

Nuclear Data: rewards for the right library choice

Olga Vilkhivskaya

FISPACT-II workshop
25 November 2020, online

Nuclear Data (ND): who always needs its good quality

Fission: NPPs and research reactor facilities, ...

Fusion: research tokamaks, ITER, DEMO, ...

Medicine: diagnostics, Gamma Knife radiosurgery, brachytherapy, ...

Applied physics: accelerators, neutrino labs, ...

Aerospace: satellites, rovers, deep space missions, ...

Security/Defense: interrogation, radioprotection, non-proliferation

ND: what needs to be accurate

Reaction cross-section

- availability for various reaction channels
- evaluated and experimental data

Fission product yields

predicted with high accuracy

Decay Data:

- radionuclides inclusion
- half-life
- decay modes, Q-values
- associated α , β , γ spectra
- (anti)neutrinos

ND: evaluated and experimental

General Purpose Libraries	Sp
 BROND-3.1 CENDL-3.1 ENDF/B-VII.1 JEFF-3.2 JENDL-4.0 RUSFOND-2010 Standards 2006 TENDL 	
EXFOR:	
Experimental	

Special Purpose Libraries

- ADL-3EADL-92
- EAF-2010
- EEDL-92
- EFF-2.4
- EPDL-92
- FENDL-2.1
- IRDFF-1.0
- JEFF-3.1/AJEFF-3.1.1/RDD
- JEFF-3.1.1/FY
- JENDL/AC-2008
- JENDL/AN-2005
- JENDL/HE-2007
- JENDL/PD-2004
- JENDL/FPD-2011
- JENDL/FPY-2011
- MENDL-2
- PADF-2007
- RRDF-98
- UKFY-4.1
- UKHEDD-2.6

Older Nuclear Data Libraries

- ACTL-82
- BROND-2.2
- CENDL-2.1
- EAF-2007
- ENDF/B-IV,V,VI,VII.0
- ENDL-78,86
- FENDL-11,20
- INDL/V-85, INDL/A-86
- IRDF-85,90,2002
- JEFF-2.2,3.0,3.1(.n)
- JENDL-3.3,3.2
- RNPL/A
- UKCROUCH-3i
- UKIFYA-1
- UKIFYU-1
- UKFY-2,3,4
- UKFPDD-2
- UKHEDD-1,2,2.x
- UKPADD-1,2,3,6.x
- UKNDL-2

FISPACT-II can handle all ENDF-6 files including:

JEFF-3.X

JENDL-4.0u and 2015/16

IRDFF-II (xs - issues noted)

Authority

ENDF/B-VIII.0

UKDD-12

as well as legacy EAF

...

Comparisons between libraries can quickly demonstrate unresolved issues in xs/decay/FY data that might affect the simulation results

More details: https://www.oecd-nea.org/dbdata/data/nds_eval_libs.htm

https://fispact.ukaea.uk/nuclear-data/

http://www-nds.ciae.ac.cn/exfor/endf.htm

https://www.nndc.bnl.gov/nudat2/

http://amdc.in2p3.fr/web/nubase_en.html

Nuclear

Reaction Data

TENDL-2019 cross-section library release

https://tendl.web.psi.ch/tendl_2019/tendl2019.html

Segmentation of TENDL publications by application area, over the years 2008-2017

Presentation by D. Rochman. The new TENDL-2019 nuclear data library. JEFF meeting, 25 April, 2019, OECD NEA Paris, France

TENDL-2019, what is new?

- New T6:
 - Newest code versions,
 - more verifications,
 - Linux RedHat/Mac,
 - tested with latest compilers
- TENDL-2019 Beta versions already available (https://tendl.web.psi.ch/tendl 2019/tendl2019.html)
- · Similar structure as the previous TENDL libraries
 - 2813 isotopes, 200 MeV, with covariances
 - Neutrons, protons, deuterons, tritons, He3, alphas, and gammas
 - ACE ?
 - ENDF-6 files in different options (MF3 MT5 at 0, 20 or 60 MeV)
 - EAF files
 - MF32 and/or MF33
 - Input files
 - Random files

ND for Energy: Nuclear power plants

Fuel Cladding Integrity monitoring at operating WWER power units

I.A. Evdokimov et al. Development of the Expert System for fuel monitoring and analysis in WWER-1000 units. INTERNATIONAL CONFERENCE ON WWER FUEL PERFORMANCE, MODELLING AND EXPERIMENTAL SUPPORT (2011)

lodine radionuclides activity in primary coolant:

- Detection of the moment when a rod leakage occurs in the core
- Estimation of the extent of cladding degradation in a leaking fuel rod: small/large defect, secondary failure, fuel washout, mass of tramp uranium in the core (I-134)
- Fuel failure criteria: operational limits (I-131)

Noble gas activity in primary coolant:

- Detection of the secondary failure in the core
- Leaking fuel burnup estimation relying on the activity ratio of ⁸⁸Kr and ^{85m}Kr to ¹³⁵Xe

ND for Energy: Nuclear power plants

Technique for the burnup evaluation of leaking fuel in WWERs during reactor operation:

¹³⁴Cs/¹³⁷Cs activity ratio at spike-events

Example of ¹³⁴Cs and ¹³⁷Cs spike-event during a power transient

Sources: O. Vilkhivskaya, PHYSOR2020 and INTERNATIONAL CONFERENCE ON WWER FUEL PERFORMANCE, MODELLING AND EXPERIMENTAL SUPPORT (2017)

WWER-1000 core: 163 assemblies, various fuel enrichment and irradiation history

ND for Nuclear Energy research: Fusion - JET

Figure 4: (a) JET neutron yield per pulse between 27/08/2015 and 15/11/2016; (b) Simulated specific activities calculated over time for dosimetry foils located within the long-term irradiation station assembly, exposed to JET experimental campaigns calculated using FISPACT-II.

Deuterium-Tritium (DT) experiments: scheduled **2020**

$$^{2}H + ^{3}H \rightarrow ^{4}He + n$$

L. W. Packer et al. (2018)
Activation of ITER materials in JET: nuclear characterisation experiments for the long-term irradiation station.
Nucl. Fus. 58

ND for Nuclear Energy: xs data for fusion examples

ND for Nuclear Energy: Fusion - ITER

ITER bolometers: currently tested to 0.1 dpa

If used in DEMO: can suffer damage of 3dpa at 3m from the FW

Pt absorbers need to be tested at damage > 0.1 dpa

H. Meister. Current status of the design of the ITER bolometer diagnostic. Fus. Eng. Des. **120** (2017)

550 lines-of-sight (LOS):

- 71 cameras observing the whole plasma
- detector type: metal resistor bolometer
- Pt absorber/SiN/Pt resistor
- radiation measurements: soft-X to the infrared
- tomographic reconstructions of the spatially resolved radiation profile
- withstand thermal loads due to n and γ heating

ND for Medicine: Brachytherapy

Example: Iodine seeds

- Iodine-125 (in Zr/Ti cladding)
- $T_{1/2}$ = 59.49 days
- emits low-energy photons (35 keV)
- reactor-produced:

124
Xe (n,γ) \rightarrow 125m Xe (57 s) \rightarrow 125 I (59.4 d) 124 Xe (n,γ) \rightarrow 125g Xe (19.9 h) \rightarrow 125 I (59.4 d)

- leading producer: Canada
- therapy of tumours

Other emitters:

Photon sources: Co-60, Cs-137,

Cs-133, Ir-192, I-125, Pd-103

Beta sources: Sr-90/Y-90 **Neutron sources:** Cf-252

Source: https://www.eisenhowerhealth.org

Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters

F. T. Tárkányi¹ · A. V. Ignatyuk² · A. Hermanne³ · R. Capote⁴ · B. V. Carlson⁵ · J. W. Engle⁶ · M. A. Kellett⁷ · T. Kibedi⁸ · G. N. Kim⁹ · F. G. Kondev¹⁰ · M. Hussain¹¹ · O. Lebeda¹² · A. Luca¹³ · Y. Nagai¹⁴ · H. Naik¹⁵ · A. L. Nichols¹⁶ · F. M. Nortier⁶ · S. V. Suryanarayana¹⁵ · S. Takács¹ · M. Verpelli⁴

Received: 23 May 2018 / Published online: 3 October 2018

Journal of Radioanalytical and Nuclear Chemistry (2019) 319:487–531 https://doi.org/10.1007/s10967-018-6142-4

ND for Aerospace: power sources

²³⁸**Pu:** power source for satellites and NASA's deep space missions

- first launched into Earth orbit in 1961, Radioisotope Thermoelectric Generators (RTGs) have flown on 27 space missions involving 46 RTGs
- optimizing power levels over a minimum lifetime of 14 years and ensuring a high degree of safety
- Pu-238 produced at HFIR reactor (ORNL) by Np-237 irradiation with neutrons
- uncertainty in Np-238 fission product evaluation → uncertainty in target heating

source: www.nasa.gov` October 2013

The Curiosity rover took this self portrait on the surface of Mars, with its MMRTG power source visible at the rear.

ND for Aerospace: Mars 2020

Go nuclear data!

Power for Mars 2020 rover: the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Image Credit: NASA/JPL-Caltech (18.10.2019)

https://mars.nasa.gov/mars2020/news/

