1.5 Substitution

Due to the Fundamental Theorem of Calculus, we can evaluate integrals by finding antiderivatives which is a huge improvement over using Riemann Sums. For example, $\int x^2 dx = \frac{x^3}{3} + C$ by the reverse power rule.

But what if we had to evaluate $\int 2x(x^2-3)^3 dx$? We could expand $(x^2-3)^3$ but what if the exponent was larger, say 50 or 100? We certainly don't want to expand $(x^2-3)^{50}$. In order to solve more complex integrals, we can use integration by substitution. This technique is where we let some variable, most commonly u, equal to some function in the integrand, u = g(x). We then differentiate u with respect to x and substitute it into the integral and hope that some other factor of g'(x) is also in the integral to cancel out and make the integral easier to compute.

Theorem 1.7: Substitution with indefinite Integrals

Let u = g(x) where g'(x) is continuous over an interval and let f(x) be continuous over the corresponding range of g. Let F(x) be the antiderivative of f. Then,

$$\int f[g(x)]g'(x) \, dx = \int f(u) \, du = F(u) + C = F(g(x)) + C.$$

Now returning to our original problem $\int 2x(x^2-3)^3\,dx$, with Theorem 1.7 in mind. Let $u=x^2-3$. Then, du=2xdx. Thus our integral becomes, $\int 2x(u)^3\,dx=\int u^32xdx=\int u^3du.$ Now using the reverse power rule, $\int u^3\,du=\frac{u^4}{4}+C=\frac{(x^2-3)^4}{4}+C$.

Problem Solving Strategy

- 1. Look carefully at the integrand and select an expression u=g(x) such that $\frac{du}{dx}=g'(x)$ is also in the integrand.
- 2. Substitute u = g(x) and du = g'(x)dx into the integral
- 3. We should now be able to evaluate the integral in terms of u
- 4. Rewrite the result in terms of x

Practice Questions Part 1

- 1. Find $\int x^3 \cos(x^4 + 2) dx$
- 2. Find $\int \frac{x}{\sqrt{1-4x^2}} dx$
- 3. Find $\int \sqrt{1+x^2} \cdot x^5 dx$
- 4. Calculate $\int \tan(x) dx$

Substitution for definite Integrals

Now that we know how to deal with more complicated integrals, what if we wanted to evaluate the area on the interval [a,b]? Such as, $\int_0^4 \sqrt{2x+1} \, x$. Theorem 1.8: Substitution with definite Integrals Let u=g(x) and let g'(x) be continuous over an interval [a,b], and let f be continuous over the range of u=g(x) and let f be the antiderivative of f. Then,

$$\int_{a}^{b} f[g(x)]g'(x) dx = \int_{g(a)}^{g(b)} f(u) du = [F(g(x))]_{a}^{b} = F(g(b)) - F(g(a)).$$

Example: Evaluate $\int_0^4 \sqrt{2x+1} \, dx$.

Solution.

Let
$$u = 2x + 1$$
. Then $du = 2dx$. When $x = 0, u = 1$ and when $x = 4, u = 9$. So, $\int_0^4 \sqrt{2x + 1} \, dx = \frac{1}{2} \int_1^9 u^{\frac{1}{2}} \, du = \frac{1}{2} \left[u^{\frac{3}{2}} \cdot \frac{2}{3} \right]_1^9 = \frac{26}{3}$.

Notice that when evaluating definite integrals via substitution, we don't return to the variable x are inetgraing. We simply evaluate the definite integral in terms of u.

Practice Questions Part 2

- 1. Find $\int \frac{a+bx^2}{\sqrt{3ax+bx^3}} dx$
- 2. Evaluate $\int_0^{\overline{2}} \cos(x) \sin(\sin(x)) dx$
- 3. If f is continuous on \mathbb{R} , prove that,

$$\int_{a}^{b} f(x+c) \, dx = \int_{a+c}^{b+c} f(x) \, dx$$

- 4. If f is continuous and $\int_0^9 f(x) dx = 4$, find $\int_0^3 x f(x^2) dx$
- 5. If f(x) = g(h(x)), when reversing the chain rule, $\frac{d}{dx}[g(h(x))] = g'(h(x))h'(x)$, should you take u = g(x) or u = h(x)?
- 6. If h(a) = h(b) in $\int_a^b g'(h(x))h'(x) dx$, what can you say about the integral?
- 7. Show that the average value of f(x) over [a, b] is the same average value of f(cx) over $\left[\frac{a}{c}, \frac{b}{c}\right]$ for c > 0.
- 8. Find the area under the graph of $f(t) = \frac{t}{(1+t^2)^a}$ between t=0 and t=x where a>0 and $a\neq 1$ is fixed, and evaluate the limit as $x\to\infty$

Solutions for Questions Part 1

- 1. Let $u = x^4 + 2$. Then $du = 4x^3 dx$. $\implies \int x^3 \cos(x^4 + 2) dx = \int x^3 \cos(u) \frac{du}{4x^3} = \frac{1}{4} \int \cos(u) du = \frac{\sin(u)}{4} = \frac{\sin(x^4 + 2)}{4} + C$
- 2. Let $u = 1 4x^2$. Then du = -8xdx. $\implies \int \frac{x}{\sqrt{1 4x^2}} dx = \int \frac{x}{\sqrt{u}} \frac{du}{-8x} = \frac{-1}{8} \int u^{-2} du = \frac{-1}{8} \cdot \frac{-1}{u} = \frac{1}{8(1 4x^2)} + C$
- 3. We can rewrite the integral as follows,

$$\int \sqrt{1+x^2} \cdot x^5 \, dx = \int \sqrt{1+x^2} \cdot x \cdot x^4 \, dx.$$

Now let $u = 1 + x^2$. Then du = 2xdx. Making the substitution, we now have, $\int \sqrt{u} \cdot x \cdot x^4 \frac{du}{2x} = \frac{1}{2} \int \sqrt{u} (u^2 - 2u + 1) du$ since $x^2 = u - 1 \implies x^4 = (u - 1)^2$. $\implies \frac{1}{2} \int \sqrt{u} (u^2 - 2u + 1) du = \frac{1}{2} \int u^{\frac{5}{2}} - 2u^{\frac{3}{2}} + u^{\frac{1}{2}} = \frac{1}{2} \left[\frac{2u^{\frac{7}{2}}}{7} - \frac{4u^{\frac{5}{2}}}{5} + \frac{2u^{\frac{3}{2}}}{3} \right] + C$

4. $\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$. Now let $u = \cos(x)$. Then $du = -\sin(x)dx$. $\implies \int \frac{\sin(x)}{\cos(x)} dx = \int \frac{\sin(x)}{u} \frac{du}{-\sin(x)} = -\int \frac{1}{u} du = -\ln|\cos(x)| + C$

Solutions for Questions Part 2

- 1. Let $u = 3ax + bx^3$. Then $du = 3(a + bx^2)dx$. $\implies \int \frac{a + bx^2}{\sqrt{3ax + bx^3}} dx = \frac{1}{3} \int \frac{1}{\sqrt{u}} du = \frac{1}{3} (2\sqrt{u}) = \frac{2\sqrt{3ax + bx^3}}{3} + C$
- 2. Let $u = \sin(x)$. Then $du = \cos(x)dx$. Observe that when x = 0, u = 0 and when $x = \frac{\pi}{2}, u = 1$. $\implies \int_0^{\frac{\pi}{2}} \cos(x) \sin(\sin(x)) dx = \int_0^1 \cos(x) \sin(u) \frac{du}{\cos(x)} = \int_0^1 \sin(u) du = \sin(1)$
- 3. Proof. Suppose f is continuous on \mathbb{R} .

 We want to show that $\int_a^b f(x+c) \, dx = \int_{a+c}^{b+c} f(x) \, dx$. So let u=x+c.

 Then du=dx. And so our integral becomes, $\int_{a+c}^{b+c} f(u) \, du = \int_{a+c}^{b+c} f(x) \, dx$ as needed.
- 4. Suppose f is continuous and $\int_0^9 f(x) \, dx = 4$. We want to find $\int_0^3 x f(x^2) \, dx$. We will do so via integration by substitution. So let $u = x^2$. Then du = 2x dx and when x = 0, u = 0 and when x = 3, u = 9. Thus we have, $\frac{1}{2} \int_0^9 x f(u) \, \frac{du}{x} = \frac{1}{2} \int_0^9 f(u) \, dx = \frac{1}{2} \cdot 4 = 2$. Therefore, $\int_0^3 x f(x^2) \, dx = 2$.
- 5. We should let u = h(x). Then $du = h'(x)dx \implies dx = \frac{du}{h'(x)}$ and so our integral becomes, $\int g'(h(x))h'(x) dx = \int g'(u) du$. Now by the fundamental theorem of calculus, $\int g'(u) du = g(u) = g(h(x)) = f(x)$.
- 6. Let u=h(x). Then du=h'(x)dx and when x=a, u=h(a) and when x=b, u=h(b) and so we have $\int_a^b g'(h(x))h'(x)\,dx=\int_{h(a)}^{h(b)} g'(u)\,du=\int_{h(a)}^{h(a)} g'(u)\,du$ since h(a)=h(b) which evaluates to 0. Therefore, if $h(a)=h(b), \int_a^b g'(h(x))h'(x)\,dx=0$.

- 7. Proof. Recall that if f is continuous on the closed interval [a,b], then the average value of the function, f_{ave} on [a,b] is given by $f_{ave} = \frac{1}{b-a} \int_a^b f(x) \, dx$. So now we want to show that $\frac{1}{b-a} \int_a^b f(x) \, dx = \frac{1}{\frac{b}{c} \frac{a}{c}} \int_{a/c}^{b/c} f(cx) \, dx$ for c > 0. So working with the right hand side we have $c \cdot \frac{1}{b-a} \int_{a/c}^{b/c} f(cx) \, dx$. Now let u = cx. Then $du = c \, dx$ and our bounds change to u = a to u = b. So now our integral is as follows, $c \cdot \frac{1}{b-a} \cdot \frac{1}{c} \int_a^b f(u) \, du = \frac{1}{b-a} \int_a^b f(u) \, du = \frac{1}{b-a} \int_a^b f(x) \, dx = f_{ave}$ as
- 8. To find the area under the graph of $f(t) = \frac{t}{(1+t^2)^a}$ between t = 0 and t = x, we need to evaluate the following integral, $\int_0^x \frac{t}{(1+t^2)^a} dt \text{ So let } u = 1+t^2. \text{ Then } du = 2t dt \text{ and our bounds}$ will change from u = 1 to $u = 1+x^2$. Thus our integral becomes, $\int_1^{1+x^2} \frac{t}{u^a} \frac{du}{2t} = \frac{1}{2} \int_1^{1+x^2} u^{-a} du. \text{ Since } a \neq -1, \frac{1}{2} \left[\frac{u^{-a+1}}{-a+1} \right]_1^{1+x^2} = \frac{1}{2} \left[\frac{(1+x^2)^{-a+1}}{-a+1} \frac{1}{-a+1} \right] = \frac{1}{2} \left[\frac{(1+x^2)^{-(a-1)}}{-a+1} + \frac{1}{a-1} \right].$ Now we want to take $\frac{1}{2} \lim_{x \to \infty} \left[\frac{(1+x^2)^{-(a-1)}}{-a+1} + \frac{1}{a-1} \right]$. Using limit laws we have, $\frac{1}{2} \left(\lim_{x \to \infty} \left[\frac{1}{(-a+1)(1+x^2)^{a-1}} \right] + \lim_{x \to \infty} \left[\frac{1}{a-1} \right] \right) = \frac{1}{2} \left(\lim_{x \to \infty} \left[\frac{1}{(-a+1)(1+x^2)^{a-1}} \right] + \frac{1}{a-1} \right) = \frac{1}{2(a-1)}$

Thus, $\lim_{x\to\infty} \int_0^x \frac{t}{(1+t^2)^a} = \frac{1}{2(a-1)}$ as required.