Tutorat logique : TD2 Université François Rabelais

Département informatique de Blois

Logique pour l'informatique

Problème 1

L'opérateur N and noté \uparrow est un opérateur très utilisé en électronique et dans la réalisation des microprocesseurs car il forme un système complet de connecteurs à lui seul. On rappelle que sa table de vérité est telle que :

x	y	$x \uparrow y$
0	0	1
0	1	1
1	0	1
1	1	0

Son symbole associé en électronique est :

Figure 1 : Porte logique de l'opérateur \uparrow Nand

- 1. Exprimer l'opérateur "ou exclusif" noté \oplus à l'aide des opérateurs classiques puis uniquement en utilisant Nand.
- 2. On considère la modélisation de l'opérateur \oplus suivante :

Figure 2 : Circuit logique de l'opérateur \oplus ou exclusif

Expliquer pourquoi cette solution n'est pas satisfaisante. Proposer un circuit logique à l'aide de Nand. Pourquoi cette modélisation est meilleure ?

Problème 2

Soit un chiffre $x \in [0, 9]$.

- 1. Donner la représentation binaire de x.
- 2. On considère un vecteur booléen (A, B, C, D) permettant de représenter x en binaire. On souhaite réaliser un affichage de calculatrice tel que :

$$(A,B,C,D) \longrightarrow \Phi \longrightarrow \stackrel{\square}{|_{\square}|}$$

Donner la fonction associée à chaque segment de l'affichage puis l'écriture de la fonction Φ .

Problème 3

Simplifier algébriquement les expressions suivantes :

- 1. $(A \land \neg B \land C) \lor (\neg A \land C) \lor (A \land \neg B) \lor (\neg A \land B \land C)$
- 2. $(A \land B \land \neg C \land \neg D) \lor (A \land B \land D) \lor (A \land C) \lor (B \land C) \lor (\neg A \land C)$
- 3. $A \lor (\neg B \land C) \lor (A \land D \neg E) \lor (A \land B \land C \land D \land E) \lor (B \land \neg C \land D \neg E) \lor (\neg A \land C \land D)$

Problème 4

Soient a,b,c et d quatre variables booléennes. On considère les formules logiques Φ et Ψ définies telles que :

- $\Phi \equiv 1$ si et seulement si $a+b \leq c+d$. Avec "+" représentant l'addition usuelle
- $\Psi \equiv 1$ si et seulement si l'entier dont l'écriture en base 2 de *abcd* est strictement inférieur à 10.

À l'aide des tableaux de Karnaugh, donner l'expression la plus simple de Φ et Ψ .

Problème 5

On considère la formule logique suivante : $\varphi \equiv [(\neg a \lor b) \land c] \Leftrightarrow [a \oplus c]$

- 1. Exprimer φ sous forme normale disjonctive puis sous forme normale conjonctive.
- 2. À 'aide des tableaux de Karnaugh, simplifier les expressions obtenues.

Problème 6

On donne la définition récursive du nombre de connecteurs dans une formule propositionnelle et du nombre de sous-formules atomiques avec $\circ \in \{\land, \lor, \Rightarrow\}$ telle que :

$$\begin{split} \operatorname{nbSymb}(P) &= 0 \quad \text{Si P est atomique} & \operatorname{nbAtom}(P) &= 1 \quad \text{Si P est atomique} \\ \operatorname{nbSymb}(\neg P) &= 1 + \operatorname{nbSymb}(P) & \operatorname{nbAtom}(\neg P) &= \operatorname{nbAtom}(P) \\ \operatorname{nbSymb}(P \circ Q) &= 1 + \operatorname{nbSymb}(P) + \operatorname{nbSymb}(Q) & \operatorname{nbAtom}(P \circ Q) &= \operatorname{nbAtom}(P) + \operatorname{nbAtom}(Q) \end{split}$$

- 1. Donner les équations récursives qui définissent une fonction nbNeg qui compte le nombre de symboles ¬ dans une formule.
- 2. Montrer par récurrence structurelle que pour toute formule P ne contenant pas l'opérateur \neg la propriété $\Phi(P)$: $\mathtt{nbAtom}(P) = \mathtt{nbSymb}(P) + 1$ est vraie. On montrera que pour toutes formules A, B ne contenant pas l'opérateur \neg , on a bien $\Phi(A, B)$: $\mathtt{nbAtom}(A \circ B) = \mathtt{nbSymb}(A \circ B) + 1$.
- 3. Montrer à l'aide d'un exemple que le résultat n'est plus vrai lorsque la formule P contient des symboles \neg .