Index

A	
Abelian Groups	vol.1:p.24
Adjoint Operators	vol.1: pp.43 - 44,87,103
	vol.3: pp.134 - 135
Adjugate Matrix	vol.2: pp.120 - 121
Affine Spaces	vol.1:p.93
Asymptotically Stable	vol.2:p.76
	vol.3: pp.82 - 84
	vol.4:p.7
Attracting Fixed Point	vol.2:p.76
	vol.3: pp.83 - 84
Attractiveness	vol.3:p.83
Autonomous Systems	vol.1:p.7
B	
Basin Boundary	vol.2:p.89
Basin of Attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bendixson's Theorem	vol.4:pp.25-29
Bifurcation	vol.1: pp.11 - 12,63 - 6
	vol.4: pp.12-13
Bifurcation (Fold)	vol.4: pp.12-13
Bifurcation (Transcritical)	vol.4:pp.12-15
Bifurcation Diagram	vol.4: pp.12, 15-17
Body Velocity	vol.1:p.38
C	
Carrying Capacity	vol.4:p.9
Causal Systems	vol.2:p.152
	vol.3:pp.3-4
Cayley Hamilton Theorem	vol.2: pp.139 - 140
	vol.3: pp.121 - 122
Center Manifold Theory	vol.4:pp.39-45
Centers (Equilibrium Point)	vol.4:pp.22,26
Centroid of Area	vol.1: pp.4-6
Characteristic Equation	vol.2: pp.77, 138 - 139
1	vol.3:p.37
	vol.4:p.34
Column Space	vol.2: pp.133 - 134
Complex Conjugate Transpose	vol.3: pp.40 - 44
Condition Number (Of a Matrix)	vol.3: pp.61 - 62
Connection Vector Field	vol.1: pp.118 - 119
Conservative System	vol.2: pp.89 - 91, 103
Conservative Vector Fields	vol.1: pp.145 - 146
Conserved Quantity	vol.2:p.90
Constraint, Holonomic	vol.1: pp.76 - 77
Constraint, Nonholonomic	vol.1: pp.110 - 117, 135

Contour	vol.2: pp.91 - 92
Controllability	vol.3:p.132
Controllability Gramian	vol.3:p.135
Convolution	vol.3: pp.2 - 4
Convolution (Discrete)	vol.3: pp.14, 17
Coordinate Transformation Matrix	vol.2: pp.128 - 129
	vol.4: pp.18, 20-41
Coordinate Vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2: pp.51 - 54
Cotangent Bundle	vol.1: p.126
Cotangent Space	vol.1: p.126 $vol.1: p.126$
Cotangent Space Cotangent Vector	vol.1: p.120 vol.1: pp.127 - 130
Cramer's Rule	vol.2: p.121
Cross Product	vol.1: pp.1-2
Curl (Vector)	vol.1: p.145
Curvature (Constraint)	vol.1: pp.144 - 145
D	
Dead Zone Nonlinearity	vol.2: p.151
Deficient Matrix	vol.2: pp.140 - 141
Degenerate Matrix	vol.2:p.139
Degrees of Freedom	vol.1:p.17
Detectable	vol.3: pp.145 - 146, 149
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonal Coordinate Form	vol.3: pp.38 - 46
Diagonalization	vol.2: pp.142 - 144
	vol.3:p.46
Diffeomorphic	vol.1:p.20
Differential Algebraic Equations	vol.2: pp.41 - 44,47 - 48
Differential Algebraic Equations, Differentiation Index	vol.2: pp.47 - 48
Differential Algebraic Equations, Model Consistency	vol.2:p.44
Differential Algebraic Equations, Regularity	vol.2:p.45
Differential Algebraic Equations, Solution	vol.2:p.44
Dimension (Of a Vector Space)	vol.2: pp.125 - 126
Direct Product of Two Sets	vol.1:p.20
Direct Sum	vol.1:p.20
Direct Sum of Two Sets	vol.1: p.125
Directional Linearity	vol.1: p.106
Distribution (Allowable Velocities)	vol.1: pp.112, 148 - 150
Divergence	vol.4: pp.25 - 29
Dot Product	vol.2: pp.134 - 135
Dot I foduct	
$\overline{\nu}$	vol.3: p.41
E Eigengness	nol 2 . m 140
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145
E:	vol.3: pp.36 - 45, 56 - 59
Eigenvector	vol.2: pp.76 - 77, 138 - 145

	vol.3: pp.36 - 45
Eigenvector (Left)	vol.3: pp.50 - 51
Elementary Row Operators	vol.2: p.107
Embedding	vol.1:p.96
Equilibrium Point	vol.3: pp.1, 5-10, 79-84
-	vol.4: pp.3-4
Equivalent Vectors w.r.t. Functions	vol.1: pp.100 - 101
Euler Lagrange Equation	vol.1: p.136
Existence And Uniqueness Theorem	vol.1:pp.11,13
	vol.2:p.82
Exponential Map	vol.1: pp.48 - 51, 103 - 104
External Forces	vol.1:p.1
F	
Finite Escape Time	vol.4: pp.9 - 10
Focus Node	vol.4:pp.22,33
Fold Bifurcation	vol.4: pp.12 - 13
Force Couple	vol.1:p.2
Force Couple System	vol.1:p.3
Forward Euler Integration	vol.2:p.148
Forward Kinematics	vol.1: pp.78, 83 - 84
Frequency Response	vol.3: pp.98, 105
Frobenius Norm	vol.3: pp.62, 102-117
Fundamental Vector Field (Infinitesimal Generators)	vol.1: pp.99 - 100
G	
Gait Generation	vol.1:p.124
Gaussian Elimination	vol.2:p.104
Generalized Coordinates	vol.1:p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Globally Asymptotically Stable	vol.3:p.93
Gradient Vector Field	vol.1: pp.129 - 130
Gram Schmidt Orthogonality Procedure	vol.2:p.137
Green's Theorem	vol.4: pp.25-27
Group	vol.1: pp.21, 94-95
Group Invariant Vectors	vol.1:p.100
Group, Left/right Action	vol.1: pp.24-29, 33, 80, 96, 137
Group, Symmetry	vol.1: pp.108 - 109, 137
H	
H_{∞} Norm	vol.3: pp.108 - 119
Hartman Grobman Theorem	vol.4:pp.23-24
Hermitian Matrix	vol.3:p.107
Heteroclinic Trajectory	vol.2:p.94
Holonomic Constraint	vol.1:pp.76-77
Homeomorphic	vol.1:p.19
	vol.2:p.88
	vol.4:p.23
Homogeneity	vol.3:p.1
Homogeneous Equations	vol.2:p.105

Hopf Bifurcation	vol.4: pp.35 - 38
Hurwitz Matrix	vol.3: pp.94 - 96
Hyperbolic Equilibrium Point	vol.4: pp.22 - 24
Hyperbolic Fixed Point	vol.2: pp.87 - 88
Hysteresis	vol.1: pp.66, 70 - 71
Hysteresis	vol.2: p.42
I	000.2 . p.42
Idempotent	vol.2:p.37
Image (Algebra)	vol.1:p.124
Impulse Response	vol.3: pp.19 - 20, 29 - 30, 36
Index Theory	vol.2: pp.98-101
	vol.4:p.35
Induced Norm	vol.3: pp.103 - 104
Infinity Norm	vol.3: pp.100 - 101
Inner Product	vol.2:pp.134-135
	vol.3:p.41
Internal Forces	vol.1:p.1
Intersection (Spaces)	vol.2: pp.130 - 131
Invariance	vol.1:p.139
Invariant Manifold	vol.4:pp.42-45
Isocline	vol.2:pp.74,84
Isomorphic	vol.1:p.22
J	
Jacobi Liouville Formula	vol.3:p.27
Jacobian	vol.1: pp.84 - 86
	vol.2:p.85
Jordan Blocks	vol.3: pp.46 - 50, 56 - 59, 77 - 78
K	
K Step Observability Matrix	vol.3: pp.138 - 139
Kalman Rank Test	vol.3:p.136
Kernel	vol.1: pp.124 - 125
Kinematic Locomotion	vol.1: pp.105 - 107
L	
L1 Norm	vol.3: pp.100 - 101
L2 Induced Gain of a System	vol.3:p.108
L2 Norm	vol.3: pp.100 - 101
Lagrangian	vol.2:p.45
Lagrangian Multipliers	vol.2: pp.45-46
	vol.3:p.126
Laplace Transform	vol.2:p.147
	vol.3: pp.29 - 33
Liapunov Fixed Point	vol.2:p.76
Lie Algebra	vol.1: pp.41, 98-100, 103, 151-152
Lie Bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie Groups	vol.1: pp.21, 96-99
Lifted Actions	vol.1: pp.31-42, 52-54, 85, 137-138

Limit Cycle	vol.3:p.82
	vol.4: pp.10 - 12, 33 - 38
Linear Combination	vol.2:p.124
Linear Equations	vol.2:p.104
Linear Independence	vol.2: pp.124 - 125
Linear Time Invariance	vol.2:p.152
	vol.3:pp.8-9,17
Linear Transformation	vol.2: pp.131 - 133
Linearity	vol.3:p.15
Linearity (Mapping)	vol.1: pp.106 - 107
Linearity (Systems)	vol.2:p.152
	vol.3:p.1
Linearization at a Fixed Point	vol.1:pp.10-11
	vol.2:pp.84-85
	vol.3: pp.1, 7-10
	vol.4: pp.5 - 8, 23 - 24
Local Connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locomotion	vol.1:p.104
Logistic Equation	vol.4:p.9
Lorenz Attractor	vol.4:p.12
Lotka Volterra Model of Competition	vol.2:p.88
Lyapunov Functions	vol.3: pp.85 - 96, 117 - 119, 124 - 126
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, Accessible	vol.1: pp.76-78
Manifolds, C^k Differentiable	vol.1:p.20
Manifolds, Curvature	vol.1:p.93
Manifolds, Stable	vol.2:p.89
Manifolds, Topology	vol.1:p.93
Marginally Stable	vol.3:pp.53,56
Markov Parameters	vol.3:p.20
Matrix Cofactor	vol.2: pp.111, 118-120
Matrix Determinant	vol.2: pp.115 - 119
Matrix Exponentiation	vol.3: pp.26 - 27, 36
Matrix Inverse	vol.2: pp.110 - 115
Matrix Minor	vol.2:p.111
Matrix Operations	vol.2:p.106
Matthew Equation	vol.3:p.27
Memoryless Systems	vol.2:p.152
	vol.3:p.4
Metzler Matrix	vol.4:p.31
Minimum Energy Input	vol.3: pp.127 - 129, 133 - 136
Modal Contributions of Initial Conditions	vol.3: pp.41 - 45, 51
Modal Decomposition	vol.3: pp.35 - 45, 51
Model Consistency	vol.2:p.44
Model Uncertainty	vol.3: pp.109 - 115
Modular Addition	vol.1:p.21

Momentum	vol.1: pp.138 - 140
Monotonic Function	vol.1:p.13
Multiplicative Calculus	vol.1: pp.34 - 38,46 - 47
N	
Negative Semidefinite Matrix	vol.3:p.93
Neumann Series	vol.3:p.22
Neutrally Stable	vol.2:p.76
Nilpotent Matrix	vol.3:p.35
Node	vol.4:pp.21,33
Noether's Theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147
Nonholonomic Constraint	vol.1: pp.110 - 117, 135 - 136
Normal Matrix	vol.3: pp.36 - 46
Nullcline	vol.2:p.84
Nullity	vol.2:p.134
Nullspace	vol.2: pp.132 - 134
0	
Observability	vol.3: pp.136 - 139
Observer Based Controller	vol.3: pp.148 - 149
One Form	vol.1: pp.125, 127 - 129
Optimal Frame	vol.1:p.83
Orthogonal Compliment	vol.2: pp.137 - 138
Orthogonal Set	vol.2:p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal Basis	vol.2: p.136
Outer Product	vol.2: p.136
Output Feedback Design	vol.3: p.147
Overdetermined System	vol.2: pp.19, 41
P	10 100 100
P Norm	vol.3: pp.100 - 102
Parallel Linkage Mechanisms	vol.3: pp.59 - 60
Pbh Test	vol.3:p.136
Pendulum	vol.4: pp.7 - 8
Periodic Orbits	vol.4: pp.25 - 34
Pfaffian Constraint	vol.1: pp.111 - 117
Phase (Angle)	vol.2: p.61
Phase Coordinate Form Phase Drift	vol.3: p.6
	vol.2: p.68
Phase Lock Phase Portrait	vol.2: p.67
Phase Portrait	vol.1: pp.7-9
	vol.2: pp.74, 83
	vol.3 : p.35
Ditablank Difuncation	vol.4: pp.5, 17-19
Pitchfork Bifurcation Poincare Bendixson Criterion	vol.4: pp.12, 15-17
Poles (Transfer Function)	vol.4: pp.32 - 34 vol.2: p.147
roles (Transfer FullChon)	voi.2: p.14i

	vol.3: pp.58 - 59
Position Trajectory	vol.1:p.105
Positive Definite Matrix	vol.3:p.87
Positive Invariant Set	vol.4: pp.21, 29 - 34
Positive Semidefinite Matrix	vol.3:p.125
Positive System	vol.4:p.31
Potentials	vol.1:p.17
Power Spectral Density	vol.3: pp.116 - 119
Predator/prey Model	vol.4: pp.30 - 31
Preimage (Algebra)	vol.1:p.124
Principally Kinematic System	vol.1:p.139
Principle Minors	vol.3:p.88
Principle of Least Action	vol.1: pp.131 - 133
Projection Operator	vol.2: p.37
Q	•
Quadratic Programming	vol.3: pp.125 - 126
R	**
Radially Unbounded	vol.3: p.89
Range (Matrix)	vol.2: pp.132 - 133
Range of Entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reachability	vol.3: pp.120 - 126, 130, 132
Reachability Gramian	vol.3: pp.124 - 129, 133 - 135
Reaction Force	vol.1: p.4
Realization Theory	vol.2: p.149
Reconstruction Equation	vol.1: pp.114 - 123, 138
Region of Attraction	vol.4: p.15
Regular Control Problem	vol.4: p.15 vol.2: p.45
Resolvent	•
	vol.3: pp.17 - 18, 30, 36
Resonance	vol.3: p.50
Reversible System	vol.2: pp.92 - 95
Rigid Body	vol.1: p.23
Rigid Body, Left Lifted Action	vol.1: pp.38 - 41
Rigid Body, Right Lifted Action	vol.1: pp.41 - 43
Routh Hurwitz Criterion	vol.3: pp.77 - 80
	vol.4: p.34
Row Echelon Form	vol.2: p.107
Row Space	vol.2: p.134
Runge Kutta Method	vol.2: p.83
S	
Saddle Connection	vol.2:p.94
Saddle Node	vol.4: pp.19-21
Camidinast Duadust of Two Cats	vol.1:p.24
Semidirect Product of Two Sets	
Separatrix	vol.2:p.89
	vol.2: p.89 $vol.1: p.105$
Separatrix	

Similar Matrices	vol.2: p.142
Singular Matrix	vol.2: pp.41 - 42, 51, 110, 122
Singular Value Decomposition	vol.3: pp.104 - 110, 128 - 129
Singular Vectors	vol.3: p.106
Sink Node	vol.4:pp.19,21
Small Gain Theorem	vol.3: pp.109 - 114
Solution, Differential Algebraic Equations	vol.2:p.44
Source Node	vol.4:pp.19,21
Span	vol.2: pp.124 - 125
Spatial Velocity	vol.1:pp.43,85
Special Euclidean Group	vol.1:p.23
	vol.2: pp.1-2
Special Orthogonal Group, $so(N)$	vol.1:p.22
	vol.2: pp.1-2
Stability	vol.3: pp.80 - 84
	vol.4:p.5
Stabilizable	vol.3: pp.141 - 143, 149
Stable	vol.2:p.76
	vol.3: pp.53 - 59, 91 - 94
	vol.4:p.5
State Estimator Controller	vol.3: pp.144 - 147
State Feedback Controller	vol.3: pp.140 - 144
State Space Model	vol.2: pp.147 - 150
	vol.3:p.5
State Transition Matrix	vol.3: pp.11-13
State Vector	vol.2: pp.147 - 149
	vol.3:p.5
Strain Energy	vol.2:pp.5-7
Structural Stability	vol.2:p.88
Subcritical Hopf Bifurcation	vol.4: pp.37 - 38
Subcritical Pitchfork Bifurcation	vol.4:p.17
Subspace	vol.2: pp.129 - 130
Sum (Spaces)	vol.2: pp.130 - 131
Supercritical Hopf Bifurcation	vol.4: pp.35 - 37
Supercritical Pitchfork Bifurcation	vol.4:pp.15-16
Superposition	vol.3:pp.1,13
Supremum	vol.3:p.98
Symmetric Matrix	vol.2:p.144
	vol.3: pp.86 - 96
Symmetry	vol.1: pp.108 - 109, 131
System Norms	vol.3: pp.99 - 120
T	
Tangent Spaces	vol.1: pp.29 - 30
Taylor Series Expansion	vol.3: pp.7 - 8
•	vol.4: pp.6, 39 - 40, 44 - 45
Tensor Product	vol.1: p.20
Time Invariance	vol.2:p.152
	F

	vol.3: pp.1-4
Time Reversal Symmetry	vol.2: pp.92 - 93
Toeplitx Matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Traction	vol.3: pp.60 - 61
Transcritical Bifurcation	vol.4: pp.12 - 15
Transfer Function	vol.2: pp.146 - 147, 150
	vol.3: pp.18 - 20, 36, 52
Transmission	vol.3:p.61
U	
Underactuated Robotic Mechanisms	vol.3:pp.59-77
Underactuated System	vol.1:p.104
Underdetermined System	vol.2:pp.19,41
Unitary Diagonal Coordinate Transformation	vol.3: pp.38 - 43, 50
Unstable	vol.2:p.76
V	
Van Der Pol Oscillator	vol.4: pp.11-12
Variance Amplication	vol.3:p.117
Variations of Constants Formula	vol.3:pp.24,54
Varignon's Theorem	vol.1:p.1
Vector Field	vol.1: pp.30 - 31
	vol.2:p.74
Vector Mapping	vol.2:p.127
Vector Space	vol.2: pp.122 - 123
Vertical Space	vol.1:p.125
Virtual Work	vol.3: pp.63 - 64
V	
White in Time Gaussian Processes	vol.3: pp.115 - 119
Work (Mechanical)	vol.1:p.145
Z	
Z Transform	vol.3: pp.14 - 22
Zero Set	vol.1: pp.76, 110-111
Zeros (Transfer Function)	vol.2:p.147