EVALUACIÓN DE CONFIGURACIONES

Práctica 7

_

Modelos con múltiples clases

FDI - UCM Iván Aguilera Calle — Daniel García Moreno

1. Datos de partida

En esta práctica modelaremos un sistema con dos recursos:

- CPU.
- Disco.

La carga de trabajo está compuesta por dos clases de componentes:

- Por lotes (BATCH en PDQ).
- Interactiva (TERM en PDQ).

Las medidas realizadas han proporcionado los siguientes datos:

Medida	Por lotes (Batch)	Interactiva (Term)
Número de trabajos	$N_b = 10$	$N_t = 25$
Tiempo de reflexión	$Z_b = 0 \text{ s}$	$Z_t = 30 \text{ s}$
Núm. Trabajos completados	$C_b = 600$	$C_t = 476$
T. ocupación cpu	$B_{b,cpu} = 600 \text{ s}$	$B_{t,cpu} = 47.6 \text{ s}$
T. ocupación disco	$B_{b,disk} = 54 \text{ s}$	$B_{t,disk} = 428,4 \text{ s}$

2. Modelo con una clase

Para construir un modelo con una sola clase de componentes, tenemos que definir una única clase con un comportamiento "promedio", es decir, es como si en los datos de partida anteriores no se hubiese realizado la diferenciación por los tipos de componentes (por lotes o interactiva). Para ello, calculamos la caracterización de la carga con medias en lugar de agrupamientos.

Medida	Por lotes (Batch)	Interactiva (Term)	Medidas de la clase única
Número de trabajos	$N_b = 10$	$N_t = 25$	N = 10 + 25 = 35
Tiempo de reflexión	$Z_b = 0 s$	$Z_t = 30 \text{ s}$	Z = (600*0+476*30)/1076 = 13.27 s
Núm. Trabajos	$C_{b} = 600$	$C_t = 476$	C = 600 + 476 = 1076
completados	$B_{b,cpu} = 600 \text{ s}$	$B_{t,cpu} = 47.6 \text{ s}$	$B_{cpu} = 600 + 47.6 = 647.6 \text{ s}$
T. ocupación cpu	$B_{b,disk} = 54 \text{ s}$	$B_{t,disk} = 428,4 \text{ s}$	$B_{disk} = 54 + 428,4 = 482,4 \text{ s}$
T. ocupación disco			

Para realizar los cálculos utilizamos las siguientes fórmulas:

$$D_i = V_i \cdot S_i = \frac{C_i}{C} \cdot \frac{B_i}{C_i} = \frac{B_i}{C}$$

Por lo tanto los parámetros del modelo con una única clase serían los siguientes:

- N = 35.
- Z = 13,27 s.
- $D_{cpu} = (647,6)/1076 = 0,6 \text{ s}.$
- $D_{disco} = (482,4)/1076 = 0,45 \text{ s.}$

Como no hemos podido calcular el tiempo de servicio y las razones de visita de cada componente con los datos proporcionados, usaremos la función setDemand() en vez de la función setVisits(). Nota: al usar la función setDemand() $V_i = 1$ y $S_i = D_i$, lo que afecta al cálculo de las productividades de los dispositivos.

```
#!/usr/bin/perl
use pdq;
#Globals-----
#Numero de trabajos
$numTrabajos=35;
#Tiempo de reflexion
$tiemReflex=13.271;
#Demanda de servicio
$demandaCPU=0.6;
$demandaDISCO=0.45;
#Inicializar modelo PDQ y añadir comentarios sobre el modelo
pdq::Init("Modelo PDQ - Una sola clase");
pdq::SetComment("Modelo de una sola clase - ECO - Tema 6");
#-----
#Definir el workload
#Utilizamos TERM porque el tiempo de reflexion de la clase unica no es cero
pdq::CreateClosed("Work",$pdq::TERM,$numTrabajos,$tiemReflex);
#-----
#Definir el queueing center
pdq::CreateNode("CPU",$pdq::CEN,$pdq::FCFS);
pdq::CreateNode("Disco",$pdq::CEN,$pdq::FCFS);
#-----
#Definir la de demanda del servicio
pdq::SetDemand("CPU","Work",$demandaCPU);
pdq::SetDemand("Disco","Work",$demandaDISCO);
#-----
#Definir las unidades
pdq::SetWUnit("Trabajos");
pdq::SetTUnit("Segundos");
#-----
#Resolver el modelo
pdq::Solve($pdq::EXACT);
#-----
#Generar informe
pdq::Report();
```

PRETTY DAMN QUICK REPORT

think G N. O. 1.10.10.20.2015 think

*** on Sun May 21 13:13:33 2017 ***

*** for Modelo PDQ - Una sola clase

*** PDQ Version 6.2.0 Build 082015 ***

COMMENT: Modelo de una sola clase - ECO - Tema 6

******* PDQ Model INPUTS *******

WORKLOAD Parameters:

Node Sched Resource Workload Class Demand

---- ----- -----

1 FCFS CPU Work Closed 0.6000

1 FCFS Disco Work Closed 0.4500

Queueing Circuit Totals

Streams: 1 Nodes: 2

Client Number Demand Thinktime

Work 35.00 1.0500 13.27

****** PDQ Model OUTPUTS *******

Solution Method: EXACT

****** SYSTEM Performance ******

Metric Value Unit

Workload: "Work"

Mean concurrency 13.2205 Trabajos

Mean throughput 1.6411 Trabajos/Segundos

Response time 8.0557 Segundos Round trip time 21.3267 Segundos

Stretch factor 7.6721

Bounds Analysis:

Max throughput 1.6667 Trabajos/Segundos

Min response1.0500SegundosMax Demand0.6000SegundosTot demand1.0500SegundosThink time13.2710SegundosOptimal clients23.8683Clients

Metric Resource	Work	Value Unit
Capacity CPU	Work	1 Servers
Throughput CPU	Work	1.6411 Trabajos/Segundos
In service CPU	Work	0.9847 Trabajos
Utilization CPU	Work	98.4683 Percent
Queue length CPU	Work	10.5845 Trabajos
Waiting line CPU	Work	9.5998 Trabajos
Waiting time CPU	Work	5.8495 Segundos
Residence time CPU	Work	6.4495 Segundos
Capacity Disco	Work	1 Servers
Throughput Disco	Work	1.6411 Trabajos/Segundos
In service Disco	Work	0.7385 Trabajos
Utilization Disco	Work	73.8512 Percent
Queue length Disco	Work	2.6360 Trabajos
Waiting line Disco	Work	1.8975 Trabajos
Waiting time Disco	Work	1.1562 Segundos
Residence time Disco	Work	1.6062 Segundos

Analizando el informe anterior podemos extraer algunas características importantes, las cuales hemos resumido en la siguiente tabla:

Medida	Resultado
Productividad	X = 1.64 Trabj/s.
Tiempo de respuesta	R = 8.05 s
Utilización CPU	U _{CPU} = 98.46 %
Utilización Disco	$U_{Disco} = 73.85\%$

3. Modelo con dos clases

Ahora realizaremos el modelado utilizando las dos clases de componentes y obtendremos los resultados para compararlos con los obtenidos en el apartado anterior.

Calculamos los parámetros para el modelo con dos clases:

Medida	Por lotes (Batch)	Interactiva (Term)
Número de trabajos	$N_b = 10$	$N_t = 25$
Tiempo de reflexión	$Z_b = 0 \text{ s}$	$Z_t = 30 \text{ s}$
Núm. Trabajos completados	$C_b = 600$	$C_t = 476$
Demanda CPU	$D_{b,cpu} = 600/600 = 1 \text{ s}$	$D_{t,cpu} = 47,6/476 = 0,1 \text{ s}$
Demanda disco	$D_{b,disk} = 54/600 = 0.09 \text{ s}$	$D_{t,disk} = 428,4/476 = 0,9 \text{ s}$

```
#!/usr/bin/perl
use pdq;
#Numero de trabajos
$numTrabajosBATCH=10;
$numTrabajosTERM=25;
#Tiempo de reflexion
$tiemReflexBATCH=0;
$tiemReflexTERM=30;
#Demanda de servicio
$demandaCPUBATCH=1;
$demandaDISCOBATCH=0.09;
$demandaCPUTERM=0.1;
$demandaDISCOTERM=0.9;
#Inicializar modelo PDQ y añadir comentarios sobre el modelo
pdq::Init("Modelo PDQ - Dos clases");
pdq::SetComment("Modelo de dos clases - ECO - Tema 6");
#Definir el workload
pdq::CreateClosed("WorkTERM", $pdq::TERM, $numTrabajosTERM, $tiemReflexTERM);
pdq::CreateClosed("WorkBATCH",$pdq::BATCH,$numTrabajosBATCH,$tiemReflexBATCH
);
#Definir el queueing center
pdq::CreateNode("CPU",$pdq::CEN,$pdq::FCFS);
pdq::CreateNode("Disco",$pdq::CEN,$pdq::FCFS);
#Definir la de demanda del servicio
pdq::SetDemand("CPU","WorkTERM",$demandaCPUTERM);
pdq::SetDemand("Disco","WorkTERM",$demandaDISCOTERM);
pdq::SetDemand("CPU","WorkBATCH",$demandaCPUBATCH);
pdq::SetDemand("Disco","WorkBATCH",$demandaDISCOBATCH);
#Definir las unidades
pdq::SetWUnit("Trabajos");
pdq::SetTUnit("Segundos");
#Resolver el modelo
pdq::Solve($pdq::EXACT);
#Generar informe
pdq::Report();
```

PRETTY DAMN QUICK REPORT

COMMENT: Modelo de dos clases - ECO - Tema 6

****** PDQ Model INPUTS ******

WORKLOAD Parameters:

Node Sched Resource Workload Class Demand

1 FCFS CPU WorkTERM Closed 0.1000 1 FCFS Disco WorkTERM Closed 0.9000 1 FCFS CPU WorkBATCH Batch 1.0000 1 FCFS Disco WorkBATCH Batch 0.0900

Queueing Circuit Totals

Streams: 2 Nodes: 2

Client Number Demand Thinktime
----WorkTERM 25.00 1.0000 30.00

Job MPL Demand

WorkBATCH 10.00 1.0900

****** PDQ Model OUTPUTS *******

Solution Method: EXACT

****** SYSTEM Performance *******

Metric Value Unit

----- ----

Workload: "WorkTERM"

Mean concurrency 2.9397 Trabajos

Mean throughput 0.7353 Trabajos/Segundos

Response time 3.9978 Segundos Round trip time 33.9978 Segundos

Stretch factor 3.9978

Bounds Analysis:

Max throughput 1.1111 Trabajos/Segundos

Min response 1.0000 Segundos
Max Demand 0.9000 Segundos
Tot demand 1.0000 Segundos
Think time 30.0000 Segundos
Optimal clients 34.4444 Clients

Workload: "WorkBATCH"

Mean concurrency 10.0000 Trabajos

Mean throughput 0.9265 Trabajos/Segundos

Response time 10.7937 Segundos

Stretch factor 9.9025

Bounds Analysis:

Max throughput 1.0000 Trabajos/Segundos

Min response1.0900SegundosMax demand1.0000SegundosTot demand1.0900SegundosOptimal jobs1.0900Jobs

****** RESOURCE Performance ******

Metric	Resource	Work V	alue Unit
Capacity	CPU	WorkTERM	1 Servers
Throughput	CPU	WorkTERM	0.7353 Trabajos/Segundos
In service	CPU	WorkTERM	0.0735 Trabajos
Utilization	CPU	WorkTERM	7.3534 Percent
Queue lengt	th CPU	WorkTERM	0.8496 Trabajos
Waiting line		WorkTERM	0.7760 Trabajos
Waiting tim		WorkTERM	1.0553 Segundos
Residence ti		WorkTERM	1.1553 Segundos
Capacity	Disco	WorkTERM	1 Servers
Throughput		WorkTERM	0.7353 Trabajos/Segundos
In service	Disco	WorkTERM	0.6618 Trabajos
Utilization	Disco	WorkTERM	66.1808 Percent
Queue lengt	th Disco	WorkTERM	2.0902 Trabajos
Waiting line	e Disco	WorkTERM	1.4284 Trabajos
Waiting tim	e Disco	WorkTERM	1.9424 Segundos
Residence ti	ime Disco	WorkTERM	2.8424 Segundos
Capacity	CPU	WorkBATCH	1 Servers
Throughput	CPU	WorkBATCH	0.9265 Trabajos/Segundos
In service	CPU	WorkBATCH	0.9265 Trabajos
Utilization	CPU	WorkBATCH	92.6466 Percent
Queue lengt	th CPU	WorkBATCH	9.7173 Trabajos
Waiting line	e CPU	WorkBATCH	8.7909 Trabajos
Waiting tim		WorkBATCH	9.4886 Segundos
Residence ti	ime CPU	WorkBATCH	10.4886 Segundos
Capacity	Disco	WorkBATCH	1 Servers
Throughput		WorkBATCH	0.9265 Trabajos/Segundos
In service	Disco	WorkBATCH	0.0834 Trabajos
Utilization	Disco	WorkBATCH	8.3382 Percent
Queue lengt	th Disco	WorkBATCH	0.2827 Trabajos
Waiting line		WorkBATCH	0.1993 Trabajos
Waiting tim		WorkBATCH	0.2151 Segundos
Residence ti	ime Disco	WorkBATCH	0.3051 Segundos

Al igual que en el apartado anterior, realizaremos una tabla comparativa para comparar algunas de las métricas.

Medida	Resultado (Batch)	Resultado (Term)	Resultado (Una clase)
Productividad	X = 0.92 Trab/s.	X = 0.73 Trab/s.	X = 1.64 Trabj/s.
Tiempo de respuesta	R = 10.79 s	R = 3.99 s	R = 8.05 s
Utilización CPU	U _{CPU} = 92.64 %	$U_{CPU} = 7.35\%$	$U_{CPU} = 98.46 \%$
Utilización Disco	$U_{\mathrm{Disco}} = 8.33\%$	$U_{Disco} = 66.18\%$	$U_{Disco} = 73.85\%$

En la tabla anterior, podemos apreciar que la productividad extraída de los resultados del análisis con una única clase es más o menos similar a la suma de las dos productividades de las distintas cargas de trabajo (Term y Batch).

En cuanto a los tiempos de respuesta, para la carga de trabajo Batch se observa un tiempo mayor de respuesta que en el caso de la carga de trabajo interactiva y que el tiempo de respuesta del análisis con una única clase.

En cuanto a los porcentajes de utilización se aprecian un mayor porcentaje de utilización de la CPU en la carga de trabajo Batch, mientras que en la carga de trabajo Term ocurre lo contrario (en este caso tiene un mayor porcentaje de utilización el disco).

4. Mejora

Para realizar este apartado hemos utilizado los mismos scripts utilizados en los dos apartados anteriores, pero hemos dividido entre dos la demandas de la CPU (ya que la mejora de la CPU es del doble).

En este apartado mostramos únicamente los informes generados tras la ejecución de ambos scripts y la tabla comparativa.

```
PRETTY DAMN QUICK REPORT
     _____
     *** on Mon May 22 16:38:58 2017 ***
     *** for Modelo PDQ - Una sola clase ***
     *** PDQ Version 6.2.0 Build 082015 ***
     _____
COMMENT: Modelo de una sola clase - ECO - Tema 6
     _____
     _____
WORKLOAD Parameters:
Node Sched Resource Workload Class Demand
1 FCFS CPU Work Closed 0.3000
1 FCFS Disco Work Closed 0.4500
Queueing Circuit Totals
Streams: 1
Nodes: 2
Client Number Demand Thinktime
-----
Work
     35.00 0.7500 13.27
     ______
     ______
Solution Method: EXACT
     ****** SYSTEM Performance ******
Metric
           Value Unit
Workload: "Work"
Mean concurrency
             7.5596 Trabajos
             2.0677 Trabajos/Segundos
Mean throughput2.667.Response time3.6561SegundosRound trip time16.9271Segundos
Mean throughput
Stretch factor
            4.8748
Bounds Analysis:
Max throughput
             2.2222 Trabajos/Segundos
Min response
           0.7500 Segundos
Max Demand
            0.4500 Segundos
Tot demand
           0.7500 Segundos
           13.2710 Segundos
Think time
```

Optimal clients

31.1578 Clients

****** RESOURCE Performance ******

Metric	Resource	Work	Value Unit
Capacity	CPU	 Work	1 Servers
Throughput	CPU	Work	2.0677 Trabajos/Segundos
In service	CPU	Work	0.6203 Trabajos
Utilization	CPU	Work	62.0308 Percent
Queue lengt	th CPU	Work	1.5367 Trabajos
Waiting line	CPU	Work	0.9164 Trabajos
Waiting time	e CPU	Work	0.4432 Segundos
Residence ti	ime CPU	Work	0.7432 Segundos
Capacity	Disco	Work	1 Servers
Throughput	Disco	Work	2.0677 Trabajos/Segundos
In service	Disco	Work	0.9305 Trabajos
Utilization	Disco	Work	93.0462 Percent
Queue lengt	th Disco	Work	6.0230 Trabajos
Waiting line	e Disco	Work	5.0925 Trabajos
Waiting time	e Disco	Work	2.4629 Segundos
Residence ti	ime Disco	Work	2.9129 Segundos

PRETTY DAMN QUICK REPORT _____ *** on Mon May 22 16:39:44 2017 *** *** for Modelo PDQ - Dos clases *** *** PDQ Version 6.2.0 Build 082015 *** _____ COMMENT: Modelo de dos clases - ECO - Tema 6 _____ _____ WORKLOAD Parameters: Node Sched Resource Workload Class Demand

wode sched Kesoui	ce workload Class	Demana
1 FCFS CPU	WorkTERM Closed	0.0500
1 FCFS Disco	WorkTERM Closed	0.9000
1 FCFS CPU	WorkBATCH Batch	0.5000
1 FCFS Disco	WorkBATCH Batch	0.0900

Queueing Circuit Totals

Streams: 2 Nodes: 2

Client Number Demand Thinktime WorkTERM 25.00 0.9500 30.00 Job MPL Demand

WorkBATCH 10.00 0.5900

Solution Method: EXACT

****** SYSTEM Performance ******

Metric Value Unit

____ ___

Workload: "WorkTERM"

Mean concurrency 3.1448 Trabajos

Mean throughput 0.7285 Trabajos/Segundos

Response time 4.3168 Segundos Round trip time 34.3168 Segundos

Stretch factor 4.5440

Bounds Analysis:

Max throughput 1.1111 Trabajos/Segundos

Min response0.9500SegundosMax Demand0.9000SegundosTot demand0.9500SegundosThink time30.0000SegundosOptimal clients34.3889Clients

Workload: "WorkBATCH"

Mean concurrency 10.0000 Trabajos

Mean throughput 1.9271 Trabajos/Segundos

Response time 5.1892 Segundos

Stretch factor 8.7953

Bounds Analysis:

Max throughput 2.0000 Trabajos/Segundos

Min response0.5900SegundosMax demand0.5000SegundosTot demand0.5900SegundosOptimal jobs1.1800Jobs

****** RESOURCE Performance ******

Metric	Resource	Work	Value Unit
Capacity	CPU	WorkTERM	1 Servers
Throughpu	t CPU	WorkTERM	0.7285 Trabajos/Segundos
In service	CPU	WorkTERM	0.0364 Trabajos
Utilization	CPU	WorkTERM	3.6425 Percent
Queue leng	gth CPU	WorkTERM	0.3877 Trabajos
Waiting lin	ne CPU	WorkTERM	0.3513 Trabajos
Waiting tin	ne CPU	WorkTERM	0.4822 Segundos
Residence	time CPU	WorkTERM	0.5322 Segundos
Capacity	Disco	WorkTERM	1 Servers
Throughpu	t Disco	WorkTERM	0.7285 Trabajos/Segundos
In service	Disco	WorkTERM	0.6557 Trabajos
Utilization	Disco	WorkTERM	65.5655 Percent
Queue leng	gth Disco	WorkTERM	2.7571 Trabajos
Waiting lin	ne Disco	WorkTERM	2.1014 Trabajos
Waiting tin	ne Disco	WorkTERM	2.8846 Segundos
Residence	time Disco	WorkTERM	3.7846 Segundos
Capacity	CPU	WorkBATCH	1 Servers
Throughpu	t CPU	WorkBATCH	1.9271 Trabajos/Segundos
In service	CPU	<i>WorkBATCH</i>	0.9635 Trabajos
Utilization	CPU	<i>WorkBATCH</i>	96.3537 Percent
Queue leng	gth CPU	WorkBATCH	9.2091 Trabajos
Waiting lin	ne CPU	<i>WorkBATCH</i>	8.2455 Trabajos
Waiting tin		<i>WorkBATCH</i>	4.2788 Segundos
Residence	time CPU	WorkBATCH	H 4.7788 Segundos
Capacity	Disco	WorkBATCH	1 Servers
Throughpu	t Disco	<i>WorkBATCH</i>	1.9271 Trabajos/Segundos
In service	Disco	<i>WorkBATCH</i>	0.1734 Trabajos
Utilization	Disco	<i>WorkBATCH</i>	17.3437 Percent
Queue leng	gth Disco	WorkBATCH	0.7909 Trabajos
Waiting lin	ne Disco	<i>WorkBATCH</i>	0.6175 Trabajos
Waiting tin	ne Disco	<i>WorkBATCH</i>	0.3204 Segundos
Residence	time Disco	WorkBATCH	0.4104 Segundos

Por último, compararemos los resultados obtenidos al aplicar la mejora a la CPU con los datos obtenidos en los apartados anteriores.

Medida	Resultado (Batch sin mejora)	Resultado (Batch con mejora)
Productividad	X = 0.92 Trab/s.	X = 1.92 Trab/s.
Tiempo de respuesta	R = 10.79 s	R = 5.18 s
Utilización CPU	$U_{CPU} = 92.64 \%$	$U_{CPU} = 96.35\%$
Utilización Disco	$U_{Disco}\!=8.33\%$	$U_{Disco} = 17.34\%$

Medida	Resultado (Term sin mejora)	Resultado (Term con mejora)
Productividad	X = 0.73 Trab/s.	X = 0.72 Trab/s.
Tiempo de respuesta	R = 3.99 s	R = 4.31 s
Utilización CPU	$U_{CPU} = 7.35\%$	$U_{CPU} = 3.64\%$
Utilización Disco	$U_{Disco} = 66.18\%$	$U_{Disco} = 65.56\%$

Medida	Resultado (una clase sin mejora)	Resultado (una clase con mejora)
Productividad	X = 1.64 Trabj/s.	X = 2.06 Trabj/s.
Tiempo de respuesta	R = 8.05 s	R = 3.65 s
Utilización CPU	U _{CPU} = 98.46 %	$U_{CPU} = 62.03 \%$
Utilización Disco	$U_{Disco} = 73.85\%$	$U_{Disco} = 93.04\%$

Empezamos comparando la tabla de comparación de la carga de trabajo Batch, en la que podemos apreciar que la productividad ha aumentado, el tiempo de respuesta ha disminuido (casi a la mitad), al igual que la utilización de la CPU (también a la mitad). Sin embargo, el porcentaje de utilización de disco ha aumentado.

Comparando la tabla de la carga de trabajo Term (interactiva), podemos observar que la productividad se mantiene estable, el tiempo de respuesta también, la utilización de la CPU disminuye a la mitad y el porcentaje de utilización del disco se mantiene estable.

Por último, analizando la tabla de la única clase podemos comprobar que la productividad ha aumentado, el tiempo de respuesta ha disminuido (a la mitad), el porcentaje de utilización de la CPU también ha disminuido considerablemente y el porcentaje de utilización del disco ha aumentado apreciablemente.

Se observa que al mejorar la CPU al doble de rápido disminuye el tiempo de respuesta más o menos a la mitad y, así mismo, también aumenta la productividad más o menos al doble. Del modelo de una clase no podemos comprobar de qué parte del sistema viene esta mejora en las medidas, en cambio mirando en el modelo de dos clases podemos ver que esta mejora en las medidas se produce en el proceso Batch, ya que este tiene un alto porcentaje de utilización de CPU.