EE411 Information Theory and Coding

Homework #1

Site Fan fanst2021@mail.sustech.edu.cn

Exercise 1

Entropy of functions. Let X be a random variable taking on a finite number of values. What is the (general) inequality relationship of H(X) and H(Y) if

(a)
$$Y = 2^X$$
 ?

(b)
$$Y = \cos X$$
?

Solution

- (a) $Y=2^X$. If X takes on a finite number of values, then 2^X will also take on a finite number of values. The transformation from X to 2^X is a bijection, i.e., each X maps uniquely to a value of 2^X and vice versa. Therefore H(X)=H(Y).
- (b) $Y = \cos X$. The mapping $X \to \cos X$ is not one-to-one. Multiple values of X can map to the same value of $\cos X$. Hence the uncertainty in the original distribution is reduced when transformed to $\cos X$. Therefore $H(X) \ge H(Y)$.

Exercise 2

Minimum entropy. What is the minimum value of $H(p_1,...,p_n)=H({\tt p})$ as {\tt p} ranges over the set of n -dimensional probability vectors?

Find all p's which achieve this minimum.

Solution

Minimize
$$H(\mathtt{p}) = -\sum_{i=1}^n p_i \log p_i, \text{where } p_i \geq 0 \text{ and } \sum_{i=1}^n p_i = 1$$

The entropy is minimized when there exists $p_i = 1$ such that for any $j \neq i$, $p_j = 0$.

The minimum H(p) = 0, which is achieved when the probability mass concentrates on a single element, i.e., there is only one $p_i = 1$ while others $p_i = 0$.

Exercise 3

Entropy of functions of a random variable. Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

$$H(X, g(X)) \stackrel{(a)}{=} H(X) + H(g(X)|X)$$
 (2.166)

$$\stackrel{(b)}{=}H(X); \tag{2.167}$$

$$H(X, g(X)) \stackrel{(c)}{=} H(g(X)) + H(X|g(X))$$
 (2.168)

$$\stackrel{(d)}{\geq} H(g(X)). \tag{2.169}$$

Thus $H(g(X)) \leq H(X)$.

Solution

Using the Chain Rule, we have

$$H(X,g(X)) \stackrel{(a)}{=} H(X) + H(g(X)|X)$$

$$H(X,g(X)) \stackrel{(c)}{=} H(g(X)) + H(X|g(X))$$

Since x to g(x) is an **onto** mapping, for any $x \in \mathcal{X}$, p(g(x)|x) = 1, therefore H(g(X)|X) = 0, $H(X, g(X)) \stackrel{(b)}{=} H(X).$

On the other hand, x to g(x) may be not **one-to-one** (e.g. $X \to \cos X$), $p(x|g(x)) \le 1$, therefore $H(X|g(X)) \ge 0, H(X,g(X)) \ge H(g(X)).$

From (a) to (d), we have $H(g(X)) \leq H(X)$.

Exercise 4

Zero conditional entropy. Show that if H(Y|X) = 0, then Y is a function of X, i.e., for all x with p(x) > 0, there is only one possible value of y with p(x, y) > 0.

Solution

For conditional entropy $H(Y|X) = -\sum_x p(x) \sum_y p(y|x) \log p(y|x) = 0$, we can imply that for any p(x) > 0, the inner term $\sum_y p(y|x) \log p(y|x) = 0$ (*).

any p(x) > 0, the inner term $\sum_y p(y|x) \log p(y|x) - \sum_y p(y|x) = 1$. And for a fixed x, $\sum_y p(y|x) = 1$, for any 0 < p(y|x) < 1, $p(y|x) \log p(y|x) < 0$, meaning that to satisfy (\star) , there could only be one y such that p(y|x) = 1 and others be 0, to let $\sum_y p(y|x) \log p(y|x) = 0$.

of X. p(y|x) = 1, which means that Y is a function of X.