

Memory Management: Contiguous

Comprehensive Course on Operating System for GATE - 2024/25

Operating System Memory Management

By: Vishvadeep Gothi

Types of Locks

while (true);

- 1. Spinlock busy waiting
- Livelock 🗸
- Reentrant Locks

3. Deadlock _____ 2 ar your processes blocked because of

Livelæk: 2 an mare processes in busy waiting for each other forever.

binary semapheres

Processes

$$\frac{P_1}{P(S_{\times})}$$

$$\frac{P_2}{P(S_{\times})}$$

$$P(s_X)$$

Reentropt bock:

A thread can enter (acquire) some lock again.

Thread

itim bock Gynt ==3

Memory Management

Module of OS

Functions of Memory Management

Memory deallocation: - Deallocating space from mm for a

Memory protection A

zwass memory which has been allocated to

P 3

4. Free Space management

Goals of Memory Management

- Maximum Utilization of space (min. 5) que wistage)
- Ability to run larger programs with limited space

Space wastage => fragmentation

Internal Sexternal

Memory Management Techniques

Contiguous

memory on consecutive nemery boations.

> 05 P1 P2 P3

Non-contiguous

Entire process is dirided into failitions and each parlitions can be stored on memory anywhere.

Contiguous Memory Management —

Entire process should be stored on consecutive memory locations

variable postitions contiguous m.m. technique Internal Laguental

Fixed Partition Contiguous MMT

05

can be used to accommodate none process.

-> Each partition size can be different_diff

Whenever a new process arrives mem mynd. Provides it a free partition

Partition Allocation Policy

	QS
100KB	
150म्ड	12 <u>1</u>
300kB	
125 FB	
26010	

	5.je = 120 kB	12-2 5:3e = 80KJ
First fit	ISOKB	100KB
Best Fit	125 KB	
wordt Fit	300 K3	
Next fit	ISO KB	300113

Partition Allocation Policy

First fit: Find a partite which can accomodate the new procuss stailing from first partite.

Best Fil:- Find smallest possible partiet which can accommodate the new process.

worst sit! Find largest ponetit

Next fit: Find next partitu from current allocated partitu in sequence.

Duffissedty faitit contiguous men. mg int Eechnique Sufferes hom Internal fregmentat? The space allocated to a known is more than the required space, hence the extre unused space is known as internal fragmentat n.

ex: A process of size 120 kg has been jiven a partition of size 130 kB. => size of internal frequentat"= 10 kB.

Variable Partition Contiguous MMT

No any partit is created before hand.

is created egyal to the size of process. and the process is stered in that partition.

⇒ No any internal fragmentation

External (Enough space is available in memory but not fragmentation contiguous to stere a knows) new process Py 5ize = 170 KB Soin = Compadion hather all allocated spaces into one side of menary so that other side can have all empty spaces together.

p4

Question

Consider the requests from processes in given order 300K, 25K, 125K, and 50K. Let there be two blocks of memory available of size 150K followed by a block size 350K. Which of the following partition allocation schemes can satisfy the above requests? (variable partition continued)

- First fit but not best fit
 - C) Both First fit & Best fit
 - D) neither first fit nor best fit

Firest adfrit:

Best fit!

last knows not slaved

DPP

By: Vishvadeep Gothi

Question 1

Consider a fixed partition MMT where there are 5 partitions of size 100MB, 250MB, 200MB, 500MB and 300MB. All Partitions are initially empty. The following process requests are made in the given order:

Process	Size
P1	150MB
P2	400MB
P3	270MB
P4	180MB
P5	80MB

Provide the following answers for First fit, Best fit and Worst Fit policies?

- 1. Maximum degree of multiprogramming?
- 2. What is the total internal fragmentation size?

Question 2

Consider variable partition MMT where there are 4 partitions of size 250MB, 200MB, 500MB and 400MB. The following process requests are made in the given order:

Process	Size
P1	150MB
P2	400MB
P3	270MB
P4	180MB
P5	80MB
P6	50MB

Provide the processes are stored for First fit, Best fit and Worst Fit policies?

Happy Learning.!

