INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

EEN-206: Power Transmission and Distribution

Lecture -02

Chapter 1: Introduction

- Various symbols used in power system network
- Single-Phase Vs. Three-Phase
- AC Vs. DC

Introduction

- Electricity is modern society's most convenient and useful form of energy.
- The development of power system has contributed to the <u>phenomenal advances</u> of human kind over past century.
- Components (lines, cable, circuit breakers, generators, transformers, etc.) for generation, transmission and distribution of electrical energy form a huge complex system termed as Electric Power System.
- Modern power system are vast electrical networks
 inter-connecting hundreds of rudimentary systems
 spread over a country giving rise to national grid.
- We are witnessing enormous development in terms of voltage rating, power ratings, components, architecture, planning, etc.
- Power system engineering is the portion of electrical engineering where we study in depth for its design, operation, maintenance and analysis.

Introduction

- Electricity is weightless. It is transported almost with speed of light when switched on.
- The ease of transmission of electrical energy gives rise to a possibility to a generating electrical energy in bulk at the centralized place and transmit it over large distance to be used by a large number of users.

Power Map India

IIT ROORKEE

Historical Background

- Commercial usage of electricity started after 1870s. Arc lamps for light houses and Street lights.
- ➤ 1870's and 1880s; DC power systems were popular. Small systems were sold to factories around the world, both in urban areas, and remote undeveloped areas for industrial/mining use.
- ➤ 1882: Power station at Pearl Station New York by Edison six DC generators supplying power to 59 consumers, 110 V DC, Undergraund Cable 1.5 km, lamp load.
- ➤ 1884: DC Motors were developed by Franck Sprague.
- ➤ 1886: Limitations of DC become apparent, higher losses and voltage drops. Invention of transformer and AC system in France.

Historical Background

- 1886: First practical AC distribution system in USA by William Stanley at Great Barrington, Massachusetts for Westinghouse.
- 1888: Tesla held several patents of ac motors, generators, transformers and transmission system.
- 1889: AC transmission line 4kV, 21 km, single phase, in north America between Willamette falls to Portland by Westinghouse.
- <u>1890</u>: Westinghouse advocated AC and Edison favored DC. There was great controversy over AC or DC. It is popularly know as 'war of currents'.
- 1893: First three phase line in Southern California, 12 km, 2.3 kV,
- 1895: Niagara falls AC power plants (>40 km, 2.3 kV),
- Upto 1921: Phenomenal growth in electric companies, 12 kV, 44 kV, 60 kV.
- 1920: Europe standardized 60 Hz and suspended insulators for HV.
- 1922 (1990) 165 kV -> 1100 kV
- 1954 HVDC transmission system by Swedish Power Board.
- 1972: Back-to-back connected HVDC station providing asynchronous tie between power systems Quebec and New Brunswick.

The of the state o

Advantages of High Voltage Transmission

Voltage Levels Vs. Year

Year	Voltage Level
Upto 1921	12, 44, 60 kV
1922	165
1923	220
1935	287
1953	330
1965	500 kV
1966	765 kV
1990	1100 kV

How exactly voltage is lead to a change? Is it because we are generating more power or is it because of improved efficiencies in transformer or something else?

Voltage Level Classification

The International Electro-technical
 Commission has classified the voltages into the following levels (IEC 60038).

Low Voltage - upto 1 kV

Medium Voltage - 1 kV to 35 kV

High Voltage - 35 kV to 230 kV

Extra High Voltage - 230 kV to 800 kV

Ultra High Voltage - above 800 kV

Symbols in Power System Network

Structure of Power System

Transmission System Topology

- Advantages of interconnections:
 - Improved Stability and Reliability and operational efficiency
 - Reduced reserve capacity
 - Reduced capital cost
 - Effective and economic use of available generation
- Disadvantages of interconnections
 - Fault propagation
 - Higher circuit breaker ratings
 - Proper management of dispatch of power

Single-Phase Vs. Three-Phase

-1.5

-1.5

Comparison of AC and DC Systems

Advantages of DC Lines

- There is no skin effect in DC transmission. Therefore, small cross sectional area conductor required or Lower losses,
- In High Voltage DC Transmission lines, there are no Dielectric losses,
- There is low voltage drop,
- No charging current, best suitable for undersea cable transmission,
- lower tower clearances, require less insulation,
- Lower switching overvoltages,
- No problem of stability and synchronism,

- Transformation of voltage levels
- There are problems in breaking DC current.

Mank