

Team 34: Portable
High Energy
Experiment (PHEE)
DAQ

ECEN 404 Final Presentation

Team Members: Ethan Barnes

John Sabra

Sang Hoon Chung

Sponsor: Michelle Chatter

Sandia National Laboratories

TA: Logan Smith

Project Summary

Problem statement:

- The United States military possesses about 5500 nuclear weapons in its stockpile
- The security of these weapons and equipment is paramount when they are transported for storage and testing
- Sandia is interested in detecting explosive-type events in sensitive areas
 - Exact application for DAQ system may not be disclosed

The Portable High Energy DAQ System will:

- Protect government equipment by detecting and identifying explosives within a 100 ft range
 - Utilizes a pressure sensor to classify if an explosive event occurred
- Write output to removable storage device
 - User will be able to refer to and perform analysis on past data

Integrated Project Diagram

Integrated Project Diagram

CSV File Reader		- D X
Open CSV	CV/ Eila Innut	
Signal 1	SV File Input	
Max:	Min:	Avg:
Frequency:	Result:	Explosion Time:
Shape:	Max FFT Amp:	
		Apply Time Range
		Save Csv Save Image
Signal 2		
Max:	Min:	Avg:
Frequency:	Result:	Explosion Time:
Shape:	Max FFT Amp:	
		Apply Time Range
		Save Csv Save Image
Signal 3		
Max:	Min:	Avg:
Frequency:	Result:	Explosion Time:
Shape:	Max FFT Amp:	
		Apply Time Range
		Apply Time hange Save Csv Save Image
		Dave CSV Dave Illiage

DC Power Supply

- Battery Charger IC
 - Takes 11.1V input from LiPo Battery and regulates to 5V
 - Utilizes DC Input (5 -16V) to charge battery
- DC-DC Buck Converter
 - Utilizes 5V input to generate required supply voltage of 3.3V for the MCU

Design requirements:

Supply Voltage	Load Current	
3.3 V	~ 200 mA	

Validation

- DC-DC buck converter output validated at 3.3138 V under normal load.
- challenge: Battery charger output tested at 2.8 V(outside buck converter input range)
 - solution to switch from 3-cell battery to 1-cell battery pending

Average Output Voltage	3.3064 V
Output Voltage Under Load	3.3183 V
Average Power	1.071666667 W

Microcontroller PCB

Device	Measured Voltage	Expected Voltage
Micro USB Output	5.001 V	5 V
LDO Regulator Output	3.318 V	3.3 V
MCU VDD Input	3.3179 V	3.3 V
microSD I/O Input	3.3027 V	3.3 V

- PCB is powered with 5V USB output from laptop or 5V output from Power Supply Subsystem
- MCU reads data from pressure sensor

Microcontroller PCB

Log output file: C:\Users\Ethan\AppData\Local\Temp\STM32CubeProgrammer_a17700.log ST-LINK SN : 004D00493331511234333834

ST-LINK FW : V3J10M3B5S1
Board : STLINK-V3SET

Voltage : 3.30V

SWD freq : 24000 KHz Connect mode: Under Reset

Reset mode : Hardware reset

Device ID : 0x421 Revision ID : Rev A

Device name : STM32F446xx Flash size : 512 KBytes

Device type : MCU
Device CPU : Cortex-M4

BL Version : 0x90

 Connection to debugger and MCU on PCB successful

Code successfully flashed onto MCU

Memory Programming ...

Opening and parsing file: ST-LINK GDB server a17700.srec

File : ST-LINK GDB server a17700.srec

Size : 57.45 KB Address : 0x08000000

Erasing memory corresponding to segment 0: Erasing internal memory sectors [0 3]

Download in Progress:

File download complete

Time elapsed during download operation: 00:00:01.311

```
Port 0 ×

SD card mounted successfully...
*adc_data.csv* created successfully
*adc_data.csv* created successfully
*adc_data.csv* created successfully
*adc_data.csv* created successfully
Total time to write 30000 samples to SD card (WITH printf, not in ms yet): 10901 ms

Samples per second: 2752.041
```

Expected sample rate (>2 ksps)

Application

Challenge 1: Develop a GUI to configure DAQ settings and output "quick looks" of data

Challenge 2: Accessing and managing signal data from various sources.

Application

Application

OAuth 2.0 Client ID:

□ Desktop olient

Google Drive API

RPI APIs & Services

RPI APIs & Services

Figure 4

Figure 1

```
def list_files(self):
    service = self.connect_to_drive()
    results = service.files().list(pageSize=10, fields="nextPageToken, files(id, name)").execute()
    items = results.get('files', [])
    for item in items:
        print(u'{0} ({1})'.format(item['name'], item['id']))
```

Figure 2

- figure 1: The script to access to file explorer(.csv file)
- figure 2: The script to list the Google Drive file(.csv).

figure 3 and figure 4: These figures show the API is working while I run the script for the application.

Integrated System Results

Metric	Actual Results	Expected Results
Sampling Rate	~2752 sps	> 2000 sps
MCU Supply Voltage	3.3179 V	3.3 V
Pressure Sensor Reading	Constant ~1.65 V (Constant 112.8 kPa)	0 V - 2.193 V (0 kPa - 150 kPa)
Power Supply Voltage	3.3138 V Output Voltage under load	3.3 V @ 120 mA

Integrated System Results

The result of the integration. Because of the PCB saturation, the real data from PCB looks bad. The plot from sensor 1 is the ideal result and sensor 2 and 3 is the result from the PCB.

Conclusions

Issues/Revisions	Status	
The 3-cell battery of the power supply is outside the input range of the buck converter. Battery charger is regulating to incorrect voltage.	Power supply was designed to support a 5V DC input via Micro USB to mitigate issues with the battery charger voltage output.	
Initially implemented pressure, acceleration, and audio sensors.	Currently only supports pressure sensor input because pressure alone is highly indicative of explosive events.	
Op-amp input terminals are swapped.	Input signal needs to enter the positive terminal, but currently enters the negative terminal. Op-amp output (ADC signal input) always saturated because of this. Will order final PCB before 11/8 deadline.	
The outputs of the original three sensors are plotted in the GUI.	After we made the decision to only use the pressure sensor, the application doesn't need to plot multiple sensors' data.	