Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №4 по дисциплине «Организация ЭВМ и систем»

Вариант 4

Выполнил студент группы ИВТ-31_____/Крючков И. С/ Проверил______/Клюкин В.Л./

1. Задание

Определить архитектуру ЭВМ, система команд которой состоит из одноадресных команд, использующих прямую адресацию; разработать структурную схему и алгоритм работы ЭВМ; составить и отладить микропрограмму командного цикла ЭВМ. Выполнить умножение: Z=XY (X и Y – целые числа от 0 до 255) путем Y кратного суммирования множимого X

- 2. Определение структуры и программирование
- 2.1 Схема алгоритма

2.2 Форматы данных

X и Y изменяются в пределах от 0 до 255, поэтому любое число можно представить 16 разрядным двоичным кодом без знака

2.3 Программно-доступные регистры

Программно-доступными регистрами МЭ, система команд которой состоит из одноадресных команд, можно считать: аккумулятор АХ, счетчик СХ, программный счетчик РС и регистр признаков RP, содержащий в простейшем случае разряд признака нуля (Z).

2.4 Система команд

Название	Мнемоника		Изменение
			признака Z
ЗАГРУЗКА АС	LDA A	AC: = M[A], PC: = PC + 1	+
ОЧИСТКА	CLM A	M[A]: = 000, PC : = $PC + 1$	-
СЛОЖЕНИЕ	ADD A	AX: = $AX - M[A]$, PC : = $PC +$	-
		1	
ПЕРЕХОД, ЕСЛИ	BEQ A	Если PZ = 1, то PC: = A,	-
НУЛЬ		иначе PC: = PC + 1	
ПЕРЕХОД	BR A	PC: = A	
ДЕКРЕМЕНТ	DEC A	M[A] := M[A] - 1, PC := PC +	+
		1	
ОСТАНОВ	HLT A	РС: = А, останов	-

2.5 Программа

	1	CLM RES
	2	LDA X
	3	BEQ X
	4	LDA Y
	5	BEQ Y
m0	6	ADD X
	7	DEC Y
	8	BEQ m1
	9	BR m0
m1	10	HLT

3. Кодирование программы и распределение памяти программ и данных

3.1 Коды операций

Название	Мнемоника	Код операции
ЗАГРУЗКА АС	LDA A	0x06
ОЧИСТКА	CLM A	0x02
СЛОЖЕНИЕ	ADD A	0x04
ПЕРЕХОД, ЕСЛИ НУЛЬ	BEQ A	0x07
ПЕРЕХОД	BR A	0x05
ДЕКРЕМЕНТ	DEC A	0x03
OCTAHOB	HLT A	0x00

3.2 Распределение памяти программ и данных

	039	Комментарии	ПНА
00:	0006	SA^	00: 1C
01:	0003	jx	01: 0E
02:	0000	įγ	02: OC
03:	000F	jz	03: 18
04:	0000	jP	04: 12
05:	0000	j	05: 16
96:	02 03	Z:=0	06: 0F
07:	06 01	AC:=X	07: 15
08:	07 OF	X = 0 - ?	08: 00
09:	06 02	AC := Y	09: 00
0A:	07 OF	Y = 0 - ?	0A: 00
0B:	0401	Z:=Z+X	0B: 00
0C :	03 02	AC:=AC-1	0C: 00
0D :	07 0F	AC = 0?	0D: 00
ØE:	05 0B	j -> 0B	0E: 00
ØF:	0003	įSTOP	0F: 00

4. Разработка структуры и алгоритма работы

4.1 Структура учебной ЭВМ

4.3 Алгоритм работы подмикропрограмм

5. Микропрограммная реализация ЭВМ

5.1 Распределение регистров

	err ruempegemen	p 01 11 0 1 p 0			
	РЗУ(R0-R7)				РЗУ(R8-R15)
0	AC			8	Регистр результата
1				9	
2				A	
3				В	
4				C	
5				D	Регистр для данных из ЗУ
6	PC			Е	Регистр константы
7	PR Z			F	Счетчик адреса ЗУ
RA	Адрес ЗУ			RQ	

5.2 Коды операций и начальные адреса подмикропрограмм

	<u> </u>	. 4
Мнемоника	Код операции	Адрес первой
		микрокоманды
LDA A	0x06	0x0F
CLM A	0x02	0x0C
ADD A	0x04	0x12
BEQ A	0x07	0x15
BR A	0x05	0x16
DEC A	0x03	0x18
HLT A	0x00	0x1C

5.3 Микропрограмма командного цикла (выборка команды и установка признаков)

N≗	МИ	P.	39	y	пр. АЛ	y	y	пр. Об	39	Шина	МИ	Ų	Іпр.	усл.		9пр. 9	y	
MK	18-0	Α	В	CO	^0E	SC	^CS	^W	^EA	D11-0	13-0	Α	U	^CCE	CO	^RLD	^0	Ε
00:	571	Ε	Ε	0	0	00	1	1	1	006	C	99	9	0	1	1	9	^
01:	533	0	Ε	0	0	00	1	1	1	j 001	9	00	0	0	1	1	0	
02:	143	0	1	0	0	00	1	1	0	000	Ε	00	0	0	1	1	0	
03:	337	0	ó	0	1	00	0	1	1	000	Ε	00	0	0	1	1	0	
04:	203	ó	6	1	0	00	1	1	0	000	Ε	00	0	0	1	1	0	
05:	245	Ε	F	0	1	00	0	1	1	000	2	00	0	0	1	1	0	
	343	0	7	0	1	00		1	1	000	Ε	00	_	0	1	1	0	
1	133	0	0	0	1	00		1	1	00A	3	00	_	0	1	1	0	
08:	133	0	_	0	1	00		1	1	004	3	01	0	0	1	1	9	
09:		0	7	1	1	01		1	1	004	3	99	_	1	1	1	9	
0A:	303	0	7	1	1	00	1	1	1	004	3	00	0	1	1	1	0	

5.4 Микропрограмма командного цикла (выполнение операций)

N≗	МИ	P.	39	9	пр. АЛ	y	y	Inp. 03	39	Шина	МИ) y	пр.	усл.		9пр. 9	y	
MK	18-0	Α	В	CO	^0E	SC	^CS	~w	^EA	D11-0	13-0	Α	U	^CCE	CO	^RLD	^0	Ε
OB:		-			-		· -			l			-			-	-	^
0C :	133	0	F	0	0	00	1	1	0	000	Ε	00	0	0	1	1	0	
0D :	143	0	F	0	0	00	0	0	1	004	3	00	0	1	1	1	0	
ØE:		-		-		[i	-		-	-	-	-	-	
OF:	133	0	F	0	9	00	1	1	0	000	Ε	00	0	0	1	1	0	
10:	337	0	0	0	1	00	0	1	1	006	3	00	0	1	1	1	0	
11:		-	-	-						i	-		-	-		-	-	
12:	133	0	F	0	0	00	1	1	0	000	Ε	00	0	0	1	1	0	
13:	305	8	8	0	1	00	0	1	1	004	3	00	0	1	1	1	0	
14:		-	-	-	-		-			i	-		-	-		-	-	
15:	113	0	7	0	1	00	1	1	1	004	3	00	0	0	1	1	0	
16:	334	F	6	0	1	00	1	1	1	004	3	00	0	1	1	1	0	
17:		-	-	-	-		-	-			-		-	-		-	-	
18:	133	0	F	0	9	00	1	1	0	000	Ε	00	0	0	1	1	0	
19:	337	0	0	0	1	00	0	1	1	000	Ε	00	0	0	1	1	0	
1A:	313	0	0	0	0	00	0	0	1	006	3	00	0	1	1	1	0	
1B:		-	-	-	-		-	-			-		-	-	-	-	-	
1C:	133	0	F	0	9	00	1	1	0	000	Ε	00	0	0	1	1	0	
1D:	134	8	0	0	0	00	0	0	1	000	Ε	00	0	0	1	1	0	
1E:	343	0	8	0	1	00	1	1	1	000	Ε	00	0	0	1	1	0	
1F:	334	F	6	0	1	99	1	1	1	000	3	00	0	1	1	1	0	

6. Расчет производительности и быстродействия Допустим, что среднее число циклов в программе C=5, вероятность обнуления операнда до окончания цикла p1=0.005, вероятность того, что X=0, p2=0.004; кроме того, будем считать, что время обращения к 3Y включено во время выполнения микрокоманд

Тип	Ср. число	Ср. число	$h_i \ast b_i$	Вероятность	$b_i * p_i$
команды	команд, h _i	микрокоманд,		команды р _і	
		b_{i}			
LDA	2.3	7.5	17.25	0.097	0.7275
CLM	0.996	3	2.988	0.042	0.126
ADD	5.994	2.5	14.985	0.290	0.725
BEQ	7.996	2	15.992	0.256	0.512
BR	6.442	1.5	9.663	0.032	0.048
DEC	5.994	1.5	8.991	0.290	0.435
HLT	1	1	1	0.032	0.032
	H = 30.772		R = 70.869		r = 2.6

Примем t=100 нс. Тогда среднее время выполнения команды составит $T_v=rt=260$ нс, а быстродействие V=1 / $T_v=3.84$ млн. команд/сек. Аналогично среднее время решения задачи $T_w=R_t=7$ мкс., производительность - W=142 тыс. задач в секунду.

7. Вывод

В ходе лабораторной работы была разработана и изучена учебная ЭВМ; разработана и реализована система команд, написана программа решения задачи, которая была помещена в ОЗУ. При выборке данных из ОЗУ старшие 8 бит указывали на код операции, который затем поступал в преобразователь начального адреса — так осуществлялся механизм вызова нужной микропрограммы, а младшие 8 бит указывали на адрес данных. Так была реализована прямая адресация.