Section 2. Projective Methods

■ Section 2.1. Galerkin Method

Section 2.1.1. Solving the initial problem.

First, let us solve the initial problem

Section 2.1.2. Choosing the basis functions

Now, choose basis functions. Choosing the 0th basis function is trivial:

```
In[175]:=
         \phi 0[x_] = 5 x/7 + 4/7;
         (-\phi 0'[x] + 3\phi 0[x]) / \cdot \{x \rightarrow 0\}(* \text{ Must be } 1 *)
         \phi 0[2] (* Must be 2 *)
Out[176]=
Out[177]=
         Next functions will be chosen as the system of linearly independent polynomial of the special form:
In[178]:=
         Clear[\phin, x, an, bn, n]
         \phi n[x_] = (x - 2)^n (an x + bn);
         boundaryn[x] = -\phi n'[x] + 3 \phi n[x]
         Solve[boundaryn[0] == 0, {an, bn}]
Out[180]=
         -an(-2+x)^n - n(-2+x)^{-1+n}(bn+anx) + 3(-2+x)^n(bn+anx)
         Solve: Equations may not give solutions for all "solve" variables.
Out[181]=
        \left\{\left\{bn \rightarrow \frac{2 \text{ an}}{6 + n}\right\}\right\}
         Thus, we are ready
         n = 5; (* Number of basis functions. For n>5 I reach the limit of Wolfram Cloud *)
         \phi \Theta[x_] = 5 \times /7 + 4/7;
         \phi = \text{Table}[(x-2)^k ((6+k)x+2), \{k, 1, n\}];
         Print["Basis Functions: ", \phi O[x], " and ", \phi]
         Basis Functions: \frac{4}{7} + \frac{5 \times 7}{7} and
          \{(-2+x)(2+7x), (-2+x)^2(2+8x), (-2+x)^3(2+9x), (-2+x)^4(2+10x), (-2+x)^5(2+11x)\}
         Verify that these basis functions satisfy boundary conditions as needed
In[206]:=
         Table [(-D[\phi[k], x] + 3 \phi[k]) / . \{x \rightarrow 0\}, \{k, 1, n\}] (* Must be all 0 *)
         Table[\phi[k]]/.\{x \rightarrow 2\}, \{k, 1, n\}] (* Must be all 0 as well *)
Out[206]=
         \{0, 0, 0, 0, 0\}
Out[207]=
         \{0, 0, 0, 0, 0, 0\}
```

Setting the approximation:

```
In[228]:=
        Clear[c]
        coeffs = Array[Subscript[c, #] &, {n}];
        u[x_{]} = \phi 0[x] + Sum[coeffs[k] \times \phi[k], \{k, 1, n\}]
Out[230]=
        \frac{4}{7} + \frac{5}{7} + (-2 + x)(2 + 7 x)c_1 + (-2 + x)^2(2 + 8 x)c_2 +
          (-2 + x)^3 (2 + 9 x) c_3 + (-2 + x)^4 (2 + 10 x) c_4 + (-2 + x)^5 (2 + 11 x) c_5
        Section 2.1.3. Optimizing w.r.t. coefficients
In[232]:=
        L[y] = D[y[x], \{x, 2\}] + x^3 D[y[x], x] - (2 + Log[1 + x]^2) y[x];
         R[x] = L[u] - 3;
        eqs = Table[Integrate[R[x] \times \phi[[k]], {x, 0.0, 2.0}] == 0, {k, 1, n}];
In[235]:=
        Print[eqs]
        \{67.9364 - 569.638 c_1 + 697.672 c_2 - 921.527 c_3 + 1311.69 c_4 - 1979.89 c_5 == 0,
          -80.3527 + 573.329 c_1 - 939.299 c_2 + 1487.47 c_3 - 2402.02 c_4 + 3978.31 c_5 == 0
          110.273 - 731.356 c_1 + 1399.7 c_2 - 2486.13 c_3 + 4369.65 c_4 - 7717.86 c_5 == 0
          -164.923 + 1053.25 c_1 - 2222.04 c_2 + 4267.69 c_3 - 7968.23 c_4 + 14756.3 c_5 == 0
          260.807 - 1628.81 c_1 + 3676.88 c_2 - 7473.44 c_3 + 14600.3 c_4 - 28041.7 c_5 == 0
In[237]:=
         optimalCoeffs = Solve[eqs, coeffs]
Out[237]=
        \{\{c_1 \rightarrow 0.0401299, c_2 \rightarrow -0.0516019, c_3 \rightarrow 0.0587259, c_4 \rightarrow 0.0514798, c_5 \rightarrow 0.0113561\}\}
In[243]:=
         optimalCoeffs = Table[optimalCoeffs[1][k][2]], {k, 1, n}]
Out[243]=
        \{0.0401299, -0.0516019, 0.0587259, 0.0514798, 0.0113561\}
In[244]:=
         uOptimal[x] = \phi O[x] + Sum[optimalCoeffs[k] \times \phi[k], \{k, 1, n\}]
Out[244]=
         \frac{4}{7} + \frac{5 \times x}{7} + 0.0401299 (-2 + x) (2 + 7 x) - 0.0516019 (-2 + x)^2 (2 + 8 x) +
          0.0587259(-2+x)^{3}(2+9x)+0.0514798(-2+x)^{4}(2+10x)+0.0113561(-2+x)^{5}(2+11x)
```

```
In[246]:=
        Plot[\{\text{Evaluate}[y[x] /. s], \text{uOptimal}[x]\}, \{x, 0, 2\},
        PlotRange → All,
        PlotTheme → "Detailed",
        AxesLabel \rightarrow {"x", "y"},
        GridLines → Automatic,
        PlotStyle → {Blue, Directive[Dashed, Red]}
Out[246]=
        2.0
        1.5
                                                                                 InterpolatingFunction
                                                                                                                    Output: :
                                                                                 uOptimal(x)
        0.5
        0.0
                                        1.0
```

Print absolute differences in the specified set of points:

Section 2.2. Least Squares Method

We simply change the system of equations for finding coefficients. The rest is the same.

```
In[304]:=
        eqs = Table[Integrate[R[x] x D[R[x], coeffs[k]], {x, 0.0, 2.0}] == 0, {k, 1, n}];
        Print[eqs]
        \{-495.681 + 6912.42 c_1 - 3371.77 c_2 + 3773.29 c_3 - 5309.95 c_4 + 8429.41 c_5 == 0,
         466.082 - 3371.77 c_1 + 5498.65 c_2 - 8663.26 c_3 + 14891.7 c_4 - 26879.8 c_5 == 0
         -615.633 + 3773.29 c_1 - 8663.26 c_2 + 17601.5 c_3 - 35070.8 c_4 + 69560.3 c_5 == 0
         928.554 - 5309.95 c_1 + 14891.7 c_2 - 35070.8 c_3 + 76975.6 c_4 - 163204. c_5 == 0
         -1525.51 + 8429.41 c_1 - 26879.8 c_2 + 69560.3 c_3 - 163204. c_4 + 363413. c_5 == 0
In[306]:=
        optimalCoeffs = Solve[eqs, coeffs]
Out[306]=
        \{(c_1 \rightarrow 0.040226, c_2 \rightarrow -0.0523426, c_3 \rightarrow 0.0557251, c_4 \rightarrow 0.0486133, c_5 \rightarrow 0.0105585\}\}
In[307]:=
        optimalCoeffs = Table[optimalCoeffs[1][[k][[2]], {k, 1, n}]
         uOptimal[x_] = \phi O[x] + Sum[optimalCoeffs[k] \times \phi[k], \{k, 1, n\}] 
Out[307]=
        \{0.040226, -0.0523426, 0.0557251, 0.0486133, 0.0105585\}
Out[308]=
        \frac{4}{7} + \frac{5 \times x}{7} + 0.040226 (-2 + x) (2 + 7 x) - 0.0523426 (-2 + x)^2 (2 + 8 x) +
         0.0557251(-2+x)^{3}(2+9x)+0.0486133(-2+x)^{4}(2+10x)+0.0105585(-2+x)^{5}(2+11x)
In[309]:=
        Plot[{Evaluate[y[x] /. s], uOptimal[x_1], {x, 0, 2},
        PlotRange → All,
        PlotTheme → "Detailed",
        AxesLabel \rightarrow {"x", "y"},
        GridLines → Automatic,
        PlotStyle → {Blue, Directive[Dashed, Red]}
Out[309]=
        2.0
        1.5
                                                                                                                      Domain:
        1.0
                                                                                   InterpolatingFunction | +
        0.5
                                                                                  uOptimal(x)
```

0.0

0.0

0.5

1.0

1.5

2.0

```
m = 20;
    xs = Table[2 k/m, {k, 1, m}];
    t = Table[Abs[uOptimal[xs[k]] - y[xs[k]] /. s], {k, 1, m}]
    Max[t]

Out[312]=

{{0.000476117}, {0.000991769}, {0.000728391}, {0.000186296},
    {0.0012365}, {0.00188564}, {0.00181404}, {0.00102341}, {0.000185937},
    {0.00134327}, {0.00199801}, {0.00190942}, {0.00116135}, {0.000140637},
    {0.000638744}, {0.000811352}, {0.000404109}, {0.000128277}, {0.000230791}, {0.}}

Out[313]=

0.00199801
```