Propriétés de la transformée de Fourier (TF)

Les propriétés de la TF sont résumées dans la Table. lci, nous voyons quelques démonstrations.

Autres notations dans les transformées de Fourier:

En posant $\omega = 2\pi f$:

$$TF[g(t)] = G(f) = \int_{-\infty}^{\infty} g(t)e^{-i2\pi ft}dt \rightarrow G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt$$

ω=2πf, dω=2πdf → df=dω/2π:

$$g(t) = TF^{-1}(G(f)) = \int_{-\infty}^{\infty} G(f)e^{i2\pi f} df \rightarrow g(t) + \int_{-\infty}^{\infty} G(\omega)e^{i\alpha t} d\omega / 2\pi = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega)e^{i\alpha t} d\omega$$

Linéarité:

$$a_1g_1(t) + a_2g_2(t) \leftrightarrow a_1G_1(f) + a_2G_2(f)$$

$$TF[a_1g_1(t) + a_2g_2(t)] = \int_{-\infty}^{\infty} [a_1g_1(t) + a_2g_2(t)]e^{-i2\pi t} dt$$

$$= \int\limits_{-\infty}^{\infty} a_1 g_1(t) e^{-i2\pi f} \, dt + \int\limits_{-\infty}^{\infty} a_2 g_2(t) e^{-i2\pi f} \, dt = a_1 G_1(f) + a_2 G_2(f)$$

Symétrie:

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{i2\pi f} df . \qquad \text{Changer } t \leftrightarrow -t \Rightarrow g(-t) = \int_{-\infty}^{\infty} G(f)e^{-i2\pi f} df$$

En interchangeant t et f:
$$g(-f) = \int_{-\infty}^{\infty} G(t)e^{-i2\pi ft}dt = TF(G(t))$$

Échelle du temps (time scaling):

$$g(at) = \frac{1}{|a|} G\left(\frac{f}{a}\right)$$
, avec $a \in \mathbb{R}^*$.

$$TF[g(at)] = \int_{-\infty}^{\infty} g(at)e^{-i2\pi t} dt$$
 $x = at \Rightarrow dx = adt \Rightarrow dt = dx/a$

Si a > 0:
$$FTg(a) = \frac{1}{a} \int_{a}^{\infty} g(x)e^{-i2\pi f/a} dx = \frac{1}{a}G(f/a)$$

C'est l'argument de l'exponentiel qui donne l'argument de G.

Si a < 0:
$$FT[g(at)] = \frac{1}{a} \int_{-\infty}^{-\infty} g(x)e^{-i2\pi fx/a} dx = \frac{1}{-a} \int_{-\infty}^{\infty} g(x)e^{-i2\pi fx/a} dx = \frac{1}{|a|}G(f/a)$$

 $FT[g(at)] = \frac{1}{|a|}G(f/a)$

Décalage temporel d'un scalaire réel a = t₀:

$$TF[g(t-t_0)] = e^{-i\omega t_0}G(w).$$

Démonstration:

$$\begin{split} \mathrm{TF}[g(t-t_0)] &= \int_{-\infty}^{\infty} g(t-t_0)e^{-i\omega t}dt \\ &= \int_{-\infty}^{\infty} g(u)e^{-i\omega(u+t_0)}du, \qquad \text{avec le changement de variable} \quad u=t-t_0, du=dt \\ &= e^{-i\omega t_0}\int_{-\infty}^{\infty} g(u)e^{-i\omega u}du \\ &= e^{-i\omega t_0}G(w) \end{split}$$

Décalage fréquentiel d'une fréquence b=w₀:

$$\mathrm{TF}^{-1}[G(\omega-\omega_0)]=e^{it\omega_0}g(t)$$
 et donc, $\mathrm{TF}[e^{it\omega_0}g(t)]=G(\omega-\omega_0).$

Démonstration:

$$TF[e^{it\omega_0}g(t)] = \int_{-\infty}^{\infty} e^{it\omega_0}g(t)e^{-i\omega t}dt$$
$$= \int_{-\infty}^{\infty} g(t)e^{-it(\omega-\omega_0)}dt$$
$$= G(\omega - \omega_0)$$

Parité:

G(ω) est la transformée de Fourier de g(t)

Si g(t) est réelle et paire \Rightarrow G(ω) est réelle et paire

Si g(t) est réelle et impaire \Rightarrow G(ω) est imaginaire et impaire

Si $G(\omega)$ est réelle et positive \Rightarrow elle fait un angle 0 avec l'axe des réels \Rightarrow la phase vaut zéro $(\phi(\omega) = 0)$.

Si $G(\omega)$ est réelle et négative \Rightarrow elle fait un angle de $\pm \pi$ avec l'axe des réels \Rightarrow la phase vaut $\pm \pi$ ($\phi(\omega) = \pm \pi$).

Propriété	g(t)	G(w)
Linéarité	$a \cdot g(t) + b \cdot h(t)$	$a \cdot G(\omega) + b \cdot H(\omega)$
Symétrie	G(t)	$2\pi g(-\omega)$
Échelle du temps (time scaling)	g(at)	$\frac{1}{ a }G\left(\frac{\omega}{a}\right)$
Décalage temporel (time shifting)	g(t-a)	$e^{-i\omega a}G(w)$
Décalage fréquentiel (frequency shifting)	$e^{itb}g(t)$	G(w-b)

TABLE 1 – Table des propriétés de la transformée de Fourier (TF) de la fonction g(t). La $\mathrm{TF}[g(t)] = G(\omega)$ peut s'exprimer en fréquences f ou en fréquences angulaires $\omega = 2\pi f$. Dans la table, a et b répresentent des scalaires réels et $\mathrm{TF}[h(t)] = H(\omega)$.

La fonction de Dirac δ

La fonction de Dirac δ peut être définie comme la dérivée de la fonction de Heaviside qui est définie comme:

$$H(t) = u(t) = \begin{cases} 0 & sit < 0 \\ \frac{1}{2} & sit = 0 \\ 1 & sit > 0 \end{cases}$$

et $\delta(x)$ et le δ de Kronecker (la version discrète et numérique du Dirac) sont définies comme:

$$\delta(x) = \begin{cases} \infty & six = 0 \\ 0 & six \neq 0 \end{cases} \qquad \left(\delta \operatorname{deKr} \circ \operatorname{ne} \operatorname{cok}_{k} \rightleftharpoons \left\{ \begin{cases} 1 & si \ i = j \\ 0 & si \ i \neq j \end{cases} \right\} \right)$$

Figure. Fonction de Dirac δ .

Les propriétés de $\delta(x)$:

$$\int_{-\infty}^{\infty} \delta(x)dx = 1$$

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$$

$$\delta(ax) = \frac{1}{|a|}\delta(x)$$

Le peigne de Dirac ou train d'impulsions (sera utile après l'intra):

$$\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Figure. Peigne de Dirac ou train d'impulsions.

Transformées de Fourier généralisées (Optionnel – pas dans les TPs ni examens)

Certaines fonctions ne sont pas de carrés intégrables:

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = \infty$$

c'est le cas des fonctions périodiques comme le sinus et le cosinus, la fonction de Heaviside, une constante etc....

Fonction de Heaviside:
$$H(t) = u(t) = \begin{cases} 0 & \text{si } t < 0 \\ \frac{1}{2} & \text{si } t = 0 \\ 1 & \text{si } t > 0 \end{cases}$$

Par définition, une fonction généralisée à progrès lent g(t) est une fonction associée à une fonction symbolique $\phi(t)$ qui décroît rapidement:

$$\langle g(t), \phi(t) \rangle = \int_{-\infty}^{\infty} g(t)\phi(t)dt$$

Pour calculer les transformées de Fourier de fonctions généralisées, on utilise la formule de Parseval.

La formule de Parseval

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} F(x)g(x)dx$$

Celle-ci peut être démontrée de la façon suivante, en utilisant les transformées de Fourier:

$$F(y) = \int_{-\infty}^{\infty} f(x)e^{-ixy}dx$$

$$G(x) = \int_{-\infty}^{\infty} g(y)e^{-ix} dy$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} f(x) \left[\int_{-\infty}^{\infty} g(y)e^{-ix} d^{3}y \right] dx$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(y) \left[\int_{-\infty}^{\infty} f(x)e^{-ix} d^{3}x \right] dx$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(y) \left[\int_{-\infty}^{\infty} f(x)e^{-ix} d^{3}x \right] dy$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(y)F(y)dy$$

et en changeant la variable y en x:

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(x)F(x)dx$$

Cette équation peut se rapporter aux transformées de Fourier comme suit, en intégrant sur ω :

$$\int_{-\infty}^{\infty} f(\omega) T F[g(t)] d\omega = \int_{-\infty}^{\infty} T F[f(t)] d\omega$$

ou bien, en intégrant sur t:

$$\int_{-\infty}^{\infty} TF'[F(\omega)] \mathcal{G}(t) dt = \int_{-\infty}^{\infty} F(t) TF'[G(\omega)] dt$$

Dans les deux cas, nous avons conservé la même variable ω ou t pour f et F et pour g et G.

Exemple 1:

Trouver la TF d'une constante, soit g(t) = 1.

g(t) = 1 est à progrès lent.

En utilisant la formule de Parseval avec la fonction rapidement décroissante $\phi(t)$:

Soit la formule de Parseval:
$$\int_{-\infty}^{\infty} G(x)\phi(x)dx = \int_{-\infty}^{\infty} g(x)\Phi(x)dx$$

qui devient:

$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} g(t)\Phi(t)dt$$

$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} \Phi(t)dt = \left[\int_{-\infty}^{\infty} \Phi(t)e^{-i\omega t}dt\right]_{\omega=0}$$

$$\left[\int_{-\infty}^{\infty} \Phi(t)e^{-i\omega t}dt\right]_{\omega=0} = TF[\Phi(t)]_{\omega=0}$$

et par la propriété de la symétrie:

$$TF[\Phi(t)]_{\omega=0} = [2\pi\phi(-\omega)]_{\omega=0} = 2\pi\phi(0)$$

Par la propriété de
$$\delta(\mathbf{x})$$
:
$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

$$2\pi\phi(0) = 2\pi \int_{-\infty}^{\infty} \delta(\omega)\phi(\omega)d\omega$$

Finalement, en reprenant l'équation de départ $\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} g(t)\Phi(t)dt$ et en

remplaçant le second membre par le résultat précédent qui est $2\pi\int\limits_{-\infty}^{\infty}\delta(\omega)\phi(\omega)d\omega$

$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = 2\pi \int_{-\infty}^{\infty} \delta(\omega)\phi(\omega)d\omega$$

et en identifiant le contenu des intégrales des deux membres de l'équation:

$$\mathsf{TF}[\mathsf{g}(\mathsf{t})] = \mathsf{G}(\omega) = 2\pi\delta(\omega)$$

Noter que dans cet exemple nous avons conservé ω pour simplifier les écritures au lieu de travailler avec $2\pi f$.

Exemple 2:

Calculer la TF de $\delta(t)$.

 $\delta(t)$ est une fonction généralisée à progrès lent.

Par définition:
$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} g(t)\Phi(t)dt$$

soit
$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} \delta(t)\Phi(t)dt = \Phi(0)$$

aussi
$$\Phi(0) = TF[\phi(t)]_{\omega=0} = \left[\int_{-\infty}^{\infty} \phi(t)e^{-i\omega t}dt\right]_{\omega=0} = \int_{-\infty}^{\infty} \phi(t)dt = \int_{-\infty}^{\infty} \phi(\omega)d\omega$$
 par changement de

variable $t \rightarrow \omega$.

ainsi
$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} 1\phi(\omega)d\omega$$

et par identification:

$$FT[\delta(t)] = G(\omega) = 1$$

On aurait pu faire le calcul directement : $\mathrm{FT}[\delta(t)] = \int\limits_{-\infty}^{\infty} \delta(t) e^{-i\omega t} dt = e^{-i\omega t} \Big|_{t=0} = 1$

En conclusion, la TF d'une constante est une fonction δ , et la TF d'une fonction δ est une constante.

Exemple 3:

Calculer la TF de $g(t)=exp(i\omega_0 t)$

g(t) peut être réécrite sous la forme g(t)=f(t)exp(i ω_0 t). Par la propriété du décalage de la fréquence: TF[f(t)exp(i ω_0 t)] = F(ω_0 - ω_0). Et comme f(t) = 1, et de l'exemple 1 ci-dessus: TF[1] = $2\pi\delta(\omega)$ \rightarrow TF[exp(i ω_0 t)] = $2\pi\delta(\omega-\omega_0)$ = $\delta(\omega-\omega_0)$. C'est un décalage de fréquence ω_0 de la fonction δ .

Exemple 4:

Calculer la TF de $cos(\omega_0 t)$ et $sin(\omega_0 t)$. $cos(\omega_0 t) = (exp(i\omega_0 t) + exp(-i\omega_0 t))/2$ TF[$cos(\omega_0 t)$] = TF[$(exp(i\omega_0 t) + exp(-i\omega_0 t))/2$] = $\pi\delta(\omega-\omega_0) + \pi\delta(\omega+\omega_0) = \delta(\omega-\omega_0) + \delta(\omega+\omega_0)$

Pour le sinus : TF[$\sin(\omega_0 t)$] = $-i\pi\delta(\omega-\omega_0)$ + $i\pi\delta(\omega+\omega_0)$ = $-i\delta(\omega-\omega_0)$ + $i\delta(\omega+\omega_0)$

Quelques fonctions courantes et leur transformée de Fourier

	g(t)	G(w)	
Fonction de Dirac	$\delta(t)$	1 (la constante)	
Fonction porte	$\Pi(t)$	$\operatorname{sinc}\left(\frac{\omega}{2}\right)$ (le sinus cardinal)	
La Gaussienne de largeur proportionnelle (∞) à a	e^{-at^2}	$\sqrt{rac{\pi}{a}}e^{rac{-\pi^2\omega^2}{4a}}$ (une Gaussienne $\propto rac{1}{a}$)	
L'exponentiel complexe de fréquence a	e^{iat}	$2\pi\delta(\omega - a) = \delta(\omega - a)$ (un Dirac décalé de a fréquences)	
Le cosinus de fréquence a	$\cos(at)$	$\delta(\omega-a)+\delta(\omega+a)$ (deux Dirac, aux fréquences a et $-a$)	
Le sinus de fréquence a	$\sin(at)$	$-i\delta(\omega-a)+i\delta(\omega+a)$ (deux Dirac imaginaires, un à la fréquence a vers $-\infty$ et l'autre à $-a$)	

TABLE 2 – Table des couples de fonctions g(t) et Transformée de Fourier $G(\omega)$. La $\mathrm{TF}[g(t)] = G(\omega)$ peut s'exprimer en fréquences f ou en fréquences angulaires $\omega = 2\pi f$. Dans la table, a répresente un scalaire réel.

Transformée de Fourier à deux dimensions

Si l'on remplace $2\pi f$ par ω , la paire de Fourier s'écrit:

$$G(\omega) = FT(g(t)) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt$$

$$g(t) = FT^{-1}(G(\omega)) = \int_{-\infty}^{\infty} G(\omega)e^{i\omega t}df$$

Par analogie, on détermine les paires en 2 dimensions (2D):

$$G(u,v) = TF(g(x,y)) = \int_{-\infty-\infty}^{\infty} g(x,y)e^{-i(ux+vy)}dxdy$$

$$g(x,y) = TF^{-1}(G(u,v)) = \frac{1}{(2\pi)^2} \int_{-\infty-\infty}^{\infty} G(u,v)e^{i(ux+vy)}dudv$$

Exercices:

- 1. Calculer la TF de $\delta(t-t_0)$.
- 2. Calculer la TF de $\delta(t+t_0)$.
- 3. Montrer que TF[$\delta(t+t_0) + 2\delta(t) + \delta(t-t_0)$] = $4\cos^2(\omega t_0/2)$.