

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-1336/16-01-03-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

SIGFOX

425, rue Jean Rostand 31670 Labège / FRANCE

Phone: -/-Fax: -/-

Contact: Susana Barreiro

e-mail: <u>susana.barreiro@sigfox.com</u>

Phone: +33 5 82 08 07 46

Manufacturer

SIGFOX

425, rue Jean Rostand 31670 Labège / FRANCE

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence-Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Transceiver Unit
Model name: SNT-900-ST
FCC ID: 2ACK7SNT900ST
IC: 12204A-SNT900ST
Frequency: ISM band 902 – 928 MHz

Technology tested: Proprietary

Antenna: External dipole half wavelength antenna Power supply: 3.7 V DC by lithium polymer battery

Temperatur: 22°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Christoph Schneider	Tohias Wittenmeier

Testing Manager

Radio Communications & EMC

Testing Manager Radio Communications & EMC

Table of contents

1	Table of contents2						
2	Gener	al information					
	2.1	Notes and disclaimer					
	2.2	Application details					
3	Test s	tandard/s and references					
4	Test e	nvironment	4				
5		em					
3							
	5.1 5.2	General descriptionAdditional information					
•	-						
6		boratories sub-contracted					
7	Descr	ption of the test setup					
	7.1	Shielded semi anechoic chamber					
	7.2	Shielded fully anechoic chamber					
	7.3	Conducted measurements					
	7.4	AC conducted					
8	Measu	rement uncertainty	10				
9	Seque	nce of testing	1′				
	9.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	11				
	9.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	12				
	9.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	13				
10	Sun	mary of measurement results	14				
11	RFı	neasurements	1				
	11.1	Additional comments	1!				
12		surement results					
12							
	12.1	Antenna gain					
	12.2	Carrier Frequency Separation					
	12.3	Number of Hopping Channels					
	12.4	Time of occupancy (dwell time)					
	12.5	Spectrum bandwidth of a FHSS system					
	12.6	Maximum Output Power					
	12.7	Detailed spurious emissions @ the band edge – conducted and radiated					
	12.8	Spurious Emissions Conducted					
	12.9 12.10	Spurious Emissions Radiated < 30 MHzSpurious emissions radiated 30 MHz to 1 GHz					
	12.11 12.12	Spurious emissions radiated above 1 GHzSpurious emissions conducted below 30 MHz (AC conducted)	4; 10				
40		•					
13		ervations					
Anr	ex A	Document history	53				
Anr	ex B	Further information	53				
Anr	ex C	Accreditation Certificate	54				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1336/16-01-03 and dated 2016-04-27

2.2 Application details

Date of receipt of order: 2016-02-22
Date of receipt of test item: 2016-04-11
Start of test: 2016-04-11
End of test: 2016-04-13

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	-/- °C during high temperature tests
		T_{min}	-/- °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	ure : not relevant for this kind of testing		not relevant for this kind of testing
		V_{nom}	3.7 V DC by lithium polymer battery
Power supply	:	V_{max}	-/- V
		V_{min}	-/- V

5 Test item

5.1 General description

Kind of test item :	Transceiver Unit
Type identification :	SNT-900-ST
HMN :	-/-
PMN :	SNT
HVIN :	SNT-900-ST
FVIN :	V0.5
S/N serial number :	No information available
HW hardware status :	V0.4.2
SW software status :	V0.4.2
Frequency band :	ISM band 902 – 928 MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	DBPSK
Number of channels :	54 (9 Macro channels x 6 Micro channels)
Antenna :	External dipole half wavelength antenna
Power supply :	3.7 V DC by lithium polymer battery
Temperature :	22 °C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1336/16-01-01_AnnexA 1-1336/16-01-01_AnnexB

1-1336/16-01-01_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP \text{ [dBm]}} = -39.0 \text{ [dBm]} + 57.0 \text{ [dB]} - 12.0 \text{ [dBi]} + (-36.0) \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vlKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	В	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
6	С	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
8	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A.	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	27.01.2016	27.01.2018
2	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
3	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 606844	400001185	ev	-/-	-/-
4	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	Batch no. 606844	400001186	ev	-/-	-/-

7.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	Α	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2016	28.01.2017
3	A	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018

8 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Carrier frequency separation	± 21.5 kHz						
Number of hopping channels	-/-						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2016-05-02	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (2)	Antenna gain	Nominal	Nominal	CW	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (2)	Carrier frequency separation	Nominal	Nominal	DBPSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (4)	Number of hopping channels	Nominal	Nominal	DBPSK	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (4)	Time of occupancy (dwell time)	Nominal	Nominal	DBPSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (1)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	DBPSK	×				-/-
§15.247(b)(1) RSS - 247 / 5.4 (2)	Maximum output power	Nominal	Nominal	DBPSK	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	DBPSK	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	DBPSK	×				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	DBPSK	×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	DBPSK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	DBPSK / RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	DBPSK / RX mode	×				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	DBPSK / RX mode	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 RF measurements

11.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: The EUT uses 9 macro channels. Every macro channel is divided into 6 micro

channels. In summary, the EUT uses 54 single channels.

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

12 Measurement results

12.1 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.3 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC	
Antenna gain		

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel 902.1375 MHz	Middle channel 903.3000 MHz	High channel 904.6625 MHz
Conducted power [dBm]	20.68	20.91	20.68
Radiated power [dBm]	24.55	24.25	23.82
Gain [dBi] Calculated	+3.87	+3.34	+3.14

12.2 Carrier Frequency Separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use DBPSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	10 kHz		
Video bandwidth	30 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		

Result: The channel separation is 299.62 kHz for the macro channels and 26.88 kHz for the micro channels.

Plots:

Plot 1: Frequency separation macro channels:

Date: 5.APR.2016 14:20:27

Plot 2: Frequency separation micro channels:

Date: 5.APR.2016 14:03:49

12.3 Number of Hopping Channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use DBPSK -modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
Number of hopping channels		
At least 15 non overlapping hopping channels		

Result: The number of macro hopping channels is 9. Each macro channel is divided into 6 micro channels. So in summary the EUT uses 9*6 = 54 channels.

Plots:

Plot 1: Number of macro channels

Date: 5.APR.2016 13:49:40

Plot 2: Number of micro channels in one single macro channel zoomed

Date: 5.APR.2016 14:03:49

12.4 Time of occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the 54 used channels is allocated more than 0.4 seconds within a 10 seconds interval (54 channels times 0.4s).

Limits:

FCC	IC		
Average time of occupancy			

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

Result: The time slot length is = 368 ms

Number of hops / channel @ 20s = 1

Within 20 s period, the average time of occupancy in 20 s: 1 * 368 ms

→ The average time of occupancy = 368 ms

Plots:

Plot 1: Time slot length = 368 ms

Date: 5.APR.2016 14:09:19

Plot 2: hops / channel @ 20s = 1 (only the highest emission is relevant)

Date: 2.MAY.2016 14:27:37

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	300 Hz		
Video bandwidth	1 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 7.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
Spectrum bandwidth of a FHSS system			
DBPSK < 1500 kHz			

Result:

Test Conditions		20dB BANDWIDTH [kHz]		
rest Conditions		Low channel 902.200 MHz	Middle channel 903.300 MHz	High channel 904.700 MHz
T _{nom}	V_{nom}	21.7	21.7	21.5

Test Conditions		99% BANDWIDTH [kHz]		
Tool conditions		Low channel 902.200 MHz	Middle channel 903.300 MHz	High channel 904.700 MHz
T _{nom}	V_{nom}	21.07	21.15	21.15

Plots:

Plot 1: Low Channel

Date: 20.APR.2016 06:47:01

Plot 2: Middle Channel

Date: 20.APR.2016 08:04:46

Plot 3: High Channel

Date: 20.APR.2016 09:25:28

12.6 Maximum Output Power

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	See plots	
Trace-Mode:	Max Hold	
Used equipment:	See chapter 7.3 A	
Measurement uncertainty:	See chapter 8	

Limits:

FCC	IC	
Maximum Output Power Conducted		
For frequency hopping systems exercise in the CO2, CO2 MHz head; 1 wett (20 dBm) for systems employing		

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		Maximum Output Power Conducted [dBm]		
		Low channel 902.200 MHz	Middle channel 903.300 MHz	High channel 904.700 MHz
T _{nom}	V_{nom}	20.68	20.91	20.68

Test Conditions			ERP [dBm]	
		Low channel 902.200 MHz	Middle channel 903.300 MHz	High channel 904.700 MHz
T _{nom}	V_{nom}	24.55	24.25	23.82

Plots:

Plot 1: Low Channel

Date: 5.APR.2016 09:44:39

Plot 2: Middle Channel

Date: 5.APR.2016 10:15:44

Plot 3: High Channel

Date: 5.APR.2016 10:29:10

12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results conducted:

Scenario	Spuriou	s band edge conduc	ted [dB]
Modulation	lowest channel	middle channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

Plots:

Plot 1: 20 dB – hopping on

Date: 20.APR.2016 09:55:58

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			.,

12.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz		
Span:	9 kHz to 12.75 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 7.3A		
Measurement uncertainty:	See chapter 8		

Limits:

FCC	IC
TX spurious emissions conducted	

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Result:

Emission Limitation					
Frequency [MHz]		Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results
904		20.50	24 dBm		Operating frequency
No e	missions detec	oted!	-20 dBc		
904		20.81	24 dBm		Operating frequency
No emissions detected!					
			-20 dBc		
906		20.58	24 dBm		Operating frequency
No e	missions detec	cted!	-20 dBc		

Plots:

Plot 1: Low channel, 9 kHz - 1 GHz

Date: 5.APR.2016 09:47:06

Plot 2: Low channel, 1 GHz - 12.75 GHz

Date: 5.APR.2016 09:47:53

Plot 3: Middle channel, 9 kHz - 1 GHz

Date: 5.APR.2016 10:18:34

Plot 4: Middle channel, 1 GHz - 12.75 GHz

Date: 5.APR.2016 10:19:13

Plot 5: High channel, 9 kHz - 1 GHz

Date: 5.APR.2016 10:28:15

Plot 6: High channel, 1 GHz - 12.75 GHz

Date: 5.APR.2016 10:27:33

12.9 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

Measurement parameter									
Detector:	Peak / Quasi Peak								
Sweep time:	Auto								
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz								
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz								
Span:	9 kHz to 30 MHz								
Trace-Mode:	Max Hold								
Used equipment:	See chapter 7.2 B								
Measurement uncertainty:	See chapter 8								

Limits:

FCC			IC				
TX spurious emissions radiated < 30 MHz							
Frequency (MHz)	Field strength (dBµV/m)		Measureme	nt distance			
0.009 – 0.490	2400/F(kHz)		30	0			
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30)	
1.705 – 30.0	3	0	30)			

Result:

SPURIOUS EMISSIONS LEVEL [dBμV/m]									
L	owest chann	iel	Middle channel			Highest channel			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	
	All emissions were more than 10 dB below the limit.								

Plots:

Plot 1: TX-Mode low channel

Plot 2: TX-Mode mid channel

Plot 3: TX-Mode high channel

Plot 4: RX-Mode

12.10 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	3 x VBW					
Video bandwidth	120 kHz					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	DBPSK					
Test setup	See sub clause 7.1 A					
Measurement uncertainty	See sub clause 8					

Limits:

FCC	IC
Band-edge Compliance of con	ducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Result:

See result table below the plots.

Plots:

Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.297700	10.21	30.00	19.79	1000.0	120.000	272.0	٧	117.0	13.8
39.227850	9.92	30.00	20.08	1000.0	120.000	200.0	٧	77.0	14.0
48.099000	8.42	30.00	21.58	1000.0	120.000	274.0	Н	-5.0	13.1
100.581000	7.83	33.50	25.67	1000.0	120.000	103.0	Н	320.0	12.1
762.694200	19.42	36.00	16.58	1000.0	120.000	274.0	Н	-13.0	22.7
921.813900	28.92	36.00	7.08	1000.0	120.000	274.0	٧	73.0	24.2

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.171950	9.57	30.00	20.43	1000.0	120.000	274.0	Н	140.0	13.7
38.681400	13.94	30.00	16.06	1000.0	120.000	172.0	٧	40.0	14.0
43.541250	9.26	30.00	20.74	1000.0	120.000	171.0	Н	187.0	13.9
531.504750	14.89	36.00	21.11	1000.0	120.000	400.0	Н	130.0	19.1
756.322500	19.44	36.00	16.56	1000.0	120.000	200.0	٧	50.0	22.7
920.688000	30.78	36.00	5.22	1000.0	120.000	273.0	٧	187.0	24.2

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.753500	10.96	30.00	19.04	1000.0	120.000	271.0	٧	265.0	13.5
38.740800	14.07	30.00	15.93	1000.0	120.000	103.0	٧	85.0	14.0
45.486450	9.94	30.00	20.06	1000.0	120.000	274.0	Н	277.0	13.7
63.562050	5.61	30.00	24.39	1000.0	120.000	275.0	٧	95.0	9.8
701.018700	18.37	36.00	17.63	1000.0	120.000	200.0	Н	32.0	21.5
807.790050	19.53	36.00	16.47	1000.0	120.000	100.0	٧	-5.0	22.8

Plot 4: 30 MHz – 1 GHz, horizontal & vertical polarisation (RX-Mode)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.357200	12.39	30.00	17.61	1000.0	120.000	103.0	٧	5.0	13.5
40.673250	10.44	30.00	19.56	1000.0	120.000	101.0	٧	27.0	14.0
55.799100	7.91	30.00	22.09	1000.0	120.000	351.0	٧	32.0	11.6
620.608050	17.73	36.00	18.27	1000.0	120.000	350.0	٧	166.0	20.9
774.773850	19.43	36.00	16.57	1000.0	120.000	274.0	Н	142.0	22.7
875.148900	20.83	36.00	15.17	1000.0	120.000	400.0	Н	279.0	23.8

12.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters						
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth	1 MHz					
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max hold					
Measured modulation	DBPSK					
Test setup	See sub clause 7.2 C (1 GHz – 12.75 GHz)					
Measurement uncertainty	See sub clause 8					

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10 - FCC Public Notice DA 00-705

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

FCC			IC					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15	.209						
Frequency (MHz) Field strength (dBµV/m) Measurement distance								
Above 960	54.0 3							

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

One pulse train is higher than 100 ms so the correction factor is 0 (see plots in chapter 12.4)

TX spurious emissions radiated [dBμV/m]								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
2706.6	Peak	57.4	2709.9	Peak	60.8	2714.1	Peak	57.7
2700.0	AVG	45.3	2709.9	AVG	48.9	27 14.1	AVG	47.3
3608.8	Peak	56.2	3613.2	Peak	57.6	3618.8	Peak	59.4
3000.0	AVG	41.8	3013.2	AVG	44.6		AVG	50.8
4511.0	Peak	57.9	4516.5	Peak	55.6	4523.6	Peak	57.4
	AVG	44.8		AVG	40.7		AVG	43.2
5413.2	Peak	56.2	-/-	Peak	-/-	5428.2	Peak	60.8
	AVG	43.2		AVG	-/-		AVG	50.2

Plots:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

The peak at 1184 MHz was not caused by the EUT.

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

The peak at 1186 MHz was not caused by the EUT.

Plot 4: 1GHz - 12.75 GHz, RX-Mode, horizontal & vertical polarisation

12.12 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement parameters					
Detector	Peak - Quasi peak / average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 7.4 A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC		IC				
TX spurious emissions conducted < 30 MHz						
Frequency (MHz)	Frequency (MHz) Quasi-peak		Average (dBμV/m)			
0.15 – 0.5	66 to	56*	56 to 46*			
0.5 – 5	0.5 – 5		46			
5 – 30.0	5 – 30.0		50			

^{*}Decreases with the logarithm of the frequency

Results:

Spurious emissions conducted < 30 MHz [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
See result table below plots!						

Plots:

Plot 1: 150 kHz to 30 MHz, phase line – TX mode

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.148745	23.02			19.37		
0.465497	32.50	24.09	56.594	25.34	21.64	46.986
0.610818	31.19	24.81	56.000	23.81	22.19	46.000
0.845453	30.40	25.60	56.000	22.96	23.04	46.000
4.292691	32.00	24.00	56.000	23.89	22.11	46.000
4.636607	32.71	23.29	56.000	24.40	21.60	46.000
4.662018	32.55	23.45	56.000	24.25	21.75	46.000
4.932038	32.92	23.08	56.000	24.45	21.55	46.000
7.841939	34.07	25.93	60.000	26.09	23.91	50.000
8.297612	34.11	25.89	60.000	26.22	23.78	50.000
8.475279	34.61	25.39	60.000	26.06	23.94	50.000
8.743684	34.85	25.15	60.000	26.21	23.79	50.000

Plot 2: 150 kHz to 30 MHz, neutral line – TX mode

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.149671	28.55			22.87		
0.220947	42.45	20.33	62.783	29.26	24.71	53.973
0.288085	32.81	27.77	60.579	25.27	26.79	52.055
0.623236	31.22	24.78	56.000	23.59	22.41	46.000
4.185748	32.36	23.64	56.000	23.97	22.03	46.000
4.661032	32.44	23.56	56.000	24.11	21.89	46.000
5.094863	32.68	27.32	60.000	24.68	25.32	50.000
5.190356	33.43	26.57	60.000	24.77	25.23	50.000
5.739921	33.56	26.44	60.000	25.27	24.73	50.000
7.203972	34.98	25.02	60.000	26.32	23.68	50.000
7.231711	34.66	25.34	60.000	26.29	23.71	50.000
8.733045	34.74	25.26	60.000	26.27	23.73	50.000

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-04-27
-A	Correction of dwell time	2016-05-02

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Drahtgebundene Kommunikation einschließlich xDSL VolP und DECT Akustik

MKUSTIK Funk einschließlich WLAN Short Range Devices (SRD) RFID

Snort nange Devices (NO)
RFID
WIMAx und Richtfunk
Mobiltunik (GSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive
Produktsicherheit
SAR und Hearing Aid Compatibility (HAC)
Umweltsimulation
Smart Card Terminals
Bluetooth
Wi-Fi- Services

Die Akkreditierungsurkundt gilt nur in Verbindung mit dem Bescheid vom 07.03.2014 mit der Akkreditierungsurummer D-PI-17076-01 uns ist giltig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit Inagesamt 77.5etten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt om Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Die auszugsweise Veröffentlichung der Akkredicierungsorkunde bedarf der verherigen schriftlichen Zusahmnung der Deutsteh Akkreditierungsstelle GribH (DAMAS). Ausgenemmen desen ist die separa Weiterversreitung des Deutstättes durch die umseitig genonnte Konformitätsbewertungsstelle in umeränderter Form.

Die Akkreditierung erfolgte gemößt des Grechten über die Akreditierungsstalls (AkstelleC) vom 31. Juli 2009 (RiGR). I.S. 2025) sewie der Veronfrung (SG) (Nr. 765/2008 des Europäischen Parlament und des Britss vom S. Juli 2008 über die Verschriffun (des Akkreditierung und Mahritüberwschurg im Zusammenhang mit der Vermunktung vom Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAAks ist Uberverberein der Multilatenlan Akkremmen unz gegente Bigen Areider nung der European ers operation für Ausredikätien (EA), des International Accorditation forum (Ari.) and der international labendung Accorditation (EA), des International Accorditation forum (Ari.) and der international labendung Accorditation of Cooperation (UAC). Die Unterzeichner eleser Abkommen erkonnen ihre Akkreditierungen gegenzeitig an.

Der aktue le Stand der Viligliedschaft kann folgenden Webseiten entnommen werden: FAL: www.muropean.accod tation.org IAC: www.ich.com; IAC: www.ich.com;

Note:

The current certificate including annex may be received from CETECOM ICT Services GmbH on request.