

1. DESCRIPTION

The 34063/33063 Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

2. FEATURES

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current Up to 1.5A (Peak)
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference

3. PIN CONFIGURATIONS AND FUNCTIONS

Figure 1. Pin Connections

Pin Functions

in tanestono					
PIN		TVDE	DESCRIPTION		
NAME	NO.	TYPE	DESCRIPTION		
Switch Collector	1	I/O	High-current internal switch collector input.		
Switch Emitter	2	1/0	High-current internal switch emitter output.		
Timing Capacitor	3	_	Attach a timing capacitor to change the switching frequency.		
GND	4	_	Ground		
Comparator Inverting Input	5	1	Attach to a resistor divider network to create a feedback loop.		
Vcc	6	ı	Logic supply voltage. Tie to V _{IN} .		
I _{PK} Sense	7	ı	Current-limit sense input.		
Driver Collector	8	1/0	Darlington pair driving transistor collector input.		

4. FUNCTIONAL BLOCK DIAGRAM

Figure 2. Representative Schematic Diagram

5. SPECIFICATIONS

5.1. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	Vdc
Comparator Input Voltage Range	VIR	-0.3 to +40	Vdc
Switch Collector Voltage	VC(switch)	40	Vdc
Switch Emitter Voltage (VPin 1 = 40 V)	VE(switch)	40	Vdc
Switch Collector to Emitter Voltage	VCE(switch)	40	Vdc
Driver Collector Voltage	VC(driver)	40	Vdc
Driver Collector Current (Note 1)	lC(driver)	100	mA
Switch Current	Isw	1.5	А
Power Dissipation and Thermal Characteristics			
Plastic Package, P, P1 Suffix			
T _A = 25°C	PD	1.25	w
Thermal Resistance	ROJA	115	°C/W
SOIC Package, D Suffix			
T _A = 25°C	PD	625	mW
Thermal Resistance	ROJA	160	°C/W
Operating Junction Temperature	Тј	+125	°C
Operating Ambient Temperature Range	TA		°C
34063		0 to +70	°C
33063		-40 to +85	°C
Storage Temperature Range	T _{stg}	-45 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- [1] Maximum package power dissipation limits must be observed.
- [2] This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL–STD–883, Method 3015. Machine Model Method 250 V.

5.2. Electrical Characteristics

(VCC = 5.0 V, TA = Tlow to Thigh [Note 4], unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATOR	•	•		•	
Frequency (Vp _{in} 5 = 0 V, C _T = 1.0 nF, T _A = 25°C)	f _{osc}	24	33	42	kHz
Charge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	I _{chg}	24	35	42	μΑ
Discharge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	ldischg	140	220	260	μΑ
Discharge to Charge Current Ratio (Pin 7 to VCC, TA = 25°C)	I _{dischg} /I _{chg}	5.2	6.5	7.5	-
Current Limit Sense Voltage (I _{chg} = I _{dischg} , T _A = 25°C)	Vipk(sense)	250	300	350	mV
DUTPUT SWITCH (Note 5)					
Saturation Voltage, Darlington Connection (ISW = 1.0 A, Pins 1, 8 connected)	VCE(sat)	-	1.0	1.3	V
Saturation Voltage (Note 6) (ISW = 1.0 A, Rpin 8 = 82 Ω to VCC, Forced Ω 20)	VCE(sat)	-	0.45	0.7	٧
DC Current Gain (ISW = 1.0 A, VCE = 5.0 V, TA = 25°C)	hFE	50	75		-
Collector Off–State Current (VCE = 40 V)	lC(off)	-	0.01	100	μΑ
OMPARATOR					
Threshold Voltage TA = 25°C	V _{th}	1.225	1.25	1.275	V
T _A = T _{low} to T _{high}		1.21	-	1.29	
Threshold Voltage Line Regulation (V _{CC} = 3.0 V to 40 V) XL33063, XL34063	Reg _{line}	_	1.4	5.0	mV
Input Bias Current (V _{in} = 0 V)	IΙΒ	-	-20	-400	nA
OTAL DEVICE					
Supply Current (V _{CC} = 5.0 V to 40 V, C _T = 1.0 nF, Pin 7 = V _{CC} , V _{Pin} 5 > V _{th} , Pin 2 = GND, remaining pins open)	lcc	-	-	4.0	mA

[3] Tlow = 0° C for XL34063; -40° Cfor XL33063.

Thigh = $+70^{\circ}$ C for XL34063; $+85^{\circ}$ C for XL33063.

- [4] Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
- [5] If the output switch is driven into hard saturation (non–Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 μs for it to come out of saturation. This condition will shorten the off time at frequencies 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non–Darlington configuration is used, the following output drive condition is recommended:

Forced ß of output switch : $\frac{IC \ output}{IC \ driver - 7.0mA*} \ge 10$

www.xinluda.com 5 / 12 Rev 19.22.7

^{*} The $100~\Omega$ resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

6. TEST INFORMATION

^[6] Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Test	Conditions	Results	
Line Regulation	V _{in} = 8.0 V to 16 V, I _O = 175 mA	30 mV = ±0.05%	
Load Regulation	V _{in} = 12 V, I _O = 75 mA to 175 mA	10 mV = ±0.017%	
Output Ripple	V _{in} = 12 V, I _O = 175 mA	400 mVpp	
Efficiency	V _{in} = 12 V, I _O = 175 mA	87.7%	
Output Ripple With Optional Filter	V _{in} = 12 V, I _O = 175 mA	40 mVpp	

Figure 7. Step-Up Converter

Figure 8. External Current Boost Connections for IC Peak Greater than 1.5 A (See Note 8)

If the output switch is driven into hard saturation (non–Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 μs to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non–Darlington configuration is used, the following output drive condition is recommended.

www.xinluda.com 8 / 12 Rev 19.22.7

Test	Conditions	Results
Line Regulation	V _{in} = 15 V to 25 V, IO = 500 mA	12 mV = ±0.12%
Load Regulation	Vin = 25 V, IO = 50 mA to 500 mA	3.0 mV = ±0.03%
Output Ripple	V _{in} = 25 V, I _O = 500 mA	120 mVpp
Short Circuit Current	Vin = 25 V, RL = 0.1Ω	1.1 A
Efficiency	V _{in} = 25 V, I _O = 500 mA	83.7%
Output Ripple With Optional Filter	V _{in} = 25 V, I _O = 500 mA	40 mVpp

a. External NPN Switch

b. External PNP Saturated Switch

Figure 9. External Current Boost Connections for IC Peak Greater than 1.5 A

Test	Conditions	Results	
Line Regulation	V _{in} = 4.5 V to 6.0 V, I _O = 100 mA	3.0 mV = ±0.012%	
Load Regulation	V _{in} = 5.0 V, I _O = 10 mA to 100 mA	0.022 V = ±0.09%	
Output Ripple	V _{in} = 5.0 V, I _O = 100 mA	500 mVpp	
Short Circuit Current	V_{in} = 5.0 V, R_L = 0.1 Ω	910 mA	
Efficiency	V _{in} = 5.0 V, I _O = 100 mA	62.2%	
Output Ripple With Optional Filter	V _{in} = 5.0 V, I _O = 100 mA	70 mVpp	

Figure 10. Voltage Inverting Converter

a. External NPN Switch

b. External PNP Saturated Switch

Figure 11. External Current Boost Connections for IC Peak Greater than 1.5 A

INDUCTOR DATA

Converter	Inductance (µH)	Turns/Wire	
Step-Up	170	38 Turns of #22 AWG	
Step-Down	220	48 Turns of #22 AWG	
Voltage-Inverting	88	28 Turns of #22 AWG	

All inductors are wound on Magnetics Inc. 55117 toroidal core.

Calculation	Step-Up	Step-Do wn	Voltage-Inver ting	
t _{on} /t _{off}	$\frac{v_{out} + v_F - v_{in(min)}}{v_{in(min)} - v_{sat}}$	$\frac{v_{\text{out}} + v_{\text{F}}}{v_{\text{in(min)}} - v_{\text{sat}} - v_{\text{out}}}$	$\frac{ V_{\text{out}} + V_{\text{F}}}{ V_{\text{in}} - V_{\text{sat}} }$	
(t _{on} + t _{off})	<u>1</u> f	1 f	<u>1</u> f	
^t off	$\frac{\frac{t_{on} + t_{off}}{t_{on}}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{\frac{t_{\text{on}} + t_{\text{off}}}{t_{\text{on}}}}{\frac{t_{\text{off}}}{t_{\text{off}}} + 1}$	$\frac{\frac{t_{on} + t_{off}}{t_{on}}}{\frac{t_{on}}{t_{off}} + 1}$	
t _{on}	(t _{on} + t _{off}) – t _{off}	(t _{on} + t _{off}) - t _{off}	(t _{on} + t _{off}) - t _{off}	
СТ	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}	$4.0 \times 10^{-5} t_{0n}$	
lpk(switch)	$2 lout(max) (\frac{ton}{toff} + 1)$	²¹ out(max)	2lout(max)(+ 1)	
R _{SC}	0.3/lpk(switch)	0.3/lpk(switch)	0.3/lpk(switch)	
^L (min)	$(\frac{(V_{ln(\min)} - V_{sat})}{I_{pk(switch)}})t_{on(\max)}$	$(\frac{(V_{In(\min)} - V_{sat} - V_{out})}{I_{pk(switch)}})t_{on(\max)}$	$(\frac{(V_{ln(\min)} - V_{sat})}{I_{pk(switch)}})t_{on(\max)}$	
СО	9 Vripple(pp)	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{8V_{ripple(pp)}}$	9 Vripple(pp)	

 V_{sat} = Saturation voltage of the output switch.

 V_F = Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

V_{in} – Nominal input voltage.

 V_{out} – Desired output voltage, |Vout| = 1.25 $(1 + \frac{R2}{R1})$

I_{out} – Desired output current.

 f_{min} – Minimum desired output switching frequency at the selected values of V_{in} and $I_{\text{O}}.$

 $V_{ripple(pp)}$ – Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

Figure 12. Design Formula Table

www.xinluda.com 11 / 12 Rev 19.22.7

7. ORDERING INFORMATION

Table 1. Ordering Information

Part	Device	Package	Body size	Temperature	MSL	Transport	Package
Number	Marking	Туре	(mm)	(°C)	IVIOL	Media	Quantity
XL34063	XL34063	SOP8	4.90 * 3.90	-0 to +70	MSL3	T&R	2500
XD34063	XD34063	DIP8	9.25 * 6.38	-0 to +70	MSL3	Tube 50	2000
XL33063	XL33063	SOP8	4.90 * 3.90	-40 to +85	MSL3	T&R	2500
XD33063	XD33063	DIP8	9.25 * 6.38	-40 to +85	MSL3	Tube 50	2000

8. DIMENSIONAL DRAWINGS

Xinluda reserves the right to change the above information without prior notice.