10.10.2014

Demo!

10.10.2014

Hardware setup

10.10.2014

Arduin		PN532 Module
GND	<>	GND
5V	<>	VCC
SDA	<>	SDA
SCL	<>	SCL

Software

10.10.2014

a.daftery@arduino.cc

Protocols supported:

- I2C
- UART (on Leonardo)
- SPI

PN532 Library:

https://github.com/elechouse/PN532

NDEF Library:

https://github.com/don/NDEF

10.10.2014

- Short-range wireless communication
- Operating frequency of 13.56 MHz or λ = 22.11m
- Operating distance upto 10cm
- Typical transaction time less than 100ms
- Energy and data are transferred via an antenna consisting of a coil with a small number of turns directly connected to the MF1S503x
- -Difficult to eavesdrop
- Transfer rates of 106kbits/s possible

10.10.2014

1	3
	2
	1
	0
0	3
0	3 2
0	
0	2

	Ke	A	cces	s Bi	ts	Key B									
Ш															
	Key A					cces	s Bi	ts	Key B						
	Manufacturer Data														

Sector Trailer 1
Data
Data
Data
Sector Trailer 0
Data
Data
Manufacturer Block

- Memory is organised as :
 - -16 bytes = 1 block
 - -4 blocks = 1 sector
 - -16 sectors total
- -Each sector has a sector trailer
- -The sector trailer controls authentication and permissions

Data Blocks

10.10.2014

	_
1	3
	2
	1
	0
0	3
	2
	1
	0

		Key A					cces	s Bi	ts	Key B						
L																
	Key A					A	cces	s Bi	ts	Key B						
					N	/lanu	ıfact	urer	Data	a						

Sector Trailer 1
Data
Data
Data
Sector Trailer 0
Data
Data
Manufacturer Block

- Each block is 16 bytes.
- Sector 0 has 2 data blocks, others have 3
- Used for general data, as long as it can be represented as a byte

Value Blocks

10.10.2014

a.daftery@arduino.cc

Byte Number Description

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
value				va	ue			val	ue		adr	adr	adr	adr	

- Useful for electronic purse applications
- Valid operations :
 - -Read
 - -Write
 - -Increment
 - -Decrement
 - -Transfer
- Data is written multiple times for integrity
- Address bytes are available for backup systems

Sector Trailer

10.10.2014

- Last block in each sector
- Contains authentication keys
- Contains access parameters and data type of the blocks

Access Conditions

10.10.2014

a.daftery@arduino.cc

Access conditions

- Access control available for a whole block
- Byte 9 available for user data
- Bits with Suffix 3 control access to keys / access control
- Careful! Possible to block yourself out

NDEF – NFC Data Exchange Format

10.10.2014

- Standardised format for exchanging data between NFC devices
- NDEF records store data, NDEF messages transport data
- NDEF defines a mapping model to use the sector and block based memory of MiFare Classic 1K cards as continuous data records

NDEF: Some supported formats

10.10.2014

```
No prepending is done ... the entire URI is contained in the URI Field
0x00
0x01
         http://www.
0x02
         https://www.
0x03
         http://
0x04
         https://
0x05
         tel:
         mailto:
0x06
         ftp://anonymous:anonymous@
0x07
0x08
         ftp://ftp.
         ftps://
0x09
0x0A
         sftp://
0x0B
         smb://
         nfs://
0x0C
0x0D
         ftp://
         dav://
0x0E
0x0F
         news:
         telnet://
0x11
         imap:
0x12
         rtsp://
0x13
         urn:
0x14
         pop:
0x15
0x16
         sips:
0x17
         tftp:
         btspp://
0x18
         btl2cap://
0x19
0x1A
         btgoep://
         tcpobex://
0x1B
         irdaobex://
0x1C
```


P2P

10.10.2014

- NFC also supports Peer to Peer communication
- Used for exchanging resources quickly in proximity
- Uses NDEF messages as the carrier, and NPP / SNEP as the protocol

Applications

10.10.2014

- -Ticketing
- E-purse
- Access control
- Process automation
- Data transfer / messaging

Near Field Communications

10.10.2014

a.daftery@arduino.cc

Thank You!

