Les nombres réels

Naoual MRHARDY

Faculté Polydisciplinaire Khouribga SMI/SMA

13 décembre 2020

Les nombres réels

Naoual MRHARDY

Faculté Polydisciplinaire Khouribga SMI/SMA

13 décembre 2020

Programme

Rappels sur les ensembles

 $oxed{2}$ Caractérisation de ${\mathbb R}$ par la propriété de la borne supérieure

3 Approximation d'un réel

▶ L'ensemble des entiers naturels, $\mathbb{N} = \{0, 1, 2, 3, ...\}$. Il vérifie le principe de récurrence, qu'on peut formuler de la manière suivante :

Principe de récurrence

Soit $\mathcal{P}(n)$ un énoncé dépendant de $n \in \mathbb{N}$ et ayant un sens pour tout $n \geq n_0 \in \mathbb{N}$ (souvent $n_0 = 0$ ou 1). La démonstration par récurrence de $\mathcal{P}(n)$ comporte 2 étapes :

- **①** On montre d'abord que le résultat est vrai pour $n = n_0$.
- ② On démontre ensuite, que si le résultat est vrai pour $n \ge n_0$ (hypothèse de récurrence), alors il reste vrai pour n + 1. On montre donc l'implication

(H.R)
$$\mathcal{P}(n)$$
 vrai $\Rightarrow \mathcal{P}(n+1)$ vrai $\forall n \geq n_0$.

▶ L'ensemble des entiers relatifs \mathbb{Z} , union de \mathbb{N} et des oppossés des entiers non nuls : $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ introduit pour permettre la résolution de l'équation :

$$x + n = 0, \quad n \in \mathbb{N}.$$

Bien sur on a

$$\mathbb{N}\subseteq\mathbb{Z}$$

▶ L'ensemble des entiers relatifs \mathbb{Z} , union de \mathbb{N} et des oppossés des entiers non nuls : $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ introduit pour permettre la résolution de l'équation :

$$x + n = 0, \quad n \in \mathbb{N}.$$

Bien sur on a

$$\mathbb{N} \subseteq \mathbb{Z}$$

► L'ensemble des nombres rationnels Q définie par

$$\mathbb{Q} = \left\{ rac{p}{q}/p \in \mathbb{Z} \,\, ext{et} \,\, q \in \mathbb{N}^*
ight\}$$

introduit pour la résolution de l'équation

$$qx = p$$
, $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$

Bien sur on a

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$$

Remarque

 Tout rationnel peut s'écrire de manière unique sous forme de fraction irréductible, c'est-à-dire sous la forme

$$rac{p}{q}, \qquad p \in \mathbb{Z}, \ \ q \in \mathbb{N}^* \quad \ \ ext{avec} \ \ p \ \ ext{et} \ \ q \ \ ext{premiers entre eux} \ \ (p \wedge q = 1).$$

Par exemple :
$$\frac{4}{8} = \frac{1}{2}$$

• On a aussi les règles de calcul suivantes, si $\frac{p}{q}$ et $\frac{a}{b} \in \mathbb{Q}$ alors

$$\frac{p}{q} + \frac{a}{b} = \frac{qa + pb}{qb}$$
 et $\frac{p}{q} = \frac{ap}{bq}$

L'addition et la multiplication sont donc des lois de composition internes dans \mathbb{Q} .

Insuffisance de Q

D'après le théorème de Pythagore, on cherche à résoudre l'équation,

$$x^2 = 2$$
.

▶ Insuffisance de Q.II n'existait pas de nombre rationnel *x* solution de cet équation.

N.MRHARDY (FPK) Nombres réels 13 décembre 2020

Les irrationnels

Introduire de nouveaux nombres, les irrationnels, en concevant un ensemble plus vaste que \mathbb{Q} , noté \mathbb{R} , et appelé ensemble des nombres réels ,

$$\mathbb{R} = \mathbb{Q} \bigcup (\mathbb{R} \backslash \mathbb{Q})$$

Exercice. Démontrer que le nombre $\sqrt{2}$ n'est pas rationnel. Réponse : Supposons, par l'absurde $\sqrt{2} \in \mathbb{Q}$ c-à-d il existe $p \in \mathbb{N}$, $q \in \mathbb{N}^*$ avec $\sqrt{2} = \frac{p}{q}$, $p \wedge q$ alors, on obtient

$$p^2 = 2q^2$$

L'entier p^2 est donc pair ce qui signifie que p l'est aussi. Donc il existe un entier $p' \in \mathbb{N}$ tel que p = 2p' et alors on a

$$2q^2 = p^2 = 4p'^2 \Longrightarrow q^2 = 2p'^2$$

q est également pair. D'où 2 divise à la fois p et q, ceci contredit le fait que p et q sont premiers entre eux.

L'ensemble \mathbb{R}

Parmi les irrationnels on distingue 2 types de nombres

- Les algébriques. les racines des polynômes à coefficient entiers : $x^n = a$.
- ▶ Les transcendants : π et e...

L'ensemble \mathbb{R}

Parmi les irrationnels on distingue 2 types de nombres

- Les algébriques. les racines des polynômes à coefficient entiers : $x^n = a$.
- ▶ Les transcendants : π et e...

Exercice(TD) Montrer que $\frac{\ln(3)}{\ln(2)}$ est irrationnel.

L'ensemble $\mathbb R$

Parmi les irrationnels on distingue 2 types de nombres

- Les algébriques. les racines des polynômes à coefficient entiers : $x^n = a$.
- ▶ Les transcendants : π et e...

 $\underline{\underline{\mathsf{Exercice}(\mathsf{TD})}}_{\mathsf{In}(2)} \; \mathsf{Montrer} \; \mathsf{que} \; \frac{\mathsf{In}(3)}{\mathsf{In}(2)} \; \mathsf{est} \; \mathsf{irrationnel.} \; \underline{\mathsf{Réponse}}. \; \mathsf{Par} \; \mathsf{absurde},$

supposons
$$\frac{\ln(3)}{\ln(2)} \in \mathbb{Q}$$
.

$$\Rightarrow \frac{\ln(3)}{\ln(2)} = \frac{p}{q} \text{ avec } p \in \mathbb{N}^* \text{ et } q \in \mathbb{N}^*$$

$$\Rightarrow q \ln(3) = p \ln(2) \Rightarrow \ln(3^q) = \ln(2^p) \Rightarrow 3^q = 2^p$$

or 3^q est impair et 2^p est pair ce qui est absurde. D'où $\frac{\ln(3)}{\ln(2)}$ est irrationnel transcendant.

L'ensemble \mathbb{R}

Définition

On admet l'existence d'un ensemble \mathbb{R} , contenant \mathbb{Q} , muni de deux lois de composition interne + et \times (qui prolongent celles de \mathbb{Q}), et d'une relation binaire \leq telles que :

- **①** $(\mathbb{R},+)$ est un groupe commutatif de neutre 0.
- **2** (\mathbb{R}, \times) est un groupe commutatif de neutre 1.
- **3** La loi \times est distributive par rapport à +.
- 4 Tout réel non nul possède un unique "inverse"
- \mathbf{o} < est une relation d'ordre total sur \mathbb{R} .

On résume les propiétés précédentes en disant que :

 $(\mathbb{R},+,\times)$ est un corps commutatif totalement ordonné.

L'ensemble $\mathbb R$

Exercice(TD)

- Soient $x, y \in \mathbb{Q}$ tels que $\sqrt{x} \notin \mathbb{Q}$ et $\sqrt{y} \notin \mathbb{Q}$. Montrer que $\sqrt{x} + \sqrt{y} \notin \mathbb{Q}$.
- ② Montrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $rx \notin \mathbb{Q}$.
- **3** En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel.

Réponse.

(1) Supposons $\sqrt{x} + \sqrt{y} \in \mathbb{Q}$, alors $\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}} \in \mathbb{Q}$ or

$$\sqrt{x} = \frac{1}{2} \left[(\sqrt{x} + \sqrt{y}) + (\sqrt{x} - \sqrt{y}) \right] \in \mathbb{Q}$$
 absurde

L'ensemble $\mathbb R$

Exercice(TD)

- Soient $x, y \in \mathbb{Q}$ tels que $\sqrt{x} \notin \mathbb{Q}$ et $\sqrt{y} \notin \mathbb{Q}$. Montrer que $\sqrt{x} + \sqrt{y} \notin \mathbb{Q}$.
- ② Montrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $rx \notin \mathbb{Q}$.
- **1** En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel.

Réponse.

(2) On pose $r=\frac{p}{q},\ p\in\mathbb{Z},\ q\in\mathbb{N}^*.$ Supposons $r+x=\frac{p'}{q'},\ p'\in\mathbb{Z},\ q'\in\mathbb{N}^*$ donc

$$x=rac{p'}{q'}-r=rac{p'q-pq'}{qq'}\in\mathbb{Q}$$
 absurde

L'ensemble \mathbb{R}

Exercice(TD)

- Soient $x, y \in \mathbb{Q}$ tels que $\sqrt{x} \notin \mathbb{Q}$ et $\sqrt{y} \notin \mathbb{Q}$. Montrer que $\sqrt{x} + \sqrt{y} \notin \mathbb{Q}$.
- ② Montrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $rx \notin \mathbb{Q}$.
- **3** En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel.

Réponse.

(3) Soit $r, r' \in \mathbb{Q}$, r < r'. On pose $x = r + \frac{\sqrt{2}}{2}(r' - r) \notin \mathbb{Q}$ (d'après (2)). De plus

$$0 < \frac{\sqrt{2}}{2} < 1 \Longrightarrow 0 < \frac{\sqrt{2}}{2} (r' - r) < r' - r$$
$$\Rightarrow r < x < r'$$

- L'ensemble vide ∅. (par convention)
- ▶ Intervalles bornés : (On désigne par a et b des réels a < b)
 - Intervalles ouverts bornés :] $a, b = \{x \in \mathbb{R}, a < x < b\}$
 - Intervalles semi-ouverts bornés : $[a,b[=\{x\in\mathbb{R},a\leq x< b\}]$ ou $[a,b]=\{x\in\mathbb{R},a< x\leq b\}$
 - Intervalles fermés bornés ou segment d'extrémités a et b: $[a,b] = \{x \in \mathbb{R}, a \le x \le b\}.$
- ▶ Intervalles non bornés : (On désigne par a et b des réels)
 - Intervalles fermés non bornés

-
$$[a, +\infty[= \{x \in \mathbb{R}, x \ge a\}$$

- $]-\infty, b] = \{x \in \mathbb{R}, x \le b\}$

- Intervalles ouverts non bornés :
 -]a, + ∞ [= { $x \in \mathbb{R}$, x > a}
 - $[-1] \infty, b[= \{x \in \mathbb{R}, x < b\}]$
 - $]-\infty,+\infty[=\mathbb{R}.$

Définition

Soit I une partie non vide de $\mathbb R$, On dit que I est un intervalle de $\mathbb R$ ssi

$$\forall x, y \in I, \ \forall z \in \mathbb{R}, \ x \le z \le y \Longrightarrow z \in I.$$

Caractérisation des intervalles

Soit I une partie non vide de \mathbb{R} , I est un intervalle si et seulement si

$$\forall x, y \in I, \ \forall t \in [0, 1], \ (1 - t)x + ty \in I.$$

Cette propriété s'appelle la convexité.

Exemples - $\mathbb Z$ n'est pas un intervalle de $\mathbb R$ car $1,2\in\mathbb Z$ mais pas $\frac{3}{2}$. $\mathbb Q$ n'est pas un intervalle de $\mathbb R$.

13 / 45

Propriétés

- L'intersection de deux intervalles de \mathbb{R} est un intervalle de \mathbb{R} .
- La réunion de deux intervalles de $\mathbb R$ non disjoints est un intervalle de $\mathbb R$.

Propriétés

- L'intersection de deux intervalles de \mathbb{R} est un intervalle de \mathbb{R} .
- La réunion de deux intervalles de $\mathbb R$ non disjoints est un intervalle de $\mathbb R$.

Preuve : Montrons la première assertion. Soient I et J deux intervalles de $\mathbb R$ et $K=I\cap J.$

Propriétés

- L'intersection de deux intervalles de \mathbb{R} est un intervalle de \mathbb{R} .
- La réunion de deux intervalles de $\mathbb R$ non disjoints est un intervalle de $\mathbb R$.

Preuve : Montrons la première assertion. Soient I et J deux intervalles de $\mathbb R$ et $K=I\cap J.$

• Si $K = \emptyset$, alors c'est un intervalle.

Propriétés

- L'intersection de deux intervalles de \mathbb{R} est un intervalle de \mathbb{R} .
- La réunion de deux intervalles de $\mathbb R$ non disjoints est un intervalle de $\mathbb R$

Preuve : Montrons la première assertion. Soient I et J deux intervalles de $\mathbb R$ et $K=I\cap J.$

- Si $K = \emptyset$, alors c'est un intervalle.
- Si $K \neq \emptyset$, alors soit $x, y \in K$ et soit z un réel tel que $x \leq z \leq y$.
 - $x, y \in I$ et I est un intervalle $\Longrightarrow z \in I$
 - $x, y \in J$ et J est un intervalle $\Longrightarrow z \in J$

finalement $z \in I \cap J = K$ et donc K est un intervalle de \mathbb{R} .

Les voisinages

Voisinage d'un point

Soit x un réel. Une partie V de $\mathbb R$ est dite voisinage de x si et seulement si

$$\exists \alpha, \beta \in \mathbb{R}, \ \alpha < x < \beta \text{ tel que }]\alpha, \beta [\subset V]$$

De façon équivalente une partie V est un voisinage de x dans $\mathbb R$ si et seulement si il existe $\varepsilon > 0$ tel que $|x - \varepsilon, x + \varepsilon| \subset V$.

On note $\mathcal{V}_{\mathbb{R}}(x)$ l'ensemble des voisinages de x dans \mathbb{R} .

Voisinage de l'infini

- Toute partie de \mathbb{R} contenant un intervalle ouvert de la forme $]A, +\infty[$ $(A \in \mathbb{R})$ est appelé voisinage de $+\infty$.
- Toute partie de \mathbb{R} contenant un intervalle ouvert de la forme $]-\infty, B[\ (B\in\mathbb{R})$ est appelé voisinage de $-\infty$.

La droite achevée $\overline{\mathbb{R}}$

On appelle droite numérique achevée et l'on note \mathbb{R} l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$, obtenu en adjoignant à \mathbb{R} deux éléments distincts et régis par les loi suivantes :

- Prolongement de l'ordre de $\overline{\mathbb{R}}$: $\forall x \in \mathbb{R}; -\infty < x < +\infty$
- **Prolongement de l'addition** : Pour tout $x \in \mathbb{R}$

$$x + (+\infty) = (+\infty) + x = +\infty, \ x + (-\infty) = (-\infty) + x = -\infty,$$
$$(+\infty) + (+\infty) = +\infty, \ (-\infty) + (-\infty) = -\infty$$

• Prolongement de la multiplication : Pour tout $x \in \overline{\mathbb{R}} \setminus \{0\}$:

$$x \times (\pm \infty) = (\pm \infty) \times x = \begin{cases} \pm \infty & \text{si } x > 0 \\ \mp \infty & \text{si } x < 0 \end{cases}$$

Programme

Rappels sur les ensembles

 $oldsymbol{2}$ Caractérisation de $\mathbb R$ par la propriété de la borne supérieure

3 Approximation d'un réel

Caractérisation de $\mathbb R$ par la propriété de la borne supérieure

Majorants, minorants d'une partie de ${\mathbb R}$

Soit A une partie non vide de \mathbb{R} et soient M et N des réels. On dit que

- M est un majorant de A (ou A est majorée par M) si $\forall x \in A, \quad x \leq M$
- m est un minorant de A (ou A est minorée par m) si $\forall x \in A, \quad x \geq m$
- A est bornée si elle est à la fois majoré et minoré.

L'ensemble des majorants (resp. minorants) de A sera noté $\mathcal{M}(A)$ (resp. $\mathfrak{M}(A)$).

Caractérisation de R par la propriété de la borne supérieure

Remarque

Le majorant ou le minorant n'existent pas toujours, en plus on n'a pas l'unicité.

Exemples

- ① L'ensemble $A =]-\infty, 1]$ est majorée par 1 et par tous les éléments de $[1, +\infty[$ donc $\mathcal{M}(A) = [1, +\infty[$ par contre il n'est pas minoré c-à-d $\mathfrak{M}(A) = \emptyset$.
- ② Si B = [0, 1[donc $\mathcal{M}(B) = [1, +\infty[$ et $\mathfrak{M}(B) =] \infty, 0]$

On peut remarquer que

- $\mathcal{M}(A) \cap A = \{1\}$ et $\mathfrak{M}(A) \cap A = \emptyset$
- $\mathcal{M}(B) \cap B = \emptyset$ et $\mathfrak{M}(B) \cap B = \{0\}$

Caractérisation de ${\mathbb R}$ par la propriété de la borne supérieure

Plus grand/petit élément d'une partie de R

Soit A une partie non vide de \mathbb{R} et soient M et N des réels. On dit que

 M est le plus grand élément ou maximum de A et on le note max A, si

$$M = \max A \iff M \text{ majore } A \text{ et } M \in A \iff M \in \mathcal{M}(A) \cap A$$

• N est le plus petit élément ou minimum de A et on le note min A, si

$$N = \min A \iff N \text{ minore } A \text{ et } N \in A \iff N \in \mathfrak{M}(A) \cap A$$

Caractérisation de $\mathbb R$ par la propriété de la borne supérieure

Remarque

Comme pour le majorant et le minorant, il n'existe pas toujours de maximum ni de minimum, par contre on a l'unicité.

Unicité

Si A posséde un plus grand (resp. petit) élément, celui ci est unique.

Preuve : Soient $M, M' \in \mathbb{R}$. On suppose que M et M' deux plus grands éléments de A. Alors par définition on aura

$$\begin{cases}
M \in A; M' \in \mathcal{M}(A) \Rightarrow M \leq M' \\
M' \in A; M \in \mathcal{M}(A) \Rightarrow M' \leq M
\end{cases} \Longrightarrow M = M'$$

Caractérisation de $\mathbb R$ par la propriété de la borne supérieure

Borne supérieure, borne inférieure d'une partie de \mathbb{R} .

- **1** Si $\mathcal{M}(A) \neq \emptyset$ et s'il admet un plus petit élément, alors celui-ci est appelé **borne supérieure** de A et noté $\sup(A)$ i.e $\sup(A) = \min(\mathcal{M}(A))$
- ② Si $\mathfrak{M}(A) \neq \emptyset$ et s'il admet un plus grand élément, alors celui-ci est appelé **borne inférieure** de A et noté $\inf(A)$. i.e $\inf(A) = \max(\mathfrak{M}(A))$

Si A posséde un plus grand (resp. petit) élément, alors A posséde une borne supérieure (resp. inférieure), de plus

$$\sup A = \max A \quad (resp. \inf A = \min A)$$

Caractérisation de R par la propriété de la borne supérieure

Exercice (TD) Trouver inf A, sup A, max A et min A quand ils existent; de l'ensemble :

$$A = \{0\} \cup]1; 2[$$

Réponse. A est borné : évident

• On a $\forall x \in A, x \ge 0 \Longrightarrow 0 \in \mathfrak{M}(A) =]-\infty, 0]$ or $0 \in A$ donc

$$A \cap \mathfrak{M}(A) = \{0\} \Longrightarrow \inf A = \min A = 0$$

• $\forall x \in A, x < 2 \Longrightarrow 2 \in \mathcal{M}(A) = [2, +\infty[$ or

$$A \cap \mathcal{M}(A) = \emptyset \Longrightarrow \max A \text{ n'existe pas}$$

Mais

$$min(\mathcal{M}(A)) = 2 \Longrightarrow \sup A = 2$$

Caractérisation de ${\mathbb R}$ par la propriété de la borne supérieure

Exercice Considérons le sous-ensemble de Q

$$A = \{x \in \mathbb{Q} | x^2 < 2\}.$$

Montrer que A est majorée mais n'a pas de borne supérieure dans \mathbb{Q} .

Réponse. C'est un sous-ensemble majorée de $\mathbb Q$ par exemple par $\frac{3}{2}$. De plus

$$\mathcal{M}(A) = \{ M \in \mathbb{Q}/M > \sqrt{2} \}$$

Soit $M \in \mathcal{M}(A)$. Posons $M' = \frac{M^2 + 2}{2M}$

•
$$M'^2 - 2 = \frac{(M^2 - 2)^2}{4M^2} > 0 \Rightarrow M'^2 > 2 \Rightarrow M' > \sqrt{2} \Rightarrow M' \in \mathcal{M}(A)$$

•
$$M - M' = M - \frac{M^2 + 2}{2M} = \frac{M^2 - 2}{2M} > 0 \Rightarrow M' < M$$

M' est un autre majorant (dans $\mathbb Q$) tel que M' < M, ce qui prouve qu'il n'y a pas de plus petit majorant

Caractérisation de ${\mathbb R}$ par la propriété de la borne supérieure

Propriété de la borne supérieure

Toute partie de \mathbb{R} non vide et majorée admet une borne supérieure.

Définition

 $(\mathbb{R},+,\times)$ est un corps commutatif totalement ordonné et possédant la propriété de la borne supérieure.

Conséquence : Il en découle que toute partie de $\mathbb R$ non vide et minorée admet une borne inférieure.

Corollaire

Toute partie non vide de \mathbb{R} , admet une borne sup et une borne inf dans $\overline{\mathbb{R}}$.

Exemple : l'ensemble $A=[1,+\infty[$ admet une borne supérieur dans $\overline{\mathbb{R}}$ qui est : $\sup A=+\infty$

Caractérisation de R par la propriété de la borne supérieure

Exercice (TD) Soient A et B deux parties non vides et bornées de \mathbb{R} . Montrer que

- (a) $A \subset B \Longrightarrow \inf(B) \leq \inf(A)$
- **(b)** $A \subset B \Longrightarrow \sup A \leq \sup B$.

Réponse.

(a) Soit $x \in A \Rightarrow x \in B$ (car $A \subset B$) donc par définition $x \ge \inf B \Longrightarrow \inf B \in \mathfrak{M}(A)$ d'où

$$\inf(B) \leq \inf(A) = \max(\mathfrak{M}(A))$$

(b) De la même manière.

Caractérisation de la borne supérieure

Caractérisation de la borne supérieure

Soit A une partie non vide de $\mathbb R$ et α un réel. Il y a équivalence entre :

- $oldsymbol{0}$ α est la borne supérieure de A.
- **2** (i) $\forall x \in A$, $x \le \alpha$ et (ii) $\forall y < \alpha$, $\exists x \in A$, $y < x \le \alpha$.

On écrit souvent (ii) sous la forme

$$(ii)' \ \forall \varepsilon > 0, \exists x \in A, \ \alpha - \varepsilon < x \le \alpha$$

Où de façon équivalente

$$(ii)'' \ \forall n \ge 1, \exists x \in A, \ \alpha - \frac{1}{n} < x \le \alpha$$

Caractérisation de la borne supérieure

Exercice(TD) Soient A et B deux parties non vides et bornées de \mathbb{R} . On pose

$$A + B = \{x + y/x \in A; y \in B\}$$

Montrer que

$$\sup(A+B) = \sup A + \sup B$$

Réponse.

- (i) Soient $x \in A$ et $y \in B$; on a $x \le \sup A$ et $y \le \sup B \Rightarrow x + y \le \sup A + \sup B$ donc $\sup A + \sup B \in \mathcal{M}(A + B)$
- (ii)' Soit $\varepsilon > 0$ alors

$$\begin{cases} \exists x \in A; \ \sup A - \frac{\varepsilon}{2} < x \\ \exists y \in B; \ \sup B - \frac{\varepsilon}{2} < y \end{cases}$$

$$\Rightarrow \exists z = (x + y) \in A + B$$
; $\sup A + \sup B - \varepsilon < z$.

Caractérisation de la borne inférieure

Caractérisation de la borne inférieure

Soit A une partie non vide de $\mathbb R$ et β un nombre réel. Il y a équivalence entre :

- $oldsymbol{0}$ eta est la borne inférieure de A.
- **2** (i) $\forall x \in A$, $\beta \le x$ et (ii) $\forall y > \beta$, $\exists x \in A$, $\beta \le x < y$.

On écrit souvent (ii) sous la forme

$$(ii)' \ \forall \varepsilon > 0, \exists x \in A, \ \beta \leq x < \beta + \varepsilon$$

Où de façon équivalente :

$$(ii)'' \ \forall n \geq 1, \exists x_n \in A, \ \beta \leq x_n < \beta + \frac{1}{n}$$

Caractérisation de la borne inférieure

Exercice(TD). Soient A et B deux parties non vides et bornées de \mathbb{R} . Montrer que $A \cup B$ admet une borne inférieure et que

$$\inf(A \cup B) = \min(\inf A, \inf B)$$

Réponse.

- (i) Soit $x \in A \cup B$: If y a 2 cas
 - Si $x \in A \Rightarrow x \ge \inf A \ge \min(\inf A, \inf B)$
 - Si $x \in B \Rightarrow x \ge \inf B \ge \min(\inf A, \inf B)$

dans les 2 cas min(inf A, inf B) $\in \mathfrak{M}(A \cup B)$

- (ii) Soit $y > \min(\inf A, \inf B)$; on a toujours 2 cas
 - $y > \inf A \Rightarrow \exists x_1 \in A \subset A \cup B; \ x_1 < y$
 - $y > \inf B \Rightarrow \exists x_2 \in B \subset A \cup B; \ x_2 < y$

dans les 2 cas $\exists x (= x_1 \text{ ou } x_2) \in A \cup B; x < y$

Caractérisation de la borne supérieure

Opération sur les bornes supérieures et inférieure

On suppose que A et B sont bornés. Alors

(i) L'ensemble $A \bigcup B$ posséde une borne supérieure et de plus;

$$\sup A \bigcup B = \max \{ \sup A, \sup B \}$$

(ii) L'ensemble A + B posséde une borne inférieure et de plus;

$$\inf(A+B) = \inf A + \inf B$$

(iii) Pour tout $\lambda > 0$, l'ensemble λA posséde une borne supérieure et de plus ;

$$\sup(\lambda A) = \lambda \sup A$$

Propriété d'Archimède

 \mathbb{R} vérifie la propriété d'Archimède c-à-d :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}^{+*}, \quad \exists n \in \mathbb{N}^* \quad x \leq ny (\ ou \ x < ny)$$

On dit aussi que R est un corps archimèdien

Preuve : Soient $x \in \mathbb{R}$, et $y \in \mathbb{R}^{+*}$. Par l'absurde, supposons que $\forall n \in \mathbb{N}^*$, x > ny. On pose

$$A = \{ny/n \in \mathbb{N}^*\}$$

A est non vide (contient y) et majoré par x, donc A admet une borne supérieure.

Soit $b = \sup(A)$, on a b - y < b (car y > 0) donc il existe un entier $n_0 \in \mathbb{N}^*$ tel que $b - y < n_0 y$, d'où $b < (n_0 + 1)y \in A$ ce qui est absurde.

Caractérisation de la borne supérieure et Propriété d'Archimède

Exercice(\overline{TD}) Trouver inf A, sup A, max A et min A quand ils existent dans chacun des cas suivants :

(1)
$$A = \{2^{-n}, n \in \mathbb{N}\}; \quad (2) \ A = \left\{(-1)^n + \frac{1}{n}, n \in \mathbb{N}^*\right\}$$

Réponse.

- (1) On remarque d'abord que $\forall n \in \mathbb{N}, \quad 0 \le 2^{-n} \le 1$
 - $1 = 2^0 \in A$ et $1 \in \mathcal{M}(A) \Rightarrow 1 \in A \cap \mathcal{M}(A) \Rightarrow \max A = \sup A = 1$
 - On $0 \in \mathfrak{M}(A)$. Montrons que $0 = \inf A$. Pour cela, on montre

$$(ii') \ \forall \varepsilon > 0; \quad \exists x \in A; \quad x < \varepsilon$$

cela revien à chercher n tel que $2^{-n} < \varepsilon \Leftrightarrow n > \lg_2(\frac{1}{\varepsilon})$?

Soit $\varepsilon > 0$; par la propriété d'Archimède;

pour
$$x = \lg_2(\frac{1}{\varepsilon}) \in \mathbb{R}$$
, **et** $y = 1 \in \mathbb{R}^{+*}$, $\exists n \in \mathbb{N}^*$ $x < ny$ donc

$$\exists n \in \mathbb{N}^* \quad \lg(\frac{1}{\varepsilon}) < n \lg 2 \Leftrightarrow \exists n \in \mathbb{N}^* \quad 2^{-n} < \varepsilon$$

d'où $0 = \inf A$ or $0 \notin A$ donc A n'a pas de minimum.

Caractérisation de la borne supérieure et propriété d'Archimède

Réponse.

(2) On remarque d'abord que

$$A = \left\{1 + rac{1}{2p}, p \in \mathbb{N}^*
ight\} \cup \left\{-1 + rac{1}{2p+1}, p \in \mathbb{N}
ight\} = A_1 \cup A_2$$

Pour A_1 ; on a $\forall p \in \mathbb{N}^*; 1 \leq 1 + \frac{1}{2p} \leq \frac{3}{2}$

- $\frac{3}{2} = 1 + \frac{1}{2} \in A_1$ et $\frac{3}{2} \in \mathcal{M}(A_1) \Rightarrow \max A_1 = \sup A_1 = \frac{3}{2}$
- On a $1 \in \mathfrak{M}(A)$. Montrons que $1 = \inf A_1$. Pour cela, on montre $(ii') \forall \varepsilon > 0$; $\exists x \in A; x < \varepsilon + 1$

cela revien à chercher p tel que $1+\frac{1}{2p}<\varepsilon+1\Leftrightarrow p>\frac{1}{2\varepsilon}$?

Soit $\varepsilon > 0$; par la propriété d'Archimède; pour $x = \frac{1}{2\varepsilon} \in \mathbb{R}, \ \exists p \in \mathbb{N}^* \quad x$

$$\exists p \in \mathbb{N}^* \quad 1 + \frac{1}{2p} < \varepsilon + 1$$

d'où $1 = \inf A_1$ or $1 \notin A_1$ donc A_1 n'a pas de minimum.

Caractérisation de la borne supérieure et propriété d'Archimède

Réponse.

(2) On remarque d'abord que

$$A = \left\{1 + rac{1}{2p}, p \in \mathbb{N}^*
ight\} \cup \left\{-1 + rac{1}{2p+1}, p \in \mathbb{N}
ight\} = A_1 \cup A_2$$

De même on montre que $\max A_2 = \sup A_2 = 0$ et $\inf A_2 = -1 \notin A_2$ donc A_2 n'a pas de minimu.

On conclut

$$\sup A = \max(\sup A_1, \sup A_2) = \max\left(\frac{3}{2}, 0\right) = \frac{3}{2} \in A_1 \subset A \Rightarrow \max A = \frac{3}{2}$$

donc

$$\sup A = \max A = \frac{3}{2}$$

et

$$\inf A = \min(\inf A_1, \inf A_2) = \min(-1, 1) = -1 \notin A$$

donc A n'admet pas de minimum.

Programme

Rappels sur les ensembles

 $oldsymbol{2}$ Caractérisation de ${\mathbb R}$ par la propriété de la borne supérieure

3 Approximation d'un réel

Valeur absolue

Valeur absolue

Soit $x \in \mathbb{R}$, on appelle **valeur absolue** de x le réel noté |x| et défini par : $|x| = \max(x, -x)$. On a donc

$$|x| = \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x \le 0 \end{cases}$$

La quantité d(x, y) = |x - y| mesure la distance entre deux réels x et y.

On tire de cette définition les conséquences immédiates suivantes valables pour tout réel :

$$|x| = |-x|, -|x| \le x \le |x|, \text{ et } |x|^2 = x^2.$$

Valeur absolue

Propriétés

La valeur absolue vérifie les propriétés suivantes :

Nous allons montrer la propriété N_3 : ona

$$|x + y| = \sqrt{(x + y)^2} = \sqrt{x^2 + 2xy + y^2}$$

$$\leq \sqrt{x^2 + 2|x||y| + y^2} = \sqrt{(|x| + |y|)^2} = |x| + |y|$$

Valeur absolue

Corollaire 1

- ② On a l'inégalité $||x| |y|| \le |x y|$, $\forall x, y \in \mathbb{R}$.

Preuve : Par l'inégalité triangulaire on a

$$|x| = |x - y + y| \le |x - y| + |y| \Rightarrow |x| - |y| \le |x - y|$$

$$|y| = |y - x + x| \le |y - x| + |x| \Rightarrow -|x - y| \le |x| - |y|$$

on conclut à partir du point (1).

Corollaire 2

- **1** Pour $a \in \mathbb{R}$ on a l'équivalence : $a = 0 \iff |a| \le \varepsilon$, $\forall \varepsilon > 0$.
- ② Pour a et $b \in \mathbb{R}$, on a l'équivalence : $a \le b \iff a \le b + \varepsilon$, $\forall \varepsilon > 0$.

Partie entière

Partie entière

Soit $x \in \mathbb{R}$, il existe un unique entier relatif p, tel que :

$$p \le x$$

p est appelé la partie entière de x et notée E(x) ou parfois [x].

Exemples -
$$E(13) = 13$$
, $E(3,9) = 3$, $E(-2) = -2$, $E(-7,4) = -8$

- ▶ E(x) est le plus grand entier n tel que $n \le x$.
- ▶ E(x) + 1 est le plus petit entier m tel que x < m.
- ▶ La fonction $x \mapsto E(x)$ est une fonction croissante, continue en tout point non entier, continue à droite en un point entier.
- ▶ Pour tout $x \in \mathbb{R}$, on a l'inégalité suivante, très utile en pratique

$$x - 1 < E(x) \le x$$

Partie entière

Exercice(TD)

- Montrer que $\forall (x,y) \in \mathbb{R}^2$, $E(x) + E(y) \leq E(x+y)$
- Montrer que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$, $E\left(\frac{E(nx)}{n}\right) = E(x)$

Réponse

On a par définition

$$E(x) \le x$$
; $E(y) \le y \Longrightarrow E(x) + E(y) \le x + y$

Comme E(x + y) est le plus grand entier relatif inférieur ou égale à x + y, on déduit que

$$E(x) + E(y) \le E(x + y)$$

Partie entière

Exercice(TD)

- Montrer que $\forall (x,y) \in \mathbb{R}^2$, $E(x) + E(y) \le E(x+y)$
- Montrer que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*, \quad E\left(\frac{E(nx)}{n}\right) = E(x)$

Réponse

• On a pout tout $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$

$$E(x) \le x < E(x) + 1 \Longrightarrow nE(x) \le nx < nE(x) + n$$

$$x \longmapsto E(x) \text{ est croissante} \Longrightarrow nE(x) \le E(nx) < nE(x) + n$$

$$\Longrightarrow E(x) \le \frac{E(nx)}{n} < E(x) + 1$$

d'où par définition

$$E\left(\frac{E(nx)}{n}\right) = E(x)$$

Application: Approximations décimales

Un réel d est un nombre décimal s'il existe $n \in \mathbb{N}$ et $p \in \mathbb{Z}$ tel que $d = \frac{p}{10^n}$

Soient x, ε deux réels avec $\varepsilon > 0$.

- On appelle valeur décimal approchée de x à ε près par défaut l'unique décimal d tel que $d \le x < d + \varepsilon$.
- On appelle valeur décimal approchée de x à ε près par excès l'unique décimal d tel que $d-\varepsilon \leq x \leq d$.

Soit x un réel. Pour tout n un entier naturel il existe un unique entier p_n tel que

$$\frac{p_n}{10^n} \le x < \frac{p_n}{10^n} + \frac{1}{10^n}$$

 $\frac{p_n}{10^n}$ est un nombre décimal approchant x à 10^{-n} près par défaut. En particulier on montre que $p_n = E(x10^n)$

Densité des rationnels et irrationnels dans $\mathbb R$

Définition

Soit D une partie de \mathbb{R} . On dit que D est dense dans \mathbb{R} si et seulement si

$$\forall x, y \in \mathbb{R}, \ x < y, \ \exists d \in D; \ x < d < y$$

Voici une autre définition équivalente (et très utile) :

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists d \in D, \quad |x - d| < \varepsilon$$

Théorème

Soit D une partie dense dans \mathbb{R} , x et y deux réels teld que x < y. Il existe une infinité d'éléments de D entre x et y.

Densité des rationnels et irrationnels dans $\mathbb R$

Théorème

- ▶ L'ensemble des nombres rationnels Q est dense dans R.
- ▶ L'ensemble des nombres irrationnels $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

Preuve:

Soit a, b deux réels tels que a < b. Il suffit de trouver un rationnel $\frac{p}{q}$ tel que

$$a<\frac{p}{q}< b.$$

Soit y = b - a > 0 et x = 1. D'apès la propriété d'Archimède, il existe un entier q tel que

$$q(b-a) > 1 \implies qa+1 < qb.$$

Soit p = [qa] + 1. On a alors

$$qa$$

En divisant par q on a le résultat désiré.

Densité des rationnels et irrationnels dans R

Montrons que

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \ \exists d \in \mathbb{R} \setminus \mathbb{Q}, \ \textit{tel que} \ |x - d| < \varepsilon$$

Soit $x \in \mathbb{R}$ et $\varepsilon > 0$

- Si $x \in \mathbb{R} \setminus \mathbb{Q}$ alors il suffit qu'on pose x = d.
- Si $x \in \mathbb{Q}$: Pour $\sqrt{2} \in \mathbb{R}$ et $\varepsilon > 0$, $\exists n \in \mathbb{N}^* / \sqrt{2} < n\varepsilon$ On pose $d = x + \frac{\sqrt{2}}{n} \in \mathbb{R} \setminus \mathbb{Q}$, donc

$$|x-d|=\frac{\sqrt{2}}{n}<\varepsilon$$

d'où $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

Fin