$$2R_1 - 3R_2 \longrightarrow R_2$$

$$2R_1 \rightarrow R_1$$
 $R_2 \leftarrow R_3$
 $R_1 + 3R_4 \rightarrow R_1$

Z4 c.

$$\overrightarrow{V}_{3}$$

$$\overrightarrow{V}_{1}$$

$$\begin{bmatrix} \vec{J}_1 & \vec{J}_2 & \vec{J}_3 \end{bmatrix} \vec{\nabla} = \vec{b}$$

$$x_1 = 2x_2 - 3x_3$$

$$x_{2,1}x_3 \text{ free}$$

$$x_1 = 4 + 2x_2 - 3x_3$$

 x_2, x_3 free

$$\vec{X} = X_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

$$\vec{X} = X_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \qquad \vec{X} = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix} + X_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + X_3 \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$$

20. line through [32] parallel to

$$\vec{\chi} = \begin{bmatrix} \frac{3}{2} \\ \end{bmatrix} + t \begin{bmatrix} -7 \\ 6 \end{bmatrix}$$

	(TFAE)
	Theorem A is mxn matrix. The following are equivalent a) For each b'er Ax=b' has a solution.
	ie, [A 5] is consistent
	ie, [A t] is consistent b) Each to elem is a lin-comb. of columns of A.
	$(A\vec{z})$
	(AZ) c) Span {a,, an } = IR ^m ("columns of A span IR ^m ") d) A has in pivots (A has a pivot in every row).
	d) A has in pivots (A has a pivot in every row).
	not a) There is a tie IRM with [A 16] inconsistant.
	not a) There is a tie IRM with [A 15] inconsistant. not b) There is a tie IRM which is not a (in. comb. of
	the columns of A. not c) Span { ai,, au} = IRM ("cols dout span")
	not c) Span { ai,, au} & FIRM ("cols dout span")
	t subjet but not equal to
	not d) There is a non-prot row. (fewer than un pivots) (ref (A) has an all-zero row.)
	not d) There is a non-prot row. (fewer than un pivots)
	(1107 (R) has an all-zero row.)
	e_{\times} $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
_	T: IR" -> IR" map, function, transformation
	· · · · · · · · · · · · · · · · · · ·
	<u> </u>
	domain codomain
	Matrix transformation: $T(\vec{x}) = A\vec{x}$ for some A
	• •
	ZERN so A has n columns
	AZEIRM, so A has m rows
	A is man. pugger —
	for \$7 + 1Rn, T(\$) is an image T(IR")={T(\$) \$\frac{1}{2} = R"}
_	1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

for \$7 ∈ Rn, T(x) is an image

image	of T		Rm	\Leftrightarrow	A	pivot	in every	المالعا.
U		•						