Molecular Dynamics Simulation

Marco Stumper und Alexander Walter

Universität Hamburg

January 30, 2014

Molecular Dynamics

- Molecular Dynamics
 - Simulation
 - Potential
- 2 Die Simulation
 - Code
 - Initialisierung
 - Ein paar Plots
- Resultate
 - Aggregatzustände
 - Noch Mögliches

Erklärung

Grundlegendes

- Es befinden sich N Partikel in einer 3D Box mit Seitenlängen L
- Dichte $\rho = \frac{N}{L}^3$

Erklärung

Grundlegendes

- Es befinden sich N Partikel in einer 3D Box mit Seitenlängen L
- Dichte $\rho = \frac{N^3}{L}$

Initialisierung

- Die Partikel werden an zufälligen Orten platziert (Optional in einem Kasten)
- Die Box hat periodische Randbedingungen

Erklärung

Grundlegendes

- Es befinden sich N Partikel in einer 3D Box mit Seitenlängen L
- Dichte $\rho = \frac{N^3}{L}$

Initialisierung

- Die Partikel werden an zufälligen Orten platziert (Optional in einem Kasten)
- Die Box hat periodische Randbedingungen

Simulation

- Ein Simulationsschritt wird mit Hilfe von 2 Arrays berechnet
- Wir verwenden das Lennard-Jones Potential

Lennard-Jones-Potential

Lennard-Jones-Potential

$$V(r) = V_0(r^{-12} - r^{-6})$$

Lennard-Jones-Potential

- $V(\infty) = 0$, $V(0) = \infty$
- \bullet ϵ ist die Tiefe des Potentialtopfes
- Minimum bei $r_m = 2^{\frac{1}{6}}$

$$V(r) = V_0(r^{-12} - r^{-6})$$

Observablen

Berechnung

- Mit den 2 Arrays werden die neuen Geschwindigkeiten berechnet
- Wir verwenden dafür den Verlet-Algorithmus

Observablen

Berechnung

- Mit den 2 Arrays werden die neuen Geschwindigkeiten berechnet
- Wir verwenden dafür den Verlet-Algorithmus

Verlet

- •
- •

XML Code

```
<RECTANGLE>
  <TITLE>Quader 1</TITLE>
  <LOCATION>
    <MIDDLEPOINT>
       < X > 4 < / X >
       <Y>4</Y>
       < Z > 4 < / Z >
    </MIDDLEPOINT>
    <LENGTHS>
       < X > 100 < /X >
       <Y>100</Y>
       <Z>100</Z>
    </LENGTHS>
```

XML Code

```
</LOCATION>
    <POTENTIAL>
      <V>3</V>
    </POTENTIAL>
    <PARTICLES>
      <COUNT>1000</COUNT>
      <MASS>20</MASS>
      <VELOCITY TYPE="constant">2000</VELOCIT</pre>
    </PARTICLES>
  </RECTANGLE>
</OBJECTS>
```

</WORLD>

Erster Zustand

Initial

- N Partikeln mit Geschwindigkeit v
- Zufällig auf den Raumkoordinaten x,y,z verteilt

Erster Zustand

Initial

- N Partikeln mit Geschwindigkeit v
- Zufällig auf den Raumkoordinaten x,y,z verteilt

Welt

Objekte

- unpassierbare Objekte in den Raum platzieren
- permeable/semipermeable Objekte

Welt

Objekte

- unpassierbare Objekte in den Raum platzieren
- permeable/semipermeable Objekte

Observablen

- unterschiedliche Startgeschwindigkeiten
- v binomial auf die Teilchen verteilen
- abkühlen des Systems über Zeit
- Dichtverteilung bestimmen

Vielen Dank für Eure Aufmerksamkeit.