本试券适用范围 本科

南京农业大学试题纸

课程名称 概率论与数理统计	课程类型:必修	卷 类:

05-06 学年 2 学期

班级	学号	姓名	成绩	

一、填空	题 (7×3=	=21分)
------	----------------	-------

- 1. P(A)=0.4, P(A∪B)=0.9, 若事件 A 与 B 互斥,则 P(B)= ; 。
- 2. 设 A、B 为随机事件, P(A)=0.7, $P(\overline{AB})=0.6$, 则 P(A-B)=
- 3. 设 P(A)=0.5, P(B)=0.25, $P(A|\bar{B})=0.4$,则 P(AB)=_____.
- 4. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} A + Be^{-\frac{x^2}{2}}, x > 0 \\ 0, x \le 0 \end{cases}$,则 $P\{|X| < \sqrt{3}\} =$ _____.
- 5. 设 X_1, X_2, X_3, X_4 是来自均值为 θ 的指数分布总体的样本。其中 θ 未知,设有估计量 $T_1 = \frac{1}{6}X_1 + \frac{1}{2}X_2 + \frac{1}{8}X_3 + \frac{3}{8}X_4$, $T_2 = \frac{1}{6}(X_1 + X_2 + 2X_3 + 3X_4)$, $T_3 = \frac{1}{6}(X_1 + X_2 + X_3 + X_4)$

- 6. 已知 X、Y 为两个随机变量,他们的方差分别为 D(X)=25,D(Y)=36,他们间的相关系数为 $\rho_{XY}=0.4$,则
- 7. 设总体 X 服从 N(μ , σ^2)(σ^2 未知), X, ..., X, 是总体 X 的一个样本, 则 μ 的置信度为 1- α 的置信区间 为 , σ^2 的置信度为 1- lpha 的区间估计为

二、选择题 (6×3=18分)

- 8. 设 A 和 B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是【】
 - (A) *A*与*B* 不相容;

(B) $\overline{A} = \overline{B}$ 相容:

(C) P(AB)=P(A)P(B);

- (D) P(A-B)=P(A).
- 9. 给 K 只犬注射狂犬疫苗,则其中某只犬总在另一只犬前面注射的概率为【】
- (A) $\frac{1}{k}$; (B) $\frac{1}{2}$; (C) $\frac{1}{k(k-1)}$; (D) $\frac{2}{k}$.
- 10. 设随机变量 X 服从参数为 λ 的泊松分布 $P(\lambda)$, 且已知 E(X+1)(X-3)=3,则 λ 的值为
- (A) $\lambda = 3$: (B) $\lambda = -2$: (C) $\lambda = 3$ 或 $\lambda = -2$: (D) $\lambda = 1$.

11. 设X 服从参数 λ 的指数分布,且已知 $E(X^2) = 72$,则 $\lambda = \mathbb{I}$

A. 6 B.
$$\frac{1}{6}$$
 C. $\frac{1}{6\sqrt{2}}$ D. $6\sqrt{2}$

D.
$$6\sqrt{2}$$

12. 设
$$(X_1,...,X_n,X_{n+1},...,X_{2n})$$
 是总体 $N(\mu,\sigma^2)$ 的一个样本,则当 $C=$ 【 】时, $C\sum_{i=1}^n(X_{n+i}-X_i)^2$ 为 σ^2 的

无偏估计。

A.
$$\frac{1}{2n-1}$$

B.
$$\frac{1}{2r}$$

A.
$$\frac{1}{2n-1}$$
 B. $\frac{1}{2n}$ C. $\frac{1}{2(n-1)}$ D. $\frac{1}{2n+1}$

D.
$$\frac{1}{2n+1}$$

13. 设总体 X~N (μ , σ^2), σ^2 未知, X₁, X₂, ···, X_n为来自 X 的样本, 对 μ 进行假设检验, 若在显著水平 $\alpha=0.05$

下拒绝 H_0 : $\mu=\mu_0$, 则当 $\alpha=0.01$ 时,下列结论正确的是【 】

A. 必拒绝 H₀

C. 第一类错误的概率变大 D. 可能接受,也可能拒绝 H_0

三、计算题 (61分)

14. 在一袋麦种中,其中一等麦种占80%,二等麦种占18%,三等麦种占2%,已知一、二、三等麦种的发芽率分别为 0.8,0.5,0.2。(1) 现从袋中任取一粒麦种,求它发芽的概率:(2) 从袋中任取一粒麦种,播种后发芽了,求它是一等种 子的概率。(10分)

系主任 周宏 出卷人吴清太

求全部果树的平均产量的置信度为 95%的置信区间。(t _{0.085} (5)=2.5706, t _{0.08} (5)=2.0150)(10 分) . 白一批钢管抽取 10 根,测得其内径(mm)的样本均值为	8. 已知某种果树的产量服从正态分布,随机抽取 6 棵,计算得它们的平均产量为	ŋ x =258.5kg,修正标准差为 s=24.10kg,
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)	求全部果树的平均产量的置信度为 95%的置信区间。($t_{0.025}$ (5)=2.5706, t	_{0.05} (5)=2.0150) (10 分)
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
$T(\mu,\sigma^2)$ (μ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢管的均值为 100mm; $\sigma_{025}(9)$ =2.2622, $\tau_{0.025}(10)$ =2.2281, $\tau_{0.05}(9)$ =1.8331)		
025(9)=2.2622, t _{0.025} (10)=2.2281, t _{0.05} (9)=1.8331)	19. 自一批钢管抽取 10 根,测得其内径(mm)的样本均值为 $x = 100.05$,样本方	ī差为 s²=22. 49, 设这批钢管内径 X 服从
025(9)=2.2622, t _{0.025} (10)=2.2281, t _{0.05} (9)=1.8331)	$N(\mu,\sigma^2)$ ($^{\mu}$ 和 σ^2 未知),试在显著性水平 α =0.05 下能否接受假设:这批钢]管的均值为 100mm;
	$t_{0.025}(9)=2.2622$, $t_{0.025}(10)=2.2281$, $t_{0.05}(9)=1.8331$)	
		出卷人 吴清太