MODELOS DE COMPUTACIÓN

Examen de Febrero - 2015

- 1. Indicar si son verdaderas o falsas las siguientes afirmaciones:
 - a) Para cada autómata finito no determinista M existe una gramática independiente de contexto G tal que L(M) = L(G).
 - b) Todo autómata finito determinista de n estados, cuyo alfabeto A contiene m símbolos debe tener m*n transiciones.
 - c) El lenguaje formado por las cadenas sobre $\{0,1\}$ que tienen un número impar de 0 y un número par de 1 no es regular
 - d) El lenguaje $L = \{0^i 1^j 2^k \mid 1 \le i \le j \le k\}$ es independiente del contexto
 - e) Todo lenguaje aceptado por un automata con pila determinista por el criterio de estados finales es tambien aceptado por un automata con pila determinista por el criterio de pila vacía.
 - f) Si tenemos un autómata con pila en el que $(p, \epsilon) \in \delta(q, a, C)$, entonces para construir una gramática genere el mismo lenguaje que acepta el autómata, debemos de añadir la producción $[p, C, q] \to a$ (según el procedimiento visto en clase).
 - g) Para que un autómata con pila sea determinista es necesario que no tenga transiciones nulas.
 - h) Si $\mathbf{r_1}$ y $\mathbf{r_2}$ son expresiones regulares, entonces siempre se tiene que $(\mathbf{r_1} + \mathbf{r_2})^* = (\mathbf{r_1^* r_2})^* \mathbf{r_1^*}$.
 - i) Si L es un lenguaje regular, entonces LL^{-1} es también regular.
 - j) Si L es un lenguaje regular, entonces la cabecera de L (CAB(L)) es siempre regular.
- 2. Dada la siguiente expresión regular $\mathbf{a} + \mathbf{a}\mathbf{c}(\mathbf{a} + \mathbf{b})^* + \mathbf{c}(\mathbf{a} + \mathbf{b} + \mathbf{c})^*$:
 - a) Obtener un autómata finito que reconozca dicha expresión.
 - b) Obtener el autómata minimal que reconozca dicha expresión
 - c) Obtener una gramática regular que genere dicho lenguaje
- 3. Daga la siguiente gramática G=(V,T,P,S) donde $T=\{0,1\}$, $V=\{S,A,B,C,D,E,F\}$ y P:

$$S \to AB|A|CS1|0E$$

$$A \to 0AS|\epsilon|A0|C$$

$$B \to B1|1$$

$$D \to B1|\epsilon|1F$$

$$E \to E1$$

$$F \to 0D$$

Obtener una gramática en FN Chomsky habiendo eliminado previamente símbolos y producciones inútiles si los tuviera. ¿El lenguaje generado es finito o infinito? Justificar la respuesta.

- 4. Diseñar autómatas con pila deterministas que acepten los siguientes lenguajes sobre el alfabeto $\{a, b, c, d\}$:
 - a) Palabras u en las que en todo prefijo (subcadena que comienza al principio de la palabra) de u el número de a es mayor o igual que el número de b y al final de la palabra hay el mismo de número de a y b.
 - b) Palabras en las que el número de a y b es el mismo y, además, también coinciden el número de c y d.
 - c) Palabras de la forma $\{a^ib^jc^kd^{k-i-j} \mid k \geq (i+j), i, j, k \geq 1\}$