

TG 265.B41 Cornell University Library

3 1924 003 877 135

Cornell University Library

BOUGHT WITH THE INCOME OF THE

SAGE ENDOWMENT FUND

THE GIFT OF

Henry W. Sage

ENGINEERING

ENGINEERING

9[11] 16.

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

LIVE-LOAD STRESSES

IN

RAILWAY BRIDGES

WITH

FORMULAS AND TABLES

BY

GEORGE E. BEGGS, A.B., C.E.

Assistant Professor of Civil Engineering in Princeton University; Associate Member of the American Society of Civil Engineers; Member of the Society for the Promotion of Engineering Education

FIRST EDITION FIRST THOUSAND

NEW YORK

JOHN WILEY & SONS, Inc.

London: CHAPMAN & HALL, LIMITED

1916

Copyright, 1916, by GEORGE E. BEGGS

PREFACE

Stresses caused by moving concentrated loads are treated in this book by the combined use of influence lines and algebraic methods. The influence line is connected by this treatment with tables of moment sums and load sums in a new and entirely practical manner.

The heart of the text is contained in equations (7) and (8). These give an easy and exact solution of the maximum live-load stresses in any structure whose influence lines can be drawn, replacing, for the more complicated structures, such as cantilever and swing bridges, arches, etc., the old method of placing the wheel loading by trial and scaling the influence-line ordinates under the loads.

A second feature of the text is the application of equations (7) and (8) to the simpler structures, such as girder bridges (with and without panels), pier reactions, and Pratt trusses (with inclined and horizontal chords), in which these equations are transformed and simplified to meet the requirements of these ordinary cases. This leads to a series of simple formulas to meet the needs of every-day designing. To illustrate the application of these formulas, fully worked-out examples are given.

The text is supplemented by a very complete set of tables, the usefulness of which is at once apparent. The greater part of the matter in these tables is new. A table similar to Table 3 was made by Mr. Josiah Gibson, C.E., and published in the *Engineering News*, June 21, 1906; and a table similar to Table 11 is given by Mr. J. P. J. Williams in the *Engineering News* of Oct. 1, 1914. Tables similar to Tables 6, 8, and 9 are found in the "Structural Engineers' Handbook" by Dean Milo S. Ketchum and in the "Design of Steel Bridges" by Mr. F. C. Kunz.

iv preface

The author wishes to acknowledge his indebtedness to the American Bridge Company for material assistance, and in particular to Mr. O. E. Hovey, Assistant Chief Engineer of this company, for his encouragement and help. The author also desires to acknowledge the valuable suggestions made in the revision of the original text by Professor F. H. Constant, of the Civil Engineering Department of Princeton. To Professor William H. Burr of Columbia University, the writer is permanently indebted for the logical and thorough instruction received from him as a student.

G. E. B.

Princeton University December, 1915.

CONTENTS

ARTICLE	1.	Influence Lines. Definition and Use	PAGE 1
ARTICLE	II.	Sum and Rate of Variation of Ordinate-load Products between Two Diverging Lines	5
ARTICLE	III.	Sum and Rate of Variation of Ordinate-load Products for any Influence Line. Position of Loading for Maximum Live-load Stress	7
ARTICLE	IV.	Girder Bridge without Panels. General Formulas for Reactions, Shears, and Bending Moment with its Rate of Variation	13
ARTICLE	V.	General Formulas for Pier Reaction and its Rate of Variation. Illustrative Problem	23
ARTICLE	VI.	Girder Bridge with Panels. General Formulas for Live-load Stresses and their Rate of Variation. Illustrative Problem	27
ARTICLE	VII.	Through Pratt Truss. General Formulas for Liveload Stresses and their Rate of Variation. Illustrative Problems	31
ARTICLE	VIII.	Three-hinged Arch. Application of the General Method to the Calculation of Live-load Stresses	48
ARTICLE	IX.	Equivalent Uniform Loads	54
ARTICLE	X.	Method of Calculating Table of Load Sums and Moment Sums for any Standard Loading. Illus- trative Example	57
ARTICLE	XI.	Summary of Formulas	59
		Tables 1 to 21	67

LIVE-LOAD STRESSES

ARTICLE I.

INFLUENCE LINES. DEFINITION AND USES.

INFLUENCE lines are useful in determining the position of live load on a bridge to produce maximum effect. They offer also a convenient method of deriving general algebraic formulas for stresses and rules for maximum when the general relations between influence lines and algebraic formulas are once understood; and in the case of the more complex problems of skew bridges, arches, cantilever bridges, etc., the influence lines themselves serve as a most direct method for the determination of the maximum live-load stresses.

An influence line may be defined as a line showing the variation in any function caused by a single *unit* load as it moves across the bridge. Vertical loads only will be considered. The function may be a reaction, bending moment, shear, stress, deflection, or any quantity whatsoever at a given part of a bridge, provided that its value is a function of the position of the unit load on the bridge.

Refer to Fig. 1a. Consider the span AB, and let Z be any function at the fixed position C on the span L. If the load unity moves across the span AB and the value of Z be calculated for each position of the unit load and its value z plotted below the corresponding position of this load as an ordinate from a horizontal base line, the locus of the plotted points will be the influence line for Z. For example, if Z be the bending moment at the fixed section C in a beam of span L, the influence line will be as shown in Fig. 1b. In plotting influence lines, ordinates repre-

senting positive quantities are plotted above the base line; and negative, below. In case the influence line consists of several straight segments, it is necessary to determine the value of the ordinates only where the influence line has a change of direction; *i.e.*, at the *salient points*. For example,

Fig 1.

the points A, C, and B are the salient points of the influence line in Fig. 1b.

The value of Z caused by a single load w is equal to wz, if z is the influence ordinate below w. The value of Z caused by a series of loads w_1 , w_2 , w_3 , etc., is

$$Z = w_1 z_1 + w_2 z_2 + w_3 z_3 + \ldots = \sum w z \quad . \quad . \quad (1)$$

where z_1 , z_2 , z_3 , etc., are the influence ordinates below the corresponding loads. It will be convenient to speak of such a quantity as wz as an ordinate-load product.

Formula (1) therefore may be expressed thus:

 $Z = Sum \ of \ ordinate-load \ products.$

The area between the influence line and the base line is called the *influence area*. It may be shown that the value of Z caused by a uniform load on the bridge is proportional to the area A_z of the influence line between the ordinates at the extremities of the uniform load. If the uniform load in Fig. 1a has an intensity of q per unit of length, the load in the length dx equals q dx, and the influence of this elementary load on the value of Z is zq dx, where z is the influence ordinate below q dx. Summing up for the length of the uniform load,

$$Z = q \sum_{a_1}^{a_2} z dx = q A_z \quad . \quad . \quad . \quad (2)$$

If a series of equal loads w is on the span, the value of Z is

If a series of unequal loads, w_1 , w_2 , etc., is multiplied by the corresponding ordinates of an influence line or a portion of an influence line which has a constant ordinate z, as in Fig. 1c, the value of Z is

$$Z = z(w_1 + w_2 + \ldots) = z\Sigma w = zW \ldots (4)$$

where W equals the sum of these loads.

If a series of unequal loads is multiplied by the corresponding ordinates of an influence line or a portion of an influence line consisting of two diverging lines, as shown in Fig. 1d, the value of Z, or the sum of the ordinate load products, and the rate at which Z varies as the loading advances, are given by the two theorems that follow. The slope of a line is defined at the beginning of Art. 2.

Theorem 1.

The sum of the ordinate-load products between two diverging lines equals the difference between the slopes of the two lines multiplied by the sum of the moments of the loads about the intersection of these lines.

In symbols, this is stated as

Theorem II.

The rate at which the sum of the ordinate-load products between the two diverging lines increases as the loading moves away from the intersection of these lines equals the difference between the *slopes* of the two lines multiplied by the sum of the loads.

In symbols, this is stated as

$$\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = C_a \frac{dM_a}{dx} . . (5a)$$

The proofs of these theorems follow in the next article.

ARTICLE II.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS
BETWEEN THE TWO DIVERGING LINES.

Consider the diverging lines DAB and AC in Fig. 2. Use the following notation:

w =any vertical load.

z =ordinate below w in the angle BAC.

 $Z = \sum w_n z_n = \text{sum of ordinate-load products.}$

Fig. 2.

 $M_a = \sum w_n x_n = \text{moment sum of all loads to left of } Aa \text{ about } A.$

 $W_a = \Sigma w_n = \text{load sum of all loads to left of } Aa.$

 s_R = slope of line DA = tangent of angle which DA makes with the horizontal.

 s_L = slope of line AC = tangent of angle which AC makes with the horizontal.

$$C_a = \frac{z_n}{x_n} = (s_L - s_R) = \text{length of ordinate unit distance}$$
 from A .

Slopes are counted numerically positive when upward to the left. The sign of C_a (called the coefficient at salient point A) is, accordingly, negative when AC diverges below DA produced to the left of A. The value of C_a may be

determined graphically as $\frac{z_n}{x_n}$ or it may be figured algebraically as $(s_L - s_R)$.

Proof of Theorem I, or that $Z = C_a M_a$.

Consider the load w_n distant x_n from the salient point a. By the similar triangles AEF and AGH,

$$\frac{C_a}{1.00} = \frac{z_n}{x_n}, \text{ or } z_n = C_a x_n.$$

Therefore,

$$w_n z_n = C_a w_n x_n \dots \dots \dots \dots (A)$$

Summing up all of the ordinate-load products,

$$Z = \sum w_n z_n = C_a \sum w_n x_n = C_a M_a. \quad . \quad . \quad . \quad (5)$$

Proof of Theorem II, or that
$$\frac{dZ}{dx} = C_a W_a$$
.

From equation (A) above, the increase in the ordinate-load product $w_n z_n$ for an advance dx_n of the load is

$$w_n dz_n = C_{a} \cdot w_n \cdot dx_n.$$

Summing up the increases of all the ordinate-load products and noting that dx is the same for all loads,

$$dZ = \Sigma w_n dz_n = C_a dx \cdot \Sigma w_n = C_a \cdot W_a \cdot dx.$$

Dividing by
$$dx$$
, $\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = \frac{C_a dM_a}{dx}$. (5a)

ARTICLE III.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS FOR ANY INFLUENCE LINE. POSITION OF LOADING FOR MAXIMUM LIVE-LOAD STRESS.

An influence line of a general type is shown in Fig. 3, this one in particular being for the member U_3L_4 of the

arch shown in Fig. 15. It is assumed that the ordinates at all salient points and the intervals between these points are known. Ordinates and slopes are counted positive or negative as already defined. The slope of any segment of the

influence line equals the ordinate at the left minus the ordinate at the right end of this segment divided by the corresponding interval. The coefficient C at any salient point equals the slope of the segment at the left minus the slope of the segment at the right of this point. The subtractions in each case are made algebraically.

It should be remembered, as has already been pointed out in Art. 2, that the value of any coefficient C may also be measured graphically from an influence line which has been drawn to scale. For example, in Fig. 3 the value of

the coefficient
$$C_2 = \frac{h_2}{x_2}$$
 and $C_4 = \frac{h_4}{x_4}$.

The algebraic calculation of the coefficients at all salient points of the influence line in Fig. 3 is given below. If it be assumed that this influence line has been drawn to scale, the signs of the numerical values of the slopes and coefficients will be as given in the parentheses.

$$s_{1} = \frac{0 - z_{2}}{l_{1}} (+) \qquad C_{1} = 0 - s_{1} (-)$$

$$s_{2} = \frac{z_{2} - z_{3}}{l_{2}} (-) \qquad C_{2} = s_{1} - s_{2} (+)$$

$$s_{3} = \frac{z_{3} - z_{4}}{l_{3}} (+) \qquad C_{3} = s_{2} - s_{3} (-)$$

$$s_{4} = \frac{z_{4} - 0}{l_{4}} (+) \qquad C_{4} = s_{3} - s_{4} (+)$$

$$C_{5} = s_{4} - 0 (+)$$

A numerical evaluation of the slopes and coefficients for this influence line is given in Fig. 15 of Art. 8, which the reader should check in order to understand completely the method of procedure. These coefficients should also be checked by the graphical method as already explained.

For example, in Fig. 15 the value of
$$C_2 = \frac{2.59}{30} = .0863$$
.

It will be noted in the algebraic calculation of the coefficients C at all salient points that each slope enters once as positive and once as negative. Therefore the sum of all coefficients equals zero.

$$\Sigma C = 0. \ldots (6)$$

This formula serves as a check on the values of the coefficients which have been determined either by calculation or by graphical measurement.

The general formulas for the sum of the ordinate-load products for any influence line (viz., with several salient points such as the one shown in Fig. 3) may be arrived at by considering the two contiguous sloping sides of the influence line meeting at each salient point as two diverging lines. The entire influence line is thus made up of pairs of diverging lines (see Fig. 3) to each pair of which formula (5) may be directly applied. Thus in Fig. 3,

Ordinate-load products in
$$|\underline{dfc}| = C_1 M_1 \quad (-)$$

" " $|\underline{cge}| = C_2 M_2 \quad (+)$

" " $|\underline{eha}| = C_3 M_3 \quad (-)$

" " $|\underline{akb}| = C_4 M_4 \quad (+)$

" " $|\underline{bmd}| = C_5 M_5 \quad (+)$

The signs of the CM's are + or - according to the signs of the coefficients, for the M's are always positive. Summing up the above equations and observing that the ordinate-load products cancel one another except between the influence line fghkm and its base line fom, it follows that the sum of the ordinate-load products for the influence line, or the live-load stress, is

$$S = C_1 M_1 + C_2 M_2 + \ldots = \Sigma C M_1 \ldots (7)$$

The letter S represents in general any stress or sum of ordinate-load products for any influence line, while Z stands for the sum of ordinate-load products for any geometrical figure.

The rate at which S varies as the load advances a distance dx equals

$$\frac{dS}{dx} = \frac{d(C_1M_1)}{dx} + \frac{d(C_2M_2)}{dx} + \text{Etc.}$$

But by formula (5a) this becomes

$$\frac{dS}{dx} = C_1 W_1 + C_2 W_2 + \ldots = \Sigma C W. \quad . \quad . \quad (8)$$

 W_1 , W_2 , etc., = sum of all of the loads to the left of points 1, 2, etc., respectively, whether on the span or not.

 M_1 , M_2 , etc., = moment of the same loads about points 1, 2, etc., respectively, whether on the span or not.

The above formulas (6), (7), and (8) apply equally well when the loading is headed from left to right instead of from right to left, the latter being the more usual way. In applying these formulas, however, it will save confusion not to reverse the loading, but to turn the influence line end for end, for this operation changes neither the values nor the signs of the coefficients C.

The stress $S = \Sigma CM$ is related to its derivative $\frac{dS}{dx} = \Sigma CW$ in the same way that any function is related to its derivative. Thus, if the value of $\frac{dS}{dx}$ passes through zero as

the loading advances, the stress itself may have reached any one of four conditions; namely,

- 1. Numerically maximum positive value.
- 2. " minimum " "
- 3. "maximum negative "
- 4. "minimum " "

In practice it is desirable to find the positions of loading to satisfy the first and third conditions. This may be done by proceeding as directed below. It is assumed in stating the following rules that the live load is advancing from right to left. In case the live load advances from left to right, the wheel will be tried first to the left and

then to the right of a salient point. In other words, dx is always an increment in the same direction as the loading advances.

Rule 1.—To determine the position of loading to give a maximum positive stress, place the live load on the part of the bridge corresponding to the positive portion of the influence line. Try a wheel first immediately to the right of a salient point that has a negative coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from + to -, a position of loading for maximum positive stress is determined.

Rule 2.—To determine the position of loading to give a numerically maximum negative stress, place the live load on that part of the bridge corresponding to the negative portion of the influence line. Try a wheel first immediately to the right of a salient point that has a positive coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from — to +, a position of loading for numerically maximum negative stress is determined.

It will be noted that the negative coefficients C occur at those salient points where the angles of the influence line point upward, while the positive coefficients C occur at those salient points where the angles point downward.

It is unnecessary to seek a position of loading for maximum positive stress by placing a wheel successively to the right and to the left of any salient point which has a positive coefficient; for if $\frac{dS}{dx} = \Sigma CW$ be + when the wheel is to the right of this point, it would have a still larger +

value when the wheel is to the left of the point. A change therefore, of $\frac{dS}{dx}$ from + to - would not result. Similarly it may be shown to be unnecessary to seek a numerically maximum negative stress by trying wheels at any salien point which has a negative coefficient.

Formulas (7) and (8) are the general formulas for the solution of the sum of the ordinate-load products of as influence line and the rate of change of this sum, and are applicable to any form of influence line. They give at once a definite solution of the position of a set of loads produc ing maximum positive and negative stresses in any membe of any truss or girder for which an influence line can be drawn and the values of such stresses. The method is particularly advantageous in the case of statically indeter minate structures, such as two-hinged and no-hinged arches swing bridges, continuous girders, etc., where general ana lytical criteria for the positions of loads producing maxi mum stresses cannot readily be expressed and where such maximum stresses have had to be found by assuming posi tions of loadings and scaling the influence-line ordinate under all the loads, a laborious process and one open to much liability of mechanical inaccuracy.

In applying the present method to the simple forms of girders and trusses (viz., the statically determinate structures where the ordinates of the influence lines are readily expressible algebraically) it will generally be more convenient to transform formulas (7) and (8) in each case whereby the coefficients C may be expressed in terms of the geometric proportions of the truss or girder. This, in the following articles (4 to 7 inclusive), we shall proceed to do for the case of girder bridges (with and without panels), pie reactions, and through Pratt trusses with curved or horizontal chords. The general method will, however, be applied directly to the case of the three-hinged arch in Art 8, which will serve as a typical example of the application of the method to any influence line.

ARTICLE IV.

GIRDER BRIDGE WITHOUT PANELS.

In Fig. 4 is shown a girder bridge without panels. The live load has advanced beyond the span, this being the

most general case. Formulas for the end reactions and for the bending moment and shear at any section will be developed. The influence line for R_1 is shown in Fig. 4a. The sum of the ordinate-load products within the shaded area *rst* equals the end reaction R_1 , which at the same time is the end shear at R_1 .

From Fig. 4a,

Ordinate-load products in
$$|\underline{rst}| =$$

" " $|\underline{atc}|$

— " " $|\underline{arb}|$

— " " $|\underline{brsc}|$

By using formulas (4) and (5), this equation becomes

$$R_1 = \frac{1}{L} M_3 - \frac{1}{L} M_1 - W_1 = \frac{M_3 - M_1}{L} - W_1 . . (9)$$

Any value of M or W may be read directly from Table 2 for the standard loadings given in Table 1. For example, in Fig. 4, if $l_1 = 10'$, $l_2 = 30'$, and w_1 of Cooper's E50 has advanced 14' beyond the left end of the span, we have from Table 2,

At 1, 14' from
$$w_1$$
, $M_1 = 350.0^{K_1}$ $W_1 = 62.50^K$
At 2, 24' from w_1 , $M_2 = 1150.0$ $W_2 = 112.50$
At 3, 54' from w_1 , $M_3 = 5435.0$ $W_3 = 177.50$

The formula for R_2 is developed as for R_1 , the method of writing the second member of the first equation being abbreviated in a way readily understood. From the influence line in Fig. 4b, and the formulas (4) and (5),

 R_2 = Ordinate-load products in (dvxe - | dvf + | fue)Or

$$R_2 = W_3 - \frac{1}{L}M_3 + \frac{1}{L}M_1 = W_3 - \frac{M_3 - M_1}{L}$$
 (9a)

The sum of the reactions R_1 and R_2 as given by (9) and (9a) equals $W_3 - W_1$, or the sum of the loads on the bridge.

From the influence line in Fig. 4c and formulas (5) or (7), the equation for bending moment may be written:

$$M = \text{Ordinate-load products in } (| gbh - | gak + | kzh).$$

Or

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \quad . \quad . \quad . \quad (10)$$

Formula (10) readily follows, likewise, from the general formula (7), $S = C_1M_1 + C_2M_2 + C_3M_3 = \Sigma CM$.

For example, in the case of the bending moment at point 2 in Fig. 4,

$$C_1 = 0 + \frac{l_2}{L}$$
 $C_2 = -\frac{l_2}{L} - \frac{l_1}{L} = -1$
 $C_3 = \frac{l_1}{L} - 0$
 $M = \frac{l_2}{L} M_1 - M_2 + \frac{l_1}{L} M_3 \dots$ (10a)

Whence

Taking the derivative of M with respect to the advance dx of the loading toward the left or using formula (8) directly, the rate of variation of the bending moment is

$$\frac{dM}{dx} = \frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \qquad . \qquad . \qquad . \qquad (11)$$

All positions for maximum M may be found by trying wheels at point 2 as directed by Rule 1 of Art. 3. In applying this rule the simultaneous shifting of other wheels of the rigid loading from right to left of points 1 and 3 as a wheel is shifted from right to left of point 2, must be taken into account by substituting in formula (11) the corresponding changed values of W_1 and W_3 . It is to be remembered, as stated in Art 3, that it is entirely unnecessary to try wheels at points 1 and 3.

From the influence line in Fig. 4d, the formula for the intermediate shear S follows by applying formulas (4) and (5):

S =Ordinate-load products in

$$(|mfq - mden - |ncq)$$

Or

$$S = \frac{1}{L} M_3 - W_2 - \frac{1}{L} M_1 = \frac{M_3 - M_1}{L} - W_2 \quad . \quad (12)$$

There is one more thing to be borne in mind in calculating maximum bending moments in a girder bridge without panels: it is the rule for finding the section where the absolute maximum bending moment occurs. The rule is often spoken of as the "centre of gravity rule," and may be stated as follows:

The bending moment under any given wheel becomes maximum when the centre of the span bisects the distance from the wheel in question to the centre of gravity of the loading on the span.

In the practical application of this rule, the procedure is first to find the wheel which gives maximum bending moment at the centre of the span and then to shift this wheel so that the bending moment beneath it becomes an absolute maximum according to the centre of gravity rule. For the usual standard loadings the maximum centre moment closely approximates the absolute maximum bending moment for the spans greater than 70 feet.

The proof of the centre of gravity rule follows. Refer to Fig. 5. Assume that it has been found by trial that the wheel w_n gives the maximum centre moment. The general case where load has advanced beyond the span is taken. In order to get an absolute maximum bending moment under w_n , this wheel must be shifted a certain distance from the centre. Let such position be distance y from R_1 . The sum of the loads on the span is called P_2 and equals $(W_3 - W_1)$. The centre of gravity of the loads P_2 is distance \overline{x} from R_2 . The sum of the loads on the span to the left of w_n is called P_1 , and their centre of gravity is at the fixed distance y from y.

Taking moments about R_2 ,

$$R_1 = \frac{P_2 \bar{x}}{L}$$

Therefore,

$$M = R_1 y - P_1 b = \frac{P_2 \overline{x}}{L} y - P_1 b.$$

In this equation for M, the only variables are \overline{x} and \underline{y} . Therefore, M will be a maximum when the product \overline{xy} is maximum. Note, however, that the sum

$$\overline{x} + y = (L - a) = \text{constant}.$$

If two variables have a constant sum, their product is maximum when the two variables are equal. Therefore, M is maximum when $\overline{x} = y$. But when $\overline{x} = y$, the distance from w_n to the centre of gravity of the loading is bisected

by the centre of the span. This proves the centre of gravity rule.

In order to apply this rule, a general expression for \overline{x} is needed.

Since $R_1 = \frac{P_2 \overline{x}}{L}$ it follows that $\overline{x} = \frac{R_1 L}{P_2}$. Substitute the value of R_1 from formula (9), and the value $(W_3 - W_1)$ for P_2 .

$$\overline{x} = \frac{M_3 - M_1 - LW_1}{W_3 - W_1} \quad . \quad . \quad . \quad (13)$$

In the special case where the loading has not advanced beyond the left end of the span, M_1 and W_1 equal zero and \bar{x} becomes

Problems relating to a girder bridge without panels will now be given to illustrate the application of the above formulas and the use of some of the tables following the text.

Problem.—Given a 40-foot deck-girder bridge consisting of one girder per rail. Use Cooper's E50 loading. Find the maximum shear at the end, quarter point, and centre. Determine also the maximum bending moment at the quarter point and at the centre, and the absolute maximum bending moment. All values are to be given per rail.

Solution.—Table 5 following the text gives the position of Cooper's loadings for maximum end shear. This table is the result of the solution of end shears for a large number of spans. As a general rule, however, it is safe to assume that w_2 of Cooper's and similar loadings will always give the maximum end or intermediate shear when placed immediately to the right of the given section, the live load being headed toward the left. The exceptions in Table 5 to this general rule are not of prime importance, for the actual value of the shear when w_2 is used is sufficiently close to the maximum even in the exceptional cases. There is no satisfactory criterion for determining the position of loading for maximum shear in girder bridges without panels, for it is as easy to calculate the actual values of the shears for the successive positions of loading as it is to apply any criterion. In the case of bending moment, however, time is saved by using the criterion.

Maximum End Shear.

Use formula (9),
$$R_1 = \frac{M_3 - M_1}{L} - W_1$$
. Place wheel 2

of Cooper's E50 immediately to right of R_1 . Take the values of moment and load sums for Cooper's E50 from Table 2.

Maximum end shear =
$$\frac{4370 - 100}{40} - 12.5 = 94.3^k$$
.

Maximum Shear at Quarter Point.

Use formula (12) with w_2 at quarter point.

$$S = \frac{M_3 - M_1}{L} - W_2$$

S at
$$\frac{1}{4}$$
 point = $\frac{2838.75 - 0}{40} - 12.5 = 58.5^{k}$.

Maximum Shear at Centre.

Using formula (12) with w_2 at centre.

$$S \text{ at centre} = \frac{1600 - 0}{40} - 12.5 = 27.5^k.$$

The values for the shears are given in Kips, or thousand of pounds. A comparison of the above shears with those in Table 7 shows agreement of results.

Maximum Bending Moment at the One-Quarter Point.

First compute successive pairs of values for $\frac{dM}{dx}$ for different wheels, first placed to the right and then to the left of the quarter point. A change of sign from + to - indicates a wheel that gives a maximum. Use formula (11),

$$\frac{dM}{dx} = \frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \quad . \quad . \quad . \quad (11)$$

 w_1 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 0 = +$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 12.5 = +$$

 w_2 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (0) - 12.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (0) - 37.5 = -$$

 w_3 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (12.5) - 37.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

 w_4 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4}(177.5) + \frac{3}{4}(37.5) - 87.5 = -$$

Accordingly, compute the value of M by formula (10) for w_2 and w_3 at quarter point.

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - \dot{M_2} \quad . \quad (10)$$

M for w_2 at quarter point,

$$M = \frac{1}{4} (2838.75) + \frac{3}{4} (0) - 100 = 609.7$$
 Kip feet.

M for w_3 at quarter point,

$$M = \frac{1}{4}(3563.75) + \frac{3}{4}(37.5) - 287.5 = 631.6$$
 Kip feet.

The latter value, 631.6, is the maximum bending moment at the quarter point. A comparison of this value

with Table 11 shows agreement of results. Reference to Table 3 indicates that the correct wheel for maximum has been chosen.

Maximum Bending Moment at the Centre.

$$rac{dM}{dx}=rac{W_3+W_1}{2}-W_2$$
, (10a), and
$$M=rac{M_3+M_1}{2}-M_2$$
, (11a), when $rac{l_1}{L}=rac{l_2}{2}$

 w_3 at centre,

$$\frac{dM}{dx} = \frac{128.75}{2} - 37.5 = +$$
No maximum.
$$\frac{dM}{dx} = \frac{128.75}{2} - 62.5 = +$$

 w_4 at centre,

$$\frac{dM}{dx} = \frac{145}{2} - 62.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{145}{2} - 87.5 = -$$

 w_5 at centre,

$$\frac{dM}{dx} = \frac{145 + 12.5}{2} - 87.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{161.25 + 12.5}{2} - 112.5 = -$$

Therefore, maximum centre moment occurs with w_4 at centre.

$$M = \frac{2838.75}{2} - 600 = 819.37$$
 Kip feet.

This value agrees with Table 11; and the position of loading, with Table 3.

Absolute Maximum Bending Moment.

Shift w_4 according to centre of gravity rule, and then recompute the value of M under this wheel by formula (10). Note that new values for l_1 , l_2 , and M_3 must be determined.

By formula (13a), when w_4 is at the centre,

$$\overline{x} = \frac{M_3}{W_3} = \frac{2838.75}{145} = 19'.58$$

Therefore for absolute maximum bending moment under

$$w_4$$
, shift loading to left $\frac{20'.00 - 19'.58}{2} = 0'.21$.

The new values of l_1 , l_2 , and M_3 are

$$l_1 = 20.00 - 0.21 = 19.79$$

 $l_2 = 20.00 + 0.21 = 20.21$
 $M_3 = 2838.75 + .21(145) = 2869.2$

The absolute maximum bending moment =

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2$$

= $\frac{19.79}{40} (2869.2) + 0 - 600 = 819.54$ Kip feet.

It appears, therefore, that the absolute maximum bending moment is .17 Kip feet greater than the maximum centre moment. The difference is not great in this particular case, as the required shift of the loading is comparatively small. The position of loading for absolute maximum bending moment agrees with Table 4, and its value agrees with Table 7.

ARTICLE V.

PIER REACTION.

In Fig. 4e is given the influence line for the pier reaction R between two non-continuous beam spans l_1 and l_2 . From this influence line, the formulas (5) and (7) give

 $R = \text{Ordinate-load products in } (|\underline{gbh} - |\underline{gak} + |\underline{kzh})$ Or,

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right)$$
(14)

Formula (14) may also be derived from formula (10) since the ordinates of the influence line for R bear the constant ratio $\frac{L}{l_1 l_2}$ to the corresponding influence ordinates for M, the position of the live load and the values of l_1 and l_2 remaining fixed.

Therefore,

$$R = \frac{L}{l_1 l_2} M \qquad (16)$$

Substituting the value $M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2$ from formula (10) in formula (16), the result is again formula (14).

For equal spans,

$$l_1 = l_2 = l$$
 so that $R = \frac{M_3 + M_1 - 2M_2}{l}$. (14a)

The rate of change of R for a movement dx of the loading to the left is

$$\frac{dR}{dx} = \frac{W_3}{l_1} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right)$$
(15)

For equal spans, $l_1 = l_2 = l$, so that

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \dots \dots (15a)$$

In the last member of formula (15) the quantity within the parentheses is the same as the expression for $\frac{dM}{dx}$ in formula (11). It follows, therefore, that the same position of loading gives maximum R and maximum M for any given values of l_1 and l_2 .

Problem.—(a) Find the maximum pier reaction per rail between two simple beam spans $l_1 = 10$ ft. and $l_2 = 30$ ft. (b) Find the maximum pier reaction between two simple beam spans, each having a length of 20 feet. Use Cooper's E50 loading.

Use formula (15) to find position of loading for maximum R.

$$\frac{dR}{dx} = \frac{L}{l_1 l_2} \left(\frac{l}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right) \quad . \quad . \quad (15)$$

 w_2 at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 12.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 37.5 \right) = -$$

 w_3 at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (12.5) - 37.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} \left(161.25 \right) + \frac{30}{40} \left(12.5 \right) - 62.5 \right) = -$$

Use formula (14) to compute the value of R.

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2.$$

 w_2 at pier.

$$R = \frac{2838.75}{30} + \frac{0}{10} - \frac{40}{10 \times 30} (100) = 81^{k}.$$

 w_3 at pier.

$$R = \frac{3563.75}{30} + \frac{37.5}{10} - \frac{40}{10 \times 30} (287.5) = 84^{k}.$$

The latter value of 84^k is the maximum pier reaction. Its value agrees with Table 14 and the position of loading agrees with Table 3.

Use formulas (14a) and (15a),

$$R = \frac{M_3 + M_1 - 2M_2}{l}$$
, and $\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l}$.

 w_3 at pier.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 37.5}{20} = +$$

No maximum.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 62.5}{20} = +$$

 w_4 at pier.

$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 62.5}{20} = +$$

Maximum.

$$\frac{dR}{dr} = \frac{145 + 0 - 2 \times 87.5}{20} = -$$

 w_5 at pier.

$$\frac{dR}{dx} = \frac{145 + 12.5 - 2 \times 87.5}{20} = -$$

No maximum.

$$\frac{dR}{dx} = \frac{161.25 + 12.5 - 2 \times 112.5}{20} = -$$

Therefore, maximum pier reaction occurs when w_4 is at the pier.

$$R = \frac{2838.75 - 0 - 2 \times 600}{20} = 81.9^{k}.$$

This maximum pier reaction of 81.9^k agrees with value in Table 7 and Table 14, while the position of loading agrees with that given by Table 3.

ARTICLE VI.

GIRDER BRIDGE WITH PANELS.

In Fig. 6 is shown a girder bridge with panels. It is as-

Fig. 6. /

sumed that the live load has advanced beyond the left end of the span, this being the most general case.

The formulas for R_1 and R_2 are the same as formulas (9) and (9a) for the girder without panels, if the girder bridge with panels has end floor-beams; but if this bridge has end struts with the end stringers resting on separate pedestals, the value of R_1 beneath the end of the main girder is the same as S_a , the shear in the end panel, as given by formula (17) to follow.

Inasmuch as the maximum bending moment in a beam carrying concentrated loads always occurs beneath a concentration, the maximum bending moments in the main girder of a girder bridge with panels will occur at the floor-beams. The influence line for the bending moment at the floor-beams is the same as for the bending moment in a girder bridge without panels; accordingly, formulas (10) and (11) are to be used in finding maximum bending moments at the floor-beams.

It remains to derive formulas for the maximum shears S_a in the end panel and S_b in any intermediate panel. In Fig. 6 are given the influence lines for S_a and S_b . The correctness of the ordinates is at once evident. The slopes and coefficients are calculated as explained in Arts. 2 and 3. The general formulas for S_a and S_b and their rates of variation may be written at once by use of formulas (7) and (8).

$$S_a = \frac{1}{L}M_3 + \frac{l_2}{l_1L}M_1 - \frac{1}{l_1}M_2 = \frac{1}{l_1}\left(\frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2\right)$$
(17)

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)$$
(18)

$$S_b = \frac{1}{L}M_4 - \frac{1}{p}M_3 + \frac{1}{p}M_2 - \frac{1}{L}M_1 \quad . \quad . \quad . \quad (19)$$

$$\frac{dS_b}{dx} = \frac{1}{L} W_4 - \frac{1}{p} W_3 + \frac{1}{p} W_2 - \frac{1}{L} W_1 \quad . \tag{20}$$

Formula (17) when compared with formula (10) shows that S_a is equal to the bending moment at the first intermediate floor-beam divided by the length of the first panel. Formula (18) when compared with formula (11) shows that

the same position of loading that gives maximum bending moment at the first intermediate floor-beam will also give maximum shear in the end panel.

Formulas (19) and (20) are perfectly general and will serve for any assumed series of vertical loads in any position. For the usual standard loadings and panel lengths, however, it is not necessary to advance any loads beyond an intermediate panel for maximum shear in this panel. Therefore, for practical purposes formulas (19a) and (20a)

$$S_{b} = \frac{M_{4}}{L} - \frac{M_{3}}{p} = \frac{1}{p} \left(\frac{p}{L} M_{4} - M_{3} \right) . . (19a)$$

$$\frac{dS_{b}}{dx} = \frac{W_{4}}{L} - \frac{W_{3}}{p} = \frac{1}{p} \left(\frac{p}{L} W_{4} - W_{3} \right) . . (20a)$$

Illustrative Problem.—A single track through girder bridge with a floor system consisting of stringers and floor-beams, both end and intermediate, has six panels of 20 feet each. Find the maximum end reaction and the shear in panels 0 - 1, 1 - 2, and 2 - 3, using Cooper's E50 loading.

Solution.—For maximum end reaction place wheel 2 at left end. Use formula

$$R_1 = \frac{M_3 - M_1}{L} - W_1 \qquad (9)$$

$$R_1 = \frac{27651 - 100}{120} - 12.5 = 217.1^k$$

Note that the above value agrees with Table 7. For maximum shear in panel 0-1, find critical wheel by formula (18) and then compute shear by formula (17). Try wheel 3 at panel point 1.

$$\frac{dS_a}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) + 0 - 37.5 \right) = +$$
Maximum.
$$\frac{dS_a}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) - 0 - 62.5 \right) = -$$

Note that the position of loading agrees with Table 3. For this position of loading formula (17) gives

$$S_a = \frac{1}{20} \left(\frac{1}{6} (21895) + 0 - 287.5 \right) = 168.1^k.$$

For maximum shears in the intermediate panels, determine the position of loading by formula (20a) and the shear by formula (19a).

$$\frac{dS_b}{dx} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \qquad (20a)$$

$$S_b = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right) \qquad (19a)$$

Panel 1-2. Try wheel 3 at panel point 2.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (306.25) - 37.5 \right) = +$$

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (322.50) - 62.5 \right) = -$$

$$S_b = \frac{1}{20} \left(\frac{1}{6} (15051.25) - 287.5 \right) = 111.0^k.$$

Panel 2-3. Try wheel 3 at panel point 3.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 37.5 \right) = +
\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 62.5 \right) = -
S_b = \frac{1}{20} \left(\frac{1}{6} (9345) - 287.5 \right) = 63.5^k.$$
Maximum.

The above values for shears agree with the values given by Table 9. The wheel for maximum shear in panels of girder and truss bridges is given in Table 6.

ARTICLE VII.

THROUGH PRATT TRUSS. GENERAL FORMULAS FOR LIVE-LOAD STRESSES AND THEIR RATE OF VARIATION. ILLUSTRATIVE PROBLEMS.

The general formulas $S = \Sigma CM$ and $\frac{dS}{dx} = \Sigma CW$ may

be used to write the equations for the live-load stresses in any member of a framed structure as soon as its influence

line has been drawn and the ordinates at the salient points determined.

In Figs. 7, 8, 9, and 10 are shown all the influence lines

needed in writing the formulas for the live-load stresses in a through Pratt truss with non-parallel or parallel chords. The influence ordinate at any salient point is the calculated stress due to a one-pound load on the bridge at the panel point above this salient point. By easily discovered relations between similar triangles, the algebraic value of each stress, or influence ordinate, is expressed in terms that are most readily evaluated in any numerical problem.

The derivation of any one formula for a live-load stress is typical. Refer to Fig. 7. The stress in the lower chord member S_5 is found by taking moments about C. The influence line for S_5 is straight over each of the two intervals kp and mp. The ordinates at the salient points 1 and 4 are zero. The ordinate at salient point 3 must be found by placing a one-pound load at the lower panel point of the truss above this salient point and calculating the value of S_5 . For the unit load so placed,

Reaction at
$$A = \frac{kp}{np} = \frac{k}{n}$$

By moments about C,

$$\cdot \frac{k}{n} (mp) = S_5 (v)$$

Therefore,

$$S_5 = + \frac{mkp}{nv} =$$
Influence ordinate at 3.

The slopes of the segments of this influence line follow.

Slope of
$$ab = -\frac{mkp}{nv} \div mp = -\frac{k}{nv}$$

Slope of
$$bc = + \frac{mkp}{nv} \div kp = + \frac{m}{nv}$$

The coefficients C for use in the general formula $S = \Sigma CM$ are now found.

$$C_1 = 0 + \frac{k}{nv} = + \frac{k}{nv}$$

$$C_3 = -\frac{k}{nv} - \frac{m}{nv} = -\frac{1}{v}$$

$$C_4 = \frac{m}{nv} - 0 = +\frac{m}{nv}$$

Therefore, for the position of the live load advanced beyond the limits of the span, the general formula for S_5 is

$$S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3 + \left(\frac{k}{nv}\right)M_1.$$

However, in actual practice it is usually not necessary to advance the loading beyond the left end of the span in order to get a maximum value of S_5 . The usual formula will therefore not contain the term M_1 , since this will be zero; thus,

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad . \quad (21)$$

Inasmuch as the horizontal component of the stress S_6 in an inclined top chord member or end post equals the stress S_5 in a corresponding lower chord member, the stress S_6 in any top chord member or end post may be found by

$$S_6 = \frac{i}{p} \cdot S_5 \quad \dots \quad (22)$$

In Fig. 8 is shown the influence line for the stress S_4 in any vertical post. The influence ordinates are determined by taking moments about the intersection of the upper and lower chord members which are cut by the section. The algebraic values of these ordinates are transformed by use of easily discovered relations between similar triangles. The slopes and coefficients are then calculated in the usual way. The influence line indicates that the live load should advance into but not beyond the panel p for a maximum compression, and for this reason M_1 and M_2 equal zero for the usual case. The numerical value of

the maximum compression S₄ in a vertical post is, therefore,

$$S_4 = \left(\frac{a}{bL}\right)M_4 - \left(\frac{1}{p}\right)M_3 \quad . \quad . \quad (23)$$

The coefficients for the stress in any inclined web member are given by Fig. 9. The quantities for S_1 and S_2 are

as shown, and the quantities for S_3 are of the same algebraic form except that they are of opposite sign throughout. For the usual position of the live load advanced from the right into but not beyond the panel p for maximum stress, the moment sums M_1 and M_2 equal zero, and the numerical values of the maximum tension S_1 and S_2 and of the maximum compression S_3 are given by the following formula:

$$S_1$$
, S_2 , or $S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3$. . . (24)

In a special case where the loading must be advanced beyond the panel p until the tension in the inclined counterweb member S_2 is balanced by the dead-load compression

in this same member, the value of M_2 is not zero, and the formula for S_2 becomes

$$S_{2} = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{3} + \left(\frac{t}{cp}\right)M_{2}$$
Or, letting $M_{c} = \left(M_{3} - \frac{b}{c}M_{2}\right)$,
$$S_{2} = \left(\frac{ta}{cbL}\right)M_{4} - \frac{t}{bp}\left(M_{3} - \frac{b}{c}M_{2}\right) = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{c} \quad (25)$$

Note that the coefficients of M_4 and M_c in this formula are the same as the coefficients for M_4 and M_3 in formula (24).

The influence line for the counter-tension in a vertical post is shown in Fig. 10. For the usual case, the loading advances beyond the panel but not beyond the end of the span. Therefore M_1 is equal to zero, so that

Fig. 10.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_o . (26)$$

where K and M_o stand for the corresponding terms in the parentheses. In order that T be a maximum the live load must advance beyond the position for the maximum tension S_2 until the tension as computed by formula (25) becomes equal to the dead-load compression in this same member. For this position of the live load, the value of T is then computed by using formula (26). It may be noted that

some specifications state that only $\frac{2}{3}$ of the dead-load compression is to be counted as effective in counteracting the live-load tension in an inclined counter-web member. This specification has been observed in the problem to follow.

A review of the preceding formulas shows that all the live-load stresses may be computed by formulas (21), (22), (23), and (24), except the counter-tension in a vertical post and the tension in a floor-beam hanger. Formula (25) makes it possible to find readily by trial the position of loading for maximum counter-tension in a vertical post, and formula (26) gives the value of this tension. The maximum tension in the floor-beam hanger may be found by the use of formulas (14a) and (15a) for pier reaction between equal spans.

If the chords of the Pratt truss are parallel, there will be no counter-tension in any vertical post. Formula (21) for the stress in a horizontal chord member and formula (22) for the stress in the inclined end post remain unchanged. Formulas (23) and (24) for web stresses are simplified because a = b = depth of truss.

The formulas, therefore, for the Pratt truss•with parallel chords are:

Stress in horizontal chord members =

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \tag{21}$$

Stress in inclined end post =
$$S_6 = \frac{i}{p} S_5$$
 (22)

Stress in vertical post =
$$S_4 = \left(\frac{1}{L}\right)M_4 - \left(\frac{1}{p}\right)M_3$$
. . . (29)

Stress in inclined web member =

$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4 \quad . \quad (30)$$

One general formula will suffice for finding the position of loading for maximum chord and web stresses of a Pratt truss with either inclined or parallel chords. The formulas

(21), (23), (24), (29), and (30) for these stresses are of one general form

 $S = (G) M_4 - (H) M_3 \dots$

where G and H are the corresponding coefficients of M_4

Fig. 11.

and M_3 in the preceding formulas. The rate of variation of S as the load advances is

$$\frac{dS}{dx} = GW_4 - HW_3 = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad (28)$$

When any one of the above stresses is a maximum, the value of $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero as a wheel is shifted from right to left of the salient point 3 in Figs. 7, 8, or 9.

The preceding formulas for the live-load stresses are summarized for convenient reference in Art. 11 preceding the Tables. The important dimensions and quantities in Figs. 7, 8, and 9 are summarized in Fig. 11. If a uniform live load is used, the shaded areas in Fig. 11a, b and c multiplied by the intensity of the uniform load will give the maximum live-load stresses. The algebraic value of any one of these triangular areas is conveniently expressed as the base of the triangle times ½ of the given algebraic ordinate. The lengths of the bases of the shaded areas in Figs. 11a and b may be readily determined by one of the constructions shown in Figs. 12a and 12b, which give the position of the unit load for zero stress in the members indicated. The proofs that these constructions locate neutral points are not given, for they are generally known, and are proved in numerous texts on bridges. (See Marburg's "Framed Structures and Girders," Vol. I, page 392.)

The application of the preceding formulas will now be made to the calculation of the live-load stresses in the two single track through Pratt trusses shown in Figs. 13 and 14. A convenient procedure is as follows:

- 1. Determine the lengths of all inclined members and write their values on the truss outline.
- 2. Determine the values of the intercepts a as defined by Fig. 11 and write their values on the truss outline.
- 3. Write on the truss outline the distances of the several panel points from the right end of the span.
- 4. Write down the reciprocals of the span, panel length, and lengths of vertical members.
- 5. Make a form for tabulating calculations and list members in some convenient form as is done in Figs. 13 and 14.
- 6. Calculate the numerical values of the coefficients G and H for the several members by use of the formulas already derived.
 - 7. Determine the position of the loading for maximum

stress by finding the position of loading causing $\left(\frac{G}{H}W_4-W_3\right)$

to pass through zero, and for this position of loading select from Table 2 the corresponding values of M_4 and M_3 . At

the same time tabulate the length L_1 of loading causing maximum stress as this value is used in the impact formula

$$I = S \cdot \frac{300}{L_1 + 300}.$$

8. Calculate values of $S = GM_4 - HM_3$ and combine with impact and dead-load stresses. When the dead- and live-load stresses are of opposite sign, the combination is usually not algebraic but according to the particular specification that is used.

Fig. 13.

Mem.	G	н	Wheel	M4	M ₃	GM4	НΜз	s	Lı	300 L1+300	I	DL	Total K
EF ED GH GF IJ IH JK ML	.00481 .00405 .00500 .00480 .00580 .00580	.0442 .0385 .0450 .0385 .0466 .0466	3 @ 3 3 @ 2 2 @ 4 3 @ 3 2 @ 5 3 @ 4 2 @ 5 2 @ 6	46255 21531 33970 12940 23375 12940 6550	287 100 287 100 287 100 100	223 87 170 62 136 75 51	11 13 4 13 4 13 5	-116 $+210$ -83 $+157$ -58 $+123$ $+70$ $+46$	86 117 86 60	.640 .728 .677 .777 .719 .777 .833	- 78 +134 - 60 +106 - 45 + 88 + 54 + 38	- 40 + 83 - 15 + 48 + 7 + 21 - 21	-158 +311 +232
NO AC = AD BC AF BE AH BG BI CD	.01030	.0496 .0312 .0278 .0263 	2 @ 7	2307 63111 59095 59661 	600 2694 7310	247 410 587 670	5 19 75 192 252 46	- 19 +228 -362 +335 -339 +395 -396 -418 + 98	193 194 178	.600 .608 .607 	- 17 +137 -217 +203 -206 +239 +240 -262 + 86	+ 83 +101 -160 +154 -156 +181 -181 -194 + 25	counter +466 -739 +692 -701 +815 -817 -874
Post at	Mem.	M4	Me	s	² / ₃ D	К	M	, T	Lı	300 L ₁ +300	I	D.L.	Total
5 6	JK ML	22261 8865		+16 +35	-14 -34	.00203	1134 596	0 +23 +13			+17 +10	+3 +1	+ 43 + 24

9. Find positions of loading for maximum counter-tensions in posts and compute values by use of formulas (25) and (26).

Problem 1.

Calculation of Live-load Stresses in a Pratt Truss with Inclined Chord.

The complete data for this problem are given in Fig. 13. Items 1 to 5 of the above method of procedure need no explanation. The values of the coefficients G and H, the position of the loading for maximum stress, and the value of the maximum stress will be determined for several typical members; for example, vertical post, inclined web members, horizontal chords, end post, and inclined chords.

Vertical Post EF.

Formula

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \dots \dots (23)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{a}{bL} = \frac{28}{36} (.00480) = .00373$$

$$H = \frac{1}{p} = .0385$$

Try w_3 at panel point 3. Use Table 2. $L_1 = 143'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00373}{.03850} (440.0) - \frac{37.5}{000} + \frac{1}{62.5}$$

Therefore w_3 at 3 gives a maximum.

$$S = GM_4 - HM_3 = .00373(33970) - .0385(287.5)$$

$$= 126.7 - 11.0 = 115.7^k$$

$$Impact factor = \frac{300}{L_1 + 300} = \frac{300}{443} = .677$$

$$Impact stress = .677 \times 115.7 = 78.3^k.$$

Inclined Web Member ED.

Formula

$$S_1 = \left(\frac{ta}{cbL}\right) M_4 - \left(\frac{t}{bp}\right) M_3 \quad . \quad . \quad (24)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{41.23 \times 28}{32 \times 36} (.00480) = .00481$$

$$H = \frac{t}{bp} = \frac{41.23}{36} \,(.0385) = .0442$$

Try w_3 at panel point 2. Use Table 2. $L_1 = 169'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00481}{.0442}(505.0) - \frac{37.5}{62.5} + \frac{+}{-}$$

Therefore w_3 at 2 gives a maximum.

$$S = GM_4 - HM_3 = .00481(46255) - .0442(287.5)$$

= 223 - 13 = 210^k.

Impact factor =
$$\frac{300}{469}$$
 = .640

Impact stress = $.640 \times 210 = 134^k$.

Inclined Web Member ML.

Formula

$$S_2 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bm}\right)M_3 \quad . \quad (24)$$

Refer to Fig. 9 or Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{46.04 \times 48}{38 \times 36} (.00480) = .00777$$

$$H = \frac{t}{bp} = \frac{46.04}{36} (.0385) = .0493$$

Try w_2 at panel point 6. Use Table 2. $L_1 = 60'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00777}{.0493}(190) - \frac{12.5}{000} + \frac{1}{37.5} - \frac{1}{37.5}$$

Therefore w_2 at 6 gives a maximum.

$$S = GM_4 - HM_3 = .00777(6550) - .0493(100)$$

= $51 - 5 = 46^k$.
Impact factor = $\frac{300}{360} = .833$
Impact stress = $.833 \times 46 = 38^k$.

Lower Chord Member AC = AD.

Formula

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \dots \dots (21)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{1}{8} (.03125) = .00390$$

$$H = \frac{1}{4!} = .0312$$

Try w_4 at panel point 1. Use Table 2. $L_1 = 200'$.

Therefore w_4 at 1 gives a maximum.

$$S = GM_4 - HM_3 = .00390(63111) - .0312(600)$$

= 247 - 19 = .228^k.

Impact factor
$$=\frac{300}{500}=.600$$

Impact stress = $.600 \times 228 = 137^k$.

End of Post BC.

Formula

$$S_6 = \frac{i}{p} S_5 \dots \dots (22)$$

$$S_6 = \frac{41.23}{26} (228) = 362^k$$
, and impact $= \frac{41.23}{26} (137) = 217^k$.

Lower Chord Member AH.

Formula
$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad . \quad (21)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{3}{8} (.02632) = .00985$$

 $H = \frac{1}{v} = .0263$

Try w_{11} at panel point 3. Use Table 2. $L_1 = 194'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00985}{.0263}(567.5) - \frac{190}{\text{or}} = \frac{+}{215}$$

Therefore w_{11} at 3 gives a maximum.

$$S = GM_4 - HM_3 = .00985(59661) - .0263(7310)$$

= $587 - 192 = 395^k$.
Impact stress = $\frac{300}{404} S = .607 \times 395 = 239^k$.

Top Chord Member BG.

Formula

$$S_6 = \frac{i}{p} S_5$$
 (22)
 $S_6 = \frac{26.08}{26} (395) = 396^k$.
Impact = $\frac{26.08}{26} (239) = 240^k$.

Counter-Tension in Post at Panel Point 5.

Formulas

$$S_{2} = \text{Stress } JK = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)\left(M_{3} - \frac{b}{c}M_{2}\right)$$
$$= \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{c} \quad . \quad . \quad . \quad (25)$$

T = tension in post. $= \left(\frac{d_2 - d_1}{hn}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_\theta \quad (26)$

Refer to Fig. 10 for definition of dimensions. The calculation of the dead-load compression in JK is

not given, but the value is 21^k . Two-thirds of this compression, or 14^k , will be considered effective in counterbalancing the live-load tension in JK. The live load must be advanced beyond the position of maximum live-load tension in JK (i.e., w_2 at panel point 5) until S_2 , or the stress in JK, equals 14^k . This must be done by trial, S_2 being figured each time by formula (25). It is found that when 114' of loading has advanced upon the bridge, this condition is approximately satisfied. For this position of loading

$$M_4 = 22261$$

 $M_c = \left(M_3 - \frac{b}{c}M_2\right) = (2565 - 175) = 2390$
 $G = \left(\frac{ta}{cbL}\right) = \frac{46.04 \times 38}{38 \times 38} (.00480) = .00580$
 $H = \left(\frac{t}{bp}\right) = \frac{46.04}{38} (.0385) = .0466$

Therefore,

$$S_2 = .00580(22261) - .0466(2390) = 16^k.$$

This value of $S_2 = 16^k$ balances $\frac{2}{3}$ $D = -14^k$, nearly enough for practical purposes. Therefore, compute T for this position of the live load.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n}M_4 - M_3\right) = K \cdot M_o$$

$$K = \frac{2 - 0}{38 \times 26} = .00203$$

$$M_o = \frac{5}{8} (22261) - 2565 = 11340$$

$$T = .00203(11340) = 23^k$$
Impact factor = $\frac{300}{414} = .725$
Impact stress for $T = .725 \times 23 = 17^k$,

Problem 2.

Live-load Stresses in a Pratt Truss with Parallel Chords.

The complete data for this problem are given in Fig. 14. Formulas (21), (29), and (30) give the values of the

coefficients G and H, which are identical for several members of any Pratt truss with parallel chords. The procedure for finding the positions of the loading and maximum stresses is exactly as in Problem 1. It should be noted that

Stress
$$FG = \text{Stress } EF \times \frac{37.54}{28}$$

"
 $HI = \text{"} GH \times \frac{37.54}{28}$

"
 $BC = \text{"} AC \times \frac{37.54}{25}$

Mem.	G	н	Wheel	M4	М3	S
$^{\mathrm{CD}}$.0400	.0800	4 @ 1	3564	600	95
$\mathop{\mathbf{EF}}_{oldsymbol{\sim}}$.00667	. 0400	3 " 3	13520	287	79
$_{ m GH}^{ m FG}$	00000	0400	2 " 4	6170	100	106
HI	.00667	.0400	2 " 4	6170	100	37 50
$\widetilde{ m JK}$.00894	.0536	2 " 5	2179	100	14
\mathbf{DE}	.00894	.0536	3 " 2	21895	287	181
1 BC	00505	0257	1 4 4 1	22070	600	272
AC = AD AF = BE	.00595	. 0357 . 0357	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$33970 \\ 31375$	$\frac{600}{2694}$	$\begin{array}{c c} 181 \\ 278 \end{array}$
BG	.01785	.0357	12 " 3	34411	8385	314

The stresses in all of the chord members may be checked by use of Table 8, and the stresses in the end post and web members may be checked by Table 9. The stress in *CD* agrees with the maximum pier reaction in Table 7. Table 3 may be used to find the position of loading for maximum chord stresses, and Table 6 gives position of loading for maximum web stresses.

ARTICLE VIII.

THREE-HINGED ARCH. APPLICATION OF THE GENERAL METHOD
TO THE CALCULATION OF LIVE-LOAD STRESSES.

The general formulas $\frac{dS}{dx} = \Sigma CW$ and $S = \Sigma CM$ may be used directly to find the position of loading and the

Fig 15.

value of the maximum live-load stress in any member of a framed structure as soon as the influence line for this member and the ordinates at all salient points have been determined. This method is applied to the calculation of maximum live-load stresses for the three-hinged arch shown in Fig. 15. Cooper's E40 loading is used.

First are drawn the influence lines for the horizontal and vertical components of the reaction at the left hinge. The vertical component V_1 is the same as for a simple span L. The horizontal component H_1 equals the bending moment at the centre of the span L divided by the depth h. The influence-line ordinates for all members are now found by drawing five Maxwell diagrams, one of which is reproduced in Fig. 16. From the influence lines for V_1 and H_1 , the value of V_1 is .8889 and H_1 is .2187 for a one-pound load at U_1 . The external loads acting on the left half of the arch are then as shown in Fig. 16a. The load line axbcya in Fig. 16b is drawn to a scale of 10'' = 1 pound, and the Maxwell diagram completed in the usual way. The scaled

TABLE A

Influence-Line Ordinates for Three-Hinged Arch

Members	Ordinates							
	1 lb. at Uı	1 lb. at U2	1_lb. at U3	1 lb. at U4	1 lb. at U'4			
$\begin{array}{c} U_0U_1 = & & & \\ U_1U_2 = & & & \\ U_2U_3 = & & \\ U_2U_4 = & & \\ L_0L_1 = & & \\ L_0L_1 = & & \\ L_2L_3 = & & \\ L_2L_3 = & & \\ L_2L_3 = & & \\ L_2L_2 = & & \\ U_0L_0 = & & \\ U_1L_1 = & & \\ U_2L_2 = & & \\ U_2L_3 = & & \\ U_0L_0 = & & \\ U_1L_1 = & & \\ U_2L_2 = & & \\ U_2L_2 = & & \\ U_2L_2 = & & \\ U_2L_3 = & & \\ U_2L_3 = & & \\ U_2L_3 = & & \\ U_2L_4 = & & \\ U_2L_5 = &$	403 417 378 171 295 + .221 + .217 + .164 692 -1.014 + .022 + .075 + .114 + .800 + .019 044 221 206 0.2187	223 833 756 342 590 264 + .434 + .328 096 384 632 955 + .150 + .226 + .441 + .878 088 442 412 0.4375	045286 -1.135513885740408 + .491145075253490775 + .342 + .085 + .350 + .98666261766626666	+ .130 + .262 + .189 685 -1.180 -1.224 -1.248 -1.086 193 + .234 + .129 043 317 545 270 180 + .928 823 0.8750 0.55555	+ .201 + .477 + .757 + .7548 -1.182 -1.302 -1.484 -1.674 -1.420 + .345 + .287 364 400 398 324 + .224 + .657 0.8750 0.4444			
7	0.8889 14°	0.7777 29°	44°	58°	63°			

values of these stresses are the influence ordinates for a one pound load at U_1 . In an exactly similar way the influence ordinates for a unit load at U_2 , U_3 , U_4 , and U'_4 are determined. The influence lines are straight from U'_0 to

 U'_4 . Table A gives the influence ordinates for all members and also for the horizontal and vertical components of the reaction at the left hinge. The angle θ is the inclination of this reaction with the vertical.

The calculation of the live-load stresses in any one member is typical. The member U_3L_4 is taken. The influence line for this member is drawn to scale in Fig. 15 by use of the influence ordinates from Table A. The salient points occur below panel points U_3 , U_4 , and U'_4 . The distance

from U_3 to the neutral point 0 equals $\frac{.662}{.662 + .928}$ (21) = 8'.8.

Calculation of Slopes.

Slope of
$$df = 0$$

$$fg = \frac{0 - (-.662)}{68} = +.0105$$

$$gh = \frac{-.662 - (.928)}{21} = -.0758$$

$$hk = \frac{.928 - (.224)}{21} = +.0336$$

$$km = \frac{.224 - 0}{84} = +.0027$$

$$mn = 0$$

Calculation of Coefficients.

$$C_1 = 0 - (.0105) = -.0105$$

 $C_2 = .0105 - (-.0758) = +.0863$
 $C_3 = -.0758 - (.0336) = -.1094$
 $C_4 = .0336 - (.0027) = +.0309$
 $C_5 = .0027 - 0 = +.0027$

The sum of these coefficients equals zero. This agrees with formula (6) of Art. 3.

It should be remembered, as is pointed out in Art. 3, that the value of these coefficients may be measured graphically. For example, in Fig. 15 the value of C_2 is $\frac{2.59}{30} = .0863$.

By use of the formula $\frac{dS}{dx} = \Sigma CW$ and Rule 1 of Art.

3, the position of loading for maximum tension in U_3L_4 may now be determined. Try wheel 3 at U_4 with the loading advancing toward the left. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.1094(30) +.309(103) +.0027(302) = +.7$$

$$\frac{dS}{dx} = \Sigma CW = -.1094(50) +.309(103) +.0027(302) = -.7$$

Therefore w_3 at U_4 gives a maximum tension in U_3L_4 , and its value is

$$S = \Sigma CM = -.1094(230) + .309(1846) + .0027(19001) = 83^{k}.$$

By use of the formula $\frac{dS}{dx} = \Sigma CW$ and Rule 2 of Art. 3,

the position of loading for maximum compression in U_3L_4 is now determined. Try wheel 2 at U_3 with the loading advancing toward the right. Note that the signs of the coefficients remain unchanged. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(10) = -1.3$$

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(30) = +0.6$$

Therefore w_2 at U_3 gives a maximum negative stress, or compression, in U_3L_4 , and its value is

$$S = \Sigma CM = -.0105(7092) + .0863(80) = -.67^{k}.$$

The above values of 83^k and 67^k for maximum tension and compression in U_3L_4 may be checked by use of formula $S = qA_z$ (2), the values of q being taken from Table 16.

Tension U_3L_4 by Equivalent Uniform Load.

The area of the tension part of the influence line equals

$$A_z = 27.2$$

The influence line *ohkm* is not triangular, but a triangular influence line with intervals $l_1 = 10$ ft. and $l_2 = 45$ ft. approximates its shape closely enough for the selection of an equivalent uniform load. For $l_1 = 10'$ and $l_2 = 45'$, Table 16 gives 3.080^k as the equivalent uniform load.

Therefore,

$$S = qA_z = (3.080) (27.2) = 84^k$$
.

This value checks very closely that obtained by the exact method.

Compression U₃L₄ by Equivalent Uniform Load.

Choose from Table 16 the equivalent uniform load for $l_1 = 10$ ft. and $l_2 = 65$ ft. From the influence line $A_z = 23.7$.

Therefore,

$$S = qA_z = (2.870) (23.7) = 68^k.$$

This checks closely the value obtained by the exact method.

Calculation of other members of this arch and of some more complicated framed structures shows a close agreement between the two preceding methods. The latter method is the simpler when a table of equivalent uniform loads has been made, especially in the case of the more complex influence lines for members of swing bridges, two-hinged arches, arch ribs, etc. The method of calculating a table of equivalent uniform loads will be explained in the following article.

ARTICLE IX.

EQUIVALENT UNIFORM LOADS.

An equivalent uniform load is one which gives the same stress as does a loading which is not uniform. For any given standard loading, the equivalent uniform load is different for stresses whose influence lines differ. Since the forms of influence lines are innumerable, a table of exact equivalent uniform loads for all stresses is impracticable. A table of equivalent uniform loads, however, for stresses whose influence lines are triangular may be used with little error in selecting equivalent uniform loads for stresses whose influence lines are not triangular. It is, therefore, sufficient for practical purposes to make tables of equivalent uniform loads for a series of triangular influence lines. It may be shown that the equivalent uniform load for any triangular influence line is dependent entirely upon the intervals l_1 and l_2 , and is independent of the ordinate h at the apex of the influence line. Consider the triangular influence line in Fig. 1b to be for any stress S. Let the ordinate below If q equals the equivalent uniform load C be any value h. covering l_1 and l_2 ,

$$S = qA_z$$
, or $q = \frac{S}{A_z}$ (A)

The area of this influence line is

$$A_z = \frac{h}{2} (l_1 + l_2) = \frac{h}{2} L \dots (B)$$

Furthermore, if the concentrated live loads have been placed so as to give the maximum pier reaction between two spans l_1 and l_2 , this same position of loading will give maximum S, if the influence line for S is a triangle with the

same intervals l_1 and l_2 . Since the influence ordinates for S are related to the influence ordinates for R as h is to unity,

$$\frac{S}{R} = \frac{h}{1.00}$$

Or

$$S = hR$$
 (C)

Substituting the values of A_z and S from equations (B) and (C) in equation (A),

$$q = hR \div \frac{h}{2}L = \frac{2R}{L} \quad . \quad . \quad (D)$$

It appears, therefore, that q is independent of h. From formula (16) of Art. 5,

$$R = \frac{L}{l_1 l_2} M \qquad \dots \qquad \dots \qquad \dots (16)$$

Substituting for R in equation (D),

$$q = \frac{2R}{L} = \frac{2M}{l_1 l_2} \quad . \quad . \quad . \quad . \quad (31)$$

The term M is the bending moment in the span $L = l_1 + l_2$ at the point where the intervals are l_1 and l_2 .

Tables (10) to (18) inclusive have been calculated for the positions of the live load given by Table 3. The values of M were first found, then the values of R, and finally the values of the equivalent uniform loads. The three formulas that were used in succession are

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \quad . \quad . \quad . \quad (10)$$

$$R = \frac{L}{l_1 l_2} M \quad . \quad (16)$$

$$q = \frac{2M}{l_1 l_2} = \frac{2R}{L}$$
 (31)

An example of the use of equivalent uniform loads has already been given in Art. 8. The general formula $S = qA_z$ may be used in any case. For the special cases of bending moment in a beam and pier reaction between two simple spans, formula (31) gives

$$M = q \left(\frac{l_1 l_2}{2}\right) \dots \dots \dots \dots \dots \dots (32)$$

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right). \quad . \quad . \quad . \quad (33)$$

The quantities in the parentheses are the areas of the influence lines for M and R respectively.

ARTICLE X.

METHOD OF CALCULATING TABLE OF LOAD SUMS FOR ANY STANDARD LOADING. ILLUSTRATIVE EXAMPLE.

The definitions of moment sum and load sum are given at the beginning of Art. 2. It is at once evident that a table of load sums may be computed by adding the successive loads. It may be shown that the table of moment sums may also be calculated by the process of addition.

From formula (5a) of Art. 2,

$$C_a W_a = C_a \, \frac{dM_a}{dx}$$

Or

$$dM_a = W_a \cdot dx.$$

Expressed in words, the increase in the moment sum for an increase dx in the distance of the centre of moments from wheel 1 equals the load sum times dx. If the load sum is constant for an interval dx = 1 foot, as between concentrated loads, the increase of the moment sum for dx = 1 foot equals the corresponding load sum. If the load sum is not constant, but uniformly increasing, as when the centre of moments lies within the uniform load, the increase of the moment sum for dx = 1 foot equals the average value of the load sum for this one foot interval. The application of the foregoing principles is made clear by the following example.

Example.—Give explicit directions for the calculation of a table of load sums and moment sums at intervals of 1 foot from 0' to 400' for Cooper's E40 loading.

Solution.—Calculate the table of load sums by adding

the loads one by one, taking a sub-total for each addition. Thus, the following numbers are added:

If the final total checks $284 + 391 \times 2 = 866$, the table of load sums is correct.

Assume now that the table of load sums for E40 has been completed. The table of moment sums may now be found as directed below. The following numbers are to be added one by one, taking a sub-total for each addition:

```
8—10's

5—30's

5—50's

5—70's

9—90's

5—103's

6—116's

5—129's

8—152's

5—172's

5—192's

5—212's

9—232's

6—258's

5—271's

5—271's

5—284's

1—285

1—289
```

and all odd numbers up to 865.

If the final total checks up 183,689, which is figured independently, the table of moment sums is correct.

The preceding additions may be made most satisfactorily on a recording adding machine. Table 2 was calculated in this way.

It will be noted that the table of load sums serves as a table of differences for the table of moment sums.

ARTICLE XI.

SUMMARY OF FORMULAS.

SOMMATICE OF FORMOLIAS.
Art. 1.
$Z = \Sigma wz$
Art. 2.
$Z = \sum w_n z_n = C_a \sum w_n x_n = C_a M_a $
Art. 3.
$\Sigma C = 0$
Art. 4. Girder Bridge without Panels.
End reactions.
$R_1 = \frac{M_3 - M_1}{L} - W_1 . . . (9)$
$R_2 = W_3 - \frac{M_3 - M_1}{L} \qquad . \qquad . \qquad . \tag{9a}$
Bending moment for unequal segments l_1 and l_2 .
$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 . . . (10)$
$\frac{dM}{dx} = \frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2 \qquad (11)$
59

Bending moment at centre. $l_1 = l_2 = \frac{L}{2}$

$$M = \frac{M_3 + M_1}{2} - M_2$$
 (10a)

$$\frac{dM}{dx} = \frac{W_3 + W_1}{2} - W_2 \quad . \quad . \quad . \quad . \quad (11a)$$

Shear at any section.

Location of centre of gravity of loading on span.

$$\overline{x} = \frac{M_3 - M_1 - LW_1}{W_3 - W_1} \qquad . \qquad . \qquad . \qquad (13)$$

. When $M_1 = 0$,

Art. 5. Pier Reaction.

For unequal spans l_1 and l_2 .

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (14)$$

$$\frac{dR}{dx} = \frac{W_3}{l_2} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right)$$
(15)

For equal spans l_1 and l_2 equal to l.

$$R = \frac{M_3 + M_1 - 2M_2}{l} \quad . \quad . \quad . \quad (14a)$$

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \quad . \quad . \quad . \quad (15a)$$

Relation between R and M,

$$R = \frac{L}{l_1 l_2} M \qquad . \qquad . \qquad . \qquad . \qquad (16)$$

Art. 6. Girder Bridge with Panels.

Shear in end panel; general case.

$$S_a = \frac{1}{L} M_3 + \frac{l_2}{l_1 L} M_1 - \frac{1}{l_1} M_2 = \frac{1}{l_1} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (17)$$

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)$$
(18)

Shear in intermediate panel; general case.

$$S_b = \frac{M_4}{L} - \frac{M_3}{p} + \frac{M_2}{p} - \frac{M_1}{L} \quad . \quad . \quad (19)$$

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} + \frac{W_2}{p} - \frac{W_1}{L} \quad . \quad . \quad . \quad (20)$$

Shear in intermediate panel; usual case.

$$S = \frac{M_4}{L} - \frac{M_3}{p} = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right)$$
 (19a)

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \quad . \tag{20a}$$

Art. 7. Through Pratt Truss with Inclined Chord.

Stress in hanger. Use formulas (14a) and (15a). Stress in any horizontal chord member; usual case.

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad (21)$$

Compression in any inclined top chord member or end post; usual case.

$$S_6 = \left(\frac{i}{p}\right) S_5 \qquad \dots \qquad (22)$$

Compression in vertical post; usual case.

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \quad . \quad . \quad . \quad (23)$$

Stresses in inclined web members including counters; usual case.

$$S_1, S_2, S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3$$
 (24)

Stress in inclined counter; special case of loading advanced beyond panel.

$$S_2 = \left(\frac{ta}{cbL}\right)M_4 - \frac{t}{bp}\left(M_3 - \frac{b}{c}M_2\right) = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_c \tag{25}$$

Counter-tension in vertical post; usual case.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_0 \quad . \quad . \quad (26)$$

Formulas (21), (23), and (24) are of the general form

$$S = GM_4 - HM_3 \qquad . \qquad . \qquad . \qquad (27)$$

where the coefficients G and H may be tabulated thus:

$$Type \ of \ member \dots G \qquad \qquad H$$
 $Horizontal \ chord \dots \frac{m}{nv} \qquad \qquad \frac{1}{v}$
 $Vertical \ post \dots \frac{a}{bL} \qquad \qquad \frac{1}{p}$
 $Inclined \ web \ member \dots \frac{ta}{cbL} \qquad \qquad \frac{t}{bp}$

The rate of variation of S in formula (27) is

$$\frac{dS}{dx} = GW_4 - HW_3 = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad (28)$$

When S in formulas (21), (23), or (24) is a maximum

$$\left(\frac{G}{H}W_4 - W_3\right)$$
 passes through zero.

Through Pratt Truss—Parallel Chords.

Stress in hanger,—use formulas (14a) and (15a)

Stress in horizontal chord =
$$S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3$$
. (21)

" vertical post =
$$S_4 = \left(\frac{1}{L}\right)M_4 - \left(\frac{1}{p}\right)M_3$$
 (29)

" inclined web =
$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4$$
 (30)

Stress in end post
$$= S_6 = -\frac{1}{p}S_5$$
 (22)

Formulas (21), (29), and (30) are of the general form

$$S = G \cdot M_4 - H \cdot M_3 \qquad \qquad . \qquad . \qquad (27)$$

and their rate of variation is

$$\frac{dS}{dx} = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad . \quad . \quad (28)$$

G and H are the coefficients of M_4 and M_3 in equations (21), (29), and (30), respectively.

When S in formulas (21), (29), or (30) is a maximum, $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero.

Art. 9. Equivalent Uniform Loads.

$$M = q\left(\frac{l_1 l_2}{2}\right) \quad . \qquad . \qquad . \qquad (32)$$

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right) \quad . \tag{33}$$

INDEX TO TABLES

NO.	. P	AGE
1	Five standard loadings	66
	Lengths, loads, load sums, and moment sums from 1 to 400 ft. for five standard loadings	67
3	Position of Cooper's loadings for maximum pier reaction between equal and unequal beam spans	88
4	Position of Cooper's loadings for absolute maximum bending moment in beam spans	89
5	Position of Cooper's loadings for maximum end shear in beam	89
6	Position of Cooper's loadings for maximum panel shear in bridges	
7	with equal panels	90
8	Cooper's E40 and E50 loadings	91
	E50 loading	94 97
	Maximum bending moments at 5-foot intervals of beams—Cooper's	
11	E40 loading	100
19	E50 loading	102
	E60 loading	104
	Maximum pier reactions for equal and unequal beam spans—Cooper's E40 loading	106
14	Maximum pier reactions for equal and unequal beam spans— Cooper's E50 loading	108
15	Maximum pier reactions for equal and unequal beam spans—	110
16	Cooper's E60 loading	112
	Equivalent uniform loads—Cooper's E50 loading	114
	Equivalent uniform loads—Cooper's E60 loading	116
	Influence-line ordinates for bending moments at 5-foot intervals of	118
20	beam spans	
	intervals of beam spans	120
21	Bending moments at 5-foot intervals of beam spans due to a unit uniform load	122

TABLE 1

STANDARD LOADINGS Loads given are for one rail.

COOPER'S E 40:

COOPER'S E 50:

COOPER'S E 60:

COMMON STANDARD-1904-PACIFIC SYSTEM

D. L. & W. R. R.:

TABLE 2

LOAD SUMS AND MOMENT SUMS FOR COOPER'S AND OTHER STANDARD LOADINGS

Note.—Load Sums and Moment Sums are given per rail in thousands of pounds and foot-pounds respectively.

50

. . . .

...

Cooper's E40. 0'-50' Cooper's E40. 50'-100' Load Moment Load Moment. Wheel Length Wheel Load Length Load Sums Sums Sums Sums 0 w. 1 10 10 0 50 3780 1 10 51 3922 23 20 52 4064 , , 30 53 4206 4 40 54 4348 5 50 55 4490 6 60 56 w. 10 10 152 4632 7 70 57 4784 . . . w. 2 20 8 30 80 58 4936 9 110 59 5088 . . . 10 140 60 5240 11 170 61 5392 12 200 62 5544 13 w. 3 20 50 230 63 5696 14 280 64 w. 11 20 172 . . . 5848 . . 15 330 65 6020 16 380 66 6192 ٠.. ٠. . . . 17 430 67 6364 18 w. 4 20 70 480 68 6536 w. 12 192 19 550 69 20 6708 20 620 70 6900 21 690 71 7092 72 22 760 7284. 23 w. 5 20 90 830 73 7476 $\tilde{24}$ 920 w. 13 74 20 212 7668 25 1010 75 7880 26 1100 76 8092 27 1190 77 8304 28 78 1280 8516 . . 29 1370 w. 14 20 232 79 8728 ٠. . . . 30 1460 80 8960 31 1550 81 . . . 9192 . . 13 32 w. 6 103 1640 82 9424 33 1743 83 9656 - -34 1846 84 9888 ٠. 35 1949 85 10120 ٠. 36 2052 86 10352 . . . ٠. 37 w. 7 13 116 2155 87 10584 38 2271 88 w. 15 13 245 10816 39 2387 89 11061 40 2503 90 11306 . . . 41 2619 91 11551 42 2735 92 11796 43 w.813 129 2851 93 w. 16 13 258 12041 2980 44 94 12299 45 3109 95 12557 46 3238 96 12815 47 3367 97 13073 ٠. . . . 48 w. 9 13 142 3496 98 13331 w. 17 49 3638 99 13 271 13589

3780

100

. .

. . .

13860

COOPER'S E40. 100'-150' COOPER'S E40. 150'-200'

		1210. 1						
Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100 101 102 103 104 105 106 107 108 109	w. 18	13	284	13860 14131 14402 14673 14944 15228 15512 15796 16080 16364	150 151 152 153 154 155 156 157 158 159		366 368 370 372 374 376 378 380 382 384	29689 30056 30425 30796 31169 31544 31921 32300 32681 33064
110 111 112 113 114 115 116 117			286 288 290 292 294 296 298 300 302	16649 16936 17225 17516 17809 18104 18401 18700 19001 19304	160 161 162 163 164 165 166 167 168 169		386 388 390 392 394 396 398 400 402 404	33449 33836 34225 34616 35009 35404 35801 36200 36601 37004
119 120 121 122 123 124 125 126 127 128 129		2,000 pounds per foot	304 308 310 312 314 316 318 320 322 324	19609 19916 20225 20536 20849 21164 21481 21800 22121 22444	170 171 172 173 174 175 176 177 178 179	2,000 pounds per foot	406 408 410 412 414 416 418 420 422 424	37409 37816 38225 38636 39049 39464 39881 40300 40721 41144
130 131 132 133 134 135 136 137 138		Uniform Load =	326 328 330 332 334 336 338 340 342 344	22769 23096 23425 23756 24089 24424 24761 25100 25441 25784	180 181 182 183 184 185 186 187 188 189	Uniform Load =	426 428 430 432 434 436 438 440 442	41569 41996 42425 42856 43289 43724 44161 44600 45041 45484
140 141 142 143 144 145 146 147 148 149 150			346 348 350 352 354 356 358 360 362 364 366	26129 26476 26825 27176 27529 27884 28241 28600 28961 29324 29689	190 191 192 193 194 195 196 197 198 199 200		446 448 450 452 454 456 458 460 462 464 466	45929 46376 46825 47276 47729 48184 48641 49100 49561 50024 50489

COOPER'S E50. 0'-50' COOPER'S E50. 50'-100'

=			300. 0	00		-000111	10 150	0. 00 .	
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0 1 2 3 4 5 6 7 8	w. 1	12.50 25.00	12.50	00.00 12.50 25.00 37.50 50.00 62.50 75.00 87.50 100.00	50 51 52 53 54 55 56 57 58	w. 10	12.50	190.00	4725.00 4902.50 5080.00 5257.50 5435.00 5612.50 5790.00 6170.00
9 10 11 12 13 14 15 16 17	w. 3	25.00	62.50	137.50 175.00 212.50 250.00 287.50 350.00 412.50 475.00 537.50	59 60 61 62 63 64 65 66 67	w. 11	25.00	215.00	6360.00 6550.00 6740.00 6930.00 7120.00 7310.00 7525.00 7740.00 7955.00
18 19 20 21 22 23 24 25 26 27 28 29	w. 4	25.00	87.50 112.50 	600.00 687.50 775.00 862.50 950.00 1037.50 1150.00 1262.50 1375.00 1487.50 1600.00 1712.50	68 69 70 71 72 73 74 75 76 77 78	w. 12 w. 13 	25.00 25.00 25.00	240.00 265.00 290.00	8170.00 8385.00 8625.00 8865.00 9105.00 9345.00 9585.00 10115.00 10380.00 10645.00 10910.00
30 31 32 33 34 35 36 37 38	w. 6	16.25	128.75	1825.00 1937.50 2050.00 2178.75 2307.50 2436.25 2565.00 2693.75 2838.75 2983.75	80 81 82 83 84 85 86 87 88 89	w. 15	16.25	306.25	11200.00 11490.00 11780.00 12070.00 12360.00 12650.00 12940.00 13230.00 13520.00 13826.25
40 41 42 43 44 45 46 47 48 49 50	w. 8	16.25	161.25 177.50	3128.75 3273.75 3418.75 3563.75 3725.00 3886.25 4047.50 4208.75 4370.00 4547.50 4725.00	90 91 92 93 94 95 96 97 98 99	w. 16	16.25	322.50	14132.50 14438.75 14745.00 15051.25 15373.75 15696.25 16018.75 1663.75 16986.25 17325.00

Cooper's E50. 100'-150' Cooper's E50. 150'-200'

									
Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums	
100 101 102 103 104 105 106 107 108 109	w. 18	16.25	355.00 355.00	17325.00 17663.75 18002.50 18341.25 18680.00 19035.00 19390.00 19745.00 20100.00 20455.00	150 151 152 153 154 155 156 157 158 159		457.50 460.00 462.50 465.00 467.50 470.00 472.50 475.00 477.50 480.00	37111.25 37570.00 38031.25 38495.00 38961.25 39430.00 39901.25 40375.00 40851.25 41330.00	
110 111 112 113 114 115 116 117 118		r foot	357.50 360.00 362.50 365.00 367.50 370.00 372.50 375.00 377.50	20811.25 21170.00 21531.25 21895.00 22261.25 22630.00 23001.25 23375.00 23751.25	160 161 162 163 164 165 166 167 168	foot	482.50 485.00 487.50 490.00 492.50 495.00 497.50 500.00 502.50	41811.25 42295.00 42781.25 43270.00 43761.25 44255.00 44751.25 45250.00 45751.25	
119 120 121 122 123 124 125 126 127 128 129		Load = 2,500 pounds per	380.00 382.50 385.00 387.50 390.00 392.50 395.00 400.00 402.50 405.00	24130.00 24511.25 24895.00 25281.25 25670.00 26061.25 26455.00 26851.25 27250.00 27651.25 28055.00	169 170 171 172 173 174 175 176 177 178 179	Load = 2,500 pounds per foot	505.00 507.50 510.00 512.50 515.00 517.50 520.00 522.50 525.00 527.50 530.00	46255.00 46761.25 47270.00 47781.25 48295.00 48811.25 49330.00 49851.25 50375.00 50901.25 51430.00	
130 131 132 133 134 135 136 137 138 139		Uniform Load	407.50 410.00 412.50 415.00 417.50 420.00 422.50 425.00 427.50 430.00	28461.25 28870.00 29281.25 29695.00 30111.25 30530.00 30951.25 31375.00 31801.25 32230.00	180 181 182 183 184 185 186 187 188 189	Uniform Load	532.50 535.00 537.50 540.00 542.50 545.00 547.50 550.00 552.50 555.00	51961.25 52495.00 53031.25 53570.00 54111.25 54655.00 55201.25 55750.00 56301.25 56855.00	
140 141 142 143 144 145 146 147 148 149 150			432.50 435.00 437.50 440.00 442.50 445.00 452.50 455.00 457.50	32661 .25 33095 .00 33531 .25 33970 .00 34411 .00 34855 .00 35301 .25 35750 .00 36201 .25 36655 .00 37111 .25	190 191 192 193 194 195 196 197 198 199 200		557.50 560.00 562.50 565.00 567.50 570.00 572.50 575.00 577.50 580.00 582.50	57411.25 57970.00 58531.25 59095.00 59661.25 60230.00 60801.25 61375.00 61951.25 62530.00 63111.25	

250

707.50

95361.25

300

832.50

133861.25

COOPER'S E50. Cooper's E50. 200'-250' 250'-300 Load Moment Load Moment Length Load Length Load Sums Sums Sums 200 582.50 63111.25 250 707.5095361.25 201 585.00 63695.00 251 710.00 96070.00 202 587.50 64281.25252712.50 96781.25 203 64870.00 253 715.00 590.00 97495.00 204 592.50 65461.25254 717.50 98211.25 66055.00 205 595.00 255 720.0098930.00 722.50 206 66651.25256 597.50 99651.25 725.00207 67250.00 257 100375.00 600.00208 602.50 67851.25 258 727.50101101.25 68455.00 209 605.00 259 730.00 101830.00 210 69061.25 260 607.50732.50102561.25 211 261 69670.00 735.00103295.00 610.00212 262 612.5070281.25737.50104031.25 213 104770.00 615.0070895.00 263 740.00 214 617.50 71511.25 264 742.50 105511.25 215 620.0072130.00 265 745.00 106255.00 216 622.50 72751.25 266747.50 107001.25217 625.00 267 750.00 73375.00 107750.00 pounds per foot foot 218 627.50 268 74001.25752.50108501.25 219 630.00 74630.00 269 755.00 109255.00 pounds per 220 270 110011.25 632.5075261.25757.50221 75895.00 271 635.00760.00110770.00 637.50 272 22276531.25 111531.25 762.50 223 640.0077170.00 273 765.00 112295.00 224 2,500 767.50113061.25 642.5077811.25274 500 225 275 645.0078455.00 770.00 113830.00 276 226 79101.25 647.50ςí 772.50114601.25 227 H 650.0079750.00 277 11 775.00 115375.00 652.50 228 80401.25 278 777.50116151.25 Uniform Load Uniform Load 229 655.0081055.00 279 780.00116930.00 230 280 657.5081711.25 782.50117711.25 231 82370.00 281 660.00785.00118495.00 232 662.5083031.25 282 787.50119281.25 665.00 667.50 670.00 233 83695.00 283 790.00 120070.00 234 84361.25 284 792.50120861.25 235 285 795.00 797.50 85030.00 121655.00 236 286 672.5085701.25 122451.25 237 675.00 86375.00 287 800.00 123250.00 677.50 238 288 87051.25 802.50 124051.25 239 680.0087730.00 289 805.00 124855.00 682.50 240 88411.25 290 807.50 125661.25 685.00 89095.00 291 241 810.00 126470.00 687.50 242 89781.25 292 812.50 127281.25 690.00 243 29390470.00 815.00 128095.00 91161.25 244 692.50294 817.50 128911.25 245 695.0091855.00295 820.00 129730.00 246 697.5092551.25296 822.50130551.25247 93250.00 700.00 297 825.00131375.00 827.50 248 702.5093951.25298 132201.25 299 249 705.00 94655.00 830.00 133030.00

COOPER'S E50. 300'-350' COOPER'S E50. 350'-400'

	COOLE	RS E50. 3	300 –350		OOPER	E50. 350	400′
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308 309		832.50 835.00 837.50 840.00 842.50 845.00 847.50 850.00 852.50 855.00	133861.25 134695.00 135531.25 136370.00 137211.25 138055.00 138901.25 139750.00 140601.25 141455.00	350 351 352 353 354 355 356 357 358 359		957:50 960:00 962:50 965:00 967:50 970:00 972:50 975:00 977:50 980:00	178611.25 179570.00 180531.25 181495.00 182461.25 183430.00 184401.25 185375.00 186351.25 187330.00
310 311 312 313 314 315 316 317 318 319	r foot	857.50 860.00 862.50 865.00 867.50 870.00 872.50 875.00 877.50 880.00	142311.25 143170.00 144031.25 144895.00 145761.25 146630.00 147501.25 148375.00 149251.25 150130.00	360 361 362 363 364 365 366 367 368 369	r foot	982.50 985.00 987.50 990.00 992.50 995.00 997.50 1000.00 1002.50 1005.00	188311.25 189295.00 190281.25 191270.00 192261.25 193255.00 194251.25 195250.00 196251.25 197255.00
320 321 322 323 324 325 326 327 328 329	oad = 2,500 pounds per foot	882.50 885.00 887.50 890.00 892.50 895.00 897.50 900.00 902.50 905.00	151011 .25 151895 .00 152781 .25 153670 .00 154561 .25 155455 .00 156351 .25 157250 .00 158151 .25 159055 .00	370 371 372 373 374 375 376 377 378 379	coad = 2,500 pounds per foot	1007.50 1010.00 1012.50 1015.00 1017.50 1020.00 1022.50 1025.00 1027.50 1030.00	198261.25 199270.00 200281.25 201295.00 202311.25 203330.00 204351.25 205375.00 206401.25 207430.00
330 331 332 333 334 335 336 337 338 339	Uniform Load	907.50 910.00 912.50 915.00 917.50 920.00 922.50 925.00 927.50 930.00	159961.25 160870.00 161781.25 162695.00 163611.25 164530.00 165451.25 166375.00 167301.25 168230.00	380 381 382 383 384 385 386 387 388 389	Uniform Load	1032.50 1035.00 1037.50 1040.00 1042.50 1045.00 1047.50 1050.00 1052.50 1055.00	208461.25 209495.00 210531.25 211570.00 212611.25 213655.00 214701.25 215750.00 216801.25 217855.00
340 341 342 343 344 345 346 347 348 349 350		932.50 935.00 937.50 940.00 942.50 945.00 947.50 950.00 952.50 955.00 957.50	169161.25 170095.00 171031.25 171970.00 172911.25 173855.00 174801.25 175750.00 176701.25 177655.00 178611.25	390 391 392 393 394 395 396 397 398 399 400		1057.50 1060.00 1062.50 1065.00 1067.50 1070.00 1072.50 1075.00 1077.50 1080.00 1082.50	218911.25 219970.00 221031.25 222095.00 223161.25 224230.00 225301.25 226375.00 227451.25 228530.00 229611.25

	Сооре	r's <i>E</i> 6	600′-	-50′	COOPER'S E60. 50'-100'				
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0123456789	w. 1	15.0	15.0 45.0	15.00 30.00 45.00 60.00 75.00 90.00 105.00	50 51 52 53 54 55 56 57 58 59	w. 10	15.0	228.0	5670.00 5883.00 6096.00 6309.00 6522.00 6735.00 6948.00 7176.00 7404.00 7632.00
10 11 12 13 14 15 16 17 18 19	w. 3	30.0	75.0	210.00 255.00 300.00 345.00 420.00 495.00 570.00 645.00 720.00 825.00	60 61 62 63 64 65 66 67 68 69	w. 11	30.0	258.0 288.0	7860.00 8088.00 8316.00 8544.00 8772.00 9030.00 9288.00 9546.00 9804.00 10062.00
20 21 22 23 24 25 26 27 28 29	w. 5	30.0	135.0	930.00 1035.00 1140.00 1245.00 1380.00 1515.00 1650.00 1785.00 1920.00 2055.00	70 71 · 72 73 74 75 76 77 78 79	w. 13	30.0	318.0	10350.00 10638.00 10926.00 11214.00 11502.00 11820.00 12138.00 12456.00 12774.00 13092.00
30 31 32 33 34 35 36 37 38 39	w. 6	19.5 19.5 	154.5 174.0	2190 00 2325 00 2460 00 2614 50 2769 00 2923 50 3078 00 3232 50 3406 50 3580 50	80 81 82 83 84 85 86 87 88 89	w. 15	19.5	367.5	13440.00 13788.00 14136.00 14484.00 14832.00 15180.00 15528.00 15876.00 16224.00 16591.00
40 41 42 43 44 45 46 47 48 49 50	w. 8	19.5	193.5	3754.50 3928.50 4102.50 4276.50 4470.00 4663.50 4857.00 5050.50 5244.00 5670.00	90 91 92 93 94 95 96 97 98 99 100	w. 16	19.5	387.0	16959.00 17326.50 17694.00 18061.50 18448.00 18835.50 19222.50 19699.50 20383.50 20790.00

Cooper's E60. 100'-150' Cooper's E60. 150'-200'

						EL S A	200. 15	
Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100				00700 00	150		F40 0	44500 50
100		· · · ·		20790.00	150		549.0	44533.50
101				21196.50	151		552.0	45084.00
102				21603.00	152		555.0	45637.50
103				22009.50	153		558.0	46194.00
104	w. 18	19.5	426.0	22416.00	154		561.0	46753.50
105	1		<i>.</i> .	22842.00	155		564.0	47316.00
106				23268.00	156		567.0	47881.50
107				23694.00	157		570.0	48450.00
108				24120.00	158		573.0	49021.50
109			426.0	24546.00	159		576.0	49596.00
110			429.0	24973.50	160		579.0	50173.50
111			432.0	25404.00	161		582.0	50754.00
112			435.0	25837.50	162		585.0	51337.50
$\bar{1}\bar{1}\bar{3}$			438.0	26274.00	163		588.0	51924.00
114			441.0	26713.50	164		591.0	52513.50
115			444.0	27156.00	165		594.0	53106.00
116			447.0	27601.50	166		597.0	53701.50
117			450.0	28050.00	167		600.0	54300.00
						42	603.0	54901.50
118			453.0	28501.50	168	.0		
119	 		456.0	28956.00	169	er f	606.0	55506.00
120	8		459.0	29413.50	170	ŭ	609.0	56113.50
121	i i		462.0	29874.00	171	ds	612.0	56724.00
122	be		465.0	30337.50	172	ğ	615.0	57337.50
123	202		468.0	30804.00	173	or	618.0	57954.00
124	Po		471.0	31273.50	174	ď	621.0	58573.50
125	፭		474.0	31746.00	175	8	624.0	59196.00
126	%		477.0	32221.50	176	o,	627.0	59821.50
127	0		480.0	32700.00	177	ຕວ	630.0	60450.00
128	8		483.0	33181.50	178	II	633.0	61081.50
129	= 3,000 pounds per foot		486.0	33666.00	179	ad	636.0	61716.00
130	 		489.0	34153.50	180	Uniform Load = $3,000$ pounds per foot	639.0	62353.50
131	8		492.0	34644.00	181	8	642.0	62994.00
$\overline{132}$	l ŭ l		495.0	35137.50	182	,ö i	645.0	63637.50
133	g		498.0	35634.00	183	ji l	648.0	64284.00
134	12		501.0	36133.50	184	- 5 I	651.0	64933.50
135	ifc		504.0	36636.00	185		654.0	65586.00
	Uniform Load		507.0	37141.50	186		657.0	66241.50
136	`							
137			510.0	37650.00	187		660.0	66900.00
138			513.0	38161.50	188		663.0	67561.50
139			516.0	38676.00	189		666.0	68226.00
140			519.0	39193.50	190		669.0	68893.50
141			522.0	39714.00	191		672.0	69564.00
142			525.0	40237.50	192		675.0	70237.50
143			528.0	40764.00	193		678.0	70914.00
144			531.0	41293.50	194		681.0	71593.50
145			534.0	41826.00	195		684.0	72276.00
146			537.0	42361 50	196		687.0	72961.50
			540.0	42900.00	197		690.0	73650.00
147					198		693.0	74341.50
148			543 0	43441.50				
149			546.0	43986.00	199		696.0	75036.00
150			549.0	44533.50	200		699.0	75733.50

Cooper's E60. 200'-250' Cooper's E60. 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200		699.0	75733.50	250		849.0	114433.50
201		702.0	76434.00	251		852.0	115284.00
202		705.0	77137.50	252		855.0	116137.50
203		708.0	77844.00	253		858.0	116994.00
204		711.0	78553.50	254		861.0	117853.50
205		714.0	79266.00	255		864.0	118716.00
206		717.0	79981.50	256		867.0	119581.50
$\frac{200}{207}$		720.0	80700.00	257		870.0	120450.00
$\frac{207}{208}$			81421.50	258			
208		723.0 726.0	82146.00	259		873.0 876.0	121321.50 122196.00
210		729.0	82873.50	260		879.0	123073.50
211		732.0	83604.00	261		882.0	123954.00
212		735.0	84337.50	262		885.0	124837.50
213		738.0	85074.00	263		888.0	125724.00
214		741.0	85813.50	264		891.0	126613.50
$\tilde{2}\tilde{1}\tilde{5}$		744.0	86556.00	265		894.0	127506.00
216		747.0	87301.50	266		897.0	128401.50
217	t)	750.0	88050.00	267	-CP	900.0	129300.00
218	9	753.0	88801.50	268	õ	903.0	
219	4	756.0	89556.00	269	44		130201.50
	3,000 pounds per foot			1 1	3,000 pounds per foot	906.0	131106.00
220	ds	759.0	90313.50	270	ds	909.0	132013.50
221	ğ	762.0	91074.00	271	ğ	912.0	132924.00
222	ğ	765.0	91837.50	272	9	915.0	133837.50
223	<u>a</u>	768.0	92604.00	273	Q,	918.0	134754.00
224	8	771.0	93373.50	274	8	921.0	135673.50
225	Ŏ,	774.0	94146.00	275	Ö,	924.0	136596.00
226		777.0	94921.50	276	 e.a	927.0	137521.50
227	li	780.0	95700.00	277	II	930.0	138450.00
228	ď	783.0	96481.50	278	Þ	933.0	139381.50
229	Uniform Load	786.0	97266.00	279	Uniform Load	936.0	140316.00
230	ä	789.0	98053.50	280	Ħ	939.0	141253.50
231	,ö	792.0	98844.00	281	Ġ.	942.0	142194.00
232	E.	795.0	99637.50	282	Ë	945.0	143137.50
233	Ö	798.0	100434.00	283	Þ	948.0	144084.00
234		801.0	101233.50	284		951.0	145033.50
235		804.0	102036.00	285		954.0	-145986.00
236		807.0	102841.50	286		957.0	146941.50
237		810.0	103650.00	287		960.0	147900.00
38		813.0	104461.50	288		963.0	148861 50
39		816.0	105276.00	289		966.0	149826.00
40		819.0	106093.50	290		969.0	150793.50
41		822.0	106914.00	291		972.0	151764 .00
42		825.0	107737.50	292		975.0	152737.50
43		828.0	108564.00	293		978.0	153714.00
44		831.0	109393.50	294		981.0	154693.50
45		834.0	110226 00	295		984.0	155676.00
46		837.0	111061.50	296		987.0	156661.50
47		840.0	111900.00	297		990.0	
48		843.0	112741.50	298		993.0	157650.00
49		846.0	113586.00	299			158641.50
250		849.0				996.0	159636.00
74 PL F		049.0	114433.50	300		999.0	160633.50

275533.50

1299:0

Cooper's E60. 300'-350' Cooper's E60. 350'-400' Moment Load Load Moment Length Load Length Load Sums Sums Sums Sume 999.0 160633.50 350 1149.0 214333.50 300 301 1002.0 161634.00 351 1152.0 215484.00 302 1005.0 162637.50 352 1155.0216637.50 1008.0 1158.0217794.00 303 163644.00 353 1161.0 218953.50 164653.50 354 304 1011.0 1164.0 305 1014.0 165666.00 355 220116.00 1167.0 221281.50 306 1017.0 166681.50 356 222450.00 167700.00 357 1170.0307 1020.0308 1023.0 168721.50 358 1173.0223621.501176.0 224796.00 309 1026.0169746.00 359 360 1179.0225973.50 1029.0 170773.50 310 1182.0 361 311 1032.0171804.00 227154.00172837.50 173874.00 1035.0 362 1185.0228337.50312 229524.00 363 1188.0 313 1038.01191.0 314 1041.0174913.50 364 230713.50 1044.0 175956.00 365 1194.0 231906.00 315 366 1047.0 177001.50 1197.0 233101.50 316 1050.0 178050.00 367 1200.0 234300.00 317 3,000 pounds per foot 179101.50 foot 235501.50 1053.0 368 1203.0318 1206.0 236706.00 319 1056.0 180156.00 369 per. 320 181213.50 370 1209.0 237913.50 1059.0 spunod 182274.00 371 1212.0239124.00 321 1062.0 240337.50 322 1065.0 183337.50 372 1215.0373 1218.0 241554.00 323 1038.0 184404.00 1221.0 242773.50 185473.50 374 324 1071.0 8 1224.0 243996.00 186546.00 375 325 1074.0 376 1227.0 245221.50 187621.50 326 1077.0 e. 377 1230.0246450.00 327 1080.0 188700.00 Į Ħ 1233.0 247681.50 328 1083.0 189781.50 378Jniform Load Jniform Load 1236.0 248916.00 190866.00 379 329 1086.01239.0 191953.50 380 250153.50 330 1089.0 381 1242.0251394.00 331 1092.0 193044.00 194137.50 1095.0 382 1245.0252637.50332 1248.0 253884.00 1098.0 195234.00 383 333 1251.0 196333.50 384 255133.50 1101.0 334 385 1254.0 256386.00 335 1104.0 197436.00 1257.0 1107.0 198541.50 386 257641.50 336 199650.00 387 1260.0258900.00 1110.0 337 1263.0 388 260161.50 338 1113.0 200761.50 389 1266.0 261426.00 339 1116.0 201876.00 390 1269.0262693.50 202993.50 340 1119.01272.0 263964.00 391 1122.0204114.00 341 1125.0 392 1275.0 265237.50 205237.50 342 266514.00 1128.0 206364.00 393 1278.0343 1281.0 267793.50 1131.0 207493.50 394 344 1284.0 269076.00 1134.0 208626.00 395 345 270361.50396 1287.0 209761.50 346 1137.0 1290.0 271650.00 397 210900.00 347 1140.01293.0 272941.50 212041.50 398 1143.0 348 274236.00 399 1296.0213186.00 349 1146.0

214333.50

1149.0

350

400

Common Standard 0'-50' Common Standard 50'-100'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0 1 2 3 4 5 6 7 8	w. 1	12.5 27.5	12.5	00.00 12.50 25.00 37.50 50.00 62.50 75.00 87.50 100.00 140.00	50 51 52 53 54 55 56 57 58 59	w. 10	12.5	205.0	5120.00 5312.50 5505.00 5697.50 5890.00 6082.50 6275.00 6480.00 6685.00 6890.00
10 11 12 13 14 15 16 17 18	w. 3	27.5 27.5	67.5	180.00 220.00 260.00 300.00 367.50 435.00 502.50 570.00 637.50 732.50	60 61 62 63 64 65 66 67 68 69	w. 11	27.5	232.5	7095.00 7300.00 7505.00 7710.00 7915.00 8147.50 8380.00 8612.50 8845.00 9077.50
20 21 22 23 24 25 26 27 28 29	w. 5	27.5	122.5	827.50 922.50 1017.50 1112.50 1235.00 1357.50 1480.00 1602.50 1725.00 1847.50	70 71 72 73 74 75 76 77 78 79	w. 13	27.5 27.5	287.5	9337.50 9597.50 9857.50 10117.50 10377.50 10665.00 10952.50 11240.00 11527.50 11815.00
30 31 32 33 34 35 36 37 38 39	w. 6	17.5 17.5	140.0 157.5	1970.00 2092.50 2215.00 2355.00 2495.00 2635.00 2775.00 2915.00 3072.50 3230.00	80 81 82 83 84 85 86 87 88	w. 15	 17.5	332.5	12130.00 12445.00 12760.00 13075.00 13390.00 13705.00 14020.00 14335.00 14650.00 14982.50
45 46	w. 8	17.5 17.5	175.0 192.5	3387 . 50 3545 . 00 3702 . 50 3860 . 00 4035 . 00 4210 . 00 4385 . 00 4560 . 00 4735 . 00 4927 . 50 5120 . 00	90 91 92 93 94 95 96 97 98 99 100	w. 16	17.5	350.0	15315.00 15647.50 15980.00 16312.50 16662.50 17012.50 17362.50 17712.50 18062.50 18412.50 18780.00

Common Standard 100'-150' Common Standard 150'-200'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100 101 102 103 104 105 106 107 108 109	w. 18	17.5	385.0	18780.00 19147.50 19515.00 19882.50 20250.00 20635.00 21020.00 21405.00 21790.00 22175.00	150 151 152 153 154 155 156 157 158 159		487.5 490.0 492.5 495.0 497.5 500.0 502.5 505.0 507.5 510.0	40061.25 40550.00 41041.25 41535.00 42031.25 42530.00 43031.25 43535.00 44041.25 44550.00
110 111 112 113 114 115 116 117 118 119		per foot	387.5 390.0 392.5 395.0 397.5 400.0 402.5 405.0 407.5 410.0	22561 . 25 22950 . 00 23341 . 25 23735 . 00 24131 . 25 24530 . 00 24931 . 25 25335 . 00 25741 . 25 26150 . 00	160 161 162 163 164 165 166 167 168 169	s per foot	512.5 515.0 517.5 520.0 522.5 525.0 527.5 530.0 532.5 535.0	45061.25 45575.00 46091.25 46610.00 47131.25 47655.00 48181.25 48710.00 49241.25 49775.00
120 121 122 123 124 125 126 127 128 129		Load = 2,500 pounds per foot	412.5 415.0 417.5 420.0 422.5 425.0 427.5 430.0 432.5 435.0	26561.25 26975.00 27391.25 27810.00 28231.25 28655.00 29081.25 29510.00 29941.25 30375.00	170 171 172 173 174 175 176 177 178 179	Uniform Load = $2,500$ pounds per foot	537.5 540.0 542.5 545.0 547.5 550.0 552.5 555.0 557.5 560.0	50311.25 50850.00 51391.25 51935.00 52481.25 53030.00 53581.25 54135.00 54691.25 55250.00
130 131 132 133 134 135 136 137 138 139		Uniform Load	437.5 440.0 442.5 445.0 447.5 450.0 452.5 455.0 457.5 460.0	30811.25 31250.00 31691.25 32135.00 32581.25 33030.00 33481.25 33935.00 34391.25 34850.00	180 181 182 183 184 185 186 187 188 189	Uniforn	562.5 565.0 567.5 570.0 572.5 575.0 577.5 580.0 582.5 585.0	55811 .25 56375 .00 56941 .25 57510 .00 58081 .25 58655 .00 59231 .25 59810 .00 60391 .25 60975 .00
140 141 142 143 144 145 146 147 148 149			462.5 465.0 467.5 470.0 472.5 475.0 477.5 480.0 482.5 485.0 487.5	35311 .25 35775 .00 36241 .25 36710 .00 37181 .25 37655 .00 38131 .25 38610 .00 39091 .25 39575 .00 40061 .25	190 191 192 193 194 195 196 197 198 199 200		587.5 590.0 592.5 595.0 597.5 600.0 602.5 605.0 607.5 610.0 612.5	61561.25 62150.00 62741.25 63335.00 63931.25 64530.00 65131.25 65735.00 66341.25 66950.00 67561.25

Common Standard 200'-250' Common Standard 250'-300'

	, MINION K	JIANDAN	200 -200	U I I I I I I I I I I I I I I I I I I I				
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums	
200 201 202 203 204 205 206 207 208 209		612.5 615.0 617.5 620.0 622.5 625.0 627.5 630.0 632.5 635.0	67561.25 68175.00 68791.25 69410.00 70031.25 70655.00 71281.25 71910.00 72541.25 73175.00	250 251 252 253 254 255 256 257 258 259		737.5 740.0 742.5 745.0 747.5 750.0 752.5 755.0 757.5 760.0	101311.25 102050.00 102791.25 103535.00 104281.25 105030.00 105781.25 106535.00 107291.25 108050.00	
210 211 212 213 214 215 216 217 218 219	per foot	637.5 640.0 642.5 645.0 647.5 650.0 652.5 655.0 657.5 660.0	73811.25 74450.00 75091.25 75735.00 76381.25 77030.00 77681.25 78335.00 78991.25 79650.00	260 261 262 263 264 265 266 267 268 269	per foot	762.5 765.0 767.5 770.0 772.5 775.0 777.5 780.0 782.5 785.0	108811.25 109575.00 110341.25 111110.00 111881.25 112655.00 113431.25 114210.00 114991.25 115775.00	
220 221 222 223 224 225 226 227 228 229	Uniform Load =2,500 pounds per	662.5 665.0 667.5 670.0 672.5 675.0 677.5 680.0 682.5 685.0	80311 . 25 80975 . 00 81641 . 25 82310 . 00 82981 . 25 83655 . 00 84331 . 25 85010 . 00 85691 . 25 86375 . 00	270 271 272 273 274 275 276 277 278 279	Uniform Load=2,500 pounds per foot	787.5 790.0 792.5 795.0 797.5 800.0 802.5 805.0 807.5 810.0	116561.25 117350.00 118141.25 118935.00 119731.25 120530.00 121331.25 122135.00 122941.25 122750.00	
230 231 232 233 234 235 236 237 238 239	Unifor	687.5 690.0 692.5 695.0 697.5 700.0 702.5 705.0 707.5 710.0	87061.25 87750.00 88441.25 89135.00 89831.25 90530.00 91231.25 91935.00 92641.25 93350.00	280 281 282 283 284 285 286 287 288 289	Unifor	812.5 815.0 817.5 820.0 822.5 825.0 827.5 830.0 832.5 835.0	124561.25 125375.00 126191.25 127010.00 127831.25 128655.00 129481.25 130310.00 131141.25 131975.00	
240 241 242 243 244 245 246 247 248 249 250		712.5 715.0 717.5 720.0 722.5 725.0 727.5 730.0 732.5 735.0 737.5	94061.25 94775.00 95491.25 96210.00 96931.25 97655.00 98381.25 99110.00 99841.25 100575.00 101311.25	290 291 292 293 294 295 296 297 298 299 300		837.5 840.0 842.5 845.0 847.5 850.0 852.5 855.0 857.5 860.0 862.5	132811.25 133650.00 134491.25 135335.00 136181.25 137030.00 137881.25 138735.00 139591.25 140450.00 141311.25	

COMMON STANDARD 350'-400' COMMON STANDARD 300'-350' Load Moment Load Moment. Length Load Length Load Sums Sums Sums Sums 862.5987.50187561.25 300 141311.25 350 301 142175.00 351 990.00 188550.00 865.0 992.50189541.25302 867.5 143041.25 352 995.00 190535.00 353 143910.00 303 870.0144781.25 354 997.50 191531.25 304 872.5875.0 1000.00 192530.00 305 145655.00 355 877.5 193531.25 306 146531.25 356 1002.50880.0 147410.00 357 1005.00 194535.00 307 1007.50 195541.25 308 882.5 148291.25 358 1010.00 196550.00 885.0 149175.00 359 309 310 887.5 150061.25 360 $\cdot 1012.50$ 197561.25 311 890.0 150950.00 361 1015.00 198575.00 151841.25 199591.25 312 892.5 362 1017.501020.00 200610.00 363 313 895.0 152735.00364 1022.50 201631.25 153631.25314 897.51025.00202655.00 154530.00 365 900.0 315 203681.25 902.5 366 1027.50 155431.25 316 204710.00 905.0367 1030.00 317 156335.00 foot 205741.25 1032.50 318 907.5157241.25 368 158150.00 1035.00 206775.00 910.0369 319 per. per. 159061.25 370 1037.50 207811.25 912.5 320 spunod spunod 208850.00 915.0 159975.00 371 1040.00 321 209891.25 160891.25 1042.50 322 917.5 372 210935.00 1045.00 161810.00 373 323 920.0922.5162731.25 374 1047.50 211981.25 324 ,500 =2,5001050.00 163655.00 375 213030.00 925.0 325 1052.50214081.25 927.5 164581.25 376 326 છ્યું 377 1055.00 215135.00 930.0 165510.00 327 II Load 216191.25 166441.25 378 1057.50328 932.5Uniform Load 1060.00 217250.00 167375.00 379 329 985.0218311.25 380 1062.50168311.25 Uniform 330 937.5381 1065.00 219375.00 169250.00 331 940.0 220441.25 382 1067.50 332 942.5 170191.25 221510.00 383 1070.00 333 945.0171135.00 1072.50222581.25172081.25 384 334 947.5223655.00 1075.00 950.0 173030.00 385 335 224731.25 173981.25 386 1077.50336 952.5225810.00 387 1080.00 955.0 174935.00 337 175891.25388 1082.50 226891.25 338 957.51085.00 227975.00 389 176850.00 339 960.0177811.25 390 1087.50 229061.25962.5340 391 1090.00 230150.00 965.0 178775.00 341 231241.25 1092.50179741.25 392 967.5342 1095.00 1097.50 232335.00 393 180710.00 343 970.0233431.25 181681.25 394 344 972.5234530.00 395 1100.00 975.0 182655.00 345 235631.25 1102.50183631.25 396 977.5 346 1105.00 236735.00 184610.00 397 980.0 347 1107.50 237841.25185591.25 398 982.5348 1110.00 238950.00 399 985.0 186575.00 349 240061.25400 1112.50987.5 187561.25 350

LACKAWANNA 0'-50' LACKAWANNA 50'-100'

Length Wheel Load Sums Sums Sums Length Wheel Load Load Sums Sums Sums
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
25 1325.000 75 9825.0 26 1436.000 76 w. 14 25 278.00 10078.0 27 1547.000 78 10634.0 28 1769.000 79 10912.0 30 1880.000 80 11190.0 31 w. 6 14 125.00 1991.000 81 11468.0 32 2116.000 82 11746.0 33 2241.000 83 12024.0 34 2366.000 84 12302.0 35 2491.000 85 w. 15 14 292.00 12580.0 36 w. 7 14 139.00 2616.000 86 12872.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
28 1658.000 78 10634.0 29 1769.000 79 10912.0 30 1880.000 80 11190.0 31 w. 6 14 125.00 1991.000 81 11468.0 32 2116.000 82 11746.0 33 2241.000 83 12024.0 34 2366.000 84 12302.0 35 2491.000 85 w. 15 14 292.00 12580.0 36 w. 7 14 139.00 2616.000 86 1202.0 12872.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
30 1880.000 80 11190.0 31 w. 6 14 125.00 1991.000 81 11468.0 32 2116.000 82 11746.0 33 2241.000 83 12024.0 34 2366.000 84 12302.0 35 2491.000 85 w. 15 14 292.00 12580.0 36 w. 7 14 139.00 2616.000 86 12872.0 27
31 w. 6 14 125.00 1991.000 81 11468.0 32 2116.000 82 11746.0 33 2241.000 83 12024.0 34 2366.000 84 12302.0 35 2491.000 85 w. 15 14 292.00 12580.0 36 w. 7 14 139.00 2616.000 86
32
33
34 2366.000 84 12302.0 35 2491.000 85 w. 15 14 292.00 12580.0 36 w. 7 14 139.00 2616.000 86 12872.0 27
35 2491.000 85 W.15 14 292.00 12580.0 36 W.7 14 139.00 2616.000 86 12872.0
27 000 07
27
37 2755.000 87 13146.0
38 2894.000 88 13456.0
39 3033.000 89 13748.0
40 3172.000 90 w. 16 14 306.00 14040.0
41 w. 8 14 153.00 3311.000 91 14346.0
42 3464.000 92 14652.0
43 3617.000 93 14958.0
44 3770.000 94 15264.0
45 3923.000 95 w.17 14 320.00 15570.0 46 w. 9 14 167.00 4076.000 96 15890.0
40
48 4410.000 98 16530.0 49 4577.000 99 16850.0
50 4744.000 100 w. 18 14 334.00 17170.0
1110.0

LACKAWANNA 100'-150' Lackawanna 150'-200' Load Moment Length Wheel Load Moment Load Length Load Sums Sums Sums 100 w. 18 14 334.00 17170.000 150 437.5036250.500 101 17504.000 151 439.7536689.125 102 17838.000 152 $442.00 \\ 444.25$ 37130.000 ٠. 103 18172.000 153 37573.12518506.000 104 334.00 154 38018.500 38466.125 446.5018841.125 105 336.25448.75 155 106 338.50 19178.500 156 451.00 38916.000 107 340.7519518.125 157 453.2539368.125 108 343.00 19860.000 158 455.5039822.500 109 345.2520204.125 159 457.7540279.125 110 347.5020550.500 160 460.00 40738.000 111 349.7520899.125161 462.2541199.125 112 352.00 21250.000162 464.5041662.500 113 354.2521603.125 163 466.7542128.12521958.500 114 356.50164 42596.000 469.00 $471.25 \\ 473.50$ 115 358.7522316.125 165 43066.125 22676.000 23038.125 116 361.00 166 43538.500 $475.75 \\ 478.00$ 363.2544013.125 117 foot 167 foot 118 $365.50 \\ 367.75$ 23402.500 168 44490.000 23769.125 119 44969.125 per 169 per 480.25482.50 484.75 487.00 489.25 120 370.00 24138.000 170 45450.500 spunod spunod 121 372.2545934.12524509.125171 122 24882.500 374.50 172 46420.000 123 25258.125 376.75 173 46908.125 2,250 ,250 124 491.50 47398.500 379.00 25636.000 174 125 381.25 26016.125 175 493.75 47891.125 126 383.50 26398.500 176 જો 48386.000 496.00 127 26783.125 li 48883.125ĮĮ. 385.75177 498.25128 49382.500 Load 388.00 27170.000 178 500.5027559.125 129 390.25 502.75 49884.125 179 130 392.50 180 27950.500 505.0050338.000 Jniform 131 394.7528344.125 181 507.2550894.125 28740.000 132 397.00 182 509.5051402.500 $\frac{29138.125}{29538.500}$ 133 399.25183 511.7551913.125 401.50134 184 514.0052426.000 29941.125135 403.75 185 516.25 52941.125 136 30346.000 186 53458.500 406.00 518.50137 408.2530753.125 187 520.7553978.125 31162.500 31574.125 138 $410.50 \\ 412.75$ 188 $523.00 \\ 525.25$ 54500.000 139 189 55024.12531988.000 527.50140 415.00 190 55550.500 417.25 419.50 421.75 141 32404.125 191 529.75 56079.125532.00 534.25 536.50 538.75 $32882.500 \\ 33243.125$ 142 192 56610.000 57143.125 57678.500 143 193

144

145

146

147

148

149

150

424.00

426.25

428.50

430.75

433.00

435.25

437.50

33666.000

34091.125

34518.500

34948.125

35380.000

35814.125

36250.500

194

195

196

197

198

199

200

58216.125

58756.000

59298.125

59842.500

60389.125

60938.000

541.00

543.25

 $545.50 \\ 547.75$

550.00

Lackawanna 200'-250' Lackawanna 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		550.00 552.25 554.50 556.75 559.00 561.25 563.50 565.75 568.00 570.25	60938.000 61489.125 62042.500 62598.125 63156.000 63716.125 64278.500 64843.125 65410.000 65979.125	250 251 252 253 254 255 256 257 258 259		662.50 664.75 667.00 669.25 671.50 673.75 676.00 678.25 680.50 682.75	91250.500 91914.125 92580.000 93248.125 93918.500 94591.125 95266.000 95943.125 96622.500 97304.125
210 211 212 213 214 215 216 217 218 219	r foot	572.50 574.75 577.00 579.25 581.50 583.75 586.00 588.25 590.50 592.75	66550.500 67124.125 67700.000 68278.125 68858.500 69441.125 70026.000 70613.125 71202.500 71794.125	260 261 262 263 264 265 266 267 268 269	r foot	685.00 687.25 689.50 691.75 694.00 696.25 698.50 700.75 703.00 705.25	97988.000 98674.125 99362.500 100053.125 100746.000 101441.125 102138.500 102838.125 103540.000 104244.125
220 221 222 223 224 225 226 227 228 229	oad = 2,250 pounds per foot	595.00 597.25 599.50 601.75 604.00 606.25 608.50 610.75 613.00 615.25	72388.000 72984.125 73582.500 74183.125 74786.000 75391.125 75998.500 76608.125 77220.000 77834.125	270 271 272 273 274 275 276 277 278 279	oad = 2,250 pounds per foot	707.50 709.75 712.00 714.25 716.50 718.75 721.00 723.25 725.50 727.75	105950.500 105659.125 106370.000 107083.125 107798.500 108516.125 109236.000 109958.125 110682.500 111409.125
230 231 232 233 234 235 236 237 238 239	Uniform Load	617.50 619.75 622.00 624.25 626.50 628.75 631.00 633.25 635.50 637.75	78450.500 79069.125 79690.000 80313.125 80938.500 81566.125 82196.000 82828.125 83462.500 84099.125	280 281 282 283 284 285 286 287 288 289	Uniform Load	730.00 732.25 734.50 736.75 739.00 741.25 743.50 745.75 748.00 750.25	112138.000 112869.125 113602.500 114338.125 115076.000 115816.125 116558.500 117303.125 118050.000 118799.125
240 241 242 243 244 245 246 247 248 249 250		640.00 642.25 644.50 646.75 649.00 651.25 653.50 655.75 658.00 660.25 662.50	84738.000 85379.125 86022.500 86668.125 87316.000 87966.125 88618.500 89273.125 89930.000 90589.125 91250.500	290 291 292 293 294 295 296 297 298 299 300		752.50 754.75 757.00 759.25 761.50 763.75 766.00 768.25 770.50 772.75 775.00	119550.500 120304.125 121060.000 121818.125 122578.500 123341.125 124106.000 124873.125 125642.500 126414.125 127188.000

Lackawanna 300'-350' Lackawanna 350'-400'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307 308 309		775.00 777.25 779.50 781.75 784.00 786.25 788.50 790.75 793.00 795.25	127188 .000 127964 .125 128742 .500 129523 .125 130306 .000 131091 .125 131878 .500 132668 .125 133460 .000 134254 .125	350 351 352 353 354 355 356 357 358 359		887.50 889.75 892.00 894.25 896.50 898.75 901.00 903.25 905.50 907.75	168750 .500 169639 .125 170530 .000 171423 .125 172318 .500 173216 .125 174116 .000 175018 .125 175922 .500 176829 .125
310 311 312 313 314 315 316 317 318 319	r foot	797.50 799.75 802.00 804.25 806.50 808.75 811.00 813.25 815.50 817.75	135050.500 135849.125 136650.000 137453.125 138258.500 139066.125 139876.000 140688.125 141502.500 142319.125	360 361 362 363 364 365 366 367 368 369	ır foot	910.00 912.25 914.50 916.75 919.00 921.25 923.50 925.75 928.00 930.25	177738.000 178649.125 179562.500 180478.125 181396.000 182316.125 183238.500 184163.125 185090.000 186019.125
320 321 322 323 324 325 326 327 328 329	330 = 2,250 pounds per foot	820.00 822.25 824.50 826.75 829.00 831.25 833.50 835.75 838.00 840.25	143138.000 143959.125 144782.500 145608.125 146436.000 147266.125 148098.500 148933.125 149770.000 150609.125	370 371 372 373 374 375 376 377 378 379	\dot{a} oad = 2,250 pounds per foot	932.50 934.75 937.00 939.25 941.50 943.75 946.00 948.25 950.50 952.75	186950.500 187884.125 188820.000 189758.125 190698.500 191641.125 192586.000 193533.125 194482.500 195434.125
330 331 332 333 334 335 336 337 338 339	Uniform Load	842.50 844.75 847.00 849.25 851.50 853.75 856.00 858.25 860.50 862.75	151450.500 152294.125 153140.000 153988.125 154838.500 155691.125 156546.000 157403.125 158262.500 159124.125	380 381 382 383 384 385 386 387 388 389	Uniferm Load	955.00 957.25 959.50 961.75 964.00 966.25 968.50 970.75 973.00 975.25	196388.000 197344.125 198302.500 199263.125 200226.000 201191.125 202158.500 203128.125 204100.000 205074.125
340 341 342 343 344 345 346 347 348 349 350		865.00 867.25 869.50 871.75 874.00 876.25 878.50 880.75 883.00 885.25 887.50	159988 .000 160854 .125 161722 .500 162593 .125 163466 .000 164341 .125 165218 .500 166098 .125 166980 .000 167864 .125 168750 .500	390 391 392 393 394 395 396 397 398 399 400		977.50 979.75 982.00 984.25 986.50 988.75 991.00 993.25 995.50 997.75 1000.00	206050.500 207029.125 208010.000 208993.125 209978.500 210966.125 211956.000 212948.125 213942.500 214939.125 215938.000

Seg	ments	20	10	15	20	25	30	35	40	45	20	25	09	99	70	7.5	80	82	06	95	100	110	120	130	140
300	0-260	2	2	3	3		4	5	5	6	7	7	8	9	10	10	11	11	12	12	13	14	15	17	18
250)-200	2					4	5	5	6	7	8	8	9	10	11	11	12	12	12	13	14	15	17	18
190	0-150	$\begin{vmatrix} 2\\2 \end{vmatrix}$	2	3	3		4	5	5	6	7	8	9	9	11	11	12	12	12	12	13	14	15	17	18
	140	2	3		3		4	5.	5	6	7	8	9	10	11	12	12	12	12	12	13	14	15	17	18
	130	2	3	3	3		4	5	5	6	7	8	9	10	11	12	12	12	12	12	13	14	15	17	l
	120	2	3	3	3		4	5	5	6	7	8	9	10	11	12	12	12	13	13	13	14	15	ا ا	
	110	2	3	3	3		4	5	6	7	7	8	9	10	11	12	12	12	13	13	13	14			
	100	2	3	3	3	4	5	5	6	14	$\overline{14}$	14	$\overline{13}$	13	11	12	12	12	13	13	13				
	95	2	3	3	4	4	5	13	$\overline{13}$	$\overline{13}$	13	$\overline{13}$	13	13	13	12	12	12	13	13			۱		
	90	2	3	3	4	4	5	13	13	13	13	13	13		13	12	12	12	13						
	85	2	3	3	4	4	5	13	13	$\overline{12}$	13	13	12	13	$\overline{13}$	$\overline{12}$	12	12	٠.						
	80	2	3	3	4	4	$\overline{13}$		13	$\overline{12}$		$\overline{12}$	12			$\overline{12}$	12							[
ţ,	75	2	3	3	4	4	$\overline{13}$		12	$\overline{12}$		$\overline{12}$	$\overline{12}$	$\overline{12}$	$\overline{12}$	12									
ien	70	2	3	3	4	4	13	13	$\overline{12}$	$\overline{12}$	$\overline{12}$	$\overline{12}$	11	11	11	٠.									
щ	65	2	3	3	4	4	$\overline{12}$	12	$\overline{12}$	$\overline{12}$	$\overline{12}$	11	$\overline{11}$	11											
$\tilde{\mathbf{x}}$	60	11	3	3	4	4	5	13	12	$\overline{11}$	11	11	11												
je.	55	11	12	12	12		12	13	12	$\overline{12}$	13	11													
Longer Segment l_2	50	11	12	12	12	12	12	13	13	$\overline{13}$	12														
Ţ	45	2		12	12	12	12	13	13	13		[[[
	40	2	3	3	3	12	12	$1\overline{3}$	13					[
	35	2	3	3	4	4	13	13]							[
	30	2	3	3	4	4	13]	
ĺ	25	2	$\frac{3}{4}$	3	4	4]			أ												
	20	2		3	4]]				. , [
	15	2	3	3																					
1	10	2	3]		
	5	2			. ,																[!	
		J	_!		1			- 1	- 1	- 1					1					1		j		1	

General Notes.—The table gives wheel for maximum for any stress which has a triangular influence line.

When both segments are each greater than 142 ft., advance load on longer segment first, and upon next segment until wheel No. 1 is within 33 feet of the far end of the latter.

In case of two unequal segments, the live load approaches on the longer segment except where wheel is overlined, when live load approaches on shorter segment.

TABLE 4

Position of Cooper's Loadings for Absolute Maximum Bending Moment in Girder Bridges Without Panels

S = Span in feet.

c =Distance in feet that wheel No. 1 has moved to left beyond centre of span.

w = wheel under which absolute maximum bending moment occurs.

a =distance that w is to left from centre of span.

b = " " w " right " " "

S	c	w	а	ъ
0' to 8'.5	8′.00	2	0′.00	••••
8.5 " 11.1	9.25	2	1.25	
11.1 " 18.7	13.00	3	0.00	
18.7 " 27.6	14.25	3 3	1.25	
27.6 " 34.9	13.39	3	0.39	
34.9 " 38.7	17.06	4		0.94
38.7 " 48.6	18.21	4	0.21	• • • •
48.6 " 53.7	19.45	4	1.45	
53.7 " 58.4	74.13	13	0.13	
58.4 " 63.2	75.37	13	1.37	• • • •
63.2 " 70.00	74.07	13	0.07	• • • •

NOTE.—For spans greater than 70 feet, the maximum centre moment equals the absolute maximum bending moment with an error of less than one per cent.

TABLE 5

Position of Cooper's Loadings for Maximum End Shear in Girder Bridges Without Panels

Span	Direction Load	Position of	Location of
	Moves	Load	Maximum Shear
0' to 23'	Right to left	w_2 at left end w_5 at right end w_2 at left end w_{11} at left end w_2 at left end	Left end
23 " 27	Right to left		Right end
27 " 46	Right to left		Left end
46 " 62	Right to left		Left end
62 " 400	Right to left		Left end

TABLE 6 ${\bf Position~of~Cooper's~Loadings~for~Maximum~Shear~in~Panels~of~Girder}$ and Truss Bridges

Number of						Pa	NEL	LEN	GTH I	IN F	EET				
Panels	Panel	22	23	24	25	26	27	28	29	30	31	32	33	34	35
6	0-1 1-2 2-3 3-4	4 3 3 2	4 3 3 2	4 3 3 2	4 3 3 2	4 4 3 2	4 4 3 2	4 4 3 2	4 4 3 2	4 4 3 2	4 4 3 3	5 4 3 3	5 4 3 3	5 4 3 3	5 4 4
7	4-5 0-1 1-2 2-3 3-4 4-5	2 4 3 3 3 2	2 4 3 3 3 2	2433332	2 4 3 3	2 4 4 3 3	2 4 4 3 3 2	2 4 4 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 5 4 3 2	2 5 4 4 3 3	2 5 4 4 3
8	5-6 0-1 1-2 2-3 3-4 4-5	2 3 3 3 2	2 4 3 3 3 2	2 4 3 3 3 2	2243333	2 4 4 3 3 2	2 4 4 3 3	2 4 4 3 3 3	2 4 4 3 3 3	2 4 4 3 3 3 3	2 4 4 3 3	2 4 4 3 3	2 5 4 4 3 3	2 5 4 4	2 5 4 4 3
9	5-6 6-7 0-1 1-2 2-3 3-4 4-5 5-6 6-7	2 2 3 3 3 2 2 2	2 2 4 3 3 3 2 2	2 2 4 3 3 3 2 2	2 2 2 4 3 3 3 3 2 2 2	2 2 4 4 3 3 2 2	2 2 4 4 3 3 2 2	2 2 4 4 3 3 2 2	2 2 4 4 3 3 2 2	2 2 4 4 4 3 3 2 2	2 2 4 4 3 3 2	2 2 4 4 3 3 2	2 2 4 4 4 3 3 2	33225443332225	2 2 5 4 4 3 3 3 3
10	7-8 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9	223333332221	22433332221	22433332221	22433332221	2 2 4 4 3 3 3 2 2 2 1	2 4 4 3 3 3 2 2 2 1	2 4 4 3 3 3 3 2 2 1	2 4 4 3 3 3 3 2 2 1	22444333222	224443333222	224443332222	224443332222	22544333222	5443254433254433222544433222

Note.—Place tabulated wheel at right end of corresponding panel with locomotive advancing toward left.

TABLE 7

Maximum Moments, Shears, and Pier Reactions for Cooper's Standard Loadings

(Figures for One Rail)

			E40					E50		
Span	Max.	M	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier
	Moment	End	1/4 Pt.	Cent.	React.	Moment	End	¼ Pt.	Cent.	React.
10	56.3 65.7 80.0 95.0 110.0 125.0 170.0 186.6 206.3 226.3 2245.7 265.4 285.2 305.2 302.8 344.6 365.5 388.0 410.5	30.0 32.7 35.0 36.9 38.6 40.0 42.5 44.7 48.4 50.0 51.4 52.7 53.9 55.4 56.8 59.2 60.4 61.6 63.4	20.0 20.9 21.7 22.3 6 25.0 26.3 27.4 3 29.2 30.0 31.4 32.7 33.9 35.0 36.0 37.8 38.6 39.3 40.0 40.7	10.0 10.9 11.7 12.3 13.3 13.7 13.8 14.0 14.5 15.4 15.8 16.2 16.5 16.9 17.1 17.4 17.7 18.2	40.0 43.7 49.2 52.2 54.7 56.9 65.6 68.0 70.2 72.2 74.0 75.7 77.7 80.2 82.3 84.4 86.3 88.5	70.4 82.1 100.0 118.8 137.5 156.3 175.0 193.8 212.5 233.3 257.9 282.5 307.1 331.8 356.5 381.3 406.0 430.8 456.9 513.0 5514.1	37.5 40.9 43.8 46.2 50.0 53.1 55.9 60.5 62.5 64.3 65.4 69.3 71.0 72.6 97.2 74.0 75.5 76.9 78.8 80.5	25.0 26.1 27.1 27.9 29.5 31.3 32.9 34.3 36.5 37.5 39.2 40.9 42.4 43.8 45.0 47.2 48.2 49.1 50.0 50.9	12.5 13.6 14.6 15.4 16.2 16.6 17.1 17.5 17.5 18.1 19.8 20.2 20.2 21.1 21.4 21.4 22.7	50.0 54.5 58.4 61.6 65.2 68.3 71.1 73.5 75.9 78.6 81.9 87.6 90.2 92.4 94.6 97.1 100.1 102.8 105.4 107.9 110.6
32	455.4 477.9 500.6 523.0 548.6 574.3 600.0 626.6 685.6 684.6 771.6 829.8 858.6 829.8 858.6 918.8 950.9 983.1 1015.2 1047.4	65.7 66.9 68.1 69.6 71.9 73.1 74.3 75.4 76.8 78.4 79.4 80.6 81.7 82.8 83.8 85.0 86.1 87.2 88.4 89.3 90.5	41 3 42 0 42 85 44 1 1 44 8 45 4 46 0 8 47 5 2 48 9 5 1 50 7 51 4 52 1 8 53 54 1 54 8 4	21.7 22.0 22.3 22.6 22.9 23.2 23.4 23.7 23.9 24.2 24.5 24.9 25.2	101 . 5 103 . 7 105 . 9 108 . 0 110 . 0 112 . 1 114 . 3 116 . 5 120 . 7 122 . 7 124 . 8 126 . 8 128 . 7 131 . 0	1000.8 1037.3 1073.3 1109.5 1148.5 1188.6 1228.9 1269.0	106.3 107.7 109.0 110.4 111.8	51.8 52.5 53.5 54.4 55.1 56.0 56.7 57.5 59.4 60.2 61.1 61.9 62.6 63.4 64.2 65.1 66.8 67.6 68.5 69.2	24.6 25.1 25.8 26.2 26.6 27.1 27.5 27.9 28.3 28.6 29.0 29.3 30.2 30.6 31.1 31.5 31.9	116. 7 119. 4 122. 0 124. 4 126. 9 129. 7 132. 3 135. 0 137. 6 140. 2 142. 9 145. 6 148. 3 150. 9 153. 4 156. 0 158. 5

TABLE 7.—Continued

Maximum Moments, Shears, and Pier Reactions for Cooper's Standard Loadings

(Figures for One Rail)

			E40					E50		
Span	Max.	M	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier
	Moment	End	¼ Pt.	Cent.	React.	Moment	End	¼ Pt.	Cent.	React.
54	1081.4 1116.9 1152.4 1187.9 1223.4 1261.0 1299.6 1338.3 1377.0 1415.5 1581.5 1581.5 1665.5 1749.3 1665.5 1749.3 1879.2 1925.8 1972.0 2019.1 2010.5 2207.7 2256.7 2256.7 2256.3 2406.9 2459.6 22615.9 2670.5 2723.0 2776.7	91.5 92.6 93.7 94.8 95.9 97.0 98.0 99.2 100.1 101.3 102.6 103.8 109.2 110.5 111.8 113.3 114.8 115.6 116.4 121.7 119.1 120.4 121.7 123.0 124.2 125.6 126.9 128.2 129.5 130.7 132.1 133.4 134.7 136.0 137.2 138.5 138.5 138.5 139.8	56.85558.88559.558.88559.558.88559.558.88559.558.88559.558.88559.558.88559.558.88559.558.8859.9955.7955.7	26.1 26.4 26.9 27.5 27.5 27.5 28.8 29.1 29.4 29.7 30.2 30.5 31.1 31.4 31.7 32.3 32.6 32.6 32.6 33.2 4.7 35.3 35.6 36.5 36.5 37.3 37.3 37.3	138.0 140.3 142.7 145.4 148.1 150.6 153.2 155.7 158.2 160.4 162.6 165.2 167.8 170.1 172.5 174.8 177.1 186.2 190.4 192.5 194.7 194.7 194.7 196.8 198.9 203.0 206.9 208.9 210.8 211.8 212.6 6 220.6 220.6 220.5 220.6 222.5	1351.8 1396.1 1440.5 1484.9 1529.2 1576.2 1624.5 1672.9 1721.2 1799.5 1819.4 1976.9 2029.4 2081.9 2134.4 2186.6 2241.2 2292.4 2349.0 2407.3 2465.0 2523.9 2523.9 2883.1 2945.4 3074.5 3138.3 3269.9 3338.1 3403.7 3470.9	114 .5 115 .8 117 .2 118 .5 119 .8 121 .2 .5 119 .8 121 .2 .5 123 .9 125 .9 128 .2 129 .7 131 .2 .2 133 .0 134 .8 136 .5 138 .1 143 .5 141 .7 143 .5 145 .3 147 .1 153 .8 155 .3 157 .0 158 .6 160 .3 161 .8 163 .4 170 .0 171 .5 173 .1 174 .7	70.1.87 71.87 72.57 74.4.07 78.06 77.78.06 77.78.08 81.07 82.4.18 83.84 85.07 86.48 87.88 88.89 89.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48 99.48	32 6 33 0 33 33 33 33 6 0 34 4 9 35 26 36 .4 34 .9 35 .6 36 .4 36 .8 1 37 .8 38 .4 8 39 .2 39 6 0 4 40 .8 41 .1 7 42 .1 42 .5 43 .0 4 43 .7 44 .1 5 9 2 45 .6 45 .9 2 46 .6	172. 5 175. 4 178. 5 181. 8 181. 8 191. 5 194. 7 200. 7 203. 6 206. 7 209. 7 212. 3 224. 3 224. 3 224. 3 224. 3 224. 3 224. 3 224. 3 225. 6 235. 2 238. 0 240. 7 243. 3 245. 9 248. 6 251. 1 253. 6 263. 6 263. 6 263. 6 263. 6 263. 6 263. 6 264. 8 273. 6 265. 6 268. 3 270. 8 273. 2 275. 6 278. 0
93 94 95 96 97	2831.5 2885.3 2939.5 2994.5 3049.0	$143.6 \\ 144.8$	81.0 81.7 82.5 83.3 84.2	37.5 37.8 38.0 38.3 38.5	$228.1 \\ 230.0$		$179.5 \\ 181.0$	101.2 102.1 103.1 104.1 105.1	$47.3 \\ 47.5 \\ 47.9$	280.3 282.7 285.1 287.5 289.7

TABLE 7.—Continued

MAXIMUM MOMENTS, SHEARS AND PIER REACTIONS FOR COOPER'S STANDARD LOADINGS

(Figures for One Rail)

			E40					E50		
Span	Max.	M:	ax. Shea	ırs	Max. Pier	Max.	Ma	ıx. Shea	rs	Max. Pier
	Moment	End	⅓ Pt.	Cent.	React.	Moment	End	1/4 Pt.	Cent.	React
98	3106.5		85.0		233.6	3883.1			48.5	292.0
99	3162.3		85.8		235.4	3952.9			48.9	294.5
00	3219.9		86.6	39.4		4024.9				296.
$01 \dots$	3277.6		87.3		238.9	4097.0				298.
$02 \dots$		152.4	88.1		240.6	4169.9				300.
03		153.7	88.8	40.1		4263.3		111.0		303.
04	3475.2	154.9	89.5	40.4		4344.0		111.9		305.
$05 \dots \dots$	3537.6	156.1	90.3		246.0	4422.0		112.7		307
06 07	3600.3 3666.6	158.5	90.9		247.8	4500.4				309.
07		159.6	$91.7 \\ 92.4$		$249.6 \\ 251.4$	4583.3			51.5	
09	3818.4	160.8	$92.4 \\ 93.2$			4681.6			51.7	
10	3886.8		93.2		$\begin{bmatrix} 253.1 \\ 254.8 \end{bmatrix}$	4773.0 4858.5				316.
11	3958.2		94.6			$ \begin{array}{c} 4858.5 \\ 4947.7 \end{array}$	$202.5 \\ 204.0$	117.4 118.2	52.3	
12	4026.9		95.3		258.2		204.0 205.5		$\begin{array}{c} 52.5 \\ 52.7 \end{array}$	
13	4099.0		96.0		259.9	5123.8				$\frac{322}{324}$.
14	4172.0		96.8	42.8		5215.0			53.5	
15	4245.0		97.5	43.1	263.3				53.9	
16	4318.8		98.3	43.4				122.9	54.2	
17	4389.5	170 2	99.0		266.7	5486.9			54.6	
18	4463.8		99.7	43.9		5579.7		124.6	54.9	
19	4538.8		100.4	44.2				125.5	55.3	
20	4614.1	173.7	101.1	44.5	272.0			126.4	55.6	
21	4686.5	174.8	101.8	44.7	273.8	5858.1	218.6	127.2	55.9	
22	4762.7	176.0	102.5	45.0	275.6		220.0		56.2	344.
23	4836.2	177.1	103.2	45.3	277.4	6045.2	221.4	129.0	56.5	346.
24	4917.4	178.3	104.0	45.7	279.2	6146.7	222.8	130.0	57.0	349.
25			104.7	46.0	281.0	6245.5	224.2	130.9	57.5	351.
50		207.4			325.4	8827.9		152.2	68.0	
75	9352.5		138.3		371.7	11690.6		172.9	78.2	
	11873.0		153.4			14841.2			88.0	
50	17592.5	313.2	183.7	85.0	515.2	21990.6	391.5	229.6	106.3	644.

NOTES.—Moments are given in thousand foot-pounds.

Shears are given in thousand pounds.

Pier reactions are given in thousand pounds and are for piers hetween two spans each equal to the tabulated span.

TABLE 8

MAXIMUM MOMENTS FOR TRUSS BRIDGES—Cooper'S E50 FOR ONE RAIL

Moments Given in Thousands of Foot-Pounds

nel Po	0 olnts i		1	2		3	4-		5	6 _	7	. 8	
els russ	est ts						Pane	L LEN	GTHS				
Panels in Truss	Panel Points	8′ 0′′	8′ 6′′	9′ 0′′	9′ 6′′	10′0″	10′ 6′′	11'0"	11′ 6″	12′ 0″	12' 6"	13′ 0″	13′ 6′
3	1	325	359	392	425	464	503	541	580	619	661	707	755
4	1 2	433 569	483 625	533 683	582 747	632 819	688 892	743 964	799 1037	859 1110	918 1189	982 1269	1046 1352
6	1 2	540 790	599 877	662 964	728 1051	794 1149	861 1265	930 1361	1001 1468	1071 1574	1140 1675	1217 1792	1298 1910
6	1 2 3	641 1008 1109	710 1115 1221	784 1228 1351	859 1347 1484	937 1466 1618	1017 1587 1767	1100 1719 1925	1186 1857 2070	1280 1997 2240	1376 2135 2407	1485 2289 2581	1600 2451 2760
7	1 2 3	731 1215 1425	812 1344 1577	896 1477 1739	984 1615 1910	1080 1758 2086	1184 1904 2269	1293 2070 2465	1411 2252 2667	1530 2441 2879	1645 2642 3100	1775 2849 3332	1906 3050 3660
8	1 2 3 4	819 1402 1716 1819	915 1553 1899 2030	1021 1709 2100 2240	1133 1872 2311 2465	1254 2061 2529 2700	1375 2273 2752 2946	1501 2490 2991 3205	1631 2708 3241 3471	1776 2933 3498 3743	1900 3165 3775 4025	2047 3405 4078 4344	2200 3649 4383 4681
9	1 2 3 4	621 1683 1997 2208	1039 1764 2215 2459	1162 1960 2451 2719	1287 2179 2700 2997	1418 2405 2986 3291	1556 2642 3276 3592	1697 2888 3570 3899	1844 3139 3877 4226	1997 3400 4194 4588	2145 3670 4532 4970	2309 3946 4887 5370	2475 4224 5242 5770
ls uss	_ s						Pane	L LEN	GTHS				
Panels in Truss	Panel Points	14'0"	14' 6"	15′0′′	15′ 6″	16′ 0″	16' 6"	17′ 0′′	17' 6"	18′ 0″	18' 6"	19′ 0′′	
3	1	803	850	900	952	1008	1060	1115	1170	1228	1285	1347	
4	· 1 2	1115 1441	1183 1529	1255 1624	1325 1721	1402 1820	1463 1924	1553 2030	1614 2134	1709 2240	1776 2349	1872 2465	
5	1 2	138 9 2047	1480 2177	1581 2310	1680 2440	1788 2581	1896 2725	2010 2881	2123 3030	2242 3190	2355 3350	2477 3618	
6	1 2 3	1724 2616 2946	1840 2792 3138	1965 2986 3338	2090 3175 3539	2221 3372 3742	2352 3670 3953	2489 3775 4170	2626 3978 4422	2769 4194 4681	2910 4415 4948	3062 4650 5215	
7	1 2 3	2047 3263 3802	2185 3485 4040	2332 3723 4310	2480 3958 4595	2634 4202 4898	2787 4450 5200	2945 4705 5509	3104 4958 5815	3268 5218 6135	3434 5480 6460	3605 5748 6800	
8	1 2 3 4	2358 3900 4710 5034	2516 4165 5040 5398	2681 4436 5380 5768	2846 4710 6720 6147	3019 4994 6072 6516	3190 5280 6430 6915	3372 5576 6806 7331	3553 5873 7180 7740	3741 6180 7573 8163	3930 6487 7985 8595	4125 6805 8369 9043	
9	1 2 3 4	2651 4512 5617 6187	2828 4804 5993 6610	3012 5107 6390 7040	3196 5420 6790 7485	3389 5747 7204 7966	3583 6074 7620 6460	3785 6414 8054 8980	3987 6755 8496 9490	4198 7108 8959 10010	4410 7463 9415 10530	4629 7830 9892 11066	•

TABLE 8.—Continued

Maximum Moments for Truss Bridges—Cooper's E50 for One Rail Moments Given in Thousands of Foot-Pounds

Panel	Point	0	1	2	3		1	5	6	7	8	
Panels in Truss	25 25			-	<u> </u>	Panel	LENGT	'HS				
Pane in T	Panel Points	19′ 6″	20′ 0′′	20′ 6″	21′ 0′′	21' 6"	22′ 0′′	22′ 6″	23 ′ 0″	23′ 6″	24′ 0″	24′ 6″
3	1	1404	1466	1527	1587	1653	1719	1788	1857	1927	1997	2066
4	1 2	1958 2581	2061 2700	2166 2821	2273 2946	2380 3074		2597 3338	2708 3471	2819 3607	2933 3743	3046 3883
5	1 2	2600 3685	2731 3943	2864 4144	3001 4347	3138 4555	3279 4767	3418 4978	3562 5193	3705 5415	3852 5640	3999 5865
6	1 2 3	3210 4885 5487	3362 5256 5746	3516 6501 6028	3678 5750 6321	3840 5998 6617	4008 6250 6921	4175 6501 7228	4349 6756 7538	4522 7011 7860	4700 7270 8166	4878 7525 8491
7	1 2 3	3778 6025 7140	3955 6326 7646	4130 6613 7990	4317 6914 8347	4505 7215 8710	4702 7530 9079	4897 7845 9448	5100 8173 9826	6303 8503 10207	5512 8842 10609	5721 9182 11017
8	1 2 3 4	4320 7125 8780 94,0	4525 7458 9234 9943	4727 7805 9630 10396	4939 8162 10070 10862	5150 8520 10515 11317	5373 8890 10993 11805	5592 9260 11475 12288	5829 9640 11976 12790	6061 10030 12472 13287	6300 10430 12981 13795	6540 10832 13490 14300
9	1 2 3 4	4850 8198 10372 11605	5)79 8578 10880 12172	5308 8970 11375 12735	5545 9378 11900 13310	5780 9790 12425 13880	6030 10216 12978 14472	6280 10640 13535 15068	6542 11082 14118 15684	6804 11525 14705 16300	7074 11985 15308 16930	7344 12448 15910 17560
			- :			Pani	EL LEN	GTHS				
Panels in Truss	Panel Points	25′ 0″	25′ 6″	26′ 0′′	26′ 6″	27′ 0′′	27′ 6″	28′ 0″	28′ 6″	29′ 0″	29′ 6″	30′ 0″
3	1	2135	2215	2289	2370	2451	2534	2616	2700	2792	2889	2986
4	1 2	3165 4025	3282 4170	3405 4344	3526 4501	3649 4681	3774 4858	3900 5034	4031 5215	4165 5398	4300 5580	4436 5768
5	1 2	4150 6093	4301 6371	4456 6552	4611 6783	4770 7017	4929 7250	5092 7492	5255 7736	5422 7984	5589 8232	5760 8482
6	1 2 3	5061 7794 8821	5245 8068 9153	5433 8352 9490	5622 8654 9828	5816 8960 10170	6010 9268 10514	6208 9580 10862	6408 9897 11208	6612 10218 11565	6817 10547 11925	7026 10880 12296
7	1 2 3	5936 9530 11444	6151 9875 11870	6373 10236 12312	6595 10600 12752	6823 10980 13203	7051 11357 13653	7286 11742 14112	7521 12125 14571	7762 12520 15039	8003 12918 15507	8250 13330 15984
8	1 2 3 4	6787 11244 14010 14820	7035 11655 14528 15340	7289 12080 15063 15875	7540 12508 15605 16413	7806 12950 16163 16965	8069 13392 16718 17514	8338 13850 17285 18075	8608 14308 17852 18635	8887 14780 18431 19210	9165 15250 19010 19795	9450 15730 19600 20406
9	1 2 3 4	7622 12925 16528 18205	7900 13400 17145 18850	8188 13890 17778 19515	8477 14380 18414 20180	8774 14888 19070 20870	9070 15400 19730 21557	9376 15930 20405 22260	9686 16460 21080 22955	9996 17005 21770 23678	10310 17547 22461 24405	10633 18100 23168 26170

TABLE 8.—Continued

MAXIMUM MOMENTS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL Moments Given in Thousands of Foot-Pounds

Panel	Points	0	1	2	3			5	()	7	- 8	⁹
els russ	Panel Points	Panel Lengths										
Panels in Truss		30′ 6″	31′ 0″	31′ 6″	32′ 0″	3 2′ 6″	33′ 0″	33′ 6″	34′ 0′′	34′ 6″	35′ 0′′	35′ 6″
3	1	3080	3175	3276	3372	3471	3570	3672	3775	3877	3978	4080
4	1	4573	4710	4852	4994	5137	5280	5428	5576	5725	5873	5923
	2	5957	6147	6332	6516	6715	6915	7123	7331	7535	7740	7950
5	1	5937	6113	6295	6477	6678	6849	7039	7228	7423	7617	7814
	2	8734	8986	9241	9496	9749	10012	10291	10590	10891	11192	11495
6	1	7238	7450	7671	7892	8120	8347	8581	8812	9050	9288	9628
	2	11219	11558	11903	12248	12684	12979	13354	13729	14120	14510	14902
	3	12668	13040	13418	13796	14180	14563	14952	15341	15745	16148	16654
7	1	8501	8752	9009	9266	9536	9806	10081	10355	10637	10919	11203
	2	13748	14165	14590	15015	15460	15885	16358	16810	17284	17758	18234
	3	16474	16964	17466	17968	18475	18981	19508	20015	20545	21024	21606
8	1	9740	10030	10326	10622	10931	11239	11557	11874	12200	12526	12856
	2	16225	16720	17227	17733	18252	18770	19311	19852	20407	20961	21518
	3	20206	20812	21432	22051	22685	23318	23960	24601	25261	25920	26585
	4	21022	21638	22268	22898	23549	24200	24860	25531	26216	26901	27590
9	1	10961	11288	11625	11961	12310	12658	13018	13378	13747	14116	14490
	2	18672	19244	19832	20419	21019	21618	22239	22860	23603	24146	24795
	3	23886	24603	25343	26083	26839	27595	28365	29135	29923	30710	31500
	4	26943	26715	27498	28281	29096	29910	30741	31572	32431	33290	34155

TABLE 9

MAXIMUM SHEARS FOR TRUSS BRIDGES—Cooper's E50 FOR ONE RAIL
Shears Given in Thousands of Pounds

Panels		ł	11	-13	1	3	4	1 5		6	7	8	+	9
SI SI		Ī					P	anel I	ENGTH	s				
Panels in Truss	Panel	T COLUM	8′ 0′′	8′ 6″	9′ 0″	9′ 6″	10′ 0″	10′ 6″	11′ 0″	11′ 6″	12′ 0′′	12′ 6″	13′ 0′′	13′ 6″
3	1 2		40.6 7.3	42.1 8.0	43.5 8.8	44.8 9.5	46.4 10.0	47.9 11.0	49.1 11.8	50.4 12.5	51.6 13.2	53.0 13.7	54.3 14.3	55.9 14.9
4	1 2		54.1 23.5	56.7 25.4	59.1 27.4	$\begin{array}{c} 61.3 \\ 28.6 \end{array}$	63.1 30.0	65.5 31.3	$67.4 \\ 32.4$	69.4	71.6	73.6 35.6	14.3 75.5 36.7	55.9 14.9 77.6 37.7
5	1 2		2.4 67 5 38.8	3.1 70.4 41.0	· 73.6 43.0	4.5 76.6 44.9	5.0 79.4 46.7	82.3 48.7	6.5 84.5 50.3	33.4 7.2 87.1 51.9	89.2 53.8	8.4 91.4 55.5	93.6 57.1	9.4 96.4 58.7 28.7 118.7
6	1 2 1 2 3 1 2 3 1 2 3 4		38.8 16.3 80.1	18.0 83.5 55.3	19.5 86.9	20.8 90.1 60.5	22.0 93.6 62.9 • 37.4	23.1 96.9 65.5	24.0 100.1 67.8	51.9 25.0 103.1 70.1 41.9	51.6 13.2 71.6 34.4 7.9 89.2 53.8 25.9 106.7 72.1 43.4	26.9 110.5 74.2	8.9 93.6 57.1 27.8 114.3 76.3	28.7 118.7 78.1
_	3		52.7 30.2 11.5	41.0 18.0 83.5 55.3 33.5	3.9 73.6 43.0 19.5 86.9 57.9 34.0 14.4 99.2	60.5 35.6 15.6	37.4 16.6 108.0	65.5 31.3 5.9 82.3 48.7 23.1 96.9 65.5 39.0 17.8 80.9 54.8 32.1 13.8 131.0 96.0 69.6 46.8	67.8 40.8 18.8	41.9 19.4 122.9	20.2	44.9 21.1 132.0	40.3	47.7 22.6
7	1 2 3	3	91.1 65.5 43.4	94.6 69.1 45.6 26.0	72.4 48.0	103.4 75.3 50.4	78.4 52.4	80.9 54.8	18.8 117 5 83.9 56.9	861	127.5 89.0 59.6	92.0 62.0 37.4	95.0 64.3	98.8
8	5 1	5	$24.1 \\ 8.5 \\ 101.9$	9.6	27.6 10.7	29.0 11.7 119.3	30.5 12.8 125.4	32.1 13.8 131.0	33.4 14.9 136.4 99.8 72.3	58.8 34.7 15.5 141.9 104.1 74.4	59.6 36.1 16.1 147.2	16.9	38.6 17.7 157.4	39.8 18.4 162.9
Ū	3	3	799	81.7 59.0 38.5 21.3 7.9	72.4 48.0 27.6 10.7 113.6 85.2 61.9 40.6 22.8 8.4	89.1 64.5 42.8 24.1	78.4 52.4 30.5 12.8 125.4 92.5 67.4 44.6 25.5 10.0	96.0 69.6	99.8 72.3 48.6	104.1 74.4		152.3 112.6 79.5	21.9 136.5 95.0 64.3 38.6 17.7 157.4 116.7 82.2 55.3 32.8 14.5 177.6 137.5	121.0 85.0
	6	5	55.8 36.4 19.5 7.4 115.2	21.3 7.9	22.8 8.4	9.2	25.5 10.0	26.9 10.9	28.0 11.9	29.1 12.5	30.5 13.1	53.7 31.7 13.8	32.8 14.5	33.9 15.1
9	1 2 3	2		122.3 93.6 71.4	129.2 98.3 74.5	135.6 103.3 77.6 56.5	141.9 108.3 81.2	148.4 113.6 84.3	154.5 118.6 87.8	50.4 29.1 12.5 160.8 123.4 91.6 65.1	76.8 52.0 30.5 13.1 166 4 128.2 95.4 67.4	13.8 172.0 132.9 99.2	177.6 137.5 102.9 72.2	183.5 142.5 106.4
	4	5	68.1 48.2 31.0 16.0	51.1 32.9 17.5	53.8 34.9 19.1	56.5 36.9 20.3	58.5 38.5 21.5	60.8 40.5 22.7	63.1 42.3 23.9	65.1 43.8 25.0	67.4 45.3 26.2	69.8 46.8 27.3	72.2 48.3 28.3	78.1 47.7 22.6 141.4 98.8 65.9 39.8 18.4 162.9 121.0 56.7 33.9 15.1 183.5 142.5 142.5 49.6 29.3
===	=		13.0		10.1			ANEL]						<u></u>
Panels		Fanel	14/ 0//	14' 6"	15′ 0″	15/ 6//	16' 0"	16' 6"	17' 0"	17' 6"	18' 0"	18' 6"	19' 0"	
	- -	-										<u> </u>		
3 4	2	2	57.4 15.5 79.6 38.6 9.8 99.2	58.7 16.0 81.6	60.0 16.4 83.6 40.6	61.5 17.1 85.5	63.0 17.8 87.3 42.7	18.3 89.0	65.6 18 8 90.6	66.9 19.3 92.6	68.2 19.9 94.5	69.5 20.5 96.4 48.3 13.9 127.5	70.8 21.0 98.3	
	1	3	38.6 9.8	39.6 10.3 102.3 61.9	40.6 10.7 105.4	85.5 41.7 11.2 108.6	111.7	43.9 12.2	45.0	46.1	19.9 94.5 47.2 13.5 124.6 72.4 35.8	48.3 13.9 127.5	49.3 14.3 130.4	
5	2	2	60.3 29.5 123.1	61.9 30.4		64.8 32.0	66.2 32.8	67.7 33.6	69.1	70.8 35 1	72.4 35.8	36.6	75.6	
6	2	1 2 3	123.1 79.8 49.1	30.4 127.1 82.2 50.4 24.1 150.9	31.2 131.0 84.6 51.7 24.8 155.5 109.6 71.1	64.8 32.0 134.9 86.9 52.9 25.6 160.1	66.2 32.8 138.8 90.1 54.0 26.3	64.3 18.3 89.0 43.9 12.2 115.1 67.7 33.6 142.7 93.0 55.3 27.0	12.7 118.3 69.1 34.3 146.5 95.8 56.5 27.6 173.3	150 2 98.5 57.6	153.8 101.1 58.6 28.9 181.6 129.6 84.4	157.5 103.6 59.7	161.1 106.1 60.7 30.2	
7	14	4	23.3 146.2	24.1 150.9	24.8 155.5 109.6	25.6 160.1	1164.6	169.0	27.6 173.3 123.1	28.3 177.5 126.4	28.9 181.6 129.6	29.6 185.7 132.8 86.6	189.7 135.9	
	4	4	67.4 41.0	106.1 69.3 42.2 19.7	71.1	113.0 73.1 44.4	116.4 75.0 45.4	119.7 77.4 46.5	79.7	82.1 48.5	49.4	86.6 50.4 24.6	88.8 51.3 25.1	
8	1	5	$\begin{array}{c c} 19.0 \\ 168.4 \\ 125.3 \end{array}$	129.5	43.4 20.3 178.8 133.7 93.9	21.0 183.8 137 8	21.6 188.7 141.8 99.6	193.6 145.7	198.4 149.5	57.6 28.3 177.5 126.4 82.1 48.5 23.4 203.1 153.2 108.5 70.4	24.0 207.8 156.9	212.5 160.5	217.1 164.1 117.0	
		3	79.8 49.1 23.3 146.2 102.6 67.4 41.0 19.0 168.4 125.3 87.8 58.1 35.0 15.7	90.9 59.8 36.1	93.9 61.4	96.8 63.1	99.6 64.8 38.9 18.1	46.5 22.2 193.6 145.7 102.6 66.7 39.9 18.7 217.3 170.1	123.1 79.7 47.5 22.8 198.4 149.5 105.6 68.5 40.9 19.2 222.7 174.5 131.0	108.5 70.4 41.7	111.4 72.2 42.5	114.2 74.0 43.4	75.8 44.2	
9	- 6	6	15.7 189.4	16.4 195.1	17.0 200.8	17.6 206.3	18.1 211.8	18.7 217.3	19.2 222.7	19.8 228 0 178.8	20.3	20.8 238.4 187.2 141.0	21.3 243.6 191.3	
	{	2 3	189.4 147.4 109.8 77.3	152.1 112.9 80.1	93.9 61.4 37.1 17.0 200.8 156.8 116.7 82.7 53.8 32.3	183.8 137.8 96.8 63.1 38.0 17.6 206.3 161.3 120.4 85.2 55.4	211.8 165.7 124.1 87.6	127.6 90.1	92.5	94.9	233.2 183.9 137.7 97.3	99.9	144.2 102.4	
	- 1	6	50.8 30.3	52.4 31.4	53.8 32.3	55.4 33.1	56.9 33.9	58.6 34.8	60.2 35.7	61.9 36.5	63.5 37.2	65.3 38.0	67.0 38.7	

TABLE 9.—Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES—Cooper's E50 FOR ONE RAIL
Shears Given in Thousands of Pounds

Panels		1_	2		3	4	5	6	7	·	8	9
ls						Pan	EL LEN	GTHS			-	
Panels in Truss	Panel	19′ 6″	20′ 0″	20′ 6″	21′ 0″	21' 6"	22' 0"	22' 6"	23′ 0″	23′ 6″	24′ 0″	24' 6"
3	1 2	72.0 21.5	73.3 22.0	74.3 22.4	75.3 22.9	76.6 23.5	78.0 24.0	79.5 24.3	81.0 24.6	82.1 25.1	83.2 25.5	84.6 25.9
4	1 2 3	100.7 50.3 14.7	103.0 51.3 15.0	106.6 52.2 15.3	108.2 63.1 15.6	110.7 54.0 15.9	113.2 54.9 16.2	116.5 65.8 16.5	117.7 .56.8 16.7	120.0 57.4 17.0	122.2 58.2 17.2	
5	1 2 3	133.5 77.4 38.1	136.6 79.1 38.8	139.8 80.9 39.6	142.9 82.6 40.3	146.0 84.4 40.9	149.0 86.1 41.6	152.0 88.0 42.3	164.9 89.9 42.9	157.8 91.7 43.7	160.5 93.5 44.3	59.0 17.5 163.3 95.1 45.0
6	1 2 1 2 3 1 2 3 1 2 3	72.0 21.5 100.7 50.3 14.7 133.5 77.4.1 164.6 62.1 30.8 193.9 91.0 52.4 25.7 7221.7 167.7 221.7 169.6 4 109.6 4 109.6 6 25.4 25.7 119.8 109.6 4 109.6 6 24.9 109.6	73.3 22.0 103.0 51.3 15.0 136.6 79.1 38.8 168.1 111.0 63.5	74.3 22.4 106.6 52.2 15.3 139.8 80.9 39.6 171.7 113.6 65.1 32.1 201.7	75.3 22.9 108.2 63.1 15.6 142.9 82.6 40.3 176.2 116.0 66.6	76.6 23.5 110.7 54.0 15.9 146.0 84.4 40.9 178.8 118.5 68.2 239.6 150.9 239.8 181.7 130.5 85.6 49.0 23.9 23.9 211.5 160.0 114.3 74.9	78.0 24.0 113.2 54.9 16.2 149.0 86.1 41.6 120.8 69.6 34.0 213.7 153.7 101.6 57.8 28.5 244.3 185.0 132.8 49.4 274.2 215.5	79.5 24.3 116.5 65.8 166.5 152.0 88.0 42.3 186.8 123.2 71.3 34.6 217.8 156.1 103.8 59.3 29.0 248.9 188.4 89.2 24.9 279.4 166.0	81.0 24.6 117.7 .56.8 164.9 89.9 42.9 189.2 125.4 125.4 105.8 105.8 105.8 105.8 105.8 105.1 105.8 105.1 105.	82.1 25.1 120.0 57.4 17.0 157.8 91.7 43.7 192.6 127.9 74.5	83.2 25.5 122.2 58.2 17.2 160.5 93.5 44.3 195.1 76.9 36.0 229.7	132.4 77.4
7	4	30.8 193.9 139.0	31.4 197.8	145.0	32.8 205.5 147.9 97.5	33.4 209.6 150.9	34.0 213.7 153.7	34.6 217.8 156.1	35.0 221.8 169.3	35.5 225.8	36.0 229.7 164.8	36.6 233 6
	1 2 3 4 5	91.0 52.4 25.7	93.1 53.4 26.3	95.4 54.5 26.9	97.5 55.5 27.4	99.6 56.7 28.0	101.6 57.8 28.5	103.8 59.3 29.0	105.8 60.6 29.4	107.9 62.1 29.9	164.8 109.8 63.4 30.3	111.8 64.7 30.8
8	5 1 2 3	221.7 167.7 119.8	226.3 171.3 122.5	230.8 174.8 125.1	235.2 178.2 127.6	239.8 181.7 130.5	244.3 185.0 132.8	248.9 188.4 135.4	253.4 191.7 137.8	258.0 195.1 140.3	262.5 198.3 142.7	267.1 201.7 145.2
	4 5 6	77.8 45.2 21.9	142.0 93.1 53.4 26.3 226.3 171.3 122.5 79.8 46.1 253.9	95.4 54.5 26.9 230.8 174.8 125.1 81.7 47.1 22.9 259.0	55.5 27.4 235.2 178.2 127.6 83.6 48.0 23.4 264.0 207.5 156.9	85.5 49.0 23.9	87.3 49.4 24.4	89.2 51.0 24.9	91.0 52.1 25.3	162.1 107.9 62.1 29.9 258.0 195.1 140.3 92.8 53.1 25.7 289.7 227.2 172.0 123.4	63.4 30.3 262.5 198.3 142.7 94.6 64.1 26.0 294.8 231.0 175.5 82.8 47.6	96.3 55.3 26.5
9	5 6 1 2 3 4 5	248.8 196.4 147.4	253.9 199.5 150.6	1902 5	264.0 207.5 156.9	269.2 211.5 160.0	274.2 215.5 163.0	279.4 219.4 166.0	284.5 223.3 169.0	289.7 227.2 172.0	294.8 231.0 175.0	299.9 234.9 177.9
	5 6	104.9 68.6 39.6	199.5 150.6 107.3 70.1 40.4	153.8 109.7 71.7 41.3	112.0 73.3 42.1	114.3 74.9 43.0	116.6 76.4 43.9	118.9 78.0 44.9	121.1 79.5 46.8	123.4 81.2 46.7	125.5 82.8 47.6	167.6 111.8 64.7 30.8 267.1 201.7 145.2 96.3 26.5 299.9 234.9 177.9 127.8 84.3 48.6
ls uss	_					Pan	EL LEN	GTHS				
Panels in Truss	Panel	25′ 0″	25′ 6″	26′ 0″	26′ 6″	27′ 0″	27' 6"	28′ 0″	28′ 6″	29′ 0″	29′ 6″	30′ 0″
3	1 2	86.0 26.4	87.0 26.8 128.7	88.0 27.2 130.9	89.5 27.6	91.0 28.0	92.2	93.5	94.7	96.0	97.8 29.7 145.8	99.7 30.0
4	1 2 1 2 3	126.5 59.7 17.8	60.5	61.3 18.4	133.1 62.1 18.6	135.2 62.9 18.9	92.2 28.3 137.3 63.8 19.1 179.4	139.3 64.6 19.3	141.5 65.6 19.6	143.6 66.5	145.8 67.4 20.1	147.9
Б	1 2 3 1	166.0 96.6 45.5	168.8 98.3 46.3	171.4 100.1 46.9	174.1 101.9 47.7	176.7 103.6 48.3	179.4 105.4 49.0	181.9 107.1 49.6	94.7 29.0 141.5 65.6 19.6 184.5 108.9 50.6 224.9 150.3	187.0 110.6	189.6 112.3	192.0 114.0
6	2	202.5 134.5 78.6	205.8 136.8 80.2	209.0 139.0 81.5	212.2 141.3 83.0	215.4 143.5 84.3	49.0 218.6 145.8 85.7 39.6	221.8 148.0 87.0	224.9 150.3 88.4	228.0 152.4 89.6	231.1 154.6 91.1	234.2 166.7 92.4
7	4 1 2 3	37.1 237.4 170.3	37.6 241.4 173.2	171.4 100.1 46.9 209.0 139.0 81.5 38.1 245.2 176.9 117.4	38.6 249.1 178.8	39.1 252.8 181.5	39.6 256.6 184.3	40.0 260.3 187.0	40.6 264.1 189.8	96.0 29.4 143.6 66.5 19.8 187.0 110.6 51.3 228.0 152.4 89.6 41.0 267.7 192.5 128.3 76.4	67.4 20.1 189.6 112.3 52.1 231.1 154.6 91.1 41.7 271.4 195.3 130.2 76.7	68.3 20.3 192.0 114.0 52.8 234.2 166.7 92.4 42.4 275.0 197.9 131.9 77.8 35.6
	4 5	113.6 66.8 31.3	115.6 67.1 31.8	117.4 68.3 32.1	119.3 69.6 32.6	121.1 70.8 33.0	123.0 72.0 33.5	124.8 73.1 33.8	126.6 74.3 34.8	128.3 75.4 34.6	35.1	131.9 77.8 35.6
8	1 2 3	271.5 204.9 147.5	18.1 168.8 98.3 46.3 206.8 136.8 80.2 37.6 241.4 173.2 115.6 67.1 31.8 276.0 208.3 150.0 99.8 57.4 27.3 810.0 242.8 81.8 81.8	280.4 211.6 152.3	284.9 215.1 154.7	289.2 218.4 157.0	293.6 221.8 159.4	297.9 225.0 161.7	302.3 228.4 164.0	306.6 231.7 166.1	310.8 235.0 168.5	315.0 238.2 170.2
	4 5 6	98.0 66.4 26.9	99.8 57.4 27.3	101.4 58.4 27.6	103.1 59.5 28.0	$104.6 \\ 60.5 \\ 28.4$	106.3 61.6 28.8	107.9 62.6 29.1	109.5 63.7 29.5	$111.0 \\ 64.8 \\ 29.9$	112.6 65.9 30.4	114.1 66.9 30.8
9	1 2 3	86.0 26.4 126.5 59.7 17.8 166.0 96.6 45.5 202.5 78.6 37.1 237.4 110.3 271.5 204.9 2147.5 98.0 26.9 304.9 288.8 180.8 129.9 85.8	310.0 242.8 183.8	68.3 32.1 280.4 211.6 152.3 101.4 58.4 27.6 315.0 246.7 134.1 88.9	89.5 27.6 133.1 18.6 174.1 101.9 47.7 212.2 141.3 83.0 38.6 249.1 178.8 119.3 69.6 32.6 284.9 215.1 103.5 284.9 215.1 103.5 284.9 103.6 284.9 215.1 103.5 286.6 286.6 32.6 286.6 32.6 286.6 32.6 286.6 32.6 286.6 32.6 32.6 32.6 32.6 32.6 32.6 32.6 3	91.0 28.0 62.9 176.7 103.6 48.3 215.4 143.5 39.1 252.8 33.0 252.8 121.1 70.8 33.0 252.8 121.5 121.1 289.2 218.4 43.5 252.8 33.0 225.9 289.2 218.4 325.4 157.0 60.5 28.4 325.4 157.0 60.5 28.4 325.4 157.0 60.5 28.4 325.4 157.0 60.5 28.4 325.4 157.0 60.5 28.4 32.5 28.4 32.5 28.4 32.5 28.4 32.5 28.4 32.5 28.4 32.5 28.4 32.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 2	256.6 184.3 123.0 72.0 33.5 293.6 221.8 159.4 106.3 61.6 28.8 330.0 258.5 196.3	93.5 28.6 139.3 64.6 19.3 181.9 107.1 49.6 221.8 148.0 260.3 187.0 124.8 237.9 225.0 161.7 107.9 62.6 29.1 334.9 262.4 198.0 142.5	88.4 40.5 264.1 189.8 126.6 74.3 302.3 302.3 228.4 164.0 109.5 29.5 339.9 266.3 200.9	344.7 270.2 203.8	349.7 274.0	354.5 277.8 209.5
	4 5 6	129.9 85.8 49.6	132.0 87.4 50.6	134.1 88.9 51.5	90.4	138.4 91.8 53.3	140.5 93.3 54.2	142.5 94.8 56.0	144.6 96.2 55.9	34.6 306.6 231.7 166.1 111.0 64.8 29.9 244.7 270.2 203.8 146.6 97.6 56.8	148.6 99.0 57.6	150.6 100.4 58.4

TABLE 9.—Continued

Maximum Shears for Truss Bridges—Cooper's E50 for One Rail Shears Given in Thousands of Pounds

Panels		1_	1 2		3 +	-4	55	t 6	- 7		8	9
Panels in Truss	평					Pan	EL LEN	GTHS				
Pan in T	Panel	30' 6"	31′ 0″	31′ 6″	32′ 0″	32′ 6″	33' 0"	33′ 6″	34′ 0″	34′ 6″	35′ 0″	35′ 6″
3	1 2	101.1 30.4	102.6 30.8	104.6 31.2	106.6 31.5	108.1 31.8	109.6 32.2	111.5 32.5	113.4 32.8	114.8 33.1	116.2 33.4	117.6 33.7
4	1 2	149.9 69.1	152.0 70.0	154.0 71.7	156.1 73.3	158.0 74.4	160.0 75.4	161.9 76.4	163.8 77.4	165.8 78.4	167.9 79.4	169.8 80.5
5	3 1 2	20.6 194.6 115.6	20.9 197.1 117.3	21.1 199.8 118.9	21.3 202.4 120.4	21.6 205.0 122.0	22.0 207.5 123.5	$ \begin{array}{c c} 22.2 \\ 210.1 \\ 125.0 \end{array} $	22.5 212.6 126.5	22.7 215.1 128.0	23.0 217.6 129.5	23.3 220.2 131.0
6	3 2 3	53.6 237.3 158.8 93.7	54.3 240.3 160.9 95.0	55.1 243.5 163.0 96.3	55.9 246.6 165.1 97.5	56.7 249.8 167.2 98.8	57.4 252.9 169.3 100.0	58.3 256.0 171.4 101.3	59.1 259.1 173.4 102.5	60.0 262.3 175.4 103.8	60.8 265.4 177.4 105.1	61.7 268.5 179.4 106.4
7	1 2 3	43.0 278.7 200.6 133.6	43.6 282.3 203.3 135.3	44.4 286.0 205.9 137.1	45,1 289.6 208.5 138.9	45.8 293.4 211.2 140.7	46.4 297.1 213.8 142.5	47.2 300.9 216.4 144.3	47.9 304.7 218.9 146.0	48.6 308.4 221.5 147.9	49.3 312.0 224.0 149.8	50.0 315.7 226.5 151.7
8	4 5 1	79.0 36.1 319.3 241.4	80.1 36.5 323.5 244.6	81.3 37.0 327.8 247.8	82.4 37.5 332.0 251.0	83.5 38.0 337.0 254.2	84.5 38.5 341.9 257.4	85.6 39.2 345.6 260.6	86.6 39.9 349.3 263.8	87.7 40.5 353.2 266.9	88.7 41.0 357.0 270.0	89.8 41.6 360.9 273.2
	2 3 4 5 6	172.8 115.7 67.9 31.2	175.4 117.3 68.9 31.5	177.8 118.7 69.9 32.0	180.1 120.3 70.9 32.5	182.5 121.9 71.9 32.9	184.8 123.4 72.9 33.3	187.1 124.9 73.9 33.8	189.4 126.3 74.8 34.3	191.7 127.7 75.7 34.7	193.9 129.1 76.6 35.1	196.2 130.5 77.5 35.5
9	1 2	359.4 281.6 212.4	364.2 285.4	369.1 289.2 218.2	373.9 293.0 221.0	378.7 296.8 223.9	383.5 300.5 226.8	388.5 304.3 229.6	393.5 308.0 232.5	398.4 311.8	403.3 315.5 238.1	408.3 319.2
	3 4 5	152.7 101.8	215.3 154.8 103.1	156.8 104.5	158.8 105.9	160.7 107.3	162.6 108.6	164.6 110.0	166.6 111.4	235.3 168.6 112.7	170.5 114.0	240.8 172.5 115.4
	6	59.4	60.3	61.2	62.0	62.9	63.8	64.7	65.5	66.3	67.1	67.8

TABLE 10 $\begin{tabular}{ll} Maximum Bending Moments in Girder Bridges Without Floor-Beams, \\ Cooper's $\it E40$ Loading \\ \end{tabular}$

Values in Thousands of Foot-Pounds per Rail

	SHORTER SEGMENT l1														
		5	10	15	20	25	30	35	40	45	50	55	60		
	225 200	$\frac{1404}{1273}$	$\frac{2769}{2505}$	$\frac{4122}{3727}$	$\frac{5455}{4926}$	6758 6098	$8034 \\ 7241$	8364	10515 9460	11743 10560	12976 11665	$\frac{14198}{12759}$	$15422 \\ 13849$		
	175 160 150 140	1053 1003 947	2073 1962 1851	3326 3082 2917 2750	4063 3843 3620	5022 4749 4471	5950 5620 5287	6862 6480 6093	7742 7304 6862	8638 8150 7658	9535 8994 8450	10424 9833 9236	12266 11300 10664 10016		
21	130 120 110 100	834 774	1625 1509	$\begin{array}{c} 2582 \\ 2410 \\ 2234 \\ 2055 \end{array}$	$\frac{3164}{2930}$	3906 3617	$\frac{4608}{4260}$	5703 5307 4905 4494	6417 5964 5514 5053	6658 6148	7901 7345 6782 6234	8028 7414	8704 8038		
Segment l_2	95 90 85 80	682 650 617	$1329 \\ 1264 \\ 1200$	1963 1866 1770 1671	$2566 \\ 2444 \\ 2314$	$3169 \\ 3016 \\ 2854$	3730 3550 3365	4290 4114 3923	4864 4661 4442	5431 5202 4936	5991 5734 5458	5958	6786 6449		
Longer S	75 70 65 60	551	1070 1003 931	1573 1474 1367 1266	$ \begin{array}{r} 2054 \\ 1923 \\ 1792 \end{array} $	$2530 \\ 2366 \\ 2202$	$\frac{3008}{2805}$ $\frac{2602}{2602}$	3489 3254 3019	3706 3437	4132 3831	4874 4553 4221 3884	4967 4608	5378 4993		
	55 50 45	425 397 367 335	805 750 692	$\begin{array}{c} 1172 \\ 1091 \\ 1005 \\ 918 \end{array}$	1398 1290	1713 1567	2023	2336 2136	2634 2404	2928	3219				
	35 30 25 20	302 270 235 200	506 440	721 622	918 787	1109 946		1707			 	 			
	15 10 5	150 100 50	300 200	410								 			

For l_1 and l_2 each > 142 ft. $M = l_1 l_2 + 3800 \frac{l_2}{L}$

TABLE 10.—Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E40 LOADING

Values in Thousands of Foot-Pounds per Rail

_	_	
SHORTER	SEGMENT	L1

	65	70	75	80	85	90	95	100	110	120	130	140
250	18327	19675	21062	22421	23766	25084	26364	27660	30152	32591	35033	37455
225						22757						
200	14939	16036	17172	18269	19360	20418	21440	22482	24465	26400	28231	30255
175	13224	14205	15207	16171	17134	18017	18952	19868	21597	23278	24963	26631
160	12185	13097	14018	14906	15789	16636	17450	18289	19866	21396	22930	24446
150	11487	12354	13194	14058	14887	15681	16442	17231	18706	20151	21569	22986
140						14722						
130	10088	10857				13756						
120	9380					12787						
110	8666				11226	11812						
100	7963	8567	9150	0.00								
95	7642	8182	8737	9296		10334						•
90	7303	7817	8321	8851	9352	9836						
85	6943	7428	7917	8404								
80	6582	7043	7500	7954								
75	6197	6629	7057									
70	5796	6197										
65	5374											

For l_1 and l_2 each > 142 ft. $M = l_1 l_2 + 3800 \frac{l_2}{L}$

TABLE 11

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S, E50 LOADING

Values in Thousands of Foot-Pounds per Rail

	SHORTER SEGMENT It														
	ĺ	5	10	15	20	25	30	35	40	45	50	55	60		
	250.	1918	3788	5643	7474	9264	11025	12754	14452	16145	17848	19535	21228		
	225.						10043	11610	13144	14679	16220	17748	19278		
	200.			4659				10456	11825	13200	14581	15949	17311		
	175.			4158					10489						
	160.			3852				8578		10798					
	150.			3646				8100		10187					
	140.			3438			6609	7617	8578				12520		
	130.			3227			6189	7129	8021	8951			11704		
	120.			3012			5760	6634	7455	8322			10880		
	110.			2793			5325	6131	6892	7685			10048		
ن-	100.			2569			4887	5618	6316						
	95.			2454			4663	5363	6080	6789					
Segment	90.			2333				5143	5826	6502					
я	85.			2213				4904	5552	6170					
ân	80.			2089						5862					
	75.			1966					4955	5528					
ē	70.			1843						5165					
Longer	65.			1709											
3	60.			1582											
	55.			1465											
	50.	496		1364			2529								
	45.	459		1256											
	40.	419		1147	1464	1774			2700						
	35.	377	713	1024	1312	1590	1862	2134					<i>.</i>		
	30.	338	632		1148	1386	1617								
	25.	294	550	778	984	1182									
	20.	250	466	647	820										
	15.	187		513	l	1		l							
	10.	125				1									
	5.	62			l		1								
	1														
											,				

For l_1 and l_2 each > 142 ft. $M = 1.25 l_1 l_2 + 4750 \frac{l_2}{L}$

TABLE 11.—Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
250	22909		26327	28026	29707	31355	32955	34575	37690	40739	43791	46819
225	20799	22327	23904	25439	26961	28446	29885	31347	34144	36878	39614	42327
200					24200							
					21417							
160	15231	16371	17523	18633	19736	20795	21812	22861	24832	26745	28662	30558
					18609							
					17475							
130					16336							
120					15091							
110					14033							
100					12867							
95					12280							
90					11690							
85					11095		. .					
80				9943			<i></i>					
75		,						1	1	1	1	
70		7746										• • • •
65	6718											

or l_1 and l_2 each > 142 ft. M=1.25 l_1 l_2+4750 $\frac{l_2}{L}$

TABLE 12 $\begin{tabular}{ll} Maximum Bending Moments in Girder Bridges Without Floor-Beams, \\ Cooper's $\it E60$ Loading \\ \end{tabular}$

Values in Thousands of Foot-pounds per Rail

	SHORTER SEGMENT I													
		5	10	15	20	25	30	35	40	45	50	55	60	
r Segment l_2	225 200 175 160 150 140 130 120 110 95 90 85 80	2302 2106 1909 1709 1579 1505 1421 1337 1250 1162 1070 1024 974 925 876	4547 4153 3757 3354 3109 2944 2977 2608 2437 2263 2084 1993 1896 1800 1702	6772 6184 5591 4990 4622 4375 4126 3872 3614 3352 3083 2945 2800 2656 2507	8969 8183 7390 6584 6095 5430 5090 4746 4394 4034 3850 3666 3472 3280	25 11117 10136 9146 8144 7534 7123 6707 6287 5860 5425 4980 4753 4524 4282 4042	13230 12052 10862 9658 8924 8430 7931 7427 6912 6390 5864 5596 5324 5047 4800	35 15305 13932 12547 11146 10294 9720 9140 8555 7961 7357 6742 6436 6172 5885 5573	40 17342 15773 14190 12587 11612 10956 9625 8946 8270 7579 7296 6991 6662 6307	19374 17615 15840 14046 12958 12224 11486 10741 9986 9222 8476 8147 7802 7404 7034	21418 19464 17497 15509 14303 13492 12674 11851 11017 10174 9352 8987 8602 8188 7757	23442 21298 19139 16958 15636 14749 13854 12953 12042 11122 10219 9820 9395 8938 8470	25474 23134 20773 18400 16950 15996 15024 14045 13056 12058 11081 10614 10178 9673 9175	
Longer	75 70 65 60 55 40 35 30 25 20 15	774 722 679 637 595 551 503 452 406 353 300 224 150	1505 1397 1296 1207 1124 1038 953 856 758 660 559 450	776 616	2885 2688 2473 2276 2096 1936 1757 1574 1378 1181 984	2129 1908 1663 1418	4207 3903 3583 3293 3035 2771 2503 2234 1940	2561	5155 4732 4326 3952 3606 3240	6198 5747 5279 4820 4392 4003	6829 6331 5826 5270 4829	7451 6912 6365 5789	8068 7489 6895	

For l_1 and l_2 each > 142 ft. $M=1.5\ l_1l_2+5700\ rac{l_2}{L}$

TABLE 12.—Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E60 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
250	27491	2 9513	31592	33631	35648	37626	39546	41490	45228	48887	52549	- 56183
225	24959	26792	28685	30527	32353	34135	35862	37616	40973	44254	47537	50792
200	22409	24054	25758	27403	29040	30626	32160	33722	36697	39600	42497	45383
175	19836	21307	22811	24257	25700	27025	28428	29802	32395	34918	37444	39947
160	18277	19645	21028	22360	23683	24954	26174	27433	29798	32094	34394	36670
150	17231	18532	19790	21088	22331	23521	24664	25847	28058	30227	32353	34478
					20970							
130	15132	16285	17390	18523	19603	20634	21619	22651	24558	26400	28250	
					18110							
					16840							
100	11945	12851	13726	14608	15440	16243	17022	17785				
95	11462	12272	13105	13944	14736	15500	16252					
90					14028							
					13314						l	1
80		-0000	11250									
75	9295							. .				[
70	8684	9295										
65	8062										<i></i> .	

For l_1 and l_2 each >142 ft. $M = 1.5 l_1 l_2 + 5700 \frac{l_2}{L}$

Values in Thousands of Pounds per Rail

					SHORT	er Se	GMENT	l_1					
		0	5	10	15	20	25	30	35	40	45	50	5ő
	250	314	314	315	318	322	326	329	332	336	338	342	346
	225	287	287	290	294	298	301	304	306	309	312	317	321
	200	261	261	263	268	271	275	278	281	284	287	292	296
	175	234	234	236	241	244	248	251	254	258	262	266	269
	160	218	218	220	225	228	232	236	238	242	246	250	254
	150	207	207	210	214	218	222	225	229	231	234	239	244
	140	196	196	198	203	206	210	214	218	220	224	229	234
	130	185	185	187	192	196	201	203	208	210	214	219	224
	[120	174	174	176	181	184	189	192	196	198	204	208	213
12	110	162	162	165	170	173	178	181	185	188	193	198	202
at	100	150	150	153	158	162	166	170	174	177	182	187	192
Segment	95	144	144	146	151	155	160	163	168	173	178	182	188
g	90	137	137	140	146	150	154	158	163	168	174	178	183
Se.	85	131	131	134	139	142	148	152	158	163	168	174	178
	80	124	124	127	133	137	142	146	153	158	163	168	174
90	75	118	118	122	126	130	135	140	146	152	158	162	167
ğ	70	110	110	114	120	124	128	134	139	146	150	156	162
Longer	65	104	104	107	112	118	122	126	133	139	144	149	155
	60	98	98	101	106	110	115	119	125	131	137	142	148
	55	93	93	95	99	103	108	113	118	125	130	134	141
	50	87	87	90	94	98	102	108	114	118	124	129	
	45	82	82	85	90	93	98	102	109	114	118		
	40	75	75	79	84	88	92	98	102	108			• • • •
	35	69	69	74	78	82	87	92	98				
	30	63	63	67	72	77	82	86				1	,
	25	57	57	62	66	71	76						
	20	50	50	56	60	66							
	15	40	40	50	55	,							
	10	30	30	40									
	5	20	20]							

For l_1 and l_2 each >142 ft. $R=L+\frac{3800}{l_1}$

TABLE 13.--Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E40 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

		60	65	70	75	80	85	90	95	100	110	120	130	140
Longer Segment b	250 225 200 175 160 150 140 130 120 110 95 90 85 80 75	350 326 300 274 258 248 229 218 207 197 192 188 183 178 173 166	356 330 305 279 264 254 242 233 222 212 202 198 194 189 184 178	70 359 334 309 284 269 259 249 228 218 208 203 198 194 188 183 178	75 365 340 314 290 274 264 253 243 223 223 214 208 203 198 194 188	370 345 320 294 280 269 259 250 239 219 214 209 204 199	85 374 350 324 300 284 274 264 242 234 219 214 209 	90 379 354 329 303 289 278 270 258 248 238 229 223 218 	95 382 358 333 308 293 282 273 262 253 243 229 	387 362 337 312 297 287 277 267 257 247 238	395 370 345 319 305 295 284 274 265 255 	120 402 377 352 327 312 302 292 282 272 	130 410 385 359 334 320 310 299 290	140 417 392 367 342 328 318 308
	65 60	160 153	165	•••	•••	• • •								

For l_1 and l_2 each >142 ft. $R = L + \frac{3800}{l_1}$

Values in Thousands of Pounds per Rail

SHORTER SEGMENT li

		0	5	10	15	20	25	30	35	40	45	50	55
	250	392	392	394	398	403	407	411	415	420	423	428	432
	225	359	359	362	367	372	376	380	383	386	390	396	401
	$[200.\ldots]$	326	326	329	335	339	344	347	351	355	359	365	370
	175	293	293	295	301	305	310	314	318	323	327	332	336
	160	273	273	275	281	285	290	295	298	302	307	313	318
	$150.\dots$	259	259	262	267	272	277	281	286	289	293	299	305
	140	245	245	248	254	258	263	268	273	275	280	286	293
	$130, \ldots$	231	231	234	240	245	251	254	260	262	268	274	280
	$ 120.\ldots. $	217	217	220	226	230	236	240	245	248	255	260	266
72	110	202	202	206	212	216	222	226	231	235	241	247	253
	100	187	187	191	197	202	208	212	218	221	227	234	240
Segment	95	180	180	183	189	194	200	204	210	216	222	228	235
Ä	90	171	171	175	182	187	192	197	204	210	218	223	229
9	85	164	164	168	174	178	185	190	198	204	210	217	223
02	80	155	155	159	166	171	177	183	191	197	204	210	217
Longer	75	147	147	152	158	163	169	175	183	190	197	203	209
ğ	70	138	138	143	150	155	160	167	174	182	188	195	202
ä	65	130	130	134	140	147	152	158	166	174	180	186	194
	60	123	123	126	132	137	144	149	156	164	171	178	185
	55	116	116	119	124	129	135	141	148	156	162	168	176
	50	109	109	112	118	122	128	135	142	148	155	161	
	45	102	102	106	112	116	122	128	136	142	148	• • • •	
	40	94	94	99	105	110	115	122	128	135		• • •	
	35	86	86	92	98	103	109	115	122	• • •		• • •	• • •
	30	79	79	84	90	96	102	108					
	25	71	71	77	83	89	95		• • •		• • •		
	20	63	63	70	75	82	• • • ‹	• • • •			• • •	• • •	
	15	50	50	62	69		• • •		• • • •				• • •
	10	38	38	50		• • • •				• • •		• • •	• • •
	5	25	25	• • •	• • •	• • • "				• • •	• • •		
								_					

For l_1 and l_2 each >142 ft. $R=1.25~L+\frac{4750}{l_1}$

TABLE 14.—Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E50 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	. 85	90	95	100	110	120	130	140
250	437	445	449	456	463	468	474	478	484	494	502	512	521
225	407	413	418	425	431	437	442	448	452	462	471	481	490
200	375	381	386	393	400	405	411	416	421	431	440	449	459
175	343	349	355	362	368	375	379	385	390	399	409	418	427
160	323	330	336	343	350	355	361	366	371	381	390	400	410
150	310	317	324	330	336	343	348	353	359	369	378	387	397
140	298	303	311	316	324	330	337	341	346	355	365	374	385
130	286	291	299	304	312	317	323	328	334	343	352	362	
120	272	278	285	291	299	303	310	316	321	331	340		
110	259	265	273	279	287	292	298	304	309	319			
100	246	253	260	267	$\overline{274}$	280	286	291	296				
95	240	$\frac{247}{247}$	$\tilde{254}$	260	$\tilde{2}67$	274	279	286					
90	235	$\overline{242}$	248	254	261	268	273						
85	229	236	242	248	255	261							
80	223	230	235	$\frac{210}{242}$	249								
75	216	222	229	235	210								
70	208	214	222										
65	200	206										: : :	
	191												
60	191												

For l_1 and l_2 each >142 ft. $R = 1.25 L + \frac{4750}{l_1}$

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

		0	5	10	15	20	25	30	35	40	45	50	55
	250	470	470	473	478	484	488	493	498	504	508	514	518
	$225\ldots\ldots$	431	431	434	440	446	451	456	460	463	468	475	481
	$200\ldots$	391	391	395	402	407	413	417	421	426	431	438	444
	175	352	352	354	361	366	372	377	382	388	392	398	403
	160	328	328	330	337	342	348	354	358	362	368	376	382
	150	311	311	314	320	326	332	337	343	347	352	359	366
	140	294	294	298	305	310	316	322	328	330	336	343	352
	130	277	277	281	288	294	301	305	312	314	322	329	336
	120	260	260	264	271	276	283	288	294	298	306	312	319
	110	242	242	247	254	259	266	271	277	282	289	296	304
l_2	100	224	224	229	236	242	250	254	262	265	272	281	288
	95	216	216	220	227	233	240	245	252	259	266	274	282
en	90	205	205	210	218	224	230	236	245	252	262	268	275
Segment	85	197	197	202	209	214	222	228	238	245	252	260	268
eg	80	186	186	191	199	205	212	220	229	236	245	252	260
ďΩ	75	176	176	182	190	196	203	210	220	228	236	244	251
Ę	70	166	166	172	180	186	192	200	209	218	226	234	242
gu	65	156	156	161	168	176	182	190	199	209	216	223	233
Longer	60	148	148	151	158	164	173	179	187	197	205	214	222
	55	139	139	143	149	155	162	169	178	187	194	202	211
	50	131	131	134	142	146	154	162	170	178	186	193	
	45	122	122	127	134	139	146	154	163	170	178		
	40	113	113	119	126	132	138	146	154	162			
	35	103	103	110	118	124	131	138	146				
	30	95	95	101	108	115	122	130					
	25	85	85	92	100	107	114						
	20	76	76	84	90	98							
	15	60	60	74	83								
	10	46	46	60		١							
	5	30	30										٠
~	1	·	l		l	l	<u> </u>	!	<u> </u>	<u> </u>	1	·	

For l_1 and l_2 each >142 ft. $R=1.5~L+\frac{5700}{l_1}$

TABLE 15.—Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E60 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
		F94	F20	F 417	FF0	560		===	F01	F02			eor
250	524	534	539	547	556	562	569	574	581	593	602	614	625
225	488	496	502	510	517	524	530	538	542	554	565	577	588
200	450	457	463	472	480	486	493	499	505	517	528	539	551
175	412	419	426	434	442	450	455	462	468	479	491	502	512
160	388	396	403	412	420	426	433	439	445	457	468	480	492
150	372	380	389	396	403	412	418	424	431	443	454	464	476
140	358	364	373	379	389	396	404	409	415	426	438	449	462
130	343	349	359	365	374	380	388	394	401	412	422	434	
120	326	334	342	349	359	364	372	379	385	397	408		
	311	318	328	335	344	350	358	365	371	383			
110													• • • •
100	295	304	312	320	329	336	343	349	356			• • •	• • •
95	288	296	305	312	320	329	335	343					
90	282	290	298	305	313	322	328						
85	275	283	290	298	306	313					1		
80	268	276	282	290	299		l <i>.</i>					1	
75	259	266	275	282	l		١						
70	250	257	266							·			
65	240	247						1					١
60	229				1			1		1			l
···	223								1			1	1

For l_1 and l_2 each >142 ft. $R = 1.5 L + \frac{5700}{l_1}$

Values in Pounds per Lineal Foot per Rail

				S	HORTE	R SEG	MENT	l_1					
		0	5	10	15	20	25	30	35	40	45	50	55
l_2	250	2500 2550 2610 2680 2730 2760 2800 2850 2900 2940 3000	2450 2500 2540 2610 2630 2670 2740 2770 2810 2850	2430 2460 2500 2550 2550 2620 2650 2670 2710 2740 2780	2410 2450 2490 2540 2570 2590 2650 2680 2710 2740	2380 2430 2460 2510 2540 2570 2580 2610 2640 2660 2690	2370 2400 2440 2490 2510 2540 2560 2610 2630 2660	2350 2380 2420 2460 2480 2500 2520 2540 2560 2580 2610	2330 2360 2390 2420 2450 2460 2510 2530 2550 2570	2310 2340 2370 2400 2420 2430 2450 2470 2490 2500 2530	2300 2320 2350 2380 2400 2420 2430 2450 2460 2490 2510	2290 2310 2340 2360 2380 2420 2420 2430 2450 2460 2500	2270 2300 2320 2340 2370 2380 2400 2420 2430 2460 2480
Longer Segment l	95	3050 3080 3110 3140 3160 3190 3270 3370 3490	2890 2920 2920 2940 2940 2960 3020 3090 3180	2810 2820 2840 2860 2870 2870 2880 2930 3000	2770 2780 2790 2800 2810 2810 2820 2840 2910	2720 2730 2740 2740 2750 2760 2760 2800	2680 2700 2710 2700 2700 2700 2700 2700 2740	2630 2640 2670 2670 2670 2660 2660 2700	$\begin{array}{c} 2620 \\ 2640 \\ 2660 \\ 2660 \\ 2660 \\ 2640 \\ 2650 \\ 2670 \end{array}$	2590 2620 2620 2640 2650 2650 2630 2620 2630	2570 2580 2610 2620 2620 2620 2610 2600 2600	2550 2570 2580 2600 2600 2600 2590 2560 2580	2540 2550 2570 2580 2580 2580 2580 2550
	40	3770 3960 4200 4540 5000 5336 6000	3350 3450 3610 3770 4000 4000	3180 3260 3380 3520 3730 4000 4000	3060 3120 3200 3320 3450 3650	2930 3010 3060 3150 3280	2840 2900 2960 3020	2780 2840 2880	2740 2790	2700			

For l_1 and l_2 each >142 ft. $q = \left(2.0 + \frac{7600}{l_1 L}\right) 1000$

$\begin{tabular}{ll} TABLE 16.--Continued \\ Equivalent Uniform Loads for Cooper's $E40$ Loading \\ \end{tabular}$

Values in Pounds per Lineal Foot per Rail

		,											
	60	65	70	75	80	85	90	95	100	110	120	130	140
											<u> </u>		
250	2260	2260	2250	2250	2240	2230	2220	2220	2210	2200	2180	2160	2140
225													
200													
175													
160													
150													
140													
130	2400	2390	2390	2380	2380	2370	2350	2340	2330	2290	2260	2230	
120													
110	2440	2420	2420	2420	2420	2400	2390	2380	2350	2320			
100	2460	2460	2450	2440	2440	2420	2410	2390	2380				
95													
90													
85													
80	2000	2010	0500	2500	2400	2400							
$75\ldots\ldots$													
70													
$65\ldots\ldots$	2560												
60	2550			<i>.</i>									
			l	l								l	l

For
$$l_1$$
 and l_2 each >142 ft. $q = \left(2.0 + \frac{7600}{l_1 L}\right) 1000$

TABLE 17 Equivalent Uniform Loads for Cooper's $\it E50$ Loading

Values in Pounds per Lineal Foot per Rail
SHORTER SEGMENT h

					e pedi							
	0	5	10	15	20	25	30	35	40	45	50	55
250 225 200 175 160 150 140 130 120 110 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5	3130 3190 3265 3350 3410 3455 3565 3560 3780 3810 3850 3910 4945 4215 4360 4715 4945 5680 6250 6670 7500	3060 3120 3180 3290 3340 3340 3560 3650 3650 3670 3680 3780 38970 4480 4490 44710 5000 5000 5000	3040 3080 3130 3240 3240 3345 3345 33470 3556 3556 3565 3565 3565 3650 3676 3850 3850 3850 3850 3850 3850 3850 3850	3010 3060 3110 3210 3275 3310 33275 3310 3350 3385 3425 3445 3455 3455 3515 3555 3515 3550 3515 3550 3515 3515	2980 3040 3180 31170 3210 32210 3230 3295 3330 3360 3360 33415 3445 3445 3445 3445 3445 345 345 345 3	2960 3000 3050 3110 31140 3170 3125 3225 3225 3225 3320 3350 3375 3380 3375 3480 3550 3630 3630 3695 3780	2940 2980 3020 3100 3130 3150 3255 3260 3225 3275 3290 3340 3345 3340 3420 3475 3545 3595	2910 2950 2990 3030 3060 3110 31135 3210 3225 3225 3325 3325 3325 3325 3325 332	2890 29920 3000 3020 3040 3064 3133 3158 3200 3237 3266 3284 3303 3287 3293 3375	2870 29900 2940 3000 3040 3080 3105 3140 3225 3255 3275 3280 3270 3260 3245 3250 3295	2860 2890 29920 29980 3000 3018 3039 3060 3083 3117 3153 3252 3252 3246 3237 3194 3219	2840 2870 29900 29960 2980 3020 3040 3040 31185 3210 3225 3225 3220 3215

For l_1 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1 L}\right) 1000$

TABLE 17.—Continued

EQUIVALENT UNIFORM LOADS FOR COOPER'S E50 LOADING

Values in Pounds per Lineal Foot per Rail

	60	65	70	75	80	85	90	95	100	110	120	130	140
						 -							
250	2830	2820	2810	2810	2800	2790	2780	2770	2760	2750	2720	2700	2680
225													
200	2890	2870	2860	2860	2850	2850	2840	2820	2810	2790	2750	2720	2700
175													
160	2940	2930	2920	2920	2910	2900	2890	2870	2850	2820	2790	2760	2730
150	2960	2940	2950	2940	2930	2920	2910	2880	2870	2840	2800	2770	2740
140	2980	2965	2960	2950	2950	2940	2920	2900	2890	2850	2810	2775	2750
130													
120													
110													
100	3080	3065	3060	3050	3045	3030	3010	2985	2965		Í. <i></i>		
95													
90													
85													
75													
70													
65													

For
$$l_1$$
 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1 L}\right) 1000$

 ${\bf TABLE \ 18}$ Equivalent Uniform Loads for Cooper's ${\it E60}$ Loading

Values in Pounds per Lineal Foot per Rail

				S	HORTE	R SEG	MENT	l_1					
		0	5	10	15	20	25	30	35	40	45	50	55
	250	3760	3670	3650	3610	3580	3550	3530	3490	3470	3440	3430	3410
	225	3830	3740	3700	3670	3650	3600	3580	3540	3500	3480	3470	3440
	200	3920	3820	3760	3730	3700	3660	3620	3590	3550	3530	3500	3480
	175	4020	3910	3830	3800	3770	3730	3680	3640	3600	3560	3540	3520
	160					3800							
	150	4150	4010	3920	3890	3850	3800	3760	3700	3650	3620	3600	3580
	140	4210	4060	3970	3940	3880	3840	3780	3730	3680	3650	3630	3600
	130	4270	4110	4010	3970	3910	3850	3820	3770	3710	3670	3650	3620
	120	4340	4150	4070	4020	3960	3910	3840	3790	3730	3700	3670	3650
	110					4000							
2	100	4500	4270	4160	4120	4030	3980	3910	3850	3790	3770	3740	3720
	95	4540											
Longer Segment	90	4570	4330	4210	4150	4080	4020	3950	3920	3890	3850	3830	3800
ğ	85	4620	4380	4240	4160	4080	4040	3960	3960	3920	3880	3850	3830
50	80	4660	4380	4260	4180	4100	4070	4010	3980	3940	3910	3880	3850
Š	75	4700											
er	70	4730											
ga	65	4790											
୍ଟି	60	4900	4540	4320	4220	4130	4060	3980	3960	3950	3910	3890	3860
П	55	5060	4630	4390	4260	4140	4060	4000	3970	3940	3900	3840	3830
	50	5230	4760	4500	4370	4200	4120	4040	4010	3950	3900	3860	
	45	5450	4900	4620	4460	4310	4180	4100	4070	4010	3960		
	40					4390							
	35	5930											
	30	6310	5410	5060	4800	4600	4440	4320	1100				
	25	6820	5650	5280	4980	4730	4540	1020					
	20	7500	6000	5590	5180	4920	-010						
	15	8000	6000	6000	5470								
	10	9000	6000	6000	0110								
	5	12000	6000	0000									
	5	-2000	3000		· · · ·]			

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_1 L}\right) 1000$

TABLE 18.—Continued

EQUIVALENT UNIFORM LOADS FOR COOPER'S E60 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
													
250	3400	3380	3370	3370	3360	3350	3340	3320	3310	3300	3260	3240	3220
225	3430	3420	3410	3410	3400	3380	3370	3360	3340	3320	3280	3250	3230
200	3470	3440	3430	3430	3420	3420	3410	3380	3370	3350	3300	3260	3240
175	3500	3480	3480	3480	3470	3460	3430	3420	3410	3360	3310	3300	3260
160													
50													
			3550										
30													
20													
10	2650	3610	2640	2020	9090	2000	2500	0000	9900	3400	9410		
100	0000	0040	3040	0000	3020	3000	3090	3200	3330	3480		• • • •	• • •
100													
			3690										
90													
85													
80	3830	3800	3770	3750	3730								
75	3840	3820	3780	3770					1		1		
70	3840	3820	3790										
65													
60													

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_1 L}\right) 1000$

TABLE 19 $\label{table 19} \mbox{Influence-Line Ordinates for M for Girder Bridges Without Floor-beams }$

Values of $rac{l_1 l_2}{L}$

	5	10	15	20	25	30	35	40	45	50	55	60
250. 225. 200. 175. 160. 150. 140. 130. 120. 110. 100. 95. 90. 85. 75. 70. 65. 60. 55. 50. 44. 35. 30. 25. 20. 15. 10. 5.	4.90 4.88 4.85 4.83 4.81 4.80 4.76 4.75 4.72 4.71 4.69 4.67 4.64 4.55 4.50 4.44 4.37 4.29 4.17 4.29 4.17 4.33 4.31 4.31 4.31 4.31 4.31 4.31 4.31	9.62 9.52 9.43 9.35 9.34 9.35 9.34 9.29 9.29 9.29 9.29 9.55 9.49 9.55 9.49 9.55 9.49 9.55 9.49 9.55	14.06 13.97 13.83 13.70 13.64 13.55 13.44 13.33 13.19 13.05 12.85 12.63 12.50 12.35 12.20 11.79 11.53 11.95 10.91 10.00 9.38 8.58 7.50	18.4 18.2 17.9 17.8 17.5 17.3 17.2 16.5 16.4 16.2 15.3 13.3 13.3 13.3 12.0 11.1 11.0	22.52.22.22.22.1.96.221.65.221.22.1.00.74.220.40.19.88.19.66.19.30.117.62.16.716.11.15.46.11.15.15.15.15.15.15.15.15.15.15.15.15.	26.5 1 25.6 1 25.6 25 3 25.3 25 3 24.7 24.4 4 24.0 6 23.1 1 22.8 21.5 2 21.5 2 20.5 2 21.5 3 21.5 3	30.3 20.9 29.2 28.7 28.0 27.6 27.1 25.6 25.2 24.8 23.4 22.7 22.1 420.6 19.7 17.5	33.9 33.3 32.6 31.1 30.6 30.0 28.6 28.1 27.7 27.2 26.1 25.5 24.8 22.2 22.2 22.2 20.0	37.6 36.8 35.8 34.1 33.4 32.7 31.9 30.6 30.0 29.4 26.6 25.8 23.7 22.4 8 23.7 22.5	41.0 40.0 38.9 37.6 36.8 36.1 35.3 32.2 31.5 30.0 29.2 28.3 27.2 26.2 25.0	44.2 43.1 42.0 41.0 41.0 41.3 39.5 38.6 37.7 35.5 34.8 34.1 33.4 43.3 30.8 29.8 227.5	47.44 46.1 44.6 43.7 42.0 41.0 40.0 337.5 36.7 36.7 36.1 35.2 33.3 33.3 33.3 33.4 43.0 6

TABLE 19.—Continued

Influence-Line Ordinates for M for Girder Bridges Without Floorbeams

Values of $rac{l_1 l_2}{L}$

	65	70	75	80	85	90	95	100	110	120	130	140
												
250												
225												
200	49.0	51.8	54.6	57.1	59.5	62.1	64.5	66.8	70.9	75.2	78.7	82.0
175	47.2	50.0	52.4	54.9	57.1	59.5	61.7	63.7	67.6	71.4	74.6	78.1
160	46 1	48.5	51.0	53.2	55.6	57.5	59.5	61.7	64.9	68.5	71.4	74.6
	45.2											
140												
130												
	42.2											
110												
100	39.4	41.2	42.9	44.4	46.1	47.4	48.8	50.0				
95	38.6	40.3	42.0	43.5	44.8	46.3	47.5					
90	37.7	39.4	41.0	42.4	43.7	45.0						
85	36.8	38.3	39.8	41.2	42.5		l		l <i>.</i> .	. <i>.</i>		
80	35.8											
75												
70	33.8											
$65\ldots\ldots$	32.5											1

TABLE 20 Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

250 .204 .104 .0707 .0540 .0440 .0374 .0326 .0290 .0262 .0240 .0221 .0225 .204 .104 .0711 .0544 .0444 .0378 .0330 .0295 .0266 .0244 .0226 .020 .205 .105 .0716 .0550 .0450 .0383 .0335 .0300 .0272 .0250 .0232 .026 .105 .0716 .0550 .0450 .0383 .0335 .0300 .0272 .0250 .0232 .026 .026 .106 .0723 .0558 .0457 .0390 .0342 .0307 .0279 .0257 .0238 .0260 .0261 .066 .0730 .0562 .0462 .0396 .0348 .0313 .0284 .0263 .0244 .026 .106 .0730 .0562 .0466 .0400 .0352 .0317 .0288 .0266 .0248 .026 .140 .207 .107 .0733 .0567 .0466 .0400 .0352 .0317 .0288 .0266 .0248 .026 .130 .208 .108 .0744 .0577 .0477 .0410 .0363 .0327 .0299 .0271 .0253 .027 .0208 .108 .0750 .0583 .0483 .0417 .0369 .0333 .0306 .0283 .0265 .0310 .029 .0275 .0259 .00 .0262 .0265	SHORTER SEGMENT l ₁												
225 204 104 0711 0544 0444 0378 0330 0295 0266 0244 0226 0200 205 105 0716 0550 0450 0383 0335 0300 0272 0250 0232 0 175 206 106 0723 0558 0457 0390 0342 0307 0279 0257 0238 0 160 206 106 0730 0562 0462 0396 0348 0313 0284 0263 0244 0 150 207 107 0733 0567 0466 0400 0352 0317 0288 0266 0248 0 140 207 107 0738 0571 0472 0405 0357 0321 0293 0271 0253 0 130 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 110 209 109 0758 0591 0491 0424 0376 0341 0314 0291 0273 0 100 210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 0 0 0 0 0 0 0 0		5	10	1.5	20	25	30	35	40	45	50	55	60
200 205 105 0716 0550 0450 0383 0335 0300 0272 0250 0232 0 175 206 106 0730 0558 0457 0390 0342 0307 0279 0257 0238 0 160 206 106 0730 0562 0462 0396 0348 0313 0284 0263 0244 0 150 207 107 0733 0567 0466 0400 0352 0317 0288 0266 0248 0 140 207 107 0738 0571 0472 0405 0357 0321 0293 0271 0253 0 140 207 107 0738 0571 0472 0405 0357 0321 0293 0271 0253 0 120 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 120 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 120 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 120 209 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 100 210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 100 210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 100 211 111 0778 0611 0511 0444 0376 0341 0314 0291 0273 0 100 211 111 0778 0611 0511 0444 0376 0368 0340 0318 0299 0 1211 111 0778 0611 0511 0444 0370 0368 0340 0318 0299 0 1211 111 0778 0611 0511 0444 0370 0368 0340 0318 0299 0 1211 111 0780 0625 0525 0458 0411 0375 0347 0325 0307 0 120 0605 0554 0554 0487 0440 0404 0376 0353 0366 0343 0355 0360 0360 0368 0340 0318 0299 0 121 111 0780 0660 0543 0554 0487 0440 0404 0376 0353 0366 0343 0 050 050 050 060 217 117 0833 0666 0567 0500 0452 0417 0388 0366 0348 0 050 050 050 0660 0567 0500 0452 0417 0388 0366 0348 0 050 050 050 050 050 050 050 050 0452 0417 0388 0366 0348 0 050 050 050 050 050 050 050 050 050													
175 206 106 0723 0558 0457 0390 0342 0307 0279 0257 0238 0 160 206 106 0730 0562 0462 0396 0348 0313 0284 0263 0244 0 150 207 107 0738 0567 0466 0400 0352 0317 0228 0266 0248 0 0410 0263 0271 0253 0 0400 0363 0327 0293 0271 0253 0 0263 0368 0366 0248 0368 0368 0364 0577 0477 0410 0363 0327 0299 0277 0259 0 0208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 0263 0368 036													
160 . 206 . 106 . 0730 . 0562 . 0462 . 0396 . 0348 . 0313 . 0284 . 0263 . 0244 . 0 150 . 207 . 107 . 0733 . 0567 . 0466 . 0400 . 0352 . 0317 . 0288 . 0266 . 0248 . 0 140 . 207 . 107 . 0738 . 0571 . 0472 . 0405 . 0357 . 0321 . 0293 . 0271 . 0253 . 0 130 . 208 . 108 . 0744 . 0577 . 0477 . 0410 . 0363 . 0327 . 0299 . 0277 . 0259 . 0 120 . 208 . 108 . 0750 . 0583 . 0483 . 0417 . 0369 . 0333 . 0306 . 0283 . 0265 . 0 110 . 209 . 109 . 0758 . 0591 . 0491 . 0424 . 0376 . 0341 . 0314 . 0291 . 0273 . 0 100 . 210 . 110 . 0766 . 0600 . 0500 . 0433 . 0386 . 0350 . 0322 . 0300 . 0282 . 0 95 . 211 . 111 . 0772 . 0605 . 0505 . 0438 . 0391 . 0355 . 0327 . 0305 . 0287 . 0 95 . 211 . 111 . 0778 . 0611 . 0511 . 0444 . 0397 . 0361 . 0333 . 0311 . 0293 . 0 205 . 0 100 . 210 . 110 . 0766 . 0600 . 0500 . 0438 . 0391 . 0355 . 0327 . 0305 . 0287 . 0 100 . 211 . 111 . 0778 . 0611 . 0511 . 0444 . 0397 . 0361 . 0333 . 0311 . 0293 . 0 10 . 0 111 . 0578 . 0612 . 0512 . 0505 . 0458 . 0411 . 0375 . 0347 . 0325 . 0307 . 0 10 . 0													
150 207 107 0738 0567 0466 0400 0352 0317 0288 0266 0248 0 140 207 107 0738 0571 0472 0405 0357 0321 0293 0271 0253 0 130 208 108 0744 0577 0477 0410 0363 0327 0299 0277 0259 0 120 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 110 209 109 0758 0591 0491 0424 0376 0341 0314 0291 0273 0 100 210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 0 050 0438 0391 0355 0327 0305 0287 0 0 0 0 0 0 0 0 0	1-1-		106	0730	0562	0462	0396	0348	0313	0284	0263	0244	0224
140, 207, 107, 0738, 0571, 0472, 0405, 0357, 0321, 0293, 0271, 0253, 0 130, 208, 108, 0744, 0577, 0477, 0410, 0363, 0327, 0299, 0277, 0259, 0 120, 208, 108, 0750, 0583, 0483, 0417, 0369, 0333, 0366, 0283, 0265, 0 110, 209, 109, 0758, 0591, 0491, 0424, 0376, 0341, 0314, 0291, 0273, 0 100, 210, 110, 0766, 0600, 0500, 0433, 0386, 0350, 0322, 0300, 0282, 0 95, 211, 111, 0772, 0605, 0505, 0438, 0391, 0355, 0327, 0305, 0287, 0 96, 211, 111, 0778, 0611, 0511, 0444, 0397, 0361, 0333, 0311, 0293, 0 85, 212, 112, 0784, 0618, 0517, 0451, 0403, 0368, 0340, 0318, 0299, 0 80, 213, 113, 0792, 0625, 0525, 0458, 0411, 0375, 0347, 0325, 0307, 0 175, 213, 113, 0800, 0633, 0533, 0466, 0419, 0383, 0356, 0333, 0315, 0 170, 214, 114, 0810, 0643, 0543, 0476, 0428, 0393, 0365, 0343, 0325, 0 181, 181, 0848, 0682, 0582, 0515, 0467, 0440, 0404, 0376, 0353, 0336, 0348, 0 181, 0848, 0682, 0582, 0585, 0467, 0440, 0404, 0376, 0353, 0366, 0348, 0 181, 0848, 0682, 0582, 0555, 0508, 0472, 0444, 0444, 0444, 0364, 0368, 0348, 0 181, 0848, 0682, 0582, 0555, 0508, 0472, 0444, 0444, 0364, 0444, 0364, 0368, 0366, 0348, 0 181, 0848, 0682, 0582, 0555, 0508, 0472, 0444, 0444, 0364, 0444, 0364, 0368, 0366, 0348, 0 181, 0848, 0682, 0582, 0555, 0508, 0472, 0444, 0364, 0444, 0364, 0444, 0364, 0444, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0464, 0364, 0368, 0466, 0464, 0364, 0464, 0364, 0368, 0466, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0364, 0464, 0464, 0364, 0464, 0464, 0364, 0464, 0464, 0364, 0464,		207	107	0733	0567	0466	0400	0352	0317	0288	0266	0248	0223
130 208 108 0744 0577 0477 0410 0363 0327 0299 0277 0259 0 120 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0 100 209 109 0758 0591 0491 0424 0376 0341 0314 0291 0273 0 100 210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 95 211 111 0772 0605 0505 0438 0391 0355 0327 0305 0287 0 90 211 111 0778 0611 0511 0444 0397 0361 0333 0311 0293 0 0 0 0 0 0 0 0 0	1	207	107	0738	.0571	.0472	.0405	0357	0321	0293	0271	0253	0238
120 208 108 0750 0583 0483 0417 0369 0333 0306 0283 0265 0													
110 209 109 0758 0591 0491 0424 0376 0341 0314 0291 0273 048 0491 0210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 09 05 211 111 0772 0605 0505 0438 0391 0355 0327 0305 0287 09 0211 111 0778 0611 0511 0444 0397 0361 0333 0311 0293 08 0321 0321 0322 0322 0323 0333 0334 0334 0334 0334 0335 03	120	.208	.108	.0750	.0583	.0483	.0417	.0369	.0333	.0306	.0283	.0265	.0250
## 100 210 110 0766 0600 0500 0433 0386 0350 0322 0300 0282 0 95 211 111 0772 0605 0505 0438 0391 0355 0327 0305 0227 0 0 225 0 225	~º [110	.209	.109	0758	.0591	. 0491	.0424	.0376	0341	.0314	.0291	.0273	.0258
$\begin{array}{c} 80 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	# 100	. 210	.110	.0766	. 0600	. 0500	. 0433	.0386	. 0350	. 0322	.0300	.0282	.0267
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a 95	.211	.111	. 0772	.0605	.0505	. 0438	. 0391	.0355	.0327	. 0305	.0287	.0272
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	₽ 90	.211	.111	.0778	.0611	. 0511	.0444	. 0397	. 0361	.0333	.0311	.0293	.0277
59 75 213 113 0800 0633 .0533 .0466 .0419 .0383 .0356 .0333 .0315 .0 70 214 .114 .0810 .0643 .0543 .0476 .0428 .0393 .0365 .0343 .0325 .0 65 .215 .115 .0820 .0654 .0554 .0487 .0440 .0404 .0376 .0353 .0336 .0 60 .217 .117 .0833 .0666 .0567 .0500 .0452 .0417 .0388 .0366 .0348 .0 55 .218 .118 .0848 .0682 .0582 .0615 .0467 .0432 .0404 .0382 .0364 . 50 .220 .120 .0867 .0700 .0600 .0533 .0486 .0450 .0422 .0400 . 45 .222 .122 .0889 .0722 .0622 .0555 .0508 .0472 .0444 40 .225	∞ 85	.212	.112	.0784	.0618	.0517	. 0451	. 0403	.0368	.0340	.0318	. 0299	.0284
59 75 213 113 0800 0633 .0533 .0466 .0419 .0383 .0356 .0333 .0315 .0 70 214 .114 .0810 .0643 .0543 .0476 .0428 .0393 .0365 .0343 .0325 .0 65 .215 .115 .0820 .0654 .0554 .0487 .0440 .0404 .0376 .0353 .0336 .0 60 .217 .117 .0833 .0666 .0567 .0500 .0452 .0417 .0388 .0366 .0348 .0 55 .218 .118 .0848 .0682 .0582 .0615 .0467 .0432 .0404 .0382 .0364 . 50 .220 .120 .0867 .0700 .0600 .0533 .0486 .0450 .0422 .0400 . 45 .222 .122 .0889 .0722 .0622 .0555 .0508 .0472 .0444 40 .225	늄 80	.213	.113	. 0792	. 0625	.0525	. 0458	.0411	. 0375	. 0347	.0325	. 0307	.0292
60 .217 .117 .0833 .0666 .0567 .0500 .0452 .0417 .0388 .0366 .0348 .0 55 .218 .118 .0848 .0682 .0582 .0515 .0467 .0432 .0404 .0382 .0364 .50 .220 .120 .0867 .0700 .0600 .0533 .0486 .0450 .0422 .0400 .45 .222 .122 .0889 .0722 .0622 .0555 .0508 .0472 .044440 .225 .125 .0917 .0750 .0650 .0583 .0536 .0500	율 75	.213	.113	.0800	. 0633	. 05331	0.0466	.0419	.0383	.0356	.03331	.0315	0300
60 .217 .117 .0833 .0666 .0567 .0500 .0452 .0417 .0388 .0366 .0348 .0 55 .218 .118 .0848 .0682 .0582 .0515 .0467 .0432 .0404 .0382 .0364 .50 .220 .120 .0867 .0700 .0600 .0533 .0486 .0450 .0422 .0400 .45 .222 .122 .0889 .0722 .0622 .0555 .0508 .0472 .044440 .225 .125 .0917 .0750 .0650 .0583 .0536 .0500	ā 70	.214	.114	.0810	.0643	. 0543	0476	.0428	. 0393	. 0365	. 0343	.0325	.0309
55, 218, 118, 0848, 0682, 0582, 0515, 0467, 0432, 0404, 0382, 0364, 50, 220, 120, 0867, 0700, 0600, 0533, 0486, 0450, 0422, 0400, 45, 222, 122, 0889, 0722, 0622, 0555, 0508, 0472, 0444,, 40, 225, 125, 0917, 0750, 0650, 0583, 0536, 0500,,	100	.215	. 115	.0820	.0654	. 0554	. 0487	.0440	.0404	.0376	.0353	.0336	.0321
50, 220, 120, 0867, 0700, 0600, 0533, 0486, 0450, 0422, 0400,	1	.217	.117	.0833	.0666	. 0567	. 0500	. 0452	.0417	.0388	.0366	.0348	. 0333
45 .222 .122 .0889 .0722 .0622 .0555 .0508 .0472 .0444 .		.218	.118	.0848	.0682	.0582	0515	.0467	.0432	. 0404	.0382	. 0364	
40 . 225 . 125 . 0917 . 0750 . 0650 . 0583 . 0536 . 0500													
35 , 229 , 129 , 0952 , 0786 , 0686 , 0619 , 0571 ,													
			129	1000	0633	. 0080	.0019	.0571					
30 .233 .133 .1000 .0833 .0733 .0666 .	95	240	140	1066	0000	.0700	.0000						
20, 250, 150, 1166, 1000													
15 .267 .167 .1333	15	267	167	1222	. 1000		1						
10.300.200	10	300	200	. 1000									
5.400	10	400	. 200										
U. IUU	"	. ±00											

TABLE 20.—Continued

Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

	65	70	75	80	85	90	95	100	110	120	130	140
250	.0194	.0183	.0174	.0165	.0158	.0151	.0145	.0140	.0131	.0123	.0117	.0112
225	.0198	.0188	.0178	.0170	.0162	.0156	.0150	.0144	.0136	.0128	.0122	.0116
200	.0204	.0193	.0183	.0175	.0168	.0161	.0155	.0150	.0141	.0133	.0127	.0122
175	.0212	.0200	.0191	.0182	.0175	.0168	.0162	.0157	.0148	.0140	.0134	.0128
160					.0180							
150	.0221	.0210	.0200	.0192	.0184	.0178	.0172	.0167	.0158	. 0150	.0144	.0138
					.0189							
130	.0231	.0220	.0210	.0202	.0194	.0188	.0182	.0177	.0168	. 0160	.0154	
120	.0237	.0226	.0216	.0208	.0201	.0194	.0188	.0183	.0174	.0167		
110	.0245	.0234	.0224	.0216	.0208							
100	.0254					.0211						
					.0223							
90	.0265	.0254			.0229							
	.0272				. 0235							
80	.0279											
75	.0287											
70												
65	.0307	;									[

TABLE 21

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OF 1 POUND PER LINEAL FOOT

Values in Foot-pounds

Values equal $\frac{l_1 l_2}{2}$ = Area of Influence Line for M

SHORTER SEGMENT II													
		5	10	15	20	25	30	35	40	45	50	55	60
		625		1875						5625		6875	7500
								3937.5					
		500		1500		2500						5500	6000
		437.5						3062.5					5250
		400		1200		2000				3600		4400	4800
		375		1125		1875				3375		4125	4500
		350		1050									4200
		325	650										3900
		300	600										3600
l_2		275	550		1100								3300
		250	500		1000								3000
Segment		237.5	475	712.5				1662.5				2612.5	
且		225	450	675						2025		2475	2700
ခြ		212.5	425	637.5				1487.5	1700	1912.5	2125	2337.5	2550
	80	200	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400
je.	75	187.5	375	562.5	750	937.5	1125	1312.5	1500	1687.5	1875	2062.5	2250
Longer	70	175	350	525	700	875	1050	1225	1400	1575	1750	1925	2100
3	65	162.5	325	487.5	650	812.5	975	1137.5	1300	1462.5	1625	1787.5	1950
_	60	150	300	450	600	750				1350			1800
		137.5	275	412.5	550	687.5				1237.5			
	50	125	250	375	500	625	750	875		1125			
		112.5	225	337.5	450	562.5		787.5		1012.5			
	40	100	200	300	400		600						
	35	87.5	175	262.5	350				000				
	30	75.0	150	225	300	375	450	012.0		• • • • • •		· · · · · ·	
	25	62.5	125	187.5	250	312.5	100			· • · · · ·			
	20	50.0	100	150	200	012.0							
	15	37.5	75	112.5	200					· · · · · ·			
	10	25.0		112.0								• • • • • •	
	5	$\frac{25.0}{12.5}$	50										
	١	12.0							· · · ·				

TABLE 21.—Continued

Bending Moments in Beams Due to Uniform Load of 1 Pound $_{\rm PER}$ Lineal Foot

Values in Foot-pounds -

Values equal $\frac{l_1l_2}{2}$ = Area of Influence Line for M

	65	70	75	80	85	90	95	100	110	120	130	140
	8125 7210 5		9375		10625. 9562.5			12500				
200	6500	7000	8437.5 7500	8000	8500	9000	9500	10000	11000	12000	13000	14000
160	5200	5600	6562.5 6000 5625	7000 6400 6000	6800	7200 6750	7600	8000 7500	8800		10400	11200
140	4550	4900	5250 4875	5600 5200	5950	6300 5850	6650	7000 6500	7700	8400	9100	10500 9800
120	3900	4200	4500 4125	4800 4400	5100	5400 4950	5700	6000 5500	6600	7200		
100	3250	3500	3750 3562.5	4000 3800		4500	4750	5000		• • • • •		
90		3150	3375	3600 3400	$\frac{3825}{3612.5}$	4050						
80		2800	3000	3200	• • • • • • •							
	$2275 \\ 2112.5$	2450										
,								1				

