8. előadás

TÖBBSZÖRÖS INTEGRÁLOK 1.

Az egyváltozós analízisben hangsúlyoztuk, hogy a matematikai alkalmazások igen fontos fejezete az integrálszámítás. Bevezettük a határozott integrál (vagy Riemann-integrál) fogalmát, megismertük a legfontosabb tulajdonságait, és bemutattuk számos gyakorlati alkalmazását. A továbbiakban a Riemann-integrál többváltozós függvényekre való kiterjesztéséről lesz szó.

Fontos megjegyezni, hogy a valós-valós függvények körében megismert integrálfogalmat többféle módon lehet általánosítani. Sőt: különböző (pl. geometriai, fizikai és egyéb) problémák vizsgálata szükségessé is tette több integrálfogalom bevezetését. Ilyen probléma pl. egy kétváltozós függvény grafikonja alatti térrész térfogatának a kiszámítása, ami az $\mathbb{R}^n \to \mathbb{R}$ függvények többszörös integráljának a fogalmához vezet. A továbbiakban csak többszörös integrálokról lesz szó.

A többszörös integrálok értelmezése n-dimenziós intervallumokon

Emlékeztetünk arra, hogy a Riemann-integrál bevezetésének a motivációjaként függvény grafikonja alatti tartomány területének a problémáját vetettük fel. Abból az Arkhimédész-óta ismert, egyébként elég természetes ötletből indultunk ki, hogy a szóban forgó (görbe vonallal határolt) síkidom területét téglalapok területeinek az összegével közelítsük. Ebből kiindulva jutottunk el a *Riemann-integrálhatóság* fogalmához.

A többszörös integrál bevezetését hasonló geometriai, illetve fizikai problémák motiválják. Példaként tekintsünk egy kétváltozós, valós értékű pozitív függvényt, amelyik az egyszerűség végett például egy, a koordináta-tengelyekkel párhuzamos oldalú téglalapon van értelmezve. A függvény grafikonja alatti térrész *térfogatát* téglatestek térfogatainak az összegével lehet közelíteni.

Látni fogjuk, hogy az egyváltozós Riemann-integrál fogalmának bevezetésénél követett út szó szerint átvihető $\mathbb{R}^n \to \mathbb{R}$ függvényekre, ezért a többszörös integrál értelmezése az egyváltozós Riemann-integrál definíciójának közvetlen általánosításaként adódik.

Induljunk ki a legegyszerűbb \mathbb{R}^n -beli halmazokból, az ún. n-dimenziós intervallumokból: egy n-dimenziós intervallum (vagy más szóval n-dimenziós tégla) az

(1)
$$I := [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n \qquad (n \in \mathbb{N}^+)$$

Descartes-szorzattal értelmezett halmaz, ahol $a_k, b_k \in \mathbb{R}, a_k < b_k \ (k=1,2,\ldots,n)$. Az

$$|I| := \mu(I) := \prod_{k=1}^{n} (b_k - a_k)$$

számot az I intervallum $m\acute{e}rt\acute{e}k\acute{e}nek$ nevezzük.

- Ha n=1, akkor a "szokásos" (korlátos és zárt) \mathbb{R} -beli intervallumot kapunk, amelynek mértéke az $|I|=b_1-a_1$ intervallum hossza.
- Ha n=2, akkor a koordináta-síkon a koordináta-tengelyekkel párhuzamos oldalú téglalapot kapunk, amelynek mértéke az $|I|=(b_1-a_1)\cdot(b_2-a_2)$ téglalap területe.

• Ha n=3, akkor a térbeli derékszögű koordináta-rendszerben a koordináta-síkokkal párhuzamos oldallapú téglatestet kapunk, amelynek mértéke az $|I| = (b_1 - a_1) \cdot (b_2 - a_2) \cdot (b_3 - a_3)$ téglatest térfogata.

Emlékeztetünk arra, hogy egy korlátos és zárt $[a,b] \subset \mathbb{R}$ intervallum felosztásán olyan $\tau \subset [a,b]$ véges halmazt értettünk, amelyre $a,b \in \tau$, azaz

$$\tau := \{ a = x_0 < x_1 < x_2 < \dots < x_m = b \},$$

ahol m egy adott természetes szám. Az intervallum felosztásainak a halmazát az $\mathcal{F}[a,b]$ szimbólummal jelöltük. Vegyük észre, hogy a fenti osztópontokkal megadott felosztást az $I_j := [x_j, x_{j+1}]$ intervallumok (j = 0, 1, ..., m-1) halmazaként is értelmezhetjük:

$$\tau = \{I_j = [x_j, x_{j+1}] \mid j = 0, 1, 2, \dots, m-1\}.$$

Az n-dimenziós intervallum felosztásának az értelmezéséhez az (1) felírásban szereplő minden egyes $[a_k, b_k]$ intervallumnál (k = 0, 1, ..., n) veszünk egy felosztást:

$$\tau_k = \{ a_k = x_{k,0} < x_{k,1} < x_{k,2} < \dots < x_{k,m_k} = b_k \} =$$

$$= \{ I_{k,j} = [x_{k,j}, x_{k,j+1}] \mid j = 0, 1, \dots, m_k - 1 \}.$$

A fenti felosztás tehát $m_k + 1$ osztópontot, illetve m_k intervallumot tartalmaz. Ekkor az (1) n-dimenziós I intervallum egy **felosztásán** a

$$\tau := \tau_1 \times \tau_2 \times \cdots \times \tau_n \subset I$$

halmazt értjük, a felosztások halmazát a $\mathcal{F}(I)$ szimbólummal jelöljük. A τ halmaz elemei tehát az

$$I_{1,j_1} \times I_{2,j_2} \times \cdots \times I_{n,j_n}$$

n-dimenziós intervallumok, ahol $0 \le j_i \le m_i - 1$ (i = 1, 2, ..., n).

A fentieket az n=2 esetben az alábbi ábra szemlélteti.

Egyszerűen igazolható, hogy

$$I = \bigcup_{J \in \tau} J, \qquad \mu(I) = \sum_{J \in \tau} \mu(J).$$

Az egyváltozós esethez hasonlóan értelmezzük az alsó-, illetve a felső közelítő összeg fogalmát. Legyen τ az n-dimenziós I intervallum egy felosztása és $f:I\to\mathbb{R}$ korlátos függvény. Ekkor

$$s(f,\tau) := \sum_{J \in \tau} \inf_{x \in J} f(x) \cdot \mu(J)$$

az f függvény τ felosztáshoz tartozó alsó~közelítő~összege, illetve

$$S(f,\tau) := \sum_{J \in \tau} \sup_{x \in J} f(x) \cdot \mu(J)$$

az f függvény τ felosztáshoz tartozó felső közelítő összege.

felső közelítő összeg

Mivel tetszőleges $\tau \in \mathcal{F}(I)$ felosztás esetén

$$\inf_{x \in I} f(x) \cdot \mu(I) \le s(f,\tau) \le S(f,\tau) \le \sup_{x \in I} f(x) \cdot \mu(I),$$

ezért minden korlátos f függvényre az

$$\{s(f,\tau) \mid \tau \in \mathcal{F}(I)\}$$
 és az $\{S(f,\tau) \mid \tau \in \mathcal{F}(I)\}$

halmazok korlátosak. Az

$$I_*(f) := \sup \{ s(f, \tau) \mid \tau \in \mathcal{F}(I) \}$$

valós számot az f függvény **Darboux-féle alsó integráljának**, az

$$I^*(f) := \inf \{ S(f, \tau) \mid \tau \in \mathcal{F}(I) \}$$

valós számot pedig az f függvény ${\it Darboux-f\'ele felső integr\'alj\'anak}$ nevezzük.

1. Definíció. Akkor mondjuk, hogy a korlátos $f: I \to \mathbb{R}$ függvény Riemann-integrálható (röviden integrálható) az I intervallumon (jelben $f \in R(I)$), ha $I_*(f) = I^*(f)$. A közös $I_*(f) = I^*(f)$ számot az f függvény I intervallumon vett Riemann-integráljának (röviden integráljának) nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\int_{I} f, \quad \int_{I} f(x) dx, \quad \int \cdots \int_{I} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}.$$

Jegyezzük meg, hogy tetszőleges $f: I \to \mathbb{R}$ korlátos függvényre $I_*(f)$ és $I^*(f)$ létezik, mindegyik véges, továbbá bármely két $\tau, \sigma \in \mathcal{F}(I)$ felosztásra $s(f, \tau) < S(f, \sigma)$, következésképpen

$$I_*(f) \le I^*(f).$$

Az egyváltozós esethez hasonlóan egyszerű példát lehet megadni olyan korlátos f függvényre, amelyre az $I_*(f) < I^*(f)$, ami azt jelenti, hogy a függvény nem integrálható.

Példa. Legyen $f:[0,1]\times[0,1]\to\mathbb{R},$

$$f(x,y) := \begin{cases} 0, & \text{ha } x \text{ \'es } y \text{ racion\'alis,} \\ 1, & \text{k\"ul\"onben.} \end{cases}$$

Ekkor $I_*(f)=0$ és $I^*(f)=1$, ezért az f függvény nem integrálható a $[0,1]\times[0,1]\subset\mathbb{R}^2$ intervallumon.

A többszörös integrál tulajdonságai

A továbbiakban felsorolt állítások azt fejezik ki, hogy a Riemann-integrálhatóság, illetve maga a Riemann-integrál a többváltozós esetben is rendelkezik az egyváltozós esetben megismert tulajdonságokkal. Az állításokat nem fogjuk bizonyítani.

Először azt fogalmazzuk meg, hogy az említett fogalmak "érzéketlenek" a függvény véges halmazon való "viselkedésére". Más szóval, ha egy Riemann-integrálható függvényt egy véges halmazon (tetszőlegesen) megváltoztatunk, akkor az így kapott "új" függvény is Riemannintegrálható lesz, és a (Riemann-)integrálja ugyanaz marad, mint a kiindulási függyényé. Tehát, ha egy intervallumon értelmezett két (valós) értékű függvény legfeljebb véges sok helyen különbözik egymástól, akkor vagy mindkettő integrálható (és ekkor az integráljuk megegyezik), vagy egyikük sem integrálható.

1. Tétel. Tekintsük az $I \subset \mathbb{R}^n \ (n \in \mathbb{N}^+)$ intervallumon értelmezett $f, g: I \to \mathbb{R}$ korlátos függvényeket. Tegyük fel, hogy az $A:=\left\{x\in I\;\middle|\;f(x)\neq g(x)\right\}$ halmaz véges. Ekkor

a)
$$f \in R(I) \iff g \in R(I)$$
,

a)
$$f \in R(I) \iff g \in R(I),$$

b) $ha \ f \in R(I), \ akkor \ \int_I f = \int_I g$

A következő tételben kiderül, hogy a folytonosság "erősebb" tulajdonság a Riemann-integrálhatóságnál.

2. Tétel. Tegyük fel, hogy az $I \subset \mathbb{R}^n$ $(n \in \mathbb{N}^+)$ intervallumon értelmezett $f: I \to \mathbb{R}$ függvény folytonos. Ekkor $f \in R(I)$, azaz $C(I) \subset R(I)$.

Az állítás megfordítása nem igaz. Az n = 1 esetben például az

$$f(x) := \begin{cases} 1 & (0 < x \le 1) \\ 0 & (x = 0) \end{cases}$$

függvényre $f \in R[0,1]$, de $f \notin C[0,1]$.

Megjegyzés. Az előző tételekből következik, hogy a véges sok szakadási hellyel rendelkező korlátos függvények integrálhatók. Kérdés, hogy a szakadási helyek számát valamilyen értelemben lehet-e növelni úgy, hogy a függvény továbbra is integrálható maradjon. Kiderül, hogy egy függvény Riemann-integrálhatósága lényegében azon múlik, hogy a függvény szakadási helyeinek a halmaza mennyire "kicsi".

Precízen: azt mondjuk, hogy az $A \subset \mathbb{R}^n$ halmaz **nullmértékű**, ha tetszőleges $\varepsilon > 0$ számhoz megadható $I_k \subset \mathbb{R}^n \ (k \in \mathbb{N}^+)$ n-dimenziós intervallumoknak egy olyan sorozata, hogy

$$A \subset \bigcup_{k=1}^{+\infty} I_k$$
 és $\sum_{k=1}^{+\infty} |I_k| < \varepsilon$.

A Riemann-integrálhatóság Lebesque-kritériuma: Tegyük fel, hogy az $I \subset \mathbb{R}^n$ n-dimenziós intervallumon értelmezett $f: I \to \mathbb{R}$ függvény korlátos, és legyen az f szakadási helyeinek a halmaza

$$\mathcal{A} := \left\{ x \in I \mid f \notin C\{x\} \right\}.$$

Ekkor $f \in R(I)$ azzal ekvivalens, hogy az A halmaz nullmértékű.

Az integrálás és bizonyos függvényműveletek kapcsolatára vonatkozik az alábbi állítás.

- **3. Tétel.** Legyen $I \subset \mathbb{R}^n$ $(n \in \mathbb{N}^+)$ egy intervallum, és tegyük fel, hogy $f, g \in R(I)$. Ekkor
 - a) $minden \ \alpha, \beta \in \mathbb{R} \ eset\'{e}n$

$$\alpha f + \beta g \in R(I)$$
 és $\int_{I} (\alpha f + \beta g) = \alpha \int_{I} f + \beta \int_{I} g$

- b) $f \cdot g \in R(I)$,
- c) ha valamilyen m > 0 állandóval fennáll az

$$|g(x)| \ge m > 0 \qquad (x \in I)$$

egyenlőtlenség, akkor az $\frac{f}{g}$ függvény is integrálható az I intervallumon.

A többváltozós Riemann-integrál is rendelkezik az egydimenziós esetben megismert monotonitási tulajdonsággal. Ezt fejezi ki az alábbi állítás.

- **4. Tétel.** Tegyük fel, hogy $f \in R(I)$, ahol I egy intervallum. Ekkor
 - a) ha $g \in R(I)$, és $f(x) \le g(x)$ $(x \in I)$, akkor $\int_I f \le \int_I g$,
 - b) $|f| \in R(I)$, és $\left| \int_{I} f \right| \leq \int_{I} |f|$.

Szukcesszív integrálás

Egy n-dimenziós intervallumon értelmezett függvény integráljának a kiszámítását vissza lehet vezetni valós-valós függvények egymásra következő (szukcesszív) integráljának a kiszámolására. A tételt n=2-re fogjuk kimondani, az ún. **kettős integrálokra**, de hasonlóan általánosítható n>2-re is.

A továbbiakban feltesszük, hogy adott egy

$$I := I_1 \times I_2 := [a, b] \times [c, d] \subset \mathbb{R}^2$$

kétdimenziós intervallum és egy $f: I \to \mathbb{R}$ korlátos függvény.

Kétváltozós függvény viselkedésének az áttekintését megkönnyítheti, ha az egyik változóját rögzítjük, és a függvényt a másik változó függvényének fogjuk fel. Az így kapott függvények az eredeti függvény ún. szekciófüggvényei.

Ha $f:I_1\times I_2\to\mathbb{R}$ adott kétváltozós függvény, akkor tetszőlegesen rögzített $x\in I_1$ esetén az

$$f_x: I_2 \to \mathbb{R}, \quad f_x(y) := f(x, y) \qquad (y \in I_2),$$

tetszőlegesen rögzített $y \in I_2$ esetén az

$$f^y: I_1 \to \mathbb{R}, \quad f^y(x) := f(x, y) \qquad (x \in I_1)$$

az f függvény szekciófüggvényei.

5. Tétel (Fubini-tétel). Legyen $I = [a, b] \times [c, d]$ és $f: I \to \mathbb{R}$. Tegyük fel, hogy

a) $f \in R(I)$, b) $\forall x \in [a, b] : f_x \in R[c, d]$, c) $\forall y \in [c, d] : f^y \in R[a, b]$.

(2)
$$\iint\limits_I f(x,y) \, dx \, dy = \int\limits_a^b \left(\int\limits_c^d f(x,y) \, dy \right) dx = \int\limits_c^d \left(\int\limits_a^b f(x,y) \, dx \right) dy.$$

Megjegyzések.

- 1. Ha az f függvény folytonos az I téglalapon, akkor $f \in R(I)$, illetve az f_x $(x \in [a,b])$ és az f^y $(y \in [c,d])$ szekciófüggvények is folytonosak, következésképpen Riemann-integrálhatóak. Így a tétel feltételei teljesülnek. Ebben az esetben az állítás equszerűen bebizonyítható. Ennek a fontos speciális esetnek a felfedezése Leonhard Euler (1707–1783) érdeme. Euler eredményét Guido Fubini (1879–1943) általánosította integrálható függvényekre. Az "igazi" Fubini-tétel ennél sokkal általánosabb érvényű az ún. Lebesgue-integrálható, ill. az absztrakt integrálható függvények elméletében.
- 2. Formálisan megfogalmazva tehát a fenti feltételek teljesülése esetén egy kétváltozós függvény integrálját kiszámíthatjuk úgy is, hogy az egyik változót először (tetszőlegesen) rögzítjük, és a másik változó szerint integrálunk, majd az így kapott (a rögzített változótól függő) integrált integráljuk. (Innen ered a szukcesszív (egymás utáni) jelző.) Az (2) egyenlőség azt is állítja, hogy az integrálást bármelyik változóval kezdhetjük, tehát az integrálás sorrendje felcserélhető.

Példa. Számítsuk ki a következő kettős integrált!

$$\iint_{I} (x^{3}y + xy^{2} + 1) dx dy \qquad (I := [0, 1] \times [1, 2]).$$

Megoldás. Az integrálandó $f(x,y) := x^3y + xy^2 + 1$ $((x,y) \in \mathbb{R}^2)$ függvény folytonos I-n, ezért $f \in R(I)$. A Fubini-tétele alapján mindegy, hogy milyen sorrendben integrálunk, az eredmény ugyanaz lesz. Ezzel kétféle módon tudjuk kiszámítani az integrált. Ha először az $x \in [0,1]$ változót (tetszőlegesen) rögzítjük, és az y változó szerint integrálunk, akkor

$$\iint_{I} (x^{3}y + xy^{2} + 1) dx dy = \int_{0}^{1} \left(\int_{1}^{2} (x^{3}y + xy^{2} + 1) dy \right) dx = \int_{0}^{1} \left[\frac{x^{3}y^{2}}{2} + \frac{xy^{3}}{3} + y \right]_{y=1}^{y=2} dx =$$

$$= \int_{0}^{1} \left(\left(\frac{x^{3} \cdot 2^{2}}{2} + \frac{x \cdot 2^{3}}{3} + 2 \right) - \left(\frac{x^{3} \cdot 1^{2}}{2} + \frac{x \cdot 1^{3}}{3} + 1 \right) \right) dx = \int_{0}^{1} \left(\frac{3x^{3}}{2} + \frac{7x}{3} + 1 \right) dx =$$

$$= \left[\frac{3x^{4}}{8} + \frac{7x^{2}}{6} + x \right]_{x=0}^{x=1} = \left(\frac{3}{8} + \frac{7}{6} + 1 \right) - 0 = \frac{61}{24}.$$

Másrészt, ha először az $y \in [1,2]$ változót (tetszőlegesen) rögzítjük, és az x változó szerint integrálunk, akkor azt kapjuk, hogy

$$\iint_{I} (x^{3}y + xy^{2} + 1) dx dy = \int_{1}^{2} \left(\int_{0}^{1} (x^{3}y + xy^{2} + 1) dx \right) dy = \int_{1}^{2} \left[\frac{x^{4}y}{4} + \frac{x^{2}y^{2}}{2} + x \right]_{x=0}^{x=1} dy =$$

$$= \int_{1}^{2} \left(\left(\frac{1^{4} \cdot y}{4} + \frac{1^{2} \cdot y^{2}}{2} + 1 \right) - 0 \right) dy = \int_{1}^{2} \left(\frac{y}{4} + \frac{y^{2}}{2} + 1 \right) dy = \left[\frac{y^{2}}{8} + \frac{y^{3}}{6} + y \right]_{y=1}^{y=2} =$$

$$= \left(\frac{2^{2}}{8} + \frac{2^{3}}{6} + 2 \right) - \left(\frac{1^{2}}{8} + \frac{1^{3}}{6} + 1 \right) = \frac{61}{24}.$$

Megjegyzés. A szukcesszív integrálás tétele azt állítja, hogy (a tétel feltételeinek a teljesülése esetén) mindegy, hogy melyik sorrendben integrálunk, az eredmény ugyanaz lesz. Ez azonban nem jelenti azt, hogy a kétféle sorrendben történő kiszámolás során ugyanolyan technikai jellegű nehézségek lépnek fel.