Problem

Let HALF-CLIQUE = { I G is an undirected graph having a complete subgraph with at least m/2 nodes, where m is the number of nodes in G}. Show that HALF-CLIQUE is NP-complete.

Step-by-step solution

Step 1 of 2

Clique is an undirected graph where every two nodes connected by an edge.

NP - complete:

A language B is NP – complete if by an edge it satisfies two conditions.

- 1. B is in NP
- 2. Every A in NP is polynomial time reducible to B.

Comment

Step 2 of 2

$$1$$
 HALF – CLIQUE $\in NP$.

Let N be the nondeterministic polynomial time (NTM) that decides HALF-CLIQUE in polynomial time.

N can be described as follows:

$$N = \text{"on input graph } \langle G \rangle$$
:

- 1. Non-deterministically choose at least n/2 nodes
- 2. Verify whether n/2 nodes form a clique
- 3. If they form a clique then accept.
- 4. Otherwise, reject".

Therefore, $HALF - CLIQUE \in NP$

$$_{2}$$
 $CLIQUE \leq_{p} HALF - CLIQUE$

A reduction from $\ ^{CLIQUE}$ to $\ ^{HALF-CLIQUE}$ as follows:

On input $\langle G, k \rangle$, where G is a graph on n verifies and k is an integer:

1. If
$$k = n/2$$
 then output $\langle G \rangle$.

2. If k < n/2, then construct a new graph G' by adding a complete graph with n-2k vertices and connecting them to all vertices in G, and output $\langle G' \rangle$

3. If k > n/2, then construct a new graph G'' by adding 2k - n isolated vertices to G, and output $\langle G'' \rangle$.

When
$$k = n/2$$
: It is clear that $\langle G, n/2 \rangle \in CLIQUE$ if and only if $\langle G \rangle \in HALF - CLIQUE$

When k < n/2: If G has a k-clique, then G' has a clique of size

$$k+(n-2k)=(2n-2k)/2$$

Therefore, $\langle G' \rangle \in HALF - CLIQUE$ as G' is a graph with 2n-2k vertices.

Conversely, if $\langle G' \rangle \in HALF - CLIQUE$, that is G' has a clique of size n-k=k+(n-2k), then at most n-2k of the clique come from the n-2k new vertices. Therefore the reaming at least k vertices form a clique in G.

Hence,
$$\langle G, k \rangle \in CLIQUE$$

When $k>\frac{n}{k}$: if G has a k -clique, then G'' has a clique size $k=\frac{2k}{2}$, and $\text{Therefore, } \langle G'\rangle \in \textit{HALF-CLIQUE} \text{ as } G'' \text{ is a graph with } n+2k-n=2k \text{ vertices.}$

Conversely, if $\langle G'' \rangle \in HALF - CLIQUE$, that is if G'' a clique of size has k, then the clique does not contain any of the new vertices as they are isolated.

Thus, the clique is a $\it k$ – clique of $\ ^{G}$, and hence $\ ^{\left\langle G,k\right\rangle \in CLIQUE}$.

Therefore, the HALF-CLIQUE is NP- complete.

Comment