SFEMaNS user guide

FL, JLG, CN, DCQ ... $\label{eq:July 3} \mbox{July 3, 2013}$

Contents

	0.1	General presentation	ŀ
		0.1.1 Introduction	Ę
		0.1.2 System of equations	Ę
		0.1.3 General features of SFEMaNS	
1	Inst	talling SFEMaNS	7
		1.0.4 How to obtain SFEMaNS?	7
		1.0.5 External tools	7
		1.0.6 Installing PETSc with MUMPS	7
		1.0.7 ARPACK library	7
	1.1	Mesh generator	7
	1.2	Adaptation to user's environment	7
2	Get	tting started	g
	2.1	First run	Ć
	2.2	Type of problem	ć
		2.2.1 Type nst	Ć
		2.2.2 Type mxw	Ć
		2.2.3 Type mhd	ć
	2.3	Numerical domain	ć
	2.4	data file	ć
		2.4.1 Required informations	10
		2.4.2 Type related blocks	10
		2.4.3 Optional blocks	10
	2.5	Boundary conditions (condlim.f90 file)	1(
	2.6	The main program (main.f90 file)	1(
3	Too	ols	11
	3.1	Backup tools	11
	3.2	Visualization tools	11
	3.3	Variables in SFEMaNS	11
	3.4	Custom variables	11
4	Tes	ts in SFEMaNS	13
5	Tes	st 1: nst	15
	5.1	Numerical domain and equations to solve	15
	5.2	Analytical solution	15
	5.3		1 5

4 CONTENTS

6	Test 2: nst + perio	17
	6.1 Numerical domain and equations to solve	17
	6.2 Analytical solution	17
	6.3 Data file	17
7	Test 3: mxw (with vacuum).	19
	7.1 Numerical domain and equations to solve	19
	7.2 Analytical solution	19
	7.3 Data file	19
8	Test 4: mxw + perio (with vacuum).	21
0	8.1 Numerical domain and equations to solve	21
	8.2 Analytical solution	21
	8.3 Data file	21
9	Test 5: mxw (with vacuum).	23
9	9.1 Numerical domain and equations to solve	23
	9.2 Analytical solution	$\frac{23}{23}$
	9.3 Data file	
	9.5 Data me	23
10	Test 6: mxw (with vacuum).	2 5
	10.1 Numerical domain and equations to solve	25
	10.2 Analytical solution	25
	10.3 Data file	25
11	Test 7: mxw (with vacuum).	27
	11.1 Numerical domain and equations to solve	27
	11.2 Analytical solution	27
	11.3 Data file	27
12	Test 8: nst + phase.	29
	12.1 Numerical domain and equations to solve	29
	12.2 Analytical solution	29
	12.3 Data file	29
10		0.1
13	Test 9: nst + phase + perio.	31
	13.1 Numerical domain and equations to solve	31
	13.2 Analytical solution	31
	13.3 Data file	31
14	Test 10: mxw (without vacuum).	33
	14.1 Numerical domain and equations to solve	33
	14.2 Analytical solution	33
	14.3 Data file	33
15	Test 11: mhd + temperature (without vacuum).	35
	15.1 Numerical domain and equations to solve	35
	15.2 Analytical solution	35
	15.3 Data file	35
16	Test 12: mxw Dirichlet/Neumann (without vacuum).	37
. 0	16.1 Numerical domain and equations to solve	37
	16.2 Analytical solution	37
	16.3 Data file	37

h

17	$17.1 \\ 17.2$	t 13: mxw Dirichlet/Neumann + perio (without vacuum). Numerical domain and equations to solve	39 39 39
18	$18.1 \\ 18.2$	t 14: mxw + arpack (without vacuum). Numerical domain and equations to solve	41 41 41 41
19	$19.1 \\ 19.2$	Reference results	43 43 43
20	$20.1 \\ 20.2$	Numerical domain and equations to solve	45 45 45 45
21	$21.1 \\ 21.2 \\ 21.3$	Numerical domain and equations to solve Analytical solution Reference results Data file	47 47 47 49 49
0.	1	General presentation	
0.	1.1	Introduction	
0.	1.2	System of equations	
0.	1.3	General features of SFEMaNS	

6 CONTENTS

Installing SFEMaNS

- 1.0.4 How to obtain SFEMaNS?
- 1.0.5 External tools
- 1.0.6 Installing PETSc with MUMPS
- 1.0.7 ARPACK library

The installation of the libraries ARPACK and PARPACK is done following these steps:

- Download arpack96.tar.gz ... ppatch.tar.gz from the url ...
- Uncompress the archives in the following order,
- In the directory ARPACK, replace the file ARmake.inc by one of the templates in the subdirectory ARMAKES, according to your environment,
- Edit the file ARmake.inc to make it compatible with your environment: in particular, the path for the top-level directory of ARPACK, make sure the Fortran compilers (FC and PFC) are the right ones, and check the path for the command make,
- Build the libraries, using make lib and make plib.

1.1 Mesh generator

1.2 Adaptation to user's environment

X

Getting started

2.1 First run

Begin with SFEMaNS by creating a directory (e.g. MY_APPLICATION) in which you want to create the executable file. Then you need to :

- Copy the content of \$(HOME_SFEMaNS)/TEMPLATE into MY_APPLICATION,
- Edit the file my_make to make it compatible with your environment, by specifying the right
 path to the top level directory of SFEMaNS,
- Edit the file make.inc to make it compatible with your environment: in particular, if you have installed ARPACK and PARPACK on your own, you need to use

have installed ARPACK and PARPACK on your own, you need to use

\$(HOME_ARPACK)/name_of_your_P_arpack_lib \$(HOME_ARPACK)/name_of_your_arpack_lib

in this specific order,

PA_LIB

- Create the file makefile using the command: ./my_make,
- Create the executable file a.exe using the command: make a.exe.

2.2 Type of problem

SFEMaNS can solve three different types of problems, listed below.

- 2.2.1 Type nst
- 2.2.2 Type mxw
- 2.2.3 Type mhd

2.3 Numerical domain

2.4 data file

The file data contains all the data needed for the computation. The user has to specify the geometry of the domain, the list of conductive and insulating parts, as well as general information for the parallel runs. The data file is divided in blocks: one block is mandatory, some others are needed depending on the type of the problem you want to solve, and a couple of blocks are optional. Table 2.1 summarizes the blocks needed for a SFEMaNS run.

2.4.1 Required informations

2.4.2 Type related blocks

2.4.3 Optional blocks

	Basic use			Advanced computations					
Blocks	nst	mxw	mhd	nst with temperature	\max without ϕ	mhd with temperature	$ \text{mhd without } \phi$	Arpack on H	
GENERAL DATA	R	R	R	R	R	R	R	R	
Mesh-NAVIER-STOKES	R	О	R	R	О	R	R	X	
BCs-NAVIER-STOKES	R	X	R	R	X	R	R	X	
Dynamics-NAVIER-STOKES	R	X	R	R	X	R	R	X	
LES-NAVIER-STOKES	R	X	R	R	X	R	R	X	
Solver-velocity-NAVIER-STOKES	О	X	О	О	X	О	О	X	
Solver-pressure-NAVIER-STOKES	О	X	О	О	X	О	О	X	
Solver-mass-NAVIER-STOKES	О	X	О	О	X	О	О	X	
Verbose (diagnostics)	О	О	О	О	О	О	О	О	
Solver-MAXWELL	X	О	О	О	О	О	О	О	
H-MAXWELL	X	R	R	X	R	R	R	R	
Phi-MAXWELL	X	R	R	X	X	О	X	О	
Verbose-MAXWELL	X	О	О	X	О	О	О	С	
Phase	О	X	X	R	X	R	О	X	
Solver-Phase	О	X	О	О	X	О	О	X	
Post-processing	О	О	О	О	О	О	О	X	
Periodicity	О	О	О	О	О	О	О	О	
ARPACK	X	X	X	X	X	X	X	R	
Visualization	X	X	X	X	X	X	X	О	
BLOCK	С	С	С	С	С	С	С	С	

Table 2.1: Summary of the blocks in the data file (R=Required, O=Optional, X=Useless)

2.5 Boundary conditions (condlim.f90 file)

2.6 The main program (main.f90 file)

Tools

- 3.1 Backup tools
- 3.2 Visualization tools
- 3.3 Variables in SFEMaNS

3.4 Custom variables

Using read_user_data.f90, SFEMaNS allows the use of custom variables. All the custom variables have to be declared in the type user_data_type and can be used in the main.f90 file. If needed, the user can read personal data from a file, either by appending the data file, or by creating another one. User's data file (e.g. my_own_data) has to be read in the main.f90 with the following

CALL read_user_data('my_own_data')

After this call, all the variables declared in the type user_data_type can be used with the prefix my_data%.

Use the template in read_user_data.f90 to add any number of variables.

Tests in SFEMaNS

The command

./debug_SFEMaNS

is used to run 17 different tests. Informations about these cases are listed below.

Test 1: nst

5.1 Numerical domain and equations to solve

$$\partial_t \mathbf{u} + (\nabla \times \mathbf{u}) \times \mathbf{u} - \frac{1}{R_e} \Delta \mathbf{u} + \nabla p = \mathbf{f},$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\mathbf{u}_{|\Gamma} = \mathbf{v},$$

$$\mathbf{u}_{|t=0} = \mathbf{u}_0.$$

The data are \mathbf{f} , \mathbf{v} and \mathbf{u}_0 . We use $R_{\rm e}=1$.

5.2 Analytical solution

$$\begin{split} u_r(r,\theta,z,t) &= \left(\left(r^2 z^3 - 3 r^3 z^2 \right) \cos(\theta) - \left(r^2 z^3 + 3 r^3 z^2 \right) \sin(\theta) \right) \cos(t), \\ u_\theta(r,\theta,z,t) &= 3 \left(r^3 z^2 - r^2 z^3 \right) \left(\cos(\theta) + \sin(\theta) \right) \cos(t), \\ u_z(r,\theta,z,t) &= \left(3 r^2 z^3 \cos(\theta) + 5 r^2 z^3 \sin(\theta) \right), \\ p(r,\theta,z,t) &= rz \left(\cos(\theta) + \sin(\theta) \right) \sin(t). \end{split}$$

Test 2: nst + perio

6.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \mathbf{u} + (\nabla \times \mathbf{u}) \times \mathbf{u} - \frac{1}{R_{\mathrm{e}}} \Delta \mathbf{u} + \nabla p &= \mathbf{f}, \\ \nabla \cdot \mathbf{u} &= 0, \\ \mathbf{u}_{|\Gamma} &= \mathbf{v}, \\ \mathbf{u}_{|t=0} &= \mathbf{u}_0, \end{split}$$

 ${f u}$ periodic in the z-direction.

6.2 Analytical solution

$$\begin{split} u_r(r,\theta,z,t) &= -r^2 \left(1 - 2\pi r \sin(2\pi z)\right) \sin(\theta) \cos(t), \\ u_\theta(r,\theta,z,t) &= -3r^2 \cos(\theta) \cos(t), \\ u_z(r,\theta,z,t) &= r^2 \left(4 \cos(2\pi z) + 1\right) \sin(\theta) \cos(t), \\ p(r,\theta,z,t) &= r^2 \cos(2\pi z) \cos(\theta) \cos(t). \end{split}$$

Test 3: mxw (with vacuum).

7.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC. + \phi \end{split}$$

7.2 Analytical solution

$$H_r(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\alpha_m z r^{m-1} m \cos(m\theta) + \beta_m z r^{m-1} m \sin(m\theta) \right) \cos(t),$$

$$H_{\theta}(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\beta_m z r^{m-1} m \cos(m\theta) - \alpha_m z r^{m-1} m \sin(m\theta) \right) \cos(t),$$

$$H_z(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\alpha_m r^m \cos(m\theta) + \beta_m r^m \sin(m\theta) \right) \cos(t),$$

$$\phi(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\alpha_m z r^m \cos(m\theta) + \beta_m z r^m \sin(m\theta) \right) \cos(t).$$

Test 4: mxw + perio (with vacuum).

8.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC + perio + \phi \end{split}$$

8.2 Analytical solution

$$\begin{split} H_r(r,\theta,z,t) &= \cos(t)\cos(\theta)\cos(2\pi z)\left(\frac{r}{r_0^2} - 2\pi\left(\frac{r}{r_0}\right)^2\left(A + B\frac{r}{r_0}\right)\right),\\ H_\theta(r,\theta,z,t) &= \cos(t)\sin(\theta)\cos(2\pi z)\left(2\pi\left(\frac{r}{r_0}\right)^2C - 2\frac{r}{r_0^2}\right),\\ H_z(r,\theta,z,t) &= \cos(t)\cos(\theta)\sin(2\pi z)\frac{r}{r_0^2}\left(3A + 4B\frac{r}{r_0} - C\right),\\ \phi(r,\theta,z,t) &= \cos(t)\cos(\theta)\cos(2\pi z)K_1(2\pi r), \end{split}$$

 K_1 : Bessel function. A, B, C constants.

Test 5: mxw (with vacuum).

9.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC. + \phi \end{split}$$

9.2 Analytical solution

$$H_r(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\alpha_m z r^{m-1} m \cos(m\theta) + \beta_m z r^{m-1} m \sin(m\theta) \right) \cos(t),$$

$$H_{\theta}(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\beta_m z r^{m-1} m \cos(m\theta) - \alpha_m z r^{m-1} m \sin(m\theta) \right) \cos(t),$$

$$H_z(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\alpha_m r^m \cos(m\theta) + \beta_m r^m \sin(m\theta) \right) \cos(t),$$

$$\phi(r,\theta,z,t) = \sum_{m=1}^{3} \frac{1}{m^3} \left(\alpha_m z r^m \cos(m\theta) + \beta_m z r^m \sin(m\theta) \right) \cos(t).$$

Test 6: mxw (with vacuum).

10.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC. + \phi \end{split}$$

- 10.2 Analytical solution
- 10.3 Data file

Test 7: mxw (with vacuum).

11.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC. + \phi \end{split}$$

- 11.2 Analytical solution
- 11.3 Data file

Test 8: nst + phase.

- 12.1 Numerical domain and equations to solve
- 12.2 Analytical solution
- 12.3 Data file

Test 9: nst + phase + perio.

- 13.1 Numerical domain and equations to solve
- 13.2 Analytical solution
- 13.3 Data file

Test 10: mxw (without vacuum).

14.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC. \end{split}$$

14.2 Analytical solution

$$\begin{split} H_r(r,\theta,z,t) &= \sum_{m=1}^3 \frac{1}{m^3} \left(\alpha_m z r^{m-1} m \cos(m\theta) + \beta_m z r^{m-1} m \sin(m\theta) \right) \cos(t), \\ H_\theta(r,\theta,z,t) &= \sum_{m=1}^3 \frac{1}{m^3} \left(\beta_m z r^{m-1} m \cos(m\theta) - \alpha_m z r^{m-1} m \sin(m\theta) \right) \cos(t), \\ H_z(r,\theta,z,t) &= \sum_{m=1}^3 \frac{1}{m^3} \left(\alpha_m r^m \cos(m\theta) + \beta_m r^m \sin(m\theta) \right) \cos(t), \end{split}$$

Test 11: mhd + temperature (without vacuum).

- 15.1 Numerical domain and equations to solve
- 15.2 Analytical solution
- 15.3 Data file

Test 12: mxw Dirichlet/Neumann (without vacuum).

16.1 Numerical domain and equations to solve

$$\begin{split} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) &= \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) &= 0, \\ + BC + IC. \end{split}$$

- 16.2 Analytical solution
- 16.3 Data file

Test 13: mxw Dirichlet/Neumann + perio (without vacuum).

17.1 Numerical domain and equations to solve

$$\partial_{t} (\mu \mathbf{H}) + \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times (\mathbf{u} \times \mu \mathbf{H}) = \frac{1}{R_{\mathrm{m}}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right),$$

$$\nabla \cdot (\mu \mathbf{H}) = 0,$$

$$+ BC + IC.$$

- 17.2 Analytical solution
- 17.3 Data file

40 CHAPTER~17.~~TEST~13:~MXW~DIRICHLET/NEUMANN+PERIO~(WITHOUT~VACUUM).

Test 14: mxw + arpack (without vacuum).

- 18.1 Numerical domain and equations to solve
- 18.2 Reference results
- 18.3 Data file

Test 15: nst (with LES).

- 19.1 Numerical domain and equations to solve
- 19.2 Reference results
- 19.3 Data file

Test 16: ??.

- 20.1 Numerical domain and equations to solve
- 20.2 Reference results
- 20.3 Data file

Test 17: mxw with vacuum + variable mu

The purpouse of this case is to test variable permeability with dependence in r and z. There is one conducting region embedded in vaccum.

21.1 Numerical domain and equations to solve

The domain is a cylinder $r \in [0, 1]$, $z \in [-1, 1]$. The exterior boundary of the vaccum is a sphere of radius 10. Let us recall the kynematic dynamo equations,

$$\begin{cases} \partial_t \left(\mu \mathbf{H} \right) + \frac{1}{R_{\rm m}} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{H} \right) - \nabla \times \left(\mathbf{u} \times \mu \mathbf{H} \right) = \frac{1}{R_{\rm m}} \nabla \times \left(\frac{1}{\sigma} \mathbf{j} \right), \\ \nabla \cdot \left(\mu \mathbf{H} \right) = 0, \\ +BC + IC. + \phi \end{cases}$$
(21.1.1)

21.2 Analytical solution

Let

$$\mathbf{H} = \frac{1}{\mu^c} \nabla \psi, \tag{21.2.1}$$

where $\psi = \psi(r, z)$ and satisfies the Laplace equation in cylindrical coordinates,

$$\partial_{rr}\psi + \frac{1}{r}\partial_r\psi + \partial_{zz}\psi = 0. \tag{21.2.2}$$

If we also set $\mathbf{j} = \nabla \times \mathbf{H}$, $\mathbf{u} = 0$, $\mathbf{E} = \mathbf{0}$ and $\phi(r, \theta, z, t) = \psi(r, z)$, then \mathbf{H} , defined as in (21.2.1), satisfies Maxwell equations (21.1.1).

Now, let

$$\mu^{c} = \mu^{c}(r, z) = \frac{1}{f(r, z) + 1},$$
(21.2.3)

where

$$f(r,z) = b \cdot r^3 \cdot (1-r)^3 \cdot (z^2-1)^3$$

and $b \ge 0$ is a parameter which determines the variation of μ^c . Observe that

$$\partial_r f(r,z) = 3b(r(1-r))^2 (1-2r)(z^2-1)^3, \quad \partial_z f(r,z) = 6bz(r(1-r))^3 (z^2-1)^2.$$

Moreover, $f(r, z) \leq 0$ for $(r, \theta, z) \in \Omega^c$ and,

$$\sup_{\Omega^c} f(r,z) = f_{\max} = 0, \quad \inf_{\Omega^c} f(r,z) = f_{\min} = -\frac{b}{2^6}$$

then,

$$\mu_{\min}^c = \frac{1}{1 + f_{\max}}, \quad \mu_{\max}^c = \frac{1}{1 + f_{\min}}, \qquad r_{\mu} = \frac{\mu_{\max}}{\mu_{\min}} = \frac{\frac{1}{1 - \frac{b}{2^6}}}{1}, \quad \text{and} \quad b = 2^6 \left(1 - \frac{1}{r_{\mu}}\right).$$

To get an explicit solution in (21.2.1), equation (21.2.2) is solved using separation of variables, this is, letting $\psi(r,z) = R(r)Z(z)$ we solve the following system of ODEs,

$$Z'' - \lambda Z = 0$$

$$R'' + \frac{R'}{r} + \lambda R = 0,$$

where λ is any real number. Here we choose $\lambda = 1$, so

$$\psi(r,z) = J_0(r)\cosh(z). \tag{21.2.4}$$

Now, using $J'_0(r) = -J_1(r)$ and $\cosh'(z) = \sinh(z)$ we get,

$$\nabla \psi = \begin{bmatrix} -J_1(r)\cosh(z) \\ 0 \\ J_0(r)\sinh(z) \end{bmatrix}$$
 (21.2.5)

then by (21.2.1),

$$\mathbf{H}^{c} = (f(r,z) + 1) \begin{bmatrix} -J_{1}(r)\cosh(z) \\ 0 \\ J_{0}(r)\sinh(z) \end{bmatrix}, \tag{21.2.6}$$

To get $\nabla \times \mathbf{H}$, we use the identity

$$\nabla \times \left(\frac{1}{\mu^c} \nabla \psi\right) = \nabla \left(\frac{1}{\mu^c}\right) \times \nabla \psi + \frac{1}{\mu^c} \nabla \times \nabla \psi,$$

but $\nabla \times \nabla \psi = 0$. Then using equation (21.2.1),

$$\nabla \times \mathbf{H}^c = \nabla \left(\frac{1}{\mu^c}\right) \times \nabla \psi,$$

and

$$\nabla \frac{1}{\mu^c} = \begin{bmatrix} \partial_r f(r, z) \\ 0 \\ \partial_z f(r, z) \end{bmatrix}; \tag{21.2.7}$$

we obtain,

$$\mathbf{j} = \nabla \times \mathbf{H}^c = \begin{bmatrix} 0 \\ -\partial_r f(r, z) J_0(r) \sinh(z) - \partial_z f(r, z) J_1(r) \cosh(z) \\ 0 \end{bmatrix}.$$
 (21.2.8)

In summary,

$$\phi(r, \theta, z, t) = J_0(r)\cosh(z). \tag{21.2.9}$$

$$\mathbf{H}^{c} = \left(2^{6} \left(1 - \frac{1}{r_{\mu}}\right) \cdot r^{3} \cdot (1 - r)^{3} \cdot (z^{2} - 1)^{3} + 1\right) \begin{bmatrix} -J_{1}(r)\cosh(z) \\ 0 \\ J_{0}(r)\sinh(z) \end{bmatrix},$$
(21.2.10)

21.3 Reference results

21.4 Data file