

어댄 영화가 흥합가?

2017-2 김순영 김어진 김응채 배현주

목차

연구 배경

수많은 영화 중, 흥행하는 영화는 오직 소수

"어떤 영화가 흥행할까?"

데이터 설명

데이터 전처리

변수 선택

num_critic_for_reviews director_facebook_likes cast_total_facebook_likes facenumber_in_poster num_user_for_reviews budget imdb_score movie_facebook_likes

actor_2_name actor_1_name actor_3_name director_name content_rating genres movie_title plot_keywords language country title_year aspect_ratio actor_3_facebook_likes actor_1_facebook_likes actor_2_facebook_likes Color movie_imdb_link

데이터 전처리

결측치 처리

gross, budget에 NA 존재

"mice" 패키지로 NA imputation

```
> summary(movie.n)
num_critic_for_reviews
                                    director_facebook_likes
                                                                             cast_total_facebook_likes
                        duration
                                                              gross
Min. : 1.0
                     Min. : 14.0
                                    Min. :
                                               0.0
                                                          Min. :
                                                                       162
                                                                            Min. : 0
1st Qu.: 66.0
                     1st Qu.: 93.0
                                    1st Qu.:
                                              7.0
                                                          1st Qu.: 1771133
                                                                            1st Qu.: 1458
                                                                            Median: 3412
Median :139.0
                     Median :103.0
                                    Median: 48.0
                                                          Median : 18320696
Mean :164.6
                     Mean :106.5
                                    Mean : 569.4
                                                          Mean : 42933315
                                                                            Mean : 10780
3rd Qu.:230.0
                     3rd Qu.:116.0
                                    3rd Ou.: 187.0
                                                          3rd Qu.: 53182670
                                                                            3rd Qu.: 15046
                     Max. :300.0
                                                          Max. :760505847
      :813.0
                                    Max.
                                           :23000.0
                                                                            Max. :656730
facenumber_in_poster num_user_for_reviews
                                           budget
                                                           imdb_score
                                                                        movie_facebook_likes
Min. : 0.000
                                                         Min. :1.600
                                       Min. :2.180e+02
                    Min. : 1.0
                                                                        Min. :
1st Qu.: 0.000
                   1st Qu.: 65.0
                                       1st Qu.:7.000e+06
                                                         1st Qu.:5.700
                                                                        1st Qu.:
Median : 1.000
                    Median : 162.0
                                       Median :2.000e+07
                                                         Median :6.400
                                                                        Median: 242
                                                         Mean :6.314
Mean : 1.431
                    Mean : 287.3
                                       Mean :4.371e+07
                                                                        Mean : 9518
3rd Qu.: 2.000
                    3rd Qu.: 347.0
                                       3rd Qu.:4.800e+07
                                                         3rd Qu.:7.100
                                                                        3rd Qu.: 11000
                    Max. :5060.0
                                       Max. :1.222e+10
                                                         Max. :9.100
                                                                        Max. :349000
Max. :43.000
```

통계 분석

로지스틱 회귀

Stepwise - 유의한 변수 고르기

```
> summary(fit2)
glm(formula = y ~ num_critic_for_reviews + cast_total_facebook_likes +
   num_user_for_reviews + imdb_score, family = binomial(link = "logit"),
   data = movie.train)
Deviance Residuals:
          1Q Median
-2.3411 -0.6484 -0.4622 -0.2831 2.3918
Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
(Intercept)
                        -1.544e+00 3.188e-01 -4.843 1.28e-06 ***
num_critic_for_reviews 5.287e-03 5.612e-04 9.420 < 2e-16 ***
cast_total_facebook_likes 1.070e-05 2.678e-06 3.997 6.41e-05 ***
num_user_for_reviews 1.991e-03 2.115e-04 9.412 < 2e-16 ***
                        -2.052e-01 5.454e-02 -3.762 0.000168 ***
imdb_score
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2789.8 on 2480 degrees of freedom
Residual deviance: 2206.9 on 2476 degrees of freedom
AIC: 2216.9
Number of Fisher Scoring iterations: 5
```

예측력 AUC: 0.82

Review 평론가 수 Review 개수 Exp(0.005) Exp(-0.2)

KNN

- 01 Numeric 변수에 대해 scaling 진행
- 02 Loop문으로 k=1~10까지 KNN 진행 K에 따른 prediction accuracy 계산

[1] 0.7511826 [1] 0.7606433 [1] 0.7587512

```
> for (i in 1:10){
+ fit.knn = knn(train=movie.train[,-9],test=movie.test[,-9],cl=movie.train[,9], k=i, prob=T)
   yhat = fit.knn
   ctable = table(movie.test[,9], yhat, dnn=c("Actual", "Predicted"))
   miss.err = 1-sum(diag(ctable))/sum(ctable)
   pred.acc = 1 - miss.err; round(pred.acc, 3)
   print(pred.acc)
[1] 0.7190161
Γ17 0.7114475
[1] 0.7341533
[1] 0.730369
Γ17 0.7473983
[1] 0.7398297
[1] 0.7492904
```


K=9일 때 prediction accuracy가 가장 높음

LDA & QDA

LDA & QDA 란? 분석 결과 LDA vs QDA

집단에 대한 정보로부터 집단을 구별하는 판별함수를 만들고, 새로운 개체가 속할 집단을 판별하여 분류하는 기법

선형판별분석

- 정규분포, 등분산 가정을 기준으로함
- 적은 수의 모수를 예측하면 정확한 예측

이중판별분석

- 정규분포를 가정한다는 점에서 LDA와 유사
- LDA와 달리 등분산 가정이 필요하지 않음
- 많은 모수가 필요함

Train: 모델 만들기

Test: 적용

적용 결과 평가 및 분석

LDA

LDA & QDA 란? 분석 결과 LDA vs QDA

01 Test data 적용을 통한 분류: C-table

Predicted Actual 0 746 1 178

02

C-table의 정확도 0.78 Sensitivity 0.30 Specificity 0.93

03 AUC: 0.80

K=10

Train error 0.20598 Test error 0.20687

K=5

Train error 0.20619 Test error 0.20689

QDA

LDA & QDA 란? 분석 결과 LDA vs QDA

K=10

Test error 0.21645

K=5

Test error 0.21883

LDA vs QDA

LDA & QDA 란? 분석 결과 LDA vs QDA

LDA		QDA
0.78	ACCURACY	0.77
0.80	AUC	0.78
0.207	5-fold-cv test error	0.212
0.207	10-fold-cv test error	0.206

LDA가 전반적으로 더 잘 예측한다고 볼 수 있음 : Accuracy, AUC가 크고 test error가 낮음

그러나 LDA를 사용하기 위해서는 등분산성에 대한 검토필요

Decision Tree

의사 결정 나무 란? 분석 결과 정확도 검정

"데이터의 특징에 대한 질문을 하면서 응답에 따라 데이터를 분류해 나가는 알고리즘!"

장점

-) 분석 과정이 직관적, 이해하기 쉽다.
- 2) 수치형, 범주형 변수 모두 사용 가능
- 3) 계산 비용이 낮아 대규모의 데이터 셋에서도 빠르게 연산 가능

Tree

의사 결정 나무란? 분석 결과 정확도 검정

rpart

의사 결정 나무란? 분석 결과 정확도 검정

party

의사 결정 나무란? 분석 결과 정확도 검정

가장 중요한 기준: 리뷰 평론가 수

그 다음 기준: 리뷰 일반인 수

평론가 리뷰 > 140 일반인 리뷰 > 238 → 리뷰가 많을 때 흥행한다!

ACCURACY 0.849
AUC 0.885
5-fold-cv test error 0.182
10-fold-cv test error 0.181

Decision Tree

의사 결정 나무란? 분석 결과 정확도 검정

	Tree	Rpart	Party
ACCURACY	0.8111	0.840	0.849
AUC	0.869	0.723	0.885
5-fold-cv test error	0.1765	0.174	0.182
10-fold-cv test error	0.1777	0.158	0.181

모두 높은 accuracy 와 AUC값, 낮은 cv test error로 좋은 예측력을 가지고 있지만 party 패키지의 경우가 가장 좋음!

최종 결론

01 영화 흥행을 잘 예측하는 기법은?

	로지스틱	KNN	LDA	QDA	Tree	Rpart	Party
ACCURACY	0.8283	0.7686	0.78	0.77	0.8111	0.840	0.849
AUC			0.80	0.779	0.869	0.723	0.885
5-fold-cv test error			0.206	0.216	0.1765	0.174	0.182
10-fold-cv test error			0.206	0.218	0.1777	0.158	0.181

대체적으로 모든 기법의 예측력이 좋지만, Accuracy와 AUC에서 decision tree의 party가 가장 좋았음!

최종 결론

02 영화 흥행에 영향을 미치는 요소는?

의사결정 나무

- Budget
- Review 개수
- · 평론가 review수

영화 제작 단계에서 투자를 탄탄히 받고, 개봉 이후 전문가 혹은 일반 관람객 리뷰를 활성화하는 방법을 모색하자!