ESQUEMA DE MEMÓRIA:

1. Estado inicial:

- a. $arr[] = \{100, 70, 90, 90, 10, 40, 30\}$
- b. $\lim_{n \to \infty} \int_{-\infty}^{\infty} dx$
- c. limSup = 6
- d. Recursão ainda não começou.

2. Após a primeira chamada de Quicksort:

- a. $Piv\hat{o} = 30$.
- b. Array após a partição: {10, 30, 90, 90, 100, 40, 70}.
- c. ind = 1.

3. Durante a recursão:

- a. A próxima chamada recursiva vai processar a sublista antes e depois do pivô.
- b. Para cada chamada recursiva, a memória contém uma nova instância das variáveis da função, como limInf, limSup, e pivo.

Como que fica na prática:

Eu posso desenhar a pilha de execução de cada ciclo da recursão. Por exemplo:

- 1. Chamada inicial: quickSort(arr, 0, 6)
 - a. Estado do array: $\{10, 30, 90, 90, 100, 40, 70\}$
 - b. Pivô: 30
 - c. Novas chamadas: quickSort(arr, 0, 0) e quickSort(arr, 2, 6).

2. Em quickSort(arr, 2, 6):

- a. Pivô: 70.
- b. Estado do array: {10, 30, 40, 70, 100, 90, 90}.