Finding Domains of Functions

Overview: How to Find the Domain of a Function

To find the domain of a function, follow these steps:

Step 1. Start with all real numbers as your initial domain

Step 2. Check for restrictions:

- Denominators cannot equal zero
- Even-root expressions must be non-negative
- The expression inside any square root must be non-negative

Step 3. Solve any inequalities to find restricted values

Step 4. Write the domain using interval notation

Practice Problems

Find the domain of each function:

1.
$$f(x) = \frac{x+3}{x-2}$$

2.
$$f(x) = \sqrt[3]{x-4}$$

3.
$$f(x) = \frac{x}{x^2 - 9}$$

4.
$$f(x) = \sqrt{16 - x^2}$$

5.
$$f(x) = \frac{x+1}{x^2-4}$$

6.
$$f(x) = \frac{\sqrt{x+2}}{x-3}$$

7.
$$f(x) = \sqrt[3]{2x+1}$$

8.
$$f(x) = \frac{2x+1}{(x+3)(x-1)}$$
9. $f(x) = \sqrt{2x+3} + \frac{1}{x-4}$
10. $f(x) = \frac{\sqrt{x-1}}{x^2-1}$

9.
$$f(x) = \sqrt{2x+3} + \frac{1}{x-4}$$

10.
$$f(x) = \frac{\sqrt{x-1}}{x^2-1}$$

Answer Key

- 1. Domain = $(-\infty, 2) \cup (2, \infty)$
 - $\,\vartriangleright\,$ Denominator cannot equal zero: $x-2\neq 0$
 - \triangleright Therefore $x \neq 2$
- **2.** Domain = $(-\infty, \infty)$
 - ▷ Cube root accepts all real numbers
 - \triangleright Therefore x can be any real number
- **3.** Domain = $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$
 - \triangleright Denominator cannot equal zero: $x^2 9 \neq 0$
 - \triangleright Solve: $x^2 9 = 0$, (x+3)(x-3) = 0
 - \triangleright Therefore $x \neq -3$ and $x \neq 3$
- 4. Domain = [-4, 4]
 - $\,\triangleright\,$ Inside square root must be non-negative: $16-x^2\geq 0$
 - \triangleright Solve: $-4 \le x \le 4$
- 5. **Domain** = $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$
 - \triangleright Denominator cannot equal zero: $x^2 4 \neq 0$
 - \triangleright Solve: (x+2)(x-2) = 0
 - \triangleright Therefore $x \neq -2$ and $x \neq 2$
- 6. Domain = $(3, \infty)$
 - \triangleright Inside square root must be non-negative: $x+2\geq 0$, so $x\geq -2$
 - \triangleright Denominator cannot equal zero: $x-3\neq 0$, so $x\neq 3$
 - \triangleright Combine restrictions: x > 3
- 7. Domain = $(-\infty, \infty)$
 - ▷ Cube root accepts all real numbers
 - \triangleright Therefore 2x + 1 can be any real number
 - ▷ Domain is all real numbers
- **8. Domain** = $(-\infty, -3) \cup (-3, 1) \cup (1, \infty)$
 - \triangleright Denominator cannot equal zero: $(x+3)(x-1) \neq 0$
 - \triangleright Therefore $x \neq -3$ and $x \neq 1$

9. Domain = $(4, \infty)$

- $\,\,\vartriangleright\,$ Inside square root must be non-negative: $2x+3\geq 0,$ so $x\geq -\frac{3}{2}$
- $\,\,\vartriangleright\,$ Denominator cannot equal zero: $x-4\neq 0,$ so $x\neq 4$
- \triangleright Combine restrictions: x > 4

10. Domain = $(1, \infty)$

- \triangleright Inside square root must be non-negative: $x-1 \ge 0$, so $x \ge 1$
- \triangleright Denominator cannot equal zero: $x^2 1 \neq 0$
- \triangleright Solve: (x+1)(x-1)=0, so $x \neq -1$ and $x \neq 1$
- \triangleright Combine restrictions: x > 1