ANNOUNCEMENT

Mid-term Exam

- Tentative date: Mar 29 Tuesday (after Spring break).
 - --2-3:20pm; same time as class.
- --online exam: download before 2pm; submit to gradescope. (details on wiki page "Mid-term exam information")
- Send me an email if you are not available!
- Open to lecture slides, textbook, homework. Not allow to check any other material.
- No communication with anyone, except TA and instructor.
 - --any sign of communication may cause in penalty.

Projects

- Topic proposal is due in a few weeks: Mar 12
- Check wiki page "Project suggestions and timeline"
 - --timeline
 - --listed a few candidate topics (other topics are fine)
 - --other instructions

Also check "Lecture 0" on the project.

Ask questions on Piazza. Act early. Act early. Act early.

CG METHOD AND COMPARING ALGORITHMS

Ruoyu Sun

Learning Goals of This Lecture

Conjugate gradient method (brief intro) and compare earlier algorithms

· After today's lecture, you should be able to

- Tell why Conjugate Gradient method is popular for quadratic problems
- Compare algorithms using synthetic data
- Tell a few tricks and traps of the comparison

PART I CONJUGATE GRADIENT METHOD

CG: Method of Choice for Quadratic Problems

• Conjugate gradient method: originally designed for solving symmetric PD linear system Qx = c--same as solving min x'Qx - 2c'x

often the method of choice; well known for decades

Remark: For non-symmetric linear system, other methods are popular.

Extendable to nonlinear problems (non-linear CG).

CG: History

- Linear conjugate gradient (CG) method was proposed by Hestenes and Stiefel in the 1950s;
 - --as an iterative method for solving PD linear systems
- First nonlinear CG method: Fletcher and Reeves, 1960s.
- --among earliest techniques for large-scale nonlinear optimization problems (before BFGS)

Newton-CG in Scipy

- Scipy.optimize provides "CG" and "Newton-CG"
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Method <u>Newton-CG</u> uses a Newton-CG algorithm (also known as the truncated Newton method); see [Numerical optimization] pp. 168
- "It uses a CG method to the compute the search direction"
- In Newton method, the search direction is $\mathbf{v} = H^{-1}g$, where $H = \nabla^2 f(x^k)$, $g = \nabla f(x)$.
- Computing $\mathbf{v} = H^{-1}g \iff$ solving $\mathbf{H}\mathbf{v} = g$
- (i.e., replace matrix inversion by solving linear system with CG method)
- What if Hessian is not PD?
 - --Start from $\mathbf{v}(\mathbf{0}) = -\nabla f(x)$;
 - --update v(k) until convergence, or getting non-descent direction

(nonlinear) CG in scipy

Scipy.optimize provides "CG" and "Newton-CG"

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

- Method <u>CG</u> uses nonlinear <u>CG</u> by Polak and Ribiere
 - --variant of the Fletcher-Reeves method
 - --see [Numerical optimization] pp. 121-123.
- We will briefly discuss Fletcher-Reeves method later.

Linear Conjugate Gradient Method

Solving symmetric PD linear system Ax = b, or quadratic problem min x'Ax/2 - b'x.

Given x_0 ; Set $r_0 \leftarrow Ax_0 - b$, $p_0 \leftarrow -r_0$, $k \leftarrow 0$; Initialize residual r, direction p while $r_k \neq 0$

$$\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T A p_k};$$
 Stepsize $x_{k+1} \leftarrow x_k + \alpha_k p_k;$ Update iterate $r_{k+1} \leftarrow r_k + \alpha_k A p_k;$ Update residual $\beta_{k+1} \leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k};$ $p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k;$ Update direction, by new residual $k \leftarrow k+1;$

Non-linear CG Method (Fletcher-Reeves)

Solving min f(x), for general differentiable function f.

```
Algorithm 5.4 (FR).
```

```
Given x_0;

Evaluate f_0 = f(x_0), \nabla f_0 = \nabla f(x_0);

Set p_0 \leftarrow -\nabla f_0, k \leftarrow 0; Initial direction is negative gradient.

while \nabla f_k \neq 0

Compute \alpha_k and set x_{k+1} = x_k + \alpha_k p_k; Update iterate

Evaluate \nabla f_{k+1};
```

$$\beta_{k+1}^{\text{FR}} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k}; \text{Update "momentum" coefficient} \\ p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{\text{FR}} p_k; \text{Update direction;} \\ k \leftarrow k+1; \text{Update direction}$$

Disclaimer: Skipping Details of CG

- The above explanations are very brief.
- To fully understand CG method, one shall learn its deeper motivation and a few properties
- We skip these details, but only focus on the importance and theory of CG

Three Main Results on Linear CG

For solving PD linear system Ax = b, CG method is very fast.

Theorem 5.4.

If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution in at most r iterations.

Theorem 5.5.

If A has eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, we have that (denote $||y||_A^2 = y^T A y$)

$$||x_{k+1} - x^*||_A^2 \le \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 ||x_0 - x^*||_A^2.$$

error
$$\frac{\|x_t - x^*\|_A}{\|x_0 - x^*\|_A}$$
 decreases like: $1 - \frac{\lambda_1}{\lambda_n}$, $1 - \frac{\lambda_1}{\lambda_{n-1}}$, ..., $1 - \frac{\lambda_1}{\lambda_2}$, $1 - \frac{\lambda_1}{\lambda_1} = 0$

Result 3:
$$||x_k - x^*||_A \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k ||x_0 - x^*||_A.$$

Convergence Rate of Linear CG

- For solving PD linear system Ax = b, CG method is very fast.
- First, terminate in at most n iterations.
- Second, "multi-stage" behavior: at the t-th iteration, the error is dependent on the ratio of the t-th largest eigenvalue over min-eigenvalue
 - -most important reason why CG is fast
- Third: at least linear convergence at rate $1 1/\sqrt{\kappa}$
 - --this rate **bound**: same as NAG for convex quadratic problems
 - -- the actual convergence of CG is much faster than NAG

Performance of CG: first few iterations

Figure 5.5 of [Numerical optimization]

Relation of BFGS and CG

- When using exact line search for solving strongly convex quadratic problems, BFGS is equivalent to (linear)-CG (see discussion in Bertsekas "nonlinear programming").
- Partially explain excellent performance of BFGS
- --Remark: BFGS has multiple steps of approximation, so theoretical benefit less clear without this result
- For general **non-quadratic** problems, or BFGS with inexact linear search, BFGS and (nonlinear)-CG are different.

PART II EXPERIMENTS ON DIAGONAL MATRICES

Methods, Theory and Experiments

- Methods: we discussed various methods: GD, HB & NAG, BB, BFGS, CG
- Theory: we have a bunch of theoretical results
 - --convergence rate results
 - --discussion of their speed
- Experiments: we have a few experimental studies
 - --1D logistic regression
 - --multi-stage behavior in low-dim linear regression

What is missing: comparing these methods in high-dim experiments

Comparing Methods Is Tricky

- Comparing methods is tricky!
- Comparing methods is tricky!!
- Comparing methods is tricky!!!
- Common "mistake":
 - --generate "random" data
 - --compare two methods and draw conclusion

Your conclusion: Algo-1 is better than Algo-2 What you really did:

- --on a linear regression problem with Gaussian data
- --with zero-ini point and constant stepsize 0.1
- --Algo-1 achieves smaller iterate error than Algo-2 within 5000 iterations

Ideal Comparison

- Comparing two methods require:
- Diverse problems and instances (data).
- --problems: from many application areas, different forms (e.g. Mittleman's standard test datasets)
- --instances: for a given form (linear regression, or fitting financial data), various data sources
- Tuning algorithm hyperparameters (for each instance)
 - --initial point
 - --stepsize, momentum coeff., etc.
 - --max # of iteration; max line search steps; max memory steps, e.g.
- Choose proper metric
 - --Target accuracy, 1e-5, 1e-8, or 1e-12?
 - --gradient error?
 - --function value? Or function error?
 - --iterate difference? Or iterate error?

Tip: How to memorize these?
If you prepare data, write algorithm and make plot yourself, then every part can be tunable.

This Lecture

- This lecture, we compare BB, BFGS, GD, etc. For simplicity, we explore:
- Diverse problems and instances (data).
- --problems: from many application areas, different forms (e.g. Mittleman's standard test datasets)
- --instances: for a given form (linear regression), various data sources
- Tuning algorithm hyperparameters (for each instance)
 - --initial point (one random initial point)
- ---stepsize, momentum coeff., etc. (fixed hyperparams)
 - --max # of iteration; max line search steps; max memory steps, e.g.
- Choose proper metric
 - --Target accuracy, 1e-5, 1e-8, or 1e-12?
 - --gradient error?
- ---function value? Or function error?
 - --iterate difference? Or iterate error?

Setting 1: Diagonal Matrices

The problem in the whole lecture:
 min x'Qx.

• Toy Case 1.0: Q = (1, 1e-2, 1e-4).

We discussed this toy case before.

Case 1.1: Three Clusters

Change the eigenvalue distribution.

Case 1.1: Spectrum consists of three clusters.

```
D1 = (1, 1, ..., 1, 1e-2, ..., 1e-2, 1e-4, ..., 1e-4)
Q = D1
```

d=100, Spectrum: (1, 1, ..., 1, 1e-2, ..., 1e-2, 1e-4, ..., 1e-4)

With only three clusters, **BB**, BFGS, L-BFGS are 100+ times faster.

Case 1.2: Linear Spacing

Case 1.2: linear spacing between eigenvalues.

```
d = 100
spacing = 30
v = np.arange( 1, d*spacing, spacing )
D2 = np.diag( v/max(v) )
```

Eigenvalues are: 1, 31, 61, 91, 121, 151, ..., 2971

• Q = D2

--scale all eigenvalues so that the maximal eigenvalue is 1; so minimum eigenvalue is $1/2971 \approx 0.00034$.

Case 1.2: linear spacing between eigenvalues

L = 1.0mu = 0.0003365870077415012

HB is much faster than GD.

BB is 2-3 times faster than HB.

BFGS, L-BFGS take fewer iterations than BB (total cost maybe comparable?) --gaps increase as error increases

Tuning Data generation

- What if spacing = 1?
- --Performance of HB should be good
- What if using different initial point?

What if using different max-iteration?

$$d = 1000$$
 spacing = 20

$$L = 1.0$$

 $mu = 5.004754516790951e-05$

Gap between BB and HB is even larger

GD is faster than HB (in 800 iterations).

--Higher dim often requires more iterations; o.w. conclusion can be reversed

BFGS outperforms BB after getting 1e-3 error.

Generic Advice of Looking at Figures

How does tuning parameter will affect the performance? --Especially eigenvalues.

It is good to keep in mind that:

- 1) High accuracy v.s. low accuracy;
- 2) What if this scales to high-dim?
- 3) Shall we look at first 100 iterations? What if run 10 times more?

PART III RANDOM MATRICES

Random matrices

 In practice, often test the algorithms using two kinds of data:

- 1) Synthetic data.
 - --"Random" data;
 - --data with controlled spectrum.
- 2) Real data. —--Skip today

Setting 2.1a: Random Gaussian Data

d = n = 100

A = np.random.randn(n,d)

Q = A.T @ A

Lessons?

- Except BFGS, all other 4 methods are similar?
- Remember the tip: run it for longer.

2k iterations BB looks similar to HB

20k iterations BB is much faster than HB.

Change: unequal n and d

We assumed n = d for simplicity.

- In data analysis, # of samples often is larger than # of features, i.e., n > d.
- What if we use n > d, instead of n = d?

Setting 2.1b Rectangular, d = 500

- d = 500, n = 533. 2000 iterations
- L = 2076, mu = 0.42. $\kappa \approx 5000$

d = 500, n = 600. 500 iterations L=6583, mu = $15,\kappa \approx 400$

Gap between BB and HB: increasing as κ increases from 400 to 5000

Setting 2.1b Rectangular, d = 1500

- d = 1500, n = 1600.
- L = 6244, mu = 2.02. $\kappa \approx 3100$

d = 1500, **n = 1800**. L=6583, mu = $15,\kappa \approx 400$

Gap between BB and HB: increasing as κ increases from 400 to 3000

Ratio d/n matters more than size of d: (d,n)=(1500,1800) similar to (500,600)

Math knowledge: Why unequal n and d make so huge difference?

- Need a bit background of random matrix.
- Edelmen: <u>Eigenvalues and condition numbers of random</u>
 <u>matrices</u> (Edelmen has many papers on this)
- Pay attention: Q = A'*A, where A is random, is called Wishart matrix.

Result 1: same n/d → similar eigenvalue pattern → similar convergence comparison

- Result 2: for square Gaussian A, kappa is huge; for non-square Gaussian A, kappa is much nicer.
- Exercise: plot eigenvalues of square and non-square A

Setting 2.2a: Uniform random data

- A = np.random.rand(n, d)
- Q = A.T @ A

Observation: BB and BFGS are similar (lower envelop); faster than HB.

What's next interesting experiment?

Longer training?

20k iterations.

BB is so much faster than HB and GD (why? Check condition number)

L-BFGS has not shown too much benefit over BB.

Setting 2.2b Rectangular Uniform

d = 500, n = 600. Uniform random.

GD and HB are slow; BB is really good. BB takes fewer iterations than L-BFGS!!

2000 iterations

Lesson on BB v.s. L-BFGS

- Only case so far: BB takes fewer iterations than L-BFGS.
- --Considering the extra cost of L-BFGS, BB is clearly dominating L-BFGS in this case.
- After seeing 10+ settings, we thought: L-BFGS always takes fewer iterations than BB
 - --too early to make assertion.

Setting 2.3: Controlled Condition Number

- Random eigenvalues with $\kappa = 1e5$ (set D = D3)
- Set A = A3, i.e.,

A = UDV', where U, V are orthogonal matrices (random Gaussian matrices).

BB is much faster than HB (about 5-6 times faster) BFGS, L-BFGS takes fewer iterations than BB.

Summarize These Settings?

"<" means "takes fewer iterations"

Low accuracy:

```
random data BFGS ≈ L-BFGS < BB < HB < GD (control-kappa case: L-BFGS << BB at 1e-6)
```

High accuracy:

BFGS < L-BFGS << BB <<< HB < GD

Here, we ignored per-iteration time!

(so L-BFGS < BB does not mean L-BFGS is faster than BB in terms of CPU time)

Disclaimer

- This lecture focused on "# of iterates" comparison
- This is NOT "time" comparison
- You shall report CPU time comparison between algorithms (in projects), especially if they are from different classes
 - --e.g. compare BB and BFGS
- --it's fine if they have similar per-iteration cost (e.g. HB v.s. NAG v.s. BB)
- Issue of CPU time comparison:
 - --depend on software (C, python, matlab, etc.)
 - --depend on hardware (Macbook, HP, GPU, etc.)
 - --depend on implementation (BFGS's different versions)

Other Factors for Experiments

- What if we apply data processing? (normalization and centralization)
- Do eigen-vectors make a difference? (i.e. does a diagonal matrix and a non-diagonal matrix with the same eigenvalues lead to the same performance?)
- How do parameters of BFGS and L-BFGS like maxcor and maxls affect the performance?
- How does momentum parameter beta in HB method affect the performance?

Comparison on Logistic Regression

- Check
- http://fa.bianp.net/blog/2013/numerical-optimizers-forlogistic-regression/
- It compares various methods, including BFGS, L-BFGS, CG and trust region methods.

Suggestions of Experiment Settings

Suggested experiments on comparing algorithms (either on a real problem, or just comparing algorithms):

- 0) Real data (one instance, or collection of problems) are the best testbed;
- 1) If you can plot the eigen-distribution for the problem at hand: then create a **smaller-size** problem **with similar spectrum pattern**, and then test the algorithms.
- This is the rational of many papers that study the Hessian spectrum of neural networks.
- 2) If not, then try two experiments:
- 2.1) Smaller subset of data.
- 2.2) "Few outliers + small cluster" spectrum (D3 matrix in ipynb file). Possibly modify the small cluster.

Possibly try random U and V (singular vectors).

Remark: similar (# of iterations)/dimension; similar accuracy.

- **3**) If try random matrix, use **unequal** d and n. Try both Gaussian and uniform. (if possible, try data preprocessing)
- 4) Other factors: sparsity; hardware implementation.

Summary of This Lecture

- Conjugate gradient (CG) method:
 - --(linear) CG is very popular for solving linear systems
 - --nonlinear CG is a possible candidate for nonlinear problems

Theory: multi-stage error; $O(\sqrt{\kappa})$ ite-complexity; n-iteration terminates

- Experiments on which methods are good.
 - --BB or L-BFGS are good choices
 - --BB is bumpy
 - L-BFGS requires line search and more memory
- Second, need to properly pick test problems to evaluate algorithms.
 - --Pay special attention to spectrum
 - --Consider changing accuracy, MaxIter, dim ratio, etc.

Comments on This Lecture

- Probably NOT existent on other optimization courses
- Reason: traditional optimization courses focus on 2nd order methods (BFGS, DFP, ...)
 - --HB, NAG, GD are not that important
 - --So comparing with HB/NAG is not important
- Nowadays, HB/NAG/GD are popular in big data
- You may wonder: which method is better?
- Here we show: BB/L-BFGS are indeed much better
- (Disclaimer: for medium-scale problems)
- HB/GD are popular in huge-scale problems partially due to the necessity of SGD