69.4.

Genotyp odczytywany z materiału biologicznego może być odkodowany w kierunku od strony lewej do prawej lub odwrotnie: od strony prawej do lewej. Genotyp nazywać będziemy *odpornym*, jeśli czytany od strony lewej do prawej oraz od strony prawej do lewej ma dokładnie taką samą część kodującą. Natomiast genotyp *silnie odporny* to taki, który czytany od strony lewej do prawej oraz od strony prawej do lewej daje dokładnie ten sam napis. (Inaczej mówiąc, genotyp jest silnie odporny, gdy jest palindromem).

Przykład

Rozważmy genotypy:

EAABCDBBDCBAAEBCDEE EAABCDBBECAAB

Genotyp EAABCDBBDCBAAE jest silnie odporny (jest palindromem). Genotyp EAAB-CDBBDCBAAEBCDEE nie jest silnie odporny (nie jest palindromem), ale jest odporny, gdyż czytany od strony lewej do prawej, jak i od strony prawej do lewej ma taką samą część kodującą: AABCDBB. Natomiast genotyp EAABCDBBECAAB nie jest silnie odporny (nie jest palindromem), nie jest też odporny, gdyż czytany od strony lewej do prawej daje część kodującą AABCDBB, a czytany od strony prawej do lewej ma część kodującą równą AACEBB.

Wyznacz liczbę genotypów odpornych oraz liczbę genotypów silnie odpornych.

Zadanie 70.

Wiązka zadań Zasłona

Pani Binarna dostała zlecenie na uszycie zasłony. Na rysunku poniżej przedstawiono zasłonę, która jest ograniczona:

- od góry prostą $y = 19 \frac{61}{125}$,
- od dołu prostą $y = -32\frac{2}{3}$,
- z lewej strony prostą x = 2,
- z prawej strony dwoma krzywymi: $f(x) = \frac{x^4}{500} \frac{x^2}{200} \frac{3}{250}$ oraz

$$g(x) = -\frac{x^3}{30} + \frac{x}{20} + \frac{1}{6}$$
.

Uwaga: Zauważ, że $f(10) = 19 \frac{61}{125}$, zaś $g(10) = -32 \frac{2}{3}$.

Rysunek pomocniczy:

Korzystając z dostępnych narzędzi informatycznych, wykonaj poniższe zadania. Odpowiedzi do nich umieść w pliku zadanie_zaslona.txt. Każda odpowiedź powinna być poprzedzona numerem je oznaczającym.

70.1.

Pani Binarna zakupiła tyle materiału, ile wynosi pole prostokąta ABCD, w którym mieści się zasłona. Oblicz, jaka będzie powierzchnia materiału pozostałego po wykrojeniu zasłony. Wynik podaj z dokładnością do 1/1000.

70.2.

Pani Binarna zamierza obszyć taśmą zasłonę ze wszystkich czterech stron, w tym celu chce wyznaczyć obwód zasłony. Część obwodu ograniczoną wykresem funkcji f(x) szacujemy w następujący sposób: Odcinek [2,10] dzielimy na 1000 równych części, których prawe końce oznaczamy przez x_1, \ldots, x_{1000} . Długość krzywej odpowiadającej wykresowi f(x) na przedziale [2,10] przybliżamy długością łamanej łączącej punkty $(2,f(2)), (x_1,f(x_1)), (x_2,f(x_2))$ itd. aż do $(x_{1000},f(x_{1000}))$. Analogicznie wyznaczamy część obwodu ograniczoną przez g(x).

Stosując powyższą metodę wyznaczania obwodu, oblicz długość taśmy, jaką musi zakupić pani Binarna, zakładając, że w sprzedaży jest tylko taśma o długościach będących wielokrotnością jednego metra.

70.3.

Pani Binarna postanowiła wykorzystać pozostały fragment materiału i wyciąć z niego pasy o szerokości 0,25 m i o bokach równoległych do osi układu współrzędnych. Podaj sumę długości pasów, które można wyciąć z pozostałego fragmentu materiału. Załóż, że długość każ-

dego wyciętego pasa jest liczbą całkowitą oraz że pani Binarna zaczyna wycinać pasy od prawej strony materiału.

Rysunek pomocniczy:

Zadanie 71. Wiązka zadań *Funkcja*

Wykres funkcji f złożony jest z pięciu fragmentów:

$$f(x) = \begin{cases} f_1(x), & x \in [0,1), \\ f_2(x), & x \in [1,2), \\ f_3(x), & x \in [2,3), \\ f_4(x), & x \in [3,4), \\ f_5(x), & x \in [4,5), \end{cases}$$

gdzie każda z funkcji $f_i(x)$ jest wielomianem stopnia trzeciego. W pliku funkcja.txt zapisane są współczynniki postaci ogólnej wielomianów $f_i(x)(i=1,2,...,5)$; w *i*-tym wierszu pliku zapisane są cztery liczby rzeczywiste: a_0, a_1, a_2, a_3 (oddzielone pojedynczym odstępem), dla których $f_i(x) = a_0 + a_1x + a_2x^2 + a_3x^3$.

Poniższy rysunek przedstawia wykres funkcji f.