

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа по дисциплине Вычислительная Математика №6 «ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

Вариант 12

Преподаватель: Машина Екатерина Алексеевна

Выполнил: Печкуров Данила Алексеевич

Группа: Р3208

Санкт-Петербург, 2024г

Цель работы:

решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Листинг программы:

```
def euler(self, x0, y0, h, n):
   y values = [y0]
   y = y0
       y += h * self.f(x, y)
       x values.append(x)
       y values.append(y)
def runge kutta 4(self, x0, y0, h, n):
   x values = [x0]
   y values = [y0]
        k3 = h * self.f(x + 0.5 * h, y + 0.5 * k2)
       k4 = h * self.f(x + h, y + k3)
       x values.append(x)
       y values.append(y)
def milne(self, x0, y0, h, n):
```

Пример и результаты работы программы:

Выберите уравнение:

1.
$$y' = y+(1+x)y^2$$

2.
$$y' = y + 2x$$

3.
$$y' = x^2 - y$$

Введите номер выбранного уравнения: 1

Введите начальное значение х: 0

Введите начальное значение у: -1

Введите шаг h: 0.1

Введите количество шагов n: 5

Метод Эйлера:

i	xi	yi	Inaccuracy
0	0.0000	-1.0000	0.0000
1	0.1000	-1.0000	0.0909
2	0.2000	-0.9900	0.1567
3	0.3000	-0.9714	0.2022
4	0.4000	-0.9459	0.2316
5	0.5000	-0.9152	0.2485

Метод Рунге-Кутты 4-го порядка:

i	xi	yi	Inaccuracy
0	0.0000	-1.0000	0.0000
1	0.1000	-0.9952	0.0861
2	0.2000	-0.9816	0.1483
3	0.3000	-0.9608	0.1916
4	0.4000	-0.9343	0.2200
5	0.5000	-0.9037	0.2371

Метод Милна:

i	xi	yi	Inaccuracy
0	0.0000	-1.0000	0.0000

1	0.1000	-0.9992	0.0901
2	0.2000	-0.9965	0.1631
3	0.3000	-0.9920	0.2228
4	0.4000	-0.9589	0.2446
5	0.5000	-0.9279	0.2612

Process finished with exit code 0

Вывод:

В ходе лабораторной работы я познакомился с численным решением обыкновенных дифференциальных уравнений.