Precalculus Homework

Trigonometric equations and inequalities

1	Convert	from	degrees	tο	radiane
1.	Convert	irom	degrees	ю	radians

- (h) 120°. (a) 15° . (n) 305° . answer: $\frac{\pi}{12} \approx 0.261799388$ answet: $\frac{2\pi}{3}$ answer: $\frac{61\pi}{36} \approx 5.323254$ (b) 30° . (i) 135°. (o) 360° . $877893523.0 \approx \frac{\pi}{8}$: Towers (c) 36° . (p) 405° . (j) 150° . (d) 45°. Suswet: $\frac{5\pi}{6}$ answer: $\frac{\Lambda}{9\pi}$ (q) 1200° . (k) 180° . 80.785398163 sinswer: $\frac{\pi}{4} \approx 0.785398163$ (e) 60° . answer: $\frac{20\pi}{3}$ answer: $\frac{\pi}{3} \approx 1.047197551$ (1) 225° . (r) -900° . (f) 75° . (m) 270° . (s) -2014° . (g) 90° . answer: $\frac{2}{N}$ answet: $\frac{3\pi}{2}$ answer: $-\frac{1000}{9}$ = -35.150931
- 2. Convert from radians to degrees. The answer key has not been proofread, use with caution.
- 3. Find the indicated circle arc-length. The answer key has not been proofread, use with caution.
 - (a) Circle of radius 3, arc of measure 36°.
 - (b) Circle of radius $\frac{1}{2}$, arc of measure 100° .
 - (c) Circle of radius 1, arc of measure 3 (radians).
 - (d) Circle of radius 3, arc of measure 300°.

£89707.31 ≈ πδ ::awers

S :Towers

 $836488.1 \approx \frac{\pi \xi}{3}$: Towers

answer: $\frac{5\pi}{18} \approx 0.872665$

4. Find the 6 trigonometric functions of the indicated angle in the indicated right triangle.

(a)

answer;
$$\sin\theta = \frac{3}{13}\sqrt{13},\cos\theta = \frac{2}{13}\sqrt{13},\tan\theta = \frac{2}{3},\cot\theta = \frac{2}{3},\sec\theta = \frac{2}{3},\sec\theta = \frac{\sqrt{13}}{2}$$

 $\frac{\sqrt{5}}{\theta}$

(b)

arswell
$$\sin \theta = \frac{\sqrt{5}}{5}$$
, $\cos \theta = \frac{2\sqrt{5}}{5}$, $\tan \theta = \frac{1}{2}$, $\cot \theta = 2$, $\sec \theta = \frac{\sqrt{5}}{2}$, $\csc \theta = \sqrt{5}$

5

(c) (d)

answer
$$\sin \theta = \frac{5}{\sqrt{29}} = \frac{5\sqrt{99}}{2}$$
, $\cos \theta = \frac{2}{\sqrt{29}}$, $\tan \theta = \frac{2}{5}$, $\cot \theta = \frac{5}{2}$, $\sec \theta = \frac{\sqrt{29}}{5}$, $\csc \theta = \frac{\sqrt{29}}{2}$

$$\text{answell sin } \theta = \frac{\sqrt{11}}{6}, \cos \theta = \frac{5}{6}, \tan \theta = \frac{\sqrt{11}}{5}, \cos \theta = \frac{5}{\sqrt{11}}, \sec \theta = \frac{6}{5}, \csc \theta = \frac{6}{5}, \csc \theta = \frac{11}{1}$$

- 5. Find the exact value of the trigonometric function (using radicals).
 - (a) $\cos 135^{\circ}$.

(b) $\sin 225^{\circ}$.

in the state of th

answer:

(c) $\cos 495^{\circ}$.

answer:

(d) $\sin 560^{\circ}$.

:Jəmsur

(e)
$$\sin\left(\frac{3\pi}{2}\right)$$
.

Suswer:

(f)
$$\cos\left(\frac{11\pi}{6}\right)$$
.

:usweit:

(g)
$$\sin\left(\frac{2015\pi}{3}\right)$$
.

(h)
$$\cos\left(\frac{17\pi}{3}\right)$$
.

6. Find all solutions of the equation in the interval $[0, 2\pi)$. The answer key has not been proofread, use with caution.

(a)
$$\sin x = -\frac{\sqrt{2}}{2}$$
.

answer:
$$x=\frac{\pi 7}{4}$$
 , $\frac{\pi 8}{4}=x$:Towere

(b)
$$\cos x = \frac{\sqrt{3}}{2}$$
.

answer:
$$x = \frac{\pi}{3}$$
, $\frac{\pi}{3} = x$: Therefore

(c)
$$\sin(3x) = \frac{1}{2}$$
.

answer
$$\frac{\pi\delta1}{6}$$
 , $\frac{\pi\delta2}{81}$, $\frac{\pi71}{81}$, $\frac{\pi\xi1}{81}$, $\frac{\pi\xi}{81}$, $\frac{\pi}{81}$ = x : Then the

(d)
$$\cos(7x) = 0$$
.

$$\text{answer} \ x = \frac{\pi}{14}, \frac{3\pi}{14}, \frac{5\pi}{14}, \frac{\pi}{2}, \frac{9\pi}{14}, \frac{11\pi}{14}, \frac{13\pi}{14}, \frac{15\pi}{14}, \frac{17\pi}{14}, \frac{17\pi}{14}, \frac{19\pi}{14}, \frac{3\pi}{2}, \frac{25\pi}{25}, \frac{25\pi}{14}, \frac{27\pi}{14}$$

(e)
$$\cos(3x + \frac{\pi}{2}) = 0$$
.

$$\frac{\pi c}{\xi}$$
, $\frac{\pi f}{\xi}$, π , $\frac{\pi f}{\xi}$, $\frac{\pi}{\xi}$, $0 = x$ Hence

(f)
$$\sin(5x - \frac{\pi}{3}) = 0$$
.

$$\frac{1}{\sqrt{2}} \left(\frac{\pi}{\sqrt{2}} \right) \left(\frac{\pi}{\sqrt{$$

Solution. 6.a

$$\sin x = -\frac{\sqrt{2}}{2}$$

Since $\sin x$ is negative it must be either in Quadrant III or IV. Therefore the angle x is coterminal either with $225^{\circ} = \frac{5\pi}{4}$ (Quadrant III) or $315^{\circ} = \frac{7\pi}{4}$ (Quadrant IV).

Case 1. x is coterminal with $225^{\circ} = \frac{5\pi}{4}$. We can compute

$$x = \frac{5\pi}{4} + 2k\pi \qquad k \text{ is any integer}$$

$$x = \frac{5\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{5\pi + 8k\pi}{4}$$

$$x = \frac{\pi(5+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{5\pi}{4}$.

Case 2.

$$x = \frac{7\pi}{4} + 2k\pi$$

$$x = \frac{7\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{7\pi + 8k\pi}{4}$$

$$x = \frac{\pi(7+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{7\pi}{4}$.

Solution. 6.f

$$\sin\left(5x - \frac{\pi}{3}\right) = 0$$

Since $\sin 0 = 0$ and $\sin 180^\circ = \sin \pi = 0$, the angle $5x - \frac{\pi}{3}$ must be coterminal with 0 or π .

Case 1. $5x - \frac{\pi}{3}$ is coterminal with 0. We compute

$$5x - \frac{\pi}{3} = 0 + 2k\pi$$

$$5x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{\frac{\pi}{3} + 2k\pi}{5}$$

$$x = \frac{\frac{\pi}{3} + \frac{6k\pi}{3}}{5}$$

$$x = \frac{\frac{\pi + 6k\pi}{35}}{5}$$

$$x = \frac{\pi + 6k\pi}{\frac{15}{5}}$$

$$x = \frac{\pi + 6k\pi}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi [1 + 6(0)]}{15}, \frac{\pi [1 + 6(1)]}{15}, \frac{\pi [1 + 6(2)]}{15}, \frac{\pi [1 + 6(3)]}{15}, \frac{\pi [1 + 6(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{\pi}{15}, \frac{7\pi}{15}, \frac{13\pi}{15}, \frac{19\pi}{15}, \frac{25\pi}{15}.$$

Case 2.

$$5x - \frac{\pi}{3} = \pi + 2k\pi$$

$$5x = \pi + \frac{\pi}{3} + 2k\pi$$

$$5x = \frac{4\pi}{3} + 2k\pi$$

$$x = \frac{\frac{4\pi}{3} + 2k\pi}{\frac{5}{3}}$$

$$x = \frac{\frac{4\pi}{3} + 6k\pi}{\frac{3}{5}}$$

$$x = \frac{\frac{4\pi + 6k\pi}{3}}{\frac{5}{5}}$$

$$x = \frac{4\pi + 6k\pi}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi[2 + 3(0)]}{15}, \frac{2\pi[2 + 3(1)]}{15}, \frac{2\pi[2 + 3(2)]}{15}, \frac{2\pi[2 + 3(3)]}{15}, \frac{2\pi[2 + 3(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{4\pi}{15}, \frac{10\pi}{15}, \frac{16\pi}{15}, \frac{22\pi}{15}, \frac{28\pi}{15}.$$

Our final answer (combined from the two cases) is $x = \frac{\pi}{15}, \frac{4\pi}{15}, \frac{7\pi}{15}, \frac{2\pi}{3}, \frac{13\pi}{15}, \frac{16\pi}{15}, \frac{19\pi}{15}, \frac{22\pi}{15}, \frac{5\pi}{3}$ or $\frac{28\pi}{15}$.

- 7. Use the known values of $\sin 30^\circ, \cos 30^\circ, \sin 45^\circ, \cos 45^\circ, \sin 60^\circ, \cos 60^\circ, \ldots$, the angle sum formulas and the cofunction identities to find an exact value (using radicals) for the trigonometric function.
 - (a) The six trigonometric functions of $105^{\circ} = 45^{\circ} + 60^{\circ}$:

- $\cos{(105^\circ)}$. Should your answer be a positive or a negative number?
- $\cos\left(\frac{\pi}{12}\right)$. Should $\sin\left(\frac{\pi}{12}\right)$ be larger or smaller than $\cos\left(\frac{\pi}{12}\right)$?
- SINGE: $\frac{4}{\sqrt{2}-\sqrt{6}}$ • $\tan (105^{\circ})$.

(b) The six trigonometric functions of $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$:

• $\cot (105^{\circ})$.

• $\sin(105^\circ)$.

• $\tan\left(\frac{\pi}{12}\right)$.

• $\cot\left(\frac{\pi}{12}\right)$.

• $\sin\left(\frac{\pi}{12}\right)$.

• $\sec{(105^{\circ})}$.

• $\csc{(105^{\circ})}$.

- answet: $\sqrt{6} \sqrt{2}$
- $\csc\left(\frac{\pi}{12}\right)$.

- 8. Simplify to a trigonometric function of the angle θ . The answer key has not been proofread, use with caution.
 - (a) $\sin\left(\frac{\pi}{2} \theta\right)$.
 - (b) $\cos\left(\frac{13\pi}{2} \theta\right)$.

(c) $\tan (\pi - \theta)$

(d) $\cot\left(\frac{3\pi}{2} - \theta\right)$

answer: tan b

(e) $\csc\left(\frac{3\pi}{2} + \theta\right)$

SUSWET: Sec B

- 9. Using the power-reducing formulas, rewrite the expression in terms of first powers of the cosines and sines of multiples of the angle θ .
 - (a) $\sin^4 \theta$.
 - (b) $\cos^4 \theta$.

answer: $\frac{1}{8}\cos\left(4\theta\right)-\frac{1}{2}\cos\left(2\theta\right)+\frac{8}{3}$

Suzange: $\frac{8}{7}\cos(7\theta) + \frac{7}{7}\cos(7\theta) + \frac{8}{2}$

- (c) $\sin^6 \theta$.

Surwell $\sin_Q\theta=-\frac{35}{1}\cos\left(\theta\theta\right)+\frac{10}{3}\cos\left(\theta\theta\right)-\frac{35}{12}\cos\left(5\theta\right)+\frac{10}{12}$

(d) $\cos^6 \theta$.

- BINAMEL: $\cos_\theta \theta = \frac{35}{1} \cos \left(\theta \theta \right) + \frac{10}{3} \cos \left(\theta \theta \right) + \frac{35}{12} \cos \left(5 \theta \right) + \frac{10}{2} \cos \left(6 \theta \right) + \frac{$
- 10. Use the sum-to-product formulas to find all solutions of the trigonometric equation in the interval $[0, 2\pi)$.

Please note that typing a query such as "solve($\sin(x)+\sin(3x)=0$)" at www.wolframalpha.com will provide you with a correct answer and a function plot.

(a) $\sin(x) + \sin(3x) = 0$.

answer: x=0 , $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$

(b) $\cos(x) + \cos(-3x) = 0$.

 $\frac{\pi 7}{\hat{\Lambda}}$, $\frac{\pi \xi}{\Omega}$, $\frac{\pi \delta}{\hat{\Lambda}}$, π , $\frac{\pi \xi}{\hat{\Lambda}}$, $\frac{\pi}{\hat{\Lambda}}$, $\frac{\pi}{\hat{\Lambda}}$ = x :Inwright

 $(c) \sin(x) - \sin(3x) = 0.$

answer $x = \frac{\pi T}{4}$, $\frac{\pi G}{4}$, π , $\frac{\pi G}{4}$, $\frac{\pi}{4}$, $\frac{\pi}{4}$, 0 = x Then the sum of x = x

(d) $\cos(2x) - \cos(3x) = 0$.

- answer: $x=0, \frac{2}{5}, \frac{\pi \hbar}{3}, \frac{\pi \hbar}{3}, \frac{8\pi}{5}$
- 11. Find the inverse function. You are asked to do the algebra only; you are not asked to determine the domain or range of the function or its inverse.
 - (a) $f(x) = 3x^2 + 4x 7$, where $x \ge -\frac{2}{3}$.

answer: $f = \frac{2}{5} - \frac{1}{5} = \frac{x}{5} + \frac{x}{5} + \frac{x}{5} = \frac{1}{5} - \frac{1}{5} = \frac{1}{5}$

(b) $f(x) = 2x^2 + 3x - 5$, where $x \ge -\frac{3}{4}$.

answer: $\frac{8}{8}-\leq x$, $\frac{x8+64\sqrt{}}{4}+\frac{8}{4}-=(x)^{1-1}$: $\frac{1}{8}$

(c) $f(x) = \frac{2x+5}{x-4}$, where $x \neq 4$.

 $\Delta \leq x$, $\frac{\partial + x \hbar}{\Delta - x} = (x)^{1 - 1} + 1$ Then we have $\Delta = 1$.

(d) $f(x) = \frac{3x+5}{2x-4}$, where $x \neq 2$.

 $\dfrac{\varepsilon}{\mathtt{c}} \neq x$, $\dfrac{\mathtt{c} + x \mathtt{f}}{\mathtt{c} - x \mathtt{c}} = (x)^{\mathsf{I} - \mathsf{l}}$ Then the subsection $\dfrac{\varepsilon}{\mathtt{c}}$

(e) $f(x) = \frac{5x+6}{4x+5}$, where $x \neq -\frac{5}{4}$.

answer: $\frac{d}{dt} \neq x \cdot \frac{d + xd - t}{d - xt} = (x)^{1-t}$: The same of t = t

(f) $f(x) = \frac{2x-3}{-3x+4}$, where $x \neq \frac{4}{3}$..

 $\frac{2}{\xi} - \neq x, \frac{\xi + xF}{\xi + x\xi} = (x)^{1} - \xi$ Then the subsection of $\xi - \xi$ to $\xi - \xi$ to $\xi - \xi$.

Solution. 11.d This is a concise solution written in form suitable for test taking.

$$y = \frac{3x+5}{2x-4}$$

$$y(2x-4) = 3x+5$$

$$2xy-4y = 3x+5$$

$$2xy-3x = 4y+5$$

$$x(2y-3) = 4y+5$$

$$x = \frac{4y+5}{2y-3}$$

$$f^{-1}(y) = \frac{5+4x}{2x-3}$$

Solution. 11.e. Set f(x) = y. Then

$$y = \frac{5x+6}{4x+5}$$

$$y(4x+5) = 5x+6$$

$$x(4y-5) = -5y+6$$

$$x = \frac{-5y+6}{4y-5}.$$

Therefore the function $x=g(y)=\frac{-5y+6}{4y-5}$ is the inverse of f(x). We write $g=f^{-1}$. The function $g=f^{-1}$ is defined for $y\neq\frac{5}{4}$. For our final answer we relabel the argument of g to x:

$$g(x) = f^{-1}(x) = \frac{-5x + 6}{4x - 5}$$

Let us check our work. In order for f and g to be inverses, we need that g(f(x)) be equal to x.

$$g(f(x)) = \frac{-5f(x) + 6}{4f(x) - 5} = \frac{-5\frac{(5x + 6)}{4x + 5} + 6}{4\frac{(5x + 6)}{4x + 5} - 5} = \frac{-5(5x + 6) + 6(4x + 5)}{4(5x + 6) - 5(4x + 5)} = \frac{-x}{-1} = x \quad ,$$

as expected.

12. Find the inverse function and its domain.

(d) $f(x) = e^{x^3}$.

answer:
$$f - 1$$
 $(x)^{1-1}$ $(x)^{1-4}$ $(x)^{1-4}$ $(x)^{1-4}$

Solution. 12.a

$$y=\ln(x+3)$$

$$e^y=e^{\ln(x+3)}$$

$$e^y=x+3$$

$$e^y-3=x$$
 Therefore
$$f^{-1}(y)=e^y-3.$$

The domain of e^y is all real numbers, so the domain of f^{-1} is all real numbers.

Solution. 12.b

$$4\ln(x-3) - 4 = y$$

$$4\ln(x-3) = y+4$$

$$\ln(x-3) = \frac{y+4}{4} \qquad | \text{ exponentiate }$$

$$e^{\ln(x-3)} = e^{\frac{y+4}{4}}$$

$$x-3 = e^{\frac{y+4}{4}}$$

$$f^{-1}(y) = x = e^{\frac{y+4}{4}} + 3$$

$$f^{-1}(x) = e^{\frac{x+4}{4}} + 3 \qquad | \text{ relabel.}$$

The domain of f^{-1} is all real numbers (no restrictions on the domain).

Solution. 12.e

$$\begin{array}{rcl} y & = & (\ln x)^2 \\ \sqrt{y} & = & \ln x \\ e^{\sqrt{y}} & = & e^{\ln x} = x \\ f^{-1}(y) & = & e^{\sqrt{x}} \end{array} \quad \begin{array}{rcl} \text{take } \sqrt{\text{ on both sides}}, y \geq 0 \\ \text{exponentiate} \end{array}$$

Solution. 12.f

$$y = \frac{e^x}{1 + 2e^x}$$

$$y(1 + 2e^x) = e^x$$

$$y = e^x(1 - 2y)$$

$$\frac{y}{1 - 2y} = e^x$$

$$\ln \frac{y}{1 - 2y} = \ln e^x$$

$$\ln \frac{y}{1 - 2y} = x$$
 Therefore
$$f^{-1}(y) = \ln \frac{y}{1 - 2y}.$$

The natural logarithm function is only defined for positive input values. Therefore the domain is the set of all y for which

$$\frac{y}{1-2y} > 0.$$

This inequality holds if the numerator and denominator are both positive or both negative. This happens if either

- (a) y > 0 and $y < \frac{1}{2}$, or
- (b) y < 0 and $y > \frac{1}{2}$.

The latter option is impossible, so the domain is $\{y \in \mathbb{R} \mid 0 < y < \frac{1}{2}\}$.

- 13. Find each of the following values. Express your answers precisely, not as decimals.
 - (a) $\arcsin(\sin 4)$.

 $\mathfrak{p} = \mathfrak{u}$ isomstile (b) $\arcsin(\sin 0.5)$.

(c) $\arcsin(\cos 120^\circ)$.

(d) $\arccos(\cos(3))$.

(e) $\arccos(\cos(-2))$.

(f) $\arcsin(\sin(-4))$.

(g) $\arctan(\tan 5)$. $(2 - 2) = 2 + \frac{2}{\pi E} \cos(2\pi 5)$

Solution. 13.g $\frac{3\pi}{2} \approx 4.71$ and $2\pi \approx 6.28$, so

$$\frac{3\pi}{2} < 5 < 2\pi$$
 Therefore
$$-\frac{\pi}{2} < 5 - 2\pi < 0 < \frac{\pi}{2}.$$

Therefore $5-2\pi$ is in the restricted domain of the tangent function. Moreover, the tangent function is π -periodic, so $\tan 5 = \tan(5-2\pi)$. Therefore $\arctan(\tan 5) = 5-2\pi$.

14. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a)
$$\cos^2(\arctan x)$$
.
$$\frac{z^{x-1} / 1}{1} \cos^2(\arctan x)$$
. (b) $-\sin^2(\operatorname{arccot} x)$.
$$\frac{z^{x+1}}{1} \cos^2(\operatorname{arccot} x)$$
.
$$\frac{z^{x+1}}{1} \cos^2(\operatorname{arccot} x)$$
.
$$\frac{z^{x+1}}{1} \cos^2(\operatorname{arccot} x)$$
.
$$\frac{z^{x+1}}{1} \cos^2(\operatorname{arccot} x)$$
.

Solution. 14.b. We follow the strategy outlined in the end of the solution of Problem 15.c. We set $y = \operatorname{arccot} x$. Then we need to express $-\sin^2 y$ via $\cot y$. That is a matter of algebra:

$$-\sin^{2}(\operatorname{arccot} x) = -\sin^{2} y \qquad \qquad | \operatorname{Set} y = \operatorname{arccot} x$$

$$= -\frac{\sin^{2} y + \cos^{2} y}{\sin^{2} y + \cos^{2} y} \qquad | \operatorname{use} \sin^{2} y + \cos^{2} y = 1$$

$$= -\frac{1}{\frac{\sin^{2} y + \cos^{2} y}{\sin^{2} y}}$$

$$= -\frac{1}{1 + \cot^{2} y} \qquad | \operatorname{Substitute} \operatorname{back} \cot y = x$$

$$= -\frac{1}{1 + x^{2}} .$$

15. Let $x \in (0,1)$. Express the following using x and $\sqrt{1-x^2}$.

Solution. 15.b. Let $y = \arcsin x$. Then $\sin y = x$, and we can draw a right triangle with opposite side length x and hypotenuse length 1 to find the other trigonometric ratios of y.

answer: $4x^{\frac{1}{2}}-3x$

Then $\cos y = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$. Now we use the double angle formula to find $\sin(2\arcsin x)$.

$$\sin(2\arcsin x) = \sin(2y)$$

$$= 2\sin y \cos y$$

$$= 2x\sqrt{1 - x^2}.$$

Solution. 15.c. Use the result of Problem 15.b. This also requires the addition formula for sine:

$$\sin(A+B) = \sin A \cos B + \sin B \cos A,$$

and the double angle formula for cosine:

$$\cos(2y) = \cos^2 y - \sin^2 y.$$

$$\sin(3\arcsin x) = \sin(3y)$$

$$= \sin(2y + y)$$

$$= \sin(2y)\cos y + \sin y \cos(2y)$$

$$= (2\sin y \cos y)\cos y + \sin y(\cos^2 y - \sin^2 y)$$
Use addition formula
$$= 2\sin y \cos^2 y + \sin y \cos^2 y - \sin^3 y$$

$$= 3\sin y \cos^2 y - \sin^3 y$$

$$= 3\sin y(1 - \sin^2 y) - \sin^3 y$$

$$= 3x(1 - x^2) - x^3$$

$$= 3x - 4x^3.$$

The solution is complete. A careful look at the solution above reveals a strategy useful for problems similar to this one.

- (a) Identify the inverse trigonometric expression- $\arcsin x$, $\arccos x$, $\arctan x$, In the present problem that was $y = \arcsin x$.
- (b) The problem is therefore a trigonometric function of y.
- (c) Using trig identities and algebra, rewrite the problem as a trigonometric expression involving only the trig function that transforms y to x. In the present problem we rewrote everything using $\sin y$.
- (d) Use the fact that $\sin(\arcsin x) = x$, $\cos(\arccos x) = x$, ..., etc. to simplify.

Solution. 15.f We use the same strategy outlined in the end of the solution of Problem 15.c. Set $y = \arccos x$ and so $\cos(y) = x$. Therefore:

$$sin(3y) = sin(2y + y)
= sin(2y) cos y + sin y cos(2y)
= 2 sin y cos y cos y + sin y(2 cos2 y - 1)
= 2 sin y cos2 y + sin y(2 cos2 y - 1)
= sin y(4 cos2 y - 1)
= $\sqrt{1 - x^2}(4x^2 - 1)$ use $\cos y = x
\sin y = \sqrt{1 - x^2}$$$

16. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.

(a)
$$2\cos x - 1 = 0$$
.
$$\frac{\varepsilon}{\frac{\omega}{\omega}} = x \text{ if } \frac{\varepsilon}{\omega} = x \text{ if ansure}$$

answer:
$$x=\frac{\pi}{2}$$
 , $x=\frac{3\pi}{2}$

(b)
$$\sin(2x) = \cos x$$
.
 $\frac{9}{\cancel{\cancel{U}}\cancel{U}} = x \cdot \frac{9}{\cancel{\cancel{U}}} = x \cdot \frac{7}{\cancel{\cancel{U}}} = x \cdot \frac{7}{\cancel{\cancel{U}}} = x \cdot 10 \text{ MSUB}$

(g)
$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$$

$$\frac{\frac{p}{\mu_L} \cdot \frac{p}{\mu_L} \cdot \frac{p}{\mu_L} - x}{2} = x \text{ Hansur}.$$

(c)
$$\sqrt{3}\sin x = \sin(2x)$$
.

$$_{^{u_7,u_7,0},\frac{v_7}{9},\frac{v_7}{9},\frac{v_7}{9}}$$
 (h) $|\tan x|=1$.

$$\frac{\pi T}{\hbar} = x$$
 to , $\frac{\pi G}{\hbar} = x$, $\frac{\pi E}{\hbar} = x$, $\frac{\pi}{\hbar} = x$: However

(d)
$$2\sin^2x=1$$
.
$$\frac{v}{vL}=x \text{ 10}, \frac{v}{vC}=x \cdot \frac{v}{vC}=x \cdot \frac{v}{v}=x \text{ 120Msure}$$

(i)
$$3\cot^2 x = 1$$
.

(e)
$$2 + \cos(2x) = 3\cos x$$
.

answer:
$$x=\frac{\pi \, \xi}{\xi}=x$$
 , $\frac{\pi \, k}{\xi}=x$, $\frac{\pi \, \xi}{\xi}=x$, $\frac{\pi}{\xi}=x$. Then we have

(f) $2\cos x + \sin(2x) = 0$.

(j)
$$\sin x = \tan x$$
.
 $\mu_{\zeta} = x \text{ 10} \cdot \mu = x \cdot_{0} = x \text{ :Jomsule}$

Solution. 16.g Set $\cos x = u$. Then

answer: x=0, x=0, x=0, x=0, or x=0

$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0$$

becomes

$$2u^2 - (1 + \sqrt{2})u + \frac{\sqrt{2}}{2} = 0.$$

This is a quadratic equation in u and therefore has solutions

$$u_{1}, u_{2} = \frac{1 + \sqrt{2} \pm \sqrt{(1 + \sqrt{2})^{2} - 4\sqrt{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{1 - 2\sqrt{2} + 2}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{(1 - \sqrt{2})^{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm (1 - \sqrt{2})}{4} = \begin{cases} \frac{1}{2} & \text{or} \\ \frac{\sqrt{2}}{2} \end{cases}$$

Therefore $u=\cos x=\frac{1}{2}$ or $u=\cos x=\frac{\sqrt{2}}{2}$, and, as x is in the interval $[0,2\pi]$, we get $x=\frac{\pi}{3},\frac{5\pi}{3}$ (for $\cos x=\frac{1}{2}$) or $x=\frac{\pi}{4},\frac{7\pi}{4}$ (for $\cos x=\frac{\sqrt{2}}{2}$).