10.2

Coordonnées de vecteurs

SECONDE 7 - JB DUTHOIT

10.2.1 Définition

Définition 10.47

une **base du plan** est un couple de vecteurs $(\vec{i}; \vec{j})$ non colinéaires.

Remarque

Une base du plan est appelée **base orthonormée** si les directions de \vec{i} et \vec{j} sont perpendiculaires, et si la norme des deux vecteurs est égale à 1.

Propriété 10. 49

Soit $(\vec{i}; \vec{j})$ une base du plan, et soit \vec{u} un vecteur du plan. Il existe un unique couple de réels (x; y) tel que $\vec{u} = x\vec{i} + y\vec{j}$.

Définition 10.48

x et y sont appelées les **coordonnées de** \vec{u} dans la base $(\vec{i}; \vec{j})$. On note $\vec{u}(x; y)$

Savoir-Faire 10.39

SAVOIR LIRE LES COORDONNÉES DE VECTEURS On considère les vecteurs ci-dessous, dans la base $(\vec{i}; \vec{j})$. Déterminer, par lecture graphique, les coordonnées de chacun de ces vecteurs.

Savoir-Faire 10.40

SAVOIR REPRÉSENTER DES VECTEURS DANS UNE BASE. Dans la base $(\vec{i}; \vec{j})$, représenter les vecteurs $\vec{u}(2; 1)$, $\vec{v}(-2; 3)$ et $\vec{w}(-3; 1)$.

Propriété 10.50 (admise)

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs dans une base $(\vec{i};\vec{j})$ du plan.

• $\vec{u} = \vec{v}$ si et seulement si x = x' et y = y'.

10.2.2 Formules avec les coordonnées de vecteurs

Coordonnées d'un vecteur

Propriété 10.51 (admise)

Soit $(O; \vec{i}; \vec{j})$ un repère du plan. Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan. Le vecteur \overrightarrow{AB} a pour coordonnées $(x_B - x_A; y_B - y_A)$.

Savoir-Faire 10.41

gramme.

SAVOIR CALCULER LES COORDONNÉES DE VECTEURS

- 1. A,B,C et D sont quatre points du plan de coordonnées respectives (-1;2), (1;4), (7;-2) et (5;-4). En calculant des coordonnées de vecteurs, montrer que ABCD est un parallélo-
- 2. Soient A,B et C trois points de coordonnées respectives (1;2),(0;-1) et (4;-2). Déterminer les coordonnées de D pour que ABCD soit un parallélogramme.

Norme d'un vecteur

Propriété 10. 52

Soit $\vec{u}(x;y)$ un vecteur du plan dans une base orthonormée $(\vec{i};\vec{j})$. La norme du vecteur \vec{u} , notée $||\vec{u}||$ est donnée par :

$$||\vec{u}|| = \sqrt{x^2 + y^2}$$

Savoir-Faire 10.42

SAVOIR CALCULER LA NORME D'UN VECTEUR DANS UNE BASE ORTHONORMÉE DU PLAN. On considère $\vec{u}(2;-7)$ dans une base orthonormée $(\vec{i};\vec{j})$. Calculer la norme de \vec{u} , notée $||\vec{u}||$

Somme de deux vecteurs et produit par un réel

Propriété 10.53 (admise)

Soit $(\vec{i}; \vec{j})$ une base du plan. Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs du plan, et $k \in \mathbb{R}$.

- Le vecteur $\vec{u} + \vec{v}$ a pour coordonnées (x + x'; y + y').
- Le vecteur $k\vec{u}$ a pour coordonnées (kx; ky).

Savoir-Faire 10.43

SAVOIR UTILISER LES FORMULES DES COORDONNÉES DE VECTEURS POUR DÉMONTRER On considère le point A(1; -3), et les vecteurs $\vec{u}(2; -3)$ et $\vec{v}(-1; 5)$. Soit E le point défini par $\overrightarrow{AE} = 2\vec{u} - \vec{v}$.

- 1. Calculer les coordonnées du vecteur $2\vec{u} \vec{v}$.
- 2. En déduire les coordonnées du point E.