On the selection uncertainty in parametric clustering

European Conference on Data Analysis

- ♣ Alessandro Casa¹
 Luca Scrucca² and Giovanna Menardi¹
 - università degli Studi di Padova¹
 - Università degli Studi di Perugia²
- casa@stat.unipd.it

5th July 2018

Selection uncertainty and statistical scandals

- Model selection is ubiquitous in modern statistical analysis and applications;
- Selection preceeds inference and these steps are considered as separated → selected model treated as fixed;

Model selection is data-dependent \rightarrow we are neglecting a source of uncertainty possibly ending up with anti-conservative statements

- Possible workarounds:
 - Data splitting;
 - Model averaging estimators;
 - Use a corrected estimators.

Aim and contribution

- Density-based clustering: definition of cluster linked to features of the density underlying the data:
 - Parametric: clusters as unimodal components within an appropriate finite mixture model;
 - Nonparametric: clusters as domains of attraction of the density modes.
- Model selection tools required to choose among different models for the true density function;
- Aim: propose a model averaging approach accounting for the selection step in model-based clustering.

Model-based clustering

 Data comes from a finite mixture of K components (corresponding to the groups):

$$f(x|\Theta) = \sum_{k=1}^{K} \pi_k f_k(x|\theta_k) ,$$

- $\Theta = \{\pi_1, \dots, \pi_{K-1}, \theta_1, \dots, \theta_k\}$ with $\pi_k > 0$ and $\sum_{k=1}^K \pi_k = 1$;
- Often $f_k(\cdot) = \phi_k(\cdot)$ hence $\theta_k = {\mu_k, \Sigma_k}$;
- Parsimony is induced by considering eigenvalue decomposition $\Sigma_k = \lambda_k A_k D_k A_k^T$;
- Selection step in model-based clustering involves choices of:
 - Number of clusters (through number of components);
 - Parametrization of the component covariance matrices Σ_k ;
 - Component densities.

Selection in model-based clustering

Single-best model paradigm
 Several models are fitted → best one then chosen according to information criteria (e.g. BIC, ICL) and used to obtain a partition;

What if discarded models have IC values close to the one of the selected model?

• Example: Iris data

VEV2, BIC=-561.72

VEV3, BIC=-562.55

Model averaging in model-based clustering

- Model averaging accounts for model uncertainty combining parameter estimates across a set of competing models;
- Problem: the quantity to average should have the same meaning in each estimated model;
- Two different Bayesian Model Averaging (BMA) approaches in model-based clustering literature:
 - Wei & McNicholas (2015) average a posteriori probabilities or parameter estimates → same number of components is needed;
 - Russell et al. (2015) average over similarity matrices
 → need to resort to distance-based algorithm to obtain a partition.

Work proposal

- Idea: choose as quantity to be averaged the density itself tackling the problem at its roots;
- Density estimate is a convex linear combination of a subset of the fitted models

$$f_{av}(x) = \sum_{m=1}^{M} \alpha_m f_m(x|\hat{\Theta}_m) ,$$

where $f_m(\cdot)$ are mixture models to average, M is their number and α_m the corresponding weights;

- Criticalities:
 - · How to estimate the weights;
 - How to operationally obtain a partition.

Choosing weights

- $f_{av}(\cdot)$ is a mixture model itself so α_m , $m=1,\ldots,M$ can be estimated maximizing the log-likelihood via EM algorithm;
- Overfitting issue: complex models with larger number of components weight more in the combination;
- **Proposed solution**: consider a *BIC-type* penalization and obtain $\hat{\alpha} = {\hat{\alpha}_1, \dots, \hat{\alpha}_m}$ by maximizing the penalized log-likelihood

$$l_p(\alpha|x) = \sum_{i=1}^n \log \sum_{m=1}^M \alpha_m f_m(x_i) - \log(n) \sum_{m=1}^M \alpha_m v_m ,$$

where v_m is the number of parameters for mth model and $\{x_i\}_{i=1}^n$ is the sample.

Obtaining partition

- Averaging process implies the loss of the correspondence between components and clusters
 - → final partition cannot be obtain in the usual way;
- Clusters are obtained as domain of attractions of the modes of the fitted density in a nonparametric fashion;
- Use of gradient ascent algorithm to explore modality of $\hat{f}_{av}(\cdot)$: mean shift specifically adjusted for mixture densities (Chacon, 2018).

Results - Simulated data

Three component Gaussian mixture

	best	pen_av
NWS, $n = 100$	0.8755	0.8664
NWS, $n = 500$	0.8796	0.8797
WS, $n = 100$	0.9918	0.9924
WS, $n = 500$	0.9909	0.9910

Mean Adjusted Rand Index

Skewed components mixture

	best	pen_av
n = 100	0.9548	0.9805
n = 500	0.6253	0.9936
n = 1000	0.5579	0.9821
n = 5000	0.3175	0.9547

Mean Adjusted Rand index

Results - Real data

Wines data: M=5, $G_{true} = 3$

	best	pen_av
Adj Rand Index	0.830	0.964
Num groups	3	3

DLBCL data: M=126, $G_{true} = 5$

	best	pen_av
Adj Rand Index	0.296	0.909
Num groups	7	4

Iris data: M=2, $G_{true} = 3$

	best	pen_av
Adj Rand Index	0.568	0.568
Num groups	2	2

Open issues and future work

 We introduce a viable and flexible alternative to BMA approaches in order to overcome single best model limitations in model-based clustering framework;

Open questions:

- Should we consider other penalitazion schemes (e.g. inspired by other IC)?
- How do we choose M?
 - Occam's window built on BIC values of fitted models;
 - Alternatives to EM algorithm in order to incorporate selection of M in the estimation process;

Relevant references

- Chacón, J.E. (2018). Mixture model modal clustering, Advances in Data Analysis and Classification, 1–26.
- Russell, N., Murphy T. B., and Raftery A. E. (2015). Bayesian model averaging in model-based clustering and density estimation, arXiv preprint arXiv:1506.09035.
- Smyth, P. and Wolpert, D. (1999). Linearly combining density estimators via stacking, Machine Learning, **36**, 59–83.
- Wei, Y. and McNicholas, P. D. (2015). Mixture model averaging for clustering, Advances in Data Analysis and Classification, 9(2), 197–217.