Devoir surveillé n°9 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Polytopes de Birkhoff et matrices bistochastiques.

Ce probème étudie la géométrie d'une partie convexe de l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$: une sorte de polyèdre dans cet espace de dimension n^2 . Au fil des questions, on déterminera, entre autres, quels sont les sommets de ce polyèdre et quelle est la dimension du plus petit espace vectoriel le contenant.

On note S_n le groupe des permutations de [1, n], et I_n la matrice identité d'ordre n.

- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients positifs $(a_{i,j})_{1 \leq i,j \leq n}$ est dite bistochastique si pour tous $i,j \in [\![1,n]\!]$ on a $\sum_{k=1}^n a_{i,k} = \sum_{k=1}^n a_{k,j} = 1$. En d'autres termes, une matrice est bistochastique si la somme des coefficients sur une ligne ou une colonne est égale à 1.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients positifs $(a_{i,j})_{1 \leqslant i,j \leqslant n}$ est dite de permutation s'il existe une permutation $\sigma \in S_n$ (c'est-à-dire une bijection de $[\![1,n]\!]$ dans $[\![1,n]\!]$) telle que $A = \sum_{i=1}^n E_{\sigma(i),i}$ ou de manière équivalente telle que $a_{i,j} = \delta_{i,\sigma(j)}$ pour tous $i,j \in [\![1,n]\!]$, où δ désigne le symbole de Kronecker. On notera M_σ la matrice de permutation associée à la permutation σ .
- \square Si $A_1, \ldots, A_q \in \mathcal{M}_n(\mathbb{R})$, on appelle barycentre à coefficients positifs de ces matrices toute matrice B s'écrivant

$$B = p_1 A_1 + \dots + p_q A_q,$$

où p_1, \ldots, p_q sont des réels positifs vérifiant $p_1 + \cdots + p_q = 1$.

Partie A - Sommets du polytope de Birkhoff

- 1) Montrer que I_n est bistochastique et de permutation; préciser la permutation associée. Exhiber une matrice bistochastique non inversible.
- 2) Vérifier que l'ensemble des matrices de permutation est un sous-groupe de $GL_n(\mathbb{R})$.
- **a)** Montrer que toute matrice de permutation est bistochastique. Étudier la réciproque.
 - b) Supposons qu'une matrice de permutation M_{σ} s'écrive $\lambda A + (1 \lambda)B$ où A et B sont des matrices bistochastiques et $\lambda \in]0,1[$. Montrer que A et B sont de permutation.
- 4) L'ensemble des matrices bistochastiques est-il stable par produit? Et par combinaison linéaire?

Partie B – Espace engendré par le polytope

Notons F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par les matrices bistochastiques et G le sous-espace vectoriel des matrices dont la somme des coefficients sur chaque ligne et sur chaque colonne vaut 0.

- 5) Montrer qu'une matrice appartient à F si et seulement si il existe $c \in \mathbb{R}$ tel que la somme des coefficients sur chaque ligne et sur chaque colonne vaut c.
- 6) Montrer que $F = \text{Vect}(J_n) \oplus G$ où J_n est la matrice dont tous les coefficients sont égaux à 1.
- 7) Montrer qu'une matrice $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$ de G est uniquement déterminée par ses coefficients $(m_{i,j})_{1\leqslant i,j\leqslant n-1}$. En déduire que

$$\dim G \leqslant (n-1)^2.$$

- 8) a) Montrer que l'intersection de p hyperplans d'un espace de dimension $N \ge p$ est au moins de dimension N-p.
 - b) Pour tout $i, j \in [1, n]$, notons L_i^* (respectivement C_j^*) la forme linéaire qui associe à une matrice la somme des coefficients de la ligne i (respectivement de la colonne j). Montrer que

$$G = \bigcap_{i=1}^{n} \operatorname{Ker} L_{i}^{*} \cap \bigcap_{j=1}^{n-1} \operatorname{Ker} C_{j}^{*} ;$$

en déduire que

$$\dim G \geqslant (n-1)^2.$$

- 9) En déduire la dimension de F.
- 10) Notons U le vecteur-colonne dont tous les coefficients sont égaux à 1 et H le sous-espace de $\mathcal{M}_{n,1}(\mathbb{R})$ des vecteurs dont la somme des coefficients est nulle.
 - a) Montrer que $M \in F$ si et seulement si M laisse stable Vect(U) et H.
 - b) Retrouver la dimension de F.

 Indication: on pourra montrer que les sous-espaces Vect(U) et H sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$.

Partie C - Théorème de Birkhoff

L'objectif est de démontrer le théorème suivant :

Théorème de Birkhoff : Toute matrice bistochastique est un barycentre à coefficients positifs d'un nombre fini de matrices de permutation.

- 11) Décomposer la matrice $\frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ comme un barycentre à coefficients positifs de matrices de permutation.
- **12)** Soit $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients $(a_{i,j})_{1 \leq i,j \leq n}$ tels que $\prod_{j=1}^n a_{\sigma(j),j} = 0$ pour toute permutation $\sigma \in S_n$.

Montrer qu'il existe I, J deux parties de [1, n] telles que la matrice extraite $(a_{i,j})_{i \in I, j \in J}$ soit nulle et Card I + Card J = n + 1.

Indication: on pourra raisonner par récurrence forte sur n.

13) En déduire que si la matrice $A = (a_{i,j})_{1 \le i,j \le n}$ est bistochastique, alors il existe une permutation $\sigma \in S_n$ telle que $\prod_{i=1}^n a_{\sigma(j),j} \ne 0$.

Indication : on pourra raisonner par l'absurde et calculer la somme de tous les coefficients d'une matrice bistochastique.

14) Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice bistochastique et σ une permutation associée à A telle que $\prod_{j=1}^n a_{\sigma(j),j}\neq 0.$ Considérons

$$\alpha = \min \left\{ a_{\sigma(j),j}, \ j \in \llbracket 1, n \rrbracket \right\} > 0.$$

- a) Déterminer A dans le cas où $\alpha = 1$.
- b) Si $\alpha < 1$, montrer que $A \alpha M_{\sigma} = (1 \alpha)B$ où B est une matrice bistochastique qui admet strictement plus de coefficients nuls que A.
- 15) Montrer le théorème de Birkhoff.

II. Lecture arbitraire de pistes musicales.

Dans tout le problème, n sera un entier naturel supérieur ou égal à 2. Un baladeur contient n pistes (numérotées de 1 à n) et fonctionne en mode aléatoire selon le protocole suivant :

- La première piste lue est choisie de façon aléatoire et uniforme parmi les n pistes.
- A la fin de la lecture d'une piste, la suivante est choisie de façon aléatoire et uniforme parmi les n pistes.

(Il est donc possible que la même piste soit lue plusieurs fois de suite...)

Ce problème étudie différents aspects de cette lecture aléatoire.

On fixe un entier naturel k supérieur ou égal à 1 et on s'intéresse aux k premières lectures effectuées. On suppose qu'un espace probabilisé fini (Ω, P) modélise cette expérience.

Les différentes parties de ce problème sont dans une grande mesure indépendantes les unes des autres.

Partie 1 – Nombre de lectures d'une piste.

Pour tout $1 \le i \le n$, on note X_i le nombre de fois où la piste numéro i est lue au cours des k premières lectures.

- 1) Déterminer la loi de X_i et donner son espérance ainsi que sa variance.
- 2) Les variables aléatoires X_1, X_2, \ldots, X_n sont-elles indépendantes?
- **3) a)** Que vaut $X_1 + X_2 + \cdots + X_n$?
 - **b)** En déduire que la covariance de X_i et X_j pour $i \neq j$ vaut $-\frac{k}{n^2}$.
- 4) a) Déterminer la loi conjointe de X_i et X_j pour $i \neq j$.
 - b) Retrouver alors le résultat de la question 3)b).
- 5) Commenter le signe de la covariance de X_i et X_j pour $i \neq j$.
- **6)** Soient a_1, a_2, \ldots, a_n n entiers naturels.
 - a) On suppose que $a_1 + \cdots + a_n \neq k$. Que vaut la probabilité

$$P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) = P(\bigcap_{i=1}^n [X_i = a_i])$$
?

b) On suppose à présent que $a_1 + \cdots + a_n = k$. Montrer que :

$$P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) = \frac{k!}{a_1! a_2! \dots a_n!} (\frac{1}{n})^k$$

Partie 2 - Nombre de pistes lues.

On note Z le nombre de pistes distinctes ayant été lues au cours des k premières lectures.

Si $1 \leqslant \ell \leqslant k$, on note C_{ℓ} le numéro de la $\ell^{\rm e}$ piste jouée.

Si $1 \le i \le n$, on note B_i la variable alétoire valant 1 si la i^e piste a été jouée, 0 sinon.

- 7) Décrire avec soin l'ensemble des valeurs que prend Z en fonction de n et k.
- 8) Déterminer P(Z=1).
- 9) Exprimer Z en fonction des variables aléatoires B_1, \ldots, B_n .
- **10)** Soit $i \in [1, n]$.
 - a) Exprimer l'événement $[B_i = 0]$ en fonction d'événements construits sur les variables aléatoires C_1, \ldots, C_k .
 - **b)** En déduire la valeur de $P(B_i = 0)$.
 - c) En déduire la loi de B_i , son expérience et sa variance.
- 11) Déduire des questions précédentes que $E(Z) = n\left(1 \left(1 \frac{1}{n}\right)^k\right)$.
- 12) Soit $i, j \in [1, n]$ vérifiant $i \neq j$.
 - a) De même que dans la question 10), déterminer la valeur de

$$P(B_i = 0, B_i = 0).$$

- **b)** Déduire de cela et de la question **10)b)** la valeur de $P(B_iB_i=0)$.
- c) En déduire $Cov(B_i, B_i)$.
- 13) Déduire des questions précédentes que la variance de Z est

$$V(Z) = n\left(1 - \frac{1}{n}\right)^k + n(n-1)\left(1 - \frac{2}{n}\right)^k - n^2\left(1 - \frac{1}{n}\right)^{2k}.$$

- 14) Dans cette dernière partie, on suppose que $k = n \ge 2$ et l'on note $Z_n = Z$.
 - a) Montrer que

$$V(Z_n) \leqslant n \left(1 - \frac{1}{n}\right)^n.$$

b) Montrer que, pour tout $\varepsilon > 0$,

$$P\left(\left|\frac{Z_n}{n} - \left(1 - \frac{1}{n}\right)^n\right| \geqslant \varepsilon\right) \leqslant \frac{1}{n\varepsilon^2} \left(1 - \frac{1}{n}\right)^n.$$

c) En déduire que, pour tout $\varepsilon > 0$,

$$P\left(\left|\frac{Z_n}{n} - \frac{1}{e}\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$$

Interpréter ce résultat.

— FIN —