VRIC: Variable Rate Image Compression with Recurrent Neural Networks

Coding of Audiovisual Contents

Miquel Oller Oliveras & Alvaro Scherk Fontanals Barcelona, December 18, 2017

Table of Contents:

VRIC: An overview of the proposal

Neural Networks Overview

Architectures and Schematics

Results

Conclusions

VRIC: An overview of the

proposal

An overview of the proposal: Abstract¹

- Low-resolution thumbnail images
- Variable fixed encoding size
- Standards do not perform well with low-dimentional images
- Fresh air into image encoding world
- Trained end-to-end

^[1] Proposal by George Toderici et al. All from the Google, Mountain View, CA, USA. Published in ICLR 2016

Neural Networks Overview

Neural Networks Overview: General Knowledge

Basic perceptron Scheme:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m1} & w_{m2} & \cdots & w_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Neural Networks Overview: Auto-Encoder

Auto-Encoder Basic Scheme:

^[2] Depicted as images but any type of data can be used as input

Architectures and Schematics

Architectures and Schematics: General Scheme

Architectures and Schematics: Straight-Forward FC

Encoder:

Decoder:

Straight-Forward Scheme:

Architectures and Schematics: Binary Layer

$$b(x) = x + \epsilon \; \in \{-1, 1\}$$

$$\epsilon \sim \begin{cases} +1 - x & \text{with probability } \frac{1+x}{2}, \\ -x - 1 & \text{with probability } \frac{1-x}{2}. \end{cases}$$

^[3] Method proposed by: Raiko, Tapani, et al. "Techniques for Learning Binary Stochastic Feedforward Neural Networks." [1406.2989] ICLR 2015, 9 Apr. 2015, arxiv.org/abs/1406.2989

Architectures and Schematics: Residual FC

Encoding Scheme:

^[4] Using tanh non-linearities in all layers

Architectures and Schematics: Residual FC

Architectures and Schematics: LSTM Based Scheme

Encoder Block:

Decoder Block:

Architectures and Schematics: LSTM Based Scheme

Encoder:

^[5] Using tanh non-linearities in all layers

Architectures and Schematics: LSTM Based Scheme

Decoder:

Architectures and Schematics: Our LSTM Proposed Scheme

Decoder:

Results

Results: Resources Used

• Framework:

• Computation:

Dataset: CIFAR10 and CIFAR100

Results: Results Overview

- 1. Straight-Forward Fully-Connected
- 2. Resiudal Fully-Connected
 - 16 bpp (2048 B)
 - 4 bpp (512 B)
 - 1 bpp (128 B)
 - 0.5 bpp (64 B)
- 3. Convolutional and Residual Convolutional
- 4. Our LSTM

Results: Parameters to Adjust

- Encoder-Decoder scheme
- Patch size
- Encoded size
- Number of passes
- Training parameters

Results: Little Quizz

What is in the picture?

Results: Little Quizz

What is in the picture?

^{[6] 4}bpp (512B) FC Residual decoded (left) and original (right) 32×32 images

Results: Poor-Quality Results Comparison

Results comparison using 0.5 bpp:

Results: Poor-Quality Results Comparison

Results comparison using 0.5 bpp:

Results: Poor-Quality Results Comparison

	FC	Convolutional Residual	Our LSTM	FC Residual
SSIM	0.7844	0.6932	0.6520	0.8191
MSE	77.942	79.370	81.64	77.527

^[9] Scores shown are the average value over a pre-defined set of 20 random pictures Pictures from right to left: Original, FC, Convolutional Residual, Our LSTM and FC Residual

Results: FC Residual Analysis

[10] From top-left to bottom-right: Original, 0.5 bpp, 1 bpp, 4 bpp 16 bpp

Results: FC Residual Analysis

[11] From top-left to bottom-right: Original, 0.5 bpp, 1 bpp, 4 bpp 16 bpp

Results: FC Residual Analysis

	JPEG	FC Residual		
BPP	1.20	1	4	16
SSIM	0.967	0.8654	0.9478	0.9951
MSE	30.06	74.351	64.952	20.451

^[12] Scores shown are the average value over a pre-defined set of 20 random pictures Pictures from right to left: Original, JPEG, FC Residual using 1, 4 and 16 bpp

Conclusions

Conclusions

- Low variable bitrate coding acomplish
- NN can be applied to image coding
- JPEG solid coding scheme and hard to be outperformed
- Results obtained are fair for an accademic project
- Further improves are needed

VRIC: Variable Rate Image Compression with Recurrent Neural Networks

Coding of Audiovisual Contents

Miquel Oller Oliveras & Alvaro Scherk Fontanals Barcelona, December 18, 2017

