Housing Prices Prediction

BIA 652 Fall 2018 Alex Caruso and Alicia Kohl

Background Info

Housing dataset from Kaggle for home prices in King County in Washington State, which includes Seattle, from May 2014-2015. There were approximately 22,000 observations.

The data will be used to accurately predict housing prices and the weight different attributes such as number of bedrooms, type of view, etc. have on the price of homes in the given area.

Problem Statement

- Problem Statement: Accurately predict home prices based on their characteristics and dimensions
- Application: Services like Zillow, Real Estate Firms, and Independent Home Seller or Buyers can benefit from strong predictive models for home pricing
- Potential Business Impacts:
 - Quicker home sales
 - Fair deals for buyers and sellers due to more accurate pricing
 - Determination of most important features in home value
 - This helps renovators / house flippers optimize their spending

Dataset

Raw Data Snapshot

price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode
221900.0	3	1.00	1180	5650	1.0	0	0	3	7	1180.0	0	1955	0	98178
538000.0	3	2.25	2570	7242	2.0	0	0	3	7	2170.0	400	1951	1991	98125
180000.0	2	1.00	770	10000	1.0	0	0	3	6	770.0	0	1933	0	98028
604000.0	4	3.00	1960	5000	1.0	0	0	5	7	1050.0	910	1965	0	98136
510000.0	3	2.00	1680	8080	1.0	0	0	3	8	1680.0	0	1987	0	98074
1225000.0	4	4.50	5420	101930	1.0	0	0	3	11	3890.0	1530	2001	0	98053
257500.0	3	2.25	1715	6819	2.0	0	0	3	7	1715.0	0	1995	0	98003
291850.0	3	1.50	1060	9711	1.0	0	0	3	7	1060.0	0	1963	0	98198
229500.0	3	1.00	1780	7470	1.0	0	0	3	7	1050.0	730	1960	0	98146
323000.0	3	2.50	1890	6560	2.0	0	0	3	7	1890.0	0	2003	0	98038

Descriptive Statistics

- 21,613 observations
- 21 attributes/features
- Average Home Price: \$540,000
- Median Home Price: \$450,000
- Range:
 - o Min: \$75,000
 - o Max: \$7,700,000
- Standard Deviation of Price: \$367,000

Independent Variable Distributions

Independent Variable Distributions

Distribution of Price Variable

Price QQ Plot

Logistic Transformation

Price Distribution following Logistic Transformation

QQ Plot following Logistic Transformation

Correlation Analysis

Continuous Variable Correlations

Categorical Variable Correlations

Correlation Ratios

Data Preprocessing

Key Steps

- Filled null values with the avg for that column
- Created binary dummy variables for **year_renovated**, **view**, and **waterfront**
 - One-hot encoding: n-1 dummy columns where n is the number of unique values for the feature
 - Dropped one column from each 'set' of binary columns to reduce multicollinearity
 - Removal of view_4 due to 0.6 correlation with waterfront_1
- Removal of sqft_above, sqft_living15, and sqft_lot15 variables due to high correlations
- Normalized continuous variables for PCA
- Clustered zip codes by average home prices

Zipcode Clustering (Tableau)

Principal Component Analysis

Overview of PCA

- Created 9 principal components from Z normalized continuous variables
 - Zipcode_cluster, bedrooms, bathrooms, sqft_living, sqft_lot, sqft_basement, yr_built, condition, grade
- Did not implement PCA for categorical variables
 - Not appropriate for one-hot encoded nominal features
- Resulting principal components were uncorrelated with categorical variables
- PCA was used to make features independent not for dimensionality reduction

Screen Plot & Variance Explained

Multiple Linear Regression Model

Analysis of Influential Points

- After an initial regression (with all principal components and categorical variables), influential points were identified and removed from the dataset
- Cutoff formulas used:
 - o Cook's D: 4/n
 - Dffits: [2*sqrt(p+1)] / [sqrt(n-p-1)]
 - Leverage: (2*p)/n
 - p=# of parameters
 - n=# of points

- # of high leverage points: 2462
- # of high Cook' D points: 1219
- # of high Dffits points: 593
- # of observations that exceed all 3 cutoffs: 413
 - These observations were removed from the dataset
 - After removing these observations, the final regression model was trained on the remaining data

R Squared, Model and Beta Significance

- Model is statistically significant with p-value
 <.0001
- Principal components
 1-4 and 6-9 and the categorical variables are significant at the
 .05 level.
- Prin5 was statistically insignificant with a p-value of .37.

Analysis of Variance										
Source	DF	Sum of Squares		F Value	Pr > F					
Model	13	4437.19903	341.32300	6123.93	<.0001					
Error	21186	1180.82180	0.05574							
Corrected Total	21199	5618.02083								

Root MSE	0.23608	R-Square	0.7898
Dependent Mean	13.03257	Adj R-Sq	0.7897
Coeff Var	1.81150		

Model Betas & Variance Inflation

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	Variance Inflation			
Intercept	1	13.02972	0.00173	7539.89	<.0001	0	0			
Prin1	1	0.19695	0.00091142	216.09	<.0001	0.69665	1.04762			
Prin2	1	0.10793	0.00133	81.07	<.0001	0.26063	1.04180			
Prin3	1	-0.11251	0.00179	-62.82	<.0001	-0.20036	1.02538			
Prin4	1	0.20562	0.00177	115.86	<.0001	0.36943	1.02487			
Prin6	1	-0.02161	0.00220	-9.83	<.0001	-0.03140	1.02752			
Prin7	1	-0.09284	0.00267	-34.78	<.0001	-0.11210	1.04745			
Prin8	1	-0.01210	0.00322	-3.76	0.0002	-0.01206	1.03681			
Prin9	1	-0.03354	0.00438	-7.66	<.0001	-0.02420	1.00633			
view_1	1	0.03135	0.01487	2.11	0.0350	0.00669	1.01428			
view_2	1	0.06627	0.00835	7.94	<.0001	0.02557	1.04565			
view_3	1	0.05475	0.01220	4.49	<.0001	0.01451	1.05341			
waterfront_1	1	0.35999	0.02409	14.94	<.0001	0.04768	1.02611			
renovated	1	0.02878	0.00861	3.34	0.0008	0.01105	1.10309			

- Before PCA, some VIF values were between 5-10.
- After PCA, all are about 1.
- Principal 1 and Principal 4 are the most important predictors

Analysis of Eigenvectors

Eigenvectors											
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9		
zipcode_cluster	0.204968	0.262643	494772	0.666079	079684	186559	0.392079	007809	074868		
bedrooms	0.354141	0.185410	0.096408	402294	0.115022	734661	0.201554	0.234577	0.143057		
bathrooms	0.480184	070482	000634	108311	0.122417	0.106708	0.087124	809346	0.252427		
sqft_living	0.499993	0.102991	0.082308	011904	032651	0.034786	345449	0.007910	781544		
sqft_lot	0.085457	055670	0.835686	0.498683	085551	097946	0.147731	002567	0.061640		
sqft_basement	0.221195	0.497894	0.102011	251971	562032	0.447646	0.240475	0.171487	0.160551		
yr_built	0.278170	543731	022831	114710	0.239135	0.327283	0.569307	0.325285	138120		
condition	083421	0.570439	0.134172	0.011915	0.752574	0.268812	0.088195	0.050974	022191		
grade	0.459820	095000	108770	0.239063	0.132728	0.153359	516897	0.389853	0.500254		

Fit Diagnostics

- Fit diagnostics are for log price
- Residuals approximate a normal distribution
- R squared: 0.79
- Durbin-Watson of 1.97 so no evidence of autocorrelation among independent variables

Predictions & Model Evaluation

Transforming Back to Original Scale & Predicting

- Take exponential of the log values for prices
 - Scaled predictions = e^(ln(price))
- R² based on original scale is 0.79
 - Some accuracy is lost when transforming predictions back to original scale
- Mean Absolute Error is \$96,050
- Median Absolute Error is \$65,520

Residuals for Scaled Predictions

- Residual distribution is skewed due to outliers
- After filtering outlier residuals from the graph, the approximate normal distribution becomes clear

Residual and QQ Plot for Scaled Predictions

Residuals:

 Residuals show Predicted values are mostly normal aside from a few outliers

• QQ Plot:

 Shows normal distribution with most residuals within 3 standard deviations

Conclusion

Conclusions

- Which factors are the most important predictors of home price?
 - Principal Components 1 and 4 have the highest standardized betas (0.696 and 0.369, respectively)
 - Principal 1 is composed mostly of the following variables: sqft_living,
 bathrooms, grade
 - Principal 4 is composed mostly of the following variables: zipcode_cluster and sqft_lot
- R^2 overall explains 79% of the variation in home prices
- Significant outliers in the field, some unique homes may need to be priced individually by experts in the field

Thank You! Questions?

Appendix: Test and Training Data

Cross Validation

- Split data into 75% training and 25% test (randomly sampled)
- Ran initial regression on training data and removed influential observations
- Reran regression without influential points
- Applied regression equation to test data to get predictions
- Scaled predictions back to original range

Comparison of Accuracy on Full Data & Test

Data

Accuracy Full Dataset (21,613 rows)

- $R^2 = 0.76$
- RMSE = 168,778
- Mean Absolute Error = 96.050
- Median Absolute Error = 65,520

Accuracy for Test Dataset (5,403 rows)

- R^2=0.738
- RMSE=186,507
- Mean Absolute Error = 105,534
- Median Absolute Error = 67,683

- The disparity in results shows the model slightly overfit the training data
- Possible reason for this is that we removed influential points from training data, but not the test data