Računanje izotropnih vektorjev

Kompleksne matrike

Avtor: Mirjam Pergar

Mentor: izred. prof. dr. Bor Plestenjak

24. november 2015

Vsebina

- Problem
- Uporaba

Vsebina

- Uvod
 - Problem
 - Uporaba
- Realne matrike
 - Uvod
 - Iskanje izotropnih vektorjev

Vsebina

- Uvod
 - Problem
 - Uporaba
- Realne matrike
 - Uvod
 - Iskanje izotropnih vektorjev
- Kompleksne matrike
 - Uvod
 - Iskanje izotropnih vektorjev
 - Meurant 1.
 - Meurant 2.

Vsebina

- Uvod
 - Problem
 - Uporaba
- Realne matrike
 - Uvod
 - Iskanje izotropnih vektorjev
- Kompleksne matrike
 - Uvod
 - Iskanje izotropnih vektorjev
 - Meurant 1.
 - Meurant 2.
- Literatura

Uvod

•0000000

Za dano nesingularno, kvadratno $n \times n$ matriko A z realnimi ali kompleksnimi elementi, nas zanima izračun enotskega vektorja b z realnimi ali kompleksnimi elementi, tako da velja:

$$b^*Ab=0. (1)$$

Vektor b, za katerega velja (1) in $b^*b = 1$ imenujemo **izotropni vektor**. Bolj splošen je problem inverzna zaloge vrednosti, kjer iščemo enotski vektor b, za katerega vii:

$$b^*Ab = \mu, \tag{2}$$

kjer je μ dano kompleksno število.

• Problem (2) zno prevesti na problem (1) za drugo matriko, saj je (2) enako

$$b^*(A - \mu I)b = 0.$$

- Ce μ lastna vrednost matrike A, potem je rešitev pripadajoč lastni vektor matrike A.
- Če μ ni lastna vrednost matrike A, je $A \mu I$ nesingularna in je potreben izračun izotropnega vektorja te matrike.
- Od sedaj naprej bomo vse vrednosti enačili z 0.

Zaloga vrednosti

Definicija

Zaloga vrednosti matrike $A \in \mathcal{P}^n$ je zaprta, konveksna podmnožica kompleksne ravnine, definirana kot

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, x^*x = 1\}.$$

Zaloga vrednosti

Definicija

Zaloga vrednosti matrike $A \in \mathbb{C}^{n \times n}$ je zaprta, konveksna podmnožica kompleksne ravnine, definirana kot

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n, x^*x = 1\}.$$

- Očitno je W(A) množica vseh Rayleighovih kvocientov matrike A.
- Izhodišče mora biti v W(A), če hočemo, da ima (1) vsaj eno rešitev.
- Označimo s $\sigma(A)$ množico vseh lastnih vrednosti matrike A, ki jo imenujemo spekter.

Lastnosti zaloge vrednosti

- $\mathbf{0}$ W(A) je konveksna, zaprta in omejena.
- 3 Za vsako unitarno matriko U je $W(U^*AU) = W(A)$.
- W(A + zI) = W(A) + z in W(zA) = zW(A) za vsako kompleksno število z.
- Solution Rob zaloge vrednosti W(A), $\partial W(A)$ je kosoma algebrska krivulja, in vsaka točka v kateri $\partial W(A)$ ni diferencia a je lastna vrednost matrike A.
- **6** Če je *A* normalna, potem $W(A) = \text{Co}(\sigma(A))$, kjer s Co označimo zaprto konveksno ogrinjačo množice.
- \bigcirc W(A) je daljica na realni osi, če in samo če je A hermitska.

Izrek

Naj imata A in b realne ali kompleksne elemente. Potem veljajo enakosti:

$$b^*Ab = 0 \Leftrightarrow b^*(A + A^*)b = 0 i \bigcirc (A - A^*)b = 0.$$

Realne matrike

Izrek

Naj imata A in b realne ali kompleksne elemente. Potem veljajo enakosti:

$$b^*Ab = 0 \Leftrightarrow b^*(A + A^*)b = 0 \text{ in } b^*(A - A^*)b = 0.$$

Dokaz.

(⇒) Če velja $b^*Ab = 0$, je tudi $(b^*Ab)^* = b^*A^*b = 0$.

Preoblikujemo prvo enačbo na desni v $b^*Ab + b^*A^*b$ dobimo 0. Drugo enačbo dokažemo na podoben način.

(⇐) S seštevkom enačb na desni dobimo enačbo na levi:

$$b^*(A + A^*)b + b^*(A - A^*)b = 0$$

$$b^*(2A)b = 0$$

$$b^*Ab = 0$$

- Če velia le $b^*(A + A^*)b = 0 \Rightarrow \Re(b^*Ab) = 0$.
- Če velja le $b^*(A A^*)b = 0 \Rightarrow \Im(b^*Ab) = 0$.
- Ko sta b in A realna, je problem mnogo enostavnejši, saj moramo upoštevati le simetričen del matrike A.

- Če velia le $b^*(A + A^*)b = 0 \Rightarrow \Re(b^*Ab) = 0$.
- Če velja le $b^*(A A^*)b = 0 \Rightarrow \Im(b^*Ab) = 0$.
- Ko sta b in A realna, je problem mnogo enostavnejši, saj moramo upoštevati le simetričen del matrike A.

Lema

Izotropni vektorji matrike A so identični izotropnim vektorjem njenega simetričnega dela.

- Če velja le $b^*(A + A^*)b = 0 \Rightarrow \Re(b^*Ab) = 0$.
- Če velja le $b^*(A A^*)b = 0 \Rightarrow \Im(b^*Ab) = 0$.
- Ko sta b in A realna, je problem mnogo enostavnejši, saj moramo upoštevati le sime (1) n del matrike A.

Lema

Izotropni vektorji manke A so identični izotropnim vektorjem njenega simetričnega dela.

Dokaz.

To sledi iz $b^T A b = b^T A_{sim} b + b^T A_{psim} b = b^T A_{sim} b$, kjeri z A_{sim} označen simetrični del matrike $A(t.j.A = A^T)$ in A_{sim} poševno-simetrični del matrike A (t.j. $A = -A^{T}$).

Uvod

00000000

$$b^T A b = 0 \Leftrightarrow b^T (A + A^T) b = 0.$$

Uvod

00000000

$$b^T A b = 0 \Leftrightarrow b^T (A + A^T) b = 0.$$

- Hermitski del matrike A bomo označili s $H = (A + A^*)/2$.
- Poševno-hermitski del matrike A bomo označili z $\tilde{K} = (A - A^*)/2 = \imath K$.

Uporaba

- Preučevanje delne stagnacije GMRES algoritma za reševanje l<mark>inearnih ristemo</mark>v z realnimi matrikami.
- Preučevanje konvergence nekaterih iterativnih metod za reševanje linearnih sistemov.

Kompleksne matrike

 Aplikacije v numerični analizi, diferencialnimenačbah, teoriji sistemov itd.

Realne matrike

Ko je A realna matrika, nas zanima kako izračunati rešitev naslednje enačbe:

$$b^*Hb=0, (3)$$

Kompleksne matrike

kjer je H realna in simetrična matrika (t.j. $H = H^T$).

Realne matrike

Ko je A realna matrika, nas zanima kako izračunati rešitev naslednje enačbe:

$$b^*Hb=0, (3)$$

Kompleksne matrike

kjer je H realna in simetrična matrika (t.j. $H = H^T$).

Vemo:

- W(A) simetrična glede na realno os.
- $0 \in W(A)$, če in samo če $\lambda_n \leq 0 \leq \lambda_1$, kjer sta λ_n in λ_1 najmanjša in največja lastna vrednost matrike H.

Naj bosta x_1 in x_n realna lastna vektorja, pripadajoča λ_1 in λ_n . Potem sta:

Kompleksne matrike

•
$$x_1^T A x_1 = x_1^T H x_1 = \lambda_1$$
.

•
$$x_n^T A x_n = x_n^T H x_n = \lambda_n$$
.

realni točki na skrajni levi in skrajni desni zaloge vrednosti W(A) na realni osi.

Naj bosta x_1 in x_n realna lastna vektorja, pripadajoča λ_1 in λ_n . Potem sta:

Kompleksne matrike

- $x_1^T A x_1 = x_1^T H x_1 = \lambda_1$.
- $x_n^T A x_n = x_n^T H x_n = \lambda_n$.

realni točki na skrajni levi in skrajni desni zaloge vrednosti W(A) na realni osi.

- Realne rešitve (3) izračunamo z uporabo lastnih vektorjev matrike H.
- Predpostavimo, da iščemo vektorje b z normo 1.

Naj bosta x_1 in x_n realna lastna vektorja, pripadajoča λ_1 in λ_n . Potem sta:

- $x_1^T A x_1 = x_1^T H x_1 = \lambda_1$.
- $x_n^T A x_n = x_n^T H x_n = \lambda_n$.

realni točki na skrajni levi in skrajni desni zaloge vrednosti W(A) na realni osi.

- Realne rešitve (3) izračunamo z uporabo lastnih vektorjev matrike H.
- Predpostavimo, da iščemo vektorje b z normo 1.
- H zapišemo kot

$$H = X \Lambda X^T$$

kjer je Λ matrika, ki ima na diagonali lastne vrednosti λ_i , ki so realna števila in X je ortogonalna matrika lastnih vektorjev, tako da $X^TX = I$.

Literatura

Uporabimo ta spektralni razcep v (3):

$$b^*Hb = b^*X\Lambda X^Tb = 0.$$

• Označimo s $c = X^T b$ vektor projekcije b na lastne vektorje matrike H.

Uporabimo ta spektralni razcep v (3):

$$b^*Hb=b^*X\Lambda X^Tb=0.$$

• Označimo s $c = X^T b$ vektor projekcije b na lastne vektorje matrike H.

Izrek

Naj bo b rešitev problema (3). Potem vektor $c = X^T b$ s komponentami c_i zadošča naslednjima enačbama:

$$\sum_{i=1}^{n} \lambda_i |c_i|^2 = 0, (4)$$

$$\sum_{i=1}^{n} |c_i|^2 = 1. {(5)}$$

Uvod

Dokaz.

Enačbo (4) dokažemo tako, da $c = X^T b$ oz. $c^* = b^* X$ vstavimo v (3) in dobimo

$$b^*Hb = b^*X\Lambda X^Tb = c^*\Lambda c = 0.$$

Ker je Λ diagonalna matrika, lahko $c^*\Lambda c$ zapišemo kot vsoto komponent $\bar{c}_i\lambda_i c_i=\lambda_i\left|c_i\right|^2$, ko i=1,2,...n. Za enačbo (5) vemo, da je $\|b\|_2=1$. Če normo zapišemo s c dobimo

$$||b||_2 = ||Xc||_2 = ||c||_2 = 1,$$

saj je X ortogonalna matrika.

Iskanje izotropnih vektorjev

Če predpostavimo, da nimajo vse lastne vrednosti H enakega predznaka, potem more za najmanjšo lastno vrednost λ_n veljati $\lambda_n < 0$. Naj bo k < n tak, da je $\lambda_k > 0$ in $0 < t < 1, t \in \mathbb{R}$. Označimo $|c_n|^2 = t, |c_k|^2 = 1 - t$ in $c_i \neq 0, i \neq n, k$, kar velja zaradi enačbe (5), t + (1 - t) = 1. Iz (4) mora veljati enačba:

$$\lambda_n t + \lambda_k (1-t) = 0,$$

katere rešitev je:

$$t_{s} = \frac{\lambda_{k}}{\lambda_{k} - \lambda_{n}}.$$
(6)

• Absolutna vrednost c_n (oz. c_k) je kvadratni koren od t_s (oz. $1 - t_s$).

- Absolutna vrednost c_n (oz. c_k) je kvadratni koren od t_s (oz. $1 t_s$).
- Ker je b = Xc, sta dve realni rešitvi:

$$b_1 = \sqrt{t_s} x_n + \sqrt{1 - t_s} x_k$$
, $b_2 = -\sqrt{t_s} x_n + \sqrt{1 - t_s} x_k$, kjer sta x_n in x_k lastna vektorja pripadajoča λ_n in λ_k .

- Absolutna vrednost c_n (oz. c_k) je kvadratni koren od t_s (oz. $1 t_s$).
- Ker je b = Xc, sta dve realni rešitvi:

$$b_1 = \sqrt{t_s}x_n + \sqrt{1 - t_s}x_k$$
, $b_2 = -\sqrt{t_s}x_n + \sqrt{1 - t_s}x_k$, kjer sta x_n in x_k lastna vektorja pripadajoča λ_n in λ_k .

 Ker imata izraza v rešitvah enaka imenovalca, lahko rešitvi zapišemo kot:

$$b_1 = \sqrt{\lambda_k} x_n + \sqrt{|\lambda_n|} x_k, \quad b_2 = -\sqrt{\lambda_k} x_n + \sqrt{|\lambda_n|} x_k$$

Uvod

- Absolutna vrednost c_n (oz. c_k) je kvadratni koren od t_s (oz. $1 t_s$).
- Ker je b = Xc, sta dve realni rešitvi:

$$b_1 = \sqrt{t_s}x_n + \sqrt{1 - t_s}x_k$$
, $b_2 = -\sqrt{t_s}x_n + \sqrt{1 - t_s}x_k$, kjer sta x_n in x_k lastna vektorja pripadajoča λ_n in λ_k .

 Ker imata izraza v rešitvah enaka imenovalca, lahko rešitvi zapišemo kot:

$$b_1 = \sqrt{\lambda_k} x_n + \sqrt{|\lambda_n|} x_k, \quad b_2 = -\sqrt{\lambda_k} x_n + \sqrt{|\lambda_n|} x_k$$

Vektor mora biti normiran:

$$\begin{aligned} b_1 &= \sqrt{\frac{\lambda_k}{\lambda_k + |\lambda_n|}} x_n + \sqrt{\frac{|\lambda_n|}{\lambda_k + |\lambda_n|}} x_k, \\ b_2 &= -\sqrt{\frac{\lambda_k}{\lambda_k + |\lambda_n|}} x_n + \sqrt{\frac{|\lambda_n|}{\lambda_k + |\lambda_n|}} x_k. \end{aligned}$$

Stevilo rešitev

Uporabimo lahko vsak par pozitivnih in negativnih lastnih vrednosti. Ta postopek lahko vrne toliko rešitev kot je dvakratno število parov lastnih vrednosti matrike H z nasprotnimi predznaki, če so vse lastne vrednosti različne. Predpostavimo, da je b realen.

Število rešitev

Uporabimo lahko vsak par pozitivnih in negativnih lastnih vrednosti. Ta postopek lahko vrne toliko rešitev kot je dvakratno število parov lastnih vrednosti matrike H z nasprotnimi predznaki, če so vse lastne vrednosti različne. Predpostavimo, da je b realen.

Kompleksne matrike

Posledica

Dobljena izotropna vektorja sta ortogonalna ($b_1^T b_2 = 0$), če in samo če $\lambda_k = -\lambda_n$.

Uvod

Uporabimo lahko vsak par pozitivnih in negativnih lastnih vrednosti. Ta postopek lahko vrne toliko rešitev kot je dvakratno število parov lastnih vrednosti matrike H z nasprotnimi predznaki, če so vse lastne vrednosti različne. Predpostavimo, da je b realen.

Posledica

Dobljena izotropna vektorja sta ortogonalna ($b_1^T b_2 = 0$), če in samo če $\lambda_k = -\lambda_n$.

Dokaz.

$$b_1^T b_2 = (\sqrt{\lambda_k} x_n + \sqrt{|\lambda_n|} x_k)^T (-\sqrt{\lambda_k} x_1 + \sqrt{|\lambda_n|} x_k) = -(\lambda_n + \lambda_k).$$

Neskončno rešitev

Ko sta A in b realna smo dokazali naslednji izrek:

Izrek

Če je A realna in nedefinitna (t.j. ni pozitivno in negativno definitna), potem obstajata najmanj dva neodvisna realna izotropna vektorja.

Ko sta A in b realna smo dokazali naslednji izrek:

Izrek

Uvod

Če je A realna in nedefinitna (t.j. ni pozitivno in negativno definitna), potem obstajata najmanj dva neodvisna realna izotropna vektorja.

 Pokazati želimo, da imamo neskončno število realnih rešitev in jih izračunati.

Neskončno rešitev

Ko sta A in b realna smo dokazali naslednji izrek:

Izrek

Uvod

Če je A realna in nedefinitna (t.j. ni pozitivno in negativno definitna), potem obstajata najmanj dva neodvisna realna izotropna vektorja.

- Pokazati želimo, da imamo neskončno število realnih rešitev in jih izračunati.
- Potrebujemo vsaj 3 različne lastne vrednosti z različnimi predznaki.

• Predpostavimo, da $\lambda_1 < 0 < \lambda_2 < \lambda_3$.

Kompleksne matrike

• Naj bo $t_1 = |c_1|^2$, $t_2 = |c_2|^2$.

- Predpostavimo, da $\lambda_1 < 0 < \lambda_2 < \lambda_3$.
- Nai bo $t_1 = |c_1|^2$, $t_2 = |c_2|^2$.

Veljati mora enačba (5)

$$\lambda_1 t_1 + \lambda_2 t_2 + \lambda_3 (1 - t_1 - t_2) = 0$$

Kompleksne matrike

OZ.

$$(\lambda_1 - \lambda_3)t_1 + (\lambda_2 - \lambda_3)t_2 + \lambda_3 = 0,$$

s pogoji: $t_i > 0$, i = 1, 2 in $t_1 + t_2 < 1$.

Neskončno rešitev

Uvod

• Dobimo premico definirano v (t_1, t_2) ravnini

$$t_2 = \frac{\lambda_3}{\lambda_3 - \lambda_2} - \frac{\lambda_3 - \lambda_1}{\lambda_3 - \lambda_2} t_1.$$

Neskončno rešitev

Uvod

• Dobimo premico definirano v (t_1, t_2) ravnini

$$t_2 = \frac{\lambda_3}{\lambda_3 - \lambda_2} - \frac{\lambda_3 - \lambda_1}{\lambda_3 - \lambda_2} t_1.$$

- Pogoji za t₁, t₂ definirajo trikotnik.
- Potrebno je preveriti, če premica seka trikotnik.

Kompleksne matrike

Neskončno rešitev

• Dobimo premico definirano v (t_1, t_2) ravnini

$$t_2 = \frac{\lambda_3}{\lambda_3 - \lambda_2} - \frac{\lambda_3 - \lambda_1}{\lambda_3 - \lambda_2} t_1.$$

- Pogoji za t₁, t₂ definirajo trikotnik.
- Potrebno je preveriti, če premica seka trikotnik.
- t_1 -os seka pri $\lambda_3/(\lambda_3 \lambda_1) > 1$.
- t_2 -os seka pri $\lambda_3/(\lambda_3-\lambda_2)<1$.

Neskončno rešitev

Uvod

Dobimo premico definirano v (t₁, t₂) ravnini

$$t_2 = \frac{\lambda_3}{\lambda_3 - \lambda_2} - \frac{\lambda_3 - \lambda_1}{\lambda_3 - \lambda_2} t_1.$$

- Pogoji za t₁, t₂ definirajo trikotnik.
- Potrebno je preveriti, če premica seka trikotnik.
- t_1 -os seka pri $\lambda_3/(\lambda_3-\lambda_1)>1$.
- t_2 -os seka pri $\lambda_3/(\lambda_3-\lambda_2)<1$.
- Vse dopustne vrednosti za t₁ in t₂ so dane z daljico v trikotniku.
- Zato obstaja neskončno število možnih pozitivnih parov (t₁, t₂).

Uvod

Poglejmo si enostaven zgled za matriko $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Očitno so lastne vrednosti $\lambda_1 = -1, \lambda_2 = 1$ in $\lambda_3 = 2$. Drugače izračunamo lastne vrednosti in vektorje v Matlabu s pomočjo ukaza [X,D] = eig(A). Kjer je X matrika lastnih vektorjev in D matrika lastnih vrednosti.

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Uvod

Enačba premice je tedaj $t_2 = 2 - 3t_1$.

Enačba premice je tedaj $t_2 = 2 - 3t_1$.

Uvod

Narišemo omejitve: $t_1, t_2 \ge 0$ in $t_1 + t_2 \le 1$.

Narišemo omejitve: $t_1, t_2 \ge 0$ in $t_1 + t_2 \le 1$.

Dopustne rešitve za t_1 in t_2 so dane z daljico v trikotniku.

Dopustne rešitve za t_1 in t_2 so dane z daljico v trikotniku.

Iz daljice lahko izberemo katerikoli par točk (t_1, t_2) , npr.

(0.5, 0.5). Potem vemo kako izgleda vektor
$$c = \begin{bmatrix} \sqrt{0.5} \\ \sqrt{0.5} \\ 0 \end{bmatrix}$$
 . Iz

Kompleksne matrike

enačbe $c = X^T b$. dobimo

$$b = Xc = c = \begin{bmatrix} \sqrt{0.5} \\ \sqrt{0.5} \\ 0 \end{bmatrix}.$$

Seveda je rešitev tudi b = -c. Tako dobimo neskončno izotropnih vektorjev b.

Kompleksne matrike

Neskončno rešitev

Ta problem za iskanje koeficientov je v treh dimenzijah in možne rešitve *t*-ja so v eni dimenziji. Takšna konstrukcija pripelje do naslednjega izreka:

Izrek

Če je n > 2 in A je realna in nedefinitna, ima matrika H vsaj tri različne lastne vrednosti z različnimi predznaki. Potem obstaja neskončno število realnih izotropnih vektorjev.

Neskončno rešitev

Ta problem za iskanje koeficientov je v treh dimenzijah in možne rešitve *t*-ja so v eni dimenziji. Takšna konstrukcija pripelje do naslednjega izreka:

Izrek

Če je n > 2 in A je realna in nedefinitna, ima matrika H vsaj tri različne lastne vrednosti z različnimi predznaki. Potem obstaja neskončno število realnih izotropnih vektorjev.

Splošen zapis

$$\sum_{i=1}^{k-1} (\lambda_i - \lambda_k) t_i + \lambda_k = 0, \quad t_i \ge 0, i = 1, \dots, k-1, \sum_{i=1}^{k-1} t_i \le 1.$$

Kompleksne matrike

00000

Kompleksne matrike

Predstavljeni bodo algoritmi naslednjih avtorjev:

- Meurant.
- Carden.
- Chorianopoulos, Psarrakos in Uhlig.

 V nekaterih primerih lahko izračunamo rešitve s samo enim računanjem lastnih vrednosti in vektorjev matrike *K*.

Kompleksne matrike

000000

 V nekaterih primerih lahko izračunamo rešitve s samo enim računanjem lastnih vrednosti in vektorjev matrike K.

Kompleksne matrike

Uporabimo lastne vektorje matrike H.

 V nekaterih primerih lahko izračunamo rešitve s samo enim računanjem lastnih vrednosti in vektorjev matrike K.

Kompleksne matrike

- Uporabimo lastne vektorje matrike H.
- Če ima matrika A kompleksne elemente, nam prejšnja konstrukcija za realne matrike vrne le vektorje za katere je $\Re(b^*Ab)=0.$

 V nekaterih primerih lahko izračunamo rešitve s samo enim računanjem lastnih vrednosti in vektorjev matrike K.

Kompleksne matrike

- Uporabimo lastne vektorje matrike H.
- Če ima matrika A kompleksne elemente, nam prejšnja konstrukcija za realne matrike vrne le vektorje za katere je $\Re(b^*Ab)=0.$
- Z uporabo treh lastnih vektorjev H, obstaja neskončno rešitev dobljenih na daljici v trikotniku omejitev.

 V nekaterih primerih lahko izračunamo rešitve s samo enim računanjem lastnih vrednosti in vektorjev matrike K.

Kompleksne matrike

- Uporabimo lastne vektorje matrike H.
- Če ima matrika A kompleksne elemente, nam prejšnja konstrukcija za realne matrike vrne le vektorje za katere je $\Re(b^*Ab) = 0$.
- Z uporabo treh lastnih vektorjev H, obstaja neskončno rešitev dobljenih na daljici v trikotniku omejitev.
- Če sta imaginarna dela, ki ustrezata robnima točkama daljice, različnih predznakov, potem iz izreka o povprečni vrednosti sledi, da obstaja točka na daljici, ki ima ničeln imaginarni del.

Opomba: to vsebuje samo izračun kvadratne forme x^*Ax . Ne potrebujemo nobenih izračunov lastnih vrednosti in vektorjev.

Uvod

- Uporabimo lastne vrednosti in lastne vektorje matrike $K = (A A^*)/(2i)$, ki je hermitska.
- S kombiniranjem lastnih vektorjev matrike K pripadajočim k pozitivnim in negativnim lastnim vrednostim, lahko (v nekaterih primerih) izračunamo dva vektorja b_1 in b_2 , taka da

$$\alpha_1 = \Re(b_1^*Ab_1) < 0$$

in

$$\alpha_2 = \Re(b_2^*Ab_2) > 0.$$

Lema

Naj bosta b_1 in b_2 enotska vektorja $(b_i^*Ab_i) = 0$, i = 1, 2 in $\alpha_1 = \Re(b_1^*Ab_1) < 0$, $\alpha_2 = \Re(b_2^*Ab_2) > 0$. Naj bo $b(t,\theta) = e^{-i\theta}b_1 + tb_2$, $t,\theta \in \mathbb{R}$, $\alpha(\theta) = e^{i\theta}b_1^*Ab_2 + e^{-i\theta}b_2^*Ab_1$. Potem je

$$b(t,\theta)^*Ab(t,\theta) = \alpha_2 t^2 + \alpha(\theta)t + \alpha_1,$$

$$lpha(heta) \in \mathbb{R}$$
, ko $heta = arg(b_2^*Ab_1 - b_1^T \overline{Ab_2})$. Za $t_1 = (-lpha(heta) + \sqrt{lpha(heta)^2 - 4lpha_1lpha_2})/(2lpha_2)$, imamo

$$b(t_1,\theta)\neq 0,\quad \frac{b(t_1,\theta)^*}{\|b(t_1,\theta)\|}A\frac{b(t_1,\theta)}{\|b(t_1,\theta)\|}=0.$$

Naj bo x (oz. y) lastna vrednost K (oz. H), upoštevamo vektorje $X_{\theta} = \cos(\theta)x + \sin(\theta)y$, $0 \le \theta \le \pi$. Ko gre θ od 0 do π , $X_{\theta}^*AX_{\theta}$ opisuje elipso v zalogi vrednosti. Za dan par lastnih vektorjev x, y iščemo presečišča elipse z realno osjo. Opazimo, da je A = H + iK, torej imamo:

Kompleksne matrike

Uvod

Naj bo x (oz. y) lastna vrednost K (oz. H), upoštevamo vektorje $X_{\theta} = \cos(\theta)x + \sin(\theta)y$, $0 < \theta < \pi$. Ko gre θ od 0 do π , $X_{\theta}^*AX_{\theta}$ opisuje elipso v zalogi vrednosti. Za dan par lastnih vektorjev x, y iščemo presečišča elipse z realno osjo. Opazimo, da je A = H + iK, torej imamo:

$$\begin{split} X_{\theta}^* A X_{\theta} &= \cos^2(\theta) (x^* H x + i x^* K x) \\ &+ \sin^2(\theta) (y^* H y + i y^* K y) \\ &+ \sin(\theta) \cos(\theta) (x^* H y + y^* H x + i [x^* K y + y^* K x]). \end{split}$$

Naj bo x (oz. y) lastna vrednost K (oz. H), upoštevamo vektorje $X_{\theta} = \cos(\theta)x + \sin(\theta)y$, $0 < \theta < \pi$. Ko gre θ od 0 do π , $X_{\theta}^*AX_{\theta}$ opisuje elipso v zalogi vrednosti. Za dan par lastnih vektorjev x, y iščemo presečišča elipse z realno osjo. Opazimo, da je A = H + iK, torej imamo:

Kompleksne matrike

$$\begin{split} X_{\theta}^* A X_{\theta} &= \cos^2(\theta) (x^* H x + i x^* K x) \\ &+ \sin^2(\theta) (y^* H y + i y^* K y) \\ &+ \sin(\theta) \cos(\theta) (x^* H y + y^* H x + i [x^* K y + y^* K x]). \end{split}$$

Ko enačimo imaginarni del $X_{\theta}^*AX_{\theta}$ z 0, dobimo enačbo:

Naj bo x (oz. y) lastna vrednost K (oz. H), upoštevamo vektorje $X_{\theta} = \cos(\theta)x + \sin(\theta)y$, $0 \le \theta \le \pi$. Ko gre θ od 0 do π , $X_{\theta}^*AX_{\theta}$ opisuje elipso v zalogi vrednosti. Za dan par lastnih vektorjev x, y iščemo presečišča elipse z realno osjo. Opazimo, da je A = H + iK, torej imamo:

$$\begin{split} X_{\theta}^* A X_{\theta} &= \cos^2(\theta) (x^* H x + i x^* K x) \\ &+ \sin^2(\theta) (y^* H y + i y^* K y) \\ &+ \sin(\theta) \cos(\theta) (x^* H y + y^* H x + i [x^* K y + y^* K x]). \end{split}$$

Ko enačimo imaginarni del $X_{\theta}^*AX_{\theta}$ z 0, dobimo enačbo:

$$\alpha \cos^2(\theta) + \beta \sin^2(\theta) + \gamma \sin(\theta) \cos(\theta) = 0.$$

Naj bo
$$\alpha = \Im(x^*Hx + ix^*Kx), \beta = \Im(y^*hy + iy^*Ky)$$
 in $\gamma = \Im(x^*Hy + y^*Hx + i[x^*Ky + y^*Kx]).$

Kompleksne matrike

00000

Naj bo $\alpha = \Im(x^*Hx + ix^*Kx), \beta = \Im(y^*hy + iy^*Ky)$ in $\gamma = \Im(x^*Hy + y^*Hx + i[x^*Ky + y^*Kx]).$

Predpostavimo, da $cos(\theta) \neq 0$ in delimo, dobimo kvadratno enačbo za $t = \tan(\theta)$,

$$\beta t^2 + \gamma t + \alpha = 0.$$

- Če ima ta enačba realne rešitve, potem dobimo vrednosti θ , ki nam vrnejo take vektorje X_{θ} , da $\Im(X_{\theta}^*AX_{\theta})=0$.
- Ko je velikost problema velika, ne uporabimo te konstrukcije za vse pare lastnih vektorjev, saj nas to lahko preveč stane. Uporabimo samo lastne vektorje, ki pripadajo par najmanjšim in največjim lastnim vrednostim.
- Če tudi ta konstrukcija ne deluje, uporabimo algoritem Chorianopoulosa, Psarrakosa in Uhliga.

Literatura

- G. Meurant, The computation of isotropic vectors, Numer. Alg. 60 (2012) 193–204.
- R. Carden, A simple algorithm for the inverse field of values problem, Inverse Probl. 25 (2009) 1–9
- C. Chorianopoulos, P. Psarrakos in F. Uhlig, A method for the inverse numerical range problem, Electron. J. Linear Algebra 20 (2010) 198–206
- N. Ciblak, H. Lipkin, Orthonormal isotropic vector bases, In: Proceedings of DETC'98, 1998 ASME Design Engineering Technical Conferences (1998).
- Johnson, C. R., Numerical determination of the field of values of a general complex matrix, SIAM J. Numer. Anal. 15 (1978) 595–602.