# Lab Assignment 1

TEAM MEMBERS: Shiva Ghose, @gshiva John Peterson, @jrpeters Wenjian Bai, @baiwenji

## Question 1

# Question 2

 $\mathbf{a}$ 



Figure 1: The required circuit diagram for question 2.

### b

### Circuit analysis:

At the non-inverting terminal, we effectively have a circuit represented by figure 2. We can use Kirchoff's voltage law along with the superposition theorem, we see:

Voltage at  $V^+$  due to  $V_1$ ,  $V_1^+$ , is given by:

$$V_1^+ = \frac{\frac{R_2 R_g}{R_2 + R_g}}{R_1 + \frac{R_2 R_g}{R_2 + R_g}} V_1$$

$$\therefore V_1^+ = \left(\frac{1}{\frac{R_1}{R_g} + \frac{R_1}{R_2} + 1}\right) V_1$$



Figure 2: Equivalent circuit at the non-inverting terminal

Similarly, voltage at  $V^+$  due to  $V_2$ ,  $V_2^+$ , is given by:

$$V_2^+ = \frac{\frac{R_1 R_g}{R_1 + R_g}}{R_2 + \frac{R_1 R_g}{R_1 + R_g}} V_2$$

$$\therefore V_2^+ = \frac{1}{\frac{R_2}{R_n} + \frac{R_2}{R_1} + 1} V_2$$

Using the superposition theorem to recombine the values, we find that V+ is given by:

$$V^{+} = V_{1}^{+} + V_{2}^{+}$$
 
$$V^{+} = \frac{1}{\frac{R_{1}}{R_{g}} + \frac{R_{1}}{R_{2}} + 1} V_{1} + \frac{1}{\frac{R_{2}}{R_{g}} + \frac{R_{2}}{R_{1}} + 1} V_{2}$$

We can now move on to the inverting terminal of the op-amp. The corresponding equivalent circuit is shown in figure 3. Analyzing this circuit, we see that:



Figure 3: Equivalent circuit at the non-inverting terminal

$$I_3R_3 = V_3 - V^-$$
  
 $I_4R_4 = V_4 - V^-$   
 $V^- - V_{out} = (I_3 + I_4)R_f$ 

Substituting from the above equations, we get:

$$V^{-} - V_{out} = \left(\frac{V_3 - V^{-}}{R_3} + \frac{V_4 - V^{-}}{R_4}\right) R_f$$

Reordering the terms, we get:

$$\begin{split} V_{out} &= V^{-} - \left(\frac{V_{3} - V^{-}}{R_{3}} + \frac{V_{4} - V^{-}}{R_{4}}\right) \, R_{f} \\ \Longrightarrow V_{out} &= V^{-} \left(\frac{R_{f}}{R_{3}} + \frac{R_{f}}{R_{4}} + 1\right) - \left(\frac{R_{f}}{R_{3}}\right) V_{3} - \left(\frac{R_{f}}{R_{4}}\right) V_{4} \end{split}$$

We also know that for an ideal op-amp,  $V^+ = V^-$ , hence we get:

$$V_{out} = \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{1}{\frac{R_1}{R_g} + \frac{R_1}{R_2} + 1}\right) V_1 + \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{1}{\frac{R_2}{R_g} + \frac{R_2}{R_1} + 1}\right) V_2 - \left(\frac{R_f}{R_3}\right) V_3 - \left(\frac{R_f}{R_4}\right) V_4 + \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{1}{\frac{R_2}{R_g} + \frac{R_2}{R_1} + 1}\right) V_2 - \left(\frac{R_f}{R_3}\right) V_3 - \left(\frac{R_f}{R_4}\right) V_4 + \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{1}{\frac{R_2}{R_3} + \frac{R_2}{R_1} + 1}\right) V_3 - \left(\frac{R_f}{R_3}\right) V_3 - \left(\frac{R_f}{R_4}\right) V_4 + \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) V_3 - \left(\frac{R_f}{R_3}\right) V_3 - \left(\frac{R_f}{R_4}\right) V_4 + \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) V_4 - \left(\frac{R_f}{R_3} + \frac{R_f}{R_4} + 1\right) V_5 - \left(\frac{R_f}{R_4} + \frac{R_f}{R_4} + 1\right) V_$$

This is equation is the mathematical representation of the problem statement which which required  $V_{out} = a_1V_1 + a_2V_2 - a_3V_3 - a_4V_4$ , i.e. :

$$a_{1} = \left(\frac{R_{f}}{R_{3}} + \frac{R_{f}}{R_{4}} + 1\right) \left(\frac{1}{\frac{R_{1}}{R_{g}} + \frac{R_{1}}{R_{2}} + 1}\right) = 1$$

$$a_{2} = \left(\frac{R_{f}}{R_{3}} + \frac{R_{f}}{R_{4}} + 1\right) \left(\frac{1}{\frac{R_{2}}{R_{g}} + \frac{R_{2}}{R_{1}} + 1}\right) = 2$$

$$a_{3} = \left(\frac{R_{f}}{R_{3}}\right) = 3$$

$$a_{4} = \left(\frac{R_{f}}{R_{4}}\right) = 4$$

 $\mathbf{c}$ 

### [DO WE HAVE ANY MORE??]

While building this circuit, we made the following assumptions:

- We are using an ideal op-amp, i.e. the input impedance is infinite and the output impedance is negligible. This implies that the op-amp does not load it's input circuit and loading effects are not seen on the op-amps output terminal.
- The voltage at the non-inverting terminal is equal to the voltage at the non-inverting terminal.
- The open loop op-amp gain is infinite.
- The op-amp will operate in an ideal manner when the output is not saturated above or below its supply limits.

 $\mathbf{d}$ 

We started by choosing  $R_f$ ,  $R_g$  and  $R_g$  to arbitrary resistances such that they were large enough to make sure that other resistances in the circuit were not small. By this we mean that the values of the other resistances were in the order of Kilo-Ohms. From section **b**, we can rewrite gains  $a_1$  and  $a_2$  in terms of  $a_3$ and  $a_4$  as follows:

$$a_1 = \left(a_3 + a_4 + 1\right) \left(\frac{1}{\frac{R_1}{R_g} + \frac{R_1}{R_2} + 1}\right) = 1$$
$$= (8) \left(\frac{1}{\frac{R_1}{R_g} + \frac{R_1}{R_2} + 1}\right) = 1$$

We can rewrite this as:

$$8R_2R_g = R_1R_2 + R_1R_g$$

$$\implies R_g = \frac{R_1R_2}{7R_2 - R_1}$$

Similarly for  $a_2$ , we see:

$$a_2 = \left(a_3 + a_4 + 1\right) \left(\frac{1}{\frac{R_2}{R_g} + \frac{R_2}{R_1} + 1}\right) = 2$$
$$= (8) \left(\frac{1}{\frac{R_2}{R_g} + \frac{R_2}{R_1} + 1}\right) = 2$$

We can re-arrange and re-write the above equations as:

$$R_g = \frac{R_1 R_2}{3R_1 - R_2}$$

Equating the two equations which equal  $R_g$ , we get:

$$\frac{R_1R_2}{7R_2-R_1} = \frac{R_1R_2}{3R_1-R_2}$$

Thus, we get:

$$R_2 = \frac{R_1}{2}$$

Thus we arbitrarily chose  $R_f=R_g=10~K\Omega$  and  $R_1=50~K\Omega$  We ended up using the following components in our circuit:

| Component Name | Component Type | Component Specification |  |  |
|----------------|----------------|-------------------------|--|--|
| $R_f$          | Resistor       | $9.880~K\Omega$         |  |  |
| $R_g$          | Resistor       | $9.860~K\Omega$         |  |  |
| $R_1$          | Resistor       | $49.3~K\Omega$          |  |  |
| $R_2$          | Resistor       | $24.65~K\Omega$         |  |  |
| $R_3$          | Resistor       | $3.293~K\Omega$         |  |  |
| $R_4$          | Resistor       | $2.470~K\Omega$         |  |  |

 $\mathbf{e}$ 

Physical implementation.

 $\mathbf{f}$ 

John

 $\mathbf{g}$ 

John

h

The beating signal is achieved as a sinusoidal wave which has an amplitude that also varies sinusoidally. In effect, the output is  $\sin(\omega_a t)\sin(\omega_b t)$ . We can use trigonometric identities as follows to rearrange this sinusoidal product as a sum as follows:

$$\sin(\omega_a t)\sin(\omega_b t) = \frac{\cos(\omega_a t + \omega_b t) - \cos(\omega_a t + \omega_b t)}{2}$$

We use the product-to-sum identities to break up the product of the sines into a sum of cosines. We can again rewrite the cosines in terms of sines by taking into account the phase difference.

$$\frac{\cos(\omega_a t + \omega_b t) - \cos(\omega_a t + \omega_b t)}{2} = \frac{\sin((\omega_a t + \omega_b t) + \pi/2) - \sin((\omega_a t + \omega_b t) + \pi/2)}{2}$$

This way, we can achieve a beating signal as a sum of sinusoids. For the purposes of this question, we chose  $\omega_a = 1$  and  $\omega_b = 10$  The values for each of the output terminals is as follows:

|                   | V1              | V2 | V3              | V4 |
|-------------------|-----------------|----|-----------------|----|
| Amplitude (Volts) | 3               | 0  | 1               | 0  |
| Frequency (Hz)    | -9              | 0  | 11              | 0  |
| Offset (Volts)    | 0               | 0  | 0               | 0  |
| Phase (Radians)   | $\frac{\pi}{2}$ | 0  | $\frac{\pi}{2}$ | 0  |

The required LabView screen shot can be seen in figure 4



Figure 4: The LabView front-end of a system that produces  $\sin(\omega_a t_a)\sin(\omega_b t_b)$ .