AMENDMENTS TO THE SPECIFICATION

Please replace the paragraph beginning on page 3, line 20 with the following paragraph.

K, D, E and Z are substituents of the aryl moiety (Ar) and each independently represent hydrogen, lower alkyl, aryl, Het, halo, cyano, nitro, OR^{19} , $OC(O)R^{20}$, $C(O)R^{21}$, $C(O)OR^{32}$, $NR^{23}R^{24}$, $C(O)NR^{25}R^{26}$, $C(S)R^{25}R^{26}$ $C(S)NR^{25}R^{26}$, SR^{27} , $C(O)SR^{27}$, or -J-Q³($CR^{13}(R^{14})(R^{15})$) $CR^{16}(R^{17})(R^{18})$ where J represents lower alkylene; or two adjacent groups selected from K, Z, D and E together with the carbon atoms of the aryl ring to which they are attached form a further phenyl ring, which is optionally substituted by one or more substituents selected from hydrogen, lower alkyl, halo, cyano, nitro, OR^{19} , $OC(O)R^{20}$, $C(O)R^{21}$, $C(O)OR^{22}$, $NR^{23}R^{24}$, $C(O)NR^{25}R^{26}$, $C(S)R^{25}R^{26}$, SR^{27} or $C(O)SR^{27}$ or, when Ar is a cyclopentadienyl group, Z may be represented by-M (L₁)_n (L₂)_m and Z is connected via a metal ligand bond to the cyclopentadienyl group;

Please replace the paragraph beginning on page 4, line 7 with the following paragraph.

 L_1 represents a cyclopentadienyl, indenyl or aryl group each of which groups are optionally substituted by one or more substituents selected from hydrogen, lower alkyl, halo, cyano, nitro, OR^{19} , $OC(O)R^{20}$, $C(O)R^{21}$, $C(O)OR^{22}$, $NR^{23}R^{24}$, $C(O)NR^{25}R^{26}$, $C(S)R^{25}R^{26}$ $C(S)NR^{25}R^{26}$, $C(S)R^{25}R^{26}$,

Please replace the paragraph beginning on page 12, line 12 with the following paragraph.

wherein R^{29} may be selected from hydrogen, lower alkyl, aryl, Het, halo, cyano, nitro, OR^{19} , $OC(O)R^{20}$, $C(O)R^{21}$, $C(O)OR^{22}$, $NR^{23}R^{24}$, $C(O)NR^{25}R^{26}$, $C(S)R^{25}R^{26}$ $C(S)NR^{25}R^{26}$, SR^{27} , $C(O)SR^{29}$ wherein R^{12} - R^{18} and R^{19} - R^{27} are as defined herein.

Please replace the paragraph beginning on page 12, line 20 with the following paragraph.

Preferably, R³⁰-R³² each independently represent hydrogen, lower alkyl, aryl or Het as defined herein. Most preferably, R³⁰-R³² represent hydrogen. As mentioned above, R²⁸ may be optionally substituted, preferably, with one or more substituents selected from lower alkyl, aryl, Het, halo, cyano, nitro, OR¹⁹, OC(O)R²⁰, C(O)R²¹, C(O)OR²², NR²³R²⁴, C(O)NR²⁵R²⁶, C(S)R²⁵R²⁶

C(S)NR²⁵R²⁶, SR²⁷ or C(O)SR²⁷ as defined herein.

Docket No.: 31229-218465

Please replace the paragraph starting on page 18, line 6 with the following paragraph.

Suitably, the hydroxyl group containing compound includes water or an organic molecule having a hydroxyl functional group. Preferably, the organic molecule having a hydroxyl functional group may be branched or linear, and comprises an alkanol, particularly a C₁-C₃₀ alkanol, including aryl alkanols, which may be optionally substituted with one or more substituents selected from lower alkyl, aryl, Het, halo, cyano, nitro, OR¹⁹, OC(O)R²⁰, C(O)R²¹, C(O)OR²², NR²³R²⁴, C(O)NR²⁵R²⁶, C(S)R²⁵R²⁶ C(S)NR²⁵R²⁶, SR²⁷ or C(O)SR²⁷ as defined herein. Highly preferred alkanols are C₁-C₈ alkanols such as methanol, ethanol, propanol, iso-propanol, iso-butanol, t-butyl alcohol, n-butanol, phenol and chlorocapryl alcohol. Although the monoalkanols are most preferred, poly-alkanols, preferably, selected from di-octa ols such as diols, triols, tetra-ols and sugars may also be utilised. Typically, such polyalkanols are selected from 1,2-ethanediol, 1,3-propanediol, glycerol, 1,2, 4 butanetriol, 2-(hydroxymethyl)- 1,3-propanediol, 1, 2, 6 trihydroxyhexane, pentaerythritol, 1,1,1 tri (hydroxymethyl) ethane, nannose, sorbase, galactose and other sugars. Preferred sugars include sucrose, fructose and glucose. Especially preferred alkanols are methanol and ethanol. The most preferred alkanol is methanol.