A Financing Channel of Gains From Trade

Chenzi Xu Stanford GSB NBER & CEPR r

Carlos Burga PUC Chile (r)

Adrien Matray Princeton NBER & CEPR

December 2022

 $\label{trade} \textbf{Trade is a source of growth} \ \ \text{because it reallocates factors in the economy}$

Motivation

 $\mbox{\bf Trade}$ is a source of growth because it reallocates factors in the economy

 $\Rightarrow \ \mathsf{Trade} \ \mathsf{generates} \ \mathsf{wealth}$

Motivation

Trade is a source of growth because it reallocates factors in the economy

 \Rightarrow Trade generates wealth \Rightarrow what happens to it?

Motivation

Trade is a source of growth because it reallocates factors in the economy

 \Rightarrow Trade generates wealth \Rightarrow what happens to it?

This paper: wealth from trade can accumulate factors \Rightarrow growth

Relevance of factor accumulation

1. Classically estimated gains are quantitatively (too?) small

2. Empirically trade \Rightarrow growth but trade \Rightarrow growth after controlling for investment (Levine Renelt 1992)

Relevance of factor accumulation

1. Classically estimated gains are quantitatively (too?) small

 Empirically trade ⇒ growth but trade ⇒ growth after controlling for investment (Levine Renelt 1992)

This paper:

Tracing factor accumulation \Longrightarrow dynamic gains that impact both the traded $\underline{\&}$ non-traded sectors:

Relevance of factor accumulation

1. Classically estimated gains are quantitatively (too?) small

2. Empirically trade \Rightarrow growth but trade \Rightarrow growth after controlling for investment (Levine Renelt 1992)

This paper:

Tracing factor accumulation ⇒ dynamic gains that impact both the traded & non-traded sectors:

- 1. Larger gains from trade
- 2. Causal link explaining the "Levine-Renelt puzzle"

Questions: Is there trade-induced investment?

How much growth does it generate domestically?

Questions: Is there trade-induced investment? [Today]

How much growth does it generate domestically? [Not today]

Questions: Is there trade-induced investment? [Today]

How much growth does it generate domestically? [Not today]

Empirical setting: Free Trade Agreement between Peru & China in 2008

- Most Favored Nation clause in WTO sets import tariffs ex-ante
 - Tariffs negotiated when each country joined WTO (1995 & 2002)

Questions: Is there trade-induced investment? [Today]

How much growth does it generate domestically? [Not today]

Empirical setting: Free Trade Agreement between Peru & China in 2008

- Most Favored Nation clause in WTO sets import tariffs ex-ante
 - Tariffs negotiated when each country joined WTO (1995 & 2002)
- FTA eliminates tariffs for Peru-China trade ⇒ product-destination/source change in tariffs
 - Exports from Peru more profitable (↑ Sales_{EX})
 - Imported inputs to Peru cheaper (\downarrow Costs_{IM})

Questions: Is there trade-induced investment? [Today]

How much growth does it generate domestically? [Not today]

Empirical setting: Free Trade Agreement between Peru & China in 2008

- Most Favored Nation clause in WTO sets import tariffs ex-ante
 - Tariffs negotiated when each country joined WTO (1995 & 2002)
- FTA eliminates tariffs for Peru-China trade ⇒ product-destination/source change in tariffs
 - Exports from Peru more profitable (↑ Sales_{EX})
 - Imported inputs to Peru cheaper (\downarrow Costs_{IM})
 - Import competition for domestic sales (\downarrow Sales_{DOM})

Questions: Is there trade-induced investment? [Today]

How much growth does it generate domestically? [Not today]

Empirical setting: Free Trade Agreement between Peru & China in 2008

- Most Favored Nation clause in WTO sets import tariffs ex-ante
 - Tariffs negotiated when each country joined WTO (1995 & 2002)
- FTA eliminates tariffs for Peru-China trade ⇒ product-destination/source change in tariffs
 - Exports from Peru more profitable (↑ Sales_{EX})
 - Imported inputs to Peru cheaper (\downarrow Costs_{IM})
 - Import competition for domestic sales (↓ Sales_{DOM})

 \Longrightarrow Shock to Peruvian firm profits

Question: Is there trade-induced investment?

FTA is a trade cost shock to Peruvian firms

We identify:

1. "First stage": FTA impacts traded-sector firm exports & imports

2. Savings: Traded-sector firm profitability impacts banks

3. Re-investment: Banks impact non-traded firm sector growth

Question: Is there trade-induced investment?

FTA is a trade cost shock to Peruvian firms

We identify:

- 1. "First stage": FTA impacts traded-sector firm exports & imports
 - ⇒ Growth in product exports to China (aggregate & firm-level)
 - ⇒ Growth in firm profits [in progress]
- 2. Savings: Traded-sector firm profitability impacts banks

3. Re-investment: Banks impact non-traded firm sector growth

Question: Is there trade-induced investment?

FTA is a trade cost shock to Peruvian firms

We identify:

- 1. "First stage": FTA impacts traded-sector firm exports & imports
 - ⇒ Growth in product exports to China (aggregate & firm-level)
 - ⇒ Growth in firm profits [in progress]
- 2. Savings: Traded-sector firm profitability impacts banks
 - \Rightarrow Banks exposed to trade shock grow (assets, net worth, ROA, loans)
- 3. Re-investment: Banks impact non-traded firm sector growth

Question: Is there trade-induced investment?

FTA is a trade cost shock to Peruvian firms

We identify:

- 1. "First stage": FTA impacts traded-sector firm exports & imports
 - ⇒ Growth in product exports to China (aggregate & firm-level)
 - ⇒ Growth in firm profits [in progress]
- 2. Savings: Traded-sector firm profitability impacts banks
 - \Rightarrow Banks exposed to trade shock grow (assets, net worth, ROA, loans)
- 3. Re-investment: Banks impact non-traded firm sector growth
 - ⇒ Banks lend more to both traded & non-traded firms
 - ⇒ Firms borrow more

Question: Is there trade-induced investment?

FTA is a trade cost shock to Peruvian firms

We identify:

- 1. "First stage": FTA impacts traded-sector firm exports & imports
 - ⇒ Growth in product exports to China (aggregate & firm-level)
 - ⇒ Growth in firm profits [in progress]
- 2. Savings: Traded-sector firm profitability impacts banks
 - \Rightarrow Banks exposed to trade shock grow (assets, net worth, ROA, loans)
- 3. Re-investment: Banks impact non-traded firm sector growth
 - ⇒ Banks lend more to both traded & non-traded firms
 - ⇒ Firms borrow more
 - \Rightarrow Real firm outcomes [not today]

Related literature

Static and dynamic gains from trade:

- Smith (1776), Baldwin (1992), Eaton Kortum (2002), Melitz (2003), Arkolakis Costinot Rodriguez-Clare (2012), Ossa (2012), Caliendo Parro (2012), Melitz Redding (2014), Anderson Larch Yotov (2015), Alvarez (2017), Alessandria Choi Ruhl (2018), Ravikumar Satacreu Sposi (2019)
- ⇒ Empirical analysis tracing capital accumulation through banking sector

Trade and finance:

- Beck (2003), Levchenko Lewis Tesar (2010), Amiti Weinstein (2011), Chor Manova (2012), Schmidt-Eisenlohr (2013), Manova (2013), Antràs Foley (2014), Paravisini Rappoport Schnabl Wolfenzon (2014), Chaney (2016), Eaton Kortum Neiman Romalis (2016), Paravisini Rappoport Schnabl (2020), Xu (2022)
- ⇒ Trade impacts the financial sector

FTA Institutional Context

Peru's top exports industries & tariff cut

Description	Value (billions pre-FTA)	Tariff rate (pp pre-FTA)
Metals, gold	4.68	0
Copper ores & concentrates	3.17	0
Copper, refined	2.27	2
Fish meals/pellets	1.35	3.5
Zinc ores & concentrates	1.35	0
Petroleum oils	0.85	6.67
Molybdenum ores	0.79	0
Petroleum gases	0.69	6.5
Lead ores & concentrates	0.58	0
Tin, unwrought	0.52	3
Coffee	0.49	8
T-shirts, cotton	0.44	14

Distribution of tariff cut

Total Peruvian firm profits

$$\Delta \pi_{i} = \Delta Revenue_{i} - \Delta Costs_{i}$$

$$\Delta \pi_{i}(TC_{k,c}, TC_{k,p}) = \underbrace{\Delta Sales_{D,i} + \Delta Sales_{X,i}}_{f(TC_{k,p})} - \underbrace{\Delta Costs_{M,i}}_{f(TC_{k,p})}$$

 $TC_{k,c}$: Δ tariff to export to China

 $TC_{k,p}$: Δ tariff to import to Peru

Total Peruvian firm profits

$$\Delta \pi_{i} = \Delta Revenue_{i} - \Delta Costs_{i}$$

$$\Delta Revenue_{i}$$

$$\Delta \pi_{i}(TC_{k,c}, TC_{k,p}) = \underbrace{\Delta Sales_{D,i} + \Delta Sales_{X,i}}_{f(TC_{k,p})} - \underbrace{\Delta Costs_{M,i}}_{f(TC_{k,p})}$$

 $TC_{k,c}$: Δ tariff to export to China $TC_{k,c}$: Δ tariff to import to Peru

Direction of effects on profits:

 $\Delta Sales_{D,i}:$ -

 $\Delta Sales_{X,i}:+$

 $\Delta Costs_{M,i}:+$

Data & Empirical strategy

Data: 2004 to 2017

- 1. Customs data: firm i imports & exports by product p to/from countries c
- 2. **Credit registry**: bank *b* loans matched to firm *i*
- 3. Bank balance sheets: bank b loans, size, profits, etc.
- 4. Firm characteristics & outcomes:
 - Currently: loans at the firm level & EEA (Encuesta Economica Nacional)
 - "Census" for large & medium firms,
 - $\bullet~\approx 60\%$ of total credit & 50% of exports
 - In progress: real outcomes from firm balance sheets

Trade cost shock: varies by product k & destination country c:

Tariff
$$Cut_{kct} = \begin{cases} 0 & \text{if destination is not China} \\ TC_k & \text{if destination is China & year } \geq 2009 \end{cases}$$

Trade cost shock: varies by product k & destination country c:

Tariff
$$Cut_{kct} = \begin{cases} 0 & \text{if destination is not China} \\ TC_k & \text{if destination is China & year } \geq 2009 \end{cases}$$

Firm *i* exposure:

$$\mathsf{TC}_i^{\mathit{direct}} = \sum_k \mathsf{TC}_k \cdot \omega_{ki}$$
 where $\omega_{ki} = \frac{\mathsf{EX}_{ikc}}{\mathsf{EX}_{ic}}$

Trade cost shock: varies by product k & destination country c:

Tariff
$$Cut_{kct} = \begin{cases} 0 & \text{if destination is not China} \\ TC_k & \text{if destination is China & year } \geq 2009 \end{cases}$$

Firm *i* exposure:

$$\mathsf{TC}_i^{\mathit{direct}} = \sum_k \mathsf{TC}_k \cdot \omega_{ki} \quad \text{where} \quad \omega_{ki} = \frac{EX_{ikc}}{EX_{ic}}$$

Trade cost shock: varies by product k & destination country c:

Tariff
$$Cut_{kct} = \begin{cases} 0 & \text{if destination is not China} \\ TC_k & \text{if destination is China & year } \geq 2009 \end{cases}$$

Firm *i* exposure:

$$\mathsf{TC}_i^{direct} = \sum_k \mathsf{TC}_k \cdot \omega_{ki}$$
 where $\omega_{ki} = \frac{EX_{ikc}}{EX_{ic}}$

Bank *b* exposure instrument:

$$\mathsf{TC}_b = \sum_i \mathsf{TC}_i^{\mathit{direct}} \cdot \omega_{\mathit{bi}} \quad \text{where} \quad \omega_{\mathit{bi}} = \frac{\mathit{Loans}_{\mathit{ib}}}{\mathit{Loans}_b}$$

Trade cost shock: varies by product k & destination country c:

$$\mathsf{Tariff}\;\mathsf{Cut}_\mathit{kct} = \begin{cases} 0 & \text{if destination is not China} \\ \mathsf{TC}_\mathit{k} & \text{if destination is China \& year} \geq 2009 \end{cases}$$

Firm *i* exposure:

$$\mathsf{TC}_i^{direct} = \sum_k \mathsf{TC}_k \cdot \omega_{ki}$$
 where $\omega_{ki} = \frac{EX_{ikc}}{EX_{ic}}$

Bank *b* exposure instrument:

$$\mathsf{TC}_b = \sum_i \mathsf{TC}_i^{\mathit{direct}} \cdot \omega_{bi}$$
 where $\omega_{bi} = \frac{\mathit{Loans}_{ib}}{\mathit{Loans}_b}$

Trade cost shock: varies by product k & destination country c:

Tariff
$$Cut_{kct} = \begin{cases} 0 & \text{if destination is not China} \\ TC_k & \text{if destination is China \& year} \ge 2009 \end{cases}$$

Firm *i* exposure:

$$\mathsf{TC}_i^{direct} = \sum_k \mathsf{TC}_k \cdot \omega_{ki}$$
 where $\omega_{ki} = \frac{EX_{ikc}}{EX_{ic}}$

Bank *b* exposure instrument:

$$\mathsf{TC}_b = \sum_i \mathsf{TC}_i^{\mathit{direct}} \cdot \omega_{\mathit{bi}}$$
 where $\omega_{\mathit{bi}} = \frac{\mathit{Loans}_{\mathit{ib}}}{\mathit{Loans}_b}$

Firm *i* indirect exposure:

$$\mathsf{TC}_i^{indirect} = \sum_b \mathsf{TC}_b \cdot \frac{Loans_{i \in b}}{Loans_i}$$

Trade cost shock: varies by product k & destination country c:

Tariff
$$Cut_{kct} = \begin{cases} 0 & \text{if destination is not China} \\ TC_k & \text{if destination is China \& year} \ge 2009 \end{cases}$$

Firm *i* exposure:

$$\mathsf{TC}_i^{direct} = \sum_k \mathsf{TC}_k \cdot \omega_{ki}$$
 where $\omega_{ki} = \frac{EX_{ikc}}{EX_{ic}}$

Bank *b* exposure instrument:

$$\mathsf{TC}_b = \sum_i \mathsf{TC}_i^{direct} \cdot \omega_{bi}$$
 where $\omega_{bi} = \frac{Loans_{ib}}{Loans_b}$

Firm *i* indirect exposure:

$$\mathsf{TC}_i^{indirect} = \sum_b \mathsf{TC}_b \cdot \frac{Loans_{i \in b}}{Loans_i}$$

Identification: bank exposure exogeneity

For any bank-level relationship:

$$Y_b = \beta \mathsf{TC}_b + \Gamma' X_b + \varepsilon_b$$
 where $\mathsf{TC}_b = \sum_i \underbrace{\mathsf{TC}_i}_{\textit{firm i shock}} \cdot \underbrace{\omega_{bi}}_{\textit{share loans}}$

Identification: bank exposure exogeneity

For any bank-level relationship:

$$Y_b = \beta \mathsf{TC}_b + \Gamma' X_b + \varepsilon_b$$
 where $\mathsf{TC}_b = \sum_i \underbrace{\mathsf{TC}_i}_{\textit{firm } i \textit{ shock}} \cdot \underbrace{\omega_{bi}}_{\textit{share loans}}$

Identifying assumption:

$$\mathbb{E}\left[\sum_{i}\mathsf{TC}_{i}\cdot\omega_{bi}\cdotarepsilon_{b}
ight]=0$$

Identification: bank exposure exogeneity

For any bank-level relationship:

$$Y_b = \beta \mathsf{TC}_b + \Gamma' X_b + \varepsilon_b$$
 where $\mathsf{TC}_b = \sum_i \underbrace{\mathsf{TC}_i}_{\textit{firm } i \textit{ shock}} \cdot \underbrace{\omega_{bi}}_{\textit{share loans}}$

Identifying assumption:

$$\mathbb{E}\left[\sum_{i}\mathsf{TC}_{i}\cdot\omega_{bi}\cdot\varepsilon_{b}\right]=0$$

- Firms can be different (do not need $\mathbb{E}[\mathsf{TC}_i\varepsilon_b]=0$)
- ullet Firms and banks can sort (do not need $\mathbb{E}[\omega_{bi}arepsilon_b]=0)$

Identification: bank exposure exogeneity

For any bank-level relationship:

$$Y_b = \beta \mathsf{TC}_b + \Gamma' X_b + \varepsilon_b$$
 where $\mathsf{TC}_b = \sum_i \underbrace{\mathsf{TC}_i}_{\textit{firm } i \textit{ shock}} \cdot \underbrace{\omega_{bi}}_{\textit{share loan}}$

Identifying assumption:

$$\mathbb{E}\left[\sum_{i}\mathsf{TC}_{i}\cdot\omega_{bi}\cdot\varepsilon_{b}\right]=0$$

- Firms can be different (do not need $\mathbb{E}[\mathsf{TC}_i\varepsilon_b]=0$)
- ullet Firms and banks can sort (do not need $\mathbb{E}[\omega_{bi}arepsilon_b]=0)$

Firm shocks orthogonal to bank characteristics relevant for bank outcomes on average after 2008

Identification threats

Identifying assumption: Firm tariff-cut exposures orthogonal to bank characteristics relevant for bank outcomes after 2008 on average

Example of threats to identification: High TC_i firms are important to...

- Banks less exposed to the US in 2008
- Banks that lend more to firms booming for other reasons after 2008
- Banks that differentially benefited from FTA investment credits

Identification threats

Identifying assumption: Firm tariff-cut exposures orthogonal to bank characteristics relevant for bank outcomes after 2008 on average

Example of threats to identification: High TC_i firms are important to...

- Banks less exposed to the US in 2008
- Banks that lend more to firms booming for other reasons after 2008
- Banks that differentially benefited from FTA investment credits

We verify:

- No pre-trends in outcomes
- Firm exposure correlation with bank characteristics [Graph]
 - Foreign liability exposure (Schnabl 2012)
 - Exports market specialization in China (Paravisini Rappoport Schnabl 2021)
 - Product demand booms in China
 - Size, geographic location, foreign ownership
- Controlling for potential confounders

Results

Outcomes

- 1. Exports growth
- 2. Banking sector growth
- 3. Transmission of loans to non-traded sector
- 4. Firm outcomes

Outcomes

1. Exports growth

- 2. Banking sector growtl
- 3. Transmission of loans to non-traded sector
- 4. Firm outcomes

$$\log(EX_{it}) = \beta \mathsf{TC}_{it} + \alpha_{i(Q)t} + \gamma_i + \varepsilon_{it}$$

- EX_{it} : exports by firm i in year t
- TC_{it} : $\sum_{k} TC_{k} \cdot \omega_{ki}$

"First stage" effects of firm-level exposures impacting exports

$$\log(EX_{it}) = \beta \mathsf{TC}_{it} + \alpha_{i(Q)t} + \gamma_i + \varepsilon_{it}$$

- EX_{it} : exports by firm i in year t
- TC_{it} : $\sum_{k} TC_{k} \cdot \omega_{ki}$

"First stage" effects of firm-level exposures impacting exports

• $\alpha_{i(Q)t}$: firm-size quartile shocks \Rightarrow not just bigger firms growing more

$$\log(EX_{it}) = \beta TC_{it} + \alpha_{i(Q)t} + \gamma_i + \varepsilon_{it}$$

- EX_{it} : exports by firm i in year t
- TC_{it} : $\sum_{k} TC_{k} \cdot \omega_{ki}$

"First stage" effects of firm-level exposures impacting exports

- $\alpha_{i(Q)t}$: firm-size quartile shocks \Rightarrow not just bigger firms growing more
- γ_i : within-firm variation \Rightarrow deals with correlation between firm char. & tariff

$$\log(EX_{it}) = \beta \mathsf{TC}_{it} + \alpha_{i(Q)t} + \gamma_i + \varepsilon_{it}$$

- EX_{it} : exports by firm i in year t
- TC_{it} : $\sum_{k} TC_{k} \cdot \omega_{ki}$

"First stage" effects of firm-level exposures impacting exports

- $\alpha_{i(Q)t}$: firm-size quartile shocks \Rightarrow not just bigger firms growing more
- γ_i : within-firm variation \Rightarrow deals with correlation between firm char. & tariff
- SEs two-way clustered by product & destination

Outcomes

- L. Exports growth
- 2. Banking sector growth
- 3. Transmission of loans to non-traded sector
- 4. Firm outcomes

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(X)t}} + \varepsilon_{\mathit{blt}}$$

•
$$TC_{bt} = \sum_{i} TC_{i} \cdot \omega_{bi}$$

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(X)t}} + \varepsilon_{\mathit{blt}}$$

•
$$\mathsf{TC}_{bt} = \sum_{i} \mathsf{TC}_{i} \cdot \omega_{bi}$$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(X)t}} + \varepsilon_{\mathit{blt}}$$

• $TC_{bt} = \sum_{i} TC_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

ullet δ_{bl} : bank-city location FE \Rightarrow restricting identifying variation to pre-existing relationships

$$\log(\mathsf{Loans}_{blt}) = \beta \mathsf{TC}_{bt} + \delta_{bl} + \frac{\lambda_{lt}}{\lambda_{lt}} + \alpha_{b(X)t} + \varepsilon_{blt}$$

• $TC_{bt} = \sum_{i} TC_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC; grew after 2008 for other reasons

- δ_{bl} : bank-city location FE \Rightarrow restricting identifying variation to pre-existing relationships
- λ_{lt} : city location-year FE \Rightarrow city-level demand shocks

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(X)t}} + \varepsilon_{\mathit{blt}}$$

• $TC_{bt} = \sum_{i} TC_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TCi grew after 2008 for other reasons

- δ_{bl} : bank-city location FE \Rightarrow restricting identifying variation to pre-existing relationships
- λ_{lt} : city location-year FE \Rightarrow city-level demand shocks
- $\alpha_{b(X)t}$: pre-shock bank characteristics X by year FE \Rightarrow absorbs bank-characteristic level shocks (ex: foreign liability exposure, specialization in China, size quartile, etc)

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(X)t}} + \varepsilon_{\mathit{blt}}$$

• $TC_{bt} = \sum_{i} TC_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TCi grew after 2008 for other reasons

- δ_{bl} : bank-city location FE \Rightarrow restricting identifying variation to pre-existing relationships
- λ_{lt} : city location-year FE \Rightarrow city-level demand shocks
- $\alpha_{b(X)t}$: pre-shock bank characteristics X by year FE \Rightarrow absorbs bank-characteristic level shocks (ex: foreign liability exposure, specialization in China, size quartile, etc)
- SEs clustered by bank

[Distribution of TC_b]

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(Q)t}} + \varepsilon_{\mathit{blt}}$$

 $[{\sf Benchmarking\ magnitudes}]$

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(Q)t}} + \nu_{\mathit{b(China})t} + \varepsilon_{\mathit{blt}}$$

 $u_{b(\mathit{China})t}$: China specialization-year \Rightarrow differential shocks to China-specialized banks

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(Q)t}} + \nu_{\mathit{b(LiabF)t}} + \varepsilon_{\mathit{blt}}$$

 $\nu_{b(LiabF)t}$: foreign liability-year \Rightarrow differential shocks to banks with high share of foreign liabilities

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(Q)t}} + \nu_{\mathit{b(Foreign)t}} + \varepsilon_{\mathit{blt}}$$

 $u_{b(Foreign)t}$: foreign ownership-year FE \Rightarrow absorbs differential shocks to foreign banks

$$\log(\mathsf{Loans}_{\mathit{blt}}) = \beta \mathsf{TC}_{\mathit{bt}} + \delta_{\mathit{bl}} + \lambda_{\mathit{lt}} + \alpha_{\mathit{b(Q)t}} + \nu_{\mathit{b(X')t}} + \varepsilon_{\mathit{blt}}$$

 $\nu_{b(X')t}$: all controls

Channels for increased bank lending

 $Hypothesized\ channel\ for\ bank\ growth:\ firm\ profits\ decrease\ non-performing\ loans\ \&\ increase\ savings$

$$\log(\mathsf{Outcome}_{bt}) = \beta \mathsf{TC}_{bt} + \gamma_b + \alpha_{b(Q)t} + \varepsilon_{bt}$$

	ROA	Asset	Net worth	Credit
	(1)	(2)	(3)	(4)
$Bank\;shock{\times}Year_{\geq 2009}$	0.0181** (0.00802)	0.525*** (0.128)	0.418*** (0.134)	0.703*** (0.202)
Fixed Effects				
Bank	\checkmark	\checkmark	\checkmark	\checkmark
Controls	\checkmark	\checkmark	\checkmark	\checkmark
$Bank\ size{\times}Year$	\checkmark	\checkmark	\checkmark	\checkmark
Observations	619	619	619	619

Outcomes

- 1. Exports growth
- 2. Banking sector growtl
- 3. Transmission of loans to non-traded sector
- 4. Firm outcomes

$$\log(\textit{Loans}_{\textit{i}(T,NT)bt}) = \beta \mathsf{TC}_{\textit{bt}} + \alpha_{\textit{b}(Q)t} + \delta_{\textit{it}} + \gamma_{\textit{ib}} + \varepsilon_{\textit{ibt}}$$

- Loans $_{i(T,NT)bt}$: loans to firm i in sector T (traded) or NT (non-traded) by bank b
- $\mathsf{TC}_{bt} = \sum_{i} \mathsf{TC}_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

$$\log(Loans_{i(T,NT)bt}) = \beta \mathsf{TC}_{bt} + \alpha_{b(Q)t} + \delta_{it} + \gamma_{ib} + \varepsilon_{ibt}$$

- Loans $_{i(T,NT)bt}$: loans to firm i in sector T (traded) or NT (non-traded) by bank b
- $\mathsf{TC}_{bt} = \sum_{i} \mathsf{TC}_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

• $\alpha_{b(Q)t}$: pre-shock bank size Quartile imes year FE

$$\log(\textit{Loans}_{\textit{i}(T,NT)bt}) = \beta \mathsf{TC}_{\textit{bt}} + \alpha_{\textit{b}(Q)t} + \frac{\delta_{\textit{it}}}{\epsilon_{\textit{ib}}} + \gamma_{\textit{ib}} + \varepsilon_{\textit{ibt}}$$

- Loans $_{i(T,NT)bt}$: loans to firm i in sector T (traded) or NT (non-traded) by bank b
- $\mathsf{TC}_{bt} = \sum_{i} \mathsf{TC}_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

- $\alpha_{b(Q)t}$: pre-shock bank size Quartile \times year FE
- δ_{it} : firm shocks \Rightarrow absorbs "credit demand"

$$\log(\textit{Loans}_{\textit{i}(T,\textit{NT})\textit{bt}}) = \beta \mathsf{TC}_{\textit{bt}} + \alpha_{\textit{b}(\textit{Q})\textit{t}} + \delta_{\textit{it}} + \gamma_{\textit{ib}} + \varepsilon_{\textit{ibt}}$$

- Loans $_{i(T,NT)bt}$: loans to firm i in sector T (traded) or NT (non-traded) by bank b
- $\mathsf{TC}_{bt} = \sum_{i} \mathsf{TC}_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

- $\alpha_{b(Q)t}$: pre-shock bank size Quartile \times year FE
- δ_{it} : firm shocks \Rightarrow absorbs "credit demand"
- γ_{ib} : within-bank-firm relationships \Rightarrow restricts variation to relationships that exist throughout

$$\log(\textit{Loans}_{\textit{i}(T,NT)bt}) = \beta \mathsf{TC}_{\textit{bt}} + \alpha_{\textit{b}(Q)t} + \delta_{\textit{it}} + \gamma_{\textit{ib}} + \varepsilon_{\textit{ibt}}$$

- Loans $_{i(T,NT)bt}$: loans to firm i in sector T (traded) or NT (non-traded) by bank b
- $\mathsf{TC}_{bt} = \sum_{i} \mathsf{TC}_{i} \cdot \omega_{bi}$

Endogeneity concern: banks lending to firms with high TC_i grew after 2008 for other reasons

- $\alpha_{b(Q)t}$: pre-shock bank size Quartile \times year FE
- δ_{it} : firm shocks \Rightarrow absorbs "credit demand"
- ullet γ_{ib} : within-bank-firm relationships \Rightarrow restricts variation to relationships that exist throughout
- SEs clustered by bank

$$\log(\textit{Loans}_{\textit{i}(T,NT)bt}) = \beta \mathsf{TC}_{bt} + \alpha_{b(Q)t} + \delta_{it} + \gamma_{ib} + \varepsilon_{ibt}$$

Sample	AII
	(1)
Bank shock×Year≥2009	0.124***
	(0.0114)
Fixed Effects	
$Bank{ imes}Firm$	\checkmark
$Firm \! imes \! Year$	\checkmark
Bank size×Year	\checkmark
Observations	4,397,494

[Firm classification]

$$\log(\textit{Loans}_{\textit{i}(T,NT)bt}) = \beta \mathsf{TC}_{\textit{bt}} + \alpha_{\textit{b}(Q)t} + \delta_{\textit{it}} + \gamma_{\textit{ib}} + \varepsilon_{\textit{ibt}}$$

Sample	All	Exporter	Non exporter	
	(1)	(2)	(3)	
Bank shock×Year>2009	0.124***	0.172***	0.139***	
	(0.0114)	(0.0462)	(0.0114)	
Fixed Effects				
$Bank{ imes}Firm$	\checkmark	\checkmark	✓	
$Firm \! \times \! Year$	\checkmark	\checkmark	✓	
$Bank\ size{\times}Year$	\checkmark	\checkmark	\checkmark	
Observations	4,397,494	223,670	4,173,824	

 $[\mathsf{Firm}\ \mathsf{classification}]$

$$\log(\textit{Loans}_{\textit{i}(T,NT)bt}) = \beta \mathsf{TC}_{\textit{bt}} + \alpha_{\textit{b}(Q)t} + \delta_{\textit{it}} + \gamma_{\textit{ib}} + \varepsilon_{\textit{ibt}}$$

Sample	All	Exporter	Non exporter	EEA	Tradable (EEA)	Non tradable (EEA)
	(1)	(2)	(3)	(4)	(5)	(6)
Bank shock×Year≥2009	0.124***	0.172***	0.139***	0.209***	0.164***	0.355***
	(0.0114)	(0.0462)	(0.0114)	(0.0371)	(0.0410)	(0.0830)
Fixed Effects						
$Bank{ imes}Firm$	\checkmark	\checkmark	✓	\checkmark	✓	✓
$Firm \times Year$	\checkmark	\checkmark	✓	\checkmark	✓	✓
$Bank\ size{\times}Year$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Observations	4,397,494	223,670	4,173,824	445,069	297,677	147,392

[Firm classification]

Accounting for entry & exit: midpoint growth

Midpoint growth rates allow for (dis)aggregation into subsamples with a "balanced" sample:

$$\Delta Y_i = \frac{Y_{i,post} - Y_{i,pre}}{[(Y_{i,pre} + Y_{i,post}) \times 0.5]}$$

- Y_{post} : average "post" ($t \ge 2009$)
- Y_{pre} : average "pre" (t < 2009)

$$\Delta(\textit{Loans}_{\textit{ib}}^{\textit{sample}}) = eta_{\textit{sample}} \mathsf{TC}_b + \delta_i + \gamma_{b(Q)} + \varepsilon_{\textit{ib}}$$

Sample	All
	(1)
Bank shock	0.308***
	(0.00388)
Fixed Effects	
Firm	\checkmark
Bank size	\checkmark
Observations	1,241,028

Bank size Observations

1,241,028

$$\beta_{AII} = 0.308$$
Sample
$$AII = 0.308$$

$$(1)$$
Bank shock
$$0.308*** = 0.00388$$

$$Fixed Effects$$
Firm

 $\Delta(Loans_{ib}^{sample}) = \beta_{sample} \mathsf{TC}_b + \delta_i + \gamma_{b(Q)} + \varepsilon_{ib}$

$$\Delta(\textit{Loans}_{\textit{ib}}^{\textit{sample}}) = \beta_{\textit{sample}} \mathsf{TC}_b + \delta_i + \gamma_{\textit{b}(Q)} + \varepsilon_{\textit{ib}}$$

$$\beta_{\textit{AII}} = 0.308 \; ; \; \beta_{\textit{Exp}} = 0.253 \; ; \; \beta_{\textit{Non-Exp}} = 0.322$$

Sample	AII	Exporter	Non exporter
	(1)	(2)	(3)
Bank shock	0.308***	0.253***	0.322***
	(0.00388)	(0.0116)	(0.00418)
Fixed Effects			
Firm	\checkmark	\checkmark	✓
Bank size	✓	\checkmark	\checkmark
Observations	1,241,028	45,683	1,195,345

$$\Delta(\textit{Loans}_{\textit{ib}}^{\textit{sample}}) = eta_{\textit{sample}} \mathsf{TC}_b + \delta_i + \gamma_{b(Q)} + \varepsilon_{\textit{ib}}$$

Sample	AII	Exporter	Non exporter	EEA	Tradable (EEA)	Non tradable (EEA)
	(1)	(2)	(3)	(4)	(5)	(6)
Bank shock	0.308*** (0.00388)	0.253*** (0.0116)	0.322*** (0.00418)	0.318*** (0.00918)	0.367*** (0.0159)	0.295*** (0.0112)
Fixed Effects						
Firm	✓	\checkmark	✓	✓	✓	✓
Bank size	\checkmark	\checkmark	✓	\checkmark	✓	✓
Observations	1,241,028	45,683	1,195,345	84,470	29,751	54,719

Bank loans to each sector: midpoint growth decomposition

$$\Delta(\textit{Loans}_{\textit{ib}}^{\textit{sample}}) = \beta \mathsf{TC}_{\textit{b}}^{\textit{sample}} + \delta_{\textit{i}} + \gamma_{\textit{b}(Q)} + \varepsilon_{\textit{ib}}$$

$$\beta_{\textit{AII}} = \underbrace{\omega_{\textit{Exp}}\beta_{\textit{Exp}}}_{\beta_{\textit{Exp}}} + \underbrace{\omega_{\textit{Non-Exp}}\beta_{\textit{Non-Exp}}}_{\beta_{\textit{Non-Exp}}}$$

	All
	(1)
Bank shock	0.308*** (0.00388)
Fixed Effects	(*******)
Firm×Year	✓
$Bank\;size{\times}Year$	✓
Observations	1,241,028

Bank loans to each sector: midpoint growth decomposition

$$\Delta(\textit{Loans}^{\textit{sample}}_{\textit{ib}}) = \beta \mathsf{TC}^{\textit{sample}}_{\textit{b}} + \delta_{\textit{i}} + \gamma_{\textit{b}(\textit{Q})} + \varepsilon_{\textit{ib}}$$

$$\beta_{\textit{All}} = \underbrace{\omega_{\textit{Exp}}\beta_{\textit{Exp}}}_{\beta_{\textit{Exp}}} + \underbrace{\omega_{\textit{Non-Exp}}\beta_{\textit{Non-Exp}}}_{\beta_{\textit{Non-Exp}}}$$

 \Rightarrow 92% of the magnitude of the impact on lending goes to non-exporters

	AII (1)	Exporter share (2)	Non exporter share (3)
Bank shock	0.308***	0.0235***	0.284***
	(0.00388)	(0.00116)	(0.00377)
Fixed Effects			
$Firm \! imes \! Year$	\checkmark	✓	✓
Bank size×Year	\checkmark	✓	✓
Observations	1,241,028	1,241,028	1,241,028

Bank loans to each sector: midpoint growth decomposition

$$\Delta(\textit{Loans}^{\textit{sample}}_{\textit{ib}}) = \beta \mathsf{TC}^{\textit{sample}}_{\textit{b}} + \delta_{\textit{i}} + \gamma_{\textit{b}(\textit{Q})} + \varepsilon_{\textit{ib}}$$

$$\beta_{\textit{All}} = \underbrace{\omega_{\textit{Exp}}\beta_{\textit{Exp}}}_{\beta_{\textit{Exp}}} + \underbrace{\omega_{\textit{Non-Exp}}\beta_{\textit{Non-Exp}}}_{\beta_{\textit{Non-Exp}}}$$

- \Rightarrow 92% of the magnitude of the impact on lending goes to non-exporters
- \Rightarrow 62% goes to non-traded firms (in the EEA)

	AII (1)	Exporter share (2)	Non exporter share (3)	EEA (4)	Tradable share (5)	Non tradable share (6)
Bank shock	0.308*** (0.00388)	0.0235*** (0.00116)	0.284*** (0.00377)	0.318*** (0.00918)	0.120*** (0.00549)	0.199*** (0.00780)
Fixed Effects						
$Firm \! imes \! Year$	\checkmark	✓	✓	\checkmark	✓	✓
$Bank\;size{\times}Year$	\checkmark	✓	✓	\checkmark	✓	✓
Observations	1,241,028	1,241,028	1,241,028	84,470	84,470	84,470

Outcomes

- 1. Exports growth
- 2. Banking sector growtl
- 3. Transmission of loans to non-traded sector
- 4. Firm outcomes

$$\log(Y_{it}) = \beta TC_{it}^{indirect} + \alpha_i + \gamma_{i(X)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

- Yit: firm outcomes; today: total loans
- $\mathsf{TC}^{indirect}_{it} = \sum_b \mathsf{TC}_b \cdot \frac{\mathit{loans}_{bi}}{\mathit{loans}_i}$

$$\log(Y_{it}) = \beta \mathsf{TC}_{it}^{indirect} + \alpha_i + \gamma_{i(X)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

- Yit: firm outcomes; today: total loans
- $\mathsf{TC}^{indirect}_{it} = \sum_b \mathsf{TC}_b \cdot \frac{loans_{bi}}{loans_i}$

Endogeneity concern: Y_{it} are affected by exposure to bank b for reasons other than TC_b

$$\log(Y_{it}) = \beta \mathsf{TC}_{it}^{indirect} + \alpha_i + \gamma_{i(X)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

- Yit: firm outcomes; today: total loans
- $\mathsf{TC}_{it}^{\mathit{indirect}} = \sum_b \mathsf{TC}_b \cdot \frac{\mathit{loans}_{bi}}{\mathit{loans}_i}$

Endogeneity concern: Y_{it} are affected by exposure to bank b for reasons other than TC_b

• α_i : firm FE

$$\log(Y_{it}) = \beta \mathsf{TC}_{it}^{indirect} + \alpha_i + \gamma_{i(X)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

- Yit: firm outcomes; today: total loans
- $\mathsf{TC}_{it}^{indirect} = \sum_b \mathsf{TC}_b \cdot \frac{loans_{bi}}{loans_i}$

Endogeneity concern: Y_{it} are affected by exposure to bank b for reasons other than TC_b

- α_i : firm FE
- $\gamma_{i(X)t}$: firm characteristics (size quartile) \times year \Rightarrow restricts comparison to within firm groups

$$\log(Y_{it}) = \beta \mathsf{TC}_{it}^{indirect} + \alpha_i + \gamma_{i(X)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

- Yit: firm outcomes; today: total loans
- $\mathsf{TC}_{it}^{indirect} = \sum_b \mathsf{TC}_b \cdot \frac{loans_{bi}}{loans_i}$

Endogeneity concern: Y_{it} are affected by exposure to bank b for reasons other than TC_b

- α_i : firm FE
- $\gamma_{i(X)t}$: firm characteristics (size quartile) \times year \Rightarrow restricts comparison to within firm groups
- $\widehat{\nu_{it}}$: estimated FEs from bank-firm regression \Rightarrow controls for firm demand shocks

$$\log(Y_{it}) = \beta \mathsf{TC}_{it}^{indirect} + \alpha_i + \gamma_{i(X)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

- Yit: firm outcomes; today: total loans
- $\mathsf{TC}^{indirect}_{it} = \sum_b \mathsf{TC}_b \cdot \frac{loans_{bi}}{loans_i}$

Endogeneity concern: Y_{it} are affected by exposure to bank b for reasons other than TC_b

- α_i : firm FE
- $\gamma_{i(X)t}$: firm characteristics (size quartile) \times year \Rightarrow restricts comparison to within firm groups
- $\widehat{\nu_{it}}$: estimated FEs from bank-firm regression \Rightarrow controls for firm demand shocks
- SEs clustered by firm

[Distribution of TC_i]

$$\log(\textit{Loans}_{\textit{it}}) = \beta \mathsf{TC}_{\textit{it}} + \alpha_{\textit{i}} + \gamma_{\textit{i(Q)}t} + \varepsilon_{\textit{it}}$$

	All
	(1)
Firm shock×Year _{≥2009}	0.153***
	(0.00694)
Fixed Effects	
Firm	✓
Firm size×Year	✓
$Industry{\times}Year$	_
$Region\!\times\!Year$	_
Controls	
Firm×Year fixed effect	_
Observations	1,903,976

$$\log(\textit{Loans}_{\textit{it}}) = \beta \mathsf{TC}_{\textit{it}} + \alpha_{\textit{i}} + \gamma_{\textit{i}(Q)t} + \varepsilon_{\textit{it}}$$

	All	Non exporter
	(1)	(2)
$Firm\ shock{\times}Year_{\geq 2009}$	0.153***	0.136***
	(0.00694)	(0.00697)
Fixed Effects		
Firm	✓	✓
$Firm\ size {\times} Year$	✓	✓
$Industry{\times}Year$	_	_
$Region \times Year$	_	_
Controls		
Firm×Year fixed effect	_	_
Observations	1,903,976	1,810,964

$$\log(\textit{Loans}_{\textit{it}}) = \beta \mathsf{TC}_{\textit{it}} + \alpha_{\textit{i}} + \gamma_{\textit{i}(Q)t} + \varepsilon_{\textit{it}}$$

	All	Non exporter	EEA
	(1)	(2)	(3)
Firm shock×Year≥2009	0.153***	0.136***	0.0751**
	(0.00694)	(0.00697)	(0.0335)
Fixed Effects			
Firm	✓	✓	✓
$Firm\ size {\times} Year$	✓	✓	✓
$Industry{\times}Year$	_	_	_
$Region\!\times\!Year$	_	_	_
Controls			
Firm×Year fixed effect	_	_	_
Observations	1,903,976	1,810,964	201,314

$$\log(\textit{Loans}_{\textit{it}}) = \beta \mathsf{TC}_{\textit{it}} + \alpha_{\textit{i}} + \gamma_{\textit{i(Q)t}} + \widehat{\nu_{\textit{it}}} + \varepsilon_{\textit{it}}$$

	All	Non exporter	EEA			Non tradable (EEA)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Firm shock \times Year $_{\geq 2009}$	0.153*** (0.00694)	0.136*** (0.00697)	0.0751** (0.0335)	0.201*** (0.0522)	0.238*** (0.0562)	0.232*** (0.0570)	0.109*** (0.0374)
Fixed Effects							
Firm	✓	✓	✓	✓	✓	✓	✓
Firm size \times Year	✓	✓	✓	✓	✓	✓	✓
$Industry \times Year$	_	_	_	_	✓	✓	✓
$Region \times Year$	_	_	_	_	✓	✓	✓
Controls							
Firm×Year fixed effect	_	_	_	_	_	_	✓
Observations	1,903,976	1,810,964	201,314	69,958	69,958	33,128	33,128

$$\log(Loans_{it}) = \beta \mathsf{TC}_{it} + \alpha_i + \gamma_{i(Q)t} + \widehat{\nu_{it}} + \varepsilon_{it}$$

All	Non exporter	EEA			Non tradable (EEA)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0.153*** (0.00694)	0.136*** (0.00697)	0.0751** (0.0335)	0.201*** (0.0522)	0.238*** (0.0562)	0.232*** (0.0570)	0.109*** (0.0374)
✓	✓	✓	✓	✓	✓	✓
✓	✓	✓	✓	✓	✓	✓
_	_	_	_	✓	✓	✓
_	_	_	_	✓	✓	✓
_	_	_	_	_	_	✓
1,903,976	1,810,964	201,314	69,958	69,958	33,128	33,128
	(1) 0.153*** (0.00694)	(1) (2) 0.153*** 0.136*** (0.00694) (0.00697)	(1) (2) (3) 0.153*** 0.136*** 0.0751** (0.00694) (0.00697) (0.0335)	(1) (2) (3) (4) 0.153*** 0.136*** 0.0751** 0.201*** (0.00694) (0.00697) (0.0335) (0.0522)	(1) (2) (3) (4) (5) 0.153*** 0.136*** 0.0751** 0.201*** 0.238*** (0.00694) (0.00697) (0.0335) (0.0522) (0.0562)	(1) (2) (3) (4) (5) (6) 0.153*** 0.136*** 0.0751** 0.201*** 0.238*** 0.232*** (0.00694) (0.00697) (0.0335) (0.0522) (0.0562) (0.0570)

Recap

- Peru's FTA with China is the setting for a trade-induced profit shock
- Exposure to the tariff cut measured for:
 - Sectors (direct)
 - Exporting firms (direct)
 - Banks (indirect)
 - Non-exporting firms (indirect)
 - \Longrightarrow Growth in financial capital and firm borrowing (& real outcomes)

Conclusion & future work

This paper so far: identifies and traces factor accumulation in the domestic economy following trade expansion

Future work:

- Empirical: import tariffs, import competition, tax authority data on real firm outcomes
- Theoretical: quantifying the gains using our estimated parameters in a framework with capital accumulation

Thank you!

chenzixu@stanford.edu

FTA and firm profits

 $TC_{k,c}$: Δ tariff to China

 $TC_{k,p}$: Δ tariff to Peru

$$\Delta \pi_{i} = \underbrace{\frac{\Delta Sales_{D,i}}{\Delta Sales_{D,i}} + \underbrace{\Delta Sales_{X,i}}_{f\left(TC_{k,p}\right)} - \underbrace{\frac{\Delta Costs_{M,i}}{f\left(TC_{k,p}\right)}}_{f\left(TC_{k,p}\right)}$$

 $\Delta \textit{Sales}_{D,i}: +/-$ depending on import competition effect (if $\textit{TC}_{k,p} \approx \textit{TC}_{k,c}$)

 $\Delta Sales_{X,i}:+$

 $\Delta Costs_{M,i}$: –

Bank covariate balance

Bank-level distribution of exposure to tariff cut

Firm-level distribution of exposure to tariff cut

Classification of firms

Firms in credit registry:

	Exporters	Non-exporters
Ever e	xport from 2004–2017	Never export from 2004–2017

Firms in the EEA:

Traded sector	Non-traded sector
Agriculture	Travel agencies
Wholesale & retail	Education
Oil (hydrocarbons)	Construction
Fishing	Hotels
Manufacturing	Electricity
Aquaculture	Transportation
	Education (universities)
	Restaurants
	Services

$$\log(EX_{kct}) = \beta TC_{pct} + \delta_{pt} + \alpha_{pc} + \varepsilon_{pct}$$

- EX_{pct} : exports from Peru in product p to destination c in year t
- Tariff Cut_{pct}:
 - Non-China trade: 0
 - China trade: varies by product k (mean 7.0 and sd 4.4)

Endogeneity concern: TC_{pt} correlated with unobserved expected product growth or demand

$$\log(EX_{kct}) = \beta TC_{pct} + \delta_{pt} + \alpha_{pc} + \varepsilon_{pct}$$

- EX_{pct} : exports from Peru in product p to destination c in year t
- Tariff Cut_{pct}:
 - Non-China trade: 0
 - China trade: varies by product k (mean 7.0 and sd 4.4)

Endogeneity concern: TC_{pt} correlated with unobserved expected product growth or demand

$$\log(EX_{kct}) = \beta \mathsf{TC}_{pct} + \delta_{pt} + \alpha_{pc} + \varepsilon_{pct}$$

- EX_{pct} : exports from Peru in product p to destination c in year t
- Tariff Cut_{pct}:
 - Non-China trade: 0
 - China trade: varies by product k (mean 7.0 and sd 4.4)

Endogeneity concern: TC_{pt} correlated with unobserved expected product growth or demand

• δ_{pt} : product growth shocks \Rightarrow within-product-year variation

$$\log(\textit{EX}_\textit{kct}) = \beta \mathsf{TC}_\textit{pct} + \delta_\textit{pt} + \alpha_\textit{pc} + \varepsilon_\textit{pct}$$

- EX_{pct} : exports from Peru in product p to destination c in year t
- Tariff Cut_{pct}:
 - Non-China trade: 0
 - China trade: varies by product k (mean 7.0 and sd 4.4)

Endogeneity concern: TC_{pt} correlated with unobserved expected product growth or demand

- $\delta_{\it pt}$: product growth shocks \Rightarrow within-product-year variation
- ullet $lpha_{
 m pc}$: average trade in product-destination \Rightarrow deals with correlation between product char. & tariff

$$\log(EX_{kct}) = \beta \mathsf{TC}_{pct} + \delta_{pt} + \alpha_{pc} + \varepsilon_{pct}$$

- EX_{pct} : exports from Peru in product p to destination c in year t
- Tariff Cut_{pct}:
 - Non-China trade: 0
 - China trade: varies by product k (mean 7.0 and sd 4.4)

Endogeneity concern: TC_{pt} correlated with unobserved expected product growth or demand

- δ_{pt} : product growth shocks \Rightarrow within-product-year variation
- ullet $\alpha_{\it pc}$: average trade in product-destination \Rightarrow deals with correlation between product char. & tariff
- SEs two-way clustered by product & destination

Growth in relative exports

Growth in relative exports

Product exports using midpoint growth

$$\Delta \textit{EX}_{\textit{pc}} = \beta \mathsf{TC}_{\textit{pc}} + \alpha_{\textit{p}} + \varepsilon_{\textit{pc}}$$

Unit of analysis	Product					
Margin of export	All	Entry	Exit	Continuous		
	(1)	(2)	(3)	(4)		
Tariff Cut×Year _{≥2009}	0.0775*** (0.00771)	0.0135*** (0.00312)	0.00293** (0.00140)	0.0611*** (0.00699)		
Fixed Effects						
Product	✓	\checkmark	✓	\checkmark		
Firm	_	_	_	_		
Observations	5,563	5,563	5,563	5,563		

Product exports using midpoint growth

$$\Delta EX_{pc} = \beta \mathsf{TC}_{pc} + \alpha_p + \varepsilon_{pc}$$

 \Rightarrow Entry & exit account for small (\approx 8%) of total change in product exports

Unit of analysis	Product					
Margin of export	All	Entry	Exit	Continuous		
	(1)	(2)	(3)	(4)		
Tariff Cut×Year _{≥2009}	0.0775*** (0.00771)	0.0135*** (0.00312)	0.00293** (0.00140)	0.0611*** (0.00699)		
Fixed Effects						
Product	\checkmark	\checkmark	\checkmark	\checkmark		
Firm	_	_	_	_		
Observations	5,563	5,563	5,563	5,563		

Firm-product exports using midpoint growth

$$\Delta EX_{ipc} = \beta TC_{pc} + \alpha_p + \gamma_i + \varepsilon_{ipc}$$

Unit of analysis		Pro	Firm			
Margin of export	All	Entry	Exit	Continuous	All	
	(1)	(2)	(3)	(4)	(5)	(6)
Tariff Cut×Year _{≥2009}	0.0775*** (0.00771)	0.0135*** (0.00312)	0.00293** (0.00140)	0.0611*** (0.00699)	0.0775*** (0.00127)	0.0717*** (0.000724)
Fixed Effects						
Product	✓	\checkmark	\checkmark	✓	✓	\checkmark
Firm	_	_	_	_	_	\checkmark
Observations	5,563	5,563	5,563	5,563	394,745	394,745

Firm-product exports using midpoint growth

$$\Delta EX_{ipc} = \beta TC_{pc} + \alpha_p + \gamma_i + \varepsilon_{ipc}$$

 \Rightarrow Firm-level characteristics (γ_i) like anticipated growth do not explain impact of tariff cut

Unit of analysis		Pro	Firm			
Margin of export	All	Entry	Exit	Continuous	All	
	(1)	(2)	(3)	(4)	(5)	(6)
Tariff Cut×Year _{≥2009}	0.0775*** (0.00771)	0.0135*** (0.00312)	0.00293** (0.00140)	0.0611*** (0.00699)	0.0775*** (0.00127)	0.0717*** (0.000724)
Fixed Effects						
Product	✓	✓	\checkmark	✓	✓	✓
Firm	_	_	_	_	_	\checkmark
Observations	5,563	5,563	5,563	5,563	394,745	394,745

Benchmarking magnitudes

Exposures:

- Average firm $TC_{it} = 1.15$
- Average bank $TC_{bt} = 0.24$

Estimated elasticities:

- Elasticity of exports with respect to direct firm exposure: $\approx 0.1 \Rightarrow$ average firm has 11.5% higher exports
- ullet Elasticity of credit with respect to direct bank exposure: $pprox 0.7 \Rightarrow$ average bank has 17% more credit

Rescaling the average bank effect: 17% more credit to firms that experienced 52.9% more exports