Bayesian approach in applications

Tomasz Kajdanowicz

Embedding in graphs

Graph encoding

Node embedding

Applications

- node classification
- user behaviour prediction
- advertisement personalization
- friends recommendation

Methods for graph encoding

PREPROCESSING

"hard-coded" features

- features included in the dataset
- node labels

network centrality measures:

- node degree
- clustering coefficient
- number of shortest paths passing through a given node

Methods for graph encoding

REPRESENTATION LEARNING - EMBEDDING

Learning of a mapping from nodes/edges/subgraphs/graphs to a low-dimensional vector space.

Fig. 1. A toy example of embedding a graph into 2D space with different granularities. $G_{\{1,2,3\}}$ denotes the substructure containing node v_1 , v_2 , v_3 .

Node embedding

Node embedding

- "near" nodes should have a similar vector representation
- node proximity measure:
 - usually 1st or 2nd order node proximity

Zachary Karate Club social network

2D visualization of node embeddings

1st order node proximity

1st order neighborhood $s_{ij}^{(1)}$ of nodes v_i and v_j is the weight of the edge e_{ij} between those.

Source: H. Cai et al., A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications

2nd order node proximity

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

2nd order neighborhood $s_{ij}^{(2)}$ of nodes v_i a v_j is the similarity of their 1st order node neighborhoods: $s_i^{(1)}$ for node v_i and $s_j^{(1)}$ for node v_j .

$$s_1^{(1)}=[0, 1.2, 1.5, 0, 0, 0, 0, 0, 0]$$

$$s_2^{(1)}$$
=[1.2, 0, 0.8, 0, 0, 0, 0, 0, 0]

$$s_{12}^{(2)} = cosine(s_1^{(1)}, s_2^{(1)}) = 0.43$$

$$s_{15}^{(2)} = cosine(s_1^{(1)}, s_5^{(1)}) = 0$$

0 => no common neighbours

Edge embedding

Operator	Symbol	Definition
Average	\square	$[f(u) \boxplus f(v)]_i = \frac{f_i(u) + f_i(v)}{2}$
Hadamard	lacksquare	$[f(u) \boxdot f(v)]_i = f_i(u) * f_i(v)$
Weighted-L1	$\ \cdot\ _{ar{1}}$	$ f(u) \cdot f(v) _{\bar{1}i} = f_i(u) - f_i(v) $
Weighted-L2	$\ \cdot\ _{ar{2}}$	$ f(u) \cdot f(v) _{\bar{2}i} = f_i(u) - f_i(v) ^2$

u, v - nodes f(u), f(v) - embedding vectors for nodes u i v

Edge embedding

LINK PREDICTION

Prediction of missing edges

finding such edges in datasets

Prediction of "probable" edges

- recommender systems: friends, movies
- recommendation of potential scientific research topics

Edge embedding

KNOWLEDGE GRAPHS

- knowledge database
- edge: <h, r, t>, <head entity, relation, tail entity>
- directed graph
- finding missing entity/relation based on the other two

Fig. 3. A toy example of knowledge graph.

<Alice, isFriendOf, Bob> <Bob, isSupervisorOf, Chris>

Subgraph / whole graph embedding

Whole graph embedding

Subgraph embedding

comparing graph structures

comparing communities in graphs

Multi-Modal Bayesian Embeddings for Learning Social Knowledge Graphs

 learn latent topics that generate word embeddings and network embeddings simultaneously

representation of social network users and knowledge concepts in a shared

Yang, Z., Tang, J., & Cohen, W. (n.d.). Multi-Modal Bayesian Embeddings for Learning Social Knowledge Graphs.

Input

- social network $G^r = (V^r, E^r)$
 - V^r set of users
 - E^r set of edges between the users
- knowledge base $G^k = (V^k, C)$
 - \circ V^k set of knowledge concepts
 - C text associated with or facts between the concepts
- text posted by users of the social network D
 - Given a user $u \in V^r$, $d_u \in D$ denotes a document of all text posted by u (each user u has only one document)

Antoni Gaudí

From Wikipedia, the free encyclopedia

"Gaudi" redirects here. For other uses, see Gaudi (disambiguation).

In this Catalan name, the paternal family name is Gaudi and the maternal family name is Cornet.

Antoni Gaudí i Cornet (/ˈgaʊdi/; Catalan: [əntəni yəwði]; 25
June 1852 – 10 June 1926) was a Spanish architect known as
the greatest exponent of Catalan Modernism.^[3] Gaudí's works
have a highly individualized, one-of-a-kind style. Most are
located in Barcelona, including his main work, the church of
the Sagrada Familia.

Gaudi's work was influenced by his passions in life: architecture, nature, and religion.\(^{4}\) He considered every detail of his creations and integrated into his architecture such crafts as ceramics, stained glass, wrought ironwork forging and carpentry. He also introduced new techniques in the treatment of materials, such as \(trencadis \) which used waste ceramic pieces.

Under the influence of neo-Gothic art and Oriental techniques, Gaudí became part of the *Modernista* movement which was reaching its peak in the late 19th and early 20th centuries. His work transcended mainstream *Modernisme*, culminating in an organic style inspired by natural forms. Gaudí rarely drew detailed plans of his works, instead preferring to create them as three-dimensional scale models and moulding the details as he conceived them.

Gaudi's work enjoys global popularity and continuing admiration and study by architects. His masterpiece, the still-incomplete Sagrada Familia, is the most-visited monument in Spain, [5] Between 1984 and 2005, seven of his works were declared World Heritage Sites by UNESCO. Gaudi's Roman Catholic faith intensified during his life and religious images appear in many of his works. This earned him the nickname "God's Architect" [6] and led to calls for his beatification [6][7]

Antoni Gaudí

Gaudi in 1878, by Pau Audouard

25 June 1852 Reus or Riudoms, Catalonia

Spain [1][2]

10 June 1926 (aged 73) Barcelona, Catalonia, Spain

Nationality Spanish

Occupation Architect

Buildings Sagrada Família, Casa Milà,

Casa Batlló

Park Güell, Church of Colonia

Website www.sagradafamilia.org/en/₽

www.parkguell.cat/en/ట casabatllo.es/en/란

Output

- social knowledge graph $G = (V^r, V^k, P)$
- given a user $u \in V^r$, P_u is a ranked list of top-k knowledge concepts in V^k , where order indicates the relatedness to user u
- E.g. academic social network
 - o top-k research interests of each researcher

Two modalities

social network of users

knowledge concepts

More about input

- pretrained knowledge concept embeddings
 - \circ encode information from the knowledge base G^k
 - o e.g. skip-gram model [Mikolov et al., 2013]
- pretrained user embeddings as input
 - social network G^r
 - o e.g. DeepWalk [Perozzi et al., 2014]

The model

D - documents

Z - topics

M - concepts in a document

f' - embeddings of users drawn from Normal(μ ,1/ λ) -> from NormalGamma(τ')

 f_{um}^{k} - embedding of m-concept in document d_{u}

 θ_u - multinomial topic distribution of document d_u (or user u)

 z_{um} - topic of the m-th knowledge concept in document d_u

 y_{u} - topics of user u

Generative process

- 1. For each topic t, and for each dimension
 - (a) Draw μ_t^r, λ_t^r from NormalGamma (τ^r)
 - (b) Draw μ_t^k, λ_t^k from NormalGamma (τ^k)

- (a) Draw a multinomial distribution θ from Dir(α)
- (b) For each knowledge concept w in d_u
 - i. Draw a topic z from $Multi(\theta)$
 - ii. For each dimension of the embedding of w, draw f^k from $\mathcal{N}(\mu_z^k, \lambda_z^k)$
- (c) Draw a topic y uniformly from all z's in d_u
- (d) For each dimension of the embedding of user u, draw f^r from $\mathcal{N}(\mu_u^r, \lambda_u^r)$

Inference

- collapsed Gibbs sampling [Griffiths, 2002]
- extension of Gaussian LDA [Das et al., 2015] that updates the embeddings during inference

Experiments

Data for embedding calculations:

- Miner co-authorships between researchers
 - documents of authors
- Wikipedia knowledge base of articles
 - (Wikipedia corpus to learn the knowledge concept embeddings)

Evaluation:

Ranking of concepts from:

- homepage
- linkedin
- crowdsourcing

1	Machine Learning
2	Embedding
3	Bayesian inference
4	Social Networks
5	Social Media

Topic #1	Topic #2	Topic #3			
GenVector					
query expansion	image processing	hepatocellular carcinoma			
concept mining	face recognition	gastric cancer			
language modeling	feature extraction	acute lymphoblastic leukemia			
information extraction	computer vision	renal cell carcinoma			
knowledge extraction	image segmentation	glioblastoma multiforme			
entity linking	image analysis	acute myeloid leukemia			
language models	feature detection	peripheral blood			
named entity recognition	digital image processing	malignant melanoma			
document clustering	machine learning algorithms	hepatitis c virus			
latent semantic indexing	machine vision	squamous cell carcinoma			
Thorsten Joachims	Anil K. Jain	Keizo Sugimachi			
Jian Pei	Thomas S. Huang	Setsuo Hirohashi			
Christopher D. Manning	Peter N. Belhumeur	Masatoshi Makuuchi			
Raymond J. Mooney	Azriel Rosenfeld	Morito Monden			
Charu C. Aggarwal	Josef Kittler	Yoshio Yamaoka			
William W. Cohen	Shuicheng Yan	Kunio Okuda			
Eugene Charniak	David Zhang	Yasuni Nakanuma			
Kamal Nigam	Xiaoou Tang	Kendo Kiyosawa			
Susan T. Dumais	Roberto Cipolla	Masazumi Tsuneyoshi			
T. K. Landauer	David A. Forsyth	Satoru Todo			

Embedding Words as Distributions with a Bayesian Skip-gram Model

Idea:

 replace point word embedding with distribution

Havrylov, Serhii, and Ivan Titov. "Embedding Words as Distributions with a Bayesian Skip-gram Model." *Proceedings of the 27th International Conference on Computational Linguistics*. 2018.

Models

skip-gram

Bayesian skip-gram

- For each data point i = 1...N
- * For each context word j = 1...C
 - · Draw a context word $c_{ij} \sim p(c|w_i)$

- For each data point i = 1...N
- * Draw a latent vector $\boldsymbol{z}_i \sim p(\boldsymbol{z}|w_i)$
- * For each context word j = 1...C
 - · Draw a context word $c_{ij} \sim p(c|\boldsymbol{z}_i, w_i)$

Examples

word 1	word 2	KL	cosine sim.
dog	cat	15.47	0.71
dog	pet	18.52	0.70
dog	hound	21.20	0.64
dog	animal	27.69	0.52
cappuccino	espresso	12.59	0.76
cappuccino	latte	13.39	0.7
cappuccino	coffee	22.54	0.69
cappuccino	drink	30.81	0.54
microsoft	windows	24.41	0.65
microsoft	google	24.44	0.60
microsoft	corporation	39.40	0.29
microsoft	company	46.05	0.19