Nontraditional Optimization: GA

- To find a global minimum, users normally try a heuristic approach where several local minima are found by repeated trials with different starting values or by using different techniques
- The smallest of all known local minima is then assumed to be global minima. Certainly not very reliable.
- Traditional techniques are mostly derivative based

• Features of Nontraditional Techniques

- Do not require derivative information (derivative free methods)
- Search wide domains of the objective/cost surface
- Can efficiently deal with a large number of variables
- Suitable for extremely complex cost surfaces; multiobjective problems
- Suggests possible other sub-optimal solutions which may be more suitable for implementation
- Highly flexible and versatile

- Computationally expensive (more suitable for off-line applications)
- Intuitive (no strong mathematical ground; black box nature) and inspired from some natural/biological process
- Stochastic in nature (relying heavily on random number generation)
- Large number of hyper parameters (problem specific tuning)

• Some Nontraditional Optimization Techniques

• Genetic Algorithm (GA)

• Differential Evolution (DE)

• Simulated Annealing (SA)

• Particle Swarm Optimization (PSO)

Ant Colony Optimization (ACO)

• Artificial Bee Colony (ABC)

• Artificial Immune System (AIS)

• Gray Wolf Algorithm (GWA)

• Firefly Algorithm (FA)

• Bacterial Foraging Optimization (BFO)

Cuckoo Search Algorithm (CSA)

• Harmony Search (HS)

and the list goes on ...

Genetic Algorithm (GA)

Introduced by John Holland in 1975
 (University of Michigan) and
 popularized by his student David Goldberg

• Philosophically, GA is based on Darwin's theory of survival of the fittest

• Basic idea is to start from a randomly chosen set of probable solutions and then allow intermixing of these candidate solutions over many generations and gradually evolve towards the optimal solution

Steps for Binary Coded GA (BCGA)

- In principle, suitable for maximization problems
- Let us first consider the unconstrained optimization problem

• find
$$\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 to

maximize
$$f(\underline{x})$$
 where $x_i^{min} \le x_i \le x_i^{max}$ $i = 1, 2, ... n$ i.e. $\underline{x} \in \Omega \subset \mathcal{R}^n$

Initialization

Encoding

Fitness Evaluation

Selection

Iteration

Crossover

Mutation

Decoding

i) Initialization

- A population size N is chosen and then N random points are picked from the phenotype space (search space) Ω
- N is even and usually a few 10's to a few 100's (not too high!)

ii) Encoding

- N points from the phenotype space are mapped to N corresponding points in the genotype space
- Each variable x_i is represented by a binary substring of length l_i
- Such binary substrings are concatenated for all i=1,2,...n
- Performed for all N points

• l_i depends on the desired accuracy level of x_i

•
$$\epsilon_i = \frac{x_i^{max} - x_i^{min}}{2^{l_i} - 1}$$

•
$$l_i = ceiling \left[log_2 \left(1 + \frac{x_i^{max} - x_i^{min}}{\epsilon_i} \right) \right]$$

• Mapping from the range $[x_i^{min}, x_i^{max}]$ to $[0, 2^{l_i} - 1]$ is done as follows:

$$x_i^d = round \left\{ \frac{x_i - x_i^{min}}{x_i^{max} - x_i^{min}} \left(2^{l_i} - 1 \right) \right\} \text{ or } x_i = x_i^{min} + \epsilon_i' \cdot x_i^d$$

 (ϵ_i') is the actual resolution

• x_i^d is then converted to binary substring D_i

Numerical Example:

• Two design variables $x_1 \in [-2, 2]$ and $x_2 \in [1, 12]$

• To represent
$$\underline{\mathbf{x}} = \begin{bmatrix} -0.85 \\ 4.21 \end{bmatrix}$$
 as a binary string or chromosome.

• Desired accuracy level of 0.2 for both x_1 and x_2 .

Solution:

resolution for
$$x_1$$
, $\in_1 = \frac{x_1^{\text{max}} - x_1^{\text{min}}}{2^{l_1} - 1}$

solving for
$$l_1$$
, $2^{l_1} = 21$ i.e. $l_1 = 5$

similarly,
$$\in_2 = \frac{x_2^{\text{max}} - x_2^{\text{min}}}{2^{l_2} - 1}$$

solving for
$$l_2$$
, $l_2=6$

Now, $x_1 = x_1^{min} + x_1^d \in \mathcal{C}'_1$ where \mathcal{C}'_1 is the actual resolution of x_1

$$\epsilon_1' = \frac{x_1^{max} - x_1^{min}}{2^{l_1} - 1} = 0.13$$

$$\therefore -0.85 = -2 + 0.13 \times x_1^d$$

$$=> x_1^d = 8.9 \approx 9$$

Hence, binary representation of -0.85 is '01001'

similarly,

$$x_2 = x_2^{min} + x_2^d \in \mathcal{E}'_2$$
 where \mathcal{E}'_2 is the actual resolution of x_2

$$\epsilon_2' = \frac{x_2^{max} - x_2^{min}}{2^{l_2} - 1} = 0.1746$$

$$\therefore 4.21 = 1 + 0.1746 \times x_2^d$$

$$=> x_2^d = 18.38 \approx 18$$

Hence, binary representation of 4.21 is '010010'

Hence, '01001010010' maps the point $\underline{x} = \begin{bmatrix} -0.85 \\ 4.21 \end{bmatrix}$

iii) Decoding and Fitness Evaluation

- Next the fitness values at all the N points in the genotype space are computed
- Extract the decimal integer x_i^d from the GA string and then map back to the phenotype space as

$$x_i = x_i^{min} + \epsilon_i' \cdot x_i^d$$

- Compute the objective function value once all x_i (i=1, 2, ... n) are obtained for a particular chromosome
- This is usually the fitness value of that chromosome

Exercise:

Let an optimization problem have two design variables x1 and x2 where both are varying in the range [-5, 5]. If they are represented by 6 bit binary substrings each then what is the point in the phenotype space corresponding to the chromosome 100110 011100?

Answer:
$$\begin{pmatrix} 1.03 \\ -0.55 \end{pmatrix}$$

iv) Selection

A mating pool (size N) is selected from the population

- (a) Proportionate selection/Roulette-Wheel selection
- Probability of getting selected in a mating pool ∝ fitness
- Implemented with the help of a Roulette-Wheel

$$P_i = \frac{f_i}{\sum_{i=1}^{N} f_i}$$

• Balancing Population Diversity and Selection Pressure (Exploration/Exploitation balance)

(b) Ranking Selection

- Least fit string is given a rank of 1, next one rank 2 etc.
- Thus the fittest string gets the highest rank i.e. N
- Then Roulette wheel selection is performed based on the ranks (rather than on the fitness)

Proportionate selection

Ranking selection

(c) <u>Tournament Selection</u>

• Small number (2-3) of chromosomes are randomly picked from the population and the fittest is put in the mating pool

• All the candidates are returned to the original population

• The process is repeated N times

• The least fit candidate is eliminated