1 toeljava tipov

Primer $\lambda_f \cdot \lambda_{\times} \cdot f(f_{\times}) \xrightarrow{\text{laster-simp}^2} (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

1. faza: dolocino tipe in nastavimo enache med parametri - za tipe

2. faza: regins enache

$$\frac{\beta = \gamma \rightarrow \delta}{\beta = \delta \rightarrow \epsilon} \qquad \frac{\gamma = \delta}{\delta = \epsilon}$$

$$\frac{\beta = \delta \rightarrow \epsilon}{\beta \rightarrow \gamma \rightarrow \delta} \qquad \Rightarrow \frac{\gamma = \delta}{\beta \Rightarrow \gamma \rightarrow \delta}$$

Ce dobljeno substitucijo uporabine na typu $\beta \rightarrow \gamma \rightarrow \epsilon$ iz 1. faze, dobino $(\epsilon \rightarrow \epsilon) \rightarrow \epsilon \rightarrow \epsilon$, kar je to, kar sna hoteli.

Nastavljanje enach

A:= bool | int | A
$$\rightarrow$$
B | α
E:= \emptyset | $A_1 = A_{z_1}$ ε

T-M:A1E

izrazi M,N ::= × | Ax.M | MN | <u>m | M+N | M*N | -M</u> M=NIMKNIN>N | true | false | if M than Ny else

[| Γ + M : α | A₁ = A₂ → α, ξ₁, ξ₂ | α svc̄₁)

P+m: int 10

 $\frac{\Gamma + M : A_1 \mid \mathcal{E}_1 \qquad \Gamma + N : A_2 \mid \mathcal{E}_2}{\Gamma + M + N : int \mid A_1 = int, A_2 = int, \mathcal{E}_1, \mathcal{E}_2}$

astalo doma

THM: ALE THM: ATIET THNZ: AZIEZ (x svez) Trifm than No eloc No: 0 | d=A1. x=A2, A=bool, E, E1 &2

Γ, f: α→B, x: α+ M: A | € Threefx.M: an A B=A, &

Resevanje enach

$$T := \emptyset \mid \alpha \mapsto A, \sigma$$

$$T(A)$$

$$T(int) = int$$

$$T(bool) = bool$$

$$T(A \rightarrow B) = O(A) \rightarrow T(B)$$

$$T(\alpha) = \begin{cases} A & (\alpha \mapsto A) \in \Gamma \\ \alpha & \text{sice} \end{cases}$$

$$T(\sigma) = \begin{cases} A & (\alpha \mapsto A) \in \Gamma \\ \alpha & \text{sice} \end{cases}$$

 $(\alpha_i \mapsto \sigma'(A_i))$ $(\alpha_i \mapsto A_i) \in \sigma$ $(\alpha_i \mapsto A_i) \in \sigma'$

 $\frac{\int rddev}{(\sigma' \cdot \sigma)(A)} = \sigma'(\sigma(A))$

$$fp(int) = \emptyset$$

 $fp(bool) = \emptyset$
 $fp(A \rightarrow B) = fp(A|v(p(B))$
 $fp(\alpha) = \{\alpha\}$

$$\phi > \phi$$

$$(\alpha \mapsto A)(\mathcal{E}) \searrow \sigma$$
 $\alpha \notin f_{\mathcal{P}}(A)$
 $\alpha = A, \mathcal{E} \searrow \alpha \mapsto \sigma(A), \sigma$

$$\frac{A_1 = A_{21} B_{17} = B_{21} }{A_1 \rightarrow B_1} = A_2 \rightarrow B_{21}$$

$$\frac{\sigma(A) = \sigma(B)}{\sigma \models (A = B, \mathcal{E})}$$

Troliter

Te veja THM: AIE in JFE
potem veja tudi o(N+M:o(A)

Dokaz

Z indukcijo ne PTM:AIE. Npr. zn aplikacijo dobima

CHM: A118, CHN: A2182

PHN: α | An=Az→α, En, Ez

Ker velje $\sigma \models A_1 = A_2 \rightarrow \alpha$, \mathcal{E}_1 , \mathcal{E}_2 velje $\sigma(A_1) = \sigma(A_2) \rightarrow \sigma(\alpha)$ for $\sigma \models \mathcal{E}_1$ in $\sigma \models \mathcal{E}_2$ Telej po I.P. velje $\sigma(\Gamma) \vdash M : \sigma(A_1)$ is $\sigma(\Gamma) \vdash N : \sigma(A_2)$.

Tedaj velje $\sigma(A_1)$ $\sigma(\Gamma) + M : \sigma(A_2) = \sigma(\Gamma) + M : \sigma(A_2)$ $\overline{\sigma(\Gamma)} + M M : \sigma(A)$

WW

Troliter Ce ESO, potem 0 FE. Dokaz 7 indukcijo na EVO.

Lema Ce obstajn o da veja of E potem obstaja o', da veja E 30'.

Glavne vprašanje je, ali se raš algoritem sploh konča. Tega ne moremo polezati z indukcije na E, saj se med posame znimi koraki dolžine lahko tudi parcte. Namesto tega uporabimo leksikografsko wediter ra ()fp(E)/, (E1) |A →B | = |A | + |B | + 1

|E||= | |A| + |B| A=B€ **E**

· Ĉe je &= Ø, polom Ø > Ø

 $\phi > \phi$ (XHA)(E) > T X & fp(A) X=A, € > x H T(A), T 215 A=A, & > 0 (αHA)(٤) > 0 < (\$(A) A=d, E\ aHr(A), o

· Ce je &= A=B, & , poten pa velje A,=A,B,=B, E & J A, +B, = A2+B2, E & O (A) = (B). Kdaj scto lahko zgodi?

+ ce je ze A=B, po i.p. obstaje € 50', zato €50'.

- sices sta A in B kompatibiline oblike, torej eden paramotes ali oba fukcijske tipa.

+ Ce je A=An+Az in B=Bn+Bz, today po i.p. obstage T', de ve) p A₁=B₁, A₂=B₁ & > σ', zato A=B₁ & > σ'.

+ ce je A=α, poten po i.p. velja (αHB)(E) Iσ, Say iz $\sigma \models \alpha = \beta_1 \xi$ sledi tudi $\sigma \models (\alpha \mapsto \beta)(\xi)$. Pokazati moromo se $\alpha \notin \{v(B), Veno, \sigma(\alpha) = \sigma(B),$

Ento je edina motrost a=B, kar smo te doramavali.

t ce je B= a , ravnomo podobno.

Traiter Ce velja $\sigma \neq \mathcal{E}$ in $\mathcal{E} \supset \sigma'$, potem obstaja σ'' , da velja $\sigma = \sigma'' \circ \sigma'$.

Deleat \mathcal{E} indukcijo na $\mathcal{E} \supset \sigma'$. $\mathcal{E} \bowtie \mathcal{E} \supset \mathcal{E}$ $\mathcal{E} \supset \mathcal{E} \supset \mathcal{E}$

Dohaz TAPL.