REMARKS

Claims 1-3, 7-9, 11 and 13-29 are pending in the application. Claim 1 has been amended. Claims 4-6, 10 and 12 have been canceled. Claims 7 and 13-29 have been withdrawn from consideration. Claims 1-3, 8, 9 and 11 have been rejected.

Claims 1-3, 8, 9 and 11 have been rejected under 35 U.S.C. §112, first paragraph, for the reasons indicated on Page 2 and 3 of the Office Action. Specifically, the Examiner states that the copy of <u>Hawley's Condensed Chemical Dictionary</u>, Eleventh Edition 1987, challenging the definitions of "epoxide" and "epoxy resin" were not received, and further that The Handbook of Epoxy Resins on pages I-1 and I-2 clearly differentiates between monoepoxide compounds and an epoxy resin defined "as any molecule containing more than one α -epoxy group...capable of being converted to a useful thermoset form." Applicants respectfully traverse the rejection.

Applicants again attach for the Examiner's consideration a copy of the definitions of the terms "epoxide", "epoxy resin" and "resin" as they appear in Hawley's Condensed Chemical Dictionary, Twelfth Edition, 1993. Neither the definition of "epoxide" nor the definition of "epoxy resin" state that an epoxy resin must contain at least two epoxy groups.

Applicants also include herewith for the Examiner's consideration a copy of an excerpt from the <u>Concise Encylopedia of Chemical Technology</u>, Kirk-Othmer, 4th Ed. 1999, in which an epoxy resin is described as being "characterized by the presence of a three-dimensional ring known as the epoxy, epoxide, oxirane, or ethoxyline group" (Emphasis added). There is no stated requirement for more than one epoxy group.

Further, the definition of epoxy resin to which the Examiner refers in <u>The Handbook of Epoxy Resins</u> specifically states that "For the purpose of this book, an epoxy resin is defined as any molecule containing more than one α-epoxy group…" (Emphasis added). Applicants submit that this limitation indicates that such definition is not a generally accepted definition in the art, and

that one skilled in the art would recognize that the term epoxy resin as recited in claims 1, 9 and 11 could include the epoxides octadecyleneoxide, epichlorohydrin, styrene oxide, vinylcyclohexene oxide and glycidyl methacrylate. Applicants respectfully request reconsideration and withdrawal of the rejection of claims 1-3, 8-9 and 11 under 35 U.S.C. §112, first paragraph.

Claims 1, 2, 4-6 and 8-12 have been rejected under 35 U.S.C. §103(a) as being unpatentable over US 4,500,660 to Minamisawa et al. (hereinafter "Minamisawa") and Japanese Patent No. 64- or 01-060679 (hereinafter "JP '679"). The Examiner states that Minamisawa sets forth nitrile rubbers having a Mooney viscosity of between 40 and 110 at 100°C such as a carboxyl-modified nitrile rubber wherein the nitrile rubber includes a copolymer of butadiene and acrylonitrile, and that it would have been obvious to formulate the composition of Miniamisawa and JP '679 with a carboxyl-terminated butadiene-acrylonitrile copolymer having the Mooney viscosity disclosed in Minamisawa, thereby indicating a liquid state, in order to facilitate processability. Applicants respectfully traverse the rejection.

Claim 1 has been amended to recite that the reactive liquid polymer (b) comprising a carboxyl-terminated butadiene-acrylonitrile copolymer is liquid at ambient temperature. Both Minamisawa and JP '679 disclose a composition comprising Nipol 1072, which is a <u>solid</u> acrylonitrile copolymer containing carboxy groups. Additionally, Nipol 1042 and Nipol 1043 are also <u>solids</u>, as evidenced by the Zeon Safety Data Sheet, a copy of which is attached for the Examiner's convenience. The Mooney viscosities disclosed in Minamisawa are measured at 100°C (212°F). Applicants' reactive liquid polymer, on the other hand, is liquid at ambient temperature. The Examiner's attention in this regard is directed to the specification at Page 17, lines 9-11, where Applicants state that the curable composition is "combined by blending at ambient or slightly elevated temperatures." One skilled in the art reviewing the teachings of Minamisawa would be guided to heating the copolymer in order to obtain a liquid polymer having the Mooney viscosity disclosed.

Because neither Minimasawa nor JP '679 does not disclose, teach or suggest the curable composition claimed by Applicants, Applicants respectfully request the withdrawal of the rejection of claims 1-3, 8-9 and 11 under 35 U.S.C. §103(a).

Conclusion

In view of the foregoing remarks and amendment, Applicants respectfully request reconsideration and a timely issuance of a notice of allowance for claims 1-3, 8-9 and 11. In the alternative, entry of the amendment is requested for purposes of an appeal

In the event any fees are due in connection with the filing of this document, the Commissioner is authorized to charge those fees to our Deposit Account No. 18-0988 under Attorney Docket No. BFGRP0313USB. In the event an extension of time is needed to make the filing of this paper timely and no separate petition is attached, please consider this a petition for the requisite extension and charge the fee to our Deposit Account No. 18-0988.

In the event there are issues the Examiner would like to discuss with the Applicants' attorney, he is invited to contact the undersigned by phone.

Respectfully submitted,

RENNER, OTTO, BOJSSELLE & SKLAR, LLP

Reg. No. 26,725

1621 Euclid Avenue 19th Floor Cleveland, Ohio 44115-2191 (216) 621-1113

R:/MTyrpak/GREP/BFGRP0313USB Response to Final

Safety Data Sheet 91/155/EEC (gb)

NBR-Nipol-Standard-Standard

Zeon Chemicals Europe Ltd. GB- Sully, CF64 5YU

Revised: 12.09.2002

Use: Rubber products

Company: Zeon Chemicals Europe Ltd.

South Glamorgan GB- Sully, CF64 5YU Phone: +44-1446-725 400

Homepage: http://www.zeon-europe.de

eMail:

Fax: +44-1446-747 988 Emergency phone: +44-1446-725 400

「Tangaran and the state of the Substance **EINECS** CAS Range [%] Symbol / R-phr.

Acrylonitrile-Butadiene Polymer

in the little and the part of the state of t

No particular hazards known.

Control of the contro

General information

None. Inhalation Not applicable.

Skin contact

Consult a doctor if skin irritation persists.

Eye contact Not applicable. ingestion Not applicable. Advice to doctor Treat symptomatically

05 Fire fighting measures

Suitable extinguishing media

Water spray jet. Dry powder. Foam.

Extinguishing media that must not be used

Full water jet, Carbon dioxide.

Special exposure hazards arising from the substance or

preparation itself or combustion products Risk of formation of toxic pyrolysis products . Special protective equipment for firefighters

Use self-contained breathing apparatus.

Additional information

Fire residues and contaminated firefighting water must be disposed of

in accordance with the local regulations.

Part of Participant Control of the C

Personal precautions

Ensure adequate ventiliation.

Environmental precautions

9003-18-3 ~100

None.

Methods for cleaning up/taking up

Take up mechanically. Dispose of absorbed material in accordance

with the regulations.

The state of the s

Advice on safe handling

Use only in well-ventilated areas,

Advice on protection against fire and explosion

No special measures necessary.

Requirements for storage rooms and vessels

No special measures required. Advice on storage compatibility Do not store together with oxidizing agents. Further information on storage conditions

Keep container in a well-ventilated place. Store in a dry place, Protect

2 A DS Exposure controls personal protection

Additional advice on system design

Ingredients with occupational exposure limits to be monitored

Not sopposite

Respiratory protection

Not applicable.

Hand protection Protective gloves. Eye protection Not applicable.

Skin protection Not applicable.

General protective measures Avoid contact with eyes.

Hygiene measures

Wash hands before breaks and after work. Use barrier skin cream.

PETTER TO Rhysical and chamical properties as a Physical and chamical properties as a Physical and Chamical properties.

Solid.

Chemiebūro D.G. Schröder Tel. (0049) 0941-566-398, Fax. (0049) 0941-566-994 www.chsmiebuero.de/ infa@chemiebuero.de

AOX-advice

No dangerous components.

Product is insoluble in water

Contains compounds of 76/464/EC

General information

Safety Data Sheet 91/155/EEC (gb) NBR-Nipol-Standard-Standard

Zeon Chemicals Europe Ltd. GB- Sully, CF64 5YU

Revised: 12.09.2002 Physical Complete Special Considerations of the Constitution of th Colour: Yellow. Odour: Characteristic. Disposal / Product pH-value: Not applicable. For recycling, consult manufacturer. Disposal in an incineration plant in Boiling point [°C]: accordance with the regulations of the local authorities. Flash point [°C]: Not applicable. 070299 Flammability: Disposal / Contaminated packaging Uncontaminated packaging may be taken for recycling. Packaging that Lower explosion limit cannot be cleaned should be disposed of as for product. Upper explosion limit: Transport formadobly in the state of the sta Combustible properties: The last the state of the last Vapour pressure [hPa]:(20°C) ADR: not classified as Density [g/ml]: Dangerous Goods Solubility in water: Insoluble. Dangerous Goods Partition coefficient: n-octanol / Declaration: Labellina Viscosity: Not applicable. Factor, ADR 1.1.3.6.3: Relative vapour density determined Hazard-no: In air Label: Melting point [°C]: Autoignition temperature: ADR-Conditions for limited quantities(LQ): -A Special of the Stability and Reactivity Dangerous Goods not classified as Dangerous Goods Declaration: Labelling If product is heated above decomposition temperature toxic vapours may be released. Label: Hazardous decomposition products Inner packing, max.: No hazardous decomposition products known. Total gross mass of a package: TATOXICO OPICA Information Williams CENTRE STAZ Classification according to MOG. Acute oral toxicity LD50 Rat: • IMDG-Code: not classified as Dangerous Goods Acute dermal toxicity LD50 Rabbit: -Dangerous Goods Acute Inhalational toxicity LC50 Rat: -Declaration: Irritant effect on eye Labelling Sensitization / Validation Label: Chronic toxicity / Validation Mutagenicity / validation IMDG-Conditions for limited quantities(LQ): Reproduction toxicity / Validation Dangerous Goods not classified as Dangerous Goods Carcinogenicity / Validation Declaration: Labelling Experiences made in practice Label: None. Inner packing, max.: General remarks Total gross mass of a No toxicological data are available. package: Ecological information? History of the 142 Classification actording to the ATAL France of Blodegradable IATA-DGR: not classified as Dangerous Goods Not applicable. Dangerous Goods Fish toxicity Declaration: Behaviour in sewage plant Labelling Not applicable. Label:

Not applicable.

Hazard symbols

Zecon 104 godgen 715 4 page 2013

Labelling

EC directives

The product does not require a hazard warning label in accordance with

Chemisbūro D.G.Schröder Tel. (0049) 0941-566-398, Fex. (0049) 0941-566-994 www.chemlebuero.de/Info@chemiebuero.de

Safety Data Sheet 91/155/EEC (gb) NBR-Nipol-Standard-Standard

Zeon Chemicals Europe Ltd. GB- Sully, CF64 5YU

Revised: 12.09.2002

Special labelling for cartain preparations (Figure 1)

Not applicable.

New York Company National regulations with the company of the comp

Not applicable.

Regulatory Information

- * 91/155 (2001/58) * 67/548 (2001/59) * 1999/45 (2001/60)
- * 91/689 (2001/118)
- * 89/542

- *89542

 * ADR (23.07,01)

 * IMDG-Code (30.Amdt.)

 * IATA-DGR (2002)

 * Classification according to VoF

 * Water hazard class

Modified position:

Hawley's

Condensed Chemical

Dictionary

TWELFTH EDITION

Revised by

Richard J. Lewis, Sr.

RESIST

1002

RENNER OTTO

was soon followed by a petroleum-derived product called coumarone-indene, which did indeed have the properties of a resin. The first synthetic clastomer was polychloroprene (1931), originated by Nieuwland and later called neoprene. Since then many new types of synthetic polymers have been synthesized, perhaps the most sophisticated of which are nylon and its congeners (polyamides, by Carothers) and the inorganic silicone group (Kipping). Other important types are alkyds, acrylics, aminoplasts, polyvinyl halides, polyester, epoxies, and polyolefins.

In addition to their many applications in plastics, textiles and paints, special types of synthetic resins are useful as ion-exchange media.

See "Curnar." See also plastic, paint, fiber, film, elastomer.

Note: Because the term "resin" is so broadly used as to be almost meaningless, it would be desirable to restrict its application to natural organo-soluble, hydrocarbon-based products derived from trees and shrubs. But in view of the tendency of inappropriate terminology to "gel" irreversibly, it is a losing battle to attempt to replace "synthetic resin" with the more precise "synthetic polymer."

See also note under gum, natural.

resist. A material that will prevent the fixation of dye on a fiber, thus making color designs and pattern prints possible. The resist may act mechanically, as a wax, resin, or gel which prevents absorption of the dye, or its accompanying mordant. Citric acid, oxalic acid, and various alkalies are among the more common resists of the chemical type.

resistor composition. A specially treated semiconducting metal powder compounded with glass binders and temporary organic carriers. Can be applied to glass or ceramic surfaces by stenciling, spraying, brushing, or dipping; fixing range 704-760C. Compositions can be blended with members of the same series to produce intermediate resistance values. Fired resistors have good reproducibility, low temperature and voltage coefficients, and stability to abrasion, moisture, and relatively high (125C) ambient temperature.

Use: To produce fired-on resistor components for electronic circuits.

"Resistox" [SCM]. TM for stabilized grades of copper powder assaying at greater than 99% copper with a density 8.9 and apparent density range of 2.0-3.5 g/cm³. Marketed in several grades of various particle sizes.

Use: Fabrication of porous bearings, sintered ferrous machine parts, catalysts, magnesium chloride cements, metal friction surfaces, electric brushes, electrical contacts, metallic paints. resite. See C-stage resin.

resitol. See B-stage resin.

"Resmetal" [Borden]. TM for a resin-metal composition that when catalyzed converts to metal-like solid. Recommended for mold making, patching, forming, and general repair of metal surfaces and objects.

resol. See A-stage resin.

resolution. See resolving power.

resolving power. The extent to which a lens can distinguish small particles and minute distances, i.e., fine structure. The human eye can resolve objects of 1/250th inch (100 microns) in any dimension. The compound microscope has a resolving power of 0.5 micron; an electron microscope can resolve fine structure as small as 5Å units, i.e., in the molecular range. Two factors determine resolving power; the wavelength of the radiation utilized and the focal depth of the lens. The resolving power: of a microscope is much more important than its ability to magnify, for no magnification, however large, can add detail to an image that was not first discerned by the lens system.

See also optical microscope; electron microscope.

resonance. (1) In chemistry, resonance (or mesomerism) is a mathematical concept based on
quantum mechanical considerations (i.e., the
wave functions of electrons); it is used to describe or express the true chemical structure of
certain compounds that cannot be accurately
represented by any one valence-bond structure.
It was originally applied to aromatic compounds
such as benzene, for which there are many possible approximate structures, none of which is
completely satisfactory.

See benzene.

The resonance concept indicates that the actual molecular structure lies somewhere between these various approximations, but is not capable of objective representation. This idea can be applied to any molecule, organic or inorganic, in which an electron pair bond is present. The term "resonance hybrid" denotes a molecule that has the property. Such molecules do not vibrate back and forth between two or more structures, nor are they isotopes or mixtures; the resonance phenomenon is rather an idealized expression of an actual molecule that cannot be accurately pictured by any graphic device.

(2) In the terminology of spectroscopy, resonance is the condition in which the energy state of the incident radiation is identical with that of the absorbing atoms, molecules, or other chemical entities. Resonance is applied in various

1001

RESIN, SYNTHETIC

iclear reactor uranium-235 n from each as formed in the accepted he spent fuel on is effected d phosphate, pitation. The ium are sent .. The fission stored. An-≔ss, has been ium; here the um isotopes, cause its plud not be used. ever, suitable adiation hazat require use mote-control ie radioactive problem that ed. There are s operational il in Europe.

technique of and typosensitized panay be coated oad potential communicad and surface and unusual

See octane

ment of rosin

209. An al-

жн_з -осн_з кн_з

ightly yellowwly on expopidly in soluy soluble in benzene; mp Derivation: From Rauwolfia serpentina. Grade: USP.

Hazard: Carcinogen in animals, potential cancer risk in humans.

RENNER OTTO

Use: Antihypertensive agent, tranquilizer.

"Resigne" [Ozark-Mahoning]. TM for a series of croxy curing agents.

residual oil. A liquid or semiliquid product resulting from the distillation of petroleum and containing largely asphaltic hydrocarbons. Also known as asphaltum oil, liquid asphalt, black oil, petroleum tailings, and residuum. Combustible.

Use: Roofing compounds, hot-melt adhesives, friction tape, sealants, heating oil for large buildings, factories, etc.

See also fuel oil.

Note: Gasoline of 94 octane can be produced from residual ofl in a high-temperature catalytic process, thus increasing the yield of gasoline from a barrel of crude by 33% when full-scale production is achieved.

"Resimene" [Monsanto]. TM for inclamine and ureaformaldehyde resins. Supplied in organic liquid solutions. The melamine is also available in water-alcohol solution and soluble spray-dry powders.

Use: Paint, varnish, lacquer for automobiles, machinery, appliances, construction; electronics, missiles; chemicals, pulp and paper.

resia. A semisolid or solid complex amorphous mix of organic compounds.

Properties: It has no definite melting point and no tendency to crystallize.

Derivation: Resins can be of animal, vegetable, or synthetic origin.

resinamine. C₃₅H₄₂N₂O₉. Alkaloid from certain species of Ranwolfia.

Properties: White or pale buff to cream-colored, odorless, crystalline powder; darkens slowly on exposure to light, more rapidly when in solution; partially soluble in organic solvents; insoluble in water; mp 238C (in vacuo).

Use: Medicine (antihypertensive).

resinate. A salt of the resin acids found in rosin.
They are mixtures rather than pure compounds.
Use: See soap (2).

"Resin C" [Allied-Signal]. TM for a neutral synthetic coal-tar resin of high styrene content. Properties: Light color, mp 115-123C, d 1.05, mineral oil cloud point 130-150C.

Use: To impart alkali- and grease-resistance to

floor tile.

resin, ioa-exchange. See ion-exchange resin.

resin, liquid. An organic polymeric liquid that, when converted to its final state for use, becomes solid (ASTM), e.g., linseed oil, raw or heat-bodied (partially polymerized). See also drying oil; resinoid.

resin, natural. (1) Vegetable-derived, amorphous mixture of carboxylic acids, essential oils, and terpenes occurring as exudations on the bark of many varieties of trees and shrubs. They are combustible, electrically nonconductive, hard and glassy with conchoidal fracture when cold, and soft and sticky below the glass transition point. Most are soluble in alcohols, ethers and carbon disulfide, and insoluble in water. The best known of these are rosin and balsam, obtained from coniferous trees; these have a high acid content. Of more remote origin are such resins as kauri, congo, dammar, mastic, sandrac, and copal. Their use in varnishes, adhesives and printing inks is still considerable, though diminishing in favor of synthetic products. (2) Miscellaneous types. Shellac, obtained from the secretion of an Indian insect, is still in general use as a transparent coating. Amber is a hard, polymerized resin that occurs as a fossil. Ester gum is a modified rosin. Amorphous sulfur is considered an inorganic natural resin. Liq-uid resins, sometimes called resinoids, are represented by linseed and similar drying oils.

See also gum, natural (note); resin, synthetic

resinoid. Any thermosetting synthetic resin, either in its initial temporarily fusible state or its final infusible state (ASTM). Heat-bodied linseed oil, partially condensed phenol-formaldehyde and the like, are also considered resinoids.

resinol. A coal-tar distillation fraction containing phenols. It is the fraction soluble in benzene but insoluble in light petroleum, obtained by solvent extraction of low temperature tars or similar materials. Resinols are very sensitive to heat and oxidation.

resin, synthetic. A man-made high polymer resulting from a chemical reaction between two (or more) substances, usually with heat or a catalyst. This definition includes synthetic rubbers and silicones (clastomers), but excludes modified, water-soluble polymers (often called resins). A distinction should be made between a synthetic resin and a plastic, the former is the polymer itself, whereas the latter is the polymer plus such additives as filters, colorant, plasticizers, etc.

The first truly synthetic resin was developed by Backeland in 1911 (phenol-formaldehyde). This

Ø 015

oxide.

20/20C), bp ingestion, and

ıH. 20C), bp (deuble in water.

e by the reacnovolak resin olak). These which offers tures than the 4 and are espe-

n based on the One type is I bisphenol A. ol may be used A. Molecules ructures.

positions, have re readily with

olyolefins oxihave more epde as well as in ared with anhyratures. Many made commercan be used to

tht cross-linked aracterized by rosive-chemical operties. part type which mponent liquid pelletized type lable under the

icured state. oușehold appli-

ances and gas storage vessels; adhesive for composites and for metals, glass, and ceramics; casting metal-forming tools and dies; encapsulation of electrical parts; filament-wound pipe and pressure vessels; floor surfacing and wall panels; neutron-shielding materials; cements and mortars; non-skid road surfacing; rigid foams; oil wells (to solidify sandy formations); matrix for stained-glass windows; low-temperature mor-

RENNER OTTO

EPR. Abbreviation for ethylene propylene rubber, also for electron paramagnetic resonance.

epsilon acid. (1-naphthylamine-3,8-disulfonic acid). C₁₀H₂(NH)₂(SO₃H)₂.

Properties: White, crystalline scales; soluble in hot water.

Derivation: Naphthalene-1.5- and 1,6-sulfonic acids are nitrated and reduced, giving 1-naphthylamine-3,8- and 4,8-disulfonic acids. Separation is effected by crystallizing out the acid sodium salts of 1-naphthylamine-3,8-disulfonic acid.

Use: Azo-dye intermediate.

Epsom salts. See magnesium sulfate.

EPT. Abbreviation for ethylene-propylene terpolymer.

"Eptac No.1" [Du Pont]. TM for zinc dimethyldithiocarbamate, an ultra-accelerator for rub-

"Eptam" [Stauffer]. TM for a selective herbicide containing ethyl-N,N-di-n-propylthiolcarbamate.

EPTC. (S-ethyl di-N, N-propylthiocarbamate). CAS: 759-94-4. C₂H₂SC(O)N(C₃H₇)₂. Available forms: Liquid and granular formula-Use: A pre-emergence herbicide.

eq. Abbreviation for gram equivalent weight, i.e., the equivalent weight in grams. Recommended as an international unit.

Equanil [Wyeth-Ayerst]. Proprietary name for meprobamate. Use: Sedative.

equation of state. The mathematical formula which expresses the relationships between pressure, volume, and temperature of a substance in any state of aggregation.

equilibrium. (1) Chemical equilibrium is a condition in which a reaction and its opposite or reverse reaction occur at the same rate, resulting in a constant concentration of reactants; for example, ammonia synthesis is at equilibrium when ammonia molecules form and decomposes at equal velocities $(N_2 + 3H_2 \leftrightarrow 2NH_3)$.

(2) Physical equilibrium is exhibited when two or more phases of a system are changing at the same rate so that the net change in the system is zero. An example is the liquid-to-vapor-vaporto-liquid interchange in an enclosed system, which reaches equilibrium when the number of molecules leaving the liquid is equal to the number entering it.

equilibrium constant. A number that relates the concentrations of starting materials and products of a reversible chemical reaction to one another. For example, for a chemical reaction represented by the equation $aAB + bCD \leftrightarrow cAD +$ dBC the equilibrium constant would be K =[(AD)c (BC)d]/[(AB)a (CD)b] where a, b, c, and d are the numbers of molecules of AB, CD, AD, and BC that occur in the balanced equation and (AD), (BC), (AB), and (CD) are the molecular concentrations of AD, BC, AB, and CD in any mixture that is at equilibrium. At any one temperature, K is usually at least approximately constant, regardless of the relative quantities of the several substances, so that when K is known it is often possible to predict the concentrations of the products when those of the starting materials are known. The constant changes markedly with temperature. The constant can often be calculated from the relations of thermodynamics if the free energy for the chemical reaction is known, or by measuring all concentrations in one or more carefully conducted experiments.

equilibrium diagram: (constitutional diagram). (1) A simplified boiling-point diagram, showing for a liquid mixture the composition of the vapor in equilibrium with the liquid. (2) A chart showing the relation between a solution and the solids that may be crystallized from it. (3) A diagram showing the limits of composition and temperature in which the various phases or constituents of an alloy are stable.

equipartition, law of. Every particle, heavy or light, gaseous or liquid, and independent of its chemical nature or form, always possesses the same mean energy of translation at a given temperature.

equipotential energy. The energy existing at a constant potential throughout a system.

equivalent electrons. Electrons of equal azi-muthal quantum numbers and principal quantum numbers. They have identical orbital properties but may have a difference in sign of their orbital moments.

EPN

468

RENNER OTTO

second crystal. This behavior is characteristic of 1,2-epoxybatane. See 1,2-butylene oxide. some types of high polymers.

EPN. (o-ethyl-o,p-nitrophenyl phenylphosphor-

othioate). CAS: 2104-64-5. C₆H₅P(C₂H₅O)(S)OC₆H₄NO₂. Properties: Light yellow crystals, mp 36C, d 1.5978 (30C), insoluble in water, soluble in most organic solvents, decomposes in alkaline solu-

Grade: Wettable powders and dusts.

Hazard: A cholinesterase inhibitor, absorbed by skin, use may be restricted. TLV: 0.5 mg/m3 of

Use: Cotton insect pest control, acaricide.

"Epolene" [Tennessee Eastman]. TM for a series of low-molecular-weight polyethylene resins. Available in both emulsifiable and nonemulsifiable types.

Eponol" Resins. TM for high-molecular-weight linear copolymers of bisphenol A and "Eponol" Resins. epichlorohydrin; produce outstanding surface coatings by solvent evaporation alone.

"Epon" Resins [Shell]. TM for a series of condensation products of epichlorohydrin and bisphenol-A having excellent adhesion, strength, chemical resistance, and electrical properties when formulated into protective coatings, adhesives, and structural plastics.

"Epotuf" [Reichhold]. TM for epoxy resins, cpoxy hardeners, and epoxy esters used as coating vehicles.

epoxidation. Reaction in which olefinic unsaturation is converted to a cyclic threemembered other by active oxygen agents.

epoxide. An organic compound containing a reactive group resulting from the union of an oxygen atom with two other atoms (usually carbon) that are joined in some other way as indicated:

This group, commonly called "epoxy," characterizes the epoxy resins. Epichlorohydrin and ethylene oxide arc well-known epoxides. The compounds are also being used in certain types of cellulose derivatives and fluorocarbons.

epoxidized linseed oil. See "Drapex" [Witco].

"Epoxybond" [Atlas]. TM for an epoxy adhesive putty in stick form.

3,4-cpoxycyclohexane carbonitrile.

 $O(C_6H_4)CN$. Properties: Liquid, d 1.0929 (20/20C), bp

244.5C, fp -33C, soluble in water.

Hazard: Toxic by skin absorption, ingestion, and inhalation.

Use: Intermediate, stabilizer.

epoxyethane. See ethylene oxide.

2,3-epoxy-2-ethylhexapol.

C,H,CHOC(C2H3)CH2OH.

Properties: Liquid, d 0.9517 (20/20C), bp (decomposes), fp -65C, slightly soluble in water-Combustible.

Hazard: Skin irritant.

Use: Stabilizer, intermediate.

epony novolak. Epoxy resin made by the reaction of epichlorohydrin with a novolak resin (phenol-formaldehyde; see novolak). These have a repeating epoxide structure which offers better resistance to high temperatures than the epichlorohydrin-bisphenol A type, and are especially useful as adhesives.

2,3-epoxy-1-propanol. See glycidol.

epoxy resin. A thermosetting resin based on the reactivity of the epoxide group. One type is made from epichlorohydrin and bisphenol A. Aliphatic polyols such as glycerol may be used instead of the aromatic bisphenol A. Molecules of this type have glycidyl ether structures,

-OCH2CHOCH2, in the terminal positions, have many hydroxyl groups, and cure readily with

Another type is made from polyolefins oxi-dized with peracetic acid. These have more epoxide groups, within the molecule as well as in terminal positions, and can be cured with anhydrides, but require high temperatures. Many modifications of both types are made commercially. Halogenated bisphenols can be used to add flame-retardant properties. See also epoxy novolak.

The reactive epoxies form a tight cross-linked polymer network and are characterized by toughness, good adhesion, corrosive-chemical

resistance, and good dielectric properties. Most epoxy resins are the two-part type which harden when blended. A one-component liquid type for filament winding and a pelletized type for injection molding are available under the TM "Amox."

Hazard: Strong skin writant in uncured state. Use: Surface coatings, as on household appli-

KIRK-OTHMER

CONCISE ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY

4th EDITION

A WILEY-INTERSCIENCE PUBLICATION

John Wiley & Sons, Inc.

RISRANE • SINGAPORE • TORONTO

758 EPOXY RESINS

usually treated with an iv-administered pressor amine, including isoproterenal (beta agonist selective) NE, E, DA, and dobutamine. E is also the primary treatment for anaphylactic shock. E is commonly included in local anasthetic solutions to promate hemostasis, and by vasoconstriction to reduce absorption resulting in prolongation of anesthesis. Several related sympathomimatic vasoconstrictor amines (eg, phenylephrine hydrochloride) are used for useal cangestion. Because of their relaxation of brunchial amooth muscle, E and selected beta-2 agonists are used to antagonize the brouchospasm observed in asthma. NE is used for treating hypotension during anesthesia when tissue perfusion is good.

Alpha-adrenergic blocking agents such as prazosin (alpha-1 selective), which causes vasodilation in both arteries and veins without usually causing reflex tachycardia, are used to treat mild to moderate hypertension. Nonselective beta-adrenergic antagonists such as propranolol are used in the treatment of hypertension (usually with a diuretic), as prophylaxis in angina pectoris, and for prophylaxis of supraventricular and ventricular arrhythmias and other selected disorders. Selective beta-1 adrenergic antagonists such as metoprolol are used mainly for the treatment of hypertension. In addition, clonidine (an alpha-2 agonist) and methyldopa (metabolized to alphamethylnorepinephrine in brain) act centrally on vasomotor centers of the brain to reduce sympathetic outflow to the peripheral vessels and thus are used, but to a lesser extent, in the treatment of hypertension.

In Parkinson's disease, treatment with the amine precursor DOPA (with the decarboxylase inhibitor carbidopa), has been shown to ameliorate the symptoms and signs of the condition and prolong life.

There are several other disorders of the central nervous system in which catecholamines have been shown to be involved and drugs that affect the actions of catecholamines have a therapeutic action. Dopamine receptor antagonists that encompass several chemical classes such as phenothiazines (eg. chlorpromazine, butyrophenones (eg. haloperidol, and thioxanthene derivatives (eg. chlorprothixene, are prescribed for the management of both acute and chronic psychoses and in nonpsychotic individuals who are delusional or excited (eg. manis). In the treatment of depression, most antidepressants are believed to improve mood by increasing catecholamine and/or serotonin concentrations.

Besides behavior and blood pressure, catecholamine neurons also have important roles in other brain functions. Regulation of neuroep-docrine function is a well-known action of catecholamines; for example, DA agonists reduce serum prolactin concentration, especially in conditions of hypersecretion. Ingestive behavior can be modulated by brain catecholamines, and some appetite-suppressing drugs are believed to act via catecholaminergic influences. Catecholamines also participate in regulation of body temperature.

Toxicity

Untoward effects of both E and NE (usually to a lesser degree) are anxiety, headache, cerebral hemorrhage (from vasopressor effects), cardiac arrhythmias, especially in presence of digitalis and certain anesthetic agents, and pulmonary edema as a result of pulmonary hypertension. The minimum subcutaneous lethal dose of E is about 4 mg, but recoveries have occurred after accidental overdosage with 16 mg subcutaneously and 30 mg intravenously, followed by immediate supportive treatment.

THOMAS A. PUCSLEY
Warner-Lambert/Parke-Davis

- U. S. von Euler in H. Blaschko and E. Muscholl, eds., Cotecholomines, Handbuch der Experimentellen Pharmakologia, Vol. 33, Springer-Verlag, Berlin, 1972, p. 186.
- J. R. Cooper, P. E. Bloum, and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, 1991, p. 224.
- H. Winkker in U. Trendelenberg and N. Weiner, eds., Handbook of Experimental Pharmacology, Vol 90/I, Springer-Verlag, Berlin, 1988, p. 49.
- D. Bylund and co-workers, Pharmacological Rev. 46, 121 (1994).

EPOXY RESINS

Epoxy resins are characterized by the presence of a three-membering known as the epoxy, epoxide, oxirane, or ethoxyline grown commercial epoxy resins contain aliphatic, cycloaliphatic, or around backbones. The capability of the epoxy ring to react with a variety substrates imparts versatility to the resins. Treatment with engagents gives insoluble and intractable thermoset polymers. In other constituents may be included in the compositions: fillers, solvent diluents, plasticizers, accelerators, curatives, and tougheners.

Resin Properties

Epichlorohydrin and Bisphenol A-Derived Resins. The most wish used epoxy resins are diglycidyl ethers of hisphenol A (1) derived remines the bisphenol A and epichlorohydrin.

The outstanding performance characteristics of the resins are on veyed by the bisphenol A moiety (toughness, rigidity, and elevettemperature performance), the ether linkages (chemical resistants) and the hydroxyl and epoxy groups (adhesive properties and formulation latitude, or reactivity with a wide variety of chemical contractions) (see also PHENOLIC RESINS).

The bisphenol A-derived epoxy resins are most frequently with anhydrides, aliphatic amines, or polyamides.

Diluents are commonly used to reduce the viscosity of epair systems to sid handling, improve ease of application, and to facilitate higher filler loading to reduce formulation cost. This, however, a achieved at the expense of other properties. To achieve a balance properties, careful selection of diluent is needed.

Specialty Epoxy Resins. In addition to hisphenol, other pullissuch as aliphatic glycols and novolaks are used to produce specific resins. Epoxy resins may also include compounds based on aliphatic cycloaliphatic, aromatic, and heterocyclic backbones. Glycidylahof active hydrogen-containing structures with epichlorohydrin and epoxidation of olefins with peracetic acid remain the important of the procedures for introducing the oxirane group into various precursors of epoxy resins.

Epoxy Cresol-Novolak Resins (ECN). The cresol-novolak epoxy cresins (2) are multifunctional, solid polymers characterized by light ionic and hydrolyzable chlorine impurities, high chemical resistant and good thermal performance. ECN resins are widely used as the components in high performance electronic and structural moldical compounds, high temperature adhesives, castings and laminating systems, tooling applications, and powder coatings.

The epoxy creeol-novolak resins (2) are prepared by givedylar of o-cresol-formaldehyde condensates in the same manner swiths nol-novolak resins.

Bisphenol F Resin. Bisphenol F epoxy resin is of the same of structure as the epoxy phenol novolaks. Bisphenol F is 2,2 met bisphenol.

Owing to relatively low viscosity, these resins offer advantage 100% solids (solvent-free) systems. Higher filler levels are possible of the low viscosity. Faster bubble release is also significantly of higher epoxy content and functionality of highernol F epoxy.

TOU

ety.

oth:

oidely!

i from

۵,

3 COD-

valed:

arire)

JE TUDE

uring

cured:

COURT

litate

er E

පෙළ ග්

olyok

cialty

hatic'

lation

a mar

: com-

criona

epoxy

y lová

ADCA

, hase

lding

uating.

latical

, phe

can provide improved chemical resistance compared to conventional

epodes...

'Bisphenol F epoxy resins are used in high-solids-high-build systems such as tank and pipe linings, industrial floors, road and bridge dack toppings, structural adhesives, grouts, coatings, and electrical variables. Bisphenol F epoxy resins are manufactured in Europe and variables.

Epoxy Phenol-Novolak Resins. Epoxy phenol-novolak resins are represented by the general idealized structure (3) whereby multifunctional products are formed containing a phenolic hydroxyl group per phenyl ring in random para-para', ortho-para', and ortho-ortho' combinations.

Subsequent epoxidation with epichlorohydrin yields the highly functional epoxy novolak. The product can range from a high viscosity liquid of n = 0.2 to a solid of n value greater than 3.

The thermal stability of epoxy phenol—novolak resins is useful in adhesives, structural and electrical laminates, coatings, castings, and encapsulations for elevated temperature service. Filament-wound pipe and storage tanks, liners for pumps and other chemical process equipment, and corrosion-resistant coatings are typical applications using the chemically resistant properties of epoxy novolak resins.

Curing agents that give the optimum in elevated temperature properties for epoxy novelaks are those with good high temperature performance such as aromatic amines, catalytic curing agents, phenolics, and some anhydrides.

Polynuclear Phenol-Glycidyl Ether-Derived Resins. This is one of the first commercially available polyfunctional products. Its polyfunctionality permits upgrading of thermal stability, chemical resistance, and electrical and mechanical properties of hisphenol A—epoxy systems. It is used in molding compounds and adhesives.

Cycloaliphatic Epoxy Resins. This family of aliphatic, low viscosity spary resins consists of two principal varieties, cycloolefins epoxidized with peraestic acid and diglycidyl esters of cyclic dicarboxylic acids.

The nonaromatic nature of these materials provides for improved uv-resistance and arc-track resistance compared to conventional epoxies. The best properties are generally achieved with anhydride and phenolic curing agents.

Recommended applications include transformers, insulators, bushings, wire and cable coatings, generators, motors and switchgear, additives for adhesives, vinyl stabilization, and as viscosity depressants.

Aromatic and Heterocyclic Glycidyl Amine Resins. Among the specialty epoxy resins containing an aromatic amine backbone, the following are commercially significant.

Tetraplycidylmethylenedianiline-Derived Resins. Resins from aromatic elycidyl amines can be formulated into hot-melt or solution-linder systems with various reinforcements, eg. glass, graphite, boron, or aramid. They are utilized for graphite-reinforced composites in agrospace and leisure products, structural adhesives, laminates, tooling and casting applications, and structures such as wings and fuelages.

Triglycidyl p-Aminophenol-Derived Resins. Resins derived from triglycidyl p-aminophenol, originally developed by Union Carbide Corp., are currently marketed by CIBA-GEIGY. Synthesis is conducted by reaction of epichlorohydrin with the phenolic and amino groups followed by dehydrohalogenation. The product is a viscous liquid (1.5-5 Pa·s (15-50 P) at 25°C) which is considerably more reactive toward amines than standard bisphenol A-derived resins.

light to increase heat resistance and cure speed of bisphenol A trains, it has utility in such diverse applications as adheaves, tooling compounds, and laminating systems.

Triazine-Based Resin. Triglycidyl isocyanurate is a solid resin that provides superior thermal, electrical, and mechanical properties and is recommended for laminates, insulating varnishes, coatings, and adhesives. Widely used as a curing agent for special polyester-based weatherable powder coatings, it is also used in electronic applications owing to its retention of optical transparency after aging at temperatures up to 150°C and minimal smoke evolution on thermal decomposition (see Emeranoric).

The triazine ring-cuntaining product 1,3,5-triglycidyl isocyanurate is synthesized by glycidylation of cyanuric acid with epichlorohydrin.

Resin Synthesis and Manufacture

RENNER OTTO

Epichlorohydrin and Bisphenol A-Derived Resins. Liquid epoxy regins may be synthesized by a two-step reaction of an excess of epichlorohydrin to bisphenol A in the presence of an alkaline catalyst. The reaction consists initially in the formation of the dichlorohydrin of bisphenol A and further reaction by dehydrohalogenation of the intermediate product with a stoichiometric quantity of alkali.

In recent years, production of liquid resins of higher purity, ie, higher monomer content and fewer side-reactions, has been accomplished. This is in response to more stringent product quality requirements.

Aliphatic Chycidyl Ethers. Aliphatic epoxy resins have been synthesized by glycidylation of diffunctional or polyfunctional polyols such as a 1,4-butanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), polypropylene glycols, glycerol, trimethylolpropane, and pentaerythritol.

The epaxidation is generally conducted in two steps: (1) the polyul is added to epichlorohydrin in the presence of a Lewis acid catalyst (stannic chloride, boron trifluoride) to produce the chlorohydrin intermediate, and (2) the intermediate is dehydrohalogenated with sodium hydroxide to yield the aliphatic glycidyl ether. Solid epoxy resins are prepared by the Taffy or Advancement processes.

Taffy Process. Bisphenol A reacts directly with epichlorohydrin in the presence of a stoichiometric amount of caustic. The molecular weight of the product is governed by the ratio of epichlorohydrin-bisphenol A. In practice, the taffy process is generally employed for only medium molecular-weight resins (n = 1-4).

Advancement Process. In the advancement process, sometimes referred to as the fusion method, liquid epoxy resin (crude diglycidyl ether of bisphenol A) is chain-extended with bisphenol A in the presence of a catalyst to yield higher polymerized products. The advancement process is more widely used in commercial practice.

In recent years, proprietary catalysts for advancement have been incorporated in precatalyzed liquid resins. Thus only the addition of bisphenol A is needed to produce solid epoxy resins. Use of the catalysts is claimed to provide reeins free from branching which can occur in conventional fusion processes. Additionally, use of the catalysts results in rapid chain-extension reactions because of the high amount of heat generated in the processing.

The preparation of flame-retardant epoxy resins is accompanied by inclusion of tetrahromohisphenol A in the advancement process (see FLAME RETARDANTS). Products containing as 20 wt % Br are extensively employed in the printed circuit board industry.

Liquid resine containing bromine (ca 49 wt %) can also be prepared directly from tetrabromobisphenol A and epichlorohydrin and are used for critical applications where a high dagree of flome retardancy is required.

Curing Reactions

A variety of reagents has been described for converting the liquid and solid epoxy resins to the cured state, which is necessary for the development of the inherent properties of the resins. Liquid epoxy resins contain mainly epoxy groups and solid resins are composed of both epoxy and hydroxyl curing sites. The curing agents or hardeners are categorized as either catalytic or corrective and the functional groups

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
б отнек:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.