CHANDRASEKHAR MADHAVAN NAIR (CHANDRA NAIR)

Dept. of Information Engineering
The Chinese University of Hong Kong
email: cnair@ie.cuhk.edu.hk
URL: http://chandra.ie.cuhk.edu.hk

Phone: +852-9854-6864

CURRENT POSITION

Associate Professor, Department of Information Engineering (IE)
Associate Director, Institute of Theoretical Computer Science and Communication (ITCSC)
Programme Director, Mathematics and Information Engineering (MIE)

RESEARCH INTERESTS

Network information theory, discrete optimization, probability, combinatorics

WORK EXPERIENCE

2005-2007	Post-doctoral Researcher, Microsoft Research (Theory Group), Redmond, USA
2007-2013	Assistant Professor, Department of Information Engineering, CUHK, Hong Kong
2013-	Associate Professor, Department of Information Engineering, CUHK, Hong Kong

EDUCATION

1995-1999	Nurture Programme in Mathematics, Institute of Mathematical Sciences, Madras, India
1995-1999	B.Тесн in Electrical Engineering, Indian Institute of Technology, Madras, India
1999-2002	M.S. in Electrical Engineering, Stanford University, Stanford, USA
2000-2005	РнD in Electrical Engineering, Stanford University, Stanford, USA

Honors & Awards

1994	First, Indian National Mathematics Olympiad
1994-1999	National Talent Scholarship, Government of India
1995-1999	First, EE dept, I.I.T. Madras
1999	Siemens(India) and Phillips(India) prize for best academic record (EE dept, class of 99)
2000-2004	Stanford Graduate Fellowship
2004-2005	Microsoft Graduate Fellowship

PhD Thesis

Proofs of the Parisi and Coppersmith-Sorkin conjectures in the finite random assignment problem, June 2005, Stanford University.

LIST OF PUBLICATIONS

JOURNAL

- [1] C. Nair, B. Prabhakar, and M. Sharma, "Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures," *Random Structures and Algorithms*, vol. 27(4), pp. 413–444, 2005.
- [2] C. Nair and A. El Gamal, "An outer bound to the capacity region of the broadcast channel," *IEEE Trans. Info. Theory*, vol. IT-53, pp. 350–355, January, 2007.
- [3] C. Nair and A. El Gamal, "The capacity region of a class of three-receiver broadcast channels with degraded message sets," *Information Theory, IEEE Transactions on*, vol. 55, pp. 4479–4493, Oct. 2009.
- [4] C. Borgs, J. T. Chayes, S. Mertens, and C. Nair, "Proof of the local rem conjecture for number partitioning I: Constant energy scales," *Random Structures and Algorithms*, vol. 34(2), pp. 217–240, 2009.
- [5] C. Borgs, J. T. Chayes, S. Mertens, and C. Nair, "Proof of the local rem conjecture for number partitioning II: Growing energy scales," *Random Structures and Algorithms*, vol. 34(2), pp. 241–284, 2009.
- [6] C. Nair, "Capacity regions of two new classes of two-receiver broadcast channels," *Information Theory, IEEE Transactions on*, vol. 56, pp. 4207–4214, sep. 2010.
- [7] Y. Geng, V. Jog, C. Nair, and Z. V. Wang, "An information inequality and evaluation of marton's inner bound for binary input broadcast channels," *IEEE Transactions on Information Theory*, vol. 59, no. 7, pp. 4095–4105, 2013.
- [8] Y. Geng, C. Nair, S. Shamai Shitz, and Z. Wang, "On broadcast channels with binary inputs and symmetric outputs," *Information Theory, IEEE Transactions on*, vol. 59, no. 11, pp. 6980–6989, 2013.
- [9] C. Nair, "Upper concave envelopes and auxiliary random variables," *International Journal of Advances in Engineering Sciences and Applied Mathematics*, vol. 5, no. 1, pp. 12–20, 2013.
- [10] Y. Geng, A. Gohari, C. Nair, and Y. Yu, "On marton's inner bound and its optimality for classes of product broadcast channels," *Information Theory, IEEE Transactions on*, vol. 60, no. 1, pp. 22–41, 2014.

[11] Y. Geng and C. Nair, "The capacity region of the two-receiver gaussian vector broadcast channel with private and common messages," *Information Theory, IEEE Transactions on*, vol. 60, pp. 2087–2104, April 2014.

CONFERENCE PAPERS (INVITED AND UNREFEREED)

- [12] C. Nair, B. Prabhakar, and D. Shah, "The randomness in randomized load balancing," *Proceedings of the 39th Annual Allerton Conference on Communication, Control and Computing*, pp. 912–921, 2001.
- [13] C. Nair and Z. V. Wang, "On the inner and outer bounds for 2-receiver discrete memoryless broadcast channels," *Proceedings of the ITA Workshop*, 2008.
- [14] C. Nair, "An achievable rate region for the 2-receiver broadcast channel obtained by viewing it as an interference channel," in *International Conference on Wireless Communications & Signal Processing*, (Nanjing, P.R. China), 2009.
- [15] V. Jog and C. Nair, "An information inequality for the bssc channel," *Proceedings of the ITA Workshop*, 2010.
- [16] Y. Geng, A. Gohari, C. Nair, and Y. Yu, "On Marton's inner bound for two receiver broadcast channels," *Presented at ITA Workshop*, 2011.
- [17] C. Nair, "A note on outer bounds for broadcast channel," *Presented at International Zurich Seminar*, 2010.
- [18] M. H. M. Costa and C. Nair, "On the achievable rate sum for symmetric Gaussian interference channels," *Information Theory and Applications Workshop (ITA)*, 2012.
- [19] V. Anantharam, A. A. Gohari, S. Kamath, and C. Nair, "On hypercontractivity and the mutual information between boolean functions," in *Allerton*, pp. 13–19, 2013.
- [20] C. Nair, "An extremal inequality related to hypercontractivity of gaussian random variables," *Information Theory and Applications Workshop*, 2014.
- [21] C. Nair, "Equivalent formulations of hypercontractivity using information measures," *International Zurich Seminar*, 2014.
- [22] S. Liu, C. Nair, and L. Xia, "An enhanced genie-based outer bound for interference channels," *Information Theory and Applications Workshop*, 2015.
- [23] M. H. M. Costa and C. Nair, "Gaussian z-interference channel: around the corner," *Information Theory and Applications Workshop (ITA)*, 2016.

CONFERENCE PAPERS (REFEREED)

[24] R. Pan, C. Nair, B. Prabhakar, and B. Yang, "Packet dropping schemes: some examples and analysis," *Proceedings of the 39th Annual Allerton Conference on Communication, Control and Computing*, pp. 563–572, 2001.

- [25] A. El Gamal, C. Nair, B. Prabhakar, E. Uysal, and S. Zahedi, "Energy-efficient scheduling of packet transmissions over wireless networks," *Proceedings of the IEEE Infocom Conference*, vol. 3, pp. 1773–1782, June, 2002.
- [26] C. Nair, "Towards the resolution of Coppersmith-Sorkin conjectures," *Proceedings* of the 40th Annual Allerton Conference on Communication, Control and Computing, pp. 667–673, 2002.
- [27] C. Nair, B. Prabhakar, and M. Sharma, "Proofs of the Parisi and Coppersmith-Sorkin conjectures for the finite random assignment problem," *IEEE Foundations of Computer Science (FOCS)*, pp. 168–178, 2003.
- [28] C. Nair, B. Prabhakar, and M. Sharma, "A new proof of the Parisi's conjecture for the random assignment problem," *International Symposium on Information Theory*, p. 61, 2004.
- [29] C. Nair, E. Ordentlich, and T. Weissman, "Asymptotic filtering and entropy rate of a hidden Markov process in the rare transitions regime," *International Symposium on Information Theory*, pp. 1838–1842, 2005.
- [30] C. Nair and A. El Gamal, "An outer bound to the capacity region of the broadcast channel," *International Symposium on Information Theory*, pp. 2205–2209, 2006.
- [31] M. Bayati and C. Nair, "A rigorous proof of the cavity method for counting matchings," *Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing*, 2006.
- [32] N. J. A. Harvey, K. Jain, L. C. Lau, C. Nair, and Y. Wu, "Conservative network coding," Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing, 2006.
- [33] N. J. A. Harvey, R. Klienberg, C. Nair, and Y. Wu, "A 'chicken & egg' network coding problem," *Proceedings of the International symposium on Information Theory*, 2007.
- [34] M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali, "Simple deterministic approximation algorithms for counting matchings," *Proceedings of the Symposium on Theory of Computation(STOC)*, pp. 122–127, 2007.
- [35] C. Nair and A. El Gamal, "The capacity of a class of 3-receiver broadcast channels with degraded message sets," *International Symposium on Information Theory*, pp. 1706–1710, 2008.
- [36] C. Nair and Z. V. Wang, "On the inner and outer bounds of 3-receiver broadcast channels with 2-degraded message sets," *International Symposium on Information Theory*, pp. 1844–1848, 2009.
- [37] C. Nair, "Capacity regions of two new classes of 2-receiver broadcast channels," *International Symposium on Information Theory*, pp. 1839–1843, 2009.

- [38] G. Kramer and C. Nair, "Comments on: Broadcast channels with arbitrarily correlated sources," *International Symposium on Information Theory*, pp. 2777–2779, 2009.
- [39] Y. Geng, C. Nair, S. Shamai, and Z. V. Wang, "On broadcast channels with binary inputs and symmetric outputs," *International Symposium on Information Theory*, 2010.
- [40] C. Nair and Z. V. Wang, "The capacity region of a class of broadcast channels with a sequence of less noisy receivers," *International Symposium on Information Theory*, 2010.
- [41] C. Nair, Z. V. Wang, and Y. Geng, "An information inequality and evaluation of Marton's inner bound for binary input broadcast channels," *International Symposium on Information Theory*, 2010.
- [42] Y. Geng, A. Gohari, C. Nair, and Y. Yu, "The capacity region of classes of product broadcast channels," *International Symposium on Information Theory*, pp. 1549–1553, 2011.
- [43] C. Nair and Z. Wang, "The capacity region of the three receiver less noisy broadcast channel," *Information Theory, IEEE Transactions on*, vol. 57, pp. 4058–4062, july 2011.
- [44] Y. Geng and C. Nair, "The capacity region of the two-receiver vector gaussian broadcast channel with private and common messages," in 2012 IEEE International Symposium on Information Theory (ISIT'2012), (Cambridge, Massachusetts, USA), pp. 591–595, July 2012.
- [45] A. A. Gohari, C. Nair, and V. Anantharam, "On Marton's inner bound for broadcast channels," in *International Symposium on Information Theory*, (Cambridge, Massachusetts, USA), pp. 586–590, July 2012.
- [46] C. Nair and L. Xia, "On Three-Receiver more capable channels," in 2012 IEEE International Symposium on Information Theory (ISIT'2012), (Cambridge, Massachusetts, USA), pp. 383–387, July 2012.
- [47] V. Anantharam, A. A. Gohari, and C. Nair, "Improved cardinality bounds on the auxiliary random variables in Marton's inner bound," in *International Symposium on Information Theory*, (Istanbul, Turkey), pp. 1272–1276, July 2013.
- [48] V. Anantharam, A. Gohari, S. Kamath, and C. Nair, "On hypercontractivity and a data processing inequality," in 2014 IEEE International Symposium on Information Theory (ISIT'2014), (Honolulu, USA), pp. 3022–3026, June 2014.
- [49] S. Liu, C. Nair, and L. Xia, "Interference channels with very weak interference," in 2014 *IEEE International Symposium on Information Theory (ISIT'2014)*, (Honolulu, USA), pp. 1031–1035, June 2014.
- [50] S. Kamath and C. Nair, "The strong data processing constant for sums of i.i.d. random variables," in *Information Theory (ISIT), 2015 IEEE International Symposium on*, pp. 2550–2552, June 2015.

- [51] C. Nair, L. Xia, and M. Yazdanpanah, "Sub-optimality of Han-Kobayashi achievable region for interference channels," in *Information Theory (ISIT), 2015 IEEE International Symposium on*, pp. 2416–2420, June 2015.
- [52] S. Beigi, S. Liu, C. Nair, and M. Yazdanpanah, "Some results on the scalar gaussian interference channel," in 2016 IEEE International Symposium on Information Theory (ISIT'2016), (Barcelona, Spain), July 2016.
- [53] S. Beigi and C. Nair, "Equivalent characterization of reverse brascamp-lieb type inequalities using information measures," in 2016 IEEE International Symposium on Information Theory (ISIT'2016), (Barcelona, Spain), July 2016.
- [54] C. Nair and Y. N. Wang, "Evaluating hypercontractivity parameters using information measures," in 2016 IEEE International Symposium on Information Theory (ISIT'2016), (Barcelona, Spain), July 2016.

UPLOADS TO ARXIV (UNREFEREED)

- [55] C. Nair, "An outer bound for 2-receiver discrete memoryless broadcast channels," *CoRR*, vol. abs/0807.3593, 2008.
- [56] C. Nair, A. El Gamal, and Y.-K. Chia, "An achievability scheme for the compound channel with state noncausally available at the encoder," *CoRR*, vol. abs/1004.3427, 2010.

RECENT TALKS (WORKSHOPS AND UNIVERSITIES)

- 1. Information Theory and Distributed Communication Workshop, Instistute Henri Poincare, February 2016
- 2. Stanford Feb 2015, May 2015
- 3. University of California, Berkeley February 2015 (Probability Seminar)
- 4. SP Coding School, Unicamp, Brazil, January 2015
- 5. Princeton University (William Pierson Field Lecture), October 2014

Miscellaneous

Services to Conferences

- Technical Program Committee
 - International Symposium on Information Theory (ISIT): St. Petersburg 2011,
 Boston 2012, Istanbul 2013, Hawai 2014, Hong Kong 2015, Barcelona 2016

- List (partial) of conferences for which I have served as reviewer
 - International Symposium on Information Theory (ISIT)
 - Information Theory Workshop (ITW)
 - Foundations of Computer Science (FOCS)
 - Symposium on Theory of Computation (STOC)

Services to Journals

- Associate Editor (Shannon Theory) IEEE Transactions on Information Theory. Jan 2014-
- List (partial) of journals for which I have served as reviewer
 - IEEE Transactions on Information Theory
 - IEEE Transactions on Networking
 - Random Structures and Algorithms
 - Annals of Applied Probability