Introduction to probability theory and stochastic processes

Cameron Ray Smith¹, Aviv Bergman^{1,2,3,4}

¹Department of Systems and Computational Biology ²Dominick P. Purpura Department of Neuroscience ³Department of Pathology

Albert Einstein College of Medicine

Outline

Theoretical background Conceptual introduction Measure theory

Stochastic processes

References

sets

probability measure

probability axioms

conditional probability

random variables

probability densities

joint probability densities

the reality

For the general theory of measure spaces, we first need a measurable space (X, Σ), that is a set equipped with a collection Σ of measurable sets complete under certain operations. Then this becomes a measure space (X, Σ, μ) by throwing in a function μ from Σ to a space of values (such as the real line) that gets along with the set-theoretic operations that Σ has. If E is a measurable set, then μ(E) is called the measure of E with respect to μ. [1]

- 1. Given a set X,
- a σ-algebra is a collection of subsets of X that is closed under complementation, countable unions, and countable intersections.
- 3. A **measurable space**, by the usual modern definition, is a set X equipped with a σ -algebra Σ .
- 4. The elements of Σ are called the **measurable sets** of X (or more properly, the measurable subsets of (X, Σ)). [2]

A measure space is a measurable space equipped with a measure. There are many different types of measures parametrized by the type of their codomains. Let (X, Σ) be a measurable space. A **probability measure** on X (due to Kolmogorov) is a function μ from the collection Σ of measurable sets to the unit interval [0,1] such that:

- 1. The measure of the empty set is zero: $\mu(\emptyset) = 0$;
- 2. The measure of the entire space is one: $\mu(X) = 1$;
- 3. Countable additivity: $\mu(\bigcup_{i=1}^{\infty} S_i) = \sum_{i=1}^{\infty} \mu(S_i)$ whenever the S_i are mutually disjoint sets—disjoint. (Part of the latter condition is the requirement that the sum on the right-hand side must converge.)

It is sometimes stated (but in fact follows from the previous) that:

- Finitary additivity: $\mu(S \cup T) = \mu(S) + \mu(T)$ whenever S and T are disjoint.
- μ is increasing: $\mu(A) \leq \mu(B)$ if $A \subseteq B$.

Outline

Stochastic processes Definition

Intuitively, **stochastic processes** are ∞ -dimensional probability distributions.

- In most applications, stochastic processes model systems that evolve randomly in time, which is likely the origin of the word process in the name.
- The order of this evolution can be described through the use of an index and an index set respectively t ∈ T.

Definition

Consider a random experiment with sample space X, a σ -algebra Σ , a base probability measure $\mu: \Sigma \to [0,1]$, and a collection of random variables S_t indexed by a set T. A **stochastic process** is then defined by the set $\{S_t, t \in T\}$.

• This definition can be specialized to the case of discrete or continuous stochastic processes by taking the index set to be $T \in \mathbb{N}$ or $T \in \mathbb{R}_+$ respectively.

Outline

Theoretical background

Stochastic processes

References

[1] David Houle, Christophe Pélabon, Günter P Wagner, and Thomas F Hansen.

Measurement and meaning in biology.

The Quarterly review of biology, 86(1):3-34, March 2011.

[2] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei.

Hierarchical Dirichlet Processes.

Journal of the American Statistical Association, 101(476):1566–1581, December 2006.