Supplementary Materials II – Example Data and

2 Code for QSM Reconstruction

3 Version, v0.2.0

4 5

- 6 Full datasets, results and processing scripts are available on Zenodo:
- 7 https://doi.org/10.5281/zenodo.7410455

8 Data availability

- 9 Data are available from three vendors: GE, SIEMENS and PHILIPS, using the
- 10 recommended acquisition in the main text. For each vendor, both monopolar and
- 11 bipolar readout strategies were used to acquire the data. The data from GE and
- 12 SIEMENS are not pre-scan normalized, while the PHILIPS data have two normalization
- 13 methods applied.

14

Figure S1: An illustration of data availability.

17 Data preparation and organization

- 18 Data preparation
- 19 Remark: The following steps for Data preparation are only required if you want to
- 20 start the processing using the 'QSM_CONSENSUS_DATA.zip' file from a clean
- 21 directory.

22 23

24

15 16

- **Step 1: Unzip the received data and reformat the directory structure** Scripts:
 - Preparation_01_rename_received_data.sh

252627

Step 2: Convert DICOM images into NIfTI format

```
1
    Dependency: dcm2niix (version 1.0.20220720)
2
    Scripts:
3
```

Preparation 02 convert dicom2nii.sh

4 5

> 6 7

8

9

10

11

12

Step 3: Rename the files according to the BIDS format

Dependency: Matlab R2016b onwards

The naming strategy as follows:

- Vendors are identified using the session tag: ses-<GE|PHILIPS|SIEMENS>
- For GE and SIEMENS, different readout methods are identified using the acquisition tag: acq-<Bipolar|Monopolar>;
- For **PHILIPS**, the normalisation method is also printed on the acquisition tag, i.e., aca-

<BipolarCLEAR|BipolarSYNERGY|MonopolarCLEAR|MonopolarSYNERGY>

13 14 Script:

1. Preparation 03 rename to bids format.m

15 16 17

18 19

20

21

22

23 24

25

Step 4: Prepare NIFTI data for SEPIA

Dependency: (1) Matlab R2016b onwards, (2) SEPIA v1.2.2.2

Involves the following operation:

- Combining individual multi-echo 3D volumes into a single 4D volume with TE in the 4th dimension;
- Obtaining header info (e.g., B₀ direction and TE) from NIfTI header and JSON sidecar files and saving as SEPIA's header format;
- (GE only) Correcting inter-slice opposite polarity on real and imaginary images and exporting phase images from the corrected real/imaginary data

Script:

Preparation 04 prepare for sepia.m

26 27

Data organization

```
28
233333333333444444444455555
```

```
QSM Consensus Paper Example DICOM Code/
|-- QSM CONSENSUS DATA.zip
                                 % Zip file containing all DICOM images
                                 % Containing all the scripts
   -- SEPIA Alternative2 Pipeline % SEPIA pipeline config files for Alternative 2 (FANSI)
                                  % DICOM images
|-- converted
                                 % dcm2niix output
| -- GE
  | |-- Bipolar
| `-- Monopolar
                                 % Bipolar readout acquisition
                                 % Monopolar readout acquisition
| |-- PHILIPS
| | |-- Bipolar_CLEAR
| | |-- Bipolar_SYNERGY
                                 % with CLEAR normalisation
                                 % with SYNERGY normalisation
     |-- Monopolar CLEAR
      -- Monopolar_SYNERGY
   `-- SIEMENS
     |-- Bipolar
      `-- Monopolar
 -- derivatives
                                 % directory contains all derived output
   `-- SEPIA
                                  % SEPIA output
     |-- GE
  | |-- Bipolar
```

- 8 QSM reconstruction pipeline
- 9 This section describes all the QSM reconstruction processing steps performed in
- 10 SEPIA. All the processing steps are specified in the SEPIA pipeline configuration files,
- 11 which are in the sub-directories of the script directory:
- 12 'QSM Consensus Paper Example Code/SEPIA Standard Pipeline/',
- 13 'QSM Consensus Paper Example Code/SEPIA Alternative1 Pipeline/' and
- 14 'QSM Consensus Paper Example Code/SEPIA Alternative2 pipeline/',
- 15 corresponding to the three processing pipelines demonstrated as follows.
- 16 Environment and dependencies
- 17 The data were processed using the following set-up
- 18 **Operating system**
 - Linux CentOS 7
- 20 Environment

21

22

23

24

25

26

27

28

29 30

31

33

34

35

36

37

38

39 40

41 42

43

- Matlab R2021a (but the scripts are backwards compatible to earlier Matlab versions from R2016b to R2022a)
- **Dependencies**
 - SEPIA v1.2.2.2 [https://github.com/kschan0214/sepia/releases/tag/v1.2.2.2]
 - MRITOOLS v3.5.6
 - [https://github.com/korbinian90/CompileMRI.jl/releases/tag/v3.5.6]
 - MRI susceptibility calculation methods (accessed 12 September 2019) [https://xip.uclb.com/product/mri_gsm_tkd]
 - MEDI toolbox (release: 15th January 2020)
 [http://pre.weill.cornell.edu/mri/pages/qsm.html]
 - FANSI toolbox [v3] [https://gitlab.com/cmilovic/FANSI-toolbox]
- 32 Processing steps

Step 1: Preparation

- (GE only) Phase data is inverted before processing (i.e., phase = -phase), so that
 paramagnetic susceptibility gives a positive value while diamagnetic susceptibility
 gives a negative value, same as the data from other vendors
- Brain mask is obtained by using MEDI toolbox implementation of FSL's BET on the 1st echo magnitude image, using default setting -f 0.5 -g 0
- (Bipolar readout data only) Bipolar readout correction based on (Li et al., 2015) using the implementation provided with SEPIA.

Step 2: Total field estimation and echo combination

Table S1: Algorithm parameters for total field estimation and echo combination.

Parameters V	/alues Remar	K
--------------	--------------	---

Echo phase combination	ROMEO total field calculation	(Dymerska et al., 2020)
MCPC-3D-S phase offset correction	On	
Mask for unwrapping	SEPIA mask	FSL's BET mask
Using ROMEO Mask in SEPIA	Off	
Exclude voxel using relative residual with threshold	0.3 (applied on weighting map)	See https://sepia- documentation.readthedocs.io/en/latest/ method/weightings.html

Step 3: Background field removalTable S2: Algorithm parameters for background field removal.

Parameters	Values	Remark
Method	VSHARP	(Li et al., 2011)
Maximum spherical mean value filtering size	12	Unit: voxel
Minimum spherical mean value filtering size	1	Unit: voxel
Remove residual B1 field	No	
Erode brain mask before BFR	1	Unit: voxel
Erode brain mask after BFR	0	

Step 4: Dipole inversion (corresponding to "Standard" pipeline)

Table S3: Algorithm parameters for dipole field inversion using 'Standard' pipeline.

rable con agentian parameters for alpois nota inversion doing chandara pipointer		
Parameters	Values	Remark
Method	Iterative Tikhonov	
Regularisation parameter (lambda)	0.1	(Karsa et al., 2020; Schweser et al., 2013)
Conjugate gradient tolerance	0.03	2010)
Reference tissue	Brain mask	

- Alternative dipole inversion methods: (MEDI and FANSI)
- **Step 4 (Alternative 1): Dipole inversion**
- Table S4: Algorithm parameters for dipole field inversion using 'Alternative 1' pipeline.

Parameters	Values	Remark
Method	MEDI	(Liu et al., 2011)

Regularisation parameter (lambda)	2000	
Method of data weighting	1	SNR weighting
Percentage of voxels considered to be edges	90	
Array size for zero padding	[0 0 0]	
Performing spherical mean value operator	On	
Radius of the spherical mean value operation	5	Unit: voxel
Performing modal error reduction through iterative tuning (MERIT)	On	
Performing automatic zero reference (MEDI+0)	Off	
Reference tissue	Brain mask	

P.S. Output from the 'Standard' pipeline is required. The scripts are in 'QSM_Consensus_Paper_Example_Code/SEPIA_Alternative1_Pipeline/'.

Step 4 (Alternative 2): Dipole inversion
Table S4: Algorithm parameters for dipole field inversion using 'Alternative 2' pipeline.

Parameters	Values	Remark
Method	FANSI	(Milovic et al., 2019, 2018)
Iteration tolerance	0.1	
Maximum number of iterations	400	
Gradient L1 penalty, regularisation weight	0.0005	
Gradient consistency weight	0.05	
Fidelity consistency weight	1	
Solver	Non-linear	
Constraint	TV	
Method for regularisation spatially variable weight	Vector field	
Using weak harmonic regularisation	On	
Harmonic constraint weight	150	

3 4

Harmonic consistency weight	3	
Reference tissue	Brain mask	

- 1 P.S. Output from the 'Standard' pipeline is required. The scripts are in
- 2 'QSM Consensus Paper Example Code/SEPIA Alternative2 Pipeline/'.
- 3 Re-run the scripts

5

6

7

To re-run the processing scripts, including the preparation shell scripts and the SEPIA pipeline configuration scripts, you may need to adopt the file and/or directory paths on the scripts to the correct paths of the files/directories stored in your local computer.

8 Example results

Figure S2: Susceptibility maps derived using the 'Standard' processing pipeline.

9 10

Figure S3: Susceptibility maps derived using the 'Alternative 1' (MEDI) processing pipeline.

Figure S4: Susceptibility maps derived using the 'Alternative 2' (FANSI) processing pipeline.

References

2

1

- 3 Dymerska, B., Eckstein, K., Bachrata, B., Siow, B., Trattnig, S., Shmueli, K., Robinson,
- 4 S.D., 2021. Phase unwrapping with a rapid opensource minimum spanning tree
- 5 algorithm (ROMEO). Magnetic resonance in medicine 85, 2294–2308.
- 6 https://doi.org/10.1002/mrm.28563
- 7 Karsa, A., Punwani, S., Shmueli, K., 2020. An optimized and highly repeatable MRI
- 8 acquisition and processing pipeline for quantitative susceptibility mapping in the
- 9 head-and-neck region. Magnetic resonance in medicine 84, 3206–3222.
- 10 https://doi.org/10.1002/mrm.28377
- 11 Li, J., Chang, S., Liu, T., Jiang, H., Dong, F., Pei, M., Wang, Q., Wang, Y., 2015. Phase-
- 12 corrected bipolar gradients in multi-echo gradient-echo sequences for quantitative
- susceptibility mapping. Magma (New York, N.Y.) 28, 347–355.
- 14 https://doi.org/10.1007/s10334-014-0470-3
- Li, W., Wu, B., Liu, C., 2011. Quantitative susceptibility mapping of human brain reflects
- spatial variation in tissue composition. Neuroimage 55, 1645–1656.
- 17 https://doi.org/10.1016/j.neuroimage.2010.11.088
- 18 Liu, T., Liu, J., Rochefort, L. de, Spincemaille, P., Khalidov, I., Ledoux, J.R., Wang, Y.,
- 19 2011. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition:
- 20 Comparison with COSMOS in human brain imaging. Magnetic resonance in medicine
- 21 66, 777–783. https://doi.org/10.1002/mrm.22816
- 22 Milovic, C., Bilgic, B., Zhao, B., Acosta-Cabronero, J., Tejos, C., 2018. Fast nonlinear
- 23 susceptibility inversion with variational regularization. Magnetic resonance in
- 24 medicine 80, 814–821. https://doi.org/10.1002/mrm.27073
- 25 Milovic, C., Bilgic, B., Zhao, B., Langkammer, C., Tejos, C., Cabronero, J.A., 2019.
- Weak-harmonic regularization for quantitative susceptibility mapping. Magnetic
- 27 resonance in medicine 81, 1399–1411, https://doi.org/10.1002/mrm.27483
- Schweser, F., Deistung, A., Sommer, K., Reichenbach, J.R., 2013. Toward online
- reconstruction of quantitative susceptibility maps: superfast dipole inversion.
- 30 Magnetic resonance in medicine 69, 1582–1594. https://doi.org/10.1002/mrm.24405

31