MMC-GRADE XI 2081 (2024) Mathematics

Time: 3 Hours FM: 75

		FIVI: 13
	Group-A (11*1=11)	
1.	A compound statement which is always true is called	
a)	Contradiction (b) Tautology c) Negation d) inve	erse
2.	The inequality $-1 \le x \le 7$ is in absolute value sign as	
a)	$ x-2 \le 4$ by $ x-3 \le 4$ c) $ x-1 \le 2$ d)	x - 5 < 2
3.	Let a function $f: R \rightarrow R$ be defined by $f(x) = x^2 + 7$, $x \in R$ then f^{-1} is	12 31 = -
a)	$f^{-1}(x) = \sqrt{x - 7}$ b) $f^{-1}(x) = \frac{x - 7}{2}$ c) $f^{-1}(x) = \frac{\sqrt{x - 7}}{2}$ d) $f^{-1}(x) = \frac{\sqrt{x - 7}}{2}$	3/26 7
4.	The value of x for $\log_4 X = 1/2$, is	$-\sqrt{x}-7$
a)	-1 b) 0 c) 1 d) 2	
	The vertex of the quadratic function $f(x) = x^2 + 4x + 3$ is	
a)	(-2, -1) b) (-1, -2) c) (1,2) d) (2,1)	
6.	The sum of the infinite series $16 + 8 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4$	
a)	4 (c) 16 (d) 32	
7.	The sum of the infinite series $16 + 8 + 4 + \dots$ is 4 If determinant $\begin{vmatrix} 5 & -6 \\ x - 2 & 3 \end{vmatrix} = 0$, then the value of x is	
0)	$\begin{vmatrix} x - 2 & 3 \end{vmatrix} = 0, \text{ then the value of x is}$	
a)	4 N -1/2 C) 1/2 J) 1/4	
0.	If a line makes 45° with positive x-axis and 60° with positive y-axis t	hen the angle
a)	made by the fine with z-axis is	
		0^0
,	If mean = 50, mode = 56 and S.D. = 15, then the karl pearson's coeff skewness is	icient of
10	-0.1 b) -0.2 c) -0.3 d) -0.4	
a) ()	Two coins are tossed simultaneously, the probability that both are he	eads is
	b) $1/2$ c) $1/4$ d) 1 The value of $\int sec^2(ax+b)dx$ is	
a)	$\tan(ax+b)+c$ b) atan(ax+b)+c c) $\frac{\tan(ax+b)}{b}+c$ d) $\frac{\tan(ax+b)}{a}+c$	c
a) $\tan(ax+b) + c$ b) $\tan(ax+b) + c$ c) $\frac{\tan(ax+b)}{b} + c$ d) $\frac{\tan(ax+b)}{a} + c$ Group-B (5*8 = 40)		
12/	a) prove that $\overline{(AUB)} = \overline{A} \cap \overline{B}$	[2]
	a) solve $x^2 - 2x - 3 \ge 0$	
13/	a) solve $x = 2x - 3 \ge 0$ a) prove that the $f: R - \{3\} \to R - \{1\}$ defined by $f(x) = \frac{x}{x - 3}$ is bijection of $y = x^2 + 4x - 3$	ve function[2
	b) sketch the graph of $y = -x^2 + 4x - 3$.	[3]
OR,	,	[5]
prove that the equation of the lines joining the origin and the point of intersection of the line $y = mx + c$ and the circle $x^2 + y^2 = a^2$ will be at right angles if $2a^2 = 2c^2$		
$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{1 + m^2} \right)$		
14/	Prove that : $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b) (b-c) (c-a) (a+b+c)$).
14.	Frove that $\begin{bmatrix} a & b & c \\ a^3 & b^3 & c^3 \end{bmatrix}$ = (a-b) (b-c) (c-a) (a+b+c)	[5]
	iu b c i	

15. a) If $A = \begin{bmatrix} 4 & -5 \\ 3 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -3 \\ -1 & -2 \end{bmatrix}$, prove that $(AB)^T = B^T A^T$ [2] b) find the sum to infinity of the series $1+2x+3x^2+4x^3+$. [3] 16. a) find the square roots of -7 + 24i. [2] b) if α and β be the root roots of the equation $px^2 + qx + q = 0$, prove that: $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$ [3] 17. a) find the general solution of $\cos^2 x = 1/2$ [2] b) If $tan^{-1}x+tan^{-1}y+tan^{-1}z = \pi$, prove that : x + y + z = xyz. [3] 18. a) find the ratio in which the xy-plane divides the join of the points (-2,4,7) and (3,-5,-8).b) Define direction cosines of a line . Find the direction cosine of a line which is equally inclined with the axes of coordinates. 19. calculate the coefficient of skewness: 70-80 60 - 70Marks 50-60 40-50 10-20 20-30 30-40 2 F 4 10 20 5 12 15 Group- C (8*3 = 24)**20.** a) Evaluate: $\lim_{x\to\theta} \frac{xtan\theta - \theta tanx}{x-\theta}$ [3+2+3]b) Find the derivative of $y = \tan(\sin(ax+b))$ c) Prove that the function defined as $f(x) = \begin{cases} 2x + 1, & \text{for } x < 1 \\ 3, & \text{for } x = 1 \\ 3x, & \text{for } x > 1 \end{cases}$, is continuous at x=121. a) Find the maxima or minima of the function $f(x) = 4x^3 - 15x^2 + 12x + 7$. [3+2+3] b) Evaluate $\int \frac{1}{9+x^2} dx$ (c) Evaluate $\int x \sin x dx$. 22. (a) If $f(x)=x^2+2$ and $x_0=2$, find $x_1 & x_2$ using Newton-Rapson method. [2+3+3]b) Prove that the vectors $\vec{i} - 2\vec{j} + \vec{k}$, $\vec{2i} + \vec{j} - \vec{k}$ and $7\vec{i} - 4\vec{j} + \vec{k}$ are linearly c) If p and q are the lengths of perpendiculars from the origin upon the straight lines dependent. $xsec\theta + ycosec\theta = a$ and $xcos\theta - ysin\theta = acos2\theta$, prove that $4p^2 + q^2 = a^2$. a) state sine law and use it to prove Lami's theorem. [5+3]b) A train moving with a velocity of 360 km/hr has the uniform acceleration 40m/s². Obtain the distance covered by the train in ½ minute. 22-02 = 0 SECO