Using Decision Trees for Baseball Run Prediction

Final Presentation

Lance Kevin, Ian McDowell, Michael Templeton

Problem Statement

Problem: How can South Carolina Baseball improve their team's batting discipline to have a higher chance at winning games?

Plan: Our project will generate a hit-ability score for each pitch.

Data: College Trackman dataset provided to us by the team

Expected Outcome: model that determines plate discipline for players which will allow for predictions of run-value for any given pitch, which will provide insights into a player's plate discipline.

A decision tree with insightful decision nodes on what aspects of a pitch to focus on when deciding whether or not to swing.

Challenges

- Inexperience with machine learning
- What hyperparameters should we test
- Learning to program with SciKit Learn Python Library
- Fitting our data into a model

Related Works

- Tango Lichtman Dolphin blog article on swing/take, and run expectancy matrix
- QOPtm (quality of pitch) and the Griner Index.

Data

- Pitching Dataset provided by UofSC Baseball Team
- Preprocessed
- 1,029,479 useable data points
 - o 720,635 (70%) used for training
 - o 308,844 (30%) used for testing

Methods

- Our approach uses decision trees and random forests.
 - The goal of these models is high explainability so that we can use our model to determine important factors of hit-ability
- We also trained a neural network (Multi-Layer Perceptron)
 - The goal of this model is to examine the explainability vs accuracy tradeoff

Experiments: Decision Trees

- Total models trained: 1400
- Test Accuracies:
 - Best model 63.60%
 - Average model 57.84%

- Color Meanings:
 - o Orange: Ball Called
 - Pink: Correct Swing
 - Blue: Strike Swinging/ Strike Called

- Important Factors:
 - Plate Location Height
 - Plate Location Side
 - Vertical Break
 - Ball Strike Number

Experiments: Random Forest

- Total models trained: 144
- Test Accuracies:
 - Best model 65.95%
 - Average model 63.66%

 On average gave more complex trees than the decision tree model

Figure: 3 decision trees from one of the higher accuracy forests

Experiments: Random Forest, Pitch-Separated

- Total models trained: 24 (6 per pitch type)
- Test Accuracies:
 - Fastball
 - Best model 66.19%
 - Average model 65.33%
 - Curveball
 - Best model 65.60%
 - Average model 65.36%
 - Change Up
 - Best model 63.10%
 - Average model 62.77%
 - Slider
 - Best model 63.43%
 - Average model 63.18%

- Insights:
 - Fastball is the most accurate, likely due to having the majority (~56%) of samples

Experiments: Neural Network

- Total models trained: 42
- Test Accuracies:
 - Best model 68.28%
 - Average model 67.76%

- Not as accurate as we hoped (>70%) but still gained insights
 - Average accuracy higher and deviates less from average than decision tree and random forest models
 - There is a clear tradeoff between explainability and accuracy

Broader Impact

- South Carolina Baseball team will have a useful way to improve player performance and hopefully lead to more wins
- South Carolina Measure players plate discipline and make training and coaching adjustments to improve player and team performance
- 3. The data we have and the inexperience of the group with machine learning, lower accuracy of 68%
- 4. Future work Train Model for different strikes zones, left hand to right hand matchups, defensive shifts and applying method in real life.

References

- 1. Tango Lichtman Dolphin.. (2019 September 23). *Statcast Lab: Swing/Take and a Primer on Run Value*. Tantotiger. http://tangotiger.com/index.php/site/article/statcast-lab-swing-take-and-a-primer-on-run-value
- 2. Quality of Pitch. https://en.wikipedia.org/wiki/Quality of Pitch
- 3. Jason Wilson & Jarvis Greiner (2014) A Curveball Index: *Quantification of Breaking Balls for Pitchers*, CHANCE, 27:3, 34-40, DOI: 10.1080/09332480.2014.965629 https://www.tandfonline.com/doi/full/10.1080/09332480.2014.965629?scroll=top&needAccess=true