Aim:

To describe the model planning and building of the whole data set.

code

model = Linear Regression()

model . fit (x-hain 1 y-hain)

y-pred = model. predict (x-test)

mse = mean-squared - everor (y-test, y-pred)

print ("Linear Regression MSE", mae)

	10	

code

79,10	TV	Radio	Newspaper	Salus
0	230.1	37.8	69.2	22.1
1	Hus	39 · 3	us-1	16.4
2	17-2	45.9	69.3	12.0
3	151.5	41.3	\$8.5	16.5
Ц	(80.8	(0.8	58.4	17.9

	TV RO	dio	Newspaper	Sales
count	200.0000	260.000	200 00000	200.0000
mian	147.042300	23.26480	30.55400	18.130500
sid	85.9 k 236	14 . 846807	21.778621	5.28852
min	0.700000	0.0000	0.30000	1.600007
25.1.	79.3373000	9.475000	12.7200300	11.00000
501.	149.78000	0 22.90000	25.750000	16.00000
max	296.4000	L7.6000.	114.00000	27.000
	State of			

The so I find from the sent of the

22.33.

pit. higure (hig size = (815))

sns. Scatterplat (x = y - hert, y = y - plat)

plt. x. label ('Achiel scales')

plt. y. label ('predicted scale)

plt. hittle ('Linear Regression: A chiel vs predictable')

pit. show!)

Kmean = kMean (n-cluster = 3, randem - stil = 0)

df ['cluster'] = kman. fit _ predictate (scaled)

plt-figure (fis Mze = 0; 6))

sns. scatter plat (data = of, x = 'TV', Y = 'saln',

hue = 'cluster', Pale = 'sol :')

pet. show()

Result:

The program has been executed successfully.