Name: _____

Student No.:

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions $y_1, y_2 : (0,2) \to \mathbb{R}$ satisfying $y_1(1) = y_2(1)$?

 $y' = \sqrt{t} |y| \qquad y'' = yy' \qquad y' = t \ln y \qquad y' = y \ln t \qquad yy' = 0$

2. The ODE $3x dx - (y - 3x^2/y) dy$ has the integrating factor y

 $|y^2|$

3. For the solution y(t) of the IVP $y' = y^4 - 1$, y(2021) = 0 the limit $\lim_{t \to +\infty} y(t)$ equals

-1 0

+∞

4. For the solution y(t) of the IVP $y' = e^{t-2y}$, y(0) = 0 the value y(1) is contained in

 $[0,\frac{1}{2}]$

5. For the solution $y: [0, \infty) \to \mathbb{R}$ of the IVP (t+1)(y'+1) = 2y, y(0) = 0 the value y(1) is equal to

|-2|

-10

6. The power series $z+z^2+z^4+z^8+z^{16}+\cdots$ has radius of convergence $0 \qquad \qquad \boxed{\frac{1}{2}} \qquad \qquad \boxed{1} \qquad \qquad \boxed{2}$

 ∞

7. The smallest integer a such that $f_a(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^a}$ is differentiable on \mathbb{R} is equal to

1

5

8. For which choice of $f_n(x)$ does the function sequence (f_n) converge uniformly on \mathbb{R} ?

9. If y(t) solves $y' = 1 + y/t - y^2/t^2$ then z = 1/(y(t) - t) solves

 $z' = z/t + 1/t^2$

10. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Picard-Lindelöf iterates for the IVP y' = 2y + 2, y(0) = 2 has $\phi_2(t)$ equal to

 $2t + 6t^2$ $2t + 5t^2$ $2 + 6t + 6t^2$ $2t + 4t^2$ $1 + 4t + 4t^2$

11. $y'' - 3y' + 2y = 2 + te^t$ has a particle $c_0 + c_1 e^t + c_2 t e^t$ $c_0 t + c_1 t e^t + c_2 t^2 e^t$	cular solution $y_p(t)$ $c_0 + c_1 t e^t + c_2 t^2$ $c_0 t + c_1 t^2 e^t$		
12. Maximal solutions of $y' = y^3 + 1$ the form $a,b \in \mathbb{R}$.	_		
13. For $\mathbf{A} = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$ and $t \in \mathbb{R}$, the	the matrix $e^{\mathbf{A}t}$ is equal		
14. The matrix norm of $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ (su	bordinate to the Euc	elidean length o	on \mathbb{R}^2) is equal to
01	$\sqrt{2}$	2	
15. A contraction $T: M \to M, M \subseteq \mathbb{R}^2$, infinite connected	has a fixed point if I	M is closed	bounded
Time allowed: 50 min	CLOSED BOOK		Good luck!