Groupe :

NOM : Prénom :

Partiel Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (6 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

- **Q1.** Pour mesurer le courant qui traverse un générateur, on place :
 - a. Un voltmètre en série avec le générateur
 - **b** Un ampèremètre en série après le générateur
 - c. Un voltmètre en parallèle avec le générateur
 - d. Un ampèremètre parallèle avec le générateur
- **Q2.** Si on applique la loi d'Ohm avec U en volt (V) et I en milliampère (mA), on obtient directement R en :
 - a. $M\Omega$

 $\bigcirc k\Omega$

c. $m\Omega$

d. Ω

Q3. Quelle est la résistance vue entre A et B?

c.
$$\frac{R}{3}$$

b.
$$\frac{28R}{33}$$

 $\bigcirc 3R$

Soit le circuit ci-contre (Q4&5) :

- **Q4.** La tension V_2 est :
 - De même signe que I₁
 - b- De signe opposé à I_1
 - c- De signe opposé à V_0
 - d- Nulle

a.
$$-\frac{V_0}{3R}$$

c.
$$I_3 - \frac{V_3}{2R}$$

(a)
$$\frac{V_0}{3R}$$

Q6. Dans le circuit ci-contre, que vaut U?

- a. 2,5 *V*
- b. -2,5 V
- c. 5*V*
- **(d)** -5V

Q7. Soit le circuit ci-contre. Quelle est l'expression de l'intensité I'?

- a- $I' = \frac{2}{7} \cdot I$
- b- $I' = \frac{1}{3} \cdot I$
- c- $I' = \frac{4}{7} \cdot I$

Q8. Que vaut la tension U_1 ?

- a. 6 V
- \bigcirc -6V
- c. -18 V
- d. 18 V

EPITA / InfoS1 Janvier 2023

Exercice 2. Equivalences Thévenin/Norton (14 points)

1. Soient les 2 circuits ci-dessous.

a. Déterminer les expressions de \mathcal{I}_N et de \mathcal{R}_N tels que les 2 circuits ci-dessus soient équivalents.

b. En déduire l'expression de l'intensité du courant I' qui traverse 2R en fonction de E, I et R.

EPITA / InfoS1

2. Soit le circuit ci-contre. Déterminer l'expression de la tension U en fonction de E, I et R. Vous pourrez utiliser les équivalences Thévenin/Norton.

D'après la formule du pont diviseur de tension, on a :

$$U = \frac{R}{R + 4R} \cdot (E + RI)$$

$$U = \frac{E + RI}{5}$$