The derivative of a function at a point

MTH 201 -- Module 2A

Today

- Activity + debrief: What the derivative is, and why we care
- Activity: Working with the derivative conceptually
- Activity (time permitting): Finding derivatives using the definition

What is the derivative?

The slope of the line that connects the two red points in this graph is the same thing as

The instantaneous rate of change in f(x) at x = a+h

The instantaneous rate of change in f(x) at x = a

The average rate of change in f(x) from x = a to x = a+h

The average rate of change in f(x) from x = 0 to x = a

The slope of the line that connects the two red points in this graph is

To get the *derivative* of this function at x=a, we would need to take the slope of the line that connects the two red dots, and then

Average rate of change = slope of the secant line between (a, f(a)) and (a+h, f(a+h))

$$\frac{f(a+h)-f(a)}{a+h-a} = \frac{f(a+h)-f(a)}{h}$$

Instantaneous rate of change = the number that the average rates of change approach as the interval shrinks

$$\lim_{h o 0}rac{f(a+h)-f(a)}{h}$$

The **derivative** of the function y = f(x) at the point x = a:

$$f'(a) = \lim_{h o 0} rac{f(a+h)-f(a)}{h}$$

The derivative of f(x) at x = a, f'(a), is all of the following things:

- The instantaneous rate of change in f(x) at x = a
- If f(t) is a position at time t, f'(a) is the **instantaneous velocity** at time t = a
- The slope of the tangent line to the graph of f(x) at x = a

Below is a statement about the derivative of a function f at x = 2. What, if anything, is wrong about this statement?

$$f'(2)=\frac{f(2+h)-f(2)}{h}$$

$$f'(a) = \lim_{h o 0} rac{f(a+h) - f(a)}{h}$$

Having $h \rightarrow 0$ under f'(2) makes no semantic sense

Working with the derivative concept

A function y=A(x) is shown along with its tangent line at x=0 and the points (0,2) and (2,8). Given this information, we can conclude

$$A(0) = 2 ext{ and } A'(0) = 8$$
 $A(0) = 2 ext{ and } A(0) = 8$
 $A(0) = 2 ext{ and } A'(0) = 6$
 $A'(0) = 2 ext{ and } A'(2) = 6$
 $A(0) = 6 ext{ and } A'(0) = 8$
None of the above

(

Here's the graph of a function g(x) and the point on its graph at x = 2. Which of the following are true statements? Select ALL that apply.

g(2) is positive

g(2) is negative

g'(2) is positive

g'(2) is negative

A function y=P(x) tells you the number of milligrams (y) of lead in x milliliters of water in a city's water supply. The units of measurement of P'(100) would be

Milligrams
Milliliters
Milligrams per milliliter
Milliliters per milligram
None of the above

Suppose y = g(x) is a function where the units of measurement of x are "milligrams" and the units of measurement of y are "meters". What are the units of measurement of g'(x)?

Finding derivative values using the definition

Save for tomorrow if low on time

Recap

The derivative of a function y = f(x) at a point x = a:

- Is denoted f'(a) ("f prime of a")
- Gives the instantaneous rate of change in f(x) at x = a
- Gives the instantaneous velocity of an object at time t = a if f(t) is position
- Gives the slope of the tangent line to the graph of f(x) at x = a
- Can be computed algebraically using a limit (below) if f(x) has a formula
- Has units equal to (Units of y) "per" (Units of x)

Next Up

- Day 2 of Module 2A -- Average rates of change and using them to find instantaneous rates of change
- No Daily Prep for day 2 on any module
- See calendar and Week 2 Guide for all due items and a schedule
- Check Campuswire 1-2x per day to stay up to speed and not miss things

$$f'(a) = \lim_{h o 0} rac{f(a+h)-f(a)}{h}$$

Feedback:

http://gvsu.edu/s/1zJ