131. Pour tout complexe z:

2. 16

- 1. $z \overline{z} = 2 \operatorname{Re}(z)$ 3. z est imaginaire pur ssi z = -z 5. $|z|^2 = -z$ z 2. z + z = 2i Im(z) 4. $|z| \le \text{Re}(z) \text{ et } |z| \le \text{Im}(z)$ (M - 2003)
- 32. Dans l'ensemble C des complexes, on donne le nombre complexe

 $z = -8 + 8\sqrt{3}$ i. Si P_0 , P_1 , P_2 et P_3 , points images des racines quatrièmes de z, forment un polygone régulier alors l'aire de ce polygone vaut: 3. 64 4. 36 5. 8

- 133. Dans l'ensemble C des complexes, l'équation $2z + 6\overline{z} = 3 + 2i$ a pour solution:
 - 3. $\frac{3}{8} \frac{1}{2}i$ 5. $1 + \frac{1}{2}i$ 1.1 + i4. 1 – i (B – 2004) $2. -\frac{9}{7} + \frac{8}{7}i$
- 134. Soit $A = e^{3i\frac{\pi}{4}}$ $B = e^{3i\frac{\pi}{2}}$ $C = 2e^{5i\frac{\pi}{3}}$ trois nombres complexes.

Le nombre complexe $Z = \frac{A^8 \cdot B^4}{C^9}$, sous sa forme algébrique s'écrit :

- $1.\frac{1}{2^9}$ $2.\frac{-i}{2^9}$ $3.\frac{i}{2^9}$ $4.\frac{-1}{2^9}$ $5.\frac{-i}{2^9} + \frac{1}{2^9}$ (M-2004)
- 135. On considere le nombre complexe z = i 1. L'expression $\frac{z+z}{z^2}$ vaut :
 - 1. -i 2. -I 3. $\frac{i}{2}$ 4. 1 5. $-\frac{i}{2}$ (M-2004)
- 136. L'ensemble des solutions de l'équation complexe z^2 (6+i)z+7+9i=0
 - 1. $\{1+i, 3i\}$ 3. $\{5-i, 1-2i\}$ 5. $\{5-i, 1+2i\}$ (M-2004)2. $\{-i, 4+i\}$ 4. $\{5+i, 1+2i\}$
 - 137. On considere l'équation du second degré $x^2 + ax + b = 0$, avec a et b des réels. Si l'inverse de l'une des racines est le nombre complexe
 - $+\frac{1}{\sqrt{3}}i$, alors l'expression a + b est égale :
 - 5. 12 (M.-2005)www.ecoles-rdc.net