APPROXIMATION OF PERIODIC ANALYTIC FUNCTIONS BY INTERPOLATION TRIGONOMETRIC POLYNOMIALS

A. I. Stepanets and A. S. Serdyuk

UDC 517.5

We obtain asymptotic equalities for the upper bounds of approximations by interpolation trigonometric polynomials on classes of convolutions of periodic functions admitting a regular extension to a fixed strip of the complex plane.

Let C be the space of 2π -periodic continuous functions φ with the norm $\|\varphi\|_C = \max_t |\varphi(t)|$, let L_∞ be the space of 2π -periodic, measurable, essentially bounded functions φ with the norm $\|\varphi\|_\infty = \operatorname{ess\,sup} |\varphi(t)|$, and let $L = L_1$ be the space of 2π -periodic functions summable over the period with the norm

$$\| \varphi \|_{L} = \| \varphi \|_{1} = \int_{-\pi}^{\pi} |\varphi(t)| dt.$$

Further, we assume that f(x) is a 2π -periodic function from L,

$$S[f] = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

is its Fourier series, $\psi(k)$ is an arbitrary function of natural argument, and β is an arbitrary fixed real number $(\beta \in R)$. If the series

$$\sum_{k=1}^{\infty} \frac{1}{\Psi(k)} \left(a_k \cos \left(kx + \frac{\pi \beta}{2} \right) + b_k \sin \left(kx + \frac{\pi \beta}{2} \right) \right)$$

is the Fourier series of a certain summable function φ , then this function is called (see, e.g., [1, p. 25]) the (ψ, β) derivative of the function f(x) and is denoted by $f_{\beta}^{\psi}(x)$ ($\varphi(x) = f_{\beta}^{\psi}(x)$). The set of functions f(x) satisfying
this condition is denoted by f(x). If $f \in L_{\beta}^{\psi}$ and, simultaneously, $f_{\beta}^{\psi} \in \mathfrak{N}$, where \mathfrak{N} is a certain subset of functions from L, then we set $f \in L_{\beta}^{\psi} \mathfrak{N}$. If $F_{\beta}^{\psi}(x) = f(x)$, then it is natural to call the function $F(\cdot)$ the (ψ, β) -integral of $f(\cdot)$. In this case, we write $F(x) = \mathcal{J}_{\beta}^{\psi}(f; x)$.

Further, we set $L^{\Psi}_{\beta} \cap C = C^{\Psi}_{\beta}$ and $L^{\Psi}_{\beta} \Re \cap C = C^{\Psi}_{\beta} \Re$. In what follows, as the sets \Re , we consider the unit balls U^{0}_{∞} in the space L_{∞} , i.e.,

$$U_{\infty}^{0} = \{ \varphi \in L_{\infty} \colon \left\| \varphi \right\|_{\infty} \le 1, \ \varphi \perp 1 \},\$$

or the classes H_{ω} , namely,

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 52, No. 12, pp. 1689–1701, December, 2000. Original article submitted April 18, 2000.

$$H_{\omega} = \{ \varphi \in C : \omega(\varphi, t) \leq \omega(t) \},$$

where $\omega(\varphi;t)$ is the modulus of continuity of a function φ from C and $\omega(t)$ is a given majorant of the modulus of continuity. In this case, we set $C_{\beta}^{\Psi}U_{\infty}^{0}=C_{\beta,\infty}^{\Psi}$.

For every fixed $q \in [0, 1)$, we denote by \mathfrak{D}_q the set of sequences $\psi(k)$, $k \in \mathbb{N}$, for which

$$\lim_{k \to \infty} \frac{\psi(k+1)}{\psi(k)} = q.$$

The principal results of this paper are obtained for the classes $C_{\beta}^{\Psi} \Re$ defined by sequences $\Psi(k)$ from \mathfrak{D}_q for certain $q \in [0,1)$. In this case, as is known, the sets C_{β}^{Ψ} consist of 2π -periodic functions f(x) admitting a regular extension into the strip $|\operatorname{Im} z| \leq \ln \frac{1}{q}$; moreover, at any point x, the following equality holds:

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} f_{\beta}^{\Psi}(x - t) \Psi_{\beta}(t) dt = \frac{a_0}{2} + (f_{\beta}^{\Psi} * \Psi_{\beta})(x), \tag{1}$$

where

$$\Psi_{\beta}(t) = \sum_{k=1}^{\infty} \Psi(k) \cos\left(kt - \frac{\beta\pi}{2}\right)$$

is the kernel of representation (1) (see, e.g., [1, pp. 32, 35]).

Let us introduce additional notation. Let $f(x) \in C$. By $\tilde{S}_n(f;x)$, we denote a trigonometric polynomial of degree n that interpolates f(x) at the points $x_k^{(n)} = \frac{2k\pi}{2n+1}$, $k \in \mathbb{Z}$, i.e.,

$$\tilde{S}_n(f; x_k^{(n)}) = f(x_k^{(n)}), \quad k \in \mathbb{Z}.$$

The space of trigonometric polynomials t_{n-1} whose degree does not exceed n-1 is denoted by \mathcal{T}_{2n-1} . The quantity

$$E_n(f)_C = \inf_{t_{n-1}} \|f - t_{n-1}\|_C$$

is called the best approximation of f in the metric of the space C by trigonometric polynomials of degree n-1.

In the present work, we investigate the quantities $\tilde{\rho}_n(f;x) = f(x) - \tilde{S}_{n-1}(f;x)$ for $f \in C_{\beta}^{\Psi} \mathfrak{N}$, where \mathfrak{N} is either U_{∞}^0 or H_{ω} , and the quantities

$$\tilde{\mathcal{E}}_n \big(C_\beta^\Psi \, \mathfrak{N} \, ; x \big) \, = \, \sup_{f \, \in \, C_\beta^\Psi \, \mathfrak{N}} \left| \tilde{\rho}_n (f \, ; x) \right|$$

in order to obtain asymptotic equalities for them in the case where $\psi \in \mathfrak{D}_q$, $0 \le q < 1$, and $\beta \in R$.

The principal results of this paper are formulated in the following statements:

Theorem 1. Let $q \in \mathfrak{D}_q$, 0 < q < 1, $\psi(k) > 0$, and $\beta \in R$. If $f \in C_{\beta}^{\psi}(C)$, then

$$\left|\tilde{\rho}_n(f;x)\right| \leq |\psi(n)| \sin \frac{2n-1}{2} x \left| \left(\frac{16}{\pi^2} K(q) + O(1) \left(\frac{q}{n(1-q)} + \frac{\varepsilon_n}{(1-q)^2}\right)\right) E_n(f_{\beta}^{\psi})_C \right|$$
(2)

for any $n \in N$ and $x \in R$. Moreover, for any $x \in R$, $n \in N$, and $f \in C_{\beta}^{\Psi}C$, there exists a function F(t) = F(f; n; x; t) that satisfies the equality

$$\left|\tilde{\rho}_{n}(F;x)\right| = |\psi(n)| \sin \frac{2n-1}{2} x \left| \left(\frac{16}{\pi^{2}} K(q) + O(1) \frac{\varepsilon_{n} + 1/n}{(1-q)^{2}}\right) E_{n}(F_{\beta}^{\psi})_{C} \right|$$
 (3)

and is such that $E_n(F_{\beta}^{\Psi})_C = E_n(f_{\beta}^{\Psi})_C$. In relations (2) and (3),

$$\varepsilon_n = \sup_{k \ge n} \left| \frac{\psi(k+1)}{\psi(k)} - q \right|, \quad K(q) = \int_0^{\pi/2} \frac{du}{\sqrt{1 - q^2 \sin^2 u}},$$

and O(1) are values uniformly bounded with respect to x, n, q, β , and $f \in C_{\beta}^{\Psi} C$.

Theorem 1 shows, in particular, that inequality (2) is asymptotically exact for every $x \in R$ on the entire space $C_{\beta}^{\Psi} C$. This inequality is also asymptotically exact on certain important subsets of $C_{\beta}^{\Psi} C$. Thus, the following statement is true:

Theorem 2. Let $\psi \in \mathfrak{D}_q$, 0 < q < 1, $\psi(k) > 0$, $\beta \in R$, and let $\omega(t)$ be an arbitrary modulus of continuity. Then the following equalities hold for any $x \in R$ as $n \to \infty$:

$$\widetilde{\mathscr{E}}_n(C_{\beta,\infty}^{\psi};x) = \left| \sin \frac{2n-1}{2} x \right| \psi(n) \left(\frac{16}{\pi^2} K(q) + O(1) \left(\frac{q}{n(1-q)} + \frac{\varepsilon_n}{(1-q)^2} \right) \right), \tag{4}$$

$$\widetilde{\mathcal{E}}_n(C_{\beta}^{\Psi}H_{\omega};x) = \left|\sin\frac{2n-1}{2}x\right| \Psi(n)\left(\frac{8}{\pi^2}e_n(\omega)K(q) + O(1)\frac{\omega(1/n)(\varepsilon_n+1/n)}{(1-q)^2}\right),\tag{5}$$

where

$$e_n(\omega) = \theta_{\omega} \int_0^{\pi/2} \omega\left(\frac{2t}{n}\right) \sin t \, dt,$$

 $\theta_{\omega} \in [1/2, 1], \ \theta_{\omega} = 1$ if $\omega(t)$ is a convex modulus of continuity, K(q) and ε_n are the same as in Theorem 1, and O(1) are values uniformly bounded with respect to x, n, q, and β .

Note that the asymptotic equalities (4) and (5) for the quantities $\tilde{\mathcal{E}}_n(C_{\beta,\infty}^{\psi};x)$ and $\tilde{\mathcal{E}}_n(C_{\beta}^{\psi}H_{\omega};x)$ are interpolation analogs of the asymptotic equalities obtained in Theorems 3 and 5 in [2] (see also [3]) for the values $\mathcal{E}_n(C_{\beta,\infty}^{\psi})_C$ and $\mathcal{E}_n(C_{\beta}^{\psi}H_{\omega})_C$ of the upper bounds of approximation by Fourier sums in the space C on the classes $C_{\beta,\infty}^{\psi}$ and $C_{\beta}^{\psi}H_{\omega}$. Moreover, the following equalities are true:

$$\widetilde{\mathcal{E}}_n(C_{\beta,\infty}^{\psi};x) = 2\left|\sin\frac{2n-1}{2}x\right|\left(\mathcal{E}_n(C_{\beta,\infty}^{\psi})_C + O(1)\psi(n)\left(\frac{q}{n(1-q)} + \frac{\varepsilon_n}{(1-q)^2}\right)\right),$$

$$\tilde{\mathcal{E}}_n(C_\beta^{\psi} H_\omega; x) = 2 \left| \sin \frac{2n-1}{2} x \right| \left(\mathcal{E}_n(C_\beta^{\psi} H_\omega)_C + O(1) \frac{\psi(n) \omega(1/n) (\varepsilon_n + 1/n)}{(1-q)^2} \right),$$

where the values ε_n and O(1) have the same sense as in Theorem 2.

We also note that, for the known classes W_{∞}^{r} , the following asymptotic equality was obtained by Nikol'skii [4] in 1941:

$$\widetilde{\mathscr{E}}_n(W^r_\infty;x) = \frac{2K_r}{\pi} \frac{\ln n}{n^r} \left| \sin \frac{2n-1}{2} x \right| + O(1) n^{-r},$$

where K_r is the Favard constant,

$$K_r = \frac{4}{\pi} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu(r+1)}}{(2\nu+1)^{r+1}}, \quad r=0, 1, \dots,$$

and O(1) is a value uniformly bounded with respect to x and n.

The Poisson kernels

$$P_{q,\beta}(t) = \sum_{k=1}^{\infty} q^k \cos\left(kt - \frac{\beta\pi}{2}\right), \quad q \in (0,1), \quad \beta \in R,$$

are an important example of kernels whose coefficients $\psi(k)$ satisfy the condition $\psi \in \mathfrak{D}_q$, 0 < q < 1. In the case where $\psi(k) = q^k$, the classes $C^{\psi}_{\beta} \mathfrak{N}$ are denoted by $C^q_{\beta} \mathfrak{N}$ and the corresponding (ψ, β) -derivatives and (ψ, β) -integrals of the function f are denoted by $f^q_{\beta}(\cdot)$ and $\mathcal{J}^q_{\beta}(f; \cdot)$, respectively. Theorem 2 yields the following statement:

Corollary 1. Let 0 < q < 1, $\beta \in R$, and let $\omega(t)$ be an arbitrary modulus of continuity. Then, for any $x \in R$, the following asymptotic equalities hold as $n \to \infty$:

$$\widetilde{\mathcal{E}}_n(C^q_{\beta,\infty};x) = \left|\sin\frac{2n-1}{2}x\right|q^n\left(\frac{16}{\pi^2}K(q) + O(1)\frac{q}{n(1-q)}\right),$$

$$\widetilde{\mathcal{E}}_n(C^q_\beta H_\omega; x) = \left| \sin \frac{2n-1}{2} x \right| q^n \left(\frac{8}{\pi^2} e_n(\omega) K(q) + O(1) \frac{\omega(1/n)}{n(1-q)^2} \right),$$

where the quantities $e_n(\omega)$ and K(q) are the same as in Theorem 2 and O(1) are values uniformly bounded with respect to x, n, q, and β .

The conditions of Theorem 2 are also satisfied by the coefficients $\psi(k)$ of the biharmonic Poisson kernel

$$B_{q,\beta}(t) = \frac{1}{2} + \sum_{k=1}^{\infty} \left(1 + \frac{1 - q^2}{2} k \right) q^k \cos\left(kt - \frac{\beta\pi}{2}\right), \quad 0 < q < 1, \quad \beta \in R,$$

and the Neumann kernel

$$N_{q,\beta}(t) = \sum_{k=1}^{\infty} \frac{q^k}{k} \cos\left(kt - \frac{\beta\pi}{2}\right), \quad 0 < q < 1, \quad \beta \in R.$$

It is easy to verify that, for the coefficients $\psi(k)$ of the kernels $B_{q,\beta}(t)$ and $N_{q,\beta}(t)$, we have

$$\varepsilon_n = \sup_{k \ge n} \left| \frac{\psi(k+1)}{\psi(k)} - q \right| = \left| \frac{\psi(n+1)}{\psi(n)} - q \right| \le \frac{q}{n}, \quad n \in \mathbb{N}.$$

Therefore, Theorem 2 yields the following statement:

Corollary 2. Let

$$\psi(k) = \left(1 + \frac{1 - q^2}{2}k\right)q^k, \quad 0 < q < 1, \quad k \in \mathbb{N}, \quad \beta \in \mathbb{R},$$

and let $\omega(t)$ be an arbitrary modulus of continuity. Then

$$\tilde{\mathcal{E}}_{n}(C_{\beta,\infty}^{\psi};x) = \left| \sin \frac{2n-1}{2} x \right| \left(1 + \frac{1-q^{2}}{2} n \right) q^{n} \left(\frac{16}{\pi^{2}} K(q) + O(1) \frac{q}{n(1-q)^{2}} \right), \tag{6}$$

$$\tilde{\mathcal{E}}_{n}(C_{\beta}^{\Psi}H_{\omega};x) = \left|\sin\frac{2n-1}{2}x\right| \left(1 + \frac{1-q^{2}}{2}n\right) q^{n} \left(\frac{8}{\pi^{2}}e_{n}(\omega)K(q) + O(1)\frac{\omega(1/n)}{n(1-q)^{2}}\right)$$
(7)

for any $x \in R$ as $n \to \infty$; if $\psi(k) = \frac{q^k}{k}$, 0 < q < 1, $k \in N$, and $\beta \in R$, then

$$\widetilde{\mathcal{E}}_n\left(C_{\beta,\infty}^{\psi};x\right) = \left|\sin\frac{2n-1}{2}x\right| \frac{q^n}{n} \left(\frac{16}{\pi^2}K(q) + O(1)\frac{q}{n(1-q)^2}\right),\tag{8}$$

$$\tilde{\mathcal{E}}_n(C_{\beta}^{\Psi} H_{\omega}; x) = \left| \sin \frac{2n-1}{2} x \right| \frac{q^n}{n} \left(\frac{8}{\pi^2} e_n(\omega) K(q) + O(1) \frac{\omega(1/n)}{n(1-q)^2} \right)$$
(9)

for any $x \in R$ as $n \to \infty$. In equalities (6)–(9), the quantities $e_n(\omega)$ and K(q) have the same sense as in Theorem 2 and O(1) are values uniformly bounded with respect to x, n, q, and β .

Theorem 3. Let $\psi \in \mathfrak{D}_0$, $\psi(k) > 0$, $\beta \in R$, and let $\omega(t)$ be an arbitrary modulus of continuity. Then, for any $x \in R$, the following asymptotic equalities hold as $n \to \infty$:

$$\widetilde{\mathscr{E}}_{n}\left(C_{\beta,\infty}^{\psi};x\right) = \left|\sin\frac{2n-1}{2}x\right| \left(\frac{8}{\pi}\psi(n) + O(1)\left(\psi(n+1)\min\left\{\frac{\psi(n+1)}{\psi(n)},\frac{1}{n}\right\} + \sum_{k=n+2}^{\infty}\psi(k)\right)\right),\tag{10}$$

$$\tilde{\mathcal{E}}_{n}\left(C_{\beta}^{\Psi}H_{\omega};x\right) = \left|\sin\frac{2n-1}{2}x\right| \left(\frac{4}{\pi}\psi(n)e_{n}(\omega) + O(1)\omega\left(\frac{1}{n}\right)\sum_{k=n+1}^{\infty}\psi(k)\right),\tag{11}$$

where

$$e_n(\omega) = \theta_{\omega} \int_0^{\pi/2} \omega\left(\frac{2t}{n}\right) \sin t \, dt,$$

 $\theta_{\omega} \in [2/3, 1], \ \theta_{\omega} = 1$ if $\omega(t)$ is a convex function, and O(1) are values uniformly bounded with respect to all parameters under consideration.

Note that the conditions $\psi \in \mathfrak{D}_0$ and $\psi(k) > 0$ guarantee the validity of the relation

$$\psi(m) = o(1) \sum_{k=m+1}^{\infty} \psi(k).$$

Theorem 3, in fact, completes Theorem 2 in the case q = 0.

Prior to the proof of Theorems 1–3, we consider the following lemma, which contains the integral representation of the quantities $\tilde{\rho}_n(f;x)$ on the classes C_{β}^{ψ} :

Lemma 1. Let

$$\psi(k) > 0, \quad \sum_{k=1}^{\infty} \psi(k) < \infty,$$

and $\beta \in R$. Then, for any function $f \in C_{\beta}^{\Psi}$, the following equality holds:

$$\tilde{\rho}_n(f;x) = \frac{2}{\pi} \sin \frac{2n-1}{2} x \int_{-\pi}^{\pi} \delta_n(t+x) \left(\sum_{\nu=n}^{\infty} \psi(\nu) \cos(\nu t + \gamma_n) + r_n(t) \right) dt \qquad \forall x \in R,$$
(12)

where $\delta_n(\tau) = f_{\beta}^{\Psi}(\tau) - t_{n-1}(\tau)$, $t_{n-1}(\cdot)$ is an arbitrary trigonometric polynomial from \mathcal{T}_{2n-1} , and the quantities $r_n(t)$ and γ_n are defined by the equalities

$$r_n(t) = r_n(\psi; \beta; x; t) = \sum_{k=1}^{\infty} \sum_{\nu=(2k+1)n=k}^{\infty} \psi(\nu) \sin\left(\nu t + \left(k + \frac{1}{2}\right)(2n-1)x + \frac{\pi\beta}{2}\right), \tag{13}$$

$$\gamma_n = \gamma_n(\beta; x) = \frac{(2n-1)x + \pi(\beta-1)}{2}.$$
 (14)

Proof. The Fourier coefficients a_k and b_k of a function $f \in C_\beta^{\Psi}$ have the form

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} \psi(k) \cos\left(kt + \frac{\pi\beta}{2}\right) \varphi(t) dt,$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} \psi(k) \sin\left(kt + \frac{\pi\beta}{2}\right) \varphi(t) dt,$$
(15)

where $\varphi(t) = f_{\beta}^{\Psi}(t)$. As is known, the coefficients $a_k^{(n)}$ and $b_k^{(n)}$ of the interpolation polynomial

$$\tilde{S}_n(f;x) = \frac{a_0^{(n)}}{2} + \sum_{k=1}^n \left(a_k^{(n)} \cos kx + b_k^{(n)} \sin kx \right) \tag{16}$$

are expressed in terms of the Fourier coefficients a_k and b_k of the function f according to the following equalities [5, p. 28; 6, p. 213]:

$$a_k^{(n)} = a_k + \sum_{m=1}^{\infty} (a_{m(2n+1)+k} + a_{m(2n+1)-k}), \quad k = 0, 1, \dots, n,$$
 (17)

$$b_k^{(n)} = b_k + \sum_{m=1}^{\infty} (b_{m(2n+1)+k} - b_{m(2n+1)-k}), \quad k = 1, 2, \dots, n.$$
 (17')

Combining formulas (15)–(17') and setting

$$\sigma_k = \sigma_k^{(n)} = (2k-1)n + k$$
 and $\alpha_k = \alpha_k^{(n)}(\beta; x) = k(2n+1)x + \frac{\beta\pi}{2}, \quad k = 1, 2, ..., \quad \forall f \in C_{\beta}^{\psi}$

we obtain

$$f(x) - \tilde{S}_{n}(f;x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t+x) \sum_{k=1}^{\infty} \sum_{v=\sigma_{k}}^{\sigma_{k+1}-1} \psi(v) \left[\cos\left(vt + \frac{\pi\beta}{2}\right) - \cos\left(vt + \alpha_{k}\right) \right] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t+x) \sum_{k=1}^{\infty} \left\{ \sum_{v=\sigma_{k}}^{\infty} \psi(v) \left[\cos\left(vt + \frac{\pi\beta}{2}\right) - \cos\left(vt + \alpha_{k}\right) \right] \right\} dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t+x) \left(\sum_{v=\sigma_{1}}^{\infty} \psi(v) \left[\cos\left(vt + \frac{\pi\beta}{2}\right) - \cos\left(vt + \alpha_{k}\right) \right] \right) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t+x) \left(\sum_{v=\sigma_{k+1}}^{\infty} \psi(v) \left[\cos\left(vt + \frac{\pi\beta}{2}\right) - \cos\left(vt + \alpha_{k+1}\right) \right] \right) dt$$

$$- \sum_{v=\sigma_{k+1}}^{\infty} \psi(v) \left[\cos\left(vt + \frac{\pi\beta}{2}\right) - \cos\left(vt + \alpha_{k+1}\right) \right] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t+x) \sum_{k=0}^{\infty} \sum_{v=\sigma_{k+1}}^{\infty} \psi(v) \left[\cos\left(vt + \alpha_{k}\right) - \cos\left(vt + \alpha_{k+1}\right) \right] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t+x) \sum_{k=0}^{\infty} \sum_{v=\sigma_{k+1}}^{\infty} \psi(v) \left[\cos\left(vt + \alpha_{k}\right) - \cos\left(vt + \alpha_{k+1}\right) \right] dt$$

$$= \frac{2}{\pi} \sin \frac{2n+1}{2} x \int_{-\pi}^{\pi} \varphi(t+x) \sum_{k=0}^{\infty} \sum_{v=\sigma_{k+1}}^{\infty} \psi(v) \sin\left(vt + \left(k + \frac{1}{2}\right)(2n+1)x + \frac{\pi\beta}{2}\right) dt. \quad (18)$$

Replacing n-1 by n in (18) and taking into account that $\sigma_{k+1}^{(n-1)} = (2k+1)n - k$, we get

$$\tilde{\rho}_{n}(f;x) = \frac{2}{\pi} \sin \frac{2n-1}{2} x \int_{-\pi}^{\pi} f_{\beta}^{\Psi}(t+x) \left(\sum_{\nu=n}^{\infty} \Psi(\nu) \cos(\nu t + \gamma_{n}) + r_{n}(t) \right) dt, \tag{19}$$

where $r_n(t)$ and γ_n are defined by equalities (13) and (14). The functions $\sum_{\nu=n}^{\infty} \psi(\nu) \cos(\nu t + \gamma_n)$ and $r_n(t)$ are orthogonal to any trigonometric polynomial $t_{n-1} \in \mathcal{T}_{2n-1}$ and, therefore, $f_{\beta}^{\psi}(u)$ in (19) can be replaced by $\delta_n(u)$. Then relation (19) yields (12) for any function $f \in C_{\beta}^{\psi}$.

Proof of Theorem 1. Let $\psi \in \mathfrak{D}_q$, 0 < q < 1. Then, by virtue of (13), we have

$$r_n(t) \le \sum_{k=1}^{\infty} \sum_{v=(2k+1)n-k}^{\infty} \psi(v)$$
 (20)

and

$$\begin{split} \sum_{\mathbf{v}=(2k+1)n-k}^{\infty} \psi(\mathbf{v}) \; &= \; \psi(n) \prod_{i=0}^{(2n-1)k-1} \frac{\psi(n+i+1)}{\psi(n+i)} \left(1 + \sum_{m=1}^{\infty} \prod_{j=0}^{m-1} \frac{\psi((2k+1)n-k+j+1)}{\psi((2k+1)n-k+j)} \right) \\ & \leq \; \psi(n) \prod_{i=0}^{(2n-1)k-1} (q + \varepsilon_{n+i}) \left(1 + \sum_{m=1}^{\infty} \prod_{j=0}^{m-1} (q + \varepsilon_{(2k+1)n-k+j}) \right) \leq \; \psi(n) \frac{(q + \varepsilon_n)^{(2n-1)k}}{1 - q - \varepsilon_{3n-1}} \,. \end{split}$$

Therefore,

$$\left| r_n(t) \right| \le \frac{\psi(n)}{1 - q - \varepsilon_{3n-1}} \sum_{k=1}^{\infty} (q + \varepsilon_n)^{(2n-1)k} = \frac{\psi(n) (q + \varepsilon_n)^{2n-1}}{(1 - q - \varepsilon_{3n-1})(1 - (q + \varepsilon_n)^{2n-1})} = o(1) \frac{q \, \psi(n)}{(1 - q)n}. \tag{21}$$

By virtue of Lemma 1 in [3], we have

$$\sum_{\nu=n}^{\infty} \Psi(\nu) \cos(\nu t + \gamma_n) = \Psi(n) \left(q^{-n} \sum_{k=n}^{\infty} q^k \cos(kt + \gamma_n) + \bar{r}_n(t) \right), \tag{22}$$

where

$$\bar{r}_n(t) = \bar{r}_n(\psi, \gamma_n, t) \stackrel{\text{df}}{=} \sum_{i=1}^{\infty} \left(\prod_{l=0}^{i-1} \frac{\psi(n+l+1)}{\psi(n+l)} - q^i \right) \cos((n+i)t + \gamma_n);$$

in this case, the following inequality holds for the quantity $\bar{r}_n(t)$ beginning with a certain number n_0 :

$$\left|\bar{r}_n(t)\right| \le \frac{\varepsilon_n}{(1-q-\varepsilon_n)(1-q)}, \quad \varepsilon_n = \sup_{k \ge n} \left|\frac{\psi(k+1)}{\psi(k)} - q\right|.$$
 (23)

Combining relations (12) and (22), as well as (21) and (23), we obtain

$$\tilde{\rho}_n(f;x) = \frac{2}{\pi} \sin \frac{2n-1}{2} x \, \psi(n) \int_{-\pi}^{\pi} \delta(t+x) \left(q^{-n} \sum_{v=n}^{\infty} q^v \cos(vt + \gamma_n) + O(1) \left(\frac{\varepsilon_n}{(1-q)^2} + \frac{q}{n(1-q)} \right) \right) dt. \quad (24)$$

Choosing as $t_{n-1}(\cdot)$ in (24) the polynomial of the best approximation of the function $f_{\beta}^{\Psi}(\cdot)$ in the space C, we get

$$\left|\tilde{\rho}_n(f;x)\right| \le \frac{2}{\pi} \left|\sin\frac{2n-1}{2}x\right| \psi(n) \left(q^{-n} \int_{-\pi}^{\pi} \left|\sum_{v=n}^{\infty} q^v \cos(vt + \gamma_n)\right| dt\right|$$

$$+ O(1) \left(\frac{\varepsilon_n}{(1-q)^2} + \frac{q}{n(1-q)} \right) E_n (f_{\beta}^{\Psi})_C. \tag{25}$$

In [7, Sec. 3], Stechkin showed that, for any 0 < q < 1 and $\alpha \in R$, the following equality holds:

$$\int_{-\pi}^{\pi} \left| \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \alpha) \right| dt = q^{n} \left(\frac{8}{\pi} K(q) + O(1) \frac{q}{n(1-q)} \right), \tag{26}$$

where O(1) is a value uniformly bounded with respect to n, q, and α . Substituting this equality with $\alpha = \gamma_n$ in relation (25), we obtain relation (2).

Let us prove the second part of Theorem 1. By virtue of relations (19) and (21)–(23) and the orthogonality of the function $r_n(t)$ to any polynomial $t_{n-1} \in \mathcal{T}_{2n-1}$, for any $f \in C_{\beta}^{\Psi}$ we get

$$\tilde{\rho}_n(f;x) = \frac{2}{\pi} \sin \frac{2n-1}{2} x \psi(n) \left(q^{-n} \int_{-\pi}^{\pi} f_{\beta}^{\psi}(t+x) \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_n) dt \right)$$

$$+ O(1) \left(\frac{\varepsilon_n}{(1-q)^2} + \frac{q}{n(1-q)} \right) E_n(f_{\beta}^{\psi})_C \right). \tag{27}$$

Note that, for every $x \in R$, we have

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f_{\beta}^{\Psi}(t+x) \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_n) dt = \rho_n(g_x; x),$$

where $\rho_n(f) = \rho_n(f;x) \stackrel{\text{df}}{=} f(x) - S_{n-1}(f;x)$, $S_n(f) = S_n(f;x)$ are the Fourier partial sums of order n of the function f from L, and

$$g_{x}(\cdot) \stackrel{\mathrm{df}}{=} \frac{1}{\pi} \int_{-\pi}^{\pi} f_{\beta}^{\Psi}(t+\cdot) \sum_{\nu=1}^{\infty} \Psi(\nu) \cos(\nu t + \gamma_{n}) dt.$$

Furthermore, according to Theorem 2 in [2], for every $n \in N$, for the function $g_x(\cdot)$ one can find a function $\overline{\varphi}(t) = \overline{\varphi}(n;x;t)$ that satisfies the equalities $E_n(\overline{\varphi})_C = E_n(f_{\beta}^{\psi})_C$ and

$$\|\rho_n(G)\|_C = \left(\frac{8q^n}{\pi^2} K(q) + O(1) \frac{q^n}{(1-q)^2 n}\right) E_n(f_\beta^{\Psi})_C, \tag{28}$$

where

$$G(\tau) \stackrel{\mathrm{df}}{=} \mathcal{I}_{2\gamma_n/\pi}^q(\overline{\varphi}; \tau) = \frac{1}{\pi} \int_{-\pi}^{\pi} \overline{\varphi}(\tau + t) \sum_{\nu=1}^{\infty} q^{\nu} \cos(\nu t + \gamma_n) dt,$$

and O(1) is a value uniformly bounded with respect to n, q, and γ_n .

Assume that a point x_0 is such that

$$|\rho_n(G; x_0)| = ||\rho_n(G)||_C.$$
 (29)

Then $F(t) \stackrel{\text{df}}{=} \mathcal{J}_{\beta}^{\Psi}(\overline{\varphi}(t-x+x_0))$ is the function required. Indeed, since $F_{\beta}^{\Psi}(t) = \overline{\varphi}(t-x+x_0)$, we have $E_n(F_{\beta}^{\Psi})_C = E_n(f_{\beta}^{\Psi})_C$ and, according to formulas (27)–(29), for given x and n we get

$$\begin{aligned} \left| \tilde{\rho}_{n}(F;x) \right| &= \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \psi(n) \left(q^{-n} \left| \int_{-\pi}^{\pi} \overline{\psi}(t+x_{0}) \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_{n}) dt \right| \right. \\ &+ \left. O(1) \left(\frac{\varepsilon_{n}}{(1-q)^{2}} + \frac{q}{n(1-q)} \right) E_{n}(F_{\beta}^{\psi})_{C} \right) \end{aligned}$$

$$= 2 \left| \sin \frac{2n-1}{2} x \right| \psi(n) \left(q^{-n} \| \rho_{n}(G) \|_{C} + O(1) \frac{\varepsilon_{n} + 1/n}{(1-q)^{2}} E_{n}(f_{\beta}^{\psi})_{C} \right) \right.$$

$$= 2 \left| \sin \frac{2n-1}{2} x \right| \psi(n) \left(\frac{8}{\pi^{2}} K(q) + O(1) \frac{\varepsilon_{n} + 1/n}{(1-q)^{2}} \right) E_{n}(f_{\beta}^{\psi})_{C}.$$

Theorem 1 is proved.

Proof of Theorem 2. Considering the upper bounds of the absolute values of both sides of equality (24) for given x and $t_{n-1} \equiv 0$ with respect to the class $C_{\beta,\infty}^{\Psi}$ and taking into account the invariance of the set U_{∞}^{0} under translation of its argument, we obtain

$$\widetilde{\mathcal{E}}_{n}(C_{\beta,\infty}^{\Psi};x) = \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \Psi(n) \left(q^{-n} \sup_{\varphi \in U_{\infty}^{0}} \int_{-\pi}^{\pi} \varphi(t) \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_{n}) dt + O(1) \left(\frac{q}{n(1-q)} + \frac{\varepsilon_{n}}{(1-q)^{2}} \right) \right). \tag{30}$$

Taking into account that

$$\sup_{\varphi \in U_{\infty}^{0}} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_{n}) dt \right| = \int_{-\pi}^{\pi} \left| \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_{n}) \right| dt + O(1) \frac{q}{n(1-q)}$$

(see, e.g., [7, pp. 137–141]), substituting this equality in formula (30), and using relation (26) (with $\alpha = \gamma_n$), we get

$$\tilde{\mathcal{E}}_{n}(C_{\beta,\infty}^{\psi};x) = \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \psi(n) \left(q^{-n} \int_{-\pi}^{\pi} \left| \sum_{\nu=n}^{\infty} q^{\nu} \cos(\nu t + \gamma_{n}) \right| dt + O(1) \left(\frac{q}{n(1-q)} + \frac{\varepsilon_{n}}{(1-q)^{2}} \right) \right) \right.$$

$$= \left| \sin \frac{2n-1}{2} x \right| \psi(n) \left(\frac{16}{\pi^{2}} K(q) + O(1) \left(\frac{q}{n(1-q)} + \frac{\varepsilon_{n}}{(1-q)^{2}} \right) \right).$$

Relation (4) is proved.

Similarly, considering the upper bounds of the absolute values of both sides of equality (12) with respect to the class $C_{\beta}^{\Psi}H_{\omega}$ for any fixed x and taking into account the invariance of the set H_{ω} under translation of its argument, equality (22), and estimate (23), we obtain

$$\widetilde{\mathscr{E}}_n(C_\beta^{\Psi} H_\omega; x) = \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \sup_{\varphi \in H_\omega} \left| \int_{-\pi}^{\pi} \varphi(t) \, \Psi(n) \, q^{-n} \sum_{k=n}^{\infty} q^k \cos(kt + \gamma_n) \, dt + R_n(\varphi) \right|, \tag{31}$$

where

$$R_n(\varphi) = R_n(\varphi; x) \stackrel{\mathrm{df}}{=} \int\limits_{-\pi}^{\pi} \delta^*(t) \big(\psi(n) \, \bar{r}_n(t) + r_n(t) \big) \, dt \, ,$$

$$\delta_n^*(\tau) = \varphi(\tau) - t_{n-1}^*(\tau),$$

and $t_{n-1}^*(\cdot)$ is the polynomial of the best approximation of the function φ in the space C. Therefore, by using estimates (21) and (23), we get

$$|R_{n}(\varphi)| \leq 2\pi ||\delta_{n}^{*}(\cdot)||_{C} ||\psi(n)\bar{r}_{n}(\cdot) + r_{n}(\cdot)||_{C} = O(1)\psi(n) \left(\frac{q}{(1-q)n} + \frac{\varepsilon_{n}}{(1-q)^{2}}\right) E_{n}(\varphi)_{C}.$$
(32)

The Jackson inequality in the space C

$$E_n(\varphi)_C \le K\omega\left(\varphi; \frac{1}{n}\right) \quad \forall \ \varphi \in C, \quad \forall \ n \in N,$$
 (33)

where K is a certain absolute constant (see, e.g., [1, p. 227]), and estimate (32) yield

$$\sup_{\varphi \in H_{\infty}} \left| R_n(\varphi) \right| = O(1) \, \psi(n) \, \omega\left(\frac{1}{n}\right) \left(\frac{q}{(1-q)n} + \frac{\varepsilon_n}{(1-q)^2}\right). \tag{34}$$

It follows from relations (31) and (34) that

$$\tilde{\mathcal{E}}_{n}(C_{\beta}^{\Psi}H_{\omega};x) = \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \Psi(n) \left(q^{-n} \sup_{\varphi \in H_{\omega}} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{k=n}^{\infty} q^{k} \cos(kt + \gamma_{n}) dt \right| + O(1) \omega \left(\frac{1}{n} \right) \left(\frac{q}{(1-q)^{n}} + \frac{\varepsilon_{n}}{(1-q)^{2}} \right) \right|.$$
(35)

In Theorem 1 in [9], the following asymptotic equality was established for any $q \in (0, 1)$, $\beta \in R$, and any modulus of continuity $\omega(t)$:

$$\sup_{\varphi \in H_{\omega}} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{k=n}^{\infty} q^{k} \cos\left(kt + \frac{\beta\pi}{2}\right) dt \right| = \frac{4}{\pi} q^{n} K(q) e_{n}(\omega) + O(1) \frac{q^{n} \omega(1/n)}{(1-q)^{2} n}, \tag{36}$$

where

$$e_n(\omega) = \theta_{\omega} \int_0^{\pi/2} \omega\left(\frac{2t}{n}\right) \sin t \, dt,$$

 $\theta_{\omega} \in [1/2, 1]$, $\theta_{\omega} = 1$ if $\omega(t)$ is a convex modulus of continuity, and O(1) is a value uniformly bounded with respect to n, q, and β . In equality (36), we set γ_n instead of $\beta \pi/2$ (the possibility of this substitution follows from the uniform boundedness of the value O(1) in (36) with respect to the parameters n and β). Comparing the equality obtained and representation (35), we get equality (5). Theorem 2 is proved.

Proof of Theorem 3. Let $\psi \in \mathfrak{D}_0$, $\psi(k) > 0$, and $\beta \in R$. Considering the upper bounds of the absolute values of both sides of equality (12) with respect to the classes $C_{\beta,\infty}^{\psi}$ and $C_{\beta}^{\psi}H_{\omega}$ and taking into account estimate (20), we get

$$\widetilde{\mathcal{E}}_{n}(C_{\beta,\infty}^{\Psi};x) = \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \left(\sup_{\varphi \in U_{\infty}^{0}} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{k=n}^{\infty} \psi(k) \cos(kt + \gamma_{n}) dt \right| + O(1) \sum_{k=1}^{\infty} \sum_{\nu=(2k+1)n-k}^{\infty} \psi(\nu) \right), \tag{37}$$

$$\tilde{\mathcal{E}}_n(C_{\beta}^{\Psi}H_{\omega};x) = \frac{2}{\pi} \left| \sin \frac{2n-1}{2} x \right| \sup_{\varphi \in H_{\omega}} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{k=n}^{\infty} \Psi(k) \cos(kt + \gamma_n) dt + R_n^*(\varphi) \right|, \tag{38}$$

where

$$R_n^*(\varphi) = R_n^*(\varphi; x) = \int_{-\pi}^{\pi} \delta_n^*(t) r_n(t) dt, \quad \delta_n^*(\tau) = \varphi(\tau) - t_{n-1}^*(\tau),$$

 $t_{n-1}^*(\cdot)$ is the polynomial of the best approximation of the function φ in the space C, and O(1) is a value uniformly bounded with respect to all parameters under consideration. According to Theorems 2 and 3 in [10, pp. 512–513], we have

$$\sup_{\varphi \in U_{\infty}^{0}} \frac{1}{\pi} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{k=n}^{\infty} \psi(k) \cos(kt + \alpha_{k}) dt \right|$$

$$= \frac{4}{\pi} \psi(n) + O(1) \left(\psi(n+1) \min \left\{ \frac{\psi(n+1)}{\psi(n)}; \frac{1}{n} \right\} + \sum_{k=n+2}^{\infty} \psi(k) \right), \tag{39}$$

where $\{\alpha_k\}$ is an arbitrary sequence of real numbers and the value O(1) has the same sense as in equality (37). Setting $\alpha_k = \gamma_n$, k = n, n + 1, ..., in (39), comparing the equality obtained with representation (37), and taking into account that, for any $\psi \in \mathcal{D}_0$ and sufficiently large n, we have

$$\sum_{k=1}^{\infty} \sum_{\nu=(2k+1)n-k}^{\infty} \psi(\nu) \le \frac{1}{1-\varepsilon_{3n-1}} \sum_{k=1}^{\infty} \psi((2k+1)n-k), \tag{40}$$

where

$$\varepsilon_n = \sup_{k \ge n} \left| \frac{\psi(k+1)}{\psi(k)} \right|,$$

we obtain formula (10).

By using estimates (20) and (33) and inequality (40), we get

$$|R_n^*(\varphi)| \le 2\pi ||\delta_n^*||_C ||r_n||_C = O(1) \sum_{k=3n-1}^{\infty} \psi(k) E_n(\varphi)_C = O(1) \omega\left(\frac{1}{n}\right) \sum_{k=3n-1}^{\infty} \psi(k). \tag{41}$$

By virtue of Theorem 7 in [11], we have

$$\sup_{\varphi \in H_{\omega}} \frac{1}{\pi} \left| \int_{-\pi}^{\pi} \varphi(t) \sum_{k=n}^{\infty} \psi(k) \cos(kt + \beta_k) dt \right| = \frac{2\theta_{\omega}}{\pi} \psi(n) \int_{0}^{\pi/2} \omega\left(\frac{2t}{n}\right) \sin t dt + O(1) \omega\left(\frac{1}{n}\right) \sum_{k=n+1}^{\infty} \psi(k), \quad (42)$$

where β_k is an arbitrary sequence of real numbers, $\theta_{\omega} \in [2/3, 1]$, $\theta_{\omega} = 1$ if $\omega(t)$ is a convex function, and O(1) is a value uniformly bounded with respect to all parameters under consideration.

Setting $\beta_k = \gamma_k$, k = n, n + 1, ..., in (42) and comparing the equality obtained with representation (38) and estimate (41), we get equality (11). Theorem 3 is proved.

REFERENCES

- 1. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).
- 2. A. I. Stepanets and A. S. Serdyuk, "Approximation by Fourier sums and best approximations on classes of analytic functions", in: *Approximation of Analytic Periodic Functions* [in Russian], Preprint No. 2000.1, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2000), pp. 60–92.
- 3. A. I. Stepanets and A. S. Serdyuk, "Approximation by Fourier sums and best approximations on classes of analytic functions," *Ukr. Mat. Zh.*, **52**, No. 3, 375–395 (2000).
- 4. S. M. Nikol'skii, "An asymptotic estimate for the remainder for approximation by interpolation trigonometric polynomials," *Dokl. Akad. Nauk SSSR*, **31**, No. 3, 215–218 (1941).
- 5. A. Zygmund, Trigonometric Series [Russian translation], Vol. 2, Mir, Moscow (1965).

- 6. S. M. Nikol'skii, "An estimate for the remainder of the Fejér sum for periodic functions with bounded derivatives," *Dokl. Akad. Nauk SSSR*, **31**, No. 3, 210–214 (1941).
- 7. S. B. Stechkin, "An estimate for the remainder of Fourier series for differentiable functions," *Tr. Mat. Inst. Akad. Nauk SSSR*, **145**, 126–151 (1980).
- 8. A. I. Stepanets and A. S. Serdyuk, "Lebesgue inequalities for Poisson integrals," Ukr. Mat. Zh., 52, No. 6, 798–808 (2000).
- 9. A. I. Stepanets, "Solution of the Kolmogorov–Nikol'skii problem for Poisson integrals of continuous functions," in: *Approximation of Analytic Periodic Functions* [in Russian], Preprint No. 2000.1, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2000), pp. 1–42.
- 10. S. A. Telyakovskii, "On the approximation of functions of high smoothness by Fourier sums," *Ukr. Mat. Zh.*, **41**, No. 4, 510–518 (1989).
- 11. A. I. Stepanets, "Rate of convergence of Fourier series on classes of $\overline{\psi}$ -integrals," Ukr. Mat. Zh., 49, No. 8, 1069–1113 (1997).