Session 2

Control of GPIO, LED, push button

Author: Guillermo Cortés Orellana

Teacher: Tomáš Frýza

Lab assignment

1. LED example

• Tables for DDRB, PORTB, and their combination

DDRB	Description
0	Input Pin
1	Output Pin

PORTB	Description
0	Output low value
1	Output high value

DDRB	PORTB	Direction	Internal pull-up resistor	Description
0	0	Input	NO	Tri-state (Hi-Z)
0	1	Input	YES	Pxn will source current if ext. Pulled low
1	0	Output	NO	Output Low
1	1	Output	NO	Outout High

• Table with input/output pins available on ATmega328P

PORT	Pin	Input/Output usage
A	X	Doesn't contain PORT A
В	0	Yes (Pin 8)
В	1	Yes (Pin -9)
В	2	Yes (Pin -10)
В	3	Yes (Pin -11)
В	4	Yes (Pin 12)
В	5	Yes (Pin 13)
В	6	NO
В	7	NO

PORT	Pin	Input/Output usage
С	0	Yes (Pin A0)
С	1	Yes (Pin A1)
С	2	Yes (Pin A2)
С	3	Yes (Pin A3)
С	4	Yes (Pin A4)
С	5	Yes (Pin A5)
С	6	NO
С	7	NO

PORT	Pin	Input/Output usage
D	0	Yes (Pin RX <- 0)
D	1	Yes (Pin $TX \rightarrow 1$)
D	2	Yes (Pin 2)
D	3	Yes (Pin -3)
D	4	Yes (Pin 4)
D	5	Yes (Pin -5)
D	6	Yes (Pin -6)
D	7	Yes (Pin 7)

• C code with two LEDs and push Button

```
\boldsymbol{\ast} Alternately toggle two LEDs when a push button is pressed.
  * ATmega328P (Arduino Uno), 16 MHz, AVR 8-bit Toolchain 3.6.2
 * Copyright (c) Guillermo Cortés
 * Dept. of Radio Electronics, Brno University of Technology, Czechia
  * This work is licensed under the terms of the MIT license.
 #define LED_GREEN PB5 // AVR pin where green LED is connected
                          // AVR pin where blue LED is connected
// AVR pin where blue PUSH BUTTON is connected
 #define LED_BLUE PC0
 #define BTN
                    PD0
 #define BLINK_DELAY 500
⊟#ifndef F CPU
 #define F_CPU 16000000 // CPU frequency in Hz required for delay
 #endif
 /* Includes -----*/
 #include <util/delay.h> // Functions for busy-wait delay loops (PAUSAS)
 #include <avr/io.h>
                          // AVR device-specific IO definitions (ENTRADA/SALIDA)
 /* Functions -----*/
  * Main function where the program execution begins. Toggle two LEDs
  * when a push button is pressed.
int main(void)
 {
    /* GREEN LED */
    // Set pin as OUTPUT in Data Direction Register... (PIN COMO SALIDA)
    DDRB = DDRB | (1<<LED_GREEN);</pre>
     // ...and turn LED off in Data Register (Inicialmente APAGADO)
    PORTB = PORTB & ~(1<<LED_GREEN);
     /* BLUE LED */
     // Set pin as OUTPUT in Data Direction Register...(PIN COMO SALIDA)
    DDRC = DDRC | (1<<LED_BLUE);</pre>
     // ...and turn LED off in Data Register (Inicialmente APAGADO)
     PORTC = PORTC | (1<<LED_BLUE);
     /* PUSH BUTTON */ // ACTIVO A NIVEL BAJO
    DDRD = DDRD &~ (1<<BTN); // Define as an Input (PIN COMO ENTRADA)
    PORTD = PORTD | (1<<BTN);
     // Infinite loop
     while (1)
        // Pause several milliseconds
        _deLay_ms(BLINK_DELAY);
        if(bit_is_clear(PIND,BTN)){ // Evaluamos el registro del bit del pulsador -> Si hay un '0' (ACTIVO BAJO), entro en el 'if'
           // Invertimos valores (PARPADEO)
PORTB = PORTB ^ (1<<LED_GREEN);</pre>
           PORTC = PORTC ^ (1<<LED_BLUE);
     // Will never reach this
    return 0:
```

You can find the code on my GitHub:

https://github.com/GuicoRM/Digital-Electronics-2

• Screenshot of SimulIDE circuit

2. Knight Rider application

• C code

Note 1: all LEDs are RED in order to simulate 'Knight Rider style'

Note 2: LED 1 is designed in active-low way

Note 3: LED 2, LED 3, LED 4 and LED 5 are designed in active-high way

You can find the code on my GitHub:

https://github.com/GuicoRM/Digital-Electronics-2

• Screenshot of SimulIDE circuit

