1

1. profit = $2 \times c + 3 \times D = maximize$ where constraints $\begin{cases} 250 \times c + 200 \times D \leqslant 30,000 \\ 75 \times c + 100 \times D \leqslant 15,000 \end{cases}$

Lucino of Lucino of rep: nod Danisher

2.			Di
Sig.	1		
150			
6	#//		
feasible -	V////	1	
area	120	150 200	ne

	Na	ND	Profit
Possible	120	0	240
Solutions	0	150	4501
	0	D	0

3. The medimum profit is: 150(3) + 0(2) = 450 > optimal solution is 150 Danish and O croissants

2

1. fi:(a,b) for=n

+cm

minimal p*= +(a) = a
minimum n* = a

uo is unique

f(u) = c. cos(u) cfo DER

over R, the minimal p = -c the minimum it = kx , ke 2- fof x is not unique

30 f(21) = sin(21) DE Co, 27]

over (0, 2x), minimal po =-1

4. f(u) = sin u , De (0,25)

over ne (12F) , minimal po = -0:05

 $f(n) = \frac{\cos \kappa(n^2) - 2n \sin \kappa}{n^4} = \frac{n \cos \kappa - 2 \sin \kappa}{n^3} = 0 \Rightarrow$

$$= \frac{2 \cos x - 2 \sin x}{x^3} = 0 \Rightarrow 2 = 4.275$$

5. pen = 23 - 32 = 2(2-3) DreR

overner minimal po is intrown and not unique