(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年7 月5 日 (05.07.2001)

PCT

(10) 国際公開番号 **WO 01/47554 A1**

(51) 国際特許分類⁷: A61K 39/395, 9/08, 47/04, 47/12

(21) 国際出願番号: PCT/JP00/09339

(22) 国際出願日: 2000年12月27日(27.12.2000)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願平11/375203

1999年12月28日(28.12.1999) JF

(71) 出願人 (米国を除く全ての指定国について): 中外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA) [JP/JP]; 〒115-8543 東京都北区浮間五丁目5番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 山崎忠男 (YAMAZAKI, Tadao) [JP/JP]. 早坂 昭 (HAYASAKA, Akira) [JP/JP]. 古賀明子 (KOGA, Akiko) [JP/JP]; 〒 412-8543 静岡県御殿場市駒門一丁目135番地中外製 薬株式会社内 Shizuoka (JP). (74) 代理人: 平木祐輔, 外(HIRAKI, Yusuke et al.); 〒 105-0001 東京都港区虎ノ門一丁目17番1号 虎ノ門 5森ビル3階 Tokyo (JP).

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: STABLE ANTIBODY COMPOSITIONS AND INJECTION PREPARATIONS

(54) 発明の名称: 安定な抗体組成物及び注射製剤

(57) Abstract: Stabilized preparations of an antibody against a peptide relating to parathyroid hormone which are in the form of a solution of pH 5 to 8 wherein the antibody against a peptide relating to parathyroid hormone is dissolved in a buffer containing at least one buffering agent selected from the group consisting of acetic acid, citric acid, phosphoric acid and salts thereof.

(57) 要約:

WO 01/47554

酢酸、クエン酸、リン酸およびそれらの塩からなる群より選択される少なくとも1種の緩衝剤を含む緩衝液中に副甲状腺ホルモン関連ペプチドに対する抗体が溶解して、pHが5~8の溶液の形態にある、副甲状腺ホルモン関連ペプチドに対する抗体の安定化製剤。

明 細 書

安定な抗体組成物及び注射製剤

5 技術分野

本発明は、副甲状腺ホルモン関連ペプチドに対する抗体の安定化製剤及び注射製剤に関する。

背景技術

10 副甲状腺ホルモン関連ペプチド(Parathyroid hormone related peptide、以下「PTHrP」という。)は、高カルシウム血症の主原因物質の腫瘍が産生する蛋白で、骨吸収・腎尿細管でのカルシウム再吸収を促進することにより腫瘍産生性の高カルシウム血症(Humoral hypercalcemia of malignancy、以下「HHM」という。)を惹起する。現在、HHMの治療には、骨吸収抑制作用を有するカルシトニンやビスホスホネート製剤が用いられているが、HHMの進行は速く、末期癌患者のQOL(Quality of Life)を著しく悪化させていることから、原因に則したより効果的な治療薬の開発が求められている。

副甲状腺ホルモン関連ペプチドに対する抗体(以下「抗PTHrP抗体」と言う。)は、HHMに対して投与後すぐに効果が現れるため、効果発現までに日にちを20 必要とするビスホスホネート製剤に比べても優れている。さらに、末期癌患者に見られる悪液質の治療薬剤としても有用である(特開平11-80025号)。

発明の開示

抗PTHrP抗体を疾病の治療薬として利用するにあたっては、抗PTHrP抗体の生物 25 活性を長期間保持できる安定な製剤として提供する必要がある。従って、本発明 は、抗PTHrP抗体の安定化製剤を提供することを目的とする。

本発明者らは、抗PTHrP抗体溶液を調製し、抗PTHrP抗体の物理化学的性質に及ぼす水素イオン濃度(pH) および緩衝液濃度の影響について確認を行い、抗PTHr

P抗体の安定化製剤を製造することに成功した。

すなわち、本発明は、酢酸、クエン酸、リン酸およびそれらの塩からなる群より選択される少なくとも 1 種の緩衝剤を含む緩衝液中に抗PTHrP抗体が溶解して、pHが $5\sim8$ の溶液の形態にある、抗PTHrP抗体の安定化製剤を提供する。

また、本発明は、酢酸、クエン酸、リン酸およびそれらの塩からなる群より選択される少なくとも 1 種の緩衝剤を含む緩衝液中に抗PTHrP抗体が溶解して、 p Hが $5\sim8$ の溶液の形態にある、安定化された抗PTHrP抗体溶液組成物を提供する。

詳しくは、抗体溶液組成物がバルク用の溶液組成物である上記の抗体溶液組成 10 物を提供する。

さらに詳しくは、緩衝剤及び等張化剤以外に、実質的に他の安定化剤を含まな い上記の抗体溶液組成物を提供する。

本明細書において、「緩衝液」とは、緩衝作用(すなわち、pHの変化をゆるめる作用)のある溶液をいう。「緩衝剤」とは、緩衝作用をもつ物質をいう。

15 製剤あるいは組成物中の緩衝剤の総濃度は、0.1~100 mmol/L、好ましくは、 5~50 mmol/Lであるとよい。

製剤には、さらに、塩化ナトリウム、ブドウ糖などの等張化剤を、本質的にヒトの血液とおなじ浸透圧になるように添加してもよい。一般的には約250~350m0smの浸透圧が好ましい。

20 抗PTHrP抗体はモノクローナル抗体であるとよく、この抗体は、ヒト抗体、ヒト型化抗体またはキメラ抗体であることが好ましい。

さらに、本発明者らは、抗PTHrP抗体溶液を含む注射製剤を調製し、緩衝液の 種類によって投与時の疼痛作用が異なることを確認し、抗PTHrP抗体を含み、疼 痛の少ない注射製剤を製造することに成功した。

25 すなわち、本発明は、酢酸及び/又はその塩からなる緩衝剤を含む緩衝液中に 抗PTHrP抗体が溶解してなる注射製剤を提供する。

詳しくは、pHが5~8の溶液の形態にある上記注射製剤を提供する。

さらに詳しくは、緩衝剤の総濃度が0.1~100 mmol/L、好ましくは5~50 mmol

/Lである上記注射製剤を提供する。

抗PTHrP抗体はモノクローナル抗体であるとよく、この抗体は、ヒト抗体、ヒト型化抗体またはキメラ抗体であることが好ましい。

以下、本発明を詳細に説明する。

5 1. 抗PTHrP抗体

本発明で使用される抗PTHrP抗体は、所望の薬理効果を有するものであれば、 その由来、種類(モノクローナル、ポリクローナル)および形状を問うものでは ない。

本発明で使用される抗PTHrP抗体は、公知の手段を用いてポリクローナルまた はモノクローナル抗体として得ることができる。本発明で使用される抗PTHrP抗 体として、特に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来の モノクローナル抗体は、ハイブリドーマに産生されるもの、および遺伝子工学的 手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に産生されるもの を含む。この抗体はPTHrPと結合することにより、PTHrPがPTH/PTHrP受容体に結 合するのを阻害してPTHrPのシグナル伝達を遮断し、PTHrPの生物学的活性を阻害 する抗体である。

このような抗体としては、ハイブリドーマクローン#23-57-137-1により産生される#23-57-137-1抗体が挙げられる。

なお、ハイブリドーマクローン#23-57-137-1 は、mouse-mouse hybridoma 20 #23-57-137-1 として、工業技術院生命工学工業技術研究所(茨城県つくば市 東1丁目1番3号)に、平成8年8月15日付で、FERM BP-5631としてブダペ スト条約に基づき国際寄託されている。

2. 抗体産生ハイブリドーマ

モノクローナル抗体産生ハイブリドーマは、以下のようにして作製できる。すなわち、PTHrPを感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。

15

25

WO 01/47554 PCT/JP00/09339

まず、抗体取得の感作抗原として使用されるヒトPTHrPを、Suva, L. J. et a l., Science (1987) 237, 893に開示されたPTHrP遺伝子/アミノ酸配列を発現することによって得る。すなわち、PTHrPをコードする遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中または培養上清中から目的のPTHrPタンパク質を公知の方法で精製する。

次に、この精製PTHrPタンパク質を感作抗原として用いる。あるいは、PTHrPのN末端の34個のペプチドについて、化学合成により作製することもでき、これを感作抗原として使用することもできる。

感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細10 胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的にはげっ歯類の動物、例えば、マウス、ラット、ハムスター、あるいはウサギ、サル等が使用される。

感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一般的方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することにより行われる。具体的には、感作抗原をPBS(Phosphate-Buffered Saline)や生理食塩水等で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えばフロイント完全アジュバントを適量混合し、乳化後、哺乳動物に4-21日毎に数回投与する。また、感作抗原免疫時に適当な担体を使用することもできる。

このように免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、 20 哺乳動物から免疫細胞を採取し、細胞融合に付されるが、好ましい免疫細胞とし ては、特に脾細胞が挙げられる。

前記免疫細胞と融合される他方の親細胞として、哺乳動物のミエローマ細胞を用いる。このミエローマ細胞は、公知の種々の細胞株、例えば、P3 (P3x63Ag8.653) (J. Immnol. (1979) 123, 1548-1550)、P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7)、NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6, 511-519)、MPC-11 (Margulies. D. H. et al., Cell (1976) 8, 405-415)、SP2/0 (Shulman, M. et al., Nature (1978) 276, 269-270)、F0 (de St. Groth, S. F. et al., J. Immunol.

WO0147554 [file://\ldowas03\firmdata\fip\FOLEYPa\fiPatentDocuments\WO0147554.CPC]

10

15

20

25

WO 01/47554 PCT/JP00/09339

Methods (1980) 35, 1-21)、S194 (Trowbridge, I. S. J. Exp. Med. (1978) 1 48, 313-323)、R210 (Galfre, G. et al., Nature (1979) 277, 131-133) 等が好適に使用される。

前記免疫細胞とミエローマ細胞との細胞融合は、基本的には公知の方法、たと えば、ミルステインらの方法 (Kohler. G. and Milstein, C.、Methods Enzymo 1. (1981) 73, 3-46) 等に準じて行うことができる。

より具体的には、前記細胞融合は、例えば細胞融合促進剤の存在下に通常の栄養培養液中で実施される。融合促進剤としては、例えばポリエチレングリコール (PEG)、センダイウィルス (HVJ)等が使用され、更に所望により融合効率を高めるためにジメチルスルホキシド等の補助剤を添加使用することもできる。

免疫細胞とミエローマ細胞との使用割合は任意に設定することができる。例えば、ミエローマ細胞に対して免疫細胞を1-10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば、前記ミエローマ細胞株の増殖に好適なRPMI1640培養液、MEM培養液、その他、この種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清 (FCS)等の血清補液を併用することもできる。

細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混合し、予め37℃程度に加温したPEG溶液(例えば平均分子量1000-6000程度)を通常30-60%(w/v)の濃度で添加し、混合することによって目的とする融合細胞(ハイブリドーマ)を形成する。続いて、適当な培養液を逐次添加し、遠心して上清を除去する操作を繰り返すことによりハイブリドーマの生育に好ましくない細胞融合剤等を除去する。

このようにして得られたハイブリドーマは、通常の選択培養液、例えばHAT培養液(ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選択される。上記HAT培養液での培養は、目的とするハイブリドーマ以外の細胞(非融合細胞)が死滅するのに十分な時間(通常、数日~数週間)継続する。ついで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよび単一クローニングを行う。

また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球をin vitroでPTHrPに感作し、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞と融合させ、PTHrPへの結合活性を有する所望のヒト抗体を得ることもできる(特公平1-59878号公報参照)。さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物に抗原となるPTHrPを投与して抗PTHrP抗体産生細胞を取得し、これを不死化させた細胞からPTHrPに対するヒト抗体を取得してもよい(国際公開番号WO 94/25585 号公報、WO 93/12227号公報、WO 92/03918 号公報、WO 94/02602 号公報参照)。

このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、 10 通常の培養液中で継代培養することが可能であり、また、液体窒素中で長期保存 することが可能である。

当該ハイブリドーマからモノクローナル抗体を取得するには、当該ハイブリドーマを通常の方法にしたがい培養し、その培養上清として得る方法、あるいはハイブリドーマをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法などが採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方法は、抗体の大量生産に適している。

3. 組換え型抗体

15

本発明では、モノクローナル抗体として、抗体遺伝子をハイブリドーマからクローニングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換20 え技術を用いて産生させた組換え型のものを用いることができる(例えば、Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775, 1990参照)。

具体的には、抗PTHrP抗体を産生するハイブリドーマから、抗PTHrP抗体の可変 (V) 領域をコードするmRNAを単離する。mRNAの単離は、公知の方法、例えば、グアニジン超遠心法 (Chirgwin, J. M. et al., Biochemistry (1979) 18, 52 94-5299)、AGPC法 (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 15 6-159) 等により行って全RNAを調製し、mRNA Purification Kit (Pharmacia 製) 等を使用して目的のmRNAを調製する。また、QuickPrep mRNA Purification Kit (Pharmacia 製) を用いることによりmRNAを直接調製することができる。

10

25

WO 01/47554 PCT/JP00/09339

得られたmRNAから逆転写酵素を用いて抗体V領域のcDNAを合成する。cDNAの合成は、AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生化学工業社製)等を用いて行う。また、cDNAの合成および増幅を行うには、5'-Amp liFINDER RACE Kit (Clontech製)およびPCRを用いた5'-RACE法 (Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA (1988) 85, 8998-9002、Belyavsky, A. et al., Nucleic AcidsRes. (1989) 17, 2919-2932)等を使用することができる。

得られたPCR産物から目的とするDNA断片を精製し、ベクターDNAと連結する。 さらに、これより組換えベクターを作製し、大腸菌等に導入してコロニーを選択 して所望の組換えベクターを調製する。そして、目的とするDNAの塩基配列を公 知の方法、例えば、ジデオキシヌクレオチドチェインターミネーション法により 確認する。

目的とする抗PTHrP抗体のV領域をコードするDNAを得たのち、これを、所望の 抗体定常領域(C領域)をコードするDNAを含有する発現ベクターへ組み込む。

15 本発明で使用される抗PTHrP抗体を製造するには、抗体遺伝子を発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより、宿主細胞を形質転換し、抗体を発現させる。

抗体遺伝子の発現は、抗体重鎖(H鎖)または軽鎖(L鎖)をコードするDNAを20 別々に発現ベクターに組み込んで宿主細胞を同時形質転換させてもよいし、あるいはH鎖およびL鎖をコードするDNAを単一の発現ベクターに組み込んで宿主細胞を形質転換させてもよい(WO 94/11523 号公報参照)。

また、組換え型抗体の産生には上記宿主細胞だけではなく、トランスジェニック動物を使用することができる。例えば、抗体遺伝子を、乳汁中に固有に産生される蛋白質(ヤギβカゼインなど)をコードする遺伝子に挿入して融合遺伝子として調製する。抗体遺伝子が挿入された融合遺伝子を含むDNA断片をヤギの胚へ注入し、この胚を雌のヤギへ導入する。胚を受容したヤギから生まれるトランスジェニックヤギまたはその子孫が産生する乳汁から所望の抗体を得る。また、ト

ランスジェニックヤギから産生される所望の抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジェニックヤギに使用してもよい(Ebert, K.M. et. al., Bio/Technology (1994) 12, 699-702)。

4. 改変抗体

15

20

本発明では、上記抗体のほかに、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ抗体、ヒト型化(Humanized)抗体を使用できる。これらの改変抗体は、以下の方法を用いて製造することができる。

本発明に有用なキメラ抗体は、前記のようにして得た抗体V領域をコードするD 10 NAをヒト抗体C 領域をコードするDNAと連結し、これを発現ベクターに組み込ん で宿主に導入し産生させることにより得ることができる。

ヒト型化抗体は、再構成 (reshaped) ヒト抗体とも称され、これは、ヒト以外の哺乳動物、例えばマウス抗体の相補性決定領域 (CDR; complementarity determining region) をヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知られている (欧州特許出願公開番号EP 125023号公報、W0 96/02576 号公報参照)。

具体的には、マウス抗体のCDRとヒト抗体のフレームワーク領域(framework region; FR)とを連結するように設計したDNA配列を、CDR及びFR両方の末端領域にオーバーラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーとして用いてPCR法により増幅する。得られたDNAをヒト抗体C領域をコードするDNAと連結し、次いで発現ベクターに組み込んで、これを宿主に導入し産生させることによりヒト型化抗体を得ることができる(EP 239400号公報、WO 96/02576 号公報参照)。

CDRを介して連結されるヒト抗体のフレームワーク領域は、相補性決定領域が 25 良好な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体 の相補性決定領域が適切な抗原結合部位を形成するように、抗体の可変領域にお けるフレームワーク領域のアミノ酸を置換してもよい (Sato, K. et al., Cancer Res. (1993) 53. 851-856)。

キメラ抗体及びヒト型化抗体のC領域には、ヒト抗体のものが使用され、例えばH鎖では、 $C\gamma1$ 、 $C\gamma2$ 、 $C\gamma3$ 、 $C\gamma4$ を、L鎖では $C\kappa$ 、 $C\lambda$ を使用することができる。また、抗体またはその産生の安定性を改善するために、ヒト抗体C領域を修飾してもよい。

- 5 キメラ抗体は、ヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の定常 領域とからなる。一方、ヒト型化抗体は、ヒト以外の哺乳動物由来抗体の相補性 決定領域と、ヒト抗体由来のフレームワーク領域およびC領域とからなる。ヒト 型化抗体はヒト体内における抗原性が低下されているため、本発明の薬剤の有効 成分として有用である。
- 本発明に使用できるヒト型化抗体としてはヒト型化#23-57-137-1抗体が挙げられる。ヒト型化#23-57-137-1抗体は、マウス由来の#23-57-137-1抗体の相補性決定領域を、L鎖についてはヒト抗体HSU03868 (GEN-BANK, Deftos Mら, Scand. J. Immunol., 39, 95-103, 1994) 由来の3つのFR断片 (FR1、FR2およびFR3) 並びにヒト抗体S25755 (NBRF-PDB) 由来のFR断片 (FR4) に連結したものであり、
- 15 日鎖についてはヒト抗体S31679 (NBRF-PDB、Cuisinier AMら, Eur. J. Immuno l., 23, 110-118, 1993) のフレームワーク領域と連結し、抗原結合活性を有するようにフレームワーク領域のアミノ酸残基を一部置換したものである。

なお、ヒト型化#23-57-137-1抗体のL鎖またはH鎖をコードするDNAを含むプラスミドを有する大腸菌は、工業技術院生命工学工業技術研究所(茨城県つくば20 市東1丁目1番3号)に、平成8年8月15日付で、H鎖をコードするDNAを含むプラスミドを有する大腸菌であるEscherichia coli JM109 (hMBC1HcDNA/pUC19) についてはFERM BP-5629として、L鎖をコードするDNAを含むプラスミドを有する大腸菌であるEscherichia coli JM109 (hMBC1Lqλ/pUC19) についてはFERM BP-5630として、ブダペスト条約に基づきそれぞれ国際寄託されている。

25 5. 抗体修飾物

本発明で使用される抗体は、PTHrPに結合し、PTHrPの活性を阻害するかぎり、 抗体の断片又はその修飾物であってよい。例えば、抗体の断片としては、Fab、F (ab') 2、Fv、またはH鎖若しくはL鎖のFvを適当なリンカーで連結させたシング 10

WO 01/47554 PCT/JP00/09339

ルチェインFv(scFv)が挙げられる。具体的には、抗体を酵素、例えばパパイン、ペプシンで処理し抗体断片を生成させるか、または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる (例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976、Bett er, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496, Aca demic Press, Inc.、Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-496, Academic Press, Inc.、Lamoyi, E., Methods in Enzymology (1989) 121, 652-663、Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-669、Bird, R. E. et al., TIBTECH (1991) 9, 132-137 参照)。

scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。このsc Fvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを 介して連結される(Huston, J. S. et al.、Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。scFvにおけるH鎖V領域およびL鎖V領域は、本明細書 に抗体として記載されたもののいずれの由来であってもよい。V領域を連結する ペプチドリンカーとしては、例えばアミノ酸12-19残基からなる任意の一本鎖ペプチドが用いられる。

scFvをコードするDNAは、前記抗体のH鎖またはH鎖V領域をコードするDNA、およびL鎖またはL鎖V領域をコードするDNAのうち、それらの配列のうちの全部又は 所望のアミノ酸配列をコードするDNA部分を鋳型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにペプチドリンカー部分を コードするDNA、およびその両端が各々H鎖、L鎖と連結されるように規定するプライマー対を組み合せて増幅することにより得られる。

また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベク 25 ター、および該発現ベクターにより形質転換された宿主を常法に従って得ることができ、また、その宿主を用いることにより、常法に従ってscFvを得ることができる。

これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主に

より産生させることができる。本発明における「抗体」にはこれらの抗体の断片 も包含される。

抗体の修飾物として、ポリエチレングリコール (PEG) 等の各種分子と結合した抗PTHrP抗体を使用することもできる。本発明における「抗体」にはこれらの抗体修飾物も包含される。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法はこの分野においてすでに確立されている。

6. 組換え型抗体または改変抗体の発現および産生

前記のように構築した抗体遺伝子は、公知の方法により発現させ、取得することができる。哺乳類細胞の場合、常用される有用なプロモーター、発現させる抗体遺伝子、その3'側下流にポリAシグナルを機能的に結合させて発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウィルス前期プロモーター/エンハンサー (human cytomegalovirus immediate early promoter/enhancer) を挙げることができる。

- 15 また、その他に本発明で使用される抗体発現に使用できるプロモーター/エンハンサーとして、レトロウィルス、ポリオーマウィルス、アデノウィルス、シミアンウィルス40 (SV 40) 等のウィルスプロモーター/エンハンサー、あるいはヒトエロンゲーションファクター1α (HEF1α) などの哺乳類細胞由来のプロモーター/エンハンサー等が挙げられる。
- 20 SV 40プロモーター/エンハンサーを使用する場合はMulliganらの方法(Nature (1979) 277, 108)により、また、HEF1 α プロモーター/エンハンサーを使用する場合はMizushimaらの方法(Nucleic Acids Res. (1990) 18, 5322)により、容易に遺伝子発現を行うことができる。

大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配 列及び発現させる抗体遺伝子を機能的に結合させて当該遺伝子を発現させることができる。プロモーターとしては、例えばlaczプロモーター、araBプロモーターを挙げることができる。laczプロモーターを使用する場合はWardらの方法(Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427) により、あるいはa

raBプロモーターを使用する場合はBetterらの方法 (Science (1988) 240, 1041 -1043) により発現することができる。

抗体分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、pelBシグナル配列 (Lei, S. P. et al J. Bacteriol. (1987) 169, 437 9)を使用すればよい。そして、ペリプラズムに産生された抗体を分離した後、抗体の構造を適切に組み直して (refold) 使用する。

複製起源としては、SV 40、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることができ、さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは、選択マーカーとしてアミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。

本発明で使用される抗体の製造のために、任意の発現系、例えば真核細胞又は 原核細胞系を使用することができる。真核細胞としては、例えば樹立された哺乳 類細胞系、昆虫細胞系、真糸状菌細胞および酵母細胞などの動物細胞等が挙げら れ、原核細胞としては、例えば大腸菌細胞等の細菌細胞が挙げられる。

好ましくは、本発明で使用される抗体は、哺乳類細胞、例えばCHO、COS、ミエローマ、BHK、Vero、HeLa細胞中で発現される。

7. 抗体の分離、精製

10

15

前記のように発現、産生された抗体は、細胞、宿主動物から分離し均一にまで 指製することができる。本発明で使用される抗体の分離、精製はアフィニティー カラムを用いて行うことができる。例えば、プロテインAカラムを用いたカラム として、Hyper D、POROS、Sepharose F. F. (Pharmacia製)等が挙げられる。そ の他、通常のタンパク質で使用されている分離、精製方法を使用すればよく、何

ら限定されるものではない。例えば、上記アフィニティーカラム以外のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製することができる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。

8. 抗体の活性の確認

5

10

本発明で使用される抗体の抗原結合活性 (Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)、リガンドレセプター結合阻害活性 (Harada, A. et al., International Immunology (1993) 5, 681-690) の測定には公知の手段を使用することができる。

本発明で使用される抗PTHrP抗体の抗原結合活性を測定する方法として、BIACO RE法(表面プラズモン共鳴を利用する分析法)、ELISA(酵素結合免疫吸着検定法)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)あるいは蛍光抗体法を用いることができる。例えば、酵素免疫測定法を用いる場合、PTHrP(1-34)をコーティングしたプレートに、抗PTHrP抗体を含む試料、例えば、抗PTHrP抗体産生細胞の培養上清や精製抗体を加える。アルカリフォスファターゼ等の酵素で標識した二次抗体を添加し、プレートをインキュベートし、洗浄した後、p-ニトロフェニル燐酸などの酵素基質を加えて吸光度を測定することで抗原結合活性を評価することができる。

20 本発明で使用される抗体の活性を確認するには、抗PTHrP抗体の中和活性を測 定する。

9. バルク

25

「バルク」とは抗PTHrP抗体を含む組成物であり、前記の方法を用いて発現・産生された抗体を、細胞・宿主動物から分離・精製した抗PTHrP抗体組成物のことである。分離・精製されたバルクには、分離・精製時に用いた溶媒(緩衝液など)が含まれる。更には、本発明で精製された抗PTHrP抗体溶液組成物に、等張化剤としてハロゲン化金属類等、具体的には、塩化ナトリウム、塩化カリウム、塩化カルシウム等、好ましくは、塩化ナトリウムを、本質的にヒトの血液とおな

じ浸透圧になるように添加する。一般的には約 $250\sim350~m0sm$ の浸透圧が好ましい。

さらに、酢酸、クエン酸、リン酸およびそれらの塩からなる群より選択される 少なくとも 1 種の緩衝剤を、 $0.1\sim100$ mmol/L、好ましくは、 $5\sim50$ mmol/L程度 添加し、 $pHe5\sim8$ 、好ましくは $5.5\sim7.0$ 、最も好ましくは、約6.0に調整し、バルク用抗体溶液組成物を調製する。

本バルク用抗体溶液組成物は、製剤として調製されるまでの間、溶液状態あるいは凍結状態、好ましくは凍結状態で保存する。

この組成物には、約1 \sim 100 mg/mLの抗体が含まれており、更には、凍結融解 10 の際に抗体の微粒子形成を減少し得るクライオプロテクタントあるいは凍結乾燥 時のリオプロテクタントとなる界面活性剤(たとえば、ポリソルベート20、ポリ ソルベート80、Triton、ドデシル硫酸ナトリウム、ナトリウムオクチルグリコシ ド、ラウリル-・リノレイル-・ステアリル-スルホベタイン、ラウリル-・ミリス チル-・リノレイル-・ステアリル-サルコシン、ミリスチル-・リノレイル-・セ 15 チル-ベタイン、ラウロアミドプロピル-・コカミドプロピル-・リノールアミド プロピル-・ミリスタミドプロピル-・パルミドプロピル-・イソステアラミドプ ロピル-ベタイン、ミリスタミドプロピル-・パルミドプロピル-・イソステアラ ミドプロピル-ジメチルアミン、ナトリウムメチルココイル-・ニナトリウムメチ ルオレイル-タウレート、ポリエチレングリコール、ポリプロピレングリコール、 20 エチレングリコールやプロピレングリコールのコポリマー(Pluronicsなど)や 糖または糖アルコール(例えば、スクロース、トレハロース、グリセロール、ア ラビトール、キシリトール、ソルビトールおよびマンニトールなどのポリオール など)、グルタミン酸やヒスチジンのようなアミノ酸等が含まれていてもよい。 またこれらの濃度は、抗体濃度および調製する製剤の等張性に依存する。

25 本発明のバルク用抗体溶液組成物は、少なくとも2~8℃で2年間で安定であることが好ましい。

バルク用溶液組成物は、長期保存性や、輸送時の物理的ストレスに対して安定であることを要求されるのと同時に、ある実施形態において、この組成物を用い

て治療される患者に適した投与方法(例えば皮下投与)の製剤に調製するために、 できるだけ安定化剤等の添加物を添加しないことが望ましい。

したがって、本発明のバルク用溶液組成物は、緩衝剤、ハロゲン化金属類等の等張化剤、界面活性剤、糖または糖アルコール以外の安定化剤を含んでいないことが好ましい。さらに本発明のバルク用溶液組成物は、緩衝剤、ハロゲン化金属類等の等張化剤、界面活性剤以外の安定化剤を含んでいないことが好ましい。最も好ましくは、本発明のバルク用溶液組成物は、緩衝剤、ハロゲン化金属類等の等張化剤以外の安定化剤を含んでいない組成物である。

10. 投与方法および製剤

20

10 抗PTHrP抗体は、PTHまたはPTHrPに起因する疾患(例えば、高カルシウム血症、 高カルシウム血症クリーゼ、薬剤抵抗性高カルシウム血症、悪液質、低バゾプレシン濃度の症状など)の治療剤、PTHまたはPTHrPに起因する疾患による症状を緩和するためのQOL改善剤、PTHまたはPTHrPに起因する中枢神経系疾患の改善剤、 PTHまたはPTHrPーサイトカインカスケードに起因する疾患の改善剤、中枢神経系 調節剤、サイトカインネットワーク調節剤などの有効成分として使用することができる。抗PTHrP抗体は、上記の用途のいずれか一つあるいは複数を目的として、 投与することができる。

抗PTHrP抗体を有効成分として含有する薬剤は、経口、非経口投与のいずれでも可能であるが、好ましくは非経口投与であり、具体的には経肺剤型(例えばネフライザーなどの器具を用いた経肺投与剤)、経鼻投与剤型、経皮投与剤型(例えば軟膏、クリーム剤)、注射剤型等が挙げられる。注射剤型の例としては、例えば点滴等の静脈内注射、筋肉内注射、腹腔内注射、皮下注射等により全身又は局部的に投与することができる。

特に、注射製剤の場合は、緩衝剤として酢酸及び/又はその塩を使用すること 25 が好ましい。緩衝剤として酢酸及び/又はその塩を使用した場合には、注射製剤 投与時の疼痛が少ないものとなる。

また、患者の年齢、症状により適宜投与方法を選択することができる。有効投与量は、一回につき体重1kgあたり0.001mg から1000mgの範囲で選ばれる。ある

10

WO 01/47554 PCT/JP00/09339

いは、患者あたり $0.01\sim100000$ mg/body、好ましくは $0.1\sim10000$ mg/body、さらに好ましくは $0.5\sim1000$ mg/body、さらに好ましくは $1\sim100$ mg/bodyの投与量を選ぶことができる。しかしながら、本発明の抗PTHrP抗体を含有する薬剤はこれらの投与量に制限されるものではない。

5 また、投与時期としては、疾患または症状が生ずる前後を問わず投与してもよく、あるいは体重減少が予測される時に投与してもよい。

本発明の抗PTHrP抗体を有効成分として含有する薬剤は、常法にしたがって製剤化することができ(Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Easton,米国)、医薬的に許容される担体や添加物を共に含むものであってもよい。

このような担体および医薬添加物の例として、水、医薬的に許容される有機溶剤、アミノ酸、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤等が挙げられる。

実際の添加物は、本発明の薬剤の剤型に応じて上記の中から単独で又は適宜組み合わせて選ばれるが、これらに限定するものではない。例えば、注射用製剤として使用する場合、精製された抗PTHrP抗体を溶剤、例えば生理食塩水、緩衝液、ブドウ糖溶液等に溶解し、これに吸着防止剤、例えばポリソルベート80、ポリソルベート 20、ゼラチン、ヒト血清アルブミン等を加えたものを使用することができる。あるいは、使用前に溶解再構成する剤形とするために凍結乾燥したものであってもよく、凍結乾燥のための賦形剤としては、例えば、マンニトール、ブドウ糖等の糖アルコールや糖類を使用することができる。

抗PTHrP抗体の安定化製剤を提供するためには、pHが5~8の範囲となるように、抗PTHrP抗体を緩衝液に溶解するとよい。緩衝液は、酸(好ましくは、酢酸、クエン酸、リン酸などの弱酸)とその塩(好ましくは、ナトリウム塩、カリウム塩などのアルカリ塩)の混合溶液であるとよい。製剤中の緩衝剤(例えば、

5 酸およびその塩)の総濃度は、0.1~100 mmol/L、好ましくは、5~50mmol/Lであり、より好ましくは、10~20mmol/Lである。酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液などは一般的な方法で調製される(D.D.ペリン、B.デンプシー著、「緩衝液の選択と応用」講談社サイエンティフィック)。

抗PTHrP抗体の安定化製剤の処方の一例を以下に記載する。

10 抗PTHrP抗体

 $20 \sim 100 \text{ mg}$

緩衝液*

 $5\sim50 \text{ mmol/L}$

塩化ナトリウム

 $130\sim150 \text{ mmol/L}$

全量

 $1 \sim 5 \text{ mL (pH } 5 \sim 8)$

*:酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液またはそれらの組み合わせ。

15 なお、本明細書は、本願の優先権の基礎である日本国特許出願11-375203号の 明細書及び/又は図面に記載される内容を包含する。

図面の簡単な説明

図1は、種々のpHの製剤について、加速試験を行った前後のSDS-PAGEパターン 20 を示す電気泳動写真である。

図2は、種々の緩衝液濃度の製剤について、加速試験を行った前後のSDS-PAGE パターンを示す示す電気泳動写真である。

発明を実施するための最良の形態

25 以下、参考例および実施例により本発明をさらに具体的に説明する。但し、本 発明は、これら実施例等にその技術的範囲を限定するものではない。

〔実施例1〕 水素イオン濃度(pH)の影響

実施例1および2で用いる抗PTHrP抗体は後述の参考例1~4で作製したヒト

型化抗体(以下、この抗体を「ヒト型化抗体」という。)である。また、実施例 1 および 2 において用いた分析法と分析条件は以下の通りである。

• GPC-UV

5 移動相:300 mmol/L NaClを含有する50 mmol/Lリン酸緩衝液 (pH 6.8)

流速:0.5 mL/min

カラム: G-3000SWXL

検出:280 nm

試料注入量:90 µg(3 mg/m1を30 µ1注入)

10

・BIACORE法(表面プラズモン共鳴を利用する分析法。ファルマシアバイオテク社のBIACOREを使用。)

1) 試薬

NHS (N-ヒドロキシコハク酸イミド), EDC (N-エチル-N'(3-ジメチルアミノプ 15 ロピル)-カルボジイミドヒドロクロリド), Ethanolamine: アミンカップリン グキット (ビアコア社)

PDEA (2-(2-ピリジニルジチオ) エタンアミンヒドロクロリド): チオールカップリングキット(ビアコア社)、PTHrP(1-34+C): 合成品(サワデー社)

- 2) センサーチップリガンド:抗原PTHrPあるいは抗原Protein A
- 20 3) サンプル溶液の調製
 - i) 試料溶液を注射用蒸留水を用いて約 $100\,\mu\,\mathrm{g/mL}$ に希釈し、 $280\,\mathrm{nm}$ における吸光度法によって濃度を決定した。
 - ii) 未知試料サンプルの調製:吸光度法により決定した濃度を基準に、BIACO RE測定時と同じHBS-EPバッファー(ビアコア社、Code #BR-1001-88)で希釈し、
- 25 $20 \,\mu$ g/mLの溶液を調製した。希釈に用いるHBS-EP バッファーはすべてBIACORE 測定時と同じものを用いた。この溶液 $20 \,\mu$ LとHBS-EP バッファー $180 \,\mu$ Lを混合 し $2 \,\mu$ g/mLの溶液を未知試料サンプルとした。
 - iii) 検量線用サンプルの調製:基準となる試料の約100μg/mLの溶液を5点以

上の濃度に希釈した。

・イオン交換クロマトグラフィー(以下、IEC-UVと言う)

カラム:PolyCAT A 4.6×250 mm

5 流速:1.0 ml/min

検出波長: 280 nm

注入量:約30μg

溶出条件: Solvent A:50 mmol/L MES-NaOH (pH6.1)

Solvent B:50 mmol/L MES-NaOH (pH6.1), 500 mmol/L NaCl

10

15

・SDS-PAGE (還元, 非還元/CBB, WB)

サンプル:前処理溶液=1:1で混和し、100C-1min加温し、SDS-PAGE (Gradien t Gel 10-15を使用)を実施した。試料アプライ量は、約1~2 mg/mlとなるように調製した。染色、脱色した。5 %グリセリンを含む脱色液に30分以上浸し、乾燥した。

前処理溶液:5 % SDSを含む40mmol/L Tris-HCl (pH 8.0) 緩衝液(還元処理では10 % 2-mercaptoethanolを含む。)

染色: 0.1%CBB (PhastGel Blue R)

分子量マーカー: SDS-PAGE Standards Broad Range (BIO-RAD/Cat. No. 161-03 17)

	<u> Protein</u>	<u>Mol.Wt.</u>	
	Myosin, Rabbit Muscle	200, 000	
5	Galactosidase, E. coli	116, 250	
	Phosphorylase b, Rabbit Muscle	97, 400	
	Albumin, Bovine Serum	66, 200	
	Ovalbumin, Chicken Egg	45,000	
	Carbonic Anhydrase, Bovine Erythrocytes	31,000	
10	Trypsin Inhibitor, Soybean	21, 500	
	Lysozyme , Chicken Egg	14, 400	
	Aprotinin, Bovine Lung	6, 500	

(1) リン酸緩衝液およびクエン酸緩衝液

15 以下の組成の製剤を調製して、加速試験を行った。

ヒト型化抗体 1mg/mL

クエン酸/クエン酸ナトリウム緩衝液 (pH $4\sim5.5$) 100 nmol/Lまたはリン酸ナトリウム緩衝液 (pH $6\sim8$) 100 nmol/L

加速試験の実験条件は、以下の通りである。製剤は、50℃-1週から1ヶ月で保 たれ、その期間で安定性を測定する。一般的には、製剤を2~8℃で貯蔵する場合、少なくとも、25℃-6ヶ月、30℃-1ヶ月または40℃-1ヶ月で安定で、2~8℃-2年で安定であるべきである。また、製剤を25℃または30℃で貯蔵する場合、一般的には、少なくとも40℃-6ヶ月で安定で、25℃-2年または30℃-2年で安定であるべきである。

25 加速試験前後の製剤のGPC-UVによるヒト型化抗体残存率[%]、BIACOREによるヒト型化抗体生物活性残存率[%]およびIEC-UVによるヒト型化抗体メインピーク残存率[%]を表1に示す。

表 1 水素イオン濃度 (pH) の影響

			T	T		т			·
	素イオン濃度	度(pH) —————	рН 4	pH 5	pH 5.5	рН 6	pH 6.5	pH 7	pH 8
	緩衝液		クエン酸緩	クエン酸緩	クエン酸緩	リン酸緩	リン酸緩	リン酸緩	リン酸緩
····	1			衝液	衝液	衝液	衝液	衝液	衝液
GPC-UV (Z	加速	試験前	100	100	100	100	100	100	100
よるヒト型	50°0	C-1 週	0	90.1	98.3	99.3	97.1	86.2	87.2
化抗体残存							0,,1	00.2	07.2
率[%]									
BIACORE (C	加速試験前	PTHrP		100	_	100	_	100	100
よるヒト型	50℃-1週	PTHrP	-	86. 7	-	110.7	_	98.0	86.7
化抗体生物	į			ļ		.			
活性残存率				-					
[%]								1	
IEC-UV (C	加速記	战験前	_	100	-	100	_	100	100
よるヒト型	25°C-:	3ヶ月	_	59.5	. –	65. 9		54.6	53.3
化抗体メイ									00.0
ンピーク残									
存率[%]									

(2) 酢酸緩衝液

以下の組成の製剤を調製して、加速試験を行った。

ヒト型化抗体 13 mg/mL

酢酸/酢酸ナトリウム緩衝液 20 mmol/L

5 塩化ナトリウム 150 mmol/L

加速試験前後の製剤の水素イオン濃度、 UV_{360nn} 、GPC-UVによるヒト型化抗体残存率 [%]、BIACOREによるヒト型化抗体生物活性残存率 [%] およびIEC-UVによるヒト型化抗体メインピーク残存率 [%] を表 2 に示す。

表 2

水素イオン濃度 (pH) の影響

試料名			01L	7007	0.07	T	
· · · · · · · · · · · · · · · · · · ·	T		OIL	02L	03L	04L	05L
水素イオン濃度	加速試験前	<u> </u>	4.94	5.40	6.01	6.52	6.92
(pH)	50℃-1ヶ月	<u> </u>	4.99	5.44	6.04	6, 55	6.92
UV _{360 nm}	50℃-1ヶ月	<u> </u>	1.4458	0.1730	0. 1038	0.0878	0.0821
GPC-UV による	加速試験前		100	100	100	100	100
ヒト型化抗体残	25℃-1ヶ月		96.8	97.0	98.6	98.5	96.6
存率[%]	25℃−3 ヶ月		93.7	97.7	97.3	101.8	100.6
	50℃-1ヶ月	·	_	82.5	91.4	92, 2	90.8
BIACORE による	加速試験前	PTHrP	100	100	100	100	100
ヒト型化抗体生		Protein A	100	100	100	100	100
物活性残存率	50℃-1 ヶ月	PTHrP	-	78.1	90.0	90.4	90.6
[%]		Protein A		79 . I	94.0	95. 1	94.8
IEC-UVによる	加速試験前	A	100	100	100	100	100
ヒト型化抗体メ	25℃-1ヶ月		103.4	85.6	100.9	96.6	107.5
インピーク残存	25℃−3 ヶ月		84.9	71.6	95.3	102. 1	118.0
率[%]							, ,

また、加速試験前後のヒト型化抗体のSDS-PAGEパターンを図1に示す。図1の上段は還元条件下、下段は非還元条件下、左は加速試験前の製剤、中は50℃-1週の加速試験後の製剤、右は50℃-1ヶ月の加速試験後の製剤のレーンである。また、レーンは、左から、pH 5.0、5.5、6.0、6.5および7.0の製剤である。

5 UV_{360 nm}、GPC-UV、BIACOREおよびIEC-UVの分析結果より、ヒト型化抗体は、pH6 ~7で安定で、pH 6で最も安定であった。

SDS-PAGEの分析結果より、pH 7および6.5でH鎖の上のバンドが増加し、pH 5 および5.5で低分子分解物の増加が認められたことにより、至適pHは6であると判断した。

- 10 〔実施例2〕 緩衝液濃度の影響
 - (1) 酢酸緩衝液

以下の組成の製剤を調製して、加速試験を行った。

ヒト型化抗体 6.5 mg/mL

酢酸/酢酸ナトリウム緩衝液(pH 6) 10,50,100 mmol/L

15 塩化ナトリウム 150 mmol/L

加速試験前後の製剤の水素イオン濃度、UV_{360nm}、GPC-UVによるヒト型化抗体残存率 [%]、BIACOREによるヒト型化抗体生物活性残存率 [%] を表 3 に示す。

表 3

酢酸緩衝液濃度の影響

			T		
試料名			. 06L	07L	08L
緩衝液濃度[m	mol/L]		10	50	100
水素イオン濃	加速試験前		6.00	6.00	5.99
度 (pH)	50℃-1 ヶ月		6.04	6.01	6.00
UV _{360 nm}	50℃-1 ヶ月		0.0401	0. 0359	0.0353
GPC-UV による	加速試験前		100	100	100
ヒト型化抗体	25℃-1 ヶ月		99. 1	96.7	95. 9
残存率[%]	25℃−3 ヶ月		95.8	97. 1	96. 7
	50℃-1ヶ月		92.5	92. 2	92. 5
BIACORE によ	加速試験前	PTHrP	100	100	100
るヒト型化抗		Protein A	100	100	100
体生物活性残	50℃-1ヶ月	PTHrP	90.4	90.2	90.4
存率[%]	,				
		Protein A	94.5	94.0	92. 0

(2) クエン酸緩衝液

以下の組成の製剤を調製して、加速試験を行った。

ヒト型化抗体 8 mg/mL

クエン酸/クエン酸ナトリウム緩衝液 (pH 6) 10,50,100 mmol/L

5 塩化ナトリウム 150 mmo1/L

加速試験前後の製剤の水素イオン濃度、 UV_{360nm} 、GPC-UVによるヒト型化抗体残存率 [%]、BIACOREによるヒト型化抗体生物活性残存率 [%] を表 4 に示す。

表 4

クエン酸緩衝液濃度の影響

					b
試料名			09L	- 10L	11L
緩衝液濃度	[mmol/L]		10	50	. 100
水素イオン	加速試験前		6. 10	6, 01	6. 03
濃度 (pH)	50℃-1ヶ月		6.12	6.03	6.04
UV _{360 rm}	50℃-1 ヶ月		0.0558	0.0597	0.0536
GPC-UV によ	加速試験前		100	100	100
るヒト型化	25℃−1 ヶ月	· · · · · · · · · · · · · · · · · · ·	96, 2	97.1	96.0
抗体残存率	25℃−3 ヶ月		97.0	95. 9	96.9
	50℃−1 ヶ月		92.5	91.0	92. 5
BIACORE に	加速試験前	PTHrP	100	100	100
よるヒト型		Protein A	100	100	100
化抗体生物	50℃-1ヶ月	PTHrP	90.3	88.4	89.7
活性残存率		Protein A	93.6	90.0	92. 1

また、加速試験前後のヒト型化抗体のSDS-PAGEパターンを図 2 に示す。図 2 の上段は還元条件下、下段は非還元条件下、左は加速試験前の製剤、中は50 $\mathbb{C}-1$ 週の加速試験後の製剤、右は50 $\mathbb{C}-1$ ヶ月の加速試験後の製剤のレーンである。また、レーンは、左から、酢酸緩衝液10、50、100 mmo1/L、クエン酸緩衝液10、50、100 mmo1/Lの製剤である。

BIACOREの分析結果より、酢酸緩衝液およびクエン酸緩衝液ともに、10~50 m mol/Lで安定で、10 mmol/Lでより安定であった。

SDS-PAGEの分析結果より、酢酸よりクエン酸の方が、高濃度より低濃度の方が分解物が少なかった。

10

〔実施例3〕

実施例3では、注射製剤を調製し、当該注射製剤における疼痛緩和作用を検討した。なお、本実施例で用いる抗PTHrP抗体は後述の参考例1~4で作製したヒト型化抗体(以下、この抗体を「ヒト型化抗体」という。)である。

表 5

15 本例では、表5に示す10種類の注射製剤を調製した。

		衣	<u> </u>
注射製剤	緩衝液	рН	ヒト型化抗体
1	酢酸緩衝液 20mM	5	-
2	酢酸緩衝液 20mM	6	_
3	酢酸緩衝液 20mM	7	_
4	酢酸緩衝液 100mM	6	_
5	クエン酸緩衝液 20mM	5	_
6	クエン酸緩衝液 20mM	6	_
7	クエン酸緩衝液 20mM	7	_
8	クエン酸緩衝液 100mM	6	-
9	酢酸緩衝液 20mM	6	13.0mg/ml
10	クエン酸緩衝液 20mM	6	16.8mg/ml

なお、これら注射製剤は、準無菌的に調製し、冷蔵にて保存し、投与時にはシ

リンジに分注し使用した。

使用動物および飼育環境

10

使用動物には生物学的特性がよく研究されており、均質な動物が多数入手できるほか、投与部位である後耳介静脈周囲皮下が投与および検査に適した大きさであり、また傷害部位の観察が肉眼的にも容易であることからウサギを選択した。ニュージーランドホワイト種ウサギ(Kbl:NZW)の雄を北山ラベス株式会社より購入(入荷時12週齢)し、7日間の馴化飼育を行った。動物の選択は馴化期間中の一般状態および体重を考慮して行い、22匹の動物を使用した。投与時(投与時13週齢)の体重は2.6~3.3 kgであった。

なお、試験期間中の飼育室の環境、飼料および飲料水の分析において、試験系 20 に影響を及ぼす異常は認められなかった。

投与液の設定および群構成

表5に示した注射製剤の投与容量については既に実施された局所障害性試験 [須永昌男,下村和裕,小泉治子、ガドテリドールのウサギ静脈内および静脈周 25 囲皮下投与局所刺激性試験、Preclin. Rep. Cent. Inst. Exp. Anim. 1992;18(1):47-57.]に準じて0.2 mL/(投与部位)とした。各注射製剤をそれぞれ2匹(耳介静脈周 囲皮下4カ所)に投与し、各群の一方を投与後2日、他方を投与後4日の剖検にあてた。

投与方法

注射製剤投与部位は耳介のほぼ中央部に位置する後耳介静脈で、小血管の分岐が少ない部分を選択した。投与はディスポーザブルのシリンジと針(27G)を用い、耳根部に向けて注射針を静脈に沿って皮下に刺入し、約3秒にてゆっくりと単回投与した。また、針の刺入部ならびに刺入した針の先端部(注入部)を特定できるように油性マーカーペンにて刺入部ならびに先端部の横に印を付けた。

投与部位の観察(肉眼所見)

10 投与直後から投与後2あるいは4日(投与日を0日として起算)まで毎日1回、 投与部ならびにその周囲を観察し、観察された変化の大きさ(長径および短径) をノギス(JIS規格)を用いて測定し、その積(長径×短径)を面積とした。

病理組織学的検査(病理組織所見)

- 15 投与直後2あるいは4日における投与部位の観察が終了した後、麻酔量算出の ための体重測定を行い、動物をペントバルビタールナトリウム麻酔下(ネンブタ ール:大日本製薬㈱)で腹大動脈より放血して安楽死させた。なお、麻酔薬の投 与は耳根部の後耳介静脈にて実施し、投与部位の評価に影響を及ぼさないように 配慮した。また、放血前に投与部位の写真撮影を実施した。
- 20 試験物質が投与された左右の耳介を耳根部より採取した後、20%中性緩衝ホルマリン液で固定した。その後、左右耳介の試験物質の注入部を投与部位に接する血管を含むように血管の走行に対して垂直方向に切り出し、常法に従ってパラフィン包埋薄切組織標本を作製し、ヘマトキシリン・エオジン(HE)染色を施し光学顕微鏡下で病理組織学的検索を実施した。
- 25 病理組織学的検査による刺激性の判定は次の基準に基づいて行った。
 - (1)出血は、投与手技の変化として刺激性の指標としない。
 - (2)投与部位の軽微な細胞密度の増加、空隙形成を指標とした組織の軽微な変化については、投与手技の変化として刺激性の指標としない。

(3)他の組織学的変化が軽微な場合に、表皮角化細胞の空胞形成と表皮の肥厚がみられた場合は刺激性の指標としない(これらの変化は組織学的影響が強い場合に発現すると考えられるこのことから、他の組織学的変化が軽微な場合に、表皮角化細胞の空胞形成と表皮の肥厚が見られた時は刺激性の指標としない)。

- 5 (4)炎症性細胞浸潤と水腫が軽度以上を刺激性の指標とする。
 - (5)表皮の肥厚は、炎症性細胞浸潤と水腫が軽度以上の場合に刺激性の指標とする。

そして、各検査結果について各群間の差あるいは経時的変化を生物学的に評価 した。結果を表6に示す。

表 6

試験物質					投与後2日	62日					特与後4日	64 日		
				中			左			中			4	
			め 問 回	病理組織 配品	刺激性		病理組織	刺激性		病理組織	刺激性	肉眼	病理組織	刺激性
			四元	加克		別児	別見		所見	所見			平三	
酢酸緩衝液	20mM	딾	1	1	l	1	l	1	ı	1	1	1	+	
	20mM	9Hg	1	l	J	l	1	I	ı	1	ı	1	1 1	I
	20mM	pH7	1	1	1				1	1	ı	1	1	۱
	100mM	9Hd]	1	1	1	1	l	1	ı	1	1	1	1
クエン酸緩衝液 20mM	液 20mM	pH5	l	l	1	1	1	1	1	1	1	1	1	1
	20mM	9Hd	l	J	1	1	ì	1	1	1	ı	1	1	ı
	20mM	pH7	1	1]	1	ı	l	1	1	. 1	ı	1	
	100mM	9Hd	+	+1	l	+	+1	1	ı	+1	1	1	l 	1 1
ヒト型化抗体 13.0mg/ml 酢酸緩衝液 20mM 16.8mg/ml クエン酸緩衝液 20mM	20mM 液 20mM	9Hq pH6	1 +	+1 +	1 +	++	1 +	I -1	ι ‡	l -	l -	1 ‡	1 -1	1 -
肉眼的所見 一:異常なし 士:淡	土:淡紅斑		五 十 3	+:紅斑 ++:紅斑および腫脹	健脹				-		-	:	-	-

病理組織所見 一:異常なし 土:出血、表皮角化細胞の空胞形成あるいは組織の軽微な変化 ++:炎症性細胞浸潤および水腫 刺激性 一:陰性 +:陽性

32

表6に示すように、ヒト型化抗体(16.8 mg/mL) / 20 mmol/Lクエン酸緩衝液(pH 6)溶液は、肉眼的には紅斑および腫脹、病理組織学的検査では軽度の炎症性細胞浸潤および軽度の水腫を惹起するため、局所刺激性を有すると判断した。これに対して、ヒト型化抗体(13.0 mg/mL) / 20 mmol/L酢酸酸緩衝液(pH 6)溶液は、肉眼所見及び病理組織所見ともに症状が認められず、刺激性を有していないと判断した。

以上の結果から、緩衝剤として酢酸を用いることによって、疼痛緩和作用を有 する注射製剤が得られることが明らかとなった。

10 〔参考例1〕

15

25

抗PTHrP(1-34)マウスモノクローナル抗体産生ハイブリドーマの作製 ヒトPTHrP(1-34)に対するモノクローナル抗体産生ハイブリドーマ#23-57-154 および#23-57-137-1 は、以下の通り作製した(Sato, K. et al., J. Bone M iner. Res. 8, 849-860, 1993)。なお、ヒトPTHrP(1-34)のアミノ酸配列を配列 番号75に示す。

免疫原として使用するために、PTHrP (1-34) (Peninsula 製) とキャリアータンパクであるサイログロブリンをカルボジイミド (Dojinn) を用いて結合した。サイログロブリンと結合したPTHrP (1-34) を透析し、タンパク濃度として $2 \mu g/m$ lとなるように調製した後、フロイントアジュバント (Difco)と 1:1 で混合し、

20 エマルジョン作製後、16匹の雌性BALB/Cマウスの背部皮下又は腹腔内に動物あた り100 μgを11回免疫した。初回免疫は、フロイント完全アジュバントを用い、 二回目以降の追加免疫にはフロイント不完全アジュバントを使用した。

免疫したマウスの血清中の抗体価の測定は、以下の方法で行った。すなわち、マウス尾静脈より採血し、血清分離後RIAバッファーで希釈した抗血清と 125 I標識PTHrP (1-34) を混合し、結合活性を測定した。抗体価の上昇したマウスの腹腔に、キャリアータンパクを結合していないPTHrP (1-34) を動物あたり $^{50}\mu$ gを最終免疫した。

最終免疫3日目にマウスを屠殺し、脾臓を摘出後、脾臓細胞とマウスミエロ

ーマ細胞株P3x63Ag8U. 1 を50%ポリエチレングリコール4000を用いる常法にしたがって細胞融合した。細胞融合した細胞を 2×10^4 /ウェルの細胞数で85枚の96穴プレートに蒔き込んだ。ハイブリドーマの選別はHAT培地を用いて行った。

ハイブリドーマのスクリーニングは、HAT培地中で生育の認められた穴の培養上清を固相化RIA法にてPTHrP認識抗体の有無を測定し選択することにより行った。抗体との結合能の認められた穴からハイブリドーマを回収し、15%FCSを含むRPMI-1640 培地にOPI-supplement (Sigma) を添加した培地に懸濁し、限界希釈法にてハイブリドーマの単一化を実施した。PTHrP (1-34) との結合能の強いクローン#23-57-154 および#23-57-137-1 を得た。

- 10 なお、ハイブリドーマクローン#23-57-137-1 は、mouse-mouse hybridoma #2 3-57-137-1 として、工業技術院生命工学工業技術研究所(茨城県つくば市東1 丁目1番3号)に、平成8年8月15日に、FERM BP-5631としてブダペスト条約に基づき国際寄託されている。
- 15 〔参考例 2〕ヒトPTHrP (1-34) に対するマウスモノクローナル抗体のV領域 をコードするDNAのクローニング

ヒトPTHrP(1-34)に対するマウスモノクローナル抗体#23-57-137-1 の可変領域をコードするDNAを次の様にしてクローニングした。

- (1) mRNAの調製
- 20 ハイブリドーマ#23-57-137-1 からのmRNAをQuick Prep mRNA Purification K it (Pharmacia Biotech社) を用いて調製した。ハイブリドーマ#23-57-137-1 の細胞を抽出バッファー で完全にホモジナイズし、キット添付の処方に従い、oligo (dT)-Cellulose Spun Column にてmRNAを精製し、エタノール沈殿をおこなった。mRNA沈殿物を溶出バッファーに溶解した。

25

- (2) マウスH鎖V領域をコードする遺伝子のcDNAの作製および増幅
 - (i) #23-57-137-1 抗体H鎖V領域cDNAのクローニング ヒトPTHrPに対するマウスモノクローナル抗体のH鎖V領域をコードする遺伝

10

25

WO 01/47554 PCT/JP00/09339

子のクローニングは、5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA, 85, 8998-9002, 1988; Belyavsky, A. et al., Nucleic Acids R es. 17, 2919-2932, 1989)により行った。5'-RACE法には5'-Ampli FINDER RA CE kit (CLONETECH社)を用い、操作はキット添付の処方にしたがって行った。 cDNA合成に使用するプライマーは、マウスH鎖定常領域(C領域)とハイブリダイズするMHC2プライマー(配列番号1)を用いた。前記のようにして調製したmR NA約 2 μ gを鋳型としてMHC2プライマー10pmole を加え、逆転写酵素と52℃、30分間反応させることによりcDNAへの逆転写を行った。

6 N NaOH でRNAを加水分解(65℃、30分間)した後、エタノール沈殿により cDNAを精製した。T4 DNAリガーゼで37℃で6時間、室温で16時間反応することにより、合成したcDNAの5'末端にAmpli FINDER Anchor(配列番号42) を連結した。これを鋳型としてPCRにより増幅するためのプライマーとしてAnchorプライマー(配列番号2) およびMHC-G1プライマー(配列番号3) (S. T. Jones, et a l., Biotechnology, 9, 88, 1991) を使用した。

PCR溶液は、その50μ1中に10mM Tris-HCl (pH8.3)、50mM KCl、0.25mM dNTPs (dATP, dGTP, dCTP, dTTP)、1.5 mM MgCl₂、2.5 ユニットのTaKaRa Taq (宝酒造)、10pmole のAnchorプライマー、並びにMHC-Glプライマー及びAmpli FINDE R Anchor を連結したcDNAの反応混合物1μ1を含有する。この溶液に50μ1の鉱油を上層した。PCRはThermal Cycler Model 480J(Perkin Elmer)を用い、9 4℃にて45秒間、60℃にて45秒間、72℃にて2分間の温度サイクルで30回行った。

(ii) #23-57-137-1 抗体L鎖V領域のcDNAのクローニング

ヒトPTHrPに対するマウスモノクローナル抗体のL鎖V領域をコードする遺伝子のクローニングは、5'-RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002, 1988; Belyavsky, A. et al., Nucleic Acids R es. 17, 2919-2932, 1989)により行った。5'-RACE法には5'-Ampli Finder RACE Kit (Clonetech) を用い、操作は添付の処方に従った。cDNA合成に使用するプライマーは、oligo-dTプライマーを用いた。前記のように調製したmRNA約 2μg を鋳型としてoligo-dTプライマーを加え、逆転写酵素と52℃、30分間反応させる

ことによりcDNAへの逆転写を行った。 6N NaOHでRNAを加水分解(65^{\circ}、 30分間)した後、エタノール沈殿によりcDNAを精製した。合成したcDNAの5'末端に前記Ampli FINDER Anchor をT4 DNAリガーゼで37^{\circ}で6時間、室温で16時間反応させることにより連結した。

5 マウスL鎖入鎖定常領域の保存配列からPCRプライマーMLC(配列番号4)を設計し、394 DNA/RNA Synthesizer (ABI社)を用いて合成した。PCR溶液は、その100 μ1中に10 mM Tris-HCl (pH8.3)、50mM KCl、0.25mM dNTPs (dATP, dGTP, dCTP, dTTP)、1.5Mm MgCl₂、2.5 ユニットの AmpliTaq (PERKIN ELME R)、50pmole のAnchorプライマー(配列番号2)、並びにMLC(配列番号4)およびAmpli FINDER Anchorを連結したcDNAの反応混合物1μ1を含有する。この溶液に50μ1の鉱油を上層した。PCRはThermal Cycler Model480J (Perkin E lmer)を用い、94℃にて45秒間、60℃にて45秒間、72℃にて2分間の温度サイクルで35回行った。

15 (3) PCR生成物の精製および断片化

前記のようにしてPCR法により増幅したDNA断片を、3%Nu Sieve GTGアガロース (FMC Bio. Products)を用いたアガロースゲル電気泳動により分離した。 H鎖V領域として約550bp 長、L鎖V領域として約550bp 長のDNA断片を含有するアガロース片を切取り、GENECLEAN II Kit (BI0101)を用い、キット添付の処 20 方に従いDNA断片を精製した。精製したDNAをエタノールで沈殿させた後、10mM Tris-HC1 (pH7.4)、1 mM EDTA 溶液20μ1に溶解した。得られたDNA溶液1μ 1を制限酵素XmaI (New England Biolabs)により37℃で1時間消化し、次いで制限酵素EcoRI (宝酒造)により37℃で1時間消化した。この消化混合物をフェノール及びクロロホルムで抽出し、エタノール沈殿によりDNAを回収した。

25 こうして、5'-末端にEcoRI 認識配列を有し、3'-末端にXmaI認識配列を有するマウスH鎖V領域およびL鎖V領域をコードする遺伝子を含むDNA断片を得た。 上記のようにして調製したマウスH鎖V領域およびL鎖V領域をコードする遺伝子を含むEcoRI-XmaI DNA断片とEcoRI 及びXmaIで消化することにより調製し

15

25

WO 01/47554 PCT/JP00/09339

たpUC19 ベクターをDNAライゲーションキットver. 2 (宝酒造)を用い、添付の処方に従い16℃で1時間反応させ連結した。次に10μ1の上記連結混合物を大腸菌JM109コンピテント細胞(ニッポンジーン)100 μ1に加え、この細胞を氷上で15分間、42℃にて1分間、さらに氷上で1分間静置した。次いで300 μ1のSOC培地(Molecular Cloning: A Labgoratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989)を加え37℃にて30分間インキュベートした後、100 μg/ml又は50μg/mlのアンピシリン、0.1mMのIPTG、20μg/mlのX-galを含むLB寒天培地または2xYT寒天培地(Molecular Cloning: A Labgora tory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989)上にこの大腸菌をまき、37℃にて一夜インキュベートして大腸菌形質転換体を得た。

この形質転換体を100 μ g/ml又は50 μ g/mlのアンピシリンを含有するLB培地または2×YT培地2 m 1 で37℃にて一夜培養し、菌体画分からプラスミド抽出機P I-100 Σ (クラボウ) 又はQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドDNAを調製し、塩基配列の決定を行った。

(4) マウス抗体 V 領域をコードする遺伝子の塩基配列決定

前記のプラスミド中のcDNAコード領域の塩基配列をDye Terminator Cycle Se quencing kit (Perkin-Elmer) を用い、DNA Sequencer 373A (ABI社Perkin-Elme 20 r) により決定した。配列決定用プライマーとしてM13 Primer M4 (宝酒造) (配列番号 5) 及びM13 Primer RV (宝酒造) (配列番号 6) を用い、両方向の塩基配列を確認することにより配列を決定した。

こうして得られたハイブリドーマ#23-57-137-1 に由来するマウスH鎖V領域をコードする遺伝子を含有するプラスミドをMBC1H04、L鎖V領域をコードする遺伝子を含有するプラスミドをMBC1L24 と命名した。プラスミドMBC1H04 およびMBC1L24 に含まれるマウス#23-57-137-1 抗体のH鎖V領域およびL鎖V領域をコードする遺伝子の塩基配列(対応するアミノ酸配列を含む)をそれぞれ配列番号57、65に示す。これらのアミノ酸配列を、H鎖V領域の断片については配

列番号46、L鎖V領域の断片については配列番号45に示す。

なお、前記プラスミドMBC1H04 およびMBC1L24 を有する大腸菌はEscherichia coli JM109 (MBC1H04) およびEscherichia coli JM109 (MBC1L24) として、工業技術院生命工学工業技術研究所 (茨城県つくば市東1丁目1番3号) に、平成8年8月15日に、Escherichia coli JM109 (MBC1H04) についてはFERM BP-5628、Escherichia coli JM109 (MBC1L24) についてはFERM BP-5627としてブダペスト条約に基づき国際寄託されている。

- (5) ヒトPTHrPに対するマウスモノクローナル抗体#23-57-137-1 のCDRの決定 H鎖V領域およびL鎖V領域の全般の構造は、互いに類似性を有しており、それぞれ4つのフレームワーク部分が3つの超可変領域、すなわち相補性決定領域 (CDR)により連結されている。フレームワークのアミノ酸配列は、比較的よく保存されているが、一方、CDR領域のアミノ酸配列の変異性は極めて高い(Kabat, E. A. et al., 「Sequence of Proteins of Immunological Interest」US De pt. Health and Human Services, 1983)。
 - このような事実に基づき、ヒトPTHrPに対するマウスモノクローナル抗体の可変領域のアミノ酸配列をKabat らにより作成された抗体のアミノ酸配列のデータベースにあてはめて、相同性を調べることによりCDR領域を表7に示すごとく決定した。
- 20 なお、L鎖V領域のCDR1~3のアミノ酸配列についてはそれぞれ配列番号59~61に示し、H鎖V領域のCDR1~3のアミノ酸配列についてはそれぞれ配列番号62~64に示した。

表	7
1 X	1

V領域	配列番号	CDR1	CDR2	CDR3
H鎖V領域	5 7	31-35	50-66	99-107
L鎖V領域	6 5	23-34	50-60	93-105

〔参考例3〕キメラ抗体の構築

- (1) キメラ抗体H鎖の構築
- 5 (i) H鎖V領域の構築

ヒトH鎖C領域C γ 1 のゲノムDNAを含む発現ベクターに連結するために、クローニングしたマウスH鎖V領域をPCR法により修飾した。後方プライマーMBC1-S1 (配列番号 7) はV領域のリーダー配列の5'-側をコードするDNAにハイブリダイズし、且つKozak コンセンサス配列 (Kozak, M. et al., J. Mol. Biol., 1 96, 947-950, 1987)及び制限酵素Hind IIIの認識配列を有するように設計した。前方プライマーMBC1-a (配列番号 8) はJ領域の3'-側をコードするDNA配列にハイブリダイズし、且つ、スプライスドナー配列及び制限酵素BamHIの認識配列を有するように設計した。PCRは、TaKaRa Ex Taq (宝酒造)を用い、50μ1の反応混合液に鋳型DNAとして0.07μgのプラスミドMBC1H04、プライマーとしてMB 15 C1-aおよびMBC1-S1 をそれぞれ50pmole、2.5UのTaKaRa Ex Taq、0.25mMのdNTP含む条件で添付緩衝液を使用して50μ1の鉱油を上層し、94℃にて1分間、55℃にて1分間、72℃にて2分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を3%Nu Sieve GTGアガロース (FMC Bio. Products)を用いたアガロースゲル電気泳動により分離した。

20 437bp 長のDNA断片を含有するアガロース片を切取り、GENECLEAN II Kit (BIO 101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノール沈殿で回収した後、10mM Tris-HCl (pH7.4)、1mM EDTA 溶液20μ1に溶解した。得られたDNA溶液1μ1を制限酵素BamHI、Hind III (宝酒造)により37℃1時間消化した。この消化混合物をフェノール及びクロロホルムで抽出し、

25 エタノール沈殿によりDNAを回収した。

20

25

WO 01/47554 PCT/JP00/09339

上記のようにして調製したマウスH鎖V領域をコードする遺伝子を含むHind III-BamHI DNA断片をHind IIIおよびBamHIで消化することにより調製したpUC19 ベクターにサブクローニングした。このプラスミドの塩基配列を確認するためプライマーM13 Primer M4 およびM13 Primer RV をプライマーとして、Dye Te rminator Cycle Sequencing kit (Perkin-Elmer) を用い、DNA Sequencer 373A (Perkin-Elmer) により塩基配列を決定した。正しい塩基配列を有するハイブリドーマ#23-57-137-1 に由来するマウスH鎖V領域をコードする遺伝子を含有し、5'-側にHind III認識配列及びKozak 配列、3'-側にBamHI認識配列を持つプラスミドをMBC1H/pUC19 と命名した。

10 (ii) c DNAタイプのマウス-ヒトキメラH鎖の作製のためのH鎖V領域の構築

ヒトH鎖C領域C γ 1 のcDNAと連結するために、上記のようにして構築したマウスH鎖V領域をPCR法により修飾した。H鎖V領域のための後方プライマーMBC 1HVS2 (配列番号 9) はV領域のリーダー配列の最初をコードする配列の 2 番のアスパラギンをグリシンに変換し、且つKozak コンセンサス配列 (Kozak, M. et al., J. Mol. Biol., 196, 947-950, 1987) 並びにHind III およびEcoRI 認識配列を有するように設計した。H鎖V領域のための前方プライマーMBC1HVR2 (配列番号10) はJ 領域の3'-側をコードするDNA配列にNAで、且つ、C 領域の5'-側の配列をコードしA pa I およびSma I 認識配列を有するように設計した。

PCRはTaKaRa Ex Taq (宝酒造)を用い、 50μ 1の反応混合液に鋳型DNAとして 0.6μ gのプラスミドMBC1H/pUC19、プライマーとしてMBC1HVS2およびMBC1H VR2をそれぞれ50pmole、TaKaRa Ex Taq を2.5U、0.25mMのdNTPを含む条件で添付の緩衝液を使用して 50μ 1の鉱油を上層して94℃1分間、55℃1分間、72℃1分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を1%Sea Kem GTG アガロース(FMC Bio. Products)を用いたアガロースゲル電気泳動により分離した。456bp 長のDNA断片を含有するアガロース片を切取り、GENECLEAN II Kit (BI0101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDN

Aをエタノール沈殿させた後、 $10\,\mathrm{mM}$ Tris-HCl (pH7.4)、 $1\,\mathrm{mM}$ EDTA 溶液 $20\,\mu$ 1 に溶解した。

得られたDNA溶液 1 μ 1 を制限酵素EcoRI およびSmaI (宝酒造) により37℃で 1 時間消化した。この消化混合物をフェノール及びクロロホルムで抽出し、エタ ノール沈殿によりDNAを回収した。上記のようにして調製したマウスH鎖V領域をコードする遺伝子を含むEcoRI-SmaI DNA断片をEcoRI およびSmaIで消化することにより調製したpUC19 ベクターにサブクローニングした。このプラスミドの塩基配列を確認するため、プライマーM13 Primer M4 及びM13 Primer RV をプライマーとして、Dye Terminator Cycle Sequencing kit (Perkin-Elmer) を 用い、DNA Sequencer 373A (Perkin-Elmer) により塩基配列を決定した。正しい塩基配列を有するハイブリドーマ#23-57-137-1 に由来するマウスH鎖V領域をコードする遺伝子を含有し、5′-側にEcoRI およびHind III認識配列並びにKoza k 配列、3′-側にApaIおよびSmaI認識配列を持つプラスミドをMBC1Hv/pUC19と命名した。

15 (iii) キメラ抗体H鎖の発現ベクターの構築

ヒト抗体H鎖C領域C γ 1 を含むcDNAは、以下のようにして調製した。すなわち、ヒト型化PM1抗体H鎖V領域およびヒト抗体H鎖C領域IgG1のゲノムDNA(N. Takahashi, et al., Cell 29, 671-679 1982)をコードする発現ベクターDHF R-ΔE-RVh-PM-1-f(W092/19759参照)と、ヒト型化PM1抗体L鎖V領域およびヒ20 ト抗体L鎖κ鎖C領域のゲノムDNAをコードする発現ベクターRV1-PM1a(W092/19759参照)とを導入したCHO細胞よりmRNAを調製し、RT-PCR法でヒト型化PM 1 抗体H鎖V領域およびヒト抗体C領域C γ 1 を含む c DNAをクローニングし、pUC19のHind IIIとBamHI部位にサブクローニングした。塩基配列を確認した後、正しい配列を持つプラスミドをpRVh-PM1f-c DNAと命名した。

25 DHFR- \triangle E-RVh-PM-1-f上のSV40プロモーターとDHFR遺伝子との間にあるHind I II部位、およびEF-1 α プロモーターとヒト型化PM1抗体H鎖V領域との間にあるE coRI 部位を欠失した発現ベクターを作製し、ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域C γ 1 を含むcDNAの発現ベクターの構築のために使用した。

25

WO 01/47554 PCT/JP00/09339

pRVh-PM1f-cDNAをBamHIで消化した後、K1enowフラグメントで平滑化し、さらにHind IIIで消化し、Hind III-BamHI平滑化断片を調製した。このHind III-BamHI平滑化断片を、上記のHind III部位およびEcoRI 部位が欠失したDHFR- \triangle E-R Vh-PM1-f をHind IIIおよびSmaIで消化することにより調製した発現ベクターに連結し、ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域C γ 1をコードするcDNAを含む発現ベクターRVh-PM1f-cDNAを構築した。

ヒト型化PM 1 抗体H鎖V領域およびヒト抗体C領域C γ 1をコードするcDN Aを含む発現ベクターRVh-PM1fーcDNAをApaIおよびBamHIで消化した後、H鎖C領域を含むDNA断片を回収し、ApaIおよびBamHIで消化することにより調製したMBC1 Hv/pUC19に導入した。こうして作製したプラスミドをMBC1HcDNA /pUC19 と命名した。このプラスミドはマウス抗体のH鎖V領域およびヒト抗体C領域C γ 1をコードするcDNAを含み、5'-末端にEcoRI およびHind III認識配列、3'-末端にBamHI認識配列を持つ。

プラスミドMBC1HcDNA/pUC19 をEcoRI およびBamHIで消化し、得られたキメラ 抗体のH鎖をコードする塩基配列を含むDNA断片を、EcoRI およびBamHIで消化 することにより調製した発現ベクターpCOS1に導入した。こうして得られたキメ ラ抗体の発現プラスミドをMBC1HcDNA/pCOS1と命名した。なお、発現ベクターpCO S1は、HEF-PMh-g γ 1(W092/19759参照)から、EcoRI およびSmaI消化により抗 体遺伝子を削除し、EcoRI-NotI-BamHI アダプター(宝酒造)を連結することに 20 より構築した。

さらにCHO細胞での発現に用いるためのプラスミドを作製するため、プラスミドMBC1HcDNA/pUC19 をEcoRI およびBamHIで消化し、得られたキメラ抗体H鎖配列を含むDNA断片を、EcoRI およびBamHIで消化することにより調製した発現プラスミドpCHO1に導入した。こうして得られたキメラ抗体の発現プラスミドをMBC1HcDNA/pCHO1 と命名した。なお、発現ベクターpCHO1は、DHFR-△E-rvH-PM1-f (W092/19759参照)から、EcoRI およびSmaI消化により抗体遺伝子を削除し、EcoRI-NotI-BamHI Adaptor (宝酒造)を連結することにより構築した。

(2) ヒトL鎖定常領域の構築

20

25

(i) クローニングベクターの作製

ヒトL鎖定常領域を含むpUC19 ベクターを構築するために、Hind III部位欠失pUC19 ベクターを作製した。pUC19 ベクター $2\,\mu$ g を $20\,\mathrm{mM}$ Tris-HC1 (pH8.5)、 $10\,\mathrm{mM}$ MgCl₂、 $1\,\mathrm{mM}$ DTT、 $100\,\mathrm{mM}$ KCl、 $8\,\mathrm{U}$ の Hind III (宝酒造)を含有する反応混合液 $20\,\mu$ 1中で $37\,\mathrm{C}$ にて $1\,\mathrm{Fl}$ 間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿により回収した。

回収したDNAを50mM Tris-HCl (pH7.5)、10mM MgCl₂、1mM DTT、100mM NaCl、0.5mM dNTP、6 UのKlenowフラグメント (GIBCO BRL)を含有する50 μ 1 の反応混合液中で室温にて20分間反応させ、末端を平滑化させた。反応混合液をフェノールおよびクロロホルムで抽出し、ベクターDNAをエタノール沈殿により回収した。

回収したベクターDNAを50mM Tris-HCl (pH7.6)、 10mM MgCl₂、 1 mM ATP、 1 mM DTT、5% (v/v) ポリエチレングリコール-8000、0.5 UのT4 DNAリガーゼ (GIBCO BRL)を含有する反応混合液10μ1中で16℃で2時間反応させ、自己連結させた。反応混合液5μ1を大腸菌JM109 コンピテント細胞(ニッポンジーン)100μ1に加え、氷上で30分間静置した後、42℃にて1分間、さらに氷上で1分間静置した。SOC培地500μ1を加えて、37℃で1時間インキュベーションした後、X-galとIPTGを表面に塗布した2×YT寒天培地(50μg/mlアンピシリン含有)(Molecular Cloning: A Labgoratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989)にまき、37℃で一夜培養して形質転換体を得た。

形質転換体を、 $50 \,\mu$ g/mlアンピシリンを含有する $2 \times YT$ 培地 $20 \,\mathrm{ml}$ で $37 \,\mathrm{C}$ 一夜培養し、菌体画分からPlasmid Mini Kit (QIAGEN) を用いて、添付の処方に従ってプラスミドDNAを精製した。精製したプラスミドをHind IIIで消化し、Hind III 部位が欠失していることを確認したプラスミドをpUC19 Δ Hind IIIと命名した。

(ii) ヒトL鎖λ鎖定常領域をコードする遺伝子の構築 ヒト抗体L鎖λ鎖C領域は、Mcg+ Ke+ Oz- 、Mcg- Ke- Oz- 、Mcg- Ke- Oz+

、Mcg-Ke+Oz-の少なくとも4種類のアイソタイプが知られている(P.Dariavach, et al., Proc. Natl. Acad. Sci. USA, 84, 9074-9078, 1987) . #23-5 7-137-1 マウスL鎖入鎖C領域と相同性を有するヒト抗体L鎖入鎖C領域をEMB Lデータベースで検索した結果、アイソタイプがMcg+ Ke+ Oz- (accession No. X57819) (P. Dariavach, et al., Proc. Natl. Acad. Sci. USA, 84, 9074-90 78, 1987) のヒト抗体L鎖ん鎖が最も高い相同性を示し、#23-57-137-1 マウス L鎖λ鎖C領域との相同性はアミノ酸配列で64.4%、塩基配列で73.4%であった。 そこで、このヒト抗体L鎖λ鎖C領域をコードする遺伝子の構築をPCR法を用 いて行った。各プライマーの合成は、394 DNA/RNA synthesizer(ABI 社) を用 いて行った。HLAMB1(配列番号11)およびHLAMB3(配列番号13)はセンスDNA配 列を有し、HLAMB2(配列番号12)およびHLAMB4(配列番号14)はアンチセンスDN A配列を有し、それぞれのプライマーの両端に20から23bpの相補的配列を有する。 外部プライマーHLAMBS(配列番号15)、HLAMBR(配列番号16)はHLAMB1、HLAM B4とそれぞれ相同な配列を有しており、またHLAMBSはEcoRI 、Hind III、BlnI 15 認識配列を、HLAMBRはEcoRI 認識配列をそれぞれ含んでいる。第一PCRでHLAMB1 -HLAMB2 とHLAMB3-HLAMB4 の反応を行った。反応後、それらを等量混合し、第 二PCRでアセンブリを行った。さらに外部プライマーHLAMBSおよびHLAMBRを添加 し、第三PCRにより全長DNAを増幅させた。

PCRはTaKaRa Ex Taq (宝酒造)を使い、添付の処方に従って行った。第一PC Rでは、5 pmole のHLAMB1および 0.5 pmole のHLAMB2と5 UのTaKaRa Ex Taq (宝酒造)とを含有する100 μ1の反応混合液、あるいは0.5 pmoleのHLAMB3および5 pmole のHLAMB4と5 UのTaKaRa Ex Taq (宝酒造)とを含有する100 μ1の反応混合液を用い、50μ1の鉱油を上層して94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで5回行った。

25 第二PCR は、反応液を 50μ 1ずつ混合し、 50μ 1の鉱油を上層して94℃にて 1分間、60℃にて 1分間、72℃にて 1分間の温度サイクルで 3回行った。

第三PCRは、反応液に外部プライマーHLAMBSおよびHLAMBRを各50pmole ずつ添加し、94 $^{\circ}$ にて1分間、60 $^{\circ}$ にて1分間、72 $^{\circ}$ にて1分間の温度サイクルで30回

行った。

20

第三PCR産物のDNA断片を3%低融点アガロースゲル (NuSieve GTG Agarose, FMC) で電気泳動した後、GENECLEANII Kit (BI0101) を用い、添付の処方に従ってゲルから回収、精製した。

- 5 得られたDNA断片を50mM Tris-HCl (pH7.5)、10mM MgCl₂、1 mM DTT、 100mM N aCl 、8 UのEcoRI (宝酒造)を含有する20 μ 1 の反応混合液中で37℃にて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿で回収した後、10mM Tris-HCl (pH7.4)、1 mM EDTA 溶液 8 μ 1 に溶解した。
- プラスミドpUC19 ΔHind III 0.8μgを同様にEcoRI で消化し、フェノールおよびクロロホルムで抽出、エタノール沈殿により回収した。消化したプラスミドpUC19 ΔHind IIIを50 mM Tris-HCl (pH9.0)、1 mM MgCl₂、アルカリホスファターゼ (E. coli C75, 宝酒造)を含有する反応混合液50μ1中で37℃、30分間反応させ脱リン酸処理 (BAP処理)した。反応液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿により回収した後、10mM Tris-HCl (pH7.4)、1 mM EDTA 溶液10μ1 に溶解した。

上記のBAP処理したプラスミドpUC19 Δ Hind III $1 \mu 1$ と先のPCR産物 $4 \mu 1$ をDNA Ligation Kit Ver. 2 (宝酒造)を用いて連結し、大腸菌JM109 コンピテント細胞に形質転換した。得られた形質転換体を 50μ g/mlアンピシリンを含有する $2 \times YT$ 培地 2 m1で一夜培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAG EN)を用いてプラスミドを精製した。

上記プラスミドについて、クローニングされたDNAの塩基配列の確認を行った。 塩基配列の決定には373A DNA sequencer (ABI 社) を用い、プライマーにはM13 Primer M4 およびM13 Pricer RV (宝酒造)を用いた。その結果、クローニ ングされたDNAの内部に12bpの欠失があることが判明した。このDNAを含むプラス ミドをCλΔ/pUC19 と命名した。そこで、その部分を補うためのプライマーH CLMS (配列番号17)、 HCLMR (配列番号18)を新たに合成し、PCRで再度正し いDNAの構築を行った。

WO 01/47554 PCT/JP00/09339

第一PCRで欠失DNAを含むプラスミドC λ Δ / pUC19 を鋳型とし、プライマーH LAMBSとHCLMR 、HCLMS とHLAMB4で反応を行った。PCR産物をそれぞれ精製し、第二PCRでアセンブリを行った。さらに外部プライマーHLAMBSおよびHLAMB4を添加し、第三PCRにより全長DNAを増幅させた。

- 第一PCRでは、鋳型としてC λ Δ /pUC19 0.1 μ g、プライマーHLAMBSおよび HCLMR 各50pmole 、あるいはHCLMS およびHLAMB4各50pmole 、5 UのTaKaRa Ex Taq (宝酒造)を含有する100 μ 1 の反応混合液を用い、50 μ 1 の鉱油を上層 して94 $^{\circ}$ にて1分間、60 $^{\circ}$ にて1分間、72 $^{\circ}$ にて1分間の温度サイクルで30回行った。
- 10 PCR産物HLAMBS-HCLMR (236bp) 、HCLMS-HLAMB4 (147bp) をそれぞれ 3 %低融点 アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101) を用いてゲルか ら回収、精製した。第二PCRでは精製DNA断片各40ng、1 UのTaKaRa Ex Taq (宝酒造)を含有する20μ1の反応混合液を用い、25μ1の鉱油を上層して94℃ にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルを5回行った。
- 第三PCRでは、第二PCR反応液 2 μ 1、外部プライマーHLAMBS、HLAMB4各50pmo1 e 、5 UのTaKaRa Ex Taq (宝酒造)を含有する100 μ 1の反応混合液を用い、50μ 1 の鉱油を上層した。PCRは、94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで30回行った。第三PCR産物である357bp のDNA断片を3%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101) を用20 いてゲルから回収、精製した。

得られたDNA断片 0.1μ gをEcoRI で消化した後、BAP処理したプラスミド pUC19 Δ Hind IIIにサブクローニングした。大腸菌 JM109コンピテント細胞 に形質転換し、 50μ g/mlアンピシリンを含有する $2\times Y$ T培地2mlで一夜培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN)を用いてプラスミドを精製した。

精製したプラスミドについて塩基配列をM13 Primer M4、M13 Primer RV (宝酒造)を用い、373A DNA sequencer (ABI 社)にて決定した。欠失のない正しい塩基配列を有していることが確認されたプラスミドを $C\lambda/pUC19$ とした。

(iii) ヒトL鎖κ鎖定常領域をコードする遺伝子の構築

プラスミドHEF-PM1k-gk (W092/19759) からL鎖 κ 鎖С領域をコードするDNA 断片をPCR法を用いてクローニングした。394 DNA/RNA synthesizer (ABI 社) を用いて合成した前方プライマーHKAPS (配列番号19) はEcoRI、Hind III、Bln I認識配列を、後方プライマーHKAPA (配列番号20) はEcoRI 認識配列を有するように設計した。

鋳型となるプラスミドHEF-PM1k-gk $0.1~\mu$ g、プライマーHKAPS 、HKAPA 各5 0pmole 、5 UのTaKaRa Ex Taq (宝酒造)を含有する100 μ 1 の反応混合液を用い、 50μ 1 の鉱油を上層した。94Cにて1分間、60Cにて1分間、72Cにて1分間の反応を30サイクル行った。360bp のPCR産物を3%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101) を用いてゲルから回収、精製した。

得られたDNA断片をEcoRI で消化した後、BAP処理したプラスミドpUC19 Δ Hind IIIにクローニングした。大腸菌 JM109コンピテント細胞に形質転換し、 $50\,\mu\,g/ml$ アンピシリンを含有する $2\times YT$ 培地 $2\,ml$ で一夜培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。

精製したプラスミドの塩基配列をM13 Primer M4 、M13 Primer RV (宝酒造)を用い、373A DNA sequencer (ABI社) にて決定した。正しい塩基配列を有していることが確認されたプラスミドを $C \kappa / pUC19$ とした。

20

25

10

15

(3) キメラ抗体L鎖発現ベクターの構築

キメラ#23-57-137-1 抗体L鎖発現ベクターを構築した。プラスミド $C\lambda/pU$ C19、 $C\kappa/pU$ C19のヒト抗体定常領域の直前にあるHind III、BlnI部位に、#23-57-137-1 L鎖V領域をコードする遺伝子を連結することによって、それぞれキメラ#23-57-137-1 抗体L鎖V領域およびL鎖 λ 鎖またはL鎖 κ 鎖定常領域をコードするpUC19ベクターを作製した。EcoRI 消化によってキメラ抗体L鎖遺伝子を切り出し、HEF発現ベクターへサブクローニングを行った。

すなわち、プラスミドMBC1L24 から#23-57-137-1 抗体L鎖V領域をPCR法を

10

15

20

25

WO 01/47554 PCT/JP00/09339

用いてクローニングした。各プライマーの合成は、394 DNA/RNA synthesizer (A BI 社)を用いて行った。後方プライマーMBCCHL1 (配列番号21)はHind III認識配列とKozak 配列 (Kozak, M. et al., J. Mol. Biol. 196, 947-950, 1987)を、前方プライマーMBCCHL3 (配列番号22)はBglII、EcoRI 認識配列を有するように設計した。

PCRは、10mM Tris-HCl (pH8. 3)、50mM KCl、1.5mM MgCl $_2$ 、0.2mM dNTP、 $0.1~\mu$ gのMBClL24、プライマーとしてMBCCHL1 およびMBCCHL3 を各50pmole、 $1~\mu$ 1の AmpliTaq (PERKIN ELMER)を含有する $100~\mu$ 1の反応混合液を用い、 $50~\mu$ 1の鉱油を上層して94Cにて45秒間、60Cにて45秒間、72Cにて2分間の温度サイクルで30回行った。

444bpのPCR産物を 3 %低融点アガロースゲルで電気泳動した後、GENECLEAN I I kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HCl (pH7.4)、1 mM EDTA 溶液20μ1に溶解した。PCR産物1μ1をそれぞれ10mM Tris-HCl (pH7.5)、10mM MgCl₂、1 mM DTT、50mM NaCl 、8 UのHind III (宝酒造) および8 UのEcoRI (宝酒造) を含有する反応混合液20μ1中で37℃にて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿で回収し、10mM Tris-HCl (pH7.4)、1 mM EDTA 溶液8μ1に溶解した。

プラスミドpUC19 1μ g を同様にHind IIIおよびEcoRI で消化し、フェノールおよびクロロホルムで抽出、エタノール沈殿により回収し、アルカリホスファターゼ (E. coli C75 , 宝酒造)でBAP処理した。反応液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿で回収した後、10mM Tris-HC1 (pH7.4)、1mM EDTA 溶液 10μ 1 に溶解した。

BAP処理したプラスミドpUC19 $1 \mu 1$ と先のPCR産物 $4 \mu 1$ をDNA Ligation Kit Ver. 2 (宝酒造)を用いて連結し、大腸菌JM109コンピテント細胞(ニッポンジーン)に前述と同様に形質転換した。これを $50 \mu \text{g/ml}$ アンピシリンを含有する $2 \times \text{YT}$ 寒天培地にまき、37 Cで一夜培養した。得られた形質転換体を、 $50 \mu \text{g/ml}$ アンピシリンを含有する $2 \times \text{YT}$ 培地 2 mlで37 Cで一夜培養した。菌体画分からQIA prep Spin Plasmid Kit (QIAGEN)を用いてプラスミドを精製した。塩基配列を決

15

25

WO 01/47554 PCT/JP00/09339

定後、正しい塩基配列を有するプラスミドをCHL/pUC19 とした。

プラスミド C λ / pUC19 、 C κ / pUC19 各 1 μ g をそれぞれ20 puccest MM 20 puccest M8. 5)、10 puccest MgCl $_2$ 、1 puccest MM 20 puccest MKCl、20 puccest Mind 20 puccest M

#23-57-137-1 L鎖V領域を含むプラスミドCHL/pUC19 から8 μ gを同様にHi nd IIIおよびBlnIで消化した。得られた409bp のDNA断片を3%低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HC1 (pH7.4)、1 mM EDTA 溶液10 μ 1 に溶解した。

このL鎖V領域DNA 4μ 1をBAP処理したプラスミドC λ /pUC19 または $C\kappa$ /pUC19 各 1μ 1にサブクローニングし、大腸菌JM109コンピテント細胞に 形質転換した。 50μ g/mlアンピシリンを含有する $2\times$ YT培地 3m1で一夜培養し、 菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。これらをそれぞれプラスミドMBC1L(λ)/pUC19 、MBC1L(κ)/pUC19 とした。

プラスミドMBC1L(λ)/pUC19 およびMBC1L(κ)/pUC19 をそれぞれEcoRI で消20 化し、3%低融点アガロースゲルで電気泳動した後、743bp のDNA断片をGENECL EANII Kit(BI0101) を用いてゲルから回収、精製し、10mM Tris-HC1(pH7.4)、1 mM EDTA 溶液10 μ 1 に溶解した。

発現ベクターとしてプラスミドHEF-PM1k-gk $2.7~\mu$ gをEcoRI で消化し、フェノールおよびクロロホルムで抽出、DNAをエタノール沈殿で回収した。回収したDNA断片をBAP処理した後、1%低融点アガロースゲルで電気泳動し、6561bpのDNA断片をGENECLEANII Kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HCI (pH7.4)、1mM EDTA 溶液10 μ 1 に溶解した。

BAP処理したHEFベクター $2 \mu 1$ を上記プラスミドMBC1L(λ) またはMBC1L(κ)

EcoRI 断片各 3 μ 1 と連結し、大腸菌JM109コンピテント細胞に形質転換した。 $50\,\mu\,\mathrm{g/ml}$ アンピシリンを含有する $2\times\mathrm{YT}$ 培地 $2\,\mathrm{ml}$ で培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。

精製したプラスミドを、 $20\,\mathrm{mM}$ Tris-HCl (pH8.5)、 $10\,\mathrm{mM}$ MgCl₂、 $1\,\mathrm{mM}$ DTT、 $10\,\mathrm{mM}$ KCl 、 $8\,\mathrm{U}$ のHind III (宝酒造) および $2\,\mathrm{U}$ のPvuI (宝酒造)を含有する反応混合液 $20\,\mu$ 1中で $37\,\mathrm{C}$ にて1時間消化した。断片が正しい方向に挿入されていれば $5104/2195\,\mathrm{bp}$ 、逆方向に挿入されていれば $4378/2926\,\mathrm{bp}$ の消化断片が生じることより、正しい方向に挿入されていたプラスミドをそれぞれMBClL(λ)/ne o、MBClL(κ)/neo とした。

10

15

(4) COS-7細胞のトランスフェクション

キメラ抗体の抗原結合活性および中和活性を評価するため、前記発現プラスミドをCOS-7細胞で一過性に発現させた。

すなわちキメラ抗体の一過性発現は、プラスミドMBC1HcDNA/pCOS1とMBC1L(λ)/neosまたはMBC1HcDNA/pCOS1とMBC1L(κ)/neos組み合わせで、Gene Pulser装置 (Bio Rad)を用いてエレクトロポレーションによりCOS-7細胞に同時形質導入した。PBS(-)中に1x107 細胞/m1の細胞濃度で懸濁されているCOS-7細胞0.8m1に、各プラスミドDNA 10 μ gを加え、1,500V,25 μ Fの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を2%のUltra Low IgGウシ胎児血清 (GIBCO)を含有するDMEM培地 (GIBCO) に懸濁し、10cm培養皿を用いてCO2 インキュベーターにて培養した。72時間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、ELISAの試料に供した。

また、COS-7細胞の培養上清からのキメラ抗体の精製は、AffiGel Protein A MA PSIIキット(BioRad)を用いてキット添付の処方に従って行った。

25

(5) ELISA

(i) 抗体濃度の測定

抗体濃度測定のためのELISAプレートを次のようにして調製した。ELISA用96穴

プレート (Maxisorp, NUNC)の各穴を固相化バッファー(0.1M NaHCO3、0.02% Na N_3) で 1μ g/ml の濃度に調製したヤギ抗ヒトIgG抗体 (TAGO) 100μ 1で固相化し、200μ1の希釈バッファー(50mM Tris-HCl、1mM MgCl。、0.1M NaCl、0.05% Tween2 0、0.02% NaN₃、1% 牛血清アルブミン(BSA)、pH7.2) でブロッキングの後、 キメラ抗体を発現させたCOS細胞の培養上清あるいは精製キメラ抗体を段階希釈 して各穴に加えた。1時間室温にてインキュベートしPBS-Tween20で洗浄後、ア ルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体 (TAGO) $100 \mu 1$ を加えた。 1 時間 室温にてインキュベートしPBS-Tween20で洗浄の後、1mg/mlの基質溶液(Sigma104、 p-ニトロフェニルリン酸、SIGMA) を加え、次に405nmでの吸光度をマイクロプ レートリーダー(Bio Rad)で測定した。濃度測定のスタンダードとして、Hu IgG 1ん Purified (The Binding Site) を用いた。

(ii) 抗原結合能の測定

15

抗原結合測定のためのElISAプレートでは、次のようにして調製した。ELISA用 96穴プレートの各穴を固相化バッファーで $1 \mu g/ml$ の濃度に調製したヒトPTHrP(1-34) (ペプチド研究所) 100μ 1 で固相化した。 200μ 1 の希釈バッファーでブ ロッキングの後、キメラ抗体を発現させたCOS細胞の培養上清あるいは精製キメ ラ抗体を段階希釈して各穴に加えた。室温にてインキュベートしPBS-Tween20で 洗浄後、アルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体 (TAGO) 100 μ 1を加え た。室温にてインキュベートしPBS-Tween20で洗浄の後、1 mg/mlの基質溶液 (Sig 20 ma104、p-ニトロフェニルリン酸、SIGMA) を加え、次に405nmでの吸光度をマ イクロプレートリーダー(Bio Rad)で測定した。

その結果、キメラ抗体は、ヒトPTHrP(1-34)に対する結合能を有しており、ク ローニングしたマウス抗体V領域の正しい構造を有することが示された。また、 キメラ抗体においてL鎖C領域が λ 鎖あるいは κ 鎖のいずれであっても抗体のPT HrP(1-34)に対する結合能は変化しないことから、ヒト型化抗体のL鎖C領域は、 ヒト型化抗体L鎖λ鎖を用いて構築した。

(6) CHO安定産生細胞株の樹立

WO 01/47554 PCT/JP00/09339

キメラ抗体の安定産生細胞株を樹立するため、前記発現プラスミドをCHO細胞 (DXB11) に導入した。

すなわちキメラ抗体の安定産生細胞株樹立は、CHO細胞用発現プラスミドMBC1H cDNA/pCHO1とMBC1L(λ)/neoまたはMBC1HcDNA/pCHO1とMBC1L(κ)/neoの組み 合わせで、Gene Pulser装置 (Bio Rad) を用いてエレクトロポレーションによりC HO細胞に同時形質導入した。それぞれの発現ベクターを制限酵素PvuIで切断して 直鎖DNAにし、フェノールおよびクロロホルム抽出後、エタノール沈殿でDNAを回 収してエレクトロポレーションに用いた。PBS(-)中に $1x10^7$ 細胞/m1の細胞濃度 で懸濁されているCHO細胞0.8m1に、各プラスミドDNA 10μgを加え、1,500V,25 10 μFの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクト ロポレーション処理された細胞を10%ウシ胎児血清 (GIBCO) を添加した $MEM-\alpha$ 培 地 (GIBCO) に懸濁し、3枚の96穴プレート (Falcon) を用いてCO。インキュベータ 一にて培養した。培養開始翌日に、10%ウシ胎児血清(GIBCO)および500mg/mlのG ENETICIN (G418Sulfate、GIBCO) 添加、リボヌクレオシドおよびデオキリボヌク レオシド不含MEM-α培地(GIBCO)の選択培地を交換し、抗体遺伝子の導入された 15 細胞を選択した。選択培地交換後、2週間前後に顕微鏡下で細胞を観察し、順調 な細胞増殖が認められた後に、上記抗体濃度測定ELISAにて抗体産生量を測定し、 抗体産生量の多い細胞を選別した。

樹立した抗体の安定産生細胞株の培養を拡大し、ローラーボトルにて 2 %のU1 tra Low IgGウシ胎児血清添加、リボヌクレオシドおよびデオキリボヌクレオシド不含MEM培地を用いて、大量培養を行った。培養 3 ないし 4 日目に培養上清を回収し、 $0.2\mu m$ のフィルター(Millipore)により細胞破片を除去した。

CHO細胞の培養上清からのキメラ抗体の精製は、POROSプロテインAカラム (PerS eptive Biosystems)を用いて、ConSep LC100 (Millipore) にて添付の処方に従って行い、中和活性の測定および高カルシウム血症モデル動物での薬効試験に供した。得られた精製キメラ抗体の濃度および抗原結合活性は、上記ELISA系にて測定した。

〔参考例4〕ヒト型化抗体の構築

- (1) ヒト型化抗体H鎖の構築
 - (i) ヒト型化H鎖V領域の構築

ヒト型化#23-57-137-1抗体H鎖を、PCR法によるCDR-グラフティングにより作 製した。ヒト抗体S31679 (NBRF-PDB、Cuisinier A.M. ら、Eur. J. Immunol., 23, 110-118, 1993) 由来のFRを有するヒト型化#23-57-137-1抗体H鎖 (バージョン "a") の作製のために 6 個のPCRプライマーを使用した。CDR-グラフティングプライマーMBC1HGP1 (配列番号23) 及びMBC1HGP3 (配列番号24) はセンスDNA配列を有し、そしてCDRグラフティングプライマーMBC1HGP2 (配列番号25) 及びMBC1HGP4 (配列番号26) はアンチセンスDNA配列を有し、そしてそれぞれプライマーの両端に15から21bpの相補的配列を有する。外部プライマーMBC1HVS1 (配列番号27) 及びMBC1HVR1 (配列番号28) はCDRグラフティングプライマーMBC1HVS1 (配列番号27) 及びMBC1HVR1 (配列番号28) はCDRグラフティングプライマーMBC1HGP1及びMBC1HGP4とホモロジーを有する。

CDR-グラフティングプライマーMBC1HGP1、MBC1HGP2、MBC1HGP3およびMBC1HGP4 は尿素変性ポリアクリルアミドゲルを用いて分離し(Molecular Cloning:A Lab oratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989)、 ゲルからの抽出はcrush and soak法(Molecular Cloning:A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989)にて行った。

すなわち、それぞれ 1 nmoleのCDR-グラフティングプライマーを 6 %変性ポリアクリルアミドゲルで分離し、目的の大きさのDNA断片の同定をシリカゲル薄層板上で紫外線を照射して行い、crush and soak法にてゲルから回収し20 μ 1 の10mM Tris-HCl (pH7.4), 1mM EDTA溶液に溶解した。PCRは、TaKaRa Ex Taq (宝酒造)を用い、100 μ 1 の反応混合液に上記の様に調製したCDR-グラフティングプライマーMBC1HGP1、MBC1HGP2、MBC1HGP3およびMBC1HGP4をそれぞれ 1 μ 1、0.25mMのdNTP、2.5UのTaKaRa Ex Taqを含む条件で添付緩衝液を使用して94℃にて1分間、55℃にて1分間、72℃にて1分間の温度サイクルで5回行い、さらに50pmoleの外部プライマーMBC1HVS1及びMBC1HVR1を加え、同じ温度サイクルを30回行った。PCR法により増幅したDNA断片を4%Nu Sieve GTGアガロース (FMC Bio. Pr

20

WO 01/47554 PCT/JP00/09339

oducts) を用いたアガロースゲル電気泳動により分離した。

421bp長のDNA断片を含有するアガロース片を切取り、GENECLEANII Kit (BI010 1)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノールで沈殿させた後、10mM Tris-HCl (pH7.4), 1mM EDTA溶液 $20\,\mu$ 1に溶解した。得られたPCR反応混合物をBamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングし、塩基配列を決定した。正しい配列を有するプラスミドをhMBCHv/pUC19と命名した。

(ii) ヒト型化H鎖cDNAのためのH鎖V領域の構築

10 ヒトH鎖C領域Cγ1のcDNAと連結するために、上記のようにして構築したヒト型化H鎖V領域をPCR法により修飾した。後方プライマーMBC1HVS2はV領域のリーダー配列の5'-側をコードする配列とハイブリダイズし、且つKozakコンセンサス配列(Kozak, M, ら、J. Mol. Biol. 196, 947-950, 1987)、HindIIIおよびEcoRI認識配列を有するように設計した。H鎖V領域のための前方プライマーMBC1HVR2はJ領域の3'-側をコードするDNA配列にハイブリダイズし、且つC領域の5'-側の配列をコードしApaIおよびSmaI認識配列を有するように設計した。

PCRはTaKaRa Ex Taq(宝酒造)を用い、鋳型DNAとして 0.4μ gのhMBCHv/pUC19を用い、プライマーとしてMBC1HVS2およびMBC1HVR2をそれぞれ50pmole、2.5UのTaKaRa Ex Taq、0.25mMのdNTPを含む条件で添付緩衝液を使用し、94Cにて1分間、55Cにて1分間、72Cにて1分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を3% Nu Sieve GTGアガロース (FMC Bio. Products)を用いたアガロースゲル電気泳動により分離した。

456bp長のDNA断片を含有するアガロース片を切取り、GENECLEANII Kit (BI010 1)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノールで沈殿させた後、10mM Tris-HCl (pH7.4), 1mM EDTA溶液20μ1に溶解した。得られたPCR反応混合物をEcoRIおよびSmaIで消化することで調製したpUC19にサブクローニングし、塩基配列を決定した。こうして得られたハイブリドーマ#23-57-137-1に由来するマウスH鎖V領域をコードする遺伝子を含有し、5'-側にEcoRI

およびHindIII認識配列及びKozak配列、3'-側にApaIおよびSmaI認識配列を持つプラスミドをhMBC1Hv/pUC19と命名した。

(2) ヒト型化抗体H鎖の発現ベクターの構築

5 hPM1抗体H鎖 cDNAの配列を含むプラスミドRVh-PM1f-cDNAをApaIおよびBamHIにて消化し、H鎖C領域を含むDNA断片を回収し、ApaIおよびBamHIで消化することにより調製したhMBC1Hv/pUC19に導入した。こうして作製したプラスミドをhMBC1HcDNA/pUC19と命名した。このプラスミドはヒト型化#23-57-137-1抗体のH鎖V領域及びヒトH鎖C領域Cγ1を含み、5'-末端にEcoRIおよびHindIII認識配り、3'-末端にBamHI認識配列を持つ。プラスミドhMBC1HcDNA/pUC19に含まれるヒト型化H鎖バージョン"a"の塩基配列および対応するアミノ酸配列を配列番号58に示す。また、バージョンaのアミノ酸配列を配列番号56に示す。

hMBC1HcDNA/pUC19をEcoRIおよびBamHIで消化し、得られたH鎖配列を含むDNA 断片をEcoRIおよびBamHIで消化することにより調製した発現プラスミドpCOS1に 導入した。こうして得られたヒト型化抗体の発現プラスミドをhMBC1HcDNA/pCOS1 と命名した。

さらにCHO細胞での発現に用いるためのプラスミドを作製するためhMBC1HcDNA/pUC19をEcoRIおよびBamHIで消化し、得られたH鎖配列を含むDNA断片をEcoRIおよびBamHIで消化することにより調製した発現プラスミドpCHO1に導入した。こうして得られたヒト型化抗体の発現プラスミドをhMBC1HcDNA/pCHO1と命名した。

(3) L鎖ハイブリッド可変領域の構築

15

20

(i) FR1, 2/FR3, 4ハイブリッド抗体の作製

ヒト型化抗体とマウス(キメラ)抗体のFR領域を組み換えたL鎖遺伝子を構築 し、ヒト型化のための各領域の評価を行った。CDR2内にある制限酵素AfIII切断 部位を利用することによって、FR1及び2はヒト抗体由来、FR3及び4はマウス 抗体由来とするハイブリッド抗体を作製した。

プラスミドMBC1L(\lambda)/neo及びhMBC1L(\lambda)/neo各10µgを10mM Tris-HC1(pH7.

WO 01/47554 PCT/JP00/09339

5), $10 \text{nM} \text{ MgCl}_2$, 1 nM DTT, 50 nM NaCl, 0.01% (w/v) BSA, AfIII (宝酒造) 10 U を含有する反応混合液 $100 \mu 1$ 中で37 Cにて1時間消化した。反応液を2%低融点 アガロースゲルで電気泳動し、プラスミドMBC1L(λ)/neoから6282 bpの断片 (c1 C する) および1022 bpの断片 (c2 C する)、プラスミドhMBC1L(λ)/neoから6282 bpの断片 (h1 C する) および1022 bpの断片 (h2 C する) を、GENECLEANII Kit (BI0101)を用いてゲルから回収、精製した。

回収したc1、h1 断片各1 μ gについてBAP処理を行った。DNAをフェノールおよびクロロホルムで抽出、エタノール沈殿で回収した後、10mM Tris-HC1 (pH7.4), 1mM EDTA溶液10 μ 1に溶解した。

10 BAP処理した c 1 及び h 1 断片 1 μ 1 をそれぞれ h 2、 c 2 断片 4 μ 1 に連結し (4℃、一夜)、大腸菌JM109コンピテント細胞に形質転換した。50 μ g/ml アンピシリンを含有する2×YT培地 2 mlで培養し、菌体画分からQIAprep Spin P lasmid Kit (QIAGEN)を用いてプラスミドを精製した。

精製したプラスミドを、10mM Tris-HCl (pH7.5), 10mM MgCl₂, 1mM DTT, ApaL I (宝酒造) 2 U、またはBamHI (宝酒造) 8 U, HindIII (宝酒造) 8 Uを含有する反応混合液20μ1中で37℃、1時間消化した。c 1-h 2が正しく連結されていれば、ApaLIで5560/1246/498bp、BamHI/HindIIIで7134/269bpの消化断片が生じることにより、プラスミドの確認を行った。

これをヒトFR1、2/マウスFR3、4ハイブリッド抗体L鎖をコードする発現ベクタ つをh/mMBC1L(λ)/neoとした。一方、h1-c2のクローンが得られなかったので、p UCベクター上で組換えてからHEFベクターにクローニングした。その際、アミノ酸置換のないヒト型化抗体L鎖V領域を含むプラスミドhMBC1Laλ/pUC19、及びF R3内の91位(Kabatの規定によるアミノ酸番号87位)のチロシンをイソロイシンに置換したヒト型化抗体L鎖V領域を含むプラスミドhMBC1Ldλ/pUC19を鋳型として用いた。

プラスミドMBC1L(λ)/pUC19、hMBC1La λ /pUC19及びhMBC1Ld λ /pUC19の各10 μ gを10mM Tris~HCI(pH7.5), 10mM MgCl $_2$, 1mM DTT, 50mM NaCl, 0.01%(w/v)BSA, HindIII 16U, Af1II 4Uを含有する反応混合液 $30\,\mu$ 1中で37℃、1時間消化した。

20

WO 01/47554 PCT/JP00/09339

反応液を 2 %低融点アガロースゲルで電気泳動し、プラスミドMBC1L(λ)/pUC19 から215bp(c2')、プラスミドhMBC1La λ /pUC19およびhMBC1Ld λ /pUC19からそれぞれ3218bp(ha1', hd1')のDNA断片をGENECLEANII Kit(BI0101)を用いてゲルから回収、精製した。

hal'、hdl'断片をそれぞれc2'断片に連結し、大腸菌JM109コンピテント細胞に 形質転換した。50μg/mlアンピシリンを含有する2×YT培地2mlで培養し、菌体画 分からQIAprep Spin Plasmid Kit (QIAGEN)を用いてプラスミドを精製した。こ れらをそれぞれプラスミドm/hMBC1Laλ/pUC19、m/hMBC1Ldλ/pUC19とした。

得られたプラスミドm/hMBC1La λ/pUC19, m/hMBC1Ld λ/pUC19をEcoRIで消化し 10 た。それぞれ743bpのDNA断片を2%低融点アガロースゲルで電気泳動した後、GE NECLEANII Kit (BI0101)を用いてゲルから回収、精製し、10mM Tris-HC1 (pH7.4), 1mM EDTA溶液20μ1に溶解した。

各DNA断片 4μ 1 を前述のBAP処理したHEFベクター 1μ 1 に連結し、大腸菌 JM1 09コンピテント細胞に形質転換した。 50μ g/mlアンピシリンを含有する $2\times$ YT培地2mlで培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。

精製した各プラスミドを、 $20\,\text{mM}$ Tris-HCl (pH8. 5), $10\,\text{mM}$ MgCl₂, $1\,\text{mM}$ DTT, $10\,$ 0 mM KCl, HindIII (宝酒造) 8U, PvuI (宝酒造) 2Uを含有する反応混合液 $20\,\mu$ 1 中で37℃にて1時間消化した。断片が正しい方向に挿入されていれば5104/2195bp、逆方向に挿入されていれば4378/2926bpの消化断片が生じることより、プラスミドの確認を行った。これらをそれぞれマウスFR1, 2/ヒトFR3, 4ハイブリッド抗体

(ii) FR1/FR2ハイブリッド抗体の作製

CDR1内にあるSnaBI切断部位を利用することによって、同様にFR1とFR2のハイ 25 ブリッド抗体を作製した。

L鎖をコードする発現ベクターをm/hMBC1Laλ/neo、m/hMBC1Ldλ/neoとした。

プラスミドMBC1L(λ)/neo及びh/mMBC1L(λ)/neoの各10 μ gを10mM Tris-HC1(p H7.9), 10mM MgCl₂, 1mM DTT, 50mM NaCl, 0.01%(w/v)BSA, SnaBI(宝酒造) 6 U を含有する反応混合液20 μ 1中で37 $^{\circ}$ にて1時間消化した。次に20mM Tris-HC1

(pH8. 5), 10mM MgCl₂, 1mM DTT, 100mM KCl, 0.01% (w/v) BSA, PvuI 6 Uを含有する反応混合液50μ1中で37℃にて1時間消化した。

反応液を1.5%低融点アガロースゲルで電気泳動した後、プラスミドMBC1L(λ)/neoから4955bp (m1) および2349bp (m2)、プラスミドh/mMBC1L(λ)/neoから4955bp (hm1) および2349bp (hm2) の各DNA断片をGENECLEANII Kit (BI0101)を用いてゲルから回収、精製し、10mM Tris-HC1 (pH7.4), 1mM EDTA溶液40μ1に溶解した。

m1、hm1断片 1μ 1をそれぞれhm2、m2断片 4μ 1に連結し、大腸菌JM109コンピテント細胞に形質転換した。 50μ g/mlアンピシリンを含有する $2\times$ YT培地2m1で培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN)を用いてプラスミドを精製した。

精製した各プラスミドを、10 mM Tris-HCl (pH7.5), 10 mM MgCl₂, 1 mM DTT, Ap aI (宝酒造) 8 U、またはApaLI (宝酒造) 2 Uを含有する反応混合液 $20 \, \mu$ 1中で $37 ^{\circ}$ でにて 1時間消化した。

各断片が正しく連結されていれば、ApaIで7304bp、ApaLIで5560/1246/498bp (m 1-hm2)、ApaIで6538/766bp、ApaLIで3535/2025/1246/498bp (hm1-m2) の消化断片が生じることにより、プラスミドの確認を行った。これらをそれぞれヒトFR1 /マウスFR2、3、4ハイブリッド抗体L鎖をコードする発現ベクターをhmmMBC1L (λ)/neo、マウスFR1/ヒトFR2/マウスFR3、4ハイブリッド抗体L鎖をコードする発現ベクターをmhmMBC1L(λ)/neoとした。

20

25

10

(4) ヒト型化抗体 L鎖の構築

ヒト型化#23-57-137-1抗体上鎖を、PCR法によるCDR-グラフティングにより作製した。ヒト抗体HSU03868 (GEN-BANK、Deftos Mら, Scand. J. Immunol., 39, 95-103, 1994) 由来のFR1、FR2およびFR3、並びにヒト抗体S25755 (NBRF-PDB) 由来のFR4を有するヒト型化#23-57-137-1抗体上鎖(バージョン"a")の作製のために6個のPCRプライマーを使用した。

CDR-グラフティングプライマーMBC1LGP1 (配列番号29) 及びMBC1LGP3 (配列番号3 0) はセンスDNA配列を有し、そしてCDRグラフティングプライマーMBC1LGP2 (配列

WO 01/47554 PCT/JP00/09339

番号31) 及びMBC1LGP4 (配列番号32) はアンチセンスDNA配列を有し、そしてそれぞれプライマーの両端に15から21bpの相補的配列を有する。外部プライマーMBC1LV S1 (配列番号33) 及びMBC1LVR1 (配列番号34) はCDRグラフティングプライマーMBC1L GP1及びMBC1LGP4とホモロジーを有する。

- 5 CDR-グラフティングプライマーMBC1LGP1、MBC1LGP2、MBC1LGP3およびMBC1LGP4 は尿素変性ポリアクリルアミドゲルを用いて分離し (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989)、ゲルからの抽出はcrush and soak法 (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989) にて行った。
- 10 すなわち、それぞれ1nmoleのCDR-グラフティングプライマーを 6%変性ポリアクリルアミドゲルで分離し、目的の大きさのDNA断片の同定をシリカゲル薄層板上で紫外線を照射して行い、crush and soak法にてゲルから回収し 20μ 1の10m Tris-HC1(pH7.4), 1mM EDTA溶液に溶解した。

PCRは、TaKaRa Ex Taq(宝酒造)を用い、100μ1の反応混合液に上記の様に 15 調製したCDR-グラフティングプライマーMBC1LGP1、MBC1LGP2、MBC1LGP3およびMB C1LGP4をそれぞれ1μ1、0.25mMのdNTP、2.5UのTaKaRa Ex Taqを含む条件で添付 緩衝液を使用して94℃にて1分間、55℃にて1分間、72℃にて1分間の温度サイ クルで5回行い、この反応混合液に50pmoleの外部プライマーMBC1LVS1及びMBC1L VR1を加え、さらに同じ温度サイクルで30回反応させた。PCR法により増幅したDN 20 A断片を3%Nu Sieve GTGアガロース (FMC Bio.Products)を用いたアガロースゲ ル電気泳動により分離した。

421bp長のDNA断片を含有するアガロース片を切取り、GENECLEANII Kit (BI010 1)を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物をBamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングし、塩基配列を決定した。こうして得られたプラスミドをhMBCL/pUC19と命名した。しかしながらCDR4の104位(Kabatの規定によるアミノ酸番号96位)のアミノ酸がアルギニンになっていたため、これをチロシンに修正するための修正プライマーMBC1LGP10R(配列番号35)を設計し、合成した。PCRはTaKaRa Tag(宝酒造)を

WO 01/47554 PCT/JP00/09339

用い、 $100\mu1$ の反応混合液に鋳型DNAとして 0.6μ gのプラスミドhMBCL/pUC19、プライマーとしてMBC1LVS1及びMBC1LGP10Rをそれぞれ50pmole、2.5UのTaKaRa Ex Taq (宝酒造) 0.25mMのdNTPを含む条件で添付の緩衝液を使用して $50\mu1$ の鉱油を上層して94℃にて1分間、55℃にて1分間、72℃にて1分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を3% Nu Sieve GTGアガロース (FMC Bio. Products) を用いたアガロースゲル電気泳動により分離した。

421bp長のDNA断片を含有するアガロース片を切取り、GENECLEANII Kit (BI010 1)を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物をBamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングした。

M13 Primer M4プライマー及びM13 Primer RVプライマーを用いて塩基配列を決定した結果、正しい配列を得ることができたので、このプラスミドをHindIII およびB1nIで消化し、416bpの断片を1%アガロースゲル電気泳動により分離した。GENECLEANII Kit (BI0101)を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物をHindIIIおよびB1nIで消化することにより調製したプラスミドC λ / pUC19に導入し、プラスミドhMBC1La λ / pUC19と命名した。このプラスミドをEcoRI消化し、ヒト型化L鎖をコードする配列を含む配列をプラスミドpCOS1に導入し、EF1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをhMBC1La λ / pCOS1と命名した。ヒト型化L鎖バージョン"a"の塩基配列(対応するアミノ酸を含む)を配列番号66に示す。また、バージョンaのアミノ酸配列を配列番号47に示す。

バージョン"b"をPCR法による変異導入を用いて作製した。バージョン"b"では43位(Kabatの規定によるアミノ酸番号43位)のグリシンをプロリンに、49位(Kabatの規定によるアミノ酸番号49位)のリジンをアスパラギン酸に変更するように設計した。変異原プライマーMBC1LGP5R(配列番号36)とプライマーMBC1LVS1によりプラスミドhMBC1Laλ/pUC19を鋳型としてPCRを行い、得られたDNA断片をBamHIおよびHindIIIで消化し、pUC19のBamHI、HindIII部位にサブクローニングした。塩基配列決定後、制限酵素HindIIIおよびAf1IIで消化し、HindIIIおよびAf1

λ/pUC19と連結した。

WO 01/47554 PCT/JP00/09339

IIで消化したhMBC1Laλ/pUC19と連結した。

こうして得られたプラスミドをhMBC1Lb λ /pUC19とし、このプラスミドをEcoRIで消化し、ヒト型化L鎖をコードするDNAを含む断片をプラスミドpCOS1に導入し、EF1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをhMBC1Lb λ /pCOS1と命名した。

バージョン"c"をPCR法による変異導入を用いて作製した。バージョン"c"では84位(Kabatの規定によるアミノ酸番号80位)のセリンをプロリンに変更するように設計した。変異原プライマーMBC1LGP6S(配列番号37)とプライマーM13 Primer RVによりプラスミドhMBC1Laλ/pUC19を鋳型としてPCRを行い、得られたDNA断片をBamHIおよびHindIIIで消化し、BamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングした。

塩基配列決定後、制限酵素BstPIおよびAor51HIで消化し、BstPIおよびAor51HIで消化した $hMBC1La\lambda/pUC19$ と連結した。こうして得られたプラスミドをhMBC1Lc $\lambda/pUC19$ とし、このプラスミドを制限酵素EcoRI消化し、ヒト型化L鎖をコード する配列を含む配列をプラスミドpCOS1のEcoRI部位に導入し、EF1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られた プラスミドをhMBC1Lc $\lambda/pCOS1$ と命名した。

バージョン"d"、"e"及び"f"をPCR法による変異導入を用いて作製した。各バージョンとも順に"a"、"b"、"c"バージョンの91位(Kabatの規定によるアミノ酸番号87位)のチロシンをイソロイシンに変更するように設計した。変異原プライマーMBC1LGP11R(配列番号38)とプライマーM-S1(配列番号44)によりそれぞれhMBC1La λ/pCOS1, hMBC1Lb λ/pCOS1, hMBC1Lc λ/pCOS1を鋳型としてPCRを行い、得られたDNA断片をBamHIおよびHindIIIで消化し、BamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングした。塩基配列決定後、HindIIIおよびBlnIで消化し、HindIIIおよびBlnIで消化することより調製したC

こうして得られたプラスミドを順にhMBC1Ld λ /pUC19、hMBC1Le λ /pUC19、hMBC 1Lf λ /pUC19とした。これらのプラスミドをEcoRI消化し、ヒト型化L鎖をコード

WO 01/47554 PCT/JP00/09339

する配列を含む配列をプラスミドpCOS1のEcoRI部位に導入し、EF1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをそれぞれ順にhMBC1Ld λ /pCOS1、hMBC1Le λ /pCOS1、hMBC1Lf λ /pCOS1と命名した。

5 バージョン"g"及び"h"をPCR法による変異導入を用いて作製した。各バー ジョンとも順に"a"、"d"バージョンの36位(Kabatの規定によるアミノ酸番 号36位)のヒスチジンをチロシンに変更するように設計した。変異原プライマー MBC1LGP9R (配列番号39) およびM13 Primer RVをプライマーとして用いて、hMBC1 Laλ/pUC19を鋳型としてPCRを行い、得られたPCR産物とM13 Primer M4をプライ マーとして用いて、プラスミド $hMBC1La\lambda/pUC19$ を鋳型としてさらにPCRを行った。 10 得られたDNA断片をHindIIIおよびBlnIで消化し、HindIIIおよびBlnIで消化する ことで調製したプラスミドCλ/pUC19にサブクローニングした。このプラスミ ドを鋳型として、プライマーMBC1LGP13R(配列番号40)とMBC1LVS1をプライマーと したPCRを行った。得られたPCR断片をApaIおよびHindIIで消化し、ApaIおよびHi ndIIIで消化したプラスミドhMBC1Laλ/pUC19およびhMBC1Ldλ/pUC19に導入した。 塩基配列を決定し、正しい配列を含むプラスミドを順にhMBC1Lg \(\rample\)/pUC19およびh MBC1Lhλ/pUC19とし、これらのプラスミドを制限酵素EcoRI消化し、ヒト型化L 鎖をコードする配列を含む配列をプラスミドpCOS1のEcoRI部位に導入し、EF1lphaプロモーターの下流にヒト型化し鎖の開始コドンが位置するようにした。こうし て得られたプラスミドをそれぞれ順にhMBC1Lgλ/pCOS1およびhMBC1Lhλ/pCOS1と 20 命名した。

バージョン"i"、"j"、"k"、"l"、"m"、"n" および"o"をPCR法による変異導入を用いて作製した。変異原プライマーMBC1LGP14S (配列番号41) と プライマーV1RV (λ) (配列番号43) によりプラスミドhMBC1La λ /pUC19を鋳型としてPCRを行い、得られたDNA断片をApaIおよびB1nIで消化し、ApaIおよびB1nIで消化することにより調製したプラスミドhMBC1Lg λ /pUC19にサブクローニングした。塩基配列決定を行い、それぞれのバージョンに対応した変異が導入されたクローンを選択した。こうして得られたプラスミドをhMBC1Lx λ /pUC19 (x=i, j, k,

1, m, n, o) とし、このプラスミドをEcoRI消化し、ヒト型化L鎖をコードする配列を含む配列をプラスミドpCOS1のEcoRI部位に導入し、EF1 α プロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをhMBC1Lx λ /pCOS1 (x=i, j, k, l, m, n, o) と命名した。バージョン"j"、"l"、"m" および"o" の塩基配列(対応するアミノ酸を含む)をそれぞれ配列番号67、68、69、70に示す。また、これらの各バージョンのアミノ酸配列をそれぞれ配列番号48、49、50、51に示す。

バージョン"p"、"q"、"r"、"s" および"t" は、バージョン"i"、 " j"、"m"、"1" または"o" のアミノ酸配列の87位のチロシンをイソロイ シンに置換したバージョンであり、FR3内にある制限酵素Aor51MI切断部位を利用 して、バージョン"h" を、各バージョン"i"、"j"、"m"、"1" または" o"とつなぎ換えることにより作製したものである。すなわち、発現プラスミ ドhMBC1Lxλ/pCOS1 (x = i , j , m , 1 , o) 中、CDR3並びにFR3の一部及びFR 4を含むAor51HI断片514bpを除き、ここに発現プラスミドhMBC1Lhλ/pCOS1中、CD R3並びにFR3の一部及びFR4を含むAor51HI断片514bpをつなぐことにより91位 (Kab atの規定によるアミノ酸番号87位)のチロシンがイソロイシンとなるようにした。 塩基配列決定を行い、各バージョン"i"、"j"、"m"、"1"および"o"の 91位 (Kabatの規定によるアミノ酸番号87位) のチロシンがイソロイシンに置換さ れたクローンを選択し、対応するバージョンをそれぞれ"p"、"q"、"s"、 20 "r" および"t" とし、得られたプラスミドをhMBC1Lx λ /pCOS1 (x=p, q, s, r, t) と命名した。バージョン"q"、"r"、"s" および"t" の塩基 配列(対応するアミノ酸を含む)をそれぞれ配列番号71、72、73、74に示す。ま た、これらの各バージョンのアミノ酸配列をそれぞれ配列番号52、53、54、55に 示す。

25 プラスミドhMBC1Lqλ/pC0S1をHindIIIおよびEcoRIで消化し、HindIIIおよびEcoRIで消化したプラスミドpUC19にサブクローニングし、プラスミドhMBC1Lqλ/pUC19と命名した。

ヒト型化し鎖の各バージョンにおける置換アミノ酸の位置を表8に示す。

表 8 配列表における置換アミノ酸の位置 (Kabatの規定によるアミノ酸番号)

		一 (比なりなしの然及による) こ/ 設備与/									
バージョン	3 6	4 3	4 5	4 7	4 9	8 0	8 7				
a											
b		P			D						
С		- "				P					
d							I				
e f		P			D		I				
					<u> </u>	P	I				
g h	Y										
h	Y						I				
i	Y		K								
j	Y		K		D						
k	Y		K	V							
1	Y		K	V	D						
m	Y				D						
n	Y			V							
0	Y			V	D						
q	Y		K				I				
q	Y		K		D		I				
r	Y			_	D		I				
S	Y		K	V	D		Ĭ				
t	Y			V	D		I				

5 表中、Yはチロシン、Pはプロリン、Kはリジン、Vはバリン、Dはアスパラ ギン酸、Iはイソロイシンを示す。

なお、前記プラスミドhMBC1HcDNA/pUC19およびhMBC1Lqλ/pUC19を有する大腸 菌はEscherichia coli JM109 (hMBC1HcDNA/pUC19) および Escherichia coli JM109 (hMBC1Lqλ/pUC19) として、工業技術院生命工学工業技術研究所(茨城県つく ば市東1丁目1番3号)に、平成8年8月15日に、Escherichia coli JM109 (hMBC1HcDNA/pUC19) についてはFERM BP-5629、Escherichia coli JM109 (hMBC1Lq λ/pUC19) についてはFERM BP-5630としてブダペスト条約に基づき国際寄託されている。

15 (5) COS-7細胞へのトランスフェクション

ハイブリッド抗体およびヒト型化#23-57-137-1抗体の抗原結合活性および中和 活性を評価するため、前記発現プラスミドをCOS-7細胞で一過性に発現させた。

すなわちL鎖ハイブリッド抗体の一過性発現では、プラスミド h MBC1HcDNA/pC0S 1とh/mMBC1L (λ)/neo、hMBC1HcDNA/pC0S1とm/hMBC1La λ /neo、hMBC1HcDNA/pC0S1とm/hMBC1La λ /neo、hMBC1HcDNA/pC0S1とm/hMBC1Ld λ /neo、hMBC1HcDNA/pC0S1とhmmMBC1L(λ)/neo、またはhMBC1HcDNA/pC0S1とmhmMBC1L(λ)/neoとの組み合わせを、Gene Pulser装置 (Bio Rad)を用いてエレクトロポレーションによりCOS-7細胞に同時形質導入した。PBS(-)中に1×10⁷細胞/m1の細胞濃度で懸濁されているCOS-7細胞0.8m1に、各プラスミドDNA10 μ gを加え、1,500V、25 μ Fの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を2%のUltraLowIgGウシ胎児血清 (GIBC0)を含有するDMEM培養液 (GIBC0) に懸濁し、10cm培養皿を用いて Ω 02 インキュベーターにて培養した。72時間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、ELISAの試料に供した。

ヒト型化#23-57-137-1抗体の一過性発現では、プラスミドhMBC1HcDNA/pCOS1とhMBC1Lx λ /pCOS1 ($x=a\sim t$) のいずれかの組み合わせをGene Pulser装置 (Bi o Rad) を用いて、前記ハイブリッド抗体の場合と同様の方法によりCOS-7細胞にトランスフェクションし、得られた培養上清をELISAに供した。

また、COS-7細胞の培養上清からのハイブリッド抗体またはヒト型化抗体の精製は、AffiGel Protein A MAPSIIキット (BioRad) を用いて、キット添付の処方に従って行った。

20 (6) ELISA

10

15

(i) 抗体濃度の測定

抗体濃度測定のためのELISAプレートを次のようにして調製した。ELISA用 96穴プレート (Maxisorp, NUNC) の各穴を固相化バッファー (0.1M NaHCO3、0.02% NaN3)で $1 \mu \text{g/ml}$ の濃度に調製したヤギ抗ヒト I gG抗体 (TAG0) $100 \mu \text{l}$ で固相化し、200 μl の希釈バッファー (50mM Tris-HCl、 1mM MgCl2、0.1M NaCl、0.05% Twee n20、0.02% NaN3、1% 牛血清アルブミン (BSA)、 $\mu \text{H7.2}$)でブロッキングの後、ハイブリッド抗体またはヒト型化抗体を発現させたCOS-7細胞の培養上清あるいは精製ハイブリッド抗体またはヒト型化抗体を段階希釈して各穴に加えた。1時

間室温にてインキュベートしPBS-Tween20で洗浄後、アルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体 (TAGO) $100\,\mu$ lを加えた。 1 時間室温にてインキュベートしPBS-Tween20で洗浄の後、1 mg/mlの基質溶液 (Sigma104、p-ニトロフェニルリン酸、SIGMA)を加え、次に405 nmでの吸光度をマイクロプレートリーダー (Bio Rad) で測定した。濃度測定のスタンダードとして、Hu IgG1 λ Purified (The Binding Site)を用いた。

(ii) 抗原結合能の測定

抗原結合測定のためのELISAプレートを、次のようにして調製した。ELISA用96 穴プレートの各穴を固相化バッファーで1 μ g/mlの濃度に調製したヒトPTHrP (1-34) 100 μ lで固相化した。200 μ lの希釈バッファーでブロッキングの後、ハイブリッド抗体またはヒト型化抗体を発現させたCOS-7細胞の培養上清あるいは精製ハイブリッド抗体またはヒト型化抗体を段階希釈して各穴に加えた。室温にてインキュベートしPBS-Tween20で洗浄後、アルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体 (TAGO) 100 μ lを加えた。室温にてインキュベートしPBS-Tween20で洗浄後、アルカリフォスファターで結合ヤギ抗ヒトIgG抗体 (TAGO) 100 μ lを加えた。室温にてインキュベートしPBS-Tween20で洗浄の後、1 mg/mlの基質溶液 (Sigma104、p - 二トロフェニルリン酸、SIGMA)を加え、次に405nmでの吸光度をマイクロプレートリーダー (Bio Rad) で測定した。

(7)活性確認

- (i) ヒト型化H鎖の評価
- 20 ヒト型化H鎖バージョン"a"とキメラL鎖を組み合わせた抗体は、キメラ抗体とPTHrP結合能が同等であった。この結果は、H鎖V領域のヒト型化はバージョン"a"で十分なことを示す。以下、ヒト型化H鎖バージョン"a"をヒト型化抗体のH鎖として供した。
 - (ii) ハイブリッド抗体の活性
- 25 (i i-a) FR1, 2/FR3, 4ハイブリッド抗体

L鎖が $h/mMBC1L(\lambda)$ の場合、活性は全く認められなかったが、 $m/hMBC1La\lambda$ あるいは $m/hMBC1Ld\lambda$ の場合はいずれもキメラ#23-57-137-1抗体と同等の結合活性を示した。これらの結果は、FR3, 4はヒト型化抗体として問題ないが、FR1, 2内に

置換すべきアミノ酸残基が存在することを示唆する。

(ii-b) FR1/FR2ハイブリッド抗体

L鎖が $nhmMBC1L(\lambda)$ の場合、活性は全く認められなかったが、 $hmmMBC1L(\lambda)$ の場合はキメラ#23-57-137-1抗体と同等の結合活性を示した。これらの結果は、FR 1, 2のうちFR1はヒト型化抗体として問題ないが、FR2内に置換すべきアミノ酸残基が存在することを示唆する。

(iii) ヒト型化抗体の活性

5

L鎖としてバージョン"a"から"t"の各々一つを用いたヒト型化抗体について、抗原結合活性を測定した。その結果、L鎖バージョン"j"、"1"、"0 m"、"o"、"q"、"r"、"s"、"t"を有するヒト型化抗体はキメラ抗体と同等のPTHrP結合能を示した。

(8) CHO安定産生細胞株の樹立

ヒト型化抗体の安定産生細胞株を樹立するため、前記発現プラスミドをCHO細15 胞(DXB11)に導入した。

すなわちヒト型化抗体の安定産生細胞株樹立は、CHO細胞用発現プラスミドhMB C1HcDNA/pCHO1とhMBC1Lmλ/pCOS1またはhMBC1HcDNA/pCHO1とhMBC1Lqλ/pCOS1あるいはhMBC1HcDNA/pCHO1とhMBC1Lrλ/pCOS1の組み合わせで、Gene Pulser装置 (Bio Rad)を用いてエレクトロポレーションによりCHO細胞に同時形質導入した。

20 それぞれの発現ベクターを制限酵素PvuIで切断して直鎖DNAにし、フェノールおよびクロロホルム抽出後、エタノール沈殿でDNAを回収し、エレクトロポレーションに用いた。PBS (-) 中に1x107 細胞/mlの細胞濃度で懸濁されているCHO細胞0.8mlに、各プラスミドDNA 10μ gを加え、1,500V, 25μ Fの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細25 胞を10%ウシ胎児血清 (GIBCO) 添加、MEM- α 培地 (GIBCO) に懸濁し、96穴プレート (Falcon) を用いて CO_2 インキュベーターにて培養した。培養開始翌日に、10%ウシ胎児血清 (GIBCO) および500mg/mlのGENETICIN (G418 Sulfate、GIBCO) 添加、

リボヌクレオシドおよびデオキシリボヌクレオシド不含MEM-α培地 (GIBCO)の選

10

25

WO 01/47554 PCT/JP00/09339

択培地に交換し、抗体遺伝子の導入された細胞を選択した。選択培地交換後、2週間前後に顕微鏡下で細胞を観察し、順調な細胞増殖が認められた後に、上記抗体濃度測定ELISAにて抗体産生量を測定し、抗体産生能の高い細胞を選別した。

樹立した抗体の安定産生細胞株の培養を拡大し、ローラーボトルにて 2% の $\mathbb{U}1$ tra Low IgGウシ胎児血清添加、リボヌクレオシドおよびデオキシリボヌクレオシド不含MEM- α 培地を用いて、大量培養を行った。培養 3 ないし 4 日目に培養上清を回収し、 0.2μ mのフィルター(Millipore)により細胞破片を除去した。CHO細胞の培養上清からのヒト型化抗体の精製は、POROSプロテインAカラム(PerSeptive Biosystems)を用いて、ConSepLC100(Millipore)にて添付の処方に従って行い、中和活性の測定および高カルシウム血症モデル動物での薬効試験に供した。得られた精製ヒト型化抗体の濃度および抗原結合活性は、上記ELISA系にて測定した。

〔参考例5〕中和活性の測定

15 マウス抗体、キメラ抗体およびヒト型化抗体の中和活性の測定は、ラット骨肉腫細胞株ROS17/2.8-5細胞を用いて行った。すなわち、ROS17/2.8-5細胞を、10%牛胎児血清(GIBCO)を含むHam'S F-12培地(GIBCO)中にて、CO₂ インキュベーターで培養した。ROS17/2.8-5細胞を96穴プレートに10⁴細胞/100μ1/穴で蒔込み1日間培養し、4mMのHydrocortisoneと10%牛胎児血清を含むHam'S F-12培地(GIBCO)に交換する。さらに3ないし4日間培養した後、260μ1のHam'S F-12培地(GIBCO)にて洗浄し、1 mMのイソブチル-1-メチル キサンチン(IBMX、SIGMA)および10%の牛胎児血清と10mMのHEPESを含む80μ1のHam's F-12を加え、30分間37℃でインキュベートした。

中和活性を測定するマウス抗体、キメラ抗体またはヒト型化抗体を、あらかじめ $10\,\mu\,g/ml$ 、 $3.3\,\mu\,g/ml$ 、 $1.1\,\mu\,g/ml$ および $0.37\,\mu\,g/ml$ の群、 $10\,\mu\,g/ml$ 、 $2\,\mu\,g/ml$ 、 $0.5\,\mu\,g/ml$ および $0.01\,\mu\,g/ml$ の群、または $10\,\mu\,g/ml$ 、 $5\,\mu\,g/ml$ 、 $1.25\,\mu\,g/ml$ 、 $0.63\,\mu\,g/ml$ および $0.31\,\mu\,g/ml$ の群に段階希釈し、4ng/mlに調製したPTHrP (1-34) と等量混合し、各抗体とPTHrP (1-34) の混合液 $80\,\mu\,l$ を各穴に添加した。各抗体の最終

濃度は上記抗体濃度の4分の1になり、PTHrP (1-34) の濃度は1 ng/mlになる。10分間室温にて処理した後、培養上清を捨て、PBSにて3回洗浄したした後、100 μ 1の0.3%塩酸95%エタノールにて細胞内のcAMPを抽出する。水流アスピレーターにて塩酸エタノールを蒸発させ、cAMP EIA kit (CAYMAN CHEMICAL'S) 付属のEIAバッファー120 μ 1を添加しcAMPを抽出後、cAMP EIA kit (CAYMAN CHEMICAL'S) 添付の処方に従ってcAMPを測定した。その結果、キメラ抗体と同等の抗原結合を有するL鎖バージョンのうち、91位のチロシンをイソロイシンに置換したバージョン" q "、" r "、" s "、" t "を有するヒト型化抗体がキメラ抗体に近い中和能を示し、その中でも、バージョン" q "がもっとも強い中和能を示した。

10

配列表フリーテキスト

配列番号1:合成DNA

配列番号2:合成DNA

配列番号3:合成DNA

15 配列番号4:合成DNA

配列番号5:合成DNA

配列番号6:合成DNA

配列番号7:合成DNA

配列番号8:合成DNA

20 配列番号 9 : 合成DNA

配列番号10:合成DNA

配列番号11:合成DNA

配列番号12:合成DNA

配列番号13:合成DNA

25 配列番号14:合成DNA

配列番号15:合成DNA

配列番号16:合成DNA

配列番号17:合成DNA

配列番号18:合成DNA

配列番号19:合成DNA

配列番号20:合成DNA

配列番号21:合成DNA

配列番号22:合成DNA

5 配列番号23:合成DNA

配列番号24:合成DNA

配列番号25:合成DNA

配列番号26:合成DNA

配列番号27:合成DNA

10 配列番号28: 合成DNA

配列番号29:合成DNA

配列番号30:合成DNA

配列番号31:合成DNA

配列番号32:合成DNA

15 配列番号33: 合成DNA

配列番号34: 合成DNA

配列番号35:合成DNA

配列番号36:合成DNA

配列番号37: 合成DNA

20 配列番号38: 合成DNA

配列番号39: 合成DNA

配列番号40:合成DNA

配列番号41: 合成DNA

配列番号42:合成DNA

25 配列番号43: 合成DNA

配列番号44:合成DNA

本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に取り入れるものとする。

産業上の利用の可能性

本発明により、副甲状腺ホルモン関連ペプチドに対する抗体の安定化製剤が提 供された。また、本発明により、疼痛緩和作用を有する注射製剤が提供された。

5

WO 01/47554 PCT/JP00/09339

請求の範囲

- 1. 酢酸、クエン酸、リン酸およびそれらの塩からなる群より選択される少なくとも1種の緩衝剤を含む緩衝液中に副甲状腺ホルモン関連ペプチドに対する抗体が溶解して、pHが5~8の溶液の形態にある、副甲状腺ホルモン関連ペプチドに対する抗体の安定化製剤。
- 2. 製剤中の緩衝剤の総濃度が0.1~100 mmol/Lである請求項1記載の製剤。
- 3. 製剤中の緩衝剤の総濃度が5~50 mmol/Lである請求項1記載の製剤。
- 4. 副甲状腺ホルモン関連ペプチドに対する抗体がモノクローナル抗体である請求項1~3のいずれかに記載の製剤。
- 10 5. 副甲状腺ホルモン関連ペプチドに対する抗体が、ヒト抗体、ヒト型化抗体またはキメラ抗体である請求項4記載の製剤。
 - 6. 酢酸、クエン酸、リン酸およびそれらの塩からなる群より選択される少なくとも1種の緩衝剤を含む緩衝液中に副甲状腺ホルモン関連ペプチドに対する抗体が溶解して、pHが5~8の溶液の形態にある、安定化された副甲状腺ホルモン
- 15 関連ペプチドに対する抗体溶液組成物。
 - 7. 抗体溶液組成物がバルク用の溶液組成物である請求項6記載の抗体溶液組成物。
 - 8. 緩衝剤及び等張化剤以外に、実質的に他の安定化剤を含まない請求項7記載の抗体溶液組成物。
- 20 9. 酢酸及び/又はその塩からなる緩衝剤を含む緩衝液中に副甲状腺ホルモン関連ペプチドに対する抗体が溶解してなる注射製剤。
 - 10. pHが5~8の溶液の形態にある請求項9記載の注射製剤。
 - 11. 上記緩衝剤の総濃度が0.1~100 mmol/Lである請求項9記載の注射製剤。
 - 12. 上記緩衝剤の総濃度が5~50 mmol/Lである請求項9記載の注射製剤。
- 25 13. 上記副甲状腺ホルモン関連ペプチドに対する抗体がモノクローナル抗体である請求項9~12いずれか一項記載の注射製剤。
 - 14. 上記副甲状腺ホルモン関連ペプチドに対する抗体が、ヒト抗体、ヒト型化抗体またはキメラ抗体である請求項13記載の注射製剤。

図 1

図2

WO 01/47554

PCT/JP00/09339

SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> Stable antibody compositions and injection

<130> PH-1093-PCT

<150> JP 11-375203

<151> 1999-12-28

<160> 75

<170> PatentIn Ver. 2.0

 $\langle 210 \rangle 1$

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 1

aaatagccct tgaccaggca

20

<210> 2

<211> 38

<212> DNA

WO 01/47554	PCT/JP00/09339
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 2	
ctggttcggc ccacctctga aggttccaga atcgatag	38
<210> 3	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 3	
ggatcccggg ccagtggata gacagatg	28
<210> 4	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 4	
ggatcccggg tcagrggaag gtggraaca	29

17

WO 01/47554 PCT/JP00/09339

<210> 5

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 5

gttttcccag tcacgac

<210> 6

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 6

caggaaacag ctatgac 17

<210> 7

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

WO 01/47554	PCT/JP00/09339
<223> Synthetic DNA	
<400> 7	
gtctaagctt ccaccatgaa acttcgggct c	31
<210> 8	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 8	
tgttggatcc ctgcagagac agtgaccaga	30
<210> 9	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
< 400 > 9	
gtctgaattc aagcttccac catggggttt gggctg	36
<210> 10	
<211> 41	

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 10

tttcccgggc ccttggtgga ggctgaggag acggtgacca g

41

<210> 11

<211> 109

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 11

gtctgaattc aagcttagta cttggccagc ccaaggccaa ccccacggtc accctgttcc 60 cgccctcctc tgaggagctc caagccaaca aggccacact agtgtgtct 109

<210> 12

<211> 110

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 12

ggtttggtgg tctccactcc cgccttgacg gggctgccat ctgccttcca ggccactgtc 60 acagctcccg ggtagaagtc actgatcaga cacactagtg tggccttgtt 110

<210> 13

<211> 98

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 13

ggagtggaga ccaccaaacc ctccaaacag agcaacaaca agtacgcggc cagcagctac 60 ctgagcctga cgcccgagca gtggaagtcc cacagaag 98

<210> 14

<211> 106

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 14

tgttgaattc ttactatgaa cattctgtag gggccactgt cttctccacg gtgctccctt 60 catgcgtgac ctggcagctg tagcttctgt gggacttcca ctgctc 106

<210> 15

WO 01/47554 PCT/JP00/09339 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 15 gtctgaattc aagcttagta cttggccagc ccaaggccaa ccc 43 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 16 tgttgaattc ttactatgaa 20 <210> 17 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA

WO 01/47554	PCT/JP00/09339
<400> 17	
caacaagtac gcggccagca gctacctgag cctgacgcc	39
<210> 18	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 18	
gtagctgctg gccgcgtact tgttgttgct ctgtttgga	39
<210> 19	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 19	
gtctgaattc aagcttagtc ctaggtcgaa ctgtggctgc accatc	46
<210> 20	
<211> 34	
<212> DNA	
<213> Artificial Sequence	

48

WO 01	/47554	PCT/JP00/09339
/0.00 \		
<220>		
<223> S	Synthetic DNA	
<400> 2	0	
tgttgaa	ittc ttactaacac tctcccctgt tgaa	34
<210> 2	21	
<211> 3	5	
<212> D	DNA	
<213> A	rtificial Sequence	
<220>		
	ynthetic DNA	
\440\ S	ynthetic DWA	
<400> 2	1	
gtctaag	ctt ccaccatggc ctggactcct ctctt	35
<210> 2	2	
<211> 4		,
<212> D		
	rtificial Sequence	
<220>		
<223> S	ynthetic DNA	
<400> 2	2	

tgttgaattc agatctaact acttacctag gacagtgacc ttggtccc

<210> 23

<211> 128

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 23

gtctaagctt ccaccatggg gtttgggctg agctgggttt tcctcgttgc tcttttaaga 60 ggtgtccagt gtcaggtgca gctggtggag tctgggggag gcgtggtcca gcctgggagg 120 tccctgag

<210> 24

<211> 125

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 24

accattagta gtggtggtag ttacacctac tatccagaca gtgtgaaggg gcgattcacc 60 atctccagag acaattccaa gaacacgctg tatctgcaaa tgaacagcct gagagctgag 120 gacac

<210> 25

<211> 132

<212> DNA

WO 01/47554	PCT/JP00/09339								
<213> Artificial Sequence									
<220>				"Figs					
<223> Synthetic DNA									
<400> 25									
ctaccaccac tactaatggt tgccaccca	c tccagcccct	tgcctggagc	ctggcggacc	60					
caagacatgc catagctact gaaggtgaa	t ccagaggctg	cacaggagag	tctcagggac	120					
ctcccaggct gg				132					
<210> 26									
<211> 110									
<212> DNA									
<213> Artificial Sequence									
<220>									
<223> Synthetic DNA									
<400> 26									
tgttggatcc ctgaggagac ggtgaccag	g gttccctggc	cccagtaagc	aaagtaagtc	60					
atagtagtct gtctcgcaca gtaatacac	a gccgtgtcct	cagctctcag		110					
<210> 27									
<211> 30									
<212> DNA									
<213> Artificial Sequence									
<220>									

<223> Synthetic DNA

<400> 27

gtctaagctt ccaccatggg gtttgggctg

30

<210> 28

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 28

tgttggatcc ctgaggagac ggtgaccagg

30

<210> 29

<211> 133

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 29

acaaagcttc caccatggcc tggactcctc tcttcttctt ctttgttctt cattgctcag 60 gttctttctc ccagcttgtg ctgactcaat cgccctctgc ctctgcctcc ctgggagcct 120 cggtcaagct cac

<210> 30

<211> 118

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 30

agcaagatgg aagccacagc acaggtgatg ggattcctga tcgcttctca ggctccagct 60 ctggggctga gcgctacctc accatctcca gcctccagtc tgaggatgag gctgacta 118

<210> 31

<211> 128

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 31

ctgtggcttc catcttgctt aagtttcatc aagtaccgag ggcccttctc tggctgctgc 60 tgatgccatt caatggtgta cgtactgtgc tgactactca aggtgcaggt gagcttgacc 120 gaggctcc 128

<210> 32

<211> 114

<212> DNA

<213> Artificial Sequence

cttggatccg ggctgacct

19

WO 01/47554 PCT/JP00/09339 <220> <223> Synthetic DNA <400> 32 cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca ccctcacaaa 60 ttgttcctta attgtatcac ccacaccaca gtaatagtca gcctcatcct caga 114 <210> 33 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 33 acaaagcttc caccatg 17 <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 34

WO 0	1/47554		PCT/JP00/09	339
<210>	35			
<211>	75			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Synthetic DNA			
<400>	35			
cttgga	tccg ggctgaccta ggacggtcag tttggtccct	ccgccgaaca	cgtacacaaa	60
ttgttc	ctta attgt			75
<210>	36			
<211>	43			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Synthetic DNA			
<400>	36			
aaagga	tcct taagatccat caagtaccga gggggcttct (ctg		43
<210> 3	37			
<211>	46			
<212>]	DNA			
<213> A	Artificial Sequence			
<220>				

42

WO 01/47554

<223> Synthetic DNA

<400> 37
acaaagctta gcgctacctc accatctcca gcctccagcc tgagga 46

<210> 38
<211> 111
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 38
cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca cgtacacaaa 60

cttggatccg ggctgaccta ggacggtcag tttggtccct ccgccgaaca cgtacacaaa 60 ttgttcctta attgtatcac ccacaccaca gatatagtca gcctcatcct c 111

<210> 39

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 39

cttctctggc tgctgctgat accattcaat ggtgtacgta ct

<210> 40

WO 01/47554 PCT/JP00/09339 $\langle 211 \rangle 26$ <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 40 cgagggccct tctctggctg ctgctg 26 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 41 gagaagggcc ctargtacst gatgrawctt aagca 35 <210> 42 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA

WO 01/47554	PCT/JP00/09339
<400> 42	
cacgaattca ctatcgattc tggaaccttc agagg	35
<210> 43	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 43	
ggcttggagc tcctcaga	18
<210> 44	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic DNA	
<400> 44	
gacagtggtt caaagttttt	20
<210> 45	
<211> 118	
<212> PRT	
<213> Mus musculus	

<400> 45

Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser Leu Gly Ala

1 5 10 15

Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Leu Lys Pro Pro Lys Tyr Val Met
35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp 50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Asp Arg Tyr Leu Ser Ile Ser 65 70 75 80

Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr Ile Cys Gly Val Gly Asp
85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Val
100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 46

<211> 118

<212> PRT

<213> Mus musculus

<400> 46

1

Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly Gly

5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

20 25 30

Gly Met Ser Trp Ile Arg Gln Thr Pro Asp Lys Arg Leu Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Phe Tyr Cys Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala $\langle 210 \rangle 47$ <211> 116 $\langle 212 \rangle$ PRT <213> Homo sapiens <400> 47 Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp His Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Leu Met

Lys Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp 85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
100 105 110

Thr Val Leu Gly

115

<210> 48

<211> 118

<212> PRT

<213> Homo sapiens

<400> 48

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala 1 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Leu Met
35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp 50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser 65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp 85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu 100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 49

<211> 118

<212> PRT

<213> Homo sapiens

<400> 49

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala

l 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr

20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Val Met

35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp

50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser

65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp

85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu

100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 50

<211> 118

<212> PRT

<213> Homo sapiens

<400> 50

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala

1 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr

20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Leu Met

35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp

50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser

65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp

90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu

100 105 110

Thr Val Leu Gly Gln Pro

85

115

<210> 51

<211> 118

<212> PRT

<213> Homo sapiens

<400> 51

1

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala

5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr

20 25 30

WO 01/47554 PCT/JP00/09339

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro <210> 52 <211> 118 <212> PRT <213> Homo sapiens $\langle 400 \rangle$ 52 Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr IIe Cys Gly Val Gly Asp
85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 53

<211> 118

<212> PRT

<213> Homo sapiens

<400> 53

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala
1 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Leu Met
35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp
50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser 65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp
85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu 100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 54

<211> 118

<212> PRT

<213> Homo sapiens

<400> 54

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala

1 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr

20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys Tyr Val Met

35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp

50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser

65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp

85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu

100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 55

<211> 118

<212> PRT

<213> Homo sapiens

<400> 55

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly Ala

1 5 10 15

Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr Tyr Thr
20 25 30

Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg Tyr Val Met
35 40 45

Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly Ile Pro Asp 50 55 60

Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu Thr Ile Ser 65 70 75 80

Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr IIe Cys Gly Val Gly Asp 85 90 95

Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu
100 105 110

Thr Val Leu Gly Gln Pro

115

<210> 56

<211> 118

<212> PRT

<213> Homo sapiens

20

<400> 56

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

25

Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

30

35 40 45

Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser 115

<210> 57

<211> 411

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 57

atg aac ttc ggg ctc agc ttg att ttc ctt gcc ctc att tta aaa ggt 48 Met Asn Phe Gly Leu Ser Leu Ile Phe Leu Ala Leu Ile Leu Lys Gly

-15

-10

-5

gtc	cag	tgt	gag	gtg	caa	ctg	gtg	gag	tct	ggg	gga	gac	tta	gtg	aag	96
Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Asp	Leu	Val	Lys	
,		-1	1				5					10				
cct	gga	ggg	tcc	ctg	aaa	ctc	tcc	tgt	gca	gcc	tct	gga	ttc	act	ttc	144
Pro	Gly	Gly	Ser	Leu	Lys	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	
	15					20					25					
agt	agc	tat	ggc	atg	tct	tgg	att	cgc	cag	act	cca	gac	aag	agg	ctg	192
Ser	Ser	Tyr	Gly	Met	Ser	Trp	Ile	Arg	Gln	Thr	Pro	Asp	Lys	Arg	Leu	
30					35					40					45	
gag	tgg	gtc	gca	acc	att	agt	agt	ggt	ggt	agt	tac	acc	tac	tat	cca	240
Glu	Trp	Val	Ala	Thr	Ile	Ser	Ser	Gly	Gly	Ser	Tyr	Thr	Tyr	Tyr	Pro	
				50					55					60		
gac	agt	gtg	aag	ggg	cga	ttc	acc	atc	tcc	aga	gac	aat	gcc	aag	aac	288
Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn	
			65					70					75			
acc	cta	tac	ctg	caa	atg	agc	agt	ctg	aag	tct	gag	gac	aca	gcc	atg	336
Thr	Leu	Tyr	Leu	Gln	Met	Ser	Ser	Leu	Lys	Ser	Glu	Asp	Thr	Ala	Met	
		80					85					90				
ttt	tac	tgt	gca	aga	cag	act	act	atg	ac t	tac	ttt	gct	tac	tgg	ggc	384
Phe	Tyr	Cys	Ala	Arg	Gln	Thr	Thr	Met	Thr	Tyr	Phe	Ala	Tyr	Trp	Gly	
	95					100					105					
caa	ggg	ac t	ctg	gtc	act	gtc	tct	gca								411
Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala								
110					115											

<210> 58

<211> 411

<212> DNA

<213> Homo sapiens

<220> <221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 58

atg ggg ttt ggg ctg agc tgg gtt ttc ctc gtt gct ctt tta aga ggt 48

Met Gly Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly

-15 -10 -5

gtc cag tgt cag gtg cag ctg gtg gag tct ggg gga ggc gtg gtc cag 96

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln

-1 1 5 10

cct ggg agg tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc 144

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe

15 20 25

agt agc tat ggc atg tct tgg gtc cgc cag gct cca ggc aag ggg ctg 192

Ser Ser Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu

30 35 40 45

gag tgg gtg gca acc att agt agt ggt ggt agt tac acc tac tat cca 240

Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr Pro

50 55 60

gac agt gtg aag ggg cga ttc acc atc tcc aga gac aat tcc aag aac 288

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn

65 70 75

acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg 336

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val

80 85

tat tac tgt gcg aga cag act act atg act tac ttt gct tac tgg ggc 384

90

Tyr Tyr Cys Ala Arg Gln Thr Thr Met Thr Tyr Phe Ala Tyr Trp Gly

95 100 105

cag gga acc ctg gtc acc gtc tcc tca 411

10

Gln Gly Thr Leu Val Thr Val Ser Ser

110 115

<210> 59

<211> 11

<212> PRT

<213> Homo sapiens

<400> 59

Lys Ala Ser Gln Asp Val Asn Thr Ala Val Ala

1 5

<210> 60

<211> 7

<212> PRT

<213> Homo sapiens

<400> 60

Ser Ala Ser Asn Arg Tyr Thr

1

5

<210> 61

<211> 9

<212> PRT

<213> Homo sapiens

<400> 61

Gln Gln His Tyr Ser Thr Pro Phe Thr

1

5

<210> 62

<211> 5

<212> PRT

<213> Homo sapiens

<400> 62

Pro Tyr Trp Met Gln

1 5

<210> 63

<211> 16

<212> PRT

<213> Homo sapiens

<400> 63

Ser Ile Phe Gly Asp Gly Asp Thr Arg Tyr Ser Gln Lys Phe Lys Gly

1

5

10

15

<210> 64

<211> 11

<212> PRT

<213> Homo sapiens

<400> 64

Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr

1

5

10

<210> 65

<211> 411

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 65

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15

-10 -5

tct ttc tcc caa ctt gtg ctc act cag tca tct tca gcc tct ttc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser

-1 1 5 10

ctg gga gcc tca gca aaa ctc acg tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag caa cag cca ctc aag cct cct aag 192

Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Pro Leu Lys Pro Pro Lys 30 35 40 45 tat gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tct gga tcc agc tct ggt gct gat cgc tac ctt 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Asp Arg Tyr Leu 65 70 75 agc att tcc aac atc cag cca gaa gat gaa gca atg tac atc tgt ggt 336 Ser Ile Ser Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tat gtt ttc ggc ggt ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aag gtc act gtc cta ggt cag ccc 411 Thr Lys Val Thr Val Leu Gly Gln Pro 110 115

<210> 66

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 66

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser -110 ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser 15 20 25 acg tac acc att gaa tgg cat cag cag cag cca gag aag ggc cct cgg 192 Thr Tyr Thr Ile Glu Trp His Gln Gln Pro Glu Lys Gly Pro Arg 30 35 40 45 tac ttg atg aaa ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Lys Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggt cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro

110 115

<210> 67

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 67

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15 -10 -5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys

30 35 40 45

tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240

Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115

<210> 68

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

 $\langle 222 \rangle$ (58).. (411)

<400> 68

atg	gcc	tgg	act	cct	ctc	ttc	ttc	ttc	ttt	gtt	ctt	cat	tgc	tca	ggt	48
Met	Ala	Trp	Thr	Pro	Leu	Phe	Phe	Phe	Phe	Val	Leu	His	Cys	Ser	Gly	
				-15					-10					-5		
tct	ttc	tcc	cag	ctt	gtg	ctg	act	caa	tcg	ccc	tct	gcc	tct	gcc	tcc	96
Ser	Phe	Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	
		-1	1				5					10				
ctg	gga	gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
	15					20					25					
acg	tac	acc	att	gaa	tgg	tat	cag	cag	cag	cca	gag	aag	ggc	cct	aag	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Lys	
30					35					40					45	
tac	gtg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
Tyr	Val	Met	Asp	Leu	Lys	Gln	Ásp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	tac	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	G1 u	Ala	Asp	Tyr	Tyr	Cys	Gly	
		80					85					90				
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											

<210> 69

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

 $\langle 222 \rangle$ (1)... (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 69

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15 -10 -5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg 192
Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg
30 35 40 45

tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly

50 55 60

att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288

336

WO 01/47554 PCT/JP00/09339

Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu
65 70 75

acc atc tcc agc ctc cag tct gag gat gag gct gac tat tac tgt ggt

Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gly

80 85 90

gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly

95 100 105

acc aaa ctg acc gtc cta ggc cag ccc 411

Thr Lys Leu Thr Val Leu Gly Gln Pro

110 115

<210> 70

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 70

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15

-10

-5

tct	ttc	tcc	cag	ctt	gtg	ctg	act	caa	tcg	ccc	tct	gcc	tct	gcc	tcc	96
Ser	Phe	Ser	Gln	Leu	Val	Leu	Thr	Gln	Ser	Pro	Ser	Ala	Ser	Ala	Ser	
		-1	1				5					10				
ctg	gga	gcc	tcg	gtc	aag	ctc	acc	tgc	acc	ttg	agt	agt	cag	cac	agt	144
Leu	Gly	Ala	Ser	Val	Lys	Leu	Thr	Cys	Thr	Leu	Ser	Ser	Gln	His	Ser	
	15					20					25					
acg	tac	acc	att	gaa	tgg	tat	cag	cag	cag	cca	gag	aag	ggc	cct	agg	192
Thr	Tyr	Thr	Ile	Glu	Trp	Tyr	Gln	Gln	Gln	Pro	Glu	Lys	Gly	Pro	Arg	
30					35					40					45	
tac	gtg	atg	gat	ctt	aag	caa	gat	gga	agc	cac	agc	aca	ggt	gat	ggg	240
Tyr	Val	Met	Asp	Leu	Lys	Gln	Asp	Gly	Ser	His	Ser	Thr	Gly	Asp	Gly	
				50					55					60		·
att	cct	gat	cgc	ttc	tca	ggc	tcc	agc	tct	ggg	gct	gag	cgc	tac	ctc	288
Ile	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	Ala	Glu	Arg	Tyr	Leu	
			65					70					75			
acc	atc	tcc	agc	ctc	cag	tct	gag	gat	gag	gct	gac	tat	tac	tgt	ggt	336
Thr	Ile	Ser	Ser	Leu	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gly	
		80					85					90				·
gtg	ggt	gat	aca	att	aag	gaa	caa	ttt	gtg	tac	gtg	ttc	ggc	gga	ggg	384
Val	Gly	Asp	Thr	Ile	Lys	Glu	Gln	Phe	Val	Tyr	Val	Phe	Gly	Gly	Gly.	
	95					100					105					
acc	aaa	ctg	acc	gtc	cta	ggc	cag	ccc								411
Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro								
110					115											

<210> 71

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

 $\langle 221 \rangle$ mat peptide

<222> (58).. (411)

 $\langle 400 \rangle$ 71

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15

-10-5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

> -11 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys

30 35 40 45

tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly

> 50 55 60

att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu

> 65 70 75

acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt 336

Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90

gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100

105

acc aaa ctg acc gtc cta ggc cag ccc 411

Thr Lys Leu Thr Val Leu Gly Gln Pro

110 115

<210> 72

<211> 411

<212> DNA

<213> Homo sapiens

<220>

 $\langle 221 \rangle$ CDS

 $\langle 222 \rangle$ (1)... (411)

<220>

<221> mat_peptide

<222> (58).. (411)

 $\langle 400 \rangle$ 72

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

> -15-10-5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

> -1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser 15 20 25 acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg 30 35 40 45 tac ctg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115

 $\langle 210 \rangle$ 73

<211> 411

<212> DNA

<213> Homo sapiens

<220>

 $\langle 221 \rangle$ CDS

 $\langle 222 \rangle$ (1)... (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 73

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48 Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly -15-10-5tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96 Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser -110 ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144 Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser 15 20 25 acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct aag 192 Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Pro Glu Lys Gly Pro Lys 30 35 40 45 tac gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384

Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly

95 100 105

acc aaa ctg acc gtc cta ggc cag ccc 411

Thr Lys Leu Thr Val Leu Gly Gln Pro

110 115

<210> 74

<211> 411

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (411)

<220>

<221> mat_peptide

<222> (58).. (411)

<400> 74

atg gcc tgg act cct ctc ttc ttc ttc ttt gtt ctt cat tgc tca ggt 48

Met Ala Trp Thr Pro Leu Phe Phe Phe Phe Val Leu His Cys Ser Gly

-15 -10 -5

tct ttc tcc cag ctt gtg ctg act caa tcg ccc tct gcc tct gcc tcc 96

Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser

-1 1 5 10

ctg gga gcc tcg gtc aag ctc acc tgc acc ttg agt agt cag cac agt 144

Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser

15 20 25

acg tac acc att gaa tgg tat cag cag cag cca gag aag ggc cct agg 192Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg 30 35 40 45 tac gtg atg gat ctt aag caa gat gga agc cac agc aca ggt gat ggg 240 Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp Gly 50 55 60 att cct gat cgc ttc tca ggc tcc agc tct ggg gct gag cgc tac ctc 288 Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg Tyr Leu 65 70 75 acc atc tcc agc ctc cag tct gag gat gag gct gac tat atc tgt ggt 336 Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr Ile Cys Gly 80 85 90 gtg ggt gat aca att aag gaa caa ttt gtg tac gtg ttc ggc gga ggg 384 Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val Phe Gly Gly Gly 95 100 105 acc aaa ctg acc gtc cta ggc cag ccc 411 Thr Lys Leu Thr Val Leu Gly Gln Pro 110 115

<210> 75

<211> 34

<212> PRT

<213> Homo sapiens

<400> 75

Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln

1 5 10 15

Asp Leu Arg Arg Arg Phe Phe Leu His His Leu Ile Ala Glu Ile His

20 25 30

PCT/JP00/09339 WO 01/47554

Thr Ala

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/09339

A. CLASS Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ A61K39/395, 9/08, 47/04, 4	7/12	2						
According to	T to the sell Detent Classification (IDC) on to both up	4:-na1	-1: Gastian and IDC	! !					
	o International Patent Classification (IPC) or to both na S SEARCHED	Honai	classification and if C						
Minimum do	ocumentation searched (classification system followed								
Int.	Int.Cl ⁷ A61K39/395-39/44, 9/00-9/08, 47/00-47/28								
	tion searched other than minimum documentation to the								
CAPL	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), MEDLINE (STN), EMBASE (STN), BIOSIS (STN), BIOTECHABS (STN), WPI (DIALOG)								
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap	propri	ate, of the relevant passages	Relevant to claim No.					
Х	JP, 4-228089, A (Kanegafuchi Ch 18 August, 1992 (18.08.92),	iem.	Ind. Co., Ltd.),	1,6					
Y	Claims; example (Family: none)		2-5,7-14					
У	WO, 89/11298, A1 (CENTOOR, INC. 30 November, 1989 (30.11.89),	•		1-14					
	Claims; page 7, line 22 to page 8, line 2; example & JP, 3-504499, A Claims; page 3, lower left column, lines 16 to 23; example & EP, 417191, A								
У	Y WO, 89/11297, A1 (CENTOOR, INC.), 30 November, 1989 (30.11.89), Claims; example & JP, 3-504605, A Claims; example & EP, 417193, A								
Y	1-14								
Further	er documents are listed in the continuation of Box C.		See patent family annex.						
"A" docume consider "E" earlier of date	l categories of cited documents: ent defining the general state of the art which is not ared to be of particular relevance document but published on or after the international filing	"T"	later document published after the interpriority date and not in conflict with the understand the principle or theory undedocument of particular relevance; the considered novel or cannot be considered to the public term when the document is taken alone of the public term when the document is taken alone.	te application but cited to erlying the invention claimed invention cannot be red to involve an inventive					
cited to special	cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such								
	means combination being obvious to a person skilled in the art								
	actual completion of the international search January, 2001 (30.01.01)	Date	of mailing of the international sear 20 February, 2001 (2						
	nailing address of the ISA/ anese Patent Office	Authorized officer							
Facsimile No.			Telephone No.						

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/09339

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	& JP, 10-512885, A Claims; page 17, line 14 to page 22, line 1; page 31, line 5 to page 32, line 2 & AU, 9647645, A & US, 5626845, A & US, 5993817, A & EP, 813423, A1 & KR, 98701585, A	
Y	JP, 11-80025, A (Chugai Pharmaceutical Co., Ltd.), 23 March, 1999 (23.03.99), Claims; Par. Nos. [0002], [0062] & WO, 98/51329,	1-14
Y	WO, 00/00219, A1 (Chugai Pharmaceutical Co., Ltd.), 06 January, 2000 (06.01.00), Claims; page 2, lines 5 to 15; page 2, the last line to page 3, the last line; page 16, line 18 to page 17, line 21 & AU, 9942899, A	1-14
Y	WO, 98/13388, A1 (Chugai Pharmaceutical Co., Ltd.), 02 April, 1998 (02.04.98), Claims; page 1, line 18 to page 2, line 23; example & JP, 11-92500, A & EP, 962467, A1 & ZA, 9708590, A & AU, 9743972, A & NO, 9901449, A & CN, 1237983, A	1-14
Y	WO, 96/33735, A1 (CELL GENESYS, INC.), 31 October, 1996 (31.10.96), Claims; example 7 & JP, 11-505523, A Claims; example 7 & EP, 822830, A1 & AU, 9656322, A & KR, 99008096, A & US, 6075181, A	1-14
Y	WO, 96/39184, A1 (THE REGENTS OF THE UNIVERSITY OF CALIFORNIA), 12 December, 1996 (12.12.96), Claims; page 1, lines 17 to 26; page 11, lines 8 to 19 & US, 5660826, A & AU, 9658844, A	1-14
Y .	SATO, K., et al., "Passive Immunization with Anti- Parathyroid Hormone-Related Protein Monoclonal Antibody Markedly Prolongs Survival Time of Hypercalcemic Nude Mice Bearing Transplanted Human PTHrP-Producing Tumors", J. Bone Miner. Res., 1993, 8(7), pp.849-860, ABSTRACT	1-14
PX	JP, 2000-80100, A (JAPAN TOBACCO INC.), 21 March, 2000 (21.03.00), Claims; Par. Nos. [0005], [0009], [0013], [0014], [0055], [0056]; example (Family: none)	1-8

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調查報告

国際出願番号 PCT/JP00/09339

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl⁷ A 6 1 K 3 9 / 3 9 5, 9 / 0 8, 4 7 / 0 4, 4 7 / 1 2

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ A 6 1 K 3 9/3 9 5 - 3 9/4 4, 9/0 0 - 9/0 8, 4 7/0 0 - 4 7/2 8

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN), MEDLINE (STN), EMBASE (STN), BIOSIS (STN), BIOTECHABS (STN), WPI (DIALOG)

C. 関連すると認められる文献

<u> </u>	<u>で、</u>								
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号							
X	JP, 4-228089, A (鐘淵化学工業株式会社),	1, 6							
Y	18.8月.1992 (18.08.92) , 特許請求の範囲,実施例(ファミリーなし)	2-5, 7-14							
Y	WO,89/11298,A1 (CENTOOR, INC.), 30.11月.1989 (30.11.89), 特許請求の範囲,第7頁22行-第8頁2行,実施例, & JP,3-504499,A,特許請求の範囲,第3頁左下欄16-23行,実施例, & EP,417191,A	1-14							
,									

図 C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告

国際出願番号 PCT/JP00/09339

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	- 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO, 89/11297, A1 (CENTOOR, INC.), 30.11月.1989 (30.11.89), 特許請求の範囲, 実施例, & JP,3-504605,A, 特許請求の範囲, 実施例, & EP,417193,A	$1 - 1 \ 4$
Y	WO, 96/22790, A1 (XENOTECH INCORPORATTED), 1.8月.1996 (01.08.96), 特許請求の範囲,第12頁1行-第17頁27行,第28頁14行-第30頁4行, & JP, 10-512885, A,特許請求の範囲,第17頁14行-第22頁1行,第31 頁5行-第32頁2行,& AU, 9647645, A,& US, 5626845, A, & US, 5993817, A, & EP, 813423, A1, & KR, 98701585, A	1-14
Y	JP, 11-80025, A (中外製薬株式会社), 23.3月.1999(23.03.99), 特許請求の範囲, 【0002】, 【0062】 & W0,98/51329, & EP,1004313,A1, & AU,9872369,A, & N0,9905558,A	·1 — 1 4
Y	WO,00/00219,A1 (中外製薬株式会社), 6.1月.2000 (06.01.00), 特許請求の範囲,第2頁5-15行,第2頁最下行-第3頁最下行, 第16頁18行-第17頁21行,&AU,9942899,A	1-14
Y	WO, 98/13388, A1 (中外製薬株式会社), 2.4月.1998 (02.04.98), 特許請求の範囲, 第1頁18行一第2頁23行, 実施例, & JP,11-92500, A, & EP,962467, A1, & ZA,9708590, A, & AU,9743972, A, & NO,9901449, A, & CN,1237983, A	$1 - 1 \ 4$
Y	WO, 96/33735, A1 (CELL GENESYS, INC.), 31.10月.1996 (31.10.96), 特許請求の範囲, 実施例7, & JP,11-505523, A, 特許請求の範囲, 実施例7, & EP,822830, A1, & AU,9656322, A, & KR,99008096, A, & US,6075181, A	$1 - 1 \ 4$
Y	WO, 96/39184, A1(THE REGENTS OF THE UNIVERSITY OF CALIFORNIA), 12.12月.1996(12.12.96), 特許請求の範囲, 第1頁17-26行, 第11頁8-19行, & US, 5660826, A, & AU, 9658844, A	1-14
Y	SATO, K., et al., "Passive Immunization with Anti-Parathyroid Hormone-Related Protein Monoclonal Antibody Markedly Prolongs Survival Time of Hypercalcemic Nude Mice Bearing Transplanted Human PTHrP-Producing Tumors", J. Bone Miner. Res., 1993, 8(7), pp.849-860, ABSTRACT	$1 - 1 \ 4$

国際調查報告

国際出願番号 PCT/JP00/09339

<mark>こ(続き).</mark> 月用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
PX	JP, 2000-80100, A(日本たばこ産業株式会社), 21.3月.2000(21.03.00), 特許請求の範囲,【0005】,【0009】,【0013】, 【0014】,【0055】,【0056】,実施例 (ファミリーなし)	1-8
•		
		,
-		
		,
		,
	,	
•		
i		
,	\cdot	