I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 2 February 2000

An Executive Agency of the Department of Trade and Industry

			•
			•
			-
			-

7734659 8420767-1 000190____ P01/7730 0.00 - 9501705.5

Request for grant of a patent (See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form))

The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1.	Your reference	P.75751 G	cw	
2.	Patent application number (The Patent Office will fill in this part)	9901705.5		
3.	Full name, address and postcode of the or of each applicant (underline all surnames)	UNIVERS Gower Stre London WC1E 6B3 United Kin	<u> </u>	
	Patents ADP number (if you know it)		22025001	
	If the applicant is a corporate body, give the country/state of its incorporation	United Kin	gdom	
4.	Title of the invention	Screen Me	hod	
 5.	Name of your agent (if you have one)	J A KEMP	& CO	
	"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)	14 SOUTH GRAY'S II LONDON		
		260) ol	
	Patents ADP number (if you know it)			
6.	If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number	Country	Priority application number (if you know it)	Date of filing (day / month / year)
7.	If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application	Number of ea	rlier application	Date of filing (day / month / year)
3.	Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer "Yes" if: a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, or c) any named applicant is a corporate body: See note (d))	Yes		

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form

Description

Claim(s)

5

bstract

Drawing(s)

6

 If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patens Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents

(please specify)

I/We request the grant of a patent on the basis of this application

Signature J. A. Kensto Date 26 Janu

12. Name and daytime telephone number of G.C. WOODS person to contact in the United Kingdom 0171 405 3292

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue of a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered "Yes" Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

SCREEN METHOD

Technical field of the invention

This invention relates to methods of screening for compounds which specifically regulate different isoforms of dimethylarginine dimethylaminohydrolase.

Background of the invention

5

10

15

20

25

30

35

Arginine residues in proteins are methylated by a family of Protein arginine N-methyltransferases (PRMTs). These enzymes catalyze the methylation of guanidino nitrogens of arginine to produce N^G monomethyl-L-arginine (L-NMMA), N^GN'^G dimethyl-L-arginine (asymmetric dimethylarginine; ADMA) and N^GN^G dimethylarginine (symmetric dimethylarginine; SDMA). Proteolysis of proteins containing these residues releases free methylarginines. Although the biological role of methylarginine residues is unclear, free L-NMMA and ADMA, but not SDMA, are inhibitors of all three isoforms of nitric oxide synthase (NOS) and might alter NOS activity in health or disease.

Free methylarginines are found in cell cytosol, plasma and tissues and their concentrations differ between tissue and between regions within a single tissue or organ. Elevated concentrations of ADMA have been detected in endothelial cells repopulating blood vessels damaged by balloon injury, in the plasma of patients or experimental animals with hyperlipidaemia, renal failure or athersclerosis, and in patients with schizophrenia or multiple sclerosis. Altered biosynthesis of nitric oxide (NO) has been implicated in the pathogenesis of all of these conditions and it is possible that the accumulation of endogenous ADMA underlies the inhibition of NO generation.

The production of methylarginines is probably an

obligatory step in protein turnover, and rates of production may show tissue specific and temporal variations. However, L-NMMA and ADMA, but not SDMA, are actively metabolised to citrulline and methylamines by the action of dimethylarginine dimethylaminohydrolase (DDAH). Certain tissues which express NOSs also appear to express DDAH. Pharmacological inhibition of DDAH increases the concentration of ADMA in endothelial cells and inhibits NO-mediated endothelium-dependent relaxation of blood vessels. These observations suggest that DDAH activity ensures that the local concentration of ADMA does not normally rise sufficiently to affect NO generation, and that changes in DDAH activity could actively alter NOS activity.

15

20

25

30

35

10

5

Summary of the invention

The present invention is based on our finding that humans express two functionally active methylarginases, which we have called DDAHI and DDAHII. We have cloned the polynucleotides that encode DDAHI and DDAHII isoforms and have studied the expression patterns of these two methylarginases via RNA blotting. These experiments revealed that DDAHI has a tissue distribution in humans which is similar to that of the neuronal isoform of nitric oxide synthase (nNOS), whilst DDAHII is highly expressed in vascular tissues which also express endothelial (eNOS).

These data provide evidence that methylarginine concentration is actively regulated in cells that express NOS and further, suggest that there is a mechanism of regulation of NOS whereby different isoforms of NOS are specifically regulated as methylarginine concentrations are modulated by the action of specific DDAH enzymes.

DDAHI and DDAHII may therefore provide new targets for the isolation of compounds which can specifically

modulate the activity of particular NOS isoforms or other arginine utilising enzymes through specific interaction with particular DDAH isoforms.

5

10

15

20

25

30

Furthermore, we have found that the human DDAHI and DDAHII share significant homology with bacterial arginine deiminases. Arginine deiminases have only been described in prokaryotic organisms and the primitive eukaryote Giardia intestinalis. Arginine deiminases catalyse the hydrolysis of arginine to ammonia and citrulline in a reaction that closely resembles the hydrolysis of methylarginine to methylamine and citrulline catalysed by DDAHI.

We have isolated DDAHI sequences from three species of bacteria and an arginine deiminase sequence from P. aeruginosa. The enzymes encoded by these sequences can be expressed at high levels and large quantities of the expressed enzyme can be recovered. Thus we have identified an excellent source of enzymes which can be used to identify compounds capable of modulating the activity of DDAH enzymes.

According to the present invention there is thus provided a polynucleotide which:

- (a) encodes a polypeptide that has the properties of a methylarginase, which polynucleotide is selected from:
- (1) the coding sequence of SEQ ID NO: 1, 3, 5,
 7,,9 or 11;
- (2) a sequence which hybridises selectively to the complement of a sequence defined in (1); and
- (3) a sequence that is degenerate as a result of the genetic code with respect to a sequence defined in (1) or (2); or
- 35 (b) is a sequence complementary to a

polynucleotide defined in (a).

The invention also provides:

- a polypeptide which has methylarginase activity

 and which comprises the sequence set out in SEQ

 ID NO: 2, 4, 6, 8, 10 or 12, a sequence

 substantially homologous thereto or a fragment

 of either said sequence.
- a vector incorporating a polynucleotide of the invention.
 - a cell harbouring a polynucleotide, a peptide or a vector of the invention.
- a process for the preparation of a polypeptide which has methylarginase activity, which
 process comprises cultivating a host cell harbouring an expression vector of the invention under conditions to provide for expression of the said polypeptide, and recovering the expressed polypeptide.
- 20 a modulator of methylarginase activity.

25

30

- a method for identifying a modulator of methylarginase activity and/or expression, comprising:
- (i) contacting a polynucleotide of the invention, a polypeptide of the invention, a vector of the invention or a cell of the invention and a test substance under conditions that would permit methylarginase activity in the absence of the test substance; and
 - (ii) determining thereby whether the said substance modulates the activity and/or expression of methylarginase.
- a modulator of methylarginase activity and/or expression identified by the method of the

method of the invention.

5

- a polynucleotide, a polypeptide, an expression vector or a modulator of the invention for use in a method of treatment of the human or animal body by therapy.
- use of a polynucleotide, a polypeptide, an expression vector or a modulator which is an activator of the invention for the manufacture of a medicament for use in the treatment of
- hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer.
- use of a modulator of the invention which is an inhibitor of methylarginase activity and/or expression for the manufacture of a medicament for use in the treatment of ischeamia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or
- multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease.
- a pharmaceutical composition comprising a
 polynucleotide, a polypeptide, an expression
 vector or a modulator which is an activator of
 the invention and a pharmaceutically acceptable
 carrier,and/or diluent.
- a method of treating a human or animal
 suffering from hyperlipidaemia, renal failure,
 hypertension, restenosis after angioplasty,
 atherosclerosis, complications of heart
 failure, schizophrenia, multiple sclerosis or
 cancer, which method comprises administering to
 the host a therapeutically effective amount of

a polypeptide, an expression vector, or a modulator which is an activator of the invention.

- a method of treating a human or animal suffering from ischeamia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including

arthritis, skin disorders or inflammatory cardiac disease, which method comprises administering to the host a therapeutically effective amount of a modulator which is an activator of the invention.

15

20

Brief description of the drawings

Figure 1 shows an amino acid alignment of rat and human DDAHI with human DDAHII. The derived amino acid sequences of human and rat DDAHI and human DDAHII were aligned using the clustal programme. Amino acid identities are indicated (*), highly conservative substitutions (:) and conservative substitutions (.).

Figure 2 shows recombinant expression of human DDAH

II. Aliquots of E. coli transfected with either empty vector (lanes 1 and 3) or vector containing human DDAH II cDNA (lanes 2 and 4) were resolved on 15% SDS-PAGE gels. Gels were either stained for total protein with coomassie blue (lanes 1 and 2) or processed for western blotting (lanes 3 and 4) as described under Experimental Procedures. The filled arrow indicates the ~40kDa recombinant protein that is specifically recognised by the anti-PentaHis antibody. The migration of molecular weight markers is indicated.

Figure 3 shows DDAH activity of recombinant DDAH II. Aliquots of cell lysates of *E. coli* transfected with either empty vector or vector containing human DDAH II cDNA were assayed for DDAH activity as described under Experimental Procedures. Assays were performed in triplicate and the data is expressed as the average of the three replicates after subtraction of background. The data presented is the result of one representative experiment. Similar results were obtained in four independent experiments. The data shown represent the hydrolysis of ~1mmol L-NMMA hr⁻¹ by *E.coli* lysates containing recombinant DDAH II. Under the same conditions, a 30% rat liver homogenate hydrolysed ~18mmol L-NMMA hr-1

15

20

25

30

35

5

10

Figure 4 shows tissue distribution of human DDAH and NOS isoforms. Labelled probes specific for human DDAH I, DDAH II, neuronal NOS, endothelial NOS and b-actin were sequentially hybridized to a commercially available multiple-tissue northern blot. The migration of molecular weight markers is indicated.

Figure 5 shows alignent of human DDAHI and II with Pseudomonas Arginine Deiminase. The derived amino acid of human DDAHI and II were aligned with the amino acid sequence of Pseudomonas X arginine deiminase. Amino acid identities are indicated (*), highly conservative substitutions (:) and conservative substitutions (.). Boxed regions indicated motifs highly conserved between arginine deiminases.

Figure 6A shows the alignment using ClustalW of human DDAH I and DDAHs from S.coelicolor, P.aeruginosa and M.tuberculosis. Identical amino acids are indicated by (*), highly conserved amino acid substitutions by (:)

and conserved amino acid substitutions by (.).

- S. coelicolor DDAH is encoded by residues 33784 to 33011 of cosmid St4C6. The sequence does not have an individual accession number. P. aeruginosa DDAH sequence is contained within a contiguous genomic DNA sequence (contig 1281). Again, the sequence does not have an individual accession number. M. tuberculosis DDAH has been deposited under accession number DDAH Z797022.
- Figure 6B shows a similar alignment using ClustalW of *P.aeruginosa* DDAH and arginine deiminase.

Figure 7 shows enzymatic activity of ScDDAH and PaDDAH. The effect of 10mM ADMA and SDMA on recombinant ScDDAH and paDDAH was studied using the assay conditions described in the material and methods section below. Assays were carried out in triplicate on aliquots of cell lysates containing empty vector, scDDAH cDNA or paDDAH cDNA and data was expressed as a mean of the total number of replicates after subtraction of background. The results shown are the mean of three independent experiments.

Detailed Description of the Invention

25 Polynucleotides

5

15

20

30

35

The invention provides a polynucleotide which:

- (a) encodes a polypeptide that has the properties of a methylarginase, which polynucleotide is selected from:
- (2) a sequence which hybridises selectively to the complement of a sequence defined in (1); and

- (3) a sequence that is degenerate as a result of the genetic code with respect to a nucleic sequence defined in (1) or (2); or
- (b) is a sequence complementary to a polynucleotide defined in (a).

5

10

15

20

25

30

35

Polynucleotides of the invention also include variants of the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 which can function as methylarginases. Such variants thus have the ability to catalyze the production of citrulline from methylarginines. Typically a polynucleotide of the invention comprises a contiguous sequence of nucleotides which is capable of hybridizing under selective conditions to the complement of the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11.

A polynucleotide of the invention and the complement of the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 can hydridize at a level significantly above background. Background hybridization may occur, for example, because of other cDNAs present in a cDNA library. The signal level generated by the interaction between a polynucleotide of the invention and the complement of the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 is typically at least 10 fold, preferably at least 100 fold, as intense as interactions between other polynucleotides and the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or The intensity of interaction may be measured, for example, by \dot{r} adiolabelling the probe, e.g. with $^{32}P.$ Selective hybridisation may typically be achieved using conditions of low stringency (0.03M sodium chloride and 0.03M sodium citrate at about 40°C), medium stringency (for example, 0.03M sodium chloride and 0.03M sodium citrate at about 50°C) or high stringency (for example, 0.03M sodium chloride and 0.03M sodium citrate at about 60°C).

A nucleotide sequence which is capable of selectively hybridizing to the complement of the DNA coding sequence of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 will generally have at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98% or at least 99% sequence identity to the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 over a region of at least 20, preferably at least 30, for instance at least 40, at least 60, more preferably at least 100 contiguous nucleotides or most preferably over the full length of SEQ ID NO: 1, 3, 5, 7, 9 or 11.

5

10

15

20

25

30

35

Any combination of the above mentioned degrees of sequence identity and minimum sizes may be used to define polynucleotides of the invention, with the more stringent combinations (i.e. higher sequence identity over longer lengths) being preferred. Thus, for example a polynucleotide which has at least 90% sequence identity over 25, preferably over 30 nucleotides forms one aspect of the invention, as does a polynucleotide which has at least 95% sequence identity over 40 nucleotides.

The coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 may be modified by nucleotide substitutions, for example from 1, 2 or 3 to 10, 25, 50 or 100 substitutions. The polynucleotide of SEQ ID NO: 1, 3, 5, 7, 9 or 11 may alternatively or additionally be modified by one or more insertions and/or deletions and/or by an extension at either or both ends. The modified polynucleotide generally encodes a polypeptide which has methylarginase activity. Degenerate substitutions may be made and/or substitutions may be made which would result in a conservative amino acid substitution when the modified sequence is translated, for example as shown in the Table below.

Polynucleotides of the invention may comprise DNA or RNA. They may also be polynucleotides which include

within them synthetic or modified nucleotides. A number of different types of modification to polynucleotides are known in the art. These include methylphosphonate and phosphorothicate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the polynucleotides described herein may be modified by any method available in the art. Such modifications may be carried out in order to enhance the *in vivo* activity or lifespan of polynucleotides of the invention.

Polynucleotides of the invention may be used as a primer, e.g. a PCR primer, a primer for an alternative amplification reaction, a probe e.g. labeled with a revealing label by conventional means using radioactive or non-radioactive labels, or the polynucleotides may be cloned into vectors.

10

15

20

25

30

35

Such primers, probes and other fragments will preferably be at least 10, preferably at least 15 or at least 20, for example at least 25, at least 30 or at least 40 nucleotides in length. They will typically be up to 40, 50, 60, 70, 100 or 150 nucleotides in length. Probes and fragments can be longer than 150 nucleotides in length, for example up to 200, 300, 400, 500, 600, 700 nucleotides in length, or even up to a few nucleotides, such as five or ten nucleotides, short of the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11.

Polynucleotides such as a DNA polynucleotide and primers according to the invention may be produced recombinantly, synthetically, or by any means available to those of skill in the art. They may also be cloned by standard techniques. The polynucleotides are typically provided in isolated and/or purified form.

In general, primers will be produced by synthetic means, involving a stepwise manufacture of the desired

nucleic acid sequence one nucleotide at a time. Techniques for accomplishing this using automated techniques are readily available in the art.

5

10

15

20

25

30

35

Longer polynucleotides will generally be produced using recombinant means, for example using PCR (polymerase chain reaction) cloning techniques. will involve making a pair of primers (e.g. of about 15-30 nucleotides) to a region of the G14 gene which it is desired to clone, bringing the primers into contact with _mRNA or cDNA obtained from a human cell, performing a polymerase chain reaction under conditions which bring about amplification of the desired region, isolating the amplified fragment (e.g. by purifying the reaction mixture on an agarose gel) and recovering the amplified DNA. The primers may be designed to contain suitable restriction enzyme recognition sites so that the amplified DNA can be cloned into a suitable cloning vector.

Such techniques may be used to obtain all or part of the DDAHI and DDAHII genes described herein. Genomic clones corresponding to the cDNA of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 containing, for example, introns and promoter regions are also aspects of the invention and may also be produced using recombinant means, for example using PCR (polymerase chain reaction) cloning techniques, starting with genomic DNA from for example a bacterial, an animal or a human cell.

Although in general the techniques mentioned herein are well known in the art, reference may be made in particular to Sambrook et al, 1989, Molecular Cloning: a laboratory manual.

Polynucleotides which do not have 100% sequence identity to the sequence of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 but fall within the scope of the invention can be obtained in a number of ways:

1. Other human allelic variants of the human DDAHI and DDAHII sequences given in SEQ ID NOS: 1 and 3 may be obtained for example by probing genomic DNA libraries made from a range of individuals, for example individuals from different populations, or individuals with different types of disorder related to aberrant NO metabolism, using probes as described above.

5

10

15

20

25

30

35

In addition, homologues of SEQ ID NO: 1, 3, 5, 7, 9 or 11 may be obtained from other animals particularly mammals (for example mice and rabbits) or fish (for example Fugu) or insects (for example D. melanogaster)or other invertebrates (for example C. elegans), plants (for example A. thaliana), bacteria and yeasts and such homologues and fragments thereof in general will be capable of selectively hybridising to the coding sequence of SEQ ID NOS: 1 and 3 or its complement. Such sequences may be obtained by probing cDNA or genomic libraries from dividing cells or tissues or other animal species with probes as described above. Degenerate probes can be prepared by means known in the art to take into account the possibility of degenerate variation between the DNA sequence of SEQ ID NOS: 1, 3, 5, 7, 9 or 11 and the sequences being probed for under the selective hybridization conditions given above.

- 2. Allelic variants and species homologues may also be obtained using degenerate PCR which will use primers designed to target sequences within the variants and homologues encoding likely conserved amino acid sequences. Likely conserved sequences can be predicted from aligning the amino acid sequences of the invention. The primers will contain one or more degenerate positions and will be used at stringency conditions lower than those used for cloning sequences with single sequence primers against known sequences.
- 3. Alternatively, polynucleotides may be obtained

by site directed mutagenesis of SEQ ID NO: 1, 3, 5, 7, 9 or 11 or allelic variants thereof. This may be useful where, for example, silent codon changes are required to sequences to optimise codon preferences for a particular host cell in which the polynucleotide sequences are being expressed. Other sequence changes may be desired in order to introduce restriction enzyme recognition sites, or to alter the property or function of the polypeptides encoded by the polynucleotides.

The invention further provides double stranded polynucleotides comprising a polynucleotide of the invention and its complement.

Polynucleotides, probes or primers of the invention may carry a revealing label. Suitable labels include radioisotopes such as ³²P or ³⁵S, enzyme labels, or other protein labels such as biotin. Such labels may be added to polynucleotides, probes or primers of the invention and may be detected using techniques known per se.

20 Polypeptides

5

15

25

A polypeptide of the invention comprises the amino acid sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12 or a substantially homologous sequence, or a fragment of either said sequence and has methylarginase activity. In general, the naturally occurring amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 is preferred.

In particular, a polypeptide of the invention may comprise:

- 30 (a) the polypeptide sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12;
 - (b) an allelic variant or species homologue thereof; or
- (c) a protein with at least 70, at least 80, at least 90, at least 95, at least 98 or at least

99% sequence identity to (a) or (b).

5

10

15

20

25

30

35

An allelic variant will be a variant which will occur naturally, for example, in a human, bacterium or yeast and which will function in a substantially similar manner to the protein of SEQ ID NO: 2, 4, 6, 8, 10 or 12, for example it acts as a methylarginase. Similarly, a species homologue of the protein will be the equivalent protein which occurs naturally in another species and which can function as a methylarginase.

Allelic variants and species homologues can be obtained by following the procedures described herein for the production of the polypeptides of SEQ ID NO: 2, 4, 6, 8, 10 or 12 and performing such procedures on a suitable cell source e.g. a human or bacterium cell. It will also be possible to use a probe as defined above to probe libraries made from human or bacterial cells in order to obtain clones encoding the allelic or species variants. The clones can be manipulated by conventional techniques to generate a polypeptide of the invention which can then be produced by recombinant or synthetic techniques known per se.

A polypeptide of the invention preferably has at least 60% sequence identity to the protein of SEQ ID NO: 3, more preferably at least 70%, at least 80%, at least 90%, at least 95%, at least 97% or at least 99% sequence identity thereto over a region of at least 20, preferably at least 30, for instance at least 40, at least 60, at least 100 contiguous amino acids or over over the full length of SEQ ID NO: 2, 4, 6, 8, 10 or 12.

The sequence of the polypeptide of SEQ ID NO: 2, 4, 6, 8, 10 or 12 and of allelic variants and species homologues can thus be modified to provide polypeptides of the invention. Amino acid substitutions may be made, for example from 1, 2 or 3 to 10, 20 or 30 substitutions.

The modified polypeptide generally retains activity as a methylarginase, as defined herein. Conservative substitutions may be made, for example according to the following Table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other.

ALIPHATIC	Non-polar	GAP
		ILV
	Polar-uncharged	CSTM
		ИQ
	Polar-charged	DE
		K R
AROMATIC		HFWY

10

15

20

25

Polypeptides of the invention also include fragments of the above-mentioned full length polypeptides and variants thereof, including fragments of the sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12. Such fragments typically retain activity as a methylarginase.

Other preferred fragments include those which include an epitope. Suitable fragments will be at least 5, e.g. at least 10, at least 12, at least 15 or at least 20 amino acids in size. Epitope fragments may typically be up to 50, 60, 70, 80, 100, 150 or 200 amino acids in size. Polypeptide fragments of the polypeptides of SEQ ID NO: 3, and allelic and species variants thereof may contain one or more (e.g. 1, 2, 3 or 5 to 10, 20 or 30) substitutions, deletions or insertions, including conservative substitutions. Epitopes may be determined by techniques such as peptide scanning techniques already known in the art. These fragments will be useful for obtaining antibodies to polypeptides of the invention.

Polypeptides of the invention may be in a

substantially isolated form. It will be understood that the polypeptide may be mixed with carriers or diluents which will not interfere with the intended purpose of the polypeptide and still be regarded as substantially isolated. A polypeptide of the invention may also be in a substantially purified form, in which case it will generally comprise the polypeptide in a preparation in which more than 50%, e.g. more than 80%, 90%, 95% or 99%, by weight of the polypeptide in the preparation is a polypeptide of the invention.

Polypeptides of the invention may be chemically modified, e.g. post-translationally modified. For example, they may be glycosylated or comprise modified amino acid residues. They may also be modified by the addition of Histidine residues to assist their purification or by the addition of a signal sequence to promote their secretion from a cell. Such modified polypeptides and proteins fall within the scope of the term "polypeptide" of the invention.

Polypeptides of the invention may be modified for example by the addition of Histidine residues or a T7 tag to assist their identification or purification or by the addition of a signal sequence to promoter their secretion from a cell where the polypeptide does not naturally contain such a sequence.

<u>Vectors</u>

5

10

15

20

25

30

35

Polynucleotides of the invention can be incorporated into a recombinant replicable vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus, in a further embodiment, the invention provides a method of making polypeptides of the invention by introducing a polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under

conditions which bring about replication of the vector. The vector may be recovered from the host cell.

Polynucleotides according to the invention may also be inserted into the vectors described above in an antisense orientation in order to provide for the production of antisense RNA. Antisense RNA or other antisense polynucleotides may also be produced by synthetic means. Such antisense polynucleotides may be used in a method of controlling the levels of methylarginases or their variants or species homologues.

5

10

15

20

25

30

35

Preferably, a polynucleotide of the invention in a vector is operably linked to a control sequence which is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector. The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence, such as a promoter, "operably linked" to a coding sequence is positioned in such a way that expression of the coding sequence is achieved under conditions compatible with the regulatory sequence.

Vectors of the invention may be transformed into a suitable host cell as described above to provide for expression of a polypeptide of the invention. Thus, in a further aspect the invention provides a process for preparing a polypeptide according to the invention which comprises cultivating a host cell transformed or transfected with an expression vector encoding the polypeptide, and recovering the expressed polypeptide.

The vectors may be for example, plasmid, virus or phage vectors provided with a origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter. The vectors may contain one or more selectable

marker genes, for example an ampicillin resistence gene in the case of a bacterial plasmid or a resistance gene for a fungal vector. Vectors may be used in vitro, for example for the production of RNA or used to transfect or transform a host cell, for example, E. coli. The vectors may also be adapted to be used in vivo, for example in a method of gene therapy.

5

10

15

20

25

30

35

A further embodiment of the invention provides host cells transformed or transfected with the vectors for the replication and/or expression of polynucleotides of the invention. The cells will be chosen to be compatible with the said vector and may for example baterial (eg. E. coli), yeast, insect or mammalian.

Promoters and other expression regulation signals may be selected to be compatible with the host cell for which expression is designed. For example, yeast promoters include *S. cerevisiae* GAL4 and ADH promoters, *S. pombe nmt1* and *adh* promoter. Mammalian promoters include the metallothionein promoter which can be induced in response to heavy metals such as cadmium. Viral promoters such as the SV40 large T antigen promoter or adenovirus promoters may also be used. All these promoters are readily available in the art.

Mammalian promoters, such as b-actin promoters, may be used. Tissue-specific promoters, in particular endothelial or neuronal cell specific promoters (for example the DDAHI and DDAHII promoters), are especially preferred. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR), the rous sarcoma virus (RSV) LTR promoter, the SV40 promoter, the human cytomegalovirus (CMV) IE promoter, adenovirus, HSV promoters (such as the HSV IE promoters), or HPV promoters, particularly the HPV upstream regulatory region (URR). Viral promoters are readily available in the art.

The vector may further include sequences flanking the polynucleotide giving rise to antisense RNA which comprise sequences homologous to eukaryotic genomic sequences, preferably mammalian genomic sequences, or viral genomic sequences. This will allow the introduction of the polynucleotides of the invention into the genome of eukaryotic cells or viruses by homologous recombination. In particular, a plasmid vector comprising the expression cassette flanked by viral sequences can be used to prepare a viral vector suitable for delivering the polynucleotides of the invention to a mammalian cell. Other examples of suitable viral vectors include herpes simplex viral vectors (for example as disclosed in WO 98/04726 and WO 98/30707) and retroviruses, including lentiviruses, adenoviruses, adeno-associated viruses and HPV viruses (such as HPV-16 or HPV-18). Gene transfer techniques using these viruses are known to those skilled in the art. Retrovirus vectors for example may be used to stably integrate the polynucleotide giving rise to the antisense RNA into the host genome. Replication-defective adenovirus vectors by contrast remain episomal and therefore allow transient expression.

<u>Assays</u>

5

10

15

20

25

30

The invention provides a method for identifying a modulator of methylarginase activity and/or expression, comprising:

- (i) contacting a polynucleotide according to the invention, a polypeptide according to the invention, a vector according to the invention or a cell according to the invention and a test substance under conditions that would permit methylarginase activity in the absence of the test substance; and
- 35 (ii) determining thereby whether the said substance

modulates the activity and/or expression of methylarginase.

Any suitable assay format may be used for identifying a modulator of methylarginase activity and/or expression.

In the case of using a polynucleotide or vector of the invention, the assay will typically be carried out on a cell harbouring the polynucleotide or vector or on a cell extract comprising the polynucleotide or vector. The cell or cell extract will typically allow transcription and translation of the polynucleotide or vector in the absence of a test substance.

A typical assay is as follows:

5

10

25

35

- 15 a defined number of cells harbouring a polynucleotide or vector of the invention are inoculated in growth medium into the wells of a plastics micro-titre plate in the presence of a substance to be tested.
- the micro-titre plates are covered and incubated at an appropriate temperature (eg. 37°C for E. coli) in the dark.
 - samples are withdrawn at regular time intervals and assayed for methylarginase activity, as described in the Examples.
 - parallel control experiments can be carried out, in which the substance to be tested is omitted.

Also, as a control, the samples may be assayed for any other enzyme to exclude the possibility that the test substance is a general inhibitor of gene expression or enzyme activity.

The assay may also be carried out using a polypeptide of the invention, in which any suitable format may be used for identifying a modulator of methylarginase activity.

√:

5

10

15

20

25

30

35

Most preferably such an assay would be carried out in a single well of a plastics microtitre plate, so that high through-put screening for methylarginase activity modulators may be carried out. In practice, the enzyme reaction is commenced by addition of a methylarginase or a substrate for methylarginase. An assay for a methylarginase modulator may therefore be initiated by providing a medium, containing a test substance and one of a methylarginase and a methylarginase substrate. As a control, the progress of the assay can be followed in the absence of the test substance.

Also the substance tested may be tested with any other known polypeptide/enzyme to exclude the possibility that the test substance is a general inhibitor of enzyme activity.

Suitable methylarginases for the assay can be obtained using the recombinant techniques described above. Suitable substrates are those comprising asymmetric methylarginines, for example Nomonomethyl-L-arginine (L-NMMA), asymmetric dimethylarginine (ADMA). In addition to the methylarginase and a suitable substrate, the reaction mixture can contain a suitable buffer, suitable cofactors and suitable divalent cations as a cofactor. A suitable buffer includes any suitable biological buffer that can provide buffering capability at a pH conducive to the reaction requirements of the enzyme.

The assay of the invention may be carried out at any temperature at which a methylarginase, in the absence of any inhibitor, is active. Typically, however, the assay will be carried out in the range of from 25° C to 37° C.

Measures of enzymatic activity of methylarginase activity are generally known to those skilled in the art, including equilibrium constants, reaction velocities of the appearance of reaction products or the consumption of reaction substrates, reaction kinetics, thermodynamics of

reaction, spectrophotometric analysis of reaction products, detection of labelled reaction components, etc. See, generally, Segel, <u>Biochemical Calculations</u>, 2nd Edition, John Wiley and Sons, New York (1976); Suelter, <u>A Practical Guide to Enzymology</u>, John Eiley and Sons, New York (1985). The preferred method of measuring enzymatic activity is by measuring [14C]citrulline production after the methylarginase has been incubated with [14C]L-NMMA or [14C]ADMA.

5

10

15

20

25

30

35

Assays can also be carried out using constructs comprising a a methylarginase gene promoter operably linked to a heterologous coding sequence, to identify compounds which modulate expression of methylarginases at the transcriptional level.

A promoter means a transcriptional promoter. Methylarginase gene promoters can be isolated via methods known to those skilled in the art and as described above. The term "heterologous" indicates that the coding sequence is not operably linked to the promoter in nature; the coding sequence is generally from a different organism to the promoter.

The promoter sequence may be fused directly to a coding sequence or via a linker. The linker sequence may comprise an intron. Excluding the length of any intron sequence, the linker may be composed of up to 45 bases. The linker sequence may comprise a sequence having enhancer characteristics, to boost expression levels.

Preferably the promoter is operably linked to the coding sequence of a reporter polypeptide. The reporter polypeptide may be, for example, the bacterial polypeptide β -glucuronidase (GUS), green fluoresent protein (GFP), luciferase (luc), chloramphenicol transferase (CAT) or β -galactosidase (lacZ).

Promoter:reporter gene constructs such as those described above can be incorporated into a recombinant

replicable vector. The vector may be used to replicate the nucleic acid construct in a compatible host cell. The vectors may be, for example, plasmid, virus or phage vectors provided with an origin of replication. Any host cell may be used in which the promoter is functional, but typically the host cell will be a cell of the species from which the promoter derives. The promoter:reporter gene constructs of the invention may be introduced into host cells using conventional techniques.

Thus the invention provides a method for identifying a modulator of methylarginase expression. Typically a promoter:reporter polypeptide construct or a cell harbouring that construct will be contacted with a test substance under conditions that would permit the expression of the reporter polypeptide in the absence of the test substance.

Any reporter polypeptide may be used, but typically GUS or GFP are used. GUS is assayed by measuring the hydrolysis of a suitable substrate, for example 5-bromo-4-chloro-3-indolyl- β -D-glucoronic acid (X-gluc)or 4-methylumbelliferyl- β -glucuronide (MUG). The hydrolysis of MUG yields a product which can be measured fluorometrically. GFP is quantified by measuring fluorescence at 590nm after excitation at 494nm. These methods are well known to those skilled in the art.

Methylarginases

5

10

15

20

25

30

35

Any methylarginase may be used in the assays above. The enzymes may be prokaryotic or eukaryotic. They may be obtained from prokaryotic or eukaryotic extracts, for example from a microbial extract. Alternatively, the enzymes may be produced recombinantly, from, for example, bacteria, yeast or higher eukaryotic cells such as insect cell lines. Recombinant expression of human DDAHII and bacterial DDAHI enzymes are described in the Examples.

Candidate Substances

í.

5

10

15

20

25

30

35

A substance which modulates the expression or activity of a methylarginase may do so by binding directly to the relevant gene promoter, thus inhibiting or activating transcription of the gene. Inhibition may occur by preventing the initiation or completion of transcription. Activation may occur, for example, by increasing the affinity of the transcription complex for the promoter. Alternatively a modulator may bind to a protein which is associated with the promoter and is required for transcription.

A substance which modulates the activity of a methylarginase may do so by binding to the enzyme. Such binding may result in activation or inhibition of the protein.

Inhibition may occur, for example if the modulator resembles the substrate and binds at the active site of the methylarginase. The substrate is thus prevented from binding to the same active site and the rate of catalysis is reduced by reducing the proportion of enzyme molecules bound to substrate. A modulator which inhibits the activity of a methylarginase may do so by binding to the substrate. The modulator may itself catalyze a reaction of the substrate, so that the substrate is not available to the enzyme. Alternatively, the inhibitor may simply prevent the substrate binding to the enzyme.

Activation may occur, for example, if the modulator increases the affinity of the substrate for the enzyme or vice versa. This means that the proportion of enzyme molecules bound to a substrate is increased and the rate of catalysis will thus increase.

Suitable candidate substances which can be tested in the above methods include antibody products (for example, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies and CDR-grafted antibodies) which are specific for a methylarginase or mimics of a methylarginase. Furthermore, combinatorial libraries, defined chemical identities, peptide and peptide mimetics, oligonucleotides and natural product libraries, such as display libraries (e.g. phage display libraries) may also be tested. The candidate substances may be chemical compounds. Batches of the candidate substances may be used in an initial screen of, for example, ten substances per reaction, and the substances of batches which show inhibition tested individually.

Modulators

5

10

15

20

25

30

A modulator of DDAH expression and/or activity is one which produces a measurable reduction in methylarginase expression and/or activity in the assays described above. Preferred substances are those which inhibit methylarginase expression and/or activity by at least 10%, at least 20%, at least 30%, at least 40% at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or at least 99% at a concentration of the inhibitor of 1 , $10\mu g ml^{-1}$, $100\mu g ml^{-1}$, $500\mu g ml^{-1}$, $1mg ml^{-1}$, $10mg ml^{-1}$, 100mgml-1. The percentage inhibition represents the percentage decrease in expression/activity in a comparison of assays in the presence and absence of the test substance. combination of the above mentioned degrees of percentage inhibition and concentration of inhibitor may be used to define an inhibitor of the invention, with greater inhibition at lower concentrations being preferred.

Candidate substances which show activity in assays such as those described above can be tested in *in vivo* systems, an animal model. Candidate inhibitors could be tested for their ability to increase ADMA and L-NMMA levels and/or to increase blood pressure and/or to decrease endothelium-dependent relaxation of blood vessels.

35 Candidate activators could be tested for their ability to

increase nitric oxide generation as assessed by NO_x measurement and/or to decrease levels of ADMA and L-NMMA. Ultimately such substances would be tested in animal models of the target disease states.

5 Therapeutic use

10

15

20

25

30

35

Polynucleotides, peptides, expression vectors and modulators of methylarginase activity and/or expression and modulators of methylarginase activity and/or expression identified by the methods of the invention may be used for the treatment of a condition in which the abnormal metabolism of NO is implicated.

Polynucleotides, peptides, expression vectors and activators of methylarginase activity and/or expression may be used in the treatment of conditions in which reduced NO production is implicated. In particular such conditions as hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, complications of heart failure, or atherosclerosis and its complications may be treated and patients with schizophrenia or multiple sclerosis may also be treated.

Modulators which are inhibitors of methylarginase activity and/or expression may be used in the treatment of conditions in which increased NO production is implicated. In particular conditions such as ischeamia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease may be treated.

Alternatively an inhibitor of methylarginase activity and/or expression could be used as a joint therapy together with an inhibitor of NOS activity (for example, a methylarginine). For example, a specific inhibitor of a DDAH isoform could be used with the methylarginine L-NMMA. This approach may radically alter the activity profile of

L-NMMA and may result in L-NMMA having an increased inhibitory effect for a specific NOS isoform. Thus, the invention provides a product containing an inhibitor of methylarginase activity and/or expression and a methylarginine as a combined preparation for simultaneous, separate or sequential use in the treatment of ischeamia-reperfusion injury of the brain or heart and lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease, or cancer

5

10

15

20

25

30

35

The formulation of a substance for use in preventing or treating and of the above mentioned conditions will depend upon factors such as the nature of the substance identified, whether a pharmaceutical or veterinary use is intended, etc. Typically an inhibitor is formulated for use with a pharmaceutically acceptable carrier or diluent. For example it may be formulated for topical, parenteral, intravenous, intramuscular, subcutaneous, intraocular, transdermal or oral administration. A physician will be able to determine the required route of administration for each particular patient. The pharmaceutical carrier or diluent may be, for example, an isotonic solution.

The dose of a substance may be determined according to various parameters, especially according to the substance used; the age, weight and condition of the patient to be treated; the route of administration; and the required regimen. Again, a physician will be able to determine the required route of administration and dosage for any particular patient.

The invention potentially allows for the regulation of expression and/or activity of a particular isoform of NOS. Substances which have effects specific for one particular methylarginase isoform, for example DDAHI or DDAHII, may be administered non-specifically as they will

only modulate the expression or activity of a particular methylarginase and thus the activity of one particular isoform of NOS.

5

10

15

20

25

30

35

Some substances may, however, have affect more than one isoform of methylarginase. Such modulators may have to be administered to specific sites, if they are required to regulate only one particular isoform of NOS. For example, if a condition requires the regulation of nNOS the modulator will have to be delivered to neurons. This may be achieved, for example, by delivery via a viral strain such as herpes simplex virus. Viral vectors comprising polynucleotides of the invention are described above. The viral vector delivery method may be used in the case of administration of, for example, polynucleotides of the invention.

The polynucleotides and vectors of the invention may be administered directly as a naked nucleic acid construct. Uptake of naked nucleic acid constructs by mammalian cells is enhanced by several known transfection techniques for example those including the use of transfection agents. Example of these agents include cationic agents (for example calcium phosphate and DEAE-dextran) and lipofectants (for example lipofectam $^{\text{TM}}$ and transfectam $^{\text{TM}}$).

Typically, nucleic acid constructs are mixed with the transfection agent to produce a composition. Preferably the naked nucleic acid construct, viral vector comprising the polynucleotide or composition is combined with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition. Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline. The composition may be formulated for parenteral, intramuscular, intravenous, subcutaneous, or transdermal administration.

The pharmaceutical composition is administered in such a way that the polynucleotide of the invention, viral

vector for gene therapy, can be incorporated into cells at an appropriate area. When the polynucleotide of the invention is delivered to cells by a viral vector, the amount of virus administered is in the range of from 10⁶ to 10¹⁰ pfu, preferably from 10⁷ to 10⁹ pfu, more preferably about 10⁸ pfu for adenoviral vectors. When injected, typically 1-2 ml of virus in a pharmaceutically acceptable suitable carrier or diluent is administered. When the polynucleotide of the invention is administered as a naked nucleic acid, the amount of nucleic acid administered is typically in the range of from 1 µg to 10 mg.

Where the polynucleotide giving rise to the product is under the control of an inducible promoter, it may only be necessary to induce gene expression for the duration of the treatment. Once the condition has been treated, the inducer is removed and expression of the polypeptide of the invention ceases. This will clearly have clinical advantages. Such a system may, for example, involve administering the antibiotic tetracycline, to activate gene expression via its effect on the tet repressor/VP16 fusion protein.

The use of tissue-specific promoters will be of assistance in the treatment of disease using the polypeptides, polynucleotide and vectors of the invention. It will be advantageous to be able express therapeutic genes in only the relevant affected cell types, especially where such genes are toxic when expressed in other cell types.

The routes of administration and dosages described above are intended only as a guide since a skilled physician will be able to determine readily the optimum route of administration and dosage for any particular patient and condition.

5

10

15

20

25

30

Example:

1. ×

Example

Materials and methods

5 Unless otherwise indicated, the methods used are standard biochemistry and molecular biology techniques. Examples of suitable methodology textbooks include Sambrook et al., Molecular Cloning, A Laboratory Manual (1989) and Ausubel et al., Current Protocols in Molecular Biology (1995), John Wiley and Sons, Inc.

Database searching and cDNA cloning

The cDNA sequence of human DDAHI was obtained by a combination of database searching, specific RT-PCR and The database of expressed sequence tags 15 (dbEST) was searched with the cDNA sequence corresponding to the open reading frame of rat DDAHI (Kimoto, M., Sasakawa, T., Tsuji, H., Miyatake, S., Oka, T., Nio, N. and Ogawa, T., 1997, Biochim. Biophys. Acta 1337, 6-10) using 20 the 'blast' programme. This search identified a single human cDNA sequence that comprised 161bp of human DDAHI cDNA fused downstream of 160bp of unknown sequence. Using this sequence, two human DDAHI specific oilogonucleotide primers HDDAHI.1 and HDDAHI.2 were designed. Human kidney polyA+ RNA was reverse transcribed from an oligo dT primer, 25 following which human DDAHI cDNA was PCR amplified in two PCR reactions incorporating either HDDAHI.1 and RDDAHI.1 or HDDAHI.2 and RDDAHI.2. In order to determine the sequence of the 5' and 3' ends of the human DDAHI open reading frame 5' and 3' RACE was performed. For 5' RACE human kidney 30 polyA mRNA was reverse transcribed using primer HDDAHI.3. Following reverse transcription, RNA was digested with RNAse H and cDNA purified using a HighPure DNA purification kit (Boehringer). Purified cDNA was polyA tailed by incubation with terminal transferase in the presence of 35

dATP. Tailed cDNA was used directly in PCR reactions incorporating OligodTAnchor and HDDADI.4. For 3' RACE human polyA+ RNA was primed with OligodTAnchor and reverse transcribed prior to PCR with oligos HDDAHI.5 and Anchor. All PCR products were cloned into pCRTOPO2.1 (In Vitrogen) following the manufactures instructions. CDNA inserts were sequenced using a T7 sequences kit (Amersham) according to the manufacturers instructions.

The sequence of human DDAHII was obtained by data base searching. The database of translated EMBL open reading frames (trembl) was searched with the rat DDAHI peptide sequence. This search identified a hypothetical mouse open reading frame (accession number 008972) that has the capacity to encode a protein of 228 amino acids with 63% similarity to rat DDAHI. Interogation of dbEST with the nucleotide sequence encoding the hypothetical mouse protein identified numerous overlapping human EST's which contained an open reading frame of 858bp with the potential to encode a 285 amino acid protein that is 52% identical to human DDAHI. The oligonucleotides used in these experiments are shown in Table 1.

Table 1. Oligonucleotides used.

100

5

10

15

20

٥٤	Name	Sequence	Details
25	HDDAHI.1	GGT TGA CAT GAT GAA AGA AGC	Homologous to nucleotides 303-324 of human DDAHI
30	HDDAHI.2	CAG CAC CCC GTT GAT TTG TC	Homologous to nucleotides 454-435 of human DDAHI
	HDDAHI.3	GCT TCT TTC ATC ATG TCA ACC	Homologous to nucleotides 324-303 of human DDAHI
35	HDDAHI.4	CCC AAC AAA GGG CAC GTC TTG	Homologous to nucleotides 682-703 of human DDAHI
40	HDDAHII.1	GAT CGA ATT CAG GAT GGG GAC GCC GGG G	Homologous to nucleotides -2-15 of human DDAHII encoding an upstream EcoRI site

	HDDAHII.2	GAC TTC	TAG AGC	TGT GGG	GGC GTG TG	Homologous to nucleotides 858-840 of human DDAHII encoding a downstream XbaI site
5	HDDAHII.3	CTC AGC	TCC CTC	TGC TTG	GTG	Homologous to nucleotides 813-834 of human DDAHII
10	HDDAHII.4	GAG GGA	GGA TTC	ACC CAG	TGG	Homologous to nucleotides 1003- 1024 of human DDAHII
10	RDDAHI.1	TCC GCG	GGA TCC	ATG GCC	GGC CTC	Homologous to nucleotides -12-12 of rat DDAHI
15	RDDAHI.2	CGC TCG	GTC TAG	ATC AAG	AGT CTG TCT T	Homologous to nucleotides 872-844 of rat DDAHI
	HNNOS.1	CTG CTG	ATG TCC	TCA AAG	CCA TCC	Homologous to nucleotides 4079-4102 of human nNOS
20	HNNOS.2	TCT GTC	CCG CGC	TTA CAA	ACT TGC	Homologous to nucleotides 4353-4330 of human nNOS
25	HENOS.1	CAA CCA	ACG TCC	TGC AGA	CCG TGC	Homologous to nucleotides 3379-3402 of human eNOS
20	HENOS.2	GGC GGA	CCT GAG	TCG GGC	AGC CGC	Homologous to nucleotides 3690- 3667 of human eNOS
30	Oligo d(T) Anchor		GCG TAT		CGA CTT	5'/3' RACE oligo d(T) anchor primer
	Anchor	GAC CAC	GCG TAT	CGA TGT	CGA C	5'/3' RACE anchor primer

35 Recombinant expression

40

45

The entire human DDAHII open reading frame was PCR amplified from oligo dT primed human kidney cDNA using oligos HDDAHII.1 and HDDAHII.2. Oligo HDDAH II.1 is complementary to base pairs 2-15 of the human DDAHII cDNA and contains an EcoRI site in frame with the EcoTI site of pPROX.HTa (Life Technologies). HDDAHII.2 is complementary to base pairs 858-840 of the human DDAHII cDNA and contains an artificial XbaI site. PCR produced a single product of ~850bp which was digested with EcoRI and Xbai, ligated into EcoRI and XbaI digested pRPROX.HTa and transformed into

compotent *E.coli* DH5α. A positive clone (pPDDAHII) containing an insert of 858bp was identified and the insert sequenced on both strands. For expression of recombinant human DDAHII, *E.coli* were grown in liquid culture at 25°C to an OD₆₀₀ of 0.5-0.6. Expression was then induced by the addition of IPTG to a final concentration of 1mM and incubation continued for a further two hours. Following induction, cells were collected by centrifugation, weighed and resuspended in ice cold assay buffer (100mM Na₂HPO₄ pH _6.5) at 1g cells/ml. Cells were disrupted by sonication (6 X 10secs, with 10 sec. intervals) and centriguged at 50,000g to separate soluble material from insoluble cell debris.

15 DDAH Assay

5

10

30

35

Aliquots of *E.coli* lysates were incubated at 37°C for 60 min. with 250 ml of 100mM Na₂HPO₄ pH 6.5 containing 0.02µCi [¹⁴C]L-NMMA as described previously [16]. Following incubation samples were prepared for determination of [¹⁴C] citrulline production by scintillation counting. Reactions were vortexed with 1ml of 50% (w/v) dowex 50X8-400, centrifuged at 10,000g for 5 min and then 500µl of the supernatant was mixed with 5ml of liquid scintillation fluid and the [¹⁴C] content determined.

Northern blot analysis

The tissue distribution of human DDAHI, DDAHII, endothelial NOS and neuronal NOS mRNA was determined by hybridization of ³²P-labelled cDNA probes to commercially available northern blot (Clontech, human multiple tissue northern blot). Probes were produced by PCR amplification of oligo dT-primed human kidney polyA+ mRNA using oligonucleotide primer pairs HDDAHI 4 and 5, HDDAHII 3 and 4, HENOS i and 2 and HNNOS 1 and 2. Following PCR reaction

products were resolved on 2% agarose gels, isolated from the gel and labelled using a random primed labelling kit (Boehringer) according to the manufacturers instructions. Labelled probes were manufactures instructions.

The amino acid sequence of human DDAHI was added to search the expressed sequence tag database (dbEST). Open reading frames which showed significant similarity to this sequence were identified in S. coelicolor (46.5% over 163 amino acids), P.auruginosa (44.3% over 226 amino acids) and M. tuberculosis (37.5% over 24 amino acids). The cDNA sequences encoding these putative bacterial DDAHs were then used to design the primers ScDDAHI and ScDDAH2, PaDDAHs were then used to design the primers ScDDAHi and ScDDAH2, PaDDAH1 and PaDDAH4, and TbDDAH1 and TbDDAH4. oligonucleotides PaDEIM2 and PaDEIM3 were designed from the cDNA sequence of P.aeruginosa arginine deiminase to amplifying the coding region. Primers TbDDAHi and TbDDAH4 were designed to amplify an open reading frame from cosmid T3G12 which was identified through the database search using hDDAH1. The oligonucleotides used in these experiments are shown in Table 2.

Table 2. Oligonucleotides Used.

5

10

15

	Name	Sequence	Details
25	ScDDAH 1	GATCGAATTGTGCCCAGCAAGAAG GCCTG	Homologous to -9 to 20 encoding an upstream EcoRI site
30	ScDDAH 2	GATCTCTAGATCAGTCGTACAGCTC GCGC	Homologous to 732 to 751 encoding a downstream <i>XbaI</i> site
30	PaDDAH 1	GAATTCATGTTCAAGCACATCATCG	Homologous to 1 to 19 encoding an upstream <i>Eco</i> RI site
35	PaDDAH 4	AAGCTTCGCCGCGGCATGGTTC	Homologous to 782 to 768 encoding a downstream <i>Hin</i> d III site
	ТЬООАН 1	GAATTCCGCAATGTATCAATG G	Homologous to -12 to 4 encoding an upstream <i>Eco</i> RI site
40	TbDDAH 2	AAGTTCCCACGCACCCTCAG	Homologous to 1024 to 1011

encoding a downstream Hind III

site

PaDEIM 2 GAATTCAGCACGGAAAAACCAAAC Homologous to 3 to 22 encoding an

upstream Eco RI site

PaDEIM 3 AAGCTTGTAGTCGATCGGGTCGC Homologous to 1257 to 1239 encoding a downstream Hind III

site

10

15

20

30

35

5

Polymerase Chain Reaction and cDNA Cloning

Amplification of S.coelicolar DDAH from cosmid 4C6 was carried out by PCR using the oligonucleotides ScDDAH1 and ScDDAH2. PCR was carried out on P.aeruginosa genomic DNA using the primers PADDAG1 and PADDAG4 to amplify the putative DDAH. The P.aeruginosa arginine deiminase was also amplified using the oligonucleotides PaDEIM2 and PaDEIM3. The oligonucleotides TbDDAH1 and TbDDAH4 were used in PCR to amplifying the M. tuberculosis DDAH from cosmid Y3G12 DNA.

All PCR products were cloned into pCRTOPO2.1 (In Vitrogen) following the manufacturer's instructions.

25 Expression of Recombinant Proteins

The inserts containing the open reading frames of the bacterial DDAHs were excised from the vector using Eco RI and Hind III, gel purified, ligated into Eco RI and Hind III digested pProEX.HT and transformed into competent E.coli DH5 α . The arginine deiminase was treated as above but was cloned into EcoRI and Hind III digested pBAD B (In Vitrogen).

For expression of the recombinant proteins, a positive clone was picked and grown in liquid media supplemented with 100 µg/ml ampicillin. E.coli were grown at 25°C to an OD_{600} of 0.5-0.6 for the bacterial DDAHs in pProEX.HT, and at 37° for the arginine deiminase in pBAD B. Induction of expression of the bacterial DDAHs was carried out by addition of IPTG to a final concentration of 1mM and a further incubation of 2 hours at 25° C. Expression of the arginine deiminase was induced by adding arabinose to a final concentration of 0.02% (w/v) and incubating fora further 4 hours at 37° C.

After induction, cells were harvested by centrifugation and resuspended to a concentration of 250 mg/ml in assay buffer (100mM Na_2HPO_4 , pH6.5). Cells were disrupted by sonication (6 X 10 secs.) And centrifuged at 18,000g to remove particulate material.

SDS-Polyacrylamide Gel Electrophoresis and Western Blot Analysis

SDS-PAGE was performed in Tris/glycine buffer, pH8.3, on 12% (w/v) separating gel with a 3.5% (w/v) stacking gel. Proteins were transferred onto an Immobilon-P membrane (Millipore) at 200A for 30 minutes. Membranes were then blocked in 5% (w/v) milk in phosphate buffered saline with 0.1 Tween 20 (PBST) for 2 hours. The blot was probed with a polyHistidine antibody (Sigma) at a dilution of 1:3000 followed by anti-mouse Ig antibody coupled to horseradish peroxide (Amersham) at a dilution of 1:5000 then developed using an ECL chemiluminescence kit (Amersham).

25

30

35

5

10

15

20

DDAH Assay

Samples were assayed by incubating 100µl of cells lysates with an equal volume of assay mix (100mM Na_2HPO_4 pH 6.5, containing 0.02µCi [^{14}C] L-NMMA and 100µM cold L-NMMA) at 37°C for 60 min, as previously reported (ref). The samples were then prepared for scintillation counting to measure the production of [^{14}C] citrulline by adding 400µl of 50% (w/v) Dowex 50X-400 to the reactions, vortexing and centrifugation at 13000g for 2 min. The [^{14}C] content of 100µl of supernatant in 1ml scintillation fluid was then

determined.

Results

5

10

15

20

30

35

Cloning of human DDAHI and DDAHII

Using a combination of RT-PCR and RACE, a cDNA encoding the entire open reading frame of human DDAHI was assembled. The 858bp open reading frame is 90% homologous to rat DDAHI ORF (data not shown) and encodes a polypeptide of 285 amino acids that is 95% identical to the rat protein _(Figure 1). A search of the 'trembl' data base using the rat DDAHI amino acid sequence identified a mouse open reading frame encoding a protein with 63% homology over 228 amino acids to rat DDAH. Further data base searching identified a human cDNA of 2000bp containing an open reading frame of 858bp with the potential to encode a protein of 285 amino acids (subsequently referred to as DDAHII). This open reading frame was 63% homologous to human DDAHI at the nucleotide level (data not shown) and the predicted protein is 62% similar to human DDAHI at the amino acid level (Figure 1). Like DDAHI, DDAHII appears to be highly conserved across mammalian species with 98& homology between murine and human DDAHII amino acid sequences (data not shown).

25 Recombinant expression of human DDAHII

An N-terminally 6X His-tagged body of DDAHII was expressed in *E.coli* under the control of an IPTG induceable promoter. Following induction, a band of ~40kDa (-35kDa human DDAHII + 4kDa 6X His-tag and linker) was apparent in the soluble fraction of cell lysates (Figure 2). The induced protein of ~40kDa is specifically recognised by an anti-His6 antibody confirming its identity as recombinant human DDAHII (Figure 2). In order to establish whether DDAHII is a functional homologue of DDAHI we assayed bacterial cell lysates for DDAH activity. Lysates of cells

transfected with empty vector did not metabolise [14C] L-NMMA. In contrast, lysates of cells expression recombinant DDAHII did metabolise [14C] L-NMMA (Figure 3). This action was inhibited by the DDAH inhibitor S-2-amino-4(3-methylguanidino) butanoic acid (4124W) [ref] and by competition with a molar excess of cold L-NMMA, ADMA or citrulline. Enzyme activity was unaffected in the presence of a molar excess of cold SDMA.

10 _Tissue distribution of human DDAH and NOS

1. .

5

15

20

25

30

35

To determine the tissue distribution of DDAHI and DDAHII messenger RNA and to explore any correlation between DDAH and NOS isoform expression we probed a commercially available human multiple tissue northern blots with labelled cDNA probed specific for each isoform (Figure 4). A DDAHI cDNA probe hybridized to a single band of ~4.4Kb that was highly expressed in kidney, brain, pancreas and liver. Lower level expression was also clearly apparent in skeletal muscle whilst signals from the heart placenta and lung were barely detectably. In contrast, a cDNA probe for DDAHII hybridized to a single band of ~2Kb that was most highly expressed by heart, kidney and placenta. case of DDAHII, lower level expression in the brain was barely detectable. A probe specific for nNOS revealed high level expression in skeletal muscle and brain, lower levels in kidney and pancreas with no detectable expression in heart, placenta, lung and liver. Endothelial NOS was highly expressed in placenta and heart with lower levels apparent in skeletal muscle, liver, kidney, pancreas and lung, whilst expression in brain was undetectable. level of β -actin message in each lane is shown as an indication of mRNA loading.

Identification of DDAH-related proteins

In order to identify proteins with significant

(

5

10

15

20

25

30

35

primary sequence homology to DDAHI/II we performed a search of the swissprot data with both the human DDAHI and DDAHII protein sequences. This search revealed significant homology between both DDAH sequences and the sequences of arginine deiminase enzymes from several microbial species. The highest degree of homology was found with the sequence of arginine deiminase from Pseudomonas putida (Accession no. p41142) (Figure 5). The homology was strongest within a 69 amino acid domain (residues 123 to 191 of DDAHI) where the identify rises to 22% and the similarity to 70%. this domain, DDAHI and DDAHII are 80% identical. Comparison of the sequences of human DDAHI and DDAHII with other arginine-utilizing or arginine-producing enzymes, such as peptidyl-arginine deiminase, arginase, argininosuccinate lysase, arginine decarboxylase and nitric oxide synthase revealed no significant amino acid homology.

Cloning of Streptomyces and Pseudomonas DDAH

A ClustalW alignment of the DDAHs from S. coelicolor, P. aeruginosa, M. tuberculosis and human DDAH I amino acid sequences is shown in Figure 6A. Alignments of P. aeruginosa DDAH and arginine deiminase are also shown in Fig. 6B.

Oligonucleotides ScDDAH 1 and ScDDAH 2 were designed from the open reading frame of a putative *S. coelicolor* DDAH identified through database screening. These primers gave a PCR product of approximately 850bp. The primers PaDDAH 1 and PaDDAH 4 amplified a product of approximately 780bp from *P. aeruginosa* genomic DNA and TbDDAH 1 and TbDDAH 4 gave a PCR product of approximately 1150bp from the cosmid Y3G12.

Expression of Recombinant Bacterial DDAHs

Expression of N-terminally 6X His-tagged forms of S. coelicolor, M. tuberculosis and P. aeruginosa DDAH was

carried out in *E. coli* under the control of an IPTG inducible promoter. Following induction, a band of ~36kDa was observed in *S. coelicolor* (~32kDa *S. coelicolor* DDAH + ~4kDa 6X His-tag) cell lysates and of 33kDa in *P. aeruginosa* (29kDa *P. aeruginosa* DDAH + ~4kDa 6X His-tag) cell lysates. A polyHistidine antibody specifically recognized these bands providing confirmation of the identity of these proteins as recombinant *S. coelicolor* and *P. aeruginosa* DDAH respectively.

10 -

15

20

5

Activity of Recombinant Bacterial DDAH proteins

The bacterial DDAH cell lysates were assayed for DDAH activity to determine whether they were functional homologues of human DDAH I. These were found to metabolize [14C] L-NMMA, as shown in Figure 7. Empty vector was also transfected into cells and the lysates from these were found not to metabolize [14C] L-NMMA. P. aeruginosa DDAH showed higher activity compared to that of S. coelicolor DDAH.

ADMA and SDMA were both found to compete with L-NMMA as substrates for the bacterial DDAHs (Fig. 7) with ADMA showing a greater effect than SDMA on the metabolism of L-NMMA. Similar results have been obtained for DDAH from M.tuberculosis.

SEQUENCE LISTING

_	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: (A) NAME: UNIVERSITY COLLEGE LONDON (B) STREET: Gower Street	
10	<pre>(C) CITY: London (E) COUNTRY: United Kingdom (F) POSTAL CODE (ZIP): WC1E 6BT</pre>	
	(ii) TITLE OF INVENTION: SCREEN METHOD	
15	(iii) NUMBER OF SEQUENCES: 12	
20	 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO) 	
25	(2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 858 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
30	ATGGCCGGCC TCGGCCACCC CTCCGCCTTC GGCCGGGCCA CCCACGCCGT GGTGCGGGCG	60
	CTACCCGAGT CGCTCTGCCA GCACGCGCTG AGAAGCGCCA AGGGCGAGGA GGTGGACGTC	120
40	GCCCGCGCGG AACGGCAGCA CCAGCTCTAC GTGGGCGTGC TGGGCAGCAA GCTGGGGCTG	180
	CAGGTGGTGG AGCTGCCGGC CGACGAGAGC CTTCCGGACT GCGTCTTCGT GGAGGACGTG	240
45	GCCGTGGTGT GCGAGGAGAC GGCCCTCATC ACCCGACCCG	300
43	GAGGTTGACA TGATGAAAGA AGCATTAGAA AAACTTCAGC TCAATATAGT AGAGATGAAA	360
	GATGAAAATG CAACTITAGA TGGCGGAGAT GITTTATTCA CAGGCAGAGA ATTTTTTGTG	420
50	GGCCTTTCCA AAAGGACAAA TCAACGAGGT GCTGAAATCT TGGCTGATAC TTTTAAGGAC	480
	TATGCAGTCT CCACAGTGCC AGTGGCAGAT GGGTTGCATT TGAAGAGTTT CTGCAGCATG	540
55	GCTGGGCCTA ACCTGATCGC AATTGGGTCT AGTGAATCTG CACAGAAGGC CCTTAAGATC	600

	ATGCAACAGA TGAGTGACCA CCGCTACGAC AAACTCACTG TGCCTGATGA CATAGCAGCA 6	60
	AACTGTATAT ATCTAAATAT CCCCAACAAA GGGCACGTCT TGCTGCACCG AACCCCGGAA 7	'20
5	GAGTATCCAG AAAGTGCAAA GGTTTATGAG AAACTGAAGG ACCATATGCT GATCCCCGTG 7	'80
	AGCATGTCTG AACTGGAAAA GGTGGATGGG CTGCTCACCT GCTGCTCAGT TTTAATTAAC 8	340
1.0	AAGAAGGTAG ACTCCTGA	85
10	(2) INFORMATION FOR SEQ ID NO: 2:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 285 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
25	Met Ala Gly Leu Gly His Pro Ser Ala Phe Gly Arg Ala Thr His Ala 1 5 10 15	
	Val Val Arg Ala Leu Pro Glu Ser Leu Cys Gln His Ala Leu Arg Ser 20 25 30	
30	Ala Lys Gly Glu Glu Val Asp Val Ala Arg Ala Glu Arg Gln His Gln 35 40 45	
35	Leu Tyr Val Gly Val Leu Gly Ser Lys Leu Gly Leu Gln Val Val Glu 50 55 60	
	Leu Pro Ala Asp Glu Ser Leu Pro Asp Cys Val Phe Val Glu Asp Val 65 70 75 80	
40	Ala Val Val Cys Glu Glu Thr Ala Leu Ile Thr Arg Pro Gly Ala Pro 85 90 95	
	Ser Arg Arg Lys Glu Val Asp Met Met Lys Glu Ala Leu Glu Lys Leu 100 105 110	
45	Gln Leu Asn ITé Val Glu Met Lys Asp Glu Asn Ala Thr Leu Asp Gly 115 120 125	
50	Gly Asp Val Leu Phe Thr Gly Arg Glu Phe Phe Val Gly Leu Ser Lys 130 _ 135 140	
	Arg Thr Asn Gin Arg Gly Ala Glu Ile Leu Ala Asp Thr Phe Lys Asp 145 150 155 160	
55	Tyr Ala Val Ser Thr Val Pro Val Ala Asp Gly Leu His Leu Lys Ser 165 170 175	

	Phe Cys Ser Met Ala Gly Pro Asn Leu Ile Ala Ile Gly Ser Ser Glu 180 185 190	
5	Ser Ala Gln Lys Ala Leu Lys Ile Met Gln Gln Met Ser Asp His Arg 195 200 205	
	Tyr Asp Lys Leu Thr Val Pro Asp Asp Ile Ala Ala Asn Cys Ile Tyr 210 215 220	
10	Leu Asn Ile Pro Asn Lys Gly His Val Leu Leu His Arg Thr Pro Glu 225 230 235 240	
1 5	Glu Tyr Pro Glu Ser Ala Lys Val Tyr Glu Lys Leu Lys Asp His Met 245 250 255	
15	- Leu Ile Pro Val Ser Met Ser Glu Leu Glu Lys Val Asp Gly Leu Leu 260 265 270	
20	Thr Cys Cys Ser Val Leu Ile Asn Lys Lys Val Asp Ser 275 280 285	
	(2) INFORMATION FOR SEQ ID NO: 3:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 858 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
35	ATGGGGACGC CGGGGGAGGG GCTGGGCCGC TGCTCCCATG CCCTGATCCG GGGAGTCCCA	60
55	GAGAGCCTGG CGTCGGGGGA AGGTGCGGGG GCTGGCCTTC CCGCTCTGGA TCTGGCCAAA 12	20
	GCTCAAAGGG AGCACGGGT GCTGGGAGGT AAACTGAGGC AACGACTGGG GCTACAGCTG	30
40	CTAGAACTGC CACCTGAGGA GTCATTGCCG CTGGGACCGC TGCTTGGCGA CACGGCCGTG 24	10
	ATCCAAGGGG ACACGGCCCT AATCACGCGG CCCTGGAGCC CCGCTCGTAG GCCAGAGGTC 30	00
45	<i>'</i>	50
	AACGCGACGC TGGATGGCAC TGACGTTCTC TTCACCGGCC GGGAGTTTTT CGTAGGCCTC 42	20
		80
50		40
		00
55	GTGCTGACAG ATCACCCATA TGCCTCCCTG ACCCTCCCAG ATGACGCAGC TGCTGACTGT 6	60

	CTCTTTCTTC GTCCTGGGTT GCCTGGTGTG CCCCCTTTCC TCCTGCACCG TGGAGGTGGG 72	20
	GATCTGCCCA ACAGCCAGGA GGCACTGCAG AAGCTCTCTG ATGTCACCCT GGTACCTGTG 78	30
5	TCCTGCTCAG AACTGGAGAA AGCTGGCGCC GGGCTCAGCT CCCTCTGCTT GGTGCTCAGC 84	40
	ACACGCCCCC ACAGCTGA	858
	(2) INFORMATION FOR SEQ ID NO: 4:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 285 amino acids (B) TYPE: amino acid	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
20	Met Gly Thr Pro Gly Glu Gly Leu Gly Arg Cys Ser His Ala Leu Ile 1 5 10 15	
25	Arg Gly Val Pro Glu Ser Leu Ala Ser Gly Glu Gly Ala Gly Ala Gly 25 30	
	Leu Pro Ala Leu Asp Leu Ala Lys Ala Gln Arg Glu His Gly Val Leu 35 40 45	
30	Gly Gly Lys Leu Arg Gln Arg Leu Gly Leu Gln Leu Glu Leu Pro 50 55 60	
35	Pro Glu Glu Ser Leu Pro Leu Gly Pro Leu Leu Gly Asp Thr Ala Val 65 70 75 80	
	Ile Gln Gly Asp Thr Ala Leu Ile Thr Arg Pro Trp Ser Pro Ala Arg 85 90 95	
40	Arg Pro Glu Val Asp Gly Val Arg Lys Ala Leu Gln Asp Leu Gly Leu 100 105 110	
	Arg Ile Val Glu Ile Gly Asp Glu Asn Ala Thr Leu Asp Gly Thr Asp 115 120 125	
45	Val Leu Phe Thr Gly Arg Glu Phe Phe Val Gly Leu Ser Lys Trp Thr 130 135 140	
50	Asn His Arg Gly Ala Glu Ile Val Ala Asp Thr Phe Arg Asp Phe Ala 145 <u>150</u> 160	
50	Val Ser Thr Val Pro Val Ser Gly Pro Ser His Leu Arg Gly Leu Cys 165 170 175	
55	Gly Met Gly Gly Pro Arg Thr Val Val Ala Gly Ser Ser Asp Ala Ala 180 185 190	

7.7.

	Gin Lys Ala Val Arg Ala Met Ala Val Leu Thr Asp His Pro Tyr Ala 195 200 205	
5	Ser Leu Thr Leu Pro Asp Asp Ala Ala Asp Cys Leu Phe Leu Arg 210 215 220	
	Pro Gly Leu Pro Gly Val Pro Pro Phe Leu Leu His Arg Gly Gly Gly 225 230 235 240	
10	Asp Leu Pro Asn Ser Gln Glu Ala Leu Gln Lys Leu Ser Asp Val Thr 245 250 255	
1.5	Leu Val Pro Val Ser Cys Ser Glu Leu Glu Lys Ala Gly Ala Gly Leu 260 265 270	
15	Ser Ser Leu Cys Leu Val Leu Ser Thr Arg Pro His Ser 275 280 285	
20		
	(2) INFORMATION FOR SEQ ID NO: 5:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 777 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
35	GTGCCCAGCA AGAAGGCCCT GGTCCGCCGC CCCAGCCCCA GGCTCGCCGA AGGACTGGTG	60
33	ACACACGTCG AGCGGGAGCA GGTCGATCAC GGCCTGGCCC TCGAACAGTG GGACGCCTAC	.20
	GTCGAGGCCC TCGGAGCACA CGGCTGGGAG ACTCTGGAGG TGGACCCGGC CGAGTACTGT 1	.80
40	CCGGACTCGG TCTTCGTCGA GGACGCCGTC GTCGTGTTCC GCAACGTCGC GCTGATCACG 2	40
	CGGCCCGGCG CCGAGTCGCG GCGCGCGGAG ACGGCCGGCG TCGAGGAGGC CGTGGCCCGG	300
45	CTCGGCTGCT CGGTGAACTG GGTGTGGGAG CCGGGCACCC TGGACGGCGG CGACGTCCTG	360
40	AAGATCGGCG ACACGATCTA CGTGGGACGC GGCGGCCGGA CCAACGCGGC CGGTGTCCAG	120
	CAGTTGCGGG CGGCGTTCGA GCCGCTGGGC GCCCGGGTCG TCGCCGTGCC CGTGAGCAAG	180
50	GTGCTGCATC TGAAGTCGGC GGTCACCGCG CTGCCGGACG GGACGGTGAT CGGGCACATC	540
	CCGCTGACGG ACGTGCCCTC GCTGTTCCCC CGTTTCCTGC CGGTGCCGGA GGAGTCGGGG	500
55	GCGCACGTGG TGCTGCTCGG CGGGAGCAGG CTGCTGATGG CGGCGAGCGC GCCCAAGACG	560

	GCGGAGCT	GC TC	GCCG	ATCT	CGG	TCAC	GAG	CCGG	TGCT	CG T	CGAC.	ATCG	G GG/	AGTT	CGAG		720
	AAGCTGGAG	GG GC	TGTG	TGAC	GTG	CCTC	TCG	GTCA	GGCT	GC G	CGAG	CTGT	A CG/	ACTG/	4		777
5	(2) INFO	RMATI	ON F	OR S	EQ I	D NO): 6:										
10	(i)	(B) (C)	IENCE LEN TYF STR TOF	igth: Pe: & Rande	: 25 amin EDNES	8 am bac SS: s	ino id singi	acid:	s								
15	(ii)	MOLE	CULE	TYP	E: t	prote	ein										
	- (xi)	SEQU	ENCE	DES	CRIF	MOIT	l: \$E	Q 10	NO:	6:							
20	Val 1	Pro	Ser	Lys	Lys 5	Αla	Leu	Val	Arg	Arg 10	Pro	Ser	Pro	Arg	Leu 15		
	Glu	G1 y	Leu	Va1 20	Thr	His	Val	G1 u	Arg 25	G1 u	G1n	Val	Asp	His 30		Leu	
25	a [A	Leu	G1u 35	Gln	Trp	Asp	A٦a	Tyr 40	Val	Glu	Ala	Leu	G1 y 45		His	G1 y	
	Trp	G1u 50	Thr	Leu	G1u	Val	Asp 55	Pro	Ala	G1 u	Tyr	Cys 60		Asp	Ser	Val	
30	Phe 65	Val	G1 u	Asp	Ala	Va1 70	Val	Va1	Phe	Arg	Asn 75	۷a۱	A7 a	Leu	Ile	Thr 80	ı
35	Arg	Pro	Glу	Αla	G1 u 85	Ser	Arg	Arg	Ala	G] u 90	Thr	Αla	Gly	Val	G1u 95		
	Ala	Val	Al a	Arg 100		G1 y	Cys	Ser	Val 109		Trp	Va1	Trp	Glu 11		Gly	
40	Thr	Leu	Asp 115	Gly	G7 y	Asp	Val	Leu 120		He	G1 y	Asp	Thr 12		Tyr	Val	
45	G1 y	Arg 130	Gly	G1 y	Arg	Thr	Asn 135		Ala	G1y	Val	G1n 14		Leu	Arg	Ala	
43	A1 a 145	Phe	Glu	Pro	Leu	Gly 150		Arg	Val	Val	A1 a 15	_	Pro	Val	Ser	Lys 16	0
50	Val	Leu	His	Leu	Lys 165		Αla	Val	Thr	Ala 17	_	Pro	Asp	Gly		Va1 75	
	Ile	Gly	His	Ile 180		Leu	Thr	Asp	Val 18		Ser	Leu	Phe		Arg 90	Phe	
55	Leu	Pro	Val	Pro	Glu	Glu	Ser	Gly	Ala	His	Val	Val	Leu	Leu	Gly	Gly	

205

200

5	Ser Arg Leu Leu Met Ala Ala Ser Ala Pro Lys Thr Ala Glu Leu Leu 210 215 220	
3	Ala Asp Leu Gly His Glu Pro Val Leu Val Asp Ile Gly Glu Phe Glu 225 230 235 24	10
10	Lys Leu Glü Gly Cys Val Thr Cys Leu Ser Val Arg Leu Arg Glu Leu 245 250 255	
	Tyr Asp	
15	(2) INFORMATION FOR SEQ ID NO: 7:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 765 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	ATGTTCAAGC ACATCATCGC TCGCACGCCC GCCCGCAGCC TGGTCGACGG CCTGACCTCC	60
30	AGCCACCTCG GCAAGCCGGA CTACGCCAAG GCCCTGGAGC AGCACAACGC CTACATCCGC	120
30	GCCTTGCAGA CCTGCGACGT GGACATCACC CTGCTGCCGC CGGACGAACG CTTCCCCGAC	180
	TCGGTGTTCG TCGAGGACCC GGTGCTCTGC ACCTCGCGCT GCGCCATCAT CACCCGCCCC	240
35	GGCGCCGAAT CGCGGCGCGG CGAGACCGAG ATCATCGAGG AAACCGTGCA GCGCTTCTAT	300
	CCGGGCAAGG TCGAGCGCAT CGAGGCACCC GGCACGGTGG AAGCCGGCGA CATCATGATG	360
4.0	GTCGGCGACC ACTTCTACAT CGGCGAATCG GCCCGCACCA ACGCCGAGGG CGCCCGGCAG	420
40	ATGATCGCGA TCCTGGAGAA ACATGGCCTC AGCGGCTCGG TGGTGCGCCT GGAAAAGGTC	480
	CTGCACCTGA AGACCGGGCT CGCCTACCTG GAACACAACA ACCTGCTGGC CGCCGGCGAG	540
45	TTCGTCAGCA AGCCGGAGTT CCAGGACTTC AACATCATCG AGATCCCCGA AGAGGAGTCC	600
	TACGCCGCCA ACTGCATCTG GGTCAACGAA AGGGTGATCA TGCCCGCCGG CTATCCCCGG	660
5.0	ACCCGCGAGA AGATCGCCCG CCTCGGCTAC CGGGTGATCG AGGTGGACAC CTCCGAATAT	720
50	CGCAAGATCG ACGGCGGCGT CAGTTGCATG TCGCTGCGCT TCTGA	765
	(2) INFORMATION FOR SEQ ID NO: 8:	
55	(i) SEQUENCE CHARACTERISTICS:	

		(B)) TYI) STI	PE: Randi	amin EDNE:	4 am 5 ac 55: : line	id sing									
5	(11)	MOLE	CULE	TYF	E: t	orote	in									
	(xi)	SEQL	JENCE	DES	CRIF	MOIT	l: SE	Q I	NO:	8:						
10	Met I	Phe	Lys	His	I1e 5	Пe	Αla	Arg	Thr	Pro 10	Ala	Arg	Ser	Leu	Val 15	
15	G1 y	Leu	Thr	Ser 20	Ser	His	Leu	G1 y	Lys 25	Pro	Asp	Tyr	Ala	Lys 30	Ala	Leu
-	Glu	G1n	His 35	Asn	Ala	Tyr	Пe	Arg 40	Ala	Leu	G1n	Thr	Cys 45		Val	Asp
20	Ile	Thr 50	Leu	Leu	Pro	Pro	Asp 55	G1 u	Arg	Phe	Pro	Asp 60		Val	Phe	Vaì
	G1 u 65	Asp	Pro	Val	Leu	Cys 70	Thr	Ser	Arg	Cys	A1 a 75	Пe	Ile	Thr	Arg	Pro 80
25	G1 y	Ala	Glu	Ser	Arg 85	Arg	G1 y	G1 u	Thr	G1u 90	Ile	Ile	Glu	Glu	Thr 95	
30	Gln	Arg	Phe	Т <i>уг</i> 100		G1y	Lys	Val	G] u 105	_	Ile	G1 u	Ala	Pro 11	G) y .0	Thr
	Val	Glu	Ala 115	Gly	Asp	Ile	Met	Met 120		Gly	Asp	His	Phe 12		Ile	Gly
35	Glu	Ser 130	Ala	Arg	Thr	Asn	A1 a 135		G1 y	ΑΊa	Arg	G]n 14		Ile	Ala	Ile
	Leu 145	Glu	Lys	His	G1 y	Leu 150		Gly	Ser	Val	Val 159		Leu	G1 u	Lys	Val 160
40	Leu	His	Leu	Lys	Thr 165		Leu	Αla	Tyr	Leu 170		His	Asn	Asn	Leu 17	
45	Ala	Ala	Gly	Glu 180		Val	Ser	Lys	Pro 185	_	Phe	Gìn	Asp	Phe 19	Asn 0	Ile
40	Ile	G1u	Ile 195	Pro	Glu	Glu	Glu	Ser 200		A1 a	Ala	Asn	Cys 20		Trp	Val
50	Asn	Glu 210	Arg	Val	Пe	Met	Pro 215		Gly	Tyr	Pro	Arg 22	_	Arg	Glu	Lys
	I1e 225	Ala	Arg	Leu	Gly	Tyr 230	-	Val	Пe	G1 u	Va1 23!		Thr	Ser	Glu	Tyr 240
55	Arg	Lys	Ile	Asp	Gły	G1 y	Val	Ser	Cys	Met	Ser	Leu	Arg	Phe		

.

245 250

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1257 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: cDNA

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

15 ATGAGCACGG AAAAAACCAA ACTTGGCGTC CACTCCGAAG CCGGCAAACT GCGCAAAGTG 60 ATGGTCTGCT CGCCCGGACT CGCCCACCAG CGCCTGACCC CGAGCAACTG CGACGAGTTG 120 CTGTTCGACG ACGTGATCTG GGTGAACCAG GCCAAGCGCG ACCACTTCGA CTTCGTCACC 180 20 AAGATGCGCG AGCGCGGCAT CGACGTCCTC GAGATGCACA ATCTGCTGAC CGAGACCATC 240 CAGAACCCGG AAGCGCTGAA GTGGATCCTC GATCGCAAGA TCACCGCCGA CAGCGTCGGC 300 25 CTGGGCCTGA CCAGCGAGCT GCGCTCCTGG CTGGAGAGCC TGGAGCCGCG CAAGCTGGCC 360 GAGTACCTGA TCGGCGGCGT CGCCGCTGAC GACCTGCCCG CCAGCGAAGG CGCCAACATC 420 CTCAAGATGT ACCGCGAGTA CCTGGGCCAT TCCAGCTTCC TGCTGCCGCC GTTGCCGAAC 480 30 ACCCAGTTCA CCCGCGACAC CACTTGCTGG ATCTACGGCG GCGTGACCCT GAACCCGATG 540 TACTGGCCGG CGCGACGACA GGAAACCCTG CTGACCACCG CCATCTACAA GTTCCACCCC 600 35 GAGTTCGCCA ACGCCGAGTT CGAGATCTGG TACGGCGACC CGGACAAGGA CCACGGCTCC 660 TCGACCCTGG AAGGCGGCGA CGTGATGCCG ATCGGCAACG GCGTGGTCCT GATCGGCATG 720 GGCGAGCGCT CCTCGCGCCA GGCCATCGGT CAGGTCGCCC AGTCGCTGTT CGCCAAGGGC 780 40 GCCGCCGAGC GGGTGATCGT CGCCGGCCTG CCGAAGTCCC GCGCCGCGAT GCACCTGGAC 840 ACCGTGTTCA GCTTCTGCGA CCGCGACCTG GTCACGGTCT TCCCGGAAGT GGTCAAGGAA 900 45 ATCGTGCCCT TCAGCCTGCG CCCCGATCCG AGCAGCCCCT ACGGCATGAA CATCCGCCGC 960 GAGGAGAAAA CCTTCCTCGA AGTGGTCGCC GAATCCCTCG GCCTGAAGAA ACTGCGCGTG 1020 GTCGAGACCG GCGGCAACAG CTTCGCCGCC GAGCGCGAGC AATGGGACGA CGGTAACAAC 1080 50 GTGGTCTGCC TGGAGCCGGG CGTGGTGGTC GGCTACGACC GCAACACCTA CACCAACACC 1140 CTGCTGCGCA AGGCCGGCGT CGAGGTCATC ACCATCAGCG CCAGCGAACT GGGTCGCGGT 1200 55 CGCGGCGGCG GCCACTGCAT GACCTGCCCG ATCGTCCGCG ACCCGATCGA CTACTGA 1257

	(2) 1	INFOR	ו ויאויט	ON F	UN J	LQ I	א טוו). IU	, .								
5		(1)	(A (B (C	JENCE) LEI) TYI) STI) TOI	NGTH PE: RANDI	: 410 amin EDNES	Bam cac cs::	ino i id singi	acid:	5							
	((ii)	MOLE	ECULE	TYF	E: p	prote	ein									
10	((ix)	SFOL	JENCE	DES	CRTE	אסזדי	ı. SE	Q [C	NO:	10.						
	·																
4 -		Met 1	Ser	Thr	Glu	Lys 5	Thr	Lys	Leu	Gly	Val 10	His	Ser	G1u	6 I A	Gly 15	
15	4	Leu	Arg	Lys	Va1 20	Met	Val	Cys	Ser	Pro 25	G1 y	Leu	Ala	His	G1n 30		Leu
20		Thr	Pro	Ser 35	Asn	Cys	Asp	G1 u	Leu 40	Leu	Phe	Asp	Asp	Va1 45		Trp	Val
		Asn	G1n 50	Αla	Lys	Arg	Asp	His 55	Phe	Asp	Phe	Val	Thr 60		Met	Arg	Glu
25		Arg 65	Gly	Ile	Asp	Val	Leu 70	Glu	Met	His	Asn	Leu 75	Leu	Thr	G1 u	Thr	Ile 80
30		G1 n	Asn	Pro	Glu	A1 a 85	Leu	Lys	Trp	ΙΊe	Leu 90	Asp	Arg	Lys	Пe	Thr 95	
30		Asp	Ser	Va1	Gly 100		G1 y	Leu	Thr	Ser 109		Leu	Arg	Ser	Trp 11		Glu
35		Ser	Leu	Glu 115	Pro	Arg	Lys	Leu	Ala 120		Tyr	Leu	Ile	Gly 12		Val	Ala
		Αla	Asp 130	Asp	Leu	Pro	Αla	Ser 135	G1u	Gly	Αla	Asn	Ile 14		Lys	Met	Tyr
40		Arg 145	G1 u	Tyr	Leu	G7 y	His 150		Ser	Phe	Leu	Leu 159		Pro	Leu	Pro	Asn 160
45		Thr	Gln	Phe	Thr	Arg 165		Thr	Thr	Cys	Trp 17		Tyr	G1 y	G1 y		Thr 75
40		Leu	Asn	Pro	Met 180	Туг	Trp	Pro	Αla	Arg 18	_	Gln	G1 u	Thr	Leu 19		Thr
50		Thr	Ala	I]e 195	Tyr	Lys	Phe	His	Pro 200		Phe	Ala	Asn	A1 a 20	_	Phe	Glu
		Ile	Trp 210	Tyr	G1 y	Asp	Pro	Asp 215	Lys	Asp	His	G1 y	Ser 22		Thr	Leu	Glu
55		G1 y	Gly	Asp	Val	Met	Pro	Пe	Gly	Asn	G1 y	Val	Val	Leu	Πe	G1 y	Met

(2) INFORMATION FOR SEQ ID NO: 10:

	225			23	0		23	5		240
E	Gly	G1u Ai	rg Ser	Ser Arg 245	Gìn A	Ala Ile	Gly Gln 250	Val Ala	Gln Ser 2	Leu 55
5	Phe	: Ala L	ys Gly 260		Glu A	Arg Val 269		Ala Gly	Leu Pro 270	Lys
10	Ser		la Ala 75	Met His	Leu A	Asp Thr 280	Val Phe		Cys Asp 85	Arg
	Asp	Leu V 290	al Thr	Val Phe	Pro 6	Glu Val	Val Lys	Glu Ile 300	Val Pro	Phe
15	Ser - 305		rg Pro	Asp Pro		Ser Pro	Tyr Gly 31		Ile Arg	Arg 320
20	Glu	Glu Ly	ys Thr	Phe Leu 325	Glu V	/al Val	Ala Glu 330	Ser Leu	Gly Leu 3:	Lys 35
20	Lys	Leu Ar	rg Val 340		Thr G	Gly Gly 349		Phe Ala	Ala Glu 350	Arg
25	Gìu		rp Asp 55	Asp Gly		lsn Val 360	Val Cys		Pro Gly 55	Val
	Va1	Val G1 370	ly Tyr	Asp Arg	Asn T 375	Thr Tyr	Thr Asn	Thr Leu 380	Leu Arg	Lys
30	A1 a 385		al Glu	Val Ile 39		Ne Ser	Ala Ser 39	_	Gly Arg	G}y 400
2 5	Arg	Gly Gl	ly Gly	His Cys 405	Met T	Դr Cys	Pro Ile 410	Val Arg	Asp Pro	Ile 15
35	Asp	Tyr								
40	(2) INFO	RMATION	FOR S	EQ ID N	0: 11:					
	(i)	(A) (LENGTH:	RACTERI 1014 b nucleic	ase pa	nirs				
45				DNESS: SY: line		?				
	(ii)	MOLECU	JLE TYP	E: cDNA						
50	(xi)	SEQUEN	ICE DES	CRIPTIO	N: SEQ	ID NO:	11:			
50	ATGTATCA	AT GGAA	AATACG	CAACGA	CCAT C	GTTTGAT	tg tgaaa	TCAGA GO	CAAATATC	60
	GTTGGTTTA	AT GACG	GATTCC	TACGTC	ectg c	TGCCCGT	CT AGGGT	CACCT GO	:ACGCCGCA	120
55	CCCCCGG	AC GCGG	CGGTAT	GCAATG	ACCC CO	GCCGGCC.	п сттб	CCGTC GC	ATACGCGA	180

1.

	TCAACCCCTG GATGGACGTC ACCGCGCCAG TCGACGTCCA AGTCGCGCAA GCACAGTGGG	240
	AGCACCTCCA CCAGACCTAT CTTCGGCTAG GCCACAGCGT GGATCTGATC GAGCCCATTT	300
5	CCGGGTTACC GGACATGGTG TACACCGCCA ACGGTGGGTT CATCGCGCAC GACATCGCCG	360
	TGGTCGCCCG GTTCCGGTTC CCCGAACGAG CTGGTGAGTC TAGAGCCTAT GCCAGCTGGA	420
- 0	TGTCCTCGGT CGGATATCGC CCGGTGACCA CCCGCCACGT CAACGAGGGA CAGGGCGACC	480
10	TGCTGATGGT TGGCGAAAGG GTGTTGGCGG GCTACGGCTT TCGCACAGAC CAGCGCGCAC	540
	ACGCCGAAAT CGCCGCGGTG CTTGGTCTGC CGGTGGTCTC CCTCGAGTTG GTCGACCCAC	600
15	GGTTCTATCA CCTGGACACC GCGCTGGCCG TGCTCGACGA CCACACGATC GCCTACTACC	660
	CGCCGGCGTT CAGTACGGCA GCGCAGGAAC AGTTGTCGGC GCTGTTCCCC GACGCGATTG	720
20	TGGTCGGCAG TGCCGACGCG TTCGTGTTCG GACTCAACGC CGTCTCTGAC GGTCTGAACG	780
20	TAGTGCTTCC GGTCGCGGCC ATGGGTTTTG CGGCGCAGTT ACGCGCAGCC GGCTTCGAGC	840
	CGGTCGGTGT CGATCTGTCC GAGCTGCTCA AGGGCGGCGG TTCCGTCAAG TGCTGCACGC	900
25	TGGAGATACA CCCATGACAA ATCTCGCGGA TGCCACTCAG GCCACTATGG CACTGGTCGA	960
	AAGGCATGCA GCGCACAATT ATTCGCCGCT GCCTGTGGTG GCGGCCAGCG CTGA	1014
30	(2) INFORMATION FOR SEQ ID NO: 12:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 305 amino acids	
	(B) TYPE: amino acid (C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
70	Asn Val Ser Met Glu Asn Thr Gln Arg Pro Ser Phe Asp Cys Glu Ile 1 5 10 15	
	Arg Ala Lys Tyr Arg Trp Phe Met Thr Asp Ser Tyr Val Ala Ala Ala	
45	20 25 30	
	Arg Leu Gly Ser Pro Ala Arg Arg Thr Pro Arg Thr Arg Arg Tyr Ala 35 40 45	
50	Met Thr Pro Pro Ala Phe Phe Ala Val Ala Tyr Ala Ile Asn Pro Trp 50 55 60	
	Met Asp Val Thr Ala Pro Val Asp Val Gln Val Ala Gln Ala Gln Trp 65 70 75 8	_
55	65 70 75 8	v

	Glu His	s Leu Hi	s G1n Th 85	r Tyr	Leu	Arg	Leu 90		His	Ser	Val	Asp 95	
5	Ile Gl	1 Pro II 10		y Leu	Pro	Asp 10		Val	Tyr	Thr	A1 a 11		Gly
	Gly Phe	116 Al 115	a His As	p Ile	Ala 12		Val	Ala	Arg	Phe 12	_	Phe	Pro
10	Glu Arg	g Ala Gl.)	y Glu Se	r Arg 13!		Tyr	Ala	Ser	Trp 14		Ser	Ser	Val
15	G7 y Tyr 145	Arg Pr		r Thr 50	Arg	His	Val	Asn 15		Gly	G1n	G1 y	Asp 160
-	Leu Leu	ı Met Va	1 Gly Gl 165	u Arg	Va]	Leu	Ala 17		Tyr	Gly	Phe		Thr 75
20	Asp G1r	Arg Al		a Glu	Пe	A7 a 189		Val	Leu	G1 y	Leu 19	_	Va1
	Val Ser	Leu Glo 195	ı Leu Va	l Asp	Pro 200	-	Phe	Tyr	His	Leu 20	_ '	Thr	A1 a
25	Leu Al a 210	ı Val Lei)	a Asp As	p His 219		Ile	A1 a	Tyr	Tyr 22		Pro	Ala	Phe
30	Ser Thr 225	Ala Ala		u Gln 80	Leu	Ser	Ala	Leu 23!		Pro	Asp	Ala	Ile 240
	Val Val	Gly Sei	^ Ala As 245	a fA c	Phe	Va1	Phe 250		Leu	Asn	Αla	Va1 25	
35	Asp Gly	Leu Ası 26		l Leu	Pro	Va1 269		Ala	Met	Gly	Phe 27		Ala
	Gin Leu	Arg Ala 275	a A1a G1	y Phe	G1u 280		Val	Gly	Val	Asp 28		Ser	Glu
40	Leu Leu 290	Lys Gly	/ Gly Gl	y Ser 295		Lys	Cys	Cys	Thr 30		G1 u	lle	His
45	Pro 305	,											

CLAIMS

- 1. A polynucleotide which:
- 5 (a) encodes a polypeptide that has the properties of a methylarginase, which polynucleotide is selected from:
 - (1) the coding sequence of SEQ ID NO: 1, 3, 5,
 7, 9 or 11;
- 10 _ (2) a sequence which hybridises selectively to the complement of a sequence defined in (1); and
 - (3) a sequence that is degenerate as a result of the genetic code with respect to a sequence defined in (1) or (2); or
 - (b) is a sequence complementary to a polynucleotide defined in (a).

15

- A polynucleotide according to claim 1 which is
 a DNA sequence.
 - 3. A polynucleotide according to claim 1 or 2 which encodes the amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12.
- 4. A polynucleotide which comprises the coding sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 or a fragment thereof.
 - 5. A polypeptide which has methylarginase activity and which comprises the sequence set out in SEQ ID NO: 2, 4, 6, 8, 10 or 12, a sequence substantially homologous thereto or a fragment of either said sequence.
 - 6. A vector incorporating a polynucleotide as defined in any one of claims 1 to 4.
 - 7. A vector according to claim 6, which is an expression vector.
- 8. A cell harbouring a polynucleotide according to

any one of claims 4, a peptide according to claim 5 or vector according to claim 6 or 7.

- 9. A process for the preparation of a polypeptide which has methylarginase activity, which process comprises cultivating a host cell harbouring an expression vector according to claim 7 under conditions to provide for expression of the said polypeptide, and recovering the expressed polypeptide.
 - 10. A modulator of methylarginase activity.
- 10 ___ 11. A modulator according to any one of claims 10 to 12, wherein the methylarginase is DDAHI.
 - 12. A modulator according to any one of claims 10 to 12, wherein the methylarginase is DDAHII.
 - 13. A modulator according to claim 10, which is an inhibitor of methylarginase activity and/or expression.
 - 14. A modulator according to claim 10, which is an activator of methylarginase activity and/or expression.
 - 15. A method for identifying a modulator of methylarginase activity and/or expression, comprising:
 - (i) contacting a polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, a vector according to claim 7 or a cell according to claim 8 and a test substance under conditions that would permit methylarginase activity in the absence of the test substance; and
 - (ii) determining thereby whether the said substance modulates the activity and/or expression of methylarginase.
 - 16. A modulator of methylarginase activity and/or expression identified by the method of claim 15.
 - 17. A modulator according to any one of claims 16 to 18, wherein the methylarginase is DDAHI.

20

15

5

30

35

- 18. A modulator according to any one of claims 16 to 18, wherein the methylarginase is DDAHII.
- A modulator according to claim 16, which is an inhibitor of methylarginase activity and/or expression.
- A modulator according to claim 16, which is an activator of methylarginase activity and/or expression.

5

10

15

25

- A polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to any one of claims 10 to 14 or 16 to 20 for use in a method of treatment of the human or animal body by therapy.
- A polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to claim 14 or 20 for use in a method of treatment of hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer.
- A modulator according to claim 13 or 19 for use in a method of treatment of ischeamia-reperfusion injury of 20 the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease.
 - Use of a polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to claim 14 or 20 for the manufacture of a medicament for use in the treatment of hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis, complications of heart failure, schizophrenia, multiple sclerosis or cancer.
- 25. Use of a modulator according to claim 13 or 19 for the manufacture of a medicament for use in the 35

1:

5

10

25

30

35

treatment of ischeamia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease.

- 26. A pharmaceutical composition comprising a polynucleotide according to any one of claims 1 to 4, a polypeptide according to claim 5, an expression vector according to claim or a modulator according to any one of claims 10 to 14 and 16 to 20 and a pharmaceutically acceptable carrier and/or diluent.
- 27. A method of treating a human or animal suffering from hyperlipidaemia, renal failure, hypertension, restenosis after angioplasty, atherosclerosis,

 15 complications of heart failure, schizophrenia, multiple sclerosis or cancer, which method comprises administering to the host a therapeutically effective amount of a polypeptide according to claim 5, an expression vector according to claim 7 or a modulator according to claim 14 or 20.
 - 28. A method of treating a human or animal suffering from ischeamia-reperfusion injury of the brain or heart, cancer, lethal hypotension in severe inflammatory conditions such as septic shock or multi-organ failure, or local and systemic inflammatory disorders including arthritis, skin disorders or inflammatory cardiac disease, which method comprises administering to the host a therapeutically effective amount of a modulator according to any one of claims 13 or 19.
 - 29. A modulator according to claim 23 for use in said method together with a methylarginine.
 - 30. Use of a modulator according to claim 25 for the manufacture of a medicament for use in said treatment together with a methylarginine.
 - 31. A method according to claim 28, which further

comprises administering to the host a methylarginine.

32. A modulator according to claim 29, use according to claim 30 or a method according to claim 31, wherein the methylarginine is L-NMMA.

5

10

15

20

_

ABSTRACT

SCREEN METHOD

5

10

Two dimethylarginine dimethylaminohydrolase (DDAH) genes have been cloned from humans. These genes can be used to screen for inhibitors and activators of activity and/or expression of DDAHs. Inhibitors and activators of activity and/or expression of DDAHs are useful in the treatment of conditions in which abnormal metabolism of nitric oxide is implicated.

Rat DDAH I Human DDAH I Human DDAH II	MAGLSHP-SVFGRATHAVVRAPPESLCRHALRRSQGEEVDFARAERQHQLYVGVLGSKLG MAGLGHP-SAFGRATHAVVRALPESLCQHALRSAKGEEVDVARAERQHQLYVGVLGSKLG MGTPGEGLGRCSHALIRGVPESLASGEGAGAGLPALDLAKAQREHGVLGGKLRQRLG :. * . : ** . : ** . : * :
	LQVVQLPADESLPDCVFVEDVAVVCEETALITRPGAPSRRKEVDMMKEALEKLQLNIVEM LQVVELPADESLPDCVFVEDVAVVCEETALITRPGAPSRRKEVDMMKEALEKLQLNIVEM LQLLELPPEESLPLGPLLGDTAVIQGDTALITRPWSPARRPEVDGVRKALQDLGLRIVEI **::**.:*** :: *.**: : *.**:
	KDENATLDGGDVLFTGREFFVGLSKRTNQRGAEILADTFKDYAVSTVPVADSLHLKSFCS KDENATLDGGDVLFTGREFFVGLSKRTNQRGAEILADTFKDYAVSTVPVADGLHLKSFCS GDENATLDGTDVLFTGREFFVGLSKWTNHRGAEIVADTFRDFAVSTVPVSGPSHLRGLCG ******* *****************************
	MAGPNLIAIGSSESAQKALKIMQQMSDHRYDKLTVPDDMAANCIYLNIPSKGHVLLHR MAGPNLIAIGSSESAQKALKIMQQMSDHRYDKLTVPDDIAANCIYLNIPNKGHVLLHR MGGPRTVVAGSSDAAQKAVRAMAVLTDHPYASLTLPDDAAADCLFLRPGLPGVPPFLLHR *.**.:. ***::***:: * ::** * .**:*** **:*::*. :*.
	TPEEYPESAKVYEKLKDHLLIPVSNSEMEKVDGLLTCCSVFINKKTDS TPEEYPESAKVYEKLKDHMLIPVSMSELEKVDGLLTCCSVLINKKVDS GGGDLPNSQEALQKLSDVTLVPVSCSELEKAGAGLSSLCLVLSTRPHS : *:* : : : ** .* *: ** ** ** : * : : . :

Figure 1

			-
			-
			-
			-

Figure 2

Figure 3

			-
			₹.

Figure 4

			•
			- .

Human DDAHII NATLÞGTDVLFTGR-EFFVGLSKWTN-HRGAEIVADTFRDFAVSTVPVSG-P-----SHLRGLCGMGGPRTVVAGSSDAA NATL PGGDNLFTGR-EFFVGLSKRTN-QRGAEILADTFKDYAVSTVPVAD-G-----LHLKSFCSMAGPNLIAIGSSESA NATL BGGD/MPVGKGIVLIGMGERTSRHAIGQLAQNLFEKGAAEKIIVAGLPKSRAAMHLDTVFSFCDRDLVTVFPEVVK Human DDAHI Deim. P.D.

Figure .

			•
			•
			^
			-
			3
			·
			•

ScDDAH PaDDAH hDDAH TbDDAH	VPSKKALVRRPSPRLAEGLVTHVEREQVDHGLAL-QWDAMFKHIIARTPARSLVDGLTSSHLGKPDYAKALEQHNAMAGLGHPSAFGRATHAVVRALPESLCQHALRSAKGEE-VDVARAERQHQL MTDSYVAAARLGSPARRTPRTRRYAMTPPAFFAVAYAINPWMDVTAP-VDVQVAQAQWEH .: . : * * :
ScDDAH Paddah hddah I Tbddah	YVEALG-AHGWETLEVDPAEYCPDSVFVEDAVVVFRNVALITRPGAESRRAETAGVEEAV YIRALQ-TCDVDITLLPPDERFPDSVFVEDPVLCTSRCAIITRPGAESRRGETEIIEETV YVGVLGSKLGLQVVELPADESLPDCVFVEDVAVVCEETALITRPGAPSRRKEVDMMKEAL LHQTYL-RLGHSVDLIEPISGLPDMVYTANGGFIAHDIAVVARFRFPERAGESRAYASWM ** * *
ScDDAH Paddah hddah I Tbddah	ARLG-CSVNWVWEPGTLDGGDVLKIGDTIYVGRGGRTNAAGVQQLRAAFEPLGARVVAVP QRFYPGKVERIEAPGTVEAGDIMMVGDHFYIGESARTNAEGARQMIAILEKHGLSGSVVR EKLQLNIVEMKDENATLDGGDVLFTGREFFVGLSKRTNQRGAEILADTFKDYAVSTVP SSVGYRPVTTRHVNEGQGDLIMVGERVLAGYGFRTDQR-AHAEIAAVLGLPVVSLELV
ScDDAH PADDAH hDDAH TbDDAH	VSKVLHLKSAVTAL-PDGTVIGHIPLTDVPSLFPRFLPVPEE-SGAHVVLLG LEKVLHLKTGLAYL-EHNNLLAAGEFV3KPEFQDFNIIEIPEEESYAANCIWV VADGLHLKSFCSMAGPNLIAIGSSESAQKALKIMQQMSDHRYDKLTVPDDIAANCIYL DPRFYHLDTALAVLDDHTIAYYPPAFSTAAQEQLS-ALFPDAIVVGSADAFVFGLNAVSD **:::::::::::::::::::::::::::::::::::
SCDDAH PADDAH hDDAH I TBDDAH	GSRLLMAASAPKTAELLADLG-HEPVLVDIGEFEKLEGCVTCLSVRLRELYD- NERVIMPAGYPRTREKIARLG-YRVIEVDTSEVRKIDGGVSCMSLRF NIPNKGHVLLHRTPEEYPESAKVYEKLKDHMLIPVSMSELEKVDGLLTCCSVLINKKIDS GLNVVLPVAAMGFAAQLRAAG-FEPVGVDLSELLKGGGSVKCCTLEIHP

{-

Figure 6A '

PaDeiminase PaDDAH	MSTEKTKLGVHSEAGKLRKVMVCSPGLAHQRLTPSNCDELLFDDVIWVNQAKRDHFDFVT
PaDeiminase PaDDAH	KMRERGIDVLEMHNLLTETIQNPEALKWILDRKITADSVGLGLTSELRSWLESLEPRKLAMFKHIIAR-TPARSLVDGLTSSHLGKP :* *: * .* *: **** :*
PaDeiminase PaDDAH	EYLIGGVAADDLPASEGANILKMYREYLGHSSFLLPPLPNTQFTRD-TTCWIYGGVTDYAKALEQHNAYIRALQTCDVDITLLPPDERFPDSVFVEDPVLCTSRCAII * * * * : **** :*:: ** . :
PaDeiminase PaDDAH	LNPMYWPARRQETLLTTAIYKFHPEFANAEFEIWYGDPDKDHGSSTLEGGDVMPIGNGVV TRPGAESRRGETEIIEETVQRFYPGKVERIEAPGTVEAGDIMMVGD-HF .* . *: :: :: :: :: :
PaDeiminase PaDDAH	LIGMGERSSRQAIGQVAQSLFAKGAAERVIVAGLPKSRAAMHLDTVFSFCDRDLVTVFPE YIGESARTNAEGARQMIAILEKHGLSGSVVRLEKVLHLKTGLAYLEHNNLLAAGE **
PaDeiminase PaDDAH	VVKEIVPFSLRPDPSSPYGMNIRREEKTFLEVVAESLGLKKLRVVETGGNSFAAEREQWD FVSKPE

Figure 6B

		•

Figure 7

PCT - 2 00 00 26

26-1-00

do A. Kamp or Co