

Term 7- Sept 2024

Nanoelectronics and Technology (01.119/99.503)

Week 2 Day 1 (24-Sept 2024)

Outline

- Review of MOSFETs
- CMOS Inverter circuit
- CMOS scaling

n-channel MOS Transistor

p-channel MOS Transistor

MOS Transistor

- Add "source" and "drain" terminals to MOS capacitor
- > Transistor types
 - ➤ NMOS: p-type substrate, n+ source/drain
 - ➤ PMOS: n-type substrate, p+ source/drain

n-channel MOS Transistor

p-channel MOS Transistor

What is a Transistor?

p-channel MOS Transistor

n-channel MOS Transistor

Cut-off Regime

- MOSFET:
 - $-V_{GS} \le V_T$, with $V_{DS} \ge 0$
- Inversion Charge = 0
- V_{DS} drops across drain depletion region
- $I_D = 0$

n-channel MOS Transistor

Linear or Triode Regime

$$V_{GD} = V_{GS} - V_{DS}$$

Electrons drift from source to drain \Rightarrow electrical current

MOSFET Output Characteristics

 $\beta = \mu C_{ox} \frac{W}{L}$

n-channel MOS Transistor

 $I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$

Review of MOSFETs: DC load line of n-MOSFET

I_D-V_{DS} curves for various V_{GS}:

Review of MOSFETs: DC load line of n-MOSFET

Load Line (Ckt Theory)

p-MOSFET

MOSFET: Threshold Voltage (V_{th})

- The voltage needed on the Gate terminal of the MOSFET to form a thin channel beneath the gate electrode (between Source & Drain terminals).
- The current can flow between S and D terminals through the channel.
- So threshold voltage is the voltage needed to turn on the device.
- As the MOSFET is voltage controlled current source, the output current will depend on the gate voltage applied.

MOSFET: Threshold Voltage (V_{th})

- Lower Vth:
 - Faster in timing
 - Higher subthreshold current
- Higher Vth:
 - Less leakage
 - Higher delay
- V_{th} scales with MOSFET scaling

v_{DD} v_{DD} v_{DS} v_{DS}

CMOS Inverter Operation Principle

G = Gate Terminal

S = Source Terminal

D = Drain Terminal

Sub = Substrate Terminal

The Ideal Inverter

CMOS inverter transfer function

The Realistic Inverter

- Noise margin is the ratio by which the signal exceeds the minimum acceptable amount.
- It explains up to what extent IC allows noise in the transmission of logic '0' and logic '1'.
- Logic '0' and '1' represent the range of input values
- Hence, for error free digital signal transmission noise margin is required

- Noise margin is the ratio by which the signal exceeds the minimum acceptable amount.
- It explains up to what extent IC allows noise in the transmission of logic '0' and logic '1'.
- Logic '0' and '1' represent the range of input values
- Hence, for error free digital signal transmission noise margin is required

- Noise margin is the ratio by which the signal exceeds the minimum acceptable amount.
- It explains up to what extent IC allows noise in the transmission of logic '0' and logic '1'.
- Logic '0' and '1' represent the range of input values
- Hence, for error free digital signal transmission noise margin is required

CMOS scaling: Moore's Law

Moore's law says that the number of transistors doubles approximately every two years.

- CMOS scaling
 - Speed
 - High density
 - Less power
 - Reduced cost/transistor

Ref: M. L. Rieger, "Retrospective on VLSI value scaling and lithography" Journal of Micro/Nanolithography-2019

CMOS scaling: Dennard's scaling

Dennard scaling, also known as MOSFET scaling, is a scaling law which states roughly that, as transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) with length.

With feature sizes below 65nm, these rules could no longer be sustained, because of the exponential growth of the leakage current."

Ref: M. L. Rieger, "Retrospective on VLSI value scaling and lithography" Journal of Micro/Nanolithography-2019

CMOS scaling: Moore's Law

Ref: H. H. Radamson, et al., "Miniaturization of CMOS" Micromachines 10(5) 293-2019