

Análisis de Sobrevida

III PARTE

Para hoy

- Regresión Cox (Statistica/Egret) vs. Weibull Ej. Conc.csv
- Regresión Cox con covariables dependientes del tiempo en EGRET
- Regresión Cox con diferentes tiempo de entrada (Entry-Time) en EGRET

Análisis de Sobrevivencia /Métodos utilizados

Estimación del riesgo según funciones Exponencial, Weibull vs. Cox

Exponencial

$$h(t) = \lambda e^{(\beta_1 x_1 + \beta_2 x_2 + \dots \beta_n x_n)}$$

Riesgo constante

Weibull

$$h(t) = \lambda \rho (\lambda t)^{\rho - 1} e^{(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}$$

Riesgo creciente o decreciente

Cox

$$h(t) = h_0(t)e^{(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}$$

Riesgo con forma variable

En Cox la función de riesgo subyacente $h_0(t)$ puede tomar formas arbitrarias

Modelo de Riesgos Proporcionales de Cox

- ➤El modelo de Riesgos Proporcionales de Cox es un método semiparamétrico porque no asume ninguna distribución específica de base para los datos.
- ➤El único requisito que debe cumplir un proceso para poder ser analizado mediante regresión Cox es que los riesgos de individuos con distintos sets de covariables sean proporcionales a través del tiempo de estudio.
- ➤Todos los procesos que pueden ser analizados mediante modelos Paramétricos pueden también ser analizados por Cox debido a que todos los modelos paramétricos deben cumplir con el requisito de proporcionalidad de riesgos.
- ➤Si la distribución asumida es correcta, los métodos paramétricos son más 'precisos' que Cox, pero si existen dudas sobre la distribución subyacente de los datos, es mejor utilizar Cox

Riesgos Proporcionales en el tiempo/Interpretación gráfica

Concepto de Riesgos proporcionales:

Tiempo	h0_g1	h0_g2	h0_g3
1	1.0	1.5	2.0
2	2.0	3.0	2.0
3	3.0	4.5	2.3
4	4.0	6.0	1.8
5	5.0	7.5	3.5
6	6.0	9.0	4.2
7	7.0	10.5	2.5
8	8.0	12.0	2.3
9	9.0	13.5	1.8
10	10.0	15.0	3.5
11	11.0	16.5	4.2
12	12.0	18.0	2.5
13	13.0	19.5	4.1
14	14.0	21.0	3.5
15	15.0	22.5	2.5

Las curvas de riesgo del grupo 1 y 2 son proporcionales porque el riesgo del grupo 2 es exactamente 1.5 veces el riesgo del grupo 1 y esta relación se mantiene a lo largo de todo el periodo evaluado Las curvas de riesgo del grupo 1 y 3 (o 2 y 3) NO son proporcionales La relación de riesgos del grupo 3 con los otros 2 grupos no es constante

Cómo evaluar el supuesto de proporcionalidad?

Graficación de curvas de sobrevivencia en escala logarítmica

$$X = In(t)$$

$$Y = In[-In(S(t))]$$

Las curvas resultantes deben ser aprox. paralelas

Evaluación de proporcionalidad en ejemplo lung/ factor tratamiento

X= In(t)
Y= In[-In(S(t))]
Las curvas resultantes deben ser aprox. paralelas

En Egret puede evaluarse la proporcionalidad con el gráfico del log(cumulative hazard) Menu Analyze-Kaplan Meier (incluir estratos a comparar)

En este caso las curvas del (logcum hazard) se entrecruzan, por lo que NO son proporcionales

Evaluación de proporcionalidad en EGRET ejemplo lung/ factor tipo de tumor

Aunque las curvas no son perfectamente paralelas, el orden relativo entre ellas tiende a mantenerse en el tiempo, por lo que en este caso sí podría asumirse proporcionalidad

Regresión Cox en Egret/ejemplo lung/opciones

- Se especifica el tipo de modelo (Define Model/Cox) y Relación asumida para riesgos (más común Multiplicativo)
- 2. Se especifican los efectos (Analyze/New)
- 3. Se selecciona método de ajuste del modelo

Cox vs Weibull en Egret/Datos Lung

Model Fit Results						
Summary Statistics						
-	Value	DF	p-value			
Deviance	986.2171		_			
Likelihood ratio test	25.5508	4	< 0.001			
Parameter Estimates			_		9	5% C.I.
Terms	Coefficient	Std.Error	p-value	Hazard Ratio	Lower	Upper
treatment ='2'	-0.1948	0.1967	0.3219	0.8230	0.5597	1.2101
cell ='1'	-0.2960	0.2857	0.3001	0.7438	0.4249	1.3020
cell ='2'	0.7939	0.2546	0.0018	2.2120	1,3429	3.6437
cell ='3'	0.8663	0.2915	0.0030	2.3782	1.3432	4.2109
Termwise Wald Test						
Termwise waid Test Term	Wald Stat.	DF	p-value			
cell	24.4645	3	< 0.001			
			0.00			
Model Fit Results						
Summary Statistics						
	Value	DF	p-value			
Deviance	172.7629	131	-			
Likelihood ratio test	32897.2383	6	< 0.001			
Parameter Estimates					95	% C.I.
Terms	Coefficient	Std.Error	p-value	Rate Ratio	Lower	Upper
%GM	5.0382	0.2351	< 0.001	154.1971	97.2615	244.4618
treatment ='2'	0.1699	0.1988	0.3928	1.1852	0.8027	1.7500
cell ='1'	0.3281	0.2838	0.2476	1.3883	0.7960	2.4214
cell ='2' Weibull	-0.8379	0.2543	< 0.001	0.4326	U 3858	0.7121
cell ='3'	-0.9078	0.2897	0.0017	0.4034	0.2286	0.7118
%SCL	1.0269	0.0708			l .	
Termwise Wald Test						
Term	Wald Stat.	DF	p-value			
cell	32.5545	3	< 0.001			

Resultados Cox Egret

- ▶Los HR sí están correctos!
- con tipo de tumor 3 tienen 2.37 veces más probabilidad de morir comparados con tipo de tumor 0

Resultados Weibull Egret

Los RR están incorrectos (invertidos)!

Cox en Egret/Datos Lung/Opción curvas de sobrevida y Riesgo (Menú Postfit)

Hazard / Survival Functions

1 0.0098 -4.6213 0.9902 2 0.0050 0.0148 -4.2134 0.9863 3 0.0050 0.0198 -3.9217 0.9804 4 0.0051 0.0249 -3.6942 0.9754 7 0.0153 0.0402 -3.2141 0.9606 8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21	Time	Hazard	Cum-Hazard	Log-Cum-Hazard	Survival
2 0.0050 0.0148 -4.2134 0.9853 3 0.0050 0.0198 -3.9217 0.9804 4 0.0051 0.0249 -3.6942 0.9754 7 0.0153 0.0402 -3.2141 0.9606 8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409				3	
2 0.0050 0.0148 -4.2134 0.9853 3 0.0050 0.0198 -3.9217 0.9804 4 0.0051 0.0249 -3.6942 0.9754 7 0.0153 0.0402 -3.2141 0.9606 8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409	1	n nnae	n nnge	/ C213	n ganal
3 0.0050 0.0198 -3.9217 0.9804 4 0.0051 0.0249 -3.6942 0.9754 7 0.0153 0.0402 -3.2141 0.9606 8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8053					
4 0.0051 0.0249 -3.6942 0.9754 7 0.0153 0.0402 -3.2141 0.9606 8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8363 24 0.0134 0.1933 -1.6436 0.8242 <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
7 0.0153 0.0402 -3.2141 0.9606 8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8363 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
8 0.0211 0.0613 -2.7917 0.9405 10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8363 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 <					
10 0.0110 0.0723 -2.6271 0.9303 11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8363 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7968					
11 0.0056 0.0779 -2.5529 0.9251 12 0.0112 0.0890 -2.4189 0.9148 13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841					
13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663	11	0.0056	0.0779	-2.5529	
13 0.0113 0.1004 -2.2990 0.9045 15 0.0116 0.1120 -2.1896 0.8941 16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663	12	0.0112	0.0890	-2.4189	0.9148
16 0.0059 0.1178 -2.1386 0.8889 18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543	13	0.0113	0.1004	-2.2990	
18 0.0178 0.1356 -1.9981 0.8732 19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482	15	0.0116	0.1120	-2.1896	0.8941
19 0.0123 0.1479 -1.9113 0.8625 20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421 <td>16</td> <td></td> <td>0.1178</td> <td>-2.1386</td> <td>0.8889</td>	16		0.1178	-2.1386	0.8889
20 0.0125 0.1604 -1.8299 0.8518 21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8353 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421	18	0.0178	0.1356	-1.9981	0.8732
21 0.0129 0.1733 -1.7527 0.8409 22 0.0066 0.1799 -1.7153 0.8363 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421	19	0.0123	0.1479	-1.9113	0.8625
22 0.0066 0.1799 -1.7153 0.8363 24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421	20	0.0125	0.1604	-1.8299	0.8518
24 0.0134 0.1933 -1.6436 0.8242 25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421	21	0.0129			0.8409
25 0.0207 0.2140 -1.5418 0.8074 27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421	22		0.1799	-1.7153	0.8353
27 0.0072 0.2212 -1.5088 0.8016 29 0.0073 0.2285 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421		0.0134		-1.6436	0.8242
29 0.0073 0.2286 -1.4764 0.7958 30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421					
30 0.0148 0.2433 -1.4136 0.7841 31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421		0.0072		-1.5088	0.8016
31 0.0151 0.2584 -1.3534 0.7723 33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421					
33 0.0078 0.2662 -1.3237 0.7663 35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421					
35 0.0078 0.2740 -1.2947 0.7603 36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421					
36 0.0080 0.2819 -1.2660 0.7543 42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421					
42 0.0081 0.2901 -1.2377 0.7482 43 0.0082 0.2982 -1.2099 0.7421					
43 0.0082 0.2982 -1.2099 0.7421					
44 U.0082 0.3064 -1.1828 0.7361					
	44	0.0082	0.3064	-1.1828	0.7361

- ➤ Permite visualizar las curvas base (baseline), de sobrevida o riesgo es decir, las curvas correspondiente a los individuos de las clases utilizadas como base. En el ejemplo correspondería a la curva de individuos con Treatment=1 y Cell=0
- Notar que el patrón de sobrevida es irregular ya que (a diferencia de métodos paramétricos) no se asume ninguna función específica

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

8

8

10

10

11

12

12

13

13

15

15

16

18

18

18

19

19

20

20

0.1458

0.0375

0.1316

0.0442

0.0477

0.1742

0.0733

0.1827

0.2220

0.0833

0.1120

0.2145

0.2468

0.3225

0.2468

0.3517

0.1479

0.2921

0.3549

0.0478

-0.1585

-0.0596

-0.1573

-0.1580

-0.1209

-0.0927

-0.0600

0.0984

0.0277

0.0864

-0.0562

-0.0547

0.0357

-0.0547

0.0334

0.0822

-0.0509

0.0832

0.013

-0.17

-0.016

-0.170

-0.17

-0.027

0.09

-0.016

0.02

-0.123

0.137

-0.018

-0.014

0.009

-0.014

0.008

0.131

-0.013

0.018

Cox en Egret/Datos Lung/ Delta Betas (Menú Postfit)

Fitted values:

Factores multiplicadores asociados con cada observación (valores mayores indican observaciones con mayor peso sobre los estimados de regresión)

Delta Betas:

Estimados de la cantidad en que un estimado de regresión cambiaría si una determinada observación se omitiera de los datos. Se calcula para cada observación y cada parámetro. Sirven para evaluar la influencia de una observación sobre el modelo

Cox en Statistica/Datos Lung/

Estratificación en Cox

- ➤ Cuando el requisito de riesgos proporcionales no se cumple para alguna covariable existe la opción de realizar el análisis de Cox por ESTRATOS (grupos en STATISTICA)
- ➤El requisito de proporcionalidad debe ser cumplido *dentro* de los estratos pero no *entre* Estratos.

Estratificación en Egret/Ejemplo Lung/ Estratos por Tratamientos

Cox Proportional Hazards Model Data file name F:\An Sob B\AnSob Lec3\Lung.cyl Model (T,C) ~ cell + PriorCat + ageyrs + months Failure Times (T) dayssurv Censoring (C) censoring Entry Time Risk Type Relative (multiplicative) Stratification treatment Analysis Type Fit using Modified Newton Raphson algorithm **Basic Information** Number of terms 4 Total Number of Observations 137 Rejected as Invalid 0 Number of valid Observations 137 **Model Fit Results Summary Statistics** Value DF p-value Deviance 816 2779 Likelihood ratio test 23,3685 < 0.001 Parameter Estimates 95% C.I. Coefficient Std.Error p-value Hazard Ratio Lower Upper Terms cell ='1' -0.1725 0.2919 0.5546 0.8415 0.4749 1.4914 cell ='2' 0.7701 0.2648 0.0036 2.1600 1.2856 3.6293 cell ='3' 0.9118 0.2997 0.0023 2.4887 1.3832 4.4778 PriorCat ='1' -0.03320.2321 0.8862 0.9673 0.6138 1.5245 ageyrs 0.0046 0.0096 0.6358 1.0046 0.9858 1.0237 months 0.0086 0.0093 0.3602 1.0086 0.9903 1.0272 Termwise Wald Test Wald Stat. cell 20.0539 < 0.001

Baseline Survival Function for Cox Proportional Hazards Model

For F:\An_Sob_B\AnSob_Lec3\Lung.cyl at 08:14 on 12/03/2005

Los riesgos son calculados aparte (una tabla por cada estrato), pero posteriormente son combinados para el cálculo de los coeficientes y HR de los variables independientes.

Regresión COX con covariables dependientes del tiempo

- ➤En algunos casos es posible que una covariable incluida en un modelo de regresión pueda asumir distintos valores durante el periodo de estudio (ver sgte)
- ➤En estos casos cuando existen covariables que pueden presentar distintos valores a través del estudio es posible incluirlas en el análisis de regresión COX.
- ➤ Esto requiere de especificar los distintos estatus del individuo para la covariable en distintos tiempos, mediante la utilización de columnas adicionales (Ver ejemplo EGRET)

Covariables dependientes del tiempo en Cox -Interpretación Gráfica

Especificación de covariables dependientes del tiempo en EGRET

- Ejemplo: Colletsurv.cyl. Comparación de 2 Tratamientos de cirrosis
- Evento: Sobrevivencia a Cirrosis (time)
- Covariable Dependiente del tiempo: Nivel de bilirubina (LBR)
- Se realiza una medición inicial de bilirrubina (LBR) y posteriormente se realizan mediciones adicionales cada 3 meses (FT1-LBR1, FT2-LBR2, etc)
- Ver codificación y especificación

Covariables dependientes del tiempo en EGRET/Ejemplo

Patient	Time	CENS	TREAT	AGE	LBR	LBRT	FT_l	LBR_l	FT_2	LBR_2	FT_3	LBR_3
1	281	1	0	46	3.20000005	3.20000005	47	3.79999995	184	4.9000001	251	5
2	604	0	0	57	3.0999999	3.0999999	94	2.9000001	187	3.0999999	321	3.20000005
3	457	1	0	56	2.20000005	2.20000005	61	2.79999995	97	2.9000001	142	3.20000005
4	384	1	0	65	3.9000001	3.9000001	92	4.69999981	194	4.9000001	372	5.4000001
5	341	0	0	73	2.79999995	2.79999995	87	2.5999999	192	2.9000001	341	3.4000001
6	842	1	0	64	2.4000001	2.4000001	94	2.29999995	197	2.79999995	384	3.5
7	1514	1	1	69	2.4000001	2.4000001	74	2.9000001	202	3	346	3
8	182	0	1	62	2.4000001	2.4000001	90	2.5	182	2.9000001	300	3.5
9	1121	1	1	71	2.5	2.5	101	2.5	410	2.70000005	774	2.79999995
10	1411	0	1	69	2.29999995	2.29999995	182	2.20000005	847	2.79999995	1051	3.29999995
11	814	1	1	77	3.79999995	3.79999995	167	3.9000001	498	4.30000019	550	4.5
12	1071	1	1	58	3.0999999	3.0999999	108	2.79999995	187	3.4000001	362	3.9000001

Covariables dependientes del tiempo en EGRET/Ejemplo

Relación que se asume mediciones consecutivas:

- 1. Factores (para variables categóricas)
- 2.Interpolación (variables continuas)
- 3.Step function: (valores fijos)

Variable con el valor inicial

Pares de Variables con mediciones posteriores

Covariables dependientes del tiempo en EGRET/Resultados

Cox Proportional Hazards Model

Data file name C:\Documents and Settings\bvargas\Desktop\EPV709\11ansobC\

(T,C) ~ LBRT + TREAT + AGE Model

Failure Times (T) Time CENS Censoring (C) **Entry Time**

Risk Type Relative (multiplicative)

Stratification

Analysis Type Fit using Newton Raphson algorithm

Basic Information

Number of terms 3 Total Number of Observations 12 Rejected as Invalid Π

Number of valid Observations 12

En el modelo solo se agrega la variable original (LBRT)

Perform

Fit

C Score Test

Step-wise

Backward

Regression Model <Cox Proportional Hazards Model>

Available variables

Index Name

(None)

4×

10

11

Model

Select transformation:

Patient

TREAT

AGE LBRT

FT 1 LBR 1

FT 2 LBR_2

FT 3

Failure Time Variable = Time

All Subjects enter at time zero.

Risk type = Relative (multiplicative)

Censor Variable = CENS

Stratification Variable =

Model Fit Results

Summary Statistics

Deviance

Likelihood ratio test	11.7394	3	0.0083			
Parameter Estimates					95	% C.I.
Terms	Coefficient	Std.Error	p-value Ha	zard Ratio	Lower	Upper
LBRT	1.9952	1.0805	0.0648	7.3540	0.8847	61.1292
TREAT ='1'	-1.4667	1.2860	0.2541	0.2307	0.0186	2.8690
AGE	-0.0728	0.0766	0.3419	0.9298	0.8001	1.0804

DF

p-value

Value

13,3819

Total analysis time 00:00:01

Hay efecto significativo de Tratam y Nivel de **Bilirrubina**

Model Terms

☐ Include constant term

Name

TREAT

OΚ

Cancel

Advanced..

AGE LBRT

El riesgo de muerte aumenta 7.35 veces por cada aumento de 1 unidad en Bilirrubina

Especificación de distintos 'tiempos de entrada' (entry-time) en Regresión COX FGRFT

- ➤En los análisis realizados hasta ahora se ha asumido que el tiempo de entrada de todos los individuos participantes en el análisis de sobrevivencia es 0. Esto es correcto en la mayoría de los casos pues el momento de entrada no es relevante al estudio Ej. El tiempo se mide con base a un mismo punto de referencia, aunque este punto de referencia puede ocurrir en distinto tiempo calendario.
- Existen casos sin embargo, cuando la variable de tiempo es externa al estudio (ver Ejemplo ugnick.cyl, siguiente)
- ➤En estos casos una opción es indicar los distintos tiempos de entrada mediante una variable adicional (entry time).
- ➤El efecto será que el grupo a riesgo en un intervalo dado no incluirá a los individuos cuyo tiempo de entrada es mayor al intervalo.

Diferentes tiempos de entrada /Representación gráfica Ejemplo Afecciones respiratorias en Mineros (ugnick.cyl)

- Evento: Presentación de afecciones respiratorias en trabajadores de Minería
- Variable analizada: Edad a presentación de afección/censura (failure)

El punto de referencia inicial es el Nacimiento, sin embargo los individuos están bajo riesgo solo hasta después de ingresar a la mina (AgeFUbegan)

2440004

ID

ExposeRaw

AgeFUBegan es la variable que indica la edad del individuo al momento de entrada a la mina

Birthdate

П	1	950	0	1902.5	22.34 16004	31.7465	33.7350006	0	0	1	3	
ı	2	187	0	1906.5	18.0984001	27.7465	34.5	0	0	0	3	
ı	3	306	0	1897.5	25.3218994	36.7464981	37.2999992	0	0	1	3	
ı	4	224	0	1903.5	13.7739	30.7465	37.6453018	0	0	0	2	
ı	5	941	3.5	1897.5	25.3054008	36.7464981	38.3546982	0	0	1	3	
ı	6	0	0	1895.5	27.6753006	38.7464981	39.7219009	0	0	2	3	
ı	7	586	0	1902.5	21.8633995	31.7465	40.7521019	0	0	1	3	
П	8	778	5.5	1897.5	22.6502991	36.7464981	42.0507011	0	1	1	3	
ı	9	202	0.5	1898.5	24.3575001	35.7464981	42.1011009	0	0	1	3	
П	10	891	1	1901.5	22.2698994	32.7464981	42.4835014	0	0	1	3	
ı	11	325	0	1910.5	14.0737	23.7465	43.0343018	0	0	0	3	
ı	12	876	0	1906.5	15.4287004	27.7465	43.2916985	0	0	0	3	
	13	318	0.5	1899.5	17	34.7464981	43.7466011	0	0	0	2	
	14	956	0	1898.5	24.1245995	35.7464981	44.3876991	0	1	1	3	
	15	773	0	1891.5	32.0999985	42.7464981	44.6257019	0	0	2	3	
	16	486	2	1901.5	21 6205997	32 7/6/1981	44 8205986	Ω	Ω	1	3	

Failure

AgeFUllegan

AFEraw

Diferentes tiempos de entrada en EGRET /Ejemplo ugnick.cyl)

Diferentes tiempos de entrada en EGRET /Ejemplo ugnick.cyl) Combinación de curvas de Egret en Excel

STATISTICA VS. EGRET EN REGRESION COX

>STATISTICA:

- --Trata todas las variables como continuas!
- +Permite generar curvas de sobrevivencia para combinaciones específicas de covariables (pero solo 1 por gráfico)

≻EGRET

- ++Permite factorizar variables nominales
- ++Más flexible en la manera de incluir covariables dep. del tiempo.
- ++Permite distintos tiempos de entrada
- --No permite graficar grupos específicos (solo baseline sobrev./hazard)

Cuál metodología utilizar?

- ➤ Los métodos No-Paramétricos se utilizan generalmente en estudios de carácter explotario o descriptivo. La ventaja es que no requieren previo conocimiento de la distribución subyacente de la variable por analizar.
- La regresión de Cox (Semi Paramétrico) se utiliza cuando no se tiene certeza sobre la distribución subyacente de la variable por analizar y cuando se puede asumir que los riesgos de grupos expuestos a distintos niveles de exposición son proporcionales a través del tiempo.
- Se utilizan métodos Paramétricos cuando se desea realizar estudios de carácter predictivo y cuando se tiene certeza sobre la verdadera distribución subyacente de la variable por analizar

Tamaño mínimo de muestra: Deben existir al menos 10 fallos por cada covariable incluida en el modelo