MATS

Release 3

Erin M. Adkins

CONTENTS

1	Cont		3
	1.1	Getting Started	3
	1.2	MATS Version Summary	5
	1.3	MATS Summary	6
	1.4	Generating Parameter Line lists	13
	1.5	Examples	
	1.6	MATS module	98
2	Lega	ı l 1	137
3	Cont	tact 1	139
4	Link	s 1	141
5	Indic	ces and tables	143
Ру	thon I	Module Index	145
In	dex	1	147

Erin M. Adkins

National Institute of Standards and Technology

Last Revision Jul 19, 2023

This software is available on GitHub and can be cited with the following DOI https://doi.org/10.18434/M32200

The purpose of the MATS project is to develop a NIST-based multi-spectrum fitting and analysis tool for spectroscopic data that allows the flexibility to test and adapt to experimental and data-driven needs. This software allows for the use of several commonly used spectroscopic line profiles (Voigt, Nelkin-Ghatak, speed-dependent Voigt, speed-dependent Nelkin-Ghatak, and Hartmann-Tran) and allows for pressure, temperature, and sample composition constraints to be imposed during fits. In addition to fitting experimental spectra, MATS can generate simulated spectra, which allows for its use as an error analysis tool.

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Getting Started

1.1.1 Set-Up

The MATS package was developed and tested using the Anaconda python environment. Example scripts have typically been written and run using jupyter notebooks (run in jupyter lab), as this allows for code to be run in segments and for iteration on certain code segments. Any python package distribution should work with the code as long as the dependent packages are installed.

1.1.2 Main Packages

- MATS
- HITRAN Application Programming Interface (HAPI) The v1.2.2.1 was tested and is available in the MATS repository.

1.1.3 Dependent Packages

MATS is not written as a basic package, meaning that there are several dependent packages that need to be installed.

If a desired package is not installed then the following command will install it. Many python package distributions have integrated package managers and required packages can also be installed through that mechanism.

```
pip install package_name
```

There is commonly a delay in the most recent package releases available in python package distribution package managers compared to that available through pip install. The following command line script will update to the newest release if a package is already installed. This should only be necessary if there is an error when running MATS with the currently installed version.

```
python -m pip install --upgrade package_name --user
```

Below are a list of the packages used in MATS.

- numpy python's fundamental scientific computing package
- pandas python data structure package
- os, sys system variables
- · lmfit non-linear least-squares minimization and curve-fitting for python

- matplotlib python plotting
- seaborn pretty plotting
- · scipy.fftpack provides fft functionality
- jupyter lab web-based user interface for Project Jupyter

1.1.4 Install

Taken from the INSTALL.md file

Basic *MATS* installation instructions. Note that development is alpha. In the future, full pypi/conda installs will be made available.

Create a conda environment with MATS dependencies

Download the [environment](environment.yml) file. Note that without setting the environment name below, by default an evironment *MATS-env* will be created.

```
conda env create -n {optional-name-of-environment} -f environment.yml
```

Alternatively, we provide a conda metapackage *mats-dependencies*, which includes all dependencies for *MATS*`(excluding python). This can be installed using

```
conda install -n {optional-name-of-environment} -c wpk-nist mats-dependencies
```

From source

After cloning the repo, you can do the following.

```
pip install .
```

To install an editable version, use option -e. To exclude dependencies, use option -no-deps

With pip from github

This requires git also be installed. Downside is that the whole repo (including all examples) are clones.

```
pip install git+https://github.com/wpk-nist-gov/MATS.git@feature/master-reformat
```

With pip from github using wheel Note, this is experimental. Do the following

(Note that the actual version will not be 3)

Alternatively, download the wheel and run

```
pip install path-to-wheel.whl
```

1.2 MATS Version Summary

1.2.1 MATS Version 3.0

published on 7/17/2023

New Features

- · Power law temperature dependence for line-mixing
- · Oxygen Theoretical CIA Model based on work of Karman et al
- · Added ability to select TIPS version
- Updated to HAPI v1.2.2.0
- Added Example for treating static HITRAN LBL molecules
- Added ability to correct ideal gas law w/ compressability factor as calculated with NIST RefProp

1.2.2 MATS Version 2.1

published on 12/03/2021

Focus of version update is cleanup to make package git installable

- renamed python files to lowercase, as this is the preferred python style.
- added __init__.py to include the most important functionality at the top level
- reformatted constants. Added codata.py file with includes CODATA dictionary (with values and metadata) and CONSTANTS dictionary (with only values)
- Added linelistdata.py file to autoload csv files from MATS/LineList.
- Got rid of all from package import * commands. Use explicit imports only
- Reworked example notebooks to reflect updates.
- Added INSTALL.md file to explain the install options.

1.2.3 MATS Version 2

published on 6/10/2021

New Features

- Beta correction to the Dicke Narrowing accounting for the hardness of coliisions based on broadener and perturber.
- Added CIA functionality. Currently, can manually enter CIA for each file
- Added capability pass non-fitting columns through the fit definition. This will help for future addition of bandwide functions or for ease of transforming fit outputs to reported results.
- · Add ability to weight the spectra
- Added beyond HITRAN molecule capabilities, including update of isotope list.
- Added preliminary instrument line shape functionality.

Bug Fixes

- Changed the structure of MATS, so that each class is in its own python file
- Changed all constant values to be consistent with CODATA values and hardwired the values to definition in the
 utility script
- Added warning for floating parameters with an initial guess equal to 0.
- Changed the etalon_freq variables to etalon_period, since that is how it is coded.
- Added checks for molecule consistency between dataset and parameter line list.
- · Ability to simulate at infinite SNR
- Indexing error for the spectrum number in baseline parameters
- Changed initial baseline guess to 0

1.2.4 MATS Version 1

published on 12/27/19

1.3 MATS Summary

In multi-spectrum fitting, there are a collection of spectra modeled by the same line-by-line spectroscopic parameters, but each spectrum might vary in pressure, temperature, and sample composition.

The MATS program is based on *Spectrum* objects, which are defined not only by their wavenumber and absorption data, but also information on the spectrum pressure, temperature, baseline characteristics, and sample composition. In addition to utilizing real spectra, MATS has a *simulate_spectrum()* function, which returns a spectrum object calculated from input simulation parameters. This is useful for performing error analysis in the same framework as primary data analysis by simply switching from experimental to simulated *Spectrum* objects.

These objects are combined to form a *Dataset* object, which is the collection of spectra that are being analyzed together in the multi-spectrum analysis.

The analysis of spectra in MATS requires an inital spectroscopic linelist. Details about the format of this linelist and how to generate it using the HITRAN Application Programming Interface are outlined on the *Generating Parameter Line lists* page. A few example line lists have been provided in the Line list folder, which can be accessed using the <code>LoadLineListData()</code> helper function. It should be noted that these linelists are provided for use with the examples and to provide an example of line list formatting. These linelists should not be used as reference data.

There are two files that contain parameters that are fit in this model, one for spectrum dependent parameters (polynomial baseline parameters, etalons, sample composition, and x-shift term) and the other for line-by-line spectroscopic parameters that are common across all spectra. These files are saved as .csv files with a column for each parameter and with rows corresponding to either the spectrum number or spectral line number. In addition to the columns containing the values for the fit parameters, there are two additional columns for each fittable parameter called param_vary and param_err. The param_vary column is a boolean (True/False) flag that is toggled to indicate whether a given parameter will be varied in the fit. The param_err column will be set to zero initially and replaced with the standard error for the parameter determined by the fit results. Calls of the <code>Generate_FitParam_File</code> class not only make these input files, but also set the line shape and define whether a parameter should be varied in the fit and if a parameter should be constrained across all spectra or allowed to vary by spectrum.

Finally, the *Fit_DataSet* class fits the spectra. Additionally, it allows the user to impose constraints on the parameters (min and max values), impose convergence criteria, update background and parameter line lists, and plot fit results.

Below is the sparse documentation for each of the classes and main functions in the MATS project with links to the full documentation provided.

1.3.1 Spectrum Class and Objects

Spectrum(filename[, molefraction,])	Spectrum class provides all information describing ex-
	perimental or simulated spectrum.
<pre>simulate_spectrum(parameter_linelist[,])</pre>	Generates a synthetic spectrum, where the output is a
	spectrum object that can be used in MATS classes.
Spectrum.calculate_QF()	Calculates the quality of fit factor (QF) for a spec-
	trum - QF = (maximum alpha - minimum alpha) /
	std(residuals).
Spectrum.fft_spectrum()	Takes the FFT of the residuals of the spectrum, generates
	a plot of frequency (cm-1) versus amplitude (ppm/cm),
	and prints a dataframe with the 20 highest amplitude fre-
	quencies with the FFT frequency (period), amplitude,
	FFT phase, and frequency (cm-1).
Spectrum.plot_freq_tau()	Generates a plot of tau (us) as a function of frequency
	(MHz).
Spectrum.plot_model_residuals()	Generates a plot of the alpha and model (ppm/cm) as a
	function of wavenumber (cm-1) and on lower plot shows
	the residuals (ppm/cm) as a function of wavenumber
	(cm-1).
Spectrum.plot_wave_alpha()	Generates a plot of alpha (ppm/cm) as a function of
	wavenumber (cm-1).
Spectrum.save_spectrum_info([save_file])	Saves spectrum information to a pandas dataframe with
	option to also save as a csv file.
Spectrum.segment_wave_alpha()	Defines the wavenumber, alpha, and indices of spectrum
	that correspond to a given spectrum segment.

1.3.2 Line-by-line Model

The line-by-line model is based on the HTP code provided in the HITRAN Application Programming Interface (HAPI). For the most part the conventions and definitions used by HITRAN are used in the MATS program. However, for some of the advanced line profile parameters the naming convention and temperature dependence is different. In the sections below, the temperature and pressure dependence of the various parameters is outlined for clarity. Additionally, MATS uses the CODATA values for calculations.

The Hartmann-Tran profile limiting cases that correspond to several commonly used line profiles. These limiting cases are achieved by setting line shape parameters equal to 0. The list below indicates the parameters that are not fixed equal to zero in each of the HTP limiting case line shapes. For more information about the HTP see the following references: Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) and An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes

```
Voigt Profile (VP): \Gamma_D, \Gamma_0, \Delta_0

Nelkin-Ghatak Profile (NGP): \Gamma_D, \Gamma_0, \Delta_0, \nu_{VC}

speed-dependent Voigt Profile (SDVP): \Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2

speed-dependent Nelkin-Ghatak Profile (SDNGP): \Gamma_D, \Gamma_0, \Delta_0, \nu_{VC}, \Gamma_2, \Delta_2

Hartmann-Tran (HTP): \Gamma_D, \Gamma_0, \Delta_0, \nu_{VC}, \Gamma_2, \Delta_2, \eta
```

Line Intensity

The line intensity for each line at the experimental temperature is calculated using the EnvironmentDependency_Intensity function in HAPI. This function takes as arguments the line intensity at 296 K $(S(T_{ref}))$, the experimental temperature (T), the reference temperature 296 K (T_{ref}) , the partition function at the experimental temperature (Q(T)), the partition function at the reference temperature $(Q(T_{ref}))$, the lower state energy (E^n) , and the line center (V), and constant (V). The partition functions are calculated using TIPS with the option for the user to select between the three versions available in HAPI TIPS2011, TIPS2017, and TIPS2021. Constants are defined by CODATA values

$$S(T) = S(T_{ref}) \frac{Q(T_{ref})}{Q(T)} \frac{e^{-c2E''/T}}{e^{-c2E''/T_{ref}}} \frac{1 - e^{-c2\nu/T}}{1 - e^{-c2\nu/T_{ref}}}$$

Doppler Broadening

In MATS, the doppler broadening (Γ_D) is not a floatable parameter and is calculated based on the experimental temperature (T), line center (ν), and molecular mass (m). Constants are defined by CODATA values. The doppler width is calculated as:

$$\Gamma_D = \sqrt{\frac{2kT \cdot ln(2)}{cMassMol \cdot mc^2}} \cdot \nu$$

$$k = 1.380648813x10^{-16} ergK^{-1}$$

$$cMassMol = 1.66053873x10^{-24}mol$$

Collisional Half-Width

The collisional half-width (Γ_0) is a function of both the experimental pressure (P) and temperature (T) referenced to P_{ref} (1 atm) and T_{ref} (296 K). The contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble collisional broadening. The temperature dependence is modeled as a power law, where n is the temperature exponent for the collisional width. The collisional half-width for each line at experimental temperature and pressure can be represented as:

$$\Gamma_0(P,T) = \sum abun_k \left(\Gamma_0^k * \frac{P}{P_{ref}} * \left(\frac{T_{ref}}{T}\right)^{n_{\Gamma_0^k}}\right)$$

In the MATS nomenclature, the collisional half-width is called gamma0_diluent and the temperature dependence of the collisional half-width is called n_gamma0_diluent.

Pressure Shift

Just like the collisional half-width, the pressure shift (Δ_0) is a function of both the experimental pressure (P) and temperature (T) referenced to P_{ref} (1 atm) and T_{ref} (296 K). The contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble pressure shift. Unlike the collisional half-width, the pressure shift has a linear temperature dependence, where n represents the temperature dependence of the pressure shift. The pressure shift for each line at experimental pressure and temperature can be represented as:

$$\Delta_0(P,T) = \sum abun_k (\Delta_0^k + n_{\Delta_0^k} \cdot (T - T_{ref})) \frac{P}{P_{ref}}$$

In the MATS nomenclature, the pressure shift is called delta0_diluent and the temperature dependence of the pressure shift is called n_delta0_diluent.

Speed-Dependent Broadening

The speed-dependent mechanism accounts for the speed-dependence of relaxation rates and is parameterized in the speed-dependent Voigt (SDVP), speed-dependent Nelkin-Ghatak (SDNGP), and Hartmann-Tran (HTP) profiles. The speed-dependent broadening in MATS is tabulated as the ratio $aw = \frac{\Gamma_2}{\Gamma_0}$, but the actual fitted parameter is Γ_2 . The temperature dependence of the speed-dependent broadening is a power law dependence on Γ_2 . Currently in HITRAN, it is assumed that the $n_{\Gamma_0} = n_{\Gamma_2}$, such that a_w is assumed to be temperature independent. The introduction of n_{Γ_2} as a parameter in MATS allows for the option of this assumption to imposed, but the flexibility to explore non-equivalent temperature dependences between the speed-dependent and collisional broadening terms. The contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble speed-dependent broadening.

$$\Gamma_2(P,T) = \sum abun_k \left(a_w^k * \Gamma_0^k * \frac{P}{P_{ref}} * \left(\frac{T_{ref}}{T}\right)^{n_{\Gamma_2^k}}\right)$$

In the MATS nomenclature, the ratio of the speed-dependent broadening to the collisional broadening (a_w) is called SD_gamma_diluent and the temperature dependence of the speed-dependent broadening is called n_gamma2_diluent. The difference in the naming structure (SD_gamma vs gamma2) is chosen to emphasize the difference between the speed-dependent width being parameterized as a ratio versus as an absolute value.

Speed-Dependent Shifting

The speed-dependent mechanism accounts for the speed-dependence of relaxation rates and is parameterized in the speed-dependent Voigt (SDVP), speed-dependent Nelkin-Ghatak (SDNGP), and Hartmann-Tran (HTP) profiles. The speed-dependent shift in MATS is tabulated as the ratio $as = \frac{\Delta_2}{\Delta_0}$, but the actual fitted parameter is Δ_2 . The temperature dependence of the speed-dependent shift is modeled with a linear dependence. Currently, the temperature dependence of the speed-dependent shift is not parameterized in HITRAN. The contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble speed-dependent shift.

$$\Delta_2(P,T) = \sum abun_k (a_s \cdot \Delta_0^k + n_{\Delta_2^k} \cdot (T - T_{ref})) \frac{P}{P_{ref}}$$

In MATS nomenclature, the ratio of the speed-dependent shift to the pressure shift (a_s) is called SD_shift_diluent and the temperature dependence of the speed-dependent shift is called n_delta2_diluent. The difference in the naming structure (SD_delta vs delta2) is chosen to emphasize the difference between the speed-dependent shift being parameterized as a ratio versus as an absolute value.

Dicke Narrowing

The Dicke narrowing mechanism models collisional induced velocity changes and is parameterized in the Nelkin-Ghatak (NGP), speed-dependent Nelkin-Ghatak (SDNGP), and Hartmann-Tran (HTP) profiles by the term ν_{VC} . The temperature dependence is modeled as a power law, where n represents the temperature dependence of the Dicke narrowing term. If the Dicke narrowing is assumed to behave like the diffusion coefficient, then the temperature dependence theoretically should be 1. The contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble Dicke narrowing.

$$\nu_{VC}(P,T) = \sum_{k=i} abun_k \left(\nu_{VC}^k * \frac{P}{P_{ref}} * \left(\frac{T_{ref}}{T}\right)^{n_{\nu_{VC}k}}\right)$$

In MATS nomenclature, the Dicke narrowing is referred to as nuVC_diluent and the temperature exponent is n_nuVC_diluent. This differs from the naming convention in HAPI, which changes based on the origin of the Dicke narrowing term (Galatry profile versus HTP). For simplicity, MATS has adopted a self-consistent naming convention.

Correlation Parameter

The correlation parameter (η) models the correlation between velocity and rotation state changes due to collisions and is only parameterized in the Hartmann-Tran profile (HTP). Currently, MATS has no temperature or pressure dependence associated with the correlation parameter. However, contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble correlation parameter.

$$\eta(k) = \sum abun_k \cdot \eta$$

In MATS nomenclature, the correlation parameter is referred to as eta_diluent.

Line Mixing

The first order Rosenkranz line mixing (Y) can be calculated from the imaginary portion of any of the HTP derivative line profiles. The temperature dependence is modeled as a power law, where n represents the temperature dependence of the Rosenkranz line-mixing term. The contributions from each diluent (k) can be scaled by the diluent composition fraction (abun) and summed to model the ensemble line mixing.

$$Y(P,T) = \sum_{k=i} abun_k (Y^k * \frac{P}{P_{ref}} * (\frac{T_{ref}}{T})^{n_{Y^k}}$$

The line mixing is implemented as:

$$\alpha = I * (ReHTP(\Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2, \nu_{VC}, \eta, \nu) + Y * ImHTP(\Gamma_D, \Gamma_0, \Delta_0, \Gamma_2, \Delta_2, \nu_{VC}, \eta, \nu))$$

In MATS nomenclature, the line mixing parameter is referred to as y_diluent and the temperature exponent is n_y_diluent. This differs from the naming convention in HAPI, where the parameter name contains information about the corresponding line shape. MATS does not contain this information in the parameter name.

Line-by-line Models

HTP_from_DF_select(linelist, waves[,])	Calculates the absorbance (ppm/cm) based on input line list, wavenumbers, and spectrum environmental param-
UTD v.Dota from DE coloct(linelist vyoyas[])	eters.
<pre>HTP_wBeta_from_DF_select(linelist, waves[,])</pre>	Calculates the absorbance (ppm/cm) based on input line
	list, wavenumbers, and spectrum environmental param-
	eters with capability of incorporating the beta correction
	to the Dicke Narrowing proposed in Analytical-function
	correction to the Hartmann-Tran profile for more re-
	liable representation of the Dicke-narrowed molecular
	spectra.

1.3.3 Dataset Class

Dataset(spectra, dataset_name, param_linelist)	Combines spectrum objects into a Dataset object to en-
	able multi-spectrum fitting.
Dataset.generate_baseline_paramlist()	Generates a csv file called dataset_name + _base-line_paramlist, which will be used to generate another csv file that is used for fitting spectrum dependent parameters with columns for spectrum number, segment number, x_shift, concentration for each molecule in the dataset, baseline terms (a = 0th order term, b = 1st order, etc), and etalon terms (set an amplitude, period, and phase for the number of etalons listed for each spectrum in the Dataset).
<pre>Dataset.generate_summary_file([save_file])</pre>	Generates a summary file combining spectral information from all spectra in the Dataset.
Dataset.get_spectra_extremes()	•
Dataset.get_spectrum_extremes()	Gets the minimum and maximum wavenumber for the entire Dataset.
Dataset.average_QF()	Calculates the Average QF from all spectra.
Dataset.plot_model_residuals()	Generates a plot showing both the model and experi-
	mental data as a function of wavenumber in the main
	plot with a subplot showing the residuals as function of
	wavenumber.

1.3.4 Generate FitParam File Class

<pre>Generate_FitParam_File(dataset,[,])</pre>	Class generates the parameter files used in fitting and sets		
	up fit settings.		
Generate_FitParam_File.	Generates the baseline line list used in fitting and updates		
<pre>generate_fit_baseline_linelist([])</pre>	the fitting booleans to desired settings.		
Generate_FitParam_File.	Generates the parameter line list used in fitting and up-		
<pre>generate_fit_param_linelist_from_linelist([</pre>])dates the fitting booleans to desired settings.		

1.3.5 Fit DataSet Class

<pre>Fit_DataSet(dataset, base_linelist_file,)</pre>	Provides the fitting functionality for a Dataset.
<pre>Fit_DataSet.constrained_baseline(params[,])</pre>	Imposes baseline constraints when using multiple seg-
	ments per spectrum, ie all baseline parameters can be
	the same across the entire spectrum except for the etalon
	phase, which is allowed to vary per segment.
<pre>Fit_DataSet.fit_data(params[, wing_cutoff,])</pre>	Uses the lmfit minimizer to do the fitting through the
	simulation model function.
<pre>Fit_DataSet.generate_params()</pre>	Generates the lmfit parameter object that will be used in
	fitting.
<pre>Fit_DataSet.residual_analysis(result[,])</pre>	Updates the model and residual arrays in each spectrum
	object with the results of the fit and gives the option of
	generating the combined absorption and residual plot for
	each spectrum.
<pre>Fit_DataSet.simulation_model(params[,])</pre>	This is the model used for fitting that includes baseline,
	resonant absorption, and CIA models.
<pre>Fit_DataSet.update_params(result[,])</pre>	Updates the baseline and line parameter files based on
	fit results with the option to write over the file (default)
	or save as a new file and updates baseline values in the
	spectrum objects.
rit_bataset.upuate_params(tesuit[,])	fit results with the option to write over the file (default) or save as a new file and updates baseline values in the

1.3.6 Support Modules

12

. 7 / . 1 1 1	Tr. 1 . 1 C .t.t
etalon(x, amp, period, phase)	Etalon definition
<pre>molecularMass(M, I[, isotope_list])</pre>	molecular mass look-up based on the HAPI defini-
	tion adapted to allow used to specify ISO list IN-
	PUT PARAMETERS: M: HITRAN molecule number
	I: HITRAN isotopologue number OUTPUT PARAME-
	TERS: MolMass: molecular mass DESCRIPTION:
	Return molecular mass of HITRAN isotolopogue.
<pre>isotope_list_molecules_isotopes([isotope_list])</pre>	The HITRAN style isotope list in the format (M,I), this
	function creates a dictionary from this with M as the keys
	and lists of I as values.
add_to_HITRANstyle_isotope_list([])	Allows for used to add to an existing isotope line list in
	the HITRAN format
LoadLineListData([paths])	Helper class to read in supplied LineList DataFrames

1.4 Generating Parameter Line lists

1.4.1 Parameter Line list Overview

The MATS program uses a spectroscopic line list that varies from the traditional HITRAN and HAPI formats to accommodate the full HTP parameterization including temperature dependencies for all parameters (other than the correlation parameter and first order line-mixing). The spectroscopic line list format has rows that correspond to each molecular transition and columns that correspond to the various HTP parameters. The necessary column headers are below, where there needs to be a column for each parameter for each diluent (ie. air, self) in the dataset. Additionally, there needs to be a line-mixing term for each nominal temperature in the dataset, where the nominal temperature is the included as the suffix of the column header.

- molec_id: HITRAN molecule id number
- local_iso_id: HITRAN local isotope id number
- nu: line center (cm^{-1})
- sw : spectral line intensity $(\frac{cm^{-1}}{molecule \cdot cm^{-2}})$ at Tref=296K
- elower: The lower-state energy of the transition (cm^{-1})
- gamma0_diluent: collisional half-width $(\frac{cm^{-1}}{atm})$ at Tref=296K and reference pressure pref=1atm for a given diluent
- n_gamma0_diluent: coefficient of the temperature dependence of the collisional half-width
- delta0_diluent: pressure shift $(\frac{cm^{-1}}{atm})$ at Tref=296K and pref=1atm of the line position with respect to line center
- n_delta0_diluent: the coefficient of the temperature dependence of the pressure shift
- SD_gamma_diluent: the ratio of the speed dependent width to the collisional half-width at reference temperature and pressure
- n_gamma2_diluent: the coefficient of the temperature dependence of the speed-dependent width NOTE: This is the temperature dependence of the speed-dependent width not the temperature dependence of the ratio of the speed-dependent width to the collisional half-width
- SD_delta_diluent: the ratio of the speed-dependent shift to the collisional shift at reference temperature and pressure
- n_delta2_diluent: the coefficient of the temperature dependence of the speed-dependent shift NOTE: This is the temperature dependence of the speed-dependent shift not the temperature dependence of the ratio of the speed-dependent shift to the pressure shift
- nuVC_diluent: Dicke narrowing term $(\frac{cm^{-1}}{atm})$ at reference temperature and pressure
- n nuVC diluent: coefficient of the temperature dependence of the Dicke narrowing term
- eta_diluent: correlation parameter
- y_diluent_nominaltemp: line mixing term $(\frac{cm^{-1}}{atm})$ NOTE: As currently written , this doesn't have a temperature dependence, so there is a different column for each nominal temperature.

1.4.2 Generating Parameter Line list from HITRAN

The parameter line list .csv file can be generated manually, but this notebook generates a parameter list using the HITRAN Application Programming Interface (HAPI). The overview below walks through this notebook.

Imports

Import the numpy, pandas, os, and sys packages. Set pandas dataframe to show all of the rows.

```
import numpy as np
import pandas as pd
pd.set_option("display.max_rows", 101)
import os, sys
```

Optional imports include matplotlib and seaborn for plotting.

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid")
sns.set_style("ticks")
sns.set_context("poster")
```

Molecule and Isotope Information

HAPI provides a dictionary called ISO_ID, where the global isotope id acts as the key, with a sub-dictionary containing the molecule id, local isotope id, isotope name, relative abundance, mass, and molecule name. The following command will generate the dictionary as the output. This provides the necessary global isotope id information for interfacing with HAPI to access HITRAN infomation.

```
print_iso_id()
```

The	The dictionary "ISO_ID" contains information on "global" IDs of isotopologues in HITRAN								
	id		M	I	iso_name	abundance	mass	ш	
∽m	ol_nar	ne							
	1	:	1	1	H2(160)	0.9973170000	18.010565	L.	
\hookrightarrow	H20								
	2	:	1	2	H2(180)	0.0019998300	20.014811	ш	
\hookrightarrow	H20								
	3	:	1	3	H2(170)	0.0003720000	19.014780	ш	
\hookrightarrow	H20								
	4	:	1	4	HD(160)	0.0003106900	19.016740	ш	
\hookrightarrow	H20								
	5	:	1	5	HD(180)	0.0000006230	21.020985	ш	
\hookrightarrow	H20								
	6	:	1	6	HD(170)	0.0000001160	20.020956	ш	
\hookrightarrow	H20								
1	29	:	1	7	D2(160)	0.0000000242	20.022915	ш	
\hookrightarrow	H20								
	7	:	2	1	(12C)(160)2	0.9842040000	43.989830	u	
\hookrightarrow	C02								
	8	:	2	2	(13C)(160)2	0.0110570000	44.993185	ш	

CO2							(continued from	m previous page)
- CO2 10 : 2 4 (160)(12C)(170) 0.0007340000 44.99405 - CO2 11 : 2 5 (160)(13C)(180) 0.0000443400 46.997431 - CO2 12 : 2 6 (160)(13C)(170) 0.000082500 45.997400 - CO2 13 : 2 7 (12C)(180)2 0.000003573 47.998322 - CO2 14 : 2 8 (170)(12C)(180) 0.0000014760 46.998291 - CO2 15 : 2 10 (13C)(180)2 0.0000001368 45.998262 - CO2 15 : 2 10 (13C)(180)2 0.000000156 48.001675 - CO2 120 : 2 11 (180)(13C)(170) 0.000000015 47.001618 - CO2 122 : 2 12 (13C)(170)2 0.000000015 47.001618 - CO2 122 : 2 12 (13C)(170)2 0.000000015 47.001618 - CO2 122 : 3 3 1 (160)(160)(180) 0.0039819400 49.988991 - CO3 17 : 3 2 (160)(160)(180) 0.0039819400 49.988991 - CO3 18 : 3 3 3 (160)(180)(160) 0.0019909700 49.988991 - CO3 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 - CO3 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 - CO3 21 : 4 1 (14N)(18N)(160) 0.0036409000 44.998096 - CO3 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 - CO3 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 - CO3 24 : 4 4 4 (14N)(18N)(160) 0.0036409000 44.998096 - CO3 25 : 5 5 1 (14N)(170) 0.0003690000 28.998270 - CO3 27 : 5 2 (13C)(160) 0.010800000 28.999130 - CO3 28 : 5 3 (12C)(180) 0.0019782000 29.999161 - CO3 28 : 5 3 (12C)(180) 0.0019782000 29.999161 - CO3 28 : 5 3 (12C)(180) 0.0019782000 29.999161 - CO3 28 : 5 3 (13C)(180) 0.0019782000 29.999161			_		4 4 4 4 4.			
10		:	2	3	(160)(12C)(180)	0.0039471000	45.994076	u
CO2 11 : 2 5 (160)(13C)(180) 0.0000443400 46.997431 CO2 12 : 2 6 (160)(13C)(170) 0.0000082500 45.997400 CO2 13 : 2 7 (12C)(180)2 0.0000039573 47.998322 CO2 14 : 2 8 (170)(12C)(180) 0.0000014700 46.998291 CO2 15 : 2 10 (13C)(180)2 0.0000001368 45.998262 CO2 15 : 2 10 (13C)(180)2 0.0000001468 45.998262 CO2 15 : 2 11 (180)(13C)(170) 0.0000000155 48.001659 CO2 120 : 2 11 (180)(13C)(170) 0.000000015 47.001618 CO2 120 : 2 12 (13C)(170)2 0.000000015 47.001618 CO2 120 : 3 1 (160)(160)(180) 0.0039819400 47.984745 CO3 17 : 3 2 (160)(160)(180) 0.0039819400 49.988991 CO3 18 : 3 3 (160)(180)(160) 0.0039819400 49.988991 CO3 19 : 3 4 (160)(160)(160) 0.0003700000 48.988960 CO3 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 CO3 21 : 4 1 (14N)2(160) 0.003300000 44.00162 N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 N20 24 : 4 4 (14N)2(180) 0.0036409000 45.005278 N20 25 : 4 5 (14N)2(170) 0.00036409000 45.005278 N20 26 : 5 1 (12C)(180) 0.003680000 28.999130 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 29 : 5 4 (12C)(180) 0.0003680000 28.999130 CO 29 : 5 4 (12C)(180) 0.0003680000 28.999130 CO 29 : 5 5 4 (12C)(180) 0.0003680000 28.999130			2	4	(160) (120) (170)	0 0007340000	44 994045	
11		•	2	7	(100)(120)(170)	0.0007540000	44.554045	ы
CO2 12		:	2	5	(160)(13C)(180)	0.0000443400	46.997431	
CO2 13								_
13	12	:	2	6	(160) (13C) (170)	0.0000082500	45.997400	u l
CO2 144 : 2 8								
14 : 2 8 (170)(12C)(180) 0.0000014700 46.998291 - CO2 121 : 2 9 (12C)(170)2 0.0000001368 45.998262 15 : 2 10 (13C)(180)2 0.0000000450 49.001675 - CO2 120 : 2 11 (180)(13C)(170) 0.000000015 48.001650 - CO2 122 : 2 12 (13C)(170)2 0.0000000015 47.001618 - CO2 16 : 3 1 (160)3 0.9929010000 47.984745 - O3 17 : 3 2 (160)(160)(180) 0.0039819400 49.988991 - O3 18 : 3 3 3 (160)(180)(160) 0.0019909700 49.988991 - O3 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 - O3 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 - O3 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 - N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 - N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 - N20 25 : 4 5 (14N)2(170) 0.00036409000 45.005278 - N20 25 : 4 5 (14N)2(170) 0.0003690000 27.994915 - CO 27 : 5 2 (13C)(160) 0.0110800000 28.999270 - CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 - CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 - CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 - CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130		:	2	7	(12C)(180)2	0.0000039573	47.998322	u
- CO2 121 : 2 9			2	0	(170) (170) (100)	0.0000014700	46 000001	
121 : 2 9 (12C)(170)2 0.0000001368 45.998262		:	2	8	(1/0)(12C)(180)	0.0000014700	46.998291	ш
- CO2 15 : 2 10			2	٥	(120)(170)2	0 0000001368	45 008262	
15 : 2 10		•	2	9	(120)(170)2	0.0000001308	43.990202	П
CO2 120 : 2 11			2	10	(13C) (180) 2	0.0000000450	49.001675	
120 : 2 11 (180)(13C)(170) 0.0000000165 48.001650		-	_		(, (,			_
CO2 122 : 2 12		:	2	11	(180) (13C) (170)	0.000000165	48.001650	ш
CO2 16 : 3 1 (160)3 0.9929010000 47.984745 03 17 : 3 2 (160)(160)(180) 0.0039819400 49.988991 03 18 : 3 3 (160)(180)(160) 0.0019909700 49.988991 03 19 : 3 4 (160)(170)(160) 0.0007400000 48.988960 03 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 03 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 N20 24 : 4 4 4 (14N)2(180) 0.0019858200 46.005308 N20 25 : 4 5 (14N)(2(170) 0.0003690000 45.005278 N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 29 : 5 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 5 (13C)(180) 0.0000222200 31.002516								
16 : 3 1 (160)3 0.9929010000 47.984745		:	2	12	(13C)(170)2	0.0000000015	47.001618	u l
03 17 : 3 2 (160)(160)(180) 0.0039819400 49.988991 03 18 : 3 3 (160)(180)(160) 0.0019909700 49.988991 03 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 03 20 : 3 5 (160)(170)(160) 0.9903330000 48.988960 03 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 29 : 5 5 (13C)(180) 0.000322200 31.002516 CO								
17 : 3 2 (160)(160)(180) 0.0039819400 49.988991 18 : 3 3 (160)(180)(160) 0.0019909700 49.988991 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 30 : 3 5 (160)(170)(160) 0.0003700000 48.988960 31 : 4 1 (14N)2(160) 0.9903330000 44.001062 32 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 N20		:	3	1	(160)3	0.9929010000	47.984745	ш
→ 03 18 : 3 3 3 (160)(180)(160) 0.0019909700 49.988991 → 03 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 → 03 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 → 03 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 → N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 → N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 → N20 24 : 4 4 4 (14N)2(180) 0.0019858200 46.005308 → N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 → N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 → CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 → CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 → CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 → CO 30 : 5 5 5 (13C)(180) 0.0000222200 31.002516 → CO			2	2	(160) (160) (180)	0 0020010400	40 000001	
18 : 3 3 (160)(180)(160) 0.0019909700 49.988991 - 03 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 - 03 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 - 03 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 - N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 - N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 - N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 - N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 - N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 - CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 - CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 - CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 - CO 30 : 5 5 5 (13C)(180) 0.0000222200 31.002516 - CO		•	3	4	(160)(160)(180)	0.0039819400	49.900991	u
→ 03 19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 □ → 03 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 □ → 03 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 □ → N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 □ → N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 □ → N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 □ → N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 □ → N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 □ → C0 27 : 5 2 (13C)(160) 0.0110800000 28.998270 □ → C0 28 : 5 3 (12C)(180) 0.0019782000 29.999161 □ → C0 29 : 5 4 (12C)(170) 0.0003680000 28.999130 □ → C0 29 : 5 5 (13C)(180) 0.0000222200 31.002516 □			3	3	(160) (180) (160)	0 0019909700	49 988991	
19 : 3 4 (160)(160)(170) 0.0007400000 48.988960 □ □ 03 □ 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 □ □ 03 □ 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 □ □ N20 □ 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 □ □ N20 □ 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 □ □ N20 □ 24 : 4 4 4 (14N)2(180) 0.0019858200 46.005308 □ □ N20 □ 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 □ □ N20 □ 26 : 5 1 (12C)(160) 0.9865400000 27.994915 □ □ C0 □ 27 : 5 2 (13C)(160) 0.0110800000 28.998270 □ □ C0 □ 28 : 5 3 (12C)(180) 0.0019782000 29.999161 □ □ C0 □ 29 : 5 4 (12C)(170) 0.0003680000 28.999130 □ □ C0 □ 30 : 5 5 5 (13C)(180) 0.0000222200 31.002516 □ □ C0		•	3	3	(100) (100) (100)	0.0013303700	13.300331	
→ 03 20 : 3 5 (160)(170)(160) 0.0003700000 48.988960 → 03 21 : 4 1 (14N)2(160) 0.9903330000 44.001062 → N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 → N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 → N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 → N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 → N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 → C0 27 : 5 2 (13C)(160) 0.0110800000 28.998270 → C0 28 : 5 3 (12C)(180) 0.0019782000 29.999161 → C0 30 : 5 5 (13C)(180) 0.0003680000 28.999130 → C0 30 : 5 5 5 (13C)(180) 0.0000222200 31.002516		:	3	4	(160) (160) (170)	0.0007400000	48.988960	L L
□ 03 21 : 4 1	→ 03							
21 : 4 1	20	:	3	5	(160)(170)(160)	0.0003700000	48.988960	ш
N20 22 : 4 2 (14N)(15N)(160) 0.0036409000 44.998096 N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 C0 27 : 5 2 (13C)(160) 0.0110800000 28.998270 C0 28 : 5 3 (12C)(180) 0.0019782000 29.999161 C0 29 : 5 4 (12C)(170) 0.0003680000 28.999130 C0 30 : 5 5 (13C)(180) 0.0000222200 31.002516								
22 : 4 2 (14N)(15N)(16O) 0.0036409000 44.998096 N20 23 : 4 3 (15N)(14N)(16O) 0.0036409000 44.998096 N20 24 : 4 4 (14N)2(18O) 0.0019858200 46.005308 N20 25 : 4 5 (14N)2(17O) 0.0003690000 45.005278 N20 26 : 5 1 (12C)(16O) 0.9865400000 27.994915 CO 27 : 5 2 (13C)(16O) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(18O) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(17O) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(18O) 0.0000222200 31.002516		:	4	1	(14N)2(160)	0.9903330000	44.001062	ш
N20 23 : 4 3 (15N)(14N)(160) 0.0036409000 44.998096 N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516		_	4	2	(14N) (15N) (160)	0.0036400000	44 000000	
23 : 4 3 (15N)(14N)(16O) 0.0036409000 44.998096 N2O 24 : 4 4 (14N)2(18O) 0.0019858200 46.005308 N2O 25 : 4 5 (14N)2(17O) 0.0003690000 45.005278 N2O 26 : 5 1 (12C)(16O) 0.9865400000 27.994915 CO 27 : 5 2 (13C)(16O) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(18O) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(17O) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(18O) 0.0000222200 31.002516		•	4	۷	(14N)(15N)(160)	0.0036409000	44.998096	ш
→ N20 24 : 4 4 (14N)2(180) 0.0019858200 46.005308 → N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 → N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 → C0 27 : 5 2 (13C)(160) 0.0110800000 28.998270 → C0 28 : 5 3 (12C)(180) 0.0019782000 29.999161 → C0 29 : 5 4 (12C)(170) 0.0003680000 28.999130 → C0 30 : 5 5 (13C)(180) 0.0000222200 31.002516			4	3	(15N) (14N) (16O)	0 0036409000	44 998096	
24 : 4 4 (14N)2(180) 0.0019858200 46.005308 → N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 → N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 → CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 → CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 → CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 → CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516		•	-	3	(1311) (1111) (100)	0.0030103000	11.330030	L L
N20 25 : 4 5 (14N)2(170) 0.0003690000 45.005278 N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516 CO		:	4	4	(14N)2(18O)	0.0019858200	46.005308	u
→ N20 26 : 5 1 (12C)(160) 0.9865400000 27.994915 → CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 → CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 → CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 → CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516	→ N20							
26 : 5 1 (12C)(160) 0.9865400000 27.994915 → CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 → CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 → CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 → CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516	25	:	4	5	(14N)2(17O)	0.0003690000	45.005278	u u
CO 27 : 5 2 (13C)(160) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516								
27 : 5 2 (13C)(160) 0.0110800000 28.998270 CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516 CO		:	5	1	(12C) (160)	0.9865400000	27.994915	u u
CO 28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516			-	2	(130) (160)	0.011000000	20 000270	
28 : 5 3 (12C)(180) 0.0019782000 29.999161 CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516 CO CO		:	5	۷	(13C) (160)	ω.ωττ ω <u></u> ααωωω	28.998270	ы
CO 29 : 5 4 (12C)(170) 0.0003680000 28.999130 CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516 CO CO			5	3	(12C) (180)	0 0019782000	20 000161	
29 : 5 4 (12C)(170) 0.0003680000 28.999130 → CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516 → CO		•	,	J	(120) (100)	G. GG 137 02 000	25.555101	<u>.</u>
CO 30 : 5 5 (13C)(180) 0.0000222200 31.002516 ∴ CO		:	5	4	(12C)(170)	0.0003680000	28.999130	
30 : 5 5 (13C)(180) 0.0000222200 31.002516 → CO			-		· · · · · · · · · · · · · · · · · · ·		· -	_
		:	5	5	(13C)(180)	0.0000222200	31.002516	u l
31 : 5 6 (13C)(170) 0.0000041300 30.002485								
	31	:	5	6	(13C) (170)	0.0000041300	30.002485	u

16

(continued from previous page)

						(continued from	n previous page)
⇔ C0		C	1	(126)114	0.0002700000	16 021200	
32 → CH4	:	6	1	(12C)H4	0.9882700000	16.031300	ш
33	:	6	2	(13C)H4	0.0111000000	17.034655	ш
→ CH4		6	2	(120)1120	0.0006157500	17 027475	
34 → CH4	:	6	3	(12C)H3D	0.0006157500	17.037475	ш
35	:	6	4	(13C)H3D	0.0000049203	18.040830	u
→ CH4 36		7	1	(160)2	0.9952620000	31.989830	
→ O2	:	,	1	(100)2	0.9932620000	31.909030	ш
37	:	7	2	(160)(180)	0.0039914100	33.994076	ш
	:	7	3	(160) (170)	0.0007420000	32.994045	
→ 02	•	,	J	(100)(170)	0.0007420000	32.334043	
39	:	8	1	(14N)(16O)	0.9939740000	29.997989	ш
→ NO 40		8	2	(15N)(160)	0.0036543000	30.995023	
→ NO	•	0	4	(13N)(100)	0.0050545000	30.333023	ш
41	:	8	3	(14N)(18O)	0.0019931200	32.002234	ш
→ NO 42	:	9	1	(32S)(160)2	0.9456800000	63.961901	
→ S02	•	3	-	(323)(100)2	0.515000000	03.301301	ш
43	:	9	2	(34S)(160)2	0.0419500000	65.957695	ш
→ S02 44	:	10	1	(14N)(16O)2	0.9916160000	45.992904	
→ NO2	•	10	-	(11.1)(100)1	013310100000	131331301	u
45	:	11	1	(14N)H3	0.9958715000	17.026549	ш
→ NH3 46	:	11	2	(15N)H3	0.0036613000	18.023583	
→ NH3							_
47 → HNO3	:	12	1	H(14N)(16O)3	0.9891100000	62.995644	ш
→ nNO3	:	12	2	H(15N)(16O)3	0.0036360000	63.992680	
→ HNO3							
48 → OH	:	13	1	(160)H	0.9974730000	17.002740	ш
49	:	13	2	(180)H	0.0020001400	19.006986	ш
→ OH							
50 → OH	:	13	3	(160)D	0.0001553700	18.008915	ш
51	:	14	1	H(19F)	0.9998442500	20.006229	ш
→ HF				- (10=)			
110 → HF	:	14	2	D(19F)	0.0001150000	21.012505	ш
52	:	15	1	H(35Cl)	0.7575870000	35.976678	ш
→ HCl		4 -	-		0.0400======	27 072-00	
53 → HCl	:	15	2	H(37C1)	0.2422570000	37.973729	u
107	:	15	3	D(35Cl)	0.0001180050	36.982954	u
→ HCl		4 =	4	P (0=63)	0.00003==255	20.00004	
108	:	15	4	D(37C1)	0.0000377350	38.980004	es on next page)

						(continued fro	m previous page)
→ HCl		1.5	1	W(70P.)	0.506700000	70 026160	
54 → HBr	:	16	1	H(79Br)	0.5067800000	79.926160	ш
55	:	16	2	H(81Br)	0.4930600000	81.924115	L L
→ HBr							_
111	:	16	3	D(79Br)	0.0000582935	80.932439	u u
→ HBr							
112	:	16	4	D(81Br)	0.0000567065	82.930392	ш
→ HBr 56	:	17	1	H(127I)	0.9998442500	127 012207	
→ HI	•	17	1	H(12/1)	0.9998442300	127.912297	u
113	:	17	2	D(127I)	0.0001150000	128.918575	u l
→ HI							
57	:	18	1	(35Cl)(160)	0.7559100000	50.963768	ш
58	:	18	2	(37Cl)(160)	0.2417200000	52.960819	u
→ C10 59	:	19	1	(160) (12C) (32S)	0 0272000000	59.966986	
→ OCS	•	19	1	(100)(120)(323)	0.9373900000	39.900980	u
60	:	19	2	(160) (12C) (34S)	0.0415800000	61.962780	L L
→ OCS							_
61	:	19	3	(160)(13C)(32S)	0.0105300000	60.970341	u
→ OCS							
62	:	19	4	(160) (12C) (33S)	0.0105300000	60.966371	ш
→ OCS		10	_	(190) (120) (225)	0 001000000	C1 071221	
63 → OCS	:	19	5	(180) (12C) (32S)	0.0018800000	61.971231	u
64	:	20	1	H2(12C)(160)	0.9862400000	30.010565	L L
→ H2CO	-		_	(0) (-00)	013002100000	301010303	_
65	:	20	2	H2(13C)(160)	0.0110800000	31.013920	Li C
→ H2CO							
66	:	20	3	H2(12C)(180)	0.0019776000	32.014811	ш
→ H2CO 67		2.1	1	U(160) (2EC])	0 755700000	F1 071F03	
↔ HOCl	:	21	1	H(160)(35Cl)	0.7557900000	51.971593	u
68	:	21	2	H(160)(37Cl)	0.2416800000	53.968644	ш
→ HOCl							_
69	:	22	1	(14N)2	0.9926874000	28.006147	u
→ N2							
118	:	22	2	(14N)(15N)	0.0072535000	29.997989	ш
→ N2		22	1	11(126)(14N)	0 0051100000	27 010000	
70 → HCN	:	23	1	H(12C)(14N)	0.9851100000	27.010899	ш
71	:	23	2	H(13C)(14N)	0.0110700000	28.014254	L L
→ HCN							_
72	:	23	3	H(12C)(15N)	0.0036217000	28.007933	u
→ HCN							
73	:	24	1	(12C)H3(35Cl)	0.7489400000	49.992328	u u
→CH3C1 74		24	2	(12C)H3(37Cl)	0.2394900000	51.989379	
→CH3Cl	•	44	۷	(12C)fi3(3/CI)	W.43343WWWW	31.3033/3	ш
75	:	25	1	H2(160)2	0.9949520000	34.005480	u l
							ues on next page)

18

(continued from previous page)

						(continued from	m previous page)
→ H2O2							
76	:	26	1	(12C)2H2	0.9776000000	26.015650	u u
→ C2H2		2.6	2	(426) (426) 112	0.021070000	27 010005	
77	:	26	2	(12C)(13C)H2	0.0219700000	27.019005	L L
→ C2H2 105		26	3	(126) 2110	0 0002045500	27 021025	
→ C2H2	:	26	3	(12C)2HD	0.0003045500	27.021825	u
→ C2H2 78	:	27	1	(12C)2H6	0.9769900000	30.046950	
→ C2H6	•	41	1	(120)2110	0.9709900000	30.040930	u
106	:	27	2	(12C)H3(13C)H3	0.0219526110	31.050305	
→ C2H6	•	27	-	(120)113 (130)113	0.0215520110	31.030303	ū
79	:	28	1	(31P)H3	0.9995328300	33.997238	ш
→ PH3							_
80	:	29	1	(12C)(160)(19F)2	0.9865400000	65.991722	ш
→ COF2							
119	:	29	2	(13C)(160)(19F)2	0.0110834000	66.995083	u u
→ COF2							
126	:	30	1	(32S)(19F)6	0.9501800000	145.962492	u u
→ SF6							
81	:	31	1	H2(32S)	0.9498800000	33.987721	u l
→ H2S							
82	:	31	2	H2(34S)	0.0421400000	35.983515	ш
→ H2S			_				
83	:	31	3	H2(33S)	0.0074980000	34.987105	ш
→ H2S		2.0	1	H(42G) (4GO) (4GO) H	0.002000000	46 005400	
84	:	32	1	H(12C)(160)(160)H	0.9838980000	46.005480	ш
⊶НСООН 85		22	1	H(160)2	0 0051070000	22 007655	
→ HO2	:	33	1	H(160)2	0.9951070000	32.997655	ш
36	:	34	1	(160)	0.9976280000	15.994915	
→ 0	•	74	1	(100)	0.557020000	13.334313	_
87	:	36	1	(14N)(16O)+	0.9939740000	29.997989	
→ NOp	•	30	-	(1111) (100)	0133337 10000	23.33.303	u
88	:	37	1	H(160)(79Br)	0.5056000000	95.921076	ш
→ HOBr							_
89	:	37	2	H(160)(81Br)	0.4919000000	97.919027	ш
→ HOBr							
90	:	38	1	(12C)2H4	0.9773000000	28.031300	u l
→ C2H4							
91	:	38	2	(12C)H2(13C)H2	0.0219600000	29.034655	u u
→ C2H4							
92	:	39	1	(12C)H3(160)H	0.9859300000	32.026215	u u
⇔ СН3ОН							
93	:	40	1	(12C)H3(79Br)	0.5013000000	93.941811	ш
→CH3Br			_				
94	:	40	2	(12C)H3(81Br)	0.4876600000	95.939764	u
→CH3Br	_	4.4	4	(400) 110 (400) (442)	0.074020000	41 000540	
95	:	41	1	(12C)H3(12C)(14N)	0.9748200000	41.026549	u
→CH3CN		42	1	(120) (100) 4	0 000200000	97 002616	
96 CE4	:	42	1	(12C)(19F)4	0.9893000000	87.993616	u
→ CF4 116	:	43	1	(12C)4H2	0.9559980000	50.015650	
110	•	40	1	(120)4112	W. 22722200000		Lac on next nage)

(cor	ntinued	from	previous	page)
------	---------	------	----------	-------

→ C4H2							
109	:	44	1	H(12C)3(14N)	0.9646069000	51.010899	_
→ HC3N							
103	:	45	1	H2	0.9996880000	2.015650	_
115	:	45	2	HD	0.0003114320	3.021825	ш
→ H2				(10.0) (00.0)			
97	:	46	1	(12C) (32S)	0.9396240000	43.971036	ш
		4.6	2	(120) (240)	0.0416017000	45 066707	
98 → CS	:	46	2	(12C) (34S)	0.0416817000	45.966787	ш
→ CS	:	46	3	(13C)(32S)	0.0105565000	44.974368	
CC	•	40	3	(13C) (323)	0.0103303000	44.974300	_
→ CS		46	4	(12C) (33S)	0.0074166800	44.970399	
→ CS	•	40	-	(120) (333)	0.0074100000	44.570555	L L
114	:	47	1	(32S)(160)3	0.9423964000	79.956820	ш
→ S03	-		_	(5=2) (=3)			_
123	:	48	1	(12C)2(14N)2	0.9707524330	52.006148	L L
→ C2N2							
124	:	49	1	(12C)(160)(35Cl)2	0.5663917610	97.932620	ш
→COC12							
125	:	49	2	(12C)(160)(35Cl)(37Cl)	0.3622352780	99.929670	<u>.</u>
COC12							

Generate HITRAN and Initial Guess Line lists from HAPI Call

The next section of the example contains a function and function call where the output is a MATS compatible line list. The HITRANlinelist_to_csv takes a list of global isotope numbers and minimum and maximum wavenumbers as variables with a tablename, filename, temperature, and option to calculate the speed-dependent broadening as optional parameters. The spectroscopic data for the isotopes in the global isotope list over the specified wavenumber range will be retrieved from HITRANOnline. HITRAN breaks-up the HTP line parameters into temperature regimes, so the temperature specied selects for the most relevant parameters. The tablename parameter sets the ame of the table generated by the HAPI call, where the filename parameter sets the base for the resulting .csv files. The HITRANlinelist_to_csv function generates two outputs, the first is a HITRAN line list with all data available in HITRAN for the isotopes and spectral range (based on the parsed parameters in the HITRAN_parameter_list). The second file generates the highest order line shape list using the HITRAN values and formats for MATS. This line list also will fill in temperature dependences and missing broadener information and if calculate_aw is True calculate the speed dependence based on theory.

```
2. Goes through the data provided from HITRAN and collects the highest order line shape.

→ information.

3. Where there is missing information for the complete HTP linelist set to 0 or make.
→ the following substitutions
    - for missing diluent information fill values with air
    - set missing shift temperature dependences equal to 0 (linear temperature.
→dependence)
    - calculate the SD_gamma based on theory (if calculate aw = True)
    - set the gamma_2 temperature exponent equal to the gamma0 temperature exponent
    - set the delta_2 temperature exponent equal to the delta0 temperature exponent
    - set the dicke narrowing temperature exponent to 1
4. Save the supplemented and MATS formatted HITRAN information as filename_initguess.csv
Parameters
_____
isotopes : list
    list of the HITRAN global isotope numbers to include in the HAPI call
minimum_wavenumber : float
    minimum line center (cm-1) to include in the HAPI call.
maximum_wavenumber : float
    maximum line center (cm-1) to include in the HAPI call.
tablename: str, optional
    desired name for table generated from HAPI call. The default is 'tmp'.
temperature : float, optional
    Nominal temperature of interest. HITRAN breaks-up the HTP line parameters into.
→temperature regimes. This allows for selection of the most approriate parameter.
→information. The default is 296.
calculate_aw : float, optional
    Boolean flag to present option to calculate speed-dependent shift based on.
→theoretical approximation based on temperature exponent, mass of the absorber, and
→mass of the perturber
Returns
linelist_select : dataframe
    pandas dataframe corresponding to the HITRAN information supplemented by
→ theoretical values/assumptions.
tablename_HITRAN.csv : .csv file
    file corresponding to available HITRAN information
tablename_initguess.csv : .csv file
    file corresponding to available HITRAN information supplemented by theory and
→assumptions in MATS format
.....
```

20 Chapter 1. Contents

Use Example for HITRANlinelist_to_csv

To select the relevant information from HITRAN you will need to provide:

- table name (str)
- an array containing the global isotope numbers of the molecules/isotopes of interest
- the minimum and maximum wavenumbers
- the minimum line intensity of interest

The example below would generate a HITRAN table named 'CO' that contains all CO isotopes (global isotopes 26 - 31) and the most abundant CO_2 isotope (global isotope 7) in the spectral region between 6200 and 6500 cm^{-1} that have line intensities greater than 1e-30 $\frac{cm^{-1}}{molecule \cdot cm^{-2}}$. Additionally, it calculates the theoretical aw value and assumes that measurements are at 296 (temperature = 296 is default).

```
tablename = 'CO'
global_isotopes = [26, 27, 28, 29, 30,31,7]
wave_min = 6200
wave_max = 6500
intensity_cutoff = 1e-30

linelist_select = (HITRANlinelist_to_csv(global_isotopes, wave_min, wave_max, tablename_

== tablename, calculate_aw = True))
```

1.5 Examples

1.5.1 MATS Example Scripts

The MATS package includes examples highlighting major features.

Fitting Experimental Spectra

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

This example fits isolated Oxygen A-Band transitions in experimental spectra

Import Modules and Set-Up

This example starts with importing modules and setting up file locations

```
import numpy as np
import pandas as pd
import os, sys
import matplotlib.pyplot as plt
from matplotlib import gridspec
%matplotlib inline
import MATS
```

Optional import of seaborn package for figure generation

1.5. Examples 21

```
import seaborn as sns
sns.set_style("whitegrid")
sns.set_style("ticks")
sns.set_context("poster")
```

If not working within the MATS file structure, change the path to the working directory that contains experimental spectra or to the folder that you want to work in.

```
os.chdir(path)
```

Load Spectra from files

There are two options for generating *Spectrum* objects. The first is from a file by instantiating an instance of the class, which is the focus of this example. The second option is by using the *simulate_spectrum()* function described in the fitting synthetic spectra example.

Before generating *Spectrum* objects from your experimental data, it is helpful to set some variables for terms that will be used in all of the *Spectrum* objects and/or throughout the fitting. In this example the minimum intensity threshold for simulation (IntensityThreshold), the minimum line intensity of lines fit in the analysis (Fit_Intensity), the order of the polynomial used in the baseline fits, and the names of columns used for the absorption, frequency, pressure, and temperature data are defined at the top of the example.

```
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-24 #intensities must be above this value for the line to be fit
order_baseline_fit = 1
tau_column = 'Corrected Tau (us)' # Mean tau/us
freq_column = 'Total Frequency (Detuning)' # Total Frequency /MHz
pressure_column = 'Cavity Pressure /Torr'
temperature_column = 'Cavity Temperature Side 2 /C'
```

After that, 4 instances of the *Spectrum* class are instantiated from 4 experimental spectra. In the class instantiation, the mole fraction of the oxygen sample used is defined, the etalon amplitude and period are defined, the sample is confirmed to be at natural abundance, the diluent is set to air, and the columns defined for pressure, temperature, frequency, and absorbance data are set. All of these spectra were collected at nominally 296K, so the nominal temperature is set to be 296. This variable is only used for a flag as to whether to allow temperature exponents to be floatable parameters and for generation of line mixing parameters for each nominal temperature as the temperature dependence of line mixing is not currently implemented.

```
input_freq = True, frequency_column = freq_column,
                     input_tau = True, tau_column = tau_column, tau_stats_column = None,
                     pressure_column = pressure_column, temperature_column = temperature_
⇔column,
                     nominal_temperature = 296, x_shift = 0.00)
spec_3 = MATS.Spectrum('190513_2per_82_forfit',
                     molefraction = { 7 :0.01949}, natural_abundance = True, diluent =
etalons = {1:[0.001172, 1.19574]},
                     input_freq = True, frequency_column = freq_column,
                     input_tau = True, tau_column = tau_column, tau_stats_column = None,
                     pressure_column = pressure_column, temperature_column = temperature_

    column,
                     nominal_temperature = 296, x_shift = 0.00)
spec_4 = MATS.Spectrum('190514_2per_126_forfit',
                    molefraction = { 7 : 0.01949}, natural_abundance = True, diluent =
etalons = \{1:[0.001172, 1.19574]\},
                     input_freq = True, frequency_column = freq_column,
                     input_tau = True, tau_column = tau_column, tau_stats_column = None,
                     pressure_column = pressure_column, temperature_column = temperature_
⇔column,
                     nominal_temperature = 296, x_shift = 0.00)
```

The <code>Spectrum.plot_wave_alpha()</code> function can be called to plot any of the spectra.

spec_1.plot_wave_alpha()

1.5. Examples 23

Generate a Dataset

If the parameter line list hasn't been read in from a .csv file, then do that now making sure to switch to the appropriate directories as needed. This file can be generated following the *Generating Parameter Line lists*. Alternatively, the code block below shows how to use the py:func:*LoadLineListData* function to read in the line list provided for the Oxygen A-Band.

```
from MATS.linelistdata import linelistdata
PARAM_LINELIST = linelistdata['02_ABand_Drouin_2017_linelist']
```

The next step is to combine all desired Spectrum objects into a *Dataset* object, where we give the dataset a name and specify the initial parameter line list to use for the fits.

The *Dataset* class contains a function to generate a baseline line list, analogous to the one for the parameter line list (done outside of this example), based on the order of the baselines, etalons, molecules, x-shift parameters, and segments as defined by both the spectrum objects.

```
BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
```

Generate Fit Parameter Files

The next section of code uses the *Generate_FitParam_File* class to define what line shape to use for the initial fits, whether to use line mixing, the minimum line intensity to fit a line, mimimum intensity to included in the simulation, and for each line parameter whether that parameter is going to be constrained across all spectra or whether there will be a parameter for each spectrum (multi-spectrum vs single-spectrum fits) on a parameter by parameter basis. In the example below, the SDVP line profile without line mixing will be used to fit lines with line intensities greater than 1e-24 and the line centers and line intensities will be allowed to float for each line, while all other lines are constrained across all spectra in the dataset. The additional_columns parameter allows for inclusion of additional columns in the line shape parameter line list to be included in the output file.

```
FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST, 
lineprofile = 'SDVP', linemixing = False,
fit_intensity = Fit_Intensity, threshold_intensity = 
lintensityThreshold, sim_window = wave_range,
nu_constrain = False, sw_constrain = False, gamma0_
lineprofile = 'SDVP', linemixing = False,
intensityThreshold, sim_window = wave_range,
nu_constrain = False, sw_constrain = False, gamma0_
lineprofile = 'SDVP', linemixing = False,
intensityThreshold_intensity = 
lineprofile = 'SDVP', linemixing = 
lineprofile = 'SDVP',
```

The next step is to generate fit parameter and baseline line lists that include columns that specify whether that parameter should be varied during fitting, in addition to adding uncertainty columns for the fit error for each parameter. For the following example the line centers, line intensities, collisional half-widths, and speed-dependent broadening terms will be floated for all main oxygen isotopes for lines where the line intensity is greater than 1e-24. Additionally, the baseline terms will float, as will the etalon amplitude and phase.

```
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {7:{1:True, 2:False, 3:
\rightarrowFalse}}, vary_sw = {7:{1:True, 2:False, 3:False}},
                                                     vary_gamma0 = {7:{1: True, 2:False, 3:__
\rightarrow False}, 1:{1:False}}, vary_n_gamma0 = {7:{1:True}},
                                                     vary_delta0 = {7:{1: False, 2:False, 3:_
\rightarrow False}, 1:{1:False}}, vary_n_delta0 = {7:{1:True}},
                                                     vary_aw = {7:{1: True, 2:False, 3:_
\rightarrow False}, 1:{1:False}}, vary_n_gamma2 = {7:{1:False}},
                                                     vary_as = {}, vary_n_delta2 = {7:{1:
→False}},
                                                     vary_nuVC = {7:{1:False}}, vary_n_nuVC_
\rightarrow = \{7:\{1:False\}\},\
                                                     vary_eta = \{\}, vary_linemixing = \{7:\{1:
→False}})
FITPARAMS.generate_fit_baseline_linelist(vary_baseline = True, vary_molefraction = {7:
→False, 1:False}, vary_xshift = False,
                                      vary_etalon_amp= True, vary_etalon_period= False,__
→vary_etalon_phase= True)
```

These functions will generate .csv files corresponding to these selections, which are read in by the Fit_DataSet class instantiation. This means that edits can be made manually to the .csv files or reading in the .csv, editing, and resaving before the next code segment is run.

Fit Dataset

Instantiating the <code>Fit_DataSet</code> class reads in the information from the baseline and parameter linelists generated in the previous step. It also allows for limits to be placed on the parameters, so that they don't result in divergent solutions. The example below includes several limits including limiting the line center to be within 0.1 cm-1 of the initial guess and the Line intensity to be within a factor of 2 of the intial guess. Placing limits on the parameters can be restrictive on the solution and cause the fit to not converge or return NaN for the standard error if it doesn't allow for a local minima to be found. The <code>Fit_DataSet</code> class also allows for the option to weight_spectra, currently this is set to False. Later in this example we will explore using weights in fitting.

```
fit_data = MATS.Fit_DataSet(SPECTRA,'Baseline_LineList', 'Parameter_LineList', minimum_
→parameter_fit_intensity = Fit_Intensity, weight_spectra = False,
            baseline_limit = False, baseline_limit_factor = 10,
            molefraction_limit = False, molefraction_limit_factor = 1.1,
            etalon_limit = False, etalon_limit_factor = 2, #phase is constrained to +/-u
\hookrightarrow2pi,
            x_shift_limit = False, x_shift_limit_magnitude = 0.5,
            nu_limit = True, nu_limit_magnitude = 0.1,
            sw_limit = True, sw_limit_factor = 2,
            gamma0_limit = False, gamma0_limit_factor = 3, n_gamma0_limit= False, n_
\rightarrowgamma0_limit_factor = 50,
            delta0_limit = False, delta0_limit_factor = 2, n_delta0_limit = False, n_

delta0_limit_factor = 50,
            SD_gamma_limit = False, SD_gamma_limit_factor = 2, n_gamma2_limit = False, ___
\rightarrown_gamma2_limit_factor = 50,
            SD_delta_limit = False, SD_delta_limit_factor = 50, n_delta2_limit = False,__
nuVC_limit = False, nuVC_limit_factor = 2, n_nuVC_limit = False, n_nuVC_
```

(continues on next page)

1.5. Examples 25

The next step is to generate the lmfit params dictionary object through the Fit_DataSet.generate_params() function. This translates baseline and parameter line list .csv files into a lmfit parameter dictionary that is used in the fits. After the parameters object is generated you can use the keys to set values and impose constraints on individual parameters, if desired. While this is not coded in the MATS toolkit, it is incredibly powerful as it lets you define min, max, vary, and expression values for any parameter. In the example below, two additional constraints are imposed on specific fit parameters. The first constrains all speed-dependent width parameters to be between the values of 0.01 and 0.25 and the second forces the amplitude of the etalon to be constant across all spectra.

The params file is then used to fit the spectra in the dataset using the <code>Fit_DataSet.fit_data()</code> function, where the result is a lmfit result object. The lmft prettyprint function prints the parameter fit results. Included below is an abbreviated prettyprint output that not only shows the fit result values and standard errors, but also highlights that constraints were imposed on the SD_gamma (speed dependent broadening) parameters and an expression was imposed on the etalon_amplitudes. It also shows that the there is a line intensity reported for every line and spectrum (sw_spectrum number_ line) as the line intensities were not constrained to global fits. The reported sw shows that the fitted line intensity value is scaled by the minimum fit value. This scalar term is saved in a column called sw_scale_factor for reference. Scaling the line intensity aids in the fitting as line intensities are so much smaller than other fitted parameters.

```
result = fit_data.fit_data(params, wing_cutoff = 25)
print (result.params.pretty_print())
```

Name	Value	Min	Max	Stderr	Vary	Expr	Brute_Step
Pressure_1_1	0.07911	-inf	inf	0	False	None	None
Pressure_2_1	0.06556	-inf	inf	0	False	None	None
Pressure_3_1	0.04602	-inf	inf	0	False	None	None
Pressure_4_1	0.02488	-inf	inf	0	False	None	None
SD_delta_air_line_1	0	-inf	inf	0	False	None	None
SD_delta_air_line_10	0	-inf	inf	0	False	None	None
SD_delta_air_line_13	0	-inf	inf	0	False	None	None
SD_delta_air_line_25	0	-inf	inf	0	False	None	None
SD_delta_air_line_26	0	-inf	inf	0	False	None	None
SD_gamma_air_line_1	0.1	0.01	0.25	0	False	None	None
SD_gamma_air_line_10	0.1137	0.01	0.25	0.0008273	True	None	None
SD_gamma_air_line_13	0.1313	0.01	0.25	0.001115	True	None	None
SD_gamma_air_line_25	0.09	0.01	0.25	0	False	None	None
SD_gamma_air_line_26	0.1	0.01	0.25	0	False	None	None
etalon_1_amp_1_1	0.001762	-inf	inf	4.007e-05	True	None	None

						(continued i	rom previous	page)
etalon_1_amp_2_1	0.001762	-inf	inf	4.007e-05	False	etalon_1_a	mp_1_1	
-None								
etalon_1_amp_3_1	0.001762	-inf	inf	4.007e-05	False	etalon_1_a	mp_1_1	ш
∽None								
etalon_1_amp_4_1	0.001762	-inf	inf	4.007e-05	False	etalon_1_a	mp_1_1	ш
∽None								
etalon_1_freq_1_1	1.196	-inf	inf	0	False	None	None	
etalon_1_freq_2_1	1.196	-inf	inf	0	False	None	None	
etalon_1_freq_3_1	1.196	-inf	inf	0	False	None	None	
etalon_1_freq_4_1	1.196	-inf	inf	0	False	None	None	
etalon_1_phase_1_1	-0.3479	-inf	inf	0.04585	True	None	None	
etalon_1_phase_2_1	-0.09384	-inf	inf	0.04288	True	None	None	
etalon_1_phase_3_1	-1.04	-inf	inf	0.04446	True	None	None	
etalon_1_phase_4_1	-1.266	-inf	inf	0.04394	True	None	None	
<pre>gamma0_air_line_1</pre>	0.04	-inf	inf	0	False	None	None	
<pre>gamma0_air_line_10</pre>	0.04501	-inf	inf	4.919e-05	True	None	None	
<pre>gamma0_air_line_13</pre>	0.04339	-inf	inf	7.531e- 0 5	True	None	None	
<pre>gamma0_air_line_25</pre>	0.04	-inf	inf	0	False	None	None	
<pre>gamma0_air_line_26</pre>	0.04	-inf	inf	0	False	None	None	
sw_1_line_1	4.369	2.184	8.738	0	False	None	None	
sw_1_line_10	4.735	2.4	9.598	0.0008558	True	None	None	
sw_1_line_13	3.087	1.562	6.246	0.0007302	True	None	None	
sw_1_line_25	2.083	1.042	4.166	0	False	None	None	
sw_1_line_26	3.399	1.699	6.798	0	False	None	None	
sw_2_line_1	4.369	2.184	8.738	0	False	None	None	
sw_2_line_10	4.752	2.4	9.598	0.0006929	True	None	None	
sw_2_line_13	3.091	1.562	6.246	0.0006913	True	None	None	
sw_2_line_25	2.083	1.042	4.166	0	False	None	None	
sw_2_line_26	3.399	1.699	6.798	0	False	None	None	
sw_3_line_1	4.369	2.184	8.738	0	False	None	None	
sw_3_line_10	4.744	2.4		0.0007446	True	None	None	
sw_3_line_13	3.095	1.562		0.0007499	True	None	None	
sw_3_line_25	2.083	1.042	4.166	0	False	None	None	
sw_3_line_26	3.399	1.699	6.798	0	False	None	None	
sw_4_line_1	4.369	2.184	8.738	0	False	None	None	
sw_4_line_10	4.8	2.4	9.598	0.001158	True	None	None	
sw_4_line_13	3.118	1.562	6.246	0.00117	True	None	None	
sw_4_line_25	2.083	1.042	4.166	0	False	None	None	
sw_4_line_26	3.399	1.699	6.798	0	False	None	None	

The last segment of code provides residual plots and updates residuals through the $Fit_DataSet.$ $residual_analysis()$ and

 ${\it Dataset.plot_model_residuals()} \ \ {\it functions, updates the parameter and baseline line lists through}$

 $Fit_DataSet.update_params(), and generates a summary file with the fit results using$

Dataset.generate_summary_file().

```
fit_data.residual_analysis(result, indv_resid_plot=True)
fit_data.update_params(result)
SPECTRA.generate_summary_file(save_file = True)
SPECTRA.plot_model_residuals()
```

1.5. Examples 27

Call to the *Spectrum.fft_spectrum()* function takes an FFT of the residuals. If we hadn't included the etalon, the result of the *Spectrum.fft_spectrum()* function would show a peak with the most abundant period being 1.271443 cm-1 and an amplitude of 0.001364, which were used as the initial guess for the etalon in the spectrum class definitions. The more etalon periods present in the spectral region being fit the more precise the etalon amplitude and frequency determined by the FFT will be.

If we hadn't included the etalon, the fit residuals and FFT would like the plots below:

Using these values as the etalon period and amplitude give the fit residuals shown in the use example above and when incorporated the FFT no longer shows a substantial peak at 1.271443 cm-1.

1.5. Examples 29

Explore the Ability to Weight Spectra

MATS v2 introduced the ability to weight spectra in two different ways, using the stats column defined for each spectrum or weighting the entire spectrum. In the first example below, we use use the same code that was introduced previously, but set the weight_spectra variable in the Fit_DataSet definitions to True.

This weights the contribution to the solution at each point in each spectrum by 1/tau_stats_column. If the tau stats column is not defined in the *Spectrum* then this will default to equal weights for all data points.

```
fit_data = MATS.Fit_DataSet(SPECTRA,'Baseline_LineList', 'Parameter_LineList', minimum_
→parameter_fit_intensity = Fit_Intensity, weight_spectra = True,
             baseline_limit = False, baseline_limit_factor = 10,
             molefraction_limit = False, molefraction_limit_factor = 1.1,
             etalon_limit = False, etalon_limit_factor = 2, #phase is constrained to +/-u
⇔2pi,
             x_shift_limit = False, x_shift_limit_magnitude = 0.5,
             nu_limit = True, nu_limit_magnitude = 0.1,
             sw_limit = True, sw_limit_factor = 2,
             gamma0_limit = False, gamma0_limit_factor = 3, n_gamma0_limit= False, n_
\rightarrowgamma0_limit_factor = 50,
             delta0_limit = False, delta0_limit_factor = 2, n_delta0_limit = False, n_

delta0_limit_factor = 50,
             SD_gamma_limit = False, SD_gamma_limit_factor = 2, n_gamma2_limit = False, ___
\rightarrown_gamma2_limit_factor = 50,
             SD_delta_limit = False, SD_delta_limit_factor = 50, n_delta2_limit = False, __
nuVC_limit = False, nuVC_limit_factor = 2, n_nuVC_limit = False, n_nuVC_
\rightarrow limit_factor = 50,
             eta_limit = False, eta_limit_factor = 50, linemixing_limit = False,
→linemixing_limit_factor = 50)
params = fit_data.generate_params()
```

For this example the statistics are relatively consistent across all points in the dataset, as shown in the plot below, so the fit residuals are very similar with some slight differences in the quality of fits and the parameter fit results.

The other option for weighting, that can be used with or without the point by point weighting, is to weight each spectrum by setting the spectrum weight value. The default for each spectrum is 1. This value can be set through the weight parameter in the spectrum definition or by using the <code>Spectrum.set_weight()</code> function, which is shown below.

For all weighting options, the residuals are adjusted by the weight factors. For this example, where the spec_1 is given a weight of 0 this effectively removed spec_1 from the solution consideration depicted by the flat residuals for spectrum

1.5. Examples 31

190510_2per_43_forfit.

```
spec_1.set_weight(0)
FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST, LINELIST, LINELI
→lineprofile = 'SDVP', linemixing = False,
                                                           fit_intensity = Fit_Intensity, threshold_intensity =__
→IntensityThreshold, sim_window = wave_range,
                                                          nu_constrain = False, sw_constrain = False, gamma0_
aw_constrain = True, as_constrain = True,
                                                            nuVC_constrain = True, eta_constrain =True, linemixing_
#additional_columns = ['trans_id', 'local_lower_quanta', 'm'])
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {7:{1:True, 2:False, 3:
\rightarrowFalse}}, vary_sw = {7:{1:True, 2:False, 3:False}},
                                                                                             vary_gamma0 = {7:{1: True, 2:False, 3:_
\rightarrow False}, 1:{1:False}}, vary_n_gamma0 = {7:{1:True}},
                                                                                             vary_delta0 = {7:{1: False, 2:False, 3:__
\rightarrowFalse}, 1:{1:False}}, vary_n_delta0 = {7:{1:True}},
                                                                                             vary_aw = {7:{1: True, 2:False, 3:_
\rightarrowFalse}, 1:{1:False}}, vary_n_gamma2 = {7:{1:False}},
                                                                                            vary_as = {}, vary_n_delta2 = {7:{1:
→False}},
                                                                                             vary_nuVC = {7:{1:False}}, vary_n_nuVC_
\rightarrow= {7:{1:False}},
                                                                                             vary_eta = {}, vary_linemixing = {7:{1:
→False}})
FITPARAMS.generate_fit_baseline_linelist(vary_baseline = True, vary_molefraction = {7:
→False, 1:False}, vary_xshift = False,
                                                                  vary_etalon_amp= True, vary_etalon_period= False,__
→vary_etalon_phase= True)
fit_data = MATS.Fit_DataSet(SPECTRA,'Baseline_LineList', 'Parameter_LineList', minimum_
→parameter_fit_intensity = Fit_Intensity, weight_spectra = True,
                        baseline_limit = False, baseline_limit_factor = 10,
                        molefraction_limit = False, molefraction_limit_factor = 1.1,
                        etalon_limit = False, etalon_limit_factor = 2, #phase is constrained to +/-u
⇔2pi,
                        x_shift_limit = False, x_shift_limit_magnitude = 0.5,
                        nu_limit = True, nu_limit_magnitude = 0.1,
                        sw_limit = True, sw_limit_factor = 2,
                        gamma0_limit = False, gamma0_limit_factor = 3, n_gamma0_limit= False, n_
\rightarrowgamma0_limit_factor = 50,
                        delta0_limit = False, delta0_limit_factor = 2, n_delta0_limit = False, n_
→delta0_limit_factor = 50,
                        SD_gamma_limit = False, SD_gamma_limit_factor = 2, n_gamma2_limit = False, ___
\rightarrown_gamma2_limit_factor = 50,
                        SD_delta_limit = False, SD_delta_limit_factor = 50, n_delta2_limit = False,__
```

```
nuVC_limit = False, nuVC_limit_factor = 2, n_nuVC_limit = False, n_nuVC_
\rightarrowlimit_factor = 50,
             eta_limit = False, eta_limit_factor = 50, linemixing_limit = False, ___
→linemixing_limit_factor = 50)
params = fit_data.generate_params()
for param in params:
if 'SD_gamma' in param:
     if params[param].vary == True:
         params[param].set(min = 0.01, max = 0.25)
if 'etalon_1_amp' in param:
     if param != 'etalon_1_amp_1_1':
         params[param].set(expr='etalon_1_amp_1_1')
result = fit_data.fit_data(params, wing_cutoff = 25)
print (result.params.pretty_print())
fit_data.residual_analysis(result, indv_resid_plot=True)
fit_data.update_params(result)
SPECTRA.generate_summary_file(save_file = True)
SPECTRA.plot_model_residuals()
```


Fitting Synthetic Spectra

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

This example simulates and fits Oxygen A-Band spectra

Import Modules and Set-Up

This example starts with importing modules and setting up file locations

```
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from matplotlib import gridspec
import MATS
```

Optional import of seaborn package for figure generation

```
import seaborn as sns
sns.set_style("whitegrid")
sns.set_style("ticks")
sns.set_context("poster")
```

If you aren't using the MATS file strucutre, change the path to the working directory that contains experimental spectra or to the folder that you want to work in.

```
os.chdir(path)
```

Simulate Spectra

If you are simulating spectra, opposed to reading them in from a file as discussed above, then you can use the <code>simulate_spectrum()</code> function.

When simulating spectra, the first step is to read in the reference line list. This file can be generated following the *Generating Parameter Line lists* and read in using pd.read_csv function. The following code reads in the reference line list using the py:func:*LoadLineListData* function to read in the line list provided for the Oxygen A-Band.

```
from MATS.linelistdata import linelistdata
PARAM_LINELIST = linelistdata['02_ABand_Drouin_2017_linelist']
```

Just as you would do if reading in the experimental spectrum, this example defines some common simulation and fit variables. In addition to variables that would be used in fitting experimental spectra, the minimum and maximum wavenumbers for the simulation and the simulation wavenumber spacing are defined. Alternatively, a wavenumbers term can be used and an array can be used as the input defining the x-axis. This feature allows the use of a non-uniform x-axis and will take precident of the use of wave_min, wave_max, and wave_step parameterization.

The baseline is defined by a polynomial where the array index is the parameter coefficient order, such that the [1, 0] would correspond to a linear baseline with a slope of 0 and an offset of 1.

```
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
```

The simulate_spectrum() function also allows for error to be added in the following ways:

- to the absorption axis through signal-to-noise ratio (SNR). The SNR is implemented by adding gaussian noise to the spectra such that the (maximum alpha minimum alpha) / noise is equal to the set SNR.
- to the wavenumber axis through the wave_err parameter. The wavenumber error is implemented by adding a gaussian noise error of the specified magnitude to the wavenumber axis.
- to the mole fraction through the molefraction_err parameter. The molefraction error is implemented as a percent error bias on each (could enter a negative percent error to get negative offset). This mimics the maximum impact that a constant error in sample mole fraction would have.
- to the temperature/pressure through the temperature_err and pressure_err dictionaries. In experiments there are generally two type of errors with pressure and temperature measurements. The first is a constant bias in the reading. The second type of error is an actual change in the pressure/temperature during the collection of the spectrum. To account for both error types the pressure_err and temperature_err are dictionaries, where the keys correspond to 'bias/per_bias' (bias for temperature and per_bias for pressure), function (allows 'linear' or 'sine'), and params. If the function is 'linear' then the param keys are 'm' and 'b' corresponding to the slope and interecept. If the function is 'sine' then the param keys are 'amp', 'freq', and 'phase' corresponding to the amplitude, period, and phase of the sine function. For both temperature and pressure, the pressure/temperature recorded in the simulated spectra output include the average pressure or temperature over the segment (analogous to the frequency of the pressure/temperature measurement in an experiment) and does not include the bias in pressure/temperature as this is would be an unknown in an experiment.

```
SNR = 4000
wave_error = 1e-4
temperature_err = {'bias': 0.01, 'function': None, 'params': {}}
pressure_err = {'per_bias': 0.01, 'function': None, 'params': {}}
molefraction_err = {7:0.01}
```

These parameters and the additional settings for filenames and number of segments can be used to call the <code>simulate_spectrum()</code> function setting the output equal to a variable as would be done for generating an instance of the <code>Spectrum</code> class from a .csv file. This makes it simple to transition code from analysis of experimental spectra to error analysis through simulations.

```
spec_2 = MATS.simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_
→error = wave_error,
                    SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→temperature_err = temperature_err, pressure = 50,
                    pressure_err = pressure_err,
                    wing_cutoff = 50, wing_method = 'wing_cutoff', filename = '50_torr
→', molefraction = sample_molefraction, molefraction_err = molefraction_err,
                    natural_abundance = True, nominal_temperature = 296,__
→IntensityThreshold = 1e-30, num_segments = 1)
spec_3 = MATS.simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_
→error = wave_error,
                    SNR = SNR, baseline_terms = baseline_terms, temperature = 25,_
→temperature_err = temperature_err, pressure = 100,
                    pressure_err = pressure_err,
                    wing_cutoff = 50, wing_method = 'wing_cutoff', filename = '100_torr
→', molefraction = sample_molefraction, molefraction_err = molefraction_err,
                    natural_abundance = True, nominal_temperature = 296,__
→IntensityThreshold = 1e-30, num_segments = 1)
spec_4 = MATS.simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_
→error = wave_error,
                    SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→temperature_err = temperature_err, pressure = 200,
                    pressure_err = pressure_err,
                    wing_cutoff = 50, wing_method = 'wing_cutoff', filename = '200_torr
→', molefraction = sample_molefraction, molefraction_err = molefraction_err,
                    natural_abundance = True, nominal_temperature = 296,__
→IntensityThreshold = 1e-30, num_segments = 1)
```

Generate a Dataset

The procedure for analysis for both simulating and loading spectrum are the same as described in *Fitting Experimental Spectra*. The next step is to combine all desired *Spectrum* objects

into a Dataset object, where we give the dataset a name and specify the parameter line list to use for analysis/

```
SPECTRA = MATS.Dataset([spec_1, spec_2, spec_3, spec_4], 'Line Intensity', PARAM_
LINELIST)
```

The *Dataset* class contains a function to generate a baseline line list, analogous to the one for the parameter line list done outside of this example, based on the order of the baseline fit, etalons, molecules, x-shift parameters, and segments as defined by both the spectrum and dataset objects.

```
BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
```

Generate Fit Parameter Files

The next section of code uses the Generate_FitParam_File class to define what line shape to use for the initial fits, whether to use line mixing, the minimum line intensity to fit a line, mimimum intensity to included in the simulation, and for each line parameter whether that parameter is going to be constrained across all spectra or whether there will be a parameter for each spectrum (multi-spectrum vs single-spectrum fits) on a parameter by parameter basis. In the example below, the SDVP line profile without line mixing will be used to fit lines with line intensities greater than 1e-24 with no parameters floated.

```
FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST, LINELIST, LINELI
  →lineprofile = 'SDVP', linemixing = False,
                                                                                                                                                                          fit_intensity = Fit_Intensity, threshold_intensity = __
  →IntensityThreshold, sim_window = wave_range,
                                                                                                                                                                         nu_constrain = True, sw_constrain = True, gamma0_
  aw_constrain = True, as_constrain = True,
                                                                                                                                                                              nuVC_constrain = True, eta_constrain =True, linemixing_
  →constrain = True)
```

The next step is to generate fit parameter and baseline line lists that include columns that specify whether that parameter should be varied during fitting, in addition to adding error columns for the fit error for each parameter. For the following example the line centers, line intensities, collisional half-widths, and speed-dependent broadening terms will be floated for all main oxygen isotopes for lines where the line intensity is greater than 1e-24. None of the baseline parameters are floated

```
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {7:{1:False, 2:False, 3:
\rightarrowFalse}}, vary_sw = {7:{1:False, 2:False, 3:False}},
                                                  \rightarrow False}, 1:{1:False}}, vary_n_gamma0 = {7:{1:True}},
                                                  vary_delta0 = {7:{1: False, 2:False, 3:_
\rightarrow False}, 1:{1:False}}, vary_n_delta0 = {7:{1:True}},
                                                  vary_aw = {7:{1: False, 2:False, 3:_
\rightarrowFalse}, 1:{1:False}}, vary_n_gamma2 = {7:{1:False}},
                                                 vary_as = {}, vary_n_delta2 = {}7:{}1:
→False}},
                                                 vary_nuVC = {7:{1:False}}, vary_n_nuVC_
\rightarrow= {7:{1:False}},
                                                 vary_eta = {}, vary_linemixing = {7:{1:
→False}})
FITPARAMS.generate_fit_baseline_linelist(vary_baseline = False, vary_molefraction = {7:
→False, 1:False}, vary_xshift = False,
                                   vary_etalon_amp= False, vary_etalon_period= False,
→vary_etalon_phase= False,
                                      vary_pressure = False, vary_temperature = False)
```

These functions will generate .csv files corresponding to these selections, which are read in by the Fit_DataSet class instantiation. When simulating spectra, if you don't adjust the baseline and parameter line lists, then your simulated variables are equal to your initial guesses. This can lead to a local minimum where the fit will not move from the initial guesses. The last segment of the code shows an example where random uncertainties from the simulated values are applied and then the Parameter line list file is resaved.

```
Parameter_LineList = pd.read_csv('Parameter_LineList.csv', index_col = 0)
```

1.5. Examples 37

```
for index in Parameter_LineList[(Parameter_LineList['sw']>1) & (Parameter_LineList['nu']
-<wave_max) & (Parameter_LineList['nu']>wave_min)].index.unique():
Parameter_LineList.loc[Parameter_LineList.index == index, 'nu'] = Parameter_
LineList[Parameter_LineList.index == index]['nu'].values[0] + np.random.normal(loc = 0,
\rightarrow scale =0.005) #adjust by random number scale 0.005 cm-1
Parameter_LineList.loc[Parameter_LineList.index == index, 'sw'] = Parameter_
→LineList[Parameter_LineList.index == index]['sw'].values[0]*(1 + np.random.normal(loc_
\rightarrow= 0, scale =0.01)) # adjust by random amount at 1% scale
Parameter_LineList.loc[Parameter_LineList.index == index, 'gamma0_air'] = Parameter_
→LineList[Parameter_LineList.index == index]['gamma0_air'].values[0]*(1 + np.random.
→normal(loc = 0, scale =0.01)) # adjust by random amount at 1% scale
Parameter_LineList.loc[Parameter_LineList.index == index, 'delta0_air'] = Parameter_
→LineList[Parameter_LineList.index == index]['delta0_air'].values[0]*(1 + np.random.
→normal(loc = 0, scale =0.02)) # adjust by random amount at 2% scale
Parameter_LineList.loc[Parameter_LineList.index == index, 'SD_gamma_air'] = Parameter_
 \begin{tabular}{ll} $\hookrightarrow$ LineList[Parameter\_LineList.index == index]['SD\_gamma\_air'].values[0]*(1 + np.random.) \\ \end{tabular} 
→normal(loc = 0, scale =0.1)) # adjust by random amount at 10% scale
Parameter_LineList.to_csv('Parameter_LineList.csv')
```

Fit Dataset

Instantiating the <code>Fit_DataSet</code> class reads in the information from the baseline and parameter linelists generated in the previous step. The Fitting Experimental Spectra documentation gives a more basic example of how to perform a fit. The example below iterates on a fit, where in the first iteration no parameters are floated, in the second iteration the line centers and line intensities are floated, and in the final iteration the collisional broadening, pressure shift, and speed-dependent broadening are floated. Sometimes it is not possible to float all parameters at the same time, specifically with poor initial guesses for line center. In that case an iterative approach like this is advantageous.

The iteration could also be applied to the lmfit parameter object by setting the the vary term, opposed to through the Parameter_LineList. In that approach the final Parameter_LineList would have the standard uncertainities and fit values saved, but wouldn't necessarily have the parameter_vary column appropriately set.

```
iteration = 0
while iteration <= 2:</pre>
print ('ITERATION ' + str(iteration))
if iteration == 1:
     Parameter_LineList = pd.read_csv('Parameter_LineList.csv', index_col = 0)
     Parameter_LineList.loc[(Parameter_LineList['sw']>1) & (Parameter_LineList['nu']

→<wave_max) & (Parameter_LineList['nu']>wave_min), 'nu_vary'] = True
     Parameter_LineList.loc[(Parameter_LineList['sw']>1) & (Parameter_LineList['nu']
→<wave_max) & (Parameter_LineList['nu']>wave_min), 'sw_vary'] = True
     Parameter_LineList.to_csv('Parameter_LineList.csv')
if iteration ==2:
    Parameter_LineList = pd.read_csv('Parameter_LineList.csv', index_col = 0)
     Parameter_LineList.loc[(Parameter_LineList['sw']>1) & (Parameter_LineList['nu']
→<wave_max) & (Parameter_LineList['nu']>wave_min), 'gamma0_air_vary'] = True
     Parameter_LineList.loc[(Parameter_LineList['sw']>1) & (Parameter_LineList['nu']
→<wave_max) & (Parameter_LineList['nu']>wave_min), 'delta0_air_vary'] = True
```

The plots below show the results from the various iterations, where the fit residuals decrease with each iteration.

Iteration 0

Iteration 1

Iteration 2

40 Chapter 1. Contents

Analysis of ASCENDS Line Spectra

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

The 30012<-00001 CO2 band is frequently used for remote sensing applications, where the R16e line in this band centered at 6359.967 cm-1 is the target line for the ASCENDS - Active Sensing of CO2 Emissions over Nights, Days, and Seasons mission. This makes this line an important target for spectroscopic reference data and thus a convenient target for single line spectroscopic studies or examples.

Data originally reported in Long, D., et al., Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015. 161: p. 35-40. This example is explicitly referenced in the Adkins and Hodges, Assessment of the precision, bias and numerical correlation of fitted parameters obtained by multi-spectrum fits of the Hartmann-Tran line profile to simulated spectra, JQSRT (under review).

This example. shows the fitting of real experimental data. This data has a non-zero baseline and several etalons that need to be considered in order to effectively fit the spectra. In addition to fitting the experimental spectra, this example also uses simulations to explore the anticipated impact of improving the SNR of the data and increasing the pressure range of the dataset.

Define Spectra

Module import follows from the *Fitting Experimental Spectra* and *Fitting Synthetic Spectra* examples. The experimental spectra and the linelists are read-in in the same manner as described in the *Fitting Experimental Spectra* example.

In this example three etalons are included in the simulation and linear baseine is considered for each spectrum in the dataset. These fits also make use of the segment column, which allows the spectrum-specific parameters (baseline, etalons) to be treated on smaller segments of the spectrum, opposed to across the whole spectrum. The segment column is set using the segment_column parameter in the *Spectrum* definition and is simply the name of a column in the spectrum .csv that contains integers that are common for continuous segments of the spectrum. This is especially useful for treatment of faster etalons, which may not maintain a consistent phase over entire spectrum. Additional constraints can be imposed to help with fit convergence and physical modeling.

```
from MATS.linelistdata import linelistdata
import MATS.hapi as hapi

wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-23 #intensities must be above this value for the line to be fit
order_baseline_fit = 1
tau_column = 'Alpha' # Mean tau/us
freq_column = 'Wavenumber' # Total Frequency /MHz
pressure_column = 'Pressure'
temperature_column = 'Temperature'
tau_stats_column = None

PARAM_LINELIST = linelistdata['JQSRT2021_SDNGP_2015']
PARAM_LINELIST.loc[PARAM_LINELIST['n_delta0_air'].isna(), 'n_delta0_air'] = 0
etalons = {1:[0.004321,1.168], 2:[0.001377, 59.38], 3:[0.0004578, 29.75]}

spec_1 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_56Torr_03_formatted_R16e', molefraction =
```

(continues on next page)

```
\hookrightarrow {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                             etalons = etalons,
                                                             baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                             input_freq = False,__

→ frequency_column = freq_column,
                                                             input_tau = False, tau_
pressure_column =_
→pressure_column, temperature_column = temperature_column,
                                                            nominal_temperature =_
\rightarrow296, x_shift = 0.00)
spec_2 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_83Torr_02_formatted_R16e', molefraction =
\hookrightarrow {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                             etalons = etalons,
                                                             baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                             input_freq = False,_

→ frequency_column = freq_column,
                                                             input_tau = False, tau_
pressure_column =_
→pressure_column, temperature_column = temperature_column,
                                                             nominal_temperature =_
\rightarrow 296, x_shift = 0.00)
spec_3 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_101Torr_01_formatted_R16e', molefraction_
\rightarrow= {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                             etalons = etalons,
                                                             baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                             input_freq = False,_
→frequency_column = freq_column,
                                                             input_tau = False, tau_
pressure_column =_
→pressure_column, temperature_column = temperature_column,
                                                             nominal_temperature =_
\rightarrow296, x_shift = 0.00)
spec_4 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_109Torr_03_formatted_R16e', molefraction_
\Rightarrow {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                               etalons = etalons,
                                                             baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                             input_freq = False,_

→ frequency_column = freq_column,
                                                             input_tau = False, tau_

→column = tau_column, tau_stats_column = tau_stats_column,
                                                             pressure_column =_
```

```
→pressure_column, temperature_column = temperature_column,
                                                               nominal_temperature =_
\rightarrow296, x_shift = 0.00)
spec_5 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_152Torr_01_formatted_R16e', molefraction_
\rightarrow= {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                               etalons = etalons,
                                                               baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                               input_freq = False,__
→ frequency_column = freq_column,
                                                               input_tau = False, tau_

→column = tau_column, tau_stats_column = tau_stats_column,
                                                               pressure_column =_

¬pressure_column, temperature_column = temperature_column,
                                                               nominal_temperature =_
\rightarrow296, x_shift = 0.00)
spec_6 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_186Torr_03_formatted_R16e', molefraction_
\rightarrow= {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                               etalons = etalons.
                                                               baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                               input_freq = False,_

→ frequency_column = freq_column,
                                                               input_tau = False, tau_
pressure_column =_
→pressure_column, temperature_column = temperature_column,
                                                               nominal_temperature =_
\rightarrow296, x_shift = 0.00)
spec_7 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_269Torr_01_formatted_R16e', molefraction_
\rightarrow= {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                               etalons = etalons,
                                                               baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                               input_freq = False,_

→ frequency_column = freq_column,
                                                               input_tau = False, tau_
pressure_column =_
→pressure_column, temperature_column = temperature_column,
                                                               nominal_temperature =_
\rightarrow296, x_shift = 0.00)
spec_8 = MATS.Spectrum('spectrum_CO2_Air_1%Ar_271Torr_03_formatted_R16e', molefraction_
\rightarrow= {2:0.0004254}, natural_abundance = True, diluent = 'air',
                                                               etalons = etalons,
                                                               baseline_order = order_
⇒baseline_fit, segment_column = 'Segment',
                                                               input_freq = False,_
                                                                         (continues on next page)
```

Construct Dataset and Generate Fit Parameters

The Dataset object is defined as is outlined in the Fitting Experimental Spectra and Fitting Synthetic Spectra examples.

The baseline and parameter fit parameter files are generated using the <code>Generate_FitParam_File</code> class. In this example, the line intensity is allowed to float for each spectrum, but all other line shape parameters are constrained to their pressure dependence. Long et al. fixed the beyond Voigt SDNGP line shape parameters to those reported by Lin, H., et al., Cavity ring-down spectrometer for high-fidelity molecular absorption measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015. 161: p. 11-20, while allowing the VP parameters and line mixing to float. In this example, we are allowing all SDNGP parameters to float using the Lin et al. values as the initial guess, but only considering spectra in the isolated transition pressure regime, where line mixing can be ignored.

The slope and intercept for the baseline of each spectra are floated, along with the amplitude, period, and phase of each etalon. Because this example uses the segment function, you can see that each spectrum has 4 segments in the print out of the baseline linelist, so the number of rows in the baseline fit parameter list is four times larger than the number of spectra. Additional constraints will be added to the etalon parameters in the next section.

```
SPECTRA = MATS.Dataset([spec_1, spec_2, spec_3, spec_4, spec_5, spec_6, spec_7, spec_8],
→ 'MATS_Example', PARAM_LINELIST)
#Generate Baseline Parameter list based on number of etalons in spectra definitions and...
→baseline order
BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
     FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST,
→lineprofile = 'SDNGP', linemixing = False,
→fit_intensity = Fit_Intensity, threshold_intensity = IntensityThreshold, sim_window = __
→wave_range,
→nu_constrain = True, sw_constrain = False, gamma0_constrain = True, delta0_constrain = __
→True,
→aw_constrain = True, as_constrain = True,
→nuVC_constrain = True, eta_constrain =True, linemixing_constrain = True,
      additional_columns = ['local_lower_quanta'])
     FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {2:{1:True}}, vary_sw_
\rightarrow= {2:{1:True}},
```

```
vary_gamma0 = {2:{1: True}},

vary_delta0 = {2:{1: True}},

vary_aw = {2:{1: True}},

vary_as = {2:{1: True}},

vary_nuVC = {2:{1:True}},

vary_eta = {}, vary_linemixing = {2:{1:False}})

FITPARAMS.generate_fit_baseline_linelist(vary_baseline = True, vary_molefraction = {2:False}, vary_pressure = False, vary_temperature = False, vary_xshift = False,

vary_etalon_amp= True, vary_etalon_period= True, vary_etalon_phase= True)
```

	Segment Number	Pressure	Pressure_err	Pressure_vary	Temperature	Temperature_err	Temperature_vary	baseline_a	baseline_a_err	baseline_a_vary	
Spectrum Number											
1.0	0.0	0.073747	0	False	296.275731	0	False	0.0	0	True	
1.0	1.0	0.073747	0	False	296.275731	0	False	0.0	0	True	
1.0	2.0	0.073747	0	False	296.275731	0	False	0.0	0	True	
1.0	3.0	0.073747	0	False	296.275731	0	False	0.0	0	True	
2.0	0.0	0.109482	0	False	296.318849	0	False	0.0	0	True	
2.0	1.0	0.109482	0	False	296.318849	0	False	0.0	0	True	
2.0	2.0	0.109482	0	False	296.318849	0	False	0.0	0	True	
2.0	3.0	0.109482	0	False	296.318849	0	False	0.0	0	True	
3.0	0.0	0.132529	0	False	296.337066	0	False	0.0	0	True	
3.0	1.0	0.132529	0	False	296.337066	0	False	0.0	0	True	
3.0	2.0	0.132529	0	False	296.337066	0	False	0.0	0	True	
3.0	3.0	0.132529	0	False	296.337066	0	False	0.0	0	True	
4.0	0.0	0.142618	0	False	296.233753	0	False	0.0	0	True	
4.0	1.0	0.142618	0	False	296.233753	0	False	0.0	0	True	
4.0	2.0	0.142618	0	False	296.233753	0	False	0.0	0	True	
4.0	3.0	0.142618	0	False	296.233753	0	False	0.0	0	True	
5.0	0.0	0.199886	0	False	296.291868	0	False	0.0	0	True	
5.0	1.0	0.199886	0	False	296.291868	0	False	0.0	0	True	
5.0	2.0	0.199886	0	False	296.291868	0	False	0.0	0	True	
5.0	3.0	0.199886	0	False	296.291868	0	False	0.0	0	True	
6.0	0.0	0.243783	0	False	296.364158	0	False	0.0	0	True	
6.0	1.0	0.243783	0	False	296.364158	0	False	0.0	0	True	
6.0	2.0	0.243783	0	False	296.364158	0	False	0.0	0	True	
6.0	3.0	0.243783	0	False	296.364158	0	False	0.0	0	True	
7.0	0.0	0.353395	0	False	296.404053	0	False	0.0	0	True	
7.0	1.0	0.353395	0	False	296.404053	0	False	0.0	0	True	
7.0	2.0	0.353395	0	False	296.404053	0	False	0.0	0	True	
7.0	3.0	0.353395	0	False	296.404053	0	False	0.0	0	True	
8.0	0.0	0.355892	0	False	296.319387	0	False	0.0	0	True	
8.0	1.0	0.355892	0	False	296.319387	0	False	0.0	0	True	
8.0	2.0	0.355892	0	False	296.319387	0	False	0.0	0	True	
8.0	3.0	0.355892	0	False	296.319387	0	False	0.0	0	True	

32 rows × 46 columns

Fit Spectra

The fitting of the dataset is looped to iterate on the fit results. The result and residual plots are shown after each iteration (with the first and last iteration shown below). In the first few iterations not all of the etalons are well modeled leading to systematic residuals, iterating on the best fit results helps better model the etalons minimizing the residuals.

Using the segments in a spectrum, allows us to model the spectrum specific parameters by segment opposed to across the whole spectrum. However, this flexibility can lead to divergent solutions if additional constraints aren't included. This example will constrain these parameters using the <code>Fit_DataSet.constrained_baseline()</code> function and by setting constraints directly in the lmfit parameter dictionary. The <code>Fit_DataSet.constrained_baseline()</code> function indicates the baseline parameters that should be constrained to be equal across the entire spectrum (parameters that won't take advantage of the segment structure). For this example the baseline and etalon periods are constrained to be

equal equal across the entire spectrum.

This example also sets a few additional constraints on the etalons. First, the period of each etalon is set to be equal across all spectra in the dataset. Second, the phase of the first etalon is constrained to be equal across each spectrum.

```
counter = 0
iterations = 5
while counter < iterations:</pre>
        fit_data = MATS.Fit_DataSet(SPECTRA,'Baseline_LineList', 'Parameter_LineList', '
→minimum_parameter_fit_intensity = Fit_Intensity)
        params = fit_data.generate_params()
        fit_data.constrained_baseline(params, baseline_segment_constrained = True,_
-xshift_segment_constrained = True, molefraction_segment_constrained = True,
                                                                                  etalon_
amp_segment_constrained = False, etalon_period_segment_constrained = True, etalon_
→phase_segment_constrained = False,
                                                                                  pressure_
-segment_constrained = True, temperature_segment_constrained = True)
        minimum_segment_spec_1 = spec_1.segments.min()
        for param in params:
                if 'etalon_1_period_' in param:
                        #Sets the period of etalon_1 to be equal for all spectra
                        if param != 'etalon_1_period_1_' + str(int(minimum_segment_spec_
\hookrightarrow1)):
                                params[param].set(expr='etalon_1_period_1_' +_

→str(int(minimum_segment_spec_1)))
                if 'etalon_1_phase_' in param:
                        #Constrains the phase of etalon_1 across each spectrum
                        start_ = (param.find('_', 9))
                        end_ = (param.find('_', param.find('_', 9) + 1))
                        spectrum_number = str(param[start_ + 1:end_])
                        if param != 'etalon_1_phase_'+spectrum_number + '_' +_
→str(int(minimum_segment_spec_1)):
                                params[param].set(expr= 'etalon_1_phase_'+spectrum_
→number + '_' + str(int(minimum_segment_spec_1)))
                if 'etalon_2_period_' in param:
                        #Sets the period of etalon_1 to be equal for all spectra
                        if param != 'etalon_2_period_1_' + str(int(minimum_segment_spec_
\hookrightarrow1)):
                                params[param].set(expr='etalon_2_period_1_' +_

→str(int(minimum_segment_spec_1)))
                if 'etalon_3_period_' in param:
```

(continues on next page)

ITERATION 1

ITERATION 2

Compare to Literature

The Lin et al. work reported spectra with QFs between 11000 and 29000 for pressures between 1.33kPa and 26.7kPa. The current example work was conducted over a slightly higher pressure range of 7.5 to 36 kPa and had QFs of about 1500.

The Lin et al. work reports uncertainty on the collisional broadening of 0.1%, the pressure shift of 0.35%, the speed-dependent broadening of 0.2%, the speed-dependent shift of 20%, and the Dicke narrowing of 1%. The code below compares the results from the Lin et al. and current fit example including a plot highlighting the reported relative uncertainty in line shape parameters reported by the fits. The current example shows much higher fit uncertainties for speed-dependent width and Dicke narrowing, which indicates that at this QF and pressure range the spectra used in this analysis have a difficult time distinguishing between these narrowing mechanisms. This motivates a Monte Carlo analysis that explores how improving the SNR and pressure range would decrease the uncertainty in the reported line shape parameters.

```
Compare_Results = pd.DataFrame()
Compare_Results['Parameters'] = ['gamma0_air', 'delta0_air', 'SD_gamma_air', 'SD_delta_
→air', 'nuVC_air']
#Get Spectra line number from the parameter results list. Alternatively, could read in.
→the Linelist file and parse the same way as the initial Parameter linelist
for param in result.params:
       if ('SD_gamma' in param) and (result.params[param].vary == True):
               line_number = param.replace('SD_gamma_air_line_', '')
for parameter in Compare_Results['Parameters'].unique():
       # Get Lin et al Parameter values and uncertainties
       Compare_Results.loc[Compare_Results['Parameters'] == parameter, 'Lin et al. Value
- PARAM_LINELIST[(PARAM_LINELIST['local_lower_quanta']=='R16e') & (PARAM_LINELIST[
lin_reported_uncertainty = {'gamma0_air':0.1, 'delta0_air':0.35, 'SD_gamma_air':
→0.2, 'SD_delta_air':20, 'nuVC_air':1}
       Compare_Results.loc[Compare_Results['Parameters'] == parameter, 'Lin et al.__
→Uncertainty (%)'] = lin_reported_uncertainty[parameter]
       # Get Parameter results from fitting
       Compare_Results.loc[Compare_Results['Parameters'] == parameter, 'Fit Value'] = __
→result.params[parameter + '_line_' + line_number].value
       Compare_Results.loc[Compare_Results['Parameters'] == parameter, 'Fit Uncertainty_
→(%)'] = 100*np.abs(result.params[parameter + '_line_' + line_number].stderr / result.
→params[parameter + '_line_' + line_number].value)
Compare_Results['Fit Percent Difference (%)'] = 100*(Compare_Results['Fit Value'] -_ ...
→Compare_Results['Lin et al. Value']) / Compare_Results['Fit Value']
plt.figure(figsize=(8,5))
plt.semilogy(Compare_Results['Parameters'], Compare_Results['Lin et al. Uncertainty (%)
→'].values, 'o',label='Lin et al. (2015)')
```

(continues on next page)

	Parameters	Lin et al. Value	Lin et al. Uncertainty (%)	Fit Value	Fit Uncertainty (%)	Fit Percent Difference (%)
0	gamma0_air	0.074492	0.10	0.074399	0.072829	-0.124604
1	delta0_air	-0.005408	0.35	-0.005407	0.598812	-0.008841
2	SD_gamma_air	0.088400	0.20	0.094939	2.788409	6.887772
3	SD_delta_air	0.055000	20.00	0.057652	27.792124	4.600130
4	nuVC_air	0.003099	1.00	0.001806	36.417243	-71.636851

Monte Carlo Analysis

The Monte Carlo uncertainty analysis involves running numerous iterations fitting synthetic spectra at experimental conditions. To simplify the analysis the simulation line list only includes the R16e line and will use the results of the experimental fits as the simulation values.

```
# Generate linelist only using the R16e line and using the results from the experimental
SIMULATION_LINELIST = PARAM_LINELIST[(PARAM_LINELIST['local_lower_quanta']=='R16e') &__
→ (PARAM_LINELIST['global_upper_quanta']==30012)].copy()
SIMULATION_LINELIST.reset_index(inplace = True)
SIMULATION_LINELIST.loc[SIMULATION_LINELIST.index ==0, 'gamma0_air'] = result.params[
SIMULATION_LINELIST.loc[SIMULATION_LINELIST.index == 0, 'delta0_air'] = result.params[
→'delta0_air_line_' + line_number].value
SIMULATION_LINELIST.loc[SIMULATION_LINELIST.index == 0, 'nuVC_air'] = result.params[
→ 'nuVC_air_line_' + line_number].value
SIMULATION_LINELIST.loc[SIMULATION_LINELIST.index == 0, 'SD_gamma_air'] = result.params[

¬'SD_gamma_air_line_' + line_number].value

SIMULATION_LINELIST.loc[SIMULATION_LINELIST.index == 0, 'SD_delta_air'] = result.params[
→ 'SD_delta_air_line_' + line_number].value
SIMULATION_LINELIST.loc[SIMULATION_LINELIST.index == 0, 'y_air_296'] = 0
SIMULATION_LINELIST['nuVC_air']
```

Additionally, a dataframe summarizing the pressures and SNR (approximated by the QF from fits to the experimental spectra) are necessary for defining the simulation conditions. In this analysis we are comparing the synthetic results at experimental conditions, to those with three additional low pressure spectra and with SNR of 5000 (about three times larger than observed in the experimental spectra).

In the Monte Carlo simulation the inital guesses will be perturbed from the simulation value by the uncertainty reported in the experimental fit.

```
gamma0_err = Compare_Results[Compare_Results['Parameters'] == 'gamma0_air']['Fit_

\to Uncertainty (%)'].values[0]/100 #per

delta0_err = Compare_Results[Compare_Results['Parameters'] == 'delta0_air']['Fit_

\to Uncertainty (%)'].values[0]/100 #per

(continues on next page)
```

52

(continued from previous page)

We define a function to generate spectrum based on the input simulation conditions (SNR and pressure) and with a given input linelist.

```
def gen_spec(simulation_conditions, i, simulation_linelist):
       sample_molefraction = {2:0.0004254}
       wave_min = 6358.972 \#cm-1
       wave_max = 6360.963 \# cm-1
       wave_space = 0.006772 \#cm-1
       wave_error = 4.67e-7
       etalons = \{1:[0.004321,1.168], 2:[0.001377, 59.38], 3:[0.0004578, 29.75]\}
       spec = MATS.simulate_spectrum(simulation_linelist,
                                                      baseline_terms = [0,0],
                                                     wave_min = wave_min, wave_max =_
→wave_max, wave_space = wave_space, wave_error = wave_error,
                                                     SNR = simulation_conditions['SNR
-- '].values[i], etalons = etalons,
                                                     temperature = 23.25,
                                                     pressure = simulation_conditions[
→ 'Pressures'].values[i],
                                                     wing_cutoff = 25, wing_method =
→ 'wing_cutoff',
                                                     filename = str(int(simulation_
molefraction = sample_
→molefraction,
                                                     natural_abundance = True,_
→nominal_temperature = 296, IntensityThreshold = 1e-30, num_segments = 1)
       return spec
```

The mc_ function defined below simply takes the simulation conditions and number of iterations as inputs. Spectra are simulated at the conditions outlined in the simulation condition dataframe for just the R16e line using the linelist determined from the fits to the experimental spectra. Again, the inital guesses for the fitting are perturbed randomly at the magnitude of the reported fit error of the fits to the experimental data. The fits are conducted in the same manner as those to the experimental data without the use of the segment function. Results from each iteration are saved to a MC_result .csv file.

```
MC_Results['Iterations'] = np.arange(0, iterations)
       MC_Results['gamma0_air'] = SIMULATION_LINELIST['gamma0_air'].values[0]
       MC_Results['delta0_air'] = SIMULATION_LINELIST['delta0_air'].values[0]
       MC_Results['SD_gamma_air'] = SIMULATION_LINELIST['SD_gamma_air'].values[0]
       MC_Results['SD_delta_air'] = SIMULATION_LINELIST['SD_delta_air'].values[0]
       MC_Results['nuVC_air'] = SIMULATION_LINELIST['nuVC_air'].values[0]
       MC_Results['y_air_296'] = SIMULATION_LINELIST['y_air_296'].values[0]
       for iteration in np.arange(0, iterations):
               #Read in Possible linelists
               PARAM_LINELIST = SIMULATION_LINELIST.copy()
               if len(simulation_conditions) ==8:
                        spec_1 = gen_spec(simulation_conditions, 0, SIMULATION_LINELIST)
                        spec_2 = gen_spec(simulation_conditions, 1, SIMULATION_LINELIST)
                        spec_3 = gen_spec(simulation_conditions, 2, SIMULATION_LINELIST)
                        spec_4 = gen_spec(simulation_conditions, 3, SIMULATION_LINELIST)
                        spec_5 = gen_spec(simulation_conditions, 4, SIMULATION_LINELIST)
                        spec_6 = gen_spec(simulation_conditions, 5, SIMULATION_LINELIST)
                        spec_7 = gen_spec(simulation_conditions, 6, SIMULATION_LINELIST)
                        spec_8 = gen_spec(simulation_conditions, 7, SIMULATION_LINELIST)
                        SPECTRA = MATS.Dataset([spec_1, spec_2, spec_3, spec_4, spec_5, __

¬spec_6, spec_7, spec_8], 'Monte Carlo Analysis', PARAM_LINELIST)

               elif len(simulation_conditions) == 11:
                        spec_1 = gen_spec(simulation_conditions, 0, SIMULATION_LINELIST)
                        spec_2 = gen_spec(simulation_conditions, 1, SIMULATION_LINELIST)
                        spec_3 = gen_spec(simulation_conditions, 2, SIMULATION_LINELIST)
                        spec_4 = gen_spec(simulation_conditions, 3, SIMULATION_LINELIST)
                        spec_5 = gen_spec(simulation_conditions, 4, SIMULATION_LINELIST)
                        spec_6 = gen_spec(simulation_conditions, 5, SIMULATION_LINELIST)
                        spec_7 = gen_spec(simulation_conditions, 6, SIMULATION_LINELIST)
                        spec_8 = gen_spec(simulation_conditions, 7, SIMULATION_LINELIST)
                        spec_9 = gen_spec(simulation_conditions, 8, SIMULATION_LINELIST)
                        spec_10 = gen_spec(simulation_conditions, 9, SIMULATION_LINELIST)
                        spec_11 = gen_spec(simulation_conditions, 10, SIMULATION_
→LINELIST)
                        SPECTRA = MATS.Dataset([spec_1, spec_2, spec_3, spec_4, spec_5, __
→spec_6, spec_7, spec_8, spec_9, spec_10, spec_11], 'Monte Carlo Analysis', PARAM_
→LINELIST)
               #Generate Baseline Parameter list based on number of etalons in spectra.
→definitions and baseline order
               BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
               gamma0_err = Compare_Results[Compare_Results['Parameters'] == 'gamma0_air
                                                                           (continues on next page)
```

```
→']['Fit Uncertainty (%)'].values[0]/100 #per
               delta0_err = Compare_Results[Compare_Results['Parameters'] == 'delta0_air
→']['Fit Uncertainty (%)'].values[0]/100 #per
               aw_err = Compare_Results[Compare_Results['Parameters'] == 'SD_gamma_air'
→']['Fit Uncertainty (%)'].values[0]/100#per
               as_err = Compare_Results[Compare_Results['Parameters'] == 'SD_delta_air'
→']['Fit Uncertainty (%)'].values[0]/100 #per
               nuVC_err = Compare_Results[Compare_Results['Parameters'] == 'nuVC_air'][
→ 'Fit Uncertainty (%)'].values[0]/100 #per
               PARAM_LINELIST.loc[PARAM_LINELIST['molec_id'] == 2, 'gamma0_air'] =__
→PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['gamma0_air'].values*(1 + np.random.
onormal(loc = 0, scale =1, size = len(PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['sw
→']))*gamma0_err)
               PARAM_LINELIST.loc[PARAM_LINELIST['molec_id'] == 2, 'delta0_air'] =_ ___
→PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['delta0_air'].values*(1 + np.random.
→normal(loc = 0, scale =1, size = len(PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['sw
→']))*delta0_err)
               PARAM_LINELIST.loc[PARAM_LINELIST['molec_id'] == 2, 'SD_gamma_air'] =_ ...
→PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['SD_gamma_air'].values*(1 + np.random.
onormal(loc = 0, scale =1, size = len(PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['sw
→']))*aw_err)
               PARAM_LINELIST.loc[PARAM_LINELIST['molec_id'] == 2, 'SD_delta_air'] =_ ...
→PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['SD_delta_air'].values*(1 + np.random.
onormal(loc = 0, scale =1, size = len(PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['sw
→']))*as_err)
               PARAM_LINELIST.loc[PARAM_LINELIST['molec_id'] == 2, 'nuVC_air'] = PARAM_
LINELIST[PARAM_LINELIST['molec_id']==2]['nuVC_air'].values*(1 + np.random.normal(loc = __
→0, scale =1, size = len(PARAM_LINELIST[PARAM_LINELIST['molec_id']==2]['sw']))*nuVC_err)
               FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_
→LINELIST, lineprofile = 'SDNGP', linemixing = False,
          fit_intensity = Fit_Intensity, threshold_intensity = IntensityThreshold, sim_
→window = wave_range,
          nu_constrain = True, sw_constrain = False, gamma0_constrain = True, delta0_
\rightarrowconstrain = True,
           aw_constrain = True, as_constrain = True,
           nuVC_constrain = True, eta_constrain = True, linemixing_constrain = True,
                additional_columns = ['local_lower_quanta'])
               FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {2:{1:True}}
\rightarrow}, vary_sw = {2:{1:True}},
```

```
vary_gamma0 = \{2:\{1: True\}\},\
                         vary_delta0 = {2:{1: True}},
                         vary_aw = {2:{1: True}},
                          vary_as = {2:{1: True}},
                          vary_nuVC = \{2:\{1:True\}\},\
                          vary_eta = {}, vary_linemixing = {2:{1:False}})
                FITPARAMS.generate_fit_baseline_linelist(vary_baseline = True, vary_
→molefraction = {2:False}, vary_pressure = False, vary_temperature = False, vary_xshift_
\rightarrow= False,
        vary_etalon_amp= True, vary_etalon_period= True, vary_etalon_phase= True)
                fit_data = MATS.Fit_DataSet(SPECTRA, 'Baseline_LineList', 'Parameter_
→LineList', minimum_parameter_fit_intensity = Fit_Intensity)
                params = fit_data.generate_params()
                result = fit_data.fit_data(params, wing_cutoff = 25)
                fit_data.residual_analysis(result, indv_resid_plot=False)
                fit_data.update_params(result)
                #SPECTRA.generate_summary_file(save_file = True)
                #SPECTRA.plot_model_residuals()
                #line Shape Parameters
                "MC_Results.loc[MC_Results['Iterations']== iteration, 'gamma0_air_fit']
→=result.params['gamma0_air_line_0'].value
                MC_Results.loc[MC_Results['Iterations']== iteration, 'gamma0_air_fit_err
→'] =result.params['gamma0_air_line_0'].stderr
                MC_Results.loc[MC_Results['Iterations']== iteration, 'delta0_air_fit'] =__
→result.params['delta0_air_line_0'].value
                MC_Results.loc[MC_Results['Iterations']== iteration, 'delta0_air_fit_err
→'] = result.params['delta0_air_line_0'].stderr
                MC_Results.loc[MC_Results['Iterations']== iteration, 'nuVC_air_fit'] =_
\neg result.params['nuVC_air_line_0'].value
                MC_Results.loc[MC_Results['Iterations'] == iteration, 'nuVC_air_fit_err']
→= result.params['nuVC_air_line_0'].stderr
               MC_Results.loc[MC_Results['Iterations'] == iteration, 'SD_gamma_air_fit']
→=result.params['SD_gamma_air_line_0'].value
                MC_Results.loc[MC_Results['Iterations']== iteration, 'SD_gamma_air_fit_
→err'] =result.params['SD_gamma_air_line_0'].stderr
               MC_Results.loc[MC_Results['Iterations']== iteration, 'SD_delta_air_fit']_
⇒=result.params['SD_delta_air_line_0'].value
               MC_Results.loc[MC_Results['Iterations'] == iteration, 'SD_delta_air_fit_
                                                                           (continues on next page)
```

```
→err'] =result.params['SD_delta_air_line_0'].stderr
              MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_1'] = spec_1.
MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_2'] = spec_2.
MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_3'] = spec_3.
→calculate_QF()
              MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_4'] = spec_4.
MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_5'] = spec_5.
MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_6'] = spec_6.
MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_7'] = spec_7.
MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_8'] = spec_8.
if len(simulation_conditions) == 11:
                     MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_9'] =_

¬spec_9.calculate_QF()
                     MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_10'] =_

¬spec_10.calculate_QF()
                     MC_Results.loc[MC_Results['Iterations']== iteration, 'QF_11'] =_

¬spec_11.calculate_QF()
              MC_Results.to_csv(MC_result_file + '.csv', index = False)
```

Below are the calls to the mc_ function at the experimental and new simulation conditions, which will generate and fit 50 iterations of synthetic data for each case.

```
mc_(50, Exp_Simulation_conditions, 'Experimental_Conditions_MC')
mc_(50, New_Simulation_conditions, 'New_Conditions_MC')
```

The parameter_eval function summarizes the MC results comparing the fit average and standard deviation across the iterations to the reported fit uncertainty on each iteration. This also calculates the fractional error compared to the simulation value. Plots of summary and dataframe are generated for visualization.

```
def parameter_eval(df, report_df):
    ""
    Summarizes MC results for a given parameter
    ""
    params = ['gamma0_air', 'delta0_air', 'SD_gamma_air', 'SD_delta_air', 'nuVC_air']
    fig = plt.figure(constrained_layout=True, figsize = [20,3])
    spec = gridspec.GridSpec(ncols=5, nrows=1, figure=fig)
    ax1 = fig.add_subplot(spec[0, 0])
    ax2 = fig.add_subplot(spec[0, 1])
    ax3 = fig.add_subplot(spec[0, 2])
    ax4 = fig.add_subplot(spec[0, 3])
```

```
ax5 = fig.add_subplot(spec[0,4])
       axes = [ax1, ax2, ax3, ax4, ax5]
       count = 0
       for simulated_column in params:
               param_avg = df[simulated_column + '_fit'].median()
               param_std = df[simulated_column + '_fit'].std()
               param_err_avg = df[simulated_column + '_fit_err'].median()
               if df[simulated_column].values[0] == 0:
                       param_frac_err = 0
                       param_fit_err = 0
               else:
                       param_frac_err = 100*(param_avg - df[simulated_column].
→values[0]) / df[simulated_column].values[0]
                       param_fit_err = np.abs(100*param_std / param_avg)
               if param_err_avg == 0:
                       param_err_ratio = 0
               else:
                       param_err_ratio = param_std/param_err_avg
               report_df.loc[report_df['Reported Values']==simulated_column, 'Simulated_
→Value'] = df[simulated_column].values[0]
               report_df.loc[report_df['Reported Values']==simulated_column, 'Parameter_
→Fit Average'] = param_avg
               report_df.loc[report_df['Reported Values']==simulated_column, 'Parameter_
→Fit StDev'] = param_std
               report_df.loc[report_df['Reported Values']==simulated_column, 'Parameter_
Frror Average'] = param_err_avg
               report_df.loc[report_df['Reported Values']==simulated_column, 'Parameter_
→Fractional Error'] = param_frac_err
               report_df.loc[report_df['Reported Values']==simulated_column, 'Parameter_
→Fit Error'] = param_fit_err
               report_df.loc[report_df['Reported Values']==simulated_column, 'Error_
→Ratio'] = param_err_ratio
               ax = axes[count]
               ax.errorbar(df['Iterations'], df[simulated_column + '_fit'], fmt = 'o', _
→yerr = df[simulated_column + '_fit_err'])
               ax.hlines(param_avg, 0, 50)
               ax.hlines(param_avg + param_std, 0, 50, linestyles = 'dashed')
               ax.hlines(param_avg - param_std, 0, 50, linestyles = 'dashed')
               ax.hlines(df[simulated_column].values[0], 0, 50, linestyles = 'dashed',__

¬colors = 'r')
               ax.set_title(simulated_column)
               ax.set_xlabel('interations')
               ax.ticklabel_format(useOffset=False)
               count+=1
       ax1.set_ylabel('Parameter Value')
       plt.show()
```

(continues on next page)

```
return report_df
```

The Experimental parameter result table shows good agreement in the fit uncertainty reported in the experimental data and averaged over the iterations of the MC analysis conducted at experimental conditions. This also provides a measure of the ratio between the standard deviations in the fit values across the iterations compared to the average fit uncertainty. Ratios greater than one indicate that the fit uncertainty reported by one iteration might under represent the uncertainty, most likely because of correlation between parameters that aren't included in the calculation of the fit uncertainty. This ratio, when greater than one, could act as a correction factor to increase the experiment fit uncertainty.

```
exp_MC = pd.read_csv('Experimental_Conditions_MC.csv')
new_MC = pd.read_csv('New_Conditions_MC.csv')

EXP_SUMMARY = pd.DataFrame()

EXP_SUMMARY['Reported Values'] = ['gamma0_air', 'delta0_air', 'SD_gamma_air', 'SD_delta___air', 'nuVC_air']

EXP_SUMMARY['Simulated Value'] = 0

EXP_SUMMARY['Parameter Fit Average'] = 0

EXP_SUMMARY['Parameter Fit StDev'] = 0

EXP_SUMMARY['Parameter Fractional Error'] = 0

EXP_SUMMARY['Parameter Fit Error'] = 0

EXP_SUMMARY['Error Ratio'] = 0

NEW_SUMMARY = EXP_SUMMARY.copy()

EXP_SUMMARY = parameter_eval(exp_MC, EXP_SUMMARY)

EXP_SUMMARY
```


By comparing the average fit uncertainties over MC simulations in the new conditions (higher SNR and 3 extra pressures) to the experimental conditions indicate that the proposed improvements to the experiments can be expected to reduce the uncertainties in the spectroscopic parameters by factors of 2.8 to 3.7. The largest improvement would be to the Dicke narrowing parameter, which is aided by not only the higher SNR, but also by the inclusion of additional low-pressure spectra that fall in a domain where the Dicke narrowing mechanism dominates over the speed-dependent narrowing.

```
NEW_SUMMARY= parameter_eval(new_MC, NEW_SUMMARY)

NEW_SUMMARY['Improvement Over Experiment'] = EXP_SUMMARY['Parameter Fit Error'].values/

NEW_SUMMARY['Parameter Fit Error'].values
```


Applying Analytical Correction to hardness of collisions for HTP

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

Dicke narrowing accounts for effective narrowing of the doppler width because of velocity changing collisions. The magnitude of this effect is dependent on the hardness of the collisions. Different line shapes make different assumptions on the hardness of the collision with the Nelkhin-Ghatak making the assumption that collisions are hard, meaning that the molecular velocity before a collision is forgotten after the collision, and the Galatry profile assuming collisions are soft, meaning that many collisions are necessary to change the velocity. In reality, the hardness of the collision is related to the perturbers and absorbers being studied and acts on a continuum. In a paper by Konefał et al. (citation below), authors map the hard Dicke Narrowing term onto the billiard ball collision model, based on a parameter beta, which is related to the pressure (parameterized as the Dicke narrowing at a pressure relative to the doppler width) and the ratio of the masses between the perturber and absorber. As Beta can be calculated, this correction provides a more robust modeling of the Dicke Narrowing without the addition of additional floated parameters.

M. Konefał, M. Słowiński, M. Zaborowski, R. Ciuryło, D. Lisak, P. Wcisło, Analytical-function correction to the Hartmann–Tran profile for more reliable representation of the Dicke-narrowed molecular spectra, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 242, 2020,106784,ISSN 0022-4073.

The Beta correction has been included in the MATS software and the following example provides an example of how to use it.

Simulate Spectrum Objects

Module import follows from the *Fitting Experimental Spectra* and *Fitting Synthetic Spectra* examples with additional details on how to simulate spectra found in *Fitting Synthetic Spectra* and the source documentation.

After the generic parameters are introduced the line list for simulations is read in using the LoadLineListData() function. In this example we are making some adjustments to the line list before simulating. In the MATS fitting, simulations are only conducted to some user-defined range outside of the spectral frequency range (wave_range = 1.5 cm^{-1} in the current example). This same constraint is not imposed when simulating spectra. This can lead to some far-wing issues between simulation and fitting if care is not taken to match the wave_range to the lines in the parameter linelist and the simulation wing_cutoff magnitude, which should also match the fit wing_cutoff magnitude. For this example, we are truncating the simulation line list to [wave_min - wave_range, wave_max + wave_range]. Additionally, values for the Dicke Narrowing air and self parameters are set and the line mixing terms are set to 0.

```
from MATS.linelistdata import linelistdata
from MATS import simulate_spectrum
#Generic Fit Parameters
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-25 #intensities must be above this value for the line to be fit
order_baseline_fit = 1
wave_min = 6326 \#cm-1
wave\_max = 6328 \#cm-1
wave_space = 0.005 \#cm-1
baseline_terms = [0] #polynomial baseline coefficients where the index is equal to the.
\hookrightarrow coefficient order
etalon = {}
#Read in linelists
PARAM_LINELIST = linelistdata['CO2_30012']
##Adjust the linelist before simualting spectra
PARAM_LINELIST = pd.read_csv('C02_30012.csv')
PARAM_LINELIST = PARAM_LINELIST[(PARAM_LINELIST['nu']>= wave_min - wave_range) & (PARAM_
→LINELIST['nu']<= wave_min + wave_range)]</pre>
PARAM_LINELIST.loc[(PARAM_LINELIST['sw'] > Fit_Intensity)& (PARAM_LINELIST['local_iso_id
→'] == 1) & (PARAM_LINELIST['molec_id'] == 2), 'nuVC_air'] = 0.018596
PARAM_LINELIST.loc[(PARAM_LINELIST['sw'] > Fit_Intensity) & (PARAM_LINELIST['local_iso_id
-'] == 1) & (PARAM_LINELIST['molec_id'] == 2), 'nuVC_self'] = 0.01993
PARAM_LINELIST.loc[(PARAM_LINELIST['sw'] > Fit_Intensity) & (PARAM_LINELIST['local_iso_id
\rightarrow'] == 1) & (PARAM_LINELIST['molec_id'] == 2), 'y_self_296'] = 0
PARAM_LINELIST.loc[(PARAM_LINELIST['sw'] > Fit_Intensity) & (PARAM_LINELIST['local_iso_id
\rightarrow'] == 1) & (PARAM_LINELIST['molec_id'] == 2), 'y_air_296'] = 0
```

For the purpose of showing the mechanism, we will be simulating data for CO_2 , air, and 10% CO_2 in air samples between 1 and 500 torr. The structure of the script follows that outlined in the *Fitting Synthetic Spectra* example.

The $simulate_spectrum()$ function is used to generate several spectrum class objects. The beta_formalism variable is set to True, which simulates the spectra accounting for the change in Dicke Narrowing with the hardness of the collision. The synthetic spectra span 3 samples: CO_2 , air, and 10% CO_2 in air. The air and CO_2 samples can use the diluent = 'air' and 'self' variables as the Diluent variable can be auto-generated. However, the 10% CO_2 in air sample requires the explicit definition of the Diluent variable, which is a dictionary of dictionaries where each diluent is a dictionary with composition and mass (m) keys. This allows the calculation of the mass of perturber, which is necessary for the β implementation. The use of the self term will generate a warning to consider switching to an explicitly name the broadener. This warning is to have the user consider if this is causing ambiguity or unanticipated behavior. Specifically, this could be an issue in multi-species fits or if the explict broadener and self term are both used. To remove the use of the self broadening, have the line shape parameter file with the explicit broadener (ie. gamma0_CO2 instead of gamma0_self) and use the Diluent sample definition as modeled for the 10% CO_2 in air sample (ie pure CO_2 would be Diluent = {'CO2':{'composition':1, 'm':43.98983}}).

```
\rightarrow {2 :400*1e-6},
                      etalons = etalon, natural_abundance = True, nominal_temperature =_
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_2 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
→wave_error,
                      SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 10, diluent = 'air',filename = 'Air_10_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\leftrightarrow {2 : 400*1e-6},
                      etalons = etalon, natural_abundance = True, nominal_temperature = _ .
\rightarrow296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_3 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
→wave_error,
                      SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 100, diluent = 'air',filename = 'Air_100_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\rightarrow {2 :400*1e-6},
                      etalons = etalon, natural_abundance = True, nominal_temperature =_
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_4 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
→wave_error,
                      SNR = SNR, baseline_terms = baseline_terms, temperature = 25,_
→pressure = 250, diluent = 'air', filename = 'Air_250_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\leftrightarrow {2 : 400*1e-6},
                     etalons = etalon, natural_abundance = True, nominal_temperature = _ ...
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_5 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
→wave_error,
                      SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 500, diluent = 'air',filename = 'Air_500_torr',
                    wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\leftrightarrow {2 : 400 * 1e - 6},
                     etalons = etalon, natural_abundance = True, nominal_temperature = __
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
#Mixture of CO2 and Air
## Note that we had to use the Diluent method opposedc to the diluent method. oldsymbol{\sqcup}
→Additionally, the use of the self broadening term will generate some warnings
print ('Mixture Samples')
spec_6 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
\rightarrowwave_error,
                      SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 1, filename = 'Mix_1_torr',
                     Diluent = {'self':{'composition':0.1, 'm':43.98983} , 'air' :{
→'composition':0.9, 'm':28.95734}},
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 :0.1},
                      etalons = etalon, natural_abundance = True, nominal_temperature =_
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_7= simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
→wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,_
```

(continues on next page)

```
→pressure = 10, filename = 'Mix_10_torr',
                     Diluent = {'self':{'composition':0.1, 'm':43.98983} , 'air' :{
→'composition':0.9, 'm':28.95734}},
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 : 0.1},
                     etalons = etalon, natural_abundance = True, nominal_temperature = _ .
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_8 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
→wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,__
→pressure = 100, filename = 'Mix_100_torr',
                     Diluent = {'self':{'composition':0.1, 'm':43.98983} , 'air' :{
→'composition':0.9, 'm':28.95734}},
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 :0.1},
                     etalons = etalon, natural_abundance = True, nominal_temperature = __
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_9 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error =_
\rightarrowwave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
⇒pressure = 250, filename = 'Mix_250_torr',
                     Diluent = {'self':{'composition':0.1, 'm':43.98983} , 'air' :{
→'composition':0.9, 'm':28.95734}},
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 :0.1},
                     etalons = etalon, natural_abundance = True, nominal_temperature = _ ...
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_10 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error_
⇒= wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,__
→pressure = 500, filename = 'Mix_500_torr',
                          Diluent = {'self':{'composition':0.1, 'm':43.98983} , 'air' :{
→'composition':0.9, 'm':28.95734}},
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 :0.1},
                     etalons = etalon, natural_abundance = True, nominal_temperature =_
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
#Pure CO2. Notice that the use of the self broadening term will cause some warnings.
print ('Pure CO2 Samples')
spec_11 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error_
⇒= wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 1, diluent = 'self', filename = 'CO2_1_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2:1},
                     etalons = etalon, natural_abundance = True, nominal_temperature =_
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_12 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error_
⇒= wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,__
→pressure = 10, diluent = 'self', filename = 'CO2_10_torr',
```

```
wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 :1},
                     etalons = etalon, natural_abundance = True, nominal_temperature = _ .
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_13 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error_
⇒= wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,_
→pressure = 100, diluent = 'self', filename = 'CO2_100_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2:1}.
                     etalons = etalon, natural_abundance = True, nominal_temperature = __
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_14 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error_
⇒= wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 250, diluent = 'self', filename = 'CO2_250_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2 :1},
                     etalons = etalon, natural_abundance = True, nominal_temperature = _ .
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
spec_15 = simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_space, wave_error_
⇒= wave_error,
                     SNR = SNR, baseline_terms = baseline_terms, temperature = 25,
→pressure = 500, diluent = 'self', filename = 'CO2_500_torr',
                     wing_cutoff = 25, wing_method = 'wing_wavenumbers', molefraction =
\hookrightarrow {2:1},
                     etalons = etalon, natural_abundance = True, nominal_temperature = __
→296, IntensityThreshold = 1e-30, num_segments = 1, beta_formalism = True)
```

Generate Dataset and Fit Parameter Files

Following the procedure outlined in *Fitting Synthetic Spectra* and *Fitting Experimental Spectra*. This example is using the SDNGP without line mixing, is constraining all parameters to multi-spectrum fits, and is floating the line center, line intensity, collisional broadening, pressure shift, speed-dependent broadening, and Dicke narrowing terms.

(continues on next page)

```
#additional_columns = ['trans_id', 'local_lower_quanta', 'm'])
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {2:{1:True, 2:False, 3:
\rightarrowFalse}}, vary_sw = {2:{1:True, 2:False, 3:False}},
                                                    vary_gamma0 = {2:{1: True, 2:False, 3:__
\rightarrow False}, 1:{1:False}}, vary_n_gamma0 = {2:{1:False}},
                                                    vary_delta0 = {2:{1: True, 2:False, 3:_
\rightarrow False}, 1:{1:False}}, vary_n_delta0 = {2:{1:False}},
                                                    vary_aw = {2:{1: True, 2:False, 3:_
\rightarrow False}, 1:{1:False}}, vary_n_gamma2 = {2:{1:False}},
                                                    vary_as = {}, vary_n_delta2 = {2:{1:
→False}},
                                                    vary_nuVC = {2:{1:True}}, vary_n_nuVC =
\rightarrow {2:{1:False}},
                                                    vary_eta = {}, vary_linemixing = {2:{1:
→False}})
FITPARAMS.generate_fit_baseline_linelist(vary_baseline = False, vary_molefraction = {7:
→False, 1:Fa
                lse}, vary_xshift = False,
                                     vary_etalon_amp= False, vary_etalon_period= False,__
→vary_etalon_phase= False)
```

Fit Data

64

In this first iteration, we are fitting the data without including the beta_formalism to correct for the hardness of the collisions by setting the beta_formalism to False in the <code>Fit_DataSet</code> instance, which is the default. The results show systematic residuals at the line core based on the large range of pressures.

In the second iteration, the beta_formalism term is set to True. Unsuprisingly, using the beta correction gives better results as this is how the spectra were simulated.

The Fit_DataSet.generate_beta_output_file() definition can be used to tabulate a value of the math:beta parameters that are used for all lines and each spectrum. By default this is saved in a file called Beta Summary File.csv. This plot shows how this math:beta parameter changes with sample and pressure.

```
fit_data.generate_beta_output_file()
beta_summary_file = pd.read_csv('Beta Summary File.csv', index_col = 0)
beta_summary_file[beta_summary_file['nuVC_air_vary']==True]
pressures = [1, 10, 100, 250, 500]
air_beta = [beta_summary_file[beta_summary_file.index == 62]['Beta_1'].values[0], beta_
summary_file[beta_summary_file.index == 62]['Beta_2'].values[0], beta_summary_

→file[beta_summary_file.index == 62]['Beta_3'].values[0],
         beta_summary_file[beta_summary_file.index == 62]['Beta_4'].values[0], beta_
summary_file[beta_summary_file.index == 62]['Beta_5'].values[0]]
mix_beta = [beta_summary_file[beta_summary_file.index == 62]['Beta_6'].values[0], beta_
summary_file[beta_summary_file.index == 62]['Beta_7'].values[0], beta_summary_

→file[beta_summary_file.index == 62]['Beta_8'].values[0],
         beta_summary_file[beta_summary_file.index == 62]['Beta_9'].values[0], beta_
summary_file[beta_summary_file.index == 62]['Beta_10'].values[0]]
CO2_beta = [beta_summary_file[beta_summary_file.index == 62]['Beta_11'].values[0], beta_
→summary_file[beta_summary_file.index == 62]['Beta_12'].values, beta_summary_file[beta_

→ summary_file.index == 62]['Beta_13'].values[0],
         beta_summary_file[beta_summary_file.index == 62]['Beta_14'].values[0], beta_
summary_file[beta_summary_file.index == 62]['Beta_15'].values[0]]
plt.semilogx(pressures, air_beta, 'o', label = 'Air')
plt.semilogx(pressures, mix_beta, 'o', label = 'Mixture')
plt.semilogx(pressures, CO2_beta, 'o', label = 'CO$_{2}$')
plt.xlabel('Pressure (Torr)')
```

```
plt.ylabel('$\\beta$')
plt.legend()
plt.show()
```


Incorporating CIA into fits

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

Collision induced absorption (CIA) is a broadband effect stemming from intermolecular interactions leading to a collisionally-induced dipole. Traditionally, CIA is treated as the remaining absorption after modeling baseline and resonant absorption. To accommodate this approach, MATS allows for the input of a static CIA for each spectrum to account for in the fitting solution. The example below takes synthetic spectra that include CIA, evalutates using the initial line list, generates a CIA for each spectrum, and then fits the line shape parameters.

Generate Spectrum Objects

Module import follows from the *Fitting Experimental Spectra* and *Fitting Synthetic Spectra* examples with additional details on how to simulate spectra found in *Fitting Synthetic Spectra* and the source documentation.

The provided spectra were simulated in MATS offline using the Drouin 2017 Multispectrum analysis of the Oxygen A-Band line list and also includes the CIA reported in that work. The code below generates *Spectrum* objects from these spectra.

```
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-26#intensities must be above this value for the line to be fit
wave_range = 1.5 #range outside of experimental x-range to simulate
segment_column = None
etalon = {}
sample_concentration = {7: 0.209}
freq_column = 'Wavenumber + Noise (cm-1)'
```

(continues on next page)

68

(continued from previous page)

```
tau_column = 'Alpha + LM + CIA'
pressure_column = 'Pressure (Torr)'
temp_column = 'Temperature (C)'
order_baseline_fit = 2
spec_1 = MATS.Spectrum(
                         '100 Torr',
                         molefraction = sample_concentration, natural_abundance = True, __

diluent = 'air',
                         etalons = etalon,
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column =__
→None,
                         pressure_column = pressure_column, temperature_column = temp_
⇒column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
spec_2 = MATS.Spectrum( '200 Torr',
                         molefraction = sample_concentration, natural_abundance = True,__

diluent = 'air',
                         etalons = etalon,
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column =_
→None,
                         pressure_column = pressure_column, temperature_column = temp_
⇒column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
spec_3 = MATS.Spectrum(
                        '400 Torr',
                         molefraction = sample_concentration, natural_abundance = True,_

diluent = 'air',
                         etalons = etalon.
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column =_
None,
                         pressure_column = pressure_column, temperature_column = temp_
⇒column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
spec_4 = MATS.Spectrum(
                        '700 Torr',
                         molefraction = sample_concentration, natural_abundance = True,_

diluent = 'air',
                         etalons = etalon,
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column = __
None,
                         pressure_column = pressure_column, temperature_column = temp_
⇒column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
spec_5 = MATS.Spectrum( '1000 Torr',
```

```
molefraction = sample_concentration, natural_abundance = True,_

diluent = 'air',
                         etalons = etalon,
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column = __
→None,
                         pressure_column = pressure_column, temperature_column = temp_
→column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
spec_6 = MATS.Spectrum(
                         '2000 Torr',
                         molefraction = sample_concentration, natural_abundance = True,_

diluent = 'air',
                         etalons = etalon,
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column =__
None,
                         pressure_column = pressure_column, temperature_column = temp_
⇒column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
spec_7 = MATS.Spectrum( '3000 Torr',
                         molefraction = sample_concentration, natural_abundance = True, __

→diluent = 'air',
                         etalons = etalon,
                         input_freq = False, frequency_column = freq_column,
                         input_tau = False, tau_column = tau_column, tau_stats_column = __
→None.
                         pressure_column = pressure_column, temperature_column = temp_
→column, #segment_column = segment_column,
                         nominal_temperature = 296, x_shift = 0, baseline_order = order_
→baseline_fit)
```

Generate Dataset

A line list generated from the Drouin 2017 Oxygen A-Band data combined with HITRAN 2016 values is used as the initial guess. A similar line list was used in the generation of the spectra, with truncation errors being the most like cause of discrepencies. Spectra are combined to form a *Dataset* object.

```
from MATS.linelistdata import linelistdata
PARAM_LINELIST = linelistdata['02_ABand_Drouin_2017_linelist']

SPECTRA = Dataset([spec_1, spec_2, spec_3, spec_4, spec_5, spec_6, spec_7], 'CIA Spectra______Study', PARAM_LINELIST)

#Generate Baseline Parameter list based on number of etalons in spectra definitions and_______baseline order
BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
```

Evaluation

Inital fit doesn't float any parameters. The residual plots shown are only for the lowest and highest pressures. In the high pressure residuals, you can see that the unaccounted for CIA is dominating the residuals and wouldn't allow for optimization of line shape parameters without treatment.

```
FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST,
                                 lineprofile = 'SDVP', linemixing = True,
                                    fit_intensity = Fit_Intensity, threshold_intensity =_
→Fit_Intensity,
                                    nu_constrain = True, sw_constrain = True, gamma0_

¬constrain = True, delta0_constrain = True,
                                     aw_constrain = True, as_constrain = True,
                                     nuVC_constrain = True, eta_constrain =True,_
→linemixing_constrain = True)
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {7:{1:False, 2:False, 3:
\rightarrowFalse}}, vary_sw = {7:{1:False, 2:False, 3:False}},
                                                  \rightarrowFalse}}, vary_n_gamma0 = {7:{1:False}},
                                                  vary_delta0 = {7:{1: False, 2:False, 3:_
\rightarrow False}}, vary_n_delta0 = {7:{1:False}},
                                                  vary_aw = {7:{1: False, 2:False, 3:__
\rightarrow False}}, vary_n_gamma2 = {7:{1:False}},
                                                  vary_as = {7:{1:False}}, vary_n_delta2_
\rightarrow= {7:{1:False}},
                                                  vary_nuVC = {7:{1:False}}, vary_n_nuVC_
\rightarrow = \{7:\{1:False\}\},\
                                                  vary_eta = {}, vary_linemixing = {7:{1:
→False}})
FITPARAMS.generate_fit_baseline_linelist(vary_baseline = False, vary_molefraction = {7:
→False, 1:False}, vary_xshift = False,
                                    vary_etalon_amp= False, vary_etalon_period= False,__
→vary_etalon_phase= False)
fit_data = MATS.Fit_DataSet(SPECTRA, 'Baseline_LineList', 'Parameter_LineList',
                    minimum_parameter_fit_intensity = Fit_Intensity)
params = fit_data.generate_params()
result = fit_data.fit_data(params, wing_wavenumbers = 50, wing_method = 'wing_wavenumbers
\rightarrow', xtol = 1e-7, maxfev = 2000, ftol = 1e-7)
fit_data.residual_analysis(result, indv_resid_plot=True)
fit_data.update_params(result)
SPECTRA.generate_summary_file(save_file = True)
```

70 Chapter 1. Contents

A simple function is defined to treat the CIA as the smooth residuals. To do this we will use a filter to smooth over any resonant absorbance and then define the CIA as the negative of what is leftover. This is done for all spectra making up the dataset. Note that this defininition includes the <code>Spectrum.set_cia()</code> function to assign this array to a given

72

Spectrum instance. Again the plots below show this process for the lowest and highest pressure spectra, where the blue lines are the residuals and the orange lines are the smoothed residuals that will define the magnitude of the CIA.

```
from scipy.signal import savgol_filter
def ad_hoc_CIA(spec):
waves = spec.wavenumber
resds = spec.residuals
CIA = savgol_filter(resds, 501, 1) # Savitsky Golay Filte that uses a 501 pt sliding.
→window with a first order polynomial to smooth the data. These settings were
→arbitrary to smooth out the data.
plt.plot(waves, resds)
plt.plot(waves, CIA)
plt.xlabel('Wavenumbers ($cm^{-1}$)')
plt.ylabel('Residuals (ppm/cm)')
plt.title( 'Spectrum '+ str(spec.spectrum_number))
plt.show()
spec.set_cia(-1*CIA)
ad_hoc_CIA(spec_1)
ad_hoc_CIA(spec_2)
ad_hoc_CIA(spec_3)
ad_hoc_CIA(spec_4)
ad_hoc_CIA(spec_5)
ad_hoc_CIA(spec_6)
ad_hoc_CIA(spec_7)
```


The spectra are evaluated again and we see that the residuals have improved. To further improve fits, I would optimize line parameters in small wavenumber sections using the baseline parameter to account for remaining CIA. These line shape parameters could then be used in evaluation of the full band (like above) and then the CIA column could be ammended based on those results. Iterating on these steps should allow for optimization of both the line shape parameters and the CIA.

74 Chapter 1. Contents

Including instrument line shapes in simulation and fits

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

MATS has added the capability to simulate and fit spectra using an instrument lineshape. MATS automatically loads the slit functions defined in HAPI, but could use any slit function with the form slit_function(x, resolution) or slit_function(x, [resolutions]). MATS uses a slight variation of the HAPI convolveSpectrumSame, where the arange_function was redefined to address an integer/float bug in the underlying np.linspace call. This implementation currently assumes an equal wavenumber spacing based on the application of the slit function calculation.

The example below simulates the same spectrum and applies the different HAPI instrument line shapes. The simulated molefraction is perturbted and then floated during a fit.

Simulate Spectra with ILS

Module import follows from the *Fitting Experimental Spectra* and *Fitting Synthetic Spectra* examples with additional details on how to simulate spectra found in *Fitting Synthetic Spectra* and the source documentation.

```
from MATS.linelistdata import linelistdata
import MATS.hapi as hapi
# Shared Simulation and Fit Parameters
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-24#intensities must be above this value for the line to be fit
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
segment_column = None
order_baseline_fit = 1
etalon = {}
SNR = 5000
resolution = 0.25
molefraction = \{2:0.01\}
wave_min = 6320
wave_max = 6340
wave_step = 0.01
```

When fitting spectra, the simulated spectral range is the minimum and maximum wavenumbers in your dataset +/- an extra spectral window defined in this example by the wave_range parameter. This is used to truncate the input line list when generating the Parameter linelist used in fitting to increase the fit speed. However, this trunctation doesn't occur when simulating spectra, which can lead to far-wing effects as the default is to calculate each transition to +/-25 half-widths from the line center. For this example, we are truncating input line list used for the simulation to match the fit simulation window. Alternatively, the wave_range parameter could be increased substantially to include these far-wing impacts.

```
PARAM_LINELIST = linelistdata['CO2_30012']
PARAM_LINELIST = PARAM_LINELIST[(PARAM_LINELIST['nu'] <= wave_max + wave_range) & (PARAM_LINELIST['nu']>= wave_min - wave_step)]
```

The *Spectrum* object definitions below show how to use the ILS_function, ILS_resolution, and ILS_wing (defines the length of the ILS slit function to use in the convolution, such that the length is +/- ILS_wing / spectrum stepsize) to define the ILS function. The outputs below show the generated spectrum for each ILS function

(continues on next page)

```
\label{eq:filename} filename = \texttt{'Gaussian'}, \\ molefraction = \{2:0.01\}, \ ILS\_function = SLIT\_GAUSSIAN, \ ILS\_\\ \Rightarrow resolution = resolution, \ ILS\_wing = 10)
```


78 Chapter 1. Contents

Generate Dataset and Fit Parameters

The dataset and fit parameters are generated with instances of the Dataset and

Generate_FitParam_File classes. Additionally, the initial CO2 molefraction is perturbed within 2% of the simulated mole fraction.

```
SPECTRA = MATS.Dataset([ spec_rectangular, spec_triangular, spec_gaussian, spec_
→dispersion, spec_cosinus,
                           spec_diffraction, spec_michelson], 'ILS Study', PARAM_
→LINELIST)
BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
BASE_LINELIST['molefraction_CO2'] = BASE_LINELIST['molefraction_CO2'].values*(1 + np.
→random.normal(loc = 0, scale =1, size = len(BASE_LINELIST['molefraction_CO2']))*(2/
→100)) #Adjust the mole fraction of each sample by a mole fraction of random value
→normally distributed 2%
FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST,
                                      lineprofile = 'SDNGP', linemixing = True,
                                          fit_intensity = Fit_Intensity, threshold_
→intensity = IntensityThreshold,
                                         nu_constrain = True, sw_constrain = True,_
aw_constrain = True, as_constrain = True,
                                          nuVC_constrain = True, eta_constrain =True, __
→linemixing_constrain = True)
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {2:{1:False, 2:False, 3:
\rightarrowFalse}}, vary_sw = {2:{1:False, 2:False, 3:False}},
                                               vary_gamma0 = {2:{1: False, 2:False, 3:__
                                                                        (continues on next page)
```

In the <code>Generate_FitParam_File.generate_fit_baseline_linelist()</code> function, in addition to the normal baseline parameters the ILS resolution parameters are also fittable parameters. Additionally, this is coded in such a way that each ILS_function has a unique resolution parameter. This allows for different spectra to have different ILS functions and the baseline linelist table adequately accounts for this. Subset of a <code>Generate_FitParam_File.generate_fit_baseline_linelist()</code> output highlights this. While floating the resolution parameters is possible, it should be done with caution as all other parameters are dependent on this value, so correlation and poor fits are likely.

```
        Spectrum Number
        SLIT_RECTANGULAR_res_0
        SLIT_RECTANGULAR_res_0_err
        SLIT_

        → RECTANGULAR_res_0_vary
        SLIT_MICHELSON_res_0
        0
        ...

        1
        0.25
        0
        ...

        → 0
        ...
        ...
        ...

        7
        0
        0
        ...

        → 0.25
        ...
        ...
        ...
```

Fit Data

In this example only the sample concentration is allowed to float, which is a spectrum dependent parameter. At this SNR all of the results yield fit mole fractions very similar to the simulated value. The plot below shows the relative Bias in the fit mole fraction with error bars equal to the relative fit uncertainty for each ILS. Note that this is only one iteration and not generalizable.

Fitting and Simulating isotopes and molecules not in HITRAN

Provided in the MATS v2 release are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

HITRAN's focus is on atmospherically relevent molecules. This was the original focus of MATS, however recent feature development has allowed for adaption of to include non-HITRAN molecules.

The example shows how to supplement the HITRAN isotope list and then use that in simulations and fits. This example uses Mercury as an example case.

Append to the HITRAN isotope list to include desired isotopes

Module import follows from the Fitting Experimental Spectra and Fitting Synthetic Spectra examples.

The <code>add_to_HITRANstyle_isotope_list()</code> function allows you to ammend a given isotope list to include additional molecules and/or isotopes using the HITRAN-style molcule_id, local_isotope id, and global isotope id parameterization. This function has some checks to verify expected behavior - if the molecule id and isotope id are in the initial isotope line list, it will return 'Already entry with that molec_id and local_iso_id. This result will write over that entry. - if the molecule id is in the initial isotope list it will return 'This is being added as a new isotope of molecule name. Proceed if that was the intention. - if the global isotope id is already in the isotope list it will return, 'There is another entry with this global isotope id. Consider changing the value for consistency'

Mercury line shape parameters are not included in the HITRAN database. The code below uses $add_to_HITRANstyle_isotope_list()$ function to add 10 Mercury isotopes to the HITRAN isotope list. This is saved in a new isotope list called HITRAN_Hg_isolist that can be used in simulating and fitting spectra. The HITRAN isotope list provides the HITRAN molecule and global ids that are already in use.

(continues on next page)

```
global_isotope_id = 200, iso_name = '196
\hookrightarrow ,
                                                  abundance = 0.0015, mass = 195.96581,
→mol_name = 'Hq')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_
→isolist, molec_id = 100, local_iso_id = 2,
                                                 global_isotope_id = 201, iso_name = '198
\hookrightarrow ,
                                                 abundance = 0.1004, mass = 197.96674,
→mol_name = 'Hq')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_

→isolist, molec_id = 100, local_iso_id = 3,
                                                 global_isotope_id = 202, iso_name =
'199A',
                                                 abundance = 0.1694, mass = 198.96825,
→mol_name = 'Hg')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_
→isolist, molec_id = 100, local_iso_id = 4,
                                                  global_isotope_id = 203, iso_name =

→ '199B',

                                                  abundance = 0.1694, mass = 198.96825,
→mol_name = 'Hg')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_

→isolist, molec_id = 100, local_iso_id = 5,
                                                 global_isotope_id = 204, iso_name = '200
abundance = 0.2314, mass = 199.96825,
→mol_name = 'Hg')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_

→isolist, molec_id = 100, local_iso_id = 6,
                                                 global_isotope_id = 205, iso_name =
'201a',
                                                 abundance = 0.1317, mass = 200.97028,
→mol_name = 'Hg')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_
⇒isolist, molec_id = 100, local_iso_id = 7,
                                                 global_isotope_id = 206, iso_name =
→'201b',
                                                 abundance = 0.1317, mass = 200.97028,
→mol_name = 'Hg')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_
⇒isolist, molec_id = 100, local_iso_id = 8,
                                                 global_isotope_id = 207, iso_name =
'201c',
                                                 abundance = 0.1317, mass = 200.97028,
→mol_name = 'Hg')
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_

→isolist, molec_id = 100, local_iso_id = 9,
                                                 global_isotope_id = 208, iso_name = '202
abundance = 0.2974, mass = 201.97062,
→mol_name = 'Hg')
```

(continues on next page)

```
HITRAN_Hg_isolist = add_to_HITRANstyle_isotope_list(input_isotope_list = HITRAN_Hg_
isolist, molec_id = 100, local_iso_id = 10,

global_isotope_id = 209, iso_name = '204

',

abundance = 0.0682, mass = 203.97347,

imput_isotope_list = HITRAN_Hg_

global_isotope_id = 209, iso_name = '204

imput_isotope_list = HITRAN_Hg_

global_isotope_id = 209, iso_name = '204

imput_isotope_list = HITRAN_Hg_

global_isotope_id = 209, iso_name = '204

imput_isotope_list = HITRAN_Hg_

global_isotope_id = 209, iso_name = '204

imput_isotope_id = 209, iso_name = '204

imput_isotope_i
```

Generate Spectra

The simulate spectrum function is used to generate spectra (similar to in the *Fitting Synthetic Spectra* example), but the isotope_list variable is set to use the isotope list that was just generated opposed to using the default HITRAN isotope list defined in HAPI.

The initial parameter line list should have molecule and local isotope ids that correspond to the new isotope list. The mole fraction definition should also use the appropriate mole fraction id. The same would be true for the abundance_ratio_MI term if the sample was not at natural abundance.

```
PARAM_LINELIST = pd.read_csv('Hg_Linelist.csv')
#Generic Fit Parameters
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-17 #intensities must be above this value for the line to be fit
order_baseline_fit = 0
tau_column = 'Absoprtion Coefficient (ppm/cm)' # Mean tau/us
freq_column = 'Frequency (cm-1)' # Total Frequency /MHz
pressure_column = 'Pressure (Torr)'
temperature_column = 'Temperature'
wave_min = 39411
wave_max = 39413.5
wave_step = 0.001
SNR = 1000
spec_1 = MATS.simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_step,
                     temperature = 25, pressure = 100, molefraction = { 100 :1e-9},
                     isotope_list = HITRAN_Hg_isolist, natural_abundance = True, SNR =_
→1000, filename = '100 Torr',)
spec_2 = MATS.simulate_spectrum(PARAM_LINELIST, wave_min, wave_max, wave_step,
                     temperature = 25, pressure = 500, molefraction = { 100 :1e-9},
                     isotope_list = HITRAN_Hg_isolist, natural_abundance = True, SNR =_
→1000, filename = '500 Torr',)
spec_1.plot_wave_alpha()
spec_2.plot_wave_alpha()
```


Construct Dataset and Generate Fit Parameters

The construction of the dataset and the generate fit parameter classes act as normal. For the generation of the fit parameter line list, the example below shows how the vary_variable input dictionaries function with multiple isotopes. Specifically, in the example below the VP is used as the fitting line shape, where the spectra were simulated with the SDVP. All parameters are constrained across the spectra and the only parameters being floated are the collisional broadening terms for all isotopes.

```
SPECTRA = MATS.Dataset([spec_1, spec_2], 'Mercury Fitting',PARAM_LINELIST )

#Generate Baseline Parameter list based on number of etalons in spectra definitions and baseline order

BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
```

(continues on next page)

```
FITPARAMS = Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST, lineprofile =
→'VP', linemixing = False,
                              fit_intensity = Fit_Intensity, threshold_intensity =_
→IntensityThreshold, sim_window = wave_range,
                              nu_constrain = True, sw_constrain = True, gamma0_

→constrain = True, delta0_constrain = True,
                               aw_constrain = True, as_constrain = True,
                               nuVC_constrain = True, eta_constrain =True, linemixing_
additional_columns = ['trans_id'])
FITPARAMS.generate_fit_param_linelist_from_linelist(vary_nu = {100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_sw ={100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_gamma0 = {100:{1:True, 2:True, 3:
True, 4: True, 5:True, 6:True, 7:True, 8:True, 9:True, 10: True}},
                                                vary_delta0 = {100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_aw = {100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_as = {100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_nuVC = {100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_eta = {100:{1:False, 2:False, 3:
→False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}},
                                                vary_linemixing = {100:{1:False, 2:
→False, 3:False, 4: False, 5:False, 6:False, 7:False, 8:False, 9:False, 10: False}})
FITPARAMS.generate_fit_baseline_linelist(vary_baseline = False, vary_molefraction = {100:
→ False}, vary_xshift = False,
                                  vary_etalon_amp= False, vary_etalon_period= False,__
→vary_etalon_phase= False)
```

Fit Spectra

Fitting follows the same strucutre described in *Fitting Experimental Spectra*. The fit results shown below are the result of fitting spectra simulated with the SDVP with the VP and only allowing the collsional broadening terms to float. The residuals at both pressures show the expected w-shaped residuals.

(continues on next page)

```
fit_data.update_params(result)
SPECTRA.generate_summary_file(save_file = True)
SPECTRA.plot_model_residuals()
```


We can compare the VP fit collisional broadening fit results to the SDVP collisional broadening values used in the simulation. On the secondary y-axis is a stem plot showing the line intensity for the lines. This highlights that the lines that deviated the most from the simulated collisional broadening value were weaker and/or closely spaced to other isotope transitions.

(continues on next page)

Correcting the Ideal Gas Law with Compressability Factors

Provided in the MATS are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

MATS has added the ability to use the compressability factor to correct the ideal gas law. This uses the NIST RefProp "> offline to generate an input file that is the compressability factor for the desired sample composition on a grid of pressures (MPa) and temperatures (K). This correction is used if a compressability_file is provided in the Spectrum object generation. The rest of the script works as normal for experimental or synthetic spectra.

The compressability factor acts on the molecular density, such that

 $n_a = \chi n_i(T,p)/Z(T,p)$, where n_a is the actual number density, n_i is the ideal - gas number density, and Z is the compressability fa

The example below is a used example that follows the script available at

88

Simulate Spectra with Compressability Factor

Module import follows from the *Fitting Experimental Spectra* and *Fitting Synthetic Spectra* examples with additional details on how to simulate spectra found in *Fitting Synthetic Spectra* and the source documentation.

```
from MATS.linelistdata import linelistdata
PARAM_LINELIST = linelistdata['02_ABand_Drouin_2017_linelist']

wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-24 #intensities must be above this value for the line to be fit
order_baseline_fit = 1
sample_molefraction = {7 :0.0025142}
wave_min = 12950 #cm-1
wave_max = 13200 #cm-1
wave_space = 0.005 #cm-1
wavenumbers = np.arange(wave_min, 13158, 0.02)
```

The Spectrum object definitions follows as normal with the addition of the compressability_file being set to a file that contains the compressability factor as a function of temperature and pressure.

The rest of the code follows as is described in the Fitting Experimental Spectra and Fitting Synthetic Spectra examples.

```
SPECTRA = MATS.Dataset([spec_1], 'Compressability Factor Test', PARAM_LINELIST)
BASE_LINELIST = SPECTRA.generate_baseline_paramlist()
FITPARAMS = MATS.Generate_FitParam_File(SPECTRA, PARAM_LINELIST, BASE_LINELIST, __
→lineprofile = 'SDVP', linemixing = True,
                                                          fit_intensity = Fit_Intensity,

→ threshold_intensity = IntensityThreshold, sim_window = wave_range,
                                                          nu_constrain = True, sw_
→constrain = True, gamma0_constrain = True, delta0_constrain = True,
                                                               aw_constrain = True, as_
nuVC_constrain = True,
→eta_constrain =True, linemixing_constrain = True)
FITPARAMS.generate_fit_param_linelist_from_linelist()
FITPARAMS.generate_fit_baseline_linelist()
fit_data = MATS.Fit_DataSet(SPECTRA,'Baseline_LineList', 'Parameter_LineList', minimum_
→parameter_fit_intensity = Fit_Intensity)
params = fit_data.generate_params()
result = fit_data.fit_data(params, wing_cutoff = 25, wing_method = 'wing_cutoff')
fit_data.residual_analysis(result, indv_resid_plot=False)
```

(continues on next page)

```
fit_data.update_params(result)
SPECTRA.generate_summary_file(save_file = True)
SPECTRA.plot_model_residuals()
```

In the infinite SNR case, the residuals when spectrum are simulated and evaluated using the compressability factor the residuals are the numerical errors.

if the the compressability factor for a spectrum simulated using the compressability factor is then evaluated with the molecular density calculated using the ideal gas law, then a molecular density error will be observed in the residuals.

HITRAN Line-by-Line Static Molecules

Provided in the MATS are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

MATS has added the capability to simulate and/or fit spectra of molecules that only available in HITRAN as static molecules (not in the typical HITRANOnline) format.

The example below provides an example of how to simulate spectra using static HITRAN LBL data and is based on the code provided in the HITRAN static LBL molecule example.

Generating a MATS linelist from a .par file

The .par formatting is provided in Table 1 of the HITRAN 2004 paper. The code below uses that .par formatting to parse the spectra into the MATS format.

L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 96, Issue 2, 2005, Pages 139-204, https://doi.org/10.1016/j.jqsrt.2004.10.008

Users will need to download the .par file provided by HITRAN for desired molecule.

This example uses CF4 and a portion of the HITRAN provided .par file. The entire HITRAN .par file can be used (and has been tested locally), but is above the github file storage recommendation.

```
molecule = 'CF4'
filename = '42_hit20_500_800.par'
PARAM_LINELIST = pd.DataFrame()
with open(filename) as file:
        PARAM_LINELIST['molec_id'] = [int(line[0:2]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['local_iso_id'] = [int(line[2:3]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['nu'] = [float(line[3:15]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['sw'] = [float(line[15:25]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['elower'] = [ float(line[45:55]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['gamma0_air'] = [ float(line[35:40]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['n_gamma0_air'] = [ float(line[55:59]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['delta0_air'] = [ float(line[59:67]) for line in file]
with open(filename) as file:
        PARAM_LINELIST['gamma0_self'] = [ float(line[40:45]) for line in file]
PARAM_LINELIST['delta0_self'] = PARAM_LINELIST['delta0_air'].values
PARAM_LINELIST['n_gamma0_self'] = PARAM_LINELIST['n_gamma0_air'].values
PARAM_LINELIST['n_delta0_air'] = 0
PARAM_LINELIST['n_delta0_self'] = 0
PARAM_LINELIST['SD_gamma_air'] = 0
PARAM_LINELIST['SD_gamma_self'] = 0
PARAM_LINELIST['n_gamma2_air'] = PARAM_LINELIST['n_gamma0_air'].values
PARAM_LINELIST['n_gamma2_self'] = PARAM_LINELIST['n_gamma0_self'].values
PARAM_LINELIST['SD_delta_air'] = 0
PARAM_LINELIST['SD_delta_self'] = 0
PARAM_LINELIST['n_delta2_air'] = 0
PARAM_LINELIST['n_delta2_self'] = 0
PARAM_LINELIST['nuVC_air'] = 0
PARAM_LINELIST['nuVC_self'] = 0
PARAM_LINELIST['n_nuVC_air'] = 1
PARAM_LINELIST['n_nuVC_self'] = 1
PARAM_LINELIST['eta_air'] = 0
PARAM_LINELIST['eta_self'] = 0
PARAM_LINELIST['y_air'] = 0
PARAM_LINELIST['y_self'] = 0
PARAM_LINELIST['n_y_air'] = 1 #used in MATS versions 3 (current development version) and.
PARAM_LINELIST['n_y_self'] = 1#used in MATS versions 3 (current development version) and.
→higher
PARAM_LINELIST = PARAM_LINELIST[['molec_id', 'local_iso_id', 'nu', 'elower', 'sw',
                                                                 'gamma0_air', 'n_gamma0_
                                                                           (continues on next page)
```

```
→air', 'delta0_air', 'n_delta0_air',
                                                               'SD_gamma_air', 'n_

→gamma2_air', 'SD_delta_air', 'n_delta2_air',
                                                               'nuVC_air', 'n_nuVC_air',

    'eta_air', 'y_air', 'n_y_air',

                                                               'gamma0_self', 'n_gamma0_
⇒self', 'delta0_self', 'n_delta0_self',
                                                               'SD_gamma_self', 'n_

¬gamma2_self', 'SD_delta_self', 'n_delta2_self',
                                                               'nuVC_self', 'n_nuVC_self
→', 'eta_self', 'y_self', 'n_y_self',]]
PARAM_LINELIST.sort_values(by = ['nu'], inplace = True)
#PARAM_LINELIST.to_csv(molecule + '_ParameterLinelist.csv', index = False) #Can save to .
→csv file, but it is a large file, so you might want to truncate before saving
plt.figure(figsize=(8, 6))
plt.stem(PARAM_LINELIST['nu'], PARAM_LINELIST['sw'], use_line_collection = True,__
plt.yscale('log')
plt.xlabel('Wavenumber (cm$^{-1}$)')
plt.ylabel('Line Intensity \n (cm<math>^{-1} / (molecule \com^{-2}))')
```


92 Chapter 1. Contents

TIPS Availability

While these molecules are available in HITRAN, the molecules available in the TIPS-2011 and TIPS-2017 partition function libraries differ. For example in hapi TIPS-2011 has information for CF4, where TIPS-2017 is an array of zeros. This leads to nan values for the at simulation temperature line intensities. We added the MATS capability to switch from the default TIPS-2017 to TIPS-2011, so that this molecule could be appropriately simulated. Below is a summary of molecules, where this might be an issue. For molecules with no TIPS available the TIPS call with through an error and the 296 line intensity will be used.

```
TIPS 2011 Only SO3, M = 46, I = 1 CF4, M = 42, I = 1 No TIPS data HNO3, M = 12, I = 2 HF, M = 14, I = 2 HCl, M = 15, I = 3, 4 HBr, M = 16, I = 3, 4 HI, M = 17, I = 2 N2, M = 22, I = 2 COF2, M = 29, I = 2 O, M = 34, I = 1 CH3OH, M = 38, I = 1
```

Simulating in MATS

Once the MATS linelist file has been generated spectra can be simulated or fit in MATS as normal.

```
#PARAM_LINELIST = pd.read_csv('CF4_ParameterLinelist.csv') # Option to read in so you don
→'t have to generate the file every time
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-24 #intensities must be above this value for the line to be fit
order_baseline_fit = 1
baseline_terms = [0] #polynomial baseline coefficients where the index is equal to the.
→coefficient order
sample_molefraction = {42 :1} #The number here is the molec_id number can be found https:
→//hitran.org/docs/iso-meta/
wave_min = 500 \#cm-1
wave_max = 800 \#cm-1
wave_space = 1 \# cm-1
SNR = None #if None, then infinite SNR
temperature = 22.85 # celsius
pressure = 760 #torr
spectrum_filename = 'Simulate_CF4'
spec_1 = MATS.simulate_spectrum(PARAM_LINELIST, wave_min = wave_min, wave_max = wave_
→max, wave_space = wave_space,
                                                SNR = SNR, baseline_terms = baseline_
→terms, temperature = temperature, pressure = pressure,
                                                wing_cutoff = 5, wing_method = 'wing_
⇔cutoff'.
                                                filename = spectrum_filename,_
→molefraction = sample_molefraction,TIPS = PYTIPS2011)
spec_1.plot_wave_alpha()
```


Oxygen CIA using theoretical model

Provided in MATS are several examples highlighting MATS capabilities, which can be found in the MATS examples folder.

Karman et al published a theoretical $O_2 - O_2$ and $O_2 - N_2$ collision-induced absorption model based on quantum calculations https://doi.org/10.1038/s41557-018-0015-x. This model is composed of spin-orbit and exchange mechanisms. In the manuscript Parameterized Model to Approximate Theoretical Collision-Induced Absorption Band Shapes for O2-O2 and O2-N2, Adkins et al present a parameterized representation of the theoretical model reported by Karman et al.

The details of the model can be found in https://doi.org/10.1016/j.jqsrt.2023.108732.

We have included this parameterized model in MATS to allow for use in multi-spectrum fitting analyses in order to fit monomer and CIA components to the absorption. The example below shows a use example for this model.

Most of this example follows from the theoretical spectra generation and fit example. However, this example makes use of the new parameterized CIA model based on the theory published by Karman et al https://doi.org/10.1016/j.jqsrt.2023.108732.

In the first step we read in the linelist. The one used in the example is that reported in the JQSRT 270 (2021) 107684. However this linelist is for demonstration purposes only, users should refer to that paper for the actual line list.

(continues on next page)

```
from MATS.linelistdata import linelistdata
PARAM_LINELIST = linelistdata['Singlet_Delta_Linelist_JQSRT_270_2021_107684']
PARAM_LINELIST.sort_values('nu', inplace = True)
```

In this example, we have written a definition that simulates the monomer absorption for a spectrum, simulates a theoretical CIA based on the Karman et al model using the o2_cia_karman_model definition, and then adds the theoretical cia to the simulated monomer absorption in the spectrum alpha data.

The o2_cia_karman_model function requires wavenumber axis, temperature, pressure, and sample composition (O2 and N2 only), in addition to values for the Spin_orbit magnitude for both O2-O2 and O2-N2, exchange magnitude of O2-O2, temperature dependences for spin orbit (O2-O2 and O2-N2, can be constrained later to be equal) and exchange intensities. Additionally, the band being studied a_band or singlet_delta needs to be specified.

```
wave_range = 1.5 #range outside of experimental x-range to simulate
IntensityThreshold = 1e-30 #intensities must be above this value to be simulated
Fit_Intensity = 1e-20 #intensities must be above this value for the line to be fit
order_baseline_fit = 0
wave_min = 7500 \# cm-1
wave\_max = 8350 \#cm-1
wave space = 0.01 \# cm-1
wavenumbers = np.arange(wave_min, wave_max, 0.02)
def sim_spectra_with_CIA(pressure, temperature, sample_molefraction, filename):
        Diluent = {'02': {'composition':sample_molefraction[7], 'm': 31.998}, 'N2': {
→'composition':1-sample_molefraction[7], 'm': 28.0134}}
        spec = MATS.simulate_spectrum(PARAM_LINELIST, wavenumbers = wavenumbers,
                                                  temperature = temperature, pressure =__
⇔pressure,
                                                  molefraction = sample_molefraction,__
→Diluent = Diluent,
                                                  filename = filename, wing_wavenumbers =__
⇒25, wing_method = 'wing_wavenumbers',)
        # Adjusted from Initial guess derived based HITRAN 2020 reported theoretical CIA
        EXCH_c, EXCH_b, EXCH_a = [3.63e-06, 0.003, 1]
        SO_c, SO_b, SO_a = [1.5e-06, 0.0002, 1]
        SO_{02}, SO_{N2}, EXCH_{02} = [40, 75, 315]
        CIA = MATS.o2_cia_karman_model(wavenumbers, temperature + 273.15, pressure/760,_
→Diluent,
                                                         SO_02, SO_N2, EXCH_02,
                                                         EXCH_b, EXCH_c, #02-02
                                                         SO_b, SO_c, #02-N2
                                                         SO_b, SO_c,
                                                         SO_shift_02_02 = 0, SO_shift_02_
\rightarrow N2 = 0, EXCH_shift = 0,
                                                         band = 'singlet_delta')
        spec.alpha += CIA
        return spec
spec_1 = sim_spectra_with_CIA(760, 22.85, {7 :0.2095}, 'Air_296')
```

```
spec_2 = sim_spectra_with_CIA(760, 0, {7 :0.2095}, 'Air_273')
spec_3 = sim_spectra_with_CIA(760, 50, {7 :0.2095}, 'Air_323')
spec_4 = sim_spectra_with_CIA(760, 22.85, {7 :1}, '02_296')
spec_5 = sim_spectra_with_CIA(760, 0, {7 :1}, '02_273')
spec_6 = sim_spectra_with_CIA(760, 50, {7 :1}, '02_323')
spec_1.plot_wave_alpha()
```


Set-up for Fitting

he CIA model is specified in the instantiation of the Dataset class. The CIA_model is specified through a dictionary specifying both the model and band. Currently, the Karman model is the only model available and the available bands are a_band and singlet_delta.

Like the generate_baseline_paramlist() definition, the generate_CIA_paramlist() generates a dataframe and file that summarizes the parameters based on the MATS preset values from the literature. https://doi.org/10.1038/s41557-018-0015-x, https://doi.org/10.1016/j.icarus.2019.02.034

In the Generate_FitParam_File class, the CIA_linelist is set to the CIA_LINELIST generated by the generate_CIA_paramlist. The genererate_fit_KarmanCIA_linelist() will then add the uncertainty and boolean vary columns, setting the vary column to vary the parameters indicated in the definition call

Fit the SPECTRA

Finally, in the Fit_Dataset instance, the CIA_linelist_file needs to be specified to indicate what parameters are being adjusted, provide initial values, and to allow uncertainties to be updated.

The CIA parameters can be constrained using the constrained_CIA parameters() definition. The default option is that the the spin orbit intensity temperature dependence is the same for O2-O2 and O2-N2. Additionally, the shift of the spin-orbit mechanism is normally constrained to be the same for O2-O2 and O2-N2. However, either of these constraints can be removed by setting S_temperature_dependence_constrained = False or shift_constrained = False.

The rest of the fitting runs in the same manner as for monomer-absorption only MATS fits.

```
fit_data = MATS.Fit_DataSet(SPECTRA,'Baseline_LineList', 'Parameter_LineList', CIA_
→linelist_file = 'CIA_LineList',
                                                        minimum_parameter_fit_intensity_
→= Fit_Intensity)
params = fit_data.generate_params()
params = fit_data.constrained_CIA(params)
for param in params:
       if 'S_SO' in param:
                params[param].set(min = 0.00)
       if 'S_EXCH' in param:
                params[param].set(min = 0.00)
result = fit_data.fit_data(params, wing_wavenumbers = 25, wing_method = 'wing_
→wavenumbers')
fit_data.residual_analysis(result, indv_resid_plot=False)
fit_data.update_params(result)
SPECTRA.generate_summary_file(save_file = True)
SPECTRA.plot_model_residuals()
```

```
example_files/O2_CIA_fit.png
```

1.5.2 Publications that used MATS

- Adkins EM, Long DA, Fleisher AJ, Hodges JT. Near-infrared cavity ring-down spectroscopy measurements of nitrous oxide in the (4200)←(0000) and (5000)←(0000) bands. Journal of Quantitative Spectroscopy and Radiative Transfer. 2021;262.
- Adkins EM, Long DA, Hodges JT. Air-broadening in near-infrared carbon dioxide line shapes: Quantifying contributions from O2, N2, and Ar. Journal of Quantitative Spectroscopy and Radiative Transfer. 2021;270.
- Fleurbaey H, Reed ZD, Adkins EM, Long DA, Hodges JT. High accuracy spectroscopic parameters of the 1.27
 µm band of O2 measured with comb-referenced, cavity ring-down spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer. 2021;270.
- Hashemi R, Gordon IE, Adkins EM, Hodges JT, Long DA, Birk M, et al. Improvement of the spectroscopic parameters of the air- and self-broadened N2O and CO lines for the HITRAN2020 database applications. Journal of Quantitative Spectroscopy and Radiative Transfer. 2021:107735.
- Chaillot J, Dasari S, Fleurbaey H, Daeron M, Savarino J, and Kassi S. High-precision laser spectroscopy of H2S forsimultaneous probing of multiple-sulfur isotopes. Environmental Science Advances. 2023; (2) 78.
- Hélène Fleurbaey, Roberto Grilli, Didier Mondelain, Samir Kassi, Andrey Yachmenev, Sergei N. Yurchenko, Alain Campargue. Electric-quadrupole and magnetic-dipole contributions to the 2+3 band of carbon dioxide near 3.3µm. Journal of Quantitative Spectroscopy and Radiative Transfer. 2021; 266.
- H. Fleurbaey, R. Grilli, D. Mondelain, A. Campargue. Measurements of the water vapor continuum absorption by OFCEAS at 3.50 μm and 2.32 μm. Journal of Quantitative Spectroscopy and Radiative Transfer. 2022; 278.
- D. Mondelain, A. Campargue, H. Fleurbaey, S. Kassi, S. Vasilchenko. CRDS measurements of air-broadened lines in the 1.6 μm band of 12CO2: Line shape parameters with their temperature dependence. Journal of Quantitative Spectroscopy and Radiative Transfer. 2022; 288.

1.6 MATS module

Bases: object

Combines spectrum objects into a Dataset object to enable multi-spectrum fitting.

Parameters

- **spectra** (*1ist*) list of spectrum objects to be included in the Dataset. Example [spectrum_1, spectrum_2, ...]
- dataset_name (str) Used to provide a name for the Dataset to use when saving files
- param_linelist (pandas dataframe) Reads in the parameter linelist used in fitting. This enables for consistency checks between the input spectra and the parameter line list.
- baseline_order (int) sets the baseline order for all spectra in the dataset. This will automatically be set to the maximum baseline order across all spectrum included in the Dataset.
- **CIA_model** (*dictionary*) Specifies the model and band of CIA Model to use. Default is {'model': None, 'band':None}. Other option is {'model':'Karman', 'band':'a_band' or 'singlet_delta'}, which applies for O2-O2 and O2-N2 CIA in the Oxygen A and Singlet Delta Bands.

average_QF()

Calculates the Average QF from all spectra.

Returns

average QF - average QF of all spectra in dataset

Return type

float

check_iso_list()

Checks to make sure that all molecules are in the isotope_list and also checks to make sure all spectra use the same isotope list

correct_component_list()

Corrects so that all spectra and the parameter line list share the same molecules, but the mole fraction is fixed to zero where molecules are not present (called in the initialization of the class).

correct_etalon_list()

Corrects so that all spectrum share the same number of etalons, but the amplitude and period are fixed to zero where appropriate(called in the initialization of the class).

generate_CIA_paramlist()

Generates a csv file called dataset_name + _CIA_paramlist, which will be used to generate another csv file that is used for fitting the broadband CIA that is common across all spectra, where the columns will be dependent on the CIA model used.

Parameters

band (str, optional) – specifies the band for the CIA model. For the O2 CIA model reported by Karman et al. The options are a_band and singlet_delta. The default is None.

Returns

CIA_paramlist – dataframe containing information decribing the CIA parameters based on the CIA model chosen. This dataframe is also saved to a dataframe. Either file can be edited before making the CIA parameter list used for fitting. If editting the .csv file will need to regenerate dataframe from .csv.

Return type

pandas dataframe

generate_baseline_paramlist()

Generates a csv file called dataset_name + _baseline_paramlist, which will be used to generate another csv file that is used for fitting spectrum dependent parameters with columns for spectrum number, segment number, x_shift, concentration for each molecule in the dataset, baseline terms (a = 0th order term, b = 1st order, etc), and etalon terms (set an amplitude, period, and phase for the number of etalons listed for each spectrum in the Dataset).

Returns

baseline_paramlist – dataframe containing information describing baseline parameters. Also saves to .csv. Either file can be edited before making the baseline parameter list used for fitting. If editting the .csv file will need to regenerate dataframe from .csv.

Return type

dataframe

generate_summary_file(save_file=False)

Generates a summary file combining spectral information from all spectra in the Dataset.

Parameters

save_file (*bool*, *optional*) – If True, then a .csv is generated in addition to the dataframe. The default is False.

1.6. MATS module 99

```
Returns
             summary_file - Summary dataframe comprised of spectral information inculding model and
             residuals for all spectra in Dataset.
         Return type
             dataframe
get_ILS_function_dict()
     Provides a dictionary of all ILS functions used in the dataset and the number of resolution parameters
             dataset_ILS_list – list of strings matching the name of the ILS functions used in the dataset
         Return type
             list
get_baseline_order()
get_broadener_list()
     Provides a list of all broadeners in the dataset.
         Returns
             dataset_broadener_list – list of all broadeners in the dataset.
         Return type
             list
get_dataset_name()
get_etalons()
     Get list of number of etalons for spectra.
         Returns
             dataset_etalon_list - etalon keys across spectra
         Return type
             list
get_list_spectrum_numbers()
     Generates a list of all spectrum_numbers.
         Returns
             spec_num_list – list of all spectrum numbers used in the dataset.
         Return type
             list
get_molecules()
     Get list of molecules in spectra.
         Returns
             dataset_molecule_list - list of molecules in spectra
         Return type
             list
get_number_nominal_temperatures()
     Get the number of nominal temperatures in the .
         Returns
```

• num_nominal_temperatures (int) – number of nominal temperatures in the Dataset

• nominal_temperatures (list) – list of all nominal temperatures listed in the input spectra

```
get_number_spectra()
get_spectra_extremes()
get_spectrum_extremes()
```

Gets the minimum and maximum wavenumber for the entire Dataset.

Returns

- wave_min (float) The minimum wavenumber in all spectra in the Dataset.
- wave_max (float) The maximum wavenumber in all spectra in the Dataset.

get_spectrum_filename(spectrum_num)

Gets spectrum filename for spectrum in Dataset. :param spectrum_num: Integer assigned to a given spectrum. :type spectrum_num: int

Returns

 $filename - if spectrum_num in Dataset then the filename for that the spectrum_number is returned$

Return type

str

get_spectrum_pressure(spectrum_num)

Gets spectrum pressure for spectrum in Dataset.

Parameters

```
spectrum_num (int) – Integer assigned to a given spectrum.
```

Returns

pressure – if spectrum_num in Dataset then the pressure (torr) for that the spectrum_number is returned.

Return type

float

get_spectrum_temperature(spectrum_num)

Gets spectrum temperature for spectrum in Dataset.

Parameters

```
spectrum_num (int) – Integer assigned to a given spectrum.
```

Returns

 $temperature - if spectrum_num in Dataset then the temperature (K) for that the spectrum_number is returned.$

Return type

float

max_baseline_order()

sets the baseline order to be equal to the maximum in any of the included spectra.

plot_model_residuals()

Generates a plot showing both the model and experimental data as a function of wavenumber in the main plot with a subplot showing the residuals as function of wavenumber.

1.6. MATS module 101

```
renumber_spectra()
    renumbers the spectra to be sequential starting at 1 (called in the initialization of the class).
set_baseline_order(new_baseline_order)
set_dataset_name(new_dataset_name)
set_spectra(new_spectra)
```

class MATS.fit_dataset.Fit_DataSet(dataset, base_linelist_file, param_linelist_file, CIA_linelist_file=None, minimum_parameter_fit_intensity=1e-27, weight_spectra=False, baseline_limit=False, baseline_limit_factor=10, pressure_limit=False, pressure_limit_factor=10, temperature_limit=False, temperature_limit_factor=10, molefraction_limit=False, molefraction_limit_factor=10, etalon_limit=False, etalon_limit_factor=50, x_shift_limit=False, $x_shift_limit_magnitude=0.1, nu_limit=False,$ nu_limit_magnitude=0.1, sw_limit=False, sw_limit_factor=10, gamma0 limit=False, gamma0 limit factor=10, n_gamma0_limit=False, n_gamma0_limit_factor=10, delta0 limit=False, delta0 limit factor=10, n delta0 limit=False, n_delta0_limit_factor=10, SD_gamma_limit=False, SD gamma limit factor=10, n gamma2 limit=False, n_gamma2_limit_factor=10, SD_delta_limit=False, SD delta limit factor=10, n delta2 limit=False, n delta2 limit factor=10, nuVC limit=False, nuVC limit factor=10, n nuVC limit=False, n nuVC limit factor=10, eta limit=False, eta_limit_factor=10, linemixing_limit=False, linemixing_limit_factor=10, n_linemixing_limit=False, *n_linemixing_limit_factor=10*, *beta_formalism=False*)

Bases: object

Provides the fitting functionality for a Dataset.

Parameters

- dataset (object) Dataset Object.
- base_linelist_file (str) filename for file containing baseline parameters.
- param_linelist_file (str) filename for file containing parameter parameters.
- **CIA_linelist_file** (*str*, *optional*) Future Feature: filename for file constraining CIA parameters
- minimum_parameter_fit_intensity (float, optional) minimum intensity for parameters to be generated for fitting. NOTE: Even if a value is floated in the param_linelist if it is below this threshold then it won't be a floated.. The default is 1e-27.
- weight_spectra (boolean) If True, then the pt by pt percent uncertainty for each spectrum and the spectrum weighting will be used in the calculation of the residuals. Default is False.
- baseline_limit (bool, optional) If True, then impose min/max limits on baseline parameter solutions. The default is False.
- baseline_limit_factor (float, optional) The factor variable describes the multiplicative factor that the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't

- imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- pressure_limit (bool, optional) If True, then impose min/max limits on pressure solutions. The default is False.
- pressure_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- **temperature_limit** (*bool*, *optional*) If True, then impose min/max limits on temperature solutions. The default is False.
- temperature_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- molefraction_limit (bool, optional) If True, then impose min/max limits on mole fraction solutions. The default is False.
- molefraction_limit_factor(float, optional) DESCRIPTION. The default is 10.
- etalon_limit (bool, optional) If True, then impose min/max limits on etalon solutions. The default is False.
- etalon_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 50. #phase is constrained to +/- 2pi
- **x_shift_limit** (*bool*, *optional*) If True, then impose min/max limits on x-shift solutions. The default is False.
- **x_shift_limit_magnitude** (*float*, *optional*) The magnitude variables set the +/-range of the variable in cm-1. The default is 0.1.
- nu_limit (bool, optional) If True, then impose min/max limits on line center solutions. The default is False.
- nu_limit_magnitude (float, optional) The magnitude variables set the +/- range of the variable in cm-1. The default is 0.1.
- **sw_limit** (*bool*, *optional*) If True, then impose min/max limits on line intensity solutions. The default is False.
- **sw_limit_factor** (*float*, *optional*) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- **gamma0_limit** (*bool*, *optional*) If True, then impose min/max limits on collisional half-width solutions. The default is False.
- gamma0_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess.

1.6. MATS module 103

NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.

- n_gamma0_limit(bool, optional) DESCIf True, then impose min/max limits on temperature exponent for half width solutions. The default is True.
- n_gamma0_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- **delta0_limit** (*bool*, *optional*) If True, then impose min/max limits on collisional shift solutions. The default is False.
- **delta0_limit_factor** (*float*, *optional*) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- n_delta0_limit (bool, optional) If True, then impose min/max limits on temperature exponent of the collisional shift solutions. The default is True.
- n_delta0_limit_factor (float, optional) DESCRIPTION. The default is 10.
- **SD_gamma_limit** (*bool*, *optional*) If True, then impose min/max limits on the aw solutions. The default is False.
- SD_gamma_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- n_gamma2_limit (bool, optional) If True, then impose min/max limits on temperature exponent of the speed-dependent width solutions. The default is True.
- n_gamma2_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- **SD_delta_limit** (*bool*, *optional*) If True, then impose min/max limits on as solutions. The default is True.
- **SD_delta_limit_factor** (*float*, *optional*) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- n_delta2_limit (bool, optional) If True, then impose min/max limits on temperature exponent of the speed-dependent shift solutions. The default is True.
- n_delta2_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess.

NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.

- nuVC_limit (bool, optional) If True, then impose min/max limits on dicke narrowing solutions. The default is False.
- nuVC_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- n_nuVC_limit (bool, optional) If True, then impose min/max limits on temperature exponent of dicke narrowing solutions. The default is True.
- n_nuVC_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is 10.
- **eta_limit** (*bool*, *optional*) If True, then impose min/max limits on correlation parameter solutions.. The default is True.
- eta_limit_factor (float, optional) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max. The default is 10.
- **linemixing_limit** (*bool*, *optional*) The factor variable describes the multiplicative factor the value can vary by min = 1/factor * init_guess, max = factor* init_guess. NOTE: If the init_guess for a parameter is equal to zero, then the limits aren't imposed because 1) then it would constrain the fit to 0 and 2) LMfit won't let you set min = max.. The default is False.
- linemixing_limit_factor (float, optional) If True, then impose min/max limits on line-mixing solutions.. The default is 10.
- **beta_formalism** (*boolean*, *optional*) If True, then the beta correction on the Dicke narrowing is used in the simulation model.

 $\textbf{constrained_CIA}(params, S_temperature_dependence_constrained=True, shift_constrained=True)$

All user to set the temperature dependence of the SO mechanism scalar and/or the shift of the SO to be equal for O2-O2 and O2_N2

Parameters

- params (*lmfit parameter object*) the params object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit.
- S_temperature_dependence_constrained (boolean, optional) Constrains the temperature dependence of the SO mechanism scalar to be the same for O2-N2 and O2-O2. The default is True.
- **shift_constrained** (*boolean*, *optional*) Constrains the SO shift to be the same for O2-N2 and O2-O2. The default is True.

Returns

params – the params object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit.

Return type

Imfit parameter object

Imposes baseline constraints when using multiple segments per spectrum, ie all baseline parameters can be the same across the entire spectrum except for the etalon phase, which is allowed to vary per segment.

Parameters

- params (*lmfit parameter object*) the params object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit.
- baseline_segment_constrained (bool, optional) True means the baseline terms are constrained across each spectrum. The default is True.
- xshift_segment_constrained (bool, optional) True means the x_shift terms are constrained across each spectrum. The default is True.
- molefraction_segment_constrained (bool, optional) True means the mole fraction for that molecule is constrained across each spectrum. The default is True.
- etalon_amp_segment_constrained (bool, optional) True means the etalon amplitude is constrained across each spectrum. The default is True.
- etalon_period_segment_constrained (bool, optional) True means the etalon period is constrained across each spectrum. The default is True.
- etalon_phase_segment_constrained (bool, optional) True means the etalon phase is constrained across each spectrum. The default is True.
- pressure_segment_constrained (bool, optional) True means the pressure is constrained across each spectrum. The default is True.
- temperature_segment_constrained (bool, optional) True means the temperature is constrained across each spectrum. The default is True.

Returns

params – the params object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit.

Return type

lmfit parameter object

fit_data(params, wing_cutoff=25, wing_wavenumbers=25, wing_method='wing_cutoff', xtol=1e-07, maxfev=2000, ftol=1e-07)

Uses the lmfit minimizer to do the fitting through the simulation model function.

Parameters

- **params** (*lmfit parameter object*) the params object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit.
- wing_cutoff (float, optional) number of voigt half-widths to simulate on either side of each line. The default is 50.
- wing_wavenumbers (float, optional) number of wavenumbers to simulate on either side of each line. The default is 50.

- wing_method (str, optional) Provides choice between the wing_cutoff and wing_wavenumbers line cut-off options. The default is 'wing_cutoff'.
- **xtol** (*float*, *optional*) Absolute error in xopt between iterations that is acceptable for convergence. The default is 1e-7.
- maxfev (float, optional) DESCRIPTION. The default is 2000.
- **ftol** (*The maximum number of calls* to the function., optional) Absolute error in func(xopt) between iterations that is acceptable for convergence.. The default is 1e-7.

Returns

result – contains all fit results as LMFit results object.

Return type

LMFit result Object

generate_beta_output_file(beta_summary_filename=None)

Generates a file that summarizes the beta values used in the fitting in the case that beta was used to correct the Dicke narrowing term (beta_formalism = True).

Parameters

beta_summary_filename (*str*, *optional*) – Filename to save the beta information. The default is Beta Summary File.

Return type

The generated file has the beta values for each line and spectra that were used in the fitting. Access to this information is critical as the relationship between beta and nuVC is what generates a spoecific nuVC.

generate_params()

Generates the lmfit parameter object that will be used in fitting.

Returns

params – the parameter object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit

Return type

Imfit parameter object

residual_analysis(result, indv_resid_plot=False)

Updates the model and residual arrays in each spectrum object with the results of the fit and gives the option of generating the combined absorption and residual plot for each spectrum.

Parameters

- result (LMFit result Object) contains all fit results as LMFit results object.
- **indv_resid_plot** (*bool*, *optional*) True if you want to show residual plots for each spectra.. The default is False.

simulation_model(params, wing_cutoff=25, wing_wavenumbers=25, wing_method='wing_cutoff')

This is the model used for fitting that includes baseline, resonant absorption, and CIA models.

Parameters

- params (*lmfit parameter object*) the params object is a dictionary comprised of all parameters translated from dataframes into a dictionary format compatible with lmfit.
- wing_cutoff (float, optional) number of voigt half-widths to simulate on either side of each line. The default is 25.

- wing_wavenumbers (float, optional) number of wavenumbers to simulate on either side of each line. The default is 25
- wing_method (TYPE, optional) Provides choice between the wing_cutoff and wing_wavenumbers line cut-off options. The default is 'wing_cutoff'.

Returns

total residuals – residuals for all spectra in Dataset.

Return type

array

Updates the baseline and line parameter files based on fit results with the option to write over the file (default) or save as a new file and updates baseline values in the spectrum objects.

Parameters

- result (LMFit result Object) contains all fit results as LMFit results object.
- base_linelist_update_file (str, optional) Name of file to save the updated baseline parameters. Default is to override the input. The default is None.
- param_linelist_update_file (str, optional) Name of file to save the updated line parameters. Default is to override the input. The default is None.
- **cia_linelist_update_file** (*str*, *optional*) Name of file to save the updated CIA parameters. Default is to override the input.

MATS.fit_dataset.HTP_from_DF_select(linelist, waves, wing_cutoff=25, wing_wavenumbers=25,

 $wing_method='wing_cutoff', p=1, T=296, molefraction={},$ isotope list={(1, 1): [1, 'H2(160)', 0.9973173, 18.01056, 'H2O'], (1, 2): [2, 'H2(180)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(17O)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(16O)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(18O)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(17O)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(16O)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(16O)(12C)(18O)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(160)(13C)(180)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(160)(13C)(170)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(18O)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(170)(12C)(180)', 1.471799e-06, 46.99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(160)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, 'O3'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, 'O3'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 4): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, 'O2'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, 'O2'], (7, 3): [38, '(160)(170)', 0.0007422352, 32.99404, 'O2'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615, 'SO2'], (10, 1): [44, '(14N)(16O)2', 0.991616, 45.9929, 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643, 46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716, 17.02655, 'NH3'], (11, 2): [46, '(15N)H3', 0.003661289, 18.02358, 'NH3'], (12, 1): [47, 'H(14N)(16O)3', 0.9891098, 62.99564, 'HNO3'], (12, 2): [117, 'H(15N)(16O)3', 0.003636429, 63.99268, 'HNO3'], (13, 1): [48, '(160)H', 0.9974726, 17.00274, 'OH'], (13, 2): [49, '(180)H', 0.002000138, 19.00699, 'OH'], (13, 3): [50, '(160)D', 0.0001553706, 18.00891, 'OH'], (14, 1): [51, 'H(19F)', 0.9998443, 20.00623, 'HF'], (14, 2): [110, 'D(19F)', 0.000155741, 21.0124, 'HF'], (15, 1): [52, 'H(35Cl)', 0.757587, 35.97668, 'HCl'], (15, 2): [53, 'H(37Cl)', 0.2422573, 37.97373, 'HCl'], (15, 3): [107, 'D(35Cl)', 0.000118005, 36.98285,

'HCl'], (15, 4): [108, 'D(37Cl)', 3.773502e-05, 38.9799, 'HCl'], (16,

Calculates the absorbance (ppm/cm) based on input line list, wavenumbers, and spectrum environmental parameters.

Outline

- 1. Uses provided wavenumber axis
- 2. Calculates the molecular density from pressure and temperature
- 3. Sets up Diluent dictionary if not given as input
- 4. Calculates line intensity and doppler width at temperature for all lines
- 5. Loops through each line in the line list and loops through each diluent, generating a line parameter at experimental conditions that is the appropriate ratio of each diluent species corrected for pressure and temperature. For each line, simulate the line for the given simulation cutoffs and add to cross section
- 6. Return wavenumber and cross section arrays

Parameters

• linelist (dataframe) -

Pandas dataframe with the following column headers, where species corresponds to each diluent in the spectrum objects included in the dataset and nominal temperature corresponds to the nominal temperatures included in the dataset:

nu = wavenumber of the spectral line transition (cm-1) in vacuum

sw = The spectral line intensity (cm1/(moleculecm2)) at Tref=296K

elower = The lower-state energy of the transition (cm-1)

molec_id = HITRAN molecular ID number

local_iso_id = HITRAN isotopologue ID number

gamma_0_species = half width at half maximum (HWHM) (cm1/atm) at Tref=296K and reference pressure pref=1atm for a given diluent (air, self, CO2, etc.)

n_gamma0_species = The coefficient of the temperature dependence of the half width

delta_0_species = The pressure shift (cm1/atm) at Tref=296K and pref=1atm of the line position with respect to the vacuum transition wavenumber ij

n_delta0_species = the coefficient of the temperature dependence of the pressure shift

SD_gamma_species = the ratio of the speed dependent width to the half-width at reference temperature and pressure

n_gamma2_species = the coefficient of the temperature dependence of the speed dependent width NOTE: This is the temperature dependence of the speed dependent width not the ratio of the speed dependence to the half-width

SD_delta_species = the ratio of the speed dependent shift to the collisional shift at reference temperature and pressure

n_delta2_species = the coefficient of the temperature dependence of the speed dependent shift NOTE: This is the temperature dependence of the speed dependent shift not the ratio of the speed dependence to the shift

nuVC_species = dicke narrowing term at reference temperature

 n_nuVC _species = coefficient of the temperature dependence of the dicke narrowing term eta_species = the correlation parameter for the VC and SD effects

- y_species = linemixing term
- n_y_species = temperature dependence of linemixing term
- waves (array) 1-D array comprised of wavenumbers (cm-1) to use as x-axis for simulation.
- wing_cutoff (float, optional) number of half-widths for each line to be calculated for. The default is 50.
- wing_wavenumbers (float, optional) number of wavenumber for each line to be calculated. The default is 50.
- wing_method (str, optional) defines which wing cut-off option to use. Options are wing cutoff or wing wavenumbers The default is 'wing cutoff'.
- p (float, optional) pressure for simulation in atmospheres. The default is 1.
- T (float, optional) temperature for simulation in kelvin. The default is 296.
- molefraction (dict, optional) takes the form {molecule_id : mole fraction, molecule_id: mole fraction, ...}. The default is {}.
- **isotope_list** (*dict*, *optional*) provides opportunity to specify the isotope look-up table. Default is ISO, which is from HAPI. If not using ISO, then must use this format and suggested you use function to add to ISO
- natural_abundance (bool, optional) True indicates the sample is at natural abundance. The default is True.
- abundance_ratio_MI (dictionary, optional) If sample is not at natural abundance, then the natural abundance defines the enrichment factor compared to natural abundance(ie a sample where the main isotope is the only isotope would have a 1/natural abundance as the enrichment factor). Defined as {M:{I:enrichment factor, I: enrichment factor, I: herichment factor}. ... }. The default is {}.
- **Diluent** (*dict*, *optional*) contains the species as the key with the value being the abundance of that diluent in the sample, ie {'He':0.5, 'self':0.5}. The default is {}.
- **diluent** (*str*, *optional*) If Diluent = {}, then this value will be used to set the only diluent to be equal to this diluent. The default is 'air'.
- IntensityThreshold (*float*, *optional*) minimum line intensity that will be simulated. The default is 1e-30.
- TIPS (definition, optional) selects the HAPI provided TIPS version to use for the partition function

Returns

- wavenumbers (array) wavenumber axis that should match the input waves
- xsect (array) simulated cross section as a function of wavenumbers (ppm/cm)

MATS.fit_dataset.HTP_wBeta_from_DF_select(linelist, waves, wing_cutoff=25, wing_wavenumbers=25,

 $wing_method='wing_cutoff', p=1, T=296, molefraction={},$ isotope list= $\{(1, 1): [1, 'H2(160)', 0.9973173, 18.01056,$ 'H2O'], (1, 2): [2, 'H2(18O)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(170)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(160)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(180)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(170)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(160)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(160)(12C)(180)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(160)(13C)(180)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(160)(13C)(170)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(18O)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(170)(12C)(180)', 1.471799e-06, 46,99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(16O)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, '03'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, '03'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 4): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, '02'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, '02'], (7, 3): [38, '(160)(170)', 0.0007422352, 32.99404, 'O2'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615, 'SO2'], (10, 1): [44, '(14N)(16O)2', 0.991616, 45.9929, 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643, 46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716, 17.02655, 'NH3'], (11, 2): [46, '(15N)H3', 0.003661289, 18.02358, 'NH3'], (12, 1): [47, 'H(14N)(16O)3', 0.9891098, 62.99564**Chapter fl** (1**Con**tents [117, 'H(15N)(16O)3', 0.003636429, 63.99268, 'HNO3'], (13, 1): [48, '(160)H', 0.9974726, 17.00274, 'OH'], (13, 2): [49,

'(180)H', 0.002000138, 19.00699, 'OH'], (13, 3): [50,

Calculates the absorbance (ppm/cm) based on input line list, wavenumbers, and spectrum environmental parameters with capability of incorporating the beta correction to the Dicke Narrowing proposed in Analytical-function correction to the Hartmann–Tran profile for more reliable representation of the Dicke-narrowed molecular spectra.

Outline

- 1. Uses provided wavenumber axis
- 2. Calculates the molecular density from pressure and temperature
- 3. Sets up Diluent dictionary if not given as input
- 4. Calculates line intensity and doppler width at temperature for all lines
- 5. Loops through each line in the line list and loops through each diluent, generating a line parameter at experimental conditions that is the appropriate ratio of each diluent species corrected for pressure and temperature. For each line, simulate the line for the given simulation cutoffs and add to cross section
- 6. Return wavenumber and cross section arrays

Parameters

• linelist (dataframe) -

Pandas dataframe with the following column headers, where species corresponds to each diluent in the spectrum objects included in the dataset and nominal temperature corresponds to the nominal temperatures included in the dataset:

nu = wavenumber of the spectral line transition (cm-1) in vacuum

sw = The spectral line intensity (cm1/(moleculecm2)) at Tref=296K

elower = The lower-state energy of the transition (cm-1)

molec_id = HITRAN molecular ID number

local_iso_id = HITRAN isotopologue ID number

gamma_0_species = half width at half maximum (HWHM) (cm1/atm) at Tref=296K and reference pressure pref=1atm for a given diluent (air, self, CO2, etc.)

n_gamma0_species = The coefficient of the temperature dependence of the half width

delta_0_species = The pressure shift (cm1/atm) at Tref=296K and pref=1atm of the line position with respect to the vacuum transition wavenumber ij

n delta0 species = the coefficient of the temperature dependence of the pressure shift

SD_gamma_species = the ratio of the speed dependent width to the half-width at reference temperature and pressure

n_gamma2_species = the coefficient of the temperature dependence of the speed dependent width NOTE: This is the temperature dependence of the speed dependent width not the ratio of the speed dependence to the half-width

SD_delta_species = the ratio of the speed dependent shift to the collisional shift at reference temperature and pressure

n_delta2_species = the coefficient of the temperature dependence of the speed dependent shift NOTE: This is the temperature dependence of the speed dependent shift not the ratio of the speed dependence to the shift

nuVC_species = dicke narrowing term at reference temperature

n_nuVC_species = coefficient of the temperature dependence of the dicke narrowing term

- eta_species = the correlation parameter for the VC and SD effects
- y_species = linemixing term
- n_y_species = temperature dependence of line mixing term
- waves (array) 1-D array comprised of wavenumbers (cm-1) to use as x-axis for simulation.
- wing_cutoff (float, optional) number of half-widths for each line to be calculated for. The default is 50.
- wing_wavenumbers (float, optional) number of wavenumber for each line to be calculated. The default is 50.
- wing_method (str, optional) defines which wing cut-off option to use. Options are wing_cutoff or wing_wavenumbers The default is 'wing_cutoff'.
- p(float, optional) pressure for simulation in atmospheres. The default is 1.
- T (float, optional) temperature for simulation in kelvin. The default is 296.
- molefraction (dict, optional) takes the form {molecule_id : mole fraction, molecule_id: mole fraction, ...}. The default is {}.
- **isotope_list** (*dict*, *optional*) provides opportunity to specify the isotope look-up table. Default is ISO, which is from HAPI. If not using ISO, then must use this format and suggested you use function to add to ISO
- natural_abundance (bool, optional) True indicates the sample is at natural abundance. The default is True.
- abundance_ratio_MI (dictionary, optional) If sample is not at natural abundance, then the natural abundance defines the enrichment factor compared to natural abundance(ie a sample where the main isotope is the only isotope would have a 1/natural abundance as the enrichment factor). Defined as {M:{I:enrichment factor, I: enrichment factor, I: enrichment factor}, ... }. The default is {}.
- **Diluent** (*dict*, *optional*) contains the species as the key with the value being the abundance of that diluent in the sample, ie {'He':0.5, 'self':0.5}. The default is {}.
- **diluent** (*str*, *optional*) If Diluent = {}, then this value will be used to set the only diluent to be equal to this diluent. The default is 'air'.
- IntensityThreshold (float, optional) minimum line intensity that will be simulated. The default is 1e-30.
- TIPS (definition, optional) selects the HAPI provided TIPS version to use for the partition function

Returns

- wavenumbers (array) wavenumber axis that should match the input waves
- xsect (array) simulated cross section as a function of wavenumbers (ppm/cm)

class MATS.generate_fitparam_file.Generate_FitParam_File(dataset, param_linelist, base_linelist,

CIA linelist=None, lineprofile='VP', linemixing=False, threshold_intensity=1e-30, fit intensity=1e-26, fit window=1.5, $sim\ window=5$, param linelist savename='Parameter LineList', base linelist savename='Baseline LineList', CIA linelist savename='CIA LineList', nu_constrain=True, sw_constrain=True, *gamma0_constrain=True*, delta0_constrain=True, aw_constrain=True, as_constrain=True, $nuVC_constrain=True$, eta_constrain=True, linemixing_constrain=True, additional_columns=[])

Bases: object

Class generates the parameter files used in fitting and sets up fit settings.

Parameters

- **dataset** (*object*) Dataset object to be used in the fits
- **param_linelist** (*dataframe*) parameter linelist dataframe name, where the dataframe has the appropriate column headers
- base_linelist (dataframe) baseline parameter dataframe name generated from the dataset.generate_baseline_paramlist() function.
- **CIA_linelist** (*dataframe*, *optional*) Future Function: CIA linelist dataframe name generated from the dataset.generate_CIA_paramlist() function.
- **lineprofile** (*str*) lineprofile to use for the simulation. This sets values in the parameter linelist to 0 and forces them to not vary unless manually changed. Default values is VP, voigt profile. Options are VP, SDVP, NGP, SDNGP, HTP.
- **linemixing** (*bool*) If False, then all linemixing parameters are set to 0 and not able to float. Default is False.
- **threshold_intensity** (*float*) This is the minimum line intensity that will be simulated. Default value is 1e-30.
- **fit_intensity** (*float*) This is the minimum line intensity for which parameters will be set to float. This can be overwritten manually. Default value is 1e-26.
- **fit_window** (**float**) currently not used
- **sim_window** (*float*) This is the region outside of the wavelength region of the dataset that will be simulated for analysis. Default value is 5 cm-1.
- base_linelist_savename (str) filename that the baseline linelist will be saved as. Default is Baseline_LineList
- param_linelist_savename (str) filename that the parameter linelist will be saved as. Default is Parameter LineList.
- **CIA_linelist_save_name** (*str*) Future Feature: filename that the CIA linelist will be saved as. Default is CIA_LineList.

- **nu_constrain** (*bool*) True indicates that the line centers will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- **sw_constrain** (*bool*) True indicates that the line intensities will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- gamma0_constrain (bool) True indicates that the collisional width will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- **delta0_constrain** (*bool*) True indicates that the shift will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- aw_constrain (bool) True indicates that the speed dependent width will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- **as_constrain** (*bool*) True indicates that the speed dependent shift will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- **nuVC_constrain** (*bool*) True indicates that the dicke narrowing term will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- eta_constrain (bool) True indicates that the correlation parameter will be a global variable across all spectra. False generates a new value for each spectrum in the dataset.
- **linemixing_constrain** (*bool*) True indicates that the first-order linemixing term will be a global variable across all spectra. False generates a new value for each spectrum in the datas

```
\label{eq:continuous_solution} \textbf{generate\_fit\_KarmanCIA\_linelist}(vary\_S\_SO=False, vary\_S\_EXCH=False, vary\_EXCH\_temp=False, vary\_SO\_temp=False, vary\_EXCH\_shift=False, vary\_SO\_shift=False)
```

Generates the baseline line list used in fitting and updates the fitting booleans to desired settings.

Parameters

- vary_baseline (bool, optional) If True, then sets all baseline parameters for all spectra to float. The default is True.
- **vary_pressure** (*bool*, *optional*) If True, then the pressures for all spectra are floated. This should be used with caution as the impact these parameters have on other floated parameters might lead to an unstable solution. The default is False.
- vary_temperature (bool, optional) If True, then the temperatures for all spectra are floated. This should be used with caution as the impact these parameters have on other floated parameters might lead to an unstable solution. The default is False.
- **vary_molefraction** (*dict*, *optional*) keys to dictionary correspond to molecule id where the value is boolean flag, which dictates whether to float the mole fraction. The default is {}. Example: {7: True, 1: False}
- vary_xshift (bool, optional) If True, then sets x-shift parameters for all spectra to float. The default is False.
- vary_etalon_amp (bool, optional) If True, then sets etalon amplitude parameters for all spectra to float. The default is False.

- vary_etalon_period (bool, optional) If True, then sets etalon period parameters for all spectra to float. . The default is False.
- **vary_etalon_phase** (*bool*, *optional*) If True, then sets etalon phase parameters for all spectra to float.. The default is False.
- vary_ILS_res (bool, optional) If True, then sets ILS resolution parameters for all spectra to float.. The default is False.

Returns

base_linelist_df – returns dataframe based on baseline line list with addition of a vary and err column for every floatable parameter. The vary columns are defined by the inputs. The err columns will be populated from fit results. The dataframe is also saved as a .csv file..

Return type

dataframe

```
\label{eq:contine} \begin{split} \textbf{generate\_fit\_param\_linelist\_from\_linelist}(vary\_nu=\{\}, vary\_sw=\{\}, vary\_gamma0=\{\}, \\ vary\_n\_gamma0=\{\}, vary\_delta0=\{\}, \\ vary\_n\_delta0=\{\}, vary\_aw=\{\}, vary\_n\_gamma2=\{\}, \\ vary\_as=\{\}, vary\_n\_delta2=\{\}, vary\_nuVC=\{\}, \\ vary\_n\_nuVC=\{\}, vary\_tinemixing=\{\}, \\ vary\_n\_linemixing=\{\}) \end{split}
```

Generates the parameter line list used in fitting and updates the fitting booleans to desired settings.

Parameters

- vary_nu (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope line centers should be floated. Each key in the dictionary corresponds to a molecule, where the values are a dictionary corresponding to local_iso_ids as keys and boolean values acting as boolean flags. True means float the nu for that molecule and isotope. Example vary_nu = {7:{1:True, 2: False, 3: False}, 1:{1:False, 2: False, 3: False}}, would indicate that line centers of all main oxygen isotopes would be floated (if the line intensity is greater than the fit intensity), where the line centers for all other O2 isotopes and all water isotopes would not be varied. If these value are left blank, then all variable would have to be manually switched to float. The default is {}.
- vary_sw (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope line intensities should be floated. Follows nu_vary example. The default is {}.
- vary_gamma0 (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope collisional half-width should be floated. Follows nu_vary example. The default is {}.
- vary_n_gamma0 (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope coefficient of the temperature dependence of the half width should be floated. Follows nu_vary example. The default is {}.
- vary_delta0 (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope pressure shift should be floated. Follows nu_vary example. The default is {}.
- vary_n_delta0 (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope coefficient of the temperature dependence of the pressure shift should be floated. Follows nu_vary example. . The default is {}.
- **vary_aw** (*bool*, *optional*) Dictionary of dictionaries setting whether the molecule and isotope ratio of the speed dependent width to the half-width should be floated. Follows nu_vary example. The default is {}.

- vary_n_gamma2 (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope coefficient of the temperature dependence of the speed dependent width should be floated. Follows nu_vary example. The default is {}.
- **vary_as** (*bool*, *optional*) Dictionary of dictionaries setting whether the molecule and isotope the ratio of the speed dependent shift to the shift should be floated. Follows nu_vary example. The default is {}.
- vary_n_delta2 (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope coefficient of the temperature dependence of the speed dependent shift should be floated. Follows nu_vary example. . The default is {}.
- **vary_nuVC** (*bool*, *optional*) Dictionary of dictionaries setting whether the molecule and isotope dicke narrowing should be floated. Follows nu_vary example. The default is {}.
- vary_n_nuVC (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope coefficient of the temperature dependence of the dicke narrowing should be floated. Follows nu_vary example. . The default is {}.
- **vary_eta** (*bool*, *optional*) Dictionary of dictionaries setting whether the molecule and isotope correlation parameter for the VC and SD effects should be floated. Follows nu_vary example. The default is {}.
- vary_linemixing (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope first-order line-mixing should be floated. Follows nu_vary example. . The default is {}.
- vary_n_linemixing (bool, optional) Dictionary of dictionaries setting whether the molecule and isotope temperature dependence for the first-order line-mixing should be floated. Follows nu_vary example. . The default is {}.

Returns

param_linelist_df – returns dataframe based on parameter line list with addition of a vary and err column for every floatable parameter. The vary columns are defined by the inputs and the fit_intensity value. The err columns will be populated from fit results. The dataframe is also saved as a .csv file. line intensity will be normalized by the fit_intensity (set to the sw_scale_factor). The term 'sw' is now equal to the normalized value, such that in the simulation 'sw'*sw_scale_factor is used for the line intensity. Because line intensities are so small it is difficult to fit the value without normalization.

Return type

dataframe

get_CIA_linelist()
get_base_linelist()
get_dataset()
get_param_linelist()

Routines to load example data locally or from web

class MATS.linelistdata.LoadLineListData(paths=None)

Bases: object

Helper class to read in supplied LineList DataFrames

names

names of LineList files available

Type

list

__getitem__ : get file DataFrame by position/name

self[x] returns a copy of the linelist frame corresponding to self.names[x] if x is an integer, otherwise returns Frame corresponding to name = x

property names

property paths

class MATS.spectrum.**Spectrum**(filename, molefraction={}, natural_abundance=True, isotope_list={(1, 1): [1, 'H2(16O)', 0.0073173, 18.01056 'H2O', (1, 2): [2, 'H2(18O)', 0.001000827]

'H2(16O)', 0.9973173, 18.01056, 'H2O'], (1, 2): [2, 'H2(18O)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(17O)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(16O)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(18O)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(17O)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(16O)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(160)(12C)(180)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(16O)(13C)(18O)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(160)(13C)(170)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(18O)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(17O)(12C)(18O)', 1.471799e-06, 46.99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(16O)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, '03'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, '03'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 4): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, '02'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, '02'], (7, 3): [38, '(16O)(17O)', 0.0007422352, 32.99404, 'O2'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615, 'SO2'], (10, 1): [44, '(14N)(16O)2', 0.991616, 45.9929, 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643, 46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716, 17.02655, 'NH3'], (11, 2): [46, '(15N)H3', 0.003661289, 18.02358, 'NH3'], (12, 1): [47, 'H(14N)(16O)3', 0.9891098, 62.99564, 'HNO3'], (12, 2): [117, 'H(15N)(16O)3', 0.003636429, 63.99268, 'HNO3'], (13, 1): [48, '(16O)H', 0.9974726, 17.00274, 'OH'], (13, 2): [49, '(18O)H', 0.002000138, 19.00699, 'OH'], (13, 3): [50, '(160)D', 0.0001553706, 18.00891, 'OH'], (14, 1): [51, 'H(19F)', 0.9998443, 20.00623, 'HF'], (14, 2): [110, 'D(19F)', 0.000155741, 21.0124, 'HF'], (15, 1): [52, 'H(35Cl)', 0.757587, 35.97668, 'HCl'], (15, 2): [53, 'H(37Cl)', 0.2422573, 37.97373, 'HCl'], (15, 3): [107, 'D(35Cl)', 0.000118005, 36.98285, 'HCl'], (15, 4): [108, 'D(37Cl)', 3.773502e-05, 38.9799, 'HCl'], (16, 1): [54, 'H(79Br)', 0.5067811, 79.92616, 'HBr'], (16, 2): [55, 'H(81Br)', 0.4930632, 81.92412, 'HBr'], (16, 3): [111, 'D(79Br)', 7.893838e-05, 80.93234, 'HBr'], (16, 4): [112, 'D(81Br)', 7.680162e-05, 82.93029, 'HBr'], (17, 1): [56, 'H(1271)', 0.9998443, 127.9123, 'HI'], (17, 2): [113, 'D(1271)', 0.000155741, 128.9185, 'HI'], (18, 1): [57, '(35Cl)(16O)', 0.7559077, 50.96377, 'ClO'], (18, 2): [58, '(37Cl)(16O)', 0.2417203, 52.96082, 'ClO'], (19, 1): [59, '(160)(12C) hapter 437 squitents 59.96699, 'OCS'], (19, 2): [60, '(160)(12C)(34S)', 0.04158284, 61.96278, 'OCS'], (19, 3): [61, '(160)(13C)(32S)', 0.01053146, 60.97034, 'OCS'], (19,

4): [62, '(160)(12C)(33S)', 0.007399083, 60.96637, 'OCS'], (19, 5): [63,

Bases: object

Spectrum class provides all information describing experimental or simulated spectrum.

Parameters

- filename (str) file containing spectrum with .csv extension. File extension is not included in the name
- **molefraction** (*dict*) mole fraction of each molecule in spectra in the format {molec_id: mole fraction (out of 1), molec_id: molefraction, ... }
- natural_abundance (bool, optional) flag for if the molecular species in the spectrum are at natural abundance
- abundance_ratio_MI (dict, optional) if not at natural abundance sets the enhancement factor for each molecule and isotope in the following format {molec_id:{iso_id: enhancement, iso_id: enhancement}}, ... }. The enhancement is the ratio of the new abundance to the natural abundance.
- **isotope_list** (*dict*, *optional*) provides opportunity to specify the isotope look-up table. Default is ISO, which is from HAPI. If not using ISO, then must use this format and suggested you use function to add to ISO
- **diluent** (str, optional) sets the diluent for the sample. Default = 'air'
- **Diluent** (*dict*, *optional*) sets the diluent for the sample if there are a combination of several diluents. Format {'he': 0.5, 'air': 0.5). NOTE: the line parameter file must have parameters that correspond to the diluent (ie gamma0_he, and gamma0_air). Additionally, the contribution from all diluents must sum to 1.
- **spectrum_number** (*int*, *optional*) sets a number for the spectrum that will correspond to fit parameters. This is set in the Dataset class, so should not need to be defined manually
- **input_freq** (*bool*, *optional*) True indicates that the frequency_column is in MHz. False indicates that the frequency column is in wavenumbers.
- input_tau (bool, optional) True indicates that the tau_column is in us. False indicates that the tau column is in 1/c*tau (ppm/cm).
- **pressure_column** (*str*, *optional*) Name of the pressure column in input file. Column should be in torr. Default is Cavity Pressure /Torr.
- **temperature_column** (*str*, *optional*) Name of the temperature column in input file. Column should be in celsius. Default is Cavity Temperature Side 2 /C.
- **frequency_column** (*str*, *optional*) Name of the frequency column in input file. Column should be in MHz or Wavenumbers (with appropriate flag for input_freq). NOTE: This is not a detuning axis. Default is Total Frequency /MHz.
- tau_column (str, optional) Name of the tau column in input file. Column should be in us or in 1/ctau (ppm/cm) (with appropriate flag for input_tau). Default is Mean tau/us.
- tau_stats_column (str, optional) Name of column containing the pt by pt error as a percent of the y-axis. Default is 'tau rel. std. dev./%
- **segment_column** (*str*, *optional*) Name of column with segment numbers in input file. This column allows spectrum background parameters to be treated in segments across the spectrum. If None then the entire spectrum will share the same segment.
- **etalons** (*dict*, *optional*) Allows you to define etalons by an amplitude and period (1/ frequency in cm-1). Default is no etalons. Input is dictionary with keys being a number and

the value being an array with the first index being the amplitude and the second being the period.

- **nominal_temperature** (*int*, *optional*) nominal temperature indicates the approximate temperature of the spectrum. When combining spectra into a dataset this acts as a flag to whether temperature dependence terms should be parameters that can be fit or whether they should act as constants. Default = 296
- **x_shift** (*float*, *optional*) value in wavenumbers of the x shift for the spectrum axis. This is a fittable parameter. Be careful in using this parameter as floating multiple parameters with similar effects cause fits to not converge (ie. unconstrained line centers + x_shift or fits with line center, shifts, and x_shifts terms without enough lines per spectrum to isolate the different effects). Floating this term works best if you have a good initial guess. Default = 0
- **baseline_order** (*int*, *optional*) sets the baseline order for this spectrum. Allows you to change the baseline order across the broader dataset.()
- weight (float, optional,) set the weighting to used for the spectrum if using weighted fits. This can be used to weight a whole spectrum in addition to the pt by pt weighting using the stats column.
- ILS_function (string, optional) Default is None and means that no instrument line shape is used in the fitting. Function can be: SLIT_MICHELSON, SLIT_DIFFRACTION, SLIT_COSINUS, SLIT_DISPERSION, SLIT_GAUSSIAN, SLIT_TRIANGULAR, SLIT_RECTANGULAR corresponding to the ILS functions defined in HAPI or a user defined function.
- ILS_resolution (float/array, optional) Resolution is a float or array of ILS resolutions in wavenumbers. The SlitFunctions defined in HAPI have 1 resolution, but this opens the option for the user defined function to be comprised of several functions with varying resolutions. Default is 0.1 cm-1.
- ILS_wing (float/array, optional) AF_wing is the a float or array consisting of the range the ILS is calculted over in cm-1. This is a single value fort he HAPI slit functions, but could be an array of multiple values for user-defined functions. Default is 10 cm-1
- TIPS (definition, optional) selects the HAPI provided TIPS version to use for the partition function
- **compressability_file** (*str*, *optional*) compressability_file is the name of a file that contains the compressability information, generated by the NIST Refprop program with the rows containing compressability (used to correct the ideal gas law) as a function pressure (MPa) and the columns as a function of temperature (K). Pressure and temperature are header/index in the given axis.

calculate_QF()

Calculates the quality of fit factor (QF) for a spectrum - $QF = (maximum \ alpha - minimum \ alpha) / std(residuals).$

Returns

QF.

Return type

float

diluent_sum_check()

Checks that if multiple broadeners are used that the contributions sum to one.

Returns

Warning if the diluents don't sum to one

Return type

str

fft_spectrum()

Takes the FFT of the residuals of the spectrum, generates a plot of frequency (cm-1) versus amplitude (ppm/cm), and prints a dataframe with the 20 highest amplitude frequencies with the FFT frequency (period), amplitude, FFT phase, and frequency (cm-1).

```
get_Diluent()
get_abundance_ratio_MI()
get_alpha()
get_background()
get_cia()
get_diluent()
get_etalons()
get_filename()
get_frequency()
get_model()
get_molefraction()
get_natural_abundance()
get_nominal_temperature()
get_pressure()
get_pressure_torr()
get_residuals()
get_spectrum_number()
get_tau()
get_tau_stats()
get_temperature()
get_temperature_C()
get_wavenumber()
plot_freq_tau()
    Generates a plot of tau (us) as a function of frequency (MHz).
plot_model_residuals()
```

Generates a plot of the alpha and model (ppm/cm) as a function of wavenumber (cm-1) and on lower plot shows the residuals (ppm/cm) as a function of wavenumber (cm-1).

plot_wave_alpha()

Generates a plot of alpha (ppm/cm) as a function of wavenumber (cm-1).

```
save_spectrum_info(save file=False)
```

Saves spectrum information to a pandas dataframe with option to also save as as a csv file.

Parameters

save_file (*bool*, *optional*) – If False, then only a dataframe is created. If True, then a csv file will be generated with the name filename + '_saved.csv'. The default is False.

Returns

new_file – returns a pandas dataframe with columns related to the spectrum information

Return type

dataframe

segment_wave_alpha()

Defines the wavenumber, alpha, and indices of spectrum that correspond to a given spectrum segment.

Returns

- wavenumber_segments (*dict*) dictionary where the key corresponds to a segment number and the values correspond to the wavenumbers for that segment
- **alpha_segments** (*dict*) dictionary where the key corresponds to a segment number and the values correspond to the alpha values for that segment.
- **indices_segments** (*dict*) dictionary where the key corresponds to a segment number and the values correspond to the array indices for that segment.

```
set_Diluent(new_Diluent)
set_abundance_ration_MI(new_abundance_ratio_MI)
set_background(new_background)
set_cia(new_cia)
set_diluent(new_diluent)
set_etalons(new etalons)
set_frequency_column(new_frequency_column)
set_model(new model)
set_molefraction(new_molefraction)
set_natural_abundance(new natural abundance)
set_nominal_temperature(new_nominal_temperature)
set_pressure_column(new_pressure_column)
set_residuals(new_residuals)
set_spectrum_number(new_spectrum_number)
set_tau_column(new_tau_column)
set_tau_stats_column(new_tau_stats_column)
```

set_temperature_column(new_temperature_column)
set_weight(new_weight)

MATS.spectrum.simulate_spectrum(parameter_linelist, wave_min=None, wave_max=None,

wave_space=None, wavenumbers=[], wave_error=0, SNR=None, baseline terms=[0], temperature=25, temperature err={'bias': 0, 'function': None, 'params': {}}, pressure=760, pressure_err={'function': None, 'params': {}, 'per_bias': 0}, wing_cutoff=25, wing wavenumbers=25, wing method='wing cutoff', filename='temp', $molefraction=\{\}, molefraction err=\{\}, isotope list=\{(1, 1): [1, 'H2(16O)',$ 0.9973173, 18.01056, 'H2O'], (1, 2): [2, 'H2(18O)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(17O)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(160)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(180)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(170)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(16O)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(160)(12C)(180)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(160)(13C)(180)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(160)(13C)(170)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(18O)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(170)(12C)(180)', 1.471799e-06, 46.99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(16O)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, '03'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, 'O3'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 4): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, 'O2'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, 'O2'], (7, 3): [38, '(160)(170)', 0.0007422352, 32.99404, 'O2'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615, 'SO2'], (10, 1): [44, '(14N)(16O)2', 0.991616, 45.9929, 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643, 46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716, 17.02655, 'NH3'], (11, 2): [46, '(15N)H3', 0.003661289, 18.02358, 'NH3'], (12, 1): [47, 'H(14N)(16O)3', 0.9891098, 62.99564, 'HNO3'], (12, 2): [117, 'H(15N)(16O)3', 0.003636429, 63.99268, 'HNO3'], (13, 1): [48, '(160)H', 0.9974726, 17.00274, 'OH'], (13, 2): [49, '(180)H', 0.002000138, 19.00699, 'OH'], (13, 3): [50, '(160)D', 0.0001553706, 18.00891, 'OH'], (14, 1): [51, 'H(19F)', 0.9998443, 20.00623, 'HF'], (14, 2): [110, 'D(19F)Chapter5\574\Q\cdot\nontents 21.0124, 'HF'], (15, 1): [52, 'H(35Cl)', 0.757587, 35.97668, 'HCl'], (15, 2): [53, 'H(37Cl)', 0.2422573, 37.97373, 'HCl'], (15, 3): [107, 'D(35Cl)', 0.000118005, 36.98285, 'HCl'], (15, 4): [108, 'D(37Cl)', 3.773502e-05,

Generates a synthetic spectrum, where the output is a spectrum object that can be used in MATS classes.

Parameters

- parameter_linelist (dataframe) linelist following the convention of the linelists used for the HTP_from_DF_select. Note that there will need to be a linemixing column for each nominal temperature, which you will have to do manually (ie y_air_296, y_self_296).
- wavenumbers (array of floats, optional) array of wavenumbers for the simulation (cm-1). If provided, then this axis will be used. If wavenumbers = None, then the wave_min, wave_max, and wave_space will be used to calculate wavenumber grid.
- wave_min (float, optional) minimum wavenumber for the simulation (cm-1)
- wave_max (float, optional) maximum wavenumber for the simulation (cm-1).
- wave_space (float, optional) wavenumber spacing for the simulation (cm-1).
- wave_error (*float*, optional) absolute error on the wavenumber axis (cm-1) to include in simulations. The default is 0.
- **SNR** (*float*, *optional*) Signal to noise ratio to impose on the simulated spectrum. The default is None. If SNR is none there is no noise on the simulation.
- baseline_terms (list, optional) polynomial baseline coefficients where the index is equal to the coefficient order, ie. [0, 1, 2] would correspond to baseline = 0 + 1*(wavenumber minimum wavenumber) + 2*(wavenumber minimum wavenumber)^2. The default is [0].
- **temperature** (*float*, *optional*) temperature for simulation in celsius. The default is 25.
- **temperature_err** (*dict*, *optional*) possible keys include 'bias', 'function', and 'params'. The bias indicates the absolute bias in Celsius of the temperature reading, which will be added to the input temperature. Function can be 'linear' with params 'm' and 'b' or 'sine' with parameters 'amp', 'phase', and 'phase'. These define a function that is added to both the bias and set temperature as a function of the wavenumber. Note: if 'function' key is not equal to None, then there also needs to be a params key to define the function.. The default is {'bias': 0, 'function': None, 'params': {}}.
- **pressure** (*float*, *optional*) pressure for simulation in torr. The default is 760.
- **pressure_err** (*dict*, *optional*) possible keys include bias, function, and params. The bias indicates the percent bias in of the pressure reading, which will be added to the input pressure. Function can be 'linear' with params 'm' and 'b' or 'sine' with parameters 'amp', 'phase', and 'phase'. These define a function that is added to both the bias and set pressure as a function of the wavenumber. Note: if 'function' key is not equal to None, then there also needs to be a params key to define the function.. The default is { 'per_bias': 0, 'function': None, 'params': { } }.
- wing_cutoff (float, optional) number of voigt half-widths to simulate on either side of each line. The default is 25.
- wing_wavenumbers (float, optional) number of wavenumbers to simulate on either side of each line. The default is 25.
- wing_method (str, optional) Provides choice between the wing_cutoff and wing_wavenumbers line cut-off options. The default is 'wing_cutoff'.
- **filename** (*str*, *optional*) allows you to pick the output filename for the simulated spectra. The default is 'temp'.

- molefraction (dict, optional) mole fraction of each molecule to be simulated in the spectrum in the format {molec_id: mole fraction (out of 1), molec_id: molefraction, ... }. The default is {}.
- molefraction_err (dict, optional) percent error in the mole fraction of each molecule to be simulated in the spectrum in the format {molec_id: percent error in mole fraction, molec_id: percent error in mole fraction, ... }. The default is {}.
- natural_abundance (bool, optional) flag for if the spectrum contains data at natural abundance. The default is True.
- abundance_ratio_MI (dict, optional) if not at natural abundance sets the enhancement factor for each molecule and isotope in the following format {molec_id:{iso_id: enhancement, iso_id: enhancement}, ... }. The default is {}. The enhancement is the ratio of the new abundance to the natural abundance.
- **isotope_list** (*dict*, *optional*) provides opportunity to specify the isotope look-up table. Default is ISO, which is from HAPI. If not using ISO, then must use this format and suggested you use function to add to ISO
- **diluent** (*str*, *optional*) sets the diluent for the sample if only using one broadener. The default is 'air'.
- **Diluent** (*dict*, *optional*) sets the diluent for the sample if there are a combination of several. Format {'he': 0.5, 'air': 0.5). NOTE: the line parameter file must have parameters that correspond to the diluent (ie gamma0_he, and gamma0_air). Additionally, the contribution from all diluents must sum to 1.. The default is {}.
- **nominal_temperature** (*int*, *optional*) nominal temperature indicates the approximate temperature of the spectrum. When combining spectra into a dataset this acts as a flag to whether temperature dependence terms should be parameters that can be fit or whether they should act as constants.. The default is 296.
- etalons (dict, optional) Allows you to define etalons by an amplitude and period (1/ frequency in cm-1). Default is no etalons. Input is dictionary with keys being a number and the value being an array with the first index being the amplitude and the second being the period.. The default is {}.
- **x_shift** (*float*, *optional*) value in wavenumbers of the x shift for the spectrum axis.. The default is 0.
- IntensityThreshold (float, optional) minimum line intensity to use in the simulation. The default is 1e-30.
- num_segments (int, optional) Number of segments in the file, which is implemented labeling the segment column into equal sequential se. The default is 10.
- **beta_formalism** (*boolean*, *optional*) Indicates whether the beta correction for Dicke Narrowing should be used. The default is False.
- ILS_function (string, optional) Default is None and means that no instrument line shape is used in the fitting. Function can be: SLIT_MICHELSON, SLIT_DIFFRACTION, SLIT_COSINUS, SLIT_DISPERSION, SLIT_GAUSSIAN, SLIT_TRIANGULAR, SLIT_RECTANGULAR corresponding to the ILS functions defined in HAPI or a user defined function.
- ILS_resolution (float/array, optional) Resolution is a float or array of ILS resolutions in wavenumbers. The SlitFunctions defined in HAPI have 1 resolution, but this opens the option for the user defined function to be comprised of several functions with varying resolutions. Default is 0.1 cm-1.

- ILS_wing (float, optional) AF_wing is the a float consisting of the range the ILS is calculted over in cm-1. Default is 10 cm-1
- **TIPS** (*definition*, *optional*) selects the HAPI provided TIPS version to use for the partition function

Returns

- **spectrum_file** (.*csv*) File that contains the simulated wavenumber axis, noisy wavenumber axis, absorbance data, noisy absorbance data, percent noise, pressure (torr), and temperature (C). The filename will correspond to the filename parameter, which has a default value of temp. The pressure and temperature columns will include whatever functional change there is to the pressure or temperature, but not the bias offset. This is coded to match how this error would manifest in experiments.
- **spectrum_object** (*object*) Outputs a Spectrum class object. This makes it so the you can easily switch between reading in an experimental spectrum and simulated a synthetic spectrum by simply switching out whether the spectrum object is defined through the class definition or through the simulate_spectrum function.

MATS.utilities.add_to_HITRANstyle_isotope_list(input isotope list={(1, 1): [1, 'H2(16O)', 0.9973173, 18.01056, 'H2O'], (1, 2): [2, 'H2(18O)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(17O)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(16O)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(180)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(170)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(160)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(160)(12C)(180)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(160)(13C)(180)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(16O)(13C)(17O)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(18O)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(170)(12C)(180)', 1.471799e-06, 46.99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(16O)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, '03'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, 'O3'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, *4*): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, '02'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, '02'], (7, 3): [38, '(160)(170)', 0.0007422352, 32.99404, '02'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615,

> 'SO2'], (10, 1): [44, '(14N)(16@hapter1616Contents 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643, 46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716,

17.02655, 'NH3'], (11, 2): [46, '(15N)H3',

Allows for used to add to an existing isotope line list in the HITRAN format

Parameters

- input_isotope_list (dictionary, optional) Isotope list dictionary in HAPI format. The default is ISO.
- molec_id (int, optional) molec_id for new isotope entry. The default is 100.
- local_iso_id (int, optional) local isotope id number for new isotope entry. The default is 1.
- global_isotope_id (int, optional) global isotope id for new istope entry. The default is 200.
- **iso_name** (str, optional) isotoope name for new isotope entry. The default is ".
- abundance (float, optional) relative abundance of new isotope entry. The default is
- mass (float, optional) Mass of isotope in g. The default is 1.
- mol_name (str, optional) name of the molecule for new istope entry. The default is ".

Returns

output_isotope_list - Isotope list with additionall entry

Return type

dictionary

MATS.utilities.arange_(lower, upper, step)

originally from HAPI 1.1.0.9.6, but corrects npnt to be int

Convolves cross section with a slit function with given parameters. Originally from HAPI 1.1.0.9.6 with correction to arange_ to prevent float/int error

MATS.utilities.etalon(x, amp, period, phase)

Etalon definition

Parameters

- **x** (array) array of floats used to define the x-axis
- amp (float) amplitude of the etalon.
- **period** (*float*) period of the etalon.
- **phase** (*float*) phase of the etalon.

Returns

etalon – etalon as a function of input x-axis, amplitude, period, and phase.

Return type

array

MATS.utilities.hasNumbers(inputString)

Determines whether there are numbers in a string

Parameters

inputString (str) – string for analysis

Returns

Returns True if the there are numbers in a string

Return type

bool

MATS.utilities.isotope_list_molecules_isotopes(isotope_list=f(1, 1): [1, 'H2(160)', 0.9973173,

18.01056, 'H2O'], (1, 2): [2, 'H2(18O)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(17O)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(16O)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(180)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(170)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(160)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(160)(12C)(180)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(160)(13C)(180)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(16O)(13C)(17O)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(18O)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(170)(12C)(180)', 1.471799e-06, 46.99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(16O)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, '03'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, 'O3'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, *4*): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, '02'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, '02'], (7, 3): [38, '(160)(170)', 0.0007422352, 32.99404, '02'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615, 'SO2'], (10, 1): [44, '(14N)(16O)2', 0.991616, 45.9**9233**, 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643,

46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716,

17.02655, 'NH3'], (11, 2): [46, '(15N)H3',

The HITRAN style isotope list in the format (M,I), this function creates a dictionary from this with M as the keys and lists of I as values.

Parameters

isotope_list (*dictionary*, *optional*) – HITRAN style isotope list. The default is ISO.

Returns

molecule_isotope_dictionary – Dictionary with the molecules in an isotope list with the available I values.

Return type

dictionary

MATS.utilities.max_iter(pars, iter, resid, *args, **kws)

MATS.utilities.molecularMass(M, I, isotope list={(1, 1): [1, 'H2(160)', 0.9973173, 18.01056, 'H2O'], (1, 2): [2, 'H2(180)', 0.001999827, 20.01481, 'H2O'], (1, 3): [3, 'H2(170)', 0.0003718841, 19.01478, 'H2O'], (1, 4): [4, 'HD(16O)', 0.0003106928, 19.01674, 'H2O'], (1, 5): [5, 'HD(18O)', 6.230031e-07, 21.02098, 'H2O'], (1, 6): [6, 'HD(170)', 1.158526e-07, 20.02096, 'H2O'], (1, 7): [129, 'D2(16O)', 2.419741e-08, 20.02292, 'H2O'], (2, 1): [7, '(12C)(16O)2', 0.9842043, 43.98983, 'CO2'], (2, 2): [8, '(13C)(16O)2', 0.01105736, 44.99318, 'CO2'], (2, 3): [9, '(160)(12C)(180)', 0.003947066, 45.99408, 'CO2'], (2, 4): [10, '(160)(12C)(170)', 0.000733989, 44.99404, 'CO2'], (2, 5): [11, '(160)(13C)(180)', 4.434456e-05, 46.99743, 'CO2'], (2, 6): [12, '(160)(13C)(170)', 8.246233e-06, 45.9974, 'CO2'], (2, 7): [13, '(12C)(180)2', 3.95734e-06, 47.99832, 'CO2'], (2, 8): [14, '(170)(12C)(180)', 1.471799e-06, 46.99829, 'CO2'], (2, 9): [121, '(12C)(17O)2', 1.368466e-07, 45.99826, 'CO2'], (2, 10): [15, '(13C)(18O)2', 4.446e-08, 49.00167, 'CO2'], (2, 11): [120, '(180)(13C)(170)', 1.65354e-08, 48.00165, 'CO2'], (2, 12): [122, '(13C)(17O)2', 1.537446e-09, 47.00162, 'CO2'], (3, 1): [16, '(16O)3', 0.9929009, 47.98474, 'O3'], (3, 2): [17, '(160)(160)(180)', 0.003981942, 49.98899, '03'], (3, 3): [18, '(160)(180)(160)', 0.001990971, 49.98899, '03'], (3, 4): [19, '(160)(160)(170)', 0.0007404746, 48.98896, '03'], (3, 5): [20, '(160)(170)(160)', 0.0003702373, 48.98896, '03'], (4, 1): [21, '(14N)2(16O)', 0.9903328, 44.00106, 'N2O'], (4, 2): [22, '(14N)(15N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 3): [23, '(15N)(14N)(16O)', 0.003640926, 44.9981, 'N2O'], (4, 4): [24, '(14N)2(18O)', 0.001985822, 46.00531, 'N2O'], (4, 5): [25, '(14N)2(17O)', 0.0003692797, 45.00528, 'N2O'], (5, 1): [26, '(12C)(16O)', 0.9865444, 27.99491, 'CO'], (5, 2): [27, '(13C)(16O)', 0.01108364, 28.99827, 'CO'], (5, 3): [28, '(12C)(18O)', 0.001978224, 29.99916, 'CO'], (5, 4): [29, '(12C)(17O)', 0.0003678671, 28.99913, 'CO'], (5, 5): [30, '(13C)(18O)', 2.2225e-05, 31.00252, 'CO'], (5, 6): [31, '(13C)(17O)', 4.13292e-06, 30.00249, 'CO'], (6, 1): [32, '(12C)H4', 0.9882741, 16.0313, 'CH4'], (6, 2): [33, '(13C)H4', 0.01110308, 17.03466, 'CH4'], (6, 3): [34, '(12C)H3D', 0.0006157511, 17.03748, 'CH4'], (6, 4): [35, '(13C)H3D', 6.917852e-06, 18.04083, 'CH4'], (7, 1): [36, '(160)2', 0.9952616, 31.98983, '02'], (7, 2): [37, '(160)(180)', 0.00399141, 33.99408, '02'], (7, 3): [38, '(16O)(17O)', 0.0007422352, 32.99404, 'O2'], (8, 1): [39, '(14N)(16O)', 0.9939737, 29.99799, 'NO'], (8, 2): [40, '(15N)(16O)', 0.003654311, 30.99502, 'NO'], (8, 3): [41, '(14N)(18O)', 0.001993122, 32.00223, 'NO'], (9, 1): [42, '(32S)(16O)2', 0.9456777, 63.9619, 'SO2'], (9, 2): [43, '(34S)(16O)2', 0.04195028, 65.9577, 'SO2'], (9, 3): [137, '(33S)(16O)2', 0.007464462, 64.96129, 'SO2'], (9, 4): [138, '(160)(32S)(180)', 0.003792558, 65.96615, 'SO2'], (10, 1): [44, '(14N)(16O)2', 0.991616, 45.9929, 'NO2'], (10, 2): [130, '(15N)(16O)2', 0.003645643, 46.98994, 'NO2'], (11, 1): [45, '(14N)H3', 0.9958716, 17.02655, 'NH3'], (11, 2): [46, '(15N)H3', 0.003661289, 18.02358, 'NH3'], (12, 1): [47, 'H(14N)(16O)3', 0.9891098, 62.99564, 'HNO3'], (12, 2): [117, 'H(15N)(16O)3', 0.003636429, 63.99268, 'HNO3'], (13, 1): [48, '(160)H', 0.9974726, 17.00274, 'OH'], (13, 2): [49, '(180)H', 0.002000138, 19.00699, 'OH'], (13, 3): [50, '(160)D', 0.0001553706, 18.00891, 'OH'], (14, 1): [51, 'H(19F)', 0.9998443, 20.00623, 'HF'], (14, 2): [110, 'D(19F)', 0.000155741, 21.0124, 'HF'], (15, 1): [52, 'H(35Cl)', 0.757587, 35.97668, 'HCl'], (15, 2): [53, 'H(37Cl)', 0.2422573, 37.97373, 'HCl'], (15, 3): [107, 'D(35Cl)', 0.000118005, 36.98285, 'HCl'], (15, 4): [108, 'D(37Cl)', 3.773502e-05, 38.9799, 'HCl'], (16, 1): [54, 'H(79Br)', 0.5067811, 79.92616, 'HBr'], (16, 2): [55, 'H(81Br)', 0.4930632, 81.92412, 'HBr'], (16, 3): [111, 'D(79Br)', 7.893838e-05, 80.93234, 'HBr'], (16, 4): [112, 'D(81Br)', 7.680162e-05, 82.93029, 'HBr'], (17, 1): [56, 'H(1271)', 0.9998443, 127.9123, 'HI'], (17, 2): [113, 'D(1271)', 0.000155741, 128.9185, 'HI'], (18, 1): [57, '(35Cl)(16O)', 0.7559077, 50.96377, 'ClO'], (18, 2): [58, '(37Cl)(16O)', 1.6. MATS module 0.2417203, 52.96082, 'ClO'], (19, 1): [59, '(160)(12C)(32S)', 0.9373947, **135** 59.96699, 'OCS'], (19, 2): [60, '(160)(12C)(34S)', 0.04158284, 61.96278,

'OCS'], (19, 3): [61, '(160)(13C)(32S)', 0.01053146, 60.97034, 'OCS'], (19, 4): [62, '(160)(12C)(33S)', 0.007399083, 60.96637, 'OCS'], (19, 5): [63,

molecular mass look-up based on the HAPI definition adapted to allow used to specify ISO list INPUT PARAMETERS:

M: HITRAN molecule number I: HITRAN isotopologue number

OUTPUT PARAMETERS:

MolMass: molecular mass

— DESCRIPTION:

Return molecular mass of HITRAN isotolopogue.

CHAPTER TWO

LEGAL

This software is subject to the NIST Software License (revised as of August 2018).

138 Chapter 2. Legal

CHAPTER

THREE

CONTACT

Erin Adkins

- Email
- NIST Staff Page
- GitHub profile

140 Chapter 3. Contact

CHAPTER

FOUR

LINKS

NIST GitHub Organization NIST Optical Measurements Group NIST Home Page

142 Chapter 4. Links

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- search

PYTHON MODULE INDEX

m

```
MATS.codata, 98
MATS.dataset, 98
MATS.fit_dataset, 102
MATS.generate_fitparam_file, 114
MATS.linelistdata, 118
MATS.spectrum, 119
MATS.utilities, 129
```

146 Python Module Index

INDEX

A	<pre>generate_beta_output_file()</pre>
add_to_HITRANstyle_isotope_list() (in module	(MATS.fit_dataset.Fit_DataSet method), 107
MATS.utilities), 129 arange_() (in module MATS.utilities), 131	generate_CIA_paramlist() (MATS.dataset.Dataset
average_QF() (MATS.dataset.Dataset method), 98	method), 99
C calculate_QF() (MATS.spectrum.Spectrum method),	<pre>generate_fit_baseline_linelist()</pre>
<pre>correct_component_list() (MATS.dataset.Dataset</pre>	method), 107 generate_summary_file() (MATS.dataset.Dataset
method), 99 correct_etalon_list() (MATS.dataset.Dataset method), 99	method), 99 get_abundance_ratio_MI() (MATS.spectrum.Spectrum method), 123
D	<pre>get_alpha() (MATS.spectrum.Spectrum method), 123</pre>
Dataset (class in MATS.dataset), 98 diluent_sum_check() (MATS.spectrum.Spectrum method), 122	<pre>get_background()</pre>
E	method), 118
etalon() (in module MATS.utilities), 131	<pre>get_baseline_order() (MATS.dataset.Dataset method), 100</pre>
F	get_broadener_list() (MATS.dataset.Dataset method), 100
<pre>fft_spectrum() (MATS.spectrum.Spectrum method),</pre>	<pre>get_cia() (MATS.spectrum.Spectrum method), 123 get_CIA_linelist() (MATS.generate_fitparam_file.Generate_FitParam_</pre>
fit_data() (MATS.fit_dataset.Fit_DataSet method), 106	method), 118 get_dataset() (MATS.generate_fitparam_file.Generate_FitParam_File
Fit_DataSet (class in MATS.fit_dataset), 102	method), 118
G	<pre>get_dataset_name() (MATS.dataset.Dataset method),</pre>
<pre>generate_baseline_paramlist()</pre>	<pre>get_Diluent() (MATS.spectrum.Spectrum method),</pre>
(MATS.dataset.Dataset method), 99	123 get_diluent() (MATS.spectrum.Spectrum method),

123	method), 123
<pre>get_etalons() (MATS.dataset.Dataset method), 100 get_etalons() (MATS.spectrum.Spectrum method),</pre>	Н
123 get_filename() (MATS.spectrum.Spectrum method), 123	hasNumbers() (in module MATS.utilities), 131 HTP_from_DF_select() (in module MATS.fit_dataset), 108
<pre>get_frequency() (MATS.spectrum.Spectrum method),</pre>	<pre>HTP_wBeta_from_DF_select() (in module</pre>
<pre>get_ILS_function_dict() (MATS.dataset.Dataset</pre>	I
<pre>get_list_spectrum_numbers()</pre>	$isotope_list_molecules_isotopes() \hspace{0.2cm} (in \hspace{0.2cm} module \\ \hspace{0.2cm} \textit{MATS.utilities}), 132$
get_moder() (MATS.spectrum.spectrum memoa), 123 get_molecules() (MATS.dataset.Dataset method), 100	1
get_molefraction() (MATS.spectrum.Spectrum	L W. T. D. (L. MATGER R. L. L.) 110
method), 123	LoadLineListData (class in MATS.linelistdata), 118
get_natural_abundance()	M
<pre>(MATS.spectrum.Spectrum method), 123 get_nominal_temperature()</pre>	MATS.codata
(MATS.spectrum.Spectrum method), 123	module, 98
get_number_nominal_temperatures()	MATS.dataset
(MATS.dataset.Dataset method), 100	module, 98
<pre>get_number_spectra() (MATS.dataset.Dataset</pre>	MATS.fit_dataset
method), 101	module, 102
<pre>get_param_linelist()</pre>	<pre>MATS.generate_fitparam_file</pre>
(MATS.generate_fitparam_file.Generate_FitPara	m_{Fil} module, 114
method), 118	MAIS.linelistdata
<pre>get_pressure() (MATS.spectrum.Spectrum method),</pre>	module, 118
123	MATS.spectrum module, 119
<pre>get_pressure_torr()</pre>	MATS.utilities
get_residuals() (MATS.spectrum.Spectrum method),	module, 129
123	<pre>max_baseline_order()</pre>
get_spectra() (MATS.dataset.Dataset method), 101	method), 101
<pre>get_spectra_extremes() (MATS.dataset.Dataset method), 101</pre>	<pre>max_iter() (in module MATS.utilities), 134 module</pre>
get_spectrum_extremes() (MATS.dataset.Dataset	MATS datas at 00
method), 101	MATS.dataset, 98 MATS.fit_dataset, 102
get_spectrum_filename() (MATS.dataset.Dataset	MATS.generate_fitparam_file, 114
method), 101	MATS.linelistdata, 118
<pre>get_spectrum_number() (MATS.spectrum.Spectrum method), 123</pre>	MATS.spectrum, 119
get_spectrum_pressure() (MATS.dataset.Dataset	MATS.utilities, 129
method), 101	molecularMass() (in module MATS.utilities), 134
<pre>get_spectrum_temperature()</pre>	NI
(MATS.dataset.Dataset method), 101	N
<pre>get_tau() (MATS.spectrum.Spectrum method), 123</pre>	$names \ (\textit{MATS.linelistdata.LoadLineListData} \ \ \textit{attribute}),$
<pre>get_tau_stats() (MATS.spectrum.Spectrum method),</pre>	118
123	names (MATS.linelistdata.LoadLineListData property),
get_temperature() (MATS.spectrum.Spectrum	119
<pre>method), 123 get_temperature_C() (MATS.spectrum.Spectrum</pre>	P
<pre>get_temperature_C() (MATS.spectrum.Spectrum method), 123</pre>	paths (MATS.linelistdata.LoadLineListData property),
get_wavenumber() (MATS.spectrum.Spectrum	119
January Commission Com	11/

148 Index

```
plot_freq_tau() (MATS.spectrum.Spectrum method),
                                                  set_tau_stats_column() (MATS.spectrum.Spectrum
                                                           method), 124
        123
plot_model_residuals()
                             (MATS.dataset.Dataset
                                                  set_temperature_column()
                                                           (MATS.spectrum.Spectrum method), 124
        method), 101
plot_model_residuals() (MATS.spectrum.Spectrum
                                                  set_weight() (MATS.spectrum.Spectrum method), 125
        method), 123
                                                   simulate_spectrum() (in module MATS.spectrum),
plot_wave_alpha()
                          (MATS.spectrum.Spectrum
                                                   simulation_model()
        method), 123
                                                                         (MATS.fit_dataset.Fit_DataSet
                                                           method), 107
R
                                                  Spectrum (class in MATS.spectrum), 119
renumber_spectra() (MATS.dataset.Dataset method),
residual_analysis() (MATS.fit_dataset.Fit_DataSet
                                                  update_params()
                                                                         (MATS.fit_dataset.Fit_DataSet
        method), 107
                                                           method), 108
S
save_spectrum_info()
                         (MATS.spectrum.Spectrum
        method), 124
segment_wave_alpha()
                          (MATS.spectrum.Spectrum
        method), 124
set_abundance_ration_MI()
        (MATS.spectrum.Spectrum method), 124
set_background()
                         (MATS.spectrum.Spectrum
        method), 124
set_baseline_order()
                             (MATS.dataset.Dataset
        method), 102
set_cia() (MATS.spectrum.Spectrum method), 124
set_dataset_name() (MATS.dataset.Dataset method),
        102
set_Diluent() (MATS.spectrum.Spectrum method),
        124
set_diluent() (MATS.spectrum.Spectrum method),
        124
set_etalons() (MATS.spectrum.Spectrum method),
set_frequency_column() (MATS.spectrum.Spectrum
        method), 124
set_model() (MATS.spectrum.Spectrum method), 124
set_molefraction()
                         (MATS.spectrum.Spectrum
        method), 124
set_natural_abundance()
        (MATS.spectrum.Spectrum method), 124
set_nominal_temperature()
        (MATS.spectrum.Spectrum method), 124
set_pressure_column()
                         (MATS.spectrum.Spectrum
        method), 124
set_residuals() (MATS.spectrum.Spectrum method),
        124
set_spectra() (MATS.dataset.Dataset method), 102
set_spectrum_number()
                         (MATS.spectrum.Spectrum
        method), 124
set_tau_column()
                          (MATS.spectrum.Spectrum
        method), 124
```

Index 149