Riccardo Toffanin

Energy Engineer - Smart Grids and Sustainable Energy

Summary

- → Dynamic energy engineer and project manager with over six years of experience in applied research within national and European-funded smart grid and energy transition projects
- → Proficient in programming languages, such as Python and MATLAB, for energy system modeling and simulation, with expertise in formulating and solving convex optimization problems (linear, quadratic, and mixed-integer linear programming) and implementing advanced control algorithms such as Model Predictive Control (MPC)
- → Familiar with pandapower for **power system modeling** and simulation
- → Hands-on expertise in data science and machine learning for analyzing high-resolution smart meter data
- → Proven track record in designing innovative smart grid solutions (dynamic grid tariff)
- → Experience in technical reporting, peer-reviewed publishing, and student supervision
- → Personally motivated by the challenge of advancing smart grids through real-world research

Professional Experience

Project Manager - Energy Systems

Azienda Elettrica di Massagno (AEM) - DSO

OCT 2022 - PRESENT, MASSAGNO (CH)

- → Led and participated in **national and Horizon Europe research projects** in collaboration with academic and industrial partners on energy communities, energy and flexibility markets, demand-side flexibility and smart grids
- → Contributed to proposal writing for grant applications, supporting the acquisition of research funding
- → Developed a dynamic grid tariff offered to end-users in 2025 awarded the 2025 Swiss Watt d'Or prize for energy innovation
- → Developed demand-side management algorithms in Python for battery energy storage systems (BESS) to improve grid stability and congestion management
- → Developed a Python-based hydropower plant simulation tool to support concession renewal planning
- → Participated in **field trials** (V2X Suisse), implementing **Model Predictive Control (MPC) in Python** for peak shaving using EV bidirectional charging

Research Assistant

University of Applied Science and Arts of Southern Switzerland (SUPSI)

MAY 2019 - SEP 2022, LUGANO (CH)

- → Modeled district heating networks and building HVAC systems in C++ and Python
- → Created a Python tool for pre-feasibility analysis of district heating systems using GIS data (GitHub)
- → Conducted CFD simulations in Ansys Fluent for solar fuel production in collaboration with Synhelion SA
- → Supervised **BSc student projects**, including laboratory testing

Research Intern

Institut de Recerca en Energia de Catalunya (IREC)

FEB 2018 - OCT 2018, BARCELONA (ES)

→ Developed a Model Predictive Control (MPC) system for optimizing residential heat pump performance and integrated dynamic building models in TRNSYS with MATLAB for co-simulation as part of the master's thesis titled Energy Flexibility Strategies for Residential Buildings

Research Intern

Concordia University

JUL 2017 - SEP 2017, MONTREAL (CA)

→ Modeled and analyzed the thermal and electrical performance of Building-Integrated Photovoltaic/Thermal (BIPV/T) systems using MATLAB under varying climatic and operating conditions

Education

Double Master's Degree in Environomical Pathways for Sustainable Energy Systems (SELECT)

Universitat Politècnica de Catalunya (UPC) Royal Institute of Technology (KTH) SEP 2017 - OCT 2018, BARCELONA (ES) AUG 2016 - JUN 2017, STOCKHOLM (SE)

Bachelor's Degree in Energy Engineering

Politecnico di Milano (PoliMi)

OCT 2013 - JUL 2016, MILAN (IT)

Skills

- → Languages: Italian (native), English (C1 IELTS 2016), French (A2), Spanish (A2)
- → Programming: Advanced in Python (pandas, numpy, scikit-learn, cvxpy, pyomo, pulp, pandapower), MATLAB, C++
- → **Optimization and control:** convex optimization, Model Predictive Control (MPC), demand response algorithms
- → Simulation: TRNSYS, Ansys Fluent, PVSyst, GaBi, custom simulation tools in Python/MATLAB
- → Data science and AI: ingestion, pre-processing, visualization (matplotlib, seaborn), statistical analysis and machine learning (regression, classification, clustering, time series forecasting)
- → Smart grids: distributed energy resources (DER) integration, dynamic grid tariffs, energy communities, energy and flexibility markets, V2G/V2X
- → Tools: Git, Jupyter, MS Office, Notion, Slack

Awards

- → Swiss Federal Office of Energy (SFOE) award 2025 Watt d'Or Watt d'Or 2025 Spezialpreis der Jury
- → EIT InnoEnergy Scholarship for MSc SELECT (2016-2018)

Publications

- → Rocca, R., Leonori, S., Aznar, G. F., Toffanin, R., & Luengo-Baranguan, L. (2025). Optimal scheduling of district heat pumps conceived for implementation in Energy Management Systems to participate in demand response. *Energy Conversion and Management: X*, 27, 101074. https://doi.org/10.1016/J.ECMX.2025.101074
- → Rocca, R., Elorza-Uriarte, L., Zubia, I., Farrace, D., Toffanin, R., & Rivas-Ascaso, D. M. (2024).

 Techno-economic analysis of electrical flexibility in combustion-based district heating systems: A Swiss case study. *International Journal of Electrical Power & Energy Systems*, 157, 109869.

 https://doi.org/10.1016/J.IJEPES.2024.109869
- → Zavattoni, S. A., Good, P., Geissbühler, L., Rutz, D., Toffanin, R., Montorfano, D., Ambrosetti, G., & Barbato, M. C. (2024). Performance Evaluation of the Pressurized Synhelion Absorbing Gas Receiver. SolarPACES Conference Proceedings, 1, 97–110. https://doi.org/10.52825/solarpaces.v1i.898
- → Toffanin, R., Caputo, P., Belliardi, M., & Curti, V. (2022). Low and Ultra-Low Temperature District Heating Equipped by Heat Pumps—An Analysis of the Best Operative Conditions for a Swiss Case Study. *Energies*, 15(9), 3344. https://doi.org/10.3390/en15093344
- → Toffanin, R., Curti, V., & Barbato, M. C. (2021). Impact of Legionella regulation on a 4th generation district heating substation energy use and cost: the case of a Swiss single-family household. *Energy*, 228, 120473. https://doi.org/10.1016/j.energy.2021.120473
- → Toffanin, R., Curti, V., & Barbato, M. C. (2020). Impact of Legionella regulation on a 4th generation district heating substation energy use and cost: the case of a Swiss single-family household. *Conference Proceedings of 6th International Conference On Smart Energy Systems*, Aalborg, Denmark
- → Toffanin, R., Ge, H., & Athienitis, A. (2019). Integration of Building Integrated Photovoltaic/Thermal (BIPV/T) System with Heat Recovery Ventilators for Improved Performance Under Extreme Cold Climates. *Cold Climate HVAC 2018*, 97–110. https://doi.org/10.1007/978-3-030-00662-4_9
- → Toffanin, R., Péan, T., Ortiz, J., & Salom, J. (2019). Development and Implementation of a Reversible Variable Speed Heat Pump Model for Model Predictive Control Strategies. *Building Simulation 2019*, *16*, 1866–1873. https://doi.org/10.26868/25222708.2019.210611

Hobbies

→ Playing electric and acoustic guitar, stand up paddle (SUP), reading (a bit of everything)