Pravděpodobnost a statistika

Uvažujme množinu $\Omega \neq \emptyset$ náhodných elementárních jevů coby výsledků náhodného pokusu. Nechť $\mathcal A$ je neprázdný systém podmnožin množiny Ω takový, že

- a) $\emptyset \in \mathcal{A}$,
- b) jestliže $A \in \mathcal{A}$, pak $A^c \in \mathcal{A}$, kde A^c je doplněk množiny A.
- c) jestliže $A_i \in \mathcal{A}$, $i = 1, 2, ..., pak \cup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Potom systém A nazýváme σ -algebra a její prvky $A,B,C\ldots\in\mathcal{A}$ nazýváme náhodné jevy.

Nechť $\Omega \neq \emptyset$ a \mathcal{A} je σ -algebra definovaná na Ω . Pak pravděpodobnost P je definovaná jako reálná funkce na \mathcal{A} , která splňuje

- a) $P(\Omega) = 1$, $P(\emptyset) = 0$,
- b) $P(A) \geq 0$ pro všechna $A \in \mathcal{A}$,
- c) pro všechny dvojice po dvou diskunktních jevů $\{A_i\}_{i=1}^{\infty}$ platí

$$P(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i).$$

Definice

Trojice (Ω, A, P) se nazývá pravděpodobnostní prostor.

- 1) ∅ ... jev nemožný
- 2) Ω ... jev jistý
- A∪B ... sjednocení jevů A a B (jev, který nastává právě tehdy, nastane-li jev A nebo jev B)
- A∩B ... průnik jevů A a B (jev, který nastává právě tehdy, nastane-li zároveň jev A i jev B)
- B A ... rozdíl jevů A a B (jev, který nastává právě tehdy, nastane-li jev B, ale zároveň nenastane jev A)
- 6) $A \subset B$... A je podjevem jevu B, tedy kdykoliv nastane jev A, víme, že nastal i jev B
- 7) $A^c = \Omega A$... doplněk jevu A (jev, který nastane právě tehdy, když nenastane jev A)
- 8) $A \cap B = \emptyset$... jevy A a B jsou disjunktní (nemohou nastat zároveň)
- 9) Posloupnost jevů $\{A_i\}_{i=1}^{\infty}$ taková, že $\bigcup_{i=1}^{\infty} A_i = \Omega$ se nazývá disjunktním rozkladem množiny Ω .

- 1) $0 \le P(A) \le 1$, $\forall A \in A$,
- 2) $A, B \in \mathcal{A}, A \subset B \Rightarrow P(A) \leq P(B),$
- 3) $P(A^c) = 1 P(A), \forall A \in A$,
- 4) $P(A \cup B) = P(A) + P(B) P(A \cap B), \forall A, B \in A$
- 5) $A, B \in \mathcal{A}, A \subset B \Rightarrow P(B A) = P(B) P(A),$
- 6) pro všechny posloupnosti $\{A_i\}_{i=1}^{\infty}$ tvořící disjunktní rozklad množiny Ω platí, že $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) = 1$;

Pravděpodobnostní prostor (Ω, \mathcal{A}, P) se nazývá klasický, jestliže

- a) množina Ω je konečná, tj. $\Omega = \{\omega_1, \dots, \omega_m\}$, a všechny elementární jevy mají stejnou pravděpodobnost, tj. $p_1 = p_2 = \dots = p_m = \frac{1}{m}$, kde $p_i = P(\omega_i)$ pro $i = 1, \dots, m$.
- b) σ -algebra \mathcal{A} je systém všech podmnožin množiny Ω ,
- c) $P(A) = \frac{m_A}{m}$, kde m_A je počet elementárních jevů tvořících jev A.

Pravděpodobnostní prostor (Ω, \mathcal{A}, P) se nazývá geometrický, jestliže

- a) $\Omega \subset \mathbb{R}^d$ (obvykle d=1,2,3), tj. elementární jevy mohou být reprezentovány body v nějakém geometrickém útvaru,
- b) $\mathcal{A} = \mathcal{B}(\Omega)$ je Borelovská σ -algebra na Ω (tj. nejmenší σ -algebra obsahující všechny otevřené podmnožiny Ω , tedy z definice i všechny uzavřené podmnožiny a jejich kombinace),
- c) $P(A) = \frac{\mu^d(A)}{\mu^d(\Omega)}$, kde μ^d is d-rozměrná Lebesqueova míra (pro naše účely postačí uvažovat $\mu^1(A)$ coby délku úsečky A, $\mu^2(A)$ jako plochu dvojrozměrného útvaru A a $\mu^3(A)$ jako objem trojrozměrného A.

Příklady některých speciálních pravděpodobnostních prostorů: obecný diskrétní

Pravděpodobnostní prostor (Ω, \mathcal{A}, P) se nazývá obecný diskrétní, jestliže

- a) $\Omega = \{\omega_1, \omega_2, \ldots\}$ je konečná nebo spočetná,
- b) A je množina všech podmnožin Ω ,
- c) jsou dány pravděpodobnosti $P(\omega_i)$ elementárních jevů ω_i splňující $\sum_{i=1}^{\infty} P(\omega_i) = 1$ a pravděpodobnost každého jevu $A \in \mathcal{A}$ je pak dána vztahem $P(A) = \sum_{\omega_i \in A} P(\omega_i)$.

Příklady některých speciálních pravděpodobnostních prostorů: obecný spojitý

Pravděpodobnostní prostor (Ω, \mathcal{A}, P) se nazývá obecný spojitý, jestliže

- a) $\Omega \subset \mathbb{R}$, tj. elementární jevy mohou být reprezentovány reálnými čísly,
- b) $\mathcal{A} = \mathcal{B}(\mathbb{R})$ je Borelovská σ -algebra na \mathbb{R} ,
- c) existuje funkce $f:\mathbb{R}\to[0,\infty]$ taková, že $\int_{\mathbb{R}}f(x)dx=1$ a pravděpodobnost libovolného jevu $A\in\mathcal{A}$ je jednoznačně dána vztahem

$$P(A) = \int_A f(x) dx.$$

Poznámka

Podobně jako v případě geometrického pravděpodobnostního prostoru je možné pracovat i zde s obecnější množinou $\Omega \subset \mathbb{R}^d, d=2,3,...$, ale to nebude náplní této přednášky.

Nechť (Ω, \mathcal{A}, P) je pravděpodobnostní prostor. Uvažujme jevy A a B, kde P(B) > 0. Pravděpodobnost jevu A za podmínky jevu B je definovaná jako

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Věta

Nechť (Ω, A, P) je pravděpodobnostní prostor a B jev, pro který P(B) > 0. Pak pro libovolný jev $A \in \mathcal{A}$ platí

- a) $P(A|B) \ge 0$,
- b) $P(\Omega|B) = 1$,
- c) $P(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B)$ pro všechny posloupnosti $\{A_i\}$ disjunktních jevů.

Poznámka

Tato věta v podstatě říká, že podmíněná pravděpodobnost má stejné vlastnosti jako pravděpodobnost nepodmíněná.

Důkaz

- a) zřejmé z definice podmíněné pravděpodobnosti (čitatel nezáporný, jmenovatel kladný),
- b) z definice dostáváme

$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1,$$

c) jelikož $A_1,\ A_2,\ldots$ jsou disjunktní, pak i $A_1\cap B,A_2\cap B,\ldots$ musejí být disjunktní, a tedy

$$P(\cup_{i=1}^{\infty} A_i | B) = \frac{P((\cup_{i=1}^{\infty} A_i) \cap B)}{P(B)} = \frac{P(\cup_{i=1}^{\infty} (A_i \cap B))}{P(B)} = \frac{\sum_{i=1}^{\infty} P(A_i \cap B)}{P(B)} = \sum_{i=1}^{\infty} P(A_i | B).$$

Věta

Pro libovolnou posloupnost jevů $A_1, A_2, \ldots, A_n \in \mathcal{A}$ takovou, že $P(A_1 \cap A_2 \cap \ldots \cap A_{n-1}) > 0$, platí

$$P(\cap_{i=1}^{n}A_{i}) = P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}\cap A_{2})\dots P(A_{n}|A_{1}\cap A_{2}\cap \dots \cap A_{n-1}).$$

Důkaz

Opakovaným použitím definice podmíněné pravděpodobnosti dostáváme

$$P(\bigcap_{i=1}^{n-1} A_i \cap A_n) = P(\bigcap_{i=1}^{n-1} A_i) P(A_n | \bigcap_{i=1}^{n-1} A_i) =$$

$$= P(\bigcap_{i=1}^{n-2} A_i) P(A_{n-1} | \bigcap_{i=1}^{n-2} A_i) P(A_n | \bigcap_{i=1}^{n-1} A_i) \dots$$

$$= P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2) \dots P(A_n | \bigcap_{i=1}^{n-1} A_i).$$

Díky monotonii pravděpodobnosti máme

$$P(A_1) \geq P(A_1 \cap A_2) \geq \ldots \geq P(A_1 \cap \ldots \cap A_{n-1}) > 0,$$

tedy všechny podmíněné pravděpodobnosti v důkazu jsou korektně definovány.

Věta

Nechť jevy $A_1, A_2, \ldots \in \mathcal{A}$ tvoří rozklad množiny Ω , tj.

$$A_i \cap A_j = \emptyset, \ \forall i \neq j \ a \ \cup_{i=1}^{\infty} A_i = \Omega.$$

Nechť tyto jevy mají postupně pravděpodobnosti $P(A_1), P(A_2), \ldots, a$ $P(A_i) > 0, \ \forall i = 1, 2, \ldots$ Uvažujme jev $B \in \mathcal{A}$, pro který známe podmíněné pravděpodobnosti

$$P(B|A_i), \forall i=1,2,\ldots$$

Pak

$$P(B) = \sum_{i=1}^{\infty} P(A_i) \cdot P(B|A_i).$$

Důkaz

Nechť jevy $A_1, A_2, \ldots \in \mathcal{A}$ tvoří rozklad množiny Ω , tj. jsou dislunktní. Pak i $(A_i \cap B)$ a $(A_i \cap B)$ jsou disjunktní, tj.

$$(A_i \cap B) \cap (A_i \cap B) = \emptyset, \quad \forall i \neq j,$$

a navíc

$$\cup_{i=1}^{\infty}(A_i\cap B)=B.$$

Tedy

$$P(B) = P(\bigcup_{i=1}^{\infty} (A_i \cap B)) = \sum_{i=1}^{\infty} P(A_i \cap B) = \sum_{i=1}^{\infty} P(A_i) \cdot P(B|A_i).$$

Věta

Nechť jevy $A_1, A_2, \ldots \in \mathcal{A}$ tvoří rozklad množiny Ω , tj.

$$A_i \cap A_j = \emptyset, \ \forall i \neq j \ a \ \cup_{i=1}^{\infty} A_i = \Omega.$$

Nechť tyto jevy mají postupně pravděpodobnosti $P(A_1), P(A_2), \ldots, a$ $P(A_i) > 0, \ \forall i = 1, 2, \ldots$ Uvažujme jev $B \in \mathcal{A}$, pro který známe podmíněné pravděpodobnosti

$$P(B|A_i), \forall i = 1, 2, \dots$$

Pak

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{\infty} P(A_j) \cdot P(B|A_j)}, \quad i = 1, 2, \dots$$

Důkaz

Z definice podmíněné pravděpodobnosti pro všechna $i=1,2,\ldots$ máme

$$P(B|A_i) = \frac{P(B \cap A_i)}{P(A_i)} \Rightarrow P(A_i \cap B) = P(B|A_i)P(A_i).$$

Z věty o úplné pravděpodobnosti pak máme

$$P(B) = \sum_{j=1}^{\infty} P(B|A_j)P(A_j).$$

Tedy

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i \cap B)}{\sum_{j=1}^{\infty} P(B|A_j)P(A_j)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{\infty} P(B|A_j)P(A_j)},$$

což jsme chtěli dokázat.

Jevy A a B se nazývají nezávislé, jestliže pro ně platí

$$P(A \cap B) = P(A) \cdot P(B).$$

Definice

Jevy A_1,A_2,\ldots,A_n se nazývají vzájemně (totálně) nezávislé, jestliže pro každou množinu indexů $\{k_1,k_2,\ldots,k_r\}\subset\{1,\ldots,n\}$, $r=2,\ldots,n$, platí

$$P(A_{k_1} \cap A_{k_2} \cap \ldots \cap A_{k_r}) = P(A_{k_1}) \cdot P(A_{k_2}) \cdot \ldots \cdot P(A_{k_n}).$$

Definice

Jevy A_1, A_2, \ldots, A_n se nazývají po dvou nezávislé, jestliže A_i, A_j jsou nezávislé pro každou dvojici indexů $i, j = 1, \ldots, n, i \neq j$.

Věta

Nechť A, B jsou nezávislé jevy. Pak (A, B^c) , (A^c, B) a (A^c, B^c) jsou dvojice nezávislých jevů.

Důkaz

$$P(A^{c} \cap B) = P(B - A) = P(B - [A \cap B]) = P(B) - P(A \cap B) = P(B) - P(B) \cdot P(A) = P(B) \cdot (1 - P(A)) = P(B) \cdot P(A^{c}).$$

Důkaz nezávislosti jevů A, B^c je analogický a nezávislost jevů A^c, B^c je přímým důsledkem těchto dvou nezávislostí.

Nechť (Ω, \mathcal{A}, P) je pravděpodobnostní prostor. Reálná funkce X definovaná na Ω se nazývá náhodná veličina, jestliže X je měřitelné zobrazení $X:(\Omega,\mathcal{A}) \to (\mathbb{R},\mathcal{B}),\ tj.$

$$\{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}$$

pro libovolnou Borelovskou množinu $B \in \mathcal{B}$.

Poznámka

Na náhodnou veličinu tedy můžeme nahlížet jako na náhodné číslo.

Značení:

- Náhodné veličiny značíme velkými písmeny X, Y, Z...
- 2 Jejich hodnoty značíme malými písmeny $x, y, z \dots$
- **●** Místo $\{\omega \in \Omega : X(\omega) \in B\}$ píšeme zkráceně $\{X \in B\}$, např. místo $\{\omega \in \Omega : X(\omega) \le x\}$ píšeme $\{X \le x\}$.

Vlastnosti: Součty, součiny, podíly, minima, maxima atd. z více náhodných veličin jsou opět náhodné veličiny.

Nechť X je náhodná veličina. Její distribuční funkce je reálná funkce F definovaná jako

$$F(x) = P(X \le x) = P(\{\omega : X(\omega) \le x\}), \quad x \in \mathbb{R}.$$

Základní vlastnosti distribuční funkce:

Distribuční funkce F(x) náhodné veličiny X je

- **1** neklesající, tj. pro každé $a, b \in \mathbb{R}, a \leq b$, platí $F(a) \leq F(b)$,
- $oldsymbol{2}$ zprava spojitá v každém bodě $x \in \mathbb{R}$,

Náhodná veličina X se nazývá diskrétní (nebo také s diskrétním rozdělením pravděpodobnosti), jestliže existuje konečná nebo nekonečná spočetná posloupnost reálných čísel $\{x_i\}$ a k nim odpovídající posloupnost nezáporných čísel $\{p_i\}$, kde $p_i = P(X = x_i)$, takových, že $\sum_{i=1}^{\infty} p_i = 1$.

Distribuční funkce diskrétní náhodné veličiny X je tvaru

$$F(x) = P(X \le x) = \sum_{\{i: x_i \le x\}} P(X = x_i) = \sum_{\{i: x_i \le x\}} p_i,$$

tedy je "skokovitá" se skoky v nabývaných hodnotách x_n a příslušnými velikostmi skoků p_n , přičemž platí, že

$$P(a < X \le b) = F(b) - F(a) = \sum_{\{i: a < x_i \le b\}} P(X = x_i) = \sum_{\{i: a < x_i \le b\}} p_i$$

pro všechna reálná čísla a, b taková, že $a \leq b$.

Náhodná veličina X se nazývá absolutně spojitá (nebo také se spojitým rozdělením pravděpodobnosti), jestliže existuje nezáporná integrovatelná funkce f taková, že

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt, \quad x \in (-\infty, \infty).$$

Funkce f se nazývá hustota pravděpodobnosti náhodné veličiny X.

Základní vlastnosti hustoty f:

- $f(x) = \frac{d}{dx}F(x)$ s.j. (kde s.j. = skoro jistě = s pravděpodobností 1),
- **1** $P(a < X \le b) = F(b) F(a) = \int_a^b f(x) dx$ pro všechna reálná čísla a, b taková, že a < b.

Míra je definovaná jako nezáporná množinová funkce na (Ω, A) , tj.

- $\mathbf{0}$ $\mu: \mathcal{A} \to [0, \infty]$,
- **3** jsou-li $A_i \in \mathcal{A}, i \geq 1$ disjunktní, pak $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

Je-li $\mu(\Omega)=1$, nazýváme míru μ pravděpodobnostní mírou.

Definice

Každé náhodné veličině X a Borelovské množině $B \in \mathcal{B}$ lze připsat pravděpodobnostní míru na $(\mathbb{R}, \mathcal{B})$,

$$\mu_X(B) = P(\{\omega \in \Omega : X(\omega) \in B\}) = P(X \in B),$$

která se nazývá rozdělení pravděpodobnosti náhodné veličiny X.

- Pro $B=(-\infty,x]$, dostaneme $P(X\in B)=\mu_X(B)=P(\{\omega\in\Omega:X(\omega)\leq x\})=P(X\leq x)=F(x),$ tj. distribuční funkci.
- Pro $B=(a,b], \ -\infty < a \le b < \infty$, dostaneme $P(X \in B) = \mu_X(B) = \mu_X((a,b]) = P(X \in (a,b]) = F(b) F(a),$ tedy přírustek distribuční funkce.
- Pro $B = (a, b] \cup (c, d], \ -\infty < a \le b \le c \le d < \infty$, máme $P(X \in B) = \mu_X(B) = \mu_X((a, b] \cup (c, d]) = P(X \in (a, b]) + P(X \in (c, d])$ = (F(b) F(a)) + (F(d) F(c)),

tedy součet přírustků distribuční funkce.

• Obecně tedy můžeme pravděpodobnosti $P(X \in B)$ získat "nasčítáním" přírustků distribuční funkce, matematicky vyjádřeno

$$P(X \in B) = \mu_X(B) = \int_B 1 d\mu_X(x) = \int_B 1 dF(x), \quad \forall B \in \mathcal{B}.$$

- (Téměř) každou náhodnou veličinu X lze jednoznačně vyjádřit jako směs $X=Mix_c(D,S)$, kde D je diskrétní náhodná veličina, S je spojitá náhodná veličina a $c\in \langle 0,1\rangle$ je váha diskréní složky ve směsi neboli pravděpodobnost, s níž nastává situace modelovaná diskrétní náhodnou veličinou D.
- Je zřejmé, že v případě c=1 je X diskrétní, zatímco v případě c=0 je X absolutně spojitá.
- O smíšeném rozdělení náhodné veličiny X tedy mluvíme v případě, kdy $c \in (0,1)$.

- Nechť náhodná veličina X je směs $X = Mix_c(D, S)$, $c \in (0, 1)$, kde D nabývá spočetně mnoha hodnot x_i s pravděpodobnostmi $p_i = P(D = x_i)$, i = 1, 2, ..., a S má hustotu f.
- Označme distribuční funkce náhodných veličin X, D a S postupně jako F_X, F_D, resp. F_S. Pak

$$F_X(x) = cF_D(x) + (1-c)F_S(x) = c\sum_{i:x_i \leq x} p_i + (1-c)\int_{-\infty}^x f(t)dt.$$

 Pro každou hodnotu x, které náhodná veličina X nabývá, pak platí, že

$$P(X = x) = F_X(x) - \lim_{t \to x-} F_X(t).$$

• Hodnoty x : P(X = x) > 0 tedy tvoří spočetnou množinu bodů nespojitosti distribuční funkce F_X a příslušné pravděpodobnosti P(X = x) jsou velikosti skoků v těchto bodech x.

Směsi náhodných veličin stejného typu

- Lze uvažovat i náhodnou veličinu X, která je směsí dvou náhodných veličin stejného typu, tj. $X = Mix_c(Y,Z)$, kde Y i Z jsou buď obě diskrétní nebo obě absolutně spojité náhodné veličiny, přičemž $c \in (0,1)$ je pravděpodobnost, s níž nastává situace modelovaná náhodnou veličinou Y.
- I zde platí, že označíme-li distribuční funkce náhodných veličin X, Y
 a Z postupně jako F_X, F_Y, resp. F_Z, pak

$$F_X(x) = cF_Y(x) + (1-c)F_Z(x).$$

- Navíc platí, že
 - ullet jsou-li Y a Z diskrétní, pak X je diskrétní a

$$P(X = x) = cP(Y = x) + (1 - c)P(Z = x)$$
 pro všechna $x \in \mathbb{R}$,

 jsou-li Y a Z absolutně spojité s hustotami f_Y, resp. f_Z, pak X je absolutně spojitá a pro její hustotu f_X platí

$$f_X(x) = cf_Y(x) + (1-c)f_Z(x)$$
 pro všechna $x \in \mathbb{R}$.

 Lze uvažovat i náhodnou veličinu X, která je směsí více náhodných veličin, tj.

$$X = Mix_{c_1,\ldots,c_n}(X_1,\ldots,X_n),$$

kde $c_i \geq 0$ pro všechna $i=1\ldots,n$, $\sum_{i=1}^n c_i=1$, přičemž c_i je pravděpodobnost, s níž nastává situace modelovaná náhodnou veličinou X_i .

• Označíme-li distribuční funkce náhodných veličin X_1, \ldots, X_n postupně jako F_{X_1}, \ldots, F_{X_n} , pak

$$F_X(x)=c_1F_{X_1}+\ldots+c_nF_{X_n}(x).$$

- Navíc platí, že
 - jsou-li všechny náhodné veličiny X_1, \ldots, X_n diskrétní, pak X je diskrétní a

$$P(X = x) = c_1 P(X_1 = x) + \ldots + c_n P(X_n = x)$$
 pro všechna $x \in \mathbb{R}$,

jsou-li X₁,..., X_n absolutně spojité s hustotami f_{X1},..., f_{Xn}, pak X je absolutně spojitá a pro její hustotu f_X platí

$$f_X(x) = c_1 f_{X_1} + \ldots + c_n f_{X_n}(x)$$
 pro všechna $x \in \mathbb{R}$.

Nechť náhodná veličina X má distribuční funkci $F_X(x)$. Její kvantilová funkce je definována jako

$$q_X(\alpha) = \frac{1}{2} (\sup_{t \in \mathbb{R}} F_X(t) \le \alpha + \inf_{t \in \mathbb{R}} F_X(t) \ge \alpha).$$

Poznámka

- Kvantilová funkce $q_X(\alpha)$ je v jistém smyslu inverzní funkcí k distribuční funkci $F_X(x)$.
- Využívá se zejména ve statistice při hledání daného podílu α extrémních hodnot.

Nechť X je náhodná veličina definovaná na pravděpodobnostním prostoru (Ω, \mathcal{A}, P) . Střední hodnota (anglicky "expected value") $\mathbb{E}X$ náhodné veličiny X je hodnota

$$\mathbb{E}X=\int_{-\infty}^{\infty}xdF(x),$$

pokud integrál existuje.

Nechť X je diskrétní náhodná veličina nabývající hodnot x₁, x₂, x₃,... Pak její střední hodnota je

$$\mathbb{E}X = \sum_{i=1}^{\infty} x_i \cdot P(X = x_i),$$

pokud řada konverguje.

 Nechť X je absolutně spojitá náhodná veličina s hustotou f. Pak její střední hodnota je

$$\mathbb{E}X = \int_{-\infty}^{\infty} x f(x) dx,$$

pokud integrál existuje.

• Nechť X je směs $X = Mix_c(D, S)$. Pak její střední hodnota je

$$\mathbb{E}X = c\mathbb{E}D + (1-c)\mathbb{E}S.$$

- \bullet $\mathbb{E}a = a$,
- $3 X_1 \leq X \leq X_2 s.j. \Rightarrow \mathbb{E}X_1 \leq \mathbb{E}X \leq \mathbb{E}X_2,$

Věta

Nechť X je náhodná veličina definovaná na pravděpodobnostním prostoru (Ω, \mathcal{A}, P) a nechť $\phi : \mathbb{R} \to \mathbb{R}$. Pak

$$\mathbb{E}\phi(X)=\int_{-\infty}^{\infty}\phi(x)dF_X(x),$$

pokud integrál existuje.

Střední hodnota funkce náhodné veličiny ve speciálních případech

• Nechť X je diskrétní náhodná veličina nabývající hodnot x_1 , x_2 , x_3 ,... Pak

$$\mathbb{E}\phi(X) = \sum_{i=1}^{\infty} \phi(x_i) \cdot P(X = x_i),$$

pokud řada konverguje.

Nechť X je absolutně spojitá náhodná veličina s hustotou f. Pak

$$\mathbb{E}\phi(X)=\int_{-\infty}^{\infty}\phi(x)f(x)dx,$$

pokud integrál existuje.

1 Nechť X je směs $X = Mix_c(D, S)$. Pak

$$\mathbb{E}\phi(X) = c\mathbb{E}\phi(D) + (1-c)\mathbb{E}\phi(S).$$

Nechť X je náhodná veličina definovaná na (Ω, A, P) .

 $\mathbb{E}X^n$ se nazývá n-tý moment náhodné veličiny X,

 $\mathbb{E}(X - \mathbb{E}X)^n$ se nazývá n-tý centrální moment náhodné veličiny X,

 $\mathbb{E}|X - \mathbb{E}X|$ se nazývá absolutní moment náhodné veličiny X.

Definice

Druhý centrální moment se nazývá rozptyl (anglicky "variance") a značí se var $X = \mathbb{E}(X - \mathbb{E}X)^2$.

Definice

Nechť X,Y jsou náhodné veličiny takové, že $\mathbb{E}X^2<\infty$ a $\mathbb{E}Y^2<\infty$. Pak jejich kovariance je definovaná jako

$$cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

Poznámka

Povšimněme si, že cov(X, X) = var(X).

Vlastnosti rozptylu a kovariance

- **1** Nechť X je náhodná veličina. Pak $varX = \mathbb{E}(X^2) (\mathbb{E}X)^2$
- ② Nechť a je konstanta. Pak var a = 0.
- Nechť X je náhodná veličina a a je reálné číslo. Pak $var(aX) = a^2 var X$.
- Nechť X je náhodná veličina a a je konstanta. Pak var(X + a) = varX.
- Nechť X je náhodná veličina s konečnou střední hodnotou a konečným nenulovým rozptylem. Nechť

$$Z = \frac{X - \mathbb{E}X}{\sqrt{varX}}.$$

Pak $\mathbb{E}Z = 0$ a varZ = 1.

 $oldsymbol{0}$ Pro náhodné veličiny X,Y platí, že

$$var(X + Y) = varX + varY + 2cov(X, Y).$$

• Pro náhodné veličiny X, Y platí, že $cov(X, Y) = \mathbb{E}(XY)$ - $\mathbb{E}X\mathbb{E}Y$.

Věta

Nechť X je náhodná veličina s konečným rozptylem. Pak pro každé $\varepsilon>0$ platí, že

$$P(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{varX}{\varepsilon^2}.$$

Důkaz

Uvažujme náhodnou veličinu $Y = X - \mathbb{E}X$ s distribuční funkcí F. Pak

$$\begin{aligned} \textit{varX} &= \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}Y^2 = \int_{-\infty}^{\infty} y^2 dF(y) \ge \int_{|y| \ge \varepsilon} y^2 dF(y) \ge \\ &\ge \varepsilon^2 \int_{|y| \ge \varepsilon} dF(y) = \varepsilon^2 P(|Y| \ge \varepsilon) = \varepsilon^2 P(|X - \mathbb{E}X)| \ge \varepsilon). \end{aligned}$$

- X nabývá hodnot 0 a 1 s pravděpodobnostmi 1 p, resp. p.
- Hodnota p, 0 , se nazývá parametr alternativního rozdělení.
- Distribuční funkce má tvar

$$F(x) = \begin{cases} 0 & \text{pro } x < 0 \\ 1 - p & \text{pro } 0 \le x < 1 \\ 1 & \text{pro } x \ge 1 \end{cases}$$

• Střední hodnota je $\mathbb{E}X = p$ a rozptyl varX = p(1-p).

- X nabývá hodnot $k = 0, 1, 2, \ldots, n$.
- Je jednoznačně dáno dvěma parametry $n \in \mathbb{N}$ a $p \in (0,1)$.
- Pravděpodobnosti P(X = k) jsou tvaru

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ pro } k = 0, 1, \dots, n.$$

$$F(x) = \begin{cases} 0 & \text{pro } x < 0 \\ \sum_{0 \le k \le x} \binom{n}{k} p^k (1-p)^{n-k} & \text{pro } 0 \le x < n \\ 1 & \text{pro } x \ge n. \end{cases}$$

• Střední hodnota je $\mathbb{E}X = np$ a rozptyl varX = np(1-p).

Výpočet střední hodnoty

$$\mathbb{E}X = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-k-1)!} p^{k} (1-p)^{n-k-1}$$

$$= np (p+(1-p))^{n-1} = np.$$

Výpočet rozptylu

Pro výpočet rozptylu využijeme vztah

$$varX = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \mathbb{E}X(X-1) + \mathbb{E}X - (\mathbb{E}X)^2.$$

Výpočet první složky je analogický předešlému, tedy

$$\mathbb{E}X(X-1) = \sum_{k=0}^{n} k(k-1) \binom{n}{k} p^{k} (1-p)^{n-k} = \dots = n(n-1)p^{2}$$

Takto získáme rozptyl

$$varX = np(1-p).$$

Poissonovo rozdělení $(X \sim Po(\lambda))$

- X nabývá hodnot $k = 0, 1, 2, \dots$
- Je jednoznačně dáno jedním parametrem $\lambda > 0$.
- Pravděpodobnosti P(X = k) jsou tvaru

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \text{ pro } k = 0, 1, \dots$$

Distribuční funkce má tvar

$$F(x) = \begin{cases} 0 & \text{pro } x \le 0 \\ \sum_{0 \le j \le x} e^{-\lambda} \frac{\lambda^j}{j!} & \text{pro } 0 \le x < \infty. \end{cases}$$

• Střední hodnota a rozptyl jsou $\mathbb{E}X = varX = \lambda$ (výpočty jsou analogické těm pro binomické rozdělení).

Vztah mezi binomickým a Poissonovým rozdělením

Uvažujme náhodnou veličinu $X \sim Binom(n, p)$, kde $n \to \infty$ a $p \to 0$, přičemž $np = \lambda$. Pak

$$P(X=k) = \frac{n(n-1)\dots(n-k+1)}{k!}p^k\left(1-\frac{\lambda}{n}\right)^{n-k} \underset{n\to\infty,p\to0}{\longrightarrow} \frac{\lambda^k}{k!}e^{-\lambda},$$

čímž dostáváme rozdělení Poissonovo.

- X nabývá hodnot $k = 0, 1, 2, \dots$
- Je jednoznačně dáno jedním parametrem $p \in (0,1)$.
- Pravděpodobnosti P(X = k) jsou tvaru

$$P(X = k) = p(1 - p)^k$$
 pro $k = 0, 1, ...$

$$F(x) = \begin{cases} 0 & \text{pro } x < 0 \\ \sum_{0 \le k \le x} p(1-p)^k & \text{pro } x \ge 0. \end{cases}$$

• Použitím vztahů pro geometrické řady dostaneme střední hodnotu $\mathbb{E} X = \frac{1-p}{p}$ a rozptyl $var X = \frac{1-p}{p^2}$.

- Je jednoznačně dáno třemi parametry $N, K, n \in \mathbb{N}$, kde $N \geq K$ a $N \geq n$.
- X nabývá hodnot $k \in \mathbb{N}$: $\max\{0, n + K N\} \le k \le \min\{n, K\}$
- ullet Pravděpodobnosti P(X=k) jsou tvaru

$$P(X=k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{k}} \text{ pro } k = \max\{0, n+K-N\}, \dots, \min\{n, K\}.$$

$$F(x) = \begin{cases} 0 & \text{pro } x < \max\{0, n + K - N\} \\ \sum_{k \le x} \frac{\binom{K}{k} \cdot \binom{N - K}{n - k}}{\binom{N}{n}} & \text{pro } x \in \{\max\{0, n + K - N\}, \min\{n, K\}) \\ 1 & \text{pro } x \ge \min\{n, K\}. \end{cases}$$

• Střední hodnota je $\mathbb{E}X = n\frac{K}{N}$ a rozptyl $varX = n\frac{K}{N}(1 - \frac{K}{N})\frac{N-n}{N-1}$.

- X nabývá hodnot z intervalu [a,b], kde $a,b\in\mathbb{R}$ jsou parametry, které X jednoznačně určují.
- Hustota je tvaru

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{pro } a \le x \le b, \\ 0 & \text{pro } x < a, x > b. \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{pro } x < a, \\ \frac{x-a}{b-a} & \text{pro } a \le x \le b, \\ 1 & \text{pro } x \ge b. \end{cases}$$

Střední hodnota a rozptyl jsou

$$\mathbb{E}X = \frac{a+b}{2}, \quad \textit{varX} = \frac{1}{12}(b-a)^2.$$

Exponenciální rozdělení $(X \sim Exp(\lambda))$

- X nabývá hodnot z intervalu $(0, \infty)$.
- Je jednoznačně určeno parametrem $\lambda > 0$.
- Hustota je tvaru

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{pro } x > 0 \\ 0 & \text{pro } x \le 0. \end{cases}$$

Distribuční funkce má tvar

$$F(x) = \begin{cases} 0 & \text{pro } x \leq 0 \\ 1 - e^{-\lambda x} & \text{pro } x > 0. \end{cases}$$

Použitím integrace per partes dostaneme

$$\mathbb{E}X = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}.$$

Dvojitým použitím per partes dostaneme

$$\mathbb{E}X^2 = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2},$$

a tedy rozptyl je

$$varX = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \frac{1}{2}$$
.

Vlastnosti exponenciálního rozdělení:

1 Je to tzv. "rozdělení bez paměti":

Pro náhodnou veličinu X s exponenciálním rozdělením platí

$$P(X > x + y | X > y) = P(X > x) \quad \forall x > 0, y > 0.$$

Souvislost s Poissonovým rozdělením:

Náhodná veličina X popisující dobu čekání na nějakou událost má exponenciální rozdělení $Exp(\lambda)$ právě tehdy, když náhodná veličina Y popisující počet takových událostí za dobu t má Poissonovo rozdělení $Po(\lambda t)$.

- X nabývá hodnot z \mathbb{R} .
- Je jednoznačně určeno dvěma parametry $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.
- Hustota je tvaru

$$f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty.$$

$$F(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt, -\infty < x < \infty.$$

• Střední hodnota je $\mathbb{E} X = \mu$ a rozptyl $\mathit{var} X = \sigma^2$.

- X nabývá hodnot z \mathbb{R} .
- Hustota je tvaru

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty.$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt, \ -\infty < x < \infty.$$

- Střední hodnota je $\mathbb{E}X = 0$ a rozptyl varX = 1.
- Hodnoty $\Phi(x)$ lze nalézt ve statistických tabulkách.
- Díky symetrii rozdělení platí $\Phi(x) = 1 \Phi(-x)$, takže hodnoty $\Phi(x)$ jsou často tabelovány pouze pro kladná x.

Transformace náhodných veličin s normálním rozdělením

Věta

- Náhodná veličina X má normované normální rozdělení právě tehdy, když $Y = \mu + \sigma X$ má normální rozdělení s parametry μ a σ^2 .
- ② Náhodná veličina X má normální rozdělení s parametry μ a σ^2 právě tehdy, když Y=a+bX má normální rozdělení s parametery $a+b\mu$ a $b^2\sigma^2$.
- Nechť X, Y jsou náhodné veličiny, $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ a cov(X, Y) = 0. Pak Z = X + Y má rozdělení $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

- ... součty, rozdíly, součiny, podíly, minima, maxima atd. náhodných veličin jsou opět náhodné veličiny.
- Dále jestliže X je náhodná veličina, pak

$$Y = \varphi(X)$$

je také náhodná veličina pro libovolnou funkci $\varphi:\mathbb{R} \to \mathbb{R}.$

Věta

Nechť X je náhodná veličina s distribuční funkcí F a nechť $\varphi : \mathbb{R} \to \mathbb{R}$. Označme $Y = \varphi(X)$ a G její distribuční funkci. Pak

$$G(y) = \int_{\{x: \varphi(x) \leq y\}} dF(x), \quad \forall y \in \mathbb{R}.$$

Speciálně je-li X diskrétní s nabývanými hodnotami a příslušnými pravděpodobnostmi $\{x_n, p_n\}$, pak

$$G(y) = \sum_{\{x_n: \varphi(x_n) \leq y\}} p_n, \quad \forall y \in \mathbb{R},$$

a je-li spojitá s hustotou f, pak

$$G(y) = \int_{\{x: \omega(x) \le y\}} f(x) \ dx, \quad \forall y \in \mathbb{R}.$$

Důkaz

Označme
$$B_v = \{x; \varphi(x) \leq y\}$$
. Pak

$$G(y) = P(Y \le y) = P(\varphi(X) \le y) = P(X \in B_y) = \int_{B_y} dF(x) =$$

$$= \int_{\{x: \varphi(x) \le y\}} dF(x).$$

- Mějme dvě nezávislé náhodné veličiny X a Y (matematická definice nezávislosti bude později) s distribučními funkcemi F(x), resp. G(y).
- Cílem je získat rozdělení náhodné veličiny Z = X + Y.
- Nechť H(z) je distribuční funkce Z. Pak

$$H(z) = \int \int_{x+y \le z} dF(x) dG(y)$$

Rozdělení pravděpodobnosti dané distribuční funkcí H(z) se nazývá konvoluce dvou rozdělení s distribučními funkcemi F(x) a G(y). H se pak nazývá konvolucí distribučních funkcí F a G.

• Konvoluci distribučních funkcí značíme H = F * G.

Věta

Nechť F a G jsou distribuční funkce nezávislých diskrétních náhodných veličin X, resp. Y, s odpovídajícími pravděpodobnostmi $\{p_n\}$, resp. $\{q_n\}$, nabýváných hodnot $n \in \mathbb{N}$, tj.

$$F(x) = \sum_{0 \le n \le x} p_n$$
 a $G(y) = \sum_{0 \le n \le y} q_n$.

Nechť H = F * G (tj. H je distribuční funkcí náhodné veličiny Z = X + Y). Pak H je daná vztahem

$$H(z) = \sum_{0 \le n \le z} h_n$$
, kde $h_n = \sum_{k=0}^n p_k \ q_{n-k}$.

Věta

Nechť X a Y jsou nezávislé spojité náhodné veličiny s odpovídajícími hustotami f(x), resp. g(y), a nechť Z = X + Y. Pak hustota h(z) náhodné veličiny Z je daná vztahem

$$h(z) = \int_{-\infty}^{\infty} f(x)g(z-x)dx = \int_{-\infty}^{\infty} f(z-y)g(y)dy.$$
 (1)

Definice

Funkce h(z) definovaná vztahem (1) se nazývá konvoluce hustot f(x) a g(y) a značí se h = f * g.

Poznámka

Funkce h(z) je skutečně hustota pravděpodobnosti, neboť $h(z) \geq 0$ a

$$\int_{-\infty}^{\infty} h(z)dz = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x - y)g(y)dydx =$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x - y)dx \right) g(y)dy = \int_{-\infty}^{\infty} g(y)dy = 1.$$

- Konvoluce dvou alternativních rozdělení Nechť X a Y jsou nezávislé náhodné veličiny, $X \sim Alt(p)$ a $Y \sim Alt(p)$. Pak pro Z = X + Y platí $Z \sim Binom(2, p)$.
- Konvoluce dvou binomických rozdělení Nechť X a Y jsou nezávislé náhodné veličiny, $X \sim Binom(n_1, p)$ a $Y \sim Binom(n_2, p)$. Pak pro Z = X + Y platí $Z \sim Binom(n_1 + n_2, p)$.
- Konvoluce dvou Poissonových rozdělení Nechť X a Y jsou nezávislé náhodné veličiny, $X \sim Po(\lambda_1)$ a $Y \sim Po(\lambda_2)$. Pak pro Z = X + Y platí $Z \sim Po(\lambda_1 + \lambda_2)$.

Konvoluce dvou rovnoměrných rozdělení

Nechť

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{pro } a \le x \le b \\ 0 & \text{jinak} \end{cases}$$

a

$$g(y) = \begin{cases} \frac{1}{d-c} & \text{pro } c \leq y \leq d \\ 0 & \text{jinak.} \end{cases}$$

Pro $d-c \geq b-a$ platí

$$h(z) = \begin{cases} 0 & \text{pro } z \le a + c \text{ nebo } b + d \le z \\ \frac{z - (a + c)}{(b - a)(d - c)} & \text{pro } a + c \le z \le b + c \\ \frac{1}{d - c} & \text{pro } b + c \le z \le a + d \\ \frac{(b + d) - z}{(b - a)(d - c)} & \text{pro } a + d \le z \le b + d. \end{cases}$$

Konvoluce dvou normálních rozdělení

Nechť X a Y jsou nezávislé náhodné veličiny, $X \sim N(\mu_1, \sigma_1^2)$ a $Y \sim N(\mu_2, \sigma_2^2)$. Pak pro Z = X + Y platí $Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Konvoluce dvou exponenciálních rozdělení

Nechť X a Y jsou nezávislé náhodné veličiny, $X \sim \textit{Exp}(\lambda)$ a $Y \sim \textit{Exp}(\lambda)$ Pak Z = X + Y má hustotu

$$h(z) = \begin{cases} \lambda^2 z \exp\{-\lambda z\} & z > 0, \\ 0 & z \le 0. \end{cases}$$

Důsledek: X_1, \ldots, X_k jsou nezávislé náhodné veličiny, $X_i \sim Exp(\lambda)$ pro všechna $i = 1, \ldots, k$, $k \in \mathbb{N}$. Pak $Z = X_1 + \ldots + X_k$ má hustotu

$$h(z) = \begin{cases} \frac{\lambda^k}{(k-1)!} z^{k-1} \exp\{-\lambda z\} & z > 0, \\ 0 & z \le 0. \end{cases}$$

Nechť (Ω, \mathcal{A}, P) je pravděpodobnostní prostor. Uvažujme náhodné veličiny X_1, X_2, \ldots, X_n definované na tomto prostoru. Pak vektor $\mathbb{X} = (X_1, \ldots, X_n)^T$ se nazývá náhodný vektor.

Poznámka

Náhodný vektor je tedy zobrazení z Ω do \mathbb{R}^n a hodnoty náhodného vektoru mohou být interpretovány jako body v n-dimenzionálním prostoru.

Nechť $\mathbb{X}=(X_1,\ldots,X_n)^T$ je náhodný vektor definovaný na pravděpodobnostním prostoru (Ω,\mathcal{A},P) . Sdružená distribuční funkce $F_{\mathbb{X}}$ náhodného vektoru \mathbb{X} je reálná funkce n proměnných definovaná jako

$$F_{\mathbb{X}}(x_1,\ldots,x_n) = P(X_1 \le x_1, X_2 \le x_2,\ldots,X_n \le x_n) = P(\bigcap_{i=1}^n \{\omega : X_i(\omega) \le x_i\}), \quad x_i \in \mathbb{R}, \ i = 1,\ldots,n.$$

Vlastnosti distribuční funkce náhodného vektoru:

- $F_{\mathbb{X}}(x_1,\ldots,x_n)$ je neklesající v každé proměnné x_i při pevných hodnotách ostatních proměnných x_i , $j=1,\ldots,n, j\neq i$.
- ② $F_{\mathbb{X}}(x_1,\ldots,x_n)$ je zprava spojitá v každé proměnné.
- $\lim_{x_i \to -\infty} F_{\mathbb{X}}(x_1, \dots, x_n) = 0$, $i = 1, \dots, n$, kde ostatní proměnné x_j , $j = 1, \dots, n$, $j \neq i$, jsou pevné.

Náhodný vektor \mathbb{X} má diskrétní rozdělení, jestliže existuje posloupnost $\{x_k\}_{k=1}^{\infty}$, $x_k \in \mathbb{R}^n$, a odpovídající posloupnost $\{p_k\}_{k=1}^{\infty}$ kladných čísel taková, že $\sum_{k=1}^{\infty} p_k = 1$, kde

$$p_k = P(X = x_k) = P(\{\omega \in \Omega : X(\omega) = x_k\}).$$

Distribuční funkce diskrétního náhodného vektoru X je tvaru

$$F_{\mathbb{X}}(x) = \sum_{\{k: x_k \leq x\}} p_k, \quad \forall x \in \mathbb{R}^n,$$

kde $x_k \le x$ znamená, že $x_k^i \le x^i$ pro všechny složky x_k^i, x^i , $i=1,\ldots,n$, vektorů x_k , resp. x.

Náhodný vektor $\mathbb{X}=(X_1,\ldots,X_n)^T$ má absolutně spojité rozdělení, jestliže existuje nezáporná funkce $f_{\mathbb{X}}$ n proměnných taková, že

$$F_{\mathbb{X}}(x_1,\ldots,x_n)=\int_{-\infty}^{x_1}\ldots\int_{-\infty}^{x_n}f_{\mathbb{X}}(t_1,\ldots,t_n)dt_1,\ldots,dt_n,$$

kde funkce $f_{\mathbb{X}}$ se nazývá sdružená hustota náhodného vektoru \mathbb{X} nebo také sdružená hustota náhodných veličin X_1, \ldots, X_n .

Poznámka

Stejně jako v případě náhodných veličin, i zde bychom mohli uvažovat zobecnění náhodného vektoru pomocí pravděpodobnostní míry borelovských množin z \mathbb{R}^n . Nicméně pro naše účely postačí uvažovat diskrétní a spojité náhodné vektory každý zvlášť.

Rozdělení (tj. distribuční funkce nebo pravděpodobnostní funkce, resp. hustota) náhodného vektoru $(X_{i_1},\ldots,X_{i_k})^T$, který je podvektorem náhodného vektoru $\mathbb{X}=(X_1,\ldots,X_n)^T$, se nazývá marginální rozdělení (marginální distribuční funkce, marginální pravděpodobnostní funkce, resp. marginální hustota).

Marginální rozdělení pro speciální náhodné vektory

• Je-li náhodný vektor $\mathbb{X} = (X_1, \dots, X_n)^T$ diskrétní se sdruženými pravděpodobnostmi

$$P(X_1 = ., ..., X_{i-1} = ., X_i = ., X_{i+1} = ., ..., X_n = .),$$

kde náhodné veličiny X_l nabývají hodnot $x_{l,1},...,x_{l,k_l}$ pro l=1,...,n, pak marginální pravděpodobnosti náhodných veličin X_i jsou

$$P(X_{i} = x) = \sum_{j_{1}=1}^{k_{1}} \dots \sum_{j_{i-1}=1}^{k_{i-1}} \sum_{j_{i+1}=1}^{k_{i+1}} \dots \sum_{j_{n}=1}^{k_{n}} P(X_{1} = x_{1,j_{1}}, \dots, X_{i-1} = x_{i-1,j_{i-1}}, X_{i} = x, X_{i+1} = x_{i+1,j_{i+1}}, \dots, X_{n} = x_{n,j_{n}}).$$

• Je-li náhodný vektor $\mathbb{X}=(X_1,\ldots,X_n)^T$ spojitý se sdruženou hustotou $f_{\mathbb{X}}(x_1,\ldots,x_n)$, pak marginální hustota náhodných veličin X_i se získají jako (n-1)-dimenzionální integrály

$$f_{X_i}(x) = \int_{\mathbb{R}^{n-1}} f_{\mathbb{X}}(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

Charakteristiky náhodného vektoru

Uvažujme náhodný vektor $\mathbb{X} = (X_1, \dots, X_n)^T$. Jeho základní charakteristiky jsou:

Vektor středních hodnot

$$\mathbb{EX} = (\mathbb{E}X_1, \dots, \mathbb{E}X_n)^T.$$

② Varianční (nazývaná občas také kovarianční) matice VarX s prvky

$$cov(X_i, X_j) = \mathbb{E}(X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j), \quad 1 \leq i, j \leq n.$$

■ Korelační matice Corr
X s prvky

$$corr(X_i, X_j) = \frac{cov(X_i, X_j)}{\sqrt{varX_i}\sqrt{varX_j}}, \quad 1 \leq i, j \leq n.$$

Poznámka

Pro korelaci platí, že $-1 \le corr(X, Y) \le 1$.

Říkáme, že náhodné veličiny X_1 , X_2 ..., X_n jsou (vzájemně) nezávislé, jestliže pro každou r-tici indexů $\{i_1,i_2,\ldots,i_r\}\subset\{1,2,\ldots,n\}, 1\leq r\leq n,$ a pro každé $x_{i_j}\in\mathbb{R}$ platí

$$P(\cap_{j=1}^r \{\omega: X_{i_j}(\omega) \leq x_{i_j}\}) = \prod_{j=1}^r P(\{\omega: X_{i_j}(\omega) \leq x_{i_j}\})$$

(neboli
$$P(X_{i_1} \leq x_{i_1}, \dots, X_{i_r} \leq x_{i_r}) = P(X_{i_1} \leq x_{i_1}) \cdot \dots \cdot P(X_{i_r} \leq x_{i_r}), tj.$$

 $F_{(X_{i_1}, \dots, X_{i_r})}(x_{i_1}, \dots, x_{i_r}) = F_{X_{i_1}}(x_{i_1}) \cdot \dots \cdot F_{X_{i_r}}(x_{i_r}).$

Poznámka

Analogicky jako u náhodných jevů můžeme i zde definovat nezávislost náhodných veličin X_1, X_2, \ldots, X_n po dvou. Definici nezávislosti po dvou bychom dostali z uvedené definice pro r = 2.

Věta

Nechť $\mathbb{X} = (X_1, X_2, \dots, X_n)^T$ je dikrétní náhodný vektor. Náhodné veličiny X_1, X_2, \dots, X_n jsou nezávislé právě tehdy, když

$$P(X_1 = x_1^{(i)}, \dots, X_n = x_n^{(i)}) = \prod_{j=1}^n P(X_j = x_j^{(i)})$$

pro všechna $\mathbf{x}^{(i)}=(x_1^{(i)},x_2^{(i)},\ldots,x_n^{(i)}),\ i=1,2,\ldots,$ kterých může $\mathbb X$ nabývat.

Věta

Nechť $\mathbb{X} = (X_1, X_2, \dots, X_n)^T$ je spojitý náhodný vektor. Náhodné veličiny X_1, X_2, \dots, X_n jsou nezávislé právě tehdy, když

$$f_{\mathbb{X}}(x_1, x_2 \dots, x_n) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \dots f_{X_n}(x_n), \ \forall (x_1, x_2 \dots, x_n) \in \mathbb{R}^n.$$

Věta

Nechť X a Y jsou nezávislé náhodné veličiny s konečnými středními hodnotami. Pak

- ② Jestliže navíc $\mathbb{E}X^2 < \infty$ a $\mathbb{E}Y^2 < \infty$, pak cov(X, Y) = 0.

Poznámka

Jestliže cov(X,Y)=0, pak říkáme, že náhodné veličiny jsou nekorelované. To však neimplikuje nezávislost!

Mějme náhodné veličiny X_1 , X_2 , X_3 , ... a náhodnou veličinu X definované na pravděpodobnostním prostoru (Ω, A, P) .

• Říkáme, že X_n konverguje k X skoro jistě, jestliže

$$P\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = 1.$$

• Jestliže pro všechna $\varepsilon > 0$ platí, že

$$\lim_{n\to\infty} P\{\omega: |X_n(\omega)-X(\omega)|>\varepsilon\}=0,$$

říkáme, že X_n konverguje k X v pravděpodobnosti.

Věta

Konvergence skoro jistě ⇒ konvergence v pravděpodobnosti.

Věta

Slabý zákon velkých čísel:

Nechť $\{X_n\}_{n=1}^\infty$ je posloupnost nezávislých náhodných veličin se stejnou střední hodnotou μ a shodným rozptylem $\sigma^2 < \infty$. Pak pro $n \to \infty$ platí, že

$$\frac{1}{n}(X_1+X_2+\ldots+X_n)\to\mu$$

v pravděpodobnosti.

Věta

Silný zákon velkých čísel:

Nechť $\{X_n\}_{n=1}^\infty$ je posloupnost nezávislých, stejně rozdělených náhodných veličin se střední hodnotou $\mu<\infty$ a rozptylem $\sigma^2<\infty$. Pak pro $n\to\infty$ platí, že

$$\frac{1}{n}(X_1+X_2+\ldots+X_n)\to\mu$$

skoro jistě (a tudíž i v pravděpodobnosti).

Věta

Nechť X_1, X_2, \ldots jsou nezávislé, stejně rozdělené náhodné veličiny se střední hodnotou μ a konečným rozptylem σ^2 . Označme náhodnou veličinu

$$Z_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma^2}} \quad n = 1, 2, \dots$$

a $F_n(x)$ distribuční funkci náhodné veličiny Z_n . Pak

$$\lim_{n\to\infty}F_n(x)=\Phi(x)$$

pro všechna $x \in \mathbb{R}$, kde $\Phi(x)$ je distribuční funkce normovaného normálního rozdělení N(0,1).

Poznámka

Centrální limitní věta (dále jen CLV) má mnoho verzí. Uvedená věta se nazývá Lévy-Lindebergova CLV.

- Volba správného modelu
- Odhady parametrů
 - bodové
 - intervalové
- Testování hypotéz

Pomocná rozdělení používaná ve statistice

• Nechť X_1, X_2, \dots, X_n jsou nezávislé náhodné veličiny s rozdělením N(0,1). Pak náhodná veličina

$$Y = \sum_{i=1}^{n} X_i^2$$

má rozdělení χ_n^2 (čti "chí-kvadrát rozdělení s n stupni volnosti").

• Nechť X je náhodná veličina s rozdělením N(0,1) a Y na ní nezávislá náhodná veličina s rozdělením χ^2_n . Pak náhodná veličina

$$Z = \frac{X}{\sqrt{Y}}\sqrt{n}$$

má rozdělení t_n (čti "Studentovo t-rozdělení s n stupni volnosti").

• Nechť U a V jsou nezávislé náhodné veličiny s rozděleními χ_n^2 , resp. χ_m^2 . Pak náhodná veličina

$$W = \frac{U/n}{V/m}$$

má rozdělení $F_{n,m}$ (čti "Fisherovo-Snedecorovo rozdělení s parametry $n \neq m$ ").

Náhodný výběr, výběrový průměr, výběrový rozptyl a výběrová směrodatná odchylka

Definice

Náhodný vektor $\mathbb{X} = (X_1, X_2 \dots, X_n)^T$ nezávislých, stejně rozdělených náhodných veličin s distribuční funkcí F_{θ} , která závisí na parametru θ , se nazývá náhodný výběr.

Definice

Funkce

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

náhodného výběru $\mathbb{X} = (X_1, X_2 \dots, X_n)^T$ se nazývá výběrový průměr a

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

se nazývá výběrový rozptyl. $S_n = \sqrt{S_n^2}$ je pak výběrová směrodatná odchylka.

Výběrový průměr a výběrový rozptyl pro náhodný výběr z normálního rozdělení

Věta

Nechť $\mathbb{X} = (X_1, X_2 \dots, X_n)^T$ je náhodný výběr z rozdělení $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$. Pak

- výběrový průměr \bar{X}_n a výběrový rozptyl S_n^2 jsou nezávislé náhodné veličiny,
- ② výběrový průměr \bar{X}_n má rozdělení $N(\mu, \sigma^2/n)$,
- **3** náhodná veličina $(n-1)S_n^2/\sigma^2$ má rozdělení $\chi^2_{(n-1)}$,
- **1** o náhodná veličina $T = \frac{\bar{X}_n \mu}{S_n} \sqrt{n}$ má rozdělení $t_{(n-1)}$.

Nechť F je spojitá a monotónní distribuční funkce a $0 < \beta < 1$. Pak hodnotu z_{β} takovou, že $F(z_{\beta}) = \beta$, nazýváme β -kvantil rozdělení s distribuční funkcí F.

Poznámka

- Výraz β -kvantil používaný ve statistice je vlastně hodnota $q(\beta)$ kvantilové funkce q. Jestliže tedy distribuční funkce p není spojitá nebo není monotónní, pak β -kvantil můžeme dodefinovat analogicky p definici kvantilové funkce q.
- **2** Pro náhodnou veličinu X s distribuční funkcí F a kvantily z_{β} je

$$P(z_{\alpha/2} < X < z_{1-\alpha/2}) = F(z_{1-\alpha/2}) - F(z_{\alpha/2}) = 1 - \alpha.$$

3 β -kvantily rozdělení používaných ve statistice budeme značit u_{β} pro normované normální rozdělení, $t_{\beta,n}$ pro rozdělení t_n a $\chi^2_{\beta,n}$ pro rozdělení χ^2_n .

Nechť $(x_1, x_2 ..., x_n)^T$ je realizace náhodného výběru $(X_1, X_2 ..., X_n)^T$. Pak

$$F_{emp}(x) = \frac{\#\{x_i : x_i \leq x\}}{n},$$

kde # značí počet prvků, se nazývá empirická distribuční funkce.

Definice

Nechť $(x_1, x_2, \ldots, x_n)^T$ je realizace náhodného výběru $(X_1, X_2, \ldots, X_n)^T$, $F_{emp}(x)$ příslušná empirická distribuční funkce a z_β značí β -kvantil náhodné veličiny s distribuční funkcí F_{emp} . Pak hodnoty $z_{1/4}$, $z_{1/2}$ a $z_{3/4}$ se nazývají 1.kvartil, 2.kvartil (též "medián"), resp. 3.kvartil. Nejčastěji zatoupený prvek v realizaci náhodného výběru se nazývá modus.

Poznámka

Občas se 1.kvartil definuje jako $z^* = \max(x_i : F_{emp}(x_i) \le 1/4)$ nebo $z^{**} = \min(x_i : F_{emp}(x_i) \ge 1/4)$, popř. jako $z^{***} = z^* + \frac{1}{4}(z^{**} - z^*)$. Analogicky se pak definuje i 2. a 3.kvartil.

Sledovali jsme doby mezi příchody zákazníků (v minutách) a naměřili jsme těchto 21 hodnot:

- $4.9,\; 6.2,\; 2.6,\; 0.6,\; 0.3,\; 2.3,\; 3.2,\; 1.4,\; 6.4,\; 4.8,\; 1.2$
- 2.5, 0.2, 0.2, 0.8, 0.1, 0.1, 1.4, 7.8, 0.2, 4.7.

Pro přehlednost si hodnoty seřadíme od nejmenší po největší:

- **0.1**, 0.1, 0.2, 0.2, 0.2, **0.3**, 0.6, 0.8, 1.2, 1.4, **1.4**,
- 2.3, 2.5, 2.6, 3.2, **4.7**, 4.8, 4.9, 6.2, 6.4, **7.8**.

Máme zde:

- ullet výběrový průměr (pro danou realizaci) $ar{X}_{21}=2.471$,
- výběrový rozptyl (pro danou realizaci) $S_{21}^2=5.81$,
- ullet výběrovou směrodatnou odchylku (pro danou realizaci) $S_{21}=2.21$,
- 1.kvartil = 0.3, medián (tj. 2.kvartil) = 1.4 a 3.kvartil = 4.7,
- min = 0.1, max = 7.8, modus = 0.2.

Histogram a boxplot

Nechť $(x_1, x_2, \dots, x_n)^T$ je realizace náhodného výběru $(X_1, X_2, \dots, X_n)^T$ a rozdělení X_1, \dots, X_n závisí na parametru θ . Bodový odhad parametru θ je libovolná funkce $\hat{\theta}(X_1, X_2, \dots, X_n)$ náhodného výběru $(X_1, X_2, \dots, X_n)^T$, jejíž předpis nezávisí na θ .

Poznámka

Pro jednoduchost si můžeme bodový odhad představit jako hodnotu $\hat{\theta}$ získanou z realizace $(x_1, x_2, \ldots, x_n)^T$ náhodného výběru $(X_1, X_2, \ldots, X_n)^T$, kde tato hodnota co možná nejlépe odhaduje parametr θ . Jelikož však při opakování náhodného výběru získáváme různé realizace, můžeme pro každou z nich dostat jinou hodnotu odhadovaného parametru, tudíž bodový odhad je náhodná veličina.

Jestliže pro bodový odhad $\hat{\theta}(X_1, X_2 ..., X_n)$ parametru θ platí, že $\mathbb{E}\hat{\theta}(X_1, X_2 ..., X_n) = \theta$, pak tento odhad nazýváme nestranným.

Definice

Jestliže pro bodový odhad $\hat{\theta}(X_1, X_2 \dots, X_n)$ parametru θ platí, že

- lacktriangledown $\lim_{n \to \infty} \mathbb{E} \hat{\theta}(X_1, X_2 \dots, X_n) = \theta$ (je tzv. asymptoticky nestranný),

pak tento odhad nazýváme konzistentním.

Definice

Jestliže existuje více nestranných bodových odhadů, pak ten s nejmenším rozptylem $var\hat{\theta}(X_1, X_2 ..., X_n)$ nazýváme eficientním.

Nechť $(x_1, x_2 \ldots, x_n)^T$ je realizace náhodného výběru $(X_1, X_2 \ldots, X_n)^T$ a rozdělení náhodných veličin X_1, \ldots, X_n závisí na parametrech $\theta_1, \ldots, \theta_k \in \Theta$, kde Θ je množina parametrů.

Předpoklad: $\mathbb{E} X_1^i < \infty \ \forall i=1,...k$ a $\mathbb{E} X_1^i$ závisí na $\theta_1,...,\theta_k$.

Metoda: Položíme do rovnosti teoretické a odhadnuté momenty, tj.

$$\mathbb{E}X_1^i = m_i$$
, kde $m_i = \frac{1}{n}\sum_{j=1}^n x_j^i$ pro všechna $i = 1, ...k$.

Takto získáme soustavu k rovnic o k neznámých $\theta_1,...,\theta_k$, jejichž řešením jsou hledané odhady parametrů $\hat{\theta_1},...,\hat{\theta_k}$.

Alternativa: Je-li k=2, pak místo i-tých momentů, i=1,2, můžeme položit $\mathbb{E} X_1=\bar{x}_n$ a $varX_1=s_n^2$, kde x_n a s_n^2 jsou hodnoty výběrového průměru, resp. výběrového rozptylu, získané z dat.

Výhoda: Jednoduchost.

Nevýhoda: Řešení nemusí existovat.

Nechť $(x_1, x_2 \ldots, x_n)^T$ je realizace náhodného výběru $(X_1, X_2 \ldots, X_n)^T$ a rozdělení (tj. $P_{\theta}(X_1 = .)$ v diskrétním případě nebo hustota f_{θ} ve spojitém případě) náhodných veličin X_1, \ldots, X_n závisí na parametru θ .

Definice

Hodnota $\hat{ heta}$ se nazýva maximálně věrohodným odhadem, jestliže

$$\prod_{i=1}^n P_{\hat{\theta}}(X_1 = x_i) = \max_{\theta \in \Theta} \prod_{i=1}^n P_{\theta}(X_1 = x_i),$$

resp.

$$\prod_{i=1}^n f_{\hat{\theta}}(x_i) = \max_{\theta \in \Theta} \prod_{i=1}^n f_{\theta}(x_i).$$

Poznámka

Obvykle je jednodušší pracovat s logaritmy těchto součinů, abychom při hledání extrému funkce derivovali součet, nikoliv součin.

Pro náhodný výběr z diskrétního rozdělení:

- **3** Zkonstruujeme věrohodnostní funkci $L(\theta) = \prod_{i=1}^{n} P_{\theta}(X_1 = x_i)$.
- **2** Zkonstruujeme logaritmicko-věrohodnostní funkci $I(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log P_{\theta}(X_1 = x_i).$
- **3** Položíme $\frac{\partial I(\theta)}{\partial \theta} = 0$.
- **③** Řešením rovnice $\frac{\partial I(\theta)}{\partial \theta}=0$ je hledaný maximálně věrohodný odhad $\hat{\theta}$.

Pro náhodný výběr ze spojitého rozdělení:

- **1** Zkonstruujeme věrohodnostní funkci $L(\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$.
- ② Zkonstruujeme logaritmicko-věrohodnostní funkci $I(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f_{\theta}(x_i)$.
- **3** Položíme $\frac{\partial I(\theta)}{\partial \theta} = 0$.
- Řešením rovnice $\frac{\partial I(\theta)}{\partial \theta} = 0$ je hledaný maximálně věrohodný odhad $\hat{\theta}$.

Nechť $(X_1, X_2 ..., X_n)^T$ je náhodný výběr a $\alpha \in (0, 1)$.

• Dvojice $(\theta_L^*(X_1, \ldots, X_n), \theta_U^*(X_1, \ldots, X_n))$ se nazývá $(1 - \alpha) \cdot 100 \%$ intervalový odhad (nebo též interval spolehlivosti; označení $(1 - \alpha) \cdot 100 \%$ -Cl) parametru θ , jestliže

$$P(\theta_L^*(X_1,\ldots,X_n)<\theta<\theta_U^*(X_1,\ldots,X_n))=1-\alpha.$$

2 $(\theta_D^*(X_1,\ldots,X_n))$ se nazývá dolní $(1-\alpha)\cdot 100$ % intervalový odhad parametru θ , jestliže

$$P(\theta_D^*(X_1,\ldots,X_n)<\theta)=1-\alpha.$$

• $(\theta_H^*(X_1,\ldots,X_n))$ se nazývá horní $(1-\alpha)\cdot 100$ % intervalový odhad parametru θ , jestliže

$$P(\theta_H^*(X_1,\ldots,X_n)>\theta)=1-\alpha.$$

Intervalové odhady parametrů normálního rozdělení se známým rozptylem

Věta

Nechť $(X_1, X_2 ..., X_n)^T$ je náhodný výběr z rozdělení $N(\mu, \sigma^2), \mu \in \mathbb{R}$ je neznámý parametr a $\sigma^2 > 0$ je známá konstanta. Pak

- $(\bar{X}_n u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})$ je $(1-\alpha) \cdot 100$ % intervalový odhad parametru μ ,
- ② $\bar{X}_n u_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ je dolní $(1-\alpha) \cdot 100$ % intervalový odhad parametru μ ,
- **3** $\bar{X}_n + u_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ je horní $(1-\alpha) \cdot 100$ % intervalový odhad parametru μ .

Intervalové odhady parametrů normálního rozdělení s neznámým rozptylem

Věta

Nechť $(X_1, X_2 \dots, X_n)^T$ je náhodný výběr z rozdělení $N(\mu, \sigma^2)$ a oba parametery $\mu \in \mathbb{R}$, $\sigma^2 > 0$ jsou neznámé. Pak

- $(\bar{X}_n t_{1-\alpha/2,n-1} \frac{S_n}{\sqrt{n}}, \bar{X}_n + t_{1-\alpha/2,n-1} \frac{S_n}{\sqrt{n}})$ je $(1-\alpha) \cdot 100$ % intervalový odhad parametru μ ,
- ② $\bar{X}_n t_{1-\alpha,n-1} \frac{S_n}{\sqrt{n}}$ je dolní $(1-\alpha) \cdot 100$ % intervalový odhad parametru μ ,
- **3** $\bar{X}_n + t_{1-\alpha,n-1} \frac{S_n}{\sqrt{n}}$ je horní $(1-\alpha) \cdot 100$ % intervalový odhad parametru μ .
- **3** $\frac{(n-1)S_n^2}{\chi_{1-\alpha,n-1}^2}$ je dolní $(1-\alpha)\cdot 100$ % intervalový odhad parametru σ^2 ,
- **6** $\frac{(n-1)S_n^2}{\chi^2_{\alpha,n-1}}$ je horní $(1-\alpha)\cdot 100$ % intervalový odhad parametru σ^2 .

Věta

Nechť $(X_1, X_2, \dots, X_n)^T$ je náhodný výběr z libovolného rozdělení s rozptylem $0 < \sigma^2 < \infty$. Pak asymptotický $(1 - \alpha) \cdot 100$ % intervalový odhad střední hodnoty $\mu = \overline{\mathbb{E}X}$ je

$$(\bar{X}_n - u_{1-\alpha/2} \frac{S_n}{\sqrt{n}}, \bar{X}_n + u_{1-\alpha/2} \frac{S_n}{\sqrt{n}}).$$

Důkaz

Připomeňme, že pro velká n platí $\frac{S_n}{\sigma} \to 1$, tj. S_n je aproximace σ . Z CLV víme, že $\frac{\sum X_i - n\mu}{\sqrt{n\sigma^2}}$ má přibližně (asymtoticky) normální rozdělení, tj.

$$P(u_{\frac{\alpha}{2}} \leq \frac{\sum X_i - n\mu}{\sqrt{n\sigma^2}} \leq u_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

$$P(u_{\frac{\alpha}{2}} \leq \frac{\sum X_i - n\mu}{\sqrt{n}S_n} \leq u_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

$$P(\frac{\sum X_i}{n} + u_{1-\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}} \geq \mu \geq \frac{\sum X_i}{n} + u_{\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}}) = 1 - \alpha$$

$$P(\bar{X}_n + u_{1-\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}} \geq \mu \geq \bar{X}_n - u_{1-\frac{\alpha}{2}} \frac{S_n}{\sqrt{n}}) = 1 - \alpha,$$

což je definice $(1-\alpha)\cdot 100\%$ intervalového odhadu parametru μ .

Věta

• Nechť $(X_1, X_2 ..., X_n)^T$ je náhodný výběr z rozdělení Alt(p), $0 . Pak <math>(1 - \alpha) \cdot 100$ % intervalový odhad parametru p je

$$(\bar{X}_n - u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n(1-\bar{X}_n)}{n}}, \bar{X}_n + u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n(1-\bar{X}_n)}{n}}).$$

② Nechť $(X_1, X_2 ..., X_n)^T$ je náhodný výběr z rozdělení $Po(\lambda)$, $\lambda > 0$. Pak $(1 - \alpha) \cdot 100$ % intervalový odhad parametru λ je

$$(\bar{X}_n - u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n}{n}}, \bar{X}_n + u_{1-\alpha/2}\sqrt{\frac{\bar{X}_n}{n}}).$$

Důkaz

Důkaz plyne z předešlé věty a faktu, že pro alternativní rozdělení je $\mathbb{E}X=p,\ varX=p(1-p)$ a pro Poisoonovo rozdělení je $\mathbb{E}X=varX=\lambda.$

- Nechť $(X_1, X_2, \dots, X_n)^T$ je náhodný výběr z rozdělení, které závisí na parametru $\theta \in \Theta$.
- Tvrzení, že θ patří do nějaké množiny Θ_0 , se nazývá nulová hypotéza (značíme $H_0: \theta \in \Theta_0$).
- Na základě náhodného výběru $(X_1, X_2 \ldots, X_n)^T$ testujeme nulovou hypotézu vůči alternativní hypotéze $H_A: \theta \in \Theta \setminus \Theta_0$. K tomu stanovíme množinu W (tzv. kritický obor) tak, že H_0 zamítáme ve prospěch H_A , jestliže $\mathbb{X} \in W$, v opačném případě H_0 ve prospěch H_A nezamítáme.

Poznámka

Většinou testujeme $H_0: \theta = \theta_0$, $kde \theta_0$ je konkrétní hodnota, takže přirozenou alternativou je $H_A: \theta \neq \theta_0$. Občas však dává větší smysl testovat H_0 vůči $H_A: \theta > \theta_0$ nebo $H_A: \theta < \theta_0$, jelikož opačná situace nedává v tu chvíli praktický smysl.

Při testování mohou nastat následující situace:

- ullet H_0 platí a test ji nezamítá $\sqrt{}$
- ullet H_0 neplatí a test ji zamítá $\sqrt{}$
- ullet H_0 platí a test ji zamítá o chyba prvního druhu
- ullet H_0 neplatí a test ji nezamítá o chyba druhého druhu

Testovací hladina:

Zvolíme hodnotu α (obvykle 0.05, někdy 0.01 nebo 0.1) a kritický obor W konstruujeme tak, aby chyba prvního druhu nebyla větší než (obvykle byla rovna) α . Takové α se nazývá testovací hladina.

Testování střední hodnoty normálního rozdělení: Jednovýběrový *t*-test

• Nechť $(X_1, X_2 \dots, X_n)^T$ je náhodný výběr z rozdělení $N(\mu, \sigma^2)$, kde $\sigma^2 > 0$ a ani jeden parametr není známý. Víme, že náhodná veličina

$$T = \frac{\bar{X}_n - \mu}{S_n} \sqrt{n} \sim t_{n-1}.$$

- Testování $H_0: \mu = \mu_0$ vůči $H_A: \mu \neq \mu_0$ tedy probíhá následovně:
 - **1** Spočítáme tzv. testovou statistiku (hodnotu) $T_0 = \frac{\bar{X}_n \mu_0}{S_n} \sqrt{n}$.
 - ② Jestliže $|T_0| \ge t_{1-\alpha/2,n-1}$, zamítáme H_0 ve prospěch H_A , v opačném případě H_0 ve prospěch H_A nezamítáme.
- Testování H_0 : $\mu = \mu_0$ vůči H_A : $\mu > \mu_0$ je analogické:
 - ① Spočítáme hodnotu $T_0 = \frac{\bar{X}_n \mu_0}{S_n} \sqrt{n}$.
 - ② Je-li $T_0 \ge t_{1-\alpha,n-1}$, zamítáme H_0 ve prospěch H_A , v opačném případě H_0 ve prospěch H_A nezamítáme.
- Nulová hypotéza $H_0: \mu = \mu_0$ vůči $H_A: \mu < \mu_0$ je pak zamítnutá v případě, že $T_0 \leq t_{\alpha,n-1} = -t_{1-\alpha,n-1}$.

Testování střední hodnoty normálního rozdělení: Párový *t*-test

- Používá se tehdy, když pozorujeme párový znak na jednom objektu (např. dioptrie na levém a pravém oku, dobu zpracování stejných dat jednou a druhou metodou atd.).
- Máme náhodný výběr $(Y_1, Z_1), (Y_2, Z_2), \dots, (Y_n, Z_n)^T$ a testujeme $H_0 : \mathbb{E}Y_i \mathbb{E}Z_i = \mu_0$ (většinou $\mu_0 = 0$, tj. shodu středních hodnot) vůči některé z alternativních hypotéz zmíněných výše.
- Položíme

$$X_1 = Y_1 - Z_1, \dots, X_n = Y_n - Z_n$$

a jestliže X_1, \ldots, X_n pochází z normálního rozělení, použijeme jednovýběrový t-test popsaný výše.

Testování střední hodnoty normálního rozdělení: Dvouvýběrový *t*-test

- Uvažujme dva nezávislé výběry, a to $(X_1, X_2 ..., X_m)^T$ z rozdělení $N(\mu_1, \sigma^2)$ a $(Y_1, Y_2 ..., Y_n)^T$ z $N(\mu_2, \sigma^2)$, kde $\sigma^2 > 0$.
- Označme \bar{X} výběrový průměr náhodného výběru $(X_1, X_2 \dots, X_m)^T$, \bar{Y} výběrový průměr $(Y_1, Y_2 \dots, Y_n)^T$, S_X^2 výběrový rozptyl $(X_1, X_2 \dots, X_m)^T$ a S_Y^2 výběrový rozptyl $(Y_1, Y_2 \dots, Y_n)^T$.
- Náhodná veličina

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(m-1)S_X^2 + (n-1)S_Y^2}} \sqrt{\frac{mn(m+n-2)}{m+n}} \sim t_{m+n-2}.$$

- Testování $H_0: \mu_1-\mu_2=\mu_0$ vůči $H_A: \mu_1-\mu_2\neq\mu_0$ tedy probíhá následovně:
 - **1** Spočteme $T_0 = \frac{\bar{X} \bar{Y} \mu_0}{\sqrt{(m-1)S_X^2 + (n-1)S_Y^2}} \sqrt{\frac{mn(m+n-2)}{m+n}}$.
 - ② Je-li $|T_0| \ge t_{1-\alpha/2,m+n-2}$, zamítáme H_0 ve prospěch H_A , v opačném případě H_0 ve prospěch H_A nezamítáme.

Testování shody rozptylů dvou výběrů z normálního rozdělení

- Uvažujme dva nezávislé výběry, a to $(X_1, X_2 \dots, X_m)^T$ z rozdělení $N(\mu_1, \sigma_1^2)$ a $(Y_1, Y_2 \dots, Y_n)^T$ z $N(\mu_2, \sigma_2^2)$, kde $\sigma_1^2 > 0$ a $\sigma_2^2 > 0$.
- Označme S_X^2 výběrový rozptyl $(X_1, X_2 ..., X_m)^T$ a S_Y^2 výběrový rozptyl $(Y_1, Y_2 ..., Y_n)^T$.
- Náhodná veličina

$$F = \frac{S_X^2}{S_Y^2} \sim F_{m-1,n-1}.$$

- Testování $H_0: \sigma_1^2 = \sigma_2^2$ vůči $H_A: \sigma_1^2 \neq \sigma_2^2$ tedy probíhá následovně:

 - ② Je-li $F_0 \leq F_{\alpha/2,m-1,n-1}$ nebo $F_0 \geq F_{1-\alpha/2,m-1,n-1}$, zamítáme H_0 ve prospěch H_A , v opačném případě H_0 ve prospěch H_A nezamítáme.

Multinomické rozdělení

- Je zobecněním rozdělení binomického ve smyslu, že uvažujeme n-krát opakovaný náhodný pokus, který může pokaždé skončit nějakým z výsledků A_1, A_2, \ldots, A_k (nikoliv pouze jedním ze dvou výsledků "úspěch" nebo "neúspěch").
- Pro $i=1,\ldots,k$ označme $p_i=P(A_i)$ (kde zřejmě $\sum_{i=1}^k p_i=1$) a X_i počet výsledků A_i ve výše zmíněných n pokusech. Pak

$$P(X_1 = x_1, ..., X_k = x_k) = \frac{n!}{x_1! ... x_k!} p_1^{x_1} ... p_k^{x_k}, \text{ kde } \sum_{i=1}^k x_i = n.$$

• Rozdělení náhodného vektoru $(X_1, X_2, ..., X_k)^T$ se nazývá multinomickým.

Pearsonův χ^2 test dobré shody

Testujeme nulovou hypotézu

 H_0 : "marginální pravděpodobnosti jsou rovny hodnotám p_1, \ldots, p_k " proti alternativní hypotéze

 H_A : "alespoň jedno p_i je jiné".

- Test probíhá následovně:
 - ① Spočteme hodnotu $\chi_0^2 = \sum_{i=1}^k \frac{(X_i np_i)^2}{np_i}$.
 - ② Jestliže $\chi_0^2 > \chi_{1-\alpha,k-1}^2$, zamítáme H_0 ve prospěch H_A , v opačném případě H_0 ve prospěch H_A nezamítáme.

Test nezávislosti v kontingenční tabulce

- Mějme náhodný výběr $(Y_1, Z_1), (Y_2, Z_2), \dots, (Y_n, Z_n)$, kde pro $k = 1, \dots, n$ nabývají Y_k a Z_k hodnot $1, \dots, r$, resp. $1, \dots, c$.
- Testujeme nulovou hypotézu H₀: "Y a Z jsou vzájemně nezávislé" vůči alternativní hypotéze H_A: "Y a Z nejsou nezávislé".
- Označme n_{ij} počet dvojic $(Y_k = i, Z_k = j)$. Pak matici o rozměrech $r \times c$ s prvky n_{ij} nazýváme kontingenční tabulkou a prvkům n_{ij} říkáme sdružené četnosti.
- Marginalní četnosti jsou

$$n_{i.} = \sum_{j} n_{ij}, \quad n_{.j} = \sum_{i} n_{ij}.$$

- Test nezávislosti probíhá následovně:
 - Spočteme hodnotu

$$\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{\left(n_{ij} - \frac{n_i, n_{,j}}{n}\right)^2}{\frac{n_i, n_{,j}}{n}}.$$

② Jestliže $\chi_0^2 \ge \chi_{1-\alpha,(r-1)(c-1)}^2$, zamítáme H_0 ve prospěch H_A , v opačném případě H_0 ve prospěch H_A nezamítáme.

Nechť (Ω, \mathcal{A}, P) je pravděpodobnostní prostor a $T \subset \mathbb{R}$. Rodina reálných náhodných veličin $\{X_t, t \in T\}$ definovaných na (Ω, \mathcal{A}, P) se nazývá náhodný (nebo také stochastický) proces.

Je-li $T=\mathbb{Z}$ nebo $T=\mathbb{N}$, mluvíme o náhodném procesu s diskrétním časem. Je-li T=[a,b], kde $-\infty \leq a < b \leq \infty$, mluvíme o náhodném procesu se spojitým časem.

Definice

Dvojice (S, \mathcal{E}) , kde S je množina hodnot náhodných veličin X_t a \mathcal{E} je σ -algebra na množině S, se nazývá stavový prostor.

Definice

Pokud náhodné veličiny X_t nabývají pouze diskrétních hodnot, mluvíme o náhodném procesu s diskrétními stavy. Pokud náhodné veličiny X_t nabývají spojitých hodnot, mluvíme o náhodném procesu se spojitými stavy.

Náhodný proces $\{X_t, t \in T\}$ můžeme chápat jako funkci dvou proměnných ω a t. Pro pevné t je tato funkce náhodnou veličinou, pro pevné ω se jedná o funkci jedné reálné proměnné t.

Definice

Mějme pevné $\omega \in \Omega$. Pak funkce $t \to X_t$ se nazývá trajektorie procesu $\{X_t, t \in T\}$.

Definice

Proces se nazývá spojitý, jsou-li všechny jeho trajektorie spojité.

Nechť $\{X_t,t\in T\}$ je náhodný proces takový, že pro každé $t\in T$ existuje střední hodnota $\mathbb{E}X_t$. Potom funkce $\mu_t=\mathbb{E}X_t$ definovaná na T se nazývá střední hodnota procesu $\{X_t\}$. Jestliže platí $\mathbb{E}|X_t|^2<\infty$ pro všechna $t\in T$, potom funkce dvou proměnných definovaná na $T\times T$ předpisem $R(s,t)=\mathbb{E}(X_s-\mu_s)(X_t-\mu_t)$ se nazývá autokovarianční funkce procesu $\{X_t\}$. Hodnota R(t,t) se nazývá rozptyl procesu $\{X_t\}$ v čase t.

Definice

Řekneme, že náhodný proces $\{X_t, t \in T\}$ je slabě stacionární, jestliže R(s,t) je funkcí pouze rozdílu s-t, tj.

$$R(s,t) = \tilde{R}(s-t)$$

Důsledek:

$$R(s,t) = R(s+h,t+h)$$

pro každé $h \in \mathbb{R}$ takové, že $s + h \in T$ a $t + h \in T$.

Označme

$$F_{t_1,\ldots,t_n}(x_1,\ldots,x_n) = P(X_{t_1} \leq x_1,\ldots,X_{t_n} \leq x_n).$$

Definice

Řekneme, že náhodný proces $\{X_t, t \in T\}$ je striktně stacionární, jestliže pro libovolné $n \in \mathbb{N}$, pro libovolná reálná x_1, \ldots, x_n a pro libovolná reálná t_1, \ldots, t_n a h taková, že $t_k \in T$, $t_k + h \in T$, $1 \le k \le n$, platí

$$F_{t_1,\ldots,t_n}(x_1,\ldots,x_n) = F_{t_1+h,\ldots,t_n+h}(x_1,\ldots,x_n).$$
 (2)

Poznámka

Pro procesy s diskrétními stavy je vztah (2) je ekvivalentní vztahu

$$P(X_{t_1} = x_1, \dots, X_{t_n} = x_n) = P(X_{t_1+h} = x_1, \dots, X_{t_n+h} = x_n).$$

Nechť náhodné procesy $\{X_t, t \in T\}$ a $\{Y_t, t \in T\}$ jsou definované na stejném pravděpodobnostním prostoru s hodnotami ve stejném stavovém prostoru. Pak

1 $\{X_t\}$ a $\{Y_t\}$ jsou stochasticky ekvivalentní, jestliže

$$P(X_t = Y_t) = P(\omega : X_t(\omega) = Y_t(\omega)) = 1, \quad \forall t \in T.$$

Říkáme také, že proces $\{X_t\}$ je stochastickou verzí, popř. modifikací, procesu $\{Y_t\}$.

2 $\{X_t\}$ a $\{Y_t\}$ jsou nerozlišitelné, jestliže

$$P(X_t = Y_t, \forall t \in T) = P(\omega : X_t(\omega) = Y_t(\omega), \forall t \in T) = 1.$$

Mějme

- pravděpodobnostní prostor (Ω, \mathcal{A}, P) ,
- na něm posloupnost náhodných veličin $\{X_n, n \in \mathbb{N}\}$,
- stavový prostor (S, \mathcal{E}) , kde množina S je konečná nebo spočetná, bez újmy na obecnosti předpokládejme $S = \{0, 1, \dots, N\}$, resp. $S = \{0, 1, \dots\}$.

Definice

Posloupnost náhodných veličin $\{X_n, n \in \mathbb{N}\}$ nazveme Markovský řetězec s diskrétním časem, jestliže

$$P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},\ldots,X_0=i_0)=P(X_{n+1}=j|X_n=i)$$

pro všechna $n=0,1,\ldots$ a všechna $i,j,i_{n-1},\ldots,i_0\in S$ taková, že $P(X_n=i,X_{n-1}=i_{n-1},\ldots,X_0=i_0)>0.$

Nechť $Y_1,\,Y_2,\ldots$ jsou nezávislé stejně rozdělené náhodné veličiny nabývající hodnot ± 1 s pravděpodobnostmi 1/2.

Definujme

$$X_0 = 0$$
$$X_n = \sum_{i=1}^n Y_i.$$

Pak posloupnost (proces, řetězec) $\{X_n, n \in \mathbb{N}\}$ se nazývá *náhodná* procházka.

Podmíněné pravděpodobnosti

- $P(X_{n+1} = j | X_n = i) = p_{ij}(n, n+1)$ nazveme pravděpodobnostmi přechodu ze stavu i v čase n do stavu j v čase n+1 nebo také pravděpodobnostmi přechodu 1.řádu;
- ② $P(X_{n+m} = j | X_n = i) = p_{ij}(n, n+m)$ nazveme pravděpodobnostmi přechodu ze stavu i v čase n do stavu j v čase n+m nebo také pravděpodobnostmi přechodu m-tého řádu.

Definice

Jestliže pravděpodobnosti přechodu $p_{ij}(n, n+m)$ nezávisí na časových okamžicích n a n+m, ale pouze na rozdílu m, nazývá se příslušný Markovský řetězec homogenní.

- Uvažujme homogenní řetězec a označme $p_{ij} := p_{ij}(n, n+1)$.
- Tyto prvky lze seřadit do čtvercové matice $P = \{p_{ij}, i, j \in S\}$, pro niž zřejmě platí

$$p_{ij} \geq 0, orall i, j \in S$$
 a $\sum_{j \in S} p_{ij} = 1, orall i \in S.$

Matice $P = \{p_{ij}, i, j \in S\}$ se nazývá matice pravděpodobností přechodu.

Označme dále

$$p_i = P(X_0 = i), \quad \forall i \in S,$$

pro které zřejmě platí

$$p_i \geq 0, \forall i \in S \quad \text{a} \quad \sum_{i \in S} p_i = 1.$$

Definice

Vektor $p = \{p_i, i \in S\}$ se nazývá počáteční rozdělení Markovského řetězce.

Lze ukázat (Věta o násobení pravděpodobnosti), že

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = p_{i_0} p_{i_0 i_1} \dots p_{i_{n-1} i_n}.$$

Označme dále $p_{ij}^{(1)}=p_{ij}$ a definujme pro přirozené $n\geq 1$ postupně

$$p_{ij}^{(n+1)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}. \tag{3}$$

Lze ukázat, že $p_{ij}^{(n)} \leq 1$ a navíc pro matice pravděpodobností přechodů platí

$$P^{(2)} = P \cdot P = P^2$$
 a obecně $P^{(n+1)} = P^{(n)} \cdot P = P \cdot P^{(n)} = P^{n+1}$.

Věta

Nechť $\{X_n, n \in \mathbb{N}\}$ je homogenní Markovský řetězec s maticí přechodu P. Potom pro pravděpodobnosti přechodu n—tého řádu platí

$$P(X_{m+n}=j|X_m=i)=p_{ij}^{(n)}, \quad \forall i,j \in S$$

pro všechna přirozená m a n a pro $P(X_m = i) > 0$.

Vztah (3) lze zobecnit. Toto zobecnění se nazývá

Chapman-Kolmogorova rovnost

definována jako

$$p_{ij}^{(m+n)} = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)},$$

zapsáno maticově

$$\mathsf{P}^{(m+n)} = \mathsf{P}^{(m)} \cdot \mathsf{P}^{(n)}.$$

• Vychází-li řetězec $\{X_n, n \in \mathbb{N}\}$ ze stavu j, tj. $P(X_0 = j) = 1$, pak označíme

$$P(.|X_0 = j) = P_j(.).$$

Definujme náhodnou veličinu

$$\tau_j = \inf\{n > 0 : X_n = j\}$$

čas prvního návratu řetězce do stavu j.

- Střední hodnotu doby prvního návratu označíme $\mu_j = \mathbb{E}[au_j | X_0 = j].$
- Největší společný dělitel čísel $n \geq 1$, pro které $p_{jj}^{(n)} > 0$, označíme d_j .

Stav j Markovského řetězce se nazývá trvalý, jestliže

$$P_j(\tau_j<\infty)=1.$$

Stav j Markovského řetězce se nazývá přechodný, jestliže

$$P_j(\tau_j=\infty)>0.$$

Definice

Trvalý stav j Markovského řetězce se nazývá nenulový, jestliže $\mu_j < \infty$ a nulový, jestliže $\mu_j = \infty$.

Definice

Je-li $d_j > 1$, stav j Markovského řetězce se nazývá periodický s periodou d_j , je-li $d_j = 1$, stav j Markovského řetězce se nazývá neperiodický.

Věta

- a) Nechť j je přechodný stav. Potom $\lim_{n\to\infty} p_{ij}^{(n)} = 0, \forall i \in S$.
- b) Nechť j je trvalý nulový stav. Potom $\lim_{n\to\infty} p_{ij}^{(n)} = 0, \forall i \in S$.
- c) Nechť j je trvalý nenulový a neperiodický stav. Potom $\lim_{n\to\infty} p_{jj}^{(n)} = \frac{1}{\mu_i}$.
- d) Nechť j je trvalý nenulový stav s periodou d_j . Potom $\lim_{n\to\infty} p_{ii}^{(nd_j)} = \frac{d_j}{u_i}$.

Věta

Trvalý stav j je nulový právě tehdy, když $\lim_{n\to\infty} p_{ij}^{(n)} = 0$.

Uvažujme nyní řetězec s množinou přechodných stavů R a definujme náhodnou veličinu

$$\tau = \inf\{n \ge 0 : X_n \notin R\}$$

značící čas výstupu z množiny přechodných stavů.

Věta

V řetězci s konečně mnoha stavy je

$$P_j(\tau=\infty)=0, \quad j\in R.$$

Řekneme, že stav j je dosažitelný ze stavu i, jestliže existuje $n \in \mathbb{N}$ takové, že $p_{ij}^{(n)} > 0$. Jestliže $p_{ij}^{(n)} = 0$, pro všechna $n \in \mathbb{N}$, pak říkáme, že stav j je nedosažitelný ze stavu i.

Definice

Množina stavů C se nazývá uzavřená, jestliže žádný stav vně C není dosažitelný z žádného stavu uvnitř C.

Definice

Množina stavů C se nazývá komponentou, jestliže žádný stav vně C není dosažitelný z žádného stavu uvnitř C a opačně, a přitom všechny stavy uvnitř komponenty jsou vzájemně dosažitelné.

Věta

Množina stavů je uzavřená právě tehdy, je-li $p_{ij}=0$ pro všechna $i\in\mathcal{C}, j\notin\mathcal{C}.$

Markovský řetězec se nazývá nerozložitelný, jestliže každý jeho stav je dosažitelný z každého jiného stavu. V opačném případě je řetězec rozložitelný.

Definice

Je-li jednobodová množina stavů $\{j\}$ uzavřená, tj. je-li $p_{jj}=1$, pak se stav j nazývá absorpční.

Definice

Řetězec s konečně mnoha stavy, jehož všechny trvalé stavy jsou absorpční, se nazývá absorpční řetězec.

Nechť $\{X_n, n \in \mathbb{N}\}$ je homogenní řetězec s množinou stavů S a maticí pravděpodobností přechodu P. Nechť $\pi = \{\pi_j, j \in S\}$ je nějaké pravděpodobnostní rozdělení na množině S, tj.

 $\pi_j \geq 0, j \in S, \sum_{j \in S} \pi_j = 1$. Potom π se nazývá stacionární rozdělení daného řetězce, jestliže platí

$$\pi^T = \pi^T P$$
,

neboli

$$\pi_j = \sum_{k \in S} \pi_k p_{kj}, j \in S.$$

Věta

Nechť počáteční rozdělení homogenního Markovského řetězce je stacionární. Pak je tento řetězec striktně stacionární a pro všechna $n \in \mathbb{N}$ platí

$$p_j(n) = P(X_n = j) = \pi_j, \quad j \in S,$$

kde π_i jsou počáteční stacionární pravděpodobnosti.

Věta

Pro nerozložitelný Markovský řetězec platí

- Jsou-li všechny jeho stavy přechodné nebo všechny trvalé nulové, stacionární rozdělení neexistuje.
- 2 Jsou-li všechny jeho stavy trvalé nenulové, stacionární rozdělení existuje a je jednoznačné.
 - **1** Jsou-li všechny stavy neperiodické, potom pro všechna $i, j \in S$

$$\pi_j = \lim_{n \to \infty} p_{ij}^{(n)} > 0 \quad a \quad \pi_j = \lim_{n \to \infty} p_j(n) > 0.$$

2 Jsou-li všechny stavy periodické, potom pro všechna $i, j \in S$

$$\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n p_{ij}^{(k)} > 0 \quad a \quad \pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n p_j(k) > 0.$$

 V nerozložitelném řetězci s konečně mnoha stavy stacionární rozdělení existuje.

- Uvažujme rozložitelný Markovský řetězec s konečně mnoha stavy $j \in S$, který lze rozdělit na K komponent.
- Existuje permutace těchto stavů $\tilde{j}=perm(j)$ pro všechna $j\in S$ taková, že matice pravděpodobností přechodu pro stavy \tilde{j} je tvaru

$$\mathsf{P} = \left(\begin{array}{cccc} \mathsf{P}_1 & 0 & \dots & 0 \\ 0 & \mathsf{P}_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \mathsf{P}_\mathsf{K} \end{array} \right),$$

kde všechny matice P_k , k = 1, ..., K, jsou stochastické.

- Označme $\pi^{(k)}$ stacionární rozdělení pro řetězec s maticí pravděpodobností přechodu P_k , $k=1,\ldots,K$.
- Pak Markovský řetězec s maticí pravděpodobností přechodu P má stacionární rozdělení

$$\pi = (c_1 \pi^{(1)}, \dots, c_K \pi^{(K)}),$$

kde $0 \le c_k \le 1$ pro všechna $k = 1, \dots, K$ a $\sum_{k=1}^{K} = 1$.

- Uvažujme rozložitelný Markovský řetězec se stavy $j \in S$, z nichž právě m je absorpčních.
- Existuje permutace těchto stavů $\tilde{j} = perm(j)$ pro všechna $j \in S$ taková, že matice pravděpodobností přechodu pro stavy \tilde{j} je tvaru

$$\mathsf{P} = \left(\begin{array}{cc} \mathbb{I}_m & 0 \\ \mathsf{R} & \mathsf{Q} \end{array} \right),$$

kde \mathbb{I}_m je jednotková matice typu $m \times m$.

Pak

$$\mathsf{P}^{\infty} = \lim_{n \to \infty} \mathsf{P}^n = \left(\begin{array}{cc} \mathbb{I}_m & 0 \\ \mathsf{M} & 0 \end{array} \right),$$

kde M = FR a $F = (\mathbb{I}_{|S|-m} + Q + Q^2 + Q^3 + \ldots) = (\mathbb{I}_{|S|-m} - Q)^{-1}$ je tzv. fundamentální matice.

• Prvky p_{ij} , $i=m+1,\ldots,|S|$, $j=1,\ldots,m$ (tj. prvky matice M) vyjadřují pravděpodobnosti, že řetězec, který vyšel ze stavu i, skončí v absorpčním stavu j.

Systém celočíselných náhodných veličin $\{X_t, t \geq 0\}$ definovaných na pravděpodobnostním prostoru (Ω, \mathcal{A}, P) nazveme Markovský řetězec se spojitým časem, jestliže

$$P(X_t = j | X_s = i, X_{t_n} = i_n, \dots, X_{t_1} = i_1) = P(X_t = j | X_s = i)$$

pro všechna $0 \le t_1 < \ldots < t_n < s < t$ a všechna $i, j, i_n, \ldots, i_1 \in S$ taková, že $P(X_s = i, X_{t_n} = i_n, \ldots, X_{t_1} = i_1) > 0$.

- $P(X_t = j | X_s = i) = p_{ij}(s, t)$ nazveme pravděpodobnostmi přechodu ze stavu i v čase s do stavu j v čase t;
- pro homogenní řetězec, kde pravděpodobnosti přechodu závisí pouze na rozdílech časů, budeme značit $p_{ii}(s, s + t)$ jako $p_{ii}(t)$;
- absolutní pravděpodobnosti budeme značit $p_j(t) = P(X_t = j), j \in S$ a $p_j(0) = P(X_0 = j), j \in S$ pak budou počáteční pravděpodobnosti.

Matice pravděpodobnosti přechodu, Chapman-Kolmogorova rovnost

- Pro každé t je $P(t) = \{p_{ij}(t), i, j \in S\}$ čtvercová matice \rightarrow systém matic pravděpodobností přechodu $\{P(t), t \geq 0\}$.
- Zřejmě platí: $\{P(0) = I\}$, kde I je jednotková matice.
- Dále dostáváme

$$p_j(t) = \sum_{i \in S} p_i(0)p_{ij}(t) \quad \forall j \in S,$$

zapsáno maticově

$$p(t)^T = p(0)^T \cdot P(t).$$

Ten lze zobecnit na

$$p_{ij}(s+t) = \sum_{k \in S} p_{ik}(s) p_{kj}(t) \quad \forall i, j \in S,$$

zapsáno maticově

$$P(s+t) = P(s) \cdot P(t),$$

což je Chapman-Kolmogorova rovnost.

V dalším textu budeme předpokládat, že

$$\lim_{t\to 0+} p_{ij}(t) = \delta_{ij}, \quad i,j \in \mathcal{S},$$

kde δ_{ij} značí Dirackovu funkci, tj. $\delta_{ij}=1$ pro i=j a $\delta_{ij}=0$ jinak. Tento předpoklad společně se skutečností, že $p_{ij}(0)=\delta_{ij}$ znamená, že řetězec je zprava spojitý v 0.

Dále si označme

$$\lim_{h\to 0+}\frac{1-p_{ii}(h)}{h}:=\lambda_i\quad \text{a}\quad \lim_{h\to 0+}\frac{p_{ij}(h)}{h}:=\lambda_{ij}. \tag{4}$$

Definice

Nezáporná čísla λ_{ij} z (4) se nazývají intenzity přechodu, číslo λ_i z (4) je pak celková intenzita. Matice $\Lambda = \{\lambda_{ij}, i, j \in S\}$, kde $\lambda_{ii} = -\lambda_i$ se nazývá matice intenzit přechodu.

Věta

Pro homogenní Markovský řetězec platí

$$P(X_t = i \text{ pro } t \in (s, s+h) | X_s = i) = e^{-\lambda_i h} \quad \forall s \geq 0, h \geq 0.$$

Věta

Je-li $\lambda_i=0$, pak $p_{ii}(t)=1$ pro všechna $t\geq 0$. Je-li $0<\lambda_i<\infty$, má doba, po kterou řetězec setrvává ve stavu i, exponenciální rozdělení s parametrem λ_i .

Věta

Nechť $0<\lambda_i<\infty$. Potom pravděpodobnost, že řetězec z počátečního stavu i přejde nejdříve do stavu j, je rovna $\frac{\lambda_{ij}}{\lambda_i}$ pro všechna $j\neq i$.

Nechť $P(X_0 = j) = 1$, J je čas, kdy řetězec poprvé opustí stav j, a

$$\tau_j = \inf\{t \geq J : X_t = j\}.$$

Definice

Stav j Markovského řetězce se nazývá trvalý, jestliže bu $\ddot{q}_j=0$ nebo $q_i>0$ a zároveň

$$P_j(\tau_j < \infty) = 1.$$

Stav j Markovského řetězce se nazývá přechodný, jestliže $q_i > 0$ a zároveò

$$P_j(\tau_j=\infty)>0.$$

Definice

Trvalý stav j Markovského řetězce se nazývá nenulový, jestliže buď $q_j=0$ nebo $\mathbb{E}[\tau_j]<\infty$. V opačném případě se řetězec nazývá nulový.

Stav $j \in S$ se nazývá absorpční, jestliže $q_j = 0$. Jestliže $q_j > 0$, pak se stav j nazývá stabilní, pokud $q_j < \infty$, a nestabilní, pokud $q_j = \infty$.

Definice

Řekneme, že stav j je dosažitelný ze stavu i, jestliže existuje t>0 takové, že $p_{ij}(t)>0$.

Poznámka

Analogicky jako pro řetězce s diskrétním časem můžeme definovat také nerozložitelnost řetězce se spojitým časem.

Nechť $\{X_t, t \geq 0\}$ je homogenní řetězec se spojitým časem, množinou stavů S a maticemi pravděpodobností přechodu $P(t), t \geq 0$. Potom π se nazývá stacionární rozdělení daného řetězce, jestliže platí

$$\pi^T = \pi^T P(t), \quad \forall t \geq 0.$$

Věta

Nechť počáteční rozdělení homogenního Markovského řetězce $\{X_t, t \geq 0\}$ je stacionární. Pak je tento řetězec striktně stacionární a pro všechna $t \geq 0$ platí

$$p_j(t) = P(X_t = j) = \pi_j, \quad j \in S,$$

kde π_i jsou počáteční stacionární pravděpodobnosti.

Nejčastěji používané Markovské procesy:

1.) Poissonův proces

Poissonův proces $\{N_t, t \geq 0\}$ popisuje počet událostí do času t. Předpoklady:

- počty událostí v disjunktních časových intervalech jsou nezávislé náhodné veličiny (proces s nezávislými přírustky),
- ullet počty událostí v časovém intervalu (t,t+h) závisí pouze na h,
- ullet pro počty událostí v časovém intervalu (t,t+h) platí

$$P(N_{t+h} - N_t = 0) = 1 - \lambda h + o(h),$$

 $P(N_{t+h} - N_t = 1) = \lambda h + o(h),$
 $P(N_{t+h} - N_t \ge 2) = o(h),$

kde symbol o(h) značí, že $o(h)/h \to 0$ při $h \to 0+$, a λ je konstanta, která se nazývá intenzita Poissonova procesu.

Nejčastěji používané Markovské procesy:

1.) Poissonův proces

- Z předpokladu nezávislosti přírustků plyne Markovská vlastnost
- Pro pravděpodobnosti přechodu platí

$$P(N_{t+h} = j | N_t = i) = \lambda h + o(h)$$
 $j = i + 1$
= $1 - \lambda h + o(h)$ $j = i$
= $o(h)$ $j > i + 1$
= 0 $j < i$.

Intenzity přechodu jsou

$$q_{i,i+1} = \lambda, \quad q_i = -qii = \lambda, \quad q_{ij} = 0$$
 jinak.

Navíc se dá ukázat, že pro tento proces platí

$$P(N_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad k = 0, 1, \dots,$$

což je Poissonovo rozdělení.

Nejčastěji používané Markovské procesy: 2.) Wienerův proces

- Není to Markovský řetězec, pouze Markovský proces (spojitá množina stavů)!
- Wienerův proces (někdy také nazýván *Brownův pohyb*) $\{W_t, t \geq 0\}$ je definován následujícími vlastnostmi:
 - $\{W_t, t \ge 0\}$ má spojité trajektorie,
 - $W_0 = 0$,
 - $\{W_t, t \geq 0\}$ má nezávislé přírustky,
 - přírustek hodnoty v časovém intervalu (s,t) má normální rozdělení s nulovou střední hodnotou a rozptylem (t-s).

Poznámka

Občas se místo (t-s) jako rozptyl uvádí $\sigma^2(t-s)$, kde σ^2 je kladná konstanta.