Contents

1	A two layer model	1
	1.1 Equations and assumptions	1
	1.2 Analytic solution for the upper canopy	2
	1.3 A modified logistic equation for the lower canopy	3
2	Stability	4
	2.1 Stability: conditions to sustain upper canopy biomass	4
	2.2 Stability: Relating return interval and severity for the upper canopy	5
	2.3 Stability: maximum return interval for a lower canopy	
	2.4 \hat{G}_l along the $\xi - \phi_S$ curves of constant \hat{G}_u	6
3	Potential feedbacks	7
	3.1 Modify ignition probability to decrease with increasing S	7
4	Soil moisture	8
	4.1 How does biomass change with decreasing soil moisture?	8
5	Estimating parameters	9
	5.1 Estimating growth rates from timescales	9
6	Non-dimensionalize	9
7	How close does G_u get to k_u ?	10
	7.1 G_u approaches k_u leading up to each fire. How close does it get?	10

1 A two layer model

1.1 Equations and assumptions

The equations for the upper and lower canopies are:

$$\frac{dG_u}{dt} = r_u S^{\beta} G_u \left(1 - \frac{G_u}{k_u} \right) \tag{1}$$

$$\frac{dG_l}{dt} = r_l S^{\beta} G_l \left(1 - \frac{G_l}{k_l} \right) - \alpha G_u G_l, \tag{2}$$

where subscripts indicate the canopy level, G is the biomass density, r is the growth rate, k is the carrying capacity, and α is a competition parameter, which effects the lower canopy only.

A vegetation growth limiting factor, S^{β} , slows the biomass growth rates as soil moisture decreases; this effect increases with increasing β .

Assume that fires occur with fixed return interval ξ and severity ϕ_S . The biomass immediately before each fire $(G_{u,max})$ and immediately after (G_{uo}) are related as:

$$\frac{G_{u,max}}{G_{uo}} = \frac{1}{\phi_R} \tag{3}$$

where ϕ_R is the proportion of biomass that remains after each fire. Defining fire severity as $\phi_S = 1 - \phi_R$:

$$\frac{G_{u,max}}{G_{uo}} = 1 - \frac{1}{\phi_S} \tag{4}$$

1.2 Analytic solution for the upper canopy

Equation 1 is the logistic equation, and has an analytic solution:

$$G_u = \frac{k_u G_{uo}}{G_{uo} + (k_u - G_{uo})e^{-r'_u t}}$$
 (5)

where G_{uo} is the initial biomass, and $r'_u = r_u S^{\beta}$ combines the growth rate and growth-limiting factor into an 'effective' growth rate.

If time is measured as the time since the previous fire, then $G_u(t=0) = G_{uo}$ and $G_u(t=\xi) = G_{u,max}$ (once the system is in a dynamic steady state):

$$\frac{G_{u,max}}{G_{uo}} = \frac{1}{\phi_R} = \frac{k_u}{G_{uo} + (k_u - G_{uo})e^{-r'_u\xi}}$$
(6)

Solving for G_{uo} :

$$G_{uo} = k_u \frac{\phi_R - e^{-r_u'\xi}}{1 - e^{-r_u'\xi}} \tag{7}$$

Or, in terms of severity:

$$G_{uo} = k_u \frac{1 - \phi_S - e^{-r'_u \xi}}{1 - e^{-r'_u \xi}} \tag{8}$$

Mean upper canopy biomass

Integrate Equation 5 to get average G_u :

$$\int_{G_{uo}}^{G_{u,max}} G_u dt = \int_0^{\xi} \frac{k_u G_{uo}}{G_{uo} + (k_u - G_{uo})e^{-r'_u t}} dt$$

$$=\frac{k_u}{r_u'}\log\left(|G_{uo}-G_{uo}e^{r_u'\xi}-k_u|\right)-\frac{k_u}{r_u'}\log\left(|-k_u|\right),\,$$

which simplifies to:

$$\int_{G_{uo}}^{G_{u,max}} G_u dt = \frac{k_u}{r'_u} \log \left(1 + \frac{G_{uo}}{k_u} (e^{r'_u \xi} - 1) \right)$$

Once the system is in dynamic equilibrium, the mean upper canopy biomass \hat{G}_u is:

$$\hat{G}_{u} = \frac{k_{u}}{r'_{u}\xi} \log \left(1 + \frac{G_{uo}}{k_{u}} (e^{r'_{u}\xi} - 1) \right)$$
(9)

Substitute Equation 8 and simplify:

$$\hat{G}_u = \frac{k_u}{r_u'\xi} \log\left(1 + \frac{1 - \phi_S - e^{-r_u'\xi}}{1 - e^{-r_u'\xi}} (1 - e^{-r_u'\xi})\right)$$
(10)

$$\hat{G}_u = k_u \left(1 + \frac{1}{r_u' \xi} \log(1 - \phi_S) \right) \tag{11}$$

1.3 A modified logistic equation for the lower canopy

The equation for the lower canopy is:

$$\frac{dG_l}{dt} = r_l S^{\beta} G_l \left(1 - \frac{G_l}{k_l} \right) - \alpha G_u G_l \tag{12}$$

Since we have an analytic solution for \hat{G}_u , we can modify the logistic equation to solve for \hat{G}_l . Rewrite G_l in logistic equation form:

$$\frac{dG_l}{dt} = r_l' \left(1 - \frac{G_l}{k_l'} \right) \tag{13}$$

where $r'_l = r_l S^{\beta} - \alpha \hat{G}_u$ and $k'_l = k_l r'_l / r_l S^{\beta}$.

The analytic solution for G_{uo} (Equation 8) can then be used to estimate G_l after the fire:

$$G_{lo} = k_l' \frac{1 - \phi_S - e^{-r_l'\xi}}{1 - e^{-r_l'\xi}} \tag{14}$$

Similarly, the analytic solution for the mean biomass (Equation 11) can be used to estimate \hat{G}_l :

$$\hat{G}_l = k_l' \left(1 + \frac{1}{r_l' \xi} \log(1 - \phi_S) \right)$$
 (15)

Substitute \hat{G}_u (Equation 11) into $r'_l = r_l S^{\beta} - \alpha \hat{G}_u$ to get the modified growth rate:

$$r'_{l} = r_{l}S^{\beta} - \alpha k_{u} \left(1 + \frac{1}{r'_{u}\xi} \log(1 - \phi_{S}) \right)$$

$$\tag{16}$$

And similarly for $k'_l = k_l r'_l / r_l S^{\beta}$:

$$k_l' = \frac{k_l}{r_l S^{\beta}} \left[r_l S^{\beta} - \alpha k_u \left(1 + \frac{1}{r_u' \xi} \log(1 - \phi_S) \right) \right]$$

$$\tag{17}$$

Which simplifies to:

$$k_l' = k_l \left[1 - \frac{\alpha k_u}{r_l S^{\beta}} \left(1 + \frac{1}{r_u' \xi} \log(1 - \phi_S) \right) \right]$$

$$\tag{18}$$

2 Stability

2.1 Stability: conditions to sustain upper canopy biomass

Requiring that $\hat{G}_u > 0$ in Equation 11 yields:

$$\phi_S < 1 - e^{-r_u S^{\beta} \xi} \tag{19}$$

In terms of return time:

$$\xi > -\frac{1}{r_u S^{\beta}} \log(1 - \phi_S) \tag{20}$$

For lower growth rates, a longer return interval is needed to sustain biomass. Increasing β and/or decreasing S lowers the effective upper canopy growth rate

Figure 1: As β increases (left) or S decreases (right), the effective growth rate r'_u decreases, and so the minimum RI to sustain biomass increases.

If $\beta > 0$, a longer return time is needed for lower soil moisture conditions:

Rearranging to find the minimum soil moisture to sustain the upper canopy:

$$S > \left(-\frac{1}{r_u \xi} \log(1 - \phi_S)\right)^{1/\beta} \tag{21}$$

$$\hat{G}_{u} = \begin{cases} k_{u} \left(1 + \frac{1}{r'_{u}\xi} \log(1 - \phi_{S})\right) & \text{if } S > \left(-\frac{1}{r_{u}\xi} \log(1 - \phi_{S})\right)^{1/\beta} \\ 0 & \text{otherwise} \end{cases}$$
(22)

2.2 Stability: Relating return interval and severity for the upper canopy Suppose $\hat{G}_u = \gamma k_u$, where $\gamma < 1$. From Equation 11:

$$\gamma = 1 + \frac{1}{r_u'\xi} \log(1 - \phi_S) \tag{23}$$

$$\xi = -\frac{1}{r_u'(1-\gamma)}\log(1-\phi_S)$$
 (24)

Rearranging for ϕ_S :

$$\phi_S = 1 - e^{-\xi r_u'(1-\gamma)} \tag{25}$$

Figure 2: The relationship between \hat{G}_u and k_u constrains that between RI and severity, and vice versa.

2.3 Stability: maximum return interval for a lower canopy

Equation 15 can be used to estimate the conditions for which $\hat{G}_l > 0$:

$$\hat{G}_l = k_l' \left(1 + \frac{1}{r_l' \xi} \log(1 - \phi_S) \right) > 0$$
 (26)

$$\frac{1}{r_l'\xi}\log(1-\phi_S) > -1\tag{27}$$

With some math:

$$\xi > -\frac{\log(1 - \phi_S)}{r_u S^{\beta}} \frac{\alpha k_u - r_u S^{\beta}}{\alpha k_u - r_l S^{\beta}}$$
(28)

In cases where $\alpha k_u - r_l S^{\beta} < 0$, there is no maximum ξ to sustain G_l . Figure 3 shows example stability curves for \hat{G}_l with varying β .

Figure 3: The maximum return interval for which a lower canopy is observed is complicated. (A) The lower canopy is more stable for higher severity fires; (B): If α is small, \hat{G}_u is stability for small beta; the opposite is observed for large α

Figure 4: The lower canopy stability is sensitive to r_l . As lower canopy growth rate decreases, so does the range of values for which $\hat{G}_l > 0$,

2.4 \hat{G}_l along the $\xi - \phi_S$ curves of constant \hat{G}_u

Does G_l vary along the $\xi - \phi_S$ curves of constant upper canopy \hat{G}_u ? Specifying that $\hat{G}_u = \gamma k_u$ implies the relation between ϕ_S and ξ :

 $\phi_S = 1 - e^{-\xi r_u'(1 - \gamma)}$

Rearranging:

$$\frac{\log(1-\phi_S)}{r_u'\xi} = -(1-\gamma) \tag{29}$$

Substituting this constraint into the equations for r'_l and k'_l :

$$r_l' = r_l S^{\beta} - \alpha k_u \gamma \tag{30}$$

$$k_l' = k_l \left(1 - \frac{\alpha k_u \gamma}{r_l S^{\beta}} \right) \tag{31}$$

Substituting r'_l and k'_l into the equation for \hat{G}_l :

$$\hat{G}_{l} = k'_{l} \left(1 - \frac{(1 - \gamma)r'_{u}}{r'_{l}} \right)$$
(32)

$$\hat{G}_l = k_l \left(1 - \frac{\alpha k_u \gamma}{r_l S^{\beta}} \right) \left(1 - \frac{(1 - \gamma) r_u S^{\beta}}{(r_l S^{\beta} - \alpha k_u \gamma)} \right)$$
(33)

$$\hat{G}_l = k_l \left(1 - \frac{\alpha k_u \gamma - (1 - \gamma) r_u S^{\beta}}{r_l S^{\beta}} \right)$$
(34)

Above, by specifying that $\hat{G}_u = \gamma k_u$, \hat{G}_l does not depend on return interval or severity.

3 Potential feedbacks

3.1 Modify ignition probability to decrease with increasing S

Suppose the probability of ignition is: $p = \frac{1-S}{\xi}$.

The effective return time will be: $\xi' = \frac{\xi}{1-S}$, and the equation for \hat{G}_u becomes:

$$\hat{G}_u = k_u \left(1 + \frac{(1-S)}{r_u S^{\beta} \xi} \log(1 - \phi_S) \right)$$
 (35)

4 Soil moisture

4.1 How does biomass change with decreasing soil moisture?

The derivative of \hat{G}_u with respect to soil moisture is:

$$\frac{d\hat{G}_u}{dS} = \begin{cases}
\frac{-\beta k_u}{r_u \xi} \log(1 - \phi_S) S^{-(1+\beta)} & \text{if } S > \left(-\frac{1}{r_u \xi} \log(1 - \phi_S)\right)^{1/\beta} \\
0 & \text{otherwise}
\end{cases}$$
(36)

For the lower canopy, the derivative is:

$$\frac{d\hat{G}_l}{dS} = \begin{cases}
\frac{\beta k_l}{r_l r_u} S^{-2\beta - 1} \left(r_u S^{\beta} (\alpha k_u - Z) + 2Z \alpha k_u \right) & \text{if } S > \left(-\frac{1}{r_l \xi} \log(1 - \phi_S) \right)^{1/\beta} \\
\frac{-\beta k_l}{r_l \xi} \log(1 - \phi_S) S^{-1-\beta} & \text{otherwise}
\end{cases}$$
(37)

where

$$Z = \frac{\log(1 - \phi_S)}{\xi} \tag{38}$$

 \hat{G}_l has a minimum value where:

$$\left(r_u S^{\beta}(\alpha k_u - Z) + 2Z\alpha k_u\right) = 0 \tag{39}$$

Rearranging:

$$S^{\beta} = \frac{-2Z\alpha k_u}{r_u(\alpha k_u - Z)} \tag{40}$$

Using the definition of Z:

$$S^{\beta} = \frac{-2\log(1 - \phi_S)\alpha k_u}{r_u(\alpha k_u \xi - \log(1 - \phi_S))}$$

$$\tag{41}$$

The numerator and denominator are both always positive (because $\log(1 - \phi_S) < 0$), so we expect a minima in \hat{G}_l for $\alpha > 0$.

 $\frac{dG_l}{dS}$ has a discontinuity at $S = \left(-\frac{1}{r_l \xi} \log(1 - \phi_S)\right)^{1/\beta}$, where G_l has a maximum value.

5 Estimating parameters

5.1 Estimating growth rates from timescales

Estimate the growth rates from the times for an isolated canopy to grow from ak_u to bk_u , where a and b are constants less than 1. Substituting into the logistic equation solution (with $G_uo = ak_u$):

$$bk_{u} = \frac{k_{u}ak_{u}}{ak_{u} + (k_{u} - ak_{u})e^{-r_{u}\tau}}$$
(42)

where τ is the timescale to mature.

$$b(ak_u + (k_u - ak_u)e^{-r_u\tau}) = ak_u \tag{43}$$

$$b(a + (1 - a)e^{-r'_u t}) = a (44)$$

$$r_u = -1/\tau \log\left(\frac{a(1-b)}{(1-a)}\right) \tag{45}$$

With a = 0.1 and b = 0.9, then $r_u \approx 4.5/\tau$.

Estimate, growth rates from timescale to mature:

• conifer : $\tau = 30, r = 0.15$

• shrubs : $\tau = 10, r = 0.45$

• meadow : $\tau = 3, r = 1.50$

• grassland : $\tau = 3$, r = 1.50

6 Non-dimensionalize

The equations for the upper and lower canopies:

$$\frac{dG_u}{dt} = r_u S^{\beta} G_u \left(1 - \frac{G_u}{k_u} \right)$$

$$\frac{dG_l}{dt} = r_l S^{\beta} G_l \bigg(1 - \frac{G_l}{k_l} \bigg) - \alpha G_l G_u$$

Non-dimensionalize the upper canopy:

$$\frac{dG_u}{dt} = \frac{r_u S^{\beta}}{r_u S^{\beta}} \frac{G_u}{dt} = r_u S^{\beta} \frac{G_u}{d(r_u S^{\beta} t)} = r_u S^{\beta} \frac{G_u}{d\tau}$$

where $\tau = r_u S^{\beta} t$. Simplifying:

$$\frac{dG_u}{d\tau} = G_u \left(1 - \frac{G_u}{k_u} \right)$$

Let $g_u = G_u/k_u$, or $G_u = k_u g_u$. Then:

$$\frac{dg_u}{d\tau} = g_u \bigg(1 - g_u \bigg)$$

Moving on to the lower canopy. Substituting τ for t:

$$r_u S^{\beta} \frac{dG_l}{d\tau} = r_l S^{\beta} G_l \left(1 - \frac{G_l}{k_l} \right) - \alpha G_l G_u$$

Let $g_l = G_l/k_l$, or $G_l = k_l g_l$. Then:

$$r_u S^{\beta} \frac{dg_l}{d\tau} = r_l S^{\beta} k_l g_l (1 - g_l) - \alpha g_l k_l g_u k_u$$

$$\frac{dg_l}{d\tau} = \frac{r_l}{r_u} g_l (1 - g_l) - \frac{\alpha k_u}{r_u S^{\beta}} g_l g_u$$

So the dimensionless groups are r_l/r_u and $\alpha k_u/S_{\beta}r_u$, which are a generalized growth rate and competition, respectively. The rescaled time also need to be factored in: $\tau = r_u S^{\beta}t$

We have several fixed parameters: $k_u = 20$, $r_u = 0.25$, S = 0.21.

 α ranges from 0 (no competition) to 0.1, β ranges from 0 (no soil moisture feedback) to 1, S^{β} ranges from 1 to 0.21

let $r = r_l/r_u$ and $\phi = \alpha k_u/S_\beta r_u$,

if r_l ranges from 0.25 to 2.5, r ranges from 1 to 10.

7 How close does G_u get to k_u ?

7.1 G_u approaches k_u leading up to each fire. How close does it get?

The pre-fire biomass is:

$$G_{u,max} = \frac{k_u}{1 - \phi_S} \frac{1 - \phi_S - e^{-r_u'\xi}}{1 - e^{-r_u'\xi}}$$
(46)

Expanding:

$$G_{u,max} = k_u \frac{1 - \phi_S - e^{-r'_u \xi}}{1 - \phi_S - e^{-r'_u \xi} + \phi_S e^{-r'_u \xi}}$$
(47)

Define x as:

$$x = \frac{\phi_S e^{-r_u'\xi}}{1 - \phi_S - e^{-r_u'\xi}} \tag{48}$$

so $G_{u,max} = k_u/(1+x)$:

$$G_{u,max} = k_u \frac{1}{1 + \frac{\phi_S e^{-r_u' \xi}}{1 - \phi_S - e^{-r_u' \xi}}}$$
(49)

 $G_{u,max} \sim k_u$ when x is very small. Suppose $G_{u,max} = \gamma k_u$, where γ is close to but less than one.

$$k_u/(1+x) = \gamma k_u \tag{50}$$

Rewriting as $x = 1/\gamma - 1 = C$ (where C > 0):

$$\frac{\phi_S e^{-r_u'\xi}}{1 - \phi_S - e^{-r_u'\xi}} = 1/\gamma - 1 = C \tag{51}$$

$$\phi_S e^{-r'_u \xi} = C(1 - \phi_S - e^{-r'_u \xi}) \tag{52}$$

Rearranging gives:

$$\phi_S = \frac{C(1 - e^{-r_u'\xi})}{C - e^{-r_u'\xi}} \tag{53}$$

This is an expression for the severity ϕ_S at which $G_u = \gamma k_u$.

Rearranging, the expression for ξ is:

$$\xi = \frac{1}{r_u'} \log \frac{C + \phi_S}{C(1 - \phi_S)} \tag{54}$$

In the limit that $G_u = k_u$, C = 0; Equation 53 yields $\phi_S = 0$, and Equation 54 yields $\xi \to \inf$.

Lower canopy equilibrium

As an alternative approach, what if the lower canopy is in dynamic equilibrium with the upper canopy? The lower canopy biomass is constant $\left(\frac{dG_l}{dt} = 0\right)$ if:

$$r_l S^{\beta} G_l \left(1 - \frac{G_l}{k_l} \right) = \alpha G_{u,max} G_l \tag{55}$$

Solving for G_l :

$$G_{l,eq} = k_l \left(1 - \frac{\alpha G_{u,max}}{r_l S^{\beta}} \right) \tag{56}$$

where $G_{l,eq}$ denotes the equilibrium value for G_l .

From Equation 8:

$$G_{u,max} = \frac{k_u}{(1 - \phi_S)} \frac{1 - \phi_S - e^{-r_u'\xi}}{1 - e^{-r_u'\xi}}$$
(57)

Substituting, the equation is messy:

$$G_{l,eq} = k_l \left(1 - \frac{\alpha k_u}{r_l S^{\beta}} \frac{(1 - \phi_S - e^{-r'_u \xi})}{(1 - \phi_S)(1 - e^{-r'_u \xi})} \right)$$
 (58)

If $G_{l,eq} > 0$, we expect the lower canopy biomass to approach this value in advance of each fire. However, if $G_{l,eq} = 0$, lower canopy biomass may still be present because the system is out of equilibrium! Estimate a stability boundary as:

$$\frac{\alpha G_{u,max}}{r_l S^{\beta}} < 1 \tag{59}$$

Substituting for $G_{u,max}$:

$$\frac{\alpha}{r_l S^{\beta}} \frac{k_u}{(1 - \phi_S)} \frac{1 - \phi_S - e^{-r_u' \xi}}{1 - e^{-r_u' \xi}} < 1 \tag{60}$$

And solving for severity as a function for ξ :

$$\phi_S < 1 - \frac{\alpha k_u e^{-r_u'\xi}}{\alpha k_u - r_l S^{\beta} (1 - e^{-r_u'\xi})} \tag{61}$$