Элементы криптографии. Однократное гаммирование

Александр Воробьев 18 октября, 2022, Москва, Россия RUDN University

Цель лабораторной работы

Цель лабораторной работы

Освоить на практике применение режима однократного гаммирования

лабораторной работы

Процесс выполнения

Блок функции для расчетов

Результат

Figure 1: Блок функции для расчетов

Определил вид шифротекста при известном ключе и известном открытом тексте.

Результат

```
In [6]: message = "С Новым Годом, друзья!"
        kev = f2(len(message))
        hex key = f1(key)
        print("ключ:", kev)
        print("шеснадцатеричный ключ:", hex kev)
        encrypt = f3([ord(i) for i in message], [ord(i) for i in key])
        hex encrypt = f1(encrypt)
        print("зашифрованной сообшение:", hex encrypt)
        decrypt = f3([ord(i) for i in encrypt], [ord(i) for i in key])
        print("расшифрованное сообщение", decrypt)
        ключ: ZW6dbCfxYo371XFXawmTa5
        шеснадцатеричный ключ: 5a 57 36 64 62 43 66 78 59 6f 33 37 31 58 46 58
        67 77 6d 54 71 35
        зашифрованной сообщение: 47b 77 42b 45a 450 408 45a 58 44a 451 407 409
        40d 74 66 46c 427 434 45a 418 43e 14
        расшифрованное сообщение С Новым Годом, друзья!
```

Figure 2: Получение шифротекста

Определил ключ,с помощью которого шифротекст может быть преобразован в некоторый фрагмент текста,представляющий собой один из возможных вариантов прочтения открытого текста.

Результат

```
In [9]: compute_key = f4([ord(i) for i in message], [ord(i) for i in encrypt])
decrypt_compute_key = f3([ord(i) for i in encrypt], [ord(i) for i in ke
print("Исходный ключ:", key)
print("варивант прочтения открытого текста:", decrypt_compute_key)

Исходный ключ: ZW6dbCfxY0371XFXgwmTqS
вариант прочтения открытого текста: С Новым Годом, друзья!
```

Figure 3: Прочтение открытого текста

Выводы

Выводы

Освоил на практике применение режима однократного гаммирования.