Pharmacology of Asthma

Pathophysiology of Asthma

- **▶** Airway inflammation
- Bronchial hyperresponsiveness
- Airflow limitation

Airway smooth muscle cells

Myriad inflammatory cells are recruited and activated in the airways, where they release multiple inflammatory mediators, which can also arise from structural cells. These mediators lead to bronchoconstriction, plasma exudation and edema, vasodilation, mucus hypersecretion, and activation sensory nerves. Chronic inflammation leads to structural changes, including subepithelial fibrosis (basement membrane thickening), airway smooth muscle hypertrophy and hyperplasia, angiogenesis, and hyperplasia of mucus-secreting cells.

Pathologic Findings

- Bronchoconstriction
- Hyperinflation of the lungs
- Hyperplasia of the smooth muscle surrounding the bronchial and bronchiolar walls
- ▶ Thickening of the basement membrane
- Mucosal edema

Etiology

HOST FACTORS

Genetic, e.g.,

- Genes pre-disposing to atopy
- Genes pre-disposing to airway hyperresponsiveness

Obesity

Sex

ENVIRONMENTAL FACTORS

Allergens

- Indoor: Domestic mites, furred animals (dogs, cats, mice), cockroach allergen, fungi, molds, yeasts
- Outdoor: Pollens, fungi, molds, yeasts

Infections (predominantly viral)

Occupational sensitizers

Tobacco smoke

- · Passive smoking
- · Active smoking

Outdoor/Indoor Air Pollution

Diet

Examples of Agents Causing Asthma in Selected Occupations

Occupation/occupational field	Agent	
	Animal and Plant Proteins	
Bakers	Flour, amylase	
Dairy farmers	Storage mites	
Detergent manufacturing	Bacillus subtilis enzymes	
Electrical soldering	Colophony (pine resin)	
Farmers	Soybean dust	
Fish food manufacturing	Midges, parasites	
Food processing	Coffee bean dust, meat tenderizer, tea, shellfish, amylase, egg proteins, pancreatic enzymes, papain	
Granary workers	Storage mites, Aspergillus, indoor ragweed, grass	
Health care workers	Psyllium, latex	
Laxative manufacturing	Ispaghula, psyllium	
Poultry farmers	Poultry mites, droppings, feathers	
Research workers, veterinarians	Locusts, dander, urine proteins	
Sawmill workers, carpenters	Wood dust (western red cedar, oak, mahogany, zebrawood, redwood, Lebanon cedar, African maple, eastern white cedar)	
Shipping workers	Grain dust (molds, insects, grain)	
Silk workers	Silk worm moths and larvae	
	Inorganic chemicals	
Beauticians	Persulfate	
Plating	Nickel salts	
Refinery workers	Platinum salts, vanadium	
	Organic chemicals	
Automobile painting	Ethanolamine, dissocyanates	
Hospital workers	Disinfectants (sulfathiazole, chloramines, formaldehyde, glutaraldehyde), latex	
Manufacturing	Antibiotics, piperazine, methyldopa, salbutamol, cimetidine	
Rubber processing	Formaldehyde, ethylene diamine, phthalic anhydride	
Plastics industry	Toluene dissocyanate, hexamethyl dissocyanate, dephenylmethyl isocyanate, phthalic anhydride, triethylene tetramines, trimellitic anhydride, hexamethyl tetramine, acrylates	

Factors that Exacerbate Asthma

- Allergens
- Respiratory infections
- Exercise and hyperventilation
- Weather changes
- Sulfur dioxide
- Food, additives, drugs

Inflammatory cells in asthmatic airways

Sputum dg:

Charcot-Leyden christals

Curschmann's spirals

Mast cells: Activated mucosal mast cells release bronchoconstrictor mediators (histamine, cysteinyl leukotrienes, prostaglandin D₂)⁵⁹. These cells are activated by allergens through high-affinity IgE receptors, as well as by osmotic stimuli (accounting for exercise-induced bronchoconstriction). Increased mast cell numbers in airway smooth muscle may be linked to airway hyperresponsiveness⁵⁴.

Eosinophils, present in increased numbers in the airways, release basic proteins that may damage airway epithelial cells. They may also have a role in the release of growth factors and airway remodeling⁹⁵.

T lymphocytes, present in increased numbers in the airways, release specific cytokines, including IL-4, IL-5, IL-9, and IL-13, that orchestrate eosinophilic inflammation and IgE production by B lymphocytes³⁶. An increase in Th2 cell activity may be due in part to a reduction in regulatory T cells that normally inhibit Th2 cells. There may also be an increase in inKT cells, which release large amounts of T helper 1 (Th1) and Th2 cytokines³⁷.

Dendritic cells sample allergens from the airway surface and migrate to regional lymph nodes, where they interact with regulatory T cells and ultimately stimulate production of Th2 cells from naïve T cells³⁶.

Macrophages are increased in number in the airways and may be activated by allergens through low-affinity IgE receptors to release inflammatory mediators and cytokines that amplify the inflammatory response.

Neutrophil numbers are increased in the airways and sputum of patients with severe asthma and in smoking asthmatics, but the pathophysiological role of these cells is uncertain and their increase may even be due to glucocorticosteroid therapy¹⁰⁰.

Airway
Structural Cells
Involved in the
Pathogenesis of
Asthma

Airway epithelial cells sense their mechanical environment, express multiple inflammatory proteins in asthma, and release cytokines, chemokines, and lipid mediators. Viruses and air pollutants interact with epithelial cells.

Airway smooth muscle cells express similar inflammatory proteins to epithelial cells¹⁰¹.

Endothelial cells of the bronchial circulation play a role in recruiting inflammatory cells from the circulation into the airway.

Fibroblasts and myofibroblasts produce connective tissue components, such as collagens and proteoglycans, that are involved in airway remodeling.

Airway nerves are also involved. Cholinergic nerves may be activated by reflex triggers in the airways and cause bronchoconstriction and mucus secretion. Sensory nerves, which may be sensitized by inflammatory stimuli including neurotrophins, cause reflex changes and symptoms such as cough and chest tightness, and may release inflammatory neuropeptides¹⁰².

Chemicals Involved in Inflammation

- IgE
- Histamine
- Tryptase
- Leukotrienes (LTC₄), SRS-A Slow Reactive Substance of Anaphylaxy
- Platelet activating factor (PAF)
- Prostaglandins (PGD₂)
- Interleukins (IL-4, IL-5)
- Granulocyte-macrophage colony stimulating factor (GM-CSF)
- Tumor Necrosis Factor (TNF)
- Major Basic Proteases (MBP)
- Eosinophil Cationic Protein (ECP)

Conceptual model for the immunopathogenesis of asthma. Exposure to allergen causes synthesis of IgE, which binds to mast cells in the airway mucosa. On reexposure to allergen, antigen-antibody interaction on mast cell surfaces triggers release of mediators of anaphylaxis: histamine, tryptase, prostaglandin D2 (PGD2), leukotriene C4, and platelet-activating factor (PAF). These agents provoke contraction of airway smooth muscle, causing the immediate fall in FEV1. Reexposure to allergen also causes the synthesis and release of a variety of cytokines: interleukins 4 and 5, granulocyte-macrophage colony stimulating factor (GM-CSF), tumor necrosis factor (TNF), and tissue growth factor (TGF) from T cells and mast cells. These cytokines in turn attract and activate eosinophils and neutrophils, whose products include eosinophil cationic protein (ECP), major basic protein (MBP), proteases, and platelet-activating factor. These mediators cause the edema, mucus hypersecretion, smooth muscle contraction, and increase in bronchiar reactivity associated with the late asthmatic response, indicated by a fall in FEV1 2-8 hours after the exposure.

Fig. Putative mechanisms leading to M_2 muscarinic receptor dysfunction in asthma. Prejunctional M_2 muscarinic receptors are involved in the regulation of acetylcholine (ACh) through a feedback mechanism. In asthma, where inflammation is a prominent feature, inflammatory cell products such as cytokines (e.g. tumour necrosis factor α or interleukin 1 β), enzymes (e.g. neuraminidase) and eosinophil cytotoxic proteins (e.g. major basic protein) alter the expression and function of M_2 receptors, which leads to an exaggerated ACh release. Acetylcholine then induces smooth muscle contraction and mucus secretion via the activation of postjunctional M_3 receptors (see text for details).

Role of cholinergic nerves in bronchial asthma

The two phases of asthma

Rang et al: Rang & Dale's Pharmacology, 7e Copyright © 2011 by Churchill Livingstone, an imprint of Elsevier Ltd. All rights reserved.

Mechanisms of response to inhaled irritants.

The airway is represented microscopically by a cross-section of the wall with branching vagal sensory endings lying adjacent to the lumen. Afferent pathways in the vagus nerves travel to the central nervous system; efferent pathways from the central nervous system travel to efferent ganglia. Postganglionic fibers release acetylcholine (ACh), which binds to muscarinic receptors on airway smooth muscle. Inhaled materials may provoke bronchoconstriction by several possible mechanisms. First, they may trigger the release of chemical mediators from mast cells. Second, they may stimulate afferent receptors to initiate reflex bronchoconstriction or to release tachykinins (eg, substance P) that directly stimulate smooth muscle contraction.

Brenner & Stevens: Pharmacology, 3rd Edition. Copyright (c) 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Bronchodilation is promoted by cAMP. Intracellular levels of cAMP can be increased by beta-adrenoceptor agonists, which increase the rate of its synthesis by adenylyl cyclase (AC); or by phosphodiesterase (PDE) inhibitors such as theophylline, which slow the rate of its degradation. Bronchoconstriction can be inhibited by muscarinic antagonists and possibly by adenosine antagonists

Classification of Asthma Severity: Clinical Features Before Treatment

Severity	Days with Symptoms	Nights with Symptoms	PEF or FEV _{1.0}
Severe Persistent	Continual	Frequent	≤ 60%
Moderate Persistent	Daily	≥ 5/month	>60% < 80%
Mild Persistent	3-6/ week	3-4/month	≥ 80%
Mild Intermittent	≤ 2/week	≤ 2/month	≥ 80%

Figure 2-3. Measuring Airway Responsiveness*

*Airway responsiveness to inhaled methacholine or histamine in a normal subject, and in asfirmatics with mild, moderate, and severe airway hyperresponsiveness.

Asthmatics have an increased sensitivity and an increased maximal broncho-constrictor response to the agonist. The response to the agonist is usually expressed as the provocative concentration causing a 20% decline in FEV1 (PC20).

General Goals of Asthma Therapy

- Prevent chronic symptoms and asthma exacerbations during the day and night
- Maintain normal activity levels
- Have normal or near-normal lung function
- Have no or minimal side effects while receiving optimal medications

Historical Perspective

- Datura stramonium (1802)
- Epinephrine (1903)
- ▶ Ephedrine (1926)
- Isoproterenol (1940)
- Isoetharine (1951)
- Metaproterenol (1961)
- Beta₂-adrenergic agents via MDI (1973)
- Ipratropium bromide (1987)
- Salmeterol (1994)
- Levalbuterol (1999)

General Pharmacologic Approach to the Treatment of Asthma

Asthma

- "Relievers"
 - Short-acting bronchodilators
 - \square β_2 -adrenergic agents
 - □ Anti-cholinergic (Parasympatholytic) agents

"Controllers"

- Corticosteroids
- Long-Acting bronchodilators
 - \square β_2 -adrenergic agents
 - Methylxanthines
- ▶ Cromolyn sodium
- Leukotriene inhibitors
- Anti-IgE monoclonal antibodies

DRUGS USED IN BRONCHIAL ASTHMA

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

II. ANTIINFLAMMATORY DRUGS

1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS
Budesonid, Fluticason,
Beclomethason, Ciclesonid

3. LIPOXIGENASE INHIBITORS
Zileuton

4. LEUKOTRIENE RECEPTOR ANTAGONISTS

Zafirlukast, Montelukast

- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS
 Rolipram
- 7. MONOCLONAL ANTIBODIES Omalizumab (anti-lgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS

TACHYKININ (NK1/NK2) RECEPTOR ANTAGONISTS

ANTISENSE OLOGONUCLEOTIDES against NF-kB, MBP, IL-4, IL-5, A1 ADENOSINE RECEPTORS

Methylxanthines

1. Inhibition of phosphodiesterase

(millimolar concentration range)!!!

- 2. Adenosine receptor antagonist action(therapeutic blood level: 20-50 µM)
- 3. Antiinflammatory effects (less than 5 µM blood level)

Theophylline affects multiple cell types in the airway

Antiasthmatic action of theophylline

- 1. Relaxation of bronchial smooth muscle
- 2. Inhibition of mast cell degranulation
- 3. Inhibition of mucus secretion
- 4. Increased release of noradrenaline
- 5. Antiinflammatory effect
- 6. Increased contraction of diaphragma
- 7. Adrenaline liberation from suprarenal glands
- 8. Can be used mainly in COPD

Disadvantages and adverse reactions of theophylline

- 1. Narrow therapeutic index
- 2. Gastrointestinal symptoms
- 3. CNS effects (excitation, epileptiform convulsions)
- 4. Relaxing effect on the esophageal sphincter (reflux, initiation of asthma)

SIDE EFFECT	PROPOSED MECHANISM
Nausea and vomiting	PDE4 inhibition
Headaches	PDE4 inhibition
Gastric discomfort	PDE4 inhibition
Diuresis	A ₁ receptor antagonism
Behavioral disturbance (?)	?
Cardiac arrhythmias	PDE3 inhibition, A ₁ receptor antagonism
Epileptic seizures	A ₁ receptor antagonism

A, adenosine.

Role of adenosine receptors in development of asthma

DRUGS USED IN BRONCHIAL ASTHMA

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

II. ANTIINFLAMMATORY DRUGS

1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS
Budesonid, Fluticason,
Beclomethason, Ciclesonid

3. LIPOXIGENASE INHIBITORS
Zileuton

4. LEUKOTRIENE RECEPTOR ANTAGONISTS

Zafirlukast, Montelukast

- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS
 Rolipram
- 7. MONOCLONAL ANTIBODIES Omalizumab (anti-lgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS
TACHYKININ (NK1/NK2) RECEPTOR
ANTAGONISTS

ANTISENSE OLOGONUCLEOTIDES against NF-kB, MBP, IL-4, IL-5, A1 ADENOSINE RECEPTORS

Schematic representation of the deposition of inhaled drugs (e.g., corticosteroids, β2 agonists). Inhalation therapy deposits drugs directly, but not exclusively, in the lungs. Distribution between lungs and oropharynx depends mostly on the particle size and the efficiency of the delivery method. Most material will be swallowed and absorbed, entering systemic circulation after undergoing the first-pass effect in the liver. Some drug will also be absorbed into the systemic circulation from the lungs. Use of a large-volume spacer will reduce the amount of drug deposited on the oropharynx, thereby reducing the amount swallowed and absorbed from the Gl\taltatract, thus limiting systemic effects.

Inhaled Short-Acting β2 Agonists (SABAs)

Albuterol,

Albutamol

Levalbuterol

Metaproterenol

Terbutaline

Pirbuterol

Fenoterol

Tulobuterol

Rimiterol

Table 27-2. Pharmacologic Properties of Selected β₂-Adrenoceptor Agonists Administered by Inhalation

Drug	Onset of Action (Minutes)	Duration of Action (Hours)	Dosage
Albuterol	5	3-8	2 puffs every 4-6 hours
Formoterol	5	12	1 inhalation every 12 hours
Pirbuterol	5	5	2 puffs every 4-6 hours
Salmeterol	20	12	2 puffs every 12 hours
Terbutaline	5-15	3-6	2 puffs every 4-6 hours

Arformoterol, the active (R,R)-isomer of formoterol, is available as a inhalation solution for the twice-daily treatment of bronchoconstriction in patients with **chronic bronchitis** or **emphysema**. Salmeterol and formoterol are available as single ingredients and in combination products that contain fluticasone or budesonide, respectively.

(CH₂)₂

Side effects of β2 agonists

- •Muscle tremor (direct effect on skeletal muscle β2 receptors)
- Tachycardia (direct effect on atrial $\beta2$ receptors, reflex effect from increased peripheral vasodilation via $\beta2$ receptors)
- Hypokalemia (direct β2 effect on skeletal muscle uptake of K+)
- Restlessness
- Hypoxemia († V/Q mismatch due to reversal of hypoxic pulmonary vasoconstriction)
- Metabolic effects (↑ FFA, glucose, lactate, pyruvate, insulin)

Antiastmatic mechanism of action of β2 agonists

- 1. Bronchodilation
- 2. Anti-inflammatory action: inhibits the release of inflammatory mediators from mast cells, eosinophils, basophils and macrophages
- 3. Reduce the non-specific bronchial hyperreactivity
- 4. Increase the mucus secretion and ciliary movement
- Decrease the permeability of the vessels and edema

Long-Acting Inhaled β2 Agonists: The LABAs

Salmeterol Formoterol Arformoterol Indacaterol Vilanterol Olodaterol

Duration of action is longer than 24 hrs.

Combination inhalers: LABA + corticosteroid (e.g. fluticasone+salmeterol)

Side Effects Seen with Beta Agonist

- Tremor
- ▶ Palpitations and tachycardia
- Headache
- Insomnia
- Rise in blood pressure
- Nervousness
- Dizziness
- Nausea
- Freon gase: increases beta receptor sensitivity

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

- II. ANTIINFLAMMATORY DRUGS
- 1. MAST CELL STABILIZERS

 Disodium cromoglycate, Nedocromil

- 2. GLUCOCORTICOSTEROIDS
 Budesonid, Fluticason,
 Beclomethason, Ciclesonid
- 3. LIPOXIGENASE INHIBITORS Zileuton
- 4. LEUKOTRIENE RECEPTOR ANTAGONISTS

 Zafirlukast, Montelukast
- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS Rolipram
- 7. MONOCLONAL ANTIBODIES
 Omalizumab (anti-lgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS

TACHYKININ (NK1/NK2) RECEPTOR ANTAGONISTS

Atropa belladonna

Deadly nightshade

Klotho Lakhesis Atropos

Quaternary amines

SAMA: Ipratropium bromide

LAMA: Tiotropium bromide

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

- **II. ANTIINFLAMMATORY DRUGS**
- 1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS
Budesonid, Fluticason,
Beclomethason, Ciclesonid

- 3. LIPOXIGENASE INHIBITORS Zileuton
- 4. LEUKOTRIENE RECEPTOR ANTAGONISTS

 Zafirlukast, Montelukast
- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS Rolipram
- 7. MONOCLONAL ANTIBODIES
 Omalizumab (anti-lgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS

TACHYKININ (NK1/NK2) RECEPTOR ANTAGONISTS

Mast cell stabilizers

Khellin

Cromolyn sodium (sodium cromoglycate) is a derivative of khellin, an Egyptian herbal remedy.

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

II. ANTIINFLAMMATORY DRUGS

1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS
Budesonid, Fluticason,
Beclomethason, Ciclesonid

3. LIPOXIGENASE INHIBITORS Zileuton

4. LEUKOTRIENE RECEPTOR ANTAGONISTS

Zafirlukast, Montelukast

- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS Rolipram
- 7. MONOCLONAL ANTIBODIES Omalizumab (anti-IgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS

TACHYKININ (NK1/NK2) RECEPTOR ANTAGONISTS

Mechanism of anti-inflammatory action of corticosteroids in asthma.

Effect of corticosteroids on inflammatory and structural cells in the airways

Corticosteroids

- 1. Reduce citokine production, synthesis of adhesion molecules, production of inflammatory mediators
- 2. Inhibit migration and activation of inflammatory cells
- 3. Reduce the bronchial hyperreactivity
- 4. Side effects: oral candidiasis, minimal systemic reactions
- 5. Aphonia, dysphonia

Prodrugs: Beclomethasone dipropionate and ciclesonide

Budesonide and fluticasone propionate

Inhaled Glucocorticoids

- Beclomethasone dipropionate
 - Dosage: 200-1000μg
- Budesonide
 - Dosage: 200-800μg
- ▶ Flunisolide
 - ▶ 500-2000µg
- Fluticasone
 - ▶ 100-500µg
- Tramcinolone acetonide
 - ▶ 400-2000µg

Steroid		UK licence covers		
	Equivalent dose	> 12 years	5 – 12 years	<5 years
Beclometasone dipropionate CFC	400 micrograms	No longer available		
Beclometasone				
Clenil modulite	400 micrograms	✓	✓	✓
Clickhaler		✓	Over age 6	×
Aerobec Autohaler		✓	×	×
Asmabec Clickhaler		✓	Over age 6	×
Dry powder (Becodisks)		✓	✓	✓
Easyhaler		✓	×	×
Pulvinal		✓	Over age 6	×
Filair		✓	✓	✓
Qvar*	200 to 300 micrograms	√	×	×
Fostair	200 micrograms	Over age 18	×	×
Budesonide		•		
Turbohaler	400 micrograms	✓	✓	×
Metered dose inhaler		✓	✓	Over age 2
Easyhaler		✓	Over age 6	×
Novolizer		✓	Over age 6	×
Symbicort		✓	Over age 6	×
Symbicort (regular and as required dosing)		Over age 18	×	×
Fluticasone				
Metered dose inhaler (HFA)		✓	✓	Over age 4
Accuhaler	200 micrograms	✓	✓	Over age 4
Seretide HFA		✓	✓	Over age 4
Seretide (Accuhaler)		✓	✓	Over age 4
Mometasone	200 micrograms	✓	×	×
Ciclesonide	200 to 300 micrograms	✓	×	×

Systemic Glucocorticoids

Mode of administration

- Oral
- Parenteral

Mechanisms of action

Same as for inhaled Glucocorticoids however systemic Glucocorticoids may reach different target cells than inhaled drugs

▶ Role in therapy

Long-term oral Glucocorticoids therapy (daily or alternateday) may be required to control severe persistent asthma.

Systemic Glucocorticoids

Side effects

- Osteoporosis
- Arterial hypertension
- Diabetes
- Hypothalamic-pituitary axis suppression
- Cataracts
- Glaucoma
- Obesity
- Skin thinning leading to cutaneous striae
- Easy bruising
- Muscle weakness
- Fatal herpes virus infections have been reported among patients who are exposed to these viruses when they are taking systemic Glucocorticoids

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

II. ANTIINFLAMMATORY DRUGS

1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS

Budesonid, Fluticason,
Beclomethason, Ciclesonid

3. LIPOXIGENASE INHIBITORS
Zileuton

4. LEUKOTRIENE RECEPTOR ANTAGONISTS

Zafirlukast, Montelukast

- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS Rolipram
- 7. MONOCLONAL ANTIBODIES
 Omalizumab (anti-lgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS

TACHYKININ (NK1/NK2) RECEPTOR ANTAGONISTS

Lipoxigenase pathway

Effects of cysteinyl-LTs on the airways and their inhibition by anti-LTs. AS, aspirin sensitive.

Brenner & Stevens: Pharmacology, 3rd Edition.
Copyright (c) 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

II. ANTIINFLAMMATORY DRUGS

1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS
Budesonid, Fluticason,
Beclomethason, Ciclesonid

3. LIPOXIGENASE INHIBITORS Zileuton

4. LEUKOTRIENE RECEPTOR ANTAGONISTS

Zafirlukast, Montelukast

- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS
 Rolipram
- 7. MONOCLONAL ANTIBODIES Omalizumab (anti-IgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS
TACHYKININ (NK1/NK2) RECEPTOR
ANTAGONISTS

Roflumilast in COPD

I. BRONCHODILATORS

1. METHYLXANTHINES

Theophylline, Aminophylline, Enprophylline

2. β2-ADRENERG RECEPTOR AGONISTS

Salbutamol, Terbutalin, Fenoterol, Clenbuterol (short)

Salmeterol, Formoterol (long)

3. MUSCARIN RECEPTOR ANTAGONISTS

Atropine, Ipratropium bromide, Tiotropium bromide

II. ANTIINFLAMMATORY DRUGS

1. MAST CELL STABILIZERS

Disodium cromoglycate, Nedocromil

2. GLUCOCORTICOSTEROIDS
Budesonid, Fluticason,
Beclomethason, Ciclesonid

3. LIPOXIGENASE INHIBITORS Zileuton

4. LEUKOTRIENE RECEPTOR ANTAGONISTS

Zafirlukast, Montelukast

- 5. COX-2 INHIBITORS: Valdecoxib
- 6. PDE4 ENZYME INHIBITORS Rolipram
- 7. MONOCLONAL ANTIBODIES Omalizumab (anti-IgE)

III. FUTURE DRUGS

ET1 RECEPTOR ANTAGONISTS

TACHYKININ (NK1/NK2) RECEPTOR ANTAGONISTS

Anti-IgE Antibodies

- Agents directed at diminishing the production of IgE through effects on interleukin 4 or on IgE itself have been evaluated
 - Soluble recombinant IL-4 receptor that can be delivered by aerosol
 - Recombinant human monoclonal antibody that forms complexes with free IgE (rhuMAb or omalizumab blocks the interaction of IgE with mast cells and basophils.
 - Attenuates the early-phase and late phase airway obstruction response to allergen and suppressed the accumulation of eosinophils in the airways

Table 27-1. Relative Efficacy of Anti-inflammatory Drugs, Bronchodilators, and Miscellaneous Agents in the Management of Respiratory Tract Disorders*

Drug	Asthma	COPD	Allergic Rhinitis	Viral Rhinitis
Anti-inflammatory Drugs			_	
Glucocorticoids	++++	0 to ++	++++	0
Mast cell stabilizers	+++	0 to ++	+++	0
Leukotriene inhibitors	+++	0 to +	Unknown	0
Bronchodilators				
Selective β ₂ -adrenoceptor	++++	++	0	0
agonists				
Other bronchodilators				
- Ipratropium	+	+++	++	++
- Theophylline	++ to +++	++ to +++	0	0
Miscellaneous Agents				
Analgesics	0	0	0	+++
Antihistamines	0 to ++	0	++++	+
Decongestants	0 to ++	0 to ++	+++	+++

^{*}Ratings range from 0 (not efficacious) to ++++ (highly efficacious). COPD = chronic obstructive pulmonary disease (e.g., emphysema).

Stepwise management in adults

Patients should start treatment at the step most appropriate to the initial severity of their asthma. Check concordance and reconsider diagnosis if response to treatment is unexpectedly poor.

MOVE UP TO IMPROVE CONTROL AS NEEDED

MOVE DOWN TO FIND AND MAINTAIN LOWEST CONTROLLING STEP

Inhaled short-acting β_s agonist as required

Add inhaled steroid 200-800 mcg/day*

400 mcg is an appropriate starting dose for many patients

Start at dose of inhaled steroid appropriate to severity of disease.

- 2. Assess control of asthma:
 - good response to LABA - continue LABA
 - benefit from LABA but control still inadequate
 - continue LABA and increase inhaled steroid dose to 800 mcg/day* (if not already on this dose)
 - no response to LABA
 - stop LABA and increase inhaled steroid to 800 mcg/dav.*If control still inadequate, institute trial of other therapies, leukotrie ne receptor antagonist or SR theophylline

STEP 3

Initial add-on therapy

Consider trials of:

- increasing inhaled steroid up to 2000 mcg/day*
- addition of a fourth drug e.g. leukotriene receptor antagonist, SR theophylline, β, agonist tablet

Use daily steroid tablet

in lowest dose providing adequate control

Maintain high dose inhaled steroid at 2000 mcg/day*

Consider other treatments to minimise the use of steroid tablets

Refer patient for specialist care

STEP 5

Continuous or frequent use of oral steroids

STEP 2

Regular preventer therapy

SYMPTOMS

STEP 4

Persistent poor control

STEP 1

Mild intermittent asthma

* BDP or equivalent

Stepwise management in children

Patients should start treatment at the step most appropriate to the initial severity of their asthma. Check concordance and reconsider diagnosis if response to treatment is unexpectedly poor.

MOVE UPTO IMPROVE CONTROL AS NEEDED

MOVE DOWN TO FIND AND MAINTAIN LOWEST CONTROLLING STEP

agonist as required

Inhaled short-acting β₃

Add inhaled steroid 200-400 mcg/day* (other preventer drug if inhaled steroid cannot be used) 200 mcg is an

appropriate starting dose for

Start at dose of inhaled steroid appropriate to severity of disease.

STEP 2

Regular preventer therapy

many patients

- 2. Assess control of asthma:
 - good response to LABA - continue LABA
 - benefit from LABA but control still inadequate
 - continue LABA and increase inhaled steroid dose to 400 mcg/day* (if not already on this dose)
 - no response to LABA - stop LABA and increase inhaled steroid to 400 mcg/ day.*If control still inadequate, institute trial of other therapies, leukotriene receptor antagonist or SR theophylline

STEP 3

Initial add-on therapy

Increase inhaled steroid up to 800 mcg/day*

adequate control

Maintain high dose inhaled steroid at 800 mcg/day*

Use daily steroid tablet in lowest dose providing

Refer to respiratory

paediatrician

STEP 5

Continuous or frequent use of oral steroids

STEP 1

Mild intermittent asthma

STEP 4

TREATMENT

Persistent poor control

* BDP or equivalent

Stepwise management in children less than 5 years

MOVE UP TO IMPROVE CONTROL AS NEEDED Patients should start treatment at the step most appropriate to the initial severity of their asthma. Check concordance and reconsider diagnosis if response to treatment is unexpectedly poor. MOVE DOWN TO FIND AND MAINTAIN LOWEST CONTROLLING STEP Refer to respiratory paediatrician. In those children taking inhaled steroids 200-400 mcg/day consider addition Add inhaled steroid 200-400 of leukotriene receptor mcg/day** antagonist. or leukotriene receptor Inhaled short-acting β₃ antagonist if inhaled steroid agonist as required In those children taking cannot be used. a leukotriene receptor antagonist alone reconsider Start at dose of inhaled addition of an inhaled steroid steroid appropriate to 200-400 mcg/day. severity of disease. In children under 2 years consider proceeding to step STEP 4 STEP 3 Persistent poor control STEP 2 Initial add-on therapy Regular preventer therapy STEP 1

Mild intermittent asthma

* BDP or equivalent

† Higher nominal doses may be required if drug delivery is difficult