COMSM1201 : Data Structures & Algorithms

Dr. Neill Campbell Neill.Campbell@bristol.ac.uk

University of Bristol

November 2, 2021

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

• When a function calls itself, this is known as recursion.

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.
- Can sometimes lead to very simple and elegant programs.

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.
- Can sometimes lead to very simple and elegant programs.
- Let's look at some toy examples to begin with.

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.
- Can sometimes lead to very simple and elegant programs.
- Let's look at some toy examples to begin with.

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.
- Can sometimes lead to very simple and elegant programs.
- Let's look at some toy examples to begin with.

```
#include <stdio.h>
     #include <string.h>
     #define SWAP(A,B) {char temp; temp=A;A=B;B=temp;}
     void strrev(char* s, int n);
     int main (void)
        char str[] = "Hello World!":
        strrev(str. strlen(str)):
        printf("%s\n", str);
        return 0:
14
15
     /* Iterative Inplace String Reverse */
17
     void strrev(char* s. int n)
18
19
        for(int i=0, j=n-1; i<j; i++, j--){
            SWAP(s[i], s[j]);
21
22
```

Execution:

!dlroW olleH

Recursion for *strrev()*

```
#include <stdio.h>
    #include <string.h>
    #define SWAP(A,B) {char temp; temp=A;A=B;B=temp;}
    void strrev(char* s, int start, int end);
    int main(void)
       char str[] = "Hello World!";
        strrev(str. 0. strlen(str)-1):
        printf("%s\n", str);
13
14
       return 0;
15
    /* Recursive : Inplace String Reverse */
    void strrev(char* s. int start, int end)
19
       if(start >= end){
           return:
       SWAP(s[start], s[end]);
23
24
        strrev(s. start+1, end-1);
```

Execution:

!dlroW olleH

Recursion for *strrev()*

```
#include <stdio.h>
    #include <string.h>
    #define SWAP(A.B) {char temp: temp=A:A=B:B=temp:}
    void strrev(char* s, int start, int end);
    int main(void)
       char str[] = "Hello World!";
        strrev(str. 0. strlen(str)-1):
        printf("%s\n", str);
13
14
       return 0:
15
    /* Recursive : Inplace String Reverse */
    void strrev(char* s, int start, int end)
19
        if(start >= end){
20
           return:
       SWAP(s[start], s[end]);
23
24
        strrev(s. start+1, end-1);
```

• We need to change the function prototype.

Execution:

!dlroW olleH

Recursion for *strrev()*

```
#include <stdio.h>
    #include <string.h>
    #define SWAP(A.B) {char temp: temp=A:A=B:B=temp:}
    void strrev(char* s, int start, int end);
    int main(void)
       char str[] = "Hello World!";
       strrev(str. 0. strlen(str)-1):
       printf("%s\n", str);
13
14
       return 0:
15
    /* Recursive : Inplace String Reverse */
    void strrev(char* s, int start, int end)
19
       if(start >= end){
20
           return:
       SWAP(s[start], s[end]);
23
24
       strrev(s. start+1, end-1):
```

- We need to change the function prototype.
- This allows us to track both the start and the end of the string.

Execution:

IdlroW olleH

The Fibonacci Sequence

A well known example of a recursive function is the Fibonacci sequence. The first term is 1, the second term is 1 and each successive term is defined to be the sum of the two previous terms, i.e. :

```
fib(1) is 1
fib(2) is 1
fib(n) is fib(n-1)+fib(n-2)
```

1,1,2,3,5,8,13,21, ...

```
#include <stdio.h>
    #define MAXFIB 24
    int fibonacci(int n);
     int main(void)
        for(int i=1: i <= MAXFIB: i++){
           printf("%d = %d\n", i, fibonacci(i));
13
14
15
        return 0;
16
17
     int fibonacci(int n)
19
        if(n \le 2)
           return 1;
       int b = 1:
        int next:
        for (int i=3; i \le n; i++){
           next = a + b:
           a = b:
           b = next:
        return b:
32
```

```
#include <stdio.h>
    #define MAXFIB 24
    int fibonacci(int n):
     int main(void)
        for(int i=1: i <= MAXFIB: i++){</pre>
            printf("%d = %d\n", i, fibonacci(i)):
13
14
15
        return 0;
16
17
     int fibonacci(int n)
19
20
        if(n \le 2)
           return 1;
        int b = 1:
        int next:
        for (int i=3; i \le n; i++){
           next = a + b:
           a = b:
29
           b = next:
30
31
        return b:
32
```

Execution:

```
1 = 1
 = 13
 = 21
9 = 34
10 = 55
11 = 89
12 = 144
13 = 233
14 = 377
15 = 610
16 = 987
17 = 1597
18 = 2584
19 = 4181
20 = 6765
21 = 10946
22 = 17711
23 = 28657
24 = 46368
```

```
#include <stdio.h>
    #define MAXFIB 24
     int fibonacci(int n);
     int main(void)
        for(int i=1; i <= MAXFIB; i++){</pre>
           printf("%d = %d\n", i, fibonacci(i));
        return 0:
18
19
20
     int fibonacci(int n)
        if (n == 1) return 1:
        if (n == 2) return 1;
        return ( fibonacci (n-1) + fibonacci (n-2));
23
```

```
#include <stdio.h>
    #define MAXFIB 24
     int fibonacci(int n);
     int main (void)
        for(int i=1; i <= MAXFIB; i++){</pre>
           printf("%d = %d\n", i, fibonacci(i));
        return 0:
     int fibonacci(int n)
18
19
20
        if (n == 1) return 1:
        if (n == 2) return 1:
        return ( fibonacci (n-1) + fibonacci (n-2));
```

It's interesting to see how run-time increases as the length of the sequence is raised.

Maze Escape

The correct route through a maze can be obtained via recursive, rather than iterative, methods.

Maze Escape

The correct route through a maze can be obtained via recursive, rather than iterative, methods.


```
bool explore(int x, int y, char mz[YS][XS])
  if mz[y][x] is exit return true;
  Mark mz[y][x] so we don't return here
  if we can go up:
    if(explore(x, y+1, mz)) return true
  if we can go right:
    if(explore(x+1, v, mz)) return true
  Do left & down in a similar manner
  return false: // Failed to find route
```

 Here we consider the ways to permute a string (or more generally an array)

- Here we consider the ways to permute a string (or more generally an array)
- Permutations are all possible ways of rearranging the positions of the characters.

Execution:

ABC

ACB

BAC

BCA

CBA CAB

- Here we consider the ways to permute a string (or more generally an array)
- Permutations are all possible ways of rearranging the positions of the characters.

Execution:

ABC

ACB

BAC

BCA

CBA CAB

- Here we consider the ways to permute a string (or more generally an array)
- Permutations are all possible ways of rearranging the positions of the characters.

${\sf Execution}:$

ABC ACB BAC

BCA CBA CAB

```
// From e.g. http://www.geeksforgeeks.org
    #include <stdio.h>
    #include <string.h>
    #define SWAP(A,B) {char temp = *A; *A = *B; *B = temp;}
     void permute(char* a, int s, int e);
     int main()
         char str[] = "ABC";
         int n = strlen(str);
         permute(str. 0, n-1);
         return 0:
     void permute(char* a, int s, int e)
18
        if (s == e){
          printf("%s\n", a);
          return:
        for (int i = s: i \le e: i++)
24
           SWAP((a+s), (a+i)); // Bring one char to the front
25
           permute(a, s+1, e);
26
           SWAP((a+s), (a+i)); // Backtrack
27
28
```

 Raising a number to a power n = 2⁵ is the same as multiple multiplications n = 2*2*2*2*2.

- Raising a number to a power n = 2⁵ is the same as multiple multiplications n = 2*2*2*2*2.
- Or, thinking recursively, $n = 2 * (2^4)$.

- Raising a number to a power n = 2⁵ is the same as multiple multiplications n = 2*2*2*2*2.
- Or, thinking recursively, $n = 2 * (2^4)$.

- Raising a number to a power n = 2⁵ is the same as multiple multiplications n = 2*2*2*2*2.
- Or, thinking recursively, $n = 2 * (2^4)$.

```
/* Try to write power(a.b) to computer a^b
        without using any maths functions other than
        multiplication :
        Try (1) iterative then (2) recursive
        (3) Trick that for n\%2==0, x^n = x^(n/2)*x^(n/2)
    #include <stdio.h>
10
11
     int power(unsigned int a, unsigned int b);
12
     int main(void)
16
        int x = 2:
        int v = 16:
19
        printf("%d^%d = %d\n", x, y, power(x,y));
20
21
     int power(unsigned int a, unsigned int b)
```

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

 The need to search an array for a particular value is a common problem.

- The need to search an array for a particular value is a common problem.
- This is used to delete names from a mailing list, or upgrading the salary of an employee etc.

- The need to search an array for a particular value is a common problem.
- This is used to delete names from a mailing list, or upgrading the salary of an employee etc.
- The simplest method for searching is called the sequential search.

- The need to search an array for a particular value is a common problem.
- This is used to delete names from a mailing list, or upgrading the salary of an employee etc.
- The simplest method for searching is called the sequential search.
- Simply move through the array from beginning to end, stopping when you have found the value you require.

- The need to search an array for a particular value is a common problem.
- This is used to delete names from a mailing list, or upgrading the salary of an employee etc.
- The simplest method for searching is called the sequential search.
- Simply move through the array from beginning to end, stopping when you have found the value you require.

- The need to search an array for a particular value is a common problem.
- This is used to delete names from a mailing list, or upgrading the salary of an employee etc.
- The simplest method for searching is called the sequential search.
- Simply move through the array from beginning to end, stopping when you have found the value you require.

```
#include <stdio.h>
     #include <string.h>
     #include <assert.h>
     #define NOTFOUND -1
     #define NUMPEOPLE 6
     typedef struct person {
             char* name; int age;
     } person;
     int findAge(const char* name, const person* p, int n);
     int main (void)
        person ppl[NUMPEOPLE] = { {"Ackerby", 21}, {"Bloggs", 25},
                   {"Chumley", 26}, {"Dalton", 25},
                   {"Eggson", 22}, {"Fulton", 41} };
        assert(findAge("Eggson",
                                    ppl, NUMPEOPLE) == 22);
        assert (find Age ("Campbell", ppl, NUMPEOPLE) == NOTFOUND);
        return 0:
23
24
     int findAge(const char* name, const person* p, int n)
25
        for (int j=0; j < n; j++){
27
           if (strcmp(name, p[i], name) == 0){
              return p[i].age:
29
30
31
        return NOTFOUND:
32
```

• Sometimes our list of people may not be random.

- Sometimes our list of people may not be random.
- If, for instance, it is sorted, we can use strcmp() in a slightly cleverer manner.

O: Algorithms I - Search

- Sometimes our list of people may not be random.
- If, for instance, it is sorted, we can use strcmp() in a slightly cleverer manner.
- We can stop searching once the search key is alphabetically greater than the item at the current position in the list.

Sequential Search

- Sometimes our list of people may not be random.
- If, for instance, it is sorted, we can use strcmp() in a slightly cleverer manner.
- We can stop searching once the search key is alphabetically greater than the item at the current position in the list.
- This halves, on average, the number of comparisons required.

O : Algorithms I - Search 13 / 30

Sequential Search

- Sometimes our list of people may not be random.
- If, for instance, it is sorted, we can use strcmp() in a slightly cleverer manner.
- We can stop searching once the search key is alphabetically greater than the item at the current position in the list.
- This halves, on average, the number of comparisons required.

O : Algorithms I - Search 13 / 30

Sequential Search

- Sometimes our list of people may not be random.
- If, for instance, it is sorted, we can use strcmp() in a slightly cleverer manner.
- We can stop searching once the search key is alphabetically greater than the item at the current position in the list.
- This halves, on average, the number of comparisons required.

```
#include <stdio h>
     #include <string.h>
     #include <assert.h>
     #define NOTFOUND -1
     #define NUMPEOPLE 6
     typedef struct person{
             char* name; int age;
     } person:
11
     int findAge(const char* name, const person* p, int n):
12
13
     int main (woid)
14
15
        person ppl[NUMPEOPLE] = { {"Ackerby", 21}, {"Bloggs", 25},
                    {"Chumley", 26}, {"Dalton", 25},
                   {"Eggson", 22}, {"Fulton", 41} };
        assert (find Age ("Eggson".
                                    ppl NUMPEOPLE) == 22):
        assert (find Age ("Campbell", ppl, NUMPEOPLE) == NOTFOUND):
21
        return 0:
22
23
24
     int findAge(const char* name, const person* p, int n)
25
        for (int j=0; j < n; j++){
27
           int m = strcmp(name, p[i], name);
           if (m == 0) // Braces!
              return p[i].age:
           if(m < 0)
31
              return NOTFOUND:
32
33
        return NOTFOUND:
```

O : Algorithms I - Search 13 / 30

 Searching small lists doesn't require much computation time.

0 : Algorithms I - Search 14 / 30

- Searching small lists doesn't require much computation time.
- However, as lists get longer (e.g. phone directories), sequential searching becomes extremely inefficient.

O : Algorithms I - Search 14 / 30

- Searching small lists doesn't require much computation time.
- However, as lists get longer (e.g. phone directories), sequential searching becomes extremely inefficient.
- A binary search consists of examining the middle element of the array to see if it has the desired value. If not, then half the array may be discarded for the next search.

4 7 19 25 36 37 50 100 101 205 220 270 301 321 ↑ ↑ ↑ ↑ ↑

O : Algorithms I - Search

- Searching small lists doesn't require much computation time.
- However, as lists get longer (e.g. phone directories), sequential searching becomes extremely inefficient.
- A binary search consists of examining the middle element of the array to see if it has the desired value. If not, then half the array may be discarded for the next search.

4 7 19 25 36 37 50 100 101 205 220 270 301 321 ↑ ↑ ↑ ↑ ↑

O : Algorithms I - Search

- Searching small lists doesn't require much computation time.
- However, as lists get longer (e.g. phone directories), sequential searching becomes extremely inefficient.
- A binary search consists of examining the middle element of the array to see if it has the desired value. If not, then half the array may be discarded for the next search.

```
#include cetdie ha
     #include cetdlib by
     #include <assert h>
     #include <time.h>
     #define NMBBS 1000000
     int bin it(int k, const int* a, int l, int r);
     int main(void)
        int a[NMBBS]:
        srand(time(NULL)):
        // Put even numbers into array
        for (int i=0; i < NMBRS; i++){
           a[i] = 2*i:
        // Do many searches for a random number
20
        for (int i=0: i<10*NMBRS: i++){
21
           int n = rand()%NMBRS:
           if((n\%2) = 0){
23
              assert(bin it(n, a, 0, NMBRS-1) = n/2);
24
25
           else { // No odd numbers in this list
26
              assert(bin it(n, a, 0, NMBRS-1) < 0):
27
28
29
        return 0:
```

O : Algorithms I - Search 14 / 30

Iterative v. Recursion Binary Search

```
int bin_it(int k, const int* a, int 1, int r)
{
   while(1 <= r){
      int m = (1+r)/2;
      if(k == a[m]){
            return m;
      }
      else{
        if (k > a[m]) {
            1 = m + 1;
      }
      else {
            r = m - 1;
      }
   }
   return -1;
}
```

0 : Algorithms I - Search 15 / 30

Iterative v. Recursion Binary Search

```
int bin_it(int k, const int* a, int 1, int r)
{
  while(1 <= r){
    int m = (1+r)/2;
    if(k = a[m]){
      return m;
    }
    else{
      if (k > a[m]){
            1 = m + 1;
        }
      else{
            r = m - 1;
        }
    }
    return -1;
}
```

```
int bin_rec(int k, const int* a, int 1, int r)
{
    if(1 > r) return -1;
    int m = (1+r)/2;
    if(k = a | m |) {
        return m;
    }
    else {
        if (k > a | m |) {
            return bin_rec(k, a, m + 1, r);
        }
        else {
            return bin_rec(k, a, 1, m - 1);
        }
    }
}
```

O : Algorithms I - Search 15 / 30

Interpolation Search

- When we look for a word in a dictionary, we don't start in the middle. We make an educated guess as to where to start based on the 1st letter of the word being searched for.
- This idea led to the interpolation search.
- In binary searching, we simply used the middle of an ordered list as a best guess as to where to begin the search.
- Now we use an interpolation involving the key, the start of the list and the end.

$$i = (k - I[0])/(I[n-1] - I[0]) * n$$

• when searching for '15':

O : Algorithms I - Search

Interpolation Search

- When we look for a word in a dictionary, we don't start in the middle. We make an educated guess as to where to start based on the 1st letter of the word being searched for.
- This idea led to the interpolation search.
- In binary searching, we simply used the middle of an ordered list as a best guess as to where to begin the search.
- Now we use an interpolation involving the key, the start of the list and the end.

$$i = (k - I[0])/(I[n-1] - I[0]) * n$$

• when searching for '15':

```
0 4 5 9 10 12 15 20
```

```
int interp(int k. const int* a. int l. int r)
   int m:
   double md:
   while(1 \le r)
      md = ((double)(k-a[1])/
            (double)(a[r]-a[1])*
            (double)(r-1)
           +(double)(1):
      m = 0.5 + md:
      if((m > r) | | (m < 1)){
         return -1:
      if (k == a[m])
         return m:
         if (k > a[m]) {
            1 = m + 1:
         elsef
            r = m-1:
```

O : Algorithms I - Search 16 / 30

Algorithmic Complexity

- This code on an old Dell laptop took:
 - 3.12 seconds using a non-optimzing compiler -O0
 - 0.00 seconds using an aggressive optimization -O3
- But "wall-clock" time is generally not the thing that excites Computer Scientists.

0 : Algorithms I - Search 17 / 30

Algorithmic Complexity

- This code on an old Dell laptop took:
 - 3.12 seconds using a non-optimzing compiler -O0
 - 0.00 seconds using an aggressive optimization -O3
- But "wall-clock" time is generally not the thing that excites Computer Scientists.

- Searching and sorting algorithms have a complexity associated with them, called big-O.
- This complexity indicates how, for n numbers, performance deteriorates when n changes.
- Sequential Search : O(n)
- Binary Search : O(log n)
- Interpolation Search : O(log log n)
- We'll discuss the dream of a O(1) search later in "Hashing".

O : Algorithms I - Search 17 / 30

Binary vs. Interpolation Timing

```
#include <stdio.h>
    #include <stdlib.h>
    #include <assert.h>
    #include <time.h>
    int bin it(int k, const int *a, int 1, int r);
     int bin rec(int k. const int *a. int 1. int r):
     int interp(int k, const int *a, int 1, int r);
     int* parse_args(int argc, char* argv[], int* n, int* srch);
     int main(int argc, char* argv[])
12
        int i, n, srch;
        int* a;
        int (*p[3])(int k, const int*a, int 1, int r) =
            {bin it, bin rec, interp};
        a = parse_args(argc, argv, &n, &srch);
        srand(time(NULL));
22
23
        for (i=0; i < n; i++){
           a[i] = 2*i:
24
25
        for (i=0; i<5000000; i++){}
26
27
           assert ((*p[srch])(a[rand()%n], a, 0, n-1) >= 0);
28
29
        free(a):
30
        return 0;
31
32
```

0 : Algorithms I - Search 18 / 30

Binary vs. Interpolation Timing

```
#include <stdio.h>
    #include <stdlib.h>
    #include <assert.h>
    #include <time.h>
    int bin it(int k, const int *a, int 1, int r);
     int bin rec(int k. const int *a. int 1. int r):
     int interp(int k, const int *a, int 1, int r);
     int* parse_args(int argc, char* argv[], int* n, int* srch);
     int main(int argc, char* argv[])
12
13
        int i, n, srch;
        int* a:
        int (*p[3])(int k, const int*a, int 1, int r) =
            {bin it, bin rec, interp};
18
19
20
21
        a = parse_args(argc, argv, &n, &srch);
        srand(time(NULL));
22
23
        for (i=0; i < n; i++){
           a[i] = 2*i:
24
25
        for (i=0; i<5000000; i++){}
26
27
           assert ((*p[srch])(a[rand()%n], a, 0, n-1) >= 0);
28
29
        free(a):
30
        return 0;
31
32
```

Execution:

```
Binary Search : Iterative
       100000 = 0.57
      800000 = 0.84
      6400000 = 2.20
     51200000 = 3.87
Binary Search : Recursive
       100000 = 1.23
       800000 = 1.79
      6400000 = 3.20
n =
     51200000 = 4.85
Interpolation
n =
       100000 = 0.20
       800000 = 0.28
      6400000 = 0.50
n =
     51200000 = 0.70
n =
```

O : Algorithms I - Search 18 / 30

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

• Linked data representations are useful when:

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.
 - We need to efficiently insert and delete elements.

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.
 - We need to efficiently insert and delete elements.
- To create linked data representations we use pointers to connect separate blocks of storage together. If a given block contains a pointer to a second block, we can follow this pointer there.

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.
 - We need to efficiently insert and delete elements.
- To create linked data representations we use pointers to connect separate blocks of storage together. If a given block contains a pointer to a second block, we can follow this pointer there.
- By following pointers one after another, we can travel right along the structure.

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.
 - We need to efficiently insert and delete elements.
- To create linked data representations we use pointers to connect separate blocks of storage together. If a given block contains a pointer to a second block, we can follow this pointer there.
- By following pointers one after another, we can travel right along the structure.

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.
 - We need to efficiently insert and delete elements
- To create linked data representations we use pointers to connect separate blocks of storage together. If a given block contains a pointer to a second block, we can follow this pointer there.
- By following pointers one after another, we can travel right along the structure.

```
#include <stdio h>
     #include < stdlih h>
    #include "general.h"
     typedef struct data{
        int i:
        struct data* next:
     } Data;
     Data* allocateData(int i):
11
     void printList(Data* 1):
     int main(void)
        int i:
        Data* start . *current :
        start = current = NULL:
        printf("Enter the first number: "):
        if(scanf("%i", &i) == 1){
           start = current = allocateData(i):
21
        elsef
           on_error("Couldn't read an int");
        printf("Enter more numbers: ");
27
        while(scanf("%i", &i) == 1){
           current -> next = allocateData(i):
           current = current -> next:
31
        printList(start):
        // Should Free List
        return 0:
```

Linked Lists

```
Data* allocateData(int i)
{
    Data* p;
    p = (Data*) ncalloc(1, sizeof(Data));
    p->i = i;
    // Not really required
    p->next = NULL;
    return p;
}

void printList(Data* 1)
{
    printf("\n");
    do{
        printf("Number : %i\n", 1->i);
        1 = 1->next;
    } while(1 != NULL);
    printf("END\n");
}
```

Linked Lists

```
Data* allocateData(int i)
{
    Data* p;
    p = (Data*) ncalloc(1, sizeof(Data));
    p->i = i;
    // Not really required
    p->next = NULL;
    return p;
}

void printList(Data* 1)
{
    printf("\n");
    do{
        printf("Number : %i\n", 1->i);
        1 = 1->next;
    }while(1 != NULL);
    printf("END\n");
}
```

Searching and Recursive printing:

```
Data* inList(Data* n, int i)
{
    do{
        if (n->i=i){
            return n;
        }
        n = n->next;
    }while (n != NULL);
    return NULL;
}

void printList_r(Data* 1)
{
    // Recursive Base-Case
    if(1 == NULL) return;
    printf(*Number: %i\n*, 1->i);
    printList_r(1->next);
}
```

• But would we really code something like this **every** time we need flexible data storage ?

- But would we really code something like this **every** time we need flexible data storage ?
- This would be horribly error-prone.

- But would we really code something like this **every** time we need flexible data storage ?
- This would be horribly error-prone.
- Build something once, and test it well.

- But would we really code something like this **every** time we need flexible data storage ?
- This would be horribly error-prone.
- Build something once, and test it well.
- One example of this is an Abstract Data Type (ADT).

- But would we really code something like this every time we need flexible data storage?
- This would be horribly error-prone.
- Build something once, and test it well.
- One example of this is an Abstract Data Type (ADT).
- Each ADT exposes its functionality via an *interface*.

- But would we really code something like this **every** time we need flexible data storage ?
- This would be horribly error-prone.
- Build something once, and test it well.
- One example of this is an **Abstract Data Type (ADT)**.
- Each ADT exposes its functionality via an *interface*.
- The user only accesses the data via this interface.

- But would we really code something like this **every** time we need flexible data storage ?
- This would be horribly error-prone.
- Build something once, and test it well.
- One example of this is an Abstract Data Type (ADT).
- Each ADT exposes its functionality via an interface.
- The user only accesses the data via this interface.
- The user of the ADT doesn't need to understand how the data is being stored (e.g. array vs. linked lists etc.)

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

Q : ADTs - Collection 23 / 30

Collections

• One of the simplest ADTs is the **Collection**.

Q : ADTs - Collection 24 / 30

Collections

- One of the simplest ADTs is the **Collection**.
- This is just a simple place to search for/add/delete data elements.

Q : ADTs - Collection 24 / 30

- One of the simplest ADTs is the **Collection**.
- This is just a simple place to search for/add/delete data elements.
- Some collections allow duplicate elements and others do not (e.g. Sets).

- One of the simplest ADTs is the Collection
- This is just a simple place to search for/add/delete data elements.
- Some collections allow duplicate elements and others do not (e.g. Sets).
- Some are ordered (for faster searching) and others unordered.

- One of the simplest ADTs is the Collection
- This is just a simple place to search for/add/delete data elements.
- Some collections allow duplicate elements and others do not (e.g. Sets).
- Some are ordered (for faster searching) and others unordered.
- Our Collection will be unsorted and will allow duplicates.

- One of the simplest ADTs is the Collection
- This is just a simple place to search for/add/delete data elements.
- Some collections allow duplicate elements and others do not (e.g. Sets).
- Some are ordered (for faster searching) and others unordered.
- Our Collection will be unsorted and will allow duplicates.

- One of the simplest ADTs is the **Collection**.
- This is just a simple place to search for/add/delete data elements.
- Some collections allow duplicate elements and others do not (e.g. Sets).
- Some are ordered (for faster searching) and others unordered.
- Our Collection will be unsorted and will allow duplicates.

```
#include "../General/general.h"
typedef int colltype:
typedef struct coll coll;
#include <stdio.h>
#include <stdlib h>
#include <assert.h>
// Create an empty coll
coll* coll init(void);
// Add element onto top
void coll add(coll* c, colltype i);
// Take element out
bool coll remove(coll* c. colltype d):
// Does this exist ?
bool coll isin(coll* c. colltype i):
// Return size of coll
int coll size(coll* c):
// Clears all space used
bool coll_free(coll* c);
```

 Note that the interface gives you no hints as to the actual underlying implementation of the ADT.

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented ideally.

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented - ideally.
- The ADT developer could have several **different** implementations.

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented - ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:
 - A fixed-size array

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:
 - A fixed-size array
 - A dynamic array

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented - ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:
 - A fixed-size array
 - A dynamic array
 - A linked-list

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:
 - A fixed-size array
 - A dynamic array
 - A linked-list

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented - ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:
 - A fixed-size array
 - A dynamic array
 - A linked-list

Fixed/specific.h:

```
1  #pragma once
2
3  #define COLLTYPE "Fixed"
4
5  #define FIXEDSIZE 5000
6  struct coll {
7    // Underlying array
8    colltype a[FIXEDSIZE];
9    int size;
10 };
```

Collection ADT using a Fixed-size Array

Fixed/fixed.c:

```
#include " .. / coll . h"
     #include "specific.h"
     coll* coll_init(void)
         coll* c = (coll*) ncalloc(sizeof(coll), 1);
        c \rightarrow size = 0;
         return c;
     int coll size(coll* c)
        if (c=NULL){
            return 0:
15
16
17
18
19
20
         return c->size:
     bool coll_isin(coll* c, colltype d)
        for (int i=0; i < coll size(c); i++){
            if(c\rightarrow a[i] = d)
                 return true;
         return false;
```

Collection ADT using a Fixed-size Array

Fixed/fixed.c:

```
#include "../coll.h"
    #include "specific.h"
    coll* coll_init(void)
        coll* c = (coll*) ncalloc(sizeof(coll), 1);
        c - > size = 0;
        return c;
    int coll size(coll* c)
13
        if (c=NULL){
           return 0:
15
16
17
        return c->size;
19
     bool coll_isin(coll* c, colltype d)
20
        for (int i=0: i < coll size(c): i++){
22
           if(c->a[i] == d){}
               return true:
24
        return false;
```

```
void coll add(coll* c. colltype d)
   if(c){
      c \rightarrow a[c \rightarrow size] = d:
      c \rightarrow size = c \rightarrow size + 1:
      if(c->size >= FIXEDSIZE){
          on error("Collection overflow"):
bool coll remove(coll* c. colltype d)
   for (int i=0: i < coll size(c): i++){
      if(c->a[i] == d)f
          // Shuffle end of array left one
          for(int j=i; j < coll_size(c); j++){</pre>
             c - a[i] = c - a[i+1];
          c->size = c->size - 1:
          return true:
   return false:
bool coll_free(coll* c)
   free(c):
   return true:
```

Collection ADT via a Dynamic (Realloc) Array

Realloc/specific.h:

```
#pragma once

#define COLLTYPE "Realloc"

#define FIXEDSIZE 16
#define SCALEFACTOR 2

struct coll {
    // Underlying array
    colltype* a;
    int size;
    int capacity;
};
```

Collection ADT via a Dynamic (Realloc) Array

Realloc/specific.h:

Realloc/realloc.c:

```
#include "../coll.h"
     #include "specific.h"
     coll* coll init(void)
        coll* c = (coll*) ncalloc(sizeof(coll), 1);
        c->a = (colltype*) ncalloc(sizeof(colltype), FIXEDSIZE);
        c \rightarrow size = 0:
        c->capacity= FIXEDSIZE;
         return c:
13
14
     void coll add(coll* c. colltype d)
        if(c){
           c = a[c = aize] = d:
           c \rightarrow size = c \rightarrow size + 1:
           if(c->size >= c->capacity){}
19
               c->a = (colltype*) nremalloc(c->a,
20
                       sizeof(colltype)*c->capacity*SCALEFACTOR);
21
               c->capacity = c->capacity*SCALEFACTOR;
23
```

Collection ADT via a Linked List

Linked/specific.h:

```
#pragma once

#define COLLTYPE "Linked"

struct dataframe {
    colltype i;
    truct dataframe* next;
};

typedef struct dataframe dataframe;

struct coll {
    // Underlying array
    dataframe* start;
    int size;
};
```

Collection ADT via a Linked List

Linked/specific.h:

```
#pragma once

#define COLLTYPE "Linked"

struct dataframe {
    colltype i;
    struct dataframe* next;
    };
    struct dataframe dataframe;

struct coll {
    // Underlying array
    dataframe* start;
    int size;
    };
}
```

Linked/linked.c:

```
#include " .. / coll .h"
#include "specific.h"
coll* coll_init(void)
   coll* c = (coll*) ncalloc(sizeof(coll), 1);
   return c:
int coll size(coll* c)
   if (c==NULL){
      return 0:
   return c->size:
bool coll_isin(coll* c, colltype d)
   if(c == NULL || c->start==NULL){
      return false:
   dataframe* f = c->start:
   dof
      if(f\rightarrow i == d){
          return true:
      f = f - > next;
   } while (f != NULL):
   return false:
```

Collection ADT via a Linked List II

```
void coll_add(coll* c, colltype d)
   if(c){
       dataframe* f = ncalloc(sizeof(dataframe), 1):
       f \rightarrow i = d:
       f \rightarrow next = c \rightarrow start:
       c \rightarrow start = f;
       c \rightarrow size = c \rightarrow size + 1;
bool coll_free(coll* c)
   if(c){
       dataframe* tmp;
       dataframe* p = c->start;
       while (p!=NULL) {
           tmp = p->next;
           free(p);
           p = tmp;
       free(c):
   return true;
```

Collection ADT via a Linked List II

```
void coll_add(coll* c, colltype d)
   if(c){
       dataframe* f = ncalloc(sizeof(dataframe), 1):
       f \rightarrow i = d:
       f \rightarrow next = c \rightarrow start:
       c \rightarrow start = f;
       c \rightarrow size = c \rightarrow size + 1:
bool coll free(coll* c)
   if(c){
       dataframe* tmp:
       dataframe* p = c->start:
       while (p!=NULL) {
           tmp = p->next;
           free(p);
           p = tmp;
       free(c):
   return true;
```

```
bool coll_remove(coll* c, colltype d)
   dataframe* f1 . *f2:
   if((c==NULL) || (c->start==NULL)){
      return false:
   // If Front
   if (c->start -> i == d) {
      f1 = c->start->next:
      free(c->start):
      c->start = f1:
      c \rightarrow size = c \rightarrow size - 1:
      return true:
   f1 = c -> start:
   f2 = c->start->next:
   dof
      if(f2->i == d)f
          f1 -> next = f2 -> next:
          free(f2):
          c \rightarrow size = c \rightarrow size - 1:
          return true:
      f1 = f2:
      f2 = f1 -> next:
   } while (f2 != NULL):
   return false;
```

 Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The *Collection* interface (coll.h) is never changed.

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The *Collection* interface (coll.h) is never changed.
- There are pros and cons of each implementation:

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The *Collection* interface (coll.h) is never changed.
- There are pros and cons of each implementation:
 - Fixed Array: Simple to implement can't avoid the problems of it being a fixed-size. Deletion expensive.

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The *Collection* interface (coll.h) is never changed.
- There are pros and cons of each implementation:
 - Fixed Array: Simple to implement can't avoid the problems of it being a fixed-size. Deletion expensive.
 - Dynamic Array: Implementation fairly simple. Deletion expensive. Every realloc() is very expensive. Need to tune SCALEFACTOR.

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The Collection interface (coll.h) is never changed.
- There are pros and cons of each implementation:
 - Fixed Array: Simple to implement can't avoid the problems of it being a fixed-size. Deletion expensive.
 - Dynamic Array: Implementation fairly simple. Deletion expensive. Every realloc() is very expensive. Need to tune SCALEFACTOR.
 - Linked : Slightly fiddly implementation
 fast to delete an element.

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The Collection interface (coll.h) is never changed.
- There are pros and cons of each implementation:
 - Fixed Array: Simple to implement can't avoid the problems of it being a fixed-size. Deletion expensive.
 - Dynamic Array: Implementation fairly simple. Deletion expensive. Every realloc() is very expensive. Need to tune SCALEFACTOR.
 - Linked : Slightly fiddly implementation
 fast to delete an element.

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The Collection interface (coll.h) is never changed.
- There are pros and cons of each implementation:
 - Fixed Array: Simple to implement can't avoid the problems of it being a fixed-size. Deletion expensive.
 - Dynamic Array: Implementation fairly simple. Deletion expensive. Every realloc() is very expensive. Need to tune SCALEFACTOR
 - Linked : Slightly fiddly implementation
 fast to delete an element.

That Linked List code from the previous Chapter again: