Inverse Prediction

One use of a regression model

$$E(Y) = \beta_0 + \beta_1 x$$

is to predict Y for a new x, x_0 .

Sometimes, instead, we observe a new y_0 , and want to make an inference about the new x_0 .

Often x is expensive to measure, but Y is cheap; the relationship is determined from a *calibration* dataset.

$$y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0,$$

we can solve for x_0 :

$$x_0 = \frac{y_0 - \beta_0 - \epsilon_0}{\beta_1}.$$

We do not observe ϵ_0 , but we know that $E(\epsilon_0) = 0$.

Similarly, we do not know β_0 and β_1 , but we have estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.

$$\hat{x}_0 = \frac{y_0 - \hat{\beta}_0}{\hat{\beta}_1}.$$

This is known as inverse prediction.

An approximate $100(1-\alpha)\%$ prediction interval for x_0 is:

$$\hat{x}_0 \pm t_{lpha/2} imes rac{s}{\hat{eta}_1} imes \sqrt{1 + rac{1}{n} + rac{(\hat{x} - ar{x})^2}{\mathsf{SS}_{xx}}}.$$

An alternative approach is to fit the inverse regression:

$$x = \gamma_0 + \gamma_1 y + \epsilon.$$

Then use the standard prediction interval

$$\hat{x}_0 \pm t_{lpha/2} imes s_{x|y} imes \sqrt{1 + rac{1}{n} + rac{(y_0 - ar{y})^2}{\mathsf{SS}_{yy}}}$$

where

$$\hat{x}_0 = \hat{\gamma}_0 + \hat{\gamma}_1 y_0.$$

This is *not* supported by the standard theory, because, in the calibration data, x is fixed and y is random.

But it has been shown to work well in practice.