REMARKS

The above is believed to be self-explanatory.

Respectfully submitted,

Anthony J. Zelano (Reg. No. 27,969)

3. She leg. #32,004

Registration No. 27,969 Attorney for Applicants

Jennifer J. Branigan (Reg. No. 40,921)

(Patent Agent)

MILLEN, WHITE, ZELANO & BRANIGAN, P. C.

2200 Clarendon Boulevard, Suite 1400

Arlington Courthouse Plaza I

Arlington, Virginia 22201

Direct Dial: (703) 812-5311

Internet address: zelano@mwzb.com

Filed: September 6, 2001

JJB/njr

K:\Sch\1722\preliminary amendment 2.wpd

VERSION WITH MARKINGS TO SHOW CHANGES MADE

Please amend the claims as follows:

- 1. A galenical formulation, characterized in that is contains comprising paramagnetic and diamagnetic perfluoroalkyl-containing substances.
- 2. A formulation Formulation according to claim 1, wherein the ratio of paramagnetic to the diamagnetic perfluoroalkyl-containing substances lies between 5:95 and 95:5.
- 3. A formulation Formulation according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are present dissolved in an aqueous solvent.
- 4. A formulation Formulation according to claim 1, wherein the paramagnetic perfluoroalkyl-containing compounds are those of general formula I:

in which R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes.

- 5. A formulation Formulation according to claim 4, wherein molecule portion A stands for a group L-M, whereby L stands for a linker and M stands for a metal complex that consists of an open-chain or cyclic chelating agent, which as a central atom contains an atom of atomic numbers 21-29, 39, 42, 44 or 57-83.
- 6. A formulation Formulation according to claim 5, wherein linker L is a direct bond, a methylene group, an -NHCO group, a group

$$(CH_2)$$
-NHCOCH₂- (CH_2) _p- q N - SO_2 -

whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂-CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C_2 - C_{30} carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

$$-CO - N - T - N(R^1) - SO_2 - R^F$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F,

whereby

 \mathbb{R}^1

R¹, and p and q have the above-indicated meanings, and R^F is defined as in claim 4 represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms

T means a C_2 - C_{10} chain, which optionally is interrupted by 1 to 2 oxygen atoms or 1 to 2 -NHCO groups.

7. A formulation Formulation according to claim 5, wherein metal complex M stands for a complex of general formula II

$$O = C$$

$$O =$$

in which R3, Z1 and Y are independent of one another, and

has the meaning of R¹ or -(CH₂)_m-L-R^F, whereby m is 0, 1 or 2, and L and R^f-have the meaning that is mentioned in claim 6, is a direct bond, a methylene group, an -NHCO group, a group

$$- \left[(CH_2)_U - NHCOCH_2 - (CH_2)_p \right]_q \stackrel{R}{\longrightarrow} N - SO_2 -$$

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

R¹ means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂
CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to

3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl

group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F.

whereby

R¹, and p and q have the above-indicated meanings,

and R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes,

- Z¹, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,
- Y means -OZ¹ or

$$-N$$
 $CH_2CH_2-L-R^F$
 R^3
or
 $N-SO_2-L-R^F$

whereby Z¹ and R³ have the above-mentioned meanings. , and linker L is defined as in claim 6

and R^F is defined as in claim 4.

8.A formulation Formulation according to claim 5, wherein metal complex M stands for a complex of general formula III

in which \mathbb{R}^3 -and \mathbb{Z}^4 -have the meanings that are mentioned in claim 7 \mathbb{R}^3 and \mathbb{Z}^1 are independent of one another, and

<u>R</u>³ has the meaning of R¹ or -(CH₂)_m-L-R^F, whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂-CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

-CO-N-T-N(R¹)-SO₂-R^F or 1 to 2
$$R^{1}$$

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F,

whereby

 \mathbf{R}^{1}

R¹, and p and q have the above-indicated meanings,

and R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes,

SCH-1722

<u>Z¹</u>, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and R²

has the meaning of R1 in claim 6 means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂-CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C_2 - C_{30} carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

-CO-N-T-N(R
1
)-SO $_2$ -R F or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)₀-CO₂H groups, 1 to 2 groups -(CH₂)₀-(O)₀-CH₂CH₂-R^F.

9. A formulation Formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula IV

$$z^{1}o_{2}C$$
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$

in which Z¹ has the meaning that is mentioned in claim 7.

independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

10. A formulation Formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula V

$$z O_2 C$$
 $CO_2 Z^1$
 $CO_2 Z^1$

in which Z¹ has the meaning that is mentioned in claim 7,

independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and o and q stand for numbers 0 or 1, and yields the sum o + q = 1.

11. A formulation Formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula VI

in which Z¹ has the meaning that is mentioned in claim 7

independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

12. A formulation Formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula VII

$$z^{1}o_{2}c$$
 N
 N
 $Co_{2}z^{1}$
 $Co_{2}z^{1}$

in which Z¹ and Y have the meanings that are mentioned in claim 7: independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and Y means $-OZ^1$ or

$$-N$$
 $CH_2CH_2-L-R^F$
 R^3
or
 $N-SO_2-L-R^F$

13. A formulation Formulation according to claim 5, wherein metal complex M is a complex of general formula VIII

$$1ZO_2C$$
 CO_2Z^1
 CO_2Z^1

(VIII)

in which R³ and Z[†] have the meanings that are mentioned in claim 7,

<u>R</u>³ <u>has the meaning of R¹ or -(CH₂)_m-L-R^F, whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group</u>

$$-CO - N - T - N(R^{1}) - SO_{2} - R^{F}$$
 or 1 to 2

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

R¹ means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂
CO₂H group or a C₂-C₁₅ chain, which optionally is interrupted by 1 to

3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl

group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C₁-C₄

alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

$$-CO - N - T - N(R^{1}) - SO_{2} - R^{F}$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F,

whereby

R¹, and p and q have the above-indicated meanings,

and R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and R2

has the meaning of R1 in claim 6

-means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂-CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups, or a straight-chain, branched, saturated or unsaturated C_2 - C_{30} carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

$$-CO - N - T - N(R^{l}) - SO_2 - R^{F}$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂-CH₂-R^F.

14. A formulation Formulation according to claim 5, wherein metal complex M is a complex of general formula IX

$$Z^{1}O_{2}C$$
 N
 N
 OH
 $CO_{2}Z^{1}$
 R^{3}
 $I_{2}I_{2}I_{2}$
 $I(IX)$

in which \mathbb{R}^3 and \mathbb{Z}^4 have the meanings that are mentioned in claim 7.

 R^3 has the meaning of R^1 or $-(CH_2)_m$ -L- R^F , whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

$$-CO - N - T - N(R^{1}) - SO_{2} - R^{F}$$
 or 1 to 2

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

R¹ means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂
CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to

3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl

group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

$$-CO - N - T - N(R^{1}) - SO_{2} - R^{F}$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂-CH₂-R^F,

whereby

R1, and p and q have the above-indicated meanings,

and R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

15. A formulation Formulation according to claim 5, wherein metal complex M is a complex of general formula X

$$z^{1}O_{2}C$$
 N
 N
 OH
 $CO_{2}Z^{1}$
 R^{3}
 (X)

in which R³ and Z[†] have the meanings that are mentioned in claim 7.

has the meaning of R¹ or -(CH₂)_m-L-R^F, whereby m is 0, 1 or 2, and L is a direct bond, a methylene group, an -NHCO group, a group

$$-CO - N - T - N(R^1) - SO_2 - R^F$$
 or 1 to 2

whereby p means the numbers 0 to 10, q and u, independently of one another, mean the numbers 0 or 1, and

means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂
CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to

3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl

group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

$$-CO - N - T - N(R^{1}) - SO_{2} - R^{F}$$
 or 1 to 2

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F,

whereby

 \mathbb{Z}^1

R1, and p and q have the above-indicated meanings,

and R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

16. A formulation Formulation according to claim 5, wherein metal complex M is a complex of general formula XI

in which Z^t, p and q have the meaning that is mentioned in claim 7,

Z¹, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83,

and whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and R^2 -has the meaning of R^4 in claim 6.

means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂-CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C_2 - C_{30} carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

-CO-N-T-N(
$$R^1$$
)-SO₂- R^F or 1 to 2 R^1

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F.

17. A formulation Formulation according to claim 5, wherein metal complex M is a complex of general formula XII

$$\begin{array}{c|c}
O \\
N - SO_{2} - W \\
N - SO_{2} - W \\
N - SO_{2} - L - R^{F} \\
CO_{2}Z^{1} \\
CO_{2}Z^{1}
\end{array}$$
(XII)

in which L is defined as in claim 6 is a direct bond, a methylene group, an -NHCO group, a group

whereby p means the numbers 0 to 10, q and u,

independently of one another, mean the numbers 0 or 1, and

R¹ means a hydrogen atom, a methyl group, a -CH₂-OH group, a -CH₂-CO₂H group or a C_2 - C_{15} chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C_1 - C_4 alkoxy groups, 1 to 2 carboxy groups,

or a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR¹ groups, 1 to 2 sulfur atoms, a piperazine, a -CONR¹ group, an -NR¹CO group, an -SO₂ group, an -NR¹-CO₂ group, 1 to 2 CO groups, a group

-CO-N-T-N(R¹)-SO₂-R^F or 1 to 2
$$R^{1}$$

optionally substituted aryls and/or is interrupted by these groups and/or is optionally substituted with 1 to 3 -OR¹ groups, 1 to 2 oxo groups, 1 to 2 -NH-COR¹ groups, 1 to 2 -CONHR¹ groups, 1 to 2 (-CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F,

whereby

R¹, and p and q have the above-indicated meanings,

R^F is defined as in claim 4 represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and A is a molecule portion that contains 1-6 metal complexes, and Z¹ is defined as in claim 7 Z¹, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

18. A formulation Formulation according to claim 5, wherein metal complex M is a complex of general formula XIII

$$\begin{array}{c|c}
 & CO_2 Z^1 \\
 & CO_2 Z^1 \\
 & CO - N \\
 & CO_2 Z^1
\end{array}$$

$$\begin{array}{c|c}
 & CO_2 Z^1 \\
 & CO_2 Z^1
\end{array}$$
(XIII)

in which \mathbb{Z}^{t} has the meaning that is mentioned in claim 7 \mathbb{Z}^{1} , independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 39, 42, 44 or 57-83.

19. A formulation according to claim 4, wherein molecule portion A has the following structure:

whereby

- q¹ is a number 0, 1, 2 or 3,
- K stands for a complexing agent or metal complex or salts thereof of organic and/or inorganic bases or amino acids or amino acid amides,
- X is a direct bond for the perfluoroalkyl group, a phenylene group or a C_1 - C_{10} alkyl chain, which optionally contains 1-15 oxygen atoms, 1-5 sulfur atoms, 1-10 carbonyl groups, 1-10 (NR) groups, 1-2 NRSO₂ groups, 1-10 CONR groups, 1 piperidine group, 1-3 SO₂ groups, 1-2 phenylene groups or optionally is substituted by 1-3 radicals R^F, in which R stands for a hydrogen atom, a phenyl, benzyl or a C_1 - C_{15} alkyl group, which optionally contains 1-2 NHCO groups, 1-2 CO groups, 1-5 oxygen atoms and optionally is substituted by 1-5 hydroxy, 1-5 methoxy, 1-3 carboxy, 1-3 R^F radicals,
- Y is a direct bond or a chain of general formula II' or III':

$$\beta - N - (CH_2)_k - (Z^1)_l - (CH_2)_m - C - \alpha$$

$$\downarrow R^{1a}$$
(II¹)

$$\beta-N-CH_2-C-N$$

$$\downarrow$$

$$H$$

$$O$$

$$(CH_2)_{0-5}$$

$$C-\alpha$$

$$K-N-CH_2-C-N$$

$$\downarrow$$

$$H$$

$$H$$

$$(III^1)$$

in which

- R^{1a} is a hydrogen atom, a phenyl group, a benzyl group or a C₁-C₇ alkyl group, which optionally is substituted with a carboxy group, a methoxy group or a hydroxy group,
- Z¹ is a direct bond, a polyglycol ether group with up to 5 glycol units or a molecule portion of general formula IV¹

-CH(
$$R^{2a}$$
)- (IV¹)

in which R^{2a} is a C_1 - C_7 carboxylic acid, a phenyl group, a benzyl group or a -(CH₂)₁₋₅-NH-K group,

- lacktriangleright represents the binding to the nitrogen atom of the skeleton chain, eta represents the binding to the complexing agent or metal complex K,
- and in which variables k and m stand for natural numbers between 0 and 10, and 1 stands for 0 or 1,

and whereby

• G is a CO or SO₂ group.

20. A formulation Formulation according to claim 5, in which linker L stands for a molecule portion according to general formula XIV

in which

N represents a nitrogen atom,

M1 means a hydrogen atom, a straight-chain or branched C₁-C₃₀ alkyl group, which optionally is interrupted by 1-15 oxygen atoms and/or optionally is substituted with 1-10 hydroxy groups, 1-2 COOH groups, a phenyl group, a benzyl group and/or 1-5 -OR⁴ groups, with R⁴ in the meaning of a hydrogen atom or a C₁-C₇ alkyl radical, or B1-R^F,

means a straight-chain or branched C₁-C₃₀ alkylene group that optionally is interrupted by 1-10 oxygen atoms, 1-5 -NH-CO groups, 1-5 -CO-NH groups, by a phenylene group (that is optionally substituted by a COOH group), 1-3 sulfur atoms, 1-2 -N(B2)-SO₂ groups, and/or 1-2 -SO₂-N(B2) groups with B2 in the meaning of A1, an NHCO group, a CONH group, an N(B2)-SO₂ group, or an -SO₂-N(B2) group and/or optionally is substituted with radical R^F a straight or branched perfluoroalkyl radical with 4 to 30 carbon atoms,

and in which a represents the binding to metal complex M, and b

represents the binding to perfluoroalkyl group R^F- a straight or branched perfluoroalkyl radical with 4 to 30 carbon atoms.

21. A formulation Formulation according to claim 5, wherein metal complex M stands for a metal complex of general formula XV

$$\begin{array}{c|c} & & & \\ & & &$$

whereby R¹

stands for a hydrogen atom or a metal ion equivalent of atomic numbers 21-29, 31, 32, 37-39, 42-44, 49 or 57-83,

 R^2 and R^3

stand for a hydrogen atom, a C_1 - C_7 alkyl group, a benzyl

group, a phenyl group,

-CH₂OH or -CH₂-OCH₃,

U

stands for radical L-according to claim 19, in which radical L
stands for a molecule portion according to general formula
XIV

in which

- N represents a nitrogen atom,
- <u>Manager atom, a straight-chain or branched C₁-C₃₀ alkyl group, which optionally is interrupted by 1-15 oxygen atoms and/or optionally is substituted with 1-10 hydroxy groups, 1-2 COOH groups, a phenyl group, a benzyl group and/or 1-5 -OR⁴ groups, with R⁴ in the meaning of a hydrogen atom or a C₁-C₇ alkyl radical, or B1-R^F,</u>
- B1 means a straight-chain or branched C₁-C₃₀ alkylene group that
 optionally is interrupted by 1-10 oxygen atoms, 1-5 -NH-CO groups,
 1-5 -CO-NH groups, by a phenylene group (that is optionally

substituted by a COOH group), 1-3 sulfur atoms, 1-2 -N(B2)-SO₂ groups, and/or 1-2 -SO₂-N(B2) groups with B2 in the meaning of Al, an NHCO group, a CONH group, an N(B2)-SO₂ group, or an -SO₂-N(B2) group and/or optionally is substituted with radical R^F a straight or branched perfluoroalkyl radical with 4 to 30 carbon atoms,

and in which a represents the binding to metal complex M, and b

represents the binding to a straight or branched perfluoroalkyl radical
with 4 to 30 carbon atoms.

whereby L and U, independently of one another, can be the same or different, however.

- 22. A formulation Formulation according to one of the preceding claims claim 1, wherein the central atom of the metal complex is a gadolinium atom (atomic number 64).
- 23. A formulation Formulation according to claim 1, wherein the diamagnetic, perfluoroalkyl-containing substances are those of general formula XVI:

$$R^{F}-L^{1}-B^{2}$$
 (XVI)

in which R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, L stands for a linker, and B^2 stands for a hydrophilic group.

- 24. A formulation Formulation according to claim 23, wherein linker L^1 is a direct bond, an $-SO_2$ group or a straight-chain or branched carbon chain with up to 20 carbon atoms, which can be substituted with one or more -OH, -COO, -SO₃ groups and/or optionally contains one or more -O-, -S-, -CO-, -CONH-, -NHCO-, -CONR-, -NRCO-, -SO₂-, -PO₄'-, -NH, -NR groups, an aryl ring or a piperazine, whereby R stands for a C_1 to C_{20} alkyl radical, which in turn can contain one or more O atoms and/or can be substituted with -COO or SO_3 groups.
- 25. A formulation Formulation according to claim 23, wherein the hydrophilic group is a monosaccharide or a disaccharide, one or more adjacent -COO or -SO₃ groups, a dicarboxylic acid, an isophthalic acid, a picolinic acid, a benzenesulfonic acid, a

tetrahydropyrandicarboxylic acid, a 2,6-pyridinecarboxylic acid, a quaternary ammonium ion, an aminopolycarboxylic acid, an aminopolyethylene glycol group, an SO₂-(CH₂)₂-OH group, a polyhydroxyalkyl chain with at least two hydroxyl groups or one or more polyethylene glycol chains with at least two glycol units, whereby the polyethylene glycol chains are terminated by an -OH or -OCH₃ group.

26. A formulation Formulation according to claim 1, wherein the diamagnetic perfluoroalkyl-containing substances are conjugates that consist of α -, β -, or γ -cyclodextrin and compounds of general formula XVIII:

$$A^{1}-L^{3}-R^{F} (XVIII)$$

in which A^1 stands for an adamantane, biphenyl or anthracene molecule, L^3 stands for a linker and R^F stands for a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms; and whereby linker L^3 is a straight-chain hydrocarbon chain with 1 to 20 carbon atoms, which can be interrupted by one or more oxygen atoms, one or more CO-, SO_2 -, CONH-, NHCO-, CONR-, NRCO-, NH-, NR groups or a piperazine, whereby R is a C_1 - C_5 alkyl radical.

- 27. A formulation Formulation according to claim 1, wherein the perfluoroalkyl chains of the perfluoroalkyl-containing metal complex and the other perfluoroalkyl-containing compounds contain 6 to 12 carbon atoms.
- 28. A formulation Formulation according to claim $\underline{1}$ $\underline{28}$, wherein the perfluoroalkyl chains contain 8 carbon atoms in each case.
- 29. A formulation Formulation according to claim 1, wherein it has a metal concentration of 50 to 250 mmol/1.

30. A substance Substances of general formula XVII

 R^F-X^1 (XVII)

in which R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and X^1 is a radical that is selected from the group of the following radicals (in this case, n is a number between 1 and 10):

31. A conjugate Conjugates that consist of α -, β -, or γ -cyclodextrin and compounds of general formula XVIII

 $A^{1}-L^{3}-R^{F} (XVIII)$

in which A^1 stands for an adamantane, biphenyl or anthracene molecule, L^3 stands for a linker and R^F stands for a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and whereby linker L^3 is a straight-chain hydrocarbon chain with 1 to 20 carbon atoms, which can be interrupted by one or more oxygen atoms, one or more CO-, SO_2 -, CONH-, NHCO-, CONR-, NRCO-, NH-, NR groups or a piperazine, whereby R is a C_1 - C_5 alkyl radical.

- 32. <u>A process Process</u> for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in a solvent while being stirred vigorously.
- 33. A process Process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in a solvent while being treated simultaneously with ultrasound.
- 34. A process Process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in a solvent while being treated simultaneously with microwaves.

- 35. A process Process for the production of galenical formulations according to claim 1, wherein the paramagnetic and diamagnetic perfluoroalkyl-containing compounds are dissolved in two different solvents, both solutions are added together, and one of the two solvents is distilled off.
- 36. A solid Solid formulation according to claim 1, wherein it is produced by freeze-drying a solution, which contains paramagnetic and diamagnetic perfluoroalkyl-containing substances.
- 37. Use of galenical formulations according to claim 1 for the production of contrast Contrast media for nuclear spin tomography comprising galenical formulations according to claim 1.
- 38. Use of galenical formulations according to claim 1 for the production of contrast Contrast media for visualizing lymph nodes or a blood-pool comprising galenical formulations according to claim 1.