Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 05 - Geuter 29

Moaz Haque, Felix Oechelhaeuser, Leo Pirker, Dennis Schulze ${\bf September}\ 1,\ 2020$

Contents

1	Auf	agb	e 1																								2
2	Aufgabe 2															3											
	2.1	a)																									3
	2.2	b)																									
	2.3	c) .																									
		ď)																									
3	Aufgabe 3																4										
	3.1	a)																									4
	3.2	b)																									
	3.3	c) .																									5
		d)																									5
		e) .																									
4	Auf	gab	e 4																								5
5	Auf	Aufgabe 5																5									
	5.1	a)																									5
	5.2																										
	5.3	,																									
	5.4	- 1																									5

1 Aufagbe 1

$$\begin{bmatrix} 0 & 3 & -2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 & 3 & -2 & | 8 \\ 1 & 1 & 0 & | 4 \\ 2 & 0 & 1 & | 3 \end{bmatrix}$$

$$\xrightarrow{\text{III-2II}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 3 & -2 & | & 8 \\ 2 & 0 & 1 & | & 3 \end{bmatrix}$$

$$\xrightarrow{\text{III-2II}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 3 & -2 & | & 8 \\ 0 & -2 & 1 & | & -5 \end{bmatrix}$$

$$\xrightarrow{\text{2II,3III}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 6 & -4 & | & 16 \\ 0 & -6 & 3 & | & -15 \end{bmatrix}$$

$$\xrightarrow{\text{III+II}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 6 & -4 & | & 16 \\ 0 & 0 & -1 & | & 1 \end{bmatrix}$$

$$\xrightarrow{\text{-III,}\frac{1}{6}\text{II}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 1 & \frac{-4}{6} & | & \frac{16}{6} \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{\text{III+}\frac{4}{6}\text{III}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{\text{III-4}\frac{4}{6}\text{III}} \begin{bmatrix} 1 & 1 & 0 & | & 4 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{\text{III-4}\frac{4}{6}\text{III}} \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{\text{III-1}} \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

Daraus folgt $x_1 = 2$, $x_2 = 2$ und $x_3 = -1$.

2 Aufgabe 2

2.1 a)

$$\begin{bmatrix} -2 & 2i & 0 & 2 & 0 \\ -4 & 4i & -i & 7 & -2 \\ 1 & i & 2 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -4 \\ -8 \\ 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -2 & 2i & 0 & 2 & 0 & | & -4 \\ -4 & 4i & -i & 7 & -2 & | & -8 \\ 1 & i & 2 & -1 & 2 & | & 4 \end{bmatrix}$$

$$\begin{array}{c} -\frac{1}{2}I \\ -\frac{1}{2}I$$

2.2 b)

Aus dem LGS

$$\begin{bmatrix} 1 & 0 & 0 & -1 - 3i & 1 + 2i & 0 \\ 0 & 1 & 0 & -3 & 2 - i & 0 \\ 0 & 0 & 1 & 3i & -2i & 0 \end{bmatrix}$$

ergeben sich folgende Gleichungen:

(I)
$$0 = x_1 + (-1 - 3i)x_4 + (1 + 2i)x_5$$

(II) $0 = x_2 - 3x_4 + (2 - i)x_5$
(III) $0 = x_2 + 3ix_4 - 2ix_5$

2.3 c)

Zum überprüfen werden die die beiden Vektoren in das hergeleitete System aus 2a) eingesetzt.

Für den ersten der Vektor ergibt sich die Gleichung

$$\begin{bmatrix} 1 & 0 & 0 & -1 - 3i & 1 + 2i \\ 0 & 1 & 0 & -3 & 2 - i \\ 0 & 0 & 1 & 3i & -2i \end{bmatrix} \begin{bmatrix} 3 \\ -i \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -i \\ 0 \end{bmatrix}$$

bei der erkennbar ist, dass sie wahr ist. Damit ist der erste Vektor eine Lösung des LGS.

Für den zweiten Vektor ergibt sich die Gleichung

$$\begin{bmatrix} 3 \\ -i \\ 0 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 0 & -1 - 3i & 1 + 2i \\ 0 & 1 & 0 & -3 & 2 - i \\ 0 & 0 & 1 & 3i & -2i \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \\ i \end{bmatrix}$$
$$= \begin{bmatrix} i \\ 1 + 2i \\ 3 \end{bmatrix}$$

bei der nach Umformung erkennbar wird, dass sie nicht gleich sein kann. Damit ist der zweite Vektor keine Lösung des LGS.

2.4 d)

3 Aufgabe 3

3.1 a)

Für A_1 :

Nur die Spalten 1 und 2 sind voneinander linear abhängig, womit gilt $Rang(A_1) =$

2.

Für A_2 :

3 Zeilen der Matrix sind ungleich 0. Die 3. <u>oder</u> 4. Spalte kann als Linear-kombination der anderen Spalten dargestellt werden. Damit gilt $Rang(A_2) = 3$.

Für A_3 :

Nur 2 Zeilen sind ungleich 0 und beide Spalten sind linear unabhängig voneinander. Damit gilt $Rang(A_3) = 2$.

Für A_4 :

Die beiden Spalten sind linear unabhängig voneinander und es gilt damit $Rang(A_4) = 2$.

3.2 b)

Für A_1 :

Zwei der Spalten sind linear abhängig $\begin{pmatrix} -2\\0 \end{pmatrix} = \lambda \begin{bmatrix} 4\\0 \end{bmatrix}$), womit sie keine Basis von Bild (A_1) ist.

Für A_2 :

- 3.3 c)
- 3.4 d)
- 3.5 e)

4 Aufgabe 4

5 Aufgabe 5

- 5.1 a)
- 5.2 b)
- 5.3 c)
- 5.4 d)