Leçon 229. Fonctions monotones. Fonctions convexes. Exemples et applications.

1. Les fonctions monotones

1.1. Croissance et décroissance

1. DÉFINITION. Soit $I \subset \mathbf{R}$ un intervalle. Une fonction $f \colon I \longrightarrow \mathbf{R}$ est croissante si

$$\forall x, y \in I, \quad x \leqslant y \implies f(x) \leqslant f(y).$$

Elle est strictement croissante si

$$\forall x, y \in I, \quad x < y \implies f(x) < f(y).$$

Elle est décroissante (respectivement strictement décroissante) si la fonction -f est croissante (respectivement strictement croissante).

- 2. EXEMPLE. La fonction $x \in \mathbf{R} \longmapsto x$ est strictement croissante. La fonction $x > 0 \longmapsto 1/x$ est strictement décroissante. La fonction de répartition d'un variable aléatoire réelle est croissante.
- 3. Théorème. Une fonction strictement monotone $I \longrightarrow \mathbf{R}$ est injective.
- 4. EXEMPLE. La fonction cos: $[0,\pi] \longrightarrow [-1,1]$ est une bijection ce qui permet de définir son inverse Arccos: $[-1,1] \longrightarrow [0,\pi]$.
- 5. Proposition. Soient $\alpha \geqslant 0$ un réel et $f,g\colon I \longrightarrow \mathbf{R}$ deux fonctions croissantes. Alors la fonction $f + \alpha g$ est croissante. De plus, si la fonction f est strictement croissante et $\alpha > 0$, alors la fonction αf est strictement croissante.
- 6. Proposition. La composée de deux fonctions croissantes (respectivement strictement croissante) est strictement croissante. Le produit de deux fonctions croissantes positives.
- 7. PROPOSITION (comparaison série-intégrale). Soit $f: \mathbf{R}_+ \longrightarrow \mathbf{R}_+$ une fonction continue par morceaux et décroissante. Alors la série $\sum_{n \in \mathbf{N}} f(n)$ et l'intégrale $\int_0^{+\infty} f(t) dt$ sont de même nature.
- 8. APPLICATION. Soit $\alpha \in \mathbf{R}$ un réel. Alors la série $\sum_{n \in \mathbf{N}} n^{-\alpha}$ converge si et seulement si $\alpha > 1$.
- 9. Théorème. Soit $f\colon]a,b[\longrightarrow {\bf R}$ une fonction croissante et majorée. Alors elle admet une limite au point $b^-.$

1.2. Suites de fonctions monotones, points fixes et suite récurrente

- 10. THÉORÈME. La limite simple d'une suite de fonctions croissantes qui converge simplement est croissantes.
- 11. Contre-exemple. La version du théorème avec la stricte décroissance est fausse : la suite de fonctions strictement croissantes $x \in [0,1[\longmapsto x^n \text{ converge simplement vers la fonction nulle.}]$
- 12. THÉORÈME (Dini). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions croissantes et continues sur un segment [a,b] qui converge simplement vers une fonction continue f. Alors la convergence est uniforme.
- 13. THÉORÈME. Une fonction croissante d'un segment dans lui-même admet au moins un point fixe.
- 14. PROPOSITION. Soit $f: I \longrightarrow I$ une fonction croissante. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de

l'intervalle I vérifiant

$$x_{n+1} = f(x_n), \qquad n \in \mathbf{N}. \tag{*}$$

- La suite $(x_n)_{n \in \mathbb{N}}$ est croissante si $f(x_0) \ge x_0$ et décroissante si $f(x_0) \le x_0$.
- On suppose que l'intervalle I est borné. Alors la suite $(x_n)_{n \in \mathbb{N}}$ converge. Si la fonction f est continue, alors sa limite est un point fixe de la fonction f.
- 15. EXEMPLE. La suite $(x_n)_{n \in \mathbb{N}}$ de l'intervalle $[0, \pi[$ définie par $x_{n+1} = \sin x_n$ converge vers zéro.
- 16. THÉORÈME. Soit $f: I \longrightarrow I$ une fonction décroissante. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de l'intervalle I vérifiant la relation (*).
 - La fonction f admet au plus un point fixe.
 - On suppose que l'intervalle I est borné et la fonction f est continue. Alors la suite $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$ convergent vers des points fixe de la fonction $f\circ f$. Si cette dernière admet un unique point fixe, alors la suite $(x_n)_{n\in\mathbb{N}}$ converge vers cet unique point fixe.

1.3. Régularité et dérivabilité des fonctions monotones

17. Théorème. Soient $I := [a, b] \subset \mathbf{R}$ un intervalle ouvert et $f : I \longrightarrow \mathbf{R}$ une fonction croissante. Alors pour tout réel $x \in I$, la fonction f admet une limite $f(x^+)$ à gauche du point x^+ et une limite $f(x^-)$ à droite du point x. De plus, on a

$$f(x^-) = \sup_{a < t < x} f(t)$$
 et $f(x^+) = \inf_{x < t < b} f(t)$

ainsi que, pour tous réels $x, y \in I$, l'implication

$$x < y \implies f(x^+) \leqslant f(y^-).$$

- 18. EXEMPLE. La fonction indicatrice $f := \mathbf{1}_{]-\infty,0]} \colon \mathbf{R} \longrightarrow \mathbf{R}$ est croissante et ces limites en zéro sont $f(0^-) = 0$ et $f(0^+) = 1$.
- 19. COROLLAIRE. L'ensemble des points de discontinuité d'une fonction monotone sur un intervalle ouvert I est au plus dénombrable.
- 20. Théorème. Soient $I \subset \mathbf{R}$ un intervalle ouvert et $f \colon I \longrightarrow \mathbf{R}$ une fonction monotone dont l'image est un intervalle. Alors la fonction f est continue.
- 21. Contre-exemple. L'hypothèse disant que l'image est un intervalle est nécessaire : la fonction $f \colon [0,1] \longrightarrow \mathbf{R}$ définie par l'égalité

$$f(x) = \begin{cases} 0 & \text{si } x = 0, \\ |x^{-1}|^{-1} & \text{sinon} \end{cases}$$

est croissante et admet une infinité de points de discontinuité.

- 22. Théorème. Soient $I \subset \mathbf{R}$ un intervalle ouvert et $f \colon I \longrightarrow \mathbf{R}$ une fonction dérivable. Alors elle est croissante (respectivement strictement croissante) si et seulement si sa dérivée est positive (respectivement strictement positive).
- 23. DÉFINITION. Soient a, b, c, d > 0 quatre réels strictement positifs. Le système

proie-prédateur de Lotka-Volterra est le système différentiel

$$\begin{cases} x' = ax - bxy, \\ y' = -cy + dxy \end{cases}$$
 (LV)

associée à une condition initiale $(x(0), y(0)) = (x_0, y_0)$ avec $x_0, y_0 > 0$.

24. PROPOSITION. La solution maximale $X: t \in I \longrightarrow (x(t), y(t)) \in \mathbf{R}^2$ du système (LV) est à valeurs dans le quadrant $(\mathbf{R}_+^*)^2$. De plus, la fonction

$$E: \begin{vmatrix} \mathbf{R}_{+}^{*} \times \mathbf{R}_{+}^{*} \longrightarrow \mathbf{R}, \\ (x,y) \longmapsto dx + by - c \ln x - a \ln y \end{vmatrix}$$

est une intégrale première du système (LV).

25. THÉORÈME. La solution maximale du système (LV) est globale et périodique.

2. Les fonctions convexes

2.1. Fonctions convexes sur un espace vectoriel

26. DÉFINITION. Soit $C \subset E$ une partie convexe. Une fonction $f: C \longrightarrow \mathbf{R}$ est convexe si, pour tous vecteurs $x, y \in C$ et tout réel $\lambda \in [0, 1]$, on a

$$f(\lambda x + (1 - \lambda)x) \leqslant \lambda f(x) + (1 - \lambda)f(y). \tag{*}$$

Elle est strictement convexe si l'inégalité (*) est stricte et tient avec $x \neq y$ et $\lambda \in]0,1[$. 27. Exemple. Si l'espace E est muni d'une norme, la fonction $x \longmapsto \|x\|$ est convexe. Si l'espace E est euclidien, la fonction $x \longmapsto \|x\|^2 = \langle x, x \rangle$ est strictement convexe. Les fonctions constantes sont convexes.

28. Remarque. Une fonction $f: C \longrightarrow \mathbf{R}$ est convexe si et seulement si son épigraphe

$$\operatorname{\acute{e}pi}(f) \coloneqq \{(x, r) \in C \times \mathbf{R} \mid f(x) \leqslant r\}$$

est convexe.

29. Exemple. Une fonction affine est convexe.

2.2. Le cas de la variable réelle

30. PROPOSITION (inégalité des pentes). Soient $I \subset \mathbf{R}$ un intervalle et $f: I \longrightarrow \mathbf{R}$ une fonction convexe. Soient $a, b, c \in I$ trois réels vérifiant a < b < c. Alors

$$\frac{f(a) - f(b)}{a - b} \leqslant \frac{f(c) - f(a)}{c - a} \leqslant \frac{f(b) - f(c)}{b - c}.$$

- 31. PROPOSITION. Une fonction $f: I \longrightarrow \mathbf{R}$ sur un intervalle I est convexe si et seulement si, pour tous points $a, b \in I$, sa courbe est en-dessous du segment dans \mathbf{R}^2 reliant les points (a, f(a)) et (b, f(b)).
- 32. Théorème. Une fonction convexe sur un intervalle I possède, en tout point de l'intervalle \mathring{I} , une dérivée à droite et à gauche. En particulier, elle est continue sur l'intervalle \mathring{I} .
- 33. Contre-exemple. Le continuité sur l'intervalle I tout entier n'est pas nécessaire : la fonction $\mathbf{1}_{\{0,1\}}$ est convexe sur l'intervalle [0,1] bien qu'elle n'y soit pas continue.
- 34. Remarque. Le résultat se généralise à une fonction convexe $f: C \subset \mathbf{R}^n \longrightarrow \mathbf{R}$: elle est continue sur l'ouvert \mathring{C} . Mais le résultat est faux en dimension infinie : il suffit de prendre une forme linéaire qui n'est pas continue.

- 35. Théorème. Une fonction dérivable sur un intervalle I est convexe (respectivement strictement convexe)> si et seulement si sa dérivée est croissante (respectivement strictement croissante) sur l'intervalle I.
- 36. COROLLAIRE. Une fonction deux dérivable sur un intervalle I est convexe (respectivement strictement convexe) si et seulement si sa dérivée seconde est positive (respectivement strictement positive) sur l'intervalle I.
- 37. Exemple. Les fonctions exponentielles et logarithmes sont respectivement convexe et concave.
- 38. Proposition. Une fonction convexe sur un intervalle ouvert est la borne supérieure d'une famille de fonctions affines.

2.3. Le cas général et la caractérisation avec le calcul différentiel

- 39. THÉORÈME. Soient $\Omega \subset \mathbf{R}^n$ un ouvert convexe et $f \colon \Omega \longrightarrow \mathbf{R}$ une fonction différentiable. Alors les points suivants sont équivalents :
 - la fonction f est convexe;
 - pour tous points $x, y \in \Omega$, on a $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$;
 - pour tous points $x, y \in \Omega$, on a $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0$.

De plus, si la fonction f est deux fois différentiables, alors on rajoute le point suivant :

- pour tout point $x \in \Omega$, la hessienne Hf(x) est positive.
- 40. Contre-exemple. Le convexe Ω nécessite d'être ouvert sans quoi le théorème est faux. Par exemple, la fonction $(x,y) \longmapsto x^2 y^2$ est convexe sur la partie $\mathbf{R} \times \{0\}$, mais sa hessienne en tout point, à savoir la matrice diag(1,-1), n'est pas positive
- 41. APPLICATION. Soit $A \in \mathscr{S}_n(\mathbf{R})$ une matrice symétrique. Alors elle est positive si et seulement si la fonction $x \longmapsto \langle Ax, x \rangle$ est convexe.
- 42. EXEMPLE. Soient $A \in \mathscr{S}_n^{++}(\mathbf{R})$ une matrice symétrique définie positive et $b \in \mathbf{R}^n$ un vecteur. Alors la fonction $x \longmapsto \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$ est convexe et elle est même strictement convexe.

3. Utilisation des fonctions convexes

3.1. Inégalités de convexité

43. THÉORÈME (inégalité arithmético-géométrique). Soient $x_1, \ldots, x_n \ge 0$ des réels positifs. Alors

$$(x_1 \cdots x_n)^{1/n} \leqslant \frac{x_1 + \cdots + x_n}{n}.$$

44. Proposition. Soient p,q>0 deux réels positifs vérifiant 1/p+1/q=1. Soient x,y>0 deux réels strictement positifs. Alors

$$xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

- 45. PROPOSITION. Soit $x \in \mathbf{R}$ un réel. Alors $e^x \geqslant 1 + x$ et $\ln(1+x) \leqslant x$.
- 46. Remarque. Cette première inégalité permet de trouver la domination nécessaire au théorème de convergence dominée et d'obtenir la limite

$$\Gamma(z) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt, \qquad \text{Re } z > 0.$$

- 47. PROPOSITION. Soit $x \in [0, \pi/2[$ un réel. Alors $\frac{\pi}{2}x < \sin x < x$.
- 48. Théorème (inégalité de Hölder). Soit (X, \mathcal{A}, μ) un espace mesuré. Soient p, q > 1deux réels positifs vérifiant 1/p + 1/q = 1. Soient $f \in L^p(X)$ et $g \in L^q(X)$. Alors la fonction fg est intégrable et

$$||fg||_1 \le ||f||_p ||g||_q.$$

49. THÉORÈME (inégalité de Minkowski). Soit $p \ge 1$ un réel. Alors pour toutes functions $f, g \in L^p(X)$, on a

$$||f + g||_p \le ||f||_p + ||g||_p.$$

En particulier, l'application $\| \|_p$ est une norme sur l'espace vectoriel $L^p(X)$.

50. Théorème (inégalité de Jensen). On considère un espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$. Soit $\varphi \colon \mathbf{R} \longrightarrow \mathbf{R}_{\perp}$ une fonction bornée convexe. Soit X une variable aléatoire réelle intégrable. Alors

$$\varphi(\mathbf{E}[X]) \leqslant \mathbf{E}[\varphi(X)].$$

51. REMARQUE. On retrouve l'inégalité $\mathbf{E}[X]^2 \leq \mathbf{E}[X^2]$.

3.2. Fonctions convexes et optimisation

- 52. THÉORÈME. Une fonction strictement convexe admet au plus un minimum.
- 53. THÉORÈME (inégalité d'Euler). Soient $\Omega \subset \mathbb{R}^n$ un ouvert et $C \subset \Omega$ un convexe. Soient $f:\Omega \longrightarrow \mathbf{R}$ une fonction différentiable. On suppose que la fonction $f|_C$ admet un minimum en un point $x^* \in C$ et qua la fonction f est différentiable en ce point. Alors

$$df(x^*)(y - x^*) \geqslant 0.$$

- 54. Proposition. Soient $\Omega \subset \mathbf{R}^n$ un ouvert convexe. Alors tout point critique d'une fonction différentiable $\Omega \longrightarrow \mathbf{R}^n$ est un minimum global pour cette dernière.
- 55. Contre-exemple. L'hypothèse de convexité est nécessaire : la fonction $x \mapsto x^3$ admet l'origine comme point critique, mais ce n'en est pas un minimum.
- 56. APPLICATION (point de Fermat). Soient A, B et C trois points non alignés du plan euclidien \mathbb{R}^2 . On suppose que les trois angles du triangle ABC sont strictement inférieurs à $2\pi/3$. Alors la fonction

$$\begin{vmatrix} \mathbf{R}^2 \longrightarrow \mathbf{R}, \\ M \longmapsto MA + MB + MC \end{vmatrix}$$

admet un unique point minimum qui est dans l'intérieur stricte du triangle ABC.

- 57. APPLICATION. La fonction de l'exemple 42 admet un unique minimum qui est la solution $x^* \in \mathbf{R}^n$ du système Ax = b.
- 58. THÉORÈME. Soit H un espace de Hilbert. Alors toute suite bornée $(x_n)_{n\in\mathbb{N}}$ de H admet une sous-suite convergeant faiblement, c'est-à-dire qu'il existe une extraction $\varphi \colon \mathbf{N} \longrightarrow \mathbf{N}$ et un vecteur $x \in H$ tels que

$$\forall y \in H, \qquad \langle x_{\varphi(n)}, y \rangle \longrightarrow \langle x, y \rangle.$$

59. Proposition. Soient H un espace de Hilbert et $C \subset H$ une partie convexe non bornée. Soit $J: C \longrightarrow \mathbf{R}$ une fonction convexe, continue et coercive. Alors cette dernière atteint sa borne inférieure.

- Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.
- [1] Philippe Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. 3e tirage. Masson, 1982.
- Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.
- Jean-Étienne Rombaldi. Éléments d'analyse réelle. EDP Sciences, 2004.
- François Rouvière. Petit quide de calcul différentiel. Quatrième édition. Cassini, 2015.