https://eduassistpro.github.

Add WeChatedu_assist_pr

Generative vs. Discriminative Learning

• Generative models:

Assignment Project Exam Help

https://eduassistpro.github.

- Example: Naive Bayes.
- · Acridictive chated assist_predictive chated
 - Example: Decision tree, Logistic Regre
 - Instance-based Learning.
 - Example: kNN classifier.

https://eduassistpro.github.

Task Add We Chat edu_assist_pr

- Input: $(x^{(i)}, y^{(i)})$ pairs $(1 \le i \le n)$
- Preprocess: let $\mathbf{x}^{(i)} = \begin{bmatrix} 1 & x^{(i)} \end{bmatrix}^{\top}$
- Output: The best $\mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}^{\top}$ such that $\hat{y} = \mathbf{w}^{\top} \mathbf{x}$ best explains the observations

The cr

https://eduassistpro.github.

Add WeChat edu_assist_pr

Minimizing a Function

Taylor Series of f(x) at point a

Assign hent-Project Exam Help

https://eduassistpro.github.

- close to x.
- If A(x) has low in in the edu_assist_property of $f''(x^*) > 0$.

Minimum of the local minima is the global minimum if it is smaller than the function values at all the boundary points.

• Intuitively, f(x) is almost $f(a) + \frac{f''(a)}{2}(x-a)^2$ if a is close to x^* .

Find the Least Square Fit for Linear Regression

https://eduassistpro.github.

By setting the above to 0, this essentially requires, f Add WeChat edu_assist_pr

$$\sum_{i=1}^{n} \hat{y}^{(i)} x_{j}^{(i)} \neq \sum_{i=1}^{n} y^{(i)} x_{j}^{(i)}$$

what the model predicts

what the data says

Find the Least Square Fit for Linear Regression

In the simple 1D case, we have only two parameters in $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$

Assignment Project Exam Help

https://eduassistpro.github.

Since $x_0^{(i)} = 1$, they are essentially

$$Add_{\sum_{i=0}^{n}}WeChat_{i}=edu_assist_properties$$

$$\sum_{i=1}^{n} (w_0 + w_1 x_1^{(i)}) \cdot x_1^{(i)} = \sum_{i=1}^{n} y^{(i)} \cdot x_1^{(i)}$$

Example

Using the same example in https://en.wikipedia.org/wiki/

Generalization to *m*-dim

• Easily generalizes to more than 2-dim:

Assignment Project Exam, Help https://eduassistpro.github.

- How to perform polynomial regression for $A_i = A_i + A_i$
 - Let $x_i^{*,'} = (x_1^{*,'})^i \Longrightarrow Polynomi$ (http://mathworld.wolfram.com/ LeastSquaresFittingPolynomial.html)

Probablistic Interpretation

High-level idea:

Assigning is possible Project, Exam Help

- https://eduassistpro.github.
 - If we also incorporate some prior on

And we was use the come to the objectiv

• Many models and their variants can be deemed as different ways of estimating $P(y^{(i)} | \hat{y}^{(i)})$

Geometric Interpretation and the Closed Form Solution

Find \mathbf{w} such that $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2$ is minimized.

Assignment Project Exam Help

• It is the hyperplane spanned by the d column vectors of \mathbf{X} .

https://eduassistpro.github.

column of X as X_i)

$$\begin{array}{cccc} Add_1^{\top} W & \text{Chat edu_assist_properties} \\ X_2^{\top}(\mathbf{y} - \mathbf{X} \mathbf{w}) &= 0 \\ \dots &= 0 \\ X_d^{\top}(\mathbf{y} - \mathbf{X} \mathbf{w}) &= 0 \end{array} \right\} \Longrightarrow \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X} \mathbf{w}) = \mathbf{0}$$

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{+}\mathbf{y}$$

(X⁺: pseudo inverse of X)

Logistic Regression

Special case: $y^{(i)} \in \{0, 1\}.$

• Not appropriate to directly regress $y^{(i)}$.

Assignment a Projectut Enxorman Intelp

https://eduassistpro.github.

- What can we say about $p_{\mathsf{x}+\epsilon}$ w
- Aswel: we impose a linear relationship bet assist product a simple linear model (Note: all points share the same parameter w)
 - Problem: mismatch of the domains: vs
 - Solution: mean function / inverse of link function: $g^{-1}:\Re \to \mathrm{params}$

Solution

• Solution: Link function $g(parameters) \to \Re$

Assignment Project, Exam Help

https://eduassistpro.github. $\frac{1+e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}}{1+e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}}$

Merchant properties that edu_assist_properties as the second of the control of th

- Decision boundary is $p \ge 0.5$.
 - Equivalent to whether $\mathbf{w}^{\top}\mathbf{x} \geq 0$. Hence, LR is a linear classifier.

Learning the Parameter w

- Consider a training data point $x^{(i)}$.
- Recall that the conditional probability ($Pr[y^{(i)} = 1 \mid x^{(i)}]$) Assignment function to the likelihood of $\mathbf{x}^{(i)}$ is denoted by the shorthand notation to th

. https://eduassistpro.github.

Log-likelihood is (assume log ≜ ln)

$$\ell(\mathbf{w}) = \sum_{i=1}^{n} y^{(i)} \log p(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - p(\mathbf{x}^{(i)}))$$
 (5)

Learning the Parameter w

• To maximize ℓ , notice that it is concave. So take its partial

$$Assignment Project Exam Help \\ \frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_{j}} = y^{(i)} \frac{1}{y^{(i)}} \frac{\partial p(\mathbf{x}^{(i)})}{\partial \mathbf{y}_{j}} + (1 \quad y^{(i)}) \frac{1}{y^{(i)}} \frac{\partial (1 - p(\mathbf{x}^{(i)}))}{\partial \mathbf{w}_{j}}$$

https://eduassistpro.github.

· Add We Charled assist_pr

$$\sum_{i=1}^{n} \hat{y}^{(i)} \cdot \mathbf{x}^{(i)}_{j} = \left[\sum_{i=1}^{n} p(\mathbf{x}^{(i)}) \mathbf{x}^{(i)}_{j}\right] = \left[\sum_{i=1}^{n} y^{(i)} \cdot \mathbf{x}^{(i)}_{j}\right]$$

what the model predicts

what the data says

Understand the Equilibrium

- Assignment Project Exam Help
 - https://eduassistpro.github.
 - The Ltd Stay strift we read our learned model to assessing the classification of training data, the LHS is the expected sum of
 - If this is still abstract, think of an example.

https://eduassistpro.github.

Add WeChat edu_assist_pr

(Stochastic) Gradient Ascent

- w is intialized to some random value (e.g., 0).
- Since the gradient gives the steepest direction to increase a

Assignment Project Exam Help

https://eduassistpro.github.

i—1

where dealing over the epochs. Where dealing over the epochs.

• Stochastic version: using the gradient on a randomly selected training instance, i.e.,

$$w_j \leftarrow w_j + \alpha(y^{(i)} - p(\mathbf{x^{(i)}}))\mathbf{x^{(i)}}_j$$

Newton's Method

• Gradient Ascent moves to the "right" direction a tiny step a

Assignation a good step size?

Assignation between the property of the proper

https://eduassistpro.github.

$$A \stackrel{\Leftrightarrow}{\underset{\longrightarrow}{d}} d \stackrel{f'(a)}{\underset{\longrightarrow}{d}} \stackrel{+}{\underset{\longrightarrow}{f''(a)}} \stackrel{+}{\underset{\longrightarrow}{f''(a)}} c hat edu_assist_pr$$

 Can be applied to multiple dimension cases too ⇒ need to use ∇ (gradient) and Hess (Hessian).

Regularization

- Regularization is another method to deal with overfitting.
 - It is designed to penalize large values of the model parameters.

Assignment Project Exame Help

• Instead of optimizing for $\ell(\mathbf{w})$, we optimize $\ell(\mathbf{w}) + \lambda R(\mathbf{w})$.

https://eduassistpro.github.

• Grid search: http:

Add her the fittenation of the model pa

- $R(\mathbf{w})$ quantities the "size" of the model pachoices are:
 - L_2 regularization (Ridge LR) $R(\mathbf{w}) = ||\mathbf{w}||_2$
 - L_1 regularization (Lasso LR) $R(\mathbf{w}) = \|w\|_1$
 - ullet L_1 regularization is more likely to result in sparse models.

Generalizing LR to Multiple Classes

Assignmentiz Projects Examt. Help

https://eduassistpro.github.

- Z is the normalization constant.
- Let \mathbf{c}^* be the last class in C, the
- · AcldfoWelcharedu_assist_pr
- Both belong to exponential or log

1.pdf

- https://eduassistpro.github.
- Tom Mitchell's book chapter: ht

```
Add WeChat edu_assist_pr
```