COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

7 Discrete Mathematics (MPF)

(a) Let $\mathbb{N}_{\geq 2} \stackrel{\text{def}}{=} \{ k \in \mathbb{N} \mid k \geq 2 \}.$

Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers m and n,

$$\gcd(m,n) = 1 \iff \neg(\exists k \in \mathbb{N}_{>2}. \ k \mid m \land k \mid n)$$

You may use any other standard results provided that you state them clearly.

[6 marks]

(b) Recall that, for $i, j \in \mathbb{N}$,

$$\begin{pmatrix} i \\ j \end{pmatrix} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 0 & \text{, if } i < j \\ \frac{i!}{j!(i-j)!} & \text{, if } i \geq j \end{array} \right.$$

(i) Show that for all m < l in \mathbb{N} ,

$$\binom{l}{m+1} + \binom{l}{m} = \binom{l+1}{m+1}$$

[2 marks]

(ii) Prove that

$$\forall n \in \mathbb{N}. \ \forall m \in \mathbb{N}. \ 0 \le m \le n \implies \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

[6 marks]

(c) Let U be a set and let $F: \mathbb{N} \times \mathbb{N} \to \mathcal{P}(U)$ be a function such that for all $i, i', j, j' \in \mathbb{N}$, if $i \leq i'$ and $j \leq j'$ then $F(i, j) \subseteq F(i', j')$ in $\mathcal{P}(U)$.

Prove that

$$\bigcup_{i \in \mathbb{N}} \left(\bigcup_{j \in \mathbb{N}} F(i,j) \right) = \bigcup_{k \in \mathbb{N}} F(k,k)$$

(Recall that
$$x \in \bigcup_{l \in L} X_l \iff \exists l \in L. \ x \in X_l.$$
) [6 marks]