

Multiples Testen -Theorie des Multiplen Testens-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020

Methoden zur multiplen Fehlerkontrolle

Testentscheidungsfunktion

 Ein statistischer Test kann über seine Testentscheidungsfunktion dargestellt werden:

$$arphi = \left\{ egin{array}{ll} 1 & ext{der Test verwirft } H_0 \ 0 & ext{der Test akzeptiert } H_0 \end{array}
ight.$$

• Beispiele:

Kontrasttest
$$\varphi_i^{\alpha}=\mathbf{1}_{\{\mathcal{T}_i\geq Q_{N-3}^t(1-\alpha/2)\}};$$
 F-Test $\varphi_0^{\alpha}=\mathbf{1}_{\{F\geq Q_{2N}^f(1-\alpha)\}}$

• Ein **multipler Test** mit den Hypothesen H_0^1, \dots, H_0^h besteht aus h Testentscheidungsfunktionen

$$\varphi = (\varphi_1, \ldots, \varphi_h)$$

wobei H_0^i verworfen wird, wenn $\varphi_i = 1$.

Wichtige Indexmengen

- Θ ein Parameterraum (z.B. $\theta \in \Theta = \mathbb{R}^2$, $\theta_i = \mu_i \mu_3$, i = 1, 2)
- h Nullhypothesen $H_0^i \subseteq \Theta$, $i=1,\ldots,h$. (z.B. $H_0^i=\{(\theta_1,\theta_2):\theta_i=0\}$)
- Wir betrachten für jedes $\theta \in \Theta$ die Indexmenge

$$W_{\theta} = \{i \in \{1, \dots, h\} : \theta \in H_0^i\}$$

aller Nullhypothesen, die unter der Parameterkonstellation θ wahr sind

- Wir haben $W_{\theta} = \emptyset$, wenn θ in keinem H_0^i liegt
- Wir definieren zudem für jedes θ die Indexmenge

$$V_{\theta} = \{i \in W_{\theta} : H_0^i \text{ wird verworfen}\} = \{i \in W_{\theta} : \varphi_i = 1\}$$

der fälschlich verworfenen Nullhypothesen

• V_{θ} hängt von θ und den Daten ab und ist also zufällig (W_{θ} hängt nicht von den Daten ab)

Wichtige Indexmengen – Illustration

- Angenommen wir verwerfen H_0^1 aber nicht H_0^2 , d.h. $\varphi_1=1$ und $\varphi_2=0$
- Dann ergeben sich die folgenden $V_{ heta}$

Wichtige Indexmengen - Illustration

• Welche W_{θ} und V_{θ} ergeben sich für $\theta \notin H_1 \cup H_2$?

- Der graue Punkt ist ein Beispiel für $\theta \not\in H_1 \cup H_2$
- Für $\theta \not\in H_1 \cup H_2$ gilt $W_\theta = V_\theta = \emptyset$

Family wise error rate (FWER)

- Angenommen θ ist die wahre Parameterkonstellation
- Wir begehen genau dann **keinen** Fehler 1. Art, d.h. verwerfen **keine** wahre Nullhypothese, wenn $V_{\theta} = \emptyset$ bzw. $\max_{i \in W_{\theta}} \varphi_i = 0$
- Die family wise error rate ist die Wahrscheinlichkeit, mindestens eine Nullhypothese fälschlicherweise zu verwerfen:

$$\mathsf{FWER}_{\theta}(\varphi) = P_{\theta}(V_{\theta} \neq \emptyset) = P_{\theta}(|V_{\theta}| > 0) = P_{\theta}(\max_{i \in W_{\theta}} \varphi_i = 1)$$

wobei $|V_{\theta}| = \sum_{i \in W_{\theta}} \varphi_i$ die Zahl der fälschlicherweise verworfenen Nullhypothesen ist

• Man spricht von starker Kontrolle der FWER auf dem Signifkanzniveau α , falls

$$\sup_{\theta \in \Theta} \mathsf{FWER}_{\theta}(\varphi) = \sup_{\theta \in \Theta} P_{\theta}(|V_{\theta}| > 0) \leq \alpha$$

FWER mit naiven Tests

- Wenn $\theta \in H_0^1 \setminus H_0^2$ oder $\theta \in H_0^2 \setminus H_0^1$, dann ist die Fehlerrate unter Kontrolle
- Für $\theta \in H_0^1 \cap H_0^2$ ist die Fehlerrate allerdings zu groß
- Wir müssen die Testentscheidung also modifizieren

FWER beim Dunnett-Test

• Für $\alpha = 0.05$ verweden wird statt

$$c = Q_{19}^t(0.975) = 2.09$$

die kritische Grenze des Dunnett-Tests:

$$d_{\alpha} = 2.3649$$

• Es gilt

$$P_{H_i}(|T_i| \ge d_{\alpha}) = 0.025$$

Kontrasttests mit vorgeschalteter ANOVA

Diese Prozedur erfolgt in zwei Schritten

- 1. Teste $H_0 = \mu_1 = \mu_2 = \mu_3$ mit ANOVA auf Signifikanzniveau α (Testentscheidungsfunktion φ_0^{α})
- 2. Wenn ANOVA **nicht** signifikant, dann **akzeptiere** H_0^1 und H_0^2
- 3. Wenn ANOVA signifikant, dann teste jedes H_0^i mit Kontrasttest (φ_i^{α} , i=1,2) auf Niveau α und verwerfe H_0^i , wenn auch Kontrasttest signifikant
- 4. Mit nur zwei Hypothesen kontrolliert diese Prozedur den multiplen Fehler 1. Art

Kontrasttests mit vorgeschalteter ANOVA (φ_0^{α})

Kontrasttests mit vorgeschalteter ANOVA (φ_0^{α})

Fehler 1. Art bei vorgeschalteter ANOVA

Kontrasttests mit vorgeschalteter ANOVA bei 3 Hypothesen

• Vier Gruppen mit Mittelwerten $\mu_1, \mu_2, \mu_3, \mu_4$. Wir interessieren uns für die 3 Hypothesen

$$H_0^1 = \mu_1 - \mu_4$$
, $H_0^2 = \mu_2 - \mu_4$, $H_0^3 = \mu_3 - \mu_4$

- Parameterraum: $\theta = (\theta_1, \theta_2, \theta_3) \in \Theta = \mathbb{R}^3$, $\theta_i = \mu_i \mu_4$, i = 1, 2, 3
- Kann man wieder erst eine ANOVA durchführen und wenn signifikant, die drei Kontrasttests auf dem Niveau α machen?
- Falls $\theta \in H_0 = H_0^1 \cap H_0^2 \cap H_0^3$ dann gilt

$$\mathsf{FWER}_\theta = P_\theta \left(\varphi_0^\alpha = 1 \text{ und } \max_{i=1}^3 \varphi_i^\alpha = 1 \right) \leq P_\theta (\varphi_0^\alpha = 1) = \alpha$$

• Gilt FWER $_{\theta} \leq \alpha$ für alle θ oder gibt es eine Konstellation θ , für die FWER $_{\theta} > \alpha$ gilt?

Kontrasttests mit vorgeschalteter ANOVA bei 3 Hypothesen

Angenommen

$$\mu_1=\mu_2=\mu_4$$
 aber $\theta_3=\mu_3-\mu_4$ groß, d.h. $\theta_3 o\infty$

- Daraus folgt $\gamma^2 = \sum_{j=1}^3 n_j \alpha_j^2 / \sigma^2 \to \infty$, wobei $\alpha_j = \mu_j \mu_0$ mit $\mu_0 = \sum_j n_j \mu_j / N$ der Gesamterwartungswert. \Rightarrow Power der ANOVA $\to 1$
- Wie lautet W_{θ} ? $W_{\theta} = \{1, 2\}$, d.h. H_0^1 und H_0^2 sind wahr!
- Die Wahrscheinlichkeit, dass die ANOVA signifikant wird, ist praktisch 1; die ANOVA stellt keine "Hürde" mehr da!
- Wir haben aber immer noch die zwei gültigen H_0^1 und H_0^2 , die wir beide nun ungschützt auf dem Niveau α testen
- FWER $_{\theta}$ ist im Extremfall derselbe wie beim ungeschützten Testen von zwei Gruppenvergleichen $> \alpha$

Schwache Kontrolle der FWER

 Kontrasttests mit vorgeschobener ANOVA kontrollieren die FWER nicht stark, d.h.

$$\sup_{\theta \in \Theta} P_{\theta}(|V_{\theta}| > 0) > \alpha$$

Allerdings kontrolliert dieses Verfahren die FWER schwach, d.h.

$$\sup_{\theta \in H_0} P_{\theta}(|V_{\theta}| > 0) \le \alpha$$

• Schwache Kontrolle der FWER bedeutet also. dass

$$\mathsf{FWER}_{\theta} \leq \alpha \quad \mathsf{für alle} \quad \theta \in H_0 = H_0^1 \cap \cdots \cap H_0^h$$

• Wie kann man mit der ANOVA starke Kontrolle der FWFR erreichen?

Historisches

• Fisher hat das Vorschalten der ANOVA für $H_0: \mu_1 = \cdots = \mu_k$ beim paarweisen Vergleich aller Gruppen untereinander (all pairwise comparisons), also beim Testen von

$$H_0^{ij}: \mu_i = \mu_j$$
 für alle $1 \leq i < j \leq k$ $\left(\mathit{m} = rac{k \, (k-1)}{2} \; \mathsf{Hypothesen}
ight)$

vorgeschlagen. Man nennt diese Vorgehensweise Fisher's Protected Least Significant Difference Test (PLSD-Test).

• Peritz (1970) schlägt eine Prozedur zum Testen aller Homogenitätshypothesen

$$H_0^{i_1,\ldots,i_l}: \mu_{i_1} = \cdots = \mu_{i_l}, \qquad \{i_1,\ldots,i_l\} \subseteq \{1,\ldots,k\}$$

vor. Marcus, Peritz und Gabriel (1976) verallgemeinern diese Prozedur zum sogenannten Abschlusstestprinzip (*closure principle* oder *closure method* oder *closed testing procedure*) auf beliebige Hypothesen.

Das Abschlusstestprinzip

Abschlusstestprinzip für drei Hypothesen mit ANOVAs

(
$$arphi_0^lpha$$
 ANOVA für $H_0:\mu_1=\dots=\mu_4$, $\ arphi_{ij}^lpha$ ANOVA für $H_0^i\cap H_0^j:\mu_i=\mu_j=\mu_4$)

Abschlusstestprinzip für drei Hypothesen mit ANOVAs

(
$$arphi_0^lpha$$
 ANOVA für $H_0:\mu_1=\dots=\mu_4$, $\ arphi_{ij}^lpha$ ANOVA für $H_0^i\cap H_0^j:\mu_i=\mu_j=\mu_4$)

Das Abschlusstestprinzip (Abschlusstests)

- Wir haben h Hypothesen $H_0^i \subseteq \Theta$, i = 1, ..., h.
- Wir betrachten alle Schnitthypothesen

$$H_0^J = \cap_{j \in J} H_0^j, \qquad J \subseteq \{1, \dots, h\}$$

• Wir legen für jedes H_0^J einen Niveau- α -Test φ_J^{α} fest (vorhin waren das ANOVA's), d.h., es muss gelten

$$P_{\theta}(\varphi_J^{\alpha}=1) \leq \alpha$$
 für alle $\theta \in H_0^J$

• Wir verwerfen die Hypothese H_0^i , falls $\varphi_J = 1$ für alle $J \subseteq \{1, \ldots, h\}$ mit $i \in J$, d.h.,

$$\phi_i^{lpha}=1$$
 wobei $\phi_i^{lpha}=\min_{i\in J\subseteq\{1,\dots,h\}}arphi_J^{lpha}$

• Prinzip benötigt i.A. Festlegung und Durchführung von $2^h - 1$ Tests (Zahl der nicht-leeren Teilmengen von $\{1, \ldots, h\}$)!

Fehlerkontrolle mit dem Abschlusstestprinzip

Für jedes $\theta \in \Theta$ mit $W_{\theta} \neq \emptyset$ gilt

$$\begin{split} \mathsf{FWER}_{\theta}(\phi^{\alpha}) &= P_{\theta} \left(\max_{i \in W_{\theta}} \phi_{i}^{\alpha} = 1 \right) \\ &= P_{\theta} \left(\max_{i \in W_{\theta}} \min_{i \in J \subseteq \{1, \dots, h\}} \varphi_{J}^{\alpha} = 1 \right) \\ &\leq P_{\theta} \left(\varphi_{W_{\theta}}^{\alpha} = 1 \right) \\ &\leq \alpha \end{split}$$

Also ist $\sup_{\theta} \mathsf{FWER}_{\theta}(\phi^{\alpha}) \leq \alpha$, d.h. familienweiser Fehler 1. Art unter Kontrolle.

Abschlusstestprinzip für 3 Hypothesen - Beispiel

 $(\varphi_0^\alpha \text{ Niveau-}\alpha \text{ test für } H_0 = H_0^1 \cap H_0^2 \cap H_0^3, \quad \varphi_{ij}^\alpha \text{ Niveau-}\alpha \text{ Tests für } H_0^i \cap H_0^j)$

Abschluss einer Hypothesenfamilie

• Beim Abschlusstest betrachten wir nicht nur die Familie der elementaren Hypothesen H_0^1, \ldots, H_0^h sondern dessen Abschluss (closure)

$$C(H_0^1, \ldots, H_0^h) = \{H_0^J = \cap_{j \in J} H_0^j : J \subseteq \{1, \ldots, h\}\} \setminus \{\emptyset\}$$

Definition - \(\cap-\)-Abgeschlossenheit

Eine Menge \mathcal{H} von Hypothesen heißt \cap -abgeschlossen, falls mit $H,H'\in\mathcal{H}$ auch $H\cap H'\in\mathcal{H}$ oder $H\cap H'=\emptyset$ gilt

• $\mathcal{C}(H_0^1, \dots, H_0^h)$ ist die kleinste \cap -abgeschlossene Familie von Hypothesen (Teilmengen von Θ), die H_0^1, \dots, H_0^h enthalten

Abschluss einer Hypothesenfamilie - Beispiele

- (a) $C(H_0^1, \ldots, H_0^h)$.
- (b) Zwei Gruppen (E und C) mit Erwartungswerten μ_E und μ_C . Wir fixieren den Nicht-Unterlegenheits- margin $\delta > 0$. Dann ist die Familie

$$H_0^1: \mu_E - \mu_C \le -\delta$$
 und $H_0^2: \mu_E - \mu_C \le 0$

 \cap -abgeschlossen, denn $H_0^1 \cap H_0^2 = H_0^1$.

Kohärenz

Definition - Kohärenz (Gabriel, 1969)

Ein multipler Test $\varphi_1, \ldots, \varphi_h$ für die Hypothesen $H_0^1, \ldots, H_0^h \subseteq \Theta$ heißt kohärent, falls

für alle
$$1 \le i, j \le h$$
 mit $H_0^i \subseteq H_0^j$ gilt: $\varphi_j = 1 \Rightarrow \varphi_i = 1$

- Bemerkungen:
 - $\varphi_i = 1 \Rightarrow \varphi_i = 1$ genau dann, wenn immer $\varphi_i \leq \varphi_i$
 - Ein nicht-kohärenter multipler Test kann zu logisch inkonsistenten Verwerfungen führen. Daher sollten nur kohärente Tests verwendet werden
 - Jeder Abschlusstest ist kohärent

Kohärenz - Beispiel 1

Wir betrachten wieder die Hypothesen

$$H_0^1: \mu_E - \mu_C \le -\delta \quad \text{und} \quad H_0^2: \mu_E - \mu_C \le 0$$

(nun) für einen normalverteilten Endpunkt $Y_j \sim N(\mu_j, \sigma^2)$, $j \in \{E, C\}$

- Fallzahlen: $N = n_E + n_C$; krit. Grenze des t-Tests: $c_\alpha = t_{N-2}(1 \alpha)$
- **Beispiel 1:** Die Hypothesen H_0^1 und H_0^2 werden in der selben Population (z.B. PP) getestet:

$$\varphi_1^\alpha = \left\{ \begin{array}{ll} 1 & \frac{\bar{Y}_E - \bar{Y}_C + \delta}{\hat{\sigma} \sqrt{n_E^{-1} + n_C^{-1}}} \geq c_\alpha \\ 0 & \text{sonst} \end{array} \right., \quad \varphi_2^\alpha = \left\{ \begin{array}{ll} 1 & \frac{\bar{Y}_E - \bar{Y}_C}{\hat{\sigma} \sqrt{n_E^{-1} + n_C^{-1}}} \geq c_\alpha \\ 0 & \text{sonst} \end{array} \right.$$

• Da $H_0^1 \subseteq H_0^2$ und $\varphi_1^{\alpha} \ge \varphi_2^{\alpha}$ ist der multiple Test $\varphi^{\alpha} = (\varphi_1^{\alpha}, \varphi_2^{\alpha})$ kohärent.

Kohärenz - Beispiel 2

Wir betrachten wieder die Hypothesen

$$H_0^1: \mu_E - \mu_C \le -\delta$$
 und $H_0^2: \mu_E - \mu_C \le 0$

für einen normalverteilten Endpunkt $Y_j \sim N(\mu_j, \sigma^2)$, $j \in \{E, C\}$

- Fallzahlen: $N = n_E + n_C$; krit. Grenze des t-Tests: $c_{\alpha} = t_{N-2}(1 \alpha)$
- Beispiel 2: Nun werden die Hypothesen H_0^1 und H_0^2 in verschiedenen Populationen getestet (z.B. FAS und PP)
- Dann ist $\varphi_1^{\alpha} < \varphi_2^{\alpha}$ möglich und die t-Tests (unadjustiert) liefern **keinen** kohärenten Test
- Allerdings, ist $(\tilde{\varphi}_1, \tilde{\varphi}_2)$ mit $\tilde{\varphi}_1 = \varphi_1^{\alpha}$ und $\tilde{\varphi}_2 = \min(\varphi_1^{\alpha}, \varphi_2^{\alpha})$ kohärent
- Bei diesem Test verwerfen wir H_0^2 nur, wenn H_0^1 verworfen wurde. (Hierarchischer Test zur Sequenz $H_0^1 \to H_0^2$)

Fehlerkontrolle bei kohärenten Tests

Definition - lokales Niveau

$$\varphi=(\varphi_1,\ldots,\varphi_h)$$
 ein multipler Test für $H^1_0,\ldots,H^h_0\subseteq\Theta$. Wenn für alle $i=1,\ldots,h$

$$\sup_{\theta \in H_0^i} P_{\theta}(\varphi_i = 1) \le \alpha$$

dann hat der multipler Test das lokale Niveau α

Beispiel: Ungeschützte Kontrasttests auf dem Niveau α

Fehlerkontrolle bei kohärenten Tests

Satz - Starke Kontrolle der FWER

Es sei $\varphi = (\varphi_1, \dots, \varphi_h)$ ein multipler Test für H_0^1, \dots, H_0^h zum lokalen Niveau α . Ist die Familie $\mathcal{H} = \{H_0^1, \dots, H_0^h\}$ \cap -abgeschlossen und φ kohärent, dann ist

$$\sup_{\theta \in \Theta} \mathsf{FWER}_{\theta}(\varphi) \leq \alpha \ .$$

Der Beweis ist fast derselbe wie beim Abschlusstestprinzip (Übung).

Beispiele: Aus dem Satz folgt, dass der familienweise Fehler I. Art in Beispiel 1 mit φ und Beispiel 2 mit $\tilde{\varphi}$ kontrolliert ist.

Kohärenz bei Fehlerkontrolle

Satz - Verbesserung durch kohärente Tests

Jeder multiple Test $\varphi = (\varphi_1, \dots, \varphi_h)$ für $H_0^1, \dots, H_0^h \subseteq \Theta$ mit starker Kontrolle der FWER kann durch einen kohärenten multiplen Test $\tilde{\varphi} = (\tilde{\varphi}_1, \dots, \tilde{\varphi}_h)$ mit starker Kontrolle der FWER verbessert werden, d.h. für diesen Test gilt immer (für jede Stichprobe)

$$ilde{arphi}_i \geq arphi_i$$
 für alle $i=1,\ldots,h$.

Beweis. Definiere für alle i = 1, ..., h den Test

$$\tilde{\varphi}_i = \max_{j: H_0^j \supseteq H_0^j} \varphi_j.$$

Klarerweise gilt immer $\tilde{\varphi}_i \geq \varphi_i$. Aus starker Kontrolle der FWER folgt für alle θ :

$$P_{\theta}(\max_{i \in W_{\theta}} \tilde{\varphi}_i = 1) = P_{\theta}(\max_{i \in W_{\theta}} \max_{j: H_0^i \supseteq H_0^i} \varphi_j = 1) = P_{\theta}(\max_{i \in W_{\theta}} \varphi_i = 1) \le \alpha \ ,$$

da aus $i \in W_{\theta} = \{j : \theta \in H_0^j\}$ und $H_0^j \supseteq H_0^i$ auch $j \in W_{\theta}$ folgt. Kohärenz folgt aus der Definition von $\tilde{\varphi}$.

Erweiterung auf Abschluss

Satz - Erweiterung kohärenter Tests

Es sei $\varphi = (\varphi_1, \dots, \varphi_h)$ ein kohärenter multipler Test für $H_0^1, \dots, H_0^h \subseteq \Theta$ mit starker Kontrolle der FWER. Dann kann φ zu einem kohärenten multiplen Test auf dem Abschluss

$$\mathcal{H}=\mathcal{C}(H_0^1,\ldots,H_0^h)$$

mit starker Kontrolle der FWER ausgedehnt werden.

Beweis. Definiere für H_0^J , $J \subseteq \{1, \ldots, h\}$, den Test $\varphi_J = \max_{i \in J} \varphi_i$. Aus der starken Kontrolle der FWER folgt für alle $\theta \in H_0^J$

$$P_{ heta}(arphi_{J}=1) \leq P_{ heta}(\max_{i \in W_{lpha}} arphi_{i}=1) \leq lpha \qquad (\mathsf{da} \; heta \in H_{0}^{J} \iff J \subseteq W_{ heta})$$

D.h. die Erweiterung von φ auf $\mathcal H$ hat lokales Niveau α . Kohärenz folgt aus der Definition der Erweiterung. Aus dem Satz der vorletzten Folie folgt starke Kontrolle der FWER.

Folgerung aus den letzten zwei Sätzen

- Kohärenz ist nicht nur eine Frage der Logik sondern auch eine Frage der Effizienz
- Es macht überhaupt keinen Sinn nicht-kohärente Tests mit starker Kontrolle der FWER zu betrachten
- Nach dem letzten Satz können wir uns zudem auf kohärente multiple Tests für den Abschluss

$$C(H_0^1, \dots, H_0^h) = \{H_0^J = \cap_{j \in J} H_0^j : J \subseteq \{1, \dots, h\}\}$$

mit lokalem Niveau α beschränken. Das sind, in einem gewissen Sinne, gerade die Abschlusstests

Kohärenz von Abschlusstests

• Wir können einen Abschlusstest $(\varphi_J^\alpha)_{J\subseteq\{1,\dots,h\}}$ für H_0^1,\dots,H_0^h immer auf den Abschluss

$$\mathcal{C}(H_0^1,\ldots,H_0^h)$$

erweitern, indem wir $H_0^J=\cap_{j\in J}H_0^j$, $J\subseteq\{1,\ldots,h\}$, verwerfen, falls $\phi_J^\alpha=1$ mit

$$\phi_J^\alpha = \min_{J \subseteq J' \subseteq \{1, \dots, h\}} \varphi_{J'}^\alpha .$$

• Bemerkungen:

- Dieser Test auf $\mathcal{C}(H_0^1,\ldots,H_0^h)$ ist per Definition kohärent
- Falls schon $(\varphi_J^{\alpha})_{J \subset \{1,...,h\}}$ köhärent ist, dann gilt

$$\phi_J^{lpha}=arphi_J^{lpha}$$
 für alle $J\subseteq\{1,\ldots,h\}$

Kohärente und Abschlusstests sind also identisch

 \bullet Wir schreiben später auch $\varphi_{H_0^J}$ und $\phi_{H_0^J}$ statt φ_J und ϕ_J

Konsonanz (Gabriel, 1969; Brannath & Bretz, 2010)

Definition - Konsonanz

Gegeben seien die Hypothesen

$$H_0^1, \ldots, H_0^h$$
.

Ein multipler Test ϕ auf dem Abschuss $\mathcal{H} = \mathcal{C}(H_0^1, \dots, H_0^h)$ heißt *konsonant*, falls für alle $H \in \mathcal{H}$

$$\{\phi_H = 1\} = \cup_{H_0^i \supseteq H} \{\phi_i = 1\}$$
,

d.h. mit jedem $H \in \mathcal{H}$ wird auch mindestens ein $H_0^i \supseteq H$ verworfen.

Bemerkungen zur Konsonanz

- Diese Definition folgt eher Brannath & Bretz (2010). Sie ist intuitiver und schwächer als die in Gabriel (1969). Die Definitionen stimmen jedoch in vielen Fällen überein
- Konsonanz ist eine wünschenswerte aber nicht zwingend notwendige Eigenschaft
- Nicht jeder Abschlusstest ist konsonant. Ein Beispiel ist der Abschlusstest mit ANOVA's
- Wir werden später sehen: Konsonanz erlaubt Abkürzungen im Algorithmus des Abschlusstestprinzips und vereinfacht die Durchführung von Abschlusstests wesentlich.