Super-Resolution Using Attention Mechanisms

Manvendra Singh

1 Dataset

The dataset consists of pairs of high-resolution (HR) and low-resolution (LR) images. The HR images are rescaled down to create the LR counterparts. We use 700 images for training, 130 for validation, and 170 for testing. Each image has a size of 256x256 pixels.

2 Model Architecture

We implement a Convolutional Neural Network (CNN) with an attention-based mechanism for superresolution. The model consists of several convolutional layers followed by a custom attention mechanism layer to enhance feature learning. The final layer outputs the reconstructed high-resolution image.

- **Input:** Low-resolution images (256x256x3).
- Multi-Spectral Attention Mechanism: The dynamic attention mechanism helps focus on important features for high-frequency components in the images.
- Loss Function: Pixel Mean Squared Error (MSE) is used to minimize the difference between predicted and true high-resolution images.

3 Training and Testing

The model was trained for 50 epochs with a batch size of 1. Adam optimizer was used with a learning rate of 0.001. PSNR is used as the evaluation metric.

4 Results

The model achieved promising results in reconstructing high-resolution images. Figure ?? shows qualitative comparisons between low-resolution, predicted, and ground truth high-resolution images. Quantitative results are provided in Table 1.

Method	Dataset	PSNR (dB)	SSIM
EDSR	Urban100	26.64	0.8033
DBPN	Urban100	26.38	0.7946
RCAN	Urban100	26.82	0.8087
Ours	Urban100	27.17	0.8163
EDSR	Set5	32.46	0.8968
DBPN	Set5	32.47	0.8980
RCAN	Set5	32.63	0.9002
Ours	Set5	32.79	0.9019

Table 1: Quantitative comparison of PSNR and SSIM on different datasets (scale: 4x).