Devoir Maison 2018-2019

Rendre IMPERATIVEMENT une copie pour deux au plus tard le 12 octobre 2018.

Toutes les réponses doivent être justifiées!

Exercice 1

Compétences mobilisées :

- Manipulation des quantificateurs.
- o Rédaction d'une preuve.

On considère les assertions suivantes :

 $A: (\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(x(y+1) \geqslant 0).$

 $B: (\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x(y+1) > 0).$

 $C: (\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x(y+1) \geqslant 0).$

- 1. Ecrire NON A, NON B et NON C.
- 2. Les assertions A, B et C sont-elles vraies ou fausses?

Exercice 2

Compétence mobilisée : Rédiger correctement un raisonnement par récurrence.

Soit $u_0 = -1$ et $v_0 = 2$. On considère les suites définies par

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + v_n \text{ et } v_{n+1} = u_n + v_n^2,$$

Démontrer que pour tout $n \in \mathbb{N}^*$, $u_n \ge 0$ et $v_n \ge 0$.

Exercice 3

Compétences mobilisées :

- Se repérer dans les " niveaux " d'ensemble (appartenance, inclusion, nombre d'accolades).
- o Manipulation du produit cartésien
- 1. Soit $F = \{1, \{2\}, \emptyset\}$.
 - (a) Compléter les \cdots par \in ou \notin : 1 \cdots F et 2 \cdots F.
 - (b) Déterminer un ensemble X tel que $X \subset F$.
 - (c) Déterminer un ensemble Y tel que $Y \in F$.
 - (d) Existe-t-il un ensemble Z tel que $Z \subset F$ et $Z \in F$?
 - (e) Déterminer $\mathcal{P}(F)$, l'ensemble des parties de F.
 - (f) Déterminer $F \cap \mathcal{P}(F)$.

- 2. On considère les intervalles de \mathbb{R} , I = [0, 2], J = [-1, 1] et K = [0, 1].
 - (a) Donner un élément de $I \times J \times K$.
 - (b) Donner un élément de $I \times J$.
 - (c) Donner un élément de $I \times J$ qui n'est pas dans $I \times K$.
 - (d) Donner un sous ensemble non vide de $I \times J$.

Exercice 4

Compétences mobilisées :

- \circ Manipulation des opérateurs \cap et \cup et leurs propriétés
- o Manipulation de l'implication (réciproque, négation, contraposée).
- o Raisonnement par l'absurde
- 1. On considère trois ensembles A, B et C tels que $A \cup B = B \cap C$. Montrer que

$$A \subset B \subset C$$
.

2. On considère A et B, deux ensembles <u>non vides</u>. On note $\not\subset$ la négation de \subset . Soit l'assertion

$$P: A \cap B = \emptyset \Longrightarrow A \not\subset B.$$

- (a) Montrer, par l'absurde, que l'assertion ${\cal P}$ est vraie.
- (b) Ecrire la contraposée de P. Est-elle vraie?
- (c) Ecrire la négation de P. Est-elle vraie?
- (d) Ecrire la réciproque de P. Est-elle vraie?