B) \rightarrow C$ and conclude C. (Application)
- 5. From C and $\neg D$, we can conclude $C \wedge \neg D$. $(\wedge Introduction)$
- 6. Under the assumption of $A \wedge \neg D$, we proved C and $\neg D$. (Direct Proof)

-2g

Claim:
$$\vdash (X \land (X \to (Z \land Y))) \to (X \land Y)$$

Goal: $(X \land (X \to (Z \land Y))) \to (X \land Y)$

Proof.

- $1. \quad Subproof$
- 2. Assume $X \wedge (X \to (Z \wedge Y))$
- 3. From $X \wedge (X \to (Z \wedge Y))$ we can conclude X and $X \to (Z \wedge Y)$ $(\wedge Elimination)$
- 4. From X we can apply $X \to (Z \wedge Y)$ and conclude $Z \wedge Y$. (Application)
- 5. From $Z \wedge Y$ we can conclude Y. $(\wedge Elimination)$
- 6. From X and Y we can conclude $X \wedge Y$. $(\wedge Introduction)$
- 7. Under the assumption $X \wedge (X \to (Z \wedge Y))$, we proved $(X \wedge Y)$,

therefore $(X \land (X \to (Z \land Y))) \to (X \land Y)$ (Direct Proof)