WHAT IS CLAIMED IS:

1	1.	A method for forming an electroluminescent lamp that
2	includes an electrolu	minescent active layer, the method comprising:
3	a)	applying a first conductive layer to a substrate wherein the
4	first conductive laye	er is an opaque conductive layer or a transparent conductive
5	layer;	
6	b)	applying a light-producing layer to the first conductive layer
7	wherein the light-pro	oducing layer is:
8		1. an electroluminescent active layer;
9		2. a multilayer construction comprising a dielectric layer
10		and an electroluminescent active layer wherein the
11		dielectric layer is applied to the first conductive layer
12		before the electroluminescent active layer is applied;
13		or
14		3. a multilayer construction comprising a dielectric layer
15		and an electroluminescent active layer wherein the
16		electroluminescent active layer is applied to the first
17		conductive layer before the dielectric layer is applied;
18		and
19	c)	applying a second conductive layer to the light-producing
20	layer wherein the s	econd conductive layer is an opaque conductive layer or a
21	transparent conducti	ve layer;
22	with	the proviso that the first conductive layer and the second
23	conductive layer a	re not both opaque conductive layers and wherein the
24	electroluminescent l	ayer is made by a method comprising:
25		1) applying an electroluminescent composition wherein
26		the electroluminescent composition has the
27		characteristic of being curable into the
28		electroluminescent active layer when irradiated with

29	UV light and does not contain any significant amount		
30	of volatile organic solvents that do not become		
31	incorporated in the electroluminescent active layer		
32	after curing; and		
33	2) curing the electroluminescent composition with UV		
34	light for a sufficient time to form the		
35	electroluminescent active layer.		
36	wherein the electroluminescent composition does not contain any		
37	significant amount of volatile organic solvents that do not become incorporated in		
38	the electroluminescent layer after the electroluminescent composition is cured.		
1	2. The method of claim 1, wherein the electroluminescent		
2	composition comprises:		
3	at least one oligomer selected from the group consisting of an		
4	acrylated urethane oligomer, an acrylic oligomer, an epoxy oligomer, a polyeste		
5	oligomer, and mixture thereof;		
6	an acrylate monomer;		
7	a photoinitiator; and		
8	a phosphor.		
1	3. The method of claim 2, wherein the acrylated monomer is an		
2	isobornyl acrylate.		
1	4. The method of claim 3, wherein:		
2	the at least one oligomer is present in an amount of about 10% to		
3	40% of the weight of the electroluminescent composition;		
4	the acrylate monomer is present in an amount of about 4% to 30%		
5	of the weight of the electroluminescent composition;		
6	the photoinitiator is present in an amount of about 0.5% to 6% of the		
7	weight of the electroluminescent composition; and		

8	the phosphor is present in an amount of about 28% to 80% of the		
9	weight of the electroluminescent composition;		
1	5. The method of claim 3, wherein the at least one aliphatic		
2	acrylated oligomer is at least one urethane oligomer.		
1	6. The method of claim 4, wherein the electroluminescent		
2	composition further comprises:		
3	an adhesion promoter in an amount of about 1% to 10% of the		
4	weight of the composition; and		
5	a flow promoting agent in an amount of 0.1 % to 5% of the weight		
6	of the electroluminescent composition.		
1	7. The method of claim 6, wherein:		
2	the at least one oligomer is present in an amount of about 34 % of		
3	the weight of the electroluminescent composition;		
4	the acrylate monomer is present in an amount of about 20% of the		
5	weight of the electroluminescent composition;		
6	the photoinitiator is present in an amount of about 3% of the weight		
7	of the electroluminescent composition; and		
8	the phosphor is present in an amount of about 33% of the weight of		
9	the electroluminescent composition;		
10	an adhesion promoter in an amount of about 7% of the weight of the		
11	composition; and		
12	a flow promoting agent in an amount of 3% of the weight of the		
13	electroluminescent composition.		
1	8. The method of claim 7, wherein:		
2	the at least one oligomer is present in an amount of about 12% of the		
3	weight of the electroluminescent composition:		

4	the acrylate monomer is present in an amount of about 8% of the
5	weight of the electroluminescent composition;
6	the photoinitiator is present in an amount of about 1% of the weight
7	of the electroluminescent composition; and
8	the phosphor is present in an amount of about 75% of the weight of
9	the electroluminescent composition;
10	an adhesion promoter in an amount of about 3% of the weight of the
11	composition; and
12	a flow promoting agent in an amount of 1% of the weight of the
13	electroluminescent composition.
1	9. The method of claim 3, wherein the method of applying the
2	electroluminescent composition is spraying.
1	10. The method of claim 3, wherein the method of applying the
2	electroluminescent composition is screen-printing.
1	11. The method of claim 3, wherein the method of applying the
2	electroluminescent composition is dipping.
1	12. The method of claim 3, wherein the method of applying the
2	electroluminescent composition is brushing.
1	13. The method of claim 3, wherein the method of applying the
2	electroluminescent composition is the flexographic method.
1	14. The method of claim 3, wherein the aliphatic acrylated
2	oligomer in the mixture is selected from the group consisting of:
3	a) aliphatic urethane diacrylate diluted 10% by weight with 1,6-
4	hexanediol diacrylate;

5	b) aliphatic urethane triacrylate diluted 15% by weight with 1,6-			
6	hexanediol diacrylate);			
7	c) aliphatic urethane diacrylate blended with 20% by weight			
8	tripropylene glycol diacrylate;			
9	d) aliphatic urethane diacrylate blended with 25% by weight			
10	ethoxylated trimethylol propane triacrylate;			
11	e) aliphatic urethane diacrylate blended with 19% by weight 2(2-			
12	ethoxyethoxy)ethyl acrylate;			
13	f) aliphatic urethane diacrylate blended with 20% by weight			
14	tripropylene glycol diacrylate;			
15	g) aliphatic urethane diacrylate blended with 20% by weight			
16	tripropylene glycol diacrylate;			
17	h) aliphatic urethane diacrylate blended with 25% by weight			
18	tripropylene glycol diacrylate;			
19	i) aliphatic urethane diacrylate; and			
20	j) mixtures thereof.			
1	15. The method of claim 3, wherein the acrylate monomer in the			
2	mixture is selected form the group consisting of acrylate, methacrylate, and			
3	mixtures thereof.			
1	16. The method of claim 3, wherein the photoinitiator is selected			
2	from the group consisting of:			
3	1-hydroxycyclohexyl phenyl ketone;			
4	2-methyl-1-[4-(methylthio)phenyl]-2-morpholino propan-1-;			
5	the combination of 50% 1-hydroxy cyclohexyl phenyl ketone and			
6	50% benzophenone;			
7	2,2-dimethoxy-1,2-diphenylethan-1-one;			
8	the combination of 25% bis(2,6-dimethoxybenzoyl-2,4-, 4-trimethyl			
9	pentyl phosphine oxide and 75% 2-hydroxy-2-methyl-1-phenyl-propan-1-one:			

10	2-hydroxy-2-methyl-1-phenyl-1-propane;		
11	the combination of 50% 2,4,6-trimethylbenzoyldiphenyl-phosphine		
12	oxide and 50% 2-hydroxy 2-methyl-1-phenyl-propan-1-one;		
13	mixed triaryl sulfonium hexafluoroantimonate salts, mixed triaryl		
14	sulfonium hexafluorophosphate salts; and		
15	mixtures thereof.		
1	17. The method of claim 2, wherein the first conductive layer is		
2	an opaque conductive layer and the second conductive layer is a transparent		
3	conductive layer.		
1	18. The method of claim 2, wherein the first conductive layer is		
2	a transparent conductive layer and the second conductive layer is an opaque		
3	conductive layer.		
1	19. The method of claim 2, wherein the first conductive layer is		
2	a transparent conductive layer and the second conductive layer is a transparent		
3	conductive layer.		
1	20. The method of claim 2 wherein the first conductive layer or		
2	the second conductive layer is made by the process comprising:		
3	a) applying an opaque conductive composition wherein the		
4	opaque conductive composition is capable of being cured into the transparent		
5	conductive layer when irradiated with UV light; and		
6	b) curing the opaque conductive composition with UV light for		
7	a sufficient time to form the first conductive layer.		
1	21. The method of claim 20, wherein the opaque conductive		
2	composition comprises comprising:		
3	a photocurable organic mixture;		

4		a photoinitiator;
5		silver powder; and
6		silver flakes.
1	22	
1	22.	The method of claim 21, wherein the photocurable organic
2	mixture comprises:	
3		an aliphatic acrylated urethane oligomer;
4		an acrylated epoxy oligomer; and
5		an isobornyl acrylate monomer.
1	23.	The method of claim 22, wherein the aliphatic acrylated
2	urethane oligomer i	s present in an amount of about 3% to 8% of the silver
3	composition.	
1	24.	The method of claim 22, wherein the aliphatic acrylated
2	urethane oligomer is	present in an amount of about 8% of the silver composition.
1	25.	The method of claim 22, wherein the acrylated epoxy
2	oligomer is present i	n an amount of about 2% to 4% of the silver composition.
1	26.	The method of claim 22, wherein the acrylated epoxy
2	oligomer is present i	n an amount of about 3% of the silver composition.
_		
1	27.	The method of claim 22, wherein the isobornyl acrylate
2	monomer is present	in an amount of about 4% to 8% of the silver composition.
1	20	
1	28.	The method of claim 22, wherein the isobornyl acrylate
2	monomer is present	in an amount of about 5% of the silver composition.

- 1 29. The method of claim 22, wherein the silver powder is present 2 in an amount of about 50% to 60% of the silver composition.
- 1 30. The method of claim 22, wherein the silver powder is present 2 in an amount of about 52% of the silver composition.
- 1 31. The method of claim 22, wherein the silver flake is present in an amount of about 25% to 35% of the silver composition.
- 1 32. The method of claim 22, wherein the silver flake is present in an amount of about 30% of the silver composition.
- 1 33. The method of claim 22, wherein the photoinitiator is present 2 in an amount of about 3% to 6% of the silver composition.
- 1 34. The method of claim 22, wherein the photoinitiator is 2 present in an amount of about 5% of the silver composition.
- 1 35. The method of claim 22, wherein the photocurable organic mixture further comprises a flow promoting agent.
- 1 36. The method of claim 35, wherein the flow agent is present 2 in an amount of about 0.1% to 2% of the silver composition.
- 1 37. The method of claim 35, wherein the flow agent is present 2 in an amount of about 1% of the silver composition.
- 1 38. The method of claim 22, further comprising an adhesion 2 promoter.

1		39.	The method of claim 22, wherein the photocurable organic
2	mixture comp	orises:	
3			an acrylated epoxy oligomer;
4			an isobornyl acrylate monomer; and
5			a flow promoting agent.
1		40.	The method of claim 2, wherein when the light-producing
2	layer include	es a die	electric layer, the dielectric layer is made by the method
3	comprising:		
4		a)	applying a dielectric composition wherein the dielectric
5	composition	is capat	ole of being cured into the dielectric layer when irradiated with
6	UV light; and	d	
7		b)	curing the dielectric composition with UV light for a
8	sufficient tim	e to for	rm the dielectric layer.
1		41.	The method of claim 40, wherein the dielectric composition
2	comprises:		
3		a pho	tocurable organic mixture;
4		dielec	etric material; and
5		a pho	toinitiator.
1		42.	The method of claim 41, wherein the photocurable mixture
2	comprises:		
3		at lea	st one oligomer is selected from the group consisting of an
4	acrylated ure	thane o	ligomer, an acrylic oligomer, an epoxy oligomer, a polyester
5	oligomer, and	d mixtu	re thereof; and
6			an isobornyl acrylate monomer.
1		43.	The method of claim 41, wherein the dielectric material is a
2	nonconductiv	e metal	oxide or a mixture of nonconductive metal oxides.

3

1	44. The method of claim 41, wherein the dielectric material is	
2	selected from the group consisting of titanium oxide, barium titanate, zirconium	
3	oxide, and mixtures thereof.	
1	45. The method of claim 41, wherein the photocurable mixture	
2	further comprises a flow promoting agent.	
4		
1	46. The method of claim 45, wherein the photocurable mixture	
2	further comprises an adhesion promoter.	
1	47. The method of claim 46, wherein the at least one oligomer is	
2	present in an amount of about 10% to 40% of the total weight of the dielectric	
3	composition;	
4	the isobornyl acrylate monomer is present in an amount of about 5%	
5	to 30% of the total weight of the dielectric composition;	
6	the dielectric material is present in an amount of about 30% to 80%	
7	of the total weight of the dielectric composition;	
8	the photoinitiator is present in an amount of about 1% to 12% of the	
9	total weight of the dielectric composition;	
10	the flow promoting agent is present in an amount of about 0.5% to	
11	10% of the total weight of the dielectric composition; and	
12	the adhesion promoter is present in an amount of about 1% to 10%	
13	of the total weight of the dielectric composition.	
1		
1	48. The method of claim 2, wherein the first conductive layer or	
2	the second conductive layer or both the first conductive layer and second conductive	

layer are made by the process comprising:

4		a)	applying a transparent conductive composition wherein the
5	transparent conductive composition is capable of being cured into the conductive		
6	layer when ir	radiated	with UV light; and
7		b)	curing the transparent conductive composition with UV light
8	for a sufficien	it time t	o form the second conductive layer.
1		49.	The method of claim 48, wherein the transparent conductive
2	composition c	ompris	es:
3		a phot	ocurable organic mixture;
4		a cond	luctive powder; and
5		a phot	oinitiator.
1		50.	The method of claim 49, wherein the photocurable organic
2	mixture comp	rises:	
3		at leas	t one aliphatic acrylated oligomer;
4		an acr	ylated epoxy oligomer; and
5		an iso	bornyl acrylate monomer.
1		51.	The method of claim 50, wherein the photocurable organic
2	mixture further	er comp	orising a flow promoting agent.
1		52.	The method of claim 51 wherein the acrylated aliphatic
2	oligomer mixt	ure is a	bout 10 $\%$ to 40 $\%$ of the weight of the transparent conductive
3	composition;		
4		the acr	rylated epoxy oligomer is about 3 % to 11 % of the weight of
5	the transparer	ıt condı	active composition;
6		the iso	bornyl acrylate monomer is about 10 $\%$ to 40 $\%$ of the weight
7	of the transpa	rent co	nductive composition;
8		the ph	otoinitiator is about 2 % to 10 % of the weight of the metallic
9	composition;		

10	the flow promoting agent is present in an amount of about 0.1 % to		
11	8 % of the weight of the transparent conductive composition; and		
12	the conductive powder is present in an amount of about 20 $\%$ to 50 $\%$		
13	of the weight of the transparent conductive composition.		
1	53. The method of claim 52, wherein the acrylated aliphatic		
2	oligomer mixture is about 20 $\%$ to 30 $\%$ of the weight of the transparent conductive		
3	composition;		
4	the acrylated epoxy oligomer is about 5 % to 9 % of the weight of		
5	the transparent conductive composition;		
6	the isobornyl acrylate monomer is about 20 $\%$ to 35 $\%$ of the weight		
7	of the transparent conductive composition;		
8	the photoinitiator is about 4 % to 6 % of the weight of the metallic		
9	composition;		
10	the flow promoting agent is present in an amount of about 3 % to 5		
11	% of the weight of the transparent conductive composition; and		
12	the conductive powder is present in an amount of about 30 $\%$ to 40 $\%$		
13	of the weight of the transparent conductive composition.		
1	54. The method of claim 53 wherein the acrylated aliphatic		
2	oligomer mixture is about 27 % of the weight of the transparent conductive		
3	composition;		
4	the acrylated epoxy oligomer is about 7 % of the weight of the		
5	transparent conductive composition;		
6	the isobornyl acrylate monomer is about 28 % of the weight of the		
7	transparent conductive composition;		
8	the photoinitiator is about 5 % of the weight of the metallic		
9	composition;		
10	the flow promoting agent is present in an amount of about 3.5 % of		
11	the weight of the transparent conductive composition; and		

12	the conductive powder is present in an amount of about 33 % of the		
13	weight of the transparent conductive composition.		
1	55. The method of claim 47, wherein the method of applying the		
2	transparent conductive composition is spraying.		
1	56. The method of claim 47, wherein the method of applying the		
2	transparent conductive composition is screen printing.		
1.	57. The method of claim 47, wherein the method of applying the		
2	transparent conductive is dipping.		
1	58. The method of claim 47, wherein the method of applying the		
2	transparent conductive is brushing.		
1	59. The method of claim 47, wherein the method of applying the		
2	transparent conductive composition is by the flexographic method.		
1	60. The method of claim 50, wherein the isobornyl acrylate		
2	monomer is selected from the group consisting of isobornyl acrylate, isobornyl		
3	methacrylate, and mixtures thereof.		
1	61. The method of claim 50, wherein the photoinitiator is		
2	selected from the group consisting of:		
3	1-hydroxycyclohexyl phenyl ketone;		
4	2-methyl-1-[4-(methylthio)phenyl]-2-morpholino propan-1-;		
5	the combination of 50% 1-hydroxy cyclohexyl phenyl ketone and		
6	50% benzophenone;		
7	2,2-dimethoxy-1,2-diphenylethan-1-one;		

8	the combination of 25% bis(2,6-dimethoxybenzoyl-2,4-, 4-trimethyl
9	pentyl phosphine oxide and 75% 2-hydroxy-2-methyl-1-phenyl-propan-1-one;
10	2-hydroxy-2-methyl-1-phenyl-1-propane;
11	the combination of 50% 2,4,6-trimethylbenzoyldiphenyl-phosphine
12	oxide and 50% 2-hydroxy 2-methyl-1-phenyl-propan-1-one;
13	mixed triaryl sulfonium hexafluoroantimonate salts, mixed triaryl
14	sulfonium hexafluorophosphate salts; and
15	mixtures thereof.
1	62. The method of claim 50, wherein the acrylated epoxy
2	oligomer is selected from the group consisting of:
3	novolac epoxy acrylate diluted 20 % by weight with tripropylene
4	glycol diacrylate;
5	difunctional bisphenol based epoxy acrylate; and
6	mixtures thereof.
1	63. The method of claim 2, further comprising:
2	a) applying a clear-coat composition to the electroluminescent
3	active layer wherein the clear-coat composition is capable of being cured into the
4	dielectric layer when irradiated with UV light; and
5	b) curing the clear-coat composition applied to the
6	electroluminescent layer with UV light for a sufficient time to form the clear-coat.
1	64. A method for forming an electroluminescent lamp on a
2	substrate, the method comprises:
3	a) applying an opaque conductive composition to a substrate
4	wherein the opaque conductive composition has the characteristic of being curable
5	into an conductive layer when irradiated with UV light;;

6	b) curing the opaque conductive composition applied to the
7	substrate with UV light for a sufficient time to form the opaque conductive layer
8	on the substrate;
9	c) applying an electroluminescent composition to the opaque
10	conductive layer wherein the electroluminescent composition has the characteristic
11	of being curable into an electroluminescent active layer when irradiated with UV
12	light;
13	d) curing the electroluminescent composition applied to the
14	opaque conductive layer with UV light for a sufficient time to form the
15	electroluminescent active layer;
16	f) applying a dielectric composition to the electroluminescent
17	active layer wherein the dielectric composition has the characteristic of being
18	curable into a dielectric layer when irradiated with UV light;
19	g) curing the dielectric composition applied to the substrate with
20	UV light for a sufficient time to form the dielectric layer;
21	h) applying a transparent conductive composition to the dielectric
22	layer wherein the transparent conductive composition is capable of being cured into
23	a transparent conductive layer when irradiated with UV light; and
24	i) curing the transparent conductive composition applied to the
25	dielectric layer with UV light for a sufficient time to form the transparent
26	conductive layer.
1	65. A UV curable dielectric composition comprising:
2	a photocurable organic mixture;
3	dielectric material; and
4	a photoinitiator.
1	66. The dielectric composition of claim 65, wherein the

photocurable mixture comprises:

2

3	at least one oligomer is selected from the group consisting of an
4	acrylated urethane oligomer, an acrylic oligomer, an epoxy oligomer, a polyester
5	oligomer, and mixture thereof; and
6	an isobornyl acrylate monomer.
1	67. The dielectric composition of claim 65, wherein the dielectric
2	material is a nonconductive metal oxide.
1	68. The dielectric composition of claim 65, wherein the dielectric
2	material is selected from the group consisting of titanium oxide, barium titanate,
3	zirconium oxide, and mixtures thereof.
1	69. The dielectric composition of claim 65, wherein the
2	photocurable mixture further comprises a flow promoting agent.
1	70. The dielectric composition of claim 69, wherein the
2	photocurable mixture further comprises an adhesion promoter.
1	71. The dielectric composition of claim 70, wherein:
2	the acrylated aliphatic urethane oligomer is present in an amount of
3	about 10% to 40% of the total weight of the dielectric composition;
4	the isobornyl acrylate monomer is present in an amount of about 5%
5	to 30% of the total weight of the dielectric composition;
6	the dielectric material is present in an amount of about 30% to 80%
7	of the total weight of the dielectric composition;
8	the photoinitiator is present in an amount of about 1% to 12% of the
9	total weight of the dielectric composition;
0	the flow promoting agent is present in an amount of about 0.5% to
l 1	10% of the total weight of the dielectric composition; and

- the adhesion promoter is present in an amount of about 1% to 10%
- of the total weight of the dielectric composition.