МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Розрахунково-графічні завдання

з дисципліни «Дискретна математика»

Виконала:

Студентка групи КН-114 Огорілко Вікторія Викладач:

Мельникова H.I.

Індивідуальні завдання

Варіант №20

Завдання:

- 1. Виконати наступні операції над графами:
- 1) знайти доповнення до першого графу,
- 2) об'єднання графів,
- 3) кільцеву суму G1 та G2 (G1⊕G2),
- 4) розщепити вершину у другому графі,
- 5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1\ A),
- 6) добуток графів $G1 \times G2$.

Розв'язування:

1.

$$X_1 = \{V1, V2, V3, V4, V5, V7\}$$

$$W_1 = \{(V1, V2), (V1, V3), (V1, V4), (V1, V7), (V3, V4), (V3, V5), (V4, V7)\}$$

$$X_2 = \{V1, V2, V3, V4, V6, V7\}$$

$$W_2 = \{(V1, V2), (V1, V4), (V2, V4),$$

$$(V3, V4), (V3, V7), (V4, V6), (V4, V7)\}$$

а) Доповнення до G1:

$$X_3 = \{V1, V2, V3, V4, V5, V7\}$$

$$W_3 = \{(V1, V7), (V2, V3), (V2, V4), (V2, V5), \\ (V2, V7), (V3, V7), (V4, V5)\}$$

б) Об'єднання G1 і G2 :

$$X_4 = \{V1, V2, V3, V4, V5, V6, V7\}$$

$$W_4 = \{(V1, V2), (V1, V3), (V1, V4), (V1, V7),$$

$$(V2, V4), (V3, V4), (V3, V5), (V3, V7),$$

$$(V4, V6), (V4, V7)\}$$

в) Кільцева сума G1 та G2 (G1⊕G2) :

$$X_5 = \{V1, V2, V3, V4, V5, V6, V7\}$$

$$W_5 = \{(V1, V3), (V1, V7),$$

$$(V2, V4), (V3, V5), (V3, V7), (V4, V6), \}$$

г) Розчепимо вершину V4.

$$X_6 = \{V1, V2, V3, V4, V4 *, V6, V7 \}$$

$$W_6 = \{(V1, V2), (V1, V4), (V2, V4),$$

$$(V3, V4 *), (V4, V4 *), (V3, V7),$$

$$(V4 *, V6), (V4 *, V7)\}$$

 Γ) виділимо підграф A, що складається з 3-х вершин в G1 і виконаємо стягнення A в G1 (G1\ A) :

$$X_A = \{V1, V4, V7\}$$

$$W_A = \{(V1, V4), (V1, V7),$$

$$(V4, V7)\}$$

д) добуток графів $G1 \times G2$.

2. Скласти таблицю суміжності для орграфа.

Таблиця суміжності:

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9
V_1	0	1	0	0	0	1	1	1	0
V_2	1	0	1	0	0	1	0	1	0
V_3	0	1	0	1	0	0	0	1	0
V_4	0	0	1	0	1	1	0	1	0
V_5	0	0	0	1	0	1	0	1	1
V_6	1	1	0	1	1	0	1	1	0
V_7	1	0	0	0	0	1	0	1	0
V_8	1	1	1	1	1	1	1	0	0
V_9	0	0	0	0	1	0	0	0	0

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9
V_1	-	1	2	2	2	1	1	1	3
V_2	1	-	1	2	2	1	2	1	3
V_3	2	1	-	1	2	2	2	1	3
V_4	2	2	1	-	1	1	2	1	2
V_5	2	2	2	1	-	1	2	1	1
V_6	1	1	2	1	1	-	1	1	2
V_7	2	2	2	2	1	1	-	1	3
V_8	1	1	1	1	1	1	1	-	2
V_9	3	3	3	2	1	2	3	2	-

 ${f 3.}$ Для графа з другого завдання знайти діаметр.

Діаметр графа: 3.

4. Для графа з другого завдання виконати обхід дерева вшир (закінчується на парне число).

Вершина	Номер	Черга
V1	0	V1
V2	1	V1V2
V8	2	V1V2V8
V6	3	V1V2V8V6
V7	4	V1V2V8V6V7
-	-	V2V8V6V7
V3	5	V2V8V6V7V3
-	-	V8V6V7V3
V4	6	V8V6V7V3V6
V5	7	V8V6V7V3V6V5
-	-	V6V7V3V6V5
-	-	V7V3V6V5
-	-	V3V6V5
-	-	V6V5
-	-	V5
V9	8	V5V9
-	-	V9
-	-	Ø

Код програми для обходу графа вшир:

```
#include <iostream>
using namespace std;
int main()
{
   int **arr, n, n0, *arr0;
  cout<<"Enter number of vertexes : ";</pre>
  cin>>n;
  cout<<"Enter number of edges : ";</pre>
  cin>>n0;
  arr = new int*[n];
  arr0 = new int[n];
  for(int i=0; i<n; i++){
    arr[i] = new int[n];
    for(int j=0;j< n;j++){
      arr[i][j]=0;
      arr0[j]=0;
    }
  }
  cout<<"Enter pair of vertexes that contains edge :\n";</pre>
  int a,b;
  for(int i=0;i< n0;i++){
    cin>>a>>b;
    arr[a-1][b-1]=1;
    arr[b-1][a-1]=1;
  }
  int num=0;
  arr0[num]=1;
```

```
cout << "V1 \ t" << num << "\ t \ t";
for(int i=0;i< n;i++){
  if(arr0[i]!=0){
     cout<<"V"<<arr0[i];
  }
}
cout<<endl;
int y=0, t=0, l=0;
for(;num<n;){</pre>
  y=0;
  for(int i=0;(i<n)&&(y==0);i++){
    if(arr0[i]!=0){y=arr0[i];}
  }
  t=0;
  for(int i=0;(i<n)&&(t==0);i++){
    if(arr[y-1][i]!=0)\{t=i;num++;arr0[num]=i+1;\}
  }
  if(t!=0)\{
     cout << "V" << t+1 << "\backslash t \backslash t" << num << "\backslash t \backslash t";
    for(int i=0;i< n;i++){
  if(arr0[i]!=0){
    cout<<"V"<<arr0[i];
  }
  }
  cout<<endl;
  }
```

```
else{
    for(int i=0, r=0;(i<n)&&(r==0);i++){
      if(arr0[i]!=0){arr0[i]=0;r++;}
    }
    cout << "-\t\t-\t";
    l=0;
    for(int i=0;i< n;i++){
    if(arr0[i]!=0){
    cout<<"V"<<arr0[i];l++;
    }
    }
    if(l==0){cout<<"-";}
    cout<<endl;
  }
  for(int i=0;i< n;i++){
    if(arr0[i]!=0){
      for(int j=0;j<n;j++){
        if(arr0[j]!=0){
          arr[arr0[i]-1][arr0[j]-1]=0;
          arr[arr0[j]-1][arr0[i]-1]=0;
        }
      }
    }
 }
return 0;
```

}

}

```
number of vertexes :
Enter number of edges : 18
Enter pair of vertexes that contains edge :
1 2 8 8 4 4 5 5 5 6 8 7
  8 6 8
٧1
                                       ٧1
V2
                   1
2
3
4
                                       V1V2
۷6
                                       V1V2V6
V7
                                       V1V2V6V7
٧8
                                      V1V2V6V7V8
                                      V2V6V7V8
V3
                                      V2V6V7V8V3
                   -
6
7
                                      V6V7V8V3
۷4
                                      V6V7V8V3V4
۷5
                                      V6V7V8V3V4V5
                                      V7V8V3V4V5
                                      V8V3V4V5
                                      V3V4V5
                                      V4V5
                                      ۷5
V9
                   8
                                      V5V9
                                      ۷9
```

5. Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Алгоритм Прима:


```
E = \{ 1, 4, 6, 3, 10, 11, 9, 2, 7, 5, 8 \}
W = \{ (1, 4), (4, 6), (1, 3), (6, 10), (10, 11), (11, 9), (1, 2), (2, 7), (2, 5), (5, 8) \}
Bara : 2+2+3+3+3+1+4+1+2+4=25
```

Код програми для алгоритму Прима:

```
#include <iostream>
using namespace std;
int main()
{
    int n;
    cout << "\nenter number of vertices's : ";
    cin >> n;
    int n0;
    cout << "\nenter number of edges : ";
    cin >> n0;
    cout << "\nenter number of edges : ";
    cin >> n0;
    cout << "\nnow\nenter data in order :\nA(1) A(2) A(1)A(2) (weight of the edge between them)\n";
    int** arr;
    arr = new int* [n];</pre>
```

```
for (int i = 0; i < n; i++) {
       arr[i] = new int[n];
       for (int j = 0; j < n; j++) {
               arr[i][j] = 0;
       }}
int a1, a2, w;
for (int i = 0; i < n0; i++) {
       cin >> a1 >> a2 >> w;
       arr[a1-1][a2-1] = w;
       arr[a2-1][a1-1] = w;
}
int* mas;
mas = new int[n];
for (int i = 0; i < n; i++) {
       mas[i] = 0;
}
mas[0] = 1;
int sum = 0;
cout << "\n\n";
for (int r=0, t=0; r != (n-1);) {
       t = 0;
       for (int i = 0; i < n; i++) {
               if (mas[i]!= 0) {
                       for (int j = 0; j < n; j++) {
                              if (arr[i][j] != 0) {
                                      if (t == 0) {
                                              a1 = i;
                                              a2 = j;
                                              w = arr[i][j];
```

```
t++;
                                      }
                                      else {
                                             if (arr[i][j] < w) {
                                                     a1 = i;
                                                     a2 = j;
                                                     w = arr[i][j];
                                             }}}}}
       sum += w;
       cout << "\nA(" << a1 + 1 << ") -> A(" << a2 + 1 << ") = " << w;
       mas[a2] = a2 + 1;
       arr[a1][a2] = 0;
       arr[a2][a1] = 0;
       r = 0;
       for (int q = 0; q < n; q++) {
               if (mas[q] != 0) { r++; }
       }}
for (int i = 0; i < n; i++) {
       if (mas[i] == 0) \{ a2 = i; \}
for (int i = 0, t = 0; i < n; i++) {
       if (arr[i][a2]!=0) {
               if (t == 0) {
                      a1 = i;
                      w = arr[i][a2];
                      t++;
               }
               else {
                      if (arr[i][a2] < w) {
```

}

```
a1 = i; \\ w = arr[i][a2]; \\ \} \} \} \} \\ sum += w; \\ cout << "\nA(" << a1 + 1 << ") -> A(" << a2 + 1 << ") = " << w; \\ cout << "\n\nminimal weight : " << sum; \\ cout << "\n\n"; \\ return 0; \\ \end{cases}
```

}

```
enter number of vertices's : 11
enter number of edges : 18
now
enter data in order :
A(1)
          A(2) A(1)A(2) (weight of the edge between them)
1 2 4
1 3 3
1 4 2
2 5 2
2 7 1
3 5 6
3 6 7
4 6 2
4 7 7
4 8 4
  9 7
6 8 4
  10 3
  9 5
  10 5
  11 4
9 11 1
10 11 3
A(1) \rightarrow A(4) = 2

A(4) \rightarrow A(6) = 2

A(1) \rightarrow A(3) = 3
A(6) \rightarrow A(10) = 3
A(10) -> A(11) = 3
A(11) -> A(9)' = 1
A(1) \rightarrow A(2) = 4
A(2) \rightarrow A(7) = 1
A(2) -> A(5) = 2

A(4) -> A(8) = 4
minimal weight : 25
```

Алгоритм Краскала:


```
E = \{ 2, 7, 9, 11, 5, 1, 4, 6, 3, 10, 8 \}
W = \{ (2, 7), (11, 9), (2, 5), (1, 4), (4, 6), (1, 3), (6, 10), (10, 11), (1, 2), (5, 8) \}
Bara : 1+1+2+2+3+3+3+4+4=25
```

Код програми для алгоритму Краскала:

```
#include <iostream>
using namespace std;
struct edge
{
  int t1;
  int t2;
  int w;
};
struct eset
{
  edge data[100];
  int n;
};
eset set;
eset tree;
```

```
void sort ()
{
 edge a;
 for(int i=0;i<set.n;i++)</pre>
  {
    for(int j=0;j<set.n-1;j++)
    {
      if(set.data[j].w>set.data[j+1].w)
   {
    a = set.data[j];
    set.data[j] = set.data[j+1];
    set.data[j+1] = a;
   }}}}
int search (int is[],int d)
{
 return(is[d]); }
void aaa (int is[],int c1,int c2,int n)
{
 int i;
 for(int i=0;i<n;i++)
  {
    if(is[i]==c2)
    {
      is[i]=c1;
    }}}
void kraskal (int **arr,int n)
{
 int is[11],i,j,n1,n2;
 set.n=0;
 for(i=0;i<n;i++)
```

```
for(j=0;j< i;j++)
  {
   if(arr[i][j]!=0)
   {
    set.data[set.n].t1=i;
    set.data[set.n].t2=j;
    set.data[set.n].w=arr[i][j];
    set.n++;}}
 sort ();
 for(i=0;i< n;i++)
  is[i]=i;
 tree.n=0;
 for(i=0;i<set.n;i++)</pre>
 {
  n1=search(is,set.data[i].t1);
  n2=search(is,set.data[i].t2);
  if(n1!=n2)
  {
   tree.data[tree.n]=set.data[i];
   tree.n=tree.n+1;
   aaa(is,n1,n2,n);
  }}}
void print ()
{
 int i,sum=0;
 for(i=0;i<tree.n;i++)
 {
  cout << "V" << tree.data[i].t2+1 << "-> V" << tree.data[i].t1+1 << "=" << tree.data[i].w << endl;
  sum=sum+tree.data[i].w; }
```

```
cout<<"\nminimal weight: "<<sum<<endl;</pre>
}
int main ()
{
 int n, m;
 cout<<"Enter the number of vertexes: ";</pre>
 cin>>n;
 cout<<"Enter the number of edges: ";</pre>
 cin>>m;
       cout << "\nnow\nenter data in order :\nA(1) A(2) A(1)A(2) (weight of the edge between
them)n;
       int** arr, **arr1;
       arr = new int* [n];
       arr1=new int*[n];
       for (int i = 0; i < n; i++) {
               arr[i] = new int[n];
               arr1[i]=new int[n];
               for (int j = 0; j < n; j++) {
                       arr[i][j] = 0;
                       arr1[i][j]=0;
               }}
       int a1, a2, w;
       for (int i = 0; i < m; i++) {
               cin >> a1 >> a2 >> w;
               arr[a1-1][a2-1] = w;
               arr[a2-1][a1-1] = w;
       }
 cout << "\n\n";
 kraskal(arr, n);
 print();}
```

```
Enter the number of vertexes: 11
Enter the number of edges: 18
now
enter data in order :
A(1)
1 2 4
       A(2) A(1)A(2) (weight of the edge between them)
1 3 3
1 4 2
2 5 2
2 7 1
3 5 6
3 6 7
4 6 2
  7 7
8 4
  9 7
684
6 10 3
 9 5
7 10 5
8 11 4
9 11 1
10 11 3
V2 -> V7 = 1
V9 -> V11 = 1
V1 -> V4 = 2
V2 -> V5 = 2
V4 -> V6 = 2
V1 -> V3 = 3
V6 -> V10 = 3
V10 -> V11 = 3
V1 -> V2 = 4
V4 -> V8 = 4
minimal weight : 25
```

б. Розв'язати задачу комівояжера для повного 8-ми вершинного графа методом «іди у найближчий», матриця вагів якого має вигляд:

	1	2	3	4	5	6 1 1 4 3 ∞ 2	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	5	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	5	2	2	2	∞

1)Почнемо з вершини V1 :

	1	2	3	4	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	5	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	5 1 5 0 6 4 5 5	2	2	2	∞

	2	3	4	1,5	6	7	8
2	∞	5	1	5	1	5	1
3	5	∞	5	6	1	5	7
4	1	5	∞	6	4	5	5
1,5	5	6	6	∞	3	2	2
6	1	1	4	3	∞	2	2
7	5	5	5	2	2	∞	2
8	1	7	5	1,5 5 6 ∞ 3 2 2	2	2	∞

	2	3	4	6	1,5,7	8
2	∞	5	1			1
3	5	∞	5	1	5	7
4	1	5	∞	4	5	5
6	1	1	4	∞	2	2
1,5,7	5	5	5	2	∞	2
8	1	7	5	2	2	∞

	2	3	4	1,5,7,6	8
2	∞	5	1	1	1
3	5	∞	5	1	7
4	1	5	∞	4	5
1,5,7,6	1	1	4	∞	2
8	1	7	5	2	∞

	1,5,7,6,2	3	4	8
1,5,7,6,2	∞	5	1	1
3	5	∞	5	7
4	1	5	∞	5
8	1	7	5	∞

	3	1,5,7,6,2,4	8
3	8	5	7
1,5,7,6,2,4	5	∞	5
8	7	5	∞

	1,5,7,6,2,4,3	8
1,5,7,6,2,4,3	∞	7
8	7	∞

Вага шляху (1,5,7,6,2,4,3,8) : 1+2+2+1+1+5+7=19

2)Почнемо з вершини V2 :

	1	2 4 ∞	3	4	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	5	5	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	5	2	2	2	∞

	1	3	2,4	5	6	7	8
1	∞	6	5	1	2	3	5
3	6	∞	5	6	1	5	7
2,4	5	5	∞	6	4	5	5
5	1	6	6	∞	3	2	2
6	2	1	4	3	∞	2	2
7	3	5	5	2	2	∞	2
8	5	7	2,4 5 5 ∞ 6 4 5 5 5	2	2	2	∞

				2,4,6	7	8
1	∞	6	1	2 1 3	3	5
3	6	∞	6	1	5	7
5	1	6	∞	3	2	2
2,4,6	2	1 5	3	∞	2	2
7	3	5	2	2	∞	2
8	5	7	2	2	2	∞

	1	2,4,6,3	5	7	8
1	∞	6	1	3	5
2,4,6,3	6	∞	6	5	7
5	1	6	∞	2	2
7	3	5	2	∞	2
8	5	7	2	2	∞

	1	5	2,4,6,3,7	8
1	∞	1	3	5
5	1	∞	2	2
2,4,6,3,7	3	2	∞	2
8	5	2	2	∞

	1	2,4,6,3,7,5	8
1	8	1	5
2,4,6,3,7,5	1	∞	2
8	5	2	∞

	2,4,6,3,7,5,1	8
2,4,6,3,7,5,1	∞	5
8	5	∞

Вага шляху (2,4,6,3,7,5,1,8) : 1+4+1+5+2+1+5=19

3)Почнемо з вершини V3:

	1	2 4 ∞ 5 1 5 1 5 1	3	4	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	5	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	5	2	2	2	∞

	1	2	4	5	3,6	7	8
1	∞	4	5	1	2	3	5
2	4	∞	1	5	1	5	1
4	5	1	∞	6	4	5	5
5	1	5	6	∞	3	2	2
3,6	2	1	4	3	∞	2	2
7	3	5	5	2	2	∞	2
8	5	1	5	2	2	2	∞
8	5	5 1	5	2	3,6 2 1 4 3 ∞ 2	∞	2 ∞

	1	3,6,2	4	5	7	8
1	∞	4	5	1	3	5
3,6,2	4	∞	1	5	5	1
4	5	1	∞	6	5	5
5	1	5	6	∞	2	2
7	3	5	5	2	∞	2
8	5	1	5	2	2	∞

	1	3,6,2,4	5	7	8
1	8	5	1	3	5
3,6,2,4	5	∞	6	5	5
5	1	6	∞	2	2
7	3	5	2	∞	2
8	5	5	2	2	∞

	3,6,2,4,1	5	7	8
3,6,2,4,1	∞	1	3	5
5	1	∞	2	2
7	3	2	∞	2
8	5	2	2	∞

	3,6,2,4,1,5	7	8
3,6,2,4,1,5	8	2	2
7	2	∞	2
8	2	2	∞

	3,6,2,4,1,5,7	8
3,6,2,4,1,5,7	∞	2
8	2	∞

Вага шляху (3,6,2,4,1,5,7,8) : 1+1+1+5+1+2+2=13

4)Почнемо з вершини V4:

	1	2	3	4	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	6 5 ∞ 5	5	6	1	5	7
4	5	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	6 1 5	5	2	2	∞	2
8	5	1	7	5	2	2	2	∞

	1	4,2	3	5	6	7	8
1	∞	4	6	1	2	3	5
4,2	4	∞	5	5	1	5	1
3	6	5	∞	6	1	5	7
5	1	5	6	∞	3	2	2
6	2	1	1	3	∞	2	2
7	3	5	5	2	2	∞	2
8	5	1	7	2	2	2	∞

		3			7	8
1	∞	6	1	2 1 3	3	5
3	6	∞	6	1	5	7
5				3	2	2
4,2,6	2	1	3	∞	2	2
7	3	5	2	2	∞	2
8	5	7	2	2	2	∞

	1	4,2,6,3	5	7	8
1	∞	6	1	3	5
4,2,6,3	6	∞	6	5	7
5	1	6	∞	2	2
7	3	5	2	∞	2
8	5	7	2	2	∞

	1	5	4,2,6,3,7	8
1	∞	1	3	5
5	1	∞	2	2
4,2,6,3,7	3	2	∞	2
8	5	2	2	∞

	1	4,2,6,3,7,5	8
1	∞	1	5
4,2,6,3,7,5	1	∞	2
8	5	2	∞

	4,2,6,3,7,5,1	8
4,2,6,3,7,5,1	∞	5
8	5	∞

Вага шляху (4,2,6,3,7,5,1,8) : 1+1+1+5+2+1+5=16

5)Почнемо з вершини V5 :

	1	2	3	4 5 1 5 ∞ 6	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	5	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	4 5 5	2	2	2	∞

	5,1	2	3	4	6	7	8
5,1	∞	4	6	5	2	3	5
2	4	∞	5	1 5	1	5	1
3	6						
4	5			∞		5	5
6	2	1	1	4	∞	2	2
7	3	5			2	∞	2
8	5	1	7	5	2	2	∞

	2	3	4	5,1,6	7	8
2	∞	5	1	1	5	1
3	5	\sim	5	1	5	7
4	1	5	∞	4	5	5
5,1,6	1	1	4	∞	2	2
7	5	5	5	2	∞	2
8	1	7	5	2	2	∞

	5,1,6,2	3	4	7	8
5,1,6,2	8	5	1	5	1
3	5	∞	5	5	7
4	1	5	∞	5	5
7	5	5	5	∞	2
8	1	7	5	2	∞

	3	5,1,6,2,4	7	8
3	∞	5	5	7
5,1,6,2,4	5	∞	5	5
7	5	5	∞	2
8	7	5	2	∞

	5,1,6,2,4,3	7	8
5,1,6,2,4,3	8	5	7
7	5	∞	2
8	7	2	∞

_	5,1,6,2,4,3,7	8
5,1,6,2,4,3,7	∞	2
8	2	∞

Вага шляху (5,1,6,2,4,3,7,8) : 1+2+1+1+5+5+2=17

6)Почнемо з вершини V6:

	1	2	3	4	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	∞ 4 6 5 1	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2 3	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	5	2	2	2	∞

	1	6,2	3	4	5	7	8
1	∞	5 1 5 5	6	5	1	3	5
6,2	4	∞	5	1	5	5	1
3	6	5	∞	5	6	5	7
4	5	1	5	∞	6	5	5
5	1	5	6	6	∞	2	2
7	3	5 1	5	5	2	∞	2
8	5	1	7	5	2	2	∞

	1	3	6,2,4	5	7	8
1	∞	6	5	1	3	5
3	6	∞	5	6	5	7
6,2,4	5	5	∞	6	5	5
5	1	6	6	∞	2	2
7	3	5	5	2	∞	2
8	5	7	5	2	2	∞

	6,2,4,1	3	5	7	8
6,2,4,1	8	6	1	3	5
3	6	∞	6	5	7
5	1	6	∞	2	2
7	3	5	2	∞	2
8	5	7	2	2	∞

	3	6,2,4,1,5	7	8
3	∞	6	5	7
6,2,4,1,5	6	∞	2	2
7	5	2	∞	2
8	7	2	2	∞

	3	6,2,4,1,5,7	8
3	8	5	7
6,2,4,1,5,7	5	∞	2
8	7	2	∞

	3	6,2,4,1,5,7,8
3	∞	7
6,2,4,1,5,7,8	7	∞

Вага шляху (6,2,4,1,5,7,8,3): 1+1+5+1+2+2+7=19

7)Почнемо з вершини V7 :

	1	2	3	4	5	6	7	8
1	∞	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	2 1 1	5	7
4	5	1	5	∞	6	4 3 ∞	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	5	5	2	2	∞	2
8	5	1	7	5	2	2	2	œ

	1	2	3	4	7,5	6	8
1	∞	4	6	5	1	2	5
2	4	∞	5	1	5	1	1
3	6	5	∞	5	6	1	7
4	5	1	5	∞	6	4	5
7,5	1	5	6	6	∞	3	2
6	2	1	1	4	3	∞	2
8	5	1	7	5	1 5 6 6 ∞ 3 2	2	∞

	7,5,1	2	3	4	6	8
7,5,1	∞	4	6	5	2	5
2	4	∞	5	1	1	1
3	6	5	∞	5	1	7
4	5	1	5	∞	4	5
6	2	1	1	4	∞	2
8	5	1	7	5	2	∞

	2	3	4	7,5,1,6	8
2	∞	5	1	1	1
3	5	∞	5	1	7
4	1	5	∞	4	5
7,5,1,6	1	1	4	∞	2
8	1	7	5	2	∞

	7,5,1,6,2	3	4	8
7,5,1,6,2	8	5	1	1
3	5	∞	5	7
4	1	5	∞	5
8	1	7	5	∞

	3	7,5,1,6,2,4	8
3	8	5	7
7,5,1,6,2,4	5	∞	5
8	7	5	∞

	7,5,1,6,2,4,3	8
7,5,1,6,2,4,3	∞	7
8	7	∞

Вага шляху (7,5,1,6,2,4,3,8): 2+1+2+1+1+5+7=19

8)Почнемо з вершини V8:

	1	2	3	4	5	6	7	8
1	8	4	6	5	1	2	3	5
2	4	∞	5	1	5	1	5	1
3	6	5	∞	5	6	1	5	7
4	5	1	5	∞	6	4	5	5
5	1	5	6	6	∞	3	2	2
6	2	1	1	4	3	∞	2	2
7	3	5	6 5 0 5 6 1 5	5	2	2	∞	2
8	5	1	7	5	2	2	2	∞

	1	8,2	3	4	5	6	7
1	∞	4	6	5	1	2	3
8,2	4	∞	5	1	5	1	5
3	6	5	∞	5	6	1	5
4	5	1	5	∞	6	4	5
5	1	5	6	6	∞	3	2
6	2	1	1	4	3	∞	2
7	3	8,2 4 ∞ 5 1 5 1 5	5	5	2	2	∞

			8,2,4			
1	∞	6	5 5 ∞	1	2	3
3	6	∞	5	6	1	5
8,2,4	5	5	5 ∞ 6 4 5	6	4	5
5	1	6	6	∞	3	2
6	2	1	4	3	∞	2
7	3	5	5	2	2	∞

	1	3	5	8,2,4,6	7
1	∞	6	1	2	3
3		∞		1	5
5	1	6	∞	3	2
8,2,4,6	2	1	3	∞	2
7	3	5	2	2	∞

	1	8,2,4,6,3	5	7
1	∞	6	1	3
8,2,4,6,3	6	∞	6	5
5	1	6	∞	2
7	3	5	2	∞

	1	5	8,2,4,6,3,7
1	8	1	3
5	1	∞	2
8,2,4,6,3,7	3	2	∞

	1	8,2,4,6,3,7,5
1	8	1
8,2,4,6,3,7,5	1	∞

Вага шляху (8,2,4,6,3,7,5,1) : 1+1+4++5+2+1=15

Код програми для алгоритму задачі Комівояжера:

```
#include <iostream>
#include <cstring>
using namespace std;
string hid(int a) {
        string one = "", two = "V(";
        int b;
        do {
                b = a \% 10;
                switch (b) {
                case 0: one = "0" + one; break;
                case 1: one = "1" + one; break;
                case 2: one = "2" + one; break;
                case 3: one = "3" + one; break;
                case 4: one = "4" + one; break;
                case 5: one = "5" + one; break;
                case 6: one = "6" + one; break;
                case 7: one = "7" + one; break;
                case 8: one = "8" + one; break;
                case 9: one = "9" + one; break;
                default: cout << "error";</pre>
               }
                a /= 10;
        } while (a != 0);
        two += one + ")";
        return two;
}
```

```
int main()
{
        int** arr, n, a, ** arr1, * arr2;
        string* vuvid;
        cout << "Enter number of vertexes : ";</pre>
        cin >> n;
        cout << "Enter weight of edges :\n";</pre>
        arr = new int* [n];
        arr1 = new int* [n];
        arr2 = new int[n];
        vuvid = new string[n];
        for (int i = 0; i < n; i++) {
                arr[i] = new int[n];
                arr1[i] = new int[n];
                vuvid[i] = "Starting from" + hid(i + 1) + ": \n\t" + hid(i + 1);
        }
        for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                         cin >> a;
                         arr[i][j] = a;
                }}
        int t = 0, minw = 0, minn = 0, w = 0;
        for (int n0 = 0; n0 < n; n0++) {
                for (int i = 0; i < n; i++) {
                         for (int j = 0; j < n; j++) {
                                 arr1[i][j] = arr[i][j];
                         }}
                t = n0;
                w = 0;
                for (int h = 0; h < n-1; h++) {
```

```
minw = 0;
                        minn = 0;
                        for (int i = 0; i < n; i++) {
                                if (arr1[t][i] != 0) {
                                        if (minw == 0) {
                                                minw = arr1[t][i];
                                                 minn = i;
                                        }
                                        else if (arr1[t][i] < minw) {</pre>
                                                 minn = i;
                                                minw = arr1[t][i];
                                        }}
}
      w += minw;
                        for (int i = 0; i < n; i++) {
                                arr1[t][i] = 0;
                                arr1[i][t] = 0;
                        }
                        t = minn;
                        vuvid[n0] += hid(t+1);
                }
                vuvid[n0] += "\n\tweight: ";
                arr2[n0] = w;
        }
        cout << "\n\n";
        for (int i = 0; i < n; i++) {
                cout << vuvid[i] << arr2[i] << endl<<endl;</pre>
        }
        return 0;
}
```

```
Enter number of vertexes : 8
Enter weight of edges :
0 4 6 5 1 2 3 5
4 0 5 1 5 1 5 1
 5 0 5 6 1 5 7
 1506455
 5 6 6 0 3 2 2
21143022
3 5 5 5 2 2 0 2
5 1 7 5 2 2 2 0
Starting from V(1) :
V(1)V(5)V(7)V(6)V(2)V(4)V(3)V(8)
         weight: 19
Starting from V(2): V(2)V(4)V(6)V(3)V(7)V(5)V(1)V(8)
         weight: 19
Starting from V(3) :
V(3)V(6)V(2)V(4)V(1)V(5)V(7)V(8)
         weight: 13
Starting from V(4) :
         V(4)V(2)V(6)V(3)V(7)V(5)V(1)V(8)
         weight: 16
Starting from V(5) :
V(5)V(1)V(6)V(2)V(4)V(3)V(7)V(8)
weight : 17
Starting from V(6) :
V(6)V(2)V(4)V(1)V(5)V(7)V(8)V(3)
         weight : 19
Starting from V(7) :
V(7)V(5)V(1)V(6)V(2)V(4)V(3)V(8)
         weight: 19
Starting from V(8) :
         V(8)V(2)V(4)V(6)V(3)V(7)V(5)V(1)
weight : 15
```

7. За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин V0 і V * .

Вага шляху: 24.

Код програми для знашодження шляху Дейкстри:

```
#include <iostream>
#include <cstring>
using namespace std;
string hid(int a) {
       string one = "", two = "V(";
       int b;
       do {
               b = a \% 10;
               switch (b) {
               case 0: one = "0" + one; break;
               case 1: one = "1" + one; break;
               case 2: one = "2" + one; break;
               case 3: one = "3" + one; break;
               case 4: one = "4" + one; break;
               case 5: one = "5" + one; break;
               case 6: one = "6" + one; break;
```

```
case 7: one = "7" + one; break;
                case 8: one = "8" + one; break;
                case 9: one = "9" + one; break;
                default: cout << "error"; }</pre>
                a /= 10;
        ) while (a != 0);
        two += one + ")";
        return two;
}
int main()
{
        string* vuvid;
        int n, n0;
        cout << "\nenter number of all vertices : ";</pre>
        cin >> n;
        cout << "\nenter number of vertices in the first line : ";</pre>
        cin >> n0;
        cout << "\nnow\nenter data in order :\nA(1) A(2) A(1)A(2) (weight of the edge between
them)n;
        long int** arr, * arr1, * arr2;
        arr = new long int* [n];
        arr1 = new long int[n];
        arr2 = new long int[n];
        vuvid = new string[n];
        for (int i = 0; i < n; i++) {
                arr[i] = new long int[n];
                arr2[i] = 0;
                arr1[i] = 0;
                for (int j = 0; j < n; j++) {
                        arr[i][j] = 0; \}
        int y=0, o=0;
```

```
int a1, a2, w;
   for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                    a1 = i + 1;
                    a2 = j + 1;
                    if (((a2 - a1 == 1) && (a1 \% n0 != 0)) || (a2 - a1 == 6)) {
                            cout << hid(a1) << "\t" << hid(a2) << "\t:\t";
                            cin >> w;
arr[a1 - 1][a2 - 1] = w;
           arr[a2 - 1][a1 - 1] = w; \}\}
   arr1[0] = 1;
   vuvid[0] = hid(1);
   int k = 0, z=0, f=0;
   long int* ww;
   ww = new long int[n];
   ww[0] = 0;
   for (int i = 0; k != n-1; i++) {
           y = ww[z];
            Z++;
            if(y!=n-1){
            for (int j = 0; j < n; j++) {
                            if (arr[j][y] != 0) {
                                     f++;
                                     ww[f] = j;
                                     if(arr2[j] == 0){
                                             arr2[j] = (arr[y][j] + arr2[y]);
                                             vuvid[j] = vuvid[y] + " -> " + hid(j + 1); }
                                     else {
                                             if(arr2[j] > (arr[y][j] + arr2[y])) {
                                                     arr2[j] = (arr[y][j] + arr2[y]);
                                                     vuvid[j] = vuvid[y] + " -> " + hid(j + 1); }}
```

```
arr[y][j] = 0; \\ arr[j][y] = 0; \} \} arr1[y] = 2; \\ k = 0; \\ for (int j = 0; j < n; j++) \{ \\ if (arr1[j] == 2) \{ k++; \} \} \} \} cout << endl << vuvid[n - 1] << " = " << arr2[n - 1] << " \n \n \n \n \n"; return 0; }
```

```
enter number of all vertices : 30
enter number of vertices in the first line : 6
         A(2)
V(2)
V(7)
V(3)
                   A(1)A(2)
                                  (weight of the edge between them)
          V(29)
V(30)
V(1) \rightarrow V(2) \rightarrow V(8) \rightarrow V(9) \rightarrow V(10) \rightarrow V(11) \rightarrow V(17) \rightarrow V(23) \rightarrow V(29) \rightarrow V(30) = 24
```

8. Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

1)Флері:

Код програми для знаходження ейлерового циклу:

```
#include <iostream>
#include <cstdio>
#define N 12
#define STACK_SIZE 100

using namespace std;

int G[N][N]={0};

int k;

int Stack[STACK_SIZE];

void Search(int v)

{
   int i;
   for(i = 0; i < N; i++)
      if(G[v][i])
      {
        G[v][i] = G[i][v] = 0;
   }
}</pre>
```

```
Search(i);
    }
  Stack[++k] = v+1;
}
int main()
{
  int n;
  cout<<"Enter number of edges : ";</pre>
  cin>>n;
  int a,b;
  cout<<"Enter pair of vertexes that contains edge :\n";</pre>
  for(int i=0;i<n;i++){
    cin>>a>>b;
    G[a-1][b-1]=1;
    G[b-1][a-1]=1;
  }
  int T, p, q, s;
  int j, vv;
  T = 1;
  for(p = 0; p < N; p++)
  {
    s = 0;
    for(q = 0; q < N; q++)
    {
      s += G[p][q];
    if(s%2) T = 0;
  }
  k = -1;
  cout << "Start vertex: ";</pre>
```

```
cin >> vv;
vv-=1;
if(T)
{
    Search (vv);
    for(j = 0; j <= k; j++)
        cout << Stack[j] << " ";
}
else
    cout << "it is not Eulerian graph\n";
    return 0;
}</pre>
```

```
Enter number of edges : 22
Enter pair of vertexes that contains edge :
1 7
1 8
2 8
2 7
2 6
2 3
3 7
3 5
3 4
46
  12
  11
5 12
6 11
6 10
11 7
11 10
10 9
9 7
10 8
8 7
Start vertex: 1
1 8 10 11 6 12 5 11 7 9 10 6 5 3 7 8 2 6 4 3 2 7 1
```

2)Елементарні цикли :

Виділимо прості цикли:

Отримаємо такий ейлеровий цикл:

Код програми для Елементарних циклів:

#include <iostream>

#include <iostream>

#include <vector>

using namespace std;

vector <int> graph;

```
bool check(vector<int> V, int vertix) {
        for (auto i = V.begin(); i != V.end(); i++) {
                 if (*i == vertix) return false;
        }
        return true;
}
void\ Find(vector{<}int{>}^*\ V, int^{**}\ B, int\ n, int\ position, int\ f\_vertix)\ \{
        for (int i = position, k = 0; k < 1; i++, k++) {
                 for (int j = 0; j < n; j++)
                         if (B[i][j] == 1 \&\& check((*V), j)) {
                                  if (j == f_{vertix \&\& (*V).size() > 2) {
                                          if (inf > V->size()) {
                                                   graph.clear();
                                                   graph.push_back(f_vertix + 1);
                                                   for (auto it = (*V).begin(); it != (*V).end();
                                                           it++)
                                                           graph.push_back(*it + 1);
                                                   graph.push_back(f_vertix + 1);
                                                   inf = V->size();
                                                   break;
                                          }
                                  }
                                  else {
                                          (*V).push_back(j);
                                          Find(V, B, n, j, f_vertix);
                                  }
                         }
        }
        if (V->size()!=0)
```

int inf = 99;

```
V->pop_back();
}
int main() {
        int n, n0;
         cout << "Enter number of vertices: ";</pre>
         cin >> n;
         int^{**} A = new int^* [n];
         for (int i = 0; i < n; i++) {
                 A[i] = new int[n];
                 for (int j = 0; j < n; j++) {
                          A[i][j] = 0;
                 }
        }
         cout << "Enter number of edges : ";</pre>
         cin >> n0;
        int a, b;
         cout << "Enter pair of vertexes that contains edge :\n";</pre>
         for (int i = 0; i < n0; i++) {
                 cin >> a >> b;
                 A[a - 1][b - 1] = 1;
                 A[b-1][a-1] = 1;
        }
         for (int i = 0; i < n; i++) {
                 for (int j = 0; j < n; j++) {
                          cin >> A[i][j];
                 }
        }*/
        vector<int> C;
         vector<int> B;
         cout << endl;</pre>
```

```
int counted, p, j, sum;
counted = 1;
for (p = 0; p < n; p++)
{
        sum = 0;
        for (j = 0; j < n; j++)
        {
                 sum += A[p][j];
        }
        if (sum \% 2) counted = 0;
}
cout << endl;</pre>
cout << "So, the cycles are: " << endl;</pre>
if (counted) {
        for (int j = 0; j < n; j++) {
                 inf = 99;
                 Find(&C, A, n, j, j);
                 for (int i = 1; i <= graph.size(); i++) {
                         cout <<"V"<< graph[i - 1] << " ";
                 }
                 cout << endl;
                 graph.clear();
        }
}
else
        cout << "It is not correct \n";</pre>
cout << endl;</pre>
return 0;
```

}

```
Enter number of vertices: 12
Enter number of edges : 22
Enter pair of vertexes that contains edge :
1 7
18
2 8
2 6
2 3
3 7
 4
  6
 6
6 12
5 11
5 12
6 11
5 10
11 7
11 10
10 9
9 7
10 8
8 7
So, the cycles are:
V1 V7 V2 V8 V1
V2 V3 V4 V6 V2
V3 V2 V6 V4 V3
V4 V3 V2 V6 V4
V5 V3 V2 V6 V5
V6 V2 V3 V4 V6
V7 V1 V8 V2 V7
  V1 V7 V2 V8
V9 V7 V8 V10 V9
V10 V6 V2 V8 V10
V11 V5 V3 V7 V11
V12 V5 V11 V6 V12
```

9. Спростити формулу (привести її до скороченої ДНФ). $(x \lor \overline{z})(\overline{y} \lor z)$

Розв'язування:

$$(x \vee \overline{z})(\overline{y} \vee z) = x\overline{y} \vee xz \vee \overline{z}\overline{y} \vee \overline{z}z = x\overline{y} \vee xz \vee \overline{z}\overline{y}$$