Here's a (slightly generalized) version of problem 2.5.4.

Let $S \subseteq k[x_1, ..., x_n]$ be a subset (not necessarily an ideal) and define

$$LT(S) = \{LT(f) \mid f \in S \setminus \{0\}\}$$

$$LM(S) = \{LM(f) \mid f \in S \setminus \{0\}\}$$

Then $\langle LM(S) \rangle = \langle LT(S) \rangle$.

Proof. Suppose $f \in S \setminus \{0\}$. If $LM(f) = x^{\alpha}$, then $LT(f) = cx^{\alpha}$ for some nonzero $c \in k$. This means that

$$LT(f) = c \cdot LM(f) \in \langle LM(S) \rangle$$

so $\langle LT(S) \rangle \subseteq \langle LM(S) \rangle$. Conversely, note that

$$LM(f) = c^{-1}LT(f) \in \langle LT(S) \rangle$$

so
$$\langle LM(S) \rangle \subseteq \langle LT(S) \rangle$$
.