

Predictive Engineering and Computational Sciences

UQ Tools

Nicholas Malaya

The University of Texas at Austin

October 18th, 2013

1/5

Tools and Processes Enabling UQ

- Forward propagation of prior information (sensitivity analysis)
- Bayesian calibration and software for sampling
- Bayesian optimal experimental design

Sensitivity Analysis

- Begin UQ process with sensitivity study in Year 1 FSS
- Identify key parameters/models for further investigation
- Conducted analogous exercise in PSAAP 1 with ~ 300 parameters

- Result: < 30 parameters account for 95%+ uncertainty
- ullet > 150 parameters negligible to within numerical error

Submodel Calibration Example: Turbulence Model

Jointly calibrate model parameters via Bayesian update

Bayes' theorem:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Sampling: Markov chain Monte Carlo

Using QUESO

Bayesian Experimental Design for Calibration

- Uncertainty encoded in PDF measured by information entropy
- Identify designs which maximally posterior parameter uncertainty
- Experimentalist defines optimization domain
- Computational scientist chooses best experiment to inform model
- Iterate until desired uncertainty reached

5/5