

Instruções Modos e Formatos de endereçamento

ARQUITETURA DE COMPUTADORES

PROF. Alex Lima

Introdução

- Endereçamento
 - Conceito
 - Modos de endereçamento
 - Formatos de instrução
 - Arquiteturas CISC
 - Arquiteturas RISC

Conceito

• Endereçamento é o meio pelo qual a CPU localiza uma instrução ou operando.

- Modos de endereçamento
 - Imediato
 - Direto
 - Indireto
 - Registradores
 - Indireto por registradores
 - Deslocamento
 - Pilha

Endereçamento imediato

•O operando está contido na instrução.

Endereçamento imediato

- O campo de operando contém o operando.
- Usado na declaração de constantes.
- Usado na inicialização de variáveis.

Vantagens

Nenhuma busca a memória é feita para se obter o valor.

Desvantagens

 O tamanho do número é limitado ao tamanho do campo de endereço.

Endereçamento direto

Endereçamento direto

 O campo de operando contém o endereço que aponta para o operando.

Vantagens

Simplicidade.

Desvantagens

Espaço de endereços limitado pelo tamanho da palavra.

Endereçamento indireto

Endereçamento indireto

 O campo de operando contém o endereço que aponta para o endereço do operando.

Vantagens

Espaço de endereçamento de tamanho 2ⁿ.

Desvantagens

 São necessárias duas buscas a memória para carregar o operando.

Endereçamento direto de registrador

Endereçamento direto de registrador

- Similar ao endereçamento direto.
- O campo de operando uma referência ao registrador que armazena o valor.

Vantagens

- Apenas um pequeno campo de referência ao registrador.
- Não há consumo significativo de tempo.

Desvantagens

Espaço de endereçamento limitado.

Endereçamento indireto de registrador

Endereçamento indireto de registrador

- Similar ao endereçamento indireto.
- O campo de operando armazena um endereço de memória que contém uma referência ao registrador que armazena o valor.

Vantagens

- Espaço de endereçamento de tamanho 2ⁿ.
- Uma busca a menos na memória.

Desvantagens

É necessário buscar o operando na memória.

Endereçamento por deslocamento

- Combina endereçamento direto e indireto de registradores.
- A instrução contém 2 campos de operando:

referência + deslocamento

Vantagens

- Espaço de endereçamento de tamanho 2ⁿ.
- Uma busca a menos na memória.

Desvantagens

É necessário buscar o operando na memória.

Endereçamento por deslocamento

- Endereçamento relativo
- Endereçamento por base
- Endereçamento por indexação

Endereçamento por deslocamento

Endereçamento relativo

Exemplo

Jump incondicional

Endereçamento por registrador base Instrução **OPCODE** Registrador Valor de deslocamento Memória **Operando** Registrador **Endereço**

Endereçamento por registrador base

- Segmentação de processos na memória.
- O registrador base por ser utilizado para acessar diferentes segmentos, com base no endereço armazenado.

Endereçamento por indexação

Endereçamento por indexação

- Processo oposto ao de endereçamento por registrador base.
- O endereço da memória encontra-se no segundo campo de operando e o deslocamento encontra-se no registrador referenciado.

Endereçamento por indexação

- A alocação de <u>vetores</u> é feita por meio de um endereço base.
- O primeiro valor do vetor ocupa um endereço e os demais valores são alocados com base no endereço do primeiro valor.
- No MIPS:
 - LW \$t0, 10(\$s2)

Pilha

- Vetor de acesso linear.
- As operações (inserção/remoção) são realizadas a partir do seu topo.
- Endereçamento de pilha
 - As expressões precisam ser reescritas em notação polonesa inversa.
 - As operações são realizadas na ordem da expressão, sempre fazendo referência ao topo da pilha.

Notação Polonesa Inversa

- Na notação polonesa invertida, o operador vem após os operandos.
- Exemplo:
- A + B torna-se AB+
- A + (B x C) torna-se ABC x +
- (A + B) x C torna-se A B + C x

Exemplo

$$F = \frac{A - B}{C + (D \times E)}$$

Na notação polonesa inversa:

• A - B torna-se AB-

 \circ C + (D x E) torna-se CDE x +

 \circ (A - B)/ (C + (D x E)) torna-se AB - CDE x + /

INSTRUÇÃO	DESCRIÇÃO
PUSH A	Empilha A
PUSH B	Empilha B
SUB	Subtrai A e B e armazena o resultado em A
PUSH C	Empilha C
PUSH D	Empilha D
PUSH E	Empilha E
MULT	Multiplica E e D e armazena o resultado em E
ADD	Soma C e E e armazena o resultado em C
DIV	Divide A por B e armazena o resultado em A

Instruções de controle

- Instruções de controle estão relacionadas a controle do fluxo de execução do programa.
- No fluxo padrão de execução as instruções são executadas de forma sequencial, uma após a outra.
- Alguns instruções podem alterar esse fluxo, gerando desvios ou saltos de instrução.

Instruções de controle

- Desvio incondicional
 - Salto de instruções
- Desvio condicional
 - Teste + Salto de instruções

Instruções de Controle

- Instruções de teste
- Instruções de teste e desvio
- Instruções de desvio

Instruções de teste (Comparação)

- slt (Set on Less Than Atribui se for menor que)
 - slt \$t0, \$t1, \$2
- slti
 - slt \$t0, \$t1, 2

Instruções de teste e desvio (Desvio condicional)

- beq (Branch on equal Desvie se for igual)
 - beq \$t0, \$t1, I1
- bne (Branch on not equal Desvie se não for igual)
 - bne \$t0, \$t1, I1

Instruções de desvio incondicional

```
j – (Jump – Salto)
j L1
jr – (Jump Register – Salto para registrador)
j $s0
```

- Array
- Testes
- Desvios

PRÁTICA

1. Descreva o funcionamento de uma pilha e como são executadas as instruções.

2. Descreva o endereçamento por indexação.

3. Escreva um código em MIPS que realize a soma de dois números.

4. Escreva um código em MIPS que leia seu nome e exiba a mensagem "Bem vindo a UFC, ...".

Formato de instruções define a estrutura de uma instrução.

- Quantidade de campos
- Ordem dos campos
- Tamanho de cada campo

Formatos de instrução

Tamanho da instrução

- Opcodes
- Operandos
- Modos de endereçamento
- Faixa de endereçamento

Tamanho da instrução

Vantagens

- Operações e Operandos Programas mais curtos
- Modos de endereçamento Acesso a locais de memória específicos
- Faixa de endereçamento Maior uso da memória

Desvantagens

- Desperdício
- Uma instrução de 64 bit não será duas vezes mais útil que uma instrução de 32 bits!

Tamanho da instrução

- Tamanho do barramento
- Velocidade da memória (Gargalo)
 - Memória cache
 - Instruções menores
- Tamanho da <u>palavra</u>

Tamanho da instrução

Tamanho do opcode

Opcodes de tamanhos variáveis

Tamanho dos campos de endereçamento

- Número de modos de endereçamento
- Número de operandos
- Registrados vs Memória
- Intervalo de endereços
- Granularidade do endereço

Tamanho dos campos de endereçamento

Número de modos de endereçamento / Intervalo de endereços

Tamanho dos campos de endereçamento

- Número de modos de endereçamento / Intervalo de endereços
- Campos de endereçamento de 8 bits podem endereçar até 28 endereços
- Apenas 2 MB!
- Essa limitação é contornada por modos de endereçamento indireto.
 - Endereçamento indireto
 - Endereçamento indireto de registrado

Tamanho da instrução

Tamanho dos campos de endereçamento

Número de operandos

Tamanho dos campos de endereçamento

- Registrados vs Memória
 - Número de registradores ⇔ Número de operandos
 - Número de registradores ⇔ Número de operações
 - Número de registradores ⇔ Tamanho do campo de endereçamento

Tamanho da instrução

- Granularidade do endereço (Divisão do espaço de memória)
 - Endereçamento por byte
 - Endereçamento por palavra

Instruções de tamanho variável

Vantagens

- Flexibilidade
- Campos de tamanhos diferentes

Desvantagens

 • Aumento na complexidade do processador ⇒ Aumento no preço do processador

O MIPS possui três classes de instrução:

- Instruções do tipo R
- Instruções do Tipo I
- Instruções do tipo J

O Simulador MARS trabalha como um montador da linguagem assembly para a arquitetura MIPS.

Tradução do programa em assembly para linguagem de máquina (binário).

Instruções do tipo R

Instruções aritméticas ou lógicas

- opcode Código de operação
- **rs e rt** Registradores fonte
- rd Registrador destino
- shamt Shift amount (usado em funções de deslocamento)
- funct Código de função (Classe de operação)

Instruções do tipo I

Instruções para transferências e desvios

- opcode Código de operação
- rs e rt Registradores fonte
- Endereço/ Imediato Endereço do operando / Valor do operando

Instruções do tipo I

Instruções para salto

- opcode Código de operação
- Endereço de destino Local para onde o correrá o desvio

Modos de endereçamento do MIPS

- Endereçamento imediato
- Endereçamento direto ao registrador
- Endereçamento por deslocamento
- Endereçamento relativo ao PC

Modos de endereçamento do MIPS

Endereçamento imediato

Modos de endereçamento do MIPS

Endereçamento direto ao registrador

Modos de endereçamento do MIPS

Endereçamento por deslocamento

Modos de endereçamento do MIPS

Endereçamento relativo ao PC

Exemplo

- Instruções do Tipo R (lógicas ou aritméticas)
- ADD \$s1, \$s2, \$s3.

PRÁTICA

1. Explique porque não é um bom investimento adicionar mais do que 4 GB de memória RAM em um computador cujo processador seja de 32 bits.

2. O que é um montador (assembler)?

3. Quais os formatos de instrução adotados pelo MIPS? Explique a função de cada campo.