Linear Regression Mecap. Yi= るもち、Xi ナミi, T=1,...,n Using the US principle, we tried to find estimates (Bo, B1) of the true pavameters (Bo, B). Specifically the CS estimates are: (30,31) = argmin Q (30, B1) 2 armin 2 (y; -B,-B,xi)2
Pos B, 121 We found a closed from: The state of the s 2 xi2 - vx2 = 2 (xi-x) J-BIX (MC 7=BotPIX

Properties of LS	S ESTANCIOS:	
	ests any soil?	
Gauss - Markov		
	CR model assumption, the LS estimates	
最早第1		
	ed for Bo & B, respectively,	
	$E(\beta_0) = \beta_0$ $E(\beta_0) = \beta_0$ $E(\beta_0) = \beta_0$	
	E(B1) = B1	
ii. the LS	estimates are BLUE.	
n best	line unlased estmators"	
j.l.	some other linear unbaised es	ን
Var	Bo) \(\text{Vav (Bo)} \)	
Vav CF	31) = (CC 31)	
	\(\frac{1}{4}\tau\)	

Hor do l know this? i. How can I show E(B))= B, = WTS: $E(\beta_1) = E\left(\frac{\sum_{i=1}^{\infty} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{\infty} (x_i - \bar{x})^2}\right) = B_1$ Def: $88X = \sum_{i=1}^{\infty} (x_i - x_i)^2$ (denom) $SSX1=\frac{3}{2}(x_1-x_2)(y_1-y_2)$ Lemma: Claim: $85\times y=\frac{n}{2}(x_1-x_2)y_1$ MNAZ SSXY= = [(xi-x)(yi-y)= = [(xi-x)yi - (xi-x)y] = \(\frac{1}{2} \chi \ G WTS =0 $\frac{7}{2}(x_1x_2)y = y = \frac{5}{2}(x_1x_2)$ $\int_{i=1}^{\infty} a c_i = a \sum_{i=1}^{\infty} c_i$ $= 7 \left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i \right)$

$$\frac{2}{2} = \frac{88xy}{89x} = \frac{2}{2} \frac{(x_1 - x_2)y_1}{2}$$

$$= \frac{1}{2} \frac{x_1 - x_2}{2} \frac{y_1}{2} = \frac{1}{2} \frac{x_1 y_2}{2} \frac{y_1}{2}$$

$$= \frac{1}{2} \frac{x_1 - x_2}{2} \frac{y_1}{2} = \frac{1}{2} \frac{x_1 y_2}{2} \frac{y_1}{2}$$

$$= \frac{1}{2} \frac{x_1 - x_2}{2} \frac{y_1}{2} = \frac{1}{2} \frac{x_1 y_2}{2}$$

$$= \frac{1}{2} \frac{x_1 - x_2}{2} \frac{y_1}{2}$$

$$= \frac{1}{2} \frac{x_1 - x_2}{2} \frac{x_1 - x_2}{2}$$

$$= \frac{1}{2}$$

1 Want toshow Var(BI) >, 03/SSX = 02 \ E ki2 Write B, = 2 ki y; = 2 (kitdi) yi di= ki-ki for at least one 1=1,-7 Vav(B))= Vov (Z (xitdi)yi) $= \sum_{i=1}^{\infty} Var((kitd_i)y_i)$ $= \sum_{i=1}^{n} (k_i + q_i)^2 Vc(y_i)$ = 02 2 (kitd;)2 = 02 [5 (hi²+ 2kidi + di²)] = 0-2 [Ziki + 2 Zikidi + Zidi] A) I kidi = 0 (fry to show) B) $I_1d_1^2 > 0$ (easy to see) $Mot all di = 0 \Rightarrow one di^2 > 0 \Rightarrow Zidi^2 > 0$

Sampling Distribution of
$$\beta$$
 & β .

Slope: $E(\beta_1) = \beta_1$ under $(i-iii)$

Nart $(\beta_1) = 0$ /SSX under $(i-iii)$

1f I assume $(iv) \in Mornelity$ of errors:

 $\beta_1 \sim N(\beta_1, 0$ /SSX) with (iv)
 $(iv) = (iv)$
 $(iv) = ($

