UNIVERSITETET I OSLO Det matematisk-naturvitenskaplige fakultet

Eksamen i: UNIK4540 - Matematisk modellering av dynamiske systemer

Eksamensdag: Torsdag 7. juni 2012

Tid for eksamen: 09:15 - 13:15

Vedlegg: Ingen

Tillatte hjelpemidler: Kalkulator (men ikke nødvendig)

Oppgavesettet er på: 2 sider (ett ark)

Kontaktperson: Oddvar Hallingstad, tlf: 784 eller 95991445

Eksamenslokalet besøkes kl 10.15

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Hvor mye (ca) hver oppgave og hvert spørsmål veier ved bedømning er vist i % (totalt deles det ut 100% poeng).

Oppgave 1 (40%) Matematisk grunnlag

a) (2%) Forklar hva som menes med referanserom og treghetsrom.

b) (2%) Hvilke objekter har vi i et affint rom? Hvilke operasjoner er definert i rommet?

c) (4%) Gitt vektorene \vec{a} , \vec{b} og \vec{c} . Definer indreproduktet og kryssproduktet for vektorene \vec{a} og \vec{b} . Gitt dyaden $\vec{a}\vec{b}$, hva blir $\vec{a}\vec{b} \cdot \vec{c}$ og $\vec{c} \cdot \vec{a}\vec{b}$

d) (4%) Gitt basisvektorene $\vec{p_1}$ og $\vec{p_2}$, finn de ortonormale basisvektorene $\vec{e_1}$ og $\vec{e_2}$ vha Grahm-Schmidts ortogonaliseringsmetode. Lag en tegning som viser vektorene som inngår.

e) (4%) Gitt det ortonormale basisvektorsettet $\{\vec{p_i}\}$, og vektorene \vec{a} , \vec{b} og \vec{c} . Da har vi utledet at koordinatisert kan kryssproduktet skrives

$$\left[\vec{a} \times \vec{b}\right]^p = S\left(\underline{a}^p\right)\underline{b}^p$$

hvor $S(\underline{a}^p)$ er den skjevsymmetriske formen av vektoren \underline{a}^p . Finn koordinatiseringene $\left[\left(\vec{a}\times\vec{b}\right)\times\vec{c}\right]^p$ og $\left[\vec{a}\times\left(\vec{b}\times\vec{c}\right)\right]^p$

f) (3%) Gitt den ortonormale retningskosinmatrisa (RKM) R_b^a , hvilke tre tolkninger har vi av en slik matrise?

g) (4%) Utled den elementære RKM $R_2(\theta)$ (dreier vinkelen θ om basisvektor 2) og vis framgangsmåten vha en skisse. Gitt de elementære RKM $R_1(\theta_1)$, $R_2(\theta_2)$ og $R_3(\theta_3)$, hvordan beregnes RKM R_b^a når vi har et 2-3-1 Eulervinkelsett?

h) (5%) Gitt den ortonormale RKM R_h^a , vis at den deriverte kan skrives

$$\overset{\circ}{R^{a}_{b}}=S\left(\underline{\omega}^{aa}_{b}\right)R^{a}_{b}=R^{a}_{b}S\left(\underline{\omega}^{ab}_{b}\right)$$

hvor $S(\underline{\omega}_b^{aa})$ er en skjevsymmetrisk matrise og dermed avhenger av tre parametre som vi
 tolker som vinkelhastigheten $\underline{\omega}_b^{aa}$.

i) (4%) Anta ramma \mathcal{F}^b roterer relativt ramme \mathcal{F}^a med vinkelhastigheten $\vec{\omega}_b^a$. Vis at

$$\overset{\circ}{\omega}_{h}^{abb} = R_{a}^{b} \overset{\circ}{\omega}_{h}^{aaa}$$

j) (8%) Dersom vi representerer det samme punktet vha radiusvektorene \underline{r}^a og $\underline{\rho}^b$ i de to rammene \mathcal{F}^a og \mathcal{F}^b får vi likningen

$$\underline{r}^a = \underline{r}_b^a + R_b^a \underline{\rho}^b$$

hvor \underline{r}_b^a er vektoren fra origo i \mathcal{F}^a til origo i \mathcal{F}^b .

Finn sammenhengen mellom punktets hastighet sett fra de to rammene, dvs mellom $\underline{v}^a = \underline{v}^{aa} = \underline{\dot{r}}^{aa}$ og $\underline{v}^b = \underline{\dot{v}}^{bb} = \underline{\dot{\rho}}^{bb}$, $\underline{a}^a = \underline{a}^{aaa} = \underline{\ddot{r}}^{aaa}$ og $\underline{a}^b = \underline{a}^{bbb} = \underline{\ddot{\rho}}^{bbb}$.

Oppgave 2 (30%) Dynamikk

- a) (2%) Hva betyr kinetimatikk og kinetikk?
- b) (6%) Chasleys teorem sier at en vilkårlig bevegelse kan settes sammen av en translasjon og en rotasjon. Bevis dette.
- c) (6%) Dersom spinnet er definert om massesenteret $(\underline{h}_c^{ib} = T_c^b \underline{\omega}_b^{ib})$ kan spinnsatsen for et stivt legeme skrives

$$\underline{n}_{c}^{b} = T_{c}^{b} \underline{\dot{\omega}}_{b}^{\mathbf{i}bb} + S\left(\underline{\omega}_{b}^{\mathbf{i}b}\right) T^{b} \underline{\omega}_{b}^{\mathbf{i}b}$$

hvor rammene $\mathcal{F}^{\mathbf{i}}$ og \mathcal{F}^{b} er hhv en treghetsramme og en ramme som ligger fast i legemet.

Vis at dersom \mathcal{F}^b ramma faller sammen med hovedaksene så får vi Eulerlikningene

$$\left. \begin{array}{l} n_x = I_{xx}\dot{\omega}_x + \omega_y\omega_z(I_{zz} - I_{yy}) \\ n_y = I_{yy}\dot{\omega}_y + \omega_z\omega_x(I_{xx} - I_{zz}) \\ n_z = I_{zz}\dot{\omega}_z + \omega_x\omega_y(I_{yy} - I_{xx}) \end{array} \right\}, \quad \underline{n}_c^b = \left[\begin{array}{l} n_x \\ n_y \\ n_z \end{array} \right], \quad \underline{\omega}_b^{\mathbf{i}b} = \left[\begin{array}{l} \omega_x \\ \omega_y \\ \omega_z \end{array} \right]$$

d) (6%) Dersom det ytre momentet $\underline{n}_c^b = \underline{0}$, vis at vinkelhastighetsvektoren $\underline{\omega}_b^{ib}$ må ligge på spinnellipsoida

$$\frac{\omega_{x}^{2}}{\left(\frac{h_{0}}{I_{xx}}\right)^{2}} + \frac{\omega_{y}^{2}}{\left(\frac{h_{0}}{I_{yy}}\right)^{2}} + \frac{\omega_{z}^{2}}{\left(\frac{h_{0}}{I_{zz}}\right)^{2}} = 1 \quad \text{hvor} \quad h_{0} = \left\|\underline{h_{c}^{ib}}\right\| = \sqrt{I_{xx}^{2}\omega_{x}^{2}\left(t_{0}\right) + I_{yy}^{2}\omega_{y}^{2}\left(t_{0}\right) + I_{zz}^{2}\omega_{z}^{2}\left(t_{0}\right)}$$

e) (6%) Dersom det ytre momentet $\underline{n}_c^b = \underline{0}$, vis at vinkelhastighetsvektoren $\underline{\omega}_b^{ib}$ må ligge på den kinetiske rotasjonsenergiellipsoida

$$\frac{\omega_x^2}{2\frac{K_0}{I_{rr}}} + \frac{\omega_y^2}{2\frac{K_0}{I_{rr}}} + \frac{\omega_z^2}{2\frac{K_0}{I_{rr}}} = 1 \quad \text{hvor} \quad K_0 = \frac{1}{2} \left(I_{xx} \omega_x^2(t_0) + I_{yy} \omega_y^2(t_0) + I_{zz} \omega_z^2(t_0) \right)$$

f) (4%) Hvordan beveger vinkelhastighetsvektoren $\underline{\omega}_b^{ib}$ seg sett fra \mathcal{F}^b -ramma

Oppgave 3 (30%) Matematiske modeller for roboter

a) (10%) Tegn en figur med to linker (nr i-1 og i) med et prismatisk ledd imellom. Vis følgende parametre i figuren og forklar hvordan de defineres:

 a_{i-1} : linklengde for link i-1.

 α_{i-1} : linkvridning for link i-1

 d_i : linkforskyvning mellom linkene i-1 og i

 θ_i : leddvinkel mellom linkene i-1 og i

b) (10%) Tegn figuren ovenfor på nytt og tegn inn rammene \mathcal{F}^{i-1} og \mathcal{F}^i samt nødvendige hjelperammer for å vise at transformasjonsmatrisa T_i^{i-1} kan beregnes fra

$$T_i^{i-1} = T_{x^{i-1}}(\alpha_{i-1}) T_{x^{i-1}}(a_{i-1}) T_{z^i}(\theta_i) T_{z^i}(d_i)$$

(Forklar hva de gjør og sett opp strukturen på transformasjonsmatrisene $T_{x^{i-1}}(\alpha_{i-1})$, $T_{x^{i-1}}(a_{i-1})$, $T_{z^i}(\theta_i)$ og $T_{z^i}(d_i)$)

- c) (2%) Dersom vi har alle T_i^{i-1} for $i=1,2,\ldots N$ hvordan kan vi da beregne T_N^0 ?
- \mathbf{d}) (8%) Beskriv med ord hvordan en går fram for å sette opp simuleringslikningene for en robotarm.

2