Folha 3

Curso: LCC 2023/2024

Probabilidades e Aplicações

- 1. Calcule a probabilidade de ocorrer pelo menos uma coincidência nos dias de aniversário de $n \ge 2$ pessoas escolhidas ao acaso (considere o ano com 365 dias). Para que valores de n essa probabilidade é superior a $\frac{1}{2}$?
- 2. Considere a experiência aleatória ξ : "lançamento de uma moeda equilibrada n-1 vezes consecutivas", com $n \geq 3$.
 - (a) Construa o modelo de probabilidade (Ω, \mathcal{A}, P) associado a esta experiência.
 - (b) Considere os seguintes n acontecimentos

$$E_j = \left\{ \begin{array}{ccc} \text{``corre cara no j-\'esimo lançamento''} & \text{se} & j \in \{1, \dots, n-1\} \\ \text{``correm uma cara e uma coroa nos 2 primeiros lançamentos''} & \text{se} & j = n \end{array} \right.$$

- i. Prove que $P(E_i \cap E_j) = P(E_i)P(E_j)$, para todo o $i, j \in \{1, \dots, n\}, i \neq j$.
- ii. Calcule $P\left(\bigcap_{j=1}^{n} E_j\right)$.
- Comente a afirmação: "Uma família finita de acontecimentos independentes 2 a 2 é uma família de acontecimentos independentes."
- 3. Sejam A e B acontecimentos de um espaço de probabilidade (Ω, \mathcal{A}, P) . Prove que as seguintes afirmações são equivalentes e generalize-as para uma qualquer família finita de acontecimentos:
 - (a) $A \in B$ são independentes
 - (b) $A \in \overline{B}$ são independentes
 - (c) \overline{A} e B são independentes
 - (d) \overline{A} e \overline{B} são independentes

Mostre ainda que A é independente de A sse P(A) = 0 ou P(A) = 1.

- 4. Dispomos de n caixas e n bolas, numeradas de 1 a n, e colocamos, ao acaso, uma (e uma só) bola em cada caixa. Designando por E_i o acontecimento: "a bola numerada com i está colocada na caixa i", $i \in \{1, ..., n\}$,
 - (a) Calcule $P(E_i)$, para $i \in \{1, ..., n\}$.
 - (b) Identifique o acontecimento $(E_i \cap E_j)$ e calcule $P(E_i \cap E_j)$, para $1 \le i < j \le n$.
 - (c) Calcule $P(E_{i_1} \cap E_{i_2} \dots \cap E_{i_k})$, para $1 \leq i_1 < i_2 < \dots < i_k \leq n$.
 - (d) Identifique o acontecimento $\bigcup_{i=1}^{n} E_i$ e calcule a sua probabilidade.
 - (e) Seja Z_n o número de bolas, entre as n, que estão colocadas na caixa correspondente ao seu número. Mostre que $\lim_{n\to\infty} P(Z_n=0)=e^{-1}$.
- 5. Tenho duas moedas normais, e equilibradas, e ainda uma moeda falsa que tem 'cara' nas duas faces. Escolho ao acaso uma moeda entre estas três, lanço-a n vezes e observo que saíram n caras. Qual a probabilidade de eu ter escolhido a moeda falsa?