INSTITUTE OF GOVERNMENTAL STUDIES LIBRARY

MAY 28 1993

UNIVERSITY OF GALIFORNIA

summary

General Development Plan OTTY OF MILPITAS

TABLE OF CONTENTS

			Page
I.	LAN	ND USE AND CIRCULATION ELEMENT	
		Concept	i-1
		Goals	i-1
		Features of the Valley Floor Land Use Plan	i-2
		Features of the Hillside Plan	i-7
		Circulation	i-8
II.	HO	USING ELEMENT (see separate document)	
III.	OPI	EN SPACE AND CONSERVATION ELEMENT	
		Introduction	
		Goals	
		Park and Recreation Lands	
		Scenic Resources	iii-4
		Agricultural, Soil, and Mineral Resources	iii-4
		Water Resources	iii-5
		Wildlife and Vegetation	iii-6
		Utility and Service Corridors	iii-9
		Undeveloped Land	iii-9
		Historic Resources	iii-11
		Public Safety	iii-11
		Preserving Open Space	iii-11
		The Urban Pattern	iii-15
		References	iii-16
IV.	NO	ISE ELEMENT (see separate document)	

V. SEISMIC AND SAFETY ELEMENT

		Introduction	v-1
		Goal	v-1
		The Earthquake Problem	v-1
		Other Geologic Hazards	v-2
		Local Seismic and Geological Hazards	v-4
		The Use of Risk in Decision Making	v-13
		Safety Concerns and Contingency Planning	v-18
	***	References	v-24
VI.	COL		
V1.	SCE	ENIC ROUTES ELEMENT	
		Introduction	vi-1
		Definitions	vi-1
		Goals	vi-1
		Objectives	vi-2
	~~	Scenic Route Guidelines	vi-2
		Proposed Scenic Routes	vi-4

ADDENDUM:

General Plan Amendment Resolutions That Affect The General

Plan Text

MILPITAS GENERAL DEVELOPMENT PLAN

I. LAND USE AND CIRCULATION ELEMENT

(Revised August, 1992)

CONCEPT

Milpitas will be a green-belt city of between 55, 000 to 60,000 that has "balanced" its local and regional roles through the integration of a highly amenable residential community and a thriving regional industrial center. The form of Milpitas will be relatively compact. On the west urbanization is confined by the Coyote River and the east by the Calaveras Foothills (with selected intrusion of hillside development). The Coyote River Park and the Ed Levin Regional Park insure permanent open space at the boundaries of the Planning Area. On the south definition and separation is provided by the Montague Expressway. The Town Center will be the "heart" of Milpitas' civic, cultural, business, and professional life. Residential districts will provide a variety of density patterns and dwelling types suitable for persons or families in all stages of the life cycle. A park-like setting will be created by a series of local parks, school sites, and a greenway system laced throughout all living areas.

Since geologic concerns are very important factors in planning for hillside development, the City of Milpitas authorized a Geologic and Seismic Hazards Investigation to determine the stability and relative safety of future residential development within the Hillside Area east of Piedmont Road, Evans Road, and North Park Victoria Drive. In order to provide for safe and appropriate residential development, the Plan for the Hillside Area makes substantial use of the findings and recommendations of that study. Construction of housing clusters, in the form of "planned unit developments," would make it possible to take advantage of natural topographic features and provide open space throughout the residential areas.

GOALS

TRANSPORTATION

- Develop a transportation system integrated with the pattern of living, working and shopping areas, and which provides for safe, convenient, and efficient movement within the City and to other parts of the region by whatever means of transit available.
- Direct special consideration toward the circulation needs of a modern, convenient central business district, including adequate off-street parking.
- Promote a traffic pattern which will encourage industry and further the potential of industrial land.

RESIDENTIAL AREAS

- Identify areas most appropriate for residential use controlled by safety concerns and topography.
- Establish population densities which can be served adequately by community facilities and utilities.
- Provide a variety of residential types to serve the varying needs of individuals and families while retaining existing structural standards.

ECONOMIC ACTIVITY

- Encourage economic pursuits which will strengthen and promote development through stability and balance.
- Publicize the position of Milpitas as a place to carry on compatible industrial and reliable commercial activity, with special emphasis directed toward the advantages of the City's location to both industrial and commercial use.

COMMUNITY IDENTITY

- Preserve and maintain the historical landmarks of Milpitas and its physical setting so the residents will recognize they are a part of a distinctive and dynamic community.
- Foster community pride and growth through beautification of existing and future development.

PUBLIC FACILITIES AND SERVICES

- Provide all possible community facilities and utilities of the highest standards commensurate with the present and anticipated needs of Milpitas as well as any special needs of the region.
- Develop adequate civic, recreational, and cultural centers in locations for the best service to the community and in ways which will protect and promote community beauty and growth.

FEATURES OF THE VALLEY FLOOR LAND USE PLAN (See Tables A and B)

RESIDENTIAL AREAS

The General Plan proposes that all living areas have a park-like quality which may be enhanced through the Planned Unit Development concept and the judicious siting of parks and schools. A complete system of landscaped pedestrian walks linking residential areas of school, parks, shopping centers, and the Town Center will create a system of City-wide greenways.

<u>Single Family Residential:</u> Occupying over 2,000 gross acres, these areas will be most attractive to families with several children. All dwelling units are to be individually owned, either on separate lots or as part of a clustered Planned Unit Development, such as townhomes. Two density ranges are provided in the Valley Floor area: Low Density (3 to 5 units per gross acre) and Moderate Density (6 to 15 units per gross acre).

Multiple Residential Dwellings: The ranges of densities in these areas make possible a variety of housing types. In general, multi-family districts act as buffers between single-family areas and commercial and industrial activities or freeways and major streets. Medium Density (7 to 11 units per gross acre) may include attached homes and groupings of duplexes. These areas will be most suitable for families with few children and childless couples. High Density (12 to 20 units per gross acre) may include large apartment or (with PUD approval) condominium complexes or smaller, four-plex developments. They can provide efficient housing that will be suitable for childless couples and single persons.

The upper limits of both multi-family density ranges are obtainable only through special PUD approvals as incentives for outstanding design or other features. Provided, however, that an overall density of up to 40 units per gross acre can be approved on lands planned for "High Density" if the following criteria are met:

- -- Sewer and water service must currently be sufficient or capable of being made sufficient to accommodate the density requested as well as other future planned development downstream from the project site. Any improvements to the sewer or water system that would be required to accommodate any such higher density proposals shall be made conditions of project approval.
- -- Traffic from increased density must not cause any local street intersection to worsen its Level of Service below "E" (i.e. Volume/Capacity greater than 0.99), when added to exiting traffic volumes plus estimated traffic from approved, undeveloped projects and future, foreseeable projects. When calculating the Level of Service impacts, future planned or proposed roadway improvements shall be factored into the analysis and, where the site is proximate to potential rail transit facilities, and appropriate factor for reduced traffic generation may be utilized.
- -- The architecture of such higher density projects shall not have adverse impacts in terms of shadows, view obstruction or loss of privacy that are not mitigated to acceptable levels.

Mobile Home Parks: Mobile Homes provide an acceptable housing alternative particularly for small-sized lower income households of either young or older residents. There are currently three mobile home parks within the City in the vicinity of Dixon Landing Road and North Milpitas Boulevard. Any new proposals for mobile home parks may be developed in areas designated as residential or highway services when located with direct access to and from a major street (a minimum of four moving lanes). Furthermore, any new parks proposed should be of an economically viable size to insure proper management and maintenance of the facility. Allowable densities would range from 6 to 8 units per gross acre.

COMMUNITY FACILITIES

<u>Schools:</u> Provision for school facilities has been made in accordance with the plans of the Milpitas Unified School District.

<u>Recreational Facilities:</u> The General Plan Map indicates 19 parks, two to twenty-five acres in size, many of which are adjacent to school sites. Supplementing these parks will be school play areas and the Hetch-Hetchy greenway. The greenway proposal envisions the development of the San Francisco Water Department's 80 foot right-of-way as a pedestrian walkway and a cycling path with simple recreation facilities. Supplemental parks may also be provided through planned unit developments.

Two regional parks will be located within the Milpitas Planning Area: the 1500+ acre Levin Park in the foothills, and approximately 180 acres of the County's proposed Coyote River Park. Roughly 2,500 acres of Calaveras watershed lands are designed as a Regional Recreational Reserve.

Government Facilities: A 7-acre site for City offices is adjacent to the Town Center. Branch offices of other government agencies could be located in office areas of the Town C enter.

A 5-acre site for a Police Station and Corporation yard is located on the west side of North Milpitas Boulevard. There are four fire stations located throughout the Valley Floor Area. The County's Elmwood Correctional Facility on Abel Street is also indicated on the General Plan Map.

COMMERCIAL ACTIVITIES

<u>Town Center:</u> The Town Center will be the functional and visual focus of Milpitas. In the approximate center of the Planning Area, it will be accessible to residents and customers and will be distinguished by a variety of commercial and civic activities drawing upon a City-wide service area.

Because of this unique and relatively intensive mix of activities, consideration should be given to including very high density residential developments (i.e., up to 40 units per acre) within the Town Center, due to the convenience such as proximity offers to the residents and the increased economic support the residents would make to the commercial uses. The Town Center's location and magnitude dictates an architecturally distinctive complex which will become a regional landmark and immediately identify Milpitas. The total area of the Town Center is 90± acres.

General Commercial: The General Commercial District is intended to provide a wide range of retail sales and personal and business services primarily oriented to the automobile customer. It is intended to include those commercial uses in which shopping may be conducted by people walking to several stores as in a center, and may include uses customarily of a single-purpose character served from an immediately parked automobile.

<u>Retail Sub-Centers:</u> Neighborhood shopping facilities will provide a concentration of convenience daily needs to groceries and minor hard good purchases. Nine sub-centers, between two and twenty acres in size, are distributed throughout the City.

<u>Professional and Administrative Offices:</u> These areas will provide advantageous locations for medical, law, and similar services required to serve local residences, stores and industries. While office uses can be located in all of the commercial districts, the Professional Administrative Office areas are solely for these uses. In general, they are located at the periphery of a larger commercial center and serve as a buffer to adjoining residential neighborhoods.

<u>Highway Services</u>: Eight highway service areas are designated on the General Plan Map. These areas would be suitable for motels, mobile home parks, and non-retail services such as car rental offices. The areas are typically at the intersection of major streets and/or freeways.

INDUSTRIAL USES

Manufacturing: The industrial core of Milpitas is the 1,040± acre block of land between Calaveras Boulevard and the Montague Expressway. A second major manufacturing area consists of 230± acres west of the Nimitz Freeway and north of Highway 237. There is also 25± acres designated as Manufacturing at the northwest quadrant of Dixon Landing Road and the Nimitz Freeway. It is expected that development would probably not begin in the second area until after the manufacturing area east of the Nimitz have been substantially developed. Manufacturing activities include a variety of intensive and extensive uses such as printing and publishing and fabricated metal processes.

Industrial Park: These areas are typified by plants engaged in intensive activities free from noise, odors, and other potential nuisances. Such firms are characterized by handsome buildings on landscaped sites. By virtue of their "clean" operations, the industrial park sectors usually serve as buffers between the heavier manufacturing uses and adjoining residential or commercial activities. Seven Industrial Park areas are designated in the City: Two large areas west of the Nimitz north and south of Highway 237, 120± acres in the northwest section of the City, 50± acres southeast of the Nimitz/237 interchange, a 30± acre strip south of Calaveras Boulevard opposite the Town Center, and 10± acres at the northwest corner of South Main and Montague.

TABLE A DISTRIBUTION OF LAND USES FOR <u>VALLEY FLOOR AREA</u> (Amended April 1992)

Land Use Category		
Single Family: Low Density (3-5 DUs/ac)	1,850	
Single Family: Moderate Density (6-15 DUs/ac)	160	
Multi-Family: Medium Density (7-11 DUs/ac)	150	
Multi-Family: High Density (12-20+ DUs/ac)	260	
Mobile Home Parks	50	
Town Center	90	
Retail Sub-Centers	70	
Professional, Administrative Offices	10	
General Commercial	300	
Highway Services (excluding Mobile Home Parks)	230	
Manufacturing	1,190	
Industrial Park	830	
Civic Center		
Fire Stations	6	
Police Station and Corp Yard	5	
City Parks	140	
Greenways/Regional Recreational ^{2/}	200	
Freeways and Major Streets	440	
Railroads and Rapid Transit	190	
Senior High Schools (2)	50	
	50	
Junior High Schools (2)	110	
Elementary Schools (10)	80	
Correctional Facility	00	

TOTAL <u>VALLEY FLOOR AREA</u>

6,468 acres

2/ Coyote Creek and Hetch Hetchy right of way.

TABLE B DISTRIBUTION OF DWELLING UNITS (DU's) AND POPULATION 1/ FOR BUILDOUT OF <u>VALLEY FLOOR AREA</u> (Amended April 1992)

Residential Type	Average No. DU's Per Gross Acre 2/	Est. Total <u>DU's</u>	Est. Average Population Per DU 3/	Est. Total Population
S-F Low	5.0	9,200	3.6	33,120
S-F Moderate	8.5	1,360	3.4	4,620
M-F Medium	8.4	1,290	3.3	4,260
M-F High	13.9	3,700	2.8	10,360
Mobile Homes	10.4	560	1.6	900
Group Quarters 4/	N.A.	N.A.	N.A.	3,200
VALLEY FLOOR TOTALS:		16,110 DU	J's	56,460 people

^{1/} DU and population figures are rounded off to nearest tens place.

2/ Average densities based on existing and projected development patterns.

3/ Based on an overall average population/DU of 3.31 (California Dept of Finance, 1992)

4/ "Group Quarters" include institutional housing, rest homes, etc.

^{1/} Includes area of non-major streets and other public right of way; areas greater than 10 acres are rounded off to nearest tens place.

FEATURES OF THE HILLSIDE PLAN (See Table C)

INTRODUCTION

The Hillside Area comprises the approximately 6,000 acres generally east of Piedmont Road, Evans Road and that portion of North Park Victoria Drive northerly of Evans Road. The currently (as of August 31, 1992) undeveloped portion of the Hillside Area is characterized by gentle to steep slopes, grassy slopes with some chaparral and trees, wildlife, numerous geologically unstable acres, the Ed R. Levin County Regional Park, and a remoteness from the more urban portions of the City. These conditions warrant plan proposals that differ considerably from those for the Valley Floor Area.

The current undeveloped Hillside Area is to be a low-density rural residential area. Such low density is warranted by the factors enumerated above. Further, low-density development will help preserve the major natural qualities of the hillside area.

VERY LOW DENSITY

Most of the Hillside Area is shown in the Very Low Density residential category. The maximum density in this category is one dwelling unit per ten acres. This density decreases as the steepness of slopes increase until eighty acres per dwelling unit is required for land with an average slope of 50% or more. The corresponding zoning for this density category is "R1-H."

LOW DENSITY

Three relatively small areas of the Hillside (representing existing developments either approved or proposed before 1992) are shown in the Low Density residential category. The maximum density in this category is one dwelling unit per acre. This density decreases as the steepness of slopes increase until one dwelling unit per ten acres are required for land with an average slope of 27% or more.

MEDIUM DENSITY

Significant areas of the Hillside are shown in the Medium Density residential category. This category reflects a density of approximately three units per gross acre on level land and decreases as the steepness of slopes increases until one dwelling unit per ten acres are required for land with an average slope of approximately 27% or more. Areas as Medium Density include:

- Existing development along the base of the hillside area;
- The existing "Summitpointe" residential/Tularcitos" golf course;
- The existing Calaveras Ridge PUD;
- The existing Lytton-Everett Subdivision off Country Club Drive.

These sites are now zoned "R1-H" (they were previously zoned "R1-10H").

GEOLOGIC STUDY

Because of the serious geologic problems, no development of Hillside land shall be allowed until the property has been the subject of appropriate geotechnical investigations.

OPEN SPACE

It is desired that subdivisions be undertaken as planned unit developments in which individual lots will be clustered with the balance of the land held as open space subject to appropriate open space easements. Such developments will be permitted when they significantly reduce the visual impact as viewed from the valley floor. However, where planned unit developments are not undertaken, major portions of the subdivision lots should be protected with open space easements. It is intended that these provisions will help ensure the retention of large contiguous open spaces, avoid geologic hazards, protect the nature environment and otherwise avoid the problems that would be attendant to the intensive development of the entire Hillside Area.

LANDSCAPING AND BUILDING DESIGN

The quality of views of the hillside are largely dictated by the harmony of the natural and man-made features. As development takes place, it is essential that landscaping be of a type indigenous to the area, that building designs, materials and colors blend with the environment, and that grading be minimized and contoured to preserve the natural terrain quality. To help ensure that these objectives are achieved, special review procedures should be required of plans for buildings, site development and planting in the Hillside Area.

RIDGES

Retaining ridges in their natural state is very important in preserving the beauty of the hills. In order to preserve these valuable scenic amenities of the City, the plan calls for the establishment of protection areas around the ridges which will ensure that buildings and grading west of the first ridge do not visually penetrate a band of land that lies 100 feet vertically below the apparent crestline when viewed from certain specific sites on the valley floor and that no structures just east of the crestline extend above the crestline sight line.

TABLE C DISTRIBUTION OF LAND USES FOR <u>HILLSIDE AREA</u> (Adopted August 1992)

Land Use Category	Gross Area ¹ /
Ed R. Levin County Regional Park	1,530 4,430
Very Low Density	3,890
Low Density	200
Medium Density	340
TOTAL HILLSIDE AREA	5,960 acres (est. 665 ² / DUs)

- 1/ Acreage and D.U. figures are rounded off to nearest tens place.
- 2/ The population of the Hillside Area after complete build-out (beyond the year 2000) is estimated to be 2380.

CIRCULATION

The circulation system is a key contributor to the form of Milpitas as it develops. The high-speed, limited access regional freeways and expressway will carry commuting employees to the periphery of work and service centers. The major street system provides the necessary links between local streets and the regional facilities. Internally, the system of expressways and major streets allows residents to move between their homes, the Town Center, and employment areas in the minimum amount of time. The City actively supports regional planning efforts for the development of mass transit facilities in Milpitas generally along either the Union Pacific or Southern Pacific Railroad corridors, insofar as they enhance other adopted City goals and objectives.

All freeways and expressways should be landscaped to improve their appearance and have sound attenuation walls constructed to diminish the traffic noise generated. The existing Sinclair (Interstate 680) and Nimitz (Interstate 880) Freeways will remain unaltered except for possible lane additions and improvements in the existing interchanges.

Calaveras Boulevard westerly from Interstate 680 is State Highway 237 for an interim period. While it currently functions to connect intra-regional traffic between Route 101 in Sunnyvale and Interstate 880 and 680 in Milpitas, plans are underway to relocate the Highway 237 link between Interstate 880 and Interstate 680 to the north in Fremont (vicinity of Mission Blvd.). Interstate 880 would connect this new alignment of Highway 237 to the present Interstate 880/Highway 237 junction (westerly of which the highway is to be upgraded to freeway status). At that time Calaveras Boulevard would only serve as an intra-City major street connecting the east and west portions of the City and providing access to the Town Center.

Calaveras Boulevard from Interstate 680 to the intersection with Evans Road will be a 4-lane major arterial street, however, eastward through Ed Levin Park it will be a 2-lane collector street. Likewise, Old Calaveras Road will serve as a collector street eastward into Ed Levin Park. North Park Victoria, extended to the County line, will be a 4-lane major street to a point just northerly of Jacklin Road where it will transition to a 2-lane collector street. All other streets shown in the General Plan Map for the Hillside area are intended to be 2-lane collector streets.

In addition to the major streets shown on the General Plan Map which include Abel Street, Calaveras Boulevard, Capitol Avenue, Tasman Drive, Jacklin Road, Milpitas Boulevard, Park Victoria Drive, Montague Expressway, Landess Avenue, and Evans and Piedmont Roads, two additional 2-lane collector-type streets are shown due to their significance in providing connections of traffic flow within the community. These are Yosemite Avenue from Milpitas Boulevard to Piedmont Road, and Main Street and Marylinn Drive from their intersection with North Abel Street on the north and Capitol Avenue on the south. These streets although designed as 2-lane collector-type streets, are specified on the General Plan because of the significant nature of their traffic collection, and strategic location within the community.

HILLSIDE TRAILS AND PATHWAYS

It is the City's goal that there be a system of hiking and riding trails and pathways connecting the Valley Floor Area to Ed Levin Park. Two trail connections are envisioned leading up the hillside from the general vicinity of Higuera Adobe Park and from Piedmont Road in the vicinity of the Hillcrest Subdivision. It is also the City's goal that there be a train in the Hillside Area within the crestline zone of protection connecting Ed Levin County Park to Alum Rock Park. The specific alignment of these trails will be reviewed and determined when Hillside development projects having the potential to accommodate trail rights-of-way or easements are proposed. A new pathway along Old Calaveras Road in addition to the existing pathway on Calaveras Road to be developed when the road is widened and improved.

INTERIM BIKEWAYS PLAN

The Milpitas Interim Bikeways Plan is intended to bring about a comprehensive City-wide bikeways traffic system. The plan (Figure I-1) utilizes several classes of bikeways and essentially consists of three north/south and three east/west systems of bicycle routes. The goals of the Interim Bikeways Plan are:

- To provide the opportunity for safe, convenient and pleasant bicycle travel throughout Milpitas.
- To encourage the use of bicycles as a pleasant means of travel and recreation.
- To provide the facilities and services necessary to allow bicycle travel to assume a significant roll in local transportation and recreation.
- To encourage coordination and development of inter-city bike routes.

The characteristics of bikeways in the plan are of four classes:

<u>Bike Paths</u>: Physically separated from auto and pedestrian traffic. Such paths will occur in relatively few instances where construction or reconstruction of street or other projects allows their incorporation in the design.

<u>Bike Lanes:</u> On existing street right-of-ways designated by appropriate signs and street markings. Such bike lanes can occur wherever streets are of such width to allow both auto and bicycle lanes, or room for bicycle lanes is created by parking restrictions.

<u>Bike Route:</u> The right-of-way to be shared with autos with adequate signing of bicycle traffic to increase the motorists' awareness.

<u>Pedestrian Pathway:</u> At specific City locations, bicyclists are encouraged to use the pedestrian pathway and avoid use of roadways having inadequate space for bicyclists.

The following map depicts the 1988 City Bikeway system.

III. OPEN SPACE AND CONSERVATION ELEMENT (Adopted June, 1973)

INTRODUCTION

This element provides a series of guidelines to insure against the loss of necessary open space and other natural resources. Because open space objectives and the majority of conservation objectives overlap in terms of decisions concerning land use and the dynamic processes of nature, this element allows for consideration of both.

The term "open space" as used in this element is defined as:

Any parcel or area of land which is essentially unimproved or improved in a natural landscape and devoted to open space use. "Open space use" means the use of the land for public recreation, the enjoyment of scenic beauty, conservation or use of natural resources, production of food and fiber, or public safety.

GOALS

- To provide contrast to the man-made urban environment so as to assist our residents in fulfilling a need for contact with nature and a desire for community recreation.
- Preserving and enhancing natural areas which act in providing for clean air, water, and an unspoiled environment.
- Acquisition and maintenance of park lands sufficient to provide a parks and recreation system in Milpitas, designed to serve the recreation needs of all residents of the community.
- Preservation and enhancement of the natural beauty of the Milpitas area.
- Prevention of the unnecessary or premature conversion of open space lands to urban uses, and discouragement of costly urban development patterns.
- Protection and conservation of open spaces which are necessary for wildlife habitats and unique ecologic patterns.
- Preservation of land and open space which would be considered potentially hazardous for customary urban development.

PARK AND RECREATION LANDS

STANDARDS

The residents of Milpitas have the opportunity to utilize hundreds of open acres a short distance from home. Besides many local parks and school playfields within their neighborhoods, the citizens can also take advantage of the 600+ acres Ed Levin Regional Park located within the incorporated limits of

Milpitas. Currently within our City, residents can make use of eleven neighborhood parks, one community park, and one mini-park (see Figure III-1), three privately owned parks, four baseball diamonds, an adventure park, open acreage at sixteen public schools, and a regional park. The total acreage of useable recreation space located on public park land equals 647.0 acres. Private park open space constitutes ll.l acres while public school open space acreage totals 190.2 acres for a grand total open space recreation acreage figure of 842 acres, resulting in ninety-five acres of open space per 1,000 population.

The park and recreation standard for neighborhood and community size parks utilized by the City of Milpitas is 5 Ac./1000 population and the corresponding overall combined City and school recreation standard is 18.5 Ac./1000 population. Utilization of school site adjacent to neighborhood and community parks offers more efficient utilization of the tax dollar in regards to recreation benefits. Whenever possible new parks (neighborhood and community) should be located adjacent to public schools to make possible joint use of school facilities and open park lands.

A prerequisite for the establishment of a park system is the early emphasis upon acquisition of land through the Planned Unit Development and "cluster" mechanism. Where no subdivision potential is available public acquisition and other mechanisms should be considered. While regional recreation areas are sufficient for the present, future recreation areas of regional significance will be needed.

REGIONAL RECREATION

To secure the recreation potential available at the Calaveras Regional Recreation Area, the City, accompanied by Santa Clara County, should enter into agreement with the present owners of the Calaveras Reservoir and Watershed (City and County of San Fransisco) whereby ownership of the property and water level controls remains in the hands of the owner, but rights to implement and control recreation uses are secured by the local government.

The Coyote River area should be developed in cooperation with the County Park and Recreation Commission in a linear park chain which would connect with the Coyote Park Chain in San Jose as well as provide a safe machanism in which flood control measures could be undertaken. At this time it is hard to derive an acreage figure for the linear park chain within Milpitas but a total of 220 acres appears reasonable.

TRAILS

Milpitas should encourage trails along publicly owned rights of way to increase walking opportunities in a pleasant and safe natural environment, such as streamsides. The "people path" should be an integral part of any linear park chain. Two proposed park chains within Milpitas (Coyote River Park and Hetch-Hetchy Park Chain) should provide an extensive, visually stimulating system of "people paths." The General Development Plan calls for approximately 14 miles of hiking trails within the Hillside Area.

SCENIC RESOURCES

The visual image of Milpitas is one of an urban community located at the foot of the Mt. Diablo Range. The foothills, as well as the tree-lined agricultural lands west of the Nimitz, provide Milpitas with a scenic backdrop and visual reference points. Urban development west of the Nimitz should exclude from its reaches the tree-lined Coyote Creek. Urban development in the hillsides should be located in geologically safe areas and at those densities as shown on the adopted Milpitas General Development Plan. Ridgelines, rocky prominences and remaining natural stands of trees should be protected from the bulldozer by consideration of the following:

- Conservation or aesthetic zoning, providing that a landowner can continue to make reasonable use of the balance of his land under the restriction. If he cannot, the preservation of such features would require:
- Public purschase of scenic easements or full-fee interest; or
- PUD or "cluster" type development should be encouraged which would preserve these scenic natural areas as open space within the development.

Specific emphasis should be placed on planting street trees as well as on-site trees within the foothills. All public and private utilities (i.e., telephone lines, sewer and water connections) should be placed underground to reduce the visual impact of urban expansion. Construction should be restricted or completely prohibited when located on a ridgeline or any location which alters the natural silhouette of the foothills.

It should also be required that the Public Works Department receive ample funds to promote a public street beautification program in conjunction with other agencies and committees.

AGRICULTURAL, SOIL, AND MINERAL RESOURCES

AGRICULTURAL AND GRAZING LANDS

The main functions which farm lands and grazing acreage can provide to the Milpitas Planning Area are: to give visual relief from urbanized areas; to produce food products for the region; and to act as "nature's sponge," absorbing water, preventing run-off, and protecting soils.

While there are approximately 1,000 acres of agricultural and grazing land within the present City limits, there are no lands planned for permanent agricultural use. The City should develop a working relationship and idea exchange process with ranchers and farmers for promoting the economic viability of agriculture. Staged growth patterns with firm policies and guidelines, coordinated with expected growth rates should be developed to provide agriculturalists with a long-term basis for their own investment planning. Development emphasis should be placed on "filling-in" the Milpitas urban pattern rather than promoting urbanization outside the urban service area.

MINERAL EXTRACTION AREAS

When considering mineral extraction, three critical factors must be weighed: impact upon the natural environment, regional need for the minerals extracted, and impacts upon the community from the extraction operation.

Within the Milpitas Planning Area, mineral extraction practices are mainly surface mining for low-unit-value earth materials (aggregate, sub-base materials). The scenic damage that has already occurred from this type of extraction is readily apparent; it is also possible that such activities may adversly affect water resources. Another critical impact upon the community is that most mining and extractive practices must ship or haul many tons of products from their site to a processor or sales outlet. When the only means of transportation for the product is by trucks passing through urbanized areas and traversing narrow hillside roads, there are a great many impacts produced upon the community.

Efforts should be initiated to acquire jurisdictional controls over the existing mining and extractive operations within the Planning Area. If a new mining interest wishes to undertake an extractive practice, it now will be required to clean up and restore the environment upon completion of the mining use through the Conditional Use Permit procedure.

SOIL PROPERTIES

Like many other things, soils have certain characteristics which either promote a land use or severely restrict its application. Knowing the soil types and the characteristics will facilitate the determination of which areas are most suitable for development or open space uses. Approximately 40% of the soils within the Milpitas Planning Area are Class I, II or III. These three classes make up the best soils for agriculture and feature limited soil deterioration over a long period of time. Within the Planning Area the soils which are generally considered to be the best agricultural and soil resources include the Campbell Clay Loams, Clear Lake Clay, Cropley Clays, Orestimba Clays, Mocho Loams, Rincon Clays, Sunnyvale Silty Clays, and the Yolo Loams. These soils and their associations should be an important input into land use decisions.

WATER RESOURCES

RECREATION AND SCENIC VALUE

Within the Planning Area, numerous bodies of water exist which possess scenic value. The Calaveras Reservoir in particular possesses water and scenic qualities worthy of preserving for centuries. The extension of urban services into this scenic water resource area should be highly restricted and only for public convenience facilities.

Small scale scenic water resources offer open space variety to the landscape and innovative relief from the structured urban environment. There is, however, a shortage of lake and pond areas in Milpitas that are of recreational, as well as scenic, value. As they are either lined or partially lined with concrete sidings, the current scenic value of Milpitas' streams is highly limited notwithstanding many hours of toil for their visual revitalization.

The section of Berryessa Creek which runs through the Town Center area should be developed into a scenic, as well as recreational, resource for the Town Center. Fountains and pools within urban complexes not only compliment the buildings surrounding a plaza or mall, but highlight the open space itself.

WATERSHED

Water and its hydraulic forces also provide potable water, public safety, and support for the ecosystem. Within the Milpitas Planning Area, the Hillside Area extending back to the Calaveras Reservoir provides a valuable resource as a watershed, controlling water run-off and also providing a vast amount of open space. Lands within the Milpitas Hillside Area represent a small section of the Diablo Range watershed which is important for water production to the region.

The Calaveras Reservoir and its thousands of surrounding acres are a part of the Hetch-Hetchy water system from which the City of Milpitas obtains the majority of its water. East of the first range of the Los Buellis Hills, water supplies are seasonal; most springs and wells usually provide adequate water supplies during the wet months, but dry up during summer and warmer months.

VALLEY FLOOR DRAINAGE SYSTEM

The western half of the Milpitas Planning Area lies within the Coyote River Basin. The seventy-five mile long Coyote River is the primary natural drainage facility for the east side of the Santa Clara Valley. Within the Planning Area there are two major patterns of flooding based upon the 100 year storm (see Figure III-2). The first pattern is created by the Coyote River overflowing its banks and flooding an area generally north of the Hetch-Hetchy pipeline and west of Highway 17. The second pattern is caused by tributary creeks and flood control channels which, due to their limited capacity in relation to a 100 year storm, overflow and could potentially inundate a considerable portion of developed land. The majority of urbanized Milpitas is drained by flood control channels (see Figure III-3). The levees of these channels possess great potential for walking and bike trails and other recreation uses.

MULTIPLE USE

Water and water-related areas should be preserved and protected to allow continuation of their beneficial open space functions. "Multiple use" of water and water-related areas should be urged by the City when dealing with agencies which handle water management. Concerns for open space, ecological maintenance or improvement and recreation should be incorporated into utilitarian designs of water supply and flood control projects.

WILDLIFE AND VEGETATION

Within the Milpitas Planning Area, and particularly along the northwestern section abutting the Coyote River and Baylands, there <u>may</u> be natural habitats for two endangered and one rare species. The two endangered species are the California Clapper Rail and the Salt Marsh Harvest Mouse. Both of these species inhabit the salt marshes along the San Francisco Bay, and the main cause of endangerment include bay fill and drainage and industrial pollution. The rare species is a snake known as the Alameda Striped Racer. The Alameda Striped Racer is found in the valleys, foothills, and low mountains east of San Francisco Bay. This species has been reduced mainly by recent construction and development.

Aside from rare and endangered species, the various habitat conditions of the Milpitas Planning Area support the California Coastal Deer, gophers, water snakes, rattle snakes, song birds such as the mocking bird, the red-winged blackbird, upland game birds, pheasant, quail, doves, squirrels, and even bobcats and an occasional mountain lion. Fish species include bass, catfish, trout, and non-game species which may be found in the Calaveras Reservoir, Sandy Wool Lake, and periodically in Coyote River and impounded waters within the foothills.

The values which vegetation in general possess are basically five-fold and include: providing scenic beauty, serving as habitat for wildlife, preventing soil erosion, maintaining air quality, and controlling water runoff in watershed areas. The educational value of untouched vegetative communities and the ecosystems which they support can only be obtained from a relatively unimproved open area.

Tree removal, grading, and other actions which remove vegetation pose a threat to open space values and other environmental concerns. Grading regulations controlling the removal of vegetative cover from hillside areas should be strictly enforced. Remaining tree stands within the Planning Area should be preserved as a major open space and protective resource. Recreational use of essentially virgin areas should be centered around activities which would have a minimal disruptive effect upon the natural vegetation.

UTILITY AND SERVICE CORRIDORS

Two water systems (Hetch-Hetchy and South Bay Aqueduct), two major electrical transmission corridors (P.G.& E.), and a gas line (P.G.& E.) traverse the Planning Area (see Figure III-4). Contractual agreements should be initiated with the various utility right-of-way owners for recreational/open space uses when consistent with recreation and open space policies.

Scenic values can deteriorate when careful considerations relating to transmission line placement and design are not addressed in the planning process. Transmission lines should be placed so that they remain relatively inconspicuous in relation to scenic resources. Undergrounding and careful route selection should be of paramount concern when dealing with replacement, relocation, or additions to the present transmission corridors within the Milpitas Planning 'Area.

UNDEVELOPED LAND

Vacant parcels within the City are generally in close proximity to each other and act to define the "built up" neighborhoods within the City. The future only offers a continuing development of vacant lands.

Due to the economic pressures upon the City, it appears at this time that future expenditures for purchase of open vacant land within the City is highly improbable. A significant proportion of open space generated within the City will continue to come from requirements placed upon developers.

Vacant industrially zoned land is in such a supply that full development of this land will take a number of years. Vacant industrially zoned land, which is not close to a major freeway or thoroughfare, can be expected to remain in an open use at least over the short-term.

High initial costs for large scale development within the hillsides will act to naturally encourage development into the valley floor. The City should continue to stress development within the incorporated limits, which act to "fill-in" the urban fabric, rather than provide costly extensions of urban services into outlying areas.

HISTORIC RESOURCES

Located near the easterly side of Sinclair Freeway north of Evans Road lies the Marian Weller Estate. Once part of Rancho Tularcitos, one of the few original Spanish land grants within the County, the highlight of this property is an original Spanish adobe, the Jose Higuera Adobe, which has been somewhat modified architecturally. To add to the historic and scenic charm of the property is a double row of olive trees planted by the missionaries of the middle 1800's, an old patch of cactus, and related outbuildings near the adobe. This accumulation of Spanish culture and architecture make the site a worthy candidate for preservation. To reap full benefits of this site, a historic park of three to eight acres should be considered.

Another adobe within the Planning Area, the Jose Maria Alviso Adobe, along with four one-hundred year old olive trees, is located at Piedmont and Calaveras Boulevard. This historic adobe should also be turned into a historic site.

PUBLIC SAFETY

The Planning area has located within its boundaries certain sites which are subject to natural and/or man-made hazards which could endanger lives if urban development encroaches upon them. The cost to the community for financial and physical aid for rescue and rehabitation operations could potentially outweigh any benefits created by development within hazardous areas.

Zoning and other land use regulations should be used to limit, and in some instances to prohibit, development in hazardous areas. The degree of development limitation provided for in such regulations should be commensurate with the degree of hazard involved and the public costs likely to ensue if emergency or remedial public action becomes necessary.

PRESERVING OPEN SPACE

DEGREES OF CONTROL

When a public body desires to obtain open space it must also consider exactly how much control is desired. The following list and explanations are designed to show the options available in regard to the degree of control available for open space preservation:

DEGREE OF CONTROL

GREATEST

- 1. Fee title
- 2. Easements
- 3. Leases

LEAST

4. Options to purchase

Fee Title: Outright purchase is the surest way of preserving open space in perpetuity. However, there are certain disadvantageous such as "immediate financial costs, future maintenance expenditures, and the loss of tax revenues from private ownership." When purchase by full fee is possible, it should be made for valuable open space areas in danger of development, areas intended for full public use, and lands whose values would be lost by any private use. 4

Easements: Since it is not possible nor really desirable for all open space to be publicly owned, large areas of land should remain in private ownership in such forms as private estates, farms, country clubs, etc. The use of easements could be a very effective tool in preserving such types of open space. An easement can be considered to be a privilege, right, or group of rights which one person or body has with regard to land owned by another person. The two types of easements concerned here are scenic easements and access easements. Access easements are centered around the right of one person to enter upon another person's land for certain specific uses. Scenic easements refer to the right of another person to restrict the ways in which a landowner may use or otherwise alter the appearance of his land.

The flexibility inherent within scenic easements offers a wide variety of potential objectives such as protection of scenic areas, preservation of wildlife habitat, conservation of farmland, protection of watershed lands, control of the timing and location of future urban development, prevention of development in hazardous areas, flood plains, and reservation of lands for future public use.

Leases: Leases are simply the public rental of land for either long or short periods of time. Lease arrangements find special application on lands in which the owner will not sell, but will allow to be leased for a specific period of time. Public agencies also find the use of leases to be financially acceptable, since land can be used by the public even though the full purchase price cannot be afforded.

Options to Purchase: Options to purchase are described as acquiring the right to have the first chance to buy a piece of land. If a parcel of open space land is currently for sale, the option would provide for purchase within a specified period of time at a designated price. Options can be used to "reserve" land for a specified period of time, during which fund raising efforts can be undertaken to obtain enough money to complete the purchase.

OPEN SPACE ACQUISITION MECHANISMS

The following list of acquisition mechanisms offers some of the alternatives which Milpitas can use to control open space either by full or partial control.

Voluntary Sale: A voluntary agreement between a landowner who wishes to sell his land and a public body who wishes to buy it is but one means of open space retention.

Eminent Domain Purchase: The use of eminent domain, the compulsory acquisition of private property for public use, has been used extensively by governments at all levels. The formal legal procedures by which eminent domain is exercised is known as "condemnation." Owners who have their lands condemned must, according to United States and State constitutions, receive just compensation.

<u>Dedication</u>: Dedication is the transfer of title or partical interests in land from a private landowner to a public body without direct monetary compensation to the owner.⁷ Prime examples of items dedicated include streets constructed as a part of a subdivision, public parks, and trails.

<u>Donations</u>: Gifts (donations) of open lands are not at all rare since many landowners have a deep affection for their open lands and strive to keep them undeveloped through donation to a public agency. Landowners are now learning of the tax advantages that can be realized when land is donated. Gifts of land with a reserved life estate provide tax advantages while the owner and his family may live on and use the land.

Tax Foreclosure: Lands which have become tax delinquent can be acquired by local agencies and added to park supplies or left in a natural state to supply wild life habitat. Lands foreclosed can be purchased by the public and resold to establish an open space fund which can be used to buy other sources of open space.

<u>Transfers</u>: Federal and State projects of all types often acquire land which is excess or never to be built upon. These particular parcels can sometimes be transferred to local governments with no cost or next to none, especially if they are planned for open space or landscape uses.

<u>Implied Dedication</u>: This legal principle means simply that if the public uses a trail or path on private property for a number of years, and the landowner does not restrict this movement, the courts have ruled on occasion that he is, in effect, granting an access easement to the public.

FEE TITLE PURCHASE VARATIONS

With total control of a piece of property come the expensive costs. There are, however, several variations of fee title acquisition which either reduce the costs incurred or extend limited funds for maximum purchasing power and effect.

<u>Purchase/Leaseback or Saleback</u>: The public purchases, in fee, a piece of open space land and then leases or sells the property with certain restrictions which guarantee that the open qualities of land will be preserved.

Staged Purchase/Acquisition: An agreement which divides the land into several smaller parcels and gives the public body an option to purchase the entire tract one parcel at a time.

Lease/Purchase: The public body to enters into a long-term contract to lease land (or, more often, facilities such as recreation complexes). Within the lease agreement are specific provisions which give the public options to purchase the land (or facility) at various prices during the course of the lease.

Advanced/Inhibiting Acquisition: The advance public purchase of strategically located parcels which tend to make large-scale development in the area extremely difficult. This might, for example, be accomplished by purchasing or establishing controls on scatterd parcels throughout an area in a pattern which would inhibit developers from assembling large, continuous parcels for development.

Excess Condemnation: Excess condemnation is the taking of more land than is required for a public project. The use of excess condemnation for open space purposes in conjunction with other public projects may include small parks along a highway, a neighborhood park adjacent to a public school, creation of barriers or buffer zones between airports and nearby residential areas, or inhibiting unwanted private urban development adjacent to open public recreation areas, highways, or reservoirs.

OPEN SPACE PURCHASE FUNDS

The General Fund: Purchasing open space lands with General Fund resources is attractive mainly because cost savings are realized due to the avoidance of interest and other debt service costs. However, it is difficult to set long range open space acquisition programs because the yearly money appropriated may vary greatly due to fluctuations in local government revenues and/or the decisions of local government officials. Also, it is often not possible to appropriate enough money in one year to completely cover the cost of the more important and/or expensive open space acquisitions without creating a severe strain.

General Obligation Bonds: This source of open space funding is one of the most common used by cities and counties. Using general obligation Bonds offers immediate funds for open space acquisition while repayment is spread over a period of years.

Revenue Bonds: Bonds are backed by the revenue to be derived from the project for which they are issued. Two attractive points for revenue bonds are that they do not require voter approval nor are they governed by debt ceilings.

<u>User Fee</u>: A cost paid by the user of an open space area or facility.

Payments In-Lieu of Dedication: Local governments can require as a condition for approval of a subdivision that open land be dedicated to the public, or a fee be paid in-lieu of such dedicated open space, which is to be used for open space purposes.

<u>Special Assessments</u>: Taxes levied upon a particular group of blocks, neighborhood, or geographic area that realize a public benefit, such as the availability of open space lands.

Local Taxing Techniques: Many local governments use special taxing techniques which are imposed upon certain activities that directly or indirectly relate to the consumption of open space, such as a special tax upon new residential developments. Others are unrelated to open space and are simply used for their revenue producing potential, as when revenues from traditional tax sources are earmarked for open space programs.

Federal and State Funds: Local governments have received considerable help in acquiring open space through various Federal and State programs. Today grant programs exist which not only help secure park and recreation land but also land which provides natural habitats, aesthetic values, and other open space/conservation benefits.

THE URBAN PATTERN

The shape which a city ultimately takes is greatly influenced by the decisions made in regards to open space and development policies. Urban growth patterns are usually effectuated by the General Plan and the use of the police power which creates certain zoning regulations. In order to help determine generally when and where development should logically and efficiently occur, the City should formulate an Urban Service Area or development boundary. This boundary is designed to encompass existing urban areas as well as a supply of developable vacant land sufficient to accommodate approximately five years of anticipated normal growth.

REFERENCES

- Santa Clara County Planning Department, <u>Santa Clara County's Open Space</u> -- <u>How It Can Be Conserved</u>, Spring 1971.
- Planning Policy Committee, Santa Clara County, An Urban Development Open Space Plan for Santa Clara County, September 1972.
- Western Center for Community Education and Development, University of California Extension, Open Space in California: Issues and Options, University of California Press, Los Angeles, April 1967.
- 4 Ibid
- 5 Ibid
- 6 Santa Clara County Planning Department, <u>Catalog of Open Space Preservation</u> Tools, "Part I: Public Acquisition", 1973.
- 7 Ibid

V. SEISMIC AND SAFETY ELEMENT (Adopted February 1975)

INTRODUCTION

The Seismic and Safety Element has grown out of an increasing awareness of the risk to life and property from seismic and other geologic and non-geologic hazards. The state mandated seismic safety element and safety element have been combined as major sections in the Seismic and Safety Element of the Milpitas General Development Plan due to the overlay of concerns between the two elements.

GOAL

The goal of this Seismic and Safety Element is to consider geologic and other life safety hazards in the adoption or amendment to any portion of the General Development Plan. This specific consideration will ultimately lead to the adoption of policies and ordinances which will reduce the risk of the loss of life and property, and social and econmic dislocation resulting from natural or man-made disasters.

THE EARTHQUAKE PROBLEM

Natural occurrences, such as earthquakes, forcibly remind us that we live on an active and changing planet. A firm understanding of geologic processes must precede regulations to minimize earthquake hazards. The state-of-the art does not now and may never permit the formulation of codes that will eliminate all possible risks related to earthquakes. The fact that earthquakes will occur in California must be realized by all persons who choose to live here.

In the Bay Area the San Andreas and portions of the Calaveras and Hayward faults are considered to be active (i.e., having shown seismic activity in the last 11,000 years). On many segments of the Calaveras and Hayward faults (as well as their branch faults) intervening geologic activity has obscured the precise dating of the fault. In nearly every case these are considered to be potentially active and dated at less than 3 million years since the last movement along the trace. This is also true where inferred extensions of the fault traces can be expressed.

Although surface ground rupture resulting from earthquakes of larger magnitudes can cause severe structural damage, the area affected by such rupture is only a small fraction of the total area affected by ground shaking. In most cases, it is actually the ground shaking rather than ground rupture along a fault trace that causes most damage in an earthquake.²

Secondary seismic effects can be defined as follows:

- Liquefaction can occur in certain types of saturated sands and silts. Shaking during an earthquake can cause these soils to lose all their cohesive strength, to become "quick" and unable to bear the weight of overlying soils and structures.

- Lurch cracking is the development, usually temporary, of all types and sizes of cracks and fissures in the ground during an earthquake.
- Lateral spreading is the movement of loose soils over low angle slopes (less than 5%) into open areas during an earthquake.
- Local subsidence can occur during an earthquake when ground shaking drives water out of saturated soils, causing them to become dense and more compact. This can result in differential settlement of structures.
- Landslides and falls of loose rocks and soils can result from ground shaking during an earthquake.
- Structural damage due to ground vibration is caused by the transmission of earthquake vibrations from the ground into structures. The variables which determine the extent of damage are:
 - * The characteristics of the underlying soils and/or rocks.
 - * The design and configuration of the structure.
 - * The quality of materials and workmanship used in construction.
 - * The location of the epicenter and magnitude of the earthquake.
 - * The duration and intensity of ground shaking.

The potential for structural damage due to ground vibration is greatest in the areas of saturated soils and least in the hard bedrock areas of the hills.

- A seiche is an oscillating wave in an enclosed or restricted body of water, generated by ground motion during an earthquake. It can cause overflow of a lake, reservoir, lagoon, etc., and inundation of the surrounding area.
- A tsunami is a high ocean wave generated by a submarine earthquake. Such an event in the Pacific Ocean could create a temporary rise of the waters in San Francisco Bay.³

OTHER GEOLOGIC HAZARDS

In addition to seismic induced hazards other geologic hazards must be considered as they relate to urban development. These other geologic hazards include landslides and slope stability, expansive soils, and erosion.

LANDSLIDES AND SLOPE STABILITY

Landslides occur when the pull of gravity on earth materials overcomes their frictional resistance to downslope movement. Slope stability is affected by:

- Type of earth materials -- unconsolidated, soft sediments or surficial deposits will move downslope easier than consolidated, hard bedrock.
- Structural properties of earth materials -- the orientation of the layering of some rocks and sediments relative to slope directions, as well as the extent and type of fracturing and crushing of the materials, will affect landslide potential.
- Steepness of slopes -- landslides occur more readily on steeper slopes.
- Water -- landsliding is generally more frequent in areas of seasonally high rainfall, because the addition of water to earth materials commonly decreases their resistance to sliding.
- Ground shaking -- strong shaking during earthquakes can jar and loosen bedrock and surficial materials, thus making them less stable.
- Type of vegetation -- trees with deep penetration roots tend to hold bedrock and surficial deposits together, thereby increasing ground stability.
- Proximity to areas undergoing active erosion -- rapid undercutting and downcutting along stream courses and shorelines makes slopes in these areas particularly susceptible to landsliding.

All the natural factors that promote landsliding are present in the Bay Region. In addition, man has at times decreased the potential for slope failures by leveling slopes, building retaining walls at the base of slopes, planting trees or seeding forests, as well as practicing soil conservation. However, other of his activities have increased the potential for slope failures, including: increasing slope angles for road or building construction; adding water to marginally stable slopes by watering lawns, improperly handling rain-water runoff, and choosing poor sites for septic tank drainfields; adding to the weight of marginally stable slopes by building structures as well as by adding fill for foundations; and removing natural vegetation.

Most landsliding takes place in areas where landsliding has occurred before, and old landslide deposits are commonly reactivated by either natural or artifical means. The materials that form landslide deposits may be so broken up and disturbed that landsliding may easily recur, especially if slope angles or moisture contents are changed. Landslide deposits are characterized by:

- Small isolated ponds, lakes, and other closed depressions.
- Abundant natural springs.
- Hummocky irregular surfaces.
- Smaller landslide deposits that are commonly younger and form within older and larger landslide deposits.
- Steep, accute scarps at the upper edge of the deposit.
- Irregular soil and vegetation patterns.
- Disturbed vegetation.

- Abundant flat areas that might appear suitable as construction sites.

In general, fewer of these characteristics will be noted in the smaller deposits. Detailed ground studies are required for predicting the future behavior of landslide deposits under changing conditions. Figure V-1 illustrates typical landslide features.

EXPANSIVE SOILS

Expansive (shrink-swell) soils occur locally throughout California wherever relatively large percentages of clay minerals are present in the soil. Losses due to expansive soil can be eliminated completely if the condition is recognized before construction and foundations are properly engineered. Costs for corrective action before construction are small, but remedial action after construction may amount to 10% or more at the value of the structure.

EROSION

Erosion is a normal and inevitable geologic process. However, under certain conditions, the rate of erosion can be greatly accelerated, creating esthetic and engineering problems. Losses due to erosion are sometimes difficult to separate from those due to flooding and landsliding. Within urban areas the major costs of erosion activity are in removing sediment from public and private drainage systems. Problems of erosion may occur where there has been a disturbance in the natural vegetation and especially where the natural slope has been oversteepened by man or nature.

LOCAL SEISMIC AND GEOLOGIC HAZARDS

Milpitas can be divided into two distinct topographic areas, valley floor (flat land) and hillside. The valley floor constitutes approximately the western 60% of the City's "Sphere of Influence," and the hillside the eastern 40%.8

VALLEY FLOOR GEOLOGY

The valley floor has been the site of at least two periods of alluvial fan development. Figure V-2 shows the character and distribution of several types of geologically young formations in the Milpitas valley floor. Elevations range from six feet in the northwest to near 200 feet in the southeast.

Beginning at the base of the foothills the deposits range from older fans (Qof) of course sand and gravel deposited by the Calera, Tularcitos, Los Coches and Berryessa Creeks. The central band of young interfluvial basin deposits (Qb) of mainly organically-rich clay and silty clay surrounds a limited deposit of older San Francisco Bay mud. (Qobm).

The western most geologic materials are fluvial deposits (Qyfo) of the Coyote Creek along the outer edges of the alluvial fan deposits (Qyf) of the Penitencia Creek. 9

Nomenclature of parts of a landslide (from Eckel, 1958).

Earthflow: soil and other colluvial materials that move downslope in a manner similar to a viscous fluid.

Slump: coherent or intact masses that move downslope by rotational slip on surfaces that underlie as well as penetrate the landslide deposit.

Debris slide: incoherent or broken masses of rock and other debris that move downslope by sliding on a surface that underlies the deposit.

<u>Rockfall</u>: rock masses that move primarily by falling .through the air.

Figure V-1

HILLSIDE GEOLOGY

The hillside area consists of a series of parallel hills and valleys oriented generally northwest/southeast. Elevations range from 40 feet on Evans Road on the west to 2,337 feet in Los Buellis Hills, in the northeast corner.

The hillside topography is basically determined by the Turarcitos Syncline, the dominate geologic structure in the area, which was formed by intense folding. The generally folded and sheared character of the hillside area was created primarily by the uplift of the Diablo Range, and secondarily by seismic activity along the Hayward Fault Zone and Calaveras Fault Zone. Spring Valley, in the central portion of the area, lies on the axis of the Tularcitos Syncline, and the hills to the east and west are the limbs of the syncline. Figure V-3 shows an idealized cross-section of the City from west to east. 10

SEISMIC AND SEISMIC INDUCED HAZARDS

The hillside area has been studied intensely to determine sufficient information on the geology for planning purposes. The report by Burkland and Associates entitled "Geologic and Seismic Hazards Investigation - Hillside Area, Milpitas" describes in detail the information found. Many of the findings will be capsulized for use here, more detailed questions should be referred to the full report.

Faults and Fault Zones: A number of the faults pass through the general Milpitas area: the Calaveras Fault is located about 4-1/2 miles east of the City Hall, and the Hayward Fault about 1-1/2 miles east near the base of the foothills (see Figure V-4). Two major traces of the Hayward Fault traverse the lower foothills in a northwesterly to southeasterly direction. In addition, the Crosley Fault is noted as following the extreme westerly base of the foothills. A postulated trace of the Hayward Fault extends into the alluvial deposits and southerly through the eastern valley floor. This trace extends almost exclusively through developed residential areas of Milpitas.

Lurch Cracking and Lateral Spreading: Two factors appear to be necessary for the potential of lurch cracking and lateral spreading to occur: the soil must have a substantial shrink-swell potential and a "free face" must be available. In the Milpitas area the only available free faces are the flood control channels and other streams.

<u>Liquefaction</u>: The areas with the largest potential for liqufaction occur in saturated sandy soils which have been deposited by a major stream. Within the Milpitas area the Coyote River and Berryessa, Calera and Los Coches Creeks have contributed most substantially to the soils. The Qyfo deposit by the Coyote River and Calera Creek (Figure V-2) consists of various size soil particles of fine sand, silt, and silty clay. This area also has a high probability of ground water content due to its proximity to the bay and the general condition of the water table. This area should be considered as having a higher risk of liquefaction during earthquake shaking than adjoining areas.

SYMBOLS

Figure V-3

Vibration Damage: The most common expression of earthquakes is ground shaking, a result of surface wave movement through the outer earth's crust. Its direction and velocity are directly related to the geological configuration of the earth's crustal material. Therefore proximity to the fault and/or area of initial subsurface rupture does not necessarily determine the intensity and duration of ground shaking. The type, configuration, depth, and density of the underlying soil and rock upon which a building is constructed will determine the maximum vibrational forces. The greatest amount of structural damage should be expected in those areas where geologic conditions prolong and accelerate the amplitude of seismic waves.

Buildings should be constructed to undergo severe shaking with minimal structural damage from vibrational forces and without collapsing. Buildings should also have systems (lighting, stairwells, communication, etc.) designed to remain functional under seismic conditions. The end result might be some structural damage, but no loss of life. 14

Because of the complexity of the problem it is not possible to determine those precise locations in which vibration damage will occur. The structural designer must consider the effects of potential ground motion upon his building in order to minimize the effects. More emphasis should be stressed for buildings of public assembly, high-rises, and structures such as fire and police facilities which will be critically necessary following a severe shake.

Fortunately the existing construction within Milpitas is of recent vintage. The oldest structures range only to 20-25 years. Almost exclusively the residential construction is of wood frame design which has shown excellent resistance to vibration damage during earthquakes. Industrial buildings are all less than 20 years old with the majority less than 10.

NON-SEISMIC GEOLOGIC HAZARDS *

Expansive Soils: Much of the soil in the City has a potential for extensive shrink-swell Special care should be taken where construction is proposed in the areas noted for high shrink-swell.

Slope Stability - Landslides: Slope movement is present in all formations in the hillside area. Most of it is soil creep and slumps, but about 30% of the study area is actually involved in landslides. Figure V-5 indicates the landslide susceptibility of the Milpitas hillside area. About 90% of the slides are on west-facing slopes in two general areas. These areas are the Santa Clara (Qsc) and Cretaceous Undifferentiated (Ku) Formations in and adjacent to the Hayward Fault Zone, and where the Orinda Formation underlines the Briones Formation east of Spring Valley. The majority of these slides are ancient (over 200 years old), massive and complex. Their slide planes are estimated to be at depths in excess of 40 feet. Many of these slides contain more recent secondary slides. The remaining 10% of the landslides appear to be shallow, that is their slide planes are estimated to be about 15 feet deep. These slides are present in steep slopes of the Orinda (Tor) and Briones (Tb) Formations in Los Buellis Hills and along Scott and Berryessa Creeks, and Arroyo de los Choches. These findings are illustrated in Figure V-6 showing the geology of the hillside area.

Figure V-5 LANDSLIDE SUSCEPTIBILITY
MILPITAS, CALIFORNIA

Most of the ancient landslides appear to be stable under existing conditions. There are no known reports of movement, or damage to farm structures or orchards in the last 100 years. Generally, trees help to stablize landslides by dewatering them through transpiration and by the retaining strength of their roots. Removal of trees from a stablized landslide causes retention of water and raising of the groundwater table and accelerated erosion, both of which can result in reactivating the slide. Development in a landslide areas can result in reactivating it.

The depth to the slide plane has important implications for development. Grading, excavation, and other means of improving stability may be utilized to stabilize slides with shallow slide planes, but not those with deep slide planes. Detailed stability analyses should be conducted at all development sites where there are landslides, formational contracts, or geologic shear zones. Wherever existing slopes are to be modified, grading plans should be reviewed and cut-and-fill slopes inspected for stability during and after grading.

The following measures are available to minimize slope stability problems:

- Keep grading and excavation to a minimum; leave vegetation undisturbed wherever possible.
- Avoid oversteepening slopes, design cut-and-fill slopes 2:1 or flatter depending on local conditions.
- Utilize special grading designs such as buttressed fill in landslideprone areas.
- Key compacted fill into underlying materials.
- Install drainage systems to divert surface runoff, groundwater, and springs away from slopes.
- Plant bare slopes with appropriate vegetation.
- Check accelerated erosion which can contribute to oversteepening of slopes. 15

THE USE OF RISK IN DECISION MAKING

Natural hazards such as earthquakes, floods, and fires have produced significant amounts of damage and casualties in the past and they will probably continue to do so in the future. This creates a risk. Risk is defined as the chance of damage or injury occurring over some period of time. By identifying the risks associated with any proposed or existing project, program, or structure and comparing them with the risks of the alternatives planning decisions can be made. If risk reduction measures are adopted, there will be a reduced amount of damage and casualties over a given period of time.

In preparing for a decision, the degree of risk acceptable for the intended use of a structure must be considered because the "no-risk" condition is unattainable. With maximum citizen input "acceptable risk" should be determined.

Acceptable Risk: The level of risk below which no specific action by local

government is deemed to be necessary.

Unacceptable Risk: Level of risk above which specific action by government is

deemed to be necessary to protect life and property.

Avoidable Risk: Risk not necessary to take because individual or public goals

can be achieved at the same or less total "cost" by other means without taking the risk. 16

Differing degrees of acceptable risk should be assigned to various types of structures. Critical-use public facilities - such as hospitals, fire stations, police stations, emergency operating centers, water supply and storage facilities, and major power and communication complexes - are essential to post-disaster operations and must be designed and constructed to remain functional after a severe hazard. Therefore, an acceptable level of risk for these important facilities must be low. Provisions must be established to provide for this basic requirement through adequate earthquake-resistant designs based upon a detailed investigation for each site.

CONSIDERATIONS IN RISK ANALYSES

The following considerations of risk are particularly important:

- Minimizing risk often results in higher cost.
- The concept of acceptable risk may seem strange but is actually part of the everyday life. All activities have some risk associated with them. Thus risk can only be understood when compared to other risks that are identifiable to the public, such as automobile accidents.
- There is a difference between the risks taken willingly by the public and those taken unwillingly. Unwilling risks should be lower than those taken willingly.
- There is a difference between those risks taken unknowingly by the public and those taken with full awareness. It is believed that everyone is entitled to full awareness of the risks they face.
- As much as possible the risks should be so balanced that those people receiving the benefit are also those undertaking the risk. This implies that no one should be subjected to an increased risk without receiving a corresponding increase in benefit. 18

RISK ANALYSIS PLANNING FOR THE HILLSIDE AREA

The hillside area can be divided into eight areas on the basis of the nature of earth materials, and the presence and severity of geologic and seismic hazards in those areas. When considered in relation to development, these hazards can be defined as geotechnical problems. The GEOTECHNICAL EVALUATION Map (Figure V-7) delineates the distribution of the eight hazard areas. The RATING OF GEOTECHNICAL PROBLEMS Table rates the severity of the most significant problems in each of the mapped areas. With the exception of active faults, engineering techniques are available to mitigate all of these problems and reduce them to acceptable levels of risk for general development.

ACCOMMENDED EPYCOTIGATIONS FOR BASIC TYP 5 OF LAVELOWWAY

1000 17000	to a threatery	8368 9518	CHARCOCKES,	C WIN	French Aud
	86 - 8 67 - 6 86 - 6 95 - 8 55 - 8	86 0 87 1 88 1 80 1 80 1 80 1 81 1 81 1	86 - 8 89 - 8 80 - 9 8C - 9 8L - 8	2 - 0 6F - 0 24 - 4 50 - 0 6L - 8	NC - 0 NO - 0 NC - 0 NC - 0
	60 - 0 50 - 0 50 - 0 60 - 0 61 - 6	6G - 8 6F - 5 58 - 6 6C - 5 6L - 6	86 - 6 6F - 8 68 - 8 8C - 8 6L - 3	KG 8 6F · 9 5d 8 CC 6 5_ 4	200 - 5 507 - 5 500 - 5 50C - 5 6L - 5
	6.0 a 9.0 a 9.0 a 9.0 a 9.0 a 9.0 b	50 - 0 50 - 0 60 - 0 4P - 0 61 - 0	8G - 8 8B - 0 8G - 0 8B - 0 8L - 0	32 8 32 8 32 8 32 8 32 8	# : 1 # : 1
	69 0 69 0 60 h 6C - 8 6L - 8	50 0 57 0 50 0 50 0 50 0 51 0	D0 0 D0 0 D0 0 D0 0 D0 0 D1 0	17 0 14 0 14 0 15 0 17 0 18 0 18 0	86 · 8 87 · 8 88 · 6 85 · 6
	80 - 0 87 - 3 81 - 8 85 - 0	86 - 8 87 - 8 85 - 8 8C - 8 88 - 9	96 - 0 64 - 8 61 - 8 8C - 5 68 - 0	60 ^ 0 9F 0 5L 0 6C 3 50 9	85 · 0 67 · 0 86 · 0 86 · 0 68 · 0
	86 - 9 87 - 8 61 - 0 62 - 0 81 0	8G - 8 8F - 0 8L - b 8C - D 88 - 0	86 - 0 67 - 9 61 - 2 8C - 0 68 - 0	50 0 50 - 6 81 - 9 20 0 18 - 9	86 - 8 87 - 3 84 - 8 80 - 9 60 - 9
	60 0 67 - 6 8n - U 5L - 0 8C - 8	86 J 87 D 84 3 8L 0 8C - 8	86 · 0 88 · 0 68 · 0 6L · 0 8C · 8	#5 B #F - 0 #A - 0 #L - 8 EC B	6C - 0 6F - 0 50 - 0 8L - 0 6C - 5
	LC D SL 0 NC - B Se D	EC 5 8F · 0 8L · D 6C · 9 38 · 0	EG 0 8F 0 8L 0 8C p 60 - 9	4G - 0 5F 0 3L 0 CC 0	56 - 0 62 - 3 81 - 8 8C - 2 8A - 0

RECOMMENDED STATEFICATIONS FOR VARIOUS SHOTECUMECAL PROPERTY

2100 LB1	SCUTTED (B)	BETAILED (9)			
	Greeton Control (BE)				
erecion miltotion	draimage control landscaping	lo addition to itake under postion: oracion rates of racks or andio silention control			
	gog tax	oring 6 rologic [80]			
foulto landelides a lope stability grading macronion drainage groundweter	recommunication of elin rector literators and maps program questralited poologie dealuges control eroise grading plane lampute during grading propare "an built" geologie map	in addition to liana ander revilantable) betterprist interpretation propers detailed (sleefs map determine authorized viporture authorized and additional statement and the s			
	Seinale Sarard (201)				
famile Berthquake effects	paneralised revivation of potestial privary and secondary sarth, with offects	forcaton rechapsate records tasted in site atoms most to date extention season eredition and death satisfies assistant product for facts pompty-likel lementywishes for facts leaking and shear were experision dynamic and interactions tasted segment out frequency tasted organization and principles of sails and reces.			
	6011	and Forest again (8F)			
pells and foundations	which policepts for vertice depths test fee applicable regiment lee charact sichlia detection ground at a living detection ground at a living detection ground at a living desirant.	in addition to form under restina specialized sempting specialized sempting sade manipule of sairs Cornolidation beloated to still cornolidation beloated trapense formation permanality dynamic fragment for the same sempting for the same sempti			
		81opq [94]			
elopo etability	<pre>poweralized analyzio of stablity based on gooled seal, and group stee Cate</pre>	is addition to items under reation, determine substrass at partners gaslogic aniquis of make structure and proposed elegan shalps of est acts for proposed alopes analyse potential outsits offests as			

NG IN-INTLAING GEOLOGIC SALESATO AARABO

SL: SLOPE STABILITY

^{*} CHITLAN STOUCTURES AND SCRIBED AS THOSE WHICH ORDITARIET S F SIGN OCCUPANICY - n - 7 minates in Drivation Orbital as Chemic, AT SUCH AS, POLICE AND FIRS - r - s, 64,000.0, 005FTRAG STADIUMS RMC

At present, the only method available for dealing with active faults is to avoid them by observing setback distances for structures in fault areas. Setback distances are generally between 50 and 200 feet depending upon local conditions and the type of structure under consideration.

Approximately half of the study area could be developed utilizing conventional engineering methods following routine geotechnical investigations.

The RECOMMENDED INVESTIGATIONS FOR VARIOUS GEOTECHNICAL PROBLEMS Table gives examples of routine and detailed investigation procedures suggested for specific geotechnical problems as they might occur at individual development sites. The type and extent of investigation required depends upon the need to determine the precise nature and severity of geologic and seismic hazards. Conditions can vary considerably from one location to another within an apparently homogeneous area.

The type and extent of investigation required further depends upon the kind of development planned for a particular site. The RECOMMENDED INVESTIGATIONS FOR BASIC TYPES OF DEVELOPMENT Table indicates the type and extent of investigation suggested for the five basic types of development considered to be reasonably representative of all potential development. These are: high-rise (over four stories), conventional residential, light industrial or commercial, heavy industrial, and critical structures. Critical structures are those which ordinarily have high occupancy, such as schools and stadiums, and those which must remain in operation during any emergency, such as hospitals and police facilities.

The SLOPE STABILITY RELATED TO DEVELOPMENT Table indicates the stability hazards which can be created by development activities. Some of the remedial measures which can minimize these hazards are described.

The tables are necessarily generalized and abbreviated. They are intended to suggest guidelines and should not be interpreted as limiting only those procedures listed to only those problems or types of development listed. Recommendations for specific types of geotechnical investigations can only be made on the basis of professional judgment at individual development sites. 19

RISK ANALYSIS PLANNING FOR THE VALLEY FLOOR AREA

The geotechnical analysis of the valley floor area has been accomplished through the use of generally available data and the identification of typical geologic hazards. The hazards in the valley floor area are more limited than those of the hillsides and primarily related to seismic occurrences.

The valley floor area can be divided into four areas on the basis of the nature of the earth materials and the presence and severity of geologic and seismic hazards. Figure V-8 delineates the distribution of the four hazard areas throughout the valley. The RATING OF GEOTECHNICAL PROBLEMS Table rates the severity of the most significant problems in each of the mapped areas. Generally the critical geotechnical problems of zones B, C and D are: the postulated location of the Hayward Fault in D, ground failure such as lurch cracking and lateral spreading in C, and liquefaction potential in B. Zone A is reasonably free of geologic and seismic hazards.

SAFETY CONCERNS AND CONTINGENCY PLANNING

In addition to geologic hazards, the City faces potential risk from other natural causes: flodding, fire (both structural and grass or brush), and maintaining the water system in case of emergencies.

FLOODING

The problem of flooding has grown to be of such a concern that the Federal Government has begun adopting guidelines for the safety of flood prone areas. These guidelines prepared by the Flood Insurance Administration (FIA) will require affirmative action by local communities in dealing with floor hazard. In general the guidelines are as follows:

- Development, especially homes, located within areas of potential flooding (100 year storm is used as the basis) will be required to obtain flood insurance before sale or transfer of title where federally insured loans are involved.
- New development proposed within the flood way must be flood proof. This will require that new development within flood plains must have the habitable floor above the potential flood level. Individual dikes or berms are not considered "flood proof," thus requiring:
 - * Filling of the site to an elevation above the flood plain or,
 - * Construction of a flood way (channel) to insure flood waters will pass by the site.
 - * Waterproof portions of a structure and anchoring the structure.

Federally insured loans will not be available unless these criteria are $met.^{20}$

Figure V-9 illustrates the extent of the historic flooding and potential 100 year flooding in the Milpitas area, and Figure V-10 indicates the undeveloped portions of Milpitas which will require flood protection prior to development. The only satisfactory long term solution is the construction of adequate flood control channels. This will require improvement of the Coyote River and Penitencia, Berryessa, Scott, Calera, and Los Coches Creeks to withstand 100 year frequency run-offs. In some cases, interim solutions of adequate filling may suffice.

FIRES

The ability to provide adequate fire protection is a combination of sufficient manpower and equipment and the prevention systems. Gage-Babcock and Associates has prepared an in-depth review of the Milptias fire system entitled, "Report on Fire Defense Evaluation (1974)" Reference should be made to the full report for details of the evaluation and recommendations.

The report also proposed the following Fire Policy Plan:

- The City Council should adopt a policy which will provide for the safeguarding of life and property from the normal fire hazards found within the City. The policy should be based upon a systems approach and establish protection by providing a balance between Fire Department strength, outside aid, and private protection.

- Hazards which would exceed the capabilities of the Department should be required to provide built-in protection to reduce the hazard to a level which is within the Department's capabilities.

Emergencies such as large fires or multiple fires should be provided for by using outside aid and call-back to compliment the City's normal forces.

An I.S.O. Class goal should be established and a definite program developed to achieve the maintain that goal. (A Class 4 or 5 grading is desirable and is average for similar cities).

MAINTAINING WATER SERVICE

The management of a water utility is a complex operation encompassing a multitude of programs, all directed toward guaranteeing a continuous, uninterrupted supply of high-quality water. In a general sense, the most important components in a water service system confronted with a major catastrophe are adequate numbers of qualified personnel, adequate amounts of stored supplies and materials for repairs, available power, and appropriate communications capability. The importance of independent sources of emergency power cannot be overstated.

The City of Milpitas has had a comprehensive review of qits water system completed by James H. Montgomery Engineers. This report urged the preparation of an "Emergency Water Plan" for implementation in the event of a disaster. Such a plan should consider three basic aspects of water storage:

- Operational Storage: The amount of water needed to smooth out the flutuations of demand on the sources of water supply. The estimated operational storage requirements will increase from 3.6 million gallons in 1972 to 12.6 million gallons in 2020.
- Fire-Flow Storage: The amount of water stored for firefighting purposes. Fire-flow storage requirements are expected to increase from 3.2 million gallons in 1972 to 4.7 million gallons in 2020. Since it is not uncommon for a major power failure to develop because of, or concurrent with, a fire, it is desirable to have water for firefighting available by gravity supply.
- Emergency Storage: The amount of water stored in case of water supply interruptions due to pipe failures or scheduled maintenance or construction activities. Emergency storage equal to three days water use is recommended as a minimum for Milpitas. Based on this criteria, estimated emergency storage requirements will increase from 18.2 million gallons in 1972 to 63 million gallons in 2020. Provision of storage facilities to meet these requirements will also satisfy operational and fire-flow needs.

MILPITAS EMERGENCY PLAN

The City Emergency Organization will be responsible wherever possible for accomplishing the following goals:

- Save lives and protect property.
- Repair and restore essential services.
- Provide for the protection, use, and distribution of remaining resources.

- Preserve the continuity of government.
- Coordinate operations with emergency organizations of other jurisdictions.

Assumptions for an Emergency: Civil emergencies may arise from a number of events: severe earthquakes, flooding, civil disturbances, fire, etc. Assumptions common to these emergencies are that normal facilities and systems may become overloaded or inoperative, the Emergency Organization may be partially or wholly activated as necessary, and mutual aid could be expected from unaffected areas.

Operational Concept for Dealing with Emergencies: Disasters such as fires, floods, and civil disorder are controlled by City public safety and engineering forces as part of their continuing responsibilities. Initial responses are made by Fire, Police, or Public Works Departments in accordance with their normal operating plans and procedures.

The Emergency Organization (established by the City Council) is mobilized and emergency procedures utilized to the extent necessary when disaster overloads or threatens to overload the regular force concerned, or disaster effects require the combined efforts of several departments. The Organization would also be used when a mutual aid assistance is required from other jurisdictions, and disaster effects require strengthened control and coordination.

Responses will vary depending on the nature of the emergency. Those common to any emergency situation include:

Coordination: The Director of Emergency Services (City Manager) coordinates operations

<u>Declaration</u>: The Director or Council declares a LOCAL EMERGENCY when appropriate.

Public Information: The public is informed that government action is under way. Actions that can or should be taken by individuals are described in announcements by radio and television.

Reports: The Operational Area (County) Organization and the State Office of Emergency Services are informed of the local situation.

Warning of an impending disaster may or may not be received from the County Communications Center or via the California Law Enforcement Teletype System. Local radio and TV stations broadcast essential emergency information.

The City of Milpitas is a party to the California Master Mutual Aid Agreement. The City can request and receive help from other jurisdictions if additional resources are needed; and is obligated to help other jurisdictions to the extent practicable in these circumstances.

Provision is made for the continued functioning of City Government despite effects of disaster. The City Council will meet as soon as possible after a disaster; and when necessary, reconstitutes itself and fills appointive City offices. The Director of Emergency Services if unavailable, is succeeded by the City Manager Pro Tempore (see current Resolution of City Council relating to succession).

The City Emergency Operating Center is located in the City Hall, 455 East Calaveras Boulevard. The alternate Emergency Operating Center is the Headquarters Fire Station at 25 West Curtis Avenue.

The Emergency Plan outlines how the City of Milpitas prepares, mobilizes, and employs public and private resources to cope with serious emergencies and disasters. The emergency operations parts of the plan will become effective immediately and to the extent necessary at the onset of a STATE OF EMERGENCY or LOCAL EMERGENCY. The plan will also go into effect when ordered by the Director of Emergency Services and to the extent necessary to prepare for or increase readiness for an imminent emergency.

REFERENCES

- 1 Engineering Geologists, Association of, Southern California Section, "Geology and Earthquake Hazards", 1973.
- 2 Ibid
- 3 Burkland and Associates, "Geologic and Seismic Hazard Investigation, City of Union City", 1974.
- 4 Nilsen, Tor H., "Preliminary Photointerpretation Map of Landslides and other Surficial Deposits of the Mount Hamilton Quadrangle and parts of the Mount Boardman and San Jose Quadrangles, Alameda and Santa Clara Counties, USGS Misc. Field Studies Map FM 361", 1972.
- 5 California, State of, Division of Mines and Geology, "Urban Geology Master Plan for California", 1973.
- 6 Ibid
- 7 Burkland and Associates, "Hillside Geologic and Seismic Hazard Investigation, City of Milpitas", 1974.
- 8 Milpitas, City of, "General Development Plan", 1967.
- 9 Helley, E.J., Brabb E.E., Geologic "Map of Late Cenozoic Deposits, Santa Clara County, U.S.G.S. Misc. Field Studies Map MF-335", 1971.
- 10 See Reference 7.
- 11 Ibid
- 12 California, State of, Division of Mines and Geology, "Special Studies Zones, Milpitas and Calaveras Reservoir Quadrangles", 1974.
- 13 See Reference 7.
- 14 Hayward, City of, Planning Commission, "Earthquake Study", 1972.
- 15 See Reference 3.
- 16 Council on Intergovernmental Relations, "Guidelines for General Plan Elements", 1973.
- 17 See Reference 1.
- 18 Armstrong, Dean, Project Director, "Tri-cities Seismic Safety and Environmental Resources Study", El Cerrito, Richmond, and San Pablo, 1973.
- 19 See Reference 7.
- 20 Housing and Urban Development, Department of, Federal Insurance Administration
- 21 Gage-Babcock & Association, "Report on Fire Defense Evaluation and Ten Year Growth Plan for Fire Department, City of Milpitas", 1974.

VI. SCENIC ROUTES ELEMENT

(Amended July 1988)

INTRODUCTION

The Scenic Routes Element has been developed to provide the means for Milpitas to retain and enhance the scenic qualities of areas adjacent to and visible from its scenic roads. The element is intended to add considerations of roadway and road corridor appearance to the scope of the General Development Plan and to propose legislative measures to protect and enhance the scenic value along Scenic Routes.

The scenic highway systems of Santa Clara County and adjacent jurisdictions have also been considered in drafting this element. An effort must be made and continued to provide coordination in the various scenic route plans affecting the southeast Bay Area.

DEFINITIONS

The following list defines scenic route terms as used in this element.

Scenic Road: a road or freeway which passes through or adjacent to an area of scenic value or provides an efficient route to or between such areas. An area of scenic value could be a rural area or an area containing man-made environments with attractive structures or urban vistas.

Scenic Corridor: the Scenic Road right-of-way plus land on either side subject to special controls for the purpose of retaining and enhancing nearby views or maintaining unobstructed distant views along the Scenic Road. Width of the Scenic Corridor is 200 feet (measured from the center line of the adjacent Scenic Route). It is within this area that development controls, dédication, and the purchase of easements or lands in fee simple will be required, and public projects reviewed for compliance with this plan.

Scenic Connector: a street or road used to connect or provide access to Scenic Corridors. A Scenic Connector may not necessarily traverse an area of scenic value, and the abutting land is not subject to the Scenic Corridor land use controls. However, special design treatment -- which may include roadside landscaping, undergrounding of utility lines, and street furnishings -- will be carried out to provide a visual continuity with the Scenic Corridors.

Scenic Route: a Scenic Corridor or Scenic Connector as defined above.

GOALS

- To preserve the opportunity for enjoyment of scenic qualities from the roadside areas in Milpitas' sphere of influence.
- To establish a system of Scenic Routes for pleasure driving.
- To assist in stabilizing or increasing property values and the economy of Milpitas by preserving and adding to its attractiveness.

OBJECTIVES

The objectives of the Scenic Routes Element are statements that attempt to put forward the means of achieving the goals of the plan. These are stated below:

- To establish a well-integrated network of continuous and varied Scenic Roads and Connectors to link and provide maximum Scenic Route access from urban areas and the regular transportation network to parks, open space areas and cultural attractions.
- To enhance the visual impact of the gateways to Milpitas.
- To encourage a variety of recreational uses along the scenic routes consistent with the concept of providing visual amenities.
- To provide for the inclusion of facilities and improvements (vista points, picnic areas, etc.) along Scenic Routes where appropriate.
- To delineate Scenic Corridors and the means for protecting them including, but not limited to, ordinances, policies and guidelines affecting land use intensity and density, and development design and siting.
- To design and site scenic roads in order to have a minimal adverse impact on the environment.

Some of the visual and cultural resources mentioned in these objectives are identified on Figure VI-1 (page vi-4).

SCENIC ROUTE GUIDELINES

LAND USE

In Scenic Corridors permitted land uses should be limited to low density residential development (including customary accessory uses), agriculture, parks, trails, and other open space uses. Clustering of dwelling units should be allowed in appropriate areas in order to preserve open space while providing for desired development. Special height and setback regulations should be required within the corridor so that scenic resources are not visually obstructed. Commercial development can be allowed when clearly designated in the adopted General Plan. Residential development abutting Scenic Corridors should be oriented to internal areas as much as possible and screened from the scenic road. All adjacent urban use access points should be carefully planned, including limited driveway access from the Scenic Road.

DESIGN AND SITE CONTROLS

All development within Scenic Corridors should be subject to strict architectural and siting review. Structures should be of a design and material that will blend with the natural scenic qualities. Originality in construction and landscaping design should be encouraged. Provisions for adequately screened off-street parking should be provided at planned intervals along Scenic Corridor Routes.

LANDSCAPING

Where necessary, all Scenic Route public rights-of-way should be landscaped for improvement of scenic qualities and erosion control. The landscaping should be related to the natural environment of the Scenic Route. In general, it should provide view framing and utilize plantings of appropriate scale. Landscape materials should not form a solid visual barrier except to screen unsightly views.

UTILITY AND TRANSMISSION LINES

Utility lines and transmission towers within or easily visible from Scenic Routes should be relocated or appropriately screened from view where possible. Utility lines should be underground wherever possible.

SIGNS AND ROADSIDE FACILITIES

Within Scenic Corridors, on-site signs should be controlled to allow only the minimum size and height necessary for identification purposes. Design and location of signs within Scenic Corridors or along Scenic Connectors should be regulated to prevent unsightly and obtrusive conglomerations of advertising. All off-premises outdoor signs are prohibited by the City's Sign Ordinance.

Appropriate and consistent Scenic Route identification signs should be placed periodically along all Scenic Route rights-of-way to indicate the road is within the Scenic Routes System. Instructional signs and displays should also be provided where appropriate along all Scenic Routes and at roadside facilities, indicating major visual features of the area.

Median landscaping, lighting fixtures, street signals, and other street furnishing along Scenic Routes should follow a consistent design scheme, and be tastefully blended into the natural or urban landscape. Where not provided as part of the Scenic Corridor's public right-of-way, provisions should be made for view turnouts, rest areas and picnic facilities.

PROPOSED SCENIC ROUTES

Based on the goals and objectives previously identified and an analysis of the scenic resources available, the following routes are proposed for Scenic Route designation and are shown on Figure VI-1.

FIGURE VI-2 SCENIC CORRIDOR/CONNECTOR (Schematic Cross-section)

Local Street:

Freeway & Frontage Road:

ADDENDUM

General Plan Amendment Resolutions That Affect The General Plan Text

City Council Resolution No. 5835 (adopted July 5, 1988):

Revise the "Trails" section on page iii-2 of the Open Space and Conservation Element to read as follows*:

The General Development Plan calls for approximately <u>16</u> miles of hiking trails within the Hillside Area, including a segment of the <u>Bay Area Ridge Trail</u>.

City Council Resolution No. 6009 (adopted July 16, 1991):

Revise the "Trails" section on page iii-2 of the Open Space and Conservation Element to read as follows*:

Two proposed park chains within Milpitas (Coyote River Park and Hetch-Hetchy Park Chain) should provide an extensive, visually stimulating system of "people paths". It is envisioned that the trails along Coyote Creek will be part of the San Francisco Bay Trail, a regional network of trails used by hikers and bicyclists.

City Council Resolution No. 6091 (adopted April 21, 1992):

Amend the Open Space and Conservation Element to include the following*:

Storm Water and Nonpoint Source Pollution

The U.S. Environmental Protection Agency has identified urban storm water runoff as the leading cause of water pollution in the United States. Storm water is defined as "storm water runoff, snow melt runoff, and surface runoff and drainage" [40 C.F.R.

^{* :}Added language is <u>underlined</u>.

§122.26(b)(13)]. It may contain a variety of pollutants including heavy metals, oil and grease, household chemicals, pesticides, fertilizers, and eroded soils. These pollutants are typically generated from a variety of diffuse nonpoint sources present through the urban environment.

Storm waters flows from the City of Milpitas are discharged into the local water bodies which empty directly into South San Francisco Bay. Both State and Federal authorities have identified urban storm water runoff as a major source of pollution adversely impacting the beneficial uses of South San Francisco Bay. There has been issued a National Pollutant Discharge Elimination System ("NPDES") permit requiring the City of Milpitas, among others, to develop and implement municipal storm water management programs and other specified measures to address the impairment of water quality in South San Francisco Bay.

It is extremely difficult and expensive to control the composition of municipal storm water discharges through the implementation of conventional wastewater treatment technologies. Therefore, it is critical (and a requirement of the NPDES permit) that the City of Milpitas implement measures to identify and control the nonpoint sources of pollutants that discharge into City of Milpitas storm water drainage facilities.

GENERAL DEVELOPMENT PLAN CITY OF MILPITAS Valley Floor MFH MEH MHP SFL SFL MHP Hillside Area (See Hillside Plan Man) SFL TO SFL 4 SFM ACXLIN SFL SFL MEM 0 0 SFL MEH SFL SFL Town 0 Center (W) SFL MEH 0 0 SFL SFL SFL (c) 0 SFL 0 SFM MFM SFL SFM 11/1/17 SCHOOLS, PARKS RESIDENTIAL Civic Center AND RECREATION Single Family Low (3-5 DUs/Acre) SFL Town Center Elementary Single Family Moderate (6-15 DUs/Acre) SFM Professional, Administrative Offices Junior High MFM Multi-Family Medium (7-11 DUs/Acre) Retail Sub-Center Senior High Multi-Family High (12-20 DUs/Acre)* MFH General Commercial Local Park Mobile Home Park MHP Highway Service Major Park Industrial Park Regional Recreational Manufacturing H Historical Access Interchange F Fire Station = Freeway Police Station/Corporation Yard Light Rail Transit Station (P) Expressway, Parkway (W) Water Storage Tank Sewer Pump Station (S) - Major Street

(C)

Light Rail

-HHHHHH Railroad

Correctional Facility

MAY 1993