Analysis of Influential Data on US Sector ETFs and the Potential for Forecasting Price Movements

Team 5

April 2018

Members

- Preeti Bekal
- Wyatt Marciniak
- Neel Shah

Project Idea

We will be analyzing influential relationships within the US stock market. To do this we will start by compiling index, sector Exchange Traded Funds (ETF), commodity prices, market/economic indicators and exchange rates and analyzing behaviors of certain relationships over time. The goal of project contains 2 parts:

- 1. Analyze influential relationships and their behaviour through and across time subsets
- 2. Employ methods for predicting 'up' and 'down' movements per period

To analyze the relationships, we will analyze correlations and simple regressions across multiple time periods and rank the influence of our factors based on these results. We will also use K-means and hierarchical clustering methods to analyze these relationships in a more dynamic way. This will provide us with a benchmark for building forecast models as well as allow us to discuss how market relationships have been maintained or changed over time. To predict price movements of the ETF securities, we will construct multivariate linear regression models and conduct testing using supervised decision trees as well. The factors we will use will be determined by the initial relationship analysis. Our goal here is to compare these prediction models and establish some process to which we can conclude with some level of certainty the future movements of these ETFs. By extension, we are trying to forecast sector price movements that could act as a complimentary analysis to macroeconomic analysis and asset allocation decisions. It should also be noted that the objective here is to predict direction of returns and not the magnitude as we believe directional predictions will be more accurate and useful in asset allocation decisions. We currently have a working script for data extraction and cleaning, which we will comment on in the following sections.

Data Sources and Extraction Methodology

We will be using the 'quantmod' package in R to extract all of our data for this project. The sources used will be Yahoo finance (for indexes and equity data) and the FRED database (for economic, exchange rate and commodities data). Equity data sets are extracted using a set time frame ('to', 'from') and FRED (economic) data sets are extracted in their full time frames from the data sets inception date (Figure: 1). They will then be adjusted for the proper analysis time frame thereafter.

```
data_pull <- function(type, tick, from, to)  # Pull stock/etf/indicator data
{
   if(type == "indicator")
   {
      cnames <- c("Data")
      getSymbols.FRED(tick, env = .GlobalEnv, return.class = "xts")
      temp <- data.frame(get(tick))
      colnames(temp) <- cnames
      #rm(get(tick))
      temp

   else if(type == "stock/etf")
   {
      cnames <- c("Open","High","Low","close","volume","Adjusted")
      getSymbols(tick, from = from, to = to)
      if(tick == "^GSPC") { temp <- data.frame(GSPC) }
      else { temp <- data.frame(get(tick)) }
      colnames(temp) <- cnames
      temp
   }
   else { bad <- "Invalid data type to pull"; bad }
}</pre>
```

Figure 1: Function: Data Pull (Pulls data sets according to identifying code and source)

Data Scrubbing

Scrubbing the data consists of 4 core steps:

- Step 1: Convert raw data sets into data frames of price/value and date
- Step 2: Subset the data into the proper periods (daily, weekly or monthly) (Figure: 2)
- Step 3: Combine the data, bound by the appropriate dates for accuracy, into combined data sets
- Step 4: Calculate the respective period returns (Figure: 3)

The objective here is to look at relationships that correspond to daily, weekly and monthly time periods. We are looking to see how relationships change over these time frames to see if certain subsets reveal stronger or weaker relationships. To complete this testing, we are also utilizing multiple factors that are published only weekly or monthly. We hope to conduct a full analysis to report as accurate results as possible.

Figure 2: Function: Compile Data (Subset data by respective dates for select periods)

```
calc.ret
              <- function(data) # Calculate returns for 1 column data frame
 rnames <- rownames(data); rnames <- rnames[-1]</pre>
 temp <- c()
  for(i in 1:length(data[,1]))
    temp <- c(temp, log(data[i,1]/data[i-1,1]))</pre>
 new.df <- data.frame(temp)
colnames(new.df) <- c("Data")
rownames(new.df) <- rnames
 new. df
calc.ret.df <- function(data) # Calculate return for 2+ column data frame
 rnames <- rownames(data); rnames <- rnames[-1]</pre>
 cnames <- colnames(data)
new.df <- data.frame(matrix(nrow = length(data[,1])-1))</pre>
  for(i in 1:length(data))
    temp <- c()
    for(j in 1:length(data[,i]))
      temp <- c(temp, log(data[j,i]/data[j-1,i]))</pre>
    new.df <- cbind(new.df, temp)</pre>
 new.df <- new.df[-1]
 colnames(new.df) <- cnames
rownames(new.df) <- rnames
  new. df
```

Figure 3: Function: Calculate Return (Calculates period return for 1 or more column data sets)

Data Sets

The current data sets we have compiled and will use are as follows:

Data Set	Description
S&P 500 Index	Broad Market Index for top 500 US companies
Dow Jones Industrial Average	Core 30 companies that represent the US economy
Nasdaq	US Technology Sector Index
Financial Sector SPDR ETF	ETF tracking US Financial Sector
Technology Sector SPDR ETF	ETF tracking US Technology Sector
Health Care Sector SPDR ETF	ETF tracking US Health Care Sector
Energy Sector SPDR ETF	ETF tracking US Energy Sector
Industrial Sector SPDR ETF	ETF tracking US Industrial Sector
Consumer Discretionary Sector SPDR ETF	ETF tracking US Consumer Discretionary Sector
Consumer Staples Sector SPDR ETF	ETF tracking US Consumer Staples Sector
Utilities Sector SPDR ETF	ETF tracking US Utilities Sector
Materials Sector SPDR ETF	ETF tracking US Materials Sector
Biotechnology Sector SPDR ETF	ETF tracking US Biotechnology Sector
US/Euro Exchange rate	US dollar to Euro zone Euro exchange rate
US/Euro Exchange rate	US Dollar to Euro zone Euro exchange rate
Yen/US Exchange rate	Japanese Yen to US Dollar exchange rate
Yuan/Euro Exchange rate	Chinese Yuan to US Dollar exchange rate
CD/US Exchange rate	Canadian Dollar to US Dollar exchange rate
Peso/Euro Exchange rate	Mexican Peso to US Dollar exchange rate
Won/US Exchange rate	South Korean Won to US Dollar exchange rate
Real/US Exchange rate	Brazilian Real to US Dollar exchange rate
Rupee/US Exchange rate	Indian Rupee to US Dollar exchange rate
Franc/US Exchange rate	Swiss Franc to US Dollar exchange rate
Federal Funds Rate	US Federal Funds Rate (Core US Interest Rate Benchmark)
Vix Index	US Stock Market Volatility Index
University of Michigan Sentiment	US Consumer Sentiment Survey Index
Oil Price	US Crude oil price per barrel
Case Schiller Index	US Home Price Index
US Dollar Index	US Dollar value against a basket of currencies
Federal Debt	US Public Debt as percentage of GDP
US Unemployment Index	US unemployment rate
Gold Price	Spot Gold Price Index

The 3 indexes we are analyzing cover the behavior of the US economy and stock markets as a whole. We will use these indexes to monitor the broad market movements. We expect, however, that these indexes will not be used heavily as they encompass too many components to specific relationship analysis. The 10 sector ETFs are the dependant or observation variables we will be testing the relationships for. We will identify, using remaining data sets, what factors are most influential for determining sector value movements and attempt to predict future movements. The 10 exchange rate data sets will be used to analyze the relationships of the world's top economies with the US and how global trade and investor expectation drive sector movements. The 9 economic indicators will be used to assess the influence of US economic output, consumer behaviour, debt market and stock market behaviors on individual US sectors. We will be compiling additional data sets pertaining to commodity price indexes after vetting a few options from the FRED database. Commodity prices are key drivers of manufacturing, consumer sales and business operations. We have included our compiled data sets with the proposal submission as they are large and previews of the data sets shown here would be too small to review.

Methodologies for Analysis

- Correlation and Simple Linear Regression Analysis (for relationship analysis)
- K-means and Hierarchical Clustering (for relationship analysis)
- Multivariate Linear Models (for forecasting movements)
- Supervised Decision Trees (for forecasting movements)

We will be building functions for automating analysis as well as utilizing an array of R packages. A complete list will be given with corresponding functions utilized when we have verified the final functionalities to use. Currently, we are using:

- quantmod Data retrieval
- corrplot Correlation Matrix Visualization
- fbasics/fTrading Time series and Return Data Analysis
- broom Summary Object Manipulation (extraction of Summary components)

Next Steps

We will finalize our data sets and begin analysis testing to pool the most influential data parameters for forecasting price movements. We expect that by the first update we will have these sets selected and have begun conducting forecast testing for out final submission.