

ENGENHARIA DE SOFTWARE II UML – UNIFIED MODELING LANGUAGE Maria Clara Silveira

UML - UNIFIED MODELING LANGUAGE

 Linguagem de modelação gráfica para especificação, visualização, construção e documentação de sistemas de software ou outros

 Sucessora das linguagens de modelação encontradas nos métodos de Booch, OOSE (Jacobson), OMT (Rumbaugh) e outros

INFLUÊNCIAS UML

EVOLUÇÃO UML

UML

- Versão 1.1 aprovada pelo OMG (Object Management Group) em novembro de 1997
- Versão 1.3 aprovada em junho de 1999
- □ Versão 2.0 em 2005
- Versão 2.5 em junho 2015 (http://www.omg.org/spec/UML/2.5/PDF/)
- http://www.uml.org/
- http://www.uml.org/what-is-uml.htm

UML

- UML 1.3 tem 9 diagramas
 - Diagramas de visão estática: casos de uso (use case), classes, objectos, componentes, distribuição (deployment)
 - Diagramas de visão dinâmica: sequência, colaboração, estados (statechart), actividades
- UML 2.0 tem 13 diagramas, 4 novos
 - Communication Diagram
 - Interaction Overview Diagram
 - Composite Structure Diagram
 - Timing Diagram

Diagrama	Descrição IPG
Activity Diagram	Representa processos de negócio de alto nível, incluindo fluxos de dados, ou é utilizado para modelar a lógica complexa de um sistema.
Class Diagram	Mostra um conjunto de elementos de modelo estáticos, nomeadamente classes e tipos, os seus conteúdos e as suas relações.
Communication Diagram (Collaboration Diagram)	Mostra instâncias de classes, as suas inter-relações e os fluxos de mensagens entre elas. Coloca a ênfase na organização estrutural dos objectos que enviam e recebem mensagens.
Component Diagram	Apresenta os componentes que compõem uma aplicação, sistema, ou empresa. São apresentados os componentes, as suas interrelações, interacções e interfaces públicas.

Diagrama	Descrição
Composite Structure Diagram	Mostra a estrutura interna de um classificador (como uma classe, componente ou caso de utilização), incluindo os pontos de interacção do classificador com outras partes do sistema.
Deployment Diagram	Mostra a arquitectura de execução dos sistemas. Isto inclui os nós, os ambientes de execução hardware e software, assim como o middleware que os liga.
Interaction Overview Diagram	É uma variante de um digrama de actividade que mostra o fluxo de controlo dentro de um sistema ou processo de negócio. Cada nó/actividade dentro do diagrama pode representar outro diagrama de interacção.
Object Diagram	Mostra os objectos e as suas relações num dado ponto do tempo, normalmente um caso especial de um diagrama de classe ou de um diagrama de comunicação.

Diagrama	Descrição IPG	
Package Diagram	Mostra como os elementos do modelo estão organizados em pacotes, bem como as dependências entre pacotes.	
Sequence Diagram	Modela a lógica sequencial. Dá ênfase à ordenação temporal das mensagens.	
State Machine Diagram	Descreve os estados em que podem estar um objecto ou interação, assim como as transições entre estados. Anteriormente era designado por state diagram, state chart diagram, ou state-transition diagram.	
Timing Diagram	Mostra a mudança de estado ou condição de uma instância ou papel de classificador ao longo do tempo. É utilizado normalmente para mostrar a mudança de estado de um objecto ao longo do tempo em resposta a acontecimentos externos.	
Use Case Diagram	Mostra casos de uso, actores e as suas inter relações.	

(UML Superstructure 2.0 Draft Adopted Specification)

- Linguagem para:
 - Representação dos modelos dos objectos
 - Independente do processo de desenvolvimento

- Sugerem que o processo deve ser:
 - Controlado pelos Caso de Uso (Use Case)
 - Centrado sobre a arquitectura
 - Iterativo e incremental

DIAGRAMA DE CASOS DE USO (USE CASE)

Fonte: Grady Booch

DIAGRAMA USE CASE

- Mostra a razão da necessidade do Sistema
 - Use Cases: Organização dos requisitos na perspectiva dos Utilizadores
 - Actores : Quem ou o Quê interage com o sistema
 - Relacionamentos entre actores e casos de uso
- Providencia o fio condutor no desenvolvimento de sistemas
 - Reflectem o comportamento que o sistema deve disponibilizar
 - São utilizados para conduzir a análise, desenho e os testes

CASOS DE USO - DIAGRAMA

DIAGRAMA USE CASE

Identificar Atores:

- A quem interessa determinado requisito?
- Em que lugar da organização o sistema é usado?
- Quem beneficia com a utilização do sistema?
- Referindo determinada informação, quem a fornece, a utiliza e a apaga?
- Quem mantém e dá apoio ao sistema?
- O sistema usa algum recurso exterior?
- Alguém desempenha papeis diferentes?
- Um mesmo papel é desempenhado por várias pessoas?
- O sistema interage com outros sistemas?

	Problema	Solução
		TP(-
Atores	Como é que se deve começar a modelação de casos de uso?	Começando pelas pessoas (ou outros sistemas) que actualmente usam este sistema.
Lista de Candidatos a Casos de Uso	Como é que se determina o que o sistema deve fazer?	Listando Candidatos a Casos de Uso para cada Ator.
Casos de Uso Essenciais	Como se pode gerir uma grande quantidade de casos de uso?	Escolhendo casos uso essenciais para conduzir o desenho.
Diagrama de Casos de Uso	Como é que se sabe que os casos uso estão completos?	Desenhando um diagrama de casos de uso para mostrar quais os actores

Roleplay de Casos de Como é que se verifica se os Pondo em prática cada caso de uso diálogos dos casos de uso estão antes de ser presente à equipa de correctos?

envolve?

Como é que se pode descrever o

que é que cada caso de uso

desenvolvimento. Fonte: Biddle

e casos de uso que estão

Escrevendo diálogos dos casos de

uso essenciais para cada caso de

relacionados.

uso.

de Uso

Uso

Diálogos de Casos

QUANDO UTILIZAR CASOS DE USO?

- Os casos de uso são muito úteis para auxiliar na análise de requisitos do sistema. Em grande número de casos são a primeira coisa a fazer ao abordar um projecto.
- □ Normalmente começa-se com um conjunto não exaustivo de casos de uso e vão-se, depois, identificando alguns adicionais.
- □ Cada caso de uso corresponde a um requisito potencial. Importa ter isso em mente porque um requisito que não se consegue esclarecer é um requisito que não pode ser tomado em conta no projecto.
- Alguns analistas preferem criar casos de uso de grande granularidade. Outros preferem criar muitos casos de uso pequenos. Esta solução é geralmente melhor, mas corre-se o risco de obter um número muito elevado e difícil de gerir.

Fonte: Dias Figueiredo

CASOS DE USO

- Os casos de uso são lidos e usados por dois grupos de pessoas muito diferentes: utilizadores finais (ou especialistas de negócio) e programadores. Portanto a sua escrita não é óbvia.
- Produzir um conjunto de casos de uso não é tarefa para uma pessoa ou para um grupo de pessoas com as mesmas funções. Requer pessoas com diferentes conhecimentos e eventualmente diferentes personalidades.

Pessoas com conhecimentos em programação, regras do negócio e de como o sistema é usado actualmente.

RUP: ITERATIVO E INCREMENTAL

Iterações

Fonte: Jacobson 1999

REPRESENTAÇÃO DE COMUNICAÇÃO

DOCUMENTAR USE CASES

- O que tem de ter um caso de uso?
 - Por um lado, temos o fluxo normal de eventos (happy path), em que tudo corre bem
 - Por outro, existe o fluxo de eventos anormal, em que as coisas não correm de forma normal. O que acontece quando o sistema não funciona?
 - Começar sempre com o cenário em que tudo corre bem

DESCRIÇÃO ESTRUTURADA

Efectuar Encomenda Internet (Cenário Principal)	
Pré-condição	O cliente é um utilizador válido no sistema.
Descrição	1. O use case começa quando o cliente selecciona a opção de Encomendar.
	2. Em simultâneo com a sua encomenda é mostrado o catálogo de produtos.
	3. O cliente adiciona produtos à encomenda através da introdução do código do produto.
	4. Automaticamente, o sistema mostra o nome, descrição e preço do produto.
	5. De cada vez que é adicionado um produto, o valor total da encomenda é calculado.
	6. O cliente confirma a sua encomenda através da opção Confirmar.
	7. O sistema pede então os detalhes do cartão de crédito.
	8. O sistema confirma os dados do pagamento e atribui um número de identificação à encomenda.
Pós-Condição	A encomenda será entregue na morada do cliente.

SOFTDIGITAL - FLUXO DIGITAL DE DOCUMENTOS

O projeto consiste no desenvolvimento de uma aplicação em Android para conectar a respetiva assinatura no telemóvel com o documento pdf no computador da respetiva autorização de operação, exame ou cirurgia do paciente."

projeto faz sentido e tem aplicabilidade prática. A obrigatoriedade do "consentimento informado" por parte do Utente como prova de autorização para a realização de procedimentos é uma realidade, mas que só ainda é possível no meio hospitalar em suporte de papel. Este tipo de ferramenta viria agilizar e facilitar todo o processo."

Fonte: Ovelheiro, B. (2019). SOFTDIGITAL – Fluxo Digital de Documentos, Relatório de Projeto de Informática, Escola Superior de Tecnologia e Gestão do Instituto Politécnico da Guarda.

TABELA ATORES E OBJETIVOS

Atores	Objetivos
Médico / Enfermeiro	Inserir documento para assinatura digital; Assinar digitalmente o documento; Consultar estado da assinatura do documento; Consultar histórico de atividade do documento; Criar utilizador; Receber notificação com documento por assinar.
Utente / Representante legal do Utente	Assinar digitalmente o documento; Consultar histórico de atividade do documento; Criar utilizador; Receber notificação com documento por assinar.
Autenticação.GOV ou outra	Assinatura digital qualificada.

DRAW.IO

CASOS DE USO - DIAGRAMA

Nome	Inserir documento para assinatura digital.
Descrição	Este caso de uso tem como objetivo descrever o processo de inserir um documento para assinatura digital. Os documentos a inserir podem ser para cirurgia, consentimento informado, etc.
Pré-Condição	Login válido.
Caminho Principal	 O ator seleciona a opção "Selecione o documento"; O sistema apresenta uma lista; O ator seleciona o documento pretendido, introduz um nome para o documento e seleciona a opção "Inserir documento"; O sistema carrega o documento pretendido e apresenta o documento para assinatura.
Caminhos Alternativos	 2. a) Lista de documentos vazia; 4. a) Falha ao carregar documento, o sistema redireciona para a página inicial; b) O sistema alerta o ator que não introduziu um nome para o documento.
Pós-Condição	O sistema envia uma notificação com documento "É necessário assinar".
Suplementos ou adornos	Testar se o documento foi inserido (clicar em Inserir documento sem ter selecionado nenhum documento; clicar em Inserir documento sem ter introduzido um nome para o documento).

Politécnico |da|Guarda Escola Superior de Tecnología e Gestão

IPG

1 – Suponha que pretende projetar um **Sistema de Gestão Documental (SGD)** para uma organização.

Os documentos circulam entre unidades orgânicas da organização, sendo arquivados no final do seu ciclo de vida. Cada documento tem um ou mais autores, um assunto e uma descrição textual, podendo ter anexos. Um documento pode ter origem interna ou externa. No caso de origem interna, os documentos passam pelo seguinte processo de tratamento:

- O(s) autor(es) do documento dão entrada do documento no sistema;
- •O sistema atribui automaticamente ao documento um número, passando a estar registado no sistema com o estado "Interno";
- Consoante o tipo de documento, este terá de ser revisto pelo superior hierárquico imediato (estado "Em Revisão") e posteriormente aprovado pelo responsável máximo (estado "Aprovado");
- Caso os superiores hierárquicos não aprovem o documento passa ao estado "Reprovado";
- Todos os documentos destinados a remetentes externos à empresa são inseridos no sistema com o estado "Externo". O processo de envio é então despoletado, passando no final o documento a estar no estado "Enviado".

Adicionalmente, pretende-se satisfazer os seguintes requisitos:

- O sistema deve guardar registo de todos os documentos a circular na empresa, podendo ou não ter uma cópia digital dos mesmos, mas tendo sempre o estado e localização física destes.
- Os utilizadores devem usar o sistema para atribuir os estados aos documentos, inserir documentos novos e todas as funcionalidades referentes ao seu processamento.
- Os utilizadores (funcionários e responsáveis hierárquicos) devem-se autenticar perante o sistema, tendo disponíveis apenas as ações que lhes são permitidas;
- O sistema deve permitir a introdução e manutenção de todos os dados relativos à identificação dos documentos, ou seja, remetente ou autor, destinatário, título ou assunto, data de criação e datas associadas às respetivas mudanças de estado (historial).
- Construa o Diagrama de Casos de Uso (notação UML) relativo a este sistema.

SISTEMA GESTÃO DOCUMENTAL

