測度論的確率論 2018 S1S2

Homework 5

$1 \quad \text{Ex } 4.12$

1.1 (a)

 $\{A_n\} \in \mathcal{A}, n = 1, 2, \cdots$ を排反にとってくる。この時、

$$\nu\left(\bigcup_{n=1}^{\infty} A_{n}\right) = \int_{\bigcup_{n=1}^{\infty} A_{n}} f d\mu = \int f\left(1_{A_{1}} + 1_{A_{2}} + \cdots\right) d\mu = \int \lim_{N \to \infty} f \sum_{n=1}^{N} 1_{A_{n}} d\mu$$

f が可測関数であり、指示関数も可測関数であることから Corollary 4.1 より

$$\int \lim_{N \to \infty} f \sum_{n=1}^{N} 1_{A_n} d\mu = \lim_{N \to \infty} \sum_{n=1}^{N} \int f 1_{A_n} d\mu = \sum_{n=1}^{\infty} \nu(A_n)$$

であるので確かに ν は測度となる。(ϕ については後で書く。)

1.2 (b)

簡単な関数から順番に示す。まず、 $g=1_B$ のような指示関数の場合は、

$$\int g \mathrm{d}\nu = \int 1_B \mathrm{d}\nu = \nu(B)$$

は必ず定義できる。この時、νの定義より以下が成立し、確かに値は同じになる。

$$\int gf d\mu = \int 1_B f d\mu = \int_B f d\mu = \nu(B)$$

次に $g=\sum_{i=1}^m g_i 1_{B_i}, g_i \geq 0, \{B_1, \cdots, B_m\} \in \mathcal{A}$ で排反とかける simple function の場合を考える。この時、

$$\int g d\mu = \sum_{i=1}^{m} g_i \int 1_{B_i} d\nu = \sum_{i=1}^{m} g_i \int 1_{B_i} f d\mu = \int \left(\sum_{i=1}^{m} g_i 1_{B_i}\right) f d\mu = \int g f d\mu$$

が成立する。ただし二つ目の等号は指示関数のケースの結果より得られる。さらに非負関数 g について考えると、lemma 4.2 より $g_n \uparrow g$ となる非負単関数の列が必ず存在するので、

$$\int g d\nu = \lim_{n \to \infty} \int g_n d\nu = \lim_{n \to \infty} \int g_n f d\mu = \int \lim_{n \to \infty} g_n f d\mu = \int g f d\mu$$

が成立する。ここで一つ目と三つ目の等号は MCT より成立し、二つ目の等号は非負単関数のケースの結果より得られる。最後に一般の可測関数 $q: X \to \mathbb{R}$ について題意を示す。非負関数のケースより、以下の等号が成立する。

$$\int g d\nu \equiv \int g^+ d\nu - \int g^- d\nu = \int g^+ f d\mu - \int g^- f d\mu \equiv \int g f d\mu$$

どちらかの項が有限の時、上の積分は定義できる。確かにどちらかの積分が定義できればもう片方もそれに対応する項が有限となるのでもう片方の積分も定義できていることが確認された。

$2 \quad \text{Ex } 4.13$

 $x \in [0,n]$ で $e^{-x} \ge \left(1-\frac{x}{n}\right)^n$ を示す。どちらも正なので対数をとって、 $-x \ge n\log\left(1-\frac{x}{n}\right)$ を示す。

$$n\log\left(1-\frac{x}{n}\right) = n\left\{-\frac{x}{n} - \frac{1}{2}\frac{x^2}{n^2} - \frac{1}{3}\frac{x^3}{n^3} - \cdots\right\} = -x - \left(\frac{1}{2}\frac{x^2}{n^2} + \frac{1}{3}\frac{x^3}{n^3} + \cdots\right)$$

であり、最終項は $x\in[0,n]$ で正なので確かに $e^{-x}\geq\left(1-\frac{x}{n}\right)^n$ である。これより、 $\left|\left(1-\frac{x}{n}\right)^n1_{[0,n]}\right|\leq e^{-x}$ である。また、指数関数の定義より $\lim_{n\to\infty}\left(1-\frac{x}{n}\right)^n1_{[0,n]}=e^{-x}$ であるので、優収束定理より以下が成立する。

$$\lim_{n\to\infty}\int_0^n\left(1-\frac{x}{n}\right)^n\mathrm{d}x=\lim_{n\to\infty}\int_0^\infty\left(1-\frac{x}{n}\right)^n\mathbf{1}_{[0,n]}\mathrm{d}x=\int_0^\infty\lim_{n\to\infty}\left(1-\frac{x}{n}\right)^n\mathbf{1}_{[0,n]}\mathrm{d}x=\int_0^\infty e^{-x}\mathrm{d}x=1$$

$3 \quad \text{Ex } 4.14$

以下のような関数列を考える。

$$f_n(x) = \begin{cases} \frac{1}{x} 1_{[1,\infty)} & n = 1\\ \frac{1}{nx} 1_{[1,n)} & \text{otherwise} \end{cases}$$

この時、

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) \mathrm{d}x = \lim_{n \to \infty} \int_1^{\infty} \frac{1}{nx} \mathbf{1}_{[1,n]} \mathrm{d}x = \lim_{n \to \infty} \frac{1}{n} \int_1^n \frac{1}{x} \mathrm{d}x = \lim_{n \to \infty} \frac{\log n}{n} = 0$$

であり、また任意の $x\in\mathbb{R}$ に対して十分大きな N が存在して、 $n\geq N$ であれば任意の $\epsilon>0$ よりも $\frac{1}{nx}$ を小さくできるので 0 に各点収束することもわかる。しかし、全ての n について上の関数列の絶対値を抑えるためには $[1,\infty)]$ の範囲で $\frac{1}{x}$ よりも大きくないといけない。ここで $\int_1^\infty \frac{1}{x} \mathrm{d}x = \lim_{n\to\infty} \log n = \infty$ であるため、そのような関数の積分は必ず無限に発散するため L^1 に入らないことが確認できた。

$4 \quad \text{Ex } 4.15$

任意の n について、 $|f_n| \leq g_n \Rightarrow -g_n \leq f_n \leq g_n \Rightarrow f_n + g_n \geq 0, \ g_n - f_n \geq 0$ が成立する。この時 Fatou の補題より、

$$\int \liminf_{n \to \infty} (f_n + g_n) d\mu \le \liminf_{n \to \infty} \left(\int f_n + g_n d\mu \right)$$
(1)

$$\int \liminf_{n \to \infty} (g_n - f_n) d\mu \le \liminf_{n \to \infty} \left(\int g_n - f_n d\mu \right)$$
 (2)

が成立する。上の左辺について、

$$\int \liminf_{n \to \infty} (f_n + g_n) d\mu = \int (f + g) d\mu = \int f d\mu + \int g d\mu$$

である。ただし二つ目の等号は、 $|f| \leq g$ であることから f が可積分であることより得られる。右辺については、全ての n について f_n, g_n が可積分であることと、「 b_n が b に収束する数列の時、 $\liminf(a_n + b_n) = \liminf a_n + b$ (主張 1)」を 使うと、

$$\liminf_{n\to\infty} \left(\int f_n + g_n d\mu \right) = \liminf_{n\to\infty} \left(\int f_n d\mu + \int g_n d\mu \right) = \liminf_{n\to\infty} \int f_n d\mu + \int g d\mu$$

以上より、

$$\int f d\mu + \int g d\mu \le \liminf_{n \to \infty} \int f_n d\mu + \int g d\mu \implies \int f d\mu \le \liminf_{n \to \infty} \int f_n d\mu$$

を得る。同様にして(1)の下の不等式から、

$$\limsup_{n \to \infty} \int f_n \mathrm{d}\mu \le \int f \mathrm{d}\mu$$

が得られる。以上より、 $\liminf_{n\to\infty}\int f_n\mathrm{d}\mu\leq \limsup_{n\to\infty}\int f_n\mathrm{d}\mu$ であることから、 $\lim_{n\to\infty}\int f_n\mathrm{d}\mu=\int f\mathrm{d}\mu$ であることが示された。

4.1 主張1の証明

$5 \quad \text{Ex } 4.21$

Billingsley を見てから書いた方が安心かも

$6 \quad \text{Ex } 4.22$

f が階段関数の時にこの補題が成立することをまず確認する。 $a=x_0 < x_1 < \cdots < x_{J-1} < x_J = b$ として、[a,b] 上の階段関数 s を以下のように定義する。

$$s(x) = c_i$$
 when $x_{i-1} \le x < x_i$

この時、

$$\left| \int s(x) \cos(nx) dx \right| = \left| \sum_{j=1}^{J} \int_{x_{j-1}}^{x_j} c_j \cos(nx) dx \right| = \left| \sum_{j=1}^{J} c_j \frac{\sin(nx_j) - \sin(nx_{j-1})}{n} \right| \le \left| \sum_{j=1}^{J} c_j \frac{2}{n} \right|$$

であり、 $n\to\infty$ で 0 に収束する。今、コンパクトな台 [a,b] を持つ関数 f についてのみ考えると、階段関数 s(x) を使って、三角不等式より以下が得られる。

$$\left| \int_a^b f(x) \cos(nx) dx \right| = \left| \int_a^b (f(x) - s(x)) \cos(nx) + s(x) \cos(nx) dx \right| \le \left| \int_a^b (f(x) - s(x)) \cos(nx) dx \right| + \left| \int_a^b s(x) \cos(nx) dx \right|$$

Ex 4.21 より任意の $\epsilon>0$ について、最後の第 1 項を $\frac{\epsilon}{2}$ で抑えるような階段関数 s(x) が必ず存在する。また、階段関数 s(x) については先の議論よりリーマンルベーグの補題がすでに示されているので、ある大きな N で、 $n\geq N$ であれば第 2 項を $\frac{\epsilon}{2}$ で抑えることができるようなものが存在する。この時、同じ N について、

$$n \ge N \Rightarrow \left| \int_a^b f(x) \cos(nx) dx \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

とできるので、コンパクトな台を持つ関数 f については題意を示すことができた。ここで、 $|f(x)\cos(nx)| \leq |f|$ であり、仮定より $\int |f| \mathrm{d}\mu < \infty$ であるので、DCT が使えて以下が成立する。

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \cos(nx) dx = \int \lim_{n \to \infty} f(x) \cos(nx) dx$$
$$= \int_{\mathbb{R}} \lim_{n \to \infty} \left(\lim_{n \to \infty} f(x) \cos(nx) \right) 1_{[-m,m]} dx$$

さらに、 $\left|\lim_{n\to\infty}f(x)\cos(nx)1_{[-m,m]}\right|<|f|$ であるので、同様に DCT を適用でき、

$$\int_{\mathbb{R}} \lim_{m \to \infty} \left(\lim_{n \to \infty} f(x) \cos(nx) \right) 1_{[-m,m]} dx = \lim_{m \to \infty} \int_{\mathbb{R}} \lim_{n \to \infty} f(x) \cos(nx) 1_{[-m,m]} dx$$
$$= \lim_{m \to \infty} \lim_{n \to \infty} \int_{-m}^{m} f(x) \cos(nx) dx$$

である。ここで任意の m について [-m,m] はコンパクトな台で、そのような関数に対してはリーマンルベーグの補題が示されているので、上は 0 となり、一般の可測関数 f について題意が示された。

$7 \quad \text{Ex } 5.3$

対称性より $(i) \Leftrightarrow (ii)$ のみ示せば十分である。(ii) の否定は以下のように書ける。

$$\mu(\{x \mid \nu(\{y \mid f(x,y) \neq 0\}) > 0\}) > 0$$

これは以下と同値である。

$$\exists A \in \mathcal{A} \text{ s.t. } \mu(A) > 0, \ \nu(\{y \mid f(x,y) \neq 0, x \in A\}) > 0$$

さらにこれは以下を意味する。

$$\exists A \in \mathcal{A}, B \in \mathcal{C} \text{ s.t. } \begin{cases} \mu(A) > 0, \nu(B) > 0 \\ f(x, y) \neq 0 \ \forall (x, y) \in A \times B \end{cases}$$

この時 $\rho(\{(x,y)\mid f(x,y)\neq 0\})\geq \rho(A\times B)=\mu(A)\nu(B)>0$ なので、対偶から (i) \Rightarrow (ii) が示された。 次に (ii) \Rightarrow (i) を示す。 to be writen.

8 Ex 5.4

8.1 (a)

以下の集合を考える。ただし $\{(z_i,z_{i+1}]\}_{i=0}^{n-1}$ は (a,b] の分割で、 $a=z_0 < z_1 < \cdots < z_{n-1} < z_n = b$ である実数から作られ、これは [a,b] を n 等分する分割であるとする。

$$B_n = \bigcup_{i=1}^n (a, z_i] \times (z_{i-1}, z_i]$$

ここで、

$$\{(x,y) \mid a < x \le y \le b\} = \lim_{n \to \infty} B_n$$
 (3)

であることをまず示す。 B_n の構成より、任意の n について $\{(x,y) \mid a < x \le y \le b\} \subset B_n$ であるので、 $\{(x,y) \mid a < x \le y \le b\} \subset \lim_{n \to \infty} B_n$ である。また、任意の n について $(x,y) \in B_n$ であるような点をとると、 B_n の構成より明らかに $a < x \le b, a < y \le b$ である。ここでもし x > y であるとすると、 $\frac{x-y}{\sqrt{2}} > 0$ である。 B_n が $\{(x,y) \mid a < x \le y \le b\}$ からはみ出ている部分は最大でも y = x の直線から $\frac{b-a}{n\sqrt{2}}$ だけ離れた部分までであるので、n を十分大きく取った時、必ず x > y であるような点を含まない B_n を作ることができる。すなわちそのような (x,y) は $\lim_{n \to \infty} B_n$ に含まれず、またその構成から明らかに $x \le y$ となる点は任意の n について含まれている。以上より (3) が示された。

 B_n は長方形集合の可算個の和集合でかけているので、 $(\mu \times \nu)$ を定義に従って計算することができる。測度の連続性より以下を得る。

$$(\mu \times \nu) \left(\left\{ (x,y) \mid a < x \le y \le b \right\} \right) = (\mu \times \nu) \left(\lim_{n \to \infty} B_n \right) = \lim_{n \to \infty} (\mu \times \nu) \left(B_n \right)$$

ここで、 B_n を構成する長方形集合は互いに排反なので以下のように計算できる。

$$(\mu \times \nu)(B_n) = \sum_{i=1}^n \mu((a, z_i]) \nu((z_{i-1}, z_i]) = \sum_{i=1}^n \nu((z_{i-1}, z_i]) (F(z_i) - F(a))$$

ここで、 $H_n = \sum_{i=1}^n \left(F(z_i) - F(a)\right) i_{(z_{i-1},z_i]}$ と置くと、単関数についてのルベーグ積分の定義より、

$$\sum_{i=1}^{n} \nu ((z_{i-1}, z_i]) (F(z_i) - F(a)) = \int_{(a,b]} H_n d\nu$$

が成立する。ここで、 H_n は可測関数であり、F が非現象な関数であることより F(x)-F(a) に下から近づいて行く関数であり、さらに F が右連続であるからこれは F に収束する関数列となる。(F が右連続でない時、不連続点において H_n の値が右極限よりも小さな左極限に固定されてしまい、これでは F-F(a) を近似することはできないから。)従って単調収束定理を適用でき、以下を得る。

$$(\mu \times \nu) \left(\left\{ (x, y) \mid a < x \le y \le b \right\} \right) = \lim_{n \to \infty} (\mu \times \nu) \left(B_n \right)$$

$$= \lim_{n \to \infty} \int_{(a, b]} H_n d\nu$$

$$= \int_{(a, b]} (F(x) - F(a)) d\nu$$

$$= \int_{(a, b]} (F(y) - F(a)) dG(y)$$

8.2 (b)

まず以下の積分を考える。

$$\int_{(a,b]} (G(b) - G(x)) \, \mathrm{d}F(x)$$

問題(a)と同様の議論によりこれは以下の表現と同じである。

$$\lim_{n \to \infty} \sum_{i=1}^{n} (G(b) - G(z_i)) \,\mu\left((z_{i-1}, z_i]\right) = \lim_{n \to \infty} \sum_{i=1}^{n} \nu((z_i, b]) \,\mu\left((z_{i-1}, z_i]\right)$$

ここで、以下の集合を考える。

$$C_n = \bigcup_{i=1}^n (z_{i-1}, z_i] \times (z_i, b]$$

これを用いると、積測度の定義より以下が成立する。

$$\lim_{n \to \infty} \sum_{i=1}^{n} \nu((z_i, b]) \mu\left((z_{i-1}, z_i]\right) = (\mu \times \nu) \left(\bigcup_{n=1}^{\infty} C_n\right)$$

この C_n の和集合については以下の関係が成立する。

$$\bigcup_{n=1}^{\infty} C_n = \{(x,y) \mid a < x \le y \le b\} \setminus \{(x,y) \mid a < x = y \le b\}$$
 (4)

まず C_n の構成より、任意の n について $C_n \subset \{(x,y) \mid a < x \le y \le b\} \setminus \{(x,y) \mid a < x = y \le b\}$ である。従って $\bigcup_{n=1}^{\infty} C_n$ が右辺に含まれることが確認できる。また、右辺の集合から任意に要素 (x,y) をとると、

$$\begin{cases} a < x \le b \\ a < y \le b \\ x < y \end{cases}$$

を満たす。 C_n の構成より、(4) の右辺の集合において、y=x の直線から $\frac{b-a}{\sqrt{2n}}$ より離れた部分は全て C_n に含まれる。従って、取ってきた点と直線 y=x との距離である $\frac{y-x}{\sqrt{2}}$ は、十分大きな n の時に必ず $\frac{b-a}{\sqrt{2n}}$ よりも大きくなってしまう。これより、どこかしらの C_n に含まれるため、 $\bigcup_{n=1}^\infty C_n$ に含まれることになる。こうして逆向きの包含関係も示されたため (4) が示された。

以上より、(a) と合わせて以下の関係が成立する。

$$\begin{cases} \int_{(a,b]} F(y) \mathrm{d}G(y) = \int_{(a,b]} F(a) \mathrm{d}G(y) + (\mu \times \nu) \left(\{(x,y) \mid a < x \leq y \leq b \} \right) \\ \int_{(a,b]} G(x) \mathrm{d}F(y) = \int_{(a,b]} G(b) \mathrm{d}F(x) - (\mu \times \nu) \left(\{(x,y) \mid a < x \leq y \leq b \} \right) + (\mu \times \nu) \left(\{(x,y) \mid a < x = y \leq b \} \right) \end{cases}$$

この辺々を足し合わせて、

$$\int_{(a,b]} F(y) dG(y) + \int_{(a,b]} G(x) dF(y) = \int_{(a,b]} F(a) dG(y) + \int_{(a,b]} G(b) dF(x) + (\mu \times \nu) \left(\{(x,y) \mid a < x = y \le b\} \right)$$

$$= F(b)G(b) - F(a)G(a) + \sum_{a < x \le b} \mu \left(\{x\} \right) \nu \left(\{x\} \right)$$

であり題意は示された。

9 Ex 5.5

$$\int_{\mathbb{R}} \left\{ F(x+c) - F(x) \right\} \mathrm{d}x = \int_{\mathbb{R}} \left\{ \mu((-\infty, x+c]) - \mu((-\infty, x]) \right\} \mathrm{d}x = \int_{\mathbb{R}} \int_{(x, x+c]} \mathrm{d}\mu \mathrm{d}x$$

「Lebesgue 測度は σ finite である(主張 2)」を所与とする。この時 μ が有限測度であることから、どちらかの逐次積分が発散しなければフビニの定理を用いることができる。

$$\int_{\mathbb{R}} \int_{\mathbb{R}} 1_{(x,x+c]} \mathrm{d}x \mathrm{d}\mu = \int_{\mathbb{R}} c \mathrm{d}\mu = c\mu(\mathbb{R}) < \infty$$

であるのでフビニの定理より上の値が求めたい積分の値と一致する。

9.1 主張2の証明

$10 \quad \text{Ex } 5.6$

ヒントに従い下の積分を得る。

$$\int_0^a e^{-xy} \sin(x) dy = -\frac{\sin(x)}{x} e^{-ax} + \frac{\sin(x)}{x}$$

これより、

$$\int_0^b \frac{\sin(x)}{x} e^{-ax} dx = \int_0^b \left\{ \frac{\sin(x)}{x} - \int_0^a e^{-xy} \sin(x) dy \right\} dx = \int_0^b \frac{\sin(x)}{x} dx - \int_0^b \int_0^a e^{-xy} \sin(x) dy dx$$

が成立する。「この第2項にフビニの定理を用いることができる(主張3)」とすると、さらに以下のように変形できる。

$$\int_0^b \frac{\sin(x)}{x} dx - \int_0^a \int_0^b e^{-xy} \sin(x) dx dy = \int_0^b \frac{\sin(x)}{x} dx + \int_0^a \frac{1}{1+y^2} \left(ye^{-by} \sin(b) + e^{-by} \cos(b) - 1 \right) dy$$

ここで第1項に注目する。同様の議論により、

$$\int_0^b \frac{\sin(x)}{x} dx = \int_0^b \left(\int_0^\infty e^{-xy} dy \right) \sin(x) dx$$

であり、「この積分にはフビニの定理が使える(主張4)」ので、

$$\int_0^\infty \int_0^b e^{-xy} \sin(x) dx dy = \frac{\pi}{2} - \int_0^\infty \frac{1}{1+y^2} \left(y e^{-by} \sin(b) + e^{-by} \cos(b) \right) dy$$

とできる。ただし、 $\int 0^\infty \frac{1}{1+y^2} \mathrm{d}y$ が $y=\tan(\theta)$ の変数変換で $\frac{\pi}{2}$ となることを用いている。以上を合わせると、与式の左辺は以下のように変形できる。

$$\left| \int_0^b \frac{\sin(x)}{x} e^{-ax} dx - \frac{\pi}{2} \right| = \left| \int_0^\infty \frac{1}{1+y^2} \left(y e^{-by} \sin(b) + e^{-by} \cos(b) \right) dy - \int_0^a \frac{1}{1+y^2} \left(y e^{-by} \sin(b) + e^{-by} \cos(b) \right) dy \right|$$

$$= \left| \int_0^a \frac{1}{1+y^2} dy + \int_a^\infty \frac{1}{1+y^2} \left(y e^{-by} \sin(b) + e^{-by} \cos(b) \right) dy \right|$$

$$\leq \left| \int_0^a \frac{1}{1+y^2} dy \right| + \left| \int_a^\infty \frac{1}{1+y^2} \left(y e^{-by} \sin(b) + e^{-by} \cos(b) \right) dy \right|$$

ただし最終行には三角不等式を用いた。ここで $y=\tan(\theta)$ で変数変換を行うと、a>0 より第 1 項は $\arctan(a)$ 。第 2 項は b を極限に飛ばした時の挙動さえ分かれば良いので、優収束定理を適用できることを確認する。

$$\int_{a}^{\infty} \left| \frac{1}{1+y^2} \left(y e^{-by} \sin(b) + e^{-by} \cos(b) \right) \right| dy = \int_{0}^{\frac{\pi}{2}} \left| \frac{\tan(\theta) \sin(b) + \cos(b)}{e^{b \tan(\theta)}} \right| d\theta$$

であり、これに対して、

$$\left| \frac{\tan(\theta)\sin(b) + \cos(b)}{e^{b\tan(\theta)}} \right| \le \left| \frac{\tan(\theta)\sin(b) + \cos(b)}{1 + b\tan(\theta)} \right| \le \left| \frac{\sin(b)\tan(\theta)}{1 + b\tan(\theta)} \right| + \left| \frac{\cos(b)}{1 + b\tan(\theta)} \right|$$
$$\le \left| \frac{\sin(b)}{b} \right| + |\cos(b)| \le 2$$

であることから有界範囲 $[0,\frac{\pi}{2}]$ についてこれが可積分であるので優収束定理を用いることができる。ただし、一つ目の不等号には $e^x\geq 1+x$ を、二つ目の不等号には三角不等式を用い、三つ目の不等式は b>0, $\tan(\theta)>0$ であることから得られ、最後の不等式は $\frac{\sin(x)}{x}<1$ から得られる。