NIS2312-01 Fall 2023-2024

信息安全的数学基础 (1)

Answer 5

2023 年 10 月 8 日

 \mathbb{R} 是实数域, \mathbb{Q} 是有理数域, \mathbb{Z} 是整数集合.

子群的判别条件:

Theorem 1 设 G 是群, H 是群 G 的 非空子集 ,则 H 成为群 G 的子群的充分必要条件是

- (1) 对任意 $a,b \in H$,有 $ab \in H$;
- (2) 对任意 $a \in H$, 有 $a^{-1} \in H$.

上述验证子群的两个条件可以用一个条件代替:

Theorem 2 设 G 是群, H 是群 G 的 非空子集, 则 H 成为群 G 的子群的充分必要条件是对 任意 的 $a,b \in H$, 有 $ab^{-1} \in H$.

上述两个子群判别定理中无子群运算结合律和单位元的验证.

Problem 1

在 \mathbb{Z}_{10} 中,令 $H = \{\overline{2}, \overline{4}, \overline{6}, \overline{8}\}$. 证明: H 关于剩余类的乘法构成群. H 是 (\mathbb{Z}_{10} , ·) 的子群吗? 为什么?

解:

- (1) 直接计算可以发现 H 关于剩余类的乘法是封闭的;
- (2) 剩余类的乘法满足结合律, 所以 H 的乘法也满足结合律;
- (3) 可以验证

$$\overline{2} \cdot \overline{6} = \overline{12} = \overline{2}$$

$$\overline{4} \cdot \overline{6} = \overline{24} = \overline{4}$$

$$\overline{6} \cdot \overline{6} = \overline{36} = \overline{6}$$

$$\overline{8} \cdot \overline{6} = \overline{48} = \overline{8}$$

故 $\overline{6}$ 是 H 的单位元;

(4) 从上述等式可以发现 H 中的每个元素都是可逆的.

综上 H 是一个群.

但 H 不是 (\mathbb{Z}_{10} , ·) 的子群: 因为 (\mathbb{Z}_{10} , ·) 不构成群 ($\overline{1}$ 是单位元, 但 $\overline{2}$ 无逆元).

Problem 2

设 $G = \operatorname{GL}_2(\mathbb{R})$, $H = \{A \in G \mid \det(A) \neq 3 \text{ 的整数幂次}\}$. 证明: $H \neq G$ 的子群. 解: 显然 $H \neq G$ 的非空集合. 假设任意 $A, B \in H$, 那么存在 $m, n \in \mathbb{Z}$ 使得 $\det(A) = 3^m, \det(B) = 3^n$. 因此

$$\det(AB^{-1}) = \det(A)\det(B^{-1}) = \det(A)\det(B)^{-1} = 3^m 3^{-n} = 3^{m-n}.$$

故 $AB^{-1} \in H$, 因此 H 为 G 的子群.

Problem 3

设 G 是交换群, m 是固定的整数. 令 $H=\{a\in G\mid a^m=e\}$. 证明: H 是 G 的子群. 解: 因为 $e^m=e$ 故 $e\in H$, 即 H 是 G 的非空子集. 设任意 $a,b\in H$, 则 $a^m=b^m=e$. 因此

$$(ab^{-1})^m = a^m (b^{-1})^m = a^m (b^m)^{-1} = e.$$

故 $ab^{-1} \in H$, 因此 H 为 G 的子群.

Problem 4

设 H 是 G 的子群. 证明: 对任意的 $g \in G$, 集合 $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ 是 G 的子群.

解: 因为 $e \in H$, 则 $e = geg^{-1} \in gHg^{-1}$, 故 gHg^{-1} 非空. 此外 gHg^{-1} 是 G 的子集. 设任意的 $h_1, h_2 \in H$, 故 $x = gh_1g^{-1} \in gHg^{-1}$, $y = gh_2g^{-1} \in gHg^{-1}$. 因此

$$xy^{-1} = gh_1g^{-1}(gh_2g^{-1})^{-1} = gh_1g^{-1}gh_2^{-1}g^{-1} = gh_1h_2^{-1}g^{-1} \in gHg^{-1}.$$

其中 $h_1h_2^{-1} \in H$ 是因为 H 为 G 的子群. 故集合 $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ 是 G 的子 群.

Problem 5

设 a 是群 G 的元素. 定义 a 在 G 中的中心化子 (centralizer) 为

$$C(a) = \{ g \in G \mid ga = ag \}.$$

证明: C(a) 是 G 的子群.

解: 显然 $e \in C(a)$, 故 C(a) 是群 G 的非空子集. 假设任意 $g_1, g_2 \in C(a)$, 则 $g_1a = ag_1, g_2a = ag_2$, 整理得到 $g_1g_2a = g_1ag_2 = ag_1g_2$, 故 $g_1g_2 \in C(a)$; 同时假设任意 $g \in C(a)$, 则 ga = ag, 整理得到 $g^{-1}ga = g^{-1}ag = a \Rightarrow g^{-1}agg^{-1} = ag^{-1}$, 即 $g^{-1}a = ag^{-1}$, 故 $g^{-1} \in C(a)$. 因此, C(a) 是 G 的子群.

Problem 6

设 G 的群. 证明: $C(G) = \bigcap_{a \in G} C(a)$ (即 G 的中心是所有形如 C(a) 的子群的交). 解:

- \subseteq 对任意 $x \in G$, $g \in C(G)$, 都有 gx = xg, 因此 $g \in C(x)$, 故 $C(G) \subseteq C(x)$, 由于 x 任意, 则 $C(G) \subseteq \bigcap_{x \in G} C(x)$;
- ⊇ 设任意 $g \in \bigcap_{a \in G} C(a)$, 则 $g \in C(a)$, 其中 $a \in G$. 因此 ag = ga, 由于 a 任意, 则 $g \in C(G)$, 故 $\bigcap_{a \in G} C(a) \subseteq C(G)$.

综上, $C(G) = \bigcap_{a \in G} C(a)$.

Problem 7

设 G 的群, $a \in G$. 证明: $C(a) = C(a^{-1})$.

解: $\forall a, g \in G$, 有 $ag = ga \Leftrightarrow ga^{-1} = a^{-1}g$, 故

$$C(a) = \{g \mid ga = ag\} = \{g \mid ga^{-1} = a^{-1}g\} = C(a^{-1}).$$

Problem 8

设 $H, K \neq G$ 的两个子群. 证明: 当且仅当 $H \subseteq K$ 或 $K \subseteq H$ 时, $H \cup K \neq G$ 的子群. 利用此结论证明, 群 G 不能被它的两个真子群所覆盖. G 能被它的三个真子群所覆盖吗?

解: 不是一般性的, 仅证明 $H \subseteq K$ 的情况.

充分性: 假设 $H \subseteq K$, 则 $H \cup K = K$ 显然是 G 的子群;

必要性: 假设 $H \cup K < G$. 如果 $H \subseteq K$, 则结论成立. 因此假设 $H \nsubseteq K$, 则假设 $h \in H \setminus K$, 故 $hkk^{-1} = h \in H$. 由 $H \cup K < G$, 有 $h \in H$, $k \in K$ 且 $hk \in H$ 或 $hk \in K$. 如果 $hk \in K$, 则 $h = hkk^{-1} \in K$ 与假设矛盾, 故 $hk \in H$, 故 $k = h^{-1}hk \in H$, 即 $K \subseteq H$.

如果 G 能被它的两个真子群覆盖,那么假设为 $G = H \cup K$,则 G = H 或 G = K,与真子群的性质矛盾,故群 G 不能被它的两个真子群所覆盖.

G 能被它的三个真子群所覆盖, 举例:

- 1. 克莱因加法群 $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0),(0,1),(1,0),(1,1)\}$, 三个真子群分别是 $\{(0,0),(0,1)\}$, $\{(0,0),(1,0)\}$ 和 $\{(0,0),(1,1)\}$.
- 2. $U(8)=\{\overline{1},\overline{3},\overline{5},\overline{7}\}$, 运算是剩余类的乘法, 其三个真子群分别是 $\{\overline{1},\overline{3}\}$, $\{\overline{1},\overline{5}\}$ 和 $\{\overline{1},\overline{7}\}$.
- 3. 可将 1 和 2 抽象为: $G = \{e, a, b, c\}$, 其中 e 为单位元, 运算满足 $a^2 = b^2 = c^2 = e$ 和 ab = c (余下的 ac = ca = b 等可由已知条件推导得到).

Problem 9

设群 K 由元素 a,b 和关系 $a^2=b^2=e,ab=ba$ 所定义. 试给出群 K 的乘法表 (乘法表定义见 Page 11).

解:

	e	a	b	ab
\overline{e}	e	a	b	ab
a			ab	b
b	b	ab	e	a
ab	ab	b	a	e