AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q76011

Appln. No.: 10/559,615

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (previously presented): A carbon material for forming a battery electrode, comprising

carbon powder having a homogeneous structure which is produced by causing an organic

compound, serving as a raw material of a polymer, to permeate into carbonaceous particles, and

subsequently polymerizing the organic compound, followed by thermal treatment at a

temperature of 1,800 to 3,300°C,

wherein a graphite crystal structure region and an amorphous structure region are

distributed throughout the entirety of a particle constituting the carbon material from the surface

of the particle to a center portion thereof and the carbonaceous particles have an average particle

size of 10 to 40 µm and which has a substantially uniform structure from the surface to the center

portion of the particle.

2. (original): The carbon material for forming a battery electrode according to claim 1,

wherein the polymerization is carried out under heating at a temperature of 100 to 500°C.

3. (previously presented): The carbon material for forming a battery electrode according

to claim 1, wherein the organic compound is a raw material of at least one polymer selected

from the group consisting of a phenol resin, a polyvinyl alcohol resin, a furan resin, a cellulose

resin, a polystyrene resin, a polyimide resin, and an epoxy resin.

2

AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q76011

Appln. No.: 10/559,615

4. (original): The carbon material for forming a battery electrode according to claim 3,

wherein the organic compound is a raw material of a phenol resin.

5. (original): The carbon material for forming a battery electrode according to claim 4,

wherein a drying oil or a fatty acid derived therefrom is added during the course of reaction of

the phenol resin raw material.

6. (canceled).

7. (currently amended): The carbon material for forming a battery electrode according to

claim 16, wherein, with respect to a transmission electron microscope bright-field image of a

cross section of a thin piece obtained by cutting each of the particles constituting the carbon

material for forming a battery electrode, in a selected area diffraction pattern of an arbitrarily

selected 5-µm square region in the section, the area ratio of a graphite crystal structure region

having a diffraction pattern formed of two or more spots to an amorphous structure region

having a diffraction pattern formed of only one spot attributed to (002) plane is 99 to 30:1 to 70.

8. (previously presented): The carbon material for forming a battery electrode according

to claim 1, which is produced by performing multiple times a process of causing the organic

compound to deposit onto and/or permeate into the carbonaceous particles and subsequently

polymerizing the organic compound, followed by thermal treatment at a temperature of 1,800 to

3,300°C.

3

AMENDMENT UNDER 37 C.F.R. § 1.111

Appln. No.: 10/559,615

9. (previously presented): The carbon material for forming a battery electrode according

to claim 1, wherein the amount of the organic compound is 4 to 500 parts by mass on the basis

of 100 parts by mass of the carbonaceous particles.

10. (original): The carbon material for forming a battery electrode according to claim 9,

the amount of the organic compound is 100 to 500 parts by mass on the basis of 100 parts by

mass of the carbonaceous particles.

11. (previously presented): The carbon material for forming a battery electrode according

to claim 1, which contains boron in an amount of 10 to 5,000 ppm.

12. (original): The carbon material for forming a battery electrode according to claim 11,

wherein boron or a boron compound is added after polymerization of the organic compound,

followed by thermal treatment at 1,800 to 3,300°C.

13. (previously presented): The carbon material for forming a battery electrode according

to claim 1, wherein the carbonaceous particles are natural graphite particles, particles formed of

petroleum pitch coke, or particles formed of coal pitch coke.

14. (canceled).

4

AMENDMENT UNDER 37 C.F.R. § 1.111

Appln. No.: 10/559,615

15. (previously presented): The carbon material for forming a battery electrode according to claim 1, which contains carbon fiber having a filament diameter of 2 to 1,000 nm.

16. (original): The carbon material for forming a battery electrode according to claim 15, wherein at least a portion of the carbon fiber is deposited onto the surface of the carbon powder.

17. (original): The carbon material for forming a battery electrode according to claim 15, wherein the amount of the carbon fiber is 0.01 to 20 parts by mass on the basis of 100 parts by mass of the carbonaceous particles.

18. (original): The carbon material for forming a battery electrode according to claim 15, wherein the carbon fiber is vapor grown carbon fiber, each fiber filament of the carbon fiber having an aspect ratio of 10 to 15,000.

19. (original): The carbon material for forming a battery electrode according to claim 18, wherein the vapor grown carbon fiber is graphitized carbon fiber which has undergone thermal treatment at 2,000°C or higher.

20. (original): The carbon material for forming a battery electrode according to claim 18, wherein each fiber filament of the vapor grown carbon fiber includes a hollow space extending along its center axis.

AMENDMENT UNDER 37 C.F.R. § 1.111

Appln. No.: 10/559,615

21. (original): The carbon material for forming a battery electrode according to claim 18, wherein the vapor grown carbon fiber contains branched carbon fiber filaments.

- 22. (original): The carbon material for forming a battery electrode according to claim 18, wherein the vapor grown carbon fiber has, at (002) plane, an average interlayer distance (d_{002}) of 0.344 nm or less as measured by means of X-ray diffractometry.
- 23. (previously presented): The carbon material for forming a battery electrode according to claim 1, wherein the carbon powder satisfies at least one of the following requirements (1) through (6):
- (1) average roundness as measured by use of a flow particle image analyzer is 0.85 to 0.99;
- (2) C_0 of (002) plane as measured through X-ray diffractometry is 0.6703 to 0.6800 nm, La (the crystallite size as measured in the a-axis orientation) is greater than 100 nm, and Lc (the crystallite size as measured in the c-axis orientation) is greater than 100 nm;
 - (3) BET specific surface area is 0.2 to 5 m²/g;
 - (4) true density is 2.21 to 2.23 g/cm³;
- (5) laser Raman R value (the ratio of the intensity of a peak at 1,360 cm⁻¹ to that of a peak at 1,580 cm⁻¹ in the laser Raman spectrum) is from 0.01 to 0.9; and
 - (6) average particle size as measured through laser diffractometry is 10 to 40 μm .
 - 24. (canceled).

AMENDMENT UNDER 37 C.F.R. § 1.111

Appln. No.: 10/559,615

25. (canceled).

26. (previously presented): An electrode paste comprising the carbon material for forming a battery electrode as recited in claim 1, and a binder.

27. (original): An electrode comprising a molded product of the electrode paste as recited in claim 26.

28. (original): A battery comprising the electrode as recited in claim 27.

29. (original): A secondary battery comprising the electrode as recited in claim 27.

30. (original): The secondary battery according to claim 29, which comprises a non-aqueous electrolytic solution and/or a non-aqueous polymer electrolyte, wherein a non-aqueous solvent employed for the non-aqueous electrolytic solution and/or the non-aqueous polymer electrolyte contains at least one selected from the group consisting of ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate.

31. - 32. (canceled).