

# Predicting Affordability of Houses in Ames, Iowa

STATS 101C - LEC 2: KAT

Albert Na, Kathy Fu, Tiffaney Pi



## Overview

- Data Cleaning
  - > Type Conversion
  - Handling NAs Imputation, Zero, 'None'
  - > Correlation
  - Creation + Deletion of Variables
- Methodology
- Results/Interpretation



#### The data frame

- Clean training and testing datasets together in a new data frame alldata
  - > rbind()
- Remove the 2 observations with an NA value in the affordability column



#### **Type Conversion**

- Use mutate\_if to save any variables with character types into factors if they weren't already
- Convert categorical variables with a numeric class type into factors based on their descriptions
  - ➤ MSSubClass, OverallCond, OverallQual,
    BedroomAbvGr, KitchenAbvGr, TotRmsAbvGrd
    Fireplaces, GarageCars, MoSold, YrSold



#### **NA** values - Imputation

- ♦ Median → numerical variables (low variance)
  - ➤ LotFrontage
- ♦ Mode → categorical variables
  - MSZoning, Exterior1st/2nd, Electrical, KitchenQual, Functional, SaleType,
- ❖ Zero → If the variable had an NA, reasonably assumed this
  meant the variable did not have the observation at all
  - ➤ MasVnrArea, BsmtFinSF1/2, BsmtUnfSF, TotalBsmtSF, BsmtFullBath, BsmtHalfBath, GarageArea, GarageCars
  - Ex: If NA value for MasVnrArea, assumed that there was no Masonry Veneer Type (level was 'None') to begin with.



## NA values → Flagging as "None"

- If NA means 'None', create factor level 'None'.
  - i.e.: PoolQC: NA means 'No pool'
- Alley, MasVnrType, BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1/2, FireplaceQu, GarageType, GarageYrBlt, GarageFinish, GarageQual, GarageCond, PoolQC, Fence, MiscFeature



#### **Correlation**

- Check for highly correlated variables (r > 0.8 or r < -0.8)</p>
  - Remove TotRmsAbvGrd, correlated with GrLivArea
  - Remove GarageCars, correlated with GarageArea
  - Remove GarageYrBlt, correlated with YearBuilt

\*Keep variables that are numerical



#### **Interpreting the Data:**

Combining + Creating New Variables

- Create a new variable AgeofHouse
  - > AgeofHouse = YearRemodAdd YrBuilt
- Create new variable BsmtBath
  - ➤ BsmtBath = BsmtFullBath + .5\*BsmtHalfBath
- Create new variable Bath
  - $\triangleright$  Bath = FullBath + .5\*HalfBath

<sup>\*</sup>Remove old variables and convert new variables into factor type



### **Interpreting the Data:**

Deleting Repetitive Variables

library(caret)

- ❖ Apply function nearZeroVar() on testing and training
- Removed all 24 variables:

```
Street, Alley, LandContour, Utilities, LandSlope, Condition2, RoofMatl, MasVnrArea, BsmtCond, BsmtFinType2, BsmtFinSF2, Heating, LowQualFinSF, KitchenAbvGr, Functional, WoodDeckSF, OpenPorchSF, EnclosedPorch, ThreeSsnPorch, ScreenPorch, PoolArea, PoolQC, MiscFeature, MiscVal
```



#### **Interpreting the Data:**

#### Deleting Other Variables

- Remove numerical variables:
  - > Obs not actually a predictor
  - Use geom density() on remaining numerical variables
    - Remove LotFrontage and LotArea
- Remove categorical variables:
  - Neighborhood too many levels
  - Table these variables, remove ones with infrequent levels of around <1000 occurrences</p>
    - Remove BldgType, RoofStyle, CentralAir, Electrical, GarageQual, GarageCond, PavedDrive, Fence



## **Attempting different Methods**

- Logistic RegressionLasso, Ridge
- 2) Lasso, Ridg Regression
- 3) SVM
- 4) Xgboost
- 5) Tree



Random Forest



# Random Forest

- Final dimensions of training data: 3498 x 39 (Originally 3500 x 81)
- mtry=9

| Confusion Matrix | Affordable | Unaffordable |
|------------------|------------|--------------|
| Affordable       | 1701       | 38           |
| Unaffordable     | 35         | 1724         |

## Variable Importance











- Most significant predictors at the top.
- Model contained all predictors

## Classification error





- Sufficient number of trees ~ 100
- OOB = "Out of Bag" error ~ 2.09%
  - running unbiased estimate of the classification error as trees are added to the **forest**
- "Affordable" error rate: 2.185%
- "Unaffordable" error rate: 1.99%



# Final Accuracy: 98.89%

Private leaderboard: 97.90%



#### **Limitations & Recommendations**

- Public leaderboard not representative of private leaderboard
- Overfitting
- Sample size
- With more time, perform deeper analysis on each variable and consider using outside data. Possibly combine infrequent levels together into "Other" category.



# Thank you!

Figure 2:

Figure 3:

Figure 1:

Figure 4:

Figure 5:

Figure 6:

Figure 8:

Figure 7:

Affordable Unaffordable

Affordable 1705 34
Unaffordable 40 1719