Installer JetPack 4.2.2 sur carte SD d'au moins 32 Go UHS-1 https://developer.nvidia.com/jetpack-422-archive

Carte wifi rtl8212au fonctionne sur la carte avec l'installation d'un driver https://devtalk.nvidia.com/default/topic/1051503/jetson-nano/make-usb-wifi-dongle-rtl8812 au-works-on-nano/

Swap augmenté à 4 Go /etc/systemd/nvzramconfig.sh changer la taille des emplacements swap

Attention à l'heure du système, il n'y a pas de RTC ni de pile donc il faut réinitialiser l'heure au lancement

Commandes nvidia et utilitaires tegrastats : températures et utilisation GPU https://github.com/jetsonhacks/jetsonUtilities https://github.com/JetsonHacksNano/gpuGraph

L4T 32.2.1 JetPack 4.2.2 Ubuntu 18.04.3 LTS Kernel : 4.9.140-tegra

CUDA: 10.0.326

Pas d'Ubuntu 16.04 sur la Nano

Idd executable_file : trouve les dépendances à exécuter Installer directement les librairies manquantes

Installation du ZED SDK sur /usr/local/zed Fonctionne parfaitement, sans ralentissement Visualisation sur tools

Explorer : visualisation des caméras

Calibration : outil de calibration

Depth Viewer: visualisation de profondeur

ZEDfu : outil de cartographie de l'environnement avec trajectoire

Installation ROS Melodic http://wiki.ros.org/melodic/Installation/Ubuntu

Créer un catkin workspace dans home http://wiki.ros.org/catkin/Tutorials/create a workspace Installation wrapper ZED:

https://github.com/stereolabs/zed-ros-wrapper https://www.stereolabs.com/docs/ros/

Installation rtabmap et rtabmap_ros en source https://github.com/introlab/rtabmap ros

Il faut installer OpenCV avec les modules SIFT et SURF en source OpenCV 3.4.9 OpenCV contrib 3.4.9

https://docs.opencv.org/3.4.9/d7/d9f/tutorial_linux_install.html

Commande : cmake -DCMAKE_BUILD_TYPE=Release

-DCMAKE_INSTALL_PREFIX=/usr/local

-DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules ...

Installation g2o: ros-melodic-libg2o (installation par les sources trop lourde)

Installation GTSAM: https://github.com/borglab/gtsam

En installant rtabmap en binaries, cela fonctionne mais cela n'utilise pas CUDA, seulement le CPU, ce qui fait que les performances sont très limitées

Installation sur sources : pas assez de RAM ni de swap, installer en limitant le nombre de processus avec make -j2

Problème dans l'installation, librairie boost non incluse, deux versions sont installées à deux endroits différents sur le système

Ne résout rien, désinstaller libboost en faisant sudo rm /usr/local/lib/libboost*
sudo rm -rf /usr/local/include/boost
Installer boost 1.65.1 en suivant
linuxfromscratch.org/blfs/view/svn/general/boost.html
Installation très rapide des librairies dans /usr/lib
Modifier GTSAM pour intégrer libboost timer

https://github.com/introlab/rtabmap_ros/issues/291

Modifier /home/jetson/rtabmap/guilib/src/opencv/stereoRectifyFisheye.h commenter la fonction stereoRectifyFisheye à la fin du fichier Modifier /home/jetson/rtabmap/guilib/src/CalibrationDialog.cpp commenter ligne 1010 appel de stereoRectifyFisheye

Tutorial ZED : http://wiki.ros.org/rtabmap_ros/Tutorials/HandHeldMapping
Utiliser les launch de l'archive Altran sur armada/SLAM/rtabmap_ros/launch/demo Réunion Altran pour spécifier l'utilisation de la Jetson

Avantages et inconvénients

Avantages	Inconvénients
SDK de la ZED inclus • Driver intégration plus simple • Utilisation de l'odométrie de la ZED	Possible incompatibilité entre les programmes développés sur Odroïd
 Plus d'Arduino ni d'IMU IMU plus fiable 	Architecture propriétaire Linux avec enrobage Nvidia
Gros gain de puissance	18.04 vs 16.04 (seulement sur Nano)
Réduction du temps de développement	Demande plus de puissance (10 à 20W)
Communauté grandissante	