

A. Žnidaršič

Blockmodeling Indirect approach Direct approach - structural equivalence

- regular equivalence

Direct approac
- generalized
equivalence

Direct approa - regular

Social Network Analysis - blockmodeling Lab sessions

Anja Žnidaršič

University of Maribor

Moscow, ANR-Lab, 28 May 2019

Outline

A. Žnidaršič

Blockmodeling Indirect approach Direct approach

Direct approac - structural equivalence

- regular equivalence

- generalized equivalence

Direct approa - regular 1 Blockmodeling

Indirect approach

Direct approach - structural equivalence

Direct approach - regular equivalence

Direct approach - generalized equivalence

Direct approach - regular equivalence

A. Žnidaršič

Blockmodeling

Indirect

Direct approach - structural equivalence Direct approach

- regular equivalence Direct approac

- generalized equivalence

Direct approac - regular equivalence

Commands in Pajek:

Network used in the example: the Everett network

1 Create complete cluster:

 ${\tt Cluster} \, \to \, {\tt Create} \, \, {\tt Complete} \, \, {\tt Cluster} \! \to \,$

(New window: Dimension of Cluster) [10] \rightarrow OK

A. Žnidaršič

Blockmodeling

Indirect approach

Direct approach
- structural
equivalence
Direct approach
- regular

equivalence
Direct approach
generalized
equivalence

Direct approac

Commands in Pajek:

2. Compute dissimilarities:

Operations o Network + Cluster o Dissimilarity* o

 \rightarrow (New window: Parameter p) [1] \rightarrow 0K

→ Save as window:

File name: everett_dendrogram.eps

Save as type: Dendrogram with Labels (*.eps)

A. Žnidaršič

Blockmodeling

Indirect approach

Direct approac - structural equivalence

- regular equivalence

Direct approac

Direct approa - regular

Commands in Pajek:

3. Check the dendrogram and select the appropriate number of clusters:

Pajek - Ward [0.00,9.62]

Dendrogram clearly shows two clusters.

A. Žnidaršič

Blockmodeling

Indirect

approach
Direct approach
- structural
equivalence

- regular

Direct approac

Direct approa-- regular

Commands in Pajek:

- 4. Select clusters according to hierarchy:
 - click on View/Edit in Hierarchy panel

 open/close different levels by clicking on an arrow

select desired clusters

A. Žnidaršič

Blockmodeling

Indirect approach

Direct approach - structural equivalence Direct approach - regular equivalence

Direct approac

Direct approa

Commands in Pajek:

• change the type of the clusters

 ${\tt Edit} \ \to \ {\tt Change} \ {\tt Type}$

 desired clusters, close 'Viewing Hierarchy' window

A. Žnidaršič

Blockmodeling

Indirect approach

Direct approac - structural equivalence

- regular equivalence

Direct approac

Direct approa

Commands in Pajek:

- 5. Draw the network with obtained partition from hierarchy:
 - Hierarchy → Make Partition
 - Select the original network in the first row of the Network panel.

Draw → Network + First Partition

A. Žnidaršič

Blockmodeling

Indirect

approach
Direct approach
- structural
equivalence
Direct approach
- regular
equivalence

equivalence
Direct approach
- generalized

Direct approa-- regular

Commands in Pajek:

6. Export the matrix with:

- Hierarchy → Make Permutation
- $\bullet \ \ \textit{File} \rightarrow \textit{Network} \rightarrow \textit{Export as Matrix to EPS} \rightarrow \textit{Using}$

- ightarrow Draw lines according to partition? ightarrow Yes
- \rightarrow Save as window:

File name: everett_2clu_matrix

Save as type: Matrix with Labels (*.eps)

Indirect approach

A. Žnidaršič

Blockmodeling

Indirect

approach

h

g

а C е

d

- regular

- generalized

- regular

The obtained matrix:

Direct approach - structural equivalence

A. Žnidaršič

Blockmodeling

approach
Direct approach
- structural
equivalence

- regular equivalence Direct approach
- Direct approac

Commands in Pajek:

1 Run the blockmodeling based on structural equivalence:

 $Network
ightarrow Create\ Partition
ightarrow Blockmodeling^*
ightarrow Random\ Start$ File Network Networks Operations Partition Partitions Vector Vectors Permutation Permutations C Create Random Network Create New Network Shop slides\NetworkData la Degree Create Vector Components Create Permutation k-Neighbours Create Hierarchy k-Core 2-Mode Network Valued Core Multiple Relations Network Communities Acyclic Network Islands Temporal Network Blockmodeling* Random Start Signed Network Vertex Labels Optimize Partition Vertex Shapes Restricted Options Row-Tie Short Report Default Labels Partition

→ New window:

Direct approach - structural equivalence

A. Žnidaršič

Blockmodeling

Direct approach structural

equivalence

- regular
- generalized

Commands in Pajek:

- 2. In the '1-Mode Blockmodeling' window select:
 - Type of equivalence
 - Number of repetitions

Number of clusters

- Click the RUN button.
- 1 Draw the network with obtained partition:

Draw - > Network + First Partition

Direct approach - structural equivalence

A. Žnidaršič

Blockmodeling Indirect

Direct approach

- structural equivalence

Direct approac

Direct approa

Direct approa

The obtained network with partition into 6 clusters based on structural equivalence:

Direct approach - regular equivalence

A. Žnidaršič

Blockmodeling Indirect approach Direct approach - structural equivalence

Direct approach - regular equivalence Direct approach - generalized

Direct approach

Commands in Pajek:

1 Run the blockmodeling based on regular equivalence:

 $\textit{Network} \rightarrow \textit{Create Partition} \rightarrow \textit{Blockmodeling}^* \rightarrow \textit{Random Start}$

In the '1-Mode Blockmodeling' window select:

- type of equivalence Regular equivalence
- number of repetitions, e.g. [1000]
- number of clusters
 [3]

Direct approach - regular equivalence

A. Žnidaršič

Blockmodeling

Indirect

Direct approach

equivalence Direct approach

 regular equivalence

Direct approad

Direct approad - regular equivalence

Results:

We get five equally well fitting partitions which can be observed from the report window or Partitions panel.

One of the obtained equally well fitting partitions:

 $^{^1}$ Blockmodeling is local optimization algorithm. There are 7 equally well fitting partitions for k=3 and regular equivalence. $4 \pm k + 4 \pm k + 4$

A. Žnidaršič

Blockmodeling
Indirect
approach
Direct approach
- structural
equivalence
Direct approach
- regular

Direct approach - generalized

equivalence Direct approad - regular

Commands in Pajek:

Network used in the example: the Transatlantic Industries network (from the Baseball LittleLeague collection of networks)

1. Run the blockmodeling based on generalized equivalence:

 $Network
ightarrow Create\ Partition
ightarrow Blockmodeling^*
ightarrow Random\ Start$

In the '1-Mode Blockmodeling' window select:

- type of equivalence
 User Defined
- number of repetitions, e.g.
 [1000]
- number of clusters
 [4]

A. Žnidaršič

Blockmodeling

Indirect approach Direct approach - structural equivalence

- regular equivalence Direct approach - generalized equivalence

Direct approa - regular equivalence

Commands in Pajek:

2. For each of 16 blocks we select null, complete, row-dominant, col-dominant, and regular block as possible blocks.

A. Žnidaršič

Blockmodeling

Indirect

Direct approac

- structural equivalence

- regular

Direct approach

- generalized equivalence

Direct approac - regular equivalence

Commands in Pajek:

We get 10 equally well fitting partitions with 0 onconsistencis, but several clusters have only one vertex.

 Therefore, we write a constraints in MDL file (see Pajek manual, page 102).

A. Žnidaršič

Blockmodeling

Indirect

Direct approach - structural

Direct approac

equivalence

Direct approach - generalized equivalence

Direct approad - regular equivalence

Commands in Pajek:

4. Load and run the mdl file:

 $Network o Create\ Partition o Blockmodeling^* o Random\ Start$

- 5. In the '1-Mode Blockmodeling' window select:
 - ullet type of equivalence Load MDL File ightarrow select the prepared mdl file
 - number of repetitions, e.g. [1000]
 - . 543
 - number of clusters [4]
- 6. Draw the network with obtained partition:

```
Draw - > Network + First Partition.
```


A. Žnidaršič

Blockmodeling

- regular

Direct approach - generalized

equivalence

- regular

Result - report window:

Final Image Matrix:

cdo cdo

cdo

rdo rdo req

Final Error Matrix:

Final error = 0.000

A. Žnidaršič

Blockmodeling

Indirect

Direct approa-

- structural equivalence Direct approac - regular

Direct approach

- generalized equivalence

Direct approaregular

Direct approach - pre-specified

A. Žnidaršič

Blockmodeling
Indirect
approach
Direct approach
- structural
equivalence
Direct approach
- regular
equivalence
Direct approach
- generalized

Direct approach - regular equivalence

Commands in Pajek:

1 Run the blockmodeling based on pre-specified model The three basic types of models are: core-periphery, hierarchical, and cohesive subgroups.

Network used in the example: borrowing study materials $Network \rightarrow Create\ Partition \rightarrow Blockmodeling^* \rightarrow Random\ Start$

In the '1-Mode Blockmodeling' window select:

- type of equivalence
 User defined
- number of repetitions, e.g. [1000]
- number of clusters

Direct approach - pre-specified

A. Žnidaršič

Blockmodeling

Indirect

approach Direct approac

- structural

Direct approac

- regular equivalen

Direct approa-

Direct approach - regular equivalence

Results: Image matrix

```
Final Image Matrix:
```

reg -

Final Error Matrix:

1 2 1 0 3 2 0 2

Final error = 5.000

Direct approach - pre-specified

A. Žnidaršič

Blockmodeling

Indirect

approach Direct approach

- structural equivalence

- regular

Direct approa

equivalence

Direct approach - regular equivalence

Next lab session:

A. Žnidaršič

Blockmodeling Indirect approach

Direct approad - structural equivalence

Direct approaregular

equivalence

- generalized equivalence

Direct approach - regular equivalence

Announcement

Blockmodeling in R: package blockmodeling (author: Žiberna Aleš)