

XGBOOST

Matt Brems

Data Science Immersive, GA DC

EXAMPLES

against time t

 \bigcirc Good balance of $\Omega(f)$ and L(f)

• Recall that **boosting** is a sequential additive modeling technique that fits a model, reweights the observations based on whether they were classified properly or improperly, then fits an additional model, and so on until the algorithm stops.

Adaboost

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

Adaboost

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

- Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- ► In Adaboost, "shortcomings" are identified by high-weight data points.

Adaboost

$$H(x) = \sum_{t} \rho_t h_t(x)$$

Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

- This method, AdaBoost, was generalized to include the gradient descent method. The highlights:
 - AdaBoost is an iterative, additive model.
 - AdaBoost iterates by reweighting observations based on misclassification.
 - These misclassifications are "residuals" and, treating these residuals as gradients, we can formulate this as a gradient descent problem with a particular loss function.
 - As a gradient descent problem, we can replace the loss function associated with AdaBoost with other loss functions to make this more general.
 - This generalization is known as "gradient boosting."

XGBOOST

- XGBoost, or "eXtreme Gradient Boosting," is similar to gradient boosting.
 - Random Forests are our boosted models.
 - XGBoost Model = RF1 + RF2 + ...
- XGBoost has some very good computational benefits.
- XGBoost is capable of handling missing values.