04/1160 11

ENDER OUR DOOR SHOULD AND DOOR OWN I

HOMEA LISTI ELIBORE

IF RESULT CATES THE NAME OF COMMUN. 1 AND

POTEN STREET PARTIES AND

信息论导论

HEIET CHEB WER TIMES
LOUBLE COUNTY OF CHEBUINGS LAM FALT
LOUNG CHEB BETTER ORGETT

第3讲信源编码的基本概念、最优信

源编码的码长

[信息论教材中页码范围] 信源编码、非奇异码、唯一可译码、即时码: p103~p107, Kraft不等式: p107~p110 & p115~p118, 最优编码码长、Shannon码: p110~p112 & p115

信息学部-信息科学与技术学院 吴绍华

hitwush@hit.edu.cn

课程内容进度安排

信源编码的基本概念

- **信源编码**: 是一个从消息到码符号串的映射, 记为 $C: \mathscr{X} \to \mathscr{D}^+$

 - \mathscr{D}^+ ——码符号集合 \mathscr{D} (亦称作编码字母表 \mathscr{D}) 上任意有限长码符号串所构成的集合
 - \mathcal{D} 在数字通信系统中默认是二进制的,即 $\mathcal{D} = \{0,1\}$
 - 举例: $\{E, F, G\} \rightarrow \{0, 1\}^+$: C(E) = 0, C(F) = 10, C(G) = 11
- 信源编码的扩展: 是一个从消息串到码符号串的映射, 记为 $C^+: \mathcal{X}^+ \to \mathcal{D}^+$
 - 具体操作:将消息串中各个消息 x_i 的编码结果 $C(x_i)$ 不间断的串联起来,即得到信源编码的扩展
 - 举例: $C^+(EFEEGE) = 01000110$

非奇异码、唯一可译码

- 非奇异码: $x_1 \neq x_2 \Rightarrow C(x_1) \neq C(x_2)$
 - 非奇异码可以无歧义地表示任意单个消息符号的值
- 唯一可译码: 若 C^+ 是非奇异码,则 C 是唯一可译码
 - 对 $C^+(x^+)$ 的译码不会产生歧义,即:对任意信源编码结果及其扩展的译码结果 是唯一的
- 尽管"唯一可译", 然而, 部分唯一可译码的译码效率可能存在问题:
 - 译码过程中,需"延迟确认"(举例说明)
 - 极端情形下,甚至需要延迟至整串编码结果尾部,才可确认译码结果中的第一个消息符号的值
 - 为提高译码效率,可在两个码字间添加间断符号,但显然这会导致编码效率降低
 - 更好的思路: 设计出"**自间断码**",以提高译码效率的同时不损失编码效率

即时码

- 即时码(又称前缀码)
 - 任何码字都不是其他码字的前缀
 - 在某个码字出现后, 无需延迟往后检索, 可立刻译出
- 即时性 ⇒ 唯一可译性 ⇒ 非奇异性

例

1.C(E, F, G, H) = (0, 11, 00, 11)

 $2.C(\mathbf{E}, \mathbf{F}) = (0, 101)$

 $3.C(\mathbf{E}, \mathbf{F}) = (1, 101)$

4.C(E, F, G, H) = (00, 01, 10, 11)

5.C(E, F, G, H) = (0, 01, 011, 111)

答: 2、3、4、5是唯一可译码,

其中 2、4 还是前缀码

码树

- 即时码: C(E, F, G, H) = (00, 11, 100, 101)
- 码树的构建: D 元字母表 (即码符号集合大小为 D , $D = |\mathcal{D}|$) 上的编码,对应 D 又树:
 - 从根节点开始,每一节点都可长出 D 个
 子节点,在对应的 D 个分支上分别标记出 D 个码符号
 - 即时码的码字, 对应码树上的叶子节点
 - 码树上的中间节点不能用作码字:因为中间 节点是其长出的叶子节点的前缀
 - 允许有部分叶子不被使用,即叶子节点可以不被用完。如果某个即时码对应的码树上,所有的叶子均用完,则有: $|\mathscr{X}| 1$ 是 D 1 的整数倍

 $1110110000000 \to FHGEE$

Kraft不等式 (for即时码)

定理 5.2.1 Kraft 不等式

(正定理) 对于 D 元字母表上的任意即时码 (前缀码), 码字长度 $l_1, l_2, ..., l_{|\mathcal{X}|}$ 必定满足不等式

$$\sum_{i=1}^{|\mathcal{X}|} D^{-l_i} \le 1$$

(逆定理) 给定一组码字长度,若满足上述不等式,则存在对应此组码字长度的即时码。

对于即时码,由Kraft不等式可知,码字长度不可能全部都很短

Kraft不等式 (for即时码) 的证明

- 以 D=2 为例,可以构造一棵二叉树
- 深度为 l 的节点标为 2^{-l}
- 每个节点的值等于它所有叶子值的总和
- 显然 Kraft 不等式成立
- 并且当所有叶子节点均被利用时,等号成立
- 2-1 可理解为编码预算。总的编码预算为 1:
 - 码字 00 使用了 1/4 预算
 - 码字 100 使用了 1/8 预算
- 对于 D ≠ 2 的情形, 道理完全一样, 结论同样成立
- 逆定理显然是成立的

Kraft不等式 (for唯一可译码)

定理 5.5.1 McMillan 不等式

(正定理) 对于 D 元字母表上的任意唯一可译码,码字长度 $l_1, l_2, ..., l_{|\mathcal{X}|}$ 必定满足不等式

$$\sum_{i=1}^{|\mathcal{X}|} D^{-l_i} \leq 1$$
 和即时码一样!

(逆定理)给定一组码字长度,若满足上述不等式,则存在对应此组码字长度的唯一可译码。

直接启示 —— 唯一可译码相比即时码并不能进一步减少码字长度

Kraft不等式(for唯一可译码)的证明

证明.

令
$$S = \sum_{i=1}^{|\mathcal{X}|} D^{-l_i}, M = \max\{l_i\}, m = \min\{l_i\}, 则对于任意 N,$$

$$S^{N} = \left(\sum_{i=1}^{|\mathcal{X}|} D^{-l_{i}}\right)^{N} = \sum_{i_{1}=1}^{|\mathcal{X}|} \sum_{i_{2}=1}^{|\mathcal{X}|} \cdots \sum_{i_{N}=1}^{|\mathcal{X}|} D^{-\left(l_{i_{1}}+l_{i_{2}}+\cdots+l_{i_{N}}\right)}$$

$$= \sum_{x^{+} \in \mathcal{X}^{N}} D^{-\frac{\ln\left\{C^{+}(x^{+})\right\}}{2}} = \sum_{l=Nm}^{NM} D^{-l} \left| \left\{x^{+} : \underline{\ln\left\{C^{+}(x^{+})\right\}} = l\right\} \right|$$

$$\leq \sum_{l=Nm}^{NM} D^{-l} D^{l} = \sum_{l=Nm}^{NM} 1 = N(M-m)$$
取码字长度

 $S^N \leq N(M-m)$ 对于任意 N 均成立,包括 $N \to \infty$,所以必然有 $S \leq 1$

最优信源编码能有多短?

- (最优码的定义) 令 l(x) = len(C(x)), 当 L = El(x) 最小时, 认为 C 是最优的
- 我们可以建立优化问题对最优码长进行求解:目标是最小化 $\sum\limits_{x\in\mathscr{X}}p(x)l(x)$,约

束条件包括

- ② 所有 l(x) 均为整数
- 将约束条件简化(松弛):
 - 忽视条件 2, 且假设条件 1 中取等号
 - 约束放宽后,求得的码长可能是比满足原优化问题的码长要短的,因此所求码长 为实际码长的下界

松弛后的优化问题

Minimize
$$\sum\limits_{i=1}^{|\mathcal{X}|} p(x_i) l_i$$
, subject to $\sum\limits_{i=1}^{|\mathcal{X}|} D^{-l_i} = 1$

求解最优码长 (约束条件简化后)

解答.

使用拉格朗日乘子法:

定义
$$J = \sum_{i=1}^{|\mathcal{X}|} p(x_i) l_i + \lambda \sum_{i=1}^{|\mathcal{X}|} D^{-l_i}$$
, 令偏导数 $\frac{\partial J}{\partial l_i} = 0$

$$\frac{\partial J}{\partial l_i} = p(x_i) - \lambda \ln(D) D^{-l_i} = 0 \Rightarrow D^{-l_i} = \frac{p(x_i)}{\lambda \ln(D)}$$

此时期望码长

$$El(x) = E(-\log_D(p(x))) = H_D(X) = \frac{H(X)}{\log_2 D}$$

最优码长定理

定理 5.3.1

随机变量 X 的任意 D 元唯一可译码(或即时码)的期望码长大于或等于熵 $H_D(X)$,即

$$L \geq H_D(X)$$

当且仅当 $D^{-l_i} = p(x_i)$ 时,等号成立

证明.

$$L - H_D(X) = El(x) + E\log_D p(x) = E\left(-\log_D D^{-l(x)} + \log_D p(x)\right)$$
令 $c = \sum_{i=1}^{|\mathcal{X}|} D^{-l_i} \le 1$, $q(x) = \frac{D^{-l(x)}}{c}$, 可以得到
$$L - H_D(X) = E\left(-\log_D q(x) + \log_D p(x) - \log_D c\right)$$

$$= E\left(\log_D \frac{p(x)}{q(x)}\right) - \log_D c = D\left(\mathbf{p}||\mathbf{q}\right) - \log_D c \ge 0$$

当且仅当 c=1 且 $\mathbf{p}=\mathbf{q}$ 时取等号,此时有 $D^{-l(x)}=p(x)$

由前述证明直接能想到的信源编码方法

- 设 $l_1^*, l_2^*, \dots, l_m^*$ 是 D 元字母表上关于信源分布 \mathbf{p} 的一组信源编码码长:
 - 如果 p 是整进制的,则 $l_i^* = -\log_D(p(x_i))$
 - 如果 \mathbf{p} 不是整进制的,即 $-\log_D(p(x_i))$ 不是整数,我们总可以找到一个接近 \mathbf{p} 的整进制分布,然后用其计算码长 $\{l_1^*, l_2^*, \cdots, l_m^*\}$
- 然而寻找最接近 p 的整进制分布并不简单。我们可以采用一种次优方法—— Shannon 码。

Shannon码

由于 $-\log_D(p(x_i))$ 可能不是整数,我们可以直接通过向上取整的方式得到整数码长,即 $l_i = \lceil -\log_D(p(x_i)) \rceil$

- Shannon编码

• 由下式可知 l_i 满足 Kraft 不等式

$$\sum D^{-l_i} = \sum D^{-\lceil -\log_D(p(x_i))\rceil} \le \sum D^{\log_D(p(x_i))} = \sum p(x_i) = 1$$

- 进一步地,我们可以依据 Shannon 码长构造出相应即时码:可以使用码树,或参照第五章习题 25 中的方法来构造。
- 期望码长 L_s : 由于 $-\log_D(p(x_i)) \le l_i \le -\log_D(p(x_i)) + 1$, 两边同时求期望可得期望码长为

Shannon-Fano
$$H_D\left(X\right) \leq L_s < H_D\left(X\right) + 1$$
 编码

最优信源编码的码长范围/上下界 (逐符号编码)

定理 5.4.1

设 L^* 是最优信源编码对应的期望码长 $L^* = \sum p(x_i) l_i^*$, 则

$$H_D(X) \le L^* < H_D(X) + 1$$

证明.

- 由定理 5.3.1 可知, $L^* \geq H_D(X)$
- 令 L_s 表示 Shannon 码的期望码长,由于最优编码一定优于 Shannon 码,有 $L^* \leq L_s$
- 总结可得 $H_D(X) \le L^* < H_D(X) + 1$

- 如何构造最优前缀码 (即时码)?
- 最优编码码长上界中的 1bit "额外开销"是否可以减少甚至消除?

阶段小结

- 关于 D 元码的 Kraft 不等式
 - 对于任意唯一可译码 C,有 $\sum_{i=1}^{|\mathcal{X}|} D^{l_i} \leq 1$
 - 若 $\sum_{i=1}^{|\mathcal{X}|} D^{l_i} \leq 1$,则可依此码长构造出即时码。
- 对于唯一可译码,有 $El(x) \ge H_D(X)$,当且仅当 $D^{-l(x)} = p(x)$ 时等号成立。
- Shannon 码: 码长为 $l_i = \lceil -\log_D(p(x_i)) \rceil$, 期望码长范围为 $H_D(X) \leq El(x) < H_D(X) + 1$, 这种编码方式是次优的
- 最优信源编码的期望码长上下界: $H_D(X) \le L^* < H_D(X) + 1$

舒訊

2025/5/26 信息科学与技术学院 19