Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

Лабораторная работа № 5 по дисциплине «Методы оптимизации»

Вариант: 3

Преподаватель: Селина Е. Г.

Выполнила: Вавилина Е. А.

Группа: Р3230

Оглавление

Задание 1	3
Задание 2	4
Набор уравнений (ошибочный)	5
Набор уравнений	6
Вывод	9

Задание 1

Решить задачу линейного программирования графическим методом

$$\begin{cases}
-x_1 + x_2 \to min \\
1 \le x_1 + x_2 \le 2 \\
1 \le x_1 - 2x_2 \le 2 \\
x_1, x_2 \ge 0
\end{cases}$$

Рассмотрим каждое уравнение в системе и определим область допустимых решений:

$$1 \le x_1 + x_2 => x_2 \ge 1 - x_1$$

$$x_1 + x_2 \le 2 => x_2 \le 2 - x_1$$

$$1 \le x_1 - 2x_2 => x_2 \le \frac{1}{2}x_1 - \frac{1}{2}$$

$$x_1 - 2x_2 \le 2 => x_2 \ge \frac{1}{2}x_1 - 1$$

$$x_1 \ge 0, x_2 \ge 0$$

Рассчитаем точки пересечения (опорные точки):

$$\begin{cases} x_2 = 2 - x_1 \\ x_2 = \frac{1}{2}x_1 - \frac{1}{2} = > \begin{cases} 0 = \frac{3}{2}x_1 - \frac{5}{2} = > \begin{cases} x_1 = \frac{5}{3} \\ x_2 = 2 - x_1 \end{cases} = > \begin{cases} \frac{5}{3}x_1 - \frac{1}{3} = > \frac{5}{3}x_1 - \frac{1}{3} = >$$

4 точка пересечения находится вне заданной области положительных х.

Построим график области допустимых решений со всеми найденными точками:

Первый способ

Посчитаем значения функции от точек пересечения.

$$-\frac{5}{3} + \frac{1}{3} = -\frac{4}{3}$$
$$-1 + 0 = -1$$
$$-2 + 0 = -2$$

Наименьшее значение, полученное таким образом -2. Достигается в точке (2; 0).

Второй способ

Построим градиент функции.

$$grad(f) = -1\vec{i} + 1\vec{j}$$

Т.к. мы ищем минимум – будем рассматривать антиградиент $1\vec{i} - 1\vec{j}$

Найдем уравнение одной из прямых уровня:

$$-x_1 + x_2 = 0 => x_2 = x_1$$

Будем двигать эту прямую так, чтобы она проходила через опорные точки и проверять, является ли она опорной:

Точка (1; 0): $-1 + 0 = C = > C = -1 = > x_2 = x_1 - 1$. Прямая является опорной.

Точка (5/3; 1/3):
$$-\frac{5}{3} + \frac{1}{3} = C = > C = -\frac{4}{3} = > x_2 = x_1 - \frac{4}{3}$$
. Прямая не является опорной.

Точка (2; 0): $-2 + 0 = C = > C = -2 = > x_2 = x_1 - 2$. Это опорная прямая. И она лежит дальше всех по направлению антиградиента функции.

Следовательно ответ — **точка** (2; 0).

Добавим все линии на график для наглядности:

Ответ: (2; 0) и f = -2

Задание 2

Решить задачу линейного программирования симплекс-методом.

$$F(X) = CX \rightarrow min, D = \{x \in \mathbb{R}^n : AX = b, X \ge 0\}$$

$$c = (0, 6, 1, -1, 0), b = (6, 6, 6)$$

$$A = \begin{vmatrix} 3 - 1 & 1 & 6 & 1 \\ 1 & 0 & 5 & 1 & -7 \\ 1 & 2 & 3 & 1 & 1 \end{vmatrix}$$

Набор уравнений (ошибочный)

$$F(x_1, x_2, x_3, x_4, x_5) = 0x_1 + 6x_2 + x_3 - x_4 + 0x_5$$

$$\begin{cases} 3x_1 - x_2 + x_3 + 6x_4 + x_5 \le 6 \\ x_1 + 0x_2 + 5x_3 + x_4 - 7x_5 \le 6 \\ x_1 + 2x_2 + 3x_3 + x_4 + x_5 \le 6 \end{cases}$$

Перейдем к каноничному виду:

$$\begin{cases} 3x_1 - x_2 + x_3 + 6x_4 + x_5 + x_6 = 6 \\ x_1 + 0x_2 + 5x_3 + x_4 - 7x_5 + x_7 = 6 \\ x_1 + 2x_2 + 3x_3 + x_4 + x_5 + x_8 = 6 \end{cases}$$

и

$$\begin{cases} x_6 = 6 - 3x_1 + x_2 - x_3 - 6x_4 - x_5 \\ x_7 = 6 - x_1 - 0x_2 - 5x_3 - x_4 + 7x_5 \\ x_8 = 6 - x_1 - 2x_2 - 3x_3 - x_4 - x_5 \end{cases}$$

Начальный базис равен (0; 0; 0; 0; 0; 6; 6; 6)

Составим симплекс-таблицу

Базис	x_1	x_2	x_3	x_4	x_5	β
x_6	3	-1	1	6	1	6
x_7	1	0	5	1	-7	6
<i>x</i> ₈	1	2	3	1	1	6
Δ	0	6	1	-1	0	

С - индексная строка

 $\Delta_j = \sum_{i \ in \ \text{базис}} c_i * a_{ij} - c_j$, но в данном случае дельты совпадут с коэффициентами исходной целевой функций (но с противоположным знаком), потому что базис на целевую функцию не влияет.

План не оптимален, т.к. есть дельты большие 0.

Выберем разрешающий столбец и строку. Наибольший вклад внесет столбец с наибольшей дельтой (т.к. мы минимизируем функцию). Выделим его желтым.

Базис	x_1	x_2	x_3	x_4	x_5	β	Q
x_6	3	-1	1	6	1	6	6/6 = 1
x_7	1	0	5	1	-7	6	6/1 = 6
x_8	1	2	3	1	1	6	6/1 = 6
Δ	0	-6	-1	1	0		

Для получения строки найдем симплекс отношение Q $(\frac{\beta_i}{a_{i4}})$ и найдем минимальное значение. Выделим получившуюся строку зеленым.

Таким образом разрешающий элемент -6.

Делим строку 1 на a_{14} . Из строк 2, 3 вычитаем строку 1, умноженную на соответствующий элемент в столбце 4.

Базис	x_1	x_2	x_3	x_5	x_6	β
x_4	1	1	1	1	1	1
	$\frac{\overline{2}}{2}$	$-\frac{1}{6}$	<u>-</u> 6	<u>-</u> 6	<u>-</u> 6	
x_7	1 1 1	1 1	$\frac{30}{2} - \frac{1}{2} = \frac{29}{2}$	42 1 43	1 1	6-1=5
,	$1 - \frac{1}{2} = \frac{1}{2}$	$0 + \frac{1}{6} = \frac{1}{6}$	6 6 6	$-\frac{1}{6} - \frac{1}{6} - \frac{1}{6}$	$0 - \frac{1}{6} = -\frac{1}{6}$	
<i>x</i> ₈	1 1	12 1 13	18 1 17	1 1 5	1 1	6-1=5
	$1 - \frac{1}{2} = \frac{1}{2}$	$\frac{-}{6} + \frac{-}{6} = \frac{-}{6}$	$\frac{-}{6} - \frac{-}{6} = \frac{-}{6}$	$1 - \frac{1}{6} = \frac{1}{6}$	$0 - \frac{1}{6} = -\frac{1}{6}$	
Δ	1	35	1	7	1	
	$-{2}$	$-{6}$	$-\frac{1}{6}$	$-\frac{-}{6}$	$-\frac{-}{6}$	

$$\Delta_1 = (c_4 * a_{11} + c_7 * a_{21} + c_8 * a_{31}) - c_1 = \left(-1 * \frac{1}{2} + 0 * \frac{1}{2} + 0 * \frac{1}{2}\right) - 0 = -\frac{1}{2}$$

$$\Delta_2 = (c_4 * a_{12} + c_7 * a_{22} + c_8 * a_{32}) - c_2 = \left(-1 * -\frac{1}{6} + 0 * \frac{1}{6} + 0 * \frac{13}{6}\right) - 6 = \frac{1}{6} - \frac{36}{6}$$
$$= -\frac{35}{6}$$

$$\Delta_3 = (c_4 * a_{11} + c_7 * a_{21} + c_8 * a_{31}) - c_3 = \left(-1 * \frac{1}{6} + 0 * \frac{29}{2} + 0 * \frac{17}{2}\right) - 1 = -\frac{7}{6}$$

$$\Delta_5 = \left(c_4 * a_{11} + c_7 * a_{21} + c_8 * a_{31}\right) - c_5 = \left(-1 * \frac{1}{6} - 0 * \frac{43}{6} + 0 * \frac{5}{6}\right) - 0 = -\frac{1}{2}$$

$$\Delta_6 = (c_4 * a_{11} + c_7 * a_{21} + c_8 * a_{31}) - c_6 = \left(-1 * \frac{1}{6} - 0 * \frac{1}{6} - 0 * \frac{1}{6}\right) - 0 = -\frac{1}{6}$$

План оптимален, т.к. все дельты меньше 0. Текущий базис равен (0; 0; 0; 1; 0; 0; 5; 5)

$$F(0; 0; 0; 1; 0; 0; 5; 5) = 0 * 0 + 6 * 0 + x_3 * 0 - 1 + 0 * 0 + 0 * 0 + 0 * 5 + 0 * 5 = -1$$

Ответ: точка (0; 0; 0; 1), значение функции -1.

Набор уравнений (верный)

$$F(x_1, x_2, x_3, x_4, x_5) = 0x_1 + 6x_2 + x_3 - x_4 + 0x_5$$

$$\begin{cases} 3x_1 - x_2 + x_3 + 6x_4 + x_5 = 6 \\ x_1 + 0x_2 + 5x_3 + x_4 - 7x_5 = 6 \\ x_1 + 2x_2 + 3x_3 + x_4 + x_5 = 6 \end{cases}$$

Приведение к каноническому виду нам не понадобится, т.к. это уже каноническое представление. Найдем базис

x_1	x_2	x_3	x_4	x_5	β
3	-1	1	6	1	6
1	0	5	1	-7	6

1	2	3	1	1	6

Выделим разрешающие столбец и строку. Столбец можем выбрать любой, т.к. сейчас базис пуст. Пусть это будет х1. И строка тоже будет первой.

Делим строку 1 на a_{11} . Из строк 2, 3 вычитаем строку 1, умноженную на соответствующий элемент в столбце 1.

x_1	x_2	χ_3	x_4	x_5	β
1	1	1	2	1	2
	$-\frac{1}{3}$	3		3	
0	$0 + \frac{1}{3} = \frac{1}{3}$	$\frac{15}{3} - \frac{1}{3} = \frac{14}{3}$	1 - 2 = -1	$-\frac{21}{3} - \frac{1}{3} = -\frac{22}{3}$	6-2=4
0	$2 + \frac{1}{3} = \frac{7}{3}$	$\frac{9}{3} - \frac{1}{3} = \frac{8}{3}$	1 - 2 = -1	$1 - \frac{1}{3} = \frac{2}{3}$	6-2=4

x_1	x_2	χ_3	x_4	<i>x</i> ₅	β
1	1	1	2	1	2
	$-\frac{1}{3}$	3		$\frac{\overline{3}}{3}$	
0	1	14	-1	_ 22	4
	3	3		3	
0	7	8	-1	2	4
	$\frac{\overline{3}}{3}$	$\overline{3}$		$\frac{1}{3}$	

Выделим разрешающие столбец и строку. Столбец можем выбрать любой, т.к. сейчас базис пуст. Пусть это будет х2. Тогда строка тоже будет второй.

Делим строку 2 на a_{21} . Из строк 1, 3 вычитаем строку 2. умноженную на соответствующий элемент в столбце 1.

x_1	x_2	x_3	x_4	<i>x</i> ₅	β
1	0	$\frac{1}{1}$, $\frac{14}{1}$ - 5	2 - 1 = 1	$\frac{1}{2} = \frac{22}{2} = \frac{7}{2}$	$2 + \frac{12}{3} = 6$
		$\frac{1}{3} + \frac{1}{3} - 3$		$\frac{1}{3} - \frac{1}{3} = -7$	$2 + \frac{1}{3} = 0$
0	1	14	-3	-22	4
					$\frac{1}{1} = 12$
					3
0	0	$\frac{8}{2} - 14 * \frac{7}{2} = -30$	-1 + 7 = 6	7	7
		$\frac{-}{3}$ - 14 * $\frac{-}{3}$ = -30		$\frac{-}{3} + 22 * \frac{-}{3} = 52$	$4-12*\frac{7}{3}=-24$

Аналогично перекинем х3 в базис и изменим соответствующим образом таблицу.

x_1	x_2	χ_3	x_4	x_5	β
1	0	0	1 + 1 = 2	$-7 + \frac{26}{5} = \frac{5}{3}$	$6-5*\frac{4}{5}=2$
0	1	0	$-3 + \frac{14*1}{5} = -\frac{1}{5}$	$-22 + \frac{14 * 26}{15} = \frac{34}{15}$	$12 - \frac{4}{5} * 14 = \frac{4}{5}$
0	0	1	1	26	4
			_ _	<u> </u>	- 5

Для полученного базиса посчитаем дельты

$$\Delta_4 = \left(c_1 * a_{11} + c_2 * a_{21} + c_3 * a_{31}\right) - c_4 = \left(0 * 2 + 6 * -\frac{1}{5} + 1 * -\frac{1}{5}\right) - 1 = -\frac{2}{5}$$

$$\Delta_5 = (c_1 * a_{11} + c_2 * a_{21} + c_3 * a_{31}) - c_5 = \left(0 * \frac{5}{3} + 6 * -\frac{34}{15} + 1 * -\frac{26}{15}\right) - 0 = \frac{178}{15}$$

План не оптимален, т.к. есть положительная дельта. Наибольший вклад внесет перенос х5 в базис на место х2.

Новая симплекс таблица:

Базис	x_2	x_4	β	Q
x_1	$0 - \frac{5}{3} * \frac{15}{34}$ $= -\frac{25}{34}$	$2 - \frac{5}{3} * - \frac{3}{34}$ $= \frac{73}{34}$	$2 - \frac{5}{3} * \frac{6}{17} = \frac{24}{17}$	$\frac{\frac{24}{17}}{\frac{73}{43}} = \frac{48}{73}$
x_5	15 34	$-\frac{3}{34}$	$\frac{6}{17}$	$\frac{\frac{6}{17}}{-\frac{3}{34}} = \infty$
x_3	$0 + \frac{26}{15} * \frac{15}{34}$ $= \frac{13}{17}$	$-\frac{1}{5} - \frac{26}{15} * \frac{3}{34}$ $= -\frac{6}{17}$	$\frac{4}{5} + \frac{26}{15} * \frac{6}{17} = \frac{24}{17}$	$\frac{\frac{24}{17}}{\frac{-6}{17}} = \infty$
Δ	$-\frac{35}{6}$	11 17		

$$\Delta_2 = (c_1 * a_{11} + c_5 * a_{21} + c_3 * a_{31}) - c_2 = \left(0 * -\frac{25}{34} + 0 * \frac{15}{34} + 1 * \frac{13}{17}\right) - 6 = -\frac{35}{6}$$

$$\Delta_4 = (c_1 * a_{12} + c_5 * a_{22} + c_3 * a_{32}) - c_4 = \left(0 * \frac{73}{34} + 0 * -\frac{3}{34} + 1 * -\frac{6}{17}\right) - 1 = \frac{11}{17}$$

Одна дельта больше 0. Критерий оптимальности не выполнен. Решающий компонент х4, строка 6.

Базис	x_1	x_2	β
x_4	34	25	48
_	73	$-{73}$	73
x_5	3	$-\frac{30}{}$	30
	73	$-{73}$	73
x_3	12	47	120
	73	73	73
Δ	22	366	
	$-{73}$	73	

$$\Delta_{1} = (c_{4} * a_{11} + c_{5} * a_{21} + c_{3} * a_{31}) - c_{1} = \left(0 * -\frac{25}{34} + 0 * \frac{3}{73} + 1 * \frac{12}{73}\right) - 0 = -\frac{22}{73}$$

$$\Delta_{2} = (c_{4} * a_{12} + c_{5} * a_{22} + c_{3} * a_{32}) - c_{2} = \left(1 * -\frac{25}{73} + 0 * -\frac{30}{73} + 1 * \frac{47}{73}\right) - 6 = -\frac{366}{73}$$

Все дельты достигнуты. Итоговый ответ $(0; 0; \frac{120}{73}; \frac{48}{73}; \frac{30}{73})$

$$f(x_1; x_2; x_3; x_4; x_5) = 0 * 0 + 6 * 0 + 1 * \frac{120}{37} - \frac{148}{73} + 0 * \frac{30}{73} = \frac{72}{73}$$

Otbet: $(0; 0; \frac{120}{73}; \frac{48}{73}; \frac{30}{73}); \frac{72}{73}$

Вывод

В этой лабораторной работе я научилась применять различные методы линейного программирования.