OCE 313 TÉCNICAS DE ANÁLISIS NO PARAMÉTRICO

CLASE 5 – PERMUTACIÓN Y CORRELACIÓN

Dr. José Gallardo

Abril 2021

PLAN DE LA CLASE

- Concepto de permutación:
 - ¿Qué es? ¿Por qué es importante? ¿Qué haremos?
- Permutación: caso 1, 2 y 3
- Solución de un problema de permutación.
- Prueba de correlación no paramétrica.
- Tarea: Prácticas DataCamp

Permutación

¿Qué es?

Una **permutación** es una combinación **ordenada** de elementos.

¿Por qué es importante?

El concepto matemático de permutación está subyacente a muchos métodos de análisis no paramétricos.

¿Qué haremos?

Calcularemos las posibles permutaciones de los elementos de un conjunto de datos de un experimento aleatorio.

Permutación sin repetición

1.- Si para el conjunto {1,2} existen 2 permutaciones 1-2 y 2-1

¿Cuántas permutaciones de los elementos {1,2,3} existen?

R: Complete la siguiente tabla sin repetir números en cada fila.

A	В	C
1	2	3

Permutación sin repetición (Pn): caso 1

$$P_n = n! = n factorial$$

$$P_3 = 3! = 3 \times 2 \times 1 = 6$$

¿Cuántas permutaciones existen para P_4 ? $P_4 = \{1,2,3,4\}$

Permutación con repetición – caso 2

¿Cuántas claves diferentes existen en el candado?

Si cuando el candado tiene 3 filas con 10 números {0.. 9} existen 10x10x10 permutaciones o 1000 claves diferentes.

¿Cuántas permutaciones existen para los candados con 4 filas?

Respuesta $n^r = 10^4 = 10.000$ permutaciones

Permutación con repetición – caso 3

¿Cuántas palabras diferentes se pueden formar con las letras de la palabra GATA? Ej. {TAGA, AGAT, GTAA ...}

Si,
$$G = 1$$
 vez; $T = 1$ vez y $A = 2$ veces

Entonces, existen

¿Cuántas palabras se pueden formar con la palabra BANANA?

Problema: Dividir una sala en grupos.

Tiene 7 personas en una sala y las desea dividir en 2 grupos, uno tendrá 3 y otro 4.

¿Cuántas formas de agrupar a los alumnos son posibles?

- 1.- ¿A qué caso se parece 1, 2 o 3?
- 2.- Esquematice el problema.
 - 3.- Resuelva

Problema: Dividir una sala en grupos.

Esquema

Grupo 1		
1	2	3

$$g_1! = 3! = 6$$

Grupo 2			
4	5	6	7

$$g_2! = 4! = 24$$

Solución

PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

Correlación de Pearson

 La correlación estudia el comportamiento recíproco de dos variables X e Y

Coeficiente de correlación de Pearson (r)

$$r = \frac{\sum xy - \frac{\sum x\sum y}{N}}{\sqrt{\left(\sum x^2 - \frac{\left(\sum x\right)^2}{N}\right)}\sqrt{\left(\sum y^2 - \frac{\left(\sum y\right)^2}{N}\right)}}} - 1 <= r <= 1$$

Hipotesis

 H_0 : r = 0 ausencia de correlación

 $H_1: r \neq 0$ existencia de correlación

Supuestos:

- Las variables X e Y son continuas.
- Existe relación lineal.
- La distribución conjunta de (X, Y) es una distribución Bivariable normal.

Coeficiente de correlación de Pearson no aplica para funciones monótonas.

Supuestos test correlación pearson que no se cumple: Existe una relación lineal.

Coeficiente de correlación de Pearson no aplica para variables discretas u ordinales.

Coeficiente de correlación de Spearman (ρ = rho)

Hipótesis

 H_0 : X e Y son mutuamente independientes.

 H_1 : X e Y no son mutuamente independientes.

Datos originales

Fish	Fish size (x)	Parasites (y)
1	942	13
2	101	14
3	313	18
4	800	10

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

d: diferencia entre ranking

2 RESULTADOS POSIBLES DE CORRELACIÓN

Rx	Ry
4	1
1	4
2	2
3	3
ρ =	= - 1

Rx	Ry
4	4
1	1
2	2
3	3

$$\rho = = 1$$

¿Cuántas permutaciones / correlaciones son posibles?

 $P_4 = 4! = 4 \times 3 \times 2 \times 1 = 24$ permutaciones posibles

Coeficiente de correlación de Spearman (ρ = rho)

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Datos originales

Fish	Fish size (x)	Parasites (y)
1	942	13
2	101	14
3	313	18
4	800	10

Rangos

Sujeto	Rx	Ry
1		
2		
3		
4		

Diferencia entre rangos

d	d ²
$\Sigma = S$	

Coeficiente de correlación de Spearman (ρ = rho)

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Hipótesis

 H_0 : X e Y son mutuamente independientes.

H₁: X e Y no son mutuamente independientes.

Datos originales

Fish	Fish size	Parasites
1	942	13
2	101	14
3	313	18
4	800	10

Rangos

Fish	Fish size	Parasite s
1	4	2
2	1	3
3	2	4
4	3	1

Diferencia entre rangos

d	d ²
2	4
-2	4
-2	4
2	4
$\Sigma = S$	16

$$\rho = 1 - ((6*16) / 4 (4^2 - 1)) = -0.6$$

DISTRIBUCIÓN MUESTRAL DE POSIBLE VALORES DE CORRELACIÓN

-1.00	- 0.80	- 0.80	- 0.80	- 0.60	- 0.40	- 0.40	- 0.40	- 0.40	- 0.20	- 0.20	0.00
0.00	0.20	0.20	0.40	0.40	0.40	0.40	0.60	0.80	0.80	0.80	1.00

¿Cómo someto a prueba la hipótesis?

Hipótesis	Verdadera cuando
H ₀ : X e Y son mutuamente independientes	Rho cerca de cero
H_1 : X e Y no son mutuamente independientes.	Rho lejos de cero, ya sea positivo o negativo.

PRUEBA DE HIPÓTESIS CORRELACION

-1.00	- 0.80	- 0.80	- 0.80	- 0.60	- 0.40	- 0.40	- 0.40	- 0.40	- 0.20	- 0.20	0.00
0.00	0.20	0.20	0.40	0.40	0.40	0.40	0.60	0.80	0.80	0.80	1.00

$$p = 10 / 24$$

 $p = 0.4167$

No se rechaza H_0 porque p = 0.416 es mayor a 0.05

Note que para el experimento de 4 peces nunca podré aceptar H_0 porque aun con el valor de Rho = 1, la probabilidad es de 0,08.

AUTOAPRENDIZAJE CON DATACAMP

INTERACTIVE COURSE

Intermediate R

Continue Course

□ Bookmark

O 6 hours ▷ 14 Videos ↔ 81 Exercises 👫 431,703 Participants 🖯 6,950 XP

RESUMEN DE LO APRENDIDO

- 1. Revisión de conceptos de permutación.
- 2. Recordatorio correlación Pearson.
- 3. Funciones monótonas.
- 4. Aplicación de concepto de permutación a prueba de correlación de Spearman.

