Rough Set Theory: A True Landmark in Data Analysis

gouziwu

July 26, 2019

Contents

1	Rou	ıgh Set	ts on Fuzzy Approximation Spaces and Intuition-	
	istic	Fuzzy	Approximation Spaces	2
	1.1	Introd	uction	2
		1.1.1	Fuzzy Sets	2
		1.1.2	Intuitionistic Fuzzy Sets	2
		1.1.3	Rough set	2
		1.1.4	Motivation	2
		1.1.5	Fuzzy proximity relation	2
		1.1.6	Intuitionistic fuzzy proximity relation	3
	1.2	Rough	Sets on Fuzzy Approximation	4
		1.2.1	Preliminaries	4
		1.2.2	Properties	4
		1.2.3	Reduction of Knowledge in Fuzzy Approximation Spaces	4
		1.2.4	Relative reducts and relative core of knowledge in fuzzy	
			approximation spaces	6
		1.2.5	Dependency of knowledge in fuzzy approximation spaces	6
		1.2.6	partial dependency of knowledge in fuzzy approxima-	
			tion spaces	6

1 Rough Sets on Fuzzy Approximation Spaces and Intuitionistic Fuzzy Approximation Spaces

1.1 Introduction

1.1.1 Fuzzy Sets

1.1.2 Intuitionistic Fuzzy Sets

the membership and nonmembership values of an element with respect to a collection of elements from a universe may not add up to 1 in all possible cases

Definition 1.1. An intuitionistic fuzzy set A on a universe U is defined by two functions: membership function μ_A and non-membership function ν s.t.

$$\mu_A, \nu_A : U \to [0, 1]$$

where $0 \le \mu_A(x) + \nu_A(x) \le 1$ for all $x \in U$.

The hesitation function Π_A for an intuitionistic fuzzy set is given by

$$\Pi_A(x) = 1 - \mu_A(x) - \nu_A(x)$$

1.1.3 Rough set

A knowledge base is also called an **approximation space**

1.1.4 Motivation

1.1.5 Fuzzy proximity relation

Definition 1.2. Let U be a universal set and $X \subseteq U$. Then a fuzzy relation on X is defined as any fuzzy set defined on $X \times X$

Definition 1.3. A fuzzy relation R is said to be fuzzy reflexive on $X \subseteq U$ if it satisfies

$$\mu_R(x,x) = 1$$
 for all x

Definition 1.4. A fuzzy relation R is said to be fuzzy symmetric on $X \subseteq U$ if it satisfies

$$\mu_R(x,y) = \mu_R(y,x)$$
 for all $x,y \in X$

Definition 1.5. A fuzzy relation on $X \subseteq U$ is said to be a *fuzzy proximity relation* if it is fuzzy reflexive and fuzzy symmetric.

Definition 1.6. Let $X, Y \subseteq U$. A fuzzy relation from X to Y is a fuzzy set defined on $X \times Y$ characterized by the membership function $\mu_R : X \times Y \to [0,1]$

Definition 1.7. For any $\alpha \in [0,1]$, the α -cut of R, denoted by R_{α} is a subset of $X \times Y$ given by $R_{\alpha} = \{(x,y) : \mu_R(x,y) \geq \alpha\}$

Let R be a fuzzy proximity relation on U. Then for any $\alpha \in [0,1]$ the elements of R_{α} are said to be α -similar to each other. $xR_{\alpha}y$.

Two elements x and y in U are said to be α -identical w.r.t. R $(xR(\alpha)y)$ if either x and y are α -similar or x and y are transitively α -similar, that is, there exists a sequence of elements u_1, u_2, \ldots, u_n in U s.t. $xR_{\alpha}u_1, u_1R_{\alpha}u_2, \ldots, u_nR_{\alpha}y$

1.1.6 Intuitionistic fuzzy proximity relation

Definition 1.8. An intuitionistic fuzzy relation on a universal set U is an intuitionistic fuzzy set defined on $U \times U$

Definition 1.9. An intuitionistic fuzzy relation R on a universal set U is said to be *intuitionstic fuzzy reflexive* if

$$\mu_R(x,x) = 1$$
 and $\nu_R(x,x) = 0$ for all $x \in X$

Definition 1.10. An intuitionistic fuzzy relation R on a universal set U is said to be *intuitionistic fuzzy symmetric* if

$$\mu_R(x,y) = \mu_R(y,x)$$
 and $\nu_R(x,y) = \nu_R(y,x)$ for all $x,y \in X$

Definition 1.11. intuitionistic fuzzy proximity

Define

$$J = \big\{(m,n) \mid m,n \in [0,1] \text{ and } 0 \leq m+n \leq 1\big\}$$

Definition 1.12. Le R be an IF-proximity relation on U. Then for any $(\alpha, \beta) \in J$ the (α, β) -cut of R, denoted by $R_{\alpha, \beta}$ is

$$R_{\alpha,\beta} = \{(x,y) \mid \mu_R(x,y) \le \alpha \text{ and } \nu_R(x,y) \le \beta\}$$

The relation $R(\alpha, \beta)$ is an equivalence relation.

1.2 Rough Sets on Fuzzy Approximation

1.2.1 Preliminaries

Definition 1.13. For any set of fuzzy proximity relation $K = (U, \mathfrak{R})$ is called a *fuzzy approximation space*

For any fixed $\alpha \in [0,1]$, \mathfrak{R} generates a set of equivalence relation $\mathfrak{R}(\alpha)$ and we call the associated space $K(\alpha) = (U, \mathfrak{R}(\alpha))$ as the *generated approximation space* corresponding to K and α

1.2.2 Properties

1.2.3 Reduction of Knowledge in Fuzzy Approximation Spaces

Definition 1.14. Let \mathfrak{R} be a family of fuzzy proximity relations on U and $\alpha \in [0,1]$. For any $R \in \mathfrak{R}$, we say that R is α -dispensable or α -superfluous in \mathfrak{R} if and only if $IND(\mathfrak{R}(\alpha)) = IND(\mathfrak{R}(\alpha) - R(\alpha))$

Consider $U = \{x_1, \dots, x_n\}$. Define the fuzzy proximity relations P, Q, R and S over U corresponding to the attributes a, b, c and d respectively.

Table 1: Fuzzy proximity relation for attribute R

Р	x_1	x_2	Х3	x_4	x_5
\mathbf{x}_1	1	0.3	0.6	0.8	0.5
x_2	0.3	1	0.7	0.4	0.4
x_3	0.6	0.7	1	0.2	0.8
x_4	0.8	0.4	0.2	1	0.5
x_5	0.5	0.4	0.8	0.5	1

Table 2: Fuzzy proximity relation for attribute Q

P	\mathbf{x}_1	x_2	x_3	x_4	x_5
\mathbf{x}_1	1	0.3	0.4	0.2	0.5
x_2	0.3	1	0.8	0.6	0.6
x_3	0.4	0.8	1	0.3	0.9
x_4	0.2	0.6	0.3	1	0.7
0.5	0.2	0.2	0.9	0.7	1

Table 3: Fuzzy proximity relation for attribute R

R	x_1	x_2	x_3	x_4	x_5
\mathbf{x}_1	1	0.3	0.2	0.8	0.7
x_2	0.3	1	0.5	0.3	0.5
x_3	0.2	0.5	1	0.6	0.4
x_4	0.8	0.3	0.6	1	0.9
x_5	0.7	0.5	0.4	0.9	1

Table 4: Fuzzy proximity relation for attribute S

\mathbf{S}	x_1	x_2	x_3	x_4	x_5
\mathbf{x}_1	1	0.3	0.2	0.2	0.5
x_2	0.3	1	0.5	0.3	0.2
x_3	0.2	0.5	1	0.2	0.4
x_4	0.2	0.3	0.2	1	0.5
x_5	0.5	0.4	0.4	0.5	1

Table 5: Fuzzy proximity relation for $IND(\Re(\alpha))$

<i>J</i> 1		v			((
$IND(\mathfrak{R}(\alpha))$	\mathbf{x}_1	x_2	x_3	x_4	x_5
$\overline{x_1}$	1	0.3	0.2	0.2	0.5
x_2	0.3	1	0.3	0.3	0.2
x_3	0.2	0.3	1	0.2	0.4
x_4	0.2	0.3	0.2	1	0.4
x_5	0.5	0.2	0.4	0.4	1

Suppose $\alpha = 0.6$, then we get

$$U/P(\alpha) = \{\{x_1, x_2, x_3, x_4, x_5\}\}$$

$$U/Q(\alpha) = \{\{x_1\}, \{x_2, x_3, x_4, x_5\}\}$$

$$U/R(\alpha) = \{\{x_1, x_3, x_4, x_5\}, \{x_2\}\}$$

$$U/S(\alpha) = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\}$$

1.2.4 Relative reducts and relative core of knowledge in fuzzy approximation spaces

Definition 1.15. Let P and Q be two fuzzy proximity relations over the universe U. For every fixed $\alpha \in [0,1]$, the α -positive region of P w.r.t. Q can be defined as

$$\alpha - POS_P Q = \bigcup_{X_\alpha \in U/Q} \underline{P} X_\alpha$$

Definition 1.16. Let P and Q be two families of fuzzy proximity relations on U. For every fixed $\alpha \in [0,1]$ and $R \in P$, R is (Q,α) -dispensable in P if

$$\alpha\text{-}POS_{I}ND(\boldsymbol{Q}) = \alpha\text{-}POS_{IND(\boldsymbol{P}-\{R\})}IND(\boldsymbol{Q})$$

- 1.2.5 Dependency of knowledge in fuzzy approximation spaces
- 1.2.6 partial dependency of knowledge in fuzzy approximation spaces