Листок 9. Графы и вероятность.

DM-ML 58. Докажите, что если $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, то n команд могут так сыграть в волейбол, чтобы для любых k команд нашлась бы команда, которая выиграла бы у них всех.

DM-ML 59. В школе в каждом кружке учится $n \ge 4$ человек, число кружков не превосходит $\frac{4^{n-1}}{3^n}$. Докажите, что можно всем школьникам выставить оценки по поведению (четыре оценки: от 2 до 5), что в каждом кружке будут представлены все 4 оценки.

DM-ML 60. Пусть Ω — конечное пространство элементарных событий, P — вероятностная мера на Ω . Докажите формулу включений исключений: Для любых событий $A_1, A_2, \ldots, A_n \subseteq \Omega$ выполняется

$$P(\cup_i A_i) = \sum_i P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots$$

DM-ML 61. Пусть \mathcal{F} — такое семейство подмножеств [n], что для любых двух $A, B \in \mathcal{F}$ выполняется $A \cap B \neq \emptyset$. Покажите, что $|\mathcal{F}| \leq 2^{n-1}$.

DM-ML 62. Множество событий $A_1, A_2, \ldots, A_n \subseteq \Omega$ называются независимыми, если $P(\bigcap_i A_i) = \prod_i P(A_i)$. Приведите пример конечного вероятностного пространства и трех событий A, B, C, что любые два из них являются независимыми, но в совокупности они не являются независимыми.

DM-ML 63. Для двух строк $x, y \in \{0,1\}^n$ обозначим их скалярное произведение по модулю два: $\langle x, y \rangle = \sum_{i=1}^n x_i y_i \mod 2$. Чему равняется вероятность события $\langle x, y \rangle = 1$, если строка y выбирается случайно (и все варианты равновероятны), а строка x фиксирована?

DM-ML 64. Докажите, что если вершины неориентированного графа имеют степень не больше, чем k, то его вершины можно покрасить в k+1 цвет так, чтобы концы любого ребра были покрашены в разные цвета.

DM-ML 65. Докажите, что если вершины графа имеют степень не больше, чем k, то его вершины можно покрасить в $\lfloor k/2 \rfloor + 1$ цвет так, чтобы для каждой вершины не более одного ребра исходило в вершины того же цвета ($\lfloor x \rfloor$ обозначает целую часть числа x).

DM-ML 66. В сильно связном ориентированном графе (из каждой вершины можно добраться в каждую) у каждой вершины входящая степень равна исходящей. Докажите, что существует цикл, проходящий по каждому ребру ровно 1 раз.

DM-ML 27. Правило ослабления позволяет вывести из дизъюнкта A дизъюнкт $A \lor B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

DM-ML 28.

- (в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_i a_{i-1} \dots a_1}$ и $\overline{b_i' b_{i-1}' \dots b_1'}$ для всех i от 1 до n.
- (г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 36. Покажите, что предикат «p-n-ое простое число» выразимым в арифметике.

DM-ML 54.

(б) В связном графе степени всех вершин не менее двух. Докажите, что в нем можно удалить две соединенные ребром вершины без потери связности.

DM-ML 57. В связном графе есть остовное дерево, в котором k висячих вершин и есть остовное дерево, в котором m висячих вершин. Докажите, что для любого числа ℓ между k и m в этом графе найдется остовное дерево, в котором ℓ висячих вершин.