DERWENT-ACC-NO:

1977-13387Y

DERWENT-WEEK:

197708

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Silica-or alumina based catalyst support - has specific

surface area increased by ultrasonically treating in

etchant

PATENT-ASSIGNEE: MATSUSHITA ELEC IND CO LTD[MATU]

PRIORITY-DATA: 1973JP-0140083 (December 9, 1973)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES N/A

MAIN-IPC

JP 50087974 A

July 15, 1975

N/A

000

(T)

INT-CL (IPC): B01J000/00, C03B000/00

ABSTRACTED-PUB-NO: JP 50087974A

BASIC-ABSTRACT:

Commercial alkaline glass fibres were immersed in HCl-5 vol. % HF mixt., treated with 100-1000 Hz ultrasonic wave for 20 min., and washed with H2O to give glass fibres having sp. surface area which ws 5-10 times the original sp. surface area.

TITLE-TERMS: SILICA ALUMINA BASED CATALYST SUPPORT SPECIFIC SURFACE AREA INCREASE ULTRASONIC TREAT ETCH

DERWENT-CLASS: F06 J04 L01

CPI-CODES: F01-H; F04-E; J04-E03; L01-F03; L01-G05; N06-E;

19 日本国特許庁

公開特許公報

特 許 別

(2000円) 🤾

昭和48年12月9日

時許庁長官, 斎 藤 英 雄 殿

1. 発明の名称

ショク・イタンタイ セイゾウホウホウ 触媒担体の製造方法

2 発 明 者

住 所

かマシオオブザパマ 大阪府門真市大字門真1,006番地 マンンタデンキサンギョウ 松下電器産業株式会社内

氏 名

ジョン

3. 特許出願人

郵便番号

5 7 1

主所大

大阪府門真市大字門真 1,006番地(582)松下電器産業株式会社

名 称 代表者

松下正治

さんま

4. 代理人

郵便番号

185

住 所

東京都国分寺市南町三丁目12番11号 方 (7483) 弁理士 阿 部 功

_

①特開昭 50-87974

43公開日 昭50.(1975) 7.15

②特願昭 48-/40083

②出願日 昭48 (1973)/3.

審查請求 未請求

(全3頁)

庁内整理番号 6518 4A 6684 41

52日本分類

1349902. 2035F3 **⑤ Int.Cl?** BO/フ 35/06 BO/フ ンナ/2/ CO3B 37/00

.明 細

1. 発明の名称

触媒担体の製造方法

2. 特許請求の範囲

シリカまたはアルミナなどから成る無機質繊維を可容性液体中に浸漬し、超音波を与え前配無機質繊維の表面を部分腐蝕して表面積を拡大する触 媒担体の製造方法。

3. 発明の詳細な説明

この発明は触媒を担持する無機質繊維の表面積を拡大する触媒担体の製造方法に関する。

高温、高流速での触媒反応の際に用いられる触 媒担体としては、以前から使用されてきたシリカ やアルミナを主成分とする粒状あるいはベレット 状の高温焼成物があるが、これらのもつ短所を補 なうものとして、ハニカム状をしたモノリス担体 や、繊維状の耐熱性無機質担体が考案されている。 学発明者らその他によりシリカ繊維を基材とした 触媒担体について、いくつかの発明が提供されて きた。またシリカ繊維以外にも炭素繊維やアルミ

ナ繊維などの耐熱性無機質繊維の触媒担体への応 用が考えられている。これらの無機質繊維を触媒 担体として用いる場合、従来より繊維そのものの 表面に特別な処理を施こさずに触媒材を付着せし めるか、あるいは繊維表面をあらかじめアルミナ やシリカなどの多孔質層を形成せしめ、しかる上 に触媒材を担持させる方法がとられている。先の 直接表面に付着させる場合には、繊維表面が滑ら かなために、表面積が極端に小さく、特に貴金属 などを少量で髙分散させることは困難であった。 また後者の繊維表面を同質あるいは異質の材料で・ コートする場合は、適当にコーティング材を選ぶ ことにより、またコーティング層厚を加減するこ とにより、表面積を拡大することが可能であり、 それ故に触媒材を好条件で担持させることが可能 である。しかしながら800℃以上にも及ぶ高温 下での使用を目的とする場合には、コーティング 層を形成せしめる際に有機パインダーを使用する ことはできないため、製造条件を一定で特定のも のにしないとコーティング層と繊維表面との付着

特開 昭50-87974 (2)

強度が著しく低下する。このような場合には接触 反応中の圧力変化や流量変化によりコーティング 層のはく離が生じ易く、場合によっては装置外へ のコーティング材並びにそれに担持されている触 蝶材の流出が起こる。

この発明は、以上のような従来例でみられる欠点を排除し、滑らかな表面をもつ無機質機維担体に触媒材を有効にかつ強固に担持させる触媒担体の製造方法を得ることを目的とする。

従来、繊維質担体表面に主として無機質から成る触媒成分を担持させる場合の困難な点は、繊維質表面が本来的に非多孔性で滑らかであることに起因している。

通常無機質の表面腐蝕処理には、可溶性溶液に 浸漉し、必要に応じて加熱促進する方法がとられ ているが、これらの方法によれば、表面を一様に 腐蝕することになり、触媒担持に効果的な表面の 凹凸構造化は容易でなかった。

この発明は、この本来的に滑らかな表面をあら かじめ可容性容液で腐蝕させると同時に超音波を

0 0 mℓに浸し、同時に 1 ~ 1 0 0 kH2 の超音波を 印加する。超音波印加後 3 0 分で溶液から繊維を引き上げ、清浄流水にて 3 0 分から 1 時間水洗したのち、 8 0 ~ 1 2 0 ℃の温風にて 3 0 分間乾燥する。この結果比表面積は約 1 0 ~ 1 5 倍増大しており、走査形電顕観察による表面構造は非常に細かい凹凸構造が繊維表面一様に確認された。

この発明によれば上記のような結果が得られる のは次のような理由による。

この発明では、腐蝕溶液に浸すと同時に超音波を印加することにより、超音波がおこすキャビテーション現象によって局部加圧と局部高温が生じ、線維表面の局部腐蝕が極端に促進されるため、線維表面に非常に微細な凹凸構造が生じ、その表面積を大巾に拡大することができる。

この発明により製造された触媒担体は、白金などの貴金属担持では繊維表面をあらかじめ多孔質物質でコーティング処理をせずに直接担持を行うことができ、また酸化物触媒担持においても、担持力が非常に強固で、高速反応中における担持物

与えることにより、触媒材を強固にかつ有効的に 担持させるに最とも適した表面に整形する触媒担 体の製造方法を提供するものである。

この発明を詳細に、以下に実施例をあげて説明する。

実施例(1) 通常の含アルカリガラス繊維108 を塩酸95部とファ酸5部から成る溶液500mℓ に浸し、同時に100~1 kH2の超音波を印加する。超音波印加後20分で溶液より繊維を引きたけ、清浄流水にて30分から1時間水洗をしたのち、80~100℃の温風にて30分間は大きのの温風にて30分にしする。 にで30~60多向上すると共に、比表面積にして、約5~10倍向上していた。また産産形電頭像により、平均繊維径は2~5多縮小していた。級祭により、平均機維径は2~5多縮小し四個なが観察された。

実施例(2) いわゆるシリカガラス繊維(シリカ 純度が96号以上)108をファ化アンモニウム 容液50部とイオン交換水50部から成る溶液5

のはく離は生じなかった。一方、高温高速反応では主として、細孔内反応よりも外表面反応が優先的に起ると考えられるが、このような反応において、この発明による処理を施こした繊維状触媒は、非常に有効である。

この発明により製造された触媒担体に貴金属を付着された触媒体は細孔内反応があまり問題とならない高流速高温反応に適しており、その代表的な反応としては、高濃度の炭化水素やcoの完全酸化反応がある。また典型的な用途としては、自動車排気ガス浄化(酸化)用触媒や排煙脱硫などにも適用され易い担体形状である。

この発明法による担体は、本法を用いないものに較べて、その表面積は約10倍拡大することができ、その結果変換率は同一触媒容積、同一被反応ガス流量条件でco + co, 変換に対し約30~50ヵ向上する、他に単位触媒容量当りの被ガス処理量は約15倍向上する。

·以上にあげられた効果は、実施例(1),(2)でのべ られている内容以外の、主として無機質機維構造 体と、それを可容な容媒との組合せにおいても、 超音波を印加することによって同等な効果を生ず るものであり、この発明は実施例(1),(2)に限定さ れるものでない。

4. 図面の簡単な説明

図面なし

符号の説明なし

5. 添付唇類の目録

通・ (1) 明

(2) 🖾

(3) 委

任

特許出願人 代理人弁理士