Claims

1. A compound of formula (I):

5

30

$$R^{4} = Z - Q - X \qquad Y \qquad R^{2}$$

$$R^{1} R^{1} R^{3} \qquad R^{3}$$
(I)

Wherein:

Q represents an optionally substituted 5- or 6-membered aryl or heteroaryl ring;

X represents O, S, NR⁵ or CR⁶ R⁷;

Y represents CHOH, CHSH, NOR8, CNR8 or CNOR8;

Z represents a bond, CR¹⁰R¹¹, O, S, SO, SO₂, NR¹⁰, OCR¹⁰R¹¹, CR¹⁰R¹¹O or Z, R⁴ and Q together form an optionally substituted fused tricyclic group;

 R^1 , $R^{1'}$, R^3 and $R^{3'}$ each independently represents H, C_{1-6} alkyl or C_{1-4} alkylaryl;

R² represents CO₂R⁸, CONR⁵OR⁹ or NR⁵COR⁹;

R⁴ represents optionally substituted 5- or 6-membered aryl or heteroaryl;

15 R⁵ represents H or C₁₋₃ alkyl;

R⁶ and R⁷ each independently represents H, C₁₋₃ alkyl or halo;

R⁸ represents H or C₁₋₂ alkyl;

R⁹ represents H or C₁₋₃ alkyl;

 R^{10} and R^{11} each independently represents H, C_{1-8} alkyl or C_{1-4} alkylaryl;

and physiologically functional derivatives thereof, with the exception of 6H-dibenzo[b,d] pyran-3-pentanoic acid (1-dihydroxy-6,6,9-trimethyl), with the provisos that: when Q represents phenyl; X is O, S or CR⁶ R⁷ where R⁶ and R⁷ each independently represents H or C₁₋₃ alkyl; Z represents a bond, C₂₋₄alkylene, S, SO, SO₂, OCH₂ or CH₂O;

and Y represents CHOH, R⁴ does not represent phenyl substituted in the ortho position by a

substituent X'W' wherein X' is $-NR^1C(O)NR^2$ -, $-NR^1C(O)$ -, $-NR^1C(O)$ O-, $-C(O)NR^2$ -, or $-OC(O)NR^2$ - (wherein R^1 and R^2 are independently selected from hydrogen, C_{1-4} alkyl and C_{1-4} haloalkyl) and W' is hydrogen or a C_{1-12} hydrocarbyl group optionally substituted by one or more groups independently selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy, hydroxy, C_{1-4}

haloalkyl and C₁₋₄ haloalkoxy; and when R⁴, Z and Q together form a group

$$R^{2'}$$

wherein R¹¹is H, C₁-ሬ alkyl, C₁-₄ alkoxyC₁-₄ alkyl, C₁-ሬ alkanoyl, C₁-₄ alkanoylC₁-₄ alkyl, aryl, arylC₁-₄ alkyl, aryl-C₁-₄ alkoxyC₁-₄ alkyl, aryl-C₁-₄ alkanoyl, arylcarbonyl, heteroaryl, heteroaryl C₁-₄ alkyl, heteroarylC₁-₄ alkyl, heteroarylC₁-₄ alkanoyl, heteroarylcarbonyl, heterocyclylC₁-₄ alkyl, heterocyclylC₁-₄ alkyl, heterocyclylC₁-₄ alkyl, heterocyclylC₁-₄ alkyl, carbocyclylC₁-₄ alkoxyC₁-₄ alkyl, carbocyclylC₁-₄ alkoxyC₁-₄ alkyl, carbocyclylC₁-₄ alkoxyC₁-₄ alkyl, carbocyclylC₁-₄ alkanoyl, carbocyclylcarbonyl, C₁-₄ alkylsulphonyl, N,N-di-C₁-₄ alkylaminosulphonyl or N-C₁-₄ alkylaminosulphonyl wherein R¹¹ may be optionally substituted by up to three substituents independently selected from C₁-₄ alkyl optionally substituted by up to three fluro substituents, C₁-₄ alkoxy, C₁-₄ alkanoyl, carboxy, hydroxy, halo, cyano, amino, N-C₁-₄ alkylamino, N,N-di-C₁-₄ alkylamino, C₁-₄ alkanoylamino, mercapto, C₁-₄ alkylsulphonyl, C₁-₄ alkylsulphanyl, nitro, heteroarylC₁-₄ alkanoylamino, or C₁-₄ alkylsulphonyl;

 R^2 is selected from hydrogen, C_{1-4} alkyl (optionally substituted by hydroxy), C_{1-4} alkoxy, cyano, nitro, halo, amino, N- C_{1-4} alkylamino, or N,N-di-alkylamino; and R^4 is selected from hydrogen, C_{1-4} alkyl, halo or nitro; X is NH or CR^6R^7 :

Y is CHOH;

5

10

15

20

R² is not CO₂R⁸ wherein R⁸ is C₁-₂alkyl.

2. A compound as claimed in claim 1 of formula (la):

wherein:

T is absent or represents O, S, NR¹⁷ or CR¹⁷ R¹⁸:

--- represents optional bonds;

15

 R^{15} and R^{18} each independently represents halo, cyano, nitro, OR^{17} , SR^{17} , COR^{17} , $NR^{18}COR^{17}$, $CONR^{17}R^{18}$, optionally substituted phenoxy or C_{1-6} alkyl optionally substituted by OR^{17} ;

R¹⁷ represents H, C₁₋₆ alkyl or C₁₋₄ alkylaryl;

- R¹⁸ represents H or C₁₋₆ alkyl; m and n each independently represents 0 or an integer 1,2 or 3; with the proviso that when T is absent, R̄¹⁵ does not represent NR̄¹⁸COR̄¹⁷or CONR̄¹⁷R̄¹⁸ in the ortho position; and physiologically functional derivatives thereof.
- 10 3. A compound as claimed in claim 1 or claim 2 for use in medicine.
 - 4. A method for the treatment of a human or animal subject suffering from or susceptible to an autoimmune disorder or an inflammatory condition which method comprises administering to said human or animal subject an effective amount of a compound as claimed in claim 1 or claim 2.
 - 5. The use of a compound as claimed in claim 1 or claim 2 for the manufacture of a medicament for the treatment of inflammatory conditions or autoimmune disorders.
- 6. A pharmaceutical composition comprising a compound as claimed in claims 1 or claim 2 and a pharmaceutically acceptable carrier therefor, and optionally one or more other therapeutic agents.
- 7. A process for the preparation of compounds of formula (I) as defined in claim 1,which process comprises:
 - (A) reacting a compound of formula (II):

$$L \longrightarrow Q \longrightarrow X \longrightarrow Y \longrightarrow R^2$$

$$R^1 \longrightarrow R^{1'} R^3 \longrightarrow R^{3'}$$
(II)

- wherein R¹, R¹, R², R³, R³, Q, X and Y are as previously defined for formula (I) and L represents a leaving group, with a reagent suitable to introduce the group R⁴Z; or
 - (B) oxidation of a compound of formula (III):

$$R^{4} Z \longrightarrow Q \longrightarrow X \longrightarrow H \longrightarrow R^{2}$$

$$R^{1} R^{1'} R^{3} R^{3'}$$
(III)

wherein R⁴, Z, Q, X, R¹, R¹, R³, R³, and R² are as previously defined for formula (I); or

(C) reaction of a compound of formula (IV):

5

wherein R⁴, Z and Q are as previously defined for formula (I) and X represents O or S with a compound of formula (VA) or (VB):

$$R^{1}$$
 R^{3} $R^{3'}$ $R^{3'}$ $R^{1'}$ $R^{1'}$ R^{3} $R^{3'}$ $R^{3'}$ $R^{3'}$ $R^{3'}$ $R^{3'}$ $R^{3'}$ $R^{3'}$ $R^{3'}$ $R^{3'}$

wherein R^1 , $R^{1'}$, R^3 , $R^{3'}$ and R^2 are as previously defined for formula (I) and L is a leaving group, in the presence of a base; or

- (D) interconversion of one compound of formula (I) to another compound of formula (I); or
- (E) deprotection of a protected derivative of a compound of formula (I).

15

10