

ECE Lyon - ING 2 - Année 2023/2024

Cours de mathématiques

ALGEBRE: Chapitre 5 - Réduction des endomorphismes

5.1 Notion de valeur propre

5.1.1 Valeur propre d'un endomorphisme

Définition. Soient E un \mathbb{K} -espace vectoriel de dimension finie n et f un endomorphisme :

$$f: E \to E$$
$$u \to f(u)$$

On appelle valeur propre de f, un scalaire $\alpha \in \mathbb{K}$ vérifiant la relation suivante :

$$\exists v \in E \setminus \{0\}, \ f(v) = \alpha v.$$

Définition. L'ensemble des valeurs propres de f est le **spectre** de f, il est noté $\operatorname{sp}(f)$.

5.1.2 Valeur propre d'une matrice

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée. On appelle valeur propre de A, un scalaire $\alpha \in \mathbb{K}$ vérifiant la relation suivante :

$$\exists X \in M_{n,1}(\mathbb{K}) \backslash \{0\}, \ AX = \alpha X.$$

Définition. L'ensemble des valeurs propres de A est le **spectre** de A , il est noté $\operatorname{sp}(A)$.

Propriété. Si $A \in M_{n,n}(\mathbb{K})$ est la matrice de f dans la base \mathcal{B} alors f et A ont même spectre.

– Exemple –

1. Soient $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, et le vecteur $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, on observe que :

$$X \neq 0$$
 et $AX = 3X$.

Par conséquent 3 est une valeur propre de A.

2. Soient $B=\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$, et le vecteur $Y=\begin{pmatrix}1\\0\\0\end{pmatrix}$, on observe que

$$Y \neq 0$$
 et $BY = 0Y$.

Par conséquent 0 est une valeur propre de B.

Proposition. Soient $A \in M_{n,n}(\mathbb{K})$ une matrice carrée, et $\alpha \in \mathbb{K}$. On a

$$\alpha$$
 valeur propre de $A \iff \det(A - \alpha I) = 0$.

Exemples

1. Soit
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
, on a:

$$\alpha$$
 valeur propre de $A \iff \det(A - \alpha I) = 0$

$$\iff \begin{vmatrix} 2 - \alpha & 1 \\ 1 & 2 - \alpha \end{vmatrix} = 0$$

$$\iff (\alpha - 1)(\alpha - 3) = 0$$

$$\iff \alpha = 1 \text{ ou } \alpha = 3$$

Les valeurs propres de A sont donc 1 et 3.

Suite Exemples –

2. Si on considère la matrice

$$B = \begin{pmatrix} 8 & 5 & 6 & 0 \\ 0 & -2 & 0 & 0 \\ -10 & -5 & -8 & 0 \\ 2 & 1 & 1 & 2 \end{pmatrix},$$

on a:

 α valeur propre de $B \iff \det(B - \alpha I) =$ $\iff \begin{vmatrix} 8-\alpha & 5 & 6 & 0\\ 0 & -2-\alpha & 0 & 0\\ -10 & -5 & -8-\alpha & 0\\ 2 & 1 & 1 & 2-\alpha \end{vmatrix} = 0$

$$\iff (\alpha - 2)^2(\alpha + 2)^2 = 0$$

 $\iff \alpha = -2 \text{ ou } \alpha = 2$

Les valeurs propres de B sont donc -2 et 2.

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée. On appelle **polynôme caractéristique** de A, et on le note P_A le polynôme défini par : $\forall \alpha \in \mathbb{K}, \ P_A(\alpha) = \det(A - \alpha I).$

$$\forall \alpha \in \mathbb{K}, \ P_A(\alpha) = \det(A - \alpha I).$$

Propriété. Soient $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et P_A son polynôme caractéristique.

$$deg P_A = n$$

Propriété. Soient $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et P_A son polynôme caractéristique. α est valeur propre de $A \Longleftrightarrow \alpha$ est racine de P_A .

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et α une valeur propre de A. On appelle multiplicité algébrique de α , la multiplicité de α vue comme racine du polynôme P_A .

- Exemple -

Nous avons vu que le polynôme caractéristique de

$$B = \begin{pmatrix} 8 & 5 & 6 & 0 \\ 0 & -2 & 0 & 0 \\ -10 & -5 & -8 & 0 \\ 2 & 1 & 1 & 2 \end{pmatrix}$$

est

$$P_B(\alpha) = \det(B - \alpha I) = (\alpha - 2)^2 (\alpha + 2)^2.$$

Les valeurs propres 2 et -2 sont donc toutes les deux de multiplicité algébrique 2.

Vecteurs propres et espace propre associés à une valeur 5.2propre

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée. On appelle vecteur propre de A, un vecteur non nul $X \in M_{n,1}(\mathbb{K}) \setminus \{0\}$ vérifiant la relation suivante :

$$\exists \alpha \in \mathbb{K}, \ AX = \alpha X$$

 $\exists \alpha \in \mathbb{K}, \ AX = \alpha X.$ On dira que X est un vecteur propre associé à la valeur propre $\alpha.$

Soient
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 et le vecteur $X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

On a:

$$X \neq 0$$
 et $AX = 3X$.

Donc X est un vecteur propre associé à la valeur propre 3.

Remarque. On peut avoir plusieurs vecteurs propres associés à une même valeur valeur propre.

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et $\alpha \in \mathbb{K}$ une valeur propre de A. On appelle **espace propre** associé à α l'ensemble suivant :

$$E_{\alpha} = \{X \in M_{n,1}(\mathbb{K})/AX = \alpha X\}.$$

Proposition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et $\alpha \in \mathbb{K}$ une valeur propre de A. On a :

$$E_{\alpha} = \operatorname{Ker}(A - \alpha I).$$

4

 $E_\alpha=\mathrm{Ker}(A-\alpha I).$ En particulier E_α est un sous espace vectoriel de $M_{n,1}(\mathbb{K}).$

Exemple -

Considérons la matrice

$$C = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$$

Le calcul du polynôme caractéristique conduit à :

$$P_C(\alpha) = -(\alpha - 1)(\alpha - 2)^2,$$

Les valeurs propres sont donc 1 et 2.

Cherchons par exemple à calculer E_2 l'espace propre associé à la valeur propre 2.

$$E_{2} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in M_{3,1}(\mathbb{R}) / \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right\}$$
$$= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in M_{3,1}(\mathbb{R}) / 2x - 3y - 2z = 0 \right\}$$
$$= \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -3/2 \end{pmatrix} \right)$$

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et $\alpha \in \mathbb{K}$ une valeur propre de A. La dimension de l'espace propre E_{α} est appelée la **multiplicité géométrique** de α .

5.3 Diagonalisation

Soit $A \in M_{n,n}(\mathbb{K})$ matrice de f dans une base \mathcal{B} .

L'objectif de ce paragraphe est de trouver, si elle existe, une matrice D diagonale représentant la même application f dans une nouvelle base \mathcal{B}' .

5.3.1 Matrice diagonalisable

Définition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée. On dit que A est **diagonalisable** si il existe une base $X_1, \ldots, X_n \in M_{n,1}(\mathbb{K})$ constituée de vecteurs propres de A.

5.3.2 Critères de diagonalisation

Théorème. Soient $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et $\alpha_1, \ldots, \alpha_p \in \mathbb{K}$ les différentes valeurs propres de A. Alors nous avons :

A est diagonalisable
$$\iff \sum_{k=1}^{p} \dim(E_{\alpha_k}) = n.$$

Corollaire. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée. Si A admet n valeurs propres distinctes, alors A est diagonalisable.

Corollaire. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée dont le polynôme caractéristique est scindé (c'est à dire dans le cas où il est possible de l'écrire sous la forme $P_A(X) = \prod_{i=1}^p (X - \alpha_i)^{m_i}$). Alors A est diagonalisable si et seulement la multiplicité algébrique et géométrique de chaque valeur propre coincident.

5.3.3 Construction d'une base diagonale

Corollaire. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée. Si A est diagonalisable, en prenant un vecteur propre pour chaque valeur propre, on constitue une base de vecteurs propres.

5.3.4 Protocole de diagonalisation d'une matrice

Soit $A \in M_{n,n}(\mathbb{K})$ matrice de f dans une base \mathcal{B} .

On cherche, si elle existe, une matice D diagonale représentant la même application f dans une nouvelle base \mathcal{B}' , c'est à dire D telle que $A = PDP^{-1}$ avec P la matrice de passage de \mathcal{B} dans \mathcal{B}' .

- 1. On cherche les valeurs propres $\alpha_1, \ldots, \alpha_p$ de A.
- 2. On cherche les espaces propres $E_{\alpha_1}, \ldots, E_{\alpha_p}$ de A.
- 3. On cherche une base $\mathcal{B}_{\alpha_1}, \ldots, \mathcal{B}_{\alpha_p}$ pour chaque espace propre.
- 4. On vérifie un critère de diagonalisation de la matrice (par exemple si $\sum_{k=1}^{p} \dim(E_{\alpha_k}) = n$). Si A n'est pas diagonalisable, on s'arrête.
- 5. On a : $\mathcal{B}' = \bigcup_{i} \mathcal{B}_{\alpha_i}$. On construit la matrice de passage $P \in M_{n,n}(\mathbb{K})$ de \mathcal{B} dans \mathcal{B}' en disposant côte à côte dans ses colonnes, les vecteurs propres.
- 6. On calcule P^{-1} .
- 7. On construit une matrice diagonale D en mettant sur sa diagonale les valeurs propres $\alpha_1, \ldots, \alpha_p$ en respectant l'ordre suivi pour construire P.

1. Considérons la matrice

$$C = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$$

Le calcul du polynôme caractéristique conduit à : $P_C(\alpha) = -(\alpha - 1)(\alpha - 2)^2$. Les valeurs propres sont donc 1 et 2.

Le calul des espaces propres E_1 et E_2 conduit à :

$$E_1 = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\-1 \end{pmatrix}\right), E_2 = \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\-3/2 \end{pmatrix}\right)$$

On vérifie que $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ est une base de E_1 et que $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\-3/2 \end{pmatrix}$ est une base de E_2 .

On en déduit que la dimension de E_1 vaut 1 et que la dimension de E_2 vaut 2.

On a : $\dim(E_1) + \dim(E_2) = 2 + 1 = 3$

Donc A est diagonalisable et $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\-3/2 \end{pmatrix}$ est une base de vecteurs propres de

A.

On construit la matrice de passage P:

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & -3/2 \end{pmatrix}$$

On calcule P^{-1} :

$$P^{-1} = \begin{pmatrix} 2 & -3 & -2 \\ -1 & 3 & 2 \\ -2 & 4 & 2 \end{pmatrix}$$

On construit D:

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

On a donc:

$$A = PDP^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & -3/2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 & -2 \\ -1 & 3 & 2 \\ -2 & 4 & 2 \end{pmatrix}$$

7

2. On considère la matrice

$$B = \begin{pmatrix} 8 & 5 & 6 & 0 \\ 0 & -2 & 0 & 0 \\ -10 & -5 & -8 & 0 \\ 2 & 1 & 1 & 2 \end{pmatrix}.$$

Le calcul du polynôme caractéristique de B est $P_B(\alpha) = (\alpha - 2)^2(\alpha + 2)^2$. Les valeurs propres sont donc -2 et 2.

Le calcul des espaces propres E_{-2} et E_2 conduit à :

$$E_{-2} = \operatorname{Vect}\left(\begin{pmatrix} -12\\0\\20\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\0\\0 \end{pmatrix}\right) \text{ et } E_2 = \operatorname{Vect}\left(\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}\right)$$

On vérifie que $\begin{pmatrix} -12\\0\\20\\1 \end{pmatrix}$, $\begin{pmatrix} -1\\2\\0\\0 \end{pmatrix}$ est une base de E_{-2} et que $\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$ est une base de E_2 .

On en déduit que $\dim(E_{-2}) = 2$ et $\dim(E_2) = 1$.

On observe que : $\dim(E_{-2}) + \dim(E_2) = 2 + 1 = 3 \neq 4$. La matrice B n'est donc pas diagonalisable.

5.4 Trigonalisation

Soit $A \in M_{n,n}(\mathbb{K})$ matrice de f dans une base \mathcal{B} .

L'objectif de ce paragraphe est de trouver, si elle existe, une matice triangulaire supérieure représentant la même application f dans une nouvelle base \mathcal{B}' .

5.4.1 Définitions

Définition. Soient E un \mathbb{K} -espace vectoriel de dimension finie n et f un endomorphisme :

$$f: E \to E$$

$$u \to f(u)$$

f est **trigonalisable** si il existe une base \mathcal{B}' de E dans laquelle sa matrice est **triangulaire** supérieure.

8

Définition. Une matrice N de $M_{n,n}(\mathbb{K})$ est **nilpotente** s'il existe un entier $p \geq 2$ telle que

$$N^{p-1} \neq (0)_{n \times n}$$
 et $N^p = (0)_{n \times n}$.

L'entier p est l'**indice de nilpotence** de N.

Définition. Une matrice nilpotente de Jordan est une matrice $N = (n_{ij})_{n \times n}$ de $M_{n,n}(\mathbb{K})$ telle que:

$$\begin{cases} n_{ij} = 0 & \text{si } j \neq i+1, \\ n_{ij} = 0 & \text{ou } 1 & \text{si } j = i+1. \end{cases}$$

– Exemple -

Soit
$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

On a: $N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $N^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Donc N est nilpotente de Jordan d'indice de nilpotence p=3.

Définition. Soit $J \in M_{n,n}(\mathbb{K})$.

J est une matrice de **Jordan** si elle est de la forme J = D + N avec :

- D une matrice **diagonale** dont la diagonale comporte les valeurs propres de J, N une matrice **nilpotente de Jordan**.

Les matrices D et N, vérifient DN = ND.

- Exemples

1.
$$J_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$J_1 = D_1 + N_1 \text{ avec } D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ et } N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
2. $J_2 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

$$J_2 = D_2 + N_2 \text{ avec } D_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ et } N_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 J_1 et J_2 sont des matrices de Jordan.

Remarque. Les matrices de Jordan sont des matrices triangulaires supérieures.

5.4.2 Critère de trigonalisation

 $\mathbf{Propriété}$. Soient E un \mathbb{K} -espace vectoriel de dimension finie n et f un endomorphisme :

$$\begin{array}{ccc} f: E & \to & E \\ u & \to & f(u) \end{array}$$

Si le polynôme caractéristique de f est **scindé** sur \mathbb{K} alors f est **trigonalisable** : il existe une base \mathcal{B}' de E dans laquelle la matrice de f soit de **Jordan**.

5.4.3 Protocole de trigonalisation d'une matrice

Soit $A \in M_{n,n}(\mathbb{K})$ matrice de f dans une base \mathcal{B} .

On cherche, si elle existe, une matrice J de Jordan représentant la même application f dans une nouvelle base \mathcal{B}' , c'est à dire J telle que $A = PJP^{-1}$ avec P la matrice de passage de \mathcal{B} dans \mathcal{B}' .

- 1. On calcule le polynôme caractéristique de $A, P_A(\alpha) = \det(A \alpha I)$
- 2. On résoud l'équation $P_A(\alpha) = 0$
 - Si P_A n'est pas scindé alors A n'est pas trigonalisable.
 - Sinon on donne les valeurs propres α_1,\ldots,α_p de A avec leur multiplicité m_1,\ldots,m_p .
- 3. On cherche les espaces propres $E_{\alpha_1}, \ldots, E_{\alpha_p}$ de A.
- 4. On cherche une base $\mathcal{B}_{\alpha_1}, \dots, \mathcal{B}_{\alpha_p}$ pour chaque espace propre.
- 5. Si $\exists k \in \{1, ..., p\}$, dim $(E_{\alpha_k}) < m_k$ (A non diagonalisable), on complète la famille libre de vecteurs propres afin d'obtenir une base \mathcal{B}' de E dans laquelle la matrice de f est de Jordan.
- 6. On construit la matrice de passage $P \in M_{n,n}(\mathbb{K})$ de \mathcal{B} dans \mathcal{B}' en disposant côte à côte dans ses colonnes, les vecteurs de \mathcal{B}' .
- 7. On calcule P^{-1} .
- 8. On a : $P^{-1}PA = J$

_ Exemple _____

Considérons l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} de \mathbb{R}^3 est la matrice

$$A = \begin{pmatrix} 0 & 2 & 2 \\ -1 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$

Le calcul du polynôme caractéristique conduit à : $P_A(\alpha) = -(\alpha - 1)(\alpha - 2)^2$. Les valeurs propres sont donc 1 et 2. 1 est simple et 2 est double.

Le calul des espaces propres E_1 et E_2 conduit à :

$$E_1 = \operatorname{Vect}\left(\begin{pmatrix} 2\\0\\1 \end{pmatrix}\right), E_2 = \operatorname{Vect}\left(\begin{pmatrix} 2\\1\\1 \end{pmatrix}\right)$$

 $\dim E_2 \neq 2$, (multiplicité de la valeur propre 2) donc A est **non diagonalisable**.

Il existe une matrice $P \in M_{3,3}(\mathbb{K})$ inversible telle que $P^{-1}AP = J$ avec

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

et P la matrice de passage de \mathcal{B} vers $\mathcal{B}' = \{v_1, v_2, v_3\}.$

On a :
$$v_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

On détermine le vecteur $v_3=\begin{pmatrix} x\\y\\z \end{pmatrix}$ tel que : $\begin{cases} f(v_3) &= v_2+2v_3\\ \{v_1,v_2,v_3\} & \text{est} & \text{libre} \ . \end{cases}$

Autrement dit

$$\begin{cases} (A-2Id) v_3 = v_2 \\ \{v_1, v_2, v_3\} & \text{est libre} . \end{cases}$$

$$A - 2Id = \begin{pmatrix} -2 & 2 & 2 \\ -1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \text{ donc } \begin{pmatrix} -2 & 2 & 2 \\ -1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \iff \begin{cases} -2x & +2y & +2z & = 2 \\ -x & & +2z & = 1 \\ -x & +y & +z & = 1 \end{cases}$$
$$\iff \begin{cases} -x & +2z & = 1 \\ -x & +y & +z & = 1 \end{cases}$$

On prend par exemple : z = 0.

On a alors :
$$x = -1$$
 et $y = 0$ et donc $v_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$.

 $\{v_1, v_2, v_3\}$ est bien une famille libre.

La matrice de passage P:

$$P = \begin{pmatrix} 2 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

On calcule P^{-1} :

$$P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

$$P^{-1}AP = J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Applications 5.5

Calcul de A^k 5.5.1

Proposition. Soit $A \in M_{n,n}(\mathbb{K})$ une matrice carrée et $P \in M_{n,n}(\mathbb{K})$ une matrice carrée inversible si $B = P^{-1}AP$ alors

$$\forall k \in \mathbb{N}, \ B^k = P^{-1}A^kP \text{ et } A^k = PB^kP^{-1}$$

Proposition. Calcul de A^k .

1. Si $A \in M_{n,n}(\mathbb{K})$ est diagonalisable, c'est à dire si il existe $P \in M_{n,n}(\mathbb{K})$ une matrice carrée inversible telle que $D = P^{-1}AP$ avec

The large tene que
$$D=T$$
 At avec
$$D = \begin{pmatrix} \lambda_1 & \dots & (0) \\ \vdots & \ddots & \vdots \\ (0) & \dots & \lambda_n \end{pmatrix} \text{ diagonale et les } \lambda_i \text{ les valeurs propres de } A \text{ alors}$$

$$D^k = \begin{pmatrix} \lambda_1^k & \dots & (0) \\ \vdots & \ddots & \vdots \\ (0) & \dots & \lambda_n^k \end{pmatrix} \text{ et } A^k = PD^kP^{-1}.$$

$$D^{k} = \begin{pmatrix} \lambda_{1}^{k} & \dots & (0) \\ \vdots & \ddots & \vdots \\ (0) & \dots & \lambda_{n}^{k} \end{pmatrix} \text{ et } A^{k} = PD^{k}P^{-1}.$$

2. Si $A \in M_{n,n}(\mathbb{K})$ est trigonalisable, c'est à dire si il existe $P \in M_{n,n}(\mathbb{K})$ une matrice carrée

inversible telle que
$$J = P^{-1}AP$$
 avec $J = D + N$, $D = \begin{pmatrix} \lambda_1 & \dots & (0) \\ \vdots & \ddots & \vdots \\ (0) & \dots & \lambda_n \end{pmatrix}$ diagonale, les

 λ_i les valeurs propres de A et N nilpotente de Jordan alors

$$J^k = \sum_{i=0}^k \binom{k}{i} D^i N^{k-i} \quad \text{et} \quad A^k = P J^k P^{-1}$$

avec
$$\binom{k}{i} = \frac{k!}{i!(k-i)!}$$
.

Exemple

Considérons l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} de \mathbb{R}^3 est la

matrice
$$A = \begin{pmatrix} 0 & 2 & 2 \\ -1 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$
.

On a:
$$P^{-1}AP = J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 avec $P = \begin{pmatrix} 2 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} = D + N \text{ avec } D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ et } N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

On a :
$$N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. Donc : $J^n = \sum_{i=n-1}^n \binom{n}{i} D^i N^{n-i}$

$$J^{n} = \binom{n}{n} D^{n} N^{0} + \binom{n}{n-1} D^{n-1} N$$

$$J^n = D^n + nD^{n-1}N$$

$$J^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} + n \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n-1} & 0 \\ 0 & 0 & 2^{n-1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$J^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & n2^{n-1} \\ 0 & 0 & 2^n \end{pmatrix}$$

$$A^{n} = PJ^{n}P^{-1} = \begin{pmatrix} 2^{n}(1-n) & 2(2^{n}-1) & 2(1+2^{n}(n-1)) \\ -n2^{n-1} & 2^{n} & n2^{n} \\ -n2^{n-1} & 2^{n} - 1 & 1+n2^{n} \end{pmatrix}$$