Importing the required libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

Load the Dataset

```
import os, types
import pandas as pd
from botocore.client import Config
import ibm boto3
def iter (self): return 0
# @hidden cell
# The following code accesses a file in your IBM Cloud Object Storage.
It includes your credentials.
# You might want to remove those credentials before you share the
notebook.
cos client = ibm boto3.client(service name='s3'.
    ibm api key id='CkS2-uN0UofbsGnqQSz-I3ssQ8fUHOT2qSLJuMQrJ9Vc',
    ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
    config=Config(signature version='oauth'),
    endpoint url='https://s3.private.us.cloud-object-
storage.appdomain.cloud')
bucket = 'universityadmiteligibilitypredict-donotdelete-pr-
i7u8fi33wqfayc'
object key = 'Admission Predict.csv'
body = cos client.get object(Bucket=bucket,Key=object key)['Body']
# add missing __iter__ method, so pandas accepts body as file-like
obiect
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType(
__iter__, body )
df = pd.read csv(body)
df.head()
   Serial No. GRE Score TOEFL Score University Rating
                                                          SOP LOR
CGPA \
                     337
                                                       4 4.5 4.5
                                  118
```

9.65						
1	2	324	107	4	4.0	4.5
8.87						
2	3	316	104	3	3.0	3.5
8.00						
3	4	322	110	3	3.5	2.5
8.67						
4	5	314	103	2	2.0	3.0
8.21						

	Research	Chance	of	Admit
0	1			0.92
1	1			0.76
2	1			0.72
3	1			0.80
4	0			0.65

Analyse the Data df.head()

Serial	No.	GRE Score	TOEFL Score	University Rating	S0P	L0R
CGPA \						
0	1	337	118	4	4.5	4.5
9.65	_					
1	2	324	107	4	4.0	4.5
8.87 2	3	216	104	2	2 0	2 5
8.00	3	316	104	3	3.0	3.5
3	4	322	110	3	3.5	2.5
8.67	7	522	110	J	5.5	2.5
4	5	314	103	2	2.0	3.0
8.21		_				

	Research	Chance	of	Admit
0	1			0.92
1	1			0.76
2	1			0.72
3	1			0.80
4	0			0.65

df.tail()

		GRE Score	TOEFL Score	University Rating	S0P	L0R
CGPA 395	396	324	110	3	3.5	3.5
9.04 396	397	325	107	3	3.0	3.5
9.11 397	398	330	116	4	5.0	4.5

9.45 398	399	312	103	3	3.5	4.0
8.78 399 9.66	400	333	117	4	5.0	4.0

	Research	Chance	of	Admit
395	1			0.82
396	1			0.84
397	1			0.91
398	0			0.67
399	1			0.95

Drop the serial No column
df.drop("Serial No.",axis=1,inplace=True)

df.head()

R	GRE Score	TOEFL Score	University Rating	S0P	L0R	CGPA
0	337	118	4	4.5	4.5	9.65
1	324	107	4	4.0	4.5	8.87
2	316	104	3	3.0	3.5	8.00
3	322	110	3	3.5	2.5	8.67
4 0		103	2	2.0	3.0	8.21
1.1						

	Chance	of	Admit
0			0.92
1			0.76
2			0.72
3			0.80
4			0.65

Checking for null value df.isnull().sum()

CDE Coore	٥
GRE Score	0
TOEFL Score	0
University Rating	0
SOP	0
LOR	0
CGPA	0
Research	0

Chance of Admit 0 dtype: int64

getting information about the dataframe

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype			
0	GRE Score	400 non-null	int64			
1	TOEFL Score	400 non-null	int64			
2	University Rating	400 non-null	int64			
3	S0P	400 non-null	float64			
4	LOR	400 non-null	float64			
5	CGPA	400 non-null	float64			
6	Research	400 non-null	int64			
7	Chance of Admit	400 non-null	float64			
$\frac{1}{2}$						

dtypes: float64(4), int64(4)

memory usage: 25.1 KB

statistical summary of the dataframe

df.describe()

	GRE Score	TOEFL Score	University Rating	S0P
LOR	\ .400_00000	400 000000	400 00000	400 000000
count 400.00	400.000000	400.000000	400.000000	400.000000
mean	316.807500	107.410000	3.087500	3.400000
3.4525	90			
std	11.473646	6.069514	1.143728	1.006869
0.8984	_	02 000000	1 000000	1 000000
min 1.0000	290.000000	92.000000	1.000000	1.000000
25%		103.000000	2.000000	2.500000
3.0000		103.00000	2100000	2.300000
50%	317.000000	107.000000	3.000000	3.500000
3.5000				
75%	325.000000	112.000000	4.000000	4.000000
4.0000		120 000000	F 000000	F 000000
max	340.000000	120.000000	5.000000	5.000000
5.0000	90			
	CGPA	Research	Chance of Admit	
count	400.000000	400.000000		
mean	8.598925	0.547500	0.724350	

std 0.596317 0.498362 0.142609

min	6.800000	0.000000	0.340000
25%	8.170000	0.000000	0.640000
50%	8.610000	1.000000	0.730000
75%	9.062500	1.000000	0.830000
max	9.920000	1.000000	0.970000

To find the correlation of columns

corr matrix=df.corr()

University Rating

Chance of Admit

S0P

L0R

CGPA

Research

corr_matrix

,	GRE Score	TOEFL Score	University Rating	S0P
GRE Score	1.000000	0.835977	0.668976	0.612831
TOEFL Score	0.835977	1.000000	0.695590	0.657981
University Rating	0.668976	0.695590	1.000000	0.734523
SOP	0.612831	0.657981	0.734523	1.000000
LOR	0.557555	0.567721	0.660123	0.729593
CGPA	0.833060	0.828417	0.746479	0.718144
Research	0.580391	0.489858	0.447783	0.444029
Chance of Admit	0.802610	0.791594	0.711250	0.675732
GRE Score TOEFL Score		0.833060 0.5		lmit 2610 2594

0.660123 0.746479 0.447783

0.729593 0.718144 0.444029

1.000000

0.521654

0.873289

0.396859

0.521654

1.000000

0.553202

1.000000 0.670211

0.711250

0.675732

0.669889

0.873289

0.553202

1.000000

```
#plotting the correlation matrix as a heatmap
```

0.670211

0.396859

0.669889

fig = plt.figure(figsize=(12,8))
sns.heatmap(corr_matrix,annot=True)
plt.show()

Data Visualization

Univarient Analysis

sns.distplot(df["GRE Score"])

<AxesSubplot:xlabel='GRE Score', ylabel='Density'>

sns.distplot(df["TOEFL Score"])

<AxesSubplot:xlabel='TOEFL Score', ylabel='Density'>

sns.distplot(df["University Rating"])

<AxesSubplot:xlabel='University Rating', ylabel='Density'>

sns.distplot(df["SOP"])

<AxesSubplot:xlabel='SOP', ylabel='Density'>

sns.distplot(df["LOR "])

<AxesSubplot:xlabel='LOR ', ylabel='Density'>

sns.distplot(df["CGPA"])

<AxesSubplot:xlabel='CGPA', ylabel='Density'>

sns.distplot(df["Research"])

<AxesSubplot:xlabel='Research', ylabel='Density'>

sns.distplot(df["Chance of Admit "])
<AxesSubplot:xlabel='Chance of Admit ', ylabel='Density'>

Bivarient Analysis
plotting data which have high correlation

```
sns.relplot(data=df,x="GRE Score",y="Chance of Admit ",hue="Research")
plt.title("GRE Score vs Chance of Admit")
plt.show()
```



```
sns.relplot(data=df,x="TOEFL Score",y="Chance of Admit
",hue="Research",kind="line",ci=None)
plt.title("TOEFL vs Chance of Admit")
plt.show()
```


sns.relplot(data=df,x="CGPA",y="Chance of Admit ",hue="Research")
plt.title("GRE Score vs Chance of Admit")
plt.show()


```
sns.relplot(data=df,x="SOP",y="Chance of Admit
",hue="Research",kind="line",ci=None)
plt.title("GRE Score vs Chance of Admit")
plt.show()
```



```
sns.relplot(data=df,x="LOR ",y="Chance of Admit
",hue="Research",kind="line",ci=None)
plt.title("GRE Score vs Chance of Admit")
plt.show()
```


sns.barplot(data=df,x="University Rating",y="Chance of Admit ")
plt.title("University Rating vs Chance of Admit")
plt.show()

Importing the required libraries for regression model

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2 score

Split the dataset into dependent column and independent column

```
x = df[["GRE Score","TOEFL Score","University Rating","SOP","LOR
","CGPA","Research"]]
y = df["Chance of Admit "]
x.head()
```

```
GRE Score
             TOEFL Score University Rating
                                                         CGPA
                                              S0P
                                                   L0R
Research
                                              4.5
         337
                      118
                                                    4.5 9.65
1
1
         324
                      107
                                              4.0
                                                    4.5 8.87
1
2
                                              3.0
                                                    3.5 8.00
         316
                      104
                                           3
1
3
         322
                      110
                                           3
                                              3.5
                                                    2.5 8.67
1
4
         314
                      103
                                           2 2.0
                                                    3.0 8.21
0
y.head()
0
     0.92
1
     0.76
2
     0.72
3
     0.80
4
     0.65
Name: Chance of Admit , dtype: float64
Spliting the dataset into training and testing data
x_train, x_test, y_train, y_test =
train test split(x,y,test size=0.2,random state=1)
MULTIPLE LINEAR REGRESSION
multiple lin reg = LinearRegression()
multiple lin reg.fit(x train,y train)
y pred mlr = multiple lin reg.predict(x test)
r2_score_mlr = r2_score(y_test,y_pred_mlr)
print("Mutiple Linear Regression's Score =
{:.3f}".format(r2 score mlr))
Mutiple Linear Regression's Score = 0.808
RANDOM FOREST REGRESSION
ran for reg = RandomForestRegressor(n estimators=100, random state=1)
ran for reg.fit(x train,y train)
y pred rfr = ran for reg.predict(x test)
r2 score rfr = r2 score(y test,y pred rfr)
```

```
print("Random Forest Regression's Score =
{:.3f}".format(r2_score_rfr))
```

Random Forest Regression's Score = 0.778

Conclusion

R^2 score is an indicator of accuracy of Regression Models, and the accuracy is measured as close to 1 of this value. Therefore, as seen, Multiple Linear Regression Model is better than Random Forest Regression on this dataset when comparing their R^2 scores.

Save the Model in IBM cloud

```
pip install -U ibm-watson-machine-learning
```

```
Requirement already satisfied: ibm-watson-machine-learning in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (1.0.257)
Requirement already satisfied: importlib-metadata in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
watson-machine-learning) (4.8.2)
Requirement already satisfied: ibm-cos-sdk==2.11.* in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
watson-machine-learning) (2.11.0)
Requirement already satisfied: urllib3 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
watson-machine-learning) (1.26.7)
Requirement already satisfied: lomond in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
watson-machine-learning) (0.3.3)
Requirement already satisfied: tabulate in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning)
(0.8.9)
Requirement already satisfied: packaging in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning)
(21.3)
Requirement already satisfied: requests in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from ibm-watson-machine-learning)
(2.26.0)
Requirement already satisfied: pandas<1.5.0,>=0.24.2 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
watson-machine-learning) (1.3.4)
Requirement already satisfied: certifi in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
watson-machine-learning) (2022.9.24)
Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-
sdk==2.11.*->ibm-watson-machine-learning) (2.11.0)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-
```

```
sdk==2.11.*->ibm-watson-machine-learning) (0.10.0)
Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-
sdk==2.11.*->ibm-watson-machine-learning) (2.11.0)
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-
sdk-core==2.11.0->ibm-cos-sdk==2.11.*->ibm-watson-machine-learning)
(2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm-
watson-machine-learning) (2021.3)
Requirement already satisfied: numpy>=1.17.3 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from
pandas<1.5.0,>=0.24.2->ibm-watson-machine-learning) (1.20.3)
Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1-
>ibm-cos-sdk-core==2.11.0->ibm-cos-sdk==2.11.*->ibm-watson-machine-
learning) (1.15.0)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from requests->ibm-watson-machine-
learning) (3.3)
Requirement already satisfied: charset-normalizer~=2.0.0 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests-
>ibm-watson-machine-learning) (2.0.4)
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/Python-
3.9/lib/python3.9/site-packages (from importlib-metadata->ibm-watson-
machine-learning) (3.6.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from
packaging->ibm-watson-machine-learning) (3.0.4)
Note: you may need to restart the kernel to use updated packages.
from ibm watson machine learning import APIClient
wml credentails={
    "apikey":"dBZwh kI4ymMDFrMHVa3Qt4 hBk-ezkorDqJNV6t7Nl ",
    "url": "https://us-south.ml.cloud.ibm.com"
}
wml client=APIClient(wml credentails)
wml client.spaces.list()
Note: 'limit' is not provided. Only first 50 records will be displayed
if the number of records exceed 50
ID
                                     NAME
CREATED
044f5a7f-14d0-4f72-9a3e-81d3088441e3 University Admit Eligibility
Predictor 2022-11-10T15:52:57.889Z
```

```
space id="044f5a7f-14d0-4f72-9a3e-81d3088441e3"
wml_client.set.default_space(space_id)
'SUCCESS'
wml client.software specifications.list(500)
                                 ASSET ID
NAME
TYPE
                                 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9
default py3.6
kernel-spark3.2-scala2.12
                                 020d69ce-7ac1-5e68-ac1a-31189867356a
pytorch-onnx 1.3-py3.7-edt
                                 069ea134-3346-5748-b513-49120e15d288
base
scikit-learn 0.20-py3.6
                                 09c5a1d0-9c1e-4473-a344-eb7b665ff687
base
spark-mllib 3.0-scala 2.12
                                 09f4cff0-90a7-5899-b9ed-1ef348aebdee
                                 0b848dd4-e681-5599-be41-b5f6fccc6471
pytorch-onnx rt22.1-py3.9
base
ai-function 0.1-py3.6
                                 Ocdb0f1e-5376-4f4d-92dd-da3b69aa9bda
base
                                 0e6e79df-875e-4f24-8ae9-62dcc2148306
shiny-r3.6
base
tensorflow 2.4-py3.7-horovod
                                 1092590a-307d-563d-9b62-4eb7d64b3f22
                                 10ac12d6-6b30-4ccd-8392-3e922c096a92
pytorch 1.1-py3.6
base
tensorflow 1.15-py3.6-ddl
                                 111e41b3-de2d-5422-a4d6-bf776828c4b7
autoai-kb_rt22.2-py3.10
                                 125b6d9a-5b1f-5e8d-972a-b251688ccf40
base
runtime-22.1-py3.9
                                 12b83a17-24d8-5082-900f-0ab31fbfd3cb
base
scikit-learn 0.22-py3.6
                                 154010fa-5b3b-4ac1-82af-4d5ee5abbc85
base
default r3.6
                                 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36
base
                                 1bc6029a-cc97-56da-b8e0-39c3880dbbe7
pytorch-onnx 1.3-py3.6
base
kernel-spark3.3-r3.6
                                 1c9e5454-f216-59dd-a20e-474a5cdf5988
pytorch-onnx rt22.1-py3.9-edt
                                 1d362186-7ad5-5b59-8b6c-9d0880bde37f
```

base

tensorflow_2.1-py3.6 base	1eb25b84-d6ed-5dde-b6a5-3fbdf1665666
spark-mllib_3.2 base	20047f72-0a98-58c7-9ff5-a77b012eb8f5
tensorflow_2.4-py3.8-horovod base	217c16f6-178f-56bf-824a-b19f20564c49
runtime-22.1-py3.9-cuda base	26215f05-08c3-5a41-a1b0-da66306ce658
do_py3.8 base	295addb5-9ef9-547e-9bf4-92ae3563e720
autoai-ts_3.8-py3.8 base	2aa0c932-798f-5ae9-abd6-15e0c2402fb5
tensorflow_1.15-py3.6 base	2b73a275-7cbf-420b-a912-eae7f436e0bc
kernel-spark3.3-py3.9 base	2b7961e2-e3b1-5a8c-a491-482c8368839a
<pre>pytorch_1.2-py3.6 base</pre>	2c8ef57d-2687-4b7d-acce-01f94976dac1
<pre>spark-mllib_2.3 base</pre>	2e51f700-bca0-4b0d-88dc-5c6791338875
<pre>pytorch-onnx_1.1-py3.6-edt base</pre>	32983cea-3f32-4400-8965-dde874a8d67e
<pre>spark-mllib_3.0-py37 base</pre>	36507ebe-8770-55ba-ab2a-eafe787600e9
<pre>spark-mllib_2.4 base</pre>	390d21f8-e58b-4fac-9c55-d7ceda621326
autoai-ts_rt22.2-py3.10 base	396b2e83-0953-5b86-9a55-7ce1628a406f
xgboost_0.82-py3.6 base	39e31acd-5f30-41dc-ae44-60233c80306e
<pre>pytorch-onnx_1.2-py3.6-edt base</pre>	40589d0e-7019-4e28-8daa-fb03b6f4fe12
pytorch-onnx_rt22.2-py3.10 base	40e73f55-783a-5535-b3fa-0c8b94291431
default_r36py38 base	41c247d3-45f8-5a71-b065-8580229facf0
autoai-ts_rt22.1-py3.9 base	4269d26e-07ba-5d40-8f66-2d495b0c71f7
autoai-obm_3.0 base	42b92e18-d9ab-567f-988a-4240ba1ed5f7
pmml-3.0_4.3 base	493bcb95-16f1-5bc5-bee8-81b8af80e9c7 49403dff-92e9-4c87-a3d7-a42d0021c095
spark-mllib_2.4-r_3.6 base	4ff8d6c2-1343-4c18-85e1-689c965304d3
xgboost_0.90-py3.6 base	50f95b2a-bc16-43bb-bc94-b0bed208c60b
<pre>pytorch-onnx_1.1-py3.6 base putopi to 3.0 py3.8</pre>	
autoai-ts_3.9-py3.8 base	52c57136-80fa-572e-8728-a5e7cbb42cde

spark-mllib_2.4-scala_2.11	55a70f99-7320-4be5-9fb9-9edb5a443af5
<pre>base spark-mllib_3.0</pre>	5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9
<pre>base autoai-obm_2.0</pre>	5c2e37fa-80b8-5e77-840f-d912469614ee
base spss-modeler 18.1	5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b
base	
cuda-py3.8 base	5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e
autoai-kb_3.1-py3.7 base	632d4b22-10aa-5180-88f0-f52dfb6444d7
<pre>pytorch-onnx_1.7-py3.8 base</pre>	634d3cdc-b562-5bf9-a2d4-ea90a478456b
spark-mllib_2.3-r_3.6 base	6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c
tensorflow_2.4-py3.7	65e171d7-72d1-55d9-8ebb-f813d620c9bb
<pre>base spss-modeler_18.2</pre>	687eddc9-028a-4117-b9dd-e57b36f1efa5
<pre>base pytorch-onnx_1.2-py3.6</pre>	692a6a4d-2c4d-45ff-aled-b167ee55469a
<pre>base spark-mllib_2.3-scala_2.11</pre>	7963efe5-bbec-417e-92cf-0574e21b4e8d
base	
<pre>spark-mllib_2.4-py37 base</pre>	7abc992b-b685-532b-a122-a396a3cdbaab
caffe_1.0-py3.6	7bb3dbe2-da6e-4145-918d-b6d84aa93b6b
base pytorch-onnx 1.7-py3.7	812c6631-42b7-5613-982b-02098e6c909c
base	01200031 1287 3013 3028 020300003030
cuda-py3.6	82c79ece-4d12-40e6-8787-a7b9e0f62770
<pre>base tensorflow_1.15-py3.6-horovod</pre>	8964680e-d5e4-5bb8-919b-8342c6c0dfd8
base	05040000 0504 5550 5155 05420000100
hybrid_0.1	8c1a58c6-62b5-4dc4-987a-df751c2756b6
<pre>base pytorch-onnx 1.3-py3.7</pre>	8d5d8a87-a912-54cf-81ec-3914adaa988d
base	
caffe-ibm_1.0-py3.6	8d863266-7927-4d1e-97d7-56a7f4c0a19b
base spss-modeler 17.1	902d0051-84bd-4af6-ab6b-8f6aa6fdeabb
base	30240031 0104 1410 4505 010440146455
do_12.10	9100fd72-8159-4eb9-8a0b-a87e12eefa36
base	
do_py3.7 base	9447fa8b-2051-4d24-9eef-5acb0e3c59f8
spark-mllib_3.0-r_3.6	94bb6052-c837-589d-83f1-f4142f219e32
base	
cuda-py3.7-opence base	94e9652b-7f2d-59d5-ba5a-23a414ea488f

nlp-py3.8 base	96e60351-99d4-5a1c-9cc0-473ac1b5a864
cuda-py3.7	9a44990c-1aa1-4c7d-baf8-c4099011741c
base hybrid_0.2	9b3f9040-9cee-4ead-8d7a-780600f542f7
<pre>base spark-mllib_3.0-py38</pre>	9f7a8fc1-4d3c-5e65-ab90-41fa8de2d418
<pre>base autoai-kb_3.3-py3.7</pre>	a545cca3-02df-5c61-9e88-998b09dc79af
base spark-mllib 3.0-py39	a6082a27-5acc-5163-b02c-6b96916eb5e0
base runtime-22.1-py3.9-do	a7e7dbf1-1d03-5544-994d-e5ec845ce99a
base	
default_py3.8 base	ab9e1b80-f2ce-592c-a7d2-4f2344f77194
tensorflow_rt22.1-py3.9 base	acd9c798-6974-5d2f-a657-ce06e986df4d
kernel-spark3.2-py3.9 base	ad7033ee-794e-58cf-812e-a95f4b64b207
autoai-obm_2.0 with Spark 3.0 base	af10f35f-69fa-5d66-9bf5-acb58434263a
default_py3.7_opence base	c2057dd4-f42c-5f77-a02f-72bdbd3282c9
tensorflow_2.1-py3.7	c4032338-2a40-500a-beef-b01ab2667e27
base do_py3.7_opence	cc8f8976-b74a-551a-bb66-6377f8d865b4
<pre>base spark-mllib_3.3</pre>	d11f2434-4fc7-58b7-8a62-755da64fdaf8
base autoai-kb 3.0-py3.6	d139f196-e04b-5d8b-9140-9a10ca1fa91a
base spark-mllib_3.0-py36	d82546d5-dd78-5fbb-9131-2ec309bc56ed
base autoai-kb_3.4-py3.8	da9b39c3-758c-5a4f-9cfd-457dd4d8c395
base	
kernel-spark3.2-r3.6 base	db2fe4d6-d641-5d05-9972-73c654c60e0a
autoai-kb_rt22.1-py3.9 base	db6afe93-665f-5910-b117-d879897404d9
tensorflow_rt22.1-py3.9-horovod base	dda170cc-ca67-5da7-9b7a-cf84c6987fae
autoai-ts_1.0-py3.7 base	deef04f0-0c42-5147-9711-89f9904299db
tensorflow_2.1-py3.7-horovod	e384fce5-fdd1-53f8-bc71-11326c9c635f
<pre>base default_py3.7</pre>	e4429883-c883-42b6-87a8-f419d64088cd
base do_22.1 base	e51999ba-6452-5f1f-8287-17228b88b652

```
eae86aab-da30-5229-a6a6-1d0d4e368983
autoai-obm 3.2
base
tensorflow rt22.2-py3.10
                                 f65bd165-f057-55de-b5cb-f97cf2c0f393
base
do 20.1
                                 f686cdd9-7904-5f9d-a732-01b0d6b10dc5
base
pytorch-onnx rt22.2-py3.10-edt
                                 f8a05d07-e7cd-57bb-a10b-23f1d4b837ac
scikit-learn 0.19-py3.6
                                 f963fa9d-4bb7-5652-9c5d-8d9289ef6ad9
base
tensorflow 2.4-py3.8
                                 fe185c44-9a99-5425-986b-59bd1d2eda46
MODEL NAME='MULTIPLE LINEAR REGRESSION'
DEPLOYMENT NAME='MULTIPLE LINEAR REGRESSION DEPLOY'
LINEAR MODEL=multiple lin reg
#setup python version
software_spec_uid=wml_client.software_specifications.get_id_by_name('r
untime-22.1-py3.9')
#setup for model meta
model props={
    wml client.repository.ModelMetaNames.NAME:MODEL NAME,
    wml client.repository.ModelMetaNames.TYPE: 'scikit-learn 1.0',
wml client.repository.ModelMetaNames.SOFTWARE SPEC UID:software spec u
id
}
#save the model
models details=wml client.repository.store model(
    model=LINEAR MODEL,
    meta props=model props,
    training data=x train,
    training target=y train
)
models details
{'entity': {'hybrid pipeline software specs': [],
  'label column': 'Chance of Admit ',
  'schemas': {'input': [{'fields': [{'name': 'GRE Score', 'type':
'int64'},
      {'name': 'TOEFL Score', 'type': 'int64'},
      {'name': 'University Rating', 'type': 'int64'},
      {'name': 'SOP', 'type': 'float64'},
```

```
{'name': 'LOR ', 'type': 'float64'},
{'name': 'CGPA', 'type': 'float64'},
    {'name': 'Research', 'type': 'int64'}],
    'id': '1',
    'type': 'struct'}],
  'output': []},
'software spec': {'id': '12b83a17-24d8-5082-900f-0ab31fbfd3cb',
  'name': 'runtime-22.1-py3.9'},
'type': 'scikit-learn_1.0'},
'metadata': {'created_at': '2022-11-12T15:37:03.402Z',
'id': '1b6400aa-f639-42f7-8d61-b7c9dee7ee47',
'modified at': '2022-11-12T15:37:09.028Z',
'name': 'MULTIPLE_LINEAR_REGRESSION',
'owner': 'IBMid-666002MQ5W',
'resource key': 'd8e8b193-7dbf-4863-bfe2-ce04a7309780',
'space id': '044f5a7f-14d0-4f72-9a3e-81d3088441e3'},
'system': {'warnings': []}}
```