HENRY LI

862 State St Apt 3C \diamond New Haven, CT 06511 (510) 396-1953 \diamond li.henry.hfl@gmail.com \diamond hnry.li

EDUCATION

Yale University

January 2020 - Present

PhD Student in the Applied Mathematics Program Department of Mathematics

University of California, San Diego

August 2018 - December 2019

Graduate Student in Computer Science

GPA: 3.83

GPA: 3.73

Department of Computer Science Engineering

Yale University

September 2013 - May 2017

Bachelor of Science in Computer Science and Math

Department of Computer Science and Department of Math

SUBMITTED AND PUBLISHED WORKS

Neural Inverse Transform Sampler Henry Li, Yuval Kluger, International Conference on Machine Learning, 2022.

Support recovery with stochastic gates: Theory and application for linear models Soham Jana, Henry Li, Yutaro Yamada, Ofir Lindenbaum, *Mathematical and Scientific Machine Learning*, 2021.

Phase retrieval with holography and untrained priors: Tackling the challenges of low-photon nanoscale imaging Hannah Lawrence, David Barmherzig, Henry Li, Michael Eickenberg, Marylou Gabrie, *Mathematical and Scientific Machine Learning*, 2021.

Detection of differentially abundant cell subpopulations in scRNA-seq data Jun Zhao, Ariel Jaffe, Henry Li, Ofir Lindenbaum, Xiuyuan Cheng, Richard Flavell, Yuval Kluger, *Proceedings of the National Academy of Sciences*, 2020.

Variational Diffusion Autoencoders for Random Walk Sampling

Henry Li*, Ofir Lindenbaum*, Xiuyuan Cheng, Alexander Cloninger, European Conference on Computer Vision, 2020.

SpectralNet: Spectral Clustering Using Deep Neural Networks

Uri Shaham*, Kelly Stanton*, Henry Li*, Boaz Nadler, Ronen Basri, and Yuval Kluger, *International Conference on Learning Representations*, 2018.

RESEARCH EXPERIENCE

Flatiron Institute 2020

CCM Summer Research Intern

· Explored deep image prior-based techniques for enhancing phase retrieval in low-photon settings at the Center for Computational Mathematics (CCM) at Flatiron Institute. Published results at MSML 2021.

Yale / UCSD 2019

· Studied manifold-based machine learning techniques for manifold-valued data generation. Presented Variational Diffusion Autoencoders at ECCV 2020, which proposes an algorithm that generates manifold-valued data via Monte-Carlo based simulation of random walks on manifolds. The dynamics of these random walks are approximated by deep neural networks.

Kluger Lab, Yale University

2017-2018

Research Fellow

• Investigated novel ways to use neural networks in applied mathematics and on medical data, including mammograms and pap test microscopy imagery. We presented a novel technique for learning Laplacian Eigenmaps using a variational method at ICLR 2018.

Lab126, Amazon.com

2016

Software Engineering Intern

· Developed an app prediction algorithm for pre-emptively starting apps to reduce user-perceived latency on Amazon FireOS (their tablet and smartphone operating system). I proposed an improvement to the pre-existing in-house algorithm that halved memory usage and run-time. (The previous algorithm was very close to an n-gram language model; I improved the algorithm by optimizing the size of the n-gram dictionary, and picking n (the main parameter in n-gram models) properly after observing collected user data.)

Institute for Computational Engineering and Sciences, UT Austin

2015

Summer Research Fellow

· Designed and implemented an image segmentation method (a combination of normalized cuts, convolutions, and a modified watershed segmentation) to label TEM imagery — this automated a process that previously required a high degree of manual input.