

PROTOKOLL THERMISCHE ENERGIETECHNIK

Grundlagen des Wärmepumpenprozesses

Teilnehmer:

Carolin Lohmann
Willy Messerschmidt
Marcus Willbrandt
Roman-Luca Zank

Protokollführer: Roman-Luca Zank

Versuchsbetreuung: Kathrin Stritzel

Datum der Versuchsdurchführung: 01.12.2020

Abgabe: 14.12.2020

Symbolverzeichnis

KM... Kältemittel KW... Kühlwasser P... Kompressorleistung (Messgerät) P_{Dia} ... Kompressorleistung (Diagramm) $\dot{m}_{\rm KM}$... Massenstrom des Kältemittels $\dot{m}_{\rm KW}$... Massenstrom des Kühlwassers ... gemessener Verdampferdruck Δp_1 ... absoluter Verdampferdruck p_1 ... gemessener Kondensatordruck Δp_2 absoluter Kondensatordruck p_2 t_1 ... Verdampferaustrittstemperatur Kondensatoreintrittstemperatur t_2 t_3 Kondensatoraustrittstemperatur Verdampfereintrittstemperatur t_4 Eintrittstemperatur Kühlwasser (Kompressor) t_5 t_6 Austrittstemperatur Kühlwasser (Kompressor) Austrittstemperatur Kühlwasser (Kondensator) t_7 t_8 Austrittstemperatur Kühlwasser (Verdampfer) Kältemittelenthalpien am Punkt i h_i $t_{\ddot{\mathsf{I}}\ddot{\mathsf{J}}}$ Überhitzungstemperatur Kondensationstemperatur bei p_2 t_{Kond} ... \dot{V}_1 ... Volumenstrom durch den Kompressor ... Eintrittstemperatur der Kühlluft t_9

 t_{10} ... Austrittstemperatur der Kühlluft

 v_L ... Luftgeschwindigkeit am luftgekoppelten Verdampfer

 p_u ... Umgebungsdruck

A ... Fläche des luftgekoppelten Verdampfers

 $\dot{Q}_{W,\mathrm{Verd}}$... Wärme im Verdampfer ausgehend vom Wasser

 \dot{Q}_{4-1} ... Wärme im Verdampfer an das Kältemittel

 \dot{Q}_{2-3} ... Wärme im Kondensator ausgehend vom Kältemittel

 $\dot{Q}_{W,\mathrm{kond}}$... Wärme im Kondensator an das Wasser

 \dot{Q}_{1-2} ... Wärme im Kompressor ausgehend vom Kältemittel

 $\dot{Q}_{W,5-6}$... Wärme im Kompressor an das Wasser

 $\dot{Q}_{W,5-7}$... Gesamtwärmeübertragung an das Wasser

 $\dot{Q}_{\ddot{\Pi}}$... Überhitzungswärme

 \dot{Q}_K ... Kondensationswärme

 \dot{Q}_H ... Heizwärme

 ε ... Leistungsziffer

 π ... Druckverhältnis

 ΔT ... Temperaturhub

1 Einleitung und Versuchsziel

Im folgenden Versuch werden die Grundlagen des Wärmepumpenprozesses an einer Beispielanlage untersucht und die Ergebnisse verschiedener Fahrweisen diskutiert. Es werden Kenntnisse zu linksläufigen Kreisprozessen, Arbeit mit einem $\lg p, h$ -Diagramm, sowie die energetische Bilanzierung der einzelnen Apparate und des Gesamtprozesses. In den folgenden Abbildungen 1, 2 und 3 sind zwei schematische Skizzen, sowie der technische Versuchsaufbau der zwei grundlegenden Fahrweisen dargestellt.

Abb. 1: Schematik des Versuchsaufbaus mit wasserdurchströmten Verdampfer

Abb. 2: Schematik des Versuchsaufbaus mit luftgekoppelten Verdampfer

Air and Water Heat Pump R831 Condancer Texperature Pressure Evaporator Pressure Evaporator Pressure Evaporator Pressure Evaporator Valve Normally Open Water Cooled Condancer Solienoid Valve Normally Open Helter Cooled Condancer Solienoid Valve Normally Open Helter Solienoid Valve Normally Open Helter Solienoid Valve Normally Open Helter Solienoid Valve Condancer Solienoid Valve Normally Open Helter Solienoid Valve Normally Open Helter Solienoid Valve Normally Open Helter Solienoid Valve Condancer Solienoid Valve Normally Open Helter Solienoid Valve Normally O

Abb. 3: Technische Zeichnung des Versuchsaufbaus

2 Versuchsdurchführung

Die Anlage wurde durch Anstellen des Wasserkreislaufes, der Durchflussmessgeräte, sowie durch das Umlegen des Hauptschalters in Betrieb genommen.

Für die ersten fünf Messreihen wird der wasserdurchströmter Verdampfer genutzt, welcher durch einen Schalter aktiviert wird.

Für die ersten drei Messreihen wurde der Massenstrom des Kühlwassers durch den wasserdurchströmten Verdampfer konstant auf $50\frac{\rm g}{\rm s}$ gehalten und die Massenströme des Kühlwassers in den Kompressor bzw. Kondensator wurden auf $27\frac{\rm g}{\rm s}$, $20\frac{\rm g}{\rm s}$ und $15\frac{\rm g}{\rm s}$ für die Messreihen 1 bis 3 eingestellt. Die Einstellung der Massenströme erfolgt analog über ein Einstellrad. Abgelesen wurde ebenfalls analog über die aufgebrachte Skala der Durchflussmesser.

Die darauffolgenden Messreihen 4 und 5 wurden mit konstantem Massenstrom des Kühlwassers von $15\frac{\rm g}{\rm s}$ durch Kompressor bzw. Kondensator und der Massenstrom des Kühlwassers durch den wasserdurchströmten Verdampfer mit $35\frac{\rm g}{\rm s}$ und $20\frac{\rm g}{\rm s}$ gefahren.

Für Messreihe 6 erfolgte ein Umschalten auf den luftgekoppelten Verdampfer. Bei dieser Messreihe wurde ein Massenstrom von $16\frac{g}{s}$ für das Kühlwasser des Kompressors bzw. Kondensators gefahren. Der Volumenstrom der Luft wurde durch punktuelle Messung der Luftgeschwindigkeit (siehe Abb. 4), der Temperatur und Abmessung des Luftaustrittsquerschnitts im Verdampfer berechnet.

Abb. 4: Skizze zur Messung der Luftgeschwindigkeiten und Abmaße des luftgekoppelten Verdampfers

Ansonsten gilt für jede Messreihe, dass die entsprechenden Temperaturen der Ströme sensorisch gemessen und digital ausgegeben wurden. Die Kompressorleistung ließ sich dagegen für jede Messreihe analog mittels Zeiger des Drehpulsmesswerkes ablesen. Die Drücke in Kompressor und Kondensator wurden mittels Manometer aufgenommen und ebenfalls analog abgelesen. Die Umgebungstemperatur, sowie der Umgebungsdruck wurden mit der bereitgestellten, anlagenunabhängigen Barometer-Thermometer-Einheit analog abgelesen.

3 Ergebnisse

Messdaten

Tab. 1: Messdaten

Messdaten	Messreihe			2	3	4	5	6			
	Kompressorleistung	$P\left[\mathbf{W}\right]$	360	380	410	400	380	400			
	Umgebungsdruck $p_u [kPa]$			101,7							
	Massenstrom Kältemittel	$\dot{m}_{KM} \left[\frac{\mathrm{g}}{\mathrm{s}} \right]$	5,0	5,8	6,5	6,1	5,7	6,0			
	gemessener Verdampferdruck	dp_1 [kPa]	115	140	180	155	120	160			
	absoluter Verdampferdruck	p_1 [kPa]	216,7	241,7	281,7	256,7	221,7	261,7			
	gemessener Kondensatordruck	dp_2 [kPa]	600	720	1900	870	800	160			
R134a	absoluter Kondensatordruck	$p_2 [\mathrm{kPa}]$	701,7	821,7	2001,7	971,7	901,7	904,7			
1(104a	Verdampferaustritts- temperatur	t_1 [°C]	8,4	8,1	7,8	7,8	10,2	14,4			
	Kondensatoreintritts-	t_2 [°C]	60,0	64,3	67,7	67,8	56,4	65,2			
	temperatur										
	Kondensatoraustritts-	t_3 [°C]	21,9	26,0	34,0	33,2	30,6	32,8			
	temperatur										
	Verdampfereintritts- temperatur	t ₄ [°C]	-9,5	-6,1	-3,8	-4,8	-8,4	-2,7			
Kompressor-	Massenstrom Kühlwasser	$\dot{m}_{KW} \left[\frac{\mathrm{g}}{\mathrm{s}} \right]$	27	20	15	15	15	16			
kühlung	Eintrittstemperatur Kühlwasser	t ₅ [°C]	7,7	7,6	7,8	7,7	7,8	8,3			
	Austrittstemperatur Kühlwasser	t ₆ [°C]	8,2	8,7	9,3	9,3	8,9	9,6			
Kondensator- kühlung	Massenstrom Kühlwasser	$\dot{m}_{KW} \left[\frac{\mathrm{g}}{\mathrm{s}} \right]$	27	20	15	15	15	16			
	Eintrittstemperatur Kühlwasser	t ₆ [°C]	8,2	8,7	9,3	9,3	8,9	9,6			
	Austrittstemperatur Kühlwasser	t ₇ [°C]	19,8	26,5	34,0	32,1	29,7	32,6			
wasser-	Massenstrom Kühlwasser	$\dot{m}_{KW} \left[\frac{\mathrm{g}}{\mathrm{s}} \right]$	50	50	50	35	20	-			
durchströmter Verdampfer	Eintrittstemperatur Kühlwasser	t ₅ [°C]	7,7	7,6	7,8	7,7	7,8	-			
verdampier	Austrittstemperatur Kühlwasser	<i>t</i> ₈ [°C]	3,1	3,0	2,6	1,0	0	-			

Tab. 2: Mess
daten zu Messreihe6- luftgekoppelter Verdampfer

${f Messpunkt}$			2	3	4	5	Mittelwert			
Luftaustrittsfläche $A [\mathrm{m}^2]$		0,081								
Umgebungstemperatur	<i>t</i> ₉ [°C]	22,7								
Luftaustrittstemperatur	t ₁₀ [°C]	5,3	9,2	4,9	9,4	16,2	9,0			
Luftgeschwindigkeit	$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	2,70	2,20	2,18	2,43	1,84	2,27			

Auswertung der Messdaten

Die Auswertung der aufgenommenen Messreihen beginnt bei Messreihe 6, da hier aufgrund des luftgekoppelten Verdampfers zusätzliche Auswertungsschritte notwendig sind.

Wie in Tabelle 3 festgehalten, wird angenommen, dass die Wärmekapazität, sowie die Dichter der Luft mit den dargstellten Werten als konstant angenommen werden.

Die Berechnung des Volumenstroms, sowie des Massenstrom der Luft sind in den Gleichungen 1 und 2 dargestellt.

Folgende Berechnungen, wie die der übertragenen Wärmen, werden sich auf die Mittelwerte und Annahmen dieser Tabelle 3 beziehen.

$$\dot{V}_L = v_L \cdot A = 2,70 \,\frac{\text{m}}{\text{s}} \cdot 0,081 \,\text{m}^2$$
$$= 0,22 \,\frac{\text{m}^3}{\text{s}} \tag{1}$$

$$\dot{m}_L = \dot{V}_L \cdot \rho_L = 0.22 \frac{\text{m}^3}{\text{s}} \cdot 1.2 \frac{\text{kg}}{\text{m}^3}$$
$$= 0.26 \frac{\text{kg}}{\text{s}}$$
(2)

Tab. 3: zusätzliche Auswertung von Messreihe 6

Messpunkt			2	3	4	5	Mittelwert
Dichte der Luft	$\rho_L \left[\frac{\mathrm{kg}}{\mathrm{m}^3} \right]$				1,2		
Wärmekapazität der Luft	$c_{p_L} \left[\frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}} \right]$				1,0		
Volumenstrom der Luft	$\dot{V}_L \left[\frac{\mathrm{m}^3}{\mathrm{s}} \right]$	0,22	0,18	0,18	0,20	0,15	0,18
Massenstrom der Luft	$\dot{m}_L \left[\frac{\text{kg}}{\text{s}} \right]$	0,26	$0,\!22$	$0,\!22$	$0,\!24$	0,18	0,22

$$P_{\text{Dia}} = \dot{m}_{KM} \cdot (h_2 - h_1) = 5.0 \cdot 10^{-3} \, \frac{\text{kg}}{\text{s}} \cdot \left(446 \, \frac{\text{kJ}}{\text{kg}} - 408 \, \frac{\text{kJ}}{\text{kg}} \right)$$
$$= \underline{190 \, \text{W}} \tag{3}$$

Tab. 4: Ausgewertete Messdaten der Messreihe 1 bis 6

Messreihe			2	3	4	5	6
Kompressorleistung	$P\left[\mathbf{W}\right]$	360	380	410	400	390	400
Kompressorleistung (Dia)	$P_{\mathrm{Dia}}\left[\mathbf{W}\right]$	190	220	163	336	114	264
	$h_1 \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right]$	408	407	405	405	410	405
Kältemittelenthalpien	$h_2 \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right]$	446	445	430	460	430	449
ranchioeconomarpien	$h_3 \left[\frac{\tilde{\mathrm{kJ}}}{\mathrm{kg}} \right]$	230	233	248	249	243	249
	$h_4 \left[\frac{\text{kJ}}{\text{kg}}\right]$	230	233	248	249	243	249
Verdampfungstemperatur	t ₄ [°C]	-9,5	-6,1	-3,8	-4,8	-8,4	-2,7
Kondensationstemperatur bei p_2	$t_{\mathrm{Kond}} [^{\circ}\mathrm{C}]$	27	35	68	38	36	36
spezifisches Volumen	$v_1 \left[\frac{\mathrm{dm}^3}{\mathrm{kg}} \right]$	30	25	9	21	23	78
Volumenstrom durch den Kompressor	$\dot{V}_1 \cdot 10^{-4} \left[\frac{\mathrm{m}^3}{\mathrm{s}} \right]$	1,5	1,5	0,59	1,3	1,3	4,7
Kältemittelmassenstrom	$\dot{m}_{KM} \cdot 10^{-3} \left[\frac{\text{kg}}{\text{s}} \right]$	5,0	5,8	6,5	6,1	5,7	6,0e-3
Wärmeübertragung im Verdampfer							
vom Wasser	$\dot{Q}_{\mathrm{W,\ Verd}}\left[\mathrm{W}\right]$	961	961	1087	980	652	3002
an das Kältemittel	$\dot{Q}_{4-1}\left[\mathbf{W}\right]$	890	1009	1021	952	952	936
Wärmeübertragung im Kondensator							
vom Kältemittel	$\dot{Q}_{2-3}\left[\mathbf{W}\right]$	1080	1230	1183	1287	1066	1200
an das Wasser	$\dot{Q}_{\mathrm{W,\ kond}}\left[\mathrm{W}\right]$	1309	1488	1549	1492	1304	1538
Wärmeübertragung im Kompressor							
vom Kältemittel	$\dot{Q}_{1-2}\left[\mathbf{W}\right]$	190	220	163	336	114	264
an das Wasser	$\dot{Q}_{\mathrm{W, 5-6}}\left[\mathrm{W}\right]$	56	92	94	100	69	87
Gesamtwärmeübertragung an das Wasser	$\dot{Q}_{ m W, \ 5-7} [m W]$	1366	1580	1643	1593	1373	1625
Leistungsziffer	$\varepsilon[-]$	3,6	3,9	3,8	3,7	3,3	3,8
Druckverhältnis	$\pi[-]$	3,2	3,4	7,1	3,8	4,1	3,5

Lösung der Aufgaben

Aufgabe 4

Aufgabe 5

Aufgabe 7

Tab. 5: Leistungsziffern: Kondensationswärme, Kondensations- und Kompressionswärme, Kältemaschine

Messreihe			2	3	4	5	6
Leistungsziffer	$\varepsilon_{\mathrm{Kond}}\left[-\right]$	3,6	3,9	3,8	3,7	3,3	3,8
	$\varepsilon_{\mathrm{Kond+Komp}}\left[-\right]$						
Leistungsziffer	$\varepsilon_{\text{K\"{a}ltemaschine}}[-]$	2,7	2,5	2,7	2,5	1,7	7,5

Aufgabe 6

Abb. 5: Leistungsziffern in Abhängigkeit vom Temperaturhub

Abb. 6: Überhitzungstemperaturen in Abhängigkeit vom Temperaturhub

Abb. 7: Überhitzungs-, Kondensations- und Heizwärme in Abhängigkeit vom Temperaturhub

4 Diskussion der Ergebnisse

Literatur