Combos de definiciones y convenciones notacionales de la materia Logica

Combo 1

- 1. Defina $n(\mathbf{J})$ (para $\mathbf{J} \in Just^+$)
- 2. Defina "par adecuado de tipo τ " (no hace falta que defina cuando $\mathbf{J} \in Just^+$ es balanceada)
- 3. Defina $Mod_T(\varphi)$
- 4. Dados $\varphi =_d \varphi(v_1,...,v_n)$, **A** una estructura de tipo τ y $a_1,...,a_n \in A$, defina que significa $\mathbf{A} \models \varphi[a_1,...,a_n]$ (i.e. Convencion notacional 4)
- 5. Defina $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)/\theta$ (θ una congruencia del reticulado complementado $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$)

Combo 2

- 1. Defina $(\Sigma, \tau) \models \varphi$
- 2. Defina "Particion de A" y $R_{\mathcal{P}}$
- 3. Defina cuando " φ_i esta bajo la hipotesis φ_l en (φ, \mathbf{J}) ". (no hace falta que defina $\mathcal{B}^{\mathbf{J}}$)
- 4. Defina $(L, s, i)/\theta$ (θ una congruencia del reticulado terna (L, s, i)). (No hace falta que defina el concepto de congruencia.)

Combo 3

- 1. Dados $t =_d t(v_1, ..., v_n) \in T^{\tau}$, **A** una estructura de tipo τ y $a_1, ..., a_n \in A$, defina $t^{\mathbf{A}}[a_1, ..., a_n]$ (i.e. Convencion notacional 2)
- 2. Defina "F es un homomorfismo de (L, s, i, c, 0, 1) en (L', s', i', c', 0', 1')"
- 3. Defina "filtro generado por S en (L, s, i)"
- 4. Defina cuando $\mathbf{J} \in Just^+$ es balanceada (no hace falta que defina $\mathcal{B}^{\mathbf{J}}$)

Combo 4

- 1. Defina "(L, s, i, c, 0, 1) es un subreticulado complementado de (L', s', i', c', 0', 1')"
- 2. Defina $\mathbf{A} \models \varphi[\vec{a}]$ (version absoluta, no dependiente de una declaración previa, i.e. $\vec{a} \in A^{\mathbf{N}}$. No hace falta definir $t^{\mathbf{A}}[\vec{a}]$)
- 3. Defina la relacion "v ocurre libremente en φ a partir de i"
- 4. Defina reticulado cuaterna

Explique la notacion declaratoria para terminos con sus 3 convenciones notacionales (convenciones 1,2 y 5 de la Guia 11)

Combo 6

Explique la notacion declaratoria para formulas con sus 3 convenciones notacionales (convenciones 3,4 y 6 de la Guia 11). Puede asumir la notacion declaratoria para terminos

Combo 7

- 1. Defina recursivamente la relacion "v es sustituible por w en φ "
- 2. Defina cuando $\mathbf{J} \in Just^+$ es balanceada (no hace falta que defina $\mathcal{B}^{\mathbf{J}}$)
- 3. Defina "filtro del reticulado terna (L, s, i)"
- 4. Defina "teoria elemental"

Combo 8

- 1. Defina $(L, s, i, c, 0, 1)/\theta$ (θ una congruencia del reticulado complementado (L, s, i, c, 0, 1))
- 2. Dados $\varphi =_d \varphi(v_1,...,v_n)$, **A** una estructura de tipo τ y $a_1,...,a_n \in A$, defina que significa $\mathbf{A} \models \varphi[a_1,...,a_n]$ (i.e. Convencion notacional 4)
- 3. Dado un poset (P, \leq) , defina "a es supremo de S en (P, \leq) "
- 4. Defina "i es anterior a j en (φ, \mathbf{J}) " (no hace falta que defina $\mathcal{B}^{\mathbf{J}}$)

Combo 9

- 1. Defina "termino elemental de tipo τ "
- 2. Defina $\dashv\vdash_T$
- 3. Defina s^T (explique por que la definicion es inhambigua)
- 4. Defina \mathcal{A}_T
- 5. Defina "S es un subuniverso del reticulado complementado (L, s, i, c, 0, 1)"

Combo 10

- 1. Defina "tesis del bloque $\langle i, j \rangle$ en (φ, \mathbf{J}) "
- 2. Defina cuando una teoria de primer orden (Σ, τ) es consistente
- 3. Dada una teoria elemental (Σ, τ) y una sentencia elemental pura φ de tipo τ , defina "prueba elemental de φ en (Σ, τ) "

1. Enuncie el programa de logica matematica dado al final de la Guia 8 y explique brevemente con que definiciones matematicas se van resolviendo los tres primeros puntos y que teoremas garantizan la resolucion del 4to punto de dicho programa.

Combos de teoremas de la materia Logica

La siguiente lista contiene 8 combos de resultados de la teoria los cuales seran utilizados para la parte teorica del examen. Algunas observaciones:

- Cuando el alumno desarrolle una prueba de un resultado perteneciente a un combo, podra utilizar un resultado previo sin necesidad de demostrarlo, salvo que justo el combo exija la prueba de dicho resultado. Cuando aplique algun resultado sin demostracion debera enunciarlo correctamente.
- 2. En general se puede dejar de hacer ciertos casos en las pruebas, por ser similares a otros ya hechos. El criterio para decidir esto se puede ver en las pruebas en las guias.

Combo 1

Theorem 22 (Teorema del Filtro Primo) Sea (L, s, i) un reticulado terna distributivo y F un filtro. Supongamos $x_0 \in L-F$. Entonces hay un filtro primo P tal que $x_0 \notin P$ y $F \subseteq P$.

Lemma 23 (Propiedades basicas de la consistencia) $Sea~(\Sigma,\tau)~una~teo-ria.$

- (1) Si (Σ, τ) es inconsistente, entonces $(\Sigma, \tau) \vdash \varphi$, para toda sentencia φ .
- (2) Si (Σ, τ) es consistente $y(\Sigma, \tau) \vdash \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente.
- (3) Si $(\Sigma, \tau) \not\vdash \neg \varphi$, entonces $(\Sigma \cup \{\varphi\}, \tau)$ es consistente.

Combo 2

Theorem 24 (Teorema de Dedekind) Sea (L, s, i) un reticulado terna. La relacion binaria definida por:

$$x \le y \ si \ y \ solo \ si \ x \ \mathsf{s} \ y = y$$

es un orden parcial sobre L para el cual se cumple que:

$$\sup(\{x,y\}) = x \mathsf{s} y$$
$$\inf(\{x,y\}) = x \mathsf{i} y$$

 $cualesquiera\ sean\ x,y\in L$

Lemma 25 Supongamos que \vec{a}, \vec{b} son asignaciones tales que si $x_i \in Li(\varphi)$, entonces $a_i = b_i$. Entonces $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi[\vec{b}]$

Combo 3

Theorem 26 (Lectura unica de terminos) Dado $t \in T^{\tau}$ se da una de las siquientes:

- (1) $t \in Var \cup C$
- (2) Hay unicos $n \geq 1$, $f \in \mathcal{F}_n$, $t_1, ..., t_n \in T^{\tau}$ tales que $t = f(t_1, ..., t_n)$.

Lemma 27 Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \ sii \ \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$. En particular \mathbf{A} y \mathbf{B} satisfacen las mismas sentencias de tipo τ .

Theorem 28 Sea $T = (\Sigma, \tau)$ una teoria. Entonces $(S^{\tau}/\dashv \vdash_T, \mathsf{s}^T, \mathsf{i}^T, \mathsf{c}^T, 0^T, 1^T)$ es un algebra de Boole.

Pruebe solo el item (6).

Combo 4

Lemma 29 (Propiedades basicas de la deduccion) Sea (Σ, τ) una teoria.

- (1) (Uso de Teoremas). Si $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$ y $(\Sigma \cup \{\varphi_1, ..., \varphi_n\}, \tau) \vdash \varphi$, entonces $(\Sigma, \tau) \vdash \varphi$.
- (2) Supongamos $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$. Si R es una regla distinta de GENER-ALIZACION y ELECCION y φ se deduce de $\varphi_1, ..., \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$.
- (3) $(\Sigma, \tau) \vdash (\varphi \rightarrow \psi)$ si y solo si $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$.

Theorem 30 Sea (L, s, i, c, 0, 1) un álgebra de Boole y sean $a, b \in B$. Se tiene que:

- $(1) (a i b)^c = a^c s b^c$
- (2) a i b = 0 si y solo si $b < a^c$

Lemma 31 Sean (L, s, i) y (L', s', i') reticulados terna y sean (L, \leq) y (L', \leq') los posets asociados. Sea $F: L \to L'$ una funcion. Entonces F es un isomorfismo de (L, s, i) en (L', s', i') si y solo si F es un isomorfismo de (L, \leq) en (L', \leq')

Theorem 32 (Teorema de Completitud) Sea $T = (\Sigma, \tau)$ una teoria de primer orden. Si $T \models \varphi$, entonces $T \vdash \varphi$.

Haga solo el caso en que τ tiene una cantidad infinita de nombres de cte que no ocurren en las sentencias de Σ . En la exposicion de la prueba no es necesario que demuestre los items (1) y (5).

Combo 6

Theorem 33 (Teorema de Completitud) Sea $T = (\Sigma, \tau)$ una teoria de primer orden. Si $T \models \varphi$, entonces $T \vdash \varphi$.

Haga solo el caso en que τ tiene una cantidad infinita de nombres de cte que no ocurren en las sentencias de Σ . En la exposicion de la prueba no es necesario que demuestre los items: (1), (2), (3) y (4)

Combo 7

Lemma 34 (Propiedades basicas de la deduccion) Sea (Σ, τ) una teoria.

- (1) (Uso de Teoremas) Si $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$ y $(\Sigma \cup \{\varphi_1, ..., \varphi_n\}, \tau) \vdash \varphi$, entonces $(\Sigma, \tau) \vdash \varphi$.
- (2) Supongamos $(\Sigma, \tau) \vdash \varphi_1, ..., \varphi_n$. Si R es una regla distinta de GENER-ALIZACION y ELECCION y φ se deduce de $\varphi_1, ..., \varphi_n$ por la regla R, entonces $(\Sigma, \tau) \vdash \varphi$.
- (3) $(\Sigma, \tau) \vdash (\varphi \rightarrow \psi)$ si y solo si $(\Sigma \cup \{\varphi\}, \tau) \vdash \psi$.

Lemma 35 Sea (L, s, i) un reticulado terna y sea θ una congruencia de (L, s, i). Entonces:

- (1) $(L/\theta, \tilde{s}, \tilde{i})$ es un reticulado terna.
- (2) El orden parcial $\tilde{\leq}$ asociado al reticulado terna $(L/\theta, \tilde{s}, \tilde{\imath})$ cumple

$$x/\theta \leq y/\theta \sin y\theta(x s y)$$

Lemma 36 Sean (L, s, i) y (L', s', i') reticulados terna y sean (L, \leq) y (L', \leq') los posets asociados. Sea $F: L \to L'$ una funcion. Entonces F es un isomorfismo de (L, s, i) en (L', s', i') si y solo si F es un isomorfismo de (L, \leq) en (L', \leq')

Lemma 37 Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi =_d \varphi(v_1, ..., v_n) \in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[a_1, a_2, ..., a_n] \text{ sii } \mathbf{B} \models \varphi[F(a_1), F(a_2), ..., F(a_n)]$$

para cada $a_1, a_2, ..., a_n \in A$.

Lemma 38 Sean (P, \leq) y (P', \leq') posets. Supongamos F es un isomorfismo de (P, \leq) en (P', \leq') .

- (a) Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es cota superior (resp. inferior) de S si y solo si F(a) es cota superior (resp. inferior) de F(S).
- (b) Para cada $S \subseteq P$, se tiene que existe $\sup(S)$ si y solo si existe $\sup(F(S))$ y en el caso de que existan tales elementos se tiene que $F(\sup(S)) = \sup(F(S))$.