ROB 101 - Fall 2021

Solutions of Nonlinear Equations (Bisection and Newton's Methods)

November 3, 2021

Learning Objectives

- Extend our horizons from linear equations to nonlinear equations.
- Appreciate the power of using algorithms to iteratively construct approximate solutions to a problem.
- Accomplish all of this without assuming a background in Calculus.

Outcomes

- Learn that a root is a solution of an equation of the form f(x) = 0.
- Learn two methods for finding roots of real-valued functions of a real variable, that is for $f: \mathbb{R} \to \mathbb{R}$, namely the Bisection Method and Newton's Method
- Become comfortable with the notion of a "local slope" of a function at a point and how to compute it numerically.

- ▶ We will limit our notion of a solution to the set of real numbers or real vectors.
- For example, $x^2+1=0$, has no real solutions because its discriminant is $\Delta=b^2-4ac=-4<0$.
- Nevertheless, many interesting problems in Engineering and Science can be formulated and solved in terms of "real solutions" to systems of equations.

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Then f(x) = 0 defines an equation.
- A solution to the equation is also called a *root* that is $x^* \in \mathbb{R}^n$ is a root of f(x) = 0 if

$$f(x^*) = 0.$$

Just as with quadratic equations, it is possible to have multiple real solutions or no real solutions.

▶ What about $f(x) = \pi$?

- ▶ What about $f(x) = \pi$?
- ▶ Define a new function, $\bar{f}(x):=f(x)-\pi$, then $\bar{f}(x^*)=0\iff f(x^*)-\pi=0\iff f(x^*)=\pi.$

 $ightharpoonup x^*$ is a root of our new function $\bar{f}(x)$.

Continuous Functions

- Informally, a function $f: \mathbb{R} \to \mathbb{R}$ is *continuous* if you can draw the graph of y = f(x) on a sheet of paper without lifting your pencil (from the paper).
- Also, a function is valid, if for a given $x \in \mathbb{R}$, there can be only one value of $y \in \mathbb{R}$ such that y = f(x).

Continuous Functions

Intermediate Value Theorem

Theorem

Assume that f is a continuous real valued function and you know two real numbers a < b such that $f(a) \cdot f(b) < 0$. Then there exists a real number c such that

- $ightharpoonup a < c < b \quad (c \text{ is between } a \text{ and } b), \text{ and } b$
- $f(c) = 0 \quad (c \text{ is a root}).$

The values a and b are said to bracket the root, c.

Intermediate Value Theorem

Bisection and Newton's Methods

Let's switch to the Julia notebooks!

Next Time

- ► Vector-valued Functions and Newton-Raphson Method
- ▶ Read Chapter 11 of ROB 101 Book