Informed search algorithms

м

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
 - □ State space = set of "complete" configurations
 - Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms
 - keep a single "current" state, tries to improve it

Iterative Improvement Search

- Another approach to search involves starting with an initial guess at a solution and gradually improving it until it is a legal/optimal one.
- Some examples:
 - Hill climbing
 - Simulated annealing
 - Constraint satisfaction

.

Hill Climbing on a Surface of States

.

Hill Climbing Search

- If there exists a successor s for the current state n such that
 - \Box h(s) < h(n)
 - □ $h(s) \le h(t)$ for all the successors t of n,

then move from n to s. Otherwise, halt at n.

- Looks one step ahead to determine if any successor is better than the current state; if there is, move to the best successor.
- Similar to Greedy search in that it uses h, but does not allow backtracking or jumping to an alternative path since it doesn't "remember" where it has been.
- Corresponds to Beam search with a beam width of 1 (i.e., the maximum size of the nodes list is 1).
- Not complete since the search will terminate at "local minima," "plateaus," and "ridges."

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then \text{return State}[current] current \leftarrow neighbor
```

м

Example: The 8-puzzle

- states? locations of tiles
- actions? move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move

[Note: optimal solution of *n*-Puzzle family is NP-hard]

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$h_2(S) = ?$$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Goal State

- <u>= ?</u> 3+1+2+2+2+3+3+2 = 18

w

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1
- h_2 is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

×

Hill Climbing Example

f(n) = -(number of tiles out of place)

Hill Climbing Example

Hill climbing with minimization goal: Here, the objective function is $min\ f$ Where, f = h(n) = (manhattan distance)

We can use heuristics to guide "hill climbing" search.

In this example, the Manhattan Distance heuristic helps us quickly find a solution to the 8-puzzle.

But "hill climbing has a problem..."

M

Drawbacks of Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

Exploring the Landscape

- Local Maxima: peaks that aren't the highest point in the space
- Plateaus: the space has a broad flat region that gives the search algorithm no direction (random walk)
- Ridges: flat like a plateau, but with drop-offs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

Example of a Local Optimum

v

Example: *n*-queens

Put n queens on an n x n board with no two queens on the same row, column, or diagonal

Hill-climbing search: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	♛	13	16	13	16
₩	14	17	15	₩	14	16	16
17	₩	16	18	15	₩	15	₩
18	14	₩	15	15	14	♛	16
14	14	13	17	12	14	12	18

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem

A local minimum with h = 1

.

Remedies of Hill Climbing Search

- Problems: local maxima, plateaus, ridges
- Remedies:
 - Random restart: keep restarting the search from random locations until a goal is found.
 - Problem reformulation: reformulate the search space to eliminate these problematic features
 - Simulated Annealing
- Some problem spaces are great for hill climbing and others are terrible.

Simulated Annealing

- Simulated annealing (SA) exploits an analogy between the way in which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process) and the search for a minimum [or maximum] in a more general system.
- SA can avoid becoming trapped at local minima.
- SA uses a random search that accepts changes that increase objective function f, as well as some that decrease it.
- SA uses a control parameter T, which by analogy with the original application is known as the system "temperature."
- T starts out high and gradually decreases toward 0.

м

Simulated annealing

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
- 1. $C = C_{init}$ // here, C is the current state and C_{init} is the initial state
- 2. For $T = T_{max}$ to T_{min} // here, T is the control temperature for annealing 3. $E_C = E(C)$ // here, E_C is the Energy i.e. utility or goodness value of state C
 - 4. N = Next (C) // Here, N is next state of current state C
 - 5. $E_N = E(N)$ // here, E_N is the Energy i.e. utility or goodness value of state N
 - 6. $\Delta E = E_N E_C$ //Here, ΔE is the Energy difference
 - 7. If $(\Delta E > 0)$
 - 8. C=N
 - 9. Else if $(e^{\Delta E/T} > rand(0,1))$ // Suppose, $\Delta E = -1$, $T_{max} = 100$ and $T_{min} = 2$
 - 10. C=N // $e^{\Delta E/T} = 0.99$ for $T_{max} = 100$
- 11. End $// e^{\Delta E/T} = 0.60 \text{ for } T_{min} = 2$

.

Simulated Annealing (cont.)

- f(s) represents the quality of state n (high is good)
- A "bad" move from A to B is accepted with a probability $P(\text{move}_{A \rightarrow B}) \approx e^{(f(B) f(A))/T}$
 - (Note that f(B) f(A) will be negative, so bad moves always have a relatively probability less than one. Good moves, for which f(B) – f(A) is positive, have a relative probability greater than one.)
- The higher the temperature, the more likely it is that a bad move can be made.
- As T tends to zero, this probability tends to zero, and SA becomes more like hill climbing
- If T is lowered slowly enough, SA is complete and admissible.

Convergence of simulated annealing

Properties of simulated annealing search

 One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

 Widely used in VLSI layout, airline scheduling, etc