Phase 5: Project Documentation & Submission

In this part you will document your project and prepare it for submission. Document the customer churn prediction project and prepare it for submission.

Documentation

- · Outline the project's objective, design thinking process, and development phases.
- Describe the analysis objectives, data collection process, data visualization using IBM Cognos, and predictive modeling.
- Explain how the insights and prediction model can help businesses reduce customer churn.

Submission

- · Share the GitHub repository link containing the project's code and files.
- Provide instructions on how to replicate the analysis and generate visualizations using IBM Cognos and build the predictive model using Python.
- Include example outputs of the visualizations and model evaluation.
- IN THIS PHASE WE HAVE
 Outline the project's objective, design thinking process, and development phases.
- Describe the analysis objectives, data collection process, data visualization using IBM Cognos, and predictive modeling.

CUSTOMER CHURNP REDICTION

ABSTRACT

Customer churn prediction refers to the pra ctice of using data analysis and predictive modeling techniques to forecast which cust omers are likely to stop using a product or service, often referred to as "churning" or " churned customers." Churn prediction is a valuable business strategy, especially for s ubscription-based services, telecom compa nies, e-commerce platforms, and other bus inesses that rely on customer retention and loyalty.

PROBLEM D EFINITION

The project involves using IBM Cognos to predict customer churn and identify f actors influencing customer retention. T he goal is to help businesses reduce cu stomer attrition by understanding the pa tterns and reasons behind customers le aving. This project includes defining an alysis objectives, collecting customer d ata, designing relevant visualizations in IBM jCognos, and building a predictive model.

DESIGN THINKING

ANALYSISOBJECTIVE

S

ANALYSIS OBJECTIVES

Define the specific ob jectives of predicting customer churn, such as identifying potentia I churners and unders tanding the key factor s contributing to chur n.

1.Identify Potential C hurners

2.Early Detection

3.Reduce Churn Rat e

- 1.The primary objective of churn prediction is to id entify customers who are at risk of churning. This can be done by developing a predictive model that assigns a churn probability score to each custom er
- 2.Aim to detect potential churners as early as pos sible. Early detection allows for proactive measur es to be taken, such as targeted marketing campa igns or personalized incentives, to retain these cu stomers.
- 3.Set a specific target for reducing the churn rate. This objective could be framed as a percentage reduction in churn over a specified time period (e.g., reduce churn by 10% in the next quarter).

4. Segmentation

5. Feature Analysis

6.Customer Lifetime Value (CLV)

- 4.Segment the customer base based on churn probabili ty and other relevant factors. This allows for tailored ret ention strategies for different customer groups. For exa mple, high-value customers may receive different retent ion efforts compared to low-value customers.
- 5.Understand the key factors contributing to churn. Con duct feature importance analysis to identify which custo mer attributes, behaviors, or interactions with the comp any have the most significant impact on churn.
- 6.Calculate CLV for each customer and analyze how it correlates with churn. The objective may be to increase the CLV of customers at risk of churning

7.Model Performance8.Actionable Insights9.Monitoring and Iteration

- 7.Set performance benchmarks for your churn predicti on model. This includes metrics such as accuracy, pre cision, recall, and F1-score. Aim to achieve a certain I evel of model accuracy in predicting churn.
- 8. The ultimate goal is to provide actionable insights to the business. Ensure that your churn prediction analy sis translates into specific actions that can be taken to retain customers. These actions may include sending targeted offers, improving customer service, or enhancing product features.
- 9.Implement a system for continuous monitoring of ch urn and model performance. Establish a process for r egular model retraining and refinement to adapt to ch anging customer behaviors and market conditions.

10.Cost Reduction

11. Oustomer Feedback Integration:

12 Benchmarking

10.Evaluate the cost of customer acquisition compared to the cost of retaining customers. The objective may be to reduce the cost of retention efforts while maximizing their effectiveness.

11.Integrate customer feedback into the churn prediction process. Identify the sentiment of customer feedback from potential churners and use it to refine retention strategies.

12. Compare your churn prediction and retention efforts with industry benchmarks or competitors to assess your performance and identify areas for improvement

DATA COLLECTION

Data Collection

Determine the sources and methods for collec ting customer data, inc luding customer demo graphics, usage behavi or, and historical intera ctions.

MOTHLY VIEW

Methods for Collecting Customer D ata:

- 1.Data Mining
- 2 Machine Learning Models
- 3.Third-party Data

- 1.Use data mining techniques to extract valuable insights from large datasets. This can help identify patterns and factors that contribute to customer churn.
- 2.Implement predictive models like logistic regression, decision trees, or neural networks to analyze historical data and predict future churn based on customer behavior and demographics.
- 3.Consider using external data sources, such as market data or industry benchmarks, to enhance your analysis and gain a broader perspective on customer behavior.

VISUALIZATIONSTR ATEGY

Visualization Strategy

Plan how to visualize the in sights using IBM Cognos, s howcasing factors affecting churn and retention rates for customer churn prediction project

1.Understand the Data2.Choose the Right Visualizations

1.Start by thoroughly understanding your dataset and the variables that may customer churn and retention. Identify key features and potential predictors.

2.Select appropriate visualization types for different types of data. For Example: Use line charts to visualize trends in churn and retention rates over Time. Create bar charts or pie charts to represent categorical variables like product usage, demographics, or subscription Type. Scatter plots can be useful to explore relationships between variables.

DATASET

Dependents

No

Yes

No

No

No

No

No

Yes

No

Yes

Yes

tenure

Partner

0 Yes

0 Yes

0 No

1 No

0 Yes

0 No

0 Yes

0 Yes

0 No

0 Yes

0 Yes

SeniorCitizen

В

gender

Female

Female

Female

Male

Male

Male

Male

Female

Female

Male

Male

1 customerID

2 7590-VHVEG

20 4190-MFLUW

21 4183-MYFRB

22 8779-QRDMV

23 1680-VDCWW

24 1066-JKSGK

25 3638-WEABW

26 6322-HRPFA

27 6865-JZNKO

28 6467-CHFZW

29 8665-UTDHZ

3	5575-GNVDE	Male	0 No	No	34 Yes	No	DSL	Yes	No	Yes	No	No	No
4	3668-QPYBK	Male	0 No	No	2 Yes	No	DSL	Yes	Yes	No	No	No	No
5	7795-CFOCW	Male	0 No	No	45 No	No phone service	e DSL	Yes	No	Yes	Yes	No	No
6	9237-HQITU	Female	0 No	No	2 Yes	No	Fiber optic	No	No	No	No	No	No
7	9305-CDSKC	Female	0 No	No	8 Yes	Yes	Fiber optic	No	No	Yes	No	Yes	Yes
8	1452-KIOVK	Male	0 No	Yes	22 Yes	Yes	Fiber optic	No	Yes	No	No	Yes	No
9	6713-OKOMC	Female	0 No	No	10 No	No phone service	DSL	Yes	No	No	No	No	No
10	7892-POOKP	Female	0 Yes	No	28 Yes	Yes	Fiber optic	No	No	Yes	Yes	Yes	Yes
11	6388-TABGU	Male	0 No	Yes	62 Yes	No	DSL	Yes	Yes	No	No	No	No
12	9763-GRSKD	Male	0 Yes	Yes	13 Yes	No	DSL	Yes	No	No	No	No	No
13	7469-LKBCI	Male	0 No	No	16 Yes	No	No	No internet ser	vic No internet se	rvic No internet ser	vic No internet ser	vic No internet serv	ic No ir
14	8091-TTVAX	Male	0 Yes	No	58 Yes	Yes	Fiber optic	No	No	Yes	No	Yes	Yes
15	0280-XJGEX	Male	0 No	No	49 Yes	Yes	Fiber optic	No	Yes	Yes	No	Yes	Yes
16	5129-JLPIS	Male	0 No	No	25 Yes	No	Fiber optic	Yes	No	Yes	Yes	Yes	Yes
17	3655-SNQYZ	Female	0 Yes	Yes	69 Yes	Yes	Fiber optic	Yes	Yes	Yes	Yes	Yes	Yes
18	8191-XWSZG	Female	0 No	No	52 Yes	No	No	No internet ser	vic No internet se	rvio No internet ser	vic No internet ser	vic No internet serv	ic No ir
19	9959-WOFKT	Male	0 No	Yes	71 Yes	Yes	Fiber optic	Yes	No	Yes	No	Yes	Yes

No

No

No

No

Yes

No

No

No phone service DSL

No phone service DSL

DSL

No

No

DSL

DSL

DSL

Fiber optic

Fiber optic

Н

No phone service DSL

InternetService

OnlineSecurity

No

No

No

No

No

Yes

Yes

No

No

MultipleLines

K

No

Yes

Yes

Yes

No

No

No

No

No

OnlineBackup

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

M

DeviceProtection TechSupport

No

Yes

No

No

Yes

Yes

No

No

No

No internet servic No internet s

No internet servic No internet s

N

Strea

No

No

Yes

Yes

No

No

No

Yes

No

StreamingTV

No

No

No

No

No

No

No

Yes

No

G

PhoneService

1 No

10 Yes

21 Yes

1 No

12 Yes

1 Yes

58 Yes

49 Yes

30 Yes

47 Yes

1 No

DATA PREPROCESSING

VISUALIZATION

Check for missing values in each columns and decide how to handle them

Handle data types appropriately(eg.convert the 'date' column to datetime)

Ensure data consistency and correctness, such as checking that percentages are within valid Ranges(0-100%)

Develop informative and visually appealing charts And graphs

Consider creating interactive visualization for Online sharing or presentations

Ensure that your visualizations are well labled And easy to interpret

PREDICTIVEM ODELING

Algorithms to predict customer churn prediction such as ensemble techniques

- 1.SVM SVM or Support Vector Machine
- 2. Ridge Classifier
- 3.Random Forest
- 4.XG boost

About the algorithms

SVM - SVM or Support Vector Machine is a supervised machine learning technique used for classificat ion and regression. Finding a hyperplane in an N-dimensional space that classifies the data points is the goal of the SVM method. The number of features determines the hyperplane's size.

Ridge Classifier - Ridge classification is a metho d used in machine learning to assess linear discri minant models. In order to prevent overfitting, thi s type of normalization limits model coefficients. Random Forest - Random Forest is a classification algorithm that uses multiple decision trees on similar sets of the input dataset and averages the results to enhance the dataset's prediction accuracy.

XG Boost - Formally speaking, XGBoost ma y be described as a decision tree-based ens emble learning framework that uses Gradien t Descent as the underlying objective functio n. It offers excellent flexibility and efficiently uses computation to produce the mandated results.

Conclusion

In conclusion, customer churn prediction plays a pivotal role in helping businesses retain their customers. By leveraging data-driven models a nd analytics, companies can identify potential c hurners and take proactive measures to retain t hem. This not only helps in maintaining revenu e but also enhances customer satisfaction and I Project title: Customer churn prediction

Phase 3: Development

Part 1

In this part you will begin building your project by loading and preprocessing the dataset.

Begin conducting the Customer churn prediction by collecting and preprocessing the data.

Collect and preprocess the Customer data for analysis.

Data Preprocessing:

- Data preprocessing is a crucial step within the statistics analysis and gadget gaining knowledge of pipeline.
- It includes a sequence of strategies and operations finished on uncooked statistics to clean, organize, and transform it right into a layout that is suitable for analysis or device mastering version schooling.
- Data preprocessing goals to enhance the firstclass of the records, making it greater reliable and conducive to generating accurate consequences.

Here are some common tasks and techniques involved in data preprocessing:

Data Cleaning:

- Handling missing values: Deciding how to deal with missing data, whether by imputing values or removing incomplete records.
- Outlier detection and treatment: Identifying and handling data points that significantly deviate from the norm.

Noise reduction:

Smoothing noisy data through techniques like filtering.

Data Transformation:

- Data normalization: Scaling numerical features to a standard range (e.g., between 0 and 1) to ensure that they have similar influence in the analysis.
- Encoding categorical variables: Converting categorical data into numerical format, such as one-hot encoding or label encoding.
- Feature engineering: Creating new features or modifying existing ones to capture more meaningful information from the data.
- Dimensionality reduction: Reducing the number of features while retaining essential information, using methods like Principal Component Analysis (PCA).

Data Integration:

 Merging or joining datasets: Combining data from multiple sources into a single dataset for analysis.

Aggregation: Summarizing data at a higher level of granularity, such as aggregating daily sales into monthly totals.

Data Reduction:

- Sampling: Reducing the size of a large dataset by randomly selecting a representative subset.
- Binning: Grouping continuous data into discrete bins to simplify analysis.
- Filtering: Selecting a subset of data based on specific criteria.

Data Standardization:

- Ensuring that data follows a consistent format and structure.
- Date and time format conversion: Converting date and time data into a uniform format.
- Currency conversion: Converting monetary values into a common currency.

Data Scaling:

 Scaling numerical data to a common range to prevent some features from dominating the analysis.

Data preprocessing is an iterative process that may involve several of these steps in various orders, depending on the specific dataset and the analysis goals. Proper data preprocessing is essential for improving the accuracy and effectiveness of machine learning models, as well as for making data more accessible for traditional statistical analysis.

Here is the data preprocessing codes along with the output of the given dataset:

Importing the libraries:

Import three basic libraries which are very common in machine learning and will be used every time you train a model

- NumPy: it is a library that allows us to work with arrays and as most machine learning models work on arrays NumPy makes it easier
- Matplotlib: this library helps in plotting graphs and charts, which are very useful while showing the result of your model
- Pandas: pandas allows us to import our dataset and also creates a matrix of features containing the dependent and independent variable.

#Connect the google drive for reading the dataset # Connect the google drive from google.colab import drive drive.mount("/content/drive")

Mounted at /content/drive

Preparing Dataset # Import the dataset import pandas as pd

dataset = pd.read_csv("/content/drive/MyDrive/BIT/Customer-churn.csv")

print(dataset)

(ataoti,						
	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	
	PhoneServi	ce					
0	7590-VHVEG	Female	0	Yes	No	1	No
1	5575-GNVDE	Male	0	No	No	34	Yes
2	3668-QPYBK	Male	0	No	No	2	Yes
3	7795-CFOCW	Male	0	No	No	45	No
4	9237-HQITU	Female	0	No	No	2	Yes
5	9305-CDSKC	Female	0	No	No	8	Yes
6	1452-KIOVK	Male	0	No	Yes	22	Yes
7	6713-OKOMC	Female	0	No	No	10	No
8	7892-POOKP	Female	0	Yes	No	28	Yes
9	6388-TABGU	Male	0	No	Yes	62	Yes
10	9763-GRSKD	Male	0	Yes	Yes	13	Yes
11	7469-LKBCI	Male	0	No	No	16	Yes
12	8091-TTVAX	Male	0	Yes	No	58	Yes
13	0280-XJGEX	Male	0	No	No	49	Yes
14	5129-JLPIS	Male	0	No	No	25	Yes
15	3655-SNQYZ	Female	0	Yes	Yes	69	Yes
16	8191-XWSZG	Female	0	No	No	52	Yes
17	9959-WOFKT	Male	0	No	Yes	71	Yes
18	4190-MFLUW	Female	0	Yes	Yes	10	Yes
19	4183-MYFRB	Female	0	No	No	21	Yes
20	8779-QRDMV	Male	1	No	No	1	No
21	1680-VDCWW	Male	0	Yes	No	12	Yes
22	1066-JKSGK	Male	0	No	No	1	Yes
23	3638-WEABW	Female	0	Yes	No	58	Yes
24	6322-HRPFA	Male	0	Yes	Yes	49	Yes
25	6865-JZNKO	Female	0	No	No	30	Yes
26	6467-CHFZW	Male	0	Yes	Yes	47	Yes
27	8665-UTDHZ	Male	0	Yes	Yes	1	No
28	5248-YGIJN	Male	0	Yes	No	72	Yes
	Multiple	Lines In	ternetService	On	lineSecurity	\	
0	No phone se	ervice	DSL		No		
4		M _a	DCI		Vaa		

	MultipleLines Ir	nternetService	OnlineSecurity	 1
0	No phone service	DSL	No	
1	No	DSL	Yes	
2	No	DSL	Yes	
3	No phone service	DSL	Yes	
4	No	Fiber optic	No	

6		Yes	Fiber optic		No	
7	No phon	service	DSL		Yes	
	· e					
8		Yes	Fiber optic		No	
9		No	DSL		Yes	
10		No	DSL		Yes	
11		No	No	No	interne service	
					t	
12		Yes	Fiber optic		No	
13		Yes	Fiber optic		No	
14		No	Fiber optic		Yes	
15		Yes	Fiber optic		Yes	
16		No	No	No	interne service	
					t	
17		Yes	Fiber optic		Yes	
18		No	DSL		No	
19		No	Fiber optic		No	
20	No phon	service	DSL		No	
	е					
21		No	No	No	interne service	
					t	
22		No	No	No	interne service	
					t	
23		Yes	DSL		No	
24		No	DSL		Yes	

Fiber optic

No ---

Yes

dataset.dropna

5

 bo	ound method	DataFran	ne.dropna of	customerID	gender	SeniorCitizen	
Par	tner Depend	ents tenu	re PhoneServ	ice \			
0	7590-VHVEG	Female	0	Yes	No	1	No
1	5575-GNVDE	Male	0	No	No	34	Yes
2	3668-QPYBK	Male	0	No	No	2	Yes
3	7795-CFOCW	Male	0	No	No	45	No
4	9237-HQITU	Female	0	No	No	2	Yes
5	9305-CDSKC	Female	0	No	No	8	Yes
6	1452-KIOVK	Male	0	No	Yes	22	Yes
7	6713-OKOMC	Female	0	No	No	10	No
8	7892-POOKP	Female	0	Yes	No	28	Yes
9	6388-TABGU	Male	0	No	Yes	62	Yes
10	9763-GRSKD	Male	0	Yes	Yes	13	Yes
11	7469-LKBCI	Male	0	No	No	16	Yes
12	8091-TTVAX	Male	0	Yes	No	58	Yes
13	0280-XJGEX	Male	0	No	No	49	Yes
14	5129-JLPIS	Male	0	No	No	25	Yes
15	3655-SNQYZ	Female	0	Yes	Yes	69	Yes
16	8191-XWSZG	Female	0	No	No	52	Yes
17	9959-WOFKT	Male	0	No	Yes	71	Yes
18	4190-MFLUW	Female	0	Yes	Yes	10	Yes
19	4183-MYFRB	Female	0	No	No	21	Yes
20	8779-QRDMV	Male	1	No	No	1	No
21	1680-VDCWW	Male	0	Yes	No	12	Yes
22	1066-JKSGK	Male	0	No	No	1	Yes
23	3638-WEABW	Female	0	Yes	No	58	Yes
24	6322-HRPFA	Male	0	Yes	Yes	49	Yes
25	6865-JZNKO	Female	0	No	No	30	Yes
26	6467-CHFZW	Male	0	Yes	Yes	47	Yes
27	8665-UTDHZ	Male	0	Yes	Yes	1	No
28	5248-YGIJN	Male	0	Yes	No	72	Yes

	MultipleLines	InternetServic	OnlineSecurity	 1
0	No phone service	е	No	
		DSL		
1	No	DSL	Yes	
2	No	DSL	Yes	

3	No phon ser	vice		DSL		Yes	
	e						
4		No	Fiber	optic		No	
5		Yes	Fiber	optic		No	
6		Yes	Fiber	optic		No	
7	No phon ser	vice		DSL		Yes	
	· e						
8		Yes	Fiber	optic		No	
9		No		DSL		Yes	
10		No		DSL		Yes	
11		No		No	No	interne service	
						t	
12		Yes	Fiber	optic		No	
13		Yes		optic		No	
14		No		optic		Yes	
15		Yes		optic		Yes	
16		No		No	No	interne service	
. •						t	
17		Yes	Fiber	optic		Yes	
18		No		DSL		No	
19		No	Fiber	optic		No	
20	No phon ser			DSL		No	
	e						
21	-	No		No	No	interne service	
						t	
22		No		No	No	interne service	
						t	
23		Yes		DSL		No	
24		No		DSL		Yes	

dataset.isnull()

	custom eeFID	gende r PhoneS	SeniorCitizem Servi	Pærtner	Dependents te	nure	PhoneServi
0	False	False	False	False	False	False	Fal
1	False	False	False	False	False	False	Fal
2	False	False	False	False	False	False	Fal
3	False	False	False	False	False	False	Fal
4	False	False	False	False	False	False	Fal
5	False	False	False	False	False	False	Fal
6	False	False	False	False	False	False	Fal
7	False	False	False	False	False	False	Fal
8	False	False	False	False	False	False	Fal
9	False	False	False	False	False	False	Fal
10	False	False	False	False	False	False	Fal
11	False	False	False	False	False	False	Fal
dataset.ir	nfo						

 bo	ound method	DataFrar	ne.info of			customerID	gender	
	Ser	niorCitizer	Partner De	pe	ndents	tenure Phon	eService \	
0	7590-VHVEG	Female		0	Yes	No	1	No
1	5575-GNVDE	Male		0	No	No	34	Yes
2	3668-QPYBK	Male		0	No	No	2	Yes
3	7795-CFOCW	Male		0	No	No	45	No
4	9237-HQITU	Female		0	No	No	2	Yes
5	9305-CDSKC	Female		0	No	No	8	Yes
6	1452-KIOVK	Male		0	No	Yes	22	Yes
7	6713-OKOMC	Female		0	No	No	10	No
8	7892-POOKP	Female		0	Yes	No	28	Yes
9	6388-TABGU	Male		0	No	Yes	62	Yes
10	9763-GRSKD	Male		0	Yes	Yes	13	Yes
11	7469-LKBCI	Male		0	No	No	16	Yes
12	8091-TTVAX	Male		0	Yes	No	58	Yes
13	0280-XJGEX	Male		0	No	No	49	Yes
14	5129-JLPIS	Male		0	No	No	25	Yes
15	3655-SNQYZ	Female		0	Yes	Yes	69	Yes
16	8191-XWSZG	Female		0	No	No	52	Yes
17	9959-WOFKT	Male		0	No	Yes	71	Yes
18	4190-MFLUW	Female		0	Yes	Yes	10	Yes
19	4183-MYFRB	Female		0	No	No	21	Yes
20	8779-QRDMV	Male		1	No	No	1	No
21	1680-VDCWW	Male		0	Yes	No	12	Yes
22	1066-JKSGK	Male		0	No	No	1	Yes
23	3638-WEABW	Female		0	Yes	No	58	Yes
24	6322-HRPFA	Male		0	Yes	Yes	49	Yes
25	6865-JZNKO	Female		0	No	No	30	Yes
26	6467-CHFZW	Male		0	Yes	Yes	47	Yes
27	8665-UTDHZ	Male		0	Yes	Yes	1	No
28	5248-YGIJN	Male		0	Yes	No	72	Yes

MultipleLines InternetService No phone service **DSL**

OnlineSecurity ... \ No ...

1			No		DSL		Yes	
2			No		DSL		Yes	
3	No	phon	service		DSL		Yes	
		· e						
4			No	Fiber	optic		No	
5			Yes	Fiber	optic		No	
6			Yes		optic		No	
7	No	phon	service		DSL		Yes	
-		е						
8			Yes	Fiber	optic		No	
9			No		DSL		Yes	
10)		No		DSL		Yes	
11			No		No	No	interne service	
							t	
12	2		Yes	Fiber	optic		No	
13	;		Yes		optic		No	
14			No		optic		Yes	
15			Yes		optic		Yes	
16			No	1 1.501	No	No	interne service	
			110		110		t	
17	,		Yes	Fiber	optic		Yes	
18			No		DSL		No	
19			No	Fiber	optic		No	
20		nhon	service		DSL		No	
20	110	е	3CI VICC		DOL		110	
21			No		No	No	interne service	
							t	
22	<u>:</u>		No		No	No	interne service	
							t	
23	}		Yes		DSL		No	
24			No		DSL		Yes	

dataset.describe

					gender	SeniorCitizen	
Par	tner Depend	ents tenure	PhoneServ				
0	7590-VHVEG	Female	0	Yes	No	1	No
1	5575-GNVDE	Male	0	No	No	34	Yes
2	3668-QPYBK	Male	0	No	No	2	Yes
3	7795-CFOCW	Male	0	No	No	45	No
4	9237-HQITU	Female	0	No	No	2	Yes
5	9305-CDSKC	Female	0	No	No	8	Yes
6	1452-KIOVK	Male	0	No	Yes	22	Yes
7	6713-OKOMC	Female	0	No	No	10	No
8	7892-POOKP	Female	0	Yes	No	28	Yes
9	6388-TABGU	Male	0	No	Yes	62	Yes
10	9763-GRSKD	Male	0	Yes	Yes	13	Yes
11	7469-LKBCI	Male	0	No	No	16	Yes
12	8091-TTVAX	Male	0	Yes	No	58	Yes
13	0280-XJGEX	Male	0	No	No	49	Yes
14	5129-JLPIS	Male	0	No	No	25	Yes
15	3655-SNQYZ	Female	0	Yes	Yes	69	Yes
16	8191-XWSZG	Female	0	No	No	52	Yes
17	9959-WOFKT	Male	0	No	Yes	71	Yes
18	4190-MFLUW	Female	0	Yes	Yes	10	Yes
19	4183-MYFRB	Female	0	No	No	21	Yes
20	8779-QRDMV	Male	1	No	No	1	No
21	1680-VDCWW	Male	0	Yes	No	12	Yes
22	1066-JKSGK	Male	0	No	No	1	Yes
23	3638-WEABW	Female	0	Yes	No	58	Yes
24	6322-HRPFA	Male	0	Yes	Yes	49	Yes
25	6865-JZNKO	Female	0	No	No	30	Yes

26	6467-CHFZW	Male	0	Yes	Yes	47	Yes
27	8665-UTDHZ	Male	0	Yes	Yes	1	No
28	5248-YGIJN	Male	0	Yes	No	72	Yes

		141-1-		1 10 1		0 - 11 0		
_		-		ternetService	(OnlineS	_	 \
0	No	phon e	service	DSL			No	
1			No	DSL			Yes	
2			No	DSL			Yes	
3	No	phon e	service	DSL			Yes	
4			No	Fiber optic			No	
5			Yes	Fiber optic			No	
6			Yes	Fiber optic			No	
7	No	phon e	service	DSL			Yes	
8			Yes	Fiber optic			No	
9			No	DSL			Yes	
10			No	DSL			Yes	
11			No	No	No	interne t	service	
12			Yes	Fiber optic			No	
13			Yes	Fiber optic			No	
14			No	Fiber optic			Yes	
15			Yes	Fiber optic			Yes	
16			No	No	No	interne t	service	
17			Yes	Fiber optic			Yes	
18			No	DSL			No	
19			No	Fiber optic			No	
20	No	phon e	service	DSL			No	
21		•	No	No	No	interne t	service	
22			No	No	No	interne t	service	
23			Yes	DSL			No	

import matplotlib.pyplot as plt

X=dataset.MonthlyCharges

Y=dataset.TotalCharges

Xtrain = dataset[['gender','PaymentMethod','OnlineBackup','PaperlessBilling']]

Ytrain = dataset[['Churn']]

print(Xtrain)

	gender	PaymentMethod	OnlineBackup	PaperlessBilling
0	Female	Electronic check	Yes	Yes
1	Male	Mailed check	No	No
2	Male	Mailed check	Yes	Yes
3	Male	Bank transfer (automatic)	No	No
4	Female	Electronic check	No	Yes
5	Female	Electronic check	No	Yes
6	Male	Credit card (automatic)	Yes	Yes
7	Female	Mailed check	No	No
8	Female	Electronic check	No	Yes
9	Male	Bank transfer (automatic)	Yes	No
10	Male	Mailed check	No	Yes

11	Male	Credit card (automatic) No	o internet service	No
12	Male	Credit card (automatic)	No	No
13	Male	Bank transfer (automatic)	Yes	Yes
14	Male	Electronic check	No	Yes

15	Female	Credit card (automatic)	Yes	No
16	Female	Mailed check	No internet service	No
17	Male	Bank transfer (automatic)	No	No
18	Female	Credit card (automatic)	No	No
19	Female	Electronic check	Yes	Yes
20	Male	Electronic check	No	Yes
21	Male	Bank transfer (automatic)	No internet service	No
22	Male	Mailed check	No internet service	No
23	Female	Credit card (automatic)	Yes	Yes
24	Male	Credit card (automatic)	Yes	No
25	Female	Bank transfer (automatic)	Yes	Yes
26	Male	Electronic check	Yes	Yes
27	Male	Electronic check	Yes	No
28	Male	Credit card (automatic)	Yes	Yes

print(Ytrain)

	Churn
0	No
1	No
2	Yes
3	No
4	Yes
5	Yes
6	No
7	No
8	Yes
9	No
10	No
11	No
12	No
13	Yes
14	No
15	No
16	No
17	No
18	Yes
19	No
20	Yes
21	No
22	Yes
23	No
24	No
25	No
26	Yes
27	Yes
28	No

from sklearn.preprocessing import OrdinalEncoder

enc = OrdinalEncoder()

enc.fit(Xtrain)

```
    OrdinalEncoder
```

Xtrain_encoded=enc.transform(Xtrain)

print(Xtrain_encoded)

- **[[0.** 2. 2. 1.]
- [1. 3. 0. 0.]
- [1. 3. 2. 1.]
- [1. 0. 0. 0.]
- [0. 2. 0. 1.]
- [0. 2. 0. 1.]
- [1. 1. 2. 1.]
- [0. 3. 0. 0.]
- [0. 2. 0. 1.]
- [1. 0. 2. 0.]
- [1. 3. 0. 1.]
- [1. 1. 1. 0.]
- [1. 1. 0. 0.]
- [1. 0. 2. 1.]
- [1. 2. 0. 1.]
- [0. 1. 2. 0.]
- [0. 3. 1. 0.]
- [1. 0. 0. 0.]
- [0. 1. 0. 0.]
- [0. 2. 2. 1.]
- [1. 2. 0. 1.]
- [1. 0. 1. 0.]
- [1. 3. 1. 0.]
- [0. 1. 2. 1.]
- [1. 1. 2. 0.]
- [0. 0. 2. 1.] [1. 2. 2. 1.]
- [1. 2. 2. 0.]
- [1. 1. 2. 1.]]

from sklearn import tree

clf = tree.DecisionTreeClassifier()

clf.fit(Xtrain_encoded,Ytrain)

DecisionTreeClassifierDecisionTreeClassifier()

tree.plot_tree(clf)

```
[Text(0.4642857142857143, 0.9, 'x[1] \le 1.5 \le 0.452 \le 0.452]
29\nvalue = [19, 10]'),
  Text(0.19047619047619047, 0.7, 'x[0] \le 0.5  | mgini = 0.245 | msamples =
14 = [12, 2]
  Text(0.09523809523809523, 0.5, 'x[2] \le 1.0 \text{ lngini} = 0.375 \text{ lnsamples} = 0.375 \text{ lnsamples}
4\ln = [3, 1]'
  Text(0.047619047619047616, 0.3, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),
  Text(0.14285714285714285, 0.3, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),
  Text(0.2857142857142857, 0.5, 'x[3] \le 0.5 \ln = 0.18 \ln = 10 \ln = 10
= [9, 1]'),
  Text(0.23809523809523808, 0.3, 'gini = 0.0\nsamples = 7\nvalue = [7, 0]'),
  = [2, 1]'),
  Text(0.2857142857142857, 0.1, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(0.38095238095238093, 0.1, 'gini = 0.0 \nsamples = 2 \nvalue = [2, 0]'),
  Text(0.7380952380952381, 0.7, 'x[1] <= 2.5\ngini = 0.498\nsamples =
15\nvalue = [7, 8]'),
  Text(0.6190476190476191, 0.5, 'x[2] <= 1.0\ngini = 0.444\nsamples = 9\nvalue
= [3, 6]'),
  Text(0.5238095238095238, 0.3, 'x[0] \le 0.5 \le 0.32 
= [1, 4]'),
  Text(0.47619047619047616, 0.1, 'gini = 0.0\nsamples = 3\nvalue = [0, 3]'),
   Text(0.5714285714285714, 0.1, 'gin = 0.5 | samples = 2 | nvalue = [1, 1]'),
   Text(0.7142857142857143, 0.3,
                                                                         'x[0 \le 0.5 \le 0.5 \le 4 \le 0.5]
[2, 2]'),
  Text(0.666666666666666, 0.1, 'gin = 0.0 \text{ nsamples} = 2 \text{ nvalue} = [2, 0]'),
   Text(0.7619047619047619, 0.1,
                                                                        'gin = 0.0\nsamples = 2\nvalue = [0, 2]'),
   Text(0.8571428571428571, 0.5,
                                                                         x[2 \le 0.5 \le 0.444 \le 6]
= [4, 2]'),
  Text(0.9047619047619048,
                                                                         x[0 \le 0.5 \le 0.444 \le 3 \le 3
                                                            0.3,
= [1, 2]'),
    Text(0.8571428571428571, 0.1,
                                                                        'gin = 0.0\nsamples = 1\nvalue = [1, 0]'),
   Text(0.9523809523809523, 0.1,
                                                                        'gin = 0.0\nsamples = 2\nvalue = [0, 2]')]
```



```
from sklearn.ensemble import
RandomForestClassifier clf =
RandomForestClassifier(n_estimators = 100)
clf.fit(Xtrain_encoded,Ytrain)
    <ipython-input-20-b6cd1249641e>:3: DataConversionWarning: A column-vector y
      w clf.fit(Xtrain_encoded,Ytrain)
     RandomForestClassifier
     RandomForestClassifier()
import numpy as np
arr = np.array([[1, 1, 2, 1]])
print(clf.predict(arr))
    ['No']
import numpy as np
arr1 = np.array([[1, 3, 2, 1]])
print(clf.predict(arr1))
    ['Yes']
import seaborn as sns
plt.figure(figsize=(8,5))
sns.heatmap(dataset.corr(),annot=True,linewidth=
3) plt.show
```

<ipython-input-25-095c9657f905>:2: FutureWarning: The default value of numeri sns.heatmap(dataset.corr(),annot=True,linewidth=3) <function matplotlib.pyplot.show(close=None, block=None)>

sns.pairplot(dataset)

plt.show()

dataset.hist()

array([[<Axes: title={'center': 'SeniorCitizen'}>,

PROJECT TITLE : CUSTOMER CHURN PREDICTION

PHASE 4: DEVELOPMENT PART 2

PROBLEM STATEMENT

Phase 4: Development Part 2

In this part you will continue building your project.

- Continue building the analysis by creating visualizations using IBM Cognos and developing a predictive model.
- Create interactive dashboards and reports in IBM Cognos to visualize churn patterns, retention rates, and key factors influencing churn.
- Use machine learning algorithms to build a predictive model that identifies potential churners based on historical data and relevant features

WE HAVE CREATED DASHBOARD USING IBM COGNOS

Loading Data

```
# Importing Dataset
data =
pd.read_csv("/kaggle/input/telco-customer-churn/WA_Fn-UseC_-Telco-Customer-Churn.c
sv")
# Printing Data
data.head()
```

DeviceProtection	TechSupport	StreamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	Churn
No	No	No	No	Month- to-month	Yes	Electronic check	29.85	29.85	No
Yes	No	No	No	One year	No	Mailed check	56.95	1889.5	No
No	No	No	No	Month- to-month	Yes	Mailed check	53.85	108.15	Yes
Yes	Yes	No	No	One year	No	Bank transfer (automatic)	42.30	1840.75	No
No	No	No	No	Month- to-month	Yes	Electronic check	70.70	151.65	Yes

```
with sns.color_palette("pastel"):
    fig, axes = plt.subplots(2, 3, figsize=(12, 7), sharey=True)
    sns.countplot("gender", data=data, ax=axes[0,0])
    sns.countplot("SeniorCitizen", data=data, ax=axes[0,1])
    sns.countplot("Partner", data=data, ax=axes[0,2])
    sns.countplot("Dependents", data=data, ax=axes[1,0])
    sns.countplot("PhoneService", data=data, ax=axes[1,1])
    sns.countplot("PaperlessBilling", data=data, ax=axes[1,2])
```

```
with sns.color_palette("husl"):
fig, axes = plt.subplots(1,2, figsize=(12, 7))
sns.distplot(data["tenure"], ax=axes[0])
sns.distplot(data["MonthlyCharges"], ax=axes[1])
```


SVM CLASSIFIER

1. SVM - SVM or Support Vector Machine is a supervised machine learning technique used for classification and regression. Finding a hyperplane in

an N-dimensional space that classifies the data points is the goal of the SVM method. The number of features determines the hyperplane's size.

```
# Training the model using the optimal parameters discovered with SVM Classifier
svmclf = SVC(C=3,class_weight='balanced', random_state=43)
svmclf.fit(X train,y train)
result2 = ["2.","SVM","Balanced using class weights"]
y_pred_tr = svmclf.predict(X_train)
print('Train accuracy SVM: ',accuracy_score(y_train,y_pred_tr))
result2.append(round(accuracy_score(y_train,y_pred_tr),2))
y_pred_test = svmclf.predict(X_test)
print('Test accuracy SVM: ',accuracy_score(y_test,y_pred_test))
result2.append(round(accuracy_score(y_test,y_pred_test),2))
recall = recall_score(y_test,y_pred_test)
print("Recall Score: ",recall)
result2.append(round(recall,2))
# Building a confusion matrix
matrix = confusion_matrix(y_test,y_pred_test)
ax=plt.subplot();
sns.heatmap(matrix, annot=True, fmt='d', linewidths=2, linecolor='black',
cmap='YIGnBu',ax=ax)
ax.set xlabel('Predicted')
ax.set_ylabel('Actual')
ax.set_ylim(2.0,0)
ax.set_title('Confusion Matrix')
ax.xaxis.set_ticklabels(['Neg','Pos'])
ax.yaxis.set_ticklabels(['Neg','Pos'])
plt.show()
OUTPUT
```

Train accuracy SVM: 0.8186469584991473 Test accuracy SVM: 0.7656149388280747

Recall Score: 0.8147668393782384

1. XG Boost - Formally speaking, XGBoost may be described as a decision tree-based ensemble learning framework that uses Gradient Descent as the underlying objective function. It offers excellent flexibility and efficiently uses computation to produce the mandated results.

```
cv result =
pd.DataFrame(grid.cv_results_).sort_values(by='mean_train_score',ascending=Tr
ue)[:70]
param_list = list(cv_result['params'])
param_index = np.arange(70)
plt.figure(figsize=(18,6))
plt.scatter(param_index,cv_result['mean_train_score'])
plt.plot(param_index,cv_result['mean_train_score'],label='Train')
plt.scatter(param_index,cv_result['mean_test_score'])
plt.plot(param_index,cv_result['mean_test_score'],label="CV")
plt.title('Hyperparameter vs accuracy')
plt.grid()
plt.legend()
plt.xlabel('Hyperparametr combination Dict')
plt.ylabel('Accuracy')
plt.show()
OUTPUT
Fitting 5 folds for each of 144 candidates, totaling 720 fits
```



```
# Using XG Boost
clf_xgb = XGBClassifier(learning_rate= best_parameters['learning_rate']
,max_depth=best_parameters ['max_depth'],
n_estimators=best_parameters['n_estimators'],
colsample_bytree=best_parameters['colsample_bytree'],
eval_metric='mlogloss',scale_pos_weight=scale)
clf_xgb.fit(X_train,y_train)
xgbresult = ["4.","XGBClassifier","Balanced using scale_pos_weight"]
y_pred_tr = clf_xgb.predict(X_train)
print('Train accuracy XGB: ',accuracy_score(y_train,y_pred_tr))
xgbresult.append(round(accuracy_score(y_train,y_pred_tr),2))
y_pred_test = clf_xgb.predict(X_train)
print('Test accuracy XGB: ',accuracy_score(y_test,y_pred_test))
xgbresult.append(round(accuracy_score(y_test,y_pred_test),2))
recall = recall_score(y_test,y_pred_test)
print("Recall Score: ",recall)
```

```
xgbresult.append(round(recall,2))
# Building confusion matrix
cm = confusion_matrix(y_test,y_pred_test)
ax=plt.subplot();
sns.heatmap(cm, annot=True, fmt='d', linewidths=2, linecolor='black',
cmap='YIGnBu',ax=ax)
ax.set_xlabel('Predicted')
ax.set_ylabel('Actual')
ax.set_ylim(2.0,0)
ax.set_title('Confusion Matrix')
ax.xaxis.set_ticklabels(['Neg','Pos'])
ax.yaxis.set_ticklabels(['Neg','Pos'])
plt.show()
Train accuracy XGB: 0.8543490619670268
Test accuracy: 0.80
Recall Score: 0.75
```


CONCLUSION

IN THIS PHASE WE HAVE CREATED DASHBOARD USING IBM COGNOS

AND WE USED MACHINE LEARNING ALGORITHM TO BUILD PREDICTIVE MODELING FOR CUSTOMER DATA AND WE USED SVM AND XG BOOST