2003 G3

Ezra Guerrero Alvarez

January 21, 2022

2003 G3

2003 G3

Let ABC be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines BC, CA, AB, respectively. Suppose that

$$AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.$$

Denote by I_A , I_B , I_C the excenters of the triangle ABC. Prove that P is the circumcenter of the triangle $I_AI_BI_C$.

We have

$$AP^{2} + PD^{2} = BP^{2} + PE^{2}$$

$$AP^{2} - PE^{2} = BP^{2} - PD^{2}$$

$$AE^{2} = BD^{2}$$

$$AE = BD.$$

Analogously, BF = CE and CD = AF. It follows that D, E, F are the extouch points. Hence, P is the concurrency point of the perpendiculars to the sides through the extouch points. Now, consider a homothety with center I and ratio 2. This sends O to V, the $Bevan\ Point$. Since it also sends the midpoints of $\widehat{BC}, \widehat{CA}, \widehat{AB}$ to the excenters, V is the circumcenter of $\triangle I_A I_B I_C$. By the homothety, $\overline{I_A V} \perp \overline{BC}$ and analogously with the other sides, so V is the concurrency point of the perpendiculars to the sides through the extouch points. Hence, P = V as desired.