File 19752 Copy only Follerts

FERROMANGANESE DEPOSITS OF THE NORTH PACIFIC

BY

D. R. HORN, B. M. HORN AND M. N. DELACH

LAMONT-DOHERTY GEOLOGICAL OBSERVATORY OF COLUMBIA UNIVERSITY PALISADES, NEW YORK 10964

1972 TECHNICAL REPORT NO. 1, NSF GX-33616

OFFICE FOR THE INTERNATIONAL DECADE OF OCEAN EXPLORATION NATIONAL SCIENCE FOUNDATION, WASHINGTON, D.C. 20550

FERROMANGANESE DEPOSITS OF THE NORTH PACIFIC OCEAN

D. R. Horn, B. M. Horn and M. N. Delach

Lamont-Doherty Geological Observatory of Columbia University

Palisades, New York

1972

TECHNICAL REPORT NO. 1 NSF - GX 33616

Office for the International Decade of Ocean Exploration National Science Foundation, Washington, D. C. 20050

FERROMANGANESE DEPOSITS OF THE NORTH PACIFIC OCEAN by D. R. Horn, B. M. Horn and M. N. Delach, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964

Abstract:

A compilation of existing data on distribution and composition of ferromanganese deposits of the North Pacific is presented. The information is overprinted on maps showing sedimentary provinces of the ocean. By doing this, several interesting relationships appear and suggest a tie between nodule distribution, metal content and properties of substrate.

Nodules occur within regions of extremely slow sedimentation of red clay and siliceous (Radiolarian) ooze and clay. They are most common in the Radiolarian ooze and clay comprising a 500-mile wide deposit stretching from Central America westward to the Marshall Islands.

Data on metal contents of nodules reveal those taken from siliceous or Radiolarian deposits of the Equatorial Pacific are twice as rich in Ni and Cu as the ones from red clays.

Properties of the siliceous ooze include very high porosity (88%) and moisture content (336%). These and other physical properties of the substrate show a correlation with high Ni, Cu and Mn content of nodules. Additional data is needed from the radiolarian oozes and associated nodules to confirm these relationships and to determine their significance in genesis and exploitation of the nodules.

https://archive.org/details/ferromanganesede00horn

CONTENTS

INTRODUCT	ION 1
METHODS	
SEDIMENTA	RY PROVINCES 3
DISTRIBUTIO	ON OF FERROMANGANESE DEPOSITS 5
NICKEL, CO	OPPER AND COBALT CONTENT OF NODULES 6
IRON, MANO	GANESE AND CALCIUM CONTENT OF NODULES 6
PHYSICAL F	PROPERTIES OF SUBSTRATE 7
CONCLUSION	NS 8
ACKNOWLE	DGMENTS 9
REFERENCE	S 9
MAPS	
Map 1.	Sedimentary Provinces, North Pacific In pocket
Map 2.	Distribution of Ferromanganese Deposits and Sedimentary Provinces, North Pacific In pocket
Map 3.	Nickel, Copper and Cobalt Content and Sedimentary Provinces, North Pacific In pocket
Map 4.	Iron, Manganese and Calcium Content and Sedimentary Provinces, North Pacific In pocket
Map 5.	Physical Properties of the Substrate and Sedimentary Provinces, North Pacific In pocket
APPENDIX	
Table 1.	Core and Dredge Samples Containing Ferromanganese Deposits, Foreign and Domestic Expeditions, North Pacific
Table 2.	Chemical Analyses of Ferromanganese Nodules and Crusts, North Pacific
Table 3.	Physical Properties of the Substrate as Determined by Analysis of Samples from the Tops of Piston Cores, North Pacific
Reference	ces Used as Source of Data Given on Maps and Tables71

INTRODUCTION

A considerable volume of data related to properties and uses of the ocean floor are stored at oceanographic institutions throughout the world. Current interest in exploitation of the seabed has resulted in pressure from industry to have these data published. In this report the authors have compiled information available to them concerning ferromanganese deposits on the floor of the North Pacific Ocean. Chemical analyses of nodules and crusts are included as well as wet density, porosity, moisture content and texture of surface sediments.

The report is in three parts: 1) A brief statement about sampling methods and results obtained; 2) Three tables listing data available on ferromanganese deposits and their substrate; and 3) A set of maps showing the distribution and properties of ferromanganese deposits.

METHODS

Lamont-Doherty has recovered 775 piston cores from the North Pacific using an 1,800-lb coring head mounted on a core pipe with a 2.5-in. ID. The average length of core recovered in the North Pacific is 25 ft. Using these data it is possible to define the boundaries of major sedimentary provinces. The final decision as to which province a core belonged was based on the dominant sediment, not on the lithology of the surface deposit. The surface or capping layer of cores is often only a few inches thick and may not represent the prevailing sediment of a region. For this reason Map 1 differs from recent maps prepared by Fraser et al. (1972).

The distribution of ferromanganese deposits rests on sources of information given in Tables 1 and 2. The list of chemical analyses includes unpublished and published data on file at Lamont-Doherty, material from Scripps Institution of Oceanography obtained through the National Oceanographic Data Center, and results published in the literature.

Measurements of physical and textural properties of abyssal sediments given in Table 3 were conducted by the authors and are part of a data bank on ocean sediments at Lamont-Doherty. Bulk properties were determined using Beckman Manual Pycnometers on samples taken from cores when they were freshly extruded on deck. The samples were stored in plastic vials and flown back to the laboratory. Formulas used to determine the properties are:

Wet Density =
$$\frac{\text{Wet weight}}{\text{Wet volume}}$$

Porosity (%) =
$$\frac{\text{Volume salt water}}{\text{Wet volume}} \times 100$$

Moisture Content (%) =
$$\frac{\text{Wet weight - Dry weight}}{\text{Dry weight - Salt weight}} \times 100$$

$$Void Ratio = \frac{Volume \ salt \ water}{Dry \ volume}$$

Grain size was determined using the combined sieve-pipette technique of Folk (1968).

Considerable emphasis has been placed on showing the results visually on maps. This has been done to keep the report brief yet informative.

SEDIMENTARY PROVINCES

Sediments of the North Pacific are best described if grouped in three categories: 1) terrigenous, 2) pelagic, and 3) material derived from topographic highs.

Terrigenous Sediments:

Land-derived or terrigenous deposits include gray and graygreen silts, muds and clays of the continental margin along with graded
sands and silts laid down by turbidity currents. Seaward dispersal of
sediment in the North Pacific is greatly restricted by an almost continuous line of barriers (island arcs) and deeps (trenches) at the periphery
of the ocean. As a result, terrigenous deposits form a narrow ribbon of
sediment 150 to 180 miles wide around the limits of the basin (Map 1).
There is one area where coarse material penetrates the basin; this is
in deep water off Oregon. Here sediment delivered to the coast by the
Columbia River is resuspended offshore and carried by turbidity currents
1400 miles seaward of the continental rise.

Pelagic Sediments:

The second group of sediments includes the extensive pelagic deposits. They cover three-fourths of the area of the North Pacific and include biogenic debris and red clays. The pelagic sediments lie in broad east-west zones which traverse the Pacific and generally coincide with major current systems and depth zones (Map 1).

Lying farthest north are biogenic oozes (mainly diatomaceous), ice-rafted detritus, and volcanic silt. The width of these deposits varies from 390 miles to 850 miles (Map 1).

Immediately to the south is red clay covering an area equal to half the North Pacific. The red clay province is 5,000 miles long and ranges from 1,300 to 1,700 miles wide. Sediment is extremely uniform both laterally and vertically and has a mean particle size of less than a micron. Manganese micronodules, occasional volcanic ejecta, and fish teeth are associated with the clay.

The zone of siliceous ooze and clay lying immediately south of the red clay is made up of the remains of Radiolaria. These onecelled animals secrete a shell of opaline silica in the form of hollow, transparent, perforated spheres. Upon death, the skeleton sinks to the bottom and is added to billions of others already there. The tiny structures now form a deposit 500 miles wide and 4,500 miles long (Map 1).

Along the equator is a 450-mile wide band of chalk and calcareous ooze composed of the remains of Foraminifera. These lime deposits extend from Central America to the western limit of the North Pacific Basin (Map 1).

Sediment Derived from Topographic Highs:

The last sediment type includes all material derived from submarine topographic highs. It generally takes the form of volcanic or carbonate debris which has been transported downslope by normal bottom currents, slumping, or turbidity currents (Horn et al., 1970). Distribution of the deposits reflects the location of major topographic elements (Map 1).

DISTRIBUTION OF FERROMANGANESE DEPOSITS

On Map 2 are shown locations at which ferromanganese crusts and nodules have been recovered. Sources of information are listed in Table 1.* Most data points are the result of dredging and coring operations of Scripps Institution of Oceanography and Lamont-Doherty Geological Observatory.

Map 2 reveals the areas of terrigenous sedimentation along continental margins and island arcs; sites of turbidite deposition; the northern zone of biogenic siliceous material; regions of sedimentation on aprons around topographic highs; and areas of calcareous deposits at the equator are generally barren of nodules. These provinces are sites of relatively rapid sedimentation, which precludes development of nodules. Crusts do occur on rock exposures associated with seamounts and along fracture zones. However, they are considered to form under a set of conditions distinct from those of deep-water nodules.

The great majority of nodules occur within the red clays and narrow band of siliceous ooze. Both are characterized by very low rates of sedimentation (i.e., red clay less than 1 mm/1,000 yrs - Opdyke and Foster, 1970; and Radiolarian ooze at 3.5 mm/1,000 yrs - Hays et al., 1969). From data given in Map 2 nodules seem most abundant between 6° 30'N and 17°N which are the approximate boundaries of radiolarian oozes and radiolarian clays.

^{*} Data of the U.S.S. NERO was collected using a sounding cup with only a 12-mm opening through which the bottom sediment could pass. In addition, sample descriptions did not distinguish between a nodule and crust. For these reasons it was decided not to plot the results on Map 2. However, information about these samples is included in Table 1.

NICKEL, COPPER AND COBALT CONTENT OF NODULES

In sections dealing with metal values, the reader understands that the average values of the metals for the nodules are a synthesis of the results of several workers who used a variety of analytical methods. The averages are used here to show trends, knowing that individual analyses may not be directly comparable. The trend of the metals are identified, and the reader can then refer to the tables and determine to his own satisfaction whether or not specific results are valid or invalid.

Chemical analyses of some nodules from red clays and several from radiolarian sediments are shown on Map 3. Results indicate the average analysis for red clays is .76% Ni, .50% Cu, and .28% Co. On the other hand, nodules from siliceous oozes have average values of 1.16% Ni, 1.02% Cu, and .25% Co.

The averages of the metals indicate nodules from radiolarian oozes of the southern siliceous zone contain nearly twice as much nickel and copper as their counterparts from red clays. It seems that if nodules were equally abundant in both provinces, industry's interest would lie only in those high in Ni and Cu from the radiolarian sediments.

IRON, MANGANESE AND CALCIUM CONTENT OF NODULES

Iron, manganese and calcium contents of nodules are given on Map 4. Nodules from regions of red clays are higher in iron (average 11.45%) than those from ooze (average 8.15%). Manganese content of of nodules from red clays (average 17.43%) is lower than those from siliceous ooze (average 22.36%). Calcium determinations indicate nearly equal values in both provinces.

Map 4 reveals these trends quite impressively. The left-hand column of the histogram represents the value for iron. There is a progressive increase of iron content from south to north. Manganese, on the other hand, is represented by the center column and is high within the siliceous oozes and shows a pronounced drop within the red clay regions.

PHYSICAL PROPERTIES OF THE SUBSTRATE

Textural and physical properties of red clays and siliceous oozes from the floor of the North Pacific are listed in Table 3. This information has been drawn from the Lamont-Doherty data bank of physical properties of ocean sediments. Results are for surface sediments only (Map 5).

Red clays have an average wet density of 1.49 g/cc, whereas that of siliceous ooze is 1.18 g/cc. Values of porosity and moisture content are extraordinary. Average porosity of red clay is 77%, which is high in itself; however, it is even higher for siliceous ooze with an average porosity of 88%. Average moisture content of the samples of red clay is 126%, siliceous ooze 336%. The very high porosity and moisture content of the southern siliceous oozes is due to the properties of the skeletal grains comprising the deposit.

Radiolarian ooze of the Equatorial Pacific appears to be one of the most porous materials on the ocean floor. Its high porosity is due in part to spines on the outer surfaces of the Radiolaria which hold the framework grains apart. This results in high interstitial porosity.

Added to this is the hollow skeleton with porous walls which many Radiolaria possess. When dry, the ooze is similar to a foam or froth, ex-

tremely porous and with the capacity to filter or hold large volumes of water. It is speculated that these properties may assist in vertical flushing of metals through the sediment column (see Raab, 1972) and be of primary importance to genesis of nodules high in nickel and copper.

Several hundred textural analyses of red clay indicate its average particle size is less than a micron. Scant data on Radiolarian oozes give a mean grain size of 1 to 2 microns.

CONCLUSIONS

Sedimentary provinces of the North Pacific have been outlined and compared with the distribution of nodular ferromanganese deposits and their metal content. Nodules occur within provinces of red clay and radiolarian-bearing sediments. This relation suggests that an extremely low rate of deposition is a primary control on the development and distribution of nodules.

Existing data on metal contents of nodules reveal that those taken from the Radiolarian deposits of the Equatorial Pacific are twice as rich in Ni and Cu as the red clays to the north. The nodules from both provinces have similar amounts of Co and Ca, and those from red clay provinces are richer in Fe. From these results it would seem that the nodule deposits from the southern siliceous oozes offer most promise to those interested in exploitation of nodules as a source of metals.

Information on the physical properties of the substrate suggest that there is a correlation between the highly porous Radiolarian ooze and nodules rich in Ni, Cu and Mn. More data is needed to verify this relationship and to determine its meaning in the distribution and genesis of the nodules.

ACKNOWLEDGMENTS

Compilation of data on the distribution of ferromanganese deposits of the North Pacific was sponsored by the Office for the International Decade of Ocean Exploration, National Science Foundation (Grant GX-33616). Core data were collected by R/V VEMA and R/V R.D. CONRAD of Lamont-Doherty Geological Observatory of Columbia University. Sediment maps and physical property data were executed under contract with the Naval Ship Systems Command (Contract N00024-72-C-1152) and the Office of Naval Research (Contract N00014-67-A-0108-0004). Maintenance of the Deep-Sea Core Library at Lamont is supported by the Office of Naval Research (Contract N00014-67-A-0108) and the National Science Foundation (Grant NSF GA 29460). Compilation of data was accomplished by M. Parsons and L. Sussilleaux. Illustrative material is the work of illustrator-artist Virginia Rippon.

REFERENCES

- Folk, R.L., 1968, Petrology of sedimentary rocks: Austin, Texas, Hemphill's, 170 p.
- Fraser, J.Z., Hawkins, D.L., Hydock, L., Crocker, W.L., Schoenbechler, M., Newhouse, D.A., and Chase, T.E., 1972, Surface sediments and topography of the North Pacific: Geologic Data Center, Scripps Institution of Oceanography, 10 charts.
- Hays, J.D., Saito, T., Opdyke, N.D., and Burckle, L.H., 1969, Pliocene-Pleistocene sediments of the Equatorial Pacific their paleomagnetic, biostratigraphic and climatic record: Geol. Soc. America Bull., v. 80, p. 1481-1514.

- Horn, D.R., Horn, B.M., and Delach, M.N., 1970, Sedimentary provinces of the North Pacific: Geol. Soc. America Mem. 126, p. 1-22.
- Opdyke, N.D., and Foster, J.H., 1970, Paleomagnetism of cores from the North Pacific: Geol. Soc. America Mem. 126, p. 83-119.
- Raab, Werner, 1972, Physical and chemical features of Pacific deep sea manganese nodules and their implications to the genesis of nodules: Paper presented at Ocean Manganese Conference sponsored by National Science Foundation (I. D. O. E.), January, (in press).

TABLE I

CORE AND DREDGE SAMPLES CONTAINING FERROMANGANESE DEPOSITS

FOREIGN AND DOMESTIC EXPEDITIONS

NORTH PACIFIC

Reference or source		Lamont		Lamont		Lamont		Lamont		Lamont		Lamont		Lamont		Lamont		Lamont		Lamont		Barnes &	Dymond, 1967	Lamont		Scripps, 1958		Scripps, 1962		Scripps, 1958		Lamont		Lamont		Lamont	
Method of sampling	0	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer	(piston)			Corer	(piston)	Corer	(gravity)	Corer	(heat probe)	Corer	(gravity)	Corer	(piston)	Corer	(piston)	Corer	(piston)
Institution and number		Lamont	V18-345	Lamont	V18-341	Lamont	RC13-132	Lamont	V20-20	Lamont	V20-24	Lamont	V18-325	Lamont	RC10-79	Lamont	RC10-76	Lamont	RC10-78	Lamont	RC10-77	Scripps	Carr-5	Lamont	V20-28	Scripps	DWBG-147	Scripps	Ris-14V	Scripps	DWHG-92	Lamont	V20-31	Lamont	V21-199	Lamont	V20-33
Depth in neters		3,563		3,799		3,484		3,288		3,446		3,206		3,630		4,316		972		4,136		3,700		3,946		4,000		4,330		4,295		3,389		4,508		4,497	
on Long.		92°52'W		97°16'W		97°39'W		101°21'W		104°08'W		105°54'W		110°33'W		110°56'W		111°06'W		111°21'W		113°16'W		114°29'W		116°13'W		117°55'W		118°00'W		120°09'W		122°57'W		123°32'W	
Location Lat.		06°31'N		N.6+.80		07°52'N		07°44'N		06°52'N		09°24'N		N,61.60		N188.90		06°53'N		07°15'N		N,92.60		07°33'N		01°27'N		05°20'N		N165.60		08°31'N		06°46'N		08°53'N	
Marsden Square		010		010		010		011		011		011		012		012		012		012		012		012		012		012		012		013		013		013	

Reference or source	Lamont	Mero, 1965	Mero, 1965	Mero, 1965	Scripps	1952-53 Tamon4		Scripps 1957-58	Lamont		Lamont		Lamont		Murray &	Lee, 1909	Cronan &	Tooms, 1969	Menard, 1964		Lamont		Lamont		Scripps	1961	Scripps	1961	Scripps	1961
Method of sampling	Corer	Corer	Corer	Corer	Corer	(gravity)	(piston)	Corer	Trawl	(biology)	Corer	(piston)	Corer	(piston)	Trawl	(Blake)	Dredge				Corer	(piston)	Dredge	(pepple)	Corer	(piston)	Corer	(gravity)	Corer	(piston)
Institution and number	Lamont RC10.93	Scripps Cb-39	Scripps Cb-17	Scripps Cb-19	Scripps	Cb-34	V21-197	Scripps DWRG-7	Lamont	V21-D14	Lamont	RC12-58	Lamont	RC12-59	Harvard	Alb-13		2P-52	Harvard	Alb-17	Lamont	RC11-206	Lamont	RC11-D21	Scripps	JynV-36	Scripps	Msn-148G	Scripps	JynV-20
Depth in meters	4,610	4,360	4,453	4,416	4,440	008 7	٠, ٥, ٠	4,917	4.813		4,823		4,660		4,930		4,930		4,510		5,086		5,086		5,007		5,400		4,925	
on Long.	125°20'W	125°20'W	125°25'W	125°37'W	126°58'W	13001111		130°48'W	136°01'W		136°23'W		137°41'W		137°47'W		137°47'W		137°54'W		139°53'W		139°53'W		142°42'W		145°18'W		148°12'W	
Location Lat.	07°18'N	N.60.80	N,50.80	07°41'N	08°01'N	N185 . 80		08°48'N	N'84°60		N.05.60		N165.80		N125.60		N125.60		00°50'IN		08°47'N		08°47'N		08°25'N		N,90.60		07°17'N	
Marsden Square	013	013	013	013	013	710		014	014		014		014		014		014		014		014		014		015		015		015	

Reference or source	Lamont	Scripps 1961	Lamont	Lamont	Scripps	1961	Scripps 1968	Scripps	1961	Scripps	1961	Cronan &	Tooms, 1969	Cronan &	Tooms, 1969	Skornyakova	et al., 1968	Skornyakova	et al., 1968	Lamont		Scripps	1964	Mero	1905	Scripps	1960-61	Lamont	
Method of sampling	Corer (niston)	Corer (oravity)	Corer	(piston) Corer	(piston)		Grab	Corer	(gravity)	Corer	(gravity)	Corer		Corer				Dredge		Corer	(piston)	Corer	(camera)	Corer		Corer	(gravity)	Corer	(piston)
Institution and number	Lamont RC12_67	Scripps Tyn V-17	Lamont	RC12-68 Lamont	RC12-69 Scripps	JynV-15PG	Scripps Stx-10FF	Scripps	JynV-14G	Scripps	JynV-13G	Scripps	Wah-4PG	Scripps	Wah-24FF8	USSR	Vit-5124	USSR	Vit-5429	Lamont	RC13-56	Scripps	Dodo-20C	Scripps	Msn-J	Scripps	Msn-10G	Lamont	RC12-195
Depth in meters	4,777	5,036	4,508	5,073	5 0 73		5,304	4,813		5,100		4,839		5,143				5,163		4,925		5,280		4,994		4,994		5,222	
on Long.	148°29¹W	148°52°W	148°59'W	149°49'W	149°541W	1	149°57'W	150°35'W		150°42'W		152°50'W		153°01'W		153°42'W		159°53'W		164°26'W		167°51'W		168°00'W		168°06'W		168°42'W	
Location Lat. L	03°14'N	N.50.90	N188.90	N181.60	N1 20 80		09°54'N	N.02.60		N12.60		N65.80		08°16'N		07°55'N		N,00.00		08°53'N		N, 25.60		07°47'N		N198.20		09°41'N	
Marsden Square	015	015	015	015	710	4	015	016		016		016		016		016		910		017		017		017		017		017	

Reference	or source	Scripps 1964	Scripps 1962	Scripps	1964	Scripps 1960-61	Mero	1965	Scripps	1962	Lamont		Scripps	1962-63	Scripps	1962	Scripps	1962-63	Lamont		Scripps	1962-63	Lamont		Scripps	1962	Scripps	1962	Lamont		Lamont		Scripps 1967
Method of	sampling	Corer	Corer	Corer	(gravity)	(oravity)	Corer		Corer	(gravity)	Corer	(piston)	Corer	(gravity)	Corer		Corer		Corer	(piston)	Corer		Corer	(piston)	Corer		Corer		Dredge	(rock)	Corer	(piston)	Corer (gravity)
Institution	and number	Scripps Dodo-25PG	Scripps Proa-151G	Scripps	Dodo-27G	Scripps Msn-11G	Scripps	Msn-K	Scripps	Proa-139G	Lamont	RC13-19	Scripps	LSDH-93PG	Scripps	Proa-137G	Scripps	LSDH-90PG	Lamont	RC12-197	Scripps	LSDH-89PG	Lamont	RC12-198	Scripps	Proa-101PG	Scripps	Proa-105G	Lamont	V24-D1	Lamont	V24-79	Scripps Nv-A-7G
Depth in	meters	5,240	4,397	5,170	r C	2,400	5,400		5,444		5,169		4,875		5,386		5,190		5,760		5,435		5,953		5,097		5,045		5,821		5,704		5, 698
n	Long.	168°50'W	168°52'W	M,00.691	0	W 86, 601	170°00'W		170°25'W		170°59'W		170°59'W		171°42'W		175°28'W		175°37'W		177°10'W		177°59'W		178°35'W		179°43°W		178°57年		178°371E		177°591臣
Location	Lat.	09°20'N	08°34¹N	N.00.60	000	06°04'N	N. 80.90		N.90.80		08°33'N		09°49'N		N. +0° L0		N161.20		N.91.60		N180.80		09°42'N		06°02'N		00°15'N		N121.60		09°17'N		N,61,60
Marsden	Square	017	017	017) 10	018		018		018		018		018		018		018		018		018		018		018		019		019		019

								ರ																									
Reference	or source	Lamont	Lamont	Lamont	Menard	1964	Scripps 1962	Skornyakova	et al., 1962	Menard	1964	Lamont		Lamont		NODC	1971	Scripps	1960	Lamont		Lamont		Mero	1965	Mero	1965	Lamont		Scripps	1964	Lamont	
Method of	sampling	Corer (niston)	Corer (niston)	Corer	(prstoil)		Corer	Trawl				Corer	(piston)	Dredge	(rock)	Corer	(gravity)	Corer		Corer	(piston)	Corer	(piston)	Corer		Corer		Corer	(piston)	Dredge	(bucket)	Corer (piston)	(NTOOPTA
Institution	and number	Lamont V24-102	Lamont RC12-200	Lamont	V 17-101	M-285	Scripps	USSR	Vit-3996		M-273	Lamont	RC13-131	Lamont	RC13-D1	USC&GS	Expl-18	USC&GS	Expl-60-6	Lamont	V18-330	Lamont	V18-329	Scripps	Acap-10	Scripps	Acap-11	Lamont	RC10-82	Scripps	CarrII-9D	Lamont RC10-88	00-010VI
Depth in	meters	5,097	4,691	4,921	4,860		4,600	4,580		4,670		4,330		3,888		3,660		3,660		3,197		3,191		3,500		3,275		3,891		5,276		3,660	
no	Long.	176°251圧	174°52'E	163°11'臣	148。411臣		136。111年	135°30'E		130°15'E		96°45¹W		97°04'W		97°36'W		97°36'W		101°20'W		102°17'W		103°48'W		105°07'W		M160°201		108°45'W		110°13rW	
Location	Lat.	N,61.80	01°28'N	06°40'N	N.07.00		N180.90	04°57'N		04°19'N		11°34'N		13°02'N		12°30'N		12°30'N		11°38'N		11°04'N		11°38'N		10°53'N		15°06'N		10°39'N		N,68.91	
Marsden	Square	019	019	020	022		023	023		023		046		046		046		046		047		047		047		047		047		047		048	

Reference or source	Scripps	L700 Ku &	Broecker 1969	Arrhenius	1952	Mero	1965	Lamont		Mero	1965	Scripps	1961-62	Scripps	1961-62	Arrhenius	1952	Lamont		Lamont		Lamont		Menard	1964	Lamont		Mero	1965	Scripps	1952-53	Skornyakova	et al., 1962
Method of sampling	Corer			Corer		Corer		Corer	(piston)	Corer		Corer	(heat probe)	Corer	(heat probe)	Corer		Corer	(piston)	Corer	(piston)	Corer	(piston)	Trawl	(camera)	Corer	(piston)	Dredge		Corer	(gravity)	Trawl	
Institution and number	Scripps		Ken-6A	Swed.Deep Sea	SDSE-48		Trans-14D	Lamont	RC10-240		Trans-14C	Scripps	RIS-8V	Scripps	RIS-10V	Swed. Deep Sea	SDSE-50A	Lamont	RC10-239	Lamont	RC12-47	Lamont	RC10-91	USSR	Vit-4279	Lamont	RC10-238		UNK-RR	Scripps	Cb-1	USSR	Vit-4281
Depth in meters	3,644	4,000		4,085		3,480		3,598		3,438		4,125		4,300		4,248		3,275		4,226		4,471		4,104		4,006		4,138		4,138		4,370	
n Long.	111°50'W	113°44'W		113°48'W		114°12'W		114°31'W		114°44'W		117°12'W		117°38'W		117°58'W		119°03'W		119°53'W		120°10'W		120°16'W		120°36'W		121°44'W		121°53'W		121°59'W	
Location Lat.	14°28'N	19°39'N		11°25'N		19°20'N		16°37'N		N.97.61		14°26'N		11°28'N		13°20'N		18°20'N		19°52'N		12°16'N		19°48¹N		18°41'N		19°49'N		N,00°61		N 65 61	
Marsden Square	8+0	8+0		048		048		048		048		048		048		048		048		048		049		049		049		049		049		049	

Reference	or source	Scripps	1952-53	Lamont		Scripps	1952-53	Scripps	1963-64	Mero	1965	Mero	1965	Scripps	1952-53	Lamont		Menard	1964	Lamont		Scripps	1958	Lamont		Scripps	1958	Cronan &	Tooms, 1969	Lamont		Scripps	1950	Scripps	1961	Lamont	
Method of	sampling	Corer		Corer	(piston)	Corer	(gravity)	Corer		Corer		Corer		Corer	(gravity)	Corer	(piston)	Corer	(camera)	Corer	(piston)	Dredge		Dredge	(rock)	Dredge		Corer		Corer	(piston)	Corer		Corer		Corer	(piston)
Institution	and number	Scripps	Cap-50B	Lamont	RC12-49	Scripps	Cb2	Scripps	Amp. 3PG	Scripps	Cb-3	Scripps	Cb-9	Scripps	Cb-5	Lamont	RC12-50	USSR	Vit-4285	Lamont	RC12-51	Scripps	DWHH-7	Lamont	V20-D1	Scripps	DWBD-2	Scripps	JynV-50PG	Lamont	V20-36	Scripps	MP-5	Scripps	JynV-48PG	Lamont	RC15-13
Depth in	meters	4,270		4,321		4,354		4,500		4,380		4,545		4,440		4,369		4,545		4,660		4,770		4,636		4,890		5,210		4,843		4,816		4,606		2,327	
n	Long.	124°12'W		124°36'W		125°01'W		125°05'W		125°26'W		125°27'W		125°29'W		125°35'W		126°06'W		127°41'W		128°34'W		128°54'W		130°28'W		131°46'W		132°07'W		133°07'W		133°57'W		134°11'W	
Location	Lat.	14°55'N		N160°11		16°03'N		15°04'N		15°00'N		N.61.01		13°03'N		16°35'N		N12.61		N160°51		11°05'N		10°37'N		10°26'N		18°16'N		11°24'N		14°22'N		15°54'N		14°05'N	
Marsden	Square	049		049		049		049		049		049		049		049		049		049		049		049		050		050		050		050		050		050	

nce)				50	1945			0.0	1945			2 %		1.3		1.3		, .																	
Reference	Lamont		Menard	1964	Fleming	et al., 1945	Menard	1964	Fleming	et al., 1945	Scripps	1960-61	Lamont		Lamont		Lamont		Lamont		Lamont		Scripps	1960-61	Lamont		Scripps	1968	Mero	1965	Lamont		Scripps	1961	Lamont	
Method of	Corer	(piston)			Snapper				Snapper		Corer		Trawl	(biology)	Dredge	(pepple)	Dredge	(pebble)	Dredge	(pepple)	Dredge	(rock)	Corer	(gravity)	Corer	(piston)	Grab		Corer		Corer	(piston)	Corer		Trawl	(biology)
Institution and number	Lamont	V20-38	Harvard	Alb-11	Scripps	Car-78	Harvard	Alb-12	Scripps	Car-79	Scripps	Msn-153PG	Lamont	V21-D13	Lamont	RC11-D20	Lamont	RC11-D18	Lamont	RC11-D19	Lamont	V20-D2	Scripps	Msn-150G	Lamont	V20-44	Scripps	Stx-8FF	USC&GS	Expl-14b	Lamont	V20-46	Scripps	JynV-31PG	Lamont	V21-D11
Depth in	4,885		4,850		4,553		5,280		4,918		4,927		4,770		4,877		5,574		4,828		4,909		4,978		4,526		5,233		3,488		4,896		5,539		5,550	
n Long.	135°25'W		136°44'W		137°06'W		137°18'W		137°32'W		138°56'W		139°24'W		139°58'W		140°02'W		140°02'W		141°11'W		142°37'W		142°46'W		143°01'W		144°14'W		144°28'W		144°54'W		145°08'W	
Location	12°18'N		14°38'N		16°15'N		12°07'N		12°40'N		13°07'N		10°45'N		11°01'N		N162.61		14°52'N		14°28'N		N165.01		15°03'N		13°31'N		N.95.61		14°11'N		11°55'N		12°19'N	
Marsden	050		050		050		050		050		020		050		020		051		051		051		051		051		051		051		051		051		051	

																																	hys.	~		
Reference	or source	Lamont	Scripps	1968	Lamont		Lamont		Lamont		Lamont		Lamont		Murray	1885	Lamont		Murray	1885	Scripps	1965	Skornyakova	et al., 1968	Scripps	1968	Scripps	1968	Scripps	1968	Lamont		Alpine Geophys.	Assoc., 1968	Mero	1965
Method of	sampling	Corer (niston)	(pretou) Grab		Dredge	(rock)	Corer	(piston)	Trawl	(biology)	Corer	(piston)	Corer	(piston)	Dredge		Corer	(piston)	Trawl		Corer				Corer		Corer		Corer		Corer	(piston)	Corer		Corer	
Institution	and number	Lamont V20_48	Scripps	Stx-9FF	Lamont	V20-D4	Lamont	V21-192	Lamont	V21-D9	Lamont	RC12-71	Lamont	V20-52	Challenger	Chal-265	Lamont	V21-190	Challenger	Chal-264	Scripps	Wah-2PG	USSR	Vit-5126	Scripps	Stx-13G	Scripps	Stx-12G	Scripps	Stx-25G	Lamont	RC13-58	Alpine G.A.	BA-11-1	Scripps	Msn-G
Depth in	meters	4,640	5,330		4,618		5,610		5,218		5,563		5,119		5,310		5,427		5,480		5,221				5,272		5,378		5,233		5,353		5,550		5,652	
110	Long.	145°21'W	145°46'W		145°52'W		147°45'W		150°00'W		150°37'W		150°55'W		152°01'W		152°21'W		152°37'W		152°56'W		154°08'W		154°48'W		154°48'W		157°04'W		157°08'W		160°37'W		161°08'W	
Location	Lat.	14°26'N	12°02'N		14°25'N		13°10'N		13°44'N		14°04'N		16°33'N		12°42'N		14°19'N		14°19'N		11°51'N		11°17'N		14°19'N		14°30'N		15°49'N		10°22'N		15°51'N		14°11'N	
Marsden	Square	051	051		051		051		052		052		052		052		052		052		052		052		052		052		052		052		053		053	

Marsden	Location	on	Depth in	Institution	Method of	Reference
Square	Lat.	Long.	meters	and number	sampling	or source
053	14°09'N	161°08'W	5,652	Scripps Msn-7G	Corer (gravity)	Scripps 1960-61
053	15°02'N	162°31'W	5,666	Scripps	Corer	Scripps
053	N,61.91	162°57'W	5,605	Swed. Deep Sea	(gravity) Corer	Olausson 1960
053	16°57'N	163°00'W	5,773	Lamont RC12-192	Corer (piston)	Lamont
053	12°58'N	163°09¹W	5,430	Scripps Tet-28	Corer (gravity)	Scripps 1960
053	13°05'N	163°10'W	5,413	Scripps Tet-27A	Corer	Scripps 1960
053	13°50'N	163°32'W	5,460	Lamont RC12-79	Corer (piston)	Lamont
053	11°01'N	164°56¹W	4,835	Scripps Proa-148G	Corer (gravity)	Scripps 1962
053	14°28'N	164°59'W	5,455	Swed. Deep Sea	Corer	Olausson 1960
053	10°30'N	165°33'W	4,341	Scripps Pros_147V	Corer (heat probe)	Scripps 1962
053	16°06'N	165°45'W	2,400	Scripps Tet-22	Corer	Scripps 1960
053	N.50.91	165°52°W	5,295	Lamont RC12-193	Corer (piston)	Lamont
053	15°36'N	166°40'W	5,440	Scripps Proa-169G	Corer	Scripps 1962
053	12°16'N	166°48'W	5,080	Swed. Deep Sea SDSE-82	Corer	Kullenberg 1955
053	13°57'N	167°00'W	5,442	Lamont RC13-53	Corer (piston)	Lamont
053	11°59'N	167°02'W	5,176	Lamont RC13-52	Corer (niston)	Lamont
053	10°02'N	167°50'W	5,280	Scripps Dodo-20P	Corer (niston)	Scripps 1964
053	19°35'N	168°50'W	2,148	Scripps Stx-2D	Dredge	Scripps 1968

Method of Reference sampling or source	Corer Scripps		ag)		ag)	Corer Scripps		Dredge Hamilton	ag)	Corer Scripps		Dredge Hamilton	(chain bag) 1956	Dredge Hamilton	(chain bag) 1956	Corer Lamont	(piston)	Corer Cronan &	Tooms, 1969	Corer Scripps	(gravity) 1962			Corer Scripps 1950	Dredge Scripps		Dredge Scripps		Dredge Scripps		Dredge Mero	1965
Institution and number	Scripps I SPH 062	Scripps	MP-25F1	Scripps	MP-25F2	Scripps	Proa-156G	Scripps	MP-26A-3	Scripps	MP-26A-1	Scripps	MP-26A-2	Scripps	MP-26B	Lamont	RC13-18	Scripps	Proa-157G	Scripps	Proa-159G	Scripps	Froa-101G	Scripps MP-32	Scripps	MP-33D	Scripps	MP-33C	Scripps	Stx-5D	Scripps	MP-33K
Depth in meters	5,285	1,740		1,741/	1,786	4,469		1,320/	1,410	1,250		1,240		1,290		5,546		5,106		5,380		2,708		3,950	1,770		1,670		1,824/	1,786	1,810/	2,290
n Long.	168°51'W	169°44'W		169°44'W		170°57'W		171°00'W		171°00°W		171°00'W		171°00'W		171°05'W		172°06'W		172°47'W		172°48¹W		173°17'W	174°16'W		174°17'W		174°17'W		174°22'W	
Location Lat. L	11°28'N	N'70°61		19°07'N		10°23'N		19°25'N		19°30'N		19°30'N		19°30'N		12°59'N		10°20'N		11°23'N		12°16'N		18°20'N	17°54'N		17°49'N		17°49'N		17°48'N	
Marsden Square	053	053		053		054		054		054		054		054		054		054		054		054		054	054		054		054		054	

Reference	or source	Lamont		Lamont		Lamont		Scripps	1962	Scripps	1950	Scripps	1950	Lamont		Lamont		Scripps	1962-63	Scripps	1962-63	Scripps	1950	Scripps	1950	Scripps	1950	Menard	1964	Scripps	1950	Scripps	1950	Scripps	1950
Method of	sampling	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer		Dredge		Dredge		Corer	(piston)	Corer	(piston)	Corer	(gravity)	Corer	(gravity)	Dredge		Dredge		Dredge		Dredge		Dredge		Dredge		Dredge	
Institution	and number	Lamont	RC13-26	Lamont	RC13-28	Lamont	V24-77	Scripps	Proa-162G	Scripps	MP-37C	Scripps	MF-3/A	Lamont	V24-100	Lamont	RC13-30	Scripps	LSDH-86G	Scripps	LSDH-85G	Scripps	MP-44L	Scripps	MP-44J	Scripps	MP-43E	Scripps	MP-43LL	Scripps	MP-43B	Scripps	MP-43D	Scripps	MP-43C
Depth in	meters	4,217		4,488		5,280		5,464		2,016		2,010/		5,330		5,506		5,570		1,400		4,487		2,918			2,100	1,330		1,500/	2,080	1,500/	2,100	1,510/	
	Long.	175°14'W		175°18'W		175°37'W		175°51'W		177°10'W		177°15'W		179°441臣		178°20'E		176°561臣		175°251 臣		165°51'E		165。391臣		165°11'E		165°10'E		165°00'臣		164°591圧		164°571圧	
Location	Lat.	13°51'N		13°53'N		12°01'N		12°31'N		17°10'N		17°04'N		16°08'N		13°55'N		12°25'N		13°38'N		11°27'N		11°32'N		11°47'N		N.9+ .11		12°03'N		11°57'N		12°03'N	
Marsden	Square	054		054		054		054		054		054		055		055		055		055		950		950		950		950		950		950		056	

Reference or source	Scripps 1950	Menard 1964	Scripps 1950	Lamont	Lamont	Lamont	Lamont	Skornyakova et al., 1962	•	1905 Flint	1905	Lamont	Flint	1905 Flint	1905	Lamont	Flint	1905	Flint	1905	NODC	1971
Method of sampling	Corer	Dredge	Dredge	Corer (piston)	Corer (piston)	Corer (piston)	Corer (piston)	Sounding	Sounding	cup	dno	Corer (niston)	Sounding	cup Sounding	dno	Corer	Sounding	cnb	Sounding	cnb		
Institution and number	Scripps MP-43J	Scripps MP-43DD	Scripps MP-43A	Lamont V24-83	Lamont V24-88	Lamont V24-87	Lamont V24-86	USSR Vit-3631	U. S. Navy	Nero-430	Nero-427	Lamont RC10-153	U.S. Navy	Nero-498 U.S. Navy	Nero-463	Lamont	U. S. Navy	Nero-521	U.S. Navy	Nero-530	Harvard	A1b-246
Depth in meters	3,290	1,610	1,480/	5, 191	4,808	4,879	3,896	5,643	4,192	7	0000	5,460	5,840	3,510		5,218	6,140		5,710		5,480	
on Long.	164°52'E	164°50'E	164°44¹E	164°16'E	162°58'E	161°23'E	161°19¹E	155°59'E	154°381臣	200 P	0	154°03'E	153°16'E	153。071臣		152。571巨	150°48'E		149°17'E		148°25'臣	
Location Lat.	12°07'N	11°48¹N	12°09'N	15°23'N	19°52'N	19°04'N	19°03'N	19°55'N	17°24'N	1417 60 7 1	N. 47 / I	14°48'N	16°35'N	17°31'N		18°05'N	15°31'N		14°57'N		10°34'N	
Marsden Square	056	056	056	056	056	056	056	057	057	U	/ 60	057	057	057		250	057		058		058	

Reference or source	Flint 1905	NODC 1971	Flint	1905 Flint	1905	Flint	1905	Flint	1905	Flint		Flint	1905	Flint	1905	Flint	1905	Flint	1905	Flint	1905	Flint	1905	Skornyakova	et al., 1962	Flint	1905	Flint	1905	Alpine Geophys.	Assoc., 1969	Flint	1000
Method of sampling	Sounding	i i	Sounding	cup Sounding	dno	Sounding	cup	Sounding	cup	Sounding	d'and	Sounding	cup	Sounding	cnb	Sounding	dno	Sounding	cup	Sounding	cnb	Sounding	dno	Trawl		Sounding	dno	Sounding	cnb	Corer	(piston)	Sounding	cap
Institution and number	U.S. Navy	Harvard Alb-247	U. S. Navy	Nero-600 U.S. Navy	Nero-603	U.S. Navy	Nero-637	U.S. Navy	Nero-990	U.S. Navy		U.S. Navy	Nero-1055	U.S. Navy	Nero-985	U.S. Navy	Nero-984	U. S. Navy	Nero-983	U.S. Navy	Nero-982	U.S. Navy	Nero-688	USSR	Vit-3899	U.S. Navy	Nero-705	U.S. Navy	Nero-715	Alpine G.A.	RA12-133	U.S. Navy	TOCHOTONI
Depth in meters	7,700	5,880	4,640	3,190		4,310	1	1,570	,	840	l	3,510	1	3,519		3,202		3,442		3,208		2,640		4,620		4,960		4,830		4,022		4,675	
n Long.	147°38'E	147°15'E	146°31'E	146°07'E		146°06'E	(144 36 E		144°36'E	1	143°52'E	1000	143。521臣		143°42'E		143°321E		143。191臣		142°301臣		141°43'E		140°34'E		139。181臣		138°24¹E		138。07년	
Location Lat.	14°25'N	11°35'N	15°30'N	15°15'N		14°41'N	(N.87. 81	(13°26'N	1	19°55'N		13°42'N		13°27'N		13°44'N		13°25'N		13°31'N		N,00°71		13°54'N		14°08'N		12°32'N		14°31'N	
Marsden Square	058	058	058	058		058	1	058	- 1	058	1	058	1	058		058		058		058		058		058		058		059		059		650	

Reference or source	Flint 1905	Lamont		Lamont		Skornyakova	et al., 1962	Lamont		Lamont		Flint	1905	Mero	1965	Menard	1964	ESSA	1965	Lamont		Mero 1965	S. Critical S.	1966	Scripps	1966	Scripps	1966	Mero	1965	Mero	COLT	Mero 1965
Method of sampling	Sounding	Dredge		Corer	(piston)			Corer	(piston)	Corer	(piston)	Sounding	cnb	Core	wire			Dredge	(chain)	Corer	(piston)	Trawl	Dredge		Dredge		Dredge		Dredge		Dredge	ſ	Dredge
Institution and number	U.S. Navy	Lamont	V28-D11	Lamont	V24-119	USSR	Vit-3729	Lamont	V20-142	Lamont	V21-123	U.S. Navy	Nero-783		UNK-BH2		Cable Ship	ESSA	Pio-2D	Lamont	RC14-84	Scripps Vs_R11_35		Tri-1D	Scripps	Tri-3D	Scripps	Tri-2D		DH-10	0 114	レロ- 7	UNK-MS
Depth in meters	5,010	2,378/	2,871	5,630		3,590		5,997		5,371		5,980		5,180		5,150		962		3,913		3,000	2 478	j H	2,496		1,711		3,385		3,450		3,604
on Long.	136。301日	135°571E		135°01'E		134°301E		133。161臣		131°04'E		130°42'E		126°27'E		126°271E		117°511臣		116°021E		107°48'W	112°40tW	1	112°42'W		112°47'W		112°47'W		113°03'W		113°08'W
Location Lat.	14°32'N	N.07.61		18°39'N		15°32'N		17°11'N		14°11'N		14°50'N		13°37'N		13°04'IN		10°49'N		14°35¹N		22°18'N	N112000)	21°18'N		20°45'N		21°53'N		21°48'N	(22°30'N
Marsden Square	650	650		059		059		059		059		059		090		090		061		061		083	780	۲ ٥ ٥	084		084		084		084		084

Reference or source	Cronan & Tooms, 1969	Cronan & Tooms 1969	Skornyakova	et al., 1962	Cronan & Tooms 1969	Mero	1965	Mero	1965	Mero	1965	Menard	1964	Mero	1965	Mero	1965	Mero	1965	Mero	1965	Scripps	1966	Scripps	1966	Scripps	1966	Mero	1965	Menard	1964	Menard	1961
Method of sampling	Dredge	Dredge	Trawl	(camera)	Dredge	Dredge)	Dredge		Dredge		Corer	(camera)	Dredge		Dredge		Dredge		Dredge		Dredge	(pipe)	Dredge	(pipe)	Dredge		Dredge		Corer		Corer	
Institution and number	Scripps MV65-1-38	Scripps Mag Bav-A35	USSR	Vit-4265	Scripps MV65-1-41	4	DH-8	Scripps	VS-78		DH-7	USSR	Vit-4273		9-HQ		DH-5		DH-4		DH-3	Scripps	Tri-4D	Scripps	Tri-5D	Scripps	Tri-6D		DH-2	Scripps	Cb-B-XIV	Scripps	PAS-19121
Depth in meters	1,950	3,550	3,315/	3,340	3,510	3,420		384/	49	3,660		3,778		3,660		3,800		3,800		3,800		3,840		3,705		3,705		3,430		3,890		4,030	
on Long.	113°16'W	113°18'W	113°23'W		113°28'W	113°30'W		113°33'W		113°48'W		113°57'W		114°06'W		114°07'W		114°08'W		114°11'W		114°27'W		114°58'W		114°58'W		115°12'W		116°03'W		116°10'W	
Location Lat. L	24°24'N	24°23'N	24°58'N		N. +5° +7	21°40'N		29°03'N		21°33'N		20°00'N		21°21'N		21°27'N		21°31'N		21°40¹N		20°45'N		20°32'N		20°32'N		21°50'N		21°59'N		27 20'N	
Marsden Square	084	084	180	(十20	084		084		084		084		180		084		084		084		084		084		480		084		084		1084	

Reference	or source	Mero	1965	Cronan &	-	Cronan &	Tooms, 1969	Menard	1964	Lamont		Menard	1964	Scripps	1966	Menard	1964	Goldberg	1954	Skornyakova	et al., 1962	Scripps	1968	Mero	1965	Mero	1965	Mero	1965	Mero	1965	Scripps	1958	Murray	1909	Mero	1965
Method of	sampling	Dredge		Dredge		Corer		Corer	(camera)	Corer	(piston)	Dredge		Dredge	(chain)	Dredge		Dredge		Trawl		Grab		Corer		Corer				Corer	(gravity)	Dredge		Trawl		Corer	
Tx c+:+:1+:	and number		DH-1	Scripps	SOB-13D	Scripps	Ris-5V	USSR	Vit-4261	Lamont	RC12-46	Scripps	SIO-DX-1	Scripps	Tri-9D		Hend-1	USN Electron. Lab.	NEL-Hend	USSR	Vit-4217	Scripps	Stx-ZFF	Scripps	DWHH-4		Wig6	USSR	Vit-4221	Scripps	Msn-157G	Scripps	DWBD-1	Harvard	Alb-2	Scripps	MP-3
Donth in	meters	3,480		540/	820	4,010		3,765		4,072		1,100/	1,520	2,607/	2,984	440				4,078/	4,017	3,787		4,330		4,000		4,325		4,414		4,300		4,340		4,702	
Ş	Long.	116°14'W		117°17'W		117°29'W		117°50'W		118°48'W		119°17'W		119°22'W		119°35'W		119°40'W		120°42'W		124°06'W		125°00'W		125°40'W		125°55'W		126°30'W		126°43'W		126°57'W		127°16'W	
T 000 +:00	Lat.	25°00'N		29°31'N		20°19'N		24°58'N		20°32'N		27°43'N		21°05'N		23°30'N		25°15'N		29°57'N		23°43'N		24°22'N		28° 59'N		29°58'N		24°18'N		21°27'N		28°23'N		20°51'N	
	Square	084		084		084		084		084		084		084		084		084		085		085		085		085		085		085		085		085		085	

Reference or source	Skornyakova	Scripps	Menard	1964	Scripps 1962	Menard	1964	Mero	1965	Mero	1965	Mero	1965	Lamont		Lamont		Lamont		Scripps	1962-63	Menard	1961	Mero	1965	Scripps	1962	Scripps	1962	Skornyakova	et al., 1964	Menard	1964
Method of sampling	Dredge	Grab	Trawl		Corer (heat probe)			Scoop		Dredge		Scoop		Dredge	(pebble)	Dredge	(pebble)	Dredge	(pebble)	Corer	(gravity)	Corer		Corer		Corer	(gravity)	Corer	(gravity)	Trawl	(camera)	Dredge	
Institution and number	USSR Vit-4289	Scripps Steripps	USSR	Vit-4249	Scripps Ris-121V	Harvard	Alb-6	USSR	Vit-4245	Scripps	Naga-8C	USSR	Vit-4243	Lamont	RC11-D15	Lamont	RC11-D16	Lamont	RC11-D17	Scripps	LSDH-100G	Scripps	Naga-10B	Scripps	Naga-10C	Scripps	Hilo-4G	Scripps	Hilo-5G	USSR	Vit-4239	Scripps	Naga-13A
Depth in meters	4,895	4,959	4,975		3,700	5,150		4,645		4,890		4,368		4,890		4,409		5,378		5,200		5,540		5,540		4,750		4,850		5, 190		5,280	
on Long.	130°01'W	130°04'W	132°18'W		132°37'W	133°28'W		137° 19'W		138°15'W		139°51'W		139°55'W		139° 59'W		140°00'W		140°23'W		141°13'W		141°13'W		143° 58'W		143°58'W		144°05'W		144°46'W	
Location Lat.	Z0 °00'N	20°04'N	24°55'N		27°53'N	20°26'N		25°00'N		23°17'N		24°56'N		N101.62		26°24'N		21°30'N		21°26'N		23°17'N		23°17'N		22°57'N		22°57'N		24°50¹N		23°50'N	
Marsden Square	980	980	980		980	980		980		980		980		980		980		087		087		087		087		087		087		000		087	

Reference or source	Scripps 1966	Mero 1965	Mero 1965	Lamont	Scripps 1966	Scripps 1966	Menard 1964	Lamont	Lamont	Scripps 1966	Lamont	Flint 1905	Flint 1905	Lamont	Flint 1905	Lamont	Lamont	Lamont
Method of sampling	Corer (gravity)	Dredge	Corer	Corer (piston)	Corer	Corer	Bottle	Trawl (biology)	Trawl (biology)	Corer	Corer	(piston) Cup	Cup	Corer (nieton)	Cup	Trawl (hiology)	Trawl (biology)	Corer (piston)
Institution and number	Scripps Zs-VII-38G	Scripps Naga-15	Scripps Naga-16	Lamont RC12-76	Scripps Sh-A-27GA	Scripps Sh-H-21G	Challenger Chal-258	Lamont V21-D6	Lamont V21-D5	Scripps Sh-H-7G	Lamont	U.S. Navy	U.S. Navy Nero-2048	Lamont BC12_187	U.S. Navy	Lamont	V21-D4 Lamont V21-D8	Lamont RC13-12
Depth in meters	5,365	5,220	5,240	1,556	4,441	4,384	5,080	5,720	5,830	4,526	3,968	290	2,712	5,360	686	2,680	4,856	5,760
on Long.	147°29'W	148°00'W	150°00'W	154°27'W	154°45'W	154°59¹W	155°12'W	157°00'W	157°02'W	157°02'W	157°56'W	157°57'W	158°07'W	158°20'W	158°39'W	159°11'W	159°21'W	161°10¹W
Location Lat.	26°42'N	23°54'N	22°00'N	23°12'N	22°39'N	21°59'N	26°11'N	27°15'N	29°15'N	22°42'N	24°16'N	21°10'N	21°53'N	28°20'N	21°45'N	28°24'N	23°01'N	29°44'N
Marsden Square	087	087	088	088	088	088	088	088	088	088	088	088	088	088	088	088	088	680

Reference or source	Lamont	Flint 1905	Flint	Menard 1964	Scripps 1950	Skornyakova et al. 1962	Scripps	Skornyakova	et al., 1968 Flint	Flint	Flint 1905	Scripps 1968	Scripps 1968	Mero 1965	Lamont	Scripps	190/ Flint 1905
Method of sampling	Corer	Cup	Cup	Corer	Dredge	Spoon	Corer	Scoop	Cup	Cup	Cup	Dredge	Dredge	Scoop	Corer (niston)	Corer	(gravity) Cup
Institution and number	Lamont RC13_15	U. S. Navy	U.S. Navy	Scripps MP27-1	Scripps MP-28	USSR Vit-4331	Scripps Zs-V-13G	USSR Vit 4247	U.S. Navy	U.S. Navy	U.S. Navy Nero-179	Scripps Stx-25D	Scripps Stx-24D	USSR Vit-4343	Lamont V24-93	Scripps	U. S. Navy Nero-257
Depth in meters	4,947	2,680	3,700	3,750	2,140/2,210	4	5, 156	5,318	2,914	2,266	4,419	1,567/	1,611/	5,815	5,782	5,894	5,850
n Long.	161°54'W	167°18'W	168°35'W	171°00'W	171°00'W	171°38'W	174° 07'W	175°40'W	176°43¹W	176° 45'W	176° 48'W	177° 52¹W	178°03¹W	179°58'E	176°131臣	175°531臣	175°321臣
Location Lat. I	27°36'N	25°41'N	26°23'N	N,00°02	20°00¹N	20°03¹N	N128.62	24°00°N	28°41'N	28°41'N	28°54'N	28°53'N	N:50°62	24°00'N	25°48'N	25°45'N	25°47'N
Marsden Square	680	680	680	060	060	060	060	060	060	060	060	060	060	091	160	091	091

Reference or source	Scripps	Nikolayev &	Yefimova, 1963	Flint	1905	Skornyakova	et al., 1962	Mero	1965	Flint	1905	Flint	1905	Flint	1905	Skornyakova	et al., 1962	Flint	1905	Flint	1905	Flint	1905	Flint	1905	Skornyakova	et al., 1962	Skornyakova	et al., 1962	Scripps	1966	Flint	1905
Method of sampling	Corer	(Blavity)		Cup		Spoon		Scoop		Cup		Cup		Cup		Spoon		Cup		Cup		Cup		Cup		Spoon		Trawl		Dredge		Cup	
Institution and number	Scripps	USSR	Vit-3782	U.S. Navy	Nero-285	USSR	Vit-4351	USSR	Vit-4355	U. S. Navy	Nero-338	U.S. Navy	Nero-339	U. S. Navy	Nero-340	USSR	Vit-4359	U. S. Navy	Nero-350	U.S. Navy	Nero-1704	U. S. Navy	Nero-361	U. S. Navy	Nero-373	USSR	Vit-4362	USSR	Vit-4370	Scripps	Zs-IV-5D	U.S. Navy	Nero-1406
Depth in meters	5, 750			5,650		5,817		6,052		3,900		3,369		2,646		5,542		4,100		3,437		4,160		3,930		3,951		6,120		2,423		3,095	
n Long.	175°10'E	173°40'臣		171°331臣		170°581臣		167°241臣		163°191圧		163°17'E		163°151臣		163°02'E		162°48'E		162°42'E		161°111E		160°581E		160°46'E		153°44'E		148。151臣		143°351臣	
Location Lat. L	27°42'N	23°55'N		24°32'N		23°57'N		24°02'N		21°26'N		21°25'N		21°24'N		24°01'N		21°15'N		21°21'N		20°38'N		20°38'N		24°04'N		26°12'N		28°23'N		21°27'N	
Marsden Square	091	091		091		091		092		092		092		092		092		092		092		092		092		092		093		094		094	

Marsden Square	Location Lat.	on Long.	Depth in meters	Institution and number	Method of sampling	Reference or source
+60	25°14'N	143° 05'E	3,080	U.S. Navy	Cup	Flint
094	25°46'N	143°01'E	3,658	U. S. Navy	Cup	Flint
094	27°05'N	142°57'E	4,905	U. S. Navy	Cup	Flint 1905
094	23°12'N	141°47'臣	1,252	Lamont W21 94	Corer (miston)	Lamont
095	28°23'N	136°17'臣	4,518	Scripps Zs-IV-12G	Corer	Scripps 1966
120	32°17'N	117° 32'W	710	Scripps SIO-DX-2	Dredge	Menard 1964
120	30°12'N	117° 38¹W	1,300	Scripps SOB-10D	Dredge	Krause 1964
120	31°19¹N	117° 38¹W	2,100/	Scripps SOB-5D	Trawl (Otter)	Krause 1964
120	30°18¹N	117° 40'W	1,060	Scripps	Dredge	Krause
120	32°50'N	118°00'W	2,000		Dredge	Goldberg &
120	31°23'N	118° 03'W	1,040	S Clem Scripps	Dredge	Arrhenius, 1958 Krause
120	32°45'N	118° 13'W	1,588	SOB-20D	Dredge	1964 Mero
120	31°05¹N	118° 37'W	1,650/	Scripps SOB-25D	Dredge	Krause 1964
120	31°21'N	119°03'W		Scripps SOB-22D	Dredge	Krause 1964
121	30°25'N	122° 45'W	450	USN Electron Lab.	Dredge	Menard 1964
121	32°24¹N	127° 47¹W	499/	USN Electron Lab.	Dredge	Menard
121	33°21¹N	128° 45¹W	4,318	Lamont RC10-233	Corer (niston)	Lamont
122	32°51'N	132° 32'W	710	U.S. Navy NEL-667	Dredge	Carsola & Dietz, 1952

		ф	1.																											7a	- 1	
Reference or source	Lamont	Skornvakova	et al., 1964	Lamont		Lamont		Lamont		Lamont		Lamont		Mero	1965	Mero	1965	Murray	1885	Murray	1885	Murray	1885	Lamont		Murray	1885	Lamont		Skornyakova	et al., 1962	
Method of sampling	Corer	(piston) Dredge)	Corer	(piston)	Corer	(piston)	Dredge	(pebble)	Corer	(piston)	Dredge	(pebble)	Dredge		Dredge		Bottle		Dredge		Dredge		Trawl	(biology)	Trawl		Trawl	(biology)	Trawl		
Institution and number	Lamont v20 72	V 2U = 72 USSR	Vit-4199	Lamont	RC11-194	Lamont	RC11-195	Lamont	RC11-D14	Lamont	RC11-193	Lamont	RC11-D13	Scripps	UPWD-1	Scripps	UPWD-2	Challenger	Chal-254	Challenger	Chal-256	Challenger	Chal-253	Lamont	V21-D3	Challenger	Chal-252	Lamont	V21-D2	USSR	Vit-4090	
Depth in meters	4,790	5,035		5,303		4,934		4,991		4,748		4,748		5,390		5,300		5,540		5,400		5,720		5,720		5,020		5,577		6	5,913	
on Long.	135°06'W	137°56¹W		139° 57'W		139°58'W		139°58'W		140°02'W		140°02'W		145°56'W		145°57'W		154° 43¹W		154° 56'W		156°25'W		159° 42'W		160°17'W		160°19'W		166°28'W		
Location Lat. L	39°38'N	35°06'N		34°59'N		31°51'N		31°51'N		N195.68		N195.68		34°04'N		34°08¹N		35°13¹N		30°22'N		38°09'N		31°31'N		37°52'N		34°54'N		35°02'N		
Marsden Square	122	122		122		122		122		123		123		123		123		124		124		124		124		125		125		125		

Reference or source	Lamont	Murray 1885	Lamont	1	Lamont	Lamont		Scripps	1966	Lamont		Lamont		Scripps	1961	Mero	1965	Menard	1964	Flint	1905	Flint	1905	Mero	1965	Menard	1964	Mero	1965	Menard	1964
Method of sampling	Corer	(piston) Trawl	Corer	(piston)	frame	Corer	(piston)	Dredge		Corer	(piston)	Corer	(piston)	Corer	(gravity)	Trawl		Snapper		Cup		Cup		Dredge		Dredge		Dredge		Dredge	
Institution and number	Lamont v20 104	Challenger Chal-248	Lamont	RC10-179	RC11-D5	Lamont	RC11-164	Scripps	Zs-III-2D	Lamont	RC10-176	Lamont	RC10-165	Scripps	JynII-21	Univ. Tokyo	JEDS-5	Scripps	Car-57	U.S. Navy	Nero-1185	U. S. Navy	Nero-1197	Scripps	Jap-B	Scripps	Jap-A-1	Scripps	Jap-A	Scripps	Jap-B-2
Depth in meters	5,449	5,300	4,312	0 70	•	5,158		1,295/	1,110	4,226		3,638		5,720		3,500		5,396		2,730		3,110		260		260		110		114	
on Long.	178°10'W	177°041臣	173°431臣	16602.11日	۲ 0	162°38'E		162°24'E		160:401巨		157°20'E		146°431E		146°001E		145°261圧		141。091日		140。561臣		139°05'E		139。051臣		138。411臣		138°41'E	
Location Lat.	37°18'N	37°41'N	39°38'N	27002171		35°20'N		37°16'N		34 47'N		31°50'N		36°29'N		38°00'N		N10+°7+		30°59'N		32°10'N		34°23'N		34°33'N		33°51'N		35 15'N	
Marsden Square	126	127	127	128	1	128		128		128		129		130		130		130		130		130		131		131		131		131	

Reference	or source	Menard	1964	NODC	1971	NODC	1971	Menard	1964	NODC	1971	Scripps	1959	Skornyakova	et al., 1962	Lamont		Lamont		Scripps	1952-53	Lamont		Willis &	Ahrens, 1962	Scripps	1951	Skornyakova	et al., 1962	Skornyakova	et al., 1962	Menard	1964	Scripps	1961	Skornyakova	et al., 1962
Method of	sampling	Dredge		Corer		Dredge		Dredge		Corer		Dredge		Corer &	Trawl	Dredge	(pebble)	Corer	(piston)	Corer		Corer	(piston)			Corer	(wire)	Trawl		Trawl		Corer	(gravity)	Corer		Trawl	
Institution	and number		CasD-8	Scripps	Fan-S16	Scripps	Fan-BD-25		CasD-5	Scripps	Fan-B24	Scripps	Fan-BD-20	USSR	Vit-4191	Lamont	RC11-D12	Lamont	RC11-192	Scripps	Cusp-8P	Lamont	V20-88			Scripps	NH-C10	USSR	Vit-4104	USSR	Vit-4074	Scripps	Ck-13	Scripps	JynII-9G	USSR	Vit-3150
Depth in	meters	1,700		1,450		1,260		2,520		2,600		4,060/	4,400	4,471/	4,477	4,116		4,116		4,350		5,081		4,938		5,029		5,435/	5,456	6,065		4,835		5,460		1,258	
no	Long.	127°21 ^t W		127°33'W		127°59",		128°03'W		128°16'W		128°28'W		135°47'W		139°57'W		139°57'W		140°38'W		151°39'W		155°55'W		155°55'W		159°54'W		175°42'W		173°02'W		170°48′臣		170°15'E	
Location	Lat.	40°23'N		40°22'N		40°23'N		45°45'N		41°10'N		40°16'N		40°20'N		45 °02'N		45°02'N		43°58'N		40°11'N		40°14'N		40°14'N		41°08'N		40°24'N		44°45¹N		40 °30'N		44 °28'N	
Marsden	Square	157		157		157		157		157		157		158		158		158		159		160		160		160		160		162		162		163		163	

Reference	or source	NODC 1971	NODC 1971	NODC 1971	NODC 1971	NODC 1971
Method of	sampling	Dredge (chain bag)	Dredge (chain bag)	Dredge (chain bag)	Dredge (chain bag)	Dredge (chain bag)
Institution	and number	Scripps NH-D-5	Scripps NH-D-2	Scripps NH-D-3	Scripps NH-D-7	Scripps NH-D-1
Depth in	meters	006	1,000	1,100/	1,370/	1,500
no	Long.	142°30'W	144°17'W	144°17'W	145°15'W	150°05'W
Location	Lat.	26°20'N	53°32'N	53°32'N	26°10¹N	52°47'N
Marsden	Square	195	195	195	195	196

TABLE 2

CHEMICAL ANALYSES

OF FERROMANGANESE NODULES AND CRUSTS

NORTH PACIFIC

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CEUSTS - NORTH PACIFIC

	Mn/Fe		1.5		1.5		4.2		2.5				5. 57				4.		3.9		1.0		6.4	T.		3,8		0.3		6, 2	(0.0	0	0.0		
	Ca		1.8		5.6				1,5								1,5		I., 2		0.7		4.							1,5		Ι, α	1) ° 1	3.	
ses	 		3.5		5, 1				0,00								ω œ		6. I		14,3		7.5									(, 5			7.0	
Results of Chemical Analyses in Weight Percent	Mn	21.5	18.8		27.2		30.28		24.6	0	0.02		26.4		30.0		28, 1	,	26.2		9.3		34.1	21 56	0 .	21.8		2.50		29.8	(54.		υ α. Ι	₹ 0.	
of Chemical And Weight Percent	Fe C		2.6		18,2		7,15		11,2				×1'				6,3		6.7		9.2		r. C	7 5 6		ω 00		8, 20		4.8		5, 3	-	4.4.0	7.0	
ts of Cl in Weig	Co	0.08	0.05 1		0.07		0.05		0.09 1	L (0, 25		0.08		0,14		0, 18		0.17		0.09		0.18	1.0		0,27		0.05		0.20	0	0.18	(0.75	0.3	
Result		0.45	0.47		0.68		0.91		0,74		0.10		1.08		1,27		1,36		1.59		0.55		1, 6	22	3	0,94		0,11		1,20		I. 4		1.61	1,5	
	Z	0.74	0.76		1, 1		1.48		I. 0	2	U. /4		1,26		1,33		1,16		1.19		0.40		1.8	1 53		1,20		0,11		1,36		7.0	1	1. /0	1,5	
Analytical method		Atomic absorption	X-ray fluorescence	spectrography	Emission spectro-	graphy	Emission spectro-		Emission spectro-	graphy	Atomic absorption		Wet chemical		Atomic absorption		X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Emission spectro-	graphy Fraingion spectro	graphy	Wet chemical		Wet chemical		X-ray fluorescence	spectrography	Emission spectro-		graphy	Spectrography	3
Portion	anarysea		Whole	nodule													X-sect.		Whole	nodule	Half	nodule								X-sect.				zeces		
Publication or source		Lamont (unpublished)	Mero, 1965		Scripps-NODC	(unpublished)	Cronan and	Tooms, 1969	Scripps-NODC	(unpublished)	Lamont	(unpublished)	Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965		Scripps-NODC	(unpublished)	Mero, 1965		Scripps-NODC	(unpublished)	Tooms, 1969	Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965	0	Scripps-NODC	(unpublished)	Anrens et al., 1967	Hewett et al.,	
Description of FeMn		Nodule	Nodule	lx1.5x1.5 cm	Nodule	lxl.5xl.5 cm	Nodule		Nod. frag.	1.5x1.5x2 cm	Nodule		Nodule		Nodule		Nodule		Nodule	1.0 cm diam	Nodule	0.6 cm diam	Nodule	N. 21	DIRECTION	Nodule		Nodule		Nodule	T F	Nodule		Noane	Nodule	
Method of	Suridina	Corer (piston)	Corer	(gravity)			Corer		Corer	(gravity)	Corer	(piston)	Corer	(piston)	Corer	(piston)	Corer		Corer		Corer		Corer	(gravity)		Corer	(piston)	Corer	(piston)	Trawl	(Blake)					
Institution		Lamont RC10-76	Scripps	DWBG-147B			Scripps	Ris 14V	Scripps	DWHH-92	Lamont	V20-31	Lamont	V21-199	Lamont	RC10-93	Scripps	Cb-39	Scripps	Cb-17	Scripps	Cb-19	Scripps	CD-04	DWBG-7	Lamont	RC12-58	Lamont	RC12-59	Harvard	Alb-13					
Depth	777	4,316	4,000				4,330		4,295	(3, 389		4,508		4,610?		4,360	1	4,453	,	4,416		4,440	7 0 17	1 7 / 64	4,823		4,660		4,930						
Location	Long.	110°56'W	01°27'N	116 13'W			05°20'N			118°00'W	08°30'N												N.10.80								13/°4/W					
ln.		2	012				012		012	(013		013		013		013		013		013		013	014	4	014		014		014						
Mrsdn.))	012	0				0		0												_					_										

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

	Mn/Fe	4.3	3.0	c.		4.9		1,7		2.5		0.5		2.1		3,4		4		15		1,5		1.7		2, 2		1,5		10		2.3		2.4	
	Ca			7	• -	1,4																1.7								1.5					
e s	Si					6.3																+.+								5, 2					
Results of Chemical Analyses in Weight Percent	Mn	23.46	16.8	9 00		26.2		17.0		23.63		5.41		22.61		24.89		25.49		22.75		20.2		11.2		20.41		18,38		29.0		20.71		25.2	
Chemi	FI e	5,41	6.7	111 6		5,3		10.1		9.34		10.50		10.94		7.31		5.77		9.43		13.8		6,60		9,51		12,04		5,25		8,96		10,6	
in We	ပိ	0.14	0.26	0.20		0.26		0.28		0.26		0.12		0.41		0.25		0, 12		0.27		0,39		0.17		0,35		0,44		0,16		0, 19		0.27	
Resu	Cu	1.59	0.98	32		1.27		99.0		0.98		0.45		0.78		1.65		1,59		1.09		0.43		0.37		0.98		0.45		1.90		1.22		0.98	
	Z.	1.93	0.94	1 28)	1,52		06.0		1.21		0.41		1,33		1.86		0,53		1,08		0, 60		0.52		1, 11		0,55		1,54		1.07		1.07	
Analytical method		Emission spectrography	Wet chemical	Wet chemical	133	X-ray fluorescence	spectrography	Wet chemical		Emission spectro-	graphy	Wet chemical and	colorimetry	Emission spectro-	graphy	X-ray fluorescence	spectrography	Wet chemical		Emission spectro-	graphy	Emission spectro-		X-ray fluorescence	spectrography	Emission spectro-	graphy	Atomic absorption							
Portion						X-sect,																X-sect.								N-sect.					
Publication or source		Cronan and Tooms, 1969	Lamont	(unpublishea)	(unpublished)	Mero, 1965		Lamont	(unpublished)	Cronan and	Tooms, 1969	Skornyakova	et al., 1968	Cronan and	Tooms, 1969	Mero, 1965		Lamont	(unpublished)	Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	Mero, 1905		Cronan and	Tooms, 1969	Lanont	(unpublished)						
Description of FeMn			Nodule	Nodule		Nodule	1.5x2.5x2.7 cm	Nodule		Nodule		Nodule						Nodule		Nodule		Nodule	2x2.5x2.5 cm	Nodule		Nodule				Nodule	1.5x1.5cm	Nodule		Nodule	
Method of sampling	0	Dredge	Corer	Dredge	(pebble)	Corer	(gravity)	Corer	(piston)	Corer		Corer	(gravity)	Corer		Corer				Corer	(camera)	Corer		Corer	(piston)	Corer		Corer		Corer		Corer	(gravity	Corer	(piston)
Institution		2P-52	Lamont	Lamont	RC11-D21	Scripps	Msn-148G	Lamont	RC12-69	Scripps	Jyn V-15PG	Scripps	Jyn V-13G	Scripps	Wah-4PG	Scripps	Wah-24FF-8	U.S.S.R.	Vit-5124	Scripps	Dodo-20C	Scripps	Msn-J	Lamont	RC12-195	Scripps	Dodo-25PG	Scripps	Proa-151G	Scripps	Msn-K	Scripp	Proa-139G	Lamont	RC13-19
Depth		4,930	980'5	5.086		5,400		5,073		5,073		5, 100		4,839		5, 143				5, 279		4, 994		5, 222		5,240		4,397		2,400		5, 444		5, 169	
Location Lat.	Long.	09°57'N 137°47'W	08°47'N	N. 55 651 N. 74. 80	139°53'W	N190.60	145 18'W	09°13'N	149°49'W	08°02'N	149 54'W	N. 22. 60	150°42'W	N.65.80	152.50'W	08 16'N	153°01'W	N,55.20	153°42'W	N125.60	167°51'W	N.24.20	168°00'W	N.14.60	168 42'W	N,02.60	168°50'W	08°34'N	168 52'W	06°03'N	170 00'W	N,90.80	170°25'W	08°33'N	M165.021
Mrsdn.	4	014	014	014		015		015		015		016		016		016		016		017		017		017		017		017		018		018		018	
Map N		16	17	00)	19		20		2.1		22		23		24		25		7.6		27		28		59		30		3		32		33	

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

Mrsdn. Location Depth Institution	Location Depth		Institutio	E	Method of	Description of FeMn	Publication or source	Portion	Analytical method	Results of Chemical Analyses in Weight Percent	yses	
Long.	Sunding Double	Sundino.	Sampani		5	4				Ni Cu Co Fe Mn	Si Ca	Min/Fe
4,875 Scripps	4,875 Scripps Corer	Scripps Corer	Corer		Nodule	1.	Cronan and		Emission spectro-	0,67 0,43 0,29 13,03 20,94		1.6
018 07*04'N 5,386 Stripps Corer Nodule	5,386 Scripps Corer	Scripps Corer	Corer		Nodule		Cronan and		Emission spectro-	0.47 0.21 0.51 16.67 18.62		1.1
171 '42'W			Proa-137G				Tooms, 1969					
5, 190	5,190 Scripps Corer	Scripps Corer	Corer		Nodule		Cronan and		Emission spectro-	0.69 0.35 0.46 14.78 17.80		7.7
175°28'W LSDH-90PG	LSDH-90PG	LSDH-90PG	0PG		,		Tooms, 1969		graphy			1 2
018 09°46'N 5,760 Lamont Corer Nodule (175°37'W RC12-197 (biston)	5,760 Lamont Corer RC12-197 (piston)	660 Lamont Corer RC12-197 (piston)	(corer (piston)	- C	Nodule		Lamont (unpublished)		wer cnemical	0.00 10.00		
5,435 Scripps	5,435 Scripps Corer	435 Scripps Corer	Corer		Nodule		Cronan and		Emission spectro-	0.54 0.33 0.21 12.81 15.78		1, 2
177°10'W LSDH-89PG		LSDH-89PG	LSDH-89PG				Tooms, 1969		graphy			
5,953 Lamont	5,953 Lamont Corer	3 Lamont Corer	Corer		Nodule		Lamont		Wet chemical	1.06 1.80 0.21 7.40 20.3		2.7
177°59'W RC12-198 (piston)	RC12-198 (piston)	RC12-198 (piston)	(piston)) (r			(unpublished)					-
5,097 Scripps	5,097 Scripps Corer	097 Scripps Corer	Corer		Nodule		Cronan and		Emission spectro-	0.25 0.18 0.38 15.48 15.84		1.0
178°35'W Proa-101PG	Proa-101PG	Proa-101PG) I PG	(gravity)			Tooms, 1969					_
018 00°15'N 5,045 Scripps Corer	5,045 Scripps	Scripps	0,50	Corer			Tronan and		Emission spectro-	0.10 10.00		•
	5 821/ Lamont Dredge	Froa-1050 Lamont Dredge	Froa-1050 Lamont Dredge	0	Nodule		Lamont		Wet chemical	0.40 0.35 0.29 13.9 16.0		1.
178°57'E 5,996 V24-D1	5,996 V24-D1	V24-D1	V24-D1				(unpublished)					
5,097 Lamont	5,097 Lamont Corer	Lamont Corer	Lamont Corer		Crust		Lamont		Wet chemical	1.04 0.60 0.37 10.8 17.2		1. 6
176°25'E V24-102 (piston)	V24-102			(piston)			(unpublished)					(
4,691 Lamont	4,691 Lamont Corer	691 Lamont Corer	Corer		Nodule		Lamont		Wet chemical	0.42 0.52 0.21 15.6 14.6		, ° 0
174 52'E RC12-200	RC12-200 (piston)	RC12-200 (piston)	(piston)) (c	Modulo		(unpublished)		agnesserouf a wer-X	0.04.0.08.0.01.6.3.1.7	12. 1 12.	6 0.3
Acap-10	S, soo scripps corer Acap-10	Acap-10	00161		0.1 cm dia	Ħ	1,000 in 1,000		spectrography			
3,275	3, 275 Scripps Corer	275 Scripps Corer	Corer		Nodule		Mero, 1965	Whole	X-ray fluorescence	0.04 0.08 0.03 15.5 3.4	13.3 3.	0 0.2
Acap-11	Acap-11	Acap-11			1 cm diam			nodule	spectrography		ſ	(
4,085 Swed. Deep Sea Corer	4,085 Swed. Deep Sea Corer	085 Swed, Deep Sea Corer	ep Sea Corer		Nodule		Mero, 1965		N-ray fluorescence	1.01 0.66 0.21 11.5 23.2	4. 2 1.	0.2
113°48'W SDSE-48	SDSE-48	SDSE-48	4		l cm diam			h.	spectrography	0 71 0 23 10	6 1 1	4 2 2
3,480 Corer	3,480 Corer	480 Corer	Corer		Nodule		Mero, 1965	N-sect.	A-ray fluorescence	0.23 10.5 22.	~	j
114°12'W Trans-14D	Trans-14D	Trans-14D			3x3x1 cm		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	spectrography	0 03 0 61 0 22 12 0 21 2	5.9	5 1.8
5, 438	5, 438	438	Corer		Nodule		Mero, 1700	·v-sect.	y-ray monescence	0.01 0.02 10.0	*	•
114-44'W Trans-14C	Trans-14C	Trans-14C	14C		lx3x2 cn	d	,		spectrography			7 6
4,125 Scripps	4,125 Scripps Corer	Scripps Corer	Corer		Nodule		Cronan and		Emission spectro-	1.89 1.06 0.08 10.30 26.84	-14	7.0
117°12'W Ris-8V (heatprobe)	Ris-8V (heatprobe)	Ris-8V (heatprobe)	(heatprobe)	robe)			Tooms, 1969		graphy			,
4, 226 Lamont	4, 226 Lamont Corer	Lamont Corer	Corer		Nodule		Lamont (man-h1:chod)		Wet chemical	1.30 0.76 0.36 9.30 22.1		;
119°53'W RCI2-4/ (piston)	RC12-4/			(piston)			(nubnorisuea)					

TABLE 2, CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

	Mn/Fe	6.2	2.2	2.4	,	3.0	3,3	4.0		1.9	(5.9	1.9		3, 5		11.6		2. 6		7.6	3.0		5,4		2.5		57.0	ر.	
	Ca	1, 3	1.3	1, 3	-	J. 7	1.4			1.4		1.5	1.8		1. 2		6.0				1.4			1,8				0.7	7	
7868	S.		7.9	6.8		0 °)	7.4			5.9		4.	8, 1		9.7		11.2					7 3		7.5					7 0	
Results of Chemical Analyses in Weight Percent	Mn	31.5	21.4	22.4		4.77	23.8	23.19		22.2	0	0.47	18.9		22.2		27.8		22.0		29.6	22.7		31.6		24.26		28.5	22.9	3
of Chemical And Weight Percent	Fe e	5.08	9.6	9.5		0.)	7.3	5.95		2.6		α, ο	10.0		6.3		2,4		8, 60		3.9	7.6		5.9		9.58		0.50	0 2	;
ts of C in Wei		0.16	0.36	0.40		0, 39	0,27	0.23		0.38	C	0.54	0.36		0.32		0.10		0,30		0,22	0.26		0.17		0.22		0.24	0 45	
Resul	Cu	1.4	0.76	0.87	٢	L . Z 5	1.05	1,24		0.82	C	0.95	1,06		1,06		1.0		0.72		1,10	1, 2,1		1.		0.74		1.32	0 78	
	ź	1. 68	1.09	1.16	-	1.15	1.22	1,91		1.00	(1.23	1.06		1.06		6.0		1.16		1, 28	1, 25		1.7		1.09		1,34	1 05	•
Analytical method		Atomic absorption	X-ray fluorescence	X-ray fluorescence	spectrography	X-ray lluorescence spectrography	X-ray fluorescence	Emission spectro-	graphy	X-ray fluorescence	spectrography	A-ray imorescence	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Emission spectro-	graphy	Wet chemical		Wet chemical	X-ray fluorescence	spectrography	Emission spectro-	graphy	Emission spectro-	graphy	Wet chemical	X-ray fluorescence	spectrography
Portion			Whole	Whole	nodule	X-sect.				X-sect.					Whole	nodule						Half	nodule						Outer 1 cm	
Publication or source		Lamont (unpublished)	Mero, 1965	Mero, 1965	1	Mero, 1965	Mero, 1965	Cronan and	Tooms, 1969	Mero, 1965		Scripps-NODC	Scripps-NODC	(unpublished)	Mero, 1965		Scripps-NODC	(unpublished)	Lamont	(unpublished)	Lamont	Mero, 1965		Scripps-NODC	(unpublished)	Cronan and	Tooms, 1969	Lamont (mmmhliched)	Mero, 1965	
Description of FeMn		Crust	Nodule	Nodule	0.1 cm diam		Nodule	Nodule		Nodule	l cm diam		Nodule	0.5 cm diam					Nodule		Nodule	Nodule	4x3x1 cm	Nodule	2.4 cm diam			Nodule	Nodule	
Method of	0	Corer (piston)	Dredge	Corer	(gravity)	Corer	Corer	(gravity)		Corer			Corer		Corer	(gravity)			Corer	(piston)	Dredge	Dredge)			Corer		Corer	Corer	
Institution		Lamont RC10-91	IINK-RR	Scripps	Cb-1	Scripps Cap-50B	Scripps	Scripps	Amp-3PG	Scripps	Cb-3		Scripps	Cb-9	Scripps	Cb-5			Lamont	RC12-50	Lamont	Scripps	DWBD-2			Scripps	Jyn V-50PG	Lamont V20-36	Scripps	MP-5
Depth		4,471	4, 138	4, 138		4,270	4,354	4,500		4,380			4,545		4,440				4,369		4,636	4,890				5, 210		4,843	4,816	
Location	Long.	12 16'N 120°10'W	19°49'N W'44°151	N,00.61	121°53'W	14 55'N 124°12'W	16°03¹N	15°04'N	125 05'W	N,00.51	125°26'W		N-61-01	125°27'W	13.03'N	125 · 29 · W			16,35'N	125°35'W	10°37'N	10 26'N	130°38'W			18°16'N	131°46'W	11°24'N 132°07'W	14°22'N	133°07'W
Mrsdn.	· ·	049	6+0	049		049	049	046		049			049		049				049		049	050				0 5 0		020	050	
Map N		52	53	54		ស	99	57		50			59		09				61		29	63				+(-)	1	69	99	

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

		Ca Mn/re	O . ⊣	0.8 1.1		1.4 5.0		1.5 2.8		1.4 5.1		0.8 1.5		1,3 2,5		1.2 2.7		2.2 1.3		1.8		1.5 4.7		1.5 4.3		1, 4		1.8 1.7		4.1		1,5 1,1	5 1.	C)	ري پ پ
alvses		2 21	J	13.7		6.3						_				6.6		0		5		. 0										13,2	<u>1</u> 3	13.	I 3.
Results of Chemical Analyses	in Weight Percent	E7 20 E2	0	9 10.0		1 25.0		4 20.8		0 30.5		0 13,6		5 21.0		4 17,0		4 20.6		61 19,45		4 25.6		6 24.0		60 13,4		5 16,4		25 17.5		15 18,4	15	15 18. 98 15.	15
s of Che	n Weigh	Co re	→	0.20 8.		0.33 5.		0.30 7.		0.32 6.		0.16 9.		0, 18 8,		0.31 6.		0.27 16.		0.18 10.		0.27 5.		0.27 5.		0.26 9.		0.32 9.		0.18 4.		0.5 16.	ıΩ.	5 2 6	2 2
Result		2 5	0.00 0.20	0.46 0.40 (1.50 1.31 (1,36 0,68 (1, 62 1, 10 (0.64 0.36 (1,10 0,70 (1,23 0,96 (0.38 0.20 (0.52 0.37 (1.28 1.36 (1.18 1.08 (0.52 0.39 (1,12 0,40		0.69 0.75		1. L. C. L.	ក	72 0.46	72 0.46
Analytical	method		Emission spectro- graphy	X-ray fluorescence	spectrography	N-ray fluorescence	spectrography	Wet chemical		Wet chemical		Wet chemical		Wet chemical		X-ray fluorescence	spectrography	Wet chemical		Emission spectro-	graphy	Wet chemical		Wet chemical	Wet chemical	Wet chemical Emission spectro-	Wet chemical Emission spectro- graphy								
Portion	analyzed			Whole	nodule	Whole	nodule									Whole	nodule															Whole	Whole	Whole	Whole
Publication	or source	(Cronan and Tooms, 1969	Mero, 1965		Mero, 1965		Lamont	(unpublished)	Lamont	(unpublished)	Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965		Lamont	(unpublished)	Cronan and	Tooms, 1969	Lamont	(unpublished)	Murray and	Murray and Renard, 1891	Murray and Renard, 1891 Cronan and	Murray and Renard, 1891 Cronan and Tooms, 1969								
Description	of FeMn	r r	Nodule	Nodule	l cm diam	Nodule	lxl.2xl cm	Nodule		Nodule		Nodule		Nodule		Nodule		Nodule		Nodule		Nodule		Nodule		Nodule		Nodule		Module		Nodule	Nodule	Nodule	Nodule Nodule
Method of	sampling	ę	Corer	Snapper		Corer		Trawl	(biology)	Dredge	(pebble)	Dredge	(bepple)	Dredge	(pepple)	Corer	(gravity)	Corer	(piston)	Corer		Trawl	(biology)	Corer		Dredge	(rock)	Trawl	(biology)	Trawl	(biology)	Trawl	Trawl	Trawl	Trawl
Institution	Number		Scripps Jyn V-48PG	Scripps	Car-78	Scripps	Msn-153PG	Lamont	V21-D13	Lamont	RC11-D20	Lamont	RC11-D18	Lamont	RC11-D19	Scripps	Msn-150G	Lamont	V20-44	Scripps	Jyn V-31PG	Lamont	V21-D11	Lamont	V20-48	Lamont	V20-D4	Lamont	V21-D10	Lamont	V21-D9	Challenger	Challenger Chal-264	Challenger Chal-264 Scripps	Challenger Chal-264 Scripps Wah-2PG
Donth	E E		4,606	4,553		4,927		4,770		4,877		5,574		4,828		4,978		4,526		5, 539		5, 550		4,640		4,618		5,603		5, 218		5,480	5,480	5, 480	5, 480
Tocation		Long.	15°54'N 133°57'W	16 15'X	137°06'W	13 07'8	138 56'W	10°45'N	139 24'W	N. 10 11	139°58'W	N162.61	140°02'W	14°52'N	140°02'W	10°59'N	142°37'W	15 '03'N	142°46'W	11°55'N	144°54'W	12°19'N	145°08'W	14°26'N	145 · 21 · W	14°25'N	145°52'W	13°10'N	147°45'W	13°44'N	150°00'W	14°19'N	14°19¹N 152°37¹W	14°19'N 152°37'W 11°51'N	14°19¹N 152°37¹W 11°51¹N 152°56¹W
Mredo	Sq.		050	050		050		050		020		051		051		051		051		051		051		051		051		051		052		052	052	052	052
Mon	no.		29	z.		63		7.0		-]		7.5		73		74		(r		92		22		7.8		4		80		81		82	82	8 82	8 8 2

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

	Mn/Fe	1.6	ν. τυ	1.9	2.0	-	•	0.9		6.0	1,5		1.0		1.0		1.4			,	- 1	1.0		1.7				1. (1.
	Са		1.5	1.6						2.0							2.1		1.5					2.2					
Ses	Si		5.6	80						6,0							3, 3		~					2.7					
Results of Chemical Analyses in Weight Percent	Mn	19.6	23.3	18,5	21.2	19 23	•	14, 18		16.0	16.8		16,70		13,38		20.5		×10.		10.01	12.28		22.7				16.9	19,6
of Chemical Ana Weight Percent	FJ e	12,4	9.2	10.0	10.2	17 08	-	16,38		17,2	11,0		16.95		12.72		14.5		×10.		14, 04	11.68		13,3			7	I 0. 8	13.6
alts of in We	U	0.27	0,31	0.31	0.26	0 44		0.88		0,73	0.29		0,84		1.28		0.95		1.5	(0.03	1,17		0.95		0.46		× .	0.31
Rest	ű	4 0.45	8 0.81	86 0.65	84 0.58	0 0	•	66 0.32		5 0.04	64 0.45		34 0.16		4 0.07		2 0.10		0.15	0	,	7 0.06		60 0,15		31 0.19		76	9 0.46
	Z	0.74	0.98	8.0	0.8	04 0	•	0.6		0.2	0, 6		0.3		0.44		0.4		0.7	C		0.47		0.6		0.3	(0.0	0.59
		absorption	X-ray fluorescence spectrography	X-ray fluorescence spectrography	, c.	24000	3	spectro-		X-ray fluorescence	rption	-	spectro-		spectro-		X-ray fluorescence	υy	spectro-		-ourseds	spectro-		X-ray fluorescence	γr				
rtical			X-ray fluoresc spectrography	X-ray fluoreso	Wet chemical			no	1 y	X-ray fluoresc	Specifical aprily Atomic absorption			Ly.		Ly.	/ fluore	spectrography			no	on		y fluore	spectrography	Colorimetry		Colorimetry	Wet chemical
Analytical method		Atomic	X-ray spect	X-ray	Wet c	Twiceion	graphy	Emission	graphy	X-ray	Atom		Emission	graphy	Emission	graphy	X-ray	spect	Emission	graphy	graphy	Emission	graphy	X-ray	spect	Color	-	Color	Weto
on			9 e	ه ه						ct,							ct.							ct.					
Portion			Whole	Whole						X-sect							X-sect.							X-sect,					
ation		Lamont (unpublished)	1965	1965	t	(unpublished)	, 1969	and	, 1969	1965		(unpublished)	and	, 1969	and	, 1969	1965		et al.,	-	1969	and	, 1969	1965		rg,	L	1955	Lamont (unpublished)
Publication or source		Lamont (unpubli	Mero, 1965	Mero, 1965	Lamont	(unpublishe	Tooms, 1969	Cronan and	Tooms, 1969	Mero, 1965	Lamont	qndun)	Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	Mero, 1965		Hewett et al	1963	Tooms, 1969	Cronan and	Tooms, 1969	Mero, 1965		Goldberg,	1954	Dietz, 1955	Lamont (unpubli
ption																		m							m				
Description of FeMn		Nodule	Nodule	Nodule	Nodule	Nodulo		Nodule		Nodule	Nodule		Nodule		Nodule		Nodule	3x2x2 cm		1,1	ivodule	Nodule		Nodule	3x3x3 cm	Nodule	1 1	Nodule	Nodule
d of		n)				(u	ity)		(heat probe)			(u			e se	bag)	e c	bag)			(tv)	ie i	bag)						n)
Method of sampling		Corer (piston)	Corer	Corer	Corer	(piston)	(gravity)	Corer	(heat	Corer	Corer	(piston)	Corer		Dredge	(chain ba	Dredge	(chain bag)			(gravity	Dredge	(chain bag)						Corer (piston)
tion		1t 58	O , h	s A	ıt	62	148G	co.	147V	w °	, ,,,	193	co.	169G	w	5F1	Ω.	5F2			156G	S	5A-3						nt 18
Institution		Lamont RC13-58	Scripps Msn-G	Scripps Tet-27A	Lamont	RC12-79	Proa-148G	Scripps	Proa-147V	Scripps Tet-22	Lamont	RC12-19	Scripps	Proa-169G	Scripps	MP-25F	Scripps	MP-25F2			Proa-156G	Scripps	MP-26A-						Lamont RC13-18
Depth m		5, 343	5, 652	5,413	5,460	α α α		4,341		2,400	5, 295		5,440		1,740		1,741/	1,786		7	4,404	1,320/	1,410						5, 546
									3 ' W					M, 0															
Location Lat.	Long.	10°22'N	14°11'N 161°08'W	13°05'N	13°50'N	163°32'W	164°56'W	10°30'N	165°33'W	16°06'N	16°05'N	165°52'W	15°36'N	166.40'W	19°07'N	169°44'W	N. 20. 61	169°44'W		7410000	N 22 01	19°25'N	171°00'W						12°59'N 171°05'W
Mrsdn. Sq.		052	053	053	053	, r		053		053	053		053		053		053			ri Z	400	054							054
Map no.		85	98	87	80	Od		06		91	92		93		94		9 5			ò	30	26							86

TABLE 2, CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

		Mn/Fe	1,5		1.2		0.8		6.0		0.8		1.0				1, 1		1.2		1, 1		1.2		1,6		1.6	1, 1		1.7		1.5	1.4
		Ca							1.5				6.8		7.								8 2							1.6			
0	2	Si							7.1				4.9		3°								4.1							1.7			
1 Ansl	rcent	Mn	20,63		17, 12		13.02		13,1		11,13		14.4		>10.		17.3		15.85		14.97		13.0		21.7		21.03	16.8		19.5		23.6	19.40
i wie	tht Per	Fl.	13.72		14,80		16,03		14.6		14.49		14.05		,10.		15.2		12.88		13.27		10.7		13.4		13.19	15.8		11.5		15.6	13,53
Results of Chemical Analyses	in Weight Percent	°C	0.43 1		0.43 1		0.90		0.42		0.88 1		0.70		1.5		0.16		0.72		0.88]		0.45		0.54		0.54	0.16		1.05		0.61	1.60 1
H Destilt	200	Cu	0.24		0.27		0.05		0.17		0.08		0.07		0.15		0.28		0.43		0.09		0.19		0.48			0.35		0.11		0.47	0.04
		Z.	0.40		0.49		0.31		0.30		0.23		0.29		0.3		0.20		0.53		0.34		0.47		0.58		0.58	0.28		0.42		0.61	0,52
			ro-		10-		ro-		ence		10-		ence		10-				T0-		10-		ence							10-			ro-
	1		n spectro-		a spectro-		n spectro-		loresc	raphy	a spect		loresc	raphy	n spect		nıcal		a spect		n spect		loresc	raphy	etry		nical	nical		n speci		etry	ı spect
Analytical	method		Emission	graphy	Emission	graphy	Emission	graphy	X-ray fluorescence	spectrography	Emission spectro-	graphy	X-ray fluorescence	spectrography	Emission spectro-	graphy	Wet chemical		Emission spectro-	graphy	Emission spectro-	graphy	X-ray fluorescence	spectrography	Colorimetry		Wet chemical	Wet chemical		Emission spectro-	graphy	Colorimetry	Emission spectro-
Α,			回	F	區	gr	區	200	×	S	回	g	×	ds	豆	90	A		回	g	回	gr	×	S	ŭ		A	W		园	g	ŭ	<u>ы</u> .
Dortion	analyzed																						X-sect.										
				6		6		6				6			al.,			d)		6		6							d)				0
Dublication	or source		Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	Mero, 1965		Cronan and	Tooms, 1969	Mero, 1965		Hewett et a		ont	(unpublished)	Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	Mero, 1965		Goldberg,		Dietz, 1955	ont	(unpublished)	Mero, 1965		Goldberg, 1954	Cronan and Tooms, 1969
D. H.	Or so		Cron	Toon	Cron	Toon	Cron	Toon	Merc		Cron	Toon	Merc		Hewe	1963	Lamont	ndun)	Cron	Toon	Cron	Toon	Merc		Gold	1954	Dietz	Lamont	ndun)	Merc		Goldl 1954	Cron
Description	Ar Trans				Ð												υ υ		е		9							e					
Dear	of FeMn				Nodule				Crust				Crust	l cm			Nodule		Nodule		Nodule		Crust	2 cm				Nodule		Crust	2 cm		
od of	ling)	t.		Tu .	ity)	ī.		Ł		ge						t.	(u)	t.	ity)	ge		9					L	n)	0		9	
Method of	sampling	1	Corer		Corer	(gravity	Corer		Corer		Dredge						Corer	(piston)	Corer	(gravity)	Dredge		Dredge					Corer	(piston)	Dredge		Dredge	
tion	I I		S	157G	S	159G	S	161G	w	0)	co.	X					14	_	ω	162G	S	C	Ω.	'A				14	00	so !	<u> </u>	s A	
Institution	Number		Scripps	Proa-157G	Scripps	Proa-159G	Scripps	Proa-161G	Scripps	MP-32	Scripps	MP-33K					Lamont	V24-77	Scripps	Proa-162G	Scripps	MP-37C	Scripps	MP-37A				Lamont	V24-100	Scripps	MP-43D	Scripps MP-43A	
Denth	in di		5,106		380		2, 708		056		1,810/	290					5,280		464		2,016		2,010	1,830				5, 330		1,500/	2, 100	1,480/ 1,880	
					, s			×	°° 2.									W	5,	W													
Location	Lat.	Long.	10°20'N	172°06'W	11°23'N	172°47'W	12°16'N	172°48'W	18°20'N	173°17'W	17°48'N	174°22'W					12°01'N	175°37'W	12 31'N	75°51"	N,01.21	177°10'W	17°04'N	177°15'W				16°08¹N	179°44'E	11°57'N	164°59'E	12°09'N 164°44'E	
Mradu		4	54		054		054	1	054		054	T					054	-	054	1	054		054	p(055	_	056	_	056	
M neM			0 66						102 0																								
>	T. I		6		100		101		10		103						104		105		106		107					108		109		111	

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

		Mn/Fe	1.2		1.0		1.0		18. 2		5,3		3, 7		5.9		17.0		20.1		27. 3		19.6		3.1		4.8		3,3		3.2		2.5		3,5
		Ca	1.8		2.0				6.0						1, 3						1.8														
ses		Si	6.2						13,4						7.9						5,4						1,2								
Results of Chemical Analyses	cent	Mn	17.2		18.0		14.8		24.8		30,3		31.0		28,8		33,92		33,90		32.8		34, 12		28.9		38, 9		24.4		28.9		27.6		28.2
hemica	in Weight Percent	Fе	14.4		19, 2		15.0		1,36		5.7		8,3		4.85		1.99		1,69		1.2		1.18		9.4		98.0		7.5		0.6		10.9		8.1
ts of C	in Wei	°	0.53		0,37		0,34		0.02		0.01		0.04		0.26		0.01		0.01		00.00		0.01		0.07		0.01		0,05		0.08		0, 11		0.05
Resul		Cu			0.24		0.32		0.05		0.31		0.47		0,42		0.09		90.0				0.05		09 .0		0.01		0,62		0,72		0,62		0.77
		Z	0.33	,	0.46		0.50		0, 12		0.54		1, 10		0.63		0, 11		0.11		0.18		0.07		1,24		0.04		1,24		1.35		1,23		1.46
Analytical	method		Wet chemical and	colorimetry	Wet chemical		Atomic absorption		X-ray fluorescence	spectrography	Emission spectro-	graphy	Emission spectro-	graphy	Wet chemical and	colorimetry	Emission spectro-	graphy	X-ray fluorescence	spectrography	X-ray fluorescence spectrography														
Portion	analyzed								X-sect,		Whole	nodule	Half	nodule	X-sect.						Outer 1 cm				X-sect.		X-sect.		Whole	nodule	Half	nodule	Whole	nodule	X-sect.
Publication	or source		Skornyakova	et al., 1962	Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965		Mero, 1965		Mero, 1965		Mero, 1965		Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	Skornyakova	et al., 1962	Cronan and	Tooms, 1969	Mero, 1965		Mero, 1965								
Description	of FeMn		Nodule	4 cm diam	Nodule		Nodule		Nodule	5x2x1 cm	Nodule		Nodule		Nodule	5x3x3 cm					Nodule				Nodule		Nodule	8x6x5 cm	Nodule		Nodule		Nodule		Nodule
Method of	sampling		Spoon		Corer	(piston)	Corer	(piston)	Trawl		Dredge		Dredge		Dredge		Dredge		Dredge		Trawl	(camera)	Dredge		Dredge		Dredge		Dredge		Dredge		Dredge		Dredge
Institution	Number		U.S.S.R.	Vit-3631	Lamont	RC10-153	Lamont	RC12-129	Scripps	VS-B11-35	Scripps	DH-10	Scripps	DH-9		UNK-MS	Scripps	MV 65-1-38	Scripps	Mag Bay-A35	U.S.S.R.	Vit-4265	Scripps	MV 65-1-41	Scripps	DH-8	Scripps	VS-78	Scripps	DH-7	Scripps	9-HQ	Scripps	DH-5	Scripps DH-4
Depth	THE STATE OF		5,643		5,460		5,218		3,000		3, 385		3,450		3,604		1,950		3,550		3,315/	3,340	3,510		3,420		384/	493	3,660		3,660		3,800		3, 800
Location	Lat.	Long.	N,55.61	155°59'E	Z-8+°+1	154°03'E	18°05'N	152°571臣	22°18'N	107°48'W	21°53'N	112°47'W	21°48'N	113°03'W	22°30'N	113°08'W	24 24'N	113°16'W	24°23'N	113°18'W	24°58'N	113°25'W	24°34'N	113°28'W	21°40'N	113 30'W	N, E0. 62	113°33'W	21°33'N	113°48'W	21°21'N	M,90. 111	21°27'N	114°07'W	21°31'N 114°08'W
Mrsdn.	Sq.		057		057		250		083		084		084		084		084		084		084		084		084		084		084		084		084		084
Map N	no.		112		113		114		116		117		118		119		120		121		122		123		124		125		126		127		128		129

CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC TABLE 2.

			Mn/Fe	3.0	2.0		2,3		2.7		1,4		2,3		1,5		1, 1		1,5		2.0		1, 1		1, 2		1.2		1,3		0.0		1,4		0°0		1.0	
			Ca				1.0				2.1				2, 1				1,3		1,3		0.5		1, 1		0.7				1.0]. 0		9.0		0.7	
	ses		Si				6.2				1.1				1.2				10.1		5.7		7.9		8.7		16.8				18.8		7.0		21.5		14.7	
	Results of Chemical Analyses	cent	Mn	28.8	25.1		21.2		27.8		21,1		24, 13		20.5		21.3		16.7		18,5		25.9		14,3		° °		16.92		7.6		24.6		7.0		10.4	
	hemica	in Weight Percent	FJ FJ	6°6	3.0		9.3		10.4		15.6		10.46		13,5		20.1		11.2		9.5		13.3		13.6		7.0		12.91		1.5		18.2		7.9	,	10.6	
	s of Cl	in Wei	Co	0.09	0.11 1		0.27		0.08		0,73 1		0.26		0.62		0.32 2		0.15 1		0.24		0.33]		0.37		0, 15		0,34		0,30		0, 50		0.07		0, 19	
	Result		Cu	0.64 (0.50		0.70		0,61		0.04 (0,68		0.04		0,22		0.45		0,49		0.69		0,34		0.25		0, 20		0.19		0.36		0, 28		0.44	
				1.19	1.02		1.25		1.02		0.22		1,26		0,36		0.30		0.74		1,21		1,7		0,51		0.41		0,35		0, 13		0,46		0,39		0. 67	
	Analytical	method		X-ray fluorescence	X-ray fluorescence	spectrography	Emission spectro-	graphy	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Emission spectro-	graphy	X-ray fluorescence	spectrography	Colorimetry		Wet chemical and	colorimetry	X-ray fluorescence	spectrography	Emission spectro-	graphy	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Emission spectro-	graphy	X-ray fluorescence		Emission spectro-		Emission spectro-	graphy	X-ray fluorescence	spectrography
	Portion	analyzed		X-sect.	Whole	nodule	Whole	nodule	X-sect.										X-sect.		Whole	nodule			Whole	nodule	Half	nodule			X-sect.						Whole	nodule
	Publication	or source		Mero, 1965	Mero, 1965		Mero, 1965		Mero, 1965		Scripps-NODC	(unpublished)	Cronan and	Tooms, 1969	Scripps-NODC	(unpublished)	Goldberg,	1954	Skornyakova	et al., 1962	Mero, 1965		Scripps-NODC	(unpublished)	Mero, 1965		Mero, 1965		Cronan and	Tooms, 1969	Mero, 1965		Scripps-NODC	(unpublished)	Scripps-NODC	(unpublished)	Mero, 1965	
	Description	of FeMn		Nodule	Nodule	l cm diam	Nodule	0.5x2x2cm	Nodule		Crust		Nodule		Crust				Nodule	4x2x2 cm	Nodule	lx2x2 cm	Nodule	0.8x2x2 cm	Nodule	0.3 cm diam	Nodule	2x1,5x1,5 cm			Nodule	4x4x4 cm	Nodule	3.5 cm diam	Nodule	3.5 cm diam	Nodule	
,	Method of	sampling		Dredge	Dredge		Corer		Dredge		Dredge		Corer	(heatprobe)	Dredge		Dredge		Trawl		Corer				Corer				Dredge								Trawl	
	Institution	Number		Scripps DH-3	Scripps	DH-2	Scripps	PAS-19121	Scripps	DH-1	Scripps	SOB-13D	Scripps	Ris-5V		Hend-1	U.S. Navy	NEL-Hend	U.S.S.R.	Vit-4217	Scripps	DWHH-4				Wig-6	U.S.S.R.	Vit-4221	Scripps	DWBD-1							Harvard	Alb-2
,	Depth	H		3, 800	3,430		4,030		3,480		540/	820	4,010		440				4,078/	4,017	4,330				4,000		4,325		4,300								4,340	
	ĭ	Lat.	Long.	21°40'N 114°11'W	21°50'N	115°12'W	Z1 .20'N	116°10'W	N100.22	116°14'W	29°31'N	117°17'W	20°19'N	117°29'W	23°30'N	119°35'W	25°15'N	119°40'W	29°57'N	120°42'W	24°22'N	125°00'W			Z8°59'N	125°40'W	Z9°58'N	125°55'W	21°27'N	126°43¹W						6	Z8°Z3'N	M. / C_071
	Mrsdn.	Sq.		084	084		084		084		084		084		084		084		085		085				085		085		082							l G	082	
	Map	no.		1 30	131		132		133		134		135		136		137		138		139				140		141		142								143	

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

	Mn/Fe	~; ~	2.5		1.1	0.7		2.0	(0. (1.3		1.2	и -	• •	2.4		1.5	0	0.9	1.9		7.1	1	1.5		† -	0.1
	Ca	1.4	1.5		1.4	1,4		1.0		0.7	~					(1.3		0.6			1.3		1.5				I. O	
yses	Si	7.9	7.3		6, 5						~					10				13,8										
l Anal	rcent Mn	21.2	21.8		15.9	12,5		21.0	1	0.7	,10.		10.67		10.81	0		12,49		10.9	0 7		18.8		28.0		15, 2		10°4	0.40
hemica	in Weight Percent Co Fe Mn	9.5	8.7		14.1	17.4		10.5		4.7	×10.		8.19		9.31	7		5.17		7.2	7 7		10.0		3.9		10, 1		11.0	3,00
Results of Chemical Analyses	In Wei	0,36	0,33		0,52	0.09		0.23		0.14	0.3		0.22		0.16	7	۴ د د د	0.10		0.20	000		0.32		0.22		0, 28	(0,32	0.01
Resul	Cu	0.76	0.91		0.20	0.14		0.54	1	0.45	0.3		0.56		0.53	C C	ት •	0.43		0.43	0		0.49		1,10		0.30	1	0.27	0.05
	ž:	1.10	1.10		0,35	0.26		1.00		0.44	0.7		0.84		0.87	0	r	0.46		0.49	0		0.52		1.36		96.0	(70.0	0.01
Analytical	method	X-ray fluorescence	X-ray fluorescence	spectrography	X-ray fluorescence	Wet chemical		Wet chemical	;	X-ray fluorescence	Emission spectro-	graphy	Emission spectro-	graphy	Emission spectro-	graphy	spectrography	Wet chemical and	colorimetry	X-ray fluorescence	spectrography	wer chemical	Wet chemical		Wet chemical	,	Wet chemical	P N N P	Wet chemical	Wet chemical
Portion	analyzed	Outer 2cm	X-sect.		X-sect,				;	X-sect.																				
Publication	or source	Mero, 1965	Mero, 1965		Mero, 1965	Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965	Hewett	et al., 1963	Cronan and	Tooms, 1969	Cronan and	Tooms, 1969	14101011	Skornyakova	et al., 1964	Mero, 1965	T	(unpublished)	Lamont	(unpublished)	Lamont	(unpublished)	Lamont	(unpublished)	(unpublished)	Lamont
Description	of FeMn	Nodule	Nodule			Nodule		Nodule		0 582			Nodule		Nodule					Nodule	Nodule		Nodule		Nodule		Nodule		ivodule	Crust
Method of	sampling	Corer	Dredge		Dredge	Dredge	(pebble)	Dredge	(pebble)	Corer			Corer	(gravity)	Corer	(gravity)	(camera)			Dredge	3030		Trawl	(biology)	Trawl	(biology)	Corer	(piston)	(biology)	Trawl
Institution	Number	Scripps	U.S.S.R.	Vit-4289	Scripps Naga-8C	Lamont	RC11-D15	Lamont	RC11-D17	Negallo	3 0 0 3		Scripps	Hilo-4G	Scripps	H110-50	Vit-4239			Scripps	Tamont	RC12-188	Lamont	V21-D6	Lamont	V21-D5	Lamont	RC12-18/	V21-D4	Lamont
Depth	Ħ	4,702	4,895		4,890	4,890		5, 378	1	5,540			4,750		4,850	7 190				5,220	2 068	ຶ້	5,720		5,830		5,360		5,080	4,856
Location	Lat. Long.	20°51'N	N,00.02		23°17'N 138°15'W	N'01°62	139°55'W	21°30'N	140°00'W	23°17'N 141°12'W) 4		22°57'N		22°57'N	24°50'W	144°05'W			23°54'N	24°16'N		27°15'N	157 '00' W	29°15'N	157°02'W	28°20°N ~	W 02 841	159°11'W	23°01'N
																					0		~		00		00		0	00
Mrsdn.	Šď.	085	086		980	086		087	0	087			087		087	087))			087	000		088		088		00	C	2000	088

CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC TABLE 2.

	Mr. / T.	1 6 J		1.5	1.6	u -		₩. •		1.7	1.6		1,5		1.1	, ,	;	2.0		1.1	0.9		6.0	6.0		0.7	1.2		1, 2	9.0
	C	3		5.3				1.6		ω.	1.7		∪] 4.		1.6	- 1		8		1.6	.5					1.5	0.9			1.0
ses	Ü	1		9.9						0.9			9.5					6. 1		7.2	∞ 1					11.8	12.5			15.6
l Analyses	cent Mn	16.0		26.8	20.16	20 20	0	19.15		20.22	20.69		17.2		16.08	17 10) - -	22.55		16.1	12. 2		14.5	14,23		10.7	13.4		14.40	7.8
Results of Chemical	Weight Percent	, 0		17.7	12.38	13 87	•	13.40		11.91	13.24		11.2		14.59	- t	•	1.3		14.6	14.0		17.0	15.15			11.4		11.85	12.3
ts of C	in Wei			0.46	0.45	92 0)			0.46	0, 39		0.32		0,36	25.0	1	0.47		0.36	0.14		0, 19	0.56		0.40	0.08		0.59	0.23
Resul	Ü	0.32			0.53	0 52				0.38					0.29						0.27		0.50	0.03		0.04	90.0		0.04	0.08
	7	0.54		0.27	0.76	00	•	0.38		0.53	1.09		0.54		0.41	0		0.49		0.41	0.41		0.27	0.20		0.18	0.34		0.59	0.24
Analytical	method	Atomic absorption	T T	Wet chemical and	Wet chemical and	Colorimetry Emission spectro-	graphy			Wet chemical and	Wet chemical and	colorimetry	Wet chemical and		Wet chemical and	colorimetry Wet chemical and		Wet chemical and		Wet chemical and	colorimetry Emission spectro-	graphy	Colorimetry	Emission spectro-	graphy	N-ray fluorescence	Specifications N-ray fluorescence	spectrography	Emission spectro-	graphy N-ray fluorescence
Portion	analyzed			Outer layer						Outer layer			Core							Outer layer	Whole	nodule				N-sect.	X-sect.			
Publication	or source	Lamont	(unpublished)	Skornyakova et al., 1962	Skornyakova	Cronan and	Tooms, 1969	Nikolayev and	Yefimova, 1963	Skornyakova	Skornyakova	et al., 1964	Skornyakova	et al., 1962	Skornyakova	et al., 1964 Skornvakova	et al., 1964	Skornyakova	et al., 1962	Skornyakova	et al., 1962 Mero, 1965		Goldberg, 1954	Cronan and	Tooms, 1969	Mero, 1965	Mero, 1965		Cronan and	Scripps-NODC
Description	ot FeMn	Nodule		Nodule	Nodule	Nodule		Crust		Nodule			Nodule		Nodule	Nodule		Nodule		Crust	Nodule		Nodule	Crust		Crust	Crust		Crust	
Method of	sampling	Corer	(piston)	Spoon	Scoop	Corer	(gravity)			Spoon			Spoon					Spoon		Trawl				Dredge			Trawl		Dredge	
Institution	Number	Lamont	RC13-15	U.S.S.R. Vit-4331	U.S.S.R.	Seripps	Jyn IV-11G	U.S.S.R.	Vit-3782	U.S.S.R.	1104-111		U.S.S.R.	Vit-4359				U.S.S.R.	Vit4362	U.S.S.R.	V1t-43/0			Scripps	SOB-10D		Scripps	SOB-5D	Scripps	G17-808
Depth	E	7,947		3,477	5,318	5.750				5, 817			5,542					3,951		6, 120			5, 286	1,300			2, 100/	2,120	1,060	
Location	Lat.	27 36'N	161°54'W	20°03'N 171°38'W	24°00'N	N.24, 22	175°10'E	23°55'N	173 40'E	23°57'N	1 00 01		24°01'N	163,02,正				24°04'N	160°46¹E	26°12'N	155 44.Ed		27°20'N 150°10'E	30°12'N	117 38'W				30°18'N	117 40'W
Mrsdn.	. 64.	089		060	060	091		091		160			092					092		093			093	120			120		120	
_	no.	160		161	162	163		164		1 65			166					167		168			169	170			171		172	

CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC TABLE 2.

	Vin/Fe		1,5		6.0	0.9		1.6	t e	0.7		1.1		c;	1.1		0.8		0.3		1.1		1.3		1. 3		1,3		1.8	1. 1
	Ö	0.2			1.0	1.6			,]. c		0.7			0.9		l. l		1.2		1.2		1.1		1.2		1.			ر: 0
rses	Ü				12,5	9.8				12.0		12.4					13.4						11.3		11.3		14.6		9.3	10.9
Results of Chemical Analyses	rcent	0.1	19,40		13.7	14.5		14.59	,	11.8		11.7		25.6	17.0		10.4		17.3		15.5		15.7		15.0		13.9		25.0	16.6
hemica	in Weight Percent	,	12,92		14.5	16.1		9.25	,	16.4		10.3		11.4	16.1		13.0		18.5		14.3		11.8		11.6		10.4		13.7	15.48
Its of C	in Wei	0.01	0.58		0.53	0.14		0,20		0.26		0.19		06.0	0.30		0.29		0,31		0.26		0.34		0.34		0.31		-0.5	9.5
Resu	Ü	0.05	0.06		0.05	0.05		0.13		0.04		0.06			0.24		0.29		0.38		0.28		0.45		0.34		0.43		÷ 5	
	ž	0.05	0.45		0.23	0, 19		0.48		0, 13		0.24		0.40	0.46		0.33		0.62		0.50		0.67		0.59		0.68		~	<u>.</u> ;
Analytical	method		Emission spectro-	graphy	X-ray fluorescence	spectrography X-ray fluorescence	spectrography	Emission spectro-	graphy	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Colorimetry	Wet chemical		X-ray fluorescence	spectrography	Wet chemical		Wet chemical		X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Wet chemical	Wet chemical
Portion	analyzed	Coating			X-sect.	X-sect.						X-sect.					X-sect,						X-sect.		X-sect,		X-sect.			
Publication	or source	Goldberg and	Cronan and	Tooms, 1969	Mero, 1965	Mero, 1965		Cronan and	Tooms, 1969	Scripps-NODC	(unpublished)	Mero, 1965		Dietz, 1955	Lamont	(unpublished)	Mero, 1965		Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965		Mero, 1965		Mero, 1965		Murray and Repard 1891	Murray and Renard, 1891
Description	of FeMn	Mn coated	. C 1		Crust		15 cm diam					Crust		Crust	Nodule				Nodule		Nodule						Nodule	3x4x3 cm	Nodule	
Method of	sampling	Dredge	Dredge			Dredge		Dredge				Dredge		Dredge	Corer	(piston)	Dredge		Dredge	(pebble)	Dredge	(pebble)	Dredge		Dredge		Dredge			Dredge
Institution	Number	2	Scripps	SOB-20D			S Clem-SV	Scripps	SOB-25D			Scripps	SOB-22D	U.S. Navy NEL-667	Lamont	V20-72	U.S.S.R.	Vit-4199	Lamont	RC11-D14	Lamont	RC11-D13	Scripps	UPWD-1	Scripps	UPWD-2	Challenger	Chal-256		Challenger Chal-253
Depth	ш	~ 2,000	1.040			1,588		1,830/	1,650			969		710	4,790		5,035		4,991		~4,748		5,390		5, 300		5,400			5,720
Location	Lat.	ZB	31°23'N	118°03'W		32°45'N	118°13'W	31°05'N	118°37'W			31°21'N	119°03'W	32°56'N 132°30'W	39°38'N	135°06'W	35°07'N	137-53'W	31°51'N	139°58'W	39°56'N	140°02'W	N. +0. +8	145°56'W	34°08'N	145°57'W	30°22'N	154 56'W		38.09'N
Mrsdn.	Sq.	120	120			120		120				120		122	122		122		122		1.5 %		123		123		77			124
Map	no.	173	174			175		921				177		178	179		180		181		~ 1 %		183		184		<i>f</i>			186

CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC TABLE 2.

	Mn/Fe	1.6	1.6	1.3		7.1	1.3	(0.5	1 4	۲.	1.3) •	1.8		1.2		1,5		1.6		0.7		9.0		0.2		1.4		2.7		L. 5
	Ca	1.3	1.0	. 8		0.2	2.0	,	2. 1	7	1 · 0	1.6		1.4		1.6		1.4		1.2		1.4		1.1		1,3		2.2		1.2		2.4
s e s	Si		တ	13.0		10.0	12.9			70	10.	2.7		8,5		12.9		13, 1		11.2						79.7		3,3		7.1		
Results of Chemical Analyse	rcent	19.2	19.9	18,0	(16.05	16.1	1	5.00	С	10.7	15.77	•	18,69		13,1		14.5		16.5		12.5		6. 60		1.9		19.8		23.5	,	21.0
hemica	in Weight Percent Co Fe Mn	12.2	12.4	14.32	,	13.10	12.48		10.6		11.6	12, 13	4	10.57		10.8		9.5		10,3		17.4		15.9		11.8		13.9		∞	,	14. I
ts of C	in Wei Co		0.13		(0.25			0.04	72 0	0.00	0 33		0,31		0.22		0.39		0.09		0.09		0.10		0.00		0.29		0.43	1	0.50 14.1
Resul	Cu	0	0.26	~0.2		0.5	~0.5		0.02									0.50		0.43		0.14		0.16		0.07		0.10		0.04		0.05
	Z	0.52	0.40	5.		0.4			0.02	17 0	0.01	0 41		0.64		0.29		0.50		0.28		0.26		0.12		0.12		0,38		0.61		0.42
Analytical	method	Wet chemical	Spectrography	Wet chemical		Wet chemical	Wet chemical		Wet chemical		Wet chemical and	colorimetry Wet chemical and		Wet chemical and	colorimetry	Wet chemical and	colorimetry	Emission spectro-	graphy	Spectrography		Wet chemical		Wet chemical		X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	X-ray fluorescence	spectrography	Emission spectro-
Portion	analyzed		Whole	nodule						. (Outer 0.8 cm					Outer 0.5 cm				Whole	nodule					Whole	nodule	X-sect.		X-sect.		
Publication	or source	Lamont	(unpublished) Riley and Sin-	haseni, 1958 Murray and		Murray and Renard, 1891	Murray and	Renard, 1891	Lamont	(unpublished)	Skornyakova	et al., 1962	Skornyakova	Skornvakova	et al., 1962	Skornyakova	et al., 1962	Scripps-NODC	(unpublished)	Riley and Sin-	haseni, 1958	Lamont	(unpublished)	Lamont	(unpublished)	Mero, 1965		Mero, 1965		Mero, 1965		Ahrens et al.,
Description	of FeMn	Nodule	Nodule	6x6x8 cm Nodule		Nodule	Nodule		Nodule	•	Nodule	Modulo	Nognie	Nodule		Nodule				Nodule		Nodule		Nodule		Nodule	2.5xlxlcm	Crust	3 cm	Crust	l cm	
Method of	sampling	Trawl	(biology) Trawl						Trawl	(biology)	Trawl					Spoon		Corer		Trawl		Oncamera	frame	Corer	(piston)	Corer	(gravity)	ro Trawl		Dredge		
Institution	Number	Lamont	V21-D3 Challenger	Chal-252					Lamont	V21-D2	U. S. S. R.	V1t-4090				U.S.S.R.	Vit-4084	Scripps	Ck-16	Challenger	Chal-248	Lamont	RC11-D5	Lamont	RC10-176	Scripps	Jyn II-21	Univ. of Tokyo	JEDS-5	Scripps	Fan-BD-25	
Depth	E	5,720	5,020						5,577		5,902/	5,913				5,971		4, 195		5,300		4,978		4,226		5,720		3,500		1,260		
Location	Lat.	31°31¹N	159°42'W	160°17'W					34°54'N	160°19'W	35°02'N	166°28'W				35°00'N	172°57'W	36°30'N	173°16'W	37°41'N	177°04'E	37°03'N	166°34'E	34°47¹N	160°40'E	36°29'N	146°43'E	38°00'N	146°00'E	40°23'N	127°59'W	
Mrsdn.	Sq.	124	125						125		125					126		126		127		128		128		130		130		157		
Map	no.	187	800						189		190					191		192		193		194		195		196		197		198		

10.

×10.

0,3 0,07 0,3

graphy Emission spectrography

1967 Hewett et al., 1963

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

		Mn/Fe	0.7	0,8		0.8		1.2		1.2		7.7		2.3		1.7		I. 1		1,5		0°8		I.9		1,2		1.7		1.1		. n	
			1.8	2,1		ιΩ «H		2.2				1.1		1,3		1,4		1.7				1.6		1.7		1,5		1.0				1.)	1.9
rses		Si	13,5	13.		9.4						12.6				13,3								11.8				13.9				14,7	14.4
1 Analy	rcent	Mn	15, 2	17,5		12.8		22.8		11,76		18.8		20,3		16,5		16,06		16,65		19.0		17,7		14,3		11.9		13.2		13, 25	12.0
Results of Chemical Analyses	in Weight Percent	FJ e	21.7	21.7		15.7		19.6		10, 12		8.4		8, 75		9.5		14.05		11,51		23.0		9.4		12.0		6.9		11.6		8.92	10.7
lts of C	in Wei		0,17	0, 16		0.12		0.45		0.10		0.07		0.12		0.36		0.29		0.29		0.24		0.23		0,35		0,23		0.25		0.31	0,13
Resu			90.09	5 0,05		0.04		2 0.03		₹ 0.37		5 0.37		0.45		3 0.22		3 0,21		7 0.21		1 0.08		2 0.42		3 0.29		5 0.47		~		~~	2 0.16
		į.	0,16	0, 15		0,11		0.32		0.44		0.56		0 22		0.58		0.48		0.47		0.24		0.72		0, 28		0.45		0.63		0.43	0.22
ical			on spectro-	ion spectro-		X-ray fluorescence	spectrography	Emission spectro-		ion spectro-		X-ray fluorescence	spectrography	Emission spectro-		X-ray fluorescence	spectrography	Wet chemical and	netry	Wet chemical and	netry	Wet chemical		X-ray fluorescence	spectrography	Emission spectro-		X-ray fluorescence	spectrography	netry		Wet chemical and	Wet chemical and colorimetry
Analytical	method		Emission	graphy Emission	graphy	X-ray	spectro	Emissi	graphy	Emission	graphy	X-ray	spectro	Emissi	graphy	X-ray	spectro	Wet ch	colorimetry	Wet ch	colorimetry	Wet ch		X-ray	spectro	Emissi	graphy	X-ray	spectro	Colorimetry		Wet chemica	Wet chemics colorimetry
Portion	analyzed											X-sect.		Pieces		X-sect,								X-sect.		Half	nodule	Outer 2 cm				Outer layer	Outerlayer
Publication	or source		Scripps-NODC	(unpublished) Scripps-NODC	(unpublished)	Scripps-NODC	(unpublished)	Ahrens et al.,	1967	Cronan and	Tooms, 1969	Mero, 1965		Ahrens et al.,	1967	Mero, 1965		Skornyakova	et al., 1964	Skornyakova	et al., 1968	Lamont	(unpublished)	Mero, 1965		Ahrens et al.,	1967	Mero, 1965		Goldberg,	1954	Skornyakova et al., 1962	Skornyakova et al., 1962
Description	of FeMn							Nodule	3x2x2 cm	Nodule		Nodule		Nodule		Nodule	3 cm diam	Nodule		Nodule		Nodules	2x2x1cm	Nodule	1.2 cm diam	Nodule from	crust	Crust	("'Horizon")			Nodule	Nodule
Method of	sampling		Dredge						,	Dredge						Corer,	Trawl					Dredge	(pebble)	Corer				Caught in	corewire			Trawl	Trawl
Institution	Number			Cas D-5						Scripps	Fan-BD-20					U.S.S.R.	Vit-4191					Lamont	RC11-D12	Scripps	Cusp-8P			Scripps	NH-C10			U.S.S.R. Vit-4104	U.S.S.R. Vit-4074
Depth	m		2,520						,	4,060/	4,400					4,471/	4,477					~ 4, 116		4,350		4,938		5,029				5,435/	6,065
Location	Lat.	Long.	45°45¹N	128°03'W							128°28'W					40°20'N							13) 57'W	43°58'N	140 38'W	40°14'N			145 54'W			41 08::: 159°54'W	40°24'N 175°42'W
Mrsdn.	Sq.		157							157						158						158		159		I 60	,	1 60				1 60	162
Map 1	no.		199							200						201						202		203		204		202				20c	207

TABLE 2. CHEMICAL ANALYSES OF FERROMANGANESE NODULES AND CRUSTS - NORTH PACIFIC

Map Mrsdn, Location Depth Institution Method of Description Publication Portion Ana	Depth Institution Method of Description Publication Portion	Institution Method of Description Publication Portion	Institution Method of Description Publication Portion	Description Publication Portion	Publication Portion	Portion		Ana	Analytical	Results of Chemical Analyses
Sq. Lat, m Number sampling of FeMn or source analyzed	m Number sampling of FeMn or source analyzed	Number sampling of FeMn or source analyzed	Number sampling of FeMn or source analyzed	of FeMn or source analyzed	or source analyzed	analyzed		C	method	in Weight Percent
Long.										Ni Cu Co Fe Mn Si Ca Mn/Fe
163 40°30'N 5,460 Scripps Corer Cronan and	5,460 Scripps Corer	Scripps Corer	Corer		Cronan and	Cronan and			Emission spectro-	0.22 0.12 0.15 12.77 6.97 0.5
170 48'E Jyn II-9G Tooms, 1969	Jyn II-9G			Tooms, 1969	Tooms, 1969	Tooms, 1969			graphy	
163 44°28N 1,258 U.S.S.R. Trawl Nodule Skornyakova Outerlem	1,258 U.S.S.R. Trawl Nodule Skornyakova	U.S.S.R. Trawl Nodule Skornyakova	Trawl Nodule Skornyakova	Nodule Skornyakova	Skornyakova		Outer 1 cm		Wet chemical and	0.12 0.41 7.8 33.9 2.8 1.9 4.3
170 15'E Vit-3150 et al., 1962	Vit-3150			et al., 1962	et al., 1962	et al., 1962			colorimetry	
195 56°10'N 1,370/ Scripps Dredge Crust Goldberg,	1,370/ Scripps Dredge Crust	Scripps Dredge Crust	Dredge Crust	Crust		Goldberg,			Colorimetry	0.45 0.40 0.26 13.1 20.9 1.6
145°15'W 1,800 NH-D7 (chainbag) 1954	1,800 NH-D7 (chainbag)	NH-D7 (chain bag)	(chain bag)		1954	1954				
196 52°47'N 1,500 Scripps Dredge Crust Goldberg,	1,500 Scripps Dredge Crust	Scripps Dredge Crust	Dredge Crust	Crust		Goldberg,			Colorinnetry	0.32 0.21 0.31 14.8 19.4
(chain bag)	NH-D1 (chain bag)	(chain bag)	(chain bag)	(5)	1954	1954				

TABLE 3

PHYSICAL PROPERTIES OF THE SUBSTRATE

AS DETERMINED BY ANALYSIS OF SAMPLES

FROM THE TOPS OF PISTON CORES

NORTH PACIFIC

TABLE 3. PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC

Mean Size																																				
clay																																				
Texture sand silt $\%$																																				
gravel %																																				
Void Ratio	0	3,56	0.	2.		6.	3.92		9.	4.	5, 12		.3	4.	. 3		00	6.	10	9.	6.	0.	7	~ .	3,16	10		. 2	0.	3,34	9 .		3, 10		9.	Ľ
Porosity %	06	78	8 3	91	74	83	79	98	93	77	83	98	81	77	91	75	74	74	7.1	78	79	75	78	80	75	27	92	98	75	92	72	75	75	78	82	
Moisture Content %dry wt.	01.9	133,84	16.1	42.1	14.3	83.5	59.2	76.3	22.8	49.9	39.7	18.8	44.4	23.6	27.9	129,50	11.8	16.2	6.5	64.3	5.3	14.4	31.9	60.6	122.57	22.5	13, 1	11.7	32,8	1.0	05.8	9.0	125.76	37.8	~	40 R
Dry Density g/cc	. 2	9 .	.3	6.	rO.	9 .	4.		5	. 2	Ι.	.7	6.	.7	9.	4.	5	.07	5	. 2	- 7	9 .	, T	70	rU	00	-3	∞	.3	.3	4.	4.	4.	2.66	TU.	9
Wet Density g/cc		1,37	. 2				1,31		1,13		1,20																				4			1,37		0
Lamont Core No.	1-3	113-13	-2	3		V24-39		C10-5	- 13	RC13-110	3-13	0-5	4	\sim	3	RC10-62	C10-	C10-	21-20	3-11	-12	RC13-119	-12	RC10-65	1-48	0	.20	RC10-74	V24-49	10-	1-2	V24-50	7-0.	10-	V24-51	1
Depth in meters	, 64	, 03	,49	, 57	, 33	,41	, 65	, 66	, 09	, 23	,43	, 66	, 20	,44	48	, 12	,46	,49	, 66	, 68	, 82	, 79	, 75	500	, 72	, 69	,92	, 10	, 87	, 78	, 03	00.	, 86	3,891	,40	p
on Long.	0 . 3	M195.06	1°3	0	3°1	30	4.0	4	5°2	70	96°02'W	1.9	0.2	7°2	M168.26	0.4	20	10	9.5	0	106°54'W		107°14'W	108°37'W	2.60	110°28'W	0	\vdash		113°37'W	113°49'W	114°32'W	4	114°54'W		125°20'W
Location Lat. L	6.19	0	220	6°37	4°21	4°53	1°49	80.9	6.36	90.0	0°51	5°34	3.04	0.20	7°52	3°20	2°19	1°49	3°11	0.58	5°25	2032	3°51	0°41	043	9.50	4.23	5°421	0°4	2.481	5 ° 0	1°481	1°27	01°20'N	1°401	0 1 00
Marsden Square		010	$\overline{}$	-	$\overline{}$	-	[mm-l]		-	$\overline{}$	prompt	\vdash	\rightarrow	$\overline{}$	\vdash		\leftarrow	$\overline{}$	-	-	\vdash	\vdash		$\overline{}$		-	$\overline{}$		$\overline{}$	$\overline{}$		$\overline{}$	$\overline{}$	012	-	
Map no.	_	2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	2.1	22	23	24	25	97	27	28	29	30	3.1	32	33	34	35	36

TABLE 3. PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC

Mean	Size									2.90		2,45						3.06																			
	clay %									52,98		57.59	7.2					56, 13																			
exture	silt %									45,31								33, 12																			
Text	sand									1.71			0.59					10,75																			
	gravel %									00.00		00.00	00.00					00.00																			
Void	Ratio	. 2	6.88	-	.3	00	7.	5	.07		4.78		.3	6.	00	rU.	00	9.	4.89	9 .	. 2	. 2	9 .	5,21	00	4	2	.3	5.84	4.	0.	0.	6.	4.	6.	4,32	-
Porosity	%	69	87	87	70	∞ ∞	73	72	78		82		91	74	74	82	83	72	83	61	80	92	82	83	87	98	89	94	85	89	83	06	83	00	80	81	
Moisture	Content % dry wt.	4.	300.27	1.0	7.7	99.8	00	01,5	38.6		173,56		68.9	70	13.8	01.6	05.0	9.2	7.3	9.2	84.6	0.60	84.6	70.7	16.9	39.4	78.4	61.2	50,2	87.8	01.9	82.1	74.3	62.6	357,33	83,5	55.0
Dry	Density g/cc	~	2.26	5	.3	70	.3	70	LΩ		2.72		0		0				0										0					- 0	2.19		
Wet	Density g/cc	1,43			1,43		1,37	4.	1,35		1,31		1.17	1,38	1.40	1,24	1, 11	1,54	1,16	1,66	1.26	1.47	1.28	1,34	1,16	. 2	. 2	-	1,21	-	. 2		. 3	1,23	1, 15	1,26	1,33
Lamont	Core No.	- 51	V21-197	- 19	17.	0	RC11-210	0	V24-58	RC12-65	V24-59	RC12-66	V24-60	9	2	C13-6	3-6	V24-62	(4)	V24-64	10	5	C12-8	\bigcirc	C13-5	3-4	C12-1	C13-2	C13-1	-2	C13-2	-2	C12-2	RC13-32	+	RC10-149	V24-140
Depth in	meters	4,	00	00	33	0,	4	4.	4	00	9 ,	4,755	00	4.	00	5	0 (,834	03	,933	, 868	, 925	4,982	∞		5,393	, 2	6.	_ •	, 2	, 2	3	, 6	4	~ 5,565		4,464
nc	Long.	29.0	130°11'W	36°1		39°5	0.0	140°04'W	141°40'W	0	145°32'W	148°13'W	0			3°1	3°1	3 °	4	0.6	0.5	64°2	4°6	2.0	9,99	167°10'W	8°4	20.2	9.0	71.0	2 0	750	74°5	770141	178°251E	20	
Location	Lat.	I .51	8°381	9.481	2°141	8°471	1°411	3.391	.161	4.391	2°341	2.371	2°481	1°21	3.061	5°221	6.521	3 ° 04 1	9.371	4°10'	9°31'	8°531	7°311	321	8.351	0°221	9°411	5°431	8 . 331	2°281	0.051	4.57	1°281	6°411	0 /	461	3.041
Marsden	Square	p(-	014	-	$\overline{}$	-		015		-		pand		\leftarrow	p-re-rel		-	parel	present .	-	$\overline{}$	parel	017	\leftarrow	guerral			-	$\overline{}$		p(019	021	2
Map		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	26	22	00 LO	59	09	19	9	63	64	9	99	29	99	69	70	71	72

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

															1
Map	Marsden	Locati	ation	Depth in	Lamont	et	Dry	Moisture	Porosity	Void	,	*	Texture	r	Mean
no.	Square	Lat.	Long.	meters	Core No.	Density g/cc	Density g/cc	Content % dry wt.	%	Ratio	gravel	sand %	silt %	clay %	Size
73	~	9.101	24.12	52	C12-3	3	,i	.69	84	4.					
74	024	07°21'N		4,276	4-135	1.30	2,73	182.94	83	5.06					
75	N	8 ° 58	20°14'	,04	C12-35	5	9 .	79.	82	4.75					
76	N	7.27	14°331	2	C12-35	4		46.	83	$\overline{}$					
77	\sim	7 ° 301	14.30	, 34	C12-35	3		55.	80	4.07					
78	\sim	7°30	14°13"	, 39	C12-35	3		00	82	5					
79	\sim	7°30	14°13'	, 16	C12-35	3		35.	78	~					
80	N	0.9	14.01	0	RC12-352	2	2, 65	252.96	87						
00	N	5 ° 0 2	13°3	, 22	C12-35	3		115,53	74	2,85					
82	N	6°33	110131	, 95	C12-35	2		205, 13	82						
83	\sim	8°44	4 ° 1	, 79	C12-34	2	0	297.87	68						
84	N	90.6	0.0	, 0 I	C12-33	4	0	114,63	92						
80	4	0°26	1 ° 1	, 71	C12-30			276.07	98	6,52					
98	4	2°60	2°3	, 03	C12-3	.3	2,48	168,28	80						
87	4	4°50	3°5	provid	C12-33	4.	2.97	118,85	78						
80	4	0.01	4.0	, 79	C12-13			343.95	89	8.57					
89	4	1°34	6°4	, 33	C13-13			372.01	89						
06	4	1.0	9	, 68	C10-2	Τ.	2.36	277.50	98						
91	4	2°27	0.6	,45	C13-13	2	2,76	298, 11	89						
92	4	60.9	9.3	,36	C13-12	4.	2,85	124.15	78	3, 58					
93	4	3°55	000	, 64	C13-12		2.02	329.42	87						
94	4	2°50	00°3	,45	C13-12	Π.	2,51	323, 26	89						
95	4	2°45	l º l	,38	C13-12		3, 11	412.58	95	~					
96	4	2°08	01°3	, 28	C13-12		3,32	380.87	92	- 0					
26	4	2.09	2°1	, 14	C13-12	Γ.		465.50	92	2					
98	4	2°50	3°1	,01	13-12	2 .		∞	98						
66	4	5 ° 0	0.2	, 91	00		2, 22	370.36	89	8,35					
0	5	62.6	0.0	, 57	-19	ω,		4	4						
0	10	4.5	0.	,82	\sim	co.			74						
0	L	2°321	0.	66:	1-20	2		70	85						
0	10	1°4	04	, 09	V21-194	Γ.		373,83	89	0					
0	5	0	143°38'W	, 25	10-1			53,4	84						
0	L	\sim	0.0	, 21	V21-191	2		1.3	82	- 0					
901	L	0	154°11'W	4	1	1.27	2,42	83.	81	4,50					
0	5	0°2	2.0	, 34	3-5	6		5.2	83						
0	5	6	160°17'W	, 82	RC12-191	2	2,42	253. 69	98	6, 22					

TABLE 3. PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC

Mean C.	Size	71																													1.08							
	clay	, O.																													77.72							
Texture	Silt	6%																													20.36							
-	sand	%																													1.92							
	gravel	%																													0.00							
Void	Katio		9.	. 3	~1	3		2 .	00	4.	4.	9.	.5	2.	. 3	. 2	5	4.	9 .	9 .	5	2.	5.	4.	4.61		5		50	6.		4.19	7	0.	rU.	2.	2.37	4.
Porosity	1	60	84	22	83	81	98	80	73	91	81	72	84	81	22	81	7 1	7 1	84	62	84	68	98	70	82	89	85	83	77	83		80	79	7.5	7.1	76	7.0	58
Moisture	onte	% dry wt.	01.	28.	86.	72.	26.	47.	12.		45.	01.	08.	38.	9	53.	6	00	6	60.	07.	6.	80.	9	158.68	\sim i	4.	4.		70		48.2	29.8	14.0	1.2	22.2	79.65	6.5
Dry	Density	g/cc	2,75	2.57	2.77	2.48	2.69	0		2.93	2.98	2.60	2.61	3,05				2.74		- 0		- 0			2.87							,	2.88		2,44		2.94	
et.	Density	g/cc	. 2	3	. 3	. 2		3			. 3		2	4	3		4.	rU	. 2		. 2	2	$\overline{}$	4	1,35	9	\sim		3				1.41		4	4	1.59	1,63
Lamont	Core No.		70	2-	\circ	2-7	RC13-54	_ 7	112-1	C13	V24-73	1	RC13-52	2-1	1-7	V24-75	C13-2	C13-	3-2	_	13-3	C13-3	4-8	4-8	V24-87	4-8		00	12-1	1	1-11	V21-119	1-12	1 - 1	1 - 1	1-12	12-3	V24-128
다	meters		, 73	, 59	,77	,46	, 54	, 47	, 29	5,242	, 23	, 44	, 17	, 15	, 66	, 42	, 60	, 21	,48	, 33	, 50	, 63	, 37	, 80	, 87	96.	, 60	51	, 21	, 86	66	18	96	,82	,74	, 07	3,528	18
	Long.		0.2	1°4	0	3.321	304	4°4	0	9	6.4	0.2	0 . 2	7 0 1	6.6	0	2 0	5 . 14 1	5 ° 1	.531	8°201	7:111	3 000	185.2	1 ° 2	16101	1004	8.521	2.571	2°051	0.33!	0,241	50221	4.301	3°2	1 60 0 2	124°08'E	0
	Lat.		.571	.281	.571	.501	500	031	0.05	34	.291	.571	.591	610	053	.201	.51	.51	0.52	-	.55	. 18	053	250	1000	03	00	.51	051	0101	-24-5	15:32.2	101	0341	.01	0000	,90.	18,11.8
larso	Square		053	053	053	053	053	053	053	053	053	053	053	053	053	054	054	054	054	055	055	055	055	050	050	950	950	057	057	057	057	059	059	059	059	090	090	090
a p	no.		109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	1 >0	131	132	133	134	135	136	137	138	139	140	141	142	7	144

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Мар	Marsden	Location	no.	Depth in	Lamont	Wet	Dry	Moisture	Porosity	Void		Tex	exture		Niean
no.	Square	Lat.	Long.	meters	Core No.	Density g/cc	Density g/cc	Content % dry wt.	%	Ratio	gravel	sand %	silt %	clay	Size
145	9	0141	0	, 51	V24-126	00	9	7.7	49	0					
146	063	11°12'N	$\tilde{\circ}$	2,692	-34	2,69	3,24	9.95	24	.32					
147	9	5°101	0 ° 3	, 66	C12-34	4.	9	16.4	75	0.					
148	9	20421	0.01	, 01	2-34	.3	5	4.7	92	2.					
149	00	10101	25.0	,46		5	∞	92.3	72	7 .	0.	0	1,2	8.7	0.
150	00	. 58	128°17'W	,49	RC10-236		∞	6.0	71	2,49	0.00	00.00	12,49	87.51	0.83
151	00	8 ° 381	29.0	, 28	C10-23		6	9.9	7.2	9 .	0.	proof.	8.0	1.7	6.
152	00	5°50	29.52	, 73	10-23	4.	5	9.4	69	· .	0.	0	7.6	2.3	6.
153	00	9.111	39°5	, 92	C11-19						0.	0	5.5	4.5	00
154	∞	1°31	40.0	, 37	-19						0.		3.8	6.0	6.
155	00	8 ° 00 1	57	, 33	9-0						0.	0.	5.0	4.9	00
156	00	5°511	5	,36	V20-65						0.	0.	8.7	1.2	6.
157	00	3°21	55°5	, 20	9-0						0.	9.	1.3	7.9	.5
158	00	7.151	LO	, 71	V21-183	4.	4	89.9	69		0.	0.	0.1	9.8	0.
159	00	115.6	57	, 82	1-187	1.44	2.79	112.48		3, 18	0.	0.	5.5	4.3	6.
160	00	7.361	57	, 50	RC13-10						0.	0	6.0	3.9	. 92
161	∞	7°441	570	, 58	C_1						0.	0.	6.2	~	0
162	∞	7.331	57°5	5,504	C13-9						0.	0.	5.4	4.5	0
163	∞	3°531	2.29	, 43	2-1		9	6.2							
164	00	5 ° 03 1	570	, 80	- 1		∞	94.3		9.	00.00	0.05	22.17	77.78	1.06
165	00	0°471	5.29	, 47	C12-1	1.51	2.98	98. 66	7-4	2.98					
166	00	4.161	57°	96	. 18		4	37.5		. 3					
167	00	0.551	28.0	66 '	21-5						00.00	1.96	43.82	54.22	2, 13
168	∞	8.121	58.071	, 54	C12-		~	5.3		7					
169	∞	0.51	28.091	, 75	21-60	3	S	0.6		~		1.52	51.14	47.34	3.05
170	∞	0.52	28.001	, 76	1-187	4	5	88.1		·)		. 51	0.8	7.5	∞
171	∞	8°201	58°2	, 36	\circ	. 3	S	08.9		. 2					
172	00	800	Ŋ	, 30	V21-181	1,45	2,68	104,39	73	2.83	3.97	0.06	15.00	80.97	0.93
173	00	12.2	70	, 92	RC12-190		5	52.3		6.					
174	00	8°241	1.6	, 67	21-1						0.	0.	5.4	4.4	~
175	00	3°01.	59°2	00.	1-18		6	6.7	74	∞	0.	4.	4. 1	4.4	3
176	00	10361	61°2	17. 00		1.49	2.80	96.68	73	2.74	0.00	0.39	37.24	62,37	1.92
177	∞	2°141	65°141	, 62	1-6	9.	~	2.4	29	0.	0.	0.	00.07	1.4	0
178	00	2°51	69°4	, 67		9.	5	8 3	55	2.	0.	0.	6.9	3.0	6
179	0	3.271	5	9	1-6	5	9	7.7	64		0.	0.	0.6	9.3	
180	0	190.6	74°3	, 3	V20-100						0.	0.	2.0	7.9	0

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Mean Size µ	0.88	Ω	0.95			0,84			0.97		1, 13	0		1,22	1.09	1, 27	0,89	1, 17					1,20		3	5, 90	5					1, 19	87,70	2, 11	2, 16
clay	83.43	o o	80,86			88,72			80.95		76.28	9.6		4.4	79.18	4.6	2,3	1, 3					74.28		2.3	34.52	4.0					33	11.43	.3	5
exture silt %	16.57	,	19.12			11.28			19.05		23,72	0.3		5. 1	20.77	5.2	7.3	8.5					25,51		2	63.70	~					3	15,41	9	9
Tessand %	00.00		0.02			00.00			00.00		00.00			0	0.05	0	\sim	0					0.21			1,78							73, 16	2	
gravel %	0.00		0.00			00.00			0.00		00.00	0			00.00			6					00.00		0.	00.00	0.					0.	00.00	0	_
Void Ratio		4	2.00	5	5	7.	0.	0.		2.95	0		6.	ς,	2	70		00		.3	. 7	6.93	6.	2 .				.3	2, 52	00	0 .		\sim	2.72	1
Porosity %		71	99	82	7 1	63	75	75		74	29		83	57	69	72	72	74	22	81	00 22	87	74	89				70	71	82	51		57	73	44
Moisture Content % dry wt.		7	69.12	~i	3	oj.				105,45	80.8		203.77	\sim	84.78	~	_	00			∞	258.61	∞	0				7.8	95,33	3,4	45.3		6.8		72 1
Dry Density g/cc		L(2.86	4.	9 .	7 .	00	9 .			2.54						- 0					2,64	- 0	2,41					2,62				.3	2, 49	4
Wet Density g/cc		1 45	1, 63	2	4.	9 .	1,48	4.		4	1,51		1, 25	1,65	יכו	1,46	4.	1,37	1,43	~	1, 22	1, 22	1,38	1.17				1,51	1.47	1.27	9		1, 60	1, 41	
Lamont Core No.	21-	V 20-101 V24-97	21 -	4-9	V24-95	1 - 6	V24-93	V24-92	V21 - 68	V24-91	9	V21-70	00	V21 - 7 1	- 15	RC 10-157	V21-72	RC 10-156	RC 12-405	RC 12-408	RC12-407	1	1-7	0.1	1-7	RC11-158		RC12-131	12-1	2-13	1-8	1-8	V21-85	1-8	00
Depth in meters	5365	1. 1	5601	5700	5287	5879	5782	5909	5964	5936	5982	5954	5544	5954	5892	5682	5369	5402	0619	6128	5768	5801	5872	5801	6015	3 177	4025	5804	5431	5854	3702	4116	1684	5717	5879
on Long.	-	0 00	9 ° 21 '	7 ° 4	7704	91.92	6°131	4.001	2°4	0°52¹	9.021	6.041	165°07'臣	2°31	0°3	180.6	8°501	.461	.531	56.361	.581	54°37'	54°361	51°341	50°501	49°551	5 . 2	49°171	46°471	4.251	40°	.251	0	031	0351
Location Lat. Lo	23°58'N	4.48	4.31	6.3	7 0 3	4°5	5°4	4°5	5 ° 3	3 ° 3	2.9	0.2	9.0	2 . 2	8 ° 0	4°4	8°4	2°2	8°1	7°3	5 . 4	5°3	2 . 6	0°2	6 . 6	0 . 5	6°4	3 ° 2	6°4	0.6	7 ° 5	7 ° 5	7 ° 5	7 ° 5	7 ° 5
Marsden Square	060	060	091	091	091	160	091	091	091	091	092	092	092	092	092	093	093	093	093	093	093	093	093	093	093	094	094	094	094	094	094	094	094	094	094
Map no.	181	183	184	185	186	187	188	189	190	191	192	193	194	0	0	0	0	0				203		0	\bigcirc	0	0	\circ	_	pro	-	-	-	_	216

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Map	Marsden	Locat	tion	Depth in	Lamont	Wet	Dry	Moisture	Porosity	Void		-	exture		Mean
0	are		Long.	meters	Core No.	Density g/cc	Density g/cc	Content % dry wt.	%	Ratio	gravel %	sand %	silt %	clay %	Size
-	0	30351	145°391臣	2		5	9	2.6		_	0		7.5	4	6
218	094	23°57'N	4.231	5841	_	2,00	2.99	33,38	50	1.01	0.00	21.33	42.85	35.82	9.82
-	. 0	3,25	3 . 23 +	12	1-9	4	. 5	01.1		5	0	0	3.5	9	3
2	094	3.001	3 ° 1	28	6	10	1.	3.3		~	0		1.4	ι∩	5.4
N	0	4.371	142°28'E	87	6	2	5	5.8		√ 3	0				3
N	0	8 . 3 3 1	146 53'E	94	V21-140						0		4.6	9	1-
U)	0	7 . 56	0	56	V21-82		2.90	1.0	92	2					
2	0	4°38	9.5	97	V21-137	3	2,45	9.5	92	C]					
2	095	0.6	03	35	00	1,75	2.58	43, 68	53	1.14					
\sim	0	3°41	136°05'E	4868	0	4	2.96	1, 1	78	9					
2	0	9:41	0 7	79	-	~	2.90	9. 1	80	0	00.00	0.77	47.10	52, 13	2.9
N	0	3 0 6	1.5	13	6-	9.	2.81	8.7	99	0					
2	0	3 º 27	4.0	04	- 13	7	3, 12	5.0	79	9					
3	0	9+.6	133°17'E	35	2-1	1.46	2,55	5.7	71	+					
3	0	3 0 3 2	2 ° 1	17	6-	4.	2,44	4.0	72	5					
3	0	2006		93	4	. 3	2.39	9.6	72	9					
(7)	0	02.6	1.5	62	- 14		2,25	4.9	7	∞					
3	0	3°35	1°2	23	1 - 10	3	2.48	4.0	78	9					
$C \cap$	0	9.33	1.2	92	2-14	4.	2,35	8.7	29						
\sim	0	1°28	0.0	92	1-13	1,40	2, 68	4.5	22	3					
3	0	3°55	0 2	96	1-11		2,43	0.3	7.1	4					
3	0	0°43	6.2	29	3	9.	2, 68	4.9	59	4					
3	0	6.3	6.2	64			2.97	7.4	76	2					
4	0	3 . 57		78	-36	1.54	2. 60	7.3	29	0					
4	0	1°45		93	9	1,46	2.77	6.2	74	0					
4	N	185.2	53	72	C10-23		3, 16	4.7	8 1	3	0	0.	co"	00	1, 3,
4	2	5,351		29	0-23	1,40	2.54	4. 1	74	0	0	2.	~	6.4	
4	2	9.381	3°4	77	2-0						0.	4	ન	3.9	
4	2	9 ° 38	135°06'W	79	V20-72						0.		9	3.4	
4,	2	7 0 421	137°51'W	5302	1-0						00.00	0.01	17.16	82.83	0 .0
4	\sim	100.5		30	C11-19	1,44	LO	8.0	71	4.	0.	0	υ.	4.0	0.8
4		°	6.6	93	RC11-195	1,42	2,42	99.80	70	2,44	0.	0	4.	5.4	
249	\sim	195.6		7	C11-19	1,44	9	5.5	73		0.	0	9	3.1	
50		0	140°51'W	20	7-(0 .	0	·	1, 2	
		0 . [146°48'W	5788	V20-68						0 .	0	6	0, 5	
252	123	30 33'N	148°12'W	5042	V20-67						00.00	rU	50	2.0	0.9

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Haif, Long. Inverters Core No. Danisty Density Content Ratio prayed sind sith clay sith si	Map	Marsden	Location	tion	Depth in	amo	Wet	Dry	Moisture	Porosity				Texture	,	Mean
124 39*12N 135*12N 270*09 270		Square	Lat.	Long.	meters	Z	nsi /c	[]	× Ee	%	Ratio	gravel	40	silt %	clay %	Size
124 184 184 1875 1278 129 12	3		9.121	53°251		0 - 8						0.	٦.	3	2.5	00
124 37.1870 158.4570 26.491 1.40 2.449 120.39 76 3.141 2.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.44 79.55 0.90 0.01 120.45 12			8 ° 48 1	55°371		6-0						0.	0.	50	0.3	6.
124 378**067**N 188**58**W 5952 RCI2184 1.34 2.44 119.00 77 3.44 124 358**567**N 188**58**W 5952 RCI2186 1.36 2.44 119.00 77 3.44 124 358**567**N 189**58**W 5952 RCI2186 1.36 2.44 145.18 80 4.22 0.00 0.27 19.63 88.10 0.99 124 358**567**N 159**38**W 5771 V21776 1.49 2.58 165.14 81 4.26 0.00 0.27 19.63 88.10 0.99 125 33**267**N 160**38**W 5762 V21-776 1.41 2.51 110.90 73 2.94 0.00 0.027 19.63 88.10 0.99 125 33**267**N 160**38**W 5762 V21-776 1.41 2.51 110.90 73 2.94 0.00 0.03 16.44 83.56 0.99 125 33**267**N 160**38**W 5794 V21-776 1.41 2.51 110.90 73 2.94 0.00 0.03 16.44 83.56 0.99 125 33**267**N 160**38**W 5795 V21-776 1.41 2.51 110.90 73 3.93 0.00 0.03 16.44 83.56 0.99 125 33**267**N 160**28**W 5796 V21-776 1.41 2.52 110.90 73 3.93 0.00 0.03 1.42 0.99 126 33**267**N 160**28**W 5900 RCI2-434 1.43 2.52 1.42 2.44 2.44 2.44 0.89 126 33**267**N 164**26**W 5900 RCI2-434 1.43 2.52 1.42 2.44 2.4			7 18	57°421	9	6-0						0.	0.	4.	9.5	6.
124 35°+55N 189°+58N 180°+58N 180°+58 1.36 2.49 132.39 76 3.34 124 35°+58N 189°+58N 180°+58N 190°+185 1.37 2.87 145°+18 80 4.22 0.00 0.03 16.59 83.38 0.8 124 35°+58N 189°+58N 5754 420°+28 1.49 2.88 100.79 74 2.94 0.00 0.27 19.68 78.08 0.9 125 33°+28N 180°+58N 5762 420°+27 1.41 2.51 1.00 7.5 2.81 0.00 0.27 19.68 78.08 0.9 125 33°+28N 160°+98N 6022 421°+77 1.41 2.51 1.00 7.5 3.12 0.00 0.03 18.04 0.9 125 33°+28N 160°+98N 6022 421°+77 1.41 2.51 1.90 7.5 3.12 0.00 0.03 18.04 0.9 125 33°+28N 160°+98N 5623 421°+77 1.41 2.51 118.09 75 3.03 0.00 0.03 18.04 0.9 125 33°+28N 160°+98N 5634 421°+78 1.43 3.05 132.25 18.08 14.29 0.00 0.03 18.04 0.9 125 33°+28N 160°+98N 5000 80°12-434 1.43 3.05 132.25 8.14 4.29 0.00 0.03 24.15 78.02 1.0 125 33°+28N 160°+98N 5000 80°12-434 1.43 3.05 135.26 8.1 4.29 0.00 0.03 24.15 78.02 1.0 126 33°+28N 164°+28N 5900 80°12-434 1.43 3.05 135.26 8.1 4.29 0.00 0.03 24.15 75.79 1.0 127 33°+28N 164°+28N 5840 42°+28 4.29	_		8 ° 00 1	58°571	~	C12-18	'n.	4	39.0		7					
124 36*16 N 159*34 W 5774 V21.179	~	124	2°25	58°581	0	C12-18	~	-4	32.3		. 3					
124 39°497N 159°48W 5771 V231-T79 V231-T79		124	5°16	100.65	\sim	C12-18		00	45. 1		. 2					
124 36 18 18 18 19 2	0	124	0°43	59.341	5	1-17						0.	0.	6.5	3.3	00
124 31131N 159442N 5720 V21-178 1,49 2.88 100.79 74 2.94 0.00 0.27 24.85 74.88 1.25 1.25 31.22 31.22 31.22 31.22 31.22 32.22N 160-808 6522 V21-177 1.32 2.52 110.71 75 31.2 0.00 0.03 18.03 81.94 0.99 0.99 0.90 0.00		124	6°18	59.381	0	20-92						0.	. 2	9.6	8. 1	6.
124 31°12° 159°45° W 588 RC12-346 1.32 2.58 163.14 81 4.26 125 33°22° 160°08° W 6022 V21-177 1.41 2.51 110.90 73 2.81 0.00 0.03 16.44 0.99 125 33°22° 160°08° V21-177 1.41 2.51 110.90 73 2.81 0.00 0.03 16.44 0.99 125 32°37° 160°08° V21-177 1.41 2.51 110.90 75 3.12 0.00 0.03 16.44 0.99 125 32°37° 160°34° V21-175 1.39 2.52 118.89 75 3.03 0.00 0.01 21.96 78.03 1.11 125 33°22° V21-177 V20-94 V20-343 1.39 2.98 142.26 81 4.29 0.00 0.03 21.95 78.03 1.10 125 38°31° V22-140 V20-94		124	1°31	59 9 421	(1)	1-17	4	∞	00.7	74	9	0.	. 2	4.8	4.8	2
125 33*22*N 160*08*W 6522 V21-177 1.41 2.51 110.90 73 2.81 0.00 0.00 16,44 83.56 0.9 125 32*45*N 160*19*W 6522 V21-175 1.49 2.78 110.71 75 3.12 0.00 0.03 18.03 81.94 0.9 125 32*45*N 160*19*W 6554 V21-175 1.49 2.52 118.89 75 3.03 0.00 0.01 21.96 78.03 1.1 125 32*27N 161*28*W 5797 V20-93 1.43 3.05 127.22 79 3.93 0.00 0.01 21.96 78.02 1.1 125 35*27N 161*28*W 5797 V20-93 1.39 2.80 142.26 81 4.29 0.00 0.03 21.95 78.02 1.1 125 33*621N 164*28*W 5097 RC12-433 1.39 2.80 135.26 79 3.93 0.00 0.05 24.12 75.79 1.0 125 33*621N 166*42*W 5947 V20-94 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 126 31*0N 107*35*W 5458 V20-94 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 126 31*0N 177*51*W 5449 V20-102 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 126 31*0N 177*51*W 5449 V20-103 0.00 0.05 0.00 0.05 0.05 0.05 0.05 0.05 127 33*68*N 174*19*E 5808 RC10-179 1.23 2.35 3.55 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 127 33*68*N 174*19*E 5808 RC10-179 1.23 2.35 3.55 0.00 0.00 0.05	01	124	1°12	59 ° 451	-00	C12-43	~	5	63. 1	81	\cup 1					
125 34*44N 160*94W 6521 V22-176 1.45 2.78 110.71 75 3.12 0.00 0.03 18.03 81.94 0.9	~	125	3°52	180.09	\sim	- 17	4	5	10.9	73	∞	0.	0.	6.4	3.5	6.
125 33-43 N 160-34 W 5781 RC12-435 1.45 2.78 110,71 75 3.12 0.00 0.01 21.96 78.02 1.0 1.2 38-22 N 162-40 W 5644 V20-93 1.39 2.52 118.89 75 3.03 0.00 0.03 21.95 78.02 1.0 1.2 38-21 N 162-40 W 5900 RC12-434 1.43 3.05 127.22 79 3.93 0.00 0.03 21.95 78.02 1.0 1.2 38-51 N 162-40 W 5900 RC12-433 1.39 2.98 142.26 81 4.29 0.00 0.03 24.12 75.79 1.0 1.2 38-51 N 164-02 W 5907 RC12-433 1.39 2.80 135.26 79 3.94 0.00 0.05 31.62 63.33 1.1 1.2 32-04 N 168-44 W 5841 V20-95 0.00 0.05 0.00 0.05 31.62 63.33 1.2 1.2 32-04 N 170-35 W 5464 V20-93 0.00	-	125	4°54	161.09	\sim	1-17						0.	0.	8.0	1.9	6.
125 38 22 N 16 26 W 26 4 V 21 175 1.39 2.52 118.89 75 3.03 0.00 0.01 21 96 78.03 1.0 1		125	2°43	60 ° 34 1	00	C12-43	4.	~	10.7							
1.5 35-277N 162-40W 5797 7020-93 1.39 2.98 142.26 81 4.29 1.99 2.98 142.26 81 4.29 1.00 0.09 24.12 75.79 1.00 1.25 34-36N 162-40W 5900 RC12-433 1.39 2.89 142.26 81 4.29 0.00 0.09 24.12 75.79 1.00 1.25 33-52N 164-022W 5993 V20-94 1.39 2.80 135.26 79 3.84 0.00 0.05 31.62 68.33 1.75 1.25 33-52N 164-022W 5771 V20-96 1.25 33-52N 164-44W 5844 V20-99 1.25 33-52N 164-44W 5844 V20-99 1.25 33-52N 164-44W 5486 V20-99 1.25 33-58N 177-59W 5486 V20-104 1.25 1.25 1.25 1.39 1.	. 0	125	8°22	190.19	LO	1-17	~	5	18,8		0	0.	0.	1.9	8.0	
125 36°13" 162°40" 5900 RC12-434 1.43 3.05 127.22 79 3.93 125 34°13" 162°40" 5900 RC12-432 1.39 2.98 142.26 81 4.29 125 34°51" 164°02" 5993 RC12-432 1.39 2.80 135.26 79 3.84 125 33°02" 164°42" 5097 RC12-432 1.39 2.80 135.26 79 3.84 125 33°02" 166°42" 5097 RC12-432 1.39 2.80 135.26 79 3.84 125 33°02" 166°42" 5097 RC12-432 1.39 2.80 135.26 79 3.84 126 30°2" 170°35" 573 V20-94 126 30°2" 171 V20-97 1.00 1.00 0.05 1.61 1.00 126 30°2" 171 171 1.00 1.00 1.00 1.00 1.00 1.00 126 30°2" 1.00 1.00 1.00 1.00 1.00 1.00 126 30°2" 1.00 1.00 1.00 1.00 1.00 1.00 126 30°2" 1.00 1.00 1.00 1.00 1.00 1.00 126 30°2" 1.00 1.00 1.00 1.00 1.00 1.00 127 37°18" 178°10" 5302 RC10-179 1.25 2.67 2.26.39 85 6.13 0.00 0.00 2.587 7.14 1.2 127 37°12" 170°5" 1.20 1.20 1.20 1.20 1.20 128 36°2" 1.00 1.00 2.00 0.00 0.00 2.00 0.00 2.00 0.00 129 30°2" 1.00 0.00 0.00 0.00 0.00 0.00 0.00 120 31°10" 1.00°1" 1.20°1"		1,5	5°27	61°281	0	6-0						0.	0.	1.9	8.0	0.
125 34 36'N 162 140'N 5900 RCI2-433 1.39 2.98 142.26 81 4.29 0.00 0.09 24.12 75.79 1.09 1.25 38*5 3		125	6°13	62°401		C12-43	4	0.	27.2	79	6.					
125 38 + 36 \text{in} 68 + 14 \text{in} 68 + 44 \text{in} 5993 V20-94 V20-94 V20-95 V20-95 V20-95 V20-95 V20-95 V20-95 V20-95 V20-96 V20-97 V20-96 V20-97 V20-96 V20-97 V20-98 V20-98 V20-98 V20-98 V20-98 V20-98 V20-99 V20-97 V20-96 V20-99 V20-97 V20-98 V20-99		125	6-13	62,401		C12-43	3	6.	42.2	81	. 2					
12	-	125	4 36	63.141	0	0-94						0.	0.	4. 1	5.7	0.
125 33°56'N 164°47'N 5804 V20-95 105		()	8°51	64.021	1	C12-43	. 3	00	35.2		000					
125 33°021N 166°424W 5871 V20-96 V20-98 V20-97 V20-97 V20-98 V20-98 V20-98 V20-98 V20-98 V20-99 V20	- 1	125	3.56	64°47"		6-0						0.	0.	6.6	3, 3	00
125 32°04" 168°44" 5841 V20-97 V20-98 V20-98 V20-98 V20-98 V20-98 V20-98 V20-98 V20-98 V20-99 V20-9	-	N	3 ° 0 2	66°421	P-	6-0						0.	0.	1.6	8.3	7
12 to 31 ** 101 to 170 ** 35 tw 5673 120 ** 948 120 to 120 to	_	125	2°04	68°441	-	6-0						0.	0 .	7.8	2.0	6
126 30°21'N 172°17'W 5486 V20-99		120	1°10	70°351	~	6						0 .	0 .	0.4	9.5	6.
126 31 III'N 177 49'W 5216 V20-102 126 33°58'N 177°50'W 34±2 V20-103 126 33°58'N 177°50'W 34±2 V20-103 126 37°18'N 177°50'W 34±2 V20-104 126 37°18'N 177°50'W 5449 V20-104 126 39°00'N 178°17'W 5336 V20-105 127 39°00'N 178°17'W 5336 V20-105 127 39°00'N 178°17'W 5336 V20-105 127 37°18'N 178°17'W 538 RCI0-179 1.25 2.67 226.39 85 6.13 0.00 0.00 25.87 7+.13 0.6 127 37°12'N 170°51'E 5302 RCI0-177 1.25 2.67 226.39 85 6.13 0.00 0.00 27.16 72.84 1.2 127 38°06'N 170°01'E 3849 RCI2-416 1.32 2.79 175.96 83		126	0°21	12017	00	6						0.	0.	9.9	0.0	6.
126 33°58¹N 177°50¹W 34±2 V20-103 126 33°58¹N 177°50¹W 34±2 V20-104 126 37°18¹N 178°10¹W 5449 V20-104 126 37°18¹N 178°10¹W 5449 V20-104 126 39°00¹N 178°17¹W 5336 V20-105 127 39°00¹N 178°17¹W 5336 V20-105 127 39°00¹N 178°17¹W 5380 RC10-179 1.23 2.32 221.80 83 5.22 0.00 0.11 31.08 68.81 1.4 127 37°48¹N 172°20¹E 5808 RC10-177 1.25 2.67 226.39 85 6.13 0.00 0.00 27.16 72.84 1.2. 127 38°06¹N 170°01¹E 3849 RC12-41 1.50 2.60 85.64 69 2.25 128 36°24¹N 166°44¹E 5319 RC11-165 1.22 2.31 230°17 84 5.38	~	126	1 1	77 491	-	- 10						0.	0.	6.6	3,3	rU.
12 to 37 * 18 to 17 * 10 to 17 * 10 to 17 to	~	126	3°58	17.501	andre	- 10						0	. 3	1. 1	7.5	. 3
12 39 00 1	0	12 t,	7 ° 18	78°10'	400	0-10						0	0	7.4	5.5	1-
127 37°128"N 173°43"E 4312 RC10-179 1.23 2.32 221.80 83 5.22 0.00 0.11 31.08 68.81 1.4° 127 37°12"N 172°20"E 5808 RC10-177 1.25 2.67 226.39 85 6.13 0.00 25.87 74.13 0.6′ 127 38°06"N 170°01"E 3849 RC12-417 1.50 2.60 85.64 69 2.25 128 36°24"N 166°44"E 5319 RC12-416 1.32 2.79 175.96 83 4.97 12.5 37°03"N 166°34"E 4978 RC11-165 1.22 2.31 230.17 84 5.38 1.5 34°03"N 104°50"E 6088 V21-145		120	00.6	78 º 17	(4)	0-10						0.	00	7.8	1. 2	~.
127 37:48'N 172°20'E 5808 RC10-178 1.23 2.32 221.80 83 5.22 0.00 0.00 25.87 74.13 0.6' 127 37°12'N 170°51'E 5302 RC10-177 1.25 2.67 226.39 85 6.13 0.00 0.00 27.16 72.84 1.21 1.21 1.22 2.79 175.96 83 4.97 1.25 2.31 2.30.17 84 5.38 0.18 0.06 30.27 69.49 1.6 1.3 1.2 2.31 2.30.17 84 5.38 0.18 0.06 30.27 69.49 1.6 1.6 1.3 1.2 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	01	127	9:38	73.431		C10-17						0.		1.0	00	4.
127 37°12'N 170°51'E 5302 RC10-177 1.25 2.67 226.39 85 6.13 0.00 0.00 27.16 72.84 1.2. 127 38°06'N 170°01'E 3849 RC12-417 1.50 2.60 85.64 69 2.25 128 36°24'N 166°44'E 5319 RC12-416 1.32 2.79 175.96 83 4.97 12.5 37°03'N 166°34'E 4978 RC11-165 1.22 2.31 2.30.17 84 5.38 1.2 3.3 1.2 2.31 2.30.17 84 5.38 1.3 30.27 69.49 1.6	~	127	2 + 28	72.201	0	C10-17	1,23	2.32	2].	83	2	0	0	500	+	9.
127 38°06'N 170°01'E 3849 RC12-417 1.50 2.60 85.64 69 2.25 128 36°24'N 166°44'E 5319 RC12-416 1.32 2.79 175.96 83 4.97 12. 37°03'N 166°34'E 4978 RC11-165 1.22 2.31 230.17 84 5.38 12. 34°03'N 164°50'E 6088 V21-145 1.60	4-44	127	7 ° 12	70°51	0	C10-17	2 .	2.67	26.	80 20	,	0	0.	7.1	2.8	. 2
128 36°24'N 166°44'E 5319 RCI2-416 1.32 2.79 175.96 83 4.97 12 37°03'N 166°34'E 4978 RCII-165 1.22 2.31 230.17 84 5.38 12 34.03'N 164°50'E 6088 V21-145 0.16 1.6	10	127	90.8	70.01		C12-41		2.60	00	69	2					
12 37 03 1N 166 34 E 4978 RC11-165 1.22 2.31 230.17 84 5.38 12 34 03 1N 164 50 E 6088 V21-145 69.49 1.6	9	N	6.24	66°441	_	C12-41	.3	2.79	75.	83	6					
12 34.03'N 164.50'E 6088 V21-145 69.49 1.6	~	<i>f</i>	7 0 0 3 1	66°341	P~	Cl 1-16	2	2.31	30.	84	60					
	00		1.03	105.49	000	1-14						F	0.	0.2	9.4	1,68

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

0,00 0.95
0.00 00.0
0.0
0.00
.00 00.1
.00 00.
•
0.00 1.36
.00 0.0
.00 0.4
.00 1.4
.00 1.6
.00 00.5
.00 1.9
0.00 1.58
.00 1.7
.00 00.1
.39 29.0
.00 1.0
0.00 0.2
0.00 2.4
0.00 0.6
0.00 2.9
0.00 1.9
0 0.00 1.11
0.00 1.4
0.00 0.7
0
0.00 15
9.0 00
0.00 1.26
0.00 10.40

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Mean	Size.			40.50	571.00																											2,81				
	clay %			19.60	3,80	45.75																										54, 24				(
Texture	silt %			36, 15	7.47																											42.66				
Te	sand %			44.25	88.07	0.62																										3, 10				
	gravel			0.00		0.00																										00.00				
Void	Ratio	4.64	4.09				2,41	0.	4.67	_															2.67	6	5	2,92	5	6	0	3	6	5, 33	~	(
Porosity	%	82	80				70	29	82	80	79	78	82	74	78	74	77	78	74	85	69	98	72	89	72	83	78	74	77	83	83	81	4	84	22	1
Moisture I	Content % dry wt.		3.2					85.04	211.41		~				158.72	114.95		144.05	114.75				107.60	83, 59	101,64	215.64	135.04	117.56	132.29	229.44	210.32	146.12	4	191.91	55.03	(
Dry	Density g/cc		2.64				7	4		9	7	5	7	4	8	5	~	rU	5	2.	3	3	3	rU.	2.59	2	[~	4	9 .	Ι.		6	9 .	-	4	ı.
Wet	Density g/cc		3				4	4	1.22	α.	3		1, 31	~	1, 29	4.	4.	1,34	4	2.	4.	Γ.	4.	TL)		1, 23	1,38	1,38	· ~	1.21	. 2	(4.)	1.34	2	1, 63	
Lamont	Core No.	- 16	RC12-135	0-13		0 - 13		00	RC12-161	- 16	- 13	- 16	- 16	- 15	-39	- 15	- 15	C12-15	- 15	- 38	C11-16	-38	- 39	-39	RC12-392	-38	- 15	RC12-152	- 15	-37	RC12-378	1	RC12-140	RC12-139		
Depth in	meters	23 19	6736	1503	1106	2598	1763	1400	3782	4030	~3673	4001	4091	4 189	2840	4228	4281	4486	4318	2650	4449	2496	1103	868	1008	1622	4449	4259	4784	10 10	1401	4515	4876	3 153	909	
uc	Long.	531	1.50	0 34'	40.25	9.551	39.05	8 23 1	138°17'E	8 . 02 1	7.54	37.521	37 0 471	1++-2	37 0 361	37.081	37.071	20	6,351	6.301	6.27	180.9	6.021	5°431	135°43¹E	5 ° 421	5.361	35°23'	5 1	4.331	4 . 3	10	+	40	34.091	113400441
Location	Lat.	122.9	2.391	20581	3.051	4.431	3 121	1051	2°151	3 000	3:14	3 ° 30 1	1031	0.521	9 0 47 1	1044	1°381	0 0 10	2 2 281	8°551	1.06	120.6	124.6	165.6	39°59'N	7 ° 15	1°541	0 : 44	20321	6.541	6.57	9 8 C	1 501	2°181	3 0001	2000
Marsden	Square	\sim	130		130	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	131	7	131	131	131	131	101
Map	no.	0.1	0.1	0.1	01	01	00	00	00	3	3	~	00	3	3	4	4	4	4	7	d.	A.	-	4	349	u	LI)	10	1	(1)	111	LL)	177.3	U)	LS 3	1

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Map	Marsden	Location	ion	Depth in	Lamont	Wet	Dry	Moisture	Porosity	Void		\vdash	exture		Mean
0	uare	Lat.	Long.	meters	Core No.	Density g/cc	Density g/cc	Content % dry wt.	%	Ratio	gravel %	sand %	silt %	clay %	Size
61			33°481	1437	- 38	2	~	70.	80						
62		0431	3 ° 0'	2113	O	1, 23	2.36	2 19. 27	83	5.24					
63		1.0	32°501	4854	C12-15	4	ω.	98.	72	5					
6.4		9.55	2 401	3027	- 38	2.	6.	69	88	0					
65		7:35	32°15	2226		1.22	4.	53,	98	3				(
99		5.351		2582	C10-22	3	+	66.	80		0.	LO	0.6	~~	5 (
67		8 ° 12 1	0	1657							00.00	3	00	~	00
89		5°56	270	2765	C10-22	~	6	84.1		.5	0.	$\overline{}$	2.5	^^ '	2
69		7°54	27 ° 1	2582	RC11-186	1.24	2.07	182.31	79	3,83	00.00	$\overline{}$	2. 1	· O	0
7.0		7027	27°1	2534	C10-22	2	4.	83.7		9.	0	$\overline{}$	9. 1	P	7 '
7 1		7°54	2703	2628	V20-76						0	0	4. ∞	_	- 1
72		0.45	270	2536	C10-22	1.26	4.	98.4		4.82		\sim	†. l	(n)	1, 16
73		6°18	28°0	2774	C10-22			10	84		0.00	\circ	5.5	\sim	× ×
74		0°28	8 ° 25 1	3200	-2		2, 73	88.9		4.	0.00	0	7.2	10	9
- (-		7042	28°401	2659	V20-77							3	4,6		3
76	10	7.09	30.07	~2670	1-18	1, 35	2,47	133,82	77	3,35	0.00	\sim	1-		, i
77	10	9.04	30°5	1159	C10-2							∞	2.3	P	3249.0
78		7 ° 15	0	2983	7							_	3.0	~	1. 6
79		6°44	31°3	3319								3	6.2	200	1.48
80		1.04	32°2	3749	7							-	00		1, 2
0 00		6.50	3 2 1	711	[00.00		9.3	1.03	1.4
82	LO	5°58	34°25'	922	- 18	4		11.8					0.9	()	2.3
83	LO	9 . 18	4.391	645	-2	1.34	2.26	123.98	73	2.83		0	2	71	1, 3
00		3°30	35°00'	801	-80						0	00	8.6	LL 1	3, 1
85	158	5	35°141	3559	RC10-222	1, 44	2.66	106,59	74	2.87	00.00	0.07	38.37	61,56]; &
98		5°56	3	4294	00							LL)	ω.	Ψ.	I. 3
87		4.57	38°2	4254	RC11-190						00.00	\circ	L.	41.	I. 0
00		5°45	20	4345	3						0.	(,)	3.6	11.	1, 0
68		2002	39°5	4116	1-19	1.48	2.70	95.21	72	2.60	0.	(1)	4.	_	1. 7
06	10	4.3	39°57	4387	C11-1						00.00	\circ	6.7	1 1	0.8
91	LO	9.43	40°3	3959	- 18						00.0	1.50	2.9	No. 2	-
392		5°27	I o I	4457	4						0.		-	LL I	1, 15
93		000	0.2	4438	RC11-185						00.00		4.		
394		4°54	4	3817	00						00.00		2. (1 4	
395		3 ° 37	0 . 8	5138	0 - 8						00.00	0.07		_	
96		4		∞	0 - 8						00.00	0.08	0	-	0.9

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Map	Marsden	Location	ion	Depth in	Lamont	Wet	Dry	Moisture	Porosity	Void		Tey	exture		Mean
no.	Square	Lat.	Long.	meters	Core No.	Density	Density	n		Ratio	gravel	sand	silt	clay	Size
						g/cc	g/cc	% dry wt.	P.		£°	8	%	%	=
7		0°111	1.3		00						00.00	0.44	23, 63	75.93	1, 20
00	160	0431	7 0 1	0	- 17	2	5	27. 1	85						
6	160	120.9	102	N	RC12-182	7	9.	18.0	75						
00	160	43°00'N	2 . 2	\sim	RC12-176	1,33	2,32	135, 28	76	3, 17					
	100	160.	158°57'W		RC12-181	3	9	49.8	80						
12	160	4.001	0.6	-	RC12-183	~	4	42.4	77	, ,					
03	160	6,361	0	the said	RC11-171						00	10	9.5	9.9	1-
4	161	0.081	50	0	V21-174	1.36	2,35	120, 20	7.4	2.86	0.	0	0.2	9.6	0
15	161	1,501	30	-	RC11-170						0.	5	4.6	4.8	~
9	161	44.22'N	63 3	5493	V21-173							1.40	25.51	73.09	2, 50
7	161	531	0		V21-171	[-	2.40	5.7		∞	0.	1.	2.7	6.5	∞
∞	161	8 38	1.7	-	-43	4	2.39	7. 1		~					
6	162	371	0.0	0	-20	.3	2.74	55. 1		.3	. 1	9.	4.9	8.2	ľΩ
C	10.2	2 10	14-	9	1	1.34	2.88	163.25	82	4.75	_	0.04	22.59	77.37	1, 23
_	162	7 13	0 . 5	4	-20	. 3	2.29	34.7		1	0 .	6.	4.0	3.9	∞
2	162	2:	1 30	9	RC12-430	4	2.89	23.6		9.					
3	162	1°42	1.571	00	C10-20	~	2.67	77.9		00	0.	0.	2.9	0	0.
4	162	5 37	3.001	FU.	C10-20		2.69	63, 4		4.	0.	0.	9.7	N	4.
2	162	8 32	3 13 1	~	-20	+	2,59	12. 6		6.	∞	∞	1.9	(4)	. 2
9	162	3:24	8-52	00	- 10						0		7.2	9	2.
7	162	5°27	9 . 151	9	V20-108						0		3,3	5	00
∞	162	10 10	9.391	9	- 10						0	2 .	4.5	N	6.
5	163	9.31	10 6	0	C10-18	1.32	2.45	153, 43	79	3,81	00.00	0.69	37.97	61,34	1,98
0.	163	5:37	7.521	10	- 18						0	6.	1. 1	0	5
		4.05	05.9	9	1	3	9.	31.6		4	$\overline{}$. 2	9.5	0	U
٠,	163	3:46	1.11	00	- 16	1.32	2,54	154,72	79	3.98	0		5.5	~	1
23	164	7057	8°4	10	- 11						0	10	7.3	0	~
4	104	1.54	1:451	N	- 12						0	6.	8.3	1	Γ.
5	164	0°41	165.99	9	2-41		9.	72.7		~					
2	164	3 17	66.541	0	-41	1.38	2.72	136.78	79	3.77					
[-]	164	0.58	1 - 1	00	0-12						00.00	1,08	42.59	57,33	2,52
5.	164	17	160. 19	00	C12-4	3		67.0		[~					
~	164	4°17	63°181	N	12-41	1,43	2.64	109,47	74	2.93					
30	164	8 .00	2°01	-	1-15(00	7	3.3	
2	104	~	1	LO	V20-122						00.00	2.	rU.	6	2, 19
	164	N.50 24	160°36'E	5477	V21-148							2.25		6	1,80

TABLE 3. PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC

Map	Marsden	Location	ion	Depth in	Lamont	Wet	Dry	Moisture	Porosity	Void		1	xtur		Mean
0	Square	Lat.	Long.	meters	Core No.	Density g/cc		Content % dry wt.	2/0	Ratio	gravel %	sand %	silt %	clay σ_5'	Size
3	Ś	5 0 8 .	0°281	99	1-14							00	2.	8.7	
134	165	46°15'N	157。551臣	4903	0						00.00	0.74	44.57	54.69	2,55
3	9	0 - 17	6.551	50	0-12							0	8.2	1.3	∞
3	9	2.091	5.521	5 1								. 5	7.3	2. 1	0
3	9	5°501	4.301	53	V20-124							.3	5.4	2. 1	[-
3	9	3.291	4°22'	54	2								3.7	6. 1	5
3	9	2.07	10371	60	C12-17			96.		5					
4	9	0 111	0 141	33	-40	2		~		3					
4	9	20211	185.6	94	- 17	4		200							
4	9	2 0 3 9 1	8 ° 12 1	24	RC12-170	1.36	2.31	119.50	73	2,80					
4	9	0.501	48.081	7	- 40	_		18.							
7	9	3.001	6.041	8	- 16	70		81.		0.					
4	166	125.0	44.561	98	- 16	4		22.		5					
4	106	0.55	٠ ١	90	-40	2.		25.		0.					
4	167	0°31'	37:31	99	2-39	2.		96.		70					
4	167	0.19	6.141	33	-39	3		48.		2.					
4	167	0.46	35,391	04	- 39			65.		4.					
10	167	190.0	5 . 121	83	∞	5		.69		00					
5	167	0°481	34°361	49	- 38	C1		01.		00					
20	167	0.50	34°2	53	∞	2		63.							
LO	167	00.00	33°17	29	- 30	~		0		3, 29					
2	194	1.03	0	78	$\overline{}$	3		35.		9.	0.	3	4.9	9	2.4
40	194	100.2	0.8	95	~						0.	. 3	0.8	00	1, 3
LO	194	1°291	9.9	63	∞						0.	0.22	0.2	9.5	ij
5	194	3 ° 181	35°4	28	∞						1, 38	∞	6. 1	3.0	351.0
50	194	1.031	3 ° 4	15	2	2	. 2	05.5	82		0.	0.	9.7	2	1. 3
20	194	0.331	1 ° 3	83	2	1,40		123.48	77	3, 38	0 .	n .	3.2	6.7	5
9	195	0.57	0.9	33		4	00	16.8	27	. 3	7	.3	6.5	5.3	2.9
9	195	3 ° 30 1	45°3	90	1	4	9.	13.9	75	0	0.	5	6.0	1,4	2.3
9	195	125.9	, 4	0	RC11-176	5	2.92	00	72	9.	00.00	0.62	38.12	$\overline{}$	1:00
9	195	0.551	43°1	90	-21						4.67	9 .	50	2.8	0
9	195	3 0 9 1	02	86	RC11-180						14.52	4.	4	LO	
9	195	5 . 111	0 ° 1	54	~						7 .	-	0.1	7.9	9
466	196	0°581	151°10'W	∞	RC10-216		9.	5.4	99	0					
9	196	2.351	$\stackrel{\circ}{\vdash}$	19	1	1,83	2.76	41.06	53	1, 14	50.75	31,89	12.42	4.94	2214.09

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

Square	n Locat Lat.	ation Long.	Depth in meters	Lamont Core No.	Wet Density g/cc	Dry Density g/cc	Moisture Content % dry wt.	Porosity %	Void Ratio	gravel	Tex sand %	exture silt %	clay %	Mean Size
0	2°29	0.	4601	- 17	, ~			82						
196	N.90.09	7 0 141	6	C12-1	1, 42	2,51	106,04	72	2. 69					
0	1.01		4887	RC10-215	70	4.	67.3	79		17.00	0.30	47.14	35,56	17,33
196	3°54	8°2	6384	RC12-178	4.	4.	1,4	7.1						
0	20.2	3	06	V21-167						0.	~	3.7		9
0	0.59	0 。	73	0-2	1,54	2,33	64.58	09	1,52	0.19). 6		3
0	1°15	164°53'W	80	- 1						0.		00		0
0	3°12	5	9	RC11-173	1,43	2,42	98,38	70	2,41	0		Ł. 2		∞
0	2°21	S	7011	- 1						00.00	1,54	4:		0
0	4.55	.4	9	V21-168						. 3		1.4		rU
0	1°49	7 ° 4	19	-2						0.		1.2		~
0	4016	168°19'W	00	V21-169						0.		3.2		00
0	1°25		10	V21-166						0.		. 0		5
0	1.06	0.0	23	RC10-212	1.27	. 2	75.3	80	0.	0		5.4		[-
0	0°55	1°3	26	RC10-207	4.	∞	TU.	22	.5	0), 4		4
	0.03	0	13	1	1,42	2.52	107.09	73	2.73	0	2.00	5, 3		0
	1°38	1°4	73	-2	5	4.	9 .	99	0.	0		4.		0
0	6°24	2°2	9 1	1-1	ry.	.3	3	61	.5	0.		7.0		
0	0.9	2°2	57	V21-165						0.		5.9		0
	0°48	2°3	28	RC10-210	1,44	2.38	92,53	69	2, 23	0		3.5		
0	3.04	3 ° I	17	-2						0.		t. 0		00
0	0°44	3°5	3 1	RC10-200	,					0.		3.9		m
198			69	-	1,36	2.22	111.48	7.1	2.51	00.00	2.37). 1		0
0	8 ° 0 2	120.9	27	21-16						0.		1.0		63
0	3°22	0.1	73	10						0.	0	2.6		LO
0	0.20	176°15'W	87	- 16						0.), 4		\sim
	8°33		3 1	V21-162	1.52		6.	7.0	4	00.00	2.28	5.5		00
0	3°12	177°41'W	73	C10-19	_	1.87	212.59	80	4.02	0		. 5		,
0	2°15	8 °0	42	RC10-189	1, 39		2.9	70	3	0		1.0		9
0	3°54	178°30'W	80	- 11						0.		3.9		17.3
0		178°42'W	59	V20-112						0	1.49	±.		LL)
0	5°01	0.6	80	RC10-194	1.22	2, 39	237,45	80	5.76	0		1.6		Cc.)
0	4.541	179°42'W	81	V20-114						0		9.		0
	I ° 0	6.6	3851	-						0		53.98	45, 19	3.96
198	5.231	179°43'W	00	- 11						00.00	0.10	5.6		0
199	54°28'N	179°55'E	3414	FC12-420	1 34	2,74	155.07	81	4.31					

PHYSICAL PROPERTIES OF THE SUBSTRATE AS DETERMINED BY ANALYSIS OF SAMPLES FROM THE TOPS OF PISTON CORES - NORTH PACIFIC TABLE 3.

REFERENCES

USED AS SOURCE OF DATA GIVEN ON MAPS AND TABLES

REFERENCES

(Used as source of data given on Maps and Tables)

- Agassiz, Alexander, 1906, Report of the expedition, in Reports on the Scientific Results of the Expedition to the Eastern Pacific by the U.S. Fish Commission Steamer "Albatross": Memoirs Museum Comparative Zoology, Harvard College, v. 33, pt. 5, p. 1-50.
- Ahrens, L.H., Willis, J.P., and Oosthuizen, C.O., 1967, Further observations on the composition of manganese nodules, with particular reference to some of the rarer elements: Geochim. et Cosmochim. Acta, v.31, p.2169-2180.
- Arrhenius, G., 1952, Description of the sediment cores, in Pettersson, Hans, Editor, Reports of the Swedish Deep-Sea Expedition 1947-1948; Sediment Cores from the East Pacific v.5, pt.2, p.95-186.
- York, John Wiley & Sons, v. 3, p. 655-727.
- Barnes, S.S., and Dymond, J.R., 1967, Rates of accumulation of ferro-manganese nodules: Nature, v. 213, p. 1218-1219.
- Bender, M.L., Ku, Teh-Lung, and Broecker, W.S., 1970, Accumulation rates of manganese in pelagic sediments and nodules: Earth and Planet. Sci. Letters, v. 8, p. 143-148.
- Bonatti, Enrico, and Nayudu, Y.R., 1965, The origin of manganese nodules on the ocean floor: Am. Jour. Science, v. 263, p. 17-39.
- Buchanan, J. Y., 1892, On the composition of oceanic and litteral manganese nodules: Royal Soc. Edinburgh Trans., v. 36, p. 459-485.
- Carsola, A. J., and Dietz, R.S., 1952, Submarine geology of two flattopped northeast Pacific seamounts: Am. Jour. Science, v. 250, p. 481-497.

- Cronan, D.S., and Tooms, J.S., 1967, Geochemistry of manganese nodules from the N.W. Indian Ocean: Deep-Sea Research, v. 14, p. 239-249.
- Dietz, R.S., 1955, Manganese deposits of the Northeast Pacific sea floor: Calif. Jour. Mines and Geology, v.51, p.209-220.
- Emery, K.O., and Shepard, F.P., 1945, Lithology of the sea floor off southern California: Geol. Soc. America Bull., v. 56, p. 431-478.
- ESSA, 1965, International Indian Ocean Expedition, USC&GS Ship <u>Pioneer</u> 1964, data report: oceanographic stations, BT observations, and bottom samples: U.S. Dept. Commerce, v. 2, 183 p.
- Fisher, R. L., 1964, Pre; iminary results of Scripps Institution of Oceanography investigations in the Indian Ocean during Expeditions Monsoon and Lusiad 1960-1963: Univ. California, San Diego, 237 p. (S. I. O. Ref. 64-19).
- Fleming, J.A., Sverdrup, H.U., Ennis, C.C., Seaton, S.L., and Hendrix, W.C., 1945, Oceanography-I-B, in Scientific Results of Cruise VII of the Carnegie during 1928-29, v. 1-B, 315 p.
- Flint, J.M., 1905, A contribution to the oceanography of the Pacific: U.S. National Museum Bull. no. 55, 282 p.
- Goldberg, E.D., 1954, Marine geochemistry 1. chemical scavengers of the sea: Jour. Geology, v. 62, p. 249-265.
- Goldberg, E.D., and Arrhenius, G.O.S., 1958, Chemistry of Pacific pelagic sediments: Geochim. et Cosmochim. Acta, v. 13, p. 153-212.

- Hamilton, E. L., 1956, Sunken islands of the Mid-Pacific Mountains: Geol. Soc. America Mem. 64, 97 p.
- Hewett, D. F., Fleischer, Michael, and Conklin, Nancy, 1963, Deposits of the manganese oxides: supplement: Econ. Geology, v. 58, p. 1-51.
- Krause, D.C., 1964, Lithology and sedimentation in the southern continental borderland, in Miller, R.L., Editor, Papers in Marine Geology: New York, Macmillan Company, p. 274-318.
- Ku, Teh-Lung, and Broecker, W.S., 1969, Radiochemical studies on manganese nodules of deep-sea origin: Deep-Sea Research, v. 16, p. 625-637.
- Kullenberg, Borje, 1955, Deep-sea coring, in Petterson, Hans, Editor, Reports of the Swedish Deep-Sea Expedition 1947-1948, bottom investigations: v. 4, no. 2, p. 37-96.
- Lamont-Doherty Geological Observatory, Descriptions of cores, dredges and trawls: Palisades, New York, Columbia Univ., unpublished.
- Menard, H. W., 1960, Consolidated slabs on the floor of the eastern Pacific: Deep-Sea Research, v.7, p.35-41.
- Menard, H. W., Goldberg, E. D., and Hawkes, H. E., Composition of Pacific sea-floor manganese nodules: Scripps data, unpublished.
- Mero, J. L., 1962, Ocean-floor manganese nodules: Econ. Geology, v. 57, p. 747-767.
- 1965, The Mineral Resources of the Sea: Amsterdam, Elsevier, 304 p.

- Murray, John, and Lee, G. V., 1909, The depth and marine deposits of the Pacific: Memoirs Museum Comparative Zoology, Harvard College, v. 38, no.1, 171 p.
- Murray, John, and Renard, A., 1891, Report on deep-sea deposits, in Thomson, C.W., Editor, Report on the Scientific Results of the Voyage of H.M.S. <u>Challenger</u> During the Years 1873-76: London, Eyre and Spottiswoode, v. 1, 5, p. 1-525.
- National Oceanographic Data Center, 1971, Listing of bottom sediment sampling information for all samples which indicate manganese in the surface sediment description, 55 p.
- Nikolayev, D.S., and Yefimova, E.I., 1963, On the age of iron-manganese concretions from the Indian and Pacific Oceans: Geochemistry, no.7, p.703-714.
- Olausson, Eric, 1960, Sediment cores from the West Pacific, in Pettersson, Hans, Editor, Reports of the Swedish Deep-Sea Expedition 1947-1948, v. 6, no. 8, p. 169-214.
- Pettersson, Hans, 1957, The voyage, in Reports of the Swedish Deep-Sea Expedition, v. 1, no. 1, p. 1-123.
- Revelle, R., Bramlette, M., Arrhenius, G., and Goldberg, E.D., 1955, Pelagic sediments of the Pacific: Geol. Soc. America, Special Paper 62, p. 221-236.
- Riley, J.P., and Sinhaseni, P., 1958, Chemical composition of three manganese nodules from the Pacific Ocean: Jour. Marine Research, v. 17, p. 466-482.
- Scripps Institution of Oceanography, 1950, MidPac Expedition, R/V Horizon, list of cores and dredge samples, 9 p.

- Skornyakova, N.S., Andrushchenko, P.F., and Fomina, L.S., 1962,
 The chemical composition of iron-manganese concretions of the
 Pacific Ocean: Okeanologiya, v. 2, p. 264-277.
- Willis, J.P., and Ahrens, L.H., 1962, Some investigations on the composition of manganese nodules, with particular reference to certain trace elements: Geochim. et Cosmochim. Acta, v. 26, p. 751-764.

