

Angles and polygons

- Finding the sum of the exterior angles of a polygon
- Finding the sum of the interior angles of a polygon
- Finding the angle between a radius and tangent
- Proving statements in geometry

Keywords

You should know

explanation 1a

explanation 1b

explanation 1c

explanation 1d

1 In each diagram, find the size of x. Give reasons for your answers.

a

> \510

d x 117° 70°

e

f 60°

2 Find the size of each angle marked by a letter. Give reasons for your answers.

a

b

3 In each diagram, find the size of x.

a

b x 56°/

c

d

explanation 2

4 Prove that angle TPQ = 2x.

5 Prove that angle DCA = angle CAB + angle ABC.

Note

Your answer proves that, in general: The exterior angle of a triangle equals the sum of the two interior opposite angles. **6** Prove that angle ADC = angle ABC.

Hint: Copy the diagram and draw in the diagonal BD.

7 Prove that red angle ADC = $2 \times$ angle ABC.

Hint: Copy the diagram and label angle ABD as *x* and angle DBC as *y*.

explanation 3a

explanation 3b

- 8 This question is about regular hexagons.
 - **a** Work out the angles at the centre of a regular hexagon.
 - **b** Use your answer to part **a** to draw a regular hexagon.
- **9** This question is about regular nonagons.
 - **a** Work out the angles at the centre of a regular nonagon.
 - **b** Use your answer to part **a** to draw a regular nonagon.
- **10** The diagram shows a regular pentagon, with centre O.
 - **a** Work out the size of angle AOB.
 - **b** Work out the size of angle OAB.
 - **c** Work out the size of angle EAB.
 - d EAB is an interior angle of the polygon. Work out the sum of all the interior angles in the pentagon.

Work out the sum of all the interior angles in a regular octagon. Use a similar method to that in question 10.

explanation 4a

explanation 4b

12 In each diagram, find the size of x.

- **13** The exterior angles of a pentagon are 2x, 2x, 3x, 4x and 4x.
 - **a** Find the value of x.
 - **b** What is the size of each of the pentagon's exterior angles?

14 The exterior angles of a hexagon are x, 2x, 3x, 4x and 5x. What is the size of each of the hexagon's exterior angles?

explanation 5a

explanation 5b

15 Below are the numbers of sides of regular polygons. What is the size of an exterior angle in each regular polygon?

- a 5 sides
- **b** 8 sides
- 10 sides

- d 15 sides
- e 16 sides
- 30 sides

16 Each diagram shows part of a regular polygon. How many sides does each regular polygon have?

17 Each exterior angle of a regular polygon is 20°. How many sides does the regular polygon have?

explanation 6a

explanation 6b

- **18** Below are the numbers of sides of regular polygons. What is the sum of the interior angles in each regular polygon?
 - a 5 sides
- **b** 8 sides
- 12 sides
- **19** Below are the numbers of sides of regular polygons. What is the size of an interior angle in each regular polygon?
 - **a** 6 sides
- **b** 9 sides
- c 20 sides

20 In each of the following questions, find the size of the angle marked x.

21 Eloise says: 'The sum of the interior angles of a decagon is double the sum of the interior angles in a pentagon.'

Is Eloise correct? Give an explanation for your answer.

22 Each diagram shows part of a regular polygon. In each case, work out the number of sides of the regular polygon.

23 Sahil says: 'I have drawn an accurate regular polygon. All the interior angles add up to 1000°.'

Could Sahil have drawn this regular polygon? Explain your answer.

24 The diagram shows a regular hexagon and a regular pentagon.

Work out the size of the angle marked x.

- **25** The diagram shows a tessellation using hexagons.
 - **a** Explain why regular hexagons tessellate but regular octagons do not.
 - **b** Which other regular polygons will tessellate? Give an explanation for your answers.

explanation 7a

explanation 7b

explanation 7c

26 Find the sizes of the angles *a* to *f*. Give reasons for your answers.

27 In each diagram, PT is a tangent to the circle.

Find the sizes of the angles a, b, c, d and e. Give reasons for your answers.

a

b

c

d

28 In these diagrams, PS and PT are both tangents to the circle.

Find the sizes of the angles marked a and b. Give reasons for your answers.

a

b

- **29** PS is a tangent to the circle.
 - a Work out angle OPS.
 - **b** Work out angle OPT.

30 PS and PT are tangents to the circle centre O. Work out the size of angle STO.

AQ is the diameter of a circle, centre O.PQR is a tangent to the circle at Q.Work out the size of angle PQB.

32 PQR is a tangent at Q to the circle, centre O. Work out the size of angle OTQ.

