Содержание

Постановка задачи	2
Математическое обоснование	3
Выбор отрезков	3
Обоснование выбора $\varepsilon_1, \varepsilon_2$	
Результаты экспериментов	5
Структура программы и спецификация функций	6
Функции из модуля main.c:	6
Функции из модуля my_lib.asm:	
Сборка программы (Маке-файл)	7
Отладка программы, тестирование функций	8
Программа на Си и на Ассемблере	9
Анализ допущенных ошибок	10
Список цитируемой литературы	11

Постановка задачи

Требуется реализовать численный метод, позволяющий вычислить площадь плоской фигуры, ограниченной тремя кривыми $y=f_1(x)=1+\frac{4}{1+x^2},\ y=f_2(x)=x^3$ и $y=f_3(x)=2^{-x}$ с заданной точностью $\varepsilon=0.001$. Для решения данной задачи должен использоваться комбинированный метод (хорд и касательных) приближённого решения уравнений для поиска вершин фигуры и формула трапеций для вычисления ее площади. При поиске вершин отрезок, содержащий корень, должен быть вычислен аналитически.

Математическое обоснование

Выбор отрезков

Пусть f(x) и g(x) - 2 функции из условия задачи. Нам нужно найти точку пересечения графиков их функций. Тогда рассмотрим вспомогательную функцию F(x) = f(x) - g(x). И точка пересечения будет соответствовать F(x) = 0. Мы должны воспользоваться комбинированным методом для поиска корня этого уравнения, а для этого мы должны правильно подобрать отрезок [a,b], на котором будем искать корень. У нас есть следующие требования: $F(a) \cdot F(b) < 0$ и $F'(x) \cdot F''(x)$ не меняет знак для $\forall x \in [a, b]$ [1].

Рассмотрим пару функций $F(x) = f_1(x) - f_2(x)$ на отрезке [1,2]

$$F(1) = 1 + \frac{4}{1+1^2} - 1^3 = 2 \Rightarrow F(1) > 0.$$

$$F(2) = 1 + \frac{4}{1+2} - 2^3 = -6.2 \Rightarrow F(2) < 0.$$

$$F(1) = 1 + \frac{4}{1+1^2} - 1^3 = 2 \Rightarrow F(1) > 0.$$

$$F(2) = 1 + \frac{4}{1+2^2} - 2^3 = -6.2 \Rightarrow F(2) < 0.$$

$$F'(x) = f'(x) - g'(x) = \frac{-8x}{(1+x^2)^2} - 3x^2 < 0 \Rightarrow F'(x) < 0, \ \forall x \in [1,2]$$

$$F''(x) = \frac{24x^2 - 8}{(1+x^2)^3} - 6x < 0 \Rightarrow F''(x) < 0, \ \forall \ x \in [1,2]$$

Значит отрезок [1,2] удовлетворяет требованиям [1].

Аналогично для f_1 и f_3 подходит отрезок [-2,-1]. И для f_2 и f_3 подходит отрезок [0, 1].

Обоснование выбора $\varepsilon_1, \varepsilon_2$

Наша цель – вычислить площадь фигуры с заданной точностью $\varepsilon = 0.001$. Сначала ищем точки пересечения графиков функций с погрешностью ε_1 . Так как точек пересечения 3, то общая погрешность $3\varepsilon_1 \cdot \max(f_1, f_2, f_3)$, где максимум берем в окрестностях точек пересечения. В нашем случае, очевидно, $\max(f_1, f_2, f_3) = f_1(0) = 5$. Значит имеем $3\varepsilon_1 \cdot \max(f_1, f_2, f_3) = 15\varepsilon_1$. Далее мы должны найти площадь, вычислив 3 интеграла с погрешностью ε_2 каждый. Значит их общая погрешность $3\varepsilon_2$.

В таком случае итоговая погрешность $\varepsilon > 15\varepsilon_1 + 3\varepsilon_2 = 0.001$. Следовательно можем взять $\varepsilon_1 = \varepsilon_2 = 0.00001$.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

В результате проведенной работы были получены координаты точек пересечения (таблица 1) и площадь фигуры S=6.591 (рис. 2).

Кривые	x	y
1 и 2	1.344	2.426
1 и 3	-1.308	2.476
2 и 3	0.826	0.564

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

На рис. З изображено разбиение программы на компоненты (модули, функции) и связи между ними.

Рис. 3: Разбиение программы на компоненты

Функции из модуля main.c:

double root возвращает абциссу точки пересечения графиков функций f(x) и g(x).

double integral возвращает значение соответствующего определенного интеграла.

void $number_of_iterations$ выводит количество итераций при поиске соответствующих точек пересечения графиков функций.

void $intersection_points$ выводит абциссы точек пересечения графиков функций.

void help выводит все допустимые ключи.

void $test_point$ тестирует функцию root, выводит абциссы точек пересечения графиков функций f_1, f_2, f_3 .

void $test_integral$ тестирует функцию integral, выводит значения соответствующих определенных интегралов от функций f_1 , f_2 , f_3 .

Функции из модуля my_lib.asm:

double $f1_0, f1_1, f2_0, f2_1, f3_0, f3_1$ возвращают значения фунций f_1, f_2, f_3 и их производные.

Сборка программы (Маке-файл)

На рис. 4 изображена схема зависимостей между модулями программы.

Рис. 4: Зависимости между модулями программы

makefile собирает модули в файл project. Сборка осуществляется по ключу all, а удаление промежуточных файлов — по ключу clean.

Код makefile:

```
all: main.o my_lib.o
       gcc -m32 -o project main.o my_lib.o
2
   main.o: main.c
       gcc -std=c99 -m32 -c -o main.o main.c
   my_lib.o: my_lib.asm
       nasm -f elf32 -o my_lib.o my_lib.asm
   start:
       ./project
   test_root:
9
       ./project --test_p -5 10 -10 5 -5 10
10
   test_integral:
       ./project --test_i -5 10 -10 5 -5 10
12
   clean:
13
       rm *.o
```

Отладка программы, тестирование функций

Программа была протестирована, проведена проверка функций root и integral. Результаты тестирования представлены в таблицах 2 и 3.

Функции	Результат	Точное значение
f_1 and f_2	1.343651	1.3436506730877
f_2 and f_3	-1.307861	-1.3078610729161
f_1 and f_3	0.826216	0.8262178093355

Таблица 2: Тестирование функции root

Функция	Отрезок	Результат	Точное значение
$y = 1 + \frac{4}{1+x^2}$	[-5, 10]	26.378124	26.37811376
x^3	[-10, 5]	-2343.749974	-2343.75
$y = 2^{-x}$	[-5, 10]	46.164832	46.16483242

Таблица 3: Тестирование функции integral

Для тестирования root использовался ключ командной строки '-test_p', а для integral – '-test_i'.

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к данному отчету.

Анализ допущенных ошибок

В ходе выполнения работы ошибок допущено не было.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.