

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013

> MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

INSTRUCCIONES: El alumno deberá elegir una de las dos opciones A o B que figuran en el presente examen y <u>contestar razonadamente</u> a los cinco ejercicios de los que consta la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico.

CALIFICACIÓN: La puntuación máxima de cada ejercicio se indica en el encabezamiento del mismo.

TIEMPO: Una hora y treinta minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Se consideran las matrices $A = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$ $y \quad B = \begin{pmatrix} -3 & 8 \\ 3 & -5 \end{pmatrix}$.

- a) Calcúlese la matriz inversa de *A*.
- b) Resuélvase la ecuación matricial $A \cdot X = B I$, donde I es la matriz identidad.

Ejercicio 2. (Calificación máxima: 2 puntos)

Sea C la región del plano delimitada por el sistema de inecuaciones

$$\begin{cases} x + 3y \ge 3 \\ 2x - y \le 4 \\ 2x + y \le 24 \\ x \ge 0, y \ge 0. \end{cases}$$

- a) Represéntese la región C y calcúlense las coordenadas de sus vértices.
- b) Determínese el punto de C donde la función f(x,y)=3x+y alcanza su valor máximo. Calcúlese dicho valor.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por $f(x) = \frac{x^3}{x^2 - 9}$.

- a) Hállense las asíntotas de f.
- b) Determínese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x = 1.

Ejercicio 4. (Calificación máxima: 2 puntos)

En un avión de línea regular existe clase turista y clase preferente. La clase turista ocupa las dos terceras partes del pasaje y la clase preferente el resto. Se sabe que todos los pasajeros que viajan en la clase preferente saben hablar inglés y que el 40 % de los pasajeros que viajan en clase turista no saben hablar inglés. Se elige un pasajero del avión al azar.

- a) Calcúlese la probabilidad de que el pasajero elegido sepa hablar inglés.
- b) Si se observa que el pasajero elegido sabe hablar inglés, ¿cuál es la probabilidad de que viaje en la clase turista?

Ejercicio 5. (Calificación máxima: 2 puntos)

El tiempo de renovación de un teléfono móvil, expresado en años, se puede aproximar mediante una distribución normal con desviación típica 0,4 años.

- a) Se toma una muestra aleatoria simple de 400 usuarios y se obtiene una media muestral igual a 1,75 años. Determínese un intervalo de confianza al 95 % para el tiempo medio de renovación de un teléfono móvil.
- b) Determínese el tamaño muestral mínimo necesario para que el valor absoluto de la diferencia entre la media muestral y la media poblacional sea menor o igual a 0,02 años con un nivel de confianza del 90 % .

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el siguiente sistema de ecuaciones lineales, dependiente del parámetro k:

$$\begin{cases} kx + y & = 0 \\ x + ky - 2z & = 1 \\ kx - 3y + kz & = 0 \end{cases}$$

- a) Discútase el sistema según los diferentes valores de k
- b) Resuélvase el sistema para k = 1.

Ejercicio 2. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} ax^2 - 3 & \text{si } x \le 1\\ \ln(2x - 1) & \text{si } x > 1 \end{cases}$$

- a) Calcúlese a para que la función f sea continua en todo $\mathbb R$
- b) Represéntese gráficamente la función para el caso a=3.

Nota: $\ln x$ denota al logaritmo neperiano del número x.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por $f(x) = \frac{x}{x^2 + 4}$.

- a) Determínense los extremos relativos de f.
- b) Calcúlese la integral definida $\int_0^1 f(x) dx$.

Ejercicio 4. (Calificación máxima: 2 puntos)

Una caja de caramelos contiene 7 caramelos de menta y 10 de fresa. Se extrae al azar un caramelo y se sustituye por dos del otro sabor. A continuación se extrae un segundo caramelo. Hállese la probabilidad de que:

- a) El segundo caramelo sea de fresa.
- b) El segundo caramelo sea del mismo sabor que el primero.

Ejercicio 5. (Calificación máxima: 2 puntos)

Se considera una variable aleatoria con distribución normal de media μ y desviación típica igual a 210. Se toma una muestra aleatoria simple de 64 elementos.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la media muestral y μ sea mayor o igual que 22.
- b) Determínese un intervalo de confianza del 99 % para μ , si la media muestral es igual a 1532.

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de *z*.

Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7224
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7652
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,7032
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
0,5	0,0133	0,0100	0,0212	0,0230	0,0204	0,0203	0,0313	0,0540	0,0303	0,0303
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8930
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9561	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9901	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
	0,3310	0,3320	0,3322	0,3323	0,3327	0,3323	0,5551	0,3352	0,5551	0,3350
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 2 puntos). Apartado (a): Obtención correcta de la matriz inversa de A
Ejercicio 2. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto. Representación de las restricciones
Ejercicio 3. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto. Obtención de asíntotas verticales (0,25x2)
Cálculo correcto de la ordenada en el origen de la recta tangente
Cálculo correcto de la probabilidad pedida
Cálculo correcto del valor del mínimo tamaño muestral0,50 puntos.

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto. Obtención de los valores críticos
Ejercicio 2. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Estudio correcto de la continuidad
Representación correcta de la función
Ejercicio 3. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Obtención de la derivada
Comprobación de tipo de punto (máximo o mínimo)0,25 puntos.
Apartado (b): 1 punto. Cálculo correcto de la primitiva
Cálculo correcto de la integral definida
Ejercicio 4. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Planteamiento correcto
Cálculo correcto de la probabilidad pedida
Planteamiento correcto
Cálculo correcto de la probabilidad pedida0,50 puntos.
Ejercicio 5. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.
Planteamiento correcto
Cálculo correcto de la probabilidad pedida0,50 puntos. Apartado (b): 1 punto.
Cálculo correcto de $z_{\alpha/2}$
Expresión correcta de la fórmula del intervalo de confianza

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados