

TEST REPORT

No. I18D00233-SAR01

For

Client: Shanghai Sunmi Technology Co.,Ltd.

Production: Wireless data POS System

Model Name: T5921

Brand Name: SUNMI

FCC ID: 2AH25T5921

Hardware Version: QP1665_MB_PCB_V1

Software Version: zqp1665_V002_181121

Issued date: 2019-1-24

Page Number: 2 of 189

Report Issued Date: Jan. 24, 2019

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
- 3. KDB has not been approved by A2LA.
- 4. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory:

East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: +86 21 63843300 FAX: +86 21 63843301

E-Mail: welcome@ecit.org.cn

Page Number: 3 of 189 Report Issued Date: Jan. 24, 2019

Revision Version

Report Number	Revision	Date	Memo
I18D00233-SAR01	00	2019-1-17	Initial creation of test report
I18D00233-SAR01	01	2019-1-24	Second creation of test report

CONTENTS

1. TEST I	LABORATORY	7
1.1.	TESTING LOCATION	7
1.2.	TESTING ENVIRONMENT	7
1.3.	PROJECT DATA	7
1.4.	SIGNATURE	7
2. STATE	MENT OF COMPLIANCE	8
3. CLIEN	T INFORMATION	10
3.1.	APPLICANT INFORMATION	10
3.2.	MANUFACTURER INFORMATION	10
4. EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	11
4.1.	ABOUT EUT	11
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	12
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	12
5. REFE	RENCE DOCUMENTS	13
5.1.	DOCUMENTS SUPPLIED BY APPLICANT	13
5.2.	REFERENCE DOCUMENTS FOR TESTING	13
6. SPECI	FIC ABSORPTION RATE (SAR)	14
6.1.	INTRODUCTION	14
6.2.	SAR DEFINITION	14
7. SAR N	IEASUREMENT SETUP	15
7.1.	MEASUREMENT SET-UP	15
7.2.	DASY5 E-FIELD PROBE SYSTEM	16
7.3.	E-FIELD PROBE CALIBRATION	16
7.4.	OTHER TEST EQUIPMENT	18

8. POSIII	ON OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	22
8.1.	GENERAL CONSIDERATIONS	22
8.2.	BODY-WORN DEVICE	23
8.3.	DUT SETUP PHOTOS	24
9. TISSUE	SIMULATING LIQUIDS	25
9.1.	EQUIVALENT TISSUES	25
9.2.	DIELECTRIC PERFORMANCE	26
10SYS	TEM VALIDATION	27
10.1.	SYSTEM VALIDATION	27
10.2.	SYSTEM SETUP	27
11MEA	SUREMENT PROCEDURES	29
11.1.	TESTS TO BE PERFORMED	29
11.2.	GENERAL MEASUREMENT PROCEDURE	29
11.3.	WCDMA MEASUREMENT PROCEDURES FOR SAR	30
11.4.	BLUETOOTH & WIFI MEASUREMENT PROCEDURES FOR SAR	31
11.5.	POWER DRIFT	32
12CON	DUCTED OUTPUT POWER	33
12.1.	MANUFACTURING TOLERANCE	33
12.2.	GSM MEASUREMENT RESULT	42
12.3.	WCDMA MEASUREMENT RESULT	43
12.4.	LTE MEASUREMENT RESULT	46
12.5.	WIFI AND BT MEASUREMENT RESULT	63
12.6.	CDMA MEASUREMENT RESULT	66
13SIMU	ILTANEOUS TX SAR CONSIDERATIONS	67
13.1.	INTRODUCTION	67
13.2.	TRANSMIT ANTENNA SEPARATION DISTANCES	67

Page Number: 6 of 189 Report Issued Date: Jan. 24, 2019

	13.3.	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	69
14.	POWER	R REDUCTION BY PROXIMITY SENSING	70
	14.1.	PROCEDURES FOR DETERMINING PROXIMITY SENSOR TRIGGERING DISTANCE 70	ES
	14.2.	PROCEDURES FOR DETERMINING ANTENNA AND PROXIMITY SENSOR COVERA 71	\GE
	14.3.	PROXIMITY SENSOR STATUS TABLE OF TRIGGER DISTANCE	72
	14.4.	TILT ANGLE INFLUENCES TO PROXIMITY SENSOR TRIGGERING	74
	14.5.	POWER REDUCTION PER AIR-INTERFACE	75
	14.6.	PROXIMITY SENSOR COVERAGE AREA	75
15.	SAR TE	ST RESULT	76
16.	SIMULT	ANEOUS TX SAR CONSIDERATIONS	89
17.	SAR ME	EASUREMENT VARIABILITY	91
18.	TEST E	QUIPMENTS UTILIZED	92
	18.1.	SAR TEST SYSTEM	92
19.	MEASU	REMENT UNCERTAINTY	93
AN	NEX A.	GRAPH RESULTS	96
ΑN	NEX B.	SYSTEM VALIDATION RESULTS	120
ΑN	NEX C.	SYSTEM VALIDATION	126
ΑN	NEX D.	CALIBRATION CERTIFICATION	127
ΑN	NEX E.	ACCREDITATION CERTIFICATE	189

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications	
Address	7-8/F., Area G, No.666, Beijing East Road, Shanghai, China	
Postal Code	200001	
Telephone	+86 21 63843300	
Fax	+86 21 63843301	

1.2. Testing Environment

Normal Temperature	18℃-25℃
Relative Humidity	25%-75%

1.3. Project Data

Project Leader	Yu Anlu
Testing Start Date	2019-1-4
Testing End Date	2019-1-12

1.4. Signature

Yan Hang

(Prepared this test report)

博二良

Fu Erliang (Reviewed this test report)

Zheng Zhongbin

(Approved this test report)

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **T5921** are as follows

Table 2.1: Max. Reported SAR (10g)

Parameter Control of the Control of			
Dand	SAR 1g(W/Kg)	SAR 1g(W/Kg)	SAR 10g(W/Kg)
Band	Body worn(5mm)	Body worn (19mm)	Body worn (0mm)
GSM 850	1.020	0.439	1.216
GSM 1900	1.016	1.359	1.529
WCDMA Band2	0.745	0.778	0.643
WCDMA Band4	0.599	0.570	0.642
WCDMA Band5	0.722		0.857
CDMA BC0	1.035	0.538	1.073
CDMA BC1	1.073	0.838	1.127
LTE Band2	1.218	0.023	1.215
LTE Band4	0.810	0.036	0.775
LTE Band7	0.456	0.397	0.375
LTE Band17	0.183	0.102	0.517
2.4G WiFi	0.170		0.122
5G WiFi	0.023		0.033

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue, 4.0 W/Kg as averaged over any 10g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

Note: Original 5G test results are obtained from the **Shenzhen BALUN Technology Co.,Ltd** Report and report No. is **BL-SZ18C0348-701**

Table 2.2: Simultaneous SAR

	Simultaneous multi-band transmission								
Test Position		2G	3G	4G	2.4GHz		5GHz	SUM	
165	i Fosition	26	3G	40	ВТ	WiFi	WiFi	2.4GHz	5GHz
0mm(10g)	Phantom Side	1.216	0.857	0.233	0.067	0.122	0.026	1.338	1.283
omm(rog)	Ground Side	1.529	1.127	1.215	0.067	0.083	0.033	1.612	1.596
5 mm (4 m)	Phantom Side	1.020	0.346	0.240	0.167	0.119	0.023	1.187	1.187
5mm(1g)	Ground Side	1.016	1.073	1.218	0.167	0.170	0.01	1.388	1.385
19mm(1g)	Ground Side	1.359	0.838	0.397	0.044	-		1.403	1.403

According to the above table, the maximum sum of reported SAR values for GSM/WCDMA/LTE/CDMA and BT/WiFi is **1.403 W/kg** (1g). GSM/WCDMA/LTE/CDMA and BT/WiFi is **1.612 W/kg** (10g)

Page Number: 10 of 189

Report Issued Date: Jan. 24, 2019

3. Client Information

3.1. Applicant Information

Company Name	Shanghai Sunmi Technology Co.,Ltd.	
Address	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai,	
Address	China	
Telephone	18721763396	
Postcode	200433	

3.2. Manufacturer Information

Company Name	Shanghai Sunmi Technology Co.,Ltd.	
Address	Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai,	
Address	China	
Telephone	18721763396	
Postcode	200433	

Page Number: 11 of 189

Report Issued Date: Jan. 24, 2019

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	Wireless data POS System
Model name:	T5921
Operation Model(s):	GSM850/GSM900/GSM1800/GSM1900
	WCDMA Band I/Band IV/Band V
	LTE 2/4/7/17/28;CDMA BC0/BC1
	BT4.2,BLE;WiFi 802.11a,b,g,n
Tx Frequency:	824.2-848.8MHz(GSM850)
	1850.2-1909.8MHz (GSM1900)
	1852.4-1907.6 MHz (WCDMA Band II)
	1712.4-1752.6 MHz (WCDMA Band IV)
	826.4-846.6MHz (WCDMA Band V)
	1850.7 -1909.3 MHz (LTE Band 2)
	1710.7 -1754.3 MHz (LTE Band 4)
	2502.5 – 2567.5 MHz (LTE Band 7)
	706.5 -713.5 MHz (LTE Band 17)
	824.7-848.31MHz(CDMA BC0)
	1851.25-1908.75MHz(CDMA BC1) 2412- 2462 MHz (WiFi)
	5150~5250 MHz(U-NII-1)
	5745~5825 MHz(U-NII-3)
	2402 – 2480 MHz (BT)
Test device Production information:	Production unit
GPRS/EGPRS Class Mode:	В
GPRS/ EGPRS Multislot Class:	12
Device type:	Portable device
Antenna type:	Inner antenna
Accessories/Body-worn	N/A
configurations:	
Hotspot Mode:	Not Support
The device employs proximity sensors	s that detect the presence of the user's body at the back faces

The device employs proximity sensors that detect the presence of the user's body at the back faces of the device. when back body worn condition is detected, GSM850/1900;WCDMA Band II/IV;LTE Band 2/4/7/17;CDMA BC0/BC1 reduced power will be active.

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N06		QP1665_MB_P CB_V1	zqp1665_V002_181121	2018-12-11

^{*}EUT ID: is used to identify the test sample in the lab internally.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer	

^{*}AE ID: is used to identify the test sample in the lab internally.

Page Number: 13 of 189

Report Issued Date: Jan. 24, 2019

5. Reference Documents

5.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

5.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
ANSI C95.1	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	1999
IEEE 1528	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.	2013
KDB648474	Handset SAR	D04 v01r03
KDB248227	802 11 WiFi SAR	D01 v02r02
KDB447498	General RF Exposure Guidance	D01 v06
KDB865664	SAR Measurement 100 MHz to 6 GHz	D01 v01r04
KDB865664	RF Exposure Reporting	D02 v01r02
KDB941225	3G SAR Procedures	D01 v03r01
KDB 941225	SAR for LTE Devices	D05 v02r04
KDB 648474	Wireless Chargers Battery Cover	D03 v01r04
KDB941225	hotspot SAR	D06 v02r01

6. Specific Absorption Rate (SAR)

6.1.Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out bye xperimental techniques or numerical modeling. The standard recommends limits for two tiers of gr oups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. SAR MEASUREMENT SETUP

7.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture 7-1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3,EX3DV4

Frequency Range: 10MHz — 6GHz(EX3DV4)

10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: $\pm 0.2 \text{ dB}(30 \text{ MHz to 4 GHz})$ for ES3DV3

± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm
Probe Tip Length: 20 mm
Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV4)

Application: SAR Dosimetry Testing

Compliance tests of mobile phones
Dosimetry in strong gradient fields

Picture 7-2 Near-field Probe

Picture 7-3 E-field Probe

7.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

East China Institute of Telecommunications Page Number: 16 of 189
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date: Jan. 24, 2019

Page Number: 17 of 189

Report Issued Date: Jan. 24, 2019

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if thefrequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

7.4. Other Test Equipment

7.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture 7-4: DAE

7.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture7-5: DASY 5

7.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices

from any other supplier could seriously damage the measurement server.

East China Institute of Telecommunications Page Number: 19 of 189
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date: Jan. 24, 2019

Picture 7-6: Server for DASY 5

7.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss material having the following dielectric parameters:

POM

relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture7-7: Device Holder

Picture 7-8: Laptop Extension Kit

7.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture 7-9: SAM Twin Phantom

8. Position of the wireless device in relation to the phantom

8.1. General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

 W_t Width of the handset at the level of the acoustic

 W_b Width of the bottom of the handset

A Midpoint of the width *w*, of the handset at the level of the acoustic output

B Midpoint of the width W_b of the bottom of the handset

Picture 8-3 Cheek position of the wireless device on the left side of SAM

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 22 of 189 Report Issued Date: Jan. 24, 2019

Picture 8-4 Tilt position of the wireless device on the left side of SAM

8.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture 8-5 Test positions for body-worn devices

8.3. DUT Setup Photos

Picture 8-7: Specific Absorption Rate Test Layout

9. Tissue Simulating Liquids

9.1. Equivalent Tissues

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 9.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table 9.1. Composition of the Head Tissue Equivalent Matter

				•		
Fragues ev (MIII-)	835	835	1900	1900	2450	2450
Frequency (MHz)	Head	Body	Head	Body	Head	Body
Ingredients (% by v	weight)					
Water	41.45	52.5	55.242	69.91	58.79	72.60
Sugar	56.0	45.0	\	\	\	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18
Preventol	0.1	0.1	\	\	\	\
Cellulose	1.0	1.0	\	\	\	\
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22
Dielectric	s=44 F	s=EE 0	s=40.0	2-F2 2	s=30.3	c=50.7
Parameters	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95

Table 9.2: Targets for tissue simulating liquid

Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1800	Head	1.40	1.33~1.47	40.0	38.0~42.0
1800	Body	1.52	1.44~1.60	53.3	50.6~56.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
2600	Head	1.96	1.86~2.06	39.0	37.1~40.9
2600	Body	2.16	2.05~2.27	52.5	59.9~55.1
5200	Head	4.66	4.43~4.89	36.0	34.2~37.8
5200	Body	5.30	5.04~5.57	49.0	46.6~51.5
5800	Head	5.27	5.01~5.53	35.3	33.5~37.1

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 25 of 189 Report Issued Date: Jan. 24, 2019

5800	Body	6.00	5.70~6.30	48.2	45.8~50.6

9.2. Dielectric Performance

Table 9.3: Dielectric Performance of Head Tissue Simulating Liquid

Measurer	Measurement Value									
Liquid Ten	Liquid Temperature: 22.5 ℃									
Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ	Drift (%)	Test Date				
Body	750 MHz	57.721	4.00%	0.916	-4.58%	2019/1/11				
Body	835 MHz	56.731	2.77%	0.998	2.89%	2019/1/10				
Body	1800 MHz	55.227	3.62%	1.479	-2.70%	2019/1/4				
Body	1900 MHz	52.078	-2.29%	1.556	2.37%	2019/1/9				
Body	2450 MHz	50.131	-4.87%	1.922	-1.44%	2019/1/12				
Body	2600MHz	54.370	3.56%	2.112	-2.22%	2019/1/5				

10. System Validation

10.1. System Validation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performace check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

10.2. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 10-1 System Setup for System Evaluation

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

The results are normalized to 1 W input power.

Picture 10-2 Photo of Dipole Setup

Table 10.1: System Verification of Body

Verification Results										
Input power level: 1W										
	Target va	lue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Toot			
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test date			
	Average	Average	Average	Average	Average	Average	uale			
750 MHz	5.7	8.55	5.56	8.24	-2.46%	-3.63%	2019/1/11			
835 MHz	6.4	9.75	6.64	9.92	3.75%	1.74%	2019/1/10			
1750 MHz	19.9	37.4	20.56	38.52	3.32%	2.99%	2019/1/4			
1900 MHz	21.2	40.4	21.36	40	0.75%	-0.99%	2019/1/9			
2450 MHz	23.5	50.5	23.76	51.6	1.11%	2.18%	2019/1/12			
2600 MHz	24.1	54.3	24.8	56.8	2.90%	4.60%	2019/1/5			

11. Measurement Procedures

11.1. Tests to be performed

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transm it maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom as Appendix D demonstrates.
- (d) Measure SAR results for Middle channel or the highest power channel on each testing position.
- (e) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg
- (f) Record the SAR value

11.2. General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results

when all the measurement parameters in the following table are not satisfied.

Page Number: 30 of 189

Report Issued Date: Jan. 24, 2019

			≤ 3 GHz	> 3 GHz
Maximum distance fro (geometric center of p		measurement point rs) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle surface normal at the r			30°±1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz}$: $\leq 12 \text{ mm}$ $4 - 6 \text{ GHz}$: $\leq 10 \text{ mm}$
Maximum area scan sp	patial resol	lution: Δx _{Area} , Δy _{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be ≤ the sion of the test device with
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: ∆z _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

11.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page Number: 31 of 189 Report Issued Date: Jan. 24, 2019

For Release 5 HSDPA Data Devices:

Cub toot	R	R	$\beta_{_{d}}$ (SF)	RIR	В	CM/dB	MPR
Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	$oldsymbol{eta}_d$ (SF)	eta_c/eta_d	$oldsymbol{eta}_{hs}$	CIVI/QB	(dB)
1	2/15	15/15	64	2/15	4/15	1.5	0.5
2	12/15	15/15	64	12/15	24/25	2.0	1
3	15/15	8/15	64	15/8	30/15	2.0	1
4	15/15	4/15	64	15/4	30/15	2.0	1

For Release 6 HSUPA Data Devices

Sub - test	$oldsymbol{eta_c}$	$oldsymbol{eta}_d$	eta_d	eta_c / eta_d	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed} (SF)	eta_{ed} (codes)	CM (dB)	MP R (dB)	AG Index	E-TFC
1	11/1 5	15/1 5	64	11/15	22/1 5	209/22 5	1039/225	4	1	2.0	1.0	20	75
2	6/15	15/1 5	64	6/15	12/1 5	12/15	12/15	4	1	3.0	2.0	12	67
3	15/1 5	9/15	64	15/9	30/1 5	30/15	eta_{ed1} :47/15 eta_{ed2} :47/1	4	2	3.0	2.0	15	92
4	2/15	15/1 5	64	2/15	4/15	4/15	56/75	4	1	2.0	1.0	17	71
5	15/1 5	15/1 5	64	15/15	24/1 5	30/15	134/15	4	1	2.0	1.0	21	81

11.4. Bluetooth & WiFi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF

Page Number: 32 of 189

Report Issued Date: Jan. 24, 2019

performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

11.5. Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 15 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

12. Conducted Output Power

12.1. Manufacturing tolerance

Table 12.1: GPRS (GMSK Modulation)

	Table	GSM 850 Full pov		
	Channel	128	190	251
1 Txslots	Maximum Target Value (dBm)	32.0	32.0	32.0
2 Txslots	Maximum Target Value (dBm)	31	31	31
3 Txslots	Maximum Target Value (dBm)	29	29	29
4 Txslots	Maximum Target Value (dBm)	27.5	27.5	27.5
		GSM 1900 Full por	wer	
	Channel	512	661	810
1 Txslots	Maximum Target Value (dBm)	28	28	28
2 Txslots	Maximum Target Value (dBm)	25	25	25
3 Txslots	Maximum Target Value (dBm)	22.5	22.5	22.5
4 Txslots	Maximum Target Value (dBm)	22	22	22
		GSM 850 power red	duce	
	Channel	128	190	251
1 Txslots	Maximum Target Value (dBm)	25	25	25
2 Txslots	Maximum Target Value (dBm)	24	24	24
3 Txslots	Maximum Target Value (dBm)	22	22	22
4 Txslots	Maximum Target Value (dBm)	20	20	20
		GSM 1900 power re	duce	
	Channel	512	661	810
1 Txslots	Maximum Target Value (dBm)	21	21	21
2 Txslots	Maximum Target Value (dBm)	18	18	18

3 Txslots	Maximum Target Value (dBm)	15.5	15.5	15.5
4 Txslots	Maximum Target Value (dBm)	15	15	15

Table 12.2: EGPRS (8-PSK Modulation)

Table 12.2: EGPRS (8-PSK Modulation)					
GSM 850 Full power					
Channel		128	190	251	
1 Txslots	Maximum Target Value (dBm)	27.0	27.0	27.0	
2 Txslots	Maximum Target Value (dBm)	26.0	26.0	26.0	
3 Txslots	Maximum Target Value (dBm)	24.0	24.0	24.0	
4 Txslots	Maximum Target Value (dBm)	22.0	22.0	22.0	
		GSM 1900 Full pov	ver		
	Channel	512	661	810	
1 Txslots	Maximum Target Value (dBm)	25	25	25	
2 Txslots	Maximum Target Value (dBm)	24	24	24	
3 Txslots	Maximum Target Value (dBm)	22	22	22	
4 Txslots	Maximum Target Value (dBm)	21	21	21	
		GSM 850 power red	luce		
Channel		128	190	251	
1 Txslots	Maximum Target Value (dBm)	20	20	20	
2 Txslots	Maximum Target Value (dBm)	18	18	18	
3 Txslots	Maximum Target Value (dBm)	16.5	16.5	16.5	
4 Txslots	Maximum Target Value (dBm)	15	15	15	
GSM 1900 power reduce					
Channel		512	661	810	
1 Txslots	Maximum Target Value (dBm)	18	18	18	
2 Txslots	Maximum Target Value (dBm)	17	17	17	

3 Txslots	Maximum Target Value (dBm)	15	15	15
4 Txslots	Maximum Target Value (dBm)	14	14	14

Table 12.3: WCDMA Full power

WCDMA Band II					
Channel Channel 9262 Channel 9400 Channel 9538					
Maximum Target Value (dBm)	23	23	23		

WCDMA Band II HSDPA					
Channel		9262	9400	9538	
1	Maximum Target Value (dBm)	23	23	23	
2	Maximum Target Value (dBm)	22	22	22	
3	Maximum Target Value (dBm)	22	22	22	
4	Maximum Target Value (dBm)	22	22	22	
WCDMA Band II HSUPA					
Channel		9262	9400	9538	
1	Maximum Target Value (dBm)	22	22	22	
2	Maximum Target Value (dBm)	22	22	22	
3	Maximum Target Value (dBm)	22	22	22	
4	Maximum Target Value (dBm)	22	22	22	
5	Maximum Target Value (dBm)	22	22	22	

Table 12.4: WCDMA Reduce power

WCDMA Band II					
Channel Channel 9262 Channel 9400 Channel 9538					
Maximum Target Value (dBm)	17	17	17		

WCDMA Band II HSDPA				
Channel	9262	9400	9538	

Page Number: 36 of 189 Report Issued Date: Jan. 24, 2019

1	Maximum Target Value (dBm)	17	17	17		
2	Maximum Target Value (dBm)	16	16	16		
3	Maximum Target Value (dBm)	16	16	16		
4	Maximum Target Value (dBm)	16	16	16		
	WCDMA Band II HSUPA					
Channel		9262	9400	9538		
1	Maximum Target Value (dBm)	16	16	16		
2	Maximum Target Value (dBm)	16	16	16		
3	Maximum Target Value (dBm)	16	16	16		
4	Maximum Target Value (dBm)	16	16	16		
5	Maximum Target Value (dBm)	16	16	16		

Table 12.5: WCDMA Full power

WCDMA Band IV					
Channel 1312 1413 1513					
Maximum Target Value (dBm)	23	23	23		

	WCDMA Band IV HSDPA				
	Channel	1312	1413	1513	
1	Maximum Target Value (dBm)	23	23	23	
2	Maximum Target Value (dBm)	22.5	22.5	22.5	
3	Maximum Target Value (dBm)	22	22	22	
4	Maximum Target Value (dBm)	22	22	22	
	W	CDMA Band IV HS	UPA		
	Channel	1312	1413	1513	
1	Maximum Target Value (dBm)	22	22	22	
2	Maximum Target Value (dBm)	22	22	22	
3	Maximum Target Value (dBm)	22	22	22	
4	Maximum Target Value (dBm)	22	22	22	
5	Maximum Target Value (dBm)	22	22	22	

Table 12.6: WCDMA Reduce power

WCDMA Band IV					
Channel 1312 1413 1513					
Maximum Target Value (dBm)	17	17	17		

	WCDMA Band IV HSDPA					
Channel 1312 1413 1513						
1	Maximum Target Value (dBm)	16	16	16		

_	Maximum Target			
2	Value (dBm)	16	16	16
3	Maximum Target	16	16	16
3	Value (dBm)	10	10	10
4	Maximum Target	16	16	16
4	Value (dBm)	10	10	10
	W	CDMA Band IV HS	UPA	
	Channel	1312	1413	1513
1	Maximum Target	16	16	16
	Value (dBm)	10	10	10
2	Maximum Target	16	16	16
2	Value (dBm)	16	10	10
3	Maximum Target	16	16	16
3	Value (dBm)	10	10	10
4	Maximum Target	16	16	16
4	Value (dBm)	10	10	10
5	Maximum Target	16	16	16
5	Value (dBm)	16	16	10

Table 12.7: WCDMA Full power

<u> </u>					
WCDMA Band V					
Channel 4132 4183 4233					
Maximum Target Value (dBm)	24	24	24		

WCDMA Band V HSDPA				
	Channel	4132	4183	4233
1	Maximum Target Value (dBm)	23	23	23
2	Maximum Target Value (dBm)	23	23	23
3	Maximum Target Value (dBm)	23	23	23
4	Maximum Target Value (dBm)	23	23	23
		WCDMA Band V H	SUPA	
	Channel	4132	4183	4233
1	Maximum Target Value (dBm)	23	23	23
2	Maximum Target Value (dBm)	23	23	23
3	Maximum Target Value (dBm)	23	23	23

Page Number: 39 of 189 Report Issued Date: Jan. 24, 2019

4	Maximum Target Value (dBm)	23	23	23
5	Maximum Target Value (dBm)	23	23	23

Table 12.8: LTE Full power

LTE D. 10					
LTE Band2					
RB Size	1	50%	100%		
Maximum Target	21.5	21	20		
Value (dBm)	21.5	21	20		
	LTE	Band4			
RB Size	1	50%	100%		
Maximum Target	22	22	21		
Value (dBm)		22	۷۱		
	LTE	Band7			
RB Size	1	50%	100%		
Maximum Target	22	20 F	20 F		
Value (dBm)	22	20.5	20.5		
LTE Band17					
RB Size	1	50%	100%		
Maximum Target	22	24	20 F		
Value (dBm)	22	21	20.5		

Table 12.9: LTE Reduce power

LTE Band2				
RB Size	1	50%	100%	
Maximum Target	12	12	11	
Value (dBm)	12	12	11	
	LTE	Band4		
RB Size	1	50%	100%	
Maximum Target	15	15	14	
Value (dBm)	15	15	14	
	LTE	Band7		
RB Size	1	50%	100%	
Maximum Target	16	15	15	
Value (dBm)	10	13	15	
LTE Band17				
RB Size	1	50%	100%	
Maximum Target	19	18	17.5	
Value (dBm)	19	10	UU	

Table 12.10: WiFi

WiFi 802.11b 2.4G				
Channel	Channel 1	Channel 6	Channel 11	
Maximum Target	20.6	20.6	20.6	
Value (dBm)	20.0	20.0	20.0	
	WiFi 802	.11g 2.4G		
Channel	Channel 1	Channel 6	Channel 11	
Maximum Target	20	20	20	
Value (dBm)	20	20	20	
	WiFi 802.11	n 20M 2.4G		
Channel	Channel 1	Channel 6	Channel 11	
Maximum Target	17	17	17	
Value (dBm)	17	17	17	
WiFi 802.11n 40M 2.4G				
Channel	Channel 3	Channel 6	Channel 9	
Maximum Target	16	16	18	
Value (dBm)	16	16	10	

Table 12.11: Bluetooth

Bluetooth					
Channel Channel 0 Channel 39 Channel 78					
Maximum Target Value (dBm)					

Table 12.12: BLE

	Bluetooth						
Channel	Channel Channel 0 Channel 19 Channel 39						
Maximum Target Value (dBm)	-2	-2	-3				

Table 12.13: CDMA Full power

Band	CDMA2000 BC0			CDMA2000 BC1		
Channel	1013	384	777	25	600	1175
Frequency (MHz)	824.7	836.52	848.31	1851.25	1880.00	1908.75
1xRTT RC1 SO55	24	24	24	22	22	22
1xRTT RC3 SO55	24	24	24	22	22	22
1xRTT RC3 SO32(+ F-SCH)	24	24	24	22	22	22
1xRTT RC3 SO32(+SCH)	24	24	24	22	22	22
1xEVDO RTAP 153.6Kbps	24	24	24	22	22	22
1xEVDO RETAP 4096Bits	24	24	24	22	22	22

Table 12.14: CDMA Reduce power

Band	CDMA2000 BC0			CDMA2000 BC1		
Channel	1013	384	777	25	600	1175
Frequency (MHz)	824.7	836.52	848.31	1851.25	1880.00	1908.75
1xRTT RC1 SO55	18	18	18	16	16	16
1xRTT RC3 SO55	18	18	18	16	16	16
1xRTT RC3 SO32(+ F-SCH)	18	18	18	16	16	16
1xRTT RC3 SO32(+SCH)	18	18	18	16	16	16
1xEVDO RTAP 153.6Kbps	18	18	18	16	16	16
1xEVDO RETAP 4096Bits	18	18	18	16	16	16

12.2. GSM Measurement result

Table 12.15: The conducted power measurement results for GPRS/EGPRS Full power

		•					•
GSM 850	Measu	red Power	(dBm)	calculation	Averaç	ged Power	(dBm)
GMSK	128	190	251		128	190	251
1 Txslot	31.05	31.24	31.34	-9.03dB	22.02	22.21	22.31
2 Txslots	30.13	30.32	30.42	-6.02dB	24.11	24.3	24.4
3 Txslots	28.05	28.15	28.25	-4.26dB	23.79	23.89	23.99
4 Txslots	26.96	26.93	27.03	-3.01dB	23.95	23.92	24.02
GSM 1900	Measu	red Power	(dBm)	calculation	Averaged Power (dBm)		
GMSK	512	661	810		512	661	810
1 Txslot	27.25	27.14	27.6	-9.03dB	18.22	18.11	18.57
2 Txslots	24.81	24.84	24.92	-6.02dB	18.79	18.82	18.9
3 Txslots	22.04	22.14	22.17	-4.26dB	17.78	17.88	17.91
4 Txslots	21.29	21.34	21.38	-3.01dB	18.28	18.33	18.37

Table 12.16: The conducted power measurement results for GPRS/EGPRS Reduce power

10010 12110	Table 12.10. The defination power incusarement results for of Ko/Lor Ko Kedade power						
GSM 850	Measu	Measured Power (dBm)		calculation	Averaç	ged Power	(dBm)
GMSK	128	190	251		128	190	251
1 Txslot	24.05	24.22	24.35	-9.03dB	15.02	15.19	15.32
2 Txslots	23.13	23.27	23.39	-6.02dB	17.11	17.25	17.37
3 Txslots	20.85	20.96	21.13	-4.26dB	16.59	16.7	16.87
4 Txslots	19.86	19.83	19.93	-3.01dB	16.85	16.82	16.92
GSM 1900	Measu	red Power	(dBm)	calculation	Averaged Power (dBm)		
GMSK	512	661	810		512	661	810
1 Txslot	20.25	20.17	20.49	-9.03dB	11.22	11.14	11.46
2 Txslots	17.61	17.77	17.85	-6.02dB	11.59	11.75	11.83
3 Txslots	14.97	14.94	15.02	-4.26dB	10.71	10.68	10.76
4 Txslots	14.21	14.22	14.24	-3.01dB	11.2	11.21	11.23

Table 12.17: The conducted power measurement results for E-GPRS Full power

GSM 850	Measu	red Power	(dBm)	calculation	Averaç	ged Power	(dBm)
8-PSK	128	190	251		128	190	251
1 Txslot	26.23	26.04	26.15	-9.03dB	17.2	17.01	17.12
2 Txslots	25.02	25.07	25.12	-6.02dB	19	19.05	19.1
3 Txslots	23.01	23.04	23.08	-4.26dB	18.75	18.78	18.82
4 Txslots	21.61	21.71	21.76	-3.01dB	18.6	18.7	18.75
GSM 1900	Measu	red Power	(dBm)	calculation	Averaç	ged Power	(dBm)
8-PSK	512	661	810		512	661	810
1 Txslot	24.15	24.02	24.33	-9.03dB	15.12	14.99	15.3
2 Txslots	23.13	23.11	23.23	-6.02dB	17.11	17.09	17.21
3 Txslots	21.06	21.01	21.13	-4.26dB	16.8	16.75	16.87

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 42 of 189 Report Issued Date: Jan. 24, 2019

4 Txslots	20.21	20.18	20.21	-3.01dB	17.2	17.17	17.2
-----------	-------	-------	-------	---------	------	-------	------

Table 12.18: The conducted power measurement results for E-GPRS Reduce power

GSM 850	Measu	red Power	(dBm)	calculation	Averaç	ged Power	(dBm)
8-PSK	128	190	251		128	190	251
1 Txslot	19.22	19.04	19.11	-9.03dB	10.19	10.01	10.08
2 Txslots	17.95	17.93	17.92	-6.02dB	11.93	11.91	11.9
3 Txslots	15.96	15.99	16.02	-4.26dB	11.7	11.73	11.76
4 Txslots	14.55	14.61	14.63	-3.01dB	11.54	11.6	11.62
GSM 1900	Meası	red Power	(dBm)	calculation	Averaged Power (dBm)		
8-PSK	512	661	810		512	661	810
1 Txslot	17.11	17.02	17.13	-9.03dB	8.08	7.99	8.1
2 Txslots	16.05	16.02	16.11	-6.02dB	10.03	10	10.09
3 Txslots	13.99	13.92	14.04	-4.26dB	9.73	9.66	9.78
4 Txslots	13.15	13.02	13.08	-3.01dB	10.14	10.01	10.07

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for 850MHz; 2Txslots for1900MHz;

12.3. WCDMA Measurement result

Table 12.19: The conducted Power for WCDMA Full power

	band	WCDN	/IA BAND II resul	t(dBm)		
Item	ARFCN	9262	9400	9538		
	ARFUN	(1852.4MHz)	(1880.0MHz)	(1907.6MHz)		
WCDMA	\	22.97	22.84	22.86		
	1	22.22	22.1	22.14		
HSDPA	2	22.02	21.92	21.9		
ПЭРА	3	21.75	21.61	21.65		
	4	21.65	21.54	21.55		
	1	21.65	21.51	21.48		
	2	21.62	21.52	21.49		
HSUPA	3	21.62	21.57	21.53		
	4	21.55	21.34	21.41		
	5	21.26	21.17	21.24		
Item	band	WCDMA BAND V result(dBm)				

Page Number: 44 of 189

Report Issued Date: Jan. 24, 2019

	ARFCN	Channel 4132 (826.4MHz)	Channel 4183 (836.6MHz)	Channel 4233 (846.6MHz)
WCDMA	١	23.26	23.34	23.28
	1	22.54	22.61	22.54
LICEDA	2	22.32	22.41	22.36
HSDPA	3	21.99	22.11	22.07
	4	21.91	22.01	21.94
	1	21.89	22.01	21.93
	2	21.94	21.95	21.97
HSUPA	3	21.93	22.09	21.9
	4	21.74	21.79	21.81
	5	21.54	21.69	21.7
	band	WCDM	WCDMA BAND IV result(d	
Item	ARFCN	Channel 1312	Channel 1413	Channel 1513
	ARFCN	(1712.4MHz)	(1732.6MHz)	(1752.6MHz)
WCDMA	\	22.88	22.92	22.96
	1	22.16	22.19	22.22
HSDPA	2	21.94	21.99	22.04
HISDEA	3	21.61	21.69	21.75
	4	21.53	21.59	21.62
	1	21.51	21.59	21.61
	2	21.56	21.53	21.65
HSUPA	3	21.55	21.67	21.58
	4	21.36	21.37	21.49
	5	21.16	21.27	21.38

Table 12.20: The conducted Power for WCDMA Reduce power

	band	WCDN	WCDMA BAND II result(dBm)					
ltem	ARFCN	9262	9400	9538				
	ARFUN	(1852.4MHz)	(1880.0MHz)	(1907.6MHz)				
WCDMA	\	16.87	16.84	16.89				
	1	16.15	16.11	16.15				
HSDPA	2	15.93	15.91	15.97				
ПЭДРА	3	15.6	15.61	15.68				
	4	15.52	15.51	15.55				
	1	15.5	15.51	15.54				
	2	15.55	15.45	15.58				
HSUPA	3	15.54	15.59	15.51				
	4	15.35	15.29	15.42				
	5	15.15	15.19	15.31				
Item	band	WCDMA BAND IV result(dBm)						

Page Number: 45 of 189 Report Issued Date: Jan. 24, 2019

	ARFCN	Channel 1312	Channel 1413	Channel 1513
	ARFUN	(1712.4MHz)	(1732.6MHz)	(1752.6MHz)
WCDMA	\	16.54	16.52	16.58
	1	15.79	15.78	15.86
ПСОВУ	2	15.59	15.6	15.62
HSDPA	3	15.32	15.29	15.37
	4	15.22	15.22	15.27
	1	15.22	15.19	15.2
	2	15.19	15.2	15.21
HSUPA	3	15.19	15.25	15.25
	4	15.12	15.02	15.13
	5	14.83	14.85	14.96

Page Number: 46 of 189

Report Issued Date: Jan. 24, 2019

12.4. LTE Measurement result

Table 12.21: The conducted Power for LTE Band 2/4/7/17 Full power

Band2									
				ı	l output power(di	3m)			
				Channel	Channel	Channel			
Bandwidth	Mode	RB Size	RB Offset	18607	18900	19193			
				1850.7MHz	1880MHz	1909.3MHz			
		1	0	20.58	20.68	20.63			
		1	2	20.52	20.77	20.56			
		1	5	20.44	20.61	20.46			
	QPSK	3	0	20.49	20.7	20.56			
		3	1	20.61	20.7	20.71			
		3	2	20.41	20.88	20.64			
4 45411-		6	0	19.4	19.6	19.47			
1.4MHz		1	0	19.78	19.52	20.04			
		1	2	19.6	20.08	19.75			
		1	5	19.46	19.65	19.53			
	16QAM	3	0	19.77	19.75	19.73			
		3	1	19.82	19.99	19.57			
		3	2	19.79	20.08	19.71			
		6	0	18.61	18.67	18.67			
				Actua	l output power(di	Bm)			
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel			
Bandwidth				18615	18900	19185			
				1851.5MHz	1880MHz	1908.5MHz			
		1	0	20.7	20.61	20.68			
		1	8	20.67	20.61	20.71			
		1	14	20.41	20.55	20.29			
	QPSK	8	0	19.58	19.84	19.74			
		8	4	19.64	19.74	19.54			
		8	7	19.61	19.71	19.44			
3MHz		15	0	19.53	19.75	19.6			
011112		1	0	19.55	19.48	19.3			
		1	8	19.39	19.72	19.66			
		1	15	19.41	19.07	19.09			
	16QAM	8	0	18.6	18.92	18.83			
		8	4	18.65	18.77	18.7			
		8	7	18.75	18.74	18.63			
		15	0	18.53	18.87	18.82			
Bandwidth	Mode	RB Size	RB Offset	Actual	output power(d	Bm)			

Page Number: 47 of 189 Report Issued Date: Jan. 24, 2019

				Channel	Channel	Channel	
				18625	18900	19175	
				1852.5MHz	1880MHz	1907.5MHz	
		1	0	20.78	20.69	20.68	
		1	13	20.65	20.66	20.75	
		1	24	20.66	20.35	20.37	
	QPSK	12	0	19.71	19.77	19.69	
		12	6	19.69	19.68	19.68	
		12	13	19.79	19.55	19.5	
CN 41.1-		25	0	19.59	19.67	19.6	
5MHz		1	0	19.42	20.08	19.87	
		1	13	19.3	19.96	19.35	
		1	24	19.34	19.28	19.08	
	16QAM	12	0	18.68	18.71	18.91	
		12	6	18.53	18.76	18.76	
		12	13	18.71	18.71	18.63	
		25	0	18.75	18.96	18.7	
				Actual output power(dBm)			
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel	
Baridwidtii	Mode	ND SIZE	ND Ollset	18650	18900	19150	
				1855MHz	1880MHz	1905MHz	
		1	0	20.66	20.66	20.36	
		1	25	20.72	20.91	20.65	
	QPSK	1	49	20.58	20.35	20.42	
		25	0	19.68	19.73	19.52	
		25	13	19.83	19.71	19.54	
		25	25	19.68	19.59	19.52	
10MHz		50	0	19.56	19.62	19.54	
TOWNIZ		1	0	19.47	19.92	19.26	
		1	25	19.88	19.96	19.74	
		1	49	20.05	19.3	19.13	
	16QAM	25	0	18.63	18.79	18.63	
		25	13	18.57	18.66	18.72	
		25	25	18.58	18.54	18.8	
		50	0	18.59	18.67	18.63	
				Actua	output power(d	Bm)	
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel	
	iviode			18675	18900	19125	
				1857.5MHz	1880MHz	1902.5MHz	
		1	0	20.87	20.73	20.58	
15MHz	QPSK	1	38	21.18	20.59	21.02	
		1	74	21.17	20.54	20.49	

		36	0		19.77	19.72	19.45
		36	18		19.81	19.68	19.52
		36	39		19.74	19.54	19.6
		75	0		19.69	19.84	19.57
		1	0		18.7	19.86	18.61
		1	38		19.24	19.89	19.08
		1	74		19.25	19.17	18.73
	16QAM	36	0		18.66	18.83	18.52
		36	18		18.6	18.79	18.79
		36	39		18.76	18.58	18.77
		75	0		18.59	18.65	18.58
					Actua	l output power(dl	3m)
Dondwidth	Mode	DD C:-	TO DD Of	foot	Channel	Channel	Channel
Bandwidth	iviode	RB Siz	ze RB Of	isei	18700	18900	19100
					1860MHz	1880MHz	1900MHz
		1	0		20.78	20.66	20.57
		1	50		21.18	20.92	20.75
		1	1 99		20.74	20.34	20.53
	QPSK	50	0		19.65	19.72	19.44
		50	25		19.72	19.61	19.54
		50	50		19.47	19.45	19.52
001411		100	0		19.69	19.84	19.57
20MHz		1	0		19.47	19.74	18.84
	16QAM	1	50		19.68	19.61	19.39
		1	99		19.13	18.72	19.22
		50	0		18.87	18.89	18.47
		50	25		18.87	18.85	18.68
		50	50		18.65	18.68	18.69
		100	0		18.7	18.68	18.53
				Band4		l.	l .
					Actual ou	utput power(dBm)
December 2014	N # = -1	RB	DD 0" '	<u>~</u> :		Channel	Channel
Bandwidth	Mode	Size	RB Offset		nannel 19957	20175	20393
				1	1710.7MHz	1732.5MHz	1754.3MHz
		1	0		21.51	21.21	21.27
		1	2		21.55	21.25	21.26
		1	5		21.53	21.11	21.11
4 4841 1-	QPSK	3	0		21.6	21.36	21.3
1.4MHz		3	1		21.56	21.42	21.32
		3	2		21.48	21.44	21.37
		6	0		20.45	20.42	20.32
	16QAM	1	0		20.44	20.28	19.98

Page Number: 48 of 189 Report Issued Date: Jan. 24, 2019

		1	2	20.47	20.49	20.17		
		1	5	20.36	20.21	20.1		
		3	0	20.79	20.42	20.48		
		3	1	20.82	20.58	20.48		
		3	2	20.81	20.43	20.49		
		6	0	19.69	19.4	19.25		
				Actual ou	ıtput power(dBm)			
5 1 1 111		RB	DD 0" 1	01 1 10005	Channel	Channel		
Bandwidth	Mode	Size	RB Offset	Channel 19965	20175	20385		
				1711.5MHz	1732.5MHz	1753.5MHz		
		1	0	21.49	21.3	21.12		
		1	8	21.48	21.23	21.3		
		1	14	21.29	21.28	21.26		
	QPSK	8	0	20.59	20.59	20.32		
		8	4	20.64	20.57	20.26		
		8	7	20.54	20.57	20.27		
ONAL I—		15	0	20.58	20.58	20.2		
3MHz		1	0	20.65	19.94	19.77		
		1	8	20.15	19.98	20.37		
		1	15	19.97	20.04	20.19		
	16QAM	8	0	19.53	19.56	19.1		
		8	4	19.6	19.64	19.14		
		8	7	19.59	19.49	19.36		
		15	0	19.51	19.53	19.27		
				Actual output power(dBm)				
Bandwidth	Mode	RB	RB Offset	Channel 19975	Channel	Channel		
Danuwiuin	iviode	Size	KD Oliset		20175	20375		
				1712.5MHz	1732.5MHz	1752.5MHz		
		1	0	21.39	21.29	21.04		
		1	13	21.32	21.17	21.2		
		1	24	21.27	21.28	21.29		
	QPSK	12	0	20.45	20.45	20.32		
		12	6	20.51	20.54	20.22		
		12	13	20.47	20.39	20.13		
5MHz		25	0	20.43	20.39	20.13		
JIVITZ		1	0	20.08	20.4	20.58		
		1	13	20.76	20.28	20.53		
		1	24	20.66	20.53	20.28		
	16QAM	12	0	19.63	19.42	19.35		
		12	6	19.49	19.54	19.57		
		12	13	19.55	19.46	19.24		
		25	0	19.66	19.46	19.36		

Page Number: 50 of 189 Report Issued Date: Jan. 24, 2019

				Ad	ctual ou	itput powe	er(dBm)	
Dec 1.214	N4 . 1 .	RB	DD 0"	0		Chan	nel	Channel
Bandwidth	Mode	Size	RB Offset		0000	201	75	20350
				1715MHz		1732.5	MHz	1750MHz
		1	0	21.3		21.2	24	21.22
		1	25	21.47		21.4	13	21.33
		1	49	20.93		21.3	35	21.23
	QPSK	25	0	20.46		20.3	31	20.28
		25	13	20.56		20.4	16	20.3
		25	25	20.28		20.3	39	20.07
400411-		50	0	20.35		20.3	39	20.23
10MHz		1	0	20.35		20.2	26	20.07
		1	25	20.49		20.6	68	20.61
		1	49	19.8		20.2	23	19.77
	16QAM	25	0	19.51		19.3	35	19.14
		25	13	19.5		19.	5	19.16
		25	25	19.33		19.4	14	19.06
		50	0	19.45 19.		51	19.17	
				Ad	ctual ou	itput powe	er(dBm)	
Bandwidth	Mode	RB	RB Offset	Channel 20	0025	Chan	nel	Channel
Danawidin	Wiode	Size	IND Offiset	1717.5MH		201	75	20325
				1717.510111.		1732.5	MHz	1747.5MHz
		1	0	21.47		21.5	55	21.33
		1	38	21.26		21.6	67	21.3
		1	74	21.46		21.4		21.18
	QPSK	36	0	20.4		20.4		20.33
		36	18	20.38		20.5	53	20.36
		36	39	20.22		20.5		19.98
15MHz		75	0	20.38		20.3		20.17
. 5		1	0	20.14		20.0		20.07
		1	38	19.84		20.4		19.82
		1	74	19.5		20.5		19.38
	16QAM	36	0	19.38		19.		19.33
		36	18	19.45		19.4		19.36
		36	39	19.27		19.5		19.11
		75	0	19.21		19.4		19.26
					1	utput power(dBm)		
Bandwidth	Mode	RB	RB Offset			annel	Chanr	nel 20300
	IVIOGE	Size		20050		0175		745MHz
				1720MHz		2.5MHz		
20MHz	QPSK	1	0	21.54		1.48		21.75
		1	50	21.25	2	1.33		21.34

	1	99	21.19	21.14	21.1
	50	0	20.41	20.42	20.58
	50	25	20.33	20.46	20.37
	50	50	20.41	20.45	20.17
	100	0	20.39	20.35	20.15
	1	0	19.92	20.23	20.27
	1	50	20.12	20.14	20.12
	1	99	19.69	19.88	19.43
16QAM	50	0	19.64	19.49	19.33
	50	25	19.56	19.44	19.46
	50	50	19.62	19.41	19.38
	100	0	19.56	19.46	19.43

			Band	7		
				Actu	al output power(c	dBm)
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel
Danuwidin	Mode	ND Size	RB Ollset	20775	21100	21425
				2502.5MHz	2535MHz	2567.5MHz
		1	0	20.55	20.74	20.77
		1	13	20.48	20.75	20.84
		1	24	20.66	20.72	20.67
	QPSK	12	0	19.72	19.93	19.97
5MHz		12	6	19.74	19.89	19.99
		12	13	19.65	19.81	19.78
		25	0	19.76	19.87	19.87
SIVIFIZ		1	0	19.42	19.92	19.58
		1	13	19.36	20.02	19.65
		1	24	19.47	19.77	19.85
	16QAM	12	0	18.69	19.09	18.85
		12	6	18.73	18.92	18.83
		12	13	18.65	18.98	18.83
		25	0	18.86	19.02	18.89
				Actual output power(dBm)		
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel
Dandwidth	Mode	IND SIZE	IND Offset	20800	21100	21400
				2505MHz	2535MHz	2565MHz
		1	0	20.85	20.91	20.84
		1	25	20.93	21.07	21
10MHz	QPSK	1	49	20.78	20.82	20.68
ΙΟΙΝΙΠΖ		25	0	19.83	20	19.88
		25	13	19.86	19.96	19.98
		25	25	19.92	19.84	19.87

		50	0	19.97	19.96	19.84	
		1	0	19.37	19.39	19.49	
		1	25	19.62	20.1	19.65	
		1	49	19.45	19.65	19.32	
	16QAM	25	0	18.96	19.11	19.03	
		25	13	18.82	19	19.07	
		25	25	18.89	18.82	19.08	
		50	0	19	18.92	18.74	
				Actu	al output power(c	dBm)	
Dondwidth	Mada	DD Cizo	DP Offeet	Channel	Channel	Channel	
Bandwidth	Mode	RB Size	RB Offset	20825	21100	21375	
				2507.5MHz	2535MHz	2562.5MHz	
		1	0	20.63	20.81	20.84	
		1	38	20.92	20.72	21.13	
		1	74	21.18	20.75	20.86	
	QPSK	36	0	19.77	19.94	19.9	
		36	18	19.85	19.91	19.88	
		36	39	19.72	19.84	19.83	
1 EN 11 I -		75	0	19.85	19.94	19.79	
15MHz		1	0	19.35	19.73	19.55	
		1	38	19.43	20	19.49	
		1	74	19.19	19.8	19.42	
	16QAM	36	0	18.84	18.92	18.96	
		36	18	19.02	19	18.95	
		36	39	18.96	18.87	18.93	
		75	0	19.01	19.03	18.87	
				Actual output power(dBm)			
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel	
Baridwidtri	IVIOGE	IND SIZE	ND Oliset	20850	21100	21350	
				2510MHz	2535MHz	2560MHz	
		1	0	21.02	20.88	21.08	
		1	50	20.95	21.1	20.98	
		1	99	21	20.99	20.79	
	QPSK	50	0	19.89	20.01	20.09	
		50	25	19.96	20.01	19.95	
201411-		50	50	20.01	19.95	20	
20MHz		100	0	19.89	19.99	19.89	
		1	0	19.26	19.33	19.1	
		1	50	19.67	19.83	19.75	
	16QAM	1	99	19.18	19.21	19.35	
		50	0	18.88	18.93	19.07	
		50	25	18.98	18.92	18.9	

Page Number: 53 of 189 Report Issued Date: Jan. 24, 2019

50	50	18.88	18.89	19.01
100	0	18.78	18.87	18.85

Page Number: 54 of 189 Report Issued Date: Jan. 24, 2019

	Band 17									
				Actu	ıal output power(d	Bm)				
Bandwidth	Mode	RB Size	RB Offset	Channel 23755 706.5 MHz	Channel 23790 710 MHz	Channel 23825 713.5MHz				
		1	0	20.99	20.93	20.9				
		1	13	20.94	20.87	21				
		1	24	20.6	20.98	21.09				
	QPSK	12	0	20.19	20.05	19.98				
		12	6	20.13	20.01	20.08				
		12	13	20.02	20.01	20.18				
5MHz		25	0	20.15	20.05	20.05				
SIVITZ		1	0	19.38	19.49	19.27				
		1	13	19.48	19.67	20.29				
	16QAM	1	24	19.41	19.75	19.63				
		12	0	19.15	19.2	18.76				
		12	6	19.18	18.81	18.84				
		12	13	18.96	18.86	19.09				
		25	0	19.05	18.91	19.04				
		RB Size	RB	Actu	al output power(d	Bm)				
Bandwidth	Mode		Offset	Channel23780	Channel23790	Channel23800				
			Onset	709MHz	710 MHz	711 MHz				
		1	0	21.03	21.03	20.89				
		1	25	20.79	20.9	20.9				
		1	49	20.92	21.3	20.92				
	QPSK	25	0	20.2	20.1	20.01				
		25	13	20.1	20.18	20.06				
		25	25	20.19	20.15	20.16				
400411-		50	0	20.13	20.07	20.05				
10MHz		1	0	19.57	19.51	19.61				
		1	25	19.48	19.55	19.73				
		1	49	19.7	19.78	19.73				
	16QAM	25	0	19.13	19.16	18.93				
		25	13	19.16	18.99	19.05				
		25	25	19.12	19.03	19.17				
		50	0	19.16	19.06	19.07				

Page Number: 55 of 189

Report Issued Date: Jan. 24, 2019

Table 12.22: The conducted Power for LTE Band 2/4/7/17 Reduce power

			Band	2	-	
				Actua	al output power(d	Bm)
				Channel	Channel	Channel
Bandwidth	Mode	RB Size	RB Offset	18607	18900	19193
				1850.7MHz	1880MHz	1909.3MHz
		1	0	10.15	10.05	10.25
		1	2	11.01	10.91	11.11
		1	5	11.34	11.24	11.44
	QPSK	3	0	11.45	11.55	11.75
		3	1	11.32	11.42	11.62
		3	2	11.24	11.34	11.54
4 4541.		6	0	10.18	10.28	10.48
1.4MHz		1	0	9.92	10.02	10.22
		1	2	10.14	10.24	10.44
		1	5	10.01	10.11	10.31
	16QAM	3	0	10.23	10.33	10.53
		3	1	10.49	10.59	10.79
		3	2	10.28	10.38	10.58
		6	0	9.53	9.63	9.83
				Actua	al output power(d	Bm)
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel
Danawiatii	Wode	112 0120	ND Olloct	18615	18900	19185
				1851.5MHz	1880MHz	1908.5MHz
		1	0	11.43	11.33	11.63
		1	8	11.27	11.17	11.47
		1	14	11.24	11.14	11.44
	QPSK	8	0	10.56	10.46	10.76
		8	4	10.48	10.38	10.68
		8	7	10.4	10.3	10.6
3MHz		15	0	10.39	10.29	10.59
5.v 12		1	0	10.42	10.32	10.62
		1	8	10.01	9.91	10.21
		1	15	10	9.9	10.2
	16QAM	8	0	10.1	10	10.3
		8	4	9.94	9.84	10.14
		8	7	9.64	9.54	9.84
		15	0	9.81	9.71	10.01
					al output power(d	
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel
	, , , ,		21122	18625	18900	19175
				1852.5MHz	1880MHz	1907.5MHz

Page Number: 56 of 189 Report Issued Date: Jan. 24, 2019

		1 1	0	11.12	11.02	11.22
		1	13	11.39	11.29	11.49
		1	24	11.42	11.32	11.52
	QPSK	12	0	10.36	10.26	10.46
		12	6	10.28	10.18	10.38
		12	13	10.37	10.27	10.47
		25	0	10.35	10.25	10.45
5MHz		1	0	10.61	10.51	10.71
		1	13	10.49	10.39	10.59
		1	24	9.99	9.89	10.09
	16QAM	12	0	10.38	10.28	10.48
		12	6	10.3	10.2	10.4
		12	13	9.9	9.8	10
		25	0	10.18	10.08	10.28
				Actua	al output power(d	Bm)
Bandwidth	Mode	DD C:	DD 044	Channel	Channel	Channel
Bandwidth		RB Size	RB Offset	18650	18900	19150
				1855MHz	1880MHz	1905MHz
		1	0	10.73	10.63	10.83
		1	25	11.14	11.04	11.24
		1	49	11.23	11.13	11.33
	QPSK	25	0	10.08	9.98	10.18
		25	13	10.2	10.1	10.3
		25	25	10.35	10.25	10.45
10MHz		50	0	10.15	10.05	10.25
TOWN 12		1	0	9.52	9.42	9.62
		1	25	10.65	10.55	10.75
		1	49	10.13	10.03	10.23
	16QAM	25	0	9.73	9.63	9.83
		25	13	10.21	10.11	10.31
		25	25	9.88	9.78	9.98
		50	0	9.78	9.68	9.88
				Actua	al output power(d	Bm)
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel
	IVIOGE	IND OIZE	ND Oliset	18675	18900	19125
				1857.5MHz	1880MHz	1902.5MHz
		1	0	10.64	10.54	10.74
		1	38	11.1	11	11.2
15MHz	QPSK	1	74	11.55	11.45	11.65
I JIVII IZ	QI OIN	36	0	9.74	9.64	9.84
		36	18	10.01	9.91	10.11
		36	39	10.23	10.13	10.33

		75	0	9.98	9.88	10.08	
		1	0	9.29	9.19	9.39	
		1	38	10.13	10.03	10.23	
		1	74	10.11	10.01	10.21	
	16QAM	36	0	8.83	8.73	8.93	
		36	18	9.76	9.66	9.86	
		36	39	9.99	9.89	10.09	
		75	0	9.38	9.28	9.48	
				Actua	al output power(d	Bm)	
Donduidth	Mode	RB Size	DD Officet	Channel	Channel	Channel	
Bandwidth	Mode	RB Size	RB Offset	18700	18900	19100	
				1860MHz	1880MHz	1900MHz	
		1	0	11.78	11.48	11.58	
		1	50	11.76	11.46	11.56	
		1	99	11.55	11.25	11.35	
	QPSK	50	0	10.56	10.46	10.66	
		50	25	10.89	10.69	10.79	
		50	50	10.09	10.09	10.19	
		100	0	10.84	10.74	10.64	
20MHz		1	0	8.9	8.8	9	
		1	50	9.74	9.64	9.84	
		1	99	10.15	10.05	10.25	
	16QAM	50	0	8.85	8.75	8.95	
		50	25	9.06	8.96	9.16	
		50	50	9.63	9.53	9.73	
		100	0	8.99	8.89	9.09	
		<u>l</u>	Band	14		L	
				Actual output power(dBm)			
الالدائية الاستانية	N4 = =! =	DD 0:	DD 0#+	Channel	Channel	Channel	
Bandwidth	Mode	RB Size	RB Offset	19957	20175	20393	
				1710.7MHz	1732.5MHz	1754.3MHz	
		1	0	14.35	14.05	13.5	
		1	2	14.38	14.05	13.28	
		1	5	14.29	13.91	13.17	
	QPSK	3	0	14.37	14.05	13.27	
		3	1	14.46	14.21	13.51	
1.4MHz		3	2	14.35	14.22	13.41	
		6	0	13.39	13.07	12.3	
		1	0	13.03	12.71	12.49	
	16QAM	1	2	13.11	12.57	12.11	
	IUQAW	1	5	13.01	12.52	12.52	
		3	0	13.34	12.98	12.27	

Page Number: 57 of 189 Report Issued Date: Jan. 24, 2019

		3	1	13.44	12.96	12.33
		3	2	13.34	13.24	12.41
		6	0	12.45	12.16	11.48
				Actua	al output power(d	Bm)
5		DD 0:		Channel	Channel	Channel
Bandwidth	Mode	RB Size	RB Offset	19965	20175	20385
				1711.5MHz	1732.5MHz	1753.5MHz
		1	0	14.35	14.15	13.33
		1	8	14.11	13.86	13.33
		1	14	14.13	14.15	13.24
	QPSK	8	0	13.42	13.23	12.24
		8	4	13.4	13.24	12.25
		8	7	13.3	13.04	12.32
0.0.41.1		15	0	13.37	12.96	12.2
3MHz		1	0	13.39	12.74	12.47
		1	8	13.24	13.18	12.52
		1	15	12.86	13.12	12.53
	16QAM	8	0	12.55	12.26	11.35
		8	4	12.53	12.28	11.47
		8	7	12.42	12.28	11.53
		15	0	12.45	12.18	11.28
				Actua	al output power(d	Bm)
D	Mode	RB Size	DD 011	Channel	Channel	Channel
Bandwidth			RB Offset	19975	20175	20375
				1712.5MHz	1732.5MHz	1752.5MHz
		1	0	14.38	13.95	13.43
		1	13	14.26	13.86	13.37
		1	24	13.83	13.94	13.33
	QPSK	12	0	13.33	12.99	12.44
		12	6	13.17	13.03	12.41
		12	13	13.06	12.85	12.34
5MHz		25	0	13.14	12.86	12.37
SIVITZ		1	0	13.01	12.94	12.01
		1	13	13.21	13.14	11.98
		1	24	12.72	12.97	12.22
	16QAM	12	0	12.3	11.91	11.36
		12	6	12.34	11.95	11.33
		12	13	12.32	12.09	11.35
		25	0	12.38	11.99	11.37
				Actua	al output power(d	Bm)
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel
_ 5.75 77 76 77			1.2 3.1000	20000	20175	20350

Page Number: 58 of 189 Report Issued Date: Jan. 24, 2019

				1715MHz	1732.5MHz	1750MHz
		1	0	14.35	13.96	13.78
		1	25	14.39	14.08	13.7
		1	49	13.84	13.87	13.48
	QPSK	25	0	13.39	13.08	12.54
		25	13	13.34	13.17	12.54
		25	25	13.15	13.11	12.36
		50	0	13.32	13.08	12.55
10MHz		1	0	12.98	12.91	12.53
		1	25	12.95	13.27	12.63
		1	49	12.67	12.59	12.22
	16QAM	25	0	12.49	12.16	11.84
		25	13	12.42	12.16	11.61
		25	25	12.24	12.2	11.32
		50	0	12.4	12.16	11.52
					al output power(d	
	Mode		55.0%	Channel	Channel	Channel
Bandwidth		RB Size	RB Offset	20025	20175	20325
				1717.5MHz	1732.5MHz	1747.5MHz
		1	0	14.35	14.22	13.95
		1	38	14.4	14.23	13.78
	QPSK	1	74	14.14	13.87	13.45
		36	0	13.41	13.1	12.75
		36	18	13.36	13.18	12.69
		36	39	13.07	13.15	12.44
458411		75	0	13.34	13.13	12.66
15MHz		1	0	13.03	12.49	12.64
		1	38	12.69	12.56	12.17
		1	74	12.85	12.45	12.12
	16QAM	36	0	12.48	12.06	11.93
		36	18	12.43	12.25	11.86
		36	39	12.24	12.14	11.6
		75	0	12.31	12.1	11.72
				Actua	al output power(d	Bm)
Donduidth	Mada	DD Ci-c	DD Offsat	Channel	Channel	Channel
Bandwidth	Mode	RB Size	RB Offset	20050	20175	20300
				1720MHz	1732.5MHz	1745MHz
		1	0	14.42	14.3	14.43
OOMIL	ODOK	1	50	14.37	14.09	13.78
20MHz	QPSK	1	99	14	13.75	13.41
		50	0	13.47	13.49	13.48

Page Number: 59 of 189 Report Issued Date: Jan. 24, 2019

		50	25	13.28	13.05	12.68
		50	50	13.15	13.03	12.45
		100	0	13.21	13.02	12.74
		1	0	13.11	13.07	13.04
		1	50	12.84	12.75	12.32
		1	99	12.53	12.46	12.15
	16QAM	50	0	12.35	12.32	12.18
		50	25	12.24	12.29	11.93
		50	50	12.19	12.19	11.58
		100	0	12.35	12.15	11.88

	Band7									
				Actu	al output power(c	IBm)				
Dan alvedalda	Mode	RB Size	RB Offset	Channel	Channel	Channel				
Bandwidth	iviode	KB Size	RB Ollset	20775	21100	21425				
				2502.5MHz	2535MHz	2567.5MHz				
		1	0	15.14	15.4	15.23				
		1	13	15.08	15.46	15.32				
		1	24	15.21	15.22	15.27				
	QPSK	12	0	14.19	14.4	14.37				
		12	6	14.29	14.38	14.33				
		12	13	14.05	14.29	14.3				
5MHz		25	0	14.21	14.31	14.34				
SIVIFIZ		1	0	13.98	13.94	14				
	16QAM	1	13	14.57	14.67	13.98				
		1	24	14.09	14.52	13.89				
		12	0	13.39	13.5	13.36				
		12	6	13.49	13.4	13.42				
		12	13	13.33	13.38	13.3				
		25	0	13.5	13.48	13.42				
				Actu	al output power(c	lBm)				
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel				
Dandwidth	Mode	ND Size	KD Ollset	20800	21100	21400				
				2505MHz	2535MHz	2565MHz				
		1	0	15.43	15.35	15.51				
		1	25	15.36	15.64	15.54				
		1	49	15.2	15.48	15.35				
10MHz	QPSK	25	0	14.23	14.41	14.52				
IUIVIE		25	13	14.4	14.65	14.51				
		25	25	14.46	14.5	14.38				
		50	0	14.45	14.51	14.33				
	16QAM	1	0	13.92	14.21	14.03				

		1	25	13.92	14.13	14.17	
		1	49	14.05	14.17	14.09	
		25	0	13.49	13.46	13.43	
		25	13	13.34	13.51	13.46	
		25	25	13.51	13.51	13.43	
		50	0	13.48	13.49	13.39	
				Actu	al output power(d	dBm)	
Donduidth	Modo	DD Ciro	DD Offeet	Channel	Channel	Channel	
Bandwidth	Mode	RB Size	RB Offset	20825	21100	21375	
				2507.5MHz	2535MHz	2562.5MHz	
		1	0	15.27	15.63	15.68	
		1	38	15.48	15.73	15.83	
		1	74	15.46	15.6	15.44	
	QPSK	36	0	14.43	14.57	14.49	
		36	18	14.55	14.52	14.6	
		36	39	14.56	14.44	14.57	
15MHz		75	0	14.45	14.57	14.6	
ISIVIEZ		1	0	14.07	14.14	14.18	
	16QAM	1	38	14.58	14.01	14.06	
		1	74	14.15	14.19	14.07	
		36	0	13.36	13.49	13.61	
		36	18	13.38	13.54	13.52	
		36	39	13.5	13.39	13.52	
		75	0	13.38	13.4	13.5	
				Actual output power(dBm)			
Bandwidth	Mode	RB Size	RB Offset	Channel	Channel	Channel	
Dandwidth	Mode	RD SIZE	RB Ollset	20850	21100	21350	
				2510MHz	2535MHz	2560MHz	
		1	0	15.75	15.7	15.24	
		1	50	15.82	15.86	15.82	
		1	99	15.84	15.82	15.85	
	QPSK	50	0	14.25	14.36	14.52	
		50	25	14.34	14.39	14.41	
		50	50	14.31	14.22	14.37	
201411-		100	0	14.17	14.34	14.26	
20MHz		1	0	14.02	14.42	13.84	
		1	50	14.41	15.06	14.33	
		1	99	14.2	14.33	14.13	
	16QAM	50	0	13.5	13.63	13.71	
		50	25	13.64	13.69	13.7	
		50	50	13.69	13.54	13.7	
		1	i			i .	

Page Number: 62 of 189 Report Issued Date: Jan. 24, 2019

			В	and 17		
				Ac	tual output power(dBm)
Bandwidth	Mode	RB Size	RB Offset	Channel 23755 706.5 MHz	Channel 23790 710 MHz	Channel 23825 713.5MHz
		1	0	17.66	17.58	17.63
		1	13	17.76	17.66	17.72
		1	24	17.71	17.72	17.5
	QPSK	12	0	16.95	16.85	16.84
		12	6	16.99	16.9	16.96
		12	13	16.94	16.85	16.9
5MHz		25	0	17.03	16.83	16.93
SIVITZ		1	0	16.34	16.22	16.25
		1	13	16.46	16.51	16.32
		1	24	16.15	16.24	16.28
	16QAM	12	0	15.65	15.58	15.51
		12	6	15.85	15.54	15.75
		12	13	15.8	15.58	15.7
		25	0	15.85	15.69	15.78
		RB Size		Actual output power(dBm)		
Bandwidth	Mode		RB Offset	Channel23780	Channel23790	Channel23800
		0126		709MHz	710 MHz	711 MHz
		1	0	17.63	17.81	17.61
		1	25	17.68	17.6	17.57
		1	49	17.85	18.07	18.02
	QPSK	25	0	17.11	16.97	16.97
		25	13	16.99	17.02	16.97
		25	25	16.96	16.97	16.91
400411-		50	0	17.01	16.87	16.98
10MHz		1	0	16.44	15.97	16.28
		1	25	17.06	16.62	16.59
		1	49	16.47	16.01	16.28
	16QAM	25	0	15.92	15.89	15.88
		25	13	15.99	15.82	16
		25	25	15.97	15.78	15.88
		50	0	15.93	15.79	15.86

12.5. WiFi and BT Measurement result

Table 12.23: The conducted power for Bluetooth

GFSK			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	4.73	5.12	4.01
π/4 DQPSK			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	3.98	4.12	3.68
8DPSK			
Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	2.89	4.21	3.07

Table 12.24: The conducted power for BLE

GFSK			
Channel	Ch0 (2402 MHz)	Ch19 (2440MHz)	CH39 (2480MHz)
Conducted Output Power (dBm)	-3.97	-2.98	-4.12

NOTE: According to KDB447498 D01 BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

SAR body value of BT is 0.167 W/Kg for 1g. SAR body value of BT is 0.0.067 W/Kg for 10g.

Page Number: 63 of 189 Report Issued Date: Jan. 24, 2019

The default power measurement procedures are:

- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting, the duty cycle is 100%.

Table 12.25: The average conducted power for WiFi

Mode	Channel	Frequence	Average power(dBm)
	1	2412 MHZ	19.89
802.11 b	6	2437 MHZ	19.97
	11	2462 MHZ	20.26
	1	2412 MHZ	18.51
802.11 g	6	2437 MHZ	18.69
	11	2462 MHZ	19.08
802.11 n	1	2412 MHZ	15.66
20M	6	2437 MHZ	15.96
20101	11	2462 MHZ	16.41
802.11 n	3	2422 MHZ	15.63
	6	2437 MHZ	15.88
40M	9	2452 MHZ	17.26

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

- a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 65 of 189 Report Issued Date: Jan. 24, 2019

12.6. CDMA Measurement result

Table 12.26: The conducted Power for CDMA Full power

Band	CDMA2000 BC0			CDMA2000 BC1		
Channel	1013	384	777	25	600	1175
Frequency (MHz)	824.7	836.52	848.31	1851.25	1880.00	1908.75
1xRTT RC1 SO55	24.31	24.32	24.36	23.64	23.67	23.63
1xRTT RC3 SO55	24.35	24.35	24.39	23.62	23.69	23.67
1xRTT RC3 SO32(+ F-SCH)	24.28	24.31	24.32	23.57	23.53	23.54
1xRTT RC3 SO32(+SCH)	24.24	24.25	24.27	23.58	23.55	23.51
1xEVDO RTAP 153.6Kbps	24.51	24.55	24.51	23.79	23.81	23.78
1xEVDO RETAP 4096Bits	23.39	23.43	23.21	23.69	23.61	23.68

Table 12.27: The conducted Power for CDMA Reduce power

Band	CDMA2000 BC0		CD	CDMA2000 BC1		
Channel	1013	384	777	25	600	1175
Frequency (MHz)	824.7	836.52	848.31	1851.25	1880.00	1908.75
1xRTT RC1 SO55	17.23	17.14	17.33	15.51	15.58	15.52
1xRTT RC3 SO55	17.19	17.12	17.37	15.53	15.56	15.57
1xRTT RC3 SO32(+ F-SCH)	17.14	17.13	17.31	15.64	15.66	15.41
1xRTT RC3 SO32(+SCH)	17.16	17.11	17.37	15.59	15.55	15.54
1xEVDO RTAP 153.6Kbps	17.22	17.23	17.22	15.57	15.48	15.59
1xEVDO RETAP 4096Bits	17.1	17.11	17.14	15.47	15.49	15.44

Page Number: 66 of 189 Report Issued Date: Jan. 24, 2019

13. Simultaneous TX SAR Considerations

13.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For this device, the BT and WiFi can transmit simultaneous with other transmitters.

13.2. Transmit Antenna Separation Distances

Picture 13.1 Antenna Locations

13.3. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Based on the above equation, Bluetooth SAR was not required:

Evaluation=1.254<3.0

Page Number: 70 of 189

Report Issued Date: Jan. 24, 2019

14. Power Reduction by Proximity Sensing

A proximity sensor for power reduction is implemented in this device to address RF exposure compliance when the cellular antenna is positioned close to the user's body. The sensor's mechanical structure is designed to fit within the enclosure design used in this device and also extended around the edge and top of the antenna element in order to optimize sensitivity in these orientations. This design combines the antenna printed directly on a plastic part and proximity sensor FPC (Flexible Printed Circuit) bonded together into one piece. According to KDB 616217 D04 SAR for laptop and tablets v01r02

14.1. Procedures for determining proximity sensor triggering distances

The following procedures should be applied to determine proximity sensor triggering distances for the back surface and individual edges of a tablet. Conducted power is monitored qualitatively to identify the general triggering characteristics and recorded quantitatively, versus spacing, as required by the procedures. Unless there is built-in test software that reports the triggering conditions and enables the power levels to be confirmed separately, monitoring of conducted power during the triggering tests typically requires internal access to the antenna ports inside the tablet, which may interfere with the triggering tests.

- (1) The relevant transmitter should be set to operate at its normal maximum output power.
- (2) The entire back surface or edge of the tablet is positioned below a flat phantom filled with the required tissue-equivalent medium, and positioned at least 20 mm further than the distance that triggers power reduction.
- (3) It should be ensured that the cables required for power measurements are not interfering with the proximity sensor. Cable losses should be properly compensated to report the measured power results.
- (4) The back surface or edge is moved toward the phantom in 3 mm steps until the sensor triggers.
- (5) The back surface or edge is then moved back (further away) from the phantom by at least 5 mm or until maximum output power is returned to the normal maximum level.
- (6) The back surface or edge is again moved toward the phantom, but in 1 mm steps, until it is at least 5 mm past the triggering point or touching the phantom. If 1 mm resolution is not suitable for the sensor triggering sensitivity, a KDB inquiry should be submitted to determine alternative test configurations.
- (7) If the tablet is not touching the phantom, it is moved in 3 mm steps until it touches the phantom to confirm that the sensor remains triggered and the maximum power stays reduced.
- (8) The process is then reversed by moving the tablet away from the phantom according to steps 4) to 7), to determine triggering release, until it is at least 10 mm beyond the point that triggers the return of normal maximum power.
- (9) The measured output power within ± 5 mm of the triggering points, or until the tablet is touching the phantom, for movements to and from the phantom should be tabulated in the SAR report.
- (10) If the sensor design and implementation allow additional variations for triggering distance tolerances, multiple samples should be tested to determine the most conservative distance required for SAR evaluation.

Page Number: 71 of 189

Report Issued Date: Jan. 24, 2019

(11) To ensure all production units are compliant, it is generally necessary to reduce the triggering distance determined from the triggering tests by 1 mm, or more if it is necessary, and use the smallest distance for movements to and from the phantom, minus 1 mm, as the sensor triggering distance for determining the SAR measurement distance.

14.2. Procedures for determining antenna and proximity sensor coverage

The sensing regions are usually limited to areas near the sensor element. If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. The following are used to determine if additional SAR measurements may be necessary due to sensor and antenna offset. 25 These procedures do not apply and are not required for configurations where the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

- (1) The back surface or edge of the tablet is positioned at a test separation distance less than or equal to the distance required for back surface or edge triggering, with both the antenna and sensor pad located at least 20 mm laterally outside the edge (boundary) of the phantom, along the direction of maximum antenna and sensor offset. For the back surface, if the direction of maximum offset is not aligned with the tablet coordinates (physical edges) the tablet test position would not be aligned with the phantom coordinates (orientations). Each applicable tablet edge should be positioned perpendicularly to the phantom to determine sensor coverage. For antennas and/or sensors located near the corner of a tablet, both adjacent edges must be considered.
- (2) The similar sequence of steps applied to determine sensor triggering distance in section 6.2 are used to verify back surface and edge sensor coverage by moving the tablet (sensor and antenna) horizontally toward the phantom while maintaining the same vertical separation between the back surface or edge and the phantom.
- (3) After the exact location where triggering of power reduction is determined, with respect to the sensor and antenna, the tablet movement should be continued, in 3 mm increments, until both the sensor and antenna(s) are fully under the phantom and at least 20 mm inside the phantom edge.
- (4) The process is then repeated from the opposite direction, starting at the other end of the maximum antenna and sensor offset, by rotating the tablet 180° along the vertical axis.
- (5) The triggering points should be documented graphically, with the antenna and sensor clearly identified, along with all relevant dimensions.
- (6) If the subsequently measured peak SAR location for the antenna is not between the triggering points, established by the sensor coverage tests from opposite ends of the antenna and sensor, additional SAR tests may be required for conditions where only part of the back surface or edge of a tablet corresponding to the antenna is in proximity to the user and the sensor may not be triggering as desired. A KDB inquiry must be submitted by the test lab to determine if additional tests are required and the proper test configurations to use for testing. This may include situations where the sensor coverage region is too small for the antenna, the sensor is located too far away from the antenna, the sensor location is insufficient to cover multiple antennas or the antenna is at the corner of a tablet etc.

14.3. Proximity Sensor Status Table of trigger distance

As per the KDB 616217 D04 SAR for laptop and tablets v01r02, section 6.2, the following procedure is used to determine the triggering distances.

Proximity Sensor Status Table when DUT is moving towards the phantom

Page Number: 73 of 189

Report Issued Date: Jan. 24, 2019

Proximity Sensor Status Table when DUT is moving away the phantom

Body Phantom

Distance to the DUT (mm)	the DUT (mm) — Rear Surface O ON	
1 ON 2 ON 3 ON 4 ON 5 ON 6 ON 7 ON 8 ON 9 ON 10 ON 11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 19 ON 20 ON 21 ON 20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 28 OFF 28 OFF		
1 ON 2 ON 3 ON 4 ON 5 ON 6 ON 7 ON 8 ON 9 ON 10 ON 11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 19 ON 20 ON 21 ON 20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 28 OFF 28 OFF		
3 ON 4 ON 5 ON 6 ON 7 ON 8 ON 9 ON 10 ON 11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 28 OFF 29 OFF	— — — — — — — — — — — — — — — — — — —	
4	2 ON	
S	3 ON	
6 ON 7 ON 8 ON 9 ON 9 ON 10 ON 11 ON 11 ON 11 ON 12 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON	4 ON	
7 ON 8 ON 9 ON 10 ON 11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 28 OFF 29 OFF	5 ON	
8 ON 9 ON 10 ON 11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	6 ON	
9 ON 10 ON 11 ON 111 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 21 ON 22 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF	7 ON	
10 ON 11 ON 11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 21 ON 22 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	8 ON	
11 ON 12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 28 OFF 29 OFF	9 ON	
12 ON 13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 22 ON 23 ON 24 ON 25 ON 25 ON 26 OFF 28 OFF 29 OFF	10 ON	
13 ON 14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	11 ON	
14 ON 15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	12 ON	
15 ON 16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	13 ON	
16 ON 17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	14 ON	
17 ON 18 ON 19 ON 20 ON 21 ON 22 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	15 ON	
18 ON 19 ON 20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	16 ON	
19 ON 20 ON 21 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	17 ON	
20 ON 21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	18 ON	
21 ON 22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	19 ON	
22 ON 23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	20 ON	
23 ON 24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	21 ON	
24 ON 25 ON 26 OFF 27 OFF 28 OFF 29 OFF	22 ON	
25 ON 26 OFF 27 OFF 28 OFF 29 OFF		
26 OFF Rear Power 27 OFF Back-off 28 OFF 29 OFF	24 ON	
27 OFF Back-off 28 OFF 29 OFF		
28 OFF 29 OFF		
28 OFF 29 OFF	27 OFF Back-off	
	28 OFF	
	29 OFF	
30 OFF ▼	30 OFF *	<u> </u>

14.4. Tilt angle influences to proximity sensor triggering

As per the KDB 616217 D04 SAR for laptop and tablets v01r02, section 6.4, the following procedure is used to determine the tilt angle influences to proximity sensor triggering.

Note: EUT does not support the hotspot mode, so the EUT SAR evaluation is not need to edges.

Distance to the DUT (mm)	Proximity Sensor Status 0° to +45°	Proximity Sensor Status 0° to -45°
15	OFF	OFF
14	OFF	OFF
13	OFF	OFF
12	OFF	OFF
11	OFF	OFF
10	OFF	OFF
9	OFF	OFF
8	OFF	OFF
7	OFF	OFF
6	OFF	OFF
5	ON	ON
4	ON	ON
3	ON	ON
2	ON	ON
1	ON	ON
0	ON	ON

14.5. Power Reduction per Air-interface

The following graphs show the power level and the distance from the DUT to the flat phantom for the Rear Surface.

Rear Surface

14.6. Proximity Sensor Coverage Area

According to KDB 616217 D04, Proximity Sensor Coverage Area of not request when the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor.

Page Number: 76 of 189

Report Issued Date: Jan. 24, 2019

15. SAR Test Result

Table 15.1: SAR Values (GSM 850 MHz Band-Body)

Frequ	ency	Mode	Service	Test	Spacing	Figure	Measured average	MHz Band- Maximum allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	/Headset	Position	(mm)	No.	power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
						Pov	ver reduce					
836.6	190	GPRS 2TS	Class12	Toward Ground	5	1	23.27	23.5	1.054	0.589	0.621	-0.10
						Fu	ıll power					
836.6	190	GPRS 2TS	Class12	Toward Phantom	5	1	30.32	31	1.169	0.845	0.988	-0.04
824.2	128	GPRS 2TS	Class12	Toward Phantom	5	1	30.13	31	1.222	0.822	1.004	-0.07
848.8	251	GPRS 2TS	Class12	Toward Phantom	5	1	30.42	31	1.143	0.825	0.943	0.09
836.6	190	GPRS 2TS	Class12	Toward Ground	19	1	30.32	31	1.169	0.375	0.439	0.11
						R	epeated					
836.6	190	GPRS 2TS	Class12	Toward Phantom	5	1	30.32	31	1.169	0.872	1.020	-0.1
Freque MHz	ency Ch.	Mode /Band	GPRS 2TS	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
						Pov	ver reduce					
836.6	836.6 190 GPRS Class12 Toward 0 / 23.27 23.5 1.054 0.684 0.721 -0.02											
						Fu	ıll power					
836.6	190	GPRS 2TS	Class12	Toward Phantom	0	2	30.32	31	1.169	1.04	1.216	-0.07

Page Number: 77 of 189 Report Issued Date: Jan. 24, 2019

Table 15.2: SAR Values (GSM 1900 MHz Band-Body)

				Table	15.2: SAR	values	(GSM 1900	WHZ Band-	Body)			
Freque MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
						Pow	er reduce					
1880	661	GPRS 2TS	Class12	Toward Ground	5	1	17.77	18	1.054	0.964	1.016	0.15
1850.2	512	GPRS 2TS	Class12	Toward Ground	5	1	17.61	18	1.094	0.805	0.881	0.08
1909.8	810	GPRS 2TS	Class12	Toward Ground	5	1	17.85	18	1.035	0.599	0.620	0.07
						R	epeated					
1880	661	GPRS 2TS	Class12	Toward Ground	5	1	17.77	18	1.054	0.941	0.992	-0.04
						Fu	II power					
1880	661	GPRS 2TS	Class12	Toward Phantom	5	1	24.84	25	1.038	0.18	0.187	-0.03
1880	661	GPRS 2TS	Class12	Toward Ground	19	3	24.84	25	1.038	1.31	1.359	-0.08
Freque MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
						Pow	er reduce					
1880	661	GPRS 2TS	Class12	Toward Ground	0	4	17.77	18	1.054	1.45	1.529	-0.16
						Fu	II power					
1880	661	GPRS 2TS	Class12	Toward Phantom	0	1	24.84	25	1.038	0.207	0.215	0.02

Page Number: 78 of 189 Report Issued Date: Jan. 24, 2019

Table 15.3: SAR Values (WCDMA Band II -Body)

				IUD		· · · · · · · · · · · · · · · · · · ·	SO (AACDIAIA	· Dana ii D				
Frequ MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
						Pov	ver reduce	(0.2)				
1880	9400	Band II	12.2kbps RMC	Toward Ground	5	1	16.84	17	1.038	0.718	0.745	-0.11
						F	ull power					
1880	9400	Band II	12.2kbps RMC	Toward Phantom	5	1	22.84	23	1.038	0.106	0.110	-0.05
1880	9400	Band II	12.2kbps RMC	Toward Ground	19	5	22.84	23	1.038	0.75	0.778	0.12
Frequ	ency						Measured	Maximum				_
		Mode	Service	Test	Spacing	Figure	average	allowed	Scaling	Measured	Reported	Power
MHz	Ch.	/Band	/Headset	Position	(mm)	No.	power	Power	factor	SAR(10g)	SAR(10g)	Drift
	5	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		()		(dBm)	(dBm)		(W/kg)	(W/kg)	(dB)
						Pov	ver reduce					
1880	9400	Band II	12.2kbps RMC	Toward Ground	0	6	16.84	17	1.038	0.62	0.643	0.09
						F	ull power					
1880	9400	Band II	12.2kbps RMC	Toward Phantom	0	1	22.84	23	1.038	0.077	0.080	0.02

Page Number: 79 of 189 Report Issued Date: Jan. 24, 2019

Table 15.4: SAR Values (WCDMA Band IV -Body)

				Tubic	7 10.7. 07.	I Value	S (WCDINIA	Bana IV B	ouy,			
Frequ	ency			_			Measured	Maximum	_	Measured	Reported	Power
		Mode	Service	Test	Spacing	Figure	average	allowed	Scaling	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	/Band	/Headset	Position	(mm)	No.	power	Power	factor	(W/kg)	(W/kg)	(dB)
							(dBm)	(dBm)		` 0,	` 0,	, ,
						Pow	er reduce					
4722.6	1413	Band	12.2kbps	Toward	-	,	16.52	47	4 447	0.520	0.599	-0.06
1732.6	1413	IV	RMC	Ground	5	1	10.52	17	1.117	0.536	0.599	-0.06
						Fu	II power					
1732.6	1413	Band	12.2kbps	Toward	5	1	22.92	23	1.019	0.068	0.069	0.17
1732.0	1413	IV	RMC	Phantom	3	,	22.92	23	1.019	0.000	0.009	0.17
1732.6	1413	Band	12.2kbps	Toward	19	7	22.92	22	4.040	0.56	0.570	-0.01
1/32.0	1413	IV	RMC	Ground	19	7	22.92	23	1.019	0.56	0.570	-0.01
Frequ	ency						Measured	Maximum		Measured	Papartad	Bower
		Mode	Service	Test	Spacing	Figure	average	allowed	Scaling		Reported	Power Drift
MHz	Ch.	/Band	/Headset	Position	(mm)	No.	power	Power	factor	SAR(10g)	SAR(10g)	
							(dBm)	(dBm)		(W/kg)	(W/kg)	(dB)
						Pow	er reduce					
1732.6	1413	Band	12.2kbps	Toward	0	8	16.52	17	1.117	0.575	0.642	0.03
1732.0	1413	IV	RMC	Ground	U	0	10.32	17	1.117	0.575	0.042	0.03
						Fu	II power					
1732.6	1413	Band IV	12.2kbps RMC	Toward Phantom	0	1	22.92	23	1.019	0.066	0.067	-0.08

Page Number: 80 of 189 Report Issued Date: Jan. 24, 2019

Table 15.5: SAR Values (WCDMA Band V -Body)

Frequ MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
836.6	4183	Band V	12.2kbps RMC	Toward Ground	5	9	23.34	24	1.164	0.62	0.722	-0.18
836.6	4183	Band V	12.2kbps RMC	Toward Phantom	5	1	23.34	24	1.164	0.238	0.277	-0.13
Frequ MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
						Fu	ıll power					
836.6	4183	Band V	12.2kbps RMC	Toward Phantom	0	1	23.34	24	1.164	0.27	0.314	0.01
836.6	4183	Band V	12.2kbps RMC	Toward Ground	0	10	23.34	24	1.164	0.736	0.857	0.12

Page Number: 81 of 189 Report Issued Date: Jan. 24, 2019

Table 15.6: SAR Values (LTE Band 2 -Body)

			lak	ie 15.6: S	AR Valu	ies (LIE Ba	nd 2 -Body	()			
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
					Powe	er reduce	(, ,				
1860	18700	20M 1RB 50offset	Toward Ground	5	1	11.76	12	1.057	0.803	0.849	-0.07
1880	18900	20M 1RB 50offset	Toward Ground	5	1	11.46	12	1.132	0.878	0.994	0.09
1900	19100	20M 1RB 50offset	Toward Ground	5	11	11.56	12	1.107	0.955	1.057	0.03
1860	18700	20M 50RB 25offset	Toward Ground	5	1	10.89	12	1.291	0.671	0.866	0.02
1880	18900	20M 50RB 25offset	Toward Ground	5	1	10.69	12	1.352	0.901	1.218	0.03
1900	19100	20M 50RB 25offset	Toward Ground	5	1	10.79	12	1.321	0.746	0.986	0.05
					Re	peated					
1900	19100	20M 1RB 50offset	Toward Ground	5	1	11.56	12	1.107	0.94	1.040	0.05
					10	0%RB					
1880	18900	20M 100RB 0offset	Toward Ground	5	1	10.74	11	1.062	0.553	0.587	0.05
					Full	power					
1860	18700	20M 1RB 50offset	Toward Phantom	5	1	21.18	21.5	1.076	0.081	0.087	0.16
1860	18700	20M 50RB 25offset	Toward Phantom	5	1	19.72	21	1.343	0.061	0.082	0.11
1860	18700	20M 1RB 50offset	Toward Ground	19	1	21.18	21.5	1.076	0.019	0.020	0.04
1860	18700	20M 50RB 25offset	Toward Ground	19	1	19.72	21	1.343	0.017	0.023	0.03
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)

Page Number: 82 of 189 Report Issued Date: Jan. 24, 2019

	Power reduce													
1860	18700	20M 1RB 50offset	Toward Ground	0	12	11.76	12	1.057	1.1	1.162	0.08			
1860	1860 18700 20M 50RB 25offset Toward Ground 0 / 10.89 12 1.291 0.941 1.215 0.09													
					Full	l power								
1860	1860 18700 20M 1RB 50offset Toward Phantom 0 / 21.18 21.5 1.076 0.05 0.054 0.11													
1860	1860 18700 20M 50RB 25offset Toward Phantom 0 / 19.72 21 1.343 0.038 0.051 0.13													

Page Number: 83 of 189 Report Issued Date: Jan. 24, 2019

Table 15.7: SAR Values (LTE Band 4 -Body)

			Iab	ie 15.7: 5	AK valu	es (LTE Ba	na 4 -Boay)			
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
					Powe	r reduce					
1745	20300	20M 1RB 0offset	Toward Ground	5	13	14.43	15	1.140	0.71	0.810	-0.15
1745	20300	20M 50RB 0offset	Toward Ground	5	1	13.48	15	1.419	0.515	0.731	0.05
1720	20050	20M 1RB 0offset	Toward Ground	5	1	14.42	15	1.143	0.599	0.685	0.03
1732.5	20175	20M 1RB 0offset	Toward Ground	5	1	14.3	15	1.175	0.659	0.774	0.07
					100)%RB					
1732.5	20175	20M 100RB 0offset	Toward Ground	5	1	13.02	14	1.253	0.437	0.548	0.03
					Full	power					
1745	20300	20M 1RB 0offset	Toward Phantom	5	1	21.75	22	1.059	0.09	0.095	0.06
1745	20300	20M 50RB 0offset	Toward Phantom	5	1	20.58	22	1.387	0.073	0.101	0.08
1745	20300	20M 1RB 0offset	Toward Ground	19	1	21.75	22	1.059	0.03	0.032	0.13
1745	20300	20M 50RB 0offset	Toward Ground	19	1	20.58	22	1.387	0.026	0.036	0.1
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
					Powe	r reduce					
1745	20300	20M 1RB 0offset	Toward Ground	0	14	14.43	15	1.140	0.68	0.775	0.19
1745	20300	20M 50RB 0offset	Toward Ground	0	1	13.48	15	1.419	0.513	0.728	0.03
					Full	power					
1745	20300	20M 1RB 0offset	Toward Phantom	0	1	21.75	22	1.059	0.057	0.060	-0.02

Page Number: 84 of 189

Report Issued Date: Jan. 24, 2019

1745	20300	20M 50RB 0offset	Toward	0	1	20.58	22	1.387	0.048	0.067	-0.03
			Phantom								

			Tab	le 15.8: S	AR Valu	es (LTE Ba	nd 7 -Body	()			
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
					Powe	r reduce					
2535	21100	20M 1RB 50offset	Toward Ground	5	15	15.86	16	1.033	0.442	0.456	0.10
2560	21350	20M 50RB 0offset	Toward Ground	5	1	14.52	15	1.117	0.347	0.388	0.01
					Full	power					
2535	21100	20M 1RB 50offset	Toward Phantom	5	1	21.1	22	1.230	0.195	0.240	0.06
2560	21350	20M 50RB 0offset	Toward Phantom	5	1	20.09	20.5	1.099	0.163	0.179	0.07
2535	21100	20M 1RB 50offset	Toward Ground	19	1	21.1	22	1.230	0.323	0.397	0.09
2560	21350	20M 50RB 0offset	Toward Ground	19	1	20.09	20.5	1.099	0.259	0.285	0.09
Frequ	uency					Measured	Maximum		Measured	Reported	Power
MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	average power (dBm)	allowed Power (dBm)	Scaling factor	SAR(10g) (W/kg)	SAR(10g) (W/kg)	Drift (dB)
					Powe	r reduce					
2535	21100	20M 1RB 50offset	Toward Ground	0	16	15.86	16	1.033	0.363	0.375	0.01
2560	21350	20M 50RB 0offset	Toward Ground	0	1	14.52	15	1.117	0.279	0.312	0.08
					Full	power					
2535	21100	20M 1RB 50offset	Toward Phantom	0	1	21.1	22	1.230	0.113	0.139	-0.12
2560	21350	20M 50RB 0offset	Toward Phantom	0	1	20.09	20.5	1.099	0.098	0.108	0.13

Page Number: 85 of 189 Report Issued Date: Jan. 24, 2019

Table 15.9: SAR Values (LTE Band 17 -Body)

Table 15.9: SAR Values (LTE Band 17 -Body)												
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)	
					Powe	r reduce						
710	710 23790 10M 1RB 49offset Toward 5 17 18.07 19 1.239 0.148 0.183 0.1											
710	23790	10M 25RB 13offset	Toward Ground	5	1	17.02	18	1.253	0.111	0.139	0.02	
Full power												
710	23790	10M 1RB 49offset	Toward Phantom	5	1	21.3	22	1.175	0.148	0.174	0.03	
710	23790	10M 25RB 13offset	Toward Phantom	5	1	20.18	21	1.208	0.111	0.134	0.02	
710	23790	10M 1RB 49offset	Toward Ground	19	1	21.3	22	1.175	0.087	0.102	0.14	
710	23790	10M 25RB 13offset	Toward Ground	19	1	20.18	21	1.208	0.063	0.076	0.09	
Frequ MHz	Ch.	Configuration	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)	
					Powe	r reduce						
710	23790	10M 1RB 49offset	Toward Ground	5	18	18.07	19	1.239	0.417	0.517	0.16	
710	23790	10M 25RB 13offset	Toward Ground	5	1	17.02	18	1.253	0.324	0.406	0.04	
					Full	power						
710	23790	10M 1RB 49offset	Toward Phantom	0	1	21.3	22	1.175	0.198	0.233	-0.01	
710	23790	10M 25RB 13offset	Toward Phantom	0	1	20.18	21	1.208	0.151	0.182	-0.08	

Page Number: 86 of 189 Report Issued Date: Jan. 24, 2019

Table 15.10: SAR Values (CDMA BC0-Body)

Table 15.10: SAR Values (CDMA BC0-Body)												
Frequ MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
						Pow	er reduce					
836.52	384	CDMA BC0	1xEV-DO-0	Toward Ground	5	1	17.23	18	1.194	0.847	1.011	0.14
824.7	1013	CDMA BC0	1xEV-DO-0	Toward Ground	5	1	17.22	18	1.197	0.638	0.764	0.12
848.31	777	CDMA BC0	1xEV-DO-0	Toward Ground	5	19	17.22	18	1.197	0.865	1.035	0.16
						R	epeated					
848.31	777	CDMA BC0	1xEV-DO-0	Toward Ground	5	1	17.22	18	1.197	0.857	1.026	0.01
						Fu	II power					
836.52	384	CDMA BC0	1xEV-DO-0	Toward Phantom	5	1	23.34	24	1.164	0.297	0.346	0.02
836.52	384	CDMA BC0	1xEV-DO-0	Toward Ground	19	1	23.34	24	1.164	0.462	0.538	-0.05
Frequ MHz	ency Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
						Pow	er reduce					
836.52	384	CDMA BC0	1xEV-DO-0	Toward Ground	0	20	17.23	18	1.194	0.899	1.073	0.05
						Fu	III power					
836.52	384	CDMA BC0	1xEV-DO-0	Toward Phantom	0	1	23.34	24	1.164	0.365	0.425	0.07

Page Number: 87 of 189 Report Issued Date: Jan. 24, 2019

Table 15.11: SAR Values (CDMA BC1-Body)

Table 15.11: SAR Values (CDMA BC1-Body)												
Freque MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
						Powe	er reduce					
1880	600	CDMA BC1	1xEV-DO-0	Toward Ground	5	21	15.48	16	1.127	0.952	1.073	-0.13
1851.25	25	CDMA BC1	1xEV-DO-0	Toward Ground	5	1	15.57	16	1.104	0.922	1.018	0.15
1908.75	1175	CDMA BC1	1xEV-DO-0	Toward Ground	5	1	15.59	16	1.099	0.946	1.040	0.13
	Repeated											
1880	600	CDMA BC1	1xEV-DO-0	Toward Ground	5	1	15.48	16	1.127	0.921	1.038	0.02
						Ful	l power					
1880	600	CDMA BC1	1xEV-DO-0	Toward Phantom	5	1	21.7	22	1.072	0.0865	0.093	0.06
1880	600	CDMA BC1	1xEV-DO-0	Toward Ground	19	1	21.7	22	1.072	0.78	0.836	0.06
1851.25	25	CDMA BC1	1xEV-DO-0	Toward Ground	19	1	21.87	22	1.030	0.813	0.838	0.14
1908.75	1175	CDMA BC1	1xEV-DO-0	Toward Ground	19	1	21.89	22	1.026	0.76	0.779	0.06
						Re	peated					
1851.25	25	CDMA BC1	1xEV-DO-0	Toward Ground	19	1	21.87	22	1.030	0.768	0.791	0.06
Freque	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
						Powe	er reduce					
1880	600	CDMA BC1	1xEV-DO-0	Toward Ground	0	22	15.48	16	1.127	1	1.127	0.18
						Ful	l power					
1880	600	CDMA BC1	1xEV-DO-0	Toward Phantom	0	1	21.87	22	1.030	0.087	0.090	0.18

Page Number: 88 of 189

Report Issued Date: Jan. 24, 2019

Table 15.12: SAR Values (WiFi 802.11b - Body)

Freque MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
	Full power											
2462	11	WiFi 2450	802.11b	Toward Phantom	5	1	20.26	21	1.186	0.1	0.119	0.04
2462	11	WiFi 2450	802.11b	Toward Ground	5	23	20.26	21	1.186	0.143	0.170	0.17
Freque MHz	Ch.	Mode /Band	Service /Headset	Test Position	Spacing (mm)	Figure No.	Measured average power (dBm)	Maximum allowed Power (dBm)	Scaling factor	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Power Drift (dB)
						Fu	ıll power					
2462	11	WiFi 2450	802.11b	Toward Phantom	0	24	20.26	21	1.186	0.103	0.122	-0.10
2462	11	WiFi 2450	802.11b	Toward Ground	0	1	20.26	21	1.186	0.07	0.083	0.12

Page Number: 89 of 189

Report Issued Date: Jan. 24, 2019

16. Simultaneous TX SAR Considerations

Table16.1 Simultaneous transmission SAR

	Standalone SAR for 2G(W/Kg)										
Toot	Position	GSM	GSM	Highoot CAD							
lest	Position	850	1900	Highest SAR							
0mm	Phantom Side	1.216	0.215	1.216							
0mm	Ground Side	0.721	1.529	1.529							
5mm	Phantom Side	1.020	0.187	1.020							
5mm	Ground Side	0.621	1.016	1.016							
19mm	Ground Side	0.439	1.359	1.359							

Standalone SAR for 3G(W/Kg)											
Toe	t Position	WCDMA	WCDMA	WCDMA	BC0	BC1	Highest SAR				
163	t r osition	Band II	Band IV	Band V	В	ВСТ	Tilghest SAIX				
0mm	Phantom Side	0.080	0.067	0.857	0.425	0.090	0.857				
0mm	Ground Side	0.643	0.642	0.314	1.073	1.127	1.127				
5mm	5mm Phantom Side		0.069	0.277	0.346	0.093	0.346				
5mm	Ground Side	0.745	0.599	0.722	1.035	1.073	1.073				
19mm	Ground Side	0.778	0.570		0.538	0.838	0.838				

Standalone SAR for 4G (W/Kg)											
Test Pos	ition	LTE	LTE	LTE	LTE Band	Highest SAR					
lest i us	ition	Band 2	Band 4	Band7	17	Tilghest SAIX					
0mm	Phantom Side	0.054	0.067	0.139	0.233	0.233					
0mm	Ground Side	1.215	0.775	0.375	0.517	1.215					
5mm	Phantom Side	0.087	0.101	0.240	0.174	0.240					
5mm	Ground Side	1.218	0.810	0.456	0.183	1.218					
19mm	Ground Side	0.023	0.036	0.397	0.102	0.397					

Page Number: 90 of 189

Report Issued Date: Jan. 24, 2019

Simultaneous multi-band transmission												
Tac	t Position	2G	3G	4G	2.4GHz		5GHz	SUM				
163	T OSMOT	20			ВТ	WiFi	WiFi	2.4GHz	5GHz			
0mm(10g)	Phantom Side	1.216	0.857	0.233	0.067	0.122	0.026	1.338	1.283			
omm(rog)	Ground Side	1.529	1.127	1.215	0.067	0.083	0.033	1.612	1.596			
Franc (4 c)	Phantom Side	1.020	0.346	0.240	0.167	0.119	0.023	1.187	1.187			
5mm(1g)	Ground Side	1.016	1.073	1.218	0.167	0.170	0.01	1.388	1.385			
19mm(1g)	Ground Side	1.359	0.838	0.397	0.044			1.403	1.403			

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA/LTE/CDMA and WiFi/BT. According to the above table, the sum of reported SAR values for GSM/WCDMA/LTECDMA and WiFi<1.6W/kg. So the simultaneous transmission SAR is not required for WiFi/BT transmitter.

17. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 17.1: SAR Measurement Variability for Body Value (1g)

Frequ	uency	Configuration	Test	Original SAR	First Repeated SAR	The Ratio	
MHz	Ch.	Configuration	Position	(W/kg)	(W/kg)	THE RAILO	
836.6	190	GPRS 2TS	Ground	0.845	0.872	1.032	
1880	661	GPRS 2TS	Ground	0.964	0.941	1.024	
848.31	777	1xEV-DO-0	Ground	0.865	0.857	1.009	
1880 600		1xEV-DO-0	Ground	0.952	0.921	1.034	

Note: According to the KDB 865664 D01repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

Page Number: 92 of 189

Report Issued Date: Jan. 24, 2019

18. Test Equipments Utilized

18.1. SAR Test System

Item.	Instrument Name	Туре	Serial Number	Manufacturer	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Agilent	Dec 17, 2018	1 year
02	Power meter	NRVD	102257			
03	Power sensor	NRV-Z5	100241	RS	May 11, 2018	1 year
03	Power sensor	NRV-Z5	100644			
04	Signal Generator	E4438C	MY49072044	Agilent	May 11, 2018	1 Year
05	Amplifier	NTWPA-0086010 F	12023024	rflight	No Calibration	Requested
06	Coupler	778D	MY4825551	Agilent	May 11, 2018	1 year
07	BTS	E5515C	MY50266468	Agilent	Dec 17, 2018	1 year
07	ыз	MT8820C	6201240338	Anritsu	Dec 17, 2018	1 year
08	E-field Probe	ES3DV3	3252	SPEAG	Sep 4,2018	1 year
09	DAE	SPEAG DAE4	1244	SPEAG	Dec 3,2018	1 year
		SPEAG D750V3	1144	SPEAG	Oct 26, 2018	3 year
		SPEAG D835V2	4d112	SPEAG	Oct 25, 2018	3 year
40	Dinala Validation 18t	SPEAG D1750V2	1044	SPEAG	Oct 31, 2018	3 year
10	Dipole Validation Kit	SPEAG D1900V2	5d151	SPEAG	Dec 6,2017	3 year
		SPEAG D2450V2	858	SPEAG	Oct 26,2018	3 year
		SPEAG D2600V2	1031	SPEAG	Nov. 1,2018	3 year

Page Number: 93 of 189

Report Issued Date: Jan. 24, 2019

19. Measurement Uncertainty

Measurement uncertainty evaluation for SAR test

IVICASA	Tement	uncent	illity (valuati	011 101 1	SAK IESI	1	
Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.	V_{i}
	value,	Dist.		1g	10g	±%,1g	±%,10g	V _{eff}
	±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined Std. Uncertainty		RSS				9.27	9.07	
Expanded STD Uncertainty		k=2				18.53	18.14	

Page Number: 94 of 189

Report Issued Date: Jan. 24, 2019

Measurement uncertainty evaluation for system validation

Error Description Unc. Prob. Value, value, value, ±% Dist. Prob. Dist. Prob. Dist. Prob. Dist. Prob. Prob. Dist. Prob. Dist. Prob. Prob. Probe Calibration 6.0 N 1 1 1 6.0 6.0 6.0 ∞ Hemispherical Isotropy 0.5 R √3 0.7 0.7 0.2 0.2 ∞ Hemispherical Isotropy 2.6 R √3 0.7 0.7 0.1 0.5 0.5 ∞ Boundary Effects 0.8 R √3 1 1 0.5 0.5 0.5 ∞ Einearity 0.6 R √3 1 1 0.6 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 1 0.7 0.7 0.7 0.7 Response Time 0 R √3 1 1 0.7 0.7 0.7 ∞ Response Time 0.8 R √3 1 1 0.7 0.7 0.7 ∞ Response Time 0.8 R √3 1 1 1.7 1.7 ∞ RFAmbient Noise 3.0 R √3 1 1 1.7 1.7 ∞ RFAmbient Reflections 3.0 R √3 1 1 1.7 1.7 ∞ Probe Positioner 1.5 R √3 1 1 0.6 0.6 0.6 ∞ Probe Positioning 2.9 R √3 1 1 0.7 0.7 ∞ Probe Positioning 2.9 R √3 1 1 0.7 0.7 ∞ Power Drift 5.0 R √3 1 1 0.7 0.7 ∞ Power Drift 5.0 R √3 1 1 0.6 0.6 ∞ Power Drift 5.0 R √3 1 1 0.6 0.6 ∞ Phantom Uncertainty 4.0 R √3 1 1 1.7 0.5 0.6 ∞ Phantom Uncertainty 4.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Conductivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Euquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.7 1.4 ∞ Combined Std Uncertainty 4.0 R √3 0.6 0.49 1.7 1.4 ∞ Combined Std Uncertainty 4.0 R √3 0.6 0.49 1.7 1.4 ∞ Combined Std Uncertainty 4.0 R √3 0.6 0.49 1.7 1.4 ∞ Combined Std Uncertainty 4.0 R √3 0.6 0.49 1.7 0.4 0.4 Combined Std Uncertainty 4.0 R √3 0.6 0.49 1.7 0.4 0.4 Combined Std Uncertainty 4.0 0.6 0.6 0.49 0.49 0.40 0.40 0.40 0.40 0.40 Combined Std Uncertainty 4.0 0.6 0.6 0.40 0.40 0.40 0.40 0.40	IVICASUI CI	nent un	ccitaiii	Ly CVO	iiuatioii	i ioi sys	teili vallua		
Measurement System	Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.	V_{i}
Measurement System 6.0 N 1 1 1 6.0 6.0 ∞ Axial Isotropy 0.5 R √3 0.7 0.7 0.2 0.2 ∞ Hemispherical Isotropy 2.6 R √3 0.7 0.7 1.1 1.1 ∞ Boundary Effects 0.8 R √3 1 1 0.5 0.5 ∞ Linearity 0.6 R √3 1 1 0.3 0.3 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 1 0.7 0.7 ∞ Response Time 0 R √3		value,	Dist.		1g	10g	±%,1g	±%,10g	Veff
Probe Calibration 6.0 N 1 1 1 6.0 6.0 ∞ Axial Isotropy 0.5 R √3 0.7 0.7 0.2 0.2 ∞ Hemispherical Isotropy 2.6 R √3 0.7 0.7 1.1 1.1 ∞ Boundary Effects 0.8 R √3 1 1 0.5 0.5 ∞ Linearity 0.6 R √3 1 1 0.5 0.5 ∞ System Detection Limits 1.0 R √3 1 1 0.3 0.3 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 1 0.7 0.7 ∞ Response Time 0 R √3 <		±%							
Axial Isotropy 0.5 R √3 0.7 0.7 0.2 0.2 ∞ Hemispherical Isotropy 2.6 R √3 0.7 0.7 1.1 1.1 ∞ Boundary Effects 0.8 R √3 1 1 0.5 0.5 ∞ Linearity 0.6 R √3 1 1 0.3 0.3 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 0.7 0.7 ∞ Response Time 0 R √3 1 1 1.5 1.1 1.7 1.7 ∞ RF Ambient Noise 3.0 R √3 1 1 </td <td>Measurement System</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Measurement System								
Hemispherical Isotropy 2.6 R √3 0.7 0.7 1.1 1.1 ∞ Boundary Effects 0.8 R √3 1 1 0.5 0.5 ∞ Linearity 0.6 R √3 1 1 0.3 0.3 ∞ System Detection Limits 1.0 R √3 1 1 0.6 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 1 0.7 0.7 0.7 ∞ Response Time 0 R √3 1 1 0.0 0 0 ∞ Integration Time 2.6 R √3 1 1 1.5 1.5 ∞ RF Ambient Noise 3.0 R √3 1 1 1.7 1.7 ∞ RF Ambient Reflections 3.0 R √3 1 1 1.7 1.7 ∞ Probe Positioner 1.5 R √3 1 1 1.0 0.9 0.9 ∞ Probe Positioning 2.9 R √3 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R √3 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R √3 1 1 1 0.6 0.6 ∞ Diople Power Drift 5.0 R √3 1 1 1 0.6 0.6 0.6 ∞ Diople	Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Boundary Effects	Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Linearity 0.6 R $\sqrt{3}$ 1 1 0.3 0.3 ∞ System Detection Limits 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 1 0.7 0.7 ∞ Response Time 0 R $\sqrt{3}$ 1 1 0 0 ∞ Integration Time 2.6 R $\sqrt{3}$ 1 1 1.5 1.5 ∞ RF Ambient Noise 3.0 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ RF Ambient Noise 3.0 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ RF Ambient Noise 3.0 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ RF Ambient Reflections 3.0 R $\sqrt{3}$ 1 1 1.7 1.7 ∞	Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
System Detection Limits 1.0 R √3 1 1 0.6 0.6 ∞ Readout Electronics 0.7 N 1 1 1 0.7 0.7 ∞ Response Time 0 R √3 1 1 0 0 ∞ Integration Time 2.6 R √3 1 1 1.5 1.5 ∞ RF Ambient Noise 3.0 R √3 1 1 1.7 1.7 ∞ RF Ambient Reflections 3.0 R √3 1 1 1.7 1.7 ∞ Probe Positioner 1.5 R √3 1 1 0.9 0.9 ∞ Probe Positioning 2.9 R √3 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R √3 1 1 0.6 0.6 ∞ Diople Diople Positioning 2.0 N 1 1 1 2.9 2.9 ∞ Dipole Input Power 5.0	Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Readout Electronics 0.7 N 1 1 1 1 0.7 0.7 ∞ Response Time 0 R √3 1 1 0 0 ∞ Integration Time 2.6 R √3 1 1 1.5 1.5 ∞ RF Ambient Noise 3.0 R √3 1 1 1.7 1.7 ∞ RF Ambient Reflections 3.0 R √3 1 1 1.7 1.7 ∞ Probe Positioner 1.5 R √3 1 1 0.9 0.9 ∞ Probe Positioning 2.9 R √3 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R √3 1 1 0.6 0.6 ∞ Diople	Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
Response Time	System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Integration Time	Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
RF Ambient Noise 3.0 R $\sqrt{3}$ 1 1.7 1.7 ∞ RF Ambient Reflections 3.0 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ Probe Positioner 1.5 R $\sqrt{3}$ 1 1 0.9 0.9 ∞ Probe Positioning 2.9 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ Diople <t< td=""><td>Response Time</td><td>0</td><td>R</td><td>$\sqrt{3}$</td><td>1</td><td>1</td><td>0</td><td>0</td><td>∞</td></t<>	Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
RF Ambient Reflections 3.0 R $\sqrt{3}$ 1 1 1 1.7 1.7 ∞ Probe Positioner 1.5 R $\sqrt{3}$ 1 1 1 0.9 0.9 ∞ Probe Positioning 2.9 R $\sqrt{3}$ 1 1 1 0.6 0.6 ∞ Max. SAR Eval. 1.0 R $\sqrt{3}$ 1 1 1 0.6 0.6 ∞ Diople Power Drift 5.0 R $\sqrt{3}$ 1 1 2.9 2.9 ∞ Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Dipole Input Power 5.0 N 1 1 1 5.0 5.0 ∞ Phantom and Setup Phantom Uncertainty 4.0 R $\sqrt{3}$ 1 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R $\sqrt{3}$ 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R $\sqrt{3}$ 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std Uncertainty ∞ 4.0 ∞ 4.1 0.6 0.49 1.5 1.2 ∞ 387 Uncertainty	Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
Probe Positioner 1.5 R $\sqrt{3}$ 1 1 0.9 0.9 ∞ Probe Positioning 2.9 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ Diople <td>RF Ambient Noise</td> <td>3.0</td> <td>R</td> <td>$\sqrt{3}$</td> <td>1</td> <td>1</td> <td>1.7</td> <td>1.7</td> <td>∞</td>	RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioning 2.9 R $\sqrt{3}$ 1 1 1.7 1.7 ∞ Max. SAR Eval. 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ Diople Diople Dipole Positioning 2.0 R $\sqrt{3}$ 1 1 2.9 2.9 ∞ Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Dipole Input Power 5.0 N 1 1 1 5.0 5.0 ∞ Phantom and Setup Image: Conductivity (target) 4.0 R $\sqrt{3}$ 1 1 2.3 2.3 ∞ Phantom Uncertainty 4.0 R $\sqrt{3}$ 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2	RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval. 1.0 R √3 1 1 0.6 0.6 ∞ Diople Solution R √3 1 1 2.9 2.9 ∞ Power Drift 5.0 R √3 1 1 2.9 2.9 ∞ Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Phantom Uncertainty 5.0 N 1 1 1 5.0 5.0 ∞ Phantom Uncertainty 4.0 R √3 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R √3 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N <th< td=""><td>Probe Positioner</td><td>1.5</td><td>R</td><td>$\sqrt{3}$</td><td>1</td><td>1</td><td>0.9</td><td>0.9</td><td>∞</td></th<>	Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Diople S.0 R √3 1 1 2.9 2.9 ∞ Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Dipole Input Power 5.0 N 1 1 1 5.0 5.0 ∞ Phantom and Setup Phantom Uncertainty 4.0 R √3 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R √3 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 <td< td=""><td>Probe Positioning</td><td>2.9</td><td>R</td><td>$\sqrt{3}$</td><td>1</td><td>1</td><td>1.7</td><td>1.7</td><td>∞</td></td<>	Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Power Drift 5.0 R √3 1 1 2.9 2.9 ∞ Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Dipole Input Power 5.0 N 1 1 1 5.0 5.0 ∞ Phantom and Setup <	Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Dipole Positioning 2.0 N 1 1 1 2.0 2.0 ∞ Dipole Input Power 5.0 N 1 1 1 5.0 5.0 ∞ Phantom and Setup Image: Condess of the phantom Uncertainty 4.0 R √3 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R √3 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std Image: Condition of the phase	Diople								
Dipole Input Power 5.0 N 1 1 1 5.0 5.0 ∞ Phantom and Setup Phantom Uncertainty 4.0 R √3 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R √3 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std #11.2% #10.9% 387	Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and Setup 4.0 R √3 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R √3 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std ±11.2% ±10.9% 387 Uncertainty 4	Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Phantom Uncertainty 4.0 R $\sqrt{3}$ 1 1 2.3 2.3 ∞ Liquid Conductivity (target) 5.0 R $\sqrt{3}$ 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R $\sqrt{3}$ 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std ±11.2% ±10.9% 387 Uncertainty ±11.2% ±10.9% 387	Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Liquid Conductivity (target) 5.0 R √3 0.64 0.43 1.8 1.2 ∞ Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std Uncertainty ±11.2% ±10.9% 387	Phantom and Setup								
Liquid Conductivity (meas.) 2.5 N 1 0.64 0.43 1.6 1.1 ∞ Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std	Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Permittivity (target) 5.0 R √3 0.6 0.49 1.7 1.4 ∞ Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std Uncertainty ±11.2% ±10.9% 387	Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Permittivity (meas.) 2.5 N 1 0.6 0.49 1.5 1.2 ∞ Combined Std Uncertainty ±11.2% ±10.9% 387	Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Combined Std ±11.2% ±10.9% 387 Uncertainty	Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Uncertainty	Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Uncertainty									
Uncertainty									
	Combined Std						±11.2%	±10.9%	387
Expanded Std Uncertainty ±22.4% ±21.8%	Uncertainty								
	Expanded Std Uncertainty						±22.4%	±21.8%	

Measurement uncertainty evaluation for Fast SAR test

						or OAIN		
Error Description	Unc. value, ±%	Prob. Dist.	Div.	ci	ci	Std.U nc.	Std.Un c.	Vi
				1g	10g	±%,1	±%,10g	veff
Probe Calibration	6	N	1	1	1	6.00	6.00	8
Axial Isotropy	0.5	R	√3	0.7	0.7	0.20	0.20	8
Hemispherical Isotropy	2.6	R	√3	1	1	1.50	1.50	8
Boundary Effects	0.8	R	√3	0.7	0.7	0.32	0.32	8
Linearity	0.6	R	√3	1	1	0.35	0.35	8
System Detection Limits	1	R	√3	1	1	0.58	0.58	8
Readout Electronics	0.7	R	√3	1	1	0.40	0.40	8
Response Time	0	N	1	1	1	0.00	0.00	8
Integration Time	2.6	R	√3	1	1	1.50	1.50	8
RF Ambient Noise	3	R	√3	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	√3	1	1	1.73	1.73	8
Probe Positioner	1.5	R	√3	1	1	0.87	0.87	8
Probe Positioning	2.9	R	√3	1	1	1.67	1.67	8
Max. SAR Eval.	1	R	√3	1	1	0.58	0.58	8
Fast SAR z-Approximation	7	R	√3	1	1	4.04	4.04	8
Test sample Related								
Test sample Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder Uncertainty	3.6	N	1	1	1	3.6	3.6	5
Phantom and Tissue Parameters								
Phantom Uncertainty	4	R	√3	1	1	2.31	2.31	∞
Liquid Conductivity (target)	5	R	√3	0.64	0.43	1.85	1.24	8
Liquid Conductivity (meas)	2.5	N	1	0.64	0.43	0.92	0.62	8
Liquid Permittivity	_	В	1/2	0.6	0.40	1 72	1 41	
(target)	5	R	√3	0.6	0.49	1.73	1.41	8
Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	0.87	0.71	8
Combined Std.		RSS				10.11	9.93	
Uncertainty								
Expanded STD		k=2				20.22	19.86	
Uncertainty								

END OF REPORT BODY

Page Number: 96 of 189

Report Issued Date: Jan. 24, 2019

ANNEX A. Graph Results

Fig.1 GPRS850 2TS Phantom Mode Middle Repeated

Date/Time: 2019/1/10 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 56.715$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C

Communication System: GSM 850MHz GPRS 2TS (0); Frequency: 836.6 MHz; Duty Cycle:

1:4.15

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018 **GPRS850 2TS Phantom Mode Middle Repeated/Area Scan (61x121x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.938 W/kg

GPRS850 2TS Phantom Mode Middle Repeated/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.07 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.872 W/kg; SAR(10 g) = 0.608 W/kgMaximum value of SAR (measured) = 0.925 W/kg

Fig.2GPRS850 2TS Phantom Mode Middle

Date/Time: 2019/1/10 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 56.715$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 850MHz GPRS 2TS (0); Frequency: 836.6 MHz; Duty Cycle:

1:4.15

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018

GPRS850 2TS Phantom Mode Middle/Area Scan (61x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.63 W/kg

GPRS850 2TS Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.31 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 1.52 W/kg; SAR(10 g) = 1.04 W/kgMaximum value of SAR (measured) = 1.61 W/kg

Fig.3 GSM1900 GPRS2TS Ground Mode Middle

Date/Time: 2019/1/9

Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 52.147$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900MHz GPRS 2TS (0); Frequency: 1880 MHz; Duty Cycle:

1:4.15

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

GPRS2TS Ground Mode Middle/Area Scan (61x81x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.4 W/kg

GPRS2TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.846 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 1.31 W/kg; SAR(10 g) = 0.828 W/kgMaximum value of SAR (measured) = 1.40 W/kg

Page Number: 99 of 189

Report Issued Date: Jan. 24, 2019

Fig.4 GSM1900GPRS2TS Ground Mode Middle

Date/Time: 2019/1/9

Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 52.147$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: GSM 1900MHz GPRS 2TS (0); Frequency: 1880 MHz; Duty Cycle:

1:4.15

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

GPRS2TS Ground Mode Middle/Area Scan (61x81x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 3.49 W/kg

GPRS2TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.729 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 6.32 W/kg

SAR(1 g) = 3.12 W/kg; SAR(10 g) = 1.45 W/kgMaximum value of SAR (measured) = 3.57 W/kg

Fig.5 WCDMA Band 2 Ground Mode Middle

Date/Time: 2019/1/9

Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 52.147$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

WCDMA Band 2 Ground Mode Middle/Area Scan (61x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.824 W/kg

WCDMA Band 2 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.393 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.750 W/kg; SAR(10 g) = 0.473 W/kgMaximum value of SAR (measured) = 0.812 W/kg

Page Number: 101 of 189

Report Issued Date: Jan. 24, 2019

Fig.6 WCDMA Band 2 Ground Mode Middle

Date/Time: 2019/1/9

Electronics: DAE4 Sn1244

Medium parameters used: f = 1880 MHz; $\sigma = 1.536 \text{ S/m}$; $\varepsilon_r = 52.147$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(4.77, 4.77, 4.77); Calibrated: 9/4/2018

WCDMA Band 2 Ground Mode Middle /Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.46 W/kg

WCDMA Band 2 Ground Mode Middle /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.7260 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.38 W/kg

SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.620 W/kgMaximum value of SAR (measured) = 1.37 W/kg

Page Number: 102 of 189

Report Issued Date: Jan. 24, 2019

Fig.7 WCDMA Band 4 Ground Mode Middle

Date/Time: 2019/1/4

Electronics: DAE4 Sn1244

Medium parameters used: f = 1733 MHz; $\sigma = 1.408$ S/m; $\varepsilon_r = 55.442$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional 1800MHz; Frequency: 1732.6 MHz; Duty Cycle:

1:1

Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018

WCDMA Band 4 Ground Mode Middle/Area Scan (61x81x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.633 W/kg

WCDMA Band 4 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.532 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.820 W/kg

SAR(1 g) = 0.560 W/kg; SAR(10 g) = 0.367 W/kgMaximum value of SAR (measured) = 0.602 W/kg

Page Number: 103 of 189

Report Issued Date: Jan. 24, 2019

Fig.8 WCDMA Band 4 Ground Mode Middle

Date/Time: 2019/1/4

Electronics: DAE4 Sn1244

Medium parameters used: f = 1733 MHz; $\sigma = 1.408$ S/m; $\varepsilon_r = 55.442$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Professional 1800MHz; Frequency: 1732.6 MHz; Duty Cycle:

1:1

Probe: ES3DV3 - SN3252ConvF(4.99, 4.99, 4.99); Calibrated: 9/4/2018

WCDMA Band 4 Ground Mode Middle/Area Scan (61x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.27 W/kg

WCDMA Band 4 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.9780 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.575 W/kgMaximum value of SAR (measured) = 1.23 W/kg

Page Number: 104 of 189

Report Issued Date: Jan. 24, 2019

Fig.9 WCDMA Band 5 Ground Mode Middle

Date/Time: 2019/1/10 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 56.715$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018

WCDMA Band 5 Ground Mode Middle/Area Scan (61x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.568 W/kg

WCDMA Band 5 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.893 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.340 W/kgMaximum value of SAR (measured) = 0.696 W/kg

Page Number: 105 of 189

Report Issued Date: Jan. 24, 2019

Fig.10 WCDMA Band 5 Ground Mode Middle

Date/Time: 2019/1/10 Electronics: DAE4 Sn1244

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 56.715$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

Communication System: WCDMA Professional Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.34, 6.34, 6.34); Calibrated: 9/4/2018

WCDMA Band 5 Ground Mode Middle/Area Scan (61x121x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.76 W/kg

WCDMA Band 5 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.5440 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 3.23 W/kg

SAR(1 g) = 1.5 W/kg; SAR(10 g) = 0.736 W/kg

Maximum value of SAR (measured) = 1.79 W/kg

