Computational Fluid Dynamics

Daniel M. Siegel^{1, 2}

September 18, 2020

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5 ²Department of Physics, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

Contents

P	refac	e and recommended literature	i
1	Bas	ic Notions of Partial Differential Equations	1
	1.1	PDEs of 2nd order	1
	1.2	PDEs of 1st order	1
	1.3	Some properties of 1st order hyperbolic systems	1
		1.3.1 Characteristics	1
		1.3.2 Domain of dependence and range of influence	1
2	Bas	ic Equations of Computational Fluid Dynamics	3
	2.1	Continuous media and the Boltzmann equation	3
	2.2	From the Boltzmann equation to the Euler equations	3
	2.3	Navier-Stokes equations	3
	2.4	Magnetohydrodynamics	3
	2.5	Radiation transfer	3
	2.6	Relativistic Hydrodynamics	3
	2.7	Relativistic radiation transfer	3
3	Fin	ite Difference methods for PDEs	5
	3.1	Basic notions of discretization	5
	3.2	Finite difference approximations	5
		3.2.1 Partial derivatives & differential operators	5
		3.2.2 Sample discretizations	5
	3.3	Consistency, stability, convergence	5
	3.4	Stability analysis and the CFL condition	5
	3.5	Diffusion and dispersion	5
	3.6	Error analysis and convergence	5

4 CONTENTS

Preface and recommended literature

These lecture notes have been prepared for a new graduate course on computational fluid dynamics in the Guelph–Waterloo Institute for Physics (GWIP), the joint graduate school of the Universities of Guelph and Waterloo, as well as Perimeter Institute for Theoretical Physics (Fall 2020). Many textbooks helped me compose these lectures and lecture notes. Some suggested textbooks include:

Numerical Methods

- Toro (2009): Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, 3rd edition, 2009)
- Leveque (2002): Finite Volume Methods for Hyperbolic Problems (Cambridge Univ. Press, Cambridge Texts in Applied Mathematics, 2002)

Mathematically inclined literature:

- Kröner (1997): Numerical Schemes for Conservation Laws (Wiley, 1997)
- Evans (2010): Partial Differential Equations (Graduate Studies in Mathematics, American Mathematical Society, 2nd edition, 2010)

Other recommended literature

- Bodenheimer et al. (2006): Numerical Methods in Astrophysics (Taylor & Francis, 2007)
- Anile (1989): Relativistic fluids and magneto-fluids (Cambridge Univ. Press, 1990)
- Rieutord (2015): Fluid Dynamics (Springer, 2015)
- LeVeque (2007): Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, 2007)

Chapter 1

Basic Notions of Partial Differential Equations

1.1 PDEs of 2nd order

Recommended reading: Evans (2010) Chap. 1, Chap. 6.1, 7.1.1, 7.2.1, Strauss (2007) Chap. 1.6, most introductory books on PDEs.

1.2 PDEs of 1st order

Recommended reading: Evans (2010) Chap. 7.3.1, 11.1, Toro (2009) Chap. 2.

1.3 Some properties of 1st order hyperbolic systems

Recommended reading: Toro (2009) Chap. 2, Leveque (2002) Chap. 2.9–2.11, 3.1–3.6, 11.2.

- 1.3.1 Characteristics
- 1.3.2 Domain of dependence and range of influence

Chapter 2

Basic Equations of Computational Fluid Dynamics

Recommended reading: Bodenheimer et al. (2006) Chap. 1, Rieutord (2015) Chap. 11, Lifshitz & Pitaevskii (1981) Chap. 1, Anile (1989) Chap. 2.

- 2.1 Continuous media and the Boltzmann equation
- 2.2 From the Boltzmann equation to the Euler equations
- 2.3 Navier-Stokes equations
- 2.4 Magnetohydrodynamics
- 2.5 Radiation transfer
- 2.6 Relativistic Hydrodynamics

Recommended reading: Gourgoulhon (2012) Chaps. 4 & 6, Gourgoulhon (2006), Baumgarte & Shapiro (2010) Chap. 5, Alcubierre (2008) Chap. 2.2 & 7.

2.7 Relativistic radiation transfer

Recommended reading: Thorne (1981), Shibata et al. (2011), Straumann (2013) Sec. 3.11.

Chapter 3

Finite Difference methods for PDEs

Recommended reading: LeVeque (2007) Chap. 1, 9, 10, Bodenheimer et al. (2006) Chap. 2, Choptuik (2006) Sec. 1., Kröner (1997) Chap. 2.4, Toro (2009) Chap. 5.1.

- 3.1 Basic notions of discretization
- 3.2 Finite difference approximations
- 3.2.1 Partial derivatives & differential operators
- 3.2.2 Sample discretizations
- 3.3 Consistency, stability, convergence
- 3.4 Stability analysis and the CFL condition
- 3.5 Diffusion and dispersion
- 3.6 Error analysis and convergence

Bibliography

- Alcubierre, M. 2008, Introduction to 3+1 Numerical Relativity (Oxford, UK: Oxford University Press)
- Anile, A. M. 1989, Relativistic fluids and magneto-fluids: with applications in astrophysics and plasma physics, Cambridge Monographs on Mathematical Physics (New York: Cambridge University Press)
- Baumgarte, T. W. & Shapiro, S. L. 2010, Numerical Relativity: Solving Einstein's Equations on the Computer (Cambridge University Press, Cambridge UK)
- Bodenheimer, P., Laughlin, G. P., Rozyczka, M., & Yorke, H. W. 2006, Numerical Methods in Astrophysics: An Introduction, Series in Astronomy and Astrophysics (CRC Press Taylor & Francis)
- Choptuik, M. W. 2006, Lectures for VII Mexican School on Gravitation and Mathematical Physics: Relativistic Astrophysics and Numerical Relativity Numerical Analysis for Numerical Relativists, http://laplace.physics.ubc.ca/People/matt/Teaching/06Mexico/mexico06.pdf
- Evans, L. C. 2010, Graduate Studies in Mathematics, Vol. 19, Partial Differential Equations, 2nd edn. (American Institute of Physics)
- Gourgoulhon, E. 2006, 21, 43, eAS Publications Series, eprint: arXiv:gr-qc/0603009
- Gourgoulhon, E. 2012, Lecture Notes in Physics, Berlin Springer Verlag, Vol. 846, 3+1 Formalism in General Relativity
- Kröner, D. 1997, Numerical Schemes for Conservation Laws (Wiley-Teubner)
- Leveque, R. J. 2002, Finite Volume Methods for Hyperbolic Problems (New York: Cambridge University Press)
- LeVeque, R. J. 2007, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady State and Time Dependent Problems (Society for Industrial and Applied Mathematics (SIAM))
- Lifshitz, E. M. & Pitaevskii, L. P. 1981, Course of Theoretical Physics, Vol. 10, Physical Kinetics (Amsterdam: Butterworth-Heinemann)
- Rieutord, M. 2015, Fluid Dynamics: An Introduction, Graduate Texts in Physics (Springer International Publishing)

8 BIBLIOGRAPHY

Shibata, M., Kiuchi, K., Sekiguchi, Y., & Suwa, Y. 2011, Progress of Theoretical Physics, 125, 1255

Straumann, N. 2013, General Relativity (Dordrecht, Netherlands: Springer)

Strauss, W. A. 2007, Partial Differential Equations: An Introduction (John Wiley & Sons), google-Books-ID: m2hvDwAAQBAJ

Thorne, K. S. 1981, MNRAS, 194, 439

Toro, E. F. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. (Springer-Verlag)