Worksheet 11

Lagrange's Error Estimation

Problem 1. Find the 4th degree Taylor polynomial of $\sin x$ (which we often write as $T_4 \sin x$). Estimate the error $|\sin x - T_4 \sin x|$ for |x| < 1.

Recall:
$$|\sin x - T_4 \sin x| = |R_4 \sin x|$$

Lagrange: $R_4 \sin x = \frac{f^{(5)}(c)}{5!} \times 5$ or $\times ccco$ if $\times xo$ or $\times co$

$$f^{(5)}(c) = \cos(c) \Rightarrow |R_4 \sin x| = \left|\frac{\cos(c)}{5!} \times 5\right| \times \left|\frac{1}{5!} \cdot 1^3\right| \leq \frac{1}{5!}$$

Conclusion:

 $|\sin x - T_4 \sin x| \leq \frac{1}{5!} \quad \text{for } |x| < 1$
 $|\sin x - T_4 \sin x| = |x - \frac{1}{6} \times 3|$

Problem 2. Calculate the 5th degree Taylor polynomial $T_5 e^x$ to find an approximation for e. Estimate the error of your approximation.

Problem 3. Recall that $\sqrt{225} = 15$. Calculate as many terms as you need of the taylor polynomial for $\sqrt{225 - x}$ to find an approximation of $\sqrt{222}$ with an error less than $\frac{1}{1000}$.

Try a few terms, see if it works:

$$f'(x) = \sqrt{225-x} \qquad f(0) = 15 \qquad \text{Try:}$$

$$f'(x) = \frac{1}{2}(225-x)^{1/2} \qquad f'(0) = \frac{1}{30} \qquad \text{Try:}$$

$$f''(x) = \frac{1}{4}(225-x)^{3/2} \qquad R_1\sqrt{225-x} = \frac{f''(c)}{2!} x^2$$

$$R_1\sqrt{225-x} = \frac{f''(c)}{2!} x^2$$

$$R_1\sqrt{225-x} = \frac{f''(c)}{2!} x^2$$

$$R_1\sqrt{225-x} = \frac{f''(c)}{2!} x^2$$

$$R_1\sqrt{225-x} = \frac{1}{2!} \cdot \frac{1}{(225-c)^{3/2}} x^2$$

$$R_1\sqrt{2$$

Problem 4. A commonly used approximation is $\sqrt{1+x} \approx 1 + \frac{1}{2}x$ for small x. How small must x be for this approximation to be accurate to within 1% error? For simplicity, assume that x > 0.

Challenge Problem. give it a try!

How many terms of the Taylor series for $\ln(1+x)$ do you need to approximate $\ln\left(\frac{3}{2}\right)$ with an error less than $\frac{1}{100}$?

Need to approximate error of
$$T_{n} \ln(1+x) \omega / x = \frac{1}{2}$$
.

Error = $R_{n} \ln(1+x) = \frac{f(n+1)(c)}{(n+1)!} \times n+1$

Calculate: $f^{(n+1)}(c) = (-1)^{n+2} n! (1+e)^{n-1}$
 $f^{(o)} : \ln(1+x)$
 $R_{n} \ln(1+x) = \frac{(-1)^{n+2} n!}{(n+1)!} \times (1+e)^{n+1} \times n+1$
 $f^{(o)} : (-1+x)^{-2}$
 $f^{(i)} : -(1+x)^{-2}$
 $f^{(i)} : 2(1+x)^{-3}$
 $f^{(i)} : -2 \cdot 3(1+x)^{-4}$
 $f^{(i)} : -2 \cdot 3(1+x)^{-4}$
 $f^{(i)} : (-1)^{n+1} (n-1)! (1+x)^{n+1}$
 $f^{(i)} : (-1)^{n+1} (n-1)! (1+x)^{n+1}$

How many terms of the Taylor series for $\ln(1+x)$ do you need to approximation $\ln 2$ with an error less than $\frac{1}{100}$?

Need to approximate error of
$$T_n \ln(1+x)$$
 at $x=1$.

Last Problem concluded:

$$|R_n \ln(1+x)| = \frac{(-1)^{n+2}}{(n+1)(1+c)^{n+1}} \times n+1 = 0 < c < 1$$

=) $|R_n \ln(1+x)| \le \frac{1}{(n+1)(1+c)^{n+1}} \times n+1 = 1$

so at $x=1$, get:

 $|R_n \ln(1+1)| \le \frac{1}{(n+1)(1+c)^{n+1}} < \frac{1}{(n+1)$