Dynaforest: High-Level Pseudocode

Notation and Setup

- *n_trees*: Number of trees in the forest.
- window: Number of trees to consider in each optimization step.
- max_depth: Maximum depth of each tree.
- min_samples: Minimum number of samples required to allow a split.
- feature_subsampling_pct: Fraction of the feature set considered for each split.
- bootstrapping: Boolean; if true, each tree is trained on a bootstrap sample of the data.
- $X \in \mathbb{R}^{N \times d}$: Training features (with N samples and d features).
- $y \in \mathbb{R}^N$: Training target values.

1. Initialization

- (a) Read hyperparameters: n_trees, window, max_depth, min_samples, feature_subsampling_pct, bootstrapping.
- (b) Compute the number of features to consider in each split:

 $num_features_considering = \max\Bigl(\lfloor d \cdot feature_subsampling_pct\rfloor, 1\Bigr).$

2. Fit Phase

Input: Training set (X, y).

(a) Initialize Trees:

- (i) For i = 1 to n_trees :
 - i. If bootstrapping is True, draw a bootstrap sample (X_i, y_i) of the same size as (X, y).
 - ii. Randomly select num_features_considering features from the d available.
 - iii. Create a new tree T_i (initially a stump).
 - iv. Call get_best_split (X_i, y_i) on T_i to find the best root split.
 - v. Split T_i once, creating left and right children.
 - vi. Store T_i in the forest.
 - vii. Record T_i 's predictions on the full training set.

(b) Iterative Optimization:

(i) Repeat until no improvement:

- i. Randomly pick a subset of window trees, $\{T_{i_1}, T_{i_2}, \dots, T_{i_{window}}\}$.
- ii. For each tree T_{i_k} in this subset:
 - A. Compute the temporary ensemble mean of the $other\ window-1$ trees:

$$\hat{y}_{-k} = \frac{1}{\text{window} - 1} \sum_{j \in \{i_1, \dots\}, j \neq i_k} T_j(X).$$

- B. Call get_best_split (T_{i_k}, \hat{y}_{-k}) to evaluate potential error reduction.
- C. Store the error reduction for T_{i_k} .
- iii. If all recorded error reductions ≤ 0 , stop (no further gain).
- iv. Otherwise, choose T_{best} with the largest positive error reduction.
- v. Split T_{best} on its best split candidate.
- vi. Update T_{best} 's predictions on the training set.

3. Predict Phase

Input: Test data X_{test} .

(a) For each tree T_i in the forest:

$$\hat{y}_i = T_i(X_{\text{test}}).$$

(b) Compute the ensemble prediction by averaging:

$$\hat{y}_{\text{ensemble}} = \frac{1}{n \text{-}trees} \sum_{i=1}^{n \text{-}trees} \hat{y}_i.$$

(c) Return $\hat{y}_{\text{ensemble}}$ as the final prediction.

4. Notes on the Algorithm

• Forest-Level Splitting: Unlike standard random forests, where each tree grows independently, the *Dynatree* approach selects which tree to split based on which candidate tree-split reduces the *ensemble* mean-squared error the most.

• Reducing Bias & Correlation:

- 1. By involving partial ensemble predictions (\hat{y}_{-k}) when determining splits, the approach can better reduce overall bias.
- 2. Bootstrapping and feature subsampling help ensure the trees remain partially de-correlated, reducing variance in the ensemble.
- Stopping Criterion: The process halts when additional splits in a random subset of trees no longer reduce the ensemble error.