Departamento de Matemática - IMECC - Unicamp Exame de Análise no \mathbb{R}^n - 12 de Julho de 2013.

1. Questão.

- (a) (0.5) Seja $f: U \to \mathbb{R}^m$, onde $U \subset \mathbb{R}^n$ é um aberto. Escreva as definições de uma aplicação diferenciável f e de derivada de uma aplicação f.
- (b) (1.0) Seja $U \subset \mathbb{R}^n$ aberto e $f: U \to \mathbb{R}$ diferenciável. Mostre que se $\left| \frac{\partial f}{\partial x_i}(x) \right| \leq M$, para todo $x \in U$ e i = 1, ..., n, então $f(\Omega)$ é limitado quando $\Omega \subset U$ é limitado e convexo.
- **2. Questão.** (2.0) Seja $U \subset \mathbb{R}^n$ aberto e $f: U \to \mathbb{R}$ uma função de classe C^2 . Dizemos que um ponto crítico $a \in U$ é não-degenerado quando a matriz Hessiana de f em a é inversível. Mostre que se $a \in U$ é um ponto crítico não-degenerado, então a é um ponto crítico isolado.

3. Questão.

- (a) (1.5) Demonstre o teorema da aplicação inversa usando o teorema do posto.
- (b) (1.0) Mostre que se $f: \mathbb{R}^2 \to \mathbb{R}^3$ é de classe C^1 , então f não é sobrejetora.
- **4. Questão.** (1.5) Seja $U \subset \mathbb{R}^n$ um aberto e $f: U \to \mathbb{R}^n$ uma função de classe C^1 . Mostre que se S é um conjunto de medida nula em \mathbb{R}^n e existe um compacto K tal que $S \subset K \subset U$, então f(S) tem medida nula em \mathbb{R}^n .
- 5. Questão. Seja $\Omega \subset \mathbb{R}^3$ um aberto conexo e limitado tal que $S = \partial \Omega$ é uma superfície conexa de classe C^{∞} .
- (a) (0.5) Enuncie o teorema da divergência em Ω (Teorema de Gauss).
- (b) (1.0) Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação de classe C^1 . Mostre que se $div(F) \equiv 0$ então F é tangente a $\partial \Omega$ em algum ponto.
- (c) (1.0) Seja $u: \mathbb{R}^3 \to \mathbb{R}$ de classe C^2 . Mostre que

$$\int_{\Omega} \Delta u dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} dS,$$

onde $\Delta u = \sum_{i=1}^{3} \frac{\partial^2 u}{\partial x_i^2}$ e $\frac{\partial u}{\partial n}$ denota a derivada de u na direção do vetor normal a $\partial \Omega$.

MM719 - 1S 2013 - Exame de Qualificação

Nome:	RA:	

Escolher questões cujo total de pontos possíveis seja 10. Bom trabalho!

- 1. (0,5) Considere $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x,y,z) = (2x-y-z,z+x-y) e $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x,y) = x-y. Calcule a expressão do funcional linear $T^*(f)$ com respeito à base canônica (aqui, $T^* = T^t$ é a transposta (adjunta) de T).
- 2. Suponha que a matriz de um operador linear T em \mathbb{R}^4 na base canônica seja $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & 4 & 0 & 2 \\ -2 & 1 & 2 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
 - (a) (2,0) Encontre uma base de Jordan.
 - (b) (1,0) Descreva todos os subespaços T-invariantes.
- 3. Responda se cada uma das afirmações abaixo é verdadeira ou falsa justificando suas respostas.
 - (a) (0,5) Se duas matrizes A,B possuem o mesmo polinômio mínimo e o mesmo polinômio característico, então elas são semelhantes.
 - (b) (0,5) $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$, então V^* é isomorfo a $V_1^* \oplus V_2^* \oplus \cdots \oplus V_m^*$.
 - (c) (0,5) Se $A \in M_n(\mathbb{R})$, existe $P \in GL_n(\mathbb{R})$ tal que $PAP^{-1} = A^t$.
 - (d) (0,5) Para todo operador linear T em um espaço vetorial real qualquer se tem $\{f \in \mathbb{R}[t] : f(T) = 0\} \neq \{0\}.$
 - (e) (0,5) Se V e W são espaços vetoriais de dimensão finita, $T \in \mathcal{L}(V, W)$ e T^* é a adjunta de T com respeito a produtos internos dados em V e W, então $\mathcal{N}(T^*) = \mathcal{I}m(T)^{\perp}$.
 - (f) (0,5) Se f é uma forma bilinear simétrica em V e $\{v_1, \dots, v_n\}$ é uma base de V tal que $f(v_i, v_i) \neq 0$ para todo $i = 1, \dots, n$, então f é não degenerada.
 - (g) (0,5) Se V é espaço vetorial real de dimensão finita com produto interno e $T \in \mathcal{L}(V, V)$, então existe operador auto-adjunto S tal que $S^2 = T^* \circ T$.
- 4. Sejam $A \in M_n(\mathbb{R})$ uma matriz simétrica e V um espaço vetorial real de dimensão n com produto interno. Dada uma base ortonormal α de V, considere o operador linear T tal que $[T]^{\alpha}_{\alpha} = A$ e a forma bilinear simétrica f tal que $[f]_{\alpha} = A$.
 - (a) (0,5) Determine se a seguinte afirmação é verdadeira ou falsa: Se β é base de V tal que $[f]_{\beta}$ é diagonal, então $[T]_{\beta}^{\beta}$ também é diagonal.
 - (b) (1,0) Suponha que $A = \begin{bmatrix} -4 & -1 & 2 \\ -1 & -1 & -1 \\ 2 & -1 & -4 \end{bmatrix}$, $V = \mathbb{R}^3$ com produto interno usual e que α seja a base canônica. Encontre base β de V tal que $[T]^{\beta}_{\beta}$ e $[f]_{\beta}$ sejam diagonais.
- 5. Sejam V e W espaços vetoriais sobre um corpo \mathbb{K} . Lembre que o posto de um vetor $u \in V \otimes W$ é o menor inteiro não negativo m tal que existem $v_1, \ldots, v_m \in V, w_1, \cdots, w_m \in W$ satisfazendo $u = \sum_{j=1}^m v_j \otimes w_j$.
 - (a) (1,0) Mostre que se numa tal expressão tivermos v_1, \ldots, v_m linearmente independentes, então o posto de u é a dimensão do subespaço gerado por w_1, \ldots, w_m .
 - (b) (0,5) Calcule o posto de

$$(2,3,-1)\otimes(1,-2)+(3,-1,0)\otimes(2,2)+(0,-1,2)\otimes(-1,3)+(1,0,-3)\otimes(3,-1)\in\mathbb{R}^3\otimes\mathbb{R}^2.$$

- (c) (1,0) Mostre que existe única $\varphi: V^* \otimes W \to \mathcal{L}(V,W)$ linear injetora tal que $\varphi(f \otimes w)(v) = f(v)w$ para todo $f \in V^*, w \in W, v \in V$.
- (d) (1,0) Suponha que V e W tenham dimensão finita e seja φ como em (c). Mostre que para todo $u \in V^* \otimes W$, o posto de u coincide com o de $\varphi(u)$.

Exame de Qualificação

Topologia Geral

10/07/2013

RA.....Nome...

Nesta prova todos os espacos topológicos são não vazios. Ao resolver cada questão, enuncie os resultados utilizados.

1. (a) Prove que a família

$$\mathcal{B} = \{(a, b] : a, b \in \mathbb{R}, a < b\}$$

é base de uma topologia τ em \mathbb{R} .

- (b) Prove que τ é mais fina que a topologia usual de \mathbb{R} .
- (c) Prove que (a, ∞) e $(-\infty, b]$ são abertos e fechados em (\mathbb{R}, τ) .
- (d) Se definimos $f:(\mathbb{R},\tau)\to(\mathbb{R},\tau)$ por f(x)=0 se $x\leq 0$ e f(x)=1 se x>0, prove que f é contínua.
 - 2. Seja $X = \{a, b\}$ um conjunto com dois pontos.
 - (a) Exiba uma topologia τ_1 em X tal que (X, τ_1) seja Hausdorff.
- (b) Exiba uma topologia τ_2 em X tal que (X,τ_2) seja regular, mas não seja Hausdorff.
- (c) Exiba uma topologia τ_3 em X tal que (X,τ_3) não seja nem regular nem Hausdorff.
- 3. Seja X um espaço topológico compacto, e seja $\mathcal F$ uma família de funções de X em $\mathbb R$ tal que:
- (i) Para cada $a \in X$ existem uma função $f_a \in \mathcal{F}$ e um aberto U_a contendo a tal que $f_a(x) = 0$ para todo $x \in U_a$.
 - (ii) Se $f, g \in \mathcal{F}$, então $fg \in \mathcal{F}$.

Prove que a função identicamente nula pertence a \mathcal{F} .

- 4. Seja X o conjunto das matrizes reais A de 2×2 tais que $AA^t=A^tA=I$. Considere X como subespaço de \mathbb{R}^4 .
 - (a) Prove que det $A=\pm 1$ para cada $A\in X$.
 - (b) Prove que X é desconexo.
- 5. Seja X um espaço topológico, seja $\{Y_i: i\in I\}$ uma família de espaços topológicos, e seja $Y=\prod_{i\in I}Y_i$. Dadas $f,g\in C(X;Y)$, prove que $f\simeq g$ se e só se $\pi_i\circ f\simeq \pi_i\circ g$ para todo $i\in I$.