Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 21

Midterm 2 Results – CS 477

min = 28

max = 110

average = 79.81

Midterm 2 Results – CS 677

$$min = 40$$

$$max = 118$$

average = 87.56

Midterm 2 - Feedback

- Heap elements do not have pointers to children
- In RBTs nodes are inserted as red
- OS_Select finds the i-th order statistic not element with key = i
- When working with trees, always check if the tree root is NULL first, before accessing t T.left or T.right
- Cannot add pointers
- The height of a node is the maximum of the left/right subtree heights + 1, not their sum
- Recursive algorithms:
 - Pay attention to the return value for the base case
 - Make sure the return value is always the same type
 - Use the return values

Huffman Codes

• Idea:

 Use the frequencies of occurrence of characters to build a optimal way of representing each character

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

Constructing a Huffman Code

- Let's build a greedy algorithm that constructs an optimal prefix code (called a Huffman code)
- Assume that:
 - C is a set of n characters
 - Each character has a frequency f(c)
- Idea:

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

- The tree T is built in a bottom up manner
- Start with a set of |C| = n leaves
- At each step, merge the two least frequent objects: the frequency of the new node = sum of two frequencies
- Use a min-priority queue Q, keyed on f to identify the two least frequent objects

Example

Building a Huffman Code

```
Running time: O(nlqn)
Alg.: HUFFMAN(C)
1. n \leftarrow |C|
2. Q ← C
                                         O(n)
3. for i \leftarrow 1 to n-1
       do allocate a new node z
           left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)
5.
                                                        O(nlgn)
           right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)
6.
7.
           f[z] \leftarrow f[x] + f[y]
           INSERT (Q, z)
8.
return EXTRACT-MIN(Q)
```

Greedy Choice Property

Let C be an alphabet in which each character $c \in C$ has frequency f[c]. Let x and y be two characters in C having the lowest frequencies.

Then, there exists an optimal prefix code for C in which the codewords for **x** and **y** have the same (maximum) length and differ only in the last bit.

Proof of the Greedy Choice

Idea:

- Consider a tree T representing an arbitrary optimal prefix code
- Modify T to make a tree representing another optimal prefix code in which x and y will appear as sibling leaves of maximum depth
- \Rightarrow The codes of x and y will have the same length and differ only in the last bit

Proof of the Greedy Choice (cont.)

- a, b two characters, sibling leaves of max. depth in T
- Assume: $f[a] \le f[b]$ and $f[x] \le f[y]$
- f[x] and f[y] are the two lowest leaf frequencies, in order
 ⇒ f[x] ≤ f[a] and f[y] ≤ f[b]
- Exchange the positions of a and x (T') and of b and y (T'')

Proof of the Greedy Choice (cont.)

CS 477/677 - Lecture 21

Proof of the Greedy Choice (cont.)

$$B(T) - B(T') \ge 0$$

Similarly, exchanging **y** and **b** does not increase the cost:

$$B(T') - B(T'') \ge 0$$

 \Rightarrow B(T'') \leq B(T). Also, since T is optimal, B(T) \leq B(T'')

Therefore, $B(T) = B(T'') \Rightarrow T''$ is an optimal tree, in which x and y are sibling leaves of maximum depth

Discussion

- Greedy choice property:
 - Building an optimal tree by mergers can begin with the greedy choice: merging the two characters with the lowest frequencies
 - The cost of each merger is the sum of
 frequencies of the two items being merged
 - Of all possible mergers, HUFFMAN chooses the one that incurs the least cost

Interval Partitioning

- Lecture j starts at s_i and finishes at f_i
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room
 - Ex: this schedule uses 4 classrooms to schedule

Interval Partitioning

- Lecture j starts at s_i and finishes at f_i
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room

Interval Partitioning: Lower Bound on Optimal Solution

- The depth of a set of open intervals is the maximum number that contain any given time
- Key observation:
 - The number of classrooms needed ≥ depth
- Ex: Depth of schedule below = 3 ⇒ schedule below is optimal
- Does there always exist a schedule equal to depth of intervals?

17

Greedy Strategy

- Consider lectures in increasing order of start time: assign lecture to any compatible classroom
 - Labels set {1, 2, 3, ..., d}, where d is the depth of the set of intervals
 - Overlapping intervals are given different labels
 - Assign a label that has not been assigned to any previous interval that overlaps it

Greedy Algorithm

- 1. Sort intervals by start times, such that $\mathbf{s_1} \leq \mathbf{s_2} \leq \ldots \leq \mathbf{s_n}$ (let $\mathbf{I_1}, \mathbf{I_2}, \ldots, \mathbf{I_n}$ denote the intervals in this order)
- 2. for j = 1 to n
- 3. Exclude from set $\{1, 2, ..., d\}$ the labels of preceding and overlapping intervals \mathbf{I}_i from consideration for \mathbf{I}_i
- 4. **if** there is any label from $\{1, 2, ..., d\}$ that was not excluded assign that label to \mathbf{I}_i
- 5. **else**
- 6. leave **I**_i unlabeled

Example

Claim

- Every interval will be assigned a label
 - For interval \mathbf{I}_{j} , assume there are t intervals earlier in the sorted order that overlap it
 - We have t + 1 intervals that pass over a common point on the timeline
 - $+ 1 \le d$, thus $+ \le d 1$
 - At least one of the d labels is not excluded by this set of t intervals, which we can assign to \mathbf{I}_i

Claim

- No two overlapping intervals are assigned the same label
 - Consider I and I' that overlap, and I precedes I'
 in the sorted order
 - When I' is considered, the label for I is excluded from consideration
 - Thus, the algorithm will assign a different label to I

Greedy Choice Property

- The greedy algorithm schedules every interval on a resource, using a number of resources equal to the depth of the set of intervals. This is the optimal number of resources needed.
- Proof:
 - Follows from previous claims
- Structural proof
 - Discover a simple "structural" bound asserting that every possible solution must have a certain value
 - Then show that your algorithm always achieves this bound

Scheduling to Minimizing Lateness

- Single resource processes one job at a time
- Job j requires t_j units of processing time, is due at time d_i
- If j starts at time s_j, it finishes at time f_j = s_j + t_j
- Lateness: $\ell_j = \max \{ 0, f_j d_j \}$
- Goal: schedule all jobs to minimize **maximum** lateness $L = \max \ell$.
- Example:

14

15

2 1

Readings

- For this lecture
 - Chapter 15
 - Coming next
 - Chapter 15