Life Cycle Assessment Using OpenLCA

Software Exercise Session: Create a life cycle model (Part II)

Prepared by Qingshi Tu, PhD

Case study: cotton fabrics production

Cotton fiber Cotton yarn Cotton fabrics production production

▼ Inputs

▼ Outputs

Cotton

Fiber

Production

Flow	Category	Amount	Unit	Costs/Rev	Uncertaint	Avoided w	Provider	Data quali	Descripti	
ြ cottonseed; at harve	Agriculture, forest	0.02000	™ kg		none					
ج CUTOFF irrigate; gra	Water supply; sew	22.20000	™ m3		none					
F. CUTOFF nitrogenous	Manufacturing/ISI	0.45700	™ kg		none					
F. CUTOFF pesticide, 1	Manufacturing/ISI	0.01600	™ kg		none					
🦊 diesel	Energy carriers an	47.70000	IIII MJ		none					
F electricity mix	Energy carriers an	12.10000	™ MJ		none		P Elec			
ج Hard coal, at consum	Energy carriers an	0.52000	™ kg		none					
F. LPG - liquefied petrol	Energy carriers an	1.38300	IIII MJ		none					
ြ Natural gas, at consu	Energy carriers an	0.35000	™ kg		none					

Flow	Category	Amount	Unit	Costs/Rev	Uncertaint	Avoided pr	Provider	Data quali	Descripti	
Fa Carbon dioxide, from	Emission to air/lo	4.26500	ru ka		none					

Flow	Category	Amount	Unit	Costs/Rev	Uncertain	Avoided pr	Provider	Data quali	Descripti	
F _a Carbon dioxide, from	Emission to air/lo	4.26500	™ kg		none					
😽 Carbon monoxide, fr	Emission to air/lo	0.01610	™ kg		none					
cotton fiber	[case study] cot	1.00000	<u>™</u> kg		none					
🏹 Hydrocarbons, unspe	Emission to air/lo	0.00500	r kg		none					
Fa Methane, from soil or	Emission to air/lo	0.00760	™ kg		none					
Mitrogen oxides	Emission to air/lo	0.02270	™ kg		none					
Sulfur dioxide	Emission to air/lo	0.00400	™ kg		none					

P Inputs/Outputs: cotton yarn production

▼ Inputs

a	×	1.23
v	\sim	

Cotton

Yarn

Product

Flow	Category	Amount	Unit	Costs/Rev	Uncertaint	Avoided w	Provider	Data quali	Descripti
F. cotton fiber	[case study] cotto	1.10000	™ kg		none				
F electricity mix	Energy carriers an	3.32000	™ kWh		none		P Elec		

▼ Outputs

Flow	Category	Amount Unit		Costs/Rev Uncertaint Avoided pr Provider			Provider	Data quali Descripti		
F ∉ cotton yarn	[case study] cot	1.00000	™ kg		none					

P Inputs/Outputs: cotton fabrics production

▼ Inputs

	_		
-			
	•		
•		•	

Cotton

Fabrics

Producti

Flow	Category	Amount l	Unit	Costs/Rev	Uncertaint	Avoided w	Provider	Data quali	Descripti	i
cotton yarn	[case study] cotto	1.08000	™ kg		none					
F. electricity mix	Energy carriers an	1.68000	᠁ kWh		none		P Elec			

▼ Outputs

Flow	Category	Amount	Unit	Costs/Rev Uncertaint Avoided pr Provider			Data quali Descripti			
F. cotton fabrics	[case study] cot	1.00000	™ kg		none					

Cotton fabrics production system

Part II: 50/50 polyester-cotton fabrics production

- Goal: to compare the environmental impacts between 100% cotton and 50/50 polyester-cotton terry towels
- Functional unit?

A proper FU for comparative LCAs

Please use the <u>handout</u> to complete the life cycle model

- For each process:
 - Create intermediate/final product flows as quantitative reference
 - Search for proper flows for input/output
 - Select a proper provider for a flow, if applicable
- Create a product system

Polyester fiber production

Polyester yarn and fabrics productions

- Duplicate the existing cotton yarn production and cotton fabrics production processes
- Swap quantitative references with polyester-relevant product flows

Don't forget to change the input!

Polyester yarn and fabrics productions

Polyester fabrics production system

Implement FU in OpenLCA

• As "quantitative reference"

Implement FU for terry towels

Function

 Cleaning: absorbing water with 1 towel

Unit

• # of service

Magnitude

• 1000

Lvl. of quality

 Absorbing x kg water per service

Adjust reference flows

- What could be different for **100% CO** and **50/50 CO-PES** terry towels to fulfill the same function?
 - Area/weight of the towels (to absorb x kg dirty water)
 - Energy to dry (water retained after washing)
 - Textile durability (loss of material that leads to potential replacement after 100 washing cycles)

Terry towel use

Fabrics-to-towel production is omitted for simplicity

Product system for terry towels made from 100% cotton fabrics

Perform impact assessment

Perform impact assessment

Discussion

- Create a "project" to compare the life cycle impacts of two towels
 - o Is there any tradeoff in impact categories?
 - Ocompare the "water consumption" category between the two products, is the result reasonable?

Discussion

- Is "drinking water" a good choice for industrial water during polyester fiber production?
 - O What are other choices available, why choose/not choose one of them?

Discussion

 Take a look again at input/output table of "terry towel use" process: a lot of hard-coding here for input values, how can we use parameters to "automate" the input of some values?

Additional information

- A quick start guide to openLCA (UBC wiki)
- <u>LCA discussion email list</u> (an open, constructive and safe platform where people can freely exchange ideas, look for collaborations and post job ADs)
- <u>Life cycle assessment: Quantitative Approaches for Decisions that</u>
 <u>Matter</u> (free LCA textbook and presentations compiled by researchers from Carnegie Mellon University)
- LCA training kit from Life Cycle Initiative