Tentti 11.05.2007

1. Kappaleen pisteessä on jännitysmatriisin
$$[S] = \begin{bmatrix} 3 & 4 & 6 \\ 4 & 2 & 5 \\ 6 & 5 & 1 \end{bmatrix}$$
 MPa mukainen jännitystila.

Määritä se kolmannen asteen yhtälö, josta voidaan ratkaista pääjännitykset tässä pisteessä. Ratkaise pääjännityksien arvot ja määritä suurinta pääjännitystä vastaava pääsuunta. **5 p**

2. Paineastian sylinteriosan sisäsäde on 1250 mm ja seinämän paksuus 15 mm. Sylinteri on tehty teräslevyistä hitsaamalla käyttäen kuvan mukaisesti 45° suunnassa kulkevia hitsisaumoja. Paineastian sisäpuolinen ylipai-

ne on 1MPa. Laske sylinteriosan pääjännitykset sekä vertailujännitys MLJH:n ja VVEH:n mukaan. Määritä hitsisauman suuntainen ja sitä vastaan kohtisuora normaalijännitys sekä näiden suuntien välinen leikkausjännitys. **5 p**

3. Piirrä Smithin väsymislujuuspiirros teräkselle, jonka myötöraja $R_{eL}=350$ MPa ja vaihtolujuus $\sigma_W=250$ MPa . Piirroksessa riittää esittää positiivisten keskijännitysten puoli, mutta sekä ylä- että alareuna on laadittava. Määritä piirroksen avulla toiminta-arvojen $(\sigma_m,\sigma_a)=(150,50)$ MPa varmuusluku, kun a) σ_m ja σ_a kasvavat samassa suhteessa, b) vain σ_m kasvaa ja c) vain σ_a kasvaa. Mittakerroin m=0,8 ja pinnan laadun kerroin $\kappa_\sigma=0,5$. Lovivaikutusta ei ole. **6 p**

0	piskeli	jan nimi:	
\sim		Jan 111111111	

4. Ovatko seuraavat väittämät oikein vai väärin? Merkitse vastaus rastilla (x) ruutuun. Oikeasta vastauksesta saa +1 pistettä, väärästä vastauksesta –1 pistettä ja vastaamatta jättämisestä 0 pistettä. Palauta vastauksesi tällä paperilla! **max 8 p min 0 p**

Väittämä	Oikein	Väärin
Pääjännitys on sen suunnan normaalijännitys, jossa leikkausjännitys on nolla.		
Jos pääjännitykset ovat erisuuria, ne esiintyvät toisiaan vastaan kohtisuorissa suunnissa.		
Yleistetyn Hooken lain mukaan leikkausjännityksestä $ au_{xz} $ aiheutuu venymä $ \epsilon_{x} .$		
Vääristymisenergiatiheyden yksikkö voi olla J/m³.		
Maksimipääjännityshypoteesia (MPJH) ei voida lainkaan käyttää hauraan materiaalin murtumisen tutkimiseen.		
Vakiovääristymisenergiahypoteesi (VVEH) sopii hyvin sitkeiden materiaalien myötämisen tarkasteluun.		
Vaihtolujuus tarkoittaa suurinta mahdollista jännitysamplitudia, jon- ka materiaali kestää väsymättä, kun keskijännitys on nolla.		
Goodmanin (Haighin) väsymislujuuspiirroksessa esitetään suurin mahdollinen ylempi rajajännitys keskijännityksen funktiona.		