HOMEWORK #2 Due: 9/19

HUALIANG LI

(1) Exercises 3.1-2

$$(n+a)^{-b} = \binom{n}{0} n^b \binom{n}{1} n^{b-1} b + \dots + \binom{n}{0} a^b$$
 The most significant term is n^b , so it is $O(n^b)$. Also, it is obviously greater than n^b , so it is $\Omega(n^b)$. Therefore, it is $\Theta(n^b)$.

(2) Exercises 3.1-4

a.
$$2^{n+1} = 2 * 2^n$$
 we choose $c = 2$ in the definition of Big O notation, we get it is $O(2^n)$.
b. $2^{2n} = 2^n * 2^n$. There is no constant c such that for $n > c$, $2^n * 2^n < c * 2^n$.

(3) Exercises 4.3.-1

We have to prove there is a constant c such that $T(n) \le c*n^2$.

$$T(n) = T(n-1) + n \le c(n-1)^2 = cn^2-2cn+c+n$$
, if I pick $c = 1$; then $T(n) \le n^2-n+1$ $\le n^2$ for $n \ge 1$. So, $T(n)$ is $O(n^2)$.

(4) Exercises 4.4-9

We can assume that $\alpha \leq \frac{1}{2}$, Otherwise 1- α would $\leq 1/2$. Thus, it is easy to see that the depth of recursion tree is logn, and each level is cn. We can guess the leave is $\theta(n)$.

So,
$$T(n) = cn * logn + \theta(n) = \theta(nlogn)$$
.

(5) Give asymptotic upper and lower bounds for T(n). Assume T(n) is constant for $n \le 2$.

a.
$$T(n) = 2T(n/2) + n^3$$

 $a = 2$, $b = 2$. $n^{\log_b a} = n$. So, $f(n) = \Omega(n^3)$, $2(n/2)^3 \le 2n^3$, we can apply Master theory 3, So, $T(n) = \theta(n^3)$.

b.
$$T(n) = T(9n/10) + n$$

a = 1, b = 10/9. $n^{\log_b a} = 1$, f(n) = n, so f(n) is polynomially larger than $n^{\log_b a}$. $T(n) = \theta(n)$.

c.
$$T(n) = 16T(n/4) + n^2$$

 $A = 16, b = 4, n^{\log_b a} = n^2, f(n) = n^2 = \theta(n^2)$. Apply Master theory 2, $T(n) = \theta(n^2 lgn)$.

d.
$$T(n) = 7T(n/3) + n^2$$

 $A = 7, b = 3, n^{\log_b a} = n^{1.5} f(n) = n^2$, polynomially larger than $n^{1.5}$, $T(n) = \theta(n^2)$

e.
$$T(n) = 7T(n/2) + n^2$$

 $a = 7, b = 2, n^{\log_b a} = n^{2.6} f(n) = n^2$ polynomially smaller than $n^{\log_b a}, T(n) = \theta(n^{\log_2 7})$

f.
$$T(n) = 2T(n/4) + n^{1/2}$$

 $A = 2$, $b = 4$, $n^{\log_b a} = n^{0.5}$ $f(n) = n^{0.5} = \theta(n^{0.5})$, so, Apply master theory 2, $T(n) = \theta(n^{0.5} lgn)$

g.
$$T(n) = T(n-1) + n$$

 $T(n) = T(n-2) + n-1 + n = T(n-3) + n-2 + n-1 + n = T(0) + 1 + 2 + ... + n = (1+n)n/2,$
This is $\theta(n^2)$

h.
$$T(n) = T(n^{1/2}) + 1$$

 $T(n) = T(n^{1/4}) + 1 + 1 = T(n^{1/m}) + logm so, T(n) = \theta (logn)$