Résumé

La mitose est une étape clé du cycle cellulaire, très préservée chez toutes les cellules eucaryotes, durant laquelle le matériel génétique de la cellule (les chromosomes) est séparé en deux puis réparti de manière égale dans les deux cellules filles. Cette équipartition du matériel génétique est crucialle pour le maintien de la stabilité génétique. Durant ce processus, la cellule forme une plaque métaphasique au centre du fuseau mitotique composé des chromatides sœurs. Chaque chromatide est attachée à son pôle respectif (on parle d'attachement bipolaire) vers lequel elle se dirigera durant l'anaphase.

Les chromatides sont l'unité indivisible du matériel génétique durant la mitose, à l'image des atomes dans une molécule. Initialement chacun de ces « objets » est libre (non attaché) et positionné de manière non ordonné dans le noyau. Toute la compléxité de la mitose est d'attacher chacune des chromatides au bon pôle afin d'exercer des forces sur ces derniers pour les positionner sur la plaque métaphasique au centre du fuseau avant leur séparation et migration vers les pôles durant l'anaphase.

Cette étape de la divison cellulaire requiert donc non seulement un complexe réseau d'intéraction et de signalisation métabolique comme dans beaucoup d'autre processus biologiques mais aussi un fin contrôle spatio-temporel du mouvement et du positionnement des ces objets de grande taille à l'echelle de la cellule: les chromatides.

Il semblerait que l'origine du mouvement des chromosomes proviennent pour une grande part de la dynamique des microtubules. Ce qui est moins certain est la part accordée aux différents processus régulant cette dynamique; que ce soit la dynamique intrinsèque (appelé instabilité dynamique des microtubules) ou l'effet de différentes protéines sur les microtubules comme les MAPs et les kinésines. On notera par ailleurs que le mécanisme de transfert d'énergie entre la dynamique des

microtubules et le mouvement des chromosomes est encore très largement hypothétique.

La dynamique des chromosomes durant la mitose est par ailleurs largement controlée par un grand nombre d'acteurs autres que les microtubules. Certains d'entre eux étant responsables de l'attachement MTs-kinétochore comme les complexes NDC80 et DAM1, tandis que d'autres sont impliqués dans la régulation de la dynamique des microtubules comme la kinésine-8 et la kinésine-13.

Durant mon travail de thèse j'ai étudié la dynamique des chromosomes en mitose chez la levure à fission qui à l'avantage de conserver les mécanismes primordiaux de la mitose avec les eucaryotes supèrieurs. Deux mécanismes que l'on retrouve chez de nombreuses cellules sont l'alignement des chromosomes durant la métaphase ainsi qu'un mouvement de va et vient plus ou moins régulier le long du fuseau aussi appelé oscillations des chromosomes. J'ai montré en analysant les trajectoires des chromosomes que ces deux processus sont pour une large part indépendants chez la levure à fission (article accepté). De plus le processus d'alignement des chromosomes, encore mal compris, est en parti contrôlé par la kinésine-8 via une activité dépendante de la longueur des microtubules. Il semblerait donc qu'une protéine, la kinésine-8, soit capable de fournir une information spatiale le long du fuseau mitotique afin de positionner correctement les chromosomes. Enfin j'ai utilisé un modèle mathématique du fuseau mitotique développé dans l'équipe afin de tester de manière quantitative les hypothèses de mécanisme du centrage des chromosomes par la kinésine-8.

L'ensemble de mon travail s'est donc intéressé au contrôle du mouvement, de l'attachement et du positionnement des chromosomes durant la mitose afin de mieux comprendre la biophysique du fuseau mitotique.

Summary

Mitosis is a highly preserved process in all eukaryotic cells during which genetic material (chromosomes) is divided in two parts and then spread in both daughter cells. This equipartition is crucial for maintaining genetic stability. During this process, cell forms a metaphasic plate at the center of the mitotic spindle composed of sisters chromatid. Each chromatid is attached to his respective pole (called bipolar attachment) toward which it will go during anaphase.

Chromatids are the indivisible units of genetic material during mitosis just like atoms in a molecule. Originally each of these « objects » is not attached and located without a specific order. All the complexity of mitosis is to attach each of the chromatids to the correct pole to be able to exert forces and then position them on the metaphasic plate at the center of the mitotic spindle just before their separation and migration toward the poles during anaphase.

This step of cell division not only requires complex interaction networks and metabolic signaling pathways just like many others biological processes but also a fine spatio-temporal control of the movement and positioning of these big objects relative to the cell size: the chromatids.

It would seems that the origin of chromosome movement comes largely from microtubule dynamic. What is less clear is the portion given to the different processes regulating this dynamic. Whether the intrinsic dynamics (called dynamic instability of microtubules) or the effect of different proteins of microtubules such as MAPs and kinesins. Note also that the energy transfer mechanism between microtubule dynamics and movement of chromosomes is still largely hypothetical.

Moreover chromosome dynamics during mitosis is largely regulated by a large number of actors other than microtubules. Some of them being responsible for the MT-kinetochore attachment such as NDC80 and DAM1 complex. While others are involved in the regulation of MT dynamic such as kinesin-8 and kinesin-13.

During my PhD work I studied chromosome dynamic during mitosis in fission yeast which has the advantage of sharing many fundamental mechanisms of symetric division with higher eukaryotes. Two mechanisms that are found in many cells are chromosome alignment during metaphase and a back and forth movement more or less uniform along the spindle called chromosomes oscillation. By analyzing chromosomes trajectories I showed that both processes are in large part independent in fission yeast (article accepted for publication). Moreover the chromosome alignment process, still not well understood, is in part regulated by the kinesin-8 via a length dependent activity on the microtubules. This suggests that a protein, the kinesin-8, is capable of providing a spatial information along the mitotic spindle to properly position chromosomes. Finally, I used a mathematical model of the mitotic spindle, in order to test quantitatively different hypotheses about chromosome centering mechanism by the kinesin-8.

This work thus examines the control of the movement, the attachment and the positioning of chromosomes during mitosis and seeks to better understand the mitotic spindle biophysics.