cheatsheet

PART1: definition

1. Triangular matrix:

A matrix that only upper or lower triangular entry is non-zero.

A matrix is **upper triangular** if the (i j)-entry is 0 whenever i > j.

A matrix is **lower triangular** if the (i j)-entry is 0 whenever i < j.

2. Diagonal matrix:

A square matrix that both upper and lower triangular (i.e. Only diagonal entries is non-zero)

3. Standard vectors

A vector in whose only i-th entry is 1 is denoted by $e_i:e_1,e_2,...,e_n$ are collectively known as the standard vectors e_i

(also called standard unit vectors or standard basis vectors)

4. Identity Matrix I:

A matrix that only diagonal entries are 1, others are all 0.

5. Equicalent

The two systems are **equivalent** if they have the same solution set.

6. Augmented matrix:

We append RHS constants vector to coefficient matrix, written as the following form: $[A \mid b]$

7. EROs: elementary row operations

- (I) Exchange two rows
- (II) Multiply a row by a nonzero constant

8. REF row echelon matrix:

- (1) Zero rows must be at the bottom of the matrix (if any)
- (2) The **leading entry** (i.e. first non-zero entry, also called **pivot**) of non-zero row must be on the right of the leading entries in the rows above (i.e. the entries below a leading entry must be 0) We call it is in **row echelon form (REF)**

9. RREF reduced row echelon matrix:

- (3) The column that each leading entry in only has one non-zero entry (i.e. pivot itself)
- (4) Every leading entry of non-zero rows are 1

We call it is in reduced row echelon form (RREF), or row canonical form

Inconsistent:

If there is a linear system with no solution at all, it's **inconsistent.** i.e. It's RREF has $[0\ 0\ ...\ 0\ |\ 1]$

10. Rank and Nullity:

The ${\bf rank}$ of A (denoted by ${rank}(A)$) is the number of ${\bf pivots}$ in the RREF of A(also the REF of A)

The **nullity** of A (denoted by nullity(A)) is defined to be the number of **free variables** in the solutions of Ax=0

11. Span and Generation set:

Let S be a finite non-empty set of vectors in \mathbb{R}^n , the **span** of S (denoted by span(S)) is defined to be the set of all linear combinations of the vectors in S And S is called the **generation set** of $span\{s\}$;

12. Elementary matrix

An **elementary matrix** is a matrix obtained from the identity matrix by performing a **single ERO**. Specifically:

- Type I Elementary Matrix:
 - o Corresponds to **swapping** two different rows.

e.g. swapping the first row with the second row in a 3x3 identity matrix.

• Type II Elementary Matrix:

- o Corresponds to multiplying a row by a non-zero scalar.
- o e.g. multiplying the second row of the identity matrix by a non-zero constant k.

Type III Elementary Matrix:

- Corresponds to adding a multiple of one row to another row.
- e.g. in the identity matrix, adding k times the second row to the first row (where k is any constant).

13. LU Decomposition

LU decomposition of A is a factorization of the form A=LU in which L is a unit lower triangular (square) matrix (i.e. all entries on the diagonal are 0) and U is upper triangular (not necessarily square).

$$A = egin{bmatrix} 2 & 1 \ 4 & 3 \end{bmatrix} = egin{bmatrix} 1 & 0 \ 2 & 1 \end{bmatrix} egin{bmatrix} 2 & 1 \ 0 & 1 \end{bmatrix} = LU$$

其中:
$$L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$

14. PLU Decomposition

When a matrix **hasn't LU decomposition**, we can find an **invertible** permutation matrix P, so that $P^{(-1)}A$ has LU decomposition.

$$P^{-1}A = LU$$
$$A = PLU$$

As addition, because permutation matrix is an **Orthogonal Matrix**, so we have:

$$P^{-1} = P^T$$

15. Matrix Transformation

Let A be an m×n matrix. The function:

$$T_a:\ R^n o R^m \ defined\ by\ T_a(x)=Ax$$

is said to be the matrix transformation induced by A (such A is called the standard matrix of T).

16. Linear Transformation

A function $T:\mathbb{R}^n o \mathbb{R}^m$ is said to be a linear transformation if

$$T(u+v) = T(u) + T(v)$$
 and $T(cu) = cT(u)$

for any $u,v\in\mathbb{R}^n$ and $c\in\mathbb{R}$,

i.e. T preserves addition and scalar multiplication.

17. Injectivity and surjectivity

Let $T:\mathbb{R}^n o \mathbb{R}^m$ be a **linear transformation** with standard matrix A. Then:

- (a) T is **injective** if and only if rankA = n (equivalently, T has null space $\{0\}$).
- (b) T is **surjective** if and only if rankA = m.

18. Null space of T (aka null space of A, kernel of T)

The **preimage**(原像) of $\{0\}$

i.e. the set of all v such that T(v) = 0 is called the **null space** of T.

19. cofactor

Let A = $[a_{ij}]$ be an $n \times n$ matrix.

 A_{ij} is a submatrix of A that obtained by deleting the i-th row and j-th column. C_{ij} is (i, j)-cofactor, defined by

$$C_{ij} = (-1)^{i+j} \times det(A_{ij})$$

20. Determination

For an $n \times n$ matrix $A = [a_{ij}]$, we define:

$$det A = \sum_{i=1}^{n} a_{ij} \cdot C_{ij} \ or \ \sum_{j=1}^{n} a_{ij} \cdot C_{ij} \ where \ i,j \in \mathbb{R}$$

Knowns as "The cofactor expansion along the j-th column or i-th row"

21. adjoint

The adjoint of A, denoted by adj(A). $adj(A) = [C_{ij}]$

22. Subspace

A subset $W\subseteq\mathbb{R}^n$ is said to be a **subspace** of \mathbb{R}^n if it satisfies the following:

- $\vec{0} \in W$
- If $ec{x}, ec{y} \in W$, then $ec{x} + ec{y} \in W$ (i.e. W is closed under addition)
- If $ec{x} \in W$ and $c \in \mathbb{R}$, then $cec{x} \in W$ (i.e. W is closed under scalar multiplication)

For each $m \times n$ matrix A, we have:

23. Row space

Notion: Row A

Subspace of \mathbb{R}^n

Span of the rows of A

24. Column space

Notion: $Col\ A$

Subspace of \mathbb{R}^m

Span of the columns of A

25. Null space

Notion: $Null\ A$

Subspace of \mathbb{R}^n

Solution set of $A\vec{x}=0$

26. Basis:

Let V be a subspace of \mathbb{R}^n . A linearly independent generating set for V is called a basis for V. Remarks:

- The plural for basis is *bases*. (单词basis的复数形式是bases)
- A basis for V must be a subset of V.
- Every basis for \mathbb{R}^n consists of exactly n vectors.

27. Reduction Theorem (约简定理) and Extension Theorem (扩展定理):

Let V be a non-zero subspace of \mathbb{R}^n . We have the following:

- ullet (Reduction theorem) Every finite generating set of V contains a basis.
- ullet (Extension theorem) Every linearly independent subset of V can be extended to a basis. (By convention we say that only basis of the zero subspace is the empty set.)

28. Dimension

Any two bases for V contain the **same number** of vectors. This number is said to be the **dimension** of V and is denoted by dim(V).

(By convention the zero subspace is defined to have dimension 0.)

28. Coordinate vector:

lemma:

Let $B = \{b_1, b_2...b_k\}$ be an **ordered basis** for a subspace V.

Then each $v \in V$ can be written as a unique linear combination of the vectors in B.

In the forms as:

$$v = c_1b_1 + c_2b_2 + ... + c_kb_k$$

Hence we define:

$$[v]_B = egin{bmatrix} c_1 \ c_2 \ c_3 \ \dots \ c_k \end{bmatrix} = B^{-1} v$$

to be the coordinate vector of v relative to B (or B-coordinate vector of v).

29. Similarity of matrices

Let A and B be square matrices. We say A is **similar** to B if

$$B = P^{-1}AP$$

for some invertible matrix P.

Thus in some sense, similar matrices can be seen as matrices representing the same linear transformation with respect to different bases.

30. eigencalue, eigenvactor and eigenspace

Let A be a square matrix. If $Ax=\lambda x$ for some non-zero vector x and scalar t λ is called to be an **eigenvalue** of A; x is called an **eigenvector** of A corresponding to the eigenvalue ,or in short, a of A. and we call Null(A-tI) as *eigenspace* of A corresponding of t, or in shorter, the t-eigenspace of A

31. character equation and character polynomial

In the progess of finding the eigenvalue, we define **character equation** is:

$$det(A - \lambda I) = 0$$

and character polynomial is LHS:

$$det(A - \lambda I)$$

32. Algebraic multiplicity and geometric multiplicity

lemma:

A degree n polynomial (where n>1) with coefficients in $\mathbb C$ has exactly n zeros(零点) in $\mathbb C$ (counting multiplicities,重根).

It thus follows that a n imes n matrix A has exactly n eigenvalues in $\mathbb C$ (counting multiplicities)

- The *algebraic multiplicity* (or simply *multiplicity*) of an eigenvalue is the number of times it appears as a zero of the character polynomial.
- The **geometric multiplicity** of an eigenvalue is the dimension of its corresponding eigenspace.

33. Diagonalization(对角化)

diagonalizable:

An $n \times n$ matrix A is diagonalizable IFF it has n linear independent eigenvectors.

- Eigenvectors of a matrix A that correspond to distinct eigenvalues are linearly independent.
- If a matrix A has an eigenvalue whose geometric multiplicity is less than the algebraic multiplicity, then A is not diagnosable.

Thus, A matrix A is diagonalizable if and only if for each of its eigenvalues, the algebraic and geometric multiplicities are equal.

Process

If A is a diagonalizable $n \times n$ matrix, it has n eigenvalues: $\{\lambda_1, \lambda_2, ... \lambda_n\}$ and n corresponding linear independent eigenvectors: $\{v_1, v_2, ... v_n\}$

$$(i.e. orall i \in \mathbb{R} \ Av_i = \lambda_i v_i)$$

Then we have:

$$A = PDP^{-1}$$

where P is eigenvector matrix and D is diagonal matrix of eigenvalues

$$P = egin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}, \ D = egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

PART2: property

1. Given the system Ax = b, the following statements are **equivalent.**

- (a) The system is consistent.
- (b) The vector b is a linear combination of the columns of A.
- (c) The reduced row echelon form of the augmented matrix of the system has no row of the form $[0\ 0\ \dots\ 0\ |\ 1].$

更一般地,在解决具有无限多解的线性系统时,我们可以将增广矩阵转换为简化行最简形式。设定那些对应于非主元列的变量为自由变量(free variables),而那些对应于主元列的变量为基础变量(basic variables)。需要注意的是,简化行最简形式使得基础变量很容易用自由变量表示出来。

2. Let A be an $m \times n$ matrix. The following statements are equivalent.

- (a) Ax = b is consistent for every $b \subseteq \mathbb{R}^m$.
- (b) The span of the columns of A is \mathbb{R}^m .
- (c) The RREF of \boldsymbol{A} has no zero row.
- (c') The RREF of $[A \mid b]$ has no row of the form $[0 \ 0 \ \dots \ 0 \mid 1]$ for every $b \subseteq \mathbb{R}^m$
- (d) rank(A) = m

3. Let A be an $m \times n$ matrix. The following statements are equivalent.

- (a) The columns of \boldsymbol{A} are linearly independent.
- (b) Ax = b has at most one solution for every $b \subseteq \mathbb{R}^m$.
- (c) nullity(A) = 0
- (d) rank(A) = n
- (e) The RREF of A is $[e_1 \ e_2 \ \dots \ e_n]$
- (f) The system Ax=0 only has the ${f trivial\ solution}$.

4. Equivalent conditions about invertibility:

The following statements are equivalent for an n×n matrix

- (1) A is invertible
- (2) The RREF of A is I.
- (3) The span of the columns of A is \mathbb{R}^n
- (4) rank(A) = n.(i.e. nullity(A) = 0)
- (5) Ax = b is consistent for every $b \in \mathbb{R}^n$
- (6) The columns of A are linearly independent.
- (7) Ax = 0 only has the trivial solution.
- (8) There exists a matrix B such that BA = I.
- (9) There exists a matrix C such that AC = I.
- (10) A is a product of elementary matrices.
- (11) $det(A) \neq 0$

5. Common geometric transformation

(1) Reflection on x/y - axis

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ -y \end{bmatrix} \ or \ \begin{bmatrix} -x \\ y \end{bmatrix}$$

just multiply following matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} or \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

(2)Translation upward by 1 unit

Not exist a linear transformation fot it

(3)Enlargement about the origin by a factor of k

$$egin{bmatrix} x \ y \end{bmatrix} \Rightarrow egin{bmatrix} kx \ ky \end{bmatrix}, \ k \in \mathbb{R}$$

just multiply following matrix:

$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

.....

6. A transformation $T:\mathbb{R}^n o \mathbb{R}^m$ is **linear** if and only if it is a **matrix transformation**.

7. Simplification of evaluating the determinant

- Find the tow/column that with more zero.
- The determinant of the triangular matrix, is equal to the product of the non-zero matrix.

$$\circ \ det egin{pmatrix} A_{11} & * & \dots & * \ 0 & A_{22} & \dots & * \ \dots & \dots & \dots \ 0 & 0 & 0 & A_{nn} \end{pmatrix} = \prod_{i=1}^n A_{ii}$$

 \circ Generalized, if each A_{ii} is a block matrix, then we have:

$$ullet \det egin{pmatrix} A_{11} & * & \dots & * \ 0 & A_{22} & \dots & * \ \dots & \dots & \dots & \dots \ 0 & 0 & 0 & A_{nn} \end{pmatrix} = \prod_{i=1}^n \det(A_{ii})$$

- ERO's effect on determinant
 - Type 1 EROs—Exchange two rows

•
$$det(E_1A) = (-1) \times det(A)$$

Type 2 EROs—Multiply one row by a constant k:

•
$$det(E_2A) = k \times det(A)$$

- Type 3 EROs—Add a row to another row:
 - $det(E_3A) = det(A)$
- Essentially, that is because:
 - $det(EA) = det(E) \times det(A)$

8. Properties of determinants

Let A be a square matrix. Then

- ullet A is invertible if and only if det(A)
 eq 0
- ullet det(AB) = det(A) imes det(B) (if they have the same size)
- $det(A^T) = det(A)$
- $det(A^{-1}) = \frac{1}{det(A)}$
- Let $T:R^n\to R^n$ be an invertible linear transformation with standard matrix A. Then for any "sufficiently nice region" $S\in R^n$ (Usually refers to the region that can calculate the volumn), the n-dimensional volume of T(S) is equal to |det(A)| times the n-dimensional volume of S.

9. Use determinant to solve the inverse matrix.

we have:

$$A^{-1} = \frac{1}{\det(A)} imes adj(A)$$

10. Cramer's rule:

We have Ax=b so $\vec{x}=A^{-1}\vec{b}=\frac{1}{\det(A)} imes \det(adj(A)) imes \vec{b}$ Let A_i denote the i-th column of A

then we have:

$$x_i = rac{det([ec{A_1} \ ... \ ec{A_{i-1}} \ ec{b} \ ec{A_{i+1}} \ ... \ ec{A_n}])}{det(A)}$$

11. How to find a basis for each of the row space, column space and the null space of a matrix A:

If R is the RREF of A

- 1. The set of non-zero rows of R will form a basis for $Row\ A$. i.e. $dim(Row\ A)$ is equal to the numbers of non-zero rows of R
- 2. The set of leading columns will form a basis for $Col\ A$.
- 3. The set of special solution vectors corresponding to the free variables in R will form a basis for $Null\ A$.

12. If V and W are subspaces of \mathbb{R}^n such that $V\subseteq W$, then $dim(V)\leq dim(W).$ Equality holds if and only if V=W.

13. For a linear transformation T_A , we have:

$$[T(v)]_B = [T]_B[v]_B$$

$$[T]_B = [[T(b_1)]_B [T(b_2)]_B ... [T(b_k)]_B]$$

14. Finding eigenvalues

Let A be an $n \times n$ matrix.

The equation det(A - tI) = 0 is called the **characteristic equation** of A.

The LHS of the characteristic equation, is said to be the *characteristic polynomial* of A.

Eigenvalues of A are thus roots of its characteristic equation, or zeros of its characteristic polynomial. It can be proved by induction on n that the characteristic polynomial of A is indeed a polynomial (with degree n).

P.S. Some authors prefer to use det(tI - A) instead of det(A - tI).

15. The algebraic multiplicity of an eigenvalue is always greater than or equal to its geometric multiplicity.

PART3: glossary

1. Triangular matrix: 三角矩阵

2. upper triangular matrix: 上三角矩阵

3. lower triangular matrix: 下三角矩阵

4. Diagonal matrix: 对角线矩阵

5. EROs: elementary row operations

6. REF: row echelon form

7. RREF: reduced row echelon form

8. Inconsistent: 不一致的

9. rank: 秩

10. nullity: 零度

11. Span: 张量空间

12. Generation set: 生成集

13. Elementary matrix: 初等矩阵

14. factorization: 因子分解

15. Orthogonal Matrix: 正交矩阵

16. Matrix Transformation: 矩阵变换

17. Linear Transformation: 线性变换

18. Injectivity: 单射性

19. Surjectivity: 满射性

20. Null space: 零空间

21. Kernel: 核

22. preimage: 原像

23. cofactor: 余子式

24. Determination: 特征值

25. cofactor expansion: 代数余子式展开

26. block matrix:分块矩阵

27. adjoint: 伴随矩阵

28. Subspace: 子空间

29. Row space: 行空间

30. Column space: 列空间

31. Basis: 基, 复数为bases

32. Reduction Theorem: 约简定理

33. Extension Theorem: 扩展定理

34. Dimension: 维度

35. zero subspace: 零子空间

36. Coordinate vector: 坐标向量

37.