Coursework 1

The coursework is finished by Jiale Fu (2543035) and Zijun Liu (2543336) in Transportation D2201.

Q1

Q1-1

Let us suppose that the current pass through the five resistors is I_1, I_2, I_3, I_4, I_5 , and the position of the upper joints are V_A, V_B .

We can get:

$$I_1 = I_4 + I_2$$

$$I_2 = I_5 + I_3$$

$$I_1 = \frac{25 - V_A}{30}$$

$$I_4=rac{V_A}{10}$$

$$I_2 = \frac{V_A - V_B}{15}$$

$$I_5=rac{V_B}{25}$$

$$I_3=rac{V_B-15}{20}$$

In this case, we can get:

$$30I_4 + 30I_5 + 30I_3 + V_A = 25$$

$$10I_4 - V_A = 0$$

$$15I_5 + 15I_3 - V_A + V_B = 0$$

$$25I_5 - V_B = 0$$

$$20I_3 - V_B = -15$$

Using the following python code to solve the equations:

The solution is:

[0.6714876 0.30578512 -0.3677686 6.71487603 7.6446281]

Which means that:

$$I_1 = 0.6095 A$$

$$I_2 = -0.0620 A$$

$$I_3 = -0.3678A$$

$$I_4 = 0.6715A$$

$$I_5 = 0.3058A$$

$$V_A=6.7149V$$

$$V_B = 7.6446V$$

So, the voltage drops are:

$$V_{D1} = 25V - V_A = 18.2851V$$

$$V_{D2} = V_A - V_B = -0.9297V$$

$$V_{D3} = V_B - 15 = -7.3554V$$

$$V_{D4} = V_A = -6.7149V$$

$$V_{D5} = V_B = 7.6446V$$

The results of simulation are as follows:

Summery

Resistor	R1	R2	R3	R4	R5
Calculated Voltage Drop	18.2851 V	-0.9297 V	-7.3554 V	-6.7149 V	7.6446 V
Calculated Current	609.5 mA	-62.0 mA	-367.8 mA	671.5 mA	305.8 A
Simulated Voltage Drop	18.285 V	-0.930 V	-7.355 V	-6.715 V	-7.645 V
Simulated Current	609.504 mA	-61.983 mA	-367.768 mA	671.487 mA	305.785 mA

The simulated result fits the calculation well.

Q2

Consider the following circuit. A capacitor with C = 0.25 μ F is in series with two resistors R1 = 1500 $k\Omega$ and R2 = 3500 $k\Omega$. The RMS value of the AC voltage supplied to the circuit is 100 VAC and the frequency is 50 Hz.

Q2-1

The amplitude is $100V imes \sqrt{2} = 100\sqrt{2} = 141.4V$

$$Z=\sqrt{(R_1+R_2)^2+X_C^2}$$
 where $X_C=rac{1}{2\pi fC}=12.7k\Omega$

Hence, $Z=5000.02k\Omega$

$$I_{max}=rac{V_{max}}{Z}=28.2 \mu A$$

$$V_{max,R_1} = R_1 I_{max} = 42.3 V$$

$$V_{max,R_2} = R_2 I_{max} = 98.7V$$

$$V_{max,X_C} = X_C I_{max} = 0.36V$$

For resistors, the phase angle between the current and the voltage is 0° , so $\Phi_{R_1}=\Phi_{R_2}=0$; for capacitor, $I=\frac{dQ(t)}{dt}=\frac{CdV(t)}{dt}=C\frac{dV_{max}sin(\omega t)}{dt}=CV_{max}sin(\omega t+\frac{\pi}{2})$

So the phase angle of the capasitor is $\Phi_{C_2}=0$

Q2-2

$$Z = 5000.02k\omega$$

$$\phi = tan^{-1} rac{V_{max,X_C}}{V_{max,R_1} + V_{max,R_2}} = 0.146 \degree$$

Q2-3

The circuit is run in the multisim.

Simulation of Q2-1

The voltage of the AC power source is set as 141.4V.

4.8699947978

Time (s)

4.8699947980

4.8699947984

 $V_{max,R_2}=98.728V$, and $\Phi_{R_2}=0$

4.8699947974

 $V_{max,X_{C}}=0.356V$

(Notive that the actural voltage should be divided by 2), and $\Phi_{X_C}=90\,^\circ.$

 $I_{max} = 28 \mu A$

Resistor	R1	R2	C1
Calculated Phase Drop	0°	0°	90°
Calculated V_{max}	42.3 V	98.7 V	0.36 V
Calculated I_{max}	42.3 V	98.7 V	0.36 V

Resistor	R1	R2	C1
Simulated Phase Drop	0°	0°	90°
Simulated V_{max}	42.312 V	98.728 V	0.356 V

Calculated Current	Simulated Current
$28.2\mu A$	$28\mu A$

Simulation of Q2-2

By adding a testing resistor, the time lag is $4.5 \times 10^{-6} s$, and the phase difference is $0.081 \, ^{\circ}.$

Q2-4

All phase shift are ignorable. The theorical phase shift is as followed.

Capacitance	Calculated phase shift	Simulated phase shift
$0.1 \mu F$	$0.3647\degree$	0.365°
$0.2 \mu F$	0.1823°	0.182°
$0.3 \mu F$	0.1215°	$0.122\degree$
$0.4 \mu F$	0.0911°	0.091°
$0.5 \mu F$	0.1729°	$0.173\degree$
$0.6 \mu F$	$0.0607\degree$	0.061°
$0.7 \mu F$	0.0521°	$0.052\degree$
$0.8 \mu F$	$0.0455\degree$	0.045°
$0.9 \mu F$	0.0405°	0.040°
$1.0 \mu F$	$0.0364\degree$	$0.036\degree$

Q2-5

All phase shift are ignorable. The theorical phase shift is as followed.

freq	Calculated phase shift	Simulated phase shift
50Hz	$0.1459\degree$	$0.146\degree$
100Hz	0.0729°	0.073°
150Hz	0.0486°	0.049°
200Hz	$0.0364\degree$	$0.036\degree$
250Hz	0.0291°	0.029°
300Hz	$0.0243\degree$	$0.024\degree$
350Hz	0.0208°	0.021°
400Hz	0.0182°	0.018°
450Hz	0.0162°	0.016°
500Hz	0.0145°	0.014°

As shown above, when the frequency raise, the phase difference decreased.

Q3

The circuit in Multisim is as followed:

The output voltage is close to 1000 mV, and the voltage gain is $10log_{10}\left(rac{1000mV}{100mV}
ight)=10$

Q3-2

The phase difference is $2\pi imesrac{(400.0058ms-399.9997ms)}{2ms}=0.01916rad$

freq	Voltage gain	GBPW
$10^2 Hz$	10.051dB	N/A
$10^3 Hz$	10.051dB	N/A
$10^4 Hz$	10.025dB	N/A
$5 imes10^4 Hz$	9.44dB	472000
$10^5 Hz$	8.073dB	807300
$5 imes10^5 Hz$	2.0951dB	1047550
$8.6 imes 10^5 Hz$	1dB	860000

From the results above, when the frequency increase, the voltage gain first remains unchanged until the freq reaches about $5 \times 10^4 Hz$, and the frequency decrease, and the gain–bandwidth product (GBWP) is around 9×10^5 .

Q3-4

the bandwidth at A=10 is $4.3 imes 10^5 Hz$

Q4

Q4-1

Since the ideal voltage gain is $A_{1/2/3}=-rac{R_F}{R_{1/2/3}}$, the output should be $V_{out}=-rac{R_F}{R_1}V_1-rac{R_F}{R_2}V_2-rac{R_F}{R_3}V_3$. The requirements is $V_{out}=-5V_1-2V_2-0.1V_3$.

Hence, the ratio is: $R_f:R_1:R_2:R_3=0.2:0.5:10:1$

If
$$R_f=100k\Omega$$
, $R_1=20k\Omega$, $R_2=50k\Omega$, $R_3=1M\Omega$

Q4-2

Since
$$V_1=100V_{DC}, V_2=-5V_{DC}, V_3=4sin(2\pi ft)V=4sin(100\pi t)V$$
, $V_{out}=-500+10-0.4sin(100\pi t)=-490-0.4sin(100\pi t)$.

The theoretical minimum and maximum value are -490.4V and -489.6V . The $\,V-t$ diagram by Microsoft Calculator is as followed:

The detected minimum and maximum value are -490.374V and $\ 489.590V$. The result is as followed:

