Работа 3.2.1

Сдвиг фаз в цепи переменного тока.

Цель работы изучить влияние активного сопротивления, индуктивности и емкости на сдвиг фаз между током и напряжением в цепи переменного тока.

В работе используются: генератор звуковой частоты, двузканальной осциллограф, магазин емкостей, магазин соаротивлений катушка индуктивности, резисторы, мост переменного тока.

Теория

Циклическая частота:

$$\Omega = 2\pi\nu$$
.

Реактивное сопротивление емкости:

$$Z = \frac{1}{\Omega C}.$$

Реактивное сопротивление индуктивности:

$$Z = \Omega L$$
.

Сдвиг фаз между синусоидами на двухканальном осциллографе:

$$\psi = \pi \cdot \frac{x}{x_0}, \quad \sigma_{\psi} = \pi \sqrt{\left(\frac{\sigma_x}{x_0}\right)^2 + \left(\frac{x}{x_0} \frac{\sigma_{x_0}}{x_0}\right)^2}; \tag{1}$$

где x — расстояния между нулевыми значениями синусоид, x_0 — расстояния между нулевыми значениями одного из сигналов.

Экспериментальная установка:

Рис. 1: Схема установки для исследования сдвига фаз между током и напряжением.

Рис. 2: Схема установки для исследования фазовращателя.

Обработка результатов

RC-цень. Построим график $\tan \psi = f[1/(\Omega C R_{\Sigma})] \equiv f(X)$, где $R_{\Sigma} = R + r$. Теоретический график будет иметь коэффициент наклона 1 и пересечение с осью $\tan \psi$ в точке 0. Рассчитаем ψ по формуле (1). Результаты в таблице 1 и на рисунке 3.

Коэффициент наклона графика: 1.03 ± 0.04 , что сходится с теорией.

Таблица 1: Зависимость для RC-цепи

ψ	$\tan \psi$	$\sigma_{ an_{\psi}}$	$1/(\Omega CR_{\Sigma})$
1.51	16	1	25.7
1.26	3.1	0.2	2.83
1.01	1.6	0.1	1.65
0.75	0.94	0.09	0.93
0.50	0.55	0.07	0.566
0.25	0.26	0.07	0.260
0.00	0.00	0.06	0.099

Рис. 3: Зависимость $\tan \psi(X)$

RL-цень. Построим график $\tan \psi = f[\Omega L/R_{\Sigma}] \equiv f(Y)$, где $R_{\Sigma} = R + r + R_L$. Теоретический график будет иметь коэффициент наклона 1 и пересечение с осью $\tan \psi$ в точке 0. Рассчитаем ψ по формуле (1). Результаты в таблице 2 и на рисунке 4.

Коэффициент наклона графика: 1.04 ± 0.05 , что сходится с теорией.

RLC-цепь. Построим графики $|\psi|=f(\nu/\nu_0)$ для R=0 и R=100. Выберем масштаб оси ψ $\pi/16$. Результаты в таблицах 3, 4 и на рисунке 5.

Рассчитаем добротности по графикам:

$$Q_{R=0} = 1/(1.10 - 0.92) = 5.56, \quad Q_{R=100} = 1/(1.24 - 0.78) = 2.17$$

Рассчитаем добротности по формуле

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Таблица 2: Зависимость для RL-цепи

ψ	$ an \psi$	$\sigma_{ an\psi}$	$\Omega L/R_{\Sigma}$
1.4	7.6	0.6	5.85
1.2	2.4	0.2	2.18
0.92	1.3	0.1	1.29
0.65	0.77	0.08	0.739
0.39	0.41	0.07	0.394
0.26	0.27	0.07	0.157
0.13	0.13	0.07	0.098

Рис. 4: Зависимость $\tan \psi(X)$

Таблица 3: Зависимость для RLC-контура при R=0

ν, Гц	ψ	σ_{ψ}	ν/ν_0
920	0.90	0.06	0.90
960	0.70	0.06	0.94
980	0.48	0.06	0.96
1,000	0.27	0.07	0.98
1,020	0.00	0.07	1.00
1,040	0.30	0.08	1.02
1,080	0.63	0.08	1.06
1,200	0.99	0.09	1.18

$$Q_{R=0}^{\text{reop}} = 9.56, \quad Q_{R=100}^{\text{reop}} = 2.37$$

Теоретические значения больше полученных экспериментально, т.к. они не учитывают сопротивление соединительных проводов, а также эффекты, возникающие в катушке и конденсаторе.

Таблица 4: Зависимость для RLC-контура при $R=100~{
m Om}$

ν , Гц	ψ	σ_{ψ}	ν/ν_0
700	0.99	0.05	0.70
760	0.88	0.05	0.76
810	0.73	0.05	0.81
870	0.58	0.06	0.87
910	0.35	0.06	0.91
980	0.13	0.06	0.98
1,000	0.00	0.07	1.00
1,020	0.13	0.07	1.02
1,100	0.41	0.07	1.10
1,240	0.79	0.08	1.24
1,500	1.05	0.11	1.50

Рис. 5: Зависимость $|\psi| = f(\nu/\nu_0)$

Рис. 6: Векторная диаграмма фазовращателя