

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/ WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

2021

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 23 pages. *Hierdie nasienriglyne bestaan uit 23 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEON	IETRY
S	A mark for a correct statement (A statement mark is independent of a reason)
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
S/R	Award a mark if statement AND reason are both correct
	Ken 'n punt toe as die bewering EN rede beide korrek is

QUESTION/VRAAG 1

1.1

_															
	26	13	3	18	12	34	24	58	16	10	15	69	20	17	40

1.1.1(a)	$\overline{x} = \frac{375}{15}$	✓ 375
	$\bar{x} = 25 \text{MB}$ Answer only: Full marks	✓ answer (2)
1.1.1(b)	$\sigma = 17,65 \text{ MB}$	✓ answer
		(1)
1.1.2	25 + 17,65 = 42,65	✓ 42,65
	∴ 2 days	✓ 2
	, .	(2)
1.1.3	Overall $\bar{x} = \frac{80}{100} \times 25$	
	= 20 MB	\checkmark Overall $\bar{x} = 20$
	$\frac{375 + x}{30} = 20$	$\checkmark \frac{375 + x}{30} = 20$
	x = 600 - 375	
	= 225	✓ answer
	maximum total amount of data that Sam must use for	(3)
	the remainder of the month: 225 MB	

Wind speed in km/h (x)	2	6	15	20	25	17	11	24	13	22
Temperature in °C (y)	28	26	22	22	16	20	24	19	26	19

1.2.1	a = 29,35	✓ a	
	a = 29,35 b = -0,46	✓ b	
	$\hat{y} = 29,35 - 0,46x$	✓ equation	
	<i>y</i> 25,000 0,1011		(3)
1.2.2	y = 25,20 °C (calculator)	✓✓ answer	
			(2)
	OR		
	$\hat{\mathbf{v}} = 29.35 - 0.46(9)$	✓ substitution	
	$\hat{y} = 29,35 - 0,46(9)$ $y = 25,21 ^{\circ}\text{C}$	✓ answer	
	y = 25,21 C		(2)
1.2.3	b < 0, indicating that as the wind speed increases the	✓ interpretation	·
	temperature decreases.		(1)
		•	[14]

Number of days absent	Number of learners	Cumulative frequency
$0 \le x < 5$	34	34
$5 \le x < 10$	45	79
$10 \le x < 15$	98	177
$15 \le x < 20$	43	220
$20 \le x < 25$	7	227
$25 \le x < 30$	3	230

QUESTION/VRAAG 3

Answer only: Full marks

 $x^2 + y^2 = 256$

 $(x-0)^2 + (y-0)^2 = (16)^2$

3.4

OS is the radius of circle passing through S

(2)

✓ identifying radius = 16

✓ Equation of circle

3.5	$m_{\rm RM} = m_{\rm LQ} = -\frac{1}{2} \qquad [RM \parallel LQ]$	√ m _{RM}
	$-4 = -\frac{1}{2}(6) + c \qquad \mathbf{OR} \qquad y + 4 = -\frac{1}{2}(x - 6)$	✓ substitution of $M(6;-4)$
	$c = -1 y + 4 = -\frac{1}{2}x + 3$	
	$\therefore y = -\frac{1}{2}x - 1$ $T(0; -1)$	✓ coordinates of T (3)
3.6	T(0;-1), $P(0;-6)$ and $S(0;-16)$	(77 10 1
	$\therefore PS = 10 \text{ units and } TS = 15 \text{ units}$	\checkmark PS = 10 units \checkmark TS = 15 units
	$\frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3}$ [prop theorem; RM LP] $\mathbf{OR} \text{ [line one side of } \Delta/lyn een sy v \Delta]}$	✓ answer
	OR Answer only: Full marks	(3)
	M(6; -4), Q(4; -8) and S(0; -16)	
	$MS = \sqrt{180} = 6\sqrt{5}$ and $QS = \sqrt{80} = 4\sqrt{5}$	\checkmark MS = $6\sqrt{5}$ units
	$\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3}$ [prop theorem; RM LQ] \mathbf{OR} [line one side of	\checkmark QS = $4\sqrt{5}$ units
	RS MS 3 OR [line one side of $\Delta/lyn // een \ sy \ v \ \Delta$]	✓ answer
	Answer only: Full marks	(3)
3.7	area of PTMQ = area of Δ TSM – area of Δ PSQ	✓ area of ∆TSM –
	$= \frac{1}{2} ST. \perp h_{\scriptscriptstyle M} - \frac{1}{2} .PS. \perp h_{\scriptscriptstyle Q}$	area of ΔPSQ
	$= \frac{1}{2}(15)(6) - \frac{1}{2}(10)(4)$	\checkmark area $\triangle TSM = 45$
	2 2 = 45 - 20	✓ area $\triangle PSQ = 20$
	= 25 square units	✓ answer
	OR	(4)
	$TM = \sqrt{45} = 3\sqrt{5} = 6,71$	$\checkmark TM = 3\sqrt{5}$
	$MQ = \sqrt{20} = 2\sqrt{5} = 4,47$	$MQ = 2\sqrt{5}$
	$PQ = \sqrt{20} = 2\sqrt{5} = 4,47$	$PQ = 2\sqrt{5}$
	area of trapezium PTMQ = $\frac{1}{2} (3\sqrt{5} + 2\sqrt{5})(2\sqrt{5})$	\checkmark area of trapezium = $\frac{1}{2}$
	$=\frac{1}{2}\left(5\sqrt{5}\right)\left(2\sqrt{5}\right)$	(sum of sides)(height) ✓ substitute into formula
	= 25 square units	✓ answer (4)

OR	
$MQ = \sqrt{20} = 2\sqrt{5}$	
$PQ = \sqrt{20} = 2\sqrt{5}$	
TP = 5	
area of PTMQ= area of Δ MTP+ area of Δ PQM	✓ area of ΔMTP +
area of PTMQ = $\frac{1}{2}$ TP× $\perp h_M + \frac{1}{2}$ MQ×PQ area of PTMQ	area of $\triangle PQM$ $\Gamma M Q = \frac{1}{2} (5) \times 6 + \frac{1}{2} (2\sqrt{5}) (2\sqrt{5})$
area of PTMQ= $10+15=25$	✓ area ΔMTP = 10 ✓ area ΔPQM = 15 ✓ answer
	(4) [19]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

8

QUESTION 4

4.1	$PV = r = \sqrt{10}$	$\checkmark \text{ PV} = r = \sqrt{10}$
	$PV = \sqrt{(k - (-3))^2 + (1 - 4)^2} = \sqrt{10}$	✓ substitution into distance formula
	$(PV)^{2} = (k - (-3))^{2} + (1 - 4)^{2} = 10$ $k^{2} + 6k + 9 + 9 = 10$ $(k + 3)^{2} + 9 = 10$	distance formula
	$k^{2} + 6k + 9 + 9 = 10$ OR $(k+3)^{2} + 9 = 10$ $(k+3)^{2} = 1$	✓ standard form
	(k+4)(k+2) = 0 $k+3=1$ or $k+3=-1$	✓ factors
	k = -4 or $k = -2\therefore k = -2$	✓ answer
4.2	$x^2 + 6x + y^2 - 8y + 15 = 0$	(5)
	y-intercepts: $(0)^2 + 6(0) + y^2 - 8y + 15 = 0$	$\checkmark x = 0$
	(y-3)(y-5) = 0	✓ factors
	$y_C = 3$ or $y_B = 5$	✓ both values
	$\therefore BC = 2 \text{ units}$	✓ answer (4)
		(4)

4.3.1	3-1		✓ substitution into	
	$m_{\rm TC} = \frac{3-1}{0-(-2)}$		gradient formula	
	= 1			
	$\tan \alpha = 1$		$\checkmark \tan \alpha = 1$	
	$\therefore \alpha = 45^{\circ}$		✓ answer	
	OR			(3)
	y = mx + 3			
	$1 = m(-2) + 3$ $m_{\text{TC}} = 1$		✓ substitution into equation of a line	
	10		_	
	$\tan \alpha = 1$ $\therefore \alpha = 45^{\circ}$		\checkmark tan α = 1 \checkmark answer	
	$\alpha = 45^{\circ}$		v answer	(3)
4.3.2	BĈV = 135°		✓ BĈV = 135°	(3)
4.5.2		$[\operatorname{ext} \angle \operatorname{of} \Delta / \operatorname{buite} \angle \operatorname{v} \Delta]$		
	$\therefore V\hat{W}B = 45^{\circ}$	[opp \angle s of cyclic quad/teenoorst. \angle e v kvh]	✓ answer	(2)
		Answer only: Full marks		(2)
	OR			
	$\hat{TCO} = 45^{\circ}$	$[\angle s \text{ of } \Delta / \angle e v \Delta]$	✓ TĈO = 45°	
	$\therefore \hat{VWB} = 45^{\circ}$	[ext \angle s of cyclic quad/buite $\angle v kvh$]	✓ answer	
		Answer only: Full marks		(2)
4.4.1	Q(-3;-2)		✓ x _Q ✓ y _Q	
				(2)
4.4.2	$(x+3)^2 + (y+2)^2 = 1$	10	✓ LHS ✓ RHS	. *
				(2)
4.4.3	x = -2 or x = -4		$\checkmark x = -2 \checkmark x = -4$	
				(2)
				[20]

- 1	() . (,,,,,,,	
5.1	$\tan(-x).\cos x.\sin(x-180^{\circ})-1$	
	$= -\tan x \cdot \cos x \cdot \sin(-(180^\circ - x)) - 1$	$\sqrt{-\tan x}$
	$=\frac{-\sin x}{\cos x \cdot (-\sin x)} - 1$	$\sqrt{-\sin x}$ $\sqrt{-\sin x}$
	$\cos x$	$\cos x$
	$=\sin^2 x - 1$	$\checkmark \sin^2 x - 1$
	$=-\cos^2 x$	✓ answer
		(5)
5.2.1	cos 215°	
	$=-\cos 35^{\circ}$	✓ reduction
	=-m	✓ answer
		(2)
5.2.2	sin 20°	
	$=\cos 70^{\circ}$	✓ co-function
	- cos 70	V CO-Tunction
	$=\cos 2(35^{\circ})$	
		✓ double angle
	$= 2\cos^2 35^\circ - 1$	
	$=2m^2-1$	expansion
	- 2m 1	\checkmark answer in terms of m
	OR	(3)
	$=\sin(55^\circ - 35^\circ)$	
	$= \sin 55^{\circ} \cos 35^{\circ} - \cos 55^{\circ} \sin 35^{\circ}$	✓ compound angle
		expansion
	$= m.m - \sqrt{1 - m^2} . \sqrt{1 - m^2}$	
		$\checkmark \cos 55^\circ = \sqrt{1 - m^2} \text{or}$
	$= m^2 - \left(1 - m^2\right)$	$\sin 35^\circ = \sqrt{1 - m^2}$
	$=2m^2-1$	\checkmark answer in terms of m
	-2m-1	(3)
5.3	$\cos 4x \cdot \cos x + \sin 4x \cdot \sin x = -0.7$	(6)
	$\cos(4x - x) = -0.7$	✓ compound angle
	$ref \angle = 45,57^{\circ}$	1 0
	161 ∠ - 43,3 /	
	$3x = 180^{\circ} - 45,57^{\circ} + k.360^{\circ} \text{ or } 3x = 180^{\circ} + 45,57^{\circ} + k.360^{\circ}$	$\sqrt{3}x = 134,43^{\circ} \text{ or }$
		, and the second
	$3x = 134,43^{\circ} + k.360^{\circ}$ or $3x = 225,57^{\circ} + k.360^{\circ}$	225,57°
	$x = 44,81^{\circ} + k.120^{\circ}; \ k \in \mathbb{Z}$ $x = 75,19^{\circ} + k.120^{\circ}; \ k \in \mathbb{Z}$	$\checkmark x = 44,81^{\circ} \text{ or } 75,19^{\circ}$
		$\checkmark + k.120^{\circ}; \ k \in \mathbb{Z}$
		(4)

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

5.4	$RHS = \cos^2 x - \sin^2 x$		
	LHS = $\frac{\sin 4x \cdot \cos 2x - 2\cos 4x \cdot \sin x \cdot \cos x}{\tan 2x}$ $= \frac{\sin 4x \cdot \cos 2x - \cos 4x \cdot \sin 2x}{\frac{\sin 2x}{\cos 2x}}$ $= \sin(4x - 2x) \left(\frac{\cos 2x}{\sin 2x}\right)$ $= \cos 2x$ $= \cos^2 x - \sin^2 x$		
	LHS = RHS		(4)
		[1	[8]

6.1	$1 - 2\sin^2 x = -\sin x$	✓ identity
	$2\sin^2 x - \sin x - 1 = 0$ (2\sin x + 1)(\sin x - 1) = 0	✓ factors
	$\sin x = -\frac{1}{2} \qquad \qquad \text{or} \qquad \sin x = 1$	$\sqrt{\sin x} = -\frac{1}{2}$
	$ \begin{array}{c c} 2 \\ \text{ref } \angle = 30^{\circ} \\ \end{array} \qquad \text{ref } \angle = 90^{\circ} $	$\sqrt{\sin x} = 1$
	$x = 210^{\circ} + k.360^{\circ}$ $x = 90^{\circ} + k.360^{\circ}$	
	or $x = 330^{\circ} + k.360^{\circ}$	(, , , , , , , , , , , , , , , , , , ,
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	$\sqrt{-150^{\circ}}$ and -30° $\sqrt{90^{\circ}}$ (A)
	OR	(6)
	$\cos 2x = -\sin x$	
	$\cos 2x = -\cos(90^\circ - x)$	✓ co-functions
	$2x = 180^{\circ} - (90^{\circ} - x) + k.360^{\circ}$ or $2x = 180^{\circ} + (90^{\circ} - x) + k.360^{\circ}$	$\checkmark 2x$ in quadrant 2
	$2x = 90^{\circ} + x + k.360^{\circ}$ or $2x = 270^{\circ} - x + k.360^{\circ}$ $x = 90^{\circ} + k.360^{\circ}$ $x = 90^{\circ} + k.120^{\circ}$	\checkmark 2x in quadrant 3 \checkmark both general
	$x = 90^{\circ} + k.360^{\circ}$ $x = 90^{\circ} + k.120^{\circ}$	solutions
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	✓ -150° and -30° ✓ 90° (A)
	OR	(6)
	$\cos 2x = -\sin x$	
	$\cos 2x = \cos(90^\circ + x)$	✓ co-functions
	$2x = 90^{\circ} + x + k.360^{\circ}$ or $2x = 360^{\circ} - (90^{\circ} + x) + k.360^{\circ}$	$\checkmark 2x$ in quadrant 1
	$x = 90^{\circ} + k.360^{\circ}$ or $3x = 270^{\circ} + k.360^{\circ}$ $x = 90^{\circ} + k.120^{\circ}$	✓ 2 <i>x</i> in quadrant 4 ✓ both general
		solutions $\sqrt{-150^{\circ}}$ and -30°
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	✓ 90° (A)
	OR	(6)
	$\cos 2x = -\sin x$	
	$\sin(90^\circ - 2x) = -\sin x$	✓ co-functions
	$90^{\circ} - 2x = 180 + x + k.360^{\circ}$ or $90^{\circ} - 2x = 360^{\circ} - x + k.360^{\circ}$	$\sqrt{90^{\circ}-2x}$ in quadrant 3
		\checkmark 90°-2x in
	$x = -30^{\circ} + k.120^{\circ}$ $x = -270^{\circ} + k.360^{\circ}$	quadrant 4 ✓ both general
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	solutions $\sqrt{-150^{\circ}}$ and -30°
	$\lambda = 150$ Of $\lambda = 50$ Of $\lambda = 70$	✓ 90° (A)
		(6)

7.1	In ΔBCE:	
	CE BC	
	$\frac{CE}{\sin \hat{B}} = \frac{BC}{\sin B\hat{E}C}$	
	$\frac{CE}{CE} = \frac{BC}{CE}$	✓ correct use of sine rule
	$\frac{1}{\sin 30^{\circ}} = \frac{1}{\sin 2x}$	
	$CE = \frac{BC\sin 30^{\circ}}{1.5}$	CE - BCsin30°
	$CE = \frac{1}{\sin 2x}$	$\checkmark CE = \frac{BC\sin 30^{\circ}}{\sin 2x}$
	In ΔCDE:	
	$\frac{DC}{CE} = \tan D\hat{E}C$	✓ correct trig ratio
		-
	$DC = \frac{BC.\sin 30^{\circ}}{\sin 2x} (\tan x)$	✓ Subst CE
	$DC = \frac{BC}{4\sin x \cos x} \left(\frac{\sin x}{\cos x}\right)$	sin r
	$\int \frac{dx}{dx} = \frac{1}{4\sin x \cos x} \left(\frac{1}{\cos x} \right)$	$\checkmark 2\sin x \cos x \checkmark \frac{\sin x}{\cos x}$
	$DC = \frac{BC}{4\cos^2 x}$	COSA
	$4\cos^2 x$	
		(6)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

7.2	$DC = \frac{BC}{4\cos^2 30^\circ}$ $= \frac{BC}{4\left(\frac{\sqrt{3}}{2}\right)^2}$ $= \frac{BC}{3}$ $\therefore BC = 3DC$		\checkmark DC == $\frac{BC}{3}$	
	But $AB = DC$ $\therefore BC = 3AB$	[opp sides of rectangle/teenoorst. sye v reghoek]	✓ BC = 3AB	
	Area of rectangle	= (AB)(BC) $= (AB)(3AB)$ $= 3AB2$	✓ substitution into area formula	(3)
				[9]

QUESTION/VRAAG 8

8.1.1	$\mathbf{M}\mathbf{\hat{R}}\mathbf{P} = 90^{\circ}$	in semi circle/∠ in halwe sirkel]	✓ R	
	$\hat{R}_2 = 21^\circ$		✓ S	
				(2)
8.1.2	$\hat{O}_1 = 138^{\circ}$ $[\angle :$	at centre = $2 \times \angle$ at circumference/	✓ S ✓R	
	mic	$dpts. \angle = 2 \times omtreks \angle]$		(2)
8.1.3	$\hat{\mathbf{M}}_1 = 21^{\circ}$	∠s in the same segment/∠e in dieselfde	✓ S ✓R	
	si	rkel segment]		(2)
	OR			
	$\hat{M}_1 + N_1 = 180^{\circ} - 138^{\circ}$ [so	um of \angle s in Δ / $\angle e \ v \ \Delta$]		
	$\therefore \hat{\mathbf{M}}_1 = 21^{\circ} \qquad [\angle \mathbf{s}]$	opp equal sides/∠e teenoor gelyke sye]	✓ S ✓R	
				(2)
8.1.4	$\hat{O}_2 = 42^{\circ}$	s on a str line/∠e op 'n reguitlyn]	✓ S	
	$\hat{P} = 42^{\circ}$ [alt	∠s; NO PR/ <i>Verw</i> . ∠ <i>e</i> , NO // PR]	✓ S ✓R	
	$\hat{\mathbf{M}}_2 = 48^{\circ}$ [sum	m of \angle s in Δ / \angle e \vee Δ]	✓ S	
	OR		~	(4)
	$\hat{N}_2 = \hat{R}_2 = 21^{\circ}$ [alt	\angle s; NO PR/Verw. \angle e, NO / PR]	✓ S ✓R	
	$\hat{N}_1 = \hat{M}_1 = 21^\circ$ [\(\angle \s \text{ oppo}\)	site equal sides/∠e teenoor gelyke sye]	✓ S	
	$\hat{\mathbf{M}}_2 = 48^{\circ}$ [sum	n of \angle s of \triangle NMR// \angle e v \triangle NMR]	✓ S	
				(4)

	1			
8.2	$\hat{\mathbf{D}}_1 = 4x$	[ext \angle of \triangle /buite \angle v \triangle]	✓ S/R	
	$\hat{D}_2 = 180^{\circ} - 4x$	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	✓ S	
	$\hat{\mathbf{B}}_1 = 5x$	[ext \angle of \triangle /buite \angle $v \triangle$]	✓ S	
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{D}}_2$	[ext \angle of cyclic quad/buite \angle v kvh]	✓S ✓R	
	$180^{\circ} - 4x = 5x$			
	$9x = 180^{\circ}$			
	$x = 20^{\circ}$		✓ answer	
				(6)
	OR			
	$\hat{\mathbf{C}}_1 = 3x$	[ext \angle of cyclic quad/buite $\angle v kvh$]	✓ S ✓ R	
	$\hat{\mathbf{B}}_2 = 4x$	[ext \angle of \triangle /buite \angle v \triangle]	✓ S	
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{C}}_3 = 3x$	[vert opp \angle s]	✓ S	
	$\hat{\mathbf{D}}_2 = 5x$	[ext \angle of \triangle /buite \angle v \triangle]		
	$4x + 5x = 180^{\circ}$	[opp \angle of cyclic quad/teenoorst. $\angle e \ v \ kvh$]	✓S/R	
	$x = 20^{\circ}$		✓ answer	
				(6)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

OR		
$\hat{\mathbf{C}}_3 = 3x$ $\hat{\mathbf{D}}_1 = 4x$	[ext \angle of cyclic quad/buite \angle v kvh]	
$\hat{\mathbf{D}}_1 = 4x$	$[\operatorname{ext} \angle \operatorname{of} \Delta / \operatorname{buite} \angle v \Delta]$	✓ S ✓R
$2x + 3x + 4x = 180^{\circ}$ $9x = 180^{\circ}$	[sum of \angle s in $\Delta/\angle e \ v \ \Delta$]	✓ S
$x = 20^{\circ}$		✓ S ✓R
		✓ answer

QUESTION/VRAAG 9

9.1

9.1 Constr: Join BE and CD and draw h_1 from E \perp AD and h_2

from $D \perp AE$

Konstr: Verbind BE en CD en trek h_1 vanaf $E \perp AD$ en h_2

 $vanaf D \perp AE$

Proof/*Bewys*:

$$\frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{BDE}} = \frac{\frac{1}{2} \text{AD} \times h_1}{\frac{1}{2} \text{BD} \times h_1} = \frac{\text{AD}}{\text{BD}}$$

$$\frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{\frac{1}{2}AE \times h_2}{\frac{1}{2}EC \times h_2} = \frac{AE}{EC}$$

area $\triangle ADE = \text{area } \triangle ADE$ [common/gemeenskaplik]

But area $\triangle BDE = area \triangle DEC$ [same base & height; $DE \parallel BC / dies \ basis \ \& \ hoogte$; $DE \parallel BC$]

$$\therefore \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{BDE}} = \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEC}}$$

$$\therefore \frac{AD}{BD} = \frac{AE}{EC}$$

 $\checkmark \frac{\text{area } \triangle ADE}{\text{area } \triangle BDE}$

✓ constr/konstr

 $\checkmark \frac{\frac{1}{2} AD \times h_1}{\frac{1}{2} BD \times h_1}$ or **R**

 $\sqrt{\frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}} = \frac{AE}{EC}$

 $\checkmark S \checkmark R$

(6)

9.2.1	$A_1 = x$ [corresp \angle s; PQ CA/ooreenkomstige \angle e, PQ CA]	✓ S ✓ R
	$\hat{\mathbf{B}} = x$ [\(\setminus \text{ opp equal sides} \setminus \text{teenoor gelyke sye} \)]	✓ S/R
	$\hat{A}_2 = x$ [tan-chord theorem/ $\angle tussen\ raaklyn\ en\ koord$]	✓ S ✓ R
	$\hat{P} = x$ [alt $\angle s$; PQ CA/verw. $\angle e$, PQ CA]	✓ S/R
		(6)
9.2.2	$\hat{\mathbf{B}} = \hat{\mathbf{P}}$ [proved in 9.2.1/bewys in 9.2.1]	✓ S
	∴ A, B, P and R are concyclic	
	∴ ABPR is a cyclic quadrilateral [conv ∠s in the same segment/	✓ R
	koord onderspan gelyke omtreks ∠e]	
		(2)
9.2.3	$\frac{BA}{BQ} = \frac{BC}{BR}$ [prop th; AC QP]	✓ S ✓ R
	OR	
	[line one side Δ/lyn / een syn v Δ]	
	But $QR = BR$ [sides opp = $\angle s/sye \ teenoor = \angle e$]	✓ S
	$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$	(3)

OR	
In \triangle ABC and \triangle BQR:	
$\hat{A}_1 = \hat{B} = x $ [proved in 9.2.1]	✓ S
$\hat{\mathbf{B}} = \hat{\mathbf{Q}} = x$ [proved in 9.2.1]	✓ S
$\hat{C}_1 = B\hat{R}Q = 180^\circ - 2x \text{ [sum of } \angle s \text{ of } \Delta \text{]}$	✓ S
$\therefore \Delta \ ABC \parallel \Delta \ BQR$	
$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$	
BQ QR	
OR	
In \triangle ABC and \triangle BQR:	4.5
$\hat{A}_1 = \hat{B} = x $ [proved in 9.2.1]	✓ S
$\hat{\mathbf{B}} = \hat{\mathbf{Q}} = x$ [proved in 9.2.1]	✓ S
$\hat{C}_1 = B\hat{R}Q = 180^\circ - 2x \text{ [sum of } \angle s \text{ of } \Delta \text{]}$	✓ R
$\therefore \triangle ABC \parallel \triangle BQR [\angle \angle \angle]$	
$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$	
му уд	
OR	
In \triangle ABC and \triangle QBR:	
B is common	
$\hat{A}_1 = \hat{Q} = x$ [corres $\angle s$; PQ CA]	✓ S
$\hat{C}_1 = B\hat{R}Q = 180^\circ - 2x [\text{sum of } \angle \text{s of } \Delta]$	✓ S
$\therefore \triangle ABC \parallel \triangle QBR [\angle \angle \angle]$	
But $QR = BR$ [sides opp = $\angle s/sye \ teenoor = \angle e$]	✓ S
$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$	

$SC/SS/NSC/NSS-Marking\ Guidelines/Nasienriglyne$

22

10.1.	$\hat{Q}_1 + \hat{Q}_2 = 90^{\circ}$	[∠ in semi circle/∠ in halwe sirkel]	✓ S/R	
	$\therefore \hat{\mathbf{M}}_2 = 90^{\circ}$	[co-interior \angle , MS QR/ ko - $binne \angle e$, MS QR]	✓ S/R	
	∴ SQ is a diameter	[converse: \angle in semi circle/ Omgekeerde: \angle in halwe sirkel]	✓ R	(3)
	OR			
	MS QR			
	$\frac{TS}{T} = \frac{TM}{T} = \frac{1}{T}$	[prop theorem; SM \parallel QR] OR	✓ S/R	
	SR MQ 1	[line one side of Δ]/lyn een sy $v\Delta$		
	TM = MQ			
	$\therefore \hat{\mathbf{M}}_2 = 90^{\circ}$	[Line from centre bisects chord/midpt. sirkel; midpt koord]	✓ S/R	
	∴ SQ is a diameter	[converse: ∠ in semi circle/	✓ R	
	OR	Omgekeerde: \angle in halwe sirkel]		(3)
	OK			
	$SQ \perp QP$	$[\tan \perp \operatorname{rad}/\operatorname{raaklyn} \perp \operatorname{radius}]$	\checkmark S \checkmark R	
	∴ SQ is a diameter	[converse: $tan \perp rad/Omgekeerde$: $raaklyn \perp radius$]	√ R	(3)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

10.1.2	In $\triangle RTQ$ and $\triangle RQP$			
	$\hat{\mathbf{T}} = \hat{\mathbf{Q}}_3$	[tan-chord theorem/∠tussen raaklyn en koord]	✓ S ✓ R	
	$\hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_2 = 90^{\circ}$	[co-interior \angle s, MS \parallel QR/ko-binne \angle e, MS \parallel QR]	✓ S	
	$\therefore \hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_2 = \hat{\mathbf{P}} = 90^{\circ}$	or [∠ in semi circle/∠ in halwe sirkel]	✓ S	
	$\hat{R}_1 = \hat{R}_2$ $\Delta RTQ \parallel \Delta RQP$	$[\angle s \text{ of } \Delta / \angle e van \Delta]$	✓ S	
	$\frac{RT}{RQ} = \frac{RQ}{RP}$ $RT = \frac{RQ^2}{RP}$		✓ ratio	(6)
	OR			
	In \triangle RTQ and \triangle RQP $\hat{T} = \hat{Q}_3$	[tan-chord theorem ∠tussen raaklyn en koord]	✓ S ✓ R	
	$\hat{Q}_1 + \hat{Q}_2 = 90^{\circ}$	[co-interior \angle s, MS QR/ko-binne \angle e, MS QR]	✓ S	
	^ ^	or [\angle in semi circle/ \angle in halwe sirkel]		
	$\therefore \hat{Q}_1 + \hat{Q}_2 = \hat{P} = 90^{\circ}$		✓ S	
	Δ RTQ \parallel Δ RQP	$[\angle,\!\angle,\!\angle]$	✓ R	
	$\frac{RT}{RQ} = \frac{RQ}{RP}$		✓ ratio	(6)
	$RT = \frac{RQ^2}{RP}$			(6)
10.2	QR = 28 units	[midpoint theorem/midpt. stelling]	✓ S ✓ R	
	$RP^{2} = 28^{2} - (\sqrt{640})^{2}$ RP = 12 units	[Pythagoras/Pythagoras]	✓ S ✓ RP = 12	
	$RT = \frac{RQ^2}{RP}$			
	$RT = \frac{28^2}{12}$			
	$RT = \frac{190}{3}$		✓ RT	
	Radius = $\frac{98}{3}$ units		✓ answer	(6)
			[15]

TOTAL/TOTAAL: 150