Семинар №5 по дисциплине «Электроника»

Тема: Расчёт схем на БТ ч.2

Задание

Задание 1. Биполярные транзисторы npn- и pnp-типа включены по схеме с ОЭ, для них известны $U_{\text{БЭ}}$ и $U_{\text{КЭ}}$. В каком режиме каждый из них работает?

Обоснуйте ответ: укажите напряжения на p-n-переходах и их состояние (открыт/закрыт).

Задание 2.

- **а)** В схеме рис. 2 задано: тип схемы (столбец 9 таблицы) некоторые величины (столбец 10 таблицы). Определите значения величин, перечисленных в столбце 11 таблицы.
- **б)** (**spice-моделирование**) Постройте модель своего транзистора (с параметрами Is, Bf; название модели фамилия члена бригады); постройте модель своей схемы; с помощью моделирования проверьте значения известных токов ветвей и напряжений узлов схемы.

Задание 3. Напряжение коллектора транзистора меняется в заданном диапазоне при постоянном напряжении базы. Определите напряжение Эрли, при котором ток изменяется в заданных пределах.

Таблица вариантов

		задание 1						задание 2			задание 3			
Nº	Бри- гада	Тип БТ 1	V _{БЭ} , В	Vкэ, В	Тип БТ 2	V _{БЭ} , В	V _{КЭ} , В	№ схемы	дано	найти	V _{КЭ1} , В	V _{КЭ2} , В	V _{БЭ} , В	δ <i>I</i> κ, %
1	2	3	4	5	6	7	8		9	10	22	23	24	25
1	1	pnp	0.4	1.5	npn	-0.7	1.9	Б	$Vcc = 15 \text{ B}; Vee = -15 \text{ B}; Vbb = 0$ B; $\beta = 100; I\kappa = 1 \text{ мA при Vб} = 0,7 \text{ B}; V\kappa = 5 \text{ B}; I\kappa = 2 \text{ мA}$	Rк; Rэ; Is	2.5	4.5	1.5	4
2	2	pnp	0.8	0.2	npn	-0.8	-1.4	Б	Vcc = 10 B; Vee = -10 B; Vbb = 0 B; Rκ = 5 κOm; Rθ = 10 κOm; β = 50; Vθ = -0,7 B;	Ік; Іб; Іэ; Vк; Іѕ	2	3	1.9	3
3	3	pnp	0.7	1.8	npn	0.2	-1.9	В	Vcc = 10 B; Vee = -10 B; Vbb = 0 B; Rк = 5 кОм; Rэ = 5 кОм; Vб = 1 B; Vэ = 1,7 B; R1 = 100 кОм	α; β; Vκ; Is	3	4	0.7	3
4	4	npn	0.5	-0.4	pnp	-0.8	1.6	Б	Vcc = 10 B; Vee = 0 B; Vbb = 4 B; β = 100; Rк = 4,7 кОм; Rə = 3,3 кОм;	Ік; Іб; Іэ; Vк; Vб; Vэ; Іѕ	3	5.5	0.3	3.5
5	5	pnp	-0.4	-0.9	npn	0.5	1.6	Б	Vcc = 10 B; Vee = 0 B; Vbb = 6 B; в = 50; Rк = 4,7 кОм; Rэ = 3,3 кОм;	Ік; Іб; Іэ; Vк; Vб; Və; Іs	1	4	0.2	3
6	6	npn	-0.5	1.4	pnp	-0.2	0.6	Γ	Vcc = 10 B; Vee = -10 B; Vbb = 0 B; R κ = 1 κ O κ ; R ϑ = 2 κ O κ ; β = 100;	Ік; Іб; Іэ; Vк; Vб; Və; Is	1.5	3.5	1.8	4
7	7	npn	-0.4	-0.8	pnp	-0.6	-0.4	A	Vcc = 10 B; Vee = 0 B; Vbb = 5 B; Rκ = 2 κOm; Rθ = 0 κOm; β = 100; R1 = 100 κOm	Ік; Іб; Іэ; Vк; Vб; Vэ; Іѕ	2	4.5	1	3