

Loghman Samani March 2024

Table of Contents

Introduction to AlphaFold

Introduction to Machine Learning

AlphaFold Structure

- Database Search
- Evoformer
- Structure Module

Achievements

References

Introducing Alpha Fold

What is AlphaFold?

AlphaFold is a cutting-edge computational algorithm developed by DeepMind AlphaFold1 (2018)
AlphaFold2 (2020)
Critical Assessment of Structure Prediction (CASP)

Purpose

It's designed to predict the 3D structure of proteins

Introducing Alpha Fold

Methodology

Employes a deep learning architecture Attention mechanisms Gradient-based optimization

Key Features

High accuracy Scalability Accessibility

Applications

Drug discovery Biotechnology Basic research

Machine Learning Model Overview

Model Representation

 $Model = W \cdot XT + b$

W: Weight matrix

• X: Input features

• B: Bias term

Training Process

Initialization: randomly initialize W and b Repeat until Convergence:

- Calculate Gradient:
 - dJ/dW and dJ/db
- Update Parameters:
 - $W = W \alpha \cdot dJ/dW$
 - $B = b \alpha \cdot dJ/db$

α (alpha): learning rate

Cost Function

 $J(W, b) = 1/2m \sum (predicted-actual)^2$

• m: number of training examples

Objective: minimize the cost function J(W,b) by updating parameters W and b iteratively

AlphaFold Structure

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

AlphaFold Structure

Database Search

Genetic Database Search

- Big Fantastic Database (BFD)
- Multiple Sequence Alignment (MSA)

Structure Database Search

- Protein Data Bank (PDB)
- The 3D Structure of Proteins
- X-ray crystallography

Debora S. Marks et al. December 7, 2011. https://doi.org/10.1371/journal.pone.0028766

AlphaFold Structure

Introduction to Transformers

Attention is all you need, Google Brain (2017)

Application Area

Natural Language Processing

Notable Models

GPT-2, GPT-3, Gemini, Google BERT, AlphaFold2

Transformer Components

Embedding Input
Multi-Head Attention
Feed Forward Neural Network

Ashish Vaswani et al. 12 Jun 2017. https://arxiv.org/abs/1706.03762

- MSA Representation Transformer
- Pair Representation Transformer

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

Attention Mechanism

Capture Dependencies and Relationships within Input Sequence

- Row-wise and Column-wise Attention ($Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$)
- Feed Forward Neural Network ($FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$)

- Row-wise and Column-wise Attention ($Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$)
- Feed Forward Neural Network ($\mathrm{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$)

- Row-wise and Column-wise Attention ($Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$)
- Feed Forward Neural Network ($FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$)

Pair Representation Transformer

- **Triangle Updates**
- Self-Attention
- Feed Forward Neural Network

Triangle multiplicative update

using 'outgoing' edges

Triangle multiplicative update using 'incoming' edges

Pair representation (r,r,c)

Corresponding edges in a graph

Triangle self-attention around starting node

Triangle self-attention around ending node

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

- Row-wise and Column-wise Attention ($Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$)
- Feed Forward Neural Network ($\mathrm{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$)

AlphaFold Structure

Structure Module

Input

- Single Representation
- Pair Representation
- Backbone Frames

Output

- 3D Model of the Protein
- Cartesian
 Coordinates in Protein Data
 Bank (PDB) Format

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

Structure Module

Input

- Single Representation
- Pair Representation
- Backbone Frames

Output

- 3D Model of the Protein
- Cartesian
 Coordinates in Protein Data
 Bank (PDB) Format

Structure Module

Input

- Single Representation
- Pair Representation
- Backbone Frames

Output

- 3D Model of the Protein
- Cartesian
 Coordinates in Protein Data
 Bank (PDB) Format

AlphaFold Structure

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

Machine Learning Model Overview

Model Representation

 $Model = W \cdot XT + b$

W: Weight matrix

• X: Input features

• B: Bias term

Training Process

Initialization: randomly initialize W and b Repeat until Convergence:

- Calculate Gradient:
 - dJ/dW and dJ/db
- Update Parameters:
 - $W = W \alpha \cdot dJ/dW$
 - $B = b \alpha \cdot dJ/db$

α (alpha): learning rate

Cost Function

 $J(W, b) = 1/2m \sum (predicted-actual)^2$

• m: number of training examples

Objective: minimize the cost function J(W,b) by updating parameters W and b iteratively

AlphaFold Cost Function

$$\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 2.0\mathcal{L}_{msa} + 0.01\mathcal{L}_{conf} & training \\ 0.5\mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 2.0\mathcal{L}_{msa} + 0.01\mathcal{L}_{conf} + 0.01\mathcal{L}_{exp \, resolved} + 1.0\mathcal{L}_{viol} & fine-tuning \end{cases}$$

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

L (FAPE): Frame Alined Point Error (FAPE) loss

L (aux): auxiliary loss from the Structure Module

L (dist): averaged cross-entropy loss for distogram prediction

L (msa): averaged cross-entropy loss for masked MSA prediction

L (conf): model confidence loss

L (exp): experimentally resolved loss

L (viol): violation loss

Achievements

- First Place in the 14th Critical Assessment of Protein Structure Prediction (CASP14)
- Median Backbone Accuracy: 0.96 Å
- All-Atom Accuracy of AlphaFold: 1.5 Å
- Predicted 98.5% of the Human Proteome
- Database with 214 Million Protein Structure Predictions

John Jumper et al. 15 July 2021. https://www.nature.com/articles/s41586-021-03819-2

Achievements

- First Place in the 14th Critical Assessment of Protein Structure Prediction (CASP14)
- Median Backbone Accuracy: 0.96 Å
- All-Atom Accuracy of AlphaFold: 1.5 Å
- Predicted 98.5% of the Human Proteome
- Database with 214 Million Protein Structure Predictions

Median Free-Modelling Accuracy

References

- [1] Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021)
- [2] Tunyasuvunakool, K., Adler, J., Wu, Z. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).
- [3] Senior, A.W., Evans, R., Jumper, J. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).
- [4] Big Fantastic Database. Accessed 14 January 2024.
- [5] Wang, S., Zhou, W. & Jiang, C. A survey of word embeddings based on deep learning. Computing 102, 717–740 (2020). https://doi.org/10.1007/s00607-019-00768-7.
- [6] Chunyan Xu, Zhen Cui, Xiaobin Hong, Tong Zhang, Jian Yang, Wei Liu. Graph Inference Learning for Semi-supervised Classification.
- [7] Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic acids research 47, no. D1 (2019): D520-D528.
- [8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. Attention Is All You Need.
- [9] Richard E. Turner. An Introduction to Transformers.
- [10] G. Bebis and M. Georgiopoulos, Feed-forward neural networks, in IEEE Potentials, vol. 13, no. 4, pp. 27-31, Oct.-Nov. 1994, doi: 10.1109/45.329294.

Thank you for your attention