Bayesian Inference and Decision

Instructions

- 1. The student is allowed two, double-sided note sheets
- 2. Previously proved results should be clearly cited and properly invoked

1. Suppose y_i , for i = 1, ..., n, is a binary outcome defined by the following representation:

$$y_i = \begin{cases} 0 & z_i < 0 \\ 1 & z_i \ge 0 \end{cases}$$

where $z_i \sim N(x_i'\boldsymbol{\beta}, \lambda^{-1})$ for the $p \times 1$ vectors of covariates x_i and coefficients $\boldsymbol{\beta}$. Using the joint prior $\pi(\boldsymbol{\beta}, \lambda) \propto \lambda^{-1}$, answer the following.

(a) Determine the likelihood and the posterior.

(b) Find the full conditionals for the binary model and determine the best sampling

strategy.

(c) Now suppose that y_i is an ordinal outcome with three levels defined by the following latent variable representation:

$$y_i = \begin{cases} 0 & c_0 < w_i < c_1 \\ 1 & c_1 \le w_i < c_2 \\ 2 & c_2 \le w_i < c_3 \end{cases}$$

where $w_i \sim N(x_i' \phi, \eta^{-1})$, $c_0 = -\infty$, and $c_3 = \infty$. Place the ridge prior on ϕ and let $\pi(\eta) \propto \eta^{-1}$. Derive the likelihood and find the posterior.

5

(d) Find the full conditionals for the ordinal model and determine a sampling strategy.

- 2. Let $\boldsymbol{\theta}_i \sim Multinom(\boldsymbol{\alpha}_i)$ for $i=1,\ldots,n$ and $j=1,\ldots,J,J>2$, total categories.
 - (a) Find the conjugate prior for α_i .

(b) Define a transformation of α_i , call it γ_i , such that $\gamma_i \stackrel{iid}{\sim} MVN(\mu, \sigma^2 I_{J \times J})$ is a valid prior; where μ is a $J \times 1$ vector of population means and $I_{J \times J}$ is the $J \times J$ identity matrix. Determine the resulting posterior for this model.

(c) Develop a strategy for drawing samples from the posterior in (b).	

(d)	Explain how informative.	to make the prior	on γ_i informative	as well as how t	o make it weakly