ALGEBRA LINEAL - Práctica N°3 - Primer cuatrimestre de 2022

Transformaciones lineales

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son transformaciones lineales.

i)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3x_1 + \sqrt{2}x_3, x_1 - \frac{1}{2}x_2)$

ii)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

iii) $f: \mathbb{C} \to \mathbb{C}, \ f(z) = \overline{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial)

iv)
$$f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

v)
$$f: \mathbb{R}_2[X] \to \mathbb{R}^3$$
, $f(p) = (p(0), p'(0), p''(0))$

Ejercicio 2. Interpretar geométricamente las siguientes aplicaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$.

- i) f(x,y) = (x,0)
- ii) f(x,y) = (x, -y)
- iii) $f(x,y) = (x\cos t y\sin t, x\sin t + y\cos t)$

Ejercicio 3. Encontrar una función $f:V\to V$ (para un K-espacio vectorial V conveniente) que cumpla f(v+w)=f(v)+f(w) para cualquier par de vectores v, $w\in V$ pero que no sea una transformación lineal. Análogamente, encontrar una función $g:V\to V$ que cumpla $g(\lambda\,v)=\lambda\,g(v)$ para cualquier escalar $\lambda\in K$ y cualquier vector $v\in V$, pero que no sea una transformación lineal.

Ejercicio 4.

- i) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- ii) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6), f(-1,1)=(2,1) y f(2,7)=(5,3)?
- iii) Sean $f, g: \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), \quad f(2,1,0) = (2,1,0), \quad f(-1,0,0) = (1,2,1),$$

 $g(1,1,1) = (1,1,0), \quad g(3,2,1) = (0,0,1), \quad g(2,2,-1) = (3,-1,2).$

Determinar si f = g.

- iv) Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga que f(1, -1, 1) = (2, a, -1), $f(1, -1, 2) = (a^2, -1, 1)$ y f(1, -1, -2) = (5, -1, -7).
- v) Hallar una fórmula para todas las tranformaciones lineales $f: \mathbb{R}_2[X] \to \mathbb{R}^2$ que satisfacen $f(X^2+X-1)=(1,2), f(2X+3)=(-1,1)$ y $f(X^2-X-4)=(2,1)$.

Ejercicio 5. Cuando sea posible, calcular bases del núcleo y de la imagen para cada tranformación lineal de los Ejercicios 1 y 4 y decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. Si f es un isomorfismo, calcular f^{-1} .

Ejercicio 6. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2)$. Calcular el núcleo y la imagen de f, de g y de $g \circ f$. Decidir si son monomorfismos, epimorfismos o isomorfismos.

Ejercicio 7. Sean $q: V \to V'$ y $f: V' \to V''$ transformaciones lineales. Probar:

- i) $Nu(g) \subseteq Nu(f \circ g)$.
- ii) Si $Nu(f) \cap Im(g) = \{0\}$, entonces $Nu(g) = Nu(f \circ g)$.
- iii) $\operatorname{Im}(f \circ g) \subseteq \operatorname{Im}(f)$.
- iv) Si $\operatorname{Im}(g) = V'$, entonces $\operatorname{Im}(f \circ g) = \operatorname{Im}(f)$.

Ejercicio 8.

- i) Sean $S, T \subset \mathbb{R}^4$ los subespacios definidos por $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 0\}$ y $T = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_4 = 0, x_2 x_3 = 0\}$. ¿Existe un isomorfismo $f : \mathbb{R}^4 \to \mathbb{R}^4$ tal que f(S) = T?
- ii) ¿Existe un monomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^2$?
- iii) ¿Existe un epimorfismo $f: \mathbb{R}^2 \to \mathbb{R}^3$?
- iv) Sean $v_1 = (1, 0, 1, 0), v_2 = (1, 1, 1, 0)$ y $v_3 = (1, 1, 1, 1)$. ¿Existe una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^4$ tal que $\{v_1, v_2, v_3\} \subset \text{Im}(f)$?

Ejercicio 9. En cada uno de los siguientes casos encontrar una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga lo pedido:

- i) $(1,1,0) \in \text{Nu}(f) \text{ y } \text{Nu}(f) \cap \text{Im}(f) = \{0\}$
- ii) $Nu(f) \cap Im(f) = \langle (1, 1, 2) \rangle$
- iii) $f \neq 0$ y $Nu(f) \subseteq Im(f)$
- iv) $f \neq 0$ y $f \circ f = 0$
- v) $f \neq Id$ y $f \circ f = Id$
- vi) $Nu(f) \neq \{0\}$, $Im(f) \neq \{0\}$ y $Nu(f) \cap Im(f) = \{0\}$

Ejercicio 10. En cada uno de los siguientes casos construir un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla:

- i) $\operatorname{Im}(f) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$
- ii) Nu(f) = { $(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0$ }
- iii) $\operatorname{Nu}(f) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : 3x_1 x_3 = 0\} \text{ e Im}(f) = \langle (1, 1, 1) \rangle$

Ejercicio 11. Sea V un K-espacio vectorial y sea $f:V\to V$ una transformación lineal. Se dice que f es nilpotente si existe $s\in\mathbb{N}$ tal que $f^s=0$.

- i) Probar que si f es nilpotente, entonces f no es un monomorfismo ni un epimorfismo.
- ii) Si V es de dimensión n probar que f es nilpotente si y solo si $f^n = 0$. (Sugerencia: analizar si las inclusiones $\operatorname{Nu}(f^i) \subseteq \operatorname{Nu}(f^{i+1})$ son estrictas o no).
- iii) Sea $B = \{v_1, \dots, v_n\}$ una base de V. Se define una transformación lineal $f: V \to V$ de la siguiente forma:

$$f(v_i) = \begin{cases} v_{i+1} & \text{si } 1 \le i \le n-1 \\ 0 & \text{si } i = n \end{cases}$$

Probar que $f^n = 0$ y $f^{n-1} \neq 0$.

Ejercicio 12. Sea $S = \langle (1, 1, 0, 1), (2, 1, 0, 1) \rangle \subseteq \mathbb{R}^4$.

- i) Hallar una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^2$ tal que Nu(f) = S.
- ii) Hallar ecuaciones para S (usar i)).
- iii) Hallar un sistema de ecuaciones lineales cuyo conjunto de soluciones sea <(1,1,0,1),(2,1,0,1)>+(0,1,1,2).

Ejercicio 13.

- i) Sea $S \subset K^n$ el conjunto de soluciones de un sistema lineal homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ tal que Nu(f) = S.
- ii) Sea $T \subset K^n$ el conjunto de soluciones de un sistema lineal no homogéneo. Encontrar una transformación lineal $f: K^n \to K^n$ y un vector $y \in K^n$ tales que $T = f^{-1}(y)$.

Ejercicio 14. Sea $f: V \to V$ una transformación lineal y sean B, B' bases de V. Calcular $|f|_{BB'}$ en cada uno de los siguientes casos:

i)
$$V = \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (3x_1 - 2x_2 + x_3, 5x_1 + x_2 - x_3, x_1 + 3x_2 + 4x_3)$, $B = \{(1, 2, 1), (-1, 1, 3), (2, 1, 1)\}$ y $B' = \{(1, 1, 0), (1, 2, 3), (-1, 3, 1)\}$

- ii) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i x_2, x_1 + x_2)$, B = B' es la base canónica de \mathbb{C}^2 como \mathbb{C} -espacio vectorial.
- iii) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2x_1 ix_2, x_1 + x_2)$, $B = B' = \{(1, 0), (0, 1), (i, 0), (0, i)\}$ considerando a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.
- iv) $V = \mathbb{R}_4[X], f(P) = P', B = B' = \{X^4, X^3, X^2, X, 1\}.$

Ejercicio 15. Sean $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 y $B' = \{w_1, w_2, w_3, w_4\}$ una base de \mathbb{R}^4 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal tal que

$$|f|_{BB'} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & -1 \\ 2 & 1 & 4 \\ 3 & -2 & 5 \end{pmatrix}.$$

- i) Hallar $f(3v_1 + 2v_2 v_3)$. ¿Cuáles son sus coordenadas en la base B'?
- ii) Hallar una base de Nu(f) y una base de Im(f).
- iii) Describir el conjunto $f^{-1}(\{w_1 3w_3 w_4\})$.

Ejercicio 16. Sea V un K-espacio vectorial y $B = \{v_1, v_2, v_3, v_4\}$ una base de V. Sea $f: V \to V$ la transformación lineal tal que

$$|f|_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Hallar $|f^{-1}|_B$ y calcular $f^{-1}(\{v_1 - 2v_2 + v_4\})$.

Ejercicio 17. Sea V un K-espacio vectorial de dimensión finita y sea B una base de V.

- i) Sea $tr: \text{Hom}(V,V) \to K$ la aplicación definida por $tr(f) = tr(|f|_B)$. Probar que tr(f) no depende de la base B elegida. La aplicación tr(f) se llama la traza del endomorfismo f.
- ii) Probar que $tr: \text{Hom}(V, V) \to K$ es una transformación lineal.

Ejercicio 18. Sean $B = \{v_1, v_2, v_3\}$, $U = \{v_1 + v_3, v_1 + 2v_2 + v_3, v_2 + v_3\}$ y $U' = \{w_1, w_2, w_3\}$ bases de \mathbb{R}^3 , y sea E la base canónica de \mathbb{R}^3 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$|f|_{BE} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
 y $|f|_{UU'} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Determinar U'.

Ejercicio 19.

i) Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ la trasformación lineal definida por

$$f(x_1, x_2, x_3, x_4) = (0, x_1, x_1 + x_2, x_1 + x_2 + x_3)$$

y sea v=(1,0,0,0). Probar que $B=\{v,f(v),f^2(v),f^3(v)\}$ es una base de \mathbb{R}^4 . Calcular $|f|_B$.

ii) Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ una tranformación lineal tal que $f^n=0$ y $f^{n-1}\neq 0$. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j+1, \\ 0 & \text{si no.} \end{cases}$$

(Sugerencia: elegir $v_1 \notin \text{Nu}(f^{n-1})$).

Ejercicio 20. Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ un proyector. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j; \ i \leq \dim(\operatorname{Im}(f)), \\ 0 & \text{si no.} \end{cases}$$

Ejercicio 21. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2x_1 - 3x_2 + 2x_3, 3x_1 - 2x_2 + x_3).$$

i) Determinar bases $B \vee B'$ de \mathbb{R}^3 tales que

$$|f|_{BB'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

ii) Si A es la matriz de f en la base canónica, encontrar matrices $C, D \in GL(3,\mathbb{R})$ tales que

$$C \cdot A \cdot D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ejercicio 22. Sean $A \in K^{m \times n}$ y $b \in K^m$. Se considera el sistema $A \cdot x = b$ y sea $(A \mid b)$ su matriz ampliada. Probar que $A \cdot x = b$ tiene solución \iff $\operatorname{rg}(A) = \operatorname{rg}(A \mid b)$.

Ejercicio 23. Sea $A \in K^{m \times n}$, $\operatorname{rg}(A) = s$ y sea $T = \{X \in K^{n \times r} / A . X = 0\}$. Calcular dim T.

Ejercicio 24. Sean $A \in K^{m \times n}$ y $B \in K^{n \times r}$. Probar que $\operatorname{rg}(A \cdot B) \leq \operatorname{rg}(A)$ y $\operatorname{rg}(A \cdot B) \leq \operatorname{rg}(B)$.

Ejercicio 25. Sean $A, D \in \mathbb{R}^{3\times 3}$ las siguientes matrices:

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 2 \\ 3 & -2 & 1 \end{pmatrix} \quad \text{y} \quad D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}.$$

i) Determinar $C_1\,,\,C_2\,,\,C_3$ y $C_4\,\in GL(3,\mathbb{R})$ tales que

$$C_1 \cdot A \cdot C_2 = C_3 \cdot D \cdot C_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

ii) Determinar $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases B, B', B_1 y B_1' de \mathbb{R}^3 tales que $|f|_{BB'} = A$ y $|f|_{B_1B_1'} = D$.

Ejercicio 26. Dadas $A, B \in \mathbb{R}^{n \times n}$, decidir si existen matrices $P, Q \in GL(n, \mathbb{R})$ tales que $A = P \cdot B \cdot Q$.

i)
$$n = 2$$
, $A = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 8 \\ 1 & 2 \end{pmatrix}$, ii) $n = 3$, $A = \begin{pmatrix} 1 & 0 & 5 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 8 & 5 \\ 2 & 2 & 0 \\ 0 & 7 & 0 \end{pmatrix}$.

Ejercicio 27. Sean $A, B \in K^{n \times n}$. Decimos que A es semejante a B (y lo notamos $A \sim B$) si existe $C \in GL(n, K)$ tal que $A = C \cdot B \cdot C^{-1}$.

i) Sean $A, A' \in K^{n \times n}$ tales que $A \sim A'$. Probar que tr(A) = tr(A').

ii) Sean
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & -5 \\ 4 & 1 & 3 \end{pmatrix}$$
 y $A' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ en $\mathbb{R}^{3 \times 3}$.

¿Existen $f \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ y bases $B \setminus B'$ de \mathbb{R}^3 tales que $|f|_B = A \setminus |f|_{B'} = A'$?