

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2019/2020 - UC 47166 (1º Ano/2º Sem)

Exercícios de MD F. 4 - Estratégias de Demonstração

- 1. Mostre, por prova direta, que se n é par então $n^3 3n 1$ é impar.
- 2. Prove, por contraposição, que se n^2 é par então n é par.
- 3. Mostre, por contraposição, que se n é um número inteiro positivo tal que n!>n+1 , então n>2.
- 4. Prove, por redução ao absurdo, que 200 não é um quadrado perfeito ($n \in \mathbb{N}$ é um quadrado perfeito se $n = p^2$ para algum $p \in \mathbb{N}$.)
- 5. Mostre por contraposição (ou por redução ao absurdo) que escolhendo quaisquer 22 dias de um ano, pelo menos 4 são o mesmo dia da semana.
- 6. Mostre, por redução ao absurdo, que $\sqrt{2}$ é um número irracional.
- 7. Mostre que

(a)
$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}, \ n \ge 1.$$

- (b) $n^2 1$ é divisivel por 8 para todo o número ímpar n.
- (c) $4^n + 15n 1$ é divisível por 9, para $n \ge 1$.
- (d) $\sum_{i=1}^{n} r^i = \frac{(r^n 1)r}{r 1}$, para todos os inteiros $n \ge 1$ e para todos os números reais $r \ne 1$.
- (e) $H_{2^n} \ge 1 + \frac{n}{2}$, para $n \ge 0$, onde $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{j}$, para $j \in \mathbb{N}$.
- 8. Recorrendo ao método de indução, prove que a sucessão de números triangulares cuja definição por recorrência é $t_1=1$ e $t_n=t_{n-1}+n$, para $n\geq 2$, é dada por

$$t_n = \frac{n^2 + n}{2}, \ n \ge 1$$
.

- 9. Descubra e mostre por indução uma fórmula para $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n$, para $n \in \mathbb{N}$.
- 10. Considere a sucessão definida por $a_0 = 1$, $a_1 = 3$ e $a_n = 2a_{n-1} a_{n-2}$, $n \ge 2$. Mostre que, para $n \in \mathbb{N}_0$, a_n não é múltiplo de 2.
- 11. Mostre que os termos de uma sucessão que satisfaça $a_1=a_2=1$ e $a_n=4a_{n-1}+5a_{n-2}$ para $n\geq 3$, são dados por

$$a_n = \frac{5^{n-1} + 2(-1)^{n-1}}{3} \ .$$

12. Considere a seguinte função definida para os números naturais

$$f(n) = \begin{cases} 0 & \text{se } n = 0\\ 4f(\frac{n}{2}) & \text{se } n \text{ for par e } n > 0\\ f(n-1) + 2n - 1 & \text{se } n \text{ for impar} \end{cases}$$

Mostre que $f(n) = n^2$ para todo $n \ge 0$.

MD 20119-2020 Folha 4 1/4

- 13. Prove que qualquer inteiro maior do que 1 é divisível por um número primo.
- 14. Uma linguagem formal usada na Álgebra tem os seguintes símbolos no seu alfabeto:

$$x \quad y \quad z \quad (\quad) \quad +$$

As palavras desta linguagem são strings de símbolos formadas de acordo com as seguintes regras:

- 1. $x, y \in z$ são palavras.
- 2. Se A e B são palavras, então (A)(B) é uma palavra.
- 3. Se $A \in B$ são palavras, então (A) + (B) é uma palavra.

Por exemplo, ((x)(z)) + (z) é uma palavra mas, (x) + z não é uma palavra desta linguagem. Mostre, por indução no comprimento das palavras (isto é, no número de símbolos) que qualquer palavra desta linguagem tem o mesmo número de símbolos (e).

- 15. A familia Ferreira tem 13 filhos, para além de dois progenitores. Recorrendo ao princípio da gaiola dos pombos responda às seguintes questões:
 - (a) Quantas pessoas desta família pode garantir que:
 - i. Nasceram no mesmo mês?
 - ii. Nasceram no mesmo dia da semana?
 - (b) No próximo sábado, os Ferreira vão dar uma festa para a qual os filhos podem convidar os seus amigos mais próximos. Quantos amigos vão ser convidados por forma a garantir que pelo menos 3 dos convidados são amigos do mesmo filho dos Ferreira?
- 16. Mostre que num conjunto de cinco números inteiros positivos (arbitrários), existem pelo menos dois com o mesmo valor para o resto da divisão por 4.
- 17. Mostre que escolhendo cinco números inteiros (distintos) entre 1 e 8, dois deles têm soma igual a 9.
- 18. Mostre que dados 11 números no intervalo]0,1[, haverá pelo menos dois deles cuja diferença é menor que 0.1.
- 19. Mostre que num grupo de 20 pessoas escolhidas ao acaso existem pelo menos 2 pessoas que têm o mesmo número de amigos dentro do grupo. Note que duas pessoas são consideradas amigas se houver uma relação de amizade recíproca estabelecida entre elas.
- 20. Considere que p_1, p_2, \dots, p_n são números inteiros positivos.
 - (a) Mostre que se $p_1 + p_2 + \cdots + p_n n + 1$ objectos são colocados em n caixas, então existe um inteiro i entre 1 e n tal que a i-ésima caixa contém pelo menos p_i objectos.
 - (b) Fazendo $p_1 = p_2 = \cdots = p_n = r \in \mathbb{N}$ o que se pode afirmar?
- 21. Durante o mês de Janeiro, o João bebeu 42 cafés. Dado que o João bebe pelo menos um café por dia, mostre que num certo número de dias consecutivos o João bebeu exatamente 17 cafés.

Soluções:

- 1. Substituir n por $2k, k \in \mathbb{N}$
- 4. Se 200 é um quadrado perfeito então 200 = n^2 , com $2 \le n \le 14 = \lfloor \sqrt{200} \rfloor$, o que é uma contradição porque $n^2 < 200$, para $2 \le n \le 14$.
- 7. (b) Seja n = 2p 1, com p natural. Então $n^2 1 = (2p 1)^2 1 = 4p^2 + 1 4p 1 = 4p(p 1)$. Dado que p ou p 1 é par, podemos concluir que $n^2 1 = 8k$, onde k é um inteiro não negativo.
- 7. (c) $4^{n+1} + 15(n+1) 1 = 4(4^n + 15n 1) + 9(-5n + 2)$.
- 7. (e) $H_{2^0} = 1 = 1 + \frac{0}{2}$. Suponhamos que $H_{2^n} \ge 1 + \frac{n}{2}$. Então

$$H_{2^{n+1}} = H_{2^n} + \frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n}$$

$$\geq 1 + \frac{n}{2} + \frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n}$$

$$\geq 1 + \frac{n}{2} + \frac{2^n}{2^n + 2^n}$$

$$= 1 + \frac{n}{2} + \frac{2^n}{2^{n+1}}$$

$$= 1 + \frac{n+1}{2}.$$

- 9. $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}, n \in \mathbb{N}.$
- 10. H.Ind.: a_k não é múltiplo de 2, para $0 \le k \le n$. Então $a_{n+1} = 2a_n a_{n-1} = 2(2r+1) (2s+1) = 2(2r-s+1) 1$ e a_{n+1} não é múltiplo de 2.
- 13. Suponhamos que qualquer k tal que $0 \le k \le n$, com $n \ge 2$, é divisível por um número primo e considere-se n+1. Então, ou n+1 é primo (e consequentemente é divisível por ele próprio) ou é um número composto (i.e, não é primo). Neste último caso, $n+1=a\,b$, onde $2 \le a,b \le n$, com $a=p_aq_a,\,b=p_bq_b$ e p_a e p_b são números primos. Logo, $k+1=p_aq_ap_bq_b$ é divisível por um número primo.
- 14. Uma palavra de comprimento 1 é x, y ou z logo tem zero símbolos "("e zero símbolos ")". Suponha-se que o resultado é verdadeiro para palavras de comprimento inferior a n. Uma palavra de comprimento n é da forma (A)(B) ou (A) + (B), onde A e B são palavras de comprimento inferior a n. Logo, pela hipótese de indução, A e B têm o mesmo número de símbolos "("e de símbolos ")". Consequentemente, (A)(B) e (A) + (B) têm o mesmo número de símbolos "("e ")".
- 15. (a) (i) 2; (ii) 3.
- 15. (b) $2 \times 13 + 1 = 27$
 - 16. Obs: Tenha em conta que existem quatro possibilidades para o resto da divisão por 4.
 - 17. 1+8=2+7=3+6=4+5=9. Escolhendo cinco números entre 1 e 8 vamos obter pelo menos uma destas quatro somas.
 - 18. Obs: Considerar a partição do intervalo]0,1[nos 10 subintervalos]0,0.1],[0.1,0.2],...,[0.9,1[.
 - 20. (b) Pela alínea anterior podemos afirmar que pelo menos uma das caixas contém r ou mais objetos.

21. Seja a_i o número de cafés que bebeu até ao dia i, para $i=1,\cdots,31$. Então $1\leq a_1<\cdots< a_{31}=42$, ou seja, trata-se de uma sequência crescente. Considere-se a sequência (igualmente crescente) $18\leq a_1+17<\cdots< a_{31}+17=59$. Juntando as duas sequências temos 62 números inteiros positivos entre 1 e 59. Logo, de entre estes números existem pelo menos dois que são iguais e cada um pertence a uma sequência distinta (uma vez que as duas sequências são crescentes). Logo, existem dois índices $1\leq i< j\leq 31$ tais que $a_j=a_i+17$. Assim, vem que $a_j-a_i=17$, ou seja, entre os dias i+1 e j o João bebeu 17 cafés.

MD 20119-2020 Folha 4 4/4