HYDROGRAPHIC MEASUREMENTS IN THE MESTERN ALBORAN SEA JUNE 1982(U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STATION MS TH KINDER ET AL FEB 83 NORDA-TN-202 F/G 8/10 AD-A126 211 1/2 UNCL'ASSIFIED NL ĐĐ

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MA126211

Naval Ocean Research and Development Activity

NSTL Station, Mississippi 39529

Hydrographic Measurements in the Western Alboran Sea, June 1982

IIIC FILE COPY

Thomas H. Kinder Zachariah R. Hallock Donald A. Burns Michael Stirgus

Ocean Science and Technology Laboratory Oceanography Division

February 1983

DISTRIBUTION STATEMENT A
Approved for public releases

Ipproved for public release Distribution Unlimited 33 03 30 055

ABSTRACT

During June 1982, 57 CTD stations were taken, 56 in the northwestern Alboran Sea (western Mediterranean) and one in the Atlantic Ocean just west of the Strait of Gibraltar. Vertical profiles of potential temperature, salinity, and density are presented along with the potential temperature versus salinity correlation diagrams. A comparison of CTD and water sample salinity data is presented.

ACKNOWLEDGMENTS

The officers and crew of USNS BARTLETT (T-AGOR-13), A. Rashkin, master, enthusiastically supported our work. In addition to Burns and Kinder, members of the scientific party were: Louis Banchero (NORDA), Stephen Sova (NORDA), Richard Myrick (NORDA), Gregorio Parrilla (Instituto Espanol de Oceanografia, Madrid), Luis Arevalo Oceanografia, (Laboratorio Malaga), Teniente Antonio Ruiz (Instituto Hidrografico de Marina, Cadiz), Edward Boyle (MIT), Margaret Delaney (MIT), Glen Shen (MIT), and E. Birch Criss (Computer Sciences Corporation). All contributed to the hydrographic measurements. Code 422CS of the Office of Naval Research, under Dr. Dennis Conlon, funded this work under Program Element 61153N.

CONTENTS

LIST OF ILLUSTRATIONS	iv
LIST OF TABLES	iv
INTRODUCTION	1
CRUISE PLAN	1
DATA COLLECTION AND PROCESSING	1
DISCUSSION	2
REFERENCES .	4

ILLUSTRATIONS

rigure 1	Cruise track of USNS BARTLETT	9
Figures 2-116	Even numbers: Vertical Profiles, Stations 1-57	10-124
Figures 3-117	Odd numbers: TS Diagrams, Stations 1-57	11–125
Figure 118:	Composite TS Diagram	126
Figure 119.	Composite TS Diagram, Intermediate and Deep Waters	127
	TABLES	
Table 1. Stat	ion Positions	5
Table 2. Sali	nity Calibration	6

HYDROGRAPHIC MEASUREMENTS IN THE

WESTERN ALBORAN SEA, JUNE 1982

1. <u>Introduction</u>. The Naval Ocean Research and Development Activity (NORDA) is studying the inflow of the Atlantic water into the Mediterranean Sea in an Office of Naval Research funded project entitled "Mesoscale Flow Dynamics in the Strait of Gibraltar and Alboran Sea." This project has become part of an international study of the Alboran Sea/Strait of Gibraltar/Gulf of Cadiz region. This broad study has taken the name ¿Donde Va?

The first of two ¿Donde Va? field periods occurred during June 1982 when USNS BARTLETT deployed 5 current meter moorings and did 57 conductivity-temperature-depth profile (CTD) stations. This note discusses the CTD data.

- 2. <u>Cruise Plan</u>. The plan of the cruise was to accomplish three objectives (listed in decreasing priority):
 - Place five subsurface current meter moorings across the inflowing jet of Atlantic water;
 - Do CTD section across the current; and
 - Do trace element chemical sampling.

The CTD sections were designed to cross the historical position of the jet and anticyclonic gyre (Cano and Castillejo, 1972; Lanoix, 1974; Cheney and Doblar, 1982; and Philipe and Harang, 1982) We also monitored satellite imagery provided by M. Philipe of the Centre de Meteorologie Spatiale, Lannion, France, and processed at NORDA by P. La Violette, and used a numerical model of the circulation (Preller and Hurlburt, 1982) to design the station locations.

3. Data Collection and Processing. Data were acquired using a Neil-Brown MK III CTD lowered at 60 m/min. Data were recorded directly on digital tape (Model 1150 Neil Brown data terminal and Digi Data tape deck). This Naval Oceanographic Office equipment, installed for evaluation aboard BARTLETT, streamlined the post-cruise data processing considerably. The raw data were then edited to remove spikes, the sensor responses were matched, and the data were pressure-sorted and filtered to produce one-decibar averages (Hallock, 1982). Individual profiles and TS diagrams (Figures 2-117) and composite TS diagrams (Figures 118 and 119) show the 1 m averaged values. Salinities were calculated using the 1978 practical salinity scale (Lewis and Perkin, 1981). Potential temperature and $\sigma_{\rm t}$ were computed according to Fofonoff (1962).

Several anomalies remain in the data. Station 23 had salinities which were about 0.03 parts per thousand (PPT) too low (Figures 46, 47 and 119), and station 43 had bad salinities from about 300 to 500 decibars (dbars) (Figures 88, 89 and 119). Both of these anomalies may have been caused by foreign material lodging in the conductivity cell and subsequently being flushed. Station 34 (034001) was repeated (034002) after the CTD struck bottom on the first cast (Figures 68-71).

Water samples were obtained with a rosette sampler to monitor CTD performance. Two water sample bottles were collected at the same depth at each of 17 designated stations. Salinity analyses were performed using a Guildline AUTOSAL salinometer, and compared to the CTD values (Table 2). Rosette malfunctions and other errors sometimes prevented collecting two samples, and disagreement between samples sometimes indicated an error in the sample collection. When only samples that agreed within 0.005 PPT were compared to CTD values (16 samples at 8 stations), then the differences had a mean of -0.003 (CTD low) and a standard deviation of +0.002. The pressure error of the instrument determined by the Naval Oceanographic Office was from 0.8 dbar at 0 dbar to 5.3 dbar at 2000 dbar. We claim that our measurements were accurate to 0.005°C, 0.005 PPT, and 5 dbar, and their precision probably exceeds these values.

Navigation was by radar and visual fixes near land, and by satellite navigation away from land. Station positions within 20 km of land are probably accurate to ± 0.2 km. Because of the intermittentency of satellite passes that yield accurate fixes (up to four hours between such passes), station positions away from land are reconstructed within 2 km (the relative position of stations is probably within 1 km). At the core of the inflowing Atlantic jet, drift was estimated at 2.5 knots. Using a lowering rate of 60 m/min at a 1500 m deep station (the deepest station: Table 1) therefore resulted in a station that occupied a track about 2 km long.

4. Discussion. Station 45 (Figures 93 and 94) illustrates the hydrographic structure that was present (also see composite Figures 118 and 119). This station was located near the center of the gyre both historically and during June 1982. Low salinity Atlantic water (20.6°C, 36.43 PPT, 6 dbar) was present at the surface, extending as a nearly isohaline layer to 129 dbar (15.5°C, 36.51 PPT). Values then increased in salinity and decreased slowly in temperature towards a series of subtle temperature minima (13.17°C, 38.46 PPT, 310 dbar) which mark the western Mediterranean winter water (Lanoix, 1974). This was underlain by a salinity maximum (13.15°C, 38.48 PPT, 370 dbar, potential density 29.08 kg/m³) that is the remaining signature of eastern Mediterranean (Levantine) intermediate water (Katz, 1972; Lanoix, 1974). Temperature and salinity

then both decreased toward western Mediterranean deep water (12.78°C, 38.42 PPT, 1300 dbar, potential density 29.11 kg/m³). Below 300 dbar the waters are quite homogeneous: most of the density stratification occurs in the upper 200 dbar (potential density at station $45 = 25.70 \text{ kg.m}^3$ at the surface and 28.78 kg/m³ at 200 dbar). The subtle differences below 200 dbar remain interesting, however, because of questions concerning the origins and circulation of these waters and their importance to the flushing of the Mediterranean Sea and their contribution to the North Atlantic Ocean (Lacombe and Tchernia, 1972; Bryden and Stommel, 1982).

REFERENCES

Bryden, H. L. and H. M. Stommel (1982). Origin of the Mediter-ranean Outflow. J. Mar. Res. 40, Suppl:55-71.

Cano, C. and F. F. de Castillejo (1972). Contribucion al Conocimiento del mar de Alboran: III. Variaciones del Remolino Anticiclonico. Boletin del Instituto Espanol de Oceanografia, Madrid, 157:3-7 plus 18 figs.

Cheney, R. E. and R. A. Doblar (1982). Structure and Variability of the Alboran Sea Frontal System. J. Geophys. Res. 87 (C1):585-594.

Fofonoff, N. P. (1962). Physical Properties of Seawater. In: The Sea, Vol. I, M. N. Hill (ed.), New York, Wiley, p. 3-30.

Hallock, Z. R. (1982). A Computer Program for Processing CTD (Conductivity-Temperature-Depth) Data. Naval Ocean Research and Development Activity, NSTL Station, Miss., NORDA Technical Note 196 (in press).

Katz, E. J. (1972). The Levantine Intermediate Water Between the Strait of Sicily and the Strait of Gibraltar. Deep Sea Res. 7:152-162.

Lacombe, H. and P. Tchernia (1972). Caracteres hydrologiques et circulation des eaux en Mediterranee. In: The Mediterranean Sea: A Natural Sedimentation Laboratory, D. J. Stanley (ed.), Stroudsburg, Pa., Dowden, Hutchinson and Ross, p. 25-36.

Lanoix, F. (1974). Projet Alboran: etude hydrologique et dynamique de la mer Alboran. NATO Technical Report 66, 39 p. plus 18 figs.

Lewis, E. L. and R. G. Perkin (1981). The Practical Salinity Scale 1978: Conversion of Existing Data. Deep Sea Res. 28(4):307-328.

Philippe, M. and L. Harang (1982). Surface Temperature Fronts in the Mediterranean Sea from Infrared Satellite Imagery. In: Hydrodynamics of Semi-Enclosed Seas, J. C. J. Nihoul (ed.), Elsevier, p. 91-128.

Preller, R. and H. Hurlburt (1982). A Reduced Gravity Numerical Model of Circulation in the Alboran Sea. In: Hydrodynamics of Semi-Enclosed Seas, J. C. J. Nihoul (ed.), Elsevier, p. 75-90.

TABLE 1. Station Positions

NUMBER	TIME (Z)	LATITUDE (N)	LONGITUDE (W)	LONGITUDE (W) DEPTH (M)	
1	1252 22 June	35-54.6	5-03.0	468	Gibraltar Section
2	1357 22 June	35-57.0	5-04.6	512	Gibraltar Section
3	1510 22 June	36-00.7	5-04.7	550 333	Gibraitar Section
4 5	1650 22 June 1841 22 June	36-03 _• 3	5-05.9 5-09.6	732 798	Gibraltar Section Gibraltar Section
6	1955 22 June	36-06 _• 0 36-09 _• 0	5-11.2	710	Gibraltar Section
7	2110 22 June	36-12.0	5-13.0	351	Gibraitar Section
8	2212 22 June	36,14,7	5-14.0	220	Gibraitar Section
9	2335 22 June	36-05.9	5-09.7	801	Chemical Station
10	1423 23 June	36,16,6	4-50.2	720	Mooring 12
11	1843 23 June	36-17.4	4-51.1	672 871	Mooring 12
12 13	2032 23 June	36-11.1 36-07.0	4-48.2 4-48.0	871 949	Mooring 13 Mooring 14 (poor pos.)
14	2130 23 June 1414 24 June	36-07.0 36-12.5	4-47.0	814	Mooring 13
15	0208 25 June	35-52.3	4-27.8	1407	Chemical Station
16	0920 25 June	36-08,5	4-45.9	937	Mooring 14 (poor pos.)
17	1846 25 June	36-02.4	.4-44.8	1021	Mooring 15
18	1334 26 June	35-58.2	4-46,6	994	Mooring 16
19	1537 26 June	36-10.8	4-39.9	966	Marbella Line
20	1712 26 June	36-06.3	4-40.3	1014	Marbella Line
21	1822 26 June	36-03.1	4-38.5	1080	Marbella Line
22	1943 26 June	36-00.7	4-36.4	1131	Marbella Line
23	2115 26 June	35-57 _• 7	4-36.1	1131 11 3 8	Marbella Line
24 25	2221 26 June 0016 27 June	35-55,2 35-51,5	4-35.8 4-35.8	1211	Marbella Line Marbella Line
26	0333 27 June	36-12.3	4-40.4	972	Marbella Line
27	0455 27 June	36-15.7	4-40.8	856	Marbella Line
28	0619 27 June	36-19.6	4-42.2	684	Marbella Line
29	0714 27 June	36-20.7	4-43.4	500	Marbel la Line
30	0804 27 June	36-24.0	4-45.1	232	Marbella Line
31	0907 27 June	36-27.8	4-45.7	82	Marbella Line
32	1235 27 June	36-41.0	4-16.8	51	Malaga Section
33	1342 27 June	36-37.8	4-17.5	167	Malaga Section
34	1500 27 June	36-34.7	4-18.0	249 317	Malaga Section
35 36	1606 27 June 1650 27 June	36-31.7 36-27.2	4-18.2 4-18.7	454	Malaga Section Malaga Section
37	1759 27 June	36-24.5	4-16.2	586	Malaga Section
38	1848 27 June	36-22.4	4-15.5	. 644	Malaga Section
39	1951 27 June	36-20.1	4-15.2	721	Malaga Section
40	2107 27 June	36-15.9	4-15.2	860	Malaga Section
41	2310 27 June	36-12.8	4-14.5	1094	Malaga Section
42	0053 28 June	36-08.0	4-09.2	1295	Malaga Section
43	0425 28 June	36-03.2	4-07.7	1330	Malaga Section
44	0630 28 June	35-58.6	4-09.3	1356	Maiaga Section
45	0905 28 June	35-52.2	4-09.0	1341	Malaga Section
46 47	1042 28 June 1320 28 June	35-52.7 35-50.7	4-02.4 3-53.3	1318 1098	Alboran Island Section Alboran Island Section
48	1623 28 June	35-52.2	3-46.8	1427	Alboran Island Section
49	1850 28 June	35-54-0	3-39.7	1466	Alboran Island Section
50	2100 28 June	35-54.2	3-31.2	1533	Alboran Island Section
51	2325 28 June	35-53.8	3-23.5	1436	Alboran Island Section
52	0138 29 June	35-55.0	3-18.7	1171	Alboran Island Section
53	0315 29 June	35-55.2	3-15.4	1017	Alboran Island Section
54	0454 29 June	35-55.4	3-11.0	660	Alboran Island Section
55	0614 29 June	35-55.3	3-06.9	262	Alboran Island Section
56	0709 29 June	35-55.8	3-04.0	110	Alboran Island Section
57	0404 30 June	35-45,8	6-29.8	443	Chemical Station (Atlantic)

TABLE 2. Salinity Comparison

BOTTLE NUMBER	STATION	PRESSURE (dbar)	CTD	SALINOMETER	DIFFERENCE	COMMENTS
1	2	447	38,436	38,424	+0.012	Bottles disagree
2	Ž	447	38,436	38,443	-0.007	Bottles disagree
3	4	583	38,426	38,429	-0.003	•
Ä.	4	583	38,426	38,430	-0.004	
5	6	642	38,442	38,445	-0.003	Bottles disagree
6	6	642	38,442	38,461	-0.019	Bottles disagree
7	17	1000	38,429	38,465	-0.036	Bottles disagree
8	17	1000	38,429	38,432	-0,003	Bottles disagree
9	18	935	38,434	38,443	-0.009	Bottles disagree
10	18	935	38,434	38,436	-0.002	ottles disagree
. 11	21	1029	38.430	38.435	-0.005	orties disagree
12	21	1029	38,430	38,427	+0.003	lottles disagree
13	24	1115	38.424	38.426	-0.002	_
14	24	1115	38,424	38,426	-0.002	
15	27	7 94	38,441	38,446	-0.005	
16	27	750	38,445	38,450	-0.005	
17	30	218	38,415	38,416	-0.001	
18	30	218	38,415	38,414	+0.001	
19	34	260	38,426	38,426	0.000	
20	36	408	38,476	38,485	-0.009	
21	39	700	38,455	38,459	-0.004	
22	39	700	38,455	38,454	+0.001	
23	42	1230	38,425	38.428	-0.003	
24	42	1230	38,425	38,427	-0.002	
25	45	1320	38,425	38,433	-0.008	Bottles disagree
26	45	1320	38,425	38,423	+0.002	Bottles disagree
27	49	1440	38,423	38.426	-0.003	_
28	49	1440	38,423	38.427	-0.004	
29	51	1400	38,420	38,423	-0.003	
30	51	1400	38,420	38,422	-0,002	
31	54	625	38,448	38,455	-0.007	

For all samples: n = 31

mean difference: -0.004 standard deviation: ±0.008

For samples with paired samples agreeing within ± 0.005 only: mean difference: -0.003 standard deviation ± 0.002

Calibration by Navai Oceanographic Office at 15°C had a difference of +0.0005.

Guildline AUTOSAL Salinometer Serial: 13059

Nell Brown CTD Sensor Serial: 01-2797-02

Vertical Profiles, Stations 1 - 57, Figures 2 - 116

Pages 10 - 124,

Even Numbers

TS Diagrams, Stations 1 - 57, Figures 3 - 117

Pages 11 - 125,

Odd Numbers

Figure 2

ALBORAN SEA CTD DATA CRUISE 130982 STATION 001001

Figure 3

Figure 4

(v)

Figure 5

Figure 6

ALBORAN SEA CTD DATA CRUISE 130982 STATION 003001

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

ALBORAN SEA CTD DATA CRUISE 130982 STATION 006001

Figure 13

Figure 14

ALBORAN SEA CTD DATA CRUISE 130982 STATION 007001

E

D

Figure 15

Figure 16

F

1

Figure 17

Figure 18

E

Figure 19

Figure 20

ALBORAN SEA CTD DATA CRUISE 130982 STATION 010001

E

Figure 21

Figure 22

Ë

Figure 23

Figure 24

ALBORAN SEA CTD DATA CRUISE 130982 STATION 012001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 15.0 14.0 13.0 -

E

.

Figure 25

36.5 37.0 37 SALINITY(ppt)

36.0

37.5

38.0

38.5

39.0

12.0

35.0

Figure 26

ALBORAN SEA CTD DATA CRUISE 130982 STATION 013001 22.0 21.0 20.0 19.0 THETA(deg-C) 18.0 17.0 16.0 15.0 14.0 13.0

C

Figure 27

36.5 37.0 37 SALINITY(ppt)

37.5

38.0

38.5

39.0

36.0

12.0

35.0

Figure 28

Ľ

Figure 29

Figure 30

Figure 31

36.5 37.0 SALINITY(ppt)

·----.5

38.0

38.5

39.0

12.0

35.0

35.5

Figure 32

È

D

12.0

35.0

36.0

Figure 33

36.5 37.0 37 SALINITY(ppt)

37.5

38.5

39.0

Figure 34

ALBORAN SEA CTD DATA CRUISE 130982 STATION 017001

Figure 35

Figure 36

ALBORAN SEA CTD DATA CRUISE 130982 STATION 018001

Figure 37

Figure 38

Figure 39

Figure 40

ALBORAN SEA CTD DATA CRUISE 130982 STATION 020001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0

16.0

15.0

14.0

13.0

12.0

35.0

26.0

Figure 41

36.5 37.0 37 SALINITY(ppt)

37.5

38.5

39.0

38.0

36.0

Figure 42

ALBORAN SEA CTD DATA CRUISE 130982 STATION 021001

Figure 43

Figure 44

ALBORAN SEA CTD DATA CRUISE 130982 STATION 022001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) **£7.0** 16.0 15.0 14.0 13.0 12.0 36.5 37.0 37 SALINITY(ppt) 37.5 35.0 35.5 36.0 38.5 39.0 38.0

Figure 45

Figure 46

E

Figure 47

Figure 48

ALBORAN SEA CTD DATA CRUISE 130982 STATION 024001

E

1

Figure 49

Figure 50

Figure 51

Figure 52

ALBORAN SEA CTD DATA CRUISE 130982 STATION 026001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 15.0 14.0 13.0

Figure 53

36.5 37.0 37 SALINITY(ppt)

37.5

38.5

39.0

38.0

12.0

35.0

35.5

Figure 54

Figure 55

Figure 56

ALBORAN SEA CTD DATA CRUISE 130982 STATION 028001

Figure 57

Figure 58

Figure 59

Figure 60

ALBORAN SEA CTD DATA CRUISE 130982 STATION 030001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 15.0 14.0 13.0 -12.0 36.5 37.0 37 SALINITY(ppt) 36.0 37.5 38.5 35.5 35.0 38.0 39.0

Figure 61

Figure 62

Figure ??

Figure 64

ALBORAN SEA CTD DATA CRUISE 130982 STATION 032001

Figure 65

Figure 66

ALBORAN SEA CTD DATA CRUISE 130982 STATION 033001 22.0 O.LS 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 15.0 14.0 13.0 12.0 36.0 38.5 37.0 37.5 35.0 38.0 38.5 35.5 39.0 SALINITY(ppt)

Ľ

Figure 67

Figure 68

Ŀ

U

Figure 69

Figure 70

Figure 71

Figure 72

ALBORAN SEA CTD DATA CRUISE 130982 STATION 035001

Figure 73

Figure 74

ALBORAN SEA CTD DATA CRUISE 130982 STATION 036001

E

J

Figure 75

Figure 76

Figure 77

Figure 78

ALBORAN SEA CTD DATA CRUISE 130982 STATION 038001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 15.0 14.0 13.0 12.0 -6.5 37.0 37 SALINITY(ppt) 35.0 36.5 37.5 36.0 38.5 39.0 38.0 35.5

Figure 79

Figure 80

ALBORAN SEA CTD DATA CRUISE 130982 STATION 039001

ľ

(()

Figure 81

Figure 82

ALBORAN SEA CTD DATA CRUISE 130982 STATION 040001 22.0 21.0 20.0 25.0 19.0 THETA(deg-C) 18.0 -17.0 16.0 15.0 14.0 13.0 12.0 36.5 37.0 37 SALINITY(ppt) 37.5 38.5 36.0 38.0 35.0 35.5 39.0

Figure 83

Figure 84

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ALBORAN SEA CTD DATA CRUISE 130982 STATION C41001 22.0 21.O 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 26.0 15.0 14.0 13.0 12.0 65 37.0 37 SALINITY(ppt) 36.5 37.5 38.5 36.0 38.0 39.0 35.5 35.0

Figure 85

The property of the second sec

Figure 86

Figure 87

Figure 88

Figure 89

Figure 90

Ġ.

823

Figure 91

Figure 92

(

Figure 93

Figure 94

Figure 95

Figure 96

ALBORAN SEA CTD DATA **CRUISE 130982** STATION 047001 22.0 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 26.0 15.0 14.0 13.0

12.0

35.0

35.5

36.0

Figure 97

36.5 37.0 37 SALINITY(ppt)

37.5

38.0

38.5

39.0

Figure 98

ALBORAN SEA CTD DATA CRUISE 130982 STATION 048001

E

Figure 99

Figure 100

. .

Figure 101

Figure 102

Figure 103

Figure 104

Figure 105

Figure 106

Figure 107

Figure 108

Figure 109

Figure 110

ALBORAN SEA CTD DATA CRUISE 130982 STATION 054001 21.0 20.0 19.0 18.0 THETA(deg-C) 17.0 16.0 28.0 15.0 14.0 13.0 12.0 36.5 37.0 37 SALINITY(ppt) 36.0 37.5 35.0 35.5 38.5 39.0 38.0

E

Figure 111

Figure 112

Ö

£ .

I

Figure 113

Figure 114

E

Figure 115

Figure 116

E

Figure 117

ALBORAN SEA CTD DATA

Figure 118

ALBORAN SEA CTD DATA

Figure 119

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)		
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NORDA Technical Note 202	AD-A126211	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Hydrographic Measurements in the Western Alboran Sea, June 1982		Final
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		. CONTRACT OR GRANT NUMBER(*)
Thomas H. Kinder Zachariah R. Hallock Donald A. Burns Michael Stirgus		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Ocean Research and Development Activity NSTL Station, Mississippi 39529		PE 61153N
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Ocean Research and Development Activity NSTL Station, Mississippi 39529		February 1983
		13. NUMBER OF PAGES 131
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)		15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Distribution Unlimited	DISTRIBUTION STATEM	ENT A
	Approved for public release;	
	Distribution Unlimi	
17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from Report)		
		•
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
hydrography, temperature, salinity, density, Strait of Gibraltar, Alboran Sea, western Mediterranean Sea		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
During June 1982, 57 CTD stations were taken 56 in the northwestern Alboran Sea (western Mediterranean) and one in the Atlantic Ocean just west		

of the Strait of Gibraltar. Vertical profiles of the potential temperature, salinity, and density are presented along with the potential temperature versus salinity correlation diagrams. A comparison of CTD and water sample salinity data is presented.

