MLS	Dataset		PLS(AICc)	PLS(BIC)	PLS(HQIC) I	PLS(GMDL)
	abalone	46.85(3)	46.85(3)	46.85(3)	46.85(3)	46.85(3)
	airfoil_self_noise	51.16(2)	51.16(2)	51.16 (2)	51.16(2)	62.68(5)
	auto_mpg	19.12(3)	19.12(3)	19.12(3)	19.12(3)	19.12(3)
	automobile	18.23(4)	18.23(4)	18.17(1)	18.23(4)	18.17(1)
	concrete_data	39.50(3)	39.50(3)	39.50(3)	39.50(3)	39.50(3)
	crime	35.61(3)	35.61(3)	35.61(3)	35.61(3)	35.61(3)
	fertility	106.17(3)	106.17(3)	106.17(3)	106.17(3)	106.17(3)
Ridge	flow	68.85(4)	68.85(4)	64.45(1)	68.85(4)	64.45(1)
	forest	101.42(3)	101.42(3)	101.42(3)	101.42(3)	101.42(3)
	qsar	43.07(3)	43.07(3)	43.07(3)	43.07(3)	43.07(3)
	servo	60.05(1)	60.05(1)	61.66(4)	61.66(4)	61.66(4)
	slump	86.52(2)	90.65(5)	86.52(2)	86.52(2)	86.52(2)
	traffic	43.91(2)	43.97(5)	43.91(2)	43.91(2)	43.91(2)
	wine_red	65.93(3)	65.93(3)	65.93(3)	65.93(3)	65.93(3)
	wine_white	74.76(3)	74.76(3)	74.76(3)	74.76(3)	74.76(3)
Avg. Ran	k	(2.93)	(3.27)	(2.77)	(3.10)	(2.93)
	abalone	43.61(2)	43.61(2)	47.18(4)	43.61(2)	47.18(4)
	airfoil_self_noise	89.32(2)	101.76(5)	89.32(2)	89.32(2)	89.32(2)
SVR	auto_mpg	25.65(2)	25.65(2)	25.74(4)	25.65(2)	26.90(5)
	automobile	19.99(3)	19.99(3)	19.99(3)	19.99(3)	19.99(3)
	concrete_data	42.45(3)	42.45(3)	42.45(3)	42.45(3)	42.45(3)
	crime	35.02(2)	35.02(2)	35.02(2)	35.02(2)	38.73(5)
	fertility	121.15(3)	121.15(3)		121.15(3)	121.15(3)
	flow	68.17(3)	68.17(3)	68.17(3)	68.17(3)	68.17(3)
	forest	100.88(3)	100.88(3)	100.88(3)	100.88(3)	100.88(3)
	qsar	38.01(3)	38.01(3)	38.01(3)	38.01(3)	38.01(3)
	servo	18.50(3)	16.14(1)	18.91(4)	18.39(2)	18.91(4)
	slump	83.61(3)	83.61(3)	83.61(3)	83.61(3)	80.94(1)
	traffic	44.65(3)	47.94(4)	40.92(1)	47.94(4)	40.92(1)
	wine_red	58.35(3)	58.35(3)	58.35(3)	58.35(3)	58.35(3)
	wine_white	58.30(3)	58.30(3)	58.30(3)	58.30(3)	58.30(3)
Avg. Ran	k	(2.83)	(2.97)	(3.13)	(2.87)	(3.20)
	abalone	45.88(2)	45.88(2)	47.92(4)	45.88(2)	51.70(5)
	airfoil_self_noise	16.59(2)	16.59(2)	16.87(4)	16.59(2)	23.67(5)
RFR	auto_mpg	13.88(2)	13.88(2)	14.16(4)	13.88(2)	15.01(5)
	automobile	23.70(2)	25.45(5)	23.70(2)	24.47(4)	16.72(1)
	concrete_data	11.99(3)	11.99(3)	11.99(3)	11.99(3)	11.99(3)
	crime	37.16(2)	36.05(1)	38.55(4)	38.12(3)	38.55(4)
	fertility	129.79(3)	139.92(5)	128.24(2)	129.79(3)	111.11(1)
	flow	64.70(4)	73.19(5)	61.74(2)	64.44(3)	60.71(1)
	forest	107.25(3)	107.25(3)	107.25(3)	107.25(3)	107.25(3)
	qsar	40.51(2)	38.95(1)	42.21(4)	40.51(2)	42.21(4)
	servo	23.47(2)	28.00(5)	23.47(2)	23.47(2)	24.07(4)
	slump	91.45(5)	88.26(3)	74.92(2)	88.74(4)	69.76(1)
	traffic	49.29(2)	50.34(4)	49.29(2)	50.54(5)	48.33(1)
	wine_red	59.65(2)	57.64(1)	61.65(4)	61.65(4)	61.65(4)
						68.41(4)
	wine_white	62.48(2)	62.48(2)	68.41(4)	62.48(2)	
Avg. Ran		(2.67)	(2.93)	(3.23)	(3.00)	(3.17)

Table 8: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when PLS, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the RS sampling strategy.