PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.1 Redes de Petri: Descripción de sistemas concurrentes. J.M. Drake

Notas:		

Redes de Petri

Notas:

- ★ Las redes de Petri (PN) (C.A. Petri, 1962) son una herramienta de modelado muy efectiva para la representación y el análisis de procesos concurrentes.
- ♯ Su éxito se debe básicamente a la simplicidad de su mecanismo básico, si bien, la representación de grandes sistemas es costosa.
- Numerosos autores han extendido el modelo básico:
 - Redes de Petri Temporizadas o Timed Petri Nets: Introduciendo el concepto de tiempo, para modelar el comportamiento temporal de los sistemas dinámicos.
 - Red de Petri Estocástica (Stochastic Petri Net, SPN): Se especifica el comportamiento temporal con variables aleatorias exponenciales. Son isomorficas a las cadenas de Markov. Tienen mayor capacidad que la Teoría de Colas
 - Red de Petri Coloreada (CPN): A los testigo se le añade atributos que se denominan color. Permiten modelar sistemas concurrentes descritos mediante flujos de datos.

Procodis'08: V.1- Descripción por redes de Petri

José M.Drake

Notas:		

Redes de Petri ₩ Una red de Petri (RdP) es un grafo orientado con dos clases de nodos: lugares (circunferencias) y transiciones (barras). Los arcos unen un lugar con una transición o viceversa. # Un lugar pude contener un número positivo o nulo de marcas. Distribución de marcas en los lugares, $marcado \rightarrow estado de la$ RdP. # Se asocian entradas y salidas a lugares y transiciones p.e.: ■ salida → lugar marcado ■ entrada → transición Procodis'08: V.1- Descripción por redes de Petri José M.Drake

Evolución de una RdP

- ➡ Una transición está sensibilizada si todos sus lugares de entrada están marcados
- ➡ Transición sensibilizada ⇒ puede disparar
- ➡ Disparo ⇒ evolución del estado: Retirada de una marca de cada lugar de entrada, depósito de una marca en cada lugar de salida

1		
1		
1		
1		
1		

Notas:	

Formalización de las RdP

- \blacksquare Red de Petri (RdP): es una cuádrupla $R = \{P, T, \alpha, \beta\}$ tal que
 - P es un conjunto finito y no vacío de lugares
 - T es un conjunto finito y no vacío de transiciones
 - $P \cap T = \emptyset$
 - $\alpha: P \times T \rightarrow N$ es la función de incidencia previa
 - \blacksquare β : $T \times P \rightarrow N$ es la función de incidencia posterior
- **#** RdP marcada: es un par $\{R, M_o\}$, donde R es una RdP y M_o es un marcado inicial.

Marcado actual: $M=\{m_1, m_2, m_3, ..., m_n\}$

Marcado inicial: $M_o = \{m_{o1}, m_{o2}, m_{o3}, ..., m_{on}\}$

Procodis'08: V.1- Descripción por redes de Petri

José M.Drake

Notas:			

I		
l		
I		
I		
I		
I		

Clasificación de RdP

• RdP ordinaria: sus funciones de incidencia sólo pueden tomar los valores 0 y 1:

 $\alpha(p,t) \in \{0,1\}, \ \beta(t,p) \in \{0,1\}$

Grafo de Estados (GE): $\forall t \in T \mid \bullet t \mid = 1 \text{ y } \mid t \bullet \mid = 1$

Toda transición tiene una unica plaza de entrada y una única plaza de salida

Grafo Marcado (GM): $\forall p \in P \mid \bullet p \mid = 1 \text{ y } |p \bullet| = 1$

Todo lugar tiene como máximo una transición de entrada y una transición de salida

RdP Libre Elección (RLE): $\forall p \in P, |p \bullet| > 1 => \forall t_k \in p \bullet, |\bullet t_k| = 1$ Si ti y tj tienen una plaza de entrada común, esta es la única plaza de ambas transiciones.

RdP Simple (RS):

Cualquier transición tiene como máximo una única plaza de entrada compartida con otras transiciones.

Procodis'08: V.1- Descripción por redes de Petri

José M.Drake

Notas:			

Notas:			

Notas:		

Notas:			

Notas:	

Notas:		

Ejemplo modelado: Carros con vía común

Dos carros A y B transportan cierto material desde los puntos de carga LA y LB, respectivamente, hasta el punto de descarga D. Los diferentes movimientos son controlados mediante las señales lA, lB, rA, rB. Si A está en LA y el pulsador MA está oprimido, comienza un ciclo LA-U-LA:

- Espera eventual en WA hasta que la zona común a los dos carros esté libre, con el fin de evitar colisiones;
- Espera obligatoria en U hasta MU (pulsador de fin de descarga).

El carro B tiene un funcionamiento similar pero, en caso de demanda simultánea de la vía común, B es prioritario. El recorrido WA-U o WB-U se establece por un cambio de agujas controlado por la acción G.

Procodis'08: V.1- Descripción por redes de Petri

Notas:

José M.Drake

l		
l		
I		
I		
l		
I		
I		
I		
l		
I		
l		
I		
l		
I		
l		
I		
I		
I		
l		
I		
I		
I		
I		
l		
I		
I		
I		
I		
I		
I		
I		
I		
I		
I		
I		
I		

Ejemplo modelo: Lectores y escritores

- ➡ Dos conjuntos de usuarios (lectores y redactores) tienen que coordinarse para acceder a unos datos comunes:
 - los lectores sólo inspeccionan, y por lo tanto pueden acceder simultáneamente a los datos
 - los redactores actualizan los datos y su trabajo debe estar en exclusión mutua con el resto de usuarios
- ♯ Cada usuario puede estar en uno de los siguientes estados: activo, espera y reposo.

Procodis'08: V.1- Descripción por redes de Petri

Notas:

José M.Drake

·	·	·	

Notas:	

Ejemplo Modelo: Transmisión datos Se desea diseñar un sistema de transmisión de datos con las siguientes características: - El sistema recibe datos (8 bits) de un puerto paralelo (p.e. PORTCL del 68HC11 con handshake) - Cada dato es procesado e introducido en un buffer con capacidad para 8 datos - Los datos son sacados del buffer con política FIFO y enviados por línea serie (SCI) mediante un sencillo protocolo con reenvío STRB PORTCL ACK/NACK Procodis'08: V.1- Descripción por redes de Petri José M.Drake

Ecuación de estado

- **Transición sensibilizada:** Una transición $t \in T$ está sensibilizada por el marcado $M \Leftrightarrow$ cada uno de sus lugares de entrada posee al menos $\alpha(p,t)$ marcas. Es decir, se exige que $\forall p \in {}^{\star}t \ M(p) \geq \alpha(p,t)$.
- **\blacksquare Disparo de un transición:** Disparar una transición sensibilizada es la operación que consiste en eliminar $\alpha(p,t)$ marcas de cada lugar de entrada y añadir $\beta(t,p)$ marcas a cada lugar de salida. Es decir al disparar t se obtiene:

$$M_j(p) = M_i(p) + \beta(t, p) - \alpha(p, t) \forall p \in P$$

- y se representa M_i] $t > M_j$
- $\texttt{\# Secuencia de disparos:} \qquad \qquad M_0]t_i > M_1]t_j > M_2...]t_r > M_q \\ \sigma = t_it_j...t_r \to M_0]\sigma > M_q$
- ➡ Vector característico de una secuencia

$$\overline{\sigma}$$
 $(\overline{\sigma}_i = n^{\circ} de \ apariciones \ de \ t_i \ en \ \sigma)$

Procodis'08: V.1- Descripción por redes de Petri

Notas:

José M.Drake

Ecuación de estado

- $igspace{1mm} M_k o marcado obtenido en el k-ésimo disparo$

$$U_k(i) = 1, U_k(j) = 0, \forall j \neq i$$

$$\begin{aligned} M_k &= M_{k-1} + CU_k = \\ &= M_{k-2} + C(U_{k-1} + U_k) = \\ &= M_{k-3} + C(U_{k-2} + U_{k-1} + U_k) = \dots = \\ &= M_0 + C\sum_{j=1}^k U_j = M_0 + C\overline{\sigma} \end{aligned}$$

Procodis'08: V.1- Descripción por redes de Petri

José M.Drake

,	٠,	-				
	N	0	t	ล	S	•