

Ю.М. БЕЛОУСОВ, С.Н. БУРМИСТРОВ, А.И. ТЕРНОВ

## ЗАДАЧИ ПО ТЕОРЕТИЧЕСКОЙ ФИЗИКЕ

## Ю.М. Белоусов, С.Н. Бурмистров, А.И. Тернов

Задачи по теоретической физике: Учебное пособие/ Ю.М. Белоусов, С.Н. Бурмистров, А.И Тернов — Долгопрудный: Издательский Дом «Интеллект», 2013. — 584 с.

ISBN 978-5-91559-134-8

Книга содержит 460 задач различной степени сложности, которые в разное время предлагались студентам МФТИ, и охватывает все основные разделы теоретической физики: Теория поля, Квантовая механика и Статистическая физика. Задачи снабжены подробными решениями и пояснениями. Всем разделам предшествует краткое теоретическое введение, содержащее необходимые сведения для решения и понимания соответствующих задач.

Книга предназначена студентам и аспирантам высших учебных заведений, изучающим теоретическую физику.

ISBN 978-5-91559-134-8

216059

© 2012, Ю.М. Белоусов, С.Н. Бурмистров, А.И. Тернов

© 2013, ООО Издательский Дом «Интеллект», оригинал-макет, оформление

Фодорилальстою, приственное бюджетное учреждение науки Центральная научная библиотека Уральского отделения Российской академии наук (ЦНБ УрО РАН)

## ОГЛАВЛЕНИЕ

| Часть I. <b>Задачи</b>                            |   |
|---------------------------------------------------|---|
| Глава 1. Теория поля                              | 1 |
| Введение                                          | 1 |
| 1.1. Векторы и тензоры в евклидовом пространстве  | 4 |
| 1.2. Векторы и тензоры в пространстве Минковского | 4 |
| 1.3. Релятивистская кинематика                    | 4 |
| 1.4. Уравнения Максвелла                          | 4 |
| 1.5. Движение заряженной частицы во внешнем поле  | 4 |
| 1.6. Статическое электромагнитное поле            | 5 |
| 1.7. Свободное электромагнитное поле              | 5 |
| 1.8. Запаздывающие потенциалы, излучение          | 5 |
| 1.9. Электромагнитное поле релятивистских частиц  | 5 |
| 1.10. Рассеяние электромагнитных волн             | 5 |
| Глава 2. Квантовая механика                       | 6 |
| Введение                                          | 6 |
| 2.1. Операторы и состояния в квантовой механике   | 8 |
| 2.2. Одномерное движение                          | 8 |
| 2.3. Линейный гармонический осциллятор            | 8 |
| 2.4. Угловой момент, спин                         | 8 |
| 2.5. Движение в магнитном поле                    | 9 |
| 2.6. Движение в центральном поле                  | Ś |
| 2.7. Квазиклассическое приближение                | 9 |
| 2.8. Теория возмущений                            | 9 |

6

## 4 🗸 Оглавление

| 2.9. F  | Релятивистская квантовая механика                              | 96  |
|---------|----------------------------------------------------------------|-----|
| 2.10. ( | Сложение моментов. Тождественность частиц                      | 97  |
| 2.11. 7 | Геория атомов и молекул                                        | 98  |
| 2.12. 7 | Геория рассеяния                                               | 100 |
| 2.13. 7 | Геория излучения                                               | 101 |
| Глав    | а 3. Статистическая физика                                     | 103 |
| Введе   | ние                                                            | 103 |
|         | Распределение Гиббса. Термодинамические величины и функции.    | 142 |
| 3.2. F  | Квантовые идеальные газы                                       | 146 |
| 3       | 3.2.1. Идеальный ферми-газ                                     | 146 |
| 3       | 3.2.2. Идеальный бозе-газ                                      | 149 |
| 3       | 3.2.3. Идеальный газ элементарных бозе-возбуждений             | 150 |
| 3.3. H  | Неидеальные квантовые системы (жидкости). Основы теории кон-   |     |
|         | денсированных сред                                             | 152 |
| 3       | 3.3.1. Нормальная (несверхтекучая) ферми-жидкость              | 152 |
| 3       | 3.3.2. Сверхпроводимость. Теория БКШ                           | 154 |
| 3       | 3.3.3. Слабонеидеальный бозе-газ. Уравнение Гросса-Питаевского | 156 |
| 3       | 3.3.4. Теория сверхтекучести                                   | 158 |
| 3.4.    | Фазовые переходы и критические явления                         | 159 |
| 3       | В.4.1. Приближение самосогласованного поля                     | 159 |
| 3       | 3.4.2. Функционал Гинзбурга–Ландау                             | 160 |
|         | 3.4.3. Основы теории критических явлений                       | 163 |
|         | Часть II. <b>Решения задач</b>                                 |     |
| Глав    | а 1. Теория поля                                               | 168 |
| 1.1. E  | Векторы и тензоры в евклидовом пространстве                    | 168 |
|         | Векторы и тензоры в пространстве Минковского                   | 171 |
|         | Релятивистская кинематика                                      | 171 |
|         | Уравнения Максвелла                                            | 198 |
|         | Цвижение заряженной частицы во внешнем поле                    | 204 |
|         | Статическое электромагнитное поле                              | 223 |
|         | Свободное электромагнитное поле                                | 233 |
|         | Вапаздывающие потенциалы, излучение                            | 235 |
|         | Электромагнитное поле релятивистских частиц                    | 254 |
|         | Рассеяние электромагнитных волн                                | 266 |
|         | •                                                              |     |

| Глаг  | ва 2. <b>Квантовая механика</b>                                | 278 |
|-------|----------------------------------------------------------------|-----|
|       | Операторы и состояния в квантовой механике                     | 278 |
| 2.2.  | Одномерное движение                                            | 283 |
|       | Линейный гармонический осциллятор                              | 303 |
|       | Угловой момент, спин                                           | 306 |
| 2.5.  | Движение в магнитном поле                                      | 311 |
|       | Движение в центральном поле                                    | 321 |
|       | Квазиклассическое приближение                                  | 332 |
|       | Теория возмущений                                              | 337 |
| 2.9.  | Релятивистская квантовая механика                              | 352 |
|       | Сложение моментов. Тождественность частиц                      | 366 |
|       | Теория атомов и молекул                                        | 373 |
|       | Теория рассеяния                                               | 392 |
| 2.13. | Теория излучения                                               | 407 |
| Гла   | ва 3. Статистическая физика                                    | 416 |
| 3.1.  | Распределение Гиббса. Термодинамические величины и функции.    | 416 |
| 3.2.  | Квантовые идеальные газы                                       | 447 |
|       | 3.2.1. Идеальный ферми-газ                                     | 447 |
|       | 3.2.2. Идеальный бозе-газ                                      | 472 |
|       | 3.2.3. Идеальный газ элементарных бозе-возбуждений             | 485 |
| 3.3.  | Неидеальные квантовые системы (жидкости). Основы теории кон-   |     |
|       | денсированных сред                                             | 491 |
|       | 3.3.1. Нормальная (несверхтекучая) ферми-жидкость              | 491 |
|       | 3.3.2. Сверхпроводимость. Теория БКШ                           | 501 |
|       | 3.3.3. Слабонеидеальный бозе-газ. Уравнение Гросса-Питаевского | 510 |
|       | 3.3.4. Теория сверхтекучести                                   | 520 |
| 3.4.  | Фазовые переходы и критические явления                         | 527 |
|       | 3.4.1. Приближение самосогласованного поля                     | 527 |
|       | 3.4.2. Функционал Гинзбурга-Ландау                             | 532 |
|       | 3.4.3. Основы теории критических явлений                       | 555 |
| Доп   | олнения                                                        | 573 |
| 1.    | Дельта-функция Дирака и другие обобщенные функции              | 573 |
|       | Цилиндрические функции полуцелого индекса                      | 575 |
|       | Вырожденная гипергеометрическая функция. Полиномы Лагерра.     | 577 |
|       | Гамма-функция                                                  | 578 |
| Спис  | ок литературы                                                  | 579 |