Trabajo Parcial Complejidad de Algoritmos - UPC 2019-2

1. Descripción del trabajo

Algunas industrias, se dedican a recortar figuras en planchas o pliegues de determinado tipo de material; sin embargo, dicha tarea usualmente implica generación de desperdicio de material y/o uso abusivo de maquinaria. En ambos casos, mencionados anteriormente, existe el problema del desperdicio de recursos.

El problema de desperdicio de material puede ser minimizado con un empaquetamiento adecuado; mientras que, el problema del uso abusivo de la maquinaria puede ser solucionado con la minimización de cortes. Las soluciones anteriores, son de distinta naturaleza y aparecen en la literatura bajo diversos nombres, e.g. corte de material, pérdida de recortes, problema de embalaje de contenedores o tiras, problema de carga de contenedores, problemas de anidamiento, problema de la mochila, etc.

Para ambos problemas mencionados, existen algoritmos que representan soluciones exactas y otros que representan soluciones que hacen uso de heurísticas. Finalmente, una empresa debe decidir que problema prefiere atacar, o si desea atacar ambos, y que tipo de solución es mas conveniente usar; para lo cual, debe analizar y discutir las ventajas y desventajas que conlleva cada algoritmo.

Su trabajo consiste en:

- 1. Brindar algoritmos que solucionen uno o los dos problemas presentados (ya que cada integrante del equipo debe presentar una solución diferente existe la posibilidad de atacar ambos problemas, si asse desea).
- 2. Proporcionar una interfaz que permita a un usuario ingresar los datos necesarios y visualizar el resultado de los algoritmos propuestos, o en su defecto la posibilidad de cargar un archivo con datos de entrada y escribir el archivo de datos de salida correspondiente;
- 3. Hallar e indicar la complejidad de los algoritmos propuestos.
- 4. Generar archivos de entrada, siguiendo el formato establecido en la siguiente sección, de cantidades de datos diversas.
- 5. Usando los archivos de entrada generados, analizar y discutir la eficiencia de las soluciones indicadas mediante:
 - porcentaje de desperdicio en el caso de empaquetamiento, y número de cortes en el caso de recortes;
 - tablas de comparción de tiempos de ejecución para cada algoritmo implementado y cada entrada de datos (tiempo de ejecución en función a algoritmo vs entrada);
 - tablas de comparción de uso de memoria para cada algoritmo implementado y cada entrada de datos (memoria consumida en función a algoritmo vs entrada).
- 6. Emitir conclusiones en función de los datos levantados en el punto anterior.

2. Entrada de datos

El archivo, de datos, de entrada deberá seguir, extrictamente, el siguiente formato:

- 1. Dimensiones de la(s) plancha(s) a utilizar ($Ancho \ x \ Alto$)
- 2. Cantidad de formatos rectangulares (n)
- 3. Las siguientes n filas presentarán cada una las dimensiones de cada formato y la cantidad de piezas a cortar/encajar con dicho formato (Identificador de formato, Ancho, Alto, Número de Piezas por formato), ningun formato deberá tener dimensiones mayores a las dimensiones indicadas para la(s) plancha(s).

720 670		
8		
A 120 120 1		
B 285 130 1		
C 200 300 1		
D 165 320 1		
E 235 470 1		
F 200 170 1		
G 285 220 1		
H 555 200 1		

Nota: El *Identificador de formato* ha de ser formado por la union de letras mayúsculas. Cada letra representa un formato diferente de pieza. No deben existir dos *Identificadores* indicando un mismo formato. En caso de tener mas de 26 formatos de pieza (A-Z) agregar letras al *Identificador de formato* (AA-ZZ, AAA-ZZZ, etc).

3. Salida de datos

El archivo, de datos, de salida deberá seguir, extrictamente, el siguiente formato (guiese del ejemplo):

- 1. Indicar la cantidad, m, de planchas utilizadas
- 2. Indicar el porcentaje de desperdicio total y el área desperdiciada.
- 3. Indicar el número de cortes a realizar
- 4. A continuación existirán m grupos indicando la disposición de las piezas en la(s) plancha(s) (esta disposición se dará indicando el $Identificador\ de\ fomato$ de cada pieza concatenado de un número, recordando que puede haber mas de una pieza por formato, seguido de sus las coordenadas x,y en la(s) plancha(s) a partir de donde se ubicará la esquina superior izquierda de tal pieza, finalmente la letra N o G indicando N que la pieza coloca en posición normal y G que la pieza se coloca girada)

Planchas: 1 plancha utilizada
Desperdicio: 0 %, Area: 0 metros cuadrados
Cortes: 7
Plancha 1
A1 165 200 N
B1 0 450 N
C1 285 200 N
D1 0 0 N
E1 485 200 N
F1 285 500 N
G1 0 320 N
H1 165 0 N

Nota: El hecho de que aparezcan tanto los datos de desperdicio en *porcentaje y area* como de cortes, no significa que su algoritmo deba optimizar ambos resultados. Recuerde que son dos problemas diferentes y sólo se exige que un algoritmo optimice un resultado.

La Figura ?? muestra: a la izquierda, diferentes piezas a encajar en una o mas plancha(s); y, a la derecha, las piezas encajadas de forma a minimizar el área desperdiciada. Así mismo, pueden observarse la cantidad de cortes a realizar.

Cuadro 1: Entrada de Datos y Salida de Datos: piezas encajadas de forma a optimizar el area usada de la(s) plancha(s)

4. Restricciones sobre la implementación del algoritmo

- 1. Cada grupo es libre de investigar uno o ambos problemas de corte y empaquetamiento 2D. Recalcando que por integrante debe haber una algoritmo diferente solucionando un problema (desperdicio o numero de cortes).
- 2. Los algoritmos propuestos pueden formar o no parte de los revisados en clase. Sin embargo, entre las propuestas de solución como máximo debe haber una propuesta basada en aproximaciones.
- 3. La complejidad de cada algoritmo investigado debe ser indicada, así como las ventajas y desventajas que implican y si presentan alguna solución eficiente. Debe implementar
- 4. Deben haber una solución, de corte y/o de empaquetamiento, por integrante de grupo (máximo tres integrantes).
- 5. Debe desarrollar una interfaz que permita visualizar el resultado obtenido para un usuario final, y adicionalmente debe permitirse cargar un archivo de entrada y genrear su respectivo archivo de salida (siguiendo **estrictamente** los formatos indicados).
- 6. Debe analizar e indicar la complejidad de cada algoritmo propuesto.
- 7. Debe permitir medir los tiempos en que los algoritmos desarrollados resuelven el problema, y la cantidad de memoria consumida.
- 8. Debe ejecutar un análisis experimental para demostrar cuál es el mejor algoritmo a utilizar para corte y cuál es el mejor algoritmo a utilizar para empaquetamiento.

5. Experimentación

- Debe generar datasets que representen retos interesantes para el problema de cortar y/o empaquetar, aidiconalmente procurar tener también la solución óptima.
- Debe mostrar un análisis para indicar a partir de que cantidad de instancias las algoritmos presentadas se vuelven inviables.
- Debe discutir la performance de los algoritmos utilizados en cuestión de tiempo y espacio (representadas en cifras y también utilizando la notación Big O).

6. Evaluación

Ver la hoja anexa: Rubrica de Calificación

7. Fecha de Presentación

Última sesión de la semana 7.

Anexo

Item	Sobresaliente	Satisfactorio	Deficiente
	Implementa funciones y/o clases	Utiliza archivos de entrada genera-	No implementado
	para generar diferentes casos para	dos manualmente.	
Generación de los archivos de	<u> </u>		
	(2 puntos)	(1 punto)	(0 puntos)
	Elabora una introducción presen-	Elabora una introducción simple,	No implementado
	tando el problema y explicando la	describe el problema de manera ele-	
	motivación para el desarrollo del	mental o no describe la motivación.	
	proyecto.	(0 = 1)	(0 +)
	(1 punto) Define objetivos del proyecto de	(0.5 puntos) Define objetivos simples, poco cla-	(0 puntos) No implementado
	manera consistente con el problema	ros o inconsistentes con el proble-	No implementado
	planteado.	ma.	
	(1 punto)	(0.5 puntos)	(0 puntos)
	Elabora el marco teórico del infor-	Elabora un marco teórico haciendo	No implementado
T. 0	me explicando detalladamente to-	uso únicamente de materiald e cla-	1.0 imprementation
Informe	das las estrategias usadas para dar	se.	
	solución al problema.		
	(1 punto)	(0.5 puntos)	(0 puntos)
	Análisis de la complejidad algorít-	Analiza la complejidad solo de al-	No implementado
	mica de cada una de las estrategias	gunas estrategias o de manera su-	
	usadas para solucionar el problema.	perficial.	
	(2 puntos)	(1 punto)	(0 puntos)
	Propone conclusiones que discuten	Propone conclusiones simples o que	No implementado
	las ventajas y desventajas de los al-	no guardan coherencia con los ob-	
	goritmos analizados, la performan-	jetivos.	
	ce respecto al hardware utilizado,		
	proponen mejoras y guardan cohe-		
	rencia con los objetivos planteados.	(0.5 punto)	(0 munt og)
	(2 puntos) Implementa soluciones para el pro-	Implementa soluciones unicamente	(0 puntos) No implementado
	blema de empaquetamiento y para	para empaquetamiento o para cor-	No implementado
	el problema de cortes.	tes.	
	(1 punto)	(0.5 puntos)	(0 puntos)
	Implementa una interfaz de usuario	Implementan una interfaz de usua-	No implementado
	que permita la interacción adecua-	rio inadecuada o visualización de	
	da con la aplicación y la visualiza-	resultados insuficiente.	
	ción adecuada de los resultados.		
	(2 puntos)	(1 puntos)	(0 puntos)
Implementación	Implementan y explican correcta-	Implementan insuficientemente las	No implementado
Implementation	mente las estrategias de solución del	estrategias de solución o no expli-	
	problema. Cuenta con por lo me-	can satisfactoriamente el funciona-	
	nos una estrategia por integrante de	miento .	
	grupo.	(1	(0+)
	(4 puntos)	(1 punto) Presenta a destiempo los entrega-	0 puntos No implementado
	po los entregables y presentación	bles del provecto .	10 mpiementado
	del provecto.	Dies dei projecto .	
	(1 punto)	(0.5 puntos)	(0 puntos)
	Experimenta con varios tamaños de	Experimenta en pocos tamaños de	No experimenta.
	los datasets (mínimo 4 experimen-	los datasets (menos de 4 experimen-	
	tos). Documenta la performance, en	tos). Documenta la performance, en	
	términos de tiempo de ejecución y	términos de tiempo de ejecución o	
	memoria, para cada entrada de da-	memoria, para cada entrada de da-	
Experimentación	tos y cada algoritmo	tos y cada algoritmo	
	(2 punto)	(0.5 puntos)	(0 puntos)
	Experimenta con un dataset sufi-	Experimenta con un dataset sufi-	No experimenta.
	cientemente grande y con piezas re-	cientemente grande y con piezas re-	
	levantes. Su propuesta muestra ser	levantes. Su propuesta no muestra	
	escalable (i.e. funciona con data de	ser escalable (i.e. funciona con da-	
	gran tamaño) aún sin encontrar una	ta de gran tamaño) aún sin encon-	
	solución en tiempo corto, se realiza	trar una solución en tiempo corto,	
	la computación.	se realiza la computación (0.5 puntos)	(0 puntos)
	(1 punto)		