그래픽스 구성 기초

Basic of graphic configuration

컴퓨터 그래픽스란??

- 컴퓨터를 사용하여 실제 세계 영상을 조작 또는 영상을 생성하는 기술
- 다양한 응용분야에서 활용
 - > 캐드 / 프레젠테이션 / 가상현실 / 미술 / 애니메이션 / 게임 교육 훈련 / 자연과학 가시화 / 그래픽 사용자 인터페이스

증상현실

프레젠테이션

에니메이션

Q

컴퓨터 그래픽스란??

학습 보조도구 컴퓨터 활용

시뮬레이션

Q

컴퓨터 그래픽스란??

대용량 정보분석 / 자연현상 시각화, 내부 패턴 및 추세 직관적으로 파악

언어, 사용 권한, 기록

컴퓨터 그래픽스란??

(메뉴, 스크롤바, 아이콘 등)

컴퓨터 그래픽스는 언제부터??

1950 - 1960

- 미국 벤 라포스키(Ben F. Laposky)가 전자 장치를 이용한 최초 그래픽 이미지 표출
- 윌리엄 페터(William Fetter)가 '컴퓨터 그래픽스' 라는 용어를 처음으로 사용
- 스트립 차트 (Strip Charts), 펜 플로터 (Pen Plotters), 아날로그 / 디지털 변환기 사용 CRT 모니터로 간단한 표출

1960 - 1970

- 1963년
 - > 이반 서덜랜드(Ivan Sutherland) 컴퓨터 그래픽스 제반 개념 확립
 - > 더글러스 엥겔 바트(Douglas Englebart) 최초 마우스 프로토타입 개발
- 1965년
 - > 잭 엘튼 브레센햄(Jack Bresenham) 선분 그리기 알고리즘 개발

이반 서더런드(Ivan Sutherland)

- 컴퓨터 그래픽의 창시자
- 대화형 컴퓨터 그래픽 개념: 라이트 펜으로 의 사전달
- 스케치패드 프로젝트
- 직선, 원호 등 기본적 그래픽 요소를 사용하여 물체를 표현하는 방법
- 기본물체를 조합하여 큰 물체를 모델링한다는 계층구조 모델링
- 물체를 선택하여 이동하는 방법
- 팝업 메뉴에 의한 사용자 입력

와이어 프레임 표현

1970 - 1980

- 그래픽 알고리즘 시기라고 볼 수 있음
- 래스터 그래픽스 (픽셀 배열로 생성된 이미지)
- 그래픽 표준 시작
 - > 국제 정보 처리 사회 연맹 (IFIPS) (유럽) ISO 2D 표준 채택 (북미) 3D 표준... (하지만 표준 채택은 X)

1971	Gouraud	구로 셰이딩 알고리즘
1973	John Whitney Jr.	컴퓨터 그래픽에 의한 최초의 영화 "West World"
1974	Edwin Catmuff	텍스쳐 매핑, 지-버퍼 알고리즘
1974	Bui-Tong Phong	전반사에 의한 하이라이트 알고리즘
1975	Martin Newell	베지어 표면 메쉬를 사용한 차 주전자 모델
1975	Benoit Mandelbrot	프랙탈 이론
1976	Jim Blinn	주변 매핑, 범프 매핑 이론
1977	Steve Wozniak	컬러 그래픽 PC: Apple II
1977	Frank Crow	앤티 에일리어싱 알고리즘
1979	Kay, Greenberg	최초로 투명한 물체 면을 그려냄

워크스테이션 / PCs

1980 - 1990

- PC 시대
- 래스터 그래픽 하드웨어
- 기하 엔진 출현

1980	Turner, Whitted	광선 추적 알고리즘
1982	Steven Lisberger	3차원 그래픽 애니메이션 "Tron"
1982	John Walkner, Dan Drake	"AutoCAD"
1983	Jaron Lanier	데이터 장갑을 사용한 가상현실 영화
1985	Pixar	"Luxo Junior"
1985	NES	가정용 게임 "Nintendo"
1986	Steve Jobs	Lucasfilm사의 Pixar 그래픽 그룹을 인수
1987	IBM	VGA 그래픽 카드
1989	IBM	SVGA 그래픽 카드
1989	Pixar	"Tin Toy" 아카데미상 수상

1990 - 2000

- 사실적 그래픽 영상 주력
- OpenGL API 사양 발표

API(Application Programming Interface, 응용 프로그램 프로그래 밍 인터페이스)는 응용 프로그램에서 사용할 수 있도록, 운영 체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 만든 인터페이스를 뜻한다. 주로 파일 제어, 창 제어, 화상 처리, 문자 제어 등을 위한인터페이스를 제공한다.

1990	Pixar: Hanrahan, Lawson	렌더링 소프트웨어 "Renderman" 개발
1990	Gary Yost	3-D Studio 개발
1991	Disney and Pixar	"Beauty and the Beast"
1992	Silicon Graphics	openGL 사양 발표
1993	Steven Spielberg	"Jurassic Park"
1995	Pixar	"Toy Story"
1995	Microsoft	DirectX API 사양 발표
1996	John Carmack, Michael Abrash	Quake 그래픽 엔진 개발
1999	NVIDIA	GeForce 256 GPU

2000 - 2010

- 영화 / 게임 응용
- 포토 리얼리즘(Photorealism)
- PC 용 그래픽 카드 시장 활성화 (Nvidia, ATI)
- 영화 산업: Maya, Lightwave .
- 프로그램 가능한 파이프 라인
- 새로운 디스플레이 기술

엔비디아

회사

엔비디아는 컴퓨터용 그래픽 처리 장치와 멀티 미디어 장치를 개발, 제조하는 회사이다. 엑스박 스와 플레이스테이션 3과 같은 비디오 게임기에 그래픽 카드 칩셋을 공급하였으며 2005년 12월 14일, 엔비디아는 ULI를 인수했다. 이 회사는 ATI 칩셋에 쓰이는 사우스 브릿지를 생산하고 있었다. 본사는 캘리포니아 주의 샌타클라라에 있다. 위키백과

어드밴스트 마이크 로 디바이시스

어드밴스트 마이크로 디바이시스 주식회사 또는 AMD는 미국의 집적회로 제조사로, 캘리포니아 주 서니베일에 위치하고 있다. 1969년 페어차일 드 반도체 출신들이 주축이 되어 세워진 AMD는 인텔에 이어 두 번째로 큰 x86 아키텍처 호환 프로세서 제조사이며 플래시 메모리 분야에서도 주도적인 위치에 서 있다. 2008년 7월에 헥터 루이츠 박사로부터 더크 마이어가 CEO 및 회장직을 이어받았다. 위키백과

2010 - 현재

- 모바일 형태 그래픽스 활용 기술 발표
- 다양한 분야에 그래픽스기술 활용 및 진화

- ES = embedded system = 내장형 시스템
- 기계나 기타 제어가 필요한 시스템에 대해, 제어를 위한 특정 기능을 수행하는 컴퓨터 시스템으로 장치 내 존재하는 전자 시스템
- OpenGL ES는 크로노스 그룹이 정의한 3차원 컴퓨터 그래픽스 API인 Open GL 서브셋으로 스마트폰과 같은 임베디드 단말을 위한 API

🔎 컴퓨터 그래픽스 이론

- 모델링
 - > 장면 내부 물체를 정의하는 작업
 - > 선분의 끝점, 다각형의 정점 정의
- 렌더링
 - > 정의될 물체 그려내기
 - > 와이어 프레임 렌더링, 솔리드 렌더링

그래픽 하드웨어

- 그래픽 시스템
 - 입력 장치, 메인 컴퓨터, 그래픽 컨트롤러, 출력장치
- 그래픽 컨트롤러 그래픽 프로세서 / 그래픽 메모리

- **Processor**
- Memory

P

좌표계

- 모양과 위치를 결정하고자 한다면 "공간"이 필요
- 공간 = 좌표계
- 정규직교 (orthonormal) 좌표계이며, 보통 x, y, z 세 개의 축을 가짐
- 왼손 좌표계 -> z 축이 모니터 안쪽으로 들어가는 방향
- 오른손 좌표계 -> z 축이 모니터 바깥으로 나가는 방향

왼손? 오른손? 좌표계

Driect X

<u> </u> 프레

프레임 버퍼

- 래스터 주사 방식에서 화면에 나타날 영상 정보를 일시적으로 저장하는 기억 장치
- 프레임 버퍼(Frame buffer) = 컬러(Color) + 깊이(Depth) + 원판(Stencil)

Color : 화면의 색 정보 저장

Depth: 화면에 찍히는 2D 좌표

Stencil: 공판화

, ,

프로세서 장치

- 단순 시스템 : CPU가 모두 수행

- 고급 시스템: 독립적인 그래픽 프로세서 사용

3D 그래픽

- 폭, 높이, 깊이를 나타내는 축의 공간 좌표를 이용하여 표현 후 화면이나 종이 등 2차원 결과물로 출력하는 그래픽 기술
- 표시하기 위한 "모델링", 오브젝트 재질과 표면 처리를 위한 "매핑", 카메라와 조명 등을 고려하여 완성된 이미지를 만드는 "렌더링"과정 필요

3D 모델 종류

- 와이어 프레임 모델 (Wireframe Model)
- 서피스 모델 (Surface Model)
- 솔리드 모델(Solid Model)

❷ 광원 (Light source(s))

- 관측자가 객체를 볼 때 빛이 없을 경우 이미지에 아무것도 x

물리적 접근

광원 -> 물체(객체) 표면 -> 반사광 -> 카메라 렌즈

🔎 추가 속성

color, shininess, pattern, texture, and etc. (etcetera)

- ج (م
 - 광원 = 빛
 - 전자기파의 한 형태
 - 가시광선 파장

- 물리적으로 실제 광원은 아주 복잡
- 단순화
 - > 점 광원(point light) : 모든 방향으로 동일한 에너지 방출
 - > 단색 광원(monochromatic light) : 빛의 밝기만

광선 추적

- 광원으로부터 광선을 따라감으로써 이미지 형성의 모형 설정
- 광선: 한 점으로부터 나가서 특정 방향으로 무한하게 진행하는 반 직선

광선 추적

주변 반사

난반사

전반사

🔑 은면 제거 (Hidden Surface Removal)

- 시점에서 앞에 있는 객체나 가려진 면들을 제거하는 과정
- 현실감 그래픽 / 렌더링 시간 감소

_			-				-		
<u> </u>	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Z- 버퍼

프레임 버퍼

은면을 제거한 결과

(A)프레임 버퍼

(B)프레임 버퍼

ВВВ

B B B B B B

B B B B B B B B B B B B B B B B B B B

C2는 평면 S2위의 어떤 점에서의 밝기값