

【Drawing】

【Fig. 1】

MSB-first Multiplication Algorithm Over GF(2^m)

Input : $A(x)$, $B(x)$, $G(x)$
Output : $P(x)=A(x)B(x) \text{ mod } G(x)$

1. $p_k^{(0)}=0$, for $0 \leq k \leq m-1$
2. $p_{-1}^{(i)}=0$, for $1 \leq i \leq m$
3. for $i = 1$ to m do
4. for $k = m-1$ to 0 do
5. $p_k^{(i)}=p_{m-1}^{(i-1)}g_k+b_{m-i}a_k+p_{k-1}^{(i-1)}$
6. end
7. end
8. $P(x) = p^m(x)$

【Fig. 2】

Division Algorithm Over GF(2^m)

Input: $G(x)$, $A(x)$, $B(x)$
Output: V has $P(x)=A(x)/B(x) \text{ mod } G(x)$
Initialize: $R=B(x)$, $S=G(x)$, $U=A(x)$, $V=0$,
 $count=0$, $state=0$

1. for $i = 1$ to $2m$ do
2. if $state == 0$ then
3. $count = count+1$;
4. if $r_0 == 1$ then
5. $(S, R)=(R, R+S)$; $(V, U)=(U, U+V)$;
6. $state = 1$;
7. end if
8. else
9. $count = count-1$;
10. if $r_0 == 1$ then
11. $(S, R)=(S, R+S)$; $(V, U)=(V, U+V)$;
12. end if
13. if $count == 0$ then
14. $state = 0$;
15. end if
16. end if
17. $R = R/x$;
18. if $u_0 == 0$ then
19. $U = U/x$;
20. else
21. $U = (U+G)/x$;
22. end if
23. end for

【Fig. 3】

【Fig. 4】

[Fig. 5]

[Fig. 6]

[Fig. 7]

