

Description

The VSM40P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =-60V, I_D =-40A $R_{DS(ON)}$ <23m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM40P06-TC	VSM40P06	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	-60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	-40	А
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	-28.3	Α
Pulsed Drain Current	I _{DM}	160	Α
Maximum Power Dissipation	P _D	100	W
Derating factor		0.67	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	420	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.5	°C/W	
---	----------------	-----	------	--

Electrical Characteristics (Tc=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=-250\mu A$	-2	-2.6	-4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	19	23	mΩ
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-20A	-	20	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	V _{DS} =-30V,V _{GS} =0V,	-	5410	-	PF
Output Capacitance	Coss		-	450	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	234	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =-30V, I_{D} =-20A V_{GS} =-10V, R_{GEN} =3 Ω	-	16	-	nS
Turn-on Rise Time	t _r		-	18	-	nS
Turn-Off Delay Time	t _{d(off)}		-	65	-	nS
Turn-Off Fall Time	t _f		-	22	-	nS
Total Gate Charge	Qg	V _{DS} =-30V,I _D =-20A,	-	89.5	-	nC
Gate-Source Charge	Q_{gs}		-	19	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	22	-	nC
Drain-Source Diode Characteristics	·					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-12A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	-40	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = -20A	-	-	71	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	-	170	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: $Tj=25^{\circ}C$, $V_{DD}=-30V$, $V_{G}=-10V$,L=0.5mH, $Rg=25\Omega$

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

-Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

-Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance