

#### FACULTY OF COMPUTING

#### SEMESTER 1

2023/2024

#### SECI1013 – DISCRETE STRUCTURE

#### SECTION 02

LECTURER: DR. NOORFA HASZLINNA BINTI MUSTAFFA

| NAME                              | MATRIC NUMBER |
|-----------------------------------|---------------|
| NUR FIRZANA BINTI BADRUS HISHAM   | A23CS0156     |
| DAMIYA AINA BINTI BASIR ABD SAMAD | A23CS0220     |
| NURUL ADRIANA BINTI KAMAL JEFRI   | A23CS0258     |

#### Q1. Relation

Given A = {2, 3, 4, 5, 6, 7, 8} and R a relation over A. Draw the directed graph of R after realising that xRy iff x−y = 3n for some n ∈ Z. Find all possible equivalence relations for R.

(5 marks)





- 2. Let  $A = \{1, 2, 3\}$  and  $B = \{9, 8, 7\}$ . Let R: A to B. For all  $(a, b) \in A \times B$ , and given a R b  $\Leftrightarrow$  a+b is an even number,
  - a. Determine R and  $R^{-1}$ .
  - b. Draw arrow diagrams for both.
  - c. Describe R-1 in words.

(10 marks)



3. Let  $A = \{1, 2, 3, 4, 5\}$ , and let R be the relation on A that has the matrix (given below)

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Construct the digraph of R, and list in-degrees and out-degrees of all vertices.

(6 marks)

3. Let A = {1,2,3,4,5}, and let R be the relation on A that has the matrix

Construct the diagraph of R, and list in-degrees and out-degrees of all verticles.



|             | 1 | 2 | 3 | 4 | 5 |
|-------------|---|---|---|---|---|
| In-degrees  | 2 | 2 | 1 | 3 | 2 |
| out-degrees | 1 | 1 | 3 | 3 | 2 |

4. Given A =  $\{0, 1, 2, 3, 4\}$ , and R =  $\{(0, 0), (0, 1), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 0), (3, 2), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)\}$ . Draw the digraph and find is R reflexive, symmetric, or transitive?

(12 marks)



- 5. Relation R in the set A =  $\{1, 2, 3...13, 14\}$  defined as R =  $\{(x, y): 3x y = 0\}$ , Determine whether the relation is
  - a. Reflexive
  - b. Symmetric
  - c. Transitive

Support your answer with the reason.

(9 marks)



6. Suppose that the given is a relation matrix for R and S,

$$R = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and 
$$S = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Using Boolean Arithmetric, Find

- a. RS
- b. SR

(8 marks)

6. Suppose that the given is a relation matrix for R and S.

$$R = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Using Boolean Anthmetic, find

9. RS

$$\begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\otimes
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$=
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

b. SR

## Q2. Function

7. What is the different between Relation and Function?

(2 Marks)

The difference between a relation and a function is that a relation can have many outputs for a single input while a function has a single input for a single output.

- 8. If  $A = \{2, 3, 4, 5\}$ , then write whether each of the following relations on set A is a function or not. Give reasons also.
  - (i) {(2, 3), (3, 4), (4, 5), (5, 2)}
  - (ii)  $\{(2, 4), (3, 4), (5, 4), (4, 4)\}$
  - (iii) {(2, 3), (2, 4), (5, 4)}
  - (iv)  $\{(2, 3), (3, 5), (4, 5)\}$  (v)  $\{(2, 2), (2, 3), (4, 4), (4, 5)\}$

(8 marks)







- domain R = { 2,3,43 + set A
- · range R = {3,53
  - no arrow from domain 5
- .. the set is not function.

# (v) {(2,2)(2,3)(4,4)(4,5)}



- · domain R = { 2,43 + Set 19
- · range R = { 2,3,4,53
- · ho arrow from domain 3,5
- .. the set is not function.

9. Given the relation of  $R = \{(x,y)|y=x+5, x \text{ is } \mathbb{Z}^+ \text{ less than } 6\}$ . Depict this relationship using roster form. Write down the domain and the range.

Range = 5,6,7,8,9,10

(3 marks)

9. Given the relation of  $R = \{(x,y) \mid y = x+5, x \text{ is } \mathbb{Z}^{+} \text{ less than } 6\}$ .

Depict this relationship using roster form . Write down the domain and the range.  $R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$ Domain = 0,1,2,3,4,5  $y = x+5, x = z^{+} \text{ less than } 6\}$ .  $z = x+5, x = z^{+} \text{ less than } 6\}$ .  $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = x+5, x = z^{+} \text{ less than } 6$   $z = z^{+} \text{ less than } 2$   $z = z^{+} \text{ less than } 2$ 

10. In the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(v) 
$$f = R \to R, f(x) = 1 - 2x$$

(vi) 
$$f = R \to R, f(x) = 5x^2 - 1$$

(vii) 
$$f = R \rightarrow R, f(x) = x^4$$

(viii) 
$$f = R \rightarrow R, f(x) = \left(\frac{x-2}{x-3}\right)$$

(8 marks)



| vii) assume y=214           |               |             |
|-----------------------------|---------------|-------------|
| is it one-to-one?           |               | is it onto? |
| (n.)4 = (n2)4               | r 16 = 16     | y=n4        |
| $(n_1 = 2) \neq (n_2 = -2)$ | but n. + n2   | n = 4/4     |
| $(2)^4 = (-2)^4$            | one-to-one= X | subs 16 n=2 |

hotline@cyberview-lodge.com.my

www.cyberview-lodge.com





11. Given the following functions, find the function f(g(x)) and find the value of the function if  $x = \{0, 1, 2, 3\}$ 

(ix) 
$$f(x) = 3x - 1$$
;  $g(x) = x^2 - 1$ 

(x) 
$$f(x) = x^2$$
;  $g(x) = 5x - 6$ 

(xi) 
$$f(x) = x - 1$$
;  $g(x) = x^3 + 1$ 

(9 marks)

11. 
$$fg(m) = 3m - 1$$
  $f[g(m)] = 3(m^2 - 1) - 1$   $g(m) = m^2 - 1$   $= 3n^2 - 3 - 1$   $= 3n^2 - 3 - 1$   $= 3n^2 - 4$   $= 3n^2 -$ 

| (xi) | TCN  | ) - | -   | K.       | [   |    |   | F L 9 | (N) | J  | _  | (   | 7, | +1)-1          |
|------|------|-----|-----|----------|-----|----|---|-------|-----|----|----|-----|----|----------------|
|      | 9(7) | )   | =   | n        | 9 + | 1  |   |       |     |    | =  | N   | 3  | +1-1           |
|      |      |     |     |          |     |    |   |       |     | •  | =  | 71  | 3  |                |
|      |      | n   | = . | £0,      | 1,2 | 13 | z |       |     |    |    |     |    |                |
|      |      |     |     |          |     |    |   |       |     |    |    |     |    |                |
|      |      | fq  | (0  | ) =      | 0   | 3  |   |       |     | f9 | (: | 2)  | =  | 23             |
|      |      | . , |     | ) =<br>= | 0   |    |   |       |     |    |    |     | =  | 23             |
|      |      |     |     |          |     |    |   |       |     |    |    |     |    |                |
|      |      | L'  | ۲ı  | ) =      | L   | 3  |   |       |     | ŧ۵ |    | 2 1 | _  | 29             |
|      |      | 19  | U   |          |     |    |   |       |     | 19 |    | עכ  | _  | 3 <sup>3</sup> |
|      |      |     |     | =        | 1   |    |   |       |     |    |    |     | _  | 27             |
|      |      |     |     |          |     |    |   |       |     |    |    |     |    |                |
|      |      |     |     |          |     |    |   |       |     |    |    |     |    |                |

### Q3. Recurrence Relation

12. Solve the recurrence relation given; (xii)  $a_n = 6a_{n-1} - 9a_{n-2}$ ; initial conditions  $a_0 = 1$  and  $a_1 = 6$ (xiii)  $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ ; initial conditions  $a_0=2$  ,  $a_1=5$  and  $a_2=15$ (xiv)  $a_n = -3a_{n-1} - 3a_{n-2} + a_{n-3}$ initial conditions  $a_0 = 1$ ,  $a_1 = -2$  and  $a_2 = -1$ (12 marks) i)  $Q_n = 6q_{n-1} - 9q_{n-2}$ ; initial condition  $q_0 = 1$  and  $q_1 = 6$ 92 = 69, - 900 = 6(6) -9CI) 93 = 692 - 90, = 6(27) -9(6) 94 = 693 - 992 = 60108) -9027) new recurrence relations: 1,6,27,108,405,1458,... 95 = 604 - 903 = 6 C405) -9 C108) = 1458 ii)  $Q_n = 6q_{n-1} - 11q_{n-2} + 6q_{n-3}$ ; initial condition  $q_0 = 2, q_1 = 5$  and  $q_2 = 15$ 93 = 692 - 119, + 690 = 6(15) -11(5) +6(2)  $q_4 = 6q_3 - 11q_2 + 6q_1 = 6(47) - 11(15) + 6(5)$ 95 = 694 - 1193 +692 = 6(147) -11(47) +6(15) 96 = 695 - 1194 + 693 = 6(455) - 11947) + 6(47) new recurrence relations: 2,5,15,47,147,455,1395,... iii)  $q_n = -3q_{n-2} + q_{n-3}$ ; initial condition  $q_0 = 1$ ,  $q_1 = -2$  and  $q_2 = -1$  $q_3 = -3q_2 - 3q_1 + q_0 = -3(-1) - 3(-2) + 1$  $Q_4 = -3Q_3 - 3Q_2 + Q_1 = -3C(0) - 3C(-1) + (-2)$  $q_5 = -3q_4 - 3q_3 + q_2 = -3(-29) - 3(10) + (4)$ = 56 96 = -395 - 394 +93 = -3(56) -3(-29) + (10)

new recurrence relations: 1, -2, -1, 10, -29, 56, -71, ...

13. A sequence  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ , ... is given by

$$a_{n+1} = 5a_n - 3$$
;  $a_1 = k$ 

where k is a non-zero constant.

- (i) Find the value of  $a_4$  in terms of k .
- (ii) Given that  $a_4$ = 7 , determine the value of k .

(8 marks)

(3) given 
$$a_{n+1} = 5a_n - 3$$
,  $a_i = k$ 
 $k \neq 0$ 

i) Find  $a_{ij}$  in terms of  $k$ ,

 $a_{n+1} + 3 = 5a_n$ 
 $a_n = a_{n+1} + 3$ 
 $a_n$ 

|                | 5                  |
|----------------|--------------------|
|                | = 57(1) + 9        |
| ii) given au=7 | find k             |
| C14 =          | 5k+3=7             |
|                | 5                  |
|                | 5k+3 = 35          |
|                | 5k = 32            |
|                | $k = \frac{32}{5}$ |
|                | 5//                |
|                |                    |