King Mongkut's University of Technology Thonburi 1st semester Midterm, academic year 2014

ChE 241 Thermodynamics 1 September 29, 2014

Sophomore, Dept. of Chem. Eng. 9.00 am. - 12.00 pm.

Instruction

- a) This examination paper has 13 pages and 5 problems.
- b) Answer the questions in the space provided. If you run out of space for an answer, continue on the back of the page.
- c) Lecture notes and textbooks are not permitted.
- d) A calculator must be complied with the university regulation.
- e) Do not take the examination out of the examination room.
- f) Ask for permission to leave the examination room when finish.
- g) Turn in neat, step-by-step solutions with enough explanation for someone else to follow what you have done.

Highest punishment for dishonesty is the expulsion from the university

First name	Last name	_Student ID No

Problem No.	1	2	3	4	5	Total
Student's score						
Full score	15	30	15	20	20	100

The examination is written by

Assoc. Prof. Dr.Anawat Sungpet (Tel. 9222 ext. 217)

This examination has been evaluated by the department committee.

(Assoc. Prof. Dr.Piyabutr Wanichpongpan) (Head of the department)

First name _____ Last name _____ Student ID No. _____

Mass balance

$$\frac{dm}{dt} = \sum_{j=1}^{J} \dot{m}_j$$

First law of thermodynamics

$$\frac{d\left(U+E_{k}+E_{p}\right)}{dt}=\sum_{j=1}^{J}\dot{m}_{j}(\widehat{H}+\frac{v^{2}}{2}+gy)+\dot{Q}-\dot{W}:where\,\widehat{H}=\widehat{U}+P\widehat{V}$$

Entropy balance equation

$$\frac{dS}{dt} = \sum_{j=1}^{J} \dot{m}_j \, \hat{S}_j + \frac{\dot{Q}}{T} + \dot{S}_P$$

Problem 1 (15 points)

An inlet of a boiler is subcooled water at 0.1 MPa and 63 °C. The diameters of the inlet and outlet pipes are the same, 0.3636 m. The water flow rate is 5,000 kg/h. The steam produced is at 0.7 MPa and 333 °C. Determine the required heat rate for producing such steam

- a) Neglect the change in kinetic energy
- b) Include the change in kinetic energy
- c) Discuss whether the change in kinetic energy can be omitted

Properties of water for problem 1

0.10	MPa (t	= 99.60	6 °C)	
V	ρ	h	s	t, °C
1.01211	988.03	209.42	0.703 77	50
1.014 52	985.69	230.33	0.767 98	55
1.017 09	983.20	251.25	0.831 25	60
1.019 84	980.55	272.18	0.893 61	65
1.022 74	977.76	293.12	0.955 09	70

0.70	MPa (t _s	= 164.94	6 °C)	
ν	ρ	h	s	t, °C
371.42	2.6924	3059.4	7.2995	300
378.33	2.6432	3080.4	7.3357	310
385.23	2.5959	3101.3	7.3713	320
392.10	2.5504	3122.3	7.4063	330
398.95	2.5066	3143.2	7.4407	340

 $V = \text{cm}^3/\text{g}$, $\rho = \text{kg/m}^3$, h = kJ/kg, s = kJ/(kg.K), $t_s = \text{temperature at saturation}$

First name	Last name	Student ID No
· 113(1141110	Last Harric	Otagent ID 140

First name _____Student ID No. _____

Problem 2 (30 points)

A chemical plant has a waste stream of dry air at 700 °C and 1 MPa, and a flow rate of 1.1×10^4 kg/h. An energy conservation proposal has been made to use this air in a turbine unit and a waste heat boiler to produce electricity and process steam. Efficiency of the turbine is 83.3 %. Only 80 % of the heat removed from the air in the heat exchanger is supplied to water. The rest of heat is released to the environment. The water flow rate is 500 kg/h. By using the properties of water the enthalpy-entropy diagram for dry air, determine

- a) The power required by the adiabatic water pump (\dot{W}_p)
- b) The power generated by the turbine (\dot{W}_T)
- c) The temperature of the process steam

Properties of water for problem 2

0.10	MPa (ts	= 99.600	6 °C)	
v	ρ	h	s	t, °C
1.002 96	997.05	104.92	0.367 20	25
1.004 37	995.65	125.82	0.436 73	30
1.006 00	994.03	146.72	0.50510	35
1.007 85	992.22	167.62	0.572 37	40
1.009 88	990.21	188.51	0.638 58	45

 $V \equiv \text{cm}^3/\text{g}$, $\rho \equiv \text{kg/m}^3$, $h \equiv \text{kJ/kg}$, $s \equiv \text{kJ/(kg.K)}$ $t_s = \text{temperature at saturation}$

1.0 !	MPa (t _s =	= 179.878	3°C)	
v	ρ	h	s	t, °C
1.127 23	887.13	762.52	2.1381	t _s (L)
194.36	5.1450	2777.1	6.5850	t _s (V)
1.120 63	892.35	741.08	2.0905	175
194.44	5.1431	2777.4	6.5857	180
197.42	5.0653	2790.7	6.6148	185
200.34	4.9916	2803.5	6.6427	190
203.20	4.9212	2816.0	6.6695	195

First name _____Student ID No. _____

First name	_Last name	_Student ID No

First name	_Last name	Student ID No

First name Last name	Student ID No
----------------------	---------------

Problem 3 (15 points)

An initially empty tank is filled with refrigerant-134a at 0.5 MPa, 30 °C from a pipe line. The tank valve is closed once the pressure in the tank reaches the pipe line pressure. If the volume of tank is 0.25 m³, what is the final temperature and the mass of the refrigerant in the tank? The tank is well insulated such that there is no heat transfer.

Superheated refrigerant-134a

T v u h s °C m ³ /kg kJ/kg kJ/kg kJ/kg · $P = 0.50 \text{ MPa} (T_{sat} = 15.74 °C)$	
$P = 0.50 \text{ MPa} (T_{sat} = 15.74^{\circ}\text{C})$	K
Sat. 0.04086 253.64 256.07 0.911 20 0.04188 239.40 260.34 0.926 30 0.04416 248.20 270.28 0.959 40 0.04633 256.99 280.16 0.991 50 0.04842 265.83 290.04 1.022 60 0.05043 274.73 299.95 1.053 70 0.05240 283.72 309.92 1.082 80 0.05432 292.80 319.96 1.111 90 0.05620 302.00 330.10 1.139 100 0.05805 311.31 340.33 1.167 110 0.05988 320.74 350.68 1.194 120 0.06168 330.30 361.14 1.221 130 0.06347 339.98 371.72 1.248 140 0.06524 349.79 382.42 1.274	478915475984

Refrigerant-134a flowing in a pipe

First name ______Student ID No. _____

Problem 4 (20 points)

Methane is compressed by **three** reversible compressors from an inlet state of 0.1 MPa and 300 K to an exit pressure of 0.9 MPa. Assume that methane is an ideal gas.

a) Determine the *minimum* compressor work per unit mass for the compression with isobaric intercooling with a polytropic exponent of 1.3. Given that the total work required by the polytropic compression is

$$W_{rev} = \frac{nRT_1}{n-1} \left[\left(\frac{P_2}{P_1} \right)^{(n-1)/n} - 1 \right] + \frac{nRT_1}{n-1} \left[\left(\frac{P_3}{P_2} \right)^{(n-1)/n} - 1 \right] + \frac{nRT_1}{n-1} \left[\left(\frac{P_4}{P_3} \right)^{(n-1)/n} - 1 \right]; R = 0.287 \ kJ/(kg.K)$$

Note that, to minimize the required work, the pressure ratio across each stage of the compressor must be the same.

b) Sketch the compression process relative to that of the isothermal compression on the given P-V diagram

First name	Last name	Student ID No
------------	-----------	---------------

First nameLast name	meStudent ID No
---------------------	-----------------

Problem 5 (20 points)

Methane at 300 K and 0.1 MPa is adiabatically mixed with methane at 180 K and 0.1 MPa. After mixing, it is compressed by an adiabatic compressor to 0.8 MPa. Efficiency of the compressor is 80 %. Methane is subsequently cooled by an isobaric cooler, which can remove heat from methane at a rate of 2.51×10^5 kJ/h. By using thermodynamic properties of methane diagram, determine the temperature of methane at the cooler exit?

First name ______Last name _____Student ID No. _____

First name	Last name	Student ID No