Homework 6 solutions

1. a. Is
$$f(x,y) = x^2 + y^3 - 3xy$$
 convex?

The gradient of f is
$$|2x-3y|$$

 $|3y^2-3x|$

The determinant of the hessian is 12y-9. If y=0, then the determinant is negative and so the function is not convex.

2b. Is
$$f(x,y,z) = x^2+y^2+z^2+6x+6y+6z+2xyz$$
 convex?

The gradient of f is
$$|2x+6+yz|$$

 $|2y+6+xz|$
 $|2z+6+xy|$

The determinant of the first square principle diagonal matrix is 2.

The determinant of the second square principle diagonal matrix is $4 - 4z^2$, which is negative if z>1, and so the function is not convex.

2. a Starting with x_i =-5 and x_r =11, perform the bisection method for 4 iterations on $f(x)=x^4+x^2$

$$f'(x)=4x^3+2x$$

Since $f'(x_{mid}) = 0$, a local optimal solution occurs at 0. If not I would have reported a local optimal exists between -1 and 1 and my best guess is to let x=0.

2. b Starting with x_1 =-5 and x_r =11, perform the bisection method for 4 iterations on f(x)=4 x^4 - x^2 +5 f'(x)=16 x^3 -2x

X_{left}	\mathbf{x}_{mid}	X_{right}	$f'(x_{mid})$
-5	3	11	426
-5	-1	3	-14
-1	1	3	14
-1	0	1	0

Since $f'(x_{mid}) = 0$, a local optimal solution occurs at 0. If not I would have reported a local optimal exists between -1 and 1 and my best guess is to let x=0.

3a. Starting with x_1 =-5 and x_r =11, perform the golden search method for 4 iterations for $f(x)=x^4+x^2$.

xleft	xmid1	xmid2	xright	f(xleft)	f(xmid1)	f(xmid2)	f(xright)
-5	1.112	4.888	11	650	2.765585	594.7462	14762
-5	-1.22278	1.110784	4.888	650	3.730826	2.756205	594.7462
-1.22278	1.111535	2.553681	4.888	3.730826	2.761999	49.04843	594.7462
-1.22278	0.217273	1.106943	2.547	3.730826	0.049436	2.726735	48.57109

I know a local optimal solution exists between -1.22 and 1.1. My best guess is x=.217 with a objective value of .05.

3b Starting with x_l =-5 and x_r =11, perform the golden search method for 4 iterations on f(x)=4 x^4 - x^2 +5

xleft	xmid1	xmid2	xright	f(xleft)	f(xmid1)	f(xmid2)	f(xright)
-5	1.112	4.888	11	2480	9.87962	2264.522	58448
-5	-1.22278	1.110784	4.888	2480	12.4473	9.855614	2264.522
-1.22278	1.111535	2.553681	4.888	12.4473	9.87044	168.5873	2264.522
-1.22278	0.217273	1.106943	2.547	12.4473	4.961707	9.780332	166.8483

I know a local optimal solution exists between -1.22 and 1.1. My best guess is x=.217 with a objective value of 4.96.

4a. From a starting points of 0 and 1, perform the intial search algorithm to determine an optimal region for $x^2-10x+25$.

xleft		xmid	xright	f(xleft)	f(xmid1)	f(xright)
	0	0.5	1	25	20.25	16
	0	1	2	25	16	9
	0	2	4	25	9	1
	0	4	8	25	1	9

I know that there exists a local optimal between 0 and 8. If I wanted to find it I would use x_{left} =0 and x_{right} =8 in either bisection or the golden search methods.

4a. From a starting points of 0 and 1, perform the intial search algorithm to determine an optimal region for x^2 -.2x+.04.

xleft		xmid	xright	f(xleft)	f(xmid1)	f(xright)
	0	0.5	1	0.04	0.19	0.84
	0	0.25	0.5	0.04	0.0525	0.19
	0	0.125	0.25	0.04	0.030625	0.0525

I know that there exists a local optimal between 0 and .25. If I wanted to find it I would use x_{left} =0 and x_{right} =.25 in either bisection or the golden search methods.

5a. Perform two iterations of the gradient search method on $f(x,y) = x^2 + 4xy + 2y^2 + 2x + 2y$. Use (0,0) as a starting point.

The gradient of f is
$$|2x+4y+2|$$

 $|4x+4y+2|$

$$d^{1}$$
= the negative of the gradient of f at the point $(0,0)$ = $-|2|$ $|2|$

So
$$x^1 = (0,0) + \lambda(-2,-2) = (-2\lambda,-2\lambda)$$
.

Plugging this into f(x,y) results in $f(\lambda)=4\lambda^2+16\lambda^2+8\lambda^2-4\lambda-4\lambda=28\lambda^2-8\lambda$

Taking the deriviative and setting it equal to 0 to find the min results in $f'(\lambda)=56\lambda-8=0$ $\lambda=1/7$

So
$$x^1 = (-2/7, -2/7)$$
.

$$d^2$$
= the negative of the gradient of f at the point (-2/7,-2/7) = -|2/7 | |-2/7|

So
$$x^1 = (-2/7, -2/7) + \lambda(-2/7, 2/7) = (-2/7 - 2\lambda/7, -2/7 + 2\lambda/7).$$

Plugging this into f(x,y) results in the following simplified expression.

$$f(\lambda) = -4/49\lambda^2 - 8/49\lambda - 28/49$$

Taking the deriviative and setting it equal to 0 to find the min results in $f'(\lambda)=-8/49\lambda-8/49=0$ $\lambda=-1$

So
$$x^2 = (0, -4/7)$$
.

6. Find all KKT points of

Minimize
$$-x^3$$
-xy
Subject to $x+y=4$
 $x \le 2$

So the KKT conditions are

$$|-3x^2-y| + u | 1 | +v | 1 | = |0|$$
 (i)
 $|-x| |0| + |1| |0|$ (ii)

$$u(x-2)=0$$
 (iii)
 $u\ge 0$ (iv)
 $x\le 2$ (v)
 $x+y=4$ (vi)

Case 1: u>0

Thus x=2, from the (iii). By (vi) y=2. Using this in (ii) results in v=2. So plugginf all of this into (i) results in -12-2+u+2=0 and so u=12.

There is a KKT point at x=2, y=2, u=12, v=2. It's objective value is -12.

Case 2: u=0.

So (i) becomes $-3x^2$ -y +v = 0. From (ii) we get x=v, and substituting this into the new (i), we get $-3x^2$ -y +x = 0. From (vi) we get y=4-x. Substituting this into the most recent version of (i), $-3x^2$ -4+x +x = 0. So $-3x^2$ +2x-4 = 0. Using the quadratic formula results in($-2 \pm (4-48)^{1/2}$)/6. Since this is an imaginary number, there are no KKT points with u=0.

The only KKT point is at x=2, y=2, u=12, v=2. It's objective value is -12.