CS6015 Linear Algebra and Random Processes

Muhammad Arsath K F(CS16S035) and Srihari Maruthachalam (CS16S024)

Programming Assignment-II

Group I

November 6, 2017

Question 1

Expectation, $E\left(\overline{X_N}\right)$

Sample mean
$$\overline{X}_{N} = \frac{1}{N} \sum_{i=1}^{N} X_{i}$$
; $E[X_{i}] = M$; $Von(X_{i}) = G^{2}$

$$= \frac{1}{N} \sum_{i=1}^{N} X_{i}$$

Variance, $Var\left(\overline{X_N}\right)$

Question 2

Criven:

let x, x2 ... Xn denote a sequence of i.i.d random variables with x; ([9,6], 4i where - & La & b < &

$$P(\overline{X}_{N} - \mu \ge \epsilon) \le \exp\left(-\frac{2N\epsilon^{2}}{(b-\alpha)^{2}}\right)$$

$$P(\overline{X}_{N} - \mu \le -\epsilon) \le \exp\left(-\frac{2N\epsilon^{2}}{(b-\alpha)^{2}}\right)$$

From egn (), we can rewrite as,

$$P(\overline{X_N} - \mu \ge \epsilon) = P(\overline{X_N} - \epsilon \ge \mu)$$

$$P(\overline{X_N} - \mu \le -\epsilon) = P(\overline{X_N} + \epsilon \le \mu)$$

Now,

$$P(\overline{X_N} - \epsilon \ge \mu) + P(\overline{X_N} + \epsilon \le \mu) \le 2 \exp(\frac{-2N\epsilon^2}{(b-a)^2})$$

is
$$P(\overline{x_n} - \epsilon' \ge \mu) + P(\overline{x_n} + \epsilon' \le \mu) \le \delta$$

 $1 - [P(\overline{x_n} - \epsilon' \ge \mu) + P(\overline{x_n} + \epsilon' \le \mu)] \ge 1 - \delta$

To find
$$e'$$
 as a function of δ and N :

$$2 \exp\left(-\frac{2Ne^{2}}{(b-a)^{2}}\right) = \delta$$

$$= \exp\left(-\frac{2Ne^{2}}{(b-a)^{2}}\right) = \frac{\delta}{2}$$

$$-\frac{2Ne^{2}}{(b-a)^{2}} = \log\left(\frac{\delta}{2}\right)$$

$$= \frac{(b-a)^{2}(-1)\log\left(\frac{\delta}{2}\right)}{2N}$$

$$= \frac{1}{2N}\log\left(\frac{\delta}{2}\right)$$

Question 3

Histogram of the sample means

Figure 5: Histogram for various number of sample means for 10000 repetition

Closeness of sample mean to the true mean

Figure 6: Absolute difference between sample mean and true mean

- As we can see from the above plot, the sample mean is getting closer to the true mean as we increase the number of samples.
- Reason: Law of Large numbers says as the number of experiments increases, the actual ratio of outcomes will converge on the theoretical, or expected, the ratio of outcomes.

Sample mean in the intervals [9.9, 10.1] and [9.99, 10.01]

Table 1: My caption

	Sample mean in the interval		
-2*Number of Samples	[9.9, 10.1]	$[9.99,\ 10.01]$	
1	1248	1248	
5	582	582	
10	398	398	
100	2370	133	
500	5086	483	
1000	6891	799	
2000	8386	1059	
4000	9585	1598	
8000	9957	2284	
10000	9988	2471	

95% confidence interval for the sample mean

Number of Samples	Confidence	e Interval	Number of times True mean falls outside 95 % Confidence interval
1	3.99999	16.01601	411
5	7.2	12.77716	494
10	8.0891	11.9	490
100	8.99694	10.99694	31
500	8.9979524	10.9979524	0
1000	8.9987134	10.9987134	0
2000	8.9993856	10.9993856	0
4000	9.000577625	11.00057763	0
8000	9.000703138	11.00070314	0
10000	9.0002905	11.0002905	0

Table 2: Confidence Intervals using the numerical results

- To get the 95% confidence interval, we initiated from the sample mean and extended the ϵ value on both sides of the distribution.
- As we can clearly see from the above table, as we increase the number of samples, confidence interval shrinking and comes closer to true mean.
- As we can see from the above table, as we increase the number of samples, the number of times true mean fall outside the confidence interval tends to zero.
- To infer more, we attempted to estimate confidence interval using Gaussian and Poisson Standard Deviations. The formula used to estimate and the numerical obtained are shown below.

Formula to estimate confidence interval using Gaussian Standard Deviations

Confidence Interval = $[\hat{\mu} - 2\sigma, \hat{\mu} + 2\sigma]$

where $\hat{\mu}$ is the sample mean, and σ is Gaussian Standard Deviation.

Formula to estimate confidence interval using Poisson Standard Deviations

$$Confidence\ Interval = \left[\hat{\lambda} - 1.96\sqrt{\frac{\hat{\lambda}}{n}}, \hat{\lambda} + 1.96\sqrt{\frac{\hat{\lambda}}{n}}\right]$$

where $\hat{\lambda}$ is the sample mean, and n is number of samples.

Number of Samples	Confidence	e Interval	ľ	Number of Samples	Confidence	e Interval
1	3.807457056	16.20854294		1	3.629739091	16.38626091
5	3.794055892	16.18310411		5	7.138925567	12.83823443
10	3.798174989	16.19092501		10	8.027007291	11.96209271
100	3.799824162	16.19405584		100	9.354763556	10.63911644
500	3.800522776	16.19538202		<i>500</i>	9.713106338	10.28279846
1000	3.80104792	16.19637888		1000	9.801875769	10.19555103
2000	3.801511794	16.19725941		2000	9.857072964	10.14169824
4000	3.802334406	16.19882084		4000	9.902588406	10.09856684
8000	3.802421023	16.19898525		8000	9.931359073	10.0700472
10000	3.80213626	16.19844474		10000	9.936878809	10.06370219

⁽a) Confidence Intervals using Gaussian Standard Deviation

(b) Confidence Intervals using Poisson Standard Deviation

Table 3: Confidence Intervals

Theorem 1 not applicable for Poisson Random Variables

• **Reason**: Theorem 1 is applicable for distributions which follow symmetricity along mean. But Poisson distribution doesn't follow symmetricity along mean.

eriven:

Let
$$X_1, X_2 - - \cdot \times n$$
 denote a sequence of i.i.d random variables with $X_i \in [a,b], H_i$ where $- \propto \langle a \leq b < \alpha \rangle$
Here, $X_i \sim B_i nomial (n, N/n)$

wkt,
$$\epsilon' = \int \frac{-(b-\alpha)^2}{2N} \log(\delta_2)$$

.We need 95% confidence interval. So
$$\delta = 0.05$$

$$e' = \sqrt{\frac{-(b-a)^2}{2N}} \log (0.025)$$

Using Theorem 2,

ie.
$$P\left(\overline{X_N} - \left(\sqrt{\frac{-(b-a)^2}{2N}} \lambda \circ g(0.025)\right) \le M \le \overline{X_N} + \left(\sqrt{\frac{-(b-a)^2}{2N}} \lambda \circ g(0.025)\right)\right) \ge 0.95$$

Samples needed to attain various accuracy

Accuracy Level (α)	Number of samples necessary
0.1	23
0.01	110
0.001	1048
0.0001	10359
0.00001	100298

- As we can see from the above table, as accuracy level increase, number of samples needed to attain the same also increases.
- To generalize, the number of samples needed to attain accuracy (i.e. α), N = $\left(\frac{1}{\alpha}\right)$
- To infer more, we attempted to check the accuracy of the sample mean and true mean with the various number of samples. We have shown the corresponding table below.

Number of Samples	Sample Mean for 10K iterations	Absolute difference from true mean	Accuracy precision of 0.1	Accuracy precision of 0.01	Accuracy precision of 0.001	Accuracy precision of 0.0001
1	10.008	0.008	✓	✓	×	×
5	9.98858	0.01142	✓	×	×	×
10	9.99455	0.00545	~	~	×	×
100	9.99694	0.00306	✓	✓	×	×
500	9.9979524	0.0020476	✓	✓	×	×
1000	9.9987134	0.0012866	✓	/	×	×
2000	9.9993856	0.0006144	✓	✓	✓	×
4000	10.00057763	0.000577625	✓	✓	/	×
8000	10.00070314	0.000703138	~	~	✓	×
10000	10.0002905	0.0002905	✓	✓	✓	×

Table 4: Accuracy attained with various number of samples

Question 4

Finding A

a) Criven:
$$f(k) = \frac{A}{k^2}$$
 for $k = \pm 1, \pm 2, \pm 3...$

To be a valid PMF,

$$\sum_{k \neq 0} f(k) = 1$$
We can rewrite as,
$$\sum_{k = 1} \frac{A}{k^2} = 1$$

$$\sum_{k = 1} \frac{A}{k^2} = 1$$

$$\sum_{k = 1} \frac{A}{k^2} = 1$$
From Basel's approximation,
$$\sum_{k = 1} \frac{1}{k^2} = 1$$
Sub in eqn O ,
$$2 A (1.644934) = 1$$

$$A = \frac{1}{3.289868}$$

$$\therefore A = 0.3039635 \text{ A.}$$

b) Expectation:

$$E[f(R)] = \sum_{k \neq 0}^{R} \frac{A}{k}, \quad k = \pm 1, \pm 2$$

$$= \sum_{k \neq 0}^{R} \frac{A}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R} \frac{1}{k}, \quad k = \pm 1, \pm 2$$

$$= A \sum_{k \neq 0}^{R$$

Histogram of the sample means

Figure 10: Histogram for various number of sample means for 10000 repetition

- We observed that the sample mean is -0.62155489999 when N=1000 and sample mean is -0.607428530000 when N=10000
- We can see that sample mean concentrates around -0.6(approx) for various choices of sample counts.
- From theoretical results, we expected sample mean to be zero. But, sample mean concentrates on -0.6(approx).

95% confidence interval for the sample mean

Number of Samples	Confidenc	e Interval	Number of times True mean falls outside 95 % Confidence interval
2	-1.7982	1	0
10	-2.01818	0.9	444
100	-2.113953	0.930007	495
500	-2.108631	0.910009	499
1000	-2.1690049	0.9258951	499
2000	-2.1505077	0.9011523	499
4000	-2.100323025	0.891756975	498
8000	-2.145130088	0.939529913	499
10000	-2.14610853	0.93125147	499

Table 5: Confidence Intervals using the numerical results

- To get the 95% confidence interval, we initiated from the sample mean and extended the ϵ value on both sides of the distribution.
- As we can clearly see from the above table, as we increase the number of samples, confidence interval shrinking and comes closer to true mean.

Reference

- Probability and Random Processes, 3rd Edition by Geoffrey R. Grimmett, David R. Stirzaker.
- Law of large numbers(Wikipedia)
- MANJUNATH KRISHNAPUR Lecture Notes on PROBABILITY AND STATISTICS