ACT6100

Analyse de données

H2019

Série 1

Rappels d'algèbre linéaire

1. On définit les matrices

$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$$

et

$$\mathbf{B} = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}.$$

Évaluer AB à la main et vérifier le résultat à l'aide de R.

2. On définit les matrices

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 0 & 9 \end{bmatrix}$$

et

$$\mathbf{B} = \begin{bmatrix} 7 & 0 \\ 3 & 1 \end{bmatrix}.$$

Évaluer $\mathbf{A}^T + \mathbf{B}$ à la main et vérifier le résultat à l'aide de \mathbb{R} .

3. On définit la matrice

$$\mathbf{Z} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 9 & 6 \\ 1 & 2 & 9 \end{bmatrix}.$$

Calculer à la main et à l'aide de R la trace de cette matrice.

4. On définit la matrice

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}.$$

Déterminer à la main et à l'aide de R les valeurs propres de cette matrice.

5. Quelle est la somme des valeurs propres de la matrice

$$\mathbf{H} = \begin{bmatrix} 2 & 1 & 7 & -2 \\ 0 & 3 & 2 & -5 \\ -1 & -1 & 0 & 8 \\ 2 & 2 & -1 & 11 \end{bmatrix}?$$

6. Est-ce que l'ensemble de vecteurs suivant dans un espace en trois dimensions est linéairement dépendants : (-3,0,4), (5,-1,2) et (1,1,3)?

Analyse en composantes principales

1. Soit \mathbf{X} , un vecteur aléatoire de longueur p tel que $E[\mathbf{X}] = \boldsymbol{\mu}$ et $\mathrm{Var}[\mathbf{X}] = \boldsymbol{\Sigma} = \boldsymbol{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^T$, où $\boldsymbol{\Lambda}$ est une matrice diagonale. Après une analyse en composantes principales, les nouvelles variables sont données par l'expression $\mathbf{Y} = \boldsymbol{\Gamma}^T (\mathbf{X} - \boldsymbol{\mu})$. Déterminer l'espérance et la variance de \mathbf{Y} . Interpréter brièvement les résultats.

2. La matrice de variance-covariance d'une base de données est

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & \tau \\ \tau & 1 \end{bmatrix},$$

où
$$0 < \tau < 1$$
.

- (a) Déterminer les valeurs propres de cette matrice.
- (b) On considère maintenant un changement d'échelle dans la variable X_1 (par exemple, MAT8594 un changement d'unité), c'est-à-dire que X_1 devient cX_1 avec c>1. En quoi la décomposition spectrale sera-t-elle affectée?
- 3. Démontrer le résultat de la Proposition 1 des notes de cours.

MAT8594

4. Une analyse en composantes principales est réalisée à partir d'une base de données contenant huit variables. La matrice de corrélation est

$$\mathbf{R} = \begin{bmatrix} 1.00 & -0.20 & -0.60 & -0.88 & 0.71 & 0.74 & 0.88 & 0.81 \\ -0.20 & 1.00 & 0.61 & 0.29 & 0.33 & 0.36 & -0.20 & 0.25 \\ -0.60 & 0.61 & 1.00 & 0.76 & -0.27 & -0.27 & -0.45 & -0.38 \\ -0.88 & 0.29 & 0.76 & 1.00 & -0.70 & -0.68 & -0.84 & -0.81 \\ 0.71 & 0.33 & -0.27 & -0.70 & 1.00 & 0.92 & 0.66 & 0.90 \\ 0.74 & 0.36 & -0.27 & -0.68 & 0.92 & 1.00 & 0.68 & 0.93 \\ 0.88 & -0.20 & -0.45 & -0.84 & 0.66 & 0.68 & 1.00 & 0.80 \\ 0.81 & 0.25 & -0.38 & -0.81 & 0.90 & 0.93 & 0.80 & 1.00 \end{bmatrix}$$

Une décomposition spectrale de cette matrice permet d'obtenir le vecteur de valeurs propres $\lambda = (1.93, 0.13, 0.07, 0.02, 5.28, 0.41, 0.12, K)$, où K est une valeur inconnue.

- (a) Déterminer la valeur de K.
- (b) Quelle proportion de la variabilité des données initiales sera expliquée par les trois premières composantes principales?
- (c) Soit les vecteurs propres

$$\mathbf{a}_i = (-0.117, 0.697, 0.491, 0.204, 0.284, 0.298, -0.091, 0.200)$$

et

$$\mathbf{a}_i = (0.406, -0.016, -0.256, -0.406, 0.377, 0.381, 0.386, 0.410).$$

Déterminer à quelles valeurs propres ils correspondent.

- (d) Définir explicitement l'équation de la première composante principale.
- 5. On souhaite réaliser une analyse en composantes principales à partir d'une base de données contenant deux variables. La Table 1 présente les valeurs pour les dix individus de l'échantillon. La matrice de variance-covariance est donnée par

$$\Sigma = \begin{bmatrix} 1.0000 & 0.4297 \\ 0.4297 & 0.5840 \end{bmatrix}.$$

- (a) Tracer la carte initiale des individus.
- (b) Déterminer la matrice de corrélation.
- (c) Calculer les valeurs propres et les vecteurs propres de la matrice de corrélation.
- (d) Quelle proportion de la variabilité initiale des données est expliquée par la première composante principale?
- (e) Si on considère qu'une seule composante sera conservée, quelle sera la coordonnée de l'individu 7 sur la carte finale des individus?

#	X_1	X_2
1	-1.49	-0.61
2	-0.07	-1.13
3	0.57	-0.73
4	1.22	0.91
5	2.44	1.04
6	0.24	1.24
7	0.25	0.16
8	1.12	0.61
9	-0.35	0.19
10	0.94	-0.13

Table 1 – Individus

- (f) Si on considère que deux composantes sont conservées, quelle est la corrélation entre la variable X_1 et la seconde composante principale?
- 6. La base de données *Rank.csv* disponible sur le site *Moodle* du cours contient plusieurs variables élaborées afin de mesurer la qualité scientifique de 50 universités. En particulier, on s'intéresse aux 6 variables suivantes :
 - **Alumni** : score basé sur le nombre d'alumnis ayant obtenu un prix Nobel ou une médaille Field ;
 - **HiCi** : score basé sur le nombre de membres du personnel académique repris dans la liste des *highly cited researchers Sciences* entre 2002 et 2006;
 - **Award** : score basé sur le nombre de membres du personnel académique ayant obtenu un prix Nobel ou une médaille Field;
 - **NS** : score basé sur le nombre d'articles publiés dans *Nature* et *Sciences* entre 2002 et 2006;
 - **SCI** : score basé sur le nombre d'articles indexés dans *Science Citation Index-expanded* et *Social Science Citation Index 2006* ; et
 - **Size** : moyenne pondérée des cinq mesures précédentes divisées par le nombre d'équivalents temps-plein du personnel académique de l'institution.

Réaliser une analyse en composantes principales à partir des six variables disponibles et répondre brièvement aux questions suivantes à l'aide de R.

- (a) Combien de composantes principales doit-on conserver dans cette analyse?
- (b) Dans cette analyse, quelle proportion de la variabilité totale des données est expliquée par les trois premières composantes?
- (c) Dans la première composante, quelle variable est la moins bien représentée?
- (d) L'analyse a permis de passer d'un espace \mathbb{R}^6 à un espace \mathbb{R}^2 . Quelle proportion de l'information a été perdue à la suite de cette procédure?
- (e) Quelle proportion de la variance initiale de la variable **Award** est expliquée par les deux premières composantes?
- (f) À partir du cercle des corrélations, quelle variable est la moins bien représentée par les deux premières composantes?
- 7. La base de données carsACP.csv disponible sur le site Moodle du cours contient les résultats d'une étude faite pour différentes marques de voitures. Les variables considérées sont
 - $-X_1$: économie;
 - $-X_2$: service;
 - X_3 : non dépréciation de la valeur de la voiture;
 - $-X_4: prix;$

- $-X_5$: design;
- $-X_6$: caractère «sport» de la voiture;
- $-X_7$: sécurité; et
- $-X_8$: facilité de conduite.

Pour chacune des 24 marques considérées, un score est attribué à chacun des ces critères (1 étant le meilleur et 6 étant le moins bon). Le cercle des corrélations obtenu est présenté à la Figure 1 et la carte finale des individus à la Figure 2. Commenter.

- 8. Une étude a été réalisée afin de comparer les niveaux moyens des salaires pour 6 professions dans 24 villes du monde. Les professions considérées sont
 - manoeuvre en bâtiment (**man**),
 - chef de service (**chefserv**),
 - ingénieur (**inge**),
 - employé de banque (banquier),
 - vendeur (**vendeur**) et
 - ouvrier du textile (**ouvrier**).

La variable **indicateur** est une mesure de la qualité de vie globale. Les données sont disponibles dans la base de données *metiers.csv* sur le site *Moodle* du cours. Utiliser R pour répondre aux questions ci-dessous.

- (a) Quelle est la corrélation entre les variables **ouvrier** et **man**?
- (b) Réaliser une analyse en composantes principales en utilisant toutes les variables et tous les individus disponibles dans la base de données **sauf la variable indicateur** (utiliser la même analyse pour les prochaine sous-question). Si on conserve deux composantes principales, quel pourcentage de l'information est perdu?
- (c) Quelle variable est la mieux représentée sur le premier plan factoriel?
- (d) Quelle observation est la moins bien représentée dans le premier plan factoriel?
- 9. On considère deux variables aléatoires indépendantes U_1 et U_2 avec distribution Uniforme sur l'intervalle (0,1). On définit $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \end{bmatrix}^T$, où $X_1 = U_1$, $X_2 = U_2$, $X_3 = U_1 + U_2$ et $X_4 = U_1 U_2$.
 - (a) Calculer la matrice des corrélations de X.
 - (b) On sait que que $\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1 & 0 \end{bmatrix}^T$ et $\mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 & 1 \end{bmatrix}^T$ sont les vecteurs propres correspondant à λ_1 et λ_2 . Quelle pourcentage de l'information se retrouvera dans chacune des 4 dimensions?
- 10. Une ACP a été effectuée sur la matrice de corrélation des variables X_1, \ldots, X_5 avec 6 individus. Les données et les deux premières composantes principales sont présentées dans la Table 2 (à gauche), ainsi que les corrélations entre les variables X_j et les deux premières composantes (à droite). La carte des individus et le cercle de corrélation sont donnés dans la Figure 3.

	X_1	X_2	X_3	X_4	X_5	Y_1	Y_2			Y_1	Y_2
i_1	0.56	1.19	1.76	-1.58	1.80	0.37	0.11		$\overline{X_1}$	-0.87	0.31
i_2	-1.22	1.75	4.05	1.93	1.45	2.48	0.76		X_2	0.66	0.53
i_3	3.10	3.14	1.78	-1.92	1.02	0.02	1.58		X_3	0.83	0.51
i_4	-0.47	0.70	0.19	0.34	4.12	1.12	-2.15		X_4	0.95	-0.11
i_5	4.86	-1.22	-1.17	-4.23	0.63	-3.16	-0.10		X_5	0.50	-0.80
i_6	0.50	-0.38	0.92	-3.05	1.18	-0.83	?	_			

TABLE 2 – A gauche : les variables X_j et les composantes principales Y_k . A droite : les corrélations entre les variables X_j et les composantes principales Y_k .

- (a) Une valeur de l'individu i_6 pour la composante Y_2 est manquante dans la Table 2 (à gauche). Calculer cette valeur.
- (b) Quelle est la valeur principale la plus grande de la matrice de corrélation des variables intiales (X)?
- (c) Commenter la phrase suivante : « Plus de 90% de la première composante Y_1 est déterminée par la variable X_4 . »

MAT8594

- 11. On considère une matrice \mathbf{X} de taille $(m \times d)$ avec d >> m et on définit les matrices $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ et $\mathbf{B} = \mathbf{X} \mathbf{X}^T$. Si \mathbf{u} est un vecteur propre de \mathbf{B} , démontrer que $\mathbf{X}^T \mathbf{u}/||\mathbf{X}^T \mathbf{u}||_2$ est un vecteur propre de la matrice \mathbf{A} . Ce résultat est à la base de la méthode accélérée utilisée dans l'Application 2 des notes de cours.
- 12. La base de données *brains* contient des observations pour 20 individus sur, entre autres, les 6 variables suivantes :

CCMIDSA superficie du corps calleux ¹ (cm²)

FIQ quotient intellectuel

HC circonférence de la tête (cm)

TOTSA superficie totale (cm²)

TOTVOL volume total du cerveau (cm³)

WEIGHT poids du corps (kg).

Les résultats d'une analyse en composantes principales sur la matrice de corrélation sont présentés à la Figure 4 et à la Figure 5.

```
cos2 des variables
                   Dim.2
                            Dim.3
       Dim.1
CCMIDSA 0.6697679994 0.06946701 0.053775764
       FIQ
HC
       TOTSA
       0.4624595541 0.27698830 0.013378111
TOTVOL 0.7734577797 0.01352115 0.002787014
WEIGHT 0.0898547131 0.01231922 0.881231817
cos2 des individus 3, 4, 7 et 8
   Dim.1
             Dim.2
                       Dim.3
3 0.54988433
             0.37126579
                       0.01924192
4 0.65602320
             0.29425953
                       0.02856360
7 0.02577022
            0.06537907
                       0.78652437
8 0.04694529 0.00537898
                       0.84458992
```

Figure 1 – Résultats de l'analyse en composantes principales.

- (a) Le vecteur propre associé à la valeur propre maximale de la matrice de corrélation des six variables est (..., −0.0075, 0.4827, 0.4216, 0.5452, 0.1858). Calculer à trois décimales près la corrélation de la variable CCMIDSA avec la première composante principale.
- (b) Donner une interprétation des trois premières composantes principales. Justifier la réponse à partir des résultats de l'analyse.
- (c) Les vingt individus sont en fait des jumeaux monozygotes: (1,2), (3,4), etc. Contraster les positions des jumeaux (3,4) d'une part les jumeaux (7,8) d'autre part.

^{1.} Le corps calleux du cerveau assure le transfert d'informations entre les deux hémisphères et leur coordination.

Réponses Rappels d'algèbre linéaire

1.

$$\mathbf{AB} = \begin{bmatrix} 3 & 12 & 6 \\ 5 & -2 & 8 \\ 4 & 5 & 7 \end{bmatrix}$$

2.

$$\mathbf{A}^T + \mathbf{B} = \begin{bmatrix} 11 & 0 \\ 5 & 10 \end{bmatrix}$$

- 3. 19
- 4. 2 et 3
- 5. 16
- 6. Les vecteurs sont linéairement indépendants.

Analyse en composantes principales

- 1. $E[\mathbf{Y}] = \mathbf{0}_p$ et $Var[\mathbf{Y}] = \mathbf{\Lambda}$.
- 2. (a) $1 \pm \tau$
 - (b) -
- 3. Démonstration.
- 4. (a) 0.04
 - (b) 0.9525
 - (c) 1.93 pour \mathbf{a}_i et 5.28 pour \mathbf{a}_j
 - (d) $y^1 = (0.406)X_1 + (-0.016)X_2 + \dots + (0.410)X_8$
- 5. (a) La carte initiale des individus est présentée à la Figure 6.

FIGURE 2 – Carte initiale des individus.

(b)

$$\mathbf{R} = \begin{bmatrix} 1 & 0.5622757 \\ 0.5622757 & 1 \end{bmatrix}$$

- (c) $\lambda_1=1.5622757,\ \lambda_2=0.4377243,\ a_{11}=0.7071,\ a_{12}=0.7071,\ a_{21}=-0.7071$ et $a_{22}=0.7071^2$
- (d) 0.78114
- (e) (-0.163, 0.172)
- (f) 0.4678226
- 6. (a) 2
 - (b) 0.9163
 - (c) **SCI**
 - (d) ≈ 0.16
 - (e) ≈ 0.90
 - (f) Alumni
- 7. Il est important de noter dans votre analyse que dans cet exercice, les graphiques obtenus sont inversés (gauche-droite, haut-bas) en raison du type d'encodage des réponses (les petites valeurs étant les meilleures et les grandes valeurs étant les moins bonnes).
- 8. (a) 0.87
 - (b) ≈ 0.0813
 - (c) ouvrier
 - (d) Hong Kong
- 9. (a)

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 1 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 & 1 \end{bmatrix}$$

- (b) Respectivement 0.5, 0.5, 0.0 et 0.0
- 10. (a) -0.2
 - (b) 3.033
 - (c) L'affirmation est fausse. La variable X_4 compte pour environ 30% de la première composante (contribution).
- 11. Démonstration.
- 1. 0.8184
- 2. -
- 3. -

^{2.} Il faut noter que le couple de vecteur propres $-\mathbf{a}_1$ et $-\mathbf{a}_2$ serait également une solution possible puisque les vecteurs propres sont déterminés au signe près.