

Современные технологии в селекции растений. Начальный уровень.

<u>Генетические последствия самоопыления и</u> панмиксии

Генетические последствия самоопыления и панмиксии

→ Генетические последствия самоопыления (повышение гомозиготности, рекомбинантные инбредные линии, почти изогенные линии)

→ Дрейф генов. Последствия перекрестного опыления и генетическая стабильность сохраняемого генофонда перекрестно опыляемых растений

Генетические последствия самоопыления

→ В селекционных программах часто используются «чистые линии». Их создание требует 5–6 поколений самоопыления и отбора для получения линий, гомозиготных по всем локусам

→ В результате, создание нового сорта может занять 11–13 лет

→ Генетики и селекционеры ищут способы ускорить процесс получения чистых линий

Есть несколько способов повысить гомозиготность в популяции:

Recombinant inbred lines

Получение рекомбинантных инбредных линий (RILs)

- → 1. Скрещивание двух гомозиготных линий
- → 2. Самоопыление потомков в нескольких поколениях, пока не будет достигнут нужный уровень гомозиготности
- → Сколько поколений самоопыления нужно осуществить, чтобы достигнуть 99% гомозиготности?

В каком поколении самоопыления можно ожидать популяцию RILs с ~99% гомозиготностью? Предположим, каждое скрещивание дает 4 потомка:

Поколение	AA	Aa	aa	Всего растений	% гетерозигот
F ₃		Aa		1	100
F ₄	1	2	1	4	50
F ₅	4 + 2	4	4 + 2	16	4/16=1/4=25
F ₆	24 + 4	8	24 + 4	64	8/64 = 12,5
F ₇					
F ₈					

Как интрогрессировать ген устойчивости к болезням в создаваемый сорт от донора?

X

донор

рекуррентный **родитель**

Получить популяцию гибридов и провести серию беккроссов

В каждом поколении беккроссов отбирать потомков с максимально восстановленной генетической средой реципиентного родителя

В каком поколении бэккроссов можно ожидать популяцию "почти изогенных линий" (Near Isogenic Lines, NILs)? Предположим, каждое скрещивание Aa*aa дает 4 потомка:

Поколение	Aa	aa	Всего растений	% гетерозигот
B ₁	2	2	4	50%
B_2	4	8+4	16	4/16 = 25%
B_3	8	48+8	64	8/64=1/8=12,5%
B_4				
B_5				

Расчет частоты аллелей у перекрестно-опыляемых культур – предмет изучения популяционной генетики

Панмиксия – случайные скрещивания Панмиктические (менделевские) популяции

- популяция должна иметь неограниченный размер (быть достаточно многочисленной по меркам статистики)
- генотип по изучаемым генам не должен влиять на выбор брачного партнера (скрещивание должно быть свободным)
 - миграция не должна существенно изменять генотип популяции
 - должен отсутствовать отбор по аллелям изучаемых генов

Полиморфизм популяции характеризуется гетерозиготностью

Вид, как губка, впитывает в себя гетерозиготные геновариации, сам оставаясь внешне однородным (С.С.Четвериков, 1926)

Гетерозиготность?

локус	Число исследованных особей		Н	Н ср
	гетеро	всего		
Α	25	100	0,25	0,19
В	42	100	0,42	
С	9	100	0,09	
D	0	100	0	

Гетерозиготность – показатель внутрипопуляционного полиморфизма

- → Гетерозиготность (H) по данному локусу определяют как отношение числа гетерозигот к общему числу исследованных особей в популяции
- → На основе данных по отдельным локусам определяют среднюю гетерозиготность популяции Н*ср*
- \rightarrow Hcp беспозвоночных = 13,4%; позвоночных = 6%
- → H*cp* человека =6,7% (30 000x0,067= 2010 генов)

Важнейшие характеристики популяций:

Частоты генотипов

Частоты аллелей

 $\langle\langle AA\rangle\rangle$

«Aa»

«aa»

Частоты гамет

Частота аллелей = Частота гамет = Частота гомозигот + половина частоты гетерозигот

Определение генетической структуры популяции:

→ Определите генетический состав популяции ржи по признаку опушенности (рецессивный аллель), если в популяции частота встречаемости опушенных растений 0,01 (1%)

Харди—Вайнберг

Годфри Харолд ХАРДИ Godfrey Harold Hardy, 1877–1947 Английский математик. Самую большую известность Харди принесли совместные работы с Джоном Идензором Литлвудом (John Edensor Littlewood, 1885–1977) и позднее с индийским математиком-самоучкой Сриниваса Рамануджаном (Srinivasa Aaiyangar Ramanujan, 1887–1920), который работал клерком в Мадрасе. В 1913 году Рамануджан послал Харди список доказанных им теорем. Признав гениальность юного клерка, Харди пригласил его в Кембридж, и в течение нескольких лет, предшествовавших безвременной смерти Рамануджана, они опубликовали серию блестящих совместных работ.

Вильгельм ВАЙНБЕРГ Wilhelm Weinberg, 1862–1937 Немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет-3500 младенцам, в том числе по крайней мере 120 парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по-наследству

"Я видел перед собой поставленный вопрос:

Как будет вести себя менделевское наследование при беспорядочном скрещивании?

Менделевский закон предусматривает только расщепления при абсолютном инбридинге, как он будет выполняться при полном отсутствии влияния людей?"

Вильгельм Вайнберг, 1908

Закон Харди-Вайнберга (1908 г):

1. Если частота в популяции доминантного аллеля «А» составляет p, а частота рецессивного аллеля «а» составляет q тогда p+q=1, а следовательно $(p+q)^2=1^2$

Согласно первому положению закона Харди-Вайнберга эти значения будут неизменны из поколения в поколение - это состояние генетического равновесия в популяции.

2. Соотношение равновесных частот генотипов будет определяться возведением соотношения частот аллелей в квадрат – это второе положение закона.

$$(p + q)^2 = p^2 + 2pq + q^2$$

р - частота доминантного аллеля А

q - частота рецессивного аллеля а

р² - частота генотипа АА (доминантные гомозиготы)

2pq - частота генотипа Aa (гетерозиготы)

q² - частота генотипа аа (гомозиготных рецессивов)

Решение задачи:

Фенотип – опушенность – частота встречаемости 1% (0,01) Это частота встречаемости опушенных растений – «аа» (q²)

Пусть частота встречаемости в популяции доминантного аллеля «А» (норма) составляет p, тогда частота рецессивного аллеля «а» (опушенность) составляет q, причем p+q=1. а следовательно $(p+q)^2=1^2$

$$(p + q)^2 = p^2 + 2pq + q^2$$

Мы знаем только
$$q^2$$
=0,01, тогда q =√0,01=0,1 p = 1 − q =1-0,1=0,9

В нашем примере:

$$(0.9 + 0.1)^2 = 0.81_{AA} + 0.18_{Aa} + 0.01_{aa}$$

Это и есть генетический состав популяции

Пользуясь законом Харди-Вайнберга можно определить генетический состав популяции, когда особи АА и Аа фенотипически неразличимы

3. Третье положение закона Харди-Вайнберга говорит о том, что равновесие частот генотипов достигается за одно поколение и остается неизменным.

$$(p + q)^2 = p^2 + 2pq + q^2$$

В нашем примере:

$$(0.9 + 0.1)^2 = 0.81_{AA} + 0.18_{Aa} + 0.01_{aa}$$

$$p_A = 0.81 + 0.09 \sim 0.9$$

$$q_a = 0.09 + 0.01 = 0.1$$

Решетка Пеннета в «популяционном масштабе»:

	0,9A	0,1a
0,9A	0,81AA	0,09Aa
0,1a	0,09Aa	0,01aa

0.81AA + 0.18Aa + 0.01aa

Исходное соотношение частот аллелей (A и а) и генотипов (AA, Aa, аа) сохраняется из поколения в поколение

Задача:

Смешали семена двух инбредных линий в следующей пропорции: 60% с генотипом *АА* и 40% - с генотипом *аа*.

Какова будет генетическая структура популяции, полученной после перекрестного опыления растений, выращенных из этой смеси?

Генетический дрейф. Дрейф генов. Генетико-автоматические процессы.

Понятие «дрейф генов» (genetic drift) было введено в оборот Райтом (1931).

Синонимичное понятие «генетико-автоматические процессы в популяциях» – Дубининым и Ромашовым (1932).

В малочисленных популяциях частота мутантного аллеля меняется быстро и случайным образом

Изначальная популяция зайцев. Окрас: бурый (*BB, Bb*), белый (*bb*)

Популяция кроликов после пожара в лесу Случайным образом выживают только «бурые» гомозиготы (BB)

В следующем поколении аллель «В» – становится фиксированной (fixed allele)

Дрейф генов можно смоделировать: https://www.radford.edu/~rsheehy/Gen_flash/popgen/

Генетический дрейф. Особенности сохранения генофонда у перекрестно-опыляющихся растений

Проиллюстрируем на модельном примере:

Допустим, окраска венчика цветков подсолнечника контролируется одним геном с двумя аллелями.

А – темно-бордовая окраска

а – красная окраска

В популяции встречаются 3 фенотипа: растения с темно-бордовыми (**AA**), желтыми (**Aa**) и красными (**aa**) венчиками.

Мы предполагаем свободное скрещивание и отсутствие отбора.

Генетический дрейф.

Особенности сохранения генофонда у перекрестно-опыляющихся растений

Смоделируем эксперимент с использованием PopGen:

Предположим, что:

- 1) размер популяции 500 растений,
- 2) Частота аллеля «**A**» = 0,5 (p_A = 0,5), соответственно, частота аллеля «**a**» = 0,5 (q_a = 0,5).

Согласно закону Харди-Вайнберга:

$$p + q = 1$$
,
and $(p + q)^2 = 1^2$

Генетический дрейф.

Особенности сохранения генофонда у перекрестно-опыляющихся растений

Согласно закону Харди-Вайнберга, баланс частот аллелей и генотипов устанавливается в первом поколении и в дальнейшем остается неизменным:

$$(p+q)^2 = p^2 + 2pq + q^2(p+q)^2 = p^2 + 2pq + q^2$$

В нашем примере:

$$(0.5 + 0.5)^2 = 0.25_{AA} + 0.5_{Aa} + 0.25_{aa}$$

$$p_A = 0.25 + 0.25 = 0.5$$

$$q_a = 0.25 + 0.25 = 0.5$$

Генетический дрейф.

Особенности сохранения генофонда у перекрестно-опыляющихся растений

Проанализируем возможность дрейфа генов локуса «А» в 5 популяциях (образцах коллекции), в зависимости от ряда факторов:

- 1) Изначальное количество растений в образце (N)
- 2) Изначальная частота встречаемости аллелей в популяции (образце)
- 3) Количество генераций (пересевов).

```
PopGen (<a href="https://www.radford.edu/~rsheehy/Gen_flash/popgen/">https://www.radford.edu/~rsheehy/Gen_flash/popgen/</a>):
```

Population: Finite.

N = 50

of populations = 5

of generations: 100

Freq A1 = 0.5

Дрейф генов. https://www.radford.edu/~rsheehy/Gen_flash/popgen/ Результаты симуляции в табличной форме

Параметры симуляции: 5 популяций (образцов)	Количество случаев фиксации или потери аллеля	На каком поколении пересева аллель потерялась/ зафиксировалась	Количество популяций, в которых аллель потерялась/ зафиксировалась
P=0.5 and N=50			
P=0.5 and N=10			
P=0.1 and N=50			
P=0.1 and N=10			

Simulation parameters: Population: Finite. N = 50. # of populations = 5. # of generations: 150. Freq A1 = 0.5

