§1.3 Vector Equations

A column vector (vector) is a matrix with only one column.

The set of all vectors with two entries is denoted by \mathbb{R}^2 .

Vectors in \mathbb{R}^2 are ordered pairs of real numbers.

The geometric point (a, b) is equivalent to the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$.

 \mathbb{R}^2 is viewed as the set of all points in the plane.

Vectors in \mathbb{R}^3 are 3×1 column matrices with three entries.

Their geometric representations are points in 3- space, sometimes with arrows from the origin for clarity.

Let n be a positive integer. The \mathbb{R}^n represents all possible $n \times 1$ column matrices.

Example:
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

The zero vector is one whose entries are all zero and is denoted by $\mathbf{0}$.

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are vectors in \mathbb{R}^n with scalars c_1, c_2, \dots, c_p , then the vector \mathbf{y} defined by $\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$ is called a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_p$ with weights c_1, \dots, c_p .

A vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$. Furthermore, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_n$ if and only if there exists a solution to the linear system corresponding to the above vector equation/augmented matrix.

If $\mathbf{v}_1, ..., \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is denoted by span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ and is called the subset of \mathbb{R}^n spanned (generated)

by $\mathbf{v}_1, \dots, \mathbf{v}_p$. That is, span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p$ with scalars c_1, \dots, c_p .

Asking whether a vector \mathbf{b} is in span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is equivalent to asking whether the vector equation $x_1\mathbf{v}_1 + \dots + x_p\mathbf{v}_p = \mathbf{b}$ has a solution or, similarly, asking whether the linear system with augmented matrix $[\mathbf{v}_1 \quad \dots \quad \mathbf{v}_p \quad \mathbf{b}]$ has a solution.

Note that span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ contains every scalar multiple of \mathbf{v}_1 , for example, since $c\mathbf{v}_1 = c\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_p$. In particular, the zero vector must be in span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

Let \mathbf{v} be a nonzero vector in \mathbb{R}^3 . Then span $\{\mathbf{v}\}$ is the set of all scalar multiples of \mathbf{v} , which is the set of points on the line in \mathbb{R}^3 through \mathbf{v} and $\mathbf{0}$.

If **u** and **v** are nonzero vectors in \mathbb{R}^3 , with **v** not a multiple of **u**, then span{**u**, **v**} is the plane in \mathbb{R}^3 that contains **u**, **v**, and **0**. In particular, span{**u**, **v**} contains the line in \mathbb{R}^3 through **u** and **0** and the line through **v** and **0**.