Assignment 1 - Linear Regression

Prajwal Sahu | ME18B114

Importing Libraries

We'll be using common python libraries like numpy, pandas, seaborn etc.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

Importing the Data-sets

We have been provided with cancer incidence and death rate for US counties. Each county has a unique FIPS (Federal Information Processing Standards) Code, and the data is sorted by it.

Data Notes

FIPS - Federal Information Processing Standard. Each area has a unique code.

Incidence_rates - Cases per 100,000 population per year which are age-adjusted to the 2000 US standard population.

Mortality Rate - The measure of number of deaths.

All_Poverty - Population For whom income in the past 12 months is below poverty level.

M_Poverty - Male Population For whom income in the past 12 months is below poverty level.

F_Poverty - Female Population For whom income in the past 12 months is below poverty level.

Med Income - Median household income in the past 12 months

Med_Income_X - Median household income in the past 12 months for the X ethnicity (X - White, Black, Asian, Hispanic etc.).

All_With - Population covered by health insurance.

All Without - Population not covered by health insurance.

M_With, M_Without - Male population covered and not covered by health insurance respectively.

F_With, F_Without - Female population covered and not covered by health insurance respectively.

Avg_Ann_Deaths - Average lung cancer mortalities

Avg_Ann_Incidence - Average lung cancer incidence rate

Our Data Set

We have a merged data set containing Income, Poverty and Health Insurance data as well as the Mortality rate in the various counties with FIPS.

me	rgeddf.he	ad()							
	Unnamed: 0	State	AreaName	All_Poverty	M_Poverty	F_Poverty	FIPS	Med_Income	Med_Inco
0	0	AK	Aleutians East Borough, Alaska	553	334	219	2013	61518.0	
1	1	AK	Aleutians West Census Area, Alaska	499	273	226	2016	84306.0	
2	2	AK	Anchorage Municipality, Alaska	23914	10698	13216	2020	78326.0	
3	3	AK	Bethel Census Area, Alaska	4364	2199	2165	2050	51012.0	
4	4	AK	Bristol Bay Borough, Alaska	69	33	36	2060	79750.0	

Population data

Acquired a data-set from data.world for population estimate in counties in 2015, the year our dataset was collected.

```
In [5]:
         popdf = pd.read_csv('popdata.csv')
         popdf.head()
                    REGION DIVISION STATE COUNTY STNAME
Out[5]:
           SUMLEV
                                                                  CTYNAME POPESTIMATE2015
        0
                40
                         3
                                                                                      4858979
                                                      Alabama
                                                                    Alabama
        1
                50
                         3
                                                      Alabama Autauga County
                                                                                       55347
```

•	JMLEV R	EGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	POPESTIMATE201
2	50	3	6	1	3	Alabama	Baldwin County	203709
3	50	3	6	1	5	Alabama	Barbour County	26489
4	50	3	6	1	7	Alabama	Bibb County	2258:
#ada	ding zero	es to a	djust fo	r our	FIPS			
stat	e = popd	If.STATE	.apply(1	ambda	x: str(x))\		
cour	nty = pop	df.COUN	TY.apply		a x: str(pad(3, '1	x))\ eft', '0')	
stat	:e							
0	1							
1 2	1 1							
3	1							
4	1							
3188	56							
3189 3190	56 56							
3191	56							
3192 Name:	56 : STATE,	Length:	3193, d	ltype:	object			
	nty							
cour								
	000							
0 1	001							
0 1 2 3	001 003 005							
0 1 2 3	001 003 005 007							
0 1 2 3 4	001 003 005 007 							
0 1 2 3 4 3188 3189	001 003 005 007 037 039							
0 1 2 3 4 3188 3189 3190 3191	001 003 005 007 037 039 041 043							
0 1 2 3 4 3188 3189 3190 3191 3192	001 003 005 007 037 039 041	Length	ı: 3193,	dtype:	object			
0 1 2 3 4 3188 3189 3190 3191 3192 Name:	001 003 005 007 037 039 041 043							

Out[9]:		SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	POPESTIMATE2015	F
	0	40	3	6	1	0	Alabama	Alabama	4858979	1(
	1	50	3	6	1	1	Alabama	Autauga County	55347	1(
	2	50	3	6	1	3	Alabama	Baldwin County	203709	1(
	3	50	3	6	1	5	Alabama	Barbour County	26489	1(

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	POPESTIMATE2015	F
4	50	3	6	1	7	Alabama	Bibb County	22583	1(
•••									
3188	50	4	8	56	37	Wyoming	Sweetwater County	44626	56(
3189	50	4	8	56	39	Wyoming	Teton County	23125	56(
3190	50	4	8	56	41	Wyoming	Uinta County	20822	56(
3191	50	4	8	56	43	Wyoming	Washakie County	8328	56(
3192	50	4	8	56	45	Wyoming	Weston County	7234	56(
3193 r	ows × 9 co	olumns							
4									•

Adding Population Estimates to Socio-Economic Data

We merge the 2 dataframes on the FIPS column

```
In [10]:
           popdf['FIPS']=popdf['FIPS'].astype(int)
In [11]:
           # Checking whether both dfs match
           print(sum(pd.Series(mergeddf.FIPS.unique()).isin(popdf.FIPS)), 'matches out of')
           print("%d unique values" % len(mergeddf.FIPS.unique()))
          3134 matches out of
          3134 unique values
In [12]:
           # merging
           mergeddf = mergeddf.merge(popdf ,right_on = 'FIPS',left_on = 'FIPS')
           mergeddf
Out[12]:
                Unnamed:
                           State
                                   AreaName All_Poverty M_Poverty F_Poverty
                                                                                FIPS Med_Income Med_
                                    Aleutians
                                         East
             0
                             \mathsf{AK}
                                                     553
                                                                334
                                                                          219
                                                                                2013
                                                                                          61518.0
                                    Borough,
                                       Alaska
                                    Aleutians
                                                                273
                                                                                2016
                             AK West Census
                                                     499
                                                                          226
                                                                                          84306.0
                                  Area, Alaska
                                   Anchorage
             2
                                                   23914
                                                                                2020
                             AK Municipality,
                                                              10698
                                                                        13216
                                                                                          78326.0
```

Alaska

	Unnamed: 0	State	AreaName	All_Poverty	M_Poverty	F_Poverty	FIPS	Med_Income	Med_
3	3	AK	Bethel Census Area, Alaska	4364	2199	2165	2050	51012.0	
4	4	AK	Bristol Bay Borough, Alaska	69	33	36	2060	79750.0	
							•••		
3129	3129	WY	Sweetwater County, Wyoming	5058	2177	2881	56037	69022.0	
3130	3130	WY	Teton County, Wyoming	1638	1026	612	56039	75325.0	
3131	3131	WY	Uinta County, Wyoming	2845	1453	1392	56041	56569.0	
3132	3132	WY	Washakie County, Wyoming	1137	489	648	56043	47652.0	
3133	3133	WY	Weston County, Wyoming	958	354	604	56045	57738.0	

3134 rows × 34 columns

Data Preprocessing

Checking for Null Values in our dataframe

In [14]:	merg	eddf								
Out[14]:		Unnamed:	State	AreaName	All_Poverty	M_Poverty	F_Poverty	FIPS	Med_Income	Med_
	0	0	AK	Aleutians East Borough, Alaska	553	334	219	2013	61518.0	
	1	1	AK	Aleutians West Census Area, Alaska	499	273	226	2016	84306.0	

	Unnamed: 0	State	AreaName	All_Poverty	M_Poverty	F_Poverty	FIPS	Med_Income	Med_
2	2	AK	Anchorage Municipality, Alaska	23914	10698	13216	2020	78326.0	
3	3	AK	Bethel Census Area, Alaska	4364	2199	2165	2050	51012.0	
4	4	AK	Bristol Bay Borough, Alaska	69	33	36	2060	79750.0	
•••									
3129	3129	WY	Sweetwater County, Wyoming	5058	2177	2881	56037	69022.0	
3130	3130	WY	Teton County, Wyoming	1638	1026	612	56039	75325.0	
3131	3131	WY	Uinta County, Wyoming	2845	1453	1392	56041	56569.0	
3132	3132	WY	Washakie County, Wyoming	1137	489	648	56043	47652.0	
3133	3133	WY	Weston County, Wyoming	958	354	604	56045	57738.0	

3134 rows × 27 columns

```
In [15]:
            # missing value count
            for col in mergeddf.columns:
                  print((col, sum(mergeddf[col].isnull())))
            ('Unnamed: 0', 0)
            ('State', 0)
            ('AreaName', 0)
           ('All_Poverty', 0)
('M_Poverty', 0)
('F_Poverty', 0)
            ('FIPS', 0)
            ('Med_Income', 1)
           ('Med_Income_White', 2)
('Med_Income_Black', 1210)
('Med_Income_Nat_Am', 1660)
            ('Med_Income_Asian', 1757)
            ('Hispanic', 681)
            ('M_With', 0)
            ('M_Without', 0)
            ('F_With', 0)
            ('F_Without', 0)
            ('All_With', 0)
            ('All_Without', 0)
            ('fips_x', 0)
            ('Incidence_Rate', 0)
```

```
('Avg_Ann_Incidence', 0)
('recent_trend', 0)
('fips_y', 0)
('Mortality_Rate', 0)
('Avg_Ann_Deaths', 0)
('POPESTIMATE2015', 0)
```

As a significant amount of data is missing, we should drop the income ethnicity data.

```
In [16]:
          mergeddf.drop(['Med_Income_White', 'Med_Income_Black', 'Med_Income_Nat_Am',
                        'Med_Income_Asian', 'Hispanic'], axis=1, inplace=True)
```

Dealing with Strings

We notice some strings in the Data. Let's find out the data types

```
In [17]:
        def get_types(col_name):
           ts = (pd.Series([type(i) for i in mergeddf[col_name]]).value_counts())
           print("%s\n" % feature, ts, "\n", "-"*20)
        for feature in mergeddf.columns:
           get_types(feature)
       Unnamed: 0
        <class 'int'>
                     3134
       dtype: int64
       State
        <class 'str'> 3134
       dtype: int64
       AreaName
        <class 'str'> 3134
       dtype: int64
        ______
       All_Poverty
        <class 'int'> 3134
       dtype: int64
       M_Poverty
        <class 'int'> 3134
       dtype: int64
       F_Poverty
        <class 'int'> 3134
       dtype: int64
        -----
       FIPS
        <class 'int'> 3134
       dtype: int64
        -----
       Med_Income
        <class 'float'> 3134
       dtype: int64
        -----
       M With
        dtype: int64
        -----
       M Without
        <class 'int'> 3134
       dtype: int64
        _____
       F With
```

3134

```
dtype: int64
F Without
<class 'int'> 3134
dtype: int64
All_With
<class 'int'> 3134
dtype: int64
All_Without
 <class 'int'> 3134
dtype: int64
fips x
 <class 'int'> 3134
dtype: int64
 -----
Incidence_Rate
 <class 'float'> 2361
<class 'str'> 499
<class 'int'>
dtype: int64
Avg_Ann_Incidence
<class 'int'> 2714
<class 'str'> 420
dtype: int64
recent_trend
 <class 'str'> 3134
dtype: int64
fips_y
 <class 'int'> 3134
dtype: int64
Mortality_Rate
 <class 'float'> 2539
<class 'str'> 325
<class 'int'> 270
dtype: int64
Avg_Ann_Deaths
<class 'int'> 2809
<class 'str'> 325
dtype: int64
POPESTIMATE2015
<class 'int'> 3134
dtype: int64
```

Cleaning the Data Strings

Mortality Rate

We need to deal with the columns containing the string *.

Our target variable is the Mortality Rate. Therefore the * values in Mortality rate should be dropped

```
In [18]: mergeddf = mergeddf[mergeddf.Mortality_Rate != '*']
```

```
9/17/21, 12:01 PM
```

```
mergeddf.shape
In [19]:
Out[19]: (2809, 22)
```

Med_Income

```
In [20]:
          mergeddf['Med_Income'] = pd.to_numeric(mergeddf.Med_Income)
```

Incidence Rate

We first find out the various nan values

```
In [21]:
          values = []
          for _, j in enumerate(mergeddf.Incidence_Rate):
              try:
                   pd.to_numeric(j)
              except:
                   values.append(j)
          pd.Series(values).value_counts()[:10]
```

```
151
Out[21]: _
                     12
                      5
          73.6 #
          68.2 #
          71.1 #
          97 #
          62.4 #
          64.9 #
          69.5 #
          dtype: int64
```

We will replace string with na.

```
In [22]:
          mergeddf['Incidence_Rate'] = pd.to_numeric(mergeddf.Incidence_Rate, errors='coerce')
```

We fill the empty data with the median.

```
In [23]:
          mergeddf['Incidence_Rate'] = mergeddf.Incidence_Rate.fillna(mergeddf.Incidence_Rate.
          print(sum(mergeddf.Incidence_Rate.isnull()))
         0
```

Avg_Ann_Incidence

Following similar procedure as done above in Incidence_Rate

```
In [24]:
          values = []
          for _, j in enumerate(mergeddf.Avg_Ann_Incidence):
              try:
                   pd.to_numeric(j)
              except:
                   values.append(j)
          pd.Series(values,dtype = str).value_counts()[:10]
```

```
Out[24]: _ _ _ 151
    ___ 12
    3 or fewer 5
    dtype: int64

In [25]: mergeddf['Avg_Ann_Incidence'] = pd.to_numeric(mergeddf.Incidence_Rate, errors='coerc
    mergeddf['Avg_Ann_Incidence'] = mergeddf.Incidence_Rate.fillna(mergeddf.Incidence_Ra
    print(sum(mergeddf.Incidence_Rate.isnull()))
```

Avg_Ann_Deaths

0

Following similar procedure as done above in Incidence_Rate

```
In [26]:
    values = []
    for _, k in enumerate(mergeddf.Avg_Ann_Deaths):
        try:
            pd.to_numeric(k)
        except:
            values.append(k)

    pd.Series(values).value_counts()[:10]

Out[26]: Series([], dtype: int64)

In [27]:
    mergeddf['Avg_Ann_Deaths'] = pd.to_numeric(mergeddf.Incidence_Rate, errors='coerce')
    mergeddf['Avg_Ann_Deaths'] = mergeddf.Incidence_Rate.fillna(mergeddf.Incidence_Rate.
    print(sum(mergeddf.Incidence_Rate.isnull()))
```

Dealing with Categorical Variables

We have the recent trend variable which we have to convert to numerical values using dummy variables.

```
In [28]:
            mergeddf
Out[28]:
                  Unnamed:
                              State
                                       AreaName All_Poverty M_Poverty F_Poverty
                                                                                         FIPS Med_Income
                                                                                                              M_W
                                       Anchorage
               2
                           2
                                 ΑK
                                     Municipality,
                                                         23914
                                                                     10698
                                                                                13216
                                                                                         2020
                                                                                                     78326.0
                                                                                                               1207
                                           Alaska
                                           Bethel
               3
                           3
                                 AK Census Area,
                                                          4364
                                                                      2199
                                                                                 2165
                                                                                         2050
                                                                                                     51012.0
                                                                                                                 63
                                           Alaska
                                        Fairbanks
                                        North Star
               7
                                 ΑK
                                                          7752
                                                                      3523
                                                                                 4229
                                                                                         2090
                                                                                                     71068.0
                                                                                                                406
                                         Borough,
                                           Alaska
                                       Juneau City
                                             and
               9
                                 ΑK
                                                          2110
                                                                      1145
                                                                                  965
                                                                                         2110
                                                                                                     85746.0
                                                                                                                137
                                         Borough,
                                           Alaska
```

	Unnamed: 0	State	AreaName	All_Poverty	M_Poverty	F_Poverty	FIPS	Med_Income	M_W
10	10	AK	Kenai Peninsula Borough, Alaska	5558	2596	2962	2122	63684.0	223
•••									
3129	3129	WY	Sweetwater County, Wyoming	5058	2177	2881	56037	69022.0	198
3130	3130	WY	Teton County, Wyoming	1638	1026	612	56039	75325.0	89
3131	3131	WY	Uinta County, Wyoming	2845	1453	1392	56041	56569.0	91
3132	3132	WY	Washakie County, Wyoming	1137	489	648	56043	47652.0	33
3133	3133	WY	Weston County, Wyoming	958	354	604	56045	57738.0	29

2809 rows × 22 columns

```
In [30]: mergeddf.replace({'recent_Trend' : {'*':'stable'}}, inplace=True)
```

Stable trends doesn't affect our model, so we create dummy variables for rising and falling

```
In [31]:     def f(x, term):
        if x == term:
            return 1
        else:
            return 0
In [32]:     mergeddf['rising'] = mergeddf.recent_trend.apply(lambda x: f(x, term='rising'))
```

mergeddf['falling'] = mergeddf.recent_trend.apply(lambda x: f(x, term='falling'))

In [33]:

In [34]:

mergeddf

t[34]:		Unnamed:	State	AreaNamo	All_Poverty	M Poverty	E Poverty	FIPS	Med_Income	M_W
		0	State	Aleanaille	All_Poverty	ivi_Poverty	r_Poverty	rirs	wieu_income	
	2	2	AK	Anchorage Municipality, Alaska	23914	10698	13216	2020	78326.0	1207
	3	3	AK	Bethel Census Area, Alaska	4364	2199	2165	2050	51012.0	63
	7	7	AK	Fairbanks North Star Borough, Alaska	7752	3523	4229	2090	71068.0	406
	9	9	AK	Juneau City and Borough, Alaska	2110	1145	965	2110	85746.0	137
	10	10	AK	Kenai Peninsula Borough, Alaska	5558	2596	2962	2122	63684.0	223
	•••									
	3129	3129	WY	Sweetwater County, Wyoming	5058	2177	2881	56037	69022.0	198
	3130	3130	WY	Teton County, Wyoming	1638	1026	612	56039	75325.0	89
	3131	3131	WY	Uinta County, Wyoming	2845	1453	1392	56041	56569.0	91
	3132	3132	WY	Washakie County, Wyoming	1137	489	648	56043	47652.0	33
	3133	3133	WY	Weston County, Wyoming	958	354	604	56045	57738.0	29
	2809 r	ows × 24 co	olumns							
	4									>
7										
5]:	# or	iginal col	umn no	longer nee	eded					
	merg	eddf.drop(['rece	ent_trend'],	axis=1,inp	lace = True	e)			

Data is cleaned.

Dropping unnecessary columns

```
finaldf = mergeddf.drop(['Unnamed: 0','State','AreaName','FIPS','fips_x','fips_y'],a
In [36]:
In [37]:
           finaldf.head()
Out[37]:
              All_Poverty M_Poverty F_Poverty Med_Income M_With M_Without F_With F_Without All_V
           2
                   23914
                             10698
                                       13216
                                                   78326.0
                                                            120747
                                                                        23245 122426
                                                                                          21393
                                                                                                  243
           3
                                                   51012.0
                   4364
                              2199
                                        2165
                                                             6396
                                                                         2708
                                                                                6627
                                                                                           1774
                                                                                                   13
           7
                   7752
                              3523
                                        4229
                                                   71068.0
                                                            40605
                                                                         6957 40210
                                                                                           5322
                                                                                                   80
           9
                   2110
                              1145
                                         965
                                                   85746.0
                                                            13739
                                                                         2433
                                                                               13582
                                                                                           2213
                                                                                                   27
          10
                    5558
                              2596
                                        2962
                                                   63684.0
                                                                         6435
                                                                                           5433
                                                            22391
                                                                                21668
```

Determining Correlation

We'll check correlation between similar variables to decide which ones to use for our model

Poverty

```
In [38]: sns.pairplot(finaldf[['All_Poverty','M_Poverty','F_Poverty','Med_Income']])
```

Out[38]: <seaborn.axisgrid.PairGrid at 0x2c5ba0e5a30>

We can drop M_Poverty and F_Poverty as we see very high correlation between the gender related Poverty data.

```
In [40]: finaldf = finaldf.drop(['M_Poverty', 'F_Poverty'],axis=1)
```

Health Insurance

```
In [41]:
sns.pairplot(finaldf[['M_With','M_Without','F_With','F_Without','All_With','All_With
```

Out[41]: <seaborn.axisgrid.PairGrid at 0x2c5bcab7340>

Similar to Poverty, We can drop M_With, M_Without, F_With, F_Without due to high correlation.

Incidence, Death and Incidence Rate

```
In [45]:
    cols = ['Avg_Ann_Deaths','Incidence_Rate','Avg_Ann_Incidence']
    sns.set(style='whitegrid', context='notebook')
    sns.pairplot(finaldf[cols],size=2)
    plt.show()
```


Since Avg_Ann_Deaths, Incidence_Rate and Avg_Ann_Incidence Represent same thing

(confirmed by the correlation heatmap), we can keep the already cleaned Incidence_Rate and drop the other 2.

```
In [47]: finaldf = finaldf.drop(['Avg_Ann_Deaths','Avg_Ann_Incidence'],axis=1)
```

Normalizing Data by Population

We create new columns with Population Normalization for Poverty and Health Insurance Data. We use the Population estimates we acquired.

In [48]:	fina	ldf						
Out[48]:		All_Poverty	Med_Income	All_With	All_Without	Incidence_Rate	Mortality_Rate	POPESTIMAT
	2	23914	78326.0	243173	44638	61.5	47.3	2
	3	4364	51012.0	13023	4482	62.7	58.3	
	7	7752	71068.0	80815	12279	58.1	54	
	9	2110	85746.0	27321	4646	35.1	34.4	
	10	5558	63684.0	44059	11868	64.9	50.1	
	•••							
	3129	5058	69022.0	38491	6001	39.9	28.4	
	3130	1638	75325.0	18503	3750	23.7	29.1	
	3131	2845	56569.0	17843	2916	31.7	22.1	
	3132	1137	47652.0	6839	1394	50.0	38.2	
	3133	958	57738.0	6014	768	44.9	43.5	

2809 rows × 9 columns

```
In [49]:
           for col in ['All_Poverty','All_With', 'All_Without']:
                finaldf[col + "_PN"] = finaldf[col] / finaldf.POPESTIMATE2015 * 10**5
In [50]:
           finaldf
Out[50]:
                 All_Poverty
                             Med_Income All_With All_Without Incidence_Rate Mortality_Rate POPESTIMAT
              2
                      23914
                                  78326.0
                                            243173
                                                          44638
                                                                           61.5
                                                                                          47.3
              3
                       4364
                                  51012.0
                                             13023
                                                                                          58.3
                                                           4482
                                                                           62.7
              7
                       7752
                                  71068.0
                                             80815
                                                          12279
                                                                           58.1
                                                                                           54
              9
                       2110
                                  85746.0
                                                                                          34.4
                                             27321
                                                          4646
                                                                           35.1
             10
                       5558
                                  63684.0
                                             44059
                                                          11868
                                                                           64.9
                                                                                          50.1
                       5058
                                  69022.0
                                             38491
                                                           6001
                                                                           39.9
                                                                                          28.4
```

	All_Poverty	Med_Income	All_With	All_Without	Incidence_Rate	Mortality_Rate	POPESTIMAT
3130	1638	75325.0	18503	3750	23.7	29.1	
3131	2845	56569.0	17843	2916	31.7	22.1	
3132	1137	47652.0	6839	1394	50.0	38.2	
3133	958	57738.0	6014	768	44.9	43.5	

2809 rows × 12 columns

→

Dropping the non-normalized columns

In [51]: finaldf = finaldf.drop(['All_Poverty','All_With','All_Without'],axis=1)

In [52]: finaldf

Out[52]: Med_Income Incidence_Rate Mortality_Rate POPESTIMATE2015 rising falling All_Poverty_P 2 78326.0 61.5 47.3 298695 8006.16013 3 51012.0 62.7 58.3 0 24317.39663 17946 0 7 71068.0 58.1 54 99631 7780.71082 9 85746.0 35.1 34.4 32756 0 6441.5679! 10 63684.0 64.9 50.1 58059 9573.02054 3129 69022.0 39.9 28.4 44626 11334.19979 3130 75325.0 23.7 29.1 23125 0 0 7083.24324 3131 56569.0 31.7 22.1 20822 13663.43290 38.2 3132 47652.0 50.0 8328 0 13652.7377! 3133 57738.0 44.9 43.5 7234 13243.01907

2809 rows × 9 columns

Visualising Final Data and Exploratory Analysis

In [53]: finaldf.describe()

Out[53]:		Med_Income	Incidence_Rate	POPESTIMATE2015	rising	falling	All_Poverty_PN
	count	2809.000000	2809.000000	2.809000e+03	2809.000000	2809.000000	2809.000000
	mean	46812.890352	70.174404	1.139303e+05	0.013884	0.070132	16251.736718
	std	12420.272665	17.008618	3.463393e+05	0.117030	0.255414	6119.212012
	min	19328.000000	13.500000	2.302000e+03	0.000000	0.000000	2598.617910
	25%	38698.000000	59.800000	1.484400e+04	0.000000	0.000000	11867.195818

		Med_Income	Incidence_Rate	POPESTIMATE2015	rising	falling	All_Poverty_PN
5	0%	45048.000000	69.700000	3.118300e+04	0.000000	0.000000	15640.873409
7	′5 %	52149.000000	79.100000	7.916100e+04	0.000000	0.000000	19775.868774
r	nax	123453.000000	203.700000	1.017029e+07	1.000000	1.000000	46489.942720


```
In [55]:
    cm = np.corrcoef(finaldf[cols].values.T)
    sns.set(font_scale=1.5)
    hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size yticklabels=cols, xticklabels=cols})
    plt.show()
```


We don't have any high correlation values, which shows all variables are significant.

Income Trends with Incidence Rate

```
In [56]: sns.jointplot(x='Med_Income',y='Incidence_Rate' ,data=finaldf)
```

Out[56]: <seaborn.axisgrid.JointGrid at 0x2c5c96c6400>


```
In [57]: sns.jointplot(x='All_Poverty_PN',y='Incidence_Rate' ,data=finaldf)
```

Out[57]: <seaborn.axisgrid.JointGrid at 0x2c5c9862c70>

There is clear visual evidence that lower income groups have higher incidence rate.

Trends with Mortality Rate

We use scatterplots for our columns with mortality rate to visualize trends.

```
In [58]: sns.jointplot(x='Med_Income',y='Mortality_Rate' ,data=finaldf)
```

Out[58]: <seaborn.axisgrid.JointGrid at 0x2c5c9b53190>

In [59]: sns.jointplot(x='Incidence_Rate',y='Mortality_Rate',data=finaldf)

Out[59]: <seaborn.axisgrid.JointGrid at 0x2c5c9d24f40>

In [60]: sns.jointplot(x='All_With_PN',y='Mortality_Rate',data=finaldf)

Out[60]: <seaborn.axisgrid.JointGrid at 0x2c5c9f568b0>

In [61]: sns.jointplot(x='All_Without_PN',y='Mortality_Rate',data=finaldf)

Out[61]: <seaborn.axisgrid.JointGrid at 0x2c5cb1113a0>

In [62]: sns.jointplot(x='All_Poverty_PN',y='Mortality_Rate',data=finaldf)

Out[62]: <seaborn.axisgrid.JointGrid at 0x2c5cb2c2fa0>

In [63]: sns.jointplot(x='rising',y='Mortality_Rate',data=finaldf)

Out[63]: <seaborn.axisgrid.JointGrid at 0x2c5cb3a85e0>

In [64]: sns.jointplot(x='falling',y='Mortality_Rate',data=finaldf)

Out[64]: <seaborn.axisgrid.JointGrid at 0x2c5c9ca9790>

Model Building

Training the Model

```
In [66]: from sklearn.linear_model import LinearRegression
In [67]: lm = LinearRegression()
In [68]: model = lm.fit(X,y)
```

Intercept and Coefficients

	Coefficient
Med_Income	-0.000116
All_With_PN	0.000028
All_Without_PN	0.000240
Incidence_Rate	0.656103
rising	-0.986183
falling	0.682052

Metrics and Model Evaluation

```
In [75]:
         #R2 Score of the model
         model.score(X,y)
Out[75]: 0.736365906887327
In [72]:
         predictions = model.predict(X)
In [73]:
         from sklearn import metrics
In [74]:
         # various types of cost functions
         print('MAE:', metrics.mean_absolute_error(y, predictions))
         print('MSE:', metrics.mean_squared_error(y, predictions))
         print('RMSE:', np.sqrt(metrics.mean_squared_error(y, predictions)))
        MAE: 5.240005014185609
        MSE: 51.96484297101189
        RMSE: 7.208664437398365
          ----- THE END ------
```