## DEVDAY



#### DEV DAY

MLT3

# Natural Language Processing: concepts, algorithms & use cases

Speaker Name
Job Title
Company/Org Name



#### What to expect

1 – Word Vectors

#### 2 – Algorithms

- Word2Vec
- GloVe
- FastText, BlazingText
- ELMo
- BERT
- XLNet

#### 3 – Use cases & demos

- Word vectors
- Word similarity
- Word analogy
- Text classification
- Sentiment analysis

4 – Getting started



#### Problem statement

- NLP is a major field in Al
  - Text classification, machine translation, text generation, chat bots, vocal assistants, etc.
  - You could even say that strong AI requires efficient NLP
- NLP apps require a language model in order to predict the next word
  - Given a sequence of words  $(w_1, \ldots, w_n)$ , predict  $w_{n+1}$  that has the highest probability
- Vocabulary size can be hundreds of thousands of words
   ... in millions of documents
- Can we build a compact mathematical representation of language, that will help with a variety of downstream NLP tasks?



## « You shall know a word by the company it keeps », Firth (1957)

- Word vectors are built from co-occurrence counts
  - Also called word embeddings
  - High dimensional: at least 50, up to 300
- Words with similar meanings should have similar vectors
  - "car" ≈ "automobile" ≈ "sedan"
- The distance between vectors for the same concepts should be similar
  - distance ("Paris", "France") ≈ distance("Berlin", "Germany")
  - distance("hot", "hotter") ≈ distance("cold", "colder")



#### High-level view

- 1. Start from a large text corpus (100s of millions of words, even billions)
- 2. Preprocess the corpus
  - Tokenize: « hello, world! » → « <BOS>hello<SP>world<SP>!<EOS>»
  - Multi-word entities: « Rio de Janeiro » → « rio\_de\_janeiro »
- 3. Build the vocabulary
  - Remove very rare words?
- 4. Learn vector representations for all words
- ... or simply use (or fine-tune) pre-trained vectors (more on this later)



#### DEV DAY

## Algorithms



#### Word2Vec (2013)

https://arxiv.org/abs/1301.3781 https://code.google.com/archive/p/word2vec/

- Continuous bag of words (CBOW):
  - the model predicts the current word from surrounding context words
  - Word order doesn't matter (hence the 'bag of words')
- Skipgram
  - the model uses the current word to predict the surrounding window of context words
  - This may work better when little data is available
- CBOW trains faster, skipgram is more accurate
- C code, based on shallow neural network





#### Global Vectors aka GloVe (2014)

https://nlp.stanford.edu/projects/glove/
https://github.com/stanfordnlp/GloVe
https://www.quora.com/How-is-GloVe-different-from-word2vec

- Performance generally similar to Word2Vec
- Pre-trained models: up to 840 billion tokens, 2.2 million vocabulary, 300 dimensions
- C code, based on matrix factorization



#### FastText (2016)

https://arxiv.org/abs/1607.04606 https://arxiv.org/abs/1802.06893

https://fasttext.cc/

https://www.quora.com/What-is-the-main-difference-between-word2vec-and-fastText

- Extension of Word2Vec: each word is treated as a set of subwords aka character n-grams
  - « Computer », n=5 : <START>Comp , compu, omput, mpute, puter, uter<END>
  - A word vector is the sum or average of its subword vectors
- Subwords help with rare/unknown/mispelled words, as they share subwords with known words
  - « Computerization » and « Cmputer » should be close to « Computer »
- Unsupervised learning: compute word vectors, with pre-trained vectors for 294 languages
- Supervised learning: use word vectors for multi-label, multi-class text classification
- Also language detection for 170 languages
- Multithreaded C++ code, with Python API



#### BlazingText (2017)

https://dl.acm.org/citation.cfm?id=3146354

https://aws.amazon.com/blogs/machine-learning/enhanced-text-classification-and-word-vectors-using-amazon-sagemaker-blazingtext/

- Amazon-invented algorithm, available in Amazon SageMaker
- Extends FastText with GPU capabilities
- Unsupervised learning: word vectors
  - 20x faster
  - CBOW and skip-gram with subword support
  - Batch skip-gram for distributed training
- Supervised learning: text classification
  - 100x faster
  - Models are compatible with FastText

|                                           | Word2Vec (unsup                     | Text Classification (supervised learning) |                |            |
|-------------------------------------------|-------------------------------------|-------------------------------------------|----------------|------------|
| Modes                                     | Skip-gram<br>(supports<br>subwords) | CBOW<br>(supports<br>subwords)            | batch_skipgram | supervised |
| Single<br>CPU<br>instance                 | •                                   | •                                         | •              | ,          |
| Single GPU instance (with 1 or more GPUs) | <b>~</b>                            | <b>~</b>                                  |                | <b>/</b> * |
| Multiple<br>CPU<br>instances              |                                     |                                           | ~              |            |



#### Limitations of Word2Vec (and family)

- Some words have different meanings (aka polysemy)
  - « Kevin, stop throwing rocks! » vs. « Machine Learning rocks »
  - Word2Vec encodes the different meanings of a word into the same vector
- Bidirectional context is not taken into account
  - Previous words (left-to-right) and next words (right-to-left)



#### Embeddings from Language Models aka ELMo (02/2018)

https://arxiv.org/abs/1802.05365 https://allennlp.org/elmo

- ELMo generates a context-aware vector for each word
  - Character-level CNN
  - Bidirectional context, with two unidirectional LSTMs
     No cheating possible (can't peek at the future)
  - "Deep" embeddings, reflecting output from all layers
- No vocabulary, no vector file: you need to use the model itself
- Reference implementation with TensorFlow



Source: Google

|        | Source                    | Nearest Neighbors                                                                   |  |
|--------|---------------------------|-------------------------------------------------------------------------------------|--|
| GloVe  | play                      | playing, game, games, played, players, plays, player<br>Play, football, multiplayer |  |
| biLM - | Chico Ruiz made a spec-   | Kieffer, the only junior in the group, was commended                                |  |
|        | tacular play on Alusik 's | for his ability to hit in the clutch, as well as his all-round                      |  |
|        | grounder {}               | excellent play .                                                                    |  |
|        | Olivia De Havilland       | {} they were actors who had been handed fat roles in                                |  |
|        | signed to do a Broadway   | a successful play, and had talent enough to fill the roles                          |  |
|        | play for Garson {}        | competently, with nice understatement.                                              |  |

Source: ELMo paper



#### Bidirectional Encoder Representations from Transformers aka BERT

http0/20.18)abs/1810.04805

https://github.com/google-research/bert

https://www.quora.com/What-are-the-main-differences-between-the-word-embeddings-of-ELMo-BERT-Word2vec-and-GloVe

- BERT improves on ELMo
  - Replace LSTM with Transformers, which deal better with long-term dependencies
  - Truly bidirectional architecture: left-to-right and right-to-left contexts are learned by the same network
  - Words are randomly masked during training to prevent cheating
- Pre-trained models: BERT Base and BERT Large
  - Masked word prediction
  - Next sentence prediction
- Reference implementation with TensorFlow



Source: Google



#### Limitations of BERT

- BERT cannot handle more than 512 input tokens
- BERT masks words during training, but not during fine-tuning (aka training/fine-tuning discrepancy)
- BERT isn't trained to predict the next word, so it's not great at text generation
- BERT doesn't learn dependencies for masked words
  - Train « I am going to <MASK> my <MASK> » on « walk » / « dog », « eat » / « breakfast », and « debug » / « code ».
  - BERT could legitimately predict « I am going to eat my code » or « I am going to debug my dog » :-/



#### XLNet (06/2019)

https://arxiv.org/abs/1906.08237 https://github.com/zihangdai/xlnet

- XLNet beats BERT at 20 tasks
- XLNet uses bidirectional context, but words are randomly permuted
  - No cheating possible
  - No masking required
- XLNet Base and XLNet Large
- Reference implementation with TensorFlow

07/2019: ERNIE 2.0 (Baidu)

beats BERT & XLNet

https://github.com/PaddlePaddle/ERNIE/



#### Train yourself or not?

- Word2Vec and friends
  - Try pre-trained embeddings first
    - Check that the training corpus is similar to your own data
    - Same language, similar vocabulary
  - Remember that subword models will help with unknown / mispelled words
  - If you have exotic requirements AND lots of data, training is not expensive
- EIMo, BERT, XLNet
  - Training is very expensive: several days using several GPUs
  - Fine-tuning is cheap: just a few GPU hours for SOTA results
  - Fine-tuning scripts and pre-trained models are available: start there!
- In both cases, you'll still have to pre-process data (yeaaaaah)



#### **DEV** DAY

Use cases & demos



# Demo: training Word2Vec subword vectors with BlazingText on Amazon SageMaker

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/introduction to amazon algorithms/blazingtext word2vec subwords text8



#### Word similarity

- Words with a similar meaning are expected to have similar vectors
  - 'cosine similarity', i.e. normalized dot product
    - -1 → words are not similar
    - $+1 \rightarrow$  words are similar

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{\sum} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

- Using word vectors for your vocabulary:
  - Pick a word
  - Compute the cosine similarity of its vector with respect to all other vectors
  - Keep the top 'k' cosines similarities
  - Return the corresponding words

| nearest neighbors of frog | Litoria | Leptodactylidae | Rana | Eleutherodactylus |
|---------------------------|---------|-----------------|------|-------------------|
| Pictures                  |         |                 |      |                   |



Source: GloVe

#### Word analogy

- The distance between two word vectors defines the relationship between the two words.
- A similar distance between two other vectors reflects a similar relationship
- « King » « Man » ≈ « Queen » « Woman »
- « King » « Man » + « Woman » ≈ « Queen »
- Meaning: « Man » is to « King » what « Woman » is to « Queen »
- Now we can ask : « Paris » is to « France » what « Rome » is to…?
- Answer: vector closest to « France » « Paris » + « Rome », hopefully « Italy » ☺





# Demo: finding similarities and analogies with Gluon NLP and pre-trained GloVe embeddings

https://gitlab.com/juliensimon/dlnotebooks/gluonnlp/



#### Demo: embeddings with ELMo on TensorFlow

https://gitlab.com/juliensimon/dlnotebooks/blob/master/nlp/ELMO%20TensorFlow.ipynb



#### Text classification

Sentiment analysis, spam detection, sentence pair comparaison, etc.

- Build a dataset of labeled sentences
- 2. Grab a pre-trained model, and add a classification layer
- 3. Convert each sentence to a list of vectors
- 4. Train or fine-tune the model to predict the correct class



Source: Wikipedia



# Demo: sentiment analysis on movie review with ktrain and pre-trained BERT

https://gitlab.com/juliensimon/dlnotebooks/ktrain/



### Getting started on AWS

https://ml.aws

https://aws.amazon.com/marketplace/solutions/machine-learning/natural-language-processing

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples



#### **DEV** DAY

# Thank you!

