Data dan Komunikasi Komputer Wiliam Stalling Edisi 7

Bab 10
Circuit Switching and Packet
Switching

Switching Networks

- Long distance transmission is typically done over a network of switched nodes
- Nodes tidak terkait dengan isi data
- Aksir dari devices adalah stasiun
 - —komputer, terminal, telepon, dll.
- Kumpulan dari nodes and connections adalah suatu jaringan komunikasi
- Data dipetakan olh swicth dari node ke node

Nodes

- Node hanya boleh dihubungkan dengan node, atau dari stasiun ke node yang lainnya
- Hubungan Node to node biasanya multiplexed
- Network biasanya dihubungkan secara parsial
 - —Beberapa hungungan yang besar *(redundant)* agar bisa memperoleh keandalan
- Dua perbedaan teknologi Switching
 - —Circuit switching
 - —Packet switching

Simple Switched Network

F

Circuit Switching

- Alur komunikasi yang digunakan oleh dua stasiun
- Tiga fasa (Three phases)
 - —Menetapkan (Establish)
 - —Mengirim (Transfer)
 - —Memutuskan (Disconnect)
- Harus memiliki kapasitas switching dan kapasitas channel untuk menetapkan/menentukan koneksi
- Must have intelligence to work out routing

Aplikasi Circuit Switching

- Tidak efisian (Inefficient)
 - Kapasitas Channel mempengaruhi waktu connection
 - —Jika tidak ada data, kapasitas menjadi sia-sia
- Set up (connection) memerlukan banyak waktu
- Once connected, transfer is transparent
- Dikembangkan Untuk lalu lintas suara (telepon)

Public Circuit Switched Network

Komponen Telecomms

- Subscriber
 - Alat yang berkait dengan jaringan
- Subscriber line
 - Local Loop
 - Subscriber loop
 - Connection to network
 - Few km up to few tens of km
- Exchange
 - Switching centers
 - End office supports subscribers
- Trunks
 - Cabang antara exchanges
 - Multiplexed

Circuit Establishment (bagan circuit)

Circuit Switch Elements

Konsep Circuit Switching

- Digital Switch
 - Menyediakan jalur sinyal yang transparan antar devices
- Network Interface
- Unit Kontrol
 - Membangun koneksi
 - Biasanya berdasarkan permintaan
 - Menangani dan memahami permintaan
 - Memutuskan apakah memiliki tujuan
 - Membangun jalur
 - Memelihara koneksi
 - Disconnect (memutuskan koneksi)

Blocking or Non-blocking

- Blocking
 - —Sebuah jaringan tidak dapat terkoneksi dengan stasiun karena semua jalur telah digunakan
 - —Sebuah jaringan yang ter blocking mengizinkan hal ini
 - —Digunakan dalam sistem suara
 - Panggilan berdurasi pendek
- Non-blocking
 - Mengizinkan semua stasiun untuk terhubung (berpasangan) sekaligus
 - Digunakan untuk koneksi data

Space Division Switching

- Dikembangkan untuk peralatan analog
- Memisahkan jalur fisik
- Switch silang (Crossbar switch)
 - —Jumlah persimpangan (crosspoint) bertambah sebanyak n kuadrat dari jumlah stasiun
 - Hilangnya crosspoint dapat mencegah terjadinya koneksi
 - Penggunaan crosspoint yang tidak efisien
 - Semua stasiun terhubung,tapi hanya beberapa yang digunakan
 - —Non-blocking

Space Division Switch

Multistage Switch

- Mengurangi jumlah dari crosspoints
- Lebih dari satu alur yang melalui jaringan (network)
 - —Meningkatkan keandalan
- Control lebih rumit
- Dapat ter-blocking

Tiga langkah Space Division Switch

Time Division Switching

- Sistem digital modern yang bersandar pada control kecerdasan dari space and time division elements
- Menggunakan teknik digital time division untuk men set up dan merawat virtual circuits
- Mempartisi bit stream berkecepatan rendah menjadi beberapa bagian yang berbagi menjadi stream berkecapatan tinggi

Fungsi Control Signaling

- Komunikasi yang bersuara dengan subscriber
- Transmisi dari nomor yang dipanggil
- Panggilan tidak dapat menjadi indikasi yang lengkap
- Indikasi akhir panggilan
- Sinyal menjadi ring telepon
- Informasi tarif
- Informasi status peralatan dan trunk
- Informasi Diagnosa
- Kontrol dari specialist equipment

Control Signal Sequence

- Kedua telepon on hook
- Subscriber lifts receiver (off hook)
- End office switch signaled
- Switch merespon dengan dial tone
- Penelepon menekan nomor
- Jika yang dituju tidaksibuk, mengirim sinyal dering menuju subscriber
- Feedback to caller (penelepon menerima feedback)
 - Ringing tone, engaged tone, unobtainable
- Target menerima panggilan melalui receiver
- Switch menghentikan sinyal dering dan nada dering
- Switch membangun koneksi
- Koneksi diputus ketika subsriber sumber ditutup

Switch to Switch Signaling

- Subscribers terhubung keswitch yang berbeda
- Originating switch dalam menangkap interswitch trunk
- Mengirim sinyal off hook ke trunk, meminta registrasi nomor pada switch tujuan
- Switch memutuskan pengiriman off hook diikuti dengan on hook (wink) untuk menunjukkan bahwa register telah siap
- Originating switch mengirimkan alamat

Lokasi dari Signaling

- Subscriber ke jaringan
 - —Tergantung pada alat subscriber dan switch
- Dalam jaringan
 - —Management dari panggilan subscriber dan jaringan
 - —ore complex

Signaling dalam Channel

- Menggunakan channel yang sama untuk signaling dan panggilan
 - Tidak memerlukan fasilitas transmisi tambahan
- Inband
 - Menggunakan frekuensi yang sama dengan sinyal suara
 - Dapat pergi kemana saja seperti sinyal suara
 - Tidak mungkin men-set up panggilan pada jalur suara yang salah
- Out of band
 - Sinyal suara tidak menggunakan semua bandwidth 4kHz
 - Narrow signal band dalam 4kHz digunakan untuk kontrol
 - Dapat atau tidaknya dikirim tergantung pada adanya sinyal suara
 - Membutuhkan extra electronics
 - Laju sinyal yang lebih rendah (narrow bandwidth)

Drawbacks of In Channel Signaling

- Laju transfer rate yang terbatas
- Delay antara memasukkan nomor (dialing) dan connection
- Mengatasi dengan menggunakan common channel signaling

Saluran sinyal yang bersifat umum (Common Channel Signaling)

- Sinyal kontrol membawa beberapa jalur yang bersifat bebas pada saluran suara
- Satu kontrol saluran sinyal dapat membawa sal;uran sinyal untuk pada saluran subscriber
- Common control channel for these subscriber lines
- Mode Associated
 - Common channel menutup tracks interswitch trunks
- Mode Disassociated
 - Nodes tambahan (signal transfer points)
 - Lebih efektif pada dua jaringan yang terpisah

Common v. In Channel Signaling

CCIS SIG: Common-channel interoffice signaling equipment SIG: Per-trunk signaling equipment

Common Channel Signaling Modes

Signaling System Number 7

- SS7
- Common channel signaling scheme
- ISDN
- Teroptimisasi untuk 64k saluran jaringan digital
- Call control, remote control, management and maintenance
- Reliable means of transfer of info in sequence
- Akan bekerja pada analog dan dibawah 64k
- Point to point terrestrial and satellite links

SS7 Signaling Network Elements

- Signaling point (SP)
 - Setiap poin dalam jaringan yang dapat menangani kontrol pesan SS7
- Signal transfer point (STP)
 - Sebuah signaling point yang dapat menjadi routing control messages
- Control plane
 - Bertanggungjawab dalam membuat dan memanajemen koneksi
- Information plane
 - Setelah sebuah koneksi ter-set up, info ditransfer ke dalam information plane

Transfer Points

STP = Signaling transfer point

SP = Signaling point

TC = Transit center

LE = Local Exchange

Signaling Network Structures

- STP capacities
 - —Jumlah hubungan sinyal yang dapat diatasi
 - —Waktu transfer pesan (*Message transfer time*)
 - —Kapasitas throughput
- Network performance
 - —Jumlah dari *SPs*
 - —Signaling delays
- Availability and reliability
 - –Kemampuan dari jaringan untuk menyediakan services dalam menghadapi STP failures

Softswitch Architecture

- Tujuan utama computer running software untuk menjadikannya sebuah smart phone switch
- Biaya yang lebih rendah
- Fungsi yang lebih besar
 - Packetizing of digitized voice data
 - Dapat mengirimkan suara melalui IP (VoIP)
- Bagian yang paling kompleks dari telephone network switch adalah software controlling call process
 - Call routing
 - Call processing logic
 - Typically running on proprietary processor
- Separate call processing from hardware function of switch
- Physical switching done by media gateway
- Call processing done by media gateway controller

Traditional Circuit Switching

Softswitch

Packet Switching Principles

- Circuit switching didesign untuk suara
 - Resources ditujukan untuk sebuah particular call
 - —Sebagian waktu dari koneksi data bersifat *idle*
 - —Data rate tetap
 - Kedua pihak harus beroperasi pada rate yang sama

Basic Operation

- Data ditransmisikan dalam paket-paket kecil
 - —Biasanya 1000 *octets*
 - —Pesan yang panjang dibagi menjadi rangkaian paketpaket
 - Setiap paket berisi sebuah bagian dari user data ditambah dengan beberapa info kontrol
- Info kontrol
 - —Routing (addressing) info
- Paket diterima, disimpan secara ringkas (buffered) dan dilanjutkan ke node selanjutnya
 - —Store and forward

Use of Packets

Keuntungan

- Effisiensi Line
 - Satu node ke node penghubungnya dapat berbagi berbagai macam paket setiap waktu
 - Paket diurutkan dan dikirimkan secepat mungkin
- Konversi DATA rate
 - Setiap stasiun terhubung pada not lokal dengan kecepatan masing-masing
 - Nodes buffer data jika diperlukan untuk menyamakan rates
- Packet akan diterima walaupun jaringan sibuk
 - Kecepatan pengiriman mungkin turun
- Prioritasnya dapat diatur

Teknik Switching

- Stasiun memecah pesan panjang menjadi paket-paket
- Pengiriman Packet satu kali pada satu waktu ke jaringan
- Packet di-handle dalam dua cara
 - —Datagram
 - —Virtual circuit

Datagram

- Setiap paket diperlakukan secara independent
- Packet dapat mengambil setiap rute praktis
- Packet mungkin datang tidak sesuai urutan
- Packet mungkin dapat menghilang
- Tergantung pada receiver untuk mengurutkan paket dan mengembalikan paket yang hilang

Datagram Diagram

Virtual Circuit

- Membangun perencanaan rute sebelum mengirimkan paket
- Panggilan permintaan dan panggilan penerimaan paket membangun koneksi (handshake)
- Masing-masing paket terdiri dari sebuah pengenal virtual circuit bukan sebuah alamat tujuan
- Tidak ada keputusan routing yang diperlukan untuk setiap paket
- Mengosongkan permintaan untuk menggagalkan circuit
- Bukan sebuah jalur yang bersifat dedicated

Diagram Virtual Circuit

Virtual Circuits v Datagram

- Virtual circuits
 - Jaringan dapat menyediakan sequencing dan kontrol error
 - Packet diteruskan lebih cepat
 - Tidak perlu membuat keputusan routing
 - Kurang reliable
 - Hilangnya sebuah node menyebabkan hilangnya seluruh circuit yang melaluinya
- Datagram
 - Tidak memrlukan fase call setup
 - Lebih baik jika paketnya sedikit
 - Lebih flexible
 - Routing dapat digunakan untuk menghindari tabrakan dalam jaringan

Circuit v Paket Switching

- Kemampuan (Performance)
 - —Propagation delay
 - —Waktu transmission
 - —Node delay

Event Timing

X.25

- 1976
- Interface antara host dan packet switched network
- Hampir bersifat universal pada packet switched networks dan packet switching dalam ISDN
- Terdiri dari tiga layer
 - —Physical
 - —Link
 - —Packet

X.25 - Physical

- Interface antara stasiun yang terhubung dan link ke node
- Data terminal equipment DTE (user equipment)
- Data circuit terminating equipment DCE (node)
- Menggunakan -physical layer specification X.21
- Reliable transfer across physical link
- Sequence of frames

X.25 - Link

- Link Access Protocol Balanced (LAPB)
 - —Subset dari HDLC
 - —Lihat bab 7

X.25 - Packet

- Virtual sirkuit Eksternal
- Logical connections (virtual circuits) antara subscribers

X.25 Penggunaan Virtual Circuits

Virtual Circuit Service

- Logical connection antara dua stasiun
 - External virtual circuit
- Perencanaan rute yang spesifik melalui jaringan
 - Internal virtual circuit
- Biasanya one to one relationship antara eksternal dan internal virtual circuits
- Dapat menyediakan X.25 dengan datagram style network
- External virtual circuits memerlukan saluran logical (logical channel)
 - Semua data dianggap sebagai bagian dari stream

X.25 Levels

- Data user lewat sampai X.25 level 3
- X.25 menambahkan informasi kontrol
 - —Header
 - —Penjaelasan virtual circuit
 - —menyediakan sequence numbers untukaliran dan kontrol error
- Paket X.25 diturunkan ke LAPB entity
- LAPB menambahkan informasi kontrol yang lebih banyak

User Data dan X.25 Protocol Control Information

Frame Relay

- Di disain lebih effisien dari pada X.25
- Dikembangkan sebelum ATM
- Installed base yang lebih besar dari pada ATM
- ATM sekarang dikembangkan kearah jaringan berkecapatan tinggi

Frame Relay Background - X.25

- Paket ckontrol panggilan, dalam band signaling
- Multiplexing dari virtual circuits pada layer 3
- Layer 2 dan 3 termaasuk flow and kontrol error
- Considerable overhead
- Tidak pantas untuk sistem digital modern dengan realibility yang tinggi

Perbedaan Frame Relay

- kontrol panggilan dibawa pada koneksi logical yang terpisah
- Multiplexing dsan switching pada layer 2
 - —Menghilangkan satu layer proses
- Tidak ada error hop by hop atau flow control
- End to end flow dan error control (jika digunakan) dilakukan pada layer yang lebih tinggi
- Satu frame data user dikirimkan dari sumber ke tujuan dan ACK (dari layer yang lebih tinggi) dikirimkan kembali

Keuntungan dan kerugian

- Kehilangan link by link error dan flow control
 - —Meningkatkan reliability membuat masalah ini berkurang
- Proses Komunikasi Streamlined
 - —Delay yang lebih rendah
 - —Throughput yang lebih tinggi
- ITU-T menyarankan frame relay diatas 2Mbps

Arsitekture Protocol

Control Plane

- Antara subscriber dan jaringan
- Menggunakan saluran logikal yang terpisah
 - Mirip dengan common channel signaling untuk circuit switching services
- Data link layer
 - —LAPD (Q.921)
 - —Reliable data link control
 - —Error dan flow control
 - —Antara user (TE) and network (NT)
 - Digunakan untuk menukar Q.933 control signal messages

User Plane

- End to end functionality
- Pengiriman info antar user
- LAPF (Link Access Procedure for Frame Mode Bearer Services) Q.922
 - Frame delimiting, alignment dan transparency
 - Frame mux dan demux menggunakan addressing field
 - Memastikan frame adalah sebuah angka integral octets (zero bit insertion/extraction)
 - Memastikan frame tidak terlalu panjang atau pendek
 - Deteksi pada error transmisi
 - Fungsi kontrol congestion

Transfer data user

- Tipe satu frame
 - —User data
 - —Tidak ada frame kontrol
- Tidak ada inband signaling
- Tiadk ada nomor sequence
 - —Tidak ada flow atau kontrol error

Informasi tambahan

- Stallings bab 10
- ITU-T web site
- Telephone company web sites (not much technical info - mostly marketing)
- X.25 info from ITU-T web site
- Frame Relay forum