Proyecto

May 26, 2025

1 Presentación

Integrantes:

- Antonio Anselmi, Miguel Maximiliano (20200118).

Resultado: No hay datos faltantes en ningun campo, y hay variables cualitativas y cuantitativas ¿Mientras mayor es la cantidad de comidas principales, menor es el control de consumo calórico?

2 Análisis Exploratorio de Datos

2.1 Descripción general del dataset

Instancias: 2111 personas

Características : 17 atributos + 1 variable objetivo Objetivo : Clasificar el nivel de obesidad de una persona

 ${\tt count}$

SCC

no 2015.0 yes 96.0

La mayoría de los entrevistados no controlan las calorías que consumen

Podemos apreciar que las personas que **si controlan** su consumo de calorías, tienen un mayor rango en la decisión del **Número de comidas principales**. En cambio, los que **no controlan** su consumo de calorías, tienden **en mayoría**, comer **solamente** las 3 comidas principales del día (valor impuesto por la sociedad).

Variable 1 Variable 2 Correlación 7 Height Weight 0.463136

Hay correlación alta entre el Peso y la talla de la persona entrevistada.

La distribución del peso de las personas que **NO tienen antecedentes familiares con obesidad**, tienen un peso con **asimetría positiva**, es decir que tienden a tener menor peso a comparación de los que **SI tienen antecedentes familiares con obesidad**. Sin embargo es raro que el peso de 40kg sea muy frecuente en el grupo sin antecedentes. Veamos:

Podemos observar que hay más caso de personas **con antecedentes familiares de obesidad** en este dataset. Tambien hay mayor variación de edad en este grupo respecto al otro.

El **peso** es una **variable importante** para entrenar nuestro modelo de clasificación. Podemos observar que hay diferencias entre los pesos de los niveles

Estadístico Chi²: 338.578 Grados de libertad: 18

Valor p: 0.0

Hay una relación significativa entre consumo de alcohol y nivel de obesidad (se rechaza HO)

Interesante que los niveles de obesidad más altos no esten necesariamente asociados con el consumo de alcohol en alta frecuencia.

Insufficient_Weight 0.128849 Normal_Weight 0.135955 Obesity_Type_I 0.166272 Obesity_Type_II 0.140692 Obesity_Type_III 0.153482 Overweight_Level_I 0.137376

Overweight_Level_II 0.137376 Name: NObeyesdad, dtype: float64

El target esta completamente balanceado.

3 Modelamiento

NObeyesdad

Probaremos los Algoritmos KNN, Random Forest, Regresión Logística y lo tunearemos cada modelo mediante validación cruzada de 10 capas, usaremos F1-Score para elegir el mejor modelo ya que pondera Precisión y Recall para no subestimar categorías.

Tambien repartiremos los datos en proporción de **70:30** para **Entrenamiento** y **Validación** respectivamente.

KNN:

- Se comparará el entrenamiento con ${\bf 3,5,7}$ vecinos.
- Se comparará el entrenamiento con pesos diferentes.

Random Forest:

- Se comparará el entrenamiento bosques de 100 y 200 arboles de decisión.
- Se variará la máxima profundidad 10 y 20.

Regresión Logística:

- Se varía el inverso C de regularización. - Se prueban los dos tipos de regularización ${f Ridge}\ \&$ Lasso.

RandomForest

Mejores hiperparámetros: {'model__max_depth': 20, 'model__n_estimators': 100} Mejor F1 promedio en validación cruzada: 0.9504 Evaluación en test set:

	precision	recall	f1-score	support	
<pre>Insufficient_Weight</pre>	1.00	0.93	0.96	82	
Normal_Weight	0.71	0.90	0.79	86	
${\tt Obesity_Type_I}$	0.97	0.94	0.96	106	
Obesity_Type_II	1.00	0.99	0.99	89	
Obesity_Type_III	1.00	0.99	0.99	97	
Overweight_Level_I	0.86	0.82	0.84	87	
Overweight_Level_II	0.96	0.87	0.92	87	
accuracy			0.92	634	
macro avg	0.93	0.92	0.92	634	
weighted avg	0.93	0.92	0.92	634	

KNN

Mejores hiperparámetros: {'model__n_neighbors': 3, 'model__weights': 'distance'}
Mejor F1 promedio en validación cruzada: 0.8452
Evaluación en test set:

	precision	recall	f1-score	support
Insufficient_Weight	0.84	0.96	0.90	82
Normal_Weight	0.73	0.41	0.52	86
Obesity_Type_I	0.89	0.95	0.92	106
Obesity_Type_II	0.95	0.97	0.96	89
Obesity_Type_III	0.99	1.00	0.99	97
Overweight_Level_I	0.69	0.76	0.72	87
Overweight_Level_II	0.74	0.79	0.77	87
accuracy			0.84	634
macro avg	0.83	0.83	0.83	634

weighted avg 0.84 0.84 0.83 634

 ${\tt LogisticRegression}$

Mejores hiperparametros: {'model__C': 10.0, 'model__penalty': 'l1'}

Mejor F1 promedio en validación cruzada: 0.7884

Evaluación en test set:

	precision	recall	f1-score	support	
Insufficient_Weight	0.98	1.00	0.99	82	
Normal_Weight	0.71	0.66	0.69	86	
${\tt Obesity_Type_I}$	0.65	0.74	0.69	106	
${\tt Obesity_Type_II}$	0.91	0.96	0.93	89	
${\tt Obesity_Type_III}$	1.00	0.99	0.99	97	
Overweight_Level_I	0.60	0.64	0.62	87	
Overweight_Level_II	0.59	0.46	0.52	87	
accuracy			0.78	634	
macro avg	0.78	0.78	0.78	634	
weighted avg	0.78	0.78	0.78	634	

Mejor modelo: RandomForest con F1 CV = 0.9504

El mejor modelo que conseguimos fue el **Random Forest** de maxima profundidad 20 y 100 arboles con un F1-score promedio de 0.9504, por lo tanto es el mejor clasificando.

Modelo guardado como modelo_obesidad.pkl

[NbConvertApp] Converting notebook Proyecto.ipynb to pdf

[NbConvertApp] Support files will be in Informe_files\

[NbConvertApp] Making directory .\Informe_files

[NbConvertApp] Writing 28029 bytes to notebook.tex

[NbConvertApp] Building PDF

[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.tex', '-quiet']

[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']

 $[{\tt NbConvertApp}] \ {\tt WARNING} \ | \ b \ {\tt had} \ {\tt problems}, \ {\tt most} \ {\tt likely} \ {\tt because} \ {\tt there} \ {\tt were} \ {\tt no}$

citations

[NbConvertApp] PDF successfully created

[NbConvertApp] Writing 391093 bytes to Informe.pdf