Incomplete Data Analysis

Ignorability—simulation study

School of Mathematics, University of Edinburgh

V. Inácio de Carvalho & M. de Carvalho

In this supplementary file I show how to reproduce the results from the simulation study presented in the slides. We are assuming that $Y_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$ and $R_i \mid Y_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. I will simulate nsim = 1000 datasets of sample size n = 100 and consider $\theta = 0.3$. I will store the generated data and corresponding missing data indicators in a $n \times nsim$ matrix. The maximum likelihood estimates (from the 1000 simulated datasets) based on both the full and observed data likelihood will be stored in two separate vectors.

Full likelihood

Observed data likelihood

We will now violate the MAR assumption. We repeat a similar exercise but now, instead of violating the

non-distinctness of parameters assumption, we violate the MAR assumption. In particular, we assume

$$Y_i \stackrel{\text{iid}}{\sim} \operatorname{Bernoulli}(\theta), \quad \text{and} \quad \Pr(R_i = 1 \mid Y_i) = \frac{e^{Y_i}}{1 + e^{Y_i}}.$$

The code follows below.

MNAR data

