SGD Ex

July 11, 2022

[P4]

E1

Def. 17:

$$D_f(x,y) + D_f(y,x) = \langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle \nabla f(y) - \nabla f(x), y - x \rangle \tag{1}$$

 $\forall x, y \in \mathbb{R}^d$:

$$\mu||x-y||^{2} \leq 2D_{f}(x,y),
\frac{\mu}{2}||x-y||^{2} \leq D_{f}(x,y),
\frac{\mu}{2}||x-y||^{2} \leq D_{f}(y,x),
D_{f}(x,y) + \frac{\mu}{2}||x-y||^{2} \leq D_{f}(x,y) + D_{f}(y,x),
D_{f}(x,y) + \frac{\mu}{2}||x-y||^{2} \leq \langle \nabla f(x) - \nabla f(y), x-y \rangle.$$
(2)

E2

$$D_{f}(x,y) + \frac{\mu}{2}||x-y||^{2} \leq \langle \nabla f(x) - \nabla f(y), x-y \rangle,$$

$$\langle \nabla f(x) - \nabla f(y), x-y \rangle \geq \underbrace{D_{f}(x,y)}_{\geq \frac{\mu}{2}||x-y||^{2}} + \frac{\mu}{2}||x-y||^{2},$$

$$\langle \nabla f(x) - \nabla f(y), x-y \rangle \geq \frac{\mu}{2}||x-y||^{2} + \frac{\mu}{2}||x-y||^{2},$$

$$\langle \nabla f(x) - \nabla f(y), x-y \rangle \geq \mu||x-y||^{2}.$$
(3)

[P6]

E17

(Equation 34):

$$\langle a, b \rangle \leq \frac{||a||^2}{2t} + \frac{t||b||^2}{2},$$

$$\langle a, b \rangle \leq \frac{\langle a, a \rangle}{2t} + \frac{t\langle b, b \rangle}{2},$$

$$2t\langle a, b \rangle \leq \langle a, a \rangle + t^2\langle b, b \rangle,$$

$$0 \leq \langle a, a \rangle + \langle tb, tb \rangle - \langle a, tb \rangle - \langle tb, a \rangle,$$

$$0 \leq ||a - tb||^2.$$
(4)

(Equation 35):

$$||a+b||^{2} \leq 2||a||^{2} + 2||b||^{2},$$

$$\langle a, a \rangle + \langle b, b \rangle + 2\langle a, b \rangle \leq 2\langle a, a \rangle + 2\langle b, b \rangle,$$

$$0 \leq \langle a, a \rangle + \langle b, b \rangle - 2\langle a, b \rangle,$$

$$0 \leq ||a-b||^{2}.$$
(5)

(Equation 36):

$$\frac{1}{2}||a||^2 - ||b||^2 \le ||a+b||^2,$$

$$\frac{1}{2}\langle a, a \rangle - \langle a, a \rangle \le \langle a, a \rangle + \langle b, b \rangle + 2\langle a, b \rangle,$$

$$\langle a, a \rangle - 2\langle b, b \rangle \le 2\langle a, a \rangle + 2\langle b, b \rangle + 4\langle a, b \rangle,$$

$$0 \le \langle a, a \rangle + \langle 2b, 2b \rangle + \langle a, 2b \rangle + \langle 2b, a \rangle,$$

$$0 \le ||a+2b||^2.$$
(6)

E19

For random vector $X \in \mathbb{R}^d$:

$$\mathbf{Var}[X] := \mathbf{E}\left[||X - \mathbf{E}[X]||^2\right]. \tag{7}$$

Markov's inequality:

$$\operatorname{Prob}(X \ge t) \le \frac{\mathbf{E}[X]}{t}.\tag{8}$$

Proof of Chebyshev's inequality using Markov's inequality:

$$\text{Prob}(||X - \mathbf{E}[X]||^2 \ge t^2) \le \frac{\mathbf{E}[||X - \mathbf{E}[X]||^2]}{t^2}.$$

Since

$$\operatorname{Prob}(||X - \mathbf{E}[X]||^2 \ge t^2) = \operatorname{Prob}(||X - \mathbf{E}[X]|| \ge t), \tag{9}$$

then

$$\operatorname{Prob}(||X - \mathbf{E}[X]|| \ge t) \le \frac{\operatorname{Var}[X]}{t^2}.$$
 (10)

[P7]

E24

If

$$f = \frac{1}{n} \sum_{i=1}^{n} f_i,$$

then

$$D_f(x,y) = \frac{1}{n} \sum_{i=1}^n f_i(x) - \frac{1}{n} \sum_{i=1}^n f_i(y) - \frac{1}{n} \sum_{i=1}^n \langle \nabla f_i(y), x - y \rangle,$$

$$D_f(x,y) = \frac{1}{n} \sum_{i=1}^n (f_i(x) - f_i(y) - \langle \nabla f_i(y), x - y \rangle),$$

$$D_f(x,y) = \frac{1}{n} \sum_{i=1}^n D_{f_i}(x,y).$$

E26

[*** partial ***]

[P8]

E33

Let

$$\chi_i = \begin{cases} 1 & i \in S \\ 0 & i \notin S \end{cases} .$$

Since

$$p_i = \frac{1}{n},$$

and

$$|S| = \tau,$$

then

$$\mathbf{E}[\chi_i] = \operatorname{Prob}(i \in S) = \sum_{i=1}^n p_i \chi_i = \frac{1}{n} \sum_{i=1}^n \chi_i = \frac{\tau}{n}.$$

E35

For any vectors, $b_1, ..., b_n \in \mathbb{R}^d$:

$$\left\| \sum_{i=1}^{n} b_{i} \right\|^{2} - \sum_{i=1}^{n} \|b_{i}\|^{2} = \underbrace{\sum_{i=1}^{n} \langle b_{i}, b_{i} \rangle + \sum_{i \neq j} \langle b_{i}, b_{j} \rangle}_{\left\| \sum_{i=1}^{n} b_{i} \right\|^{2}} - \sum_{i=1}^{n} \langle b_{i}, b_{i} \rangle,$$

$$\left\| \sum_{i=1}^{n} b_i \right\|^2 - \sum_{i=1}^{n} \|b_i\|^2 = \sum_{i \neq j} \langle b_i, b_j \rangle.$$

[P9]

E37

Assumptions of $C: \mathbb{R}^d \to \mathbb{R}^d$:

1.
$$\mathbf{E}[\mathcal{C}(x)] = x, \quad \forall x \in \mathbb{R}^d$$

2.
$$\mathbf{E}[||\mathcal{C}(x) - x||^2] \le \omega ||x||^2 + \delta, \quad \forall x \in \mathbb{R}^d, \quad \exists \omega, \delta \ge 0$$

Proof of convergence for CGD with n = 1: Since $C \in \mathbb{B}^d(\omega)$,

$$\mathbf{E}\left[||g(x)||^2\right] = \mathbf{E}\left[||\mathcal{C}(\nabla f(x))||^2\right] \le (\omega + 1)||\nabla f(x)||^2. \tag{11}$$

In case of $\nabla f(y) = 0$,

$$G(x,y) := \mathbf{E} \left[||g(x) - \nabla f(y)||^2 \right]$$

$$= \mathbf{E} \left[||g(x)||^2 \right]$$

$$\stackrel{\text{(11)}}{\leq} (\omega + 1) ||\nabla f(x) - \nabla f(y)||^2,$$

$$\stackrel{\text{(22)}}{\leq} 2(\omega + 1) LD_f(x,y).$$

In case of $\nabla f(y) \neq 0$,

$$G(x,y) := \mathbf{E} \left[||g(x) - \nabla f(y)||^{2} \right]$$

$$= \mathbf{E} \left[||g(x) - \nabla f(x)||^{2} \right] + ||\nabla f(x) - \nabla f(y)||^{2}$$

$$= \mathbf{E} \left[||\mathcal{C}(\nabla f(x)) - \nabla f(x)||^{2} \right] + ||\nabla f(x) - \nabla f(y)||^{2}$$

$$\leq \omega ||\nabla f(x)||^{2} + \delta + ||\nabla f(x) - \nabla f(y)||^{2}$$

$$= \omega ||\nabla f(x) - \nabla f(y) + \nabla f(y)||^{2} + ||\nabla f(x) - \nabla f(y)||^{2} + \delta$$

$$\leq 2\omega ||\nabla f(x) - \nabla f(y)||^{2} + 2\omega ||\nabla f(y)||^{2} + ||\nabla f(x) - \nabla f(y)||^{2} + \delta$$

$$= (2\omega + 1)||\nabla f(x) - \nabla f(y)||^{2} + 2\omega ||\nabla f(y)||^{2} + \delta$$

$$\leq 2\underbrace{(2\omega + 1)L}_{A} D_{f}(x, y) + \underbrace{2\omega ||\nabla f(y)||^{2} + \delta}_{C}.$$

If $0 < \gamma < \frac{1}{A}$, then

$$\mathbf{E}\left[||x^k - x^*||^2\right] \le (1 - \gamma\mu)^k ||x^0 - x^*|| + \frac{2\gamma\omega||\nabla f(x^*)||^2 + \gamma\delta}{\mu}.$$

E39

(maybe) this is the other direction, if matrix is psd then E is psd:

