Midterm 1 Rubric

Questions 1.-5.

- i. express the statement in terms of quantifiers, (1 pt.)
- ii. express the negation in terms of quantifiers, (1 pt.)
- iii. indicate whether the statement is true or false, (2 pt.)
- iv. either prove or disprove the statement (3 pts. for logical correctness, 3 pts. for conventional writing.)

Rubric.

i-ii.

points	conditions
1	correct
0	incorrect

iii.

points	conditions
2	correct
0	incorrect

iv. logical correctness

points conditions

- 3 entirely correct with no irrelevant data
- 2 includes superfluous or irrelevant data
- 1 does not appropriately introduce or assign variables misapplies or misinterprets a mathematical fact includes a logically invalid deduction
- 0 cites a mathematically false statement attempts to disprove a claim by failing to prove it

writing

points conditions

- 3 clear and conventional mathematical writing
- 2 includes unconventional terms or phrases starts a sentence with a mathematical symbol uses quantifiers as shorthand for English phrases
- 1 grossly unconventional writing
- 0 not entirely written in complete sentences does not address the question

Example.

If $f: A \to B$ and $g: B \to C$ are not injective, then $g \circ f: A \to C$ is not injective.

- i. 1 pt.
 - \forall noninjections $f:A \to B, g:B \to C:g \circ f$ noninjective
 - \forall functions $f: A \to B$, $g: B \to C: (f \text{ noninjective } \land g \text{ noninjective}) \implies g \circ f \text{ noninjective}$
 - $\forall f: A \to B, g: B \to C: f, g$ noninjective $\implies g \circ f$ noninjective

0 pts.

- \forall noninjections $f: A \to B \land g: B \to C: g \circ f$ noninjective
- $(f:A \to B \text{ noninjective } \land g:B \to C \text{ noninjective}) \implies g \circ f \text{ noninjective}$
- ii. 1 pt.
 - \exists noninjections $f: A \to B, g: B \to C: g \circ f$ injective
 - \exists functions $f:A \to B$, $g:B \to C: (f \text{ noninjective } \land g \text{ noninjective}) \land g \circ f \text{ injective}$
 - \exists functions $f:A \to B$, $g:B \to C:f$ noninjective \land g noninjective \land $g \circ f$ injective
 - $\exists f: A \to B, g: B \to C: f, g$ noninjective $\land g \circ f$ injective

0 pts.

- $\neg \forall$ noninjections $f: A \to B, g: B \to C: g \circ f$ noninjective
- \forall noninjections $f: A \to B, g: B \to C: g \circ f$ injective
- $\forall f: A \to B, g: B \to C: f, g \text{ noninjective } \Longrightarrow g \circ f \text{ injective}$
- $\exists f: A \to B, g: B \to C: f, g \text{ injective } \land g \circ f \text{ injective}$
- iii. 2 pts. true; 0 pts. false
- iv. logical correctness 3 pts., writing 3 pts.
 - Choose distinct $a, a' \in A$ with f(a) = f(a') and observe that g(f(a)) = g(f(a')).
 - Choose distinct $a, a' \in A$ with f(a) = f(a') and observe that g(f(a)) = g(f(a')). It follows that $g \circ f$ is noninjective.
 - Let $f: A \to B$ and $g: B \to C$ be functions. Suppose that f and g are not injective. Since f is noninjective, there are $a, a' \in A$ such that $a \neq a'$ and f(a) = f(a'). Applying g to the second equality yields $g \circ f(a) = g \circ f(a')$ and we conclude that $g \circ f$ is not injective.

l.c. 3 pts., w. 2 pts.

- Choose distinct $a, a' \in A$ with f(a) = f(a') and observe that g(f(a)) = g(f(a')). So this means the statement is true.
- Since f is injective $\exists a, a' \in A$ such that $a \neq a'$ and f(a) = f(a'). Applying g to the second equality yields $g \circ f(a) = g \circ f(a')$ and we conclude that $g \circ f$ is not injective.

l.c. 3 pts., w. 1 pts.

• Assume $a, a' \in A$ such that $a \neq a'$ and f(a) = f(a'). Therefore, g(f(a)) = g(f(a')).

l.c. 3 pts., w. 0 pts.

• $a, a' \in A$ s.t. $a \neq a'$ and f(a) = f(a') Therefore g(f(a)) = g(f(a'))

l.c. 2 pts., w. 3 pts.

- Choose distinct $a, a' \in A$ with f(a) = f(a') and distinct $b, b' \in B$ with g(b) = g(b') and observe that g(f(a)) = g(f(a')).
- Choose distinct $a, a' \in A$ with f(a) = f(a'). Since g is noninjective, we have g(f(a)) = g(f(a')).

l.c. 1 pts., w. 3 pts.

• Since injections are closed under composition, it follows that if $g \circ f$ were injective then at least one of f and g must be injective as well.

l.c. 0 pts., w. 3 pts.

• Since noninjections are closed under composition, it follows that if $g \circ f$ were injective then at least one of f and g must be injective as well.