# Analoge elektronische schakelingen

Jan Genoe (jan.genoe@kuleuven.be)

## Transistor Configuraties

| I  | Transistor Configuraties                                                                                                                                                                                                                 | 2                         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1  | Transistor Configuraties  1.1 Tweepoorten en driepoorten                                                                                                                                                                                 | 3<br>3<br>3<br>3          |
| II | Versterkers                                                                                                                                                                                                                              | 5                         |
| 2  | Klasse A versterkers  2.1 Indeling vermogenversterkers  2.2 Voorbeeld 1: Klasse B versterker  2.3 Voorbeeld 2: Klasse B versterker  2.4 Voorbeeld 3: Klasse B versterker  2.5 Uitgewerkt voorbeeld van een klasse AB met MOS transistors | 6<br>14<br>14<br>14<br>14 |
| 3  | Klasse G versterkers 3.1 Indeling vermogenversterkers                                                                                                                                                                                    | 28<br>28<br>28            |
| II | I Voedingen                                                                                                                                                                                                                              | 32                        |
| 4  | Buck Converter of step-down Convertor 4.1 Zonder belasting van de uitgang                                                                                                                                                                | 33<br>33<br>33            |
| 5  | Boost Converter of Step-up Converter 5.1 Oefening Boost convertor                                                                                                                                                                        | 35<br>37<br>41<br>41      |
| 6  | Inverter of Buck-Boost Converter                                                                                                                                                                                                         | 44                        |
| 7  | Flyback converter                                                                                                                                                                                                                        | 45                        |

## Inleiding

Welkom bij de notebooks van het vak Analoge Elektronische Schakelingen.

Deze notebooks bevatten materiaal en oefeningen, in het formaat van Jupyter Book, ontwikkeld als aanvullingen bij het vak Analoge Elektronische Schakelingen aan de KU Leuven, campus Diepenbeek.

**Notitie:** Dit is momenteel nog werk in progress. De cursus zoals aanwezig op Toledo blijft het voornaamste leerinstrument. Dit is enkel een hulpmiddel.

# Deel I Transistor Configuraties

## HOOFDSTUK 1

## **Transistor Configuraties**

- 1.1 Tweepoorten en driepoorten
- 1.2 Definities van versterking
- 1.3 MOS transistor configuraties
- 1.3.1 Gemeenschappelijke Source Schakeling: GSS
- 1.3.2 Gemeenschappelijke Drain Schakeling: GDS

In deze configuratie is het doel van de transistor in eerste instantie om stroomsversterking op te leveren.

#### 1.3.3 Gemeenschappelijke Gate Schakeling: GGS

In deze configuratie is het doel van de transistor in eerste instantie om

## 1.4 Bipolaire transistor configuraties

### 1.4.1 Gemeenschappelijke Emitter Schakeling: GES

In deze configuratie is het doel van de transistor in eerste instantie om spanningsversterking op te leveren.

## 1.4.2 Gemeenschappelijke Collector Schakeling: GCS

In deze configuratie is het doel van de transistor in eerste instantie om stroomsversterking op te leveren.

## 1.4.3 Gemeenschappelijke Basis Schakeling: GBS

In deze configuratie is het doel van de transistor in eerste instantie om

# **Deel II**

# Versterkers

Klasse A versterkers

## 2.1 Indeling vermogenversterkers

In Tabel 2.1 geven we een overzicht van de verschillende versterkers die we zullen bespreken in de leerlijn analoge elektronica. In dit hoofdstuk behandelen we de klasse A versterkers. Zoals je in de tabel kan zien, zijn dit versterkers die aan een lage frequentie werken en ook niet een resonant kring hebben zijn. Bovendien is er slechts 1 transistor die het vermogen van de finale trap gaat leveren. Natuurlijk zijn er normaal heel wat andere transistors aanwezig in het schema maar die werken op een veel lager vermogen, dit is een veel lagere stroom en in vele gevallen ook een veel lagere spanning.

Tabel 2.1: Indeling van de vermogenversterkers

|                                          | laagfrequent of breedband | hoogfrequent of resonant   |
|------------------------------------------|---------------------------|----------------------------|
| 1 transistor in de vermogentrap          | Klasse A                  | Klasse C Klasse F Klasse E |
| 2 of meer transistors in de vermogentrap | Klasse B Klasse G         | Klasse D                   |

#### 2.1.1 Basisschema

Het basisschema van de klasse A versterker vinden we terug in Fig. 2.1. Om hiervan een Spice simulatie te maken, nummeren we de verschillende knopen in dit netwerk zoals je kan zien in Fig. 2.2.

#### 2.1.2 Overeenkomende Spice listing

De overeenkomende spice listing wordt dan:

Spice Listing 2.1: basis Klasse A circuit

```
* Spice file van een eenvoudige Klasse A versterker
R_R6 0 1 8
R_R7 3 2 1
L1_TX1 3 4 25m
```

(Vervolgt op volgende pagina)



Fig. 2.1: Basisschema van de Klasse A versterker.



Fig. 2.2: Basisschema van de Klasse A versterker.

(Vervolgd van vorige pagina)

Vergelijk deze Spice list aandachtig met Fig. 2.2. Voor elk element, met uitzondering van de transformator, vinden we de 2 of 3 knopen terug die ook in het schema staan. De uitgang wordt belast met een weerstand van 8  $\Omega$ . De weerstand van de primaire wikkeling van de transformator is natuurlijk ongewenst maar we kunnen deze niet zomaar verwaarlozen. We moeten dit correct inbrengen om een realistische simulatie te bekomen. We doen dit door een weerstand van 1  $\Omega$  te plaatsen tussen knopen 2 en 3. Voor de vermogentransistor (Q5) nemen we in deze simulatie een bipolaire transistor. In het model van deze transistor (de naam van het model is Q2) zien we dat deze transistor een voorwaartse stroomversterking ( $\beta_E$ ) heeft van 20.

De transformator TX1 implementeren we in spice aan de hand van de 2 spoelen L1\_TX1 en L2\_TX1 die gekoppeld worden door de koppeling K\_TX1. De koppelingsfactor is 1. Uit de ratio van de 2 spoelwaardes ( $\frac{25mH}{1mH}$  =25) kunnen we ook de wikkelverhouding (N) afleiden:  $5 = \sqrt{25}$ .

De bovenstaande netwerkcode simuleren we in Spice. Fig. 2.3 toont zowel de stromen (rechts) als de spanningen (links) als functie van de tijd.



Fig. 2.3: Klasse A versterker: stromen en spanningen als functie van de tijd.

Het is ook altijd interessant om van dezelfde simulatie de stroom door de transistor versus de spanning over de transistor te plotten. Dit zien we in Fig. 2.4.



Fig. 2.4: Belastingskarakteristiek van de klasse A versterker.

Wanneer we de spoelwaarde van de primaire en de secundaire wikkeling heel erg sterk verhogen (zonder de wikkelverhouding van 5 hierbij aan te passen), valt het faseverschil tussen de stroom en de spanning weg en krijgen we een plot waarbij we een mooi linair verband zien tussen stroom en spanning, zowel over de primaire (blauwe curve) als over de secundaire wikkeling (orange curve) (zie Fig. 2.5). De spice code voor deze simulatie met aangepaste wikkelverhouding kan je hieronder terugvinden.

#### Spice Listing 2.2: basis Klasse A circuit

```
* Spice file van een eenvoudige Klasse A versterker
R_R6
             0 1 8
R_R7
             3 2 1
L1_TX1
             3 4 25
L2_TX1
             1 0 1
             L1_TX1 L2_TX1 1.
K_TX1
             4 5 0 Q2
Q_Q5
             0 5 SIN(17m 15m 10k) DC=17m
I_I4
V_VDD
             2 0 66V
.model Q2 NPN(Is=14.34p BF=20)
```



Fig. 2.5: Stroom-spanningsrelaties voor de primaire en de secundaire wikkeling in het geval van een grote inductantie van de spoelen.

Het verschil in fase tussen de stroom door de transistor en de spanning over de transistor kunnen we ook verkleinen door de frequentie te verhogen. In de onderstaande spice listing is de frequentie van de stroombron I4 aan de basis van de bipolaire transistor verhoogt van 10 kHz naar 100 kHz. Uit de simulatie in Fig. 2.6 zien we dat ook hier weer een bijna linair verloop tussen stroom en spanning wodt bekomen.

#### Spice Listing 2.3: basis Klasse A circuit

```
* Spice file van een eenvoudige Klasse A versterker
R_R6
             0 1 8
R_R7
             3 2
                 1
L1_TX1
             3 4 25m
L2_TX1
             1 0 1m
K_TX1
             L1_TX1 L2_TX1 1.
Q_Q5
             4 5 0 Q2
I_I4
             0 5
                 SIN(17m 15m 100k) DC=17m
             2 0 66V
V_VDD
.model Q2 NPN(Is=14.34p BF=20)
```



Fig. 2.6: Stroom door de transistor versus spanning over de transistor in het geval van aansturing aan 100 kHz.

We kunnen de simulatie van het ogenblikkelijk vermogen in Fig. 2.7 ook integreren over een aantal periodes. We



Fig. 2.7: Ogenblikkelijk vermogen als functie van de tijd voor de simulatie van Fig. 2.3

bekomen dat het gemiddeld vermogen:

$$P_{in} = \frac{1}{T} \int_{0}^{T} V_{over} I_{door} \partial t$$

Het gemiddelde inputvermogen gedurende de 10 eerste periodes is 22.44~W Het gemiddelde vermogenverlies in de transistor gedurende de 10 eerste periodes— 4.5~13.78~W Het gemiddelde vermogen aan de uitgang gedurende de 10 eerste periodes is 8.50~W

De gemiddelde efficentie gedurende de 10 eerste periodes is 37.89 %

#### 2.2 Voorbeeld 1: Klasse B versterker



Fig. 2.8: Basisschema van de versterker

#### 2.3 Voorbeeld 2: Klasse B versterker

#### 2.4 Voorbeeld 3: Klasse B versterker

## 2.5 Uitgewerkt voorbeeld van een klasse AB met MOS transistors

In [] wordt de klasse AB werking getoond aan de hand van het schema in Fig. 2.21. We bestuderen dit schema in meer detail. Eerst bekijken we de voorinsteltak. De 2 weerstanden R, samen met de 2 diodes zorgen ervoor dat zonder aangelegd signaal de spanning  $V_i$  gelegen is midden de 2 voedingsspanningen. De 2 weerstanden R zijn dan zo gekozen dat de  $I_B$  een DC stroomcomponenten heeft die mooi kan ingesteld worden door R.

Wanneer we vervolgens een AC signaal aanleggen, krijgen we de volgende signalen:

+  $V_I + V_D$  aan de ingang van de nMOS transistor  ${\cal M}_N$ 



Fig. 2.9: Interne structuur van de versterkerchip

+  $V_I - V_D$  aan de ingang van de pMOS transistor  ${\cal M}_P$ 

Onder zo goed als alle omstandigheden zullen zowel de nMOS als de pMOS in saturatie zijn. Dit wil zeggen dat de stromen door deze transistors voldoen aan de vergelijkingen:

$$I_n = \mu_n C_{ox} \frac{W_n}{2L_n} (V_{GSn} - V_{Tn})^2 \label{eq:intermediate}$$

als  $V_{GSn} > V_{Tn}$ 

$$I_p = \mu_p C_{ox} \frac{W_p}{2L_p} (V_{GSp} - V_{Tp})^2 \label{eq:Ip}$$

als  $V_{GSp} < V_{Tp}$ 

Wanneer we de spanning aan de gate en de source invullen krijgen we:

• 
$$I_p = \mu_p C_{ox} rac{W_p}{2L_n} (V_I - V_D - V_{out} - V_{Tp})^2$$
 als  $V_I - V_D - V_{out} < V_{Tp}$ 

• 
$$V_{out} = (I_n - I_p)R_L$$

In Fig. 2.22 berekenen we deze stromen. We veronderstellen hierbij dat:  $\mu_n C_{ox} \frac{W_n}{2L_n} = \mu_p C_{ox} \frac{W_p}{2L_p} = 0.02 A/V^2, V_D = 0.7 V, V_{Tn} = 0.3 V, V_{Tp} = -0.3 V$  en  $R_L = 80 \Omega$ .

In Fig. 2.23 zoemen we in op een detail rond de oorsprong.



Fig. 2.10: Foto van de versterker



Fig. 2.11: Layout van de versterker



Fig. 2.12: Bestukking van de versterker



Fig. 2.13: Basisschema van de versterker



Fig. 2.14: Interne structuur van de versterkerchip



Fig. 2.15: Foto van de versterker



Fig. 2.16: Layout van de versterker



Fig. 2.17: Bestukking van de versterker



Fig. 2.18: Basisschema van de versterker



Fig. 2.19: Foto van de versterker



Fig. 2.20: Layout van de versterker



Fig. 2.21: Klasse AB versterker met MOS transistors [1].



Fig. 2.22: Transfer curve en stroom van de beide transistors.



Fig. 2.23: Detail van de zone rond de oorsprong. We zien dat hier beide transistors in geleiding zijn.

## HOOFDSTUK 3

Klasse G versterkers

## 3.1 Indeling vermogenversterkers

In Tabel 3.1 hernemen we een overzicht van de verschillende versterkers die we bespreken in de leerlijn analoge elektronica.

Tabel 3.1: Indeling van de vermogenversterkers

|                                          | laagfrequent of breedband | hoogfrequent of resonant   |
|------------------------------------------|---------------------------|----------------------------|
| 1 transistor in de vermogentrap          | Klasse A                  | Klasse C Klasse F Klasse E |
| 2 of meer transistors in de vermogentrap | Klasse B Klasse G         | Klasse D                   |

### 3.2 Basisschema

Spice Listing 3.1: basis Klasse G circuit

(Vervolgt op volgende pagina)



Fig. 3.1: Basisschema van de klasse G versterker met compensatie voor de saturatie spanning.

(Vervolgd van vorige pagina)

```
Dneg 7 4 DNOM

*
*compensatie Vsat
Db1 1 12 DNOM
Db4 13 1 DNOM

*

* Load resistance
RL1 2 0 8

*
* DEVICE MODELS
.model QNPN NPN(BF=50)
.model QPNP PNP(BF=50)
.model DNOM D()
```

3.2. Basisschema



Fig. 3.2: Klasse G versterker: stromen en spanningen als functie van de tijd.

3.2. Basisschema 30



Fig. 3.3: Klasse G versterker: de stroom door de verschillende transistor als functie van de spanning over deze transistors.

3.2. Basisschema 31

# **Deel III**

# Voedingen

## HOOFDSTUK 4

## **Buck Converter of step-down Convertor**

In dit hoofdstuk bespreken we de voedingen die een (eventueel veranderlijke) ingangsspanning omzetten in een stabiele en ook lagere uitgangsspanning. In het engels gebruiken we hiervoor typisch de volgende namen:

- Buck converter
- Step-down converter

## 4.1 Zonder belasting van de uitgang

## 4.2 Onder belasting van de uitgang: 5uA



Fig. 4.1: Schakelspanning en bekomen spanning voor een step-down converter met een inputspanning van 12 V die opstart van 0V naar 5V, zonder stroom aan de uitgang. De gewenste spanning is aangegeven in het rood.



Fig. 4.2: Schakelspanning en bekomen spanning voor een step-down converter met een inputspanning van 12 V die opstart van 0V naar 5V, onder een uitgangsstroom van 5 uA. De gewenste spanning is aangegeven in het rood.

## Boost Converter of Step-up Converter

De relatie tussen de Duty cycle (D) en de uitgangsspanning  $(V_{uit})$  voor een gegeven ingangsspanning  $(V_{in})$  kunnen we het best bereken vanuit het perspectief van de stroomverandering door het spoel. Inderdaad, de spanning over het spoel is evenredig met de stroomstijging per tijdseenheid.

$$U_L = L \frac{dI}{dt}$$

Hieruit volgt dat tijdens de tijd dat de transistor aan staat  $(T_{on})$ :

$$U_L = L \frac{\Delta I}{T_{co}}$$

en tijdens de tijd dat de transistor af staat  $(T_{off})$ :

$$U_L = L \frac{-\Delta I}{T_{off}}$$

We vullen dit in en we bekomen:

$$U_L = L \frac{\Delta I}{T_{on}} =$$

$$U_L = -L \frac{\Delta I}{T_{off}} =$$

met \*\* zijnde \*\*\*. Uit beide vergelijkingen kunnen we nu  $L\Delta I$  extraheren en deze 2 waardes aan elkaar gelijkstellen. Dit geeft:

$$L\Delta I = T_{on}() = -T_{off}()$$

Wanneer we deze vergelijking nu oplossen naar  $V_{uit}$  en de stroom door het spoel  $I_L$  bekomen we:

$$V_{uit} = \frac{1}{1-D}V_{in} - V_D - \frac{1}{1-D}R_LI_L - \frac{D}{1-D}R_TI_L$$

In de meeste gevallen willen we echter de uitgangsspanning als functie van een gegeven uitgangsstroom  $I_{out}$ .

$$V_{uit} = \frac{1}{1-D}V_{in} - V_D - \frac{1}{(1-D)^2}R_LI_{out} - \frac{D}{(1-D)^2}R_TI_{out}$$

We kunnen de vergelijking ook schrijven in functie van de duty cycle D. We zien dat er hier 2 oplossingen zijn.



Fig. 5.1: Visualisatie van de werking van de boost convertor

## 5.1 Oefening Boost convertor

#### **5.1.1** opgave

Het onderstaande schema beschikbaar op het internet. De ingangsspanning is 12V en de uitgangsspanning is 48V. De voorwaartse spanning over D1 is typisch 0.45V en de aan weerstand van M1 is typisch  $0.028\,\Omega$ . De weerstand van het spoel L1 is verwaarloosbaar klein ten opzichte van de weerstand  $R_{SENSE}$  (zie schema) die wel moet meegerekend worden.

- 1. Wat is de duty cycle als er een verwaarloosbare stroom aan de uitgang loopt?
- 2. Bereken de duty cycle D als een functie van de stroom  $I_L$
- 3. Bereken de duty cycle D als een functie van de stroom  $I_{out}$ . Hier bekijken we enkel de duty cycle waarbij een stabiele waarde van de stroom wordt bekomen.
- 4. Bereken de efficientie als een functie van de stroom  $I_{out}$
- 5. Bereken de efficientie als een functie van de output Power  $P_{out}$ .
- 6. Hoe verandert deze efficientie als de chip nog bijkomend 22mA uit de 12V voeding verbruikt?



Fig. 5.2: Commercieel boost convertor circuit

#### 5.1.2 Oplossing

We berekenen hier eerst de duty cycle als een functie van de stroom die door het spoel loopt  $(I_L)$ .

Bereken de duty cycle D als een functie van de stroom  $I_L$ 

$$\begin{split} D\left(V_{in} - (R_L + R_{SENSE} + R_T)I_L\right) + (1 - D)\left(V_{in} - V_D - (R_L + R_{SENSE})I_L - V_{out}\right) &= 0 \\ D\left(V_{in} - (R_L + R_{SENSE} + R_T)I_L\right) - D\left(V_{in} - V_D - (R_L + R_{SENSE})I_L - V_{out}\right) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D\left( - (R_T)I_L\right) - D\left( - V_D - V_{out}\right) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D\left(V_{out} + V_D - R_TI_L\right) &= V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in} \\ D &= \frac{V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in}}{(V_{out} + V_D - R_TI_L)} \end{split}$$

$$D = \frac{36.45 + 0.005 I_L}{48.45 - 0.028 I_L}$$

Fig. 5.3 toont het verloop van de bekomen Duty Dycle als een functie van de stroom die door het spoel loopt  $(I_L)$ .



Fig. 5.3: Duty cycle als een functie van de stroom door de spoel

Wanneer we deze grafiek bekijken, lijkt het in dit geval dat we een lineaire benadering kunnen uitvoeren.  $\$D = \frac{36.45}{48.45} \frac{1 + \frac{0.0055}{10.645} I_L}{1 - \frac{36.45}{10.625} I_L} \$$ 

Dit doen we door een reeks ontwikkeling van de noemer uit te werken:

$$D = \frac{36.45}{48.45} \left( 1 + \frac{0.005}{36.45} I_L \right) \left( 1 + \frac{0.028}{48.45} I_L + \dots \right)$$

en deze reeks vervolgens te benaderen door de eerste term:

$$D \approx \frac{36.45}{48.45} \left( 1 + \frac{0.005}{36.45} I_L \right) \left( 1 + \frac{0.028}{48.45} I_L \right)$$
$$D \approx \frac{36.45}{48.45} \left( 1 + \left( \frac{0.005}{36.45} + \frac{0.028}{48.45} \right) I_L \right)$$
$$D \approx 0.7523 \left( 1 + 0.000715 I_L \right)$$

Bereken de duty cycle D als een functie van de stroom  $I_{out}$ 

$$I_L(1-D) = I_{out}$$
 
$$D(V_{out} + V_D - R_T I_L) = V_{out} + V_D + (R_L + R_{SENSE})I_L - V_{in}$$
 
$$D((1-D)(V_{out} + V_D) - R_T I_{out}) = (1-D)(V_{out} + V_D - V_{in}) + (R_L + R_{SENSE})I_{out}$$
 
$$-(V_{out} + V_D)D^2 + (2V_{out} + 2V_D - R_T I_{out} - V_{in})D - (V_{out} + V_D - V_{in} + (R_L + R_{SENSE})I_{out})$$
 
$$D = \frac{-(2V_{out} + 2V_D - R_T I_{out} - V_{in}) + \sqrt{(2V_{out} + 2V_D - R_T I_{out} - V_{in})^2 - 4(V_{out} + V_D)(V_{out} + V_D - V_{in} + (R_L + R_{SENSE})(V_{out} + V_D)}{-2(V_{out} + V_D)}$$



Fig. 5.4: Duty cycle als een functie van de stroom aan de uitgang

Aangezien de duty cycle erg lineair was als functie van  $I_L$  kunnen we dit ook als basis nemen voor de verdere berekening van de duty cycle als functie van de  $I_{out}$ 

$$\begin{split} D &\approx 0.7523 \left(1 + 0.000715 I_L\right) \\ D &\approx 0.7523 \left(1 + 0.000715 \frac{I_{out}}{1 - D}\right) \\ D(1 - D) &= 0.7523 \left(1 - D + 0.000715 I_{out}\right) \\ D^2 - D + 0.7523 \left(1 - D + 0.000715 I_{out}\right) &= 0 \\ D^2 - 1.7523D + 0.7523 + 0.0005378945 I_{out} &\approx 0 \end{split}$$

Opnieuw heeft deze vierkantsvergelijking 2 oplossingen. De berekening met de + levert ons het onstabiele stroompunt op. De correcte benadering vinden we in:

$$D \approx \frac{1.7523 - \sqrt{1.7523^2 - 4(0.7523 + 0.0005378945I_{out})}}{2}$$

Fig. 5.4 toont dat zowel de correcte berekening als de benadering weinig van elkaar verschillen.

0.0005378945 (0.06135528999999984, 0.03506752229514367) (0.752300000000002, 0.0021715563181267687)

$$D \approx \frac{1.7523 - \sqrt{0.061355(1 - 0.035I_{out})}}{2}$$
 
$$D \approx 0.7523 + 0.00217I_{out}$$

## Bereken de efficientie als een functie van de stroom ${\cal I}_{out}$



Fig. 5.5: efficientie als een functie van de stroom aan de uitgang

## Bereken de efficientie als een functie van de output Power $P_{out}$



Fig. 5.6: Efficientie als een functie van de output power

## 5.2 Boost Converter oefening 2

(a) Het schema in Fig. 5.7 komt uit een datasheet die je van het internet kan downloaden. Wat verwacht je dat er binnen in deze component zit en hoe werkt dit circuit dan? De Ron van de schakeltransistor veronderstel je  $0.3\Omega$  en de weerstand van het spoel L1 mag je verwaarlozen, VD veronderstel je 0.3V.



Fig. 5.7: Schema van een Step-up converter ontworpen door ST-microelectronics [bron toevoegen].

(b) Reken uit hoe de Duty cycle en de efficiëntie veranderen als de output stroom gaat van 0 mA naar 500 mA.

## 5.3 Boost Converter oefening 3



Fig. 5.8: (links) Duty-cycle als functie van de input spanning en (rechts) efficientie als functie van de output stroom voor de ontworpen Step-up converter.



Fig. 5.9: Duty cycle als functie van de input spanning voor de ontworpen Step-up converter.



Fig. 5.10: Efficientie als functie van de output stroom voor de ontworpen Step-up converter

```
[0.5934959349593495,
0.61083333333333333,
0.6290598290598289,
0.6482456140350876,
0.6684684684684684,
0.6898148148148148]
[97.56097560975613,
93.4,
89.02564102564105,
84.42105263157899,
79.56756756756758,
74.44444444446]
[0.0,
0.03891666666666667,
0.07418803418803421,
0.1055263157894737,
0.13261261261261265,
0.15509259259259262]
```

# HOOFDSTUK 6

Inverter of Buck-Boost Converter

# HOOFDSTUK 7

Flyback converter