Wash Trading Detection and Quantification across Decentralized Exchanges (DEXs)

UNIVERSITY OF **OREGON**

Sanidhay Arora ¹

Yingjiu Li 1

¹Center for Cyber Security and Privacy

Introduction

Wash trading is a market manipulation tactic where a trader simultaneously buys and sells an asset to inflate trading volume without market risk or genuine economic intent.

- Wash trading inflates volume without real economic activity.
- DEXs pose new challenges: pseudonymity, no deposit addresses.
- Goal: Detect and quantify wash trading across DEXs using entity clustering and volume matching within small time windows.

Methodology

The key challenges are: (a) Pseudonymity of addresses, (b) Time window selection, and (c) lack of ground truth data.

The methodology comprises three main phases:

- 1. Address Clustering: Identify addresses controlled by the same entity using novel on-chain heuristics [1].
- 2. Trade Graph Construction: Model trades as a graph between entities, tracking volume, timestamps, and asset types.
- 3. Detection and Quantification: Apply volume-matching within small time windows to find trades with no net position change [2].

Data Source: Ethereum blockchain (2021 to 2024) using per-minute ERC-20 token and swap logs.

Expected Results

- Detection of coordinated clusters with repetitive trade patterns.
- Quantification of wash volume in millions (USD).
- Identification of DEX-to-DEX arbitrage-like loops.
- Insights into automation/bot behavior via timing and gas.

Detection and Quantification

The detection framework identifies wash trades by analyzing clustered entities for matched buy/sell behavior within short time windows.

Step 1: Address Clustering: Propose the Consolidation heuristic for address clustering. Build user and exchange entity maps: M_u , M_e .

Step 2: Suspicious Graph: Nodes = entity sets, edges = trades. Find Strongly Connected Components (SCCs) with frequent internal trading.

Step 3: Volume Matching: For each SCC U, compute buy/sell volume in \mathcal{TW} . If $|buy - sell| < \Delta$, label as wash trade.

Blockchain Data

Address Clustering -Consolidation Heuristic

Entity Sets

Volume Matching -Small Time Window

Detection and Quantification

Detection and Quantification Algorithm

Require: Trade set T, Entity map M_u , Volume threshold Δ , Time window TW, Tokens C

Ensure: Set of wash trades \mathcal{W} , Total wash volume V

1: Initialize $\mathcal{W} \leftarrow \emptyset$, $V \leftarrow 0$

2: for all entity cluster $U \in M_u$ do

for all token $c \in \mathcal{C}$ do

Compute $buy \leftarrow \sum_{t \in T[U, \mathcal{TW}, c]}$ incoming volume

Compute $sell \leftarrow \sum_{t \in T[U, \mathcal{TW}, c]}$ outgoing volume

if $|buy - sell| < \Delta$ then

Mark trades in $T[U, \mathcal{TW}, c]$ as wash trade result τ

 $\mathcal{W} \leftarrow \mathcal{W} \cup \{\tau\}$ $V \leftarrow V + buy$

end if

end for 12: end for

13: return \mathcal{W}, V

Address Clustering

Challenge: Wallets on DEXs don't reuse identifiable deposit addresses.

- Consolidation Heuristic: >= N addresses send swapped tokens to one address (A1) in time T.
- Forwarding Ratio: $R_f = A_{out}/A_{in}$, keep $R_{min} \le R_f \le R_{max}$.
- Filter static holders: temporary wallets used in wash loops.

Address Clustering Algorithm

Require: Trade Set Data T, Time window TW, Sender threshold N, Forwarding ratio bounds $[R_{min}, R_{max}]$

Ensure: Set of consolidated address clusters ${\mathcal C}$

- 1: Initialize mapping $R \leftarrow \text{empty map of recipient} \rightarrow \{\text{senders}\}$
- 2: Initialize $\mathcal{C} \leftarrow \emptyset$
- 3: **for all** transfer $(sender, receiver, amount, time) \in T$ **do**
- 4: if sender = receiver then
- continue
- end if
- Add sender to R[receiver] if time within \mathcal{TW} of previous senders
- 8: end for
- 9: for all receivers r with $|R[r]| \geq N_{senders}$ do
- Compute total inflow A_{in} to receiver
- Compute total outflow A_{out} from receiver within TW
- Compute $R_f \leftarrow Amount_{out}/Amount_{in}$
- if $R_{min} \leq R_f \leq R_{max}$ then
- Add $\{r\} \cup R[r]$ to cluster set \mathcal{C}
- end if
- 16: end for
- 17: return \mathcal{C}

Discussion

- Time Windows: How to select low-volatility and small time windows to avoid false positives?
- Thresholds: How to calibrate N, R_f, Δ using historical data?
- Obfuscation: How to handle stealth addresses used to hide wash trade patterns?

References

[1] Friedhelm Victor.

Address clustering heuristics for ethereum.

In Joseph Bonneau and Nadia Heninger, editors, Financial Cryptography and Data Security, pages 617-633, Cham, 2020. Springer International Publishing.

[2] Friedhelm Victor and Andrea Marie Weintraud Detecting and quantifying wash trading on decentralized cryptocurrency exchanges. CoRR, abs/2102.07001, 2021.