성과육의

Multimodal Study - 스터디장 김하연

INDEX

01

커리큘럼 소개

02

1 / 2주차 활동내용

03

4/10 세미나

01

커리큘럼 소개

(2²) 1주차 활동내용

학습 내용

딥러닝 스터디를 진행하지 못한 인원이 많아 정규 커리큘럼 중 1주를 활용해 기초 딥러닝 학습 기초적인 신경망 구조 / CNN / RNN

MLP

다층 신경망 구조인 Multi-Layer Perceptron 딥러닝에서 가장 기초가 되는 모델

CNN

이미지 인식에 주로 활용되는 CNN 모델 Convolution Layer를 활용해 각 픽셀의 중요 정보를 연산

RNN

시계열 데이터에 주로 활용되는 RNN 모델 과거의 정보를 기억하며 새로운 정보를 처리

⁰² 2주차 활동내용

학습 내용

Transformer 모델의 핵심 원리이자 기초 개념인 Attention 매커니즘에 대해 학습 논문: Attention Is All You Need 서울대 Joonseok Lee 교수님 강의자료 활용

ATTENTION

RNN과는 달리, 전체 시퀀스 내 모든 단어 간 관계를 한번에 학습하는 기법
RNN에 비해 데이터 손실률이 적음

Q/K/V

입력받은 시퀀스로부터 쿼리 / 키 / 밸류를 받아 Attention 작동 현재 단어 (쿼리)를 기준으로, 문장 내 다른 단어들 (키)의 의미(밸류)와의 관계를 학습

03 4/10 세미나

Attention Is All You Need

Ashish Vaswani* Google Brain

Google Brain avaswani@google.com

Llion Jones*
Google Research
llion@google.com

Noam Shazeer* Google Brain

noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* †
University of Toronto

aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to

세미나

일시 4월 10일(목) 저녁

스터디원 모두 논문을 활용하여 공부하는 초기 단계이기 때문에 관련 주제로 김찬영 선배님의 세미나 예정

THANKYOU

MULTIMODAL STUDY