# **Index Models**

#### The purpose

- Learn what index models are: theory-less statistical models that decompose return volatility into firm-specific and covariance related components
   Notice I am NOT saying systematic, but rather covariance. While most
  - Notice I am NOT saying systematic, but rather covariance. While most systematic risks are also covariance risks. Covariance risks do not have to be systematic.
- Show you how to estimate index models with real data.
- Show you how index models can be used to simplify portfolio optimization.

Apply index models to security selection (Stock picking)

#### What is an Index Model?

 Index Models are atheoretical, statistical models designed to estimate and distinguish the firm-specific and the covariance risk.



#### Limits to Diversification: Simulation

| Avg. Std. Dev | <b>/</b> . | 30%           |             |
|---------------|------------|---------------|-------------|
| Avg. Correlat | ion        | 0.2           |             |
|               |            | Firm-specific | Systematic  |
| # of Assets   | Portfolio  | Due to        | Due to      |
|               | Std. Dev.  | Variances     | Covariances |
| 2             | 23.24%     | 83.33%        | 16.67%      |
| 3             | 20.49%     | 71.43%        | 28.57%      |
| 4             | 18.97%     | 62.50%        | 37.50%      |
| 100           | 13.68%     | 4.81%         | 95.19%      |
| 1000          | 13.44%     | 0.50%         | 99.50%      |
| 10000         | 13.42%     | 0.05%         | 99.95%      |

#### Example of an index model

 An index model represents asset returns for firm i as a function of firm-specific  $(e_{i,t})$  and K other asset or portfolio covariance risks.

A consistent return not explained by covariances ( $\beta s$ ) or transitory firmspecific shocks  $(e_{i,t})$ .

$$r_{i,t} - r_{f,t} = \alpha_i + \sum_{k=1}^{K} \beta_{i,k} (r_{k,t} - r_{f,t}) + e_{i,t}$$
 Firm-specific or residual return.

Return due to covariances with other

$$\beta_{i,k}(r_{k,t}-r_{f,t})+e_{i,t}$$

Firm-specific or

If the market were the only covariate (factor), then:

$$\beta_{i,k} = \frac{COV(\tilde{r}_i, \tilde{r}_K)}{VAR(\tilde{r}_K)}$$

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{M,t} - r_{f,t}) + e_{i,t}$$

Note: The sare gone because these are historic observations, not random variables from a distribution. The t's indicate the observations change with time.

#### Pause for some notation and jargon clarification

- Your textbook is not 100% consistent in their notation.
  - When you know what you mean, it is easy to forget your reader may not.
  - I will always use  $\tilde{s}'s$  for random variables and t's for known observations.
- Covariance risk (me) vs. systematic risk (your book)
  - Recall that systematic risks are risks that cannot be diversified away.
  - Because this is a statistical model, we could put anything into the index model as one of the covariance risks, even something that is not a systematic risk.
    - This would be a problem for "asset pricing " (next lecture), but not a problem for the index model.
    - I want to remember that we can accidentally use non-systematic factors in index models, so I will avoid the term "systematic risk" and instead say "covariance risks".

## Risk decomposition

• This form:

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_{i,M} (r_{M,t} - r_{f,t}) + e_{i,t}$$

• Translates directly into risks:

$$VAR(\tilde{r}_i - \tilde{r}_f) = VAR(\alpha_i + \beta_{i,M}(\tilde{r}_M - \tilde{r}_f) + \tilde{e}_i)$$

 $\alpha_i$  is constant, and assuming  $r_f$  is constant, then:

$$\sigma_{r_i}^2 = \beta_{i,M}^2 \sigma_{r_M}^2 + \sigma_{e_i}^2$$
 covariand. 
$$Total\ Risk = covariance/systematic\ risk + firm\_specific\ risk$$

# **Estimating Index Models with OLS**

Security Characteristic Line

#### **Estimating index models**

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{M,t} - r_{f,t}) + e_{i,t}$$

- Index models translate directly OLS (Ordinary Least Squares)
   regressions you learned about in your statistics subjects.
  - When the only covariate is the market portfolio (often an index, such as the ASX200), then we call this a Market Model.
- With OLS we can estimate  $\alpha_i$ 's and  $\beta_i$ 's and calculate what is called a Security Characteristic Line.

#### Security Characteristic Line (SCL)

#### Equation of the Security Characteristic Line:



© 2020 Patrick J. Kelly

Market Risk Premium

#### R<sup>2</sup> is the measure of dispersion of the data around the SCL

 It tells us how important the covariance risk is for explaining returns.

$$R - Square = R^2 = \rho^2 = \frac{Explained\ Variance}{Total\ Variance}$$

$$R^{2} = \frac{\beta_{i,M}^{2} \sigma_{r_{M}}^{2}}{\beta_{i,M}^{2} \sigma_{r_{M}}^{2} + \sigma_{e_{i}}^{2}}$$

#### High R<sup>2</sup>: Security Characteristic Line



#### Low R<sup>2</sup>: Security Characteristic Line



#### Very Low R<sup>2</sup>: Security Characteristic Line



#### How to Calculate Beta

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{M,t} - r_f) + \varepsilon_{i,t}$$

- Need:
- Risk free rate -> annual y pented should be the same

  - Market return

- Details, details:
  - Pay attention to the risk free rate, because that is usually stated yearly
  - What frequency are returns? Monthly
  - How long?
    - Common is to use 60 months of monthly data.
    - Or a year of daily or weekly data.

daily? Trading or non-trading day
is different

#### How to Calculate Beta

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{M,t} - r_f) + \varepsilon_{i,t}$$

#### Need:

- Risk free rate
  - We'll use the 1 month "Bank Accepted Bills/Negotiable Certificates of Deposit"
  - · Note that this is annualized. We need to make it monthly
- Stock return
  - Woolies (WOW)
- Market return
  - ASX 200

#### Details, details:

- Pay attention to the risk free rate, because that is usually stated yearly
- What frequency are returns? Monthly
- How long?
  - Common is to use 60 months of monthly data.
  - Or a year of daily or weekly data.

| Hom  | Home Insert Draw Page Layout Formulas Data Review View Add-ins Acrobat 🖟 Tell me              |                                                                                       |           |                   |          |   |                                  |               |   |                   |   |                      |           |
|------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|-------------------|----------|---|----------------------------------|---------------|---|-------------------|---|----------------------|-----------|
| Fron |                                                                                               | e Refresh All Edit Links                                                              | ks Geogra | Z Sort Filter Adv | pply 5 E |   | Remove Data uplicates Validation | Consolidate \ |   | y De Vigroup Subt |   | Data Sol<br>Analysis | )<br> ver |
| B290 | B290 $\stackrel{\wedge}{_{	ilde{V}}}$ $	imes$ $\stackrel{\wedge}{_{	ilde{V}}}$ $f_x$   2.0925 |                                                                                       |           |                   |          |   |                                  |               |   |                   |   |                      |           |
|      | А                                                                                             | В                                                                                     | С         | D                 | E        | F | G                                | Н             | 1 | J                 | К | L                    | М         |
| 1    |                                                                                               | 1-month BABs/NCDs                                                                     |           |                   |          |   |                                  |               |   |                   |   |                      |           |
| 2    |                                                                                               | Bank Accepted Bills/Negotiable<br>Certificates of Deposit-1 month;<br>monthly average |           |                   |          |   |                                  |               |   |                   |   |                      |           |
| 3    |                                                                                               | FIRMMBAB30                                                                            | Risk-Free | S&P/ASX 200 (XJO) | wow      |   | WOW - rf                         | rm - rf       |   |                   |   |                      |           |
| 4    | DATE                                                                                          | Risk-Free (% Annualized)                                                              |           |                   | (%)      |   | (%)                              | (%)           |   |                   |   |                      |           |
| 282  | Jul-2015                                                                                      | 2.05                                                                                  | 0.17      |                   | 6.08     |   | 5.91                             | 4.23          |   |                   |   |                      |           |
| 283  | Aug-2015                                                                                      | 2.04                                                                                  | 0.17      | -8.64             | -7.69    |   | -7.86                            | -8.81         |   |                   |   |                      |           |
| 284  | Sep-2015                                                                                      | 2.06                                                                                  | 0.17      | -3.56             | -5.91    |   | -6.08                            | -3.73         |   |                   |   |                      |           |
| 285  | Oct-2015                                                                                      | 2.04                                                                                  | 0.17      | 4.34              | -0.10    |   | -0.27                            | 4.17          |   |                   |   |                      |           |
| 286  | Nov-2015                                                                                      | 2.05                                                                                  | 0.17      | -1.39             | -1.82    |   | -2.00                            | -1.56         |   |                   |   |                      |           |
| 287  | Dec-2015                                                                                      | 2.07                                                                                  | 0.17      | 2.50              | 3.51     |   | 3.33                             | 2.33          |   |                   |   |                      |           |
| 288  | Jan-2016                                                                                      | 2.05                                                                                  | 0.17      | -5.48             | -0.90    |   | -1.07                            | -5.65         |   |                   |   |                      |           |
| 289  | Feb-2016                                                                                      | 2.08                                                                                  | 0.17      | -2.49             | -5.68    |   | -5.86                            | -2.66         |   |                   |   |                      |           |
| 290  | Mar-2016                                                                                      | 2.09                                                                                  | 0.17      | 4.14              | -3.49    |   | -3.67                            | 3.96          |   |                   |   |                      |           |
| 291  | Apr-2016                                                                                      | 2.08                                                                                  | 0.17      | 3.33              | 2.03     |   | 1.86                             | 3.16          |   |                   |   |                      |           |
| 292  | May-2016                                                                                      | 1.86                                                                                  | 0.15      | 2.41              | 0.05     |   | -0.11                            | 2.25          |   |                   |   |                      |           |
| 293  | Jun-2016                                                                                      | 1.85                                                                                  | 0.15      | -2.70             | -5.56    |   | -5.71                            | -2.85         |   |                   |   |                      |           |
| 294  | Jul-2016                                                                                      | 1.85                                                                                  | 0.15      | 6.29              | 12.06    |   | 11.91                            | 6.13          |   |                   |   |                      |           |
| 295  | Aug-2016                                                                                      | 1.64                                                                                  | 0.14      | -2.33             | 1.28     |   | 1.14                             | -2.46         |   |                   |   |                      |           |
| 296  | Sep-2016                                                                                      | 1.62                                                                                  | 0.13      | 0.05              | -1.86    |   | -1.99                            | -0.08         |   |                   |   |                      |           |
| 297  | Oct-2016                                                                                      | 1.62                                                                                  | 0.14      | -2.17             | 3.04     |   | 2.91                             | -2.31         |   |                   |   |                      |           |
| 298  | Nov-2016                                                                                      | 1.62                                                                                  | 0.14      | 2.31              | -3.21    |   | -3.35                            | 2.17          |   |                   |   |                      |           |





19







#### **Predicting Betas**

 When running a regressions, the Beta we calculate is based on historic data.

- We usually need a <u>future</u> beta
  - For example, for using as a cost of capital.

Betas tend to mean revert.



#### Mean Reversion as Seen with IBM's Betas





- When Beta is below the mean (typically 1) betas tend to rise.
- When Beta is above then mean betas tend to fall

## Predicting Betas: Correcting for Mean Reversion

- In order to correct for mean reversion
  - Because the average beta is 1
- We calculate the following:

Adjusted Beta = 
$$\frac{2}{3} \times Historic Beta + \frac{1}{3} \times 1$$

- This is also a shrinkage estimator.
  - There are other shrinkage estimators for variances and covariances, but these are beyond the scope of this subject.

# Portfolio Optimization: Using Index Models to Reduce Dimensionality

Consider if you want to create an efficient frontier



 You need to calculate portfolio expected returns and variances and find the minimum:

$$E[\tilde{r}_p] = \sum_{i=1}^{N} w_i E[\tilde{r}_i]$$

$$\sigma_p^2 = \sum_{i=1}^N w_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{\substack{j=1 \ i \neq i}}^N w_i w_j \sigma_{i,j}$$

 With only 10 assets you have a variance-covariance matrix with 100 elements:

- You have to estimate  $55(= \frac{1}{2}(10 \times 10 10) + 10)$  variances and covariances.
- 1000 assets it's just over half a million variances and covariances

Stock returns can be expressed by a factor or index model:

$$r_{i,t} - r_{f,t} = \alpha_i + \sum_{k=1}^{K} \beta_{i,k} (r_{k,t} - r_{f,t}) + e_{i,t}$$

• Then the portfolio beta for each factor *k* is:

$$\beta_{P,k} = \sum_{i=1}^{N} w_i \beta_{i,k}$$

Assuming  $r_f$  is constant and each r and e represents a time series of returns or

residuals respectively.

And portfolio variance is:

$$\sigma_{P}^{2} = \sum_{k=1}^{K} \sum_{l=1}^{K} \beta_{k,P} \beta_{l,P} cov(r_{k}, r_{l}) + \sum_{i=1}^{N} w_{i}^{2} var(e_{i})$$

So with 1000 stocks and 3 factors you have 1000 variances + 9 factor
 variances and covariances instead of half a million.

# Security Analysis with the Index Model

The Treynor-Black Model

#### Adding or overweighting an asset in your portfolio

 Suppose you have an investment strategy that is bench marked to K portfolios, the following index model explains your return:

$$r_{i,t} - r_{f,t} = \alpha_i + \sum_{k=1}^K \beta_{i,k} (r_{k,t} - r_{f,t}) + e_{i,t}$$

mining-sector ETF as two of your K factors/risks.

olio, such as the

a value ETF and a

 Typically, funds will be bench marked to one portfolio, such as the ASX 200 index, so we would expect something like this:

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_{i,M} (r_{M,t} - r_{f,t}) + e_{i,t}$$
where private at the overprised of the constraints of the constraints and the constraints are constraints.

 $\alpha_i$  measures how much better or worse asset or portfolio i has done compared to the benchmark portfolios

For example, if you have a value fund with a tilt toward mining, you might

use a 2-factor model with

## Does adding an asset to your portfolio improve reward for risk?

- Suppose you do not know the actual efficient frontier, you only know the portfolios you are benchmarked against.
- How do you know whether you should add or overweight the asset?

- Ans: Suppose you have there are N assets plus your benchmark, you add an asset if:
  - If alpha,  $\alpha$ , is significantly different from zero
  - And you believe alpha will persist
    - Treynor and Black (1973) note in real life that  $\alpha$ >0 are likely to be fleeting. Without short sale constraints,  $\alpha$ <0 should be fleeting too.

#### Next year add

 Add an efficient frontier and ask how you adjust the portfolio if you can identify something that is better?

Discuss alpha to residual risk intuition

## This optimization involves forecasting

The index model:

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{M,t} - r_{f,t}) + e_{i,t}$$

Implies:

$$E[\tilde{r}_i] - r_f = \alpha_i + \beta_i (E[\tilde{r}_M] - r_f)$$

#### Treynor-Black Model: Inputs

#### Requires:

- N estimates of the securities' nonmarket risk premia  $(E[\tilde{\alpha}_i])$  for notational simplicity, I will call these forecasts, just " $\alpha_i$ "
- N estimates of the beta in the future,  $E[\tilde{\beta}_i]$ , but I will call these,  $\beta_i$
- N estimates of the firm-specific variances,  $\sigma_{e_i}^2$
- One estimate of the market risk premium,  $(E[\tilde{r}_M] r_f)$
- One estimate of the market variance,  $\sigma_M^2$ .

- A total of (3N + 2) estimates this is the real benefit
  - With a 50 security portfolio only 152 estimates are needed as opposed to 1,325 needed with a Markowitz portfolio optimization.

#### Treynor-Black Optimization Procedure, 1-3

1. Compute the initial position in the "active" portfolio:

$$w_i^0 = \frac{\alpha_i}{\sigma_{e_i}^2}$$
 Information ratio

Also, appraisal ratio

close to "t-stats"

2. Rescale the weights to create the weight of each asset, *i*, in the active portfolio:

$$w_{i} = \frac{w_{i}^{0}}{\sum_{i=1}^{N} w_{i}^{0}}$$

3. Compute the alpha and beta of the active portfolio:

$$\alpha_A = \sum_{i=1}^N w_i \alpha_i \qquad \beta_A = \sum_{i=1}^N w_i \beta_i$$

#### Treynor-Black Optimization Procedure, 4-5

4. Compute the residual variance of the active portfolio

$$\sigma_{e_A}^2 = \sum_{i=1}^N w_i^2 \sigma_{e_i}^2$$
 The index model should fully explain covariances, so residual variances have no covariance among them.

Compute the initial weight of the active portfolio in the overall risky portfolio:

$$w_A^0 = \frac{\alpha_A/\sigma_{e_A}^2}{\left(E[\tilde{r}_M] - r_f\right)/(\sigma_M^2)}$$

#### Treynor-Black Optimization Procedure, 6-7

6. Adjust the initial weight allocated in the active portfolio:

$$w_A^* = \frac{w_A^0}{1 + w_A^0 (1 - \beta_A)}$$

7. Calculate the weight of the passive, benchmark portfolio:

$$w_M^* = 1 - w_A^*$$

# The optimized portfolio return and risk

 We can calculate the optimised risk premium on the portfolio, P, of our active and market portfolios as:

$$E[\tilde{r}_O] - r_f = w_M^* \left( E[\tilde{r}_M] - r_f \right) + w_A^* \left( \alpha_A + \beta_A \left( E[\tilde{r}_M] - r_f \right) \right)$$

$$E[\tilde{r}_O] - r_f = w_A^* \alpha_A + (w_M^* + w_A^* \beta_A) \left( E[\tilde{r}_M] - r_f \right)$$

• The variance of the optimised portfolio is then:

$$\sigma_0^2 = (w_M^* + w_A^* \beta_A)^2 \sigma_M^2 + (w_A^* \sigma_{e_A})^2$$

• The Sharpe Ratio of your new optimal portfolio is:



## Example – Finding the New Optimal Portfolio

| Asset             | $\pmb{E}[\widetilde{\pmb{r}}]$ | Beta | $\sigma_e$ |
|-------------------|--------------------------------|------|------------|
| Risk-free         | 4%                             | 0    | 0          |
| Passive Benchmark | 15%                            | 1    | 15%        |
| Stock B           | 30%                            | 1.9  | 45%        |
| Stock C           | 25%                            | 1.2  | 49%        |
| Stock D           | 12%                            | 1.6  | 38%        |
| Stock G           | 25%                            | 0.7  | 22%        |

#### First find the alphas

The index model as a forecast:

$$E[\tilde{r}_i] - r_f = \alpha_i + \beta_i (E[\tilde{r}_M] - r_f)$$

Therefore:

$$\alpha_i = E[\tilde{r}_i] - \{r_f + \beta_i (E[\tilde{r}_M] - r_f)\}$$

$$\alpha_B = 0.30 - \{0.04 + 1.9(0.15 - 0.04)\} = 0.051$$

$$\alpha_C = 0.25 - \{0.04 + 1.2(0.15 - 0.04)\} = 0.078$$

$$\alpha_D = 0.12 - \{0.04 + 1.6(0.15 - 0.04)\} = -0.096 \rightarrow \text{overprise}$$

$$\alpha_G = 0.25 - \{0.04 + 0.7(0.15 - 0.04)\} = 0.133$$

#### Calculate the residual variances from standard deviations

$$\sigma_{e_B}^2 = 0.45^2 = 0.2025$$
 $\sigma_{e_C}^2 = 0.49^2 = 0.2401$ 
 $\sigma_{e_D}^2 = 0.38^2 = 0.1444$ 
 $\sigma_{e_G}^2 = 0.22^2 = 0.0484$ 

- Step 1: Find the initial positions of each security in the portfolio
  - For example

$$w_B^0 = \frac{\alpha_B}{\sigma_{e_B}^2} = \frac{0.051}{0.2025}$$

# Step 2: Rescale the weights to sum to 1

| Stock                      | Step 1                                    | Step 2                                   |
|----------------------------|-------------------------------------------|------------------------------------------|
| i                          | $w_i^0 = \frac{\alpha_i}{\sigma_{e_i}^2}$ | $w_i = \frac{w_i^0}{\sum_{i=1}^N w_i^0}$ |
| В                          | 0.2519                                    | 0.0947                                   |
| $\boldsymbol{\mathcal{C}}$ | 0.3249                                    | 0.1221                                   |
| D                          | 6648                                      | 2499                                     |
| G                          | 2.7479                                    | 1.0331                                   |
| Sum                        | 2.6598                                    | 1.0000                                   |

## Step 3: Compute the alpha and beta of the active portfolio

$$\alpha_A = \sum_{i=1}^{N} w_i \alpha_i$$

$$= 0.0947 \times 0.051 + 0.1221 \times 0.078$$

$$+(-0.2499) \times (-0.096) + 1.0331 \times 0.133 =$$

$$\alpha_A = 0.1758$$

$$\beta_A = \sum_{i=1}^{N} w_i \beta_i$$
= 0.0947×1.9 + 0.1221×1.2  
+(-0.2499)×1.6 + 1.0331×0.7 =  
$$\beta_A = 0.6497$$

# Steps 4 & 5: active portfolio residual variance & initial weight

Step 4: Compute the residual variance of the active portfolio

$$\sigma_{e_A}^2 = \sum_{i=1}^N w_i^2 \sigma_{e_i}^2$$

$$0.0947^2 \times 0.2025 + 0.1221^2 \times 0.2401$$

$$+(-0.2499)^2 \times 0.1444 + 1.0331^2 \times 0.0484 =$$

$$\sigma_{e_A}^2 = 0.0661$$

Step 5: Compute the initial position in the active portfolio

$$\mathbf{w_A^0} = \frac{\alpha_A/\sigma_{e_A}^2}{\left(E[\tilde{r}_M] - r_f\right)/(\sigma_M^2)} = \frac{0.1758/0.0661}{(0.15 - 0.04)/0.0225} = 0.5441$$

# Steps 6 & 7: Calculate the Optimal Portfolio Weights

Step 6: Adjust the initial weight allocated in the active portfolio

$$w_A^* = \frac{w_A^0}{1 + w_A^0 (1 - \beta_A)} = \frac{0.5441}{1 + 0.5441 (1 - 0.6497)} = 0.4570$$

Step 7: Calculate the weight of the passive, benchmark portfolio

$$w_M^* = 1 - w_A^* = 1 - 0.4570 = 0.5430$$

## The optimized portfolio return and risk

Calculate the risk premium of the optimal risky portfolio:

$$E[\tilde{r}_P] - r_f = w_A^* \alpha_A + (w_M^* + w_A^* \beta_A) (E[\tilde{r}_M] - r_f)$$

$$E[\tilde{r}_P] - r_f = 0.4570 \times 0.1758 + (0.5430 + 0.4570 \times 0.6497)(0.15 - 0.04)$$

$$E[\tilde{r}_P] - r_f = 0.1727$$

• The variance of the optimised portfolio is then:

$$\sigma_P^2 = (w_M^* + w_A^* \beta_A)^2 \sigma_M^2 + (w_A^* \sigma_{e_A})^2$$

$$\sigma_P^2 = (0.5430 + 0.4570 \times 0.6497)^2 \times 0.15^2 + 0.4570^2 \times 0.0661$$

$$\sigma_P^2 = 0.0297$$

#### Compare the Sharpe Ratios

$$S_M = \frac{E[\tilde{r}_M] - r_f}{\sigma_M} = \frac{0.15 - 0.04}{0.15} = 0.7333$$

The Sharpe Ratio of your new optimal portfolio is:

$$S_0 = \sqrt{S_M^2 + \left(\frac{\alpha_A}{\sigma_{e_A}}\right)^2} = \sqrt{0.5378 + \frac{0.1758^2}{0.0661}} = 1.0021 = \frac{E[\tilde{r}_P] - r_f}{\sigma_P}$$

Much better... if our expectation/forecasts are correct!