Teorija programskih jezikov: 3. izpit

9. september 2022

1. naloga (15 točk)

V λ -računu definirajmo:

$$M = (\lambda f.ff)(\lambda m.m + 6 * 7)$$

- a) Zapišite vse korake v evalvaciji izraza M v neučakani semantiki malih korakov.
- **b**) Dokažite, da izraz *M* nima veljavnega tipa.

2. naloga (25 točk)

V λ -račun dodamo operaciji:

$$M ::= \cdots \mid M_1 \text{ or } M_2 \mid M_1 \mid \mid M_2 \mid$$

Obe operaciji naj bi izračunali logično disjunkcijo Boolovih izrazov M_1 in M_2 , razlika je le v tem, da or evaluira M_2 samo po potrebi, če iz M_1 ni razviden rezultat, medtem ko || vedno evaluira oba M_1 in M_2 .

- a) Zapišite pravila za operacijsko semantiko in določanje tipov za or in ||.
- **b)** Podajte primer izrazov M_1 in M_2 tipa bool, iz katerih je opazna razlika med M_1 or M_2 in $M_1 || M_2$.
- c) Dokažite, da za razširjeni jezik še vedno velja izrek o varnosti.

3. naloga (20 točk)

Dokažite, da v λ -računu s preprostimi tipi za vsak sklep $\Gamma, \Gamma' \vdash M : A$, vsak tip B in vsako spremenljivko x, ki se ne pojavlja v M, velja tudi sklep $\Gamma, x : B, \Gamma' \vdash M : A$.

4. naloga (20 točk)

Naj bo $\mathcal{D}_f(X)$ množica vseh tistih verjetnostnih porazdelitev na množici X, ki imajo končen nosilec.

- a) Podajte ustrezni funkciji η in \gg , za kateri bo $(\mathscr{D}_f, \eta, \gg)$ monada za interpretacijo učinka naključja. Dokažite, da monada zadošča zahtevanim zakonom.
- **b**) Pokažite, kako z monado interpretirate razširitev drobnozrnatega λ -računa z izračunom $M_1 \oplus_p M_2$, ki z verjetnostjo p izvede izračun M_1 , z verjetnostjo 1-p pa izračun M_2 .