Essentials of Turbulence:

Vortex Shedding Past Square Cylinder

Sanit Bhatkar

Problem Description

- Vortex Shedding is an oscillating flow that takes place when a fluid flows past a bluff body in certain range Re.
- Vortices are created at the back of the body and detach periodically from either side of the body.
- Strouhal Number $St = \frac{fD}{U}$
- Lyn [1] performed Laser-Doppler
 Velocimetry for one period of vortex.

Vortex shedding past cylinder

Objective

- 1. Analyse the flow around square cylinder in ANSYS-Fluent and calculate:
- Coefficient of discharge Cd
- Velocity profile at different longitudinal and lateral
- Strouhal number calculation from coefficient of lift Co
- Streamlines for different phases of vortex shedding
- 2. Compare Fluent data with Lyin [1] experimental data.

Calculation Domain and BC

Flow Parameters	Value
Reynolds Number	21400
Free stream turbulence level	2%
Strouhal number	0.132
Cylinder diameter	0.04 m
Working Fluid	Water

Calculation domain and Boundary Conditions

Mesh Details

Turbulence Model and Numerical Methods

- URANS SST k-ω model [4,5]
- SST k-ω model has good behaviour in adverse pressure gradients and separating flow [5]
- Numerical Cd matches with experimental value [4]
- 2D simulation model with FVM and SIMPLE algorithm for governing equations. [3]
- Second order implicit scheme for time discretization and third order scheme for spatial discretization.

Time step calculation

$$U = 0.5375m/s$$

$$St = \frac{fD}{U}$$

$$f = \frac{St \cdot U}{D} = 1.77375Hz$$

$$T = 0.563777s$$

$$Step = 0.01s$$

$$Iter/Step = 25$$

$$Total = 15s$$

$$Iterations = 1500$$

VALIDATION

Strouhal Number Validation

FFT code Output

---FFT of Lift coefficient---

Strouhal Number is 0.131098

Frequency is 1.761633 Hz

Time period is 0.567655 s

Manual Calculation

Start Time	4.23 s
End Time	9.68 s
Total samples	10
Strouhal Number	0.137
Frequency	1.835
Time period	0.545

Comparison

Flow Parameters	Experiment Value	Numerical Model
Reynolds Number	21400	21400
Free stream turbulence level	2%	2%
Strouhal number	0.132	0.131
Drag Coefficient	2.05-2.23	2.14
Working Fluid	Water	Water

RESULTS

Mean Velocity at x = 0 for Phase 1

Mean Velocity at x = 0.02 for Phase 1

Lateral Velocity <V>/U at y = 0 for Phase 1

Mean Velocity at x = 0 for Phase 9

Mean Velocity at x = 0.02 for Phase 9

Lateral Velocity <V>/U at y = 0 for Phase 9

Sources of Error and Conclusion

- Time step was approximated as 0.56s and divided into 20 phases for simplicity
- Time step size can have effect on the results as St = 0.131 for present case while St = 0.121 for Xu et al [4].
- By and large the SST $k-\omega$ model predicts the vortex shedding behaviour. Velocity is overestimated by the model.
- One can create 3D square cylinder to check the accuracy of the model.

References

- [1] J.H.P. D.A. Lyin., S.Einav., W.Rodi., "A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder," J. Fluid Mech. 304 (1995) 285–319. doi:10.1017/S0022112095004435
- [2] R. Franke, W. Rodi, "Calculation of Vortex Shedding Past a Square Cylinder with Various Turbulence Models," Turbul. Shear Flows 8. (2011) 189–204. doi:10.1007/978-3-642-77674-8 14
- [3] S. Murakami, A. Mochida, "On turbulent vortex shedding flow past 2D square cylinder predicted by CFD," J. Wind Eng. Ind. Aerodyn. 54–55 (1995) 191–211. doi:10.1016/0167-6105(94)00043-D
- [4] F.Y. Xu, X.Y. Ying, Z. Zhang, "Prediction of Unsteady Flow around a Square Cylinder Using RANS," Appl. Mech. Mater. 52–54 (2011) 1165–1170. doi:10.4028/www.scientific.net/amm.52-54.1165
- [5] FLUENT, Inc., ANSYS FLUENT 16.0 Theory Guide, 2015.