Bayesian Inference in e-sport matches

Bayesian Computation Project
Etienne ROUANET-LABE
2018

The Dataset

- ► All matches since 2014
- ► For each match is given:
 - > Tournament
 - Regional
 - International
 - > 2 opponent teams
 - > Winner
 - Duration of the match
 - Year/Split of the match

Summary

- 1. Prediction of the winner of a match
 - A. Logit Model
 - a. Posterior
 - b. Sampling Methods / Predictions
 - c. Inflence of Time scale and Training Set
 - B. Logit Model for International events
 - a. Model
 - b. Predictions

- 2. Prediction of the duration of a match
 - A. Basic models
 - a. Gaussian
 - b. Gamma
 - c. Skewed Gaussian
 - B. Injection of Logit Model for duration prediction
 - a. Model
 - b. Predictions

Prediction of the winner of a match

A Bayesian Linear Model

$$\theta = \begin{pmatrix} f_1 \\ f_2 \\ \dots \\ f_m \\ \Delta \end{pmatrix}$$

$$p_{ij} = logit^{-1}(f_i - f_j + \Delta) = logit^{-1}(\theta^T x_k)$$

- We have linear dependency:
 - $\rightarrow y_k \sim B(logit^{-1}(\theta^T x_k))$
- ▶ Then we have :

$$p(y_k | \theta, x_k = X_{i,j}) = \left(\frac{1}{1 + e^{-(f_i - f_j + \Delta)}}\right)^{y_k} \cdot \left(1 - \frac{1}{1 + e^{-(f_i - f_j + \Delta)}}\right)^{1 - y_k}$$

Gaussian Prior

- $\triangleright \theta_i \sim N(\mu_i, \sigma_i^2)$
 - $>\mu_{1\leq i\leq m}=0$; no intuition
 - $\mu_{m+1}=0$; game well-balanced
 - $ightharpoonup \sigma_{1 \le i \le m} = 4$; flexible model
 - $ightharpoonup \sigma_{m+1} = 1$; stronger intuition for the bias

Posterior

- $\blacktriangleright \theta_{bayes} = E(\theta|D) = \int_{\theta} f(\theta|D)d\theta$
- > Shape of the posterior:

Logit Model for Prediction of the winner - Construction of the Posterior

Predictor

▶ Given $x_k = X_{i,j}$ we estimate y_k from θ^* :

« Accuracy » displayed by my algorithms for n matches:

$$A_{\%} = \frac{\#\{k \in [1,n] | \hat{y}_k = y_k\}}{n}.100 \; ; \quad n = len(Validation Set)$$

Laplace Approximation

- ightharpoonup Find $heta^* = argmax_{ heta}f(heta|D)$ by gradient descent
 - \rightarrow (also works with $\log(f(\theta|D))$
- Approximate Covariance Matrix by inverse of logcurvature:

▶ Then $(\theta|D) \sim N(\theta^*, Cov^*)$

Backtracking Line-Search Gradient Descent

- Optimize choice of step by making sure we go down enough:
 - $lackbox{0.5cm}{$\mid$} \theta_n$ initial point; λ_0 initial step-size; E function to optimize; (α, β)
 - At each step:
 - ▶ Initialize $\lambda = \lambda_0$
 - ▶ Candidate is $\theta_c = \theta_n \lambda \nabla E(\theta_n)$
 - ► Accepted if $E(\theta_c) \le E(\theta_n) \lambda \alpha \|\nabla E(\theta_n)\|_2^2$; $\theta_{n+1} = \theta_c$
 - ▶ If rejected, λ = βλ

Laplace Approximation

Gaussian and L.A.

LA on symmetric dimension

LA on assymetric dimension

Laplace Predictions

Predictions of winners by split in EULCS (2015-2017)
Training Set 1/2

Importance Sampling

- ► Goal: compute expectation of a random variable given its density
- ▶ Based on proposal distribution $h(\theta)$, like RS Sampling
- Principle:
 - $\rightarrow h(\theta)$ proposal we can sample from ; $f(\theta|D)$ our target density
 - \triangleright Sample θ_i from h
 - ightharpoonup Compute weight $p_i = \frac{f(\theta|D)}{h(\theta)}$
 - Estimator of Expectation:
 - $E(\theta \sim f(\theta|D)) \approx \frac{\sum_i p_i \theta_i}{\sum_i p_i}$

IS Predictions

Predictions of winners by split in EULCS (2015-2017)

Training Set $\frac{1}{2}$ N = 15000

Metropolis-Hastings

- ▶ Goal : Compute expectation by sampling from a density $f(\theta)$
- Build Markov Chain with respect to density and a proposal
 - $\triangleright \theta_0$ initiation; λ step-size
 - \triangleright At each step n:
 - Compute $\theta_c = \theta_n + \lambda \eta_n$; $\eta_n \sim N(0,1)$ for example
 - Accept θ_c with probability $p_c = min\left\{\frac{f(\theta_c)}{f(\theta_n)}, 1\right\}$
 - If accepted $\theta_{n+1} = \theta_c$
 - Else $\theta_{n+1} = \theta_n$
 - \blacktriangleright We have sampled $\{\theta_n\}_{n_0 \le n \le N}$ from f
 - n_0 far enough, for independence

MH Predictions

5000 epochs; 0,1 step-size

Predictions of winners by split in EULCS (2015-2017)
Training Set 1/2

Metropolis-adjusted Langevin

- Same idea than MH
- Difference of candidate and acceptance probability

$$p_c = min\left\{\frac{f(\theta_c)\pi(\theta_n|\theta_c)}{f(\theta_n)\pi(\theta_c|\theta_n)}, 1\right\} ;$$

with
$$\pi(\theta_1|\theta_2) = \alpha e^{-\frac{1}{\lambda^2} \left\| \theta_1 - \theta_2 - \frac{\lambda^2}{2} \nabla \left[\log(f(\theta_2)) \right] \right\|_2^2}$$

Langevin MH Predictions

Predictions of winners by split in EULCS (2015-2017)
Training Set 1/2

Interpretation of results

- \blacktriangleright Estimated θ_{bayes} , EULCS 2015 :
 - $\Delta_{bayes} = 0.41554176$
- Interpretation: « force » for each team
- ▶ The game is not well balanced : $p(y_{ij} = 1 | f_i = f_j) \approx 0.6$

Comparison of algorithms

- Our posterior is :
 - Monomodal
 - Close to 0
- MH Methods are quite slow
- Laplace is quicker and more reliable
- ▶ IS is the fastest

Influence of Training Set: Region EULCS

Periodic Training Set $\{\#TS = n/i\}_{2 \le i \le 11}$

Logit Model for Prediction of the winner - MH Sampling Set 500 epochs

Accuracy

Random Training Set $\{\#TS = n/i\}_{2 \le i \le 13}$

MH Sampling
500 epochs

Influence of Time Scale

Different time scale predictions for 4 regions

(1 split; 1,2,3,4,5 years) Training Set 1/10IS Sampling; N = 15000

Predictions for international tournaments

▶ Is our model relevant for international tournaments?

Predictions by year in international tournaments (2015-2017)

Parametric Model for International Matches

$$\theta = \begin{pmatrix} f_1 \\ f_2 \\ \cdots \\ f_{m_1} \\ F_1 \\ \cdots \\ F_{m_2} \\ \Delta \end{pmatrix}$$

▶ Parametric : $y_k \sim B(logit^{-1}(\theta^T x_k))$

$$p_{i_1j_1i_2j_2} = logit^{-1}(f_{i_1} - f_{i_2} + F_{j_1} - F_{j_2} + \Delta)$$

▶ Regions quite heterogeneous ; model should fit

Predictions from new model

Year

Epochs

Predictions per year in international tournaments (2015-2017)

> Training Set 1/7 Langevin MH Sampling; 500 Epochs

Accuracy per year // #Epochs (10,20,50,100,500)(2015-2017)Training Set 1/7 Langevin MH Sampling

Prediction of the duration of a match

Distribution of durations

Duration of matches
All years, all regions

Parametric model

Expectation :

- $\triangleright \{\alpha_i\}$ parameter for each team
- $\triangleright \mu_0$ global expectation
- Parametric model :
 - $\succ t_{ij} \sim L(\mu_{ij}, A)$

Predictor

➤ Once fitted, we estimate:

$$\hat{t}_{ij} = \alpha_{i_{bayes}} + \alpha_{j_{bayes}} + \mu_{0_{bayes}}$$

- **Error**:
 - $MSE = 1/n \sum_{1}^{n} (t_{ij} \hat{t}_{ij})^{2}$
 - Compared to variance

Gaussian Model

 $t_{ij} \sim N(\alpha_i + \alpha_j + \mu_0, \sigma)$; σ identical for each team

$$\theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \\ \mu_0 \\ \sigma \end{pmatrix}$$

Gaussian Prior for θ

Fitted using Langevin MH Sampling or IS

Gaussian predictions

distribution

EULCS, 2015

Distribution of durations Langevin MH Sampled

•
$$MSE = 45.12$$

•
$$Var = 43.34$$

Gamma Model

 $t_{ij} \sim Gamma\left(k, \frac{\alpha_i + \alpha_j + \mu_0}{k}\right)$

$$\theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \\ \mu_0 \\ k \end{pmatrix}$$

$$\mu_{ij} = k \cdot \frac{\alpha_i + \alpha_j + \mu_0}{k} = \alpha_i + \alpha_j + \mu_0$$

Fitted by Langevin MH Sampling

Gamma predictions

EULCS, 2015

Error on training set: $MSE_{1,2}=53.43$, 43.34 $Var_{1,2}=53.91$, 43.37 Error on validation set: $MSE_{1,2}=57.21$, 68.16 $Var_{1,2}=57.23$, 68.77

Skewed Gaussian Model

- $> t_{ij} \sim SkewedGaussian(\alpha_i + \alpha_j + \mu_0, \omega, \varepsilon)$

$$\theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \\ \mu_0 \\ \omega \\ \varepsilon \end{pmatrix}$$

- $ar{t}_{ij} = lpha_i + lpha_j + \mu_0 + \omega rac{arepsilon}{\sqrt{1+arepsilon^2}} \sqrt{rac{2}{\pi}}$, Expectation
- Fitted by Langevin MH Sampling, MH Sampling

Skewed Gaussian Predictions

distribution

time(min)

EULCS, 2015

Distribution of durations MH Sampled

Error on training set : $MSE_{1,2} = 67.81$, 68.11 $Var_{1,2} = 71.21$, 72.70 Error on Validation Set : $MSE_{1,2} = 47.57$, 72.28 $Var_{1,2} = 48.32$, 72.84

Injection of Logit Results in Skewed Gaussian

- ▶ Intuition : Difference of « force » has an influence
- Model:

ightharpoonup We expect $\kappa < 0$

Skewed Gaussian with forces

$$\mu_{ij} = \alpha_i + \alpha_j + \mu_0 + \kappa |f_i^* - f_j^* + \Delta^*|$$

- $ightharpoonup t_{ij} \sim SkewedGaussian(\mu_{ij}, \omega, \varepsilon)$
- $ightharpoonup \alpha_i + \alpha_j + \mu_0$ is max likelihood and **not expectation**

$$\theta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \\ \mu_0 \\ \omega \\ \varepsilon \\ \kappa \end{pmatrix}$$

Expectation:
$$\hat{t}_{ij} = \alpha_{i_{bayes}} + \alpha_{j_{bayes}} + \mu_{0_{bayes}} + \kappa_{bayes} |f_i^* - f_j^* + \Delta^*| + \omega_{bayes} \frac{\varepsilon_{bayes}}{\sqrt{1 + \varepsilon_{bayes}^2}} \sqrt{\frac{2}{\pi}}$$

Fitted by Langevin MH Sampling

Skewed Gaussian with forces Predictions

distribution

EULCS, 2015

```
Error on training set : MSE_{1,2} = 58.90 , 61.78 Var_{1,2} = 63.85 , 66.96 Error on Validation Set : MSE_{1,2} = 59.07 , 59.16 Var_{1,2} = 63.86 , 64.70
```

Influence of Force Parameters

 $|\Delta f|$

LCK, 2014-2018

EULCS, 2014-2018

 $|\Delta f|$

All regions, 2014-2018

Questions?