AMATH 732: Assignment 1.

Due Monday, September 26

- 1. Find approximate solutions of the following problems by finding the first three terms in a perturbation series solution (in an appropriate power of ϵ) using perturbation methods. For problem (e) explain whether the missing terms are $O_F(\epsilon^2)$ or $O(\epsilon^2)$. You should find all of the roots, including complex roots. In these cases you can leave the solutions in terms of x_0 , where x_0 is the leading-order approximation of the complex roots.
 - (a) $\epsilon x^3 + (x-1)(x-2) = 0$.
 - (b) $x^2 + (2 \epsilon)x 63 + 3\epsilon = 0$.
 - (c) $x^2 (8 2\epsilon)x + 16 + \epsilon = 0$.
 - (d) $x^3 + 2\epsilon^2 x 1 + \epsilon^2 = 0$.
 - (e) $(x+1)^3(x-1) \epsilon x^2 = 0$.
 - (f) $\epsilon x^6 + (x+1)^4 = 0$.
 - (g) $\epsilon x^5 + \epsilon x^4 + x^2 2x 8 = 0$.
- 2. The equation

$$y = \cos(x + \epsilon \sin(y))$$

implicitely defines a function $y(x; \epsilon)$. Find $y(x; \epsilon)$ as a power series in $\epsilon \ll 1$. You should find the first three non-zero coefficients. [Hint: use $f(q(x)+\epsilon r(x)+\cdots)=f(q(x))+f'(q(x))(\epsilon r(x)+\cdots)+\cdots$.]

3. (a) For the projectile problem discussed in class find the first two corrections to the solution of the reduced problem, i.e., solve to $O(\epsilon^3)$:

$$\tilde{x}(t,\epsilon) = x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + O_F(\epsilon^3).$$

- (b) Find the solution using the method of parametric differentiation and show that the solution you obtained in part (a) is the Taylor series expansion of $x(t, \epsilon)$. Hence argue that the O_F symbol can be replaced by the O symbol given that you are only interested in the solution between the time the projectile leaves the surface and the time it returns to the surface.
- (c) Using your solution estimate the upward velocity $\tilde{v}(t,\epsilon)$ of the projectile. Let τ_m be the time the projectile reaches its maximum height \tilde{x}_m . Estimate the value of τ_m .