A few comments about "Topology" by Munkres

Pierre-Yves Gaillard¹

As the title indicates, we make a comments about the book **Topology** by James R. Munkres. This is a work in progress.

• **Definition of** \mathbb{R} **p. 31.** The object \mathbb{R} is defined by assuming that there exists a set \mathbb{R} having certain properties. We take this assumption for granted. Then it is easy to see that there are several sets having these properties. So, let \mathbb{R}' be a set having the same properties as \mathbb{R} . Let $\mathbb{Z}'_+, \mathbb{Z}'$ and \mathbb{Q}' be to \mathbb{R}' what \mathbb{Z}_+, \mathbb{Z} and \mathbb{Q} are to \mathbb{R} .

Theorem 1. There is a unique morphism of fields from $f : \mathbb{R} \to \mathbb{R}'$. This morphism is an isomorphism of ordered fields, and it induces isomorphisms $\mathbb{Z}_+ \to \mathbb{Z}'_+, \mathbb{Z} \to \mathbb{Z}'$ and $\mathbb{Q} \to \mathbb{Q}'$.

Lemma 2. There is a unique map $g: \mathbb{Z}_+ \to \mathbb{Z}'_+$ such that g(0) = 0 and g(n+1) = g(n) + 1 for all n in \mathbb{Z}_+ . Similarly, there is a unique map $h: \mathbb{Z}'_+ \to \mathbb{Z}_+$ such that h(0) = 0 and h(n+1) = h(n) + 1 for all n in \mathbb{Z}'_+ .

Proof. For $i \in \mathbb{Z}_+$ and $\varphi : \{1, \ldots, i\} \to \mathbb{Z}'_+$ define $\rho(\varphi) \in \mathbb{Z}'_+$ by $\rho(\varphi) := \varphi(i) + 1$. Then the first statement follows from the Principle of Recursive Definition (Theorem 3 p. 2). The proof of the second statement is similar.

Proof of Theorem 1. In the notation of Lemma 2, set $u:=h\circ g$. Then $u:\mathbb{Z}_+\to\mathbb{Z}_+$ satisfies u(0)=0 and u(n+1)=u(n)+1 for all n in \mathbb{Z}_+ . One can easily prove that u(n)=n by induction. The same argument works for $g\circ h$. This shows that $g:\mathbb{Z}_+\to\mathbb{Z}_+'$ and $h:\mathbb{Z}_+'\to\mathbb{Z}_+'$ are inverse isomorphisms. Then we extend g to morphisms $\mathbb{Z}\to\mathbb{Z}'$ and $\mathbb{Q}\to\mathbb{Q}'$, and similarly for h, and, arguing as before, we show that these morphisms are isomorphisms. More precisely, we see that there is a unique morphism $\mathbb{Z}\to\mathbb{Z}'$ extending g, and that this morphism is an isomorphism, and similarly for the morphism $\mathbb{Q}\to\mathbb{Q}'$. So we can make the identifications $\mathbb{Z}_+=\mathbb{Z}_+',\mathbb{Z}=\mathbb{Z}_-',\mathbb{Q}=\mathbb{Q}'$. To show that there is a unique morphism of fields $\mathbb{R}\to\mathbb{R}_-'$, and that this morphism is an isomorphism (inducing the identity of \mathbb{Q}), we argue as in Section Appendix to Chapter 1 in A few comments about "Principles of Mathematical Analysis" by Rudin, available at https://zenodo.org/records/13955297.

- Exercise 7.6. p. 51. We say that two sets A and B have the same cardinality if there is a bijection of A with B.
 - (a) Show that if $B \subset A$ and if there is an injection

$$f:A\to B,$$

¹ORCID https://orcid.org/0000-0002-7960-1698

then A and B have the same cardinality. [Hint: Define $A_1 = A, B_1 = B$, and for n > 1, $A_n = f(A_{n-1})$ and $B_n = f(B_{n-1})$. (Recursive definition again!) Note that $A_1 \supset B_1 \supset A_2 \supset B_2 \supset A_3 \supset \cdots$ Define a bijection $h: A \to B$ by the rule

$$h(x) = \begin{cases} f(x) & \text{if } x \in A_n \setminus B_n \text{ for some } n, \\ x & \text{otherwise.} \end{cases}$$

(b) Theorem (Schroeder-Bernstein theorem). If there are injections $f: A \to C$ and $g: C \to A$, then A and C have the same cardinality.

Solution. (a) We will freely use the following two obvious facts:

(F1) For $x \in A$ and $n \in \mathbb{Z}_+$ we have

$$x \in A_n \iff f(x) \in A_{n+1} \text{ and } x \in B_n \iff f(x) \in B_{n+1}.$$

(F2) We have $\bigcap_{n>1} A_n = \bigcap_{>1} B_n =: I$.

Setting $A'_n := A_n \setminus B_n, B'_n := B_n \setminus A_{n+1}$, we get

$$A = \left(\bigcup_{n>1} A'_n\right) \cup \left(\bigcup_{n>1} B'_n\right) \cup I,$$

and this union is disjoint. We also have

$$B = \left(\bigcup_{n \ge 2} A'_n\right) \cup \left(\bigcup_{n \ge 1} B'_n\right) \cup I.$$

The injection f induces bijections $f_n: A'_n \to A'_{n+1}$ (here we are using (F1)). To define a bijection $h: A \to B$, it suffices to define three bijections

$$u: \bigcup_{n\geq 1} A'_n \to \bigcup_{n\geq 2} A'_n, \quad v: \bigcup_{n\geq 1} B'_n \to \bigcup_{n\geq 1} B'_n, \quad w: I \to I.$$

We define u by $u(x) = f_n(x)$ if $x \in A'_n$, and take v and w to be the identity maps.

- (b) We set $B := g(C) \subset A$ and define $f' : A \to B$ by f'(a) := g(f(a)). Then $f' : A \to B$ satisfies the assumptions for $f : A \to B$ in (a).
- Exercise 8.7. p. 56. Prove Theorem 8.4 p. 54.

Solution. Recall the statement of Theorem 8.4.

Theorem 3 (Principle of Recursive Definition, Theorem 8.4 of the book). Let A be a set; let a_0 be an element of A. Suppose ρ is a function that assigns, to each function f mapping a nonempty section of the positive integers into A, an element of A. Then there exists a unique function

$$h: \mathbb{Z}^+ \to A$$

such that

$$h(1) = a_0,$$

 $h(i) = \rho(h|\{1, ..., i-1\}) \text{ for } i > 1.$
(*)

The formula (*) is called a recursion formula for h. It specifies h(1), and it expresses the value of h at i > 1 in terms of the values of h for positive integers less than i.

The book gives a detailed proof of the particular case when $\rho(h|\{1,\ldots,i-1\})$ is equal to $\min(C\setminus h(\{1,\ldots,i-1\}))$, where "min" means "minimum", and C is an infinite set. A close inspection of this proof reveals that the sole property of the element c of C defined by the equality $c:=\min(C\setminus h(\{1,\ldots,i-1\}))$ is that it depends only on the restriction $h|\{1,\ldots,i-1\}$. This implies that, if, in the proof given by the book, we replace " $\min(C\setminus h(\{1,\ldots,i-1\}))$ " with " $\rho(h|\{1,\ldots,i-1\})$ ", then we obtain a proof of Theorem 3.

• Exercise 10.7 p. 67. Let J be a well-ordered set. A subset J_0 of J is said to be inductive if for every $\alpha \in J$,

$$(S_{\alpha} \subset J_0) \Rightarrow \alpha \in J_0.$$

Theorem (The principle of transfinite induction). If J is a well-ordered set and J_0 is an inductive subset of J, then $J_0 = J$.

Solution. If $J_0 \neq J$, let α be the least element of $J \setminus J_0$. We get $S_{\alpha} \subset J_0$, and thus $\alpha \in J_0$, contradiction.

• Exercise 10.10 p. 67. Theorem. Let J and C be well-ordered sets; assume that there is no surjective function mapping a section of J onto C. Then there exists a unique function $h: J \to C$ satisfying the equation

$$h(x) = \min(C \setminus h(S_x)) \tag{*}$$

for each $x \in J$, where S_x is the section of J by x.

Proof.

- (a) If h and k map sections of J, or all of J, into C and satisfy (*) for all x in their respective domains, show that h(x) = k(x) for all x in both domains.
- (b) If there exists a function $h: S_{\alpha} \to C$ satisfying (*), show that there exists a function $k: S_{\alpha} \cup \{\alpha\} \to C$ satisfying (*).
- (c) If $K \subset J$ and for all $\alpha \in K$ there exists a function $h_{\alpha} : S_{\alpha} \to C$ satisfying (*), show that there exists a function

$$k: \bigcup_{\alpha \in K} S_{\alpha} \to C$$

satisfying (*).

- (d) Show by transfinite induction that for every $\beta \in J$, there exists a function $h_{\beta}: S_{\beta} \to C$ satisfying (*). [Hint: If β has an immediate predecessor α , then $S_{\beta} = S_{\alpha} \cup \{\alpha\}$. If not, S_{β} is the union of all S_{α} with $\alpha < \beta$.]
- (e) Prove the theorem.

Solution.

- (a) Otherwise there would be a least x such that $h(x) \neq k(x)$, we would get $h(S_x) = k(S_x)$, and (*) would yield a contradiction.
- (b) We define k by k(x) = h(x) if $x < \alpha$ and $k(x) = \min(C \setminus h(S_x))$ if $x = \alpha$, and verify that k satisfies (*).
- (c) Set $k(x) = h_{\alpha}(x)$ if $x \in S_{\alpha}$. To show that k(x) is well defined, we must check that $\beta > \alpha$ implies $h_{\beta}(x) = h_{\alpha}(x)$. But this follows from (a).
- (d) Let I be the set of all $\beta \in J$ such that there is a map $h_{\beta}: S_{\beta} \to C$ satisfying (*). It suffices to show that I is inductive. So, assume that β is in J and that $S_{\beta} \subset I$. We must show $\beta \in I$. To do that, we use (b) if β has an immediate predecessor, and we use (c) if not.
- (e) We define h by

$$h(x) = \begin{cases} \min(C \setminus h_x(S_x)) & \text{if } x = \max(J) \\ h_{x+1}(x) & \text{if } x \neq \max(J), \end{cases}$$

where " $x \neq \max(J)$ " means " $x \neq \max(J)$ if J has a maximum", and x+1 is the least element greater than x. Let us show that h satisfies (*), that is, $h(x) = \min(C \setminus h(S_x))$. We can assume $x \neq \max(J)$ (in the above sense). We must show $h_{x+1}(x) = \min(C \setminus h(S_x))$. Since we have $h_{x+1}(x) = \min(C \setminus h_{x+1}(S_x))$ by (d) it suffices to prove $h(S_x) = h_{x+1}(S_x)$. Let y be in S_x , that is, $y \in J$ and y < x. It is enough to verify $h(y) = h_{x+1}(y)$, that is, $h_{y+1}(y) = h_{x+1}(y)$. We have y + 1 < x + 1, and thus $S_{y+1} \subset S_{x+1}$, and (a) implies $h_{x+1}|S_{y+1} = h_{y+1}$. This proves $h_{y+1}(y) = h_{x+1}(y)$, which is what we wanted.

• Supplementary Exercise 11.1 p. 72. Theorem (General principle of recursive definition). Let J be a well-ordered set; let C be a set. Let \mathcal{F} be the set of all functions mapping sections of J into C. Given a function $\rho: \mathcal{F} \to C$, there exists a unique function $h: J \to C$ such that $h(\alpha) = \rho(h|S_{\alpha})$ for each $\alpha \in J$.

[Hint: Follow the pattern outlined in Exercise 10 of §10.]

Solution. In the solution to Exercise 10.10 above, we just replace $\min(C \setminus h(S_x))$ with $\rho(h|S_x)$. (See solution to Exercise 8.7 above.)

• Solution to Exercise 13.6 p. 83. We must show that the topologies \mathcal{T}_{ℓ} and \mathcal{T}_{K} are incomparable.

Claim: $[2,3) \notin \mathcal{T}_K$. Proof. If not we would have $2 \in (a,b) \setminus K \subset [2,3)$ for some a and b, hence a < 2 and $a \le 2$, contradiction.

Claim: $(-1,1) \setminus K \notin \mathcal{T}_{\ell}$. Proof. If not we would have $0 \in [a,b) \subset (-1,1) \setminus K \subset [2,3)$ for some a and b, hence $a \leq 0 < b$, hence $a < \frac{1}{n} < b$ for some n, contradiction.

• Solution to Exercise 13.7 p. 83. Let us use the following notation:

 $\mathcal{T}_s := \text{standard topology},$

 $\mathcal{T}_K := \text{topology of } \mathbb{R}_K,$

 $\mathcal{T}_{fc} := \text{finite complement topology},$

 $\mathcal{T}_u := \text{upper limit topology (having the sets } (a, b] \text{ as basis)},$

 $\mathcal{T}_{\infty} := \text{topology having the sets } (-\infty, a) \text{ as basis.}$

We denote the corresponding topological spaces by \mathbb{R}_s , \mathbb{R}_K , \mathbb{R}_{fc} , \mathbb{R}_u and \mathbb{R}_{∞} . Finally we write \mathcal{B}_s , \mathcal{B}_K , \mathcal{B}_u and \mathcal{B}_{∞} for the obvious bases.

The inclusions between these five topologies on \mathbb{R} can be summarized by the diagram

$$\begin{array}{ccc} u & & \\ K & & \\ s & & \\ fc & & \infty, \end{array}$$

where "i below j" means " $\mathcal{T}_i \subsetneq \mathcal{T}_j$ ", and "i and j on the same level" means " \mathcal{T}_i and \mathcal{T}_j are incomparable".

Preliminary comments: It is easy to see that the elements of \mathcal{T}_{∞} are \emptyset , the intervals $(-\infty, a)$, and \mathbb{R} , and to observe that $\mathcal{T}_{\infty} \cap \mathcal{T}_{fc} = \{\emptyset, \mathbb{R}\}$. It is also easy to compare the standard topology \mathcal{T}_s to the others: the elements of \mathcal{T}_{fc} and \mathcal{T}_{∞} are clearly open in \mathbb{R}_s , and it is plain that the intervals (a, b) (which are the elements on \mathcal{B}_s) are open in \mathbb{R}_K and in \mathbb{R}_{∞} (note that $(a, b) = \bigcup_{d < b} (a, d]$). Clearly, $(-1, 1) \setminus K \in \mathcal{T}_K$ and $(a, b] \in \mathcal{T}_u$ are not open in \mathbb{R}_s . Moreover (2, 3] is in \mathcal{T}_u but not in \mathcal{T}_K . So, it only remains to prove $\mathcal{T}_K \subset \mathcal{T}_u$.

Let x be in $(a,b) \setminus K$. It suffices to show that there is a c such that $x \in (c,x] \subset (a,b) \setminus K$. If $x \leq 0$ we set c := a. If $\frac{1}{n+1} < x < \frac{1}{n}$ we set $c := \frac{1}{n+1}$. If x > 1 we set $c := \max(1,a)$.

 $^{^2}$ I denote inclusion by \subset and proper inclusion by \subsetneq . I know that, in some sense, it would be more coherent to use \subseteq for inclusion, but I prefer to do it that way, and hope the reader will not be confused.