Prob. Cons Prob & Counting

Sampling: n items k draws:

no replacement ordered:
$$n \cdot (n-1) \cdots (n-k+1)$$
 unordered: $\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$

replacement ordered:
$$n^k$$
 unordered: $\binom{n+k-1}{k}$

Axioms of Prob:
$$P(\varnothing)=0, P(S)=1$$

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P(A_{n}) \text{ if disjoint }$$

$$\begin{aligned} & \text{Inc-Exc: } P\left(\bigcup_{i=1}^n A_i\right) = \sum_i P(A_i) - \sum_{i < j} (A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \cdots \\ & \text{Chain Rule: } P(A_1 \cap \cdots \cap A_n) = \prod_{j=1 \ldots k} P(A_j | A_1 \cap \cdots \cap A_{j-1}) \end{aligned}$$

LOTP:
$$P(B) = \sum_{i=1}^n P(B|A_j) P(A_j)$$
 if A_1, \dots, A_n is a partition

Indep:
$$P(A \cap B) = P(A)P(B)$$

Cond Indep:
$$P(A \cap B|C) = P(A|C)P(B|C)$$

Cond Bayes:
$$P(A|B,E) = \frac{P(B|A,E)P(A|E)}{P(B|E)}$$

Cond LOTP:
$$P(B|E) = P(B|A,E)P(A|E) + P(B|A^c,E)P(A^c|E)$$

Random Variables & Joint Distribution

Indicator rv: I(A) = 1 if A occurs, 0 otherwise E(I(A)) = P(A)

PMF Properties (drv/crv):

I. Nonnegative:
$$P(X=x) \geq 0/f(x) \geq 0$$

II. Sums/Integrates to 1:
$$\sum P(X=x) = 1 \int_{-\infty}^{\infty} f(x) dx = 1$$

CDF Properties:
$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 for continuous

I. Increasing:
$$x_1 \leq x_2 \rightarrow F(x_1) \leq F(x_2)$$

II. Right continuous:
$$F(a) = \lim_{x \to a^+} F(x)$$

III. Convergence:
$$\lim_{x \to -\infty} F(x) = 0 \wedge \lim_{x \to \infty} F(x) = 1$$

Expectation:

Discrete:
$$E(X) = \sum x P(X = x)$$
 Continuous: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Expectation Properties: (linearity)

$$E(cX) = cE(X)$$
 $E(X+Y) = E(X) + E(Y)$

LOTUS:

Discrete:
$$E(g(x)) = \sum_{x} g(x)P(X = x)$$

Discrete 2D:
$$E(g(X,Y)) \sum_{x} \sum_{y} g(x,y) P(X=x,Y=y)$$

Continuous:
$$E(g(X))=\int_{-\infty}^\infty g(x)f(x)dx$$
 Continuous 2D: $E(g(X,Y))=\int_{-\infty}^\infty \int_{-\infty}^\infty g(x,y)f_{X,Y}(x,y)dxdy$

Variance: $Var(X) = E(X - \mu)^2 = E(X^2) - (E(X))^2$

Variance Properties:

I.
$$\operatorname{Var}(cX) = c^2 \operatorname{Var}(X) \quad \operatorname{Var}(X+c) = \operatorname{Var}(X)$$

II.
$$\operatorname{Var}(X+Y) \neq \operatorname{Var}(X) + \operatorname{Var}(Y)$$
 unless indep

Covariance: indep $\Rightarrow Cov(X, Y) = 0$

$$Cov(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

Covariance Properties:

$$\operatorname{Cov}(X,X) = \operatorname{Var}(X) \quad \operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X) \quad \operatorname{Cov}(X,c) = 0$$

$$Cov(X, Y + c) = Cov(X, Y)$$
 $Cov(aX, Y) = aCov(X, Y)$

$$\mathrm{Cov}(X+Y,Z)=\mathrm{Cov}(X,Z)+\mathrm{Cov}(Y,Z)$$

$$\operatorname{Var}(X_1+\cdots+X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2\sum_{i < j} \operatorname{Cov}(X_i,X_j)$$

$$\underline{\textbf{Correlation}} : \operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} - 1 \leq \operatorname{Corr} \leq 1$$

Named Distributions

• BINOMIAL $Bin(n, p) \equiv \sum n \text{ i.i.d } Bern(p)$

$$X \sim \mathrm{Bin}(n,p), \ Y \sim \mathrm{Bin}(m,p) \Rightarrow X + Y \sim \mathrm{Bin}(n+m,p)$$

• NEGATIVE BINOMIAL $\operatorname{NBin}(\mathbf{r}, \mathbf{p}) \equiv \sum r \text{ i.i.d Geom}(p)$

• POISSON
$$X \sim \text{Pois}(\lambda_1), Y \sim \text{Pois}(\lambda_2) \Rightarrow X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$$

UNIFORM

Universality of the Uniform: F a continuous & strictly increasing CDF

I. Let $U \sim \mathrm{Unif}(0,1)$, $X = F^{-1}(U)$, then X is an r.v. with CDF F

II. Let X be an r.v. with CDF F, then $F(X) \sim \mathrm{Unif}(0,1)$

NORMAL

Symmetry of \mathcal{Z} :

I. Symmetry of PDF: $\varphi(z) = \varphi(-z)$

II. Symmetry of CDF tail areas: $\Phi(z) = 1 - \Phi(-z)$

III. Symmetry of \mathcal{Z} and $-\mathcal{Z}$: $P(-\mathcal{Z} < z) = P(\mathcal{Z} > -z) = 1 - \Phi(-z)$

EXPO

Memoryless: $P(X \ge s + t | X \ge s) = P(X \ge t)$, Expo the only memoryless c.r.v

$$T_1 \sim \operatorname{Expo}(\lambda_1), \, T_2 \sim \operatorname{Expo}(\lambda_2) \Rightarrow P(T_1 < T_2) = rac{\lambda_1}{\lambda_1 + \lambda_2}.$$

• BETA Beta $(1,1) \equiv \text{Unif}(0,1)$

Normalising factor:
$$\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

 $a<1,b<1\Rightarrow$ U-shaped upward $a>1,b>1\Rightarrow$ U-shaped downward $a=b\Rightarrow$ symmetric about 1/2 $a<|>b\Rightarrow$ favours <| > than 1/2

• GAMMA

$$\begin{aligned} & \textbf{Gamma Function: } \Gamma(a) = \int_0^\infty x^a e^{-x} \frac{dx}{x} \\ & \Gamma(a+1) = a\Gamma(a) \quad \Gamma(n) = (n-1)! \quad \Gamma(\frac{1}{2}) = \sqrt{\pi} \\ & X \sim \operatorname{Gamma}(a,\lambda), Y \sim \operatorname{Gamma}(b,\lambda) \Rightarrow X + Y \sim \operatorname{Gamma}(a+b,\lambda) \\ & X \sim \operatorname{Gamma}(a,1) \Rightarrow E(X^c) = \frac{\Gamma(a+c)}{\Gamma(a)} \\ & Y \sim \operatorname{Gamma}(a,\lambda) \Rightarrow E(Y^c) = \frac{1}{\lambda^c} \frac{\Gamma(a+c)}{\Gamma(a)} \end{aligned}$$

Connections Between Distributions

Pois & Bin

$$X \sim \operatorname{Pois}(\lambda_1), \ Y \sim \operatorname{Pois}(\lambda_2) \Rightarrow X | (X + Y = n) \sim \operatorname{Bin}(n, \lambda_1 / (\lambda_1 + \lambda_2))$$

 $N \sim \operatorname{Pois}(\lambda), \ X | (N = n) \sim \operatorname{Bin}(n, p) \Rightarrow X \sim \operatorname{Pois}(\lambda p), \ N - X \sim \operatorname{Pois}(\lambda (1 - p))$
 $X \text{ and } N - X \text{ indep}$

Pois & Expo

Poisson Process:
$$P(T_n > t) = P(N_t < n)$$

I. #arrivals in interval t is $Pois(\lambda t)$

II. #arrivals in disjoint intervals are indep

$$X_1=t_1, X_2=t_2-t_1, \cdots \Rightarrow X_1, X_2, \cdots \overset{ ext{i.i.d}}{\sim} \operatorname{Expo}(\lambda)$$

Gamma & Expo

$$X_1, \ldots, X_n \overset{\text{i.i.d}}{\sim} \text{Expo}(\lambda) \Rightarrow X_1 + \cdots + X_n \sim \text{Gamma}(n, \lambda)$$

Beta & Gamma

$$X \sim \operatorname{Gamma}(a,\lambda), Y \sim \operatorname{Gamma}(b,\lambda) \Rightarrow T = X + Y \sim \operatorname{Gamma}(a+b,\lambda) \ W = rac{X}{X+Y} \sim \operatorname{Beta}(a,b), rac{1}{eta(a,b)} = rac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$$

T and W indep

Beta & Bin Conjugacy

Prior dist: $p \sim \mathrm{Beta}(a,b),\, X|p \sim \mathrm{Bin}(n,p)$

Posterior dist: $p|(X=k) \sim \mathrm{Beta}(a+k,b+n-k)$

$$P(X=k) = \binom{n}{k} \frac{\beta(a+k,b+n-k)}{\beta(a,b)}$$

Gamma & Pois Conjugacy

Prior dist: $\lambda \sim \operatorname{Gamma}(n_0,\lambda_0), X | \lambda \sim \operatorname{Pois}(\lambda t)$

Posterior dist: $\lambda | (X=x) \sim \operatorname{Gamma}(n_0 + x, \lambda_0 + t)$

Moments

 N^{th} moment of X: $E(X^n)$ MGF : $M(t)=E(e^{tX})$ Discrete: $\sum_x e^{tx} P(X=x)$ Continuous: $\int_{-\infty}^\infty e^{tx} f_X(x) dx$

MGF is useful because:

I. Can be used to calculate moments

II. Determines a distribution uniquely

III. Works well with sum of indep r.v.s $M_{X+Y}(t) = M_X(t) M_Y(t)$

Transformations

1-var:
$$Y=g(X)\Rightarrow f_Y(y)=f_X(x)\left|rac{dx}{dy}
ight|,\ x=g^{-1}(y)\qquad f_Y(y)dy=f_X(x)dx$$
 multi-var:

$$ec{Y} = g\left(ec{X}
ight), ec{X} = (X_1, \dots, X_n) \Rightarrow f_{ec{Y}}(ec{y}) = f_{ec{X}}(ec{x}) \cdot \left|\det\left(rac{\partial x}{\partial y}
ight)
ight|, \, x = g^{-1}(y)$$

Jacobian matrix:
$$\frac{\partial x}{\partial y} = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \cdots & \frac{\partial x_n}{\partial y_n} \end{pmatrix}$$

Convolutions: determine dist of T=X+Y, X,Y indep: story/MGF/convolution Discrete: $P(T=t)=\sum_x P(Y=t-x)P(X=x)=\sum_y P(X=t-y)P(Y=y)$ Continuous: $f_T(t)=\int_{-\infty}^{\infty} f_Y(t-x)f_X(x)dx=\int_{-\infty}^{\infty} f_X(t-y)f_Y(y)dy$

<mark>Multinomial</mark>

$$ar{X} \sim \operatorname{Mult}_k(n, ec{p}) \Rightarrow \sum_{j=1}^k p_j = 1, \, X_1 + \cdots + X_k = n$$
PMF: $rac{n!}{n_1! n_2! \cdots n_k!} \cdot p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$

Marginal: $\tilde{X}_i \sim \ddot{\mathrm{Bin}}(n,p_i)$

Lumping: $(X_1 + X_2, X_3, \dots, X_k) \sim \text{Mult}_{k-1}(n, (p_1 + p_2, p_3, \dots, p_k))$

Cond: $(X_2,\ldots,X_k)|(X_1=n_1)\sim \mathrm{Mult}_{k-1}(n-n_1,(p_2',\ldots,p_k'))$

$$P_j'=p_j/((p_2+\cdots+p_k))$$

 \mathbf{Cov} : i
eq j , $\mathrm{Cov}(X_i, X_j) = -np_ip_j$

$$extbf{Corr:}\operatorname{Corr}(X_i)(X_j) = -\sqrt{rac{p_i p_j}{(1-p_i)(1-p_j)}}$$

Order Statistics

$$P(X_{(j)} \leq x) = P(ext{at least } j ext{ to the left of } x) = \sum_{k=j}^n inom{n}{k} F(x)^k (1-F(x))^{n-k}$$
 $f_{X_{(j)}}(x) dx = P(j-1 ext{ left, } n-j ext{ right)} = n \cdot inom{n-1}{j-1} f(x) F(x)^{j-1} (1-F(x))^{n-j}$
 $X_1, \dots, X_n \overset{ ext{i.i.d}}{\sim} ext{Unif}(0,1) \Rightarrow X_{(j)} \sim ext{Beta}(j,n-j+1)$
 $E(X_{(j)}) = \frac{j}{n+1}$

Cond Expectation & Variance

Cond Expectation Given Event:

Discrete:
$$E(Y|A) = \sum_{y} y P(Y=y|A)$$
 Continuous: $E(Y|A) = \int_{-\infty}^{\infty} y f(y|A) dy$

Cond Expectation Given r.v.: q(x) = E(Y|X=x), E(Y|X) = q(X)

Properties:

I. Dropping what's independent: X,Y indep $\Rightarrow E(Y|X)=E(Y)$

II. Taking out what's known: E(h(X)Y|X) = h(X)E(Y|X)

III. Linearity: $E(Y_1 + Y_2) = E(Y_1|X) + E(Y_2|X)$, E(cY|X) = cE(Y|X)

IV. Adam's Law: E(E(Y|X)) = E(Y), E(E(Y|X,Z)|Z) = E(Y|Z)

LOTE: $E(Y) = \sum_{i=1}^{n} E(Y|B_i)P(B_i)$ $Y = I(B) \Rightarrow E(Y) = P(B)$ reduces to LOTP

Cond Variance:

$$Var(Y|X) = E((Y - E(Y|X))^{2}|X) = E(Y^{2}|X) - (E(Y|X))^{2}$$

Eve's law: Var(Y) = E(Var(Y|X)) + Var(E(Y|X)) (within-grp + between-grp)

Inequalities & Limit Theorems

Markov: P(|X| > a) < E(|X|)/a

Chebyshev: $P(|X-\mu|\geq a)\leq \sigma^2/a^2$ $P(|X-\mu|\geq c\sigma)=1/c^2$ Cauchy-Schawarz: $|E(XY)|\leq \sqrt{E(X^2)E(Y^2)}$

Jensen: $g ext{ convex} \Rightarrow E(g(X)) \geq g(E(X))$ $g ext{ concave} \Rightarrow E(g(X)) \leq g(E(X))$

Sample Mean & Variance:

$$egin{aligned} ar{X}_n &= (X_1 + \dots + X_n)/n & E(ar{X}_n) &= \mu & \operatorname{Var}(ar{X}_n) &= \sigma^2/n \ S_n^2 &= 1/(n-1) \sum_{j=1}^n (X_j - ar{X}_n)^2 \end{aligned}$$

Strong LLN: $P(\bar{X}_n \to \mu) = 1 \text{ as } n \to \infty$

Weak LLN: $\forall \epsilon > 0, P(|\bar{X}_n - \mu| \geq \epsilon) \to 0 \text{ as } n \to \infty$

CLT:
$$\sqrt{n}\left(rac{ar{X}_n-\mu}{\sigma}
ight) o \mathcal{N}(0,1) ext{ as } n o\infty$$

PDF/PMF	Discrete	Continuous
Joint	$p_{X,Y}(x,y) = P(X = x, Y = y) \ P((X,Y) \in A) = \sum_{(x,y) \in A} P(X = x, Y = y)$	$f_{X,Y}(x,y) = rac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) \ P((X,Y) \in A) = \iint_A f_{X,Y}(x,y) dx dy$
Marginal	$P(X=x) = \sum_y P(X=x,Y=y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Cond	$P(Y=y\mid X=x)=rac{P(X=x,Y=y)}{P(X=x)}$	$f_{Y\mid X}(y\mid x) = rac{f_{X,Y}(x,y)}{f_X(x)}$
Indep	P(X=x,Y=y)=P(X=x)P(Y=y)	$f_{X,Y}(x,y)=f_X(x)f_Y((y))$

Discrete $X\sim$	PMF $P(X=k)$	E(X)	$\mathrm{Var}(X)$	MGF $M(t)$
$\mathrm{Bern}(p)$ One time	$k=1\Rightarrow p$ $k=0\Rightarrow 1-p$	d	p(1-p)	$pe^t+(1-p)$
$\mathrm{Bin}(n,p)$ #S in n trials	$\binom{n}{k} p^k (1-p)^{n-k}$	du	np(1-p)	$(pe^t+(1-p))^n$
$\operatorname{Geom}(p)$ #F before $1^{ ext{st}}$ S	$p(1-p)^k$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1-(1-p)e^t}$
$\mathrm{NBin}(r,p)$ #F before $r^{ ext{th}}$ S	$\binom{k+r-1}{r-1}p^r(1-p)^k$	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)^r$
$\mathrm{HGeom}(w,b,n)$ # w in chosen n	$\frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{n}}$	$n - \frac{w}{w + b}$	$\frac{w+b-n}{w+b-1}np(1-p)$	×
$\operatorname{Pois}(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!}$	~	Κ	$\exp\big(\lambda(e^t-1\big))$

Continuous	PDF $f(x)$	$CDF\:F(x)$	E(X)	$\operatorname{Var}(X)$	MGF $M(t)$
$U \sim \mathrm{Unif}(a,b)$	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb}-e^{ta}}{\overline{t(b-a)}}$
$\mathcal{Z} \sim \mathcal{N}(0,1)$	$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$	$\Phi(z)$	0	П	$e^{t^2/2}$
$X \sim \mathcal{N}(\mu, \sigma^2) \ X = \mu + \sigma \mathcal{Z}$	$\varphi\left(\frac{x-\mu}{\sigma}\right)\frac{1}{\sigma}$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	η	σ^2	$e^{\mu t + rac{1}{2}\sigma^2 t^2}$
$X \sim \operatorname{Expo}(\lambda) \ \lambda X \sim \operatorname{Expo}(1)$	$e^{-\lambda x}$	$1 - e^{-\lambda x}$	1 <	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda-t}$
$X \sim \operatorname{Gamma}(a,\lambda) \ \lambda X \sim \operatorname{Gamma}(a,1)$	$\frac{1}{\Gamma(a)}(\lambda x)^a e^{-\lambda x} \frac{1}{x}$	×	$\gamma \mid a$	$\frac{a}{\lambda^2}$	$\left(rac{\lambda}{\lambda-t} ight)^a$
$X \sim \mathrm{Beta}(a,b)$	$\frac{1}{\beta(a,b)}x^{a-1}(1-x)^{b-1}$	×	$\frac{a}{a+b}$	×	×