《拓扑学基础》HW 1 提交时间: 03/12/2019, 周二

1. 设 M 为正多面体,它的每个面有 p 个边,每个顶点是 q 个面的交点. 用 Euler 定理 v-e+f=2, 证明:

(a).
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2} + \frac{1}{e}$$

- (b). 由 (a) 证明正多面体只有 5 种.
- 2. 计算由立方体按下图中箭头粘合边并且对面两两粘合(即上表面和底面粘合,前表面和后表面粘合,左侧面和右侧面粘合)得到的商空间的 Euler 示性数.

图 1:1 立方体按图中箭粘合边,两两粘合对面得到的商空间

《拓扑学基础》HW 2 提交时间: 03/26/2019, 周二

- 1. 设闭曲面 M 分别有以下多边形表示:
 - (1). $abcda^{-1}bc^{-1}d$
 - (2). $abcb^{-1}dc^{-1}a^{-1}d^{-1}$

求 M 分别所表示的闭曲面. (**提示**: 分割多边形,把多边形表示为标准表示,例如环面 $2T^2$,标准表示为 $aba^{-1}b^{-1}cdc^{-1}d^{-1}$; $3RP^2$ 标准表示为 $a^2b^2c^2$. etc.)

2. 如果在环面上挖去一个圆盘的内部,然后把洞口的对径点粘合,所得曲面是什么类型的闭曲面? (提示:给出其多边形表示,再由是否可定向性以及 Euler 示性数,就可确定该曲面的类型.)

《拓扑学基础》HW 3 提交时间: 04/02/2019, 周二

1. 设T是X上的拓扑,A是X的一个子集,规定:

$$\mathcal{T}' = \{ A \cup U \mid | U \in \mathcal{T} \} \cup \{ \emptyset \}$$

证明: \mathcal{T}' 也是 X 上的拓扑.

- 2. 设集合 $X = \{a, b, c\}$, 请给出 X 上的所有可能的拓扑.
- 3. 设 \mathbb{Z}^+ 是全体正整数的集合,令 \mathfrak{T} 表示满足如下条件的集合 U 构成的集簇:

"若 $n \in U$, 则 n 的每个因数都在 U 中"

证明:

- (a). \mathfrak{T} 是 \mathbb{Z}^+ 上的一个拓扑.
- (b). $A = \{n \in \mathbb{Z}^+ \mid n > 1\}$ 是闭集吗? 全体正的奇数的集合是开集合吗? 请给出证明或说明.
- 4. 分别定义 $\rho_1, \rho_2: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ 为:

$$\rho_1(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

$$\rho_2(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

证明:

- (a). ρ_1, ρ_2 都是集合 \mathbb{R}^2 上的度量.
- (b). 画出在 ρ_1, ρ_2 度量下单位圆周的图形.

《拓扑学基础》HW 4 提交时间: 04/9/2019, 周二

1. 设 \mathbb{Z}^+ 是全体正整数的集合,令 \mathcal{T} 表示满足如下条件的集合 U 构成的集族 \mathcal{T} "若 $n\in U$,则 n 的每个因数都在 U 中"

是 Z+ 上的一个拓扑. (见 HW#3)

- (a). 设集合 $B = \{3, 8\}$, 求: d(B),
- (b). 求 {1} 的聚点.
- 2. 设 \mathbb{N} 为可数补实数空间 (\mathbb{R} , \mathcal{T}_c) 中的全体非负整数集,求 $d(\mathbb{N})$.
- 3. 设 X 是一个拓扑空间,则对于任意 $A,B \subset X$ 有:
 - (a). $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
 - (b). $A^{\circ \circ} = A^{\circ}$
- 4. 证明:每一个离散拓扑空间都是可度量化的。(提示:注意到离散拓扑空间的任意子集都是 开集,要证明其可度量化,只需说明存在一个度量,使得空间的任意一个子集都可以表示成一些由 该度量定义的开球的并.)

《拓扑学基础》HW 5 提交时间: 04/16/2019, 周二

- 1. 设 A, B 都是拓扑空间 X 的子集, 并且 A 是开集. 证明: $A \cap \overline{B} \subset \overline{A \cap B}$
- 2. 若 A, B 都是拓扑空间 X 的稠密子集, 并且 A 是开集, 则 $A \cap B$ 也是 X 的稠密子集.
- 3* 设 X 是任一拓扑空间,则 X 的每个子集的导集是闭集 $\iff X$ 的每个单点集的导集是闭集. (如你有困难,可选做下面一题)
- 3. 度量空间的每个子集的导集是闭集.
- 4. 设 (X, \mathcal{I}) 是一个拓扑空间, ∞ 是任何一个不属于 X 的元素. 令

$$X^* = X \cup \{\infty\}$$

$$\mathscr{T}^* = \{A \cup \{\infty\} \quad | A \in \mathscr{T}\} \cup \{\emptyset\}$$

证明:

- (a). (X^*, \mathcal{I}^*) 是一个拓扑空间.
- (b). (X^*, \mathscr{T}^*) 是可分的拓扑空间. (提示:证明单点集 $\{\infty\}$ 是拓扑空间 (X^*, \mathscr{T}^*) 的稠密子集)

《拓扑学基础》HW 6 提交时间: 04/30/2019, 周二

- 1. 证明:设 \mathcal{B} 是拓扑空间 X 的一个基,则 A 是拓扑空间 X 的稠密子集 \Longleftrightarrow A 与 \mathcal{B} 中任意个元 B,都有 $A \cap B \neq \emptyset$.
- 2. 证明:考虑实数集 ℝ 上的子集族:

$$\mathcal{B} = \{ [a, b) | a, b \in \mathbb{R}, a < b \}$$

证明:

- (a). \mathcal{B} 为 \mathbb{R} 的某一个拓扑的基.(该拓扑称为实数**下限拓扑**,记为: \mathbb{R}_l)
- (b). B 中每一个元素在下限拓扑 ℝ 中即是开集又是闭集.
- (c). \mathbb{R}_l 有一个子基: $\{(-\infty,b)|b\in\mathbb{R}\}\cup\{[a,\infty)|a\in\mathbb{R}\}$.
- 3. 设 $f: X \longrightarrow Y$ 在 $x \in X$ 处连续,序列 $x_n \longrightarrow x$,则 $f(x_n) \longrightarrow f(x)$.
- 4. 设 $f: X \longrightarrow Y$ 是满的连续映射, 其中 X 是可分的. 证明: Y 也是可分的.
- 5. 规定 $f: \mathbb{R} \setminus [0,1) \longrightarrow \mathbb{R}$ 为:

$$f(x) = \begin{cases} x & x < 0, \\ x - 1 & x \ge 0. \end{cases}$$

证明: f 是连续映射, 但不是同胚映射.

6. 若 $f: \mathbb{R} \longrightarrow \mathbb{R}$ 为连续映射,证明在 f 下保持不动的点的全体构成 \mathbb{R} 的一个闭集.(即集合: $\{x \in \mathbb{R} | f(x) = x\}$ 是闭集.)

《拓扑学基础》HW 7 提交时间: 05/21/2019, 周二

1. 设 X 和 Y 是两个拓扑空间, $f: X \longrightarrow Y$ 是一个商映射. 定义集合:

$$A = \{(x, y) \in X^2 | f(x) = f(y) \}$$

证明: (a) $A \in X$ 中的一个等价关系. (b) Y 同胚与商空间 X/A.

2. 定义映射 $p:[0,1] \longrightarrow S^1$ 如下:

$$p(t) = (\cos(2\pi t), \sin(2\pi t)), \forall t \in [0, 1]$$

其中 S^1 为单位圆周. 证明:

- (a) p 是满的连续闭映射;
- (b) 若定义 [0,1] 上的一个等价关系 ~ 如下: $x \sim y \iff x = y$ 或 $\{x,y\} = \{0,1\}$. 则 商空间 $[0,1]/\sim$ 与 S^1 同胚.
- 3. 设 X 与 Y 都是可分空间,证明 $X \times Y$ 也是可分的.
- 4. 设 $\mathcal{B} = \{[a,b)|a,b \in \mathbb{R}, a < b\}$ 为实数集上 \mathbb{R} 的一个拓扑称为**实数下限拓扑**,记为 \mathbb{R}_l ,证明:
 - (a) \mathbb{R}_l 满足 C_1 公理.
 - (b) \mathbb{R}_l 是可分空间。
 - (b) \mathbb{R}_l 不满足 C_2 公理.

《拓扑学基础》HW 8 提交时间: 5/28/2019, 周二

- 1. 若 X 是 T_0 和正则空间,则 X 是 T_2 空间.
- 2. 设 X 满足 T_1 公理,证明: X 中任意子集的导集是闭集.
- 3. 设 X 是 Hausdorff 空间, $f: X \longrightarrow Y$ 连续,则 f 的图像 $G = \{(x, f(x)) | x \in X\}$ 是 $X \times Y$ 的闭子集.
- 4. 设 X 是正则空间,F 为 X 的闭子集, $x \notin F$,证明:存在 F 和 x 的开邻域 U 和 V,使得 $\overline{U} \cap \overline{V} = \emptyset$.
- 5. 证明:设 $f: X \longrightarrow Y$ 是同胚映射,X是正则空间,则Y也是正则空间.
- 6. 设 ℝ 上的通常拓扑为 观. 令

$$\mathscr{T} = \{U \setminus E \mid U \in \mathscr{U}, E \in \mathbb{Q}\}\$$

证明:

- (a). Ø 是实数集 ℝ 上的一个拓扑;
- (b). 拓扑空间 (\mathbb{R}, \mathcal{T}) 是 Hausdorff 空间;
- (c). 拓扑空间 (ℝ, ℱ) 不是正则空间. (提示:参考熊金城《点集拓扑讲义》第四版 173 页,例 6.2.2、再根据我课堂提示)

《拓扑学基础》HW 9 提交时间: 6/4/2019, 周二

- 1. 设 X 是正规空间,A,B 为 X 的闭子集, $A \cap B = \emptyset$,证明:存在 A 和 B 的开邻域 U 和 V,使得 $\overline{U} \cap \overline{V} = \emptyset$.
- 2. 证明:设 $f: X \longrightarrow Y$ 是满的闭连续映射,X是正规空间,则Y也是正规空间.
- 3. 设 X 是正规空间, A 为 X 的闭子集. 证明: 对任何一个连续映射 $f: A \longrightarrow [0,1]^n$, 有一个连续映射 $g: X \longrightarrow [0,1]^n$ 是映射 f 的扩张.
- 4. 证明: 设 $f: X \longrightarrow Y$ 是同胚映射, X 是完全正则空间, 则 Y 也是完全正则空间.
- 5. 设 X 是一个拓扑空间,证明: X 是一个 Tychonoff 空间 \iff 对任何 $x \in X$ 和任何一个不包含点 x 的闭集或单点集 A,存在一个连续映射 $f: A \longrightarrow [0,1]$,使得 f(x) = 0 和对于任何 $a \in A$ 有f(a) = 1.

《拓扑学基础》HW 10 提交时间: 6/18/2019, 周二

- 1. 证明: $(\mathbb{R}, \mathcal{T}_f)$ 的任何子集都紧致, 但 $(\mathbb{R}, \mathcal{T}_c)$ 是非紧致的.
- 2. 证明:有限个紧致子集的并集紧致.
- 3. 证明: 紧致空间的无穷子集必有聚点.
- 4. 证明: 紧致的度量空间是可分的,从而是 A_2 空间(即满足第二可数公理).
- 5. 设 $f: X \longrightarrow Y$ 是闭映射,并且 $\forall y \in Y$, $f^{-1}(y)$ 是 X 的紧致子集. 则对于 Y 的任何一个紧致子集 B, $f^{-1}(B)$ 也紧致.
- 6. 设 X 满足 T_4 公理的连通空间,并且 X 中至少有两个点. 证明: X 是不可数的.