Cpr E 281 HW03 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Third Week Due Date: First class of 4th week

P1.

Starting with the canonical sum-of-products for f get

$$f = \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + \overline{x}_{1}x_{2}x_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}x_{3} + x_{1}x_{2}\overline{x}_{3} + x_{1}x_{2}x_{3}$$

$$= x_{1}(\overline{x}_{2}\overline{x}_{3} + \overline{x}_{2}x_{3} + x_{2}\overline{x}_{3} + x_{2}x_{3}) + x_{2}(\overline{x}_{1}\overline{x}_{3} + \overline{x}_{1}x_{3} + x_{1}\overline{x}_{3} + x_{1}x_{3})$$

$$+ x_{3}(\overline{x}_{1}\overline{x}_{2} + \overline{x}_{1}x_{2} + x_{1}\overline{x}_{2} + x_{1}x_{2})$$

$$= x_{1}(\overline{x}_{2}(\overline{x}_{3} + x_{3}) + x_{2}(\overline{x}_{3} + x_{3})) + x_{2}(\overline{x}_{1}(\overline{x}_{3} + x_{3}) + x_{1}(\overline{x}_{3} + x_{3}))$$

$$+ x_{3}(\overline{x}_{1}(\overline{x}_{2} + x_{2}) + x_{1}(\overline{x}_{2} + x_{2}))$$

$$= x_{1}(\overline{x}_{2} \cdot 1 + x_{2} \cdot 1) + x_{2}(\overline{x}_{1} \cdot 1 + x_{1} \cdot 1) + x_{3}(\overline{x}_{1} \cdot 1 + x_{1} \cdot 1)$$

$$= x_{1}(\overline{x}_{2} + x_{2}) + x_{2}(\overline{x}_{1} + x_{1}) + x_{3}(\overline{x}_{1} + x_{1})$$

$$= x_{1} \cdot 1 + x_{2} \cdot 1 + x_{3} \cdot 1$$

$$= x_{1} + x_{2} + x_{3}$$

P2.

Truth Tables a, b, c

X	Y	0 1 0 1	a	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	b
0	0	0	0	0	0	0	1
0	0	1	0	0	0	1	1
0	1	0	0	0	1	0	0
0	1	1	1	0	1	1	1
1	0	0	0	1	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	1	0	0
1	1	0 1 0 1	1	1	1	0 1 0 1 0 1 0	1

- a) Sum of Minterms: $\overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$
 - Product of Maxterms: $(X + Y + Z)(X + Y + \overline{Z})(X + \overline{Y} + Z)(\overline{X} + Y + Z)$
- b) Sum of Minterms: $\overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$
 - Product of Maxterms: $(A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$

P3.

Cpr E 281 HW03 SOLUTION

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Assigned Date: Third Week Due Date: First class of 4th week

f(x1, x2, x3) = 5 m (3,4,6,7) f = x1x2x3+ x1x2x3+x1x2x3+x1x2x3 $= \chi(\chi_2 \chi_3 + \chi_1 \chi_2' \chi_3') + \chi_1 \chi_2 (\chi_3' + \chi_3)$ = x1x2x3+x1x2x3+x1x2 = x1 x2 x3 + x1 (x2 x3 + x2) = x1 x2 x3 + x1 (x1+x2) (x3+x2) = x1 x2x3 + x1 x3 + x1 x2 = x1 x2 x3 + x1 x2 + x1 x3 = x2 (x1 x3+x1) +x1 x3 = xv(x(+x1)(x3+x1)+x1x3 = x, x2 + x2 x3 + x, x3 AND-OR NETWORK NAND only Network (a) Double inversion (6)

Cpr E 281 HW03 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Third Week Due Date: First class of 4th week

P4. a)

(a) Min terms

$$M(X, Y, Z) = \sum m(3, 5, 6, 7) = \overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$$

$$N(X, Y, Z) = \sum m(1, 2, 4, 7) = \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y Z$$

Max terms

$$M(X,Y,Z) = \prod M(0,1,2,4) = (X+Y+Z)(X+Y+\overline{Z})(X+\overline{Y}+Z)(\overline{X}+Y+Z)$$

$$N(X,Y,Z) = \prod M(0,3,5,6) = (X+Y+Z)(X+\overline{Y}+\overline{Z})(\overline{X}+Y+\overline{Z})(\overline{X}+\overline{Y}+Z)$$

b)
$$M = YZ + XZ + XY$$
,

$$N = \overline{X} \, \overline{Y} \, Z + \overline{X} Y \overline{Z} + X \, \overline{Y} \overline{Z} + X Y Z$$

Cpr E 281 HW03 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Third Week Due Date: First class of 4th week

P5.

x 1	x 2	y 1	y 2	X=x1x2	Y=y1y2	F
0	0	0	0	$(00)_2 = (0)_{10}$	$(00)_2 = (0)_{10}$	1
0	0	0	1	00=0	01=1	0
0	0	1	0	00=0	10=2	0
0	0	1	1	00=0	11=3	0
0	1	0	0	01=1	00=0	0
0	1	0	1	01=1	01=1	1
0	1	1	0	01=1	10=2	0
0	1	1	1	01=1	11=3	0
1	0	0	0	10=2	00=0	0
1	0	0	1	10=2	01=1	0
1	0	1	0	10=2	10=2	1
1	0	1	1	10=2	11=3	0
1	1	0	0	11=3	00=0	0
1	1	0	1	11=3	01=1	0
1	1	1	0	11=3	10=2	0
1	1	1	1	11=3	11=3	1

$$\begin{split} SOP &= x_1'x_2'y_1'y_2' + x_1'x_2y_1'y_2 + x_1x_2'y_1y_2' + x_1x_2y_1y_2 \\ POS &= \left(x_{1+}x_{2+}y_{1+}y_{2'}\right) \left(x_{1+}x_{2+}y_{1'+}y_2\right) \left(x_{1+}x_{2+}y_{1'+}y_{2'}\right) \left(x_{1+}x_{2'+}y_{1+}y_2\right) \\ &\qquad \left(x_{1+}x_{2'+}y_{1'+}y_2\right) \left(x_{1+}x_{2'+}y_{1'+}y_{2'}\right) \left(x_{1'+}x_{2+}y_{1+}y_2\right) \left(x_{1'+}x_{2+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2+}y_{1'+}y_{2'}\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2+}y_{1'+}y_{2'}\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_{2'}\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_{1+}y_2\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \left(x_{1'+}x_{2'+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_{1+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_{1+}y_{1+}y_{1+}y_{1+}y_2\right) \\ &\qquad \left(x_{1'+}x_{2}y_{1+}y_$$

P6.

(a) The NAND function F = (A.B)'

If we set B=1, then F = (A.1)'=A'.

In other words, we can implement the NOT function by connecting one of the inputs of a 2-input NAND gate to 1 (Vdd).

(b) The NOR function F = (A+B)'

If we set B=0, then F = (A+0)'=A'.

In other words, we can implement the NOT function by connecting one of the inputs of a 2-input NOR gate to 0 (Gnd).

(c) The 2-1 MUX function F = S'.x0 + S.x1

If we set x0=1 and x1=0, then F = S'.1 + S.0 = S'.

In other words, we can implement the NOT function by connecting the x0 input of a 2-1 MUX to 1 (Vdd), the x1 input to 0 (Gnd), and the signal to be inverted to S.

Cpr E 281 HW03 SOLUTION ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Assigned Date: Third Week Due Date: First class of 4th week

P7.

