1. Some interesting properties of ${\cal EL}$

- Show that every \mathcal{EL} -concept is satisfiable (regardless of the presence of an \mathcal{EL} -TBox). That is, for every \mathcal{EL} -concept C there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.
- Show that every \mathcal{EL} -TBox is consistent. That is, for every \mathcal{EL} -TBox \mathcal{T} there exists an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$.

(1)satisfiable

We give the Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$:

$$\Delta^{\mathcal{I}} = \{a\}$$

 $A^{\mathcal{I}} = \{a\}$ for all concept name A

 $r^{\mathcal{I}} = \{(a,a)\}$ for all role name $\ r$

We can prove it by induction on the structure of \mathcal{EL} -concept C:

- ullet if C= op, then $C^{\mathcal{I}}=\Delta^{\mathcal{I}}=\{a\}.$
- ullet if $C=A\in {f C}$, then $C^{\mathcal I}=A^{\widetilde{\mathcal I}}=\{a\}$.
- ullet if $C=D\sqcap E$, then $C^{\mathcal{I}}=D^{\mathcal{I}}\cap E^{\mathcal{I}}=\{a\}\cap \{a\}=\{a\}.$
- if $C=\exists r.\, F$, then $C^{\mathcal{I}}=\{a\}$.

So there exists an interpretation $\mathcal I$ such that $C^{\mathcal I}
eq \emptyset$.

(2)consistent

We continue to use the interpretation \mathcal{I} listed in (1).

Since every $\mathcal{EL} - TBox$ can be transformed into these 4 kinds of normal form:

$$(sform)A \sqsubseteq B \ (cform)A_1 \sqcap A_2 \sqsubseteq B \ (rform)A \sqsubseteq \exists r.\, B \ (lform)\exists r.\, A \sqsubseteq B$$

From (1) we know that every $\mathcal{EL}-concept$ is satisfiable, then $A,B,A_1,A_2,\exists r.\ A,\exists r.\ B$ are all satisfiable according to \mathcal{I}

It's obvious that ${\cal I}$ fit all 4 normal forms listed above.(We can prove it by induction on the structure)

So there exists an intterpretation $\mathcal I$ such that $\mathcal I \models \mathcal T$.

2. Reasoning in \mathcal{EL}

Let $\mathcal T$ be an $\mathcal {EL}$ -TBox containing the following (primitive) concept definitions:
$Bird \equiv Vertebrate \sqcap \exists has_part.Wing$
Reptile \sqsubseteq Vertebrate $\sqcap \exists$ lays.Egg
- Compute an \mathcal{EL} -TBox \mathcal{T}' in normal form using the pre-processing algorithm given in the lecture.
• Apply the algorithm from the lecture slides deciding whether $A \sqsubseteq_{\mathcal{T}'} B$, where A, B are concept names. Using the normalized TBox \mathcal{T}' as input and explain step-by-step which rules are applied.
Using the output of the algorithm, decide whether
Reptile $\sqsubseteq_{\mathcal{T}'}$ Vertebrate
Vertebrate $\sqsubseteq_{\mathcal{T}'}$ Bird
(1)pre-processing algorithm
to transform into 4 formal forms
step 1 gives: (注意运算符优先级)
$ Vertebrate \sqcap \exists has_part. \ Wing \sqsubseteq \qquad \qquad Bird $
$egin{array}{ccc} ext{Reptile} & oxedsymbol{oxdot} & ext{Vertebrate} & oxedsymbol{eta} & ext{llays. Egg} \end{array}$
step 2 gives:
$Bird egin{array}{ccc} & & & & & & & & & & & & & & & & & &$
$Bird egin{array}{cccccccccccccccccccccccccccccccccccc$
$Vertebrate \sqcap \exists has_part.Wing \ \sqsubseteq \ Bird$
$Reptile egin{array}{cccc} & & & & & & & & & & & & & & & & & $
$Reptile \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
step 4 gives:
$Bird \hspace{1cm} \sqsubseteq \hspace{1cm} Vertebrate$
$Bird \hspace{1cm} \sqsubseteq \hspace{1cm} \exists has_part. Wing$
$X \hspace{1cm} \sqsubseteq \hspace{1cm} \exists has_part. Wing$
$\exists has_part. Wing \sqsubseteq \qquad \qquad X$
$Vertebrate \sqcap X \sqsubseteq \qquad Bird$
$Reptile egin{array}{cccc} & & & & & & & & & & & & & & & & & $
$Reptile \hspace{1cm} \sqsubseteq \hspace{1cm} \exists lays. Egg$

(2)Deciding intuition algorithm

use 4 rules and 7 axioms above to compute functions \boldsymbol{S} and \boldsymbol{R}

Initalisition:

$$S(\mathrm{Bird}) = \{\mathrm{Bird}\}$$
 $S(\mathrm{Vertebrate}) = \{\mathrm{Vertebrate}\}$
 $S(\mathrm{Wing}) = \{\mathrm{Wing}\}$
 $S(X) = \{X\}$
 $S(\mathrm{Reptile}) = \{\mathrm{Reptile}\}$
 $S(\mathrm{Egg}) = \{\mathrm{Egg}\}$
 $R(\mathrm{has_part}) = \emptyset$
 $R(\mathrm{lays}) = \emptyset$

rule simpleR:(axiom 1,6)

$$S(Bird) = \{Bird, Vertebrate\}$$

 $S(Reptile) = \{Reptile, Vertebrate\}$

rule rightR:(axiom 2,3,7)

$$R(\text{has_part}) = \{(\text{Bird}, \text{Wing}), (X, \text{Wing})\}$$
$$R(\text{lays}) = \{(\text{Reptile}, \text{Egg})\}$$

rule leftR:(axiom 4)(要理解)

$$S(Bird) = \{Bird, Vertebrate, X\}$$

final result:

$$S(\mathrm{Bird}) = \{\mathrm{Bird}, \mathrm{Vertebrate}, \mathrm{X}\}$$
 $S(\mathrm{Vertebrate}) = \{\mathrm{Vertebrate}\}$
 $S(\mathrm{Wing}) = \{\mathrm{Wing}\}$
 $S(X) = \{X\}$
 $S(\mathrm{Reptile}) = \{\mathrm{Reptile}, \mathrm{Vertebrate}\}$
 $S(\mathrm{Egg}) = \{\mathrm{Egg}\}$
 $R(\mathrm{has_part}) = \{(\mathrm{Bird}, \mathrm{Wing}), (X, \mathrm{Wing})\}$
 $R(\mathrm{lays}) = \{(\mathrm{Reptile}, \mathrm{Egg})\}$

(3)application

Reptile $\sqsubseteq_{\mathcal{T}'}$ Vertebrate is T Vertebrate $\sqsubseteq_{\mathcal{T}'}$ Bird is F

3. Bisimulation invariance

In the lecture we defined bisimulation for \mathcal{ALC} and showed bisimulation invariance of \mathcal{ALC} (Theorem 3.2).

- Define a notion of " \mathcal{ALCN} -bisimulation" that is appropriate for \mathcal{ALCN} in the sense that bisimilar elements satisfy the same \mathcal{ALCN} -concepts.
- Use the definition to show that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

(1)Extend the notion of bisimulation to ALCN:

Let $\mathcal I$ and $\mathcal J$ be interpretations. The relation $\rho\subseteq\Delta^{\mathcal I}\times\Delta^{\mathcal J}$ is a bisimulation between $\mathcal I$ and $\mathcal J$ if (i) d ρ e implies

$$d \in A^{\mathcal{I}} \ if \ and \ only \ if \ e \in A^{\mathcal{I}}$$

for all $d \in \Delta^{\mathcal{I}}$, $e \in \Delta^{\mathcal{I}}$, and $A \in \mathbf{C}$.

(ii) if d_1, \dots, d_n are all distinct elements of $\Delta^{\mathcal{I}}$ such that $d \ \rho \ e$ and $(d, d_i) \in r^{\mathcal{I}}$ for $1 \le i \le n$ implies the existence of exactly n distinct elements e_1, \dots, e_n of $\Delta^{\mathcal{I}}$ such that

$$d_i \ \rho \ e_i \ and \ (e, e_i) \in r^{\mathcal{I}} for \ 1 \leq i \leq n$$

for all $d,d_i \in \Delta^{\mathcal{I}}$, $e, \in \Delta^{\mathcal{I}}$, and $r \in \mathbf{R}$.

(iii) if d_1,\cdots,d_n are all distinct elements of $\Delta^\mathcal{I}$ such that d ρ e and $(e,e_i)\in r^\mathcal{I}$ for $1\leq i\leq n$ implies the existence of exactly n distinct elements d_1,\cdots,d_n of $\Delta^\mathcal{I}$ such that

$$d_i \
ho \ e_i \ and \ (d,d_i) \in r^{\mathcal{I}} for \ 1 \leq i \leq n$$

for all $d_1 \in \Delta^{\mathcal{I}}$, $e, e_i, \in \Delta^{\mathcal{J}}$, and $r \in \mathbf{R}$.

Prove

Then we prove that \mathcal{ALCN} is bisimulation invariant for the bisimulation relation on the basis of \mathcal{ALC}

For
$$(\leq nR. \top)$$
,

$$d \in (\leq nR. \, \top)^{\mathcal{I}} \quad \Leftrightarrow \quad \exists \ m(\ m \leq n) \ elements \ d_1, \cdots, d_m, (d, d_i) \in R^{\mathcal{I}} \\ \Leftrightarrow \qquad \exists \ m \ elements \ e_1, \cdots, e_m, (e, e_i) \in R^{\mathcal{I}} \\ \Leftrightarrow \qquad \qquad e \in (\leq nR. \, \top)^{\mathcal{I}}$$

(2)ALCQ is more expressive than ALCN

prove by definition

 \mathcal{ALCN} is unqualified number restriction and does not admit qualifications using an arbitrary concept $\mathcal C$

Besides, there is no $(\geq nR. \top)$ in \mathcal{ALCN} .

Therefore, \mathcal{ALCQ} is more expressive than \mathcal{ALCN}

4. Closure under Disjoint Union

Recall Theorem 3.8 from the lecture, which says that the disjoint union of a family of models of an \mathcal{ALC} -TBox \mathcal{T} is again a model of \mathcal{T} . Note that the disjoint union is only defined for concept and role names.

• Extend the notion of disjoint union to individual names such that the following holds: for any family $(\mathcal{I}_{\nu})_{\nu\in\Omega}$ of models of an \mathcal{ALC} -knowledge base \mathcal{K} , the disjoint union $\biguplus_{\nu\in\Omega}\mathcal{I}_{\nu}$ is also a model of \mathcal{K} .

Theorem 3.8. Let \mathcal{T} be an \mathcal{ALC} TBox and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of models of \mathcal{T} . Then its disjoint union $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ is also a model of \mathcal{T} .

Extend the notion of disjoint union to individual names:

Their *disjoint union* ${\mathcal J}$ isdefined as follows:

- ullet $\Delta^{\mathcal{J}} = \{(d,v)|v\in\Omega ext{ and } d\in\Delta^{\mathcal{I}_v}\}$
- $A^{\mathcal{I}} = \{(d,v)|v \in \Omega \text{ and } d \in A^{\mathcal{I}_v}\}$ for all $A \in \mathbf{C}$
- $r^{\mathcal{J}}=\{((d,v),(e,v))|v\in\Omega ext{ and } (d,e)\in r^{\mathcal{I}_v}\}$ for all $r\in\mathbf{R}$
- $ullet \ a^{\mathcal{J}} = \{(a^{\mathcal{I}_{v_0}}, v_0) | orall a \in \mathcal{A} \ and \ v_0 \in \Omega \}$

Prove:

Then we prove that its disjoint union $\mathcal{J}=\biguplus_{v\in\Omega}\mathcal{I}_v$ is also a model of $\mathcal{K}.$

From Theorem 3.8 we know that ${\mathcal J}$ is a model of ${\mathcal T}$.

Assume that ${\mathcal J}$ is not a model of ${\mathcal K}$.

Assume that there is assertion a:C in \mathcal{K} and $(a^{\mathcal{I}v_0},v_0)\not\in C^{\mathcal{I}}$. This implies $a^{\mathcal{I}_{v_0}}\not\in C^{\mathcal{I}_{v_0}}$, which contradicts to the assumption of \mathcal{I}_{v_0} is a model of \mathcal{K} .

Assume that there is assertion (a,b):r in \mathcal{K} and $((a^{\mathcal{I}_{v_0}},v_0),(b^{\mathcal{I}_{v_0}},v_0)) \notin r^{\mathcal{J}}$. This implies $(a^{\mathcal{I}_{v_0}},b^{\mathcal{I}_{v_0}}) \notin r^{\mathcal{I}_{v_0}}$, which contradicts to the assumption of \mathcal{I}_{v_0} is a model of \mathcal{K} .

5、 Closure under Disjoint Union

Let $\mathcal{K} = \{\mathcal{T}, \mathcal{A}\}$ be a consistent \mathcal{ALC} -KB. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{K} .

• Prove that for all \mathcal{ALC} -concepts C and D we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$. Hint: Use the modified definition of disjoint union from the previous exercise.

Lemma 3.7. Let $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ be the disjoint union of the family $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ of interpretations. Then we have

$$d \in C^{\mathcal{I}_{\nu}}$$
 if and only if $(d, \nu) \in C^{\mathcal{I}}$

for all $\nu \in \mathfrak{N}$, $d \in \Delta^{\mathcal{I}_{\nu}}$ and \mathcal{ALC} concept descriptions C.

 \Leftarrow :

If $C \sqsubseteq_{\mathcal{T}} D$, then $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{T} .

Because each model J of $\mathcal K$ must be a model of $\mathcal T$, so $C^{\mathcal J}\subseteq D^{\mathcal J}$ holds for every model $\mathcal J$ of $\mathcal K$.

So $C \sqsubseteq_{\mathcal{K}} D$.

 \Rightarrow :

If $C \sqsubseteq_{\mathcal{K}} D$, then $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{K} . Assumed $C \not\sqsubseteq_{\mathcal{T}} D$.

So there is a model \mathcal{I}_1 of \mathcal{K} satisfying $C^{\mathcal{I}_1}\subseteq D^{\mathcal{I}_1}$, another model \mathcal{I}_2 of \mathcal{T} satisfying $C^{\mathcal{I}_2}\nsubseteq D^{\mathcal{I}_2}$.

Let $\mathcal J$ be the disjoint union of $\mathcal I_1$ and $\mathcal I_2$.

Assumed $C^{\mathcal{J}} \nsubseteq D^{\mathcal{J}}$, then there is an element $(d,v) \in C^{\mathcal{J}}$ but $(d,v) \notin D^{\mathcal{J}}$. By Lemma 3.7, this implies $d \in C^{\mathcal{I}_1}$ but $d \notin D^{\mathcal{I}_1}$, which contradicts to $C^{\mathcal{I}_1} \subseteq D^{\mathcal{I}_1}$. So $C^{\mathcal{J}} \subseteq D^{\mathcal{J}}$.

By Lemma 3.7, $C^{\mathcal{J}}\subseteq D^{\mathcal{J}}$ implies \forall element d satisfying $(d,v)\in C^{\mathcal{J}}$ also satisfies $(d,v)\in D^{\mathcal{J}}$, which implies \forall element e satisfying $(e,v)\in C^{\mathcal{I}_2}$ also satisfy $(e,v)\in D^{\mathcal{I}_2}$ And thie contradicts to $C^{\mathcal{I}_2}\not\subseteq D^{\mathcal{I}_2}$.

So $C \sqsubseteq_{\mathcal{T}} D$.

6. Finite model property

Let C be an \mathcal{ALC} -concept that is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} . Show truth or falsity of the following statement:

- for all $m \geq 1$ there is a finite model \mathcal{I}_m of \mathcal{T} such that $|C^{\mathcal{I}_m}| \geq m$.
- Does it hold if the condition " $|C^{\mathcal{I}_m}| \geq m$ " is replaced by " $|C^{\mathcal{I}_m}| = m$ "?

(1)True

By the finite model property, there is a finite model ${\mathcal I}$ such that $|C^{\mathcal I}| \ge 1.$

Let $\mathcal{I}_m=\biguplus_{v\in 1,\cdots,m}\mathcal{I}$ be the disjoint union of \mathcal{I} itself of m times. So $|C^{I_m}|=m|C^{\mathcal{I}}|\geq m$.

(2)False

Counter example:

Let
$$m=1$$
, $C=\top$, $\mathcal{T}=\{A\sqsubseteq \exists r.\, \neg A, \neg A\sqsubseteq \exists r.\, A\}$

For any model $\mathcal I$ of $\mathcal T$, assume that $A^{\mathcal I} \neq \emptyset$ or $(\neg A)^{\mathcal I} \neq \emptyset$.

- If $A^{\mathcal{I}} = \emptyset$, then $(\exists r. A)^{\mathcal{I}} = \emptyset$. From the GCI $\neg A \sqsubseteq \exists r. A$, we know $(\neg A)^{\mathcal{I}} \subseteq (\exists r. A)^{\mathcal{I}}$ then $(\neg A)^{\mathcal{I}} = \emptyset$, which contradicts to $A^{\mathcal{I}} \neq \emptyset$ or $(\neg A)^{\mathcal{I}} \neq \emptyset$.
- If $(\neg A)^{\mathcal{I}} = \emptyset$, then $(\exists r. \neg A)^{\mathcal{I}} = \emptyset$. From the GCI $A \sqsubseteq \exists r. \neg A$, we know $A^{\mathcal{I}} \subseteq (\exists r. \neg A)^{\mathcal{I}}$ then $A^{\mathcal{I}} = \emptyset$, which contradicts to $A^{\mathcal{I}} \neq \emptyset$ or $(\neg A)^{\mathcal{I}} \neq \emptyset$.

Then
$$|C^\mathcal{I}|=| op^\mathcal{I}|=|A^\mathcal{I}|+|(op A)^\mathcal{I}|\geq 1+1=2$$
, which contradicts $|C^\mathcal{I}|=m=1$.

So it doesn't hold if the condition " $|C^{\mathcal{I}_m}| \geq m$ " is replaced by " $|C^{\mathcal{I}_m}| = m$ ".

7. Bisimulation over filtration

Let C be an \mathcal{ALC} -concept, \mathcal{T} an \mathcal{ALC} -TBox, \mathcal{I} an interpretation and \mathcal{J} its filtration w.r.t. $sub(C) \cup sub(\mathcal{T})$ (see Definition 3.14 for the definition of filtration). Show truth or falsity of the following statement:

• the relation $\rho = \{(\mathsf{d}, [\mathsf{d}]) \mid \mathsf{d} \in \Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .

Definition 3.14 (S-filtration). Let S be a finite set of \mathcal{ALC} concepts and \mathcal{I} an interpretation. We define the equivalence relation \simeq_S on $\Delta^{\mathcal{I}}$ as follows:

$$d \simeq_S e$$
 if $t_S(d) = t_S(e)$.

The \simeq_S -equivalence class of $d \in \Delta^{\mathcal{I}}$ is denoted by $[d]_S$, i.e.,

$$[d]_S = \{ e \in \Delta^{\mathcal{I}} \mid d \simeq_S e \}.$$

The S-filtration of \mathcal{I} is the following interpretation \mathcal{J} :

$$\Delta^{\mathcal{J}} = \{ [d]_S \mid d \in \Delta^{\mathcal{I}} \};$$

$$A^{\mathcal{J}} = \{ [d]_S \mid \text{there is } d' \in [d]_S \text{ with } d' \in A^{\mathcal{I}} \} \text{ for all } A \in \mathbf{C};$$

$$r^{\mathcal{J}} = \{ ([d]_S, [e]_S) \mid \text{there are } d' \in [d]_S, e' \in [e]_S \text{ with } (d', e') \in r^{\mathcal{I}} \}$$
for all $r \in \mathbf{R}$.

False

Counter example:

Fig. 3.4. An interpretation \mathcal{I} and its S-filtration \mathcal{J} for $S = \{\top, A, \exists r. \top\}$.

Assume that
$$S=\{\top,A,\exists r.\, \top\}$$
 where $\mathbf{C}=\{A\}$ and $\mathbf{R}=\{r\}$, $\Delta^{\mathcal{I}}=\{d_1,d_2,d_1',d_2'\}$

Then $\, \simeq_S \,$ has 3 equivalence classes: $[d_1]_S = [d_2]_S, [d_1']_S$ and $\, [d_2']_S \,$

We have $(d_1,[d_1]_S)\in \rho$, but $[d_1]_S$ has an r-successor in $\mathcal J$ that does not belong to the extension of A , whereas d_1 does not have such an r-successor in $\mathcal I$.

8、Bisimulation over ltration

We define "bisimulations on \mathcal{I} " as bisimulations between an interpretation \mathcal{I} and itself. Let $d, e \in \Delta^{\mathcal{I}}$ be two elements. We write $d \approx_{\mathcal{I}} e$ if they are bisimilar, i.e., if there is a bisimulation ρ on \mathcal{I} such that $d \rho e$.

• Show that $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

Consider the interpretation $\mathcal J$ defined like the filtration, but with $\approx_{\mathcal I}$ instead of \simeq .

- Show that $\rho = \{(\mathsf{d}, [\mathsf{d}]_{\approx_{\mathcal{I}}})\} \mid \mathsf{d} \in \Delta^{\mathcal{I}}$ is a bisimulation between \mathcal{I} and \mathcal{J} .
- Show that, if \mathcal{I} is a model of an \mathcal{ALC} -concept C w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then so is \mathcal{J} .

(1)

condition 1

 $dpprox_{\mathcal{I}}e$ implies $d\in A^{\mathcal{I}}$ if and only if $e\in A^{\mathcal{I}}$

(for all
$$d \in \Delta^{\mathcal{I}}$$
 , $e \in \Delta^{\mathcal{I}}$, and $A \in \mathbf{C}$)

condition 2

 $d \approx_{\mathcal{I}} e$ and $(d,d') \in r^{\mathcal{I}}$ implies the existence of $e' \in \Delta^{\mathcal{I}}$ sattisfying $d' \rho \ e'$ and $(e,e') \in r^{\mathcal{I}}$

Then $d'pprox_{\mathcal{I}}e'$ and $(e,e')\in r^{\mathcal{I}}$ because of the definition of $d'pprox_{\mathcal{I}}e'$

(for all
$$d,d'\in\Delta^{\mathcal{I}}$$
 , $e\in\Delta^{\mathcal{I}}$, and $r\in\mathbf{R}$)

condition 3

similar to condition 2

According to 3 conditions of the definition of Blsimulation, $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

(2)

condition 1

 $(d,[d]_{lpha_{\mathcal{I}}})\in
ho$ implies $\ d\in A^{\mathcal{I}}$ if and only if $[d]_{lpha_{\mathcal{I}}}\in A^{\mathcal{J}}$

for all $d \in \Delta^{\mathcal{I}}$, $[d] * \approx * \mathcal{I} \in \Delta^{\mathcal{I}}$, and $A \in \mathbf{C}$.

 \Rightarrow :

If $d \in A^{\mathcal{I}}$, then we have $d \in [d]_{pprox_{\mathcal{I}}}$ and $d_{pprox \mathcal{I}}d$. We can know $[d]_{pprox_{\mathcal{I}}} \in A^{\mathcal{I}}$ by the definition of $A^{\mathcal{I}}$.

 \Leftarrow

If $[d]_{\approx_{\mathcal{I}}} \in A^{\mathcal{J}}$, then we have $d' \in [d]_{\approx_{\mathcal{I}}}$ and $d' \in A^{\mathcal{I}}$. From $d \in [d]_{\approx_{\mathcal{I}}}$ and $d_{\approx_{\mathcal{I}}}d$, we can know that $d_{\approx_{\mathcal{I}}}d'$. However, $d' \in A^{\mathcal{I}}$ if and only if $d \in A^{\mathcal{I}}$.

condition 2

 $(d,[d]_{\approx_{\mathcal{I}}}) \in \rho \text{ and } (d,e) \in r^{\mathcal{I}} \text{ implies there is } d \in [d]_{\approx_{\mathcal{I}}}, e \in [e]_{\approx_{\mathcal{I}}} \text{ with } (d,e) \in r^{\mathcal{I}} \text{, which implies the existence of } [e]_{\approx_{\mathcal{I}}} \in \Delta^{\mathcal{I}} \text{ satisfying}(e,[e]_{\approx_{\mathcal{I}}}) \in \rho \text{ and } ([d]_{\approx-\mathcal{I}},[e]_{\approx_{\mathcal{I}}}) \in r^{\mathcal{I}}$

for all
$$d,e\in\Delta^{\mathcal{I}}$$
 , $[d]_{pprox_{\mathcal{I}}}\in\Delta^{\mathcal{J}}$, and $r\in\mathbf{R}$.

condition 3

similar to condition 2

According to 3 conditions of the definition of BIsimulation, we show that $\rho=(d,[d]*\approx *\mathcal{I})|d\in\Delta^{\mathcal{I}} \text{ is a bisimulation between }\mathcal{I} \text{ and }\mathcal{J}.$

(3)

 ${\mathcal I}$ is a model of an ${\mathcal A}{\mathcal L}{\mathcal C}$ -concept C with respect to an ${\mathcal A}{\mathcal L}{\mathcal C}$ -TBox ${\mathcal T}$.

$$C^{\mathcal{I}}
eq \emptyset$$
 implies the existence of $\ d \in C^{\mathcal{I}}$ and $[d]_{lpha_{\mathcal{I}}} \in C^{\mathcal{J}}$

Let $D \sqsubseteq E$ be a GCI in $\mathcal T$, and $[e]_{pprox_{\mathcal I}} \in D^{\mathcal J}$. $e \in D^{\mathcal I}$ implies $e \in E^{\mathcal J}$ since $\mathcal I$ is a model of $\mathcal T$, which implies $[e]_{pprox_{\mathcal I}} \in E^{\mathcal J}$.

So $\mathcal J$ is a model of an $\mathcal A\mathcal{LC}$ -concept C with respect to an $\mathcal A\mathcal{LC}$ -TBox $\mathcal T$.

9. Unravelling

Draw the unravelling of the following interpretation \mathcal{I} at d up to depth 5, i.e., restricted to d-paths of length at most 5 (see Definition 3.21):

Definition 3.21 (Unravelling). Let \mathcal{I} be an interpretation and $d \in \Delta^{\mathcal{I}}$. The unravelling of \mathcal{I} at d is the following interpretation \mathcal{J} :

$$\begin{split} \Delta^{\mathcal{I}} &= \{ p \mid \ p \text{ is a d-path in \mathcal{I}} \}, \\ A^{\mathcal{I}} &= \{ p \in \Delta^{\mathcal{I}} \mid \operatorname{end}(p) \in A^{\mathcal{I}} \} \text{ for all } A \in \mathbf{C}, \\ r^{\mathcal{I}} &= \{ (p, p') \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid p' = (p, \operatorname{end}(p')) \text{ and } (\operatorname{end}(p), \operatorname{end}(p')) \in r^{\mathcal{I}} \} \\ & \text{ for all } r \in \mathbf{R}. \end{split}$$

In our example, $d_1 = d, e, d \in A^{\mathcal{I}}$ because $end(d_1) = d \in A^{\mathcal{I}}$, and $((d, e, d), (d, e, d, e)) \in r^{\mathcal{I}}$ because $(d, e) \in r^{\mathcal{I}}$.

Next, we will see that the relation that connects a d-path with its end node is a bisimulation.

10. Tree model property

Show the truth or falsity of the following statement: if \mathcal{K} is an \mathcal{ALC} -KB and C an \mathcal{ALC} -concept such that C is satisfiable w.r.t. \mathcal{K} , then C has a tree model w.r.t. \mathcal{K} .

False

Let
$$\mathcal{K} = (\mathcal{T}, \mathcal{A}), \mathcal{T} = \emptyset, \mathcal{A} = \{a : A, b : B, (a, b) : r, (b, a) : r\}.$$

Then $\forall \mathcal{I}$ of such \mathcal{K} , $a^\mathcal{I}$ and $b^\mathcal{I}$ are two distinct elements satisfying $(a^\mathcal{I},b^\mathcal{I}),(b^\mathcal{I},a^\mathcal{I})\in r^\mathcal{I}$.

So there is a ring " $a \xrightarrow{r} b \xrightarrow{r} a$ " for any model $\mathcal I$ of such $\mathcal K$.

11、Tableau

Apply the Tableau algorithm consistent(A) to the following ABox:

2

$$\mathcal{A} = \{(b,a): r, (a,b): r, (a,c): s, (c,b): s, a: \exists s.A, b: \forall r.((\forall s. \neg A) \sqcup (\exists r.B)), c: \forall s.(B \sqcap (\forall s.\bot))\}.$$

If A is consistent, draw the model generated by the algorithm.

- Initalisition: \mathcal{A} is in NNF, so $\mathcal{A}_0 = \mathcal{A}$
- An application of \rightarrow_\exists and $a:\exists s.\ A$ gives

$$A_1 = A_0 \cup \{(a,d) : s,d : A\}$$

• An application of \rightarrow_\forall and $b: \forall r. ((\forall s. \neg A) \sqcup (\exists r. B))$ and (b, a): r gives:

$$\mathcal{A}_2 = \mathcal{A}_1 \cup \{a : (\forall s. \neg A) \sqcup (\exists r. B)\}$$

- An application of \to_\sqcup and $a:(\forall s.\, \neg A)\sqcup(\exists r.\, B)$ gives:
 - Firstly, we can try

$$\mathcal{A}_3 = \mathcal{A}_2 \cup \{a : \forall s. \neg A\}$$

 \circ An application of \rightarrow_\forall and $a:\forall s. \neg A$ and (a,c):s,(a,d):s gives

$$\mathcal{A}_4 = \mathcal{A}_3 \cup \{c : \neg A, d : \neg A\}$$

- We have abtained a clash because d:A and $d:\neg A$, thus this choice was unsuccessful.
- Secondly, we can try

$$\mathcal{A}_3^* = \mathcal{A}_2 \cup \{a : \exists r. B\}$$

o An application of \rightarrow_\exists and $a:\exists r.\ B$ gives (这里不能新建fresh individual,因为已经有 $(a,\ b):\ r)$

$$A_4 = A_3^* \cup \{(a,b): r,b:B\}$$

• An application of \to_\forall and $c: \forall s. \ (B \sqcap (\forall s. \bot))$ and (c,b): s gives:

$$\mathcal{A}_5 = \mathcal{A}_4 \cup \{b: B \sqcap (orall s. ot)\}$$

• An application of \to_\sqcap and $b:B\sqcap(\forall s.\perp)$ gives:

$$\mathcal{A}_6 = \mathcal{A}_5 \cup \{b:B,b: orall s.ot\}$$

• No rule is applicable to \mathcal{A}_6 and it does not contain a clash. Thus, \mathcal{A} is consistent.

12、Extension of Tableau algorithm

We consider the concept constructor \rightarrow (implication) with the following semantics:

$$(C \to D)^{\mathcal{I}} := \{ x \in \Delta^{\mathcal{I}} \mid x \in C^{\mathcal{I}} \text{ implies } x \in D^{\mathcal{I}} \}.$$

To extend consistent (A) to this constructor, we propose two alternatives new expansion rules:

The deterministic →-rule

Condition: A contains $a: C \to D$ and a: C, but not a: D

Action: $A \longrightarrow A \cup \{a:D\}$

The nondeterministic →-rule

Condition: A contains $a: C \to D$, but neither $a: \dot{\neg} C$ nor a: D

Action: $A \longrightarrow A \cup \{a: X\}$ for some $X \in \{ \dot{\neg} C, D \}$

For each rule, determine whether the extended algorithm remains terminating, sound, and complete.

Knowledge of implication

$$(C \to D)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | x \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \text{ or } x \in D^{\mathcal{I}}\} = (\neg C \sqcup D)^{\mathcal{I}}$$

According to NNF, $\neg(C \to D) \equiv C \sqcap \neg D$

The deterministic -rule:

Terminating: True

Omit the part of original proof and add the new proof for \rightarrow (Lemma 4.4)

- The new rule never remove an assertion and add a new assertion of the form $\,\{a:D\}$. And the size of sub(A) is still bounded by the size of A
- The new rule does not add new individual name.
- The new rule only add concept assertions of the form $\{a:D\}$. The depth of each tree in the forest-shaped ABox is bounded by $|\operatorname{sub}(\mathcal{A})|$.

Along with the original properties on the book, these properties ensure that there is a bound on the size of the ABox that can be constructed via rule applications, and thus a bound on the number of recursive applications of expand.

Soundness: False

Conter example:

Let
$$\mathcal{A} = \{a: (C \sqcup D) \to E, a: C, a: \neg E\}$$

Since $a:C\sqcup D\notin \mathcal{A}$, we cannot use the deterministic \rightarrow -rule or any other rules.

Then no rules are applicable and no clash in it, so the $\operatorname{consistent}(\mathcal{A})$ will return "consistent". However, if we replace $(C \sqcup D) \to E$ with $\neg (C \sqcup D) \sqcup E$ in preprocessing and call the original $\operatorname{consistent}(\mathcal{A})$, clash $a: E, a: \neg E \subseteq \mathcal{A}'$ will be found.

Completeness: True

Omit the part of original proof(Lemma 4.6)

• The deterministic \rightarrow -rule: If $a:C \rightarrow D \in \mathcal{A}$ and $a:C \in \mathcal{A}$, then $a^{\mathcal{I}} \in (C \rightarrow D)^{\mathcal{I}}$. Thus $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ or $a^{\mathcal{I}} \in D^{\mathcal{I}}$ by the semantics of \rightarrow , but $a^{\mathcal{I}} \in C^{\mathcal{I}}$, so $a^{\mathcal{I}} \in D^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A} \cup a:D$, so \mathcal{A} is still consistent after the rule is applied.

The nondeterministic -rule:

Terminating: True

Omit the part of original proof and add the new proof for \rightarrow (Lemma 4.4)

- The new rule never remove an assertion and add a new assertion of the form $\,\{a:X\}$. And the size of sub(A) is still bounded by the size of A
- The new rule does not add new individual name.
- The new rule only add concept assertions of the form $\{a:X\}$. The depth of each tree in the forest-shaped ABox is bounded by $|\operatorname{sub}(\mathcal{A})|$.

Along with the original properties on the book, these properties ensure that there is a bound on the size of the ABox that can be constructed via rule applications, and thus a bound on the number of recursive applications of expand.

Soundness: True

Omit the part of original proof(Lemma 4.5)

Induction Basis: C is a conceptname: by definition of \mathcal{I} , if $a:C\in\mathcal{A}'$, then $a^{\mathcal{I}}\in C^{\mathcal{I}}$ as required. Induction Steps:

- $C = \neg D$: since \mathcal{A}' is clash-free, $a : \neg D \in \mathcal{A}'$ implies that $a : D \in \mathcal{A}'$. Since all concepts in \mathcal{A} are in NNF, D is a concept name. By definition of \mathcal{I} , $a^{\mathcal{I}} \notin D^{\mathcal{I}}$, which implies $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus D^{\mathcal{I}} = C^{\mathcal{I}}$ as required.
- C=D o E: if $a:D o E \in \mathcal{A}'$, then completeness of \mathcal{A}' implies that $a:E \subseteq \mathcal{A}'$ or $a:\dot{\neg}D \subseteq \mathcal{A}'$ (otherwise the nondeterministic \to -rule would be applicable). Thus $a^{\mathcal{I}} \in E^{\mathcal{I}}$ or $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}$ by induction, and hence $a^{\mathcal{I}} \in (\Delta^{\mathcal{I}} \setminus D^{\mathcal{I}}) \cup E^{\mathcal{I}} = (\neg D \sqcup E)^{\mathcal{I}} = (D \to E)^{\mathcal{I}}$ by the semantics of \to .

As a consequence, \mathcal{I} satisfies all concept assertions in \mathcal{A}' and thus in \mathcal{A} , and it satisfies all role assertions in \mathcal{A}' and thus in \mathcal{A} by definition. Hence \mathcal{A} has a model and thus is consistent.

Completeness: True

Omit the part of original proof(Lemma 4.6)

• The nondeterministic \rightarrow -rule: If $a:C \rightarrow D \in \mathcal{A}$, then $a^{\mathcal{I}} \in (C \rightarrow D)^{\mathcal{I}}$. Thus $a^{\mathcal{I}} \in \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ or $a^{\mathcal{I}} \in D^{\mathcal{I}}$ by the semantics of \rightarrow . Therefore, at least one of the ABoxes $\mathcal{A}' \in \exp\left(\mathcal{A}, \operatorname{nondeterministic} \rightarrow -\operatorname{rule}, a:C \rightarrow D\right)$ is consistent. Thus, one of the calls of expand is applied to a consistent ABox.

13、 Modification of Tableau algorithm

We consider an \mathcal{ALC} TBox $\mathcal T$ consisting only of the following two kinds of axioms:

- role inclusions of the form $r \sqsubseteq s$, and
- role disjointness constraints of the form disjoint(r, s).

where r and s are role names. An interpretation $\mathcal I$ satisfies these axioms if

- $r^{\mathcal{I}} \subset s^{\mathcal{I}}$, and
- $r^{\mathcal{I}} \cap s^{\mathcal{I}} = \emptyset$, respectively.

Modify the Tableau algorithm consistent (A) to decide consistency of (\mathcal{T}, A) , where A is an ABox and \mathcal{T} an TBox containing only role inclusions and role disjointness constraints. Show that the algorithm remains terminating, sound, and complete.

Modify

Add a judgement rule of the calsh:

• for role names r and s satisfying $\operatorname{disjoint}(r,s)\subseteq\mathcal{T}$, if $(a,b):r,(a,b):s\subseteq\mathcal{A}$

Add a new expansion rule:

• \sqsubseteq -rule: if $(a,b):r\in\mathcal{A}$, $r\sqsubseteq s\in\mathcal{T}$ and $(a,b):s
otin\mathcal{A}$, then $\mathcal{A}\to\mathcal{A}\cup\{(a,b):s\}$

Termination: True

Omit the part of original proof and add the new proof for \sqsubseteq

The number of the new role assertions will be no more than the square of the count of individual names , which is well bounded.

Soundness: True

Let $\mathcal{A}' = \operatorname{consistent}(\mathcal{A})$. Then \mathcal{A}' must be a clash-free and complete ABox.

- \mathcal{I} satisfies each $\operatorname{disjoint}(r,s) \in \mathcal{T}$:
 - Assume $r^{\mathcal{I}} \cap s^{\mathcal{I}} \neq \emptyset$, thus there are a and b satisfying $(a,b) \in r^{\mathcal{I}}$ and $(a,b) \in s^{\mathcal{I}}$. So we can know $(a,b): r, (a,b): s \subseteq \mathcal{A}'$, which contradicts \mathcal{A}' is a clash-free ABox.
- \mathcal{I} satisfies each $r \sqsubseteq s \in \mathcal{T}$:
 - Assume there are a and b satisfying $(a,b) \in r^{\mathcal{I}}$ but $(a,b) \in s^{\mathcal{I}}$. Therefore, $(a,b): r \in \mathcal{A}'$ but $(a,b): s \notin \mathcal{A}'$, which contradicts \mathcal{A}' is a complete ABox.

Completeness: True

Omit the part of original proof(Lemma 4.6)

• The \sqsubseteq -rule: if $(a,b): r \in \mathcal{A}$ and $r \sqsubseteq s \in \mathcal{T}$, then $(a,b) \in r^{\mathcal{I}}$. As \mathcal{I} is a model of \mathcal{T} , $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$, thus $(a,b) \in s^{\mathcal{I}}$. Therefore, \mathcal{I} is still a model of $\mathcal{A} \cup (a,b): s$, so \mathcal{A} is still consistent after the rule is applied.