WI4630 STATISTICAL LEARNING - ASSIGNMENT 1

The answers to this assignment should be submitted in a single PDF file by the stated deadline.

Question 1. Suppose that we are interested in an outcome variable y that depends linearly on two sets of features (input variables) represented below by design matrices X_1 and X_2 . Suppose that our data is generated according to the following model

$$y = X_1 \beta_1^{\star} + X_2 \beta_2^{\star} + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ is a random disturbance term, \mathbf{X}_1 and \mathbf{X}_2 denote matrices consisting of features of dimension $n \times k_1$ and $n \times k_2$ respectively, and the unknown model parameters $\boldsymbol{\beta}_1^{\star}$ and $\boldsymbol{\beta}_2^{\star}$ are elements of \mathbb{R}^{k_1} and \mathbb{R}^{k_2} respectively. Moreover, we may assume that all features are deterministic and linearly independent. However, only the features present in \mathbf{X}_1 are available to us, that is, \mathbf{X}_2 is not observed. We estimate the model

$$y = X_1 \beta_1 + \varepsilon$$
,

with $\varepsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ by means of ordinary least squares (OLS), resulting in the estimated parameter

$$\hat{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T \boldsymbol{y}.$$

(a) Derive the bias and the variance of $\hat{\beta}_1$.

Now consider instead the situation where the outcome variable y only depends on the features X_1 , i.e., the data is generated according to

$$y = X_1 \beta_1^* + \varepsilon$$
,

where $\varepsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. We now assume that both sets of features \mathbf{X}_1 and \mathbf{X}_2 are available to us and consider the OLS estimation of the following model

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon.$$

The resulting OLS estimator for the parameters β_1 is now given by (you do *not* have to show this)

$$\tilde{\beta}_1 = (X_1^T M_2 X_1)^{-1} X_1^T M_2 y,$$

where M_2 is the matrix that describes the projection onto the space orthogonal to the column space of X_2 and is given by

$$M_2 = I_n - X_2 (X_2^T X_2)^{-1} X_2^T.$$

- (b) Derive the bias and the variance of $\tilde{\beta}_1$. *Hint:* What properties do you know of projection matrices?
- (c) Show that the variance (i.e., the covariance matrix) of $\hat{\beta}_1$ is larger than the variance of the OLS estimator $\hat{\beta}_1$ in the model $y = X_1\beta_1 + \varepsilon$. For two positive semi-definite matrices Σ_1 and Σ_2 , we say that Σ_1 is greater than Σ_2 if their difference $\Sigma_1 \Sigma_2$ is positive semi-definite; this is often denoted as $\Sigma_1 \succ \Sigma_2$.

Hint: You may use that if Σ_1 and Σ_2 are two positive semi-definite matrices then we have that $\Sigma_1 \succ \Sigma_2$ if and only if $\Sigma_1^{-1} \prec \Sigma_2^{-1}$.

Question 2. In this problem we consider the high-dimensional linear regression model

$$y = X\beta + \varepsilon$$
,

where $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$, \boldsymbol{X} denotes a given deterministic matrix of dimension $n \times p$, and $\boldsymbol{\beta} \in \mathbb{R}^p$ with p = n. Assume that in our data pre-processing step we orthonormalize the features, such that \boldsymbol{X} is an orthogonal matrix, i.e., $\boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{I}_p$. Consider the penalised least squares estimator $\hat{\boldsymbol{\beta}}(\lambda)$ which minimises

(1)
$$\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda J(\boldsymbol{\beta}),$$

where $J(\beta)$ denotes some penalty term and $\lambda > 0$ is a given tuning parameter.

- (a) Let the penalty term be given by $J(\beta) = \sum_{j=1}^{n} \mathbb{1}_{\beta_j \neq 0}$. Show that the components of the solution $\hat{\beta}^{(0)}(\lambda)$ are given by $\hat{\beta}_j^{(0)}(\lambda) = \bar{\beta}_j \mathbb{1}_{\{|\bar{\beta}_j| > \sqrt{\lambda}\}}$, where $\bar{\beta}$ denotes the OLS estimator.
- (b) Let the penalty term be given by $J(\beta) = \sum_{j=1}^{n} |\beta_j|$. Show that now the solution of the penaltised least squares problem is given by

(2)
$$\hat{\beta}_{j}^{(1)}(\lambda) = \begin{cases} \bar{\beta}_{j} + \lambda/2 & \text{if } \bar{\beta}_{j} < -\lambda/2 \\ 0 & \text{if } -\lambda/2 \leq \bar{\beta}_{j} \leq \lambda/2 \\ \bar{\beta}_{j} - \lambda/2 & \text{if } \bar{\beta}_{j} > \lambda/2 \end{cases},$$

where again $\bar{\beta}$ denotes the OLS estimator

For the remainder of this exercise we do not assume that X is orthogonal.

- (c) Let the penalty term be given by $J(\boldsymbol{\beta}) = \sum_{j=1}^{n} \beta_{j}^{2}$. Show that $\hat{\boldsymbol{\beta}}_{\lambda}^{(2)} = \left(\boldsymbol{X}^{T}\boldsymbol{X} + \lambda \boldsymbol{I}_{p}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$.
- (d) Prove that the variance of $\hat{\beta}_{\lambda}^{(2)}$ is smaller than that of the classical OLS estimator. Does this contradict the Gauss-Markov Theorem? Explain your reasoning.
- (e) Consider the general high-dimensional setting with $p \ge n$. Why is it sensible to impose a penalty term on the least-squares criterion? Also comment on the effect of the penalty term on the predictive performance of the estimator.

Question 3. In this exercise we consider a high-dimensional logistic regression model. Suppose that we are given a training set consisting of independent observations $(x_i, y_i)_{i=1}^n$, with $x_i \in \mathbb{R}^p$ and $y_i \in \{0, 1\}$. The logistic regression model postulates

$$\mathbb{P}(y_i = 1 | \boldsymbol{x}_i) = \frac{e^{\boldsymbol{\beta}^T \boldsymbol{x}_i}}{1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}_i}}, \quad \text{for } i = 1, \dots, n.$$

We consider the high-dimensional situation, i.e., p > n. In the theoretical part of this question we will study two problems that can arise in these high-dimensional settings. In the computational part of this question we will estimated a logistic regression model with real and simulated data and see how these problems are circumvented in practice.

(a) Derive the log-likelihood function $\ell(\beta)$ and its gradient $\nabla_{\beta}\ell(\beta)$.

Let X denote the $n \times p$ matrix consisting of all features, i.e.,

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1^T \ oldsymbol{x}_2^T \ dots \ oldsymbol{x}_n^T \end{bmatrix}$$

Note that X^T then denotes the matrix where every every column j denotes the features of observation j, i.e., $X^T = [x_1, x_2, \cdots, x_n]$.

(b) Prove that if $\operatorname{rank}(\boldsymbol{X}^T)=n$, the maximum likelihood estimator does not exist. Hint: Examine the first-order conditions that the maximum likelihood estimator must satisfy. Another complication that can arise in high-dimensional settings is the so-called separation problem. Suppose that the training set is linearly separated by some hyperplane through the origin, i.e., there exists some vector \boldsymbol{w} such that

(3)
$$y_i = \begin{cases} 0 & \text{if } \boldsymbol{w}^T \boldsymbol{x}_i < 0 \\ 1 & \text{if } \boldsymbol{w}^T \boldsymbol{x}_i \ge 0. \end{cases}$$

(c) Prove that the maximum likelihood estimator diverges to infinity. *Hint:* Consider maximum likelihood estimators of the form $\hat{\beta} = c w$.