Measuring things

When we do experiments, we weasure things. Each thing that we measure that an uncertainty we measure that it. Asways!

The question is: if we we these measurements to we these measurements to late something else, what control the uncertainty in that row grantity? Math can

help us: Suppose we neosue trus things: Dou, suppose there of some z = f(x,y)now quantity, $z = \sin^{-1}(\frac{x}{y})$ What is 82? dep ouls The answer in the 8x, 89 we ness wel first place.

Unitorn Uncertainties. Case 1: Z-Sx Z+JX This sough that the true value of x is somewhere between X-Sx ad x+Sx, and if if equally probable that it be any where in this vonge. This applies whom we make a Single measure met with some instruct that has a distral Scale, e.g. Stop watch, meter. Streh, Itz.

we measure Excepte: t = 2.01swith a stop watch. This $\pm 2.00s$, $(t \pm 2.02s)$ 2.00 2.015 2.005 (smallest division of pe instrument

r un form uncertainties, we

For on ...

calalete 52 as follows:

Calabre.

Whish
$$\delta z = \left| \frac{\partial z}{\partial x} \right| \delta x + \left| \frac{\partial z}{\partial y} \right| \delta y$$

(Chain Rule of Differentiation)

Examples:
$$\frac{2}{2} = x + y$$

$$100 \pm 5 \text{ silo} \quad \frac{32}{2x} = 1$$

$$50 \pm 10 \text{ solo} \quad \frac{32}{2x} = 1$$

$$\frac{2}{2x} = 1 \quad \begin{vmatrix} \frac{32}{2x} \\ \frac{32}{2x} \end{vmatrix} = 1$$

$$\frac{2}{2} = \frac{xy}{50 \pm 15} = \frac{30\%}{50 \pm 15}$$

$$\frac{32}{30} = \frac{x}{30} = \frac{x}{30$$

Moter strek (|mm) = .1(m $\pm \frac{1}{2}$ (subst)

Noter strek (|mm) = .1(m $\pm \frac{1}{2}$ (subst)

From trigonometry, we have that

Sin
$$\Theta = \left(\frac{x}{L}\right) \Theta = \sin^{-1}\left(\frac{x}{L}\right)$$

What is $\delta \theta$?

Use implicit differentiation:

 $\cos \theta = \frac{1}{L} \left| \delta x + \frac{1}{L^2} \left| \delta L \right| \delta L$
 $\delta \theta = \frac{1}{L} \left| \delta x + \frac{1}{L^2} \left| \delta L \right| \delta L$
 $\delta \theta = \frac{1}{L} \left| \delta x + \frac{1}{L^2} \left| \delta L \right| \delta L$

$$\frac{10}{3}$$

$$\frac{10}{2}$$

$$\frac{10}{2}$$

$$\frac{1}{2}$$

$$\frac{\delta \theta}{\delta t} = \frac{L}{L^{2} \times L^{2}} \left(\frac{\delta x}{L} + \frac{\delta L}{L^{2}} \right)$$

$$\frac{\partial}{\partial t} = \frac{L}{L^{2} \times L^{2}} \left(\frac{\delta x}{L} + \frac{\delta L}{L^{2}} \right)$$

$$\frac{\partial}{\partial t} = \frac{\delta x}{L^{2} \times L^{2}} = \frac{\delta x}{L^{2}} \left(\frac{2.7}{98.4} \right)$$

$$= 1.572^{\circ} \text{ min}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\delta x}{L^{2}} \right)$$

$$= 1.572^{\circ} \text{ min}$$

$$\frac{\partial}{\partial t} = \frac{\lambda x}{L^{2} \times L^{2}}$$

$$\frac{\partial}{\partial t} = \frac{\lambda x}{L^{2}}$$

$$\frac{\partial}{\partial t} = \frac{\lambda x}{L^{2}$$

2) Gaussian/Statistical Uncertainties.

In other experimets, we reasure some quantity by making many mous whenever and looking at the

distribution of values.

The "5x" that we quote is actually the standard deviation of the Gaussian, o.

In mis case, we calculate $\delta \geq$ as follows: { calculus happons

$$\delta z = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 \left(\delta x\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 \left(\delta y\right)^2}$$

$$\delta z = \sqrt{(\delta x)^2 + (\delta y)^2}$$

$$\delta z = \sqrt{y^2 \delta x^2 + x^2 \delta y^2}$$

Otz.

(