Hauptseminar: Logjam

by Li Yang Wu

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Breaking 1024 bit Groups

Logjam

• The situation:

Logjam

- Attack on network security protocol
 - Secure client-server communication
- Exploits TLS 1.2 handshake flaw
- Downgrade security level in Diffie-Hellman
- In theorie: easy to avoid
- In practice: high success

Logjam

• Approach:

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Breaking 1024 bit Groups

- Given:
 - Communication partners A and B
 - Insecure communication channel
 - Message space
- Determine:
 - Public key cryptosystem
 - Key space
 - ... with exponential ciper-cryptanalyst ratio

- Define key space:
 - Choose prime q
 - Define number field $GF(q) = \mathbb{Z}/q\mathbb{Z}$
 - Choose basis α in GF(q)
- Draw keys:
 - Choose private key D in GF(q)
 - Calculate public key $E = \alpha^{D} \mod q$
- We have: D_A, D_B, E_A, E_B

Session key:

Remember: $E = \alpha^{D} \mod q$

- Cryptanalyst:
 - Knowledge: α , q, E_A , E_B
 - Objective: D_A or D_B
 - Calculate Logarithm: $D = \log_{\alpha} E \mod q$
 - Cost: O(sqrt(q))
 - Cost of taking $\alpha^{D_AD_B}$ mod q is only $O(\log(q))$
 - => Exponential cipher-cryptanalyst ratio

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Breaking 1024 bit Groups

Approach:

- Polynomial Selection:
 - Find polynomial f and choose m
 s.t. f(m) = 0 mod q
 - Based on f, find a ring of integers O and homomorphism s.t. $\phi: \mathbb{Z}[\gamma] \to \mathbb{Z}/q\mathbb{Z}$, where γ is some root of f
- Benefit: Express knowledge about logs of factors of α with linear equations.

Sieving:

- Define the set of "good" prime ideals B in O
- Sieve through pairs of integers (c,d) that are related to elements in B
- Form matrices from these relations
- Modify matricies to express only information about log factors of α
- Output: Some matrices A_i

- Linear Algebra:
 - Take matrices A_i
 - Compute rank r and extract matrices A_i' with sizes of its ranks
 - Find set P of primes p_i with bounded
 - Compute det(A) mod p for each p_i in P
 - Find relations between the r+1th row and A_i'
 - Calculate logs of prime factors of α

- Descent:
 - Find I s.t. $\alpha^{I}E \equiv p_1p_2...p_t \mod q$, for small p_i 's
 - Find logs of p_i's with database
 - Compute D from these logs

Refined Approach:

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Breaking 1024 bit Groups

TLS Handshake

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Breaking 1024 bit Groups

Logjam Summary

- Preparation:
 - Use the most common 512 Apache group for DH
 - Do the precomputation according to NFS
- Now our database is ready

Logjam Summary

Logjam Summary

- Success Rate:
 - 8.4% top 1M Alexa sites
 - 3.4% sites with browser-trusted certificates

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Weak DH Parameters
- Breaking 1024 bit Groups

Weak DH Parameters

- Use Pollard's lamda method and Pohlig-Hellman decomposition for an improved log calculation if E is chosen small and q is not chosen "safe".
 - Pollard's lambda method calculates logs efficiently, if it is known to lie in a fixed bound {b, ..., b+w}
 - Pohlig-Hellman decomposition extracts information about logs given some prime factors of q-1

Weak DH Parameters

- Improved attack:
 - Decompse q-1 in prime factors
 - Extract information of the log from factors for which the log is feasible to compute (Pohlig-Hellman)
 - Express the missing information as a new log problem with fixed bounds.
 - Solve with Pollard's lambda method

- Logjam
- Diffie-Hellman Key Exchange
- Number Field Sieve
- Transport Layer Security Handshake
- Logjam Summary
- Breaking 1024 bit Groups

Breaking 1024 bit Groups

- Only a cost estimation
- Motivation: Edward Snowden leaks
 - Assertion: NSA decripts all communication
- Assumptions:
 - Optimistic cost extrapolation of recent records in factorization and log computation
 - Existence of specialized hardware for certain tasks

Breaking 1024 bit Groups

- Result:
 - Total cost slightly over \$11B
 - Budget for Consolidated Cryptographic Program plus some additional investments: over \$11B