AN 5 - FONCTIONS VECTORIELLES

Dans tout le chapitre $E = \mathbb{R}^p$ avec $p \in \mathbb{N}^*$; il est muni du produit scalaire usuel. D désigne une partie non vide de \mathbb{R} .

1 Notions de topologie

1.1 Norme euclidienne

Définition 1

On appelle norme euclidienne sur E l'application $\|\cdot\|$ définie sur E par :

$$\forall x = (x_1, ..., x_p) \in E, ||x|| = \sqrt{(x|x)} = \sqrt{\sum_{k=1}^p x_k^2}$$

Remarque 1

• Pour p = 1, la norme coïncide avec la valeur absolue.

Définition 2

La distance euclidienne associée au produit scalaire est définie sur \mathbb{E}^2 par :

$$\forall (x,y) \in E^2, d(x,y) = ||x - y||$$

Proposition 1

L'application $x \mapsto ||x||$ définie sur E vérifie :

- **1.** $\forall x \in E, ||x|| = 0 \Leftrightarrow x = 0 \text{ (axiome de séparation)};$
- **2.** $\forall (\lambda, x) \in \mathbb{R} \times E, \|\lambda x\| = |\lambda| \|x\|$ (axiome d'homogénéité);
- 3. $\forall (x,y) \in E^2, ||x|| ||y||| \le ||x + y|| \le ||x|| + ||y||$ (inégalité triangulaire).

Définition 3

On dit que A est une partie bornée de E s'il existe un réel $M \ge 0$ tel que $\forall x \in A, ||x|| \le M$.

1.2 Ouverts - Fermés

Soient $a \in E$ et $r \in]0; +\infty[$.

- L'ensemble $B(a,r) = \{x \in E/d(x,a) < r\}$ est appelée boule ouverte de centre a et de rayon r.
- L'ensemble $\overline{B}(a,r) = \{x \in E/d(x,a) \le r\}$ est appelée boule fermée de centre a et de rayon r.

Définition 4

 $\forall a \in E$, on appelle *voisinage* de a, tout sous-ensemble de E qui contient une boule ouverte de centre a et de rayon non nul, c'est-à-dire :

$$V(a)$$
 est un voisinage de $a \Leftrightarrow \exists r \in]0; +\infty[, B(a,r) \subset V(a)]$

Proposition 2

 $\forall (a,r) \in E \times]0; +\infty[$, la boule ouverte B(a,r) est un voisinage de tous ses éléments.

Définition 5

• Un sous-ensemble O de E est dit ouvert s'il est vide, ou s'il est voisinage de chacun de ses points, c'est à dire :

O est un ouvert de
$$E \Leftrightarrow (O = \emptyset) \vee (\forall a \in O, \exists r \in]0; +\infty[, B(a, r) \subset O)$$

 \bullet Un sous-ensemble F de E est dit fermé si son complémentaire dans E (c'est-à-dire l'ensemble des éléments de E qui ne sont pas dans F) est un ouvert de E.

Remarque 2

- E et \varnothing sont des ouverts et des fermés de E.
- $\forall (a,r) \in E \times]0; +\infty[$, la boule ouverte B(a,r) est un ouvert de E.

Proposition 3

- La réunion quelconque d'ensembles ouverts de E est un ouvert de E.
- L'intersection finie d'ouverts de E est un ouvert de E.
- La réunion finie de fermés de E est un fermé de E.
- L'intersection quelconque de fermés de E est un fermé de E.

Définition 6

Soit A une partie de E.

- On dit que a est un point intérieur à A si $\exists r > 0, B(a,r) \subset A$. L'ensemble des points intérieurs à A est appelé intérieur de A; on le note A.
- On dit que a est un point adhérent à A si $\forall r > 0, B(a,r) \cap A \neq \emptyset$. L'ensemble des points adhérents à A est appelé adhérence de A; on le note \overline{A} .
- On dit que a est un point extérieur à A si $\exists r > 0, B(a,r) \cap A = \emptyset$.
- On dit que a est un point de la frontière de A si a est un point adhérent à A, qui n'est pas intérieur à A. L'ensemble des points de la frontière de A est appelé frontière de A; on le note $\operatorname{Fr}(A) = \overline{A} \setminus \overset{\circ}{A}.$

Proposition 4

Soient A de B deux parties non vides de E.

- Si $A \subset B$, alors $\overset{\circ}{A} \subset \overset{\circ}{B}$ et $\overline{A} \subset \overline{B}$. A ouvert $\Leftrightarrow A = \overset{\circ}{A}$; $\overset{\circ}{A}$ est le plus grand ouvert contenu dans A. A fermé $\Leftrightarrow A = \overline{A}$; \overline{A} est le plus petit fermé contenant A.
- $C_E(\overline{A}) = \widehat{C_E A}$ et $\overline{C_E A} = C_E(\widehat{A})$.

2 Limites

2.1 Limites de suites de E

Théorème-Définition 1

On dit qu'une suite (u_n) de E est convergente si :

$$\exists l \in E / \forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall n \in \mathbb{N}, (n > N \Rightarrow ||u_n - l|| < \varepsilon)$$

S'il existe, un tel élément l est unique. On l'appelle limite de la suite (u_n) . On le note $\lim_{n\to+\infty}u_n$. Pour indiquer que la suite (u_n) est convergente de limite l on écrit : $u_n \underset{n \to +\infty}{\longrightarrow} l$.

Remarque 3

• Toute suite convergente est bornée (c'est-à-dire $\exists M \in \mathbb{R}_+^*, \forall n \in \mathbb{N}, ||u_n|| \leq M$).

Proposition 5

- $a \in \overline{A} \Leftrightarrow \exists (u_n) \in A^{\mathbb{N}} / \lim_{n \to +\infty} u_n = a.$
- $A \subset E$ est un fermé de E si, et seulement si toute suite convergente de A converge dans A.

Proposition 6

L'ensemble des suites convergentes de E est un sous-espace vectoriel de l'ensemble des suites de E. Sur ce sous-espace vectoriel, l'application $(u_n) \mapsto \lim_{n \to +\infty} u_n$ est linéaire, c'est-à-dire : si (u_n) et (v_n) sont deux suites convergentes de E, alors

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \lim_{n \to +\infty} (\lambda u_n + \mu v_n) = \lambda \lim_{n \to +\infty} u_n + \mu \lim_{n \to +\infty} v_n$$

2.2 Limite d'une fonction vectorielle

Définition 7

Une fonction vectorielle est une application d'une partie D de \mathbb{R} vers l'espace vectoriel \mathbb{R}^p .

$$f: D \to \mathbb{R}^p, t \longmapsto (f_1(t), ..., f_p(t))$$

Les fonctions réelles $f_i: D \to \mathbb{R}$ sont appelée fonctions coordonnées de f. L'ensemble des fonctions vectorielles de D dans \mathbb{R}^p est noté $\mathcal{F}(D, \mathbb{R}^p)$.

Proposition 7

 $\mathcal{F}(D,\mathbb{R}^p)$ muni des lois usuelles est un \mathbb{R} -espace vectoriel.

Définition 8

Soient $f \in \mathcal{F}(D, \mathbb{R}^p)$, et a un point adhérent à D $(a \in \overline{D})$. On dit que f admet une limite $l \in \mathbb{R}^p$ en a si:

$$\forall \varepsilon > 0, \exists r > 0 / \forall t \in D, (|t - a| < r \Rightarrow ||f(t) - l|| < \varepsilon)$$

Proposition 8

Soient $f \in \mathcal{F}(D, \mathbb{R}^p)$, et $a \in \overline{D}$. Si f admet une limite en a, alors elle est unique. On la note $\lim_{t \to a} f(t)$ ou $\lim_a f$.

Théorème 1

Soient $f \in \mathcal{F}(D, \mathbb{R}^p)$, et $a \in \overline{D}$. On note $f = (f_1, ..., f_p)$. f admet une limite en a si, et seulement si, $\forall i \in [1, p], f_i$ admet une limite en a, et dans ce cas :

$$\lim_{a} f = (\lim_{a} f_1, ..., \lim_{a} f_p)$$

Théorème 2 Caractérisation séquentielle de la limite

Soient $f \in \mathcal{F}(D, \mathbb{R}^p)$, et $a \in \overline{D}$.

$$(\lim_{a} f = l) \Leftrightarrow \left(\forall (x_n) \in D^{\mathbb{N}}, \lim_{n \to +\infty} x_n = a \Rightarrow \lim_{n \to +\infty} f(x_n) = l \right)$$

Définition 9

Soit f une application définie sur un intervalle I de \mathbb{R} non majoré (resp. non minoré) à valeurs dans E. On dit que f admet une limite $l \in \mathbb{R}^p$ en $+\infty$ (resp. $-\infty$) si :

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}/\forall t \in I, (t > M \text{ (resp. } t < M) \Rightarrow ||f(t) - l|| < \varepsilon)$$

Proposition 9

Soit $a \in \overline{D}$. Le sous-ensemble des fonctions vectorielles de $\mathcal{F}(D, \mathbb{R}^p)$ admettant une limite en a est un sous-espace vectoriel de $\mathcal{F}(D, \mathbb{R}^p)$.

Sur ce sev, l'application $f\mapsto \lim_{a}f$ est linéaire, c'est-à-dire :

si f et g sont deux fonctions vectorielles définies sur D admettant une limite en a, alors

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \lim_{a} (\lambda f + \mu g) = \lambda \lim_{a} f + \mu \lim_{a} g$$

Proposition 10

Soient $a \in \overline{D}$, f et g deux fonctions de $\mathcal{F}(D, \mathbb{R}^p)$ admettant une limite en a. Alors:

• la fonction norme $||f||: t \mapsto ||f(t)||$ admet une limite en a et

$$\lim_a \|f\| = \|\lim_a f\|$$

• la fonction produit scalaire $(f|g): t \mapsto (f(t)|g(t))$ admet une limite en a et

$$\lim_{g} (f|g) = (\lim_{g} f|\lim_{g} g)$$

• la fonction produit vectoriel $f \wedge g : t \mapsto f(t) \wedge g(t)$ admet une limite en a et

$$\lim_{a} (f \wedge g) = \lim_{a} f \wedge \lim_{a} g$$

2.3 Continuité

Dans la suite du chapitre, $a \in D$, et f est une fonction vectorielle de $\mathcal{F}(D, \mathbb{R}^p)$.

Définition 10

- \bullet On dit que f est continue en a si f admet une limite en a.
- On dit que f est continue sur $I \subset D$ si f est continue en tout point de I.
- On dit que f est continue, si f est continue sur D.

Remarque 4

• Si f est continue en a, alors $\lim_{a} f = f(a)$.

Théorème 3

On note $f = (f_1, ..., f_p)$.

f est continue en a (resp. sur $I \subset D$) si, et seulement si $\forall i \in [1, p], f_i$ est continue en a (resp. sur I).

Proposition 11 Caractérisation séquentielle de la continuité

f est continue en a si, et seulement si l'image par f de toute suite d'éléments de D convergeant vers a converge vers f(a).

Proposition 12

Soient f et g deux fonctions de $\mathcal{F}(D,\mathbb{R}^p)$ continues en a, $(\lambda,\mu) \in \mathbb{R}^2$. Alors $\lambda f + \mu g$ est continue en a.

Notation

Les applications continues sur D à valeurs dans \mathbb{R}^p sont notées $\mathcal{C}(D,\mathbb{R}^p)$ (ou $\mathcal{C}^0(D,\mathbb{R}^p)$).

Proposition 13

 $\mathcal{C}(D,\mathbb{R}^p)$ est un sous-espace vectoriel de $\mathcal{F}(D,\mathbb{R}^p)$.

3 Dérivabilité

Dans ce paragraphe, D désigne un intervalle de \mathbb{R} , $a \in D$, $f \in \mathcal{F}(D, \mathbb{R}^p)$

3.1 Dérivée en un point

Définition 11

On dit que f est dérivable en a, si l'application $t \mapsto \frac{f(t) - f(a)}{t - a}$ définie sur $D \setminus \{a\}$, appelée taux d'accroissement de f en a, admet une limite en a.

Dans ce cas, cette limite est appelée vecteur dérivé de f en a, ou plus simplement dérivée de f en a.

On la note : f'(a), Df(a) ou $\frac{d\hat{f}}{dt}(a)$.

On écrit aussi :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Définition 12

On dit que f est dérivable à droite (resp. dérivable à gauche) de $a \in D$ si $I_a^+ = D \cap [a; +\infty[$ (resp. $I_a^- = D \cap] - \infty, a]$) n'est pas réduit à un point, et si la restriction de f à I_a^+ (resp. I_a^-) admet une dérivée en a.

Dans ce cas, une telle dérivée s'appelle dérivée à droite (resp. dérivée à gauche) de f en a; elle est notée $f'_d(a)$ (resp. $f'_g(a)$).

Proposition 14

Toute fonction dérivable en a est continue en a.

Attention!

La réciproque est fausse.

3.2 Fonction dérivée

Définition 13

On dit que f est $d\acute{e}rivable$ sur D, si f est dérivable en tout point de D.

On définit alors la fonction dérivée de f sur D, noté f' ou Df, par :

$$f': t \mapsto f'(t)$$

Notation

L'ensemble des applications dérivables sur D à valeurs dans \mathbb{R}^p est noté $\mathcal{D}(D,\mathbb{R}^p)$.

Proposition 15

 $\mathcal{D}(D,\mathbb{R}^p)$ est un sous-espace vectoriel de $\mathcal{F}(D,\mathbb{R}^p)$.

De plus l'application définie sur $\mathcal{D}(D,\mathbb{R}^p)$ à valeurs dans $\mathcal{F}(D,\mathbb{R}^p)$ par $f\mapsto f'$ est linéaire, c'est-à-dire : si f et g sont deux fonctions dérivables sur D, alors :

$$\forall (\lambda, \mu) \in \mathbb{R}^2, (\lambda f + \mu g)' = \lambda f' + \mu g'$$

Définition 14

Toute fonction dérivable sur D dont la dérivée est continue sur D est dite de classe \mathcal{C}^1 sur D.

Notation

L'ensemble des applications de classe \mathcal{C}^1 sur D est noté $\mathcal{C}^1(D,\mathbb{R}^p)$.

Proposition 16

 $\mathcal{C}^1(D,\mathbb{R}^p)$ est un sous-espace vectoriel de $\mathcal{F}(D,\mathbb{R}^p)$.

Théorème 4

On note $f = (f_1, ..., f_p)$. f est dérivable (resp. de classe \mathcal{C}^1) sur D si, et seulement si $\forall i \in [1, p]$, f_i est dérivable (resp. de classe \mathcal{C}^1) sur D, et dans ce cas :

$$\forall t \in D, f'(t) = (f'_1(t), ..., f'_n(t))$$

Remarque 5 Interprétation cinématique

On se place dans le cas où $p \in \{2, 3\}$.

On utilise souvent t comme paramètre, car celui-ci représente habituellement le temps.

- f(t) s'interprète comme la position à l'instant t d'un point mobile M(t) (du plan si p=2, de l'espace si p=3), définie par : $\overrightarrow{OM}=f(t)$.
- Si f est dérivable, f'(t) s'interprète alors comme le vecteur vitesse de ce mobile à l'instant t.
- Si f' est elle-même dérivable, f''(t) s'interprète quant à elle comme le vecteur accélération du mobile à l'instant t.

3.3 Dérivées de fonctions particulières

Dans cette section, f et g désignent deux fonctions vectorielles dérivables sur D.

Théorème 5 Dérivation d'un produit scalaire

La fonction produit scalaire $(f|g): t \mapsto (f(t)|g(t))$ est dérivable sur D et :

$$\forall t \in D, (f|g)'(t) = (f'(t)|g(t)) + (f(t)|g'(t))$$

Théorème 6 Dérivation d'un produit vectoriel

La fonction produit vectoriel $f \wedge g : t \mapsto f(t) \wedge g(t)$ est dérivable sur D et :

$$\forall t \in D, (f \land g)'(t) = f'(t) \land g(t) + f(t) \land g'(t)$$

Théorème 7 Dérivation d'un déterminant

• En dimension 2:

Si u et v sont des fonctions vectorielles dérivables sur D à valeurs dans \mathbb{R}^2 , alors l'application Δ définie sur D par $\Delta(t) = \det(u(t), v(t))$ est dérivable sur D et :

$$\Delta'(t) = \det(u'(t), v(t)) + \det(u(t), v'(t))$$

• En dimension 3:

Si u, v et w sont des fonctions vectorielles dérivables sur D à valeurs dans \mathbb{R}^3 , alors l'application Δ définie sur D par $\Delta(t) = \det(u(t), v(t), w(t))$ est dérivable sur D et :

$$\Delta'(t) = \det(u'(t), v(t), w(t)) + \det(u(t), v'(t), w(t)) + \det(u(t), v(t), w'(t))$$

Théorème 8 Composée d'applications dérivables

Soient I un intervalle réel, $f: D \to \mathbb{R}^p$ et $\varphi: I \to D$ deux fonctions dérivables. Alors la fonction $f \circ \varphi$ est dérivable sur I et on a :, $\forall a \in I$:

$$(f \circ \varphi)'(a) = \varphi'(a).f'(\varphi(a))$$

3.4 Dérivées successives

Définition 15

Soient $k \in \mathbb{N}^*$, et $f \in \mathcal{F}(D, \mathbb{R}^p)$; les dérivées successives de f sont définie par récurrence : on pose $f^{(0)} = f$, f est k fois dérivable si $f^{(k-1)}$ est dérivable; on appelle dérivée k-ème ou dérivée d'ordre k, la dérivée de $f^{(k-1)}$ que l'on note $f^{(k)}$ (ou $\mathbb{D}^k(f)$).

Notation

L'ensemble des fonctions k fois dérivables sur D à valeurs dans \mathbb{R}^p se note $\mathcal{D}^k(D,\mathbb{R}^p)$.

Proposition 17

L'ensemble $\mathcal{D}^k(D,\mathbb{R}^p)$ est un sous-espace vectoriel de $\mathcal{F}(D,\mathbb{R}^p)$.

De plus l'application définie sur $\mathcal{D}^k(D,\mathbb{R}^p)$ à valeurs dans $\mathcal{F}(D,\mathbb{R}^p)$ par $f\mapsto f^{(k)}$ est linéaire, c'est-à-dire :

si f et g sont deux fonctions k fois dérivables sur D, alors :

$$\forall (\lambda, \mu) \in \mathbb{R}^2, (\lambda f + \mu g)^{(k)} = \lambda f^{(k)} + \mu g^{(k)}$$

Définition 16

- Une fonction vectorielle k fois dérivable sur D est dite de classe C^k si sa dérivée d'ordre k est continue.
- Une fonction vectorielle est dite de classe \mathcal{C}^{∞} si elle est de classe \mathcal{C}^k pour tout $k \in \mathbb{N}$.

Notation

L'ensemble des fonctions de classe $\mathcal{C}^k(k \in \mathbb{N} \cup \{\infty\})$ se note $\mathcal{C}^k(D, \mathbb{R}^p)$.

Proposition 18

L'ensemble $\mathcal{C}^k(D,\mathbb{R}^p)$ est un sous-espace vectoriel de $\mathcal{F}(D,\mathbb{R}^p)$.

Théorème-Définition 2 Formule de Taylor Young

Soient $f \in \mathcal{C}^k(D, \mathbb{R}^p)$ $(k \in \mathbb{N})$, alors pour tout réel h tel que $a + h \in D$:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + \dots + \frac{h^k}{k!}f^{(k)}(a) + h^k\varepsilon(h)$$

où ε est une fonction vectorielle définie sur D qui vérifie $\lim_{h\to 0} \varepsilon(h) = 0$.

Cette expression s'appelle développement limité de f d'ordre k au voisinage de a.

Théorème 9 Formule de Leibniz

Soient $f: D \to \mathbb{R}^p$ et $\lambda: D \to \mathbb{R}$ une fonction vectorielle et une fonction réelle (également appelée fonction scalaire) toutes deux de classe \mathcal{C}^k ($k \in \mathbb{N} \cup \{\infty\}$) sur D. Alors, la fonction $t \mapsto \lambda(t)f(t)$ est de classe \mathcal{C}^k sur D et :

$$\forall t \in D, (\lambda f)^{(k)}(t) = \sum_{i=0}^{k} {k \choose i} \lambda^{(i)}(t) f^{(k-i)}(t)$$