Apellidos:	Nombre:	Código:
Apenidos	1 tollible	courgo.

UNIVERSIDAD ESCUELA COLOMBIANA DE INGENIERÍA SEMESTRE: 2025 – 1

SYSB SEÑALES Y SISTEMAS BIOMÉDICOS 24 FEB 2025

Tiempo Permitido: UNA HORA.

Material Permitido: APUNTES CON CALIGRAFÍA PROPIA.

NO se permite comunciación con compañeros ni préstamo de elementos.

Instrucciones: Responda cada pregunta según las instrucciones de la sección

El examen consta de un total de 50 puntos.

Figura 1: X(t) para la pregunta 1.

- 1. Esta sección presenta preguntas con múltiples respuestas (al menos una de ellas es correcta). Marque con una x las afirmaciones correctas.
 - (a) La señal de la Figura 1 está compuesta por una combinación de funciones escalón u(t) y rampa r(t). La(s) expresion(es) que define x(t) es:

i.
$$x(t) = 3u(t-2) - 2u(t-4)$$

ii.
$$x(t) = 3r(t-2) - 3u(t-4)$$

iii.
$$x(t) = 3r(t-2) - 2u(t+4)$$

iv.
$$x(t) = 3r(t-2) - 2u(t-4)$$

- v. Ninguna de las anteriores
- (b) En la Figura 2 se presentan dos señales. Se sabe que la fase de ambas señales es cero. Cuales de las siguientes afirmaciones es correcta:
 - **i.** g_1 tiene naturaleza senoidal.
 - ii. g₂ tiene naturaleza senoidal.
 - **iii.** $g_1(t) = \cos(2\pi t)$
 - **iv.** $g_1(t) = \cos(8\pi t)$
 - **v.** $g_2(t) = \cos(12\pi t)$
 - vi. Ninguna de las anteriores
- (c) A partir de la información de la pregunta anterior, se puede afirmar que:
 - i. $g_1(t)$ es periodica.
 - ii. $g_2(t)$ tiene una frecuencia de 6 Hz
 - iii. $g_1(t)$ tiene una frecuencia angular de 8π rad/s
 - iv. Ninguna de las anteriores.
- (d) Según la Figura 2, se puede afirmar que:
 - i. $g_1(t) + g_2(t)$ es periodica
 - ii. $g_1(t) + g_2(t)$ no es periodica
 - iii. $g_1(t)$ es par.

Figura 2

iv. $g_1(t)$ es impar.

- v. Ninguna de las anteriores
- (e) Conforme a la información entregada por la Figura 2, se desea muestrear la señal $g_1(t) + g_2(t)$. Las condiciones adecuadas para esto son:

i.
$$F_s = 12$$

ii.
$$F_s = 24$$
 iii. $F_s = 36$

iii.
$$F_c = 36$$

iv.
$$F_s = 6$$

v. Ninguna de las anteriores