Multiple Choices Questions

Questio	n 1.1 Boolean Algebra
In Boolear	n algebra, all the variables have two possible values. What are they?
□ A:	True and False
□ B:	Yes and No
□ C:	High and Low
□ D:	Positive and Negative
Questic	n 1.2 Boolean Algebra
What are	the basic operations in Boolean algebra?
□ A:	Addition, Subtraction, Multiplication
□ B:	AND, OR, NOT
□ C:	Greater than, Less than, Equal to
□ D:	Union, Intersection, Complement
Questic	n 1.3 Cache
Consider	the following Python code:
	nums = "123456789" idx = [8, 4, 1, 5, 0] s = 0
	<pre>for i in idx: s += int(nums[i])</pre>
During the into the ca	e execution, when i = 1 happens, which character from nums will be loaded ache?
□ A:	7
□ B:	8
□ c:	4

Name:_____ NYU-ID (NetID): _____

☐ D: 2

Question 1.4 | Spatial Locality

Consider the following Python code:

```
nums = "123456789"
idx = [8, 4, 1, 5, 0]
s = 0

for i in idx:
    s += int(nums[i])
```

Does the code make good use of the spatial locality?

- \square A: Yes, the code makes good use of spatial locality.
- \square B: No, the code does not make good use of spatial locality.

Question 1.5 | Color Values

Computers generate color on a video or liquid crystal display by mixing three different colors of lights: red, green, and blue. Imagine a simple scheme with three different lights, each of which can be turned on or off, projecting onto a glass screen:

Name:______ NYU-ID (NetID): ______ Page 2

We can then create eight colors based on the absence(0) or presence(1) of light sources R, G, and B. A color in the table can be a mixture of some other colors.

R	G	В	Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magenta
1	1	0	Yellow
1	1	1	White

What are the colors if we apply Boolean operations on the following color signals:

(Red AND Yellow) XOR Magenta

☐ A: Blue
☐ B: Black
☐ C: Cyan

☐ D: Green

Question 1.6 | Boolean Expressions

Assume variables a, b, and c are declared and initialized with integer values. The following Python expression is logically equivalent to which of the provided options? (Hint: Apply De Morgan's Laws)

not (a<b or b>c) $\Box A: a < b \text{ and } b >= c$

```
\square B: a >= b or b <= c
   \square C: a >= b and b <= c
   \square D: a > b or b <= c
Question 1.7 | Debugging Times 5
Assume the below program is designed to multiply the input number by 5.
         def multiplied_by_5():
             x = (input("Please give a number: "))
             return x*5.0
        ##calling the function in the console
         >>> multiplied by 5()
         >>> Please give a number: 5
Does the program compute the solution correctly?
   ☐ A: Yes, the program works as expected.
   ☐ B: No, the program does not work as expected.
Question 1.8 | Debugging Output
Consider the following Python code:
        def fun2(y):
             y[0] += 2
        y = [0]
        fun2(y)
        print(y)
What is the output of this code?
   ☐ A: [2]
   ☐ B: [0]
```

Name: NYU-ID (NetID): Page 4

☐ C: [0, 2]

☐ D: The program can not be executed.

Programming Questions

Question 1 | Counting

You are tasked with writing two Python functions: count_letters and count_letter_pairs. Both functions analyze a given string and return a dictionary that maps characters or character sequences to their respective frequencies.

1. count_letters: This function takes a single string as input, where the string contains no spaces or punctuation. The function returns a dictionary where each key is a letter from the input string, and the corresponding value represents the number of times that letter appears in the string. For instance, calling count letters("banana") should return the following dictionary:

```
{'b': 1, 'a': 3, 'n': 2}
```

count_letter_pairs: This function takes two input arguments: a string and an integer representing the length of letter pairs (consecutive letter sequences). It returns a dictionary where the keys are the letter pairs of the specified length from the input string, and the values represent the number of occurrences of each pair. For example, calling count_letter_pairs("banana", 2) should return:

```
{'ba': 1, 'an': 2, 'na': 2}
```

Both functions provide a method for analyzing letter frequency as individual characters or consecutive letter pairs within a string.

Example Console Output

```
>>> result = count_letters("banana")
>>> print(result)
{'b': 1, 'a': 3, 'n': 2}
>>> result = count_letter_pairs("banana", 2)
>>> print(result)
{'ba': 1, 'an': 2, 'na': 2}
```

Write your code on the next page!

Name:	NYLL-ID (NetID):	Page 5

```
def count_letters(s):
     # Please write your code here
def count_letter_pairs(s, pair_len):
     # Please write your code here
```

Name:_____ NYU-ID (NetID): _____ Page 6