

CrowdDiffKDE: Multi-hypothesis Crowd density Estimation using Diffusion Models and Kernel Density Estimation

Aravind Seshadri* Hidangmayum Bebina Prof.Tushar Sandhan Electrical Engineering, Indian Institute of technology Kanpur

Background

- Crowddiff uses a diffusion model to learn the crowd map generation by conditioning on an image
- Due to the stochastic nature of diffusion models, multiple realizations can be obtained. These are then fused to improve the counting performance.

The generation of multiple realizations is a time-intensive process. Each new realization requires additional processing due to the inherent computational complexity of diffusion models. Can the speed of this process be improved without compromising accuracy?

Introduction

Realizations from model

MAE

MSE

52.96

201.32

- From sample realizations, we observe a degree of similarity between any two given realizations.
- > This similarity can be quantified by estimating the probability density of the points.
- > We make use of Kernel Density Estimation for this purpose.

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

- ➤ In KDE, we use a Gaussian kernel to model the density function.
- ➤ After learning the probabilistic distribution of points in a map, new points can be sampled and fused to obtain the final map.

Results JHU_Crowd | Shtech-A | Shtech-B | UCF-CC | UCF-QNRF 51.82 46.35 77.4 203.194 81.25 261.28 117.103 Count using Predicted Count using Realizations KDE: 653 616. **Ground Truth: Ground Truth:** JHU_Crowd | Shtech-A | Shtech-B | UCF-CC | UCF-QNRF

44.29 7.02 87.22 70.19 79.24 13.19 196.98 99.32

Conclusion

- Fusing with KDE improves accuracy in high-density images, such as in UCF-CC and reduces computation.
- ➤ For low-density images, such as Shtech-B KDE may reduce accuracy by predicting incorrect locations.

Methodology

Final Fused Samples

head_points = denoise_and_threshold(crowd_map)
KDE = kde.fit(head_points)
Set initial values for k and β and remove outliers
Neighbours = NearestNeighbours(k + 1)
Neighbours.fit(head_points)
Set initial radius r by the definition of rejection radius

For each point in 4 * head_points_count:
 dist = euclidean(point - head_points)
 If dist > r for all head_points:
 Add point to head_points
 Neighbours.fit(head_points)
 Update r, k, and β as necessary

Return head_points