Task 1 – Advanced Mathematics Mock Test

Section I – Multiple Choice (5 Marks)

1. If $3^x = 7$, what is the value of x?

$$(A) \qquad \frac{7}{3}$$

(B)
$$\log_3 \frac{7}{3}$$

(C)
$$\log_3 4$$

(D)
$$\frac{\log_e 7}{\log_e 3}$$

2. How many solutions are there to the equation $2 \sin x = \left| \frac{x}{3} \right|$ in the domain $(-\infty, \infty)$.

- (A) 3
- (B) 2
- (C) 4
- (D) 5

3. What could be the equation of the graph below?

(A) $y = 3\log_2(x-1) - 6$

(C) $y = 3 \log_2(x+1) - 3$

(B) $y = 2\log_3(x-1) + 1$

(D) $y = 2\log_4(x-1) - 2$

4. The domain of the function y = f(x) is $[-2, \infty)$.

What is the domain of the function y = 3f(-2x) - 4?

- (A) $[1,\infty)$
- (B) $\left(-\infty, -4\right]$
- (C) $\left(-\infty,1\right]$
- (D) $\left[-4,\infty\right)$
- 5. In the diagram, a graph of a trigonometric function is given.

Which of the following could be the equation of the given graph?

- (A) $y = 2\sin\left(3x \frac{\pi}{2}\right) + 1$
- (B) $y = 2\sin(2x \pi) + 1$
- (C) $y = 2\cos\left(3x \frac{\pi}{2}\right) + 1$
- (D) $y = 2\cos\left(2x + \frac{\pi}{2}\right) + 1$

Section II – Show all necessary working (30 marks)

Differentiate $y = 2xe^{7x-3}$	
	_
	_
	_
Find the domain of $y = \ln(x - 4)$	_
	_
Solve for θ , where $0 \le \theta \le 2\pi$ $2\sin\left(\theta - \frac{\pi}{3}\right) = -1$	
	_
	_
	_
	-
It is given that $\log_3 6 = a$ and $\log_3 5 = b$.	
Express $\log_3 150$ in terms of a and b .	
	_
	_

$$y = x^2$$
 to the graph with equation $y = \left(\frac{x+1}{2}\right)^2$.

11. Solve $\log_2 x + \log_2 (x-3) = 2$.

3

12. Given $y = 3e^{-2x}$, prove that $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$

2

- 14. The temperature $T(^{\circ}C)$ of water in a kettle after t minutes is given by $T = 20e^{0.4t} + 15$.
 - (a) What is the initial temperature of the water?

1

(b) At what rate is the temperature increasing after 5 minutes?

2

(c) How many minutes will it take for the temperature to reach $100\,^{\circ}\text{C}$? Give your answer correct to one decimal place.

2

2

16. The displacement of a particle x metres from the origin, at t seconds is given by $x = 10 + 3e^{-0.2t}$.

Explain why the particle will never be stationary. Include mathematical reasoning.

17. The water at a certain beach rises and falls in a periodic pattern. The height of the water at any time can be modelled by the equation $h(t) = 8 + 5 \sin\left(\frac{\pi t}{12}\right)$, where t is time in hours after midnight.

2

2

(a) Sketch the graph of y = h(t) for $0 \le t \le 24$.

(b) A boat with a depth of 5.5 metres, is scheduled to arrive at the beach. Between what times will the boat be able to dock?