

Report No: CCISE160900303

FCC REPORT

(WIFI)

Applicant: Plus One Marketing Ltd.

Address of Applicant: Sumitomofudosan Hibiya, Building 2F, 2-8-6 Nishi-Shimbashi,

Minatoku, Tokyo, 107-0053, JAPAN

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: FTU161E, ÖWN Fun Value S

Trade mark: Freetel, ÖWN

FCC ID: 2AG5LFTU161E

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 Sep., 2016

Date of Test: 05 Sep., to 27 Sep., 2016

Date of report issued: 27 Sep., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	27 Sep., 2016	Original

Tested by: Date: 27 Sep., 2016

Test Engineer

Reviewed by: Date: 27 Sep., 2016

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	29
	6.6.2	Radiated Emission Method	32
	6.7	Spurious Emission	45
	6.7.1	Conducted Emission Method	45
	6.7.2	Radiated Emission Method	52
7	TES	T SETUP PHOTO	59
8	EUT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Plus One Marketing Ltd.		
Address of Applicant:	Sumitomofudosan Hibiya, Building 2F, 2-8-6 Nishi-Shimbashi, Minatoku, Tokyo, 107-0053, JAPAN		
Manufacturer:	Shenzhen Wellstec Communications Co., Ltd		
Address of Manufacturer:	No. 707, 7th floor, B building., CR city, the park of science and technology, Nanshan district, shenzhen, China		

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	FTU161E, ÖWN Fun Value S
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.8dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1350mAh
AC adapter (EU):	Model: UT-090E-5065
	Input: 100-240V.150mA
	Output: 5V-500mA
AC adapter (US):	Model: UT-090A-5065
	Input: 100-240V.150mA
	Output: 5V-500mA
Remark:	Model No.: FTU161E, ÖWN Fun Value S were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and trade mark.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCISE160900303

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE160900303

testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.8 dBi.

6.2 Conducted Emission

Pection 15.207 4 Hz W=30 kHz Ige Limit (dBuV) Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50 Ithe logarithm of the frequency. Ind simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a locupling impedance for the measuring equipment. It all devices are also connected to the main power through
V=30 kHz Ige Limit (dBuV) Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50 Ithe logarithm of the frequency. Ind simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. Italian devices are also connected to the main power through
V=30 kHz Inge
Limit (dBuV) Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50 the logarithm of the frequency. Ind simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. In all devices are also connected to the main power through
Limit (dBuV) Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50 the logarithm of the frequency. Ind simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. In all devices are also connected to the main power through
Limit (dBuV) Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50 the logarithm of the frequency. Ind simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. In all devices are also connected to the main power through
Quasi-peak Average 66 to 56* 56 to 46* 56 46 60 50 the logarithm of the frequency. Ind simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. In all devices are also connected to the main power through
the logarithm of the frequency. Indicate the simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. In all devices are also connected to the main power through
the logarithm of the frequency. Indicate the simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. In all devices are also connected to the main power through
the logarithm of the frequency. Indicate the simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. Indicate the simulatory in the simple simulatory in the simulatory in the simulatory in the simula
nd simulators are connected to the main power through a ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. all devices are also connected to the main power through
ce stabilization network (L.I.S.N.), which provides a coupling impedance for the measuring equipment. all devices are also connected to the main power through
orovides a 50ohm/50uH coupling impedance with 50ohm (Please refer to the block diagram of the test setup and). f A.C. line are checked for maximum conducted In order to find the maximum emission, the relative equipment and all of the interface cables must be changed ANSI C63.4: 2014 on conducted measurement.
Reference Plane
LISN 40cm 80cm Filter AC power ent E.U.T EMI Receiver ent Under Test edence Stabilization Network et=0.8m
i.6 for details
i.3 for details
()) f = 1

Measurement Data:

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: mobile phone EUT : FTU161E : Wifi mode Model Test Mode

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: MT

Remark

CEMELK	Freq	Read Level	LISN Factor	Cable Loss		Limit Line		Remark
	MHz	dBu∜	₫B	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.162	39.13	0.13	10.77	50.03	65.34	-15.31	QP
2	0.162	24.42	0.13	10.77	35.32	55.34	-20.02	Average
1 2 3 4 5 6 7 8	0.327	38.49	0.20	10.73	49.42	59.53	-10.11	QP
4	0.330	26.76	0.20	10.73	37.69	49.44	-11.75	Average
5	0.377	37.78	0.22	10.72	48.72	58.34	-9.62	QP
6	0.377	23.99	0.22	10.72	34.93	48.34	-13.41	Average
7	0.541	22.70	0.26	10.76	33.72	46.00	-12.28	Average
8	0.701	19.91	0.33	10.77	31.01	46.00	-14.99	Average
9	0.708	35.34	0.33	10.77	46.44	56.00	-9.56	QP
10	0.796	18.22	0.30	10.81	29.33	46.00	-16.67	Average
11	0.809	35.57	0.30	10.81	46.68	56.00	-9.32	QP
12	1.191	32.26	0.26	10.89	43.41	56.00	-12.59	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Line:

Trace: 7

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

EUT : mobile phone
Model : FTU161E
Test Mode : Wifi mode
Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

Nemark								
	Freq	Read Level	LISN Factor	Cable	Level	Limit	Over Limit	Remark
	MHz	—dBu₹	dB	dB	dBuV	dBuV	dB	
	шти	шич	ш	ш	ma,	шич	ш	
1	0.150	34.95	0.14	10.78	45.87	66.00	-20.13	QP
2	0.154	21.62	0.14	10.78	32.54	55.78	-23.24	Average
3	0.330	39.23	0.19	10.73	50.15	59.44	-9.29	QP
4	0.330	27.06	0.19	10.73	37.98	49.44	-11.46	Average
5	0.373	39.67	0.22	10.73	50.62	58.43	-7.81	QP
6	0.377	25.32	0.22	10.72	36.26	48.34	-12.08	Average
2 3 4 5 6 7 8 9	0.535	19.93	0.26	10.76	30.95	46.00	-15.05	Average
8	0.708	34.60	0.32	10.77	45.69	56.00	-10.31	QP
9	0.775	17.80	0.30	10.80	28.90	46.00	-17.10	Average
10	1.060	32.55	0.26	10.88	43.69	56.00	-12.31	QP
11	1.060	17.49	0.26	10.88	28.63	46.00	-17.37	Average
12	1.839	31.03	0.31	10.95	42.29	56.00	-13.71	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum	Limit(dDm)	Popult			
Test CH	802.11b	Limit(dBm)	Result			
Lowest	16.57	13.64	12.85			
Middle	16.47	13.87	12.96	30.00	Pass	
Highest	16.26	13.72	12.84		İ	

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

measurement bata.									
Test CH	6dB	Limit(kHz)	Result						
1031 011	802.11b 802.11g 802.11n(H20)		- Limit(Kriz)	Nosuit					
Lowest	10.24	16.24	17.60						
Middle	10.24	16.32	17.60	>500	Pass				
Highest	10.24	16.16	17.76						
Test CH	99%	Limit(kHz)	Result						
1031 011	802.11b	802.11g	802.11n(H20)	Ell'Ill(KHZ)	result				
Lowest	13.28	23.28	18.08						
Middle	13.52	23.12	18.40	N/A	N/A				
Highest	13.52	23.60	18.88						

Test plot as follows:

6dB EBW

Date: 8.SEP.2016 09:13:49

Lowest channel

Date: 8.SEP.2016 09:39:56

Middle channel

Date: 8.SEP.2016 09:41:52

Highest channel

Date: 8.SEP.2016 10:12:18

Lowest channel

Date: 8.SEP.2016 09:51:29

Middle channel

Date: 8.SEP.2016 09:44:34

Highest channel

Date: 8.SEP.2016 10:15:15

Lowest channel

Date: 8.SEP.2016 10:27:55

Middle channel

Date: 8.SEP.2016 10:30:43

Highest channel

99% OBW

Test mode: 802.11b

Date: 8.SEP.2016 10:48:16

Lowest channel

Date: 8.SEP.2016 10:47:51

Middle channel

Date: 8.SEP.2016 10:47:32

Highest channel

Page 22 of 60

Date: 8.SEP.2016 10:37:37

Lowest channel

Date: 8.SEP.2016 10:37:55

Middle channel

Date: 8.SEP.2016 10:38:17

Highest channel

Date: 8.SEP.2016 10:36:53

Lowest channel

Date: 8.SEP.2016 10:36:36

Middle channel

Date: 8.SEP.2016 10:31:22

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	NSI C63.10:2013 and KDB558074v03r05 section 10.2					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Pow	Limit(dBm)	Result			
	802.11b	802.11g	Limit(dbin)	Nesuit		
Lowest	6.86	4.34	1.29			
Middle	6.81	4.70	1.55	8.00	Pass	
Highest	6.40	4.59	1.56			

Test plot as follows:

Date: 8.SEP.2016 09:15:18

Lowest channel

Date: 8.SEP.2016 09:15:45

Middle channel

Date: 8.SEP.2016 09:16:04

Highest channel

Date: 8.SEP.2016 09:17:48

Lowest channel

Date: 8.SEP.2016 09:17:21

Middle channel

Date: 8.SEP.2016 09:16:36

Highest channel

Date: 8.SEP.2016 09:18:49

Lowest channel

Date: 8.SEP.2016 09:19:11

Middle channel

Date: 8.SEP.2016 09:19:35

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.20	9 and 15.205				
Test Method:	ANSI C63.10: 20	013 and KDE	3 558074v03r0	5 sect	ion 12.	1	
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	V	BW	Remark	
ricosivoi octupi	Above 1GHz	Peak	1MHz	3MHz		Peak Value	
		RMŞ	1MHz		ИНz	Average Value	
Limit:	Frequency	y Lir	nit (dBuV/m @	3m)		Remark	
	Above 1GH	łz —	54.00 74.00			verage Value Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	sheet.	(Turntable)	Ground Reference Plane	rn Antenna	Antenna Tov	wer	
	Refer to section 5.6 for details						
Test Instruments:	Refer to section 5.3 for details						
Test Instruments: Test mode:							

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone Model : FTU161E Test mode : B-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

ω_{Γ}	r.								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	22.53	23.68	4.69	0.00	50.90	74.00	-23.10	Peak
2	2390,000	13.81	23.68	4.69	0.00	42.18	54.00	-11.82	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone Model : FTU161E
Test mode : B-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: MT

REMARK

UT.	Tr ·								
	ReadAnte		Antenna		Preamp				
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	19.88	23.68	4.69	0.00	48.25	74.00	-25.75	Peak
	2390.000	8.39	23.68	4.69	0.00	36.76	54.00	-17.24	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: mobile phone : FTU161E EUT Model Test mode : B-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq	ReadAntenna Level Factor							
-	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	 -
	2483.500 2483.500					170000		Control of the Contro	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 35 of 60

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: mobile phone : FTU161E EUT Model Test mode : B-H Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	D J	A A	C-11-	D		T 2 - 2 4	0	
From	ReadAntenna Level Factor							
rreq	rever	ractor	F022	ractor	rever	Line	LIMIT	Remark
MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	d₿	
2483.500	29.34	23.70	4.81	0.00	57.85	74.00	-16.15	Peak
2483.500	17.11	23.70	4.81	0.00	45.62	54.00	-8.38	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone Model : FTU161E Test mode : G-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

THY									
	Freq		Antenna Factor						
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000	43.86	23.68	4.69	0.00	72.23	74.00	-1.77	Peak
	2390.000	23.29	23.68	4.69	0.00	51.66	54.00	-2.34	Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: mobile phone EUT : FIUIDIE
Test mode : G-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARY : FTU161E Model

REMARK

Linnic			Antenna Factor						Remark
	MHz	dBu∀	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: FTU161E

Test mode : G-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK : : mobile phone EUT

 77. 197. 197.		Antenna Factor						
MHz	dBu₹	$-\overline{dB/m}$	<u>d</u> B	dB	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
2483.500 2483.500								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : mobile phone : FTU161E Model Test mode : G-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: MT REMARK

THURTH									
	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2483.500	35.00	23.70	4.81	0.00	63.51	74.00	-10.49	Peak
2	2483.500	16.90	23.70	4.81	0.00	45.41	54.00	-8.59	Average
3	2490.789	36.75	23.70	4.82	0.00	65.27	74.00	-8.73	Peak
4	2490.789	17.22	23.70	4.82	0.00	45.74	54.00	-8.26	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : mobile phone Model : FTU161E Test mode : N20-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

2)IICTI	м .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
03	MHz	dBu∜	dB/m	<u>dB</u>	<u>d</u> B	dBuV/m	dBu√/m	<u>dB</u>	
1	2390.000	26.51	23.68	4.69	0.00	54.88	74.00	-19.12	Peak
2	2390.000	8.66	23.68	4.69	0.00	37.03	54.00	-16.97	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: mobile phone : FTU161E EUT Test mode : N20-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK Model

REMARK

	Freq		Antenna Factor						
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000					48.01 35.51			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: mobile phone

Model : FTU161E

Test mode : N20-H Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

ωv	r .								
		ReadAntenna		Cable Preamp			Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
,	MHz	—dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
en:	2483.500	41.82	23.70	4.81	0.00	70.33	74.00	-3.67	Peak
2	2483.500	23.53	23.70	4.81	0.00	52.04	54.00	-1.96	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : mobile phone Model : FTU161E Test mode : N20-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

THETT!									
	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∀	dB/m	<u>d</u> B	dB	dBuV/m	dBuV/m	<u>d</u> B	
1	2483.500	35.02	23.70	4.81	0.00	63.53	74.00	-10.47	Peak
2	2483, 500	14.99	23, 70	4.81	0.00	43.50	54,00	-10.50	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 8.SEP.2016 09:33:25 C

30MHz~25GHz

Date: 8.SEP.2016 09:32:50

30MHz~25GHz

Date: 8.SEP.2016 09:32:15

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 8.SEP.2016 09:28:43

30MHz~25GHz

Date: 8.SEP.2016 09:30:10

30MHz~25GHz

Date: 8.SEP.2016 09:31:06

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 8.SEP.2016 09:27:28

30MHz~25GHz

Date: 8.SEP.2016 09:26:34

30MHz~25GHz

Date: 8.SEP.2016 09:25:54

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:201	13						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Dis	stance: 3m	m					
Receiver setup:	Frequency	Detecto	or	RBW	V	BW	Remark	
·	30MHz-1GHz	Quasi-pe	eak	120KHz	300)KHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz		ИHz	Peak Value	
		RMS		1MHz		ИHz	Average Value	
Limit:	Frequency		Limit ((dBuV/m @3	m)		Remark	
	30MHz-88MH			40.0			uasi-peak Value	
	88MHz-216MH			43.5			uasi-peak Value	
	216MHz-960MHz 46.0						uasi-peak Value	
	960MHz-1GHz 54.0 Quasi-pea							
	Above 1GHz	: -		54.0		/	Average Value	
Test Procedure:	1. The EUT wa	o placed a	on the	74.0	otio a	table 0	Peak Value	
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the med. 4. For each suscase and the meters and the meters and the meters and the find the meters. Specified Base 6. If the emission the limit specifies the EUT whave 10dB meters and the meters and the limit specifies are limited and the limit specifies and the limited and the l	as rotated ation. Its set 3 me ich was me height is o determire and versaurements pected er the ante aximum resiver system on level of cified, there would be remargin woo	I 360 d neters a nounte s varied ine the ertical lent. emission tenna valuem was with Marthe Een testiireporte buld be	degrees to deaway from the ded on the top defrom one remaximum to polarization on, the EUT was turned from the second between the top death of	he into of a meter value s of the was a being om 0 of a mode stopped the ne by	erferent variable to four of the interest from the text fr	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees	

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

: FCC PART15 CLASS B 3m

EUT : mobile phone

Model : FTU161E

Test mode : Wifi Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

:	Read	ûnt enna	Cable	Preamn		Limit	Over	
Freq								Remark
MHz	dBu∜	<u>dB</u> /m	dB	dB	dBu√/m	dBu√/m	dB	
33.917	34.10	14.20	0.98	29.96	19.32	40.00	-20.68	QP
53.882	38.12	13.22	1.34	29.80	22.88	40.00	-17.12	QP
214.514	39.68	11.02	2.85	28.74	24.81	43.50	-18.69	QP
252.063	38.60	11.86	2.82	28.54	24.74	46.00	-21.26	QP
292.058	36.95	12.36	2.92	28.46	23.77	46.00	-22.23	QP
463.970	36.32	16.38	3.32	28.89	27.13	46.00	-18.87	QP
	MHz 33.917 53.882 214.514 252.063 292.058	MHz dBuV 33.917 34.10 53.882 38.12 214.514 39.68 252.063 38.60 292.058 36.95	Freq Level Factor MHz dBuV dB/m 33.917 34.10 14.20 53.882 38.12 13.22 214.514 39.68 11.02 252.063 38.60 11.86 292.058 36.95 12.36	Freq Level Factor Loss MHz dBuV dB/m dB 33.917 34.10 14.20 0.98 53.882 38.12 13.22 1.34 214.514 39.68 11.02 2.85 252.063 38.60 11.86 2.82 292.058 36.95 12.36 2.92	MHz dBuV dB/m dB dB 33.917 34.10 14.20 0.98 29.96 53.882 38.12 13.22 1.34 29.80 214.514 39.68 11.02 2.85 28.74 252.063 38.60 11.86 2.82 28.54 292.058 36.95 12.36 2.92 28.46	MHz dBuV dB/m dB dB dBuV/m 33.917 34.10 14.20 0.98 29.96 19.32 53.882 38.12 13.22 1.34 29.80 22.88 214.514 39.68 11.02 2.85 28.74 24.81 252.063 38.60 11.86 2.82 28.54 24.74 292.058 36.95 12.36 2.92 28.46 23.77	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 33.917 34.10 14.20 0.98 29.96 19.32 40.00 53.882 38.12 13.22 1.34 29.80 22.88 40.00 214.514 39.68 11.02 2.85 28.74 24.81 43.50 252.063 38.60 11.86 2.82 28.54 24.74 46.00 292.058 36.95 12.36 2.92 28.46 23.77 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 33.917 34.10 14.20 0.98 29.96 19.32 40.00 -20.68 53.882 38.12 13.22 1.34 29.80 22.88 40.00 -17.12 214.514 39.68 11.02 2.85 28.74 24.81 43.50 -18.69 252.063 38.60 11.86 2.82 28.54 24.74 46.00 -21.26 292.058 36.95 12.36 2.92 28.46 23.77 46.00 -22.23

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: mobile phone

Model : FTU161E

Test mode : Wifi Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

π 111 σ 1 σ 1 σ 1									
	Freq		Antenna Factor		3400 F		Limit Line	Over Limit	Remark
-	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
1	52.025	48.86	13.38	1.29	29.81	33.72	40.00	-6.28	QP
2	91.495	45.74	8.31	2.03	29.56	26.52	43.50	-16.98	QP
3	125.446	41.32	12.09	2.24	29.36	26.29	43.50	-17.21	QP
4	197.200	40.63	10.06	2.85	28.85	24.69	43.50	-18.81	QP
5	463.970	35.38	16.38	3.32	28.89	26.19	46.00	-19.81	QP
6	896.997	38.80	21.55	3.74	27.89	36.20	46.00	-9.80	QP

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.
` ′	(dBuV)	(dB/m)	(dB)	(dB)	,	,	(dB)	
4824.00	55.91	36.06	6.81	41.82	56.96	74.00	-17.04	Vertical
4824.00	54.32	36.06	6.81	41.82	55.37	74.00	-18.63	Horizontal
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.16	36.06	6.81	41.82	51.21	54.00	-2.79	Vertical
4824.00	49.83	36.06	6.81	41.82	50.88	54.00	-3.12	Horizontal

Test mode: 8	Test mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	56.21	36.32	6.85	41.84	57.54	74.00	-16.46	Vertical	
4874.00	53.46	36.32	6.85	41.84	54.79	74.00	-19.21	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	50.36	36.32	6.85	41.84	51.69	54.00	-2.31	Vertical	
4874.00	51.27	36.32	6.85	41.84	52.60	54.00	-1.40	Horizontal	

Test mode: 80	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	56.16	36.58	6.89	41.86	57.77	74.00	-16.23	Vertical	
4924.00	55.89	36.58	6.89	41.86	57.50	74.00	-16.50	Horizontal	
Test mode: 80	02.11b		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	50.19	36.58	6.89	41.86	51.80	54.00	-2.20	Vertical	
4924.00	50.31	36.58	6.89	41.86	51.92	54.00	-2.08	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	52.28	36.06	6.81	41.82	53.33	74.00	-20.67	Vertical	
4824.00	51.28	36.06	6.81	41.82	52.33	74.00	-21.67	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.26	36.06	6.81	41.82	49.31	54.00	-4.69	Vertical	
4824.00	45.36	36.06	6.81	41.82	46.41	54.00	-7.59	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	52.56	36.32	6.85	41.84	53.89	74.00	-20.11	Vertical	
4874.00	52.12	36.32	6.85	41.84	53.45	74.00	-20.55	Horizontal	
Test mode: 80)2.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.61	36.32	6.85	41.84	48.94	54.00	-5.06	Vertical	
4874.00	46.31	36.32	6.85	41.84	47.64	54.00	-6.36	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	50.81	36.58	6.89	41.86	52.42	74.00	-21.58	Vertical	
4924.00	51.35	36.58	6.89	41.86	52.96	74.00	-21.04	Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.82	36.58	6.89	41.86	47.43	54.00	-6.57	Vertical	
4924.00	46.35	36.58	6.89	41.86	47.96	54.00	-6.04	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	51.02	36.06	6.81	41.82	52.07	74.00	-21.93	Vertical	
4824.00	48.21	36.06	6.81	41.82	49.26	74.00	-24.74	Horizontal	
Test mode: 8	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.32	36.06	6.81	41.82	47.37	54.00	-6.63	Vertical	
4824.00	43.25	36.06	6.81	41.82	44.30	54.00	-9.70	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	50.62	36.32	6.85	41.84	51.95	74.00	-22.05	Vertical	
4874.00	50.01	36.32	6.85	41.84	51.34	74.00	-22.66	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.66	36.32	6.85	41.84	46.99	54.00	-7.01	Vertical	
4874.00	44.14	36.32	6.85	41.84	45.47	54.00	-8.53	Horizontal	

Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.32	36.58	6.89	41.86	49.93	74.00	-24.07	Vertical
4924.00	49.31	36.58	6.89	41.86	50.92	74.00	-23.08	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	43.21	36.58	6.89	41.86	44.82	54.00	-9.18	Vertical
4924.00	44.25	36.58	6.89	41.86	45.86	54.00	-8.14	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.