Exercice 1. Les fonctions suivantes sont-elles injectives? surjectives? bijectives? Dans ce dernier cas, expliciter la bijection réciproque.

$$f_1: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto 2n, \quad f_2: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto -n$$

 $f_3: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2, \quad f_4: \mathbb{R} \to \mathbb{R}_+, \ x \mapsto x^2$
 $f_5: \mathbb{R} \to \mathbb{R}_+, \ x \mapsto x^2, \quad f_6: \mathbb{C} \to \mathbb{C}, z \mapsto z^2.$

Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application définie par f(x,y) = (x+y, 3x-y, 2x+y).

- 1. Etudier l'injectivité, la surjectivité, la bijectivité de f.
- 2. Si f est bijective, déterminer f^{-1} .
- 3. Soit $(a, b, c) \in \mathbb{R}^3$. À quelle condition a-t-on $(a, b, c) \in f(\mathbb{R}^2)$?

Exercice 3. On considère l'application f de $\mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$f(x, y, z) = (x - y + 2z, -x + y - z, 2x - y + z).$$

- 1. Etudier l'injectivité, la surjectivité, la bijectivité de f.
- 2. Si f est bijective, déterminer f^{-1} .
- 3. Soit $(a, b, c) \in \mathbb{R}^3$. À quelle condition a-t-on $(a, b, c) \in f(\mathbb{R}^3)$?

Exercice 4. Soit $E = \{a, b\}$ un ensemble à deux éléments.

- 1. Construire sur E une loi de composition interne commutative mais non associative.
- 2. Construire sur E une loi de composition interne associative mais non commutative.
- 3. Construire sur E une loi de groupe.

Exercice 5. Montrer que les structures suivantes sont des groupes.

- 1. $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +).$
- 2. $(\{-1,1\},\times)$, (\mathbb{Q}^*,\times) , (\mathbb{R}^*,\times) , (\mathbb{C}^*,\times) .
- 3. $(S(E), \circ)$, où E est un ensemble fini et S(E) est l'ensemble des bijections de E. Remarque : si $E = \{1, ..., n\}$, on note S_n l'ensemble S(E).

Exercice 6. Les ensembles suivants sont-il des sous-groupes de $(\mathbb{C},+)$? de (\mathbb{C}^*,\cdot) ?

 \mathbb{R}^* , \mathbb{R}_+^* , $C = \{z \in \mathbb{C} : |z| = 2\}$, $\mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$, $\mathbb{U}_n = \{z \in \mathbb{C} : z^n = 1\}$ (avec $n \in \mathbb{N}^*$ fixé), l'ensemble $D = \{k/10^n : (k,n) \in \mathbb{Z} \times \mathbb{N}\}$ des nombres décimaux, l'ensemble D^* des nombres décimaux non nuls?

Exercice 7. Pour tout x et y dans \mathbb{R} , on note x * y = x + y - xy.

- 1. Montrer que * est une loi de composition interne commutative et associative sur \mathbb{R} .
- 2. Montrer que * admet un élément neutre e que l'on précisera.
- 3. Montrer que tout élément $x \in \mathbb{R} \setminus \{1\}$ admet un symétrique x' que l'on déterminera.
- 4. $(\mathbb{R}, *)$ est-il un groupe? $(\mathbb{R} \setminus \{1\}, *, e)$ est-il un groupe?
- 5. Pour tout $x \in \mathbb{R}$ et tout entier naturel n on note $x^{*n} = x * \cdots * x$ le produit de x par lui même pour la loi * dans lequel il y a n occurences de x (par convention, $x^{*0} = e$). Montrer que $x^{*n} = 1 (1 x)^n$.

Exercice 8. Exemples de lois internes.

- 1. Pour tous x et y dans \mathbb{R} , on pose $x * y = xy + (x^2 1)(y^2 1)$. Montrer que * est une loi de composition interne commutative, non associative, et que 1 est élément neutre.
- 2. Pour tous x et y dans \mathbb{R} , on pose $x * y = \sqrt{x^2 + y^2}$. Montrer que * est une loi de composition interne commutative, associative, et que 0 est élément neutre. Montrer que aucun élément de \mathbb{R}^{+*} n'a de symétrique pour *.
- 3. Pour tous x et y dans \mathbb{R} , on pose $x * y = \sqrt[3]{x^3 + y^3}$. Montrer que l'application $x \mapsto x^3$ est un isomorphisme de $(\mathbb{R}, *)$ vers $(\mathbb{R}, +)$. En déduire que $(\mathbb{R}, *)$ est un groupe commutatif.

Exercice 9. Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une bijection. Pour tous x et y dans I on pose $x * y = f^{-1}(f(x) + f(y))$

- 1. Montrer que (I, *) est un groupe commutatif. Expliciter le neutre, et le symétrique d'un élément $x \in I$ pour la loi *.
- 2. Donner la loi * dans les cas suivants :
 - (a) $I =]0, +\infty[, f(x) = \ln(x);$
 - (b) $I = \mathbb{R}, f(x) = 1 + x$;
 - (c) $I = \mathbb{R}, f(x) = \lambda x \text{ (avec } \lambda \in \mathbb{R}^* \text{ fixé)};$
 - (d) $I =]-1, 1[, f(x) = \ln(\frac{1+x}{1-x}).$

Exercice 10. Soit $G = \mathbb{R} \times \mathbb{R}^*$. Montrer que G est un groupe pour la loi définie par (x,y)*(x',y')=(x'y+x/y',yy'). Est-il abélien?

Exercice 11. Soient $(G_1, *), (G_2, \star)$ deux groupes. Montrer que $G_1 \times G_2$ est un groupe pour la loi définie par $(g_1, g_2) \cdot (g'_1, g'_2) = (g_1 * g'_1, g_2 \star g'_2)$.

Exercice 12. Soit $H = \{a + b\sqrt{3} : (a,b) \in \mathbb{Z}^2, \ a^2 - 3b^2 = 1\}$. Montrer que H est un sous-groupe de (\mathbb{R}^*, \times) .

Exercice 13. Soit \mathbb{U}_4 est l'ensemble des racines quatrièmes de l'unité.

1. Écrire la table du groupe (\mathbb{U}_4,\times) . À quoi voit-on que ce groupe est abélien?

×	1	i	-1	-i
1				
i				
-1				
-i				

2. Trouver un sous-groupe du groupe (\mathbb{U}_4 , \times) autre que {1} et \mathbb{U}_4 .

Exercice 14. On considère les éléments suivants de S_5 .

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix} \quad \text{et} \quad \varrho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$

Calculer les puissances successives de σ , ϱ , $\sigma \circ \varrho$. Indication : on pourra écrire dans un tableau les images de 1, 2, 3, 4, 5 par les puissances successives de σ , ϱ , $\sigma \circ \varrho$ et montrer qu'on obtient des suites périodiques.

Exercice 15. Soit E un ensemble ayant au moins deux éléments. Lorsque a et b sont deux éléments de E distincts, on définit l'application $\tau_{a,b}: E \to E$ par $\tau_{a,b}(a) = b$, $\tau_{a,b}(b) = a$ et $\tau_{a,b}(x) = x$ pour tout $x \in E \setminus \{a,b\}$. Une telle application s'appelle transposition.

- 1. Déterminer $\tau_{a,b} \circ \tau_{a,b}$. En déduire que $\tau_{a,b}$ est une permutation de E.
- 2. Montrer que pour tout $\sigma \in \mathcal{S}(E)$, $\sigma \circ \tau_{a,b} \circ \sigma^{-1} = \tau_{\sigma(a),\sigma(b)}$.
- 3. On prend $E=\{1,\dots,7\}.$ Écrire la permutation

$$\sigma = \left(\begin{array}{rrrrrr} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 6 & 7 & 2 & 1 & 5 \end{array}\right).$$

comme composée de transpositions. Indication : passer de 1 2 3 4 5 6 7 à 3 4 6 7 2 1 5 en n'échangeant que deux éléments à chaque étape.

Exercice 16. Les ensembles suivants muni des lois considérées sont-ils des groupes, des groupes abéliens?

- 1. $S = \{f_1, f_2, f_3, f_4\}$ muni de la loi \circ , où f_1, f_2, f_3, f_4 sont les applications de \mathbb{R}^* dans \mathbb{R}^* définies par $f_1(x) = x$, $f_2(x) = -x$, $f_3(x) = 1/x$, $f_4(x) = -1/x$.
- 2. $G = \{f_{a,b}(x) : (a,b) \in \mathbb{R}^* \times \mathbb{R}\}$ muni de la loi \circ , où $f_{a,b}$ est l'application de \mathbb{R} dans \mathbb{R} définie par $f_{a,b}(x) = ax + b$.
- 3. L'ensemble C des fonctions croissantes de \mathbb{R} dans \mathbb{R} , muni de l'addition.

Exercice 17. Soit (G,*) un groupe, de neutre e.

- 1. Montrer que G et $\{e\}$ sont des sous-groupes de G.
- 2. Montrer que l'intersection de deux sous-groupes de G est un sous-groupe de G.
- 3. On appelle centre de G l'ensemble $Z(G) = \{z \in G : \forall g \in G, z * g = g * z\}$. Montrer que Z(G) est un sous-groupe de G, et que Z(G) est un groupe abélien.

Exercice 18. Les applications suivantes sont-elles des morphismes de groupe?

- 1. $f: x \to 2x$ de \mathbb{R} dans \mathbb{R} .
- 2. $f: x \mapsto 2x \text{ de } \mathbb{R}^* \text{ dans } \mathbb{R}^*.$
- 3. $f: x \mapsto x^2 \text{ de } \mathbb{R} \text{ dans } \mathbb{R}$.
- 4. $f: x \mapsto x^2 \text{ de } \mathbb{R}^* \text{ dans } \mathbb{R}^*.$
- 5. $f: x \mapsto \ln x \text{ de } (\mathbb{R}_+^*, \times) \text{ dans } (\mathbb{R}, +).$
- 6. $f: x \mapsto \exp(x) \operatorname{de}(\mathbb{R}, +) \operatorname{dans}(\mathbb{R}, +)$.
- 7. $f: x \mapsto \exp(x) \text{ de } (\mathbb{R}, +) \text{ dans } (\mathbb{R}_+^*, \times).$
- 8. $f: n \mapsto 2^n \text{ de } \mathbb{Z} \text{ dans } \mathbb{R}_+^*$.
- 9. $f: z \mapsto \bar{z} \text{ de } (\mathbb{C}, +) \text{ dans } (\mathbb{C}, +).$
- 10. $f: z \mapsto \bar{z} \text{ de } (\mathbb{C}^*, \times) \text{ dans } (\mathbb{C}^*, \times).$
- 11. $f: z \mapsto 1/z$ de (\mathbb{C}^*, \times) dans (\mathbb{C}^*, \times) .

Exercice 19. Soit $(A, +, \times)$ un anneau commutatif. Un élément $a \in A$ est dit inversible s'il existe $a' \in A$ tel que $aa' = 1_A$. Soit A^{\times} l'ensemble des éléments inversibles de A.

- 1. Déterminer A^{\times} dans les cas suivants : $A = \mathbb{Z}, A = \mathbb{R}, A = D$ (ensemble des nombres décimaux).
- 2. Montrer que (A^{\times}, \times) est un groupe.

Exercice 20. Soit $A = \{a + b\sqrt{2}; (a, b) \in \mathbb{Z}^2\}.$

- 1. Soit $z \in A$. Montrer que z a une unique écriture sous la forme $z = a + b\sqrt{2}$ avec $(a,b) \in \mathbb{Z}^2$, c'est-à-dire que si l'on a $z = a + b\sqrt{2} = a' + b'\sqrt{2}$ avec $(a,b,a',b') \in \mathbb{Z}^4$, alors a = a' et b = b'. On pourra utiliser le fait que $\sqrt{2}$ est irrationnel.
- 2. Montrer que $(A, +, \times)$ est un sous-anneau de \mathbb{R} .
- 3. Soit $\phi: A \to A$ l'application qui à un élément $z = a + b\sqrt{2}$ avec $(a,b) \in \mathbb{Z}^2$ associe $\phi(z) = a b\sqrt{2}$. Montrer que ϕ est un automorphisme de l'anneau A (autrement dit ϕ est une bijection de A dans A, $\phi(1) = 1$, et ϕ est un morphisme pour chacune des deux lois + et \times).
- 4. Pour tout $z \in A$, on pose $N(z) = z\phi(z)$. Montrer que $N(z) \in \mathbb{Z}$. Montrer que pour tous $z_1, z_2 \in A$, on a $N(z_1z_2) = N(z_1)N(z_2)$.

- 5. Soit $z \in A$. Démontrer que z est un élément inversible de A si et seulement si $N(z) = \pm 1$. Dans ce cas, quel est son inverse?
- 6. Déterminer si -1, $\sqrt{2}$ et $g := 1 + \sqrt{2}$ sont inversibles dans A et si oui, donner leur inverse. En déduire que $\{\pm g^n : n \in \mathbb{Z}\} \subset A^{\times}$.
- 7. On se propose de montrer l'inclusion réciproque. Soit $z=a+b\sqrt{2}$ avec $(a,b)\in\mathbb{Z}^2$. On suppose que $z\in A^{\times}$.
 - (a) Montrer que $a \neq 0$.
 - (b) Quelles sont les valeurs possibles pour a et pour z si b = 0?
 - (c) Montrer que si a et b sont de même signe (au sens strict) alors $|z| \geq g$.
 - (d) En déduire que si sont de signes opposés (au sens strict) alors $|z| \le 1/g$.
 - (e) Déduire des questions précédentes que g est le plus petit élément de $A^{\times} \cap]1, +\infty[$.
 - (f) Soit n la partie entière de $\ln |z|/\ln g$. Montrer que $|z|g^{-n}\in A^{\times}\cap [1,g[$ et en déduire que $z=\pm g^n$.

Exercice 21. Soit K un corps. Montrer les propriétés suivantes

- 1. $(\mathbb{K}[X], +, \times)$ est un anneau commutatif.
- 2. Pour tous P et Q dans K[X], $\deg(P+Q) \leq \max(\deg(P), \deg(Q))$ avec égalité si $\deg(P) \neq \deg(Q)$.
- 3. Pour tous P et Q dans K[X], $\deg(PQ) = \deg(P) + \deg(Q)$. En déduire que PQ = 0 si et seulement si P = 0 ou Q = 0.

Exercice 22. On pose $T_0 = 1$, $T_1 = X$ et pour $n \ge 2$, on définit le n-ième polynôme de Tchebychev T_n par la relation de récurrence $T_n = 2XT_{n-1} - T_{n-2}$.

- 1. Calculer T_2 , T_3 et T_4 .
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, le terme dominant du polynôme T_n est $2^{n-1}X^n$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, et pour tout $\theta \in \mathbb{R}$, $\cos(n\theta) = T_n(\cos(\theta))$. En déduire les racines de T_n .
- 4. Montrer que pour tout $n \in \mathbb{N}$, $(1 X^2)T_n'' XT_n' + n^2T_n = 0$. Indication : dériver par rapport à θ l'égalité $T_n(\cos(\theta)) = \cos(n\theta)$.

Exercice 23. Soit K un corps. Soient $P \in K[X]$ et a, b deux éléments de K distincts.

- 1. Montrer que (X-a)(X-b) divise P si et seulement si P(a)=P(b)=0.
- 2. Généraliser.
- 3. On note Q et R le quotient et le reste de la division euclidienne de P par $(X-a)^2$. Montrer que R = P(a) + P'(a)(X-a).
- 4. À quelle condition $(X a)^2$ divise-t-il P?

Exercice 24. Soit n un entier strictement positif. On se place dans l'anneau des polynômes à coefficients réels $\mathbb{R}[X]$.

- 1. Montrer que X-1 divise X^n-1 .
- 2. Montrer $X^2 + 2X$ divise $(X + 1)^{2n} 1$.
- 3. Montrer que X^2 divise $(X+1)^n nX 1$.
- 4. Montrer que $(X-1)^2$ divise $X^n nX + n 1$.
- 5. Montrer que $(X-1)^2$ divise $nX^{n+1} (n+1)X^n + 1$.
- 6. On note

$$S_n = \sum_{k=0}^{n-1} X^k.$$

Montrer que $(X-1)^2$ divise $S_n^2 - n^2 X^{n-1}$. Calculer $(X-1)S_n$.

7. Montrer que $(X-1)^3$ divise $nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$

Exercice 25. Dans $\mathbb{R}[X]$, effectuer la division euclidienne de A par B pour les couples (A,B) suivants.

- 1. $A = X^2 1$, B = X 1
- 2. $A = X^3 1$, $B = X^2 + 1$
- 3. $A = X^4 1$, $B = X^2 + 1$
- 4. $A = X^4 2X^2 + 1$, $B = X^2 2X + 1$
- 5. $A = X^4 X^3 + X 2$, $B = X^2 2X + 4$
- 6. $A = X^4 + 2X^3 X + 6$, $B = X^3 6X^2 + X + 4$
- 7. $A = 3X^5 + 4X^2 + 1$, $B = X^2 + 2X + 3$
- 8. $A = 3X^5 + 2X^4 X^2 + 1, B = X^3 + X + 2$
- 9. $A = X^5 X^4 + 2X^3 + X^2 + 4$, $B = X^2 1$
- 10. $A = X^6 3X^4 + 3X^2 1$, $B = X^2 X$
- 11. $A = X^6 X^5 + X^2 1$, $B = X^3 X$
- 12. $A = X^6 2X^4 + X^3 + 1$, $B = X^3 + X^2 + 1$

Exercice 26. Soient a, b, c trois réels distincts. On note M = (X - a)(X - b)(X - c) et

$$A = \frac{(X-b)(X-c)}{(a-b)(a-c)}, \quad B = \frac{(X-a)(X-c)}{(b-a)(b-c)}, \quad C = \frac{(X-a)(X-b)}{(c-a)(c-b)}.$$

Soient $P \in \mathbb{R}[X]$, Q et R le quotient et le reste de la division euclidienne de P par M.

- 1. Montrer que les polynômes P et R coïncident aux points a, b, c.
- 2. Calculer les valeurs des polynômes A, B, C aux points a, b, c.
- 3. En déduire que P(a)A + P(b)B + P(c)C = R.