Interface Control Document

Gas Turbine Propulsion Toolbox

Variable Definitions and Function Input and Output

ICD-GTPT-001

Copyright 2016 Christopher Chinske. This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

	Revision Record		
LTR	Description	Date	
Α	Initial Release	Date February 20, 2016	

Table of Contents

1	SCO	PE	3
	1.1	SCOPE	3
	1.2	INTERFACE CONTROL DOCUMENT CHANGES	3
2	REQ	UIREMENTS	3
	2.1	INTERFACE IDENTIFICATION	3
	2.2	Variable Definitions	4
	2.2.1	Reference Values	7
	2.3	FUNCTION INPUTS AND OUTPUTS	7
	2.3.1	IDEAL_TURBOJET	7
	2.3.2		7
	2.3.3	B IDEAL_TURBOFAN	8
	2.3.4	! IDEAL_TURBOFAN_OPT	8
	2.3.5	5 IDEAL_TURBOFAN_MIXED	9
	2.3.6	S IDEAL_TURBOFAN_AB	9
	2.3.7	7 NONIDEAL_TURBOJET	10
	2.3.8	NONIDEAL_TURBOFAN	10
	2.3.9		
	2.3.1		
	2.3.1		

1 Scope

1.1 Scope

This Interface Control Document (ICD) defines the variables that are common across the Gas Turbine Propulsion Toolbox and the format of inputs and outputs for functions of the Gas Turbine Propulsion Toolbox.

The Gas Turbine Propulsion Toolbox is a GNU Octave software package that implements the equations necessary to perform Ideal Cycle Analysis, Non-Ideal Cycle Analysis, and Engine Off-Design Performance for gas turbine engines.

1.2 Interface Control Document Changes

The author of this document is responsible for the basic preparation, approval, distribution, and retention of the ICD. Changes to the approved version of this ICD can be initiated by the author. The approved version of this ICD will be kept under version control by committing it to the master branch of the version control system used for the Gas Turbine Propulsion Toolbox.

2 Requirements

2.1 Interface Identification

Figure 1 captures the interfaces defined in this ICD. The point of demarcation separates the workspace and the functions that form the Gas Turbine Propulsion Toolbox. For the purpose of this ICD, function outputs terminate at the line of demarcation, because the program is designed such that data can be directly shared between internal functions or used independently within the external workspace.

Figure 1 Gas Turbine Propulsion Toolbox Variables and Input and Output

2.2 Variable Definitions

Variable	Description	Units	Туре
A0	Speed of sound	m/s	Double
A9_RAT	Ratio	-	Double
	A_9		
	$\overline{A_{9R}}$		
AB	Afterburning flag (primary stream)	-	Logical
AB2	Afterburning flag (secondary stream)	-	Logical
ALPHA	Bypass ratio	-	Double
ALPHA_OPT	Optimal bypass ratio	-	Double
CP	Specific heat of air	J/(kg*K)	Double
	1004.9 J/(kg*K)		
CP_AB	Specific heat of air, afterburner	J/(kg*K)	Double
	(primary stream)		
CP_AB2	Specific heat of air, afterburner	J/(kg*K)	Double
	(secondary stream)		
CP_C	Specific heat of air, compressor	J/(kg*K)	Double
CP_T	Specific heat of air, turbine	J/(kg*K)	Double

E_C	Polytropic efficiency, compressor (primary stream)	-	Double
E_C2	Polytropic efficiency, compressor (secondary stream)	-	Double
ΕT	Polytropic efficiency, turbine	-	Double
ETA AB	Afterburner efficiency (primary stream)	-	Double
ETA_AB2	Afterburner efficiency (secondary stream)	-	Double
ETA_B	Burner efficiency	-	Double
ETA_C	Compressor efficiency	-	Double
ETA_C2	Efficiency, fan, $\eta_{c'}$	-	Double
ETA_CH	Efficiency, high-pressure compressor, η_{ch}	-	Double
ETA M	Mechanical efficiency	-	Double
_	0.9 implies the use of drawn-off air for auxiliary power		
ETA_T	Efficiency, turbine	-	Double
F		-	Double
	$f = \frac{\dot{m}_f}{\dot{m}}$		
F	Fuel-to-air ratio	-	Double
	kg fuel / s		
	kg air / s		
F_MDOT	Specific thrust	m/s	Double
	$\frac{F}{\dot{m}}$		
F_MDOT_OPT	Optimal specific thrust	m/s	Double
F_RAT	Ratio	-	Double
	<u>F</u>		
	F_R		
GAM	Ratio of specific heats	-	Double
GAM_AB	Ratio of specific heats, afterburner	-	Double
	(primary stream)		
GAM_AB2	Ratio of specific heats, afterburner	-	Double
	(secondary stream)		
GAM_C	Ratio of specific heats, compressor	-	Double
GAM_T	Ratio of specific heats, turbine	-	Double
H	Fuel heating value	J/kg	Double
	4.4194E7 J/kg = 19,000 Btu/lbm		
INPUTS	Structure	-	Structure
	Fields are the input variables		
	Field names correspond to the variables		
NAO	defined in this ICD		Davida
MOLIOSLIOD	Flight Mach number	-	Double
M0U92U0R	Reference	-	Double
	Mach number at secondary nozzle exit		
	$\left(M_0 \frac{u_{9'}}{u_0}\right)_R$		
MOLIOLIOD			Double
M0U9U0R	Reference	-	Double
	Mach number at primary nozzle exit		
	$\left(M_0 \frac{u_9}{u_0}\right)_R$		
	$u_0 r_R$		

M5	Mach number at turbine exit	-	Double
MDOT_C_RAT	Ratio	-	Double
	\underline{m}_c		
	$ \overline{m_{cR}^{\cdot}} $		
P0P0R	Ratio p_0/p_{0R}	-	Double
P92P0	Nozzle exit pressure ratio (secondary stream)	-	Double
	$p_{9'}$		
	$\overline{p_0}$		
P9P0	Nozzle exit pressure ratio (primary stream)	-	Double
	$\frac{p_9}{}$		
	p_0		<u> </u>
PI_B	Burner pressure ratio	-	Double
PI_C	Compressor pressure ratio (primary stream)	-	Double
PI_C_RAT	Ratio	-	Double
	$\frac{\pi_c}{}$		
DI OO	π_{cR}		Davida
PI_C2	Compressor pressure ratio (secondary stream)	-	Double
PI_D	Inlet pressure ratio	-	Double
PI_N	Nozzle pressure ratio (primary stream)	-	Double
PI_N2	Nozzle pressure ratio (secondary stream)	-	Double
R S	Gas constant	m^2/(s^2*K)	Double
5	Thrust specific fuel consumption (TSFC)	mg/(N*s)	Double
	mg fuel		
	$S = \frac{S}{(N \ thrust)}$		
S_OPT	Optimal TSFC	mg/(N*s)	Double
S_RAT	Ratio	-	Double
	$\left \frac{S}{S_R} \right $		
T0	Free-stream temperature	K	Double
T0T0R	Ratio T_0/T_{0R}	-	Double
TAU C	Compressor stagnation temperature ratio	-	Double
TAU_C2	Compressor stagnation temperature ratio	-	Double
_	(secondary stream)		
TAU_LAM	Maximum allowable turbine inlet stagnation	-	Double
	enthalpy, $C_{p_t}T_{t_A}$		
	1		
	$ au_{\lambda} \equiv rac{C_{p_t}T_{t_4}}{C_{p_c}T_0}$		
TAU_LAM_AB	Similar to TAU LAM, where the maximum	_	Double
1710_L710_	stagnation enthalpy referred to is the		Double
	stagnation enthalpy following the primary		
	stream afterburner.		
	$ au_{\lambda AB} = rac{C_{p_{AB}}}{C_{p_{C}}} rac{T_{t_{8}}}{T_{0}}$		
	p_c^{-10}		
	Farma affarkamaian (
TALL LANA ADO	For no afterburning, $(\tau_{\lambda AB})_{min} = \tau_{\lambda} \tau_{t}$		David
TAU_LAM_AB2	Similar to TAU_LAM, where the maximum	-	Double
	stagnation enthalpy referred to is the		

	stagnation enthalpy following the duct afterburner. $\tau_{\lambda AB\prime} = \frac{C_{p_{AB\prime}}}{C_{p_{c}}} \frac{T_{t_{8\prime}}}{T_{0}}$		
	For no afterburning, $(\tau_{\lambda AB})_{min} = \tau_r \tau_{cr}$		
TAU_R	Recovery stagnation temperature ratio	-	Double
TAU_T	Turbine stagnation temperature ratio	-	Double
TAU_T_OPT	Optimal turbine stagnation temperature ratio	-	Double
VERBOSE	Flag for verbose display	-	Integer

2.2.1 Reference Values

Oates states, "It is usually most convenient to obtain the off-design behaviors in terms of the ratio of the desired parameter to the value of the parameter at on-design." Reference, or on-design, quantities are denoted by a suffix R. For example, M0 is the flight Mach number, and M0R is the reference flight Mach number. Similarly, TAU_R is the recovery stagnation temperature ratio, and TAU_RR is the reference recovery stagnation temperature ratio.

2.3 Function Inputs and Outputs

2.3.1 IDEAL_TURBOJET

INPUTS Structure Fields
T0
GAM
Н
CP
TAU_LAM
PI_C
MO

Outputs
F_MDOT
S
INPUTS

2.3.2 IDEAL_TURBOJET_AB

INPUTS Structure Fields
T0
GAM
Н
CP
TAU_LAM
TAU_LAM_AB

PI_C	
M0	

Outputs
F_MDOT
S
INPUTS

2.3.3 IDEAL_TURBOFAN

INPUTS Structure Fields
T0
GAM
Н
СР
TAU_LAM
PI_C
PI_C2
MO
ALPHA

Outputs
F_MDOT
S
INPUTS

2.3.4 IDEAL_TURBOFAN_OPT

INPUTS Structure Fields
T0
GAM
Н
СР
TAU_LAM
PI_C
PI_C2
MO

Outputs
TAU_T_OPT
ALPHA_OPT
F_MDOT_OPT
S_OPT
INPUTS

2.3.5 IDEAL_TURBOFAN_MIXED

INPUTS Structure Fields
T0
GAM
Н
СР
TAU_LAM
PI_C
PI_C2
MO
ALPHA
M5

Outputs	
F_MDOT	
S	
INPUTS	

2.3.6 IDEAL_TURBOFAN_AB

INPUTS Structure Fields
T0
GAM
Н
СР
TAU_LAM
TAU_LAM_AB
TAU_LAM_AB2
PI_C
PI_C2
MO
ALPHA

Outputs
F_MDOT
S
INPUTS

TAU_LAM_AB = 0 implies no primary stream burning; $\left(\tau_{\lambda_{AB}}\right)_{\min}$ will be assumed.

 ${\sf TAU_LAM_AB2 = 0 \ implies \ no \ secondary \ stream \ burning;} \ \left(\tau_{\lambda_{AB}}\right)_{min} \quad {\sf will \ be \ assumed.}$

2.3.7 NONIDEAL_TURBOJET

INPUTS Structure Fields
AB
T0
GAM_C
GAM_T
CP_C
CP_T
Н
PI_D
PI_B
PI_N
ETA_B
ETA_M
E_C
E_T
P9P0
TAU_LAM
PI_C
MO
GAM_AB
CP_AB
ETA_AB
TAU_LAM_AB

Outputs	
F_MDOT	
S	
INPUTS	

2.3.8 NONIDEAL_TURBOFAN

INPUTS Structure Fields
AB
AB2
T0
GAM_C
GAM_T
CP_C
CP_T
Н
PI_D
PI_B
PI_N
PI_N2

ETA_B
ETA_M
E_C
E_C2
E_T
P9P0
P92P0
TAU_LAM
PI_C
PI_C2
MO
ALPHA
GAM_AB
CP_AB
ETA_AB
TAU_LAM_AB
GAM_AB2
CP_AB2
ETA_AB2
TAU_LAM_AB2

Outputs	
F_MDOT	_
S	
INPUTS	

2.3.9 NONIDEAL_TURBOFAN2

INPUTS Structure Fields
T0
GAM_C
GAM_T
CP_C
CP_T
Н
PI_D
PI_B
PI_N
PI_N2
ETA_B
ETA_M
E_C
E_C2
E_T
TAU_LAM
PI_C
PI_C2

M0	
ALPHA	

Outputs	
F_MDOT	
S	
INPUTS	

2.3.10 OD_TURBOJET

INPUTS Structure Fields
GAM_C
GAM_T
P0P0R
T0T0R
ETA_M
ETA_C
ETA_T
PI_CR
PI_DR
PI_BR
PI_NR
TAU_LAMR
M0R
PI_D
TAU_LAM
MO

Outputs
F_RAT
S_RAT
A9_RAT
MDOT_C_RAT
PI_C_RAT

2.3.11 OD_TURBOFAN

INPUTS Structure Fields
GAM_T
CP_C
CP_T
ETA_CH
ETA_C2
ETA_B

PI_D
PI_B
PI_N
PI_N2
T0
P0P0R
Н
TAU_LAM
MO
MOR
TAU_LAMR
PI_C2R
PI_CR
ALPHAR
ETA_CHR
ETA_C2R
ETA_BR
PI_DR
PI_BR
PI_NR
PI_N2R
T0R
M0U9U0R
M0U92U0R
TAU_TR
ETA_TR
TAU_C2R
FR

Outputs S F_RAT