# ProjectRegressionModels

Alejandro Coy 2019-02-23

# Peer-graded Assignment: Regression Models Course Project

# **Executivy summary**

The main objective of this projet is to apply the regressions model to answer the following questions:

- 1. "Is an automatic or manual transmission better for MPG"?
- 2. "Quantify the MPG difference between automatic and manual transmissions"?

Using exploratory data anlysis the difference between automatic and manual transmission cars was evident. Furthermore a t test was performed for the two groups showing a significant difference between the groups, showing the automatic cats achived less MPG than manual cars.

For quantify the difference a linear regression model was used. Thre models were tested with differente explanatory variables. With the best model it was determined that to have a manual transmission increase 1.63 MPG when all the other variable are held constant.

#### **Exploratory Data Analysis**

The dataset is preload in Rstudio. The columns with categorical value were changed to factor using the mutate function.

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(GGally)
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
##
       nasa
data <- mtcars %>%
  mutate at(c("cyl", "gear", "carb", "am", "vs"), as.factor)
levels(data$am) <- list(automatic="0", manual="1")</pre>
```

A serie of plots using ggpairs and gplot were done to see the relationship between MPG and the varaible (see APEENDIX)

The first exploration indicates that manual cars yield higher MPG.

# T-Test

In order to perform a t-test the data was divided depending on the type of transmission. Then the t.test function was performed:

```
t.test(automatic$mpg,manual$mpg,paired = FALSE)
##
```

```
##
## Welch Two Sample t-test
##
## data: automatic$mpg and manual$mpg
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean of x mean of y
## 17.14737 24.39231
```

As can be seen there is a significant diffrente with a lower mean for automatic cars. The interval confidence does not contain 0 and p value is lower than 0.05

#### Regression models

In order to quantify the difference between automatic and manual transmissions three linear models were used.

## Model 1

Model 1 just consider the type of transission (am) as explanatory variable

The coefficient of the am variable indicates that the use of manual transmission increase 7.245 MPG, However, the R-squared is low indicating the change in transmission can just explain 35.9% the variation of the MPG.

#### Model2

The model 2 take in consideration the variable that seem to have influence according to the pair plot from the EDA:

The R-square for this model is 0.8428 with Adjusted R-squared: 0.8196. This indicates a better model. The residual plot are distributed around 0 which indicates a good fitting model.

#### Model3

Finlaly model 3 take in consideration all the variables

```
model3 <- lm(mpg ~., data= data)</pre>
```

The R-square for this model is 0.8931, but an Adjusted R-squared: 0.779. This is an indication of overfitting of the model. Finally we can compare between the models using the anova anlysis:

```
anova(model1,model2,model3)
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ hp + drat + am + wt
  Model 3: mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
     Res.Df
               RSS Df Sum of Sq
##
## 1
         30 720.90
## 2
         27 176.96 3
                         543.93 22.5880 8.124e-06 ***
## 3
         15 120.40 12
                          56.56 0.5872
                                             0.821
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

From this results we can conclude there is not need to add all the variables in model 3 since there is not significant difference in the predections. However in comparison with model 1, model 2 does a significant better job (p-value lower than 0.05).

#### **APPENDIX**

### GRID PLOTS

# ggpairs(mtcars)

geom\_point()





# MEAN MPG FOR DIFFERENT TYPE OF TRANSMISSION

```
ggplot(data = data)+
aes(x = am, y = mpg,fill=am)+
geom_boxplot()
```



REISIDUAL PLOT FOR MODEL 2

qplot(predict(model2), resid(model2))

