Digital Signatures CS 411 / 507 - Cryptography

Erkay Savaş & Atıl Utku Ay

Faculty of Engineering and Natural Sciences
Sabanci University

November 27, 2023

Digital Signatures

- Digital signatures enable us to <u>personalize</u> electronic documents, i.e., to associate our identities to them.
- The assumption is that no one else can fake our signature for a given message.
- Why don't we just digitize our <u>analog</u> signature and append it to a document?
- While classical signatures cannot be cut from a document and pasted into another document, the digitized analog signatures can easily be forged.
- We need digital signature that cannot be separated from a message and attached to another.

Digital Signatures

- A digital signature is not only tied to the signer but also to the message that is being signed.
- Digital signatures must be easily verified by the others.
- Therefore, digital signature schemes consist of two distinct steps:
 - The signing process (signature generation)
 - 2 The verification process (signature verification)

RSA Signatures

Alice (signer)

RSA Setup

- generates public key: (e_A, n) and private key: (d_A, p, q)
- 2 generates signature for m $s = m^{d_A} \mod n$
- \odot Sends (m,s) to Bob

Bob (verifier)

- lacktriangledown receives (m,s)
- \bigcirc download (e_A, n)
- **3** Computes $z = s^{e_A} \mod n$
- Checks z = m

RSA-PSS (Probabilistic Signature Scheme)- 2048 bit

RSA-PSS - Signature Verification

The Digital Signature Algorithm

- NIST proposed the DSA in 1991 and adopted it as a standard in 1993.
- It is similar to the ElGamal method.
- It uses a hash value (message digest) that is signed.
- The original standart (DSS) utilizes SHA-1 hash function which produces 160-bit hash values.
 - SHA-2 variants are approved for use
- We are trying to sign a 256-bit hash values.
 - 384-bit, or 512-bit

DSA Setup

- Alice finds a prime q that is 256 bits long and chooses a prime p that satisfies q|p-1 (p is 3072 bits)
 - Options: (1024, 160), (2048, 224), (2048, 256), and (3072, 256)
- Let g be a primitive root in group G_q .
- Let α be a random number $\operatorname{mod} p$ and let $g = \alpha^{(p-1)/q} \operatorname{mod} p$
 - If $g \neq 1 \mod p$ then use g (otherwise try another α)
- Alice chooses a secret value "a" such that 1 < a < q-1 and calculates $\beta = g^a \bmod p$
- Alice publishes $\{p,q,g,\beta\}$ and keeps $\{a\}$ secret.

Small DSA Parameters

• p = 23; q = 11; g = 3• $G_q = \{g^0, g^1, g^2, g^3, g^4, g^5, g^6, g^7, g^8, g^9, g^{10}\} \mod p$ • $G_q = \{1, 3, 9, 4, 12, 13, 16, 2, 6, 18, 8\}(3^{11} \mod 23 = 1)$

$\times \mod 23$	1	3	9	4	12	13	16	2	6	18	8
1	1	3	9	4	12	13	16	2	6	18	8
3	3	9	4	12	13	16	2	6	18	8	1
9	9	4	12	13	16	2	6	18	8	1	3
4	4	12	13	16	2	6	18	8	1	3	9
12	12	13	16	2	6	18	8	1	3	9	4
13	13	16	2	6	18	8	1	3	9	4	12
16	16	2	6	18	8	1	3	9	4	12	13
2	2	6	18	8	1	3	9	4	12	13	16
6	6	18	8	1	3	9	4	12	13	16	2
18	18	8	1	3	9	4	12	13	16	2	6
8	8	1	3	9	4	12	13	16	2	6	18

Small DSA Parameters

- Pick a random $\alpha = 22$,
- Compute $\alpha^{(p-1)/q} \bmod p = 22^2 \bmod 23 = 1$ No good!
- Pick another random $\alpha = 4$,
- Compute $\alpha^{(p-1)/q} \bmod p = 4^2 \bmod 23 = 16$
- Compute $16^i \mod 23$ for i=0,1,...,11: 1,16,3,2,9,6,4,18,12,8,13,1

Small DSA Parameters: Another Example

- p = 31, q = 5 then (p 1)/q = 6
- Pick a random $\alpha = 25$.
- Compute $\alpha^{(p-1)/q} \bmod p = 25^6 \bmod 31 = 1$ No good!
- Pick another random $\alpha = 17$,
- Compute $\alpha^{(p-1)/q} \mod p = 17^6 \mod 31 = 8$
- Compute $8^i \mod 31$ for i = 0, 1, ..., 5: 1, 8, 2, 16, 4, 1

DSA - Signature Scheme

- ullet Message m
- Computes h = H(m)
- She selects a random, secret integer k such that 1 < k < q.
- Computes $r = (g^k \mod p) (\mod q)$.
- Computes $s = k^{-1}(h + ar)(\bmod q)$.
- Alice's signature for m is (r, s).
- ullet Alice sends (r,s) and m to Bob to verify.

DSA - Verification Scheme

- Bob downloads Alice's public information (p, q, q, β) .
- Computes h = H(m)
- Computes $u_1 = s^{-1}h \mod q$.
- Computes $u_2 = s^{-1}r \mod q$.
- Computes $v \equiv (g^{u_1}\beta^{u_2} \bmod p) \bmod q$.
- Bob accepts the signature if and only if v = r.
- Show that the verification really works.

Birthday Attacks on DSA

- Fred is a real estate agent and Alice wants to buy a land in Antalya.
 - She will sign a contract electronically using the DSA (she actually signs the hash value of the contract).
 - Suppose they use a hash function that produces 50-bit hashes instead of SHA-1 (or SHA-2 or SHA-3).
- Can Fred trick Alice to buy a land with no value in Antalya while she thinks otherwise?
- Fred is unlikely to produce a fake contract which produces the hash value as the original contract.
- But he can use a different approach.

Birthday Attacks in DSA

- Fred prepares the original contract for a nice piece of land.
- On the other hand, he also locates other places which have no value whatsoever.
 - ullet And he prepares 2^{30} different contracts for these junk lands by changing the wording slightly, placing a space at the end of a line, etc.
 - extstyle ext
 - 4 He searches a match between the two sets of contracts which produces the same hash value.

Birthday Attacks in DSA

- He is pretty sure he can find a match since the birthday paradox tells us the probability that there is match when $k=2^{30}$ and $n=2^{50}$ is given by $1-e^{-1024}\approx 1.$ (remember the formula $1-e^{-k^2/n}$)
- He gives this variation of the original contract to Alice to sign but appends the signature to the fake contract which produces the same hash value.