Synthesis of Inorganic Polymers From Vitreous Slags Produced by EAF Smelting of Bauxite Residue Hertel T¹, Xakalashe B², Friedrich B², Pontikes Y¹

¹KU Leuven, Department of Materials Engineering, 3001 Leuven, Belgium ²RWTH Aachen University, IME Institute of Process Metallurgy and Metal Recycling, 52056 Aachen, Germany

ABSTRACT

In this study, an integrated two-step process is presented for a zero-waste valorisation of BR. In the first step, BR is smelted with additives in an electric arc furnace (EAF) to remove metallic Fe and to produce simultaneously a vitreous slag. The slag produced is activated using an alkaline solution to produce an inorganic polymer. The mechanical properties and microstructure of the final product were then determined.

INTRODUCTION METHODS AND MATERIALS Resource: GLOBAL INVENTORY 2 ~4Gt silica sand Bauxite OXIDES Ca 21,4% Residue (BR) Fe lignite coke Dried BR XRF >150 Mt/yr Al 7,1% 71,5% Integrated Process to Integrated Process to Integrated Process to Increase mineral Increase reactivity and Increase reactivity Phase recover Fe **But:** Low industrial scale use Smelting 1500 - 1550 °C **INDUSTRIAL SCALE USE** Why? $2 - 4.5 \text{ Mt/yr}^{1}$ Water quenching Low reactivity **XRD** as binder, 600kt-1.5Mt/yr1 SEM ← BR slag for instance **USE IN BUILDING MATERIALS XRF** + alkaline activator Compressive Inorganic

RESULTS

XRF of BR and BR slag:

Component (wt%)	Fe	SiO ₂	Al_2O_3	CaO	TiO ₂	Na ₂ O	Others	Loss on ignition				
BR	30.4*	5.5	24.0	10.2	5.6	1.8	0.2	9.4	** expressed as Fe, present as FeO and Fe in BR slag			
BR slag	7.0**	39.5	30.3	10.5	7.9	3.2	1.6	_				
XRD of BR s	lag:	Fe 1,0%	6		amorp	ohous	Plagio 3,0					

96,0%

SEM-BSE of Inorganic **Polymer:** a) low b) high magnification

FTIR of Inorganic Polymer:

Polymer

Compressive Strength of Inorganic Polymer:

 $76.6 \pm 4.8 \text{ MPa}$

CONCLUSIONS

- ✓ Close-to zero-waste valorisation of BR via a two-step process
- ✓iron removal was achieved through carbothermic reduction in an EAF with a satisfactory recovery of more than 80 %
- ✓The combination of silica fluxing during the smelting of BR, followed by water quenching of the molten product has shown to favour the formation of a vitrified slag
- ✓The results demonstrated the high reactivity of the vitreous slag and the formation of a dense IP with satisfactory strength of about 75 MPa

REFERENCES

strength,

FTIR

1. K. Evans, J Sustain Metall, 2 (4) 316-331 (2016).

2. M. Gräfe, G. Power and Klauber,

Hydrometall 108, 60-79 (2011)

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Community's Horizon 2020 Programme (H2020/2014–2019) under Grant Agreement No. 636876 (MSCA-ETN REDMUD). This publication reflects only the authors' view, exempting the Community from any liability. Project website: http://www.etn.redmud.org.