

MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

LCD MODULE SPECIFICATION

Model: MI0283Q1T-13RP

This module uses RoHS material

For Customer's Acceptance:

Customer		
Approved		
Comment		

The standard product specification may change without prior notice in order to improve performance or quality. Please contact Multi-Inno for updated specification and product status before design for the standard product or release of the order.

Revision	1.0
Engineering	
Date	2016-11-10
Our Reference	

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2016-11-10	First Release	

CONTENTS

- GENERAL INFORMATION
- EXTERNAL DIMENSIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- BACKLIGHT CHARACTERISTICS
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE DESCRIPTION
- APPLICATION NOTES
- TOUCH PANEL SPECIFICATIONS
- RELIABILITY TEST
- INSPECTION CRITERION
- PRECAUTIONS FOR USING LCD MODULES
- PACKING SPECIFICATION
- PRIOR CONSULT MATTER

■ GENERAL INFORMATION

Item	Contents	Unit
LCD type	TFT/TRANSMISSIVE/POSITIVE	/
Size	2.83	Inch
Viewing direction	6:00 (without image inversion and least brightness	O' Clock
	change)	
Gray scale inversion direction	12:00 (contrast peak located at)	O' Clock
$LCM(W \times H \times D)$	50.2×69.3×4.0	mm^3
Active area (W×H)	43.2×57.6	mm^2
Pixel pitch (W×H)	0.18×0.18	mm^2
Number of dots	240 (RGB) × 320	/
Driver IC	ILI9341V	/
Backlight type	4 LEDs	/
Interface type	CPU/RGB/SPI	/
Color depth	65K/262K	/
Pixel configuration	R.G.B vertical stripe	/
Top polarizer surface treatment	Glare	/
Input voltage	2.8	V
With/Without TSP	With RTP	/
TP surface treatment	Glare	/
Weight	TBD	g

Note 1: RoHS compliant; Note 2: LCM weight tolerance: \pm 5%.

■ EXTERNAL DIMENSIONS

■ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Power supply voltage	VCI	-0.3	4.6	V
Logic signal voltage	VDDI	-0.3	4.6	V
Supply current(One LED)	$I_{ m LED}$		30	mA
Operatingtemperature	Тор	-20	70	°C
Storagetemperature	TST	-30	80	°C
Humidity	RH	-	90%(Max60 °C)	RH

■ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage	VCI	2.5	2.8	3.3	V
Logic signalI/O voltage	VDDI	1.65	2.8	3.3	V
Inputvoltage'H'level	VIH	0.7VDDI	-	VDDI	V
Inputvoltage'L'level	VIL	VSS	-	0.3VDDI	V
Outputvoltage'H'level	VOH	0.8VDDI	-	VDDI	V
Outputvoltage'L'leve	VOL	VSS	-	0.2VDDI	V

Note:

■ BACKLIGHT CHARACTERISTICS

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	Vf	-	3.2	ı	V	Ta=25±2°C,
Forward current	If	-	80	-	mA	,
Power consumption	WBL	-	256	-	mW	60%RH±5%
Operating life time	-	30,000	1	1	Hrs	

Note:

Operating life time means brightness goes down to 50% initial brightness;

The life time of LED will be reduced if LED is driven by high current, high ambient temperature and humidity conditions;

^{1:} Display full white. Backlight on state.

White LED CIRCUIT DIAGRAM:

CIRCUIT DIAGRAM

If=80mA,Constant Current

NOTE:

- 1 The LED 's driver mode needs to be constant current mode.
- 2 Permanent damage to the device may occur if maximum values are exceeded or reverse voltage is loaded .Functional operation should be restricted to the conditions described under normal operating conditions.

■ELECTRO-OPTICAL CHARACTERISTICS

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark	Note
Response time	Tr +Tf		-	30	-	ms	Fig.1	4
Contras tratio	Cr	θ=0°	-	500	-		FIG 2.	1
Luminance uniformity	δ WHITE	Ø=0° Ta=25°C	80	90.8	-	%	FIG 2.	3
Surface Luminance	Lv	1 a-25 C	150	240	-	cd/m ²	FIG 2.	2
		Ø = 90°	-	70	-	deg	FIG 3.	
Viewing angle range	θ	Ø = 270°	-	57	-	deg	FIG 3.	6
viewing angle range	0	$\emptyset = 0$ °	-	70	-	deg	FIG 3.] "
		Ø = 180°	-	70	-	deg	FIG 3.]
	Red x		-	-	•			
	Red y		-	-	•			
	Green x	θ=0°	-	-	-			
CIE (x, y) chromaticity	Green y		-	-	-		FIG 2.	5
	Blue x	Ø=0°	-	-	-		rig 2.	3
	Blue y	Ta=25℃	-	-	-			
	White x		-	-	-			
	White y		-	-	-			
NTSC Ratio	S		55	67	_	%		

Note 1. Contrast Ratio(CR) is defined mathematically as For more information see FIG 2.:

Contrast Ratio = Average Surface Luminance with all white pixels (P₁,P₂, P₃,P₄, P₅)

Average Surface Luminance with all black pixels (P₁, P₂, P₃,P₄, P₅)

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see FIG 2.

Lv = Average Surface Luminance with all white pixels $(P_1, P_2, P_3, P_4, P_5)$

Note 3. The uniformity in surface luminance , δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance. For more information see FIG 2.

 $\delta \text{ WHITE} = \frac{\text{Minimum Surface Luminance with all white pixels } (P_1, P_2, P_3, P_4, P_5)}{\text{Maximum Surface Luminance with all white pixels } (P_1, P_2, P_3, P_4, P_5)}$

Note 4. Response time is the time required for the display to transition from White to black(Rise Time, Tr) and from black to white(Decay Time, Tf). For additional information see FIG 1. The test equipment is Autronic-Melchers's ConoScope. Series

Note 5. CIE (x, y) chromaticity, The x,y value is determined by measuring luminance at each test position 1 through 5, and then make average value

Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the conrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.

Note 7. For Viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope. Series Instruments. For contrast ratio, Surface Luminance, Luminance uniformity, CIE The test data is base on TOPCON's BM-5 photo detector.

Note 8. For TFT module, Gray scale reverse occurs in the direction of panel viewing angle.

FIG.1. The definition of Response Time

FIG.2. Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity

A:5 mm

B:5 mm

H,V: Active Area

Light spot size \varnothing =5mm, 500mm distance from the

LCD surface to detector lens

measurement instrument is TOPCON's luminance

meter BM-5

FIG.3. The definition of viewing angle

■ INTERFACE DESCRIPTION

Pin No.	Symbol	I/O	Function		
1	LEDK	I	Cathode for LED backlighting		
2	LEDA1	I	Anode No.1 for LED backlighting		
3	LEDA2	I	Anode No.2 for LED backlighting		
4	LEDA3	I	Anode No.3 for LED backlighting		
5	LEDA4	I	Anode No.4 for LED backlighting		
6	IM0	I			
7	IM1	I	Select Interface Mode; Note1		
8	IM2	I	Select interface Wood it total		
9	IM3	I			
10	RESET	I	Reset pin		
11	VSYNC	IO	Frame Synchronizing Signal For RGB Interface		
12	HSYNC	IO	Line Synchronizing Signal For RGB Interface		
13	DOTCLK	IO	Dot Clock Signal For RGB Interface		
14	DE	IO	Data Enable Signal For RGB Interface		
15	DB17				
I		IO	DATA BUS		
32	DB0				
33	SDO	IO	Serial Output Signal		
34	SDI	IO	Serial Input Signal		
35	RD	IO	Read execution control pin		
36	WRX(D/CX)	IO	Write execution control pin; Serial Register select s Signal		
37	D/CX(SCL)	IO	Register select signal; Serial Interface Clock		
38	CSX	IO	Chip Select Signal		
39	TE	IO	Tearing effect out pin synchronize MPU to frame writing		
40	VDDI	P	Logic power,provide with 1.8/2.8V		
41	VDDI	P	Logic power,provide with 1.8/2.8V		
42	VCI	P	Power Supply to the interface pins ,provide with 2.8V		
43	GND	G	Ground		
44	X+	О	Touch panel output		
45	Y+	О	Touch panel output		
46	X-	О	Touch panel output		
47	Y-	О	Touch panel output		
48	GND	О	Ground		
49	GND	О	Ground		
50	GND	-	Ground		

NOTE1:

IM3	IM2	IM1	IMO	MCU-Interface Mode		Pins in use		
IIVIS	IIVIZ	IIVII	IIVIO	MCO-Interface Mode	Register/Content	GRAM		
0	0	0	0	8080 MCU 8-bit bus interface I	D[7:0]	D[7:0],WRX,RDX,CSX,D/CX		
0	0	0	1	8080 MCU 16-bit bus interface I	D[7:0]	D[15:0],WRX,RDX,CSX,D/CX		
0	0	1	0	8080 MCU 9-bit bus interface I	D[7:0]	D[8:0],WRX,RDX,CSX,D/CX		
0	0	1	1	8080 MCU 18-bit bus interface I	D[7:0]	D[17:0],WRX,RDX,CSX,D/CX		
0	1	0	1	3-wire 9-bit data serial interface I	SCL,SDA,CSX			
0	1	1	0	4-wire 8-bit data serial interface I		SCL,SDA,D/CX,CSX		
1	0	0	0	8080 MCU 16-bit bus interface $\scriptstyle II$	D[8:1]	D[17:10],D[8:1],WRX,RDX,CSX,D/CX		
1	0	0	1	8080 MCU 8-bit bus interface Ⅱ	D[17:10]	D[17:10],WRX,RDX,CSX,D/CX		
1	0	1	0	8080 MCU 18-bit bus interface Ⅱ	D[8:1]	D[17:0],WRX,RDX,CSX,D/CX		
1	0	1	1	8080 MCU 9-bit bus interface Ⅱ	D[17:10] D[17:9],WRX,RDX,CSX,D/C			
1	1	0	1	3-wire 9-bit data serial interface $ \mathrm{I\hspace{1em}I}$	SCL,SDI,SDO, CSX			
1	1	1	0	4-wire 8-bit data serial interface Ⅱ	SC	CL,SDI,D/CX,SDO, CSX		

■ APPLICATION NOTES

1. AC Characteristics

1.1 Display Parallel 18/16/9/8-bit Interface Timing Characteristics (8080- I system)

Signal	Symbol	Parameter	min	max	Unit	Description
DCX tast taht		Address setup time	0	-	ns	
		Address hold time (Write/Read)	0	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
CSX	trcs	Chip Select setup time (Read ID)	45	-	ns	
	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
	twc	Write cycle	66	-	ns	
WRX	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trcfm	Read Cycle (FM)	450	-	ns	
RDX (FM)	trdhfm	Read Control H duration (FM)	90	-	ns	
	trdlfm	Read Control L duration (FM)	355	-	ns	
	trc	Read cycle (ID)	160	-	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	-	ns	
	trdl	Read Control pulse L duration	45	-	ns	
D[47.0]	tdst	Write data setup time	10	-	ns	
D[17:0],	tdht	Write data hold time	10	-	ns	For maximum CL 20nE
D[15:0], D[8:0],	trat	Read access time	-	40	ns	For maximum CL=30pF For minimum CL=8pF
D[8.0], D[7:0]	tratfm	Read access time	-	340	ns	For minimum GL=opF
[D[/ .U]	trod	Read output disable time	20	80	ns]

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, VSS=0V

CSX timings:

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

Write to read or read to write timings:

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

1.2 Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080- II system)

Signal	Symbo I	Parameter	min	max	Unit	Description
DCX	tast	Address setup time	0	-	ns	
DOX	taht	Address hold time (Write/Read)	0	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
CSX	trcs	Chip Select setup time (Read ID)	45	-	ns	
	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
	twc	Write cycle	66	-	ns	
WRX	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trcfm	Read Cycle (FM)	450	-	ns	
RDX (FM)	trdhfm	Read Control H duration (FM)	90	-	ns	
	trdlfm	Read Control L duration (FM)	355	-	ns	
	trc	Read cycle (ID)	160	-	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	-	ns	
	trdl	Read Control pulse L duration	45	-	ns	
D[47.0]	tdst	Write data setup time	10	-	ns	
D[17:0],	tdht	Write data hold time	10	-	ns	Far maniference OL 2005
D[17:10]&D[8:1], D[17:10],	trat	Read access time	-	40	ns	For maximum CL=30pF For minimum CL=8pF
D[17:10], D[17:9]	tratfm	Read access time	-	340	ns	For minimum GL=8pF
ال ال	trod	Read output disable time	20	80	ns	

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, VSS=0V.

CSX timings:

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

Write to read or read to write timings:

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

1.3 Display Serial Interface Timing Characteristics (3-line SPI system)

Signal	Symbol	Parameter	min	max	Unit	Description
	tscycw	Serial Clock Cycle (Write)	100	-	ns	
	tshw	SCL "H" Pulse Width (Write)	40	-	ns	
SCL	tslw	SCL "L" Pulse Width (Write)	40	-	ns	
SCL	tscycr	Serial Clock Cycle (Read)	150	-	ns	
	tshr	SCL "H" Pulse Width (Read)	60	-	ns	
	tslr	SCL "L" Pulse Width (Read)	60	-	ns	
SDA / SDI	tsds	Data setup time (Write)	30	-	ns	
(Input)	tsdh	Data hold time (Write)	30	-	ns	
SDA / SDO	tacc	Access time (Read)	10	-	ns	
(Output)	toh	Output disable time (Read)	10	50	ns	
	tscc	SCL-CSX	20	-	ns	
CSX	tchw	CSX "H" Pulse Width	40	-	ns	
05/	tcss	CSX-SCL Time	60	-	ns	
	tcsh	COX-OCL TIME	65	-	ns	

Note: Ta = 25 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

1.4 Display Serial Interface Timing Characteristics (4-line SPI system)

Signal	Symbol	Parameter	min	max	Unit	Description
CSX	tcss	Chip select time (Write)	40	-	ns	
CSX	tcsh	Chip select hold time (Read)	40	-	ns	
	twc	Serial clock cycle (Write)	100	-	ns	
	twrh	SCL "H" pulse width (Write)	40	-	ns	
001	twrl	SCL "L" pulse width (Write)	40	-	ns	
SCL	trc	Serial clock cycle (Read)	150	-	ns	
	trdh	SCL "H" pulse width (Read)	60	-	ns	
	trdl	SCL "L" pulse width (Read)	60	-	ns	
D/CV	tas	D/CX setup time	10	-		
D/CX	tah	D/CX hold time (Write / Read)	10	-		
SDA / SDI	tds	Data setup time (Write)	30	-	ns	
(Input)	tdh	Data hold time (Write)	30	-	ns	
SDA / SDO	tacc	Access time (Read)	10	-	ns	For maximum CL=30pF
(Output)	tod	Output disable time (Read)	10	50	ns	For minimum CL=8pF

Note: Ta = 25 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

1.5 Parallel 18/16/6-bit RGB Interface Timing Characteristics

Signal	Symbol	Parameter	min	max	Unit	Description
VSYNC /	tsyncs	VSYNC/HSYNC setup time	15	-	ns	
HSYNC	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns	
DE	t _{ENS}	DE setup time	15	-	ns	
DE	t _{ENH}	DE hold time	15	-	ns	
D[17:0]	t _{POS}	Data setup time	15	-	ns	18/16-bit bus RGB
D[17.0]	t _{PDH}	Data hold time	15	-	ns	interface mode
	PWDH	DOTCLK high-level period	15	-	ns	
DOTCLK	PWDL	DOTCLK low-level period	15	-	ns	
DOTOLK	t _{CYCD}	DOTCLK cycle time	100	-	ns	
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	
VSYNC /	tsyncs	VSYNC/HSYNC setup time	15	-	ns	
HSYNC	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns	
DE	t _{ENS}	DE setup time	15	-	ns	
	t _{ENH}	DE hold time	15	-	ns	
D[17:0]	t _{POS}	Data setup time	15	-	ns	6-bit bus RGB
D[17:0]	t _{PDH}	Data hold time	15	-	ns	interface mode
	PWDH	DOTCLK high-level pulse period	15	-	ns	
DOTCLK	PWDL	DOTCLK low-level pulse period	15	-	ns	
DOTOLK	t _{CYCD}	DOTCLK cycle time	100	-	ns	
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

INSTRUCTION DESCRIPTION(ILITEK's <u>ILI9341</u>

Regulative Command Set													
Command Function	D/CX	RDX	WRX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex
No Operation	0	1	1	XX	0	0	0	0	0	0	0	0	00h
Software Reset	0	1	↑	XX	0	0	0	0	0	0	0	1	01h
	0	1	↑	XX	0	0	0	0	0	1	0	0	04h
Dood Display Identification	1	1	1	XX	Х	Х	Х	Х	Х	Х	Х	Χ	XX
Read Display Identification Information	1	1	1	XX				ID1 [7:0]				XX
Information	1	1	1	XX				ID2 [7:0]				XX
	1	1	1	XX				ID3 [7:0]				XX
	0	1	↑	XX	0	0	0	0	1	0	0	1	09h
	1	1	1	XX	Х	X	X	Х	Х	Х	X	Χ	XX
Pood Dioplay Status	1	1	1	XX			D	[31:25]				Χ	00
Read Display Status	1	1	1	XX	Х		D [22:20]		D [1	9:16]		61
	1	1	1	XX	X	Х	X	Х	Х		D [10:8]		00
	1	1	1	XX		D [7:5]		Х	Х	Х	X	Χ	00
	0	1	↑	XX	0	0	0	0	1	0	1	0	0Ah
Read Display Power Mode	1	1	1	XX	Х	Х	X	Χ	Χ	Х	Х	Χ	XX
	1	1	1	XX			D [7	:2]			0	0	08
	0	1	↑	XX	0	0	0	0	1	0	1	1	0Bh
Read Display MADCTL	1	1	1	XX	X	Х	X	Х	Х	X	Х	Χ	XX
	1	1	1	XX			D [7	:2]			0	0	00
	0	1	↑	XX	0	0	0	0	1	1	0	0	0Ch
Read Display Pixel Format	1	1	1	XX	X	X	X	Χ	Х	Х	Х	Χ	XX
	1	1	1	XX	RIM		DPI [2:0		Х		DBI [2:0]		06
	0	1	↑	XX	0	0	0	0	1	1	0	1	0Dh
Read Display Image Format	1	1	1	XX	Х	X	X	Х	Х	Х	X	Χ	XX
	1	1	1	XX	Х	X	X	Х	Х		D [2:0]		00
	0	1	1	XX	0	0	0	0	1	1	1	0	0Eh
Read Display Signal Mode	1	1	1	XX	X	Х	X	Х	Х	X	X	Χ	XX
	1	1	1	XX			D [7	:2]			0	0	00
Dood Dioplay Calf Diagnostic	0	1	1	XX	0	0	0	0	1	1	1	1	0Fh
Read Display Self-Diagnostic Result	1	1	1	XX	X	X	X	Х	Х	Х	Х	Χ	XX
nesuit	1	1	1	XX	D [7	:6]	X	Х	Х	Х	X	Χ	00
Enter Sleep Mode	0	1	1	XX	0	0	0	1	0	0	0	0	10h
Sleep OUT	0	1	1	XX	0	0	0	1	0	0	0	1	11h
Partial Mode ON	0	1	1	XX	0	0	0	1	0	0	1	0	12h
Normal Display Mode ON	0	1	1	XX	0	0	0	1	0	0	1	1	13h
Display Inversion OFF	0	1	↑	XX	0	0	1	0	0	0	0	0	20h
Display Inversion ON	0	1	↑	XX	0	0	1	0	0	0	0	1	21h
Gamma Set	0	1	1	XX	0	0	1	0	0	1	1	0	26h
Gamma Set	1	1	1	XX				GC [7:0]				01
Display OFF	0	1	1	XX	0	0	1	0	1	0	0	0	28h
Display ON	0	1	1	XX	0	0	1	0	1	0	0	1	29h
	0	1	1	XX	0	0	1	0	1	0	1	0	2Ah
	1	1	1	XX				SC [1	5:8]				XX
Column Address Set	1	1	1	XX				SC [7:0]				XX
	1	1	1	XX				EC [1	5:8]				XX
	1	1	1	XX			_	EC [7:0]		_		XX
	0	1	1	XX	0	0	1	0	1	0	1	1	2Bh
	1	1	1	XX				SP [1	5:8]				XX
Page Address Set	1	1	1	XX				SP [7:0]				XX
	1	1	1	XX				EP [1	5:8]				XX
	1	1	1	XX				EP [7	7:0]				XX

Memory Write	0	1	1	XX	0	0	1	0	1	1	0	0	2Cł
Memory write	1	1	1					[17:0]					XX
	0	1	1	XX	0	0	1	0	1	1	0	1	2DI
	1	1	1	XX					R	00 [5:0]			XX
	1	1	1	XX					R	nn [5:0]			ХХ
	1	1	1	XX					R	31 [5:0]			ХΧ
Color SET	1	1	1	XX					G	00 [5:0]			ХΧ
60101 3L1	1	1	1	XX					G	nn [5:0]			ХΧ
	1	1	1	XX					G	64 [5:0]			XΧ
	1	1	1	XX					В	00 [5:0]			ХХ
	1	1	1	XX					В	nn [5:0]			XX
	1	1	1	XX					В	31 [5:0]			XΣ
	0	1	1	XX	0	0	1	0	1	1	1	0	2E
Memory Read	1	1	1	XX	X	Х	X	Χ	X	Х	X	X	XΣ
	1	1	1					[17:0]					ХΧ
	0	1	1	XX	0	0	1	1	0	0	0	0	301
	1	1	1	XX				SI	R [15:8]				00
Partial Area	1	1	1	XX				S	R [7:0]				00
	1	1	1	XX				El	R [15:8]				01
	1	1	1	XX				Е	R [7:0]				3F
	0	1	1	XX	0	0	1	1	0	0	1	1	331
	1	1	1	XX				TF	A [15:8]				00
	1	1	1	XX				TI	A [7:0]				00
Vertical Scrolling Definition	1	1	1	XX				VS	A [15:8]				01
	1	1	1	XX				VS	SA [7:0]				40
	1	1	1	XX				BF	A [15:8]				00
	1	1	1	XX				ВІ	FA [7:0]				00
Tearing Effect Line OFF	0	1	1	XX	0	0	1	1	0	1	0	0	341
Tablian Effect Line ON	0	1	1	XX	0	0	1	1	0	1	0	1	351
Tearing Effect Line ON	1	1	1	XX	Х	Χ	Х	Χ	Х	Х	Х	М	00
	0	1	1	XX	0	0	1	1	0	1	1	0	361
Memory Access Control	1	1	1	XX	MY	MX	MV	ML	BGR	МН	Х	Х	00
	0	1	1	XX	0	0	1	1	0	1	1	1	37l
Vertical Scrolling Start Address	1	1	1	XX				VS	P [15:8]				00
	1	1	1	XX					SP [7:0]				00
Idle Mode OFF	0	1	1	XX	0	0	1	1	1	0	0	0	381
Idle Mode ON	0	1	1	XX	0	0	1	1	1	0	0	1	39l
	0	1	1	XX	0	0	1	1	1	0	1	0	ЗАІ
Pixel Format Set	1	1	1	XX	Х		DPI [2:0	1	Х		DBI [2:0)]	66
	0	1	1	XX	0	0	1	1	1	1	0	0	3CI
Write Memory Continue	1	1	1					[17:0]					ХХ
	0	1	1	XX	0	0	1	1	1	1	1	0	3EI
Read Memory Continue	1	1	1	XX	Х	Х	Х	Х	Х	Х	Х	Х	XX
,	1	1	1				•	17:0]			1		XX
	0	1	1	XX	0	1	0	0	0	1	0	0	441
Set Tear Scanline	1	1	1	XX	X	X	X	X	X	X	X	STS [8]	00
	1	1	<u></u>	XX	<u>, , , , , , , , , , , , , , , , , , , </u>				TS [7:0]		, ,,	, [-]	00
	0	1	<u></u>	XX	0	1	0	0	0	1	0	1	45
	1	1	1	XX	X	X	X	X	X	X	X	X	XX
Get Scanline	1	<u> </u>	1	XX	X	X	X	X	X	X		S [9:8]	00
	1	<u> </u>	1	XX	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^_	^_		TS [7:0]		1 010	J [U.U]	00
	0	1	<u>'</u>	XX	0	1	0	1	0	0	0	1	51h
Write Display Brightness	1	1	<u> </u>	XX	"	_ '			BV [7:0]		, 0		00
								וט	- • ['··∪]				_ 50

	1			ı	1			1				1	_
	0	1	1	XX	0	1	0	1	0	0	1	0	52h
Read Display Brightness	1	1	1	XX	Х	Х	X	X	Χ	X	Х	X	XX
	1	1	1	XX				DBV	[7:0]				00
Write CTRL Display	0	1	1	XX	0	1	0	1	0	0	1	1	53h
Tinto OTTLE Biopiay	1	1	1	XX	Х	Х	BCTRL	Χ	DD	BL	X	Х	00
	0	1	1	XX	0	1	0	1	0	1	0	0	54h
Read CTRL Display	1	↑	1	XX	Х	X	X	Χ	X	X	X	X	XX
	1	1	1	XX	Х	Х	BCTRL	Х	DD	BL	Х	Х	00
Write Content Adaptive	0	1	1	XX	0	1	0	1	0	1	0	1	55h
Brightness Control	1	1	1	XX	Х	Х	Х	Х	Х	Х	CI	1:0]	00
	0	1	1	XX	0	1	0	1	0	1	1	0	56h
Read Content Adaptive Brightness Control	1	1	1	XX	Х	Х	Х	Χ	Х	Х	Х	Х	XX
Brightness Control	1	1	1	XX	Х	Х	Х	Х	Х	Х	CI	1:0]	00
Write CABC Minimum	0	1	1	XX	0	1	0	1	1	1	1	0	5Eh
Brightness	1	1	1	XX				СМЕ	3 [7:0]	•	•	•	00
	0	1	<u> </u>	XX	0	1	0	1	0	1	1	1	5Fh
Read CABC Minimum	1	1	1	XX	X	Х	Х	Χ	Х	Х	Х	Х	XX
Brightness	1	1	1	XX				CME	· 3 [7:0]			1	00
	0	1	1	XX	1	1	0	1	1	0	1	0	DAh
Read ID1	1	1	1	XX	X	X	X	Х	Х	Х	Х	Х	XX
	1	1	1	XX			Modu	ıle's Maı	nufacture	e [7:0]	1		XX
	0	1	1	XX	1	1	0	1	1	0	1	1	DBh
Read ID2	1	1	1	XX	X	X	X	X	X	X	X	X	XX
11000 152	1	<u> </u>	1	XX			LCD Mo						XX
	0	1	<u>'</u>	XX	1	1	0	1	1	1	0	0	DCh
Read ID3	1	<u> </u>	1	XX	X	X	X	X	X	X	X	X	XX
neau ibs	1	1	1	XX		^	-	-			^	^	XX
							LODI	viodule /	Driver I	[וט: /] ט			

Extended Command Set													
Command Function	D/CX	RDX	WRX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex
RGB Interface	0	1	↑	XX	1	0	1	1	0	0	0	0	B0h
Signal Control	1	1	1	XX	ByPass_MODE	RCM	[1:0]	Х	VSPL	HSPL	DPL	EPL	40
Frame Control	0	1	↑	XX	1	0	1	1	0	0	0	1	B1h
	1	1	↑	XX	X	Χ	Χ	Х	X	Х	DIVA	[1:0]	00
(In Normal Mode)	1	1	↑	XX	X	Χ	Χ		F	TNA [4:0	1		
Frama Cantral	0	1	↑	XX	1	0	1	1	0	0	1	0	B2h
Frame Control (In Idle Mode)	1	1	↑	XX	X	Χ	Χ	Х	X	Х	DIVE	[1:0]	00
(III Idle Mode)	1	1	↑	XX	X	Χ	Χ		RTNB [4:0]				1B
Fuerra Cantual	0	1	↑	XX	1	0	1	1	0	0	1	1	B3h
Frame Control	1	1	↑	XX	Х	Χ	Χ	Х	X	Х	DIVC	[1:0]	00
(In Partial Mode)	1	1	↑	XX	Х	Χ	Х		F	RTNC [4:0	0]		1B
Diamino Incomeina Combani	0	1	↑	XX	1	0	1	1	0	1	0	0	B4h
Display Inversion Control	1	1	↑	XX	Х	Χ	Χ	Х	Х	NLA	NLB	NLC	02
	0	1	↑	XX	1	0	1	1	0	1	0	1	B5h
	1	1	↑	XX	0				VFP [6:	:0]			02
Blanking Porch Control	1	1	↑	XX	0				VBP [6:	:0]			02
	1	1	↑	XX	0	0	0			HFP [4:0]		0A
	1	1	↑	XX	0	0	0			HBP [4:0)]		14

	0	1	1	XX	1	0	1	1	0	1	1	0	B6h
	1	1	1	XX	Х	Х	Х	Х	PTG	i [1:0]	PT	[1:0]	0A
Display Function Control	1	1	1	XX	REV	GS	SS	SM			SC [3:0]		82
	1	1	1	XX	Х	Х			•	NL [5:0]			27
	1	1	↑	XX	Х	Х			P	CDIV [5:	0]		XX
Frature Manda Cat	0	1	↑	XX	1	0	1	1	0	1	1	1	B7ł
Entry Mode Set	1	1	1	XX	Х	Х	Х	X	DSTB	GON	DTE	GAS	07
	0	1	1	XX	1	0	1	1	1	0	0	0	B8ł
Backlight Control 1	1	1	1	XX	X	Х	Х	Х	Х	Χ	X	Х	XX
	1	1	1	XX	Х	Х	X	Х		T⊦	I_UI [3:0]		04
	0	1	1	XX	1	0	1	1	1	0	0	1	B9ł
Backlight Control 2	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX		TH_MV	[3:0]	1		TH	ST [3:0]		B8
	0	1	1	XX	1	0	1	1	1	0	1	0	BAł
Backlight Control 3	1	1	1	XX	Х	Х	X	Х	X	X	Х	X	XX
	1	1	1	XX	X	X	X	Х			H_UI [3:0]		04
	0	1	1	XX	1	0	1	1	1	0	1	1	BBh
Backlight Control 4	1	1	1	XX	X	Х	X	Х	X	X	X	X	XX
	1	1	1	XX		DTH_M		I			H_ST [3:0]		C9
	0	1	1	XX	1	0	1	1	1	1	0	0	BCh
Backlight Control 5	1	1	1	XX	X	Х	X	Х	Х	Х	X	X	XX
	1	1	1	XX		DIM2			X		DIM1 [2	1	44
Backlight Control 7	0	1	1	XX	1	0	1	1	1	1	1	0	BEh
	1	1	<u> </u>	XX			Ι.		1_DIV [7	_			0F
Backlight Control 8	0	1	1	XX	1	0	1	1	1	1	1	1	BFh
	1	1	1	XX	X	X	X	X	X			LEDPWMOPL	
Power Control 1	0	1	1	XX	1	1	0	0	0	0	0	0	COh
	1	1	1	XX	X	X		0		/RH [5:0			26
Power Control 2	0	1	<u></u>	XX	1	1	0	0	0	0	0	01	00 00
	1	1	<u> </u>		X	X	X	X	X	1	BT [2:		
VCOM Control 1	0	1	<u>↑</u>	XX	1	1	0	0	0	•	0	1	C5h
VCOIVI CONITOT 1	1	1	<u> </u>	XX	X				VMH VML				3C
	0	1	<u> </u>	XX	1	1	0	0	0	[6:0] 1	1	1	C7h
VCOM Control 2	1	1	<u> </u>	XX	nVM	<u> </u>	0	0	VMF	•	<u> </u>	1	CO
	0	1	<u> </u>	XX	1	1	0	1	0	0.01	0	0	Dor
NV Memory Write	1	1	<u> </u>	XX	X	X	X	X	X		GM_ADR		00
TVV Momory VVIIIc	1	1	<u> </u>	XX		Λ			DATA [GIVI_/\DIT	[2.0]	XX
	0	1	<u> </u>	XX	1	1	0	1	0	7.0j 0	0	1	D1h
	1	1	<u> </u>	XX	<u>'</u>	<u> </u>			Y [23:16			<u>'</u>	55
NV Memory Protection Key	1	1	<u> </u>	XX					Y [15:8]				AA
	1	1	1	XX					EY [7:0]				66
	0	1	<u> </u>	XX	1	1	0	1	0	0	1	0	D2ł
	1	<u> </u>	1	XX	X	X	X	X	X	X	X	X	XX
NV Memory Status Read	1	1	1	XX	X		CNT		X		ID1_CNT		XX
	1	†	1	XX	BUSY		CNT		Х		ID3_CNT		XX

	_				1			ı					
	0	1	1	XX	1	1	0	1	0	0	1	1	D3h
_	1	1	1	XX	X	Х	Х	Х	Х	Χ	Х	X	XX
Read ID4	1	1	1	XX	0	0	0	0	0	0	0	0	00
	1	1	1	XX	1	0	0	1	0	0	1	1	93
	1	1	1	XX	0	1	0	0	0	0	0	1	41
	0	1	1	XX	1	1	1	0	0	0	0	0	E0h
	1	1	1	XX	Х	Х	Х	X			0 [3:0]		08
	1	1	1	XX	Х	Х			VP1 [5	:0]			0E
	1	1	1	XX	Х	X		1	VP2 [5	:0]			12
	1	1	1	XX	Х	X	Х	Х		VP	4 [3:0]		05
	1	1	1	XX	Х	X	Х		V	P6 [4	:0]		03
	1	1	1	XX	Х	Х	X	Χ		VP1	3 [3:0]		09
Positive Gamma	1	1	1	XX	Х			V	P20 [6:0]				47
Correction	1	1	1	XX		VP36	[3:0]			VP2	27 [3:0]		86
	1	1	1	XX	Х			V	P43 [6:0]				2B
	1	1	1	XX	Х	X	Х	Х		VP5	50 [3:0]		0B
	1	1	1	XX	Х	Х	Х		VF	P57 [4	1:0]		04
	1	1	1	XX	Х	Х	Х	Х		VP5	59 [3:0]		00
	1	1	1	XX	Х	Х			VP61 [5	5:0]			00
	1	1	1	XX	Х	Х			VP62 [5	5:0]			00
	1	1	1	XX	Х	Х	Х	Х		VP6	3 [3:0]		00
	0	1	1	XX	1	1	1	0	0	0	0	1	E1h
	1	1	1	XX	Х	Х	Х	Х		VN	0 [3:0]		08
	1	1	1	XX	Х	Х			VN1 [5				1A
	1	1	1	XX	Х	Х			VN2 [5				20
	1	1	1	XX	Х	Х	Х	Х			4 [3:0]		07
	1	1	1	XX	Х	Х	Х		V	N6 [4			0E
	1	1	1	XX	Х	Х	Х	Х			13 [3:0]		05
Negative Gamma	1	1	1	XX	Х				N20 [6:0]		- []		3A
Correction	1	1	1	XX		VN36	[3:0]		120 [0.0]	VN2	27 [3:0]		8A
	1	1	1	XX	Х	11100	[0.0]	VI	N43 [6:0]		[0.0]		40
	1	1		XX	X	Х	Х	Х	110 [0.0]	VNF	50 [3:0]		04
	1	1	1	XX	X	X	X			N57 [4			18
	1	1	1	XX	X	X	X	Х] ,		59 [3:0]		0F
	1	1	1	XX	X	X			VN61 [5		0.0]		3F
	1	1	↑	XX	X	X			VN62 [5				3F
	1	1	1	XX	X	X	X	Х	V1402 [33 [3:0]		0F
Digital Gamma Control 1	0	1	 	XX	1	1	1	0	0	0	1	0	E2h
1 st Parameter	1	1	↑		<u> </u>			U	U		10:8] O <i>l</i>		XX
: Parameter	1	1	<u> </u>	XX		RCA ₂			+				XX
	1	1				RCA15					15 [3:0]		
	+		<u></u>	XX	4	RCA15			0		15 [3:0]		XX
Digital Gamma Control 2	0	1	1	XX	1	1	[2.0]	0	0	0		1	E3h
1 st Parameter	1	1	1	XX		RFA0			+		(0:8] OA		XX
:	1	1	1	XX		RFAx					Ax [3:0]		XX
64 th Parameter	1	1	1	XX		RFA63					63 [3:0]		XX
	0	1	1	XX	1	1	1	1	0	1	1	0	F6h
Interface Control	1	1	1	XX	MY_EOR	MX_EOR	MV_EOR	X	BGR_EOR	X	Х	WEMODE	01
	1	1	1	XX	Х	Х	EPF[Х	Χ		T [1:0]	00
	1	1	│ ↑	XX	X	X	ENDIAN	X	DM [1:	0]	RM	RIM	00

Note 1: Undefined commands are treated as NOP (00h) command.

Note 2: B0 to D9 and DE to FF are for factory use of display supplier. USER can decide if these commands are available or they are treated as NOP (00h) commands before shipping to USER. Default value is NOP (00h).

Note 3: Commands 10h, 12h, 13h, 26h, 28h, 29h, 30h, 36h (Bit B4 only), 38h and 39h are updated during V-SYNC when ILI9341 is in Sleep OUT mode to avoid abnormal visual effects. During Sleep IN mode, these commands are updated immediately. Read status (09h), Read display power mode (0Ah), Read display MADCTL (0Bh), Read display pixel format (0Ch), Read display image mode (0Dh), Read display signal mode (0Eh) and Read display self diagnostic result (0Fh) of these commands are updated immediately both in Sleep IN mode and Sleep OUT mode.

■ TOUCH PANEL SPECIFICATION

1. ELECTRICAL CHARACTERISTICS

Item		Value		Unit	Remark		
item	Min.	Тур.	Max.	Onit	Kemark		
Linearity	-1.5	-	1.5	%	Analog X and Y directions		
Terminal	150	-	550	Ω	X(Film side)		
Resistance	300	-	850	Ω	Y(Glass side)		
Insulation resistance	20	-	-	ΜΩ	DC 25V		
Voltage	-	-	10	V	DC		
Chattering	-	-	15	ms	100kΩ pull-up		

Note: Avoid operating with hard or sharp material such as a ball point pen or a mechanical pencil except a polyacetal pen (tip R0.8mm or less) or a finger.

2. MECHANICAL & RELIABILITY CHARACTERISTICS

Item		Value		Unit	Remark	
item	Min.	Тур.	Max.	Onit	Nomark	
Active force	-	-	100	gf	Note 1	
Durability-surface scratching	Write 100,000	-	-	characters	Note 2	
Durability-surface pitting	1,000,000	-	-	touches	Note 3	
Surface hardness	3	-	-	Н		

Note 1: Active force test condition

- (1) Input DC 5V on X direction, Drop off Polyacetal Stylus (R0.8), until output voltage stabilize ,then get the activation force •
- (2) R8.0mm Silicon rubber for finger Activation force test
- (3) Test point: 9 points

Note 2: Measurement for surface area.

-Scratch 100,000 times straight line on the film with a stylus change every 20,000 times.

-Force: 250gf. -Speed: 60mm/sec.

-Stylus: R0.8 polyacetal tip.

Note 3: Pit 1,000,000 times on the film with a R0.8 silicon rubber.

-Force: 250gf. -Speed: 2times/sec.

3. LINEARITY DEFINITION

Va: maximum voltage in the active area of touch panel Vb: minimum voltage in the active area of touch panel

X: random measuring point Vxm: actual voltage of Lx point Vxi: theoretical voltage of Lx point

Linearity = [|Vxi-Vxm |/(Va-Vb)]*100%

Note: Test area is as follows and operation force is 150gf.

4. Design guidance for the upper case and cushion

Note 1:Upper case opening

- a. Please place the upper case opening to maintain the operation by a stylus pen inside the TP response area.
- b. The any pressures in the area between TP response area and TP viewing area is prohibited.
- c. Please use the appropriate material (PMMA, PC, etc.) as the upper case.

Note 2: Cushion design

- a. Please put the cushion on the upper case.
- b. Do not use an adhesive tape to stick on the TP suface.
- c. Please position the cushion over the cushion area to avoid a short.

■ RELIABILITY TEST

No.	Test Item	Test Condition	Remarks
1	High Temperature Storage Test	80°C /96Hrs.	Note2
2	Low Temperature Storage Test	-30°C /96Hrs.	Note1,2
3	High Temperature Operation Test	70°C/96Hrs.	
4	Low Temperature Operation Test	-20°C/96Hrs.	Note1
5	High Temperature and High Humidity Operation Test	60±5℃, 90%RH 96Hrs.	Note1,2
6	Thermal Shock Test (Non-operating)	-30±2°C(30Min.)~25±2°C(5Min.)~80±2°C(30Min.) 10Cycles	
7	Vibration Test (Non-operating)	Frequency:10~55Hz Amplitude: 1.5mm Sweep Time: 11Mins Test Period: 6 Cycles For Each Direction Of X, Y, Z (Packing Condition)	
8	Shock Test (Non-operating)	100G, 6Ms Direction: ±X, ±Y, ±Z Cycle: 3 Times	
9	Electro Static Discharge Test (Non-operating)	Voltage: ±8KV, R:330Ω, C:150pF, Air Discharge, 10 Times. (Packing Condition)	

Note 1: Without water condensation

Note 2: The function test shall be conducted after 2 hours storage at the room temperature and humidity after removed from the test chamber.

■ INSPECTION CRITERION

MI	OUTGOING QUALITY STANDARD	PAGE 1 OF 5
TITLE:FUNCTION	NAL TEST & INSPECTION CRITERIA	

This specification is made to be used as the standard acceptance/rejection criteria for TFT module.

1 Sample plan

1.1 Lot size: Quantity per shipment lot per model

1.2 Sampling type: Normal inspection, Single sampling

1.3 Inspection level: II

1.4 Sampling table: MIL-STD-105D1.5 Acceptable quality level (AQL)

Major defect: AQL=0.65 Minor defect: AQL=1.50

2. Inspection condition

2.1 Ambient conditions:

a. Temperature: Room temperature $25\pm5^{\circ}$ C

b. Humidity: (60± 10) %RH

c. Illumination: Single fluorescent lamp non-directive (300 to 700 Lux)

2.2 Viewing distance:

The distance between the LCD and the inspector's eyes shall be at least 35 ± 5 cm.

2.3 Viewing Angle

U/D: 45° /45° , L/R: 45° /45°

- 3. Definition of Inspection Item.
 - 3.1 Definition of inspection zone in LCD.

Zone A: character/Digit area

Zone B: viewing area except Zone A (ZoneA+ZoneB=minimum Viewing area)

Zone C: Outside viewing area (invisible area after assembly in customer's product)

ZoneB+ZoneC= Around opaque edge area on TP.

Fig.1 Inspection zones in an LCD.

OUTGOING QUALITY STANDARD

PAGE 2 OF 5

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

4. Inspection standards

Defects are classified as major defects and minor defects according to the degree of defectiveness defined herein.

4.1 Major defect

Item No	Items to be inspected	Inspection Standard
4.1.1	All functional defects	 No display Display abnormally Short circuit Line defect Excess power consumption
4.1.2	Missing	Missing function component
4.1.3	Crack	Glass crack

4.2 Minor defect

Item No	Items to be inspected	Inspection standard	
4.2.1	Spot Defect Including Black spot	For dark/white spot is defined $\varphi = (\mathbf{x} + \mathbf{y}) / 2$ $\longrightarrow \begin{array}{c} \mathbf{X} \\ & & \\ &$	
	White spot Pinhole Foreign particle Polarizer dirt	Size φ(mm) φ≤0.15 2mm(min) apart	Acceptable Quantity Ignore
		0.15 < φ≤ 0.25 5mm(min) apart	3
		0.25<φ	Not allowed

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA				
		Define:	Vidth	
4.2.2	Line Defect Including Black line	Width(mm) Length(mm)	Acceptable Quantity	
	White line	W≤0.05 and L≤10	Ignore	
	Scratch	0.05 < W≤0.08 and L≤10 3mm(min) apart	3	
		0.08 < W≤0.10 andL≤5 3mm(min) apart	1	
		0.10< W or 10 <l< td=""><td>Not allowed</td></l<>	Not allowed	
		Size φ(mm)	Acceptable Quantity	
	Polarizer	φ≤0.25	Ignore	
4.2.3	Dent/Bubble	Non visible area	Ignore	
		0.25<φ≤0.40 5mm(min) apart	4	
		0.40< φ	Not allowed	
		Bright and Black dot defi	and	
4.2.4	Electrical Dot Defect	Inspection pattern: Full white, Full black, Red, green and blue screens		
		Item	Acceptable Quantity	
		Black dot defect	2	
		Bright dot defect	0	
		Total Dot	2	

OUTGOING QUALITY STANDARD

PAGE 4 OF 5

TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA

ILL.I OIW			
		1.Corner Fragment:	
		Size(mm)	Acceptable Quantity
4.2.5	Touch panel defect	X≤3mm Y≤3mm Z≤T	Ignore T: Glass thickness X: Length Y: Width Z: thickness
		2. Side Fragment:	
		Size(mm)	Acceptable Quantity
		X≤5mm Y≤3mm Z≤T	Ignore T: Glass thickness X: Length Y: Width Z: thickness
	Touch panel spot	Size φ(mm)	Acceptable Quantity
4.2.6		φ≤ 0.20	Ignore
		0.20 < φ≤ 0.50 5mm(min) apart	4
		0.50< φ	Not allowed

MI	OUTGOING QUALITY STANDARD	PAGE 5 OF 5	
TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA			

4.2.7	Touch panel White line Scratch	Width(mm) Length(mm)	Acceptable Quantity
		W≤0.03	Ignore unless clustered
		0.03 < W≤0.05, L≤10 5mm(min) apart	4
		0.05 < W≤0.10, L≤10 5mm(min) apart	1
		0.10< W or 10 < W	Not allowed
4.2.8	Touch panel Newton ring	Compare with limit sample	

Note: 1. Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area.

- 2. The distance between black dot defects or black and bright dot defects should be more than 5mm apart. The distance between two bright dot defects should be more than 15mm apart
- 3. Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.
- 4. Mura is checker by 6% ND filter.
- 5. Foreign particle on the surface of the LCM should be ignore.

■ PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass and polarizer. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents
 - Isopropyl alcohol
 - Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
 - (9) Do not attempt to disassemble or process the LCD module.
 - (10) NC terminal should be open. Do not connect anything.
 - (11) If the logic circuit power is off, do not apply the input signals.
- (12) Electro-Static Discharge Control, Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.
- Tools required for assembling, such as soldering irons, must be properly grounded. make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated

- (13) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.
 - Do not alter, modify or change the shape of the tab on the metal frame.
- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - Do not damage or modify the pattern writing on the printed circuit board.
 - Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - Do not drop, bend or twist LCM.

Handling precaution for LCM

LCM is easy to be damaged.

Please note below and be careful for handling!

Correct handling:

As above picture, please handle with anti-static gloves around LCM edges.

Incorrect handling:

Please don't touch IC directly.

Please don't stack LCM.

Please don't hold the surface of panel.

Please don't stretch interface of output, such as FPC cable.

Handling precaution for LCD

LCD is easy to be damaged.

Please note below and be careful for handling!

Correct handling:

As above photo, please handle with anti-static gloves around LCD edges.

Incorrect handling:

Please don't stack the LCDS.

Please don't hold the surface of LCD.

Please don't operate with sharp stick such as pens.

Please don't touch ITO glass without anti-static gloves.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C, and keep the relative humidity between 40%RH and 60%RH.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the anti-static electricity container in which they were shipped.

 Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- -Terminal electrode sections.

USING LCD MODULES

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

Precaution for assemble the module with BTB connector:

Please note the position of the male and female connector position,don't assemble or assemble like the method which the following picture shows

Precaution for soldering to the LCM

	Hand soldering	Machine drag soldering	Machine press soldering
No ROHS	290°C ~350°C.	330°C ~350°C.	300°C ~330°C.
product	Time : 3-5S.	Speed: 4-8 mm/s.	Time : 3-6S.
product			Press: 0.8~1.2Mpa
ROHS	340°C ~370°C.	350°C ~370°C.	330°C ~360°C.
product	Time : 3-5S.	Time: 4-8 mm/s.	Time : 3-6S.
			Press: 0.8~1.2Mpa

- (1) If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.
- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.
- (2) It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life. An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- (3) Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, Which will come back in the specified operating temperature.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature,50%RH or less is required.
 - (6) Input each signal after the positive/negative voltage becomes stable.
- (7) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Limited Warranty

Unless agreed betweenMulti-Inno and customer,Multi-Inno will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with Multi-Inno LCD acceptance standards (copies available upon request) for a period of one year from date of production. Cosmetic/visual defects must be returned to Multi-Inno within 90 days of shipment. Confirmation of such date shall be based on data code on product. The warranty liability of Multi-Inno limited to repair and/or replacement on the terms set forth above. Multi-Inno will not be responsible for any subsequent or consequential events.

Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet is damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet, conductors and terminals.

■ PRIOR CONSULT MATTER

- 1. ①For Multi-Inno standard products, we keep the right to change material, process ... for improving the product property without notice on our customer.
 - ②For OEM products, if any change needed which may affect the product property, we will consult with our customer in advance.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.