Persyaratan K3 Pemasangan Instalasi Penyalur Petir

Sambaran Langsung pada bangunan tanpa Proteksi Petir

Sambaran Langsung pada bangunan Dengan Proteksi Petir

- Sistem Proteksi Petir menyediakan jalur dengan resistansi rendah
- Sambaran petir memilki energi yang tinggi
- Bangunan aman, Peralatan mengalami potensi kerusakan

• Pasang proteksi Transien p semua saluran masuk ke bangunan dan peralatan kirus pada bangunan

Sambaran Tak Langsung pada bangunan

 Sambaran tak langsung menyebabkan tegangan transien pada bangunan baik yang dipasang maupun tak dipasang sistem proteksi petir

Konsep sistem proteksi petir

Katagori Proteksi

Proteksi External

 adalah instalasi dan alat-alat di luar sebuah struktur untuk meredam dan menghantar arus petir ke sistem pembumian atau berfungsi sebagai ujung tombak penangkap muatan listrik/arus petir di tempat tertinggi

Proteksi Internal

 Upaya menghindari terjadinya beda potensial pada semua titik di instalasi atau peralatan yang diproteksi di dalam bangunan.

INSTALASI PENYALUR PETIR

Peraturan/Standard

- Peraturan Umum Instalasi Penangkal Petir (PUIPP),
- National Fire Protection Association (NFPA) 780
- International Electrotechnical Commission (IEC) 61024-1-1.
- Peraturan Menteri Tenaga Kerja 02/MEN/1989
- SNI 3 -3991-1995

Proteksi External

Proteksi External

- Air Termination / Penerima
- Down Conductor/Penghantar Penurunan
- Earthing System/Pembumian

 Adalah suatu peralatan yang digunakan sebagai penangkap petir untuk mencegah sambaran langsung ke struktur guna mencegah terjadinya kerusakan

 Susunan finial penyalur petir dapat berupa Finial Batang Tegak; Susunan Finial Mendatar dan Finialfinial lain dengan memanfaatkan benda logam yang terpasang di atas bangunan seperti atap logam, menara logam, dll.

- Sebagai penerima dapat digunakan:
 - logam bulat panjang yang terbuat dari tembaga;
 - hiasan-hiasan pada atap, tiang-tiang, cerobongcerobong dari logam yang disambung baik dengan instalasi penyalur petir;
 - atap-atap dari logam yang disambung secara elektris dengan baik.

• Dimensi minimum air terminal:

- Cu: 35 mm2

- Fe: 50 mm2

 $-Al:70 \text{ mm}^2$

Pemasangan Air Termination

- Penerima harus dipasang di tempat atau bagian yang diperkirakan dapat tersambar petir
- Jika bangunan yang terdiri dari bagian-bagian seperti bangunan yang mempunyai menara, antena, papan reklame atau suatu blok bangunan harus dipandang sebagai suatu kesatuan;

Finial penyalur petir (Air Termination/Penerima)

- Penerima yang dipasang di atas atap yang datar sekurang-kurangnya lebih tinggi 15 cm dari pada sekitarnya (Permen 02/1989)
- Ketinggian Air Termination minimum 10 in ((IEC)61024-1-1)

Finial penyalur petir (Air Termination/Penerima)

 Untuk air Termination yg tingginya lebih dari 600 cm, harus diberi penyangga yang tidak boleh kurang dari setengah tinggi total

Pemasangan Air Termination

Air-termination rod for chim-neys

Air Termination/Penerima

- Pemasangan penerima pada atap yang mendatar harus benarbenar menjamin bahwa seluruh luas atap yang bersangkutan termasuk dalam daerah perlindungan;
- Jumlah dan jarak antara masing-masing penerima harus diatur sedemikian rupa sehingga dapat menjamin bangunan itu termasuk dalam daerah perlindungan.

Finial penyalur petir (Air Termination/Penerima)

 Jumlah dan jarak antara masing-masing penerima harus diatur sedemikian rupa sehingga dapat menjamin bangunan itu masuk dalam daerah perlindungan

 penghantar yang menghubungkan penerima dengan elektroda bumi;

 harus dipasang sepanjang bubungan (nok) dan atau sudutsudut bangunan ke tanah

 Dari suatu bangunan paling sedikit harus mempunyai 2 (dua buah penghantar penurunan;

 Penghantar penurunan harus dipasang dengan jarak tidak kurang 15 cm dari atap yang dapat terbakar kecuali atap dari logam, genteng atau batu;

- Sebagai penghantar penurunan petir dapat digunakan bagian-bagian dari atap, pilarpilar, dinding-dinding, atau tulang-tulang baja yang mempunyai massa logam yang baik;
- Khusus tulang-tulang baja dari kolom beton harus memenuhi syarat, kecuali:
 - sudah direncanakan sebagai penghantar penurunan dengan memperhatikan syarat-syarat sambungan yang baik dan syarat-syarat lainnya;
 - ujung-ujung tulang baja mencapai garis
 permukaan air di bawah tanah sepanjang waktu.
 - Kolom beton yang bertulang baja yang dipakai sebagai penghantar penurunan harus digunakan kolom beton bagian luar

Dimensi minimum menurut bahan (IEC 62305)
 .

- Cu: 16 mm2

- Fe : 50 mm²

- Al: 25 mm²

 recommend that the Down-Conductor be at least 50 mm² or AWG 0 in all cases

Down Conductor / Penghantar penurunan (permenaker : 02/1989)

- Bahan penghantar penurunan yang dipasang khusus harus digunakan kawat tembaga atau bahan yang sederajat dengan ketentuan :
 - penampang sekurang-kurangnya 50 mm'.;
 - setiap bentuk penampang dapat dipakai dengan tebal serendah-rendahnya 2 mm.
- Jarak antara alat-alat pemegang penghantar penurunan satu dengan yang lainnya tidak boleh lebih dari 1,5 meter

Pemegang Down conductor (IEC 62305)

Detail examples of an external lightning protection system at a building with a sloped tiled roof

- Jarak minimum antara penghantar penurunan yang satu dengan yang lain diukur sebagai berikut;
- Pada bangunan yang tingginya kurang dari 25 meter maximum 20 meter;
- Pada bangunan yang tingginya antara 25 50 meter maka jaraknya {30 - (0,4 xtinggi bangunan) }
- Pada bangunan yang tingginya lebih dari 50 meter maximum 10 meter.

Sambungan-sambungan

- harus merupakan suatu sambungan elektris, tidak ada kemungkinan terbuka dan dapat menahan kekuatan tarik sama dengan sepuluh kali berat penghantar yang menggantung pada sambungan itu.
- Penyambungan dilakukan dengan cara:
 - dilas.
 - diklem (plat klem, bus kontak klem) dengan panjang sekurang-kurangnya 5 cm;
 - disolder dengan panjang sekurang-kurangnya 10 cm

Pembumian

- Elektroda bumi harus dibuat dan dipasang sedemikian rupa sehingga tahanan pembumian sekecil mungkin
- Tahanan pembumian dari seluruh sistem pembumian tidak boleh lebih dari 5 ohm

Pembumian

 Panjang suatu elektroda bumi yang dipasang tegak dalam bumi tidak boleh kurang dari 4 meter, kecuali jika sebagian dari elektroda bumi itu sekurang-kurangnya 2 meter dibawah batas minimum permukaan air dalam bumi;

Bonding

 Mencegah terjadinya loncatan yang ditimbulkan adanya perbedaan potensial tegangan antara satu system pentanahan dengan yang lainnya.

Perhitungan Kebutuhan Bangunan akan Sistem Proteksi Petir

 Berdasarkan PUIPP besarnya kebutuhan ditentukan berdasarkan penjumlahan indeksindeks yang mewakili keadaan bangunan di suatu lokasi dan dituliskan :

• R = A + B + C + D + E

R	Perkiraan Bahaya	Pengamanan		
Di bawah 11	Diabaikan	Tidak perlu		
Sama dengan 11	Kecil	Tidak perlu		
12	Sedang	Dianjurkan		
13	Agak besar	Dianjurkan		
14	Besar	Sangat dianjurkan		
Lebih dari 14	Sangat besar	Sangat perlu		

Perhitungan Kebutuhan Bangunan akan Sistem Proteksi Petir

- Indeks A: Bahaya berdasarkan Jenis Bangunan
- Indeks B: Bahaya berdasarkan Konstruksi Bangunan
- Indeks C: Bahaya berdasarkan Tinggi Bangunan
- Indeks D: Bahaya berdasarkan Situasi Bangunan
- Indeks E: Bahaya berdasarkan Hari Guruh

PERTIMBANGAN PEMASANGAN INSTALASI PENYALUR PETIR

INDEK RESIKO BAHAYA SAMBARAN PETIR

A: Peruntukan bangunan	(-10	0	1	2	3	5	15)
B : Struktur konstruksi	(0	1	2	3)			
C : Tinggi bangunan	(0	2	3	4	5	-	10)
D : Lokasi bangunan	(0	1	2)				
E : Hari guruh	(0	1	2	3	4	_	7)

R	=	A + E	3 + C + D + E
	<	11	ABAIKAN
	=	11	KECIL
	=	12	SEDANG
	=	13	AGAK BESAR
	=	14	BESAR
	>	14	SANGAT BESAR

Perhitungan Kebutuhan Bangunan akan Sistem Proteksi Petir

- Indeks A: Bahaya berdasarkan Jenis Struktur
- Indeks B: Bahaya berdasarkan Jenis Konstruksi
- Indeks C: Bahaya berdasarkan Lokasi Bangunan
- Indeks D: Bahaya berdasarkan Topografi
- Indeks E: Penggunaan dan Isi Bangunan

<u>INDEK RESIKO BAHAYA SAMBARAN PETIR</u>

A: Peruntukan bangunan
Rumah tinggal: 1
Bangunan umum: 2
Banyak orang: 3
Instalasi gas,minyak, rumah sakit: 5
Gudang handak: 15

B: Struktur konstruksi

Steel structure : 0
Beton bertulang, kerangka baja atap logam: 1
Beton bertulang, atap bukan logam : 2
Kerangka kayu atap bukan logam : 3

INDEK RESIKO BAHAYA SAMBARAN PETIR

C: Tinggi bangunan

s/d 6 m : 0

12 m : 2

17 m : 3

25 m : 4

35 m : 5

50 m : 6

70 m : 7

100 m : 8

140 m : 9

200 m : 10

INDEK RESIKO BAHAYA SAMBARAN PETIR

D: Lokasi bangunan

Tanah datar : 0

Lereng bukit: 1

Puncak bukit: 2

E: Hari guruh per tahun

2 : 0

4 : 1

8:2

16 : 3

32 : 4

64 : 5

128 : 6

256 : **7**

Metode jala (mesh size method)

digunakan untuk
 perlindungan permukaan
 yang datar karena bisa
 melindungi seluruh
 permukaan bangunan.
 Daerah yang diproteksi
 adalah keseluruhan daerah
 yang ada di dalam jala-jala

Tingkat	h (m)	20	30	45	60	Lebar jala
proteksi	R (m)	α°	α°	α°	α°	(m)
Ι	20	25	-	-	-	5
II	30	35	25	-	-	10
III	45	45	35	25	-	15
IV	60	55	45	35	25	20

H: Height of the air-termination system above ground |H

r: Radius of the "rolling sphere"

α: Protective angle

- Metode sudut proteksi (protective anglemethod)
- Daerah yang diproteksi adalah daerah yang berada di dalam kerucut dengan sudut

- Metode bola bergulir (rolling sphere method)
- Titik sentuh bola bergulir pada struktur adalah titik yang dapat disambar petir dan pada titik tersebut harus diproteksi oleh terminasi udara.
- $R = I^{0,75}$

