

Faglig kontakt under eksamen: Finn Faye Knudsen tlf. 73 59 35 23

EKSAMEN I MA2301 VIDEREGÅENDE DISKRET MATEMATIKK

Bokmål Mandag 6. juni 2005 kl. 09:00–13:00

Hjelpemidler (kode D): Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator (HP 30S)

Sensurdato: 27. juni 2005.

Oppgave 1 Gitt det regulære uttrykket $r = (ab \bigcup aab \bigcup aba)^*$. Lag en ikkedeterministisk endelig automat M slik at L(M) = L(r).

Oppgave 2

- a) Bruk nodeeliminasjonsmetoden til å finne et regulært uttrykk r, slik at språket, L(r), til det regulære uttrykket er det samme som språket L(M) bestemt av den ikkedeterministiske endelige automaten M på figuren. Eliminer nodene i rekkefølgen 1,2,3.
- b) Lag en deterministisk endelig automat N med samme språk som M.

Oppgave 3 Alle språkene som forekommer i denne oppgaven er språk over ett og samme alfabet Σ . Dersom $w \in \Sigma^*$, så betyr w^R den reverserte strengen.

Hvilke av følgende utsagn er sanne. Begrunn svarene eller angi et moteksempel.

- a) i) Ethvert delspråk av et regulært språk er regulært.
 - ii) For ethvert regulært språk L finnes det et regulært delspråk L' med $L' \subsetneq L$.
- b) i) Dersom L er regulært, så er språket $\{xy \mid x \in L \text{ og } y \notin L\}$ regulært.
 - ii) Språket $\{w \mid w = w^R\}$ er regulært.
- c) i) Dersom L er regulært, så er språket $\{w \mid w \in L \text{ og } w^R \in L\}$ regulært.
 - ii) Språket $\{xyx^R \mid x, y \in \Sigma^*\}$ er regulært.

Oppgave 4

Skriv opp tabellen for automaten M på figuren, og bruk minimaliseringsalgoritmen til å finne den tilhørende standardautomaten. Det vil si at du skal skrive opp partisjonene tilhørende ekvivalensrelasjonene $\equiv_0 \supseteq \equiv_1 \supseteq \equiv_2 \supseteq \cdots$. Partisjonen tilhørende \equiv_0 er $\{\{1,2,3\},\{0,4,5\}\}$.

Oppgave 5 En Turingmaskin M er gitt ved tabellen

\overline{q}	σ	$\delta(q,\sigma)$	
s_0	\triangleright	s_0	\rightarrow
s_0	Ш	s_1	a
s_0	a	s_2	a
s_1	\triangleright	s_1	\longrightarrow
s_1	\sqcup	s_0	Ш
s_1	a	s_0	\rightarrow

- a) Anvend M tre ganger på konfigurasjonen $(s_1, \triangleright a \underline{\sqcup} a)$.
- b) Enhver Turingmaskin $N = (K, \Sigma, \delta, s, H)$ bestemmer et språk $L(N) = \{w \mid \text{ Det finnes en konfigurasjon } (q, x\underline{\sigma}y) \text{ med } q \in H \text{ slik at } (s, \triangleright \underline{\sqcup}w) \vdash_{N}^{*} (q, x\underline{\sigma}y)\}.$ Det er underforstått at strengene i språket L(N) ikke inneholder symbolene \triangleright eller \sqcup . Hva er språket til M?
- c) Tegn alle flisene i flisleggingssystemet som er assosiert med Turingmaskinen M ved reduksjonen fra ikkestoppeproblemet på blankt bånd til flisleggingsproblemet i første kvadrant. Et par av fliser (x,y) er med i H dersom høyre kanten til flisen x er merket med det samme som venstre kanten til flisen y, og $(x,y) \in V$ dersom den øvre kanten til flisen x er merket med det samme som den nederste kanten til flisen y. Finnes det en tillatt flislegging av hele første kvadrant med disse flisene? Husk at begynnelsesflisen er

