MITX SDS MICROMASTERS

Course Notes

6.431x: Probability - The Science of Uncertainty and Data

Author: Yolanda Huitian DIAO

February 21, 2023

Contents

1	Pro	bability	models and axioms	1
	1.1	Math		1
		1.1.1	Sets and De Morgan's Laws	1
		1.1.2	Sequences and their limits	
		1.1.3	Infinite series	2
		1.1.4	Geometric series	2
		1.1.5	Sums with multiple indices	2
		1.1.6	Countable and uncountable sets	3
	1.2	Lectur	re 1: Probability models and axioms	3
		1.2.1	Sample space	3
		1.2.2	Probability laws	3
		1.2.3	Some simple consequences of the axioms	4
		1.2.4	More consequences of the axioms	4
		1.2.5	Discrete uniform law	4
		1.2.6	Uniform probability law	4
		1.2.7	Probability calculation steps	4
		1.2.8	Countable additivity axiom	4
		1.2.9	Interpretations of probabilities	5
		1.2.10	The role of probability theory	5
2	Con	ditioni	ng and independence	7
	2.1	Lectur	re 2: Conditioning an Baye's rule	7
			Conditional Probability	7
		2.1.2	Three important tools: Multiplication rule; Total probability	
			theorem; Baye's rule	7
A	Frec	quently	Asked Questions	9
			do Lehange the colors of links?	9

List of Figures

List of Tables

List of Abbreviations

LAH List Abbreviations HereWSF What (it) Stands For

List of Symbols

- R Real numbers
- Natural numbers
- Ω Universal set
- Ø Empty set

Chapter 1

Probability models and axioms

1.1 Math Overview

1.1.1 Sets and De Morgan's Laws

Sets

- A collection of distinct element
- Can be finite or infinite

Unions and intersections

- $S \cup T$: $x \in S \cup T \Leftrightarrow x \in S \text{ or } x \in T$
- $S \cap T$: $x \in S \cap T \Leftrightarrow x \in S$ and $x \in T$
- $x \in \bigcup_{n} S_n \Leftrightarrow x \in S_n$, for some n
- $x \in \bigcap_{n} S_n \Leftrightarrow x \in S_n$, for all n

Set properties

- $S \cup T = T \cup S$
- $S \cap (T \cup U) = (S \cap T) \cup (S \cap U)$
- $(S^c)^c = S$
- $S \cup \Omega = \Omega$
- $S \cup (T \cup U) = (S \cup T) \cup U$
- $S \cup (T \cap U) = (S \cup T) \cap (S \cup U)$
- $S \cap S^c = \emptyset$
- $S \cap \Omega = S$

De Morgan's laws

- $(\bigcap_{n} S_n)^c = \bigcup_{n} S_n^c$
- $\bullet \ (\bigcup_n S_n)^c = \bigcap_n S_n^c$

Sequences and their limits

• Definition of Sequence

- function
$$f : \mathbb{N} \to S$$
, $f(i) = a_i$

• Convergence of Sequence

$$-a_i \underset{i \to \infty}{\to} a, \lim_{i \to \infty} a_i = a$$

– For any $\epsilon > 0$, there exists i_0 , such that if $i \geq i_0$, then $|a_i - a| < \epsilon$

1.1.2 Sequences and their limits

- If $a_i \ge a_{i+1}$, for all i, then either:
 - the sequence "converges to ∞"
 - the sequence converges to some real number a
- If $|a_i a| \le b_i$, for all i, and $b_i \to 0$, then $a_i \to a$
- Properties of convergent sequences

- If
$$a_i \rightarrow a$$
 and $b_i \rightarrow b$, then

*
$$a_i + b_i \rightarrow a + b$$

*
$$a_ib_i \rightarrow ab$$

– If $a_i \rightarrow a$ and g is a continuous function, then

*
$$g(a_i) \rightarrow g(a)$$

1.1.3 Infinite series

Provided limit exists: $\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$

- If $a_i \ge 0$: limit exists
- If term a_i do not all have the same sign:
 - limit need not exist
 - limit may exist but be different if we sum in a different order
 - **Fact:** limit exists and independent of order of summation if $\sum_{i=1}^{\infty} |a_i| < \infty$

1.1.4 Geometric series

$$\sum_{i=0}^{\infty} \alpha^{i} = 1 + \alpha + \alpha^{2} + ... + = \frac{1}{1-\alpha} |\alpha| < 1$$

1.1.5 Sums with multiple indices

$$\sum_{i\geq 1, j\geq 1} a_{ij}$$

- If the sum converges, this double series will be well defined.
- If $\sum |a_{ij}| < \infty$, then order of summation does not matter.

1.1.6 Countable and uncountable sets

- Countable: can put in 1-1 correspondence with positive integers
 - positive integers
 - integers
 - pairs of positive integers
 - rational number q, with 0 < q < 1
 - * 1/2,1/2,2/3,1/4,2/4,3/4,1/5,2/5...
- Uncountable: not countable
 - the interval [0, 1]
 - the reals, the plane, ...
- The reals are uncountable
 - Cantor's diagonalization argument

1.2 Lecture 1: Probability models and axioms

1.2.1 Sample space

- Two steps:
 - Describe possible outcomes
 - Describe beliefs about likelihood of outcomes
- List (set) of possible outcomes, Ω
 - Mutually exclusive
 - Collectively exhaustive
 - At the "right" granularity
- Examples
 - Discrete / finite
 - * Two rolls of a tetrahedral die
 - * Sequential description (decision tree)
 - Continuous
 - * (x, y) such that $0 \le x, y \le 1$

1.2.2 Probability laws

- Event: a subset of the sample space
 - Probability is assigned to events
- Axioms:
 - Nonnegativity: $P(A) \ge 0$
 - Normalization: $P(\Omega) = 1$
 - (Finite) additivity: (to be strengthened later)
 - * If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

1.2.3 Some simple consequences of the axioms

- $P(A) \le 1$
- $P(\emptyset) = 0$
- $P(A) + P(A^C) = 1$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ and similarly for k disjoint events $P(s_1, s_2, ...s_k) = P(s_1) + ... + P(s_k)$
- $A \cup A^C = \Omega$
- $A \cap A^C = \emptyset$

1.2.4 More consequences of the axioms

- If $A \subset B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) \leq P(A) + P(Bs)$
- $P(A \cup B \cup C) = P(A) + P(A^C \cap B) + P(A^C \cap B^C \cap C)$

Examples

- Discrete / finite example: Two rolls of a tetrahedral die
 - X = Firstroll, Y = Secondroll, Z = min(X, Y)
 - -P(X=1) = 4/16 = 1/4, P(Z=2) = 5/16

1.2.5 Discrete uniform law

- Assume Ω consists of n equally likely elements
- Assume *A* consists of *k* elements
- $P(A) = k \cdot \frac{1}{n}$

1.2.6 Uniform probability law

• Probabiliy = Area

1.2.7 Probability calculation steps

- Specify the sample space
- Specify a probability law
- Identify an event of interest
- Calculate ...

1.2.8 Countable additivity axiom

- If $A_1, A_2, A_3, ...$ is an infinite sequence of disjoint events,
 - Then $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$

1.2.9 Interpretations of probabilities

- A narrow view: a branch of math
 - Axioms \Rightarrow theorems
- Are probabilities frequencies?
 - P(coin toss yields heads) = 1/2
 - P(the president of ... will be reelected) = 0.7
- Probabilities are often interpreted as:
 - Description of beliefs
 - Betting preferences

1.2.10 The role of probability theory

- A framework for analyzing phenomena with uncertain outcomes
 - Rules for consistent reasoning
 - Used for predictions and decisions
- Diagram
 - Real world \Rightarrow data \Rightarrow Inference/Statistics
 - Inference/Statistics ⇒ Models ⇒ Probability theory (Analysis)
 - **Probability theory (Analysis)** \Rightarrow Predictions \neq **Real world**

Chapter 2

Conditioning and independence

2.1 Lecture 2: Conditioning an Baye's rule

The idea of conditioning: Use new information to revise a model

2.1.1 Conditional Probability

The idea of conditioning: Use new information to revise a model

Definition of conditional probability

- P(A|B) = "probability of A, given that B occurred"
- $P(A|B) = \frac{P(A \cap B)}{P(B)}$ defined only when P(B) > 0

Two rolls of a 4-sided die

- Let *B* be the event: min(X, Y) = 2. Let M = max(X, Y)
 - -P(M=1|B)=0
 - $-P(M=3|B) = \frac{P(M=3andB)}{P(B)} = \frac{2/16}{5/16} = 2/5$

Conditional probabilities hsare properties of ordinary probabilities

- $P(A|B) \ge 0$, assuming P(B) > 0
- $P(\Omega|B) = \frac{P(\Omega \ capB)}{P(B)} = 1$
- P(B|B) = 1
- If $A \ cap C = \emptyset$, then $P(A \cup C|B) = P(A|B) + P(C|B)$

2.1.2 Three important tools: Multiplication rule; Total probability theorem; Baye's rule

- Multiplication rule
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$ - $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$
- Total probability theorem
 - Partition of sample space into $A_1, A_2, A_3, ...$
 - Have $P(A_i)$, for every i

- Have
$$P(B|A_i)$$
, for every i

$$-P(B) = \sum_{i} P(A_i) P(B|A_i)$$

Bayes' rule and inference

- Thomas Bayes, presbyterian minister (c. 1701 1761)
- "Bayes' theorem", published pothumously
- systematic approach for incorporatin new evidence
- Bayesian inference
 - initial beliefs $P(A_i)$ on possible causes of an observed event B
 - model of the world under each A_i : $P(B|A_i)$

*
$$A_i \xrightarrow{P(B|A_i)} B$$

- draw conclusions about causes

*
$$B \xrightarrow{P(A_i|B)} A_i$$

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.