Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Taller de Matemática 1 Primer semestre 2019 Catedrático: Hugo García Guatemala, 18 de febrero de 2019

TAREA 2

Instrucciones: Resuelva los siguiente problemas, deberá subir a la plataforma elearning.hagarcia. com el pdf hecho en LATEX.

Problema 1

1. Encuentre el número de multiconjuntos del multiconjunto de $M=\{r_1\cdot a_1,r_2\cdot a_2,\cdots,r_n\cdots a_n\}$

5 puntos

Problema 2

Encuentre el número de multiconjuntos del multiconjunto de $M = \{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdots a_n\}$

10 puntos

Problema 3

Dos enteros de n-dígitos se llaman equivalentes si uno es permutación de los dígitos del otro. Por ejemplo 10075, 01057, 00751 son números equivalentes de 5 dígitos. Encuentre la cantidad de números enteros de 5 dígitos tales que no dos de ellos son equivalentes.

5 puntos

Problema 4

Encuentre el número de soluciones enteras de la ecuación $x_1+x_2+x_3+x_4=30$ bajo las siguientes condiciones

- 1. $x_i \ge 0$ para cada i = 1, 2, 3, 4.
- 2. $2 \le x_1 \le 7$ y $x_i \ge 0$ para cada i = 2, 3, 4
- 3. $x_i \ge -5, x_2 \ge -1, x_3 \ge 1 \text{ y } x_4 \ge 2.$

10 puntos

Problema 5

Encuentre el número de cuádruplas (w, x, y, z) de enteros no negativos que satisfacen la desigualdad $w + x + y + z \le 1992$

10 puntos

Problema 6

Hay 5 formas de expresar 4 como las suma de 2 enteros no negativos, esto es 4 = 4 + 0 = 3 + 1 = 2 + 2 = 1 + 3 = 0 + 4.

Dados r, n números naturales, calcule el número de formas de expresar r como la suma de n enteros no negativos en el cual el orden importa?

10 puntos

Problema 7

Sea $A=\{1,2,\ldots,n\}$ donde n es un número natural. Dado $k\in A$, demuestre el número de subconjuntos de A en los cuales k es el elemento más grande es 2^k-1 . Utilice este hecho para demostrar que $\sum_{i=0}^{n-1} 2^i = 2^n-1$

5 puntos

Problema 8

Calcule la cantidad de números enteros entre 100 y 1000 que son divisibles dentro de 7.

5 puntos

Problema 9

Demuestre que el producto de tres enteros consecutivos son divisibles dentro de 6.

5 puntos

Problema 10

Demuestre que $4 \nmid (n^2 + 2)$ para todo n entero.

5 puntos

Problema 11

Demuestre que si n es impar, entonces $n^2 - 1$ es divisible por 8.

5 puntos

Problema 12

Demuestre que si x, y son impares, entonces $x^2 + y^2$ es par pero no divisible dentro de 4.

10 puntos

Problema 13

Se
a $n \geq 2$ y kun entero positivo. Demuestre que
 $(n-1)^2 \mid (n^k-1)$ si y sólo si $(n-1) \mid k$

Hint: $n^k = ((n-1)+1)^k$ 15 puntos