#### Parsing and CFG vs RE

Narges Khakpour

Department of Computer Science, Linnaeus University

- Intro to Parsing
- 2 Recursive Descent Parsing
- Table-Driven Parsing
- 4 REs vs CFGs
- Conclusions

#### Plan

- Intro to Parsing
- 2 Recursive Descent Parsing
- Table-Driven Parsing
- 4 REs vs CFGs
- Conclusions

#### Parser Types

- Slides on parsing by Jonas Lundberg and Narges Khakpour
- Input representation: a string
- Output representation: Parse (or syntax) tree
- Top-down or Bottom-up parsers

#### Parser Types

- Top-down parser
  - Starts from the start symbol (the tree root)
  - Transforms the start symbol into the input string to build the tree body
  - Recursive descent parsing vs Table-driven parsing
- Bottom-up parser
  - Starts from the input string that correspond to leaves
  - Constructs the rest of tree up to the start symbol (the tree root)
- We discuss top-down methods in this course.

## Top-down Methods: An Example

#### Consider the grammar

(1) 
$$S \rightarrow aABe$$
 (2)  $A \rightarrow b$  (3)  $A \rightarrow Abc$  (4)  $B \rightarrow d$ 

• Using a left-most derivation we can show that abbcde is in the language

$$S \stackrel{1}{\Longrightarrow} aABe \stackrel{3}{\Longrightarrow} aAbcBe \stackrel{2}{\Longrightarrow} abbcBe \stackrel{4}{\Longrightarrow} abbcde$$

This is a *top-down method* since we start from the start symbol S (the syntax tree root) and work our way down to the Symbols *abbcde* (the leaves of the syntax tree).

- Which non-terminal to apply a production rule to?
- What production to use when facing one (or k) Symbols?
- AntLR uses a top-down parsing method.

## Bottom-up Methods: An Example

(1) 
$$S \rightarrow aABe$$
 (2)  $A \rightarrow b$  (3)  $A \rightarrow Abc$  (4)  $B \rightarrow d$ 

 Bottom-up approaches starts with the leaves and uses the grammar productions to reduce the input to the start symbol S.

$$abbcde \xrightarrow{2} aAbcde \xrightarrow{3} aAde \xrightarrow{4} aABe \xrightarrow{1} S$$

• That is, bottom-up parsing is a backward rightmost derivation.

## LL(k) Parsers

- A top-down parser
- Is predictive, i.e. predicts next production rule to be used
- Derivation: a non-terminal symbol to apply a production rule on.
- First L means read input string from left to right
- Second L means produce leftmost derivation
- k is the number of lookahead symbols
- An LL(k) grammar is a grammar that can be parsed by an LL(k) parser.

Consider the following grammar

$$A 
ightarrow aAB \mid ba \mid bb$$
 (Rules 1 – 3),  $B 
ightarrow Ba \mid b$  (Rules 4 – 5)

| Status | Left-most | Remaining (to be parsed) | Rule/Comment                         |
|--------|-----------|--------------------------|--------------------------------------|
| Α      | Α         | ababaa                   | Rule $1, k = 1$                      |
| aAB    | A         | babaa                    | Rule 2, $k = 2$ , Left-factorization |
| abaB   | В         | baa                      | Rule 4, $k = 2$ , Left-recursion     |
| abaBa  | В         | baa                      | Rule 4                               |
| abaBaa | В         | baa                      | Rule 5                               |
| ababaa | _         | _                        | OK!                                  |

Consider the following grammar

$$A 
ightarrow aAB \mid ba \mid bb \quad \text{(Rules } 1-3\text{)}, \quad B 
ightarrow Ba \mid b \quad \text{(Rules } 4-5\text{)}$$

| Status | Left-most | Remaining (to be parsed) | Rule/Comment                         |
|--------|-----------|--------------------------|--------------------------------------|
| Α      | Α         | ababaa                   | Rule $1, k = 1$                      |
| aAB    | Α         | babaa                    | Rule 2, $k = 2$ , Left-factorization |
| abaB   | В         | baa                      | Rule 4, $k = 2$ , Left-recursion     |
| abaBa  | В         | baa                      | Rule 4                               |
| abaBaa | В         | baa                      | Rule 5                               |
| ababaa | _         | _                        | OK!                                  |

Consider the following grammar

$$A 
ightarrow aAB \mid ba \mid bb$$
 (Rules 1 – 3),  $B 
ightarrow Ba \mid b$  (Rules 4 – 5)

| Status | Left-most | Remaining (to be parsed) | Rule/Comment                         |  |
|--------|-----------|--------------------------|--------------------------------------|--|
| Α      | Α         | ababaa                   | Rule $1, k = 1$                      |  |
| aAB    | Α         | babaa                    | Rule 2, $k = 2$ , Left-factorization |  |
| abaB   | В         | baa                      | Rule 4, $k = 2$ , Left-recursion     |  |
| abaBa  | В         | baa                      | Rule 4                               |  |
| abaBaa | В         | baa                      | Rule 5                               |  |
| ababaa | _         | _                        | OK!                                  |  |

Consider the following grammar

$$A 
ightarrow aAB \mid ba \mid bb$$
 (Rules 1 – 3),  $B 
ightarrow Ba \mid b$  (Rules 4 – 5)

| Status | Left-most | Remaining (to be parsed) | Rule/Comment                         |
|--------|-----------|--------------------------|--------------------------------------|
| Α      | Α         | ababaa                   | Rule $1, k = 1$                      |
| aAB    | Α         | babaa                    | Rule 2, $k = 2$ , Left-factorization |
| abaB   | В         | baa                      | Rule 4, $k = 2$ , Left-recursion     |
| abaBa  | В         | baa                      | Rule 4                               |
| abaBaa | В         | baa                      | Rule 5                               |
| ababaa | _         | _                        | OK!                                  |

Consider the following grammar

$$A 
ightarrow aAB \mid ba \mid bb$$
 (Rules 1 – 3),  $B 
ightarrow Ba \mid b$  (Rules 4 – 5)

| Status | Left-most | Remaining (to be parsed) | Rule/Comment                         |  |
|--------|-----------|--------------------------|--------------------------------------|--|
| Α      | Α         | ababaa                   | Rule $1, k = 1$                      |  |
| aAB    | Α         | babaa                    | Rule $2, k = 2$ , Left-factorization |  |
| abaB   | В         | baa                      | Rule 4, $k = 2$ , Left-recursion     |  |
| abaBa  | В         | baa                      | Rule 4                               |  |
| abaBaa | В         | baa                      | Rule 5                               |  |
| ababaa | _         | _                        | OK!                                  |  |

Consider the following grammar

$$A 
ightarrow aAB \mid ba \mid bb$$
 (Rules 1 – 3),  $B 
ightarrow Ba \mid b$  (Rules 4 – 5)

| Status | Left-most | Remaining (to be parsed) | Rule/Comment                         |
|--------|-----------|--------------------------|--------------------------------------|
| Α      | Α         | ababaa                   | Rule $1, k = 1$                      |
| aAB    | Α         | babaa                    | Rule 2, $k = 2$ , Left-factorization |
| abaB   | В         | baa                      | Rule 4, $k = 2$ , Left-recursion     |
| abaBa  | В         | baa                      | Rule 4                               |
| abaBaa | В         | baa                      | Rule 5                               |
| ababaa | _         | _                        | OK!                                  |

- Is the above grammar an LL(1)?
- Rewrite the grammar

$${\it A} \rightarrow {\it aAB} \mid {\it bA}', ~~ {\it A}' \rightarrow {\it a} \mid {\it b}, ~~ {\it B} \rightarrow {\it bB}', ~~ {\it B}' \rightarrow {\it aB}' \mid \varepsilon$$

• Given a left-most non-terminal A and the remaining string, decide which production  $A \to \alpha$  to chose.

#### Removing Ambiguity

- Derivations are not unique, even if the grammar is unambiguous
- In an unambiguous grammar, leftmost derivations are unique and right-most derivation are unique
- Consider the following grammar with the start symbol S

$$S \rightarrow S + S \mid S * S \mid a \mid b$$

$$S \xrightarrow{1} S + S \xrightarrow{3} a + S \xrightarrow{2} a + S * S \xrightarrow{3} a + a * S \xrightarrow{4} a + a * b$$

$$S \xrightarrow{2} S * S \xrightarrow{1} S + S * S \xrightarrow{3} a + S * S \xrightarrow{3} a + a * S \xrightarrow{4} a + a * b$$

• Removing left recursion and left-factoring sometimes can help to obtain an LL(1) grammar.

BonusPoint Is an ambiguous grammar an LL(1) grammar? Argue why.

#### Plan

- 1 Intro to Parsing
- 2 Recursive Descent Parsing
- 3 Table-Driven Parsing
- 4 REs vs CFGs
- Conclusions

#### The Recursive Descent Parsing

- In a parse tree
  - Leaves are terminals
  - Interior nodes correspond to non-terminals
  - Root is the start symbol.
- Input string:  $s_1 s_2 \dots s_n$
- We associate each non-terminal A with one procedure pA().
- Procedure pA() is used to select A productions  $(A \rightarrow \alpha)$ .

#### The Recursive Descent Parsing

```
• Consider A \to bCd \mid eF \quad C \to cCF \mid e \quad F \to b where A, C, F \in V and b, d, e \in \Sigma
  pA() {
                                         consume(Symbol t) {
   Node(A);
   if lookahead = b then
                                          if lookahead = t then
      consume(b); pC(); consume(d);
                                              Node(t); lookahead = nextSymbol
    elsif lookahead = e then
                                            else
      consume(e); pF();
                                                 reportError();
    else
                                                   // Error in prediction
      reportError();
                                            end if;
    end if:
           // Can't make decision,
          // no suitable A production
Initializing the parser
  lookahead = nextSymbol();
                                          // Read first Symbol from input st
```

pStartSymbol();

// Resolve start symbol

$$A 
ightarrow bCd \mid eF \quad C 
ightarrow cCF \mid e \quad F 
ightarrow b$$
 Construct parse tree for  $bcebd$  A

 $A o bCd \mid eF \quad C o cCF \mid e \quad F o b$  Construct parse tree for bcebd A

 $A 
ightarrow bCd \mid eF \quad C 
ightarrow cCF \mid e \quad F 
ightarrow b$  Construct parse tree for bcebd



 $A 
ightarrow bCd \mid eF \quad C 
ightarrow cCF \mid e \quad F 
ightarrow b$  Construct parse tree for bcebd



 $A 
ightarrow bCd \mid eF \quad C 
ightarrow cCF \mid e \quad F 
ightarrow b$  Construct parse tree for bcebd



If we continue, the final result is



#### **Example: Arithmetic Expressions**

An LL(1) grammar for arithmetic expressions:

$$G = \{T, N, P, S\}$$
  
 $T = \{id, +, *, (,), \}$   
 $N = \{E, E', T, T', F\}$   
 $S = F$ 

where P is defined as

(1) 
$$E \rightarrow TE', E' \rightarrow +TE' \mid \varepsilon$$
,

(2) 
$$T \rightarrow F T', T' \rightarrow *F T' \mid \varepsilon,$$

(3) 
$$F \rightarrow id \mid (E)$$

Notice: Ambiguity, left-factoring, and left-recursion are all removed.

#### **Example: Arithmetic Expressions**

```
The RD procedure associated with T' \to *F T' \mid \varepsilon
pTprime() {
   if lookahead = * then
       consume(*); pF(); pTprime();
   elsif lookahead = X then
         //Do nothing, the epsilon branch
   else
      reportError();
   end if;
}
```

- The  $\varepsilon$ -production for T' is the tricky part.
- ullet We must determine on what input T' should do nothing and when to report error.

#### **Example: Arithmetic Expressions**

```
The RD procedure associated with T' \to *F \ T' \mid \varepsilon pTprime() { if lookahead = * then consume(*); pF(); pTprime(); elsif lookahead = X then ; //Do nothing, the epsilon branch else reportError(); end if; }
```

**BonusPoint** What should X be in the above?

#### Recursive Descent Pros/Cons

- Easy to understand how parsing works
- Grammar updates are often difficult to handle: a minor update may get propagated to the whole parser.
- An alternative is to encode all predictions in a parsing table, and the parser uses that table to parse a grammar.

#### Plan

- Intro to Parsing
- 2 Recursive Descent Parsing
- Table-Driven Parsing
- 4 REs vs CFGs
- Conclusions

#### Table-Driven Approach

- Recursive calls are replaced by a stack.
- Which production branch to chose is given by a **parse table** M[A, t].
- Given non-terminal A and lookahead t, M[A, t] returns the appropriate production to use.
- There are algorithms for constructing parse tables

## A Parse Table M[A, t] for Grammar 3

|    | id                  | +                     | *          | (                   | )                    |
|----|---------------------|-----------------------|------------|---------------------|----------------------|
| Ε  | $E \rightarrow TE'$ |                       |            | E 	o TE'            |                      |
| E' |                     | $E' \rightarrow +TE'$ |            |                     | $E' \to \varepsilon$ |
| T  | T 	o FT'            |                       |            | T 	o FT'            |                      |
| T' |                     | T'	oarepsilon         | T' 	o *FT' |                     | T'	o arepsilon       |
| F  | $F \rightarrow id$  |                       |            | $F \rightarrow (E)$ |                      |

#### Questions:

- How to construct a parse table? (not in this course)
- How to build a parser that uses a parse table?

## Algorithm 1: Table driven LL(1)-parsing

```
stack.push(StartSymbol)
LA = input.nextSymbol()
repeat
  X = stack.top()
  if X \in T then
     if X = LA then
        Node(stack.top)
        stack.pop()
                               (reduce)
        LA = input.nextSymbol()
     else
        error(stack,LA,input)
                                     (Symbol not in agreement with prediction)
     end if
  else
     if M[X, LA] = X \rightarrow Y_1 \dots Y_n then
        stack.pop()
                               (shift)
        push Y_n \dots Y_1 onto stack, with Y_1 on top
        add X \to Y_1 \dots Y_n to parse tree
     else
        error(stack,LA,input)
                                 (Can't make a decision, empty slot in M[X, LA])
```

## Table driven LL(1)-parsing: An Example

|    | id                  | +                     | *                     | (                   | )                    |
|----|---------------------|-----------------------|-----------------------|---------------------|----------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                      |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' \to \varepsilon$ |
| T  | $T \rightarrow FT'$ |                       |                       | T 	o FT'            |                      |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | $T' 	o \varepsilon$  |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                      |

Parsing id + id\$ (where \$ symbolizes end-of-file)

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift. shift  $\Rightarrow$  replace top element with M[TOP, LA] right-hand side. reduce  $\Rightarrow$  pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| E      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   |    | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' |     |    | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  |    | id\$    | shift with $M[T',+]=(T' ightarrowarepsilon)$  |
| E'     | E'  |    | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

## Table driven LL(1)-parsing: An Example

|    | id                  | +                     | *                     | (                   | )                    |
|----|---------------------|-----------------------|-----------------------|---------------------|----------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                      |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' \to \varepsilon$ |
| T  | $T \rightarrow FT'$ |                       |                       | T 	o FT'            |                      |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | $T' 	o \varepsilon$  |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                      |

Parsing id + id\$ (where \$ symbolizes end-of-file)

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift. shift  $\Rightarrow$  replace top element with M[TOP, LA] right-hand side. reduce  $\Rightarrow$  pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| Ε      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   |    | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' |     |    | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  |    | id\$    | shift with $M[T',+]=(T' ightarrowarepsilon)$  |
| E'     | E'  |    | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

|    | id                  | +                     | *                     | (                   | )                   |
|----|---------------------|-----------------------|-----------------------|---------------------|---------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                     |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' 	o \varepsilon$ |
| T  | $T \rightarrow FT'$ |                       |                       | T 	o FT'            |                     |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | $T' 	o \varepsilon$ |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                     |

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift. shift  $\Rightarrow$  replace top element with M[TOP, LA] right-hand side. reduce  $\Rightarrow$  pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| Ε      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   | id | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' |     |    | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  |    | id\$    | shift with $M[T',+]=(T' ightarrowarepsilon)$  |
| E'     | E'  |    | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

|    | id                  | +                     | *                     | (                   | )                   |
|----|---------------------|-----------------------|-----------------------|---------------------|---------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                     |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' 	o \varepsilon$ |
| T  | $T \rightarrow FT'$ |                       |                       | T 	o FT'            |                     |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | $T' 	o \varepsilon$ |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                     |

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift. shift  $\Rightarrow$  replace top element with M[TOP, LA] right-hand side. reduce  $\Rightarrow$  pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| Ε      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   | id | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' | id  | id | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  |    | id\$    | shift with $M[T',+]=(T' ightarrowarepsilon)$  |
| E'     | E'  |    | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

|    | id                  | +                     | *                     | (                   | )                   |
|----|---------------------|-----------------------|-----------------------|---------------------|---------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                     |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' 	o \varepsilon$ |
| T  | T 	o FT'            |                       |                       | T 	o FT'            |                     |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | $T' 	o \varepsilon$ |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                     |

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift.
   shift ⇒ replace top element with M[TOP, LA] right-hand side.
   reduce ⇒ pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| Ε      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   | id | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' | id  | id | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  | +  | id\$    | shift with $M[T',+]=(T' \to \varepsilon)$     |
| E'     | E'  |    | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

|    | id                  | +                     | *                     | (                   | )                   |
|----|---------------------|-----------------------|-----------------------|---------------------|---------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                     |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' 	o \varepsilon$ |
| T  | T 	o FT'            |                       |                       | T 	o FT'            |                     |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | T' 	o arepsilon     |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                     |

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift. shift  $\Rightarrow$  replace top element with M[TOP, LA] right-hand side. reduce  $\Rightarrow$  pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| E      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   | id | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' | id  | id | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  | +  | id\$    | shift with $M[T',+]=(T' ightarrowarepsilon)$  |
| E'     | E'  | +  | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

|    | id                  | +                     | *                     | (                   | )                   |
|----|---------------------|-----------------------|-----------------------|---------------------|---------------------|
| Ε  | $E \rightarrow TE'$ |                       |                       | E 	o TE'            |                     |
| E' |                     | $E' \rightarrow +TE'$ |                       |                     | $E' 	o \varepsilon$ |
| T  | $T \rightarrow FT'$ |                       |                       | T 	o FT'            |                     |
| T' |                     | T' 	o arepsilon       | $T' \rightarrow *FT'$ |                     | $T' 	o \varepsilon$ |
| F  | $F \rightarrow id$  |                       |                       | $F \rightarrow (E)$ |                     |

- Start: Push start symbol E on stack ⇒ TOP = E
   Lookahead is first input Symbol ⇒ LA = id, Remains = +id\$
- Parse: if TOP = LA then reduce, else shift. shift  $\Rightarrow$  replace top element with M[TOP, LA] right-hand side. reduce  $\Rightarrow$  pop top element (a terminal) and set lookahead to next input.

| Stack  | TOP | LA | Remains | Rule                                          |
|--------|-----|----|---------|-----------------------------------------------|
| Ε      | Ε   | id | +id\$   | shift with $M[E, id] = (E \rightarrow TE')$   |
| TE'    | T   | id | +id\$   | shift with $M[T, id] = (T \rightarrow FT')$   |
| FT'E'  | F   | id | +id\$   | shift with $M[F, id] = (F \rightarrow id)$    |
| idT'E' | id  | id | +id\$   | $reduce \Rightarrow TOP = T', LA = +$         |
| T'E'   | T'  | +  | id\$    | shift with $M[T',+]=(T' \to \varepsilon)$     |
| E'     | E'  | +  | id\$    | shift with $M[E', +] = (E' \rightarrow +TE')$ |

Parsing id + id\$ (where \$ symbolizes end-of-file)

• Success: When lookahead is end-of-file (LA = \$)

| Remains | LA | TOP | Stack  |
|---------|----|-----|--------|
| +id\$   | id | Ε   | Ε      |
| +id\$   | id | T   | TE'    |
| +id\$   | id | F   | FT'E'  |
| +id\$   | id | id  | idT'E' |
| id\$    | +  | T'  | T'E'   |
| id\$    | +  | E'  | E'     |

| Remains | LA | TOP | Stack  |
|---------|----|-----|--------|
| id\$    | +  | +   | +TE'   |
| \$      | id | T   | TE'    |
| \$      | id | F   | FT'E'  |
| \$      | id | id  | idT'E' |
|         | \$ | T'  | T'E'   |
|         |    |     |        |

### Plan

- 1 Intro to Parsing
- 2 Recursive Descent Parsing
- Table-Driven Parsing
- 4 REs vs CFGs
- Conclusions

#### **Theorem**

For any arbitrary regular expression E defined over an alphabet  $\Sigma$ , there is a CFG G such that L(E) = L(G).

### Proof.

The operators in a RE include union ( $\cup$ ), concatenation (.) and closure ( $R^*$ ). We prove this by induction on the number of operators n.

Base Case If n = 0, then two cases can happen

- $E = \sigma$  where  $\sigma \in \Sigma$ : then the following CFG generates L(E) $G = \langle \{S\}, \Sigma, \{S \to \sigma\}, S \rangle$
- $E = \epsilon$ :  $G = \langle \{S\}, \Sigma, \{S \to \epsilon\}, S \rangle$



**Inductive Step**: For all regular expressions  $E_k$  with k operator, assume that there is a CFG  $G_k$  such that  $L(G_k) = L(E_k)$ . Let  $E_{k+1}$  be a regular expression. Three cases can happen:

•  $E_{k+1} = E' \cup E''$ : According to the induction step hypothesis, there are  $G' = \langle V', \Sigma', R', S' \rangle$  and  $G'' = \langle V'', \Sigma'', R'', S'' \rangle$  such that L(G') = L(E'), L(G'') = L(E'') and  $V' \neq V''$ . Consider the following CFG where  $S \notin V' \cup V''$ :

$$\textit{G} = \langle \textit{V}' \cup \textit{V}'' \cup \{\textit{S}\}, \Sigma' \cup \Sigma'', \{\textit{S} \rightarrow \textit{S}', \textit{S} \rightarrow \textit{S}''\} \cup \textit{R}' \cup \textit{R}'', \textit{S} \rangle$$

$$L(S) = L(S') \cup L(S'') = L(E') \cup L(E'') = L(E_{k+1})$$

•  $E_{k+1}=E'.E''$ : According to the induction step hypothesis, there are  $G'=\langle V',\Sigma',R',S'\rangle$  and  $G''=\langle V'',\Sigma'',R'',S''\rangle$  such that  $L(G')=L(E'),\ L(G'')=L(E'')$  and  $V'\neq V''$ . Consider the following CFG where  $S\notin V'\cup V''$ :

$$G = \langle V' \cup V'' \cup \{S\}, \Sigma' \cup \Sigma'', \{S \to S'S''\} \cup R' \cup R'', S \rangle$$
$$L(S) = L(S'S'') = L(E').L(E'') = L(E_{k+1})$$

•  $E_{k+1} = E'^*$ : According to the induction step hypothesis, there are  $G' = \langle V', \Sigma', R', S' \rangle$  such that L(G') = L(E'). Consider the following CFG where  $S \notin V'$ :

$$\textit{G} = \langle \textit{V}' \cup \{\textit{S}\}, \Sigma', \{\textit{S} \rightarrow \textit{S}'\textit{S} \mid \epsilon\} \cup \textit{R}', \textit{S}\rangle$$

$$L(S) = \epsilon \cup L(S') \cup L(S'S') \cup L(S'S'S') \dots = \epsilon \cup L(E') \cup L(E'E') \cup L(E'E'E') \dots = L(E_{k+1})$$

## $CFGs \not\subseteq REs$

#### **Theorem**

There are CFGs that generates non-regular languages, i.e. CFGs  $\not\subseteq$  REs.

### Proof.

Consider a context-free grammar that produces  $\{a^nb^n \mid 0 \le n\}$ . We know that a RE has a corresponding FSA. The accepting DFA of should accept  $a^nb^n$  and reject  $a^mb^n$ , where  $n \ne m$ . It means it should reach two different states where one is an accepting state (to accept  $a^nb^n$ ) and the other is not (to reject  $a^mb^n$ ). Since n is infinite, then we need to have infinite states while DFA only has a finite number of states. Hence, we cannot represent it using a regular language.

## Plan

- Intro to Parsing
- 2 Recursive Descent Parsing
- Table-Driven Parsing
- 4 REs vs CFGs
- Conclusions

### **Conclusions**

- Recursive descent parsing and table-driven parsing
- Regular languages are context-free but not all context-free languages are regular
- Next lecture is on Turing Machines