Predicate logic - Structures (models)

Dr. Son P. Nguyen

UEL VNU-HCMC

March 14, 2016

Structures

Definition

Let S be a signature. An S-structure \mathcal{M} consists of:

- a non-empty set D (called the domain of M);
- a set $P^{\mathcal{M}} \subseteq D^k$, for each k-ary predicate symbol P in S;
- a function $F^{\mathcal{M}}: D^k \to D$, for each k-ary function symbol F in S;
- an element $c^{\mathcal{M}} \in D$, for each constant symbol c in S.

Thus, an S-structure specifies a domain (of discourse), and meanings for all predicate/function/constant symbols in S.

Example: Students and Instructors

Signature $S = \{Student, Younger, Instructor\}$:

- Student and Instructor are unary (i.e., 1-ary or of arity 1)
- Younger is binary (i.e., 2-ary or of arity 2)

A possible S-structure \mathcal{M} :

- Domain of \mathcal{M} : $D = \{Alice, Bob, Carol\}$
- $Student^{\mathcal{M}} = \{Alice, Bob\}$
- Younger^M = {(Alice, Bob), (Bob, Carol), (Alice, Carol)}
- $Instructor^{\mathcal{M}} = \{Carol\}$

Example: Students and Instructors

Signature $S = \{Student, Younger, Instructor\}$:

- Student and Instructor are unary (i.e., 1-ary or of arity 1)
- Younger is binary (i.e., 2-ary or of arity 2)

A different S-structure \mathcal{M}' :

- Domain of \mathcal{M}' : the set D of all the people living in the UK
- Student $M' = \{d \in D \mid d \text{ is a student}\}$
- Younger $M' = \{(d, d') \in D^2 \mid d \text{ is younger than } d'\}$
- $Instructor^{\mathcal{M}'} = \{d \in D \mid d \text{ is an instructor at some university}\}$

Example: Arithmetic

Signature $S = \{F, \underline{2}\}$:

- F is a binary function symbol
- 2 is a constant symbol

A possible S-structure \mathcal{M} :

- Domain of M: $D = \{0, 1, 2, 3, ...\}$
- $F^{\mathcal{M}}: D^2 \to D$ is such that for all $d, d' \in D$:

$$F^{\mathcal{M}}(d,d')=d+d'$$

• $2^{\mathcal{M}} = 2$ (the number, not to be confused with the symbol 2!)

Example: Kinship Relations

Signature $S = \{Female, Parent, alice\}$:

- Female and Parent are predicate symbols of arity 1 and 2, respectively,
- alice is a constant symbol.

A possible S-structure \mathcal{M} :

- Domain of \mathcal{M} : the set of all the people on earth
- $Female^{\mathcal{M}} = \{d \in D \mid d \text{ is female}\}$
- $Parent^{\mathcal{M}} = \{(d, d') \in D^2 \mid d \text{ is a parent of } d'\}$
- alice^M = Alice

Example: Graphs

A (directed) graph consists of:

- points (called nodes, or vertices)
- directed lines connecting the points (called (directed) edges, or arcs).

Example:

A graph can be represented as a $\{E\}$ -structure G, where E is a binary predicate symbol:

- The domain of G are the graph's nodes: $D = \{a, b, c, d\}$.
- $E^G = \{(a,b), (b,d), (c,b), (d,b), (d,c)\}$ represents the graph's edges, including their directions.

Reminder

 Formulae of predicate logic are strings without any meaning, so how do we make sense of, say,

$$\exists x \exists y \ (Sibling(alice, x) \land Mother(x) = y) ?$$

- · Last lecture: We can use structures to specify
 - a domain of discourse and
 - a meaning for each of the symbols in a formulae.

Example: Kinship Relations

Signature $S = \{Sibling, Mother, alice\}$:

- Sibling is a binary predicate symbol,
- Mother is a unary function symbol,
- alice is a constant symbol.

S-structure \mathcal{M} :

- Domain of \mathcal{M} : $D = \{Alice, Bob, Carol, Unknown\}$
- Sibling $^{\mathcal{M}} = \{ (Alice, Bob) \}$
- Mother^M(Alice) = Mother^M(Bob) = Carol,
 Mother^M(d) = Unknown for all d ∈ D \ {Alice, Bob}
- $alice^{\mathcal{M}} = Alice$

Reminder

 Formulae of predicate logic are strings without any meaning, so how do we make sense of, say,

$$\exists x \exists y \ (Sibling(alice, x) \land Mother(x) = y) ?$$

- Last lecture: We can use structures to specify
 - a domain of discourse and
 - a meaning for each of the symbols in a formulae.
- Now: How to interpret formulae in structures?

Example: Students and Instructors (cont'd)

- Signature $S = \{Student, Younger, alice\}$
- S-structure M:
 - Domain of \mathcal{M} : $D = \{Alice, Bob, Carol\}$
 - $Student^{\mathcal{M}} = \{Alice, Bob\}$
 - Younger[™] = {(Alice, Bob), (Bob, Carol), (Alice, Carol)}
 - $alice^{\mathcal{M}} = Alice$

Example: Students and Instructors (cont'd)

In the context of the structure \mathcal{M} :

- Student(alice) means: $alice^{\mathcal{M}} \in Student^{\mathcal{M}}$.
- $\exists x \ Younger(alice, x)$ means: There exists an object $d \in D$ such that $(alice^{\mathcal{M}}, d) \in Younger^{\mathcal{M}}$.
- $\neg \exists x \ Student(x)$ means: There does not exist a $d \in D$ such that $d \in Student^{\mathcal{M}}$.
- What does Younger(alice, x) mean?
 We have to associate the free variable x with a concrete object to make sense of this.

Notation

- The domain of a structure \mathcal{M} is denoted by $dom(\mathcal{M})$.
- The set of all variables is denoted by Var.

Assignments

Definition

Let S be a signature, and \mathcal{M} an S-structure.

- An assignment in \mathcal{M} is a function $a: Var \to dom(\mathcal{M})$.
- Given a variable x and an element d ∈ dom(M), we define the assignment a[x → d] in M by:

$$a[x \mapsto d](y) := \begin{cases} d, & \text{if } y = x, \\ a(y), & \text{otherwise.} \end{cases}$$

- An assignment a assigns to each variable x an object in \mathcal{M} 's domain, namely a(x).
- a[x → d] changes a slightly by assigning to x the object d (but otherwise, it's the same as a).

Example: Students and Instructors (cont'd)

- Signature $S = \{Student, Younger, alice\}$
- S-structure M:
 - Domain of \mathcal{M} : $D = \{Alice, Bob, Carol\}$
 - $Student^{\mathcal{M}} = \{Alice, Bob\}$
 - Younger^M = {(Alice, Bob), (Bob, Carol), (Alice, Carol)}
 - $alice^{\mathcal{M}} = Alice$
- A possible assignment in M is the function a: Var → D
 with a(x) = Alice, a(y) = Bob, and a(z) = Carol for all other
 variables z.
- a[x → Bob] is the assignment such that a[x → Bob](x) = Bob, a[x → Bob](y) = Bob, and a[x → Bob](z) = Carol for all other variables z.

The Value of a Term

Recall: terms are names for objects

The object pointed to by a term can be calculated after "plugging in" the meanings of variables, constants, functions:

Definition

Let \mathcal{M} be an S-structure, and a an assignment in \mathcal{M} .

The value of an S-term t in (\mathcal{M}, a) , written $t^{\mathcal{M}, a}$, is obtained by:

- 1 replacing each variable x in t by a(x);
- 2 replacing each constant symbol c in t by $c^{\mathcal{M}}$;
- 3 replacing each function symbol F in t by $F^{\mathcal{M}}$;
- 4 computing the value of the resulting expression.

Example: Kinship Relations

- Signature S = {Sibling, Mother, alice}
- S-structure M:
 - Domain of \mathcal{M} : $D = \{Alice, Bob, Carol, Unknown\}$
 - Sibling $\mathcal{M} = \{(Alice, Bob)\}$
 - Mother^M(Alice) = Mother^M(Bob) = Carol,
 Mother^M(d) = Unknown for all d ∈ D \ {Alice, Bob}
 - $alice^{\mathcal{M}} = Alice$
- Assignment a defined by a(x) = Bob, and a(y) = Unknown for all variables y ∈ Var \ {x}

S-term t	the corresponding value $t^{\mathcal{M},a}$
alice	Alice
X	Bob
Mother(alice)	Carol
Mother(x)	Carol
Mother(Mother(alice))	Unknown

Satisfaction Relation

Let \mathcal{M} be an S-structure, and a an assignment in \mathcal{M} .

An S-formula φ is satisfied in (\mathcal{M}, a) , denoted by $(\mathcal{M}, a) \models \varphi$, if the following holds:

- If $\varphi = P(t_1, \dots, t_k)$, then $(\mathcal{M}, a) \models \varphi$ if $(t_1^{\mathcal{M}, a}, \dots, t_k^{\mathcal{M}, a}) \in P^{\mathcal{M}}$.
- If φ has the form $t_1 = t_2$, then $(\mathcal{M}, a) \models \varphi$ if $t_1^{\mathcal{M}, a} = t_2^{\mathcal{M}, a}$.
- If $\varphi = \neg \psi$, then $(\mathcal{M}, a) \models \varphi$ if $(\mathcal{M}, a) \not\models \psi$ ("not $(\mathcal{M}, a) \models \psi$ ").
- If $\varphi = \psi \wedge \chi$, then $(\mathcal{M}, a) \models \varphi$ if $(\mathcal{M}, a) \models \psi$ and $(\mathcal{M}, a) \models \chi$.
- If $\varphi = \psi \lor \chi$, then $(\mathcal{M}, a) \models \varphi$ if $(\mathcal{M}, a) \models \psi$ or $(\mathcal{M}, a) \models \chi$.
- If $\varphi = \exists x \, \psi$, then $(\mathcal{M}, a) \models \varphi$ if there exists a $d \in \text{dom}(\mathcal{M})$ such that $(\mathcal{M}, a[x \mapsto d]) \models \psi$.
- If $\varphi = \forall x \, \psi$, then $(\mathcal{M}, a) \models \varphi$ if for all $d \in \text{dom}(\mathcal{M})$ we have $(\mathcal{M}, a[x \mapsto d]) \models \psi$.

Example: Students and Instructors (cont'd)

- 4 $(\mathcal{M}, a) \models Younger(alice, y)$: This is true since $alice^{\mathcal{M}, a} = Alice, y^{\mathcal{M}, a} = a(y) = Bob, and (Alice, Bob) \in Younger^{\mathcal{M}}$.
- **(** \mathcal{M} , a) $\models \exists x \ Younger(alice, x)$:
 First of all, note that $(\mathcal{M}, a[x \mapsto \mathsf{Bob}]) \models Younger(alice, x)$.
 This can be shown as above. Just observe that $alice^{\mathcal{M}, a[x \mapsto \mathsf{Bob}]} = \mathsf{Alice} \ \mathsf{and} \ x^{\mathcal{M}, a[x \mapsto \mathsf{Bob}]} = \mathsf{Bob}$. Now, by the sixth condition in the definition of the satisfaction relation, we have $(\mathcal{M}, a) \models \exists x \ Younger(alice, x)$.
- 6 $(\mathcal{M}, a) \models \forall x (Younger(alice, x) \lor x = alice)$?

Assignments and Free Variables

Observation

Let M be an S-structure, and a an assignment in M.

In order to check whether an S-formula φ is satisfied in (\mathcal{M},a) , the values a(x) for all variables x that do not occur free in φ are irrelevant.

More precisely: If a' is another assignment in \mathcal{M} such that a'(x) = a(x) for all $x \in \text{free}(\varphi)$, then

$$(\mathcal{M},a) \models \varphi$$
 if and only if $(\mathcal{M},a') \models \varphi$.

Conclusion: It suffices to specify a(x) for all $x \in \text{free}(\varphi)$.

Conventions

- Instead of " φ is satisfied in (\mathcal{M}, a) ", we also say that φ is satisfied in \mathcal{M} under a.
- If φ does not have any free variables, we omit a and say:
 φ is satisfied in M.

Notation

For formulae φ , we use the notation $\varphi(x_1, \ldots, x_n)$ to indicate that the free variables of φ are precisely x_1, \ldots, x_n . (We omit the brackets if there are no free variables.)

Examples:

- $\varphi(x) = \exists y R(x, y)$
- $\psi = \forall x \exists y R(x, y)$
- $\chi(x,y,z) = (\exists y R(x,y) \lor Q(y)) \land P(z)$

Note: The order of the free variables in the list is arbitrary. We can choose any order we like.

Notation

Let $\varphi(x_1,\ldots,x_n)$ be an S-formula.

Given an S-structure \mathcal{M} and elements $d_1, \ldots, d_n \in \text{dom}(\mathcal{M})$, we use the notation

$$\mathcal{M} \models \varphi(d_1,\ldots,d_n)$$

to indicate that $(\mathcal{M}, a) \models \varphi$, where a is any assignment in \mathcal{M} with $a(x_1) = d_1, \dots, a(x_n) = d_n$.

(We omit the brackets if the list x_1, \ldots, x_n is empty.)

Examples:

- $\mathcal{M} \models \varphi(\mathsf{Bob}, \mathsf{Carol})$ with $\varphi(x, y) = \mathsf{Younger}(\mathsf{alice}, x) \land \neg \mathsf{Student}(y)$
- $\mathcal{M} \models \varphi$ with $\varphi = \exists x \, Younger(alice, x)$.

Relational Databases

A relational database consists of one or more tables, e.g.:

Films

id	title	running_time
1	Her	126 min
2	Gravity	91 min
3	Pompeii	105 min
:	:	:

Actors

7 101010	
id	name
1	Joaquin Phoenix
2	Amy Adams
3	Scarlett Johansson
4	Sandra Bullock
:	:

Cast

film_id	actor_id
1	1
1	2
1	3
2	4
:	:

- Relational model
- proposed 1970 by Edgar F. Codd

Relational Databases and Structures

A relational database D can be seen as a structure \mathcal{M} :

- A table T in D corresponds to a predicate T^M in M whose arity matches the number of columns of T.
- A row in T corresponds to a tuple in T^M.

Films

id	title	running_time
1	Her	126 min
2	Gravity	91 min
3	Pompeii	105 min
:	:	:

```
\begin{aligned} \textit{Films}^{\mathcal{M}} &= \{ (1, \, \text{Her}, & 126 \, \text{min}), \\ & (2, \, \text{Gravity}, & 91 \, \text{min}), \\ & (3, \, \text{Pompeii}, \, 105 \, \text{min}), \\ & \dots \, \} \end{aligned}
```

• The domain of \mathcal{M} consists of all the entries in the database $(1, 2, 3, \dots, \text{Her}, \text{Gravity}, \dots)$.

A Note on the Signature

For this translation of databases D into structures \mathcal{M} to work:

- The signature S of M has to contain a predicate symbol for each table in D.
- The arity of each predicate symbol has to match the number of columns of the corresponding table.

Example: For our film database, the signature is

$$S = \{Films, Actors, Cast\},\$$

where

- Films has arity 3,
- Actors, Cast have arity 2.

The Film Database as a Structure

Our film database as an S-structure \mathcal{M} :

- Signature $S = \{Films, Actors, Cast\}$
- $dom(\mathcal{M}) = \{1, 2, 3, \dots, Her, Gravity, \dots\}$
- Predicates:

```
 \textit{Films}^{\mathcal{M}} = \{ (1, \text{Her}, 126 \, \text{min}), \qquad \textit{Cast}^{\mathcal{M}} = \{ (1, 1), \\ (2, \text{Gravity}, 91 \, \text{min}), \qquad (1, 2), \\ (3, \text{Pompeii}, 105 \, \text{min}), \dots \} \qquad (1, 3), \\ (2, 4), \dots \}   \textit{Actors}^{\mathcal{M}} = \{ (1, \text{Joaquin Phoenix}), \\ (2, \text{Amy Adams}), \\ (3, \text{Scarlett Johansson}), \\ (4, \text{Sandra Bullock}), \dots \}
```

Formulae as Queries

Queries to a database correspond to formulae (1-1 correspondence between relational algebra and predicate logic)

Example: Consider our film database

The SQL query	select title from Films
	"Output all the entries in the 'title' column of the 'Film' table."
corresponds to	$\varphi(y) = \exists x \exists z Films(x, y, z)$
	"Output all y for which $\exists x \exists z Films(x, y, z)$ is true."

the above query.

Note: These are the titles returned by

```
select running_time from Films where title='Gravity' "Output the running time of Gravity." \varphi(\mathbf{Z}) = \exists x \, \textit{Films}(x, \textit{gravity}, \mathbf{Z})
```

Note: This assumes that we also have a constant symbol *gravity* in our signature, and that *gravity* is interpreted by "Gravity". Such constant symbols are typically added to the signature.

Evaluating a Formula in a Structure

Definition

Let $\varphi(x_1, \ldots, x_k)$ be an S-formula, and let \mathcal{M} be an S-structure.

The result of φ in \mathcal{M} is defined as:

$$\varphi(\mathcal{M}) \,=\, \{(d_1,\ldots,d_k) \in \text{dom}(\mathcal{M}) \mid \mathcal{M} \models \varphi(d_1,\ldots,d_k)\}.$$

Note: $\varphi(\mathcal{M})$ is sensitive to the order of the variables in the list x_1, \ldots, x_k . We will always make sure that this order is clear from the context.

"Output all pairs of actors who played in the same film."

$$\varphi(\mathbf{a_1}, \mathbf{a_2}) = \exists f \ \exists i_1 \ \exists i_2 \ \big(\ \textit{Actors}(i_1, \mathbf{a_1}) \ \land \ \textit{Actors}(i_2, \mathbf{a_2}) \ \land \\ \textit{Cast}(f, i_1) \ \land \ \textit{Cast}(f, i_2) \ \big)$$

For our film database \mathcal{M} :

$$\begin{split} \varphi(\mathcal{M}) &= \big\{ (\text{Joaquin Phoenix}, \text{Joaquin Phoenix}), \\ &\quad (\text{Joaquin Phoenix}, \text{Amy Adams}), \, \dots, \\ &\quad (\text{Scarlett Johansson}, \text{Joaquin Phoenix}), \, \dots \big\} \end{split}$$

Sentences

Definition

Let S be a signature. An S-sentence is an S-formula φ with free(φ) = \emptyset .

Examples:

- $\forall x \exists y R(x, y)$ is an $\{R\}$ -sentence.
- $\exists y R(x,y)$ is *not* an $\{R\}$ -sentence.

Recall: If φ is an S-sentence and \mathcal{M} an S-structure, then $\mathcal{M} \models \varphi$ means that φ is satisfied in \mathcal{M} .

Semantic Consequence: Motivation

Assumption 1: Instructor(john)

Assumption 2: $\forall x (Instructor(x) \rightarrow \exists y \, Teaches(x, y))$

Does $\exists z \, Teaches(john, z)$ follow from these two sentences?

- Intuitively: yes!
- But what does it mean precisely that a sentence follows from a set of sentences?

Semantic Consequence

Definition

Fix a signature S, a set F of S-sentences, and an S-sentence φ .

We say φ follows from F (or φ is a semantic consequence of F) if for all S-structures \mathcal{M} :

If for all $\psi \in F$ we have $\mathcal{M} \models \psi$, then $\mathcal{M} \models \varphi$.

This is denoted by $F \models \varphi$.

Note: We use \models both for the satisfaction relation and for the semantic consequence relation. The left hand side of \models determines which of the two relations we mean.

Signature:
$$S = \{P, c\}$$

$$\{P(c)\} \models \exists x P(x)$$

Proof: We have to show that the following is true for all S-structures \mathcal{M} : If P(c) is satisfied in \mathcal{M} , then $\exists x P(x)$ is satisfied in \mathcal{M} .

Let \mathcal{M} be an S-structure, and assume that $\mathcal{M} \models P(c)$. Note that $(\mathcal{M}, a) \models P(x)$, where a is an assignment in \mathcal{M} with $a(x) = c^{\mathcal{M}}$.

Since $a = a[x \mapsto c^{\mathcal{M}}]$, we have $(\mathcal{M}, a[x \mapsto c^{\mathcal{M}}]) \models P(x)$. The definition of the satisfaction relation thus yields $(\mathcal{M}, a) \models \exists x P(x)$. Since $\exists x P(x)$ is a sentence, we can write this as $\mathcal{M} \models \exists x P(x)$.

Signature: $S = \{P, Q, c\}$

$$\{P(c), \forall x (P(x) \rightarrow Q(x))\} \models Q(c)$$

Proof: We have to show that the following is true for all S-structures \mathcal{M} : If the two sentences in the set on the left-hand side of \models are satisfied in \mathcal{M} , then Q(c) is satisfied in \mathcal{M} .

To this end, let \mathcal{M} be an S-structure, and assume that $\mathcal{M} \models P(c)$ and

$$\mathcal{M} \models \forall x (P(x) \rightarrow Q(x)).$$

The latter implies

$$(\mathcal{M}, a) \models P(x) \to Q(x) \tag{*}$$

for all assignments a in \mathcal{M} and, in particular, for any assignment a with $a(x)=c^{\mathcal{M}}$. Fix such an assignment a. Since $\mathcal{M}\models P(c)$, we have $(\mathcal{M},a)\models P(x)$. Together with (\star) , this implies $(\mathcal{M},a)\models Q(x)$. Since $a(x)=c^{\mathcal{M}}$, we obtain $\mathcal{M}\models Q(c)$.

Signature: $S = \{I, T, john\}$

$$\{I(john), \forall x (I(x) \rightarrow \exists y T(x,y))\} \models \exists z T(john,z)$$

Proof: We have to show that the following is true for all S-structures \mathcal{M} : If the two sentences in the set on the left-hand side of \models are satisfied in \mathcal{M} , then $\exists z \, T(john, z)$ is satisfied in \mathcal{M} .

To this end, let \mathcal{M} be an S-structure, and assume that $\mathcal{M} \models \mathit{I(john)}$ and

$$\mathcal{M} \models \forall x (I(x) \rightarrow \exists y T(x, y)).$$

Note that the latter implies

$$(\mathcal{M}, a) \models I(x) \to \exists y \, T(x, y)$$
 (*)

for all assignments a in \mathcal{M} and, in particular, for any assignment a with $a(x) = john^{\mathcal{M}}$. Fix such an assignment a. Since $\mathcal{M} \models I(john)$, we have $(\mathcal{M}, a) \models I(x)$. Together with (\star) , this implies $(\mathcal{M}, a) \models \exists y \, T(x, y)$. Since $a(x) = john^{\mathcal{M}}$, we obtain $\mathcal{M} \models \exists y \, T(john, y)$.

Signature: $S = \{P, Q, c\}$

$$\{P(c) \lor Q(c)\} \not\models P(c)$$

"P(c) does not follow from $P(c) \vee Q(c)$ "

Proof: We provide a counter-example for $\{P(c) \lor Q(c)\} \models P(c)$, that is, an S-structure \mathcal{M} such that $\mathcal{M} \models P(c) \lor Q(c)$, but $\mathcal{M} \not\models P(c)$. One such counter-example is the S-structure \mathcal{M} with $dom(\mathcal{M}) = \{1\}$, $P^{\mathcal{M}} = \emptyset$, $Q^{\mathcal{M}} = \{1\}$, and $c^{\mathcal{M}} = 1$. Since $c^{\mathcal{M}} = 1 \in Q^{\mathcal{M}}$, we have $\mathcal{M} \models Q(c)$ and hence $\mathcal{M} \models P(c) \lor Q(c)$. On the other hand, since $c^{\mathcal{M}} = 1 \notin P^{\mathcal{M}}$, we have $\mathcal{M} \not\models P(c)$.

Semantic Equivalence

Definition

Let S be a signature, and φ, ψ two S-sentences.

We say φ and ψ are equivalent if they are satisfied in the same S-structures, i.e., if for all S-structures \mathcal{M} :

$$\mathcal{M} \models \varphi$$
 if and only if $\mathcal{M} \models \psi$.

This is denoted by $\varphi \equiv \psi$.

Observation: $\varphi \equiv \psi$ if and only if $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$.

- $\neg \exists x \varphi \equiv \forall x \neg \varphi$ $\neg \forall x \varphi \equiv \exists x \neg \varphi$
- $\forall x \varphi \land \forall x \psi \equiv \forall x (\varphi \land \psi)$ $\forall x \varphi \lor \forall x \psi \not\equiv \forall x (\varphi \lor \psi)$
- $\exists x \varphi \land \exists x \psi \not\equiv \exists x (\varphi \land \psi)$ $\exists x \varphi \lor \exists x \psi \equiv \exists x (\varphi \lor \psi)$
- $\exists x \forall y \varphi \not\equiv \forall y \exists x \varphi$