2014-2015 学年第二学期《高等数学 AII》试卷

- **一、填空题**(每小题 3 分, 共 24 分)
- 1. 设 $\vec{a} = (2,1,-3)$, $\vec{b} = (-3,2,1)$,则 $(\vec{a},\vec{b}) =$ ______。
- 2. 设 $f(x,y,z) = \left(\frac{x}{y}\right)^{\frac{1}{z}}$,则 $\frac{\partial f}{\partial y}\Big|_{(1,1,1)} = \underline{\qquad}$
- 3. 设f(u)可导, $x^2 + y^2 + z^2 = yf\left(\frac{z}{y}\right)$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$ 。
- 4. 设 $D: 0 \le y \le \sqrt{a^2 x^2}$, $0 \le x \le a$, 由二重积分的几何意义知 $\iint\limits_{D} \sqrt{a^2 x^2 y^2} \, dx dy = \underline{\hspace{1cm}}$ 。
- 5. L 为圆周 $x^2 + y^2 = 1$,则 $\oint_L x^2 ds =$ ______。
- 6. 周期为 2π 的周期函数f(x),它在一个周期上的表达式为 $f(x) = x(-\pi \le x < \pi)$,设它的傅立叶级数的和函数为S(x),则 $S\left(\frac{3\pi}{2}\right) = _______。$
- 7. 若级数为 $\sum_{n=0}^{\infty} (\sqrt{n+2} 2\sqrt{n+1} + \sqrt{n})$,则其和是_____。
- 8. 已知t, $t \ln t$ 是微分方程 $x'' \frac{1}{t}x' + \frac{1}{t^2}x = 0$ 的解,则其通解为x(t) =
- 二、计算题(每小题8分,共32分)
- 1. 已知两条直线的方程是 l_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$, l_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 求过 l_1 且平行于 l_2 的平面方程。

2. 设
$$z = yf(x+y,x-y)$$
, f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial y \partial x}$ 。

3. 设
$$\Omega$$
 是由 $x^2 + y^2 + z^2 \le R^2$, $z \ge \sqrt{x^2 + y^2}$ 所确定的闭区域,计算 $\iint_{\Omega} \sqrt{x^2 + y^2 + z^2} dv$ 。

4. 求微分方程
$$y'' + 2yy' = y'^2$$
 满足条件 $y(1) = 0$, $y'(1) = 2$ 的特解。

- **三、综合题**(每小题 11 分, 共 44 分)
- 1. 用拉格朗日乘数法求解下面的问题,隧道截面的上部为半圆,下部为矩形,若隧道截面的周界长L固定,问矩形的边长各为多少时,隧道截面的面积最大?

2. 计算曲面积分 $\iint_{\Sigma} y^2 z^2 dy dz + z dx dy$,其中 Σ 为下半球面 $z = -\sqrt{R^2 - x^2 - y^2}$ 的下侧, R > 0

3. 试求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1}$ 的和函数,并计算级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \left(\frac{3}{4}\right)^n$ 的和。

4. 已知上半平面内一曲线 y = y(x) $(x \ge 0)$ 过原点,且曲线上任一点 $M(x_0, y_0)$ 处切线斜率数值上等于该点横坐标与纵坐标之和的 2 倍减去由此曲线与 x 轴,直线 $x = x_0$ 所围成的面积,求此曲线方程。