Act1 Normal Multivariada

Elías Garza A01284041

19/9/2023

Ejercicio 1.

Hallar el procedimiento para el cálculo de probabilidad de que $P(X_1 \le 2, X_2 \le 3)$ con X_1, X_2 se distribuyen Normal con

$$\mu = (\mu_1 = 2.5, \mu_2 = 4) \text{ y } \Sigma = \begin{bmatrix} 1.2 & 0 \\ 0 & 2.3 \end{bmatrix}$$

library(mnormt)

Warning: package 'mnormt' was built under R version 4.1.3

```
mu = c(2.5, 4)
sigma = matrix(c(1.2, 0, 0, 2.3), nrow=2)
pmnorm(c(2,3), mu, sigma)
```

[1] 0.08257333

R. 0.08257

Ejercicio 2.

Grafique la anterior distribución bivariada del problema 1.

```
x <- seq(-1.5, 6.5, 0.2)
y <- seq(0, 8, 0.2)
f <- function(x, y) dmnorm(cbind(x, y), mu, sigma)
z <- outer(x, y, f)
#create surface plot
persp(x, y, z, theta=-30, phi=25, expand=0.6, ticktype='detailed', col = "green")</pre>
```


Ejercicio 3.

Grafique los contornos de la anterior distribución normal bivariada correspondiente a las alturas de 0.01, 0.03, 0.05, 0.07, 0.09

```
x <- seq(-1.5, 6.5, 0.1)
y <- seq(0, 8, 0.1)
f <- function(x, y) dmnorm(cbind(x, y), mu, sigma)
z <- outer(x, y, f)
#create contour plot
contour(x, y, z, col = "blue", levels = c(0.01,0.03,0.05,0.07,0.9))</pre>
```


Los resultados del primer ejercicio se relacionan porque el hipervolumen del cuadrante que esta "abajo' de (2,3) es el nuestro valor de 0.08. Asimismo, las curvas de niver representan la proyección de la segunda grafica sobre el plano horizontal a distintas alturas.