ELICITING AWARENESS

Evan Piermont Royal Holloway, University of London

Society for the Advancement of Economic Theory

July 2023

\ \	A decision maker must choose a 'plan-of-action;' what action to take
	provided the future resolution of uncertainty

♦ He is unaware of some relevant contingencies and *knows this is possible*

♦ He can seek the council of an expert who is more aware than himself

Why is the interesting?

- When preferences are not aligned, the expert might strategically conceal her awareness
- Can the dm do anything to incentivize revelation?
- Importantly, even with full/complete contracting, the dm cannot articulate what he wants
- A(n unaware) designer may not be able to solve the problem, if mechanisms depend on the unknowns

- A politician (the decision maker) is trying to write environmental legislation that
 - can be contingent on the future realized environmental state-of-affairs, but
 - can depend only on those contingencies he is aware of.

 He can enlist the help of an environmental scientist (the expert) who may reveal what she is aware of

 \diamond The true state-space is $\Omega = \{\omega, \nu\}$; equally likely

 \diamond Set of actions $\mathcal{A} = \{a, b, c\}$

 \diamond The politician must choose legislation $\mathfrak{c}:\Omega \to \mathcal{A}$

The expert can tell distinguish the states, but the politician cannot.

$$\mathcal{P}_{\mathbf{e}} = \big\{ \{\omega\}, \{\nu\} \big\} \qquad \qquad \mathcal{P}_{d} = \big\{ \{\omega, \nu\} \big\}$$

How does the politician view payoffs in coarse states?
♦ Assume it is aggregated via expectations
⋄ As if he correctly assesses randomness, but cannot explain what causes it

$$u_{d} = \begin{cases} \begin{array}{c|c|c|c} a & b & c \\ \hline \omega & 4 & 0 & 2 \\ \hline \nu & 0 & 6 & 0 \end{array} & u_{e} = \begin{cases} \begin{array}{c|c|c} a & b & c \\ \hline \omega & 0 & 2 & 4 \\ \hline \nu & 0 & 2 & 4 \end{array} \\ \\ u_{d} = \begin{cases} \begin{array}{c|c|c} a & b & c \\ \hline \omega, \nu \} & 2 & 3 & 1 \end{array} & u_{e} = \begin{cases} \begin{array}{c|c|c} a & b & c \\ \hline \omega, \nu \} & 0 & 2 & 4 \end{array} \end{cases}$$

What would the politician implement:

What would the politician implement:

- Without revelation c = b
- $\bullet \mathbb{E}[u_d] = 3, \mathbb{E}[u_e] = 2$

What would the politician implement:

$$\diamond$$
 With revelation: $\mathfrak{c}': \left\{ egin{array}{l} \omega \mapsto a \\ \nu \mapsto b \end{array} \right.$

$$\bullet \mathbb{E}[u_d] = 5, \mathbb{E}[u_e] = 1$$
; So the expert won't reveal.

$$\diamond \; \mathsf{But}, \mathfrak{c}^\star : \left\{ egin{array}{l} \omega \mapsto c \\ \nu \mapsto b \end{array}
ight. ext{is a Pareto improvement over no revelation}
ight.$$

$$\diamond \mathbb{E}[u_d] = 4, \mathbb{E}[u_e] = 3$$

- ♦ The Pareto improvement c*, requires revelation
- But revealing allows the politician to exploit the expert
- What is the politician could commit:
 - ⋄ Propose $\mathfrak{c} = \mathfrak{b}$ (his outside option)
 - \diamond After the expert reveals, propose some other contract \mathfrak{c}^{\dagger}
 - \diamond c^{\dagger} only get implemented if the expert agrees

Internalizing this, the politician solves:

$$\max_{\mathfrak{c}^\dagger:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathfrak{c}^\dagger)] \hspace{1cm} \text{subject to} \hspace{1cm} \mathbb{E}[u_{\pmb{e}}(\mathfrak{c}^\dagger)] \geq \mathbb{E}[u_{\pmb{e}}(\mathfrak{c})] \hspace{1cm} \text{(IC)}$$

Internalizing this, the politician solves:

$$\max_{\mathfrak{c}^\dagger:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathfrak{c}^\dagger)] \qquad \qquad \text{subject to} \qquad \mathbb{E}[u_{\boldsymbol{e}}(\mathfrak{c}^\dagger)] \geq \mathbb{E}[u_{\boldsymbol{e}}(\mathfrak{c})] \qquad \text{(IC)}$$

$$\diamond$$
 The solution is $\mathfrak{c}^{\star}: \left\{ \begin{array}{l} \omega \mapsto c \\ \nu \mapsto b \end{array} \right.$

- ♦ full revelation

♦ an efficient contract

So a two stage game with commitment to never revoke prior proposals resulted in

- ♦ full revelation
- ♦ an efficient contract

Does this always work?

So a two stage game with commitment to never revoke prior proposals resulted in

- ♦ full revelation
- ♦ an efficient contract

Does this always work? No

- ♦ Take $\Omega = \{\omega, \nu, \upsilon\}$; equally likely
- \diamond Set of actions $\mathcal{A} = \{a, b, c, d\}$
- ♦ The expert can tell distinguish the states, but the decision maker cannot.

$$\mathscr{P}_{e} = \big\{\{\omega\}, \{\nu\}, \{v\}\big\} \qquad \qquad \mathscr{P}_{d} = \big\{\{\omega, \nu, v\}\big\}$$

$$u_d = \left\{ egin{array}{c|ccccc} a & b & c & c \\ \hline \omega & 2 & 0 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 2 & 3 & 0 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 3 & 2 & 2 & 2 & 4 & c \\ \hline
u & 4 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 4 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 & 2 & 2 & 2 & 4 & c \\ \hline
u & 5 & 2 &$$

$$\diamond$$
 Without revelation $\mathfrak{c} = a$

$$\diamond$$
 $\mathbb{E}[u_d] = \frac{6}{3}, \mathbb{E}[u_e] = \frac{3}{3}$

$$\diamond$$
 With full revelation: $\mathbf{c}': egin{cases} \omega \mapsto a \\ \nu \mapsto b \\ v \mapsto c \end{cases}$

$$\bullet \ \mathbb{E}[u_d] = \frac{9}{3}, \mathbb{E}[u_e] = \frac{4}{3}$$

$$\diamond \ \ \mathsf{Revealing} \ \big\{ \{\omega\}, \{\nu, \upsilon\} \big\} : \mathbf{c''} : \left\{ \begin{array}{ll} \omega & \mapsto a \\ \{\nu, \upsilon\} \mapsto b \end{array} \right.$$

$$\bullet \ \mathbb{E}[u_d] = \frac{7}{3}, \mathbb{E}[u_e] = \frac{5}{3}$$

So, even with commitment, the expert does not fully reveal

$$\diamond$$
 Again, this is inefficient: $\mathfrak{c}^\star: \left\{ egin{array}{l} \omega \mapsto a \\ \nu \mapsto b \\ \upsilon \mapsto d \end{array} \right.$

$$\bullet \ \mathbb{E}[u_d] = \frac{8}{3}, \mathbb{E}[u_e] = \frac{6}{3}$$

(1) Initially, the decision maker commits to c = a

- (1) Initially, the decision maker commits to c = a
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, \upsilon\}\}$

- (1) Initially, the decision maker commits to c = a
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, v\}\}$
- (3) The decision maker proposes to \mathfrak{c}'' ; the expert accepts

- (1) Initially, the decision maker commits to $\mathfrak{c} = a$
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, v\}\}$
- (3) The decision maker proposes to \mathfrak{c}'' ; the expert accepts
 - This solves the IC-constrained maximization problem with constraint c

- (1) Initially, the decision maker commits to $\mathfrak{c} = a$
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, v\}\}$
- (3) The decision maker proposes to \mathfrak{c}'' ; the expert accepts
 - This solves the IC-constrained maximization problem with constraint c
 - This becomes the new IC constraint

- (1) Initially, the decision maker commits to $\mathfrak{c} = a$
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, \upsilon\}\}$
- (3) The decision maker proposes to \mathfrak{c}'' ; the expert accepts
 - This solves the IC-constrained maximization problem with constraint c
 - This becomes the new IC constraint
- (4) The expert reveals the rest of her awareness

- (1) Initially, the decision maker commits to $\mathfrak{c} = a$
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, v\}\}$
- (3) The decision maker proposes to \mathfrak{c}'' ; the expert accepts
 - This solves the IC-constrained maximization problem with constraint c
 - This becomes the new IC constraint
- (4) The expert reveals the rest of her awareness
- (5) The decision maker solves

$$\max_{\mathfrak{c}^{\dagger}:\Omega\to\mathcal{A}}\mathbb{E}[u_{\boldsymbol{d}}(\mathfrak{c}^{\dagger})] \qquad \text{subject to} \qquad \mathbb{E}[u_{\boldsymbol{e}}(\mathfrak{c}^{\dagger})] \geq \mathbb{E}[u_{\boldsymbol{e}}(\mathfrak{c}'')] \qquad \text{(IC)}$$

- (1) Initially, the decision maker commits to c = a
- (2) The expert partially reveals $\{\{\omega\}, \{\nu, v\}\}$
- (3) The decision maker proposes to \mathfrak{c}'' ; the expert accepts
 - This solves the IC-constrained maximization problem with constraint c
 - This becomes the new IC constraint
- (4) The expert reveals the rest of her awareness
- (5) The decision maker solves

$$\max_{\mathbf{c}^{\dagger}:\Omega\to\mathcal{A}}\mathbb{E}[u_d(\mathbf{c}^{\dagger})] \qquad \text{subject to} \qquad \mathbb{E}[u_{\boldsymbol{e}}(\mathbf{c}^{\dagger})] \geq \mathbb{E}[u_{\boldsymbol{e}}(\mathbf{c''})] \qquad \text{(IC)}$$

⋄ c* is the solution

Does this always work?

Does this always work? Yes

♦ This iterated procedure (ending when nothing novel is revealed) always results in:

full revelation

- This iterated procedure (ending when nothing novel is revealed) always results in:
 - full revelation
 - an efficient contract

- This iterated procedure (ending when nothing novel is revealed) always results in:
 - ♦ full revelation
 - an efficient contract
- More remarkably: any strategic procedure yielding full revelation is outcome equivalent to this one

- This iterated procedure (ending when nothing novel is revealed) always results in:
 - full revelation
 - an efficient contract
- More remarkably: any strategic procedure yielding full revelation is outcome equivalent to this one
- ⋄ dm does not need to optimize each round ⇒ full revelation, not necessarily efficient

The can be seen as an impossibility result:	
 Without commitment to leave proposed contracts on the table, full revelation cannot be obtained. 	

The Designers Problem

More generally, often awareness is decentralized:

- A designer wants the decision maker to take some action
- The designer does not know the dm's or the expert's awareness
- ♦ A mechanism elicits awareness and returns an action recommendation

Types

Hypothetical State-Space

Call $h = (W, (v_d, v_e), p)$ a hypothetical states-space,

- \diamond W is a finite set
- $\diamond \ v_i: W \times \mathcal{A}
 ightarrow \mathbb{R}$, for $i \in \{\mathit{d}, \mathit{e}\}$, and,
- $\diamond \ p \in \Delta(W)$

Let \mathscr{H} collect all hss; \mathscr{H} are the possible types

Talk: that h^e refines (is more expressive than) h^d .

Mechanism

A mechanism is a mapping from pairs of types into contracts:

$$\mathcal{M}:(h^d,h^{\color{red}e})\mapsto \mathcal{M}(h^d,h^{\color{red}e})$$

where $\mathcal{M}(h^d, h^e): W^e \to \mathcal{A}$

Desiderata:

INDIVIDUAL RATIONALITY: the dm can not do better alone (there is no constraint for the expert)

INCENTIVE COMPATIBILITY: i prefers to report h^i than any $h \prec h^i$

PARETO OPTIMALITY: there is no feasible contract that dominates the outcome of the mechanism

These are all **ex-post** restrictions — they must hold for all type realizations

Consider the mechanism, \mathcal{M}^* , that enforces round-by-round commitment then implements the game described above.

Theorem

The mechanism \mathcal{M}^*

- ⋄ is individually rational, incentive compatible, and Pareto optimal, and,
- \diamond $\mathbb{E}(v_d)$ -dominates any other such mechanism (point-wise over the typespace)

- ⋄ there is a 'dual' mechanism that is expert-optimal:
- it reverses the proposer and acceptor roles.
- requires only one round

