lan Wildanger

Reading Quiz 2 for Electromagnetic Theory (PHYS330)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy November 6, 2020

Abstract

A summary of content covered in chapter 2 of Introduction to Electrodynamics.

Distributions of Point Charges

 Picture a physical dipole of two charges +q and -q of equal magnitude, separated by a distance d. Define the dipole moment as $\vec{p} = q\vec{d}$ pointing from -q to q somewhere in the xy-plane. Now add an external electric field $\vec{E} = E_0 \hat{x}$. Show that the torque on the dipole is

 $5(n\theta)$ applied to 2 forces is (705) product 2. Imagine two dipoles, each with dipole moments $\vec{p_1}$ and $\vec{p_2}$ pointed in opposite directions, forming a square with alternating positive and negative charges. Calculate the electric field vector in the center of the square.

$$E(z) = \sqrt{\eta \epsilon_0} \frac{z^3}{z^3}$$

$$E(z) = \sqrt{\eta \epsilon_0} \frac{z^3}{z^3} + \sqrt{\eta \epsilon_0} \frac{z^3}{z^3} + \sqrt{\eta \epsilon_0} \frac{z^3}{z^3}$$

$$= \sqrt{\eta \epsilon_0} \frac{z^3}{z^3}$$

$$= \sqrt{\eta \epsilon_0} \frac{z^3}{z^3} + \sqrt{\eta \epsilon_0} \frac{z^3}{z^3}$$

$$= \sqrt{\eta \epsilon_0} \frac{z^3}{z^3} + \sqrt{\eta \epsilon_0} \frac{z^3}{z^3}$$

$$= \sqrt{\eta \epsilon_0} \frac{z^3}{z^3} + \sqrt{\eta \epsilon_0} \frac{z^3}{z^$$

2 Continuous Charge Distributions

1. (a) Compute the electric field of a continuous line of charge, with total charge $Q = \lambda L$, where λ is the charge density and L is the total length. Take the field point to be a distance z above the center of the line of charge. Show what happens in the limit that $L \gg z$. (b) Obtain the same result as (a) using Gauss' Law

(2b) Stida = La Servician Surface

Stida = Stida = TESSS JACO

 $\begin{array}{ll}
O(5) = 1 & \text{dif} = 0, \ E = 0 \\
- (1) = -0 & \text{dif} = 0 \\
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0 \\
- (1) = -0 & \text{dif} = 0 \\
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0 \\
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0$ $\begin{array}{ll}
- (1) = -0 & \text{dif} = 0
\end{array}$

Constant absorbs other Coefficients)