

Guidelines for the 1st lab

Robotics

2024-2025 (P2 / S1)

Alberto Vale, Gonçalo Teixeira, João Sequeira DEEC/IST

Inertial Measurement Unit (IMU)

- A 3-axis accelerometer measures linear acceleration along the X, Y, and Z axes.
- A 3-axis gyroscope measures angular velocity around the X, Y, and Z axes (similar to a rate gyro).
- A 3-axis magnetometer provides information on the magnetic field, which can help determine orientation relative to Earth's magnetic north.

GY-85 BMP085 @ Flashtree (<10€)

MTI-G-710-2A8G4 @ DigiKey (>5k€)

Frames conversion

Data import

- Datafile with 7 columns divided by tabs
- Each line include
 "time" "a_data_1" "a_data_2"
 "a_data_3" "w_data_1" "w_data_2"
 "w_data_3"
- Different datafile may have different number of lines
- Import data to a vector

5.0	182.0	23.0	1004.0	-2.0	3.0	9.0
133.0	-30.0	34.0	1002.0	-1.0	6.0	-5.0
240.0	223.0	145.0	1085.0	-2.0	4.0	8.0
345.0	187.0	168.0	792.0	-3.0	-5.0	5.0
451.0	-61.0	62.0	984.0	-6.0	-28.0	17.0
556.0	-53.0	33.0	1040.0	-1.0	3.0	8.0
662.0	83.0	48.0	1009.0	-1.0	0.0	23.0
768.0	-109.0	79.0	1037.0	-2.0	3.0	-1.0
874.0	-77.0	-42.0	1017.0	-1.0	-2.0	16.0
982.0	1.0	82.0	1006.0	0.0	-6.0	-3.0
1088.0	130.0	86.0	983.0	-3.0	-7.0	-24.0
1193.0	-126.0	14.0	930.0	-5.0	-14.0	-9.0
1300.0	-39.0	36.0	993.0	-1.0	4.0	-6.0
1405.0	-38.0	41.0	1004.0	-2.0	-1.0	-24.0
1511 0	-408 0	145 0	1112 0	-4 0	2 0	-50 0

Filters (suggestions)

- Sliding Windows Average/Median
- Gaussian filters
- Savitzky–Golay filters
- Smooth filters
- Outliers filters
- •

- There are plenty of libraries and toolboxes available for download.
- The essential of the original signal must be preserved

Data representation

- Axes
- Scales
- Units
- Colours
- Labels, legends and captions
- Parameterization and equations
- 2D and 3D plots
- Frames representation

 Suggestion: use libraries to easily plot frames (e.g.: https://github.com/WD40andTape/plotfram e/tree/master)

Guidelines to use SCORBOT-ER VII

Robotics

2024-2025 (P2 / S1)

Alberto Vale, João Sequeira

DEEC/IST

References of text, tables and images

1. SCORBOT-ER VII User Manual

2nd Edition, Eshed Robotec, December 1998, ISBN 965-291-033-3

2. ACL – Advanced Control Language, Version 1.43, F.44, Reference Guide, 4th edition, Eshed Robotec, January 1995, Catalog #100083 Rev.A

3. Introduction to the Scorbot ER VII and the Eshed Robotec Pty. Ltd.

Advanced Control Language (ACL)

R. Mahony, Dep. Engineering, ANU, ACT, 0200, Australia.

SCORBOT-ER VII

Figure 2-1: SCORBOT-ER VII Robot Arm

SCORBOT-ER VII Setup

- Power button
- Motors enable button
- Teach Pendant

Guidelines to use SCORBOT-ER VII | 2023-2024

Instructions

- 1. Check that the manipulator workspace is <u>free of obstacles</u>.
- 2. Do not enter the robots safety range or touch the robot during operation.
- 3. Verify that you can reach the <u>red emergency button on the controller</u>. One person should always be in a position to abort control using the emergency switch during operation.
- 4. Switch on the controller. Activate the motors.
- 5. Home the robot using the command HOME

The SCORBOT-ER VII is dangerous and can cause severe injury.

USE WITH EXTREME CAUTION.

Risk of clash (examples)

Arm parts, axes and main features

Axis Movement		(
Axis 1: Base rotation	250°; 310° user programmable	Y,
Axis 2: Shoulder rotation	170°	
Axis 3: Elbow rotation	225°	<u> </u>
Axis 4: Wrist pitch	180°	
Axis 5: Wrist roll	360°	-2
		_

Encoders max values
(experimental
values!)
-31960 to 31950
-16960 to 25972
-28480 to 28942
-27048 to 28133
-31929 ro 31956

Attention: some combinations results in clash!

Maximum Payload	2 kg (4.4 lb.), including gripper		
Position Repeatability	±0.2 mm (0.008")		
Weight	30 kg (66 lbs)		
Maximum Path Velocity	1000 mm/sec (39.4"/sec)		

Figure 1-2: Robot Arm Parts

Arm joints and motor locations

Figure 2-3: Robot Arm Joints

Axis No.	Joint Name	Motion	Motor No.
1	Base	Rotates the body.	1
2	Shoulder	Raises and lowers the upper arm.	2
3	Elbow	Raises and lowers the forearm.	3
4	Wrist Pitch	Raises and lowers the end effector	4
5	Wrist Roll	Rotates the end effector	5

Figure 2-7: Motor Locations

Coordinates and home configuration

Figure 6-1: Cartesian Coordinates

Home configuration

Dimensions and operation range

Figure 2-4: Operating Range With Gripper Attached

Teach Pendant/Keypad/Controller

The most important keys:

- Abort
- XYZ/Joints mode
- Control on/off
- Speed + number (1%-100%) + Enter -
- Open/Close gripper

ACL: Advanced Control Language

ACL has two types of commands:

- DIRECT commands are executed as soon as they are entered at the terminal/computer keyboard [recommended]
- **EDIT**, or indirect, commands are executed during the running of the programs and routines in which they are used.
- About ACL, see reference 2 in slide 1.

Main DIRECT commands

- CON: Control ON for all axes.
- HELP: List the available commands.
- **HOME**: Searches for microswitch home position, for all robot axes, or specific axis. In teach pendant: [Run] 0 [Enter]. (takes 1-2 mins)
- OPEN/CLOSE: opens/closes the gripper
- SPEED 50: sets speed movements of 50% maximum speed.
- HERE pos: records a position, in joint coordinates, according to the current location of the axes.

- LISTP: To see a list of the defined positions
- LISTPV A31: To view the coordinates of position A31

1:0	2:1791	3:2746	4:0	5 : -1
X:1690	Y:0	Z:6011	P:-636	R:-1
		<mark>601.</mark>	1 mm - 63.	<mark>6°</mark>

- The first line shows the **joint coordinates**; defined in **encoder counts**.
- The second line shows the Cartesian (XYZ) coordinates.
 X, Y and Z are defined in tenths of millimeters; P (Pitch) and R (Roll) are defined in tenths of degrees.
- LISTPV POSITION: Displays current coordinates of robot arm.

- **DEFP** *pos*: defines position *pos* for the robot.
- **DIMP** *vect[n]*: defines (creates) a vector of n positions. n = 1, ..., N
- DELP pos: deletes the position.
- HERE pos: records joint coordinates for current position of axes.
- SETPV pos axis var: changes one joint coordinate of a previously recorded position
- **SETPVC** *pos coord var*: Changes one Cartesian coordinate of a previously recorded robot position.
- **SETP** *pos2=pos1*: Copies the coordinates and type of pos1 to pos2.

- **DELP A99**: to delete position A99.
- MOVE A31: to send the robot to position A31. The robot moves at the current speed setting.
- MOVE A32 1000: to send the robot to position A32 in 10 seconds.
- MOVED A32: similar to move, but moved ensures that the robot will
 accurately reach the target position before continuing to the next command.
- MOVES POS n1 n2: Moves axes smoothly through all consecutive vector positions between position n1 and position n2, at current joint speed.
 Constant speed between consecutive positions.

- SHOW ENCO: Displays the values of all encoders every 0.5 seconds
- SHOW SPEED: Displays the current speed settings
- CLR n: Initializes (sets to 0) the value of encoder n. CLR * initializes all encoders.

Switch between DIRECT and MANUAL modes: "Alt + m" or " ~ "

(to be updated with more commands...)

Program SCORBOT-ER VII

• See Chapter 7-1 of reference 1 in slide 1.

How to connect with SCORBOT-ER VII

- The communication with SCORBOT-ER
 VII is done by a Serial Port (RS232).
- A Serial Port is required on the laptop
 or, instead, a USB <> serial converter
 - [suggestion] buy a USB <> serial converter per group (costs 10 - 20 EUR)

Attention: not all USB <> serial converters are recognized in Windows/Linux

How to operate with SCORBOT-ER VII

- Communicate with SCORBOT-ER VII to send and receive commands in real time [recommended]
- 2. Program the SCORBOT-ER VII to run offline

Send and receive commands in real time

- Windows software (e.g.: PuTTY)
- Linux shell commands

- Popular programming languages:
 - MATLAB
 - Python
 - C/C++
 - other

Recommended for quick testing

Recommended for development

Attention: the messages are strings and must end with a "carriage return" (\r)

Example with PuTTY

Example with a shell in Linux

Suggestion in Linux:

```
chmod o+rw /dev/ttyUSB0 (you may need to use "sudo")
stty -F /dev/ttyUSB0 9600 cs8 -cstopb -ixoff
echo 'MOVE P1\r' > /dev/ttyUSB0
cat < /dev/ttyUSB0</pre>
```

stty -a -F /dev/ttyUSB0 (to see the configuration)

Video demo

https://tinyurl.com/2j9eyuq3

Special notes

- 1. To create a vector, for instance, PVECT, it is necessary to created it by "DIMP PVECT[n]", where n is the n is the number of positions (n>=1). Then it is not possible to define each axis of each PVECT[i] by "SETPVC PVECT[i] coord var", for instance "SETPVC PVECT[1] X 5000". To bypass it, run "HERE PVECT[1]" and then "SETPVC PVECT[1] X 5000".
- 2. The same is applicable when trying to configure the values of encoders, i.e., "HERE PVECT[1]" and then "SETPV PVECT[1] 1 5000"-
- 3. When it is necessary to modify more than one coordinate of a point, the intermediate modifications must result in a point also inside the workspace of the manipulator. For instance, to modify X and Y of PVECT[1], it is necessary to do "SETPVC PVECT[1] X var_X" and then "SETPVC PVECT[1] Y var_Y". However, when changing the X first, the resulted temporarily point must fit in the workspace.
- 4. After creating a vector, for instance PVECT[...] with 10 positions, it is not possible to run "MOVES PVECT 1 10".

 The result is an error about the trajectory. A possible solution is to run for each i "TEACH PVECT[i]", then "MOVE PVECT[i]" and finally HERE PVECT[i]" to record again VECT[i] (it seems silly...). Then run again "MOVES PVECT 1 10" and it works! By the way, we should use "MOVES PVECT 1 10 --time_to_execute--".

Special notes (cont.)

5. The replied message "Done." is sent by the manipulator immediately after sending "MOVE *pos*" and not only when the operation is completely performed.