Supplemental Results

Due to the space limitation, this section provides those experimental results that are not included in the main body of the paper.

0.1 Comparison with Semi-supervised Methods

In this subsection, we present and discuss the comparison results between CDSC-AL and semi-supervised approaches using 5%, 15%, and 20% of labeled data. The best results are in bold-face and the Nemenyi post-hoc test is performed here.

Table 1: Comparison with semi-supervised approaches using 5% labeled data.

Datasets	Metric	LNP	OReSSL	CDSC-AL
Datasets	BA	0.8836	0.9214	0.9323
Synthetic-1				***
	F_{macro}	0.7706	0.9220	0.9344
Synthetic-2	BA	0.8278	0.8329	0.8297
Synthetic=2	F_{macro}	0.6078	0.7796	0.8013
Sea	BA	0.5048	0.8068	0.9554
Sea	F_{macro}	0.5879	0.8169	0.9601
VDD 00	BA	0.5125	0.6182	0.8219
KDD cup 99	F_{macro}	0.5007	0.6205	0.7829
Forest sovetime	BA	0.4838	0.6752	0.8256
Forest covtype	F_{macro}	0.4821	0.6755	0.8066
Gas Sensor Drift	BA	0.5695	0.8474	0.8866
Gas Sensor Drift	F_{macro}	0.5951	0.8299	0.8934
Shuttle	BA	0.3635	0.4475	0.4459
Shuttle	F_{macro}	0.3661	0.4508	0.4457
MNIST	BA	0.7231	0.8322	0.9307
	F_{macro}	0.7286	0.8327	0.9313
CIFAR-10	BA	0.4114	0.6304	0.7625
	F_{macro}	0.4075	0.6198	0.7619

Figure 1: Comparison of CDSC-AL against semi-supervised methods with the Nemenyi test with $\alpha=0.05$ using 5% labeled data.

Discussions: Table 1 summarizes the experimental results for CDSC-AL and other two semi-supervised methods when there is 5% labeled data in each incoming data chunk. As shown in Table 1, CDSC-AL provides better performance on most data streams except for Shuttle. In Figure 1, the Nemenyi post-hoc test indicates that CDSC-AL achieves statistically comparable performance than OReSSL method while showing statistically better performance than LNP method using 5% of labeled data.

Figure 2: Comparison of CDSC-AL against semi-supervised methods with the Nemenyi test with $\alpha=0.05$ using 15% labeled data.

Table 2: Comparison with semi-supervised approaches using 15% labeled data.

Datasets	Metric	LNP	OReSSL	CDSC-AL
0 1 1 1	BA	0.8939	0.9307	0.9495
Synthetic-1	F_{macro}	0.8126	0.9318	0.9537
Synthetic-2	BA	0.8416	0.8542	0.8549
Synthetic-2	F_{macro}	0.6598	0.7937	0.8287
Sea	BA	0.5418	0.8596	0.9713
Sea	F_{macro}	0.6271	0.8619	0.9754
KDD cup 99	BA	0.5528	0.7458	0.8366
KDD cup 99	F_{macro}	0.5739	0.7535	0.7923
Forest sovetrees	BA	0.5420	0.7512	0.8612
Forest covtype	F_{macro}	0.5438	0.7485	0.8442
Gas Sensor Drift	BA	0.6756	0.9202	0.9291
Gas Selisor Dilit	F_{macro}	0.6858	0.9238	0.9299
Shuttle	BA	0.4259	0.5004	0.5015
Shuttle	F_{macro}	0.4256	0.5193	0.5205
MNIST	BA	0.7874	0.9451	0.9772
MINIOI	F_{macro}	0.7955	0.9479	0.9773
CIFAR-10	BA	0.4251	0.6596	0.8051
	F_{macro}	0.4264	0.6426	0.8208

Discussions: Table 2 presents the experimental results of CDSC-AL and other two semi-supervised methods with 15% labeled data in each incoming data chunk. In Table 2, we can observe that CDSC-AL outperforms the OReSSL and LNP methods on all data streams in terms of BA and F_{macro} . From Figure 2, the CD diagram reveals that CDSC-AL provides statistically better performance than OReSSL and LNP method using 15% of labeled data.

Table 3: Comparison with semi-supervised approaches using 20% labeled data.

Matric	I NID	OPassi	CDSC-AL
BA	0.9043	0.9333	0.9634
F_{macro}	0.8343	0.9428	0.9684
BA	0.8562	0.8634	0.8616
F_{macro}	0.6862	0.7988	0.8367
BA	0.5620	0.8970	0.9715
F_{macro}	0.6497	0.9145	0.9758
BA	0.6088	0.7645	0.8369
F_{macro}	0.6121	0.7812	0.7927
BA	0.5692	0.7898	0.8809
F_{macro}	0.5735	0.7834	0.8668
BA	0.6791	0.9210	0.9293
F_{macro}	0.6892	0.9248	0.9301
BA	0.4436	0.5197	0.5223
F_{macro}	0.4643	0.5361	0.5455
BA	0.8148	0.9612	0.9816
F_{macro}	0.8249	0.9646	0.9824
BA	0.4291	0.6872	0.8208
F_{macro}	0.4381	0.6778	0.8263
	BA Fmacro	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 3: Comparison of CDSC-AL against semi-supervised methods with the Nemenyi test with $\alpha=0.05$ using 20% labeled data.

Discussions: Table 3 shows the experimental results of CDSC-AL and two semi-supervised methods with 20% labeled data in each incoming data chunk. From Table 2, it is clear that CDSC-AL achieves better performance than two compared semi-supervised methods on all data streams for

both BA and F_{macro} . As shown in Figure 3, it is observed that CDSC-AL also shows statistically comparable performance than OReSSL method while showing statistically better performance than LNP method using 20% of labeled data.

Summary of Discussions: In summary, the performance of CDSC-AL method shows better improvement than the two compared semi-supervised methods on all data streams as the label proportion increases.

0.2 Comparison with Supervised Methods

In this subsection, we summarize the comparison results between CDSC-AL and supervised approaches in Tables 4, 5, and 6. Here, we only use 5%, 15%, and 20% of labeled data for CDSC-AL method while the supervised approaches utilize all labels (100%) of the data stream. The best results are in bold-face.

Table 4: Comparison with supervised approaches when CDSC-AL only uses 5% labeled data.

$\begin{array}{c} {\rm Syn-1} & BA & 0.7910 & 0.6640 & 0.6354 & 0.6247 \\ F_{macro} & 0.7965 & 0.6675 & 0.6513 & 0.6313 & \textbf{0.9044} \\ \\ {\rm Syn-2} & BA & 0.7124 & 0.7204 & 0.6926 & 0.6784 & \textbf{0.8297} \\ F_{macro} & 0.7218 & 0.7219 & 0.6977 & 0.6864 & \textbf{0.8013} \\ \\ {\rm Sea} & BA & 0.8204 & 0.7498 & 0.7493 & 0.7205 & \textbf{0.9554} \\ F_{macro} & 0.8227 & 0.7501 & 0.7505 & 0.7345 & \textbf{0.9601} \\ \\ {\rm KDD} 99 & BA & 0.7585 & 0.7812 & \textbf{0.8541} & 0.7495 & 0.8219 \\ F_{macro} & 0.7564 & 0.7798 & \textbf{0.8012} & 0.7682 & 0.7829 \\ \\ {\rm covtype} & BA & 0.8888 & 0.8707 & 0.8612 & 0.8545 & 0.8256 \\ F_{macro} & \textbf{0.8901} & 0.8709 & 0.8688 & 0.8588 & 0.8066 \\ \\ {\rm GSD} & BA & 0.7185 & 0.6345 & 0.6111 & 0.6357 & \textbf{0.8866} \\ F_{macro} & 0.7199 & 0.6361 & 0.6188 & 0.6412 & \textbf{0.8934} \\ \\ {\rm Shuttle} & BA & 0.4789 & 0.4477 & 0.4508 & 0.4424 & 0.4459 \\ F_{macro} & \textbf{0.5187} & 0.5112 & 0.4987 & 0.4894 & 0.4457 \\ \hline MNIST & BA & 0.8909 & 0.8498 & 0.8393 & 0.8549 & \textbf{0.9307} \\ F_{macro} & 0.8946 & 0.8501 & 0.8412 & 0.8596 & \textbf{0.9319} \\ \hline {\rm CIEAR10} & BA & 0.7199 & 0.6208 & 0.7366 & 0.6218 & \textbf{0.7625} \\ \hline \end{array}$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Datasets	Metric	LB	OBA	AHT	SAMkNN	CDSC-AL
$\begin{array}{c} {\rm Syn-2} & F_{macro} & 0.7965 & 0.6675 & 0.6513 & 0.6313 & 0.9044 \\ {\rm Syn-2} & BA & 0.7124 & 0.7204 & 0.6926 & 0.6784 & 0.8297 \\ F_{macro} & 0.7218 & 0.7219 & 0.6977 & 0.6864 & 0.8013 \\ {\rm Sea} & BA & 0.8204 & 0.7498 & 0.7493 & 0.7205 & 0.9554 \\ F_{macro} & 0.8227 & 0.7501 & 0.7505 & 0.7345 & 0.9601 \\ {\rm KDD} 99 & BA & 0.7585 & 0.7812 & 0.8541 & 0.7495 & 0.8219 \\ F_{macro} & 0.7564 & 0.7798 & 0.8012 & 0.7682 & 0.7829 \\ {\rm covtype} & BA & 0.8888 & 0.8707 & 0.8612 & 0.8545 & 0.8256 \\ F_{macro} & 0.8901 & 0.8709 & 0.8688 & 0.8588 & 0.8066 \\ {\rm GSD} & BA & 0.7185 & 0.6345 & 0.6111 & 0.6357 & 0.8866 \\ F_{macro} & 0.7199 & 0.6361 & 0.6188 & 0.6412 & 0.8934 \\ {\rm Shuttle} & BA & 0.4789 & 0.4477 & 0.4508 & 0.4424 & 0.4459 \\ F_{macro} & 0.5187 & 0.5112 & 0.4987 & 0.4894 & 0.4457 \\ F_{macro} & 0.8906 & 0.8498 & 0.8393 & 0.8549 & 0.9307 \\ F_{macro} & 0.8946 & 0.8501 & 0.8412 & 0.8596 & 0.9319 \\ {\rm CIEAR10} & BA & 0.7199 & 0.6208 & 0.7366 & 0.6218 & 0.7625 \\ \end{array}$	Cvm 1	BA	0.7910	0.6640	0.6354	0.6247	0.9123
$ \begin{array}{c} {\rm Syn-2} & BA & 0.7124 & 0.7204 & 0.6926 & 0.6784 & 0.8297 \\ F_{macro} & 0.7218 & 0.7219 & 0.6977 & 0.6864 & 0.8013 \\ {\rm Sea} & BA & 0.8204 & 0.7498 & 0.7493 & 0.7205 & 0.9554 \\ F_{macro} & 0.8227 & 0.7501 & 0.7505 & 0.7345 & 0.9601 \\ {\rm KDD} 99 & BA & 0.7585 & 0.7812 & 0.8541 & 0.7495 & 0.8219 \\ F_{macro} & 0.7564 & 0.7798 & 0.8012 & 0.7682 & 0.7829 \\ {\rm covtype} & BA & 0.8888 & 0.8707 & 0.8612 & 0.8545 & 0.8256 \\ F_{macro} & 0.8901 & 0.8709 & 0.8688 & 0.8588 & 0.8066 \\ {\rm GSD} & BA & 0.7185 & 0.6345 & 0.6111 & 0.6357 & 0.8866 \\ F_{macro} & 0.7199 & 0.6361 & 0.6188 & 0.6412 & 0.8934 \\ {\rm Shuttle} & BA & 0.4789 & 0.4477 & 0.4508 & 0.4424 & 0.4459 \\ F_{macro} & 0.5187 & 0.5112 & 0.4987 & 0.4894 & 0.4457 \\ MNIST & BA & 0.8909 & 0.8498 & 0.8393 & 0.8549 & 0.9307 \\ F_{macro} & 0.8946 & 0.8501 & 0.8412 & 0.8596 & 0.9319 \\ {\rm CIEAR} 10 & BA & 0.7199 & 0.6208 & 0.7366 & 0.6218 & 0.7625 \\ \hline \end{array}$	Syll-1	F_{macro}	0.7965	0.6675	0.6513	0.6313	0.9044
$\begin{array}{c} {\rm Sea} & F_{macro} & 0.7218 & 0.7219 & 0.6977 & 0.6864 & \textbf{0.8013} \\ {\rm Sea} & F_{macro} & 0.8204 & 0.7498 & 0.7493 & 0.7205 & \textbf{0.9554} \\ F_{macro} & 0.8227 & 0.7501 & 0.7505 & 0.7345 & \textbf{0.9601} \\ {\rm KDD} 99 & BA & 0.7585 & 0.7812 & \textbf{0.8541} & 0.7495 & 0.8219 \\ F_{macro} & 0.7564 & 0.7798 & \textbf{0.8012} & 0.7682 & 0.7829 \\ {\rm covtype} & BA & \textbf{0.8888} & 0.8707 & 0.8612 & 0.8545 & 0.8256 \\ F_{macro} & \textbf{0.8901} & 0.8709 & 0.8688 & 0.8588 & 0.8066 \\ {\rm GSD} & BA & 0.7185 & 0.6345 & 0.6111 & 0.6357 & \textbf{0.8866} \\ F_{macro} & 0.7199 & 0.6361 & 0.6188 & 0.6412 & \textbf{0.8934} \\ {\rm Shuttle} & BA & \textbf{0.4789} & 0.4477 & 0.4508 & 0.4424 & 0.4459 \\ F_{macro} & \textbf{0.5187} & 0.5112 & 0.4987 & 0.4894 & 0.4457 \\ F_{macro} & 0.8909 & 0.8498 & 0.8393 & 0.8549 & \textbf{0.9307} \\ {\rm KMNIST} & BA & 0.8909 & 0.8498 & 0.8393 & 0.8549 & \textbf{0.9307} \\ F_{macro} & 0.8946 & 0.8501 & 0.8412 & 0.8596 & \textbf{0.9319} \\ {\rm CIEAR10} & BA & 0.7199 & 0.6208 & 0.7366 & 0.6218 & \textbf{0.7625} \\ \end{array}$	Cvm 2		0.7124	0.7204	0.6926	0.6784	0.8297
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Syll-2	F_{macro}	0.7218	0.7219	0.6977	0.6864	0.8013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cas	BA	0.8204	0.7498	0.7493	0.7205	0.9554
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sea	F_{macro}	0.8227	0.7501	0.7505	0.7345	0.9601
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KDD 00		0.7585	0.7812	0.8541	0.7495	0.8219
$ \begin{array}{c} BA \\ F_{macro} \\ \hline \\ COVITY \\ \hline \\ \\ COVITY \\ \hline \\ $	KDD 99	F_{macro}	0.7564	0.7798	0.8012	0.7682	0.7829
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a a v strum a	BA	0.8888	0.8707	0.8612	0.8545	0.8256
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	covtype	F_{macro}	0.8901	0.8709	0.8688	0.8588	0.8066
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CSD		0.7185	0.6345	0.6111	0.6357	0.8866
Shuttle BA 0.4789 0.4477 0.4508 0.4424 0.4459 F_{macro} 0.5187 0.5112 0.4987 0.4894 0.4457 MNIST BA 0.8909 0.8498 0.8393 0.8549 0.9307 F_{macro} 0.8946 0.8501 0.8412 0.8596 0.9319 CIFAR IO BA 0.7199 0.6208 0.7366 0.6218 0.7625	GSD	F_{macro}	0.7199	0.6361	0.6188	0.6412	0.8934
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chuttle		0.4789	0.4477	0.4508	0.4424	0.4459
MNIST $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shuttle	F_{macro}	0.5187	0.5112	0.4987	0.4894	0.4457
F_{macro} 0.8946 0.8501 0.8412 0.8596 0.9319 CIFAR10 BA 0.7199 0.6208 0.7366 0.6218 0.7625	MNIST		0.8909	0.8498	0.8393	0.8549	0.9307
CIEAR 10 BA 0.7199 0.6208 0.7366 0.6218 0.7625		F_{macro}	0.8946	0.8501	0.8412	0.8596	0.9319
$F_{macro} = 0.7208 - 0.6325 - 0.7381 - 0.6295 - 0.7619$	CIFAR10		0.7199	0.6208	0.7366	0.6218	0.7625
		F_{macro}	0.7208	0.6325	0.7381	0.6295	0.7619

Table 5: Comparison with supervised approaches when CDSC-AL only uses 15% labeled data.

Datasets	Metric	LB	OBA	AHT	SAMkNN	CDSC-AL
G 1	BA	0.7910	0.6640	0.6354	0.6247	0.9195
Syn-1	F_{macro}	0.7965	0.6675	0.6513	0.6313	0.9137
Syn-2	BA	0.7124	0.7204	0.6926	0.6784	0.8549
Syll-2	F_{macro}	0.7218	0.7219	0.6977	0.6864	0.8616
Sea	BA	0.8204	0.7498	0.7493	0.7205	0.9713
Sea	F_{macro}	0.8227	0.7501	0.7505	0.7345	0.9729
KDD 99	BA	0.7585	0.7812	0.8541	0.7495	0.8366
KDD 99	F_{macro}	0.7564	0.7798	0.8012	0.7682	0.7923
aavtvna	BA	0.8888	0.8707	0.8612	0.8545	0.8616
covtype	F_{macro}	0.8901	0.8709	0.8688	0.8588	0.8442
GSD	BA	0.7185	0.6345	0.6111	0.6357	0.9291
GSD	F_{macro}	0.7199	0.6361	0.6188	0.6412	0.9299
Shuttle	BA	0.4789	0.4477	0.4508	0.4424	0.5015
	F_{macro}	0.5187	0.5112	0.4987	0.4894	0.5205
MNIST	BA	0.8909	0.8498	0.8393	0.8549	0.9772
	F_{macro}	0.8946	0.8501	0.8412	0.8596	0.9773
CIFAR10	BA	0.7199	0.6208	0.7366	0.6218	0.8051
	F_{macro}	0.7208	0.6325	0.7381	0.6295	0.8083

Summary of Discussions: As mentioned in the paper, we increased the label proportion for CDSC-AL method up to 20% and presented the results in Tables 4, 5, and 6. As shown in Tables 4, 5, and 6, the performance of CDSC-AL method

Table 6: Comparison with supervised approaches when CDSC-AL only uses 20% labeled data.

Datasets	Metric	LB	OBA	AHT	SAMkNN	CDSC-AL
C 1	BA	0.7910	0.6640	0.6354	0.6247	0.9234
Syn-1	F_{macro}	0.7965	0.6675	0.6513	0.6313	0.9184
Syn-2	BA	0.7124	0.7204	0.6926	0.6784	0.8616
Syll-2	F_{macro}	0.7218	0.7219	0.6977	0.6864	0.8367
Can	BA	0.8204	0.7498	0.7493	0.7205	0.9715
Sea	F_{macro}	0.8227	0.7501	0.7505	0.7345	0.9758
KDD 99	BA	0.7585	0.7812	0.8541	0.7495	0.8469
KDD 99	F_{macro}	0.7564	0.7798	0.8012	0.7682	0.7927
o o vitvim o	BA	0.8888	0.8707	0.8612	0.8545	0.8809
covtype	F_{macro}	0.8901	0.8709	0.8688	0.8588	0.8668
GSD	BA	0.7185	0.6345	0.6111	0.6357	0.9293
GSD	F_{macro}	0.7199	0.6361	0.6188	0.6412	0.9301
Shuttle	BA	0.4789	0.4477	0.4508	0.4424	0.5223
Shuttle	F_{macro}	0.5187	0.5112	0.4987	0.4894	0.5445
MNIST	BA	0.8909	0.8498	0.8393	0.8549	0.9816
	F_{macro}	0.8946	0.8501	0.8412	0.8596	0.9824
CIFAR10	BA	0.7199	0.6208	0.7366	0.6218	0.8208
	F_{macro}	0.7208	0.6325	0.7381	0.6295	0.8263

improves as the proportion of labeled data increases. More importantly, with 20% labeled data, CDSC-AL achieves the best performance on all benchmark data streams except for the KDD cup 99 and Forest covtype. For KDD cup 99 and Forest covtype, CDSC-AL shows comparable performance.