Домашние задание №15 Григорьев Дмитрий БПМИ-163

Задание 1.

Решение:

Заметим, что $A \setminus B = A \setminus (A \cap B)$. Так как $A \setminus B$ бесконечно, то $A \setminus (A \cap B)$ тоже бесконечно, а это значит мы можем выделить счетное подмножество C в $A \setminus (A \cap B)$. Теперь заметим, что $C \cup (A \cap B)$ - счетно, так как C счетно и $(A \cap B)$ либо счетно, либо конечно.

Пусть у нас есть биекция из $(A \setminus (A \cap B)) \setminus C$ в себя, биекция из C в $C \cup (A \cap B)$ (так как и то и то счетно).

Получилось, что из $A \setminus (A \cap B)$ установилось биективное соответствие в A, так как у нас есть биекция для $A \setminus (A \cap B) \setminus C$ и для C.

А в начале мы в начале сказали, что $A \setminus B = A \setminus (A \cap B)$, следовательно у нас есть биекция из $A \setminus B$ в A, значит они равномощны.

Ответ: верно

Задание 2.

Решение:

Если $A = B \neq \emptyset$, то $A \triangle B = \emptyset$. Получается, что $A \triangle B$ не равномощно A, так как пустое множество не может быть равномощным с непустым.

Ответ: не верно

Задание 3.

Решение:

Заметим, что $A \setminus B = A \setminus (A \cap B)$. Множество $A \setminus (A \cap B)$ бесконечно, так как $A \cap B$ - конечно, а это значит мы можем выделить счетное подмножество C в $A \setminus (A \cap B)$. Теперь заметим, что $C \cup (A \cap B)$ - счетно, так как C счетно и $(A \cap B)$ конечно. Пусть у нас есть биекция из $(A \setminus (A \cap B)) \setminus C$ в себя, биекция из C в $C \cup (A \cap B)$ (так как и то и то счетно).

Получилось, что из $A \setminus (A \cap B)$ установилось биективное соответствие в A, так как у нас есть биекция для $A \setminus (A \cap B) \setminus C$ и для C.

А в начале мы в начале сказали, что $A \setminus B = A \setminus (A \cap B)$, следовательно у нас есть биекция из $A \setminus B$ в A, значит они равномощны.

Ответ: верно

Задание 4.

Решение:

Пусть у нас имеется какое-то множество непересекающихся интервалов. Если их конечное число, то задача решена.

Иначе, мы можем на каждом интервале выбрать рациональное число, так как интервалы непересекаются, и у нас полилось счетное множество интервалов, так как множество рациональных чисел счетно.

ч.т.д.

Задание 5.

Решение:

Из бесконечного множества можно выделить счетное подмножество и разбить его на счетное подмножество счетных подмножеств, это сделать не сложно:

упорядочим все пары (i, j), такие, что $i, j \in \mathbb{N}$. Теперь сопоставим их элементам выделеного счетного подмножества. Разобьем это счетное подмножество на счетное подмножество счетных подмножеств, где каждому элементу соответствует пара индексов (i, j), с фиксированным j и любым натуральным i.

Получилось, что бесконечное множество можно разбить на счетное колиество счетных подмножеств.

ч.т.д.

Задание 7.

Решение:

Пусть множество всех строго возрастающих последовательностей - это A, а множество последовательностей натуральных чисел - это B. Мы знаем, что $\forall i: a_i < a_{i+1}$. Мы можем единственным образом задать B_i через последовательность из A: $\{b_1 = a_1, b_{i+1} = a_{i+1} - a_i\}$.

Таким образом, у нас есть явная биекция между А и В.

ч.т.д.