

Proportionnalité

La gazelle de Thomson, une antilope dans la réserve du Masaï Mara, Kenya.

La géométrie et le calcul utilisent souvent les mêmes techniques et l'un nous aide à comprendre l'autre...

La proportionnalité et Thalès, quel rapport?

Justement un rapport! Sur la figure ci-dessous, «comme pour des quantités », connaissant trois longueurs, on connaît la quatrième!

(DE) // (BC)

AB = 5

AD = 3

AC = 6

AE = ?

À l'aide du chapitre 11, vous devriez pouvoir calculer la longueur AE.

L'antilope court à la **vitesse** mouenne de 88 km.h-1, le lion à la vitesse moyenne de 80 km.h-1. Pourquoi alors le lion, qui court moins vite, parvient-il parfois à rattraper l'antilope?

C'est là tout le Secret des vitesses moyennes: elles éliminent les pointes de vitesse et les coups

de fatigue...

Attention toutefois: la proportionnalité n'est pas toujours applicable! Si un kilogramme de tomates coûte 2 euros, 10 kilogrammes coûteront 20 euros, sauf si le marchand fait une **remise**, ce qui peut arriver.

Un carré de 2 mètres de côté a une aire de 4 mètres carrés, mais un carré de côté de longueur double (4 mètres) aura une aire quadruple, soit 16 mètres carrés!

Pour bien commencer

QCM

Pour chaque cas, une seule des trois réponses proposées est exacte. Laquelle ?

		Α	В	С	
1	Masse (en kg) 2 5 9 Prix (en €) 8 20 36	Pour obtenir le prix, on multiplie la masse par 4	Pour obtenir le prix, on ajoute 4 à la masse	Pour obtenir la masse, on multiplie le prix par 4	
2	Deux kilogrammes d'abricots coûtent 4,50 €. Pour calculer le prix, en euros, de 5 kg de ce fruit, on calcule	$\frac{4,50}{2} \times 5$	$\frac{5}{4,50} \times 2$	4,50 2 : 5	
3	4	L'abscisse de A est 4	L'ordonnée de A est 4	L'ordonnée de A est 6	
4	50 % de 680 est égal à	340	1 360	34 000	
5	Si dans une classe de 30 élèves, 40 % des élèves sont des filles, alors il y a	9 garçons	12 garçons	18 garçons	
6	Un article coûte 72 €. Si l'on augmente son prix de 30 %, alors son nouveau prix est égal à	21,6€	102 €	93,6 €	
7	Luc avait 25 billes, il en a perdu 40 %. Il lui reste maintenant	10 billes	32 billes	15 billes	
8	Une durée de 3,4 h correspond à	3 h 15 min	3 h 24 min	200 min	
9	a, b, c et d sont quatre nombres relatifs avec $b \neq 0$ et $d \neq 0$. Si $\frac{a}{b} = \frac{c}{d}$ alors	$a \times d = b \times c$	$a \times b = c \times d$	$a \times c = b \times d$	

Exercice 1 Calculer x dans chacun des cas suivants.

a.
$$\frac{3}{2} = \frac{x}{4}$$

a.
$$\frac{3}{2} = \frac{x}{4}$$
. **b.** $\frac{x}{8} = \frac{5}{2}$.

c.
$$\frac{9}{x} = \frac{3}{2}$$
.

d.
$$\frac{8}{7} = \frac{3}{x}$$
.

Exercice 2 1 Convertir les durées suivantes en seconde.

- a. 43 min.
- **b.** 52 min.
- c. 3 h 20 min.
- Convertir les durées suivantes en un nombre décimal d'heures.
- a. 18 min.
- **b.** 3 h 15 min.
- c. 24 min.
- Convertir les durées suivantes en heure, minute, seconde.
- a. 72 min.
- **b.** 123 s.
- c. 3 685 s.

Exercice 3 Le mouvement d'un train est uniforme. Il parcourt 180 kilomètres en 1 heure. Quelle distance parcourt-il en :

- a. 3 h?
- **b.** 2 h 30 min?
- c. 5 h 21 min 36 s?

Activités

Activité 1 Proportionnalité et représentation graphique

On considère cinq situations, données par les tableaux 1 à 4 ci-dessous.

Tableau 1

Nombre de spectacles	0	2	4	6	8	10
Prix (en €)	20	26	32	38	44	50

Tableau 2

Âge (en année)	lé de Saint-Brieud à Pa	2	3	4	5
Taille (en cm)	75	85	95	100	105

Tableau 3

Longueur du côté d'un carré (en cm)	0	1 1 1 1 1 1	2	3	4	5
Aire du carré (en cm²)	0	1	4	9	16	25

Tableau 4

Masse de tomates (en kg)	2	5	9	12	15	20
Prix (en €)	5	12,5	22,5	30	37,5	50

Indiquer, pour chacune d'elles, s'il s'agit d'une situation de proportionnalité ou non. On justifiera chaque réponse.

On a représenté chaque situation dans un repère orthogonal et obtenu les graphiques suivants.

- a. Associer chaque graphique au tableau auquel il correspond.
- b. Qu'observe-t-on pour les points représentant les situations de proportionnalité?
- G. Qu'observe-t-on pour les points représentant les autres situations ?

Pour conclure Quelle propriété caractérise les points représentant une situation de proportionnalité?

<u>Activites</u>

Activité 2

Quatrième proportionnelle et produits en croix égaux

Avec 30 kg d'oranges, on a obtenu 18 L de jus.

On voudrait connaître la quantité de jus, notée x, que l'on obtiendrait avec 48 kg de ces mêmes oranges, sachant que la quantité de jus obtenu est proportionnelle à la masse d'oranges pressées.

- Que peut-on dire des quotients $\frac{30}{18}$ et $\frac{48}{r}$? Justifier.
- Que peut-on en déduire pour les produits en croix $30 \times x$ et 18×48 ?
- Recopier et compléter l'égalité : $x = \frac{\square \times \square}{\square}$, puis conclure.

Pour conclure Pour calculer la quatrième proportionnelle x du tableau de proportionnalité ci-contre, quelle égalité de produits peut-on utiliser?

а	Ь
С	x

Calculer la masse d'oranges nécessaire pour obtenir 66 L de jus.

Activité 3

Pourcentage relatif à la réunion de deux groupes

Dans la classe de Maud, il y a 20 élèves dont 40 % sont des filles.

Dans celle d'Émilie, il y a 30 élèves dont 60 % sont des filles.

Lors d'une rencontre sportive, les classes de Maud et Émilie sont réunies.

Maud dit: « Lors de cette rencontre, il y aura 50 % de filles! ».

Émilie répond : « Mais pas du tout, il y en aura 52 % ».

Qui a raison?

Activité 4

Vitesse moyenne

La famille Vadrouille, partie de Paris en voiture à 9 h 00, est arrivée à Lille à 11 h 30, après avoir parcouru 225 km.

- Quelle a été la durée du parcours, exprimée en nombre décimal d'heures ?
- Justifier que si le véhicule avait effectué le trajet à vitesse constante, alors cette vitesse aurait été égale à 90 kilomètres par heure.

En réalité, le mouvement d'une voiture n'est jamais uniforme (accélération, freinage, différentes limitations de vitesse, ...).

Aussi dit-on que la **vitesse moyenne** du véhicule de la famille Vadrouille a été 90 km·h⁻¹ (ou 90 km/h).

Pour conclure

Si un véhicule parcourt une distance d (en km) pendant une durée t (en h), alors à quel quotient sa vitesse moyenne v (en km·h⁻¹) durant ce trajet est-elle égale?

Activité 5 Calculer une vitesse moyenne, une distance, une durée

Pendant les dernières vacances, Cédric a fait le tour de la Bretagne en vélo.

Le premier jour, parti de chez lui à côté de Saint-Cast, il s'est arrêté Saint-Brieuc après avoir parcouru 54 km en 2 h 42 min.

À quelle vitesse moyenne a-t-il roulé?

Le deuxième jour, Cédric est allé de Saint-Brieuc à Paimpol en 2 h 24 min en ayant roulé à la vitesse moyenne de $17.5 \text{ km} \cdot \text{h}^{-1}$.

On désigne par d la distance parcourue par Cédric, exprimée en km.

- 3. Convertir la durée du parcours en un nombre décimal d'heure.
- **b.** Recopier et compléter l'égalité suivante : $17,5 = \frac{d}{\Box}$
- **G.** En déduire la valeur de d.

Après avoir campé quelques jours sur l'île de Bréhat, il est parti de Paimpol à 11 h 00 et s'est arrêté à Perros-Guirec après avoir parcouru 39 km à la vitesse moyenne de 15 km \cdot h⁻¹.

On désigne par t la durée de ce parcours, exprimée en heure.

- a. Recopier et compléter l'égalité suivante : $15 = \frac{1}{4}$
- **b.** En déduire la valeur de t.
- . À quelle heure Cédric est-il arrivé à Perros-Guirec ?

Pour conclure Soit v la vitesse moyenne d'un mobile ayant parcouru la distance d pendant la durée t. Justifier que lorsque l'on connaît deux des trois nombres v, d, t, on peut alors calculer le troisième.

Activité 6 Vitesse moyenne sur un parcours en deux étapes

Un camion parcourt 176 km à la vitesse moyenne de 55 km \cdot h⁻¹. Après avoir livré sa cargaison, il repart à vide et parcourt 56 km à la vitesse moyenne de 70 km \cdot h⁻¹.

- 3. Calculer la moyenne des deux vitesses données dans l'énoncé.
 - b. Le résultat obtenu est-il la vitesse moyenne du camion sur l'ensemble du parcours ?
- Proposer une phrase qui explique comment est définie la vitesse moyenne du camion sur l'ensemble du parcours.
- Calculer cette vitesse moyenne.