Basic Machine Learning Supervised Learning

Kyunghyun Cho

New York University

Courant Institute (Computer Science) and Center for Data Science Facebook AI Research

Data-Driven Algorithm Design?

- Algorithm: a sequence of instructions that solves a problem.
- Traditionally,
 - 1. A detailed problem specification is given.
 - 2. An algorithm is designed to solve the described problem.
- Machine learning: data-driven algorithm design
 - 1. [A rough problem specification is given.] ← optional
 - 2. A set of examples is provided.*
 - 3. A machine learning model is "trained" to solve the problem.
- A meta-approach to algorithm design

• Provided:

- 1. a set of N input-output "training" examples $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$
- 2. A per-example loss function* $l(M(x), y) \ge 0$
- 3. Evaluation sets*: validation and test examples $D_{\rm val}, D_{\rm test}$

• What we must decide:

- 1. Hypothesis sets $\mathcal{H}_1, \ldots, \mathcal{H}_M$
 - Each set consists of all compatible models
- 2. Optimization algorithm

* Often it is necessary to design a loss function.

* Often these sets are created by holding out subsets of training examples.

• Given:

- 1. $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$ and $D_{\text{val}}, D_{\text{test}}$
- 2. $l(M(x), y) \ge 0$
- 3. $\mathcal{H}_1,\ldots,\mathcal{H}_M$
- 4. Optimization algorithm
- Supervised learning finds an appropriate algorithm/model automatically
 - 1. For each hypothesis set \mathcal{H}_m , find the best model:*

$$\hat{M}_m = \arg\min_{M \in \mathcal{H}_m} \sum_{n=1}^{N} l(M(x_n), y_n)$$

using the optimization algorithm.

- Given:
 - 1. $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$ and $D_{\text{val}}, D_{\text{test}}$
 - 2. $l(M(x), y) \ge 0$
 - 3. $\mathcal{H}_1,\ldots,\mathcal{H}_M$
 - 4. Optimization algorithm
- Supervised learning finds an appropriate algorithm/model automatically
 - 1. [Training] For each hypothesis set \mathcal{H}_m , find the best model:*

$$\hat{M}_m = \arg\min_{M \in \mathcal{H}_m} \sum_{n=1}^{\infty} l(M(x_n), y_n)$$

using the optimization algorithm and the training set.

• Given:

- 1. $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$ and $D_{\text{val}}, D_{\text{test}}$
- 2. $l(M(x), y) \ge 0$
- 3. $\mathcal{H}_1,\ldots,\mathcal{H}_M$
- 4. Optimization algorithm
- Supervised learning finds an appropriate algorithm/model automatically
 - 2. [Model Selection]* Among the trained models, select the best one

$$\hat{M} = \arg\min_{M \in \{\mathcal{H}_1, \dots, \mathcal{H}_M\}} \sum_{(x,y) \in D_{\text{val}}} l(M(x), y)$$

using the validation set loss.

^{*} If you're familiar with deep learning, "hyperparameter optimization" may be a more familiar term for you.

- Given:
 - 1. $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$ and $D_{\text{val}}, D_{\text{test}}$
 - 2. $l(M(x), y) \ge 0$
 - 3. $\mathcal{H}_1,\ldots,\mathcal{H}_M$
 - 4. Optimization algorithm
- Supervised learning finds an appropriate algorithm/model automatically
 - 3. [Reporting] Report how well the best model would work

$$R(\hat{M}) \approx \frac{1}{|D_{\text{test}}|} \sum_{(x,y) \in D_{\text{test}}} l(\hat{M}(x), y)$$

using the test set loss.

^{*} If you're familiar with deep learning, "hyperparameter optimization" may be a more familiar term for you.

• Given:

- 1. $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$ and $D_{\text{val}}, D_{\text{test}}$
- 2. $l(M(x), y) \ge 0$
- 3. $\mathcal{H}_1,\ldots,\mathcal{H}_M$
- 4. Optimization algorithm
- Supervised learning finds an appropriate algorithm/model automatically
- It results in an algorithm \hat{M} with an expected performance of $R(\hat{M})$.

Supervised Learning

- Three points to consider both in research and in practice
 - 1. How do we decide/design a hypothesis set?
 - 2. How do we decide a **loss function**?
 - 3. How do we **optimize** the loss function?

Hypothesis set – Neural Networks

- What kind of machine learning approach will we consider?
 - Classification:
 - Support vector machines, Naïve Bayes classifier, logistic regression, ...?
 - Regression:
 - Support vector regression, Linear regression, Gaussian process, ...?
- How are the hyperparameters sets?
 - ullet Support vector machines: regularization coefficient C
 - Gaussian process: kernel function $k(\cdot, \cdot)$

Hypothesis set – Neural Networks

• In the case of deep learning/artificial neural networks,

. The architecture of a network defines a set ${\cal H}$

- 2. Each model in the set $M \in \mathcal{H}$ is characterized by its parameters θ
 - Weights and bias vectors define one model in the hypothesis set.
- There are infinitely many models in a hypothesis set.
- We use optimization to find "a" good model from the hypothesis set.

Network Architectures

• What is a neural network? – An (arbitrary) directed acyclic graph (DAG)

- 1. Solid Circles O: parameters (to be estimated or found)
- 2. Dashed Circles : vector inputs/outputs (given as a training example)
- 3. Squares : compute nodes (functions, often continuous/differentiable)

Network Architectures

- What is a neural network? An (arbitrary) directed acyclic graph (DAG)
 - 1. Logistic regression $p_{\theta}(y=1|x) = \sigma(w^{\top}x+b) = \frac{1}{1+\exp(-w^{\top}x-b)}$
 - 2. 3rd-order polynomial function $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$

Inference – Forward Computation

- What is a neural network? An (arbitrary) directed acyclic graph (DAG)
- Forward computation: how you "use" a trained neural network.
 - Topological sweep (breadth-first)
 - Logistic regression $p_{\theta}(y=1|x) = \sigma(w^{\top}x+b) = \frac{1}{1+\exp(-w^{\top}x-b)}$

DAG ↔ Hypothesis Set

- What is a neural network? An (arbitrary) directed acyclic graph (DAG)
- Implication in practice
 - Naturally supports high-level abstraction
 - Object-oriented paradigm fits well.*
 - Base classes: variable (input/output) node, operation node
 - Define the internal various types of variables and operations by inheritance
 - Maximal code reusability
 - See the success of PyTorch, TensorFlow, DyNet, Theano, ...
- You define a hypothesis set by designing a directed acyclic graph.
- The hypothesis space is then a set of all possible parameter settings.

Supervised Learning

- Three points to consider both in research and in practice
 - 1. How do we decide/design a hypothesis set?
 - 2. How do we decide a **loss function**?
 - 3. How do we **optimize** the loss function?

Loss Functions

- Per-example loss function
 - Computes how good a model is doing on a given example: $l(M(x),y) \ge 0$
- So many loss functions...
 - Classification: hinge loss, log-loss, ...
 - Regression: mean squared error, mean absolute error, robust loss, ...
- In this lecture, we stick to distribution-based loss functions.

Probability in 5 minutes – (1)

- An "event set" Ω contains all possible events: $\Omega = \{e_1, e_2, \dots, e_D\}$
 - Discrete: when there are a finite number of events $|\Omega| < \infty$
 - Continuous: when there are infinitely many events $|\Omega| = \infty$
- A "random variable" X could take any one of these events: $X \in \Omega$
- A probability of an event: $p(X = e_i)$
 - How likely would the *i*-th event happen?
 - How often has the *i*-th event occur relative to the other events?
- Properties
 - 1. Non-negative: $p(X = e_i) \ge 0$
 - 2. Unit volume: $\sum_{e \in \Omega} p(X = e) = 1$

Probability in 5 minutes – (2)

- Multiple random variables: consider two here X, Y
- A joint probability $p(Y = e_j^Y, X = e_i^X)$
 - How likely would e_j^Y and e_i^X happen together?
- A conditional probability $p(Y = e_j^Y | X = e_i^X)$
 - Given e_i^X , how likely would e_j^Y happen?
 - The chance of both happening together divided by that of e_i^X happening regardless of whether e_j^Y happened:

$$p(Y|X) = \frac{p(X,Y)}{p(X)} \iff p(X,Y) = p(Y|X)p(X)$$

• Probability function p(X) returns a probability of X

Probability in 5 minutes – (3)

- Multiple random variables: consider two here X, Y
- A joint probability $p(Y = e_j^Y, X = e_i^X)$
 - How likely would e_j^Y and e_i^X happen together?
- A marginal probability $p(Y = e_j^Y)$
 - Regardless of what happens to X, how likely is e_j^Y ?

$$p(Y = e_j^Y) = \sum_{e \in \Omega_X} p(Y = e_j^Y, X = e)$$

A Neural network computes a conditional distribution

• Supervised learning: what is y given x?

$$f_{\theta}(x) = ?$$

• In other words, how probable is a certain value y' of y given x?

$$p(y = y'|x) = ?$$

- What kind of distributions?
 - Binary classification: Bernoulli distribution
 - Multiclass classification: Categorical distribution
 - Linear regression: Gaussian distribution
 - Multimodal linear regression: Mixture of Gaussians

Important distributions – Bernoulli

- How probable is a certain value y' of y given x? p(y = y'|x) = ?
- Binary classification: Bernoulli distribution $\mathcal{B}(\mu)$
 - Probability: $p(y|x) = \mu^y (1-\mu)^{1-y}$, where $y \in \{0,1\}$
 - Fully characterized by $\mu \in [0, 1]$.
 - A neural network then should turn the input x into μ

Important distributions – Categorical

- How probable is a certain value y' of y given x? p(y = y'|x) = ?
- Multi-class classification: Categorical distribution $C(\{\mu_1, \mu_2, \dots, \mu_C\})$
 - Probability: $p(y=v|x)=\mu_v$, where $\sum \mu_v=1$

 - A neural network then should turn the input x into a vector $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$ An arbitrary sub-graph

using a **softmax** function: softmax
$$(a) = \frac{1}{\sum_{v=1}^{C} \exp(a_v)} \exp(a)$$
.

Important distributions – Gaussian

- How probable is a certain value y' of y given x? p(y = y'|x) = ?
- Regression: Gaussian distribution $\mathcal{N}(\mu, \mathbb{I})$ with an identity covariance Probability: $p(y|x) = \frac{1}{Z} \exp(-\frac{1}{2}(y-\mu)^{\top}(y-\mu))$

 - Fully characterized by $\mu \in \mathbb{R}^q$.
 - A neural network then should turn the input x into a vector μ .
 - Can be done trivially by affine transformation.

Loss Function – negative log-probability

- Once a neural network outputs a conditional distribution $p_{\theta}(y|x)$, a natural way to define a loss function arises.
- Make sure training data is maximally likely:
 - Equiv. to making sure each and every training example is maximally likely.

$$\arg \max_{\theta} \log p_{\theta}(D) = \arg \max_{\theta} \sum_{n=1}^{N} \log p_{\theta}(y_n|x_n)$$

- Why log? many reasons... but out of the lecture's scope.
- Equivalently, we want to minimize the *negative* log-probability.
 - A loss function is the sum of negative log-probabilities of correct answers.

$$L(\theta) = \sum_{n=1}^{N} l(M_{\theta}(x_n), y_n) = -\sum_{n=1}^{N} \log p_{\theta}(y_n | x_n)$$

Loss Function – negative log-probability

- Once a neural network outputs a conditional distribution $p_{\theta}(y|x)$, a natural way to define a loss function arises.
- Practical implications
 - An OP node: negative log-probability (e.g., NLLLoss in PyTorch)
 - Inputs: the conditional distribution and the correct output
 - Output: the negative log-probability (a scalar)

Loss Function – negative log-probability

- Once a neural network outputs a conditional distribution $p_{\theta}(y|x)$, a natural way to define a loss function arises.
- Logistic regression
 - Computes a Bernoulli distribution
 - Computes a negative log-probability.
 - All in one directed acyclic graph
- Forward computation
 - Computes the conditional distribution, and
 - Computes the per-example loss

Supervised Learning

- Three points to consider both in research and in practice
 - 1. How do we decide/design a hypothesis set?
 - 2. How do we decide a **loss function**?
 - 3. How do we **optimize** the loss function?

Loss Minimization

- What we now know
 - 1. How to build a neural network with an arbitrary architecture.
 - 2. How to define a per-example loss as a negative log-probability.
 - 3. Define a single directed acyclic graph containing both.
- What we now need to know
 - 1. Choose an optimization algorithm.
 - 2. How to use the optimization algorithm to estimate parameters θ .

Local, iterative optimization

- An arbitrary function $L: \mathbb{R}^d \to \mathbb{R}$
- Given the current value θ_0 , how should I move to minimize L?
- Random guided search
 - Stochastically perturb θ_0 : $\theta_k = \theta + \epsilon_k$, where $\epsilon_k \sim \mathcal{N}(0, s^2 \mathbf{1})$
 - Test each perturbed point $L(\theta_k)$
 - Find the best perturbed point $\theta_1 = \arg\min_{\alpha} L(\theta_k)$
 - Repeat this until no improvement could be made.
- Applicable to any arbitrary loss function and neural network.
- Inefficient in the high-dimensional parameter space: large d.

Local, iterative optimization

- An arbitrary function $L: \mathbb{R}^d \to \mathbb{R}$
- Given the current value θ_0 , how should I move to minimize L?
- Random guided search
 - Applicable to any arbitrary loss function and neural network.
 - Inefficient in the high-dimensional ^{1.0} parameter space

Gradient-based optimization

- A continuous, differentiable* function $L: \mathbb{R}^d \to \mathbb{R}$
- Given the current value θ_0 , how should I move to minimize L?
- Gradient descent
 - The negative gradient of the function: $-\nabla L(\theta_0)$
 - This is only valid in a local neighbourhood of θ_0 : take a very small step! $\theta = \theta_0 \eta \nabla L(\theta_0)$
- Efficient and effective even in the high dimensional space.
 - Can be improved with the second-order information (Hessian and/or FIM)

Gradient-based optimization

- A continuous, differentiable function $L: \mathbb{R}^d \to \mathbb{R}$
- Given the current value θ_0 , how should I move to minimize L?
- Gradient descent
 - Efficient and effective even in the high dimensional space.
 - Learning rate must be carefully selected and annealed over time.

- How do we compute the gradient of the loss function?
- 1. Manual derivation
 - Relatively doable when the DAG is small and simple.
 - When the DAG is larger and complicated, too much hassle.
- 2. Automatic differentiation (autograd)
 - Use the chain rule of derivatives

$$\frac{\partial (f \circ g)}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$$

- The DAG is nothing but a composition of (mostly) differentiable functions.
- Automatically apply the chain rule of derivatives.

- Automatic differentiation (autograd)
 - 1. Implement the Jacobian-vector product of each OP node:

$$\begin{bmatrix} \frac{\partial L}{\partial x_1} \\ \vdots \\ \frac{\partial L}{\partial x_d} \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_{d'}}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_1}{\partial x_d} & \cdots & \frac{\partial F_{d'}}{\partial x_d} \end{bmatrix} \begin{bmatrix} \frac{\partial L}{\partial F_1} \\ \vdots \\ \frac{\partial L}{\partial F_{d'}} \end{bmatrix}$$

- Can be implemented efficiently without explicitly computing the Jacobian.
- The same implementation can be reused every time the OP node is called.

- Automatic differentiation (autograd)
 - 2. Reverse-sweep the DAG starting from the loss function node.
 - Iteratively multiplies the Jacobian of each OP node until the leaf nodes of the parameters.
 - As expensive as forward computation with a constant overhead: O(N), where N: # of nodes.

- Practical Implications Automatic differentiation (autograd)
 - Unless a complete new OP is introduced, no need to manually derive the gradient
 - Nice de-coupling of specification (front-end) and implementation (back-end)
 - 1. [Front-end] Design a neural network by creating a DAG.
 - 2. [Back-end] The DAG is "compiled" into an efficient code for a target compute device.

Gradient-based Optimization

- Backpropagation gives us the gradient of the loss function w.r.t. θ
- Readily used by off-the-shelf gradient-based optimizers
 - Gradient descent, L-BFGS, Conjugate gradient, ...
 - Though, most are not applicable in a realistic neural network with 10s or 100s of millions of parameters.
- Stochastic gradient descent
 - Approximate the full loss function (the sum of per-examples losses) using only a small random subset of training examples:

$$\nabla L \approx \frac{1}{N'} \sum_{n=1}^{N'} \nabla l(M(x_{n'}), y_{n'})$$

Stochastic Gradient Descent

- Stochastic gradient descent
 - Approximate the full loss function (the sum of per-examples losses) using only a small random subset of training examples:

$$\nabla L \approx \frac{1}{N'} \sum_{n=1}^{N'} \nabla l(M(x_{n'}), y_{n'})$$

- Unbiased estimate of the full gradient.*
- Learning rate must be annealed appropriately.
- Extremely efficient de facto standard practice.

Stochastic Gradient Descent

- Stochastic gradient descent in practice
 - 1. Grab a random subset of M training examples* $D' = \{(x_1, y_1), \dots, (x_{N'}, y_{N'})\}$
 - 2. Compute the minibatch gradient

$$\nabla L \approx \frac{1}{N'} \sum_{n=1}^{N'} \nabla l(M(x_{n'}), y_{n'})$$

- 3. Update the parameters $\theta \leftarrow \theta + \eta \nabla L(\theta; D')$
- 4. Repeat until the validation loss stops improving.*

* In practice, sample without replacement until the training set is exhausted (one epoch).

^{*} This is called early-stopping which prevents the neural network from overfitting to training examples.

Stochastic Gradient Descent – Early Stopping

- Stochastic gradient descent in practice
 - 1. Grab a random subset of M training examples
 - 2. Compute the minibatch gradient
 - 3. Update the parameters
 - 4. Repeat until the validation loss stops improving.
- An efficient way to prevent overfitting
 - Overfitting: the training loss is low, but the validation loss is not.
 - The most serious problem in statistical machine learning.
 - Early-stop based on the validation loss

Stochastic Gradient Descent – Early Stopping

- An efficient way to prevent overfitting
 - Overfitting: the training loss is low, but the validation loss is not.
 - The most serious problem in statistical machine learning.
 - Early-stop based on the validation loss

Stochastic Gradient Descent

Adaptive Learning Rate

- Stochastic gradient descent in practice
 - 1. Grab a random subset of M training examples $D' = \{(x_1, y_1), \dots, (x_{N'}, y_{N'})\}$
 - 2. Compute the minibatch gradient
 - 3. Update the per-parameter learning rate η_{θ}
 - 4. Update the parameters

$$\theta \leftarrow \theta - \eta_{\theta} \frac{\partial L'}{\partial \theta}$$

- 5. Repeat until the validation loss stops improving.
- Adaptive learning rate: Adam [Kingma&Ba, 2015], Adadelta [Zeiler, 2015], and many more...
 - Approximately re-scale parameters to improve the conditioning of the Hessian.

Supervised Learning with Neural Networks

- 1. How do we decide/design a hypothesis set?
 - Design a network architecture as a directed acyclic graph
- 2. How do we decide a **loss function**?
 - Frame the problem as a conditional distribution modelling
 - The per-example loss function is a negative log-probability of a correct answer
- 3. How do we **optimize** the loss function?
 - Automatic backpropagation: no manual gradient derivation
 - Stochastic gradient descent with early stopping [and adaptive learning rate]

In the next lecture,

• We will study the entire cycle for text classification with a neural network.