Copper Page 1 of 5

Description

Image

Caption

1. Copper electrical wires. © Chris Lefteri 2. Kettle pot. © Granta Design 3. Close-up of a copper cladded building. © John Fernandez

The material

In Victorian times you washed your clothes in a 'copper' - a vat or tank of beaten copper sheet, heated over a fire; the device exploited both the high ductility and the thermal conductivity of the material. Copper has a distinguished place in the history of civilization: it enabled the technology of the Bronze age (3000 BC - 1000 BC). It is used in many forms: as pure copper, as copper-zinc alloys (brasses), as copper-tin alloys (bronzes), and as copper-nickel and copper-beryllium. The designation of 'copper' is used when the percentage of copper is more than 99.3%. It is heavy and soft, not what you want for good mechanical performance. It is in its thermal, electrical, environmental and aesthetic qualities that copper excels. Its thermal and electrical conductivities are greater than those of any other metal except silver, and it is 50 times more expensive. It is exceptionally durable -- copper artifacts 2500 years old survive today; it is one of the reasons that it is used for coinage. And it is visually attractive: copper objects are prized, and prestige buildings are clad with it.

Composition (summary)

Cu

General properties

General properties				
Density	557	-	558	lb/ft^3
Price	* 3.21	-	3.53	USD/lb
Date first used	-8000			
Mechanical properties				
Young's modulus	16.2	-	21.5	10^6 psi
Shear modulus	6.53	-	7.54	10^6 psi
Bulk modulus	17.4	-	22.5	10^6 psi
Poisson's ratio	0.34	-	0.35	
Yield strength (elastic limit)	4.35	-	50.8	ksi
Tensile strength	14.5	-	58	ksi
Compressive strength	4.35	-	50.8	ksi
Elongation	3	-	50	% strain
Hardness - Vickers	44	-	180	HV
Fatigue strength at 10^7 cycles	10.2	-	18.9	ksi
Fracture toughness	27.3	-	81.9	ksi.in^0.5
Mechanical loss coefficient (tan delta)	3.5e-4	-	0.005	

Thermal properties

Melting point1.8e3- 1.98e3°FMaximum service temperature356- 572°FMinimum service temperature-459°F

Thermal conductor or insulator? Good conductor

Thermal conductivity 92.4 - 225 BTU.ft/h.ft^2.F Specific heat capacity 0.0889 - 0.0927 BTU/lb.°F Thermal expansion coefficient 9.39 - 10 µstrain/°F

Electrical properties

Electrical conductor or insulator? Good conductor

Electrical resistivity 1.74 - 5.01 µohm.cm

Optical properties

Transparency Opaque

Processability

Castability 3 - 5
Formability 4 - 5
Machinability 4 - 5
Weldability 3
Solder/brazability 5

Durability: water and aqueous solutions

Water (fresh)

Water (salt)

Soils, acidic (peat)

Soils, alkaline (clay)

Wine

Excellent

Excellent

Excellent

Excellent

Durability: acids

Acetic acid (10%) Limited use Acetic acid (glacial) Unacceptable Citric acid (10%) Excellent Hydrochloric acid (10%) Acceptable Hydrochloric acid (36%) Unacceptable Hydrofluoric acid (40%) Limited use Nitric acid (10%) Acceptable Nitric acid (70%) Unacceptable Phosphoric acid (10%) Limited use Phosphoric acid (85%) Unacceptable Sulfuric acid (10%) Unacceptable Sulfuric acid (70%) Unacceptable

Durability: alkalis

Sodium hydroxide (10%)

Sodium hydroxide (60%)

Unacceptable
Excellent

Durability: fuels, oils and solvents

Amyl acetate Excellent
Benzene Excellent
Carbon tetrachloride Excellent
Chloroform Excellent
Crude oil Acceptable
Diesel oil Excellent

PULL	CE	5	2	0	15
desta	ED	U F	٦F	30	K

Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Limited use
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Limited use
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Acceptable
O2 (oxygen gas)	Limited use
Sulfur dioxide (gas)	Limited use

Durability: built environments

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Excellent
Excellent
Unacceptable
Unacceptable
Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production	1.56e7	ton/yr
Reserves	5.31e8	I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 6.15e3	-	6.8e3	kcal/lb
CO2 footprint, primary production	* 3.52	-	3.9	lb/lb
Water usage	* 35.1	-	38.8	gal(US)/lb
Eco-indicator 95	1.4e3			millipoints/kg
Eco-indicator 99	2.17e3			millipoints/kg

Material processing: energy

Casting energy	* 93	35 -	1.03e3	kcal/lb
Extrusion, foil rolling energy	* 43	31 -	477	kcal/lb

Rough rolling, forging energy	* 231	-	256	kcal/lb	
Wire drawing energy	* 1.53e3	-	1.69e3	kcal/lb	
Metal powder forming energy	* 2.55e3	-	2.87e3	kcal/lb	
Vaporization energy	* 8.82e5	-	9.74e5	kcal/lb	
Coarse machining energy (per unit wt removed)	* 81.5	-	90	kcal/lb	
Fine machining energy (per unit wt removed)	* 352	-	389	kcal/lb	
Grinding energy (per unit wt removed)	* 652	-	720	kcal/lb	
Non-conventional machining energy (per unit wt removed)	8.82e3	-	9.74e3	kcal/lb	
Material processing: CO2 footprint					
Casting CO2	* 0.647	-	0.715	lb/lb	
Extrusion foil rolling CO2	* 0 208	_	U 33	lh/lh	

Casting CO2	* 0.647	-	0.715	lb/lb
Extrusion, foil rolling CO2	* 0.298	-	0.33	lb/lb
Rough rolling, forging CO2	* 0.16	-	0.177	lb/lb
Wire drawing CO2	* 1.06	-	1.17	lb/lb
Metal powder forming CO2	* 1.88	-	2.12	lb/lb
Vaporization CO2	* 610	-	675	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0564	-	0.0623	lb/lb
Fine machining CO2 (per unit set removed)	* 0 242		0.260	lh/lh

Coarse machining CO2 (per unit wt removed)

* 0.0564 - 0.0623 lb/lb
Fine machining CO2 (per unit wt removed)

* 0.243 - 0.269 lb/lb
Grinding CO2 (per unit wt removed)

* 0.451 - 0.499 lb/lb
Non-conventional machining CO2 (per unit wt removed)

* 0.564 - 0.0623 lb/lb
lb/lb

* 0.269 lb/lb

* 0.451 - 0.499 lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	✓			
Embodied energy, recycling	* 1.4e3	-	1.55e3	kcal/lb
CO2 footprint, recycling	* 1.02	-	1.12	lb/lb
Recycle fraction in current supply	40	-	46	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	✓			
Biodegrade	×			
Toxicity rating	Non-toxic	;		
A renewable resource?	×			

Environmental notes

Copper and its alloys are particularly easy to recycle - in many countries the recycle fraction approaches 90%.

Supporting information

Design guidelines

Copper and its alloys are easy to cast, to roll to sheet, to draw to wire, and to shape in other ways. They resist corrosion in the atmosphere, acquiring an attractive green patina (copper carbonate) in clean air, and a black one (copper sulfide) in one that is not - copper roofs in cities are usually black. The patina of bronze is a rich warm brown, much loved by sculptors. Pure copper has excellent electrical and thermal conductivity, is easy to fabricate and join, has good corrosion resistance and reasonable strength. Where high conductivity is necessary, oxygen-free high-conductivity (OFHC) copper is used. In its annealed form it is soft and ductile; with work-hardening the material becomes harder but less ductile.

Technical notes

There is now a UNS designation system for copper and its alloys: the letter C (for 'copper') followed by a 5-digit number. Only the first digit means anything: C1**** designates almost pure copper, the C2, C3 and C4 series are brasses with increasing zinc content, the C5s are bronzes based on copper and tin, the C6s are other bronzes containing aluminum instead of tin, and the C7s are copper-nickel alloys. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Typical uses

Electrical wiring, electrical conductors, cables, busbars, high strength, high conductivity wires and sections, overheads lines, contact wires, resistance-welding electrodes, terminals, high conductivity items for use at raised temperatures, heat exchangers, heat sinks, coinage, pans, kettles and boilers, plates for etching and engraving, roofing and architecture, boilers and pressure vessels.

Links

Reference

ProcessUniverse

Producers