

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS ECONÓMICAS INGENIERÍA FINANCIERA

Proyección de estados financieros por el método de redes neuronales artificiales aplicable al sector financiero de Bolivia

PROYECTO DE GRADO PARA
OBTENER EL GRADO DE
LICENCIATURA EN INGENIERÍA
FINANCIERA

POSTULANTE: Solís Peña Luis Alberto

TUTOR: Mgr. Torrico Lara Alex

RESUMEN

La presente investigación parte de la idea de que la existencia de fenómenos no lineales en el campo de las ciencias económicas hace necesario explorar modelos alternativos que permitan encontrar patrones no sujetos al análisis convencional.

Se busca responder la hipótesis de que si el modelo de redes neuronales artificiales adaptado a series de tiempo correspondiente a las cuentas de los estados financieros de las entidades financieras de Bolivia, obtiene mayor ajuste y captación de patrones que los modelos tradicionales como el modelo ARIMA.

Los resultados arrojaron que el modelo de redes neuronales artificiales obtuvo mayor ajuste y mejor captación de patrones que modelos tradicionales, que en consecuencia proporcionaron información financiera adecuada con mayor aproximación a la situación económica-financiera observada.

ABSTRACT

This research stems from the idea that the existence of nonlinear phenomena in the field of economics calls for the exploration of alternative models that allow for the discovery of patterns not identify by conventional analysis.

The aim is to test the hypothesis that if the artificial neural network model adapted to time series corresponding to the financial statements of financial institutions in Bolivia that it would provide a better fit and pattern recognition than traditional models like the ARIMA model.

The results showed that the artificial neural network model achieved a better fit and superior pattern recognition when compared to traditional models that consequently providing more accurate financial information approximating the observed economic and financial situation.

INDICE CAPITULAR

RESUMEN	1
ABSTRACT	II
INTRODUCCIÓN	IX
CAPÍTULO 1. PERFIL DE LA INVESTIGACIÓN	
1.1 PLANTEAMIENTO DEL PROBLEMA	1
1.2 FORMULACIÓN DEL PROBLEMA CENTRAL	2
1.3 JUSTIFICACIÓN	2
1.4 ALCANCE Y DELIMITACIÓN	2
1.5 OBJETIVOS DE LA INVESTIGACIÓN	3
1.5.1 General	3
1.5.2 Específico	3
1.6 HIPÓTESIS	3
1.6.1 Elementos o componentes	4
1.7 MARCO METODOLÓGICO	4
1.7.1 Tipo de investigación	4
1.7.2 Método de investigación	4
1.7.3 Técnicas de investigación	4
1.7.4 Fuentes de información	5
CAPÍTULO 2. MARCO TEÓRICO	
2.1 FINANZAS Y EL SISTEMA FINANCIERO	7
2.1.1 Entidades de intermediación financiera en Bolivia	7

	ESTADOS FINANCIEROS	8
2.2.1	Balance general	Ĝ
2.2.2	Estado de resultados	Ö
2.3	EVALUACIÓN FINANCIERA	9
2.3.1	Indicadores financieros o razones financieras	10
2.4	MÉTODO CAMEL	10
2.4.1	Cálculo de indicadores	11
2.4.2	Definición de rangos y límites de los indicadores	15
2.4.3	Definición de la ponderación	15
2.4.4	Calificación CAMEL	16
2.5	INTELIGENCIA ARTIFICIAL	16
2.5.1	Aprendizaje supervisado con redes neuronales	17
2.5.2	Aprendizaje no supervisado con redes neuronales	17
	Aprendizaje no supervisado con redes neuronales	
2.6		17
2.6	REDES NEURONALES ARTIFICIALES	17 18
2.6 2.7	REDES NEURONALES ARTIFICIALES	17 18
2.6 2.7 2.7.1	REDES NEURONALES ARTIFICIALES	17 18 18
2.6 2.7 2.7.1 2.7.2 2.7.3	REDES NEURONALES ARTIFICIALES	177 188 188 199 222
2.6 2.7 2.7.1 2.7.2 2.7.3	REDES NEURONALES ARTIFICIALES ELEMENTOS DE REDES NEURONALES Neurona artificial Funciones de activación. Propagación hacia adelante y hacia atrás	177 188 188 199 222
 2.6 2.7 2.7.1 2.7.2 2.7.3 2.8 	REDES NEURONALES ARTIFICIALES ELEMENTOS DE REDES NEURONALES Neurona artificial Funciones de activación. Propagación hacia adelante y hacia atrás PRONÓSTICOS Y EVALUACIÓN	177 188 189 199 222 244

CAPÍTULO 3. PRONÓSTICO DE ESTADOS FINANCIEROS POR REDES NEURONALES ARTIFICIALES

3.1 PRECISIONES DE LOS PRONOSTICOS DE ESTADOS FINANCIE-	
ROS	28
3.1.1 Series de tiempo	28
3.1.2 Modelos	29
3.1.3 Evaluación de modelos	32
3.1.4 Variables comprendidas	32
3.2 ENTRENAMIENTO DE MODELOS, PROYECCIONES Y SIMULA-	
CIONES	33
3.2.1 Modelo clásico de series de tiempo	34
3.2.2 Redes neuronales	34
3.2.3 ARIMA	35
3.2.4 Eficiencia de los modelos en el entrenamiento	36
3.2.5 Eficiencia de los modelos en los pronósticos	36
3.2.6 Simulación de proyecciones	36
3.3 EVALUACIÓN DE DATOS AJUSTADOS DE MODELOS	38
3.4 EVALUACIÓN DE DATOS PROYECTADOS DE MODELOS	40
3.5 APLICACIÓN DE METODOLOGÍA CAMEL SOBRE DATOS PRO-	
YECTADOS	42
3.6 ESTADOS FINANCIEROS PROYECTADOS	44
3.6.1 Balance general proyectado	45
3.6.2 Estado de resultados proyectado	48
CAPÍTULO 4. CONCLUSIONES Y RECOMENDACIONES	
4.1 CONCLUSIÓN Y RECOMENDACIÓN RESPECTO AL DIAGNÓS-	
TICO FINANCIERO REALIZADO	50

4.2 CONCLUSIÓN Y RECOMENDACIÓN RESPECTO A LA DEFINI-
CIÓN DE LA RED DE NEURONAS ARTIFICIALES 50
4.3 CONCLUSIÓN Y RECOMENDACIÓN RESPECTO A LA PROYECCIÓN-
SIMULACIÓN DE LOS ESTADOS FINANCIEROS 51
4.4 CONCLUSIÓN Y RECOMENDACIÓN RESPECTO A LA EVALUA-
CIÓN DE LOS DATOS PROYECTADOS-SIMULADOS 51
4.5 CONCLUSIÓN Y RECOMENDACIÓN GENERAL
REFERENCIAS BIBLIOGRFICAS 53

LISTA DE FIGURAS

1	Arbol de problemas]
2	Funciones de activación	21
3	Agrupamiento de los datos de las series de tiempo.	28
4	Arquitectura de red neuronal por la cuenta.	35
5	Ajuste R2 de los modelos para proyecciones simuladas por cuenta	37
6	Historgrama de diferentes redes neuronales entrenadas	44

LISTA DE TABLAS

1	Matriz de diseno metodológico	6
2	Calificación CAMEL	16
3	Estaciones modelo clasico de series de tiempo	30
4	Tasas de cambio modelo clasico	34
5	Regresores y medias moviles del modeo ARIMA	35
6	Ajuste R2 de los modelos para resultado neto de la gestion	36
7	Ajuste R2 de proyecciones de modelos para resultado neto de la gestion	36
8	Ajuste R2 por cuentas	38
9	Ajuste R2 por modelos	40
10	Ajuste R2 de proyecciones por cuentas	40
11	Ajuste R2 de proyecciones por modelo	42
12	Aplicacion de metodologia CAMEL a proyecciones realizadas	43
13	Balance general observado respecto a proyecciones por redes neuronales	45
14	Balance general observado respecto a proyecciones por MCO y ARIMA $$. $$.	46
15	Estado de resultados observado respecto a proyecciones por redes neuronales	48
16	Estado de resultados observado respecto a proyecciones por MCO y ARIMA	49

INTRODUCCIÓN

La presente investigación tiene por objeto evaluar la capacidad de las redes neuronales para encontrar patrones que a su vez representen mayor ajuste entre los datos proyectados y observados, es decir, permitirá responder que si la aplicación del método de redes neuronales obtendrá información adecuada con mayor aproximación a la situación económica-financiera observada del sistema en su conjunto, siendo los estados financieros con frecuencia mensual de las entidades financieras de Bolivia la unidad de análisis.

Así también, se realizó el diagnóstico de la solidez financiera del sistema financiero de Bolivia agrupados por sectores que representan a las diferentes entidades financieras registradas mediante la puesta en marcha de la metodología CAMEL, donde dicha metodología también nos permitirá evaluar los datos proyectados por los diferentes modelos y si estos se ajustan mejor a los patrones de los datos efectivamente observados correspondiente al mismo intervalo de tiempo, es decir, que el presente investigación exigirá la aplicación de los conocimientos aprendidos durante la formación profesional.

CAPÍTULO 1. PERFIL DE LA INVESTIGACIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

En un mundo cada vez más globalizado, y siendo el entorno financiero uno de los sectores que más ha sido impactado por la integración económica multilateral, que ha implicado su incremento en complejidad, donde los agentes económicos son expuestos a una inmensa cantidad de información sobre productos y/o servicios financieros, lo que puede dar lugar a oportunidades de incrementar rendimientos, sin dejar de lado el riesgo de perdidas como consecuencia de la complejidad del mismo.

Una de las alternativas de tratamiento de esta información que ofrece el sistema financiero, y que es el objeto de estudio en esta investigación que se propone, es la aplicación de redes neuronales artificiales para la proyección de estados financieros, la cual se encarga de encontrar la relación existente en las variables introducidas al modelo que no pueden ser visibles al análisis subjetivo económico-financiero, dando lugar a la necesidad de evaluar dicha información por herramientas de igual complejidad.

Figura 1
Arbol de problemas

Fuente: Elaboración propia.

1.2. FORMULACIÓN DEL PROBLEMA CENTRAL

¿Será que, con la aplicación del método de redes neuronales se obtendrá información adecuada con mayor aproximación a la situación económica-financiera observada del sistema financiero en su conjunto?

1.3. JUSTIFICACIÓN

Observando la importancia de las proyecciones para la toma de decisiones, y la capacidad de las redes neuronales de encontrar patrones no visibles al análisis subjetivo, este tipo de modelos podrán dotar de mayor información a agentes internos y externos del sector financiero de donde y como hacer colocaciones o inversiones sobre el dinero que administran.

En síntesis, el presente trabajo de investigación no pretende remplazar a otros modelos existentes para la toma de decisiones, por el contrario, ser tomado como una alternativa para el modelado de fenómenos no lineales en el campo de las finanzas.

1.4. ALCANCE Y DELIMITACIÓN

El presente trabajo de investigación se circunscribe al estudio de las entidades de intermediación de servicios financieros de Bolivia, definidos en el artículo 151 de la ley 393. Con fines de obtener la información que coadyuve a generar la determinación de pronósticos mediante redes neuronales, como herramienta en la toma de decisiones a nivel gerencial y la evaluación de las mismas.

En el diagnóstico financiero las entidades financieras se agruparán por sectores:

- Bancos múltiples.
- Bancos PYME.
- Entidades financieras de vivienda.
- Cooperativas de ahorro y crédito abiertas.
- Instituciones financieras de desarrollo.
- Bancos de desarrollo productivo.

Para tener acceso a la información homogénea requerida en los pronósticos, los estados financieros se agruparon de forma tal que representan el sistema en su conjunto los cuales tienen un intervalo mensual obtenidos de las gestiones de 2014 a 2021, proyectando los periodos posteriores.

1.5. OBJETIVOS DE LA INVESTIGACIÓN

Entre los objetivos propuestos para viabilizar el tema de investigación y la realización del informe final, se describen los siguientes:

1.5.1. General

Proporcionar información financiera adecuada con mayor aproximación a la situación económica-financiera observada, mediante la determinación de pronósticos de estados financieros por el método de redes neuronales artificiales.

1.5.2. Específico

- Diagnosticar la situación actual del sistema financiero de Bolivia.
- Definir la arquitectura y entrenamiento del modelo de red de neuronas artificiales.
- Proyectar los estados financieros.
- Evaluar los datos proyectados-simulados respecto a los datos observados.

1.6. HIPÓTESIS

Con la determinación de proyecciones de estados financieros por el método de redes neuronales, de entidades financieras de Bolivia, se logrará proyectar información con mayor aproximación a la situación económica-financiera observada del sistema financiero.

1.6.1. Elementos o componentes

- Unidad de observación y análisis: Entidades financieras de Bolivia.
- Variable independiente: Proyecciones de estados financieros por el método de redes neuronales.
- Variable dependiente: Información con mayor aproximación a la situación económicafinanciera observada del sistema financiero.
- Enlace lógico: Se logrará.

1.7. MARCO METODOLÓGICO

1.7.1. Tipo de investigación

El tipo de investigación que se aplico en el informe final fue descriptivo y analítico, donde se busco describir y estudiar la realidad presente de los hechos de las unidades de observación y análisis.

1.7.2. Método de investigación

Se aplicó un enfoque inductivo donde se partió desde hechos particulares llegando a conclusiones generales, que posteriormente podrán ser aplicados en otras instituciones financieras de manera exitosa y beneficiar al sistema financiero con nuestra propuesta. También cabe especificar que los procedimientos aplicados en el informe final, está orientado al método deductivo y analítico fundamentalmente.

1.7.3. Técnicas de investigación

En primera instancia se realizó la identificación del problema de investigación que fue establecido en el proyecto de grado, donde se identificó la arquitectura de la red neuronal, que está compuesta de las funciones de activación, y ajuste de los datos en formato de tablas. Posteriormente se realizó la recolección de datos e información del sistema financiero correspondiente a las fuentes secundarias.

1.7.4. Fuentes de información

Se recurrió a las siguientes fuentes de información:

- **1.7.4.1.** Fuentes primarias Se recurrirá a la investigación y recopilación de datos relacionados al tema específico, mediante consultas a libros, estados financieros y otros.
- 1.7.4.2. Fuentes secundarias Se recurrirá a las fuentes de compilación de información bibliográfica referente al tema, tales como:
 - Libros especializados, definidos en la referencias bibliográficas.
 - Leyes (Ley 393 de servicios financieros).
 - Manuales (Manual y glosario de la ASFI).
 - Páginas de Internet (Pagina oficial de la ASFI para la recolección de los estados financieros de los entidades financieras de Bolivia).

1.7.4.3. Técnica de recolección de la información

- Recopilación de información basada en fuentes primarias, secundarias y terciarias.
- Análisis de la información recopilada, con fines de depuración, selección, tabulación mediante lenguajes de programación R y Python orientado al análisis de datos, adecuando a la arquitectura de la red neuronal.
- La investigación tendrá un repositorio en GitHub (https://github.com/LASPUMSS/PROYECTO-DE-GRADO-PARA-OBTENER-EL-GRADO-DE-LICENCIATURA-EN-INGENIERIA-FINANCIERA-UMSS).

 ${\bf Tabla} \ {\bf 1} \\ {\bf Matriz} \ {\bf de} \ {\bf dise\~no} \ {\bf metodol\'ogico}.$

	¿Será que co	on la aplicación del métod	lo de redes neuronales	s, se obtendrá
Pregunta de	información adecuada con mayor aproximación a la situación			
investigación	económica-financiera de la institución financiera analizada?			
01:4:	Proporcionar información financiera adecuada con mayor aproximación a la de			
Objetivo	decisiones situación económica-financiera observada, mediante la determinación			
general	de pronósticos de estados financieros por el método de redes neuronales artificiales.			
		Definir la	Proyectar	Evaluar
	Diagnosticar la	arquitectura y	los estados	los datos
Objetivos	situación actual	entrenamiento	financieros	proyectados-simulados
específicos	del sistema financiero	del modelo de red	para su	respecto a los datos
	de Bolivia	de neuronas	posterior	observados
		artificiales	simulación	obsei vados
Unidad de	CAMEL	RED	RED	CAMEL
análisis	OTHILL	NEURONAL	NEURONAL	CHMEE
Tipo de	Secundaria	Secundaria	Secundaria	Secundaria
fuente	Securitaria	Secundaria	Securitaria	Securidaria
Técnica de	Revisión	Revisión	Revisión	Revisión
recolección	bibliográfica	bibliográfica	bibliográfica	bibliográfica
		Elementos de la		
Información	Estados Financieros	red neuronal,	Estados financieros	Estados
necesaria	del sistema financiero	número de neuronas,	estructurados en	financieros
necesaria	de Bolivia.	funciones de activación	forma vectores.	proyectados.
		y funciones de coste.		

Fuente: Elaboración propia.

CAPÍTULO 2. MARCO TEÓRICO

En el presente capitulo se desarrollan los conceptos y teorías necesarios, que darán lugar el desarrollo de la investigación.

2.1. FINANZAS Y EL SISTEMA FINANCIERO

Las finanzas se entienden como "la ciencia y arte de administrar el dinero" (J. Gitman & J. Zutter, 2012, p. 3) subordinada a restricciones dadas por un contexto de un conjunto mayor definido como sistema financiero, donde, el sistema financiero, "consiste en diversas instituciones y mercados que sirven a las empresas de negocios, los individuos y los gobiernos" (Van Horne & Wachowicz, 2010, p. 27).

Así mismo, se entiende como sistema financiero como el "conjunto de entidades financieras autorizadas, que prestan servicios financieros a la población en general", donde los servicios financieros están definidos como "servicios diversos que prestan las entidades financieras autorizadas, con el objeto de satisfacer las necesidades de las consumidoras y consumidores financieros" (ASFI, 2022a).

2.1.1. Entidades de intermediación financiera en Bolivia

Las definiciones presentadas a continuación están suscritas a la ley 393 - ley de servicios financieros atendiendo al objetivo o características reconocidas por el estado.

- **2.1.1.1.** Bancos múltiples. Los bancos múltiples tendrán como objetivo la prestación de servicios financieros al público en general, entendido como servicios financieros, aquellos servicios que tienen por objeto satisfacer las necesidades de las consumidoras y consumidores financieros (ALPB, 2013, Art. 230).
- 2.1.1.2. Bancos PYME Los bancos PYME son aquellos que tienen como objetivo la prestación de servicios financieros especializados en el sector de las pequeñas y medianas empresas, sin restricción para la prestación de los mismos también a la microempresa (ALPB, 2013, Art. 235).

- 2.1.1.3. Entidades financieras de vivienda Las entidades financieras de vivienda son sociedades que tiene por objeto prestar servicios de intermediación financiera con especialización en préstamos para adquisición de vivienda, proyectos de construcción de vivienda unifamiliar o multifamiliar, compra de terrenos, refacción, remodelación, ampliación y mejoramiento de viviendas individuales o propiedad horizontal y otorgamiento de microcrédito para vivienda familiar y para infraestructura de vivienda productiva, así también operaciones de arrendamiento financiero habitacional (ALPB, 2013, Art. 247).
- **2.1.1.4.** Cooperativas de ahorro y crédito abiertas Las cooperativas de ahorro y crédito se constituyen como entidades especializadas de objeto único para la prestación de servicios de intermediación financiera, dirigidos a sus socios y al público en general cunado corresponda (ALPB, 2013, Art. 239).
- 2.1.1.5. Instituciones financieras de desarrollo La institución financiera de desarrollo es una organización sin fines de lucro, con personalidad jurídica propia, creada con el objeto de prestar servicios financieros con un enfoque integral que incluye gestión social, buscando incidir favorablemente en el progreso económico y social de personas y organizaciones, así como contribuir al desarrollo sostenible del pequeño productor (ALPB, 2013, Art. 273).
- 2.1.1.6. Banco de desarrollo productivo El banco de desarrollo productivo es una persona jurídica de derecho privado con fines públicos constituido bajo la tipología de una sociedad de economía mixta y que realizará actividades de primer y segundo piso de fomento y de promoción del desarrollo del sector productivo (ALPB, 2013, Art. 176).

2.2. ESTADOS FINANCIEROS

Los estados financieros se entienden como una representación estructurada de la situación financiera y de las transacciones llevadas a cabo por la empresa o entidad financiera. El objetivo de los estados financieros, con propósitos de información general, es suministrar información acerca de la situación y rendimiento financieros, así como de los flujos de efectivo, que sea útil a una amplia variedad de usuarios al tomar sus decisiones económicas (ASFI, 2022a).

Así mismo, los estados financieros que son los medios principales con los que las compañías comunican información a los inversionistas, analistas y al resto de la comunidad empresarial (J. Gitman & J. Zutter, 2012, p. 51).

Por lo tanto se afirma, que los estados financieros son un resumen del ejercicio económico de una empresa o institución, entendiendo al ejercicio económico como la suma de todas las actividades vinculadas al giro de la empresa en un intervalo de tiempo, dando información, sobre ingresos, egresos, pasivos, activos, es decir, los estados financieros son una fotografía de la empresa en un punto del tiempo.

2.2.1. Balance general

El balance general se entiende como, "estado financiero que muestra, a una fecha determinada, el valor y la estructura del activo, pasivo y patrimonio de una empresa". (ASFI, 2022a)

Con una expresión equivalente se afirma que el balance general representa una fotografía sobre el estado de los bienes y derechos, respecto a las obligaciones con propietarios y terceros de la institución en un determinado momento.

2.2.2. Estado de resultados

Estado de ganancias y pérdidas o estado de resultados, se entiende como, "documento contable que muestra el resultado de las operaciones (utilidad o pérdida) de una entidad durante un periodo y a una fecha determinada; resulta de la comparación de los ingresos con los gastos efectuados". (ASFI, 2022a)

Es decir, el estado de resultados muestra la conclusión en términos monetarios del conjunto de actividades administrativas y complementarias en un intervalo de tiempo de la institución correspondiente.

2.3. EVALUACIÓN FINANCIERA

La evaluación financiera se entiende como un proceso de valoración de los resultados de actividades económica-financieras de las instituciones.

2.3.1. Indicadores financieros o razones financieras

Los ratios financieros, también llamados razones financieras, son cocientes que permiten comparar la situación financiera de la empresa con valores óptimos o promedios del sector (Rus Arias, 2020).

Es decir, un indicador financiero es un instrumento que tiene por objeto final medir una característica de la entidad estudiada, estos pueden ser los siguientes:

- Estructura de activos.
- Estructura de pasivos.
- Estructura de obligaciones.
- Calidad de cartera.
- Liquidez.
- Rentabilidad.
- Ingresos y gastos financieros.
- Eficacia administrativa.

Pero los indicadores financieros por si solos no pueden brindar información integrada sobre la situación económica-financiera de una institución en consecuencia a esta necesidad, se encuentra las metodologías de evaluación como ser la metodología CAMEL y PERLAS.

2.4. MÉTODO CAMEL

La solidez financiera informa sobre el estado corriente de salud y solidez de todo el sector de las instituciones financieras de un país y de los sectores de empresas y hogares que conforman la clientela de las instituciones financieras (FMI, 2006).

Donde la metodología CAMEL tiene por objeto evaluar la **solidez financiera** de las instituciones con base en indicadores cuantitativos, contemplando cinco características:

- Capital adecuado (C).
- Calidad del activo (A).
- Capacidad de la gerencia (M).

- Rentabilidad (E).
- Situación de liquidez (L).

Es decir, la **solidez financiera** de una institución debe entenderse como la capacidad que tiene dicha institución de hacer frente a las obligaciones que tiene con terceros y propietarios. La presente metodología se divide en siguientes pasos expuestos por Alpiry Hurtado (2021a):

- Cálculo de indicadores que responden a las características antes mencionadas.
- Definición de rangos y límites de los indicadores.
- Definición de la ponderación, que responden a la solidez financiera de la institución.
- Calificación CAMEL.

2.4.1. Cálculo de indicadores

A continuación, se definen los indicadores que componen a la metodología CAMEL, en función de los elementos que la componen definidos por la ASFI (2022b) en su manual de cuentas y la fórmulas expuestas por Alpiry Hurtado (2021b):

- **2.4.1.1.** Capital Los indicadores de capital buscan responder o evaluar la capacidad del capital contable de los sectores financieros para hacer frente a sus obligaciones con terceros y propios.
- 2.4.1.1.1. Coeficiente De Adecuación Patrimonial (CAP) Está definido cómo la relación porcentual entre el capital regulatorio y los activos y contingentes ponderados en función de factores de riesgo, incluyendo a los riesgos de crédito, de mercado y operativo, utilizando los procedimientos establecidos en la normativa emitida por la Autoridad de Supervisión del Sistema Financiero ASFI.
- 2.4.1.1.2. Coeficiente de cobertura de cartera en mora (CCCM) Este indicador definido en la ecuación (1) mide o tiene por objeto responder si el patrimonio de la institución cubre en tanto por ciento:

- Los créditos cuyo capital, cuotas de amortización o intereses no hayan sido cancelados íntegramente a la entidad hasta los 30 días contados desde la fecha de vencimiento.
- Los créditos por los cuales la entidad ha iniciado las acciones judiciales para el cobro.
- Descontando la previsión por incobrabilidad de créditos.

$$CCCM = \frac{Cartera \ En \ Mora - Previsión \ Cartera}{Patrimonio}$$
 (1)

2.4.1.1.3. Coeficiente ácido de cobertura de cartera en mora (CACCM) El indicador definido en la ecuación (2) mide o tiene por objeto responder si el patrimonio de la institución cubre en tanto por ciento:

- Los créditos cuyo capital, cuotas de amortización o intereses no hayan sido cancelados íntegramente a la entidad hasta los 30 días contados desde la fecha de vencimiento.
- Los créditos por los cuales la entidad ha iniciado las acciones judiciales para el cobro.
- Descontando la previsión por incobrabilidad de créditos y adjuntando bienes realizables.

$$CACCM = \frac{Cartera\ En\ Mora\ -\ Previsión\ Cartera\ +\ Realizables}{Patrimonio} \tag{2}$$

2.4.1.1.4. Coeficiente de cobertura patrimonial (CCP) Este indicador definido en la ecuación (3) mide o tiene por objeto responder si los activos descontando las cuentas contingentes cubren el patrimonio de la misma.

$$CCP = \frac{Patrimonio}{Activo - Contingente}$$
 (3)

2.4.1.2. Activo Los indicadores de activos tienen por objeto de evaluar la composición de los activos de los respectivos sectores financieros los cuales junto al patrimonio permiten hacer frente a sus obligaciones.

2.4.1.2.1. Coeficiente de exposición de cartera (CEC) El presente coeficiente definido en la ecuación (4) determina que por ciento de los créditos están expuestos a riesgo de ser incumplidos o cancelados.

$$CEC = \frac{Cartera\ En\ Mora}{Cartera\ Bruta} \tag{4}$$

2.4.1.2.2. Coeficiente de previsión de cartera (CPC) El presente coeficiente definido en la ecuación (5) mide o tiene por objeto responder en que tanto por ciento está cubierta los créditos realizados por la institución.

$$CPC = \frac{Previsión}{Cartera Bruta}$$
 (5)

2.4.1.2.3. Coeficiente de previsión de cartera en mora (CPCM) Este coeficiente definido en la ecuación (6) mide o tiene por objeto responder en que tanto por ciento está cubierta los créditos incobrables realizados por la institución.

$$CPCM = \frac{Previsión}{Cartera En Mora}$$
 (6)

2.4.1.2.4. Coeficiente de reposición de cartera (CRC) Dicho coeficiente definido en la ecuación (7) tiene por objeto medir en que tanto por ciento alcanzan los créditos re programados.

$$CRC = \frac{Cartera \text{ Reprogramada Total}}{Cartera \text{ Bruta}}$$
 (7)

- **2.4.1.3.** Administración Los indicadores de administración tienen por objeto evaluar como las instituciones gestionan sus gastos administrativos.
- 2.4.1.3.1. Coeficiente de cobertura gastos administrativos (CCGA) El coeficiente definido en la ecuación (8) mide si los activos de la institución pueden hacer frente a los gastos administrativos de la institución.

$$CCGA = \frac{Gastos Administración}{Activos + Contingentes}$$
 (8)

2.4.1.3.2. Coeficiente ácido de cobertura patrimonial (CACGA) Este coeficiente definido en la ecuación (9) mide si los ingresos brutos pueden hacer frente a los gastos administrativos de la institución.

$$CACGA = \frac{Gastos Administración - Impuestos}{Resultado Operativo Bruto}$$
(9)

- **2.4.1.4.** Beneficios Los indicadores de beneficios tienen por objeto de evaluar el rendimiento o generación de valor de las instituciones o sectores financieros.
- **2.4.1.4.1.** Coeficiente de rendimiento sobre activos (ROA) El presente coeficiente definido en la ecuación (10) determina el rendimiento en tanto por uno, los beneficios que han generado los activos.

$$ROA = \frac{Resultado Neto De La Gestión}{Activo + Contingente}$$
 (10)

2.4.1.4.2. Coeficiente de rendimiento sobre patrimonio (ROE) Este coeficiente definido en la ecuación (11) determina el rendimiento en tanto por uno, los beneficios que ha generado el patrimonio.

$$ROE = \frac{Resultado Neto De La Gestión}{Patrimonio}$$
 (11)

2.4.1.5. Liquidez Los indicadores de liquidez tienen por objeto de evaluar la capacidad de las instituciones para hacer frente a sus obligaciones con terceros con sus activos más líquidos.

2.4.1.5.1. Coeficiente de capacidad de pago frente a pasivos (CCPP) El coeficiente definido en la ecuación (12) busca medir si la institución puede hacer frente a sus obligaciones con los activos disponibles y inversiones temporales.

$$CCPP = \frac{Disponibles + Inversiones Temporarias}{Pasivos}$$
 (12)

2.4.1.5.2. Coeficiente ácido de capacidad de pago frente a pasivos (CACPP) El coeficiente definido en la ecuación (14) busca medir si la institución puede hacer frente a sus obligaciones con los activos disponibles.

$$CACPP = \frac{Disponibles}{Pasivos}$$
 (13)

2.4.2. Definición de rangos y límites de los indicadores

En esta sección de la metodología CAMEL se establecen rangos a los cuales le corresponde una calificación, sujeta a una probabilidad (Alpiry Hurtado, 2021c), es decir, aquellos resultados mejores, pero menos probable se los posiciona en L1 dando una mejor calificación y aquellos resultados peores y menos probables se los posiciona en L5 recibiendo una peor calificación, es decir, los límites de los indicadores están definidos por la desviación estándar y el promedio de los datos históricos:

- L3 \bar{X}
- L2 v L4 $\bar{X} \pm \sqrt{\sigma^2}$
- \blacksquare L1 y L5 $\bar{X} \pm 2\sqrt{\sigma^2}$

2.4.3. Definición de la ponderación

La ponderación de los elementos CAMEL son asignados de manera arbitraria, pero sujeto a lineamientos económico-financieros (ECONOMY, 2022), el cual presenta la siguiente forma:

$$CAMEL = 30\%C + 30\%A + 10\%M + 15\%E + 15\%L$$
 (14)

Donde la mayor ponderación está concentrado en los indicadores de capital y activos ya que en último termino son estos mismos con la que una institución financiera puede hacer frente a sus obligaciones con terceros, como también dando mayor ponderación a los indicadores de rendimiento y liquidez respecto a los indicadores de administración debido a la relación que guardan los mismos con el activo y el capital, es decir, el rendimiento tiene efectos sobre el capital y por el otro lado la liquidez tiene efectos sobre los activos.

2.4.4. Calificación CAMEL

Dado los pasos anteriores la metodología CAMEL asigna una puntuación a la institución, y permitirá determinar que institución les corresponde mayor solidez financiera respecto a las otras instituciones (Alpiry Hurtado, 2021a), permitiendo asignar una categoría de solidez financiera (Ver tabla 2).

Tabla 2
Calificación CAMEL

Raiting	Descripción	Significado	
1	Robusto	Solvente en todos aspectos	
2	Satisfactorio	Generalmente solvente	
3	Normal	Cierto nivel de vulnerabilidad	
4	Marginal	Problemas financieros serios	
5	Insatisfactorio	Serios problemas de solidez	

Nota: Obtenido de (Alpiry Hurtado, 2021a).

2.5. INTELIGENCIA ARTIFICIAL

"En la literatura referente a la inteligencia artificial no existe consenso sobre lo que se entiende como inteligencia artificial, pero estas diferencias se engloban en dos ideas, donde la inteligencia artificial se refiere a procesos mentales y al razonamiento". (Russell & Norvig, 2004)

Ahora bien, el campo de la inteligencia artificial es relativamente reciente, y cobra atención en la actualidad por su capacidad de resolver problemas que con anterioridad sus resultados se divisaban lejanos, como el pronóstico de fenómenos no lineales, procesamientos de lenguaje natural, generador de imágenes, clasificación de objetos e procesos estocásticos donde se encuentra la proyección de estados financieros.

2.5.1. Aprendizaje supervisado con redes neuronales

El aprendizaje supervisado corresponde a la situación en que se tiene una variable de salida, ya sea cuantitativa o cualitativa, que se desea predecir basándose en un conjunto de características. (Ponce Gallegos et al., 2014)

El aprendizaje supervisado es una rama del aprendizaje automático, son algoritmos que permiten aprender a la red neuronal mediante, datos ejemplos que están compuestas por un vector de entrada que son las variables independientes, y otro vector denominado etiquetas, donde la red se encarga de encontrar las relaciones existentes entre las variables independientes, realizando cambios y adaptando el modelo por medio de variaciones sujetas a una función de coste.

2.5.2. Aprendizaje no supervisado con redes neuronales

El aprendizaje no supervisado, "corresponde a la situación en que existe un conjunto de datos que contienen diversas características de determinados individuos, sin que ninguna de ellas se considere una variable de salida que se desee predecir". (Ponce Gallegos et al., 2014)

Donde el aprendizaje no supervisado es un método de aprendizaje automático donde la red neuronal se ajusta a las observaciones. Se distingue del aprendizaje supervisado por el hecho de que no hay un conocimiento a priori, es decir, etiquetas que sirvan como guía, en el aprendizaje no supervisado solo se cuenta con un conjunto de datos de objetos de entrada.

2.6. REDES NEURONALES ARTIFICIALES

Las Redes Neuronales "son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el cerebro para realizar las tareas de pensar y tomar decisiones (sistema nervioso)". (Ponce Gallegos et al., 2014)

Por lo tanto, una red neuronal es un método del aprendizaje automático que enseña a las computadoras a procesar datos de una manera que está inspirada en la forma en que lo hace el cerebro humano, las redes neuronales artificiales es modelo computacional resultado de diversas aportaciones científicas, consiste en un conjunto de unidades llamadas neuronas artificiales.

2.7. ELEMENTOS DE REDES NEURONALES

Como todo sistema es el resultado de la interacción de elementos simples trabajando conjuntamente, que se presenta a continuación.

2.7.1. Neurona artificial

La neurona es la unidad básica de procesamiento de una red neuronal de ahí el nombre, igual que su equivalente biológico una neurona artificial recibe estímulos externos y devuelve otro valor, esta es expresada matemáticamente como una función, donde la neurona realiza una suma ponderada con los datos de entrada (Isasi Viñuela & Galván León, 2004, pp. 3–6).

Dado:

$$X = (x_1, x_2, x_3, ..., x_n) (15)$$

Se tiene:

$$Y = f(X) = \sum_{i=1}^{n} w_i x_i = \sum WX$$
 (16)

Donde:

X = Vector de los datos de entrada.

Y = Vector resultado de la suma ponderada.

W = Vector de los pesos las variables independientes.

La arquitectura de la red neuronal corresponde a la manera en que esta ordena las neuronas, si las neuronas son colocadas de forma vertical, reciben los mismos datos de entrada y sus resultados de salida lo pasan a la siguiente capa, la última capa de una red neuronal se

denominan capa de salida y las capas que estén entre la capa de salida y capa de entrada se denominas capas ocultas. Ahora bien, al ser cada neurona una suma ponderada esta equivaldría a una sola capa de la red, a esto se denomina colisión de la red neuronal, para resolver este problema se planteó los que se conoce como función de activación que es una función no lineal que distorsiona los resultados salientes de cada neurona (Isasi Viñuela & Galván León, 2004, pp. 3–6).

$$A = f(Y) \tag{17}$$

Dado lo anterior expuesto una capa de una red neuronal se debe entender como la agrupación de neuronas.

2.7.2. Funciones de activación

Los modelos de neuronas utilizados en redes neuronales artificiales combinan sus entradas usando pesos que modelan sus conexiones sinápticas y, a continuación, le aplican a la entrada neta de la neurona una función de activación o transferencia. La entrada neta de la neurona recoge el nivel de estímulo que la neurona recibe de sus entradas y es la función de activación la que determina cuál es la salida de la neurona (Berzal, 2018, p. 220).

Es decir, las funciones de activación distorsionan de forma no lineal las salidas de las neuronas para así no colapsar la red, es decir, las funciones de activación permiten conectar capas neuronales, dentro las funciones de activación más conocidas se tienen:

2.7.2.1. Función escalón Esta función asigna el valor de 1 si la salida de la neurona supera cierto umbral y cero si no lo supera.

$$f(x) = max(0, x) = \begin{cases} 0 & Si \quad x < 0 \\ 1 & Si \quad x \ge 0 \end{cases}$$
 (18)

2.7.2.2. Función sigmoide Esta función genera un en un rango de valores de salida que están entre cero y uno por lo que la salida es interpretada como una probabilidad.

$$f(x) = \frac{1}{1 + e^{-x}} \tag{19}$$

2.7.2.3. Función tangente hiperbólica Esta función de activación llamada tangente hiperbólica tiene un rango de valores de salida entre -1 y 1.

$$f(x) = \frac{2}{1 + e^{-2x}} - 1 \tag{20}$$

2.7.2.4. Función Relu La función ReLU transforma los valores introducidos anulando los valores negativos y dejando los positivos.

$$f(x) = max(0, x) = \begin{cases} 0 & Si \quad x < 0 \\ x & Si \quad x \ge 0 \end{cases}$$
 (21)

2.7.2.5. Función Leaky ReLU La función Leaky ReLU transforma los valores introducidos multiplicando los negativos por un coeficiente rectificativo y dejando los positivos según entran.

$$f(x) = max(0, x) = \begin{cases} 0 & Si \quad x < 0 \\ a * x & Si \quad x \ge 0 \end{cases}$$
 (22)

2.7.2.6. Función Softmax La función Softmax transforma las salidas a una representación en forma de probabilidades, de tal manera que el sumatorio de todas las probabilidades de las salidas de 1.

$$f(Z)_j = \frac{e^{Z_j}}{\sum_{k=1}^K e^{Z_k}}$$
 (23)

Figura 2
Funciones de activación

Fuente: Elaboración propia.

2.7.3. Propagación hacia adelante y hacia atrás

Los algoritmos de propagación hacia adelante y hacia atrás son los que dotan de inicialización - aprendizaje a la red neuronal.

2.7.3.1. Propagación hacia adelante La propagación hacia adelante se entiende como el proceso de "calcular una salida y a partir de una entrada dada x de acuerdo a sus parámetros w (Berzal, 2018, p. 311).

Para hacer manifiesto el algoritmo de propagación hacia adelante se propone un ejemplo continuación, donde se supone que la estructura de red ejemplo, estará compuesta de cuatro capas, es decir, la capa de entrada y salida junto a dos capas neuronales ocultas, dada esta estructura el algoritmo tendrá el siguiente comportamiento:

• Capa de entrada está definida por:

$$x = a^{(1)} \tag{24}$$

 La primera capa oculta procesará los datos de la capa de entrada toma la siguiente forma:

$$z^{(2)} = W^{(1)}x + b^{(1)} (25)$$

• Antes de pasar los datos procesados en las neuronas de la primera capa oculta deben ser pasados por las funciones de activación, para que no colapse la red:

$$a^{(2)} = f(z^{(2)}) (26)$$

Nuevamente se procesará los datos de la capa de anterior:

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)} (27)$$

También nuevamente se envuelve los resultados en una función de activación antes de pasar a la capa de salida:

$$a^{(3)} = f(z^{(3)}) (28)$$

Finalmente tendremos una salida, la cual será evaluada si coincide con los datos esperados.

$$s = W^{(3)}a^{(3)} (29)$$

2.7.3.2. Propagación hacia atrás El algoritmo Backpropagation para redes multicapa es una generalización del algoritmo de mínimos cuadrados. Ambos algoritmos realizan su labor de actualización de pesos y ganancias con base en el error medio cuadrático. La red Backpropagation trabaja bajo aprendizaje supervisado y por tanto necesita un conjunto de instrucciones de entrenamiento que le describa cada salida y su valor de salida esperado (Ponce, 2010, p. 9).

Por lo tanto, el algoritmo de propagación hacia atrás o "backpropagation" tiene como objeto dotar de aprendizaje a las redes neuronales minimizando la función de costo ajustando los pesos y sesgos de la red, el nivel de ajuste está determinado por los gradientes para cada neurona hasta llegar a la capa de entrada.

Dada una función de costo:

$$C = f(s, y) (30)$$

Se calcula las derivadas parciales para cada neurona, para determinar que rutas que han generado menor error, hasta la capa de entrada:

$$\frac{\partial C}{\partial x} \tag{31}$$

Para el logro de esta derivada se hace uso de un método matemático denominado "Chain Rule" o "método de la cadena", que permite determinar la derivada de una función compuesta defina por:

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x) \tag{32}$$

2.8. PRONÓSTICOS Y EVALUACIÓN

El término de pronóstico definido como "la acción y efecto de pronosticar" (RAE, 2022), así mismo pronosticar es definido como "predecir algo en el futuro a partir de indicios" (RAE, 2022), es decir, "el (los) valor(es) futuro(s) de la variable dependiente Y, o de pronóstico, con base en el (los) valor(es) futuro(s) conocido(s) o esperado(s) de la variable explicativa, o predictora, X" (Gujarati & Porter, 2009, p. 8)

Por lo tanto, el pronóstico es el proceso de estimación en situaciones de incertidumbre, para los propósitos de esta investigación, un pronóstico es un evento o resultado en el futuro asociado a una distribución de probabilidad.

Ahora bien, con el fin de evaluar la eficiencia de los pronosticos del modelo de redes neuronales propuesto se emplearan a la par del mismo, modelos alternativos que se presentan a continuación:

- Modelo autorregresivo integrado de media móvil (ARIMA).
- Modelo clásico de series de tiempo (MCO).

2.8.1. Modelo autorregresivo integrado de media móvil (ARIMA)

Los modelos ARIMA (AutoRegressive Integrated Moving Average) es el resultado de la combinación de dos modelos que son los modelos auto regresivos y modelos de media móvil (Hyndman & Athanasopoulos, 2018, Capítulo 8).

Los modelos auto regresivos están definidos por:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_n y_{t-n} + \varepsilon_t \tag{33}$$

En contraposición, el modelo de promedios móviles están definidos por:

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$
(34)

Por lo tanto, la integración de ambos modelos da lugar al modelo ARIMA que se define como:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$
(35)

Donde:

- Y_t = Representa el valor de la serie en el momento t.
- c = Representa la constante del modelo.
- ϕ_i = Representa el coeficiente de cambio para la variable respectiva.
- ε_t = Representa el error del valor ajustado respecto al observados en el momento t.

Así mismo, las especificaciones del algoritmo utilizado para el presente modelo corresponden al paquete "forecast" del repositorio publico CRAN (Hyndman et al., 2023), donde los paquetes o librerías en el campo de análisis de datos son colecciones de funciones diseñadas para atender problemas en especifico.

2.8.2. Modelo clásico de series de tiempo (MCO)

El modelo clásico de series de tiempo se define a si misma como la suma de dos elementos:

La variable "tendencia" es una serie temporal simple y "estacionalidad" es un factor que indica la estación (por ejemplo, el mes o el trimestre dependiendo de la frecuencia de los datos) (Hyndman et al., 2023).

Entendiendo la tendencia como la tasa de cambio de la serie de tiempo respecto al tiempo y las estacionalidades como tasas de cambio correspondientes a variables dicótomas, es decir, solo pueden asumir valores de 0 o 1 cuando la observación se encuentre en la estacionalidad dada,

así mismo el modelo presentado asume una estacionalidad de 12 periodos que en consecuencia la ecuación (36) toma la forma de la ecuación (37).

$$Y_t = \beta_0 + \beta_1 T_t + \sum_{\substack{i=2\\j=2}}^{i=n} \beta_i S_j$$
 (37)

Donde:

- Y_t = Representa el valor de la serie en el momento t.
- \blacksquare T = Representa el tiempo.
- S_i = Representa la estacionalidad de serie dividiéndola en 12 por los meses contenidos en un año.
- β_i = Representa la tasa de cambio, es decir, el efecto de la variable sobre la serie de tiempo.

Así también, el método a usar para ajustar los pesos en β_i sera el de mínimos cuadrados ordinarios (MCO).

2.8.3. Evaluación de modelos (#MT-EVALUACION-MODELOS)

Una vez finalizado el entrenamiento de los modelos para las diferentes series de tiempo se evalúa la validez o consistencia de los mismos siguiendo dos criterios:

- Ajuste del modelo (R2).
- Capacidad de generalización del modelo.

Donde, "el coeficiente de determinación es la proporción de la varianza total de la variable explicada por la regresión. El coeficiente de determinación, también llamado R cuadrado, refleja la bondad del ajuste de un modelo a la variable que pretender explicar" (López, 2023), así mismo teniendo en cuenta que "el problema del coeficiente de determinación, y razón por el cual surge el coeficiente de determinación ajustado, radica en que no penaliza la inclusión de variables explicativas no significativas" (López, 2023).

$$R2 = \left(\frac{\sum [(x_i - \bar{x}) - (y_i - \bar{y})]}{\sqrt{\sum (x_i - \bar{x})^2 * \sum (y_i - \bar{y})^2}}\right)^2$$
(38)

El problema del coeficiente de determinación también es conocido como sobreajuste, donde dicho "sobreajuste puede hacer que el modelo sea menos útil para trabajar con datos nuevos, como los que se encontrará cuando empecemos a utilizarlo, en otras palabras, generalizará peor" (Berzal, 2018, p. 82).

Es decir, un modelo con R2 cercado a uno (mayor ajuste) no necesariamente dará como resultado proyecciones mas cercanas a las efectivamente observadas, por lo tanto una practica habitual en el campo de análisis de datos es segmentar los datos de entrenamiento y de prueba, aplicando el el criterio de R2 sobre los datos proyectados-simulados.

Así también, el ajuste promedio (R2) de las proyecciones por si solos no pueden brindar información integrada sobre la capacidad de los modelos de generalizar situación económica-financiera proyectada del sistema financiero, en consecuencia como respuesta a esta necesidad, se realizo la evaluación CAMEL sobre los datos proyectados-simulados para visualizar la capacidad de generalización de los mismos, es decir, si los datos proyectados siguen la misma tendencia que los datos efectivamente observados.

CAPÍTULO 3. PRONÓSTICO DE ESTADOS FINANCIEROS POR REDES NEURONALES ARTIFICIALES

3.1. PRECISIONES DE LOS PRONÓSTICOS DE ESTADOS FINANCIEROS

Los pronósticos realizados en el presente capítulo estarán sujetos a las especificaciones dadas a continuación.

3.1.1. Series de tiempo

Los datos a ser modelados están definidos como series de tiempo (cada serie de tiempo representa una cuenta de los estados financieros) de 108 observaciones cada una, las cuales agrupan a todas las entidades del sistema financiero de Bolivia, presentados en el capítulo anterior.

Figura 3

Agrupamiento de los datos de las series de tiempo.

Fuente: Elaboración propia.

Así mismo, los datos se dividen en dos grupos:

- Datos de entrenamiento.
- Datos para realizar pruebas.

Donde los datos de entrenamiento fueron utilizados para adaptar los modelos y los datos de pruebas buscarán contrastar el ajuste de los pronósticos de los modelos respecto a la misma.

3.1.2. Modelos

Los modelos empleados para realizar las proyecciones son los siguientes:

- Modelo clásico de series de tiempo (MCO)
- Modelo autorregresivo integrado de media móvil (ARIMA)
- Redes neuronales artificiales (NN)

Los cuales están sujetos a las arquitecturas o especificaciones que se mencionan a continuación.

3.1.2.1. Modelo clásico de series de tiempo (MCO) El modelo clásico de series (Ver sección 2.8.2) definido como la suma de sus elementos:

$$Y_t = \beta_0 + \beta_1 T_t + \sum_{\substack{i=2\\j=2}}^{i=n} \beta_i S_j$$
 (39)

Donde:

- Y_t = Representa el valor de la serie en el momento t.
- T = Representa el tiempo.
- S_i = Representa la estacionalidad de serie dividiéndola en 12 por los meses contenidos en un año.
- β_i = Representa la tasa de cambio, es decir, el efecto de la variable sobre la serie de tiempo.

Así también, el algoritmo empleado en la presente investigación correspondiente a este modelo esta contenido en el paquete "forecast" (Hyndman et al., 2023), donde le mismo esta sujeto a las siguientes características:

- Los pesos de las variables " β_i " se ajusta por el método de mínimos cuadrados ordinarios (Ver anexos).
- La variable T representa una serie temporal simple, definida por una sucesión finita.

$$a_n = n (40)$$

• La variable S_i representa variables dicótomicas (solo asumen valores de 0 y 1), es decir, si a la variable Y posicionada en el momento t correspondiente a la estación S_i , el valor de Y_t varia en β_i , donde se tiene como estaciones a los meses contenidos en una gestión (Ver tabla 3).

Tabla 3
Estaciones modelo clasico de series de tiempo.

ESTACIONES	MES
S2	Febrero
S3	Marzo
S4	Abril
S5	Mayo
S6	Junio
S7	Julio
S8	Agosto
S9	Septiembre
S10	Octubre
S11	Noviembre
S12	Diciembre

Donde S_1 correspondiente al mes de enero no se incluye para evitar la multicolinealidad en las variables independientes, y se entiende que S_1 esta activo cuando las demás estaciones asumen el valor de 0.

3.1.2.2. Modelo autorregresivo integrado de media móvil (ARIMA) Los modelos ARIMA (AutoRegressive Integrated Moving Average) es el resultado de la combinación de dos modelos que son los modelos auto regresivos y modelos de media móvil (Ver sección 2.8.1) definido como:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_n y_{t-n} + \theta_1 \varepsilon_{t-1} + \dots + \theta_n \varepsilon_{t-n} + \varepsilon_t \tag{41}$$

Donde:

- Y_t = Representa el valor de la serie en el momento t.
- c = Representa la constante del modelo.
- \bullet ϕ_i = Representa el coeficiente de cambio para la variable respectiva.
- \bullet $\varepsilon_t=$ Representa el error del valor ajustado respecto al observados en el momento t.

Así mismo, el algoritmo empleado en la presente investigación correspondiente al metodo ARIMA esta contenido en el paquete "forecast" (Hyndman et al., 2023) donde la misma esta sujeta a las siguientes características:

- El método para determinar el numero de diferencias, para volver estacionaria la serie temporal es la denominada Kwiatkowski-Phillips-Schmidt-Shin (KPSS).
- El numero de regresores y medias móviles es determinado como la combinación de los mismos que permitan minimizar el criterio de información de Akaike corregido (Ver anexos).
- 3.1.2.3. Redes neuronales (NN) La arquitectura de una rede neuronal hace referencia al número de capas, neuronas y funciones de activación que se aplicaran, estas mismas pueden ser asignadas de forma arbitraria donde el uso de muchas capas y neuronas causaran un sobre ajuste del modelo, y usar muy pocas hará que el modelo no pueda generalizar la información contenida en las series de tiempo, en consecuencia las redes neuronales que se emplearan en la presente investigación estarán sujetos a las siguientes lineamientos que determinan su arquitectura:

- El número de neuronas de entrada esta definido por dos elementos un serie de resago estacional y series con un resaho maximo que satisfaga el criterio de información de Akaike corregido (Ver anexos).
- El número de capas ocultas serán igual a 1, con el mismo numero de neuronas que la capa de entrada.
- La función de activación de aplicar será la función sigmoide.

Las especificaciones del algoritmo utilizado corresponden al paquete "forecast" del repositorio publico CRAN (Hyndman et al., 2023).

3.1.3. Evaluación de modelos

Una vez finalizado el entrenamiento de los modelos para las diferentes series de tiempo se evalúo la validez o consistencia de los mismos siguiendo dos criterios (Ver sección ??):

- Ajuste del modelo (R2).
- Capacidad de generalización del modelo.

Donde el presente estadístico (R2) fue aplicado bajo dos lineamientos:

- **3.1.3.1.** R2 sobre datos de entrenamiento Representa el ajuste existente entre los datos observados en el entrenamiento respecto a los datos pronosticados o ajustados para los mismos intervalos de tiempo.
- **3.1.3.2.** R2 sobre datos de prueba Representa el ajuste entre los datos observados para realizar pruebas respecto los datos proyectados por el modelo para los mismos intervalos de tiempo.

3.1.4. Variables comprendidas

Las variables comprendidas que corresponden a las cuentas representadas en forma de series de tiempo para los pronósticos son las mismas definidas en el capítulo anterior:

- Activo
- Disponibilidades
- Inversiones temporarias
- Cartera vigente, vencida y en ejecución
- Cartera reprogramada vigente, vencida y en ejecución
- Cartera reestructurada vigente, vencida y en ejecución
- Previsión de incobrabilidad de cartera
- Bienes realizables
- Cuentas contingentes deudoras
- Pasivo
- Patrimonio
- Ingresos
- Gastos de administración
- Impuestos
- Resultado operativo bruto
- Resultado neto de la gestión
- Coeficiente de adecuación patrimonial

Debiendo aclarar que el coeficiente de adecuación patrimonial no es una cuenta del manual de cuentas de ASFI, pero se realiza sus pronósticos al ser necesario para la evaluación de los modelos por la metodología CAMEL.

3.2. ENTRENAMIENTO DE MODELOS, PROYECCIONES Y SIMULACIONES

Para una mayor ejemplificación de los modelos empleados en las diferentes cuentas se presenta el proceso de entrenamiento para la serie de tiempo correspondiente a la cuenta de resultado neto de la gestión.

3.2.1. Modelo clásico de series de tiempo

Una vez concluida en el entrenamiento de este tipo de modelo se obtendrá los coeficientes o tasas de cambio para las diferentes variables contenidas en el modelo.

Tabla 4
Tasas de cambio modelo clasico

VARIABLES	BETAS
Intercepto	176 252 543
Tendencia	-1 084 952
Estacion 2	96 687 139
Estacion 3	218 061 328
Estacion 4	322 833 176
Estacion 5	446 104 949
Estacion 6	598 872 750
Estacion 7	848 548 294
Estacion 8	1 008 835 001
Estacion 9	1 160 726 974
Estacion 10	1 308 728 482
Estacion 11	1 490 049 365
Estacion 12	1 754 750 638

Donde cada tasa de cambio está sujeta a su interpretación, por ejemplo la tasa de cambio correspondiente a la tendencia nos indica que el resultado neto de gestión sufre una variación de -1084952 Bs por cada mes, ahora bien respecto a las estaciones quiere decir por ejemplo que si la observación se encuentra en la estación 2 el resultado neto de gestión sufre una variación de 96687139.

3.2.2. Redes neuronales

Una vez entrenado el modelo de red neuronal para la cuenta correspondiente su estructura presentara la siguiente forma:

Así también, dentro lo correspondiente al análisis de los pesos ajustados de una red neuronal estos no pueden ser interpretados más que solo como una tasa de cambio.

 ${\bf Figura~4} \\ {\bf Arquitectura~de~red~neuronal~por~la~cuenta}.$

Fuente: Elaboración propia.

3.2.3. ARIMA

El modelo ARIMA obtenido sujeto a las especificaciones dadas es el siguiente:

 ${\bf Tabla~5}$ Regresores y medias moviles del modeo ARIMA

AR1	MA1	SAR1
0.582155	-0.86642	-0.656114

Es decir, que el algoritmo de (Hyndman et al., 2023) determino que el modelo ARIMA que minimiza el coeficiente de información de Akaike (AIC) está definido por un auto regresor

junto a una media móvil y un auto regresor estacional.

3.2.4. Eficiencia de los modelos en el entrenamiento

Una vez terminado el entrenamiento de los modelos se realizará la evaluación de los mismos.

Tabla 6

Ajuste R2 de los modelos para resultado neto de la gestion

CUENTAS	NN	MCO	ARIMA
RESULTADO NETO DE LA GESTION	0.947378	0.851831	0.94215

Es decir que los datos pronosticados del resultado neto de la gestión para el intervalo de tiempo correspondiente a los datos de entrenamiento se ajustan en 94.74 %, 85.18 % y 94.21 % para los modelos correspondientes suscritos a la tabla anterior.

3.2.5. Eficiencia de los modelos en los pronósticos

Posteriormente se calcula el ajuste de las proyecciones respecto a los datos de prueba, los cuales son nuevos para el modelo y nos dan una idea de que si el modelo está logrando generalizar los patrones contenidos en la serie de tiempo.

Tabla 7

Ajuste R2 de proyecciones de modelos para resultado neto de la gestion

CUENTAS	NN	MCO	ARIMA
RESULTADO NETO DE LA GESTION	0.864505	0.867744	0.82794

3.2.6. Simulación de proyecciones

Sobre los mismos modelos se realizan simulaciones sobre las proyecciones que son el resultado de la proyección promedio más menos selección aleatoria de los errores o desviaciones, sobre los cuales se calcula su ajuste R2 donde dichas simulaciones muestran el rango de ajuste al que está sujeto cada modelo para la cuenta de resultado neto de la gestión, los cuales pueden ser visualizados a través de histogramas (Ver figura 5).

Para las diferentes series de tiempo se realizara 100 simulaciones para dar con el ajuste promedio del modelo, ahora bien en la siguientes apartado se presentara los resultados obtenidos para cada serie de tiempo sujeta al proceso presentado en esta sección.

 ${\bf Figura~5}$ Ajuste R2 de los modelos para proyecciones simuladas por cuenta

Fuente: Elaboración propia.

3.3. EVALUACIÓN DE DATOS AJUSTADOS DE MODELOS

En esta sección se presentan el nivel de ajuste de los modelos para las distintas series de tiempo observadas respecto a las series de tiempo pronosticadas por los modelos:

Tabla 8
Ajuste R2 por cuentas

CUENTAS	NN	MCO	ARIM
ACTIVO	0.997120	0.842684	0.96684
DISPONIBILIDADES	0.782919	0.513812	0.89129
INVERSIONES TEMPORARIAS	0.862076	0.160217	0.87048
CARTERA	0.999189	0.881498	0.97484
CARTERA VENCIDA TOTAL	0.733437	0.280214	0.74512
CARTERA VENCIDA	0.770122	0.146811	0.75746
CARTERA REPROGRAMADA VENCIDA	0.900459	0.513253	0.74516
CARTERA REESTRUCTURADA VENCIDA	0.970301	0.279877	0.9041
CARTERA REPROGRAMADA O REESTRUCTURADA VENCIDA	0.923301	0.064787	0.7383
CARTERA EJECUCION TOTAL	0.994321	0.930514	0.98563
CARTERA EN EJECUCION	0.993243	0.853241	0.98630
CARTERA REPROGRAMADA EJECUCION	0.990617	0.875561	0.9840
CARTERA REESTRUCTURADA EN EJECUCION	0.963059	0.437238	0.8835
CARTERA REPROGRAMADA O REESTRUCTURADA EN EJECUCION	0.899954	0.011667	0.8471
CARTERA VIGENTE TOTAL	0.998850	0.874732	0.9739
CARTERA VIGENTE	0.998731	0.749827	0.9668
CARTERA REPROGRAMADA VIGENTE	0.998776	0.472431	0.9974
CARTERA REESTRUCTURADA VIGENTE	0.998746	0.416558	0.9967
CARTERA REPROGRAMADA O REESTRUCTURADA VIGENTE	0.901044	0.019147	0.8550
PREVISION PARA INCOBRABILIDAD DE CARTERA	0.996710	0.902375	0.9742
OTRAS CUENTAS POR COBRAR	0.965184	0.756974	0.9487
BIENES REALIZABLES	0.972707	0.690927	0.9713
INVERSIONES PERMANENTES	0.987762	0.867995	0.9860
BIENES DE USO	0.997818	0.878497	0.9684
OTROS ACTIVOS	0.944396	0.828565	0.9384
FIDEICOMISOS CONSTITUIDOS	0.945073	0.810026	0.9358
PASIVO	0.996897	0.846636	0.9674
OBLIGACIONES CON EL PUBLICO	0.993224	0.706342	0.9544
OBLIGACIONES CON INSTITUCIONES FISCALES	0.997106	0.258945	0.0084
OBLIGACIONES CON EMPRESAS PUBLICAS	0.955865	0.680420	0.8909
OBLIGACIONES CON BANCOS Y ENTIDADES DE FINANCIAMIENTO	0.995667	0.958746	0.9937
OTRAS CUENTAS POR PAGAR	0.890463	0.786955	0.9044
PREVISIONES	0.994496	0.738553	0.9372
VALORES EN CIRCULACION	0.978132	0.746521	0.9652
OBLIGACIONES SUBORDINADAS	0.979468	0.650870	0.9672
PATRIMONIO	0.992940	0.779253	0.9576
CAPITAL SOCIAL	0.993461	0.841803	0.9712
APORTES NO CAPITALIZADOS	0.855138	0.210348	0.7675
AJUSTES AL PATRIMONIO	NA	0.188406	0.5463
RESERVAS	0.986678	0.699025	0.9218

Tabla 8

Ajuste R2 por cuentas (Continuación)

CUENTAS	NN	MCO	ARIMA
RESULTADOS ACUMULADOS	0.843080	0.492175	0.902223
CONTINGENTES DEUDORAS	0.987554	0.176901	0.935500
CUENTAS DE ORDEN DEUDORAS	0.995290	0.756020	0.963028
INGRESOS FINANCIEROS	0.982605	0.957957	0.986892
GASTOS FINANCIEROS	0.993615	0.918375	0.993130
RESULTADO FINANCIERO BRUTO	0.984076	0.946159	0.980607
OTROS INGRESOS OPERATIVOS	0.976858	0.923254	0.973977
OTROS GASTOS OPERATIVOS	0.990970	0.837049	0.976868
RESULTADO DE OPERACION BRUTO	0.982576	0.954610	0.980324
RESULTADO DE OPERACION DESPUES DE INCOBRABLES	0.989582	0.954480	0.977841
GASTOS DE ADMINISTRACION	0.990082	0.961286	0.981799
GASTOS DE PERSONAL	0.983898	0.956095	0.981800
SERVICIOS CONTRATADOS	0.988185	0.961589	0.979702
SEGUROS	0.967477	0.916345	0.968691
COMUNICACIONES Y TRASLADOS	0.989497	0.952860	0.976391
IMPUESTOS	0.854016	0.820147	0.927582
MANTENIMIENTO Y REPARACIONES	0.983913	0.958197	0.977901
DEPRECIACION Y DESVALORIZACION DE BIENES DE USO	0.978275	0.956275	0.979002
AMORTIZACION DE CARGOS DIFERIDOS Y ACTIVOS INTANGIBLES	0.962241	0.927434	0.975902
OTROS GASTOS DE ADMINISTRACION	0.992094	0.962030	0.984875
RESULTADO DE OPERACION NETO	0.957101	0.897830	0.960848
RESULTADO DESPUES DE AJUSTE POR DIFE. DE CAMB. Y MANT. DE VALOR	0.951197	0.897660	0.960243
RESPECTO INGRESOS GASTOS EXTRAORDINARIOS	0.912786	0.320059	0.726988
RESULTADO NETO DEL EJERCICIO ANTES DE AJUSTES DE GESTIONES ANTERIORES	0.941783	0.898168	0.960824
RESPECTO INGRESOS GASTOS DE GESTIONES ANTERIORES	0.722855	0.060219	0.589764
RESULTADO ANTES DE IMPUESTOS Y AJUSTE CONTABLE POR EFECTO DE INFLACION	0.964134	0.900592	0.952326
RESPECTO AJUSTE CONTABLE POR EFECTO DE LA INFLACION	0.000296	0.116269	NA
RESULTADO ANTES DE IMPUESTOS	0.937553	0.900368	0.957061
IMPUESTO SOBRE LAS UTILIDADES DE LAS EMPRESAS	0.966056	0.883628	0.951286
RESULTADO NETO DE LA GESTION	0.947378	0.851831	0.942150
COEFICIENTE DE ADECUACION PATRIMONIAL	0.555163	0.198027	0.423442

Donde el ajuste promedio por modelo se tiene los siguiente:

Tabla 9
Ajuste R2 por modelos

MODELOS	R2 PROMEDIO
NN	0.933823
MCO	0.681213
ARIMA	0.905377

Dejando a las redes neuronales como el mejor modelo bajo el presente método de evaluación al tener mayor ajuste promedio para las diferentes series de tiempo.

3.4. EVALUACIÓN DE DATOS PROYECTADOS DE MODELOS

Ahora bien, se presenta el nivel de ajuste de las proyecciones de los modelos respecto a las series de tiempo de prueba, las cuales no fueron incluidas en el entrenamiento de los mismos.

Tabla 10

Ajuste R2 de proyecciones por cuentas

CUENTAS	NN	MCO	ARIMA
ACTIVO	0.784850	0.305330	0.494823
DISPONIBILIDADES	0.170717	0.112887	0.090811
INVERSIONES TEMPORARIAS	0.098778	0.091385	0.108763
CARTERA	0.809364	0.365169	0.457066
CARTERA VENCIDA TOTAL	0.207213	0.081804	0.352515
CARTERA VENCIDA	0.108953	0.090493	0.249693
CARTERA REPROGRAMADA VENCIDA	0.044927	0.082602	0.205530
CARTERA REESTRUCTURADA VENCIDA	0.263787	0.123945	0.767100
CARTERA REPROGRAMADA O REESTRUCTURADA VENCIDA	NaN	NaN	NaN
CARTERA EJECUCION TOTAL	0.607893	0.340457	0.584996
CARTERA EN EJECUCION	0.321600	0.125583	0.259026
CARTERA REPROGRAMADA EJECUCION	0.385957	0.147160	0.504322
CARTERA REESTRUCTURADA EN EJECUCION	0.606995	0.169379	0.476974
CARTERA REPROGRAMADA O REESTRUCTURADA EN EJECUCION	NaN	NaN	NaN
CARTERA VIGENTE TOTAL	0.469419	0.352384	0.522976
CARTERA VIGENTE	0.849916	0.217707	0.516214
CARTERA REPROGRAMADA VIGENTE	0.059933	0.174206	0.851752
CARTERA REESTRUCTURADA VIGENTE	0.887359	0.158515	0.952414
CARTERA REPROGRAMADA O REESTRUCTURADA VIGENTE	NaN	NaN	NaN
PREVISION PARA INCOBRABILIDAD DE CARTERA	0.153311	0.410046	0.494424
OTRAS CUENTAS POR COBRAR	0.086420	0.118847	0.097828
BIENES REALIZABLES	0.265203	0.124324	0.408541

 $\begin{table} {\bf Tabla~10} \\ {\bf Ajuste~R2~de~proyecciones~por~cuentas~(Continuación)} \end{table}$

CUENTAS	NN	MCO	ARIMA
INVERSIONES PERMANENTES	0.318772	0.184640	0.338775
BIENES DE USO	0.201378	0.159146	0.320718
OTROS ACTIVOS	0.141975	0.093552	0.114092
FIDEICOMISOS CONSTITUIDOS	0.152318	0.085637	0.301442
PASIVO	0.707795	0.314333	0.494285
OBLIGACIONES CON EL PUBLICO	0.657783	0.226325	0.421917
OBLIGACIONES CON INSTITUCIONES FISCALES	0.100739	0.293290	0.087565
OBLIGACIONES CON EMPRESAS PUBLICAS	0.313568	0.102672	0.230811
OBLIGACIONES CON BANCOS Y ENTIDADES DE FINANCIAMIENTO	0.238858	0.122308	0.216927
OTRAS CUENTAS POR PAGAR	0.183411	0.101117	0.112512
PREVISIONES	0.760524	0.264330	0.486893
VALORES EN CIRCULACION	0.141794	0.157400	0.325402
OBLIGACIONES SUBORDINADAS	0.205221	0.098924	0.172120
PATRIMONIO	0.710495	0.327910	0.501438
CAPITAL SOCIAL	0.604084	0.246494	0.443798
APORTES NO CAPITALIZADOS	0.126312	0.103213	0.177047
AJUSTES AL PATRIMONIO	NaN	NaN	NaN
RESERVAS	0.087115	0.084525	0.119851
RESULTADOS ACUMULADOS	0.220009	0.422518	0.229574
CONTINGENTES DEUDORAS	0.696044	0.118933	0.395272
CUENTAS DE ORDEN DEUDORAS	0.328622	0.234705	0.405948
INGRESOS FINANCIEROS	0.983684	0.960087	0.987907
GASTOS FINANCIEROS	0.994740	0.903574	0.995326
RESULTADO FINANCIERO BRUTO	0.984397	0.941938	0.977276
OTROS INGRESOS OPERATIVOS	0.979736	0.923773	0.976820
OTROS GASTOS OPERATIVOS	0.990309	0.800272	0.957628
RESULTADO DE OPERACION BRUTO	0.981227	0.956897	0.979285
RESULTADO DE OPERACION DESPUES DE INCOBRABLES	0.988784	0.960958	0.975021
GASTOS DE ADMINISTRACION	0.991629	0.964015	0.982764
GASTOS DE PERSONAL	0.985613	0.959803	0.984603
SERVICIOS CONTRATADOS	0.989153	0.967365	0.979119
SEGUROS	0.955278	0.918976	0.980334
COMUNICACIONES Y TRASLADOS	0.991306	0.964493	0.972447
IMPUESTOS	0.776903	0.832083	0.868390
MANTENIMIENTO Y REPARACIONES	0.978337	0.955695	0.973042
DEPRECIACION Y DESVALORIZACION DE BIENES DE USO	0.980768	0.963458	0.980610
AMORTIZACION DE CARGOS DIFERIDOS Y ACTIVOS INTANGIBLES	0.963238	0.918399	0.971731
OTROS GASTOS DE ADMINISTRACION	0.991069	0.968611	0.987427
RESULTADO DE OPERACION NETO	0.932589	0.909913	0.911565
RESULTADO DESPUES DE AJUSTE POR DIFE. DE CAMB. Y MANT. DE VALOR	0.925080	0.903175	0.901715
RESPECTO INGRESOS GASTOS EXTRAORDINARIOS	0.388287	0.343847	0.259665
RESULTADO NETO DEL EJERCICIO ANTES DE AJUSTES DE GESTIONES ANTERIORES	0.901471	0.901638	0.917533
RESPECTO INGRESOS GASTOS DE GESTIONES ANTERIORES	0.154884	0.093697	0.278038
RESULTADO ANTES DE IMPUESTOS Y AJUSTE CONTABLE POR EFECTO DE INFLACION	0.936607	0.910500	0.937239
RESPECTO AJUSTE CONTABLE POR EFECTO DE LA INFLACION	0.087902	0.130641	0.072706
RESULTADO ANTES DE IMPUESTOS	0.909108	0.911660	0.927318
IMPUESTO SOBRE LAS UTILIDADES DE LAS EMPRESAS	0.930324	0.875137	0.953718

Tabla 10

Ajuste R2 de proyecciones por cuentas (Continuación)

CUENTAS	NN	MCO	ARIMA
RESULTADO NETO DE LA GESTION	0.864505	0.867744	0.827940
COEFICIENTE DE ADECUACION PATRIMONIAL	0.184156	0.117232	0.159403

NOTA

NaN indica que uno de los series de tiempo es 0 en todos sus elementos, donde el R2 devuelve una indeterminación.

Donde el ajuste promedio de las proyecciones por modelo se tiene los siguiente:

Tabla 11

Ajuste R2 de proyecciones por modelo

MODELOS	R2 PROMEDIO
NN	0.564187
MCO	0.450146
ARIMA	0.566697

En el segundo método de evaluación los modelos ARIMA lograron mayor ajuste R2 en las series de tiempo proyectadas, lo que entra en contradicción con la evaluación anterior para poder resolver esta contradicción el siguiente método no evaluara el ajuste de los modelos sino su capacidad de generalizar los patrones contenidos en las series de tiempo sobre los cuales en ultimo termino se pueden tomar decisiones.

3.5. APLICACIÓN DE METODOLOGÍA CAMEL SOBRE DATOS PROYECTADOS

Como tercer método de evaluación de los modelos se realiza una valuación CAMEL sobre las series de tiempo proyectadas, donde el presente método de evaluación se justifica ya que el fin último de cualquier pronostico o proyección de un modelo es revelar al analista una situación futura, entonces al aplicar la metodología CAMEL a las proyecciones realizadas por los modelos permitirá confirmar o negar si estos siguen la tendencia general de las series de tiempo efectivamente observadas.

Tabla 12

Aplicacion de metodologia CAMEL a proyecciones realizadas

TIPO DE ENTIDAD	TENDENCIA	PROMEDIO	DESVIACION	MINIMO	MAXIMO
DATOS ORIGINAL	ES				
TOTAL SISTEMA	0.043357	3	0.256691	3	4
REDES NEURONA	LES				
TOTAL SISTEMA	-0.041346	3	0.272083	3	4
MCO					
TOTAL SISTEMA	-0.094493	3	0.442033	3	4
ARIMA					
TOTAL SISTEMA	-0.039948	4	0.172039	3	4

Hacer notar que debido a la naturaleza de la arquitectura y funcionamiento de las redes neuronales en el paso inicial los pesos en las neuronas que dotan de la capacidad de aprendizaje a la red toman valores aleatorios lo que en consecuencia cuando estos se re-entrenan no darán los mismos pronósticos, dada esta situación se realizó 20 entrenamientos para cada serie de tiempo con sus respectivos pronósticos y sobre los cuales se aplicó la metodología CAMEL.

Donde se observa que la tendencia promedio (Ver figura 6) en la calificación CAMEL de los pronósticos realizados por las distintas redes neuronales es de 0.0335533 y la desviación estándar de 0.3697488, así mismos se observa que la tendencia de los datos de prueba y de las proyecciones de las redes neuronales van en un mismo sentido contradiciendo la tendencia de los otros modelos, dando lugar a las siguiente situaciones:

- Los datos efectivamente observados y los pronósticos de las redes neuronales indica que la insolidez financiera del sistema financiero Boliviano aumentaría, lo cual podría dar a correcciones o modificaciones a políticas aplicadas.
- En contra parte los otros dos modelos presumen que la solidez financiera iría en aumento lo cual se contradice con los datos efectivamente observados lo podría dar lugar a mantener políticas viciadas o mal ejecutadas.

Teniendo en cuenta los antes expuesto podemos afirmar que las redes neuronales pueden encontrar patrones no sujetos al análisis subjetivo en las series de tiempo lo que da lugar a mejores pronósticos de los mismos respecto a los otros modelos.

Figura 6
Historgrama de diferentes redes neuronales entrenadas.

Fuente: Elaboración propia.

3.6. ESTADOS FINANCIEROS PROYECTADOS

En esta última sección se presenta los estados financieros observados respecto a sus proyecciones correspondientes para cada cuenta, es decir, balance general y estado de resultados del sistema financiero en su conjunto para la fecha del 31 de diciembre de la gestión 2022 expresado en bolivianos para los modelos antes presentados:

- Redes neuronales artificiales (NN)
- Modelo clásico de series de tiempo (MCO)
- ARIMA

3.6.1. Balance general proyectado

Tabla 13
Balance general observado respecto a proyecciones por redes neuronales

DESCRIPCION	OBSERVADO	NN
ACTIVO	325 556 345 195	326 160 759 145
Disponibilidades	33 115 871 066	32 873 626 799
Inversiones Temporarias	$31\ 985\ 386\ 467$	$30\ 462\ 604\ 932$
Cartera	221 198 281 168	214 919 639 046
Cartera Vencida Total	1 433 186 797	854 808 856
Cartera Vencida	548 167 237	243 318 483
Cartera Reprogramada Vencida	$755\ 254\ 828$	$228\ 931\ 872$
Cartera Reestructurada Vencida	$129\ 764\ 731$	40 543 418
Cartera Ejecucion Total	$3\ 194\ 267\ 476$	$2\ 127\ 614\ 598$
Cartera En Ejecucion	1 643 001 815	1 850 943 876
Cartera Reprogramada Ejecucion	1 375 823 662	614 925 353
Cartera Reestructurada En Ejecucion	175 441 998	5 588 192
Cartera Vigente Total	212 189 454 263	202 241 735 977
Cartera Vigente	$173\ 441\ 817\ 727$	167 993 096 262
Cartera Reprogramada Vigente	35 347 613 534	40 506 874 393
Cartera Reestructurada Vigente	3 400 023 002	2 165 697 769
Prevision Para Incobrabilidad De Cartera	-6 844 199 194	-6 565 733 043
Otras Cuentas Por Cobrar	$2\ 656\ 840\ 791$	$2\ 294\ 611\ 451$
Bienes Realizables	173 361 997	$142\ 376\ 391$
Inversiones Permanentes	29 685 331 188	28 552 616 550
Bienes De Uso	4 993 559 302	4 839 800 133
Otros Activos	$1\ 036\ 342\ 907$	977 547 148
Fideicomisos Constituidos	711 370 308	$689\ 552\ 262$
PASIVO	301 051 589 153	$300\ 321\ 024\ 785$
Obligaciones Con El Publico	217 827 876 746	218 328 262 247
Obligaciones Con Instituciones Fiscales	229 384 889	594 680 655
Obligaciones Con Empresas Publicas	18 706 886 340	$16\ 275\ 442\ 316$
Obligaciones Con Bancos Y Entidades De Financiamiento	46 519 414 530	46 200 512 498
Otras Cuentas Por Pagar	6 538 683 560	5 784 060 372
Previsiones	$3\ 461\ 242\ 906$	3 636 452 028
Valores En Circulacion	5 046 618 144	5 515 881 697
Obligaciones Subordinadas	$2\ 721\ 482\ 039$	2 751 109 939
PATRIMONIO	$24\ 504\ 756\ 042$	24 542 796 608
Capital Social	17 874 171 404	17 440 393 636
Aportes No Capitalizados	213 484 527	603 607 510

Tabla 13

Balance general observado respecto a proyecciones por redes neuronales (Continuación)

DESCRIPCION	OBSERVADO	NN
Ajustes Al Patrimonio	0	0
Reservas	4 582 070 537	$4\ 313\ 627\ 648$
Resultados Acumulados	1 835 029 574	$1\ 317\ 852\ 823$
CONTINGENTES DEUDORAS	17 038 100 668	20 798 081 225
CUENTAS DE ORDEN DEUDORAS	561 546 694 073	491 912 254 670

 ${\bf Tabla~14}$ Balance general observado respecto a proyecciones por MCO y ARIMA

DESCRIPCION	OBSERVADO	MCO	ARIMA
ACTIVO	325 556 345 195	353 503 175 984	346 233 091 265
Disponibilidades	33 115 871 066	$36\ 817\ 596\ 322$	$32\ 414\ 003\ 097$
Inversiones Temporarias	31 985 386 467	35 286 695 830	$32\ 955\ 104\ 468$
Cartera	221 198 281 168	246 250 438 468	207 195 871 963
Cartera Vencida Total	1 433 186 797	878 873 393	756 177 611
Cartera Vencida	548 167 237	677 979 612	442 847 771
Cartera Reprogramada Vencida	755 254 828	196 960 403	$236\ 995\ 798$
Cartera Reestructurada Vencida	129 764 731	13 716 961	$78\ 044\ 316$
Cartera Ejecucion Total	3 194 267 476	$3\ 288\ 028\ 022$	$2\ 650\ 312\ 344$
Cartera En Ejecucion	1 643 001 815	2 501 521 618	$1\ 462\ 269\ 238$
Cartera Reprogramada Ejecucion	1 375 823 662	786 399 398	680 026 326
Cartera Reestructurada En Ejecucion	175 441 998	37 939 682	$61\ 746\ 218$
Cartera Vigente Total	212 189 454 263	238 699 395 975	223 268 719 570
Cartera Vigente	173 441 817 727	$219\ 469\ 688\ 762$	$152\ 372\ 649\ 750$
Cartera Reprogramada Vigente	35 347 613 534	18 621 773 027	51 467 073 072
Cartera Reestructurada Vigente	3 400 023 002	2 055 046 416	6 626 018 181
Prevision Para Incobrabilidad De Cartera	-6 844 199 194	-7 529 230 313	-7 280 976 782
Otras Cuentas Por Cobrar	$2\ 656\ 840\ 791$	$2\ 362\ 267\ 648$	$2\ 665\ 571\ 960$
Bienes Realizables	173 361 997	$185\ 264\ 891$	170 388 060
Inversiones Permanentes	29 685 331 188	24 475 778 563	29 767 237 179
Bienes De Uso	4 993 559 302	5 854 115 994	5 395 275 460
Otros Activos	$1\ 036\ 342\ 907$	$1\ 239\ 847\ 969$	$1\ 028\ 910\ 237$
Fideicomisos Constituidos	711 370 308	$1\ 006\ 920\ 588$	$715\ 250\ 276$
PASIVO	301 051 589 153	326 475 040 128	$320\ 476\ 418\ 398$
Obligaciones Con El Publico	217 827 876 746	237 711 333 349	203 976 869 074
Obligaciones Con Instituciones Fiscales	229 384 889	276 756 287	268 725 979

 ${\bf Tabla~14}$ Balance general observado respecto a proyecciones por MCO y ARIMA (Continuación)

DESCRIPCION	OBSERVADO	MCO	ARIMA
Obligaciones Con Empresas Publicas	18 706 886 340	18 072 089 043	18 378 516 724
Obligaciones Con Bancos Y Entidades De Financiamiento	46 519 414 530	49 472 928 773	50 716 073 337
Otras Cuentas Por Pagar	6 538 683 560	$6\ 441\ 056\ 531$	$5\ 872\ 125\ 995$
Previsiones	$3\ 461\ 242\ 906$	$3\ 594\ 388\ 261$	3 587 691 882
Valores En Circulacion	5 046 618 144	5 645 652 455	6 350 437 957
Obligaciones Subordinadas	$2\ 721\ 482\ 039$	$3\ 710\ 932\ 216$	$2\ 800\ 685\ 692$
PATRIMONIO	$24\ 504\ 756\ 042$	$27\ 028\ 135\ 854$	$25\ 756\ 672\ 867$
Capital Social	17 874 171 404	$19\ 934\ 957\ 726$	18 638 545 574
Aportes No Capitalizados	$213\ 484\ 527$	$185\ 605\ 352$	$520\ 545\ 752$
Ajustes Al Patrimonio	0	0	0
Reservas	$4\ 582\ 070\ 537$	4 814 484 789	$4\ 855\ 965\ 504$
Resultados Acumulados	$1\ 835\ 029\ 574$	2 093 087 988	$945\ 210\ 299$
CONTINGENTES DEUDORAS	17 038 100 668	$22\ 636\ 052\ 182$	14 846 993 796
CUENTAS DE ORDEN DEUDORAS	561 546 694 073	615 771 765 980	491 189 287 843

3.6.2. Estado de resultados proyectado

Tabla 15
Estado de resultados observado respecto a proyecciones por redes neuronales

DESCRIPCION	OBSERVADO	NN
Ingresos Financieros	20 725 235 338	18 639 786 678.904
Gastos Financieros	-8 122 441 004	-8 051 214 446.943
RESULTADO FINANCIERO BRUTO	12 602 794 334	11 636 128 488.115
Otros Ingresos Operativos	4 621 244 962	4 327 717 485.189
Otros Gastos Operativos	-2 097 471 837	-2 631 417 130.454
RESULTADO DE OPERACION BRUTO	15 126 567 459	13 505 209 781.993
RESULTADO DE OPERACION DESPUES DE INCOBRABLES	$13\ 185\ 237\ 553$	$12\ 162\ 943\ 470.625$
Gastos De Administracion	-9 897 359 207	-9 243 460 028.500
Gastos De Personal	-5 210 325 182	-4 830 433 981.132
Servicios Contratados	-901 409 197	-838 044 218.910
Seguros	-111 862 516	-101 580 922.876
Comunicaciones Y Traslados	-265 544 412	-249 857 465.558
Impuestos	-261 457 013	-172 845 269.945
Mantenimiento Y Reparaciones	-285 832 493	-262 702 888.287
Depreciacion Y Desvalorizacion De Bienes De Uso	-372 999 967	-368 123 031.032
Amortizacion De Cargos Diferidos Y Activos Intangibles	-191 218 642	-193 136 629.922
Otros Gastos De Administracion	-2 296 709 785	-2 145 897 191.255
RESULTADO DE OPERACION NETO	$3\ 287\ 878\ 346$	$2\ 689\ 226\ 220.146$
RESULT. DESP. DE AJT. POR DIF. DE CAMB. Y MANT. DE VALOR	$3\ 287\ 104\ 095$	$2\ 721\ 919\ 080.543$
Respecto Ingresos Gastos Extraordinarios	26 661 806	22 322 621.601
RESULT. NETO DEL EJERCI. ANTES DE AJUST. DE GEST. ANTE.	3 313 765 902	2 741 520 485.970
Respecto Ingresos Gastos De Gestiones Anteriores	21 399 787	22 296 687.093
RESULT. ANT. DE IMP. Y AJUSTE CONT. POR EFECTO DE INFL.	$3\ 335\ 165\ 689$	$2\ 726\ 173\ 155.705$
Respecto Ajuste Contable Por Efecto De La Inflacion	0	-1 513.363
RESULTADO ANTES DE IMPUESTOS	3 335 165 689	2 772 272 771.645
Impuesto Sobre Las Utilidades De Las Empresas	-1 410 875 054	-1 367 609 791.673
RESULTADO NETO DE LA GESTION	1 924 290 635	$1\ 399\ 029\ 340.368$

 ${\bf Tabla~16}$ Estado de resultados observado respecto a proyecciones por MCO y ARIMA

DESCRIPCION	OBSERVADO	MCO	ARIMA
Ingresos Financieros	20 725 235 338	19 487 088 780.315	18 884 408 829
Gastos Financieros	-8 122 441 004	-6 655 759 301.680	-8 035 974 937
RESULTADO FINANCIERO BRUTO	12 602 794 334	12 831 329 478.636	10 631 881 974
Otros Ingresos Operativos	4 621 244 962	4 512 585 547.522	5 155 850 203
Otros Gastos Operativos	-2 097 471 837	-2 774 135 100.624	-1 833 660 584
RESULTADO DE OPERACION BRUTO	15 126 567 459	14 569 779 925.533	13 194 290 271
RESULTADO DE OPERACION DESPUES DE INCOBRABLES	$13\ 185\ 237\ 553$	$12\ 993\ 569\ 203.712$	$12\ 121\ 902\ 282$
Gastos De Administracion	-9 897 359 207	-9 780 019 283.671	-9 328 277 841
Gastos De Personal	-5 210 325 182	-5 160 136 753.026	-4 901 974 448
Servicios Contratados	-901 409 197	-854 313 465.876	-860 759 395
Seguros	-111 862 516	-86 976 738.961	-111 849 139
Comunicaciones Y Traslados	-265 544 412	-263 841 309.782	-253 977 284
Impuestos	-261 457 013	-195 082 660.326	-150 003 442
Mantenimiento Y Reparaciones	-285 832 493	-253 157 059.670	-269 814 067
Depreciacion Y Desvalorizacion De Bienes De Uso	-372 999 967	-385 696 038.335	-376 148 342
Amortizacion De Cargos Diferidos Y Activos Intangibles	-191 218 642	-198 414 215.354	-216 286 923
Otros Gastos De Administracion	-2 296 709 785	-2 163 488 439.941	-2 285 480 780
RESULTADO DE OPERACION NETO	$3\ 287\ 878\ 346$	$3\ 213\ 549\ 920.027$	$2\ 021\ 294\ 289$
RESULT. DESP. DE AJT. POR DIF. DE CAMB. Y MANT. DE VALOR	$3\ 287\ 104\ 095$	$3\ 212\ 357\ 966.192$	$2\ 000\ 670\ 350$
Respecto Ingresos Gastos Extraordinarios	26 661 806	33 401 737.706	$22\ 927\ 853$
RESULT. NETO DEL EJERCI. ANTES DE AJUST. DE GEST. ANTE.	3 313 765 902	3 245 649 174.792	1 988 637 159
Respecto Ingresos Gastos De Gestiones Anteriores	$21\ 399\ 787$	$12\ 980\ 927.262$	3 153 088
RESULT. ANT. DE IMP. Y AJUSTE CONT. POR EFECTO DE INFL.	3 335 165 689	3 260 101 806.001	$2\ 301\ 885\ 501$
Respecto Ajuste Contable Por Efecto De La Inflacion	0	564.927	0
RESULTADO ANTES DE IMPUESTOS	3 335 165 689	3 259 861 304.485	2 329 527 317
Impuesto Sobre Las Utilidades De Las Empresas	-1 410 875 054	-1 445 881 146.757	-1 592 179 450
RESULTADO NETO DE LA GESTION	$1\ 924\ 290\ 635$	$1\ 813\ 828\ 361.421$	811 288 150

CAPÍTULO 4. CONCLUSIONES Y RECOMENDACIONES

4.1. CONCLUSIÓN Y RECOMENDACIÓN RESPECTO AL DIAGNÓSTICO FINANCIERO REALIZADO

Se efectuó el diagnóstico del sistema financiero de Bolivia por medio del método CAMEL el cual evalúa el criterio de solidez financiera donde dicho método fue adaptado a series de tiempo que representan las cuentas individuales de los estados financieros publicados por la ASFI los cuales tienen un intervalo mensual desde 2014 al 2022, los cuales a su vez fueron agrupados por sectores financieros.

Donde de acuerdo al diagnóstico realizado de la situación actual del sistema financiero de Bolivia se concluyó que las cooperativas, entidades financieras de vivienda y bancos múltiples como sector pueden hacer frente en promedio a sus obligaciones con terceros y que en contraposición los sectores instituciones financieras de desarrollo, bancos PYME y el banco de desarrollo productivo se ven expuestos por naturaleza de sus activos junto al giro de su negocio y deben revisar sus políticas de administración.

Por tanto, se recomienda a los bancos PYME, banco de desarrollo productivo y instituciones financieras de desarrollo mejorar los resultados obtenidos en los indicadores de capital y activos, es decir, deben aumentar su posición contabilizada en el patrimonio o reducir la cartera en mora modificando sus políticas de cobranza. En contraparte se recomienda a las cooperativas de ahorro y créditos mejorar sus resultados en los indicadores de administración, es decir, reducir los gastos de administración que no estén directamente vinculados con la generación de beneficios para la entidad.

4.2. CONCLUSIÓN Y RECOMENDACIÓN RESPECTO A LA DEFINICIÓN DE LA RED DE NEURONAS ARTIFICIALES

Se determinó la arquitectura y entrenamiento del modelo de red de neuronas donde el número de neuronas de entrada está definido por el criterio de información de Akaike, las capas ocultas fueron igual a 1, con el mismo número de neuronas que la capa de entrada las cuales están conectadas por medio de la función de activación sigmoide el bajo el lenguaje de programación

R, así mismo los datos fueron separados en datos de entrenamiento y de prueba, teniendo al intervalo de tiempo de 2014 a 2021 como datos de prueba y el restante como datos de prueba.

Respecto a la arquitectura y entrenamiento del modelo de red de neuronas artificiales se concluye que este representa mayor esfuerzo computacional respecto a los otros modelos presentados, pero donde su capacidad de ajuste a los datos de la presente investigación fue mayor y a su vez la capacidad de encontrar patrones que le permitan generalizar la información contenida fue completamente mayor a la de los otros modelos.

En este sentido se recomienda que para mayor ajuste de pronósticos por parte de las redes neuronales se deben emplear arquitecturas más complejas atendiendo características como ser, tipo de entidad, estacionalidad mensual y otras características, pero siendo evidente que este tipo de arquitecturas requerirán mayor esfuerzo computacional.

4.3. CONCLUSIÓN Y RECOMENDACIÓN RESPECTO A LA PROYECCIÓN-SIMULACIÓN DE LOS ESTADOS FINANCIEROS.

Se elaboró la proyección-simulación de los estados financieros para los modelos contenidos en la presente investigación (redes neuronales, modelo clásico de series de tiempo y ARIMA) que es el resultado de los coeficientes obtenidos respecto a sus datos de entrada, así también la simulación de dichos modelos está definida como la proyección promedio más los errores aleatorios obtenidos por el mismo.

Por tanto, se recomienda efectuar la proyección y simulación de estados financieros con frecuencia periódica definidos en intervalos mensuales que permita implementar políticas y así contrarrestar contingencias negativas sujetas al contexto del sistema financiero.

4.4. CONCLUSIÓN Y RECOMENDACIÓN RESPECTO A LA EVALUA-CIÓN DE LOS DATOS PROYECTADOS-SIMULADOS

Se efectuó la evaluación de los datos proyectados-simulados midiendo el ajuste promedio de 100 simulaciones por cada cuenta respecto a los datos efectivamente observados o datos de prueba, así también se aplicó el método CAMEL sobre dichos datos proyectados-simulados lo cual permitió comparar los patrones contenidos en las diferentes series de tiempo.

En este sentido se recomienda que los datos proyectados-simulados con intervalos mensuales deben ser evaluados no solo por su nivel de ajuste, si no así también por métodos que permitan visibilizar si estos contienen los patrones contenidos en los datos efectivamente observados.

4.5. CONCLUSIÓN Y RECOMENDACIÓN GENERAL

La hipótesis planteada en la presente investigación sugería que:

"Con la determinación de proyecciones de estados financieros por el método de redes neuronales, de entidades financieras de Bolivia, se logrará proyectar información con mayor aproximación a la situación económica-financiera observada del sistema financiero"

Donde posteriormente a través de la evaluación de ajuste con los datos de entrenamiento y de prueba las redes neuronales presentaron un mayor ajuste promedio y en la prueba de la evaluación financiera sobre datos proyectados el modelo de redes neuronales fue el único en lograr generalizar los patrones contenidos en las series de tiempo, teniendo en cuenta dichos resultados se concluye que la hipótesis se encuentra contrastada y tomada como valida, así también, se recomienda que el contraste de la hipótesis solo puede ser considerado como valido para los datos contenidos en la presente investigación.

REFERENCIAS BIBLIOGRFICAS

- ALPB. (2013). Ley 393 de servicios financieros. Asamblea legislativa plurinacional de Bolivia.
- Alpiry Hurtado, G. (2021a). Calificación CAMEL. https://www.youtube.com/watch?v=puc5f3X1lHw
- Alpiry Hurtado, G. (2021b). *Ratios CAMEL*. https://youtu.be/xOJPVGff8jA?si=H3OKByO5JLIBLpNB
- Alpiry Hurtado, G. (2021c). *Tendencias CAMEL*. https://youtu.be/fRoDkIvmk6I?si=QA14mKBmvvNxEW7i
- ASFI. (2022a). Glosario de términos económicos financieros. Autoridad de Supervisión del Sistema Financiero.
- ASFI. (2022b). Manual de cuentas para entidades financieras. Autoridad de Supervisión del Sistema Financiero.
- Berzal, F. (2018). Redes de neuronas y deep learning. Pearson Educación S.A.
- ECONOMY. (2022). Ranking CAMEL de BANCOS 2022. https://www.calameo.com/read/ 0068895646889569957c6
- FMI. (2006). Indicadores de solidez financiera. Fondo Monetario Internacional.
- Gujarati, D., & Porter, D. (2009). ECONOMETRIA. Mc Gran Hill.
- Hyndman, R., & Athanasopoulos, G. (2018). Forecasting: Principles and practice, 2nd edition.

 OTexts. OTexts.com/fpp2
- Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., Kuroptev, K., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2023). Forecast:

 Forecasting functions for time series and linear models. https://CRAN.R-project.org/package=forecast
- Isasi Viñuela, P., & Galván León, I. M. (2004). Redes de neuronas artificiales un enfoque práctico. Pearson Educación S.A.
- J. Gitman, L., & J. Zutter, C. (2012). Principios de administración financiera. Pearson Educación S.A.
- López, J. F. (2023). Coeficiente de determinación (R cuadrado). https://economipedia.com/definiciones/r-cuadrado-coeficiente-determinacion.html
- Ponce Gallegos, J. C., Torres Soto, A., & Quezada Aguilera, F. S. (2014). *Inteligencia artificial*. Iniciativa Latinoamericana de Libros de Texto Abiertos.

- Ponce, P. (2010). *Inteligencia artificial con aplicaciones a la ingeniería*. Alfaomega Grupo Editor, S.A.
- RAE. (2022). Diccionario web. Real Academia Española. https://dle.rae.es
- Rus Arias, E. (2020). *Ratios Financieros*. https://economipedia.com/definiciones/ratios-financieros.html
- Russell, S., & Norvig, P. (2004). *Inteligencia artificial un enfoque moderno*. Pearson Educación S.A.
- Van Horne, J. C., & Wachowicz, J. M., Jr. (2010). Fundamentos de administración financiera. Pearson Educación S.A.
- Velarde, G. (2020). Una estrategia 4.0 de inteligencia artificial en bolivia.