MINIMUM SPANNING TREE motiogle a lasteur O(ElogV) sorted edges (5,3): 2 (1,2): (4,5): (4,6): 2 X (5,6): 2 ratarelation (512): 3 (5) 4 (3,5): 6 (1,3): 4 (2,4): 4 3 (7) selected (5'3) (1 restardi (1,2) (s nautorati selected cost (9,7) solected steraturi 3) (4,6) selected neutorati (5,6) met releded (it forms a cycle) (2 nastardi (2,5) relicted naturation 6) We have 6 voities, 5 needed (F natheresti edges The final tree: Greedy's algorithm It contains all the vites Symoxs

Flayd-Worshall algorithm

(mo megatue carts)

- lowest vert walk between the guen vertices

0(1113)

$$D_{1} = \begin{pmatrix} 0.5 & 50 & \infty \\ \infty & 0.10 & 50 \\ \infty & \infty & 0.05 \\ \infty & \infty & \infty & 0 \end{pmatrix} \qquad P_{1} = \begin{pmatrix} 0.110 \\ 0.022 \\ 0.003 \\ 0.000 \end{pmatrix}$$

$$D_{2} = \begin{pmatrix} 0.5 & 15 & 35 \\ \infty & 0.10 & 30 \\ \infty & \infty & 0.5 \\ \infty & \infty & \infty.0 \end{pmatrix}$$

$$P_{2} = \begin{pmatrix} 0.1 & 2.2 \\ 0.0 & 2.2 \\ 0.0 & 0.3 \\ 0.0 & 0.0 \end{pmatrix}$$

$$D_{5} = \begin{pmatrix} 0 & 5 & 15 & 20 \\ \infty & 0 & 10 & 15 \\ \infty & \infty & 0 & 5 \end{pmatrix} \qquad P_{3} = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

k=4 uning vertex 4 as intermediate vertex

$$D'' = \begin{pmatrix} \infty & \infty & \infty & 0 \\ \infty & 0 & 0 & 12 \\ 0 & 2 & 12 & 50 \end{pmatrix} \qquad b' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 1 & 5 & 3 \end{pmatrix} \qquad A = A \quad \text{spab}$$

The minimum cost walk from $\Delta = 1$ to t = 4 has the cost $D_{\mu}(114) = 20$ and it is obtained

from Py (backwords);
$$P(1,4)=3$$
 $P(1,3)=2$ $P(1,1)=1$
The minimum cost walk $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

Dijkstra's algorithm — the minimum cost walk from a vortex s to all the other vorte as (mon-negative)

The minimum cost walk from 0 to 4 is $\boxed{30} = d[4]$ And the path is print 4J = 3 print 3J = 2 print 3J = 0 = 1 $0 \Rightarrow 1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$ cost = dist [4J = 30]

built backwoords

multiregle a artifica

BACK WARDS FROH + TO D

D=0 +=4

Nin	
0	[]
1	[0]
2	[0,1]
3	[1,2]
4	[2,3]

		T			
And the Spinish of the Spinish	X	X	dust	3. Criesta	txen
		U	dictionary	Quilia	dictionary
,			01235	(4,0)	
	4	23	50 10 0	(2,20) > P.2. (3,00) (2,20)	1 1 1 1 1 1 1 1
	3	21	01235	(5'12) (1'30) (5'12) (5'50)	01274
	2	0	0 1 5 3 7 152 14 10 0	(1,25) (1,27) (1,30)	01235
	٨	0	0 1 2 3 7	(0'32)	01234
	0		p=0	9012	

The minimum cost walk from 0=0 to t= } os = [o] trub two aft can.

N=0 mext [0]=1 mext[1]=2 mext [2]=3 mext[3]=4 0>1-12-33-4

Prima Olgoridhum

HUMINIM

SPANNING TREE

O(EligV)

regbe betra

	(2,	3)	,	1	•
--	-----	----	---	---	---

2 4 4	
3 2	6)
4 3 2	

	ale betelon	e Vna	x Emau
ratarelaitera	ale betelon	3 13	3 3
1 instarcti	(1,2)	11.57	3(1,2)}
La ration 2	(2,3)	31,235	{ (1,2) (2,1) }

E natorata	(2,5)	{1,23,5} }(1,2)(2,3)(2,5)}
1 instanti	(4,5)	{1,2,3,4,5} }(1,7)(2,3),(2,5),(4,5)

de la constantina della consta		
2 nortarete	(5,6)	31'5'3'7'2'67 3(1'5)(52)'(52)'(72)'(72)'(29)

Another reminiment pouring the 10 of the Abie

Bellman - Ford's algorithm (based on privile of relaxation) MINIMUM COST WALK

	changed	edge (x,y)	dist dictionary	prev dicturary
restarilation	tome		0 0 0 0 0	7
1 nactorali	Jalse true true true true	(2,3) (1,2) (1,2) (1,3)	0 1 2 3 0 5 0 0 0 5 10 0 0 5 17 37 0 5 17 30	0 0 0 0 0 1 1 0 1 2
is neutoneti	Jahre	(0,1) (0,2) (1,2) (1,3) (2,3)	0 1 2 3 0 7 17 70 0 7 15 70 0 7 15 70 0 7 15 70	0 1 2 0 1 2 0 1 2

the minimum cost walk is cost = dist [3]= 30 t=3 prev [3]=2 prev [3]=0 = 0

walk $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$

	0	G		
$\mathcal{D} = \mathbf{y}$	t=6	path [1,2,4,6]	Congth = 3	(dist [6])

2	4		4	1	
X	9	queue	Destrict (text)	dist	dictionary
		1	314	0153426	0123436
٨	2,	2,	11,23	0123456	0123556
2	3	3 34	31,2,34 31,2,34	101511	0 1 2 3 4 5 6
3	4	Ч			
4	6	6	71,7,3,4,5	10/11/5/5/13	1 1 2 2 1 4 5 6

2=[0] used 0=+ and wast third is that surver oft

bren (5]=1 BACKWARD

X	y	Julie	visited	dut .	mext
	J	d		broughy	dictionary
		6	363	[0153126
G	4	4	34,64	0133170	0123556
· Ign)	5	4,5	34,5,69	1111110	11 1661
4	2	2,5	32,5,5,63	ाँ। या गांगी	1 141 16161
1.0	3	2,5,3	32,3,4,516	1 2211110	1 14 14 16 161
5	3	2,3			
2	1	3 31	11234567	0123456	0123456

y= D=1 -> rlop path [1,2,2,6] dist [6] = 3

5 - [3,6]

[]-[]

Turens

[6,4,2,1]

Nim - dectionary

4 - [2,3]

-[4,5]

5 - [3]

C> 1,2,4,6

7=1

mext[i]=2 next[i]=4 mext[i]=6=+

length = 3

Find the connected components of an undirected graph wring BFS

(A)	3-4
0	(5)

(seet)

Nout								
	0	[i]-						
	1	[5,0]-						
	2	[1]-						
	3	- [4J						
	4	- [3]						
	5	-[]						

					(bet)			
	X	y	que	acc	between			
					13			
call accenible	0 1 2	1 2	ر ا ا	303 20,14 30,123		cornected		
					70,1,25	0-0-0		
call occarrible	3 4		3	33,44				
	,			No. of the Park Park	33,44	connected		
					30,1,2,3,44	3-6		
coll accemble	5		5	353				
						comp.		
					30,1,2,3,4,53	0		

def accersible (g.s): graph vortex

acc = vet()

acc. add(s)

list = [a] = kil

while lon (list) >0:

[0] trisl = X

[:1] trul = trul

for y in g. pour e Nout (x):

y mot in acc:

etun acc lust append (y)

Depth - Joint neorch (DFS)

O(V+E)

Sedges

Nordex

Prunt: ABBEFC

When stalk is empty > STOP