Урок 18 Розв'язування задач. Самостійна робота Мета уроку:

Навчальна. Закріпити в учнів знання з теми «Плавлення і кристалізація. Питома теплота плавлення»; продовжити формування умінь і навичок учнів розв'язувати фізичні задачі, застосовуючи набуті знання.

Розвивальна. Розвивати логічне мислення учнів.

Виховна. Викликати цікавість до вивчення предмету.

Тип уроку: урок закріплення знань.

Обладнання: навчальна презентація, комп'ютер.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

V. САМОСТІЙНА РОБОТА

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

ІІ.ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Фронтальне опитування

- 1. Який процес називають плавленням?
- 2. Який процес називають кристалізацією?
- 3. Від чого залежить кількість теплоти, що виділяється під час кристалізації речовини?
 - 4. Що називають питомою теплотою плавлення речовини?
 - 5. Яким ϵ фізичний зміст питомої теплоти плавлення?
- 6. Як обчислити кількість теплоти, що необхідна для плавлення речовини або виділяється під час її кристалізації?

IV. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. Яка кількість теплоти виділиться в навколишнє середовище при кристалізації 600 г олова?

Дано:

$$m = 600 \text{ г}$$

 $= 0.6 \text{ кг}$
 $\lambda = 59 \frac{\text{кДж}}{\text{кг}}$
 $= 59000 \frac{\text{Дж}}{\text{кг}}$
 $Q - ?$

Розв'язання

$$Q = \lambda m$$
 $Q = 59000 \frac{\text{Дж}}{\text{кг}} \cdot 0,6 \text{ кг} = 35400 \text{ Дж}$

Відповідь: Q = 35,4 кДж

2. Відомо, що на плавлення шматка міді при температурі плавлення витрачено 6,3 МДж енергії. Яка його маса?

Дано:

$$\lambda = 213 \frac{\text{кДж}}{\text{кг}}$$

$$= 213000 \frac{\text{Дж}}{\text{кг}}$$

$$Q = 6,3 \text{ МДж}$$

$$= 6300000 \text{ Дж}$$

$$m = 2$$

Розв'язання

$$Q=\lambda m => m=rac{Q}{\lambda}$$
 $m=rac{6300000\,\mathrm{Дж}}{213000\,rac{\mathrm{Дж}}{\mathrm{K}\Gamma}}pprox 29,58~\mathrm{K}\Gamma$

Відповідь: $m \approx 29,58$ кг

3. Для плавлення шматка льоду, взятого при температурі -5 °C, потрібно 722 кДж тепла. Визначте масу льоду.

\mathcal{A} ано: $t_1 = -5 \, ^{\circ}\text{C}$ $t_2 = 0 \, ^{\circ}\text{C}$ $Q = 722 \, \text{кДж}$ $= 722000 \, \text{Дж}$ $c = 2100 \, \frac{\text{Дж}}{\text{кг} \cdot ^{\circ}\text{C}}$ $\lambda = 332 \, \frac{\text{кДж}}{\text{кг}}$ $= 332000 \, \frac{\text{Дж}}{\text{кг}}$

Розв'язання

$$Q = Q_1 + Q_2$$

$$Q_1 = cm(t_2 - t_1) - \text{нагрівання льоду}$$

$$Q_2 = \lambda m - \text{плавлення льоду}$$
Підставимо формули (2) і (3) в рівняння (1):
$$Q = cm(t_2 - t_1) + \lambda m$$

$$Q = m(c(t_2 - t_1) + \lambda)$$

$$m = \frac{Q}{c(t_2 - t_1) + \lambda}$$

$$[m] = \frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{2}} = \kappa \Gamma$$

$$m = \frac{722000}{2100 \cdot (0 - (-5)) + 332000} = \frac{722000}{342500} \approx 2,1 \text{ (кг)}$$

4. У сталевій коробці масою 250 г розплавляють 100 г свинцю. Яка кількість теплоти витратилася на теплові процеси, якщо початкова температура тіл становила 27 °C?

 $Bi\partial noвiдь: m \approx 2.1 кг.$

Розв'язання

$$Q = Q_{\rm CT} + Q_{\rm CB} + Q_{\rm ПЛ}$$

$$Q_{\rm CT} = c_{\rm CT} m_{\rm CT} (t_{\rm ПЛ} - t) - \text{нагрівання сталі}$$

$$Q_{\rm CB} = c_{\rm CB} m_{\rm CB} (t_{\rm ПЛ} - t) - \text{нагрівання свинцю}$$

$$Q_{\rm ПЛ} = \lambda_{\rm CB} m_{\rm CB} - \text{плавлення свинцю}$$

$$Q = c_{\rm CT} m_{\rm CT} (t_{\rm ПЛ} - t) + c_{\rm CB} m_{\rm CB} (t_{\rm ПЛ} - t) + \lambda_{\rm CB} m_{\rm CB}$$

$$Q = (t_{\rm ПЛ} - t) (c_{\rm CT} m_{\rm CT} + c_{\rm CB} m_{\rm CB}) + \lambda_{\rm CB} m_{\rm CB}$$

$$[Q] = {}^{\circ}\text{C} \cdot \left(\frac{\text{Дж}}{\text{кг} \cdot {}^{\circ}\text{C}} \cdot \text{кг} + \frac{\text{Дж}}{\text{кг} \cdot {}^{\circ}\text{C}} \cdot \text{кг}\right) + \frac{\text{Дж}}{\text{кг}} \cdot \text{кг} = \text{Дж}$$

$$\lambda_{\text{CB}} = 25 \frac{\text{кДж}}{\frac{\text{KF}}{\text{Дж}}}$$
$$= 25000 \frac{\frac{\text{KF}}{\text{KF}}}{Q - ?}$$

$$Q = (327 - 27) \cdot (500 \cdot 0.25 + 140 \cdot 0.1) + 25000 \cdot 0.1$$

= $300 \cdot 139 + 2500 = 44200$ (Дж)

 ${\it Bidnosids:}\ Q=44,2\ {\rm кДж}\ .$

5. У посудині міститься 2 л води, яка має температуру 30 °C. Визначте температуру, що встановиться в посудині, якщо в неї покласти 200 г льоду, температура якого 0 °C.

Дано: $V_{\rm B} = 2 \, \text{л}$ $t_0 = 0 \, ^{\circ}\text{C}$ $t_{\rm B} = 30 \, ^{\circ}\text{C}$ $m_{\rm J} = 200 \, \text{г}$ $= 0.2 \, \text{кг}$ $c_{\rm B} = 4200 \, \frac{\text{Дж}}{\text{кг} \cdot ^{\circ}\text{C}}$ $\lambda = 332 \, \frac{\text{кДж}}{\text{кг}}$ $= 332000 \, \frac{\text{Дж}}{\text{кг}}$ $\rho_{\rm B} = 1000 \, \frac{\text{Дж}}{\text{кг}}$

Розв'язання

$$2$$
 л = 2 дм 3 = $2\cdot 0{,}001$ м 3 = $0{,}002$ м 3
$$m_{_{\rm B}}=\rho_{_{\rm B}}\cdot V_{_{\rm B}}$$

$$m_{_{\rm B}}=1000\frac{{\rm K}\Gamma}{{\rm m}^3}\cdot 0{,}002$$
 м $^3=2$ кг

Перевіряємо кількість теплоти, яка потрібна для танення всього льоду і яку кількість теплоти може віддати вода, охолонувши до 0° C :

$$Q_{_{
m J}} = \lambda \cdot m_{_{
m J}} = 332000 \; rac{{
m Дж}}{{
m kr}} \cdot 0.2 \; {
m kr} = 66400 \; {
m Дж}$$
 $Q_{_{
m B}} = c_{_{
m B}} \cdot (t_{_{
m B}} - t_{_{
m 0}}) = 4200 \; rac{{
m Дж}}{{
m kr}} \cdot 2 \; {
m kr} \cdot 30 ^{\circ}{
m C}$
 $= 252000 \; {
m Дж}$
 $Q_{_{
m J}} < Q_{_{
m B}}$

Як бачимо, вода може віддати значно більше тепла, ніж потрібно для танення льоду. Тому лід не просто розтане весь, але ще й нагріється до певної температури. Складаємо рівняння теплового балансу:

$$\begin{aligned} Q_{\rm B} &= Q_{\rm T} + Q_{\rm H} \\ c_{\rm B} \cdot m_{\rm B} \cdot (t_{\rm B} - t) &= \lambda \cdot m_{\rm A} + c_{\rm B} \cdot m_{\rm A} \cdot (t - t_{\rm 0}) \\ t_{\rm 0} &= 0^{\circ} \mathrm{C} \\ c_{\rm B} \cdot m_{\rm B} \cdot t_{\rm B} - c_{\rm B} \cdot m_{\rm B} \cdot t &= \lambda \cdot m_{\rm A} + c_{\rm B} \cdot m_{\rm A} \cdot t \\ c_{\rm B} \cdot m_{\rm A} \cdot t + c_{\rm B} \cdot m_{\rm B} \cdot t &= c_{\rm B} \cdot m_{\rm B} \cdot t_{\rm B} - \lambda \cdot m_{\rm A} \\ t \cdot c_{\rm B} \cdot (m_{\rm A} + m_{\rm B}) &= c_{\rm B} \cdot m_{\rm B} \cdot t_{\rm B} - \lambda \cdot m_{\rm A} \\ t &= \frac{c_{\rm B} \cdot m_{\rm B} \cdot t_{\rm B} - \lambda \cdot m_{\rm A}}{c_{\rm B} \cdot (m_{\rm A} + m_{\rm B})} \\ [t] &= \frac{\frac{\mathcal{J}_{\rm K}}{\kappa \Gamma \cdot {}^{\circ} \mathrm{C}} \cdot \kappa \Gamma \cdot {}^{\circ} \mathrm{C} - \frac{\mathcal{J}_{\rm K}}{\kappa \Gamma} \cdot \kappa \Gamma}{\frac{\mathcal{J}_{\rm K}}{\kappa \Gamma} \cdot {}^{\circ} \mathrm{C}} = \frac{\mathcal{J}_{\rm K}}{\frac{\mathcal{J}_{\rm K}}{{}^{\circ} \mathrm{C}}} = {}^{\circ} \mathrm{C} \\ t &= \frac{4200 \cdot 2 \cdot 30 - 332000 \cdot 0.2}{4200 \cdot (0.2 + 2)} = \frac{185600}{9240} \approx 20 \; ({}^{\circ} \mathrm{C}). \end{aligned}$$

Відповідь: весь лід розтопиться і в посудині буде вода, температура якої становитиме $t=20\,^{\circ}$ С.

V. САМОСТІЙНА РОБОТА (Тестові завдання ставимо лише номер відповіді, задачі оформлюємо повністю)

- 1. Як перевести тіло з рідкого стану в твердий? (0,5 бали)
- а) Забрати енергію у тіла
- б) Передати тілу енергію
- в) Перехід в твердий стан відбувається мимовільно
- 2. Як називається перехід тіла з твердого стану в рідкий? (0,5 бали)
- а) Нагрівання
- б) Кристалізація
- в) Плавлення
- 3. Температура плавлення срібла 962 °C. Що можна сказати про температуру кристалізації срібла? (0,5 бали)
- a) $t_{KP} = 962 \, {}^{\circ}\text{C}$
- б) $t_{\text{кр}} > 962 \, ^{\circ}\text{C}$
- B) $t_{\rm KD} < 962 \, {\rm ^{\circ}C}$
- 4. Температура тіла під час його плавлення (0,5 бали)
- а) Підвищується
- б) Знижується
- в) Не змінюється
- 5. Золото плавиться при температурі 1065 °C. В якому стані воно знаходиться при температурі 1065,1 °C? (1 бал)
- а) Частину золота в твердому стані, частина в рідкому
- б) В твердому стані
- в) В рідкому стані
- 6. Як називається величина, що показує, скільки енергії потрібно для плавлення 1 кг речовини, взятого при температурі плавлення? (1 бал)
- а) Питома теплота плавлення
- б) Питома теплоємність
- в) Питома теплота конденсації
- 7. Маса платини 10 г. Скільки енергії виділиться при кристалізації платини, якщо платина взята при температурі плавлення? (2 бали)
- 8. Скільки міді, взятої при температурі плавлення, можна розплавити, передавши їй кількість теплоти 126 кДж? (2 бали)
- 9. Яка кількість теплоти необхідна, щоб розплавити 375 г золота, взятого при температурі 25 °С? Зобразіть цей процес на графіку. (4 бали)

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Повторити § 12, Вправа № 12 (4, 7)

Виконане Д/з та сомостійну роботу відправте на Human, Або на елетрону адресу Kmitevich.alex@gmail.com