La planification

C'est l'activité qui consiste à déterminer et à ordonnancer les tâches du projet, à estimer leurs charges et à déterminer les profils nécessaires à leur réalisation.

Nous pouvons alors dire que la planification a 3 phases:

- analyser: aussi finement que possible
- modéliser : déterminer les précédences, les durées, les contraintes de ressources, ...
- ordonnancer : calculer les dates, les marges et lisser les charges (Tâches).

La planification

Il faut donc diviser pour maîtriser la complexité du projet.

maîtrise des éléments atomiques du projet

+
maîtrise de la structure séquentielle du projet

maîtrise globale du projet

La planification

- On a 4 notions de planification:
 - La planification au plus tôt
 - La planification au plus tard
 - La planification à capacité infinie
 - La planification à capacité finie
- Par exemple

Tache	Durée
Opé1	10h
Opé2	20h
Opé3	30h

La planification au plus tôt

On part de la date du jour ou de la date spécifiée de "début au plus tôt" et on calcule à partir de là la date de fin d'opération.

La planification au plus tôt: Illustration

La Planification au plus tard

 Consiste à fixer d'abord la date de fin d'opération pour trouver la date de début d'opération.

La planification au plus tard: Illustration

La planification à capacité infinie

- Chaque opération se planifie en ignorant la charge provoquée par les autres opérations.
- Le système peut planifier les deux ordres de travail en prenant le jour J comme date de début

Capacité infinie: Intérêt

L'intérêt de cette planification (qui présente des incohérences avec la réalité) est justement de détecter les surcharges sur les postes si la planification devait respecter strictement les délais demandés.

Capacité infinie: Exemple

- Un poste de charge a un temps d'ouverture de huit heures par jour.
- La charge pour l'opération 1 correspond à 10 heures d'occupation pour ce poste
- La charge pour l'opération 2 correspond à 13 heures d'occupation pour ce poste

Capacité infinie: Exemple

La planification à capacité finie

- L'ordonnancement quant à elle consiste en l'optimisation de l'ordre de passage des opérations.
- ► Elle exclut les configurations qui présentent des charges de poste supérieures à 100 %.
- Cela implique de décaler des dates d'ordre de travail ou de modifier la capacité des postes (on parle alors de lissage).

Le Lissage

- ► Le lissage de charge consiste à éliminer les surcharges issues d'une première planification en capacité infinie.
- On distingue deux types de lissages:
 - Lissage dit en « parallèle »
 - Lissage dit en « série »

Lissage dit en "parallèle"

- En cas de surcharge de poste, on affectera la charge à un poste équivalent pour l'opération.
- C'est pourquoi il est intéressant de regrouper au préalable les postes de charge dans des familles de postes interchangeables.
- Une fois ce regroupement effectué, on pourra substituer au poste surchargé un poste de la même famille.

Lissage dit en "série"

- Si tous les postes d'une même famille de postes interchangeables sont surchargés sur une période donnée,
- cela signifie que seul le lissage "en série" (décalage dans le temps de l'opération) pourra annuler la surcharge.

Formalisation problème d'ordonnancement

- Plusieurs formalisations d'un problème sont possibles en fonction de 4 éléments à prendre en compte :
 - le critère à optimiser
 - les contraintes prises en compte
 - la nature certaine ou aléatoire des données
 - la méthode de résolution retenue

Le critère à optimiser

- Pour choisir entre plusieurs solutions d'ordonnancement, il faut disposer d'un critère d'évaluation parmi les deux familles suivantes :
 - date d'achèvement du projet
 - lissage d'une ressources donnée

Les contraintes potentielles

- Elles peuvent être de deux sortes :
 - Les contraintes d'antériorité selon laquelle une tâche j ne peut commencer avant qu'une tâche i ne soit achevée.
 - Les contraintes de localisation temporelle impliquant qu'une tâche donnée i ne peut débuter avant une date imposée ou qu'elle ne peut s'achever après une date imposée (cas des jalons).

Les contraintes cumulatives des ressources non stockables

- Elles imposent la prise en compte :
 - de la disponibilité datée de différentes ressources non stockables (heures de travail du personnel ou d'équipement) qui sont perdues si elle ne sont pas utilisée au cours de cette période.
 - → et de leur consommation datée par tâches dans la recherche d'un ordonnancement.

Les contraintes disjonctives

- Elles imposent la non-réalisation simultanée de deux tâches
- Interdictions de réalisation simultanée liées, par exemple:
 - ressources partagées
 - à des raisons de sécurité
 - ou de manque de place pour exécuter simultanément plusieurs tâches en un même endroit).

L'incertitude des données

- ▶ Le problème posé se caractérise par la prise en compte de données numériques relatives aux durées associées aux différentes tâches et à leurs consommations de différentes ressources.
- Malheureusement, hypothèse de travail pas toujours réaliste.

Les problèmes simples

- Univers certain
 - → tâches répétitives (e.g. construction)
 - la durée peut être prédite avec une certitude élevée à la cause de l'existence d'une expérience (i.e. historique)
 - une estimation unique du temps
- Prise en compte des seuls contraintes d'antériorité et critère de la minimisation de la date d'achèvement du projet,
- Temps déterministe : utiliser CPM

Les problèmes plus complexes

- Univers incertain
 - Tâches non répétitives (e.g. projet R&D)
 - les estimations du temps et du cout tendent à être incertain
 - plusieurs estimations du temps
- Temps probabiliste : utiliser la méthode de PERT

Les problèmes plus complexes

- Pour chaque Tâche, nous avons 3 durée:
 - Une durée optimiste : o
 - Une durée pessimiste: p
 - Une durée vraisemblable: v
- Pour estimer la durée moyenne de la tâche, il faut calculer sa durée moyenne et l'écart type comme suit:
 - Durée moyenne = $\frac{o+4v+p}{6}$

Ecart type =
$$\frac{p-o}{6}$$

Exemple

Pour la réalisation d'un lot de travail Alpha, dont le temps le plus optimiste est de 4 jours, le temps moyen de 5 jours et le temps le plus pessimiste de 6 jours, le temps moyen de réalisation serait de :

$$((1 \times 4 \text{ jours}) + (4 \times 5 \text{ jours}) + (1 \times 6 \text{ jours}))/6 = 5 \text{ jours}$$

Résumé

- La planification nous permet de:
 - définir des tâches
 - déterminer des durées des tâches
 - déterminer des contraintes

Définir les tâches

- Établir la liste des tâches, chaque tâche donnera lieu à un arc
- Le chef de projet est responsable de ce travail.
 - Il doit se faire aider par des personnes compétentes.

Déterminer les durées

- C'est parfois très difficile ...
 - ... mais toujours indispensable
- Comparer régulièrement les prévisions aux réalités, essayer d'anticiper les écarts
- ► Le PERT est un document prévisionnel incertain

Déterminer les contraintes

- Quelles tâches doivent être achevées pour réaliser une tâche donnée ?
- Les contraintes sont souvent créées par la façon dont on organise les travaux!