QUADRATIC EQUATIONS

1.Intoduction:

In this chapter, you will study quadratic equations, and various ways of finding their roots. You will also see some applications of quadratic equations in daily life situations.

2.Notes:

- A quadratic equation in the variable x is of the form ax2 + bx + c = 0, where
 a, b, c are real numbers and a ≠ 0.
- A real number α is said to be a root of the quadratic equation ax2 + bx + c = 0, if $a\alpha 2 + b\alpha + c = 0$. The zeroes of the quadratic polynomial ax2 + bx + c and the roots of the quadratic equation ax2 + bx + c = 0 are the same.
- If we can factorise ax2 + bx + c, $a \ne 0$, into a product of two linear factors, then the roots of the quadratic equation ax2 + bx + c = 0 can be found by equating each factor to zero.
- A quadratic equation can also be solved by the method of completing the square.
- Quadratic formula: The roots of a quadratic equation ax2 + bx + c = 0 are given by 2 4, 2 b b ac a $-\pm$ provided b2 $4ac \ge 0$.
- A quadratic equation ax2 + bx + c = 0 has (i) two distinct real roots, if b2 4ac > 0, (ii) two equal roots (i.e., coincident roots), if b2 4ac = 0, and (iii) no real roots, if b2 4ac < 0.

3.Example Sums:

*Check whether the following are quadratic equations: (i) (x-2)2 + 1 = 2x - 3

Solution: LHS = (x - 2)2 + 1 = x2 - 4x + 4 + 1 = x2 - 4x + 5 Therefore, (x - 2)2 + 1 = 2x - 3 can be rewritten as x2 - 4x + 5 = 2x - 3 i.e., x2 - 6x + 8 = 0 It is of the form ax2 + bx + c = 0. Therefore, the given equation is a quadratic equation.

*Find the roots of the following quadratic equations, if they exist, using the quadratic formula: (i) 3x2 - 5x + 2 = 0.

SOLUTION:
$$3x2 - 5x + 2 = 0$$
. Here, $a = 3$, $b = -5$, $c = 2$. So, $b2 - 4ac = 25 - 24 = 1 > 0$. Therefore, $x = 5 \ 1 \ 51 \ 6 \ 6 \ \pm \pm = 1$, i.e., $x = 1$ or $x = 2 \ 3$ So, the roots are 2 3 and 1.

4.Practice Sums:

*Find the roots of the following quadratic equations, if they exist, using the quadratic formula:

$$x^2 + 4x + 5 = 0$$
.

*Find the roots of the equation 5x2 - 6x - 2 = 0 by the method of completing the square.