Summary	Bayes' Rule						
Prior probability	•						
Posterior probability			Baye's	rule			
Where does Bayes' rule fit							
into this?	I .	Often we have initial guesses about an event from which we can calculate pri- robabilities, using the usual probability theory.					
	Then, from sources such as data collection, sample, product field tests, we mare information about those events.				tests, we obt		
	 more information about these events. Given, this new information, we can update our prior beliefs by calculating revi 						
	probabilities – this is called the posterior probability.						
	 Baye's rule is used to calculate the posterior probability if we have the initial b (probability) and the additional sample information. 						
	([
			Baye's ru	le			
	Suppose that a ma	Suppose that a manufacturer receives same raw material from two different					
	suppliers S1 and S2			C1 d	i-i 250/	f	
	• Currently 65% of th S2.	ie raw mate	eriai comes from	31 and rema	ınıng, 35%, (comes from	
	Also, suppose that department, we kn						
	and <i>S2</i> has 95% of	department, we know that $S1$ has 98% of the supplied raw material of good quality and $S2$ has 95% of the raw material of good quality.					
	 That is, the probab is, Pr(G S1) = 0.98. 			_			
	is, $Pr(G S1) = 0.98$. And for the second supplier, this probability is: $Pr(G S2) = 0.95$.						
	65% of the ra	w material o	comes from S1 3	35% of the rav	v material co	omes from S2	
			S1	S2			
		Good	98% of S1	95% of S2			
			P(G S1) 2% of S1	P(G S2) 5% of S2		_	
		Bad	P(B S1)	P(B S1)			
			P(s1) = 65%	P(S2) = 35 %	%		
			1 (01) = 03/0	1 (02) - 33/	<u> </u>		
			S1	S2			
		Good Bad	0.98×0.65 0.02×0.65	0.95×0.35 0.05×0.35			
		Dad	0.65	0.35			
			Paye's mu	la.			
	 Baye's rule What is the probability of the raw material being supplied by S1 and it being good? Joint probability, of course! 						
	This can be calcula	ted using th	•				
	$Pr(S1, G) = Pr(S1 \cap G) = Pr(S1)*Pr(G S1) = 0.65*0.98 = 0.637$ $Pr(S2, G) = Pr(S2 \cap G) = Pr(S2)*Pr(G S2) = 0.35*0.95 = 0.3325$						
	 Now, knowing all this information so far, suppose the manufacturer inspects the incoming raw material on receipt and finds a bad quality material. 						
	He wants to know		•			!	
			G.	Co			
		Good	S1 0.637	S2 0.3325	0.9695		
		Bad	0.013	0.0175	0.0305		
			0.65	0.35	1		
State Bayes' Rule		D	, a/al -				
		Bay	ye's rule				
	We are interested.	ed in the n	osterior proba	hility that a	particular		
	supplier is guilty	of supply	ing bad quality	product <i>gi</i>	ven that		
	we have bad qu	ality raw n	naterial at our	doorstep –	Pr(S1 B)		
	or <i>Pr(S2 B)</i> . • This is an application	ation of Ba	aye's theorem	– finding po	sterior		
	probability giver		•				
	From Baye's form	mula we ki	now that:				

• From Baye's formula we know that:

 $Pr(S1) * Pr(B \mid S1)$

 $\Pr(S1 \mid B) = \frac{\Pr(S1 \cap B)}{\Pr(B)}$

_	(~-/		1~-/
_	Р	r(B)	

	S1	S2	
	0.98×0.65 = 0.637	0.95×0.35 = 0.3325	0.9695
Good	P(G S1) × P(S1)	P(G S2) × P(S2)	P(G)
	0.02×0.65 =	$0.05 \times 0.35 = 0.0175$	0.0305
Bad	0.013 P(B S1) × P(S1)	P(B S2) × P(S2)	P(B)
	0.65	0.35	
	P(S1)	P(S2)	1

- We have this contingency table, which is prior info.
- Now we found a bad quality material this is the additional sample info.
- We want to know given a bad quality material (additional info) what is the probability that it came from supplier S1 (or S2)? Posterior probability
- $P(S1 | B) \times P(B) = P(B | S1) \times P(S1)$

$$P(S1 \mid B) = rac{P(B \mid S1) \times P(S1)}{P(B)}$$

Bayes' Rule $\mathbf{P}\left(\mathbf{X}\mid\mathbf{Y}\right) = \frac{\mathbf{P}\left(\mathbf{Y}\mid\mathbf{X}\right)\times\mathbf{P}\left(\mathbf{X}\right)}{\mathbf{P}\left(\mathbf{Y}\right)}$

Baye's rule

- What is Pr(B)?
- · That is the probability of receiving a bad quality raw
- Now bad quality raw material can from supplies of S1 or S2.
- That is, the event B can occur with S1 or with S2.

 $Pr(B) = Pr(S1 \cap B) + Pr(S2 \cap B)$

- But $Pr(S1 \cap B) = Pr(S1)*Pr(B|S1)$, and
- $Pr(S2 \cap B) = Pr(S2)*Pr(B|S2)$

$$Pr(S1 | B) = \frac{Pr(S1) * Pr(B | S1)}{Pr(S1) * Pr(B | S1) + Pr(S2) * Pr(B | S2)}.$$

• $P(B) = P(S1 \cap B) + P(S2 \cap B)$

$$P\left(B\right) = P\left(B \mid S1\right) \times P\left(S1\right) \ + \ P\left(B \mid S2\right) \times P\left(S2\right)$$

Observe how probabilities change with the prior and posterior.

Baye's rule

$$Pr(S1 \mid B) = \frac{Pr(S1) * Pr(B \mid S1)}{Pr(S1) * Pr(B \mid S1) + Pr(S2) * Pr(B \mid S2)}$$
$$= \frac{0.65 * 0.02}{0.65 * 0.02 + 0.35 * 0.05} = 0.426.$$
$$Pr(S2 \mid B) = 0.574.$$

- Significance: Find posterior probabilities using prior information.
- Notice that we use Pr(B|S1) to find Pr(S1|B).

	S1	S2	
	$0.98 \times 0.65 = 0.637$	$0.95 \times 0.35 = 0.3325$	0.9695
Good	P(G S1) × P(S1)	P(G S2) × P(S2)	P(G)
	0.02×0.65 =	$0.05 \times 0.35 = 0.0175$	0.0305
Bad	0.013 P(B S1) × P(S1)	P(B S2) × P(S2)	P(B)
	0.65	0.35	
	P(S1)	P(S2)	1

- So, Prior was:
 - P (a randomly picked item was from S1) = 65%
 - P (a randomly picked item was from S2) = 35%
- - P (a randomly picked item was from S1 | given that the item was bad) = 42.6%
 P (a randomly picked item was from S2 | given that the item was bad) = 57.4%

 So we have found association between two categorical variables: Supplier (s1 & S2), and Quality (good and bad) 	