SLDM Homework 1

Dave Zachariah

January 24, 2023

- Solution proposals are individual.
- Each solution must be reproducible by your peer. Code should be added to the appendix.
- The solution to each subproblem yield 0 to 2 points.

1

Let us consider the ship localization problem with data drawn from target distribution $p(\mathbf{z})$. The reported ship location is parameterized as

$$oldsymbol{ heta} = egin{bmatrix} heta_x \\ heta_y \end{bmatrix} \in \Theta$$

We consider the following loss function $\ell_{\theta}(\mathbf{z}) = \|\mathbf{z} - \boldsymbol{\theta}\|^2$ when reporting a location $\boldsymbol{\theta}$.

a) Show that the risk (aka. expected loss) of $\boldsymbol{\theta}$ can be expressed as

$$L(\boldsymbol{\theta}) = \mathbb{E}[\ell_{\boldsymbol{\theta}}(\mathbf{z})] = \boldsymbol{\theta}^{\top} \boldsymbol{\theta} - 2\boldsymbol{\theta}^{\top} \mathbb{E}[\mathbf{z}] + \mathbb{E}[\mathbf{z}^{\top}\mathbf{z}],$$

where the last term is a constant, and show therefore there is a unique ship location target

$$oldsymbol{ heta}_{\circ} = \mathbb{E}[\mathbf{z}]$$

when the parameter space is the entire plane $\Theta = \mathbb{R}^2$

b) For notational simplicity, let

$$\mu = \mathbb{E}[\mathbf{z}]$$
 $\mathbf{\Sigma} = \mathbb{V}[\mathbf{z}]$

denote the mean and covariance matrix of \mathbf{z} under p. Plot $\boldsymbol{\theta}_{\circ}$ and the contours of $L(\boldsymbol{\theta},p)$ (skip constants) and over a parameter space $\Theta=[0,400]\times[0,400]$ in units [m] when

$$\boldsymbol{\mu} = \begin{bmatrix} 200 \\ 200 \end{bmatrix}$$

c) Suppose the target distribution $p(\mathbf{z})$ is a multivariate t-distribution $t_{\nu}(\boldsymbol{\mu}, \mathbf{C})$. What happens to $L(\boldsymbol{\theta})$ when the unknown degrees of freedom change as $\nu = 3, 2, 1$?

d) Consider i.i.d. training data \mathbf{z}^n in from the target distribution $p(\mathbf{z})$. Show that when using the empirical distribution, we have

$$L(\boldsymbol{\theta}, p_n) = \mathbb{E}_n[\ell_{\boldsymbol{\theta}}(\mathbf{z})] = \frac{1}{n} \sum_{i=1}^n \|\mathbf{z}_i - \boldsymbol{\theta}\|^2$$

and that the empirical risk minimizer is

$$\widehat{\boldsymbol{\theta}}_n = \mathbb{E}_n[\mathbf{z}]$$

when the parameter space is the entire plane $\Theta = \mathbb{R}^2$

e) Suppose the unknown data-generating process corresponds to a multivariate Gaussian $\mathcal{N}(\mu, \Sigma)$, where

$$\mathbf{\Sigma} = \begin{bmatrix} 400 & 50 \\ 50 & 400 \end{bmatrix}$$

Draw a sample $\underline{\mathbf{z}}^n$ and plot contours of the resulting empirical risk $L(\boldsymbol{\theta}, p_n)$ along with the best parameter $\boldsymbol{\theta}_{\circ}$ and the learned parameters

$$\{\widehat{\boldsymbol{\theta}}_1, \widehat{\boldsymbol{\theta}}_{10}, \widehat{\boldsymbol{\theta}}_{100}, \widehat{\boldsymbol{\theta}}_{1000}\}$$

f) In the above problem, the learned parameter $\widehat{\boldsymbol{\theta}}_n$ could be numerically evaluated using a closed-form expression. Such expressions are not available in many problems, but instead the minimizer of $L(\boldsymbol{\theta}, p_n)$ must be approximated using a numerical search methods, e.g.:

$$\widehat{\boldsymbol{\theta}}^{(k+1)} = \widehat{\boldsymbol{\theta}}^{(k)} - \gamma_k \mathbf{g}_k$$
 where $\gamma_k \ge 0$

A common choice is gradient descent methods, where

$$\mathbf{g}_k = \partial_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, p_n)|_{\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}^{(k)}}$$

is the gradient of the empirical risk.

Implement a gradient descent method with a fixed γ to approximate the learned parameter $\hat{\boldsymbol{\theta}}_n$ and plot the approximations using the same data as above. Initialize at $\hat{\boldsymbol{\theta}}^{(0)} = \mathbf{0}$.

g) Show that the MSE-matrix of the learned parameter $\widehat{\boldsymbol{\theta}}_n$ over all possible training datasets equals

$$\mathbf{M} = \mathbb{E}[(\boldsymbol{\theta}_{\circ} - \widehat{\boldsymbol{\theta}}_{n})(\boldsymbol{\theta}_{\circ} - \widehat{\boldsymbol{\theta}}_{n})^{\top}] = \frac{1}{n}\boldsymbol{\Sigma}$$

Tip: Note that the bias of $\widehat{\boldsymbol{\theta}}_n$ is **0**.

h) We begin to study the large-sample behaviour of the ERM method using the fact that $L(\theta, p)$ admits a Taylor-series approximation. Show that the Hessian of $L(\theta, p)$ at θ_{\circ} is

$$\mathbf{Q} = 2\mathbf{I}_2$$

and that the sensitivity score with covariance matrix equals

$$\dot{\boldsymbol{\ell}}_{\circ}(\mathbf{z}) = 2(\boldsymbol{\theta}_{\circ} - \mathbf{z}) \qquad \mathbf{L} = 4\boldsymbol{\Sigma}$$

We can conclude that the errors of $\widehat{\boldsymbol{\theta}}_n$ approach a zero-mean Gaussian distribution at a \sqrt{n} -rate:

$$\sqrt{n}(\boldsymbol{\theta}_{\circ} - \widehat{\boldsymbol{\theta}}_{n}) \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$$

By re-arranging the LHS, this means, somewhat informally, that $\widehat{\boldsymbol{\theta}}_n$ approaches a distribution with mean $\boldsymbol{\theta}_{\circ}$ (i.e. vanishing bias) and covariance $\frac{1}{n}\boldsymbol{\Sigma}$. Compare this with MSE-matrix above.

$\mathbf{2}$

We want to study the association between blood pressure y and covariates \mathbf{x} , specifically to evaluate a particular medication. The data-generating process is a randomized trial, where

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ y \end{bmatrix}$$

a) We consider the target parameters to be those that yield the 'best' linear predictor of outcome y given covariates \mathbf{x} . Using the squared-error loss $\ell_{\theta}(\mathbf{z}) = (y - \mathbf{x}^{\top} \boldsymbol{\theta})^2$, show that the target parameters are given by

$$\Theta_{\circ} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} L(\boldsymbol{\theta}, p)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \ \boldsymbol{\theta}^{\top} \mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right] \boldsymbol{\theta} - 2\boldsymbol{\theta}^{\top} \mathbb{E} [\mathbf{x} y]$$

$$= \left\{ \boldsymbol{\theta} : \mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right] \boldsymbol{\theta} = \mathbb{E} [\mathbf{x} y] \right\}$$
(1)

b) A generalized inverse \mathbf{A}^- to a matrix \mathbf{A} is any matrix that satisfies $\mathbf{A}\mathbf{A}^-\mathbf{A} = \mathbf{A}$. Show that using any generalized inverse $\mathbb{E}\left[\phi\phi^\top\right]^-$, we have that

$$\Theta_{\circ} = \left\{ \mathbb{E} \left[\mathbf{x} \mathbf{x}^{\top} \right]^{-} \mathbb{E} [\mathbf{x} y] \right\}$$

Conclude that a target parameter θ_{\circ} is point-identifiable when $\mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right]$ has full rank.

Hint: Note that $\mathbb{E}[\mathbf{x}y]$ belongs to the column space of $\mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right]$.

c) Suppose

$$\mathbf{x} = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

where x quantifies a drug dosage (which varies so that indeed $\mathbb{E}\left[\mathbf{x}\mathbf{x}^{\top}\right] \succ \mathbf{0}$). Show that the target parameter can be written as:

$$\boldsymbol{\theta}_{\circ} = \begin{bmatrix} \mathbb{E}[y] - \frac{\mathbb{V}[x,y]}{\mathbb{V}[x]} \, \mathbb{E}[x] \\ \frac{\mathbb{V}[x,y]}{\mathbb{V}[x]} \end{bmatrix},$$

where $\mathbb{V}[x,y]$ denotes the *covariance* between drug dosage x and blood pressure y.

d) The target parameter

$$\theta_{\circ,2} = \frac{\mathbb{V}[x,y]}{\mathbb{V}[x]}$$

is often understood as the 'average treatment effect' of the drug on blood pressure. How would you justify this interpretation in this randomized trial process?