How Science Works

And What Fails the Method

Julian Avila

March 16, 2025

Universidad Distrital Francisco José de Caldas

Outline

What is the Scientific Method?

Core Principles of the Scientific Method

Important Facts

Conclusions

Bibliography

What is the Scientific Method?

Scientific Method: A Common Misconception

Science is not a linear process.

The common Scientific method is an oversimplification.

Figure 1: The myth of the step-by-step "science recipe". [1]

How Does Science Actually Work?

Science operates through an iterative, interconnected process:

- Observation Collecting empirical data from experiments or nature.
- Hypothesis Testing Formulating and systematically evaluating explanations.
- Peer Feedback Refining theories through collaboration and critique.
- Application Translating scientific knowledge into real-world innovations.

Figure 2: Science as a dynamic, self-correcting process. [1]

The Core of Science: Testing Ideas

Empirical testing is the foundation of science.

Through experimentation and analysis, hypotheses are refined, rejected, or strengthened.

Standard Model of Elementary Particles three generations of matter interactions / force carriers (bosons) mass = 2.16 MeV/c1 ≈125.2 GeV/c² С t spin aluon hiaas charm top up **UARKS** d S b down strange bottom photon =0.511 MeV/c2 ≈1.77693 GeV/c2 =91.188 GeV/c2 е Z boson electron muon tau electron muon tau W boson neutrino neutrino

Figure 3: The Standard Model: A theory refined through decades of testing. [2]

Core Principles of the Scientific Method

Observation: Identifying Patterns and Gaps

Processes:

- Reviewing Scientific Literature
- Analysing Known
 Phenomena
- Examining Existing Data
- Identifying Unsolved Problems

- Formulation of New Hypotheses
- Refinement of Existing Questions

Hypothesis Testing: Validating Scientific Claims

Processes:

- Designing and Conducting Experiments
- Collecting and Analyzing Data
- Comparing Results with Predictions

- Discovery of New Patterns or Anomalies
- Theory Development or Refinement
- Practical Applications in Technology or Industry

Peer Feedback: Refining Scientific Knowledge

Processes:

- Independent Replication of Experiments
- Peer Review and Critical Evaluation
- Scientific Discussions and Debates
- Integration into Theoretical Frameworks

- Identification of Errors or Biases
- Generation of New Hypotheses
- Expansion of Scientific Applications

Applications: Science in Action

Processes:

- Development of New Technologies
- Implementation in Medicine, Engineering, and Society
- Identification of Emerging Challenges

- New Observations for Future Research
- Inspiration for Novel
 Experimental Approaches

Important Facts

Theories Evolve

Theories are not set in stone—new evidence refines and improves them over time.

Figure 4: Quantum Field Theory, one of the most successful theories. [3]

Principle of Parsimony

The simplest explanation is preferable.

Example: Renormalization in Quantum Field Theory

Instead of introducing an infinite number of parameters, renormalization allows QFT to explain physical phenomena using only a few experimentally determined constants.

The success of the **Standard Model** lies in its parsimony: a limited set of symmetries and fundamental interactions describes a vast array of experimental results.

Peer Review is not Absolute

While it helps ensure better research, peer review has limitations— it can become a barrier to knowledge or create a false sense of quality.

Example: Reinvention of Calculus in 1994

A peer-reviewed medical paper unknowingly reinvented the **trapezoidal rule** for numerical integration, illustrating how errors can persist in published research. [4]

Example: Reinvention of Calculus

Figure 1—Total area under the curve is the sum of individual areas of triangles a, c, e, and g and rectangles b, d, f, and h.

Figure 5: Taken from paper. [4]

Conclusions

Conclusions

Science is a dynamic process.

- The scientific method is not a rigid sequence but a network of interconnected processes.
- Theories evolve as new evidence emerges—certainty in science is always provisional.
- Parsimony guides scientific progress by favouring explanations with fewer assumptions.
- Peer review is useful but not infallible; critical thinking remains essential.
- Applications of scientific knowledge drive technological and societal progress.

Science advances by continuously refining ideas through observation, testing, and feedback.

Bibliography

References

- [1] Understanding Science. *Understanding Science 101: How science works.* Understanding Science, 2007. URL: https://undsci.berkeley.edu/understanding-science-101/how-science-works/.
- [2] Cush. Standard Model of Elementary Particles. Wikimedia Commons. Sept. 17, 2019. URL: https://commons.wikimedia.org/wiki/File: Standard_Model_of_Elementary_Particles.svg.

Bibliography ii

[3] Joel Holdsworth. *Feynmann Diagram Gluon Radiation*.

```
Mar. 9, 2007. URL: https://commons.wikimedia.org/wiki/File: Feynmann_Diagram_Gluon_Radiation.svg.
```

[4] Mary M Tai. "A Mathematical Model for the Determination of Total Area Under Glucose Tolerance and Other Metabolic Curves". In: Diabetes Care 17.2 (Feb. 1994), pp. 152–154. ISSN: 1935-5548. DOI:

10.2337/diacare.17.2.152.