Sem-17 (m) Regular 16/12/13 Comp Dept COMP 25

COMP 3-5 (RC)

S.E. (Comp.) (Semester – III) (RC) Examination, Nov./Dec. 2013 LOGIC DESIGN

Du	ratio	on: 3 Hours Total Marks: 1	00
		Instructions: 1) Answer five full questions, by selecting atleast one question from each module. 2) Diagram must be drawn neat and clear with pencil only. 3) Assume data if necessary.	
		MODULE - I have been a second of the second	
1.		What is a digital system? What are its advantages over analog system? Perform the following operations: i) (679.6 + 536.8) ₁₀ using BCD addition	4
	c)	ii) (753 – 864) ₁₀ using 9's complement method. Detect and correct errors if any in the following even parity Hamming code	
	d)	word 0101101. Minimize and draw the circuit for f(A, B, C, D) = Σ_m (0, 1, 3, 5, 7, 8, 9, 11, 15) using Q-M method.	8
2.	a)	Prove the following using Boolean Algebraic Theorems i) $(A + B) (\overline{A} \overline{C} + C) (\overline{\overline{B}} + AC) = \overline{A}B$	6
	b)	ii) $\overline{A \oplus B} = A \oplus \overline{B} = \overline{A} \oplus B$. Implement $Y = \overline{AB} + A + (\overline{B} + \overline{C})$ using minimum number of NAND gates only (only 2 inputs).	4
	c)	Obtain the minimal POS expression for $\Pi_{\rm M}$ (0, 1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15) using K-map.	6
	d)	What are self complementing codes? Explain two self complementing codes with help of example.	4

MODULE-II

3.	a)	Describe the operations of the following combinational circuits : i) magnitude comparator ii) octal to binary encoder.	8
	b)	Design a full adder with two half adders and one OR gate. Show the truth tables and circuit diagrams.	6
	c)	A circuit receives a BCD code as input. Design a minimal circuit to detect the decimal numbers 0, 1, 2, 3, 8, 9.	6
4.	a)	Explain the following: i) How does level triggered flip flop differ from edge triggered flip flop? ii) How does SR flip flop differ from JK flip flop in its basic operation?	
	b)	With the help of a neat logic diagram schematic symbol, truth table, present state, next state table, state diagram and excitation table. Explain the working of a J – K flip flop.	
	C)	Bring out the differences between combinational and sequential circuits. What is 'T' and 'D' in T and D flip flop?	6
		MODULE - III	
5.	a)	Explain the working of a 4 bit bidirectional shift register with mode control signal. Also discuss its constructional features.	8
	b)	Design and implement an octal synchronous down counter using either D or T flip flops. For this mod N counter what is N?	8
	c)	Explain the working of 4 bit SIPO shift register.	4
6.	a)	What are synchronous counter? Design a synchronous counter that goes through the following states, using SR flip flops.	8
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	b)	With the help of neat diagram and a wave form, explain the working of mod-4 ripple counter. How would you convert it to a Mod-8 counter?	6
	c)	The content of a 4 bit shift register is initially 1101. The register is shifted 6 times to the right with serial input being 101101. What is the content of the register after each shift?	4
	d)	List some applications of counters.	2
	47	The same appropriate at agentaria.	

MODULE-IV

7. a) Reduce the number of states in the following state table and draw the reduced state diagram.

8

8

Present State	Input x	Next State	O/P Z
machine ()	0	f	0
а	1	b	0
b	0	d	0
	1	c	0
	0	f	0
С	1	е	0
d	0	g	1
Q .	1	а	0
College Commis	0	d	0
е	1 0	c	0
AND THE BELL BELL	0	EA for	1
f	1 149	b	1
CARTE LUCK	0	g	0
g	1.00	Tigotich ett to	1.
h	0	g	1
	raidis de la	a a pate	0

b) Design a synchronous counter for the following diagram using T-flip flops.

State	Assignment	
So	000	
S ₁	001	
S ₂	011	
S ₃	010	
S_4	110	

10

6

4

S ₅	111
S ₆	101
S ₇	100

- c) How is FPLA architecture different from the PAL?
- a) Design a 2 input 2 output synchronous sequential circuit which produces an output z = 1, whenever any of the following input sequences 1100, 1010 or 1001 occurs. The circuit resets to its initial state after a 1 output has been generated.
 - b) Design a PAL programmed for the following 3 variable logic function $X = ABC + \overline{A}C + A\overline{B} + \overline{B}\overline{C}.$
 - c) What is PAL? Explain any two types of PAL.