Cálculo diferencial e integral I Resolución de Problemas de Supremo e Ínfimo

Vite Riveros Carlos Emilio

20 octubre del 2022

1. Sea $S \subseteq \mathbb{R}$ un conjunto no vacío. Demostrar que $u \in \mathbb{R}$ es una cota superior de S si y sólo si las condiciones: $t \in \mathbb{R}$ y t > u, implican que $t \notin S$.

Proof. Primero demostraremos que $t \notin S$. Sabemos que t > u y que por hipótesis u es cota superior de S. Por definición de cota superior, sabemos que $\forall x \in S, x \leq u$, y como u < t, tenemos entonces:

$$\forall x \in S, \ x \le u < t$$
$$\forall x \in S, \ x < t$$

Por lo que concluimos que t es una cota superior y que $t \notin S$ al ser estrictamente mayor que cualesquiera elemento de S.

Ahora demostraremos que u es cota superior de S, sabiendo que t>u. Por hipótesis, sabemos que $t\notin S$.

2. Sea S un subconjunto no vacío de \mathbb{R} que está acotado inferiormente. Demostrar que el conjunto $-S = \{-s | s \in S\}$ está acotado superiormente y que:

$$\inf(S) = -\sup(-S)$$

3. (6.) Sean S y S_0 subconjuntos no vacíos de \mathbb{R} tales que $S_0 \subseteq S \subseteq \mathbb{R}$ y S acotado superior e inferiormente. Demostrar que:

$$\inf(S) \le \inf(S_0) \le \sup(S_0) \le \sup(S)$$

4. (8.) Si $S = \{\frac{1}{n} - \frac{1}{m} | : n, m \in \mathbb{N} \}$, demuestre que S está acotado superior e inferiormente y encuentre $\inf(S)$ y $\sup(S)$. Pruebe su respuesta.