

ECS764P: LECTURE 1

Introduction to Probabilities

Dr Fredrik Dahlqvist

ABOUT ECS764P

- Lectures: Wednesdays 13:00 to 15:00.
- 4 Labs: 12:00 to 14:00 (TB Lab) on:
 - Thursday 10 October
 - Thursday 31 October
 - Thursday 14 November
 - Thursday 5 December
 - 4 pieces of coursework: The "Applied" part of "Applied Statistics". 10% of the marks each, submit Jupyter notebook, code must run without bugs!
 - Exam (60% of the marks)

MODULE CONTENTS

- Week 1: Introduction to Probabilities
- Week 2: More Probabilities
- Week 3: Descriptive statistics and Visualisation
- Week 4: Estimators and Limit Laws
- Week 5: Maximum Likelihood Estimators
- Weeks 6 & 8: Hypothesis Testing
- Week 9: Independence, Dependence and Correlation
- Week 10: Linear Regression
- Week 11: Special Topic

REFERENCE BOOKS FOR THE MODULE

E-copy from the library

David Pollard

https://www.math.arizona.edu/~jwatkins/statbook.pdf

WARNING.

- I don't teach statistics and probabilities in the "standard way"
- You will not hear me talk much about random variables
- I think they create confusion and prevent a good understanding
- If you want to know what they are, check out standard textbooks

- We will be using **Python 3**!
 - And a number of packages like numpy and matplotlib.

PROGRAMMING IN THE MODULE

- Python code accompanies the lectures
- Coding breaks will be represented by python at the bottom of slides
- Code can be found at

https://hub.comp-teach.qmul.ac.uk

- Sign in and choose Applied Statistics
- This will give you access to Jupyter notebooks for the lectures

DATA ANALYSIS: METHODOLOGY

- 1) Set your objectives
 - Modelling random process
 - Forecasting
 - Testing statistical hypothesis
- 2) Collect data and assess quality according to objectives
- 3) Get a feeling of the data: Descriptive Statistics, Visualisation
- 4) Select methods: Distribution Fitting, Hypothesis Testing, Regression Analysis
- 5) Carry out analysis: *Python*
- 6) Compare findings with objectives and/or expectations

SOME PUBLICLY AVAILABLE DATA

- OECD data, e.g. economics, demographics, agriculture, health
 - http://stats.oecd.org/
- United Nations data, e.g. development indicators, crime, health, trade
 - http://data.un.org
- Gov.uk open data, e.g. government, transportation, education, health
 - https://www.data.gov.uk
- Kaggle: big repository of data for ML projects
 - https://www.kaggle.com

CALCULUS

- The calculus in these lectures will be very basic. To follow you just need to be able to:
 - Differentiate elementary functions (e.g. x^n , $e^{-\frac{x^2}{2}}$, ...)
 - Integrate elementary function
- If you need a refresher:
 - MIT open access courses (choose Single Variable Calculus): https://ocw.mit.edu/search/?d=Mathematics&s=department course numbers.sort coursenum
 - Important formulas and some exercises: https://www.mathcentre.ac.uk/resources/uploaded/final0502-calc-ref-ukmlsc.pdf

PROBABILITY THEORY

A brief introduction

Why is probability theory important?

Why is probability theory important?

- Natural sciences
 - Ecology, biology, chemistry, biochemistry: reactions modelled as happening randomly
 - Physics: quantum mechanics is founded on randomness.

As far as we know, the universe is intrinsically random. "God" does play dice.

- Engineering
 - Many machine-learning algorithms use probabilities e.g. ChatGPT
 - Optimisation problems used random algorithms
- Maths
 - Probabilities used outside of probability theory e.g. number theory, differential equations
- Finance
 - All derivative products are priced using ideas from probability theory

PRELIMINARIES

1) Writing down sets:

• Finite sets can be written explicitly by listing their elements:

$$\{2,3,5,7,11\}$$
 or $\{\text{true, false}\}$ or $\{a,b,aa,bb,ab,ba\}$

- The empty set contains no element and is written Ø
- The order in which a set is written is irrelevant

$${2,3,5,7,11} = {11,2,3,7,5}$$

This distinguishes sets from tuples

$$(2,3,5,7,11) \neq (11,2,3,7,5)$$

- 1) Writing down sets:
 - Infinite sets must obviously be written differently
 - Special names for special sets:

Symbol	Meaning	(Some) Elements
N	Natural numbers	{0,1,2,3,4,}
\mathbb{Z}	Integers	$\{\dots, -2, -1, 0, 1, 2, \dots\}$
\mathbb{Q}	Rational numbers	$\left\{ 1, -\frac{1}{2}, -\frac{1}{4}, 0, \frac{1}{3}, 2, \right\}$
\mathbb{R}	Real numbers	$\left\{\sqrt{2},\pi,\frac{1}{e},1,\frac{1}{3},\right\}$

1) Writing down sets:

- The most frequent way of defining/writing down a set is to restrict a previously defined set using a predicate (logical condition)
- Examples

```
\{x \in \mathbb{N} \mid 5 < x\} Read: All natural numbers x such that 5 < x \{x \in \mathbb{Z} \mid x \pmod{2} = 0\} Read: All integers x such that x is divisible by x
```

 This kind of notation will feature prominently in this course, make sure you understand it!

- 2) Operations on sets:
 - **1.** <u>Intersection.</u> The intersection $A \cap B$ contains precisely the elements which belong both to A and to B:

$${a, b, aa, bb, ab, ba} \cap {a, c, aa, cc, ac, ca} = {a, aa}$$

2. <u>Union.</u> The union $A \cup B$ contains precisely the elements which belong either to A or to B (or both!):

 $\{a, b, aa, bb, ab, ba\} \cup \{a, c, aa, cc, ac, ca\} = \{a, b, c, aa, bb, cc, ab, ba, ac, ca\}$

3. Relative complement/set difference. The relative complement $A \setminus B$ contains precisely the elements of A which do not belong to B:

$$\{a, b, aa, bb, ab, ba\} \setminus \{a, c, aa, cc, ac, ca\} = \{b, bb, ab, ba\}$$

2) Operations on sets:

4. Cartesian product. The Cartesian product $A \times B$ contains precisely the pairs of elements such that the first element belongs to A and the second elements belongs to B

 $\{true, false\} \times \{1,2\} = \{(true, 1), (true, 2), (false, 1), (false, 2)\}$ Essential to understand repeated experiments!

- 3) Membership and inclusion:
 - To say that an element belongs to a set we use the membership symbol

Its negation is written

• A is included in B, notation $A \subseteq B$, if every element of A is an element of B. In other words, if $x \in A \Rightarrow x \in B$

PRELIMINARIES: FUNCTIONS

4) Functions:

- A function $f: X \to Y$ is a relation between X and Y, i.e. a subset of $X \times Y$
- This relation must satisfy the following condition:
 - 1. If $(x, y) \in f$ and $(x, y') \in f$ then y = y'
 - 2. For every $x \in X$ there exists a $y \in Y$ such that $(x, y) \in f$
- In other words, each "input" $x \in X$ is related to exactly one "output" $y \in Y$
- We therefore write this y as f(x)
- Functions are written down in the following format

$$f: X \to Y, x \mapsto f(x)$$

- Example: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$
- Exercise: write down the square root function.

MEASURES

MEASURES: DISCRETE CASE

- Central concept: **Probability Measure**, a special class of **measures**
- In the discrete case, measures generalize counting

$$count(\bullet)\bullet.\bullet(\bullet)\bullet.\bullet(\bullet))=6=\sum_{i=1}^61$$

$$count(\mathbf{)}) = 1 = \sum_{i=1}^{1} 1$$

$$count(\{0,1,2,3,4,...\}) = \infty = \sum_{i=1}^{\infty} 1$$

MEASURES: TOWARDS A DEFINITION

- Abstract properties of counting
 - 1. count() takes a **set** as input and returns a **number** for example: $count(\{1,2,3\}) = 3$
 - 2. $count(\emptyset) = 0$
 - 3. $count(\{a,b,c\} \cup \{d,e,f\}) = count(\{a,b,c\}) + count(\{d,e,f\})$
 - 3. More generally: $count(A \cup B) = count(A) + count(B)$ if $A \cap B = \emptyset$ (otherwise double-counting!)
- This is almost the definition of a measure.

MEASURES: CONTINUOUS CASE

• In the continuous case, measures generalise lengths, areas, volumes, etc

$$length([a,b]) = b - a = \int_{a}^{b} 1 \, dx$$

$$area([a,b] \times [c,d]) = (b-a)(d-c) = \int_{a}^{b} \int_{c}^{d} 1 \, dx \, dy$$

$$volume([a,b] \times [c,d] \times [e,f]) = \int_{a}^{b} \int_{c}^{d} \int_{e}^{f} 1 \, dx \, dy \, dz$$

$$length((-\infty,\infty)) = \infty$$

MEASURES: CONTINUOUS CASE Queen Mary University of London

 What is the area coloured in purple?

MEASURES: CONTINUOUS CASE Queen Mary University of London

- What is the area coloured in purple?
- The area coloured in purple is given by

$$\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots = \frac{1}{3}$$

MEASURES: DEFINITION

- Abstract properties of area
 - 1. area() takes a **set** as input and returns a **number**

for example:
$$area\left(\left[0,\frac{1}{2}\right]\times\left[0,\frac{1}{2}\right]\right)=\frac{1}{4}$$

- 2. $area(\emptyset) = 0$
- 3. $area(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} area(A_i)$ if all A_i s are pairwise disjoint (otherwise double-counting!). See example on previous slide.
- This is also true for length and volumes
- In fact, this the definition of a measure

MEASURES: DEFINITION

- A measure \mathbb{M} on a set A is a function taking subsets $V \subseteq A$ as inputs and returns a real number $\mathbb{M}(V) \in \mathbb{R}$
- We will often think of $\mathbb{M}(V)$ as the "mass" of V
- M must satisfy the conditions on the previous slides
 - 1. $M(V) \geq 0$
 - 2. $\mathbb{M}(\emptyset) = 0$
 - 3. $\mathbb{M}(\bigcup_{i=1}^{\infty} V_i) = \sum_{i=1}^{\infty} \mathbb{M}(V_i)$ (σ -additivity)

Note: in good books you will see that measures are not defined on all subsets but only on a certain type of collection of subsets called a σ -algebra. I will not discuss this subtlety; I only want you to remember that measures take subsets as inputs.

- Probability measures are measures which are normalized: The measure of the entire set must be 1, formally $\mathbb{M}(A) = 1$.
- Examples:

$$\mathbb{P}(\bullet) = \frac{1}{6} = \sum_{i=1}^{1} \frac{1}{6}$$

$$\mathbb{P}([a,b]) = 1 = \int_a^b \frac{1}{(b-a)} dx$$

DENSITIES: discrete case

density

- Examples so far: every "point" contributes equally to the total measure
- What if some points contribute more/are "heavier"?

DENSITIES: continuous case

- Imagine a rod of length 4 m.
 - Along 1st meter it weights 1kg/m
 - Along 2nd meter it weights 2kg/m
 - Along 3rd meter it weights 3kg/m
 - Along 4th meter it weights 4kg/m
- What is the weight of the entire rod?

DENSITIES: continuous case

- Imagine a rod of length 4 m.
 - Along 1st meter it weights 1kg/m
 - Along 2nd meter it weights 2kg/m
 - Along 3rd meter it weights 3kg/m
 - Along 4th meter it weights 4kg/m
- What is the weight of the entire rod?
 1kg+2kg+3kg+4kg=10kg

Weight =
$$\int_0^4 density(x) \cdot 1 dx$$

Standard length is reweighted

DENSITIES: continuous case

• Imagine now a rod which gets heavier as you move away from one of the ends. Formally, imagine length l and density x kg/m at x meter from the end

$$Mass(Rod) = \int_{0}^{l} x(1)dx = \frac{l^{2}}{2}$$
Still a kind of length!

$$Mass(First Half Rod) = \int_0^{l/2} x .1 dx$$
$$= \frac{l^2}{8}$$

PMF and PDF

- We can do the same thing with probability measures it just needs to add up/integrate to 1
- Discrete case: loaded dice.

$$\mathbb{P}(\mathbf{\xi}) = \frac{2}{7}$$

$$\mathbb{P}(other\ faces) = \frac{1}{7}$$

Probability Mass Function (PMF)

$$f: \{1,2,3,4,5,6\} \to \mathbb{R}^+$$

 $1,2,3,4,5,6 \mapsto \frac{1}{7} \quad 6 \mapsto \frac{2}{7}$

PMF and PDF

Continuous case: normal distribution

$$\mathbb{P}((-\infty, t]) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \cdot 1 \, dx$$
Probability Density Function (PDF). Integrates to 1.

PMF and PDF

In the discrete case:

Probability Density/Mass Function tells us by how much counting (measure) is reweighted

• In the continuous case:

Probability Density Function tells us by how much the usual integration/length (dx) is reweighted

 Theoretically, probability theory is about probability measures. In practice, Probability Density Functions – PDFs - are the most useful mathematical objects.

PMF and PDF: USAGE

- Practically, the density gives us a concrete way to compute the probability mass of subsets
- Discrete case: $\mathbb{P}(A) = \sum_{x \in A} f(x)$

Eg:
$$Binom(10, 0.4)(\{1,2,3\}) = f(1) + f(2) + f(3)$$

= $\binom{10}{1}0.4^{1}0.6^{9} + \binom{10}{2}0.4^{2}0.6^{8} + \binom{10}{3}0.4^{3}0.6^{7}$

• Continuous case: $\mathbb{P}(A) = \int_{x \in A} f(x) dx$

Eg:
$$N(0,1)([2,3]) = \int_2^3 f(x) dx = \int_2^3 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

CUMULATIVE DISTRIBUTION FUNCTION

• For distributions on $\mathbb R$ it always makes sense to define

$$F(t) = \mathbb{P}((-\infty, t]), t \in \mathbb{R}$$

- This function is called the Cumulative Distribution Function or CDF
- In terms of the density function we have
 - Discrete case: $F(t) = \sum_{x \le t} f(x)$
 - Continuous case: $F(t) = \int_{-\infty}^{t} f(x) dx$

CDF: FAIR DICE

PDF vs CDF

Fundamental Theorem of Calculus:

If $f: \mathbb{R} \to \mathbb{R}$ is continuous and integrable and $F(t) = \int_{-\infty}^{t} f(x) dx$ then

$$\frac{\partial}{\partial t}F(t) = f(t)$$

- If f is a PDF, then F is a CDF
- The fundamental theorem of calculus allows us to compute a density from a CDF, i.e. from $\mathbb{P}\big((-\infty,t]\big)$
- This is extremely useful in practice