

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Projeto e Análise de Algoritmos Prof^a. Raquel Mini

TRABALHO SEMANAL TAREFA 3

Entrega: 30/08/2020 pelo Canvas

1. Indique para cada par de expressões (A,B) na tabela abaixo, se A é O, o, Ω , ω ou Θ de B. Assuma que $k \ge 1$ e $0 < \epsilon < 1 < c$ são constantes. Sua resposta deve ser da forma SIM ou NÃO.

Nota: $\log^k n = \underbrace{\log \log \cdots n}_{k} e n! \approx \left(\frac{n}{e}\right)^n$.

K							
	A	В	О	О	Ω	ω	Θ
(i)	$\log^k n$	$n^{\mathcal{E}}$					
(ii)	n^k	c^n					
(iii)	c^n	$c^{n/2}$					
(iv)	$\log(n!)$	$\log(n^n)$					
(v)	$\log^{k+1} n$	$\log^k n$					
(vi)	$c^{\mathcal{E}}$	$(c+1)^{\varepsilon}$					

2. Sejam as seguintes funções:

$$g_1 = n^{\frac{1}{\log n}}$$
 $g_2 = \ln \ln n$ $g_3 = (\ln n)^2$ $g_4 = n$
 $g_5 = 2^{\log n}$ $g_6 = n \log n$ $g_7 = \log(n!)$ $g_8 = n^2$
 $g_9 = 4^{\log n}$ $g_{10} = \left(\frac{3}{2}\right)^n$ $g_{11} = 2^n$ $g_{12} = e^n$

e os seguintes fatos (a > 0, b > 0, c > 0, n $\in \Re$):

$$\log n = \log_2^n \qquad \qquad \ln n = \log_e^n$$

$$a = b^{\log_b^a} \qquad \qquad \log_c^{(ab)} = \log_c^a + \log_c^b$$

$$\log_c^{a^n} = n \log_b^a \qquad \qquad \log_b^a = \frac{\log_c^a}{\log_c^b}$$

$$\log_b^a = \frac{1}{\log_a^b}$$

$$n^{\frac{1}{\log n}} = n^{\log_n^2} = 2$$

$$4^{\log n} = 2^{2\log n} = 2^{\log n^2} = n^2$$

$$\log(n!) = \Theta(n\log n)$$

$$a^{\log_b^n} = n^{\log_b^a}$$

$$2^{\log n} = n$$

$$n! \approx \left(\frac{n}{e}\right)^n$$

Pede-se: Mostre para cada par de funções g_i e g_{i+1} para $1 \le i \le 11$ se g_i é o ou Θ de g_{i+1} .