akubihar.com

2011

Time: 3 hours

Full Marks: 70

Inustructions .

- (i) There are NINE questions in the paper. All questions carry equal marks
- (i.) Attempt FIVE auestions in all.
- Hill Question No. 1 is compulsory
- Choose and write the correct answer (any seven):
 - (a) The (n + 1)th term in Maclantin's series is

$$-i\partial_{x} = \frac{c^{2}}{2} \int_{0}^{\infty} f(x) dx$$

(ii)
$$\frac{x^n}{4a} f^n(a)$$

(iii)
$$\frac{1}{1n}f^n(0)$$

(w)
$$f^n(0)$$

12AK--2500/21

- (b) The angle ϕ between the tangent and the radius vector is given by
 - (i) $\tan \phi = \frac{1}{r} \cdot \frac{d\theta}{dr}$
 - (ii) $\tan \phi = \frac{1}{r} \frac{dr}{d\theta}$
 - (iii) $\tan \phi = r \frac{dr}{d\theta}$
 - (iv) $\tan \phi = r \frac{d\theta}{dr}$

akubihar.com

The formula of L' Hospital's rule is

(i)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \left[\frac{f'(x)}{g'(x)} \right]$$

(iii)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left[\frac{f(a)}{g(a)} \right]$$

(iv)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left[\frac{f'(a)}{g'(a)} \right]$$

- (d) If f(x, y) = c, then $\frac{dy}{dx}$ is
 - (i) $\frac{\partial f}{\partial x}$
 - (ii) $\frac{\partial f}{\partial y}$
 - $\underbrace{\partial f / \partial x}_{jii} \frac{\partial f / \partial x}{\partial f / \partial y}$
 - (iv) $\frac{\partial f'/\partial x}{\partial f/\partial y}$
- (e) The order of differential equation whose general solution is given by

$$y = (c_1 + c_2)\cos(x + c_3) - c_4 e^{x + c_5}$$

where c_1 , c_2 , c_3 , c_4 , c_5 are arbitrary constants is

- (i) 5
- (ii) 4
- (iii) 3
- (iv) 2

The solution of differential equation

$$y\frac{dy}{dx} = x - 1$$

satisfying y(1) = 1 is

- (i) $y^2 = x^2 2x + 2$
- (ii) $y^2 = 2x^2 x 1$
- (iii) $y = x^2 2x + 2$
- (iv) None of these

- (g) If A is a symmetric metrics and $n \in \mathbb{N}$, then A^n is
 - (i) symmetric
 - (ii) skew-symmetric
 - (iii) diagonal matrix
 - (iv) None of these
- 950) If

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 2 & 3 & 2 \end{bmatrix}$$

the top row of A^{-1} is

- (1) [5 6 4]
- (ni) [5 -3 1]
- (iii) [2 0 -1]
- (iv) $\{2-1,\frac{1}{2}\}$
- The sum of eigenvalues of the matrix

15

- (0) 5
- q_{II} 7
- (iii) 9
- (iv) 18

- (j) The value of $\int_0^\infty \frac{t^2}{1+t^4} dt$ is
 - (i) $\frac{\pi}{\sqrt{2}}$
 - (ii) $\frac{\sqrt{\pi}}{2}$
 - $(iii) \frac{\pi}{2}$
 - $(iv) \frac{\pi}{4}$
- 2. (a) If $y = \cos(m \sin^{-1} x)$, then show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$ and hence find $y_n(0)$
 - (b) Determine

$$\lim \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$

as $x \rightarrow 0$.

3. (a) If $u = \log_e (x^3 + y^3 + z^3 - 3xyz)$, then show that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$$

(b) Expand $2x^3 + 7x^2 + x - 6$ in powers of (x - 2)

[Turn Over]

4. (a) If the tangent at (x_1, y_1) to the curve $x^3 + y^3 = a^3$ meets the curve again at (x_2, y_2) , then prove that

$$\frac{x_2}{x_1} + \frac{y_2}{y_1} = 1$$

Find the pedal equation of the curve

$$r^m = a^m \cos m\theta$$

5. (a) Use Gauss-Jordan reduction method to compute the inverse of the matrix

$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

by applying elementary row transformation.

(b) Find the rank by elementary row transformation of

$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

6. (a) Solve by the elimination method (Gauss-Jordan method):

$$2x_1 + x_2 + 2x_3 + x_4 = 6$$

$$4x_1 + 3x_2 + 3x_3 - 3x_4 = -1$$

$$6x_1 - 6x_2 + 6x_3 + 12x_4 = 36$$

$$2x_1 + 2x_2 - x_3 + x_4 = 10$$

akubihar.com

akubihar.com

The matrix A is defined as

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

Find the eigenvalues of

$$3A^3 + 5A^2 - 6A + 2I$$

7. 16/ Solve

$$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$$

(b) Solve :

$$x(x-1)\frac{dy}{dx} - (x-2)y = x^2(2x-1)$$

8. (a) Prove duplication formula

$$\boxed{m \mid m + \frac{1}{2}} = \frac{\sqrt{\pi}}{2^{2m-1}} \boxed{2m}$$

Show that

$$\int_0^{\pi/2} \sin^p \theta \cos^q \theta d\theta = \frac{\left[\frac{p+1}{2} \frac{q+1}{2}\right]}{2\left[\frac{p+q+2}{2}\right]}$$

(Turn Over ,

~ Z

Find the point upon the plane ax + by + cz = p at which the function has a minimum value and find this minimum value.

Define error function and prove that $cri(\omega) = 1$.

akubihar.com