cin.ufpe.br

Universidade Federal de Pernambuco

CPU: Estrutura e Funcionalidade

Roteiro da Aula

- Ciclo de Instrução
- Projeto de uma CPU simples: conceitos
- Componentes básicos
 - Leitura da instrução
 - Operação entre registradores
 - Acesso à memória
- Implementação Mono-ciclo
 - Leitura da Instrução
 - Operações Aritméticas
 - Leitura + Operação entre registradores
 - Acesso à Memória
 - Desvio Condicional
- Visualizando a execução da instrução
- Análise de Desempenho

Como um documento é processado?

- 1- Busca documento
- 2 Identifica tipo de transação
- 3 Verifica se saldo é positivo
- 4 Efetiva transação e atualiza saldo

cin.ufpe.br

Componentes de um computador

Unidade Central de Processamento

Centro

Ciclo de Instrução

cin.ufpe.br

Projeto de uma Arquitetura,

- Conjunto de registradores
- Tipos de Dados
- Formato e Repertório de instruções

Projeto: uma CPU simples...

Instrução	Descrição
LD rt, desl(rs)	Carrega palavra de mem em rs
SD rt, desl(rs)	Armaz. Reg. na memória
ADD rd, rs, rt	rd <- rs + rt
SUB rd, rs, rt	rd <- rs - rt
AND rd, rs, rt	rd <- rs and rt
BEQ rs, rt, end	Desvio se $rs = rt$

Name		Fi	eld			Comments			
(Field Size)	7 bits	5 bits	5 bits	3 bits	5 bits	7 bits			
R-type	funct7	rs2	rs1	funct3	rd	opcode	Arithmetic instruction format		
I-type	immediate[11:0] rs1			funct3	rd	opcode	Loads & immediate arithmetic		
S-type	immed[11:5]	rs2	rs1	funct3	immed[4:0]	opcode	Stores		
SB-type	immed[12,10:5]	rs2	rs1	funct3	immed[4:1,11]	opcode	Conditional branch format		
UJ-type	immediate[20,10:1,11,19:12]				rd	opcode	Unconditional jump format		
U-type	immediate[31:12]				rd	opcode	Upper immediate format		

RISC V - Visão Abstrata

Multiplexers

Controle

Conceitos Básico Projeto Lógico

- Informação codificada em binário
 - Baixa tensão = 0, alta tensão = 1
 - Um fio por bit
 - Dados codificados como vários bits são implementados como barramentos
- Circuito combinacional
 - Operam os dados
 - A saída é uma função da entrada
- Circuitos de estado (sequenciais)
 - Guardam informação

Elementos Combinacionais

AND-gate

$$-Y = A & B$$

Adder

Arithmetic/Logic Unit

•
$$Y = F(A, B)$$

Elementos Sequenciais

- Registrador: armazena dados em um circuito
- Usa um sinal do clock para determinar quando atualizar o valor armazenado

Edge-triggered: atualiza quando Clk muda de

0 para 1

Elementos Sequenciais

- Registrador com controle de escrita
 - Sómente atualiza na transição do clock edge quando controle write é 1
 - Usado quando valor armazenado será usado posteriormente

Uso do Clock

- A lógica combinacional transforma os dados durante os ciclos de clock
- Entre transições do clock
 - Entrada de elementos de estado, saída para o elemento de estado
 - Atraso mais longo determina o período do relógio

Projetando um Datapath

- Centro de Informática
- Datapath (Caminho de Dados)
 - Elementos que processam dados e endereços na CPU
 - Registradores, ALUs, mux's, memórias,...
- Vamos construir um caminho de dados RISC-V incrementalmente
 - Refinando o projeto da versão geral

Relógio - Clock

Mono-ciclo

Componentes Básicos: Busca de Instrução

Contador Programa

Memória (Instrução)

Busca de Instrução

Componentes Básicos: Operações Aritméticas

Banco de registradores Leitura

Componentes Básicos: Operações Aritméticas

Banco de registradores Escrita

Componentes Básicos: Operações Aritméticas

ALU

Instruções Aritméticas/Lógicas

Busca e Execução de Instruções Aritméticas/Lógicas

Componentes Básicos: Acesso à memória

Memória de Dados - Leitura

Componentes Básicos: Acesso à memória

Memória de Dados - Escrita

Componentes Básicos: Acesso à memória

Geração de Constantes: extrai e compõe constante da instrução preservando o sinal

Instruções Load/Store

Id x8, desl(x9)

Instruções Load/Store

sw x8, desl(x9)

Instruções Aritméticas e de Load/Store

add x5, x6, x7

Instruções Aritméticas e de Load/Store

Id x8, desl(x9)

Instrução de Branch on equal

de Informática

Beq x5,x6, end.

Unidade Processamento

Controle da ALU

ALU usada para

– Load/Store: F = adição

– Branch: F = subtração

- R-type: F depende do opcode

ALU control	Function		
0000	AND		
0001	OR		
0010	add		
0110	subtract		

Controle da ALU

- Suponha que o ALUOp de 2 bits seja derivado do opcode
 - Lógica combinacional deriva o controle da ALU

оре	code	ALUOp	Operation	Opcode field	ALU function	ALU control
ld		00	load register	XXXXXXXXXX	add	0010
sd		00	store register	XXXXXXXXXX	add	0010
beq		01	branch on equal	XXXXXXXXXX	subtract	0110
R-typ	ре	10	add	100000	add	0010
			subtract	100010	subtract	0110
			AND	100100	AND	0000
			OR	100101	OR	0001

Unidade de Controle

Sinais de controle derivados da instrução

on) 31:25	24:20	19:15	14:12	11:7	6:0	
	<u> </u>					
funct7	rs2	rs1	funct3	rd	opcode	
immediate	e[11:0]	rs1	funct3	rd	opcode	
			'			
immed[11:5]	rs2	rs1	funct3	immed[4:0]	opcode	
immed[12,10:5]	rs2	rs1	funct3	immed[4:1,11]	opcode	
	funct7 immediate	funct7 rs2 immediate[11:0] immed[11:5] rs2	funct7 rs2 rs1 immediate[11:0] rs1 immed[11:5] rs2 rs1	funct7 rs2 rs1 funct3 immediate[11:0] rs1 funct3 immed[11:5] rs2 rs1 funct3	funct7 rs2 rs1 funct3 rd immediate[11:0] rs1 funct3 rd immed[11:5] rs2 rs1 funct3 immed[4:0]	

AL	UOp	Funct7 field							Funct3 field			
ALUOpi	ALUOp0	I[31]	I[30]	I[29]	I[28]	I[27]	I[26]	I[25]	I[14]	I[13]	I[12]	Operation
0	0	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	0010
Х	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	0110
1	X	0	0	0	0	0	0	0	0	0	0	0010
1	X	0	1	0	0	0	0	0	0	0	0	0110
1	X	0	0	0	0	0	0	0	1	1	1	0000
1	X	0	0	0	0	0	0	0	1	1	0	0001

Processamento e Controle

Instrução R-Type

Instrução Load

DE PERNAMBUCO

Instrução BEQ Centro de Informática

Análise de Desempenho

- Mono-ciclo:
 - Período do relógio definido em função da duração da instrução mais lenta
 - 8ns (5ns)
 - Implementação pouco eficiente
 - CPU_{time} = nr. Instruções x período_clock
- Como melhorar o desempenho na execução de várias instruções?
 - Multi-ciclo: cada estágio é executado em um ciclo do relógio.
 - Começar uma instrução ANTES da última instrução iniciada terminar.