Generování matic bez zakázaných vzorů

Stanislav Kučera

Informatický ústav Univerzity Karlovy

8. 9. 2016

Zadání

Cílem bakálářské práce bylo navrhnout a implementovat postup, jak vytvořit aproximaci rovnoměrně náhodné binární matice bez daného zakázaného vzoru.

Zakázaný vzor

Definice

Binární matice $M \in \{0,1\}^{m \times n}$ obsahuje binární matici $P \in \{0,1\}^{k \times l}$ jako podmatici, pokud lze z M vynecháním některých řádků a sloupečků získat matici M' $k \times l$ takovou, že pokud má P jedničku na nějaké pozici, má na téže pozici jedničku i M'. Jinak řekneme, že M neobsahuje (vyhýbá se) P jako podmatici.

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Zakázaný vzor

Definice

Binární matice $M \in \{0,1\}^{m \times n}$ obsahuje binární matici $P \in \{0,1\}^{k \times l}$ jako podmatici, pokud lze z M vynecháním některých řádků a sloupečků získat matici M' $k \times l$ takovou, že pokud má P jedničku na nějaké pozici, má na téže pozici jedničku i M'. Jinak řekneme, že M neobsahuje (vyhýbá se) P jako podmatici.

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Příklady použití

- Pomocí matic bez zakázaných vzorů se dokázal horní odhad časové složitosti algoritmu Efrata a Sharira na "Segment-center problem".
- Existuje korelace mezi některými třídami matic bez zakázených vzorů a Davenport-Schinzelovým posloupnostmi, které zase korelují se složitostí dolní (horní) obálky arrangementů v rovině.

Markovovy řetězce

Definice (neformální)

Pro předepsané pravděpodobnosti $p_{i,j}$ je Markovův řetězec posloupnost prvků X_0, \ldots ze stavové množiny \mathcal{X} dodržující $P[X_{t+1} = j | X_t = i] = p_{i,j}$.

Markovovy řetězce

Definice (neformální)

Pro předepsané pravděpodobnosti $p_{i,j}$ je Markovův řetězec posloupnost prvků X_0, \ldots ze stavové množiny $\mathcal X$ dodržující $P[X_{t+1} = j | X_t = i] = p_{i,j}$.

Věta (neformální)

Pokud je Markovův řetězec aperiodický, nerozložitelný a symetrický, potom je jeho limita uniformně náhodně rozložena na stavové množině \mathcal{X} .

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor *P*, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **3** Pokud M' neobsahuje P jako podmatici, nastavíme M := M'.
- Goto 2.

Markovův řetězec pro matice

Pokud chceme generovat matici neobsahující vzor P, postupujeme takto:

- 2 Zvolíme libovolnou matici M neobahující P.
- 2 Změníme uniformně náhodně vybraný bit M, čímž dostaneme M'.
- **3** Pokud M' neobsahuje P jako podmatici, nastavíme M := M'.
- Goto 2.

Protože definovaný Markovův řetězec splňuje předpoklady věty z minulého slidu, jeho limita je náhodná matice neobsahující vzor P jako podmatici. My ale nemáme čas čekat nekonečně dlouho, a zároveň zmíněná věta ani žádná jiná nedává odhad na dostačující počet iterací (mixing time), takže volbu počtu iterací necháme na uživateli.

Algoritmus pro testování speciálních vzorů

Definice

O matici řekneme, že je to Walking pattern, pokud existuje procházka z levého horního rohu matice do pravého dolního rohu obsahující všechny jedničky v matici.

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Algoritmus pro testování speciálních vzorů

Definice

O matici řekneme, že je to Walking pattern, pokud existuje procházka z levého horního rohu matice do pravého dolního rohu obsahující všechny jedničky v matici.

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Algoritmus pro testování speciálních vzorů

Definice

O matici řekneme, že je to Walking pattern, pokud existuje procházka z levého horního rohu matice do pravého dolního rohu obsahující všechny jedničky v matici.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.
- Volitelně program testuje kromě toho, že jsou jedničky tam, kde být musí, také jestli je dost jedniček tam, kam se později budou mapovat dosud nenamapované linie.

Rozhodnout, zda daná matice obsahuje daný vzor je NP-úplné (dokonce i pro permutační matice).

Při testování obsahování vzoru postupně mapujeme všechny linie (řádky a sloupce) vzoru na všechny možné linie testované matice.

Optimalizace:

- Některá částečná mapování můžeme sloučit a tím ušetřit čas i prostor.
- Program poskytuje mnoho různých způsobů jak zvolit pořadí, ve kterém se budou linie mapovat.
- Volitelně program testuje kromě toho, že jsou jedničky tam, kde být musí, také jestli je dost jedniček tam, kam se později budou mapovat dosud nenamapované linie.
- Protože známe generující proces a již víme, že matice před změnou bitu vzor neobsahovala, víme také, že pokud ho po změně obsahuje tak jedině proto, že právě změněný bit je součástí mapování vzoru.

Děkuji za pozornost.