CS578 – INTERACTIVE AND TRANSPARENT MACHINE LEARNING

TOPIC: BAYESIAN NETWORKS

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- We would like to represent a joint distribution P over $X = \{X_1, X_2, ..., X_n\}$
- Why is such a P useful?
- The naïve representation ⇒ Specify a value for each possible combination
- o If all X_i are binary, how many numbers are needed to represent P with 1000 variables?
- o How many atoms in the observable universe?

WHY IS 2N BAD?

Computational challenges

- Answering queries requires manipulating exponential number of entries
- Storing exponential number of entries is almost always impossible

• Cognitive challenges

- How can we wrap our minds around about a specific assignment and its corresponding, extremely small, probability?
- How can an expert provide those numbers or even verify they are correct?

• Statistical challenges

• We often would like to learn probabilities from data; estimation requires repetition. How can we have a dataset where an exponential number of events are present and repeated multiple times?

WE WOULD LIKE TO HAVE A REPRESENTATION THAT IS

Compact

• Easy to store, manipulate, understand, and estimate

Intuitive

Easy to understand, verify, and construct

Modular

Easy to add and remove variables

Declarative

Separates representation and reasoning

COMPACTNESS

- A joint distribution P over $X = \{X_1, X_2, ..., X_n\}$ requires exponential number of numbers
- Reduce the number of parameters through independence
 - 1. Marginal independence
 - 2. Conditional independence

MARGINAL INDEPENDENCE

- Represent a joint distribution P over $X = \{X_1, X_2, ..., X_n\}$, where all X_i are binary
- o How many independent parameters?
- Assume for $\forall i \neq j, X_i \perp X_j$
- $P(X) = P(X_1)P(X_2)...P(X_n)$
- o Now, how many independent parameters?

CONDITIONAL PROBABILITIES

• Two variables, Intelligence (I) and SAT score (S)

• Intelligence: low (i⁰), high (i¹)

• SAT score: low (s⁰), high (s¹)

I	S	P(I, S)
i^0	s^{0}	0.665
i^0	s^1	0.035
i^1	s^0	0.06
i^1	s^1	0.24

What's the number of independent parameters needed?

CONDITIONAL PROBABILITIES

 \circ P(I, S) = P(I)P(S | I)

P(I)

\mathbf{i}^0	\mathbf{i}^1
0.7	0.3

P(S | I)

I	\mathbf{s}^{0}	s^1
i^0	0.95	0.05
\mathbf{i}^1	0.2	0.8

What's the number of independent parameters needed?

A NEW VARIABLE

- Let's add the variable grade (G), with three possible values, A (g^1), B (g^2), and C (g^3).
- \circ Can we assume that G is independent of I or S in real life?
- A more reasonable assumption is to assume that I determines S and G; that is, S and G are conditionally independent
 - This is not totally true either, but then, in the real-world, we cannot really assume anything is independent of anything
 - Butterfly effect?

CONDITIONAL INDEPENDENCE

- P(I, S, G) = P(S, G | I)P(I) = P(S | I)P(G | I)P(I)
- P(I, S, G) = P(I)P(S | I) P(G | S, I) = P(I)P(S | I) P(G | I)
- We already have P(I) and P(S | I). We need to specify P(G | I)

P(G | I)

Ι	\mathbf{g}^1	\mathbf{g}^2	${f g}^3$
\mathbf{i}^0	0.2	0.34	0.46
i^1	0.74	0.17	0.09

What's the number of independent parameters needed for P(I, S, G) if we use the full joint table?

What if we use the factorization P(I, S, G) = P(I)P(S|I) P(G|I)?

CONDITIONAL INDEPENDENCIES

- Compactness
 - Fewer parameters to specify
- Intuition
 - Easier to specify
- Modularity
 - Adding a new variable does not cause us to change all the entries in the joint table

BAYESIAN NETWORK REPRESENTATION

12

Naïve Bayes

13

Naïve Bayes

- o How do we write the joint $P(C, X_1, X_2, ..., X_n)$?
- o How many independent parameters are needed if C and X_i are all binary?
- Naïve Bayes is used for **classification**: given attributes of an object (X_i) , classify it into one of pre-given categories (C) (i.e., $P(C \mid X_1, ..., X_n)$).
- Read Box 3.A in the textbook for more details

BAYESIAN NETWORKS

- A Bayesian Network is a directed acyclic graph whose nodes are random variables and edges represent, intuitively, the direct influence of one node on another
- Naïve Bayes is a special Bayesian network
- Bayesian networks is
 - A data structure that provides the skeleton for representing a joint distribution compactly in a factorized way
 - A compact representation for a set of conditional independence assumptions about a distribution

THE STUDENT EXAMPLE

- So far we have I, S, G
- We add two more random variables
 - Student's grade also depends on the difficulty (D) of the class: Val(D) = {easy(d⁰), hard(d¹)}
 - Student's professor writes a recommendation letter (L), where Val(L)={weak (l⁰), strong(l¹)}
 - Professor writes the letter based only the grade and it is a stochastic function of the grade

THE STUDENT NETWORK

17

THE JOINT?

- What is the meaning of P(i¹, d⁰, g², s¹, l⁰)?
- Probability that
 - The student is intelligent
 - The class is easy
 - The smart student gets a B in an easy class
 - The smart students get a high score in SAT
 - The student who got a B in the class gets a weak letter
 - = $P(i^1) P(d^0) P(g^2 | i^1, d^0) P(s^1 | i^1) P(l^0 | g^2)$

REASONING PATTERNS

- Causal reasoning
 - Causes to effects
- Evidential reasoning
 - Effects to causes
- Intercausal reasoning
 - Explaining away

CAUSAL REASONING

- Causes to effects
- o Don't know anything. Probability of a strong letter
 - $P(l^1) = 0.502$
- Learn that the student is not smart
 - $P(l^1 | i^0) = 0.389$
- Additionally, learn the class is easy
 - $P(l^1 | i^0, d^0) = 0.513$

EVIDENTIAL REASONING

- Effects to causes
- o Don't know anything. Probability of a student being smart
 - $P(s^1) = 0.3$
- Learn that the student got a C in a class
 - $P(s^1 | g^3) = 0.079$
- o Or, learn that the student received a weak letter
 - $P(s^1 | l^0) = 0.14$
- Learn both
 - $P(s^1 | g^3, l^0) = 0.079$

INTERCAUSAL REASONING

- Different causes of the same effect interact
- o Don't know anything. Probability of a student being smart
 - $P(i^1) = 0.3$
- Learn that the student got a B in a class
 - $P(i^1 | g^2) = 0.175$
- Learn that the class was difficult
 - $P(i^1 | g^2, d^1) = 0.34$
- Student's B is *explained away* with the other cause

BAYESIAN NETWORK STRUCTURE

- A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables $X_1, ..., X_n$. Let $Pa(X_i)$ denote the parents of X_i , and $ND(X_i)$ denote the variables that are not descendants of X_i . Then G encodes the following set of conditional independence assumptions:
 - For each variable X_i : $X_i \perp ND(X_i) \mid Pa(X_i)$
- These independencies are called the *local independencies*
- Clarification. A node itself and its parents are part of nondescendants according the definition of ND. A clearer statement would be, in my opinion:
 - $X_i \perp ND(X_i) \setminus \{X_i \cup Pa(X_i)\} \mid Pa(X_i)$

LOCAL INDEPENDENCIES EXAMPLE

BAYESIAN NETWORK FACTORIZATION

$$P(X_1,...,X_n) = \prod_i P(X_i | Pa(X_i))$$

Why is this factorization useful?

How can you prove this factorization holds?

FACTORIZATION EXAMPLE

HUGIN LITE

- Download Hugin Lite
 - https://www.hugin.com/index.php/hugin-lite/
- Download the student network from the class website
- Try a few causal, evidential, and intercausal queries
- Learn network structure and perform queries on a few publicly available datasets