REPORT

1)F (w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

A)Truth Table

Karnaugh map.

W	X	Y	Z	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

F:Y'+W'Z'+XZ'

F:Y'+Z'(W'+X)

B) Quartus

C) Waveform function of F

D) F function on breadboard

2)Half Adder And Full Adder

A)Half Adder

The addition of 2 bits is done using a combination circuit called Half adder. The input variables are augend and addend bits and output variables are sum & carry bits. A and B are the two input bits. These are half adder's truth table and karnaugh map

a)Truth Table

X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Karnaugh Map

b)Quartus

Half adder's implementation on quartus:

c) Waveform of half adder

Half adder's waveform result

d) Half adder on breadboard

When x equals 1 and y equals 0, c(carry) took the value 0.

When x equals 1 and y equals 0, s(sum) took the value 1.

B)Full Adder

2 Half Adders and a OR gate is required to implement a Full Adder.

a)Truth Table

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Karnaugh Map

b)Quartus

Full adder's implementation on quartus:

c)Waveform of full adder

Full adder's waveform result

d)Full adder on breadboard

When x equals 1, y equals 1 and z equals 1, y equals 1.

When x equals 1, y equals 1 and y equals 1, y equals 1.

