Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut Dr. D. Vogel

Blatt 7

Abgabetermin: Donnerstag, 08.12.2016, 9.30 Uhr

Aufgabe 1. (Lineare Unabhängigkeit und Erzeugendensysteme im \mathbb{R}^3 .) Im \mathbb{R}^3 betrachte man die vier Vektoren $v_1 = (0, 1, 2), v_2 = (2, 1, 0), v_3 = (1, 1, 1), v_4 = (1, 0, 0)$. Bestimmen Sie in jedem der folgenden zwei Fälle, ob das gegebene System von Vektoren im \mathbb{R}^3 linear unabhängig (bzw. ein Erzeugendensystem des \mathbb{R}^3 , eine Basis des \mathbb{R}^3) ist.

(a)
$$(v_1, v_2, v_3)$$
,

Dr. M. Witte

(b)
$$(v_1, v_2, v_4)$$
.

Aufgabe 2. (Lineare Unabhängigkeit und Erzeugendensysteme unter Zerlegungen in direkte Summen.) Sei K ein Körper und $\ell, m, n \in \mathbb{N}$. Für $k = 1, \ldots, \ell$, $i = 1, \ldots, m$ und $j = 1, \ldots, n$ seien $v_{i,k}, w_{j,k} \in K$. Wir betrachten für $k = 1, \ldots, \ell$ die Vektoren

$$v_k := (v_{1,k}, \dots, v_{m,k}) \in K^m, \quad w_k := (w_{1,k}, \dots, w_{n,k}) \in K^n,$$

 $u_k := (v_{1,k}, \dots, v_{m,k}, w_{1,k}, \dots, w_{n,k}) \in K^{m+n}.$

Beweisen oder widerlegen Sie:

- (a) Die Famile (v_1, \ldots, v_ℓ) in K^m ist genau dann linear unabhängig, wenn die Familie (u_1, \ldots, u_ℓ) in K^{m+n} linear unabhängig ist.
- (b) Wenn die Familie (v_1, \ldots, v_ℓ) linear abhängig ist, so ist die Familie (u_1, \ldots, u_ℓ) linear abhängig.
- (c) Wenn (v_1, \ldots, v_ℓ) kein Erzeugensystem von K^m ist, so ist (u_1, \ldots, u_ℓ) kein Erzeugendensystem von K^{m+n} .

Aufgabe 3. (Charakterisierung von Basen) Sei K ein Körper, I eine Menge und $(v_i)_{i\in I}$ eine Familie von Vektoren in einem K-Vektorraum V. Zeigen Sie, dass folgende Aussagen äquivalent sind (dies verallgemeinert Satz 9.3 aus der Vorlesung):

- (a) $(v_i)_{i\in I}$ ist eine Basis von V,
- (b) $(v_i)_{i\in I}$ ist ein Erzeugendensystem von V und für jede echte Teilmenge $J\subsetneq I$ ist $(v_i)_{i\in J}$ kein Erzeugendensystem von V.
- (c) Zu jedem $v \in V$ gibt es eine eindeutig bestimmte Familie $(\lambda_i)_{i \in I}$ von Elementen von K, so dass $\lambda_i = 0$ für fast alle i und $v = \sum_{i \in I} \lambda_i v_i$.
- (d) $(v_i)_{i\in I}$ ist linear unabhängig und für jede Menge J, die I als echte Teilmenge enthält, ist jede Familie von Vektoren $(w_i)_{i\in J}$ in V mit $v_i=w_i$ für $i\in I$ linear abhängig.

Aufgabe 4. (Umordnung von Basen) Sei K ein Körper, V ein K-Vektorraum, I eine Menge, $(v_i)_{i\in I}$ eine Basis von V und $\phi\colon J\to I$ eine Abbildung. Zeigen Sie:

- (a) $(v_{\phi(j)})_{j\in J}$ ist genau dann ein Erzeugendensystem von V, wenn ϕ surjektiv ist.
- (b) $(v_{\phi(j)})_{j\in J}$ ist genau dann linear unabhängig, wenn ϕ injektiv ist.
- (c) $(v_{\phi(j)})_{j\in J}$ ist genau dann eine Basis, wenn ϕ bijektiv ist.

Zusatzaufgabe 5. (Basen von Abb(\mathbb{N}, K).) Sei K ein Körper. Zeigen Sie, dass der K-Vektorraum Abb(\mathbb{N}, K) der K-wertigen Folgen keine abzählbare Basis besitzt. Mit anderen Worten: Es gibt keine durch \mathbb{N} indizierte Familie $(v_n)_{n\in\mathbb{N}}$ von Vektoren in Abb(\mathbb{N}, K), die eine Basis ist.