AI Courses by OpenCV COMPUTER VISION II

Module 1: Facial Landmark Detection

- 1. Different Face Processing Applications
- 2. Facial Landmarks Detection using dlib
 - Introduction to Dlib
 - Facial Landmark Detection using Dlib
- 3. Application Face Alignment
- 4. Improving Facial Landmark Detector
 - Improve in Speed
 - Improve in Stability
 - Landmark Stabilization in OpenCV
 - Optical flow
 - Lucas-Kanade Optical flow
- 5. Facial Landmark Detection Theory
 - Machine Learning Basics
 - Paper Review
- 6. Train a custom Facial Landmark Detector
 - How to Train a Custom landmark Detector

Module 2: Applications of Facial Landmarks

1. Alpha Blending

- Alpha Blending in OpenCV
- 2. Image Warping
 - Affine Transform
 - Geometric Transform
 - Triangle Warping
- 3. Delaunay Triangulation
 - Theory of Delaunay Triangulation
- 4. Face Averaging
 - Face Averaging using OpenCV
- 5. Face Morphing
 - Face Morphing using OpenCV
- 6. Application: Bug Eyes
 - Create a Bug eye app
- 7. Head Pose Estimation
 - Head Pose Estimation in OpenCV

Aissgnment1: Smile Detection

Module 3: SnapChat Filters

- 1. Face Swap
 - How Face Swapping can be achieved
 - Seamless Cloning
 - Seamless Cloning in OpenCV
 - Face Swapping in a video

Application: Beard Filter
 Application: Aging filter
 Non-linear Deformations

• Moving Least Square

• Application: MLS based Happify and Fatify Filters

Project1: Virtual Makeup

Module 4: Face Recognition

- 1. Introduction to Face Recognition
 - Introduction to Face Recognition
- 2. Eigen Faces
- 3. Fisher Faces
- 4. Local Binary Patterns Histograms
- 5. Face Recognition API in OpenCV
- 6. Deep Learning based Face Recognition

Project2: DoppelGanger- Find Celebrity Look-Alike

Module 5: Introduction to Deep Learning

- 1. Basics of Neural Networks
 - What is Neural Network
 - How does Neural Network Learn
- 2. Introduction to TensorFlow Keras(python) and LibTorch(C++)
 - Deep Learning Frameworks
 - The Keras Framework(Python)
 - Linear Regression using Keras(Python)
 - Introduction to LibTorch(C++)

- 3. LibTorch Installation and Usage(C++)
 - How to run LibTorch code on your Local System
 - How to run LibTorch code on Google Colab
 - Linear Regression using LibTorch
- 4. Feed Forward Neural Network
 - Importance of Hidden Layer in a Neural Network
 - Training a Neural Network using Backpropagation
 - Example: Image Classification using MLP
- 5. Convolutional Neural Network(CNN)
 - What is CNN
 - Example: Image Classification using CNN
 - Data Augmentation(Python)

Assignment2: Improve CNN Training

Module 6: Leveraging Pre-Trained Model

- 1. Introduction to Pre-trained model(Python)
 - Pre-Trained models in Keras
- 2. How to get Free GPU
 - Introduction to Google Colab
 - Introduction to Kaggle Kernels
- 3. Transfer Learning and Fine Tuning in Keras(Python)
 - How to use Custom Dataset in Keras
 - Introduction to Kaggle Datasets
 - Fine-Tuning an Image Classifier using Google Colab
 - Fine-Tuning an Image Classifier using Kaggle Kernel

- 4. Troubleshooting using Tensorboard(Python)
 - Using Tensorboard with Keras
- 5. From PyTorch to LibTorch(C++)
- 6. Fine Tuning using LibTorch(C++)
- 7. Fine Tuning using Caffe
 - Introduction to Caffe
 - Fine-Tuning in Caffe using Colab(C++)
 - Inference of Trained Caffe model using OpenCV(C++)
 - Train an Image Classifier using Fine-Tuning in Caffe(Python)

Module 7: Object Detection

- 1. Object Detection Overview
 - What is Object Detection
 - Traditional Object Detection Pipeline
- 2. Two Stage Object Detectors
 - Different two-stage Detectors
 - Faster R-CNN in OpenCV(C++)
- 3. Single Stage Object Detectors
 - SSD Object Detector in OpenCV
- 4. YOLO
 - What is YOLO
 - YOLO object Detection in OpenCV
- 5. Measure Performance of Object Detectors

• Evaluation Metrics for Object Detection

Module 8: Train a Custom Object Detector using YOLO

- 1. Problem Description
 - Which Object to Detect
 - Where to get the data for Training
- 2. YOLO and DarkNet
 - What is DarkNet
 - Build DarkNet
 - Run YOLO on DarkNet
- 3. Stepwise explanation of how train your detector on Colab
 - How to link your Google Drive
 - Compile DarkNet
 - Download and Prepare Dataset
 - How to start Training
 - Run Inference on New Images

Project3: Train a Face Mask detector

Module 9: Text Detection and Recognition

- 1. Overview of OCR
 - What is OCR
 - The OCR Pipeline
 - Challenges
 - Datasets and Competitions
- 2. Graphic Text Recognition using Tesseract

- What is Tesseract
- Introduction to OCR using Tesseract
- Tesseract OCR Failure Cases
- Improving Tesseract OCR failures
- 3. Text Detection
 - Text Detection using EAST
 - Text Detection using CRAFT(Python)
- 4. Modified Pipeline for scene Text Recognition using Tesseract(Python)
- 5. Scene Text recognition using Keras OCR(Python)
 - Text Recognition using CRNN
- 6. Comparing Keras-OCR and Tesseract(Python)

Assignment3: OCR on invoice

Case Study: Automatic Number Plate Recognition(Python)

- 1. ALPR system using YOLO-Net
 - YOLO-Net: License Plate Detector using YOLOv3
 - ALPR using YOLO-Net and Tesseract
 - ALPR using YOL-Net and YOLO-OCR
- 2. ALPR system using WPOD-Net
 - ALPR using WPOD-Net and Tesseract
 - ALPR using WPOD-Net and YOLO-OCR

Module 10: Deploy Applications on Cloud

- 1. Create a Web Application using Flask
 - What is Flask
 - A minimal Flask Application
 - Using HTML Templates
 - A complete Flask Application
- 2. Deploy Web App on Heroku [Paas]
 - What is Heroku
 - How to create an account on Heroku
 - Prepare Application for Deployment
 - How to Deploy using Heroku CLI
 - How to Deploy using Heroku website
- 3. Deploy Web App on Google GCP [Iaas]
 - What is Google Cloud Platform(GCP)
 - Create account on Google Cloud Platform
 - Create and Configure a VM instance
 - Setup VM and Deploy App
 - Change Firewall settings and Check Deployment

Assignment4: Deploy your Web App on Heroku