Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data

- Data Visualization
- Measuring Data Similarity and Dissimilarity
- Summary

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis indicates values, y-axis does frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as a point in the plane

Histogram Analysis

- Histogram: Graph display of frequencies shown as bars
- It shows what proportion of cases fall into each of several categories
 - The categories are usually specified as non-overlapping intervals of some variable
 - The categories (bars) must be adjacent

Histogram Analysis

- Differs from a bar chart
 - The area of the bar denotes the value (histogram)
 - The *height* denotes the value (bar chart)
 - A crucial distinction when the categories are not of uniform width

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min,Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data
 - Allowing the user to assess both the overall behavior and unusual occurrences

Quantile Plot

- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Displays the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?

Quantile-Quantile (Q-Q) Plot

- Example: Shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.
 - Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Each pair of values is treated as a pair of coordinates and plotted as a point in the plane
- Provides a first look at bivariate data to see clusters of points, outliers, etc

Positively and Negatively Correlated Data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated Data

Chapter 2: Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity

Summary

Similarity and Dissimilarity

Similarity

- Numerical measure of how much alike two data objects are
- This value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
 - Numerical measure of how much different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

n data points with p dimensions (attributes)
 Two modes

$$x_{11}$$
 ... x_{1f} ... x_{1p} x_{ip} ... x_{in} ... x_{in}

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d\left(i,j\right) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Proximity Measure for Binary Attributes

A contingency table for binary data

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute (ignored in this case)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N 0

$$d (jack , mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack , jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim , mary) = \frac{1+2}{1+1+2} = 0.75$$

Standardizing Numeric Data

- Z-score: $z = \frac{x \mu}{\sigma}$
 - X: raw score to be standardized, μ: mean of the population,
 σ: standard deviation
 - Meaning: the distance between the raw score and the population mean in units of the standard deviation
 - "-" when the raw score is below the mean
 - "+" when the raw score is above the mean

Standardizing Numeric Data

An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$
 where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf}).$$

- standardized measure (*z-score*): $z_{if} = \frac{x_{if} m_f}{s_f}$
- Using mean absolute deviation is more robust than using standard deviation (when outliers exist)

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
x1	0			
<i>x2</i>	3.61	0		
<i>x3</i>	5.1	5.1	0	
<i>x4</i>	4.24	1	5.39	C