

Filtrace obrazu

© 2010-2019 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

Histogram obrázku

Tabulka četností jednotlivých jasových (barevných) hodnot

spojitý případ – hustota pravděpodobnosti

Přímé použití – fotografie

Jasové poměry obrázku

Histogram → první odhad expozice obrazu

Přeexponované nebo podexponované snímky

Nedostatečný nebo příliš velký kontrast

"Dobrý histogram"

- obraz má odstíny ve všech částech škály
- ~ detaily čitelné ve stínech i jasných partiích

Nedal by se špatný histogram "opravit"?

Jasová transformace

Převodní funkce ("transfer function") mezi jasy na vstupu a výstupu

 $- t: R \rightarrow R \text{ (obyčejně } [0, 1] \rightarrow [0, 1])$

Gamma-korekce

Zvětšování kontrastu

Ekvalizace histogramu

Umělá jasová transformace

snaží se o vyrovnaný histogram

Manipuluje s celými jasovými "sloupečky"

případně rozděluje četnější odstíny stochasticky

Lokální ekvalizace histogramu

- analýzu dělá jen na (větším) okolí daného pixelu
- může zlepšit čitelnost na celé ploše obrázku
- nezachovává jednobarevné plochy!

Příklad globální ekvalizace

Kumulovaný histogram (jasová transformace)

Jasová transformace

Výsledek po ekvalizaci

Kumulovaný histogram

Barevné operace

- 1. převod $RGB \rightarrow HSV$
- 2a. manipulace se sytostí S
- 2b. manipulace s odstínem H
 - změna barvy objektu
 - selektivní přebarvování ...
- 3. převod zpět $H'S'V' \rightarrow R'G'B'$

HSV operace

HSV operace

Příklady barevných operací

(algoritmus: Miroslav Hrivík)

Příklady barevných operací

(foto a algoritmus: David Marek)

Matematická definice obrazu

Konvoluce

Spojitá varianta "váženého klouzavého průměru"

váhová funkce (konvoluční jádro) g

Úzká souvislost s Fourierovou transformací

- spektrální prostor
- filtry typu "dolní propust" apod.

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t) \cdot g(x - t) dt$$

(1D varianta)

Diskrétní konvoluce

"Vážený klouzavý průměr" na posloupnosti (tabulce)

váhová posloupnost (tabulka) g

Souvislost s diskrétní Fourierovou transformací

$$(f*g)[n] = \sum_{m=-\infty}^{\infty} f[m] \cdot g[n-m]$$

(1D varianta)

Účinky konvoluce

Dolní propust (jen kladné hodnoty **g**)

- rozmazání obrazu
- potlačení šumu

Horní propust (kladné i záporné hodnoty, součet 0)

- detekce hran v obraze
- po modifikaci: ostření obrazu

Složitější spektrální filtry

Další efekty ("emboss" ...)

Rozmazání obrazu

Originál

Gauss

1	2	1
2	4	2
1	2	1

/16

Detekce hran ("high-pass filter")

Originál

Sobel (2 směry)

1	2	1
0	0	0
-1	-2	-1

1	0	-1
2	0	-2
1	0	-1

Ostření obrazu

Laplacián

0	-1	0
-1	4	-1
0	-1	0

Zaostření

0	-1	0
-1	5	-1
0	-1	0

"Emboss" efekt

Emboss

-1	0	0
0	1	0
0	0	0

Originál

Neuniformní rozmazání

Originál

Radiální rozmazání (1D rozmazání)

Nelineární filtry ("rank filtry")

Okénková filtrace (podobně jako u konvoluce)

V okénku se hodnoty pixelů seřadí podle velikosti

medián: potlačení šumu, umělecké efekty ...

– minimum: "eroze"

– maximum: "dilatace"

Různé tvary okna

- čtverec
- kruh
- křížek (zachová ostré rohy)

Medián na potlačení šumu

Dilatace a eroze

dilatace eroze

Potlačování šumu

Pokročilejší metody se snaží o zachování hran obrazu

nelze použít obyčejnou redukci vysokých frekvencí

Varianty mediánového filtru

Neizotropické filtrování

 rozmazávání se děje ve směru "vrstevnic" obrazu (kolmo na gradient obrazové funkce)

Filtrace rotující maskou

- několik uvažovaných okolí daného pixelu
- průměruje ("mediánuje") se v okénku s minimálním rozptylem

Umělecké efekty

Napodobení malířských/kreslířských technik

Simulované tahy štětcem/perem/pastelem

Efekty typu "mozaika", vitráž, ...

NPR (nefotorealistické) efekty

- zvýrazňování hran
- vyplňování vnitřních oblastí objektů
- narůstání oblastí (aplikace segmentačních metod)

– ...

Příklad – umělecký efekt

kresba

Příklad – NPR filtry

Příklad – NPR filtry

Příklad – mozaika

Literatura

Pratt W. K.: *Digital Image Processing: PIKS Inside*, 3rd Edition, Wiley-Interscience, 2001

Gonzales R. C, Woods R. E.: *Digital Image Processing*, 3rd Edition, Prentice Hall, 2007