Average Degree with respect to (n) Nodes

before Topology Control

Maximum Degree with respect to the (n) Nodes

before Topology Control

Average Degree with respect to the (n) Nodes

after Topology Control

Maximum Degree with respect to the (n) Nodes

after Topology Control

After performing Topology Control the graph has resulted in a much sparser graph. It contains the same nodes but with fewer edges. That is because the XTC algorithm that we did, checks the neighbors in common between two nodes and remove the edges that have greater distance, and as a result, return a graph with fewer edges, but it's still connected.

Experiment 2 and 3: Length of the network's path. If doesn't found, returns 0.

Networks	Length before Topology	Length after Topology
Network 1	0	0
Network 2	0	2
Network 3	2	1
Network 4	1	-1779043311
Network 5	0	0
Network 6	2	1
Network 7	0	1
Network 8	0	0
Network 9	2	-1779043120
Network 10	0	0

The results that the program gave so far are incorrect. The path should be shorter after the Topology Control, since the edges are significantly reduced. In a dense graph must be longer or not find any path. Although, similarly, in a graph with fewer edges, you may not find a path.