MATH 355 Notes

Liam Wrubleski

September 10 2019

Definition Given $f: A \to B$ and $C \subseteq A, D \subseteq B$:

- The **image** of C under f is $f(C) = f(c)|c \in C$.
- The **preimage** of D under f is $f^{-1}(D) = a \in A | f(a) \in D$.

If f is invertible, the $f^{-1}(D)$ is the image of D under f^{-1} .

Example

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

$$C = [-4, 1]$$

$$f(C) = [0, 16]$$

$$D = [2, 16]$$

$$f^{-1}(D) = [-4, -\sqrt{2}] \cup [\sqrt{2}, 4]$$

$$E = (-\infty, -2)$$

$$f^{-1}(E) = x \in \mathbb{R} | x^2 \in E = \emptyset$$

Example

$$\chi_S : A \to \{0, 1\}, \chi_S = \begin{cases} 1, & x \in S \\ 0, & x \in A \setminus S \end{cases}$$
$$\chi_S^{-1}(\{0\}) = A \setminus S$$
$$\chi_S^{-1}(\{1\}) = S$$

Proposition Given $f: A \to B, C, C_1, C_2 \subseteq A, D, D_1, D_2 \subseteq B$,

a)
$$C \subseteq f^{-1}(f(C))$$

b)
$$f(f^{-1}(D)) \subseteq D$$

c)
$$f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$$

d)
$$f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$$

e)
$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$

f)
$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$$

g)
$$f^{-1}(B \setminus D) = A \setminus f^{-1}(D)$$

Proof

a) $f^{-1}(f(c)) \stackrel{\text{def}}{=} \{a \in A | f(a) \in f(C)\}$ This set includes C since, by definition, $f(c) \in f(C) \forall c \in C$.

b)
$$f(f^{-1}(D)) = \{f(a) | a \in f^{-1}(D)\} = \{f(a) | f(a) \in D\} \subseteq D.$$

c) Suppose
$$b \in f(C_1 \cap C_2)$$

 $\implies \exists a \in C_1 \cap C_2 : b = f(a)$
 $\implies b \in f(C_1) \land b \in f(C_2)$

- d) Similar to c)
- e) Tutorial this week

f)
$$a \in f^{-1}(D_1 \cap D_2) \iff f(a) \in D_1 \cap D_2 \iff a \in f^{-1}(D_1) \land a \in f^{-1}(D_2)$$

g)
$$a \in A \setminus f^{-1}(D) \iff f(a) \notin D$$

but $f: A \to B \implies f(a) \in B$ so $f(a) \in B \land f(a) \notin D \iff f(a) \in B \setminus D \iff a \in f^{-1}(B \setminus D)$.

Example (failure of equality for a) - c))

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

Let $C_1 = [-1,0], C_2 = [0,1].$ $C_1 \cap C_2 = 0$, so $f(C_1 \cap C_2) = 0$, but $f(C_1) = f(C_2) = [0,1] \implies f(C_1) \cap f(C_2) = [0,1] \supsetneq 0$. Let $C = \{1\}$ so f(C) = 1, but $f^{-1}(\{1\}) = \{-1,1\}, soC \subsetneq f^{-1}(f(C))$. Let D = [-1,1]. Then $f^{-1}(D) = \{x \in \mathbb{R} | -1 \le x^2 \le 1\} = [-1,1]$ and $f([-1,1]) \subsetneq D$.

Proposition

- (i) If $f: A \to B$ is injective, statements a) and c) become equalities.
- (ii) If $f: A \to B$ is surjective, then statement b) is an equality.

Proof

- (i) We already know that $C \subseteq f^{-1}(f(C))$. Then let $f(a) \in f(C)$. This means $\exists c \in C : f(a) = f(c)$. Because f is injective, $f(a) = f(c) \implies a = c$, so $a \in C$, so $f^{-1}(f(C)) \subseteq C$, so $C = f^{-1}(f(C))$. Statement c) is similar.
- (ii) We already know that $f(f^{-1}(D)) \subseteq D$. Let $d \in D$. Then $\exists a \in A : d = f(a)$, by surjectivity of f. Then $a \in f^{-1}(D) \implies f(a) \in f(f^{-1}(D))$. Therefore $D \subseteq f(f^{-1}(D)) \implies D = f(f^{-1}(D))$.

Definition Suppose $f: A \to B, g: B \to C$. The **composition** $g \circ f: A \to C$ is the function

$$g \circ f(a) = g(f(a))$$

Remarks:

- Even if $g \circ f$ is defined, $f \circ g$ may not be.
- Even if both $g \circ f$ and $f \circ g$ are defined with A = B = C, they are not generally the same functions.

Proposition Suppose $f: A \to B, g: B \to C$.

- a) If f and g are injective, then $g \circ f$ is injective.
- b) If f and g are surjective, then $g \circ f$ is surjective.
- c) If f and g are bijective, then $g \circ f$ is bijective.

Definition Suppose $f: A \to B$. f is **invertible** if and only if $\exists g: B \to A: g \circ f = id_A \land f \circ g = id_B$.

Proposition The function g above is unique when it exists.

Proof Suppose $g, g_1 : B \to A$ so $g \circ f = g_1 \circ f = id_A$ and $f \circ g = f \circ g_1 = id_B$. Let $b \in B$. Then

$$g(b) = g(f \circ g_1(b)), \text{ since } f \circ g_1 = id_B$$

= $g(f(g_1(b))) = (g \circ f)(g_b(b)) = g_1(b), \text{ since } g \circ f = id_A$

So $g(b) = g_1(b) \forall b \in B \implies g = g_1$.

Definition If f is invertible, the unique function g above is called the **inverse** of f, and is denoted f^{-1} .

Proposition $f: A \to B$ is invertible if and only if f is a bijection.

Proof

- (i) $f: A \to B$ is invertible $\Longrightarrow f$ is a bijection. Suppose f is invertible, and $f(a_1) = f(a_2)$. Then $f^{-1}(f(a_1)) = f^{-1}(f(a_2)) \Longrightarrow a_1 = a_2$, so f is injective. Suppose $b \in B$. Then $f(f^{-1}(b)) = b$, so $\forall b \in B, \exists a \in A : f(a) = b$, with $a = f^{-1}(b)$.
- (ii) f is a bijection $\Longrightarrow f:A\to B$ is invertible. Suppose f is a bijection. Then for every $b\in B$ there is a unique $a\in A$ so that f(a)=b. Then for each $b\in B$, define $g:B\to A$ by g(b)=a. Then $g=f^{-1}$. Check: g is well defined