Unnecessary Bias

two options

use the invariance property \longrightarrow t.i. bias average simulated QIs \longrightarrow 2x t.i. bias

- (1) 2017 PA
- (2) What happens when you average simulated QIS?
- (3) Does any of this matter?

Key Point: Averaging simulated quantities of interest roughly doubles transformation induced bias. Instead, use the invariance principle to compute maximum likelihood estimates of your quantity of interest.

coefficient-induced

← def. of t.i. bias

total
$$\tau$$
-bias = $\underbrace{\mathbb{E}[\tau(\hat{\beta})] - \tau[\mathbb{E}(\hat{\beta})]}_{\text{transformation-induced}} + \tau[\mathbb{E}(\hat{\beta})] - \tau(\beta)$.

 $y_i \sim N(\mu, 1)$, for i = 1, 2, ..., 100

← stark illustration of the bias in the ML and sim. avg. estimates.

 $\overset{\wedge}{\tau}$

Theorem 1 (t.i. bias, Rainey 2017) Suppose a non-degenerate estimator $\hat{\beta}$. Then any strictly convex (concave) τ creates upward (downward) transformation-induced τ -bias.

0.050 0.075 0.100 0.125 0.050 0.075 0.100 ... True Quantity of Interest

Bias

Proof The proof follows directly from Jensen's inequality. Suppose that the non-degenerate sampling distribution of $\hat{\beta}$ is given by $S_{\beta}(b)$ so that $\hat{\beta} \sim S_{\beta}(b)$. Then $\mathrm{E}(\hat{\beta}) = \int_B b S_{\beta}(b) db$ and $\mathrm{E}[\tau(\hat{\beta})] = \int_B \tau(b) S_{\beta}(b) db$. Suppose first that τ is convex. By Jensen's inequality, $\int_B \tau(b) S_{\beta}(b) db > \tau \left[\int_B b S_{\beta}(b) db \right]$, which implies that $\mathrm{E}[\tau(\hat{\beta})] > \tau[\mathrm{E}(\hat{\beta})]$. Because $\mathrm{E}[\tau(\hat{\beta})] - \tau[\mathrm{E}(\hat{\beta})] > 0$, the transformation-induced τ -bias is upward. By similar argument, one can show that for any strictly $concave \ \tau, \ \mathrm{E}[\tau(\hat{\beta})] - \tau[\mathrm{E}(\hat{\beta})] > 0$ and that the transformation-induced τ -bias is downward.

Theorem 1 Suppose a maximum likelihood estimator $\hat{\beta}^{mle}$. Then for any strictly convex or concave τ , the transformation-induced τ -bias for $\hat{\tau}^{avg}$ is strictly greater in magnitude than the transformation-induced τ -bias for $\hat{\tau}^{mle}$.

$$\begin{split} & \textbf{Proof} \text{ According to Theorem 1 of Rainey (2017), } E\left(\hat{\tau}^{mle}\right) - \tau\left[E\left(\hat{\beta}^{mle}\right)\right] > \\ & 0. \text{ Lemma 1 shows that for any convex } \tau, \ \hat{\tau}^{\text{avg.}} > \hat{\tau}^{\text{mle}}. \text{ It follows that } \\ & E\left(\hat{\tau}^{\text{avg.}}\right) - \tau\left[E\left(\hat{\beta}^{\text{mle}}\right)\right] > \underbrace{E\left(\hat{\tau}^{\text{mle}}\right) - \tau\left[E\left(\hat{\beta}^{\text{mle}}\right)\right]}_{\text{t.i. } \tau\text{-bias in }\hat{\tau}^{\text{mle}}} > 0. \text{ For the concave case,} \\ & \text{it follows similarly that } E\left(\hat{\tau}^{\text{avg.}}\right) - \tau\left[E\left(\hat{\beta}^{\text{mle}}\right)\right] < E\left(\hat{\tau}^{\text{mle}}\right) - \tau\left[E\left(\hat{\beta}^{\text{mle}}\right)\right] < 0. \end{split}$$

t.i. τ-bias in τ̂avg

Lemma 1 Suppose a maximum likelihood estimator $\hat{\beta}^{mle}$. Then any strictly convex (concave) τ guarantees that $\hat{\tau}^{avg}$ is strictly greater [less] than $\hat{\tau}^{mle}$.

Proof By definition,

Bias

0.050 0.075 0.100 0.125

$$\hat{\tau}^{\text{avg.}} = E \left[\tau \left(\tilde{\beta} \right) \right]$$

Using Jensen's inequality, we know that $\mathbf{E}\left[\tau\left(\tilde{\beta}\right)\right] > \tau\left[\mathbf{E}\left(\tilde{\beta}\right)\right]$, so that

$$\hat{\tau}^{\text{avg.}} > \tau \left[E \left(\tilde{\beta} \right) \right].$$

However, because $\tilde{\beta} \sim N\left[\hat{\beta}^{\mathrm{mle}}, \hat{V}\left(\hat{\beta}^{\mathrm{mle}}\right)\right]$, $\mathrm{E}\left(\tilde{\beta}\right) = \hat{\beta}^{\mathrm{mle}}$, so that

$$\hat{\tau}^{\text{avg.}} > \tau \left(\hat{\beta}^{\text{mle}} \right)$$
.

Of course, $\hat{\tau}^{\text{mle}} = \tau \left(\hat{\beta}^{\text{mle}} \right)$ by definition, so that

True Quantity of Interest

$$\hat{\tau}^{\text{avg.}} > \hat{\tau}^{\text{r}}$$

The proof for concave τ follows similarly. \blacksquare