Lecture 9: Clustering (Part II) Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

November 27, 2023

Today

- Distribution clustering
 - Gaussian Mixture Models (GMM)
 - Parameter estimation: the EM algorithm
 - Hyperparameter K: AIC and BIC
- 2 Evaluate clusters
- Summary

Learning outcome

- Be able to explain the difference between Gaussian naive Bayes classifier and GMM in terms of parameter estimation
- Be able to explain the objective function $Q(\theta)$ for GMM
- Understand what EM algorithm is used for and why we need it
- Be able to calculate AIC/BIC and use them to determine K for GMM
- Be able to explain the EM algorithm for one dimensional GMM
- Be able to explain the difference between K-means and the EM algorithm in terms of their assumptions and parameter estimation

Today

- Distribution clustering
 - Gaussian Mixture Models (GMM)
 - Parameter estimation: the EM algorithm
 - Hyperparameter K: AIC and BIC
- 2 Evaluate clusters
- Summary

Gaussian Mixture Models (GMM) Parameter estimation: the EM algorithm Hyperparameter K: AIC and BIC

Gaussian Mixture Models (GMM)

Four categories

Clustering models

- Centroid clustering (lecture 8)
- Distribution clustering
- Density clustering
- Hierarchical clustering

Gaussian Mixture Models (GMM) - overview

Distribution clustering:

- Each cluster is modeled using a probability distribution
- Each data point is modeled using a "combination of all clusters"

Gaussian Mixture Models:

• Data x: a d dimensional feature vector $\mathbf{x} = [x_1, \dots, x_d]$

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f(\mathbf{x} \mid k)$$

where

- f(x) is the PDF of x ("multivariate");
- $\pi_k = P(k) > 0$ and $\sum_{k=1}^K \pi_k = 1$;
- f(x | k) is a d dimensional multivariate Gaussian PDF describing cluster k.

Gaussian Mixture Models (GMM) - overview (cont.)

Gaussian Mixture Model:

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f(\mathbf{x} \mid k)$$

- Examples of the mixture distribution with d=1
 - Example 1: $\pi_1 = 0.1$, $\pi_2 = 0.9$

$$f(\mathbf{x}) = 0.1 \times f(\mathbf{x} \mid \mathbf{k} = 1) + 0.9 \times f(\mathbf{x} \mid \mathbf{k} = 2) = 0.1 \times f(\mathbf{x} \mid \mu_1, \sigma_1) + 0.9 \times f(\mathbf{x} \mid \mu_2, \sigma_2)$$

 \bullet Example 2: $\pi_1=$ 0.4, $\pi_2=$ 0.6

$$f(\mathbf{x}) = 0.4 \times f(x \mid k = 1) + 0.6 \times f(x \mid k = 2) = 0.4 \times f(x \mid \mu_1, \sigma_1) + 0.6 \times f(x \mid \mu_2, \sigma_2)$$

Gaussian Mixture Models (GMM) - overview (cont.)

• Examples of the mixture distribution with d=2: $\pi_1=0.5, \, \pi_2=0.5$

$$f(\mathbf{x}) = 0.5 \times f(\mathbf{x} \mid k = 1) + 0.5 \times f(\mathbf{x} \mid k = 2) = 0.5 \times f(\mathbf{x} \mid \mu_1, \Sigma_1) + 0.5 \times f(\mathbf{x} \mid \mu_2, \Sigma_2)$$

where $\mu_k \in \mathbb{R}^2$ is the mean and $\Sigma_k \in \mathbb{R}^{2 \times 2}$ is the covariance matrix

Gaussian Mixture Models (GMM) - overview (cont.)

- Data x: a d dimensional feature vector $\mathbf{x} = [x_1, \dots, x_d]$ with PDF $f(\mathbf{x}) = \sum_{k=1}^K \pi_k f(\mathbf{x} \mid k)$
- Target y: y is a set of K posterior probabilities; for $k = 1, \dots, K$

likelihood of k

$$\underbrace{P(k \mid x)}_{posterior} = \underbrace{\frac{P(k)}{F(x \mid k)}}_{posterior} \underbrace{\frac{P(k)}{f(x \mid k)}}_{\sum_{c=1}^{K} P(c)f(x \mid c)}$$

It is soft clustering - x is assigned to all clusters with a probability - the posterior $P(k \mid x)$ Alternatively, y can be defined as the cluster index with the highest posterior probability, i.e.

$$y = \arg\max_{\mathbf{k} \in \{1, \dots, K\}} P(\mathbf{k} \mid \mathbf{x}) = \arg\max_{\mathbf{k} \in \{1, \dots, K\}} P(\mathbf{k}) f(\mathbf{x} \mid \mathbf{k})$$

- Parameter:
 - The parameters for each Gaussian likelihood $f(x \mid k)$
 - The prior P(k), typically denoted as π_k

Gaussian Mixture Models (GMM)
Parameter estimation: the EM algorithm
Hyperparameter K: AIC and BIC

Parameter estimation: the EM algorithm

Parameter estimation for GMM

Parameter estimation

- What's special about this? We know how to do it! It's almost the same as the Gaussian naive Bayes classifier! ...which you just struggled a lot with...:D
- Let's discuss the key differences between these two algorithms
- Set up: given a data set $\mathcal{X} = \{x_1, \cdots, x_N\}$, we need to estimate the parameter of interest from \mathcal{X}

	Gaussian naive Bayes classifier	Gaussian Mixture Models
Parameter of interest	$P(k)$, Gaussian PDF $f(x \mid k)$, for $k = 1, \dots, K$	
Training data (labels) available?	Yes	No
Probabilistic model	One Gaussian for each x_i	A linear combination of K Gaussians for each x_i
Interpretation	One label for each x_i (hard assignment)	K probabilities for each x_i (soft assignment)
Assumption	x_i and x_j independent for $i \neq j$	
	x_m^i and x_n^i independent for dimensions $m \neq n$ (NAIVE!)	x_m^i and x_n^i NOT necessarily independent for dimensions $m \neq n$

Note: the subscripts here are the indices for the dimensions of the feature space; they are not the indices for the data points - data points are still independent!

Parameter estimation for GMM (cont.)

In summary, we have the following additional challenges compared to the Gaussian naive Bayes classifier:

- 1. We do not have the labels we cannot easily estimate P(k) and $f(x \mid k)$
- 2. The distribution $f(x \mid k)$ is a multivariate Gaussian PDF and the features are not necessarily independent now we need to explicitly work with joint probability distributions $f_{X_1, \dots, X_d}(x_1, \dots, x_d \mid k)$ and covariance matrices (ugh!!)

Let's focus on the first issue by working with one dimensional feature vectors so we don't get overwhelmed by dealing with all the problems at once Note: in this lecture, sometimes we simply use θ to denote the estimate (instead of $\hat{\theta}$) in order to reduce clutter since the notations are already quite complex

Parameter estimation for one dimensional GMM

• Data: x_1, \dots, x_N

• Random variable: X_1, \dots, X_N i.i.d. with PDF

$$f(x) = \sum_{k=1}^{K} \pi_k f(x \mid k)$$

where $f(x \mid k)$ is a Gaussian PDF.

The joint probability distribution of all data points is defined as

$$f_{X_1,\dots,X_N}(x_1,\dots,x_N) \stackrel{\text{i.i.d.}}{=} \prod_{i=1}^N f(x_i) = \prod_{i=1}^N \sum_{k=1}^K \pi_k f(x_i \mid k)$$
 (1)

This is the likelihood $L(\theta \mid x_1, \dots, x_N)$ of the mixture distribution given data x_1, \dots, x_N

- Parameter of interest: π_k (prior), μ_k , σ_k , for all $k = 1, \dots, K$
- Parameter estimation method: maximum likelihood estimation

Parameter estimation for one dimensional GMM (cont.)

• The log likelihood (cf. Eq. (1) on page 14) is

$$Q(\theta) = \log L(\theta \mid x_1, \dots, x_N) = \log f_{X_1, \dots, X_N}(x_1, \dots, x_N)$$

$$= \sum_{i=1}^N \log \left(\sum_{k=1}^K \pi_k f(x_i \mid k) \right)$$
(2)

where
$$\theta = (\mu_1, \cdots, \mu_K, \sigma_1, \cdots, \sigma_K, \pi_1, \cdots, \pi_K)$$

The parameters are estimated by maximizing the log likelihood

$$\hat{ heta} = rg \max_{ heta} Q(heta)$$

- There is no closed-form solution due to the summation inside the log!
- We need to apply an iterative method to find the solution the EM algorithm

Intuition behind (simplified) EM

Scenario 1: if we knew the label of each data point, the task would be to estimate the parameters (similar to Gaussian Naive Bayes)

- $\pi_k = P(k) = \frac{N_k}{N}$, where N_k is the count of data points that belong to cluster k, i.e. $\pi_1 = P(\text{blue}) = \frac{5}{11}$ and $\pi_2 = P(\text{orange}) = \frac{6}{11}$
- $\mu_k = \frac{1}{N_k} \sum_{i=1}^{N_k} x_i$
- $\sigma_k^2 = \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i \mu_k)^2$

Scenario $1 \approx \text{maximization}$ step in the EM algorithm

Intuition behind (simplified) EM (cont.)

Scenario 2: if we knew the two priors P(1), P(2) and the two Gaussian distributions $f(x \mid 1)$, $f(x \mid 2)$, the task would be to compute the posterior probability $P(k \mid x)$ for $k \in \{\text{orange}, \text{blue}\}$; then we can assign each data point x to a cluster y by the maximum a posteriori estimation $y = \begin{cases} \text{blue}, & P(\text{orange} \mid x) < P(\text{blue} \mid x) \\ \text{orange}, & P(\text{orange} \mid x) \ge P(\text{blue} \mid x) \end{cases}$

- Prior: $\pi_1 = P(z_1) = P(blue), \ \pi_2 = P(z_2) = P(orange)$
- Likelihood: $f(x \mid blue) = blue$, $f(x \mid orange) = orange$
- Posterior:

$$P(\mathsf{blue} \mid x) = \frac{P(\mathsf{blue})f(x \mid \mathsf{blue})}{P(\mathsf{blue})f(x \mid \mathsf{blue}) + P(\mathsf{orange})f(x \mid \mathsf{orange})}$$

$$P(\text{orange} \mid x) = \frac{P(\text{orange})f(x \mid \text{orange})}{P(\text{blue})f(x \mid \text{blue}) + P(\text{orange})f(x \mid \text{orange})}$$

Scenario $2 \approx \text{expectation}$ step in the EM algorithm

Intuition behind (simplified) EM (cont.)

- In reality, we don't know any of these!
- The idea here is that we start with some initial guesses and alternate scenario 1 and 2 iteratively until convergence
- This is essentially how the Expectation-Maximization (EM) algorithm works
 - E-step (expectation): estimate the posterior for all data points given each cluster
 - M-step (maximization): estimate the parameters for each cluster

The EM algorithm: two main steps

Two main steps in the EM algorithm

• E-step (expectation): compute the posterior probability of the cluster for each data point x_i

$$\gamma_{ik} = P(k \mid x_i) = \frac{\pi_k f(x_i \mid k)}{\sum_{c=1}^K \pi_c f(x_i \mid c)}, \text{ for all } k = 1, \dots, K$$

This posterior is also called the **responsibility**, denoted as γ_{ik}

M-step (maximization): estimate the parameters

•
$$\pi_k = P(k) = \frac{N_k}{N}$$
, where $N_k = \sum_{i=1}^N \gamma_{ik}$ - soft clustering

•
$$\mu_k = \frac{1}{N_k} \sum_{i=1}^N \frac{\gamma_{ik}}{\gamma_{ik}} x_i$$

•
$$\sigma_k^2 = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (x_i - \mu_k)^2$$

for each cluster $k = 1, \dots, K$

K-means as a special case of the EM algorithm

Expectation Step

EM: soft clustering - posterior

$$\gamma_{ik} = P(k \mid x_i)$$

Why soft? - It is a probability, i.e. $\gamma_{ik} \in [0,1]$

K-means: hard clustering - equivalent to

$$\gamma_{ik} = \begin{cases} 1, & \text{if the centroid of cluster } k \text{ is the closest to } x_i \\ 0, & \text{otherwise} \end{cases}$$

Why hard? - It is a binary decision, i.e. $\gamma_{ik} \in \{0,1\}$

Maximization Step

• EM: need to estimate μ_k , σ_k , where

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^K \gamma_{ik} x_i, \quad \sigma_k^2 = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (x_i - \mu_k)^2, \quad N_k = \sum_{i=1}^N \gamma_{ik}, \quad \text{for } \gamma_{ik} \in [0,1]$$

 \bullet K-means: only need to estimate μ_k , where

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} \mathsf{x}_i = \frac{1}{N_k} \sum_{\mathsf{x} \in \text{cluster } k} \mathsf{x}, \quad \mathsf{N}_k = \sum_{i=1}^N \gamma_{ik}, \quad \text{for } \gamma_{ik} \in \{0,1\}$$

The complete EM algorithm

- These two steps are the core of the EM algorithm
- There are some extra steps involved
- The EM algorithm is an iterative method
- There are three important components in an iterative method:
 - 1) Initialization step
 - 2) Update the parameters in a while loop (the core, i.e. the maximization step and the expectation step)
 - 3) Stopping criteria

The complete EM algorithm (cont.)

- 1) Initialization step: initialize π_k , μ_k , σ_k manually (randomly) or using, e.g. the K-means algorithm μ_k , for all $i=1,\cdots,N$, $k=1,\cdots,K$
- 2) Update the parameters in a while loop: repeat the expectation step and the maximization step until the stopping criteria are met; each repetition of this process is called **one iteration**
- 3) Stopping criteria: something you check (using e.g. a conditional statement) inside the while loop; if the stopping criteria are true, the loop shall be escaped then you are done! There are two alternative stopping criteria for the EM algorithm:
 - Has the objective function, i.e. the log likelihood (cf. Eq. (2)), stopped changing since the last iteration?
 - Have any of the parameters, i.e. π_k , μ_k , σ_k , stopped changing since the last iteration?

Take away

- GMM: weighted sum of PDFs
- GMM vs K-means?
- GMM vs Gaussian naive Bayes?
- EM implementation (what does each step do)?

Gaussian Mixture Models (GMM)
Parameter estimation: the EM algorithm
Hyperparameter K: AIC and BIC

Hyperparameter K: AIC and BIC

How to choose hyperparameter K

- ullet For a given data set, we need to choose the number of clusters ${\cal K}$
- Similar to K-means, we first estimate $\hat{\theta}$ and then we choose the K value that gives the best clustering quality
- We introduce two alternative criteria for this task: Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
- Principle: low error + low model complexity

How to choose hyperparameter K (cont.)

Let c_K be the number of parameters to be estimated:

$$c_K = \overbrace{K \times d \times (d+1)/2}^{\text{covariance matrices}} + \overbrace{(K-1)}^{\text{priors}} + \overbrace{d \times K}^{\text{means}}$$

Note: the covariance matrix is symmetric \Rightarrow (d diagonal elements + d^2 all elements)/2

Akaike Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

$$BIC(K) = \frac{-\log(\text{likelihood})}{-\log(\text{likelihood})} + \frac{1}{2}c_K \log N$$

$$= -Q(\hat{\theta}) + \frac{1}{2}c_K \log N$$

Note: an alternative definition is to multiply this definition of AIC and BIC by 2

AIC vs BIC

- The idea is to find the best K that balances the "error" and the complexity of the model - Occam's Razor - if two models explain the data equally well, we choose the simpler one!
- ullet BIC penalizes the complexity more than AIC BIC increases more as ${\cal K}$ gets larger
- Example 1: well separated clusters

AIC vs BIC (cont.)

• Example 2: overlapping clusters

High dimensional GMM

- The second problem on page 13 is the high dimensional joint (multivariate) probability distribution of the correlated features
- ullet The EM steps for d>1 is presented as follows

Expectation Step

$$\gamma_{ik} = P(k \mid \mathbf{x}_i) = \frac{\pi_k f(\mathbf{x}_i \mid k)}{\sum_{c=1}^K \pi_c f(\mathbf{x}_i \mid c)}, \text{ for all } k = 1, \dots, K$$

Maximization Step

- $\pi_k = P(k) = \frac{N_k}{N}$, where $N_k = \sum_{i=1}^N \gamma_{ik}$
- $\mu_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} \mathbf{x}_i$
- $\Sigma_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_{ik} (\pmb{x}_i \pmb{\mu}_k) (\pmb{x}_i \pmb{\mu}_k)^T$ note that \pmb{x}_i is a column vector here

The covariance matrix Σ_k captures the dependence between features

Note: you should be able to calculate the two dimensional case

Recap: GMM

Gaussian Mixture Models (GMM) is a mixture distribution characterized by a mixture PDF

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f(\mathbf{x} \mid k)$$

where each $f(x \mid k)$ is a multivariate Gaussian PDF for each Gaussian component k multivariate

because $x \in \mathbb{R}^d$ is a $d \geq 1$ dimensional feature vector

- $f(\mathbf{x})$ is the PDF of the mixture model with parameters $\theta = \{\mu_1, \cdots, \mu_K, \Sigma_1, \cdots, \Sigma_K\}$
- f(x) is the **likelihood** of θ given data x
- Parameter estimation: maximum likelihood estimation given x_1, \dots, x_N

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{N} \log(f(\mathbf{x}_i))$$

- No closed form solution iterative algorithm for finding $\hat{\theta}$ the EM algorithm
- Comparison to other techniques
 - Gaussian naive Bayes classifiers vs GMM
 - K-means vs the EM algorithm for parameter estimation

GMM: pros and cons

- Pros:
 - Relatively simple compared to other mixture models we love Gaussians!
 - Flexible due to the soft clustering criterion
- Cons:
 - Might get stuck on local optimum of the objective function
 - Convergence can be slow
 - Covariance matrix estimate might lead to divergence in case of small data set
 - Need to choose the hyperparameter K manually
 - Gaussian mixture assumption might not be true

Today

- Distribution clustering
- 2 Evaluate clusters
- Summary

Evaluation criteria

Cluster evaluation is to evaluate the quality of clusters; there are two types of criteria: internal and external

- Internal criteria: unsupervised; cluster labels are unknown
 - Algorithms that assume clusters with spherical shapes
 - Silhouette score
 - SSE
 - Many other indices, e.g. Davies-Bouldin index, Dunn index, etc
 - Algorithms that assume mixture distributions
 - AIC
 - BIC
 - Distance based criteria; more generic
 - · Similarity matrix with data ordered by cluster indices
- External criteria: supervised; ground truth labels are given
 - Purity
 - F1-score
 - Entropy and mutual information

Today

- Distribution clustering
- 2 Evaluate clusters
- Summary

Summary

So far:

- Data types and data containers
- Descriptive data analysis: descriptive statistics, visualization
- Probability distributions, events, random variables, PMF, PDF, parameters
- CDF, Q-Q plot, how to compare two distributions (data vs theoretical, data vs data)
- Modeling
- Parameter estimation: maximum likelihood estimation (MLE) and maximum a posteriori estimation (MAP)
- Classification, multinomial naive Bayes classifier, Gaussian naive Bayes classifier
- Clustering, cluster tendency
- Centroid clustering, k-means, parameter estimation, SSE, Silhouette score
- Gaussian Mixture Models, AIC/BIC
- The EM algorithm

Next:

- Recap: probability distributions, likelihood function, MLE, MAP, the Bayes' rule, CLT
- Central limit theorem and confidence interval

