24 PIZES FPATMATIKONAPIOMON

TETPATONKHPIZA

Εσαγωγικά - ορισμός

Στο Γυμνάσιο μάθαμε την έννοια της τετραγωνικής ρίζας μη αρνητικού αριθμού και τις ιδιότητές της. Συγκεκριμένα μάθαμε ότι:

Η τετραγωνική ρίζα ενός μη αρνητικού αριθμού α συμβολίζεται με $\sqrt{\alpha}$ και είναι ο μη αρνητικός αριθμός που, όταν υψωθεί στο τετράγωνο, δίνει τον α.

Δηλαδή:

$$x = \sqrt{\alpha} \iff x^2 = \alpha$$
 με $\alpha \ge 0$ και $x \ge 0$

Μπορούμε επομένως να πούμε ότι:

• Av $\alpha \geq 0$, $\eta \sqrt{\alpha}$ παριστάνει τη μη αρνητική λύση της εξίσωσης $x^2 = \alpha$

Ιδιότητες γνωστές από το γυμνάσιο

1. Αν α πραγματικός αριθμός τότε:

$$\sqrt{a^2} = |a|$$

2 Aν $\alpha \geq 0$ και $\beta \geq 0$, τότε:

$$\sqrt{\alpha}^2 = \alpha$$

N-OETHPIZA

Εσαγωγικά - ορισμός

Όταν θέλουμε να υπολογίσουμε το μήκος για την πλευρά x ενός ορθογωνίου και μας δίνεται ότι το εμβαδό του είναι $x^2 = 16$ τότε:

$$x^2 = 16 \Leftrightarrow x = \sqrt{16} \Leftrightarrow x = 4$$
 μονάδες μήκους

Αν όμως θέλαμε να υπολογίσουμε το μήκος για την πλευρά x ενός κύβου και μας δίνεται ότι το εμβαδό του είναι $x^3 = 27$ τότε θα «φεύγαμε» από την έννοια της t τετραγωνικής ρίζας και θα πηγαίναμε στην έννοια της t-οστής ρίζας:

$$x^3 = 27 \Leftrightarrow x = \sqrt[3]{27} \Leftrightarrow x = \sqrt[3]{3^3} \Leftrightarrow x = 3$$
 μονάδες μήκους

Θα μάθουμε λοιπόν ότι:

Η **ν-οστή ρίζα** ενός μη αρνητικού αριθμού α συμβολίζεται με $\sqrt[\nu]{\alpha}$ και είναι ο μη αρνητικός αριθμός που, όταν υψωθεί στην δύναμη ν, δίνει τον α .

Δηλαδή:

$$x = \sqrt[\nu]{\alpha} \iff x^{\nu} = \alpha \qquad \text{ he } \alpha \ge 0 \text{ kal } x \ge 0$$

Ονομάζουμε:

$$x = \sqrt[\nu]{\alpha}$$

- ν: λέγεται **δείκτης** ή **τάξη** της ρίζας
- α: λέγεται **υπόριζο** ή **υπόρριζη ποσότητα**

Ισχύουν οι τιμές:

- v = 1 γράφουμε $\sqrt[1]{\alpha} = \alpha$
- για v=2 είναι $\sqrt[2]{\alpha}=\sqrt{\alpha}$ και διαβάζουμε δεύτερη ρίζα ή **τετραγωνική ρίζα** ή απλά ρίζα του α
- για v=3 είναι $\sqrt[3]{\alpha}$ και διαβάζουμε τρίτη ρίζα ή τρίτης τάξης ρίζα ή **κυβική ρίζα** του α
- lacktriangle για v=4 είναι $\sqrt[4]{lpha}$ και διαβάζουμε τέταρτη ρίζα ή τετάρτης τάξης ρίζα του α

...

Ιδιότητες της ν-οστής ρίζας

Ισχύουν οι εξής ιδιότητες:

- 1. Av $\alpha \geq 0$, τότε:

- **2** Aν $\alpha \geq 0$ και $\beta \geq 0$, τότε:
- 3. Αν ν άριος φυσικός αρθμός, τότε η έχει νόημα για κάθε πραγματικό αριθμό α και ισχύει:
- \mathbf{v} $\sqrt[\nu]{\alpha^{\nu}} = |\alpha|$, ν άρτιος και $\alpha \in \mathbb{R}$
- **4** Αν ν περιττός φυσικός αρθμός, τότε η έχει νόημα μόνο όταν $\alpha \ge 0$ και ισχύει:
- \checkmark $\sqrt[\nu]{\alpha^{\nu}} = \alpha$, ν περιττός και $\alpha \ge 0$

2 (\alpha)
$$\sqrt[\nu]{\alpha} \cdot \sqrt[\nu]{\beta} = \sqrt[\nu]{\alpha \cdot \beta}$$

Έχουμε:

$$\sqrt[\nu]{\alpha} \cdot \sqrt[\nu]{\beta} = \sqrt[\nu]{\alpha \cdot \beta} \iff (\sqrt[\nu]{\alpha} \cdot \sqrt[\nu]{\beta})^{\nu} = (\sqrt[\nu]{\alpha} \cdot \beta)^{\nu} \iff (\sqrt[\nu]{\alpha})^{\nu} \cdot (\sqrt[\nu]{\beta})^{\nu} = \alpha \cdot \beta \iff \alpha \cdot \beta = \alpha \cdot \beta, \quad \piov \, \iota\sigma\chi\dot{\upsilon}\varepsilon\iota$$

$$(\beta) \frac{\sqrt[\nu]{\alpha}}{\sqrt[\nu]{\beta}} = \sqrt[\nu]{\frac{\alpha}{\beta}} \quad \mu\varepsilon \ \beta \neq 0$$

Έχουμε για $\beta \neq 0$:

$$\frac{\sqrt[\nu]{\alpha}}{\sqrt[\nu]{\beta}} = \sqrt[\nu]{\frac{\alpha}{\beta}} \iff$$

$$\left(\frac{\sqrt[\nu]{\alpha}}{\sqrt[\nu]{\beta}}\right)^{\nu} = \left(\sqrt[\nu]{\frac{\alpha}{\beta}}\right)^{\nu} \iff$$

$$\frac{(\sqrt[\nu]{\alpha})^{\nu}}{(\sqrt[\nu]{\beta})^{\nu}} = \frac{\alpha}{\beta} \iff$$

$$\frac{\alpha}{\beta} = \frac{\alpha}{\beta}$$
 , $\pi o \nu \iota \sigma \chi \acute{\nu} \epsilon \iota$

ΠΑΡΑΤΗΡΗΣΕΙΣ

1. Η ιδιότητα 1. ισχύει και για περισσότερους από δυο μη αρνητικούς παράγοντες. Συγκεκριμένα, για μη αρνητικούς αριθμούς $\alpha_1, \ \alpha_2, \dots, \ \alpha_{\kappa}$ ισχύει:

$$\sqrt[\nu]{\alpha_1} \cdot \sqrt[\nu]{\alpha_2} \cdot \dots \cdot \sqrt[\nu]{\alpha_{\kappa}} = \sqrt[\nu]{\alpha_1 \cdot \alpha_2 \cdot \dots \cdot \alpha_{\kappa}}$$

2 Στην ειδική μάλιστα περίπτωση που είναι $\alpha_1 = \alpha_2 = \ldots = \alpha_\kappa = \alpha > 0$, ισχύει:

$$\sqrt[\nu]{\alpha^{\kappa}} = (\sqrt[\nu]{\alpha})^{\kappa}$$

οπότε, λόγω της ιδιότητας 1. έχουμε:

για α , β ≥ 0

$$\sqrt[\nu]{\alpha^{\nu}\beta} = \alpha \cdot \sqrt[\nu]{\beta}$$

αφού
$$\sqrt[\nu]{\alpha^{\nu}\beta} = \sqrt[\nu]{\alpha^{\nu}} \cdot \sqrt[\nu]{\beta} = \alpha \cdot \sqrt[\nu]{\beta}$$

ν αν ο ν είναι **άρτιος θετικός ακέραιος,** τότε για κάθε πραγματικό αριθμό α (και $\beta \geq 0$) ισχύει:

$$\sqrt[\nu]{\alpha^{\nu}\beta} = |\alpha| \cdot \sqrt[\nu]{\beta}$$

Δυνάμεις με ρητό εκθέτη

Αν $\alpha > 0$, μ ακέραιος και ν θετικός ακέραιος, τότε ορίζουμε:

$$\alpha^{\frac{\mu}{\nu}} = \sqrt[\nu]{\alpha^{\mu}}$$

► Επιπλέον, αν μ, ν θετικοί ακέραιοι, τότε ορίζουμε:

$$0^{\frac{\mu}{\nu}} = 0$$

► Ειδικά, αν $\alpha \ge 0$ τότε:

$$\alpha^{\frac{1}{2}} = \sqrt{\alpha}$$

Αν α ≥ 0 τότε

$$\sqrt[\mu]{\sqrt[\nu]{\alpha}} = \sqrt[\mu \cdot \nu]{\alpha}$$

Απόδειξη:

Έχουμε:

$$\sqrt[\mu]{\sqrt[\nu]{\alpha}} = \sqrt[\mu + \nu]{\alpha} \iff \left(\sqrt[\mu]{\sqrt[\nu]{\alpha}}\right)^{\mu + \nu} = \left(\sqrt[\mu + \nu]{\alpha}\right)^{\mu + \nu} \iff \left[\left(\sqrt[\mu]{\sqrt[\nu]{\alpha}}\right)^{\mu}\right]^{\nu} = \alpha \iff (\sqrt[\nu]{\alpha})^{\nu} = \alpha \iff \alpha = \alpha, \quad \piov \ \iota\sigma\chi\dot{\upsilon}\varepsilon\iota$$

Συχνά σε ασκήσεις χρησιμοποιούμε την παρακάτω ιδιότητα:

$$\sqrt[\nu\rho]{\alpha^{\mu\rho}} = \sqrt[\nu]{\alpha^{\mu}}$$

Η ιδιότητα αυτή, πρακτικά, σημαίνει ότι σε μία ρίζα $\sqrt[\nu]{\alpha^{\mu}}$ μπορούμε να πολλαπλασιάσουμε ή να διαιρέσουμε την τάξη της ρίζας (ν) και τον εκθέτη (μ) της υπόρριζης ποσότητα με τον ίδιο θετικό ακέραιο (ρ).

δηλαδή
$$\sqrt[\nu\rho]{\alpha^{\mu\rho}} = \alpha^{\frac{\mu\rho}{\nu\rho}} = \alpha^{\frac{\mu}{\nu}} = \sqrt[\nu]{\alpha^{\mu}}$$

Απόδειξη:

$${}^{\nu\rho}\sqrt{\alpha^{\mu\rho}} = {}^{\nu}\sqrt{{}^{\rho}\sqrt{\alpha^{\mu\rho}}} = {}^{\nu}\sqrt{{}^{\rho}\sqrt{(\alpha^{\mu})^{\rho}}} = {}^{\nu}\sqrt{\alpha^{\mu}}$$

▶ Αν $\alpha \ge 0$ και $\beta \ge 0$ ισχύει:

$$\alpha < \beta \Leftrightarrow \sqrt[\nu]{\alpha} < \sqrt[\nu]{\beta}$$

Απόδειξη:

$$\sqrt[\nu]{\alpha} < \sqrt[\nu]{\beta} \iff \left(\sqrt[\nu]{\alpha}\right)^{\nu} < \left(\sqrt[\nu]{\beta}\right)^{\nu} \iff \alpha < \beta, \ \text{mov isc} \ \text{isc}$$

ΤΡΟΣΟΧΗ Όταν δίνεται μία παράσταση με ρίζες τότε θα πρέπει να παίρνουμε περιορισμούς καθώς μία ρίζα **ορίζεται** μόνο εάν το **υπόριζο** είναι **μη αρνητικό** (προσοχή στον *ορισμό* της ν-οστής ρίζας). Επομένως:

ightharpoonup Η παράσταση $\sqrt[\nu]{A(x)}$ με ν θετικό ακέραιο, ορίζεται όταν:

$$A(x) \ge 0$$

ightharpoonup Η παράσταση $\frac{1}{\sqrt[\nu]{A(x)}}$ με ν θετικό ακέραιο, ορίζεται όταν:

$$A(x) \ge 0$$
 $\kappa \alpha \iota \sqrt[\nu]{A(x)} \ne 0$

δηλαδή όταν:

ΓΡΟΣΟΧΗ Επειδή για $\alpha, \beta \geq 0$ ισχύουν $\sqrt[\nu]{\alpha} \geq 0$ και $\sqrt[\mu]{\beta} \geq 0$ προκύπτει ότι:

$$\sqrt[\nu]{\alpha} + \sqrt[\nu]{\beta} = 0 \iff (\alpha = 0 \text{ kai } \beta = 0)$$