

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 1º semestre de 2018 – GABARITO

Considere que, em um certo instante, o nó A possui o seguinte vetor de distâncias:

Vetor de distâncias de A						
В	C	D	\mathbf{E}	F	G	Н
9	10	9	20	11	11	∞

e recebe dos seus vizinhos os seguintes vetores de distâncias:

Vetor de distâncias de B							
A	С	D	E	F	G	Н	
9	10	9	4	2	3	8	
	Vetor de distâncias de C						
A	В	D	E	F	G	Н	
10	10	15	10	8	9	14	
Vetor de distâncias de D							
A	В	С	E	F	G	Н	
9	9	15	9	3	2	13	

(a) De posse destes vetores de distâncias e da topologia da vizinhança do nó A, calcule a sua tabela de distâncias.

 $AP3 - 2018/1 \qquad \qquad Página \ 1 \ de \ 5 \qquad \qquad (questão \ 1 \ continua)$

(b) Determine o vetor de distâncias atualizado do nó A após o cálculo desta tabela.

Resposta:

Vetor de distâncias de A						
В	C	D	E	\mathbf{F}	G	Η
9	10	9	13	11	11	17

(c) O nó A irá enviar este vetor de distâncias atualizado para outros nós da rede? Se sim, para quais? Justifique sua resposta.

Resposta:

A irá enviar seu vetor de distâncias para outros nós, pois ele sofreu atualização. Ele irá enviá-lo para todos os seus vizinhos: B, C e D.

(a) A rede da empresa é dada pelo endereço de rede 57.244.0.0/15, a ser dividida nas subredes R_1 (com 27000 estações), R_2 (com 31000 estações), R_3 (com 30000 estações), R_4 (com 25000 estações) e R_5 (com 5000 estações). Mostre que é impossível realizar esta divisão.

Resposta:

O endereço de rede de cada uma das subredes deve satisfazer um valor máximo de máscara de subrede, para que elas tenham pelo menos tantos endereços quanto a quantidade de estações desejada — R_1 deve utilizar, no máximo, máscara /20 (e, por isso conter pelo menos 32768 endereços), R_2 , no máximo máscara /20 (ao menos 32768 endereços), R_3 , no máximo máscara /20 (ao menos 32768 endereços), R_4 , no máximo máscara /20 (ao menos 32768 endereços) e R_5 , no máximo máscara /20 (ao menos 8192 endereços). Isto significa que, em qualquer alocação que satisfaça todas as subredes, serão necessários no mínimo 139264 endereços. No entanto, a rede principal (57.244.0.0/15) possui apenas 131072 endereços, logo é impossível realizar essa divisão.

(b) A rede da empresa é dada pelo endereço de rede 186.212.0.0/14, a ser dividida nas subredes R_1 (com 60000 estações), R_2 (com 20000 estações), R_3 (com 30000 estações), R_4 (com 20000 estações) e R_5 (com 10000 estações). Você deixou esta tarefa com o estagiário e ele lhe apresentou as seguintes propostas de subdivisão:

	Proposta 1	Proposta 2
R_1	186.215.0.0/16	186.212.0.0/16
R_2	186.212.0.0/16	186.213.128.0/17
R_3	186.216.0.0/16	186.213.0.0/17
R_4	186.214.0.0/16	186.214.0.0/18
R_5	186.213.0.0/16	186.214.64.0/18

Determine quais destas subdivisões são válidas e quais não são, e justifique as que não estiverem de acordo.

Resposta:

A proposta 2 é válida, pois todas as subredes possuem endereços de rede válidos, suas faixas de endereços estão contidas na faixa de endereços 186.212.0.0/14 da rede principal, não se sobrepõem, e receberam pelo menos tantos endereços quanto requisitado. Já a proposta 1 não satisfaz o segundo destes requisitos, pois o endereço da rede R_3 (186.216.0.0/16) não pertence à rede original.

	(IP, porta) da estação local	(IP, porta) da estação remota	Porta pública no NAT
(1)	172.16.0.1, 23570	125.62.172.194, 10484	1026
(2)	172.16.0.2,6387	0.46.223.212, 14609	20789
(3)	172.16.0.3, 15826	176.210.39.227, 17085	28028
(4)	$172.16.0.3,\ 30735$	191.144.243.207, 24356	1024
(5)	172.16.0.3, 19602	156.49.39.182, 4500	11594
(6)	172.16.0.1, 26653	213.187.203.92, 20025	22656
(7)	172.16.0.4, 3289	29.184.163.239, 17755	29951
(8)	172.16.0.4, 28801	58.91.194.239, 19292	13104
(9)	172.16.0.3, 24945	17.164.111.118, 32135	30914
(10)	172.16.0.3, 28449	199.224.108.107, 13050	1029

Determine se cada uma das afirmações a seguir é verdadeira ou falsa e justifique usando apenas uma frase:

- √ A estação 172.16.0.1 é incapaz de hospedar um servidor Web, acessível de qualquer estação da Internet através da porta 80 (HTTP). Toda tentativa de conexão com este servidor Web iniciará com o envio de um pacote para o NAT com porta de destino 80, o que significa que este pacote será descartado e a conexão não será aberta.
- Um pacote enviado pela estação 172.16.0.4 na porta 28801, com destino à estação 58.91.194.239, porta 19292 exigirá que o NAT crie uma nova entrada para encaminhá-lo.
 - Não será necessário criar uma nova entrada pois o cabeçalho do pacote é compatível com a entrada (8) da tabela de tradução do NAT.
- As estações 172.16.0.1 e 172.16.0.3 serão vistas por todas as estações na Internet como sendo duas estações distintas.
 - Em todas as comunicações de ambas as estações com a Internet, elas irão compartilhar o IP 254.51.104.99, de modo que elas serão indistinguíveis.
- O emprego do NAT interfere tanto com o uso de aplicações P2P como de navegadores Web pelas estações da rede local.

 Navegadores Web somente necessitam iniciar conexões, e o NAT irá criar entradas em sua tabela de tradução para cada conexão solicitada, logo a aplicação irá funcionar sem problemas.
- $\sqrt{\mbox{ Um pacote com origem 191.144.243.207}}$, porta 24356 e destino 254.51.104.99, porta 1024 será encaminhado para a rede local.

Conforme a tabela de tradução do NAT, ele será encaminhado para a estação 172.16.0.3 na porta 30735.

(a) Suponha que ocorre a transmissão de um fluxo de quadros de s3 para h2. Por quais equipamentos (estações, servidores, hubs e switches) esse fluxo irá transitar?

Resposta:

A transmissão será vista por h2, h3, h4, h7, H1, H2, H3, H4, H5, H6, s2, s3, s4, S1, S2 e S3.

(b) Considere que todos os servidores e estações possuem dados a transmitir para a Internet. Qual o número máximo destes equipamentos que podem realizar essa transmissão simultaneamente, sem que ocorram colisões? Descreva um cenário em que este máximo é atingido.

Resposta:

Pode haver no máximo 8 transmissões simultâneas para a Internet, sem que haja colisão. Este máximo é atingido, por exemplo, com transmissões de h1, h5, h6, h10, h11, h12, s1 e s5.

(a) A longo prazo, qual a taxa de transmissão que uma estação alcança se somente ela possuir dados para transmitir? E se todas as estações possuírem dados para transmitir?

Resposta:

Em ambos os cenários, a estação em questão somente pode acessar o meio em um slot a cada 4, e deve ficar em silêncio nos slots restantes. Isto leva a uma taxa de transmissão de $0 \cdot 3/4 + 50 \cdot 1/4 = 12$ Mbps.

(b) Suponha que, a partir do instante t=425.0 ms, a estação 1 deseja transmitir um total de 4.2 Mbits, e a partir do instante t=126.0 ms, a estação 3 deseja transmitir um total de 6.6 Mbits. Determine o retardo inicial de ambas as transmissões (isto é, o tempo que cada estação aguarda para iniciar a transmissão após adquirir os dados a serem enviados) e o instante de tempo em que cada transmissão termina.

Resposta:

A estação 1 irá iniciar sua transmissão no instante t=480.0 ms, com um retardo inicial de 55.0 ms, e irá encerrar sua transmissão no instante t=744.0 ms. Já a estação 3 irá iniciar sua transmissão no instante t=126.0 ms, com um retardo inicial de 0.0 ms, e irá encerrar sua transmissão no instante t=618.0 ms.