

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A01N 43/04, A61K 39/02		A1	(11) International Publication Number: WO 99/13720 (43) International Publication Date: 25 March 1999 (25.03.99)
(21) International Application Number: PCT/US98/19600 (22) International Filing Date: 18 September 1998 (18.09.98)		(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 60/059,353 19 September 1997 (19.09.97) US (71) Applicant: THE OHIO STATE UNIVERSITY [US/US]; 1960 Kenny Road, Columbus, OH 43210 (US). (72) Inventors: RIKIHISA, Yasuko; 1120 Woodman Drive, Worthington, OH 43085 (US). OHASHI, Noris; 1210 Chambers Road, Columbus, OH 43212 (US). (74) Agent: DOCHERTY, Pamela, A.; Calfee, Halter & Griswold LLP, 1400 McDonald Investment Center, 800 Superior Avenue, Cleveland, OH 44114 (US).			
<p>(54) Title: OUTER MEMBRANE PROTEIN OF EHRLICHIA CANIS AND EHRLICHIA CHAFFEENSIS</p> <p>(57) Abstract</p> <p>The present invention relates to diagnostic tools for veterinary and human use which are used for serodiagnosing ehrlichiosis in mammals, particularly in members of the Canidae family and in humans. The present invention also provides polynucleotides which encode the outer membrane proteins of <i>E. chaffeensis</i>. The polynucleotides encode an OMP-1 family of proteins of <i>E. chaffeensis</i> and P30 family of proteins of <i>E. canis</i>. The present invention also provides the following isolated proteins of <i>E. chaffeensis</i> OMP-1, OMP-1A, OMP-1B, OMP-1C, OMP-1D, OMP-1E, OMP-1F, OMP-1R, OMP-1S, OMP-1T, OMP-1U, OMP-1V, OMP-1W, OMP-1X, and OMP-1Z, referred to hereinafter collectively as the "OMP family". The present invention also provides the following isolated proteins of <i>E. canis</i> P30, P30-a, P30-1, P30-2, P30-3, P30-4, P30-5, P30-6, P30-7, P30-8, P30-9, and P30-10, referred to hereinafter as the P30 family. The present invention also relates to an assay for diagnosing ehrlichiosis in humans using a recombinant outer membrane protein of <i>E. chaffeensis</i>, particularly OMP-1. The present invention also relates to an assay for diagnosing ehrlichiosis in humans and members of the family Canidae using a recombinant outer membrane protein of <i>E. canis</i>, particularly P30.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

OUTER MEMBRANE PROTEIN OF EHRLICHIA CANIS AND EHRLICHIA CHAFFEENIS

This work was supported by grant RO1 AI40934 from National Institutes of Health. The government has certain rights in this invention.

BACKGROUND OF THE INVENTION

The ehrlichiae are obligate intracellular bacteria that infect circulating leucocytes. *Ehrlichia chaffeensis* infects the monocytes and macrophages in humans and causes human monocytic ehrlichiosis. The clinical manifestations of ehrlichiosis in humans are nonspecific and similar to Rocky Mountain spotted fever. The clinical manifestations include fever, chills, headache myalgia or vomiting and weight loss. Most patients have a history of tick exposure.

Ehrlichia canis infects and causes ehrlichiosis in animals belonging to the family Canidae. Canine ehrlichiosis consists of an acute and a chronic phase. The acute phase is characterized by fever, serous nasal and ocular discharges, anorexia, depression, and loss of weight. The chronic phase is characterized by severe pancytopenia, epistaxis, hematuria, blood in feces in addition to more severe clinical signs of the acute disease. If treated early during the course of the disease, dogs respond well to doxycycline. However, chronically infected dogs do not respond well to the antibiotic. Therefore, early diagnosis is very important for treating canine ehrlichiosis.

The primary diagnostic test for diagnosing canine ehrlichiosis and human ehrlichiosis is the indirect fluorescent antibody (IFA) test. This test uses the etiologic agent *Ehrlichia canis* to diagnose canine ehrlichiosis. The IFA test uses *Ehrlichia chaffeensis* as antigen for diagnosing human ehrlichiosis. The IFA test has, however, serious limitations. The IFA test is subject to false positives because the antigens are made of whole infected cells which comprise many nonspecific proteins which will cross-react with sera from some patients. The IFA test is also subject to false negatives because IFA antigens are unstable and may become inactivated during storage. In addition the IFA test requires a special equipment to perform the test. For example, the IFA test requires a tissue culture system for growing the bacterium that are used to prepare the antigen slides, a fluorescent microscope, and trained persons to evaluate the serum reactivity to the bacterial antigen on the slide.

Tools which permit simpler, more rapid, and objective serodiagnosis of canine ehrlichiosis or human ehrlichiosis are desirable.

SUMMARY OF THE INVENTION

The present invention relates to improved diagnostic tools for veterinary and human use which are used for serodiagnosing ehrlichiosis in mammals, particularly in members of the Canidae family and in humans.

The present invention also provides polynucleotides or nucleic acids which encode the outer membrane proteins of *E. chaffeensis*. The OMP-1 polynucleotide encodes an OMP-1 protein of *E. chaffeensis* having a molecular weight of about 27.7 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG.3B, SEQ ID NO: ___. The OMP-1B polynucleotide encodes an OMP-1B protein of *E.*

chafeensis having a molecular weight of about 28.2 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 4B, SEQ ID NO: ___. The OMP-1C polynucleotide encodes an OMP-1C protein of *E. chafeensis* having a molecular weight of about 27.6 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 5B, SEQ ID NO: ___. The OMP-1D polynucleotide encodes an OMP-1D protein of *E. chafeensis* having a molecular weight of about 28.7 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 6B, SEQ ID NO: ___. The OMP-1E polynucleotide encodes an OMP-1E protein of *E. chafeensis* having a molecular weight of about 27.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 7B, SEQ ID NO: ___. The OMP-1F polynucleotide encodes an OMP-1F protein of *E. chafeensis* having a molecular weight of about 27.9 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 8B, SEQ ID NO: ___. The OMP-1A polynucleotide encodes an OMP-1A protein of *E. chafeensis* having a molecular weight of about 29.6 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 9B, SEQ ID NO: ___. The OMP-1R polynucleotide encodes an OMP-1R protein of *E. chafeensis* having a molecular weight of at least 23 kDa and comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 10B, SEQ ID NO: ___. The OMP-1S polynucleotide encodes an OMP-1S protein of *E. chafeensis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 11B, SEQ ID NO: ___. The OMP-1T polynucleotide encodes an OMP-1T protein of *E. chafeensis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 12B, SEQ ID NO: ___. The OMP-1U polynucleotide encodes an OMP-1U protein of *E. chafeensis* having a molecular weight of about 30.6 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 13B, SEQ ID NO: ___. The OMP-1V polynucleotide encodes an OMP-1V protein of *E. chafeensis* having a molecular weight of about 28.0 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 14B, SEQ ID NO: ___. The OMP-1W polynucleotide encodes an OMP-1W protein of *E. chafeensis* having a molecular weight of about 28.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 15B, SEQ ID NO: ___. The OMP-1X polynucleotide encodes an OMP-1S protein of *E. chafeensis* having a molecular weight of about 27.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 16B, SEQ ID NO: ___. The OMP-1Y polynucleotide encodes an OMP-1Y protein of *E. chafeensis* having a molecular weight about 28.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 17B, SEQ ID NO: ___. The OMP-1Z polynucleotide encodes an OMP-1Z protein of *E. chafeensis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 18B, SEQ ID NO: ___.

The outer membrane proteins from *E. chaffeensis*, particularly a recombinant form of OMP-1, are immunogenic and, thus are useful for preparing antibodies. Such antibodies are useful for immunolabeling isolates of *E. chaffeensis* and for detecting the presence of *E. chaffeensis* in body fluids, tissues, and particularly in monocytes and macrophages. The isolated outer membrane proteins, particularly OMP-1, are also useful for

detecting antibodies to *E. chafeensis* in the blood of patients with clinical signs of ehrlichiosis. The isolated outer membrane protein, particularly OMP-1, are also useful immunogens for raising antibodies that are capable of reducing the level of infection in an immunized mammal that has been infected with *E. chafeensis*. The isolated membrane proteins are also useful in a vaccine for protecting against infection with *E. chafeensis*.

The present invention also relates to isolated polynucleotides which encode 30 kDa outer membrane proteins from *Ehrlichia canis*. The proteins are designated P30 and P30a. The proteins, particularly P30, are immunogenic and are, thus, useful for preparing antibodies that are useful for immunolabeling isolates of *E. canis*. The P30 protein is also useful for diagnosing canine ehrlichiosis in mammals, particularly in members of the family Canidae, most particularly in dogs and for diagnosing infections with *E. chafeensis* in humans. The P30 protein is also a useful immunogen for raising antibodies that reduce the level of infection in an immunized mammal that has been infected with *E. canis*. The P30 protein is also useful in a vaccine for protecting animals against infection with *E. canis*.

The present invention also provides the following isolated proteins of *E. chafeensis* OMP-1 (also known as p28), OMP-1A, OMP-1B, OMP-1C, OMP-1D, OMP-1E, OMP-1F, OMP-1R, OMP-1S, OMP-1T, OMP-1U, OMP-1V, OMP-1W, OMP-1X, and OMP-1Z, referred to hereinafter collectively as the "OMP family". The present invention also provides the following isolated proteins of *E. canis* P30, P30-a, P30-1, P30-2, P30-3, P30-4, P30-5, P30-6, P30-7, P30-8, P30-9, and P30-10, referred to hereinafter as the P30 family.

The present invention also relates to an assay for diagnosing ehrlichiosis in humans using a recombinant outer membrane protein of *E. chafeensis*, particularly OMP-1. The present invention also relates to an assay for diagnosing ehrlichiosis in humans and members of the family Canidae using a recombinant outer membrane protein of *E. canis*, particularly P30.

Brief Description of the Figures

FIG. 1. shows the DNA sequence of and the amino acid sequence encoded by the *E. chafeensis* (*p28*) gene cloned in pCR_I*p28*. The N-terminal amino acid sequence of native *omp-1* protein (P28) determined chemically is underlined. Five amino acid residues at the N terminus of P28 which were not included in the *p28* gene, are indicated by boldface. Arrows indicate annealing positions of the primer pair designed for PCR.

FIG. 2. shows the restriction map of 6.3-kb genomic DNA including the *omp-1* gene copies in *E. chafeensis*. The four DNA fragments were cloned from the genomic DNA (pPS2.6, pPS3.6, pEC2.6, and pEC3.6). A recombinant plasmid pPS2.6 has an overlapping sequence with that of pEC3.6. The closed boxes at the bottom show PCR-amplified fragments from the genomic DNA for confirmation of the overlapping area. Open boxes at the top indicate open reading frames (ORF) of *omp-1* gene copies with direction by arrows. Open boxes at the bottom show DNA fragments subcloned for DNA sequencing.

FIG. 3B shows one embodiment of the OMP-1 protein; FIG. 3A shows one embodiment of the OMP-1 polynucleotide.

FIG. 4B shows one embodiment of the OMP-1B protein, FIG. 4A shows one embodiment of the OMP-1B polynucleotide

FIG. 5A shows one embodiment of the OMP-1C polynucleotide; FIG 5B shows one embodiment of the OMP-1C protein.

FIG. 6B shows one embodiment of the OMP-1D protein; FIG. 6A shows one embodiment of the OMP-1D polynucleotide.

FIG. 7A shows one embodiment of the OMP-1E protein; FIG 7B shows one embodiment of the OMP-1E polynucleotide.

FIG. 8A shows one embodiment of the OMP-1F protein; FIG 8B shows one embodiment of the OMP-1F polynucleotide.

FIG. 9B shows one embodiment of the OMP-1A protein, FIG 9A shows one embodiment of the OMP-1A polynucleotide.

FIG. 10B shows one embodiment of a portion of the OMP-1R protein, FIG 10A shows one embodiment of an OMP-1R polynucleotide encoding such polypeptide.

FIG. 11B shows one embodiment of a portion of the OMP-1S protein, FIG 11A shows one embodiment of the OMP-1S polynucleotide encoding such polypeptide.

FIG. 12B shows one embodiment of a portion of the OMP-1T protein, FIG 12A shows one embodiment of the OMP-1T polynucleotide encoding such polypeptide.

FIG. 13B shows one embodiment of the OMP-1U protein, FIG 13A shows one embodiment of the OMP-1U polynucleotide.

FIG. 14B shows one embodiment of the OMP-1V protein, FIG 14A shows one embodiment of the OMP-1V polynucleotide.

FIG. 15B shows one embodiment of the OMP-1W protein, FIG 15A shows one embodiment of the OMP-1W polynucleotide.

FIG. 16B shows one embodiment of the OMP-1X protein, FIG 16A shows one embodiment of the OMP-1X polynucleotide.

FIG. 17B shows one embodiment of the OMP-1Y protein, FIG 17A shows one embodiment of the OMP-1Y polynucleotide.

FIG. 18B shows one embodiment of the OMP-1Z protein, FIG 18A shows one embodiment of the OMP-1Z polynucleotide.

FIG. 19B shows one embodiment of the P30 protein, FIG 19A shows one embodiment of the P30 polynucleotide.

FIG. 20B shows one embodiment of the P30a protein, FIG 20A shows one embodiment of the p30A polynucleotide.

FIG. 21B shows one embodiment of the P30-1 protein, FIG 21A shows one embodiment of the p30-1 polynucleotide.

FIG. 22B shows one embodiment of the P30-2 protein, FIG 22A shows one embodiment of the p30-2 polynucleotide.

FIG. 23 B shows one embodiment of the P30-3 protein, FIG 23 A shows one embodiment of the p30-3 polynucleotide.

FIG. 24 B shows one embodiment of the P30-4 protein, FIG 22 A shows one embodiment of the p30-4 polynucleotide.

FIG. 25 B shows one embodiment of the P30-5 protein, FIG 22 A shows one embodiment of the p30-5 polynucleotide.

FIG. 26 B shows one embodiment of the P30-6 protein, FIG 26 A shows one embodiment of the p30-6 polynucleotide.

FIG. 27 B shows one embodiment of the P30-7 protein, FIG 27 A shows one embodiment of the p30-7 polynucleotide.

FIG. 28 B shows one embodiment of the P30-8 protein, FIG 28 A shows one embodiment of the p30-8 polynucleotide.

FIG. 29 B shows one embodiment of a portion of the P30-9 protein, FIG 29 A shows one embodiment of the p30-9 polynucleotide encoding such polypeptide.

FIG. 30 B shows one embodiment of a portion of the P30-10 protein, FIG 30 A shows one embodiment of the p30-10 polynucleotide encoding such polypeptide.

FIG. 31 depicts the amino acid sequences alignment of seven *E. chaffeensis* OMP-1s and *Cowdria ruminantium* MAP-1. Aligned positions of identical amino acids with OMP-IF are shown with dots. The sequence of *C. ruminantium* MAP-1 is from the report of Van Vliet et al (1994) Molecular cloning, sequence analysis, and expression of the gene encoding the immunodominant 32-kilodalton protein of *Cowdria ruminantium*. Infect Immun. 62:1451-1456. Gaps indicated by dashes were introduced for optimal alignment of all proteins. Bars indicates semivariable region (SV) and three hypervariable regions (HV1, HV2, and HV3).

DETAILED DESCRIPTION OF THE INVENTION

Isolated Polynucleotides Encoding OMP-1, OMP-1A, OMP-1B, OMP-1C, OMP-1D, OMP-1F and the OMP from E. Canis

In one aspect, the present invention, provides isolated polynucleotides that encode the outer membrane proteins, OMP-1 (or p28), OMP-1B, OMP-1C, OMP-1D, OMP-1E, OMP-1F, OMP-1A, OMP-1R, OMP-1S, OMP-1T, OMP-1U, OMP-1V, OMP-1W, OMP-1X, OMP-1Y and OMP-1Z from *E. chaffeensis* and the outer membrane proteins P30, P30-a, P-30-1, P30-2, P30-3, P30-4, P30-5, P30-6, P30-7, P30-8, P30-9, and P30-10 from *E. Canis* or an immunogenic fragment thereof.

The polynucleotide is single stranded or double stranded. The polynucleotide may be a DNA or RNA molecule, preferably a DNA molecule, and comprises a sequence which codes for the respective outer membrane protein. Preferably, the polynucleotide encodes at least the mature form of outer membrane protein. The polynucleotide optionally further comprises a leader sequence and encode an outer membrane preprotein that is

processed in the cell to form the mature protein. The polynucleotide of the present invention may also be fused in frame to a marker sequence which allows for purification of the corresponding outer membrane protein.

The OMP-1 polynucleotide encodes an OMP-1 protein of *E. chafeensis* having a molecular weight of about 27.7 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 3B SEQ ID NO: ____; Figure 3B shows one embodiment of the OMP-1 protein, Figure 3A shows one embodiment of the OMP-1 polynucleotide. The OMP-1B polynucleotide encodes an OMP-1B protein of *E. chafeensis* having a molecular weight of about 28.2 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 4B SEQ ID NO: ____; Figure 4B shows one embodiment of the OMP-1B protein, Figure 4A shows one embodiment of the OMP-1B polynucleotide. The OMP-1C polynucleotide encodes an OMP-1C protein of *E. chafeensis* having a molecular weight of about 27.6 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 5B SEQ ID NO: ____; Figure 5B shows one embodiment of the OMP-1C protein, Figure 5A shows one embodiment of the OMP-1C polynucleotide. The OMP-1D polynucleotide encodes an OMP-1D protein of *E. chafeensis* having a molecular weight of about 28.7 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 6B SEQ ID NO: ____; Figure 6B shows one embodiment of the OMP-1D protein, Figure 6A shows one embodiment of the OMP-1D polynucleotide. The OMP-1E polynucleotide encodes an OMP-1E protein of *E. chafeensis* having a molecular weight of about 27.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 7B SEQ ID NO: ____; Figure 7B shows one embodiment of the OMP-1E protein, Figure 7A shows one embodiment of the OMP-1E polynucleotide. The OMP-1F polynucleotide encodes an OMP-1F protein of *E. chafeensis* having a molecular weight of about 27.9 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 8B SEQ ID NO: ____; Figure 8B shows one embodiment of the OMP-1F protein, Figure 8A shows one embodiment of the OMP-1F polynucleotide. The OMP-1A polynucleotide encodes an OMP-1A protein of *E. chafeensis* having a molecular weight of about 29.6 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 9B SEQ ID NO: ____; Figure 9B shows one embodiment of the OMP-1A protein, Figure 9A shows one embodiment of the OMP-1A polynucleotide. The OMP-1R polynucleotide encodes an OMP-1R protein of *E. chafeensis* having a molecular weight of at least 23 kDa and comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 10B SEQ ID NO: ____; Figure 10B shows one embodiment of a portion of the OMP-1R protein, Figure 10A shows one embodiment of the OMP-1R polynucleotide encoding such polynucleotide. The OMP-1S polynucleotide encodes an OMP-1S protein of *E. chafeensis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 11B SEQ ID NO: ____; Figure 11B shows one embodiment of a portion of the OMP-1S protein, Figure 11A shows one embodiment of the OMP-1S polynucleotide encoding such polypeptide. The OMP-1T polynucleotide encodes an OMP-1T protein of *E. chafeensis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 12B SEQ ID NO: ____; Figure 12B shows one embodiment of a portion of the OMP-1T protein, Figure 12A shows one embodiment of the OMP-1T polynucleotide encoding such polypeptide. The OMP-1U polynucleotide encodes an

OMP-1U protein of *E. chafeensis* having a molecular weight of about 30.6 kDa and an amino acid sequence which is at least 85% homologous to amino acid sequence shown in FIG. 13B SEQ ID NO: ____; Figure 13B shows one embodiment of the OMP-1U protein, Figure 13A shows one embodiment of the OMP-1U polynucleotide. The OMP-1V polynucleotide encodes an OMP-1V protein of *E. chafeensis* having a molecular weight of about 28.0 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 14B SEQ ID NO: ____; Figure 14B shows one embodiment of the OMP-1V protein, Figure 14A shows one embodiment of the OMP-1V polynucleotide. The OMP-1W polynucleotide encodes an OMP-1W protein of *E. chafeensis* having a molecular weight of about 28.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 15B SEQ ID NO: ____; Figure 15B shows one embodiment of the OMP-1W protein, Figure 15A shows one embodiment of the OMP-1W polynucleotide. The OMP-1X polynucleotide encodes an OMP-1S protein of *E. chafeensis* having a molecular weight of about 27.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 16B SEQ ID NO: ____; Figure 16B shows one embodiment of the OMP-1X protein, Figure 16A shows one embodiment of the OMP-1X polynucleotide. The OMP-1Y polynucleotide encodes an OMP-1Y protein of *E. chafeensis* having a molecular weight about 28.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 17B SEQ ID NO: ____; Figure 17B shows one embodiment of the OMP-1Y protein, Figure 17A shows one embodiment of the OMP-1Y polynucleotide. The OMP-1Z polynucleotide encodes an OMP-1Z protein of *E. chafeensis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 18B SEQ ID NO: ____; Figure 18B shows one embodiment of a portion of the OMP-1Z protein, Figure 18A shows one embodiment of an OMP-1Z polynucleotide encoding such polypeptide.

The p30 polynucleotide encodes a P30 protein of *E. canis* having a molecular weight of about 28.8 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 19B SEQ ID NO: ____; Figure 19B shows one embodiment of the P30 protein, Figure 19A shows one embodiment of the p30 polynucleotide. The p30A polynucleotide encodes a P30a protein of *E. canis* having a molecular weight of about 29.1 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 20B SEQ ID NO: ____; Figure 20B shows one embodiment of the P30a protein, Figure 20A shows one embodiment of the p30A polynucleotide. The p30-1 polynucleotide encodes a P30-1 protein of *E. canis* having a molecular weight of about 27.7 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 21B SEQ ID NO: ____; Figure 21B shows one embodiment of the P30-1 protein, Figure 21A shows one embodiment of the p30-1 polynucleotide. The p30-2 polynucleotide encodes a P30-2 protein of *E. canis* having a molecular weight of about 28.0 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 22B SEQ ID NO: ____; Figure 22B shows one embodiment of the P30-2 protein, Figure 22A shows one embodiment of the p30-2 polynucleotide. The p30-3 polynucleotide encodes a P30-3 protein of *E. canis* having a molecular weight of about 28.7 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 23B SEQ ID NO: ____; Figure 23B shows one embodiment of the P30-3 protein, Figure 23A shows one embodiment of the p30-3 polynucleotide. The p30-4 polynucleotide

encodes a P30-4 protein of *E. canis* having a molecular weight of about 28.0 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 24B SEQ ID NO: ____; Figure 24B shows one embodiment of the P30-4 protein, Figure 24A shows one embodiment of the p30-4 polynucleotide. The p30-5 polynucleotide encodes a P30-5 protein of *E. canis* having a molecular weight of about 29.4 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 25B SEQ ID NO: ____; Figure 25B shows one embodiment of the P30-5a protein, Figure 25A shows one embodiment of the p30-5a polynucleotide. The p30-6 polynucleotide encodes a P30-6 protein of *E. canis* having a molecular weight of about 29.5 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 26B SEQ ID NO: ____; Figure 26B shows one embodiment of the P30-6 protein, Figure 26A shows one embodiment of the p30-6 polynucleotide. The p30-7 polynucleotide encodes a P30-7 protein of *E. canis* having a molecular weight of about 29.9 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 29B SEQ ID NO: ____; Figure 29B shows one embodiment of the P30-7 protein, Figure 29A shows one embodiment of the p30-7 polynucleotide. The p30-8 polynucleotide encodes a P30-8 protein of *E. canis* having a molecular weight of about 30.3 kDa and an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 28B SEQ ID NO: ____; Figure 28B shows one embodiment of the P30-8 protein, Figure 28A shows one embodiment of the p30-8 polynucleotide. The p30-9 polynucleotide encodes a P30-9 protein of *E. canis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 29B SEQ ID NO: ____; Figure 29B shows one embodiment of a portion of the P30-9 protein, Figure 29A shows one embodiment of the p30-9 polynucleotide encoding such polypeptide. The p30-10 polynucleotide encodes a P30-10 protein of *E. canis* comprising an amino acid sequence which is at least 85% homologous to the amino acid sequence shown in FIG. 30B SEQ ID NO: ____; Figure 30B shows one embodiment of a portion of the P30-10 protein, Figure 30A shows one embodiment of the p30-10 polynucleotide encoding such polypeptide.

The polynucleotides encoding an *E. chaffeensis* outer membrane protein or an *E. canis* outer membrane protein have a sequence that is at least 85%, preferably at least 90%, more preferably at least 95% homologous to or similar to the amino acid sequences shown in Figures 3B through 30B, and thus embrace polynucleotides encoding outer membrane proteins from different strains of *E. chaffeensis* and *E. canis*. The polynucleotides encode an outer membrane protein whose conserved regions collectively are at least 90%, preferably at 95%, more preferably at least 97% homologous to the conserved regions of the amino acid sequences of the present invention. The outer membrane proteins of *E. chaffeensis* and *E. canis* have six conserved regions, which are separated by one semivariable region and three hypervariable regions. The conserved regions of the outer membrane proteins OMP-1, OMP-1A, OMP-1B, OMP1-C, OMP-1D, OMP1-F are depicted in Fig. 31. Preferably, the amino acid sequence of the outer membrane proteins of *E. chaffeensis* and *E. canis* are at least 30% divergent from the amino acid sequence of MAP-1. Such sequences include allelic, strain variants and other amino acid sequence variants (e.g., including "muteins" or "mutant proteins"), whether naturally-occurring or biosynthetically produced. As used herein, "amino acid sequence homology" is understood to mean amino acid sequence similarity, and homologous sequences share identical or similar amino acids, where similar amino acids are conserved amino acids as defined by

Dayoff et al., *Atlas of Protein Sequence and Structure*; vol. 5, Supp. 3, pp. 345-362 (M. O. Dayoff, ed., Nat'l Bi Med. Research Fdn., Washington D.C. 1978.) Thus, a candidate sequence sharing 85% amino acid sequence homology with a reference sequence requires that, following alignment of the candidate sequence with the reference sequence, 85% of the amino acids in the candidate sequence are identical to the corresponding amino acid in the reference sequence, or constitute a conserved amino acid change thereto. "Amino acid sequence identity" is understood to require identical amino acids between two aligned sequences. Thus, a candidate sequence sharing 85% amino acid identity with a reference sequence requires that, following alignment of the candidate sequence with the reference sequence, 85% of the amino acids in the candidate sequence are identical to the corresponding amino acid in the reference sequence.

As used herein, all homologies and identities are calculated using the amino acid sequences shown in the cited Figure or SEQ ID NO as the reference sequence. Thus, to determine whether an amino acid sequence is 85% homologous to OMP-1, one uses the amino acid sequence shown in Fig. ___, SEQ ID NO: ___ as a reference.

Also as used herein, sequences are aligned for homology and identity calculations using the method of the software basic local alignment search tool in the BLAST network service (the National Center for Biotechnology Information, Bethesda, MD) which employs the method of Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) *J. Mol. Biol.* 215, 403-410. Identities are calculated by the Align program (DNAstar, Inc.) In all cases, internal gaps and amino acid insertions in the candidate sequence as aligned are ignored when making the homology/identity calculation.

In another aspect, the present invention provides a nucleotide sequence encoding a polypeptide which comprises a fragment of the OMP1 protein, hereinafter referred to as "rP28". The rP28 polypeptide weighs approximately 31 kDa and comprises all but of the first 5 amino acids of mature OMP-1 protein. The rP28 polypeptide comprises the amino acid sequence extending from amino acid 6 through amino acid 251 of the amino acid sequence shown in Fig. 1, SEQ ID NO. The present invention also embraces polypeptides where one or more of the amino acids in the sequence extending from amino acid 1 or 6 through amino acid 251 Fig. 1 are replaced by conservative amino acid residues. The present invention also relates to derivatives of rP28 that have an amino acid sequence identity of at least 85%, more preferably at least 90%, and most preferably of at least 95% with the amino acid sequence extending from amino acid 1 or 6 through amino acid 251 of the protein and which derivative binds to antibodies in sera from humans infected with *E. chaffeensis*.

The polynucleotides are useful for producing the outer membrane proteins of *E. chaffeensis* and *E. canis*. For example, an RNA molecule encoding the outer membrane protein OMP-1 is used in a cell-free translation systems to prepare OMP-1. Alternatively, a DNA molecule encoding the outer membrane protein is introduced into an expression vector and used to transform cells. Suitable expression vectors include for example chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40, bacterial plasmids, phage DNAs; yeast plasmids, vectors derived from combinations of plasmids and phage DNAs, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. The DNA sequence is introduced into the expression vector by conventional procedures.

Accordingly, the present invention also relates to recombinant constructs comprising one or more of the polynucleotide sequences. Suitable constructs include, for example, vectors, such as a plasmid, phagemid, or viral vector, into which a sequence that encodes the outer membrane protein has been inserted. In the expression vector, the DNA sequence which encodes the outer membrane protein is operatively linked to an expression control sequence, i.e., a promoter, which directs mRNA synthesis. Representative examples of such promoters, include the LTR or SV40 promoter, the *E. coli* lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or in viruses. The promoter may also be the natural promoter of the outer membrane protein coding sequence. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. Preferably, the recombinant expression vectors also include an origin of replication and a selectable marker, such as for example, the ampicillin resistance gene of *E. coli* to permit selection of transformed cells, i.e. cells that are expressing the heterologous DNA sequences. The polynucleotide sequence encoding the outer membrane protein is incorporated into the vector in frame with translation initiation and termination sequences. Optionally, the sequence encodes a fusion outer membrane protein which includes an N-terminal or C-terminal peptide or tag that stabilizes or simplifies purification of the expressed recombinant product. Representative examples of such tags include sequences which encode a series of histidine residues, the Herpes simplex glycoprotein D, or glutathione S-transferase.

Polynucleotides which encode portions of the outer membrane proteins of *E. chaffeensis* and *E. canis* are useful as probes for isolating and identifying *E. chaffeensis* genes and *E. canis* genes, particularly full-length genes from new strains or isolates of *E. chaffeensis* and *E. canis*.

The Outer Membrane Proteins of *E. chaffeensis* and *E. Canis*

In addition to the outer membrane proteins OMP-1, OMP-1B, OMP-1C, OMP-1D, OMP-1E, and OMP-1F, OMP-1R, OMP-1S, OMP-1T, OMP-1U, OMP-1V, OMP-1W, OMP-1X, OMP-1Y, and OMP-1Z from *E. chaffeensis* and the proteins P30, P30A, P30-1, P30-2, P30-3, P30-4, P30-5, P30-6, P30-7, P30-8, P30-9, and P30-10 from *E. Canis*, the present inventions embraces non-naturally occurring allelic forms or derivatives of the outer membrane proteins, where one or more of the amino acids have been replaced by conservative amino acid residues, typically by using direct synthesis or recombinant techniques.

Preparing the Outer Membrane Proteins

The outer membrane proteins of the present invention are synthetically produced by conventional peptide synthesizers. The outer membrane proteins are also produced using cell-free translation systems and RNA molecules derived from DNA constructs that encode the outer membrane protein. Alternatively, the outer membrane protein is made by transfecting host cells with expression vectors that comprise a DNA sequence which encodes the outer membrane protein and then inducing expression of the outer membrane protein in the host cells.

The outer membrane protein is expressed in suitable host cells, preferably bacteria, under the control of suitable promoters. Host cells are transformed with the expression vectors of this invention and cultured in conventional nutrient media. Such media optionally contains additional compounds, such as for example

compounds that induce promoters, such as for example isopropyl- β -D-thiogalactoside which induces the Lac promoter, or compounds, such as for example, ampicillin, which allows for selection of transformants.

Following transformation of the suitable host strain and growth of the host strain to an appropriate cell density, the cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification of the outer membrane protein. Such purification usually involves salting-out of the protein fraction, and one or more chromatography steps, including aqueous ion exchange chromatography, size exclusion chromatography steps, and high performance liquid chromatography (HPLC).

Preparation of Antibodies

The isolated outer membrane proteins, particularly the recombinant forms of the outer membrane proteins, are used as immunogens to produce antibodies immunospecific for the corresponding protein. The term "immunospecific" means the antibodies have substantially greater affinity for the protein used as an immunogen than for other proteins. Such antibodies are generated using conventional techniques by administering the respective outer membrane protein or a portion thereof, i.e., the recombinant polypeptide, to an animal, preferably a nonhuman, collecting blood from the immunized animals and isolating the serum and/or the IgG fraction from the blood. Monoclonal antibodies are prepared by injecting animals with the immunogens, extracting antibody-producing B cells from the animal, fusing the B cells with a myeloma cells to produce hybridomas, obtaining the monoclonal antibodies from the hybridomas.

Antibodies to the outer membrane proteins of *E. chaffeensis* and *E. canis* are useful research tools for identifying cells, particularly monocytes, infected with *E. chaffeensis* or *E. canis* and for purifying the corresponding outer membrane protein of *E. chaffeensis* or *E. Canis* from partially purified preparations by affinity chromatography. Such antibodies are also useful for identifying bacterial colonies, particularly colonies of genetically-engineered bacteria, that are expressing the major outer membrane protein.

Diagnostic Method

The present invention also provides a method for detecting antibodies to the *E. chaffeensis* or *E. canis* in a sample of a bodily fluid from a patient. The method comprises providing an isolated outer membrane protein of *E. chaffeensis* or *E. canis*, particularly a recombinant form of the isolated protein, contacting the outer membrane protein or polypeptide with a sample taken from the patient; and assaying for the formation of a complex between the outer membrane protein or polypeptide and antibodies in the sample. For ease of detection, it is preferred that the isolated protein or polypeptide be attached to a substrate such as a column, plastic dish, matrix, or membrane, preferably nitrocellulose. The sample may be a tissue or a biological fluid, including urine, whole blood, or exudate, preferably serum. The sample may be untreated, subjected to precipitation, fractionation, separation, or purification before combining with the isolated protein or peptide. Interactions between antibodies in the sample and the isolated protein or peptide are detected by radiometric, colorimetric, or fluorometric means, size-separation, or precipitation. Preferably, detection of the antibody-outer membrane protein complex is by addition of a secondary antibody that is coupled to a detectable tag, such as for example, an enzyme, fluorophore, or chromophore. Formation of the complex is indicative of the presence of anti-*E. chaffeensis* or anti-*E. canis* antibodies,

either IgM or IgG, in the patient. Thus, the method is used to determine whether a patient is infected with *E. chafeensis* or *E. canis*.

Preferably, the method employs an enzyme-linked immunosorbent assay (ELISA) or a Western immunoblot procedure. Such methods are relatively simple to perform and do not require special equipment as long as membrane strips are coated with a high quality antigen. Accordingly, it is more advantageous to use a recombinant form of the outer membrane protein of *E. chafeensis* or *E. canis* since such proteins, typically, are more pure and consistent in quality than a purified form of such protein.

Immunogenic Composition

The present invention also relates to immunogenic compositions comprising one or more of the isolated outer membrane proteins of *E. chafeensis* and a pharmaceutically acceptable adjuvant and to immunogenic compositions comprising an isolated P30 protein of *E. canis* and a pharmaceutically acceptable adjuvant, which, preferably, enhances the immunogenic activity of the outer membrane protein in the host animal.

Preparation of a Polynucleotide which Encodes OMP-1(P28)

A. Isolation of the Outer Membrane Proteins

E. chafeensis Arkansas strain and *E. canis* Oklahoma strain were cultivated in the DH82 dog macrophage cell line and purified by Percoll density gradient centrifugation. Purified ehrlichiae (100 µg) were suspended with 10 mM sodium phosphate buffer, pH 7.4, containing 0.1% Sodium N-lauroyl sarcosine (Sarkosyl) [Sigma, St. Louis, MO], 50 µg/ml each Dnase I (Sigma) and Rnase A (Sigma), and 2.5 mM MgCl₂. After incubation at 37° for 30 min, the sample was separated by centrifugation at 10,000 x g for 1 h into the soluble supernatant and the insoluble precipitate. The insoluble pellet was resuspended 2 to 3 times with 0.1% Sarkosyl and centrifuged. The final pellet was analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and by electron microscopy.

Transmission electron microscopy revealed that the purified ehrlichial fraction consists of a mixture of electron dense and light forms of *E. chafeensis* with slight disintegration of inner membrane. Ehrlichiae were not surrounded with the host inclusion membrane. Various sizes of membrane vesicles (< 1 µm) without significant ribosomes or nuclear materials were observed in the Sarkosyl-insoluble fraction from the organism. Succinic dehydrogenase (inner membrane marker enzyme of gram negative bacteria) activities were at less than the detection limit (1 n moles / min / mg of protein) in the Sarkosyl-insoluble fraction compared to approximately 10 n moles / min / mg of protein in the Percoll-purified organisms, suggesting that the insoluble fraction primarily consisted of the outer membrane of *E. chafeensis*.

Analysis of the Sarkosyl-soluble, and insoluble fraction of *E. chafeensis* by SDS-PAGE suggested that proteins of 30-kDa range in the insoluble fraction represent the major outer membrane proteins of this organism. Analysis of the Sarkosyl-soluble, and insoluble fraction of *E. canis* by SDS-PAGE suggested that proteins of 30-kDa range in the insoluble fraction represent the major outer membrane proteins of this organism also. *E. canis* was

antigenically cross reactive with *E. chaffeensis*. These findings indicate that the 30-kDa range proteins represent the major outer membrane proteins of these two *Ehrlichia* spp.

To improve resolution of the outer membrane proteins, proteins in the Sarkosyl-insoluble pellet prepared from 400 µg of purified *E. chaffeensis* were separated by a reversed-discontinuous (Rd) SDS-PAGE (2.5-cm-long 17% gel on top of 11-cm-long 12% gel). At least five proteins of 30-kDa range in *E. chaffeensis* (P23, P25, P27, P28, and P29) were resolved from the Sarkosyl-insoluble proteins.

B. Cloning and sequencing of the *p28* gene

The portion of the membrane containing bound proteins was excised and analyzed with an Applied Biosystems protein sequencer (Model 470). The N-terminal amino acid sequence of P28 was determined as D P A G S G I N G N F Y S G K Y M P, SEQ IN NO _____. Based on 6th to 12th amino acids of this sequence, a forward primer, FECH1, having the sequence: 5'-
CGGGATCCGAATTGGG(A/T/G/C)AT(A/T/C)AA(T/C)GG(A/T/G/C)AA(T/C)TT(T/C)TA-3'. SEQ ID NO _____ was designed. Amino acids at the 1 to 5 positions of the N terminus of P28 were not included in this primer design. For insertion into an expression vector, a 14-bp sequence (underlined) was added at the 5' end of primer to create an *Eco*R1 and a *Bam*H1 site. The reverse primer, RECH2, which includes a *Not*I site at the 5' end for ligation into an expression vector had the sequence: 5'-AGCGGCCGCTTA(A/G)AA(T/C)A(C/G) (A/G)AA (C/T)CT T(C/G)C TCC-3'. SEQ ID NO _____.

Genomic DNA of *E. chaffeensis* was isolated from purified organisms. PCR amplification with FECH1 and RECH2 primers was performed using a Perkin-Elmer Cetus DNA Thermal Cycler (model 480). A 0.8-kb amplified product was cloned in the pCRII vector of a TA cloning kit, as described by the manufacturer (Invitrogen Co., San Diego, CA). The clone obtained was designated pCRIIp28. Both strands of the inserted DNA were sequenced by a dideoxy-termination method with an Applied Biosystems 373A DNA sequencer.

The 0.8-kb DNA fragment, cloned in pCRIIp28, had an open reading frame (ORF) of 756 bp encoding a 251-amino acid recombinant protein (including both PCR primer regions) with a molecular mass of 27,685 Da. The nucleotide sequence of the open reading frame, SEQ ID NO: ___, and the amino acid sequence of the polypeptide of the OMP-1 protein, SEQ ID NO ___, are shown in Figs _____ and _____, respectively.

A DNA fragment comprising the *p30* gene was prepared in a similar manner, i.e., by PCR amplification of genomic DNA of *E. canis* with the FECH1 and RECH2 primers.

Preparation of Polynucleotides which encode OMP 1A, OMP1B, OMP1-C, OMP-1D, OMP-1F, and OMP1-E

A. Southern blot analysis. Genomic DNA extracted from the purified *E. chaffeensis* (200 ng each) was digested with restriction endonucleases, electrophoresed, and transferred to Hybond-N⁺ nylon membrane (Amersham, Arlington Heights, IL), by a standard method. The 0.8-kb *p28* gene fragment from the clone pCRIIp28 was labeled with [α -³²P]dATP by the random primer method using a kit (Boehringer Mannheim, Indianapolis, IN) and the labeled fragment was used as a DNA probe. Hybridization was performed at 60°C in rapid hybridization buffer (Amersham) for 20 h. The nylon sheet was washed in 0.1 x SSC (1 x SSC containing 0.15M sodium chloride and

0.015M sodium citrate) with 1% SDS at 55°C and the hybridized probes were exposed to Hyperfilm (Amersham) at -80°C.

Genomic Southern blot analysis with several restriction enzymes resulted in one or more DNA fragment(s) of *E. chafeensis* which hybridized to ³²P-labeled *p28* gene probe. The restriction enzymes used did not cut within the *p28* gene portion of the pCRII*p28* insert. *Xba* I, *Bgl* II, and *Kpn* I produced two bands, *Spe* I generated three bands, and *Eco*R V and *Pst* I produced multiple bands with different densities. *Eco*R I generated a broad band of 2.5 to 4kb. These *p28* homologous genes are designated as *omp-1* (outer membrane protein-1) family.

B. Cloning and sequencing of genomic copies of *E. chafeensis* *p28* gene. The *Eco*R I and *Pst* I fragments of DNA, detected by genomic Southern blot analysis as described above, were inserted into pBluescript II KS (+) vectors, and the recombinant plasmids were introduced into *E. coli* DH5α. Using the colony hybridization method with the ³²P-labeled *p28* gene probe, four positive clones were isolated from the transformant. The positive clones were designated pEC2.6, pEC3.6, pPS2.6, and pPS3.6. These contained the ehrlichial DNA fragments of 2.6-kb (*Eco*R I), 3.6 kb (*Eco*R I), 2.6 kb (*Pst* I), and 3.6 kb (*Pst* I), respectively. The inserts of the clones pEC3.6 and pPS2.6 overlapped as shown in Fig. _____. The overlapping area was further confirmed by PCR of *E. chafeensis* genomic DNA with two pairs of primer sets interposing the junctions of the four clones. The 1.1- to 1.6-kb DNA fragments of *Hind*III-*Hind*III, *Hind*III-*Eco*RI, or *Xba*I-*Eco*RI in the pEC2.6 and pEC3.6 were subcloned for sequencing. DNA sequencing was performed with suitable synthetic primers by dideoxy-termination method as described above.

Four DNA fragments from 2.6 to 3.6 kb were cloned from the *Eco*RI-digested and the *Pst*I-digested genomic DNA of *E. chafeensis* by colony hybridization with radiolabeled *p28* gene probe. The inserted DNA of the two recombinant clones, pEC3.6 and PPS2.6, were overlapped as shown in Fig. 7. Sequencing revealed one 5'-truncated ORF of 243 bp (designated *omp-1A*) and five complete ORF of 836-861 bp (designated *omp-1B* to *omp-1F*), which are tandemly-arrayed and are homologous to the *p28* gene (but are not identical), in the ehrlichial genomic DNA of 6,292 bp. The intergenic spaces were 581 bp between *omp-1A* and *omp-1B* and 260-308 bp among others. Putative promoter regions and ribosome-binding sites were identified in the noncoding regions.

Sequence analysis and GenBank accession number.

Nucleotide sequences were analyzed with the DNASIS program (Hitachi Software Engineering Co., Ltd., Yokohama, Japan). A homology search was carried out with databases of the GenBank, Swiss Plot, PDB and PIR by using the software basic local alignment search tool in the BLAST network service (the National Center for Biotechnology Information, Bethesda, MD). Phylogenetic analysis was performed by using the PHYLIP software package (version 3.5). An evolutionary distance matrix, generated by using the Kimura formula in the PROTDIST, was used for construction of a phylogenetic tree by using the unweighted pair-group method analysis (UPGMA) (Felsenstein, J. 1989. PHYLIP-phylogeny inference package (version 3.3). Cladistics 5:164-166). The data were also examined using parsimony analysis (PROTPARS in PHYLIP). A bootstrap analysis was carried out to investigate the stability of randomly generated trees by using SEQBOOT and CONSENSE in the same package. The nucleotide sequence of the *p28* gene and its gene copies has been assigned GenBank accession numbers U72291 and AF021338, respectively.

Proteins of the *E. chafeensis* *omp-1* Family.

Five complete *omp-1* gene copies (*omp-1B* to *omp-1F*) enc de 279 to 287-amin acid proteins with molecular masses of 30,320 - 31,508 Da. *Omp-1A* encodes an 82-amino acid partial protein (9,243 Da) which lacks the N-terminal region. The 25-amino acid sequence at the N-terminus of OMP-1B to OMP-1F (encoded in *omp-1B* to *omp-1F*) is predicted to be a signal peptide because three carboxyl-terminal amino acids of the signal peptides (Ser-X-Ala in OMP-1B, Leu-X-Ser for OMP-C, and Ser-X-Ser for OMP-1D and OMP-1F) are included in the preferred amino acid sequence of signal peptidase at the processing sites proposed by Oliver .. The calculated molecular masses of the mature OMP-1B to OMP-1F from the predicted amino acid sequences are 28,181 Da for OMP-1B, 27,581 Da for OMP-1C, 28,747 Da for OMP-1D, 27,776 Da for OMP-1E, and 27,933 Da for OMP-1F. The estimated isoelectric points are 4.76-5.76 in the mature OMP-1B to OMP-1F. An amino acid sequence in *omp-1F* gene (the 80th to 94th amino acids) was identical to the N-terminal amino acid sequences of *E. chafeensis* native P23 protein as determined chemically, which indicates that P23 is derived from the *omp-1F* gene. Amino acid sequences identical to the N-terminal sequences of P25, P27, and P29 were not found in those from *omp-1* gene c ples cloned in this study.

Alignment of predicted amino acid sequences of the *E. chafeensis* OMP-1 family and *Cowdria ruminantium*, revealed substitutions or deletions of one or several contiguous amino acid residues throughout the molecules. The significant differences in sequences among the aligned proteins are seen in the regions indicated SV (semivariable region) and HV (hypervariable region) 1 to 3 in Fig 3I. Computer analysis for hydropathy revealed that protein molecules predicted from all *omp-1* gene copies contain alternative hydrophilic and hydrophobic motifs which are characteristic of transmembrane proteins. The HV1 and HV2 were found to locate in the hydrophilic regions.

The amino acid sequences of 5 mature proteins without signal peptides (OMP-1C to OMP-1F and a P28) were similar to one another (71-83%) but the sequence of OMP-1B was dissimilar to those of the 5 proteins (45-48%). The amino acid sequences of the 5 proteins showed an intermediate degree of similarity with that of *C. ruminantium* MAP-1 (59-63%), but the similarity between that of the OMP-1B and the *C. ruminantium* MAP-1 was low (45%). These relations are shown in a phylogenetic tree which was obtained based on the amino acid sequence alignment by UPGMA method in the PHYLIP software package (Fig. 10). Three proteins (P28, OMP-1D, and OMP-1F) and two proteins (OMP-1C and OMP-1E) formed two separate clusters. The OMP-1B was located distantly from these two clusters. The *C. ruminantium* MAP-1 was positioned between the OMP-1B and other members in the OMP-1 family.

Preparation of a Recombinant form of OMP-1 and P30

The 0.8-kb *p28* gene was excised from the clone pCRII*p28* by *Eco*RI-*Not*I double-digestion, ligated into *Eco*RI-*Not*I sites of a pET 29a expression vector, and amplified in *Escherichia coli* BL21 (DE3)pLysS (Novagen, Inc., Madison, WI). The clone (designated pET29*p28*) produced a fusion protein with a 35-amino acid sequence

carried from the vector at the N terminus. The amino acid sequence of the OMP-1 portion of the fusion protein is depicted in Fig. 1.

An expression vector comprising the p30 gene was used to prepare the recombinant form of P30.

The following examples are for purposes of illustration only and are not intended to limit the scope of the claims which are appended hereto.

Preparation of anti rP28 (anti-OMP1) antibody

The (r) P28 antigen was prepared by excising the gel band corresponding to the rP28 in SDS-PAGE, mincing the band in phosphate-buffered saline (PBS), pH 7.4, and mixing with an equal volume of Freund's incomplete adjuvant (Sigma). The rP28 mixture (1 mg of protein each time) was subcutaneously injected into a rabbit every 2 weeks four times. A serum sample was collected from the rabbit to provide the anti-rP28 antibody.

The anti-rP28 antibody was examined by western immunoblots analysis. The results indicated that the rabbit anti-rP28 antibody recognized not only rP28 (31 kDa) and P28, but also P29 and P25 of *E. chaffeensis* and P30 of *E. canis*. These results indicate that P28 shares antigenic epitopes with P25 and P29 in *E. chaffeensis* and P30 of *E. canis*.

Example 1. Assaying for the presence of anti-OMP-1 antibody in a Patient

Convalescent-phase serum from a patient with clinical signs of human ehrlichiosis was used. Western blot analyses using the rP28 protein as antigen was performed with 1:1,000 dilutions of this serum. Alkaline phosphatase-conjugated affinity-purified anti-human, anti-rabbit or anti-mouse immunoglobulin G (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) were used at a 1:1,000 or 1:2,000 dilution as secondary antibodies. Results indicated that serum from a patient with clinical signs of human ehrlichiosis reacted strongly to rP28 (31 kDa).

Example 2. Assaying for the presence of anti-OMP-1 antibody in a Patient

Convalescent-phase serum from a patient with clinical signs of human ehrlichiosis was reacted with the rP30 protein of *E. canis* as described in Example 1. The serum reacted strongly to rP30. These results indicate the rP30 is useful for diagnosing an infection with *E. chaffeensis* in human patients.

Example 3. Identifying *E. chaffeensis*-infected cells using anti-rP 28 antibody

E. chaffeensis-infected DH82 cells were sonicated and centrifuged at 400 x g for 10 min. The supernatant was then centrifuged at 10,000 x g for 10 min to obtain ehrlichia-enriched pellet. The pellet was resuspended and incubated with rabbit anti-rP28 antibody or normal rabbit serum (1:100 dilution) at 37°C for 1h in PBS containing 1% bovine serum albumin (BSA-PBS). After washing, the ehrlichiae was incubated with gold-conjugated protein G (20 nm, Sigma) at 1:30 dilution for 1 h at room temperature in BSA-PBS. After washing again, the specimen was fixed with 1.25% formaldehyde, 2.5% glutaraldehyde, and 0.03% trinitrophenol in 0.1 M cacodylate buffer (pH 7.4) for 24h and postfixed in 1% osmium-1.5% potassium ferricyanide for 1 h (34). The section was then embedded in

PolyBed 812 (Polysciences, Warraington, Pa). The specimen was ultrathin sectioned at 60 nm, stained with uranyl acetate and lead citrate, and observed with a Philips 300 transmission electron microscope at 60 kV.

Transmission immunoelectron microscopy with colloidal gold-conjugated protein G and rabbit anti-rP28 antibody revealed gold particles bound to *E. chaffeensis* surface. The distribution of the particles was random, close to the surface, and appeared as if almost embedded in the membrane, suggesting that the antigenic epitope protrudes very little from the lipid bilayer. Nonetheless, the antigenic epitope was surface-exposed, and thus, could be recognized by rabbit anti-rP28 antibody. No gold particles were observed on host cytoplasmic membrane or *E. chaffeensis* incubated with normal rabbit serum.

Example 4. Immunization of mice and *E. chaffeensis* challenge.

The rP28 band in SDS-PAGE was excised, minced, and mixed with an equal volume of Freund's incomplete or complete adjuvant. Nine BALB/c male mice (6 weeks old) were divided into two groups. Five mice were intraperitoneally immunized a total of four times at 10-day intervals; twice with a mixture of the minced gel with the rP28 (30 to 40 µg of protein per mouse each time) and incomplete adjuvant, and twice with a mixture of the recombinant protein (the same amount as before) and complete adjuvant. Four mice were intraperitoneally injected with a mixture of the minced gel without protein and the respective adjuvants. For ehrlichia-challenge, approximately 1×10^7 DH82 cells heavily-infected with *E. chaffeensis* were disrupted by sonication in serum-free DMEM (GIBCO-BRL) and centrifuged at 200 x g for 5 min. The supernatant was diluted to a final volume of 5 ml, and 0.3 ml was inoculated intraperitoneally into each mouse 10 days after the last immunization. Before challenge, all 5-immunized mice had a titer of 1:160 against *E. chaffeensis* antigen by IFA and all 4-nonimmunized mice were negative.

At day 5 post-challenge, approximately 1 ml of blood was collected in an EDTA tube from each mouse and protection was assessed by PCR detection of *E. chaffeensis* 16S rDNA in the buffy coat of the collected blood. *E. chaffeensis* could not be reisolated in cell culture at day 10 postinfection. Day 5 post challenge is the optimum time at which establishment of ehrlichial infection can be examined by PCR without the influence of residual DNA from the ehrlichiae used as the challenge before the spontaneous clearance of organisms take place. The *E. chaffeensis*-specific DNA fragment was observed in all nonimmunized mice but not in any immunized mice, indicating that immunization of rP28 apparently protects mice from ehrlichial infection and indicating that the P28 is a potential protective antigen.

Example 5 Assaying for the presence of anti-P30 antibody in Dogs

The rP30 protein was used as an antigen in a Western immunoblot analysis and dot blot analysis to detect the presence of antibody to *E. canis* in serum from *E. canis* infected dogs. The results of the Western immunoblot analysis indicated that reactivity of the sera with rP30 was stronger than the reactivity that was observed when purified *E. canis* was used as antigen. The results of the dot blot assay indicated that rP30 is a useful and sensitive tool for serodiagnosis of canine ehrlichiosis.

CLAIMS

What is claimed is:

1. An isolated polynucleotide encoding an outer membrane protein of *E. chafeensis* or an immunogenic fragment thereof, wherein the outer membrane protein is selected from the group consisting of OMP-1, OMP-1B, OMP-1C, OMP-1D, OMP-1E, OMP-1F, OMP-1R, OMP-1S, OMP-1T, OMP-1U OMP-1V, OMP-1W OMP-1X OMP-1Y, and OMP-1Z.
2. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an OMP-1 protein comprising a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 3B, SEQ. ID NO ____.
3. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an OMP-1B protein comprising a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 4B, SEQ. ID NO ____.
4. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an OMP-1C protein comprising a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 5B, SEQ. ID NO ____.
5. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an OMP-1D protein comprising a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 6B, SEQ. ID NO ____.
6. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an OMP-1E protein comprising a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 7B, SEQ. ID NO ____.
7. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an OMP-1F protein comprising a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 8B, SEQ. ID NO ____.
8. The isolated polynucleotide of claim 1 wherein the polynucleotide encodes an immunogenic fragment of the OMP-1 protein, said fragment comprising a sequence which is at least 85% homologous to the amino acid sequence extending from amino acid 6 through amino acid 251 as shown in Fig. 1, SEQ. ID NO ____.
9. An isolated polynucleotide encoding an outer membrane protein of *E. canis* or an immunogenic fragment thereof, wherein the outer membrane protein is selected from the group consisting of P30, P30-A, P30-1, P30-2, P30-3, P30-4, P30-5, P30-6, P30-7, P30-8, P30-9, P30-10.
10. The isolated polynucleotide of claim 9 wherein said P30 protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 19 SEQ ID NO ____.
11. An isolated outer membrane protein of *E. chafeensis* or an immunogenic fragment thereof, wherein said protein is selected from the group consisting of OMP-1, OMP-1B, OMP-1C, OMP-1D, OMP-1E, OMP-1F, OMP-1R, OMP-1S, OMP-1T, OMP-1U OMP-1V, OMP-1W OMP-1X OMP-1Y, and OMP-1Z.
12. The isolated OMP-1 protein of claim 11, wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 4B, SEQ. ID NO ____.
13. The isolated OMP-1B protein of claim 11 wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 5B, SEQ. ID NO ____.
14. The isolated OMP-1C protein of claim 11 wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 6B, SEQ. ID NO ____.

15. The isolated OMP-1D protein of claim 11 wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 7B, SEQ. ID NO ____.
16. The isolated OMP-1E protein of claim 11 wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 8B, SEQ. ID NO ____.
17. The isolated OMP-1F protein of claim 11 wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig. 9B, SEQ. ID NO ____.
18. The isolated immunogenic fragment of the OMP-1 protein of claim 11, said fragment comprising a sequence which is at least 85% homologous to the amino acid sequence extending from amino acid 6 through amino acid 251 as shown in Fig. 1, SEQ. ID NO ____.
19. An isolated outer membrane protein of *E. canis* or an immunogenic fragment thereof, wherein the outer membrane protein is selected from the group consisting of P30, P30-A, P30-1, P30-2, P30-3, P30-4, P30-5, P30-6, P30-7, P30-8, P30-9, P30-10.
20. The isolated P-30 protein of claim 19 wherein said protein comprises a sequence which is at least 85% homologous to the amino acid sequence shown in Fig 19, SEQ ID NO ____.
21. A method for diagnosing an infection with *E. chaffeensis* in a patient comprising the steps of:
 - (a) providing a serum sample from the patient;
 - (b) providing an outer membrane protein selected from the group consisting of a protein of claim 11, a protein of claim 19, and mixtures thereof;
 - (c) contacting the serum sample with the outer membrane protein; and
 - (d) assaying for the formation of a complex between antibodies in the serum sample and the outer membrane protein, wherein formation of said complex is indicative of infection with *E. chaffeensis*.
22. A method for diagnosing an infection with *E. canis* in a Canidae patient comprising the steps of:
 - (a) providing a serum sample from the patient ;
 - (b) providing an outer membrane protein of claim 19;
 - (c) contacting the serum sample with the outer membrane protein; and
 - (d) assaying for the formation of a complex between antibodies in the serum sample and the outer membrane protein, wherein formation of said complex is indicative of infection with *E. canis*.

f28p1 primer →

GCGATTAATGGGAATTTCACATCAGTGAAATAACATGCCAAGTGCCTCCGATTTGGA	60
D P A G S G I R Q H F Y I S G E Y H P S A S H F G	25
GTATTCCTGCTAAAGGAAAAGAAATACACAGTTGGATUTTGGACTGAGCMAATTGGACGGAAAGCOCATAATCCMCTCC	150
V P B A K E B B R N T T V G V F O L K O W D G B A X B R B B	55
CCAAGGATGATTCACTCTCAATTTCATTAATATGAAACACCCGTTTTAGGTTTACGGAACTATGGTTACTCAATG	240
P H D V F T V S R Y I S F K Y T B N H P F L O F A G A I G Y M	85
CATGGTCCANGAAATAGACCTTGAAGTATCTTATGAAACATTGATGTTAAAGGTAACATTATGAGATGAGCACATGATAT	330
D G P R I E L E V S Y Z T F D V K H Q O N H Y K E A H R Y	115
TGTTGCTCTATCCATAACTCAGCAGCAGACATGAGTAGTOCAAGTAAATTTGCTCTTAAAGTGGAGGATTACTTGACATATCA	420
C A L S R H S A A D M S B A S S H P V F L K N E G L D I S	145
TCTATGAGACCATGCTATGCGTGTAGGGAGGACATACCTTTCTCTTATATGCGCAGTATGCGTACTGATTTAGTATCC	510
F H L B A C Y D V V G E Q I P F S P Y T C A G I G T D L V S	175
A G T T T G A M C T A C A A T C T A A A T T C T A C C A N G U A A G T T A G G T T A G C T A C T C T A T A G C C C A G A G C T T C T G T G T T A T G G T	600
H Y E A T E R K I Z T Y Q O K L O L S T S I S P E A S V F I G	205
GGGACTTTCATAGGATAATAGGAACGAAATTAGAGATATTCCTACTATAATACCTTACTGGATCAGACTTGCGAGAANGGAATAC	690
G R F H K V I Q N E P R D I P T I I P T G S T L A G K N Y	235
CCTGCAATAGATAACTGUATOTATGCCACTTTGGAAATAGAGACTTCCTACTATAATACCTTACTGGATCAGACTTGCGAGAANGGAATAC	756
P A T V I L D V C H F G I E L O G R Y V *	256

← r28p1 primer

Fig. 1

Fig. 2

2/31

10	20	30	40	50	60
ATGAATTACA	AAAAAGTTT	CATAACAA	GT	CATTGATAT	CATTAATATC
70	80	90	100	110	120
GGAGTATCAT	TTCCGACCC	AGCAGGTAGT	GGTATTAACG	GTAATTTCTA	CATCAGTGGA
130	140	150	160	170	180
AAATACATGC	CAAGTGCTTC	GCATTTGGA	GTATTCTCTG	CTAAGGAAGA	AAGAAATACA
190	200	210	220	230	240
ACAGTTGGAG	TGTTTGGACT	GAAGCAAAT	TGGGACGGAA	GCGCAATATC	CAACTCCTCC
250	260	270	280	290	300
CCAAACGATG	TATTCACTGT	CTCAAATTAT	TCATTTAAAT	ATGAAAACAA	CCCGTTTTA
310	320	330	340	350	360
GGTTTGCAG	GAGCTATTGG	TTACTCAATG	GATGGTCCAA	GAATAGAGCT	TGAAGTATCT
370	380	390	400	410	420
TATGAAACAT	TTGATGTAAA	AAATCAAGGT	AACAATTATA	AGAATGAAGC	ACATAGATAT
430	440	450	460	470	480
TGTGCTCTAT	CCCATAACTC	AGCAGCAGAC	ATGAGTAGTG	CAAGTAATAA	TTTTGTCTT
490	500	510	520	530	540
CTAAAAAAATG	AAGGATTACT	TGACATATCA	TTTATGCTGA	ACGCATGCTA	TGACGTAGTA
550	560	570	580	590	600
GGCGAAGGCA	TACCTTTTTC	TCCTTATATA	TGCGCAGGTA	TCGGTACTGA	TTTAGTATCC
610	620	630	640	650	660
ATGTTTGAAG	CTACAAATCC	AAAAATTCT	TACCAAGGAA	AGTTAGGTTT	AAGCTACTCT
670	680	690	700	710	720
ATAAGCCCCAG	AAGCTTCTGT	GT	TTTATTGGT	GGGCAC	TTTC ATAAGGTAAT AGGGAACGAA
730	740	750	760	770	780
TTTAGAGATA	TTCCTACTAT	AATACCTACT	GGATCAACAC	TTGCAGGAAA	AGGAAACTAC
790	800	810	820	830	840
CCTGCAATAG	TAATACTGGA	TGTATGCCAC	TTTGGAAATAG	AACTTGGAGG	AAGGTTTGTA
850	860	870	880	890	900
TTCTAA.....

Fig. 3A

10	20	30	40	50	60
MNYKKVFITS	ALISLISSLP	GVSFSDPAGS	GINGNFYISG	KYMPASHFG	VFSAKEERNT
70	80	90	100	110	120
TVGVFGLKQN	WDGSAISNSS	PNDVETVSNY	SFKYENNPF	GFAGAI	GYSM DGPRI
130	140	150	160	170	180
YETFDVKNQG	NNYKNEAHRY	CALSHNSAAD	MSSASNNFV	LKN	EGILLDIS EMLNACYDV
190	200	210	220	230	240
GEGIPFSPYI	CAGIGTDLVS	MFEATNPKIS	YQGKLGLSYS	ISPEASVFIG	GHFKVIGNE
250	260	270	280	290	300
FRDIPTIPI	GSTLAGKGNY	PAIVILDVCH	FGIEJ-GGRFV	F.....

Fig. 3B

10	20	30	40	50	60
ATGAATTACA	AGAAAATTTT	TGTAAGCAGT	GCATTAATTTC	CATTAATGTC	AATCTTACCT
70	80	90	100	110	120
TACCAATCTT	TTGCAGATCC	TGTAACCTCA	AATGATAACAG	GAATCACCGA	CAGCAGAGAA
130	140	150	160	170	180
GGCTTCTACA	TTAGTGTAAA	GTATAATCCA	AGCATATCAC	ACTTCAGAAA	ATTCTCAGCT
190	200	210	220	230	240
GAAGAACGTC	CCATCAATGG	AAATACTTCT	ATCACTAAAA	AGGTTTCGG	GCTGAAAAAA
250	260	270	280	290	300
GACGGAGATA	TAGCACAATC	TGCGAATTTT	AACAGGACAG	ATCCAGCCCT	CGAGTTTCAG
310	320	330	340	350	360
AATAACCTAA	TATCAGGATT	CTCAGGAAGT	ATTGGTTATG	CTATGGATGG	GCCAAGAATA
370	380	390	400	410	420
GAACTTGAAG	CTGCATACCA	AAAATTGAT	GCAAAAAATC	CTGACAACAA	TGACACTAAT
430	440	450	460	470	480
AGCGGTGACT	ACTATAAATA	CTTTGGACTA	TCTCGTGAAG	ACGCAATAGC	AGATAAGAAA
490	500	510	520	530	540
TATGTTGTCC	TTAAAAATGA	AGGCATCACT	TTTATGTCA	TAATGGTTAA	CACTTGCTAT
550	560	570	580	590	600
GACATTACAG	CTGAAGGGAGT	ACCTTCATA	CCGTATGCAT	GTGCAGGTGT	AGGAGCAGAC
610	620	630	640	650	660
CTTATAAACG	TATTTAAGGA	TTTTAATTAA	AAATTCTCAT	ACCAAGGGAA	AATAGGTATT
670	680	690	700	710	720
AGCTATCCAA	TCACACCAGA	AGTTTCCGCT	TTTATTGGAG	GATACTACCA	CGGAGTTATA
730	740	750	760	770	780
GGAAATAATT	TTAACAAAAT	ACCTGTAATA	ACACCTGTAG	TATTAGAAGG	AGCTCCTCAA
790	800	810	820	830	840
ACCACATCTG	CGCTAGTAAC	TATTGACACT	GGATACTTTG	GGGAGAAGT	TGGAGTAAGG
850	860	870	880	890	900
TTCACCTTCT AG.....					

Fig. 4A

10	20	30	40	50	60
MNYKKIFVSS	ALISILMSILP	YQSFADPVTS	NDTGINDSRE	GFYISVKYNP	SISHFRKFSA
70	80	90	100	110	120
EEAPINGNTS	ITKKVFGLKK	DGDIAQSANF	NRTDPALEFQ	NNLISGFSGS	IGYAMDGPRI
130	140	150	160	170	180
ELEAAAYQKFD	AKNPDNNDTN	SGDYYKYFGL	SREDAIADKK	YVVLKNEGIT	FMSLMVNTCY
190	200	210	220	230	240
DITAEGVPFI	PYACAGVGAD	LINVFKDFNL	KFSYQQKIGI	SYPITPEVSA	FIGGYXHGVI
250	260	270	280	290	300
GNNFNKIPVI TPVVLEGAPQ TTSALVTIDT GYFGGEVGVR FTF.....					

Fig. 4B

10	20	30	40	50	60
ATGAACTGCA	AAAAATTTT	TATAACA	ACT GCATTGGCAT	TGCCAATGTC	TTTCTTACCT
70	80	90	100	110	120
GGAATATTAC	TTTCTGAACC	AGTACAAGAT	GACAGTGTGA	GTGGCAATT	CTATATTAGT
130	140	150	160	170	180
GGCAAGTACA	TGCCAAGTGC	TTCTCATT	GGAGTTTCT	CTGCCAAAGA	AGAAAAAAAT
190	200	210	220	230	240
CCTACTGTGCG	CGTTGTATGG	TTTGAAACAA	GATTGGAACG	GTGTTAGTGC	TTCAAGTCAT
250	260	270	280	290	300
GCTGATGCGG	ACTTTAATAA	CAAAGGTTAT	TCTTTAAAT	ACGAAAACAA	TCCATTTCTA
310	320	330	340	350	360
GGTTTGCAG	GAGCTATTGG	TTATTCAATG	GGTGGTCCAA	GAATAGAGTT	TGAAGTGTCC
370	380	390	400	410	420
TATGAAACAT	TTGACGTGAA	AAATCAAGGT	GGTAATTACA	AAAATGATGC	TCACAGATAC
430	440	450	460	470	480
TGTGCCTTAG	ATCGTAAAGC	AAGCAGCACT	AATGCCACAG	CTAGTCACTA	CGTGCTACTA
490	500	510	520	530	540
AAAAATGAAG	GACTACTTGA	TATATCACTT	ATGTTGAATG	CATGCTATGA	CGTAGTAAGT
550	560	570	580	590	600
GAAGGAATAC	CTTTCTCTCC	TTACATATGT	GCAGGTGTTG	GTACCGATT	AATATCCATG
610	620	630	640	650	660
TTTGAAGCTA	TAAACCCCTAA	AATTTCTTAT	CAAGGAAAGT	TAGGTTTGAG	TTACTCTATA
670	680	690	700	710	720
AACCCAGAAG	CTTCTGTCTT	TGTTGGTGGGA	CATTTTCATA	AAGTTGCAGG	TAATGAATTC
730	740	750	760	770	780
AGGGACATT	CTACTCTTAA	AGCGTTTGCT	ACACCATCAT	CTGCAGCTAC	TCCAGACTTA
790	800	810	820	830	840
GCAACAGTAA	CACTGAGTGT	GTGTCACTT	GGAGTAGAAC	TTGGAGGAAG	ATTTAACTTC
850	860	870	880	890	900
TAA.....					

Fig. 5A

10	20	30	40	50	60
MNCKKFITT	ALALPMFLP	GILLSEPVQD	DSVSGNFYIS	GKYMPASHE	GVFSAKEEKN
70	80	90	100	110	120
PTVALYGLKQ	DWNGVSASSH	ADADFNKGY	SFKYENNPF	GFAGAIGYSM	GGPRIEFEV
130	140	150	160	170	180
YETFDVKNQG	NYKNDAHRY	CALDRKASST	NATASHYVLL	KNEGLLDISL	MLNACYDVVS
190	200	210	220	230	240
EGIPFSPYIC	AGVGTDLISM	FEAINPKISY	QGKLGLSYSI	NPEASVFVGG	HFKVAGNEF
250	260	270	280	290	300
RDISTLKAF	TPSSAATPDL	ATVTL	SVCHF	GVELGGRFNF

Fig. 5B

5/31

10	20	30	40	50	60
ATGAACTGCG	AAAAATT	TATAACA	ACT GCATTAACAT	TACTAATGTC	CTTCTTACCT
70	80	90	100	110	120
GGAATATCAC	TTTCTGATCC	AGTACAGGAT	GACAACATTA	GTGGTAATTT	CTACATCA
130	140	150	160	170	180
GGAAAGTATA	TGCCAAGCGC	TTCGCATT	GGAGTTTTT	CTGCCAAGGA	AGAAAAGAAAT
190	200	210	220	230	240
ACAACAGTG	GAGTATTG	AATAGAGCAA	GATTGGGATA	GATGTGTAAT	ATCTAGAAC
250	260	270	280	290	300
ACTTTAAGCG	ATATATT	CAC CGTTCCA	AAAT TATTCA	TTA AGTATGAAA	AAATCTATT
310	320	330	340	350	360
TCAGGATTG	CAGGAGCTAT	TGGCTACTCA	ATGGATGGCC	CAAGAATAGA	GCTTGAAGTA
370	380	390	400	410	420
TCTTATGAAG	CATTCGATGT	TAAAAATCAA	GGTAACAATT	ATAAGAACGA	AGCACATAGA
430	440	450	460	470	480
TATTATGCTC	TGTCCCAC	TCTCGGCACA	GAGACACAGA	TAGATGGTGC	AGGCAGTGCG
490	500	510	520	530	540
TCTGTCTTC	TAATAAAATGA	AGGACTACTT	GATAAATCAT	TTATGCTGAA	CGCATGTTAT
550	560	570	580	590	600
GATGTAATAA	GTGAAGGCAT	ACCTTTTCT	CCTTATATAT	GTGCAGGTAT	TGGTATTGAT
610	620	630	640	650	660
TTAGTATCCA	TGTTTGAAGC	TATAAACCT	AAAATTCTT	ATCAAGGAAA	ATTAGGCTTA
670	680	690	700	710	720
AGTTACCCCTA	TAAGCCCAGA	AGCTTCTGTG	TTTATTGGTG	GACATTTCA	TAAGGTGATA
730	740	750	760	770	780
GGAAACGAAT	TTAGAGATAT	TCCTACTATG	ATACCTAGTG	AATCAGCGCT	TGCAGGAAAA
790	800	810	820	830	840
GGAAACTACC	CTGCAATAGT	AAACACTGGAC	GTGTTCTACT	TTGGCATAGA	ACTTGGAGGA
850	860	870	880	890	900
AGGTTTA	ACT TCCA	ACT TTG A.....			

Fig. 6A

10	20	30	40	50	60
MNCEKFFITT	ALTLLMSFLP	GISLSDPVQD	DNIISGNFYIS	GKYMP SASHF	GVFSAKEERN
70	80	90	100	110	120
TTVGVFGIEQ	DWDRCVISRT	TLSDIETVPN	YSEFKYENNLF	SGFAGAIGYS	MDGPRIELEV
130	140	150	160	170	180
SYEAFDVKNQ	GNNYKNEAHR	YYALSHLLGT	ETQIDGAGSA	SVELINEGLL	DKSFMLNACY
190	200	210	220	230	240
DVISEGIPFS	PYICAGIGID	LVS MFEAINP	KIS YQKLGL	SYPISPEASV	FIGGHFHKV
250	260	270	280	290	300
GNEFRDIPTM	IPS E SALAGK	GNYPAI	VLD VFYFGIELGG	RNFQL

Fig. 6B

10	20	30	40	50	60
ATGAATTGCA	AAAAATTTT	TATAACA	ACT GCATTAGTAT	CACTAATGTC	CTTTCTACCT
70	80	90	100	110	120
GGAATATCAT	TTTCTGATCC	AGTGCAAGGT	GACAATATTA	GTGGTAATT	CTATGTTAGT
130	140	150	160	170	180
GGCAAGTATA	TGCCAAGTGC	TTCGCATT	GGCATGTTT	CTGCCAAAGA	AGAAAAAAAT
190	200	210	220	230	240
CCTACTGTTG	CATTGTATGG	CTTAAAACAA	GATTGGGAAG	GGATTAGCTC	ATCAAGTCAC
250	260	270	280	290	300
AATGATAATC	ATTTCAATAA	CAAGGGTTAT	TCATTTAAAT	ATGAAAATAA	CCCATTTTA
310	320	330	340	350	360
GGGTTTGCAG	GAGCTATTGG	TTATTCAATG	GGTGGTCAA	GAGTAGAGTT	TGAAGTGTCC
370	380	390	400	410	420
TATGAAACAT	TTGACGTTAA	AAATCAGGGT	AATAACTATA	AAAATGATGC	TCACAGATAC
430	440	450	460	470	480
TGTGCTT	GTCAACAAGA	CAACAGCGGA	ATACCTAAA	CTAGTAAATA	CGTACTGTTA
490	500	510	520	530	540
AAAAGCGAAG	GATTGCTTGA	CATATCATT	ATGCTAAATG	CATGCTATGA	TATAATAAAC
550	560	570	580	590	600
GAGAGCATA	CTTTGTCTCC	TTACATATGT	GCAGGGTGTG	GTACTGATT	AATATCCATG
610	620	630	640	650	660
TTTGAAGCTA	CAAATCCTAA	AATTCCTAC	CAAGGGAA	TAGGTCTAAG	TTACTCTATA
670	680	690	700	710	720
AAACCAGAAG	CTTCTGTATT	TATTGGTGG	CATTTTCATA	AGGTGATAGG	AAACGAATT
730	740	750	760	770	780
AGGGACATTC	CTACTCTGAA	AGCATTGTT	ACGTCA	CTACTCCAGA	TCTAGCAATA
790	800	810	820	830	840
GTAACACTAA	GTGTATGTCA	TTTGGAAATA	GAAC	TTGGAG	GAAGGTTAA
CTTCTAA...					

Fig. 7A

10	20	30	40	50	60
MNCKKFFITT	ALVSIMSLP	GISFSDPVQG	DNIISGNFYVS	GKYMP	SASHF GMFSAKEEKN
70	80	90	100	110	120
PTVALYGLKQ	DWEGISSSSH	NDNHFNKGY	SEKYENNPL	GFAGAIGYSM	GGPRVEFEVS
130	140	150	160	170	180
YETFDVKNQG	NNYKNDAHRY	CALGQQDNSG	IPKTSKYVLL	KSEG	LLDISF MLNACYDIIN
190	200	210	220	230	240
ESIPLSPYIC	AGVGTDLISM	FEATNPKISY	QGKLGLSYSI	NPEASVFIGG	HFHKVIGNEF
250	260	270	280	290	300
RDIPTLKAFV	TSSATPDLAI	VTLSVCHFGI	ELGGGRNF...		

Fig. 7B

7/31

10	20	30	40	50	60
ATGAATTGCA	AAAAATTTT	TATAACAAC	ACATTAGTAT	CGCTAATGTC	CTTCTTACCT
70	80	90	100	110	120
GGAATATCAT	TTTCTGATGC	AGTACAGAAC	GACAATGTTG	GTGGTAATT	CTATATCAGT
130	140	150	160	170	180
GGGAAATATG	TACCAAGTGT	TTCACATTT	GGCGTATTCT	CTGCTAAACA	GGAAAGAAAT
190	200	210	220	230	240
ACAACAACCG	GAGTATTTGG	ATTAAGCAA	GATTGGGATG	GCAGCACAA	ATCTAAAAAT
250	260	270	280	290	300
TCTCCAGAAA	ATACATTTAA	CGTTCCAAAT	TATTCATT	AATATGAAAA	TAATCCATT
310	320	330	340	350	360
CTAGGGTTTG	CAGGAGCTGT	TGGTTATT	ATGAATGGTC	CAAGAATAGA	GTTAGAAATG
370	380	390	400	410	420
TCCTATGAAA	CATTTGATGT	GAAAACCAG	GGTAATAACT	ATAAGAACGA	TGCTCACAAA
430	440	450	460	470	480
TATTATGCTT	TAACCCATAA	CAGTGGGGGA	AAGCTAACGA	ATGCAGGTGA	TAAGTTGTT
490	500	510	520	530	540
TTTCTAAAAA	ATGAAGGACT	ACTTGATATA	TCACTTATGT	TGAATGCATG	CTATGATGTA
550	560	570	580	590	600
ATAAGTGAAG	GAATACCTT	CTCTCCTTAC	ATATGTGCAG	GTGTTGGTAC	TGATTTAATA
610	620	630	640	650	660
TCCATGGTTG	AAGCTATAAA	CCCTAAATT	TCTTATCAAG	GAAAGTTAGG	TTTGAGTTAC
670	680	690	700	710	720
TCCATAAGCC	CAGAAGCTTC	TGTTTTGTT	GGTGGACATT	TTCATAAGGT	GATAGGGAAT
730	740	750	760	770	780
GAATTCAAGAG	ATATTCCCTGC	TATGATAACCC	AGTACCTCAA	CTCTCACAGG	TAATCACTTT
790	800	810	820	830	840
ACTATAGTAA	CACTAAGTGT	ATGCCACTT	GGAGTGGAAC	TTGGAGGAAG	GTTTAACTTT
850	860	870	880	890	900
TAA.....

Fig. 8A

10	20	30	40	50	60
MNCKKFFITT	TLVSLMSFLP	GISFSDAVQN	DNVGGNFYIS	GKYVPSVSHE	GVFSAKQERN
70	80	90	100	110	120
TTTGVFGLKQ	DWDGSTISK	SPENTFNVPN	YSFKYENNPF	LGFAGAVGYL	MNGPRIELEM
130	140	150	160	170	180
SYETFDVKNQ	GNNYKNDAHK	YYALTHNSGG	KLSNAGDKFV	FLKNEGLLDI	SLMLNACYDV
190	200	210	220	230	240
ISEGIPFSPY	ICAGVGTDLI	SMFEAINPKI	SYQGKLGLSY	SISPEASVFV	GGHFHKVIGN
250	260	270	280	290	300
EFRDIPAMIP	STSTLTGNHF	TIVTLSVCHF	GVELGGRFNF

Fig. 8B

10	20	30	40	50	60
ATGGAAAATC	TCATGAATAA	GAAAAACAAA	TTCTTTACAA	TAAGTACAGC	AATGGTATGC
70	80	90	100	110	120
TTATTGTTAT	TACCTGGTAT	ATCATTTC	GAAACTATAA	ACAACAGTGC	TAAAAAACAG
130	140	150	160	170	180
CCTGGGTTAT	ATATCAGTGG	GCAGTACAAA	CCTAGTGT	CAGTTTTAG	TAATTTCA
190	200	210	220	230	240
GTAAAAGAAA	CTAATGTTCC	CACAAAGCAG	TTAATAGCAC	TTAAAAAAGA	CATTAATTCT
250	260	270	280	290	300
GTTGCAGTTG	GTAGTAATGC	TACTACAGGT	ATTAGCAATC	CAGGTAATT	CACAATTCC
310	320	330	340	350	360
TATACTGCAG	AATTCAGA	TAATGTTGCC	AATTCAGAATG	GGGCTGTTGG	TTACTCTTT
370	380	390	400	410	420
CCTGATAGTC	TAAGAATTGA	AATAGAGGGA	TTTCATGAAA	AATTTGATGT	CAAAAACCC
430	440	450	460	470	480
GGAGGTTACA	CACAAGTAAA	AGATGCGTAC	CGTTATTTTG	CACTAGCACG	TGATTTAAA
490	500	510	520	530	540
GATGGCTTCT	TTGAACCTAA	AGCGGAAGAT	ACAGGTGT	ATCATACTGT	TATGAAAAAT
550	560	570	580	590	600
GATGGATTAT	CTATTTATC	TACTATGGTT	AACGTCTGTT	ACGATTTTC	TGTAGATGAA
610	620	630	640	650	660
TTACCAGTCT	TACCTTATAT	ATGTGCAGGT	ATGGGTATAA	ACGCCATAGA	ATTCTTCGAC
670	680	690	700	710	720
GCTTTACATG	TAAAATTGC	TTACCAAGGC	AAACTAGGTA	TTAGCTATCA	ACTATTTACT
730	740	750	760	770	780
AAAGTAAATT	TATTCCCTGA	TGGGTATTAC	CATCAAGTAA	TAGGCAATCA	ATTCAAAAAC
790	800	810	820	830	840
TTAAACGTAA	ACCATGTTA	CACACTAAA	GAATCTCCTA	AAGTCACATC	TGCAGTAGCT
850	860	870	880	890	900
ACACTTGACA	TTGCATACTT	TGGTGGCGAA	GTTGGAATAA	GATTACACATT	TTAA.....

Fig. 9A

10	20	30	40	50	60
MVCLLLLPGI	SFSETINNSA	KKQPGLYISG	QYKPSVSVFS	NFSVKETNVP	TKQLIALKKD
70	80	90	100	110	120
INSVAVGNSA	TTGISNPNGNF	TIPYTAEFQD	NVANFNGAVG	YSFPDSLRIE	IEGFHEKEDV
130	140	150	160	170	180
KNPGGYTQVK	DAYRYFALAR	DLKDGFPEPK	AEDTGVYHTV	MKNNDGLSILS	TMVNVCYDFS
190	200	210	220	230	240
VDELPVLVPI	CAGMGINAIE	FFDALHVKFA	YQGKLGISYQ	LFTKVNLFLD	GYYHQVIGNQ
250	260	270	280	290	300
EKNLNVNHVY	TLKESPKVTS	AVATLDIAYF	GGEVGIRFTF

Fig. 9B

10	20	30	40	50	60
ATGATATATA	AAGAAAAACT	TACTAGAGTG	GGAGAAATATA	TCTTAGCATA	TTTATCATTT
70	80	90	100	110	120
ATTCTTTCTA	CTTATATCTT	TCTAGTGCTG	GTAATATTTA	TTAGATATAA	CAGCCTTGCT
130	140	150	160	170	180
ATATGTGTTA	TCAGTCTACT	AAGAACTAAT	ATCTTTAACCG	TTAGCACAAA	AAAATTAATA
190	200	210	220	230	240
AAAGATAAAT	GTCGTGATAC	TAAGTTTAGT	AACATGAATT	GTTATTGTA	CGGTAAACCG
250	260	270	280	290	300
TTAAATTTCAC	AAATTTTTTA	TGGAATATTT	TCCTTTATTA	GAAACTTTCA	AAATAACACA
310	320	330	340	350	360
CTAATAATTC	CTAATGATAG	TAAATGCCGC	TTCTATACCA	CGTTATGGGA	TAATCCAGCA
370	380	390	400	410	420
CTACATTATA	CATATACACT	TACTGGCAGT	GAGTACCGTA	ATTTTTTGTA	CATTCTATAT
430	440	450	460	470	480
GAAAACATTA	TCTGTCAATG	TAAATTACTT	ATTAACTATA	ACCGTTCTGT	ATTAAACCAA
490	500	510	520	530	540
CATAATAAAA	ATACTCTCGT	AATAATACCA	ATACCTAATG	CTAGAGAGTT	CAGTAATGAA
550	560	570	580	590	600
ATTCGAGTAA	GGAATATATC	AATAAATAAG	GAAAGTTCTT	ATGAGTGCTA	A.....

Fig. 10A

10	20	30	40	50	60
MIYKEKLTRV	GEYILAYLSF	ILSTYIFLVL	VNIIRYNSLA	ICVISLLRTN	IENVSTKKLI
70	80	90	100	110	120
KDKCRDTKFS	NMNCYLYGKP	LNLQIFYGIE	SFIRNFQNNT	LIIPNDSKCG	FYTTLWDNPA
130	140	150	160	170	180
LHYTYTLTGS	EYRNFFDILY	ENIICQCKLL	INYNRSVLNQ	HNKNTLVIIP	IPNAREFSNE
190	200	210	220	230	240
IRVRNISINK	ESSYEC.....				

Fig. 10B

10/31

10	20	30	40	50	60
ATGAATAAAA	AAAACAAGTT	TATTATAGCT	ACAGCATTGG	TATATTTACT	GTCATTACCT
70	80	90	100	110	120
AGTGTATCGT	TTTCAGAGGT	TACAAACAGC	AGTATTAAAA	AACACTCTGG	GTTATATATT
130	140	150	160	170	180
AGTGGACAAT	ACAAACCAAG	TGTTTCTGTT	TTTAGTAGTT	TCTCAATTAA	AGAAACTAAC
190	200	210	220	230	240
ACTATCACAA	AAAATCTTAT	AGCGTTAAAA	AAAGATATTA	ACTCTCTTGA	AGTTAACGCC
250	260	270	280	290	300
GATGCTAGTC	AAGGTATTAG	TCATCCAGGA	AATTTACTA	TACCTTATAT	AGCAGCATT
310	320	330	340	350	360
GAAGATAATG	CTTTAATTT	CAACGGTGCT	ATTGGTTACA	TTACTGAAGG	TCTAAGGATT
370	380	390	400	410	420
GAAATAGAAG	GTTCCTATGA	AGAATTGAT	GCTGAAAACC	CTGGAGGTTA	TGGTCTAAAT
430	440	450	460	470	480
GATGCCTTTC	GGTACTTTGC	TTTAGCACGT	GATATGGAAA	GCAACAAGTT	CCTACCAAAA
490	500	510	520	530	540
GCACAAAGCT	CAC.....

Fig. 11A

10	20	30	40	50	60
MNKKNKFIIA	TALVYLLSLP	SVSFSEVTNS	SIKKHSGLYI	SGQYKPSVSV	FSSFSIKETN
70	80	90	100	110	120
TITKNLIALK	KDINSLEVNA	DASQGISHPG	NFTIPYIAAF	EDNAFNFGA	IGYITEGLRI
130	140	150	160	170	180
EIEGSYEEFD	AENPGGYGLN	DAFRYFALAR	DMESNKFLPK	AQSS.....

Fig. 11B

10	20	30	40	50	60
TCTAGAATAC	ATGATGAAAA	TTATGCTATT	ACAACAAATA	ATAAATTATC	CATCGCATCT
70	80	90	100	110	120
ATTATGGTTA	ACACCTGCTA	TGATATTCA	ATTAATAATA	CATCAATAGT	ACCGTATTTA
130	140	150	160	170	180
TGCACAGGCA	TTGGTGAAGA	TCTTGTAGGG	CTTTTTAATA	CAATACATTT	TAAACTTGCA
190	200	210	220	230	240
TATCAAGGGA	AAGTTGGAAT	GAGTTATTTG	ATAAATAACA	ATATCCTATT	ATTTTCTGAC
250	260	270	280	290	300
ATATATTATC	ATAAAGTCAT	GGGTAACAGA	TTTAAAAATT	TGTACATGCA	ATATGTAGCT
310	320	330	340	350	360
GATCCTAATA	TTTCTGAAGA	AACTATACCT	ATATTAGCAA	AACTTGATAT	TGGTTATTTT
370	380	390	400	410	420
GGAAGTGAAA	TTGGAATAAG	GTTCATGTTT	AACTAA.....		

Fig. 12A

10	20	30	40	50	60
SRIHDENYAI	TTNNKLSIAS	IMVNTCYDIS	INNTSIVPYL	CTGIGEDLVG	LFNTIHFKLA
70	80	90	100	110	120
YQGKVGMMSYL	INNNILLFSD	IYYHKVMGNR	EKNLYMQYVA	DPNISEETIP	ILAKLDIGYF
130	140	150	160	170	180
GSEIGIREMFE	N.....				

Fig. 12B

12/31

10	20	30	40	50	60
ATGACAAAGA	AATTTAAC	TGTAAATGTT	ATATTAACAT	TTTTGTTATT	TCTTTCCCA
70	80	90	100	110	120
CTTAAGTCAT	TTACAACATA	TGCAAATAAT	AACACAATCA	CTCAAAAAGT	TGGATTGTAC
130	140	150	160	170	180
ATAAGTGGTC	AATATAAGCC	AAGTATTCCCT	CATTICAAGA	ATTTTCAGT	AGAAGAAAAT
190	200	210	220	230	240
GACAAAGTAG	TAGATTTGAT	AGGTCTTACA	ACTGATGTTA	CATATATCAC	AGAACATATA
250	260	270	280	290	300
TTACGAGATA	ATACAAAATT	CAACACTCAT	TATATTGCAA	AGTTCAAGAA	CAATTTATA
310	320	330	340	350	360
AATTCAGCA	GTGCAATTGG	TTATTATTCT	GGGCAAGGAC	CAAGGTTAGA	AATAGAAAGC
370	380	390	400	410	420
TCTTATGGGG	ATTTGATGT	TGTAAATTAT	AAAAATTATG	CAGTACAAGA	TGTTAATAGA
430	440	450	460	470	480
TATTTTGCTT	TAGTACGTGA	AAAAAATGGT	TCAAATTTCT	CTCCAAAACC	ACATGAAACT
490	500	510	520	530	540
AGTCAACCCT	CTGACAGTAA	TCCTAAAAAG	TCTTTTATA	CTTTAATGAA	GAATAATGGG
550	560	570	580	590	600
GTATTTGTTG	CATCAGTAAT	AATCAACGGT	TGTTATGATT	TTTCTTTAA	TAACACAACA
610	620	630	640	650	660
ATATCACCTT	ACGTATGTAT	AGGAGTTGGA	GGAGATTTA	TAGAGTTTT	TGAAGTAATG
670	680	690	700	710	720
CATATCAAGT	TTGCTTGCCA	AAGTAAGGTT	GGTATTAGCT	ATCCAATATC	TCCCTCTATT
730	740	750	760	770	780
ACTATTTTG	CTGATGCACA	TTATCACAAG	GTCATAAATA	ATAAATTAA	CAACCTACAT
790	800	810	820	830	840
GTAAAGTATT	CATATGAAC	AAAAAACTCA	CCTACCATTAA	CCTCTGCAAC	AGCCAAACTA
850	860	870	880	890	900
AACATTGAAT ATTTGGTGG TGAAGTTGGG ATGAGATTAA TATTTAA.....					

Fig. 13A

10	20	30	40	50	60
MTKKENFNVN	ILTFLLFLFP	LKSFTTYANN	NTITQKVGLY	ISGQYKPSIP	HEKNFSVEEN
70	80	90	100	110	120
DKVVVDLIGHT	TDVTVITEHI	LRDNTKFNT	YIAFKNNFI	NFSSAIGYYS	GQGPRLEIES
130	140	150	160	170	180
SYGDFDVVNY	KNYAVQDVNR	YEALVREKNG	SNFSPKPHE	SQPSDSNPKK	SFYTLMKNNG
190	200	210	220	230	240
VFVASVIING	CYDFSFNNTT	ISPYVCIGVG	GDFIEFFEVM	HIFACQSKV	GISYPISPSI
250	260	270	280	290	300
TIFADAHYHK VINNKFNNLH VKYSYELKNS PTITSATAKL NIEYFGGEVG MRFIE.....					

Fig. 13B

	10	20	30	40	50	60
ATGAGCAAAA	AAAAGTTTAT	TACAATAGGA	ACAGTACTTG	CATCTCTATT	ATCATTCTTA	
70	80	90	100	110	120	
TCTATTGAAT	CCTTTTCAGC	TATAAATCAT	AATCATACAG	GAAATAACAC	TAGTGGTATA	
130	140	150	160	170	180	
TATATTACAG	GGCAGTATAG	ACCAGGAGTA	TCCCATTAA	GCAATTCTC	AGTAAAAGAA	
190	200	210	220	230	240	
ACTAATGTTG	ATACAATACA	ACTAGTAGGA	TATAAAAAAA	GTGCGTCTTC	TATCGATCCT	
250	260	270	280	290	300	
AACACTTATT	CAAACTTCA	AGGTCCATAT	ACTGTTACAT	TTCAAGATAA	TGCTGCTAGT	
310	320	330	340	350	360	
TTCAGTGGAG	CAATTGGATA	TTCTTACCCC	GAAAGTCTAA	GACTTGAAC	TGAAGGTTCT	
370	380	390	400	410	420	
TACGAAAAAT	TTGATGTCAA	AGATCCTAAA	GACTACTCAG	CAAAAGATGC	TTTAGGTTT	
430	440	450	460	470	480	
TTTGCTCTAG	CACGTAATAC	GTCTACTACT	GTTCCTGATG	CTCAAAAATA	TACAGTTATG	
490	500	510	520	530	540	
AAGAATAATG	GCTTATCTGT	TGCATCAATC	ATGATCAATG	GTTGTTATGA	TCTATCTTTT	
550	560	570	580	590	600	
AATAATTAG	TCGTATCAC	TTATATATGT	GCAGGTATTG	GTGAAGATTT	CATTGAATT	
610	620	630	640	650	660	
TTTGATACTT	TGCACATTAA	ACTTGCTTAT	CAAGGAAAAC	TAGGTATTAG	TTATTACTTC	
670	680	690	700	710	720	
TTTCCTAAGA	TTAATGTATT	TGCTGGTGGG	TACTATCATA	GAGTTATAGG	GAATAAATT	
730	740	750	760	770	780	
AAAAATTAA	ATGTTAACCA	TGTTGTTACA	CTTGATGAAT	TTCCTAAAGC	AACTTCTGCA	
790	800	810	820	830	840	
GTAGCTACAC	TTAATGTTGC	TTATTTGGT	GGTGAAGCTG	GAGTAAAGTT	TACATTTAA	
850	860	870	880	890	900	
.....	

Fig. 14A

	10	20	30	40	50	60
MSKKKFITIG	TVLASLLSFL	SIESFSAINH	NHTGNNTSGI	YITGQYRPGV	SHFSNFSVKE	
70	80	90	100	110	120	
TNVDTIQLVG	YKKSASSIDP	NTYSNFQGPY	TVTFQDNAAS	FSGAIGYSYP	ESLRLELEGS	
130	140	150	160	170	180	
YEKF DV KDPK	DYSAKDAFRF	FALARNTSTT	VPDAQKYTM	KNNGLSVASI	MINGCYDLSF	
190	200	210	220	230	240	
NNL VVSPYIC	AGIGEDFIEF	FDTLHIKLAY	QGKLIGISYYF	FPKINVEAGG	YYHRVIGNKE	
250	260	270	280	290	300	
KNLN VN HVVT	LDEFPKATSA	VATLNVAYFG	GEAGVKFTF	

Fig. 14B

10	20	30	40	50	60
ATGAGTGCTA	AAAAAAAGCT	TTTTATAATA	GGGTCACTGT	TAGTATGTTT	AGTGTACATAC
70	80	90	100	110	120
TTACCTACTA	AATCTTGTC	AAACTTAAAT	AATATTAAATA	ATAACACTAA	GTGCACTGGG
130	140	150	160	170	180
CTATATGTCA	GTGGACAATA	AAAACCTACT	GTTTCTCACT	TTAGTAATTT	TTCACTTAAA
190	200	210	220	230	240
GAAACTTATA	CTGACACTAA	AGAGTTATTA	GGACTAGCAA	AAGATATTAA	GTCTATTACA
250	260	270	280	290	300
GATATAACAA	CAAATAAAAA	ATTCAACATT	CCTTATAACA	CAAAATTTCA	AGATAATGCT
310	320	330	340	350	360
GTTAGCTTCA	GTGCAGCTGT	TGGATATATT	TCCCAAGACA	GTCCAAGGGT	TGAGGTAGAA
370	380	390	400	410	420
TGGTCTTATG	AAGAATTGGA	CGTTAAAAAT	CCTGGTAATT	ACGTAGTAAG	TGAAGCCTTC
430	440	450	460	470	480
AGGTATATTG	CTTAGCAAG	AGGAATTGAT	AATCTTCAA	AATATCCTGA	AACAAATAAG
490	500	510	520	530	540
TATGTTGTTA	TAAAGAACAA	TGGCTTATCT	GTCGCATCCA	TTATAATCAA	TGGCTGTTAT
550	560	570	580	590	600
GATTTTCTT	TAAACAATT	AAAAGTATCA	CCTTACATAT	GCGTAGGGTT	TGGTGGGGAC
610	620	630	640	650	660
ATTATAGAAT	TTTTTAGTGC	TGTAAGTTT	AAATTTGCTT	ATCAAGGTAA	GGTAGGTATC
670	680	690	700	710	720
AGTTATCCAT	TATTCTCTAA	TATGATTATA	TTTGCTGACG	GATATTACCA	TAAGGTACATA
730	740	750	760	770	780
GGAAATAAAAT	TTAACAAATT	AAATGTTCAA	CACGTTGTTA	GTCTTAACAG	TCATCCTAAG
790	800	810	820	830	840
TCTACTTTG	CAGTAGCTAC	TCTTAATGTT	GAGTATTTCG	GTAGTGAATT	TGGGTTAAAA
850	860	870	880	890	900
TTTATATTTT AA.....					

Fig. 15A

10	20	30	40	50	60
MSAKKKLFII	GSVLVCLVSY	LPTKSLSNLN	NINNNNTKCTG	LYVSGQYKPT	VSHFSNFSLK
70	80	90	100	110	120
ETYTDTKELL	GLAKDIKSIT	DITTNKKFNI	PYNTKFQDNA	VSFSAAVGYI	SQDSPRVEVE
130	140	150	160	170	180
WSYEEFDVKN	PGNYVVSEAF	RYIALARGID	NLQKYPETNK	YVVIKNNGLS	VASIIINGCY
190	200	210	220	230	240
DFSLNNLKVS	PYICVGEGGD	IIEFFSAVSF	KFAYQGKVGI	SYPLESNMII	FADGYYHKVI
250	260	270	280	290	300
GNKFNNLNQ HVVSLNSHPK STFAVATLNV EYFGSEFGLK FIF.....					

Fig. 15B

10	20	30	40	50	60
ATGAGTAAA	AAAATTTAT	TACAATAGGA	GCAACACTTA	TTCATATGTT	GTTACCTAAC
70	80	90	100	110	120
ATATCTTTTC	CAGAAACTAT	TAACAATAAC	ACTGATAAAC	TTTCTGGGTT	ATATATAAGT
130	140	150	160	170	180
GGGCAATATA	AACCAGGGAT	TTCTCATTC	AGCAAATTT	CAGTCAAAGA	AATCTATAAT
190	200	210	220	230	240
GATAACATTG	AACTAATTGG	GTAAAGACAC	AACGCAATT	CTACTAGTAC	CCTTAATATT
250	260	270	280	290	300
AATACAGATT	TTAATATCCC	CTATAAAGTA	ACATTTCAAA	ATAACATTAC	CAGCTTTAGT
310	320	330	340	350	360
GGAGCTATTG	GTTATTCTGA	TCCCACAGGG	GCAAGATTTG	AGCTTGAGG	TTCTTATGAA
370	380	390	400	410	420
GAATTTGATG	TGACAGATCC	TGGAGACTGC	TTAATAAAAG	ATACCTATAG	ATATTCGCT
430	440	450	460	470	480
TTAGCTAGAA	ACCCATCAGG	TTCTAGCCT	ACCTCAAACA	ACTATACTGT	TATGAGAAAT
490	500	510	520	530	540
GATGGTGT	CCATTACTTC	TGTTATATT	AATGGCTGTT	ATGACATCTT	TTTAAAGGAT
550	560	570	580	590	600
TTAGAAGTAT	CACCTTATGT	ATGTGTTGGT	GTAGGTGGAG	ATTTTATAGA	ATTTTTGAC
610	620	630	640	650	660
GCATTACACA	TTAAATTAGC	ATACCAAGGC	AAGTTAGGTA	TCAATTATCA	CTTATCGACT
670	680	690	700	710	720
CAAGCAAGCG	TATTTATTGA	TGGATATTAT	CATAAGGTTA	TAGGAAATCA	ATTCAACAAAT
730	740	750	760	770	780
CTAAATGTT	AACACGTGGC	TAGTACAGAT	TTTGGACCTG	TATACGCAGT	AGCCACACTT
790	800	810	820	830	840
AACATTGGTT	ATTTGGTGG	TGAAATCGGA	ATTAGACTTA	CATTTAA..

Fig. 16A

10	20	30	40	50	60
MSKKNFITIG	ATLIHMLLPN	ISFPETINNN	TDKLSGLYIS	GQYKPGISHF	SKFSVKEIYN
70	80	90	100	110	120
DNIQLIGLRH	NAISTSTLNI	NTDFNIPYKV	TFQNNITSE	GAIGYSDPTG	ARFELEGSYE
130	140	150	160	170	180
EFDVTDPGDC	LIKDTYRYFA	LARNPSGSSP	TSNNYTVMRN	DGVSITSVIF	NGCYDIFILKD
190	200	210	220	230	240
LEVSPYVCVG	VGGDFIEFFD	ALHIKLAYQG	KLGINYHLST	QA SVFIDGYY	HKVIGNQFNN
250	260	270	280	290	300
LNVQHVASTD	FGPVYAVATL	NIGYFGGEIG	IRLTF..

Fig. 16B

16/31

10	20	30	40	50	60
ATGAATAATA	GAAAAAGTTT	TTTTATAATA	GGTGCATCAT	TACTAGCAAG	CTTATTATTTC
70	80	90	100	110	120
ACATCTGAGG	CCTCTTCTAC	AGGAAATGTA	AGTAACCATA	CTTATTTAA	ACCTAGGTAA
130	140	150	160	170	180
TATATCAGTG	GACAATATAG	ACCAAGAGTT	TCTCATTAA	GCAAATTTTC	AGTCAAAGAA
190	200	210	220	230	240
ACCAACTACA	ATACTACTCA	ACTAGTTGGG	CTTAAAAGG	ACATCAGTGT	CATAGGGAAC
250	260	270	280	290	300
AGTAATATCA	CAACCTACAC	AAATTTAAC	TTTCCTTACA	TTGCAGAATT	TCAAGACAAT
310	320	330	340	350	360
GCCATAAGTT	TCAGTGGGGC	AATTGGATAC	TTGTATTCCG	AGAATTITAG	AATTGAAGTA
370	380	390	400	410	420
GAGGCTTCTT	ATGAAGAATT	TGATGTTAAA	AATCCAGAAG	GATCTGCTAC	AGACGCATAC
430	440	450	460	470	480
AGGTATTITG	CACTAGCACG	TGCTATGGAT	GGCACTAATA	AATCTAGTCC	TGATGACACA
490	500	510	520	530	540
AGAAAATTCA	CTGTCATGAG	AAATGACGGG	TTATCAATT	CATCAGTAAT	GATAAATGGG
550	560	570	580	590	600
TGTTACAATT	TTACATTAGA	TGATATACCA	GTAGTACCGT	ATGTATGCGC	AGGAATAGGA
610	620	630	640	650	660
GGAGATTCA	TAGAGTTTT	TAATGATTAA	CATGTTAAGT	TTGCTCATCA	AGGCAAGGTA
670	680	690	700	710	720
GGTATTAGTT	ATTCTATATC	CCCTGAAGTA	AGTTTATTTC	TTAACGGATA	TTACCATAAA
730	740	750	760	770	780
GTAACAGGTA	ACAGATTAA	AAACTTACAC	GTTCAACACG	TAAGTGATTT	AAGTGACGCT
790	800	810	820	830	840
CCTAAGTTCA	CATCTGCAGT	TGCTACACTC	AATGTTGGGT	ACTTTGGGG	CGAAATTGGA
850	860	870	880	890	900
GTAAGATTAA	TATTTAA..

Fig. 17A

10	20	30	40	50	60
MNNRKSEFFII	GASLLASILF	TSEASSTGNV	SNHTYFKPRL	YISGQYRPGV	SHFSKFSVKE
70	80	90	100	110	120
TNYNTTQLVG	LKKDISVIGN	SNITTYTNEN	FPYIAEFQDN	AISFSGAIGY	LYSENFRIEV
130	140	150	160	170	180
EASYEEFDVK	NPEGSATDAY	RYFALARAMD	GTNKSSPDDT	RKFTVMRNDG	LSISSIONMING
190	200	210	220	230	240
CYNFTLDDIP	VVPYVCAGIG	GDFIEFFNDL	HVKFAHQGV	GISYSISPEV	SIFLNGYYHK
250	260	270	280	290	300
VTGNRFKNLH	VQHVSSDLSDA	PKETSAVATL	NVGYFGGEIG	VRFIF

Fig. 17B

10	20	30	40	50	60
TAGCAGCACT	AAAAAAACAGT	TTGGGTATA	TGTTAGTGGA	CAACACCAGC	CTAGTGTTC
70	80	90	100	110	120
TATTTTAGC	AATTTCTCAG	TAAAGGAAAC	TAATTTCCCT	ACAAAGTATT	CTAGCAGCTT
130	140	150	160	170	180
CTTAAAAAAA	GACATTAATT	CTGTCGAATT	TGACGATAGT	GTTACTGCTG	GCATTAGTTA
190	200	210	220	230	240
CCCACCTAAT	TTCAGTACTC	CTTATATAGC	TGTATTTCAA	GATAATATTT	CTAATTTAA
250	260	270	280	290	300
TGGCGCTATT	GGGTACACTT	TTGTTGAAGG	CCCAAGAATT	GAAATAGAAG	GTTCTTATGA
310	320	330	340	350	360
AGAATTTCGAT	GTCAAAGACC	CTGGAAGATA	TACAGAAATA	CAAGATGCAT	ACCGTTACTT
370	380	390	400	410	420
TGCTTTAGCA	CGTGATATAG	ACTCTATTCC	TACTAGCCCC	AAAAATAGAA	CTTCACATGA
430	440	450	460	470	480
TGGCAACAGT	TCATATAAGG	TATACCACAC	TGTAATGAAA	AATGAAGGAC	TATCTATAAT
490	500	510	520	530	540
ATCCATTATG	GTCAATGGCT	GCTATGATTT	TTCTTCAGAT	AATTTATCAA	TATTACCTTA
550	560	570	580	590	600
TGTATGTGGT	GGTATAGGTG	TAAATGCTAT	AGAGTTTTTC	GATGCATTAC	ATGTTAAATT
610	620	630	640	650	660
CGCGTGTCA	GGTAAATTAG	GTATTACTTA	TCCATTATCT	TCCAACGTTA	GTTTATTG
670	680	690	700	710	720
TGGTGGATAT	TATCACCAAG	TAATGGGCAA	CCAATTTAAA	AATCTAAATG	TTCAACATGT
730	740	750	760	770	780
AGCTGAACTT	AATGACGCAC	CCAAAGTTAC	ATCTGCAGTA	GCTACACTTG	ACATTGGGTA
790	800	810	820	830	840
TTTTGGTGGT	GAAATTGGAG	CAAGGTTAT	ATTTAA...

Fig. 18A

10	20	30	40	50	60
SSTKKQFGLY	VSGQHQPSVS	IFSNFSVKET	NEPTKYSSSF	LKKDINSVEF	DDSVTAGISY
70	80	90	100	110	120
PLNFSTPYIA	VFQDNISNEN	GAIGYTFVEG	PRIEIEGSYE	EFDVKDPGRY	TEIQDAYRYF
130	140	150	160	170	180
ALARDIDSI	TSPKNRTSHD	GNSSYKVYHT	VMKNEGGLSII	SIMVNGCYDF	SSDNLSILPY
190	200	210	220	230	240
VCGGIGVN	EFFDALHVKF	ACQGKLGITY	PLSSNVSLFA	GGYYHQVMGN	QFKNLNVQHV
250	260	270	280	290	300
AELNDAPKVT	SAVATLDIGY	FGGEIGARLI	F.....

Fig. 18B

10	20	30	40	50	60
ATGAATTGCA	AAAGATTTT	CATAGCAAGT	GCATTGATAT	CACTAATGTC	TTTCTTACCT
70	80	90	100	110	120
AGCGTATCTT	TTTCTGAATC	AATACATGAA	GATAATATAA	ATGGTAACCTT	TTACATTAGT
130	140	150	160	170	180
GCAAAGTATA	TGCCAAGTGC	CTCACACTT	GGCGTATTTT	CAGTTAAAGA	AGAGAAAAAC
190	200	210	220	230	240
ACAACAACTG	GAGTTTCGG	ATTAAAACAA	GATTGGGACG	GAGCAACAAT	AAAGGATGCA
250	260	270	280	290	300
AGCAGCAGCC	ACACAATAGA	CCCAAGTACA	ATATTCTCCA	TTTCAAATTA	TTCATTTAAA
310	320	330	340	350	360
TATGAAAACA	ATCCATTTT	AGGGTTGCA	GGAGCTATTG	GCTACTCAAT	GGGTGGTCCA
370	380	390	400	410	420
AGGGTAGAGT	TTGAAGTGTG	TTACGAAATA	TTTGATGTAA	AAAACCAAGG	TAACAGTTAC
430	440	450	460	470	480
AAGAACGATG	CTCACAAATA	TTGCGCTTTA	TCAAGACACA	CCGGAGGTAT	GCCACAAGCC
490	500	510	520	530	540
GGTCATCAAA	ATAAATTGT	CTTCCTAAAA	AATGAAGGAT	TACTTGACAT	ATCACTTATG
550	560	570	580	590	600
ATAAACGCAT	GTTATGATAT	AACAATCGAC	AGCATGCCAT	TTTCTCCATA	TATATGTGCA
610	620	630	640	650	660
GGTATTGGTA	GTGACTTAGT	TTCGATGTTT	GAAACTACAA	ATCCTAAAAT	TTCTTATCAA
670	680	690	700	710	720
GGAAAATTAG	GTGTAAGTTA	CTCCATAAGC	CCAGAAGCAT	CTGTTTTGT	TGGAGGACAC
730	740	750	760	770	780
TTTCACAGAG	TTATAGGTA	TGAATTAAA	GACATTCTG	CAATAACTCC	TGCTGGAGCA
790	800	810	820	830	840
ACAGAAAATTA	AAGGCACACAC	GTTCACAAACA	GTAACATTAA	ACATATGCCA	CTTCGGACTA
850	860	870	880	890	900
GAGCTTGGAG	GCAGGTTTAC	TTTTTAA...			

Fig. 19A

10	20	30	40	50	60
MNCKRFFIAS	ALISLMSFLP	SVSFSESIHE	DNINGNFYIS	AKYMP SASHF	GVFSVKEEKN
70	80	90	100	110	120
TTTGVFGLKQ	DWDGATIKDA	SSSHTIDPST	IFSISNYSFK	YENNPFGLFA	GAIGYSMGGP
130	140	150	160	170	180
RVEFEVSYEI	FDVKNQGNSY	KNDAHKYCAL	SRHTGGMPQA	GHQNKFVFLK	NEGLLDISLM
190	200	210	220	230	240
INACYDITID	SMPFSPYICA	GIGSDLVSMF	ETTNPKISYQ	GKLGVYSIS	PEASVFVGGH
250	260	270	280	290	300
FHRVIGNEFK	DIPAITPAGA	TEIKGTQFTT	VTLNICHFGL	ELGGRFTE..

Fig. 19B

19/31

10	20	30	40	50	60
ATGAAATATA	AAAAAACTTT	TACAGTAAC	GCATTAGTAT	TATTAACCTC	CTTTACACAT
70	80	90	100	110	120
TTTATACCTT	TTTATAGTCC	AGCACGTGCC	AGTACAATT	ACAACTTCTA	CATTAGTGGA
130	140	150	160	170	180
AAATATATGC	CAACAGCGTC	ACATTTGGA	ATTTTTCA	CTAAAGAAGA	ACAAAGTTT
190	200	210	220	230	240
ACTAAGGTAT	TAGTTGGGTT	AGATCAACGA	TTATCACATA	ATATTATAAA	CAATAATGAT
250	260	270	280	290	300
ACAGCAAAGA	GTCCTTAAGGT	TCAAAATTAT	TCATTTAAAT	ACAAAAATAA	CCCATTCTA
310	320	330	340	350	360
GGATTTGCAA	GAGCTATTGG	TTATTCAATA	GGCAATTCAA	GAATAGAACT	AGAAGTATCA
370	380	390	400	410	420
CATGAAATAT	TTGATACTAA	AAACCCAGGA	AACAATTATT	TAAATGACTC	TCACAAATAT
430	440	450	460	470	480
TGCGCTTAT	CTCATGGAAG	TCACATATGC	AGTGATGGAA	ATAGCGGAGA	TTGGTACACT
490	500	510	520	530	540
GCAAAAATG	ATAAGTTGT	ACTTCTGAAA	ATGAAGGTT	TACTTGACGT	CTCAITTTATG
550	560	570	580	590	600
TTAAACGCAT	GTTATGACAT	AACAACGTAA	AAAATGCCTT	TTTCACCTTA	TATATGTGCA
610	620	630	640	650	660
GGTATTGGTA	CTGATCTCAT	ATCTATGTTT	GAGACAACAC	AAAACAAAAT	ATCTTATCAA
670	680	690	700	710	720
GGAAAGTTAG	GTAAACACTA	TACTATAAAC	TCAAGAGTTT	CTGTTTTGC	AGGTGGGCAC
730	740	750	760	770	780
TTTCATAAAAG	TAATAGGTAA	TGAATTAAA	GGTATTCTA	CTCTATTACC	TGATGGATCA
790	800	810	820	830	840
AACATTAAG	TACAACAGTC	TGCAACAGTA	ACATTAGATG	TGTGCCATT	CGGGTTAGAG
850	860	870	880	890	900
ATTGGAAGTA	GATTTTTCTT	TTAA.....			

Fig. 20A

10	20	30	40	50	60
MKYKKTFVT	ALVLLTSFTH	FIPFYSPARA	STIHNFYISG	KYMPТАSHFG	IFSAKEEQSF
70	80	90	100	110	120
TKVLVLDQR	LSHNIINNN	TAKSLKVQNY	SFKYKNPFL	GEFARAIGYSI	GNSRIELEVS
130	140	150	160	170	180
HEIFDTKNPG	NNYLNDSHKY	CALSHGSHIC	SDGNSGDWYT	AKTDKFVLLK	NEGLLDVSEFM
190	200	210	220	230	240
LNACYDITTE	KMPFSPYICA	GIGTDLISMF	ETTONKISYQ	GKLGLNYTIN	SRVSVFAGGH
250	260	270	280	290	300
FRKVIGNEFK	GIPTLLPDGS	NIKVQQSATV	TLDVCHFGL	IGSRFFF	...

Fig. 20B

20/31

10	20	30	40	50	60
ATGTTTATA	CTAATATATA	TATTCTGGCT	TGTATTTACT	TTGCACTTCC	ACTATTGTTA
70	80	90	100	110	120
ATTTATTTTC	ACTATTTTAG	GTGTAATATG	AATTGCAAAA	AAATTCTTAT	AACAACGTGCA
130	140	150	160	170	180
TTAATATCAT	TAATGTACTC	TATTCCAAGC	ATATCTTTT	CTGATACTAT	ACAAGATGGT
190	200	210	220	230	240
AACATGGGTG	GTAACCTCTA	TATTAGTGGGA	AAGTATGTAC	CAAGTGTCTC	ACATTTGGT
250	260	270	280	290	300
AGCTTCTCAG	CTAAAGAAGA	AAGCAAATCA	ACTGTTGGAG	TTTTTGGATT	AAAACATGAT
310	320	330	340	350	360
TGGGATGGAA	GTCCAATACT	TAAGAATAAA	CACGCTGACT	TTACTGTTCC	AAACTATTG
370	380	390	400	410	420
TTCAGATACG	AGAACAAATCC	ATTTCTAGGG	TTTGCAGGAG	CTATCGGTTA	CTCAATGGGT
430	440	450	460	470	480
GGCCCAAGAA	TAGAATTCGA	AATATCTTAT	GAAGCATTG	ACGTAAAAAG	TCCTAATATC
490	500	510	520	530	540
AATTATCAAA	ATGACGCGCA	CAGGTACTG	GCTCTATCTC	ATCACACATC	GGCAGCCATG
550	560	570	580	590	600
GAAGCTGATA	AATTTGTCTT	CTTAAAAAAC	GAAGGGTTAA	TTGACATATC	ACTTGCAATA
610	620	630	640	650	660
AATGCATGTT	ATGATATAAT	AAATGACAAA	GTACCTGTTT	CTCCTTATAT	ATGCGCAGGT
670	680	690	700	710	720
ATTGGTACTG	ATTTGATTTC	TATGTTGAA	GCTACAAGTC	CTAAAATTTC	CTACCAAGGA
730	740	750	760	770	780
AAACTGGGCA	TTAGTTACTC	TATTAATCCG	GAAACCTCTG	TTTCATCGG	TGGGCATTT
790	800	810	820	830	840
CACAGGATCA	TAGGTAATGA	GTTTAGAGAT	ATTCTGCAA	TAGTACCTAG	TAACTCAACT
850	860	870	880	890	900
ACAATAAGTG	GACCACAAATT	TGCAACAGTA	ACACTAAATG	TGTGTCACTT	TGGTTTAGAA
910	920	930	940	950	960
CTTGGAGGAA	GATTAACTT	CTAA.....

Fig. 21A

10	20	30	40	50	60
MFYTNIYILA	CIYFALPILL	IYFHYFRCNM	NCKKILITTA	LISLMYSIPS	ISFSDTIQDG
70	80	90	100	110	120
NMGGNFYISG	KYVPSVSHFG	SFSAKEESKS	TVGVFGLHD	WDGSPILKNK	HADFTVPNYS
130	140	150	160	170	180
FRYENNPFLG	FAGAIGYSMG	GPRIEFELSY	EAFDVKSPNI	NYQNDAHRYC	ALSHHTSAAM
190	200	210	220	230	240
EADKFVELKN	EGLIDISLAI	NACYDIINDK	VPVSPYICAG	IGTDLISMEE	ATSPKISYQG
250	260	270	280	290	300
KLGISYSINP	ETSVFIGGHF	HRIIGNEFRD	IPAIVPSNST	TISGPQFATV	TLNVCHFGLE
310	320	330	340	350	360
LGGRNF...

Fig. 21B

21/31

10	20	30	40	50	60
ATGAATTGCA	AAAAAATTCT	TATAACACT	GCATTAATGT	CATTAATGTA	CTATGCTCCA
70	80	90	100	110	120
AGCATATCTT	TTTCTGATAC	TATACAAGAC	GATAACACTG	GTAGCTTCTA	CATCAGTGGA
130	140	150	160	170	180
AAATATGTAC	CAAGTGTTC	ACATTTGGT	GTTTCTCAG	CTAAAGAAGA	AAGAAACTCA
190	200	210	220	230	240
ACTGTTGGAG	TTTTGGATT	AAAACATGAT	TGGAATGGAG	GTACAATATC	TAACTCTTCT
250	260	270	280	290	300
CCAGAAAATA	TATTCACAGT	TCAAAATTAT	TCGTTAAAT	ACGAAAACAA	CCCATTCTTA
310	320	330	340	350	360
GGGTTTGCAG	GAGCTATTGG	TTATTCAATG	GGTGGCCCAA	GAATAGAACT	TGAAGTTCTG
370	380	390	400	410	420
TACGAGACAT	TCGATGTGAA	AAATCAGAAC	AATAATTATA	AGAACGGCGC	ACACAGATAC
430	440	450	460	470	480
TGTGCTTAT	CTCATCATAG	TTCAGCAACA	AACATGTCCT	CCGCAAGTAA	CAAATTTGTT
490	500	510	520	530	540
TTCTTAAAAA	ATGAAGGGTT	AATTGACTTA	TCATTATGA	TAAATGCATG	CTATGACATA
550	560	570	580	590	600
ATAATTGAAG	GAATGCCTTT	TTCACCTTAT	ATTTGTGCAG	GTGTTGGTAC	TGATGTTGTT
610	620	630	640	650	660
TCCATGTTTG	AAGCTATAAA	TCCTAAAATT	TCTTACCAAG	GAAAACTAGG	ATTAGGTTAT
670	680	690	700	710	720
AGTATAAGTT	CAGAACCTC	TGTTTTTATC	GGTGGACACT	TTCACAGAGT	CATAGGTAAT
730	740	750	760	770	780
GAATTTAGAG	ACATCCCTGC	TATGGTTCT	AGTGGATCAA	ATCTTCCAGA	AAACCAATT
790	800	810	820	830	840
GCAATAGTAA	CACTAAATGT	GTGTCACTTT	GGTTAGAAC	TTGGAGGAAG	ATTTAACTTC
850	860	870	880	890	900
TGA.....					

Fig. 22A

10	20	30	40	50	60
MNCKKILIT	ALMSIMYYAP	SISFSDTIQLD	DNTGSFYISG	KYVPSVSHFG	VESAKEERNS
70	80	90	100	110	120
TVGVFGLKHD	WNGGTISNSS	PENIFTVQNY	SFKYENNPF	GFAGAIGYSM	GGPRIELEV
130	140	150	160	170	180
YETFDVKNQN	NNYKNGAHRY	CALSHHSSAT	NMSSASNKFV	FLKNEGLIDL	SFMINACYDI
190	200	210	220	230	240
IIEGMPFSPY	ICAGVGTDVV	SMFEAINPKI	SYQGKLGLGY	SISSEASVFI	GGHFHRVIGN
250	260	270	280	290	300
EERDIPAMVP	SGSNL彭QF	AIVTLNVCHE	GLELGGRFNF

Fig. 22B

10	20	30	40	50	60
ATGAATTGTA	AAAAAGTTT	CACAATAAGT	GCATTGATAT	CATCCATATA	CTTCCTACCT
70	80	90	100	110	120
AATGTCTCAT	ACTCTAACCC	AGTATATGGT	AACAGTATGT	ATGGTAATTT	TTACATATCA
130	140	150	160	170	180
GGAAAGTACA	TGCCAAGTGT	TCCTCATT	GGAAATTTTT	CAGCTGAAGA	AGAGAAAAAA
190	200	210	220	230	240
AAGACAAC	TG	AGTATATGG	CTTAAAAGGA	AAACTGGCAG	GAGATGCAAT
250	260	270	280	290	300
AGTCCAGATG	ATAATTTTAC	CATTGAAAT	TACTCATTCA	AGTATGCAAG	CAACAAGTTT
310	320	330	340	350	360
TTAGGGTTTG	CAGTAGCTAT	TGGTTACTCG	ATAGGCAGTC	CAAGAATAGA	AGTTGAGATG
370	380	390	400	410	420
TCTTATGAAG	CATTGATGT	GAAAATCCA	GGTGATAATT	ACAAAAACGG	TGCTTACAGG
430	440	450	460	470	480
TATTGTGC	TATCTCATCA	AGATGATGCG	GATGATGACA	TGACTAGTGC	AACTGACAAA
490	500	510	520	530	540
TTTGTATATT	TAATTAATGA	AGGATTACTT	AACATATCAT	TTATGACAAA	CATATGTTAT
550	560	570	580	590	600
GAAACAGCAA	GCAAAATAT	ACCTCTCT	CCTTACATAT	GTGCAGGTAT	TGGTACTGAT
610	620	630	640	650	660
TTAACATCAC	TGTTGAAAC	TACACATCCT	AAAATTTCTT	ATCAAGGAAA	GCTAGGGTTG
670	680	690	700	710	720
GCCTACTTCG	TAAGTGCAGA	GTCTTCGGTT	TCTTTGGTA	TATATTTC	AAAATTATA
730	740	750	760	770	780
AATAATAAGT	TTAAAAATGT	TCCAGCCATG	GTACCTATTA	ACTCAGACGA	GATAGTAGGA
790	800	810	820	830	840
CCACAGTTTG	CAACAGTAAC	ATTAAATGTA	TGCTACTTTG	GATTAGAACT	TGGATGTAGG
850	860	870	880	890	900
TTCAACTTCT	AA.....				

Fig. 23A

10	20	30	40	50	60
MNCKKVFTIS	ALISSIYFLP	NVSYSNPVYG	NSMYGNFYIS	GKYMPSPVHF	GIFSAEEKK
70	80	90	100	110	120
KTTVVYGLKG	KLAGDAISSQ	SPDDNFTIRN	YSFKYASNKE	LGFAVAIGYS	IGSPRIEVEM
130	140	150	160	170	180
SYEAFDVKNP	GDNYKNGAYR	YCALSHQDDA	DDDMTSATDK	FVYLINEGLL	NISFMNTNICY
190	200	210	220	230	240
ETASKNIPLS	PYICAGIGTD	LIHMFETTHP	KISYQGKLGL	AYFVSAESSV	SEGIYFHKII
250	260	270	280	290.	300
NNKFKNPAM	VPINSDEIVG	PQEATVTLNV	CYFGLELGCR	FNF.....

Fig. 23B

10	20	30	40	50	60
ATGAACTGTA	AAAAATTCT	TATAACAAC	ACATTGGTAT	CACTAACAAAT	TCTTTACCT
70	80	90	100	110	120
GGCATATCTT	TCTCCAAACC	AATACATGAA	AACAATACTA	CAGGAAACTT	TTACATTATT
130	140	150	160	170	180
GGAAAATATG	TACCAAGTAT	TTCACATTT	GGGAACCTTT	CAGCTAAAGA	AGAAAAAAAC
190	200	210	220	230	240
ACAACTACTG	GAATTTTGG	ATTAAAAGAA	TCATGGACTG	GTTGTATCAT	CCTTGATAAA
250	260	270	280	290	300
GAACATGCAG	CTTTAAATAT	CCCAAATTAT	TCATTTAAAT	ATGAAAATAA	TCCATTTTA
310	320	330	340	350	360
GGATTTGCAG	GGGTAAATTGG	CTATTCAATA	GGTAGTCCAA	GAATAGAATT	TGAAGTATCA
370	380	390	400	410	420
TACGAGACAT	TCGATGTACA	AAATCCAGGA	GATAAGTTA	ACAATGATGC	ACATAAGTAT
430	440	450	460	470	480
TGTGCTTTAT	CCAATGATTTC	CAGTAAACAA	ATGAAAAGTG	GTAAAATTCTG	TTTCTCAAA
490	500	510	520	530	540
AATGAAGGAT	TAAGTGACAT	ATCACTCATG	TTAAATGTAT	GTTATGATAT	AATAAACAAA
550	560	570	580	590	600
AGAATGCCCTT	TTTCACCTTA	CATATGTGCA	GGCATTGGTA	CTGACTTAAT	ATTCAATGTTT
610	620	630	640	650	660
GACGCTATAA	ACCATAAAAGC	TGCTTATCAA	GGAAAATTAG	TTTTTAATTA	TCCAATAAGC
670	680	690	700	710	720
CCAGAAGCTA	ACATTCTAT	GGGTGTGAC	TTTCACAAAG	TAACAAACAA	CGAGTTTAGA
730	740	750	760	770	780
GTTCCTGTC	TATTAACTGC	TGGAGGACTC	GCTCCAGATA	ATCTATTGTC	AATAGTAAAG
790	800	810	820	830	840
TTGAGTATAT	GTCATTTGG	GTTAGAATT	GGGTACAGGG	TCAGTTTTA	A.....

Fig. 24A

10	20	30	40	50	60
MNCKKFLITT	TLVSLTILLP	GISFSKPIHE	NNNTGNFYII	GKYVPSISHF	GNFSAKEERN
70.	80	90	100	110	120
TTTGIFGLKE	SWTGGIILDK	EHAAFNIPNY	SFKYENNPL	GFAGVIGYSI	GSPRIEEVS
130	140	150	160	170	180
YETFDVQNPQ	DKFNNDAHKY	CALSNDSSKT	MKGKFVFLK	NEGLSDISIM	LNCYDIINK
190	200	210	220	230	240
RMPFSPYICA	GIGTDLIFMF	DAINHKAAYQ	GKLGENYPIS	PEANISMGVH	FHKVTNNEFR
250	260	270	280	290	300
VPVLLTAGGL	APDNLFAIVK	LSICHFGLEF	GYRVSF

Fig. 24B

10	20	30	40	50	60
ATGAATAATA	AACTCAAATT	TACTATAATA	AACACAGTAT	TAGTATGCTT	ATTGTCATTA
70	80	90	100	110	120
CCTAATATAT	CTTCCTCAAA	GGCCATAAAC	AATAACGCTA	AAAAGTACTA	CGGATTATAT
130	140	150	160	170	180
ATCAGTGGAC	AATATAAAC	CAGTGTTCT	GTTTCAGTA	ATTTTCAGT	TAAAGAAACC
190	200	210	220	230	240
AATGTCAAA	CTAAAAACCT	TATAGCTTTA	AAAAAAAGATG	TTGACTCTAT	TGAAACCAAG
250	260	270	280	290	300
ACTGATGCCA	GTGTAGGTAT	TAGTAACCCA	TCAAATTTA	CTATCCCCTA	TACAGCTGTA
310	320	330	340	350	360
TTTCAAGATA	ATTCTGTCAA	TTTCAATGGA	ACTATTGGTT	ACACCTTTGC	TGAAGGTACA
370	380	390	400	410	420
AGAGTTGAAA	TAGAAGGTTC	TTATGAGGAA	TTTGATGTTA	AAAACCCCTGG	AGGCTATACA
430	440	450	460	470	480
CTAAGTGATG	CCTATCGCTA	TTTTGCATTA	GCACGTGAAA	TGAAAGGTAA	TAGTTTACA
490	500	510	520	530	540
CCTAAAGAAA	AAGTTTCTAA	TAGTATTTT	CACACTGTAA	TGAGAAATGA	TGGATTATCT
550	560	570	580	590	600
ATAATATCTG	TTATAGTAAA	TGTTTGCTAC	GATTCTCTTT	TGAACAATTT	GTCAATATCG
610	620	630	640	650	660
CCTTACATAT	GTGGAGGAGC	AGGGGTAGAT	GCTATAGAAT	TCTTCGATGT	ATTACACATT
670	680	690	700	710	720
AAGTTTGCAT	ATCAAAGCAA	GCTAGGTATT	GCTTATTCTC	TACCATCTAA	CATTAGTCTC
730	740	750	760	770	780
TTTGCTAGTT	TATATTACCA	TAAAGTAATG	GGCAATCAAT	TTAAAAAATT	AAATGTCCAA
790	800	810	820	830	840
CATGTTGCTG	AACTTGCAAG	TATACCTAAA	ATTACATCCG	CAGTTGCTAC	ACTTAATATT
850	860	870	880	890	900
GGTTATTTG	GAGGTGAAAT	TGGTGCAAGA	TTGACATTT	AA.....

Fig. 25A

10	20	30	40	50	60
MNNKLKFTII	NTVLVCLLSSL	PNISSSKAIN	NNAKKYGLY	ISGQYKPSVS	VESNFSVKET
70	80	90	100	110	120
NVITKNLIAL	KKDVSIEK	TDASVGISNP	SNFTIPYTAV	FQDNSVNFG	TIGYTFAEGT
130	140	150	160	170	180
RVEIEGSYEE	FDVKNPGGYT	LSDAYRYFAL	AREMKGNSFT	PKEKVSNSIF	HTVMRNDGLS
190	200	210	220	230	240
IISVIVNVCY	DFLNNLSIS	PYICGGAGVD	AIEFFDVLHI	KFAYQSKLGI	AYSILPSNISL
250	260	270	280	290	300
FASLYYHKVM	GNQFKNLNVQ	HVAELASIPK	ITSAVATLNI	GYFGGEIGAR	LTF.....

Fig. 25B

10	20	30	40	50	60
ATGGCAAATT	TTATGTACAA	AAAATACAAA	CTAATGACAG	CAGGTGTAGT	ATTATTCAC
70	80	90	100	110	120
ATGTTATTC	TACCTCATGT	TTCTTCGCA	AAAAATACAA	ACAGCAATAA	ACTTGGATTA
130	140	150	160	170	180
TACATCAGTG	GACAGTATAA	CCCTAGTGT	TCTGTTTTA	GCAATTTC	AGCAAAAGAA
190	200	210	220	230	240
ACCAATGTTCA	ATACAGTACA	ACTCATGGCG	CTTAAAAAAG	ACATTGATT	TATTGAAGTT
250	260	270	280	290	300
GATACTGGAA	ATAGCGCAGG	TATTAGCAAA	CCACAAAATT	TCACAGTTCT	TTATACTCCA
310	320	330	340	350	360
AAATTTCAAG	ATAATGTTGC	TGGTCTTAGC	GGTGCACTTG	GATTCTTTA	TTCTAAAGGA
370	380	390	400	410	420
TTAAGGATTG	AAATGGGGTT	TTCTTATGAA	AAATTTGATG	CTAAAGACCT	TGGTGAGTAC
430	440	450	460	470	480
ACCAAAATAA	AAGATGCTTA	TAGATATTTT	GCTCTAGTAC	GTGAAATGCA	TGTTAGTCTC
490	500	510	520	530	540
ATTTATCCAA	AAGATAATAA	CACAGGAACA	CATTATACTG	TTATGAGAAA	TGATGGTATA
550	560	570	580	590	600
TCTATTTCTT	CTGCTACAGT	AAATGGCTGC	TATGATTCTT	TTTCCAGTT	TATCTTGTC
610	620	630	640	650	660
ACCTATATGT	GTATAGGCAT	CGGTATAGAT	GCTATAGAAT	TTCTTAATGC	ATACATATTA
670	680	690	700	710	720
AGTTTGCTTG	CCAAGGTAGT	TAAGGTGTTA	ACTTATTCTG	TATCTCCAA	TGTTAATTAA
730	740	750	760	770	780
TTTGCAGATG	GATATTATCA	TAAAGTGATG	GGCAATAAAAT	TTAAAAAATT	ACCTGTTCAA
790	800	810	820	830	840
TACGTTAATA	CTTTAGAAGA	GTATCCAAGA	GTTACATCTG	CAATTGCTAC	ACTTGATATT
850	860	870	880	890	900
GGCTACCTCG	GTGGTGAAAT	TGGCATAAGA	TTTATATTTT	AA.....

Fig. 26A

10	20	30	40	50	60
MYKKYKLMTA	GVVLFHMLFL	PHVSFAKNTN	SNKLGLYISG	QYNPSVSVFS	NFSAKETNVH
70	80	90	100	110	120
TVQLMALKKD	IDSIEVDTGN	SAGISKPQNF	TVLYTPKFQD	NVAGLSGALG	FFYSKGLRIE
130	140	150	160	170	180
MGFSYEKFDA	KDLGEYTKIK	DAYRYFALVR	EMHVSЛИYPK	DNNTGTHYTV	MRNDGISISS
190	200	210	220	230	240
ATVNGCYDSF	FQFIFVTYMC	IGIGIDAI	LNAYILSLLA	KVVKVLTYSV	SPVNLFADG
250	260	270	280	290	300
YYHKVMGNKF	KNLPVQYVNT	LEEYPRVTSA	IATLDIGYLG	GEIGIRFIF.

Fig. 26B

10	20	30	40	50	60
ATGGGAATT	CTATGAATAA	TAAAAGTCAA	TTCTTAATAA	GATTTATATT	TTAACATGC
70	80	90	100	110	120
ATGCTGTCA	TACCTAATAT	ATCTCTTCA	AAAGTAAATA	ACGAAAAACA	TTCTGGTTTG
130	140	150	160	170	180
TATATTAGCG	GGCAATACAA	ACCCAGTGTT	TCTGTTTCA	GTAATTTTC	AGTTAAAGAA
190	200	210	220	230	240
ACCAACTTTC	ATACAAAACA	TCTCATAGCT	CTTAAACAAAG	ATGTTGATTC	TGTTGAAATT
250	260	270	280	290	300
GATACTGGTA	GTAATACAGC	AGGTATTAGT	AACCCATCTA	ACTTTACAAT	CCCTTATACT
310	320	330	340	350	360
GCAGAATTTC	AAGACAACCA	TACTAACTGC	AATGGCTCTA	TTGGTTATGC	TTTGCTGAA
370	380	390	400	410	420
GGTCCAAGAA	TTGAAATAGA	ATTATCATAT	GAAAAATTG	ATGTTAAAAAA	TCCCACAGGG
430	440	450	460	470	480
TATACTACAG	TAAAAGATGC	TTATAGATAC	TTTGCTTTAG	CACGTGAAAT	AAATATTTCT
490	500	510	520	530	540
CTATTCCAAC	CAAAACAAAA	AGAAGGTAGT	GGAATTTACC	ATGTCGTAAT	GAAAACGAT
550	560	570	580	590	600
GGGTTATCTA	TCTTATCCAA	TATAGTTAAT	ATTTGCTACG	ATTTTTCTTT	AAATAATTTA
610	620	630	640	650	660
CCTATATCAC	CTTATTTATG	CGGAGGAATG	GGTATAAAATG	CCATAGAATT	CTTGACGCT
670	680	690	700	710	720
TTACATGTGA	AATTGCTTA	TCAAAGCAAG	GCAGGAATTA	GTTATCAACT	ATTACGTAAA
730	740	750	760	770	780
ATCAACTTAT	TTATTGATGT	ATATTACTAC	GAAGTAATAA	GTAATAAATT	AAAAACCTG
790	800	810	820	830	840
AAAGTCCAAC	ATGTACATGA	ACTTAAAGAT	AATCCAAAAG	TCACATCTGC	AGTTGCTACA
850	860	870	880	890	900
CTTGATATAG CATATTTGG TAGTGAAGCT GCCATAAGAA TTATATTTA A.....					

Fig. 27A

10	20	30	40	50	60
MNNKSQFLIR	FIFLTCLMSL	PNISLSKVNN	EKHSGLYISG	QYKPSVSF3	NFSVKETNFH
70	80	90	100	110	120
TKHLIALKQD	VDSVEIDTGS	NTAGISNPSN	FTIPYTAEFQ	DNHTNCNGSI	GYAFAEGPRI
130	140	150	160	170	180
EIELSYEKFD	VKNPTGYTTV	KDAYRYFALA	REINISLFQP	KQKEGSGIYH	VVMKNDGLSI
190	200	210	220	230	240
LSNIVNICYD	FSLNNLPISP	YLCGGMGINA	IEFFDALHVK	FAYQSKAGIS	YQLLRKINLF
250	260	270	280	290	300
IDVYYEVIS	NKFKNLKQH	VHELKDNPKV	TSAVATLDIA	YFGSEAGIRI	IF.....

Fig. 27B

10	20	30	40	50	60
ATGAAATAGCA	AGAGTAAGTT	CTTACAATA	TGTACATCGT	TAATATGCTT	ATTATCATCA
70	80	90	100	110	120
CCTAACACAT	CTCTCTAAA	CTTCATAGGC	AATAGTACAA	AACATTCTGG	ATTATATGTT
130	140	150	160	170	180
AGCGGACAAT	ATAAGCCCAG	CGTTTCCATT	TTTAGCAAAT	TTTCAGTAA	AGAAACAAAT
190	200	210	220	230	240
ACACATACAG	TACAGTTAGT	AGCTCTAAA	AAAGATGTTA	ATTCTATTTC	TATGAACATC
250	260	270	280	290	300
AGTAATGGTG	CTACAGGCAT	TAGCAAAGCA	ACAAATTTA	ATCTTCCTTA	TGTTGCAGAA
310	320	330	340	350	360
TTTCAAGACA	ATGCCCTCAA	CTTCAGTGGG	GCTATTGGTT	ATTCACTTTT	TGAACAACTA
370	380	390	400	410	420
AACATTGAAG	TTGAAGGTTC	TTATGAAGAA	TTCGATGCCA	AAAATCCTGG	TGGTTATATT
430	440	450	460	470	480
TTAAATGATG	CATTCCGCTA	TTTTGCATTG	GCACGTGAAA	TGGGACAAGA	AAAAAATGAT
490	500	510	520	530	540
AATAAGCATC	TTAGTCCTAA	GGAGGAGCAT	GATATAAGTA	AAACATATTA	CACAGTCATG
550	560	570	580	590	600
AGAAAATAATG	GGTTATCTAT	ATTATCTATT	ATGATAAAATG	GCTGCTATAA	TCTACCTCTC
610	620	630	640	650	660
AATGATTTAT	CAATATCAC	TTATTTTGT	ACAGGAATAG	GTGTAGATGC	TATAGAATTT
670	680	690	700	710	720
TTTGATGCAC	TGCATCTAA	ACTTGCTTG	CAAAGTAAAA	TAGGAGCTAC	TTACCAATTA
730	740	750	760	770	780
TCAGACAAACA	TTAGTTTATT	TACAAATGGA	TATTACCATC	AAGTAATAGG	TGATCAATTT
790	800	810	820	830	840
AAAAACTTAA	AAGTCCAATA	TATAGGTGAA	CTTAAAGAGA	ACCCGAAAAT	TACATCTGCA
850	860	870	880	890	900
GTTGCTACTC	TCAATGTTGG	ATACTTTGGA	GGTGAAATTG	GAGTAAGACT	CACACTTAA
910	920	930	940	950	960
.....

Fig. 28A

10	20	30	40	50	60
MNSKSKFTI	CTSLICLLSS	PNTSLSNFIG	NSTKHSGLYV	SGQYKPSVSI	FSKFSVKETN
70	80	90	100	110	120
THTVQLVALK	KDVNSISMNI	SNGATGISKA	TNFNLPYVAE	FQDNAFNFSG	AIGYSLFEQL
130	140	150	160	170	180
NIEVEGSYEE	FDAKNPGGYI	LNDAFRYFAL	AREMGQEKN	NKHLSPREEH	DISKTYYTVM
190	200	210	220	230	240
RNNGLSILSI	MINGCYNLPL	NDLSISPYFC	TGIGVDAIEF	FDALHLKLAL	QSKIGATYQL
250	260	270	280	290	300
SDNISLFTNG	YYHQVIGDQF	KNLKVOYIGE	LKENPKITS	VATLNVGYFG	GEIGVRLTL.

Fig. 28B

10	20	30	40	50	60
AAGCTTCTTA	TGAAGAATTT	GACGTTAAAA	ATCCTGAAGG	ATCTACTACA	GACTCCTATA
70	80	90	100	110	120
GATATTCGC	GTTAGCACGT	GGCATGGATG	GTAATAATAT	TCCTACAAGT	CAAAAATTAA
130	140	150	160	170	180
CTGTAATGAG	AAACGACGGG	TTATTAATCT	CATCTGTTAT	GATAAATGGC	TGTTACAATG
190	200	210	220	230	240
TCATACTAAA	TGATATACAA	GCAGAACCTT	ACATATGTGC	AGGACTAGGA	GGAGATTTA
250	260	270	280	290	300
TAGAATTCTT	CAATGGCTTT	CATGTTAACG	TAGCTTATCA	AGGTAAAGTA	GGCATTAGTT
310	320	330	340	350	360
ATCAAATATT	CCCTGAAGTA	AGATTATTAA	TTGATGGATA	CTACCATAAA	GTAAAAGGCA
370	380	390	400	410	420
ACAAGTTAA	AAATTTACAC	GTTAACATG	TAGGTGCACT	TGCAGCACTC	CCTAAAGTTA
430	440	450	460	470	480
CATCTGCAGT	TGCAACACTT	AATATTGGAT	ACTTTGGTTG	TGAAGCTGGA	GTAAGATTCA
490	500	510	520	530	540
TATTTTAA..

Fig. 29A

10	20	30	40	50	60
ASYEEFDVKN	PEGSTTDSYR	YFALARGMDG	NNIPTSQKFT	VMRNDGLLIS	SVMINGCYNV
70	80	90	100	110	120
ILNDIQAEPY	ICAGLGGDFI	EFFNGFHVKL	AYQGKVGISY	QIFPEVRLFI	DGYYHKVKGN
130	140	150	160	170	180
KFKNLHVQHV	GALAALPKVT	SAVATLNIGY	FGCEAGVRFI	F.....

Fig. 29B

29/31

10	20	30	40	50	60
ATGAATTATA	AGAAAATTCT	AGTAAGAACG	GCGTTAATCT	CATTAATGTC	AATCTTACCA
70	80	90	100	110	120
TATCAGTCTT	TTGCAGATCC	TGTAGGTTCA	AGAACTAATG	ATAACAAAGA	AGGCTTCTAC
130	140	150	160	170	180
ATTAGTGCAA	AGTACAATCC	AGTATATCA	CACTTTAGAA	AATTCTCTGC	TGAAGAAACT
190	200	210	220	230	240
CCTATTAAATG	GAACAAATTC	TCTCACTAAA	AAAGTTTCG	GACTAAAGAA	AGATGGTGAT
250	260	270	280	290	300
ATAACAAAAA	AAGACGATTT	TACAAGAGTA	GCTCCAGGCA	TTGATTTCA	AAATAACTTA
310	320	330	340	350	360
ATATCAGGAT	TTTCAGGAAG	TATTGGTTAC	TCTATGGACG	GACCAAGAAT	AGAACTTGAA
370	380	390	400	410	420
GCTGCATATC	ACAATTTAAT	CCAAAAACAC	GATAACAATG	ATACTGATAA	TGGTGAATAC
430	440	450	460	470	480
TATAAACATT	TTGCATATCT	CGTAAAGATG	CCATGGAAGA	TCAGCCATAT	GTTGTTCTTA
490	500	510	520	530	540
AAAATGACGG	CATAC.....				

Fig. 30A

10	20	30	40	50	60
MNYKKILVRS	ALISLMSILP	YQSFADPVGS	RTNDNKEGFY	ISAKYNPSIS	HFRKFSAEET
70	80	90	100	110	120
PINGTNSLTK	KVFGLKRDGD	ITKKDDFTRV	APGIDFQNNL	ISGFSGSIGY	SMDGPRIELE
130	140	150	160	170	180
AYHNLIQKH	DNNDTDNGEY	YKHFAYLVKM	PWKISHMLFL	KMTAY.....	

Fig. 30B

30/31

	SV	HV1	
CNP-1F	KOKEKFFITI TLVLSMNSFLP GISPEDAWM DING-CW---	PTISCKYUP SVSHFOVFA HQ---	EEG TTTCVPLGD DMGOSTISCH SPENTIAVEN
CNP-1E A..... P.G ..1S..... V..... M..... A..... N..... K..... P..... VALY..... E..... K..... P..... VALY.....	..L..-1S..ES RTO.D.H...RKG
CNP-1D E..... A.TL..... L.P.D ..1S..... M..... A..... S..... V..... IX..... RCV..RT TLDSD.I.T...	90
CNP-1C A.AL..... LL.RP.D ..S.S..... M..... A..... S..... K..... P..... VALY..... M..... VBAAS HADAD...RKG	93
CNP-1B Y..I.VSS A.I..... YU..A.P.TS HDT.INDSR.G..... V..... M..... X..... RE..... EXPINIGTS I.KX..... K.....	94
P28 PA-G SGDN..... M..... A..... E..... V..... GDI AQSAN..RTD	94
NAP-1 X..... S T.I.V.... V..... VI.E K.HPV.S--- V..... M..... A..BS ..HUV.T.S.	64
CNP-1A V..... A.H. TA..... RH.I E..... ESR D.KA..... K..... VETPSO HTHSI.TKD	91
	HV2	HV3	
CNP-1F	TSFXTKDFPF LGPAGAVOYL KQCPKHLKH SYTFDVKNG CHTTIDRAN- -XVALTH-	NSGGXLSHAG DQDFVLENDG LDYLSLMKA CHVLSLSCP	186
CNP-1E L.S..... L.S G...V.F.V..... R.C..OQ..... QCGQILWV S.Y.L.S..... F..... I.M.S..	194
CNP-1D L.S..... L.S D..... V..... A..... E..... E..... S.LI GIEQIQD.. SAS...I..... K.V.....	188
CNP-1C L.S..... L.S G..... F.V..... R.C..DR..... KASSTDATA SHY.L..... V.....	184
CNP-1B	PALEQ..LI S..S.SI..A D..... A AYUK..A..P D..DT.SGY Y..PG.SR-- EDAD K.Y.V..... ITTM..V.T..... ITA..V.	188
P28 L.S D..... V..... E..... E..... R.C..SH..... ADDM.S.S HS..... F..... VG..... IMLO.M.	160
NAP-1 S..... F.V..... R.P. G..... M.C..... L UYASSSTACA TTG.BV...N..T.....	
CNP-1A			
CNP-1F	FSPYICAGWG TOLISNUAI KPEISTQKL GLSYTISPEA SVVUGCHPK VIECFEFQIP AMIPSTILF CH-NP---	T IVTLEVCHFG VELGOMYHF	280
CNP-1E T..... N..... I..... TLEAFVFTS -ATYD..A..... I.....	278
CNP-1D L.I.V..I..... P..... I..... T..... E.A.A. KGTYP..A..... D.FY.. I.....	286
CNP-1C M..... M..... A..... S TLEAFVFTS ARTPOL..A T.....	269
CNP-1B A..H.V.KDF ..L.P..... X..... P.T..V..... A.I..TY.G..... M.HX..... VIT.VULGA FOTTE--A L..IDTOY.. Q.V.V..T.	283
P28 I..... V.H..T..... L..... T..... T..... A..... KGTYP--A ..I.D..... I..... V.	256
NAP-1	V..... V.W..I..... V.VIN..T ..L..... X..... A.TSKV..SGM ASSEASVGFPA SAI.D..... I.I..... V.	284
CNP-1A EY..D.L HV.FA..... QJFTRV HL.ID.YY.Q..... Q.EHLS VENY.LKES PEVTS--A VA..DIAY.. G.V.I.T.	81

Fig. 31

31/31