Sistemi

Giovanni Tosini

Indice

	Numeri complessi										4		
	0.1.1	Formula di Eulero											4
	0.1.2	Operazioni con i numero complessi											6
	0.1.3	Teorema fondamentale dell'algebra											10

0.1 Numeri complessi

Un numero complesso $s=\sigma+j\omega$ con $j=\sqrt{-1}$ e $\sigma,\omega\in R$ in cui

- $\sigma = Re(s)$ parte reale
- $\omega = Im(s)$ parte immaginaria
- $C=st.c.s=\sigma+j\omega,\sigma,\omega\in R$ insieme dei numeri complessi

Forma polare dei numeri complessi, $s = \rho(\cos\theta + j\sin\theta)$

- $\rho = \sqrt{\sigma^2 + \omega^2}$ il modulo di s con $\rho \in R^+$
- $\theta = \text{argomento di } s$

Osservazione 1 $Re(s) = \rho cos\theta$ e $Im(s) = \rho sin\theta$

Osservazione 2 L'argomento θ è determinato a meno di multipli interi di 2π . Imponendo $\theta \in [0, 2\pi)$ oppure $(-\pi, \pi]$ (deve essere un intervallo lungo 2π) si ottiene l'argomento principale θ che notiamo con arg(s)

0.1.1 Formula di Eulero

$$\theta \in R, j = \sqrt{-1}$$
 abbiamo $e^{j\theta} = \cos\theta + j\sin\theta$

Forma esponenziale $s = \rho e^{j\theta}$

0.1. NUMERI COMPLESSI

5

$$|e^{j\theta} = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$

Esempio: $e^{j\frac{\pi}{2}} = j$

$$s = 0 + 1j = j$$

Def: i numeri immaginari puri hanno la parte reale nulla

La forma polare di \bar{s} sarà uguale a $\rho(\cos\theta - j\sin\theta)$

Osservazione $|s| = |\bar{s}| arg(\bar{s}) = -arg(s)$

Esempio: $e^{j\pi} = -1 = e^{j\pi} + 1 = 0$

0.1.2 Operazioni con i numero complessi

- $s_1 = \sigma_1 + j\omega_1, s_2 = \sigma_2 + j\omega_2 \in C$
- $s_1 + s_2 = \sigma_1 + \sigma_2 + j(\omega_1 + \omega_2)$
- $s_1 s_2 = \sigma_1 \sigma_2 + j(\omega_1 \omega_2)$

Osservazione: $Re(s) = \frac{s+\bar{s}}{2}$ e $Im(s) = \frac{s+\bar{s}}{2j}$

Per la formula di Eulero $e^{j\theta}=cos\theta+jsin\theta\Rightarrow cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2}$ e $sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j}$

Osservazione: $2Re(s) = s + \bar{s} \ e \ 2jIm(s) = s - \bar{s}$

$$s=\bar{s}\Rightarrow Im(s)=0$$
e $s=-\bar{s}\Rightarrow Re(s)=0$

- $s_1 = \rho_1(\cos\theta_1 + j\sin\theta_1)$
- $s_2 = \rho_1(\cos\theta_2 + j\sin\theta_2)$
- $s_1 s_2 = \rho_1 \rho_2 (cos(\theta_1 + \theta_2) + jsin(\theta_1 + \theta_2))$
- $s_1s_2 = \rho_1\rho_2(cos\theta_1cos\theta_2 + jcos\theta_1sin\theta_2 + jsin\theta_1cos\theta_2 sin\theta_1sin\theta_2)$
- $s_1s_2 = \rho_1\rho_2(cos\theta_1cos\theta_2 sin\theta_1sin\theta_2 + j(cos\theta_1sin\theta_2 + sin\theta_1cos\theta_2))$

N.B.: $cos\theta_1cos\theta_2 - sin\theta_1sin\theta_2 = cos(\theta_1+\theta_2)$ e $cos\theta_1sin\theta_2 + sin\theta_1cos\theta_2 = sin(\theta_1+\theta_2)$

Def: Dato $s \in C$ il numero s^{-1} t.c. $ss^{-1} = 1$, $s^{-1} = \frac{\bar{s}}{|s|^2}$ reciproco (inverso) di s.

$$ss^{-1} = s \frac{\bar{s}}{|s|^2} = \frac{s\bar{s}}{|s|^2}$$

$$s\bar{s} = \rho^2(\cos(\theta - \theta) + j\sin(\theta - \theta)) = \rho^2 = |s|^2$$

8

Osservazione: l'argomento di un numero complesso si può chiamare anche fase.

$$\frac{s_1}{s_2} = s_1 s_2^{-1} = s_1 \frac{\bar{s_2}}{|s_2|^2} = \frac{\rho_1}{\rho_2} (\cos(\theta_1 - \theta_2) j \sin(\theta_1 - \theta_2))$$

Osservazione: $s\bar{s} = \rho^2(cos(\theta - \theta) + jsin(\theta - \theta)) = \rho^2 \Rightarrow |s|^2 = s\bar{s}$

Def: $u\in C$ si dice complesso unitario se |u|=1. In forma polare $u=cos\theta+jsin\theta$. In forma esponenziale $u=e^{j\theta}$ e $|e^{j\theta}|=1$

Sia $u = cos\alpha + jsin\alpha$ con $s = \rho(cos\theta + jsin\theta)$ avremo che $su = \rho(cos(\theta + \alpha) + jsin(\theta + \alpha))$ (rotazione intorno all'origine)

$$s^n = \rho^n(\cos(n\theta) + j\sin(n\theta))$$

Esempio: $(e^{j\theta})^n = e^{jn\theta}$

9

Radici complesse Ogni $s \in C$ ammette n distinte radici n-esime $\omega_1, ..., \omega_{n-1} \in$

C. Dobbiamo trovare $\omega \in C$ t.c. $\omega^n = s$. $\forall k \in [0, n-1], \omega_k \sqrt[n]{\rho}(\cos(\frac{\theta}{n} + \frac{2\pi}{n}k) + j\sin(\frac{\theta}{n} + \frac{2\pi}{n}k))$ Prova: $\omega_k^n = (\sqrt[n]{\rho}^n)(\cos(n(\frac{\theta}{n} + \frac{2\pi}{n}k)) + j\sin(n(\frac{\theta}{n} + \frac{2\pi}{n}k)))$ $\rho(\cos(\theta + 2\pi k) + j\sin(\theta + 2\pi k)) = s$

Notare che $cos(\theta + 2\pi k)$ è equivalente a $cos\theta$ e $sin(\theta + 2\pi k)$ equivale a $sin\theta$ questo $\forall k = 0, ..., n-1$

L'equazione: $s^4 = 1 + 2i$ ha 4 radici distinte nel campo C. Esempio: le radici complesse dell'unità

$$s^{n} = 1\omega_{k} = \cos(\frac{2\pi}{n}k) + j\sin(\frac{2\pi}{n}k)k = 0, ..., n-1$$

Funzioni di variabile complessa Gli insieme su cui definiamo una funzione di variabile complessa f si scrivono D(f), $D(f) \subseteq C$

Def: un punto $s_0 \in D(f) \subseteq C$ è interno a D(f) se esiste un disco $B_{\rho}(s_0)$ di raggio ρ con $\rho \in \mathbb{R}^+$ centrato in s_0 , t.c. $B_{\rho}(s_0) \subseteq D(f)$ dove $B_{\rho}(s_0) =$ $s \in Ct.c.|s-s_0| < \rho$

Def: Un insieme $D(f) \subseteq C$ si dice aperto se tutti i suoi punti sono interni

Def: Una funzione $f: D(f) \to C$ con $D(f) \subseteq C$ aperto è una funzione complessa

Esempi di funzioni complesse con annesso dominio:

- f(s) = s, D(f) = C
- $f(s) = s^2, D(f) = C$
- $f(s) = Re(s) + jIm(s)^2, D(f) = C$
- $f(s) = \sum_{k=0}^{n} a_k s^k, D(f) = C$
- funzione polinomiale, $f(s) = \frac{P(s)}{Q(s)}$ dove $P(s) = \sum_{k=0}^{n} a_k s^k$ e funzione razionale $Q(s) = \sum_{k=0}^{n} b_k s^k$, $D = C \lambda_1, ..., \lambda_m$ dove λ_α è radice di Q(s) = 0 per k = 1, ..., m

0.1.3 Teorema fondamentale dell'algebra

Ogni polinomio P(s) a coefficienti complessi di grado n>0 ha n radici complesse e si può comporre come

$$P(s) = a_n(s - \lambda_1)_1^{\mu}(s - \lambda_2)_2^{\mu}...(s - \lambda_r)_r^{\mu}$$
 dove $\lambda_1,...\lambda_r$ sono radici e $\mu_1,...,\mu_r$ sono le **molteplicità** relative di ciascuna radice per cui $\mu_1 + ... + \mu_r = n$

Osservazione Un numero λ è una radice di molteplicità μ per un polinomio P(s) se e solo se $P(\lambda) = P'(\lambda) = P''(\lambda) = \dots = P^{\mu-1}(\lambda) = 0$ e $P^{\mu}(\lambda) \neq 0$