

Voici les caractéristiques d'un population de chats:

- Couleur des yeux: marron, marron, vert, marron, vert, bleu, vert, marron, marron, marron, marron, marron, marron, marron, marron, bleu, vert, bleu, vert, bleu, vert, bleu, marron, bleu, marron, bleu.
- Poids des chats (en kg): 1.48-1.67-1.72-1.84- 1.56- 1.68-1.75- 1.84- 1.56- 1.68-1.76- 1.94- 1.60- 1.68-1.77- 1.61- 1.69- 1.77- 1.63- 1.70- 1.79- 1.64- 1.71- 1.81- 1.64-1.72- 1.81.

Soit X la variable "Couleur des yeux" et Y la variable "Poids du chat". On vous propose les classes suivantes : [1.40, 1.49], [1.5, 1.59], [1.6, 1.69], [1.7, 1.79], [1.8, 1.89], [1.9, 2.00] pour étudier la variable Y. On utilise la notation suivant

$$\{a \le Y \le b\},\$$

représente l'événement: "chats avec un poids compris entre a et b kg, a et b inclus" au même

$$\{X = \text{``couleur''} \},$$

l'événement: "chats avec un couleur des yeux égale à "couleur" ".

- 1. En utilisant les calcules déjà effectues dans l'atelier 1, calculez les probabilités conditionnelles suivantes.
 - (a) $\mathbb{P}(\{1.40 \le Y \le 1.49\} | \{X = \text{marron}\})$
 - (b) $\mathbb{P}(\{1.5 \le Y \le 1.59\} | \{X = \text{marron}\})$
 - (c) $\mathbb{P}(\{1.6 \le Y \le 1.69\} | \{X = \text{marron}\})$
 - (d) $\mathbb{P}(\{1.7 \le Y \le 1.79\} | \{X = \text{marron}\})$
 - (e) $\mathbb{P}(\{1.8 \le Y \le 1.89\} | \{X = \text{marron}\})$
 - (f) $\mathbb{P}(\{1.9 \le Y \le 2.00\} | \{X = \text{marron}\})$
 - (g) $\mathbb{P}(\{1.40 \le Y \le 1.49\} | \{X = \text{blue}\})$
 - (h) $\mathbb{P}(\{1.5 \le Y \le 1.59\} | \{X = \text{blue}\})$
 - (i) $\mathbb{P}(\{1.6 \le Y \le 1.69\} | \{X = \text{blue}\})$
 - (j) $\mathbb{P}(\{1.7 \le Y \le 1.79\} | \{X = \text{blue}\})$
 - (k) $\mathbb{P}(\{1.8 \le Y \le 1.89\} | \{X = \text{blue}\})$
 - (l) $\mathbb{P}(\{1.9 \le Y \le 2.00\} | \{X = \text{blue}\})$
 - (m) $\mathbb{P}(\{1.40 \le Y \le 1.49\} | \{X = \text{vert}\})$
 - (n) $\mathbb{P}(\{1.5 \le Y \le 1.59\} | \{X = \text{vert}\})$
 - (o) $\mathbb{P}(\{1.6 \le Y \le 1.69\} | \{X = \text{vert}\})$
 - (p) $\mathbb{P}(\{1.7 \le Y \le 1.79\} | \{X = \text{vert}\})$
 - (q) $\mathbb{P}(\{1.8 \le Y \le 1.89\} | \{X = \text{vert}\})$

Biostatistique Degré en Veto Atelier 2 Alfara del Patriarca (Valencia),

Feuille 2 of 4

(r)
$$\mathbb{P}(\{1.9 \le Y \le 2.00\} | \{X = \text{vert}\})$$

- 2. Comme on peut interpréter les probabilités calculés?
- a) Calculez les probabilités suivantes.

(a)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.40 \le Y \le 1.49\})$$

(b)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.5 \le Y \le 1.59\})$$

(c)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.6 \le Y \le 1.69\})$$

(d)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.7 \le Y \le 1.79\})$$

(e)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.8 \le Y \le 1.89\})$$

(f)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.9 \le Y \le 2.00\})$$

(g)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.40 \le Y \le 1.49\})$$

(h)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.5 \le Y \le 1.59\})$$

(i)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.6 \le Y \le 1.69\})$$

(j)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.7 \le Y \le 1.79\})$$

(k)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.8 \le Y \le 1.89\})$$

(l)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.9 \le Y \le 2.00\})$$

(m)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.40 \le Y \le 1.49\})$$

(n)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.5 \le Y \le 1.59\})$$

(o)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.6 \le Y \le 1.69\})$$

(p)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.7 \le Y \le 1.79\})$$

(q)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.8 \le Y \le 1.89\})$$

(r)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.9 \leq Y \leq 2.00\})$$

Biostatistique Degré en Veto Atelier 2 Alfara del Patriarca (Valencia),

Feuille 3 of 4

3. Calculez les différences suivantes:

```
(a) \mathbb{P}(\{X = \text{marron}\} \cap \{1.40 \le Y \le 1.49\}) - \mathbb{P}(\{X = \text{marron}\})\mathbb{P}(\{1.40 \le Y \le 1.49\})
(b) \mathbb{P}(\{X = \text{marron}\} \cap \{1.5 \le Y \le 1.59\}) - \mathbb{P}(\{X = \text{marron}\})\mathbb{P}(\{1.5 \le Y \le 1.59\})
```

(c)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.6 \le Y \le 1.69\}) - \mathbb{P}(\{X = \text{marron}\})\mathbb{P}(\{1.6 \le Y \le 1.69\})$$

(d)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.7 \le Y \le 1.79\}) - \mathbb{P}(\{X = \text{marron}\})\mathbb{P}(\{1.7 \le Y \le 1.79\})$$

(e)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.8 \le Y \le 1.89\}) - \mathbb{P}(\{X = \text{marron}\})\mathbb{P}(\{1.8 \le Y \le 1.89\})$$

(f)
$$\mathbb{P}(\{X = \text{marron}\} \cap \{1.9 \le Y \le 2.00\}) - \mathbb{P}(\{X = \text{marron}\})\mathbb{P}(\{1.9 \le Y \le 2.00\})$$

(g)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.40 \le Y \le 1.49\}) - \mathbb{P}(\{X = \text{blue}\})\mathbb{P}(\{1.40 \le Y \le 1.49\})$$

(h)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.5 \le Y \le 1.59\}) - \mathbb{P}(\{X = \text{blue}\})\mathbb{P}(\{1.5 \le Y \le 1.59\})$$

(i)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.6 \le Y \le 1.69\}) - \mathbb{P}(\{X = \text{blue}\})\mathbb{P}(\{1.6 \le Y \le 1.69\})$$

(j)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.7 \le Y \le 1.79\}) - \mathbb{P}(\{X = \text{blue}\})\mathbb{P}(\{1.7 \le Y \le 1.79\})$$

(k)
$$\mathbb{P}(\{X=\mathrm{blue}\}\cap\{1.8\leq Y\leq 1.89\})-\mathbb{P}(\{X=\mathrm{blue}\})\mathbb{P}(\{1.8\leq Y\leq 1.89\})$$

(l)
$$\mathbb{P}(\{X = \text{blue}\} \cap \{1.9 \le Y \le 2.00\}) - \mathbb{P}(\{X = \text{blue}\})\mathbb{P}(\{1.9 \le Y \le 2.00\})$$

(m)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.40 \le Y \le 1.49\}) - \mathbb{P}(\{X = \text{vert}\})\mathbb{P}(\{1.40 \le Y \le 1.49\})$$

(n)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.5 \le Y \le 1.59\}) - \mathbb{P}(\{X = \text{vert}\})\mathbb{P}(\{1.5 \le Y \le 1.59\})$$

(o)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.6 \le Y \le 1.69\}) - \mathbb{P}(\{X = \text{vert}\})\mathbb{P}(\{1.6 \le Y \le 1.69\})$$

(p)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.7 \le Y \le 1.79\}) - \mathbb{P}(\{X = \text{vert}\})\mathbb{P}(\{1.7 \le Y \le 1.79\})$$

(q)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.8 \le Y \le 1.89\}) - \mathbb{P}(\{X = \text{vert}\})\mathbb{P}(\{1.8 \le Y \le 1.89\})$$

(r)
$$\mathbb{P}(\{X = \text{vert}\} \cap \{1.9 \le Y \le 2.00\}) - \mathbb{P}(\{X = \text{vert}\})\mathbb{P}(\{1.9 \le Y \le 2.00\})$$

Biostatistique Degré en Veto Atelier 2 Alfara del Patriarca (Valencia),

Feuille 4 of 4

- 4. On dit que la variable X et la variable Y sont indépendantes si toutes les différences dans la question précédente sont nulles. En utilisant les quantités que vous avez calculez à l'exercice précédente vous avez de proposez une quantité qui permet de quantifier à quelle distance ils sont éloigné de l'indépendance. Expliquer comment on peut calculer la quantité en utilisant les données qu'on connais.
- 5. Calculez explicitement ce quantité et justifier l'emploi de ce quantité dans la pratique scientifique.