Fuler's method

Truncation Errors in Euler's Method

Really want to understand global error: the (absolute) error after ktimesteps

Assignment Project Exam Help

Use Taylor Series on $y(t_k + h)$, assuming $y \in C^2 \implies$

$$https://powcoder.comy(t_{k+1}) = y(t_k) + hy'(t_k) + h^2y''(\xi)/2$$
(1)

$$Addy W_k \oplus Cha(t_k p \phi(w_k \phi)) d\theta^{2} y''(\xi)/2$$
 (2)

Euler's Method is just

$$y_{k+1} = y_k + hf(t_k, y_k) \tag{3}$$

$$(2)$$
- $(3) \Longrightarrow$

$$GE_{k+1} = GE_k + h[f(t_k, y(t_k)) - f(t_k, y_k)] + h^2 y''(\xi)/2$$
 (4)

Mean Value Theorem in second argument \Longrightarrow

$$f(t_k, y(t_k)) - f(t_k, y_k) = \frac{\partial f}{\partial y} |_{\xi} (y(t_k) - y_k)$$
 (5)

or could use Lipshitz bound https://powcoder.com

$$f(t_k, y(t_k)) - f(t_k, y_k) \leq L GE_k$$

Add WeChat powcoder

(4) and $(6) \implies$

$$GE_{k+1} = (1 + hJ)GE_k + h^2y''(\xi)/2 \tag{7}$$

or

$$GE_{k+1} \le (1 + hL)GE_k + h^2y''(\xi)/2$$

—Euler's method

Error propagation

```
In words, this difference equation says Global error at t_{k+1} the Global error at t_k, propagated with factor (1+hJ) plus the new error ( the propagated power factor) plus the new error ( the propagated power factor) (1+hJ) determines the propagated power factor (1+hJ) determines the propagated power fac
```

Euler's method

Diverging solutions

If J > 0 \Longrightarrow nearby solutions are diverging

Absolute errors Avils gramment Pirojecter Exam Help

If J is not too large, IVP may still be fairly well-conditioned.

If the solution is also grawing relative errors may be OK, even if absolute errors are growing \Longrightarrow may get useful information from numerical solution

If $J\gg 0$, IVP is ill-conditioned \Longrightarrow don't expect accurate numerical solution, using any method! More precisely: if $J(t_f-t_0)\gg 1$

Numerical Methods & Scientific Computing: lecture notes

L IVPs

Euler's method

Contractive solutions

If $J < 0 \implies$ Assignment Project Exam Help

In this case, the local error made at each step is damped thereafter Sketch: https://powcoder.com

Add WeChat powcoder

We aim for accurate solutions in this case.

Fuler's method

Convergence of Euler's Method

Convergence determined by what happens to the error as $h \to 0$ Numerical stability determined by what happens to the error at finite h.

We would like the project h Exam Help i.e. that the Forward Error $\rightarrow 0$ as $h \rightarrow 0$.

We do it in 2 steps: https://powcoder.com

- **11** show the Backward Error (residual) \rightarrow 0 as $h \rightarrow$ 0 : **consistency**
- 2 show the condition dim be of that ϕ over ϕ bounded as $h \to 0$: 0-stability

then use a Big Theorem

Consistency + **Stability** → **Convergence**

that is true for ODE methods and time-dependent linear PDE methods!

For ODEs: any sensible method is consistent but not all are 0-stable!

Euler's method

Consistency

A method is **consistent** if the exact solution satisfies the difference equation in the limit $t = t_0 + t_0$ with $t = t_0$.

To check this, we find the residual R by substituting the exact solution https://powcoder.com into the method: for Euler's Method

Add WeChat powcoder
$$R = y(t_{n+1}) - y(t_n) - hf(t_n, y(t_n)) = \frac{1}{2}h^2y''(\xi)$$

R is called the local truncation error LTE.

For 1-step methods, the LTE is the same as the Local Error.

Fuler's method

Backward error

We want this residual to measure the backward error: is the exact solution a solution of the difference equation with a different f? The answer is Assignmente Project Esam Help—so the backward error is really R/h.

https://powcoder.com

Definition

A method is consistent of two that powcoder

In our case, $R/h \sim h \rightarrow 0 \implies$ Euler's Method is consistent.

Definition

A method is **consistent of order** p if $\frac{R}{h} = O(h^p)$ as $h \to 0$

⇒ Euler's Method is consistent of order 1.

L Euler's method

0-stability

Check that the difference equation doesn't go ill-conditioned as $h \to 0$.

Suppose we change initial condition by δ_0 and at step n change the right hand side (RHS) signment Project Exam Help

https://pow/coden:com/

$$V_{n+1}$$
 Add+Wethat powcoder+ δ_0

is the change in the solution v-u finite? Can show (by induction) that

$$|v-u|_n \le e^{LT}\delta_0 + \frac{e^{LT}-1}{L}\delta$$

where $T = t_n - t_0$, assuming $|\delta_k| \le \delta$ no h dependence! \implies change remains finite as $h \to 0$ so Euler's Method is 0-stable.

Fuler's method

Hence convergence

Now combine these two results to show that $|GE_n| \to 0$ as $h, \delta_0 \to 0$.

Definition

Assignment Project Exam Help A method is convergent of order p if $\max |GE_n| = O(h^p)$ as $h, \delta_0 \to 0$

https://powcoder.com

Theorem

A method that is consistent we convergent of order p.

Sketch of proof:

the backward error R/h plays the role of the perturbation δ . Therefore if the discrete condition number stays finite (0-stability) and $R/h = O(h^p)$ as $h \to 0$ (consistent), then as $h, \delta_0 \to 0 \implies |GE_n| = O(h^p)$ (convergent)

Euler's method

An error bound

For Euler's Method,
$$R/h = \frac{1}{2}hy''(\xi)$$

 $\implies \delta = \frac{1}{2}hM$ where $|y''(\xi)| \le M$, assuming $y \in C^2$.
So, for $\delta_0 \to 0$ **Assignment Project Exam Help**

$$|GE_n| \le \frac{hM}{2L}[e^{LT} - 1] = Kh$$

$$|CE_n| \le \frac{hM}{2L}[e^{LT} - 1] = Kh$$

$$|CE_n| \le \frac{hM}{2L}[e^{LT} - 1] = Kh$$
an a priori error bound! i.e. global error is $O(h)$

Euler's Method is convergent of order 1 (a 'first order method')

Hence if we halve h, expect GE to halve, as we observed.

The bound Kh depends sensitively on LT— this bound is rigorous but very pessimistic: doesn't distinguish between $J\gg 0$ and $J\ll 0$ (both have same Lipshitz constant L=|J|)

Euler's method

A tighter bound

We can do better if J < 0 (solutions are contractive)

Assignment Project Exam Help
$$|GE_n| \le \frac{1}{2}T = Kh$$
 https://powcoder.com

provided *h* satisfies

Add WeChat powcoder

i.e. numerical errors are damped

BUT if
$$J < 0$$
 and $|1 + hJ| > 1$

we get numerical error growth for a well-conditioned IVP!

— a classic case of numerical instability

Euler's method

Interval of absolute stability

The interval where Euler Method is numerically stable is called the interval of absolute stability

Assignment Project Exam Help

$$\mid 1 + hJ \mid < 1$$

https://powcoder.com

$$-2 < hJ < 0$$

Only satisfied if J < 0 (solutions are contractive) and

 \implies there is an upper bound on stepsize h (depending on J) to ensure numerical stability.

This can limit the efficiency if h is forced to be very small!

Numerical Methods & Scientific Computing: lecture notes

L IVPs

Euler's method

Stiff problems

If $J \ll 0 \implies$ need very small ptensize to satisfy stability requirement \implies stepsize restricted by stability not truncation error!

https://powcoder.com

An ODE where the choice of th

Usually a problem is stiff if it has **sharp transients**. Stiff problems require special methods to get around stability restrictions!

Summary: role of *J*

Assignment Project Exam Help

	J > 0		J < 0	
	nearby solution https://pov		vcoderneam solutions converge	
	$J(t_f-t_0)\gg 1$		$J(t_f-t_0)pprox -1$	$J(t_f-t_0)\ll -1$
ĺ	don't expect	shaud by Col	nat powcoder	stiff: need
	good num. sol.	esp. rel. error	\Longrightarrow Euler unstable	special methods

—Euler's method

Effect of roundoff?

In the error bound for Euler's Method (assuming worst case for roundoff), just replace $\frac{hM}{2}$ with

⇒ an optimal stepsize, as in ForwardDifference.m, https://powcoder.com

Add WeChat powcoder

If roundoff errors add randomly: get extra error due to roundoff $\sim u n^{1/2} \sim u h^{-1/2}$ (instead of u/h) \rightarrow an optimal stepsize, with

$$h_{\mathsf{opt}} \approx K u^{2/3}$$

Usually truncation errors dominate in solving ODEs - just remember : don't set h too low!

L_{IVPs}

—Euler's method

Summary of Euler's Method properties

Assignment Project Exam Help

Global error $\leq Bh = O(h)$ Lohdtpso//powcoderQ(bin)
Stability interval -2 < hJ < 0Roundoff WeChat-powcoder $^{2/3}$

i.e. a convergent first order method finite stability interval \implies suitable for nonstiff problems

Euler's method

Beyond Euler's method

Although it's existing net and per to be useful for ODEs.

Definition

https://powcoder.com

A method is of **pth** order if local error $\equiv O(h^{p+1})$ and $O(h^{p+1})$ we constant $O(h^{p+1})$ and $O(h^{p+1})$ are $O(h^{p+1})$ are $O(h^{p+1})$ and $O(h^{p+1})$ are O(h

 \implies global error = $O(h^p)$ (provided it's numerically stable)

Hence Euler's method is a first order method

We press on to look for higher-order methods

L_{IVPs}

Euler's method

Is higher order worthwhile?

Set absolute tolerance τ and suppose $t_f - t_0 = T$

Assignment Project Exam Help For Euler's Method: Global Error $\sim h \implies h \sim \tau$

For RK2 (second order method): Global Error $t_{n}^{2} \Rightarrow h \sim \tau^{1/2}$ number of function evals = 2 per step $t_{n}^{2} \Rightarrow h \sim \tau^{1/2}$ RK2 is more efficient (fewer function evaluations) if $2T\tau^{-1/2} < T\tau^{-1} \Rightarrow \tau < 1/4$

Moral: For small enough tolerances, a higher order method is worthwhile

There are 2 broad classes of higher order methods: 1-step and multistep For each class, there are:

- explicit methods: easier to program; relatively cheap per step fine for nonstiffigenment Project Exam Help
- implicit methods: harder to program; relatively expensive per step but some can solvetptiff/Optioncoder.com
- \rightarrow 4 kinds of higher-order methods
 - explicit 1-step methods (Runge-Kutta methods)
 - explicit multistep methods (Adams methods)
 - 3 multistep stiff solvers (BDF methods)
 - 1-step stiff solvers (Implicit RK methods) beyond this subject

Runge-Kutta methods

Let's start from the quadrature rule derivation of Euler's method and try to improve it:

and approximate it, not by L h rectangle rule but by trapezoid rule (quadrature rule with truncation error $\sim h^3$)

$$y_{n+1} = y_n + \frac{\text{Add WeChat powcoder}}{2} [f(t_n, y_n) + f(t_{n+1}, y(t_n + h))] + O(h^3)$$

but we don't know $y(t_n + h)!$ Since we already have an error $\sim h^3$, it's good enough to approximate it with error $\sim h^2!$

 \implies we can use Euler to get $Y(\equiv y(t_n+h))$ on RHS:

$$Y = y_n + hf(t_n, y_n) + O(h^2)$$

□RK methods

Explicit trapezoid method

Putting this together:

$$y_{n+1} = y_n + \frac{h}{2}[f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))] + O(h^3)$$

Which can be organized sequentially in terms of slopes s_i as

https://powcoder.com

Add
$$\overline{W}eChat_h^h powcoder$$
 $y_{n+1} = y_n + \frac{1}{2}[s_1 + s_2]$

This method:

- is explicit: can compute s_1, s_2, y_{n+1} in turn
- uses 2 function evaluations per step: 1 per stage
- tries to get a better idea of the slope field f(t, y) by sampling at points in $[t_n, t_{n+1}]$

└─_{IVPs} └─RK methods

Assignment Project Exam Help

End of Lecture 20

https://powcoder.com

Add WeChat powcoder

└─_{IVPs} └─RK methods

Assignment Project Exam Help

End of Week 10

https://powcoder.com

Add WeChat powcoder