Chapter 5

Basic Electronics and Digital Logic

Digital Circuits

- Combinational: a circuit whose output depends only on its present inputs
- Sequential: a circuit whose output depends on its past as well as present inputs. That is, it depends on the sequence of inputs from the past up to the present.

Atom has a positively-charged nucleus and negatively-charged orbiting electrons

Like charges repel. Unlike charges attract

A conductor has electrons that are not "stuck" to the nucleus.

An *insulator* has no "unstuck" electrons.

A flashlight is a simple electrical circuit

Flashlight

Electron current Voltage Resistance

- flow of electrons
- provides "push" of electrons
- opposition to current

FIGURE 5.2

Schematic Diagram

Ohm's law

I is current in amps
E is voltage in volts
R is resistance in ohms

$$I = E/R$$

Solving for E in Ohm's law

E = IR

Important observation:

The voltage across a resistor (the *voltage drop*) is zero if I (the current) is zero.

Direct current (DC) flows in only one direction

Current Time

Alternating current (AC) repeatedly changes it direction of flow.

Computers circuits cannot use the 117 volt AC line voltage available by household electrical outlets. A computer power supply converts line voltage to the DC voltage required by computer circuits.

b)

c)

Safety rules with electricity

- Never touch any electrical equipment when any part of your body is wet.
- Never open electrical equipment unless you are qualified to do so.
- Keep one hand in your pocket while examining any electrical circuit.
- Never use any electrical equipment with frayed wires.

MOS transistors

- Low power consumption
- High noise immunity
- High fan out
- Three leads: source, drain, gate
- Two types: PMOS (P-type), NMOS (N-type)
- CMOS technology: PMOS, NMOS used in pairs to minimize current requirements

Inverter (NOT gate)

PIGURE 5.5

c) +3v Output

Truth table for NOT

Input/output relationship:

in	out
0	3
3	1

If we let 0 and 3 volts represent the logic values 0 and 1, respectively, we get the truth table

in	out
0	1
1	0

b)	A	В	Output
	0	0	3
	0	3	0
	3	0	0
	3	3	0

c)	Α	В	Output
٠	0	0	1
	0	1	O NOR
	1	0	المالم
	1	1	ره ا

Positive logic

d)	A	В	Output	
	1	1	07	
	1	0	1 1	NANE
ď	0	1	1 7	MAIL
	0	0	ر 1	

Negative logic

Positive logic – the higher voltage value represents 1 Negative logic – the lower voltage value represents 1 A capacitor stores an electrical charge. When a capacitor is charging or discharging, current is flowing (and heat is generated).

The heat generated in our capacitor-resistor circuit is proportional to the frequency of voltage changes.

The heat generated is also proportional to the *square* of the magnitude of the voltage change.

Problem:

All circuits, including computer circuits, have capacitance.

Increasing voltage or frequency produces more heat.

Computer circuits can be damaged by excessive heat.

Solutions:

Reduce voltage to compensate for increasing frequency.
But must not make voltage separation too small.

Attach cooling devices.

Combinational Circuits

FIGURE 5.9

_	Α
NOR	Output
	В

	Α ,
XOR	Output
XOK	
	В / 2

NOT	A	Output
1		

A	В	Output
o	, 0	1
0	-1	1
1	0	1 ·
1	1	lo

A	В	Output
0	0	1
0	1	0
1	0	. 0
1	1	0

Α	В	Output
0	0	0
O	1	0
1	0	0
1 .	1	1 1

Α	В	Output
o	0	0
0	1	1
1	0	1
1	1	1

Α	. B	Output
0	0	0
0	1	1
1	0	1
1	1	0

Α	Output
0	1
1	0

Building AND and OR gates

It is easy to construct the circuit corresponding to any truth table.

Implementing circuit from truth table

FIGURE 5.12

Build a circuit for each row with a 1 output, and then connect using an OR gate.

Note the resulting circuit contains AND gates driving an OR gate.

There is more than one way to implement a truth table. The circuit with the least number of gates is called the *minimal* circuit.

c)

Circuits can be minimized using any of several techniques. We will study two such techniques: Boolean algebra and Karnaugh maps.

Boolean expressions

- Describe operation of computer circuits
- '+' represents OR
- Concatenation represents AND
- Superscript bar represents NOT
- Two values: 1 and 0

$$C = \overline{A} \, \overline{B} + \overline{A} \, B$$

Describes of circuit on the next slide.

c)

You can use Boolean algebra to simplify this expression (hint: factor out "A bar").

$$C = \overline{A} \, \overline{B} + \overline{A} \, B$$

Using these laws, we can manipulate Boolean expressions into equivalent simpler expressions. For example, let's use Boolean algebra to simplify

$$C = \overline{A}\,\overline{B} + \overline{A}\,B$$

We get

$$C = \overline{A} \, \overline{B} + \overline{A} \, B$$

 $= \overline{A} (\overline{B} + B)$ by the distributive law
 $= \overline{A} (1)$ by the inverse law
 $= \overline{A}$ by the identity law

The laws of Boolean algebra are not identical to the laws of real number algebra.

FIGURE 5.15	Distributive Law	A(B+C) = AB + AC
	•	A + BC = (A + B)(A + C)
	Commutative Law	AB = BA
		A + B = B + A
	Absorption Law	A + AB = A
		A(A+B)=A
	Identity Law	A1 = A
		A + 0 = A
	Null Law	A0 = 0
		A+1=1
	Idempotent Law	A + A = A
		AA - A
	Inverse Law	$A\overline{A} = 0$
		$A + \overline{A} = 1$
	Associative Law	(A + B) + C = A + (B + C)
	·	(AB)C = A(BC)
	DeMorgan's Laws	$\overline{A + B} = \overline{AB}$
		$\overline{AB} = \overline{A} + \overline{B}$

Bye, bye black sheep rule: If two terms differ in only one variable, may combine terms by eliminating "black sheep" variable.

 $ABCD + AB\overline{C}D$

Black sheep rules yields single term **ABD**

DeMorgan's Laws

$$\overline{A + B} = \overline{A} B$$

$$\overline{AB} = \overline{A} + \overline{B}$$

a)

Move bubble back: gate changes

In a circuit consisting of AND gates driving a single OR gate, all AND and OR gates can be replaced by NAND gates. The resulting circuit will realize the same function.

Karnaugh map

- Matrix representation of a Boolean function
- Useful for circuit minimization
- Horizontally and vertically adjacent squares differ in only one variable. Thus, horizontal and vertical groups correspond to terms simplified by the black sheep rule.

a)

$$C = AB + AB$$

Black sheep rule yields

$$C = A$$

When the function below is simplified, you have to use AB twice.

$$C = A \overline{B} + AB + \overline{A} B$$

$$= A \overline{B} + AB + AB + \overline{A} B$$
 by the idempotent law
$$= (A \overline{B} + AB) + (AB + \overline{A} B)$$
 by the associative law
$$= A + (AB + \overline{A} B)$$
 by the black sheep rule
$$= A + B$$
 by the black sheep rule

Now simplify same function using Karnaugh map. Note: using bottom right term (AB) twice

Group corresponds to AC

AB CD

Group corresponds to B

FIGURE 5.21

We now will use our basic gates to build more complex circuits

Implementation of MUX

FIGURE 5.23

a)

Two-Bus Input Multiplexer

Bus 1 Bus 2 2-Bus Control mux Input

Implementation of 2 bus MUX

FIGURE 5.24

Two-Input Decoder

Implementation of 2 input decoder

Half Adder

b)	Α	В	Sum
	0	0.	0
•	0	1	1
	1	0	1
	1	· 1	0

A PAR	В	Carry out
0	0	0
0 -	1	0
1	0.	0
1	1	1

Implementation of half adder

Full Adder

One-Position Shifter

a) One-**Position** Shifter

R/L: right shift on 1, left shift on 0

Implementation of shifter

If the product of two n-bit numbers can fit into n bits, then our standard multiplication technique works for both positive and negative two's complement numbers.

Binary multiplication

$$1110 = -2 \text{ multiplicand}$$

$$\times 0011 = +3 \text{ multiplier}$$

$$1110 \quad \text{partial products}$$

$$1110$$

$$0000$$

$$0000$$

$$0101010 \quad \text{product}$$

$$\text{correct answer in these 4 bits}$$

Implementing a multiplier circuit

Use AND gates to generate the partial products

Use full adders to add corresponding bits of the partial products

ALU functions

b)	F 2	F1	F 0	Output	
	0	0	0	left	output is same as left input
	0	0	1	~left	bitwise complement left input
	0	1	0	left & right	AND inputs
	0	1	1	left * right	multiply inputs
	1	0	0	left + right	add inputs
	1	0	. 1	left - right	subtract inputs
	1	1	0	left << 1	left shift left input one position
	1	1	1	left >> 1	right shift left input one position

Sometimes we want data to flow through the ALU without any modification. That is the reason for function 000, which makes the ALU output identical to its left input.

Circuits needed for the ALU

- Complementer
- ANDer
- Multiplier
- Adder/subtracter
- Shifter

We have already seen the multiplier, adder/subtracter, and shifter circuits. Let's now look at the complementer and ANDer.

Our ALU consists of subcircuits, each performing a single function, combined with a multiplexer.

The multiplexer selects which subcircuit output is routed to the ALU output.

FIGURE 5.31

b)	<u>Control</u>	In	Out
	0 ,	0	High Z
	0 '	1	High Z High Z
	1	0	0
,	1	1	1

b) a) Shared Shared bus bus 0 High Z Device Device 1 1 High 0 • • • Z Device Device 2 2

Implementation of tri-state buffer

Simplified diagram of bidirectional bus

ROM – read-only memory RAM – read/write memory

Both ROM and RAM are "random access" memories.

Address in

Implementation of ROM

Sequential Circuits

Circuits in which the present output depends on past and present inputs. Sequential circuits have memory.

Flip-flop

Two-state device that can hold 1 bit.

When *set*, a flip-flop's Q output is 1. When *reset*, its Q output is 0.

SR flip-flop and S and R inputs

FIGURE 5.36

SR Flip-Flop (NOR Version)

a)

Flip-flops use *feedback* (an output line is fed back into an input).

Implementation of SR flip-flop

Truth table for SR flip-flop.
Two states are possible when S and R are both 0. Which state depends on the previous input.

C)

S	R	Q	$\overline{\mathbf{Q}}$
0	1	0	1
1	0	1	0 —
1	1	0	0
0	0	1	0 ←
0	0	0	1 —

SR flip-flop can be implemented with NORs or NANDS

FIGURE 5.37

SR Flip-Flop (NAND Version)

a)

Implementation of SR flip-flop— NAND version

Truth table for SR flip-flop NAND version Role of 0 and 1 is reversed. Two states are possible when S and R are both 1.

c)

S	R	Į Q	\overline{Q}
0	0	1	1
0,	1	1	, o ——
1	0	0	1
1	1	0	1 ←
1	1	1	0 ←

The clock input determines when a flip-flop will respond to its inputs. It is often driven by an clock.

FIGURE 5.38

Clocked D Flip-Flop

Implementation of clocked D flipflop

PR and CLR allows setting/resetting at any time

FIGURE 5.39

Clocked D Flip-Flop with PR & CLR (NOR Version)

a)

Implementation of clocked D flipflop with PR and CLR

Clocked D Flip-Flop with PR & CLR (NAND Version)

Implementation of clocked D flipflop with PR and CLR

JK flip-flop changes state when J= K = 1 and CK is asserted

FIGURE 5.41

Clocked JK Flip-Flop

a)

— CK

— K

Q

Implementation of JK flip-flop

 $\overline{\mathbf{Q}}$ CK

Level-triggered flip-flop Responds to input whenever the CK input is asserted.

Edge-triggered flip-flop Responds to the input only on an edge (i.e., transition) of the CK input.

Triggering digital circuits

- Level triggered: circuit responds whenever CK is asserted.
- Positive-edge triggered: circuit responds only during a positive-going input to CK.
- Negative-edge triggered: circuit responds only during a negative-going input to CK.

'>' indicates edge-triggering

Positive edge triggered

If T = 1, circuit changes state on every positive edge of CK

FIGURE 5.44

T Flip-Flop

We can construct RAM with edge-triggered D flip-flops and a decoder.

Synchronous circuit: All changes occur simultaneously.

Asynchronous circuit:
One subcircuit triggers the next.

4-Bit Binary Counter (Asynchronous)

FIGURE 5.47

Read/Write Register (Synchronous)

Implementation of 4-bit register

LD = 1: Register is loaded from Data In (not edge triggered).

INC = 1: Register is Incremented on leading edge.

Implementation of counter-register

b)

A clock but not a good one. A quartz crystal oscillator is better

Quartz crystal

- Piezoelectric effect
- Used to create very frequency-stable clocks

Sequencer

Implementation of sequencer

T1, T2, T3 clock subcycles

