CORSO DI OTTIMIZZAZIONE

Prova scritta del 12 Febbraio 2016

Tempo a disposizione: ore 2:00.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 8)

Un'azienda ha appena creato n nuovi reparti deve allocare a tali reparti alcune delle m fotocopiatrici a disposizione. Ad ogni reparto possono essere allocate anche più fotocopiatrici. Ogni fotocopiatrice i ha un costo di gestiore mensile pari a c_i e può fotopiare al massimo f_i fogli al mese. Ogni reparto j, di contro, ha bisogno di effettuare r_j fotocopie al mese. Per ragioni di spazio, ciascun reparto non può ricevere più di 5 fotocopiatrici. Si scriva un programma lineare che modellizzi il problema di minimizzare il costo di gestione complessivo delle fotocopiatrici utilizzate.

Esercizio 2. (Punti 6, la risposta occupi al massimo 25 righe)

Si discuta dell'algoritmo MCF basato sulla cancellazione di cicli, discutendo la sua definizione e la sua correttezza.

Esercizio 3. (Punti 8)

Si risolva, tramite l'algoritmo del simplesso primale, il seguente problema di programmazione lineare:

$$\max 10x_1 + x_2$$

$$x_1 \ge -2$$

$$2x_1 - x_2 \ge -4$$

$$x_2 \le 3 + x_1$$

$$x_2 \le 3 - x_1$$

$$x_2 \le 4 - 2x_1$$

$$x_1 \le 2$$

Si parta dalla base ammissibile corrispondente ai primi due vincoli.

Esercizio 4. (Punti 8)

La mappa di una certa città può essere vista come un grafo indiretto i cui nodi sono n punti di interesse e i cui archi sono le vie che collegano tali punti di interesse: un tale arco $\{i,j\}$ rappresenta una strada di lunghezza $l_{\{i,j\}}$ che collega il punto di interesse i al punto di interesse j. Si scriva un programma lineare che permetta di determinare il percorso (che può comprendere più strade) di lunghezza complessiva minima tra due punti di interesse s e t (dove $s \neq t$).