Internship Program Report

By

UPPALAPU HIMA BINDU-19485A0249

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	. 4
4 th May2021: Engineering documentation for EPC projects	. 5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	. 7
10 th May2021: Engineering documentation for Typical diagrams	. 8
11 th May2021: Classification of Transformers and Generators	. 9
12 th May2021: Classification of Switchgare construction and power factor improvement	LO
17 th May2021: Detailing about UPS system and Busducts	L1
18 th May2021: Detailing about Motor Starters and Sizing of motors	L2
19 th May2021: Discribing about Earthing system and Lighting Protection	L3
20 th May2021: Lighting or illumination systems and calculations	L4
21 th May2021: Lighting or illumination systems using DIALUX software	L5
24 th May2021: Cabling and their calculations and types	۱6
25 th May2021: Cabling calculations and Cable gland selection	L7
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5 th june 2021: Cable sizing and cable tray sizing calculations	21
Conclusion	22
Foodhack:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

:	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A	A AUTOCAD BASIC KEYS							
STAND	ARD	DRA	DRAW MOD		OIFY FORM		AT	
NEW	Ctrl+N	LINE	L	ERASE	£	PROPERTIES	MO	
OPEN	Ctrl+O	RAY	RAY	COPY	CO	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPGLY	3P	OFFSET	0	LINETYPE	LT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	Х			
		BOUNDARY	ВО					
		DONUT	DO					

EXTRA			DRAF	FING	PAPER SIZE	
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	A	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz

1C. DETAILED ENGINEERING

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May 2021: Engineering documentation for Typical diagrams

5	Electrical system		
	design for typical		
	diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic
			diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6	Classification of		
	Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7	Classification of Switchgare construction and power factor	Different types of Switchgare assembles	Power factor improvement
	improvement		

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	-

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX software	Lighting or illumination systems	Operation software	of	dialux
----	--	----------------------------------	--------------------	----	--------

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types materials	of	cabling

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and	Cabling calculations	Cable gland selection
	cable gland selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table Refer to illustration at the top of

Cable Gland	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "8"	Armour Range		Across Flats "D"	Across Corners "D"	Protrusion Length "F"
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length F
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32,2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	MSO	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8
755	M75	15.0	62.0	72,1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	0.08	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

Topic details:

List of electrical load calculations.

Equipment	Equipment De	ecciption	Breaker	Breaker	Breaker	ELCB	Absorbed	Motor / Load	Load	Efficiency	Power	kW = [A]/[D	4	Consume	Load	kVAR = kW	× tan φ	Remai
No.	Equipition De	Somption	Rating	Type	No. of	Rating		Rating	Factor	at Load	Factor at	Continu	ious	Interm	ittent	Stand-	Ьу	110111
					Poles	_			[A]/[B]	Factor [C]	Load						ľ	
				-		-	[A]	[B]	IC1	IDI	Factor [C]							
			A			mA	kW	kW	decimal	decimal	cos ф	kW	kVAB	kW	kVAR	kW	kVAB	
	Silica filter feed pump						88.18		0.98		0.82	94.82	66.18					
	Absorbesn#Neutral oil pump (V						25.62		0.85		0.78	28.2	22.6					
	AbsorbesntNeutral oil pump (S)					22.03		0.73		0.78					24.2	19.4	
	Feed Pump (Seperator)						89.06		0.99		0.82	95.8						
	MIXER(W)						89.75		1.00		0.73	96.5	90.4					
	MIXER(S)						89.75		1.00		0.73					96.5	90.4	
	Blower						38.53		0.86		0.78	42.3	34.0		ļ		ļ	
	TK 2313B (I)			ļ	ļ	 	3.74		0.80		0.73		L	4.4	4.1	ļ	ļ	ļ
	Screw conveyor (I)			-		ļ	8.65		0.94		0.73			10.18	9.53		ļ	
	Citric acid tan agitator (W)				ļ	 	6.50		0.87		0.73	7.65	7.16	ļ		ļ		ļ
	Citric acid tank agitator (S)			ļ	ļ	ļ	6.50		0.87 0.79		0.73 0.78	05.03	I	ļ	ļ	7.6	7.2	ļ
	Citric oil rection vessol agitator						23.63					25.97	20.83					
	Lye oil reaction vessel agitator						8.60		0.93 0.93		0.73	10.12	9.47 9.47					
	Lye oil reaction vessel agitator Soap Adsorbant Tank Agitator			ļ			8.60 15.04		0.93		0.73 0.73	10.12 17.69	16.57					
AG 2314	Soap Ausorbanit Fank Agitator						15.04	10.30	0.01	0.63	0.73	17.03	16.37		ļ			
Maximum of nor (Est. x%E + y%F	mal running plant load :	433.5 kW		347.5	kVAR		sgrt (k\	v² +kVAR²) =	555.6	kVA	TOTAL	429.12	343.44	14.58	13.65	128.36	116.93	
Peak Load :		446.3 kW		250.2	kVAB			√² +kVAR²) =	572.9	LVA	kVA	549.6	2	19.9	17	173.6		
reak Load : (Est. x%E + y%F	+ z%G)	446.3 KW		303.2	KVAD		sqrt(K)	v* +kvan*j =	5/2.3	KVA	KVA	343.6	.3	19.3	,	173.6	4	
Assumptions																		
 Load factor, El 	ficiency and Power factor.		E.C.															
	Load Rating (kW) <= 20		Effic 0.	iency		Power f 0.73												
	> 20 - <= 45		0.	91		0.73												
	> 45 - < 150		0.1	93		0.82												
	>= 150			94		0.91												
2) Coincidence f	actors x= 1.0, y= 0.3, and z=0.1	considered for contri	oue intermitte	ant and a	tandhu le	and												
a) con lorderice i	accord x= 1.0, y= 0.0, arIU 2=0.1	constacted for curitril	Just, II KOITIIKI	CH GIIU S	or ideal if	out.												

ROLL NO: 19485A0249 June 2021

T/F calculation:

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types, sizing or selections

2nd june2021: Caluculations of Earthing and Lighting protection.

1	17	Calculation of			
		Earthing and	Earthing calculations	Lighting protection	
		Lighting	_	calculation	
		protection			
		calculations			

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculation

tc - Short circuit current duration sec Thermal capacity factor, TCAP J/(cm3.oC)	3.93						
	419						
Tm - Maximum allowable temperature for copper conductor, in oC KO - Factor at oC							
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	293						
18 = Ac *	0.123						
Ac - Required conductor cross section in sq.mm	147						
Earth flat area in mm	14						
Earth flat area (including 25% corrosion allowance) in mm	17						
Selected flat size W * Thk in sq mm	20						
Rg - Grid resistance							
Grid resistance can be calculated using Eq. 52 of IEEE 80							
$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20 / A}} \right] \right\}$							
p - Soil resistivity in Ω-meter=	9						
L - Total buried length of ground conductor in meter	380						
h - Depth of burial in meter	0.01						
A - Grid area in sq. meter	8125						
Rg - Grid resistance	0.068						
Rr - Earth Electrode resistance							
Grid resistance can be calculated using Eq. 55 of IEEE 80							
$R_r = \frac{\rho}{2 \times \pi \times n_r \times L_r} \left\{ 1_n \left[\frac{4 \times L_r}{b} \right] - 1 + \frac{2 \times k_1 \times L_r}{\sqrt{A}} \left(\sqrt{n_r} - 1 \right)^2 \right\}$							
ρ - Soil resistivity in Ω-meter, 16.96	9						
n - No of earth electrodes	6						
Lr - Length of earth electrode in meter b - Diameter of earth electrode in meter	0.020						
b - Diameter of earth electrode in meter	0.020						
A - Area of grid in square metre	8125						
A - Area or griu in Square metre	0123						
Rr - Earth Electrode resistance	3.5663						
Grounding system resistance							
Grounding system resistance can be calculated using equation 53 of IEEE	80 as follo						

ρ - Soil resistivity in Ω-meter, 16.96	9	
n - No of earth electrodes	6	
Lr - Length of earth electrode in meter	4	
b - Diameter of earth electrode in meter	0.020	
k1 - co-efficient	1	
A - Area of grid in square metre	8125	
Rr - Earth Electrode resistance	3.5663	
9 :	80 as fol	lows:
Grounding system resistance $R_s = \frac{R_g \times R_2 - R_m^2}{R_g + R_2 - 2R_m}$ $R_m \text{- Mutual ground resistance between the group of ground conductors,} $ $R_g \text{ and group of electrodes, } R_r \text{ in } \Omega. \text{ Neglected } R_m, \text{ since this is for homogenous soil}$	80 as fol	lows:

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and		
	cable tray	Cable sizing calculations	Cable tray calculation
	sizing		·
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

5.N O.	Description	Equipment No.	Description	Consum ed Load KW	Hatin	Voltag e rvn	No Ful Loa of Curr of nt oh (A	d Starti	Load P.F. Bunnin g	SIN Φ Runni ng	Motor P.F Staring	SIN © Stari ng	Туре	No. of Buns	No. of Cores	Size (mm2)	Current Bating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k v	Derate d Current (A -	Lengt	Cable Resistan ce (Ohms/k MI	Cable Reactanc e (Ohms/kM	(Runnin	drop
3	LV MCC	PU2315	Silica filter feed pump	11.11		415	3 153.	920.10	0.8	0.6	0.8	0.5	2	1	4.0	95	284	0.98	0.9	1	- 1	0.882	250.5	95	0.2470	0.0734	6.10	147
4	LV MCC	PU2322A	Soft water pump	25.42	,,		3 44.			0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	5.81	140
5	LV MCC	PU 2314A	Absorbesn#Neutral oil pump	22.00	18.8	415	3 38.			0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	60	1.4700	0.0815	4.88	1.18
6	LV MCC	PU2324	Citric Acid Tank pump	\$9.04	10.0	415	3 154.			0.6	0.8	0.5	2	1	4.0	95	284	0.98	0.9	1	1	0.882	250.5		0.2470	0.0734	5.51	133
7	LV MCC	PU2333	Slop Oil pump	09.75			3 156			0.6	0.8	0.5	2	1	4.0	70	230	0.98	0.9	1	1	0.882	202.9	75	0.3430	0.0752	6.48	156
8	LV MCC	PU 2322B	Soft water pump-Stand by	19.75	18.0		3 156			0.6	0.8	0.5	2	1	4.0	95	284	0.98	0.9	1	1	0.882	250.5	105	0.2470	0.0734	6.86	165
9	LV MCC	PU2321A	LyefSimplex Metering Pump	39.53	6.0		3 67.			0.6	0.8	0.5	2	1	4.0	35	148	0.98	0.9	1	1	0.882	130.5	100	0.6710	0.0794	6.78	163
10	LV MCC	PU2321B	Lye storage tank pump	2.74			3 6.5		0.8	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	100	5.9000	0.0947	5.38	130
11	LV MCC	PU2305	Feed Pump(Seperator)	0.45			3 15.0		0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	6.26	1.51
12	LV MCC	PU2332	Saop Stock Pump	4.50	2.5	415	3 11.3		0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	110	2.3400	0.0852	4.14	100
13	LV MCC	MX2305	Mixer	4.50	·	415	3 113		0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	4.71	1.13
14	LV MCC	MX2308	Mixer	22,43		415	3 41.	246.56		0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	5.93	143
15	LVMCC	CF2312 BW2313	Separator Blower	8.44	59	415 415	3 15.0		0.8	0.6	0.8	0.5	2	1	4.0	25 10	122 66	0.98	0.9	1 1	1	0.882	107.6 58.2	85 95	0.9300 2.3400	0.0816	1.75 4.73	1,14
17	LV MCC LV MCC	BW2313 BW 2314	Blower Rotary valve	2.44			3 15.0		0.8	0.6	0.8	0.5	2	-	4.0	10	66	0.98	0.9	1	-	0.882	58.2	65	2.3400	0.0852	5.66	136
12	EV MOD	111 2314	Tiolary varie	95.0	- 4.	750	3 20.	150.55	0.0	0.0	0.0	0.0	-		4.0	- 10	- 00	0.30	0.5	-		0.002	30.2	- 03	2.3400	0.0032	3.00	130
_					_				_		_													-			_	\leftarrow
_					_		_	_	_	_	_	_	_						_				-	-			-	-
_					_		_	_	_		_	_												-			-	-
																								_				
		Basis:																										
		1. Overall derati	na factor k = k1 x k2 x k3 x k4																									
			K1=Rating factor for variation in a	irlaround tem	merature																							
			K2=Bating factor for depth of lavi																									
			K3=Rating factor for spacing bets																									
			K4=Bating factor for variation in t																									
		2. LT Motors :	Running Voltage Drop = 3%, Start	ting Voltage D	Orop = 15	5%																						
		3. Cable type:																										
			TYPE 1: Al Conductor, XLPE Inst	ulated, Armou	ured, PV	C outer sh	athed																					
			TYPE 2: Cu Conductor, XLPE Inc																									
			quency Variation ± 5%																									
		e. Ellect of Free	juency variation ± 5%																									

-	TRAY: FROM								
_	THE THE STATE OF T	LT-4		TO	L	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	2	95	1	33	33	4	4	
2	PU2322A	2	25	1	22	22	1.4	1.4	
3	PU 2314A	2	16	1	21	21	1	1	
4	PU2324	2	95	1	33	33	4	4	
5	PU2333	2	70	1	29	29	3.25	3.25	
6	PU 2322B	2	95	1	33	33	4	4	
7	PU2321A	2	35	1	24	24	1.8	1.8	
8	PU2321B	2	4	1	17	17	0.6	0.6	
9	PU2305	2	6	1	18	18	0.7	0.7	
10	PU2332	2	10	1	18	18	0.9	0.9	
11	MX2305	2	6	1	18	18	0.7	0.7	
12	MX2308	2	25	1	22	22	1.4	1.4	
13	CF2312	2	25	1	22	22	1.4	1.4	
14	BW2313	2	10	1	18	18	0.9	0.9	
15	RV 2314	2	10	1	18	18	0.9	0.9	
	Total	-		15		346	26.95	26.95	
	lation					Result			
	um Cable Diameter:		33	mm			le Tray width:	O.K	
	ler Spare Capacity of Cable Tr	ay:	30%				ole Tray Depth:	O.K	
	ce between each Cable:		0	mm			ole Tray Weight:	O.K	Including Spare Capacit
	ated Width of Cable Tray: ated Area of Cable Tray:		450 14843	mm Sq.mm		Selected Cable Tray Size:		O.K	Including Spare Capacit
	aver of Cables in Cable Tray:		1	sq.mm		Required Cat	ole Trav Size:	600 x 100	mm
	ed No of Cable Tray:		i	Nos.			of Cable Tray:	1	No
	ed Cable Tray Width:		600	mm			ole Tray Weight:	90.00	Kg/Meter/Tray
	ed Cable Tray Depth:		100	mm		Type of Cabl	е Тгау:	Ladder	
	ed Cable Tray Weight Capacity		90	Kg/Mete	r	CILT	2 ht 4 B	0504	
	of Cable Tray: Area of Cable Tray:		Ladder 60000	Sq.mm			/idth Area Remar rea Remaning:	25% 75%	

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

Equipment	Equipment D)escription	Breaker	Breaker	Breaker	ELCB	Absorbed	Motor / Load	Load	Efficiency	Power	kW = [A]/[D]	1	Consume	d Load	kVAR = kW	x tan φ	Remai
No.			Rating	Туре	No. of Poles	Rating	Load	Rating	Factor [A]/[B]	at Load Factor [C]	Factor at Load	Continu	ious	Interm	ittent	Stand-	Бу	
											Factor [C]							
							[A]	[B]	[C]	[D]								
			 ^			mΑ	kW	kW	decimal	decimal	cos ф	kW	kVAR	kW	kVAR	kW	kVAR	
	Silica filter feed pump						88.18		0.98	0.93	0.82	94.82	66.18			l		
	Absorbesnt/Neutral oil pump (\	W)			Ī	T	25.62	30.00	0.85	0.91	0.78	28.2	22.6		T		T	
PU 2314 -B /	Absorbesnt/Neutral oil pump (9	5)		1			22.03	30.00	0.73	0.91	0.78		T			24.2	19.4	
PU2305 F	eed Pump (Seperator)						89.06	90.00	0.99	0.93	0.82	95.8	66.8	T	1		1	
MX2305 N	MIXER(W)		····	†			89.75	90.00	1.00		0.73	96.5	90.4		-	T		
	MIXER (S)						89.75	90.00	1.00		0.73			†	†	96.5	90.4	
	Blower			·			38.53		0.86		0.78	42.3	34.0					
	TK 2313B (I)				t		3.74		0.80	0.85	0.73		1	4.4	4.1	l	t	
	Screw conveyor (I)		····-t·····	†	l		8.65	9.20	0.94	0.85	0.73		†	10.18		t	1	
	Citric acid tan agitator (W)			·	t		6.50		0.87	0.85	0.73	7.65	7.16		t	l	t	·····
	Citric acid tank agitator (S)			+			6.50		0.87	0.85	0.73		t			7.6	7.2	
	Citric oil rection vessol agitator			-	····		23.63		0.79		0.78	25.97	20.83	 	+	<u>-</u>	† <u>'</u>	
	_ye oil reaction vessel agitator			+			8.60		0.93		0.73	10.12	9.47			.	-	
	_ye oil reaction vessel agitator				 		8.60		0.93		0.73	10.12	9.47		+	l	 	
	Soap Adsorbant Tank Agitator						15.04		0.33		0.73	17.69	16.57					
Maximum of norr (Est. x%E + y%F)	mal running plant load :	433.5 kW		347.5	kVAR		sgrt (k\	V² +kVAR²) =	555.6	kVA	TOTAL	429.12	343.44	14.58	13.65	128.36	116.93	
Peak Load :		446.3 kW		259.2	kVAB		oget (k)	V² +kVAB²) =	572.9	LYZA	kVA	549.6	2	19.3	27	173.6	4	
(Est. x%E + y%F	+ z%G)	440.5 KW		333.2	NVAII		SQITTE	v +kvaiij-	312.3	NVA		343.0		13.		173.0		
Assumptions																		
	ficiency and Power factor.		F.65:															
L	_oad Rating (kW) (= 20		Effic	iency 85		Power fa 0.73	actor						-		-		-	
	x= 20 > 20 - <= 45			85 91		0.73												
5	45 - < 150		0.3	93		0.70											-	
	·= 150		0.1	94		0.91												
2) Coincidence fa	actors $x=1.0$, $y=0.3$, and $z=0$.	1 considered for contniou	us, intermitte	ent and st	tandby lo	ad.												
																	-	

1.4 Selection of rated capacity

120 kVA transformer selected.

Assignment-3

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.7553	Avg
	Efficiency	0.8873	Awg
	Total operating load on DG set in kVA at 0.7553 power factor	555.6	
	Largest motor to start in the sequence - load in KW	90	KW
	Running kVA of last motor (CosØ=0.91)	134	KVA
	Starting current ratio of motor	6	(Considering starting method
	Starting Current ratio of motor Starting KVA of the largest motor	806	Soft starter\ KVA
	(Running kVA of last motor X Starting current ratio of motor)	555	
		421	KVA
	Base load of DG set in KVA (Total operating load in kVA - Running kVA of last motor)	421	NA.
A	Continous operation under load -P1	421	77000
	Capacity of DG set based on continuous operation under load P1	421	KVA
В	Transient Voltage dip during starting of Last motor P2	-	7
	Total momentary load in KVA	1227	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd"" =(Xd"+Xd")/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd" x (1-Transient Voltage Dip) (Transient Voltage Dip	625	KVA
C	Overload capacity P3	*	
-	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	1227	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K)	818	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	421	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	625	KVA
	Overload capacity P3	818	KVA
	Considering the last value amongst P1, P2 and P3	818	KVA
	Hence, Existing Generator 818 KVA is adequate to cater the loads as per re-		
	neite, Existing deletator and knowns abequate to date the loads as per re-		

Asssignment - 4 Eathing caluculation

	7	4		
16				
9				
8				
	=	(3.1415)×(c6 ⁴	2)+2×(c6×c8)	
		644.3892		
	=	A. * N. * 10-6		
		0.000708828		
	=	1.7		
	=	1.0		
	=	1.7		
,	=	1.0		
	=	0.3		
	=	A*B*C*D*	F	
	=		_	
Po	-			
	-			
7 64	tor (Po		ae 10-5	
	101 (10)) Ilas beeli takei	1 43 10	
red.				
	_	2(I +W)		
		. ,	Mtc	
	-	30	IVILS.	
	=	36	Mts.	
neter	=	2	Nos.	
e been selected.				
	=	20 X 2.5 mm (Salvanized St	eel Strip
e very short duration, there	efore the	ermal factors		eel Strip
e very short duration, there e cross-section of the co Galvanized Steel Strip)	efore the	ermal factors		eel Strip
	16 Rajkot Concrete School Triangle Roofs 12 6 8 8 Po Po Po Po Pa ested acceptable risk factored.	16 Rajkot Concrete School Triangle Roofs 12 6 8 = = = = = = = = = = = = = = = = = =	Rajkot Concrete School Triangle Roofs 12 6 8 = (3.1415)×(c6^* 644.3892 = A _c * N _g * 10 ⁶ 0.000708828 = 1.7 = 1.0 = 1.7 = 1.0 = 0.3 = A * B * C * D * = 0.867 Po = P * Wo Po = 0.000614553 Pa 10 ⁻⁵ Pested acceptable risk factor (Po) has been taken red. = 2(L+W) = 36 peter = 2	16 Rajkot Concrete School Triangle Roofs 12 6 8 = (3.1415)×(c6^2)+2×(c6×c8) 644.3892 = A _c * N _g * 10 ⁶ 0.000708828 = 1.7 = 1.0 = 1.7 = 1.0 = 0.3 = A * B * C * D * E = 0.867 Po = P * Wo Po = 0.000614553 Pa 10 ⁻⁵ rested acceptable risk factor (Po) has been taken as 10 ⁻⁵ red. = 2(L+W) = 36 Mts. neter = 2 Nos.

Assignment -5

Lightning protection

ρ - Soil resistivity in Ω-meter, 16.96	9	
n - No of earth electrodes	6	
Lr - Length of earth electrode in meter	4	
b - Diameter of earth electrode in meter	0.020	
k1 - co-efficient	1	
A - Area of grid in square metre	8125	
Rr - Earth Electrode resistance	3.5663	
Grounding system resistance Grounding system resistance can be calculated using equation 53 of IEEE	80 as fol	lows
$R_{s} = \frac{R_{g} \times R_{2} - R_{m}^{2}}{R_{g} + R_{2} - 2R_{m}}$		
$R_{\mbox{\scriptsize m}}$ - Mutual ground resistance between the group of ground conductors,		
R_g and group of electrodes, R_r in $\Omega.$ Neglected R_m , since this is for homogenous soil		
ů .	0.067	Ohm

Assig ment - 6 Cable sizing

		٠		-								PI				· ·						w		-		нн	нь	HU	HD
S.N O.	Description	Equipment No.	Description	Consum ed Load K\	Hatu	n Voita	-	Load Curre	Motor Starti ng Curre nt	Load P.F. Runnin g	SIN ¢ Runni ng		Stari	Туре		No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derate d Current (A -	Lengt	Cable Resistan ce (Ohms/k M)	е	(Runnin	Volta droj (Runr g) (%)
3	LVMCC	PU2315	Silica filter feed pump		10 1	415	3		920.10	0.8	0.6	0.8	0.5	2	1	4.0	95	284	0.98	0.9	1	1	0.882	250.5	95	0.2470	0.0734	6.10	1.47
4	LVMCC	PU2322A	Soft water pump	25	162	415			267.33	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	5.81	1.40
5	LVMCC	PU 2314A	Absorbesnt/Neutral oil pump	22		415	3	38.3	229.87	0.8	0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	60	1.4700	0.0815	4.88	1.18
6	LVMCC	PU2324	Citric Acid Tank pump	19		415	3	154.9	929.28	0.8	0.6	0.8	0.5	2	1	4.0	95	284	0.98	0.9	1	1	0.882	250.5	85	0.2470	0.0734	5.51	1.33
7	LVMCC	PU2333	Slop Oil pump	19		415	3	156.1	936.48	0.8	0.6	0.8	0.5	2	1	4.0	70	230	0.98	0.9	1	1	0.882	202.9	75	0.3430	0.0752	6.48	1.56
8	LV MCC	PU 2322B	Soft water pump-Stand by	89	1.75	415	5 3	156.1	936.48	0.8	0.6	0.8	0.5	2	1	4.0	95	284	0.98	0.9	1	1	0.882	250.5	105	0.2470	0.0734	6.86	1.65
9	LVMCC	PU2321A	Lye/Simplex Metering Pump	38	1.53	415	3		402.04	0.8	0.6	0.8	0.5	2	1	4.0	35	148	0.98	0.9	1	1	0.882	130.5	100	0.6710	0.0794	6.78	1.63
10	LVMCC	PU2321B	Lye storage tank pump	3	1.74	415			39.02	0.8	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	100	5.9000	0.0947	5.38	1.30
11	LVMCC	PU2305	Feed Pump(Seperator)		1.65	415	3		90.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	6.26	1.51
12	LVMCC	PU2332	Saop Stock Pump	6	.50	415			67.82	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	110	2.3400	0.0852	4.14	1.00
13	LVMCC	MX2305	Mixer		.50	415			67.82	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	4.71	1.13
14	LVMCC	MX2308	Mixer	23	1.63	415			246.56	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	5.93	1.43
15	LVMCC	CF2312	Separator		1.60	415			89.74	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	1.75	0.42
16	LVMCC	BW2313	Blower		1.60			15.0	89.74	0.8	0.6	0.8	0.5	2	1 1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	2.3400	0.0852	4.73	1.14
17	LVMCC	RV 2314	Rotary valve	15	1.0/	415) 3	26.2	156.93	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	65	2.3400	0.0852	5.66	1.36
							_				1	+									<u> </u>							+	
							\top																					†	
																												—	
_						_	_					_							-								-	+	
					_		_				1	_								1						-	-	+	
							\top																						
							\top																					†	
		Basis:																											
		I. Uverall dera	ting factor k = k1 x k2 x k3 x k4																										
			K1=Rating factor for variation in		emperatu	re																							
			K2=Rating factor for depth of lay	ving																									
			K3=Rating factor for spacing bet	tween two cir	rcuits																								
			K4=Rating factor for variation in	thermal resi:	stivitu of	the soil																							
		2.1.T.Materia	Running Voltage Drop = 3%, Sta																										
			riuming voltage brop = 3/s, 3/a	rung voltage	Diop -	1376																							
		3. Cable type:	TIPE A NO. 1 . 15 TELL																										
			TYPE 1: Al Conductor, XLPE Ins																										
			TYPE 2: Cu Conductor, XLPE In	nsulated, Arn	noured, l	PVC out	er shea	athed																					
		4. Effect of Fre	quency Variation ± 5%																										
			ffect of Voltage & Frequency Vari	ation ±10%																									
		bii iod t	ge at reduction rail																										

Assignment - 7

Cable tray sizing

CABLE	TRAY: FROM	LT-4		TO	L	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	2	95	1	33	33	4	4	
2	PU2322A	2	25	1	22	22	1.4	1.4	
3	PU 2314A	2	16	1	21	21	1	1	
4	PU2324	2	95	1	33	33	4	4	
5	PU2333	2	70	1	29	29	3.25	3.25	
6	PU 2322B	2	95	1	33	33	4	4	
7	PU2321A	2	35	1	24	24	1.8	1.8	
8	PU2321B	2	4	1	17	17	0.6	0.6	
9	PU2305	2	6	1	18	18	0.7	0.7	
10	PU2332	2	10	1	18	18	0.9	0.9	
11	MX2305	2	6	1	18	18	0.7	0.7	
12	MX2308	2	25	1	22	22	1.4	1.4	
13	CF2312	2	25	1	22	22	1.4	1.4	
14	BW2313	2	10	1	18	18	0.9	0.9	
15	RV 2314	2	10	1	18	18	0.9	0.9	
	Total			15		346	26.95	26.95	
	lation					Result			
	num Cable Diameter:		33	mm			le Tray width:	O.K	
	der Spare Capacity of Cable Tra	ıy:	30%				ole Tray Depth:	O.K	
	nce between each Cable:		0	mm			le Tray Weight:	O.K	Including Spare Capacity
	lated Width of Cable Tray: lated Area of Cable Tray:		450	mm		Selected Cal	ole Tray Size:	O.K	Including Spare Capacity
	Laver of Cables in Cable Tray:		14843 1	Sq.mm		Bequired Cal	ole Tray Size:	600 x 100	mm
	ted No of Cable Tray:		i	Nos.			of Cable Tray:	1	No
Select	ted Cable Tray Width:		600	mm		Required Cal	ole Tray Weight:	90.00	Kg/Meten/Tray
	ed Cable Tray Depth:		100	mm		Type of Cabl	e Tray:	Ladder	
	ted Cable Tray Weight Capacity	90	Kg/Mete	Г					
	of Cable Tray:	Ladder				idth Area Remar			
ı otal ı	Area of Cable Tray:		60000	Sq.mm		Lable Iray A	rea Remaning:	75%	