Convolution

Padding and strides

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab:

Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Contents

- Zero Padding
- Non-unit strides

Convolution: zero padding Half padding

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Half padding

GLAB

Half padding

padding size =
$$\left\lfloor \frac{3}{2} \right\rfloor \times \left\lfloor \frac{3}{2} \right\rfloor = 1 \times 1$$

The input is enlarged one pixel on left, right, top, and bottom

Convolution: zero padding Half padding

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

padding size =
$$\left\lfloor \frac{3}{2} \right\rfloor \times \left\lfloor \frac{3}{2} \right\rfloor = 1 \times 1$$

Input image

	3	1	0	1	
	1	1	2	0	
:	1	2	2	1	
	0	1	0	2	

Input image, after padding

Half padding

3	1	0	1	
1	1	2	0	
1	2	2	1	
0	1	0	2	

Input image, after padding

1	1	0
0	2	1
2		1

Rotated kernel

Output size = ?

Convolution: zero padding Half padding

The first valid position

1	1	U
0	2	
2	0	1

Rotated kernel

Convolution: zero padding Half padding

The last valid position (on horizontal direction)

1		0
0	2	1
2	0	1

Rotated kernel

Convolution: zero padding Half padding

Half padding (with unit stride): input and output have the same size

Half padding

Half padding

Step-by-step computation (see next slides)

Convolution: zero padding

Half padding

Half padding

2

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

padding size = $\left\lfloor \frac{3}{2} \right\rfloor$	×	$\left\lfloor \frac{3}{2} \right\rfloor$	$=1\times1$
---	---	--	-------------

Output 4×4

	: :			
3	1	0	1	
1	1	2	0	
1	2	2	1	
0	1	0	2	

Input image, after padding

Convolution: zero padding Half padding

3

starting the cross-correlation process

	3	1	0	1	
:	1	1	2	0	
	1	2	2	1	
	0	1	0	2	

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Convolution: zero padding Half padding

Half padding

Final result

Filter's kernel

Convolution: zero padding Full padding

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Convolution: zero padding

Full padding

Filter's kernel

Full padding

padding size =
$$(3 - 1) \times (3 - 1) = 2 \times 2$$

The input is enlarged two pixel on left, right, top, and bottom

GLAB

Full padding

3	1	0	1							
1	1	2	0	after padding with 2×2		3	1	0	1	
1	2	2	1			1	1	2	0	
0	1	0	2			1	2	2	1	
In	put i	mage < 4	Э			0	1	0	2	
	4 ×	4								

Output size = ?

Convolution: zero padding

1	1	0
0	2	1
2	0	1

Padded image

Rotated kernel

Convolution: zero padding

Full padding

Padded image

Convolution: zero padding Full padding

The first valid position

The last valid position (on horizontal direction)

Convolution: zero padding

Full padding

Convolution: zero padding

G LAB

Full padding

Convolution: zero padding

Full padding

The computation is the same as the example in half padding

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, **HCMUT**

Default, the kernel moves to right and down with stride of 1-unit.

* Stride > 1 can be used to reduce output feature map => reduce the computation in next layers.

End

G

1	1	0
0	2	1
2	0	1

Padded image stride = 2

1	1	0
0	2	1
_	0	1

Rotated kernel

Padded image

stride = 2

CAN NOT move the kernel to right more

1	1	0
0	2	1
2	0	1

Padded image

stride = 2

$\frac{i_1 + 2p_1 - k_1}{s_1}$			+ 1

$$\left\lfloor \frac{i_1 + 2p_1 - k_1}{s_1} \right\rfloor + 1$$

$$\left\lfloor \frac{i_2 + 2p_2 - k_2}{s_2} \right\rfloor + 1$$

stride on $x = s_1$ stride on $y = s_2$

$$i_1 = i_2 = 4$$

$$k_1 = k_2 = 3$$

full padding:
$$p_1 = p_2 = 2$$

non-unit strides:
$$s_1 = s_2 = 2$$

stride on
$$x = s_1$$

stride on $y = s_2$

$$i_1 = i_2 = 4$$

$$k_1 = k_2 = 3$$

full padding: $p_1 = p_2 = 2$

non-unit strides: $s_1 = s_2 = 2$

$$\left[\frac{i_1 + 2p_1 - k_1}{s_1}\right] + 1 = 3$$

$$\left[\frac{i_2 + 2p_2 - k_2}{s_2}\right] + 1 = 3$$

$$\left[\frac{\iota_2 + 2p_2 - k_2}{s_2}\right] + 1 = 3$$

stride on $x = s_1$ stride on $y = s_2$

