Análisis

Se tiene un camión de caudales que debe entregar y recibir dinero de diferentes sucursales bancarias. Sale de la central vacío y no puede superar los límites de carga en ningún momento. Se trata de un problema del viajante.

Objetivo

Determinar el camino que debe realizarse para minimizar la distancia recorrida para un periodo determinado, pasando por todas las sucursales bancarias.

Hipótesis y supuestos

- No hay cortes, no se avería el vehículo que transporta.
- La distancia entre la central y las sucursales inicial y final, es despreciable.
- Los caminos recorridos se hacen en línea recta (no hay obstáculos).
- Todas las operaciones (transporte, entrega y recibo de dinero), son instantáneas.
- La moneda es constante (no hay inflación ni deflación).

Variables

(bivalentes para decir de donde salgo y a donde llego)

 S_i : Variable entera que representa la secuencia en la cual la sucursal i es visitada, i = 1, 2, ..., 18512.

 Y_{ij} : Variable bivalente que vale 1 si el camión va directamente de la ciudad i a la ciudad j o vale cero en el caso que no va de i a j, i = 1, 2, ..., 18512, j = 1, 2, ..., 18512.

 C_{k} : Carga de dinero acumulada en el paso k, k = 1, 2, ..., 18512.

 W_{ik} : Variable bivalente que indica si se está en la sucursal i en el orden de la secuencia k.

Funcional

$$\label{eq:minz} \text{Min z} = \sum_{i \,=\, 0, i \,\neq j}^{18512} \sum_{i \,=\, 0}^{18512} D_{ij}^{} Y_{ij} \quad \text{, } D_{ij}^{} \text{: Distancias entre sucursal i y sucursal j.}$$

Restricciones

Carga)

$$C_0 = 0$$

$$C_k = C_{k-1} + P_1 W_{1k} + P_2 W_{2k} + \dots$$
 , $\forall k$, P_i : Dinero a entregar o recibir de la sucursal i.

$$0 <= C_{_{\scriptscriptstyle L}} <= L$$
, $\forall k$, L : límite de carga máxima.

Para evitar los subcaminos)

$$Si - Sj + 18512 * Yij \le 18511, j \ne i$$

Orden)

$$\sum_{\substack{i=0,j\neq i\\18512\\\sum\\j=0,j\neq i}}^{18512}Y_{ij}=1, \forall j=0.., 18512$$

$$\sum_{i=0}^{18512} W_{ik} = 1, \forall k$$

$$\sum_{i=0}^{18512} W_{ik} = 1, \forall i$$

$$\sum_{k=0}^{18512} W_{ik} = 1, \forall i$$

$$Si = \sum_{k=0}^{18512} k \times W_{ik}, \forall i$$