Geometría Lineal

Álvaro García Tenorio

Clara Isabel López González

22 de octubre de 2016

Índice general

1.	Esp	acio Proyectivo y Variedades Proyectivas	4
	1.1.	El Espacio Proyectivo	4
		1.1.1. Primera Aproximación	4
		1.1.2. Segunda Aproximación	4
		1.1.3. Equivalencia de las Aproximaciones	5
		1.1.4. Proyección Canónica	5
	1.2.	Variedades Proyectivas	5
		1.2.1. Operaciones con Variedades Proyectivas	6
	1.3.	Dimensiones y Fórmula de Grassmann	7
		1.3.1. Dimensiones y Fórmula de Grassmann	8
	1.4.	Referencias Proyectivas	9
		1.4.1. Coordenadas Homogéneas	9
		1.4.2. Referencias Proyectivas	9
			10
	1.5.	· ·	12
	1.6.	· ·	13
2.	Dua	alidad	L4
	2.1.	1	14
			14
			15
		2.1.3. Principio de Dualidad	17
	2.2.	Dualidad en espacios proyectivos	18
		2.2.1. Formas Lineales e Hiperplanos Proyectivos	18
		2.2.2. Dualidad Canónica	18
		2.2.3. Principio de Dualidad para espacios proyectivos	20
	т.	. 1	
3.			22 22
	3.1.	V	
		•	22
			23
	2.0	1 0	24
		· ·	25
	5.5.	Haces	25
4.	Apl	icaciones Proyectivas	26
			26
			27
			27
			27
			28

INDICE CENEDAL	
INDICE GENERAL	2

A. Álgebra Lineal			
A.1.	Coordenadas en Espacios Vectoriales		
	A.1.1. Matriz de Cambio de Base		
A.2.	Ecuaciones de Subespacios		
	A.2.1. Existencia de las Ecuaciones Cartesianas		
A.3.	Dualidad		

ÍNDICE GENERAL 3

Prefacio

Estas notas son una transcripción (reorganizada y con muchos añadidos) de las clases de la asignatura *Geometría Lineal*, impartidas por Antonio Valdés, y sus sustitutos, entre los que se contaban un esquizofrénico que no sabía por qué oía voces y un clon de Felipe González con pendiente, en el curso 2016–2017 a los cursos de tercero de los dobles grados de matemáticas e informática y matemáticas y física en la facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid (UCM).

Se han incluido demostraciones que usualmente se dan por evidentes y algunas aclaraciones de otros textos que consideramos importantes para un correcto seguimiento de una asignatura como esta.

Consideramos un requisito indispensable para seguir estas notas haber entendido bien el álgebra lineal, no obstante, se incluye un anexo con los conocimientos que consideramos indispensables, para evitar que el lector tenga que desempolvar con demasiada frecuencia la bibliografía del primer curso.

Agradecimientos

Agradecemos las grandes aportaciones de Iván Prada a la hora de ilustrar este texto, así como para ayudar a limpiarlo de errores y erratas.

Capítulo 1

Espacio Proyectivo y Variedades Proyectivas

1.1. El Espacio Proyectivo

Sea E un \mathbb{K} -espacio vectorial arbitrario.

Podemos realizar dos aproximaciones equivalentes a la noción de espacio proyectivo, que confundiremos según nos convenga. Cabe destacar que la segunda de estas aproximaciones tiene especial interés en la topología, por estar basada en conjuntos cociente.

1.1.1. Primera Aproximación

Definición 1.1.1 (Espacio Proyectivo). Se define el *espacio proyectivo* asociado a E como el conjunto de los subespacios vectoriales de dimensión 1 de E. Lo denotaremos por $\mathbb{P}(E)$.

Expresando el contenido de la definición 1.1.1 con una notación conjuntista obtenemos lo siguiente.

$$\mathbb{P}(E) \stackrel{\text{def.}}{=} \{ [u] \mid u \in E \setminus \{0\} \}$$
 (1.1)

En la ecuación (1.1) hay una notación implícita que pasamos a explicar a continuación.

Definición 1.1.2 (Rayo). Sea $u \in E \setminus \{0\}$, se denomina *rayo* engendrado por u al conjunto de todos los vectores proporcionales a u, es decir:

$$[u] \stackrel{\mathrm{def.}}{=} \{ \lambda u \sqcup \lambda \in \mathbb{K} \}$$

Consideraremos, a partir de ahora, a los rayos como los puntos del espacio proyectivo. Antes de continuar, notemos algunos casos curiosos.

Observación 1.1.3 (Casos Extremos). 1. Si $E = \{0\}$ entonces, por definición $\mathbb{P}(E) = \emptyset$, ya que no hay ningún subespacio de dimensión 1.

2. Si $\dim(E) = 1$ entonces $\mathbb{P}(E)$ consta de ún único elemento, el rayo generado por el vector de la base de E (o cualquier otro no nulo).

1.1.2. Segunda Aproximación

La definición 1.1.1 tiene una traducción natural en términos de relaciones de equivalencia y conjuntos cociente.

Definición 1.1.4 (Relación de Proporcionalidad). Se comprueba inmediatamente que la relación \mathcal{R} definida en $E \setminus \{0\}$ como:

$$u\mathcal{R}v \stackrel{\mathrm{def}}{\Leftrightarrow} \exists \lambda \in \mathbb{K}^* \sqcup u = \lambda v$$

es de equivalencia, siendo la clase de equivalencia de un vector v el conjunto de todos los proporcionales a él, es decir el *cuasirayo* generado por v (rayo al que se le ha sustraído el 0).

La clase del vector u según la relación de equivalencia definida en 1.1.4 será denotada por $u\mathcal{R}$. Es trivial ver que se cumple:

$$u\mathcal{R} = [u] \setminus \{0\}$$

Definición 1.1.5 (Espacio Proyectivo). Definimos espacio proyectivo asociado a E como el conjunto de las clases de equivalencia de \mathcal{R} , es decir, el conjunto cociente $\frac{E\setminus\{0\}}{\mathcal{R}}$.

1.1.3. Equivalencia de las Aproximaciones

Veamos ahora que, intuitivamente, podemos confundir ambas aproximaciones a la noción de espacio proyectivo, estableciendo una biyección entre los conjuntos resultantes de las definiciones 1.1.1 y 1.1.5. La aplicación natural entre ambos conjuntos es la de asociar al cuasirayo engendrado por un vector su rayo correspondiente, es decir:

$$\frac{E\setminus\{0\}}{\mathcal{R}} \stackrel{\Phi}{\to} \mathbb{P}(E) \\
u\mathcal{R} \mapsto [u] \tag{1.2}$$

Ver que es una biyección y que está bien definida es un ejercicio fácil que se deja al lector.

1.1.4. Proyección Canónica

Una nueva forma muy útil de identificar el espacio proyectivo asociado a E es mediante la imágen de la llamada $proyección\ canónica$, que es la aplicación (evidentemente sobreyectiva) que a cada vector le asocia su rayo engendrado.

$$\begin{array}{ccc}
E \setminus \{0\} & \stackrel{\pi}{\to} & \mathbb{P}(E) \\
u & \mapsto & [u] \equiv u\mathcal{R}
\end{array} \tag{1.3}$$

1.2. Variedades Proyectivas

Como es típico en álgebra, trataremos de estudiar los subconjuntos de una estructura que mantienen dicha estructura, en este caso, estudiaremos las variedades o subespacios de espacios proyectivos. Este es un concepto que puede resultar lioso en una primera lectura, pero que es de importancia crucial.

Definición 1.2.1 (Variedad Proyectiva). Dado un subconjunto X de un espacio proyectivo $\mathbb{P}(E)$, se dirá que X es una variedad proyectiva de $\mathbb{P}(E)$ si existe una variedad lineal de E, a la que llamaremos \hat{X} de manera que el espacio proyectivo asociado a \hat{X} coincide con X. Escrito de otra forma:

$$X = \mathbb{P}(\hat{X}) = \pi(\hat{X} \setminus \{0\})$$

El siguiente lema demuestra que hay dos enfoques equivalentes a la idea de variedad proyectiva. Es muy probable que la demostración pueda reducirse mucho.

Lema 1.2.1 (Caracterización de las Variedades). X es variedad proyectiva si y solo si $\pi^{-1}(X) \cup \{0\}$ es un subespacio vectorial de E.

Demostración. \implies Para esta implicación basta ver que $\pi^{-1}(X) \cup \{0\}$ es un subespacio vectorial. Como X es variedad proyectiva existe cierta variedad lineal \hat{X} de forma que $\pi(\hat{X} \setminus \{0\}) = X$. Si Dios existe y está de nuestra parte se tendrá $\hat{X} = \pi^{-1}(X) \cup \{0\}$, con lo que habríamos terminado. En efecto, la igualdad que queremos obtener es equivalente (quitando el cero y aplicando la proyección canónica) a la igualdad $\pi(\hat{X}) = \pi(\pi^{-1}(X)) = X$, lo cual tenemos por hipótesis.

 \subseteq Si $\pi^{-1}(X) \cup \{0\}$ es un espacio vectorial, su proyectivo asociado será $\pi(\pi^{-1}(X)) = X$, con lo que hemos encontrado una variedad lineal de E de forma que X es su espacio proyectivo asociado. Por la definición 1.2.1 hemos terminado.

Del lema 1.2.1 se deduce que los subespacios vectoriales de E y los subespacios proyectivos de $\mathbb{P}(E)$ están en biyección, siendo este un resultado análogo al del llamado lema de la correspondencia de la teoría de grupos y anillos. Estudiemos más a fondo este hecho.

Observación 1.2.2 (Lema de la Correspondencia). Sea \mathcal{P} el conjunto de las variedades proyectivas de $\mathbb{P}(E)$. Asimismo sea el conjunto \mathcal{L} compuesto por las variedades lineales de E. Es claro, por la definición de variedad proyectiva 1.2.1 por el lema 1.2.1 que la siguiente aplicación es una bivección.

$$\begin{array}{ccc} \mathcal{P} & \stackrel{\Phi}{\to} & \mathcal{L} \\ X & \mapsto & \pi^{-1}(X) \cup \{0\} \end{array}$$

Aunque trivial, es recomendable recordar, que se preservan las contenciones, es decir:

$$X \subset Y \Leftrightarrow \pi^{-1}(X) \subset \pi^{-1}(Y)$$

1.2.1. Operaciones con Variedades Proyectivas

Tras estas observaciones estamos en condiciones de abordar dos problemas elementales pero importantes. Estos son:

- 1. Determinar si la intersección de variedades proyectivas es variedad proyectiva.
- 2. Obtener una descripción explícita de los elementos que conforman la mínima variedad que contiene a un subconjunto del espacio proyectivo.

Lema 1.2.2 (Intersección de Variedades Proyectivas). Sea la familia de variedades proyectivas $\{X_i \mid i \in I\}$, se tiene que la intersección $\bigcap_{i \in I} X_i$ es una variedad proyectiva.

Además, se verifica
$$\hat{X} = \bigcap_{i \in I} \hat{X}_i$$

Demostración. Debemos demostrar que $\bigcap_{i\in I} X_i$ es variedad proyectiva. Esto pasa, por el lema 1.2.1 si y solo si $\pi^{-1}\left(\bigcap_{i\in I} X_i\right) \cup \{0\}$ es un espacio vectorial. Si tenemos suerte, se cumplirá que $\pi^{-1}\left(\bigcap_{i\in I} X_i\right) = \bigcap_{i\in I} \pi^{-1}(X_i)$. Supongamos que tenemos suerte, en tal caso, por ser cada X_i una variedad proyectiva y por tanto $\pi^{-1}(X_i) \cup \{0\}$ un subespacio vectorial, y por ser la intersección arbitraria de espacios vectoriales un espacio vectorial, se tiene que $\pi^{-1}\left(\bigcap_{i\in I} X_i\right) \cup \{0\}$ es un subespacio vectorial, como queríamos demostrar.

Finalmente, comprobemos que, efectivamente, hemos tenido suerte.

$$x \in \pi^{-1}\left(\bigcap_{i \in I} X_i\right) \Leftrightarrow \pi(x) = [x] \in \bigcap_{i \in I} X_i \Leftrightarrow [x] \in X_i \ \forall i \in I \Leftrightarrow$$
$$\pi^{-1}([x]) = x \in \pi^{-1}(X_i) \forall i \in I \Leftrightarrow x \in \bigcap_{i \in I} \pi^{-1}(X_i)$$

con lo que se obtiene la igualdad deseada.

El además se obtiene muy fácilmente:

$$\hat{X} = \pi^{-1} \left(\bigcap_{i \in I} X_i \right) \cup \{0\} = \bigcap_{i \in I} \pi^{-1}(X_i) \cup \{0\} = \bigcap_{i \in I} \hat{X}_i$$

Con el lema 1.2.2 queda resuelto el primer problema planteado en esta sección. Pasemos ahora a estudiar la noción de variedad proyectiva engendrada por un subconjunto cualquiera A de $\mathbb{P}(E)$ así como sus propiedades.

Definición 1.2.3 (Variedad Engendrada por un Subconjunto). Sea $A \subset \mathbb{P}(E)$ no vacío. Se define la variedad proyectiva engendrada por A al menor subespacio proyectivo que contiene a A. A esta, se la denotará por $\mathcal{V}(A)$.

Vamos a demostrar la existencia de dicha variedad construyéndola mediante un truco muy habitual en matemáticas.

Observación 1.2.4 (Existencia de la Variedad Engendrada). Sea \mathcal{L} la familia de las variedades proyectivas de $\mathbb{P}(E)$ que contienen a A. Es trivial demostrar que $\bigcap_{X \in \mathcal{L}} X$ es la menor variedad proyectiva que contiene a A.

Que es variedad proyectiva es evidente por el lema 1.2.2. Es la menor variedad ya que, dada cualquer otra variedad que contenga a A, esta pertenecerá a la familia \mathcal{L} , por lo que su intersección estará contenida en la variedad.

La 1.2.4 demuestra la existencia de la variedad engendrada de la misma forma que demostramos la existencia de un subespacio vectorial engendrado por un conjunto, o del subgrupo generado por un conjunto, lo que deja claro la importancia de este truco. Sin embargo, esta demostración no nos da una descripción explícita de los elementos de la variedad.

Una forma de resolver este problema es, a la luz del lema 1.2.1, encontrar la variedad lineal asociada a la variedad engendrada.

Lema 1.2.3 (Variedad Lineal Asociada a una Variedad Engendrada). Se tiene que

$$\widehat{\mathcal{V}(A)} = \mathcal{L}(\pi^{-1}(A))$$

Es decir, la variedad lineal asociada a la variedad proyectiva engendrada por A es aquella que engendra la preproyección de A sobre E.

Demostración.
$$\bigcirc$$
 Como $A \subset \mathcal{V}(A)$ entonces $\pi^{-1}(A) \subset \widehat{\mathcal{V}(A)} \Rightarrow \mathcal{L}(\pi^{-1}(A)) \subset \widehat{\mathcal{V}(A)}$

 \subset $A \subset \pi(\mathcal{L}(\pi^{-1}(A)))$ ya que $\mathcal{L}(\pi^{-1}(A)) \supset \pi^{-1}(A)$. Como $\mathcal{L}(\pi^{-1}(A))$ es un subespacio vectorial, su proyectivizado será una subvariedad proyectiva X, por lo cual $X = \pi(\mathcal{L}(\pi^{-1}(A)))$. Como por la primera desigualdad conjusista de esta segunda parte de la demostración nos dice que $A \subset X$, tenemos la desigualdad:

$$A \subset \mathcal{V}(A) \subset X = \pi(\mathcal{L}(\pi^{-1}(A)))$$

Aplicando π^{-1} a la desigualdad obtenemos:

$$\pi^{-1}(\mathcal{V}(A)) = \widehat{\mathcal{V}(A)} \setminus \{0\} \subset \mathcal{L}(\pi^{-1}(A)) \setminus \{0\}$$

El lema 1.2.3 nos da una descripción explícita de los elementos de la variedad engendrada por un conjunto, basta aplicar la proyección canónica para obtener:

$$\mathcal{V}(A) = \pi(\mathcal{L}(\pi^{-1}(A))) \tag{1.4}$$

Tengamos especialmente en cuenta el caso de las variedades engendradas por conjuntos finitos.

Ejemplo 1.2.1 (Variedades Engendradas por Conjuntos Finitos). Sea $A = \{p_1, \ldots, p_n\}$, denotaremos $\mathcal{V}(A) = \mathcal{V}(p_1, \ldots, p_n)$, escogiendo un representante arbitrario para cada $p_i = [u_i]$ obtenemos, por 1.4 que

$$\mathcal{V}(p_1,\ldots,p_n) = \pi(\mathcal{L}(u_1,\ldots,u_n))$$

1.3. Dimensiones y Fórmula de Grassmann

Prosiguiendo en nuestra traducción de los conceptos del mundo vectorial al idioma proyectivo introduciremos el concepto de dimensión de un espacio proyectivo y deduciremos la llamada fórmula de Grassmann.

1.3.1. Dimensiones y Fórmula de Grassmann

Es importante tener claro que los espacios proyectivos **no** son espacios vectoriales, ya que no hemos definido la noción de suma de rayos o producto de rayos por escalares. Sin embargo, parece razonable extender la noción de dimensión a los espacios proyectivos.

Intuitivamente, al considerar las rectas vectoriales como puntos, estamos, entre comillas, perdiendo un grado de libertad. Esta idea es recogida por la siguiente definición.

Definición 1.3.1 (Dimensión de un Espacio Proyectivo). Si E es un espacio vectorial de dimensión n, se define la dimensión de $\mathbb{P}(E)$ como n-1. Es decir, la *codimensión* de un espacio proyectivo respecto de su espacio lineal asociado es 1.

Usualmente nos referiremos a los espacios proyectivos de dimensión 1 como rectas proyectivas, a los de dimensión 2 como planos proyectivos y a los de dimensión 3 como espacios proyectivos.

Es importante distinguir algunos casos extremos que pueden parecer chocantes.

- **Observación 1.3.2** (Casos Extremos). 1. Si E es un espacio vectorial de dimensión 1, entonces $\mathbb{P}(E)$ tiene dimensión nula, lo cual tiene sentido al estar conformado por un solo punto.
 - 2. Si $E = \{0\}$, es decir, un espacio vectorial de dimensión 0, resulta que su espacio proyectivo tiene dimensión -1.

Estamos ahora en condiciones de presentar el ejemplo de espacio canónico, cuya notación no hubiéramos entendido hasta ahora.

Ejemplo 1.3.1 (Espacio Canónico). El espacio proyectivo asociado a un espacio vectorial de la forma $E = \mathbb{K}^{n+1}$ se denomina *espacio canónico* y se denota por:

$$\mathbb{P}(E) : \stackrel{\text{not.}}{=} \mathbb{P}^n$$

Una igualdad recurrente en matemáticas es la llamada *fórmula de Grassmann*, que se presenta con diversas versiones en áreas tan dispersas de las matemáticas como la teoría de conjuntos, la probabilidad, la teoría de grupos, el álgebra lineal,... Como no podía ser de otra manera, también está presente en los espacios proyectivos.

Teorema 1.3.1 (Fórmula de Grassmann, Teorema de la Incidencia). Sean $X,Y\subset \mathbb{P}(E)$ dos variedades proyectivas. Se tiene que:

$$\dim(\mathcal{V}(X,Y)) = \dim(X) + \dim(Y) - \dim(X \cap Y)$$

Demostración. Apoyándonos en la fórmula de Grassmann para espacios vectoriales, sale fácilmente. En efecto, como

$$\dim(\mathcal{V}(X,Y)) = \dim(\widehat{\mathcal{V}(X,Y)}) - 1$$

y además

$$\dim(X) + \dim(Y) - \dim(X \cap Y) = \dim(\widehat{X}) - 1 + \dim(\widehat{Y}) - 1 - \dim(\widehat{X \cap Y}) + 1$$

por la fórmula de Grassmann en espacios vectoriales sabemos que los dos miembros de la derecha de sendas igualdades coinciden.

Este teorema arroja un corolario importante, del que debemos extraer la idea de que en los espacios proyectivos las cosas se cortan muy fácilmente. Es por esto que se conoce a la geometría proyectiva como geometría de la incidencia.

Corolario 1.3.2 (Hiperplanos y Rectas). Una recta y un hiperplano proyectivos siempre se cortan.

Demostración. Basta sustituir las dimensiones en la fórmula de Grassmann teniendo en cuenta que $\dim(\mathbb{P}(E)) \ge \dim(\mathcal{V}(X,Y))$, despejando se concluye que $\dim(\mathcal{V}(X,Y)) \ge 0$, y por tanto hay al menos un punto común.

1.4. Referencias Proyectivas

En esta sección trataremos de extrapolar el concepto de base de un espacio vectorial a los espacios proyectivos.

Sea E un \mathbb{K} -espacio vectorial cualquiera de dimensión n+1. Sabemos por álgebra lineal que, dada $\mathcal{B} := \{e_0, \dots, e_n\}$ una base de E, cualquier vector $x \in E$ puede escribirse de manera única como combinación lineal de los vectores que conforman la base, es decir, para ciertos λ_i con $i \in \{0, \dots, n\}$ se tiene:

$$x = \sum_{i=0}^{n} \lambda_i e_i \stackrel{\text{not.}}{\equiv} (\lambda_0, \dots, \lambda_n)_{\mathcal{B}} \stackrel{\text{not.}}{\equiv} \mathcal{B}X$$
 (1.5)

Nótese que la tercera equivalencia de la ecuación (1.5), es un mero abuso de notación muy extendido para hacer la notación más compacta.

Volviendo al mundo proyectivo, queremos encontrar cierta colección de *entes* en función de los cuales poder escribir todos los demás.

1.4.1. Coordenadas Homogéneas

Si tomamos un punto proyectivo x := [u], por la ecuación (1.5) podremos escribir:

$$x: [u] = [(\lambda_0, \dots, \lambda_n)_{\mathcal{B}}] \stackrel{\text{not.}}{=} (\lambda_0 : \dots : \lambda_n)$$
 (1.6)

Al último miembro de la ecuación (1.6) se le llama escritura de x en coordenadas homogéneas.

Nótese que, fijada una base, las coordenadas homogéneas de un punto proyectivo son únicas salvo proporcionalidad, ya que si se toma un representante u' distinto del rayo vectorial, su escritura respecto de la base \mathcal{B} será proporcional a la de u.

Con esto podría decirse que hemos cumplido el objetivo de la sección, ya que, dada una base de E, podemos escribir en función de ella a cualquier punto proyectivo.

Sin embargo, estamos creando una referencia en base a otra ya existente, lo cual no es muy recomendable salvo si nuestra referencia base (base del espacio vectorial) es *estándar* o *canónica*, lo cual sólo ocurre en contadas ocasiones, por ejemplo, en los espacios canónicos.

1.4.2. Referencias Proyectivas

Para evitar los problemas derivados de la aproximación presentada en el apartado anterior, debemos concentrarnos en la idea de que lo que debemos hacer es encontrar una colección de elementos del espacio proyectivo en función de los cuales poder escribir todos los demás. A ese conjunto de puntos lo llamaremos referencia proyectiva.

Definición 1.4.1 (Independencia Proyectiva). Sea un conjunto $\{p_0, \dots, p_r\} \subset \mathbb{P}(E)$, diremos que son *proyectivamente independientes* si ninguno de ellos está en la variedad proyectiva engendrada por los restantes.

Con un poco de trabajo adicional extraemos la siguiente caracterización de la independencia proyectiva.

Lema 1.4.1 (Caracterización de la Indepencia Proyectiva). Un conjunto de puntos proyectivos es proyectivamente independiente si y solo si sus representantes son linealmente independientes, sin depender de la elección de los mismos.

Demostración. Decir que los representantes son linealmente independientes es equivalente a decir que, dado un de ellos, no puede ser expresado como combinación lineal de los restantes y por ende no se encuentra en la variedad lineal engendrada por estos. Por la ecuación (1.4) sabemos que:

$$u_i \notin \mathcal{L}(u_0, \dots, u_{i-1}, u_{i-1}, \dots, u_r) \Leftrightarrow [p_i] \notin \mathcal{V}(p_0, \dots, p_{i-1}, p_{i+1}, \dots, p_r)$$

Observación 1.4.2 (Base Inducida). En un espacio proyectivo de dimensión n, podemos escoger un conjunto de n+1 puntos proyectivamente independientes, ya que, para cualquier elección de representantes de estos puntos, se obtendrían n+1 vectores linealmente independientes del espacio vectorial asociado E, de dimensión n+1, en el cual estos vectores, por definición formarían una base a la que llamaremos base inducida.

Hay un gran problema con la definición 1.4.1, y es que, dados n+1 puntos proyectivos, inducimos una familia de bases de E demasiado "grande". Con grande nos referimos a que no solo inducimos una base junto con todas las proporcionales a ella (resultantes de aplicarle el mismo factor de escala a todos sus vectores), sino muchas más.

Observación 1.4.3 (No Unidad de la Base Inducida). Dada una elección de representantes $\{u_o, \ldots, u_n\}$ que son una base de E, entonces, el conjunto de representantes $\{\lambda_0 u_0, \ldots, \lambda_n u_n\}$, con $\lambda_i \in \mathbb{K}^*$ también conforma una base de E.

Para solucionar este problema deberemos añadir alguna restricción más a la definición de base inducida.

Definición 1.4.4 (Referencia Proyectiva). Dado un espacio proyectivo de dimensión n, una referencia proyectiva es un conjunto **ordenado** \Re de n+2 puntos de tal forma que cada n+1 de ellos son proyectivamente independientes.

A pesar de ser una referencia proyectiva un conjunto ordenado normalmente lo escribiremos con la notación usual para conjuntos.

Observación 1.4.5 (Reordenación). Dada una referencia \mathfrak{R} , cualquier reordenación de la misma sigue siendo referencia proyectiva.

- **Ejemplo 1.4.1** (Referencias Proyectivas en Dimensiones Bajas). 1. En caso de querer dar una referencia de la recta proyectiva deberemos elegir tres puntos proyectivamente independientes dos a dos.
 - 2. Si queremos referenciar el plano proyectivo deberemos dar lo que se llama triangulo de referencia, es decir, una elección de cuatro puntos proyectivamente independientes tres a tres.
 - 3. La misma idea se extrapola al espacio proyectivo, donde habría que escoger un $tetraedro\ de$ referencia

1.4.3. Base Asociada a una Referencia Proyectiva

Siguiendo la idea de las observaciones 1.4.2 y 1.4.3 vamos a estudiar las propiedades de las bases asociadas a referencias proyectivas.

Definición 1.4.6 (Base Asociada). Una base \mathcal{B} de E se dice *asociada* a la referencia proyectiva \mathfrak{R} si sus vectores son representantes de los n+1 primeros puntos proyectivos, y además, la suma de sus vectores es representante del último de los puntos.

Nótese que una base asociada no es más que una base inducida con una pequeña restricción más, con la suerte de que esta es fundamental para solucionar el problema de la no unicidad salvo proporcionalidad, tal y como muestra el siguiente teorema, cuya demostración es constructiva.

Teorema 1.4.2 (Unicidad de la Base Asociada). Para cada referencia proyectiva \mathfrak{R} de $\mathbb{P}(E)$ hay una base asociada única salvo un factor no nulo común a todos los elementos de la base.

Demostración. 1. Probemos la existencia de dicha base. Dada una referencia proyectiva \mathfrak{R} , tomemos representantes de cada uno de los puntos. Por ser \mathfrak{R} referencia proyectiva y por el lema 1.4.1 los representantes de los n+1 primeros puntos forman una base de E, y por ende el representante del último punto puede escribirse como combinación lineal de los anteriores. Denotando por u_i al representante escogido para el i-ésimo punto se tiene que:

$$u_{n+1} = \sum_{i=0}^{n} a_i u_i$$

Veamos que $\mathcal{B} = \{a_i u_i \mid 0 \le i \le n\}$ es una base de E y además sus vectores son representantes de los n+1 primeros puntos de \mathfrak{R} . Esto es debido a que ninguno de los coeficientes a_i es nulo. Si alguno lo fuera, por ejemplo $a_0 = 0$, se tendríamos la relación:

$$u_{n+1} = \sum_{i=1}^{n} a_i v_i \in \mathcal{L}(v_1, \dots, v_n)$$

Lo cual va contra la hipótesis de independencia proyectiva. Además, la suma de sus vectores es un representante del último punto de la referencia. Luego \mathcal{B} es base asociada a \Re .

2. Para demostrar la unicidad supongamos la existencia de dos bases asociadas:

$$\mathcal{B} := \{u_0, \dots, u_n\}$$
$$\mathcal{B}^* := \{u'_0, \dots, u'_n\}$$

Instantáneamente se ve que $u_i' = u_i \lambda_i$ para algún $\lambda \in \mathbb{K}^*$ para todos los $i \in \{0, ..., n\}$, ya que si no no serían representantes de los primeros elementos de la referencia. Además, se debe dar la condición:

$$\left[\sum_{i=0}^{n} u_i\right] = \left[\sum_{i=0}^{n} u_i'\right]$$

y por ende las sumas deben ser proporcionales, de lo que se desprende:

$$\sum_{i=0}^{n} u_i' = \sum_{i=0}^{n} u_i \lambda_i = \lambda \sum_{i=0}^{n} u_i$$

Es decir, las bases son proporcionales.

La comprobación de que un conjunto ordenado de n+2 puntos es referencia proyectiva puede ser muy tediosa ya que consiste en realizar $\binom{n+2}{n+1} = n+2$ determiantes de orden n+1. El lema 1.4.3 es extramadamente útil pues reduce esta comprobación al cálculo de un determinante de orden n+1 y a la inversión de una matriz de orden n+1.

Lema 1.4.3 (Comprobación de Referencias Proyectivas). Para comprobar que n + 2 puntos proyectivos $x_i = [v_i]$ conforman una referencia proyectiva basta comprobar las siguientes condiciones:

- 1. Los n+1 primeros puntos son proyectivamente independientes.
- 2. Al escribir $v_{n+1} = \sum_{i=0}^{n} \lambda_i v_i$ se tiene que $\lambda_i \neq 0 \ \forall 0 \leq i \leq n$

Demostración. Si se cumplen las condiciones del enunciado se tiene que $\{\lambda_0 u_0, \dots, \lambda_n u_n\}$ es una base de E. Si a este conjunto le añadimos v_{n+1} , sabemos por álgebra lineal que es un conjunto linealmente dependiente y un sistema de generadores de E. Por ende, alguno de los vectores del conjunto puede ponerse como combinación lineal de los demás, y extrayendo este elemento del conjunto, este seguirá siendo sistema de generadores. Obviamente, v_{n+1} puede ponerse como combinación lineal de los demás, pero esto no nos ayuda. Lo interesante es, que como todos los coeficientes λ_i son no nulos, podemos despejar cualquier v_i de la ecuación, de esta forma:

$$v_{n+1} = \sum_{i=0}^{n} \lambda_i v_i \Leftrightarrow v_i = \sum_{j \neq i, n+1} \frac{\lambda_j}{-\lambda_i} u_j + \frac{1}{\lambda_i} u_{n+1}$$

Entonces podemos formar $\binom{n+2}{n+1} = n+2$ conjuntos diferentes de n+1 vectores, si todos ellos formaran bases habríamos terminado, pero esto es evidente, ya que son sistemas de generadores de n+1 elementos, es decir, bases.

Para clarificar un poco las cosas se presenta el siguiente ejemplo.

Ejemplo 1.4.2 (Referencia de \mathbb{P}^2). En \mathbb{P}^2 nos dan los puntos:

$$a_0 = (1:0:1), \ a_1 = (0:2:1)$$

 $a_2 = (0:0:1), \ a_3 = (1:-1:0)$

Donde las coordenadas homogéneas vienen dadas según la base estándar de \mathbb{R}^3 .

Se pide estudiar si dichos puntos conforman una referencia proyectiva.

Siguiendo el lema 1.4.3 para ahorrarnos cálculos, vemos que los representantes de a_0 , a_1 y a_2 son una base de \mathbb{R}^3

$$u_0 = (1,0,1), u_1 = (0,2,1), u_2 = (0,0,1)$$

En efecto, al calcular el determinante:

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{vmatrix} \neq 0$$

Ahora, tomando $u_3 = (1, -1, 0)$ como representante de a_3 , bastaría resolver el sistema de ecuaciones lineales (que sabemos compatible determinado) dado por:

$$\alpha u_0 + \beta u_1 + \gamma u_2 = u_3$$

Si la matriz columna solución no tiene ningún coeficiente nulo la colección de puntos original conforma una referencia proyectiva de base asociada dada por el método de construcción de bases asociadas (teorema 1.4.2), es decir, la base asociada sería:

$$\mathcal{B} = \{\alpha u_0, \beta u_1, \gamma u_2\}$$

Con un poquito de magia se obtiene que:

$$\alpha = 1, \ \beta = -\frac{1}{2}, \ \gamma = -\frac{1}{2}$$

Como no son todos nulos, los puntos originales conforman una referencia proyectiva.

Una base asociada sería:

$$\mathcal{B} = \left\{ (1, 0, 1), \left(0, -1, -\frac{1}{2} \right), \left(0, 0, -\frac{1}{2} \right) \right\}$$

Como esta base es única salvo proporcionalidad, podríamos multiplicar todo por 2 para que nos queda algo más bonito.

$$\mathcal{B}' = \{(2,0,2), (0,-2,-1), (0,0,-1)\}$$

Antes de continuar, fijemos una notación para referirinos a referencias proyectivas.

Dada una referencia proyectiva \Re , la denotaremos por los puntos que la conforman de la siguiente manera:

$$\mathfrak{R} = \{p_0, \dots, p_n; E\} \tag{1.7}$$

Donde E representa el último punto al que llamaremos punto unidad.

Definición 1.4.7 (Coordenadas Homogéneas Respecto de una Referencia \mathfrak{R}). Dado un punto proyectivo $p \in \mathbb{P}(E)$ y una referencia proyectiva \mathfrak{R} , se dice que $p = (x_0 : \cdots : x_n)_{\mathfrak{R}}$ si, para cualquier elección de u (representante del rayo p) y cualquier elección de base asociada \mathcal{B} a \mathfrak{R} , se tiene que:

$$u = \lambda(x_0, \dots, x_n)_{\mathcal{B}}$$

Es evidente, por lo visto en la sección 1.4.1 y en el teorema 1.4.2, que la definición 1.4.7 es sólida.

1.5. Cambios de Referencia Proyectiva

POSPUESTO HASTA QUE LO DEMOS EN CLASE!!!

1.6. Problemas

Problema 1.1. ¿Cuál es el menor número de variedades proyectivas de dimensión 3 necesarias para generar una de dimensión 11? ¿Y para generar una de dimensión 8?

Problema 1.2. Sea $\mathfrak{R} := \{a_0, a_1, a_2; a_3\}$ una referencia proyectiva de \mathbb{P}^2 . Calcular la matriz de cambio de referencia entre dos reordenaciones cualesquiera de \mathfrak{R} .

Capítulo 2

Dualidad

Hasta el momento hemos conseguido establecer relaciones sólidas entre espacios vectoriales y espacios proyectivos. Relaciones que engloban tanto bases como subespacios, coordenadas o dimensiones. Así, si se quiere tratar cierto problema referente a estos conceptos en el espacio proyectivo, siempre será posible trasladarnos al territorio conocido de espacios vectoriales, y resolverlo allí. Y, como no podía ser de otra manera, esto también ocurre con el espacio dual.

Es vital entender la relación que existe entre el espacio dual y el espacio proyectivo dual, pues el procedimiento para dar coordenadas de subespacios proyectivos se basa en esta relación. Pero antes de nada, hagamos un pequeño repaso del espacio dual y sus propiedades.

Si su conocimiento sobre espacio dual anda escaso, y desconoce alguno de los resultados aquí mencionados, se recomienda al lector echar un vistazo al apéndice A.

2.1. Dualidad en espacios vectoriales

Definíamos el espacio vectorial dual E^* como el conjunto de todas las formas lineales que nacen en E y mueren en $\mathbb K$

$$E^* = \{\alpha : E \to \mathbb{K} \mid \alpha \text{ es lineal }\} = Hom_{\mathbb{K}}(E, \mathbb{K})$$
(2.1)

2.1.1. Formas Lineales e Hiperplanos

Antes de comenzar, fijemos una base \mathcal{B} de E. Asimismo fijamos la base $\{1\}$ de \mathbb{K} . Es claro que una forma lineal $h \in E^*$, tiene por matriz asociada cierta matriz $1 \times n$, a la que denotaremos símplemente M.

Como ya sabemos, para cada vector $u \in E$, el valor h(u) viene dado por:

$$h(u) = MX$$

Siendo X la matriz columna compuesta por las coordenadas de u en la base \mathcal{B} . Es decir, la expresión anterior no es más que el producto de una matriz fila por una matriz columna, desarrollémoslo:

$$h(u) = (h(e_1) \quad \cdots \quad h(e_n)) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = h(e_1)u_1 + \cdots + h(e_n)u_n$$

Como sabemos, el kernel, o núcleo, de una aplicación lineal cualquiera, es un subespacio vectorial del espacio de donde nace.

Refrescando brevemente la fórmula de Grassmann para aplicaciones lineales:

$$\dim(\ker(h)) + \dim(\operatorname{im}(h)) = \dim(E)$$

A no ser que h sea la aplicación idénticamente nula, se tiene que $\dim(\operatorname{im}(h)) = 1$, y, por ende, la dimensión del kernel es n-1. Equivalentemente, $\ker(h)$ es un hiperplano de E. Y, por ende, tendrá ciertas ecuaciones cartesianas, en concreto una ecuación cartesiana, por ser $1 = \operatorname{codim}(\ker(h))$.

Pero esta ecuación cartesiana salta a la vista. No es otra que:

$$h(e_1)u_1 + \dots + h(e_n)u_n = 0$$

Esto es evidente ya que esa es la definición del núcleo de h. El conjunto de aquellos vectores que, pasados por h, se anulan.

Veamos ahora que, todo hiperplano H de E, está asociado a alguna forma lineal h de E^* . El recíproco ya lo hemos visto, ya que el núcleo de toda forma lineal no nula es un hiperplano. En términos de biyecciones:

Lema 2.1.1 (Pseudolema de la Correspondencia). La aplicación:

$$E^* \to \mathcal{H}$$
$$h \mapsto \ker(h)$$

es sobreyectiva.

 \mathcal{H} denota el conjunto de los hiperplanos de E.

Demostración. Dado un hiperplano H, basta con deducir una ecuación cartesiana suya. Que será de la forma $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$. A partir de aquí, basta con construir la forma lineal cuya matriz asociada es:

$$(\alpha_1 \quad \cdots \quad \alpha_n)$$

En efecto, el kernel de dicha aplicación viene dado por una ecuación lineal homogénea que coincide con la ecuación cartesiana de H.

Sin embargo, la aplicación del lema 2.1.1 no es biyectiva. Dado un hiperplano H existen infinitud de formas lineales cuyo núcleo es H. Por ende, ahora nos interesa encontrar relaciones entre las formas lineales con idéntico núcleo.

Lema 2.1.2 (Lema de la Correspondencia). Todas las formas lineales asociadas a un mismo hiperplano H son múltiplos entre si. En términos de aplicaciones:

$$\mathbb{P}(E^*) \to \mathcal{H}$$
$$[h] \mapsto \ker(h)$$

es biyectiva. Es decir, los hiperplanos de E están en biyección con las rectas vectoriales de E*.

Demostración. Sea un hiperplano H, podemos escoger una ecuación cartesiana suya y fabricar, como hicimos en el lema 2.1.1 una forma lineal cuyo núcleo tenga la misma ecuación cartesiana que H. Ahora, si cogemos una ecuación cartesiana de H equivalente a la primera que escogimos, es decir, con el mismo conjunto de soluciones, o lo que es lo mismo, una ecuación que sea múltiplo de la primera, fabricaremos una forma lineal que será múltiplo de la primera.

2.1.2. Dualidad Canónica

En esta sección tratamos de generalizar lo dicho en el caso anterior. Es decir, trataremos de identifiar variedades lineales arbitrarias con variedades lineales del dual correspondiente.

En el caso de los hiperplanos, los identificábamos con el conjunto de las formas lineales cuyo núcleo era dicho hiperplano. Dicho de otra forma, el conjunto de las aplicaciones lineales que anulaban todos los vectores del hiperplano.

Siguiendo esta idea, la definimos en un ámbito más general. Para ello echamos mano del anulador. Recordemos la siguiente definición

Definición 2.1.1 (Anulador de un subespacio vectorial). Sea $W \subset E$ subespacio vectorial de E, se define el anulador de W como el conjunto

$$W^{\perp} := \{ \alpha \in E^* \mid \alpha(u) = 0 \ \forall u \in W \} = \{ \alpha \in E^* \mid W \subset ker(\alpha) \}$$
 (2.2)

siendo este a su vez un subespacio vectorial de E^* .

Intentemos reeditar el lema de la correspondencia del apartado anterior, tratando de identificar a cada subespacio de E con su anulador correspondiente.

Lema 2.1.3 (Lema de la Correspondencia). Los subespacios de E están en biyección con los subespacios de E^* de la siguiente manera:

$$U \to U^*$$

 $U \mapsto U^{\perp}$

Donde \mathcal{U} y \mathcal{U}^* denotan el conjunto de los subespacios de E y E^* respectivamente.

Demostración. Para la sobreyectividad basta ver que todo subespacio W de dimensión r de E^* es el anulador de un cierto subespacio U.

Buscamos el probar que el conjunto de vectores de E que son anulados por todas las formas lineales de W es un subespacio vectorial de E.

Para verlo, notamos que W tendrá una cierta base compuesta de r formas lineales. Esto tiene importancia, ya que cada vector que sea anulado por todas las formas lineales de la base, también lo será, por linealidad, por todas las aplicaciones de W.

Dicho lo cual, tenemos que:

$$W = \mathcal{L}(f_1, \ldots, f_r)$$

Dichas formas lineales tendrán ciertas matrices asociadas:

$$f_i \equiv \begin{pmatrix} a_1^i & \dots & a_n^i \end{pmatrix}$$

Sabemos que, dado un vector $x = (x_1, \dots, x_n)_{\mathcal{B}}$, su valor por f_i viene dado por la ecuación:

$$f_i(x) = a_1^i x_1 + \dots + a_n^i x_n$$

Así, pues el conjunto de los vectores tales que son anulados por las formas lineales de W es el conjunto de vectores que cumplen las ecuaciones:

$$\begin{cases} a_1^1 x_1 + \dots + a_n^1 x_n = 0 \\ \vdots \\ a_1^r x_1 + \dots + a_n^r x_n = 0 \end{cases}$$

Estas ecuaciones pueden interpretarse por las ecuaciones cartesianas de cierto subesacio U de dimensión n-r cuyo anulador es precisamente W.

Lo anterior también prueba la inyectividad.

Una vez probada la biyectividad, es posible definir el anulador de un subespacio vectorial del espacio dual.

Definición 2.1.2 (Anulador dual). Sea $W^* \subset E^*$ subespacio vectorial del dual E^* , se define el anulador de W^* como el conjunto

$$W^{*\perp} := \{ u \in E \mid \beta(u) = 0 \ \forall \beta \in W^* \}$$
 (2.3)

siendo a su vez un subespacio vectorial de E.

Por tanto, cuando nos encontramos en el espacio vectorial E, buscamos las formas lineales que se anulan en los vectores de nuestro subespacio. Sin embargo, cuando nos encontramos en el espacio dual E^* hacemos justo lo contrario, buscamos los vectores que anulan las formas lineales de nuestro subespacio dual. Es claro que esta definición no es más que la imagen de la aplicación inversa de la biyección del lema 2.1.3. Por tanto, se deduce inmediatamente que

$$(W^{\perp})^{\perp} = W \tag{2.4}$$

independientemente de si $W \subset E$ o $W \subset E^*$.

Obsérvese que hemos probado algo bastante importante además de lo queríamos probar en un principio, y es que, las dimensiones de un subespacio y su anulador suman la dimensión del espacio total, es decir:

$$\dim(U) + \dim(U^{\perp}) = \dim(E) \tag{2.5}$$

Evidentemente, debido a la biyectividad del lema 2.1.3 se tiene que

$$\dim(U^*) + \dim(U^{*\perp}) = \dim(E^*)$$

De esto se desprenden muchas propiedades muy útiles, tal y como muestra la siguiente proposición.

Proposición 2.1.4 (Propiedades de la Dualidad). Se cumplen las siquientes propiedades:

1. Los contenidos se invierten al dualizar. Es decir:

$$W \subset U \Leftrightarrow U^{\perp} \subset W^{\perp}$$

2. Las sumas se convierten en intersecciones al dualizar:

$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$

3. Las intersecciones se convierten en sumas:

$$(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$$

Demostración. PENDIENTE

- 1. \Longrightarrow Sea $\alpha \in U^{\perp}$ cualquiera. Esto implica que $\alpha(u) = 0$ para todo $u \in U$. Como $W \subset U$ en concreto para todos los vectores $w \in W$ se tiene que $\alpha(w) = 0$. Por tanto $\alpha \in W^{\perp}$.
 - \sqsubseteq Sea $w \in W = (W^{\perp})^{\perp}$. Esto implica que $\alpha(w) = 0 \ \forall \alpha \in W^{\perp}$. Como $U^{\perp} \subset W^{\perp}$ se tiene que $\beta(w) = 0$ para todo $\beta \in U^{\perp}$. Esto implica, por la definición 2.1.2 que $w \in (U^{\perp})^{\perp} = U$.

2.

3.

Todas estas propiedades, y otras derivadas de ellas, nos permiten "traducir" enunciados de problemas en espacio vectorial a espacio dual. Para ello es imprescindible saber si, que algo sea verdad en espacio vectorial implica que su "traducción" será verdad en el espacio dual y viceversa.

2.1.3. Principio de Dualidad

SON PÁRRAFOS INCONEXOS, REVISAR

Todo enunciado tiene un enunciado dual, y si es cierto uno es cierto el otro.

Como los espacios vectoriales E y E^* son isomorfos por tener la misma dimensión, todas las propiedades que sean ciertas en uno serán ciertas en el otro.

Todas las propiedades válidas en E^* , lo son en E aplicando la biyección de la dualidad canónica.ya que es un espacio vectorial.

Las propiedades de la dualidad canónica actúan como un diccionario que traduce los enunciados del espacio vectorial usual al espacio vectorial dual.

Ejemplo 2.1.1 (Principio de Dualidad). Sea un E un \mathbb{K} -espacio vectorial de dimensión 3.

Entonces, se tiene que dos rectas distintas generan un plano.

En efecto, esto puede demostrarse fácilmente mediante la fórmula de Grassmann.

Por el principio de dualidad, los respectivos anuladores de dichas dos rectas se intersecan en el anulador de un plano.

Traduciendo por la propiedad de las dimensiones complementarias:

Dos planos se intersecan en una recta.

Este último enunciado no hay que probarlo ya que es lo que se llama enunciado dual del primero, y por las propiedades anteriormente demostradas es trivialmente cierto.

La idea del principio de dualidad es que, demostrando un teorema, ya sea en el espacio habitual o en el espacio dual, obtenemos el teorema dual de forma automática y gratuita.

2.2. Dualidad en espacios proyectivos

Una vez repasados y ampliados los conceptos de espacio dual y anulador, pasemos a introducir el espacio proyectivo dual. Iremos adentrándonos en él poco a poco, hasta finalmente comprender su juego en la geometría proyectiva. Comencemos con una definición.

Definición 2.2.1 (Espacio proyectivo dual). Dado un espacio vectorial E y su correspondiente espacio proyectivo $\mathbb{P}(E)$, se llama *espacio proyectivo dual* de P al espacio proyectivo $\mathbb{P}(E^*)$ asociado al espacio vectorial dual E^* de E. Se denota por $\mathbb{P}(E^*)$. En el caso de ser $E = \mathbb{K}^{n+1}$, su espacio proyectivo dual se denota por \mathbb{P}^* .

Observación 2.2.2. Dado que el espacio dual E^* tiene la misma dimensión que E, si la dimensión es finita, esto implica que la dimensión del espacio proyectivo es la misma que la del espacio proyectivo dual

$$\dim(\mathbb{P}(E)) = \dim(\mathbb{P}(E^*))$$

2.2.1. Formas Lineales e Hiperplanos Proyectivos

Comenzamos este apartado recordando brevemente que los hiperplanos vectoriales son subespacios lineales de codimensión 1. Asimismo todo hiperplano proyectivo $H = \mathbb{P}(\hat{H})$ es la proyección de un hiperplano vectorial \hat{H}

$$\dim(E) - 2 = \dim(\mathbb{P}) - 1 = \dim(H) = \dim(\hat{H}) - 1 \Rightarrow \dim(\hat{H}) = \dim(E) - 1. \tag{2.6}$$

Recordemos también que todo hiperplano vectorial \hat{H} está en biyección con las formas lineales cuyo núcleo es el propio espacio vectorial \hat{H} , las cuales son múltiplos. Es decir, está en biyección con un punto del espacio proyectivo dual, un rayo de formas lineales.

Por tanto podemos intentar establecer también una biyección entre un hiperplano proyectivo H y dicho punto proyectivo [h], ya que H es la proyección de un hiperplano vectorial. Pero la forma lineal h no está bien definida en el espacio proyectivo $\mathbb{P}(E)$. Ello se debe a que puedo escoger dos vectores $u, \lambda u \in E$, que pertenecen al mismo punto en el espacio proyectivo, tales que sus imágenes no pertenecen al mismo rayo. Sin embargo, esto no puede ocurrir con aquellos que pertenezcan al núcleo de h. Por tanto los ceros de h sí están bien definidos en $\mathbb{P}(E)$. Dado que estos ceros son precisamente el espacio vectorial \hat{H} , no hay ningún problema en considerar el espacio proyectivo.

Surge así el siguiente lema, idéntico al lema 2.1.1.

Lema 2.2.1 (Lema de la Correspondencia proyectiva). La aplicación

$$\mathcal{H} \to \mathbb{P}(E^*)$$

 $H \to [h]$

es biyectiva. \mathcal{H} denota el conjunto de los hiperplanos proyectivos de $\mathbb{P}(E)$.

Demostración. El conjunto de los hiperplanos proyectivos de $\mathbb{P}(E)$ está en biyección con el conjunto de los hiperplanos vectoriales de E. Estos, a su vez, por el Lema de la Correspondencia, están en biyección con el espacio proyectivo dual, asociando a cada hiperplano vectorial \hat{H} el rayo de formas lineales que se anulan sobre él. Dado que la composición de biyecciones es biyección, queda demostrado que existe una aplicación biyectiva que asocia a cada hiperplano proyectivo $H = \mathbb{P}(\hat{H})$ el rayo de formas lienales cuyos ceros forman el hiperplano \hat{H} .

Entonces, dado un hiperplano proyectivo H, podemos escribirlo como

$$H = \mathbb{P}(\hat{H}) = \{ [u] \in \mathbb{P}(E) \mid h(u) = 0 \}$$
 (2.7)

2.2.2. Dualidad Canónica

Se ha visto la importancia del espacio dual a la hora de caracterizar hiperplanos proyectivos. Al igual que se hizo en la sección anterior, buscamos ahora generalizar ese resultado, para poder identificar variedades proyectivas con variedades lineales del espacio dual proyectivo.

Recordemos que, dada una variedad lineal, esta estaba en biyección con su anulador, el cual es un subespacio vectorial de E^* . Al igual que hicimos con hiperplanos trataremos de trasladar esta biyección entre variedades de un espacio vectorial y su dual, a una biyección entre variedades de un espacio proyectivo y su dual.

Lema 2.2.2 (Lema de la Correspondencia Proyectiva). La aplicación

$$\mathcal{X} \to \mathcal{X}^*$$

$$X \to X^* = \mathbb{P}(\hat{X}^\perp)$$

donde \mathcal{X} y \mathcal{X}^* denotan el conjunto de las variedades de $\mathbb{P}(E)$ y $\mathbb{P}(E^*)$ respectivamente, es biyectiva.

Demostración. El conjunto de las variedades de $\mathbb{P}(E)$ está en biyección con los subespacios vectoriales de E. Estos, a su vez, por el lema 2.1.3 (Lema de la Correspondencia), están en biyección con su anulador \hat{X}^{\perp} . Al ser este un subespacio vectorial del espacio dual E^* , de nuevo podemos establecer una biyección entre \hat{X}^{\perp} y las variedades de $\mathbb{P}(E^*)$, que asocia a cada subespacio su correspondiente proyección $X^* = \mathbb{P}(\hat{X}^{\perp})$. Dado que la composición de biyecciones es biyección, queda demostrado que existe una aplicación biyectiva que asocia a cada variedad proyectiva X la proyección de su anulador X^* .

Dada una variedad proyectiva X, llamaremos dual de la variedad a X^* .

Obsérvese que, lo que estamos haciendo, es identificar cada variedad proyectiva $X = \mathbb{P}(\hat{X})$ con los rayos de las formas lineales que pertenecen al anulador de \hat{X} . Dado que un subespacio vectorial tiene tantas ecuaciones cartesianas como formas lineales independientes hay en su anulador, es fácil hacer esta identificación. Un punto del espacio proyectivo, por ejemplo, se identifica con dos elementos del dual linealmente independientes, es decir, un plano, ya que el subespacio del que es proyección es una recta, la cual posee dos ecuaciones cartesianas.

Por supuesto, el hiperplano es un caso particular de esta caracterización, en la que solo hay una ecuación cartesiana y por tanto la variedad proyectiva se identifica con un único punto en el espacio proyectivo dual. Así

$$H^* = \mathbb{P}(\hat{H}^\perp) = \mathbb{P}(\{h \in E^* \mid h(u) = 0 \ \forall u \in \hat{H}\}) = [h]$$
 (2.8)

Las propiedades que se desprendían del Lema de la Correspondencia para espacios vectoriales, se dan también entre variedades proyectivas, como muestra la siguiente proposición.

Proposición 2.2.3 (Propiedades de la Dualidad Proyectiva). Sea E un espacio vectorial y su correspondiente espacio proyectivo $\mathbb{P}(E)$. Sean $X,Y \subset \mathbb{P}(E)$ variedades proyectivas. Se cumple

- 1. Si $X \subset Y$, entonces $Y^* \subset X^*$
- 2. $(X \cap Y)^* = \mathcal{V}(X^*, Y^*)$
- 3. $V(X,Y)^* = X^* \cap Y^*$
- 4. $\dim(X) + \dim(X^*) = \dim(\mathbb{P}) 1$

Demostración. Sean $X = \mathbb{P}(\hat{X})$ e $Y = \mathbb{P}(\hat{Y})$ variedades proyectivas.

- 1. Si $X \subset Y$, entonces $\hat{X} \subset \hat{Y}$. Por la proposición 2.1.4 esto implica que $\hat{Y}^{\perp} \subset \hat{X}^{\perp}$, y por tanto $Y^* \subset X^*$.
- 2. Por el lema 1.2.2 se tiene que $X \cap Y = \mathbb{P}(\hat{X} \cap \hat{Y})$. Por tanto $(X \cap Y)^* = \mathbb{P}((\hat{X} \cap \hat{Y})^{\perp})$. Aplicando la proposición 2.1.4 se tiene que $\mathbb{P}((\hat{X} \cap \hat{Y})^{\perp}) = \mathbb{P}(\hat{X}^{\perp} + \hat{Y}^{\perp}) = \mathcal{V}(X^*, Y^*)$.
- 3. Se tiene que $\mathcal{V}(X,Y) = \hat{X} + \hat{Y}$. Por tanto $\mathcal{V}(X,Y)^* = \mathbb{P}((\hat{X} + \hat{Y})^{\perp})$. Por la proposición 2.1.4 sabemos que $\mathbb{P}((\hat{X} + \hat{Y})^{\perp}) = \mathbb{P}(\hat{X}^{\perp} \cap \hat{Y}^{\perp})$. Atendiendo de nuevo al lema 1.2.2 queda que $\mathbb{P}(\hat{X}^{\perp} \cap \hat{Y}^{\perp}) = \mathbb{P}(\hat{X}^{\perp}) \cap \mathbb{P}(\hat{Y}^{\perp}) = X^* \cap Y^*$
- 4. Por la ecuación (2.5) se tiene que $\dim(\hat{X}) + \dim(\hat{X}^{\perp}) = \dim(E) = \dim(\mathbb{P}(E)) + 1$. Teniendo en cuenta la definición 1.3.1 queda

$$\dim(X) + \dim(X^*) = \dim(\hat{X}) - 1 + \dim(\hat{X}^{\perp}) - 1 = \dim(\mathbb{P}(E)) + 1 - 2 = \dim(\mathbb{P}(E)) - 1$$

Observación 2.2.3. El lema anterior confirma que el dual de un hiperplano proyectivo es un punto. En efecto supongamos que $\dim(E) = m + 1$, entonces

$$\dim(X) + \dim(X^*) = m - 1 + \dim(X^*) = \dim(\mathbb{P}(E)) - 1 = m - 1 \Leftrightarrow \dim(X^*) = 0$$

2.2.3. Principio de Dualidad para espacios proyectivos

Comencemos con una definición.

Definición 2.2.4. Sea \mathcal{P} una proposición relativa a los subespacios de un espacio proyectivo y formulada en términos de intersecciones, variedades generadas por uniones, contenidos y dimensiones de estos subespacios. Se llama *proposición dual* \mathcal{P}' a la que se obtiene a partir de \mathcal{P} sustituyendo los términos anteriores por sus duales.

Observemos que sustituir un término por su dual no es más que aplicar la proposición 2.2.3 en el sentido adecuado. Por ejemplo, hallemos la proposición dual de "en un plano proyectivo real toda recta contiene al menos tres puntos diferentes". Dado que un plano proyectivo real \mathbb{P}^2 tiene dimensión 2, el dual de una recta es un punto y el de un punto una recta

$$\dim(X) + \dim(X^*) = 1.$$

Por tanto su proposición dual será "en un plano proyectivo real por todo punto pasan al menos tres rectas diferentes".

Una vez definido este concepto, podemos enunciar un teorema de gran importancia.

Teorema 2.2.4 (Principio de Dualidad). Una proposición \mathcal{P} relativa a variedades proyectivas de espacios de dimensión finita n sobre un cuerpo \mathbb{K} es cierta si y solo si lo es su proposición dual \mathcal{P}'

Demostración. PENDIENTE Sea P un espacio proyectivo de dimensión n sobre \mathbb{K} y sea una proposición \mathcal{P} cierta en P^* . Tenemos que demostrar que \mathcal{P}' es cierta. Esta última se obtiene de sustituir las intersecciones, variedades generadas por uniones, contenidos y dimensiones de estos subespacios que haya en \mathcal{P} por sus duales. Por lo que si estos eran ciertos en P^* , al pasar a su dual, seguirán siendo ciertos en su espacio dual, es decir en $P^{**} = P$, donde se enuncia \mathcal{P}' . Por lo que \mathcal{P}' es cierta.

El recíproco es análogo.

La gran importancia de este teorema radica en que permite obtener, sin necesidad de demostración, un nuevo teorema a partir de cada teorema conocido. En efecto dado un teorema, este constituye una proposición \mathcal{P} , y por el principio de dualidad, automáticamente su proposición dual \mathcal{P}' es cierta, es decir, el dual del teorema, es cierto.

NO SABÍA MUY BIEN DONDE PONER EL PRINCIPIO ESTE, SI DELANTE O DETRÁS DEL EJEMPLO, LO HE PUESTO DELANTE PERO PUEDES CAMBIARLO DONDE TE PLAZCA

Todas estas caracterizaciones no serían de ninguna utilidad si no nos permitiesen resolver problemas de espacio proyectivo con mayor facilidad. Hasta ahora no hemos visto ninguna aplicación. Simplemente hemos ido explicando como se hace ese paso al espacio proyectivo dual, insistiendo una y otra vez en su importancia. Pero ¿realmente es tan importante? ¿No podemos simplemente resolver los problemas en el espacio proyectivo o echando mano del espacio vectorial? Es posible, sí, pero muchas veces hacer la asociación entre una variedad proyectiva y su dual, es decir la proyección del anulador, facilita enormemente la resolución. Veamos a continuación un ejemplo.

Ejemplo 2.2.1. Sea $\mathbb{P}^3 = \mathbb{P}(\mathbb{R}^4)$. Sean dos rectas del espacio proyectivo $r_1, r_2 \in \mathbb{P}^3$, las cuales no se cortan, y un punto $p \in \mathbb{P}^3$ que no pertenece a ninguna de las rectas. Demuestre que existe una única recta $r \in \mathbb{P}^3$ que pasa por p y corta a ambas rectas r_1, r_2 .

Según el enunciado del problema tenemos dos rectas $r_1, r_2 \in \mathbb{P}^3$ y un punto $p \in \mathbb{P}^3$ tales que $r_1 \cap r_2 = \emptyset$ y $p \notin r_1 \cup r_2$. Debemos probar que existe una única recta $r \in \mathbb{P}^3$ tal que $p \in r$, $r_1 \cap r \neq \emptyset$ y $r_2 \cap r \neq \emptyset$. Resolvamos el problema primero sin dualizar, y luego pasando al dual.

1. Tomemos la variedad proyectiva engendrada por r_1 y p, la cual es un plano ya que

$$\dim(\mathcal{V}(p, r_1)) = \dim(p) + \dim(r_1) - \dim(r_1 \cap p) = 0 + 1 - (-1) = 2$$

Podemos aplicar el corolario 1.3.2 al plano $\mathcal{V}(p,r_1)$ y la recta r_2 , según el cual una recta y un hiperplano siempre se cortan. Antes, y para obtener el resultado deseado, debemos asegurarnos de que $r_2 \not\subset \mathcal{V}(p,r_1)$, pues en caso contrario existirían más de un punto de corte entre la recta y el hiperplano y r no sería única. Es fácil comprobar que esto no ocurre, ya que si $r_2 \subset \mathcal{V}(p,r_1)$, entonces $r_1 \cap r_2 \neq \emptyset$, llegando así a un absurdo. Existirá por tanto un único punto $q \in r_2 \cap \mathcal{V}(p,r_1)$. Definimos entonces la recta r como la variedad engendrada por los puntos p y q, pudiéndose comprobar con la fórmula de las dimensiones que efectivamente es una recta. Por un lado r es única, ya que lo es el punto q. Además $r_1 \cap r \neq \emptyset$ y $r_2 \cap r \neq \emptyset$, ya que $q \in r_2 \cap \mathcal{V}(p,r_1)$. Queda así demostrado el ejercicio.

2. Dado que es la primera vez que dualizamos un problema, hagámoslo paso a paso. Para empezar, y atendiendo a la proposición 2.2.3, la ecuación de las dimensiones que caracteriza la dualización es, en nuestro caso,

$$\dim(X) + \dim(X^*) = 2.$$

Por tanto el dual de un punto es un plano del espacio proyectivo dual y el dual de una recta, una recta. Tenemos entonces que p^* es un plano y r_1^*, r_2^* son rectas. Por otro lado que $p \in r$ implica, por la proposición 2.2.3, que $r^* \subset p^*$. De igual forma que $p \notin r_1 \cup r_2$ implica que $r_1^* \not\subset p^*$ y $r_2^* \not\subset p^*$. Además si $r_1 \cap r_2 = \emptyset$, entonces $r_1^* \cap r_2^* = \emptyset$. En caso contrario existiría un plano dual π^* tal que $r_1^* \subset \pi^*$ y $r_2^* \subset \pi^*$. Utilizando de nuevo la fórmula de las dimensiones y la proposición 2.2.3, esto equivaldría a decir que existe un punto q tal que $q \in r_1$ y $q \in r_2$, llegando así a un absurdo.

Por tanto el enunciado del problema se traduce en, dadas dos rectas $r_1^*, r_2^* \in \mathbb{P}^{3^*}$ y un plano $p^* \in \mathbb{P}^{3^*}$ tales que $r_1^* \cap r_2^* = \emptyset$, $r_1^* \not\subset p^*$ y $r_2^* \not\subset p^*$; demostrar que existe una única recta r^* tal que $r_1^* \cap r^* \neq \emptyset$, $r_2^* \cap r^* \neq \emptyset$ y $r^* \subset p^*$.

Dado que las rectas r_1^* , r_2 no están contenidas en el plano p^* , cortarán con él en dos puntos únicos. Es claro que la recta engendrada por esos dos puntos es única y cumple las condiciones requeridas.

Observación 2.2.5. Este enunciado es falso en espacio afín. Podemos encontrar dos rectas paralelas, r_1 y r_2 , y un punto p, que cumplan las hipótesis del enunciado, para los cuales no existe ninguna recta r; o bien para los cuales existan infinitas rectas r, tales que $p \in r$, $r_1 \cap r \neq \emptyset$ y $r_2 \cap r \neq \emptyset$. Ello se debe a que en el espacio afín dos rectas paralelas no se cortan, mientras que en el espacio proyectivo sí (en el infinito), y por lo tanto no cumplen las hipótesis del enunciado.

Observación 2.2.6. Una vez resuelto este ejercicio podemos observar diferencias en los métodos de resolución. Mientras que en el primer caso hemos tenido que construir la recta sin mucha idea de a donde nos llevaría e ir comprobando que cumple los requisitos, al traducir el problema al espacio dual, la recta ha surgido por sí sola, como consecuencia de las hipótesis del enunciado. Es cierto que, debido a la sencillez de este ejercicio, la diferencia en la dificultad de resolución no es tan clara. Sin embargo, es posible darse cuenta de que, en problemas más complicados, el espacio proyectivo dual nos da un camino más rápido. La única dificultad radica en traducir bien los enunciados.

Capítulo 3

Ecuaciones de rectas y planos proyectivos (por ejemplo)

Nuestra tarea aquí es tratar de, dado un subespacio proyectivo, por ejemplo una recta o un plano, dar una referencia proyectiva de ese subespacio mediante la cual hacer una descripción explícita de sus elementos. Comenzaremos estudiando el caso más sencillo, las rectas proyectivas.

3.1. Rectas Proyectivas

Definición 3.1.1 (Recta en $\mathbb{P}(E)$). Se define recta proyectiva que pasa por los puntos proyetivos P y Q como la variedad engendrada por dichos puntos. A dicha recta se la denomina recta PQ.

3.1.1. Ecuación paramétrica

Sean P = [u] y Q = [v] dos puntos proyectivos, vamos a describir los elementos de la recta PQ, que no es otra cosa que $\mathcal{V}(P,Q)$.

Para describir los elementos de esta variedad (o de cualquiera) deberemos dar una referencia en función de la cual *coordenar* todos los puntos de la misma.

Como P y Q son dos puntos proyectivos distintos, los vectores u, v son linealmente independientes, formando una base de la variedad lineal $\mathcal{L}(u, v)$.

Para construir una referencia bastaría tomar los puntos P, Q y añadirle como punto unidad un tercer punto cuyo representante pueda ser escrito como combinación lineal de u y v con todos los coeficientes no nulos, por ejemplo [u+v].

De esta forma tenemos la referencia:

$$\mathfrak{R} = \{P, Q; [u+v]\}$$

Por el método de construcción de bases asociadas tenemos que la base asociada a esta referencia es $\mathcal{B} = \{u, v\}$. Como sabemos, todo punto $p \in \mathcal{V}(P, Q)$ es un rayo representado por un vector de $\mathcal{L}(u, v)$. Es decir, un vector $w = \alpha u + \beta v$ con alguno de los coeficientes no nulo.

Esto quiere decir que todo punto de la recta PQ es un rayo de la forma:

$$[\alpha u + \beta v] = (\alpha : \beta)$$

Sin embargo, podemos reducir esto aún un poco más, cambiemos el representante del rayo dividiendo todo por β .

$$\left[\frac{\alpha}{\beta}u + v\right] : \stackrel{\text{not.}}{=} [\theta u + v]$$

De esta forma la recta ya no queda descrita por dos coordenadas homogéneas α y β como antes, sino por una única coordenada θ a la que llamaremos no homogénea.

Sin embargo, hemos de tener cuidado, pues, como más de uno ya se habrá dado cuenta, es posible que en algunos casos β se anule, por ende, θ no estaría definida. Como este caso se corresponde con un único punto, y este es el punto P, diremos que una recta queda descrita por lo siguiente:

$$PQ: \{ [\theta u + v] \mid \theta \in \mathbb{K} \} \cup \{ P \}$$

$$(3.1)$$

De esta forma, cuando $\beta = 0$ podemos decir que $\theta = \infty$, y así $\theta \in \mathbb{K} \cup \{\infty\}$, que podemos identificar con \mathbb{P}^1 . Describiremos pues la recta como

$$PQ: \{ [\theta u + v] \mid \theta \in \mathbb{P}^1 \}$$
 (3.2)

donde se entiende que si $\theta = \infty$ nos estamos refiriendo al punto P.

Dados los vectores $u=(u_0,u_1,\cdots,u_n)$ y $v=(v_0,v_1,\cdots,v_n)$ si los sustituimos en la ecuación (3.2) obtenemos

$$PQ : \{ [\theta(u_0, u_1, \cdots, u_n) + (v_0, v_1, \cdots, v_n)] \mid \theta \in \mathbb{P}^1 \} = \{ [(\theta u_0 + v_0, \theta u_1 + v_1, \cdots, \theta u_n + v_n)] \mid \theta \in \mathbb{P}^1 \}$$

que se puede escribir a su vez como

$$PQ: \{(\theta u_0 + v_0 : \theta u_1 + v_1 : \dots : \theta u_n + v_n) \mid \theta \in \mathbb{P}^1\}$$
 (3.3)

denominada ecuación paramétrica de la recta. Así, la recta proyectiva está formada por todos aquellos puntos proyectivos que cumplan dicha ecuación, es decir, los que se obtienen al ir variando el valor de θ .

Ejemplo 3.1.1 (Parametrización de una Recta Concreta). Dados los puntos P = (1 : 2 : -1) y Q = (0 : 1 : 3) se nos pide parametrizar la recta PQ. Siguiendo los pasos expuestos en este apartado, la ecuación paramétrica de la recta PQ queda:

$$PQ: \{(\theta: 2\theta + 1: -\theta + 3) \mid \theta \in \mathbb{P}^1\}$$

donde, cuando $\theta = \infty$, nos referimos al punto P = (1:2:-1).

Imaginemos que ahora queremos hacernos una idea de donde se encuentra esa recta en \mathbb{R}^3 , es decir, queremos "pintar" los rayos de esa variedad proyectiva de dimensión uno. Para ello, debemos escoger un representante afín, y los rayos serán las rectas que vayan desde el (0,0,0) hasta los vectores representantes de la recta proyectiva en ese plano. Así, además, determinamos donde se encuentran los puntos del infinito del espacio proyectivo. Si elegimos el plano z=1, entonces los puntos del infinito estarán en el plano xy. Para poder representar los rayos de nuestra recta proyectiva debemos determinar su punto de corte con el plano z=1. Por ello dividimos entre z. Obtenemos así las ecuaciones

$$x = \frac{\theta}{-\theta + 3}, \quad y = \frac{2\theta + 1}{-\theta + 3}, \quad z = 1$$

siendo los puntos de la recta proyectiva los rayos engendrados por los vectores con esas coordenadas. Nótese que hay dos indeterminaciones. Cuando $\theta = \infty$, como ya dijimos, nos referimos al punto P, que al dividir entre z nos da el vector representante (-1, -2, 1). Cuando $\theta = 3$, entonces z = 0 y nos vamos al plano xy, al infinito.

3.1.2. Ecuación implícita

EXPLICAR MEJOR

Durante este apartado nos situaremos en el plano proyectivo \mathbb{P}^2 , donde las rectas son hiperplanos. Recordemos que toda recta, variedad proyectiva de dimensión uno, es proyección de un subespacio vectorial de dimensión 2, un plano. Dado que en este caso ese plano pertenece a \mathbb{R}^3 , será un hiperplano. En realidad esto ya era sabido, todo hiperplano proyectivo es proyección de un hiperplano vectorial. Pero, además, que el plano, cuya proyección es la recta proyectiva, sea un hiperplano vectorial implica que tiene una, y solo una, ecuación implícita, que cumplen todos los

vectores pertenecientes al plano. Por tanto, todos los representantes de los puntos de la recta proyectiva, cumplen también dichas ecuaciones. De esta forma, asignamos a la recta de \mathbb{P}^2 la ecuación implícita del plano vectorial del que es proyección

$$ax + by + cz = 0$$

con a, b, c no todos nulos.

Veamos pues, varias formas de obtener la ecuación implícita de una recta proyectiva que pasa por dos puntos, es decir, de hallar esos coeficientes.

Sean entonces $P = [u] = [(u_1, u_2, u_3)]$ y $Q = [v] = [(v_1, v_2, v_3)]$ dos puntos proyectivos, y sea la ecuación implícita de la recta PQ

$$ax + by + cz = 0$$

donde a, b, c son coeficientes a determinar. Ya vimos que el conjunto

$$\mathfrak{R} = \{P, Q; [u+v]\}$$

es una referencia proyectiva de la recta PQ, cuya base asociada es $\mathcal{B} = \{u, v\}$.

Dado que $P,Q \in PQ$, la primera forma de hallar esos coeficientes consiste simplemente en sustituir en x,y,z de la ecuación implícita las coordenadas de un vector representante de P y de uno de Q

$$au_1 + bu_2 + cu_3 = 0$$

$$av_1 + bv_2 + cv_3 = 0$$
(3.4)

y resolver el sistema de ecuaciones resultante.

Sin embargo, este método puede resultar un poco tedioso. Observemos que, aunque en el espacio proyectivo no está definido el producto escalar, la primera ecuación del sistema podría identificarse con el producto escalar entre el vector (a, b, c) y (u_1, u_2, u_3) . Al ser cero, esto implicaría que son perpendiculares. A partir de la segunda ecuación podemos deducir algo similar, que (a, b, c) es perpendicular al vector (v_1, v_2, v_3) .

De esta forma, el vector que debemos hallar es perpendicular a u y v. Por tanto nos basta con hallar un vector perpendicular a ambos para determinar los coeficientes de la ecuación implícita, pues es única salvo múltiplos?. Una forma rápida de hallar un vector (a,b,c) que cumpla esto es hacer el producto vectorial de u y v. Así los coeficientes serán el resultado de

$$(a,b,c) = u \times v = \begin{vmatrix} x & y & z \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (3.5)

por lo que la ecuación implícita de la recta vendrá dada por

$$(u \times v) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \tag{3.6}$$

3.1.3. Intersección de dos rectas proyectivas

Una vez que sabemos describir una recta proyectiva a través de sus ecuaciones, no está de menos calcular la intersección de dos rectas. Para ello, nos situamos de nuevo en el plano proyectivo \mathbb{P}^2 , debido a la facilidad con la que allí se opera, pero bien sería válido para cualquier espacio proyectivo.

Sean pues dos rectas proyectivas $r, r' \in \mathbb{P}^2$. Al igual que con la ecuación implícita de la recta, quizás la primera forma que a uno le viene a la mente para hallar la intersección de dos rectas es combinar sus ecuaciones implícitas y resolver el sistema resultante

$$ax + by + cz = 0$$
$$a'x + b'y + c'z = 0$$

Sin embargo, este método no es del todo práctico. Si nos paramos a reflexionar un momento sobre que debe cumplir la intersección, hallaremos formas mucho más fáciles de calcularla. Para

empezar la intersección de r y r' es un punto p del espacio proyectivo. Esto se debe a que en \mathbb{P}^2 los hiperplanos son rectas, y por tanto por el Corolario 1.3.2 la intersección de r y r' no puede ser vacía. Además, dicho punto pertenece tanto a r, como a r'. Por tanto, debe cumplir las ecuaciones de ambas rectas. Estas ecuaciones pueden ser tanto paramétricas como implícitas.

Si, por ejemplo, la recta r está descrita a través de su ecuación paramétrica, donde $[(u_0, u_1, u_2)]$ y $[(v_0, v_1, v_2)]$ son dos puntos de la recta

$$r: \{(\theta u_0 + v_0 : \theta u_1 + v_1 : \theta u_2 + v_2) \mid \theta \in \mathbb{P}^1\}$$

existirá un valor de θ tal que

$$(\theta u_0 + v_0 : \theta u_1 + v_1 : \theta u_2 + v_2) = p \tag{3.7}$$

Una vez hallado ese valor, queda hallado el punto p y con ello la intersección de ambas rectas. Si, por otro lado, la recta r' se describe a través de su ecuación implícita

$$a'x + b'y + c'z = 0$$

el punto p debe satisfacer dicha ecuación. Por tanto, podemos sustituir en la ecuación implícita de r', en vez de las coordenadas de un representante arbitrario del punto p, las del vector $(\theta u_0 + v_0, \theta u_1 + v_1, \theta u_2 + v_2)$. Así, resolviendo la ecuación

$$a'(\theta u_0 + v_0) + b'(\theta u_1 + v_1) + c'(\theta u_2 + v_2) = 0$$

obtenemos el valor de θ que cumple la ecuación (3.7), y con ello el punto p, que es la intersección de las rectas r y r'.

Supongamos ahora que ambas rectas vienen descritas por su ecuación implícita, como teníamos al principio, y deduzcamos otro método para hallar la intersección de r y r'. Al ser esta un punto $p = (p_0 : p_1 : p_2)$, podemos escoger un vector representante, por ejemplo (p_0, p_1, p_2) , y sustituirlo en ambas ecuaciones de tal forma que ambas deben cumplirse

$$ap_0 + bp_1 + cp_2 = 0$$

 $a'p_0 + b'p_1 + c'p_2 = 0$

Detengámonos un segundo y observemos la ecuación (3.4). Recordemos que en este caso las incógnitas son p_0, p_1, p_2 ; No se aprecia cierta similitud?. En efecto, en este caso el vector (p_0, p_1, p_2) hace el papel de (a, b, c). Si hacemos la misma interpretación, aunque no del todo correcta, de perpendicularidad a través del producto escalar, podemos afirmar que el vector que buscamos es perpendicular a los vectores $\vec{a} = (a, b, c)$ y $\vec{a}' = (a', b', c')$. Al igual que hicimos anteriormente, una forma rápida de hallar un vector perpendicular a otros dos, es hacer su producto vectorial. Por tanto, un vector representante del punto p viene dado por

$$(p_0, p_1, p_2) = \vec{a} \times \vec{a}' = \begin{vmatrix} x & y & z \\ a & b & c \\ a' & b' & c' \end{vmatrix}$$

Es decir, la intersección de las rectas r y r' es el punto

$$p = [(p_0, p_1, p_2)] = \vec{a} \times \vec{a}' \tag{3.8}$$

Es importante observar que para encontrar el punto de corte entre dos rectas de \mathbb{P}^2 se realiza la misma operación que para hallar los coeficientes de la ecuación implícita de la recta engendrada por dos puntos, correspondiente a la ecuación (3.5).

COMPLETAR

3.2. Planos Proyectivos

3.3. Haces...

Capítulo 4

Aplicaciones Proyectivas

En este capítulo vamos a tratar de extrapolar uno de los conceptos más centrales del álgebra lineal al contexto proyectivo. Tratamos de estudiar las aplicaciones entre espacios proyectivos cuyo comportamiento consideramos "bueno".

En el mundo lineal, estas aplicaciones eran los llamados homomorfismos entre espacios vectoriales o símplemente aplicaciones lineales. Aquí, en el mundo de los rayos, las llamaremos *aplicaciones proyectivas*.

4.1. Definición

Sean dos espacios proyectivos X e Y asociados a sendos espacios vectoriales, \widehat{X} e \widehat{Y} respectivamente.

Nuestro objetivo es definir una aplicación proyectiva entre dos espacios proyectivos a partir de una aplicación lineal entre sus respectivos espacios lineales de forma natural. Intentémoslo y veamos qué dificultades se nos presentan.

Sea $\hat{h}: \widehat{X} \to \widehat{Y}$ una aplicación lineal arbitraria. Lo deseable sería definir la aplicación proyectiva asociada a \hat{h} como aquella que, a cadaa rayo le asigna el rayo engendrado por la imagen de uno de sus representantes. Visto formalmente, si x = [u]:

$$X \xrightarrow{h} Y$$
$$x \mapsto \left[\widehat{h}(u) \right]$$

Este intento de definición tan intuitivo e inocente presenta dos problemas. El primero de ellos es que si $\hat{h}(u) = 0$ entonces el rayo $\left[\hat{h}(u)\right]$ no está definido.

Esto lo arreglamos de una forma natural, restringiendo el dominio de \hat{h} a los vectores de \hat{X} que no se anulan mediante \hat{h} . Es decir, ahora \hat{h} queda definida en $\hat{X} \setminus \ker (\hat{h})$.

Trasladando esta restricción al contexto proyectivo obtenemos este segundo intento de definición de aplicación proyectiva asociada a cierta aplicación lineal:

$$X \setminus \mathbb{P}\left(\ker\left(\widehat{h}\right)\right) \xrightarrow{h} Y$$

 $x \mapsto \left[\widehat{h}(u)\right]$

Antes de hacer algunas aclaraciones adicionales acerca de este primer problema que se nos ha presentado, demos una pequeña definición (por comodidad tipográfica).

Definición 4.1.1 (Centro). Se denomina *centro* de una aplicación \widehat{h} entre dos espacios lineales \widehat{X} e \widehat{Y} a la variedad proyectiva:

$$\mathcal{Z} \stackrel{\mathrm{not.}}{=} \mathbb{P}\left(\ker\left(\widehat{h}\right)\right)$$

Tras este breve inciso sobre la notación, veamos que, en efecto, hemos resuelto el problema que se nos planteaba, es decir, hemos eliminado del dominio todos los rayos que no tenían imagen definida. Si hubiera algún rayo con imagen no definida, alguno de sus representantes debería pertenecer al núcleo de \hat{h} (y por tanto todos). Pero esto no es posible ya que el rayo engendrado por este representante estaría en el centro de h.

El segundo problema que planteaba nuestra definición era saber si está bien definida. En efecto, siempre que definamos una aplicación y los elementos de nuestro conjunto de salida no tengan una representación única, debemos comprobar que la imagen de la función es independiente del representante escogido. En este caso es un juego de niños:

Sean [u'] = x = [u]. Es evidente que $u' = \lambda u$ para cierto λ no nulo. Entonces:

$$\left[\widehat{h}(u')\right] = \left[\widehat{h}(\lambda u)\right] = \left[\lambda \widehat{h}(u)\right] = \left[\widehat{h}(u)\right]$$

Para terminar la sección advertimos de que en algunos textos, a la hora de representar una aplicación proyectiva omiten (abusando de notación) especificar que al espacio de partida se le extrae el centro \mathcal{Z} .

4.2. Propiedades Elementales

4.3. Homografías

4.4. Proyecciones Cónicas

Dedicaremos esta sección al estudio de un tipo especialmente relevante de aplicaciones proyectivas no homográficas, las llamadas proyecciones cónicas.

Antes de lanzarnos al estudio general de estas aplicaciones presentemos un par de ejemplos que más adelante nos ayudarán a entender intuitivamente el por qué del apellido "cónicas" de estas aplicaciones.

Ejemplo 4.4.1 (Punto sobre Recta). En el plano proyectivo \mathbb{P}^2 consideramos un punto z y una recta Y (recordemos que es un subespacio proyectivo) tal que $z \notin Y$. En estas condiciones definimos la aplicación:

$$\mathbb{P}^2 \setminus \{z\} \xrightarrow{h} Y$$
$$x \mapsto h(x) = \mathcal{V}(x, z) \cap Y$$

No demostraremos que la aplicación del ejemplo 4.4.1 es, en efecto, una aplicación proyectiva, ya que al final de la sección daremos una demostración general para todas las proyecciones cónicas, de las que esta aplicación en concreto es un caso particular.

El ejemplo 4.4.1 se puede generalizar para dimensiones superiores, basta mantener que z sea un punto de \mathbb{P}^n e Y un hiperplano.

Ejemplo 4.4.2 (Punto sobre Hiperplano). En el plano proyectivo \mathbb{P}^n consideramos el punto z y el hiperplano Y tal que $z \notin Y$. Definimos la aplicación:

$$\mathbb{P}^n \setminus \{z\} \xrightarrow{h} Y$$
$$x \mapsto h(x) = \mathcal{V}(x, z) \cap Y$$

Otra generalización de los ejemplos anteriores es la siguiente (menos intuitiva y más dificil de ver):

Ejemplo 4.4.3. En el espacio proyectivo \mathbb{P}^3 se consideran las rectas l y l tales que $l \cap l' = \emptyset$. Definimos la aplicación:

$$\mathbb{P}^3 \setminus l \xrightarrow{h} l'$$
$$x \mapsto \mathcal{V}(x, l) \cap l'$$

Observamos simplemente que $\mathcal{V}(x,l) \cap l'$ siempre se corta con l en un punto (consecuencia inmediata de la fórmula de Grassmann).

Llegados a este punto, ha llegado la hora de definir proyección cónica en toda su generalidad.

Definición 4.4.1 (Proyección Cónica). Sean X un espacio proyectivo y Z e Y dos variedades proyectivas de X tales que:

- 1. $Z \cap Y = \emptyset$
- $2. \dim(Z) + \dim(Y) = \dim(X) 1$

Definimos la aplicación:

$$X \setminus Z \xrightarrow{h} Y$$
$$x \mapsto \mathcal{V}(x, Z) \cap Y$$

Automáticamente se nos presentan una serie de cuestiones que trataremos de responder a continuación:

- 1. ¿La intersección $\mathcal{V}(x,Z)\cap Y$ es siempre un único punto?
- 2. ightharpoonup ha bando de la constant de la c

Como diría Jack el Destripador, vayamos por partes:

Proposición 4.4.1 (Intersección Unipuntual). En las condiciones de la definición 4.4.1 la intersección $V(x, Z) \cap Y$ tiene dimensión nula. Es decir, es un punto proyectivo.

Demostraci'on.

4.5. Teorema de Desargues

Apéndice A

Álgebra Lineal

Este apéndice está especialmente pensado para los alumnos de los dobles grados, que, a fecha de escribir este texto, cursan la asignatura de geometría lineal y la de álgebra lineal con un año de separación.

Este hecho añade a la presente materia un plus de dificultad, pues hace echar mano constantemente de la bibliografía de primer curso, que, en muchas ocasiones, no es sufiente, por ejemplo en el estudio de la dualidad.

Algo que merece la pena recalcar es que aquí únicamente se incluyen los resultados más elementales acerca de dualidad, ya que sabemos por experiencia que los resultados más profundos se omiten en un primer curso de álgebra lineal (a pesar de ser harto necesarios aquí). Es por esta razón, no hacer visitar un apéndice al lector sin necesidad, que estos conceptos gozan de sección propia en el texto ordinario.

El objetivo de este anexo no es otro que recopilar los conceptos y resultados que consideramos totalmente imprescindibles para seguir el texto, no obstante, no pretende ser, ni mucho menos, tan completo o rico en ejemplos como otros títulos específicos de álgebra lineal que se recomiendan en la bibliografía.

A.1. Coordenadas en Espacios Vectoriales

El objetivo de esta sección es servir como pequeño área de repaso a la hora de entrar en conceptos íntimamente ligados con los cambios de base en espacios vectoriales. Un ejemplo claro de esto son los cambios de referencia proyectiva.

Sea E un \mathbb{K} -espacio vectorial de dimensión finita n.

Asimismo, consideraremos la base $\mathcal{B} := \{b_1, \dots, b_n\}$ de E.

Proposición A.1.1 (Escritura Única de un Vector). Dado un vector $u \in E$, este tiene una escritura **única** como combinación lineal de los vectores de la base \mathcal{B} .

Demostración. La existencia de esta escritura es evidente, por ser \mathcal{B} una base de E, y, por tanto, un sistema de generadores. En consecuencia, lo único que hay que probar es la unicidad de dicha combinación lineal. En efecto, supongamos que hubiera dos:

$$u = \alpha_1 b_1 + \dots + \alpha_n b_n = \beta_1 b_1 + \dots + \beta_n b_n$$

Pasando todo al segundo miembro y sacando factor común obtenemos:

$$(\alpha_1 - \beta_1)b_1 + \dots + (\alpha_n - \beta_n)b_n = 0$$

Como los vectores de la base son linealmente independientes, se tiene que todos los coeficientes deben ser nulos. Es decir:

$$\alpha_i - \beta_i = 0 \quad \forall i \in \{1, \dots, n\}$$

De donde se sigue la necesaria igualdad de ambas escrituras.

Observación A.1.1 (Coordenadas de un Vector Respecto de una Base). Es evidente que, fijada una base, todo vector queda caracterizado por su escritura como combinación lineal de los vectores de dicha base. Es por este motivo que, dado un vector $u \in E$ cualquiera, emplearemos la siguiente notación:

$$u = \alpha_1 b_1 + \dots + \alpha_n b_n \stackrel{\text{not.}}{=} (\alpha_1, \dots, \alpha_n)_{\mathcal{B}}$$

A la tupla de escalares $(\alpha_1, \ldots, \alpha_n)$ la denominaremos coordenadas de u respecto de la base \mathcal{B} .

Por supuesto, si decidimos tomar otra base \mathcal{B}' , las coordenadas de los vectores respecto de la base \mathcal{B}' serán, en general, distintas a las coordenadas respecto de \mathcal{B} .

Un problema interesante, y que resolveremos en A.1.1, consiste en encontrar una relación o ligadura entre ambas coordenadas.

Observación A.1.2 (Coordenadas del i-ésimo Vector de la Base). Dado el vector b_i , es interesante notar que sus coordenadas respecto de la base \mathcal{B} , de la que, recordemos, es el i-ésimo vector, son:

$$b_i = (0, \dots, \overbrace{1}^i, \dots, 0)_{\mathcal{B}}$$

La comprobación es inmediata y se deja al lector.

A.1.1. Matriz de Cambio de Base

Sean $\mathcal{B} := \{e_1, \dots, e_n\}$ y $\mathcal{B}' := \{e'_1, \dots, e'_n\}$ dos bases de un espacio vectorial E. En estas condiciones, dado un vector cualquiera $u \in E$, podemos escribirlo de dos maneras distintas:

$$u = \alpha_1 e_1 + \dots + \alpha_n e_n \tag{A.1}$$

$$u = \beta_1 e_1' + \dots + \beta_n e_n' \tag{A.2}$$

Escribiendo cada vector de \mathcal{B}' como combinación lineal de los vectores de \mathcal{B} , es decir, en coordenadas de \mathcal{B} obtenemos (los exponentes son símplemente superíndices):

$$e_i' = \gamma_1^i e_1 + \dots + \gamma_n^i e_n \tag{A.3}$$

Uniendo las ecuaciones se tiene:

$$u = \beta_{1}(\gamma_{1}^{1}e_{1} + \dots + \gamma_{n}^{1}e_{n}) + \dots + \beta_{n}(\gamma_{1}^{n}e_{1} + \dots + \gamma_{n}^{n}e_{n}) =$$

$$= (\beta_{1}\gamma_{1}^{1}e_{1} + \dots + \beta_{1}\gamma_{n}^{1}e_{n}) + \dots + (\beta_{n}\gamma_{1}^{n}e_{1} + \dots + \beta_{n}\gamma_{n}^{n}e_{n}) =$$

$$= (\beta_{1}\gamma_{1}^{1} + \dots + \beta_{n}\gamma_{1}^{n})e_{1} + \dots + (\beta_{1}\gamma_{n}^{1} + \dots + \beta_{n}\gamma_{n}^{n})e_{n} \quad (A.4)$$

La traducción de esto a términos de coordenadas nos arroja (los corchetes son símplemente corchetes para una mejor visualización):

$$u = (\alpha_1, \dots, \alpha_n)_{\mathcal{B}} = ([\beta_1 \gamma_1^1 + \dots + \beta_n \gamma_1^n], \dots, [\beta_1 \gamma_n^1 + \dots + \beta_n \gamma_n^n])_{\mathcal{B}}$$
(A.5)

Esto, por comodidad, lo interpretaremos como producto de matrices (compruébese):

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \gamma_1^1 & \cdots & \gamma_1^n \\ \vdots & \ddots & \vdots \\ \gamma_n^1 & \cdots & \gamma_n^n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$
(A.6)

Usando una notación más compacta:

$$X_{\mathcal{B}} = C_{\mathcal{B}\mathcal{B}'} X_{\mathcal{B}'} \tag{A.7}$$

Obsérvese que la matriz P es **cuadrada** e **invertible**, por ser la matriz formada al poner por columnas los vectores de la base \mathcal{B}' respecto de la base \mathcal{B} .

Por esta razón, podemos despejar $X_{\mathcal{B}'}$, obteniendo la relación inicialmente buscada:

$$X_{\mathcal{B}'} = C_{\mathcal{B}\mathcal{B}'}^{-1} X_{\mathcal{B}} \tag{A.8}$$

A la matriz $C_{\mathcal{BB}'}$ se la denomina matriz de cambio de base de \mathcal{B} a \mathcal{B}' . Es intersante comprobar que su inversa es la matriz de cambio entre las mismas bases en sentido contrario.

Para cerrar la sección diremos, como curiosidad, que toda matriz invertible constituye una matriz de cambio entre ciertas bases.

A.2. Ecuaciones de Subespacios

El objetivo de esta sección será caracterizar un subespacio vectorial por el conjunto de soluciones de una ecuación o conjunto de ecuaciones (siempre lineales y homogéneas). A estas ecuaciones las denominaremos ecuaciones cartesianas. Son de importancia capital en el estudio de la dualidad.

A.2.1. Existencia de las Ecuaciones Cartesianas

Sea E un espacio vectorial de dimensión n y sea U un subespacio vectorial cualquiera de E. Sea $\mathcal{B}_U := \{u_1, \dots, u_r\}$ una base de U.

Ecuaciones Paramétricas

Sea $x \in U$, entonces podemos escribirlo tanto en coordenadas de \mathcal{B}_U como en coordenadas de la base del espacio total \mathcal{B} . Es decir:

$$x = \alpha_1 e_1 + \dots + \alpha_n e_n \tag{A.9}$$

$$x = \beta_1 u_1 + \dots + \beta_r u_r \tag{A.10}$$

Usando los mismos trucos que utilizamos para cálculo de la matriz de cambio de base, podemos escribir los vectores de la base \mathcal{B}_U como combinación lineal de los vectores del espacio total:

$$u_i = \gamma_1^i e_1 + \dots + \gamma_n^i e_n \tag{A.11}$$

Sustituyendo y reagrupando:

$$x = \beta_{1}(\gamma_{1}^{1}e_{1} + \dots + \gamma_{n}^{1}e_{n}) + \dots + \beta_{r}(\gamma_{1}^{n}e_{1} + \dots + \gamma_{n}^{n}e_{n}) =$$

$$= (\beta_{1}\gamma_{1}^{1}e_{1} + \dots + \beta_{1}\gamma_{n}^{1}e_{n}) + \dots + (\beta_{r}\gamma_{1}^{n}e_{1} + \dots + \beta_{r}\gamma_{n}^{n}e_{n}) =$$

$$= (\beta_{1}\gamma_{1}^{1} + \dots + \beta_{r}\gamma_{1}^{n})e_{1} + \dots + (\beta_{1}\gamma_{n}^{1} + \dots + \beta_{r}\gamma_{n}^{n})e_{n} \quad (A.12)$$

Expresado de forma matricial:

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \gamma_1^1 & \cdots & \gamma_1^n \\ \vdots & \ddots & \vdots \\ \gamma_n^1 & \cdots & \gamma_n^n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_r \end{pmatrix}$$
(A.13)

Con una notación más compacta escribimos:

$$X = P\Lambda \tag{A.14}$$

Nótese que la matriz P no es cuadrada por lo general, además, es la matriz resultante de poner por columnas las coordenadas de los vectores de \mathcal{B}_U en la base \mathcal{B} .

Reflexionemos un segundo acerca de lo que acabamos de hacer. Dado un subespacio U, queríamos caracterizarlo como el conjunto de vectores que verificaban un conjunto de ecuaciones.

Pues bien, dada una base de U, hemos conseguido una serie de ecuaciones tales que, dado un vector $u = (u_1, \ldots, u_n)_{\mathcal{B}} \in E$, nos escupen un sistema de n ecuaciones lineales con r incógnitas, que, en caso de resultar ser incompatible nos avisa de que $u \notin U$, y en caso contrario, tras la resolución del sistema obtenemos las coordenadas de u en la base B_U .

Sin embargo, esto se puede afinar un poco más todavía. Es por eso que en el siguiente apartado se estudian las coordenadas cartesianas o implícitas.

Nótese que el camino que hemos hecho también es de vuelta, ya que, dadas unas ecuaciones paramétricas de un subespacio, podemos hallar una base del mismo, basta tomar las columnas de la matriz de coeficientes.

De momento tenemos:

Ecuaciones Cartesianas o Implícitas

Como dijimos en el apartado anterior, las ecuaciones paramétricas son un gran paso, pero deben afinarse un poco más, pues aún no son un conjunto de ecuaciones lineales homogéneas que caractericen por si solas al subespacio U.

A continuación daremos dos métodos para hallar las ecuaciones cartesianas a partir de las ecuaciones paramétricas. A uno de ellos le bautizaremos cariñosamente como "método ortopédico".

Método Ortopédico Como ya aventuramos en el apartado anterior, si insertamos un vector $x \in U$ a las ecuaciones $X = P\Lambda$, se nos remitía a un sistema de ecuaciones lineales compatible determinado.

Esto quiere decir, por el teorema de Rouché-Frobenius que:

$$\operatorname{rg}(P|X) = \operatorname{rg}(P)$$

Por ende ninguna submatriz cuadrada de la matriz ampliada (P|X) es regular, es decir, todas tienen determinante nulo.

Esto es maravilloso, puesto que proporciona un conjunto de ecuaciones lineales homogéneas (nunca podrán ser no lineales ya que las incógnitas se encuentran en la misma columna de la matriz ampliada).

Observaciones Dicho lo cual, si $x \in U$, insertando el vector en las ecuaciones obtenidas, las deberá verificar a la fuerza, con lo que lo hemos conseguido, hemos caracterizado a un subespacio mediante el conjunto de soluciones de un sistema homogéneo de ecuaciones lineales.

Para realizar el camino de vuelta, es decir, deducir unas ecuaciones paramétricas a partir de unas implícitas, basta resolver el sistema de ecuaciones homogéneo (cosa siempre posible).

Con lo que tenemos:

Antes de meternos con el segundo método (que aligera los cálculos), necesitamos ver la relación que existe entre el número de ecuaciones cartesianas y la dimensión del subespacio al que caracterizan.

Proposición A.2.1 (Ecuaciones Cartesianas y Dimensión). Sea U un subespacio vectorial de dimensión r de E, el número de ecuaciones cartesianas esenciales que le caracteriza es igual a su codimensión.

Demostración. Dado un sistema homogéneo de n ecuaciones lineales, para que su conjunto de soluciones dependa de r parámetros, es decir, para que obtenegamos unas ecuaciones paramétricas con r incógnitas, debe haber exactamente n-r "ecuaciones esenciales".

Método de Eliminación de Parámetros Para obtener unas ecuaciones cartesianas a partir de unas ecuaciones paramétricas, basta interpretar a las ecuaciones paramétricas como la solución al sistema homogéneo de ecuaciones lineales que queremos encontrar. Es decir, deberemos aplicar el algoritmo de Gauss-Jordan al revés.

A.3. Dualidad

Sea E un \mathbb{K} –espacio vectorial de dimensión n.

Definición A.3.1 (Espacio Dual). Se llama *espacio dual* de E al conjunto todas de las aplicaciones lineales que nacen en E y mueren en \mathbb{K} . Es decir:

$$E^* := \{ f \in \operatorname{Hom}(E, \mathbb{K}) \}$$

A las aplicaciones lineales que conforman el espacio dual se las denomina formas lineales.

Nótese que si E^* recibe el nombre de "espacio", es porque se lo merece, es decir, E^* tiene estructura de espacio vectorial (la comprobación es inmediata).

A continuación calculamos de manera inmediata la dimensión del espacio dual.

Lema A.3.1 (Dimensión del Espacio Dual). $\dim(E) = \dim(E^*)$

Demostración. contenidos...

Continuemos definiendo varios conceptos imprescindibles del espacio dual.

Definición A.3.2 (Anulador de un Subconjunto). Sea S un subconjunto de E, denominamos anulador de S al conjunto de las formas lineales tales que anulan todos los vectores de S. Es decir:

$$S^{\perp} = \{ f \in E^* \mid f(u) = 0 \ \forall u \in S \}$$

Es un ejercicio de cálculo rutinario la demostración de que el anulador de un subespacio de E es un subespacio de E^* .

Una propiedad interesante de los anuladores es que el anulador de un subconjunto S, coincide con el anulador de la variedad lineal engendrada por S. Veámoslo.

Lema A.3.2 (Anuladores y Variedades Engendradas). Sea S un subconjunto arbitrario no vacío de E, entonces:

$$S^{\perp} = \mathcal{L}(S)^{\perp}$$

Demostración. \subseteq Consideremos una forma lineal $f \in S^{\perp}$, como todo vector de $x \in \mathcal{L}(S)$ se escribe de la forma $x = \alpha_1 s_1 + \cdots + \alpha_r s_r$, está claro que, usando la linealidad de f, f(x) = 0.

 \bigcirc Como $S \subset \mathcal{L}(S)$, toda forma lineal que anule los vectores de $\mathcal{L}(S)$ también anulará a los vectores de S.