

STUDENT ID NO					

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

EME4086 – FINITE ELEMENT METHOD (ME)

27 OCTOBER 2017 3.00 p.m. - 5.00 p.m. (2 Hours, Open Book)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 6 pages with 4 Questions and 1 Appendix only.
- 2. Attempt ALL FOUR questions of 25 marks each.
- 3. Please write all your answers in the Answer Booklet provided.

Figure Q1 shows a system consisting of five members which is fixed at both far ends. Four concentrated forces are applied to the system. Young's modulus, E for all the members is 200 GPa. The applied forces (in Newton) and cross sectional area (in m²) of the members are: $F_A = 3560$, $F_B = 4450$, $A_1 = 2 \times 10^{-4}$, $A_2 = 1 \times 10^{-4}$, $A_3 = 6 \times 10^{-4}$, $A_4 = 1.3 \times 10^{-4}$ and $A_5 = 1.3 \times 10^{-4}$. The lengths (in meters) are $L_A = 0.15$ and $L_B = 0.1$.

Figure Q1

- a) Determine all the unknown forces and deflections for the system shown in Figure
 Q1 by using minimum number of one-dimensional finite elements. Do not change
 the given element numbers. [16 marks]
- b) Verify the unknown forces computed in part a) by using static equilibrium.

[2 marks]

- c) Compute the axial stress for each member and indicate whether it is tensile or compressive. [5 marks]
- d) Without increasing the number of finite elements, suggest a method to determine deflection at the midpoint of member 2. [2 marks]

Continued ...

Consider a nonlinear equation:

$$-\left(\frac{du}{dx}\right)^2 = \cos\pi x \qquad \text{for } 0 < x < 1$$

subjected to boundary conditions:

$$u(0) = 0$$
 and $u(1) = 0$

Choose: $\phi_i = \sin(i\pi x)$ and do the following:

a) show, in detailed steps, that the weak form for the nonlinear equation above is given as:

$$B(v,u) = \int_0^1 \left(\frac{du}{dx}\right) \left(\frac{dv}{dx}\right) dx$$
$$l(v) = \int_0^1 v \cos(\pi x) dx$$
$$v = trial function$$

[10 marks]

b) find a two-parameter approximate solution by using the Ritz method.

[15 marks]

Hint: Please refer to the Appendix on page 6 to solve the integrations.

Continued ...

LP

- a) For the truss shown in **Figure Q3** (a), given that each truss has a cross sectional area of 0.005 m², Young's modulus of 100 GPa and yield strength of 5.2 MPa. Without changing the given node numbers and element numbers, do the following:
 - i) determine the displacement at node 3.

[13 marks]

- ii) compute the internal force of each element of the plane truss. Indicate whether it is tensile or compressive. [6 marks]
- iii) determine whether the applied loads are safe or not.

[2 marks]

- b) Consider a single finite element with fixed cantilever support condition as shown in Figure Q3 (b).
 - i) Are you able to obtain correct solution for the displacements at the tip by using a truss element? Explain. [2 marks]
 - ii) Propose other suitable finite element to do the task and justify your proposal. | F [2 marks]

A, E Figure Q3 (b)

Continued ...

A two-dimensional heat transfer finite element model is shown in **Figure Q4**. The plate is of a unit thickness, a unit length and a unit width. Thermal conductivity, $k_x = k_y = 1.0$ W/(m²-K). The problem is symmetric about the axis going through Nodes 2 and 5. Node 3 is the midpoint. The right edge is maintained at $T_0 = 200^{\circ}$ C, and the rest of the edges are maintained at $T = 0^{\circ}$ C.

- a) For the half-model, give [K][T] = [Q], where [K] is the global "stiffness" matrix, [T] is the global primary variable vector, and [Q] is load vector. [15 marks]
- b) Determine the temperature at Node 3. Let $T_4 = 200$ °C. [7 marks]
- c) Compare the temperature computed at Node 3 in part b) and the one computed from the first three terms of the analytical solution given below. Comment on the differences, if there are any.

$$T = T_0 \frac{2}{\pi} \sum_{n=1,3,5}^{\infty} \left(\frac{(-1)^{n+1} + 1}{n} \right) \left(\frac{\sinh(n\pi x)}{\sinh(n\pi)} \right) \left(\sin(n\pi y) \right)$$
 [3 marks]

Figure Q4

Continued ...

Appendix

$$\frac{d}{dx}Sin(i\pi x) = i\pi Cos(i\pi x)$$

$$\frac{d}{dx}Cos(i\pi x) = -i\pi Sin(i\pi x)$$

$$\int_{0}^{1} Cos(i\pi x) Cos(j\pi x) dx = \begin{cases} 0 & i \neq j \\ 1/2 & i = j \end{cases}$$

$$\int_{0}^{1} Sin(i\pi x) Cos(\pi x) dx = \begin{cases} 0 & i \text{ is odd} \\ \frac{2i}{\pi(i^{2}-1)} & i \text{ is even} \end{cases}$$

Integration by parts:
$$\int_{a}^{b} w \, dz = wz \Big|_{a}^{b} - \int_{a}^{b} z \, dw$$