STUDENT ID NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

BMS 1024 – MANAGERIAL STATISTICS

(All sections / Groups)

3 March 2018 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- This question paper consists of TEN (10) printed pages with: Section A: Ten (10) multiple choice questions (20%)
 Section B: Three (3) structured questions (80%)
- 2. Answer all questions.
- 3. Answer Section A in the multiple-choice answer sheet provided and Section B in the answer booklet provided.
- 4. Formula and Statistical tables are attached at the end of the question paper.
- 5. Students are allowed to use non-programmable scientific calculators with no restrictions.

SECTION A: MULTIPLE CHOICE QUESTIONS (20 MARKS)

There are TEN (10) questions in this section. Answer ALL questions on the multiple choice answer sheet.

oice answer sh	ieet.			

- 1. In measures of central tendency, sample statistic is denoted by
 - Α. μ
 - Β. β
 - C. \bar{x}
 - D. α
- 2. In a negative skewed distribution, the order of mean and median is
 - A. mean = median
 - B. mean < median
 - C. mean > median
 - D. mean ≠ median
- 3. The collection of one or more outcomes from an experiment is called
 - A. probability
 - B. event
 - C. discrete random variable
 - D. z-value
- 4. The joint probability is
 - A. the likelihood of two events happening to get the probability
 - B. the likelihood of an event happening given that another event has already happened
 - C. based on two mutually exclusive events
 - D. also called Prior probability
- 5. Which of the following is not a condition of the binomial distribution?
 - A. Only 2 possible outcomes
 - B. have constant probability of success
 - C. must have at least 3 trials
 - D. trials must be independent
- 6. If value of x for normal distribution is 35, the mean of normal distribution is 65 and the standard deviation is 25 then standardized random variable, z is
 - A. -1.5
 - B. -1.4
 - C. -1.7
 - D. -1.2

Continued...

NAA 1/10

- 7. If you reject a true null hypothesis, what does this mean?
 - A. You have made a correct decision.
 - B. You have made a Type I error.
 - C. You have made a Type II error.
 - D. You have increased the power of a test.

Ī	Commodity	2000		2017	
Ĺ		Price (RM)	Quantity	Price (RM)	Quantity
ĺ	A	2	20	3	21
	В	18	3	36	2
	C	3	18	4	23

Table 1: Demand for Commodity A, B and C for year 2000 and 2017

- 8. Based on Table 1, what is the unweighted aggregate price index for 2017 with 2000 as the base year?
 - A. 186.96
 - B. 180.96
 - C. 176.96
 - D. 170.96
- 9. Based on Table 1, what is the Laspeyres aggregate price index for 2017 with 2016 as the base year?
 - A. 152.16
 - B. 162.16
 - C. 158.20
 - D. 158.20
- 10. Based on Table 1, what is the Paasche aggregate price index for 2017 with 2016 as the base year?
 - A. 152.38
 - B. 153.38
 - C. 150.38
 - D. 154.38

Continued...

NAA 2/10

SECTION B: STRUCTURED QUESTIONS (80) MARKS)

There are THREE (3) questions in this section. Candidates MUST answer ALL THREE questions.

Question 1 (25 Marks)

- a) From a set of 3 females and 4 males' students, three students were selected for inter university entrepreneurship fest. Let X be the random variable that denotes the number of girls selected.
 - i) Construct the probability distribution of X.

(5 marks)

ii) Find the variance of X.

(5 marks)

- b) One of the audit firm in Malaysia audits 5% of all companies every year. The companies selected for auditing in any one year are independent of the previous year's selection. What is the probability that one of the company listed will be selected for auditing exactly twice in the next 5 years? (5 marks)
- c) Suppose a famous seafood restaurant can expect two customers every 10 minutes, on average. Calculate the probability that less than four customers will enter the restaurant in a 30-minute period? (5 marks)
- d) An investment return is normally distributed with a mean of 6% and a standard deviation of 3%. Determine the probability of losing money and sketch the area.
 (5 marks)

Question 2 (25 Marks)

a) Suppose that in a large city the annual income of real estate agents is normally distributed with a standard deviation of \$40. A random sample of 15 real estate agents was asked to report their annual income (in \$1000) and listed as below:

180	130	150	165	90
130	120	60	200	180
80	240	210	150	125

- i) Construct a 95% confidence interval estimate of the population mean. Express your answer in 2 decimal places. (6 marks)
- ii) Interpret your answer in (i)

(2 marks)

iii) At 90% confidence level, how large a sample should be selected if they want the estimate to be within \$10 of the population mean? (6 marks)

Continued...

NAA 3/10

b) The weight of children age 3 years old are normally distributed with a mean of 15 kg. A researcher claims that the weight of children who were sent to nursery will have a lower weight compared to the population mean. To test the researcher's claim, a random sample of 40 children were examined. The mean weight in this sample was 12.5 kg with a standard deviation of 2 kg. Would you conclude that the researcher's claim is true at a 1% significance level? (11marks)

Question 3 (30 Marks)

a) In a meat packing factory, a new machine will pack faster on the average than the machine currently used. To test that hypothesis, the times it takes each machine to pack ten cartons are recorded. The results, in seconds, are shown in the following table. Use significance level: $\alpha = 0.05$. (25 marks)

	New	Old
	Machine	Machine
1	32.1	32.7
2	31	33.6
3	31.3	33.8
4	31.8	33.3
5	32.4	32.5
6	32.8	33.5
7	33.2	33.1
8	32.3	31.7
9	31.8	34
10	32.7	34.1

b) The sales of a company (in million dollars) for each year are shown in the table below:

Year	2013	2014	2015	2016	2017
Sales	12	19	29	37	45

(Let y =sales and x =number of years)

Given the least square regression line for the above data is y = 8.4x + 11.6, estimate the sales of the company in 2020.

(Use 2013 as the starting year, x = 0).

(5 marks)

End of Page

NAA 4/10

STATISTICAL FORMULAE

A. DESCRIPTIVE STATISTICS

$$Mean (\bar{x}) = \frac{\sum_{i=1}^{n} X_i}{n}$$

Standard Deviation (s) =
$$\sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n-1} - \frac{(\sum_{i=1}^{n} X_i)^2}{n(n-1)}}$$

Coefficient of Variation (CV) = $\frac{\sigma}{\overline{X}} \times 100$

Pearson's Coefficient of Skewness $(S_k) = \frac{3(\overline{X} - Median)}{S_k}$

B. PROBABILITY

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $P(A \text{ and } B) = P(A) \times P(B)$ if A and B are independent

 $P(A \mid B) = P(A \text{ and } B) \div P(B)$

Poisson Probability Distribution

If X follows a Poisson Distribution, $P(\lambda)$ where $P(X = x) = \frac{e^{-\lambda} \lambda^x}{|x|}$

then the mean = $E(X) = \lambda$ and variance = $VAR(X) = \lambda$

Binomial Probability Distribution

If X follows a Binomial Distribution B(n, p) where $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$

then the mean = E(X) = np and variance = VAR(X) = npq where q = 1-p

Normal Distribution

If X follows a Normal distribution, $N(\mu, \sigma)$ where $E(X) = \mu$ and $VAR(X) = \sigma^2$

then
$$Z = \frac{X - \mu}{\sigma}$$

C. EXPECTATION AND VARIANCE OPERATORS

$$E(X) = \sum [X \bullet P(X)]$$

$$VAR(X) = E(X^2) - [E(X)]^2$$
 where $E(X^2) = \sum [X^2 \cdot P(X)]$

If
$$E(X) = \mu$$
 then $E(cX) = c \mu$, $E(X_1 + X_2) = E(X_1) + E(X_2)$

If
$$VAR(X) = \sigma^2$$
 then $VAR(cX) = c^2 \sigma^2$,

$$VAR(X_1 + X_2) = VAR(X_1) + VAR(X_2) + 2 COV(X_1, X_2)$$

where $COV(X_1, X_2) = E(X_1X_2) - [E(X_1) E(X_2)]$

NAA 5/10

CONFIDENCE INTERVAL ESTIMATION AND SAMPLE SIZE DETERMINATION

(100 – α) % Confidence Interval for Population Mean (σ Known) = $\mu = \overline{X} \pm Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$

 $(100 - \alpha)\%$ Confidence Interval for Population Mean (σ Unknown) = $\mu = \overline{X} \pm t_{\alpha/2, n-1} \left(\frac{s}{\sqrt{n}} \right)$

 $(100 - \alpha)\%$ Confidence Interval for Population Proportion $= \hat{p} \pm Z_{\alpha/2} \sigma_{p^*}$

Where
$$\sigma_{\hat{\rho}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Sample Size Determination for Population Mean = $n \ge \left\lceil \frac{(Z_{\alpha/2})\sigma}{E} \right\rceil^2$

Sample Size Determination for Population Proportion = $n \ge \frac{(Z_{\alpha/2})^2 \hat{p}(1-\hat{p})}{F^2}$

Where E = Limit of Error in Estimation

E. HYPOTHESIS TESTING

One Sample Mean Test								
Standard Deviation (σ) Known	Standard Deviation (o) Not Known							
$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\bar{s} - \mu}{\bar{s} / \sqrt{n}}$							

$$z = \frac{\hat{\rho} - p}{\sigma_{\rho}}$$
 where $\sigma_{\rho} = \sqrt{\frac{p(1-p)}{n}}$

Two Sample Mean Test

Standard Deviation (o) Known

$$z = \frac{\overline{(x_1 - x_2)} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

Standard Deviation (o) Not Known

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } p = \frac{X_1 + X_2}{n_1 + n_2}$$

where X_1 and X_2 are the number of successes from each population

NAA 6/10

F. REGRESSION ANALYSIS

Simple Linear Regression

Population Model: $Y = \beta_0 + \beta_1 X_1 + \varepsilon$

Sample Model: $\hat{y} = b_0 + b_1 x_1 + e$

Correlation Coefficient

$$r = \frac{\sum XY - \left[\frac{\sum X \sum Y}{n}\right]}{\sqrt{\left[\sum X^2 - \left((\sum X)^2 / n\right)\right]\left[\sum Y^2 - \left((\sum Y)^2 / n\right)\right]}} = \frac{COV(X, Y)}{\sigma_X \sigma_Y}$$

ANOVA Table for Regression

Source	Degrees of Freedom	Sum of Squares	Mean Squares
Regression	1	SSR	MSR = SSR/1
Error/Residual	n-2	SSE	MSE = SSE/(n-2)
Total	n-1	SST	

Test Statistic for Significance of the Predictor Variable

$$t_i = \frac{b_i}{S_{b_i}}$$
 and the critical value = $\pm t_{\alpha/2,(n-p-1)}$

Where p = number of predictor

G. INDEX NUMBERS

G. INDEX NUMBERS	
Simple Price Index	Laspeyres Quantity Index
$P = \frac{p_t}{p_0} \times 100$	$P = \frac{\sum p_0 q_t}{\sum p_0 q_0} \times 100$
Aggregate Price Index	Paasche Quantity Index
$P = \frac{\sum p_t}{\sum p_0} (100)$	$P = \frac{\sum p_t q_t}{\sum p_t q_0} \times 100$
Laspeyres Price Index	Fisher's Ideal Price Index
$P = \frac{\sum p_{\rm t} q_0}{\sum p_0 q_0} \times 100$	$\sqrt{\text{(Laspeyres Price Index)(Paa sche Price Index)}}$
Paasche Price Index	Value Index
$P = \frac{\sum p_t q_t}{\sum p_0 q_t} \times 100$	$V = \frac{\sum p_{t}q_{t}}{\sum p_{0}q_{0}} \times 100$
— ro¬t	₩ F070

NAA 7/10

B. STATISTICAL TABLE

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = 1 - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	æ	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0.00	0.2000	0.40	0.6554	0.80	0.7881	1.50	0.8849	x.20	0.9452	2.00	0.97725
.ox	5040	·4I	.6591	·81	7910	.31	·8869	-6x	-9463	.oz	.97778
-02	·5080	.42	·6628	82	7939	.22	-8888	-62	9474	.02	·97831
-03	.5120	-43	-6664	-83	-7967	.23	·8907	.63	·9484	.03	.97882
-04	-5160	'44	-6700	∙84	7995	.24	·8925	·6 4	9495	.04	·97932
0.02	0.2199	0.45	0.6736	0.85	0.8023	1.25	0.8944	x·65	0.9202	2.05	0.97982
.06	5239	-46	.6772	-86	·8051	-26	-8962	-66	.9212	-06	.ბ <u>წ</u> ივი
.07	5279	.47	-6808	·8 ₇	8078	.27	·8980	.67	9525	.07	-98077
.08	.2319	-48	·6844	-88	·8106	·28	-8997	-68	9535	.08	.98124
.09	5359	.49	-6879	∙89	-8133	.30	9015	-69	·9545	.09	-98169
0.10	0.5398	0.20	0.6915	0-90	0.8159	1.30	0.9032	x·70	0.9224	2.10	0.98214
·II	.5438	·5x	·6950	91	-8186	.31	9049	·7x	.9564	.II.	-98257
12	.5478	.52	-6985	92	8212	.32	.9066	.72	9573	12	-98300
.13	5517	.23	.7019	-93	8238	-33	·9082	.73	.9582	.13	.08341
.14	5557	54	.7054	'94	·8264	*34	9099	74	.9591	.14	·9838z
0.12	0.5596	0.22	0.7088	0.02	0.8289	1.35	0.0112	1.75	0.0200	2.12	0-98422
.16	·5636	·56	7123	-96	.8315	.36	·9131	.76	9608	.16	·98461
17	.5675	-57	7157	.97	·8340	.37	9147	.77	.9616	٠.٢٦	-98500
·18	.5714	.58	.7190	.08	8365	·38	9162	78	.9625	·18	·98537
.19	5753	.59	.7224	.99	-8389	.39	9177	79	.9633	.19	·98574
0.20	0.5793	0.60	0.7257	1.00	0.8413	X·40	0.9192	x·80	0.9641	2.20	0.98610
.21	.5832	-61	.7291	·OI	8438	·41	9207	·8x	-9649	·21	.98645
.22	-5871	-62	7324	.02	·8461	·42	9222	.82	-9656	.22	-98679
.23	.5010	-63	*7357	.03	-8485	'43	-9236	.83	9664	.53	98713
·24	·5948	-64	-7389	-0.4	·8508	·44	9251	-84	·9671	-24	-98745
	0.5987	0.65	0.7422	1.02	0.8531	x-45	0.9262	1.85	0.9678	2.25	0.98778
0·25 ·26	·6026	-66	.7454	.06	·8554	·46	.9279	-86	.9686	-26	.98809
.27	-6064	-67	7486	107	8577	'47	.0292	·8 7	-9693	-27	-98840
-28	6103	-68	7517	.08	.8599	٠48	-9306	-88	.9699	·28	.98870
.29	·6141	.69	.7549	.00	·8621	.49	.9319	-89	-9706	.29	-98899
0.30	0-6179	0.70	0.7580	1.10	0.8643	1.20	0.9332	1.90	0.9713	2.30	0.98928
.31	6217	-71	.7611	.11	8665	.21	9345	-9 1	.9719	31	·98956
.32	·6255	72	7642	.12	-8686	.52	.9357	-92	·9726	32	.98983
.33	-6293	73	•7673	.13	8708	·53	-9370	.93	.9732	.33	.99010
·34	.6331	74	7704	.14	·8 7 29	54	9382	'94	·9738	34	-99036
0.35	0-6368	0-75	0.7734	1.12	0.8749	1.22	0.9394	1.92	0.9744	2.35	
.36	.6406	.76	.7764	·16	8770	.56	.9406	-96	19750	∙36	
.37	.6443	.77	.7794	.17	8790	-57	.9418	.97	-9756	·3 <u>7</u>	
38	6480	78	7823	81·	-8810	-58	19429	·98		.38	
39	-6517	.79	.7852	.19	·8830	·59	·9441	.99	-9767	.39	.99158
0.40	0.6554	0-80	0-7881	1-20	0.8849	1. 60	0.9452	2.00	0.9772	2:40	0-99180

NAA 8/10

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

æ	$\Phi(x)$	æ	$\Phi(x)$	x	$\Phi(x)$	×	$\Phi(x)$	œ	$\Phi(x)$	x	$\Phi(x)$
2.40	0.99180	2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99862	3.12	0.99918
'4 I	-99202	•56	99477	·71	99664	∙86	.99788	·oz	-99869	·16	199921
.42	199224	.57	99492	.72	·99674	·8 7	199795	02	.99874	-17	199924
'43	99245	∙58	-99506	.73	199683	-88	-99801	-03	-99878	.18	99926
.44	199266	159	.99520	.74	99693	∙89	-99807	04	99882	.19	199929
2.45	0.99286	2.60	0.99534	2.75	0.99702	2.90	0.99813	3.02	0-99886	3.30	0.00031
•46	.99305	·6x	99547	.76	99711	·91	.99819	-06	.99889	'21	99934
.47	199324	-62	-99560	-77	99720	·92	199825	.07	99893	.22	99936
·48	99343	-63	99573	.78	99728	·93	·99831	-08	99896	.23	-99938
.49	·99361	·6 4	.99585	-79	-99736	.94	199836	.09	.99900	.24	99940
2-50	0.99379	2.65	0.99598	2.80	0.99744	2.95	0.00841	3.10	0.99903	3:25	0.00042
·51	99396	.66	.99609	·81	99752	-06	.99846	·II	99906	·26	99944
.22	.99413	·6 7	-99621	·82	-99760	.97	.99851	12	.00010	.27	.99946
.23	99430	-68	.99632	.83	99767	.98	.99856	.13	.00013	.28	.99948
.54	99446	-69	99643	-84	99774	.99	19861	14	-99916	·29	.99950
2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	3.12	0-99918	3.30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

2.075	2,262 0.9994	3,22 0.99990	0.99995
3 0/3 0.9990	3 203 0.9995	3 /34 0.99991	3.976 0.99995 0.99996
3,102 0.9991	3 320 0.9996	3 759 0.99992	3.970 0.00002
3.130 0.0002	3.300 0.0007	3.731 0.99990 3.759 0.99991 3.791 0.99992 3.826 0.99993	4.055 0.00008
3.174 0.0003	3,480 0,0008	3.826 0.00004	4'X73 0'00000
3.075 3.105 3.138 0.9992 3.174 0.9993 3.215 0.9994	3·263 0·9994 3·320 0·9995 3·389 0·9997 3·480 0·9998 3·615 0·9999	3.867 0.99994	4.055 0.99999 4.173 0.99999 4.417 1.00000

When x > 3.3 the formula $x - \Phi(x) = \frac{e^{-\frac{1}{2}x^2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^8} + \frac{105}{x^8} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points $\alpha(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{x(P)}^{\infty} e^{-\frac{1}{2}t^n} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is 2P/100.

P	x(P)	\boldsymbol{P}	x(P)	P	x(P)	P	x(P)	P	x(P)	P	x(P)
50	0.0000	5.0	1.6449	~5.3.0	1·8808	2.0	2.0537	I.O	2-3263	0.10	3.0902
45	0.1257	4.8	1.6646	2.9	1.8957	r.9	2.0749	0.9	2.3656	0.03	3.1214
40	0.2233	4.6	1.6849	2.8	1.9110	r-8	2.0969	0.8	2.4089	0.08	3 1559
35	0.3823	4'4	1.7060	2.7	1.9268	1.7	2.1501	0.7	2'4573	0.07	3 1947
30	0.244	4.3	1.7279	2.6	1.9431	1.6	2.1444	0.6	2.2121	0.06	3.2389
25	0.6745	4.0	1.7507	2.5	1.9600	1.2	2.1701	0.2	2.5758	0.02	3'2905
20	0.8416	3.8	1.7744	2.4	1.9774	1.4	2'1973	0.4	2.6521	0.01	3.2100
15	1.0364	3.6	1.7991	2.3	1.9954	1.3	2-2262	0.3	2.7478	0.005	3.8906
10	1.5819	3.4	1.8250	2.2	2.0141	1.5	2.2571	0.3	2.8782	0.00x	4.2649
5	1.6449	3.2	1.8522	2.1	2.0335	I-I	2.2904	0.X	3.0002	0.0002	4 4172

NAA 9/10

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_p(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{\nu n}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{t_r(P)}^{\infty} \frac{dt}{(1+t^2/\nu)^{\frac{1}{2}(\nu+1)}}.$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^2 -distribution with ν degrees of freedom respectively; then $t = X_1/\sqrt{X_s/\nu}$ has Student's t-distribution with ν degrees of freedom, and the probability that $t \ge t_{\nu}(P)$ is P/roo. The lower percentage points are given by symmetry as $-t_{\nu}(P)$, and the probability that $|t| \ge t_{\nu}(P)$ is 2P/roo.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

P	40	30	25	20	15	TO	5	2.2	x	0.2	0.X	0.02
$\nu = r$	0.3249	0.7265	1.0000	1.3764	1.963	3.078	6.314	12.71	31.82	63-66	318-3	636.6
2	0.2887	0.6172	0.8165	1.0602	1.386	r-886	2-920	4.303	6.965	9.925	22.33	31.60
. 3	0.2767	0.5844	0.7649	0.9785	1.320	1.638	2*353	3.182	4.241	5.841	10.51	12.02
4	0.2707	0.2686	0.7407	0.9410	1.100	1.233	2.132	2.776	3.747	4.604	7°×7.3	8-610
5 6	0.2672	0.5594	0.7267	0.8182	1.126	1.476	2.012	2.271	3-365	4.033	5.893	6-869
-	0.2648	0.5534	0.7176	0.9057	1.134	1'440	1.943	2.447	3'143	3.202	5.203	5.959
7 8	0.5635	0.2491	0.7111	0,8960	1.110	1'415	1.895	2.362	2.998	3'499	4.78.	5·408
	0.2619	0.5459	0.7064	0-8889	1.108	1.397	1.860	5.306	2.896	3.322	4.50	5°04I
9	0'2610	0.2432	0.7027	0.8834	1.100	1.383	1.833	2.262	2.821	3.520	4'29',	4·781
10	0.2602	0.2412	0-6998	0-8791	1033	1.372	t·812	2.228	2.764	3.160	4.14	4.587
XX	0.2596	0.2399	0.6974	0.8755	1.088	1.363	1.796	2.301	2.718	3-106	4.02	4:437
12	0.5200	05386	0.6955	0.8726	1.083	r•356	i 782	2.179	2.681	3.055	3.030	4:318
13	0.2586	0.5375	0.6938	0.8702	1.079	1.350	1.771	2.160	2.650	3.012	3.85	4.221
74	0.3283	0.2366	0.6924	0.8681	1.076	1.342	‡·761	2.142	2.624	2.977	3.787	4.140
15	0.2579	0.5357	0.6012	0.8662	I.074	1.341	1'753	2.131	2,602	2'947	3'733	4:073
16	0.2576	0.2320	0.690x	0.8647	1.071	I-337	1.746	2.150	2. 283	2.031	3.686	4·015
¥7	0.2573	0.2344	0.6892	0.8633	1.060	1.333	1.740	2.110	2.567	2.808	3.646	3.965
zŚ	0.2571	0.5338	0.6884	0.8620	1.067	1.330	1.734	2.101	2.552	2.878	3.6xc	3.022
19	0.2569	0.2333	0.6876	0.8610	1.066	1.328	1.729	2.093	2.239	2.861	3.222	3.883
20	0.2567	0.2356	0.6870	0-8600	1.064	1.325	¥'725	2.086	2.258	2.845	3.223	3.850
21	0.2566	0.2322	0.6864	0.859x	1.063	1.353	1 721	2.080	2.218	2.831	3.222	3.819
22	0.2564	0.2321	o·6858	0.8583	1.001	1.351	7.7.7	2.074	2.208	5.810	3.202	3.465
23	0.2563	0.2314	0.6823	0.8575	z.060	1.310	1.414	2.060	2.200	2.807	3 485	3.768
24	0.2562	0'5314	o·6848	0.8260	1.029	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.2561	0.5312	0.6844	0.8562	1.028	1.316	1708	2.060	2.485	2.787	3.450	3.725
26	0.2560	0.5300	0.6840	0.8557	1.058	1.312	1.706	2.056	2.479	2.779	3.435	3.707
27	0.2559	0.2300	0.6837	0.8551	1.057	1.314	1 703	2.052	2.473	2.771	3.421	3.600
28	0.2558	0.5304	0.6834	0.8546	1.056	1.313	1.701	2.048	2.467	2:763	3.408	3.674
29	0.2557	0.2302	0.6830	0.8542	1.022	1.311	1 699	2.045	2.462	2.756	3.396	3.659
30	0.2556	0.2300	0.6828	0.8538	1.022	1.310	1 697	2.042	2.457	2.750	3.382	3.646
32	0.2555	0.2297	0.6823	0.8530	1.024	1.300	1.694	2.037	2:449	2.738	3.362	3.622
34	0.2553	0.5294	0.6818	0.8523	1.023	1.302	1 691	2.032	2.441	2.728	3.348	3.20i
36	0.2552	0.231	0.6814	0.8517	1.022	1-300	1.688	2.028	2.434	2.419	3.333	3.282
38	0.5221	0.5288	0.6810	0.8512	1.021	1.304	r 686	2.024	2:429	2.712	3.319	3.266
40	0.2550	0.5286	0.6807	0.8507	1.020	1.303	1684	2.031	2.423	2.704	3:307	3.221
50	0.2547	0.5278	0.6794	0.8489	1.047	1.599	1 676	2.009	2.403	2:678	~ .	
60	0.2545	0.5272	o·6786	0.8477	1.042	1.500	1,671	2.000	2.390	2.660		
120	0.2539	0.5258	0-6765	0.8446	1.041	1.589	1∤658	1.980	2.328	2.617	3.160	3.373
00	0.5233	0.5244	0.6745	0.8416	1.036	1-282	x1645	1.960	2.326	2.576	3.090	3.291

NAA 10/10