Colles - Semaine 9

Exercice 1

On pose $I = \int_0^1 \frac{x \ln(x)}{1-x} dx$, et pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^1 \frac{x^n \ln(x)}{1 - x} dx$$
 et $J_n = \int_0^1 x^n \ln(x) dx$

- 1. Montrer que l'intégrale I est convergente.
- 2. Montrer que, pour tout $n \in \mathbb{N}$, l'intégrale I_n est convergente.
- 3. Montrer que, pour tout $x \in]0,1[,-1 \leqslant \frac{x \ln(x)}{1-x} \leqslant 0$. En déduire que pour tout $n \in \mathbb{N}^*, -\frac{1}{n} \leqslant I_n \leqslant 0$, puis la limite de I_n lorsque n tend vers $+\infty$.
- 4. Montrer que l'intégrale J_n est convergente pour tout $n \in \mathbb{N}$, et calculer sa valeur.
- 5. Calculer $\sum_{k=1}^{n} J_k$, pour tout $n \in \mathbb{N}^*$.

En déduire que : $\forall n \in \mathbb{N}^*, \ I = -\sum_{k=2}^{n+1} \frac{1}{k^2} + I_{n+1}.$

Exercice 2

On pose, quand l'intégrale converge, $f(x) = \int_{1}^{+\infty} \frac{1}{1 + t + t^{x+1}} dt$.

- 1. Montrer que le domaine de définition de f est $]0, +\infty[$.
- 2. Montrer que f est décroissante sur $]0, +\infty[$.
- 3. a) Pour x > 0, justifier l'existence de $g(x) = \int_1^{+\infty} \frac{1}{t(1+t^x)} dt$.
 - **b)** Pour x > 0 et $t \ge 1$, simplifier $\frac{1}{t} \frac{t^{x-1}}{1 + t^x}$, puis calculer g(x).
 - c) En déduire que, pour tout $x > 0 : 0 \le f(x) \le \frac{\ln(2)}{x}$. Déterminer la limite de f en $+\infty$.
- **4. a)** Montrer que : $\forall x > 0, \ 0 \le \frac{\ln(2)}{x} f(x) \le \frac{1}{2x+1}$.
 - \boldsymbol{b}) En déduire la limite et un équivalent de f(x) quand x tend vers 0.

Exercice 3

On considère la fonction H définie sur \mathbb{R}_+ par $H(x) = \int_x^{+\infty} \frac{e^{-t}}{1+t} dt$.

- 1. Montrer que H est bien définie sur \mathbb{R}_+ .
- 2. Montrer que H est de classe \mathcal{C}^1 sur \mathbb{R}_+ , et calculer H'(x), pour tout $x \geqslant 0$.
- 3. Montrer que $\lim_{x \to +\infty} x H(x) = 0$.
- 4. Montrer que l'intégrale $I = \int_0^{+\infty} H(t) dt$ est convergente et calculer sa valeur en fonction de H(0).

1

Exercice 4

Pour x > 0, on pose $f(x) = \int_0^1 \frac{t^x}{1+t} dt$.

- 1. Vérifier que pour x > 0, $f(x) + f(x+1) = \frac{1}{x+1}$.
- 2. Donner le sens de variation de f.
- 3. En utilisant la question 1:
 - a) Trouver la limite de f lorsque x tend vers $+\infty$.
 - b) Donner un équivalent simple de f(x) en $+\infty$.