CS 171: Discussion Section 11 (April 15)

1 Zero-Knowledge Protocol for Graph Isomorphism

Two graphs are **isomorphic** if it is possible to permute the vertices of one graph to obtain the other graph.

Let G = (V, E) be a graph with n vertices: $V = \{1, ..., n\} = [n]$. Let $\pi : [n] \to [n]$ be a permutation of the vertices. We can define a permutation of the graph as follows¹: $\pi(G) = (V', E')$ is a graph with vertex set V' = V and edge set

$$E' = \{(u, v) \in V \times V : (\pi^{-1}(u), \pi^{-1}(v)) \in E\}$$

In other words, applying π to the vertices of G produces the graph $\pi(G)$.

Definition 1.1 (Isomorphic Graphs). Two graphs G_0 and G_1 are **isomorphic** (notated as $G_0 \simeq G_1$) if they have the same number of vertices n, and there exists a permutation $\pi^* : [n] \to [n]$ such that

$$G_0 = \pi^*(G_1)$$

Question: Give a zero-knowledge proof system for the language of isomorphic graphs $\mathcal{L} = \{(G_0, G_1) : G_0 \simeq G_1\}$. Prove that the scheme satisfies completeness, soundness, and zero-knowledge.

1.1 Definitions

Let (P, V) be the honest prover and honest verifier, respectively. They follow the protocol. Let P^* and V^* be a dishonest prover and verifier, respectively, who may deviate from the protocol. Also, let $\lambda \in \mathbb{N}$ be the security parameter.

Completeness says that a valid proof will be accepted with overwhelming probability.

Definition 1.2 (Completeness). The protocol satisfies **completeness** if when P and V interact and their inputs satisfy $G_0 = \pi^*(G_1)$, then the verifier will accept the proof with probability $\geq 1 - \mathsf{negl}(\lambda)$.

Soundness says that if $G_0 \not\simeq G_1$, then no adversarial prover will be able to "trick" the verifier into accepting the proof with greater than negligible probability.

Definition 1.3 (Soundness). The protocol satisfies **soundness** if for any adversarial prover P^* , when P^* and V interact and their inputs satisfy $G_0 \not\simeq G_1$, then the verifier will accept the proof with probability $\leq \mathsf{negl}(\lambda)$.

¹It's technically an abuse of notation to write $\pi(G)$ since π was defined to take a vertex as input, not a graph, but we'll do it anyways.

Zero-Knowledge

Zero-knowledge says that an adversarial verifier cannot learn anything about π^* during the protocol because the information available to the verifier (their view) can be simulated without knowledge of π^* .

To make this definition more formal, let's establish some notation.

- Let V^* be an adversarial verifier for the proof system that may deviate from the protocol in order to try to learn something about π^* . V^* runs in polynomial time.
- Let the verifier's **view**, $\text{view}(V^*; 1^{\lambda}, G_0, G_1, \pi^*)$, be a list of the verifier's inputs $(1^{\lambda}, G_0, G_1)$ and any messages sent to or from the verifier during the protocol, when the protocol has inputs $(1^{\lambda}, G_0, G_1, \pi^*)$.
- Let the simulator Sim be an algorithm that tries to simulate the verifier's view given only $(1^{\lambda}, G_0, G_1)$. Note that Sim is not given π^* .

Next, Sim is given black-box access to V^* (notated as Sim^{V^*}). This means Sim can run V^* on any inputs of its choice and rewind V^* to any step, but it cannot modify the internal workings of V^* .

Finally, the expected value of Sim's runtime should be polynomial in the size of Sim's inputs.

• Let the distinguisher D be an algorithm that outputs a bit and tries to distinguish the verifier's real view from the one produced by the simulator.

Informally, the protocol satisfies **zero-knowledge** if whenever $G_0 = \pi^*(G_1)$, the distinguisher cannot distinguish the real view from the simulated view.

Here is a more-formal definition:

Definition 1.4 (Black-Box Zero-Knowledge). The protocol satisfies (black-box) **zero-knowledge** if there exists a simulator Sim such that for any V^* and any inputs $(1^{\lambda}, G_0, G_1, \pi^*)$ that satisfy $G_0 = \pi^*(G_1)$ and any distinguisher D:

$$\left| \Pr \left[D \left(\mathsf{view}(V^*; 1^\lambda, G_0, G_1, \pi^*) \right) \to 1 \right] - \Pr \left[D \left(\mathsf{Sim}^{V^*}(1^\lambda, G_0, G_1) \right) \to 1 \right] \right| \leq \mathsf{negl}(\lambda)$$

2 Polynomial Commitments

Question: Prove that the KZG commitment scheme is not hiding.

2.1 The KZG Commitment Scheme

- 1. Setup (1^n) :
 - (a) Set up a bilinear map by sampling

$$pp = (\mathbb{G}, \mathbb{G}_T, q, g, e) \leftarrow \mathcal{G}(1^n)$$

- (b) Sample $\tau \leftarrow \mathbb{Z}_q^*$.
- (c) Finally, output

$$\mathsf{srs} = \left(\mathsf{pp}, g^{\tau}, g^{(\tau^2)}, \dots, g^{(\tau^{d-1})}\right)$$

- 2. Commit(f, srs):
 - (a) Let f be a polynomial $\in \mathbb{Z}_q[X]$ of degree $\leq d-1$:

$$f(X) = \sum_{i=0}^{d-1} c_i \cdot X^i$$

where every $c_i \in \mathbb{Z}_q$.

(b) Compute and output the commitment:

$$F = \prod_{i=0}^{d-1} \left(g^{(\tau^i)} \right)^{c_i}$$
$$= g^{f(\tau)}$$

- 3. Open:
 - (a) Let $z \in \mathbb{Z}_q$ be an input on which to open the commitment, and let s = f(z). Now the sender will prove that s = f(z).
 - (b) The sender computes the polynomial:

$$t(X) := \frac{f(X) - s}{X - z}$$

and a commitment $T = \mathsf{Commit}(t, \mathsf{srs})$. Then they send (z, s, T) to the receiver.

(c) The receiver accepts the opening if and only if:

$$e(F \cdot g^{-s}, g) = e(T, g^{\tau} \cdot g^{-z})$$

$$(2.1)$$

Note that equation 2.1 is satisfied if and only if:

$$e(g^{f(\tau)-s}, g) = e(g^{(f(\tau)-s)/(\tau-z)}, g^{\tau-z})$$
$$f(\tau) - s = t(\tau) \cdot (\tau - z)$$