## Storing Data: Disks and Files

Iztok Savnik, FAMNIT

## Slides & Textbook

- Textbook:
  - Raghu Ramakrishnan, Johannes Gehrke, *Database Management Systems, McGraw-Hill, 3rd ed., 2007.*
- Slides:
  - From "Cow Book": R.Ramakrishnan, http://pages.cs.wisc.edu/~dbbook/

## Disks and Files

- DBMS stores information on ("hard") disks.
- This has major implications for DBMS design!
  - READ: transfer data from disk to main memory (RAM).
  - WRITE: transfer data from RAM to disk.
  - Both are high-cost operations, relative to in-memory operations, so must be planned carefully!

#### Why Not Store Everything in Main Memory?

- Costs too much. 100 eur will buy you either 16GB RAM or 4TB of disk today.
- Main memory is volatile. We want data to be saved between runs. (Obviously!)
- Typical storage hierarchy:
  - Main memory (RAM) for currently used data.
  - Disk for the main database (secondary storage).
  - Tapes for archiving older versions of the data (tertiary storage).

### Disks

- Secondary storage device of choice.
- Main advantage over tapes: <u>random access</u> vs. <u>sequential</u>.
- Data is stored and retrieved in units called disk blocks or pages.
- Unlike RAM, time to retrieve a disk page varies depending upon location on disk.
  - Therefore, relative placement of pages on disk has major impact on DBMS performance!

Components of a Disk

Arm assembly

Disk head

Arm movement

Spindle

**Tracks** 

**Platters** 

Sector

\* The platters spin (say, 90rps).

\* The arm assembly is moved in or out to position a head on a desired track.

Tracks under heads make a *cylinder* (imaginary!).

Only one head reads/writes at any one time.

\* Block size is a multiple of sector size (which is fixed).



## Hard Disk Drives (HDDs)



Western Digital Drive http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986) 30 MB hard disk - \$500 30-40ms seek time 0.7-1 MB/s (est.)



Read/Write Head Side View



**IBM/Hitachi Microdrive** 

# Accessing a Disk Page

- Time to access (read/write) a disk block:
  - seek time (moving arms to position disk head on track)
  - rotational delay (waiting for block to rotate under head)
  - transfer time (actually moving data to/from disk surface)
- Seek time and rotational delay dominate.
  - Seek time varies from about 1 to 20msec
  - Rotational delay varies from 0 to 10msec
  - Transfer rate is about 1msec per 4KB page
- Key to lower I/O cost: reduce seek/rotation delays! Hardware vs. software solutions?

#### Barracuda®

#### The Power of One



| Specifications                          | 3TB <sup>1</sup> | 2TB <sup>1</sup> | 1.5TB <sup>1</sup> | 1TB <sup>1</sup> | 750GB <sup>1</sup> | 500GB <sup>1</sup>       | 320GB <sup>1</sup>       | 250GB <sup>1</sup>       |
|-----------------------------------------|------------------|------------------|--------------------|------------------|--------------------|--------------------------|--------------------------|--------------------------|
| Model Number                            | ST3000DM001      | ST2000DM001      | ST1500DM003        | ST1000DM003      | ST750DM003         | ST500DM002 <sup>2</sup>  | ST320DM000 <sup>2</sup>  | ST250DM000 <sup>2</sup>  |
| Interface Options                       | SATA 6Gb/s NCQ   | SATA 6Gb/s NCQ   | SATA 6Gb/s NCQ     | SATA 6Gb/s NCQ   | SATA 6Gb/s NCQ     | SATA 6Gb/s NCQ           | SATA 6Gb/s NCQ           | SATA 6Gb/s NCQ           |
| Performance                             |                  |                  |                    |                  |                    |                          |                          |                          |
| Spindle Speed (RPM)                     | 7200             | 7200             | 7200               | 7200             | 7200               | 7200                     | 7200                     | 7200                     |
| Cache, Multisegmented (MB)              | 64               | 64               | 64                 | 64               | 64                 | 16                       | 16                       | 16                       |
| SATA Transfer Rates Supported (Gb/s)    | 6.0/3.0/1.5      | 6.0/3.0/1.5      | 6.0/3.0/1.5        | 6.0/3.0/1.5      | 6.0/3.0/1.5        | 6.0/3.0/1.5              | 6.0/3.0/1.5              | 6.0/3.0/1.5              |
| Seek Average, Read (ms)                 | <8.5             | <8.5             | <8.5               | <8.5             | <8.5               | <11                      | <11                      | <11                      |
| Seek Average, Write (ms)                | <9.5             | <9.5             | <9.5               | <9.5             | <9.5               | <12                      | <12                      | <12                      |
| Average Data Rate, Read/Write (MB/s)    | 156              | 156              | 156                | 156              | 156                | 125                      | 125                      | 125                      |
| Max Sustained Data Rate, OD Read (MB/s) | 210              | 210              | 210                | 210              | 210                | 144                      | 144                      | 144                      |
| Configuration/Organization              |                  |                  |                    |                  |                    |                          |                          |                          |
| Heads/Disks                             | 6/3              | 6/3              | 4/2                | 2/1              | 2/1                | 2/1                      | 2/1                      | 1/1                      |
| Bytes per Sector                        | 4096             | 4096             | 4096               | 4096             | 4096               | 4096 or 512 <sup>2</sup> | 4096 or 512 <sup>2</sup> | 4096 or 512 <sup>2</sup> |

## WD Red™ Pro

#### **Specifications**

| Model Number⁴                         | WD221KFGX               | WD201KFGX               | WD181KFGX               | WD161KFGX               | WD141KFGX               | WD121KFBX               |
|---------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Formatted capacity <sup>1</sup>       | 22TB                    | 20TB                    | 18TB                    | 16TB                    | 14TB                    | 12TB                    |
| Recording technology                  | CMR                     | CMR                     | CMR                     | CMR                     | CMR                     | CMR                     |
| Interface                             | SATA 6 Gb/s             |
| Form factor                           | 3.5-inch                | 3.5-inch                | 3.5-inch                | 3.5-inch                | 3.5-inch                | 3.5-inch                |
| Native command queuing                | Yes                     | Yes                     | Yes                     | Yes                     | Yes                     | Yes                     |
| OptiNAND™ technology                  | Yes                     | Yes                     | No                      | No                      | No                      | No                      |
| Advanced Format (AF)                  | Yes                     | Yes                     | Yes                     | Yes                     | Yes                     | Yes                     |
| RoHS compliant⁵                       | Yes                     | Yes                     | Yes                     | Yes                     | Yes                     | Yes                     |
| Performance                           |                         |                         |                         |                         |                         |                         |
| Interface speed (max)                 | 6 Gb/s                  |
| Internal transfer rate <sup>6</sup>   | 265 MB/s                | 268 MB/s                | 272 MB/s                | 259 MB/s                | 255 MB/s                | 240 MB/s                |
| Cache (MB) <sup>1</sup>               | 512                     | 512                     | 512                     | 512                     | 512                     | 256                     |
| RPM                                   | 7200                    | 7200                    | 7200                    | 7200                    | 7200                    | 7200                    |
| Reliability/Data Integrity            |                         |                         |                         |                         |                         |                         |
| Load/unload cycles <sup>7</sup>       | 600,000                 | 600,000                 | 600,000                 | 600,000                 | 600,000                 | 600,000                 |
| Non-recoverable errors per bits read  | <10 in 10 <sup>14</sup> |
| MTBF (hours) <sup>8</sup>             | 1,000,000               | 1,000,000               | 1,000,000               | 1,000,000               | 1,000,000               | 1,000,000               |
| Workload rate (TB/year) <sup>2</sup>  | 300                     | 300                     | 300                     | 300                     | 300                     | 300                     |
| Limited warranty (years) <sup>3</sup> | 5                       | 5                       | 5                       | 5                       | 5                       | 5                       |

#### And RAM?

- What are the differences to HD?
- DDR4
  - 12-15ns latency
  - 12-15 GB/s transfer rate

#### • DDR5

- The same latency (to DDR4)
- 38-50 GB/s transfer rate

excepted to be like this

| Standard<br>name                                      | Memory<br>clock<br>(MHz) | I/O bus<br>clock<br>(MHz) | Data<br>rate<br>(MT/s) | Module<br>name | Peak trans-<br>fer rate<br>(MB/s) | Timings<br>CL-tRCD-tRP                       | CAS<br>latency<br>(ns)        |
|-------------------------------------------------------|--------------------------|---------------------------|------------------------|----------------|-----------------------------------|----------------------------------------------|-------------------------------|
| DDR4-1600J*<br>DDR4-1600K<br>DDR4-1600L               | 200                      | 800                       | 1600                   | PC4-12800      | 12800                             | 10-10-10<br>11-11-11<br>12-12-12             | 12.5<br>13.75<br>15           |
| DDR4-1866L*<br>DDR4-1866M<br>DDR4-1866N               | 233.33                   | 933.33                    | 1866.67                | PC4-14900      | 14933.33                          | 12-12-12<br>13-13-13<br>14-14-14             | 12.857<br>13.929<br>15        |
| DDR4-2133N*<br>DDR4-2133P<br>DDR4-2133R               | 266.67                   | 1066.67                   | 2133.33                | PC4-17000      | 17066.67                          | 14-14-14<br>15-15-15<br>16-16-16             | 13.125<br>14.063<br>15        |
| DDR4-2400P* DDR4-2400R DDR4-2400T DDR4-2400U          | 300                      | 1200                      | 2400                   | PC4-19200      | 19200                             | 15-15-15<br>16-16-16<br>17-17-17<br>18-18-18 | 12.5<br>13.32<br>14.16<br>15  |
| DDR4-2666T<br>DDR4-2666U<br>DDR4-2666V<br>DDR4-2666W  | 333.33                   | 1333.33                   | 2666.67                | PC4-21333      | 21333.33                          | 17-17-17<br>18-18-18<br>19-19-19<br>20-20-20 | 12.75<br>13.50<br>14.25<br>15 |
| DDR4-2933V<br>DDR4-2933W<br>DDR4-2933Y<br>DDR4-2933AA | 366.67                   | 1466.67                   | 2933.33                | PC4-23466      | 23466.67                          | 19-19-19<br>20-20-20<br>21-21-21<br>22-22-22 | 12.96<br>13.64<br>14.32<br>15 |
| DDR4-3200W<br>DDR4-3200AA<br>DDR4-3200AC              | 400                      | 1600                      | 3200                   | PC4-25600      | 25600                             | 20-20-20<br>22-22-22<br>24-24-24             | 12.5<br>13.75<br>15           |

## Solid State Disks (SSDs)

#### Flash memory

- Electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed.
- Two main types of flash memory, NOR flash and NAND flash.
- Invented at Toshiba in 1980 and is based on EEPROM technology.
  - EPROMs had to be erased completely before they could be rewritten.
  - NAND flash memory can be erased, written, and read in blocks (or pages); much smaller than the entire device.

#### NAND flash architecture

- Hierarchical structure: strings, pages, blocks, planes and a die.
  - String is 32-128 NAND cells
  - It still is EEPROM: block first cleared then we can reprogram the pages!

# Solid State Disks (SSDs)

- 2009 Use NAND Multi-Level Cell (2-bit/cell) flash memory
  - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
- No moving parts (no rotate/seek motors)
  - Eliminates seek and rotational delay (0.1-0.2ms access time)
  - Very low power and lightweight

#### SSD Architecture – Reads



- No seek or rotational latency
- Transfer time: transfer a 4KB page
  - SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10  $\mu$ s
- Latency = Queuing Time + Controller time + Xfer Time
- Highest Bandwidth: Sequential OR Random reads

## SSD Architecture – Writes (I)

- Writing data is complex! (~200µs 1.7ms)
- Erasing a block takes ~1.5ms
- Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity.



Typical NAND Flash Pages and Blocks

# Development of SSD

- Important numbers (2020-21)
  - Seq. read/write
  - IOPS
  - Access time!

#### SSD evolution

| Parameter                                  | Started with                                                     | Developed to                                                                                                                                                   | Improvement                                                                                                                                                     |
|--------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capacity                                   | 20 MB (Sandisk,<br>1991)                                         | 100 TB (Enterprise<br>Nimbus Data DC100,<br>2018)<br>(As of 2020 Up to 8<br>TB available for<br>consumers) <sup>[16]</sup>                                     | 5-million-to-<br>one <sup>[17]</sup><br>(400,000-to-<br>one <sup>[17]</sup> )                                                                                   |
| Sequential read speed                      | 49.3 MB/s (Samsung<br>MCAQE32G5APP-0XA,<br>2007) <sup>[18]</sup> | 15 GB/s (Gigabyte<br>demonstration, 2019)<br>(As of 2020 up to<br>6.795 GB/s available<br>for consumers) <sup>[19]</sup>                                       | 304.25-to-<br>one <sup>[20]</sup> (138-<br>to-one) <sup>[21]</sup>                                                                                              |
| Sequential<br>write speed                  | 80 MB/s (Samsung<br>enterprise SSD,<br>2008) <sup>[22][23]</sup> | 15.200 GB/s (Gigabyte demonstration, 2019) (As of 2020 up to 4.397 GB/s available for consumers)[19]                                                           | 190-to-one <sup>[24]</sup><br>(55-to-one) <sup>[25]</sup>                                                                                                       |
| IOPS                                       | 79 (Samsung<br>MCAQE32G5APP-0XA,<br>2007) <sup>[18]</sup>        | 2,500,000 (Enterprise<br>Micron X100, 2019)<br>(As of 2020 up to<br>736,270 read IOPS<br>and 702,210 write<br>IOPS available for<br>consumers) <sup>[19]</sup> | 31,645.56-to-<br>one <sup>[26]</sup><br>(Consumer:<br>read IOPS:<br>9,319.87-to-<br>one, <sup>[27]</sup> write<br>IOPS:<br>8,888.73-to-<br>one) <sup>[28]</sup> |
| Access time<br>(in<br>milliseconds,<br>ms) | 0.5 (Samsung<br>MCAQE32G5APP-0XA,<br>2007) <sup>[18]</sup>       | 0.045 read, 0.013<br>write (lowest values,<br>WD Black SN850<br>1TB, 2020) <sup>[29][19]</sup>                                                                 | Read:11-to-<br>one, <sup>[30]</sup> Write:<br>38-to-one <sup>[31]</sup>                                                                                         |
| Price                                      | US\$50,000 per<br>gigabyte (Sandisk,<br>1991) <sup>[32]</sup>    | US\$0.10 per gigabyte<br>(Crucial MX500, July<br>2020) <sup>[33]</sup>                                                                                         | 555,555-to-<br>one <sup>[34]</sup>                                                                                                                              |

## Some "Current" 3.5in SSDs

- Seagate Nytro SSD: 15TB (2017)
  - Dual 12Gb/s interface
  - Seq reads 860MB/s
  - Seq writes 920MB/s
  - Random Reads (IOPS): 102K
  - Random Writes (IOPS): 15K
  - Price (Amazon): \$6325 (\$0.41/GB)
- Nimbus SSD: 100TB (2019)
  - Dual port: 12Gb/s interface
  - Seq reads/writes: 500MB/s
  - Random Read Ops (IOPS): 100K
  - Unlimited writes for 5 years!
  - Price: ~ \$50K? (\$0.50/GB)



# Seagate Nytro SSD (2022)

| Specifications                                         |                                | Nytro 5550H 15 mm — Mixed Use  |                                |
|--------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Capacity                                               | 6.4TB                          | 3.2TB                          | 1.6TB                          |
| Standard Model 1                                       | XP6400LE70005                  | XP3200LE70005                  | XP1600LE70005                  |
| SED Model <sup>1</sup>                                 | XP6400LE70015                  | XP3200LE70015                  | XP1600LE70015                  |
| FIPS 140-3/Common Criteria Model <sup>1</sup>          | XP6400LE70025                  | XP3200LE70025                  | XP1600LE70025                  |
| Features                                               |                                |                                |                                |
| Interface                                              | PCIe <sup>®</sup> Gen4 ×4 NVMe | PCIe <sup>®</sup> Gen4 ×4 NVMe | PCIe <sup>®</sup> Gen4 ×4 NVMe |
| NAND Flash Type                                        | 3D eTLC                        | 3D eTLC                        | 3D eTLC                        |
| Form Factor                                            | 2.5 in × 15mm                  | 2.5 in × 15mm                  | 2.5 in × 15mm                  |
| Performance                                            |                                |                                |                                |
| Sequential Read (MB/s) Sustained, 128 KB <sup>2</sup>  | 7,400                          | 7,400                          | 7,400                          |
| Sequential Write (MB/s) Sustained, 128 KB <sup>2</sup> | 7,200                          | 6,900                          | 4,300                          |
| Random Read (IOPS) Sustained, 4 KB QD64 <sup>3</sup>   | 1,700,000                      | 1,700,000                      | 1,700,000                      |
| Random Write (IOPS) Sustained, 4 KB QD64 <sup>3</sup>  | 470,000                        | 470,000                        | 315,000                        |
| Average Read Latency (µs), 4 KB QD1                    | 75                             | 75                             | 75                             |
| Average Write Latency (µs), 4 KB QD1                   | 12                             | 12                             | 12                             |

|                         | EDDCT016 | EDDCT032 | EDDCT050   | EDDCT100    | EDDCS016       | EDDCS032    | EDDCS050      | EDDCS100 |
|-------------------------|----------|----------|------------|-------------|----------------|-------------|---------------|----------|
| Basics                  |          |          |            |             |                |             |               |          |
| Capacity                | 16 TB    | 32 TB    | 50 TB      | 100 TB      | 16 TB          | 32 TB       | 50 TB         | 100 TB   |
| Interface               |          | SATA-3   | (6.0 Gbps) |             |                | SAS-2 dual- | port (for HA) |          |
| Form Factor             |          |          |            | 3.5"        | (LFF)          |             |               |          |
| Reliability             |          |          |            |             |                |             |               |          |
| Endurance               |          |          |            | Unlimited D | WPD for 5 year | S           |               |          |
| MTBF (hours)            |          |          |            | 2.5 mi      | llion hours    |             |               |          |
| Limited Warranty        |          |          |            | 5           | years          |             |               |          |
| Performance             |          |          |            |             |                |             |               |          |
| Latency                 | 0.1 ms   | 0.1 ms   | 0.1 ms     | 0.05 ms     | 0.2 ms         | 0.2 ms      | 0.2 ms        | 0.15 ms  |
| Random Read (4 KB)      | 97K IOps | 97K IOps | 97K IOps   | 114K IOps   | 50K IOps       | 50K IOps    | 50K IOps      | 52K IOps |
| Random Write (4 KB)     | 91K IOps | 91K IOps | 91K IOps   | 106K IOps   | 25K IOps       | 25K IOps    | 25K IOps      | 26K IOps |
| Sequential Read         | 500 MBps | 500 MBps | 500 MBps   | 500 MBps    | 450 MBps       | 450 MBps    | 450 MBps      | 450 MBps |
| Sequential Write        | 460 MBps | 460 MBps | 460 MBps   | 460 MBps    | 260 MBps       | 260 MBps    | 260 MBps      | 260 MBps |
| Power                   |          |          |            |             |                |             |               |          |
| Active Read Power       | 12.1 W   | 12.2 W   | 12.1 W     | 15.2 W      | 12.1 W         | 12.2 W      | 12.1 W        | 15.2 W   |
| Active Write Power      | 13.1 W   | 13.2 W   | 13.8 W     | 16.8 W      | 13.1 W         | 13.2 W      | 13.8 W        | 16.8 W   |
| Idle Power              | 6.8 W    | 7.2 W    | 7.2 W      | 11.1 W      | 7.0 W          | 7.4 W       | 7.4 W         | 11.3 W   |
| Active Read Power / TB  | 0.76 W   | 0.38 W   | 0.24 W     | 0.15 W      | 0.76 W         | 0.38 W      | 0.24 W        | 0.15 W   |
| Active Write Power / TB | 0.82 W   | 0.41 W   | 0.28 W     | 0.17 W      | 0.82 W         | 0.41 W      | 0.28 W        | 0.17 W   |
| Idle Power / TB         | 0.43 W   | 0.23 W   | 0.14 W     | 0.11 W      | 0.44 W         | 0.23 W      | 0.14 W        | 0.11 W   |

#### **RAID**

- Disk Array: Arrangement of several disks that gives abstraction of a single, large disk.
- Goals: Increase performance and reliability.
- Two main techniques:
  - Data striping: Data is partitioned; size of a partition is called the striping unit. Partitions are distributed over several disks.
  - Redundancy: More disks => more failures.
     Redundant information allows reconstruction of data if a disk fails.

- Level 0: No redundancy
  - Data distributed in strips
  - No redundancy, parity
  - Speed is the only reason



- Level 1: Mirrored (two identical copies)
  - Each disk has a mirror image (check disk)
  - Parallel reads, a write involves two disks.
  - Max.transfer rate = transfer rate of one disk
    - N mirrored disks => N times access to one



- Level 2 (0+1): Striping and Mirroring
  - Striping unit is 1 bit
  - Hamming code for error correction
  - Parallel reads, a write involves two disks.
  - Maximum transfer rate = aggregate bandwidth
  - Rearly used



- Level 3: Bit-interleaved parity
  - Striping Unit: One byte.
  - One parity disk.
  - Each read and write request involves all disks
  - Disk array can process one request at a time
- Level 4: Block-interleaved parity
  - Striping Unit: One disk block.
  - One check disk.
  - Parallel reads possible for small requests
  - Large requests can utilize full bandwidth
  - Writes involve modified block and check disk



RAID 4

**B3** 

D3

Disk 2

Disk 3

**B**2

D2

Disk 1



В1

C1 D1

- Level 5: Block-Interleaved Distributed Parity
  - Similar to RAID Level 4, but parity blocks are distributed over all disks



# DBMS memory hieararchy



## Arranging Pages on Disk

- Next' block concept:
  - blocks on same track, followed by
  - blocks on same cylinder, followed by
  - blocks on adjacent cylinder
- Blocks in a file should be arranged sequentially on disk (by `next'), to minimize seek and rotational delay.
- For a sequential scan, <u>pre-fetching</u> several pages at a time is a big win!

## Disk Space Management

- Lowest layer of DBMS software manages space on disk.
- Higher levels call upon this layer to:
  - allocate/de-allocate a page
  - read/write a page
- Request for a sequence of pages must be satisfied by allocating the pages sequentially on disk! Higher levels don't need to know how this is done, or how free space is managed.

## Buffer Management in a DBMS

Page Requests from Higher Levels



- Data must be in RAM for DBMS to operate on it!
- Table of <frame#, pageid> pairs is maintained.

## When a Page is Requested ...

- If requested page is not in pool:
  - Choose a frame for replacement
  - If frame is dirty, write it to disk
  - Read requested page into chosen frame
- *Pin* the page and return its address.

If requests can be predicted (e.g., sequential scans)
 pages can be <u>pre-fetched</u> several pages at a time!

## More on Buffer Management

- Requestor of page must unpin it, and indicate whether page has been modified:
  - dirty bit is used for this.
- Page in pool may be requested many times,
  - a pin count is used. A page is a candidate for replacement iff pin count = 0.
- CC & recovery may entail additional I/O when a frame is chosen for replacement. (Write-Ahead Log protocol; more later.)

## Buffer Replacement Policy

- Frame is chosen for replacement by a replacement policy:
  - Least-recently-used (LRU), Clock, MRU etc.
- Policy can have big impact on # of I/O's; depends on the access pattern.
- <u>Sequential flooding</u>: Nasty situation caused by LRU + repeated sequential scans.
  - # buffer frames < # pages in file means each page request causes an I/O. MRU much better in this situation (but not in all situations, of course).

## DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let OS manage these tasks?

- Differences in OS support: portability issues
- Some limitations, e.g., files can't span disks.
- Buffer management in DBMS requires ability to:
  - pin a page in buffer pool, force a page to disk (important for implementing CC & recovery),
  - adjust replacement policy, and pre-fetch pages based on access patterns in typical DB operations.

## Record Formats: Fixed Length



- Information about field types same for all records in a file; stored in system catalogs.
- Finding i'th field does not require scan of record.

## Record Formats: Variable Length

Two alternative formats (# fields is fixed):



Second offers direct access to i'th field, efficient storage of <u>nulls</u> (special don't know value); small directory overhead.

#### Page Formats: Fixed Length Records



<u>Record id</u> = <page id, slot #>. In first alternative, moving records for free space management changes rid; may not be acceptable.

#### Page Formats: Variable Length Records



 Can move records on page without changing rid; so, attractive for fixed-length records too.

## Files of Records

- Page or block is OK when doing I/O, but higher levels of DBMS operate on records, and files of records.
- FILE: A collection of pages, each containing a collection of records. Must support:
  - insert/delete/modify record
  - read a particular record (specified using record id)
  - scan all records (possibly with some conditions on the records to be retrieved)

## Unordered (Heap) Files

- Simplest file structure contains records in no particular order.
- As file grows and shrinks, disk pages are allocated and de-allocated.
- To support record level operations, we must:
  - keep track of the pages in a file
  - keep track of free space on pages
  - keep track of the records on a page
- There are many alternatives for keeping track of this.

# Heap File Implemented as a List



- The header page id and Heap file name must be stored someplace.
- Each page contains 2 `pointers' plus data.

## Heap File Using a Page Directory



- The entry for a page can include the number of free bytes on the page.
- The directory is a collection of pages; linked list implementation is just one alternative.
  - Much smaller than linked list of all HF pages!

## System Catalogs

- For each index:
  - structure (e.g., B+ tree) and search key fields
- For each relation:
  - name, file name, file structure (e.g., Heap file)
  - attribute name and type, for each attribute
  - index name, for each index
  - integrity constraints
- For each view:
  - view name and definition
- Plus statistics, authorization, buffer pool size, etc.
  - Catalogs are themselves stored as relations!

# Attr\_Cat(attr\_name, rel\_name, type, position)

| attr_name | rel_name      | type    | position |
|-----------|---------------|---------|----------|
| attr_name | Attribute_Cat | string  | 1        |
| rel_name  | Attribute_Cat | string  | 2        |
| type      | Attribute_Cat | string  | 3        |
| position  | Attribute_Cat | integer | 4        |
| sid       | Students      | string  | 1        |
| name      | Students      | string  | 2        |
| login     | Students      | string  | 3        |
| age       | Students      | integer | 4        |
| gpa       | Students      | real    | 5        |
| fid       | Faculty       | string  | 1        |
| fname     | Faculty       | string  | 2        |
| sal       | Faculty       | real    | 3        |

## Summary

- Disks provide cheap, non-volatile storage.
  - Random access, but cost depends on location of page on disk; important to arrange data sequentially to minimize seek and rotation delays.
- Buffer manager brings pages into RAM.
  - Page stays in RAM until released by requestor.
  - Written to disk when frame chosen for replacement (which is sometime after requestor releases the page).
  - Choice of frame to replace based on replacement policy.
  - Tries to pre-fetch several pages at a time.

# Summary (Contd.)

- DBMS vs. OS File Support
  - DBMS needs features not found in many OS's, e.g., forcing a page to disk, controlling the order of page writes to disk, files spanning disks, ability to control pre-fetching and page replacement policy based on predictable access patterns, etc.
- Variable length record format with field offset directory offers support for direct access to i'th field and null values.
- Slotted page format supports variable length records and allows records to move on page.

# Summary (Contd.)

- File layer keeps track of pages in a file, and supports abstraction of a collection of records.
  - Pages with free space identified using linked list or directory structure (similar to how pages in file are kept track of).
- Indexes support efficient retrieval of records based on the values in some fields.
- Catalog relations store information about relations, indexes and views. (*Information that is common to all records in a given collection.*)