

ATTORNEY'S DOCKET NO. B00801/70258 (formerly 18989-001CIP)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Murray et al.

Serial No:

09/917,058

Confirmation No.:

not yet assigned

Filed: For:

July 27, 2001

BIOLOGIC REPLACEMENT FOR FIBRIN CLOT

)#5
relimber

8. Bya
9/10/02

Examiner:

not yet assigned

Art Unit:

3738

CERTIFICATE OF MAILING UNDER 37 C.F.R. §1.8(a)

The undersigned hereby certifies that this document is being placed in the United States mail with first-class postage attached, addressed to Box Fee Amendment, Commissioner for Patents, Washington, D.C. 20231, on the day of August, 2002.

BOX FEE AMENDMENT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

Sir:

PRELIMINARY AMENDMENT

Prior to examination of the above identified patent application, please amend the application as follows:

IN THE SPECIFICATION

Please amend the specification as follows:

Please replace the paragraph beginning at line 13 on page 1 as shown.

Intra-articular tissues, such as the anterior cruciate ligament (ACL), do not heal after rupture. In addition, the meniscus and the articular cartilage in human joints also often fail to heal after an injury. Tissues found outside of joints heal by forming a fibrin clot, which connects the ruptured tissue ends and is subsequently remodeled to form scar, which heals the tissue. Inside a synovial joint, a fibrin clot either fails to form or is quickly lysed after injury to the knee,