- A totalidade das condições ao redor
- Muito difícil de categorizar, pois, pela própria definição é um conceito subjetivo
- Mas existem categorizações:
 - Contexto computacional: rede, conectividade, recursos
 - Contexto do usuário: perfil, posição, situação, estado
 - Contexto físico: luz, temperatura, ruído, posição
 - Contexto no tempo: hora, dia/mês, época do ano, estação
- Outras e outras são possíveis
 - Contexto operacional (regras), contexto pessoal etc.
- O importante é a utilização da categoria e não a sua abrangência

- Informações: Estados x Eventos
- Estados
 - Requisitados pelas Aplicações (pull)
 - Acesso a informação atual e ao histórico
 - Exemplo: localização, informações dos dispositivos etc.
- Eventos
 - Notificados às aplicações (push)
 - Estado atual, notificado mediante registro
 - Exemplo: mudança de localização, disponibilização de uma nova rede, nível crítico de energia etc.
- Aplicações: Passivas x Ativas
 - Ativa, adapta o seu comportamento ao contexto percebido
 - Passiva, mostra ao usuário informações do contexto, cabe ao usuário a modificação do comportamento

- Uma maneira de coletar informações capazes:
 - Refletir as condições atuais do usuário
 - Do ambiente
 - Do próprio dispositivo (características de hardware e software)
- "Qualquer informação que possa ser utilizada para caracterizar a situação de entidades (pessoa, lugar ou objeto) que sejam consideradas relevantes para a interação entre o usuário e a aplicação"

- Identidade (Who)
- Atividade (What)
- Tempo (When)
- Localização (Where)
- Matemática:
 - Who + What + When + Where = Why
- Que aplicações?

Aplicações

Aplicações

temperature (12°) humidity (90%) air pressure (1005 hPa)

cold high humidity high air pressure cloud formation, high probably of rain and storm recommend user to use the car instead of bicycle

Origem de Contexto

- Sensores (GPS, temperatura, luz, barulho)
- Dados (informações de bases de dados)
- Aplicações (exemplo: aplicação de calendário)
- Comportamento do usuário (entrada de dados, movimentação, atividade realizada)

Sensores

Android:

```
Android.harware.SensorManager sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
```

• Lista de Sensores Disponíveis:

```
List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);
for (Sensor sensor: sensors) {
     sensor.getName();
}
```

• EventListener observa mudanças nos dados dos sensores

```
private final SensorEventListener sensorListener = new SensorEventListener()
{
    public void onSensorChanged(SensorEvent se) {}
    public void onAccuracyChanged(Sensor sensor, int accuracy) {}
}
```

Sensores

• Registro:

sensorManager.registerListener(sensorListener, sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_NORMAL);

Características dos Sensores

- Dependência Temporal
 - A relevância depende do tempo de captura
 - Pode ser considerada uma série histórica
- Dependência de Localização
 - A relevância depende do local de captura
 - A importância decresce com a distância de referência
- Imperfeições
 - Desconhecimento falha de sensores ou indisponibilidade
 - Ambiguidade- conflito de valores alternativos
 - Imprecisão incerteza de valores, aplicação de heurísticas
 - Erros falhas de medição, entrada de valores errados

Aplicações

- Playlist com controle dinâmico
 - O som ambiente define o controle do volume da aplicação
 - Tamanho da fonte, brilho da tela e conteúdo musical podem ser adaptados de acordo com a atividade do usuário e do nível de luminosidade
- Sensores
 - Microfone, acelerômetros, sensor de toque etc.
- Contexto em alto nível
 - Localização {indoor, outdoor}
 - Tipo de Som {Carro, Elevador, Tipo de música, Fala etc.}

Método

- 1 Fase:
 - Abstração dos Dados dos Sensores
 - Especificação das classificações e do comportamento da aplicação
- 2 Fase:
 - Captura dos Sensores e classificação dos valores

Aplicações

- Casa Inteligente
 - Inferência sobre a situação de usuários na casa
- Especificação e classificação de informações
 - Modelagem: Ontologia baseada no Contexto (CONON)
 - OWL (web Ontology Language W3C), RDF
- Inferência
 - Análise de Regras:

	Ü
Situation	Reasoning Rules
Sleeping	(?u locatedIn Bedroom) ∧ (Bedroom lightLevel LOW)
	↑ (Bedroom drapeStatus CLOSED)
	\Rightarrow (?u situation SLEEPING)
Shower- ing	(?u locatedIn Bathroom)
	↑ (WaterHeater locatedIn Bathroom)
	↑ (Bathroom doorStatus CLOSED)
	↑ (WaterHeater status ON)
	⇒ (?u situation SHOWERING)
Cooking	(?u locatedIn Kitchen)
	↑ (ElectricOven status ON)
	⇒ (?u situation COOKING)
Watching- TV	(?u locatedIn LivingRoom)
	↑ (TVSet locatedIn LivingRoom)
	↑ (TVSet status ON)
	⇒ (?u situation WATCHINGTV)
Having- Dinner	(?u locatedIn DiningRoom)
	^ (?v locatedIn DiningRoom)
	^ (?u owl:differentFrom ?v)
	⇒(?u situation HAVINGDINNER)

CONON

CONON

Provisão de Contexto

- O que é mais importante no Contexto?
 - Sensoriamento
 - Classificação
- Especificação das aplicações em alto nível
 - Middleware
 - Modelagem
- Objetivo: Provisão de informação contextual às aplicações
 - Uma nova aplicação não precisa ser desenvolvida para plataformas específicas, mas entender de uma modelagem ou middleware que ofereça informações de contexto.
- Desafios:
 - Acesso aos módulos de sensoriamento
 - Localização de sensores nas plataformas
 - Gerenciamento de ciclos de vida, valores etc. Provisão de Contexto

Provisão de Contexto

Contexto Baseado na Localização

Localização

• Quais são os recursos utilizados nesse serviço?

• Lugar, localização e posição?

Localização

- Lugar
 - Define um apontamento geográfico no mundo real
- Localização
 - Define um apontamento lógico ou semântico
 - Usualmente associado a uma descrição semântica de uma área (casa, trabalho etc.)
 - Talvez mais importante do que o lugar na especificação do "mundo real"
- Posição
 - Define um apontamento especifico/geométrico
 - Ponto exato no espaço euclidiano, baseado em coordenadas
 - Maior precisão oferecida às aplicações

Modelos

- Modelo de Localização Geométrico
 - Define lugares como coordenadas relativas a um sistema de referência
 - Geoposicionamento
- Modelo de Localização Simbólico
 - Define lugares baseados em símbolos abstratos
 - Baseados em processos de comunicação e no tempo de retorno das informações
 - Triangulação em redes de telefonia celular
 - Comunicação em redes sem fio
- Normalmente mais de um modelo é suportado
 - Android

Android

Manifest

Cálculo dos Modelos

Posicionamento

- Dispositivo determina/calcula as informações de posicionamento
- Localização sobre o controle do dispositivo
- Consumo de hardware e energia

Traking

- Dispositivo envia sinais
- Posicionamento determinado pela infraestrutura
- Pode ser usado em dispositivos mais simples
- Controle da informação baseada na rede

Outras classificações

- Infraestrutura de localização dedicada (standalone)
 - Sistemas de satélite, sistemas infravermelho etc.
 - Custo elevado de investimento
 - Poucas influências externas
 - Alta precisão
 - Alta disponibilidade
- Infraestrutura de localização integrada
 - O sistema de comunicação também é utilizado para posicionamento/localização/tracking etc.
 - Redes celulares, redes sem fio etc.
 - Mais barata
 - Adequada a ambientes internos

Localização

- Global Positioning System
 - Controlado pelo Departamento de Defesa (USA)
 - 24 satélites com 6 orbitas (4 por órbita)
 - 20.200 km (órbita da terra)
 - De 5 a 11 satélites visíveis por localização

Celular

Localização Android

