Оперативная память

Что это такое?

Оперативная память — один из важнейших компонентов системы, она необходима для работы операционной системы и приложений, для обработки и временного хранения данных.

Оперативная память не позволяет хранить информацию после выключения питания, но она работает намного быстрее жестких дисков и других устройств. Любая программа сначала загружается с жесткого диска в оперативную память и лишь затем начинает работу. Объем оперативной памяти существенно влияет на общую производительность системы, и его увеличение — наиболее простой и популярный метод модернизации компьютера.

Другие имена

Для оперативной памяти может использоваться обозначение *ОЗУ* (оперативное запоминающее устройство) или *RAM* (*Random Access Memory* — *память с произвольным доступом*).

Как использовать?

Оперативная память выполняется в виде отдельных модулей, которые состоят из нескольких чипов памяти и устанавливаются в соответствующие разъемы на системной плате.

Каждый чип памяти — это особая матрица из миллионов миниатюрных конденсаторов, которые являются элементарными ячейками памяти и могут находиться в заряженном (1) или разряженном (0) состоянии. Кроме конденсаторов, чип содержит схемы управления чтением, записью регенерацией данных. Последняя служит для восстановления заряда конденсаторов, поскольку со временем ОНИ самопроизвольно разряжаются.

Устройство ячейки динамической памяти

Виды оперативной памяти

- I. FPM и EDO
- II. SDRAM (Synchronous DRAM).
- III. DDR SDRAM (Double Data Rate SDRAM), или просто DDR
- IV. DDR2
- v. DDR3
- VI. DDR4
- VII. DDR5
- VIII.SIMM
- IX. DIMM
- X. SODIMM

FPM u EDO

Устаревшие типы *динамической памяти* (экономичный вид памяти, для хранения разряда бита или трита (логарифмическая единица измерения в теории информации), используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариантах два конденсатора), широко применявшиеся в компьютерах класса 486 и Pentium.

SDRAM (Synchronous DRAM)

Этот тип памяти использовался в уже устаревших системах класса Pentium I/II/III, в первых выпусках Pentium 4, а также В аналогичных моделях процессорами AMD. Память SDRAM выпускалась в нескольких вариантах, различавшихся рабочей частотой: РС66 (66 МГц), РС100 (100 МГц), РС133 (133 МГц). Более быстрые модули РС100/РС133 не работают в платах, поддерживающих только РС66.

DDR SDRAM (Double Data Rate SDRAM), или просто DDR

В отличие от обычной *SDRAM*, в **DDR** за <u>один такт передается два</u> <u>пакета данных</u>, поэтому эта память работает в два раза быстрее. Она применялась в системах на базе процессоров Pentium IV (Celeron), AMD Athlon (Sempron), но c 2008 года системные платы с памятью DDRуже не выпускаются. зависимости от тактовой частоты модули DDR МОГУТ иметь обозначения DDR266 (PC2100), DDR333 (PC2700) и DDR400 (PC3200).

DDR₂

Эта память представляет собой дальнейшее развитие технологии DDR: в ней за счет усовершенствования внутренней архитектуры модуля достигается уже четырехкратное увеличение объема передаваемых данных за один такт в сравнении с SDRAM. Модули DDR2 памяти широко используются современных компьютерах и выпускаются нескольких вариантах, различающихся тактовой Модули DDR2 частотой. ΜΟΓΥΤ иметь DDR2-400(PC2-3200), DDR2обозначения 533(PC2-4200), DDR2-677 (PC2-5300), DDR2-

DDR₃

Память этого стандарта позволяет передавать уже 8 пакетов данных за такт.

У DDR3 уменьшено потребление энергии по сравнению с модулями DDR2, что обусловлено пониженным напряжением питания ячеек памяти. Снижение напряжения питания достигается за счёт использования более ТОНКОГО техпроцесса начале — 90нм, в дальнейшем — 65, 50, 40 нм) при производстве микросхем и применения двойным транзисторов затвором Dual-gate (что способствует снижению токов утечки).

DDR4

Четвёртое поколение ОП, являющееся эволюционным развитием предыдущих поколений DDR SDRAM. Отличается повышенными частотными характеристиками и пониженным напряжением питания.

Основное отличие DDR4 от предыдущего стандарта DDR3 заключается в удвоенном до 16 чисел внутренних банков (в 2 группах банков), что позволило увеличить скорость передачи внешней шины. Пропускная способность памяти DDR4 в перспективе может достигать 25,6 ГБ/с (в случае повышения максимальной эффективной частоты до 3200 МГц). Кроме того, повышена надёжность работы за счёт введения механизма контроля чётности на шинах адреса и команд. Изначально стандарт DDR4 определял частоты от 1600 до 2400 МГц с перспективой роста до 3200 МГц.

В массовое производство вышла во 2 квартале 2014 года, сперва только ЕСС-память, а в следующем квартале начались продажи и не-ЕСС модулей DDR4, вместе с процессорами Intel Haswell, требующими DDR4.

DDR5

Пятое поколение ОП, являющееся эволюционным развитием предыдущих поколений DDR SDRAM. DDR5 предоставит меньшее энергопотребление, а также удвоенную пропускную способность и объём по сравнению с DDR4 SDRAM.

Первую в мире оперативную память нового поколения представила SK Hynix 6 октября 2020 года. Ёмкость модулей памяти DDR5 от SK hynix может достигать **256 Гбайт** при использовании технологии производства Through-Silicon-Via (TSV).

Скорость передачи данных увеличена по сравнению с DDR4 в 1,8 раза до 4800–6400 миллионов передач/с. У DDR4 – 3200 миллионов передач/с.

PMIC – встроенная микросхема управления питанием **SPD Hub** (концентратор) - объединяет энергонезависимую память (EEPROM) функции последовательной идентификации модуля памяти (SPD) с дополнительными функциями концентратора, управляющее доступом к внешнему контроллеру и отделяющее нагрузку на внутреннюю шину памяти от внешней

SIMM

Модуль памяти односторонним расположением выводов. Это небольшая плата несколькими чипами памяти, которая устанавливается соответствующий разъем на системной плате. Такая конструкция использовалась для устаревших типов памяти FPM и EDO.

DIMM

Модуль, аналогичный SIMM, но имеющий двухстороннее расположение выводов. Он применяется во всех современных типах памяти SDRAM, DDR и DDR2.

SODIMM

Какие бывают проблемы с оперативной памятью?

При установке большого количества оперативной памяти может оказаться, что операционная система не видит всю установленную память. Основных причин может быть две.

1 Причина

Каждая системная плата имеет свой максимально возможный объем оперативной памяти, который составляет 2, 4, 8, 16 ... Гбайт. Узнать максимальный объем памяти можно из инструкции к плате.

2 Причина

Для повышения скорости обмена данными может применяться двухканальный режим работы памяти. Все платы, предназначенные для создания высокопроизводительных систем, поддерживают его, а в платах для недорогих компьютеров поддержка двухканального режима может отсутствовать.

Для работы в двухканальном режиме модули памяти следует устанавливать на системную плату только парами. На платах с поддержкой двухканального режима обычно имеется четыре слота для установки модулей памяти, два из которых относятся к первому каналу (А), а два других — ко второму (В). Первый модуль памяти следует установить в первый слот канала А, а второй точно такой же модуль — в первый слот канала В. При наличии еще одной пары одинаковых модулей их можно установить в оставшиеся слоты.