Previsão de Votação de Deputados

Aluno: Gustavo Silva Medeiros

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib

import matplotlib.pyplot as plt
from scipy.stats import skew
from scipy.stats.stats import pearsonr
from sklearn import preprocessing

%config InlineBackend.figure_format = 'png'
%matplotlib inline
```

- 2) Considere o pipeline mostrado nesse link para construir seus modelos de regressão. Isso implica, dentre outras coisas:
- 2.1) Analisar as distribuições das variáveis para ver se estão enviesadas e precisam de correção; tratamento de valores ausentes, variáveis categóricas e normalização, quando for o caso.

```
In [2]: # Colunas carregadas do CSV
        cols = [
            "ano",
            "nome",
            "sexo",
            "estado civil",
            "grau",
            "ocupacao",
            "uf",
            "partido",
            "quantidade_doacoes",
             "quantidade_doadores",
            "total receita",
            "media receita",
            "recursos_de_outros_candidatos/comites",
             "recursos_de_pessoas_fisicas",
             "recursos de pessoas juridicas",
             "recursos proprios",
            "quantidade despesas",
            "quantidade fornecedores",
             "total_despesa",
             "media despesa",
            "votos",
        # OBS 1: As colunas "sequencial_candidato" e "cargo" não foram consideradas atribu
        df = pd.read_csv("eleicoes_2006_a_2010.csv", usecols=cols, index_col="nome")
        # separa os dados de 2006 como treino e os dados de 2010 como teste e remove a coli
        train = df[(df['ano'] == 2006)].loc[:,'uf':]
        test = df[(df['ano'] == 2010)].loc[:,'uf':]
```

```
# junta os dados de 2006 e 2010 sem as colunas "ano" e "votos"
         all_data = pd.concat((
             train.loc[:,:'ocupacao'],
             test.loc[:,:'ocupacao']
         ))
         all_data.head()
In [3]:
Out[3]:
                       uf partido quantidade_doacoes quantidade_doadores total_receita media_receita
               nome
           JOSÉ LUIZ
          NOGUEIRA
                      ΑP
                               PΤ
                                                   6
                                                                        6
                                                                              16600.00
                                                                                         2766.666667
           DE SOUSA
            LOIVA DE
                      RO
                               PT
                                                  13
                                                                       13
                                                                              22826.00
                                                                                         1755.846154
            OLIVEIRA
              MARIA
           DALVA DE
                      ΑP
                               PT
                                                  17
                                                                       16
                                                                             148120.80
                                                                                         9257.550000
              SOUZA
         FIGUEIREDO
           ROMALDO
                      MS
                           PRONA
                                                   6
                                                                        6
                                                                               3001.12
                                                                                          500.186667
             MILANI
           ANSELMO
            DE JESUS
                     RO
                               PT
                                                  48
                                                                       48
                                                                                  NaN
                                                                                               NaN
              ABREU
         train.head()
In [4]:
Out[4]:
                       uf partido quantidade_doacoes quantidade_doadores total_receita media_receita
               nome
           JOSÉ LUIZ
                      ΑP
                                                   6
          NOGUEIRA
                               PT
                                                                        6
                                                                              16600.00
                                                                                         2766.666667
           DE SOUSA
            LOIVA DE
                      RO
                               PT
                                                  13
                                                                       13
                                                                                         1755.846154
                                                                              22826.00
            OLIVEIRA
              MARIA
           DALVA DE
                      ΑP
                               PT
                                                  17
                                                                       16
                                                                             148120.80
                                                                                         9257.550000
              SOUZA
         FIGUEIREDO
           ROMALDO
                      MS
                           PRONA
                                                   6
                                                                        6
                                                                               3001.12
                                                                                          500.186667
             MILANI
           ANSELMO
            DE JESUS
                               PT
                                                  48
                                                                       48
                      RO
                                                                                  NaN
                                                                                               NaN
              ABREU
In [5]: test.head()
```

_			-	_	-	
\cap	1.15	ь.			- 1	0
\ J	u	ı.		-)	- 1	

	uf	partido	quantidade doacoes	quantidade doadores	total receita	media receita
--	----	---------	--------------------	---------------------	---------------	---------------

nome						
ANTONIA LUCILEIA CRUZ RAMOS CAMARA	AC	PSC	36	35	406891.92	11625.483429
DEODATO NUNES DE FRANÇA	AC	PMDB	3	3	6990.00	2330.000000
EDSON FIRMINO DE PAULA	AC	PSDB	3	3	1840.00	613.333333
ELISABETH APARECIDA GARCIA RODRIGUES	AC	PSDB	1	1	440.00	440.000000
FLAVIANO FLAVIO BAPTISTA DE MELO	AC	PMDB	15	13	241500.00	18576.923077

Data preprocessing

```
In [6]: matplotlib.rcParams['figure.figsize'] = (12.0, 6.0)
prices = pd.DataFrame({"votos":train["votos"], "log(votos + 1)":np.log1p(train["votos"))
prices.hist()
```



```
In [7]: # log transform the target:
    train["votos"] = np.log1p(train["votos"])

# log transform skewed numeric features:
    numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index
```

```
skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) #compute skel
skewed_feats = skewed_feats[skewed_feats > 0.75]
skewed_feats = skewed_feats.index
all_data[skewed_feats] = np.log1p(all_data[skewed_feats])
In [8]: all_data = pd.get_dummies(all_data)
all_data.head()
```

Out[8]:

quantidade_doacoes quantidade_doadores total_receita media_receita recursos_de_c

nome					
JOSÉ LUIZ NOGUEIRA DE SOUSA	1.945910	1.945910	9.717218	7.925760	
LOIVA DE OLIVEIRA	2.639057	2.639057	10.035699	7.471276	
MARIA DALVA DE SOUZA FIGUEIREDO	2.890372	2.833213	11.905790	9.133303	
ROMALDO MILANI	1.945910	1.945910	8.007074	6.216979	
ANSELMO DE JESUS ABREU	3.891820	3.891820	NaN	NaN	

5 rows × 259 columns

```
In [9]: # filling NA's with the mean of the column:
    all_data = all_data.fillna(all_data.mean())
    all_data.head()
```

nome					
JOSÉ LUIZ NOGUEIRA DE SOUSA	1.945910	1.945910	9.717218	7.925760	
LOIVA DE OLIVEIRA	2.639057	2.639057	10.035699	7.471276	
MARIA DALVA DE SOUZA FIGUEIREDO	2.890372	2.833213	11.905790	9.133303	
ROMALDO MILANI	1.945910	1.945910	8.007074	6.216979	
ANSELMO DE JESUS ABREU	3.891820	3.891820	9.634619	7.466020	

5 rows × 259 columns

- 2.2) Construir modelos de regressão com (ridge e lasso) e sem regularização.
- 2.3) Considerar outros modelos ainda não vistos em sala de sua escolha (e.g. SVR, Regression Trees, KNN e Random Florests).
- 2.4) Tunar os hiperâmetros para cada caso e retornar os rmses de validação cruzada para todos os modelos avaliados.
- 2.5) Plotar os resíduos versus predições e analisar se esses plots representam bons indícios da adequabilidade dos modelos a esse problema.

```
In [10]: # creating matrices for sklearn:
    X_train = all_data[:train.shape[0]]
    X_test = all_data[train.shape[0]:]
    y = train.votos

In [11]: from sklearn.linear_model import Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV
    from sklearn.model_selection import cross_val_score

def rmse_cv(model, X_train, y):
    rmse= np.sqrt(-cross_val_score(model, X_train, y, scoring="neg_mean_squared_erreturn(rmse)")
```

```
In [12]: model_ridge = None

# tunando hiperâmetros
alphas = [0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 1

cv_ridge = []
min_ridge_rmse = float("inf")
for alpha in alphas:
    model_ridge_tmp = Ridge(alpha = alpha)
    ridge_rmse = rmse_cv(model_ridge_tmp, X_train, y).mean()
    cv_ridge.append(ridge_rmse)
    if ridge_rmse < min_ridge_rmse:
        min_ridge_rmse = ridge_rmse
        model_ridge = model_ridge_tmp</pre>
```

```
In [13]: cv_ridge = pd.Series(cv_ridge, index = alphas)
    cv_ridge.plot(title = "Validation - Just Do It")
    plt.xlabel("alpha")
    plt.ylabel("rmse")
```

Out[13]: Text(0, 0.5, 'rmse')

Ridge: RMSE

```
In [14]: min_ridge_rmse
Out[14]: 0.9479115249847091
```

Ridge: Coefficients

Out[15]: Text(0.5, 1.0, 'Coefficients in the Ridge Model')

Ridge: Resíduos vs Predições

```
In [16]: # let's look at the residuals as well:
    matplotlib.rcParams['figure.figsize'] = (6.0, 6.0)

preds = pd.DataFrame({"preds":model_ridge.predict(X_train), "true":y})
preds["residuals"] = preds["true"] - preds["preds"]
preds.plot(x = "preds", y = "residuals", kind = "scatter")
```

Out[16]: <AxesSubplot:xlabel='preds', ylabel='residuals'>

O gráfico de resíduos versus predições do modelo Ridge parece bom. Os dados não estão

muito espalhados.

Lasso

Out[20]:

```
# tunando hiperâmetros
In [17]:
         model_lasso = LassoCV(alphas = [1, 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01,
         Lasso: RMSE
         rmse_cv(model_lasso, X_train, y).mean()
In [18]:
         0.9585032441908858
Out[18]:
         Lasso: Coefficients
         coef = pd.Series(model_lasso.coef_, index = X_train.columns)
In [19]:
         print("Lasso picked" + str(sum(coef != 0)) + " variables and eliminated the other
         Lasso picked 111 variables and eliminated the other 148 variables
In [20]:
         imp_coef = pd.concat([coef.sort_values().head(10),
                              coef.sort_values().tail(10)])
         matplotlib.rcParams['figure.figsize'] = (8.0, 10.0)
         imp_coef.plot(kind = "barh")
         plt.title("Coefficients in the Lasso Model")
```

Text(0.5, 1.0, 'Coefficients in the Lasso Model')

Lasso: Resíduos vs Predições

```
In [21]: # let's look at the residuals as well:
    matplotlib.rcParams['figure.figsize'] = (6.0, 6.0)

    preds = pd.DataFrame({"preds":model_lasso.predict(X_train), "true":y})
    preds["residuals"] = preds["true"] - preds["preds"]
    preds.plot(x = "preds", y = "residuals",kind = "scatter")

Out[21]: 

Cut[21]:
```


O gráfico de resíduos versus predições do modelo Lasso também parece bom. A maioria dos dados não estão muito espalhados.

```
In [22]: import xgboost as xgb
         dtrain = xgb.DMatrix(X_train, label = y)
         dtest = xgb.DMatrix(X_test)
         params = {"max_depth":2, "eta":0.1}
         model = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100)
         C:\Users\ghust\anaconda3\lib\site-packages\xgboost\compat.py:36: FutureWarning: pa
         ndas.Int64Index is deprecated and will be removed from pandas in a future version.
         Use pandas. Index with the appropriate dtype instead.
           from pandas import MultiIndex, Int64Index
         C:\Users\ghust\anaconda3\lib\site-packages\xgboost\data.py:250: FutureWarning: pan
         das.Int64Index is deprecated and will be removed from pandas in a future version.
         Use pandas. Index with the appropriate dtype instead.
           elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
In [23]:
         model.loc[30:,["test-rmse-mean", "train-rmse-mean"]].plot()
         <AxesSubplot:>
Out[23]:
```



```
400
         model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) #the
In [24]:
         model_xgb.fit(X_train, y)
         C:\Users\ghust\anaconda3\lib\site-packages\xgboost\data.py:250: FutureWarning: pan
         das.Int64Index is deprecated and will be removed from pandas in a future version.
         Use pandas. Index with the appropriate dtype instead.
           elif isinstance(data.columns, (pd.Int64Index, pd.RangeIndex)):
         XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
Out[24]:
                      colsample_bynode=1, colsample_bytree=1, enable_categorical=False,
                      gamma=0, gpu_id=-1, importance_type=None,
                      interaction_constraints='', learning_rate=0.1, max_delta_step=0,
                      max_depth=2, min_child_weight=1, missing=nan,
                      monotone_constraints='()', n_estimators=360, n_jobs=16,
                      num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,
                      reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact',
                      validate_parameters=1, verbosity=None)
         xgb_preds = np.expm1(model_xgb.predict(X_test))
In [25]:
         lasso_preds = np.expm1(model_lasso.predict(X_test))
In [26]: from scipy import stats
         predictions = pd.DataFrame({"xgb":xgb_preds, "lasso":lasso_preds})
         # remove outliers
         predictions = predictions[(np.abs(stats.zscore(predictions)) < 10).all(axis=1)]</pre>
         predictions.plot(x = "xgb", y = "lasso", kind = "scatter")
         <AxesSubplot:xlabel='xgb', ylabel='lasso'>
Out[26]:
```



```
In [27]: preds = 0.7 * lasso_preds + 0.3 * xgb_preds
    # converte os votos para int
    preds = preds.astype('int')

In [28]: solution = pd.DataFrame({"nome":test.index, "votos":preds})
    solution.to_csv("ridge_sol.csv", index = False)

In [29]: solution.head(20)
```

	nome	votos
0	ANTONIA LUCILEIA CRUZ RAMOS CAMARA	26239
1	DEODATO NUNES DE FRANÇA	1634
2	EDSON FIRMINO DE PAULA	734
3	ELISABETH APARECIDA GARCIA RODRIGUES	360
4	FLAVIANO FLAVIO BAPTISTA DE MELO	26706
5	FRANCISCO ALVES VIEIRA	1054
6	FRANCISCO CARLOS DE OLIVEIRA DE LIMA	783
7	FRANCISCO JOSE BENICIO DIAS	897
8	JOSE ALVES DE MORAES	519
9	MARCIO MIGUEL BITTAR	22351
10	Maria da Rocha Severo	300
11	MAURICIO DINIZ LIMA	509
12	MIGUEL ARCANJO DE SOUZA CARNEIRO	876
13	RAIMUNDO NONATO DE CASTRO	2168
14	SOLANGE MARIA PINHO PASCOAL	5279
15	UAGLA BELMONT ALVES	1565
16	EDILBERTO AFONSO DE MORAES JUNIOR	18604
17	FERNANDO MELO DA COSTA	27458
18	GEHLEN DINIZ ANDRADE	3809

GILSON GOMES DE OLIVEIRA

4451

In [30]: test.loc[:, "votos":"votos"].head(20)

19

Out[30]: votos

nome ANTONIA LUCILEIA CRUZ RAMOS CAMARA 15849 **DEODATO NUNES DE FRANÇA** 4620 **EDSON FIRMINO DE PAULA** 312 **ELISABETH APARECIDA GARCIA RODRIGUES** 1357 FLAVIANO FLAVIO BAPTISTA DE MELO 36301 FRANCISCO ALVES VIEIRA 3378 FRANCISCO CARLOS DE OLIVEIRA DE LIMA 3377 FRANCISCO JOSE BENICIO DIAS 1082 **JOSE ALVES DE MORAES** 943 MARCIO MIGUEL BITTAR 52183 **MARIA DA ROCHA SEVERO** 113 **MAURICIO DINIZ LIMA** 744 **MIGUEL ARCANJO DE SOUZA CARNEIRO** 567 **RAIMUNDO NONATO DE CASTRO** 2492 **SOLANGE MARIA PINHO PASCOAL** 10513 **UAGLA BELMONT ALVES** 452 **EDILBERTO AFONSO DE MORAES JUNIOR** 149 FERNANDO MELO DA COSTA 11018 **GEHLEN DINIZ ANDRADE** 2944 **GILSON GOMES DE OLIVEIRA** 707

```
In [31]: votos_vs_votos_preditos = pd.DataFrame({"votos": test["votos"].values, "votos_pred:
    # remove outliers
    votos_vs_votos_preditos = votos_vs_votos_preditos[(np.abs(stats.zscore(votos_vs_votos_vs_votos_vs_votos_preditos), y = "votos", kind = "scatter")

Out[31]: 

AxesSubplot:xlabel='votos_preditos', ylabel='votos'>
```


Random Forest Regressor

```
In [32]: y_test = test.votos
         from sklearn.ensemble import RandomForestRegressor
         model_rf = RandomForestRegressor(n_estimators = 50, random_state = 42, max_depth=8)
         # Train the model on training data
         model_rf.fit(X_train, y);
In [33]:
         # Use the forest's predict method on the test data
         predictions = model_rf.predict(X_test)
         # Calculate the absolute errors
         errors = abs(predictions - y_test)
         # Print out the mean absolute error (mae)
         print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.')
         Mean Absolute Error: 22454.66 degrees.
In [34]:
         # Calculate mean absolute percentage error (MAPE)
         mape = 100 * (errors / y_test)
         # Calculate and display accuracy
         accuracy = 100 - np.mean(mape)
         print('Accuracy:', round(accuracy, 2), '%.')
         Accuracy: 0.94 %.
```

RandomForestRegressor: RMSE

```
In [35]: rmse_cv(model_rf, X_train, y).mean()
Out[35]: 0.9399565049950297
```

RandomForestRegressor: Resíduos vs Predições

```
In [36]: # Let's Look at the residuals as well:
    matplotlib.rcParams['figure.figsize'] = (6.0, 6.0)

preds = pd.DataFrame({"preds":model_rf.predict(X_train), "true":y})
    preds["residuals"] = preds["true"] - preds["preds"]
    preds.plot(x = "preds", y = "residuals",kind = "scatter")
```

Out[36]: <AxesSubplot:xlabel='preds', ylabel='residuals'>

O gráfico de resíduos versus predições do modelo Ramdom Forest aparenta que os dados não estão muito espalhados.

- 3) Alguns dias antes da entrega final serão liberados os dados de teste referentes à 2014 para validação final dos seus melhores modelos.
- 3.1) Dica: Uma coisa que você pode fazer é usar os dados de 2006 como treino e os de 2010 como validação. Uma vez encontrados os melhores modelos para 2010 junte 2006+2010, retreine, e aplique o modelo aos dados de 2014 que serão liberados.

```
In [37]: # Colunas carregadas do CSV
cols = [
         "ano",
         "nome",
         "sexo",
         "estado_civil",
         "grau",
         "ocupacao",
         "uf",
         "partido",
         "quantidade_doacoes",
         "quantidade_doadores",
```

```
"media_receita",
              "recursos_de_outros_candidatos/comites",
              "recursos_de_pessoas_fisicas",
              "recursos_de_pessoas_juridicas",
              "recursos_proprios",
              "quantidade_despesas",
              "quantidade_fornecedores",
              "total_despesa",
              "media_despesa",
              "votos",
          ]
          df_2006_2010 = pd.read_csv("eleicoes_2006_a_2010.csv", usecols=cols, index_col="nor
          # junta os dados de 2006 e 2010 para treino
          train = df_2006_2010.loc[:,'uf':]
          # dados de 2014 como teste
          df_2014 = pd.read_csv("eleicoes_2014.csv", usecols=cols, index_col="nome")
          test = df_2014.loc[:,'uf':]
          # junta os dados de 2006, 2010 e 2014 sem as colunas "ano" e "votos"
          all_data = pd.concat((
              train.loc[:,:'ocupacao'],
              test.loc[:,:'ocupacao']
          ))
         train.head()
In [38]:
Out[38]:
                      uf partido quantidade_doacoes quantidade_doadores total_receita media_receita
               nome
           JOSÉ LUIZ
           NOGUEIRA AP
                              PT
                                                  6
                                                                     6
                                                                           16600.00
                                                                                      2766.666667
           DE SOUSA
            LOIVA DE
                              PT
                      RO
                                                 13
                                                                    13
                                                                           22826.00
                                                                                      1755.846154
            OLIVEIRA
              MARIA
           DALVA DE
                      AΡ
                              PT
                                                 17
                                                                     16
                                                                          148120.80
                                                                                      9257.550000
              SOUZA
          FIGUEIREDO
           ROMALDO
                      MS PRONA
                                                  6
                                                                             3001.12
                                                                                       500.186667
              MILANI
           ANSELMO
            DE JESUS RO
                              PT
                                                 48
                                                                    48
                                                                               NaN
                                                                                            NaN
              ABREU
In [39]:
         test.head()
```

"total_receita",

	_	
\cap	[39]	
Uut	001	

	nome						
	EMERSON DA SILVA SANTOS	AC	PSOL	3	3	1580.00	526.666667
	GERALDO SILVA DOS SANTOS	AC	PSOL	5	5	3180.00	636.000000
	CARLOS CESAR CORREIA DE MESSIAS	AC	PSB	40	38	333293.13	8770.871842
	IDESIO LUIS FRANKE	AC	PT	29	29	156719.32	5404.114483
	LEONARDO CUNHA DE BRITO	AC	PT	160	146	711083.00	4870.431507
4							•

uf partido quantidade_doacoes quantidade_doadores total_receita media_receita

In [40]: all_data

Ο.	.4-	[40]	1 .
U	иL	40	

	ur	partido	quantidade_doacoes	quantidade_doadores	totai_receita	media_receita
nome						
JOSÉ LUIZ NOGUEIRA DE SOUSA	AP	PT	6	6	16600.00	2766.666667
LOIVA DE OLIVEIRA	RO	PT	13	13	22826.00	1755.846154
MARIA DALVA DE SOUZA FIGUEIREDO	AP	PT	17	16	148120.80	9257.550000
ROMALDO MILANI	MS	PRONA	6	6	3001.12	500.186667
ANSELMO DE JESUS ABREU	RO	PT	48	48	NaN	NaN
JOENICE PEREIRA RIBEIRO	то	PR	7	6	6334.29	1055.715000
TIAGO DE PAULA ANDRINO	ТО	PP	42	42	1738508.82	41393.067143
ETEVALDO DA PAZ NONATO	ТО	PSOL	3	3	1230.00	410.000000
IVARDO SANTANA	ТО	PSOL	2	2	900.00	450.000000
MARIA LUCIA SOARES VIANA	ТО	PSOL	10	9	9095.00	1010.555556

uf partido quantidade_doacoes quantidade_doadores total_receita media_receita

12266 rows × 18 columns

Data preprocessing


```
In [42]: # Log transform the target:
    train["votos"] = np.log1p(train["votos"])

# Log transform skewed numeric features:
    numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index

skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) #compute skewing
skewed_feats = skewed_feats[skewed_feats > 0.75]
skewed_feats = skewed_feats.index

all_data[skewed_feats] = np.log1p(all_data[skewed_feats])
```

```
In [43]: all_data = pd.get_dummies(all_data)
    all_data.head()
```

Out[43]:

quantidade_doacoes quantidade_doadores total_receita media_receita recursos_de_c

nome					
JOSÉ LUIZ NOGUEIRA DE SOUSA	1.945910	1.945910	9.717218	7.925760	
LOIVA DE OLIVEIRA	2.639057	2.639057	10.035699	7.471276	
MARIA DALVA DE SOUZA FIGUEIREDO	2.890372	2.833213	11.905790	9.133303	
ROMALDO MILANI	1.945910	1.945910	8.007074	6.216979	
ANSELMO DE JESUS ABREU	3.891820	3.891820	NaN	NaN	

5 rows × 281 columns

```
In [44]: # filling NA's with the mean of the column:
    all_data = all_data.fillna(all_data.mean())
    all_data.head()
```

Out[44]:

quantidade_doacoes quantidade_doadores total_receita media_receita recursos_de_u

nome					
JOSÉ LUIZ NOGUEIRA DE SOUSA	1.945910	1.945910	9.717218	7.925760	
LOIVA DE OLIVEIRA	2.639057	2.639057	10.035699	7.471276	
MARIA DALVA DE SOUZA FIGUEIREDO	2.890372	2.833213	11.905790	9.133303	
ROMALDO MILANI	1.945910	1.945910	8.007074	6.216979	
ANSELMO DE JESUS ABREU	3.891820	3.891820	9.670482	7.468538	

5 rows × 281 columns

```
In [45]: # creating matrices for sklearn:
    X_train = all_data[:train.shape[0]]
    X_test = all_data[train.shape[0]:]
    y = train.votos
```

Ridge (retreino)

```
In [46]: model_ridge = None
    alphas = [0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 1
    cv_ridge = []
    min_ridge_rmse = float("inf")
    for alpha in alphas:
        model_ridge_tmp = Ridge(alpha = alpha)
        ridge_rmse = rmse_cv(model_ridge_tmp, X_train, y).mean()
        cv_ridge.append(ridge_rmse)
        if ridge_rmse < min_ridge_rmse:
            min_ridge_rmse = ridge_rmse
            model_ridge = model_ridge_tmp</pre>
```

Ridge: RMSE

```
In [47]: min_ridge_rmse
```

Lasso (retreino)

```
In [48]: model_lasso = LassoCV(alphas = [1, 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, Lasso: RMSE
```

```
In [49]: rmse_cv(model_lasso, X_train, y).mean()
Out[49]: 1.0176304272725223
```

RandomForestRegressor (retreino)

```
In [50]: y_test = test.votos
    model_rf = RandomForestRegressor(n_estimators = 150, random_state = 42, max_depth=!
# Train the model on training data
model_rf.fit(X_train, y);
```

RandomForestRegressor: RMSE

```
In [51]: rmse_cv(model_rf, X_train, y).mean()
Out[51]: 0.9879650357238319
```

4.1) Responder: Dentre os modelos avaliados, qual foi o que deu o melhor resultado nos dados de 2014 em termos de RMSE? Justifique bem sua resposta.

Dentre os modelos avaliados, o Ridge obteve um RMSE de 1.014233447104668, enquanto o Lasso obteve um RMSE de 1.0176304272725223 e o Random Forest de 0.9879650357238319. Desta forma, o modelo que apresentou o melhor resultado para os dados de 2014 foi o modelo Random Forest. O RMSE (root mean squared error) é a medida que calcula a raiz quadrática média dos erros entre os valores observados e predições. Desta forma, quanto menor o RMSE melhor o modelo.

```
In [ ]:
```