Matthias Puech^{1,2} Yann Régis-Gianas²

¹Dept. of Computer Science, University of Bologna

 $^2 \text{University Paris 7, CNRS, and INRIA, PPS, team } \pi r^2$

June 2011

INRIA - Gallium

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages $\,$

... And yet,

Workflow of programming and formal mathematics is still largely inspired by legacy software development (emacs, make, svn, diffs...)

A paradoxical situation

Observation

We have powerful tools to mechanize the metatheory of (proof) languages

... And yet,

Workflow of programming and formal mathematics is still largely inspired by legacy software development (emacs, make, svn, diffs...)

Isn't it time to make these tools metatheory-aware?

Incrementality in programming \mathcal{E} proof languages

Q

: Do you spend more time writing code or editing code?

Today, we use:

- separate compilation
- dependency management
- version control on the scripts
- interactive toplevel with global rollback (Coq)

Incrementality in programming \mathcal{E} proof languages

Q

: Do you spend more time writing code or editing code?

Today, we use:

- separate compilation
- dependency management
- version control on the scripts
- interactive toplevel with global rollback (Coq)

... ad-hoc tools, code duplication, hacks...

Examples

- diff's language-specific options, lines of context...
- git's merge heuristics
- ocamldep vs. ocaml module system
- coqtop's rigidity

In an ideal world...

- Edition should be incrementally communicated to the tool
- The impact of changes visible "in real time"
- No need for separate compilation, dependency management...

In an ideal world...

- Edition should be incrementally communicated to the tool
- The impact of changes visible "in real time"
- No need for separate compilation, dependency management...

Types are good witnesses of this impact

In an ideal world...

- Edition should be incrementally communicated to the tool
- The impact of changes visible "in real time"
- No need for separate compilation, dependency management...

Types are good witnesses of this impact

Applications

- non-(linear|batch) user interaction
- typed version control systems
- type-directed programming
- tactic languages

In this talk, we focus on...

- ... building a procedure to type-check local changes
 - What data structure for storing type derivations?
 - What language for expressing changes?

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

Tools

The LF logical framework Monadic LF

Typing by annotating

The typing/committing process

What does it do?

Example

Regaining version management

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

Tools

The LF logical framework

Typing by annotating

The typing/committing process

What does it do?

Example

Regaining version management

version management	
script files	
parsing	
type-checking	

• AST representation

• AST representation

• AST representation

- AST representation
- Typing annotations

- AST representation
- Typing annotations

Yes, we're speaking about (any) typed language.

A type-checker

```
val check : env \rightarrow term \rightarrow types \rightarrow bool
```

- builds and checks the derivation (on the stack)
- conscientiously discards it

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

More precisely

Given a well-typed $\mathcal{R}: repository$ and a $\delta: delta$ and

 $\mathsf{apply}: repository \to delta \to derivation \ ,$

an incremental type-checker

 $\mathsf{tc}: repository \to delta \to bool$

decides if $\mathsf{apply}(\delta, \mathcal{R})$ is well-typed in $O(|\delta|)$. (and not $O(|\mathsf{apply}(\delta, \mathcal{R})|)$)

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

More precisely

Given a well-typed $\mathcal{R}: repository$ and a $\delta: delta$ and

 $\mathsf{apply}: repository \to delta \to derivation \ ,$

an incremental type-checker

 $\texttt{tc}: repository \rightarrow delta \rightarrow repository\ option$

decides if $\mathsf{apply}(\delta, \mathcal{R})$ is well-typed in $O(|\delta|)$. (and not $O(|\mathsf{apply}(\delta, \mathcal{R})|)$)

Goal Type-check a large derivation taking advantage of the knowledge from type-checking previous versions Idea Remember all derivations!

from

\mathbf{to}


```
\begin{array}{lll} \textbf{let rec} & \textbf{check env t a} = \\ & \textbf{match t with} \\ | & \dots & \rightarrow \dots \textbf{ false} \\ | & \dots & \rightarrow \dots \textbf{ true} \\ \\ \textbf{and infer env t} = \\ & \textbf{match t with} \\ | & \dots & \rightarrow \dots \textbf{ None} \\ | & \dots & \rightarrow \dots \textbf{ Some a} \\ \end{array}
```

```
let table = ref ([] : environ \times term \times types) in
let rec check env t a =
  if List . mem (env,t,a) ! table then true else
    match t with
    | \dots \rightarrow \dots false
      \dots \rightarrow \dots table := (env,t,a)::! table; true
and infer env t =
  try List .assoc (env,t) !table with Not_found \rightarrow
    match t with
    | \dots \rightarrow \dots None
    \cdots \rightarrow \cdots table := (env,t,a )::! table; Some a
```

Syntactically

+ lightweight, efficient implementation

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Semantically

- external to the type system (meta-cut) What does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf} \Rightarrow \Gamma} \qquad \qquad \frac{\Gamma_1 \vdash J_1 \text{ wf} \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf} \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf} \Rightarrow \Gamma_n[J_n][J]}$$

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Semantically

- external to the type system (meta-cut) What does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf } \Rightarrow \Gamma} \qquad \qquad \frac{\Gamma_1 \vdash J_1 \text{ wf } \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf } \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf } \Rightarrow \Gamma_n[J_n][J]}$$

- imperative (introduces a dissymmetry)

Syntactically

- + lightweight, efficient implementation
- + repository = table, delta = t
- syntactic comparison (no quotient on judgements)
 What if I want e.g. weakening or permutation to be taken into account?

Semantically

- external to the type system (meta-cut) What does it mean logically?

$$\frac{J \in \Gamma}{\Gamma \vdash J \text{ wf } \Rightarrow \Gamma} \qquad \qquad \frac{\Gamma_1 \vdash J_1 \text{ wf } \Rightarrow \Gamma_2 \qquad \dots \qquad \Gamma_{n-1}[J_{n-1}] \vdash J_n \text{ wf } \Rightarrow \Gamma_n}{\Gamma_1 \vdash J \text{ wf } \Rightarrow \Gamma_n[J_n][J]}$$

- imperative (introduces a dissymmetry)

Mixes two goals: derivation synthesis & object reuse

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

Tools

The LF logical framework

Typing by annotating

The typing/committing process

What does it do?

Example

Regaining version management

Two-passes type-checking

ti = type inference = derivation delta synthesis

tc = type checking = derivation delta checking

 δ = program delta

 δ_{LF} = derivation delta

 \mathcal{R} = repository of derivations

Two-passes type-checking

ti = type inference = derivation delta synthesis

tc = type checking = derivation delta checking

 δ = program delta

 δ_{LF} = derivation delta

 \mathcal{R} = repository of derivations

Shift of trust: ti (complex, ad-hoc algorithm) \rightarrow tc (simple, generic kernel)

The repository \mathcal{R} is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

Operations

- commit δ
- extend the database with Tree/Blob objects
 - add a Commit object
 - update head
- checkout v
- follow v all the way to the Blobs
- diff v_1 v_2 follow simultaneously v_1 and v_2
 - if object names are equal, stop (content is equal)
 - otherwise continue

The repository \mathcal{R} is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

Invariants

- Δ forms a DAG
- if $(x, \mathsf{Commit}\ (y, z)) \in \Delta$ then
 - $(y, \mathsf{Tree}\ t) \in \Delta$
 - $(z, \mathsf{Commit}\ (t, v)) \in \Delta$
- if $(x, \mathsf{Tree}(\vec{y})) \in \Delta$ then for all y_i , either $(y_i, \mathsf{Tree}(\vec{z}))$ or $(y_i, \mathsf{Blob}(s)) \in \Delta$

The repository \mathcal{R} is a pair (Δ, x) :

$$\Delta: x \mapsto (\mathsf{Commit}\ (x \times y) \mid \mathsf{Tree}\ \vec{x} \mid \mathsf{Blob}\ string)$$

Invariants

- Δ forms a DAG
- if $(x, \mathsf{Commit}\ (y, z)) \in \Delta$ then
 - ▶ $(y, \text{Tree } t) \in \Delta$
 - $\blacktriangleright \ (z, \mathsf{Commit} \ (t,v)) \in \Delta$
- if $(x, \mathsf{Tree}(\vec{y})) \in \Delta$ then for all y_i , either $(y_i, \mathsf{Tree}(\vec{z}))$ or $(y_i, \mathsf{Blob}(s)) \in \Delta$

Let's do the same with *proofs*


```
\begin{split} x &= \dots : A \land B \vdash C \\ y &= \dots : \vdash A \\ z &= \dots : \vdash B \\ t &= \lambda a : A \land B \cdot x : \vdash A \land B \rightarrow C \\ u &= (y,z) : \vdash A \land B \\ v &= t \ u : \vdash C \\ w &= \mathsf{Commit}(v,w1) : \mathsf{Version} \end{split}
```

```
\begin{array}{l} x = \ldots : A \wedge B \vdash C \\ y = \ldots : \vdash A \\ z = \ldots : \vdash B \\ t = \lambda a : A \wedge B \cdot x : \vdash A \wedge B \rightarrow C \\ u = (y,z) : \vdash A \wedge B \\ v = t \ u : \vdash C \\ w = \mathsf{Commit}(v,w1) : \mathsf{Version} \qquad , \quad \textcolor{red}{w} \end{array}
```

```
x = \dots : A \wedge B \vdash C
y = \dots : \vdash A
z = \dots : \vdash B
 t = \lambda a : A \wedge B \cdot x : \vdash A \wedge B \rightarrow C
u = (y, z) : \vdash A \land B
v = t \ u : \vdash C
w = \mathsf{Commit}(v, w1) : \mathsf{Version}
p = \dots : \vdash B
q = (y, p) : \vdash A \land B
r = t \ q : \vdash C
s = \mathsf{Commit}(r, w) : \mathsf{Version}
```

```
x = \dots : A \wedge B \vdash C
y = \dots : \vdash A
z = \dots : \vdash B
 t = \lambda a : A \wedge B \cdot x : \vdash A \wedge B \rightarrow C
u = (y, z) : \vdash A \land B
v = t \ u : \vdash C
w = \mathsf{Commit}(v, w1) : \mathsf{Version}
p = \dots : \vdash B
q = (y, p) : \vdash A \land B
r = t \ q : \vdash C
s = \mathsf{Commit}(r, w) : \mathsf{Version}
```

• A delta is a term t with variables x, y, defined in the repository

- A delta is a term t with variables x, y, defined in the repository
- A repository \mathcal{R} is a flattened, annotated term with a head

- A delta is a term t with variables x, y, defined in the repository
- A repository \mathcal{R} is a flattened, annotated term with a head
- Incrementality by sharing common subterms

- A delta is a term t with variables x, y, defined in the repository
- A repository \mathcal{R} is a flattened, annotated term with a head
- Incrementality by *sharing* common subterms

Invariants

- R forms a DAG
- Annotations are valid wrt. proof rules

Higher-order notion of delta

Problem

Proofs are higher-order objects by nature:

Example

We can't allow sharing in $\vdash t : B$ without instantiating $\vdash x : A$ (scope escape)

Higher-order notion of delta

Solutions

- "first-orderize" your logic (de Bruijn indices, Γ is a list...)
 - + we're done
 - weakening, permutation, substitution etc. become explicit operations
 - delta application possibly has to rewrite the repository (lift)
 - dull dull dull...
- "let *meta* handle it" (the delta language)
 - + known technique (HOAS)
 - + implicit environments = weakening, permutation, substitution for free
 - have to add an instantiation operator

Higher-order notion of delta

Solution

A delta is a term t with variables x, y and boxes $[t]_{y.n}^u$ to jump over lambdas in the repository

Towards a metalanguage of proof repository

Repository language

- 1. name all proof steps
- 2. annote them by their judgement

Delta language

- 1. address sub-proofs (variables)
- 2. instantiate lambdas (boxes)
- 3. check against \mathcal{R}

Menu

The big picture

Incremental type-checking Why not memoization?

Our approach

Two-passes type-checking The data-oriented way

A metalanguage of repository

Tools

The LF logical framework Monadic LF

Typing by annotating

The typing/committing process

What does it do?

Example

Regaining version management

A logical framework for incremental type-checking

LF [Harper et al. 1992] (a.k.a. $\lambda\Pi$) provides a **meta-logic** to represent and validate syntax, rules and proofs of an **object language**, by means of a typed λ -calculus.

dependent types to express object-judgements signature to encode the object language higher-order abstract syntax to easily manipulate hypothesis

A logical framework for incremental type-checking

LF [Harper et al. 1992] (a.k.a. $\lambda\Pi$) provides a **meta-logic** to represent and validate syntax, rules and proofs of an **object** language, by means of a typed λ -calculus.

dependent types to express object-judgements signature to encode the object language higher-order abstract syntax to easily manipulate hypothesis

Examples

$$\begin{array}{c} [x:A] \\ \vdots \\ t:B \\ \hline \lambda x \cdot t:A \to B \end{array} \qquad \begin{array}{c} \text{is-lam}: \quad \Pi A,B: \mathsf{ty} \cdot \Pi t: \mathsf{tm} \to \mathsf{tm} \cdot \\ (\Pi x: \mathsf{tm} \cdot \mathsf{is} \ x \ A \to \mathsf{is} \ (t \ x) \ B) \to \\ \mathsf{is} \ (\mathsf{lam} \ A \ (\lambda x \cdot t \ x))(\mathsf{arr} \ A \ B) \end{array}$$

$$\begin{array}{c} \bullet \\ \hline (x:\mathbb{N}] \\ \hline \lambda x \cdot x:\mathbb{N} \to \mathbb{N} \end{array} \qquad \begin{array}{c} \mathsf{is-lam} \ \mathsf{nat} \ \mathsf{nat} \ (\lambda x \cdot x) \ (\lambda yz \cdot z) \\ : \mathsf{is} \ (\mathsf{lam} \ \mathsf{nat} \ (\lambda x \cdot x)) \ (\mathsf{arr} \ \mathsf{nat} \ \mathsf{nat}) \end{array}$$

A logical framework for incremental type-checking

Syntax

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid a(l)$$

$$t ::= \lambda x \cdot t \mid x(l) \mid c(l)$$

$$l ::= \cdot \mid t, l$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

Judgements

- $\Gamma \vdash_{\Sigma} K$
- $\Gamma \vdash_{\Sigma} A$
- $\Gamma \vdash_{\Sigma} t : A$
- $\Gamma, A \vdash_{\Sigma} l : A$
- \bullet $\vdash \Sigma$

$$\frac{\Gamma \vdash t : A \qquad \Gamma, B[\![x/t]\!] \vdash l : B}{\Gamma, \Pi x : A \cdot B \vdash t, l : C}$$

Remarks

- the spine-form, canonical flavor (β and η -long normal)
- substitution is hereditary (i.e. cut-admissibility / big-step reduction)

Remark

In LF, proof step = term application spine Example is-lam nat nat $(\lambda x \cdot x)$ $(\lambda yz \cdot z)$

Remark

In LF, proof step = term application spine Example is-lam nat nat $(\lambda x \cdot x)$ $(\lambda yz \cdot z)$

Monadic Normal Form (MNF)

Program transformation, IR for FP compilers

Goal: sequentialize all computations by naming them (lets)

Examples

- $f(g(x)) \notin MNF$
- $\begin{array}{ccc} \bullet & \lambda x \cdot f(g(\lambda y \cdot y, x)) & \Longrightarrow \\ \text{ret } (\lambda x \cdot \text{let } a = g(\lambda y \cdot y, x) \text{ in } f(a)) \end{array}$

Positionality inefficiency

Order of lets is irrelevant, we just want non-cyclicity and fast access.

Positionality inefficiency

Order of lets is irrelevant, we just want non-cyclicity and fast access.

$$\begin{array}{l} \text{let } x = \dots \text{ in} \\ \text{let } y = \dots \text{ in} \\ \text{let } z = \dots \text{ in} \\ \vdots \\ \underline{v(\underline{l})} \end{array} \implies \begin{pmatrix} x = \dots \\ y = \dots \\ z = \dots \\ \vdots \end{pmatrix} \vdash \underline{v(\underline{l})}$$

Non-positional monadic calculus

$$\begin{array}{ll} \underline{t} \; ::= \; \operatorname{ret} \; \underline{v} \; | \; \operatorname{let} \; x = \underline{v}(\underline{l}) \; \operatorname{in} \; \underline{t} \; | \; \underline{v}(\underline{l}) \\ \underline{l} \; ::= \; \cdot \; | \; \underline{v}, \underline{l} \\ \underline{v} \; ::= \; x \; | \; \lambda x \cdot \underline{t} \end{array}$$

Positionality inefficiency

Order of lets is irrelevant, we just want non-cyclicity and fast access.

Non-positional monadic calculus

$$\begin{array}{l} \underline{t} \; ::= \; \operatorname{ret} \; \underline{v} \; | \; \underline{\sigma} \vdash \underline{v}(\underline{l}) \\ \underline{l} \; ::= \; \cdot \; | \; \underline{v}, \underline{l} \\ \underline{v} \; ::= \; x \; | \; \lambda x \cdot \underline{t} \\ \underline{\sigma} \; ::= \; \cdot \; | \; \underline{\sigma}[x = \underline{v}(\underline{l})] \end{array}$$

Naming of proof steps

Positionality inefficiency

Order of lets is irrelevant, we just want non-cyclicity and fast access.

Non-positional monadic calculus

$$\begin{array}{l} \underline{t} \; ::= \; \operatorname{ret} \; \underline{v} \; | \; \underline{\sigma} \vdash \underline{v}(\underline{l}) \\ \underline{l} \; ::= \; \cdot \; | \; \underline{v}, \underline{l} \\ \underline{v} \; ::= \; x \; | \; \lambda x \cdot \underline{t} \\ \underline{\sigma} \; : \; x \mapsto \underline{v}(\underline{l}) \end{array}$$

```
\begin{split} K &::= & \Pi x : A \cdot K \mid * \\ A &::= & \Pi x : A \cdot A \mid \sigma \vdash a(l) \\ t &::= & \operatorname{ret} v \mid \sigma \vdash v(l) \\ h &::= & x \mid c \\ l &::= & \cdot \mid v, l \\ v &::= & c \mid x \mid \lambda x \cdot t \\ \sigma &: & x \mapsto h(l) \\ \Sigma &::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}
```

```
\begin{split} K &::= & \Pi x : A \cdot K \mid * \\ A &::= & \Pi x : A \cdot A \mid \sigma \vdash a(l) \\ t &::= & \mathsf{ret} \ v \mid \sigma \vdash v(l) \\ h &::= & x \mid c \\ l &::= & \cdot \mid v, l \\ v &::= & c \mid x \mid \lambda x \cdot t \\ \sigma &: & x \mapsto h(l) \\ \Sigma &::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}
```

$$\begin{split} K & ::= & \Pi x : A \cdot K \mid * \\ A & ::= & \Pi x : A \cdot A \mid \sigma \vdash a(l) \\ t & ::= & \sigma \vdash v \\ h & ::= & x \mid c \\ l & ::= & \cdot \mid v, l \\ v & ::= & c \mid x \mid \lambda x \cdot t \\ \sigma & : & x \mapsto h(l) \\ \Sigma & ::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}$$

$$\begin{split} K &::= & \Pi x : A \cdot K \mid * \\ A &::= & \Pi x : A \cdot A \mid \sigma \vdash a(l) \\ t &::= & \sigma \vdash v \\ h &::= & x \mid c \\ l &::= & \cdot \mid v, l \\ v &::= & c \mid x \mid \lambda x \cdot t \\ \sigma &: & x \mapsto h(l) \\ \Sigma &::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{split}$$

Definition

 \cdot^* : LF \rightarrow monadic LF

One-pass, direct style version of [Danvy 2003]

Type annotation

Remark

Type annotation

Remark

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid \sigma \vdash a(l)$$

$$t ::= \sigma \vdash v : a(l)$$

$$h ::= x \mid a$$

$$l ::= \cdot \mid v, l$$

$$v ::= c \mid x \mid \lambda x : A \cdot t$$

$$\sigma : x \mapsto h(l) : a(l)$$

$$\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

The repository language

Remark

```
Example is-lam nat nat (\lambda x \cdot x) (\lambda yz \cdot z) : is (lam nat (\lambda x \cdot x)) (arr nat nat)
```

$$\begin{array}{lll} \underline{K} & ::= & \Pi x : \underline{A} \cdot \underline{K} \mid * \\ \underline{A} & ::= & \Pi x : \underline{A} \cdot \underline{A} \mid \underline{\sigma} \vdash a(\underline{l}) \\ \\ \mathcal{R} & ::= & \underline{\sigma} \vdash \underline{v} : a(\underline{l}) \\ \underline{h} & ::= & x \mid a \\ \underline{l} & ::= & \cdot \mid \underline{v}, \underline{l} \\ \underline{v} & ::= & c \mid x \mid \lambda x : \underline{A} \cdot \mathcal{R} \\ \underline{\sigma} & : & x \mapsto \underline{h}(\underline{l}) : a(\underline{l}) \\ \\ \Sigma & ::= & \cdot \mid \Sigma[c : A] \mid \Sigma[a : K] \end{array}$$

The repository language

Remark

$$\underline{K} ::= \Pi x : \underline{A} \cdot \underline{K} \mid *
\underline{A} ::= \Pi x : \underline{A} \cdot \underline{A} \mid \underline{\sigma} \vdash a(\underline{l})
\mathcal{R} ::= \underline{\sigma} \vdash \underline{v} : \underline{a(\underline{l})} \qquad \longleftarrow \underline{\sigma} \text{ DAG, binds in } \underline{v} \text{ and } \underline{l}
\underline{h} ::= x \mid a
\underline{l} ::= \cdot \mid \underline{v}, \underline{l}
\underline{v} ::= c \mid x \mid \lambda x : \underline{A} \cdot \mathcal{R}
\underline{\sigma} : x \mapsto \underline{h}(\underline{l}) : \underline{a(\underline{l})}
\Sigma ::= \cdot \mid \Sigma[c : A] \mid \Sigma[a : K]$$

The repository language

Remark

$$\begin{array}{lll} \underline{K} & ::= & \Pi x : \underline{A} \cdot \underline{K} \mid * \\ \underline{A} & ::= & \Pi x : \underline{A} \cdot \underline{A} \mid \underline{\sigma} \vdash a(\underline{l}) \\ \\ \mathcal{R} & ::= & \underline{\sigma} \vdash \underline{v} : \underline{a(\underline{l})} & \longleftarrow \underline{\sigma} \text{ DAG, binds in } \underline{v} \text{ and } \underline{l} \\ \underline{h} & ::= & x \mid a \\ \underline{l} & ::= & \cdot \mid \underline{v}, \underline{l} \\ \underline{v} & ::= & c \mid x \mid \lambda x : \underline{A} \cdot \mathcal{R} \\ \underline{\sigma} & : & x \mapsto \underline{h}(\underline{l}) : \underline{a(\underline{l})} & \longleftarrow \text{ named implementation} \\ \underline{\Sigma} & ::= & \cdot \mid \underline{\Sigma}[c : A] \mid \underline{\Sigma}[a : K] \end{array}$$

The delta language

Syntax

$$K ::= \Pi x : A \cdot K \mid *$$

$$A ::= \Pi x : A \cdot A \mid a(l)$$

$$t ::= \lambda x \cdot t \mid x(l) \mid c(l) \mid [t]_{x,n}^{t}$$

$$l ::= \cdot \mid t, l$$

 $\Sigma ::= \cdot \mid \Sigma[c:A] \mid \Sigma[a:K]$

Judgements

- $\mathcal{R}, \underline{\Gamma} \vdash K \to \underline{K}$
- $\mathcal{R}, \underline{\Gamma} \vdash A \to \underline{A}$
- $\mathcal{R}, \underline{\Gamma} \vdash t : \underline{A} \to \underline{t}$
- $\mathcal{R}, \underline{\Gamma}, \underline{A} \vdash l \rightarrow \underline{l} : \underline{A}$
- $\vdash \Sigma \to \underline{\Sigma}$

Informally

- $\mathcal{R}, \Gamma \vdash_{\Sigma} x \Rightarrow \mathcal{R}$ means "I am what x stands for, in Γ or in \mathcal{R} (and produce \mathcal{R})".
- $\mathcal{R}, \Gamma \vdash_{\Sigma} [t]_{y,n}^u \Rightarrow \mathcal{R}'$ means "Variable y has the form $c(v_1 \dots v_{n-1}(\lambda x \cdot \mathcal{R}'') \dots)$ in \mathcal{R} . Make all variables in \mathcal{R}'' in scope for t, taking u for x. In this new scope, t will produce \mathcal{R}' "

The typing/committing process

$$\mathcal{R}, \underline{\Gamma} \vdash t : \underline{A} \rightarrow \underline{t}$$

What does it do?

- puts t in non-pos. MNF (O(t))
- type-checks t wrt. \mathcal{R} and
- returns \underline{t} i.e. t annotated with types (O(t))

 $partial\ translation: monadic\ LF \rightarrow annotated\ monadic\ LF$

$$\mathcal{R}, \underline{\Gamma}[x:\underline{A}] \vdash t:\underline{B} \to \underline{t}$$

$$\overline{\mathcal{R},\underline{\Gamma}\vdash \lambda x\cdot t: \Pi x:\underline{A}\cdot\underline{B}\rightarrow \lambda x:\underline{A}\cdot\underline{t}}$$

 $\mathbf{partial\ translation}: \ \mathrm{monadic\ LF} \to \mathrm{annotated\ monadic\ LF}$

$$\frac{\underline{\Gamma}(x) : \underline{A} \quad \text{or} \quad \underline{\sigma}(x) : \underline{A}}{(\underline{\sigma} \vdash \underline{v}), \underline{\Gamma} \vdash x \to \underline{A}}$$

 $partial\ translation: monadic\ LF \rightarrow annotated\ monadic\ LF$

$$\frac{\mathcal{R}, \underline{\Gamma} \vdash v : \underline{A} \to \underline{v} \qquad \mathcal{R}, \underline{\Gamma}, \underline{B}[\![x/\underline{v}]\!] \vdash l \to \underline{l} : a(\underline{l})}{\mathcal{R}, \underline{\Gamma}, \Pi x : \underline{A} \cdot \underline{B} \vdash v, l \to \underline{v}, \underline{l} : a(\underline{l})}$$

partial translation: monadic LF \rightarrow annotated monadic LF

OBox
$$\mathcal{R}|_{p} = \lambda x : \underline{B} \cdot \mathcal{R}' \qquad \mathcal{R}, \underline{\Gamma} \vdash u : \underline{B} \to (\underline{\sigma} \vdash \underline{h} : a(\underline{l}))$$

$$\frac{\mathcal{R}' \cup \underline{\sigma}[x = \underline{h} : a(\underline{l})], \underline{\Gamma} \vdash t : \underline{A} \to \underline{t}}{\mathcal{R}, \underline{\Gamma} \vdash [t]_{p}^{u} : \underline{A} \to \underline{t}}$$

 $partial\ translation: monadic\ LF \rightarrow annotated\ monadic\ LF$

$$\begin{split} (\Pi x : \underline{A} \cdot \underline{B}) \llbracket z/\underline{v} \rrbracket &= \Pi x : \underline{A} \llbracket z/\underline{v} \rrbracket \cdot \underline{B} \llbracket z/\underline{v} \rrbracket \\ (\underline{\sigma} \vdash a(\underline{l})) \llbracket z/\underline{v} \rrbracket &= \underline{\sigma} \llbracket z/\underline{v} \rrbracket \vdash a(\underline{l} \llbracket z/\underline{v} \rrbracket) \end{split}$$

$$(\underline{\sigma}[y = x(\underline{l}) : a(\underline{m})]) \llbracket z/\underline{v} \rrbracket &= (\underline{\sigma} \llbracket z/\underline{v} \rrbracket) [y = x(\underline{l} \llbracket z/\underline{v} \rrbracket) : a(\underline{m} \llbracket z/\underline{v} \rrbracket)] \\ (\underline{\sigma}[y = z(\underline{l}) : a(\underline{m})]) \llbracket z/\underline{v} \rrbracket &= \operatorname{red}_{\underline{\sigma}}^y(\underline{v}, \underline{l}) \end{split}$$

$$\operatorname{red}_{\underline{\sigma}}^y(\underline{h} : a(\underline{l}), \cdot) &= \underline{\sigma}[y = \underline{h} : a(\underline{l})] \\ \operatorname{red}_{\underline{\sigma}}^y(\lambda x : \underline{A} \cdot \underline{t}, (\underline{v}, \underline{l})) &= \operatorname{red}_{\underline{\sigma} \cup \underline{\rho}}^y(\underline{w}, \underline{l}) \qquad \text{if} \quad \underline{t} \llbracket x/\underline{v} \rrbracket &= (\underline{\rho} \vdash \underline{w}) \\ \vdots &\vdots \end{split}$$

Properties of the translation

Work in progress...

Theorem (Soundness)

if
$$\Gamma \vdash t : A \ then \ \vdash \Gamma^* \to \underline{\Gamma} \ and \ (\cdot \vdash \underline{\ }), \underline{\Gamma} \vdash A^* \to \underline{A} \ and \ (\cdot \vdash \underline{\ }), \underline{\Gamma} \vdash t^* : \underline{A} \to \underline{t}$$

Definition (Checkout)

Let \cdot^- be the back-translation function of a repository into an LF term.

Theorem (Completeness)

if
$$(\cdot \vdash _), \underline{\Gamma} \vdash t^* : \underline{A} \to \underline{t} \ then \ \underline{\Gamma}^- \vdash \underline{t}^- : \underline{A}^-$$

Theorem (Substitution)

If
$$\mathcal{R}, \underline{\Gamma} \vdash u : \underline{B} \to (\underline{\sigma} \vdash y : \underline{B}) \text{ and } \underline{\Gamma}^-[x : B]\underline{\Delta}^- \vdash t : A \text{ then } (\underline{\sigma} \vdash y : \underline{B}), \underline{\Gamma}\underline{\Delta}\{x/y\} \vdash t\{x/y\} : \underline{B}\{x/y\} \to \mathcal{R}'$$

Example

Signature

$$A \ B \ C \ D:*$$
 $a:(D \to B) \to C \to A$
 $b \ b':C \to B$
 $c:D \to C$
 $d:D$

<u>Terms</u>

$$\begin{array}{rcl} t_1 & = & a(\lambda x \cdot b(c(x)), c(d)) \\ \mathcal{R}_1 & = & [v = c(d) : C] \\ & = & [u = a(\lambda x : D \cdot [w = c(x) : C][w' = b(w) : B] \vdash w' : B, v) : A] \\ & \vdash u : A \\ t_2 & = & a(\lambda y \cdot [b'(w)]_1^x y) \\ \mathcal{R}_2 & = & [v = c(d) : C] \\ & = & [u = a(\lambda y : D \cdot [x = y][w = c(x) : C][w' = b(w) : B] \vdash w' : B, v) : A] \\ & \vdash u : A \end{array}$$

Regaining version management

Just add to the signature Σ :

Version: *

Commit0: Version

Commit : Πt : tm · is $(t, unit) \rightarrow Version \rightarrow Version$

Commit t

$$\text{if} \qquad \mathcal{R} = \sigma \vdash v : \mathsf{Version} \qquad \text{and} \qquad \mathcal{R}, \cdot \vdash_{\Sigma} t : \mathsf{is}(p,\mathsf{unit}) \Rightarrow (\rho \vdash k)$$

then

$$\rho[x = \mathsf{Commit}(p, k, v)] \vdash x : \mathsf{Version}$$

is the new repository

Further work

- metatheory of annotated monadic LF
- from terms to derivations (ti)
- diff on terms
- mimick other operations from VCS (Merge)

Further work

- metatheory of annotated monadic LF
- from terms to derivations (ti)
- diff on terms
- mimick other operations from VCS (Merge)

Thank you!