

Michael Bleher

Institute for Mathematics, Heidelberg University

- July 3, 2024 - Morningside Center of Mathematics -

HAYDYS-WITTEN INSTANTONS

AND THE GAUGE THEORETIC APPROACH
TO KHOVANOV HOMOLOGY

Table of Contents

- 1 Motivation
- 2 Haydys-Witten Floer Theory
- 3 Towards Khovanov Homology
- 4 Decoupled Haydys-Witten Equations
- **5** Outlook

based on PhD Thesis (doi:10.11588/HEIDOK.00034010) and arxiv:2307.15056.

Motivation

Topological Field Theories give rise to topological invariants.

Chern-Simons theory

$$Z_{\mathrm{CS}}(X^3) \leadsto \mathrm{Witten-Reshetikhin-Turaev}$$
 invariants $Z_{\mathrm{CS}}(S^3,K) \leadsto \mathrm{Jones}$ polynomial

f m topologically twisted d=4 ${\cal N}=2$ super Yang-Mills theory

$$Z^Q_{\mathrm{SYM}}(W^4; \underbrace{\gamma_1, \ldots, \gamma_n}) \leadsto \mathsf{Donaldson} \; \mathsf{polynomials}$$

Motivation 2/18

Motivation

m topologically twisted d=4 $\mathcal{N}=2$ super Yang-Mills theory

- on $W^4 = \mathbb{R}_s \times X^3$
- "coupled" to Chern-Simons theory @ $s \to \pm \infty$

classical states

critical points of = flat G-connections on X^3

quantum corrections

gradient flow of Chern-Simons action = Yang-Mills instantons on $\mathbb{R}_s \times X^3$ (ASD G-connections)

 $\rightsquigarrow HF^{\bullet}(X^3)$ Yang-Mills Instanton Floer theory

Motivation 3/18

Motivation – by analogy

- \bigcirc topologically twisted $d = 5 \mathcal{N} = 2$ super Yang-Mills theory
 - on $M^5 = \mathbb{R}_s \times W^4$
 - "coupled" to top. tw. d=4 $\mathcal{N}=2$ SYM @ $s\to\pm\infty$

classical states

critical points of super Yang-Mills action = Kapustin-Witten soln. on W^4 (phase-shifted ASD $G_{\mathbb{C}}$ -connections)

quantum corrections

gradient flow of Kapustin-Witten equations on $\mathbb{R}_s \times W^4$

 $\rightarrow HF^{\bullet}(W^4)$ Haydys-Witten Instanton Floer theory

Motivation 4/18

Haydys-Witten instanton Floer Theory

 $E \rightarrow M^5$ G-principal bundle

A connection one-form

 (M^5,q) Riemannian 5-manifold

B adjoint-valued self-dual 2-form

v nowhere vanishing unit vector field

(anti-)self-dual 2-forms in 5d

Let $\eta:=g(v,\cdot)\in\Omega^1(M^5)$ be the 1-form dual to v. Then $*_5(\cdot\wedge\eta)$ induces **eigenvalue decomposition**

$$\Omega^2(M^5) = \Omega_{v,+}^2 \oplus \Omega_{v,0}^2 \oplus \Omega_{v,-}^2$$
 rank 10 3 4 3

Remark:

 $\Omega_{v,+}^2$ is a lift of 4d self-dual forms, where v determines which direction is "additional" in 5d.

$$\Omega^2_{\partial_y,\pm}(W^4 \times \mathbb{R}_y) \simeq \Omega^2_{\pm}(W^4)$$

Haydys-Witten Floer Theory 5/18

cross-product on $\Omega_{v+}^2(M, \operatorname{ad} E)$

- cross-product $(\cdot \times \cdot)$ on $\Omega^2_{v,+}$ (fiber \mathbb{R}^3)
- Lie bracket $[\cdot,\cdot]_{\mathfrak{g}}$ on $\operatorname{ad} E$ (fiber \mathfrak{g})
- \rightsquigarrow yield bilinear map σ on $\Omega^2_{v,+}(M^5,\operatorname{ad} E)$ (fiber $\mathbb{R}^3\otimes\mathfrak{g}$):

$$\sigma(\cdot,\cdot):=(\cdot\times\cdot)\otimes[\cdot,\cdot]_{\mathfrak{g}}$$

codifferential on $\Omega^2_{v,+}(M, \operatorname{ad} E)$

$$\delta_A^+: \Omega^2_{v,+}(M^5, \operatorname{ad} E) \stackrel{\nabla^{A,LC}}{\longrightarrow} T^*M \otimes \Omega^2_{v,+}(M, \operatorname{ad} E) \stackrel{\operatorname{contr}}{\longrightarrow} \Omega^1(M^5, \operatorname{ad} E)$$

Let $A \in \mathcal{A}(E)$ connection one-form, $B \in \Omega^2_{v,+}(M^5, \operatorname{ad} E)$ self-dual two-form.

Haydys-Witten equations

$$F_A^+ = \sigma(B, B) + \nabla_v^A B$$
$$\iota_v F_A = \delta_A^+ B$$

Haydys-Witten Floer Theory 6/18

Now consider 5-manifolds of the form $M^5 = \mathbb{R}_s \times W^4$. boundary condition $(0, s) \to \pm \infty$ (cylindrical ends): **asymptotically stationary** solutions.

boundary condition (a) $s \to \pm \infty$ (cylindrical ends). asymptotically stationary solutions

Assume incidence angle $g(\partial_s, v) = \cos \theta$ is constant.

\mathbb{R}_s -invariant Haydys-Witten equations

$$\mathrm{HW}_v(A,B) \leadsto \begin{cases} \mathrm{VW}(\tilde{A},B,A_s) & \theta = 0 \pmod{\pi} \\ \mathrm{KW}_{\theta}(\tilde{A},\phi) & \text{else} \end{cases}$$

 \leadsto Haydys-Witten solutions on $\mathbb{R}_s \times W^4$ interpolate between Vafa-Witten / θ -Kapustin-Witten solutions on W^4 at $s \to +\infty$.

Haydys-Witten Floer Theory 7/18

Floer chains

$$CF_{\theta}(W^4) := \bigoplus_{x \in \mathcal{M}^{\mathrm{KW}_{\theta}}(W^4)} \mathbb{Z} \cdot \langle x \rangle$$

Floer differential

$$\mathcal{M}_{v}(x,y) = \left\{ (A,B) \in \mathcal{M}^{\mathrm{HW}_{v}}(\mathbb{R}_{s} \times W^{4}), \\ \lim_{s \to -\infty} (A,B) = x, \\ \lim_{s \to \infty} (A,B) = y \right\}$$

$$d_v\langle x\rangle := \sum_{\mu(x,y)=1} \#\mathcal{M}_v(x,y)/\mathbb{R}\cdot\langle y\rangle$$

→ HW-instanton Floer cohomology

$$HF_{\theta}^{\bullet}(W^4) := H^{\bullet}(CF_{\theta}(W^4), d_v)$$

Haydys-Witten Floer Theory 8/18

Towards Khovanov Homology

Where are the knots?

Following Witten, physical theory suggests to consider

$$M^5 = \mathbb{R}_s \times \underbrace{X^3 \times \mathbb{R}_y^+}_{W^4}, \quad v = \cos \theta \partial_s + \sin \theta \partial_y,$$

together with a knot $K \subset X^3 = \partial W^4$.

How to include the knot?

Geometric blow-up along $\Sigma_K = \mathbb{R}_s \times K \times \{y=0\}$ and specify boundary behaviour:

- Nahm pole at original boundary (y = 0),
- and monopole-like singularity at blown-up boundary (R = 0).

Towards Khovanov Homology 9/18

boundary conditions $@y \rightarrow 0$ (original boundary): **locally boundary-independent** solutions.

Assume **incidence angle** $g(v, \partial_y) = \cos \beta$ is constant.

\mathbb{R}^4 -invariant Haydys-Witten equations

$$\mathrm{HW}_v(A,B) \leadsto \mathrm{NP}_\beta^\mathbb{O}(\tilde{A},\Phi)$$

Nahm pole boundary conditions

Modelled on solution of (β -twisted octonionic) Nahm's equation with pole at y=0.

$$A_i = \sin\beta \frac{t_i^\tau}{y} + O(y^{-1+\epsilon}) \qquad B_i = \cos\beta \frac{t_i}{y} + O(y^{-1+\epsilon}) \qquad A_s, A_y = 0 + O(y^{-1+\epsilon})$$

$$\{t_i\}_{i=1,2,3} \qquad \mathfrak{sl}_2\text{-triple in }\mathfrak{g}.$$

Towards Khovanov Homology 10/18

boundary conditions $@R \rightarrow 0$ (blown-up boundary): **locally boundary-independent** solutions.

Assume **glancing angle** $g(v, \partial_s) = \cos \theta$ is constant.

\mathbb{R}^2 -invariant Haydys-Witten equations

$$\mathrm{HW}_v(A,B) \leadsto \mathrm{TEBE}_{\theta}(\tilde{A},\phi,c_1,c_2)$$

Knot singularity boundary conditions

Modelled on monopole solution of (θ -twisted) extended Bogomolny equation with 'magnetic charge' $\lambda \in \Gamma_{\text{char}}^{\vee}$.

$$A = A^{\lambda,\theta} + O(R^{-1+\epsilon})$$
 $B = B^{\lambda,\theta} + O(R^{-1+\epsilon})$

Towards Khovanov Homology 11/18

Physics: For $X^3 = S^3$ or \mathbb{R}^3 and

- $v = \partial_y \ (\Longrightarrow \ \theta = \pi/2, \beta = 0)$
- (A,B) asymptotically stationary at cylindrical ends $(s \to \pm \infty, y \to \infty)$
- (A, B) satisfy Nahm pole and knot singularity BCs at boundaries $(y \to 0, R \to 0)$

Conjecture (Witten 2011)

$$HF_{\pi/2}([S^3;K] \times \mathbb{R}_y^+) = \operatorname{Kh}^{\bullet,\bullet}(K)$$

O: How to test this?

Problem: Solutions to Haydys-Witten and Kapustin-Witten equations are not well-understood.

Towards Khovanov Homology 12/18

Decoupled Haydys-Witten Equations

- $M^5 = \mathbb{R}_s \times X^3 \times \mathbb{R}_y^+$
- $v = \sin \theta \partial_s + \cos \theta \partial_y$
- $\implies \ker g(v,.) \simeq T(\mathbb{R} \times X^3)$ admits an almost Hermitian structure J.

J lifts to $J\otimes J\odot\Omega^2_{v,+}(M^5)$ with eigenvalues $\{+1,-1,-1\}$. Write $J^\pm:=(1\pm J\otimes J)/2$ for the projections.

Definition

$$F_A^+ = J^+(\sigma(B, B) + \nabla_v^A B) \qquad 0 = J^-(\sigma(B, B) + \nabla_v^A B)$$

$$i_v F_A = \delta_A^+ J^+ B \qquad 0 = \delta_A^+ J^- B$$

Remark: Contributions from F_A and B in the negative eigenspace of $J \otimes J$ are "decoupled".

Hermitian Yang-Mills structure

On local holomorphic patch $(w = s + ix^1, z = x^2 + ix^3, y)$ of $M^5 = \mathbb{R}_s \times X^3 \times \mathbb{R}_y^+$:

$$\mathcal{D}_0 =
abla_{ar{w}}^A \qquad \qquad \mathcal{D}_1 =
abla_{ar{z}}^A \qquad \qquad \mathcal{D}_2 =
abla_y^A - i[B_1, \cdot] \qquad \qquad \mathcal{D}_3 = [B_2, \cdot] + i[B_3, \cdot]$$

Then Haydys-Witten equations and their decoupled version are

$$HW_{v}(A,B) = 0 \iff \left\{ \frac{[\overline{\mathcal{D}}_{0},\overline{\mathcal{D}}_{i}] + \frac{1}{2}\epsilon_{ijk}[\mathcal{D}_{j},\mathcal{D}_{k}] = 0}{\sum_{\mu=0}^{3}[\bar{\mathcal{D}}_{\mu},\mathcal{D}_{\mu}] = 0} \right\}$$

$$dHW_{v,J}(A,B) = 0 \iff \left\{ \begin{aligned} [\mathcal{D}_{\mu},\mathcal{D}_{\nu}] &= 0 \\ \sum_{\mu=0}^{3} [\bar{\mathcal{D}}_{\mu},\mathcal{D}_{\mu}] &= 0 \end{aligned} \right\} \longleftarrow G_{\mathbb{C}} - \text{invariant! Use ideas of DUY}$$

There is a Weitzenböck formula

$$\int_{M^5} \|\mathrm{HW}_v(A,B)\|^2 = \int_{M^5} \|\mathrm{dHW}_{v,J}(A,B)\|^2 + \int_{M^5} d\chi$$

Theorem (B. '23)

Let $M^5 = \mathbb{R}_s \times X^3 \times \mathbb{R}_y^+$ and $v = \partial_y$. Assume

- ullet $\mathbb{R}_s imes X^3$ is ALE or ALF gravitational instanton, and Nagy-Oliveira's Conjecture holds
- (A,B) satisfy corresponding BCs (Nahm poles, knot singularities, θ -Kapustin-Witten asymptotics)

Then $\int_{M^5} d\chi \to 0$.

Corollary

Under the assumptions of the theorem $\mathrm{HW}_v(A,B)=0 \iff \mathrm{dHW}_{v,J}(A,B)=0.$ In particular: $HF^{\bullet}_{\pi/2}([\mathbb{R}^3;K])$ is fully determined by "decoupled" Haydys-Witten instantons.

proof idea

regularize $\int_{M^5} d\chi \leadsto \sum_i \int_{\partial_i M^5} \chi$ by a compact exhaustion of M^5 (respecting incidence angles of v). (a) $y \to 0$:

- elliptic regularity of $HW_{\theta} \implies (A,B)$ polyhomogeneous (\exists asymptotic series in $y^{\alpha}(\log y)^k$)
- ullet expand χ around Nahm pole and knot singularities

 $(y \rightarrow \infty)$

Conj (Nagy-Oliveira '21, B. '23)

 W^4 ALE or ALF, $\mathrm{KW}_{\theta}(A,\phi)=0$, finite energy $\implies A$ flat, $\nabla^A\phi=0=[\phi\wedge\phi].$

$$\rightarrow \chi \propto \nabla^A \phi \& [\phi \wedge \phi] \rightarrow 0.$$

 $@ s \to \pm \infty$: mixture of both arguments

Outlook / Future Research

Generalize He-Mazzeo's classification of Nahm pole solutions with S^1 -invariant knot $K=S^1\times\sqcup\{p_i\}\subset S^1\times\Sigma=X^3$

$$\mathcal{M}_K^{\mathrm{KW}} = \mathcal{M}_D^{\mathrm{EBE}} = \quad \left\{ \begin{aligned} \mathcal{D}_0 &= 0, \ [\mathcal{D}_i, \mathcal{D}_j] = 0 \\ \sum_{i=1}^3 [\bar{\mathcal{D}}_i, \mathcal{D}_i] = 0 \end{aligned} \right\} \overset{1:1}{\leftrightarrow} \left\{ \begin{aligned} \text{Higgs bundles w/} \\ \text{extra structure @}K \end{aligned} \right\}$$

to S^1 -dependent knots $K = \mathbb{R}_t \times \sqcup \{p_i(t)\} \subset \mathbb{R}_t \times \Sigma = X^3$.

$$\mathcal{M}^{\mathrm{dHW}}_{\Sigma_K} = \quad \left\{ \begin{aligned} [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}] &= 0 \\ \sum_{\mu=0}^{3} [\bar{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}] &= 0 \end{aligned} \right\} \overset{1:1}{\leftrightarrow} \left\{ \begin{aligned} \text{pseudo-holomorphic discs in} \\ \text{moduli space of Higgs bundles} \\ \text{w/ extra structure} \ @\Sigma_K \end{aligned} \right\}$$

Seems to lead to something that looks a lot like **symplectic Khovanov homology**?

Outlook 17/1

Thank you for your attention!

Outlook 18/18