Logic Gates

What are logic gates?

- A logic gate is a device that acts as a building block for digital circuits.
- They perform basic logical functions that are fundamental to digital circuits.
- A logic gate is a simple switching circuit that determines whether an input pulse can pass through to the output in digital circuits.

- Logic gates works on digital inputs logic '0' or logic '1'.
- It is also called as true or false.

TTL voltage levels

Acceptable TTL gate input signal levels

Acceptable TTL gate output signal levels

What is Boolean algebra?

- Boolean algebra is a type of logical algebra in which symbols represent logic levels.
- The digits(or symbols) 1 and 0 are related to the logic levels in this algebra;
- in electrical circuits, logic 1 will represent a closed switch, a high voltage, or a device's "on" state.
- An open switch, low voltage, or "off" state of the device will be represented by logic 0.

Review of Boolean algebra

- Not is a horizontal bar above the number
 - $-\bar{0} = 1$
 - $-\overline{1}=0$
- OR is a plus
 - -0+0=0
 - -0+1=1
 - -1+0=1
 - -1+1=1
- AND is multiplication
 - -0*0=0
 - -0*1=0
 - -1*0=0
 - -1*1=1

Basic logic gates

- NOT $x \rightarrow \overline{x}$
- AND $\frac{x}{y}$
- OR $y = \sum_{y=1}^{x+y} x+y$
- NAND $y = \frac{\overline{xy}}{y}$
- NOR $y = \sqrt{X+y}$

- Logic gates are the basic building blocks of any digital circuit.
- · Logic gates are classified as-

Types of Logic Gates

Basic logic gates

- There are following three basic logic gates-
- 1.AND Gate
- 2.OR Gate
- 3.NOT Gate

AND Gate

- The output of AND gate is high ('1') if all of its inputs are high ('1').
- The output of AND gate is low ('0') if any one of its inputs is low ('0').

Logic Symbol-

The logic symbol for AND Gate is as shown below-

Truth Table-

The truth table for AND Gate is as shown below-

Α	В	Y = A.B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Truth Table

Timing Diagram-

The timing diagram for AND Gate is as shown below-

2. OR Gate-

- The output of OR gate is high ('1') if any one of its inputs is high ('1').
- The output of OR gate is low ('0') if all of its inputs are low ('0').

Logic Symbol-

The logic symbol for OR Gate is as shown below-

2-Input OR Gate

N-Input OR Gate

Truth Table-

The truth table for OR Gate is as shown below-

А	В	Y = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

Timing Diagram-

The timing diagram for OR Gate is as shown below-

3. NOT Gate-

- The output of NOT gate is high ('1') if its input is low ('0').
- The output of NOT gate is low ('0') if its input is high ('1').

From here-

- It is clear that NOT gate simply inverts the given input.
- Since NOT gate simply inverts the given input, therefore it is also known as Inverter Gate.

Logic Symbol-

The logic symbol for NOT Gate is as shown below-

Truth Table-

The truth table for NOT Gate is as shown below-

Α	Y = A'	
0	1	
1	0	

Truth Table

Timing Diagram-

The timing diagram for NOT Gate is as shown below-

What are Universal Gates?

- They are called as "Universal Gates" because-
- They can realize all the binary operations.
- All the basic logic gates can be derived from them.

1. NAND Gate-

- A NAND Gate is constructed by connecting a NOT Gate at the output terminal of the AND Gate.
- The output of NAND gate is high ('1') if at least one of its inputs is low ('0').
- The output of NAND gate is low ('0') if all of its inputs are high ('1').

Logic Symbol-

The logic symbol for NAND Gate is as shown below-

Truth Table-

The truth table for NAND Gate is as shown below-

A	В	Y = (A.B) ¹
0	٥	1
0	1	1
1	0	1
1	1	0

Truth Table

Timing Diagram-

The timing diagram for NAND Gate is as shown below-

2. NOR Gate-

- A NOR Gate is constructed by connecting a NOT Gate at the output terminal of the OR Gate.
- The output of OR gate is high ('1') if all of its inputs are low ('0').
- The output of OR gate is low ('0') if any of its inputs is high ('1').

Logic Symbol-

The logic symbol for NOR Gate is as shown below-

Truth Table-

The truth table for NOR Gate is as shown below-

Α	В	Y = A + B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Truth Table

Timing Diagram-

The timing diagram for NOR Gate is as shown below-

Find the output of the following circuit

• Answer: $(x+y)\overline{y}$

Find the output of the following circuit

Answer: x̄ȳ

- Write the circuits for the following Boolean algebraic expressions
- a) $\overline{x}+y$

 Write the circuits for the following Boolean algebraic expressions

b)
$$\overline{(x+y)}x$$

Writing xor using and/or/not

•
$$x \oplus y \equiv (x + y)(\overline{xy})$$

Х	У	<i>x</i> ⊕y
1	1	0
1	0	1
0	1	1
0	0	0

