Back Propagation and Activation Functions

An example Network

- 28 x 28 pixel images as input.
- Input vector of 784.
- 10 target variables or 'classes'
- It has 16 neurons in two hidden layers

Example Cont.

Updating a Neuron through back prop.

$$0.2 = \sigma(w_0 a_0 + w_1 a_1 + \dots + w_{n-1} a_{n-1} + b)$$

Increase b

Increase w_i in proportion to a_i

Change a_i in proportion to w_i

Weight Matrix Update

	2	3	0	Ч	1	9		rage over ining data
w_0	-0.08	+0.02	-0.02	+0.11	-0.05	-0.14	··· -	-0.08
w_1	-0.11	+0.11	+0.07	+0.02	+0.09	+0.05	··· →	+0.12
w_2	-0.07	-0.04	-0.01	+0.02	+0.13	-0.15	··· →	-0.06
:	:	:	:	:	:	:	٠٠.	
$w_{13,001}$	+0.13	+0.08	-0.06	-0.09	-0.02	+0.04	··· →	+0.04

Updating whole network through back prop


```
Increase b
                             ···+ †+ + + + † + + + †
                             \cdots + \downarrow + \downarrow + \uparrow + \uparrow + \uparrow + \uparrow \bigcirc
                             ···+ †++++++++
                                                               0.8 1
                             ···+ +++++++++
Increase w_i
                             ···+ +++++++++++
···+ ++++++++++
                             \cdots + \uparrow + \downarrow + \uparrow + \uparrow + \downarrow + \uparrow \bigcirc
                                                              1.0 16
Change a_i
                             ···+ ↓+ + + ↑ + ↑ + ↓ + ↓ ●
···+ ++ \ + + + \ \ + + + \ \ 1
                             \cdots + \uparrow + \uparrow + \downarrow + \uparrow + \uparrow + \downarrow \bigcirc
                             ···+ †++++++++
```


General Rules

- The more data you use to update the longer it will take to train.
- Batches speed up the learning process.
- We update weights after each batch is trained on.

Cost Functions in Deep Learning

- Two primary functions are binary and categorical cross entropy.
- Binary cross entropy takes in a single binary value of either 1 or 0.
- Categorical takes in n length binary chain of 0's and 1's where 1's are positive classes.
- Categorical can have multiple correct classes.

Or 0, 0, 0, 1, 0

Stochastic Gradient Descent

- Is used to find the local and global minima for any function.
- Works like Gradient Descent except it is batched and it has random starting points.
- It works like blind hill climbing.

GD vs SGD

Learning Rate

- Low learning rate converges slower but is more stable.
- High learning rate converges quickly but may 'step off' the minima and fall off a cliff. This leads to the model not being able to converge at all.
- Start high and lower it each training epoch.

SGD update

$$\theta_1 = \theta_0 - \alpha \Delta Q \theta$$

- $\bullet \theta_1$ is next position
- θ_0 is current position
- α is learning rate
- $\Delta Q\theta$ is the cost function
- When $\theta_1 = \theta_0$ then the network can no longer learn new things.

Cost Function

$$Cost \longrightarrow C_0(\dots) = (a^{(L)} - y)^2$$

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(L)})$$

$$0.48$$

$$0.66$$

$$0.66$$

$$0.66$$

$$0.66$$

$$0.66$$

$$0.66$$

$$0.66$$

Chain Rule of SGD

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C_0}{\partial a^{(L)}}$$

Chain rule

$$C_0(...) = (a^{(L)} - y)^2$$
 $z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$
 $a^{(L)} = \sigma(z^{(L)})$
Desired output

 $a^{(L)} = \sigma(z^{(L)})$
 $a^{(L-1)}$
 $a^{(L)} = a^{(L)}$
 $a^{(L)} = a^{(L)}$

Values of the derivatives

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C_0}{\partial a^{(L)}}$$

$$\frac{\partial C0}{\partial a^{(L)}} = 2(a^{(L)} - y)$$

$$\frac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'(z^{(L)})$$

$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)}$$

$$C_0 = (a^{(L)} - y)^2$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

$$a^{(L)} = \sigma(z^{(L)})$$

Final Equation

$$rac{\partial C_0}{\partial w^{(L)}} = rac{\partial z^{(L)}}{\partial w^{(L)}} \, rac{\partial a^{(L)}}{\partial z^{(L)}} \, rac{\partial C0}{\partial a^{(L)}} = a^{(L-1)} \sigma'\!(z^{(L)}) 2(a^{(L)}-y)$$

Average of all training examples

$$\frac{\partial C}{\partial w^{(L)}} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\partial C_k}{\partial w^{(L)}}$$

Derivative of full cost function

$$C_0 = (a^{(L)} - y)^2$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

$$a^{(L)} = \sigma(z^{(L)})$$

3D model

How Bias and Activations Work

