

В задаче не требуется оценка погрешностей.

Теоретическая справка

При описании полёта тела в поле силы тяжести часто применяется проецирование используемых векторных величин на горизонтальную и вертикальную оси (Рис. 1). В отсутствии сопротивления воздуха движение тела вдоль горизонтальной оси является равномерным, координата тела по этой оси линейно зависит от времени:

$$x = x_0 + v_{0x}t,\tag{1}$$

где x – координата тела по горизонтальной оси в момент времени t, x_0 – координата тела в момент времени $t=0, v_{0x}$ – проекция начальной скорости тела на горизонтальную ось.

Движение тела по вертикальной оси может быть описано квадратичной зависимостью координаты от времени:

$$y = y_0 + v_{0y}t - \frac{gt^2}{2},\tag{2}$$

где y – координата тела на вертикальной оси, направленной вверх, в момент времени t, y_0 – координата тела в момент времени $t=0,\,v_{0y}$ - проекция начальной скорости тела на вертикальную ось, $g=9.8~{\rm m/c}^2$ – ускорение свободного падения тела.

Рис. 1. Полет тела в поле силы тяжести.

В данной задаче предлагается исследовать движение стального шара. Для осуществления запуска шарика с неизменной от одного полёта к другому начальной скоростью в задаче предлагается использовать магнитную пушку (Рис. 2). В исходном положении к магниту прикрепленному к алюминиевому профилю присоединены два металлических шара, один из них будем называть шар-снаряд, другой — промежуточный шар. С другой стороны магнита на профиль кладут еще один шар, называемый бьющим, и слегка подталкивают его в направлении магнита. Бьющий шар ускоряется за счет притяжения

к магниту и ударяет магнит. Импульс бьющего шара передается через магнит и промежуточный шар шару-снаряду. Тот в свою очередь отрывается от конструкции и начинает свой полёт.

Рис. 2. Устройство магнитной пушки.

Задание

1. Соберите экспериментальную установку (Рис. 2 и 3). Настройте её так, чтобы выстрелы происходили горизонтально. Опишите предпринятые действия, которые обеспечивают горизонтальность направления начальной скорости шарика. Измерьте зависимость расстояния l, которое пролетает шар-снаряд до удара о стол, от высоты его запуска h над уровнем стола. Высоту h отсчитывайте от плоскости стола до нижней точки шара-снаряда. Постройте график измеренной зависимости.

Рис. 3. Экспериментальная установка.

- 2. Запишите формулы (1) и (2) для исследованного вами случая, поместив начало координат в начальное положение шара-снаряда.
- 3. Предложите координаты, в которых исследованная в пункте 1 зависимость является линейной функцией. Постройте линеаризированный график исследованной зависимости. Определите его угловой коэффициент.

4. Рассчитайте начальную скорость v_0 полёта шара-снаряда.

Оборудование. Отрезок алюминиевого профиля с прикреплённым магнитом, 4 одинаковых шара в чашке Петри, мерная лента, линейка 50 см, штатив с муфтой, малярный скотч, картонная коробка, тряпочка (положите тряпочку в коробку для гашения скорости шара).

Решение

Соберем установку, показанную на Рис. 3. Направление начальной скорости шарика снаряда после отрыва от промежуточного шара зависит от ориентации в пространстве направляющего профиля. Для того чтобы проверить его горизонтальность положим на него шарик. В случае, когда профиль горизонтален, шарик должен оставаться неподвижным. В противном случае, он начнёт катиться в сторону того конца профиля, который оказался ниже. Высоту установки пушки будем измерять с помощью линейки, расстояние по горизонтали от пушки до точки падения шара будем измерять с помощью мерной ленты. Для этого закрепим ленту с помощью скотча на столе.

Запустим шар-снаряд. Для удобного определения области падения шара, будем методом последовательных приближений клеить скотч в то место, где падает шар, либо располагать возле этого места торец линейки. «Кучность» места попадания шара при фиксированной высоте пушки достаточно высокая. Приблизительный размер области приземления имеет диаметр сопоставимый с шириной скотча (приблизительно 2 см). Измерим зависимость дальности полета шара-снаряда от высоты его запуска. Построим график исследованной зависимости.

h, cm	l, cm	l^2 , cm ²
3.8	18.5	342
6.5	25.5	650
12.2	35.5	1260
16.1	38.5	1482
20.5	43.5	1892
27.5	51.0	2601
37.0	60.0	3600
45.3	68.0	4624
60.0	78.0	6084

В исследуемом случае начальная скорость шара-снаряда направлена горизонтально. Поместив начало координат в его начальное положение, запишем уравнения (1) и (2):

$$x = v_0 t,$$

$$y = -\frac{gt^2}{2}.$$
(3)

В момент приземления $t_{\rm n}$ координата по горизонтальной оси становится равной x=l, а по вертикальной оси y=-h. Тогда исключая из уравнений время полета шара, получим связь между между дальностью полета и начальной высотой шара-снаряда:

$$h = \frac{g}{2v_0^2} \cdot l^2. \tag{4}$$

Таким образом, исследованная ранее зависимость должна быть линейной в координатах $h(l^2)$. Построим соответствующий график.

График зависимости l^2 от h l^2 , cm² h, cm

Видно, что измеренные точки хорошо описываются прямой пропорциональностью. Найдем угловой коэффициент искомого графика:

$$k = \frac{g}{2v_0^2} = (100 \pm 1) \text{ cm}.$$
 (5)

Откуда для начальной скорости снаряда получаем:

$$v_0 = \sqrt{\frac{g}{2k}} = (2.21 \pm 0.02) \text{ M/c.}$$
 (6)