Дополнительное задание №1

Разработка программы для перевода чисел из одной системы счисления в другую

Цели работы:

- 1) Знакомство с различными системами счисления;
- 2) Разработка алгоритма и программы для перевода чисел из одной системы счисления в другую.

1 Краткие теоретические сведения

Система счисления — символический метод записи чисел, представление чисел с помощью письменных символов. Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.

Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет. Самой известной непозиционной системой счисления является римская система.

Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Наибольший интерес для нас представляют позиционные системы счисления, а именно те, которые чаще всего используется в программирование и компьютерном проектировании — это двоичная система счисления, десятичная система счисления и шестнадцатеричная система счисления.

Десятичная система счисления

Это одна из самых распространенных систем счисления.. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. В позиционной системе счисления каждую цифру числа необходимо умножить на основание системы, в данном случае число "10", возведенное в степень, равную номеру разряда. Получается, значение равно $5*10^2 + 0*10^1 + 3*10^0 = 500+0+3 = 503$. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, $503 = 503_{10}$.

Двоичная система счисления

Эта система, в основном, используется в вычислительной технике. Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание "2", возведенное в степень, равную разряду. Таким образом, число $101_2 = 1*2^2 + 0*2^1 + 1*2^0 = 4+0+1 = 5_{10}$.

Шестнадцатеричная система счисления

Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

2 Правила перевода целых чисел

2.1 Перевод из двоичной системы счисления в десятичную

Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

$$\mathbf{X_2} = \mathbf{A_n} \cdot \mathbf{2^{n-1}} + \mathbf{A_{n-1}} \cdot \mathbf{2^{n-2}} + \mathbf{A_{n-2}} \cdot \mathbf{2^{n-3}} + \ldots + \mathbf{A_2} \cdot \mathbf{2^1} + \mathbf{A_1} \cdot \mathbf{2^0}$$

При переводе удобно пользоваться таблицей степеней двойки:

n (степень)	0	1	2	3	4	5	6	7	8	9	10
2 ⁿ	1	2	4	8	16	32	64	128	256	512	1024

Пример. Число 11101000_2 перевести в десятичную систему счисления.

$$11101000_{2} = 1 \cdot 2^{7} + 1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0} = 232_{10}$$

2.2 Перевод из двоичной системы счисления в шестнадцатеричную

Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей шестнадцатеричной цифрой.

Пример. Число 1011100011_2 перевести в шестнадцатеричную систему счисления.

$$0010 \ 1110 \ 0011_2 = 2E3_{16}$$

2.3 Перевод из десятичной системы счисления в двоичную

Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример. Число $^{22}_{10}$ перевести в двоичную систему счисления.

$$22_{10} = 10110_2$$

2.4 Перевод из десятичной системы счисления в шестнадцатеричную

Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число $^{7467}_{10}$ перевести в шестнадцатеричную систему счисления.

$$7467_{10} = 1D2B_{16}$$

2.5 Перевод из шестнадцатеричной системы счисления в двоичную

Для перевода шестнадцатеричного числа в двоичное, необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой.

Пример. Число $EE8_{16}$ перевести в двоичную систему счисления. $EE8_{16} = 111011101000_2$

2.6 Перевод из шестнадцатеричной системы счисления в десятичную

Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

$$X_{16} = A_{n} \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + \ldots + A_{2} \cdot 16^{1} + A_{1} \cdot 16^{0}$$

При переводе удобно пользоваться таблицей степеней числа 16:

п (степень)	0	1	2	3	4	5	6
16 ⁿ	1	16	256	4096	65536	1048576	16777216

Пример. Число $^{\text{FDA1}_{16}}$ перевести в десятичную систему счисления. $^{\text{FDA1}_{16}} = 15 \cdot 16^3 + 13 \cdot 16^2 + 10 \cdot 16^1 + 1 \cdot 16^0 = 64929_{10}$

3 Правила перевода дробных чисел

3.1 Перевод из десятичной системы счисления в двоичную и шестнадцатеричную

Исходная дробь умножается на основание системы счисления, в которую переводится (2 или 16);

В полученном произведении целая часть преобразуется в соответствии с таблицей в цифру нужной системы счисления и отбрасывается - она является старшей цифрой получаемой дроби;

Оставшаяся дробная часть вновь умножается на нужное основание системы счисления с последующей обработкой полученного произведения в соответствии с шагами а) и б).

Процедура умножения продолжается до тех пор, пока ни будет получен нулевой результат в дробной части произведения или ни будет достигнуто требуемое количество цифр в результате;

Формируется результат: последовательно отброшенные в шаге б) цифры составляют дробную часть результата, причем в порядке уменьшения старшинства.

Пример. Выполнить перевод числа 0,847 в двоичную систему счисления. Перевод выполнить до четырех значащих цифр после запятой.

Имеем:

В данном примере процедура перевода прервана на четвертом шаге, поскольку получено требуемое число разрядов результата. Очевидно, это привело к потере ряда цифр. Таким образом, $0.847 = 0.1101_2$.

Пример. Выполнить перевод числа 0,847 в шестнадцатеричную систему счисления. Перевод выполнить до трех значащих цифр.

В данном примере также процедура перевода прервана. Таким образом, 0,847 = 0,D8D.

3.2 Перевод из двоичной и шестнадцатеричной систем счисления в десятичную

В этом случае рассчитывается полное значение числа по представлению в виде многочлена.

Пример . Выполнить перевод из двоичной системы счисления в десятичную числа 0,1101₂. Имеем:

$$0.1101_2 = 1*2^{-1} + 1*2^{-2} + 0*2^{-3} + 1*2^{-4} = 0.5 + 0.25 + 0 + 0.0625 = 0.8125.$$

Расхождение полученного результата с исходным для получения двоичной дроби числом вызвано тем, что процедура перевода в двоичную дробь была прервана. Таким образом, $0.1101_2 = 0.8125$.

Пример. Выполнить перевод из шестнадцатеричной системы счисления в десятичную числа $0,D8D_{16}$. Имеем:

 $0.D8D_{16} = 13*16^{-1} + 8*16^{-2} + 13*16^{-3} = 13*0.0625 + 8*0.003906 + 13*0.000244 = 0.84692.$

Расхождение полученного результата с исходным числом вызвано тем, что процедура перевода в шестнадцатеричную дробь была прервана. Таким образом, $0,D8D_{16} = 0.84692$.

3.3 Перевод из двоичной системы счисления в шестнадцатеричную

Исходная дробь делится на тетрады, начиная с позиции десятичной точки вправо. Если количество цифр дробной части исходного двоичного числа не кратно 4, оно дополняется справа незначащими нулями до достижения кратности 4. Каждая тетрада заменяется шестнадцатеричной цифрой в соответствии с таблицей.

Пример. Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,11012. В соответствии с таблицей $1101_2 = D_{16}$. Тогда имеем $0,1101_2 = 0,D_{16}$.

Пример. Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа $0,0010101_2$.

Поскольку количество цифр дробной части не кратно 4, добавим справа незначащий ноль: $0,0010101_2=0,00101010_2$. В соответствии с таблицей $0010_2=10_2=2_{16}$ и $1010_2=A_{16}$. Тогда имеем $0,0010101_2=0,2A_{16}$.

3.4 Перевод из шестнадцатеричной системы счисления в двоичную

Каждая цифра исходной дроби заменяется тетрадой двоичных цифр в соответствии с таблицей, незначащие нули отбрасываются.

Пример. Выполнить перевод из шестнадцатеричной системы счисления в двоичную числа $0.2A_{16}$.

По таблице имеем $2_{16} = 0010_2$ и $A_{16} = 1010_2$. Тогда $0.2A_{16} = 0.00101010_2$.

Отбросим в результате незначащий ноль и получим окончательный результат: $0.2A_{16} = 0.0010101_2$.

4 Перевод неправильных дробей

Отдельно переводится целая часть числа, отдельно - дробная. Результаты складываются.

Пример. Выполнить перевод из десятичной системы счисления в шестнадцатеричную числа 19,847. Перевод выполнять до трех значащих цифр после запятой.

Представим исходное число как сумму целого числа и правильной дроби: 19,847 = 19 + 0,847.

Как следует из ранее рассмотренных примеров $19 = 13_{16}$; $0,847 = 0,D8D_{16}$. Тогда имеем: $19 + 0,847 = 13_{16} + 0,D8D_{16} = 13,D8D_{16}$.

Таким образом, $19,847 = 13,D8D_{16}$.

5 Выполнение лабораторной работы

5.1 Задание на лабораторную работу

В данной лабораторной работе необходимо реализовать программу перевода числа из одной системы счисления в другую двумя способами: на языке С++ и с помощью

ассемблерной вставки. Оба варианта должны показать идентичный результат. Значения переменных вводятся непосредственно пользователем с клавиатуры. Результаты вычислений (на C++ и с помощью ассемблерной вставки) выводятся в консоль.

Номер	Задание										
1	Написать универсальную программу перевода неправильных беззнаковых										
1	дробей из двоичной системы счисления в шестнадцатеричную систему.										
2	Написать универсальную программу перевода неправильных беззнаковых										
	дробей из двоичной системы счисления в десятичную систему.										
3	Написать универсальную программу перевода неправильных беззнаковых										
3	дробей из десятичной системы счисления в двоичную систему.										
4	Написать универсальную программу перевода неправильных беззнаковых										
	дробей из десятичной системы счисления в шестнадцатеричную систему.										
5	Написать универсальную программу перевода неправильных беззнаковых										
	дробей из шестнадцатеричной системы счисления в двоичную систему.										
6	Написать универсальную программу неправильных беззнаковых дробей из										
	шестнадцатеричной системы счисления в десятичную систему.										

6 Результаты выполнения лабораторной работы

В результате выполнения данной лабораторной работы необходимо составить отчёт, содержащий следующие пункты:

- 1) Титульный лист
- 2) Цель лабораторной работы
- 3) Индивидуальное задание
- 4) Ход выполнения лабораторной работы (код программы)
- 5) Результаты выполнения лабораторной работы (скриншоты)
- 6) Выводы