ICE-DT:

Synthesizing Invariants using Implications and Decision Tree Learning

Daniel Neider Pranav Garg P. Madhusudan

University of Illinois at Urbana-Champaign

Invariant

- 1. $I \subseteq Inv$
- 2. $Inv \cap B = \emptyset$
- 3. $Post(Inv) \subseteq Inv$

Teacher

1. Return positive counterexample $x \in I \setminus Inv$

Teacher

- 1. Return positive counterexample $x \in I \setminus Inv$
- 2. Return negative counterexample $x \in B \cap Inv$

Teacher

- 1. Return positive counterexample $x \in I \setminus Inv$
- 2. Return negative counterexample $x \in B \cap Inv$
- 3. Return implication counterexample $x \to y$ with $x \in Inv$, $y \notin Inv$

Decision Tree learning

Decision Tree learning

- ▶ Attributes: octagonal constraints of the form $\pm x \pm y$
- ▶ Resulting predicate: $\bigvee_i \bigwedge_i (\pm x_1^{i,j} \pm x_2^{i,j} \le c^{i,j})$
- ▶ No pruning, no boosting, etc.

Decision Tree Learning in the Presence of Implications

Information gain plus penalizing the cut of implications

Decision Tree Learning in the Presence of Implications

Information gain plus penalizing the cut of implications

Propagate implications

Decision Tree Learning in the Presence of Implications

Information gain plus penalizing the cut of implications

Propagate implications

