Optimization for Data Science (MAL7070)

Dr. Md Abu Talhamainuddin Ansary Department of Mathematics, IIT Jodhpur

PPT 1 Convex Set and Convex Function

• Definition: A set $S \subseteq \mathbb{R}^n$ is said to be a convex set of for any $x^1, x^2 \in S$, $\lambda \ge 0, \lambda x^1 + (1 - \lambda)x^2 \in S$.

- Definition: A set $S \subseteq \mathbb{R}^n$ is said to be a convex set of for any $x^1, x^2 \in S$, $\lambda \ge 0$, $\lambda x^1 + (1 \lambda)x^2 \in S$.
- **Geometrical interpretation:** If *S* is a convex set then for any two points of *S*, the line segment joining these two points lie inside the set.

- Definition: A set $S \subseteq \mathbb{R}^n$ is said to be a convex set of for any $x^1, x^2 \in S$, $\lambda \ge 0$, $\lambda x^1 + (1 \lambda)x^2 \in S$.
- **Geometrical interpretation:** If *S* is a convex set then for any two points of *S*, the line segment joining these two points lie inside the set.
- In first picture we can see that entire line segment joining x and y lies inside S. So S is a convex set.

- Definition: A set $S \subseteq \mathbb{R}^n$ is said to be a convex set of for any $x^1, x^2 \in S$, $\lambda \ge 0, \frac{\lambda x^1 + (1 \lambda)x^2}{2} \in S$.
- Geometrical interpretation: If S is a convex set then for any two points of S, the line segment joining these two points lie inside the set.
- In first picture we can see that entire line segment joining x and y lies inside S. So S is a convex set.

• In the second picture, we can see that certain portion of the line segment joining x and y does not lies inside S_1 . So S_1 is not a convex set.

Examples of convex set

• One dimensional problem: $S = \{x | x \ge, <, \le, > a\}$, S = [a, b], S = (a, b).

Examples of convex set

- One dimensional problem: $S = \{x | x \ge <, \le, > a\}$, S = [a, b], S = (a, b).
- Two dimension: $S = \{(x_1, x_2) | a_1x_1 + a_2x_2 = b\}$ is a convex set. Proof: Suppose $x = (x_1, x_2)^T$ and $y = (y_1, y_2)^T$ be two points on S. Then $a_1x_1 + a_2x_2 = c$ and $a_1y_1 + a_2y_2 = c$. Now

$$\lambda x + (1 - \lambda)y = (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2)$$

This implies

$$a_1(\lambda x_1 + (1 - \lambda)y_1) + a_2(\lambda x_2 + (1 - \lambda)y_2)$$

$$= \lambda(a_1x_1 + a_2x_2) + (1 - \lambda)(a_1y_1 + a_2y_2)$$

$$= \lambda b + (1 - \lambda)b = b$$

Hence $\lambda x + (1 - \lambda)y \in S$ So S is a convex set.

Examples of convex set

- One dimensional problem: $S = \{x | x \ge <, \le, > a\}$, S = [a, b], S = (a, b).
- Two dimension: $S = \{(x_1, x_2) | a_1x_1 + a_2x_2 = b\}$ is a convex set. Proof: Suppose $x = (x_1, x_2)^T$ and $y = (y_1, y_2)^T$ be two points on S. Then $a_1x_1 + a_2x_2 = c$ and $a_1y_1 + a_2y_2 = c$. Now

$$\lambda x + (1 - \lambda)y = (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2)$$

This implies

$$a_1(\lambda x_1 + (1 - \lambda)y_1) + a_2(\lambda x_2 + (1 - \lambda)y_2)$$

= $\lambda(a_1x_1 + a_2x_2) + (1 - \lambda)(a_1y_1 + a_2y_2)$
= $\lambda b + (1 - \lambda)b$ = b

Hence $\lambda x + (1 - \lambda)y \in S$ So S is a convex set.

• Similarly we can show that $S = \{x \in \mathbb{R}^n | a_1x_1 + a_2x_2 + \cdots + a_nx_n = c\}$ i.e. $S = \{x \in \mathbb{R}^n | a^Tx = b\}$ is a convex set. The set $S = \{x \in \mathbb{R}^n | a^Tx = b\}$ is called a hyperplane.

• The hyperplane $S = \{x \in \mathbb{R}^n | a^T x = b\}$ divides the space \mathbb{R}^n into two parts

$$S_1 = \{x \in \mathbb{R}^n | a^T x \ge b\}$$

and $S_2 = \{x \in \mathbb{R}^n | a^T x \le b\}$

Each part is called a closed half space.

• The hyperplane $S = \{x \in \mathbb{R}^n | a^T x = b\}$ divides the space \mathbb{R}^n into two parts

$$S_1 = \{x \in \mathbb{R}^n | a^T x \ge b\}$$

and $S_2 = \{x \in \mathbb{R}^n | a^T x \le b\}$

Each part is called a closed half space.

• The set $S_1 = \{x \in \mathbb{R}^n | a^T x > b\}$ is called an open half space.

• The hyperplane $S = \{x \in \mathbb{R}^n | a^T x = b\}$ divides the space \mathbb{R}^n into two parts

$$S_1 = \{x \in \mathbb{R}^n | a^T x \ge b\}$$

and $S_2 = \{x \in \mathbb{R}^n | a^T x \le b\}$

Each part is called a closed half space.

- The set $S_1 = \{x \in \mathbb{R}^n | a^T x > b\}$ is called an open half space.
- Both half spaces (closed & open) are convex set (prove it).

• The set $S = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 4\}$ is a convex set. **Proof:** Suppose $x = (x_1, x_2)^T$ and $y = (y_1, y_2)^T$ be two points on S. Then $x_1^2 + x_2^2 < 4$ and $y_1^2 + y_2^2 < 4$. Now

$$(\lambda x_1 + (1 - \lambda)y_1)^2 + (\lambda x_2 + (1 - \lambda)y_2)^2$$

$$= \lambda^2 x_1^2 + 2\lambda(1 - \lambda)x_1y_1 + (1 - \lambda)^2 y_1^2 + \lambda^2 x_2^2 - 2\lambda(1 - \lambda)x_2y_2$$

$$+ (1 - \lambda)^2 y_2^2 - \lambda x_1^2 - \lambda x_2^2 - (1 - \lambda)y_1^2 - (1 - \lambda)y_2^2 + \lambda x_1^2 + x_2^2 + (1 - \lambda)y_2^2$$

$$= \lambda(x_1^2 + x_2^2) + (1 - \lambda)(y_1^2 + y_2^2) - \lambda(1 - \lambda)(x_1 - y_1)^2 - \lambda(1 - \lambda)(x_2 - y_2)^2$$

$$= 4$$

This implies $\lambda x + (1 - \lambda)y \in S$. Hence *S* is a convex set.

• The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 4\}$ is not a convex set since $x = (2,0)^T$ and $y = (0,2)^T$ belong to S but $0.5x + (1-0.5)y = (1,1)^T$ does not belong to S.

- The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 4\}$ is not a convex set since $x = (2,0)^T$ and $y = (0,2)^T$ belong to S but $0.5x + (1-0.5)y = (1,1)^T$ does not belong to S.
- The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \ge 4\}$ is not a convex set since $x = (-3,0)^T$ and $y = (3,0)^T$ belong to S but $0.5x + (1-0.5)y = (0,0)^T$ does not belong to S.

- The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 4\}$ is not a convex set since $x = (2,0)^T$ and $y = (0,2)^T$ belong to S but $0.5x + (1-0.5)y = (1,1)^T$ does not belong to S.
- The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \ge 4\}$ is not a convex set since $x = (-3, 0)^T$ and $y = (3, 0)^T$ belong to S but $0.5x + (1 0.5)y = (0, 0)^T$ does not belong to S.
- If $f: \mathbb{R}^n \to \mathbb{R}$ is any nonlinear function then $\{x \in \mathbb{R}^n : f(x) = \alpha\}$ is not a convex set but $\{x \in \mathbb{R}^n : f(x) \ge \alpha\}$ and $\{x \in \mathbb{R}^n : f(x) \le \alpha\}$ may/may-not be convex.

- The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 4\}$ is not a convex set since $x = (2,0)^T$ and $y = (0,2)^T$ belong to S but $0.5x + (1-0.5)y = (1,1)^T$ does not belong to S.
- The set $S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \ge 4\}$ is not a convex set since $x = (-3, 0)^T$ and $y = (3, 0)^T$ belong to S but $0.5x + (1 0.5)y = (0, 0)^T$ does not belong to S.
- If $f: \mathbb{R}^n \to \mathbb{R}$ is any nonlinear function then $\{x \in \mathbb{R}^n : f(x) = \alpha\}$ is not a convex set but $\{x \in \mathbb{R}^n : f(x) \ge \alpha\}$ and $\{x \in \mathbb{R}^n : f(x) \le \alpha\}$ may/may-not be convex.

Properties of convex sets

• Intersection of two convex set is a convex set.

- Intersection of two convex set is a convex set.
- Union of two convex set is not necessarily convex.

- Intersection of two convex set is a convex set.
- Union of two convex set is not necessarily convex.
- If S_1 , S_2 are two convex sets then $S_1 + S_2$ is a convex set.(prove it).

- Intersection of two convex set is a convex set.
- Union of two convex set is not necessarily convex.
- If S_1 , S_2 are two convex sets then $S_1 + S_2$ is a convex set.(prove it).
- Discrete set is not convex.

- Intersection of two convex set is a convex set.
- Union of two convex set is not necessarily convex.
- If S_1 , S_2 are two convex sets then $S_1 + S_2$ is a convex set.(prove it).
- Discrete set is not convex.
- Suppose *S* is a convex set and *f* is an affine function (i.e. f(x) = Ax + b). Then image of *S* under *f*, i.e. $f(S) = \{f(x) | x \in S\}$ is a convex set.

Properties of convex sets

- Intersection of two convex set is a convex set.
- Union of two convex set is not necessarily convex.
- If S_1 , S_2 are two convex sets then $S_1 + S_2$ is a convex set.(prove it).
- Discrete set is not convex.
- Suppose S is a convex set and f is an affine function (i.e. f(x) = Ax + b). Then image of S under f, i.e. $f(S) = \{f(x) | x \in S\}$ is a convex set. **Proof** Suppose $s^1, s^2 \in f(S)$. Then there exists $x^1, x^2 \in S$ such that $s^1 = f(x^1) = Ax^1 + b$ and $s^2 = f(x^2) = Ax^2 + b$. Now for $0 \le \lambda \le 1$,

$$\lambda s^{1} + (1 - \lambda)s^{2} = \lambda (Ax^{1} + b) + (1 - \lambda)(Ax^{2} + b)$$
$$= A(\lambda x^{1} + (1 - \lambda)x^{2}) + b$$
$$= Ax^{3} + b = f(x^{3})$$

where $x^3 = \lambda x^1 + (1 - \lambda)x^2$. Since *S* is a convex set $x^3 \in S$. Hence $\lambda s^1 + (1 - \lambda)s^2 = f(x^3)$ for some $x^3 \in S$. i.e. $\lambda s^1 + (1 - \lambda)s^2 \in f(S)$. So f(S) is a convex set.

Convex combination...

• Convex Combination: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .

- Convex Combination: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Collection of all convex combinations of S is said to be the convex hull of S and denoted by Conv(S) or Co(S). i.e.

$$S = \{x \in \mathbb{R}^n | x = \sum_{i=0}^n \lambda_i x^i, \ 0 \le \lambda \le 1, \ \sum_{i=0}^n \lambda_i = 1\}$$

- Convex Combination: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Collection of all convex combinations of S is said to be the convex hull of S and denoted by Conv(S) or Co(S). i.e.

$$S = \{x \in \mathbb{R}^n | x = \sum_{i=0}^n \lambda_i x^i, \ 0 \le \lambda \le 1, \ \sum_{i=0}^n \lambda_i = 1\}$$

• Suppose $S = \{x^1, x^2\}$ then Co(S) is the line segment joining x^1 and x^2 .

- Convex Combination: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Collection of all convex combinations of S is said to be the convex hull of S and denoted by Conv(S) or Co(S). i.e.

$$S = \{x \in \mathbb{R}^n | x = \sum_{i=0}^n \lambda_i x^i, \ 0 \le \lambda \le 1, \ \sum_{i=0}^n \lambda_i = 1\}$$

- Suppose $S = \{x^1, x^2\}$ then Co(S) is the line segment joining x^1 and x^2 .
- Suppose $S = \{x^1, x^2, x^3\}$ then Co(S) is the triangle formed by x^1, x^2 and x^3 (if x^1, x^2, x^3 don't line in a hyperplane).

- Convex Combination: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Collection of all convex combinations of S is said to be the convex hull of S and denoted by Conv(S) or Co(S). i.e.

$$S = \{x \in \mathbb{R}^n | x = \sum_{i=0}^n \lambda_i x^i, \ 0 \le \lambda \le 1, \ \sum_{i=0}^n \lambda_i = 1\}$$

- Suppose $S = \{x^1, x^2\}$ then Co(S) is the line segment joining x^1 and x^2 .
- Suppose $S = \{x^1, x^2, x^3\}$ then Co(S) is the triangle formed by x^1, x^2 and x^3 (if x^1, x^2, x^3 don't line in a hyperplane).
- Suppose S be a convex set. $x \in S$ is said to be a vertex of S if x can not be expressed as convex combination of any other points S.

- **Convex Combination**: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Collection of all convex combinations of S is said to be the convex hull of S and denoted by Conv(S) or Co(S). i.e.

$$S = \{x \in \mathbb{R}^n | x = \sum_{i=0}^n \lambda_i x^i, \ 0 \le \lambda \le 1, \ \sum_{i=0}^n \lambda_i = 1\}$$

- Suppose $S = \{x^1, x^2\}$ then Co(S) is the line segment joining x^1 and x^2 .
- Suppose $S = \{x^1, x^2, x^3\}$ then Co(S) is the triangle formed by x^1, x^2 and x^3 (if x^1, x^2, x^3 don't line in a hyperplane).
- Suppose S be a convex set. $x \in S$ is said to be a vertex of S if x can not be expressed as convex combination of any other points S.
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Then Co(S) is the convex hull of all vertexes of S.

- **Convex Combination**: Suppose $\{x^1, x^2, \dots, x^n\}$ The linear combination $\lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n$, $0 \le \lambda \le 1$, $\sum_{i=0}^n \lambda_i = 1$ is said to be a convex combination of x^1, x^2, \dots, x^n .
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Collection of all convex combinations of S is said to be the convex hull of S and denoted by Conv(S) or Co(S). i.e.

$$S = \{x \in \mathbb{R}^n | x = \sum_{i=0}^n \lambda_i x^i, \ 0 \le \lambda \le 1, \ \sum_{i=0}^n \lambda_i = 1\}$$

- Suppose $S = \{x^1, x^2\}$ then Co(S) is the line segment joining x^1 and x^2 .
- Suppose $S = \{x^1, x^2, x^3\}$ then Co(S) is the triangle formed by x^1, x^2 and x^3 (if x^1, x^2, x^3 don't line in a hyperplane).
- Suppose S be a convex set. $x \in S$ is said to be a vertex of S if x can not be expressed as convex combination of any other points S.
- Suppose $S = \{x^1, x^2, \dots, x^n\}$. Then Co(S) is the convex hull of all vertexes of S.

Convex combination contd...

Theorem 1

Suppose $S = \{x^1, x^2, \dots, x^n\}$. Then Co(S) is a convex set.

Theorem 1

Suppose $S = \{x^1, x^2, \dots, x^n\}$. Then Co(S) is a convex set.

Proof: Suppose $y^1, y^2 \in Co(S)$. Then there exists $\mu = (\mu_1, \mu_2, \dots, \mu_n)^T, \theta = (\theta_1, \theta_2, \dots, \theta_n)^T$ such that

$$y^1 = \mu_1 x^1 + \mu_2 x^2 + \dots + \mu_n x^n, \quad 0 \le \mu_i \le 1, \quad \sum_{i=1}^n \mu_i = 1$$

$$y^2 = \theta_1 x^1 + \theta_2 x^2 + \dots + \theta_n x^n, \quad 0 \le \theta_i \le 1, \quad \sum_{i=1}^n \theta_i = 1$$

Now for $0 < \lambda < 1$,

$$\lambda y^{1} + (1 - \lambda)y^{2} = \lambda(\mu_{1}x^{1} + \mu_{2}x^{2} + \dots + \mu_{n}x^{n}) + (1 - \lambda)(\theta_{1}x^{1} + \theta_{2}x^{2} + \dots + \theta_{n}x^{n})$$

$$= \sum_{i=1}^{n} (\lambda \mu_{i} + (1 - \lambda)\theta_{i})x^{i}$$

Clearly $\lambda \mu_i + (1 - \lambda)\theta_i \geq 0$ for all i and

$$\sum_{i=1}^{n} (\lambda \mu_{i} + (1 - \lambda)\theta_{i}) = \lambda \sum_{i=1}^{n} \mu_{i} + (1 - \lambda) \sum_{i=1}^{n} \theta_{i} = \lambda + (1 - \lambda) = 1$$

Hence $\lambda y^1 + (1 - \lambda)y^2 \in Co(S)$. So Co(S) is convex set.

Convex combination contd...

Theorem 2

Suppose S be a non-empty convex set and $A = \{x^1, x^2, \dots, x^n\} \subseteq S$. Then $Co(A) \subseteq S$.

Proof: We prove the result by induction.

For n=2, the result holds from the definition of convex set.

Suppose the result holds for n-1, i.e. $Co\{x^1, x^2, \dots, x^{n-1}\} \subseteq S$. Let

$$y = \lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_n x^n \in Co(A)$$
 (1)

Then $\lambda_i \geq 0$ and $\sum_{i=1}^n \lambda_i = 1$. Then $\sum_{i=1}^{n-1} \lambda_i = 1 - \lambda_n$. This implies $\frac{\lambda_i}{1 - \lambda_n} \geq 0$ and $\sum_{i=1}^{n-1} \frac{\lambda_i}{1 - \lambda_n} = 1$.

Hence $z = \sum_{i=1}^{n-1} \frac{\lambda_i}{1-\lambda_n} x^i \in Co\{x^1, x^2, \dots, x^{n-1}\} \subseteq S$ and

$$(1-\lambda_n)z=\lambda_1x^1+\lambda_2x^2+\cdots+\lambda_{n-1}x^{n-1}.$$

Then from (1), $(1 - \lambda_n)z = y - \lambda_n x^n$. This implies $y = (1 - \lambda_n)z + \lambda_n x^n$. Since S is a convex set, $z, x^n \in S$ implies $y = (1 - \lambda_n)z + \lambda_n x^n \in S$. Hence $Co\{x^1, x^2, \dots, x^n\} \subseteq S$.

• A set $C \subseteq \mathbb{R}^n$ is said to be a cone if $x \in C$, $\lambda > 0$ implies $\lambda x \in C$. For example $C = \{x \in \mathbb{R}^2 | x_1, x_2 \ge 0\}$.

- A set $C \subseteq \mathbb{R}^n$ is said to be a cone if $x \in C$, $\lambda > 0$ implies $\lambda x \in C$. For example $C = \{x \in \mathbb{R}^2 | x_1, x_2 \ge 0\}$.
- A cone is said to be convex if it is convex and cone. i.e. $x^1, x^2 \in C$, $\lambda_1, \lambda_2 \ge 0$ $\lambda_1^2 + \lambda_2^2 > 00$ imply $\lambda_1 x^1 + \lambda_2 x^2 \in C$.

- A set $C \subseteq \mathbb{R}^n$ is said to be a cone if $x \in C$, $\lambda > 0$ implies $\lambda x \in C$. For example $C = \{x \in \mathbb{R}^2 | x_1, x_2 \ge 0\}$.
- A cone is said to be convex if it is convex and cone. i.e. $x^1, x^2 \in C$, $\lambda_1, \lambda_2 \ge 0$ $\lambda_1^2 + \lambda_2^2 > 00$ imply $\lambda_1 x^1 + \lambda_2 x^2 \in C$.
- A linear combination of the form $\theta_1 x^1 + \theta_2 x^2 + \cdots + \theta_n x^n$, $\theta_1, \theta_2, \dots, \theta_n \ge 0$ is said to be a conic combination of x^1, x^2, \dots, x^n .

- A set $C \subseteq \mathbb{R}^n$ is said to be a cone if $x \in C$, $\lambda > 0$ implies $\lambda x \in C$. For example $C = \{x \in \mathbb{R}^2 | x_1, x_2 \ge 0\}$.
- A cone is said to be convex if it is convex and cone. i.e. $x^1, x^2 \in C$, $\lambda_1, \lambda_2 \ge 0$ $\lambda_1^2 + \lambda_2^2 > 00$ imply $\lambda_1 x^1 + \lambda_2 x^2 \in C$.
- A linear combination of the form $\theta_1 x^1 + \theta_2 x^2 + \cdots + \theta_n x^n$, $\theta_1, \theta_2, \dots, \theta_n \ge 0$ is said to be a conic combination of x^1, x^2, \dots, x^n .
- The set of all conic combinations of some set C is called conic hull of C and denoted by cone(C). i.e.

$$\textit{cone}(\textit{C}) = \{\theta_1 x^1 + \theta_2 x^2 + \dots + \theta_n x^n | x^1, x^2, \dots, x^n \in \textit{C}, \theta_1, \theta_2, \dots, \theta_n \geq 0.$$

- A set $C \subseteq \mathbb{R}^n$ is said to be a cone if $x \in C$, $\lambda > 0$ implies $\lambda x \in C$. For example $C = \{x \in \mathbb{R}^2 | x_1, x_2 \ge 0\}$.
- A cone is said to be convex if it is convex and cone. i.e. $x^1, x^2 \in C$, $\lambda_1, \lambda_2 \ge 0$ $\lambda_1^2 + \lambda_2^2 > 00$ imply $\lambda_1 x^1 + \lambda_2 x^2 \in C$.
- A linear combination of the form $\theta_1 x^1 + \theta_2 x^2 + \cdots + \theta_n x^n$, $\theta_1, \theta_2, \dots, \theta_n \ge 0$ is said to be a conic combination of x^1, x^2, \dots, x^n .
- The set of all conic combinations of some set C is called conic hull of C and denoted by cone(C). i.e.

$$\textit{cone}(\textit{C}) = \{\theta_1 x^1 + \theta_2 x^2 + \dots + \theta_n x^n | x^1, x^2, \dots, x^n \in \textit{C}, \theta_1, \theta_2, \dots, \theta_n \geq 0.$$

• A cone *C* is said to be a pointed cone if $C \cap -C \subseteq \{0\}$.

• A function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be a convex function iff for any $x, y \in X$, $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{2}$$

• Geometrically this inequality implies that the graph of f between x and y lies below the line segment joining (x, f(x)) and (y, f(y)).

• A function $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be a convex function iff for any $x, y \in X$, $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{2}$$

• Geometrically this inequality implies that the graph of f between x and y lies below the line segment joining (x, f(x)) and (y, f(y)).

• A function is strictly convex if strict inequality holds in (2).

• A function $f: X\mathbb{R}^n \to \mathbb{R}$ is said to be a convex function iff for any $x, y \in X$, $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y). \tag{3}$$

• Geometrically this inequality implies that the graph of f between x and y lies above the line segment joining (x, f(x)) and (y, f(y)).

• A function $f: X\mathbb{R}^n \to \mathbb{R}$ is said to be a convex function iff for any $x, y \in X$, $0 \le \lambda \le 1$,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y). \tag{3}$$

• Geometrically this inequality implies that the graph of f between x and y lies above the line segment joining (x, f(x)) and (y, f(y)).

• A function is strictly concave if strict inequality holds in (3).

- Example of convex functions $y = \sum_{i=1}^{n} x_i^2$, $y = e^{\sum_{i=1}^{n} x_i}$ are (strictly) convex functions in \mathbb{R}^n . $y = \sum_{i=1}^{n} -\log(x_i)$, $y = \sum_{i=1}^{n} x_i \log(x_i)$ are (strictly) convex function in $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n | x_i > 0, \forall i \}$.
- If f is a convex function then -f is a concave function and vice-versa.
- If f_1, f_2, \ldots, f_n two convex functions then $\sum_{i=1}^n f_i, \alpha f_i$ ($\alpha > 0$), $\max\{f_1, f_2, \ldots, f_n\}$ are also convex functions.
- If f_1 , f_2 are two convex functions then $\min\{f_1,f_2\}$ is not necessarily convex. For example suppose $f_1(x) = x^2$ and $f_2(x) = (x-1)^2$. Define $f(x) = \min\{x^2, (x-1)^2\}$. Then f(1/2*0+1/2*1) > 1/2f(0)+1/2f(1)
- Affine functions $f(x) = a^T x + b$ are both convex and concave function.

• If f is a convex function then the level set $L = \{x : f(x) \le \alpha\}$ $\alpha \in \mathbb{R}$ is a convex set.

Proof: Suppose $x^1, x^2 \in L$. Then $f(x^1) \le \alpha$ and $f(x^2) \le \alpha$. Now for $0 \le \lambda \le 1$,

$$f(\lambda x^{1} + (1 - \lambda)x^{2}) \leq \lambda f(x^{1}) + (1 - \lambda)f(x^{2})$$

$$\leq \lambda \alpha + (1 - \lambda)\alpha$$

$$= \alpha$$

The first inequality holds, since f is a convex function. Hence $f(\lambda x^1 + (1 - \lambda)x^2) \le \alpha$ i.e. $\lambda x^1 + (1 - \lambda)x^2 \in L$. So L is a convex set.

- If f is a concave function then the set $S = \{x | f(x) \ge \alpha\}$ is a convex set. (prove it).
- If f is a convex function then the set $L = \{x : f(x) \ge \alpha\}$ $\alpha \in \mathbb{R}$ is not necessarily a convex set (provide counter example).
- Every convex function is continuous in the interior of its domain.
- f(x) = |x| is an example of non-differentiable convex function.

Convex function contd...

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then gradient of f at x^*

is defined as
$$\nabla f(x^*) = \begin{bmatrix} rac{\partial f}{\partial x_j}(x^*) \\ rac{\partial f}{\partial x_2}(x^*) \\ \dots \\ rac{\partial f}{\partial x_n}(x^*) \end{bmatrix}$$
.

• Suppose $f(x) = a^T x = x^T a = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$. Then $\nabla f(x) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a.$

• Suppose $Q = \begin{bmatrix} q_{11} & q_{12} \\ q_{12} & q_{22} \end{bmatrix}$ is an 2 × 2 symmetric matrix and $f: \mathbb{R}^2 \to \mathbb{R}$

be defined by
$$f(x) = \frac{1}{2}x^T Q x = \frac{1}{2}(x_1, x_2)Q = \begin{bmatrix} q_{11} & q_{12} \\ q_{12} & q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{2}\{q_{11}x_1^2 + 2q_{12}x_1x_2 + q_{22}x_2^2 + q_{12}x_1x_2 + q_{22}x_1^2 + q_{12}x_1x_2 + q_{22}x_1^2 + q_{12}x_1x_2 + q_{22}x_1^2 + q_{12}x_1x_2 + q_{22}x_1^2 + q_{12}x_1x_2 + q_{12}x_1x_1 + q_{12}x_1 + q$$

Then $\nabla f(x) = \begin{bmatrix} q_1 1 x_1 + q_{12} x_2 \\ q_{12} x_1 + q_{22} x_2 \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} \\ q_{12} & q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Qx.$

• Similarly for *n* dimensional square matrix *Q*, if $f(x) = \frac{1}{2}x^TQx$ then $\nabla f(x) = Qx$

If a convex function is differentiable at x, then for any y,

$$f(y) \ge f(x) + \nabla f(x^*)^T (y - x) \tag{4}$$

 Geometrically this inequality implies that the entire graph of f lies above the tangent plane at x.

- Suppose f is a convex function and $\nabla f(x^*) = 0$ for some $x^* \in X$, then from (4) $f(y) \ge f(x^*)$ for all $y \in X$. Hence x^* is a minima of f.
- Consider the problem $\min_{x \in \mathbb{R}^n} f(x)$. If f is convex, then $\nabla f(x^*) = 0$ implies x^* is the solution of this problem.

• Subdifferential of a convex function at $x^* \in dom f$ is defined as

$$\partial f(x^*) = \{ \xi \in \mathbb{R}^n | f(y) - f(x) \ge \xi^T (y - x) \ \forall \ y \in dom(f) \}$$
 (5)

i.e. collection of all subgradients is called the subdifferential.

- Consider f(x) = |x| and $x^* = 0$. Then $\partial f(0) = [-1, 1]$.
- If f is continuous at x then $\partial f(x)$ is a compact set (closed and bounded).
- If $f(x) = f_1(x) + f_2(x)$ then $\partial f(x^*) = \partial f_1(x^*) + \partial f_2(x^*)$.
- If $f(x) = \alpha f_1(x)$, $\alpha > 0$ then $\partial f(x^*) = \alpha \partial f_1(x^*)$.

Subdifferential of a convex function

• If
$$f(x) = \max\{f_1(x), f_2(x), \dots, f_m(x)\}$$
. Then
$$\partial f(x^*) = Co\{\nabla g_i(x^*) | i \in \{1, 2, \dots, m\}, f(x^*) = f_i(x^*).$$

- If $x^* \notin dom(f)$ then we define $\partial f(x^*) = \emptyset$.
- If f is differentiable at x^* then $\partial f(x^*) = {\nabla f(x^*)}.$
- Suppose $0 \in \partial f(x^*)$ for some $x^* \in dom(f)$ then $f(y) f(x^*) \ge 0^T (y x^*)$. This implies $f(y) \ge f(x^*)$ for all $y \in dom(f)$. i.e. x^* is a global minima of f.
- Thus x* is a global minima of f iff

$$0 \in \partial f(x^*).$$

Consider the least square problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|^2 = \frac{1}{2} \left(x^T A^T A x - 2 x^T A^T b + b^T b \right).$$

Here the objective function is convex. Hence $\nabla \left(\frac{1}{2}\|Ax-b\|^2\right)=0$ gives the optimal solution. Now $\nabla \left(\frac{1}{2}\|Ax-b\|^2\right)=0$ implies $A^TAx-A^Tb=0$, i.e.

$$x = (A^T A)^{-1} A^T b,$$

which is the least square solution.

Convex function contd...

- An $n \times n$ matrix H is said to be a
 - a positive semi-definite matrix if $x^T H x \ge 0$ for all $x \in \mathbb{R}^n$.
 - a positive definite matrix if $x^T H x > 0$ for all non-zeros $x \in \mathbb{R}^n$.
 - a negative semi-definite matrix if $x^T H x \leq 0$ for all $x \in \mathbb{R}^n$.
 - a negative definite matrix if $x^T H x < 0$ for all non-zeros $x \in \mathbb{R}^n$.
- Diagonal elements of a
 - a positive semi-definite matrix is greater than equal to 0.
 - a positive definite matrix is strictly greater then zero.
 - a negative semi-definite matrix is less than equal to zeros.
 - a negative definite matrix is less than zero.
- Converse of the above statements are not always true. For example if diagonal elements of a matrix is > 0 then it is not necessarily a positive definite matrix. For example $H = \begin{bmatrix} 2 & 4 \\ 4 & 1 \end{bmatrix}$ has strictly positive diagonal elements but H is not positive definite since $(1,2)H\begin{bmatrix} 1 \\ 2 \end{bmatrix} = -10 < 0$.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ り へ ○

Convex function contd...

- Eigen values of a symmetric
 - positive definite matrix are > 0.
 - positive semi definite matrix are ≥ 0 .
 - negative definite matrix are < 0.
 - negative semi definite matrix are \leq 0.
- **Definition:** Suppose H be an $n \times n$ matrix. A leading principal minor of H of order k is the minor of order k obtained by deleting the last n k rows and columns.
- If H is a positive (semi) definite matrix then leading principal minors of H
 of order 1, 2, ..., n (≥) > 0.
- If H is a negative (semi) definite matrix then leading principal minors of H of order k is $(\leq) < 0$ if k is odd and $(\geq) > 0$ if k is even for k = 1, 2, ..., n.
- Suppose $H = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 2 & -1 \\ 2 & -1 & 4 \end{bmatrix}$. For any $x \in \mathbb{R}^3$, we have

$$x^{T}Hx = (x_1 + x_2)^2 + (\sqrt{2}x_1 + \sqrt{2}x_3)^2 + (x_2 - x_3)^2 + x_3^2 > 0$$

for any $x \neq 0$. Hence H is a positive definite matrix.

• One can verify eigenvalues and leading principle minors of H are > 0.

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function. Then Hessian of f at x is defined as

$$H(x) = \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 x_n}(x) \\ \frac{\partial^2 f}{\partial x_1 x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_2 x_n}(x) \\ \dots & \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_n x_2}(x) & \frac{\partial^2 f}{\partial x_n x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}$$

- Since *f* is continuous, Hessian of *f* is a symmetric matrix.
- f is a convex function in $X \subseteq \mathbb{R}^n$ if and only $\nabla^f(x)$ is positive semi-definite for every $x \in X$.
- If Hessian of *f* is positive definite then *f* is strictly convex.

• Suppose
$$f(x) = 2x_1^2 + 3x_2^2 + 2x_3^2 + 2x_1x_2 + 3x_1x_3 + 4x_2x_3$$
. Then $\nabla f(x) = \begin{bmatrix} 4x_1 + 2x_2 + 3x_3 \\ 2x_1 + 6x_2 + 4x_3 \\ 3x_1 + 4x_2 + 4x_3 \end{bmatrix}$ and $\nabla^2 f(x) = \begin{bmatrix} 4 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & 4 & 4 \end{bmatrix}$.

- For any $x \in \mathbb{R}^3$, leading principle minors of $\nabla^2 f(x)$ are 4, 20, 10. This implies $\nabla^2 f(x)$ is positive definite for every $x \in \mathbb{R}^3$. Hence f is a strictly convex function.
- If f is strictly convex then $\nabla^2 f(x)$ is not necessarily positive definite. For example $f(x) = x_1^4 + x_2^4$. (verify)

• A function $f: X \to \mathbb{R}$ is said to be a σ -strongly convex for some $\sigma > 0$ if for any $x, y \in X$ and $0 \le \lambda \le 1$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\sigma}{2}\lambda(1 - \lambda)||x - y||^2.$$

 $\sigma(>0)$ is said to be the modulus of strong convexity. Sometimes, a σ -strongly convex function is called as 'a strongly convex function with modulus σ .

- If f is a σ -strongly convex then $g(x) = f(x) \frac{\sigma}{2} ||x||^2$ is a strictly convex function.
- Every strongly convex function is a strictly convex function but not converse. For example $f(x) = e^x$, $-\log(x)$ are strictly convex but not strongly convex function.
- If f is a σ -strongly convex function then $d^T \nabla^2 f(x) d \geq \frac{\sigma}{2} ||d||^2$ for every $x \in X$ and $d \in \mathbb{R}^n$.
- The modulus of convexity $\sigma = \min_{x \in X} eig_min \nabla^2 f(x)$, where eig_min of a matrix H is the minimum eigenvalue of H.

References

Boyd, S. and Vandenberghe, L.: Convex optimization. Cambridge university press, 2004.

Boyd, S. and Vandenberghe L.: Introduction to applied linear algebra: vectors, matrices, and least squares. Cambridge university press, 2018.