

Costos de Producción

La Naturaleza de los Costos

Los economistas miden o consideran todos los costos relevantes:

- Costos explícitos: costos directos, aquellos que implican el pago a factores (o inputs) utilizados en el proceso de producción durante un determinado periodo de tiempo.
 Costos implícitos: reflejan una oportunidad perdida, en lugar de un gasto corriente.
- Costo de Oportunidad (en el contexto de una firma): costo de las oportunidades que se pierden por no destinar los recursos de la empresa al mejor uso alternativo.

Costo de Oportunidad

- Costo de Oportunidad: el valor del mejor uso alternativo de un recurso.
 - Ejemplo: el costo de oportunidad de mantener dinero en efectivo, el costo de oportunidad de estudiar.
- Costo irrecuperable: gasto que no puede recuperarse una vez que se realiza
 - Ejemplo: el gasto en una maquina que no tiene un uso alternativo.
- Costos de capital: el costo de bienes durables, que pueden ser utilizados por muchos años.
 - Ejemplo: la compra de un edificio donde se realizará el proceso de producción.

Corto Plazo: Costos Fijos y Costos Variables

Costo Total

- Costo Fijo: gastos de la producción que no varían con el nivel de producción.
- Costo Variable (CV): gasto que cambia con el nivel de producción.

$$CT = CF + CV$$

Costo Marginal (CM): cambio en el costo si la firma produce una unidad adicional.

$$CM = \frac{\partial CT}{\partial q}$$

Costos Medios

Costo Fijo Medio:

 $CF_{Me} = \frac{CF}{q}$

Costo Variable Medio:

$$CV_{Me} = \frac{CV}{q}$$

Costo Total Medio:

$$CT_{Me} = \frac{CT}{q} = CF_{Me} + CV_{Me}$$

Costos en el Corto Plazo

Producción,							
q	CF	CV	CT	CM	CFMe	CVMe	CTMe
0	48	0	48				
1	48	25	73	25	48	25	73
2	48	46	94	21	24	23	47
3	48	66	114	20	16	22	38
4	48	82	130	16	12	20.5	32.5
5	48	100	148	18	9.6	20	29.6
6	48	120	168	20	8	20	28
7	48	141	189	21	6.9	20.1	27
8	48	168	216	27	6	21	27
9	48	198	246	30	5.3	22	27.3
10	48	230	278	32	4.8	23	27.8
11	48	272	320	42	4.4	24.7	29.1
12	48	321	369	49	4	26.8	30.8

Curvas de Costos en el Corto Plazo

	Costo	Costo	Costo
Producto,	Fijo,	Variable	Total
q	CF	CV	CT
0	48	0	48
1	48	25	73
2	48	46	94
3	48	66	114
4	48	82	130
5	48	100	148
6	48	120	168
7	48	141	189
8	48	168	216
9	48	198	246
10	48	230	278
11	48	272	320
12	48	321	369

Relación entre Costo Marginal y Costo Medio

Cuando el CM es menor que el CVMe, el CVMe es decreciente

Costo Variable y Producción Total del Trabajo

Costos en el Largo Plazo

En el largo plazo, todos los inputs/factores de producción pueden variar (CF = 0, entonces CT = CV)

- Supuesto: las firmas eligen la cantidad de inputs de forma tal de minimizar los costos
- Recta de Isocosto (combinaciones de inputs con mismo costo total):

El costo total de la firma $\rightarrow CT = wL + rK$

Isocosto
$$\Rightarrow K = \frac{\overline{CT}}{r} - \frac{w}{r}L$$

Notar que la pendiente es: $-\frac{w}{r}$

Minimización de costos: la recta de Isocosto más "baja" que toca la isocuanta correspondiente al nivel de producto que se desea producir.

Costos en el Largo Plazo

Si la solución es interior

$$RMST = \frac{\partial K}{\partial L} = -\frac{PM_L}{PM_K} = -\frac{w}{r}$$

$$\frac{PM_L}{PM_K} = \frac{w}{r}$$

$$\frac{PM_L}{w} = \frac{PM_K}{r}$$

Recta de Isocosto

• Ecuación de isocosto:

$$K = \frac{\overline{CT}}{r} - \frac{w}{r}I$$

Supongamos que:

$$w = 5 y r = 10$$
, entonces

 Si la firma quiere incrementar en una unidad L, entonces requiere reducir en 0.5 K (para mantener el costo constante).

Recta de Isocosto: Diferentes Costos Totales

 Supongamos que w = 5 y r = 10. A continuación dos rectas de isocosto cuando CT = 100 y CT = 150

Minimización de Costos

Pendiente de la isocuanta:

$$-\frac{MPL}{MPK} = RMST$$

Minimización de Costos

Minimización de Costos

Cambio en el Precio de un Factor: \u00e4w

Senda de Expansión

Senda de Expansión: combinación de trabajo y capital de menor costo que pueden utilizarse para obtener cada nivel de producción a largo plazo.

Costo de Largo Plazo

Curvas de Costos en el Largo Plazo

- Costo Medio a Largo Plazo (CM_eL): costo medio de producción ($\frac{CT}{q}$) para diferentes niveles de producción cuando todos los factores son variables.

Notar que es diferente al costo medio a corto plazo (CM_eC : costo medio de producción cuando algún factor está fijo).

 Costo Marginal de Largo Plazo (CM L): el costo de producir una unidad adicional cuando todos los factores son variables.

Curvas de Costos en el Largo Plazo y Economías de Escala

- La forma de la curva de costo total a largo plazo estará determinada por la función de producción:
- Economías de Escala: propiedad de una función de costos por la cual el costo promedio de producción cae a medida que la producción aumenta.

Curva de Costo Total a Largo Plazo y Economías de Escala

Producto,	Trabajo,	Capital,	Costo Total,	CMe,	
q	L	K	CT = wL + rK	$CMe = \frac{CT}{q}$	Economías de Escala
1	1	1	12	12	
3	2	2	24	8	Creciente
6	4	4	48	8	Constante
8	8	8	96	12	Decreciente

w = r = \$6 por unidad.

Curva de Costo Total a Largo Plazo

- En el largo plazo, la firma elige el tamaño más adecuado de su planta, la maquinaria a utilizar, etc. para minimizar el costo total, y producir la cantidad de producto necesario.
- Una vez que elige el nivel de capital a utilizar, estos inputs están fijos en el corto plazo.
- Entonces, las decisiones de largo plazo determinan el costo de corto plazo.
- La curva de costo medio a largo plazo es la envolvente de las curvas de costo medio a corto plazo.

Costo Medio a Largo y Corto Plazo

Sendas de Expansión a Corto y Largo Plazo

Curvas de Transformación del Producto

Curvas de transformación del producto: la cantidad máxima que puede producirse de dos productos con un conjunto dado de factores.

"Learning by Doing" y Reducción de Costos

 Learning by doing: las habilidades productivas y el conocimiento que los trabajadores obtienen de la experiencia (una función de la producción acumulada)

¿Por qué los Costos Caen Con el Tiempo?

- Progreso tecnológico puede incrementar la productividad.
- Operar a mayor escala en el largo plazo puede reducir el costo medio debido a rendimientos crecientes de escala.
- Los trabajadores pueden volverse más productivos (por medio de un proceso de "learning by doing").

Ejercicio

La firma posee la siguiente función de producción:

$$q(K,l) = L^{1/3}K^{1/3}$$

Además, sabemos que r = 10 y w = 5

1. Si la firma desea producir q = 100, ¿cuál es la cantidad óptima de K y L?

Empecemos computando RMST,

$$RMST = -\frac{PM_L}{PM_K} = -\frac{1/3L^{-2/3}K^{2/3}}{2/3L^{1/3}K^{-1/3}} = -\frac{1}{2}\frac{K}{L}$$

En la cantidad óptima de trabajo y capital se cumplirá que RMST = -w/r. Entonces,

$$RMST = -\frac{1}{2}\frac{K}{L} = -\frac{5}{10}$$

$$RMST = -\frac{1}{2}\frac{K}{L} = -\frac{1}{2} \rightarrow K = L$$

Entonces, en la cantidad óptima K = L. Llevamos esta relación a la función de producción:

$$q(K, L) = L^{1/3}K^{2/3}$$

 $100 = L^{1/3}L^{2/3} \rightarrow L = K = 100$