Exploration of the effect of missing data on statistical analysis

UNIVERSITY OF TORONTO

Leo Watson, Nathalie Moon

ABSTRACT

Analysis of missing data mechanisms and modern approaches to handling missing data.

Designing R simulations to investigate hypotheses about imputation technique.

INTRODUCTION

Motivations

- Interested in what scenarios different imputation techniques should be used to reduce runtime without sacrificing bias, error, and other performance measures.
- Determine the types of missing data in the real world

Definitions

Missing Data Mechanisms

MCAR

MAR

MNAR

Imputation Techniques

Listwise Deletion

Multiple Imputation

INVESTIGATIONS

1) Comparing multiple imputation under varying degrees of MCAR, MAR, MNAR

Simulation

```
MCAR.create.data <- function(beta = 1, sigma2 = 1, n = 200,</pre>
                         run = 1) {
  set.seed(seed = run)
  y <- beta * x + rnorm(n, sd = sqrt(sigma2))
  cbind(x = x, y = y)
MCAR.make.missing <- function(data, p = 0.5){</pre>
  rx <- rbinom(nrow(data), 1, p)</pre>
  data[rx == 0, "x"] <- NA
  data
MCAR.test.impute <- function(data) {</pre>
  imp <- mice(data, print = FALSE)</pre>
 fit <- with(imp, lm(y ~ x))</pre>
  tab <- summary(pool(fit), "all", conf.int = TRUE)</pre>
  as.numeric(tab[2, c("estimate", "2.5 %", "97.5 %")])
MCAR.simulate <- function(runs = 10) {
  res \leftarrow array(NA, dim = c(1, runs, 3))
  dimnames(res) <- list(c("MCAR"),</pre>
                          as.character(1:runs),
                          c("estimate", "2.5 %", "97.5 %"))
  for(run in 1:runs) {
    data <- MCAR.create.data(run = run)</pre>
    data <- MCAR.make.missing(data)</pre>
    res[1, run, ] <- MCAR.test.impute(data)</pre>
```


	Estimate	РВ	CR	AW
MCAR	0.9779	2.209	0.97	0.102
MAR-light	0.9768	2.315	0.91	0.108
MAR-moderate	0.9799	2.011	0.91	0.095
MAR-heavy	0.9841	1.588	0.90	0.082
MNAR-light	1.0174	1.740	0.96	0.306
MNAR-moderate	1.0262	2.615	0.95	0.331
MNAR-heavy	1.0485	4.853	0.88	0.388

2) When Listwise Deletion Outperforms Multiple Imputation

Hypothesis 2a:
Missing Data only in Response Y
Probability of missingness doesn't depend on Y

Simulation

Hypothesis 2c:
Data follows Logistic Regression, probability of missingness depends only on Y

Simulation

Simulation

Results

Results

Results

CONCLUSION

NO.	feren	200

```
MCAR.create.data <- function(beta = 1, sigma2 = 1, n = 200,
                          run = 1) {
 set.seed(seed = run)
 x \leftarrow rnorm(n)
 y \leftarrow beta * x + rnorm(n, sd = sqrt(sigma2))
  cbind(x = x, y = y)
MCAR.make.missing <- function(data, p = 0.5){
 rx <- rbinom(nrow(data), 1, p)</pre>
 data[rx == 0, "x"] \leftarrow NA
  data
MCAR.test.impute <- function(data) {</pre>
 imp <- mice(data, print = FALSE)</pre>
 fit <- with(imp, lm(y ~ x))
  tab <- summary(pool(fit), "all", conf.int = TRUE)</pre>
  as.numeric(tab[2, c("estimate", "2.5 %", "97.5 %")])
MCAR.simulate <- function(runs = 10) {</pre>
  res \leftarrow array(NA, \dim = c(1, runs, 3))
  dimnames(res) <- list(c("MCAR"),</pre>
                          as.character(1:runs),
                          c("estimate", "2.5 %", "97.5 %"))
  for(run in 1:runs) {
    data <- MCAR.create.data(run = run)</pre>
    data <- MCAR.make.missing(data)</pre>
    res[1, run, ] <- MCAR.test.impute(data)
  res
```

	Estimate	PB	CR	AW
MCAR	0.9779	2.209	0.97	0.102
MAR-light	0.9768	2.315	0.91	0.108
MAR-	0.9799	2.011	0.91	0.095
moderate				
MAR-	0.9841	1.588	0.90	0.082
heavy				
MNAR-	1.0174	1.740	0.96	0.306
light				
MNAR-	1.0262	2.615	0.95	0.331
moderate				
MNAR-	1.0485	4.853	0.88	0.388
heavy				