Confidence Distributions in Meta-Analysis Student Research Conference, BYU

Travis Andersen Dr Brinley Zabriskie

February 27, 2021

Statistical inference

Group	Event	No Event
Treatment	10	42
Control	12	35

$$\mathsf{Odds}\;\mathsf{Ratio} = \frac{\mathsf{ET}/\mathsf{NT}}{\mathsf{EC}/\mathsf{NC}}$$

$$\hat{OR} = 0.694$$
, P-value = 0.453, 95% CI = (0.268, 1.80)

Statistical inference

- \blacktriangleright We are interested in θ
- ▶ P-values: $P(abs(T) \ge abs(t)|\theta = \theta_0)$
- ► Confidence intervals: $\hat{\theta} \pm z^*(\alpha)SE(\hat{\theta})$

Statistical Inference

Inference depends on choice of level of significance and null value

P-value functions

- ► Compute p-values for all levels of significance
- ► Allows for field experts to make decision

P-value functions

P-value functions

$$lpha = 2\left(1 - \Phi\left(rac{| heta - \hat{ heta}|}{\mathsf{SE}(\hat{ heta})}
ight)
ight)$$

- $ightharpoonup \alpha$: level of significance
- $ightharpoonup \theta$: parameter of interest
- \triangleright $\hat{\theta}$: estimate of θ
- Φ: standard normal cdf

Author	Ee	Ne	Ec	Nc
Barber	10	42	12	35
Norris	5	221	15	213
Kahler	0	38	6	25
Ledwich	2	18	3	17

- In approaches above, normality is assumed
- Goal: create an exact confidence distribution for rare event meta-analyses