Automated Subject Indexing

Eliot Kmiec

Data Scientist

About Me

- Augustana College 2020
 - Biochemistry, Public Health
- Fields of Interest:
 - Bioinformatics
 - Cloud Computing

Why Automate Database Indexing?

- Subject headings are powerful indexing tools
- Labor intensive
- Ongoing work to automate MeSH for PubMed
- Saves Money, Streamlines Research
- Bring this technology to arXiv

Implementing Automated Indexing

Supervised Arm

Identifying the subject of an article

Unsupervised Arm

Identifying new subjects for the database

Approach to Modeling

NLP with RNNs

Data Structure

- Abstracts : Subject Headings
- Available from <u>Kaggle</u>
- 1.5 mil abstracts

Technical Hurdles

- Data Sparsity/High Dimensionality
- Numerous Categories/Subjects

Model Architecture

- Recurrent Neural Networks
- Retain more info VS. traditional models

The Good

- RNNs scale well
- Accurate even with few examples

The Bad

- Lots of parameters
- Lots of resources to train

The Ugly

- Prone to gradient instability
- Initial models had "exploding gradient"

Using RNNs for NLP

Training Hurdles

The Modeling Process

Gated Recurrent Units

- Basis of the model
- Hidden State
- Gate controlled

Gradient Explosion

- Gradient Clipping
- Batch Normalization
- Categorical Hinge
 Loss
- AMSgrad optimizer

Big Data and Embedding

- Abstracts --> Matrices
- Initially over 100 million params
- (est. 1 month training)

Resource Constraints

- AWS EC2
- GPU access denied
- Used a subset of the
 10 most common
 subjects

Model Training & Gradient Instability

Accuracy

51.7%

Loss

0.541

AUC Score

0.395

Test Scores and Remaining Issues

- 10-classes with 18% dummy model accuracy
- Varying degrees of convergence for most models
- MeSH studies have shown near 80% accuracy

Next Steps

- Parallelize training on GPU cores
- Further work on stabilizing the gradient
- Expand model training to all subjects

Questions?

Project Github

https://github.com/ek775

Eliot Kmiec