ECE253/CSE208 Introduction to Information Theory

Lecture 4: Convexity and Inequalities

Dr. Yu Zhang ECE Department University of California, Santa Cruz

• Chap 2 of Elements of Information Theory (2nd Edition) by Thomas Cover & Joy Thomas

Convex Functions

Definition (Convexity of functions)

• A function f(x) is *convex* over an interval (a,b) if and only if

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

holds for any $x_1, x_2 \in (a, b)$ and $\lambda \in [0, 1]$.

Figure: Any *chord* of a convex function is always above the function itself: The 0th-order condition of convexity.

Convex Functions

Definition (Convexity of functions)

• A function $f(\cdot)$ that is differentiable everywhere in (a,b) is convex if and only if

$$f(y) \ge f(x) + f'(x)(y - x)$$

for any $x, y \in (a, b)$.

Figure: Tangent lines are always global under-estimator of the function: The 1st-order condition of convexity.

Convex Functions

Definition (Convexity of functions)

• A function f(x) that is twice differentiable over (a,b) is convex if and only if

$$f''(x) \ge 0$$

for any $x \in (a, b)$.

Figure: Convex functions always curve upward (positive curvature).: The 2nd-order condition of convexity.

Examples. Convex functions: ax + b, |x|, x^2 , x^4 , $e^{\pm x}$, $x \log x$.

If f(x) is convex, then -f(x) is concave. Affine functions are both convex and concave.

Convexity in High-dimensional Spaces

Definition (Convex function)

A function $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ is *convex* iif for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have one of the following:

- 0th-order condition: $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ for any $\lambda \in [0, 1]$.
- 1st-order condition: $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} \mathbf{x})$
- 2nd-order condition: $\mathbf{H}_f := \nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$; i.e., the *Hessian* matrix is positive semi-definite (all eigenvalues are nonnegative), where $\mathbf{H}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.
- Strictly convex: if strict inequality always holds when $\mathbf{x} \neq \mathbf{y}$ and $\lambda \in (0,1)$.
- Strongly convex: $\mathbf{H}_f \succeq a\mathbf{I}$ for some constant a > 0 (the Hessian is positive definite).

Convex Sets

Definition (Convex sets)

A set $S \subseteq \mathbb{R}^n$ is convex if and only if $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in S, \forall \ \mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \in [0, 1].$

Geometrically, a convex set contains line segment between any two points in the set.

Convex sets are solid body without holes and curve outward.

examples (one convex, two nonconvex sets)

Figure: Convex and nonconvex sets (source: Stephen Boyd, Stanford).

Epigraph and Sublevel Set

• α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ \mathbf{x} \in \text{dom} f : f(\mathbf{x}) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

• epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} : \mathbf{x} \in \operatorname{dom} f, \ f(\mathbf{x}) \le t\}$$

f is a convex function \iff epif is a convex set

Convex Optimization Problem

Convex optimization problem in standard form:

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
s.to $f_i(\mathbf{x}) \le 0, \quad i = 1, ..., m$

$$\mathbf{a}_i^{\mathsf{T}} \mathbf{x} = b_i, \quad i = 1, ..., p$$

- f_0, f_1, \ldots, f_m are convex
- ullet equality constraints are affine (alternatively $\mathbf{A}\mathbf{x}=\mathbf{b})$

Important properties:

- 1. For convex problems, any local solution is also global.
- 2. If $f_0()$ is strictly convex, the minimizer is unique.
- 3. The optimal set X_{opt} is convex.

Jensen's Inequality

Lemma (Jenson's Inequality)

If X is a random variable and $f(\cdot)$ is a convex function, then

$$\boxed{E(f(X)) \ge f(E(X))}$$

Moreover, if f(X) is strictly convex, equality implies X = E(X) with probability 1.

Jensen's Inequality (Cont'd)

Proof:

1) For a two-point distribution $X \in \{x_1, x_2\}$, the convexity of $f(\cdot) \Longrightarrow$

$$p_1 f(x_1) + p_2 f(x_2) \ge f(p_1 x_1 + p_2 x_2).$$

2) Proof by induction: Assume Jenson's inequality holds for a (k-1)-mass point distribution. To show the inequality holds for a k-mass point distribution, define $p_i' = \frac{p_i}{1-p_k}$ for all i=1,2,...,k-1:

$$\sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + (1 - p_k) \sum_{i=1}^{k-1} p'_i f(x_i)$$

$$\geq p_k f(x_k) + (1 - p_k) f\left(\sum_{i=1}^{k-1} p'_i x_i\right)$$

$$\geq f\left(p_k x_k + (1 - p_k) \sum_{i=1}^{k-1} p'_i x_i\right) = f\left(\sum_{i=1}^{k} p_i x_i\right)$$

where the 1st inequality is from the induction while the 2nd inequality is due to the convexity of $f(\cdot)$.

Gibbs' Inequality (Information Inequality)

Theorem (Gibbs' Inequality)

Let p(x) and q(x) be two probability mass functions. Then, $D(p||q) \ge 0$ with equality if and only if p(x) = q(x) for all x.

Proof:
$$-D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)} \le \log \left(\sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)} \right) = \log \left(\sum_{x \in \mathcal{X}} q(x) \right) = 0.$$

Corollary (Nonnegativity of mutual information)

For any two random variables X and Y, we have $I(X;Y) \geq 0$ with equality iff X and Y are independent.

Corollary (Conditional mutual Information)

$$I(X;Y|Z) \ge 0$$

with equality iff X and Y are conditionally independent given Z, which is denoted as $(X \perp\!\!\!\perp Y) \mid Z$.

Gibbs' Inequality (Cont'd)

Theorem (Conditioning reduces entropy (information cannot hurt))

 $H(X|Y) \leq H(X)$ with equality iif $X \perp \!\!\! \perp Y$.

Intuitively, knowing Y can only reduce the uncertainty in X. Note that this is true only on the average (expectation) sense. That is, H(X|Y=y)>H(X) can happen.

Theorem (Uniform distribution has the maximum entropy)

$$H(X) \le \log |\mathcal{X}|$$

where $|\mathcal{X}|$ is the cardinality of the set \mathcal{X} (i.e., the number of elements in the set) with equality iff X has a uniform distribution over \mathcal{X} .

Proof: Let $u(x) = \frac{1}{|\mathcal{X}|}$ be the uniform PMF, and p(x) be the PMF of X over \mathcal{X} , respectively. Then, $D(p\|u) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{u(x)} = \log |\mathcal{X}| - H(X) \geq 0$.

Gibbs' Inequality (Cont'd)

Theorem (Independence bound on entropy)

Let $X_1, X_2, ..., X_n$ be drawn from $p(x_1, x_2, ..., x_n)$. Then,

$$H(X_1, X_2, ..., X_n) \le \sum_{i=1}^n H(X_i)$$

with equality iff the $\{X_i\}_{i=1}^n$ are independent.

Proof: By the chain rule:
$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1) \le \sum_{i=1}^n H(X_i)$$
.

Theorem (Convexity of relative entropy)

D(p||q) is convex in the pair (p,q). That is, if (p_1,q_1) and (p_2,q_2) are two pairs of PMFs. Then,

$$D(\lambda p_1 + (1 - \lambda)p_2||\lambda q_1 + (1 - \lambda)q_2) \le \lambda D(p_1||q_1) + (1 - \lambda)D(p_2||q_2)$$

for all $0 < \lambda < 1$.

Proof: By the log-sum inequality; see details on page 31–32 of the textbook.

Entropy and Probability of Errors

Lemma

Let X,X' be independent with $X\sim p(x),X'\sim r(x'),x,x'\in\mathcal{X}$. Then,

$$Prob(X = X') \ge \max \left\{ 2^{-H(p,r)}, 2^{-H(r,p)} \right\}.$$

$$\mathsf{Proof} \colon 2^{-H(p,r)} = 2^{\operatorname{E}_p(\log_2 r(X))} \leq \operatorname{E}_p\left(2^{\log_2 r(X)}\right) = \sum_{x \in \mathcal{X}} p(x) r(x) = \operatorname{\mathsf{Prob}}(X = X').$$

Corollary

Let X,X^{\prime} are i.i.d. with entropy H(X). Then,

$$Prob(X = X') \ge 2^{-H(X)},$$

with equality iif X has a uniform distribution.

Data Processing Inequality (DPI)

Definition

Random variables X,Y,Z are said to form a Markov chain in the $X\to Y\to Z$ if the joint PMF can be written as p(x,y,z)=p(x)p(y|x)p(z|y).

Note: p(x,y,z) = p(x)p(y,z|x) = p(x)p(y|x)p(z|y,x) = p(x)p(y|x)p(z|y).

Corollary

X o Y o Z iff X and Z are conditionally independent given Y [i.e., $(X \perp \!\!\! \perp Z) \mid Y$].

Markovity implies conditional independence since

$$p(x, z|y) = \frac{p(x, y, z)}{p(y)} = \frac{p(x, y)p(z|y)}{p(y)} = p(x|y)p(z|y).$$

Corollary
$$(X \leftrightarrow Y \leftrightarrow Z)$$

$$X \to Y \to Z \Leftrightarrow Z \to Y \to X$$
.

DPI

Theorem (Data Processing Inequality (DPI))

If $X \to Y \to Z$ then $I(X;Y) \ge I(X;Z)$ with equality iif I(X;Y|Z) = 0 (i.e., $X \to Z \to Y$).

Proof: By the chain rule, we can expand mutual information in two different ways:

$$I(X;Y,Z) = I(X;Y) + I(X;Z|Y)$$
$$= I(X;Z) + I(X;Y|Z)$$

Since $(X \perp\!\!\!\perp Z) \mid Y \implies I(X;Z|Y) = 0$. Consider the fact that $I(X;Y|Z) \ge 0$, we have $I(X;Y) \ge I(X;Z)$.

Corollary

 $I(X;Y) \ge I(X;g(Y))$ for any function $g(\cdot)$. Thus, functions (post-processing) of Y cannot increase the information about X.

Proof: $X \to Y \to g(Y)$.

DPI (Cont'd)

Corollary

If
$$X \to Y \to Z$$
, then $I(X;Y|Z) \le I(X;Y)$.

Note that it is possible to have I(X;Y|Z)>I(X;Y); see the following example when X,Y,Z do not form a Markov chain.

Example

Consider
$$Z = X + Y$$
 for two i.i.d. $X, Y \sim \text{Bern}(0.5)$, Find $I(X; Y|Z)$.

$$\begin{split} I(X;Y|Z) &= H(X|Z) - H(X|Y,Z) \\ &= \Pr(Z=0)H(X|Z=0) + \Pr(Z=2)H(X|Z=2) + \Pr(Z=1)H(X|Z=1) \\ &= \left[\Pr(X=1,Y=0) + \Pr(Y=1,X=0)\right] \times H(X|Z=1) \\ &= 2 \times \frac{1}{4} \times H(1/2,1/2) \\ &= 0.5 > I(X;Y) = 0 \end{split}$$

Sufficient Statistics

Given a family of distributions $\{f_{\theta}(x)\}$. Let X be a sample drawn from a distribution in this family, and T(X) be any statistic (function of the sample such as sample mean or variance). Thus, we have $\theta \to X \to T(X) \Rightarrow I(\theta;X) \geq I(\theta;T(X))$.

Definition (Sufficient Statistic)

A function T(X) is said to be a sufficient statistic relative to the family $\{f_{\theta}(x)\}$ if X is independent of θ given T(X) for any distribution on θ ; i.e., $\theta \to T(X) \to X$ forms a Markov chain. This is the same as the condition for equality in the DPI:

$$I(\theta; X) = I(\theta; T(X))$$

Implication

A statistics is sufficient for θ if it contains all information in X about θ : Once we know T(X), the remaining randomness in X does not depend on θ .

Sufficient Statistics (Cont'd)

Example

Given i.i.d. $X_1, \ldots, X_n \sim \mathrm{Bern}(\theta)$. Let $X^n := (X_1, \ldots, X_n)$, a sufficient statistic of θ is $T(X^n) = \sum_{i=1}^n X_i$.

Proof: Need to prove: $\theta \to T(X^n) \to X^n$; i.e., $P(X^n)$ is independent of θ given $T(X^n)$:

$$P\left((X_1, ..., X_n) = (x_1, ..., x_n) \middle| \sum_{i=1}^n X_i = k\right) = \begin{cases} 0, & \text{if } \sum_{i=1}^n x_i \neq k \\ 1/\binom{n}{k}, & \text{if } \sum_{i=1}^n x_i = k \end{cases}$$

Another example: For $f_{\theta} = \operatorname{Uniform}(\theta, \theta + 1)$, a sufficient statistic for θ is $T(X_1, ..., X_n) = (\max\{X_i\}, \min\{X_i\})$.

Definition (Minimal sufficient statistic)

A statistic T(X) is a *minimal* sufficient statistic if it is a function of every other sufficient statistics U(X), which implies that $\theta \to T(X) \to U(X) \to X$.

Minimal sufficient statistic maximally compresses the information about θ in the sample; see more discussions in the lecture notes on minimal sufficient statistics by Yukai Sun.

Fano's Inequality

Consider a Markov chain $X \to Y \to \hat{X}$. In the context of communications:

- ullet Send symbol X via a noisy channel.
- The received symbol $Y \neq X$ due to the noise.
- Try to recover X by post-processing Y; i.e., $\hat{X} = g(Y)$ for some function g.
- The probability of error is defined as $P_e := P(\hat{X} \neq X)$.

Fano's inequality: We may estimate X with small P_e when H(X|Y) is small.

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, define $P_e = \Pr(X \neq \hat{X})$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y) \implies P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

If $\hat{X} \in \mathcal{X}$, we then have a slightly stronger inequality:

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y).$$

Fano's Inequality (Cont'd)

Proof: Define $E = \mathbb{1}_{\{\hat{X} \neq X\}}$. By the chain rule, we have

$$\begin{split} H(E, X | \hat{X}) &= H(X | \hat{X}) + H(E | X, \hat{X}) \\ &= H(E | \hat{X}) + H(X | E, \hat{X}) \\ &\leq H(P_e) + P(E = 0) H(X | \hat{X}, E = 0) + P(E = 1) H(X | \hat{X}, E = 1) \\ &\leq H(P_e) + P_e \log |\mathcal{X}| \end{split}$$

 $\implies H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$, where the 2nd inequality is due to the DPI: $I(X;Y) > I(X;\hat{X})$.

Furthermore, given E = 1, the range of possible X outcomes is $|\mathcal{X}| - 1$ $\implies H(X|E, \hat{X}) \le P_e \log(|\mathcal{X}| - 1)$.

Corollary

For any two random variables X, Y, let $p = P(X \neq Y)$. We have

$$H(p) + p \log |\mathcal{X}| \ge H(X|Y).$$

Proof: Let $\hat{X} = Y$ in Fano's inequality.

Yu Zhang (UCSC)

Fano's Inequality (Cont'd)

Fano's inequality establishes the fundamental limits of data compression and transmission. It can be used to characterize when a perfect reconstruction of sent code is not possible, i.e. P_e is bounded away from zero.

Example (Fano's inequality is sharp)

Let $X \in \{1,2,\ldots,m\}$ and $p_1 \geq p_2 \geq \cdots \geq p_m$. Then the best guess of X is $\hat{X} = 1$ and the resulting probability of error is $P_e = 1 - p_1$. Fano's inequality becomes

$$H(P_e) + P_e \log(m-1) \ge H(X).$$

The PMF $(p_1, p_2, \dots, p_m) = \left(1 - P_e, \frac{P_e}{m-1}, \dots, \frac{P_e}{m-1}\right)$ achieves the lower bound with equality. To see this,

$$H(X) = -(1 - P_e) \log(1 - P_e) - (m - 1) \times \frac{P_e}{m - 1} \log \frac{P_e}{m - 1}$$
$$= -(1 - P_e) \log(1 - P_e) - P_e \log P_e + P_e \log(m - 1)$$
$$= H(P_e) + P_e \log(m - 1).$$

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/