# NEUROBIOLOGIE FÜR BIOINFORMATIKERINNEN: PRAKTIKUM B

PROTOKOLL ZUM 2. PRAKTIKUMSTAG AM 14.01.2019

## Erregungsleitung im Bauchmark des Regenwurms

## **GRUPPE IV**

Gruppenmitglieder ALIA ROTHKEGEL MARA STEIGER

alia.rothkegel@fu-berlin.de mara.steiger@fu-berlin.de

Lehrveranstalter
Prof. Dr. P.R. HIESINGER
Dr. D. MALUN
Prof. Dr. M. WERNET

TutorInnen Lisa Peters Johannes Brüner Hammacher Claudia Haushalter

## 1 Einleitung

Ziel der heutigen Experimente ist es, die Erregunsleitung und Funktionsweise der dorsalen Riesenaxone des Regenwurmes zu untersuchen.

## 1.1 Erregunsleitung in Nervenzellen

Die Fortleitung von Informationen wird von Zellen des Nervensystem übernommen und basiert auf Spannungsunterschieden zwischen dessen Zellinnerem und dem extrazellulären Raum.

Aufgrund der Semipermeabilität der Membran von Neuronen, liegt ein sogenanntes Ruhepotential von ca. -70mV vor. Die Membran ist für größere Ionen wie Natrium  $(Na^{2+})$  nicht permeabel, aber Kalium  $(K^{+})$  kann frei diffundieren. Durch die geringere Konzentration von Kalium-Ionen im Zellinneren, kommt es zu einem Kalium-Austrom d.h. einem Austrom von Kationen, sodass die Nervenzelle gegenüber der Außenseite negativ geladen ist. Außerdem trägt eine Natrium-Kalium-Pumpe  $(Na^{2+}-K^{+}-ATPase)$  zum Erhalt des Membranpotentials bei.

Eine Nervenzelle wird durch die Bindung eines Neurotransmitters an einen ligandengesteuerten Ionenkanal in der Plasmamembran aktiviert. Dieser Kanal öffnet sich durch die Bindung, woraufhin  $Na^{2+}$  und  $Ca^{2+}$  entlang des Konzentrationsgradienten in die Zelle einströmen und eine Depolarisation bewirken. Spannungsabhängige  $Na^{2+}$ -Kanäle entlang des Axons einer Nervenzelle, die durch die Depolarisation in benachbarten Regionen der Zelle kurz geöffnet werden, sorgen für die Ausbreitung des Aktionspotentials in Form einer Depolarisationswelle durch das Neuron. Kurz nach der Depolarisation durch Natrium-Einstrom öffnen sich auch spannungsgesteurte  $K^+$ -Kanäle entlang des Axons, die wiederum eine Repolarisation durch den Austrom von Kalium bewirken. Da diese Kalium-Kanäle etwas langsamer schließen, kommt es zu einer Hyperpolarisation der Zelle. Anschließend wird das Ruhepotential durch Leckströme von Ionen und die Aktivität der Natrium-Kalium-Pumpe wiederhergestellt. [?]



Abbildung 1: Die Abbildung zeigt den zeitlichen Verlauf eines Aktionspotentials einer Nervenzelle. Zu sehen ist die Depolarisation von -70mV auf ca. +20mV, danach die Repolarisation übergehend zur Hyperpolarisation zu ca. 100mV und die Wiederherstellung des Ruhepotentials.

Die passiven elektrischen Eigenschaften der Nervenzelle beeinflussen hierbei die Geschwindigkeit, mit der sich ein Aktionspotential ausbreitet. Dies ist zum einen der Membranwiderstand  $R_m$ , zum anderen die Membrankapazität  $C_m$  und außerdem der intrazelluläre Längswiderstand  $R_i$ . Außerdem wirkt sich der Durchmesser eines Neurons auf die Fortleitungsgeschwindigkeit aus. [?]

## 1.2 Refraktärphase

Nachdem die Natrium-Kanäle während der Depolarisation kurz geöffnet waren, sind sie für eine bestimmte Zeit inaktiviert. Diese Phase nennt man Refraktärphase, währenddessen können diese Natrium-Kanäle nicht aktiviert werden und ein weiteres Aktionspotential auslösen. Dadurch wird erreicht, dass sich die Depolarisationswelle, d.h. das Aktionspotential nur in eine Richtung entlang des Axons ausbreitet. [?]

Man unterscheidet zwischen der absoluten und relativen Refraktärphase. Während der absoluten Refraktärphase ist eine Erregung überhaupt nicht möglich, auch nicht durch eine starke Depolarisation.

Die relative Refraktärphase beginnt direkt nach der absoluten Refraktärphase. Hier ist eine erneute Erregung zwar möglich, aber das Schwellenpotential ist deutlich höher. Das heißt, um erneut ein Aktionspotential auszulösen ist ein stärkerer Reiz nötig. Außerdem ist während dieser Zeit die Amplitude des resultierenden Aktionspotentiales verringert. [?]

#### 1.3 Riesenaxone

Die Entwicklung von Axonen mit deutlich größerem Durchmesser ist durch den evolutionären Vorteil entstanden, dass diese Aktionspotentiale schneller fortleiten können. Besonders für Bewegungsabläufe, die bei Fluchtreaktionen von Bedeutung sind, ist diese Eigenschaft entscheidend.

Bei der Vergrößerung des Durchmessers von Nervenfasern kommt es zu einem geringeren cytoplasmatischen Längswiderstand  $R_i$ , der wiederum für einen Anstieg der Längskonstante verantwortlich ist. Der Längswiderstand lässt sich wie folgt berechnen:

$$R_i = \frac{R_m}{\pi d^2} \tag{1}$$

Daraus folgt, dass bei gleichem Membranwiderstand  $R_m$  die Längskonstante  $R_i$  für einen steigenden Durchmesser sinkt. Ursache dafür ist, dass durch den größeren Durchmesser der Widerstand, der sich in der Zelle dem Stromfluss (einströmenden Ionen) entgegenstellt, geringer ist.

Die Längskonstante  $\lambda$  ist die Strecke, in der die maximale Amplitude der Spannungsänderung durch die Depolarisation auf den Anteil  $\frac{1}{e} \approx 37\%$  abgefallen ist. [?] Sie berechnet sich folgendermaßen:

$$\lambda = \frac{d/2 \cdot R_m}{2R_i} = \frac{d \cdot R_m}{4R_i} \tag{2}$$

Demnach kann das Aktionspotential eine größere Distanz überbrücken, bis es seine Amplitude verliert, wenn der Durchmesser des Axons größer ist. Diese Eigenschaften führten zur positiven Selektion von Riesenfasern, die man heute noch bei Arten der Bilateria finden kann.

#### 1.4 Myelinisierung

Um den Längswiderstand  $L_i$  zu erhöhen, kann auch der Membranwiderstand  $R_m$  bei gleichbleibendem Durchmesser d vergrößert werden (??).

Dies wird bei der Myelinisierung über eine saltatorische Erregungsleitung erreicht, bei der im Gegensatz zu nichtmyelinisierten Axonen die aktiven und passiven Leitungsmechanismen zeitlich und räumlich voneinander getrennt sind.

Gliazellen umhüllen Axone und bilden die Myelinscheide, indem sie sich um die Nervenfaser wickeln. Dadurch wird das Axon isoliert und es liegt ein größerer Membranwiderstand vor, sodass der Längswiderstand verringert wird und schließlich eine Erhöhung der Längskonstante bewirkt wird (??).

Die myelinisierten Nervenfasern weisen sogenannte Ranvier-Schnürringe auf, an denen die aktiven Leitungsprozesse (langsamere Erregunsleitung) ablaufen , während die passiven in den isolierten Abschnitten (schnelle Erregungsleitung) erfolgen. An diesen Schnürringen liegt das Axon unmyelinisiert vor, diese kurzen Abschnitte dienen zur Regeneration der Amplitude des Aktionspotentials. [?]



Abbildung 2: Dies ist eine schematische Darstellung einer myeliniserten Nervenfaser. Gezeigt ist, wie ein Aktionspotential von einem zum nächsten Schnürring "springt".

#### 1.5 Anatomie des Lumbricus terrestris

Der gemeine Regenwurm (auch: Tauwurm) *Lumbricus terrestris* besitzt einen länglichen bräunlich rot gefärbten Körper, der in mehrere Segmente unterteilt ist. Zur Fortbewegung befinden sich an jedem dieser Segmente zwei

Borstenpaare an der Unterseite. Das vordere Ende weist eine dunklere eher braune Färbung auf und läuft spitz zu, während das hintere Ende eher heller gefärbt ist. Der Körper des Regenwurms besteht aus einer flüssigkeitsgefüllten sekundären Leibeshöhle oder *Coelom*, die von einem formgebenden Hautmuskelschlauch umgeben ist. In der Leibeshöhle befinden sich auch die Organe des Regenwurms, sprich der Darm, die Gonaden, die Nephriden, das Ringgefäß mit Rücken- sowie Bauchgefäß und das für diesen Versuch relevante Bauchmark ??.





Abbildung 3: Eine Skizze der Anatomie des Regenwurms. Links im Längs-, rechts im Querschnitt. Das Bauchmark ist gelb hervorgehoben

Im Bauchmark befinden sich die Riesenfasern des Regenwurms, die mediane Riesenfaser (im Folgenden als MRF bezeichnet) und die lateralen Riesenfasern (im Folgenden als LRF bezeichnet). Zusätzlich zu dem vergrößerten Durchmesser der in ihnen liegenden Neuronen sind die Riesenfasern myelinisiert. Die beiden LRF mit je einem Durchmesser von ca.  $50\mu m$ , der zu anterior abnimmt, sind über Querbrücken verbunden und fungieren so wie eine einzelne Nervenfaser. Die MRF hat einen Durchmesser von ca.  $75\mu m$ , der Richtung posterior abnimmt. Sie erfüllen unterschiedliche Funktionen, und sprechen so unterschiedliche sensorische und motorische Neuronen an. Die MRF sorgt bei Reizen am anterioren Pol für das Abflachen des posterioren Körperendes und somit für ein Zurückziehen des anterioren Körperendes. Die LRF sorgen bei einem Reiz am posterioren Ende, dafür dass sich der Wurm am anterioren Ende "festhält" und das posteriore Ende wegzieht.??

### 1.6 Differentielle Ableitung

Eine differentielle Ableitung ist eine Methode zur Ableitung elektrischer Muskelpotentiale, bei der eine lokale Differenz zwischen zwei Elektroden gemessen wird. Dies dient dem herausfiltern von Störsignalen der elektromagnetischen Wechselfeldern der Umwelt. Es wird angenommen, dass sich diese Störsignale ca. mit Lichtgeschwindigkeit ausbreiten und somit beide Elektroden zur gleichen Zeit erreichen. Berechnet man nun die Differenz der von den Elektroden jeweils gemessenen Spannungen, so ergibt sich folgende Gleichung:

$$U_{ges} = (U_1 + S_1) - (U_2 + S_2)$$
  
Unter der Annahme, dass  $S_1 \approx S_2$ , gilt:  
 $U_{ges} \approx U_1 - U_2$ 

## 2 Material und Methoden

#### 2.1 Material

Für den durchgeführten Versuch wurde ein Regenwurm der Art Lumbruczs terrestis als Versuchstier verwendet. Zudem eine Wurmplatte mit einer Vertiefung für das Versuchstier, sowie 2 Paaren von fest verankerten Elektroden, ein Reizgenerator, ein Verstärker, ein AD-Wandler und ein Laptop. Für die Erhebung der Daten wurde die Software Spike2 benutzt.

#### 2.2 Versuchsaufbau

Für den Versuch wurde die Vertiefung der Wurmplatte auf einer Seite mit Knete blockiert und das Versuchstier animiert in diese hineinzukriechen. Sobald der Regenwurm sich vollständig zusammengezogen mit dem vorderen Ende an der Knete und dem Körper über dem vorderen Elektronenpaar befindet, wird die Vertiefung auch hinten mit Knete blockiert und der Wurm zusätzlich mir Plexiglasplatten fixiert.

An die Elektroden am anterioren Ende (im Folgenden "anteriore Elektroden" genannt) des Versuchstiers wird der Reizgenerator angeschlossen und die Elektroden am posterioren Ende (im Folgenden "posteriore Elektroden" genannt) werden mit dem Verstärker verknüpft. Sowohl der Reizgenerator als auch der Verstärker werden über den AD-Wandler an den PC angeschlossen ??



Abbildung 4: Die Abbildung zeigt einen schematischen Versuchsaufbau für den 1. - 3. Versuch. Gezeigt sind die verwendeten Komponenten und entlang der Pfeile ist der Informationsfluss zu erkennen. In blauer Schrift sind die Funktionen gekennzeichnet.

## 2.3 Versuchsdurchführung

- 2.3.1 Beobachtung der Lokomotion
- 2.3.2 Identifikation der Riesenfaser bei mechanischer Reizung
- 2.3.3 Bestimmung der Reizschwelle und der Fortleitungsgeschwindigkeit von MRF und LRF durch elektrische Reizung
- 2.3.4 Bestimmung der Refraktärphasen bei elektrischer Reizung

## 3 Ergebnisse

Durch verschiedene Störfaktoren enthalten unsere Messungen leider viele Artefakte und sind zum Teil unvollständig.

Screenshots für 2.:

 $a4_1, a4_2, a6_1$ 

 $p3_3, p3_4, p4_2$ 

Screenshots für 3.:

## 4 Diskussion

## Literatur

- [1] Nelson, David; Cox, Michael: Lehninger Biochemie. Springer Verlag, 2011.
- [2] Karp, Gerald: Molekulare Zellbiologie. Springer Verlag, 2005.
- [3] von Engelhardt, Wolfgang: Physiologie der Haustiere. Georg Thieme Verlag, 2010.
- [4] Schmidt, Robert; Lang, Florian; Heckmann, Manfred: Physiologie des Menschen, mit Pathopyhsiologie. Springer Medizin Verlag, 2010.
- [5] http://www.regenwuermer.info/regenwurm/ regenwurm-koerperbau.php Zugriff 18.01.2019 14:20 Uhr
- [6] Skript: Erregungsleitung im Bauchmark des Regenwurms
- [Abbildung 1] https://www.repetico.de/card-16616620, Zugriff 17.01.2019 13:20 Uhr
- [Abbildung 2] Karp, Gerald: Molekulare Zellbiologie. Springer Verlag, 2005.
- [Abbildung 3] https://hypersoil.uni-muenster.de/1/02/26.htm, Zugriff 18.01.2019 12:13 Uhr