FACULTY OF MEDICINE AND HEALTH

Motion compensated reconstruction in STIR 2.4

Charalampos Tsoumpas

Division of Medical Physics Leeds Institute of Genetics, Health and Therapeutics

C.Tsoumpas@leeds.ac.uk

Source Code Dissemination

Motion Incorporated Reconstruction with regularisation (MCIR-OSL-MRP) Image Based Motion Correction with regularisation (RTA-OSL-MRP)

MCIR-OSL-MRP equation:

$$\boldsymbol{\Lambda}_{v}^{(s+1)} = \boldsymbol{\Lambda}_{v}^{(s)} \frac{1}{\sum_{b \in S_{l},g} \sum_{\acute{v}} \widehat{\boldsymbol{W}}_{\acute{v}g \rightarrow v}^{-1} \boldsymbol{P}_{\acute{v}b} \boldsymbol{A}_{bg} + \boldsymbol{\beta} \nabla_{\boldsymbol{\Lambda}_{v}} \boldsymbol{E}_{v}^{(s)}} \sum_{b \in S_{l},g} \sum_{\acute{v}} \left(\widehat{\boldsymbol{W}}_{\acute{v}g \rightarrow v}^{-1} \boldsymbol{P}_{\acute{v}b} \frac{\boldsymbol{Y}_{bg}}{\sum_{\widetilde{v}} \boldsymbol{P}_{b\widetilde{v}} \sum_{\widetilde{v}} \widehat{\boldsymbol{W}}_{\widecheck{v} \rightarrow \widecheck{v}g} \boldsymbol{\Lambda}_{\widecheck{v}}^{(s)} + \frac{\boldsymbol{B}_{bg}}{\boldsymbol{A}_{bg}}} \right)$$

FACULTY OF MEDICINE AND HEALTH

Relevant Publications

- Image Based Motion Correction
- Motion Correction Within Reconstruction

Polycarpou et al (2012) Medical Physics

Regularised Motion Correction

Tsoumpas et al (2013) Phys Med Biol

Regional Root Mean Square Error versus penalisation weight

FACULTY OF MEDICINE AND HEALTH

Transformation

```
VoxelsOnCartesianGrid<float>
warp_image(const shared_ptr<DiscretisedDensity<3,float> > & density_sptr,
            const shared ptr<DiscretisedDensity<3,float> > & motion vector sptr)
    const DiscretisedDensityOnCartesianGrid <3,float>* density_cartesian_sptr =
         dynamic_cast< DiscretisedDensityOnCartesianGrid<3,float>* > (density_sptr.get());
    const BasicCoordinate<3,float> grid spacing=density cartesian sptr->get grid spacing();
    const CartesianCoordinate3D<float> origin=density cartesian sptr->get origin();
    const BSpline::BSplinesRegularGrid<3, float> density interpolation(*density sptr, linear);
    BasicCoordinate<3,int> min; BasicCoordinate<3,int> max;
    const IndexRange<3> range=density_sptr->get_index_range();
    if (!range.get_regular_range(min, max))
         error("image is not in regular grid.\n");
    const IndexRange<3> out range(out min,out max);
    VoxelsOnCartesianGrid<float> out_density(out_range,origin,grid_spacing);
    BasicCoordinate<3,int> c;
    BasicCoordinate<3,double> d, l;
    for (c=min; c<=max; ++c)</pre>
         1 = static cast<double> ((*motion vector sptr)[c]/grid spacing);
         d = c + 1:
         out_density[c] = density_interpolation(d);
                                                                                  5
    return out density;
```

FACULTY OF MEDICINE AND HEALTH

New Classes in STIR 2.4

GatedDiscretisedDensity
GatedProjData
MotionField
MotionVectors
TimeGateDefinitions
PoissonLogLikelihoodWithLinearModelForMeanAndGated
ProjectionDataWithMotion

How to work with the RTA?

Utility:

$$\Lambda_v = rac{1}{G} \sum_g \sum_{\acute{v}} \widehat{W}_{\acute{v}g
ightarrow v}^{-1} \Lambda_{\acute{v}g}$$

FACULTY OF MEDICINE AND HEALTH

How to run MCIR?

Normal Reconstruction: OSMAPOSL < OSMAPOSL.par>

```
OSMAPOSI Parameters :=
objective function type:=
PoissonLogLikelihoodWithLinearModelForMeanAndGatedProjectionDataWithMotion
PoissonLogLikelihoodWithLinearModelForMeanAndGatedProjectionDataWithMotion
Parameters:=
input filename prefix := INPUT
; Input multiplicative factors (norm*attenuation). Suffix of each file is q#
normalisation sinograms prefix:= ATTENNORMFACTORS
; Input additive term (randoms + scatter). The suffix of each file is _q#
additive sinograms prefix := scaled attcor upsampled scatter estimation
Gate Definitions filename := MOTION.gdef
; Motion Vectors in image file format with suffix: q#d%
Motion Vectors filename prefix := MOTION
Reverse Motion Vectors filename prefix := INVERTEDMOTION
end
PoissonLogLikelihoodWithLinearModelForMeanAndGatedProjectionDataWithMotion
Parameters:=
output filename prefix := MOTIONCORRECTEDIMAGE
                                                                       8
END :=
```


FACULTY OF MEDICINE AND HEALTH

Data Preparation

- Multiple Files (one for each position): Emission sinogram, Multiplicative corrections (attenuation, normalisation), additive corrections (scatter, randoms), motion vectors, and gate definitions filename.
- Sinograms for each position: Standard suffix _g#, e.g. sinogram_g1.hs is the header of the position 1. Needs a definition file, e.g. sinogram.gdef
- Images: Similar suffix _g#. Needs a definition file, e.g. image.gdef
- Motion Vectors: Suffix _g#d%, e.g. motion_g1d1.hv is the header of the motion corresponding to the position 1 and 1st direction. Needs also a definition file, e.g. motion.gdef. The image has exactly the same characteristics as the reconstructed PET image.

Additional Notes

- Both RTA & MCIR use the same warping routines
- MCIR requires two motion fields: forward motion fields and the backward motion fields (i.e. the same as used in RTA).
- It is important that the forward and backward projectors are consistent with each other, if not the result might not converge to a solution.
- Different gate duration could be accounted for by normalizing for the time duration
- MCIR at late iterations may have a small number of voxels very high value
- If you wish to estimate motion there is a free software package at KCL compatible with STIR IO: http://www.isd.kcl.ac.uk/internal/hyperimage
- Realistic gated simulated data are available for free: http://www.isd.kcl.ac.uk/pet-mri/simulated-data/

More information

- User's Guide Documentation
- Reconstruction Test Package (recon_test_pack)
- C++ code and Doxygen documentation
- Relevant publications: Polycarpou et al (2012) Med Phys,
 Tsoumpas et al (2013) PMB

Next Steps

- More robust testing: Currently the tests are performed based on basic tests.
- Regularisation: with Quadratic Priors
- OSSPS: Needs further debugging as it seems the current settings do not reconstruct the motion compensated image.
- Scatter Estimation: Assumed to have it already estimated prior to reconstruction.
- Out of the field of view motion
- Rigid motion for brain imaging
- Combine Motion and Kinetic Modelling
- SPECT & motion compensated reconstruction

School of Medicine FACULTY OF MEDICINE AND HEALTH

PhD Studentship

Motion correction of clinical PET/CT data using motion information from MRI

Deadline: 6/1/2014

Applications: fmhgrad@leeds.ac.uk

Inquiries: <u>c.tsoumpas@leeds.ac.uk</u>

FACULTY OF MEDICINE AND HEALTH

Acknowledgments

Ms Irene Polycarpou Professor Paul K. Marsden Professor Tobias Schaeffter

Dr. Kris Thielemans (now UCL)

Dr. Christian Buerger (now Philips)

GRANTS:

HYPERimage EU FP7: 201651

SUBLIMA EU FP7: 241711