Regularization

Fraida Fund

Contents

egu	larization
	Penalty for model complexity
	Regularization vs. standard LS
	Common regularizers
	Graphical representation
	Common features: Ridge and LASSO
	Differences: Ridge and LASSO (1)
	Differences: LASSO (2)
	Standardization (1)
	Standardization (2)
	L1 and L2 norm with standardization (1)
	L1 and L2 norm with standardization (2)
	Ridge regularization
	Ridge term and derivative
	Ridge closed-form solution
	LASSO term and derivative
	Effect of regularization level
	Selecting regularization level

Regularization

Penalty for model complexity

With no bounds on complexity of model, we can always get a model with zero training error on finite training set - overfitting.

Basic idea: apply penalty in loss function to discourage more complex models

Regularization vs. standard LS

Least squares estimate:

$$\hat{w} = \operatorname*{argmin}_{w} MSE(w), \quad MSE(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

Regularized estimate w/ regularizing function $\phi(w)$:

$$\hat{w} = \operatorname*{argmin}_{w} J(w), \quad J(w) = MSE(w) + \phi(w)$$

Common regularizers

Ridge regression (L2):

$$\phi(w) = \alpha \sum_{j=1}^d |w_j|^2$$

LASSO regression (L1):

$$\phi(w) = \alpha \sum_{j=1}^{d} |w_j|$$

Graphical representation

Figure 1: LS solution (+), RSS contours. As we increase α , regularized solution moves from LS to 0.

Common features: Ridge and LASSO

- Both penalize large w_i
- Both have parameter α that controls level of regularization
- Intercept w_0 not included in regularization sum (starts at 1!), this depends on mean of y and should not be constrained.

Differences: Ridge and LASSO (1)

Ridge (L2):

- minimizes $|w_i|^2$,
- minimal penalty for small non-zero coefficients
- heavily penalizes large coefficients
- tends to make many "small" coefficients
- · Not for feature selection

Differences: LASSO (2)

LASSO (L1)

- minimizes $|w_i|$
- tends to make coefficients either 0 or large (sparse!)
- ullet does feature selection (setting w_i to zero is equivalent to un-selecting feature)

Standardization (1)

Before learning a model with regularization, we typically *standardize* each feature and target to have zero mean, unit variance:

•
$$x_{i,j} o \frac{x_{i,j} - \bar{x}_j}{s_{x_j}}$$

•
$$y_i o \frac{y_i - \bar{y}}{s_y}$$

Standardization (2)

Why?

- · Without scaling, regularization depends on data range
- With mean removal, no longer need $w_{\rm 0}$, so regularization term is just L1 or L2 norm of coefficient vector

L1 and L2 norm with standardization (1)

Assuming data standardized to zero mean, unit variance, the Ridge cost function is:

$$\begin{split} J(\mathbf{w}) &= \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^d |w_j|^2 \\ &= ||\mathbf{A}\mathbf{w} - \mathbf{y}||^2 + \alpha ||\mathbf{w}||^2 \end{split}$$

L1 and L2 norm with standardization (2)

LASSO cost function ($||\mathbf{w}||_1$ is L1 norm):

$$\begin{split} J(\mathbf{w}) &= \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \alpha \sum_{j=1}^d |w_j| \\ &= ||\mathbf{A}\mathbf{w} - \mathbf{y}||^2 + \alpha ||\mathbf{w}||_1 \end{split}$$

Ridge regularization

Why minimize $||\mathbf{w}||^2$?

Without regularization:

- · large coefficients lead to high variance
- large positive and negative coefficients cancel each other for correlated features (remember attractiveness ratings in linear regression case study...)

3

Ridge term and derivative

Figure 2: L2 term and its derivative for one parameter.

Ridge closed-form solution

$$J(\mathbf{w}) = ||\mathbf{A}\mathbf{w} - \mathbf{y}||^2 + \alpha ||\mathbf{w}||^2$$

Taking derivative:

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 2\mathbf{A}^T(\mathbf{y} - \mathbf{A}\mathbf{w}) + 2\alpha\mathbf{w}$$

Setting it to zero, we find

$$\mathbf{w}_{\mathsf{ridge}} = (\mathbf{A}^T\mathbf{A} + \alpha \mathbf{I})^{-1}\mathbf{A}^T\mathbf{y}$$

LASSO term and derivative

Figure 3: L1 term and its derivative for one parameter.

- No closed-form solution: derivative of $\left|w_{i}\right|$ is not continuous
- · But there is a unique minimum, because cost function is convex, can solve iteratively

Effect of regularization level

Greater α , less complex model.

- Ridge: Greater α makes coefficients smaller.
- LASSO: Greater α makes more weights zero.

Selecting regularization level

How to select α ? by CV!

- Outer loop: loop over CV folds
- Inner loop: loop over α