Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures

Emily Palmer

Journal Club, Oregon State University

March 16, 2021

Overview

Introduction

Correlation structure

Taxonomic correlation structure of OTUs Correlation structure from longitudinal repeated measures Integrative Correlation Matrix

Microbiome Taxonomic Longitudinal Correlation model

General GEE framework

Two-part model

Introduction

Challenges of applying regression models on association studies of microbiome composition and environmental factors

- Many OTUs, potentially correlated
- Repeated Measures (longitudinal, other repeated measures)
- OTU data has excessive zeros

Goals

- Estimate correlations between multiple OTUs
- Incorporate correlations into models with longitudinal OTU measures
- Estimate predictors effects using GEEs
- Two-part Microbiome Taxonomic Longitudinal Correlation (MLTC) model

Correlation matrix of taxonomic structure - Assumptions

- Assume that OTUs that belong to the same taxa at some higher level have some correlation
- ▶ All OTUs will belong to same taxa at highest level, so there are $\binom{N}{2}$ possible correlations infeasible to model
- Assume that two pairs of OTUs have the same correlation if the first common taxa of both pairs are identical

Example

Notation and Definitions

- / levels:
 - ▶ 1st taxonomic level is the level at which all observed *N* OTUs belong to the same taxon but not at one level lower
- ▶ M_i : number of taxa at level i ($M_1 = 1, M_I = N$)
- $ightharpoonup t_{m_i,i}$: taxon at level i for $m_i=1,\ldots,M_i$
- $n_{m_i,i}$: number of OTUs belonging to taxon $t_{m_i,i}$. $\mathbf{n}_i = (n_{1i}, \dots, n_{M_i,i})$

Example

$$M_1=1, M_2=2, M_3=3, M_4=6,$$

 $\textbf{n}_1=6, \textbf{n}_2=(3,3), \textbf{n}_3=(2,1,3), \textbf{n}_4=(1,1,1,1,1,1)$
I represents correlation of same class different orders,
III correlation of same order different families,
IIII, IV same family

The taxonomic structure matrix Γ

	OTU_1	OTU_2	OTU_3	OTU_4	OTU_5	OTU_6
OTU_1	\mathbb{D}	${\rm III}$	${\rm I\hspace{1em}I\hspace{1em}I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{I}
OTU_2	${\rm IIII}$	\mathbb{D}	${\rm I\hspace{1em}I\hspace{1em}I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{I}
OTU_3	${\rm I\hspace{1em}I\hspace{1em}I}$	\mathbb{II}	\mathbb{D}	${\mathbb I}$	${\mathbb I}$	\mathbb{I}
OTU_4	${\mathbb I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{D}	\mathbb{IV}	\mathbb{IV}
OTU_5	\mathbb{I}	${\mathbb I}$	\mathbb{I}	\mathbb{IV}	\mathbb{D}	\mathbb{IV}
OTU_6	${\mathbb I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{IV}	\mathbb{IV}	\mathbb{D}

Finding the taxonomic structure matrix

ightharpoonup Create I-1 $N \times N$ block matrices

For $m_i=1,\ldots,M_i$, each block ${\pmb B}_{1,i}$ is an $n_{m_i,i}\times n_{m_i,i}$ matrix, with diagonal entries ${\Bbb D}$ and off diagonal entries $\sum_{h=0}^{i-1}M_h+m_i$

- ightharpoonup Create interim correlation after replacement at level i ($\Gamma^{(i)}$)
 - ▶ For i = 1, $\Gamma^{(1)} = \Gamma_1$
 - For $i=2,\ldots,l-1$, Replace the block diagonal entries of $\mathbf{\Gamma}^{(i-1)}$ with $\mathbf{B}_{m_i,i}$, but keep all other entries the same.
- ➤ Sort all elements from largest to smallest. Different ranks are the distinct correlations to estimate

Example

$$\Gamma_{1} = \begin{pmatrix} \mathbb{D} & 1 & 1 & 1 & 1 & 1 \\ 1 & \mathbb{D} & 1 & 1 & 1 & 1 \\ 1 & 1 & \mathbb{D} & 1 & 1 & 1 \\ 1 & 1 & 1 & \mathbb{D} & 1 & 1 \\ 1 & 1 & 1 & 1 & \mathbb{D} & 1 \\ 1 & 1 & 1 & 1 & 1 & \mathbb{D} \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} \mathbb{D} & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & \mathbb{D} & 2 & 2 & \mathbb{D} & 2 & 2 \\ 2 & 2 & \mathbb{D} & 2 & 2 & 2 & \mathbb{D} \\ & & \mathbb{D} & 3 & 3 & 3 & \mathbb{D} \end{pmatrix}$$

$$\Gamma_{3} = \begin{pmatrix} \mathbb{D} & 4 & 2 & 1 & 1 & 1 \\ 4 & \mathbb{D} & 2 & 1 & 1 & 1 \\ 2 & 2 & \mathbb{D} & 1 & 1 & 1 \\ 1 & 1 & 1 & \mathbb{D} & 6 & 6 \\ 1 & 1 & 1 & 6 & \mathbb{D} & 6 \\ 1 & 1 & 1 & 6 & 6 & \mathbb{D} \end{pmatrix}$$

 Γ can be represented by $(\mathbf{n}_1, \dots, \mathbf{n}_l)$

The taxonomic structure matrix Γ

	OTU_1	OTU_2	OTU_3	OTU_4	OTU_5	OTU_6
OTU_1	\mathbb{D}	${\rm III}$	${\rm I\hspace{1em}I\hspace{1em}I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{I}
OTU_2	${\rm IIII}$	\mathbb{D}	${\rm I\hspace{1em}I\hspace{1em}I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{I}
OTU_3	${\rm I\hspace{1em}I\hspace{1em}I}$	\mathbb{II}	\mathbb{D}	${\mathbb I}$	${\mathbb I}$	\mathbb{I}
OTU_4	${\mathbb I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{D}	\mathbb{IV}	\mathbb{IV}
OTU_5	\mathbb{I}	${\mathbb I}$	\mathbb{I}	\mathbb{IV}	\mathbb{D}	\mathbb{IV}
OTU_6	${\mathbb I}$	${\mathbb I}$	${\mathbb I}$	\mathbb{IV}	\mathbb{IV}	\mathbb{D}

Correlation structure from longitudinal repeated measures

Types of correlations between pairs of time points

- Exchangeable
 - Assumes all correlations are equal to each other
- ▶ Toeplitz
 - Assumes time points with equal temporal distance have equal correlation
- Unstructured
 - Assumes each pair has a different correlations
 - Most complicated structure for correlation parameter estimation

Correlation structure matrix for the the same individual is denoted $\Omega_{\mathcal{T}}$

Example Correlation Matrices for 3 timepoints

Exchangable structure			Toeplitz	Toeplitz structure			
	T_1	T_2	T_3		T_1	T_2	T_3
T_1	\mathbb{D}	Î	Î	T_1	\mathbb{D}	Î	
T_2	Î	\mathbb{D}	Î	T_{2}	Î	\mathbb{D}	Î
T_3	Î	Î	\mathbb{D}	T_3	88	Î	\mathbb{D}

Combining longitudinal and sample correlation

When both longitudinal and sample correlations exist, the repeated measure correlation matrix is all combinations of time points and repeated samples

	(T_1,S_1)	(T_2,S_1)	(T_3,S_1)	(T_1,S_2)	(T_2,S_2)	(T_3,S_2)
(T_1,S_1)	\mathbb{D}	å	å	00	000	000
(T_2,S_1)	å	\mathbb{D}	å	000	88	000
(T_3,S_1)	å	Î	\mathbb{D}	000	000	88
(T_1,S_2)		000	000	\mathbb{D}	å	ů
(T_2,S_2)	000	ÕÕ	000	ů	\mathbb{D}	ů
(T_3,S_2)	888	000	åå	å	å	\mathbb{D}

Incorporating taxonomic structure with repeated measures

 Ω with dimension L, for $a,b=1,\ldots,N$,

$$\mathbf{\Omega}(\Gamma_{ab}) = egin{pmatrix}
ho_{(\Gamma_{ab},\Omega_{11})} & \cdots &
ho_{(\Gamma_{ab},\Omega_{1L})} \ dots & \ddots & dots \
ho_{(\Gamma_{ab},\Omega_{L1})} & \cdots &
ho_{(\Gamma_{ab},\Omega_{LL})} \end{pmatrix}.$$

$$m{R} = egin{pmatrix} m{\Omega}^{11} & \cdots & m{\Omega}^{1N} \ dots & \ddots & dots \ m{\Omega}^{N1} & \cdots & m{\Omega}^{NN} \end{pmatrix}$$

Dimension of $R = (N \times L) \times (N \times L)$ Diagonals of $R = \rho(\mathbb{D}, \mathbb{D})$ are 1, off-diagonals need to be estimated

Example R

For two correlated OTUs and two repeated measures at different time points

$$m{R} = egin{pmatrix}
ho_{(\mathbb{D},\mathbb{D})} &
ho_{(\mathbb{D},\mathbf{i})} &
ho_{(\mathbb{I},\mathbb{D})} &
ho_{(\mathbb{I},\mathbf{i})} \
ho_{(\mathbb{D},\mathbf{i})} &
ho_{(\mathbb{I},\mathbf{i})} &
ho_{(\mathbb{I},\mathbf{D})} \
ho_{(\mathbb{I},\mathbf{D})} &
ho_{(\mathbb{I},\mathbf{D})} &
ho_{(\mathbb{I},\mathbf{D})} \
ho_{(\mathbb{I},\mathbf{D})} &
ho_{(\mathbb{D},\mathbf{D})} &
ho_{(\mathbb{D},\mathbf{i})} \
ho_{(\mathbb{D},\mathbf{i})} &
ho_{(\mathbb{D},\mathbf{i})} \
ho_{(\mathbb{D},\mathbf{D})} &
ho_{(\mathbb{D},\mathbf{D})} \end{pmatrix}$$

- $ho_{(\mathbb{D},\mathbb{D})}=1$
- $\rho_{(\mathbb{D},i)}, \rho_{(\mathbb{I},\mathbb{D})}$ correlation between two time points and two OTUs
- ho $ho_{(\mathbb{I},\mathbb{I})}$ correlation from different OTU and different time points

Introduction to MTLC:

MTLC:

- Estimate predictor effects
- Estimate correlation coefficients between OTUs, longitudinal measures and other repeated measures
- Perform hypothesis testing of predictor effects

Generalized estimating equation framework

- $\mathbf{y}_k = (y_{k1}, \dots, y_{kJ_k})$ clusters, length J_k for $k = 1, \dots, K$
- ightharpoonup $m f x}_{kj}$ the vector of covariates with length $p, j=1,\ldots,J_k$
- $m{\mu}_k = (\mu_{k1}, \dots, \mu_{kJ_k})$ mean of $m{y}_k$
- \triangleright Each observation y_{kj}

$$g(\mu_{kj}) = \mathbf{x}'_{kj}\boldsymbol{\beta}$$

 \triangleright Conditional variance of y_{kj}

$$Var(y_{kj}|\boldsymbol{x}_{kj}) = v(\boldsymbol{\mu}_{kj})\phi$$

v is the variance function depending on the distribution of y_{kj} , ϕ is dispersion parameter

cont.

lacktriangle Estimate eta by solving the generalized estimating equation

$$U(\boldsymbol{\beta}) = \sum_{k=1}^K \boldsymbol{D}_k' \boldsymbol{V}_k^{-1} (\boldsymbol{y}_k - \boldsymbol{\mu}_k) = 0$$

- ▶ $\mathbf{A}_k = diag(\mu_{k1}\phi, \dots, \mu_{kJ_k}\phi) \ \boldsymbol{\rho}$ collection of all correlation coefficients in \mathbf{R}_k
- $ightharpoonup R_k(
 ho)$ is the working correlation matrix following correlation structure R

cont.

 $ightharpoonup \phi,
ho$ also need to be estimated

$$\hat{\phi} = \frac{1}{\sum_{k=1}^{K} J_k - \rho} \sum_{k=1}^{K} \sum_{j=1}^{J_k} e_{kj}^2$$

where e_{kj} is the Pearson residual

- $\hat{\rho}$ is estimated as a function of ϕ and e_{kj} , depending on the correlation structure R
- lterative switch between estimating β from fixed value of $\hat{\phi}$ and $\hat{\beta}$ and estimating ϕ and ρ for a fixed value of $\hat{\beta}$

Hypothesis testing

From GEE theory $\hat{\beta}$ is asymptotically normally distributed with mean β and variance

$$\boldsymbol{V_{\beta}} = (\boldsymbol{\Sigma_{k=1}^{K}} \boldsymbol{D_{k}'} \boldsymbol{V_{k}^{-1}} \boldsymbol{D_{k}})^{-1} \{\boldsymbol{\Sigma_{k=1}^{K}} \boldsymbol{D_{k}'} \boldsymbol{V_{k}^{-1}} \text{Cov}(\boldsymbol{y_{k}}) \boldsymbol{V_{k}^{-1}} \boldsymbol{D_{k}}\} (\boldsymbol{\Sigma_{k=1}^{K}} \boldsymbol{D_{k}'} \boldsymbol{V_{k}^{-1}} \boldsymbol{D_{k}})^{-1}$$

• Wald test statistic for testing H_0 : $C\beta = c$

$$oldsymbol{W} = (oldsymbol{C}\hat{oldsymbol{eta}} - oldsymbol{c})'(oldsymbol{C}\hat{oldsymbol{V}}_eta oldsymbol{C}')^{-1}(oldsymbol{C}\hat{oldsymbol{eta}} - oldsymbol{c})$$

• $W \stackrel{d}{\to} \chi^2_{(q)}$ where q is the rank of C

Estimating predictors effects on OTUs

- Two part model two separate GEE models
 - Convert quantitative OTU observations to binary outcomes indicating prevalence of OTU in each observation - assessing predictor effects on OTU prevalence
 - Relative abundance of non-zero observation assume RA follows normal distribution after log transformation - predictor effects on positive RA
 - Combine test statistics from two models for overall predictor effects

OTU GEE Model

- Assume each OTU observation y_{kj} follows a mixture of Bernoulli and log-normal distribution.
- ▶ OTU prevalence: $y_{kj}^{(0)}$ follows a Bernoulli distribution with $P(Y_{kj}^{(0)}=1)=\mu_{kj}^{(0)}$
- Log-transform positive RAs: $y_{kj}^{(+)}$ follows a normal distribution

$$F(y) = \begin{cases} 1 - \mu_{kj}^{(0)} & y = 0\\ 1 - \mu_{kj}^{(0)} + \mu_{kj}^{(0)} \Phi(\log y) & y > 0 \end{cases}$$

GEE Model for OTUs

For OTU prevalence, use logit link function

$$\log \frac{\mu_{jk}^{(0)}}{1 - \mu_{jk}^{(0)}} = \mathbf{x}'_{kj} \boldsymbol{\beta}^{(0)}$$

► For Log-transform RA, use identity link function

$$\mu_{jk}^{(+)} = \boldsymbol{x}_{kj}' \boldsymbol{\beta}^{(0)}$$

lacktriangle Use GEE framework to find parameter estimates $\hat{eta}^{(0)}$ and $\hat{eta}^{(+)}$

Hypothesis testing

 Test if the predictors have effects on either the prevalence of OTUs or the quantitative amount of RA,

$$H_0: {m C}^{(0)}m{eta}^{(0)} = {m c}^{(0)}$$
 and $H_0: {m C}^{(+)}m{eta}^{(+)} = {m c}^{(+)}$

- ► Calculate Wald test statistics $W^{(0)}$ and $W^{(+)}$
- Cauchy combination test

$$W_{\it MTLC} = 0.5 tan[(0.5 - p^{(0)})\pi] + 0.5 tan[(0.5 - p^{(+)})\pi] \xrightarrow{d} Cauchy(0, 1)$$

Estimating correlation coefficients

- Estimated values of correlation coefficients $\hat{\rho}^{(0)}$ and $\hat{\rho}^{(+)}$ may be different.
- ▶ When Pearson correlations are available to compute, the GEE estimates are similar.

Discussion

- MTLC has accurate Type I error, unbiased estimation of model parameters and robust power performance
- Correlation estimation is consistent
- ▶ Does not put a constraint on range of correlation coefficient
- Reccomend using a subset of OTUs as model is time consuming when N > 1000.

References

Chen B, Xu W (2020)

Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures

PLoS Comput Biol 16(9): e1008108.

https://doi.org/10.1371/journal.pcbi.1008108.