

## DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

### MTH2302D - PROBABILITÉS ET STATISTIQUE

TD nº 9: séance du 8 novembre 2017

#### Exercice 1

Le fichier distribution\_moyenne.csv contient 1000 lignes. Chaque ligne peut être considérée comme :

- Un échantillon de taille 30 (les 30 premières colonnes) d'une loi exponentielle avec  $\lambda = 1$ .
- La moyenne échantillonnale, notée  $\overline{X}$ , est calculée à partir des n premières observations, où  $n \in \{1, 3, 10, 30\}$ . Cela revient à considérer successivement le cas de la moyenne pour un échantillon de taille 1, 3, 10 et 30.

Considérons le cas de la moyenne  $\overline{X}$  avec n=3. Sur chaque ligne se trouve un échantillon de taille 3 si on prend les 3 premières colonnes. On a :

| ligne | $X_1$ | $X_2$ | $X_3$ | $\overline{X}(n=3)$ |
|-------|-------|-------|-------|---------------------|
| 1     | 1,47  | 0,33  | 2,29  | 1,361               |
| 2     | 0,40  | 0,36  | 0,25  | 0,336               |
| 3     | 0,06  | 0,56  | 0,23  | 0,285               |
| 4     | 0,64  | 0,97  | 1,16  | 0,922               |
| :     | :     | :     | :     | :                   |
| 1000  | 0,06  | 1,02  | 0,37  | 0,483               |

On a ainsi un total de 1000 échantillons de taille n=3. Cela donne 1000 valeurs (observations) de la moyenne  $\overline{X}$ . On peut donc ainsi étudier la distribution de la moyenne  $\overline{X}$  pour différentes valeurs de n en prenant le nombre de colonnes correspondantes.

- a) Analyser la distribution de  $\overline{X}$  : statistiques descriptives, histogramme, diagramme de normalité.
- b) Vérifier que la formule suivante est vérifiée approximativement :

$$V\left(\overline{X}\right) = \frac{V(X)}{n} \; .$$

### Exercice 2

L'intervalle de confiance pour la moyenne  $\mu$  d'une population normale  $N(\mu, \sigma^2)$  avec  $\sigma$  inconnu et un coefficient de confiance  $1-\alpha$  basé sur un échantillon  $X_1, X_2, \ldots, X_n$  est

$$\mu = \overline{X} \pm t_{\alpha/2;n-1} \frac{S}{\sqrt{n}}.$$

On pose n = 10 et  $1 - \alpha = 95\%$ .

- a) Déterminer  $t_{\alpha/2;n-1}$ .
- **b)** Compléter le fichier intervalle\_confiance.csv :

- **b.1)** Simuler 1000 échantillons de taille n=10 pour une population normale  $N(\mu=2,\sigma^2=4)$  (ajouter 950 lignes au fichier).
- **b.2**) Calculer l'intervalle de confiance pour chaque échantillon.
- **b.3)** Calculer la proportion d'échantillons (parmi les 1000 intervalles simulés) pour lesquels l'intervalle de confiance estime correctement (contient) la moyenne de la population. Interpréter le résultat obtenu.
- c) Choisir au hasard l'un des 1000 intervalles de confiance simulés. Cet intervalle est-il une bonne estimation pour la moyenne de la population? Commenter.

### Exercice 3

On considère l'intervalle de confiance approximatif avec niveau de confiance  $1-\alpha$  pour estimer la moyenne d'une population dont la variance  $\sigma^2$  est inconnue, à partir d'un échantillon de taille n, où n est grand ( $\geq 50$ ), exprimé par :

$$\mu = \overline{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}.$$

On pose  $1 - \alpha = 95\%$ .

- a) Déterminer  $z_{\alpha/2}$ .
- **b)** Pour une population exponentielle avec  $\lambda = 0.5$ :
  - **b.1)** Simuler 1000 échantillons de taille n = 50.
  - b.2) Calculer l'intervalle de confiance pour chaque échantillon.
  - **b.3**) Calculer la proportion d'échantillons (parmi les 1000 intervalles simulés) pour lesquels l'intervalle de confiance estime correctement (contient) la moyenne de la population. Interpréter le résultat obtenu.

# Exercices suggérés du livre

3 ème édition: 9.22, 9.27, 9.16, 9.29, 9.31, 9.33, 9.35, 9.36, 9.39.

2 ème édition: 10.22, 10.24, 10.29, 10.31, 10.32, 10.33, 10.35, 10.36, 10.40.