

Our country, our future

525/1

S6 CHEMISTRY

Exam 6

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709.

Instructions

This paper consists of two sections A and B

- Section A is compulsory
- Attempt only six questions in section B
- Answers must be written in the spaces provided only.

For E	Examine	er's Us	e Only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

SECTION A

1.	Write a balanced overall ionic equation for the following reactions: (a) $MnO_2(s) + HCI$ (aq) \longrightarrow $MnCl_2$ (aq) $+ H_2O(I) + Cl_2(g)$
	(b) $KIO_3(aq) + HCl(aq) + KI(aq)$ \longrightarrow $I_2(aq) + H_2O(I)$
	(c) $K_2Cr_2O_7(aq) + H^+(aq) + SO_2(g)$ \longrightarrow $SO_4^{2-}(aq) + H_2O(I) + Cr^{3+}(aq)$
2.	The osmotic pressure of an aqueous solution of a non- electrolyte containing 5.43 gdm ⁻³ of solution is $7.093 \times 10^4 \text{Nm}^{-2}$ at 25°C . Calculate the freezing point of solution. (Kf for water = 18.6°C per 100gmol^{-1})

	••••••
3. (a) Define the term "disproportionation."	
(b) Write the ionic equation for the disproportionation of the following species.	
(i) MnO ₄ ²⁻ in acidic media.	
(ii) copper (I) in aqueous solution.	
(ii) copper (I) in aqueous solution.	
(ii) copper (I) in aqueous solution.	
(ii) copper (I) in aqueous solution.	

	ions	and readil	on between nydr	ogen peroxide and iodine i
and hydrogen Expt. No.		on (moldm ⁻³)		Rate of reaction (moldr
	I-(aq) ion	H ₂ O ₂ (aq)	H+(aq) ions	
1	0.010	0.010	0.010	1.76 x 10 ⁻⁶
2	0.010	0.030	0.010	5.25 x 10 ⁻⁶
3	0.020	0.030	0.010	1.05 x 10 ⁻⁵
4	0.020	0.030	0.020	1.05 x 10 ⁻⁵
H ₂ O ₂				
l ⁻				

(ii) Write the rate equation for the reaction:

			(iii) Calculat	e the rate constant	(K) for the rea	ction and indicate	its units.
	5.	Comple	ete each of the fo	llowing equations a	nd write the a	ccepted mechanis	sm.
		(i)	CH ₃ -CH ₂ -CHO	KCN/ dil H ₂ SO ₄	•		
				10-20°C			
••••							
••••		••••••••••••					
		(ii)	CH₃CH=CHCH₃	HBr(g)	→		(2 ½ marks)
	6.	(a) Defi	ne the term "sta	ndard enthalpy of a	tomization"		
•••••	• • • • • • • •						

••••••				
••••••				
(h) Bar	nd anargias for same hand	s are given below		
(ט) סטו	nd energies for some bonds	s are given below.		
	Bond		Bond energy	
	C-O		358	
	С-Н		413	
	О-Н		464	
.				
Calcula	ite the standard enthalpy o	of atomization of m	nethanol	
••••••				
(d) Ex	olain why ammonium nitra	te is readily solubl	e in water even though the stand	lard enthalpy of
sol	ution has a positive value.			
7.	Name the reagent that ca	an be used to distir	nguish between Co ²⁺ and Mn ²⁺ ion	ns. State what is
	observed when the aque	ous solution of eac	ch ion is separately treated with t	he reagent.

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

Reagent
Observations:
(b) Cobalt forms a complex of formula Co(NH₃)n³+3Cl⁻.
5×10^{-3} moles of a complex were heated in excess alkali and the ammonia liberated was absorbed in 50
cm ³ of dilute sulphuric acid of concentration 0.5M. The excess acid remaining after the absorption
required 20.00cm ³ of 1M sodium hydroxide for complete neutralization. Calculate the value of N in the
formula of the complex.

8(a) Explain what is meant by the term "condensation polymerization?"
(b) Nylon6,10 can be made by reacting 1,6-diaminohexanewith decane doiyl chloride CIOC(CH₂) ₈ COCl.
Write the structural formula of: (i) 1.6-diaminohexane
(ii) Nylon 6,10
(c) State one use of nylon 6,10.

9. Ammnonium carbamate (NH₄CONH₂) decomposes according to the following equation:

More exams? browse: digitaltears.co.ug

For consultations call: +256 776 802709

NH ₄ CO	NH ₂ (s)	\rightleftharpoons	$2NH_3(g) + CO_2(g) +$	ΔH ⁰ (kJmol ⁻¹)	
(a)	Write	the expression	for the equilibrium co	onstant (Kp)	
(b)			tal pressure of the sys	stem is 0.36 atm. at	40°C. Calculate the value of Kp for
(c)	State v (i)		o the Kp calculated in nmonium carbamate		ilibrium mixture.
	(ii)	The temperat	ture is increased to 80	°C.	
			SEC	TION B	
10 Shov	w how t	he following or	rganic conversions car	n be effected. (Indic	rate suitable reagents and
conditi	ons of re	eaction's n eac	h).		3marks each

(a)	(CH₃)₃COH from CH₃COCH₃
(h)	$H_2C_2O_4$ from $CH_2=CH_2$
(5)	1120204 110111 0112-0112
(c)	CH₃NH₂ from CH₃COOH
•••••	

11. Explain the following observations	
(a) Silicon and phosphorus are both covalent substances, but the melting of silicon	n is much higher than
that of phosphorus. (3marks)
(b) Magnesium oxide (MgO) has the same crystalline structure as sodium chlo	oride (NaCl) but the
lattice energy of MgO is more exothermic than that of NaCl.	(3marks)
(c) A concentrated solution of calcium chloride forms a precipitate with sodium	m hydroxide but no
precipitate form with aqueous ammonia.	(3marks)

12.(a) Phenylamine was mixed with concentrated hydrochloric acid and sodium nitrite	
resultant solution Y was then treated with a mixture of phenol in aqueous sodium hydroxidal solution and the solution of the s	droxide. State what
is observed and write the equation of reaction that takes place between:	
(i) Phenylamine and a mixture of concentrated hydrochloric acid and sodium nitrite.	
Observation	(½ mark)
Equation:	(1 ½ marks)
(ii) Y and phenol in aqueous sodium hydroxide	
Observation	(½ mark)
Equation:	(1 ½ marks)

(b) 20 cm ³ of 0.05M aqueous phenylamine was mixed with 50ccm ³ of 1M sodium bromide and							
electrolyzed at current of 0.2A. The fi	rst perman	ent bron	nine color v	was observed	after 49.	93 minu	tes;
then electrolysis was stopped. (Farad	ays consta	nt =96500	OCmol ⁻¹).				
(i) Calculate the moles of bromine that	(3 ½ mar	ks)				
(iii) Hence write equation	n of the rea	ction bet	ween bror	nine and phe	nylamine	. Name t	the
product					(1½ mar	ks)
13. The table below gives data obtain	ed when 1	00cm³ of	propanoio	acid was titr	ated with	1.0M sc	odium
hydroxide solution.							
Volume of 1M NaOH added/ cm ³	0.0	1.0	5.0	9.0	10.5	11.0	15.0
pH of solution	2.94	3.92	4.87	5.82	11.70	12.00	12.70
(a) (i) Plot a graph of pH against	volume of :	1M sodiu	m hydroxi	de	(3marks)	<u> </u>

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

				2
		47		
				4111111111111111111111111111111111111
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<i>A</i>
ng the graph determir	e the pH and	volume 1.0M sodium	hydroxide use	d at equivaler
me the suitable indica	or that can b	e used for the titratio	n	(½ mark)
ir	ng the graph determin	ng the graph determine the pH and	ng the graph determine the pH and volume 1.0M sodium	ng the graph determine the pH and volume 1.0M sodium hydroxide used to the suitable indicator that can be used for the titration

(b) Explain the shape of the graph.

14. The table	below shows formulae o	of oxides of silicon, Alur	ninium and phosphorus. (Indicate						
	the chemical nature, bonding type and the structure adopted by the oxide)								
Oxide	Chemical nati	ure Bonding	Structure						
Oxide SiO ₂	Chemical nati	ure Bonding	Structure						
	Chemical nati	ure Bonding	Structure						
	Chemical nati	ure Bonding	Structure						
	Chemical nati	ure Bonding	Structure						
SiO ₂	Chemical nati	ure Bonding	Structure						
SiO ₂	Chemical nati	ure Bonding	Structure						
SiO ₂	Chemical nati	ure Bonding	Structure						
SiO ₂	Chemical nation	ure Bonding	Structure						
SiO ₂	Chemical nati	ure Bonding	Structure						

 P_4O_{10}

(i)

(c) Write equations of reaction to illustrate the chemical nature of

	Equation								
(ii)	Al ₂ O ₃								
	Equation								
15 (a) Define the term "Phase" (1mark)									
(b) The melting points of various composition of Naphthalene-biphenyl system are given below:									
Mole fraction of	0.800	0.625	0.275	0.125					
Naphthaleine									
Melting points/ ⁰	C 72.6	58.0	56.0	64.5					
	1								

Naphthalene-biphenyl system form a eutectic mixture of composition of 0.47 mole fraction of naphthalene at temperature of 41.0° C

(i) Plot a phase diagram for naphthalene-biphenyl system and label all regions. Melting point pure Naphthalene = 80° C and mpt. Of biphenyl = 71° C) (5marks)

																								11000	-					
												1																		
++++	++++	-	+++	+++	+	+			-		+++	-	1		-		-				111	111	\perp		1					1
-		+++	+++	+++		+++			+	+	+++	+++		+++	-		-	-	+++		+	111	+	-	++	++-	HI		-	
+++		+++		+++	-	1111	-			-		111		+++	-		-	-	+++	+1+	+++	++	+	++	111	1	1		-	
		1111	111		1111	1111	111			-	111	-	111	+++	-		-			-	111	111	111	++		1			-	
		111				1111						111	111	111	+	+	-	-	+++	+	+++	+++	+++	++		+++	-	1111		
						1111				111	111	111	+	111			111				111	111	111	++		111			-	
														111					\Box		+	111	+		\vdash					
												111										111								
														111																
																	4.3									4				
																										4				
		\square																								1.0				
																										121.7				
			-									\perp							-							1.7				
		\square			1-1-1	+++				\perp		\perp	111													177				
++++	+++				++++		+	-	-	+		+++	-			1 3						111	+		1	13		\square	-	\Box
++++	++++		111	+++	1111	1		-	1	111	1	111	111	+++	-	-	-	1.5	35 5		10	14	1		-	19			1	
++++	+	+++	+++	1	+++	1		-		111	111	111	1	1		-	1		17		1			-	- 1		-		-	
			111	1	1111	1111		-		111	1	1	111	1	-	-	1	-	-	1.0	1		1	10	11	1	-		-	
++++	1111	+++	111	+++	++++	1111	+++	111	1	111	111	111	111	+++	111	111	111	++	1	111	111	1	111	+	-	111	1	1	++	1
			111		1111	1111		111		111	111	111	111	111	111	-	111		-	+++	111	1	+++	++	++	+++	-		-	1
					1111					111	111	111	111	111	111	111	111			111	111	111	111	11	-	111			11	
			111		1111	1111				111	111	111	111	111	111	111	111	11	111	+++	111	1	111	++	1	111			11	111
										111	111	111		111	111		111			111	111	111	111	11	-	111	1		11	111
																	111			111				11	1	111				
														TIT																
		\square																												
+	+									\perp																				
+		+++								\perp		111		\perp	\perp	\perp	\perp													
+		+++	-	+++					-	+		1	+	1	-			\perp	\perp	\perp	\perp					\perp	\perp		-	\perp
++++		+++			-	+++		-	-	+	+++		++	+++	\perp	+	+	+	\perp	+++	\perp	111	\square	-			1		-	
++++		-	-	-	++++	-	-	-	-			-	+++	+++	-		-	-	-		-	-		-	-	-	-		-	-
++++	1111	+++	+		++++	1				+	+++	111	+	111	+	+++	+++	+	+++	+++	+++	++	+++	++-	+	+++	-	+	-	++
1111	++++		1111	111	1111	1111	+++	+	+++	+++		+++	111	111	+	+	-	+	+++	+++	+++	1	+++	+++	+	111	-		++-	-
					1111	1111	+++	111	-	+	111	111	+	+++	+++	+++	111	111	111	+		111	+++	+++	-		-		-	
11111		$^{\rm H}$			1111			111		111		111	111	111		+	111		111	+++	+++	111	+++	111	-	111	-		++	-
11111					1111	1111	\mathbf{H}	111	-	+++	111	111	111	111	+	111	+++	-	111	111	111	111	+++	+++	11	111	11		11	
														111	111	111	111		111	111	+++			+	1	+				
														111																
1111																														
++++	1		+++		1111		111	111	+++	111	+++	1	1	111	1	111	111	111	1	111					-	111				
1111	++++	HH	1111			1111	+111	111	111	+	111	111	111	111	+11	+	+++	+	+++	+++	111		111	111	+1	111	-	111	-	-
11111	++++	1111	1111	+	1111	1	+++	+++	+++	111	+++	111	111	111	111	111	1	111	111	+++	111	1	H	111	++	HI	-	111	-	-
++++	1111		1111	111	1111	1111	+++	111	+	+++	+++	111	111	+++	+++	+++	111	+++	+++	+	111		+++	1	++	+++	++	1	+++	-
1111	1111		1111	111	1111	1111	+++	+++	+++	111	111	111	111	111	111	+++	111	+++	+++	+++	111	1	+++	111	++	+++	++		111	++
	1111							111	111	111	111	111	111	111	111	111	111	111	111	111	111	1	111	111	++	+++	11	111	+++	1
					1111			111	111	111	111				111	111	111	111	111	111	111		111	111	++	111		111	111	11
																			111					111	11	111				
1111	1111		111	111	1111																									
++++			+	-				111	111	1			111		\Box										1					
++++	++++	1	1111		1111		1	111	+	1	111	+++	++1	+++	111	-	1	1	1	111	111		111	1	1	H		111	111	-
11111	++++	+++	+++	+++	++++	1111	+++	+	+	+11	111	111	++1	+++	+H	+++	111	+	+++	111	111	111	HI	111	11	H	11	+H	111	+
1111	1111	1111	+++	+++	1111	1	+++	+++	+	+++	+++	+++	+++	+++	+++	+++	111	111	+++	111	111	111	H	111	++	HH	-	+++	111	-
1111	1111		1111	+++	1111	1	+++	+++	111	+++	+++	+++	+++	+++	+	+++	11.	+	+++	+++	111	1	+++	111	++	+++	11	+++	111	-
1111	1111		1111	111	1111	1111		+++	111	111	+++	1	+++	+++	+++	+++	+++	+++	+++	+++	111	111	+++	+++	++	+++	+++	+++	+	++
	1111			111		1111	1111	111	+++	111	+++	+++	111	111	+++	+++	+++	111	+++	+++	111	1	+++	111	++	+++	111	+++	111	-
	1111			111	1111	1111		111	111	111	111	111	+++	111	111	111	111	111	111	111	111	111	1	111	++	111	111	111	111	11
	1111			111	1111		1111	111	111	111	+++	111	+++	111	+++	+++	+++	111	111	+++	111		111	111	-	+++	111	111	111	++
				111				111	111	111	111	111	+++	111	111	+++	111	+++	111	+++		111	111	111	++	111	111	+++	111	11
						1111		111	111	111		111	111	111		111	111	111	111	111	111		111	111	11	111	111	111	111	11
									111	111	111	111	111	111	111	111	111	111	111				111	111	11	111	111	111	111	11
																	\Box						111	111	11					

(11)	Describe what happens when a mixture containing 0.70 mole fraction of biphenyl is								
	Cooled.	(2marks)							

	(c) State one application of eutectic mixture	(½ mark)
16	. 3.70g of an organic compound Q containing carbon, hydrogen and oxygen was explo	nded in eyress
10.	oxygen, 4.50g of water and 6.48dm ³ of gaseous substance were passed through soc	
	solution, 2.0dm ³ of oxygen was found unreacted. (All volumes of gaseous substance	•
	measured at stp).	
(a)	(i) Determine the empirical formula of Q:	(4marks)
••••		
••••		
••••		
••••	(iii) If the vapor density of Q is 37, determine the molecular formula of Q	(1 ½ marks)
	(d) Q reacts with a mixture of sodium hydroxide and iodine solution to give a yellow	v precipitate
	(i) Identify Q	(1mark)

(ii)	Name the reagent(s) used to confirm the functional group in Q.	
17. (a) Explain	what is meant by the term "salt hydrolysis"	(1 ½ marks)
(b) Sodium sulp	ohide undergoes hydrolysis. Write the r hydrolysis of sodium sulphide	
(iii)	expression for hydrolysis constant (K_h), for sodium sulphide.	
	the pH of solution containing 3.9gdm $^{-3}$ of sodium sulphide (Hydroe = 1.25 x 10^{-10} moldm $^{-3}$)	olysis constant at 25°C of

(iv)	State whether the resultant solution in (a)(i) is basic, neutral or acid	(Give a reason for your
	answer)	(1marks)