УСТОЙЧИВОСТЬ НЕЗАЛИПАЮЩИХ ПЕРИОДИЧЕСКИХ КОЛЕБАНИЙ, УСТАНОВЛЕННЫХ МЕТОДОМ УСРЕДНЕНИЯ В РАЗРЫВНЫХ СИСТЕМАХ. І. ГЛАДКИЕ ВНЕ РАЗРЫВОВ СИСТЕМЫ

О.Ю. Макаренков

Аннотация. В настоящей работе утверждение второй теоремы Н.Н. Боголюбова о периодических решениях гладких систем с малым параметром обосновывается для разрывных систем, в которых порождающее решение пересекает гиперплоскости разрыва трансверсально и которые непрерывно дифференцируемы вне этих гиперплоскостей. Данная ситуация имеет место в системах с сухим трением в отсутствии залипания и упругих ограничителей. В качестве иллюстрации доказывается устойчивость колебаний скорости тела, перемещаемого вибрациями.

0.1 Введение

Рассмотрим систему

$$\dot{x} + h(t, x) = \varepsilon f(t, x, \varepsilon), \tag{1}$$

где $h \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$ и f - T-периодическая по времени непрерывно дифференцируемая функция, терпящая разрывы 1-го рода в таких точках (t, x, ε) , в которых некоторые компоненты x обращаются в нуль (см. условие (A1) ниже). В предположении, что порождающая система

$$\dot{x} + h(t, x) = 0 \tag{2}$$

допускает только T-периодические решения, настоящая статья изучает существование, единственность и устойчивость T-периодических решений системы (1). Известной T-периодической заменой переменных (см. замену 7 ниже) система (1) приводится к стандартной форме принципа усреднения. Соответственно, в случае, когда $f \in C^1(\mathbb{R} \times \mathbb{R}^n \times [0,1],\mathbb{R}^n)$, поставленная задача полностью решена Н.Н. Боголюбовым в его второй теореме (см. [2], Ч.1, §5, Теорема II).

Принцип усреднения для нахождения периодических колебаний в разрывных системах до сих пор применялся либо без обоснования (см. [3]), либо без обоснования устойчивости (см. [4]), либо на основании негладкого аналога первой теоремы Н.Н. Боголюбова (см. [1], [5], [8]). Такой аналог впервые предложен В.А. Плотниковым [10] и позволяет убедиться, что динамика системы (1) близка к T-периодической на временном интервале порядка $[0, 1/\varepsilon]$ и не гарантирует, что динамика системы действительно T-периодическая и, тем более, устойчивая на всем $[0, +\infty)$. Результат настоящий статьи впервые гарантирует последнее свойство. В качестве иллюстративного примера в работе доказывается

T-периодичность и устойчивость колебаний скорости тела, перемещаемого под действием периодических вибраций, что было ранее установлено А. Фидлиным [5] на интервале $[0,1/\varepsilon]$.

Предлагаемый результат получен прямым методом склейки оператора сдвига по траекториям системы (1) из его фрагментов на гладких областях. Используя решения вспомогательных задач Коши с векторным временем (см. лемму 0.2), доказано, что оператор Пуанкаре системы (1) дифференцируем по фазовой переменной и параметру $\varepsilon > 0$. Далее, используя сходимость правой части при уменьшении $\varepsilon > 0$ по мере (см. следствие 0.2), установлено равенство классической функции усреднения и производной оператора Пуанкаре по ε в $\varepsilon = 0$. Это позволило связать свойства собственных значений нулей функции усреднения с такими свойствами оператора Пуанкаре, которые достаточны для анализа устойчивости его неподвижных точек методами теории динамических систем.

0.2 Основной результат

На протяжении статьи ξ^j является j-й компонентой вектора $\xi \in \mathbb{R}^n$, $x(\cdot, \xi, 0)$ обозначает решение порождающей системы (2) с начальным условием $x(0) = \xi$ и $B_r(\zeta)$ – это шар в \mathbb{R}^n радиуса r > 0 с центром в точке $\zeta \in \mathbb{R}^n$. Результат статьи применим к разрывным системам, удовлетворяющим следующим аналогичным предположениям А. Фидлина [5] условиям.

(А1) Положим
$$\mathbb{R}^n_s = \left\{ \xi \in \mathbb{R}^n : \mathrm{sign}(\xi^j) = s^j, j \in \overline{1,n} \right\}, \quad s \in \{-1,1\}^n = \underbrace{\{-1,1\} \times \ldots \times \{-1,1\}}_{n \text{ штук}}.$$
 Существует 2^n функций $f_s \in C^1(\mathbb{R} \times \mathbb{R}^n \times [0,1], \mathbb{R}^n),$ $s \in \{-1,1\}^n$ таких, что

$$f(t,\xi,\varepsilon) = f_s(t,\xi,\varepsilon), \quad (t,\xi,\varepsilon) \in \mathbb{R} \times \mathbb{R}^n_s \times [0,1], \ s \in \{-1,1\}^n.$$

Следующие два условия предъявляются к такому $x(\cdot, \xi_0, 0)$, которое, ожидается, будет порождающим, но часто они выполнены или нет сразу для всех решений системы (2).

- (А3) Множество точек $S \subset \mathbb{R}^n \setminus \bigcup_{s \in \{-1,1\}^n} \mathbb{R}^n_s$, в которых функция $\xi \mapsto f(t,\xi,\varepsilon)$ не является непрерывно дифференцируемой, не зависит от t и ε , и для любых $j \in \overline{1,n}$ и $t \in \mathbb{R}$ существует $p \in \overline{1,n}$ такое, что функция $\xi \mapsto f^j(t,\xi^1,...,\xi^{p-1},0\cdot\xi^p,\xi^{p+1},...,\xi^n,\varepsilon)$ непрерывно дифференцируема в точке $x(t,\xi_0,0)$.
- (A2) Предположим, что множество $\{t \in [0,T]: x(t,\xi_0,0)\} \in S$ конечно и занумеруем его элементы как $0 \le t_1 < ... < t_m < T$. Пусть $t_1 > 0$ и для любых $j \in \overline{1,n}$ и $i \in \overline{1,m}$ таких, что $x^j(t_i,\xi_0,0) = 0$ и $\{\xi \in \mathbb{R}^n : \xi^j = 0\} \subset S$, имеем $(x^j)'_t(t_i,\xi_0,0) \ne 0$.

Поскольку система (1) может вообще не иметь дифференцируемого на всем временном промежутке решения, нам следует принять несколько более общее определение.

Определение 1. Решением системы (1) называется непрерывная функция x, дифференцируемая всюду, за исключением, быть может, множества $\{t : x(t) \in S\}$ и удовлетворяющая всюду, кроме, быть может, этого множества, системе (1).

Данное определение позволяет не ограничивая общности считать, что функция f ограничена на каждом ограниченном множестве.

Пемма 0.1 Пусть $h \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$ и f удовлетворяет условию (A1). Пусть $\xi_0 \in \mathbb{R}^n$ таково, что выполнены условия (A2)-(A3). Тогда существует $\delta > 0$ такое, что при всех $\varepsilon \in [0, \delta]$, $v \in B_{\delta}(\xi_0)$ система (1) имеет единственное решение $t \mapsto x(t, \xi, \varepsilon)$ с начальным условием $x(0, \xi, \varepsilon) = \xi$. Это решение продолжимо на [0, T] и непрерывно дифференцируемо по $(\xi, \varepsilon) \in B_{\delta}(\xi_0) \times [0, \delta)$. Кроме того,

$$\{t: x^j(t,\xi,\varepsilon) = 0\} \subset \bigcup_{i=1}^m \{T_i^j(\xi,\varepsilon)\}, \quad j \in \overline{1,n},$$

где $T_i^j \in C^1(B_\delta(\xi_0) \times B_\delta(0), \mathbb{R}^n)$ и $T_i^j(\xi_0, 0) = t_i$ при всех $i \in \overline{1, m}$ и $j \in \overline{1, n}$.

Для доказательства леммы 0.1 нам понадобится следующее вспомогательное утверждение, в котором $1_{\mathbb{R}^n}$ – это n-мерный вектор, состоящий из единиц, и для произвольных $g:\mathbb{R}^n \to \mathbb{R}^n, \ t \in \mathbb{R}, \ \xi \in \mathbb{R}^n$ запись $g(t1_{\mathbb{R}^n} + \overrightarrow{\xi})$ обозначает следующее

$$g(t1_{\mathbb{R}^n} + \overrightarrow{\xi}) = \begin{pmatrix} g^1(t+\xi^1) \\ \vdots \\ g^n(t+\xi^n) \end{pmatrix}.$$

Лемма 0.2 Пусть $F \in C^1(\mathbb{R} \times \mathbb{R}^n \times [0,1], \mathbb{R}^n)$. Тогда для любых $t_* \in \mathbb{R}$ и $\xi_* \in \mathbb{R}^n$ существует $\gamma > 0$ такое, что при любых $\Delta \in B_{\gamma}(0)$, $\xi \in B_{\gamma}(\xi_*)$, $\varepsilon \in [0,\gamma)$, задача

$$\dot{x} = F(t, x, \varepsilon),\tag{3}$$

$$x(t_*1_{\mathbb{R}^n} + \overrightarrow{\Delta}) = \xi_* \tag{4}$$

имеет единственное решение $t \mapsto x(t, t_* 1_{\mathbb{R}^n} + \overrightarrow{\Delta}, \xi, \varepsilon)$, определенное на \mathbb{R} . Более того, функция x непрерывно дифференцируема на $\mathbb{R} \times B_{\gamma}(t_* 1_{\mathbb{R}^n}) \times B_{\gamma}(\xi_*) \times [0, \gamma)$.

Доказательство. Обозначим через $\widetilde{x}(\cdot,t_*,\zeta,\varepsilon)$ решение системы (3) с начальным условием $x(t_*)=\zeta$. Рассмотрим функцию

$$\Phi(\Delta, \zeta, \xi, \varepsilon) = \widetilde{x}(t_* + \overrightarrow{\Delta}, t_*, \zeta, \varepsilon) - \xi,$$

непрерывно дифференцируемую на $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times [0,1]$. Имеем $\Phi(0,\xi_*,\xi_*,0)=0$ и $\det \|\Phi'_{\xi}(0,\xi_*,\xi_*,0)\| = \det \|I\| \neq 0$. Поэтому, из теоремы о неявной функции следует существование $\gamma>0$ и функции $(\Delta,\xi,\varepsilon)\mapsto \zeta(\Delta,\xi,\varepsilon)$, непрерывно дифференцируемой на

 $B_{\gamma}(0) \times B_{\gamma}(\xi_{*}) \times [0,\gamma)$ и удовлетворяющей условию

$$\Phi(\Delta,\zeta(\Delta,\xi,\varepsilon),\xi,\varepsilon)=0,\quad \|\Delta\|<\gamma,\ \|\xi-\xi_*\|<\gamma,\ \varepsilon\in[0,\gamma).$$

Искомая функция х дается формулой

$$x(t, t_* 1_{\mathbb{R}^n} + \overrightarrow{\Delta}, \xi, \varepsilon) = \widetilde{x}(t, t_*, \zeta(\Delta, \xi, \varepsilon), \varepsilon),$$

и справедливость соотношения (4) проверяется непосредственно.

Доказательство леммы 0.1. Доказательство проводится в два этапа. На первом этапе строятся фрагменты решения системы (1), проходящего в окрестности решения $x(\cdot, \xi_0, 0)$ и компоненты которого определены на подходящих окрестностях интервалов (t_{i-1}, t_i) . На втором этапе искомое решение склеивается из полученных фрагментов.

I этап. Обозначим $t_0=0,\,t_{m+1}=T,$ зафиксируем произвольное $i\in\overline{1,m+1},$ положим $(t_*,\xi_*)=(t_{i-1},x(t_{i-1},\xi_0,0))$ и применим лемму 0.2 к системе

$$\dot{x} + h(t, x) = \varepsilon f_s(t, x, \varepsilon), \tag{5}$$

где $s^j = \lim_{t \to t_{i-1} + 0} \mathrm{sign} \, (x^j(t, \xi_0, 0)), \, j \in \overline{1, n}$. Пусть $\gamma > 0$ – то число, а $\widetilde{x}_i(t, t_{i-1} 1_{\mathbb{R}^n} + \overrightarrow{\Delta}, \xi, \varepsilon)$ – та функция, о которых говорится в лемме 0.2. Обозначим через $\nu_1, ..., \nu_{k_i}$ номера компонент порождающего решения $x(\cdot, \xi_0, 0)$, обращающиеся в нуль при $t = t_i$. Из условия (А3) следует, что

$$(\widetilde{x}_i^j)_t'(t_i, t_{i-1}1_{\mathbb{R}^n}, \xi_*, 0) = (x^j)_t'(t_i, \xi_0, 0) \neq 0, \quad j \in \{\nu_1, ..., \nu_{k_i}\}.$$

Поэтому, теорема о неявной функции позволяет утверждать, что существует $0 < \delta_i < \gamma$ и k_i функций $t_i^j : \mathbb{R}^n \times \mathbb{R}^n \times [0,1] \to \mathbb{R}, j \in \{\nu_1,...,\nu_{k_i}\}$, удовлетворяющих условиям (см. рис. 1):

- a) $t_i^j \in C^1(B_\delta(t_{i-1}1_{\mathbb{R}^n}) \times B_\delta(\xi_*) \times [0,\delta), \mathbb{R}^n),$
- б) $t_i^j(0, \xi_*, 0) = t_i$,
- B) $\widetilde{x}_i^j(t_i^j(\Delta,\xi,\varepsilon),t_{i-1}1_{\mathbb{R}^n}+\Delta,\xi,\varepsilon)=0, \|\Delta\|<\delta_i,\xi\in B_{\delta_i}(\xi_*),\varepsilon\in[0,\delta_i).$

Рис. 1. Иллюстрация возможного поведения решения \tilde{x} , приводящего к разветвлению момента времени t_i на две функции t_i^1 и t_i^2 , то есть к ситуации, когда разные компоненты $\xi \mapsto f^{j_1}(t,\xi,\varepsilon)$ и $\xi \mapsto f^{j_2}(t,\xi,\varepsilon)$ имеют разрывы в одной и той же точке $x(t_i,\xi_0,0)$. Такой случай допускается условиями (A2)-(A3) и реализуется в системах с трением с несколькими степенями свободы (см. [3]).

В силу единственности неявной функции, $\delta_i > 0$ может быть уменьшено ещё и так, что $\widetilde{x}_i^j(t,t_{i-1}1_{\mathbb{R}^n}+\Delta,\xi,\varepsilon) \neq 0$ при всех $t \in (t_{i-1}+\Delta^j,t_i^j(\Delta,\xi,\varepsilon)), j \in \{\nu_1,...,\nu_{k_i}\}, \|\Delta\| < \delta_i, \|\xi-\xi_*\| < \delta_i, 0 \leq \varepsilon < \delta_i$. Для оставшихся компонент t_i определим как

$$t_i^j(\Delta, \xi, \varepsilon) := t_i, \quad \Delta, \xi \in \mathbb{R}^n, \ \varepsilon \in [0, 1], \ j \in \overline{1, n} \setminus \{\nu_1, ..., \nu_{k_i}\}$$
 (6)

и уменьшим $\delta_i > 0$, если необходимо, так, что $\widetilde{x}^j(t,t_{i-1}1_{\mathbb{R}^n} + \Delta,\xi,\varepsilon) \neq 0$ при всех $t \in (t_{i-1} + \Delta^j,t_i^j(\Delta,\xi,\varepsilon)], j \in \overline{1,n} \setminus \{\nu_1,...,\nu_{k_i}\}, \|\Delta\| < \delta_i, \|\xi-\xi_*\| < \delta_i, 0 \leq \varepsilon < \delta_i.$

II этап. Двигаясь от i=m+1 до i=2, уменьшим $\delta_{i-1}>0$ одно за другим так, чтобы

$$\begin{split} \|\widetilde{x}_{i-1}(t_{i-1}(\Delta,\xi,\varepsilon),t_{i-2}1_{\mathbb{R}^n}+\Delta,\xi,\varepsilon)-x(t_{i-1},\xi_0,0)\| &< \delta_i, \\ \|t_{i-1}(\Delta,\xi,\varepsilon)-t_{i-1}\| &< \delta_i, \\ \text{при всех} \|\Delta\| &< \delta_{i-1}, \|\xi-x(t_{i-2},\xi_0,0)\| &< \delta_{i-1}, 0 \leq \varepsilon < \delta_{i-1}. \end{split}$$

В помощь читателю мы подробно выписываем первые итерации построения функции x, но мелким шрифтом. Итак, для каждого $j \in \overline{1,n}$, $\|\xi - \xi_0\| \le \delta_1$ и $0 \le \varepsilon < \delta_1$ положим

$$x^j(t,\xi,arepsilon):=\widetilde{x}_1^j(t,0,\xi,arepsilon),$$
 при всех $t\in[0,t_1^j(0,\xi,arepsilon)],$

$$\begin{split} x^j(t,\xi,\varepsilon) &:= \widetilde{x}_2^j(t,t_1(0,\xi,\varepsilon),x(\overrightarrow{t}_1(0,\xi,\varepsilon),\xi,\varepsilon),\varepsilon), \\ \text{при всех } t \in [t_1^j(0,\xi,\varepsilon),t_2^j(t_1(0,\xi,\varepsilon)-t_1,x(t_1(0,\xi,\varepsilon),\xi,\varepsilon),\varepsilon)]. \end{split}$$

Далее, используя обозначение

$$T_2^j(v,\varepsilon) = t_2^j(t_1(0,\xi,\varepsilon) - t_1, x(t_1(0,\xi,\varepsilon),\xi,\varepsilon),\varepsilon),$$

построение продолжается как

$$\begin{split} x^j(t,\xi,\varepsilon) &:= \widetilde{x}_3^j(t,T_2(\xi,\varepsilon),x(\overrightarrow{T}_2(\xi,\varepsilon),\xi,\varepsilon),\varepsilon), \\ \text{при всех } t \in [T_2^j(\xi,\varepsilon),t_3^j(T_2^j(\xi,\varepsilon)-t_2,x(T_2(\xi,\varepsilon),\xi,\varepsilon),\varepsilon)]. \end{split}$$

Общая итерационная формула для определения $x(t,\xi,\varepsilon)$ при произвольных $t\in[0,T],$ $\|\xi-\xi_0\|<\delta_1,\,0\leq\varepsilon<\delta_1$ и i=1,...,m+1 выписывается как

$$x^{j}(t,\xi,\varepsilon):=\widetilde{x}_{i}^{j}(t,T_{i-1}(\xi,\varepsilon),x(\overrightarrow{T}_{i-1}(\xi,\varepsilon),\xi,\varepsilon),\varepsilon),$$
 при всех $t\in[T_{i-1}^{j}(\xi,\varepsilon),T_{i}^{j}(\xi,\varepsilon)],$

где $T_i(\xi,\varepsilon) = t_i(T_{i-1}(\xi,\varepsilon) - t_{i-1}, x(T_{i-1}(\xi,\varepsilon),\xi,\varepsilon)), T_1(\xi,\varepsilon) = t_1(0,\xi,\varepsilon), T_0(\xi,\varepsilon) = 0.$ При этом из (6) имеем $T_{m+1}^j = T$ для любого $j \in \overline{1,n}$. Так как $\widetilde{x}_i \in C^1(\mathbb{R} \times B_{\delta_1}(t_{i-1}1_{\mathbb{R}^n}) \times B_{\delta_1}(x(t_{i-1},\xi_0,0)) \times [0,\delta_1),\mathbb{R}^n)$ и $t_i \in C^1(B_{\delta_1}(0) \times B_{\delta_1}(x(t_{i-1},\xi_0,0)) \times [0,\delta_1),\mathbb{R}^n)$, то $z(t,\cdot),T_i \in C^1(B_{\delta_1}(x(t_{i-1},\xi_0,0)) \times [0,\delta_1),\mathbb{R}^n)$ при всех $i \in \overline{1,m}, t \in [0,T]$.

Для завершения доказательства нам остается обосновать единственность построенного решения. Для этого достаточно показать, что при любом $i \in \overline{1,m}$ и достаточно малом $\gamma > 0$ часть $x((t_*,t_*+\gamma))$ решения x системы (1) с начальным условием $x(t_*) = \xi$, где $|t_*-t_i| < \gamma$, $||\xi-\xi_0|| < \gamma$ и $\xi, x(t_i,\xi_0,0) \in S$, лежит в том же множестве \mathbb{R}^n_s , что и $x((t_i,t_i+\gamma),\xi_*,0)$ (как это имеет место для построенного решения $t\mapsto x(t,\xi,\varepsilon)$). В силу принятого определения решения системы (1) можем считать, что решение x непрерывно дифференцируемо на $(t_*,t_*+\gamma)$. Но тогда, считая $\varepsilon>0$ достаточно малым, получаем, что значения $x'(t), t\in (t_*,t_*+\gamma)$ и $x'_t(t,\xi_*,0), t\in (t_i,t_i+\gamma)$ сколь угодно близки. Требуемое

утверждение теперь легко следует из трансверсальности $t \mapsto x(t, \xi_0, 0)$ по отношению к S в точке t_i , вытекающей из (A3).

Лемма 0.1 позволяет ввести при малых $\varepsilon>0$ и $\xi\in\mathbb{R}^n$ близких к ξ_0 следующую функцию

$$u(t,\xi,\varepsilon) = x^{-1}(t,x(t,\xi,\varepsilon),0),\tag{7}$$

где $x^{-1}(t,\cdot,0)$ – обратный к $x(t,\cdot,0)$ оператор (то есть $x(t,x^{-1}(t,\xi,0),0)=x^{-1}(t,x(t,\xi,0),0)=\xi$), существующий в силу гладкости порождающей системы (2). Замена (7) приводит (1) к стандартной форме принципа усреднения

$$\dot{u} = \varepsilon(x_u'(t, u, 0))^{-1} f(t, x(t, u, 0), \varepsilon). \tag{8}$$

Решения системы (8) будем понимать в смысле определения 1. В частности функция $t \mapsto u(t, \xi, \varepsilon)$ является решением системы (8) и, в силу леммы 0.1, непрерывно дифференцируемо по (ξ, ε) достаточно близким к $(\xi_0, 0)$. Нам понадобится ряд свойств правой части системы (8), которые мы сейчас выведем из леммы 0.1.

Следствие 0.1 В условиях леммы 0.1 функция

$$t \mapsto (x'_u(t,\xi,0))^{-1} f(t,x(t,\xi,0),0)$$

суммируема на [0,T] при всех $\|\xi - \xi_0\| < \delta$.

Доказательство. Утверждение следует из суммируемости функции $t\mapsto f(t,x(t,\xi,0),0),$ которая, в силу леммы 0.1, непрерывна на [0,T] всюду, кроме, быть может, точек $\bigcup_{i\in\overline{1,m},j\in\overline{1,n}}\{T_i^j(\xi,0)\}.$

$$\overline{f}(\xi) = \int_0^T (x_u'(\tau, \xi, 0))^{-1} f(\tau, x(\tau, \xi, 0), 0) d\tau, \quad \|\xi - \xi_0\| < \delta.$$

Следствие 0.2 В условиях леммы 0.1 при всех $\xi \in B_{\delta}(\xi_0)$ и $\sigma > 0$ справедливо соотношение

$$\lim_{\varepsilon \to 0} \operatorname{mes} \left\{ t \in [0, T] : \| f(t, x(t, u(t, \xi, \varepsilon), 0), \varepsilon) - f(t, x(t, \xi, 0), 0) \| \ge \sigma \right\} = 0.$$

Доказательство. Зафиксируем $j \in \overline{1,n}, \, \sigma > 0, \, \xi \in B_{\delta}(\xi_0)$ и $\gamma > 0$. Выберем $\varepsilon_0 > 0$ настолько малым, что

$$||T_i^j(\xi,\varepsilon) - T_i^j(\xi,0)|| < \gamma, \quad \varepsilon \in [0,\varepsilon_0], \ i \in \overline{1,m}.$$

Обозначая $T_0^j(\xi,\varepsilon)\equiv 0$ и $T_{m+1}^j(\xi,\varepsilon)\equiv T$, при любом $i\in\overline{1,m+1}$ имеем

$$f(t,x(t,u(t,\xi,arepsilon),arepsilon),arepsilon) o f(t,x(t,\xi,0),0)$$
 при $arepsilon o 0$

равномерно на $[T_{i-1}^j(\xi,0)+\gamma,T_i^j(\xi,0)-\gamma]$, в частности мы можем уменьшить $\varepsilon_0>0$ настолько, что

$$||f(t, x(t, u(t, \xi, \varepsilon), 0), \varepsilon) - f(t, x(t, \xi, 0), 0)|| < \sigma,$$

при всех $[T_{i-1}^j(\xi,0)+\gamma,T_i^j(\xi,0)-\gamma],\,\xi\in B_\delta(\xi_0),\,\varepsilon\in[0,\varepsilon_0],\,i\in\overline{1,m+1}.$ Таким образом,

$$\operatorname{mes} \left\{ t \in [0,T] : \| f(t,x(t,u(t,\xi,\varepsilon),0),\varepsilon) - f(t,x(t,\xi,0),0) \| \ge \sigma \right\} \le$$

$$\le (m+1) \cdot 2\gamma, \quad \text{при всех } \xi \in B_{\delta}(\xi_0), \ \varepsilon \in [0,\varepsilon_0].$$

Поскольку $\gamma>0$ было выбрано произвольно, следствие доказано.

Следствие 0.3 В условиях леммы 0.1 имеем $\overline{f}(\xi) = x'_{\varepsilon}(T, \xi, 0)$, в частности функция \overline{f} непрерывно дифференцируема на $B_{\delta}(v_0)$.

Доказательство. Имеем

$$u(T,\xi,\varepsilon) = \xi + \varepsilon \int_0^T (x'_u(\tau,u(\tau,\xi,\varepsilon),0))^{-1} f(\tau,x(\tau,u(\tau,\xi,\varepsilon),0),\varepsilon) d\tau,$$

поэтому,

$$u'_{\varepsilon}(T,\xi,0) = \lim_{\varepsilon \to 0} \frac{u(T,\xi,\varepsilon) - u(T,\xi,0)}{\varepsilon} =$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{T} (x'_{u}(\tau,u(\tau,\xi,\varepsilon),0))^{-1} f(\tau,x(\tau,u(\tau,\xi,\varepsilon),0),\varepsilon) d\tau.$$

В силу непрерывности функции u и ограниченности функции f, подынтегральное выражение равномерно ограничено по $\tau \in [0,T]$, $\xi \in B_{\delta}(\xi_0)$ и $\varepsilon \in [0,\delta)$. Значит, следствие 0.2 позволяет применить теорему Лебега о предельном переходе под знаком интеграла и прийти к заключению

$$\lim_{\varepsilon \to 0} \int_0^T (x_u'(\tau, u(\tau, \xi, \varepsilon), 0))^{-1} f(\tau, x(\tau, u(\tau, \xi, \varepsilon), 0), \varepsilon) d\tau = \overline{f}(\xi),$$

завершающему доказательство.

Теорема 0.1 Пусть $h \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$ и каждое решение порождающей системы (2) T-периодично. Пусть f - T-периодическая по времени непрерывно дифференцируемая функция, терпящая разрывы 1-го рода на S, точнее, пусть выполнено условие (A1). Зададимся $\xi_0 \in \mathbb{R}^n$, удовлетворяющим (A2), то есть таким, что при каждом $t \in [0,T]$ и $j \in \overline{1,n}$ решение $t \mapsto x(t,\xi_0,0)$ порождающей системы (2) пересекает не более одной гиперплоскости разрыва функции f^j и такие пересечения происходят только при $t \in (0,T)$. Пусть, наконец, решение $x(\cdot,\xi_0,0)$ пересекает S трансверсально, то есть выполнено условие (A3). Тогда имеют место следующие утверждения:

1) Если $\overline{f}(\xi_0) = 0$ и $\det \|\overline{f}'(\xi_0)\| \neq 0$, то существуют $\delta > 0$ и $\varepsilon_0 > 0$ такие, что при $\varepsilon \in (0, \varepsilon_0)$ система (8) имеет единственное T-периодическое решение u_ε с начальным условием $u_\varepsilon(0) \in B_\delta(\xi_0)$.

- 2) Если в условиях пункта 1) все собственные значения матрицы $\overline{f}'(\xi_0)$ имеют отрицательные вещественные части, то решения $\{u_{\varepsilon}\}_{{\varepsilon}\in(0,{\varepsilon}_0)}$ асимптотически устойчивы.
- 3) Если в условиях пункта 1) хотя бы одно собственное значение матрицы $\overline{f}'(\xi_0)$ имеет положительную вещественную часть, то решения $\{u_{\varepsilon}\}_{\varepsilon\in(0,\varepsilon_0)}$ неустойчивы.

Доказательство. Положим

$$\overline{f}_{\varepsilon}(\xi) = \int_0^T (x'_u(\tau, u(\tau, \xi, \varepsilon), 0))^{-1} f(\tau, x(\tau, u(\tau, \xi, \varepsilon), 0), \varepsilon) d\tau,$$

тогда

$$u(T,\xi,\varepsilon) = \xi + \varepsilon \overline{f}_{\varepsilon}(\xi) = u'_{\xi}(T,\xi,0) + \varepsilon \overline{f}_{\varepsilon}(\xi). \tag{9}$$

Поэтому,

$$\frac{u'_{\xi}(T,\xi,\varepsilon)-u'_{\xi}(T,\xi,0)}{\varepsilon}=(\overline{f}_{\varepsilon})'(\xi).$$

В силу леммы 0.1 имеем $\frac{u_{\xi}'(T,\xi,\varepsilon)-u_{\xi}'(T,\xi,0)}{\varepsilon} \to u_{\xi\varepsilon}'(T,\xi,0)$ при $\varepsilon\to 0$ равномерно по $\xi\in B_{\delta}(\xi_0)$. Следовательно, учитывая заключение следствия 0.3,

$$(\overline{f}_{\varepsilon})'(\xi) \to (\overline{f})'(\xi)$$
 при $\varepsilon \to 0$

равномерно по $\xi \in B_{\delta}(\xi_0)$.

- 1) Начнем с доказательства утверждения 1). Другими словами, требуется показать, что существует $\varepsilon_0 > 0$ и $\delta > 0$ такие, что при $\varepsilon \in (0, \varepsilon_0)$ функция $\xi \mapsto u(T, \xi, \varepsilon) \xi$ имеет единственный нуль в $B_{\delta}(\xi_0)$. В силу формулы (9) достаточно установить данное утверждение для функции $\overline{f}_{\varepsilon}(\xi)$. Но в силу условия 2) теоремы это утверждение немедленно следует из теоремы о неявной функции.
- 2) Перейдем к вопросу об устойчивости найденных решений. Для этого изучим собственные значения матрицы $u'_{\varepsilon}(T, \xi_{\varepsilon}, \varepsilon)$. Имеем

$$u'_{\xi}(T, \xi_{\varepsilon}, \varepsilon) = I + \varepsilon (\overline{f}_{\varepsilon})'(\xi_{\varepsilon}).$$

Предположим, что вещественные части всех собственных значений матрицы $(\overline{f})'(\xi_0)$ отрицательны. Пусть λ_0 – какое-нибудь собственное значение матрицы $(\overline{f})'(\xi_0)$ и λ_ε – какоенибудь собственное значение матрицы $(\overline{f})'(\xi_\varepsilon)$, сходящееся при $\varepsilon \to 0$ к λ_0 . Тогда $1 + \varepsilon \lambda_\varepsilon$ будет являться собственным значением матрицы $I + \varepsilon (\overline{f}_\varepsilon)'(\xi_\varepsilon)$. Но $\lambda_\varepsilon = \lambda_0 + \delta_\varepsilon$, где $\delta_\varepsilon \to 0$ при $\varepsilon \to 0$, значит $1 + \varepsilon \lambda_\varepsilon = 1 + \varepsilon \lambda_0 + \varepsilon \delta_\varepsilon$. Так как $\operatorname{Re}(\lambda_0) < 0$, то существует $\varepsilon_0 > 0$ такое, что $\operatorname{Re}(1 + \varepsilon \lambda_\varepsilon) < 0$ при $\varepsilon \in (0, \varepsilon_0]$. Таким образом, при $\varepsilon \in (0, \varepsilon_0]$ собственные значения матрицы $u'_\xi(T, \xi_\varepsilon, \varepsilon)$ лежат в единичном шаре. Зафиксируем $\varepsilon \in [0, \varepsilon_0]$ и обозначим через $\|\cdot\|_0$ такую норму в \mathbb{R}^n , что

$$\sup_{\|\zeta\|_0 \le 1} \|u'_{\xi}(T, \xi_{\varepsilon}, \varepsilon)\zeta\|_0 \le q < 1$$

(см. [6], с. 90, лемма 2.2). Тогда найдется $\delta > 0$ такое, что

$$\sup_{\|\zeta\|_0 \le 1} \|u_\xi'(T,\xi,\varepsilon)\zeta\|_0 \le \widetilde{q} < 1 \quad \text{для всех } \xi \in B_\delta(\xi_\varepsilon).$$

Следовательно, будем иметь

$$||u(T,\xi_1,\varepsilon) - u(T,\xi_2,\varepsilon)||_0 \le \widetilde{q}||\xi_1 - \xi_2||_0, \quad \xi_1,\xi_2 \in B_\delta(\xi_0),$$

что означает (см. [7], лемма 9.2) асимптотическую устойчивость периодического решения u_{ε} .

3) Пусть теперь матрица $(\overline{f})'(\xi_0)$ допускает собственное значение с положительной вещественной частью. Рассуждая аналогично предыдущему пункту, приходим к существованию такого $\varepsilon_0 > 0$, что при $\varepsilon \in (0, \varepsilon_0]$ матрица $u'_{\xi}(T, \xi_{\varepsilon}, \varepsilon)$ допускает собственное значение λ_{ε} с б/'ольшей единицы вещественной частью. Зафиксируем $\varepsilon \in (0, \varepsilon_0]$. На основании теоремы Гробмана-Хартмана (см., напр., [9], теорема 4.1) существует $\lambda > 0$ и локальный гомеоморфизм $g: B_{\alpha}(\xi_{\varepsilon}) \to \mathbb{R}^n$ такой, что

$$u(T, \xi, \varepsilon) = g^{-1}(u'_{\varepsilon}(T, \xi_{\varepsilon}, \varepsilon)g(\xi)), \quad \xi \in B_{\alpha}(\xi_{\varepsilon}), \tag{10}$$

соответственно для p-й степени оператора $\xi\mapsto u(T,\cdot,\varepsilon)$ имеем

$$u^p(T,\xi,\varepsilon) = g^{-1}((u'_{\xi}(T,\xi_{\varepsilon},\varepsilon))^p g(\xi)), \quad \xi \in B_{\alpha}(\xi_{\varepsilon}).$$

Пусть $l \in \mathbb{R}^n$ — собственный вектор матрицы $u'_{\xi}(T, \xi_{\varepsilon}, \varepsilon)$, соответствующий собственному значению λ_{ε} и такой, что $g^{-1}(u'_{\xi}(T, \xi_{\varepsilon}, \varepsilon)l)$ определено. Из (10) имеем $g(\xi_{\varepsilon}) = u'_{\xi}(T, \xi_{\varepsilon}, \varepsilon)g(\xi_{\varepsilon})$, то есть $g(\xi_{\varepsilon}) = 0$ и, значит, $g^{-1}(l) \neq \xi_{\varepsilon}$. Поэтому, для доказательства неустойчивости достаточно предъявить такую сходящуюся к ξ_{ε} последовательность $\{\zeta_{p}\}_{p\in\mathbb{N}}$, что

$$u^p(T, \zeta_p, \varepsilon) = g^{-1}(l), \quad p \in \mathbb{N}.$$

Требуемой последовательностью является, например,

$$\zeta_p = g^{-1} \left(\frac{1}{\lambda^p} l \right), \quad p \in \mathbb{N}.$$

Действительно, так как $\xi_{\varepsilon}=g^{-1}(0),$ то $\zeta_p\to \xi_{\varepsilon}$ при $p\to\infty,$ и, далее,

$$u^{p}(T,\zeta_{p},\varepsilon) = g^{-1}\left((u'_{\xi}(T,\xi_{\varepsilon},\varepsilon))^{p}g\left(g^{-1}\left(\frac{1}{\lambda^{p}}l\right)\right)\right) =$$

$$= g^{-1}\left((u'_{\xi}(T,\xi_{\varepsilon},\varepsilon))^{p}\frac{1}{\lambda^{p}}l\right) = g^{-1}\left(\lambda^{p}\frac{1}{\lambda^{p}}l\right) = g^{-1}(l).$$

Теорема доказана полностью.

Так как замена (7) T-периодична, то в условиях теоремы 0.1 функция $x_{\varepsilon}(t) = x(t, u_{\varepsilon}(t), 0)$ является T-периодическим решением системы (1) и решение x_{ε} устойчиво или неустойчиво вместе с u_{ε} . Для удобства ссылок сформулируем это утверждение в виде теоремы.

Теорема 0.2 Пусть выполнены условия теоремы 0.1. Тогда утверждения 1), 2) и 3) этой теоремы имеют место и для системы (1).

0.3 Колебания скорости тела, перемещаемого периодическими вибрациями

В этой секции теорема 0.2 иллюстрируется на примере доказательства периодичности и устойчивости колебаний скорости тела в механической модели из рисунка 2. Уравнение

Рис. 2. Механическая система, в которой сила сухого трения имеет значение $-\varepsilon a < 0$ при движении тела вправо и значение $\varepsilon b > 0$ при движении тела влево, где $a \neq b$. Движение происходит за счет горизонтальной вибрации с амплитудой $\cos t$.

движения тела записывается (см. [5]) в виде

$$\ddot{z} = \cos t - a\varepsilon E(\dot{z}) + b\varepsilon E(-\dot{z}),$$
 где $E(\dot{z}) = (\operatorname{sign}(\dot{z}) + 1)/2.$ (11)

Замена $x = \dot{z}$ приводит систему (11) к системе вида (1)

$$\dot{x} = \cos t - a\varepsilon E(x) + b\varepsilon E(-x). \tag{12}$$

Значит, $S = \{0\}$, $x(t, \xi_0, 0) = -\xi_0 \sin t$ и условия теоремы 0.2 выполнены для любого $\xi_0 \in \mathbb{R} \backslash \{0\}$. Функция \overline{f} имеет вид (см. [5])

$$\overline{f}(\xi) = -4(a+b)\arcsin(\xi) + 2\pi(a-b),$$

откуда $\xi_0 = \sin\left(\frac{a-b}{a+b}\pi\right)$ и $(\overline{f})'(\xi_0) = -2\frac{a+b}{\left|\cos\left(\frac{a-b}{a+b}\pi\right)\right|} < 0$. Следовательно, при a > b (a < b) тело движется вправо (влево) с π -периодически изменяющейся асимптотически устойчивой скоростью.

Работа поддержана грантом BF6M10 Роснауки и CRDF (программа BRHE) и грантом MK-1620.2008.1 Президента РФ молодым кандидатам наук. Исследования проведены в ходе стажировки автора в Институте Проблем Управления РАН под руководством проф. В.Н. Тхая и финансируемой грантом РФФИ 08-01-90704-моб_ст.

Литература

- [1] Бабицкий В.И., Крупенин В.Л. Колебания в сильно нелинейных системах. М.: Физматлит, 1985, 320 с.
- [2] Боголюбов Н.Н. О некоторых статистических методах в математической физике. Акад. Наук Укр. ССР, 1945, – 139 с.
- [3] Bolotnik N., Pivovarov M., Zeidis I., Zimmermann K. Controlled motions of mechanical systems induced by vibration and dry friction, 6th ENOC CDRom proceedings, 2008.
- [4] Feckan M. Bifurcation of periodic solutions in differential inclusions // Appl. Math. 1997. V. 42. P. 369–393.
- [5] Fidlin A. On the asymptotic analysis of discontinuous systems // ZAMM Z. Angew. Math. Mech. − 2002. V. 82, №2. − P. 75–88.
- [6] Красносельский М.А. Положительные решения операторных уравнений, М.: Физматлит, 1962, 394 с.
- [7] Красносельский М.А. Оператор сдвига по траекториям дифференциальных уравнений, М.: Физматлит, 1966, 331 с.
- [8] Thomsen J. J., Fidlin A. Near-elastic vibro-impact analysis by discontinuous transformations and averaging // J. Sound Vibration 2008. V. 311. P. 386–407.
- [9] Палис Ж., Ди Мелу В. Геометрическая теория динамических систем, М.:Мир, 1986, – 301 с.
- [10] Плотников В.А. Усреднение дифференциальных включений // Укр. мат. жур. 1979.
 Т. 31, №5. Р. 573-576.