Problemes Tema 2

Vectors

1. Calcula les components, mòdul, direcció i sentit dels següents vectors (cada quadret és una unitat de mesura).

- 2. Calcula les components, mòdul, direcció i sentit de \overrightarrow{AB} on
 - a) A(1,2) i B(2,5)
 - b) A(-8,2) i B(-5,-6)
 - c) A(2,-2) i B(1,-5)
- 3. Dibuixa i calcula les components del vector de
 - a) Mòdul 3, angle 30
 - b) Mòdul 5, angle 120
 - c) Mòdul 3, angle 180
 - $d)\,$ Mòdul 1, angle 240
- 4. Expressa una relació vectorial entre els vectors de les següents figures

5. Expressa relacions vectorials entre els vectors de les figures:

- 6. Comprova de dues formes diferents si els punts A(1,2,3), B(0,-1,2) i C(-2,-7,0) están o no alineats. Raona ambdós mètodes i les passes de cada procediment.
- 7. Obten les coordenades del punt que divideix en dues parts iguals el segment d'extrems A(2,0,-4) i B(-4,4,-2).

- 8. Obten les coordenades dels dos punts que divideixen en tres parts iguals el segment d'extrems A(2,0,-4) i B(-4,4,-2).
- 9. Donats $\vec{u}=(1,2,-3), \vec{v}=(-2,-1,4), \vec{w}=(0,2,0), \vec{z}=(1,0,-3),$ calculeu analíticament el valor de
 - a) $\vec{u} + \vec{v} \vec{w} + \vec{z}$
 - b) $(\vec{u} + \vec{v}) (\vec{w} + \vec{z})$
 - c) $3\vec{u} 2\vec{v} + 4\vec{w} \vec{z}$
- 10. Estudiar si $\vec{v}=(1,2,-1)$ és combinació lineal dels vectors $\vec{a}=(1,2,2), \vec{b}=(0,0,3), \vec{c}=(-2,4,-3).$
- 11. Donat el conjunt de vectors $\vec{a} = (1, 2, 1), \vec{b} = (-1, 0, 3), \vec{c} = (2, 1, -4), \vec{v} = (-3, -2, 4)$, esbrinau si el vector \vec{v} és combinació lineal de \vec{a} , \vec{b} i \vec{c} . Esbrinau també si \vec{c} és combinació lineal de \vec{a} i \vec{b}
- 12. Donats els punts P = (3,0,0), Q = (0,2,0), R = (0,0,-4), S = (3,-2,4),
 - a) Calcula la norma dels vectors PQ, RS, OP, OR
 - b) Calcula la distància entre P i Q, R i S, O i P, O i R.
 - c) Calcula vectors unitaris proporcionals a PQ, RS, OP, OR
 - d) Troba, si és possible, una combinació lineal de OP i OR tal que el seu resultat sigui el vector PQ.
 - e) Troba, si és possible, una combinació lineal de OP, OR i PS tal que el seu resultat sigui el vector PQ.
- 13. Trobau el valor de a i b per tal que (a,b,-37,-3) sigui combinació lineal de (1,2,-5,3) i (2,-1,4,7)
- 14. Escriu raonadament dos vectors de l'espai \mathbb{R}^3 que siguin perpendiculars. Obtén també un tercer vector perpendicular als altres dos.
- 15. Donats $\vec{u} = (1, 2, -3), \vec{v} = (-2, -1, 4), \vec{w} = (0, 2, 0)$ i $\vec{z} = (1, 0, -3)$ calculau
 - $a) \vec{u} \cdot \vec{v}$
 - b) $\vec{u} \cdot (-\vec{v})$
 - c) $(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$
 - $d) (\vec{u} \vec{v}) \cdot (\vec{u} \vec{v})$
 - e) $||\vec{u}||$
 - $f) ||\vec{v}||$
 - $g) ||\vec{u} \vec{v}||$
 - $h) ||\vec{u} + \vec{v} \vec{w}||$
- 16. Calcula la distància entre els punts A(2,-3) i B(-2,5)
- 17. Esbrina quines de les següents parelles de vectors són ortogonals. Determina en cada cas l'angle que formen els vectors

- a) (1,2) i (-2,1)
- b) (1,-1,1) i (-1,1,-1)
- c) (a, -b, 1) i (b, a, 0)
- 18. Sigui $\vec{u} = (1, 2, -3)$
 - a) Troba un vector unitari de la mateixa direcció i sentit que \vec{u} .
 - b) Troba un vector de la mateixa direcció i sentit que \vec{u} i de mòdul 3.
 - c) Troba un vector unitari perpendicular a \vec{u} .
- 19. Donats els vectors $\vec{u}=(2,0,0), \vec{v}=(0,1,-3)$ i $\vec{w}=a\vec{u}+b\vec{v}$, quina condició han de cumplir els escalars a i b per tal de que
 - a) \vec{w} sigui ortogonal al vector (1,1,1)
 - b) \vec{w} sigui unitari
 - c) \vec{w} sigui paral·lel al vector (1, -2, 6)
 - d) Per a a=1 i b=-1, calculau el vector de longitud 3, en sentit oposat a \vec{w}
- 20. Siguin \vec{a} i \vec{b} dos vectors tals que $||\vec{a}|| = 3$ i $||\vec{b}|| = 2$. Pot ocorrer que $\vec{a} \cdot \vec{b} = -7$? Quins valors pot prendre el producte escalar $\vec{a} \cdot \vec{b}$? Quin és el màxim valor que pot prendre $||\vec{a} \vec{b}||$? I el mínim? Quant val $||\vec{a} \vec{b}||$ si els dos vectors són perpendiculars?
- 21. Demostra que $||\vec{a} + \vec{b}|| \le ||\vec{a}|| + ||\vec{b}||$.
- 22. Siguin P=(5,7) i Q=(8,3) els vèrtexos del quadrat PQSR

- a) Calcula el punt S saben que es troba sobre l'eix OX
- b) Calcula el punt R
- c) Calcula el centre i l'àrea del quadrat

23. Comprova que l'operació entre dos vectors de \mathbb{R}^3 definida per

$$(a, b, c) \cdot (a', b', c') = aa' + 2bb' + 3cc'$$

compleix les condicions de producte escalar. Calcula la norma del vector $\vec{u} = (-1, 0, 2)$ amb aquesta definició i emprant també la del producte escalar usual.

- 24. Calcula l'angle que formen \vec{a} i \vec{b} sabent que $||\vec{a}||=3, ||\vec{b}||=5$ i $||\vec{a}+\vec{b}||=7$.
- 25. Siguin $\vec{u} = (1, 2, -3)$ i $\vec{v} = (0, -2, 1)$
 - a) Obteniu un vector perpendicular als dos.
 - b) Obteniu un vector perpendicular i unitari als dos.
 - c) Obteniu un vector perpendicular als dos i de norma 3.
- 26. Donats els punts A = (1, -1, 3), B = (1, 0, -2) i C = (-2, 4, 0) calculau si és possible un punt D tal que la figura formada unint els punts consecutivament formi un paralel·logram. Calculau-ne l'àrea.
- 27. Tria l'opció correcta. Donats dos vectors de \mathbb{R}^3 , \vec{u} i \vec{v} tals que $\vec{u} \wedge \vec{v} = -3\vec{i}$, on $\vec{i} = (1,0,0)$.
 - a) \vec{u} i \vec{v} són perpendiculars.
 - b) \vec{u} i \vec{v} són paral·lels.
 - c) Les condicions de l'enunciat no es poden complir mai.
 - d) \vec{u} i \vec{v} són perpendiculars a l'eix OX.
- 28. Com han de ser dos vectors per tal que el seu producte escalar sigui màxim? Quien és en aquest cas el producte vectorial? Justifica-ho.
- 29. Donats els punts A = (1, 4, -3), B = (-1, 0, 2) i C = (5, -4, 1), troba un quart punt D tal que els quatre punts estiguin en el mateix pla. Pista: empra el producte mixt.
- 30. Donats els punts A = (1, 4, -3), B = (-1, 0, 2) i C = (5, -4, 1), troba un quart punt D tal que els quatre punts NO estiguin en el mateix pla. Pista: empra el producte mixt.