Représentation par Modèles

Régression Univariée

Exemple

Base d'entraînement

Age (X)	Taille en m (Y)
2.0658746e+00	7.7918926e-01
2.3684087e+00	9.1596757e-01
2.5399929e+00	9.0538354e-01
2.5420804e+00	9.0566138e-01
2.5490790e+00	9.3898890e-01
2.7866882e+00	9.6684740e-01
2.9116825e+00	9.6436824e-01
3.0356270e+00	9.1445939e-01
3.1146696e+00	9.3933944e-01
3.1582389e+00	9.6074971e-01
3.3275944e+00	8.9837094e-01

• Notations:

- m: nombre d'observations,
- X : variable d'entrée ou attribut,
- Y: variable de sortie ou objectif,
- (X,Y): une observation,
- (X_i, Y_i) : i^{ième} observation.

• Exemple

- $-X_2 = 2,3684087,$
- $-Y_{10} = 0.96074971.$
- (X_3, Y_3) =(2.5399929,0.90538354)

Apprentissage

$$h_{\theta}(X) = \theta_0 + \theta_1 \times x$$

$$h_{\theta}(X) = X^T \theta$$

$$\theta = [\theta_0 \ \theta_1]^T$$

$$X = [1 \ x]^T$$

$$\theta ?$$

$$h(X) = \theta_0 + \theta_1 \times x$$

$$\theta_0 = 1, 5$$

$$\theta_1 = 0$$

$$\theta_0 = 0$$

$$\theta_1 = 0, 5$$

$$\theta_0 = 1$$

$$\theta_1 = 0, 5$$

Intuition

 Trouver θ de façon à ce que h(X) soit proche de Y pour nos exemples d'entraînement.

Fonction de coût

$$h_{\theta}(X) - Y$$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)$$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

$$\min_{\theta_0, \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

Fonction de coût

$$\min_{\theta_0, \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

$$h_{\theta}(X_i) = \theta_0 + \theta_1 \times x_i^1$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Fonction de Coût

Contexte

• Hypothèse :

$$h_{\theta}(X) = \theta_0 + \theta_1 \times x$$

• Paramètres :

$$\theta_0$$
, θ_1

• Fonction de coût (fonctionnelle):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

• Objectif:

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Simplification

$J(\theta_{1})$

Contexte

• Hypothèse :

$$h_{\theta}(X) = \theta_0 + \theta_1 \times x$$

• Paramètres :

$$\theta_0, \theta_1$$

• Fonction de coût (fonctionnelle):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

• Objectif:

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Résolution

$J(\theta_{o},\theta_{1})$

Méthode des Moindres Carrés

Contexte

• Une fonction :

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

• Un objectif:

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Comment?

Solution (1)

$$Y = X^{T} \theta = \begin{bmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{m} \end{bmatrix} \begin{bmatrix} \theta_{0} \\ \theta_{1} \end{bmatrix} \qquad Y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2 \qquad \min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

Solution (2)

$$Y = X^{T} \theta = \begin{bmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{m} \end{bmatrix} \begin{bmatrix} \theta_{0} \\ \theta_{1} \end{bmatrix} \qquad Y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix}$$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_{i}) - Y_{i})^{2} = \frac{1}{2m} (Y - X^{T}\theta)^{T} (Y - X^{T}\theta)$$

$$J(\theta_0, \theta_1) \approx (Y - X^T \theta)^T (Y - X^T \theta)$$

$$\min_{\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{1}} J(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{1}) \Rightarrow \frac{\partial J(\boldsymbol{\theta}_{0},\boldsymbol{\theta}_{1})}{\partial \boldsymbol{\theta}} = 0$$

Solution (3)

$$J(\theta_0, \theta_1) \approx (Y - X^T \theta)^T (Y - X^T \theta)$$

$$\min_{\boldsymbol{\theta_{0,}}\boldsymbol{\theta_{1}}} J(\boldsymbol{\theta_{0,}}\boldsymbol{\theta_{1}}) \Rightarrow \frac{\partial J(\boldsymbol{\theta_{0,}}\boldsymbol{\theta_{1}})}{\partial \boldsymbol{\theta}} = 0$$

$$\theta = (XX^T)^{-1}XY$$

Descente de Gradient

Contexte

• Une fonction :

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

• Un objectif:

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Comment?

Idée

• Démarrer avec :

$$\theta = [\theta_0 \ \theta_1]^T$$

• Changer $\theta = [\theta_0 \ \theta_1]^T$ en espérant que l'on atteigne un minimum.

Idée

Source: Andrew Ng

Initialisation

Source: Andrew Ng

Algorithme de descente de gradient

Tant que convergence {

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} \ J(\theta) \qquad \text{Dérivée partielle}$$

$$Pour \ \theta = [\theta_0 \ \theta_1]^T$$

$$tmp0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} \ J(\theta)$$

$$Pas de gradient (learning rate)$$

$$tmp1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} \ J(\theta)$$

$$\theta_0 = tmp0$$

$$\theta_1 = tmp1$$

Simplification

Tant que convergence {

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

+

$$\theta_0 = 0$$

$$h_{\theta}(X) = \theta_1 \times x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X_i) - Y_i)^2$$

$$\min_{\theta_1} J(\theta_1)$$

$J(\theta_1)$

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

Alpha

Alpha

Alpha

Merci de votre Attention

Questions