Table 6-1 Combined Flexure and Axial Force

Sha	ape							14×					
				5°				90°				62°	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	< 10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.346	0.230	0.220	0.146	0.417	0.278	0.253	0.168	0.474	0.316	0.281	0.187
	11	0.378	0.251	0.220	0.146	0.454	0.302	0.253	0.168	0.516	0.343	0.281	0.187
	12	0.384	0.256	0.220	0.146	0.462	0.307	0.253	0.168	0.524	0.349	0.281	0.187
3,	13	0.392	0.261	0.222	0.148	0.470	0.313	0.255	0.170	0.533	0.355	0.284	0.189
'n.	14	0.402	0.267	0.225	0.150	0.480	0.319	0.259	0.173	0.544	0.362	0.289	0.192
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	15	0.412	0.274	0.229	0.152	0.490	0.326	0.264	0.175	0.555	0.369	0.294	0.196
length, KL (ft), with respect to least radius of gyor Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	16	0.423	0.281	0.232	0.155	0.501	0.333	0.268	0.178	0.568	0.378	0.299	0.199
ns c	17	0.435	0.290	0.236	0.157	0.514	0.342	0.273	0.181	0.582	0.387	0.304	0.203
adit (is	18	0.449	0.299	0.240	0.160	0.527	0.351	0.277	0.184	0.597	0.397	0.310	0.206
st re	19	0.463	0.308	0.244	0.162	0.542	0.361	0.282	0.188	0.613	0.408	0.316	0.210
-X-)	20	0.479	0.319	0.248	0.165	0.559	0.372	0.287	0.191	0.632	0.420	0.322	0.214
라 <u>후</u>	22	0.515	0.343	0.256	0.171	0.597	0.397	0.298	0.198	0.674	0.448	0.335	0.223
(£)	24	0.558	0.371	0.266	0.177	0.643	0.428	0.309	0.206	0.724	0.482	0.348	0.232
q7	26	0.608	0.405	0.275	0.183	0.702	0.467	0.321	0.214	0.785	0.522	0.363	0.242
₽ ₩	28	0.668	0.444	0.286	0.190	0.77	0.512	0.335	0.223	0.859	0.571	0.379	0.252
, wi	30	0.738	0.491	0.297	0.198	0.851	0.567	0.349	0.232	0.950	0.632	0.397	0.264
pec Sed	32	0.822	0.547	0.310	0.206	0.948	0.631	0.365	0.243	1.06	0.705	0.417	0.277
r, K	34	0.923	0.614	0.323	0.215	1.06	0.708	0.382	0.254	1.19	0.793	0.438	0.292
통	36	1.03	0.689	0.338	0.225	1.19	0.794	0.401	0.267	1.34	0.889	0.465	0.310
ᅙᇹ	38	1.15	0.767	0.354	0.235	1.33	0.885	0.429	0.286	1.49	0.990	0.507	0.337
tive	40	1.28	0.850	0.377	0.251	1.47	0.980	0.464	0.309	1.65	1.10	0.549	0.365
ffec	42	1.41	0.937	0.404	0.269	1.62	1.08	0.499	0.332	1.82	1.21	0.592	0.394
ш	44	1.55	1.03	0.431	0.287	1.78	1.19	0.534	0.355	2.00	1.33	0.635	0.423
	46	1.69	1.12	0.459	0.305	1.95	1.30	0.570	0.379	2.18	1.45	0.679	0.452
	48	1.84	1.22	0.486	0.323	2.12	1.41	0.605	0.403	2.37	1.58	0.722	0.481
	50	2.00	1.33	0.514	0.342	2.30	1.53	0.641	0.426	2.58	1.71	0.766	0.510
				0	ther Cor	nstants	and Pro	perties					
	, (kip-ft) ⁻¹	1.5		1.0		1.5		1.1		1.9	96	1.3	30
$t_y \times 10^3$,		0.3	339	0.2	226	0.3	391	0.2	260	0.4	133	0.2	288
$t_r \times 10^3$,	(kips) ⁻¹	0.4	417	0.2	278	0.4	480	0.3	320	0.0	531	0.3	354
r _x	/r _y		5.	10			5.	10			5.	10	
r_y ,	in.		3.	49			3.	49			3.	47	
^c Shape is	s slender fo	r compre	ssion with	$1 F_{\nu} = 50$	ksi.	1				1			

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y}$ = 50 ksi.

W44-W40

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_{V} = 50 \text{ ksi}$

Sha	no		W4	4 ×					W4	l0×			
Sile	ape		230) ^{c, v}			59	3 ^h			50)3 ^h	
		p×	10 ³	b _x ×	10 ³	р×	10 ³	b _x ×	(10³	p×	10 ³	b _x ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.557	0.370	0.324	0.215	0.192	0.128	0.129	0.0859	0.226	0.150	0.154	0.102
	11	0.604	0.402	0.324	0.215	0.210	0.139	0.129	0.0859	0.247	0.165	0.154	0.102
	12	0.614	0.409	0.324	0.215	0.213	0.142	0.129	0.0859	0.252	0.168	0.154	0.102
ž	13	0.625	0.416	0.329	0.219	0.217	0.144	0.129	0.0859	0.257	0.171	0.154	0.102
o,	14	0.637	0.424	0.335	0.223	0.221	0.147	0.130	0.0863	0.262	0.174	0.155	0.103
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	15	0.650	0.433	0.341	0.227	0.226	0.150	0.131	0.0870	0.268	0.178	0.156	0.104
to least radius of gyr for X-X axis bending	16	0.665	0.442	0.347	0.231	0.231	0.154	0.132	0.0877	0.274	0.182	0.158	0.105
us o	17	0.681	0.453	0.354	0.235	0.237	0.158	0.133	0.0884	0.281	0.187	0.159	0.106
adii	18	0.698	0.465	0.360	0.240	0.243	0.162	0.134	0.0892	0.289	0.192	0.161	0.107
st r X a	19	0.718	0.478	0.367	0.244	0.250	0.166	0.135	0.0899	0.297	0.198	0.163	0.108
<u>ea</u>	20	0.739	0.492	0.375	0.249	0.257	0.171	0.136	0.0907	0.306	0.204	0.164	0.109
t 6,	22	0.787	0.524	0.390	0.260	0.273	0.182	0.139	0.0923	0.326	0.217	0.168	0.112
pect (ft),	24	0.846	0.563	0.407	0.271	0.292	0.194	0.141	0.0939	0.350	0.233	0.171	0.114
res , L _b	26	0.916	0.609	0.425	0.283	0.314	0.209	0.144	0.0956	0.377	0.251	0.175	0.117
# #g	28	1.00	0.666	0.446	0.296	0.340	0.226	0.146	0.0973	0.410	0.273	0.179	0.119
length, <i>KL</i> (ft), with respondent or Unbraced Length, \mathcal{L}_b	30	1.10	0.735	0.468	0.311	0.370	0.246	0.149	0.0991	0.448	0.298	0.183	0.122
t) pe	32	1.23	0.820	0.492	0.327	0.405	0.269	0.152	0.101	0.492	0.327	0.187	0.125
ı, K	34	1.39	0.924	0.519	0.346	0.446	0.297	0.155	0.103	0.544	0.362	0.192	0.128
효	36	1.56	1.04	0.568	0.378	0.494	0.329	0.158	0.105	0.606	0.403	0.197	0.131
e e	38	1.73	1.15	0.621	0.413	0.551	0.366	0.161	0.107	0.675	0.449	0.201	0.134
tive	40	1.92	1.28	0.674	0.449	0.610	0.406	0.164	0.109	0.748	0.498	0.207	0.138
lfec	42	2.12	1.41	0.729	0.485	0.673	0.448	0.168	0.112	0.825	0.549	0.212	0.141
ш	44	2.33	1.55	0.784	0.522	0.738	0.491	0.171	0.114	0.906	0.603	0.218	0.145
	46	2.54	1.69	0.840	0.559	0.807	0.537	0.175	0.116	0.990	0.659	0.224	0.149
	48	2.77	1.84	0.897	0.597	0.879	0.585	0.179	0.119	1.08	0.717	0.230	0.153
	50	3.00	2.00	0.954	0.634	0.953	0.634	0.183	0.122	1.17	0.778	0.237	0.158
				01	ther Cor	stants	and Pro	perties					
$b_y \times 10^3$		2.2		1.5			741	l	193		904	1	602
$t_y \times 10^3$,			193	ı	328		192	ı	28		226	0.1	50
$t_r \times 10^3$,	(kips) ⁻¹	0.6	605	0.4	103	0.2	236	0.1	57	0.2	277	0.1	85
r _x	/r _y		5.	10			4.	47			4.	52	
r_y ,	in.		3.	43			3.	80			3.	72	

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $^{^{\}rm v}$ Shape does not meet the $h/t_{\rm W}$ limit for shear in AISC *Specification* Section G2.1(a) with $F_{\rm y}=50$ ksi; therefore, $\phi_{\rm v}=0.90$ and $\Omega_{\rm v}=1.67$.

Table 6-1 (continued) Combined Flexure and Axial Force

Cha							W4	0×					
Sha	ipe		43	1 ^h			39	7 ^h			39)2 ^h	
		p×	10 ³	b _x ×	10³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ^{−1}	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.263	0.175	0.182	0.121	0.285	0.190	0.198	0.132	0.288	0.192	0.208	0.139
	11	0.289	0.193	0.182	0.121	0.314	0.209	0.198	0.132	0.346	0.230	0.213	0.142
	12	0.295	0.196	0.182	0.121	0.320	0.213	0.198	0.132	0.358	0.238	0.217	0.144
ž	13	0.301	0.200	0.182	0.121	0.327	0.217	0.198	0.132	0.372	0.247	0.220	0.146
on,			0.204	0.184	0.122				0.133	0.387	0.258	0.223	0.148
/rati	15	0.314	0.209	0.186	0.124	0.341	0.227	0.203	0.135	0.404	0.269	0.227	0.151
din	16	0.322	0.214	0.188	0.125	0.350	0.233	0.205	0.137	0.424	0.282	0.230	0.153
o sr			ı	0.190	0.127		0.239		0.138	0.446		0.234	0.156
adit cis	18		ı	0.193	0.128		0.246		0.140			0.238	0.158
st ra (a)												0.241	0.161
r X-)	20	0.361	0.240	0.197	0.131	0.392	0.261	0.216	0.144	0.527	0.351	0.245	0.163
, e	22	0.386	0.257	0.202	0.134	0.419	0.279	0.221	0.147	0.598	0.398	0.254	0.169
ec (#)	24	0.415	0.276	0.207	0.138	0.451	0.300	0.227	0.151	0.687	0.457	0.263	0.175
res	26	0.449	0.299	0.212	0.141	0.488	0.325	0.234	0.155	0.801	0.533	0.273	0.181
£ €			l									0.283	0.188
Len	30	0.536	0.356	0.224	0.149	0.584	0.388	0.247	0.164	1.07	0.710	0.295	0.196
bed (f	32								0.169		0.807	0.307	0.204
rac orac			ı						0.175			0.320	0.213
를												0.335	0.223
<u> </u>			l									0.351	0.233
ctive	40						0.658					0.372	0.248
∰.	42	0.999	0.665	0.267		1.09	0.725	0.299	0.199	2.09	1.39	0.394	0.262
-			l							2.29	1.53	0.415	0.276
			l										
			ı										
	50	1.42	0.942	0.308	0.205	1.55	1.03	0.356	0.237				
				0	ther Cor	stants	and Pro	perties					
												1.1	
												0.1	
12	0.2	236											
r_{x}	/r _y		4.	55			4.	56			6.	10	
r_{v} ,	in.		3.0	65			3.0	64			2.0	64	

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification Section A3.1c.* Note: Heavy line indicates KL/r_V equal to or greater than 200.

 $F_y = 50 \text{ ksi}$

							W4	l0×					
Sha	ape		37	2 h				62 ^h			33	1h	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign	(kip			-ft) ⁻¹	(kip			-ft) ⁻¹	(kip			-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.304	0.202	0.212	0.141	0.315	0.210	0.217	0.145	0.342	0.227	0.249	0.166
	11	0.335	0.223	0.212	0.141	0.348	0.231	0.217	0.145	0.415	0.276	0.257	0.171
	12	0.341	0.227	0.212	0.141	0.354	0.236	0.217	0.145	0.430	0.286	0.262	0.174
ž	13	0.348	0.232	0.213	0.142	0.361	0.240	0.218	0.145	0.448	0.298	0.266	0.177
e,	14	0.356	0.237	0.215	0.143	0.369	0.246	0.221	0.147	0.467	0.311	0.271	0.180
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	15	0.365	0.243	0.218	0.145	0.378	0.252	0.224	0.149	0.489	0.326	0.276	0.184
to least radius of gyr for X-X axis bending	16	0.374	0.249	0.221	0.147	0.388	0.258	0.227	0.151	0.514	0.342	0.281	0.187
ns c	17	0.384	0.255	0.224	0.149	0.398	0.265	0.230	0.153	0.542	0.361	0.287	0.191
adiı	18	0.395	0.263	0.227	0.151	0.410	0.273	0.233	0.155	0.573	0.381	0.292	0.194
st r X a	19	0.407	0.271	0.230	0.153	0.422	0.281	0.236	0.157	0.608	0.404	0.298	0.198
ea -	20	0.420	0.280	0.233	0.155	0.436	0.290	0.239	0.159	0.647	0.430	0.304	0.202
t 6,	22	0.450	0.299	0.240	0.159	0.467	0.311	0.246	0.164	0.739	0.492	0.317	0.211
(ft),	24	0.485	0.323	0.246	0.164	0.503	0.335	0.253	0.168	0.856	0.570	0.331	0.220
res L _b	26	0.526	0.350	0.254	0.169	0.546	0.363	0.261	0.174	1.00	0.668	0.346	0.230
a a a a a a a a a a a a	28	0.574	0.382	0.261	0.174	0.596	0.396	0.269	0.179	1.16	0.774	0.362	0.241
length, <i>KL</i> (ft), with respondent or Unbraced Length, \mathcal{L}_b	30	0.631	0.420	0.270	0.179	0.655	0.436	0.278	0.185	1.34	0.889	0.381	0.253
t) pe	32	0.698	0.464	0.278	0.185	0.724	0.482	0.287	0.191	1.52	1.01	0.401	0.267
ı, Kı	34	0.777	0.517	0.288	0.191	0.806	0.536	0.297	0.197	1.72	1.14	0.425	0.283
횽	36	0.871	0.579	0.298	0.198	0.904	0.601	0.307	0.204	1.92	1.28	0.456	0.304
흐늘	38	0.970	0.646	0.308	0.205	1.01	0.670	0.319	0.212	2.14	1.43	0.488	0.324
tive	40	1.08	0.715	0.320	0.213	1.12	0.742	0.331	0.220	2.38	1.58	0.519	0.345
:Hec	42	1.19	0.789	0.332	0.221	1.23	0.818	0.344	0.229	2.62	1.74	0.550	0.366
ш	44	1.30	0.866	0.345	0.230	1.35	0.898	0.358	0.238				
	46	1.42	0.946	0.365	0.243	1.48	0.982	0.380	0.253				
	48	1.55	1.03	0.385	0.256	1.61	1.07	0.401	0.267				
	50	1.68	1.12	0.405	0.270	1.74	1.16	0.422	0.281				
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$		1.2			356	1.3			378	2.1		1.4	
$t_y \times 10^3$,			304		202		315		210		342	0.2	227
$t_r \times 10^3$,	(kips) ⁻¹	0.3	373	0.2	249	0.3	387	0.2	258	0.4	120	0.2	280
r_{χ}	/r _y		4.	58			4.	58			6.	19	
r_y ,	in.		3.0	60			3.	60			2.	57	

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification Section A3.1c.* Note: Heavy line indicates KL/r_V equal to or greater than 200.

Table 6-1 (continued) Combined Flexure and Axial Force

							WA	40×					
Sha	ape		32	7h				24			20)7 ^c	
		D×	10 ³		10 ³	p×			10 ³	D×	10 ³		10 ³
Des	sign		s) ⁻¹		-ft) ⁻¹	(kip		(kip		(kip			-ft) ⁻¹
		ASD	LRFD										
	0	0.348	0.232	0.253	0.168	0.350	0.233	0.244	0.162	0.386	0.257	0.268	0.178
ľy,	11 12 13	0.422 0.437 0.455	0.281 0.291 0.303	0.261 0.265 0.270	0.174 0.177 0.180	0.387 0.394 0.403	0.258 0.262 0.268	0.244 0.244 0.245	0.162 0.162 0.163	0.424 0.432 0.441	0.282 0.287 0.293	0.268 0.268 0.270	0.178 0.178 0.179
yration, g	14 15	0.475 0.497	0.316 0.331	0.275 0.280	0.183 0.186	0.412 0.422	0.274 0.281	0.249 0.252	0.165 0.168	0.451 0.462	0.300 0.308	0.274 0.278	0.182 0.185
to least radius of gyr for X-X axis bending	16 17 18 19 20	0.522 0.550 0.581 0.616 0.656	0.347 0.366 0.387 0.410 0.436	0.285 0.290 0.296 0.302 0.308	0.190 0.193 0.197 0.201 0.205	0.433 0.444 0.457 0.471 0.487	0.288 0.296 0.304 0.314 0.324	0.256 0.259 0.263 0.267 0.271	0.170 0.173 0.175 0.178 0.180	0.474 0.488 0.502 0.518 0.535	0.316 0.325 0.334 0.345 0.356	0.282 0.286 0.291 0.295 0.300	0.188 0.190 0.193 0.197 0.200
, with respect to $ $ ength, L_b (ft), for	22 24 26 28 30	0.749 0.866 1.01 1.18 1.35	0.498 0.576 0.675 0.783 0.899	0.321 0.335 0.350 0.367 0.385	0.213 0.223 0.233 0.244 0.256	0.522 0.563 0.611 0.667 0.734	0.347 0.374 0.406 0.444 0.488	0.279 0.288 0.298 0.308 0.319	0.186 0.192 0.198 0.205 0.212	0.575 0.621 0.675 0.739 0.815	0.382 0.413 0.449 0.492 0.542	0.310 0.321 0.332 0.344 0.357	0.206 0.213 0.221 0.229 0.238
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	32 34 36 38 40	1.54 1.73 1.95 2.17 2.40	1.02 1.15 1.29 1.44 1.60	0.406 0.430 0.462 0.494 0.526	0.270 0.286 0.307 0.329 0.350	0.813 0.907 1.02 1.13 1.25	0.541 0.603 0.676 0.754 0.835	0.330 0.343 0.357 0.371 0.387	0.220 0.228 0.237 0.247 0.258	0.904 1.01 1.13 1.26 1.40	0.602 0.674 0.755 0.841 0.932	0.372 0.387 0.404 0.422 0.446	0.247 0.257 0.269 0.281 0.297
Effect	42 44 46 48 50	2.65	1.76	0.557	0.371	1.38 1.52 1.66 1.81 1.96	0.921 1.01 1.10 1.20 1.30	0.408 0.435 0.461 0.488 0.514	0.272 0.289 0.307 0.324 0.342	1.54 1.70 1.85 2.02 2.19	1.03 1.13 1.23 1.34 1.46	0.478 0.509 0.541 0.573 0.605	0.318 0.339 0.360 0.381 0.403
				0	ther Cor	stants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			12 348 128		11 232 285		49 350 430	0.2	992 233 287		66 883 170	l	10 255 313
r_{x}	/r _y		6.	20			4.	58			4.0	60	
r_y ,	in.		2.	58			3.	58			3.	54	

 $^{^{\}rm c}$ Shape is slender for compression with $\textit{F}_{\textit{y}}\!=50$ ksi.

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c. Note: Heavy line indicates $KL/r_{\rm V}$ equal to or greater than 200.

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W4	l0×					
3116	ape		29	94			2	78			27	7 ^c	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.387	0.258	0.281	0.187	0.406	0.270	0.299	0.199	0.425	0.283	0.285	0.190
	11	0.471	0.314	0.291	0.194	0.496	0.330	0.312	0.207	0.462	0.308	0.285	0.190
	12	0.489	0.325	0.296	0.197	0.515	0.343	0.318	0.211	0.470	0.313	0.285	0.190
7.	13	0.509	0.339	0.302	0.201	0.537	0.357	0.324	0.216	0.479	0.318	0.287	0.191
e,	14	0.532	0.354	0.308	0.205	0.562	0.374	0.331	0.220	0.488	0.325	0.291	0.193
/rati	15	0.558	0.371	0.314	0.209	0.589	0.392	0.338	0.225	0.498	0.332	0.295	0.196
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_{\rm lo}$ or Unbraced Length, $\it L_{\rm b}$ (ft), for X-X axis bending	16	0.586	0.390	0.321	0.214	0.620	0.413	0.345	0.229	0.510	0.339	0.300	0.199
us c	17	0.619	0.412	0.328	0.218	0.655	0.436	0.352	0.234	0.522	0.347	0.304	0.203
adii	18	0.655	0.436	0.335	0.223	0.694	0.462	0.360	0.240	0.536	0.357	0.309	0.206
st r	19	0.695	0.463	0.342	0.228	0.738	0.491	0.369	0.245	0.551	0.367	0.314	0.209
X-)	20	0.740	0.493	0.350	0.233	0.788	0.524	0.377	0.251	0.569	0.379	0.320	0.213
t to	22	0.848	0.564	0.366	0.244	0.905	0.602	0.396	0.263	0.610	0.406	0.330	0.220
€ (±)	24	0.985	0.655	0.384	0.256	1.06	0.702	0.416	0.277	0.658	0.438	0.342	0.228
res	26	1.16	0.769	0.404	0.269	1.24	0.824	0.439	0.292	0.714	0.475	0.355	0.236
l ∰ ∰	28	1.34	0.892	0.426	0.284	1.44	0.956	0.464	0.309	0.780	0.519	0.368	0.245
), w Len	30	1.54	1.02	0.451	0.300	1.65	1.10	0.493	0.328	0.858	0.571	0.382	0.254
pec Sed	32	1.75	1.16	0.482	0.320	1.88	1.25	0.535	0.356	0.950	0.632	0.398	0.265
ı, K	34	1.98	1.31	0.521	0.347	2.12	1.41	0.580	0.386	1.06	0.705	0.415	0.276
를 를	36	2.22	1.47	0.561	0.373	2.38	1.58	0.624	0.415	1.19	0.791	0.434	0.289
声 9	38	2.47	1.64	0.601	0.400	2.65	1.76	0.669	0.445	1.32	0.881	0.454	0.302
tive	40	2.73	1.82	0.640	0.426	2.93	1.95	0.714	0.475	1.47	0.976	0.484	0.322
ec.	42	3.02	2.01	0.679	0.452	3.23	2.15	0.758	0.504	1.62	1.08	0.519	0.345
ш.	44									1.78	1.18	0.555	0.369
	46									1.94	1.29	0.590	0.393
	48									2.11	1.41	0.625	0.416
	50									2.29	1.53	0.661	0.440
				0	ther Cor	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹	2.3		1.5		2.5		1.7		1.7		1.1	16
$t_y \times 10^3$,			387		258		406	0.2			110	l	273
$t_r \times 10^3$,	(kips) ⁻¹	0.4	176	0.3	317	0.4	198	0.3	332	0.5	503	0.3	336
r_{χ}	/r _y		6.	24			6.	27			4.	58	
r_{v}	in.		2.	55			2.	52			3.	58	
	s slender fo	r oompro	ooion with	2 E _ E0	koi								

^c Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

							14/4	0					
Sha	аре		26	24			W4	i9°			22	85°	
		n v	10 ³		10 ³	p×			10 ³	n v	10 ³		10 ³
Des	ian		s) ⁻¹	(kip-		(kip		(kip-			s) ⁻¹		-ft) ⁻¹
Des	igii	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.432	0.287	0.315	0.210	0.483	0.321	0.318	0.212	0.504	0.335	0.353	0.235
	11	0.527	0.351	0.329	0.219	0.525	0.349	0.318	0.212	0.595	0.396	0.368	0.245
5	12 13	0.548 0.571	0.365 0.380	0.335	0.223 0.228	0.534 0.543	0.355 0.361	0.318 0.320	0.212 0.213	0.615 0.638	0.409 0.424	0.376 0.384	0.250 0.255
n, <i>r</i> j	14	0.597	0.397	0.342	0.233	0.554	0.368	0.325	0.217	0.666	0.424	0.393	0.261
ratio	15	0.627	0.417	0.357	0.238	0.565	0.376	0.331	0.220	0.698	0.464	0.402	0.267
length, KL (ft), with respect to least radius of gyor Unbraced Length, L_b (ft), for X-X axis bending	16	0.660	0.439	0.365	0.243	0.578	0.385	0.336	0.224	0.734	0.488	0.411	0.274
us o	17	0.697	0.464	0.373	0.248	0.592	0.394	0.342	0.227	0.775	0.515	0.421	0.280
radi	18	0.738	0.491	0.382	0.254	0.608	0.404	0.347	0.231	0.820	0.546	0.431	0.287
ast ı	19 20	0.785 0.838	0.522 0.557	0.391 0.401	0.260 0.267	0.625 0.643	0.416 0.428	0.353	0.235 0.239	0.871 0.928	0.580 0.618	0.442 0.454	0.294 0.302
to le	22	0.963	0.641	0.421		0.685	0.456	0.372	0.248	1.06	0.709	0.479	0.319
oct 1	22 24	1.12	0.747	0.444	0.280 0.295	0.005	0.456	0.372	0.246	1.06	0.709	0.479	0.319
espo	26	1.32	0.877	0.469	0.233	0.799	0.532	0.401	0.267	1.45	0.967	0.538	0.358
± ±	28	1.53	1.02	0.498	0.331	0.875	0.582	0.417	0.278	1.68	1.12	0.573	0.381
), wi Lenç	30	1.75	1.17	0.533	0.354	0.964	0.641	0.435	0.289	1.93	1.29	0.629	0.419
pec sed	32	2.00	1.33	0.582	0.387	1.07	0.711	0.454	0.302	2.20	1.46	0.690	0.459
h, K brae	34	2.25	1.50	0.632	0.420	1.20	0.795	0.475	0.316	2.48	1.65	0.750	0.499
ngt r Un	36 38	2.53 2.81	1.68 1.87	0.681 0.730	0.453 0.486	1.34 1.49	0.892 0.994	0.498	0.331 0.353	2.79 3.10	1.85 2.06	0.811	0.540 0.580
ve le	40	3.12	2.07	0.780	0.400	1.65	1.10	0.573	0.333	3.44	2.29	0.072	0.620
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	42	3.44	2.29	0.829	0.552	1.82	1.21	0.616	0.410	3.79	2.52	0.993	0.661
₩	44					2.00	1.33	0.659	0.438				
	46					2.19	1.46	0.702	0.467				
	48 50					2.38 2.59	1.59 1.72	0.746 0.790	0.496 0.525				
	อบ				<u> </u>				0.525				
						stants		-					
$b_y \times 10^3$		2.7		1.8		1.9		1.3		3.0		2.0	
$t_y \times 10^3,$ $t_r \times 10^3,$			132 530		287 353		154 558	0.3 0.3			183 594		322 396
r _x	/r _y		6.:	27			4.	59			6.2	26	
r _y ,	in.		2.	52			3.	55			2.	54	

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W4	l0×					
Sha	ape		21	5 ^c			21	1 ^c			19	99°	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	< 10 ³
Des	ign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.578	0.385	0.370	0.246	0.578	0.385	0.393	0.262	0.629	0.419	0.410	0.273
	11	0.627	0.417	0.370	0.246	0.681	0.453	0.412	0.274	0.685	0.456	0.410	0.273
	12	0.637	0.424	0.370	0.246	0.704	0.468	0.422	0.281	0.696	0.463	0.410	0.273
72	13	0.648	0.431	0.373	0.248	0.729	0.485	0.432	0.287	0.708	0.471	0.416	0.277
n,	14	0.661	0.440	0.379	0.252	0.759	0.505	0.442	0.294	0.722	0.481	0.423	0.282
ratio	15	0.674	0.448	0.385	0.256	0.792	0.527	0.453	0.301	0.738	0.491	0.431	0.287
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	16	0.689	0.458	0.392	0.261	0.830	0.552	0.464	0.309	0.754	0.502	0.439	0.292
IS 0	17	0.705	0.469	0.399	0.265	0.873	0.581	0.476	0.317	0.773	0.514	0.447	0.297
ldir is I	18	0.723	0.481	0.406	0.270	0.924	0.615	0.489	0.325	0.793	0.528	0.455	0.303
t re	19	0.742	0.494	0.413	0.275	0.983	0.654	0.503	0.334	0.815	0.543	0.464	0.309
leas X-X	20	0.764	0.508	0.421	0.280	1.05	0.698	0.517	0.344	0.840	0.559	0.473	0.315
t to	22	0.812	0.540	0.437	0.291	1.21	0.803	0.548	0.364	0.896	0.596	0.493	0.328
æ (≆	24	0.870	0.579	0.455	0.303	1.41	0.938	0.582	0.388	0.963	0.640	0.514	0.342
resl	26	0.939	0.625	0.474	0.315	1.66	1.10	0.622	0.414	1.04	0.694	0.537	0.357
≨ €	28	1.02	0.680	0.495	0.329	1.92	1.28	0.679	0.452	1.14	0.759	0.562	0.374
, wi Lenç	30	1.12	0.746	0.517	0.344	2.20	1.47	0.753	0.501	1.26	0.838	0.590	0.393
L (ft)	32	1.24	0.827	0.542	0.361	2.51	1.67	0.827	0.550	1.41	0.935	0.621	0.413
, K	34	1.39	0.926	0.569	0.379	2.83	1.88	0.902	0.600	1.58	1.05	0.655	0.436
ag de	36	1.56	1.04	0.605	0.403	3.17	2.11	0.978	0.650	1.77	1.18	0.716	0.476
ᇹᇹ	38	1.74	1.16	0.660	0.439	3.54	2.35	1.05	0.701	1.98	1.32	0.782	0.520
tive	40	1.93	1.28	0.715	0.476	3.92	2.61	1.13	0.751	2.19	1.46	0.849	0.565
ffec	42	2.12	1.41	0.771	0.513					2.41	1.61	0.918	0.610
ш	44	2.33	1.55	0.828	0.551					2.65	1.76	0.987	0.657
	46	2.55	1.69	0.885	0.589					2.90	1.93	1.06	0.703
	48	2.77	1.85	0.942	0.627					3.15	2.10	1.13	0.750
	50	3.01	2.00	1.00	0.665					3.42	2.28	1.20	0.797
				0	ther Co	nstants	and Pro	perties					
	(kip-ft) ⁻¹	2.2	28	1.5	52	3.3	39	2.2	26	2.6	60	1.7	73
$t_y \times 10^3$,			526		350		538	l .	358		568		378
$t_r \times 10^3$,	(kips) ⁻¹	0.6	646	0.4	131	0.6	661	0.4	140	0.6	698	0.4	165
r _x	/r _y		4.	58			6.	29			4.0	64	
r_{v}	in.		3.	54			2.	51			3.4	45	
	slender fo	r 00mnro	oolon with	, F F0	Iroi								

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) **Combined Flexure** and Axial Force

Ch	ape						W4	10×					
3116	ape		18	3°			16	67 ^c			149	9 ^{c, v}	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.702	0.467	0.460	0.306	0.767	0.510	0.514	0.342	0.883	0.587	0.596	0.396
	11	0.823	0.548	0.485	0.323	0.907	0.603	0.547	0.364	1.05	0.701	0.644	0.429
5	12 13	0.850	0.565 0.585	0.497 0.509	0.330 0.339	0.937 0.973	0.624 0.647	0.562 0.577	0.374 0.384	1.09 1.14	0.727 0.756	0.663 0.682	0.441 0.454
n, 1	14	0.914	0.608	0.522	0.348	1.01	0.674	0.593	0.395	1.19	0.790	0.703	0.468
ratio	15	0.953	0.634	0.536	0.357	1.06	0.705	0.610	0.406	1.25	0.828	0.725	0.483
of gy Iding	16	0.997	0.663	0.551	0.367	1.11	0.739	0.628	0.418	1.31	0.873	0.749	0.498
us (ber	17	1.05	0.696	0.567	0.377	1.17	0.779	0.647	0.431	1.39	0.925	0.774	0.515
radi Ixis	18 19	1.10 1.17	0.734 0.777	0.583	0.388	1.24 1.32	0.825 0.878	0.668	0.444 0.459	1.48 1.58	0.984 1.05	0.801	0.533 0.552
east X-X a	20	1.17	0.777	0.619	0.399	1.41	0.076	0.009	0.459	1.70	1.13	0.861	0.552
t to l	22	1.43	0.948	0.659	0.439	1.64	1.09	0.763	0.508	2.02	1.34	0.930	0.619
E G	24	1.67	1.11	0.705	0.469	1.94	1.29	0.822	0.547	2.40	1.60	1.03	0.683
res 1, <i>L_b</i>	26	1.96	1.30	0.763	0.507	2.28	1.52	0.919	0.611	2.82	1.88	1.18	0.783
Effective length, KL (ft), with respect to least radius of gyration, r_{γ} , or Unbraced Length, L_b (ft), for X-X axis bending	28 30	2.27 2.61	1.51 1.74	0.859 0.957	0.571 0.636	2.65 3.04	1.76 2.02	1.04 1.16	0.690 0.771	3.27 3.75	2.18 2.50	1.33 1.49	0.887 0.993
/ (ff), ed L	32	2.97	1.98	1.06	0.702	3.45	2.30	1.28	0.853	4.27	2.84	1.66	1.10
λ, K	34	3.35	2.23	1.16	0.769	3.90	2.59	1.41	0.937	4.82	3.21	1.82	1.21
를	36	3.76	2.50	1.26	0.837	4.37	2.91	1.53	1.02	5.41	3.60	1.99	1.33
e le	38 40	4.19 4.64	2.79 3.09	1.36 1.46	0.905 0.973	4.87 5.40	3.24 3.59	1.66 1.79	1.11 1.19	6.02	4.01	2.16	1.44
ectiv	40	4.04	3.03	1.40	0.373	3.40	0.00	1.73	1.19				
置													
					u ^	-4- •							
	# 1 to 1		20			stants		-					
$b_y \times 10^3$, $t_v \times 10^3$,	, (kip-ft) ⁻¹	4.0)3 627	2.6	58 117	4.6	59 577	3.1 0.4		5.7	763	3.8	32 507
$t_r \times 10^{\circ}$, $t_r \times 10^{\circ}$,			770		513		332		555		937		624
r_{λ}	·/r _y		6.	31			6.	38			6.	55	
r_y	, in.		2.	49			2.	40			2.	29	
C Chana is	s slender fo	r compro	ooion with	E _ E0	loi								

 $^{^{\}circ}$ Shape is slender for compression with $F_y=50$ ksi. $^{\vee}$ Shape does not meet the h/t_w limit for shear in AISC *Specification* Section G2.1(a) with $F_y=50$ ksi; therefore, $\phi_v=0.90$ and $\Omega_V = 1.67$.

Note: Heavy line indicates KL/r_y equal to or greater than 200.

 $F_y = 50 \text{ ksi}$

Ch							W3	86×					
3116	ape		65	2 ^h			52	29 ^h			48	37 ^h	
		p×	10 ³	b _x ×	(10³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	< 10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.174	0.116	0.122	0.0815	0.214	0.142	0.153	0.102	0.234	0.155	0.167	0.111
	11	0.188	0.125	0.122	0.0815	0.232	0.154	0.153	0.102	0.253	0.169	0.167	0.111
	12	0.190	0.127	0.122	0.0815	0.235	0.157	0.153	0.102	0.257	0.171	0.167	0.111
2	13	0.193	0.129	0.122	0.0815	0.239	0.159	0.153	0.102	0.262	0.174	0.167	0.111
'n.	14	0.197	0.131	0.122	0.0815	0.244	0.162	0.153	0.102	0.266	0.177	0.167	0.111
ratic	15	0.200	0.133	0.123	0.0817	0.248	0.165	0.154	0.102	0.272	0.181	0.169	0.112
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	16	0.204	0.136	0.124	0.0823	0.253	0.169	0.155	0.103	0.277	0.185	0.170	0.113
ls o	17	0.208	0.139	0.124	0.0828	0.259	0.172	0.157	0.104	0.284	0.189	0.172	0.114
lg is	18	0.213	0.142	0.125	0.0833	0.265	0.176	0.158	0.105	0.290	0.193	0.173	0.115
t ra	19	0.218	0.145	0.126	0.0839	0.272	0.181	0.159	0.106	0.298	0.198	0.175	0.116
leas X-X	20	0.223	0.149	0.127	0.0845	0.279	0.185	0.160	0.107	0.306	0.203	0.176	0.117
t t for	22	0.236	0.157	0.129	0.0856	0.294	0.196	0.163	0.109	0.323	0.215	0.180	0.120
) sec	24	0.250	0.166	0.130	0.0868	0.313	0.208	0.166	0.110	0.344	0.229	0.183	0.122
res	26	0.266	0.177	0.132	0.0880	0.334	0.222	0.169	0.112	0.368	0.245	0.187	0.124
<u>₹</u> €	28	0.284	0.189	0.134	0.0892	0.359	0.239	0.172	0.114	0.395	0.263	0.190	0.127
, w Leng	30	0.306	0.203	0.136	0.0905	0.387	0.258	0.175	0.117	0.427	0.284	0.194	0.129
t) 7	32	0.330	0.220	0.138	0.0918	0.420	0.279	0.178	0.119	0.465	0.309	0.198	0.132
λ, κ ora	34	0.359	0.239	0.140	0.0932	0.458	0.305	0.182	0.121	0.508	0.338	0.202	0.135
를 를 드	36	0.392	0.261	0.142	0.0946	0.502	0.334	0.185	0.123	0.558	0.371	0.207	0.138
흐흐	38	0.430	0.286	0.144	0.0960	0.554	0.369	0.189	0.126	0.617	0.410	0.211	0.141
tive	40	0.475	0.316	0.147	0.0975	0.614	0.409	0.193	0.128	0.684	0.455	0.216	0.144
ffec	42	0.524	0.348	0.149	0.0990	0.677	0.450	0.197	0.131	0.754	0.501	0.221	0.147
ш	44	0.575	0.382	0.151	0.101	0.743	0.494	0.201	0.134	0.827	0.550	0.226	0.150
	46	0.628	0.418	0.154	0.102	0.812	0.540	0.205	0.137	0.904	0.601	0.232	0.154
	48	0.684	0.455	0.156	0.104	0.884	0.588	0.210	0.140	0.984	0.655	0.237	0.158
	50	0.742	0.494	0.159	0.106	0.960	0.638	0.215	0.143	1.07	0.711	0.243	0.162
				0	ther Cor	stants	and Pro	perties					
	, (kip-ft) ⁻¹		613	ı	108		785	ı	522		365	1	575
$t_y \times 10^3$,			174	ı	116		214	ı	42		234		155
$t_r \times 10^3$,	(kips) ⁻¹	0.2	214	0.1	142	0.2	263	0.1	75	0.2	287	0.1	191
r _x	/r _y		3.	95			4.	00			3.	99	
r_{v}	in.		4.	10			4.	00			3.9	96	
	hickness o	rootor the			uiromonto	mov opr	shi por AIC	C Cnooifi	action Co	otion A2 1	10		

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

Table 6-1 (continued) Combined Flexure and Axial Force

							wa	86×					
Sh	ape		44	11 ^h)5 ^h			26	61 ^h	
		n×	10 ³	-	10 ³	n×	10 ³		10 ³	n×	10 ³		10 ³
Des	sign		s) ⁻¹		-ft) ⁻¹		s) ⁻¹	(kip			s) ⁻¹		-ft) ⁻¹
	,.9	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.257	0.171	0.187	0.124	0.288	0.192	0.208	0.139	0.315	0.210	0.230	0.153
	11	0.279	0.186	0.187	0.124	0.313	0.208	0.208	0.139	0.343	0.228	0.230	0.153
	12	0.279	0.189	0.187	0.124	0.318	0.200	0.208	0.139	0.349	0.220	0.230	0.153
چ	13	0.288	0.192	0.187	0.124	0.324	0.216	0.208	0.139	0.355	0.236	0.230	0.153
'n,	14	0.294	0.196	0.187	0.124	0.330	0.220	0.209	0.139	0.362	0.241	0.231	0.154
ratic 	15	0.300	0.199	0.189	0.125	0.337	0.224	0.211	0.141	0.370	0.246	0.234	0.155
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	16	0.306	0.204	0.190	0.127	0.344	0.229	0.213	0.142	0.378	0.251	0.236	0.157
o sr	17	0.313	0.208	0.192	0.128	0.352	0.234	0.216	0.144	0.387	0.257	0.239	0.159
adiı	18	0.321	0.213	0.194	0.129	0.361	0.240	0.218	0.145	0.397	0.264	0.242	0.161
st r X a	19	0.329	0.219	0.196	0.130	0.371	0.247	0.221	0.147	0.407	0.271	0.245	0.163
	20	0.338	0.225	0.198	0.132	0.381	0.253	0.223	0.148	0.419	0.279	0.248	0.165
, to	22	0.358	0.238	0.202	0.135	0.404	0.269	0.228	0.152	0.444	0.296	0.254	0.169
) the contract of the contract	24	0.381	0.254	0.206	0.137	0.431	0.287	0.234	0.155	0.474	0.316	0.260	0.173
res 1, L	26	0.408	0.272	0.211	0.140	0.462	0.307	0.239	0.159	0.509	0.339	0.267	0.178
og th	28 30	0.440 0.476	0.293	0.215	0.143 0.147	0.498	0.331 0.359	0.245	0.163 0.167	0.550 0.597	0.366 0.397	0.274 0.282	0.183 0.188
Fel (2)													
(d. (i	32	0.518	0.345	0.225	0.150	0.589	0.392	0.258	0.172	0.652	0.434	0.290	0.193
th, /	34 36	0.567	0.377 0.415	0.231 0.236	0.153 0.157	0.646 0.713	0.430 0.474	0.265 0.272	0.176 0.181	0.716 0.791	0.477 0.526	0.299 0.308	0.199 0.205
lg j	38	0.624 0.693	0.415	0.236	0.161	0.713	0.474	0.272	0.186	0.880	0.526	0.306	0.205
ve le	40	0.767	0.511	0.242	0.165	0.732	0.584	0.288	0.100	0.976	0.649	0.317	0.211
ecti	42	0.846	0.563	0.255	0.169	0.968	0.644	0.296	0.197	1.08	0.716	0.338	0.225
置	44	0.040	0.503	0.253	0.103	1.06	0.707	0.290	0.197	1.18	0.710	0.350	0.223
	46	1.01	0.675	0.269	0.179	1.16	0.772	0.315	0.210	1.29	0.858	0.362	0.241
	48	1.10	0.735	0.276	0.184	1.26	0.841	0.325	0.216	1.40	0.935	0.376	0.250
	50	1.20	0.798	0.284	0.189	1.37	0.913	0.336	0.224	1.52	1.01	0.395	0.263
				0	ther Cor	stants	and Pro	perties					
	, (kip-ft) ⁻¹	0.9	968	0.6	644	1.1	10	0.7	'29	1.2	22	3.0	309
$t_y \times 10^3$			257	0.1			288		92		315		210
$t_r \times 10^3$,	(kips) ⁻¹	0.3	316	0.2	210	0.3	354	0.2	236	0.3	387	0.2	258
r _x	/r _y		4.	01			4.	05			4.	05	
r_y	in.		3.	92			3.	88			3.	85	
h =-													

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $F_y = 50 \text{ ksi}$

٥.							W3	6×					
Sha	ape		33	30			30)2			28	32 ^c	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.345	0.229	0.253	0.168	0.375	0.250	0.278	0.185	0.404	0.269	0.299	0.199
	11	0.376	0.250	0.253	0.168	0.410	0.272	0.278	0.185	0.440	0.293	0.299	0.199
	12	0.382	0.254	0.253	0.168	0.416	0.277	0.278	0.185	0.447	0.298	0.299	0.199
7.	13	0.389	0.259	0.253	0.168	0.424	0.282	0.278	0.185	0.456	0.303	0.299	0.199
on,	14	0.397	0.264	0.254	0.169	0.432	0.288	0.280	0.186	0.465	0.309	0.302	0.201
yrati g	15	0.405	0.270	0.257	0.171	0.441	0.294	0.284	0.189	0.475	0.316	0.306	0.203
of g	16	0.414	0.276	0.260	0.173	0.451	0.300	0.287	0.191	0.486	0.323	0.310	0.206
us (ber	17	0.424	0.282	0.264	0.175	0.462	0.308	0.291	0.194	0.497	0.331	0.314	0.209
adi xis	18	0.435	0.289	0.267	0.178	0.474	0.315	0.295	0.196	0.510	0.339	0.319	0.212
str Xa	19	0.447	0.297	0.270	0.180	0.487	0.324	0.299	0.199	0.524	0.349	0.323	0.215
k-	20	0.459	0.306	0.274	0.182	0.501	0.333	0.303	0.202	0.539	0.359	0.328	0.218
후	22	0.488	0.325	0.281	0.187	0.532	0.354	0.312	0.208	0.573	0.382	0.338	0.225
(ff.)	24	0.521	0.347	0.289	0.192	0.569	0.378	0.321	0.214	0.613	0.408	0.348	0.232
q7 esp	20 0.459 0.306 0.274 0.182 0.501 0.333 0.303 0.202 0.539 0.359 0.328 22 0.488 0.325 0.281 0.187 0.532 0.354 0.312 0.208 0.573 0.382 0.338 24 0.521 0.347 0.289 0.192 0.569 0.378 0.321 0.214 0.613 0.408 0.348 26 0.560 0.373 0.297 0.198 0.611 0.407 0.331 0.220 0.660 0.439 0.359 28 0.605 0.403 0.306 0.204 0.661 0.440 0.341 0.227 0.714 0.475 0.371 28 0.605 0.403 0.306 0.204 0.373 0.267 0.361 0.204 0.373 0.304 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.204 0.373 0.306 0.			0.239									
ਜ਼ ਜ਼	£ 24 0.521 0.347 q 26 0.560 0.373 £ 28 0.605 0.403				0.661		0.341		0.714	0.475		0.247	
, wi eng	24 0.521 0.34 24 0.521 0.34 26 0.560 0.37 28 0.605 0.40 30 0.658 0.43 9 32 0.719 0.47		0.438	0.315	0.210	0.718	0.478	0.352	0.234	0.777	0.517	0.384	0.255
ed I	32	0.719	0.478	0.325	0.216	0.786	0.523	0.364	0.242	0.850	0.566	0.397	0.264
, KI	34	0.790	0.526	0.335	0.223	0.864	0.575	0.376	0.250	0.936	0.623	0.412	0.274
gth Jub	36	0.874	0.581	0.346	0.230	0.956	0.636	0.389	0.259	1.04	0.690	0.428	0.284
len or 1	38	0.973	0.648	0.358	0.238	1.07	0.709	0.404	0.269	1.16	0.769	0.444	0.296
Effective length, KL (ft), with respect to least radius of gyration, $r_{l\nu}$ or Unbraced Length, L_b (ft), for X-X axis bending	40	1.08	0.717	0.371	0.247	1.18	0.785	0.419	0.279	1.28	0.852	0.463	0.308
ffec	42	1.19	0.791	0.384	0.256	1.30	0.866	0.436	0.290	1.41	0.939	0.482	0.321
ш	44	1.30	0.868	0.399	0.265	1.43	0.950	0.456	0.303	1.55	1.03	0.514	0.342
	46	1.43	0.949	0.417	0.277	1.56	1.04	0.484	0.322	1.69	1.13	0.547	0.364
	48	1.55	1.03	0.441	0.293	1.70	1.13	0.513	0.341	1.84	1.23	0.580	0.386
	50	1.69	1.12	0.465	0.309	1.84	1.23	0.541	0.360	2.00	1.33	0.612	0.407
				0	ther Cor	ıstants	and Pro	perties					
	(kip-ft) ⁻¹	1.3		3.0	894	1.4	18	0.9	84	1.6	60	1.0)6
$t_y \times 10^3$,			345	0.2	229	0.3	375	0.2	250	0.4	103	0.2	268
$t_r \times 10^3$,	(kips) ⁻¹	0.4	123	0.2	282	0.4	161	0.3	807	0.4	195	0.3	330
r_{x}	/r _y		4.	05			4.0	03			4.0	05	
r_y ,	in.		3.	83			3.8	82			3.8	30	
	s slender fo	r compre	ssion with	$F_{\nu} = 50$	ksi.	1							

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sh	ape							86×					
	иро			52 ^c				56				17 ^c	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ^{−1}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.440	0.293	0.324	0.215	0.444	0.295	0.343	0.228	0.475	0.316	0.346	0.230
	11	0.476	0.317	0.324	0.215	0.532	0.354	0.353	0.235	0.513	0.341	0.346	0.230
	12	0.483	0.322	0.324	0.215	0.550	0.366	0.360	0.239	0.521	0.347	0.346	0.230
Ž	13	0.491	0.327	0.324	0.215	0.571	0.380	0.367	0.244	0.530	0.352	0.346	0.230
on,	14	0.501	0.333	0.327	0.218	0.595	0.396	0.374	0.249	0.539	0.359	0.350	0.233
/rati	15	0.512	0.340	0.332	0.221	0.622	0.414	0.381	0.254	0.550	0.366	0.355	0.236
of gy din	16	0.524	0.348	0.337	0.224	0.651	0.433	0.389	0.259	0.561	0.373	0.360	0.240
ns c	17	0.537	0.357	0.342	0.227	0.684	0.455	0.397	0.264	0.574	0.382	0.366	0.243
adii cis	18	0.551	0.366	0.347	0.231	0.721	0.480	0.406	0.270	0.588	0.391	0.372	0.247
st r	19	0.566	0.377	0.352	0.234	0.762	0.507	0.414	0.276	0.605	0.402	0.378	0.251
to least radius of gyr for X-X axis bending	20	0.583	0.388	0.357	0.238	0.808	0.538	0.424	0.282	0.623	0.414	0.384	0.255
t 6,	22	0.620	0.413	0.369	0.245	0.916	0.610	0.443	0.295	0.663	0.441	0.396	0.264
pect (ft),	24	0.664	0.442	0.381	0.253	1.05	0.700	0.465	0.309	0.711	0.473	0.410	0.273
res _p	26	0.716	0.476	0.394	0.262	1.22	0.815	0.489	0.325	0.766	0.510	0.424	0.282
<u></u>	28	0.776	0.516	0.408	0.271	1.42	0.945	0.515	0.343	0.831	0.553	0.440	0.293
length, <i>KL</i> (ft), with respondent or Unbraced Length, \mathcal{L}_b	30	0.846	0.563	0.423	0.281	1.63	1.08	0.545	0.362	0.907	0.603	0.457	0.304
t) pa	32	0.928	0.617	0.439	0.292	1.86	1.23	0.582	0.387	0.996	0.663	0.475	0.316
ı, Kı	34	1.02	0.681	0.456	0.303	2.09	1.39	0.632	0.420	1.10	0.732	0.495	0.329
唐	36	1.14	0.757	0.474	0.316	2.35	1.56	0.681	0.453	1.22	0.815	0.516	0.343
e e	38	1.27	0.843	0.495	0.329	2.62	1.74	0.730	0.486	1.36	0.908	0.539	0.359
tive	40	1.40	0.934	0.517	0.344	2.90	1.93	0.779	0.519	1.51	1.01	0.570	0.379
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	42	1.55	1.03	0.551	0.367	3.20	2.13	0.828	0.551	1.67	1.11	0.613	0.408
ш .	44	1.70	1.13	0.589	0.392	3.51	2.33	0.877	0.584	1.83	1.22	0.657	0.437
	46	1.86	1.24	0.628	0.418					2.00	1.33	0.700	0.466
	48	2.02	1.35	0.666	0.443					2.18	1.45	0.744	0.495
	50	2.19	1.46	0.705	0.469					2.36	1.57	0.788	0.524
				0	ther Cor	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹	1.7		1.1		2.6		1.7		1.8		1.2	
$t_y \times 10^3$			133		288		144	0.2		0.4			307
$t_r \times 10^3$,	(kips) ⁻¹	0.5	531	0.3	354	0.5	545	0.3	863	0.5	566	0.3	377
r _x	/r _y		4.	07			5.	62			4.	06	
r_y	, in.		3.	76			2.	65			3.	74	
	a alandar fa	r compre	ooion with	h E _ E0	Iroi								

^c Shape is slender for compression with $F_y = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

Sh	ape							86×					
				32°				31°				Oc	
			10 ³		10 ³	p×	10 ³		10 ³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.498	0.331	0.381	0.253	0.511	0.340	0.370	0.246	0.555	0.369	0.428	0.285
	11	0.591	0.393	0.394	0.262	0.553	0.368	0.370	0.246	0.653	0.435	0.445	0.296
	12	0.613	0.408	0.402	0.267	0.561	0.373	0.370	0.246	0.678	0.451	0.454	0.302
7	13	0.637	0.424	0.410	0.273	0.570	0.379	0.370	0.246	0.705	0.469	0.465	0.309
ioi	14	0.663	0.441	0.419	0.278	0.581	0.386	0.375	0.249	0.736	0.489	0.475	0.316
yrat g	15	0.694	0.461	0.427	0.284	0.592	0.394	0.381	0.253	0.770	0.512	0.486	0.323
of g	16	0.727	0.484	0.437	0.291	0.604	0.402	0.387	0.257	0.809	0.538	0.498	0.331
us (17	0.765	0.509	0.447	0.297	0.618	0.411	0.393	0.261	0.852	0.567	0.510	0.339
adi	18	0.807	0.537	0.457	0.304	0.633	0.421	0.399	0.266	0.901	0.599	0.523	0.348
str	19	0.855	0.569	0.468	0.311	0.649	0.432	0.406	0.270	0.955	0.635	0.536	0.357
to least radius of gyr for X-X axis bending	20	0.907	0.604	0.479	0.319	0.667	0.444	0.412	0.274	1.02	0.676	0.550	0.366
, e	22	1.03	0.687	0.503	0.335	0.709	0.472	0.426	0.284	1.16	0.772	0.580	0.386
be (≢	24	1.19	0.791	0.530	0.352	0.761	0.506	0.442	0.294	1.34	0.893	0.614	0.409
res , L _b	26	1.39	0.923	0.559	0.372	0.821	0.546	0.458	0.305	1.57	1.05	0.653	0.434
를 둘	28	1.61	1.07	0.592	0.394	0.892	0.594	0.476	0.316	1.82	1.21	0.696	0.463
length, KL (ft), with respect or Unbraced Length, L_{b} (ft),	30	1.85	1.23	0.631	0.420	0.975	0.649	0.494	0.329	2.09	1.39	0.765	0.509
₽ Sed	32	2.10	1.40	0.691	0.460	1.07	0.713	0.515	0.343	2.38	1.58	0.841	0.559
n, K	34	2.37	1.58	0.751	0.500	1.19	0.789	0.537	0.357	2.69	1.79	0.917	0.610
ag de la	36	2.66	1.77	0.812	0.540	1.32	0.880	0.562	0.374	3.01	2.00	0.993	0.661
e e	38	2.96	1.97	0.872	0.580	1.47	0.981	0.588	0.391	3.36	2.23	1.07	0.712
Effective length, $\it AL$ (ft), with respect to least radius of gyration, $\it r_{\rm p}$ or Unbraced Length, $\it L_{\rm b}$ (ft), for X-X axis bending	40	3.28	2.18	0.932	0.620	1.63	1.09	0.631	0.420	3.72	2.48	1.15	0.763
et lec	42	3.62	2.41	0.992	0.660	1.80	1.20	0.680	0.452	4.10	2.73	1.220	0.814
ш	44					1.98	1.31	0.729	0.485				
	46					2.16	1.44	0.778	0.518				
	48					2.35	1.56	0.828	0.551				
	50					2.55	1.70	0.878	0.584				
				0	ther Cor	stants	and Pro	perties					
	, (kip-ft) ⁻¹	2.9		1.9		2.0		1.3		3.3		2.2	
$t_y \times 10^3$			191		327		190	l .	326		540	l	359
$t_r \times 10^3$,	(kips) ⁻¹	0.6	503	0.4	102	0.6	602	0.4	101	0.6	663	0.4	142
r_{λ}	/r _y		5.	65			4.	07			5.0	66	
r_y	in.		2.	62			3.	71			2.	58	
C Chana i	a alandar fa				lua!	-							

^c Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

							W3	6×					
Sha	ape		19)4 ^c				32°			17	′0°	
		p×	10 ³	b _x ×	10 ³	p×			10 ³	p×	10 ³		10³
Des	sign	(kip	s) ⁻¹		-ft) ⁻¹	(kip		(kip-			s) ⁻¹		-ft) ⁻¹
		ASD	LRFD										
	0	0.618	0.411	0.464	0.309	0.669	0.445	0.496	0.330	0.732	0.487	0.533	0.355
ration, r _y ,	11 12 13 14 15	0.725 0.749 0.775 0.806 0.841	0.483 0.498 0.516 0.536 0.560	0.485 0.496 0.507 0.519 0.532	0.322 0.330 0.337 0.345 0.354	0.783 0.808 0.837 0.869 0.905	0.521 0.538 0.557 0.578 0.602	0.519 0.531 0.544 0.557 0.571	0.345 0.353 0.362 0.371 0.380	0.856 0.883 0.913 0.948 0.988	0.569 0.587 0.608 0.631 0.657	0.559 0.573 0.587 0.602 0.617	0.372 0.381 0.390 0.400 0.411
Effective length, $K\!L$ (ft), with respect to least radius of gyration, r_{y_0} or Unbraced Length, L_b (ft), for X-X axis bending	16 17 18 19 20	0.884 0.932 0.986 1.05 1.11	0.588 0.620 0.656 0.696 0.741	0.545 0.559 0.574 0.589 0.606	0.363 0.372 0.382 0.392 0.403	0.947 0.995 1.05 1.12 1.19	0.630 0.662 0.701 0.744 0.792	0.586 0.601 0.618 0.635 0.653	0.390 0.400 0.411 0.422 0.435	1.03 1.08 1.14 1.21 1.29	0.687 0.721 0.760 0.805 0.858	0.634 0.651 0.670 0.689 0.710	0.422 0.433 0.445 0.458 0.472
length, KL (ft), with respect to or Unbraced Length, L_b (ft), for	22 24 26 28 30	1.28 1.48 1.73 2.01 2.31	0.848 0.984 1.15 1.34 1.54	0.641 0.681 0.726 0.786 0.873	0.427 0.453 0.483 0.523 0.581	1.36 1.58 1.86 2.16 2.47	0.908 1.05 1.24 1.43 1.65	0.693 0.738 0.789 0.868 0.966	0.461 0.491 0.525 0.577 0.642	1.48 1.72 2.02 2.35 2.69	0.985 1.15 1.35 1.56 1.79	0.755 0.806 0.864 0.966 1.08	0.502 0.536 0.575 0.643 0.717
ive length, KL (ft) or Unbraced L	32 34 36 38 40	2.63 2.96 3.32 3.70 4.10	1.75 1.97 2.21 2.46 2.73	0.961 1.05 1.14 1.23 1.32	0.639 0.699 0.758 0.818 0.878	2.81 3.18 3.56 3.97 4.40	1.87 2.11 2.37 2.64 2.93	1.07 1.17 1.27 1.37 1.47	0.709 0.775 0.843 0.911 0.979	3.07 3.46 3.88 4.32 4.79	2.04 2.30 2.58 2.88 3.19	1.19 1.31 1.42 1.54 1.66	0.792 0.869 0.946 1.02 1.10
Hect	42	4.52	3.01	1.41	0.938	4.85	3.23	1.57	1.05	5.28	3.51	1.77	1.18
						nstants		-					
$b_y \times 10^3,$ $t_y \times 10^3,$ $t_r \times 10^3,$			55 586 720	ı	13 390 180		93 623 765	2.6 0.4 0.5	115		25 668 321		33 144 547
r _x	/r _y		5.	70			5.	69			5.7	73	
r _y ,	in.		2.	56			2.	55			2.	53	

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

 $F_{v} = 50 \text{ ksi}$

Ch							W3	6×					
Sha	ipe		16	60°			15	Ю ^с			13	5 ^{c, v}	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	ign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.791	0.526	0.571	0.380	0.851	0.566	0.613	0.408	0.967	0.643	0.700	0.466
	11 12	0.925 0.955	0.616 0.635	0.601 0.616	0.400 0.410	0.997 1.03	0.663 0.684	0.648 0.665	0.431 0.442	1.14 1.18	0.758 0.783	0.748 0.769	0.498 0.512
,2,	13	0.933	0.657	0.632	0.410	1.03	0.709	0.682	0.442	1.10	0.763	0.769	0.512
u, u	14	1.03	0.683	0.648	0.431	1.11	0.736	0.701	0.466	1.27	0.845	0.814	0.541
rratio J	15	1.07	0.711	0.666	0.443	1.15	0.767	0.721	0.479	1.33	0.883	0.838	0.558
adius of gy kis bending	16 17 18	1.12 1.17 1.24	0.744 0.781 0.824	0.684 0.703 0.724	0.455 0.468 0.482	1.21 1.27 1.34	0.803 0.844 0.890	0.741 0.763 0.786	0.493 0.508 0.523	1.39 1.47 1.55	0.927 0.977 1.03	0.864 0.892 0.921	0.575 0.593 0.613
least r	19 20	1.31 1.39	0.872 0.928	0.746 0.769	0.496 0.511	1.42 1.51	0.943 1.00	0.811 0.837	0.540 0.557	1.65 1.77	1.10 1.18	0.952 0.986	0.634 0.656
Effective length, KL (ft), with respect to least radius of gyration, r_{y_i} or Unbraced Length, L_b (ft), for X-X axis bending	22 24 26 28 30	1.61 1.88 2.20 2.56 2.94	1.07 1.25 1.47 1.70 1.95	0.820 0.878 0.950 1.07 1.20	0.545 0.584 0.632 0.714 0.797	1.74 2.04 2.40 2.78 3.19	1.16 1.36 1.59 1.85 2.12	0.895 0.962 1.06 1.20 1.34	0.596 0.640 0.706 0.799 0.894	2.06 2.44 2.87 3.32 3.82	1.37 1.62 1.91 2.21 2.54	1.06 1.15 1.31 1.49 1.67	0.706 0.763 0.871 0.989 1.11
e length, KL (ft) or Unbraced I	32 34 36 38	3.34 3.77 4.23 4.71	2.22 2.51 2.81 3.13	1.33 1.46 1.59 1.72	0.883 0.969 1.06 1.15	3.63 4.10 4.59 5.12	2.42 2.73 3.06 3.41	1.49 1.64 1.79 1.94	0.991 1.09 1.19 1.29	4.34 4.90 5.49 6.12	2.89 3.26 3.66 4.07	1.85 2.05 2.24 2.44	1.23 1.36 1.49 1.62
Effective	40	5.22	3.47	1.86	1.23	5.67	3.77	2.10	1.40				
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,	(kips) ⁻¹		61 711 873)7 173 582)2 754 926	3.3 0.5 0.6	502		97 337 030		97 557 685
r_{χ}	/r _y		5.	 76			5.	79			5.8	38	
r _y ,	in.		2.				2.	47			2.3	38	

 $^{^{\}circ}$ Shape is slender for compression with $F_y=50$ ksi. $^{\vee}$ Shape does not meet the h/t_w limit for shear in AISC *Specification* Section G2.1(a) with $F_y=50$ ksi; therefore, $\phi_v=0.90$ and

Note: Heavy line indicates KL/r_y equal to or greater than 200.

Table 6-1 (continued) Combined Flexure and Axial Force

							Wa	33×					
Sh	ape		38	37 ^h			35	4 ^h			3	18	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	sign	(kip	os) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.293	0.195	0.228	0.152	0.321	0.214	0.251	0.167	0.356	0.237	0.281	0.187
	11	0.320	0.213	0.228	0.152	0.352	0.234	0.251	0.167	0.391	0.260	0.281	0.187
	12	0.326	0.217	0.228	0.152	0.358	0.238	0.251	0.167	0.398	0.265	0.281	0.187
7,	13	0.332	0.221	0.228	0.152	0.365	0.243	0.251	0.167	0.406	0.270	0.281	0.187
<u>io</u>	14	0.339	0.225	0.230	0.153	0.372	0.248	0.253	0.168	0.414	0.276	0.283	0.189
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	15	0.346	0.230	0.232	0.155	0.380	0.253	0.256	0.170	0.423	0.282	0.287	0.191
of g	16	0.354	0.236	0.235	0.156	0.389	0.259	0.259	0.172	0.434	0.288	0.290	0.193
us c ben	17	0.363	0.241	0.237	0.158	0.399	0.266	0.261	0.174	0.445	0.296	0.294	0.195
adiı	18	0.372	0.248	0.239	0.159	0.410	0.273	0.264	0.176	0.457	0.304	0.297	0.198
st r X a	19	0.383	0.255	0.242	0.161	0.421	0.280	0.267	0.178	0.470	0.313	0.301	0.200
- <u>ea</u>	20	0.394	0.262	0.244	0.163	0.434	0.289	0.270	0.180	0.484	0.322	0.305	0.203
t to,	22	0.419	0.279	0.250	0.166	0.462	0.308	0.277	0.184	0.516	0.343	0.313	0.208
e (£)	24	0.449	0.299	0.255	0.170	0.495	0.330	0.283	0.189	0.554	0.368	0.321	0.214
res, L_b	26	0.483	0.322	0.261	0.174	0.534	0.355	0.290	0.193	0.598	0.398	0.330	0.220
∄ ∰	28	0.524	0.348	0.267	0.178	0.579	0.386	0.298	0.198	0.649	0.432	0.339	0.226
length, KL (ft), with respect to least radius of gys or Unbraced Length, L_b (ft), for X-X axis bending	30	0.571	0.380	0.273	0.182	0.632	0.421	0.305	0.203	0.710	0.472	0.349	0.232
F) 7	32	0.626	0.416	0.280	0.186	0.694	0.462	0.313	0.208	0.780	0.519	0.359	0.239
rac	34	0.690	0.459	0.287	0.191	0.767	0.510	0.322	0.214	0.863	0.574	0.370	0.246
를	36	0.766	0.510	0.294	0.196	0.854	0.568	0.331	0.220	0.963	0.641	0.382	0.254
声	38	0.854	0.568	0.302	0.201	0.951	0.633	0.340	0.227	1.07	0.714	0.395	0.263
tive	40	0.946	0.629	0.310	0.206	1.05	0.701	0.351	0.233	1.19	0.791	0.408	0.271
£ξ	42	1.04	0.694	0.318	0.212	1.16	0.773	0.361	0.240	1.31	0.872	0.422	0.281
ш	44	1.14	0.762	0.327	0.218	1.28	0.848	0.373	0.248	1.44	0.957	0.438	0.291
	46	1.25	0.832	0.337	0.224	1.39	0.927	0.385	0.256	1.57	1.05	0.454	0.302
	48	1.36	0.906	0.347	0.231	1.52	1.01	0.398	0.265	1.71	1.14	0.477	0.318
	50	1.48	0.984	0.358	0.238	1.65	1.10	0.412	0.274	1.86	1.24	0.502	0.334
				0	ther Cor	stants	and Pro	perties					
	, (kip-ft) ⁻¹	1.1		0.7	' 60	1.2		3.0	841	1.4		0.9	948
$t_y \times 10^3$			293	I	95		321	0.2			356		237
$t_r \times 10^3$	(kips) ⁻¹	0.3	360	0.2	240	0.3	394	0.2	263	0.4	438	0.2	292
	r_x/r_y		3.	87			3.	88			3.	91	
r_y	, in.		3.	77			3.	74			3.	71	
r _y ,													_

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $F_y = 50 \text{ ksi}$

Chi	ono						Wa	3×					
3116	ape		29	91			2	63			24	11°	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.390	0.260	0.307	0.204	0.432	0.287	0.343	0.228	0.471	0.313	0.379	0.252
	11	0.429	0.285	0.307	0.204	0.475	0.316	0.343	0.228	0.518	0.344	0.379	0.252
	12	0.436	0.290	0.307	0.204	0.483	0.322	0.343	0.228	0.527	0.351	0.379	0.252
7.	13	0.445	0.296	0.307	0.204	0.493	0.328	0.343	0.228	0.538	0.358	0.380	0.253
jon,	14	0.454	0.302	0.311	0.207	0.503	0.335	0.348	0.231	0.550	0.366	0.386	0.257
yrati g	15	0.465	0.309	0.315	0.210	0.515	0.343	0.352	0.234	0.563	0.374	0.391	0.260
to least radius of gyr for X-X axis bending	16	0.476	0.317	0.319	0.212	0.528	0.351	0.357	0.238	0.577	0.384	0.397	0.264
us (17	0.488	0.325	0.323	0.215	0.542	0.360	0.362	0.241	0.593	0.394	0.403	0.268
adi	18	0.502	0.334	0.328	0.218	0.557	0.370	0.367	0.244	0.609	0.405	0.409	0.272
st r X a	19	0.517	0.344	0.332	0.221	0.573	0.381	0.373	0.248	0.628	0.418	0.416	0.276
<u>ea</u>	20	0.533	0.354	0.337	0.224	0.591	0.393	0.378	0.252	0.648	0.431	0.422	0.281
후후	22	0.568	0.378	0.346	0.230	0.631	0.420	0.390	0.259	0.693	0.461	0.436	0.290
(£)	24	0.611	0.406	0.356	0.237	0.679	0.452	0.402	0.267	0.746	0.496	0.450	0.300
r _p	26	0.660	0.439	0.367	0.244	0.734	0.488	0.415	0.276	0.809	0.538	0.466	0.310
E €	28	0.718	0.478	0.378	0.251	0.799	0.532	0.428	0.285	0.882	0.587	0.483	0.321
Effective length, KL (ft), with respect to least radius of gyration, r_{y_s} or Unbraced Length, L_b (ft), for X-X axis bending	30	0.786	0.523	0.390	0.259	0.875	0.582	0.443	0.295	0.968	0.644	0.501	0.333
t) pe	32	0.865	0.576	0.403	0.268	0.965	0.642	0.459	0.305	1.07	0.712	0.520	0.346
ı, K	34	0.959	0.638	0.416	0.277	1.07	0.712	0.476	0.317	1.19	0.791	0.541	0.360
lg de	36	1.07	0.713	0.431	0.287	1.20	0.797	0.494	0.329	1.33	0.887	0.564	0.375
ᇹᇹ	38	1.19	0.794	0.447	0.297	1.33	0.888	0.514	0.342	1.48	0.988	0.589	0.392
tive	40	1.32	0.880	0.463	0.308	1.48	0.984	0.535	0.356	1.65	1.09	0.619	0.412
ffec	42	1.46	0.970	0.482	0.320	1.63	1.08	0.562	0.374	1.81	1.21	0.663	0.441
ш —	44	1.60	1.06	0.503	0.335	1.79	1.19	0.598	0.398	1.99	1.32	0.708	0.471
	46	1.75	1.16	0.533	0.354	1.96	1.30	0.635	0.422	2.18	1.45	0.753	0.501
	48	1.90	1.27	0.563	0.374	2.13	1.42	0.672	0.447	2.37	1.58	0.797	0.530
	50	2.07	1.37	0.592	0.394	2.31	1.54	0.708	0.471	2.57	1.71	0.842	0.560
				01	ther Cor	nstants	and Pro	perties					
	, (kip-ft) ⁻¹	1.5		1.0)5	1.5		1.1	7	1.9	96	1.3	30
$t_y \times 10^3$,		0.3	390	0.2	260		132	0.2	287	0.4	170	0.3	313
$t_r \times 10^3$,	(kips) ⁻¹	0.4	179	0.3	320	0.5	530	0.3	353	0.5	577	0.3	885
r _x	·/r _y		3.	91			3.	91			3.9	90	
r_y ,	, in.		3.	68			3.	66			3.0	62	
^c Shape is	s slender fo	r compre	ssion with	$F_y = 50$	ksi.								

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sh	ape							83×					
	иро		22)1 ^c				9 ^c	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	(10³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	os) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.522	0.347	0.416	0.277	0.588	0.391	0.461	0.307	0.720	0.479	0.566	0.377
	11	0.568	0.378	0.416	0.277	0.640	0.426	0.461	0.307	0.851	0.566	0.595	0.396
	12	0.578	0.384	0.416	0.277	0.651	0.433	0.461	0.307	0.880	0.586	0.608	0.405
, y	13	0.588	0.391	0.418	0.278	0.663	0.441	0.464	0.309	0.913	0.607	0.623	0.415
io n'	14	0.600	0.399	0.424	0.282	0.676	0.450	0.471	0.314	0.950	0.632	0.638	0.425
/rat	15	0.615	0.409	0.431	0.286	0.690	0.459	0.479	0.319	0.992	0.660	0.654	0.435
to least radius of gy for X-X axis bending	16	0.630	0.419	0.437	0.291	0.706	0.470	0.487	0.324	1.04	0.692	0.671	0.447
o sr pen	17	0.648	0.431	0.444	0.296	0.724	0.482	0.495	0.329	1.10	0.731	0.689	0.458
adiu xis	18	0.666	0.443	0.451	0.300	0.743	0.494	0.504	0.335	1.16	0.775	0.708	0.471
st r	19	0.687	0.457	0.459	0.305	0.764	0.508	0.512	0.341	1.24	0.825	0.728	0.484
<u>-</u>	20	0.709	0.472	0.467	0.310	0.788	0.524	0.522	0.347	1.32	0.881	0.749	0.498
t t	22	0.760	0.505	0.483	0.321	0.845	0.562	0.541	0.360	1.52	1.01	0.794	0.528
(#)	24	0.819	0.545	0.500	0.333	0.912	0.607	0.561	0.374	1.78	1.19	0.846	0.563
res , L _b	26	0.889	0.591	0.519	0.345	0.991	0.659	0.584	0.388	2.09	1.39	0.905	0.602
# fg	28	0.970	0.646	0.539	0.358	1.08	0.721	0.608	0.404	2.43	1.62	0.999	0.664
Len ,	30	1.07	0.710	0.560	0.373	1.19	0.794	0.634	0.422	2.79	1.85	1.11	0.737
length, KL (ft), with respect or Unbraced Length, L_{b} (ft),	32	1.18	0.786	0.584	0.388	1.32	0.880	0.663	0.441	3.17	2.11	1.21	0.810
, Ka	34	1.32	0.876	0.609	0.405	1.48	0.984	0.694	0.462	3.58	2.38	1.33	0.883
Fig	36	1.48	0.982	0.637	0.424	1.66	1.10	0.728	0.484	4.01	2.67	1.44	0.957
ᅙ	38	1.64	1.09	0.667	0.444	1.85	1.23	0.782	0.520	4.47	2.98	1.55	1.03
tive	40	1.82	1.21	0.719	0.478	2.05	1.36	0.846	0.563	4.95	3.30	1.66	1.10
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	42	2.01	1.34	0.772	0.514	2.26	1.50	0.910	0.606				
ш	44	2.20	1.47	0.825	0.549	2.48	1.65	0.975	0.649				
	46	2.41	1.60	0.879	0.585	2.71	1.80	1.04	0.692				
	48	2.62	1.75	0.932	0.620	2.95	1.96	1.11	0.736				
	50	2.85	1.89	0.986	0.656	3.20	2.13	1.17	0.780				
				0	ther Co	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹	2.		1.4	15	2.4	42	1.6	61	4.2	22	2.8	31
$t_y \times 10^3$,	(kips) ⁻¹		511		340		565	l	376		675	l	149
$t_r \times 10^3$	(kips) ⁻¹	0.6	528	0.4	119	0.6	694	0.4	163	0.8	329	0.5	553
r_{λ}	·/r _y		3.	93			3.	93			5.	48	
ry	, in.		3.	59			3.	56			2.	50	
C Chana i	a alandar fa				l.a!								

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

							W3	3×					
Sha	ape		15	i2 ^c			14	11°			13	80°	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹		s) ⁻¹		-ft) ⁻¹		s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.809	0.538	0.637	0.424	0.891	0.593	0.693	0.461	0.982	0.654	0.763	0.508
Effective length, $K\!L$ (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36	0.956 0.988 1.03 1.07 1.11 1.17 1.23 1.30 1.39 1.48 1.71 2.01 2.36 2.74 3.15 3.58 4.04	0.636 0.658 0.682 0.710 0.742 0.778 0.819 0.866 0.923 0.987 1.14 1.34 1.57 1.82 2.09 2.38 2.69 3.02	0.673 0.689 0.707 0.725 0.745 0.765 0.787 0.810 0.834 0.860 0.917 0.982 1.07 1.20 1.33 1.47 1.61	0.447 0.459 0.470 0.483 0.496 0.509 0.524 0.539 0.555 0.572 0.610 0.653 0.709 0.798 0.888 0.979 1.07	1.05 1.09 1.13 1.18 1.23 1.29 1.36 1.44 1.53 1.64 1.91 2.25 2.64 3.07 3.52 4.00 4.52 5.07	0.702 0.726 0.753 0.784 0.820 0.860 0.907 0.960 1.02 1.09 1.27 1.50 1.76 2.04 2.34 2.66 3.01 3.37	0.735 0.754 0.774 0.796 0.818 0.841 0.866 0.893 0.921 0.951 1.02 1.09 1.21 1.37 1.53 1.69 1.85 2.02	0.489 0.502 0.515 0.529 0.544 0.560 0.576 0.594 0.613 0.633 0.677 0.728 0.808 0.911 1.02 1.12 1.23 1.34	1.16 1.20 1.25 1.30 1.36 1.43 1.51 1.60 1.70 1.82 2.13 2.52 2.96 3.43 3.94 4.48 5.06 5.68	0.775 0.801 0.832 0.867 0.907 0.952 1.00 1.06 1.13 1.21 1.42 1.68 1.97 2.28 2.62 2.98 3.37 3.78	0.814 0.837 0.860 0.885 0.911 0.939 0.968 0.999 1.03 1.07 1.15 1.24 1.41 1.60 1.78 1.98 2.17 2.37	0.542 0.557 0.572 0.589 0.606 0.624 0.644 0.665 0.687 0.711 0.764 0.826 0.939 1.06 1.19 1.32 1.45 1.58
Effective le or	38 40	5.05 5.60	3.36 3.72	1.89 2.03	1.26 1.35	5.65 6.26	3.76 4.16	2.18 2.35	1.45 1.56	6.32	4.21	2.57	1.71
				0	ther Cor	nstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			32 744 914		21 195 609		33 305 989	l	54 535 559	5.9 0.8 1.0	372	l	98 580 714
r _x	/r _y		5.	47			5.	51			5.	52	
	in.		2.	47			2.	43			2.3	39	
c Shape is	s slender fo	r compre	ssion with	$F_{\nu} = 50$	ksi								

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	no		W3	3×					W3	80×			
Sile	ihe		118	3 ^{c, v}			39)1 ^h			35	7 ^h	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.11	0.738	0.858	0.571	0.290	0.193	0.246	0.163	0.318	0.212	0.270	0.180
Effective length, KL (ft), with respect to least radius of gyration, r_{γ} , or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40	1.32 1.37 1.42 1.48 1.56 1.64 1.73 1.84 1.96 2.11 2.48 2.95 3.47 4.02 4.62 5.25 5.93 6.65 7.41	0.879 0.910 0.946 0.988 1.03 1.09 1.15 1.22 1.31 1.40 1.65 1.97 2.31 2.68 3.07 3.49 3.95 4.42 4.93	0.926 0.952 0.980 1.01 1.04 1.08 1.11 1.15 1.19 1.24 1.34 1.48 1.70 1.92 2.16 2.40 2.64 2.89 3.14	0.616 0.634 0.652 0.672 0.693 0.716 0.740 0.765 0.793 0.822 0.888 0.984 1.13 1.28 1.44 1.59 1.76 1.92 2.09	0.319 0.325 0.331 0.339 0.346 0.355 0.364 0.374 0.424 0.456 0.493 0.536 0.587 0.647 0.717 0.802 0.893 0.990	0.212 0.216 0.221 0.225 0.230 0.236 0.242 0.256 0.264 0.264 0.282 0.303 0.328 0.357 0.391 0.477 0.533 0.594 0.658	0.246 0.246 0.248 0.250 0.252 0.255 0.257 0.259 0.262 0.267 0.277 0.282 0.288 0.294 0.300 0.307 0.314 0.321	0.163 0.164 0.165 0.166 0.168 0.171 0.172 0.174 0.177 0.181 0.188 0.192 0.200 0.204 0.209 0.213	0.350 0.357 0.364 0.372 0.380 0.400 0.412 0.424 0.437 0.503 0.544 0.593 0.650 0.718 0.797 0.892 0.994 1.10	0.233 0.237 0.242 0.247 0.253 0.266 0.274 0.282 0.291 0.311 0.334 0.362 0.395 0.433 0.478 0.530 0.594 0.662 0.733	0.270 0.270 0.270 0.273 0.276 0.281 0.284 0.287 0.290 0.302 0.308 0.315 0.322 0.330 0.338 0.346 0.355 0.364	0.180 0.180 0.180 0.182 0.183 0.185 0.187 0.189 0.191 0.201 0.205 0.210 0.215 0.220 0.225 0.230 0.236 0.242
H H	44 46 48 50					1.20 1.31 1.43 1.55	0.726 0.797 0.871 0.948 1.03	0.328 0.336 0.344 0.353 0.362	0.218 0.224 0.229 0.235 0.241	1.21 1.33 1.46 1.59 1.72	0.808 0.887 0.969 1.06 1.15	0.373 0.383 0.394 0.405 0.417	0.248 0.255 0.262 0.270 0.278
			<u> </u>	0	ther Cor	ıstants			<u> </u>		I		
$t_y \times 10^3,$ $t_r \times 10^3,$		6.9 0.9 1.	963	0.7	62 640 788		290 357	0.1	765 93 238		28 318 391	0.2 0.2	350 212 260
	in.		3.				3.				3.0		

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $^{^{\}text{v}}$ Shape does not meet the h/t_{tv} limit for shear in AISC Specification Section G2.1(a) with $F_y = 50$ ksi; therefore, $\phi_v = 0.90$ and $\Omega_v = 1.67$. Note: Heavy line indicates KL/r_y equal to or greater than 200.

 $F_y = 50 \text{ ksi}$

Ch							W3	80×					
Sha	ape		32	.6 ^h			2	92			20	61	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	103
Des	sign		s) ⁻¹		-ft) ⁻¹	(kip	s) ⁻¹		-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.348	0.232	0.299	0.199	0.388	0.258	0.336	0.224	0.434	0.289	0.378	0.251
	11	0.384	0.256	0.299	0.199	0.429	0.285	0.336	0.224	0.480	0.320	0.378	0.251
	12	0.392	0.260	0.299	0.199	0.437	0.291	0.336	0.224	0.490	0.326	0.378	0.251
7.	13	0.400	0.266	0.300	0.200	0.446	0.297	0.337	0.225	0.500	0.333	0.380	0.253
'n.	14	0.408	0.272	0.303	0.202	0.456	0.304	0.341	0.227	0.512	0.341	0.385	0.256
ratio	15	0.418	0.278	0.307	0.204	0.467	0.311	0.345	0.230	0.525	0.349	0.390	0.260
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_{\rm lo}$ or Unbraced Length, $\it L_{\rm b}$ (ft), for X-X axis bending	16	0.429	0.285	0.310	0.206	0.479	0.319	0.349	0.232	0.539	0.358	0.395	0.263
ns o	17	0.440	0.293	0.313	0.208	0.492	0.328	0.353	0.235	0.554	0.368	0.400	0.266
adit is I	18	0.453	0.301	0.317	0.211	0.507	0.337	0.358	0.238	0.570	0.379	0.406	0.270
a st	19	0.467	0.311	0.320	0.213	0.522	0.348	0.362	0.241	0.588	0.392	0.411	0.274
leas X-)	20	0.482	0.321	0.324	0.215	0.539	0.359	0.366	0.244	0.608	0.405	0.417	0.277
t 1 호 1	22	0.516	0.343	0.331	0.220	0.578	0.385	0.376	0.250	0.653	0.434	0.429	0.285
E (H)	24	0.556	0.370	0.339	0.225	0.623	0.415	0.385	0.256	0.706	0.470	0.441	0.294
res	26	0.603	0.401	0.347	0.231	0.677	0.450	0.396	0.263	0.768	0.511	0.454	0.302
重頻	28	0.658	0.438	0.355	0.236	0.740	0.492	0.406	0.270	0.841	0.560	0.468	0.312
), w Len	30	0.724	0.481	0.364	0.242	0.813	0.541	0.418	0.278	0.928	0.617	0.483	0.322
Z (ft	32	0.800	0.532	0.373	0.248	0.901	0.599	0.430	0.286	1.03	0.686	0.499	0.332
ı, K	34	0.891	0.593	0.383	0.255	1.00	0.669	0.443	0.295	1.15	0.768	0.516	0.343
la de	36	0.999	0.665	0.393	0.262	1.13	0.749	0.456	0.304	1.29	0.861	0.534	0.356
ᅙᇹ	38	1.11	0.741	0.404	0.269	1.26	0.835	0.471	0.313	1.44	0.959	0.554	0.368
tive	40	1.23	0.821	0.416	0.277	1.39	0.925	0.486	0.323	1.60	1.06	0.575	0.382
ffec	42	1.36	0.905	0.428	0.285	1.53	1.02	0.502	0.334	1.76	1.17	0.597	0.398
ш	44	1.49	0.993	0.441	0.293	1.68	1.12	0.520	0.346	1.93	1.29	0.626	0.416
	46	1.63	1.09	0.454	0.302	1.84	1.22	0.539	0.358	2.11	1.41	0.662	0.440
	48	1.78	1.18	0.469	0.312	2.00	1.33	0.564	0.375	2.30	1.53	0.698	0.464
	50	1.93	1.28	0.485	0.322	2.17	1.45	0.592	0.394	2.50	1.66	0.734	0.488
				0	ther Cor	nstants	and Pro	perties					
	(kip-ft) ⁻¹	1.4	1 1	0.9	941	1.6	60	1.0)6	1.8	32	1.2	21
$t_y \times 10^3$,			348		232		388	l	258		134		289
$t_r \times 10^3$,	(kips) ⁻¹	0.4	128	0.2	285	0.4	477	0.3	818	0.5	533	0.3	355
r_{χ}	/r _y		3.	67			3.	69			3.	71	
r_{v}	in.		3.	60			3.	58			3.	53	
	hickness a	rootor the	n 2 in Cr	ooiol roa	uiromonto	mov opr	shi par Al	C Cnooifi	ootion Co	otion A2 1	I o		

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	ape						W3	80×					
	иро		23				2)1 ^c	
		p×	10 ³	b _X ×	10 ³	p×	10 ³	b _X ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.482	0.321	0.421	0.280	0.536	0.357	0.474	0.316	0.604	0.402	0.528	0.351
	11	0.534	0.356	0.421	0.280	0.595	0.396	0.474	0.316	0.663	0.441	0.528	0.351
	12	0.545	0.363	0.421	0.280	0.607	0.404	0.474	0.316	0.676	0.450	0.528	0.351
ž	13	0.557	0.370	0.424	0.282	0.620	0.413	0.479	0.319	0.691	0.460	0.534	0.355
'n,	14	0.570	0.379	0.430	0.286	0.635	0.423	0.486	0.323	0.707	0.471	0.543	0.361
ratio	15	0.584	0.389	0.436	0.290	0.651	0.433	0.493	0.328	0.726	0.483	0.551	0.367
Effective length, KL (ft), with respect to least radius of gyration, r_{y_0} or Unbraced Length, L_b (ft), for X-X axis bending	16	0.600	0.399	0.442	0.294	0.669	0.445	0.501	0.333	0.746	0.496	0.560	0.373
) Sr pen	17	0.617	0.411	0.448	0.298	0.688	0.458	0.509	0.338	0.768	0.511	0.570	0.379
adii (is	18	0.636	0.423	0.455	0.302	0.709	0.472	0.517	0.344	0.792	0.527	0.579	0.385
ع <u>بت</u> (19	0.656	0.437	0.461	0.307	0.732	0.487	0.525	0.349	0.818	0.544	0.589	0.392
leas X-)	20	0.678	0.451	0.468	0.311	0.758	0.504	0.533	0.355	0.846	0.563	0.599	0.399
, fo	22	0.729	0.485	0.483	0.321	0.815	0.542	0.551	0.367	0.911	0.606	0.621	0.413
ge (±)	24	0.788	0.525	0.498	0.331	0.882	0.587	0.570	0.379	0.988	0.657	0.644	0.429
res	26	0.859	0.571	0.514	0.342	0.962	0.640	0.591	0.393	1.08	0.718	0.669	0.445
重頻	28	0.942	0.627	0.531	0.354	1.06	0.702	0.613	0.408	1.19	0.789	0.696	0.463
), w Len	30	1.04	0.692	0.550	0.366	1.17	0.777	0.636	0.423	1.31	0.874	0.726	0.483
Z (ft	32	1.16	0.769	0.570	0.379	1.30	0.864	0.662	0.440	1.47	0.975	0.758	0.504
λ, r bra	34	1.30	0.863	0.591	0.393	1.46	0.971	0.690	0.459	1.65	1.10	0.793	0.527
ag II	36	1.45	0.968	0.614	0.409	1.64	1.09	0.720	0.479	1.85	1.23	0.831	0.553
e e	38	1.62	1.08	0.639	0.425	1.83	1.21	0.753	0.501	2.06	1.37	0.889	0.591
tive	40	1.80	1.19	0.666	0.443	2.02	1.34	0.802	0.533	2.28	1.52	0.957	0.637
, tec	42	1.98	1.32	0.704	0.468	2.23	1.48	0.858	0.571	2.52	1.67	1.03	0.683
ш	44	2.17	1.45	0.748	0.498	2.44	1.63	0.914	0.608	2.76	1.84	1.10	0.729
	46	2.37	1.58	0.792	0.527	2.67	1.78	0.970	0.645	3.02	2.01	1.16	0.775
	48	2.59	1.72	0.837	0.557	2.91	1.94	1.03	0.683	3.29	2.19	1.23	0.821
	50	2.81	1.87	0.881	0.586	3.16	2.10	1.08	0.720	3.57	2.37	1.30	0.867
				0	ther Cor	stants	and Pro	perties					
	, (kip-ft) ⁻¹	2.0)4	1.3		2.3	30	1.5		2.5	58	1.7	
$t_y \times 10^3$,		0.4	182	0.3	321	0.5	536	0.3	357	0.5	595	0.3	396
$t_r \times 10^3$,	(kips) ⁻¹	0.5	592	0.3	395	0.6	659	0.4	139	0.7	731	0.4	188
r _x	·/r _y		3.	70			3.	70			3.	70	
r_y ,	, in.		3.	51			3.	49			3.	46	
^c Shape is	s slender fo	r compre	ssion with	$F_v = 50$	ksi.								

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y}$ = 50 ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

							W3	80×					
Sha	ape		17	73°				18°			13	32°	
		p×	10 ³		10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	sign		s) ⁻¹		-ft) ⁻¹	(kip			-ft) ⁻¹		s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.678	0.451	0.587	0.391	0.801	0.533	0.713	0.474	0.917	0.610	0.815	0.542
Effective length, KL (ft), with respect to least radius of gyration, r_{γ} , or Unbraced Length, L_b (ft), for X-X axis bending	111 122 133 144 155 166 177 188 199 200 222 244 266 288 300 322 344 366 388 440	0.745 0.758 0.773 0.790 0.809 0.852 0.878 0.904 1.01 1.10 1.21 1.33 1.48 1.65 1.86 2.09 2.32 2.57	0.495 0.505 0.515 0.526 0.538 0.552 0.567 0.584 0.604 0.626 0.675 0.733 0.802 0.884 0.982 1.10 1.24 1.39 1.55 1.71	0.587 0.587 0.596 0.606 0.616 0.626 0.637 0.649 0.660 0.673 0.698 0.726 0.756 0.789 0.825 0.864 0.906 0.964 1.05 1.13	0.391 0.391 0.396 0.403 0.410 0.417 0.424 0.432 0.439 0.447 0.465 0.483 0.503 0.525 0.549 0.575 0.603 0.641 0.696 0.751	0.986 1.03 1.08 1.14 1.21 1.29 1.38 1.48 1.59 1.72 2.05 2.43 2.86 3.31 3.80 4.33 4.89 5.48	0.656 0.684 0.718 0.758 0.804 0.856 0.915 0.982 1.06 1.15 1.36 1.62 1.90 2.20 2.53 2.88 3.25 3.64	0.765 0.784 0.804 0.826 0.849 0.873 0.898 0.925 0.954 0.984 1.05 1.13 1.25 1.39 1.53 1.67 1.82 1.96	0.509 0.522 0.535 0.550 0.565 0.598 0.616 0.635 0.700 0.751 0.828 0.923 1.02 1.11 1.21 1.30	1.13 1.18 1.23 1.30 1.37 1.47 1.57 1.69 1.82 1.98 2.36 2.81 3.30 3.82 4.39 4.99 5.64 6.32	0.751 0.783 0.819 0.862 0.915 1.04 1.12 1.21 1.32 1.57 1.87 2.19 2.54 2.92 3.32 3.75 4.21	0.882 0.906 0.931 0.958 0.987 1.02 1.05 1.08 1.12 1.16 1.25 1.36 1.54 1.72 1.91 2.09 2.28 2.47	0.587 0.603 0.620 0.638 0.657 0.677 0.699 0.721 0.746 0.772 0.831 0.904 1.02 1.15 1.27 1.39 1.52 1.64
描	44 46 48 50	3.12 3.41 3.71 4.02	2.07 2.27 2.47 2.68	1.30 1.38 1.47 1.55	0.863 0.919 0.976 1.03								
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			90 856 806		93 137 537		24 766 941	1	19 510 527	6.1 0.8 1.0	361	l	06 573 705
r _x	·/r _y		3.	71			5.	44			5.4	42	
	in.			42			2.	28			2.5	25	
c Shape is	s slender fo	r compre	ssion with	$F_{\nu} = 50$	ksi.								

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Ch							W3	80×						
3116	ape		12	.4°			11	1 6 °			10)8 ^c		
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	(10 ³	p×	10 ³	b _x >	< 10 ³	
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	0.991	0.659	0.873	0.581	1.07	0.713	0.943	0.627	1.17	0.782	1.03	0.685	
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm p}$ or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36	1.22 1.27 1.33 1.40 1.48 1.57 1.69 1.82 1.97 2.13 2.55 3.04 3.57 4.14 4.75 5.40 6.10 6.84	0.811 0.845 0.885 0.931 0.984 1.05 1.12 1.21 1.31 1.42 1.70 2.02 2.37 2.75 3.16 3.60 4.06 4.55	0.949 0.976 1.00 1.03 1.07 1.10 1.14 1.18 1.22 1.26 1.36 1.51 1.72 1.92 2.13 2.35 2.56 2.78	0.631 0.649 0.668 0.688 0.710 0.732 0.757 0.782 0.810 0.907 1.01 1.14 1.28 1.42 1.56 1.70 1.85	1.32 1.38 1.45 1.52 1.61 1.72 1.84 1.99 2.16 2.35 2.83 3.36 3.95 4.58 5.26 5.98 6.75 7.57	0.880 0.918 0.962 1.01 1.07 1.14 1.23 1.32 1.44 1.56 1.88 2.24 2.63 3.05 3.50 3.98 4.49 5.04	1.03 1.06 1.09 1.13 1.16 1.20 1.24 1.29 1.34 1.51 1.70 1.94 2.18 2.42 2.67 2.92 3.17	0.686 0.706 0.728 0.750 0.775 0.801 0.828 0.858 0.890 0.924 1.00 1.13 1.29 1.45 1.61 1.78 1.94 2.11	1.45 1.52 1.59 1.68 1.78 1.90 2.04 2.20 2.40 2.62 3.16 3.77 4.42 5.13 5.88 6.69 7.56	0.968 1.01 1.06 1.12 1.18 1.26 1.35 1.47 1.60 1.74 2.11 2.51 2.94 3.41 3.91 4.45 5.03	1.14 1.17 1.21 1.25 1.29 1.34 1.39 1.44 1.50 1.56 1.70 1.96 2.24 2.52 2.81 3.10 3.40	0.755 0.779 0.804 0.830 0.859 0.922 0.957 0.995 1.04 1.13 1.31 1.49 1.68 1.87 2.06 2.26	
				0	ther Co	ıstants	and Pro	perties						
	, (kip-ft) ⁻¹	6.6		4.3		7.2		4.8			12	1.34 0.4 1.39 0.9 1.44 0.9 1.50 0.9 1.50 1.50 1.5 1.70 1.5 1.96 1.5 1		
$t_y \times 10^3$, $t_r \times 10^3$,		0.9 1.1	915 12		609 749	0.9	977 20	1	350 300		05 29			
	/r _y			43				48						
r _y ,	in.		2.	23			2.	19			2.	15		
C Chana is	s slender fo	r compro	ccion with	. E _ E0	lcoi									

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

 $F_{V} = 50 \text{ ksi}$

Ch					W3	80×					W2	27×	
3116	ape		9	9 ^c			90) ^{c, v}			53	9 ^h	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x >	(10³	p×	10 ³	b _X ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ^{−1}	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.31	0.872	1.14	0.760	1.49	0.994	1.26	0.838	0.210	0.140	0.189	0.125
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34	1.63 1.70 1.79 1.89 2.01 2.14 2.30 2.50 2.73 3.00 3.63 4.31 5.06 5.87 6.74 7.67 8.66	1.08 1.13 1.19 1.26 1.33 1.43 1.53 1.66 1.81 1.99 2.41 2.87 3.37 3.91 4.49 5.10 5.76	1.27 1.31 1.36 1.41 1.46 1.51 1.57 1.63 1.70 1.78 2.00 2.32 2.65 2.99 3.34 3.69 4.06	0.846 0.874 0.903 0.935 0.969 1.01 1.04 1.09 1.13 1.18 1.33 1.54 1.76 1.99 2.22 2.46 2.70	1.85 1.93 2.02 2.13 2.26 2.41 2.59 2.79 3.04 3.34 4.04 4.80 5.64 6.54 7.51 8.54 9.64	1.23 1.28 1.35 1.42 1.50 1.60 1.72 1.86 2.02 2.22 2.69 3.20 3.75 4.35 4.99 5.68 6.41	1.41 1.45 1.51 1.56 1.62 1.68 1.75 1.82 1.90 1.99 2.28 2.65 3.04 3.44 3.85 4.27 4.70	0.936 0.968 1.00 1.04 1.08 1.12 1.16 1.21 1.27 1.32 1.52 1.76 2.02 2.29 2.56 2.84 3.13	0.231 0.235 0.240 0.245 0.251 0.257 0.264 0.271 0.279 0.288 0.308 0.331 0.358 0.390 0.428 0.472 0.524	0.154 0.157 0.160 0.163 0.167 0.171 0.176 0.181 0.186 0.192 0.205 0.220 0.238 0.260 0.285 0.314 0.348	0.189 0.189 0.190 0.191 0.192 0.193 0.194 0.195 0.196 0.201 0.203 0.206 0.208	0.125 0.125 0.125 0.126 0.127 0.128 0.129 0.130 0.131 0.132 0.134 0.135 0.137 0.139 0.140 0.142
tive length or Unb	36 38 40									0.586 0.653 0.724	0.390 0.435 0.481	0.216 0.219 0.222	0.144 0.146 0.148
Effec	42 44 46 48 50									0.798 0.876 0.957 1.04 1.13	0.531 0.583 0.637 0.693 0.752	0.225 0.228 0.231 0.234 0.237	0.149 0.151 0.154 0.156 0.158
				0	ther Cor	ıstants	and Pro	perties					
$t_y \times 10^3,$ $t_r \times 10^3,$	(kips) ⁻¹	1.	23 15 41	0.9	14 766 943		.27 .56	1.0	345	0.2	315 210 258	0.1 0.1	542 40 72
	in.		5. 2.	57 10				60 09			3.4	48 ——— 65	
	o olondor fo				1 - 2		۷.						

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $^{^{\}text{V}}$ Shape does not meet the h/t_W limit for shear in AISC Specification Section G2.1(a) with $F_y = 50$ ksi; therefore, $\phi_V = 0.90$ and $\Omega_V = 1.67$. Note: Heavy line indicates KL/r_V equal to or greater than 200.

Table 6-1 (continued) Combined Flexure and Axial Force

							W2						
Sha	ape		36	8 ^h			33	86 ^h			30)7 ^h	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.306	0.204	0.287	0.191	0.337	0.224	0.315	0.210	0.370	0.246	0.346	0.230
	11	0.340	0.226	0.287	0.191	0.375	0.249	0.315	0.210	0.413	0.275	0.346	0.230
	12	0.347	0.231	0.287	0.191	0.382	0.254	0.315	0.210	0.422	0.281	0.346	0.230
, y,	13	0.355	0.236	0.289	0.192	0.391	0.260	0.318	0.211	0.432	0.287	0.349	0.232
on,	14	0.363	0.242	0.291	0.194	0.400	0.266	0.320	0.213	0.442	0.294	0.353	0.235
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	15	0.373	0.248	0.294	0.195	0.411	0.273	0.323	0.215	0.454	0.302	0.356	0.237
to least radius of gyr for X-X axis bending	16	0.383	0.255	0.296	0.197	0.422	0.281	0.326	0.217	0.467	0.311	0.360	0.239
ns c	17	0.394	0.262	0.299	0.199	0.435	0.289	0.329	0.219	0.481	0.320	0.364	0.242
adii	18	0.406	0.270	0.301	0.200	0.448	0.298	0.332	0.221	0.497	0.330	0.367	0.244
st r X a	19	0.419	0.279	0.304	0.202	0.463	0.308	0.336	0.223	0.513	0.342	0.371	0.247
ea -	20	0.434	0.289	0.306	0.204	0.480	0.319	0.339	0.225	0.532	0.354	0.375	0.250
t 6	22	0.467	0.311	0.312	0.207	0.517	0.344	0.345	0.230	0.574	0.382	0.383	0.255
E G	24	0.506	0.336	0.317	0.211	0.560	0.373	0.352	0.234	0.624	0.415	0.392	0.261
res , L _b	26	0.552	0.367	0.323	0.215	0.612	0.407	0.359	0.239	0.683	0.454	0.401	0.267
a a a a a a a a a a a a	28	0.606	0.403	0.329	0.219	0.674	0.448	0.367	0.244	0.753	0.501	0.410	0.273
length, KL (ft), with respect or Unbraced Length, L_b (ft),	30	0.670	0.446	0.335	0.223	0.746	0.497	0.375	0.249	0.836	0.557	0.420	0.279
#) pec	32	0.746	0.497	0.342	0.227	0.833	0.554	0.383	0.255	0.936	0.623	0.430	0.286
ı, K	34	0.839	0.558	0.348	0.232	0.938	0.624	0.391	0.260	1.06	0.703	0.441	0.293
lg lg	36	0.941	0.626	0.355	0.236	1.05	0.700	0.400	0.266	1.18	0.788	0.452	0.301
ᇹᇹ	38	1.05	0.697	0.363	0.241	1.17	0.780	0.409	0.272	1.32	0.878	0.464	0.309
tive	40	1.16	0.773	0.370	0.246	1.30	0.864	0.419	0.279	1.46	0.972	0.476	0.317
ffec	42	1.28	0.852	0.378	0.252	1.43	0.952	0.429	0.285	1.61	1.07	0.490	0.326
ш	44	1.41	0.935	0.386	0.257	1.57	1.05	0.439	0.292	1.77	1.18	0.504	0.335
	46	1.54	1.02	0.395	0.263	1.72	1.14	0.451	0.300	1.93	1.29	0.518	0.345
	48	1.67	1.11	0.404	0.269	1.87	1.24	0.462	0.308	2.10	1.40	0.534	0.355
	50	1.81	1.21	0.413	0.275	2.03	1.35	0.475	0.316	2.28	1.52	0.551	0.367
				0	ther Cor	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹	1.2		3.0		1.4		0.9		1.5		1.0	
$t_y \times 10^3$,			306		204		337	0.2			370	l	246
$t_r \times 10^3$,	(kips) ⁻¹	0.3	376	0.2	251	0.4	114	0.2	276	0.4	155	0.3	303
r _x	/r _y		3.	51			3.	51			3.	52	
r_y ,	in.		3.	48			3.	45			3.	41	

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $F_y = 50 \text{ ksi}$

Cha							W2	27×					
Sha	ipe		28	31			2	58			2	35	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.402	0.267	0.381	0.253	0.439	0.292	0.418	0.278	0.481	0.320	0.461	0.307
	11	0.449	0.299	0.381	0.253	0.491	0.327	0.418	0.278	0.540	0.359	0.461	0.307
	12	0.459	0.305	0.381	0.253	0.502	0.334	0.419	0.279	0.552	0.367	0.463	0.308
7,	13	0.469	0.312	0.385	0.256	0.514	0.342	0.424	0.282	0.565	0.376	0.469	0.312
'n.	14	0.481	0.320	0.389	0.259	0.527	0.351	0.429	0.285	0.580	0.386	0.475	0.316
rati	15	0.494	0.329	0.393	0.262	0.541	0.360	0.434	0.289	0.596	0.396	0.481	0.320
of gy ding	16	0.508	0.338	0.397	0.264	0.557	0.371	0.439	0.292	0.614	0.408	0.487	0.324
IS 0	17	0.524	0.348	0.402	0.267	0.575	0.382	0.444	0.296	0.633	0.421	0.494	0.328
adiu	18	0.541	0.360	0.406	0.270	0.594	0.395	0.450	0.299	0.655	0.436	0.500	0.333
t re	19	0.559	0.372	0.411	0.273	0.615	0.409	0.455	0.303	0.678	0.451	0.507	0.337
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{\rm r}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	20	0.580	0.386	0.416	0.277	0.637	0.424	0.461	0.307	0.704	0.468	0.514	0.342
t to , for	22	0.626	0.417	0.426	0.283	0.689	0.459	0.473	0.315	0.762	0.507	0.529	0.352
Dec (ft)	24	0.681	0.453	0.436	0.290	0.751	0.500	0.485	0.323	0.832	0.553	0.544	0.362
r _p	26	0.747	0.497	0.447	0.297	0.824	0.549	0.498	0.332	0.914	0.608	0.560	0.373
± €	28	0.824	0.548	0.458	0.305	0.912	0.607	0.512	0.341	1.01	0.674	0.578	0.384
, wi Lenç	30	0.917	0.610	0.470	0.313	1.02	0.676	0.527	0.351	1.13	0.753	0.596	0.397
/ (ft)	32	1.03	0.683	0.482	0.321	1.14	0.760	0.543	0.361	1.27	0.848	0.616	0.410
, K	34	1.16	0.772	0.496	0.330	1.29	0.858	0.559	0.372	1.44	0.957	0.637	0.424
를 를 다	36	1.30	0.865	0.510	0.339	1.45	0.962	0.577	0.384	1.61	1.07	0.660	0.439
le le	38	1.45	0.964	0.524	0.349	1.61	1.07	0.596	0.396	1.80	1.20	0.684	0.455
tive	40	1.61	1.07	0.540	0.359	1.78	1.19	0.616	0.410	1.99	1.33	0.710	0.472
ffec	42	1.77	1.18	0.557	0.370	1.97	1.31	0.637	0.424	2.20	1.46	0.738	0.491
ш .	44	1.94	1.29	0.574	0.382	2.16	1.44	0.660	0.439	2.41	1.60	0.776	0.516
	46	2.12	1.41	0.593	0.395	2.36	1.57	0.685	0.456	2.63	1.75	0.818	0.544
	48	2.31	1.54	0.614	0.408	2.57	1.71	0.721	0.479	2.87	1.91	0.861	0.573
	50	2.51	1.67	0.639	0.425	2.79	1.85	0.756	0.503	3.11	2.07	0.904	0.601
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$,		1.7		1.1		1.9		1.2		2.1		1.4	
$t_y \times 10^3$,	(kips) ⁻¹	0.4	102	0.2	267	0.4	439	0.2	292	0.4	181	0.3	320
$t_r \times 10^3$,	(kips) ⁻¹	0.4	194	0.3	329	0.5	539		359	0.5	591	0.3	394
r _x	/r _y		3.	54			3.	54			3.	54	
	in.		3.	39			3.	36			3.	33	
,						l							

Table 6-1 (continued) Combined Flexure and Axial Force

							W2	.7×					
Sha	ape		21	17			19	94			1	78	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign	(kip	os) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD								
	0	0.523	0.348	0.501	0.333	0.585	0.389	0.565	0.376	0.636	0.423	0.625	0.416
ration, r _y ,	11 12 13 14 15	0.587 0.600 0.614 0.630 0.648	0.390 0.399 0.409 0.419 0.431	0.501 0.503 0.510 0.517 0.524	0.333 0.335 0.339 0.344 0.348	0.658 0.673 0.689 0.708 0.728	0.438 0.448 0.459 0.471 0.484	0.565 0.568 0.576 0.584 0.593	0.376 0.378 0.383 0.389 0.395	0.718 0.734 0.753 0.773 0.796	0.478 0.489 0.501 0.515 0.530	0.625 0.630 0.640 0.650 0.661	0.416 0.419 0.426 0.432 0.439
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	16 17 18 19 20	0.667 0.689 0.712 0.738 0.766	0.444 0.458 0.474 0.491 0.510	0.531 0.538 0.546 0.554 0.562	0.353 0.358 0.363 0.369 0.374	0.750 0.775 0.802 0.831 0.863	0.499 0.516 0.533 0.553 0.574	0.602 0.612 0.621 0.631 0.641	0.401 0.407 0.413 0.420 0.427	0.821 0.849 0.879 0.912 0.948	0.546 0.565 0.585 0.607 0.631	0.671 0.683 0.694 0.706 0.718	0.447 0.454 0.462 0.470 0.478
, with respect to ength, L_b (ft), for	22 24 26 28 30	0.830 0.906 0.997 1.11 1.23	0.552 0.603 0.663 0.735 0.822	0.579 0.597 0.617 0.637 0.660	0.385 0.398 0.410 0.424 0.439	0.937 1.02 1.13 1.25 1.40	0.623 0.682 0.751 0.834 0.934	0.663 0.686 0.711 0.737 0.766	0.441 0.456 0.473 0.490 0.509	1.03 1.13 1.25 1.39 1.56	2 0.607 0.706 3 0.631 0.718 0.686 0.745 0.752 0.773 0.830 0.803 0.925 0.836 1.04 0.871 1.18 0.910		0.495 0.514 0.534 0.556 0.580
ive length, KL (ft) or Unbraced I	32 34 36 38 40	1.39 1.57 1.76 1.96 2.18	0.927 1.05 1.17 1.31 1.45	0.683 0.709 0.736 0.766 0.798	0.455 0.471 0.490 0.509 0.531	1.59 1.79 2.01 2.24 2.48	1.06 1.19 1.34 1.49 1.65	0.797 0.830 0.867 0.906 0.968	0.530 0.552 0.577 0.603 0.644	1.77 2.00 2.24 2.49 2.76	1.18 1.33 1.49 1.66 1.84	0.910 0.952 1.00 1.07 1.15	0.606 0.634 0.665 0.713 0.765
Effect	42 44 46 48 50	2.40 2.63 2.88 3.13 3.40	1.60 1.75 1.91 2.09 2.26	0.842 0.892 0.942 0.992 1.04	0.560 0.593 0.627 0.660 0.693	2.73 3.00 3.28 3.57 3.88	1.82 2.00 2.18 2.38 2.58	1.03 1.10 1.16 1.22 1.29	0.687 0.729 0.771 0.813 0.855	3.05 3.34 3.66 3.98 4.32	2.03 2.23 2.43 2.65 2.87	1.23 1.31 1.38 1.46 1.54	0.817 0.869 0.920 0.972 1.02
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			31 523 642	ı	54 348 128		62 585 718	l	74 889 179	2.9 0.6 0.7	36	l	94 123 521
r_{x}	/r _y		3.	55			3.	56			3.	57	
r_y ,	in.		3.	32			3.	29			3.	25	

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W2	27×					
Sha	ape		16	1°			14	16°			12	29°	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³
Des	ign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.704	0.468	0.692	0.460	0.792	0.527	0.768	0.511	0.910	0.606	0.902	0.600
	11	0.793	0.527	0.692	0.460	0.883	0.587	0.768	0.511	1.15	0.763	0.976	0.649
	12	0.811	0.540	0.698	0.465	0.901	0.600	0.777	0.517	1.21	0.802	1.00	0.666
ž	13	0.832	0.554	0.710	0.472	0.922	0.614	0.791	0.526	1.27	0.846	1.03	0.684
'n,	14	0.855	0.569	0.722	0.480	0.946	0.629	0.805	0.535	1.35	0.897	1.06	0.703
rrati J	15	0.881	0.586	0.735	0.489	0.974	0.648	0.819	0.545	1.44	0.955	1.09	0.723
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	16	0.909	0.604	0.747	0.497	1.01	0.669	0.835	0.555	1.53	1.02	1.12	0.744
ns (17	0.939	0.625	0.761	0.506	1.04	0.692	0.850	0.566	1.65	1.10	1.15	0.767
adii (is	18	0.973	0.647	0.775	0.515	1.08	0.718	0.867	0.577	1.78	1.18	1.19	0.791
st r	19	1.01	0.672	0.789	0.525	1.12	0.746	0.884	0.588	1.92	1.28	1.23	0.816
, e a	20	1.05	0.699	0.804	0.535	1.17	0.776	0.901	0.600	2.09	1.39	1.27	0.843
, tt	22	1.14	0.761	0.835	0.556	1.27	0.846	0.939	0.625	2.51	1.67	1.36	0.903
g €	24	1.25	0.835	0.869	0.578	1.40	0.930	0.980	0.652	2.99	1.99	1.46	0.973
res L _b	26	1.39	0.924	0.906	0.603	1.55	1.03	1.02	0.681	3.51	2.33	1.64	1.09
£ £	28	1.55	1.03	0.946	0.630	1.73	1.15	1.07	0.714	4.07	2.71	1.82	1.21
, w Len	30	1.74	1.16	0.990	0.659	1.95	1.30	1.13	0.750	4.67	3.11	2.00	1.33
pec T. (ff	32	1.98	1.31	1.04	0.691	2.22	1.48	1.19	0.789	5.31	3.54	2.18	1.45
λ, r	34	2.23	1.48	1.09	0.726	2.50	1.67	1.27	0.843	6.00	3.99	2.36	1.57
lg I	36	2.50	1.66	1.17	0.781	2.81	1.87	1.38	0.919	6.73	4.47	2.54	1.69
e e	38	2.79	1.85	1.27	0.844	3.13	2.08	1.50	0.995				
tive	40	3.09	2.05	1.36	0.907	3.47	2.31	1.61	1.07				
:#ec	42	3.40	2.26	1.46	0.970	3.82	2.54	1.73	1.15				
ш	44	3.73	2.48	1.55	1.03	4.19	2.79	1.84	1.23				
	46	4.08	2.72	1.65	1.10	4.58	3.05	1.96	1.30				
	48	4.44	2.96	1.74	1.16	4.99	3.32	2.07	1.38				
	50	4.82	3.21	1.84	1.22	5.41	3.60	2.19	1.46				
				0	ther Cor	ıstants	and Pro	perties					
	(kip-ft) ⁻¹	3.2	27	2.1	17	3.6	35	2.4	13	6.1	19	4.1	12
$t_y \times 10^3$,			702		167		773		514		384		88
$t_r \times 10^3$,	(kips) ⁻¹	0.0	362	0.5	575	0.9	950	0.6	33	1.0)9	0.7	724
r_{x}	/r _y		3.	56			3.	59			5.	07	
r_{v}	in.		3.:	23			3.	20			2.	21	
	slender fo	r compro			koi	I				I			

^c Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Ch							W2	27×					
3116	ape		11	4 ^c			10) 2 °			9	4 ^c	
		p×	10 ³	b _x ×	(10³	p×	10 ³	b _x >	< 10 ³	p×	10 ³	b _x ×	< 10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.05	0.696	1.04	0.691	1.21	0.804	1.17	0.777	1.34	0.890	1.28	0.853
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm p}$ or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36	1.45 0.962 1.20 0.798 1.66 1.11 1.36 0.907 1.84 1.23 1.5 1.53 1.02 1.24 0.822 1.76 1.17 1.41 0.935 1.95 1.30 1.5 1.64 1.09 1.27 0.847 1.86 1.24 1.45 0.966 2.07 1.38 1.6 1.75 1.17 1.31 0.874 1.99 1.33 1.50 1.00 2.21 1.47 1.6 1.89 1.25 1.36 0.903 2.15 1.43 1.55 1.03 2.38 1.58 1.7 2.04 1.36 1.40 0.934 2.33 1.55 1.61 1.07 2.59 1.72 1.8 2.21 1.47 1.45 0.967 2.53 1.69 1.67 1.11 2.82 1.88 1.8 2.41 1.60 1.51 1.00 2.77 1.84 1.74 1.16 3.09		1.42 1.46 1.51 1.56 1.62 1.67 1.74 1.80 1.88 1.95 2.16 2.50 2.84 3.19 3.54 3.90 4.26	0.944 0.974 1.01 1.04 1.07 1.11 1.15 1.20 1.25 1.30 1.44 1.66 1.89 2.12 2.36 2.59 2.83								
				0	ther Co	ıstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,		0.9	994	0.6	661	1.	11	0.7	741	1.	21	305	
r _x	/r _y		$p \times 10^3$ $b_x \times 10^3$ \times 10^3$										
	in.			18				15				12	
	s slender fo	r compro	ecion with	. E _ EO	koi								

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

 $F_{V} = 50 \text{ ksi}$

			W2	27×					W2	.4×			
Sha	ape		84				37	70 ^h			33	5 ^h	
		p×	10 ³	b _X >	(10³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.53	1.02	1.46	0.971	0.306	0.204	0.315	0.210	0.340	0.226	0.349	0.232
ration, r _y ,	11 12 13 14 15	1.92 2.02 2.12 2.25 2.39	1.28 1.34 1.41 1.49 1.59	1.63 1.69 1.75 1.81 1.88	1.09 1.12 1.16 1.20 1.25	0.345 0.353 0.362 0.372 0.382	0.230 0.235 0.241 0.247 0.254	0.315 0.316 0.319 0.321 0.323	0.210 0.210 0.212 0.213 0.215	0.384 0.393 0.403 0.414 0.426	0.255 0.261 0.268 0.276 0.284	0.349 0.351 0.354 0.357 0.359	0.232 0.233 0.235 0.237 0.239
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	16 17 18 19 20	2.56 2.76 3.00 3.28 3.62	1.70 1.84 1.99 2.18 2.41	1.95 2.03 2.11 2.21 2.31	1.30 1.35 1.41 1.47 1.53	0.394 0.407 0.422 0.437 0.454	0.262 0.271 0.280 0.291 0.302	0.326 0.328 0.330 0.333 0.335	0.217 0.218 0.220 0.221 0.223	0.440 0.455 0.471 0.489 0.509	0.293 0.303 0.314 0.325 0.338	0.362 0.365 0.368 0.371 0.375	0.241 0.243 0.245 0.247 0.249
, with respect to Length, L_b (ft), for	22 24 26 28 30	4.38 5.21 6.12 7.10 8.15	2.91 3.47 4.07 4.72 5.42	2.64 3.06 3.49 3.93 4.38	1.76 2.04 2.32 2.62 2.92	0.494 0.540 0.596 0.663 0.743	0.328 0.359 0.397 0.441 0.495	0.340 0.346 0.351 0.357 0.363	0.226 0.230 0.234 0.237 0.241	0.554 0.608 0.672 0.750 0.843	0.368 0.404 0.447 0.499 0.561	0.381 0.388 0.395 0.402 0.409	0.254 0.258 0.263 0.267 0.272
ive length, KL (ft) or Unbraced	32 34 36 38 40	9.27 10.5	6.17 6.96	4.84 5.31	3.22 3.53	0.842 0.950 1.07 1.19 1.32	0.560 0.632 0.709 0.790 0.875	0.369 0.375 0.381 0.388 0.395	0.245 0.249 0.254 0.258 0.263	0.957 1.08 1.21 1.35 1.49	0.636 0.718 0.806 0.897 0.994	0.417 0.425 0.433 0.442 0.451	0.277 0.283 0.288 0.294 0.300
Effect	42 44 46 48 50					1.45 1.59 1.74 1.89 2.05	0.965 1.06 1.16 1.26 1.37	0.402 0.409 0.417 0.425 0.433	0.267 0.272 0.277 0.283 0.288	1.65 1.81 1.98 2.15 2.34	1.10 1.20 1.32 1.43 1.55	0.460 0.470 0.480 0.491 0.502	0.306 0.313 0.319 0.326 0.334
				0	ther Cor	nstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			.7 .35 .66	7.° 0.9 1.°	900		33 306 376		888 204 251		50 340 117	l	00 226 278
r_{x}	/r _y		5.	17			3.	39			3.	41	
r_y ,	in.		2.	07			3.	27			3.	23	

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c. Note: Heavy line indicates $KL/r_{\rm V}$ equal to or greater than 200.

Table 6-1 (continued) Combined Flexure and Axial Force

01-							W2	4×					
Sha	ipe		30	6 ^h			27	'9 ^h			2	50	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.372	0.248	0.386	0.257	0.408	0.271	0.427	0.284	0.454	0.302	0.479	0.319
	11	0.422	0.281	0.386	0.257	0.463	0.308	0.427	0.284	0.517	0.344	0.479	0.319
	12	0.432	0.287	0.389	0.259	0.474	0.316	0.430	0.286	0.530	0.353	0.483	0.322
ž	13	0.443	0.295	0.392	0.261	0.487	0.324	0.434	0.289	0.544	0.362	0.489	0.325
on,	14	0.455	0.303	0.396	0.263	0.501	0.333	0.438	0.292	0.560	0.373	0.494	0.329
Effective length, KL (ft), with respect to least radius of gyration, t_p or Unbraced Length, L_b (ft), for X-X axis bending	15	0.469	0.312	0.399	0.266	0.516	0.343	0.443	0.294	0.578	0.384	0.499	0.332
di g	16	0.484	0.322	0.403	0.268	0.533	0.355	0.447	0.297	0.597	0.397	0.505	0.336
us c	17	0.501	0.333	0.406	0.270	0.552	0.367	0.451	0.300	0.619	0.412	0.510	0.340
adir xis	18	0.520	0.346	0.410	0.273	0.573	0.381	0.456	0.303	0.642	0.427	0.516	0.343
st r X a	19	0.540	0.359	0.414	0.275	0.595	0.396	0.461	0.306	0.668	0.445	0.522	0.347
<u>ea</u>	20	0.562	0.374	0.418	0.278	0.620	0.413	0.465	0.310	0.697	0.463	0.528	0.351
# e .	22	0.612	0.407	0.426	0.283	0.677	0.451	0.475	0.316	0.762	0.507	0.541	0.360
e (£)	24	0.612 0.407 0.426 0.283 0.677 0.451 0.475 0.316 0.762 0.507 0.541 0.673 0.448 0.434 0.289 0.746 0.496 0.485 0.323 0.841 0.559 0.554		0.368									
res , L _b	26	0.746	0.496	0.442	0.294	0.828	0.551	0.496	0.330	0.935	0.622	0.567	0.378
ᄩ	28	0.834	0.555	0.451	0.300	0.927	0.617	0.507	0.337	1.05	0.698	0.582	0.387
length, $K\!L$ (ft), with respect to least radius of gyn or Unbraced Length, L_b (ft), for X-X axis bending	30	0.939	0.625	0.461	0.306	1.05	0.697	0.519	0.345	1.19	0.792	0.597	0.397
E ed	32	1.07	0.711	0.470	0.313	1.19	0.793	0.531	0.353	1.35	0.901	0.613	0.408
rac /	34	1.21	0.802	0.480	0.320	1.35	0.895	0.544	0.362	1.53	1.02	0.630	0.419
를 를	36	1.35	0.899	0.491	0.327	1.51	1.00	0.557	0.371	1.71	1.14	0.648	0.431
흐흐	38	1.51	1.00	0.502	0.334	1.68	1.12	0.571	0.380	1.91	1.27	0.667	0.444
tive	40	1.67	1.11	0.513	0.341	1.86	1.24	0.586	0.390	2.12	1.41	0.687	0.457
#ec	42	1.84	1.22	0.525	0.349	2.05	1.37	0.601	0.400	2.33	1.55	0.708	0.471
	44	2.02	1.34	0.538	0.358	2.25	1.50	0.618	0.411	2.56	1.70	0.731	0.486
	46	2.21	1.47	0.551	0.367	2.46	1.64	0.635	0.423	2.80	1.86	0.755	0.502
	48	2.40	1.60	0.565	0.376	2.68	1.78	0.653	0.435	3.05	2.03	0.781	0.519
	50	2.61	1.73	0.579	0.386	2.91	1.94	0.673	0.448	3.31	2.20	0.814	0.541
				0	ther Cor	stants	and Pro	perties					
$b_y \times 10^3$,		1.6		1.1		1.8		1.2		2.0)8	1.3	39
$t_y \times 10^3$,			372		248		108	0.2			154	0.3	
$t_r \times 10^3$,	(kips) ⁻¹	0.4	157	0.3	305	0.5	501	0.3	334	0.5	558	0.3	372
r _x	/r _y		3.	41			3.	41			3.	41	
r _v .	in.		3.	20			3.	17			3.	14	

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $F_y = 50 \text{ ksi}$

-							W2	.4×					
Sha	ape		22	29			20	07			19	92	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	ign		os) ⁻¹		-ft) ⁻¹	(kip	s) ⁻¹		-ft) ⁻¹	(kip	s) ⁻¹		-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.497	0.331	0.528	0.351	0.550	0.366	0.588	0.391	0.591	0.393	0.637	0.424
	11	0.567	0.377	0.528	0.351	0.629	0.419	0.589	0.392	0.677	0.450	0.639	0.425
	12	0.581	0.387	0.534	0.355	0.646	0.430	0.596	0.397	0.694	0.462	0.647	0.431
Ž,	13	0.597	0.397	0.540	0.359	0.664	0.442	0.604	0.402	0.714	0.475	0.656	0.437
'n.	14	0.615	0.409	0.547	0.364	0.684	0.455	0.612	0.407	0.736	0.490	0.665	0.443
ratio	15	0.635	0.422	0.553	0.368	0.706	0.470	0.620	0.412	0.760	0.506	0.675	0.449
f gy ding	16	0.657	0.437	0.560	0.372	0.731	0.486	0.628	0.418	0.787	0.524	0.684	0.455
s o	17	0.681	0.453	0.567	0.377	0.758	0.505	0.637	0.424	0.816	0.543	0.694	0.462
diu is b	18	0.707	0.471	0.574	0.382	0.788	0.525	0.646	0.429	0.849	0.565	0.705	0.469
t ra	19	0.736	0.490	0.581	0.387	0.821	0.547	0.655	0.435	0.885	0.589	0.715	0.476
leas' X-X	20	0.768	0.511	0.588	0.391	0.858	0.571	0.664	0.442	0.924	0.615	0.726	0.483
t to	22	0.842	0.560	0.604	0.402	0.942	0.626	0.683	0.454	1.02	0.675	0.749	0.498
(£)	24	0.930	0.619	0.620	0.412	1.04	0.694	0.704	0.468	1.13	0.749	0.773	0.514
esp L _b	26	1.04	0.690	0.637	0.424	1.17	0.775	0.725	0.483	1.26	0.837	0.799	0.532
∄ #	28	1.17	0.776	0.655	0.436	1.31	0.874	0.749	0.498	1.42	0.944	0.827	0.550
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	30	1.33	0.883	0.674	0.448	1.50	0.996	0.773	0.514	1.62	1.08	0.857	0.570
7 (ft) ed 1	32	1.51	1.00	0.694	0.462	1.70	1.13	0.800	0.532	1.84	1.23	0.888	0.591
, KI	34	1.70	1.13	0.716	0.476	1.92	1.28	0.828	0.551	2.08	1.38	0.923	0.614
븅鱼	36	1.91	1.27	0.739	0.491	2.16	1.43	0.858	0.571	2.33	1.55	0.960	0.639
len or L	38	2.13	1.42	0.763	0.508	2.40	1.60	0.891	0.593	2.60	1.73	1.00	0.666
tive	40	2.36	1.57	0.789	0.525	2.66	1.77	0.926	0.616	2.88	1.92	1.05	0.697
ffeci	42	2.60	1.73	0.817	0.544	2.93	1.95	0.967	0.643	3.17	2.11	1.11	0.740
ш	44	2.85	1.90	0.847	0.563	3.22	2.14	1.02	0.679	3.48	2.32	1.17	0.782
	46	3.12	2.08	0.884	0.588	3.52	2.34	1.07	0.715	3.81	2.53	1.24	0.824
	48	3.40	2.26	0.928	0.617	3.83	2.55	1.13	0.751	4.15	2.76	1.30	0.866
	50	3.68	2.45	0.971	0.646	4.16	2.77	1.18	0.787	4.50	2.99	1.36	0.908
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$,		2.3	31	1.5	54	2.6	60	1.7	73	2.8	33	1.8	38
$t_y \times 10^3$,		0.4	197	0.3	331	0.5	550	0.3	366	0.5	591	0.3	393
$t_r \times 10^3$, (kips) ⁻¹ 0.611 0.407 0.676 0.451 0.726							0.4	184					
r _x	/r _y		3.	44			3.	44			3.	42	
r_{V} ,	in.		3.	11			3.	08			3.	07	

Table 6-1 (continued) Combined Flexure and Axial Force

Chr	nno						W2	.4×					
SIIG	ape			76				62				46	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	10 ³	p×	10 ³	b _X ×	(10 ³
Des	sign	(kip	os) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.646	0.430	0.697	0.464	0.699	0.465	0.761	0.506	0.777	0.517	0.852	0.567
ration, r _y , I	11 12 13 14 15	0.742 0.761 0.783 0.808 0.835	0.493 0.506 0.521 0.537 0.555	0.700 0.710 0.721 0.731 0.743	0.466 0.472 0.479 0.487 0.494	0.801 0.822 0.846 0.872 0.901	0.533 0.547 0.563 0.580 0.600	0.764 0.776 0.788 0.801 0.814	0.508 0.516 0.524 0.533 0.541	0.894 0.918 0.945 0.975 1.01	0.595 0.611 0.629 0.649 0.671	0.857 0.872 0.887 0.902 0.918	0.571 0.580 0.590 0.600 0.611
Effective length, KL (ft), with respect to least radius of gyration, r_{y_s} or Unbraced Length, L_b (ft), for X-X axis bending	16 17 18 19 20	0.865 0.898 0.934 0.975 1.02	0.575 0.597 0.622 0.649 0.678	0.754 0.766 0.778 0.791 0.804	0.502 0.510 0.518 0.526 0.535	0.934 0.969 1.01 1.05 1.10	0.621 0.645 0.671 0.700 0.731	0.827 0.841 0.855 0.870 0.886	0.550 0.560 0.569 0.579 0.589	1.05 1.09 1.13 1.18 1.24	0.696 0.723 0.753 0.786 0.823	0.935 0.952 0.970 0.988 1.01	0.622 0.633 0.645 0.657 0.670
, with respect to ength, L_b (ft), for	22 24 26 28 30	1.12 1.25 1.40 1.58 1.80	0.746 0.829 0.928 1.05 1.20	0.832 0.861 0.893 0.927 0.964	0.553 0.573 0.594 0.617 0.641	1.21 1.34 1.50 1.70 1.94	0.804 0.892 0.999 1.13 1.29	0.918 0.953 0.991 1.03 1.08	0.611 0.634 0.660 0.687 0.716	1.36 1.52 1.70 1.93 2.21	0.907 1.01 1.13 1.29 1.47	1.05 1.09 1.14 1.19 1.25	0.697 0.727 0.759 0.794 0.832
ive length, KL (ft) or Unbraced I	32 34 36 38 40	2.05 2.32 2.60 2.90 3.21	1.37 1.54 1.73 1.93 2.13	1.00 1.05 1.09 1.15 1.23	0.668 0.697 0.728 0.767 0.818	2.21 2.49 2.79 3.11 3.45	1.47 1.66 1.86 2.07 2.29	1.13 1.18 1.24 1.33 1.42	0.749 0.784 0.826 0.886 0.947	2.52 2.84 3.19 3.55 3.93	1.68 1.89 2.12 2.36 2.62	1.31 1.39 1.50 1.62 1.73	0.874 0.926 1.00 1.08 1.15
Effect	42 44 46 48 50	3.54 3.88 4.24 4.62 5.01	2.35 2.58 2.82 3.07 3.34	1.31 1.38 1.46 1.53 1.61	0.869 0.920 0.970 1.02 1.07	3.80 4.17 4.56 4.96 5.39	2.53 2.78 3.03 3.30 3.58	1.51 1.60 1.69 1.78 1.87	1.01 1.07 1.13 1.19 1.25	4.34 4.76 5.20 5.67 6.15	2.89 3.17 3.46 3.77 4.09	1.85 1.96 2.07 2.19 2.30	1.23 1.30 1.38 1.45 1.53
				0	ther Cor	nstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			10 646 794	l	06 130 529		39 699 358	l	26 165 572		32 777 954		54 517 536
r_{x}	/r _y		3.	45			3.	41			3.	42	
r_y ,	in.		3.	04			3.	05			3.	01	

 $F_y = 50 \text{ ksi}$

W-Shapes

							1110						
Sha	аре						W2						
		p×	13		10 ³	p×		7°	. 403		10 ³)4 ^c	< 10 ³
Des	ian			(kip-		μ× (kip			10 ³)s) ⁻¹		-ft) ⁻¹
Des	ayıı		s) ⁻¹	٠							LRFD		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD		ASD	LRFD
	0	0.865	0.576	0.963	0.641	0.994	0.661	1.09	0.725	1.14	0.759	1.23	0.820
	11	1.00	0.665	0.972	0.646	1.13	0.752	1.10	0.733	1.30	0.862	1.25	0.832
_	12 13	1.03 1.06	0.684 0.704	0.989	0.658	1.16 1.19	0.771 0.794	1.12 1.15	0.748 0.762	1.33 1.37	0.884	1.28 1.30	0.849 0.867
n, r _y	14	1.00	0.704	1.01	0.670 0.683	1.19	0.794	1.15	0.762	1.41	0.936	1.33	0.886
atio	15	1.13	0.753	1.05	0.696	1.28	0.850	1.19	0.794	1.45	0.966	1.36	0.905
gyr	16	1.17	0.781	1.07	0.710	1.33	0.882	1.22	0.810	1.50	1.00	1.39	0.925
s of	17	1.22	0.813	1.09	0.724	1.38	0.919	1.24	0.828	1.56	1.04	1.42	0.946
ndiu is b	18	1.27	0.848	1.11	0.739	1.44	0.959	1.27	0.846	1.63	1.08	1.46	0.969
st ra (ax	19	1.33	0.886	1.13	0.754	1.51	1.00	1.30	0.865	1.70	1.13	1.49	0.992
leas 'X-)	20	1.39	0.928	1.16	0.770	1.58	1.05	1.33	0.885	1.79	1.19	1.53	1.02
t to , for	22	1.54	1.03	1.21	0.804	1.75	1.16	1.39	0.927	1.99	1.32	1.61	1.07
pec (ft)	24	1.72	1.14	1.26	0.841	1.96	1.30	1.46	0.974	2.23	1		1.13
res , L	26	1.94	1.29	1.33	0.882	2.21	1.47	1.54	1.03	2.52	1		1.19
with	28 30	2.21 2.53	1.47 1.68	1.39 1.47	0.928 0.977	2.53	1.68 1.93	1.63 1.73	1.08 1.15	2.89			1.27 1.37
length, $\it KL$ (ft), with respect to least radius of gyor Unbraced Length, $\it L_b$ (ft), for X-X axis bending											1.48 1.69 1.68 1.79 1.92 1.90 2.21 2.06		
KL (32 34	2.88 3.25	1.92 2.16	1.56 1.70	1.04 1.13	3.30 3.72	2.20 2.48	1.89 2.07	1.26 1.38	3.77 4.26	2.83	2.29	1.52 1.67
ıth,	36	3.65	2.43	1.84	1.13	4.18	2.78	2.25	1.50	4.78	3.18	2.74	1.82
eng or U	38	4.06	2.70	1.99	1.32	4.65	3.10	2.43	1.62	5.32	3.54	2.97	1.98
ive	40	4.50	3.00	2.13	1.42	5.16	3.43	2.62	1.74	5.90	3.92	3.20	2.13
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_{\rm jo}$ or Unbraced Length, $\it L_{\rm b}$ (ft), for X-X axis bending	42	4.96	3.30	2.28	1.52	5.68	3.78	2.80	1.86	6.50	4.33	3.44	2.29
ш	44	5.45	3.62	2.42	1.61	6.24	4.15	2.98	1.99	7.13	4.75	3.67	2.44
	46	5.95	3.96	2.57	1.71	6.82	4.54	3.17	2.11	7.80	5.19	3.91	2.60
	48	6.48	4.31	2.71	1.80	7.42	4.94	3.35	2.23	8.49	5.65	4.14	2.76
				01	ther Cor	nstants :	and Pro	perties					
$b_V \times 10^3$	(kip-ft) ⁻¹	4.3	37	2.9	91	4.9	99	3.3	32	5.	71	3.8	30
$t_{\nu} \times 10^{3}$	(kips) ⁻¹		365		76	0.9	971	l	646		09	l	724
$t_r \times 10^3$,	(kips) ⁻¹	1.0	06	0.7	'09	1.1	19	0.7	'95	1.	34	3.0	391
r _X	/r _y		3.	43			3.	44			3.	47	
r_y ,	in.		2.	97			2.	94			2.	91	

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

							W2	.4×							
Sha	ape		10	3°			9	4 ^c			8	4 ^c			
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x >	< 10 ³	p×	10 ³	b _x ×	(10³		
Des	sign	(kip)s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip)s) ⁻¹	(kip	-ft) ⁻¹		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	1.13	0.753	1.27	0.847	1.26	0.840	1.40	0.933	1.46	0.968	1.59	1.06		
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32	1.52 1.62 1.73 1.86 2.00 2.18 2.38 2.61 2.88 3.19 3.86 4.60 5.40 6.26 7.19 8.18	1.01 1.08 1.15 1.23 1.33 1.45 1.58 1.74 1.92 2.12 2.57 3.06 3.59 4.16 4.78 5.44	1.42 1.46 1.51 1.55 1.61 1.66 1.72 1.78 1.85 1.92 2.09 2.37 2.65 2.94 3.22 3.50	0.944 0.972 1.00 1.03 1.07 1.10 1.14 1.19 1.23 1.28 1.39 1.58 1.77 1.95 2.14 2.33	1.67 1.78 1.90 2.04 2.21 2.40 2.62 2.88 3.18 3.53 4.27 5.08 5.96 6.92 7.94 9.03	1.11 1.18 1.26 1.36 1.47 1.60 1.74 1.92 2.12 2.35 2.84 3.38 3.97 4.60 5.28 6.01	1.57 1.62 1.68 1.73 1.79 1.86 1.93 2.01 2.09 2.17 2.43 2.76 3.10 3.44 3.79 4.13	1.05 1.08 1.12 1.15 1.19 1.24 1.28 1.33 1.39 1.45 1.61 1.84 2.06 2.29 2.52 2.75	1.92 2.03 2.17 2.33 2.52 2.75 3.01 3.32 3.68 4.08 4.94 5.88 6.90 9.18 10.4	1.28 1.35 1.44 1.55 1.68 1.83 2.00 2.21 2.45 2.71 3.28 3.91 4.59 5.32 6.11 6.95	1.80 1.87 1.93 2.00 2.08 2.16 2.25 2.34 2.45 2.56 2.95 3.37 3.80 4.24 4.67 5.11	1.20 1.24 1.28 1.33 1.38 1.44 1.49 1.56 1.63 1.70 1.96 2.24 2.53 2.82 3.11 3.40		
	# m 4		50				and Pro	-							
$b_y \times 10^3$, $t_v \times 10^3$,	(kip-ft) ⁻¹		58 10	5.7 0.7	71 733		50 21	6.3 0.8	32 302		1 2.00 2.25 1.4 2 2.21 2.34 1.8 8 2.45 2.45 1.6 8 2.71 2.56 1. 4 3.28 2.95 1.4 8 3.91 3.37 2 0 4.59 3.80 2.5 0 5.32 4.24 2.6 8 6.11 4.67 3.				
$t_r \times 10^3$,			35		903		48	l	987						
r _x	/r _y		5.	03			4.	98			5.	02			
r_y ,	in.		1.9	99			1.	98			1.	95			
^c Shane is	s slender fo	r compre	ssion with	n <i>F</i> = 50	kei										

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

							W2	24×					
Sha	ape		7	6			6	8 ^c			6	2 ^c	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x >	< 10³	p×	10 ³	b _x >	< 10 ³
Des	sign		os) ⁻¹		-ft) ⁻¹		s) ⁻¹		-ft) ⁻¹		os) ⁻¹		-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.64	1.09	1.78	1.19	1.87	1.24	2.01	1.34	2.08	1.38	2.33	1.55
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, L_b (ft), for X-X axis bending	Second 1.89 1.26 1.85 1.23 2.17 1.44 2.11 1.40		2.40 2.54 2.72 2.94 3.22 3.59 4.07 4.67 5.42 6.22 7.08 7.99 8.96 9.98 11.1 13.4	1.60 1.69 1.81 1.96 2.14 2.39 2.71 3.11 3.60 4.14 4.71 5.31 5.96 6.64 7.36 8.90	2.44 2.56 2.68 2.82 2.97 3.13 3.32 3.53 3.77 4.15 4.62 5.11 5.60 6.10 6.61 7.64	1.63 1.70 1.78 1.87 1.97 2.08 2.21 2.35 2.51 2.76 3.08 3.40 3.72 4.06 4.40 5.08							
						nstants		_				ı	
$b_y \times 10^3$, $t_y \times 10^3$,	, (kip-ft) ⁻¹ (kips) ⁻¹	12 1	.5 .49	8.2 0.9	29 992	14 1	.5 .66		67 11	22 1	.7 .84	15 1	.1 .22
$t_r \times 10^3$.83	1.2			.04	l	36		.25		.50
r _x	/r _y		5.	05			5.	11			6.	69	
	in.			92			1.	87			1.	38	
C Shane is	s slender fo	r compre	ssion witl	$h F_{v} = 50$	ksi								

 $^{^{\}circ}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) **Combined Flexure** and Axial Force

W-Shapes

			W2	24×					W2	21×			
Sha	ape		55				20	01			18	32	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.42	1.61	2.66	1.77	0.563	0.375	0.672	0.447	0.623	0.415	0.748	0.498
ration, r _y ,	6 7 8 9 10	2.80 2.97 3.18 3.45 3.79	1.87 1.98 2.11 2.29 2.52	2.82 2.95 3.10 3.27 3.46	1.87 1.96 2.07 2.18 2.30	0.587 0.596 0.606 0.618 0.632	0.391 0.397 0.403 0.411 0.421	0.672 0.672 0.672 0.672 0.672	0.447 0.447 0.447 0.447 0.447	0.650 0.660 0.672 0.685 0.700	0.432 0.439 0.447 0.456 0.466	0.748 0.748 0.748 0.748 0.748	0.498 0.498 0.498 0.498 0.498
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_{\rm p}$ or Unbraced Length, $\it L_{\rm b}$ (ft), for X-X axis bending	11 12 13 14 15	4.23 4.80 5.57 6.46 7.41	2.81 3.19 3.70 4.29 4.93	3.67 3.91 4.18 4.51 5.08	2.44 2.60 2.78 3.00 3.38	0.648 0.665 0.685 0.706 0.730	0.431 0.443 0.455 0.470 0.486	0.675 0.682 0.690 0.698 0.706	0.449 0.454 0.459 0.464 0.470	0.718 0.737 0.759 0.784 0.811	0.478 0.491 0.505 0.521 0.539	0.752 0.761 0.771 0.780 0.790	0.500 0.507 0.513 0.519 0.526
, with respect to ength, L_b (ft), for	16 17 18 19 20	8.43 9.52 10.7 11.9 13.2	5.61 6.33 7.10 7.91 8.77	5.68 6.29 6.91 7.55 8.20	3.78 4.18 4.60 5.02 5.46	0.757 0.786 0.819 0.854 0.894	0.504 0.523 0.545 0.568 0.595	0.714 0.723 0.731 0.740 0.749	0.475 0.481 0.487 0.492 0.498	0.841 0.874 0.910 0.951 0.995	0.559 0.581 0.606 0.632 0.662	0.801 0.811 0.822 0.833 0.844	0.533 0.540 0.547 0.554 0.562
tive length, KL (ft) or Unbraced L	22 24 26 28 30	15.9	10.6	9.52	6.34	0.985 1.10 1.23 1.39 1.59	0.655 0.729 0.818 0.926 1.06	0.768 0.788 0.809 0.831 0.854	0.511 0.524 0.538 0.553 0.568	1.10 1.22 1.37 1.56 1.79	0.730 0.813 0.914 1.04 1.19	0.868 0.893 0.919 0.947 0.977	0.577 0.594 0.612 0.630 0.650
Effect	32 34 36 38 40					1.81 2.05 2.30 2.56 2.83	1.21 1.36 1.53 1.70 1.89	0.878 0.904 0.932 0.961 0.993	0.584 0.602 0.620 0.640 0.660	2.03 2.30 2.57 2.87 3.18	1.35 1.53 1.71 1.91 2.11	1.01 1.04 1.08 1.12 1.16	0.671 0.694 0.718 0.744 0.772
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,			.8 .06 .53		.8 .37 .69		58 563 592	1.7 0.3 0.4	375		99 623 765	l	99 115 510
r_{x}	/r _y		6.	80			3.	14			3.	13	
r_y ,	in.		1.3	34			3.	02			3.	00	

 $^{^{\}circ}$ Shape is slender for compression with $F_y=50$ ksi. $^{\vee}$ Shape does not meet the h/t_w limit for shear in AISC *Specification* Section G2.1(a) with $F_y=50$ ksi; therefore, $\phi_v=0.90$ and $\Omega_{V} = 1.67.$

 $F_y = 50 \text{ ksi}$

Ch	ape						W2	21×						
3116	ape			66			14	47				32		
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x >	< 10 ³	
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	0.684	0.455	0.825	0.549	0.773	0.514	0.955	0.635	0.861	0.573	1.07	0.712	
	6	0.714	0.475	0.825	0.549	0.808	0.537	0.955	0.635	0.900	0.599	1.07	0.712	
	7	0.725	0.482	0.825	0.549	0.820	0.546	0.955	0.635	0.914	0.608	1.07	0.712	
, z	8	0.738	0.491	0.825	0.549	0.835	0.556	0.955	0.635	0.931	0.620	1.07	0.712	
ţi	9 10	0.753 0.770	0.501 0.512	0.825 0.825	0.549 0.549	0.853 0.873	0.567 0.581	0.955 0.955	0.635 0.635	0.951 0.973	0.633 0.647	1.07 1.07	0.712 0.712	
gyra														
o of	11 12	0.789 0.811	0.525 0.540	0.829 0.841	0.552 0.559	0.895	0.596 0.612	0.963 0.978	0.641 0.651	0.999	0.664 0.683	1.08 1.10	0.719 0.731	
dius	13	0.835	0.556	0.852	0.567	0.949	0.631	0.978	0.661	1.03	0.705	1.12	0.743	
t ra	14	0.862	0.574	0.864	0.575	0.980	0.652	1.01	0.671	1.09	0.728	1.14	0.756	
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_{\rm in}$ or Unbraced Length, $\it L_{\rm b}$ (ft), for X-X axis bending	15	0.892	0.594	0.876	0.583	1.02	0.675	1.02	0.682	1.13	0.755	1.16	0.769	
t to	16	0.925	0.616	0.888	0.591	1.05	0.701	1.04	0.693	1.18	0.784	1.18	0.782	
mect (#)	17	0.962	0.640	0.901	0.599	1.10	0.730	1.06	0.704	1.23	0.816	1.20	0.796	
res , L _b	18	1.00	0.667	0.914	0.608	1.14	0.761	1.08	0.716	1.28	0.852	1.22	0.811	
ag di	19	1.05 1.10	0.697	0.927 0.941	0.617	1.20 1.25	0.796 0.835	1.09	0.728 0.740	1.34 1.41	0.892 0.935	1.24	0.826 0.841	
ft), v	20		0.729		0.626			1.11				1.26		
KZ (1	22	1.21	0.805	0.970	0.645	1.39	0.924	1.15	0.767	1.56	1.04	1.31	0.874	
th, /	24 26	1.35 1.52	0.897 1.01	1.00	0.666	1.55 1.75	1.03 1.17	1.19 1.24	0.795 0.825	1.74 1.97	1.16 1.31	1.37 1.43	0.910 0.948	
eng or U	28	1.72	1.15	1.03	0.711	2.00	1.33	1.29	0.858	2.25	1.50	1.49	0.990	
ive	30	1.98	1.31	1.11	0.736	2.29	1.53	1.34	0.894	2.59	1.72	1.56	1.04	
fect	32	2.25	1.50	1.15	0.763	2.61	1.74	1.40	0.933	2.95	1.96	1.63	1.09	
₩	34	2.54	1.69	1.19	0.792	2.95	1.96	1.47	0.975	3.32	2.21	1.72	1.14	
	36	2.85	1.89	1.24	0.823	3.30	2.20	1.54	1.02	3.73	2.48	1.85	1.23	
	38 40	3.17 3.51	2.11 2.34	1.29 1.34	0.857 0.895	3.68 4.08	2.45 2.71	1.64 1.75	1.09 1.16	4.15 4.60	2.76 3.06	1.98 2.12	1.32 1.41	
	40	0.01	2.04						1.10	4.00	3.00	2.12	1.41	
							and Pro	- I						
	(kip-ft) ⁻¹	3.3		2.1		3.8		2.5		4.3		2.8		
$t_y \times 10^3$, $t_r \times 10^3$,	(kips) '		684 841	ı	155 560		773 950	ı	514 533	1.0	361 36	l	573 705	
		0.0		13		0.0		11						
	/r _y													
r_y	in.		2.	99			2.	95			2.	93		

Table 6-1 (continued) Combined Flexure and Axial Force

		I														
Sha	ape					1		21×								
				22				11)1 ^c				
			10 ³		< 10 ³		10 ³		(10 ³		10 ³		< 10 ³			
Des	sign		s) ⁻¹		-ft) ⁻¹		s) ⁻¹		-ft) ⁻¹)s) ⁻¹		-ft) ⁻¹			
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	0	0.930	0.619	1.16	0.772	1.02	0.682	1.28	0.850	1.13	0.754	1.41	0.937			
ration, r _y , y	6 7 8 9 10	0.973 0.988 1.01 1.03 1.05	0.647 0.658 0.670 0.684 0.700	1.16 1.16 1.16 1.16 1.16	0.772 0.772 0.772 0.772 0.772	1.07 1.09 1.11 1.13 1.16	0.713 0.725 0.739 0.754 0.773	1.28 1.28 1.28 1.28 1.28	0.850 0.850 0.850 0.850 0.850	1.18 1.20 1.22 1.24 1.27	0.785 0.797 0.810 0.826 0.846	1.41 1.41 1.41 1.41 1.41	0.937 0.937 0.937 0.937 0.937			
length, KL (ft), with respect to least radius of gyor Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15	1.08 1.11 1.15 1.19 1.23	0.719 0.739 0.763 0.789 0.817	1.17 1.19 1.22 1.24 1.26	0.781 0.795 0.809 0.823 0.838	1.19 1.23 1.27 1.31 1.36	0.793 0.816 0.842 0.871 0.903	1.29 1.32 1.34 1.37 1.40	0.861 0.877 0.894 0.911 0.929	1.31 1.34 1.39 1.43 1.49	0.869 0.894 0.923 0.955 0.990	1.43 1.46 1.49 1.52 1.55	0.951 0.969 0.989 1.01 1.03			
, with respect to ength, L_b (ft), for	16 17 18 19 20	1.28 1.33 1.39 1.45 1.52	0.849 0.884 0.924 0.967 1.01	1.28 1.31 1.33 1.36 1.39	0.854 0.870 0.887 0.905 0.923	1.41 1.47 1.54 1.61 1.69	0.939 0.979 1.02 1.07 1.12	1.42 1.45 1.48 1.51 1.55	0.947 0.966 0.986 1.01 1.03	1.55 1.61 1.69 1.77 1.86	1.03 1.07 1.12 1.18 1.23	1.58 1.61 1.65 1.69 1.72	1.05 1.07 1.10 1.12 1.15			
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm J_0}$ or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	22 24 26 28 30	1.69 1.89 2.14 2.45 2.82	1.13 1.26 1.43 1.63 1.87	1.45 1.51 1.58 1.65 1.74	0.961 1.00 1.05 1.10 1.16	1.88 2.11 2.39 2.74 3.14	1.25 1.40 1.59 1.82 2.09	1.62 1.69 1.78 1.87 1.97	1.08 1.13 1.18 1.24 1.31	2.06 2.32 2.63 3.02 3.46	1.37 1.54 1.75 2.01 2.30	1.81 1.90 2.00 2.11 2.24	1.20 1.26 1.33 1.41 1.49			
Effeci	32 34 36 38 40	3.20 3.62 4.06 4.52 5.01	2.13 2.41 2.70 3.01 3.33	1.83 1.97 2.12 2.28 2.44	1.22 1.31 1.41 1.52 1.62	3.58 4.04 4.53 5.05 5.59	2.38 2.69 3.01 3.36 3.72	2.12 2.31 2.50 2.69 2.88	1.41 1.53 1.66 1.79 1.91	3.94 4.45 4.99 5.56 6.16	2.62 2.96 3.32 3.70 4.10	2.46 2.69 2.92 3.14 3.37	1.64 1.79 1.94 2.09 2.24			
				0	ther Co	ıstants	and Pro	perties								
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,		4.7 0.9 1.7	930		14 619 762	1.	.22 02 26		18 682 339	1.	.61 1.07 1.61 1.0 .69 1.12 1.65 1.1 .77 1.18 1.69 1.1 .86 1.23 1.72 1.1 2.06 1.37 1.81 1.2 2.32 1.54 1.90 1.2 2.63 1.75 2.00 1.3 3.02 2.01 2.11 1.4 4.46 2.30 2.24 1.4 3.94 2.62 2.46 1.6 4.45 2.96 2.69 1.7 3.99 3.32 2.92 1.8 3.56 3.70 3.14 2.0					
r _x	·/r _y		3.	11			3.	12			3.	12				
r_y ,	, in.		2.	92			2.	90			2.	89				
^c Shape is	s slender fo	r compre	ssion with	$F_y = 50$	ksi.											

^c Shape is slender for compression with $F_v = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W2	21×					
Sna	ape		9	3			8	3 ^c			7	3 ^c	
		p×	10 ³	b _x ×	(10³	p×	10 ³	b _x >	(10³	p×	10 ³	b _x ×	< 10³
Des	ign	(kip	os) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.22	0.814	1.61	1.07	1.38	0.916	1.82	1.21	1.62	1.08	2.07	1.38
	6	1.37	0.910	1.61	1.07	1.53	1.02	1.82	1.21	1.78	1.19	2.07	1.38
	7	1.42	0.948	1.63	1.09	1.60	1.06	1.85	1.23	1.85	1.23	2.11	1.40
2	8	1.49	0.993	1.68	1.12	1.67	1.11	1.90	1.26	1.93	1.28	2.18	1.45
Ę.	9	1.57	1.05	1.73	1.15	1.77	1.17	1.96	1.30	2.02	1.35	2.25	1.49
ratic 	10	1.67	1.11	1.78	1.18	1.87	1.25	2.02	1.34	2.14	1.43	2.32	1.55
of gy ding	11	1.78	1.19	1.83	1.22	2.00	1.33	2.09	1.39	2.29	1.52	2.40	1.60
s o	12	1.91	1.27	1.89	1.25	2.15	1.43	2.16	1.43	2.47	1.64	2.49	1.66
diu is b	13	2.07	1.38	1.95	1.29	2.33	1.55	2.23	1.48	2.67	1.78	2.58	1.72
r za	14	2.25	1.50	2.01	1.34	2.53	1.69	2.31	1.54	2.92	1.94	2.68	1.79
leas X-X	15	2.46	1.64	2.08	1.38	2.78	1.85	2.40	1.60	3.20	2.13	2.79	1.86
t t	16	2.71	1.80	2.15	1.43	3.06	2.04	2.49	1.66	3.54	2.35	2.91	1.94
(£)	17	3.01	2.00	2.23	1.48	3.40	2.26	2.59	1.72	3.93	2.62	3.04	2.02
47	18	3.36	2.23	2.32	1.54	3.80	2.53	2.70	1.80	4.41	2.93	3.18	2.11
₹ ₹	19	3.74	2.49	2.41	1.60	4.23	2.82	2.82	1.88	4.91	3.27	3.33	2.22
, wi Leng	20	4.15	2.76	2.51	1.67	4.69	3.12	2.95	1.96	5.44	3.62	3.58	2.38
7 (ff)	22	5.02	3.34	2.77	1.84	5.67	3.78	3.37	2.24	6.58	4.38	4.13	2.75
ı, K					2.07							4.68	3.12
효	26	7.01	4.66	3.46	2.30	7.93	5.27	4.25	2.83	9.19	6.12	5.24	3.49
e e	28	8.13	5.41	3.81	2.54	9.19	6.12	4.69	3.12	10.7	7.09	5.81	3.86
tive	30	9.33	6.21	4.16	2.77	10.6	7.02	5.13	3.41	12.2	8.14	6.37	4.24
Effec													
				0	ther Co	ıstants	and Pro	perties					
				6.8	33			7.7	77	13	.4	8.	91
								0.9	911			1.	03
$t_r \times 10^3$,	(kips) ⁻¹	1	.50	1.0	00	1	.68	1.1	12	1	.91	1.	27
Color Colo		77											
r_y ,	in.		1.5	84			1.	83			1.	81	
	slender fo	r oomnro	ooion with	. E _ EO	koi					-			

 $^{^{\}rm c}$ Shape is slender for compression with $F_{\rm y} = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sha	аре							21×					
			_	8 ^c				2 ^c				7 c	
			10 ³		< 10 ³		10 ³		(10 ³		10 ³		< 10 ³
Des	sign		s) ⁻¹	٠	-ft) ⁻¹		s) ⁻¹		-ft) ⁻¹		s) ⁻¹		-ft) ⁻¹
		ASD	LRFD										
	0	1.77	1.18	2.23	1.48	1.98	1.31	2.47	1.65	2.18	1.45	2.76	1.84
ration, r _y , g	6 7 8 9 10	1.95 2.02 2.10 2.21 2.33	1.30 1.34 1.40 1.47 1.55	2.23 2.27 2.35 2.43 2.51	1.48 1.51 1.56 1.62 1.67	2.18 2.26 2.35 2.47 2.61	1.45 1.50 1.56 1.64 1.74	2.47 2.54 2.62 2.71 2.81	1.65 1.69 1.74 1.81 1.87	2.56 2.73 2.94 3.21 3.56	1.71 1.82 1.96 2.14 2.37	2.91 3.04 3.19 3.35 3.53	1.94 2.03 2.12 2.23 2.35
length, $\it KL$ (ft), with respect to least radius of gyr or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	11 12 13 14 15	2.48 2.67 2.89 3.16 3.47	1.65 1.77 1.92 2.10 2.31	2.61 2.70 2.81 2.93 3.05	1.73 1.80 1.87 1.95 2.03	2.78 2.98 3.22 3.53 3.89	1.85 1.98 2.14 2.35 2.59	2.92 3.04 3.16 3.30 3.44	1.94 2.02 2.10 2.19 2.29	4.02 4.60 5.32 6.17 7.08	2.68 3.06 3.54 4.10 4.71	3.73 3.95 4.20 4.48 4.94	2.48 2.63 2.79 2.98 3.29
), with respect to Length, L_b (ft), for	16 17 18 19 20	3.84 4.27 4.79 5.34 5.91	2.55 2.84 3.19 3.55 3.93	3.19 3.34 3.50 3.72 4.03	2.12 2.22 2.33 2.48 2.68	4.31 4.83 5.41 6.03 6.68	2.87 3.21 3.60 4.01 4.45	3.61 3.78 3.98 4.33 4.70	2.40 2.52 2.65 2.88 3.13	8.06 9.10 10.2 11.4 12.6	5.36 6.05 6.79 7.56 8.38	5.47 6.01 6.55 7.10 7.65	3.64 4.00 4.36 4.72 5.09
Effective length, KL (ft), with respect to least radius of gyration, r_{y_0} or Unbraced Length, L_b (ft), for X-X axis bending	22 24 26 28 30	7.16 8.52 9.99 11.6 13.3	4.76 5.67 6.65 7.71 8.85	4.66 5.31 5.95 6.60 7.26	3.10 3.53 3.96 4.39 4.83	8.09 9.63 11.3 13.1	5.38 6.40 7.52 8.72	5.46 6.24 7.02 7.81	3.63 4.15 4.67 5.20	15.2	10.1	8.76	5.83
Effec													
				0	ther Co	nstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,	(kip-ft) ⁻¹ (kips) ⁻¹ (kips) ⁻¹		.6 .67 .05	1.	71 11 37		.4 .83 .24		.9 .21 .49		.1 .00 .46	l	.0 .33 .64
r_{x}	/r _y		4.	78			4.	82			6.	19	
r_{v}	in.		1.	80			1.	77			1.	35	
	olondor fo				les!								

^c Shape is slender for compression with $F_y = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

01-							W2	21×					
Sna	ape		5	5 ^c			5	Oc			48	c, f	
		p×	10 ³	b _x >	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip	-ft) ^{−1}	(kip	s)-1	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.29	1.52	2.83	1.88	2.54	1.69	3.24	2.15	2.71	1.80	3.36	2.23
	6	2.52	1.68	2.83	1.88	3.01	2.00	3.45	2.30	3.00	1.99	3.36	2.23
	7	2.61	1.74	2.92	1.94	3.22	2.14	3.63	2.41	3.11	2.07	3.47	2.31
ž	8	2.73	1.81	3.02	2.01	3.48	2.31	3.81	2.54	3.25	2.16	3.61	2.40
'n.	9	2.86	1.91	3.14	2.09	3.81	2.54	4.02	2.68	3.42	2.28	3.76	2.50
ratio	10	3.03	2.02	3.27	2.17	4.25	2.82	4.26	2.83	3.63	2.42	3.92	2.61
of gy ding	11	3.23	2.15	3.40	2.26	4.83	3.21	4.52	3.01	3.88	2.58	4.10	2.73
is o	12	3.47	2.31	3.55	2.36	5.57	3.71	4.82	3.21	4.19	2.79	4.30	2.86
ig II	13	3.76	2.50	3.71	2.47	6.52	4.34	5.16	3.43	4.56	3.04	4.51	3.00
ay tr	14	4.11	2.73	3.89	2.59	7.56	5.03	5.67	3.77	5.02	3.34	4.74	3.16
leas X-X	15	4.55	3.03	4.08	2.71	8.68	5.77	6.36	4.23	5.60	3.72	5.01	3.33
t to	16	5.07	3.38	4.29	2.86	9.87	6.57	7.06	5.16 3.43 4.56 3.04 4.51 5.67 3.77 5.02 3.34 4.74 6.36 4.23 5.60 3.72 5.01 7.06 4.70 6.31 4.20 5.30 7.78 5.17 7.13 4.74 5.75 8.51 5.66 7.99 5.32 6.35 9.24 6.15 8.90 5.92 6.97 9.99 6.65 9.86 6.56 7.60		3.52		
⊨ ge (±)	17	5.71	3.80	4.53	3.01	11.1	7.42	_	5.17		4.74	5.75	3.82
res L _b	18	6.40	4.26	4.92	3.27	12.5	8.31				l		4.22
E E	19	7.13	4.75	5.38	3.58	13.9	9.26	9.24	6.15	8.90	5.92	6.97	4.63
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	20	7.90	5.26	5.86	3.90	15.4	10.3	9.99	6.65	9.86	6.56	7.60	5.06
#) pe	21	8.71	5.80	6.34	4.22	17.0	11.3	10.7	7.15	10.9	7.23	8.25	5.49
ı, K	22	9.56	6.36	6.84	4.55					11.9	7.94	8.91	5.93
동물	23	10.5	6.95	7.34	4.88					13.0	8.68	9.58	6.37
e e	24	11.4	7.57	7.84	5.22					14.2	9.45	10.3	6.82
tive	25	12.3	8.22	8.35	5.56					15.4	10.3	10.9	7.28
ffec	26	13.4	8.89	8.87	5.90					16.7	11.1	11.6	7.75
ш	27	14.4	9.58	9.38	6.24					18.0	12.0	12.3	8.22
	28	15.5	10.3	9.90	6.59								
	l			0	ther Co	nstants	and Pro	perties	I				
$b_V \times 10^3$, (kip-ft) ⁻¹	19.	.4	12	.9	29	.2	19	.4	24	.2	16	.1
$t_{V} \times 10^{3}$.06		.37		.27		.51		.37		.58
$t_r \times 10^3$.53		.69	2	.79		.86		.91		.94
r _x	·/r _y		4.	86			6.	29			4.	96	
r_{v}	, in.		1.	73			1.	30			1.	66	
	s slender fo	r compre	eeion witl	h <i>E</i> _ 50	kei								

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

 $^{^{\}rm f}$ Shape does not meet compact limit for flexure with $\emph{F}_{\emph{y}} = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

			w	M					14/4	0			
Sha	аре			21× 4¢			21	1 ^h	WI	8×	20	3h	
		nv	10 ³	-	103	p×		-	103	nv	103		10 ³
Des	ian		s) ⁻¹	(kip-		(kip			-ft)-1	(kip			-ft)-1
D03	ngn	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.97	1.98	3.73	2.48	0.365	0.243	0.473	0.314	0.401	0.267	0.527	0.351
	6 7	3.53	2.35 2.51	4.03 4.24	2.68 2.82	0.381	0.253 0.257	0.473 0.473	0.314	0.419	0.279	0.527 0.527	0.351 0.351
يّ	8	4.09	2.72	4.48	2.98	0.394	0.262	0.473	0.314	0.434	0.289	0.527	0.351
'n.	9	4.50	3.00	4.75	3.16	0.402	0.268	0.473	0.314	0.443	0.295	0.527	0.351
ratio	10	5.03	3.35	5.05	3.36	0.412	0.274	0.473	0.314	0.454	0.302	0.527	0.351
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	11	5.74	3.82	5.39	3.59	0.422	0.281	0.474	0.315	0.466	0.310	0.530	0.352
us o	12	6.68	4.45	5.79	3.85	0.434	0.289	0.477	0.317	0.480	0.319	0.533	0.355
adi xis	13	7.84	5.22	6.25	4.16	0.447	0.298	0.480	0.319	0.495	0.329	0.537	0.357
ıstı -X a	14 15	9.10 10.4	6.05 6.95	7.11 7.99	4.73 5.32	0.462 0.479	0.308 0.319	0.483 0.486	0.321 0.323	0.512 0.530	0.340 0.353	0.540 0.544	0.359 0.362
or k													
ct to t), fo	16	11.9	7.91	8.90	5.92	0.497	0.331	0.489	0.325	0.551	0.367	0.548	0.364
spe	17 18	13.4 15.0	8.93 10.0	9.83	6.54 7.18	0.517 0.540	0.344 0.359	0.492	0.327 0.329	0.574 0.600	0.382	0.551 0.555	0.367 0.369
hre	19	16.8	11.1	11.8	7.10	0.564	0.339	0.498	0.329	0.628	0.399	0.559	0.372
, wit	20	18.6	12.4	12.7	8.47	0.592	0.394	0.501	0.333	0.659	0.439	0.563	0.374
E G	22					0.655	0.436	0.507	0.338	0.732	0.487	0.571	0.380
, KL	24					0.732	0.487	0.514	0.342	0.821	0.546	0.579	0.385
를 를 근	26					0.826	0.550	0.521	0.347	0.929	0.618	0.588	0.391
o e	28					0.942	0.627	0.528	0.351	1.06	0.708	0.596	0.397
ctive	30					1.08	0.720	0.535	0.356	1.22	0.813	0.605	0.403
Effe	32					1.23	0.819	0.542	0.361	1.39	0.925	0.614	0.409
_	34					1.39	0.924	0.550	0.366	1.57	1.04	0.624	0.415
	36 38					1.56 1.74	1.04 1.15	0.557 0.565	0.371 0.376	1.76 1.96	1.17 1.30	0.634	0.422 0.428
	40					1.92	1.28	0.573	0.382	2.17	1.45	0.654	0.425
			<u> </u>	0	ther Cor	ı ıstants	and Pro	perties					I
$b_{\rm V} \times 10^3$, (kip-ft)-1	35	.0	23	.3	1.7	72	1.1	5	1.9	93	1.2	28
$t_y \times 10^3$,	(kips)-1	2	.57	l	.71		365	l	243	0.4			267
$t_r \times 10^3$,	(kips) ⁻¹	3	.16	2	.10	0.4	148	0.2	299	0.4	193	0.3	328
r_X	/r _y		6.	40			2.	96			2.	96	
r _y ,	in.		1.	26			2.	95			2.	91	

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification Section A3.1c.* Note: Heavy line indicates $KL/r_{\rm y}$ equal to or greater than 200.

 $F_y = 50 \text{ ksi}$

Ch							W1	8×					
Sna	ape		25	8 ^h			23	4 ^h			2	11	
		p×	10 ³	b _x ×	103	p×	10 ³	b _X ×	10 ³	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.439	0.292	0.583	0.388	0.487	0.324	0.649	0.432	0.536	0.357	0.727	0.484
	6	0.460	0.306	0.583	0.388	0.510	0.339	0.649	0.432	0.562	0.374	0.727	0.484
	7	0.468	0.311	0.583	0.388	0.519	0.345	0.649	0.432	0.572	0.381	0.727	0.484
7,	8	0.477	0.317	0.583	0.388	0.529	0.352	0.649	0.432	0.584	0.388	0.727	0.484
'n.	9	0.487	0.324	0.583	0.388	0.541	0.360	0.649	0.432	0.597	0.397	0.727	0.484
ratio	10	0.499	0.332	0.583	0.388	0.554	0.369	0.649	0.432	0.612	0.407	0.727	0.484
Effective length, KL (ft), with respect to least radius of gyration, $r_{y_{i}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	11	0.512	0.341	0.587	0.390	0.570	0.379	0.654	0.435	0.629	0.419	0.734	0.488
is o	12	0.528	0.351	0.591	0.393	0.587	0.390	0.659	0.438	0.649	0.432	0.740	0.493
adit (is I	13	0.545	0.362	0.595	0.396	0.606	0.403	0.664	0.442	0.671	0.446	0.747	0.497
e ti	14	0.564	0.375	0.600	0.399	0.628	0.418	0.670	0.446	0.695	0.462	0.754	0.502
-X-)	15	0.585	0.389	0.604	0.402	0.652	0.434	0.675	0.449	0.722	0.480	0.761	0.506
, for	16	0.608	0.405	0.609	0.405	0.678	0.451	0.681	0.453	0.752	0.501	0.768	0.511
ec (#)	17	0.634	0.422	0.613	0.408	0.708	0.471	0.687	0.457	0.786	0.523	0.775	0.516
res	18	0.663	0.441	0.618	0.411	0.741	0.493	0.692	0.461	0.823	0.548	0.782	0.520
£ £	19	0.695	0.462	0.623	0.414	0.777	0.517	0.698	0.465	0.865	0.575	0.790	0.525
, w Len	20	0.730	0.486	0.627	0.417	0.818	0.544	0.704	0.469	0.910	0.606	0.797	0.531
pec Sed	22	0.812	0.541	0.637	0.424	0.912	0.607	0.717	0.477	1.02	0.677	0.813	0.541
ı, K	24	0.913	0.607	0.648	0.431	1.03	0.683	0.729	0.485	1.15	0.765	0.829	0.552
ag II	26	1.04	0.690	0.658	0.438	1.17	0.778	0.742	0.494	1.31	0.873	0.846	0.563
声	28	1.19	0.793	0.669	0.445	1.35	0.897	0.756	0.503	1.52	1.01	0.864	0.575
tive	30	1.37	0.910	0.680	0.453	1.55	1.03	0.770	0.513	1.74	1.16	0.882	0.587
ffec	32	1.56	1.04	0.692	0.460	1.76	1.17	0.785	0.522	1.98	1.32	0.902	0.600
ш	34	1.76	1.17	0.704	0.468	1.99	1.32	0.800	0.533	2.24	1.49	0.922	0.613
	36	1.97	1.31	0.716	0.477	2.23	1.48	0.816	0.543	2.51	1.67	0.943	0.627
	38	2.19	1.46	0.729	0.485	2.48	1.65	0.833	0.554	2.79	1.86	0.965	0.642
	40	2.43	1.62	0.743	0.494	2.75	1.83	0.850	0.566	3.09	2.06	0.988	0.657
				0	ther Cor	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹	2.	15	1.4	13	2.3	39	1.5	59	2.7	70	1.8	30
$t_y \times 10^3$			139		292		487	ı	324		536	l	357
$t_r \times 10^3$,	(kips) ⁻¹	0.0	540	0.3	360	0.5	598	0.3	399	0.6	659	0.4	139
r_{χ}	/r _y		2.	96			2.	96			2.	96	
r_{v}	in.		2.	88			2.	85			2.	82	
	hickness a	roator tha	ın 2 in Sr	nacial ran	uiromonto	may and	nly ner Al	SC Specifi	ication Co	ction A3	10		

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

Table 6-1 (continued) Combined Flexure and Axial Force

-							W1	8×					
Sha	ipe		19	32			17	75			1	58	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	ign	(kip	s) ⁻¹	(kip-	·ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s)-1	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.594	0.395	0.806	0.536	0.650	0.432	0.895	0.596	0.721	0.480	1.00	0.666
	6	0.624	0.415	0.806	0.536	0.683	0.454	0.895	0.596	0.759	0.505	1.00	0.666
	7	0.635	0.423	0.806	0.536	0.695	0.463	0.895	0.596	0.773	0.514	1.00	0.666
تح	8	0.648	0.431	0.806	0.536	0.710	0.472	0.895	0.596	0.789	0.525	1.00	0.666
Ľ,	9	0.663	0.441	0.806	0.536	0.727	0.484	0.895	0.596	0.808	0.538	1.00	0.666
ratic	10	0.680	0.453	0.807	0.537	0.746	0.496	0.898	0.597	0.830	0.552	1.00	0.668
f gy ding	11	0.700	0.466	0.815	0.542	0.768	0.511	0.907	0.604	0.855	0.569	1.02	0.676
s o	12	0.722	0.480	0.823	0.548	0.793	0.528	0.917	0.610	0.883	0.587	1.03	0.685
diu is t	13	0.747	0.497	0.831	0.553	0.821	0.546	0.927	0.617	0.914	0.608	1.04	0.693
t ra	14	0.775	0.515	0.840	0.559	0.852	0.567	0.938	0.624	0.950	0.632	1.05	0.702
eas X-X	15	0.806	0.536	0.848	0.564	0.887	0.590	0.948	0.631	0.989	0.658	1.07	0.710
espect to least radius of gyl L_b (ff), for X-X axis bending	16	0.840	0.559	0.857	0.570	0.926	0.616	0.959	0.638	1.03	0.687	1.08	0.719
(#)	17	0.879	0.585	0.866	0.576	0.969	0.645	0.970	0.645	1.08	0.720	1.10	0.729
esp L _b (18	0.921	0.613	0.875	0.582	1.02	0.677	0.981	0.653	1.14	0.756	1.11	0.738
≟ ≨	19	0.968	0.644	0.884	0.588	1.07	0.712	0.993	0.661	1.20	0.796	1.12	0.748
Effective length, <i>KL</i> (ft), with respect to least radius of gyration, r_{j_0} or Unbraced Length, L_b (ft), for X-X axis bending	20	1.02	0.679	0.894	0.595	1.13	0.752	1.00	0.669	1.26	0.841	1.14	0.758
(#)	22	1.14	0.761	0.913	0.608	1.27	0.844	1.03	0.685	1.42	0.946	1.17	0.779
rac , K	19 0.96 20 1.03 22 1.14 24 1.30 26 1.44 28 1.77		0.862	0.934	0.621	1.44	0.958	1.06	0.702	1.62	1.08	1.20	0.801
振숙	24 1 26 1		0.987	0.955	0.636	1.65	1.10	1.08	0.720	1.86	1.24	1.24	0.824
	28	1.72	1.14	0.978	0.651	1.92	1.28	1.11	0.739	2.16	1.44	1.28	0.849
tive	30	1.97	1.31	1.00	0.666	2.20	1.47	1.14	0.759	2.48	1.65	1.32	0.875
ffec	32	2.24	1.49	1.03	0.683	2.51	1.67	1.17	0.780	2.82	1.88	1.36	0.903
ш	34	2.53	1.68	1.05	0.700	2.83	1.88	1.21	0.803	3.19	2.12	1.40	0.933
	36	2.84	1.89	1.08	0.718	3.17	2.11	1.24	0.827	3.57	2.38	1.45	0.965
	38	3.16	2.10	1.11	0.737	3.53	2.35	1.28	0.852	3.98	2.65	1.50	0.999
	40	3.50	2.33	1.14	0.757	3.91	2.60	1.32	0.878	4.41	2.93	1.56	1.04
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$	(kip-ft)-1	2.9	99	1.9	99	3.3	36	2.2	24	3.7	76	2.5	50
$t_y \times 10^3$,		0.5	594	0.3	395	0.6	350	0.4	132	0.7	'21	0.4	180
$t_r \times 10^3$, (kips) ⁻¹ 0.730 0.487 0.798 0.532 0.886 0.59									591				
r _x	/r _y		2.	97			2.	97			2.	96	
r_y ,	in.		2.	79			2.	76			2.	74	
,										<u> </u>			

 $F_y = 50 \text{ ksi}$

01-							W1	8×					
Sha	ape		14	13			1;	30			11	19	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	ign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s)-1	(kip	-ft) ^{−1}	(kip	s)-1	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.795	0.529	1.11	0.736	0.872	0.580	1.23	0.817	0.952	0.633	1.36	0.905
	6	0.837	0.557	1.11	0.736	0.919	0.611	1.23	0.817	1.00	0.667	1.36	0.905
	7	0.853	0.567	1.11	0.736	0.936	0.623	1.23	0.817	1.02	0.680	1.36	0.905
چ	8	0.871	0.580	1.11	0.736	0.957	0.636	1.23	0.817	1.04	0.695	1.36	0.905
'n,	9	0.892	0.594	1.11	0.736	0.980	0.652	1.23	0.817	1.07	0.712	1.36	0.905
ratio	10	0.917	0.610	1.11	0.740	1.01	0.670	1.24	0.823	1.10	0.732	1.37	0.912
f gy ding	11	0.945	0.629	1.13	0.750	1.04	0.691	1.25	0.835	1.13	0.755	1.39	0.926
s o	12	0.976	0.649	1.14	0.760	1.07	0.714	1.27	0.847	1.17	0.781	1.41	0.941
diu is t	13	1.01	0.673	1.16	0.770	1.11	0.741	1.29	0.859	1.22	0.810	1.44	0.956
t ra	14	1.05	0.699	1.17	0.780	1.16	0.770	1.31	0.872	1.27	0.842	1.46	0.972
espect to least radius of gyl L_b (ff), for X-X axis bending	15	1.10	0.729	1.19	0.791	1.21	0.803	1.33	0.886	1.32	0.878	1.49	0.989
for for	16	1.14	0.762	1.21	0.802	1.26	0.840	1.35	0.899	1.38	0.919	1.51	1.01
(ff)	17 1.20 0.798 1.22 0.814 1.32 0.881 1.37 0.913 1.45 0.964 1.5 18 1.26 0.839 1.24 0.825 1.39 0.926 1.39 0.928 1.52 1.01 1.5				1.54	1.02							
esp dsə	18		0.839	1.24	0.825		0.926	1.39	0.928	1.52	1.01	1.57	1.04
ਜ਼ ਜ਼	19	1.33	0.884	1.26	0.838	1.47	0.977	1.42	0.943	1.61	1.07	1.59	1.06
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	20	1.41	0.935	1.28	0.850	1.55	1.03	1.44	0.959	1.70	1.13	1.62	1.08
(ft) ed L	22	1.58	1.05	1.32	0.876	1.75	1.17	1.49	0.992	1.92	1.28	1.69	1.12
rac rac	24	1.81	1.20	1.36	0.904	2.00	1.33	1.54	1.03	2.20	1.46	1.75	1.17
la de	26	2.08	1.39	1.40	0.933	2.32	1.54	1.60	1.06	2.55	1.70	1.83	1.21
or L	28	2.42	1.61	1.45	0.965	2.69	1.79	1.66	1.10	2.96	1.97	1.90	1.27
ive	30	2.77	1.85	1.50	0.999	3.09	2.05	1.73	1.15	3.39	2.26	1.99	1.32
ffect	32	3.16	2.10	1.56	1.03	3.51	2.34	1.80	1.20	3.86	2.57	2.08	1.39
ш	34	3.56	2.37	1.61	1.07	3.97	2.64	1.87	1.25	4.36	2.90	2.19	1.46
	36	4.00	2.66	1.68	1.12	4.45	2.96	1.96	1.30	4.89	3.25	2.34	1.56
	38	4.45	2.96	1.74	1.16	4.95	3.30	2.08	1.38	5.45	3.62	2.50	1.66
	40	4.93	3.28	1.82	1.21	5.49	3.65	2.20	1.47	6.04	4.02	2.65	1.77
				0	ther Cor	nstants	and Pro	perties					
$b_y \times 10^3$	(kip-ft)-1	4.	17	2.7	78	4.6	64	3.0)9	5.1	16	3.4	43
$t_{V} \times 10^{3}$	(kips)-1									633			
$t_r \times 10^3$	$t_r \times 10^3$, (kips) ⁻¹ 0.977 0.651 1.07 0.714 1.17 0.778												
r_{χ}	/r _y		2.	97			2.	97			2.	94	
r_{ν} ,	in.		2.	72			2.	70			2.	69	

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	ape							8×					
)6				7				6	
			10 ³		103		10 ³		103		10 ³		(10 ³
Des	sign		s) ⁻¹		-ft) ⁻¹		s)-1		-ft) ⁻¹		s) ⁻¹		-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.07	0.715	1.55	1.03	1.17	0.780	1.69	1.12	1.32	0.878	1.92	1.27
ration, r _y ,	6 7 8 9 10	1.13 1.16 1.18 1.21 1.25	0.754 0.769 0.786 0.806 0.829	1.55 1.55 1.55 1.55 1.56	1.03 1.03 1.03 1.03 1.04	1.24 1.26 1.29 1.32 1.36	0.823 0.839 0.858 0.880 0.906	1.69 1.69 1.69 1.71	1.12 1.12 1.12 1.12 1.14	1.39 1.42 1.46 1.49 1.54	0.928 0.946 0.968 0.994 1.02	1.92 1.92 1.92 1.92 1.94	1.27 1.27 1.27 1.27 1.29
least radius of gy X-X axis bending	11 12 13 14 15	1.29 1.33 1.38 1.44 1.50	0.856 0.885 0.919 0.957 0.999	1.59 1.62 1.65 1.68 1.71	1.06 1.08 1.10 1.12 1.14	1.41 1.45 1.51 1.57 1.64	0.935 0.968 1.00 1.05 1.09	1.74 1.77 1.81 1.84 1.88	1.16 1.18 1.20 1.23 1.25	1.59 1.64 1.71 1.78 1.86	1.06 1.09 1.14 1.18 1.24	1.98 2.02 2.06 2.11 2.15	1.32 1.35 1.37 1.40 1.43
Effective length, KL (ft), with respect to least radius of gyration, $t_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	16 17 18 19 20	1.57 1.65 1.74 1.84 1.95	1.05 1.10 1.16 1.22 1.30	1.74 1.78 1.81 1.85 1.89	1.16 1.18 1.21 1.23 1.26	1.72 1.81 1.90 2.01 2.13	1.14 1.20 1.27 1.34 1.42	1.92 1.96 2.00 2.04 2.09	1.28 1.30 1.33 1.36 1.39	1.95 2.05 2.16 2.29 2.43	1.30 1.36 1.44 1.52 1.61	2.20 2.25 2.31 2.36 2.42	1.47 1.50 1.53 1.57 1.61
ive length, <i>KL</i> (ft) or Unbraced L	22 24 26 28 30	2.21 2.53 2.94 3.41 3.92	1.47 1.68 1.96 2.27 2.61	1.97 2.06 2.15 2.26 2.38	1.31 1.37 1.43 1.50 1.58	2.42 2.78 3.24 3.75 4.31	1.61 1.85 2.15 2.50 2.87	2.18 2.29 2.41 2.54 2.68	1.45 1.52 1.60 1.69 1.78	2.76 3.17 3.70 4.29 4.93	1.83 2.11 2.46 2.86 3.28	2.54 2.68 2.84 3.01 3.29	1.69 1.79 1.89 2.00 2.19
Elfective 30 30 32 34 36 38 40		4.46 5.03 5.64 6.29 6.97	2.97 3.35 3.75 4.18 4.63	2.51 2.72 2.92 3.12 3.32	1.67 1.81 1.94 2.08 2.21	4.90 5.53 6.20 6.91 7.66	3.26 3.68 4.13 4.60 5.10	2.91 3.15 3.38 3.62 3.86	1.93 2.09 2.25 2.41 2.57	5.61 6.33 7.10 7.91 8.76	3.73 4.21 4.72 5.26 5.83	3.59 3.90 4.21 4.51 4.82	2.39 2.60 2.80 3.00 3.21
				0	ther Cor	nstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,		1.	89 07 32	l	92 715 379	1.	44 17 44		29 780 960	1.	36 32 62	4.9 0.8 1.0	378
r _x	/r _y		2.	95			2.	95			2.	95	
r_{V}	r_y , in.			66			2.	65			2.	63	

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W1	8×					
500	ape		7	6c			7	1			6	5	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip	-ft) ^{−1}	(kip	s)-1	(kip	-ft) ^{−1}	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.52	1.01	2.19	1.45	1.60	1.06	2.44	1.62	1.75	1.16	2.68	1.78
	6	1.59	1.06	2.19	1.45	1.82	1.21	2.44	1.62	2.00	1.33	2.68	1.78
	7	1.62	1.08	2.19	1.45	1.91	1.27	2.51	1.67	2.09	1.39	2.76	1.84
ڪِ	8	1.66	1.10	2.19	1.45	2.02	1.34	2.59	1.72	2.21	1.47	2.85	1.90
Ľ,	9	1.70	1.13	2.19	1.45	2.15	1.43	2.67	1.78	2.36	1.57	2.95	1.96
ratic 	10	1.75	1.16	2.22	1.48	2.30	1.53	2.76	1.83	2.53	1.68	3.05	2.03
Effective length, KL (ft), with respect to least radius of gyration, $\mathit{r_y}$, or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	11	1.81	1.20	2.27	1.51	2.48	1.65	2.85	1.90	2.73	1.82	3.15	2.10
S 0	12	1.87	1.24	2.32	1.54	2.70	1.80	2.95	1.96	2.97	1.98	3.27	2.18
ig t	13	1.94	1.29	2.37	1.58	2.96	1.97	3.05	2.03	3.26	2.17	3.39	2.26
t ra	14	2.03	1.35	2.43	1.62	3.26	2.17	3.17	2.11	3.60	2.40	3.53	2.35
leas X-X	15	2.12	1.41	2.49	1.65	3.63	2.41	3.29	2.19	4.01	2.67	3.67	2.44
t to , for	16	2.22	1.48	2.55	1.69	4.06	2.70	3.42	2.28	4.50	2.99	3.83	2.55
æ (±)	17	2.34	1.56	2.61	1.74	4.58	3.05	3.57	2.37	5.08	3.38	4.00	2.66
q7 Isə.	18	2.47	1.64	2.68	1.78	5.14	3.42	3.72	2.48	5.69	3.79	4.19	2.79
≨ €	19	2.62	1.74	2.75	1.83	5.73	3.81	3.89	2.59	6.34	4.22	4.43	2.95
), wi Lenç	20	2.78	1.85	2.82	1.88	6.34	4.22	4.12	2.74	7.02	4.67	4.76	3.17
t) 7	22	3.16	2.11	2.98	1.98	7.68	5.11	4.69	3.12	8.50	5.66	5.44	3.62
ı, K	24	3.65	2.43	3.16	2.10	9.14	6.08	5.25	3.50	10.1	6.73	6.11	4.07
를 를	26	4.26	2.84	3.36	2.24	10.7	7.13	5.82	3.87	11.9	7.90	6.79	4.51
ᇹᇹ	28	4.94	3.29	3.67	2.44	12.4	8.27	6.38	4.25	13.8	9.16	7.46	4.96
tive	30	5.68	3.78	4.06	2.70								
ffec	32	6.46	4.30	4.45	2.96								
ш	34	7.29	4.85	4.85	3.22								
	36	8.17	5.44	5.24	3.49								
	38	9.11	6.06	5.64	3.75								
	40	10.1	6.71	6.04	4.02								
				0	ther Co	nstants	and Pro	perties					
	, (kip-ft) ⁻¹		44	5.6		14			60	15.	.8	10	
	$\times 10^3$, (kips) ⁻¹ 1.50				997		.60		06		.75		.16
$t_r \times 10^3$,	$\times 10^3$, (kips) ⁻¹ 1.84			1.2	23	1	.96	1.	31	2.	.15	1	.43
r _x	r_x/r_y 2.			96			4.	41			4.	43	
r_{v}	in.		2.	61			1.	70			1.	69	
	s slender fo	r compre	eeinn wit	n F - 50	kei								

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W18

W-Shapes

Sha	ape							8×		ı			
				Oc				5 ^c				Oc	
			10 ³		103	p×			103		10 ³		< 10 ³
Des	sign		s) ⁻¹		-ft) ⁻¹	(kip			-ft) ⁻¹		s) ⁻¹		-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.94	1.29	2.90	1.93	2.14	1.43	3.18	2.12	2.42	1.61	3.53	2.35
	6	2.18	1.45	2.90	1.93	2.40	1.60	3.19	2.12	2.72	1.81	3.55	2.36
	7	2.28	1.52	3.00	1.99	2.51	1.67	3.30	2.20	2.84	1.89	3.68	2.45
'y'	8	2.41	1.60	3.10	2.06	2.64	1.75	3.42	2.27	2.98	1.98	3.81	2.54
ţion	9 10	2.57	1.71 1.83	3.20	2.13 2.21	2.80	1.86 2.00	3.54 3.68	2.36 2.45	3.16 3.37	2.10 2.24	3.96	2.64 2.74
yra		2.76		3.32								4.12	
of g ndin	11	2.98	1.98	3.44	2.29	3.26	2.17	3.83	2.55	3.63	2.42	4.29	2.86
ius	12	3.25	2.16	3.58	2.38	3.55	2.36	3.99	2.65	3.97	2.64	4.48	2.98
radi	13 14	3.56 3.94	2.37 2.62	3.72 3.88	2.48 2.58	3.90 4.32	2.60 2.87	4.16 4.35	2.77 2.89	4.37 4.85	2.91 3.23	4.69 4.91	3.12 3.27
ast -X	15	4.39	2.02	4.05	2.69	4.82	3.21	4.55	3.03	5.42	3.61	5.16	3.43
9 c c													
t), f	16 17	4.94 5.57	3.28 3.71	4.23 4.44	2.82 2.95	5.43 6.13	3.61 4.08	4.78 5.03	3.18 3.35	6.13 6.92	4.08 4.60	5.44 5.76	3.62 3.83
) 95 1-9 (†	18	6.25	4.16	4.66	3.10	6.87	4.00	5.39	3.59	7.76	5.16	6.31	4.20
# ±	19	6.96	4.63	5.02	3.34	7.65	5.09	5.85	3.89	8.64	5.75	6.86	4.57
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	20	7.71	5.13	5.41	3.60	8.48	5.64	6.32	4.20	9.58	6.37	7.43	4.94
E E	22	9.33	6.21	6.19	4.12	10.3	6.83	7.26	4.83	11.6	7.71	8.56	5.70
, KI	24	11.1	7.39	6.98	4.64	12.2	8.13	8.20	5.46	13.8	9.17	9.72	6.47
ag Pag	26	13.0	8.67	7.76	5.16	14.3	9.54	9.16	6.09	16.2	10.8	10.9	7.24
声	28	15.1	10.1	8.55	5.69								
tive													
ttec.													
ш													
	<u> </u>		<u> </u>	0	ther Co	nstants	and Pro	perties	<u> </u>		<u> </u>		
$b_y \times 10^3$	$_{y} \times 10^{3}$, (kip-ft) ⁻¹ 17.3				.5	19	.3	12	.8	21.	.5	14	.3
$t_y \times 10^3$.90		.26		.06		.37		.27		.51
$t_r \times 10^3$	(kips) ⁻¹	2	.33	1	.55	2	.53	1	.69	2	.79	1	.86
r_{λ}	r_x/r_y			45			4.	44			4.	47	
r_y	, in.		1.	68			1.	67			1.	65	
	s slender fo	r compre	eeion wit	h <i>F</i> — 50	kei								

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

W18

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

W-Shapes

Design (kips)-1 (kip-ft)-1 (kip-ft)-1 (kip-ft)-1 (kips)-1 (kip-ft)-1 (kips)-1 (kips)-1 <th co<="" th=""><th></th></th>	<th></th>	
ASD LRFD AS	< 10 ³	
0 2.65 1.76 3.93 2.61 3.15 2.10 4.54 3.02 3.71 2.47 5.36 6 3.19 2.12 4.19 2.79 3.79 2.52 4.88 3.25 4.49 2.99 5.84 7 3.42 2.28 4.39 2.92 4.06 2.70 5.13 3.41 4.83 3.21 6.17	-ft) ⁻¹	
6 3.19 2.12 4.19 2.79 3.79 2.52 4.88 3.25 4.49 2.99 5.84 7 3.42 2.28 4.39 2.92 4.06 2.70 5.13 3.41 4.83 3.21 6.17	LRFD	
7 3.42 2.28 4.39 2.92 4.06 2.70 5.13 3.41 4.83 3.21 6.17	3.56	
10 4.66 3.10 5.12 3.41 5.45 3.63 6.05 4.03 6.61 4.40 7.43 10 4.66 3.10 5.12 3.41 5.45 3.63 6.05 4.03 6.61 4.40 7.43 11 5.32 3.54 5.43 3.61 6.24 4.15 6.44 4.28 7.63 5.08 7.97 12 6.15 4.09 5.77 3.84 7.25 4.82 6.88 4.58 9.00 5.99 8.60 13 7.21 4.80 6.16 4.10 8.51 5.66 7.38 4.91 10.6 7.03 9.67 14 8.36 5.56 6.69 4.45 9.87 6.56 8.30 5.52 12.2 8.15 11.0 15 9.60 6.38 7.45 4.95 11.3 7.54 9.27 6.17 14.1 9.36 12.3 16 10.9 7.26 8.21 5.46 12.9 8.57 10.3 6.83 16.0 10.6 13.6 17 12.3 8.20 8.98 5.97 14.5 9.68 11.3 7.50 18.1 12.0 15.0 18 13.8 9.19 9.75 6.49 16.3 10.9 12.3 8.17 20.2 13.5 16.4 19 15.4 10.2 10.5 7.01 18.2 12.1 13.3 8.85 22.6 15.0 17.9 20 17.1 11.3 11.3 7.53 20.1 13.4 14.4 9.54 21 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 19 15.4 10.2 10.5 7.01 18.2 12.1 13.3 8.85 22.6 15.0 17.9 21 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 19 10.6 7.03 9.67 9.68 1.3 7.50 16.6 19.3 10 10 10 10 10 10 10	3.89 4.11	
11 5.32 3.54 5.43 3.61 6.24 4.15 6.44 4.28 7.63 5.08 7.97 12 6.15 4.09 5.77 3.84 7.25 4.82 6.88 4.58 9.00 5.99 8.60 13 7.21 4.80 6.16 4.10 8.51 5.66 7.38 4.91 10.6 7.03 9.67 14 8.36 5.56 6.69 4.45 9.87 6.56 8.30 5.52 12.2 8.15 11.0 15 9.60 6.38 7.45 4.95 11.3 7.54 9.27 6.17 14.1 9.36 12.3 16 10.9 7.26 8.21 5.46 12.9 8.57 10.3 6.83 16.0 10.6 13.6 17 12.3 8.20 8.98 5.97 14.5 9.68 11.3 7.50 18.1 12.0 15.0 18 13.8 9.19 9.75 6.49 16.3 10.9 12.3 8.17 20.2 13.5 16.4 19 15.4 10.2 10.5 7.01 18.2 12.1 13.3 8.85 22.6 15.0 17.9 20 17.1 11.3 11.3 7.53 20.1 13.4 14.4 9.54 21 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 19 15.4 10.2 10.5 7.01 18.2 12.1 13.3 10.9 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2 19 10.6 7.03 9.67 9.6	4.35 4.63 4.94	
The poet of the po	5.30 5.72 6.43 7.29 8.17	
Effective length, AZ 18.8 12.5 12.1 8.05 22.2 14.8 15.4 10.2	9.07 10.0 10.9 11.9 12.8	
Other Constants and Properties		
$t_y \times 10^3$, (kips) ⁻¹ 2.47 1.65 2.83 1.88 3.24).4 ?.16 ?.66	
r_{x}/r_{y} 5.62 5.68 5.77		
r _y , in. 1.29 1.27 1.22		

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W16

Sha	ape							6 ×					
	apo .			00				9				7	
			10 ³		103		10 ³		(10 ³		10 ³		(10 ³
Des	ign	(kip	s)−1		-ft)−1		s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.14	0.756	1.80	1.20	1.27	0.848	2.04	1.35	1.48	0.983	2.38	1.58
ration, r _y ,	6 7 8 9 10	1.21 1.23 1.26 1.30 1.34	0.803 0.820 0.841 0.865 0.893	1.80 1.80 1.80 1.80 1.83	1.20 1.20 1.20 1.20 1.22	1.36 1.39 1.42 1.46 1.51	0.902 0.922 0.946 0.973 1.01	2.04 2.04 2.04 2.04 2.08	1.35 1.35 1.35 1.36 1.38	1.57 1.61 1.65 1.70 1.76	1.05 1.07 1.10 1.13 1.17	2.38 2.38 2.38 2.39 2.44	1.58 1.58 1.58 1.59 1.62
Effective length, <i>KL</i> (ft), with respect to least radius of gyration, <i>r_f</i> , or Unbraced Length, <i>L_b</i> (ft), for X-X axis bending or Unbraced Length, <i>L_b</i> (ft), for X-X axis bending 5 8 9 7 7 8 10 11 11 11 11 11 11 11 11 11 11 11 11		1.39 1.45 1.51 1.58 1.65	0.925 0.962 1.00 1.05 1.10	1.86 1.89 1.93 1.96 1.99	1.24 1.26 1.28 1.30 1.33	1.57 1.63 1.70 1.78 1.87	1.04 1.08 1.13 1.18 1.24	2.12 2.16 2.20 2.24 2.29	1.41 1.44 1.46 1.49 1.52	1.82 1.89 1.98 2.07 2.18	1.21 1.26 1.32 1.38 1.45	2.49 2.54 2.59 2.65 2.71	1.65 1.69 1.72 1.76 1.80
(ft), with respect to leas ed Length, L_b (ft), for X-X		1.74 1.84 1.95 2.08 2.22	1.16 1.23 1.30 1.38 1.47	2.03 2.07 2.11 2.15 2.19	1.35 1.38 1.40 1.43 1.46	1.97 2.08 2.21 2.35 2.51	1.31 1.39 1.47 1.57 1.67	2.34 2.38 2.43 2.49 2.54	1.55 1.59 1.62 1.65 1.69	2.30 2.43 2.59 2.76 2.95	1.53 1.62 1.72 1.83 1.96	2.77 2.83 2.90 2.97 3.05	1.84 1.89 1.93 1.98 2.03
ive length, KL (ft) or Unbraced L	22 24 26 28 30	2.55 2.98 3.50 4.06 4.66	1.70 1.98 2.33 2.70 3.10	2.28 2.37 2.48 2.59 2.72	1.51 1.58 1.65 1.72 1.81	2.90 3.40 3.99 4.62 5.31	1.93 2.26 2.65 3.08 3.53	2.66 2.79 2.93 3.09 3.27	1.77 1.86 1.95 2.06 2.17	3.41 4.00 4.70 5.45 6.25	2.27 2.66 3.13 3.62 4.16	3.21 3.39 3.59 3.83 4.20	2.14 2.26 2.39 2.55 2.80
Ettective 30 30 32 34 36 38 40		5.30 5.98 6.70 7.47 8.28	3.52 3.98 4.46 4.97 5.51	2.85 3.04 3.26 3.47 3.68	1.90 2.03 2.17 2.31 2.45	6.04 6.82 7.64 8.52 9.44	4.02 4.54 5.09 5.67 6.28	3.54 3.82 4.09 4.36 4.63	2.36 2.54 2.72 2.90 3.08	7.12 8.03 9.01 10.0 11.1	4.73 5.34 5.99 6.68 7.40	4.57 4.94 5.31 5.68 6.04	3.04 3.29 3.53 3.78 4.02
				0	ther Cor	nstants	and Pro	perties					
$b_y \times 10^3$, $t_y \times 10^3$, $t_r \times 10^3$,		1.	.49 .14 .40	I	32 756 930	1.	.41 .27 .57	4.9 0.8 1.0	348	1.	67 48 82	5.7 0.9 1.2	983
r _x	/r _y in.			83 51				83 49				83 47	

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W1	6 ×					
3116	ape		6	7 c			5	7			5	0c	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.71	1.14	2.74	1.82	1.99	1.32	3.39	2.26	2.30	1.53	3.87	2.58
	6	1.81	1.21	2.74	1.82	2.31	1.53	3.43	2.28	2.64	1.76	3.92	2.61
	7	1.86	1.23	2.74	1.82	2.43	1.62	3.54	2.35	2.79	1.85	4.06	2.70
جَ	8	1.90	1.27	2.74	1.82	2.59	1.72	3.65	2.43	2.97	1.97	4.21	2.80
Ľ,	9	1.96	1.31	2.76	1.84	2.77	1.85	3.78	2.51	3.18	2.12	4.36	2.90
ratic	10	2.03	1.35	2.82	1.88	3.00	2.00	3.91	2.60	3.45	2.29	4.53	3.02
Effective length, KL (ft), with respect to least radius of gyration, $\mathit{r_y}$, or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	11	2.10	1.40	2.88	1.92	3.27	2.18	4.05	2.70	3.76	2.50	4.72	3.14
ls o	12	2.19	1.46	2.95	1.96	3.59	2.39	4.20	2.80	4.14	2.75	4.91	3.27
ig t	13	2.29	1.52	3.02	2.01	3.98	2.65	4.37	2.91	4.59	3.06	5.13	3.41
t ra	14	2.40	1.59	3.09	2.06	4.45	2.96	4.55	3.03	5.14	3.42	5.37	3.57
leas X-X	15	2.52	1.68	3.17	2.11	5.02	3.34	4.74	3.15	5.80	3.86	5.63	3.74
t to , for	16	2.66	1.77	3.25	2.16	5.70	3.79	4.95	3.29	6.60	4.39	5.91	3.93
(#)	17	2.82	1.87	3.33	2.22	6.44	4.28	5.18	3.45	7.45	4.96	6.23	4.14
resl	18	2.99	1.99	3.42	2.27	7.22	4.80	5.43	3.61	8.35	5.56	6.74	4.48
∓ €	19	3.19	2.12	3.51	2.34	8.04	5.35	5.81	3.86	9.31	6.19	7.28	4.85
), wi	20	3.42	2.27	3.61	2.40	8.91	5.93	6.23	4.14	10.3	6.86	7.83	5.21
bec	22	3.96	2.63	3.83	2.55	10.8	7.17	7.07	4.70	12.5	8.30	8.93	5.94
ı, K	24	4.65	3.10	4.07	2.71	12.8	8.54	7.90	5.26	14.8	9.88	10.0	6.67
를 를	26	5.46	3.63	4.34	2.89	15.1	10.0	8.74	5.82	17.4	11.6	11.1	7.40
ᇹᇹ	28	6.33	4.21	4.82	3.21								
tive	30	7.27	4.84	5.31	3.53								
ffec	32	8.27	5.50	5.80	3.86								
ш	34	9.34	6.21	6.29	4.18								
	36	10.5	6.96	6.77	4.51								
	38	11.7	7.76	7.26	4.83								
	40	12.9	8.60	7.75	5.15								
				0	ther Co	nstants	and Pro	perties					
	$p_y \times 10^3$, (kip-ft) ⁻¹ 10.0				68	18		12		21		14	
$t_y \times 10^3$.70		13		.99		.32		.27		.51
$t_r \times 10^3$,	(kips) ⁻¹	2	.09	1.	40	2	.44	1	.63	2	.79	1	.86
r _x	r_{x}/r_{y}		2.	83			4.	20			4.	20	
r_{v}	in.		2.	46			1.	60			1.	59	
	s slender fo	r compre	eeion witl	h <i>E</i> — 50	kei								

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W16

W-Shapes

Chi	nno						W1	6 ×					
Sili	ape		4	5 ^c			4	0c			3	6 ^c	
		p×	10 ³	b _x ×	103	p×	10 ³	b _X ×	103	p×	10 ³	b _x >	< 10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s)-1	(kip-	-ft)−1	(kip	s)-1	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.61	1.73	4.33	2.88	3.03	2.02	4.88	3.25	3.42	2.28	5.57	3.70
	6	2.97	1.98	4.40	2.93	3.44	2.29	4.96	3.30	3.91	2.60	5.71	3.80
	7	3.12	2.08	4.56	3.03	3.61	2.40	5.16	3.43	4.10	2.73	5.94	3.95
يخ	8	3.31	2.20	4.74	3.15	3.81	2.54	5.36	3.57	4.35	2.89	6.20	4.12
É	9	3.55	2.36	4.92	3.28	4.06	2.70	5.59	3.72	4.65	3.10	6.48	4.31
ratic 	10	3.85	2.56	5.13	3.41	4.37	2.91	5.83	3.88	5.03	3.34	6.78	4.51
Effective length, $K\!L$ (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	11	4.21	2.80	5.35	3.56	4.75	3.16	6.10	4.06	5.49	3.65	7.12	4.74
ls o	12	4.65	3.09	5.59	3.72	5.24	3.48	6.39	4.25	6.07	4.04	7.49	4.98
ig t	13	5.17	3.44	5.86	3.90	5.83	3.88	6.72	4.47	6.81	4.53	7.90	5.26
t ra	14	5.80	3.86	6.15	4.09	6.54	4.35	7.07	4.71	7.70	5.12	8.36	5.56
leas X-X	15	6.58	4.37	6.47	4.30	7.41	4.93	7.47	4.97	8.80	5.86	8.88	5.91
t to , for	16	7.48	4.98	6.82	4.54	8.43	5.61	7.96	5.30	10.0	6.66	9.79	6.51
(#)	17	8.45	5.62	7.36	4.90	9.52	6.33	8.76	5.83	11.3	7.52	10.8	7.19
resl	18	9.47	6.30	8.03	5.34	10.7	7.10	9.58	6.38	12.7	8.43	11.9	7.89
∓ €	19	10.5	7.02	8.70	5.79	11.9	7.91	10.4	6.93	14.1	9.40	12.9	8.59
), wi	20	11.7	7.78	9.37	6.23	13.2	8.77	11.2	7.48	15.6	10.4	14.0	9.31
bec	21	12.9	8.57	10.0	6.68	14.5	9.66	12.1	8.04	17.3	11.5	15.1	10.0
ı, K	22	14.1	9.41	10.7	7.14	15.9	10.6	12.9	8.61	18.9	12.6	16.2	10.8
를	23	15.5	10.3	11.4	7.59	17.4	11.6	13.8	9.17	20.7	13.8	17.3	11.5
ᅙᇹ	24	16.8	11.2	12.1	8.04	19.0	12.6	14.6	9.74	22.5	15.0	18.4	12.2
tive	25	18.3	12.2	12.8	8.50	20.6	13.7	15.5	10.3	24.4	16.3	19.5	13.0
:Hec	26	19.8	13.1	13.5	8.95	22.3	14.8	16.4	10.9				
Other Constants and Properties													
	$p_y \times 10^3$, (kip-ft) ⁻¹			16	.3	28	.1	18.	.7	33	.0	21	.9
$t_y \times 10^3$.51		.67		.83		.88		.15		.10
$t_r \times 10^3$,	(kips) ⁻¹	3	.08	2	.06	3	.48	2	.32	3	.87	2	.58
r_{χ}	r_x/r_y		4.	24			4.	22			4.	28	
r_{v}	in.		1.	57			1.	57			1.	52	
	s slender fo	r compro	ooion wit	h E _ 50	koi								

^c Shape is slender for compression with $F_y = 50$ ksi.

W16

Table 6-1 (continued) **Combined Flexure** and Axial Force

W-Shapes

 $F_{v} = 50 \text{ ksi}$

					W1	6×			
Sha	ape		3.	1¢			26	c, v	
		p×	10 ³	b _X ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s)-1	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft) ^{−1}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	4.09	2.72	6.60	4.39	5.06	3.37	8.06	5.36
	6	5.08	3.38	7.28	4.85	6.33	4.21	9.07	6.03
	7	5.52	3.67	7.71	5.13	6.91	4.60	9.66	6.43
ž	8	6.10	4.06	8.19	5.45	7.68	5.11	10.3	6.87
io	9	6.87	4.57	8.74	5.82	8.70	5.79	11.1	7.39
yrat g	10	7.89	5.25	9.37	6.23	10.1	6.72	12.0	7.99
of g adin	11	9.28	6.17	10.1	6.71	12.0	8.01	13.1	8.69
us (ber	12	11.0	7.34	11.1	7.35	14.3	9.53	15.0	10.0
radi ixis	13	13.0	8.62	12.6	8.39	16.8	11.2	17.2	11.5
ast -X a	14 15	15.0 17.2	10.0 11.5	14.2 15.8	9.45 10.5	19.5 22.4	13.0 14.9	19.5 21.9	13.0 14.6
o le									
ct tr t), fe	16	19.6	13.1	17.5	11.6	25.5	16.9	24.3	16.2
spe . _b (f	17 18	22.2 24.8	14.7 16.5	19.2 20.9	12.8 13.9	28.7 32.2	19.1 21.4	26.7 29.2	17.8 19.4
h re	19	27.7	18.4	22.6	15.0	32.2	21.4	25.2	19.4
Effective length, KL (ft), with respect to least radius of gyration, r_{γ_r} or Unbraced Length, L_b (ft), for X-X axis bending									
			Oth	er Constai	nts and Pr	operties			
	, (kip-ft) ⁻¹	50	.7	33	.7	65	.0	43	.3
$t_y \times 10^3$.66		.43		.35		.89
$t_r \times 10^3$,	(kips) ⁻¹	4	.49	3	.00	5	.34	3	.56
r_{x}	r/r_y		5.	48			5.	59	
r_y ,	, in.		1.	17			1.	12	

^c Shape is slender for compression with F_y = 50 ksi. v Shape does not meet the h/t_w limit for shear in AISC *Specification* Section G2.1(a) with F_y = 50 ksi; therefore, ϕ_V = 0.90 and

Note: Heavy line indicates KL/r_V equal to or greater than 200.

Table 6-1 (continued) Combined Flexure and Axial Force

							W4	4 ×					
Sha	ape		73	nh				4× 35 ^h			60)5h	
		n×	10 ³		103	p×		-	103	p×			103
Des	sign		s) ⁻¹	(kip-		(kip			-ft)-1	(kip			-ft) ⁻¹
	3	ASD	LRFD										
	0	0.155	0.103	0.215	0.143	0.170	0.113	0.241	0.160	0.188	0.125	0.270	0.180
ľy,	11 12 13	0.165 0.166 0.168	0.110 0.111 0.112	0.215 0.215 0.215	0.143 0.143 0.143	0.181 0.183 0.185	0.120 0.122 0.123	0.241 0.241 0.241	0.160 0.160 0.160	0.200 0.202 0.204	0.133 0.134 0.136	0.270 0.270 0.270	0.180 0.180 0.180
yration, ıg	14 15	0.171 0.173	0.114 0.115	0.215 0.215	0.143 0.143	0.188 0.190	0.125 0.127	0.241 0.241	0.160 0.160	0.207 0.210	0.138 0.140	0.270 0.270	0.180 0.180
least radius of g X-X axis bendir	16 17 18 19 20	0.176 0.178 0.181 0.185 0.188	0.117 0.119 0.121 0.123 0.125	0.215 0.215 0.215 0.216 0.216	0.143 0.143 0.143 0.143 0.144	0.193 0.197 0.200 0.204 0.208	0.129 0.131 0.133 0.135 0.138	0.241 0.241 0.242 0.242 0.242	0.160 0.160 0.161 0.161 0.161	0.214 0.217 0.221 0.225 0.230	0.142 0.145 0.147 0.150 0.153	0.270 0.270 0.271 0.272 0.272	0.180 0.180 0.180 0.181 0.181
length, KL (ft), with respect to least radius of gyor Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	22 24 26 28 30	0.196 0.205 0.215 0.226 0.239	0.130 0.136 0.143 0.150 0.159	0.217 0.217 0.218 0.219 0.220	0.144 0.145 0.145 0.146 0.146	0.216 0.226 0.238 0.251 0.266	0.144 0.151 0.158 0.167 0.177	0.243 0.244 0.245 0.246 0.247	0.162 0.163 0.163 0.164 0.164	0.240 0.252 0.265 0.280 0.297	0.160 0.167 0.176 0.186 0.197	0.273 0.274 0.276 0.277 0.278	0.182 0.183 0.183 0.184 0.185
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	32 34 36 38 40	0.254 0.270 0.289 0.310 0.334	0.169 0.180 0.192 0.206 0.222	0.221 0.221 0.222 0.223 0.224	0.147 0.147 0.148 0.148 0.149	0.282 0.301 0.323 0.347 0.375	0.188 0.201 0.215 0.231 0.250	0.248 0.249 0.250 0.251 0.252	0.165 0.166 0.166 0.167 0.168	0.316 0.338 0.363 0.391 0.423	0.210 0.225 0.241 0.260 0.282	0.279 0.280 0.282 0.283 0.284	0.186 0.187 0.187 0.188 0.189
Effect	Hective 40 42 44 46 48 50		0.240 0.261 0.285 0.311 0.337	0.225 0.226 0.226 0.227 0.228	0.150 0.150 0.151 0.151 0.152	0.407 0.443 0.485 0.528 0.573	0.271 0.295 0.322 0.351 0.381	0.253 0.254 0.255 0.256 0.257	0.168 0.169 0.170 0.171 0.171	0.460 0.503 0.550 0.599 0.650	0.306 0.335 0.366 0.399 0.432	0.285 0.287 0.288 0.289 0.290	0.190 0.191 0.191 0.192 0.193
				0	ther Cor	stants	and Pro	perties					
$b_y \times 10^3$ $t_y \times 10^3$, $t_r \times 10^3$,		0.1	137 155 191	1	290 03 27	0.1	188 170 209	0.1	325 13 40	0.1	546 188 230	0.1	364 25 54
r_{x}	/r _y		1.	74			1.3	73			1.	71	
r _y ,	in.		4.	69			4.0	62			4.	55	

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

W14

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

Ch							W1	4 ×					
Sna	ape		55	0 ^h			50	0h			45	55 ^h	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.206	0.137	0.302	0.201	0.227	0.151	0.339	0.226	0.249	0.166	0.381	0.253
	11	0.220	0.146	0.302	0.201	0.242	0.161	0.339	0.226	0.266	0.177	0.381	0.253
	12	0.222	0.148	0.302	0.201	0.245	0.163	0.339	0.226	0.270	0.179	0.381	0.253
3,	13	0.225	0.150	0.302	0.201	0.249	0.166	0.339	0.226	0.273	0.182	0.381	0.253
n,	14	0.228	0.152	0.302	0.201	0.252	0.168	0.339	0.226	0.278	0.185	0.381	0.253
ratic	15	0.232	0.154	0.302	0.201	0.256	0.171	0.339	0.226	0.282	0.188	0.381	0.253
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	16	0.236	0.157	0.302	0.201	0.261	0.173	0.340	0.226	0.287	0.191	0.381	0.254
is o	17	0.240	0.160	0.303	0.201	0.265	0.177	0.340	0.227	0.292	0.194	0.382	0.254
ndir is I	18	0.244	0.162	0.303	0.202	0.270	0.180	0.341	0.227	0.298	0.198	0.383	0.255
t re	19	0.249	0.166	0.304	0.202	0.276	0.183	0.342	0.228	0.304	0.202	0.384	0.256
leas X-X	20	0.254	0.169	0.305	0.203	0.282	0.187	0.343	0.228	0.310	0.207	0.385	0.256
t to	22	0.265	0.177	0.306	0.204	0.295	0.196	0.345	0.229	0.325	0.216	0.387	0.258
E ge	24	0.279	0.185	0.308	0.205	0.309	0.206	0.346	0.230	0.342	0.227	0.389	0.259
res	26	0.293	0.195	0.309	0.206	0.327	0.217	0.348	0.232	0.361	0.240	0.392	0.261
± €	28	0.310	0.207	0.310	0.207	0.346	0.230	0.350	0.233	0.383	0.255	0.394	0.262
, w Leng	30	0.330	0.219	0.312	0.208	0.368	0.245	0.352	0.234	0.408	0.272	0.396	0.263
z (ft	32	0.352	0.234	0.313	0.209	0.394	0.262	0.353	0.235	0.437	0.291	0.398	0.265
λ, κ bra	34	0.377	0.251	0.315	0.209	0.422	0.281	0.355	0.236	0.470	0.313	0.400	0.266
lg la	36	0.406	0.270	0.316	0.210	0.455	0.303	0.357	0.238	0.508	0.338	0.403	0.268
<u>e</u> e	38	0.438	0.292	0.318	0.211	0.493	0.328	0.359	0.239	0.551	0.366	0.405	0.269
tive	40	0.475	0.316	0.319	0.213	0.536	0.357	0.361	0.240	0.600	0.399	0.407	0.271
ffec	42	0.518	0.345	0.321	0.214	0.586	0.390	0.363	0.241	0.657	0.437	0.409	0.272
ш	44	0.568	0.378	0.322	0.215	0.643	0.428	0.365	0.243	0.721	0.480	0.412	0.274
	46	0.621	0.413	0.324	0.216	0.703	0.468	0.367	0.244	0.789	0.525	0.414	0.276
	48	0.676	0.450	0.326	0.217	0.765	0.509	0.369	0.245	0.859	0.571	0.417	0.277
	50	0.733	0.488	0.327	0.218	0.830	0.552	0.371	0.247	0.932	0.620	0.419	0.279
				0	ther Cor	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹		611	1	107		683	l	154		761		506
$t_y \times 10^3$			206	1	37		227	0.1			249		166
$t_r \times 10^3$,	(kips) ⁻¹	0.2	253	0.1	169	0.2	279	0.1	86	0.3	306	0.2	204
r _x	r_x/r_y		1.	70			1.	69			1.	67	
r_{v}	in.		4.	49			4.	43			4.	38	
	hickness a	roator tha	n 2 in Cr	nocial roa	uiromonto	may and	alv nor Al	C Cnacif	ication Co	ction A2	10		

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

Table 6-1 (continued) Combined Flexure and Axial Force

							W1	1 .v					
Sha	ape		42	eh .				4×)8 ^h			37	'O ^h	
		n×	103	_	103	n×	10 ³	-	103	p×			103
Des	sign		s) ⁻¹		-ft)-1	(kip			-ft)−1	(kip			-ft) ⁻¹
	,,g,,	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.267	0.178	0.410	0.273	0.285	0.190	0.445	0.296	0.306	0.204	0.484	0.322
	11 12	0.286	0.190 0.193	0.410	0.273	0.306	0.203	0.445 0.445	0.296 0.296	0.329	0.219	0.484	0.322
.2.	13	0.294	0.195	0.410	0.273	0.314	0.200	0.445	0.296	0.338	0.225	0.484	0.322
'n,	14	0.298	0.198	0.410	0.273	0.319	0.212	0.445	0.296	0.343	0.228	0.484	0.322
ratio	15	0.303	0.202	0.410	0.273	0.324	0.216	0.445	0.296	0.349	0.232	0.484	0.322
f gy ding	16	0.308	0.205	0.411	0.273	0.330	0.220	0.446	0.297	0.355	0.236	0.485	0.323
is o	17	0.314	0.209	0.412	0.274	0.336	0.224	0.447	0.298	0.362	0.241	0.487	0.324
adit xis	18	0.320	0.213	0.413	0.275	0.343	0.228	0.449	0.298	0.369	0.246	0.489	0.325
st r	19	0.327	0.218	0.414	0.276	0.350	0.233	0.450	0.299	0.377	0.251	0.490	0.326
r - ea	20	0.334	0.222	0.415	0.276	0.358	0.238	0.451	0.300	0.386	0.257	0.492	0.327
, fe	22	0.350	0.233	0.418	0.278	0.376	0.250	0.454	0.302	0.405	0.270	0.495	0.329
spec b (ft	24	0.369	0.245	0.420	0.280	0.396	0.263	0.457	0.304	0.427	0.284	0.498	0.331
n re h, L	26 28	0.390	0.259 0.276	0.423 0.425	0.281 0.283	0.419 0.445	0.279 0.296	0.460 0.462	0.306 0.308	0.453 0.482	0.301 0.321	0.501 0.505	0.334 0.336
with	30	0.414	0.270	0.428	0.285	0.445	0.230	0.465	0.310	0.402	0.343	0.508	0.338
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	32	0.474	0.315	0.430	0.286	0.510	0.339	0.468	0.312	0.554	0.368	0.512	0.340
, KL	34	0.510	0.339	0.433	0.288	0.550	0.366	0.471	0.314	0.597	0.397	0.515	0.343
gth Unb	36	0.551	0.367	0.435	0.290	0.595	0.396	0.474	0.316	0.648	0.431	0.519	0.345
<u>e</u> e	38	0.599	0.399	0.438	0.291	0.647	0.431	0.477	0.318	0.705	0.469	0.522	0.347
tive	40	0.654	0.435	0.441	0.293	0.707	0.470	0.480	0.320	0.772	0.514	0.526	0.350
:#ec	42	0.718	0.478	0.443	0.295	0.778	0.517	0.484	0.322	0.850	0.566	0.529	0.352
	44	0.788	0.524	0.446	0.297	0.853	0.568	0.487	0.324	0.933	0.621	0.533	0.355
	46 48	0.861	0.573 0.624	0.449 0.452	0.299	0.933	0.621 0.676	0.490	0.326 0.328	1.02 1.11	0.679	0.537 0.541	0.357 0.360
	50	1.02	0.624	0.452	0.300	1.10	0.676	0.493	0.326	1.11	0.739	0.541	0.360
	0.454 0.50 Other (3.000		3.002	3.0.3	3.002
h v 102	, (kip-ft) ⁻¹	546			-	:00	0.0)E2	0.0	241			
$t_y \times 10^3$,			321 267	l	178		386 285	0.5 0.1			963 306	0.6 0.2	
$t_r \times 10^3$, $t_r \times 10^3$,			328	1	219		351	l	234		376	0.2	
r _x	·/r _v		1.	L 67			1.	 66			1.	 66	
	, in.		4.:	34			4.	31			4.	27	
h Element			0: 0					20.0 10	0				

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

W14

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

Ch	nno						W1	4 ×					
Sna	ape		34	2 ^h			31	1 ^h			28	3 ^h	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _X ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.331	0.220	0.530	0.353	0.365	0.243	0.591	0.393	0.401	0.267	0.657	0.437
	11	0.355	0.236	0.530	0.353	0.393	0.261	0.591	0.393	0.431	0.287	0.657	0.437
	12	0.360	0.239	0.530	0.353	0.398	0.265	0.591	0.393	0.437	0.291	0.657	0.437
3,	13	0.365	0.243	0.530	0.353	0.404	0.269	0.591	0.393	0.444	0.296	0.657	0.437
'n.	14	0.371	0.247	0.530	0.353	0.411	0.273	0.591	0.393	0.451	0.300	0.657	0.437
ratic	15	0.377	0.251	0.530	0.353	0.418	0.278	0.591	0.393	0.459	0.306	0.658	0.438
Effective length, KL (ft), with respect to least radius of gyration, $\mathit{r_y}$, or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	16	0.384	0.256	0.532	0.354	0.426	0.283	0.593	0.395	0.468	0.312	0.661	0.440
is o	17	0.392	0.261	0.534	0.355	0.434	0.289	0.596	0.396	0.478	0.318	0.663	0.441
ndir is I	18	0.400	0.266	0.536	0.356	0.443	0.295	0.598	0.398	0.488	0.325	0.666	0.443
t re	19	0.409	0.272	0.538	0.358	0.453	0.302	0.600	0.399	0.499	0.332	0.669	0.445
leas X-)	20	0.418	0.278	0.539	0.359	0.464	0.309	0.602	0.401	0.511	0.340	0.672	0.447
t to	22	0.439	0.292	0.543	0.361	0.488	0.325	0.607	0.404	0.537	0.358	0.677	0.451
) Se (±)	24	0.463	0.308	0.547	0.364	0.515	0.343	0.612	0.407	0.568	0.378	0.683	0.455
res	26	0.491	0.327	0.551	0.367	0.547	0.364	0.617	0.410	0.604	0.402	0.689	0.458
± €	28	0.523	0.348	0.555	0.369	0.583	0.388	0.621	0.413	0.645	0.429	0.695	0.462
, w Leng	30	0.560	0.373	0.559	0.372	0.625	0.416	0.626	0.417	0.691	0.460	0.701	0.466
z (ft	32	0.602	0.401	0.563	0.374	0.673	0.448	0.631	0.420	0.745	0.496	0.707	0.471
ı, K	34	0.651	0.433	0.567	0.377	0.729	0.485	0.636	0.423	0.807	0.537	0.713	0.475
를	36	0.706	0.470	0.571	0.380	0.792	0.527	0.641	0.427	0.879	0.585	0.720	0.479
<u>e</u> e	38	0.770	0.513	0.575	0.383	0.865	0.576	0.647	0.430	0.961	0.640	0.726	0.483
tive	40	0.844	0.562	0.580	0.386	0.951	0.633	0.652	0.434	1.06	0.704	0.733	0.488
ffec	42	0.931	0.619	0.584	0.389	1.05	0.697	0.657	0.437	1.17	0.776	0.740	0.492
ш	44	1.02	0.680	0.588	0.391	1.15	0.765	0.663	0.441	1.28	0.852	0.747	0.497
	46	1.12	0.743	0.593	0.394	1.26	0.837	0.669	0.445	1.40	0.931	0.754	0.501
	48	1.22	0.809	0.597	0.397	1.37	0.911	0.674	0.449	1.52	1.01	0.761	0.506
	50	1.32	0.878	0.602	0.401	1.49	0.988	0.680	0.452	1.65	1.10	0.768	0.511
				0	ther Cor	ıstants	and Pro	perties					
	$_{y} \times 10^{3}$, (kip-ft) ⁻¹ 1.05 0.7					1.1	17	0.7	'80	1.3	30	3.0	365
$t_y \times 10^3$			331		220		365	l	243		401	l	267
$t_r \times 10^3$,	$r \times 10^3$, (kips) ⁻¹		406	0.2	271	0.4	149	0.2	299	0.4	193	0.3	328
r _x	/r _y		1.	65			1.	64			1.	63	
r_{v}	r_y , in.						4.	20			4.	17	
	hickness a	roator tha			uiromonto	may and	nly ner Al	SC Specifi	ication So	ction A3	10		

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	no						W1	4 ×					
3116	ahe			57				33				11	
		p×	10 ³	b _x ×	103	p×	10 ³	b _X ×	103	p×	10 ³	b _x ×	C10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1
		ASD	LRFD										
	0	0.442	0.294	0.732	0.487	0.488	0.324	0.817	0.544	0.539	0.358	0.914	0.608
ration, r _y ,	11 12 13 14 15	0.476 0.483 0.490 0.499 0.508	0.317 0.321 0.326 0.332 0.338	0.732 0.732 0.732 0.732 0.733	0.487 0.487 0.487 0.487 0.488	0.526 0.534 0.542 0.551 0.561	0.350 0.355 0.361 0.367 0.374	0.817 0.817 0.817 0.817 0.819	0.544 0.544 0.544 0.544 0.545	0.582 0.590 0.600 0.610 0.622	0.387 0.393 0.399 0.406 0.414	0.914 0.914 0.914 0.914 0.917	0.608 0.608 0.608 0.608 0.610
Effective length, KL (ft), with respect to least radius of gyration, r_{y_s} or Unbraced Length, L_b (ft), for X-X axis bending	16 17 18 19 20	0.517 0.528 0.540 0.552 0.566	0.344 0.351 0.359 0.367 0.376	0.736 0.740 0.743 0.746 0.750	0.490 0.492 0.494 0.497 0.499	0.572 0.584 0.597 0.611 0.626	0.381 0.389 0.397 0.407 0.417	0.823 0.827 0.832 0.836 0.840	0.548 0.551 0.553 0.556 0.559	0.634 0.647 0.662 0.678 0.695	0.422 0.431 0.440 0.451 0.462	0.922 0.927 0.932 0.937 0.942	0.613 0.617 0.620 0.623 0.627
, with respect to ength, L_b (ft), for	22 24 26 28 30	0.596 0.630 0.671 0.717 0.770	0.396 0.419 0.446 0.477 0.512	0.757 0.764 0.771 0.778 0.786	0.503 0.508 0.513 0.518 0.523	0.660 0.699 0.745 0.797 0.857	0.439 0.465 0.495 0.530 0.570	0.849 0.857 0.866 0.876 0.885	0.565 0.571 0.576 0.583 0.589	0.733 0.777 0.828 0.887 0.955	0.488 0.517 0.551 0.590 0.635	0.953 0.964 0.975 0.987 0.998	0.634 0.641 0.649 0.656 0.664
ive length, KL (ft) or Unbraced L	32 34 36 38 40	0.831 0.902 0.983 1.08 1.19	0.553 0.600 0.654 0.717 0.791	0.794 0.801 0.809 0.818 0.826	0.528 0.533 0.539 0.544 0.549	0.926 1.01 1.10 1.20 1.33	0.616 0.669 0.731 0.801 0.886	0.895 0.904 0.914 0.925 0.935	0.595 0.602 0.608 0.615 0.622	1.03 1.12 1.23 1.35 1.49	0.687 0.747 0.817 0.897 0.993	1.01 1.02 1.04 1.05 1.06	0.672 0.680 0.689 0.697 0.706
Effect	42 44 46 48 50	1.31 1.44 1.57 1.71 1.86	0.872 0.957 1.05 1.14 1.24	0.834 0.843 0.852 0.861 0.870	0.555 0.561 0.567 0.573 0.579	1.47 1.61 1.76 1.92 2.08	0.976 1.07 1.17 1.28 1.38	0.946 0.957 0.968 0.979 0.991	0.629 0.637 0.644 0.652 0.659	1.65 1.81 1.97 2.15 2.33	1.09 1.20 1.31 1.43 1.55	1.08 1.09 1.10 1.12 1.13	0.715 0.725 0.734 0.744 0.754
				0	ther Cor	ıstants	and Pro	perties					
$t_y \times 10^3$	\times 10 ³ , (kip-ft) ⁻¹ 1.45 \times 10 ³ , (kips) ⁻¹ 0.442 \times 10 ³ , (kips) ⁻¹ 0.543						61 488 599	l)7 324 399		30 539 662		20 358 141
r _x /r _y 1.62 1.62											1.	61	
r_y ,	in.		4.	13			4.	10			4.	07	

 $F_y = 50 \text{ ksi}$

Ch							W1	4 ×					
Sha	ape		19	93			17	76			19	59	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	C10 ³	p×	10 ³	b _x ×	< 10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s)-1	(kip	-ft) ^{–1}	(kip	s)-1	(kip	-ft) ^{–1}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.588	0.391	1.00	0.668	0.645	0.429	1.11	0.741	0.715	0.476	1.24	0.826
ration, r _y ,	11 12 13 14 15	0.636 0.645 0.655 0.667 0.679	0.423 0.429 0.436 0.444 0.452	1.00 1.00 1.00 1.00 1.00	0.668 0.668 0.668 0.668 0.670	0.698 0.708 0.720 0.733 0.747	0.464 0.471 0.479 0.487 0.497	1.11 1.11 1.11 1.11 1.12	0.741 0.741 0.741 0.741 0.745	0.774 0.786 0.799 0.814 0.829	0.515 0.523 0.532 0.541 0.552	1.24 1.24 1.24 1.24 1.25	0.826 0.826 0.826 0.826 0.831
Effective length, KL (ft), with respect to least radius of gyration, $\mathit{r_y}$, or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	16 17 18 19 20	0.693 0.708 0.724 0.741 0.760	0.461 0.471 0.482 0.493 0.506	1.01 1.02 1.03 1.03 1.04	0.675 0.679 0.683 0.687 0.691	0.762 0.778 0.796 0.816 0.837	0.507 0.518 0.530 0.543 0.557	1.13 1.13 1.14 1.15 1.16	0.750 0.755 0.760 0.765 0.770	0.846 0.865 0.885 0.907 0.931	0.563 0.576 0.589 0.603 0.619	1.26 1.27 1.28 1.29 1.30	0.837 0.843 0.850 0.856 0.863
, with respect to ength, L_b (ft), for	22 24 26 28 30	0.802 0.851 0.908 0.973 1.05	0.534 0.566 0.604 0.647 0.697	1.05 1.07 1.08 1.09 1.11	0.700 0.709 0.718 0.727 0.737	0.884 0.938 1.00 1.07 1.16	0.588 0.624 0.666 0.715 0.771	1.17 1.19 1.21 1.22 1.24	0.781 0.791 0.803 0.814 0.826	0.983 1.04 1.12 1.20 1.29	0.654 0.695 0.742 0.797 0.860	1.32 1.34 1.36 1.38 1.40	0.876 0.889 0.904 0.918 0.933
ive length, KL (ft) or Unbraced I	32 34 36 38 40	1.13 1.23 1.35 1.49 1.65	0.755 0.822 0.899 0.989 1.09	1.12 1.14 1.15 1.17 1.19	0.747 0.757 0.767 0.778 0.789	1.26 1.37 1.50 1.65 1.83	0.836 0.911 0.998 1.10 1.22	1.26 1.28 1.30 1.32 1.34	0.838 0.851 0.864 0.877 0.891	1.40 1.53 1.68 1.85 2.05	0.934 1.02 1.12 1.23 1.36	1.43 1.45 1.47 1.50 1.53	0.949 0.965 0.981 0.998 1.02
Effect	42 44 46 48 50	1.81 1.99 2.18 2.37 2.57	1.21 1.32 1.45 1.58 1.71	1.20 1.22 1.24 1.26 1.28	0.800 0.812 0.824 0.836 0.848	2.02 2.22 2.42 2.64 2.86	1.34 1.47 1.61 1.75 1.90	1.36 1.38 1.41 1.43 1.45	0.905 0.920 0.935 0.951 0.967	2.26 2.48 2.71 2.95 3.21	1.50 1.65 1.81 1.97 2.13	1.56 1.58 1.61 1.64 1.68	1.03 1.05 1.07 1.09 1.12
				0	ther Cor	ıstants	and Pro	perties					
$t_y \times 10^3$	$(\times 10^3, (\text{kip-ft})^{-1})$ 1.98 1.32 $\times 10^3, (\text{kips})^{-1}$ 0.588 0.391 $\times 10^3, (\text{kips})^{-1}$ 0.722 0.482						19 645 792	l	45 129 528		14 715 378	l .	62 476 586
r_{x}			1.	60									
r_y ,	in.		4.	05			4.	02			4.	00	

Table 6-1 (continued) Combined Flexure and Axial Force

Ch	nno.						W1	4 ×					
Sha	ipe		14	1 5			1;	32			12	20	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	ign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.782	0.520	1.37	0.912	0.861	0.573	1.52	1.01	0.946	0.630	1.68	1.12
	11	0.848	0.564	1.37	0.912	0.942	0.627	1.52	1.01	1.04	0.690	1.68	1.12
	12	0.861	0.573	1.37	0.912	0.958	0.638	1.52	1.01	1.05	0.702	1.68	1.12
r,	13	0.875	0.582	1.37	0.912	0.976	0.650	1.52	1.01	1.07	0.715	1.68	1.12
on,	14	0.891	0.593	1.37	0.912	0.996	0.663	1.53	1.02	1.10	0.730	1.69	1.13
rati J	15	0.908	0.604	1.38	0.919	1.02	0.677	1.55	1.03	1.12	0.746	1.71	1.14
Effective length, KL (ft), with respect to least radius of gyration, $t_{J_{\prime}}$ or Unbraced Length, L_{b} (ft), for X-X axis bending	16	0.927	0.617	1.39	0.926	1.04	0.693	1.56	1.04	1.15	0.763	1.73	1.15
us o	17	0.948	0.631	1.40	0.933	1.07	0.710	1.57	1.05	1.18	0.783	1.74	1.16
adiı cis	18	0.970	0.645	1.41	0.941	1.10	0.729	1.59	1.06	1.21	0.803	1.76	1.17
stra (a)	19	0.994	0.662	1.43	0.949	1.13	0.749	1.60	1.07	1.24	0.826	1.78	1.18
X-)	20	1.02	0.679	1.44	0.956	1.16	0.771	1.62	1.08	1.28	0.851	1.80	1.20
t to , for	22	1.08	0.718	1.46	0.973	1.23	0.821	1.65	1.10	1.36	0.906	1.84	1.22
Dec (#)	24	1.15	0.763	1.49	0.989	1.32	0.880	1.68	1.12	1.46	0.971	1.88	1.25
res _p	26	1.23	0.816	1.51	1.01	1.42	0.948	1.71	1.14	1.57	1.05	1.92	1.28
at a	28	1.32	0.876	1.54	1.02	1.54	1.03	1.75	1.16	1.71	1.14	1.96	1.30
), w Len	30	1.42	0.947	1.57	1.04	1.68	1.12	1.79	1.19	1.86	1.24	2.00	1.33
t) 7	32	1.54	1.03	1.60	1.06	1.85	1.23	1.82	1.21	2.05	1.36	2.05	1.37
ı, Kl	34	1.69	1.12	1.63	1.08	2.04	1.35	1.86	1.24	2.26	1.50	2.10	1.40
lgth Cht	36	1.85	1.23	1.66	1.10	2.26	1.51	1.90	1.27	2.51	1.67	2.15	1.43
<u>e</u> =	38	2.05	1.36	1.69	1.12	2.52	1.68	1.95	1.29	2.80	1.86	2.21	1.47
tive	40	2.27	1.51	1.72	1.15	2.79	1.86	1.99	1.32	3.10	2.07	2.27	1.51
ttec:	42	2.50	1.66	1.76	1.17	3.08	2.05	2.04	1.36	3.42	2.28	2.33	1.55
ш	44	2.74	1.82	1.79	1.19	3.38	2.25	2.09	1.39	3.76	2.50	2.39	1.59
	46	3.00	1.99	1.83	1.22	3.70	2.46	2.14	1.42	4.11	2.73	2.46	1.63
	48	3.26	2.17	1.87	1.24	4.02	2.68	2.19	1.46	4.47	2.97	2.53	1.68
	50	3.54	2.36	1.91	1.27	4.37	2.91	2.25	1.50	4.85	3.23	2.60	1.73
					ther Cor	ıstants	and Pro	perties					
	(kip-ft)-1	2.6		1.7		3.		2.		3.4		2.3	
$t_y \times 10^3$,			782	1	520		361		573		946		30
$t_r \times 10^3$,	(kips) ⁻¹	0.9	961	0.6	541	1.0)6	0.7	705	1.1	16	0.7	775
r _x	/r _y		1.5	59			1.	67			1.	67	
r_y ,	in.		3.9	98			3.	76			3.	74	

W14

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

 $F_y = 50 \text{ ksi}$

							W1	4 ×					
Sha	ape		10)9				9f			9	O ^f	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹	(kip	s)-1	(kip-	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.04	0.694	1.86	1.23	1.15	0.764	2.07	1.38	1.26	0.839	2.33	1.55
Effective length, KL (ft), with respect to least radius of gyration, r_p , or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40	1.14 1.16 1.19 1.21 1.24 1.27 1.30 1.33 1.37 1.41 1.51 1.61 1.74 1.89 2.06 2.27 2.50 2.79 3.11 3.44	0.761 0.774 0.789 0.805 0.823 0.843 0.864 0.887 0.940 1.00 1.07 1.16 1.26 1.37 1.51 1.67 1.86 2.07 2.29	1.86 1.86 1.87 1.89 1.91 1.93 1.95 1.98 2.00 2.04 2.09 2.14 2.20 2.25 2.31 2.37 2.44 2.51 2.58	1.23 1.23 1.23 1.25 1.26 1.27 1.29 1.30 1.31 1.33 1.36 1.39 1.43 1.46 1.50 1.54 1.58 1.62 1.67 1.72	1.26 1.28 1.31 1.33 1.36 1.40 1.43 1.47 1.51 1.56 1.66 1.78 1.92 2.09 2.28 2.51 2.78 3.10 3.45 3.83	0.838 0.853 0.869 0.887 0.907 0.929 0.953 0.978 1.01 1.04 1.11 1.19 1.28 1.39 1.52 1.67 1.85 2.06 2.30 2.55	2.07 2.07 2.07 2.08 2.10 2.13 2.15 2.18 2.21 2.23 2.29 2.35 2.41 2.48 2.55 2.62 2.70 2.78 2.87 2.96	1.38 1.38 1.38 1.38 1.40 1.42 1.43 1.45 1.47 1.49 1.52 1.56 1.60 1.65 1.69 1.74 1.80 1.85 1.91	1.38 1.41 1.44 1.47 1.50 1.53 1.57 1.62 1.66 1.71 1.83 1.96 2.12 2.30 2.52 2.77 3.07 3.42 3.81 4.23	0.920 0.937 0.955 0.975 0.997 1.02 1.05 1.08 1.11 1.14 1.22 1.31 1.41 1.53 1.68 1.84 2.04 2.28 2.54 2.81	2.33 2.33 2.33 2.33 2.33 2.35 2.38 2.42 2.45 2.48 2.55 2.62 2.70 2.78 2.87 2.96 3.06 3.16 3.27 3.39	1.55 1.55 1.55 1.55 1.55 1.55 1.57 1.59 1.61 1.63 1.65 1.70 1.74 1.80 1.85 1.91 2.03 2.10 2.18 2.26
	44 46	4.17 4.55	2.77 3.03	2.74 2.82	1.82 1.88	4.63 5.06	3.08 3.37	3.17 3.31	2.11 2.20	5.11 5.59	3.40 3.72	3.72 3.94	2.48 2.62
	48	4.96	3.30	2.92	1.94	5.51	3.67	3.48	2.32	6.08	4.05	4.15	2.76
	50	5.38	3.58	3.05	2.03	5.98	3.98	3.66	2.43	6.60	4.39	4.36	2.90
					ther Cor			•					
$t_y \times 10^3$,	$y \times 10^3$, (kip-ft) ⁻¹ $y \times 10^3$, (kips) ⁻¹ $y \times 10^3$, (kips) ⁻¹		84 04 28		56 694 355	1.	29 15 41	l	35 764 940	1.	90 26 55	3.2 0.8 1.0	339
r_{x}	/r _y		1.0	67			1.	66			1.	66	
r_y ,	in.		3.	73			3.	71			3.	70	

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

^f Shape does not meet compact limit for flexure with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

0 6 7 8 9 10 11 12 13 14 15 16	p× (kip ASD 1.39 1.48 1.51 1.55 1.60 1.65 1.71 1.78 1.86 1.95 2.05 2.16	10 ³	2	103 -ft)-1 LRFD 1.71 1.71 1.71 1.71 1.71 1.74 1.77 1.80 1.83	p× (kip ASD 1.53 1.63 1.67 1.71 1.76 1.82 1.88	10 ³ s)-1 LRFD 1.02 1.08 1.11 1.14 1.17 1.21		103 -ft)-1 LRFD 1.88 1.88 1.88 1.89 1.92	(kip ASD 1.67 1.78 1.82 1.87 1.92 1.99	103 s)-1 LRFD 1.11 1.18 1.21 1.24 1.28 1.32		2.06 2.06 2.06 2.06 2.06 2.07 2.11
0 6 7 8 9 10 11 12 13 14 15	(kip ASD 1.39 1.48 1.51 1.55 1.60 1.65 1.71 1.78 1.86 1.95 2.05	0.926 0.985 1.01 1.03 1.06 1.10 1.14 1.18 1.24 1.30	(kip- ASD 2.56 2.56 2.56 2.56 2.57 2.61 2.66 2.70 2.74	1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.74 1.77 1.80	(kip ASD 1.53 1.63 1.67 1.71 1.76 1.82	1.02 1.08 1.11 1.14 1.17 1.21	(kip- ASD 2.83 2.83 2.83 2.83 2.84 2.89	1.88 1.88 1.88 1.88 1.89 1.92	(kip ASD 1.67 1.78 1.82 1.87 1.92 1.99	1.11 1.18 1.21 1.24 1.28	(kip- ASD 3.10 3.10 3.10 3.10 3.12	2.06 2.06 2.06 2.06 2.06 2.06 2.07
0 6 7 8 9 10 11 12 13 14 15	1.39 1.48 1.51 1.55 1.60 1.65 1.71 1.78 1.86 1.95 2.05	0.926 0.985 1.01 1.03 1.06 1.10 1.14 1.18 1.24 1.30	2.56 2.56 2.56 2.56 2.57 2.61 2.66 2.70 2.74	1.71 1.71 1.71 1.71 1.71 1.71 1.74 1.77 1.80	1.53 1.63 1.67 1.71 1.76 1.82	1.02 1.08 1.11 1.14 1.17 1.21 1.25	2.83 2.83 2.83 2.83 2.83 2.84 2.89	1.88 1.88 1.88 1.88 1.89 1.92	1.67 1.78 1.82 1.87 1.92 1.99	1.11 1.18 1.21 1.24 1.28	3.10 3.10 3.10 3.10 3.10 3.12	2.06 2.06 2.06 2.06 2.06 2.07
6 7 8 9 10 11 12 13 14 15	1.39 1.48 1.51 1.55 1.60 1.65 1.71 1.78 1.86 1.95 2.05	0.926 0.985 1.01 1.03 1.06 1.10 1.14 1.18 1.24 1.30	2.56 2.56 2.56 2.56 2.57 2.61 2.66 2.70 2.74	1.71 1.71 1.71 1.71 1.71 1.74 1.77 1.80	1.53 1.63 1.67 1.71 1.76 1.82 1.88	1.02 1.08 1.11 1.14 1.17 1.21 1.25	2.83 2.83 2.83 2.83 2.84 2.89	1.88 1.88 1.88 1.89 1.92	1.67 1.78 1.82 1.87 1.92 1.99	1.11 1.18 1.21 1.24 1.28	3.10 3.10 3.10 3.10 3.12	2.06 2.06 2.06 2.06 2.07
6 7 8 9 10 11 12 13 14 15	1.48 1.51 1.55 1.60 1.65 1.71 1.78 1.86 1.95 2.05	0.985 1.01 1.03 1.06 1.10 1.14 1.18 1.24 1.30	2.56 2.56 2.56 2.57 2.61 2.66 2.70 2.74	1.71 1.71 1.71 1.71 1.71 1.74 1.77	1.63 1.67 1.71 1.76 1.82	1.08 1.11 1.14 1.17 1.21 1.25	2.83 2.83 2.83 2.84 2.89	1.88 1.88 1.88 1.89 1.92	1.78 1.82 1.87 1.92 1.99	1.18 1.21 1.24 1.28	3.10 3.10 3.10 3.12	2.06 2.06 2.06 2.07
7 8 9 10 11 12 13 14 15	1.51 1.55 1.60 1.65 1.71 1.78 1.86 1.95 2.05	1.01 1.03 1.06 1.10 1.14 1.18 1.24 1.30	2.56 2.56 2.57 2.61 2.66 2.70 2.74	1.71 1.71 1.71 1.74 1.77 1.80	1.67 1.71 1.76 1.82 1.88	1.11 1.14 1.17 1.21 1.25	2.83 2.83 2.84 2.89	1.88 1.88 1.89 1.92	1.82 1.87 1.92 1.99	1.21 1.24 1.28	3.10 3.10 3.12	2.06 2.06 2.07
12 13 14 15	1.78 1.86 1.95 2.05	1.18 1.24 1.30	2.70 2.74	1.80			2.94	1.00		1	0.17	2.11
	2.16	I	2.84	1.86 1.89	2.05 2.14 2.25	1.30 1.36 1.43 1.50	2.99 3.05 3.10 3.16	1.96 1.99 2.03 2.06 2.10	2.06 2.15 2.24 2.35 2.47	1.37 1.43 1.49 1.56 1.64	3.23 3.30 3.36 3.43 3.50	2.15 2.19 2.24 2.28 2.33
18 19 20	2.28 2.42 2.58 2.76	1.44 1.52 1.61 1.72 1.84	2.89 2.94 2.99 3.05 3.11	1.92 1.96 1.99 2.03 2.07	2.37 2.51 2.67 2.84 3.04	1.58 1.67 1.78 1.89 2.02	3.22 3.29 3.35 3.42 3.49	2.14 2.19 2.23 2.28 2.32	2.61 2.76 2.93 3.13 3.35	1.73 1.84 1.95 2.08 2.23	3.57 3.65 3.73 3.81 3.90	2.38 2.43 2.48 2.53 2.59
22 24 26 28 30	3.19 3.74 4.39 5.09 5.84	2.12 2.49 2.92 3.39 3.89	3.23 3.36 3.51 3.66 3.83	2.15 2.24 2.33 2.44 2.55	3.51 4.12 4.83 5.60 6.43	2.33 2.74 3.21 3.73 4.28	3.65 3.81 3.99 4.20 4.42	2.43 2.54 2.66 2.79 2.94	3.88 4.56 5.35 6.21 7.12	2.58 3.03 3.56 4.13 4.74	4.08 4.29 4.51 4.77 5.10	2.72 2.85 3.00 3.17 3.39
32 34 36 38 40	6.65 7.50 8.41 9.37 10.4	4.42 4.99 5.60 6.24 6.91	4.02 4.26 4.56 4.85 5.14	2.67 2.84 3.03 3.22 3.42	7.32 8.26 9.26 10.3 11.4	4.87 5.50 6.16 6.86 7.61	4.72 5.07 5.43 5.78 6.14	3.14 3.38 3.61 3.85 4.08	8.11 9.15 10.3 11.4 12.7	5.39 6.09 6.83 7.60 8.43	5.53 5.96 6.38 6.81 7.23	3.68 3.96 4.25 4.53 4.81
			0	ther Cor	nstants	and Pro	perties					
$\times 10^3$, (kips-ft) ⁻¹ 7.95 5.29 $\times 10^3$, (kips) ⁻¹ 1.39 0.926 $\times 10^3$, (kips) ⁻¹ 1.71 1.14						53	1.	02	1.	67	1.	42 11 37
		2.4	44			2.	44			2.	44	
		2.4	48			2.	48			2.	46	
2 2 3 3 3 3 4 — ppp	4 6 8 0 2 4 6 8 0	4 3.74 6 4.39 8 5.09 0 5.84 2 6.65 7.50 6 8.41 8 9.37 0 10.4	4 3.74 2.49 6 4.39 2.92 8 5.09 3.39 0 5.84 3.89 2 6.65 4.42 7.50 4.99 6 8.41 5.60 8 9.37 6.24 0 10.4 6.91 -ft) ⁻¹ 7.95 s) ⁻¹ 1.39 s) ⁻¹ 2.	4 3.74 2.49 3.36 6 4.39 2.92 3.51 8 5.09 3.39 3.66 0 5.84 3.89 3.83 2 6.65 4.42 4.02 4 7.50 4.99 4.26 6 8.41 5.60 4.56 8 9.37 6.24 4.85 0 10.4 6.91 5.14 0 0 -ft)-1 7.95 5.2 0.5	4 3.74 2.49 3.36 2.24 6 4.39 2.92 3.51 2.33 8 5.09 3.39 3.66 2.44 0 5.84 3.89 3.83 2.55 2 6.65 4.42 4.02 2.67 4 7.50 4.99 4.26 2.84 6 8.41 5.60 4.56 3.03 8 9.37 6.24 4.85 3.22 0 10.4 6.91 5.14 3.42 Other Col -ft)-1 7.95 5.29 0.926 1.14 2.44	4 3.74 2.49 3.36 2.24 4.12 6 4.39 2.92 3.51 2.33 4.83 8 5.09 3.39 3.66 2.44 5.60 0 5.84 3.89 3.83 2.55 6.43 2 6.65 4.42 4.02 2.67 7.32 4 7.50 4.99 4.26 2.84 8.26 6 8.41 5.60 4.56 3.03 9.26 8 9.37 6.24 4.85 3.22 10.3 0 10.4 6.91 5.14 3.42 11.4 Other Constants -ft)-1 7.95 5.29 8. s)-1 1.39 0.926 1. s)-1 1.71 1.14 1.	4 3.74 2.49 3.36 2.24 4.12 2.74 6 4.39 2.92 3.51 2.33 4.83 3.21 8 5.09 3.39 3.66 2.44 5.60 3.73 0 5.84 3.89 3.83 2.55 6.43 4.28 2 6.65 4.42 4.02 2.67 7.32 4.87 4 7.50 4.99 4.26 2.84 8.26 5.50 6 8.41 5.60 4.56 3.03 9.26 6.16 8 9.37 6.24 4.85 3.22 10.3 6.86 0 10.4 6.91 5.14 3.42 11.4 7.61 Other Constants and Pro -ft)-1 7.95 5.29 8.80 9.31 1.39 0.926 1.53 9.1 1.71 1.14 1.88	4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 4.39 2.92 3.51 2.33 4.83 3.21 3.99 5.09 3.39 3.66 2.44 5.60 3.73 4.20 5.84 3.89 3.83 2.55 6.43 4.28 4.42 4.02 2.67 7.32 4.87 4.72 4.750 4.99 4.26 2.84 8.26 5.50 5.07 6.84 5.60 4.56 3.03 9.26 6.16 5.43 6.84 5.89 5.10 10.4 6.91 5.14 3.42 11.4 7.61 6.14 9.14 5.60 6.91 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.14 3.42 11.4 7.61 6.14 9.15 5.29 8.80 5.15 5.14 5.14 1.88 1.1 9.15 6.14 9.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6	4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 2.54 6 4.39 2.92 3.51 2.33 4.83 3.21 3.99 2.66 8 5.09 3.39 3.66 2.44 5.60 3.73 4.20 2.79 0 5.84 3.89 3.83 2.55 6.43 4.28 4.42 2.94 2 6.65 4.42 4.02 2.67 7.32 4.87 4.72 3.14 4 7.50 4.99 4.26 2.84 8.26 5.50 5.07 3.38 6 8.41 5.60 4.56 3.03 9.26 6.16 5.43 3.61 8 9.37 6.24 4.85 3.22 10.3 6.86 5.78 3.85 0 10.4 6.91 5.14 3.42 11.4 7.61 6.14 4.08 Other Constants and Properties -ft)-1 7.95 5.29 8.80 5.85 5)-1 1.39 0.926	4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 2.54 4.56 6 4.39 2.92 3.51 2.33 4.83 3.21 3.99 2.66 5.35 8 5.09 3.39 3.66 2.44 5.60 3.73 4.20 2.79 6.21 0 5.84 3.89 3.83 2.55 6.43 4.28 4.42 2.94 7.12 2 6.65 4.42 4.02 2.67 7.32 4.87 4.72 3.14 8.11 4 7.50 4.99 4.26 2.84 8.26 5.50 5.07 3.38 9.15 6 8.41 5.60 4.56 3.03 9.26 6.16 5.43 3.61 10.3 8 9.37 6.24 4.85 3.22 10.3 6.86 5.78 3.85 11.4 0 10.4 6.91 5.14 3.42 11.4 7.61 </td <td>4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 2.54 4.56 3.03 6 4.39 2.92 3.51 2.33 4.83 3.21 3.99 2.66 5.35 3.56 8 5.09 3.39 3.66 2.44 5.60 3.73 4.20 2.79 6.21 4.13 0 5.84 3.89 3.83 2.55 6.43 4.28 4.42 2.94 7.12 4.74 2 6.65 4.42 4.02 2.67 7.32 4.87 4.72 3.14 8.11 5.39 4 7.50 4.99 4.26 2.84 8.26 5.50 5.07 3.38 9.15 6.09 6 8.41 5.60 4.56 3.03 9.26 6.16 5.43 3.85 11.4 7.60 9 10.4 6.91 5.14 3.42 11.4 7.61 6.14 4.08 12.7</td> <td>4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 2.54 4.56 3.03 4.29 6 4.39 2.92 3.51 2.33 4.83 3.21 3.99 2.66 5.35 3.56 4.51 8 5.09 3.39 3.66 2.44 5.60 3.73 4.20 2.79 6.21 4.13 4.77 0 5.84 3.89 3.83 2.55 6.43 4.28 4.42 2.94 7.12 4.74 5.10 2 6.65 4.42 4.02 2.67 7.32 4.87 4.72 3.14 8.11 5.39 5.53 4 7.50 4.99 4.26 2.84 8.26 5.50 5.07 3.38 9.15 6.09 5.96 6 8.41 5.60 4.56 3.03 9.26 6.16 5.43 3.61 10.3 6.83 6.38 8 9.37 6.24 4.85 3.22 10.3 6.86 5.78 3.85 11.4 7.60 6.81<!--</td--></td>	4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 2.54 4.56 3.03 6 4.39 2.92 3.51 2.33 4.83 3.21 3.99 2.66 5.35 3.56 8 5.09 3.39 3.66 2.44 5.60 3.73 4.20 2.79 6.21 4.13 0 5.84 3.89 3.83 2.55 6.43 4.28 4.42 2.94 7.12 4.74 2 6.65 4.42 4.02 2.67 7.32 4.87 4.72 3.14 8.11 5.39 4 7.50 4.99 4.26 2.84 8.26 5.50 5.07 3.38 9.15 6.09 6 8.41 5.60 4.56 3.03 9.26 6.16 5.43 3.85 11.4 7.60 9 10.4 6.91 5.14 3.42 11.4 7.61 6.14 4.08 12.7	4 3.74 2.49 3.36 2.24 4.12 2.74 3.81 2.54 4.56 3.03 4.29 6 4.39 2.92 3.51 2.33 4.83 3.21 3.99 2.66 5.35 3.56 4.51 8 5.09 3.39 3.66 2.44 5.60 3.73 4.20 2.79 6.21 4.13 4.77 0 5.84 3.89 3.83 2.55 6.43 4.28 4.42 2.94 7.12 4.74 5.10 2 6.65 4.42 4.02 2.67 7.32 4.87 4.72 3.14 8.11 5.39 5.53 4 7.50 4.99 4.26 2.84 8.26 5.50 5.07 3.38 9.15 6.09 5.96 6 8.41 5.60 4.56 3.03 9.26 6.16 5.43 3.61 10.3 6.83 6.38 8 9.37 6.24 4.85 3.22 10.3 6.86 5.78 3.85 11.4 7.60 6.81 </td

W14

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

W-Shapes

Sha	ape							4×					
				1				3				8	
		p×	10 ³	b _x >	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	(10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.87	1.24	3.49	2.32	2.14	1.42	4.09	2.72	2.37	1.58	4.54	3.02
	6	1.99	1.32	3.49	2.32	2.37	1.58	4.09	2.72	2.63	1.75	4.54	3.02
	7	2.03	1.35	3.49	2.32	2.46	1.64	4.11	2.74	2.73	1.82	4.57	3.04
ž	8	2.09	1.39	3.49	2.32	2.57	1.71	4.21	2.80	2.85	1.90	4.70	3.13
'n.	9	2.15	1.43	3.52	2.34	2.70	1.80	4.32	2.88	2.99	1.99	4.83	3.21
ratio	10	2.22	1.48	3.59	2.39	2.85	1.90	4.44	2.95	3.16	2.10	4.96	3.30
Effective length, KL (ft), with respect to least radius of gyration, r_{y} , or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	11	2.31	1.54	3.66	2.44	3.02	2.01	4.56	3.03	3.36	2.23	5.11	3.40
is c	12	2.40	1.60	3.74	2.49	3.23	2.15	4.68	3.11	3.59	2.39	5.26	3.50
adit.	13	2.51	1.67	3.82	2.54	3.47	2.31	4.81	3.20	3.86	2.57	5.43	3.61
3 3 3	14	2.63	1.75	3.90	2.59	3.75	2.49	4.96	3.30	4.17	2.77	5.60	3.73
k-)	15	2.77	1.84	3.99	2.65	4.07	2.71	5.11	3.40	4.53	3.02	5.79	3.85
t to	16	2.92	1.95	4.08	2.71	4.45	2.96	5.26	3.50	4.96	3.30	5.98	3.98
ec (#)	17	3.10	2.06	4.17	2.78	4.89	3.25	5.43	3.62	5.45	3.63	6.20	4.12
res _p	18	3.29	2.19	4.27	2.84	5.40	3.59	5.61	3.74	6.03	4.01	6.42	4.27
E €	19	3.51	2.34	4.38	2.91	6.01	4.00	5.81	3.86	6.72	4.47	6.67	4.44
, w Leng	20	3.76	2.50	4.49	2.98	6.66	4.43	6.01	4.00	7.45	4.96	6.94	4.61
Z (ft	22	4.36	2.90	4.72	3.14	8.06	5.36	6.47	4.31	9.01	6.00	7.69	5.12
ı, K	24	5.14	3.42	4.99	3.32	9.60	6.38	7.22	4.80	10.7	7.14	8.64	5.75
를	26	6.03	4.01	5.28	3.51	11.3	7.49	7.99	5.32	12.6	8.38	9.59	6.38
ᅙᇹ	28	6.99	4.65	5.66	3.77	13.1	8.69	8.76	5.83	14.6	9.72	10.5	7.01
tive	30	8.02	5.34	6.20	4.13	15.0	9.98	9.53	6.34	16.8	11.2	11.5	7.65
:ffec	32	9.13	6.07	6.74	4.48	17.1	11.3	10.3	6.85				
	34	10.3	6.86	7.27	4.84								
	36	11.6	7.69	7.81	5.20								
	38	12.9	8.57	8.34	5.55								
	40	14.3	9.49	8.87	5.90								
				0	ther Co	nstants	and Pro	perties					
	, (kip-ft)-1	10		7.2		16		10		18		12	
$t_y \times 10^3$.87		.24		.14		.42		.37		.58
$t_r \times 10^3$,	(kips) ⁻¹	2	.29	1	.53	2	.63	1	.75	2	.91	1	.94
r _x	/r _y		2.	44			3.	07			3.	06	
r_y ,	in.		2.	45			1.	92			1.	91	
Note: Hea	vy line indi	cates <i>KL</i>	<i>r_y</i> equal t	o or grea	ter than 2	200.							

Table 6-1 (continued) Combined Flexure and Axial Force

W14

W-Shapes

							W1	1 4 ×					
Sh	ape		4	3c				8c			3	4 ^c	
		D ×	103		103	D×	10 ³	_	103	D×	10 ³		10 ³
Des	sign		os) ⁻¹		-ft)-1		s)-1		-ft)−1	_	s) ⁻¹		-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.68	1.78	5.12	3.41	3.06	2.04	5.79	3.85	3.50	2.33	6.53	4.34
	6	2.95	1.96	5.12	3.41	3.51	2.34	5.90	3.93	4.02	2.67	6.67	4.44
	7	3.06	2.04	5.17	3.44	3.70	2.46	6.12	4.07	4.23	2.81	6.94	4.61
7,	8	3.20	2.13	5.31	3.54	3.95	2.63	6.36	4.23	4.49	2.99	7.22	4.80
jo n	9	3.37	2.24	5.47	3.64	4.25	2.83	6.61	4.40	4.81	3.20	7.53	5.01
/rat	10	3.56	2.37	5.64	3.75	4.62	3.08	6.89	4.58	5.24	3.48	7.87	5.23
ding ding	11	3.79	2.52	5.82	3.87	5.07	3.37	7.19	4.78	5.76	3.83	8.24	5.48
us o	12	4.05	2.70	6.01	4.00	5.61	3.73	7.52	5.00	6.38	4.25	8.64	5.75
adit cis	13	4.36	2.90	6.21	4.13	6.25	4.16	7.88	5.24	7.14	4.75	9.09	6.05
st ra X a)	14	4.72	3.14	6.42	4.27	7.04	4.68	8.27	5.50	8.07	5.37	9.58	6.37
length, KL (ft), with respect to least radius of gy or Unbraced Length, L_{b} (ft), for X-X axis bending	15	5.15	3.42	6.66	4.43	8.01	5.33	8.71	5.80	9.21	6.13	10.1	6.74
5 t	16	5.64	3.75	6.90	4.59	9.11	6.06	9.20	6.12	10.5	6.97	11.0	7.29
(#)	17	6.21	4.13	7.17	4.77	10.3	6.85	9.99	6.65	11.8	7.87	12.0	8.01
rest L _b	18	6.90	4.59	7.46	4.97	11.5	7.68	10.9	7.23	13.3	8.82	13.1	8.73
£ £	19	7.68	5.11	7.78	5.17	12.9	8.55	11.8	7.82	14.8	9.83	14.2	9.47
, w Len	20	8.51	5.66	8.12	5.40	14.2	9.48	12.6	8.41	16.4	10.9	15.3	10.2
# pe	21	9.39	6.25	8.71	5.80	15.7	10.4	13.5	9.00	18.0	12.0	16.5	11.0
, KI	22	10.3	6.85	9.31	6.19	17.2	11.5	14.4	9.60	19.8	13.2	17.6	11.7
ag de	23	11.3	7.49	9.90	6.59	18.8	12.5	15.3	10.2	21.6	14.4	18.7	12.4
<u> 등</u>	24	12.3	8.16	10.5	6.99	20.5	13.6	16.2	10.8	23.6	15.7	19.8	13.2
ijve	25	13.3	8.85	11.1	7.39	22.3	14.8	17.1	11.4	25.6	17.0	21.0	13.9
Effective length, KL (ft), with respect to least radius of gyration, $\mathit{r_y}$, or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	26	14.4	9.57	11.7	7.78								
<u></u>	27	15.5	10.3	12.3	8.18								
	28	16.7	11.1	12.9	8.58								
	29	17.9	11.9	13.5	8.98								
	30	19.2	12.7	14.1	9.37								
				0	ther Co	nstants	and Pro	perties					
$b_y \times 10^3$, (kip-ft)-1	20	.6	13	.7	29	.4	19	.6	33	.6	22	.4
$t_y \times 10^3$.65		.76		.98		.98		.34		.22
$t_r \times 10^3$	(kips) ⁻¹	3	.26	2	.17	3	.66	2	.44	4	.10	2	.74
r _x	r/r _y		3.	08			3.	79			3.	81	
r_{y}	, in.		1.	89			1.	55			1.	53	

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

W14

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch	ape						W 1	14×					
3116	ape		3	Oc			2	6 ^c			2	2 c	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	C10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s)-1	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	4.02	2.68	7.53	5.01	4.73	3.15	8.86	5.90	5.82	3.87	10.7	7.14
	6	4.63	3.08	7.76	5.16	6.18	4.11	10.0	6.67	7.65	5.09	12.4	8.24
	7	4.89	3.25	8.09	5.38	6.85	4.56	10.7	7.10	8.52	5.67	13.3	8.83
ž	8	5.20	3.46	8.44	5.62	7.75	5.16	11.4	7.59	9.70	6.45	14.3	9.51
'n.	9	5.59	3.72	8.83	5.88	9.02	6.00	12.3	8.15	11.3	7.54	15.5	10.3
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	10	6.07	4.04	9.26	6.16	10.7	7.13	13.2	8.80	13.6	9.08	16.9	11.2
length, KL (ft), with respect to least radius of gyor Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	11	6.70	4.46	9.74	6.48	12.9	8.60	14.4	9.56	16.5	11.0	19.2	12.8
is o	12	7.47	4.97	10.3	6.83	15.4	10.2	16.5	11.0	19.7	13.1	22.3	14.8
ldir is I	13	8.41	5.60	10.8	7.21	18.1	12.0	18.7	12.4	23.1	15.3	25.4	16.9
at re	14	9.56	6.36	11.5	7.65	20.9	13.9	20.9	13.9	26.8	17.8	28.5	19.0
leas X-X	15	11.0	7.30	12.3	8.20	24.0	16.0	23.2	15.4	30.7	20.4	31.8	21.2
t 1 호 1	16	12.5	8.31	13.7	9.12	27.3	18.2	25.5	17.0	34.9	23.2	35.1	23.3
) Sec (±)	17	14.1	9.38	15.1	10.0	30.9	20.5	27.8	18.5	39.4	26.2	38.4	25.6
res L _b	18	15.8	10.5	16.5	11.0	34.6	23.0	30.1	20.0				
£ £	19	17.6	11.7	18.0	12.0								
, w Leng	20	19.5	13.0	19.4	12.9								
E ge	21	21.5	14.3	20.9	13.9								
, Ka	22	23.6	15.7	22.4	14.9								
를 를 기타	23	25.8	17.2	23.9	15.9								
or le	24	28.1	18.7	25.4	16.9								
tive													
l He													
_													
				0	ther Co	nstants	and Pro	perties					
$b_{\nu} \times 10^3$, (kip-ft) ⁻¹	39.	.6	26	.4	64	.3	42	.8	81	.2	54	.0
$t_V \times 10^3$.77		.51		.34		.89		.15		.42
$t_r \times 10^3$.64		.09		.33		.56		.32		.21
r _x	/r _y		3.	85			5.	23			5.	33	
	in.		1.	49			1.	08			1.	04	
	s slender fo	r compro	ceion wit	h <i>E</i> _ 50	kei								

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

						W1	2×											
ape		33	6 ^h							27	gh							
	p×			103	p×	10 ³	b _X ×	10 ³	p×			103						
ign												-ft)−1						
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
0	0.338	0.225	0.591	0.393	0.373	0.248	0.663	0.441	0.408	0.271	0.741	0.493						
6	0.349	0.232	0.591	0.393	0.385	0.256	0.663	0.441	0.422	0.280	0.741	0.493						
7	0.352	0.235	0.591	0.393	0.390	0.259	0.663	0.441	0.427	0.284	0.741	0.493						
												0.493						
		I				l						0.493						
10	0.369	0.245	0.591	0.393	0.408	0.272	0.663	0.441	0.447	0.298	0.741	0.493						
11	0.375	0.250	0.591	0.393	0.416	0.277	0.663	0.441	0.456	0.303	0.741	0.493						
12	0.383	0.255	0.591	0.393	0.425	0.283	0.663	0.441	0.466	0.310	0.741	0.493						
		I				l						0.495						
		1										0.497						
15	0.411	0.274	0.596	0.397	0.457	0.304	0.670	0.446	0.502	0.334	0.749	0.499						
16	0.422	0.281	0.598	0.398	0.470	0.313	0.673	0.448	0.516	0.344	0.752	0.500						
17	0.435	0.289	0.600	0.399	0.484	0.322	0.675	0.449	0.532	0.354	0.755	0.502						
18	0.448	0.298	0.602	0.400	0.500	0.332	0.677	0.451	0.550	0.366	0.758	0.504						
				0.402			0.680				0.761	0.506						
20	0.479	0.319	0.606	0.403	0.535	0.356	0.682	0.454	0.590	0.392	0.764	0.508						
22	0.516	0.343	0.610	0.406	0.577	0.384	0.687	0.457	0.637	0.424	0.770	0.512						
24	0.559	0.372	0.614	0.408	0.627	0.417	0.692	0.461	0.693	0.461	0.776	0.516						
26	0.610	0.406	0.618	0.411	0.686	0.456	0.697	0.464	0.760	0.506	0.782	0.520						
28	0.670	0.446	0.622	0.414	0.756	0.503	0.702	0.467	0.840	0.559	0.788	0.524						
30	0.742	0.494	0.626	0.417	0.839	0.558	0.708	0.471	0.935	0.622	0.795	0.529						
32	0.827	0.550	0.630	0.419	0.938	0.624	0.713	0.474	1.05	0.698	0.801	0.533						
34	0.930	0.619	0.635	0.422	1.06	0.704	0.718	0.478	1.18	0.788	0.808	0.537						
36	1.04	0.694	0.639	0.425	1.19	0.789	0.724	0.481	1.33	0.883	0.814	0.542						
38	1.16	0.773	0.644	0.428	1.32	0.879	0.729	0.485	1.48	0.984	0.821	0.546						
40	1.29	0.856	0.648	0.431	1.46	0.974	0.735	0.489	1.64	1.09	0.828	0.551						
			0	ther Cor	stants	and Pro	perties											
			3.0	365	1.4	16	0.9	71	1.6	62	1.0)8						
											0.2							
(kips) ⁻¹	0.4	415	0.2	277	0.4	158	0.3	806	0.5	501	0.3	334						
/r _y		1.5	85			1.	84			1.	82							
in.		3.	47			3.	42			3.	38							
	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40	Px (kip ASD 0 0.338 6 0.349 7 0.352 8 0.357 9 0.363 10 0.369 11 0.375 12 0.383 13 0.391 14 0.401 15 0.411 16 0.422 17 0.435 18 0.448 19 0.463 20 0.479 22 0.516 24 0.559 26 0.610 28 0.670 30 0.742 32 0.827 34 0.930 36 1.04 38 1.16 40 1.29 ((kip-ft))^{-1} ((kips))^{-1} 0.3 ((kips))^{-1} 0.4 ((kips))^{-1} ((kips))^{-1}		336 ⁿ $p \times 10^3$ $b_x \times 10^3$ $p \times 10^3$ $b_x \times 10^3$ $(kip)^{-1}$ $(kip)^{-1}$ ASD 0 0.338 0.259 0.591 7 0.352 0.235 0.591 8 0.357 0.238 0.591 9 0.363 0.241 0.591 10 0.369 0.245 0.591 12 0.383 0.255 0.591 12 0.383 0.255 0.591 13 0.391 0.260 0.592 14 0.401 0.267 0.596 15 0.411 0.274 0.596 16 0.422 0.281 0.598 0.602 17 0.435 0.289 0.600 18 0.448 0.298 0.602	336 ⁿ $p \times 10^3$ $b_x \times 10^3$ $(kip \Rightarrow f)^{-1}$ $(kip - f)^{-1}$ ASD LRFD ASD LRFD 0 0.338 0.225 0.591 0.393 6 0.349 0.232 0.591 0.393 8 0.357 0.238 0.591 0.393 9 0.363 0.241 0.591 0.393 10 0.369 0.245 0.591 0.393 11 0.375 0.250 0.591 0.393 12 0.383 0.255 0.591 0.393 13 0.391 0.260 0.592 0.393 14 0.401 0.267 0.594 0.395 15 0.411 0.274 0.596 0.397 16 0.422 0.281 0.598 0.398	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ape 336h $p \times 10^3$ $b_x \times 10^3$ $p \times 10^3$ $p \times 10^3$ $b_x \times 10^3$ $p \times 10^3$ $p \times 10^3$ $b_x \times 10^3$ $p \times 10^3$ <th <="" colspan="6" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td> Sign P × 103 D_x × 1</td><td> Sign P × 10³ D_x × 10³ P × 10³ D_x × 10³ P × 10³ D_x × 10³ D</td><td> The image The</td><td> </td></th>	<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td> Sign P × 103 D_x × 1</td> <td> Sign P × 10³ D_x × 10³ P × 10³ D_x × 10³ P × 10³ D_x × 10³ D</td> <td> The image The</td> <td> </td>						$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sign P × 103 D _x × 1	Sign P × 10 ³ D _x × 10 ³ P × 10 ³ D _x × 10 ³ P × 10 ³ D _x × 10 ³ D	The image The	

 $^{^{\}rm h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

 $F_y = 50 \text{ ksi}$

Ch							W1	2 ×					
Sna	ape		25	2 ^h			23	80h			2	10	
		p×	10 ³	b _x ×	103	p×	10 ³	b _X ×	10 ³	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.451	0.300	0.832	0.554	0.493	0.328	0.923	0.614	0.540	0.360	1.02	0.681
	6	0.466	0.310	0.832	0.554	0.511	0.340	0.923	0.614	0.560	0.372	1.02	0.681
	7	0.472	0.314	0.832	0.554	0.517	0.344	0.923	0.614	0.567	0.377	1.02	0.681
7,	8	0.479	0.319	0.832	0.554	0.525	0.349	0.923	0.614	0.575	0.383	1.02	0.681
'n.	9	0.487	0.324	0.832	0.554	0.533	0.355	0.923	0.614	0.585	0.389	1.02	0.681
rration 3	10	0.495	0.330	0.832	0.554	0.543	0.361	0.923	0.614	0.596	0.397	1.02	0.681
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	11	0.505	0.336	0.832	0.554	0.554	0.369	0.923	0.614	0.608	0.405	1.02	0.681
ns (12	0.516	0.344	0.833	0.554	0.567	0.377	0.924	0.615	0.622	0.414	1.03	0.683
adii cis	13	0.529	0.352	0.837	0.557	0.580	0.386	0.928	0.618	0.638	0.424	1.03	0.686
) st [14	0.542	0.361	0.840	0.559	0.596	0.396	0.933	0.621	0.655	0.436	1.04	0.689
, <u>ea</u>	15	0.557	0.371	0.844	0.561	0.612	0.407	0.937	0.623	0.674	0.448	1.04	0.693
, 한 다	16	0.574	0.382	0.847	0.564	0.631	0.420	0.941	0.626	0.694	0.462	1.05	0.696
(#)	17	0.592	0.394	0.851	0.566	0.651	0.433	0.946	0.629	0.717	0.477	1.05	0.700
q7 Isə.	18	0.612	0.407	0.854	0.568	0.674	0.448	0.950	0.632	0.742	0.494	1.06	0.703
≨ €	19	0.634	0.422	0.858	0.571	0.698	0.464	0.954	0.635	0.769	0.512	1.06	0.707
), wi Lenç	20	0.657	0.437	0.862	0.573	0.725	0.482	0.959	0.638	0.799	0.532	1.07	0.710
t) 7	22	0.712	0.474	0.869	0.578	0.786	0.523	0.968	0.644	0.868	0.577	1.08	0.718
, K	24	0.776	0.516	0.877	0.583	0.858	0.571	0.977	0.650	0.950	0.632	1.09	0.725
를 를	26	0.853	0.568	0.884	0.588	0.945	0.629	0.986	0.656	1.05	0.697	1.10	0.733
ᅙᇹ	28	0.945	0.629	0.892	0.594	1.05	0.697	0.996	0.663	1.16	0.775	1.11	0.741
tive	30	1.05	0.701	0.900	0.599	1.17	0.780	1.01	0.669	1.30	0.868	1.13	0.749
ffec	32	1.19	0.790	0.908	0.604	1.32	0.880	1.02	0.676	1.48	0.982	1.14	0.757
ш	34	1.34	0.891	0.916	0.610	1.49	0.993	1.03	0.682	1.67	1.11	1.15	0.765
	36	1.50	0.999	0.925	0.615	1.67	1.11	1.04	0.689	1.87	1.24	1.16	0.774
	38	1.67	1.11	0.933	0.621	1.87	1.24	1.05	0.696	2.08	1.38	1.18	0.782
	40	1.85	1.23	0.942	0.627	2.07	1.37	1.06	0.704	2.31	1.53	1.19	0.791
				0	ther Cor	ıstants	and Pro	perties					
	, (kip-ft) ⁻¹	1.8		1.2		2.0		1.3	34	2.2	24	1.4	19
$t_y \times 10^3$			451		300		193	ı	328		540	I	360
$t_r \times 10^3$,	(kips) ⁻¹	0.5	554	0.3	369	0.6	606	0.4	104	0.6	664	0.4	143
r_{x}	/r _y		1.	81			1.	80			1.	80	
r_{v}	in.		3.	34			3.	31			3.	28	
	hickness n	roator tha	ın 2 in Sr	nacial ran	uiromonto	may anr	nly ner Al	SC Specifi	ication So	ction A3	10		

^h Flange thickness greater than 2 in. Special requirements may apply per AISC *Specification* Section A3.1c.

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	ane						W1	2 ×					
	иро			90				70				52	
			10 ³		103		10 ³	b _x ×	(10 ³	p×			103
Des	sign	(kip	s) ⁻¹		-ft) ^{−1}		s)-1	(kip	-ft) ⁻¹	(kip	s)-1	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.596	0.397	1.15	0.762	0.668	0.444	1.30	0.862	0.747	0.497	1.47	0.975
ration, <i>r_y,</i>	6 7 8 9 10	0.618 0.626 0.636 0.647 0.659	0.411 0.417 0.423 0.430 0.438	1.15 1.15 1.15 1.15 1.15	0.762 0.762 0.762 0.762 0.762	0.693 0.702 0.713 0.725 0.739	0.461 0.467 0.474 0.483 0.492	1.30 1.30 1.30 1.30 1.30	0.862 0.862 0.862 0.862 0.862	0.776 0.786 0.798 0.813 0.829	0.516 0.523 0.531 0.541 0.551	1.47 1.47 1.47 1.47 1.47	0.97 0.97 0.97 0.97 0.97
Effective length, $K\!L$ (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	11 12 13 14 15	0.673 0.688 0.706 0.725 0.746	0.448 0.458 0.470 0.482 0.497	1.15 1.15 1.16 1.16 1.17	0.762 0.764 0.768 0.773 0.777	0.755 0.773 0.793 0.815 0.839	0.503 0.514 0.528 0.542 0.559	1.30 1.30 1.31 1.32 1.32	0.862 0.865 0.870 0.876 0.881	0.847 0.867 0.890 0.915 0.943	0.563 0.577 0.592 0.609 0.627	1.47 1.47 1.48 1.49 1.50	0.975 0.980 0.987 0.994 1.00
, with respect to Length, L_b (ft), for	16 17 18 19 20	0.770 0.796 0.824 0.855 0.889	0.512 0.529 0.548 0.569 0.591	1.17 1.18 1.19 1.19 1.20	0.781 0.786 0.790 0.794 0.799	0.866 0.896 0.928 0.964 1.00	0.576 0.596 0.618 0.641 0.667	1.33 1.34 1.35 1.36 1.37	0.887 0.892 0.898 0.903 0.909	0.974 1.01 1.04 1.09 1.13	0.648 0.670 0.695 0.722 0.752	1.51 1.52 1.54 1.55 1.56	1.01 1.01 1.02 1.03 1.04
ive length, <i>KL</i> (ft) or Unbraced I	22 24 26 28 30	0.966 1.06 1.17 1.30 1.46	0.643 0.705 0.778 0.867 0.973	1.21 1.23 1.24 1.26 1.27	0.808 0.817 0.827 0.837 0.847	1.09 1.20 1.33 1.48 1.67	0.727 0.798 0.883 0.985 1.11	1.38 1.40 1.42 1.44 1.46	0.921 0.932 0.945 0.957 0.970	1.23 1.36 1.50 1.68 1.90	0.820 0.902 1.00 1.12 1.26	1.58 1.60 1.63 1.65 1.68	1.05 1.07 1.08 1.10 1.12
Effect	32 34 36 38 40	1.66 1.87 2.10 2.34 2.59	1.10 1.25 1.40 1.56 1.72	1.29 1.30 1.32 1.34 1.35	0.857 0.867 0.878 0.889 0.900	1.89 2.14 2.39 2.67 2.96	1.26 1.42 1.59 1.78 1.97	1.48 1.50 1.52 1.54 1.56	0.983 0.997 1.01 1.03 1.04	2.16 2.43 2.73 3.04 3.37	1.43 1.62 1.82 2.02 2.24	1.70 1.73 1.76 1.79 1.82	1.13 1.15 1.17 1.19 1.21
				0	ther Cor	stants	and Pro	perties					
$t_y \times 10^3$	× 10 ³ , (kip-ft) ⁻¹ × 10 ³ , (kips) ⁻¹ 0.596 × 10 ³ , (kips) ⁻¹ 0.733				66 397 488		33 668 321		38 144 547		21 747 918		14 197 312
r _X	/r _y		1.	79			1.	78			1.	77	
r_{V} ,	in.		3.	25			3.	22			3	19	

 $F_y = 50 \text{ ksi}$

Ol							W1	2 ×					
Sha	ape		13	36			12	20			10	06	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _X >	103
Des	ign	(kip	s) ⁻¹	(kip	-ft) ^{−1}	(kip	s)-1	(kip	-ft) ^{−1}	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	0.837	0.557	1.66	1.11	0.949	0.631	1.92	1.27	1.07	0.712	2.17	1.45
	6	0.869	0.578	1.66	1.11	0.986	0.656	1.92	1.27	1.11	0.741	2.17	1.45
	7	0.881	0.586	1.66	1.11	1.00	0.665	1.92	1.27	1.13	0.751	2.17	1.45
چ	8	0.896	0.596	1.66	1.11	1.02	0.676	1.92	1.27	1.15	0.764	2.17	1.45
Ľ,	9	0.912	0.607	1.66	1.11	1.04	0.689	1.92	1.27	1.17	0.778	2.17	1.45
ratio	10	0.930	0.619	1.66	1.11	1.06	0.703	1.92	1.27	1.19	0.794	2.17	1.45
f gy ding	11	0.951	0.633	1.66	1.11	1.08	0.719	1.92	1.27	1.22	0.813	2.17	1.45
s o	12	0.974	0.648	1.68	1.11	1.11	0.737	1.93	1.28	1.25	0.833	2.19	1.46
diu s	13	1.00	0.666	1.69	1.12	1.14	0.757	1.95	1.30	1.29	0.856	2.22	1.47
t ra	14	1.03	0.685	1.70	1.13	1.17	0.779	1.96	1.31	1.33	0.882	2.24	1.49
respect to least radius of gylespect to L_b (ft), for X-X axis bending	15	1.06	0.706	1.71	1.14	1.21	0.804	1.98	1.32	1.37	0.910	2.26	1.50
ئ بو	16	1.10	0.730	1.73	1.15	1.25	0.831	2.00	1.33	1.41	0.941	2.28	1.52
(#)	17	1.14	0.755	1.74	1.16	1.29	0.861	2.02	1.34	1.47	0.976	2.31	1.53
dsə	18	1.18	0.784	1.76	1.17	1.34	0.894	2.04	1.35	1.52	1.01	2.33	1.55
ਜੂ ਜ਼	19	1.22	0.815	1.77	1.18	1.40	0.931	2.05	1.37	1.59	1.06	2.35	1.57
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_{\it y}$, or Unbraced Length, $\it L_{\it b}$ (ft), for X-X axis bending	20	1.28	0.849	1.78	1.19	1.46	0.970	2.07	1.38	1.65	1.10	2.38	1.58
(#)	22	1.39	0.928	1.81	1.21	1.60	1.06	2.11	1.41	1.81	1.21	2.43	1.62
rac /	24	1.54	1.02	1.84	1.23	1.76	1.17	2.15	1.43	2.00	1.33	2.48	1.65
불입	26	1.71	1.14	1.87	1.25	1.96	1.31	2.19	1.46	2.23	1.49	2.54	1.69
	28	1.91	1.27	1.91	1.27	2.20	1.47	2.24	1.49	2.51	1.67	2.60	1.73
ive	30	2.16	1.44	1.94	1.29	2.50	1.66	2.28	1.52	2.86	1.90	2.66	1.77
ffect	32	2.46	1.64	1.97	1.31	2.84	1.89	2.33	1.55	3.25	2.16	2.72	1.81
ù	34	2.78	1.85	2.01	1.34	3.21	2.14	2.38	1.58	3.67	2.44	2.79	1.86
	36	3.12	2.07	2.05	1.36	3.60	2.40	2.43	1.62	4.11	2.74	2.86	1.90
	38	3.47	2.31	2.09	1.39	4.01	2.67	2.48	1.65	4.58	3.05	2.93	1.95
	40	3.85	2.56	2.13	1.41	4.44	2.96	2.54	1.69	5.08	3.38	3.01	2.00
				0	ther Co	nstants	and Pro	perties					
$b_y \times 10^3$	(kip-ft)-1	3.0	64	2.4	12	4.	17	2.7	78	4.	74	3.	16
$t_{v} \times 10^{3}$	(kips)-1	0.0	337	0.5	557	0.9	949	0.6	31	1.	07	0.7	712
$t_r \times 10^3$,	(kips) ⁻¹	1.0		1	885	1.1	17	l	777		31	0.8	377
r _x	/r _y		1.	77			1.	76			1.	76	
r_{v} ,	in.		3.	16			3.	13			3.	11	

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	ane						W1	2 ×					
3116	ahe.			6				7				9	
		p×	10 ³		10 ³	p×	10 ³	b _x ×	(10 ³	p×	10 ³	b _x ×	C10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.18	0.788	2.42	1.61	1.30	0.868	2.70	1.80	1.44	0.958	2.99	1.99
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	6 7 8 9 10 11 12 13 14 15	1.23 1.25 1.27 1.30 1.32 1.35 1.39 1.43 1.47 1.52 1.57	0.820 0.832 0.846 0.862 0.880 0.901 0.924 0.949 0.978 1.01 1.05 1.08	2.42 2.42 2.42 2.42 2.42 2.43 2.45 2.48 2.50 2.53 2.56 2.59	1.61 1.61 1.61 1.61 1.61 1.63 1.65 1.67 1.68	1.36 1.38 1.40 1.43 1.46 1.49 1.53 1.58 1.62 1.68	0.904 0.917 0.932 0.950 0.971 0.994 1.02 1.05 1.08 1.12	2.70 2.70 2.70 2.70 2.70 2.70 2.74 2.77 2.80 2.84 2.87 2.91	1.80 1.80 1.80 1.80 1.80 1.80 1.82 1.84 1.86 1.89 1.91	1.50 1.52 1.55 1.58 1.61 1.65 1.69 1.74 1.80 1.86	0.998 1.01 1.03 1.05 1.07 1.10 1.13 1.16 1.20 1.24 1.28 1.33	2.99 2.99 2.99 2.99 2.99 3.00 3.04 3.08 3.12 3.16 3.21 3.25	1.99 1.99 1.99 1.99 1.99 2.00 2.02 2.05 2.08 2.11 2.13 2.16
t), with respe Length, \mathcal{L}_b (f	18 19 20	1.69 1.76 1.84	1.13 1.17 1.22	2.62 2.65 2.68	1.74 1.76 1.78	1.87 1.95 2.04	1.25 1.30 1.36	2.94 2.98 3.02	1.96 1.98 2.01	2.08 2.17 2.26	1.38 1.44 1.51	3.30 3.34 3.39	2.19 2.22 2.26
tive length, KL (f	22 24 26 28 30	2.02 2.24 2.50 2.81 3.20	1.34 1.49 1.66 1.87 2.13	2.74 2.81 2.88 2.95 3.03	1.83 1.87 1.92 1.97 2.02	2.24 2.48 2.78 3.13 3.57	1.49 1.65 1.85 2.08 2.38	3.10 3.19 3.28 3.37 3.47	2.06 2.12 2.18 2.24 2.31	2.49 2.76 3.09 3.50 4.00	1.66 1.84 2.06 2.33 2.66	3.49 3.60 3.71 3.84 3.96	2.32 2.40 2.47 2.55 2.64
Effec	32 34 36 38 40	3.64 4.11 4.61 5.14 5.69	2.42 2.74 3.07 3.42 3.79	3.11 3.20 3.29 3.39 3.49	2.07 2.13 2.19 2.26 2.32	4.07 4.59 5.15 5.73 6.35	2.71 3.05 3.42 3.81 4.23	3.58 3.69 3.81 3.94 4.08	2.38 2.46 2.54 2.62 2.72	4.55 5.13 5.75 6.41 7.10	3.02 3.41 3.83 4.26 4.73	4.10 4.25 4.41 4.58 4.78	2.73 2.83 2.93 3.05 3.18
				0	ther Co	nstants	and Pro	perties					
$t_y \times 10^3$, $t_r \times 10^3$,	$b_y \times 10^3$, (kip-ft) ⁻¹ $t_y \times 10^3$, (kips) ⁻¹ $t_r \times 10^3$, (kips) ⁻¹		28 18 45	0.9	51 788 970	1.	90 30 60	3.9 0.8 1.0	368	1.	56 44 77	1.1	958
	in.			76 09				75 07				75 05	
						l				l			

W12

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

							W1	2 ×					
Sha	ape		7	2				5 ^f			5	i8	
		p×	10 ³		103	p×	10 ³		103	p×	10 ³	b _x ×	103
Des	sign		s) ⁻¹		-ft) ⁻¹		s)-1		-ft)−1		s) ⁻¹		-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.58	1.05	3.30	2.19	1.75	1.16	3.75	2.50	1.96	1.31	4.12	2.74
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30	1.65 1.67 1.70 1.74 1.77 1.82 1.87 1.92 1.98 2.05 2.12 2.20 2.29 2.39 2.50 2.75 3.05 3.42 3.87 4.42	1.10 1.11 1.13 1.16 1.18 1.21 1.24 1.28 1.32 1.36 1.41 1.46 1.52 1.59 1.66 1.83 2.03 2.28 2.57 2.94	3.30 3.30 3.30 3.30 3.30 3.31 3.36 3.40 3.45 3.50 3.56 3.61 3.67 3.72 3.78 3.91 4.04 4.18 4.33 4.49	2.19 2.19 2.19 2.19 2.20 2.23 2.27 2.30 2.33 2.37 2.40 2.44 2.48 2.52 2.60 2.69 2.78 2.88 2.99	1.82 1.85 1.88 1.92 1.96 2.01 2.06 2.13 2.19 2.27 2.35 2.44 2.54 2.65 2.77 3.06 3.40 3.82 4.32 4.95	1.21 1.23 1.25 1.28 1.31 1.34 1.37 1.41 1.46 1.51 1.56 1.62 1.69 1.77 1.85 2.03 2.26 2.54 2.88 3.29	3.75 3.75 3.75 3.75 3.75 3.75 3.81 3.87 3.93 4.00 4.06 4.13 4.20 4.27 4.43 4.59 4.77 4.96 5.17	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.54 2.58 2.62 2.66 2.70 2.75 2.80 2.84 2.95 3.06 3.17 3.30 3.44	2.09 2.13 2.19 2.25 2.32 2.41 2.50 2.61 2.73 2.86 3.01 3.18 3.38 3.59 3.83 4.41 5.15 6.05 7.01 8.05	1.39 1.42 1.45 1.50 1.54 1.60 1.66 1.73 1.81 1.90 2.01 2.12 2.25 2.39 2.55 2.94 3.43 4.02 4.67 5.36	4.12 4.12 4.13 4.21 4.28 4.36 4.45 4.53 4.62 4.71 4.81 4.91 5.01 5.12 5.36 5.61 5.90 6.21 6.57 7.12	2.74 2.74 2.74 2.75 2.80 2.85 2.90 2.96 3.02 3.07 3.14 3.20 3.27 3.34 3.41 3.56 3.74 3.92 4.13 4.37
_	34 36	5.68 6.37	3.78 4.24	4.86 5.06	3.23 3.37	6.36 7.13	4.23 4.74	5.64 5.97	3.75 3.98	10.3 11.6	6.88 7.71	7.66 8.21	5.10 5.46
	38 40	7.09 7.86	4.72 5.23	5.32 5.66	3.54 3.76	7.94 8.80	5.28 5.85	6.39 6.81	4.25 4.53	12.9 14.3	8.59 9.52	8.75 9.29	5.82 6.18
		00	3.20		ther Cor						3.02	3.20	30
$b_V \times 10^3$, (kip-ft) ⁻¹	7.	24		82		31	_	53	11.	0	7.	29
$t_y \times 10^3$, $t_r \times 10^3$,	(kips)-1	1.	58 94	1.	05 30	1.	75 15	1.	16 43	1.	96 41	1.	31 61
r _x	/r _y		1.	 75			1.	75			2.	10	
	in.			04			3.	02			2.	51	
f Shape d	oes not me	et compa	ct limit fo	r flexure	with $F_{\nu} =$	50 ksi							

^f Shape does not meet compact limit for flexure with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W12

W-Shapes

Sh	ape							1 2 ×					
				3				0				5	
		p×	10 ³	b _x ×	103	p×	10 ³		103	p×	10 ³	b _x ×	103
Des	sign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip-	-ft)−1
		ASD	LRFD										
	0	2.14	1.42	4.57	3.04	2.29	1.52	4.96	3.30	2.55	1.70	5.55	3.69
ation, r _y ,	6 7 8 9 10	2.28 2.33 2.39 2.46 2.54	1.52 1.55 1.59 1.64 1.69	4.57 4.57 4.57 4.59 4.68	3.04 3.04 3.04 3.06 3.12	2.52 2.62 2.73 2.86 3.01	1.68 1.74 1.81 1.90 2.00	4.96 4.96 5.08 5.19 5.32	3.30 3.30 3.38 3.46 3.54	2.82 2.92 3.04 3.19 3.36	1.87 1.94 2.03 2.12 2.24	5.55 5.56 5.70 5.84 6.00	3.69 3.70 3.79 3.89 3.99
Effective length, $\it KL$ (ft), with respect to least radius of gyration, $\it r_y$, or Unbraced Length, $\it L_b$ (ft), for X-X axis bending	11 12 13 14 15	2.63 2.74 2.86 2.99 3.15	1.75 1.82 1.90 1.99 2.09	4.77 4.87 4.97 5.07 5.18	3.18 3.24 3.31 3.38 3.45	3.19 3.39 3.64 3.91 4.24	2.12 2.26 2.42 2.60 2.82	5.45 5.58 5.73 5.88 6.04	3.62 3.72 3.81 3.91 4.02	3.56 3.80 4.07 4.39 4.75	2.37 2.53 2.71 2.92 3.16	6.15 6.32 6.50 6.69 6.88	4.09 4.21 4.32 4.45 4.58
, with respect to ength, L_b (ft), for	16 17 18 19 20	3.32 3.51 3.73 3.97 4.25	2.21 2.34 2.48 2.64 2.83	5.29 5.41 5.53 5.66 5.80	3.52 3.60 3.68 3.77 3.86	4.61 5.05 5.56 6.17 6.83	3.07 3.36 3.70 4.10 4.55	6.20 6.38 6.57 6.77 6.98	4.13 4.25 4.37 4.50 4.64	5.18 5.68 6.25 6.94 7.69	3.45 3.78 4.16 4.62 5.12	7.09 7.32 7.56 7.81 8.08	4.72 4.87 5.03 5.20 5.38
ive length, KL (ft) or Unbraced L	22 24 26 28 30	4.90 5.75 6.75 7.83 8.99	3.26 3.83 4.49 5.21 5.98	6.09 6.41 6.77 7.16 7.81	4.05 4.26 4.50 4.77 5.20	8.27 9.84 11.5 13.4 15.4	5.50 6.55 7.68 8.91 10.2	7.45 8.01 8.84 9.67 10.5	4.95 5.33 5.88 6.44 6.99	9.31 11.1 13.0 15.1 17.3	6.19 7.37 8.65 10.0 11.5	8.69 9.66 10.7 11.7 12.8	5.78 6.43 7.11 7.80 8.48
Effect	32 34 36 38 40	10.2 11.5 12.9 14.4 16.0	6.80 7.68 8.61 9.59 10.6	8.48 9.15 9.81 10.5 11.1	5.64 6.09 6.53 6.97 7.41	17.5	11.6	11.3	7.53	19.7	13.1	13.8	9.16
				0	ther Co	ıstants	and Pro	perties					
$t_y \times 10^3$, $t_r \times 10^3$,	(kips) ⁻¹		14 63	1. 1.	15 42 75		29 .81	1.	1 52 87		55 13	2.	5 70 09
r _x ,	/r _y		2.	11			2.	64			2.	64	
r _y ,	in.		2.	48			1.	96			1.	95	
Noto: Hos	wy line indi	catoc KI	r oqual t	o or aroa	tor than 3	200							

W12

Table 6-1 (continued) Combined Flexure and Axial Force

 $F_y = 50 \text{ ksi}$

W-Shapes

-							W 1	1 2 ×					
Sna	ape		4	10			3	5 ^c			3	0c	
		p×	10 ³	b _x ×	103	р×	10 ³	b _x ×	103	p×	10 ³	b _x >	< 10 ³
Des	sign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s)-1		-ft)−1	(kip	s) ⁻¹		-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.85	1.90	6.25	4.16	3.25	2.17	6.96	4.63	3.94	2.62	8.27	5.50
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24	3.16 3.27 3.41 3.58 3.78 4.00 4.27 4.58 4.94 5.36 5.84 6.41 7.07 7.85 8.70 10.5 12.5	2.10 2.18 2.27 2.38 2.51 2.66 2.84 3.05 3.29 3.56 3.89 4.26 4.70 5.23 5.79 7.01 8.34	6.25 6.27 6.44 6.62 6.80 7.00 7.21 7.43 7.66 7.91 8.18 8.46 8.77 9.10 9.45 10.5 11.8	4.16 4.17 4.29 4.40 4.53 4.66 4.79 4.94 5.10 5.26 5.44 5.63 5.83 6.05 6.29 6.96 7.83	3.80 4.03 4.31 4.65 5.05 5.55 6.15 6.87 7.74 8.82 10.0 11.3 12.7 14.2 15.7	2.53 2.68 2.87 3.09 3.36 4.09 4.57 5.15 5.87 6.68 7.54 8.45 9.42 10.4 12.6 15.0	7.09 7.34 7.61 7.90 8.22 8.56 8.93 9.77 10.3 10.8 11.5 12.5 13.4 14.4	4.72 4.89 5.07 5.26 5.47 5.69 5.94 6.21 6.50 6.82 7.18 7.66 8.30 8.94 9.59	4.54 4.79 5.10 5.50 5.99 6.60 7.32 8.21 9.28 10.6 12.1 13.6 15.3 17.0 18.9 22.8 27.2	3.02 3.19 3.39 3.66 3.99 4.39 4.87 5.46 6.18 7.06 8.04 9.07 10.2 11.3 12.6 15.2 18.1	8.46 8.79 9.14 9.53 9.94 10.4 10.9 11.5 12.1 12.7 13.7 15.0 16.4 17.7 19.0 21.7 24.4	5.63 5.85 6.08 6.34 6.62 7.25 7.62 8.02 8.48 9.13 10.0 10.9 11.8 12.7 14.5 16.3
fective length or Unk	26 28 30 32	14.7 17.1 19.6 22.3	9.79 11.3 13.0	13.1 14.4 15.7 16.9	8.69 9.56 10.4 11.3								
T					-								
				0	ther Co	ıstants	and Pro	perties					
$b_y \times 10^3$ $t_y \times 10^3$, $t_r \times 10^3$,			2 85 51		1 90 34		0 24 98		6 16 66		3 80 67		8 53 11
r _x	/r _y		2.	64			3.	41			3.	43	
	in.			94			1.	54			1.	52	
C Shane is	s slender fo	r compre	ssion wit	$h F_{v} = 50$	ksi								

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

							W1	l 2 ×					
Sh	ape		2	6 ^c				2 ^c			1	9c	
		p×	10 ³	b _x ×	103	p×	10 ³		103	p×	10 ³	-	10 ³
Des	sign	(kip	s) ⁻¹		-ft)−1		s) ⁻¹	-	-ft)−1	_	s) ⁻¹		-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	4.66	3.10	9.58	6.37	5.42	3.60	12.2	8.09	6.52	4.34	14.4	9.60
	1	4.67	3.11	9.58	6.37	5.48	3.65	12.2	8.09	6.60	4.39	14.4	9.60
	2	4.73	3.14	9.58	6.37	5.68	3.78	12.2	8.09	6.84	4.55	14.4	9.60
72	3	4.82	3.21	9.58	6.37	6.03	4.01	12.2	8.09	7.28	4.84	14.5	9.66
ou,	4	4.95	3.29	9.58	6.37	6.58	4.38	13.0	8.65	7.95	5.29	15.6	10.4
rati J	5	5.13	3.41	9.58	6.37	7.43	4.95	14.0	9.28	8.97	5.97	16.9	11.2
length, KL (ft), with respect to least radius of gy or Unbraced Length, L_{b} (ft), for X-X axis bending	6	5.36	3.56	9.83	6.54	8.73	5.81	15.1	10.0	10.5	6.99	18.4	12.2
IS 0	7	5.64	3.75	10.2	6.81	10.6	7.03	16.4	10.9	12.9	8.56	20.2	13.4
adit dis l	8	6.00	3.99	10.7	7.11	13.2	8.75	17.9	11.9	16.3	10.8	22.3	14.9
st ra	9	6.43	4.28	11.2	7.43	16.7	11.1	19.8	13.1	20.6	13.7	25.7	17.1
<u> ea</u>	10	6.97	4.64	11.7	7.79	20.6	13.7	23.0	15.3	25.5	16.9	30.4	20.2
함	11	7.64	5.08	12.3	8.17	24.9	16.5	26.5	17.6	30.8	20.5	35.2	23.4
(#)	12	8.49	5.65	12.9	8.60	29.6	19.7	30.0	20.0	36.7	24.4	40.1	26.7
rest L _b	13	9.53	6.34	13.6	9.08	34.7	23.1	33.5	22.3	43.0	28.6	45.1	30.0
£ £	14	10.8	7.18	14.4	9.61	40.3	26.8	37.1	24.7				
, w Len	15	12.4	8.22	15.4	10.3								
# pe	16	14.1	9.36	17.1	11.4								
, KI	17	15.9	10.6	18.8	12.5								
ag de	18	17.8	11.8	20.6	13.7								
<u>e</u> -	19	19.8	13.2	22.3	14.9								
ive	20	22.0	14.6	24.1	16.0								
Effective length, KL (ft), with respect to least radius of gyration, $\mathit{r_y}$, or Unbraced Length, $\mathit{L_b}$ (ft), for X-X axis bending	21	24.2	16.1	25.9	17.2								
<u></u>	22	26.6	17.7	27.7	18.4								
	23	29.1	19.3	29.5	19.6								
	24	31.6	21.0	31.3	20.8								
	25	34.3	22.8	33.1	22.0								
				0	ther Co	nstants	and Pro	perties					
$b_V \times 10^3$, (kip-ft) ⁻¹	43.	6	29.	0	97.	.3	64.	8	120		79.	5
$t_y \times 10^3$	(kips)-1	4.	37	2.	90		.15	3.	43	6.	00	3.	99
$t_r \times 10^3$	(kips) ⁻¹	5.	36	3.	58	6.	.33	4.	22	7.3	37	4.	91
r _x ,	/r _y		3.	42			5.	79			5.	86	
r_y	, in.		1.	51			0.0	348			0.0	322	
l		-				-				-			

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

W12

Table 6-1 (continued) **Combined Flexure** and Axial Force

W-Shapes

 $F_{v} = 50 \text{ ksi}$

Ch	ape				W1	2 ×			
3116	ape		10	6°			14	c, v	
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	103
Des	sign	(kip	s)-1	(kip-	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	7.98	5.31	17.7	11.8	9.39	6.24	20.5	13.6
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	1 2 3 4 5 6 7 8 9 10 11 12	8.08 8.39 8.97 9.87 11.3 13.4 16.8 21.8 27.6 34.0 41.2 49.0	5.38 5.59 5.96 6.57 7.49 8.91 11.2 14.5 18.3 22.6 27.4 32.6	17.7 17.7 18.1 19.6 21.4 23.6 26.3 29.6 36.1 42.9 50.0 57.2	11.8 11.8 12.0 13.1 14.3 15.7 17.5 19.7 24.0 28.5 33.3 38.1	9.50 9.88 10.5 11.6 13.3 15.8 19.9 26.0 32.9 40.6 49.1 58.5	6.32 6.57 7.02 7.73 8.83 10.5 13.3 17.3 21.9 27.0 32.7 38.9	20.5 20.5 21.0 22.9 25.1 27.8 31.2 36.4 44.6 53.3 62.4 71.8	13.6 13.6 14.0 15.2 16.7 18.5 20.7 24.2 29.7 35.5 41.5 47.8
			Oth	er Constai	nts and Pr	operties			
$b_y \times 10^3$ $t_y \times 10^3$, $t_r \times 10^3$,		158 7. 8.			72 81		03 86	l	34 57
r _x	·/r _y		6.0)4			6.1	4	
r_y ,	in.		0.7	773			0.7	753	

^c Shape is slender for compression with $F_y=50$ ksi. v Shape does not meet the h/t_w limit for shear in AISC *Specification* Section G2.1(a) with $F_y=50$ ksi; therefore, $\phi_V=0.90$ and $\Omega_{V} = 1.67.$

Note: Heavy line indicates KL/r_v equal to or greater than 200.

Table 6-1 (continued) Combined Flexure and Axial Force

Sha	ape							0×					
				12				00				8	
			10 ³		103		10 ³		C 10 ³	-	10 ³		103
Des	sign	(kip	s) ⁻¹	(kip-	-ft) ⁻¹		s)-1		-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI
	0	1.02	0.675	2.42	1.61	1.14	0.758	2.74	1.82	1.28	0.855	3.15	2.10
ation, r_y ,	6 7 8 9 10	1.07 1.09 1.12 1.14 1.18	0.712 0.726 0.742 0.761 0.782	2.42 2.42 2.42 2.42 2.43	1.61 1.61 1.61 1.61 1.62	1.20 1.23 1.25 1.29 1.32	0.800 0.816 0.835 0.856 0.881	2.74 2.74 2.74 2.74 2.75	1.82 1.82 1.82 1.82 1.83	1.36 1.38 1.42 1.45 1.50	0.903 0.921 0.942 0.967 0.995	3.15 3.15 3.15 3.15 3.17	2.10 2.10 2.10 2.10 2.11
Effective length, AL (IT), with respect to least radius of gyration, f_{y_0} or Unbraced Length, L_b (II), for X-X axis bending	11 12 13 14 15	1.21 1.25 1.30 1.35 1.41	0.807 0.834 0.865 0.900 0.939	2.45 2.47 2.49 2.51 2.53	1.63 1.64 1.66 1.67 1.68	1.37 1.41 1.47 1.53 1.60	0.909 0.941 0.977 1.02 1.06	2.78 2.80 2.82 2.85 2.87	1.85 1.86 1.88 1.90 1.91	1.54 1.60 1.66 1.73 1.81	1.03 1.06 1.11 1.15 1.20	3.20 3.23 3.27 3.30 3.33	2.13 2.15 2.17 2.19 2.22
, with respect to ength, L_b (ft), for	16 17 18 19 20	1.48 1.55 1.63 1.72 1.82	0.983 1.03 1.09 1.15 1.21	2.55 2.56 2.59 2.61 2.63	1.69 1.71 1.72 1.73 1.75	1.67 1.76 1.85 1.96 2.08	1.11 1.17 1.23 1.30 1.38	2.90 2.92 2.95 2.98 3.00	1.93 1.94 1.96 1.98 2.00	1.90 1.99 2.10 2.23 2.36	1.26 1.33 1.40 1.48 1.57	3.36 3.40 3.43 3.47 3.50	2.24 2.26 2.28 2.31 2.33
ive lengin, AL (II) or Unbraced L	22 24 26 28 30	2.06 2.36 2.74 3.18 3.65	1.37 1.57 1.82 2.11 2.43	2.67 2.71 2.76 2.80 2.85	1.78 1.80 1.83 1.87 1.90	2.36 2.70 3.15 3.65 4.19	1.57 1.80 2.09 2.43 2.79	3.06 3.11 3.17 3.23 3.30	2.03 2.07 2.11 2.15 2.19	2.68 3.09 3.60 4.18 4.79	1.79 2.05 2.40 2.78 3.19	3.58 3.65 3.73 3.82 3.90	2.38 2.43 2.48 2.54 2.60
	32 34 36 38 40	4.15 4.69 5.25 5.85 6.49	2.76 3.12 3.50 3.90 4.32	2.90 2.95 3.01 3.06 3.12	1.93 1.97 2.00 2.04 2.08	4.77 5.38 6.03 6.72 7.45	3.17 3.58 4.01 4.47 4.96	3.36 3.43 3.50 3.58 3.66	2.24 2.28 2.33 2.38 2.43	5.46 6.16 6.90 7.69 8.52	3.63 4.10 4.59 5.12 5.67	4.00 4.09 4.19 4.30 4.41	2.66 2.72 2.79 2.86 2.94
				0	ther Cor	stants	and Pro	perties					
$\times 10^3$, (kips) ⁻¹ 1.		15 02 25	1	13 675 331	1.	84 14 40	l	39 758 933	1.	71 28 58	4.4 0.8 1.0	355	
	/r _y			74				74				73	
r_y	, in.		2.0	68			2.	65			2.	63	

 $F_y = 50 \text{ ksi}$

-							W1	0×					
Sha	ape		7	7			6	8			6	60	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	103
Des	ign	(kip	s) ⁻¹	(kip	-ft)−1	(kip		(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1.47	0.979	3.65	2.43	1.68	1.12	4.18	2.78	1.89	1.26	4.78	3.18
	6	1.56	1.04	3.65	2.43	1.78	1.18	4.18	2.78	2.00	1.33	4.78	3.18
	7	1.59	1.06	3.65	2.43	1.81	1.21	4.18	2.78	2.04	1.36	4.78	3.18
یّے	8	1.63	1.08	3.65	2.43	1.86	1.23	4.18	2.78	2.09	1.39	4.78	3.18
Ľ.	9	1.67	1.11	3.65	2.43	1.91	1.27	4.18	2.78	2.15	1.43	4.78	3.18
ratio	10	1.72	1.14	3.68	2.45	1.96	1.31	4.22	2.81	2.21	1.47	4.84	3.22
f gyl	11	1.78	1.18	3.72	2.48	2.03	1.35	4.27	2.84	2.29	1.52	4.90	3.26
s of	12	1.84	1.23	3.76	2.50	2.10	1.40	4.32	2.88	2.37	1.58	4.97	3.31
diu	13	1.91	1.27	3.80	2.53	2.19	1.46	4.38	2.91	2.47	1.64	5.04	3.36
axi	14	2.00	1.33	3.85	2.56	2.28	1.52	4.44	2.95	2.58	1.72	5.12	3.41
east X-X	15	2.09	1.39	3.89	2.59	2.39	1.59	4.49	2.99	2.70	1.80	5.19	3.46
for for	16	2.19	1.46	3.94	2.62	2.51	1.67	4.55	3.03	2.84	1.89	5.27	3.51
(±) ect	17	2.31	1.54	3.98	2.65	2.64	1.76	4.61	3.07	2.99	1.99	5.35	3.56
97) q7	1 respect to least radius of gy, h, <i>L_b</i> (ff), for X-X axis bending 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.62	4.03	2.68	2.79	1.86	4.67	3.11	3.16	2.10	5.43	3.62
= =	<u>=</u> <u>€</u> 19		1.72	4.08	2.71	2.96	1.97	4.74	3.15	3.36	2.23	5.52	3.67
, wit	20	2.58 2.74	1.83	4.13	2.74	3.14	2.09	4.80	3.20	3.57	2.38	5.61	3.73
ed L	22	3.13	2.08	4.23	2.81	3.59	2.39	4.94	3.29	4.08	2.72	5.79	3.85
rac K	24	3.61	2.40	4.33	2.88	4.15	2.76	5.08	3.38	4.73	3.14	5.99	3.99
# 를	26	4.22	2.81	4.45	2.96	4.85	3.23	5.24	3.49	5.54	3.69	6.20	4.13
en C	28	4.89	3.26	4.56	3.04	5.63	3.74	5.40	3.59	6.42	4.27	6.43	4.28
ive	30	5.62	3.74	4.69	3.12	6.46	4.30	5.57	3.71	7.38	4.91	6.67	4.44
ffect	32	6.39	4.25	4.82	3.21	7.35	4.89	5.76	3.83	8.39	5.58	6.94	4.61
ù	34	7.22	4.80	4.96	3.30	8.30	5.52	5.96	3.96	9.47	6.30	7.22	4.80
	36	8.09	5.38	5.11	3.40	9.30	6.19	6.17	4.10	10.6	7.07	7.53	5.01
	38	9.02	6.00	5.26	3.50	10.4	6.90	6.40	4.26	11.8	7.87	7.96	5.30
	40	9.99	6.65	5.43	3.61	11.5	7.64	6.64	4.42	13.1	8.72	8.43	5.61
				0	ther Co	nstants	and Pro	perties					
$b_y \times 10^3$,	(kip-ft)-1		.76	5.	16	8.	88	5.	91	10.	2	6.	77
$t_y \times 10^3$,	$\times 10^3$, (kips) ⁻¹ 1.47 0.9					1.	68	1.	12	1.	89	1.	26
$t_r \times 10^3$,	$\times 10^3$, (kips) ⁻¹ 1.81 1.20						06	1.	37		32		55
r _x	/r _y		1.	73			1.	71			1.	71	
r_{ν} ,	in.		2.	60			2.	59			2.	57	

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sh	ape						W1	0×					
	иро			4				9				5	
		p×	10 ³	b _X ×	103	p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	C 10 ³
Des	sign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.11	1.41	5.35	3.56	2.32	1.54	5.90	3.92	2.51	1.67	6.49	4.32
	6	2.24	1.49	5.35	3.56	2.46	1.64	5.90	3.92	2.76	1.84	6.49	4.32
	7	2.29	1.52	5.35	3.56	2.51	1.67	5.90	3.92	2.85	1.90	6.49	4.32
, ry	8	2.34	1.56	5.35	3.56	2.57	1.71	5.90	3.92	2.97	1.97	6.60	4.39
.io	9	2.41	1.60	5.35	3.56	2.65	1.76	5.90	3.93	3.10	2.06	6.73	4.48
yrat g	10	2.48	1.65	5.43	3.61	2.73	1.82	6.00	3.99	3.26	2.17	6.87	4.57
of g ndin	11	2.57	1.71	5.51	3.67	2.83	1.88	6.10	4.06	3.44	2.29	7.00	4.66
us (12	2.66	1.77	5.60	3.72	2.93	1.95	6.20	4.13	3.65	2.43	7.15	4.76
adi	13	2.77	1.85	5.69	3.78	3.06	2.03	6.31	4.20	3.90	2.60	7.30	4.86
st r X a	14	2.90 3.03	1.93	5.78	3.85	3.19	2.12	6.42	4.27	4.19	2.78	7.46	4.96
- <u>ea</u>	Effective length, AL (ft), with respect to least radius of gyration, I_{γ} or Unbraced Length, L_{b} (ft), for X-X axis bending or Unbraced Length, L_{b} (ft), for X-X axis bending I_{b}		2.02	5.88	3.91	3.35	2.23	6.54	4.35	4.51	3.00	7.63	5.07
), tt	16 16 (£) 17		2.12	5.97	3.97	3.52	2.34	6.66	4.43	4.89	3.26	7.80	5.19
bec (#)	17 (#), 17 18		2.24	6.08	4.04	3.72	2.47	6.78	4.51	5.33	3.55	7.98	5.31
res 1, L _b	_	3.56	2.37	6.18	4.11	3.94	2.62	6.91	4.60	5.84	3.89	8.17	5.44
af fi	19	3.78	2.51	6.29	4.19	4.18	2.78	7.04	4.69	6.44	4.28	8.37	5.57
Ler 't	20	4.02	2.67	6.40	4.26	4.46	2.96	7.18	4.78	7.13	4.75	8.58	5.71
7. (f	22	4.60	3.06	6.64	4.42	5.11	3.40	7.48	4.98	8.63	5.74	9.03	6.01
h, <i>k</i> bra	24	5.33	3.55	6.90	4.59	5.94	3.95	7.80	5.19	10.3	6.83	9.53	6.34
g -	26	6.25	4.16	7.18	4.78	6.97	4.64	8.15	5.42	12.1	8.02	10.1	6.71
e e	28	7.25	4.83	7.48	4.98	8.08	5.38	8.53	5.68	14.0	9.30	10.9	7.22
cţi.	30	8.33	5.54	7.81	5.20	9.28	6.17	8.95	5.96	16.0	10.7	11.7	7.82
He H	32	9.47	6.30	8.17	5.43	10.6	7.03	9.47	6.30	18.3	12.1	12.6	8.41
-	34	10.7	7.12	8.60	5.72	11.9	7.93	10.2	6.77				
	36	12.0	7.98	9.19	6.11	13.4	8.89	10.9	7.24				
	38 40	13.4 14.8	8.89 9.85	9.77 10.4	6.50 6.89	14.9 16.5	9.91 11.0	11.6 12.3	7.71 8.18				
	70	14.0	3.00						0.10				
					ther Cor			_					
	, (kip-ft) ⁻¹	11.			57	12.			38	17.		11.	
$t_y \times 10^3$			11		41		32	l .	54		51		67
$t_r \times 10^3$	(kips) ⁻¹	2.	60	1.	73	2.	85	1.	90	3.	08	2.	06
r_{χ}	r_{i}/r_{y}		1.	71			1.	71			2.	15	
r_y	, in.		2.	56			2.	54			2.	01	
Noto: Hos	www.line_indi	catae KL	'r ogual f	o or aroa	tor than 2	000				-			

 $F_y = 50 \text{ ksi}$

		I											
Sh	аре							10×					
				9				33				80	
			10 ³		103		10 ³		103		10 ³		103
Des	sign	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip	s) ⁻¹	(kip	-ft) ⁻¹	(kip		(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2.90	1.93	7.61	5.06	3.44	2.29	9.18	6.11	3.78	2.51	9.73	6.48
	6	3.20	2.13	7.61	5.06	3.80	2.53	9.18	6.11	4.62	3.08	10.1	6.74
	7	3.31	2.20	7.61	5.07	3.95	2.62	9.22	6.13	4.97	3.31	10.5	6.99
ž	8	3.45	2.29	7.78	5.18	4.11	2.74	9.45	6.29	5.41	3.60	10.9	7.25
on,	9	3.61	2.40	7.96	5.29	4.31	2.87	9.70	6.45	5.95	3.96	11.3	7.53
/rati J	10	3.80	2.53	8.14	5.41	4.55	3.03	9.96	6.62	6.62	4.41	11.8	7.84
length, KL (ft), with respect to least radius of gy or Unbraced Length, L_b (ft), for X-X axis bending	11	4.02	2.67	8.33	5.54	4.83	3.21	10.2	6.81	7.45	4.96	12.3	8.17
ns c	12	4.28	2.84	8.53	5.67	5.15	3.42	10.5	7.00	8.47	5.64	12.8	8.54
adiı Kis	13	4.57	3.04	8.74	5.81	5.52	3.67	10.8	7.20	9.76	6.49	13.4	8.93
st r X a	14	4.92	3.27	8.96	5.96	5.95	3.96	11.2	7.42	11.3	7.53	14.1	9.37
lea 'X-	15	5.31	3.54	9.19	6.12	6.45	4.29	11.5	7.65	13.0	8.64	14.8	9.85
t to , fo	16	5.78	3.84	9.44	6.28	7.04	4.68	11.9	7.89	14.8	9.83	15.6	10.4
Dec (#)	17	6.31	4.20	9.70	6.45	7.72	5.14	12.3	8.15	16.7	11.1	16.8	11.2
res _p	18	6.93	4.61	9.97	6.63	8.51	5.67	12.7	8.43	18.7	12.4	18.1	12.1
£ £	19	7.67	5.10	10.3	6.82	9.46	6.30	13.1	8.73	20.8	13.9	19.4	12.9
), wi	20	8.50	5.66	10.6	7.03	10.5	6.98	13.6	9.05	23.1	15.4	20.7	13.8
pec	22	10.3	6.84	11.2	7.47	12.7	8.44	14.8	9.82	27.9	18.6	23.2	15.4
λ, / bra	24	12.2	8.14	12.0	7.98	15.1	10.0	16.5	11.0				
ngt Un	26	14.4	9.56	13.2	8.77	17.7	11.8	18.3	12.2				
ᅙᅙ	28	16.7	11.1	14.4	9.58	20.6	13.7	20.1	13.4				
tive	30	19.1	12.7	15.6	10.4	23.6	15.7	21.9	14.5				
Effective length, KL (ft), with respect to least radius of gyration, r_{γ} , or Unbraced Length, L_{b} (ft), for X-X axis bending	32	21.8	14.5	16.8	11.2	26.8	17.9	23.6	15.7				
_													
				0	ther Co	nstants	and Pro	perties					
	, (kip-ft) ⁻¹	20.		13.		25.		16.		40.		26.	8
$t_y \times 10^3$			90		93		.44		29		78	I	51
$t_r \times 10^3$,	(kips) ⁻¹	3.	57	2.	38	4.	.23	2.	82	4.	64	3.	09
r_{x}	/r _y		2.	16			2.	16			3.	20	
r_y	in.		1.	98			1.	94			1.	37	
Note: Hea	vy line indi	cates KL/	r_y equal t	to or grea	ter than 2	200.							

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sha	no						W1	0×					
SIIC	ihe		2	6			2	2 c			1	9	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x ×	C10 ³	p×	10 ³	b _x ×	< 10 ³
Des	ign	(kip	s) ⁻¹	(kip-	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft) ⁻¹
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	4.39	2.92	11.4	7.57	5.19	3.45	13.7	9.12	5.94	3.95	16.5	11.0
	1	4.41	2.94	11.4	7.57	5.22	3.47	13.7	9.12	6.03	4.01	16.5	11.0
	2	4.49	2.99	11.4	7.57	5.30	3.53	13.7	9.12	6.28	4.18	16.5	11.0
ζ,	3	4.62	3.07	11.4	7.57	5.44	3.62	13.7	9.12	6.73	4.48	16.5	11.0
ou,	4	4.81	3.20	11.4	7.57	5.66	3.77	13.7	9.12	7.41	4.93	17.4	11.6
/rati g	5	5.06	3.37	11.5	7.63	5.97	3.97	13.9	9.23	8.39	5.58	18.6	12.4
of gy din	6	5.39	3.58	11.9	7.93	6.38	4.24	14.5	9.64	9.76	6.49	19.9	13.2
ıs o	7	5.80	3.86	12.4	8.25	6.89	4.58	15.1	10.1	11.7	7.77	21.4	14.3
adit cis l	8	6.32	4.20	12.9	8.59	7.53	5.01	15.9	10.6	14.4	9.55	23.2	15.4
stra (a)	9	6.96	4.63	13.5	8.97	8.33	5.55	16.7	11.1	18.1	12.0	25.3	16.8
Effective length, KL (ft), with respect to least radius of gyration, $t_{\rm y}$, or Unbraced Length, L_b (ft), for X-X axis bending	10	7.76	5.16	14.1	9.38	9.33	6.21	17.6	11.7	22.3	14.8	28.2	18.8
t to , for	11	8.74	5.81	14.8	9.84	10.6	7.04	18.5	12.3	27.0	18.0	32.3	21.5
ec (#)	12	9.96	6.63	15.5	10.3	12.1	8.07	19.6	13.1	32.1	21.4	36.4	24.2
res _p	13	11.5	7.65	16.4	10.9	14.1	9.38	20.9	13.9	37.7	25.1	40.5	26.9
£ £	14	13.3	8.88	17.3	11.5	16.4	10.9	22.5	15.0	43.7	29.1	44.6	29.7
length, KL (ft), with respect to least radius of gy or Unbraced Length, L_b (ft), for X-X axis bending	15	15.3	10.2	18.4	12.2	18.8	12.5	25.0	16.6				
t) ed	16	17.4	11.6	20.1	13.4	21.4	14.2	27.4	18.2				
ı, Klı orac	17	19.7	13.1	21.8	14.5	24.1	16.0	29.9	19.9				
er ge	18	22.1	14.7	23.6	15.7	27.0	18.0	32.4	21.6				
ᇹᇹ	19	24.6	16.3	25.3	16.8	30.1	20.0	34.9	23.2				
tive	20	27.2	18.1	27.0	18.0	33.4	22.2	37.4	24.9				
ffec	21	30.0	20.0	28.7	19.1	36.8	24.5	39.9	26.5				
ш	22	32.9	21.9	30.5	20.3	40.4	26.9	42.4	28.2				
				0	ther Cor	ıstants	and Pro	perties					
$b_y \times 10^3$	(kip-ft)-1	47.	5	31.	6	58.	4	38.	9	106		70.	8
$y \times 10^3$			39	1	92		15	3.	42	5.	94	3.	95
$r \times 10^3$,	(kips) ⁻¹	5.	39	3.	59	6.	32	4.	21	7.	30	4.	87
r_X	/r _y		3.	20			3.	21			4.7	74	
r.,	in.		1.3	36			1.	33			3.0	374	

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

 $F_y = 50 \text{ ksi}$

W-Shapes

Ch							W1	10×					
Sha	ape		1	7 c			1	5 ^c			12	c, f	
		p×	10 ³	b _x ×	103	p×	10 ³	b _x >	< 10 ³	p×	10 ³	b _x >	< 10 ³
Des	ign	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1	(kip	s) ⁻¹	(kip	-ft)−1
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	6.77	4.50	19.1	12.7	7.77	5.17	22.3	14.8	10.3	6.87	28.5	19.0
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.85 7.11 7.64 8.47 9.68 11.4 13.8 17.2 21.8 26.9 32.5 38.7 45.4 52.7	4.56 4.73 5.09 5.64 6.44 7.57 9.17 11.4 14.5 17.9 21.6 25.8 30.2 35.1	19.1 19.1 19.1 20.4 21.9 23.6 25.6 28.0 30.9 36.0 41.4 46.8 52.3 57.8	12.7 12.7 12.7 13.6 14.5 15.7 17.0 18.6 20.6 23.9 27.5 31.2 34.8 38.5	7.87 8.19 8.76 9.79 11.3 13.5 16.6 21.2 26.8 33.1 40.1 47.7 56.0	5.24 5.45 5.83 6.51 7.53 8.98 11.1 14.1 17.8 22.0 26.7 31.7 37.2	22.3 22.3 22.5 24.2 26.1 28.4 31.2 34.5 39.6 46.8 54.0 61.4 68.8	14.8 14.8 15.0 16.1 17.4 18.9 20.7 22.9 26.4 31.1 35.9 40.9 45.8	10.5 10.9 11.6 12.8 14.6 17.5 21.8 28.1 35.6 43.9 53.1 63.2 74.2	6.96 7.24 7.74 8.52 9.73 11.6 14.5 18.7 23.7 29.2 35.4 42.1 49.4	28.5 28.5 28.8 31.1 33.9 37.3 41.3 46.4 56.5 67.2 78.3 89.6 101	19.0 19.0 19.1 20.7 22.6 24.8 27.5 30.9 37.6 44.7 52.1 59.6 67.3
				0	ther Co	ıstants	and Pro	perties					
	(kip-ft) ⁻¹	127	00	84.		155	F-7	103	0.4	207	44	138	00
$t_y \times 10^3$, $t_r \times 10^3$,		69 22	I	45 48		57 30		04 20		44 1.6		28 73	
	$\frac{(rapo)}{r_y}$	J.	4.7			J.	4.8				4.9		-
	in.			345				310				785	
	s slender fo	r compre			kei	l		-				-	

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

 $^{^{\}rm f}$ Shape does not meet compact limit for flexure with $\emph{F}_{\emph{y}} = 50$ ksi.

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sha	ape							8×					
				7				8				8	
Design		p × 10 ³ (kips) ⁻¹		b _x × 10 ³ (kip-ft) ⁻¹		p × 10 ³ (kips) ⁻¹		$b_X \times 10^3$ (kip-ft) ⁻¹		p × 10 ³ (kips) ⁻¹		$b_X \times 10^3$ (kip-ft) ⁻¹	
			0	1.70	1.13	5.08	3.38	1.95	1.30	5.96	3.96	2.37	1.58
Effective length, KL (ft), with respect to least radius of gyration, r_y , or Unbraced Length, L_b (ft), for X-X axis bending	6 7 8 9 10	1.84 1.90 1.97 2.05 2.14	1.23 1.27 1.31 1.36 1.43	5.08 5.08 5.11 5.16 5.21	3.38 3.38 3.40 3.43 3.47	2.13 2.20 2.28 2.37 2.48	1.42 1.46 1.51 1.58 1.65	5.96 5.96 6.00 6.07 6.14	3.96 3.96 3.99 4.04 4.08	2.59 2.67 2.77 2.88 3.02	1.72 1.78 1.84 1.92 2.01	7.27 7.27 7.34 7.44 7.55	4.84 4.84 4.88 4.95 5.02
	11 12 13 14 15	2.25 2.38 2.52 2.68 2.87	1.50 1.58 1.68 1.79 1.91	5.27 5.32 5.38 5.43 5.49	3.50 3.54 3.58 3.61 3.65	2.61 2.75 2.92 3.12 3.34	1.73 1.83 1.95 2.08 2.22	6.21 6.29 6.36 6.44 6.52	4.13 4.18 4.23 4.29 4.34	3.18 3.36 3.57 3.82 4.10	2.12 2.24 2.38 2.54 2.73	7.65 7.77 7.88 8.00 8.12	5.09 5.17 5.24 5.32 5.41
	16 17 18 19 20	3.09 3.34 3.62 3.95 4.33	2.05 2.22 2.41 2.63 2.88	5.55 5.61 5.67 5.74 5.80	3.69 3.73 3.77 3.82 3.86	3.60 3.89 4.23 4.62 5.08	2.39 2.59 2.82 3.08 3.38	6.61 6.69 6.78 6.87 6.96	4.40 4.45 4.51 4.57 4.63	4.42 4.79 5.21 5.70 6.28	2.94 3.18 3.47 3.79 4.18	8.25 8.38 8.52 8.66 8.80	5.49 5.58 5.67 5.76 5.85
	22 24 26 28 30	5.24 6.23 7.31 8.48 9.74	3.48 4.15 4.87 5.64 6.48	5.93 6.07 6.22 6.38 6.54	3.95 4.04 4.14 4.24 4.35	6.15 7.32 8.59 9.96 11.4	4.09 4.87 5.71 6.63 7.61	7.15 7.35 7.57 7.79 8.03	4.76 4.89 5.03 5.19 5.35	7.60 9.05 10.6 12.3 14.1	5.06 6.02 7.06 8.19 9.40	9.10 9.43 9.77 10.1 10.6	6.06 6.27 6.50 6.75 7.02
Effect	32 34	11.1 12.5	7.37 8.32	6.71 6.89	4.46 4.58	13.0 14.7	8.66 9.77	8.29 8.56	5.52 5.70	16.1 18.2	10.7 12.1	11.0 11.5	7.31 7.63
				0	ther Co	nstants	and Pro	perties					
$b_y \times 10^3$, (kip-ft) ⁻¹ $t_y \times 10^3$, (kips) ⁻¹ $t_r \times 10^3$, (kips) ⁻¹			9 70 08	1.	25 13 39	12.8 8 1.95 1		1.	8.50 1.30 1.60		15.6 2.37 2.91		4 58 94
r_{x}	r/r _y		1.	75			1.	74			1.	74	
r_y	, in.		2.	12			2.	10			2.	08	
Note: Heavy line indicates KI /r. equal to or greater than 200									-				

 $F_y = 50 \text{ ksi}$

Ch					W	8 ×					
Shape			4	0			3	5			
		p×	10 ³	b _x ×	10 ³	p×	10 ³	b _x ×	10 ³		
Design		(kip	os)-1 (-ft)−1	(kip	s) ⁻¹	(kip-ft)−1			
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	2.85	1.90	8.95	5.96	3.24	2.16	10.3	6.83		
	6	3.13	2.08	8.95	5.96	3.56	2.37	10.3	6.83		
	7	3.23	2.15	8.95	5.96	3.68	2.45	10.3	6.83		
ž	8	3.36	2.23	9.07	6.03	3.82	2.54	10.4	6.94		
e,	9	3.50	2.33	9.22	6.14	3.99	2.65	10.6	7.07		
rrati J	10	3.68	2.45	9.38	6.24	4.19	2.79	10.8	7.21		
of gy ding	11	3.88	2.58	9.55	6.35	4.42	2.94	11.1	7.36		
ns (12	4.11	2.73	9.72	6.47	4.68	3.12	11.3	7.51		
adit tis I	13	4.38	2.91	9.90	6.59	4.99	3.32	11.5	7.67		
e st	14	4.69	3.12	10.1	6.71	5.35	3.56	11.8	7.83		
length, KL (ft), with respect to least radius of gy or Unbraced Length, L _b (ft), for X-X axis bending	15	5.04	3.36	10.3	6.84	5.76	3.83	12.0	8.00		
t to	16	5.46	3.63	10.5	6.97	6.24	4.15	12.3	8.18		
gec (#)	17	5.93	3.95	10.7	7.11	6.79	4.51	12.6	8.37		
res _l	18	6.48	4.31	10.9	7.25	7.42	4.94	12.9	8.56		
₩ ₩	19	7.12	4.73	11.1	7.40	8.16	5.43	13.2	8.77		
, w Leng	20	7.87	5.24	11.4	7.55	9.03	6.01	13.5	8.99		
# g	22	9.52	6.34	11.8	7.88	10.9	7.27	14.2	9.45		
ı, K	24	11.3	7.54	12.4	8.24	13.0	8.65	15.0	9.97		
효물	26	13.3	8.85	13.0	8.64	15.3	10.2	15.8	10.5		
ᅙ	28	15.4	10.3	13.6	9.07	17.7	11.8	17.0	11.3		
tive	30	17.7	11.8	14.4	9.57	20.3	13.5	18.4	12.3		
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, $L_{\rm b}$ (ft), for X-X axis bending	32	20.1	13.4	15.4	10.3	23.1	15.4	19.8	13.2		
_	34	22.7	15.1	16.5	11.0						
			Oth	er Constai	nts and Pr	operties					
$b_V \times 10^3$, (kip-ft)-1	19.3	3	12.	8	22.	1	14.7			
$t_{v} \times 10^{3}$	(kips)-1	2.8		1.9	90		24		16		
$t_r \times 10^3$	(kips) ⁻¹	3.	51	2.	34	3.	98	2.	66		
r _x	·/r _y		1.	73			1.	73			
r_{v}	in.		2.	04			2.	03			
		cates <i>KL/r_y</i> eq	ual to or great	ter than 200.							

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

Sha	ape				W	8 ×						
				1 ^f	0			8	0			
Design 0		-	$p \times 10^3$ $b_x \times 10^3$ $p \times (kips)^{-1}$ $(kip-ft)^{-1}$ $(kip-ft)^{-1}$						× 10 ³			
				(kip-ft)-1		(kip		(kip-ft) ⁻¹				
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	0	3.66	2.43	11.7	7.80	4.05	2.69	13.1	8.71			
Effective length, KL (ft), with respect to least radius of gyration, $r_{\rm y}$, or Unbraced Length, L_b (ft), for X-X axis bending	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32	4.01 4.15 4.32 4.51 4.74 5.00 5.30 5.66 6.07 6.54 7.08 7.71 8.44 9.29 10.3 12.4 14.8 17.4 20.2 23.1 26.3	2.67 2.76 2.87 3.00 3.15 3.33 3.53 3.76 4.04 4.35 4.71 5.13 5.62 6.18 6.84 8.28 9.86 11.6 13.4 15.4	11.7 11.7 11.9 12.2 12.5 12.7 13.0 13.3 13.7 14.0 14.4 14.7 15.1 15.6 16.0 17.0 18.0 19.6 21.4 23.3 25.1	7.80 7.80 7.94 8.11 8.29 8.48 8.67 8.88 9.09 9.32 9.56 9.81 10.1 10.3 10.6 11.3 12.0 13.1 14.3 15.5	4.68 4.93 5.23 5.60 6.05 6.58 7.21 7.98 8.89 9.98 11.3 12.8 14.3 16.0 17.7 21.4 25.5 29.9	2.69 3.11 3.28 3.48 3.73 4.02 4.38 4.80 5.31 5.91 6.64 7.54 8.51 9.54 10.6 11.8 14.2 17.0 19.9	13.1 13.2 13.5 13.9 14.2 14.6 15.0 15.5 15.9 16.4 17.0 17.5 18.1 18.7 19.4 20.2 22.1 24.5 26.9	8.77 9.00 9.23 9.48 9.74 10.0 10.3 10.6 10.9 11.3 11.7 12.0 12.5 12.9 13.4 14.7 16.3 17.9			
			Oth	er Constai	nts and Pr	operties						
$b_y \times 10^3$, (kip-ft) ⁻¹ $t_y \times 10^3$, (kips) ⁻¹ $t_r \times 10^3$, (kips) ⁻¹		25.3 3.0 4.	66	16.8 2.4 3.0		35. 4. 4.	05	2.	23.5 2.69 3.32			
r_{χ}	·/r _y		1.	72			2.	13				
	in.						1.	62				
		at aamnaat lin	2.02 1.62									

 $^{\rm f}$ Shape does not meet compact limit for flexure with $F_{\rm y}\!=\!50$ ksi.

 $F_y = 50 \text{ ksi}$

		W8×											
Shape			2	24			2	21			1	8	
Design		p×	10 ³	b _x >	< 10 ³	p×	10 ³	b _x >	103	p×10 ³		<i>b_x</i> × 10 ³	
		(kip	s) ⁻¹	(kip-ft)−1		(kips)−1		(kip-ft)−1		(kips) ⁻¹		(kip-ft)−1	
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	4.72	3.14	15.4	10.3	5.42	3.61	17.5	11.6	6.35	4.22	21.0	13.9
Effective length, KL (ft), with respect to least radius of gyration, r_{γ} , or Unbraced Length, L_b (ft), for X-X axis bending	1 2 3 4 5	4.74 4.79 4.89 5.03 5.22 5.46	3.15 3.19 3.26 3.35 3.47 3.63	15.4 15.4 15.4 15.4 15.4 15.6	10.3 10.3 10.3 10.3 10.3	5.46 5.57 5.76 6.03 6.40 6.88	3.63 3.70 3.83 4.01 4.26 4.58	17.5 17.5 17.5 17.5 17.8	11.6 11.6 11.6 11.6 11.9	6.39 6.53 6.76 7.10 7.56	4.25 4.34 4.50 4.72 5.03 5.43	21.0 21.0 21.0 21.0 21.5 22.5	13.9 13.9 13.9 13.9 14.3
	7 8 9 10	5.76 6.12 6.56 7.08	3.83 4.07 4.36 4.71	16.0 16.5 17.0 17.5	10.6 11.0 11.3 11.7	7.50 8.29 9.28 10.5	4.99 5.51 6.17 7.00	19.2 20.0 20.9 21.9	12.8 13.3 13.9 14.5	8.93 9.91 11.2 12.7	5.94 6.60 7.42 8.47	23.5 24.6 25.9 27.3	15.6 16.4 17.2 18.1
	11 12 13 14 15	7.71 8.47 9.37 10.5 11.8	5.13 5.63 6.24 6.96 7.83	18.1 18.7 19.3 20.0 20.8	12.0 12.4 12.9 13.3 13.8	12.1 14.1 16.6 19.2 22.0	8.05 9.39 11.0 12.8 14.7	22.9 24.1 25.3 26.7 28.5	15.2 16.0 16.8 17.8 18.9	14.7 17.3 20.3 23.6 27.1	9.81 11.5 13.5 15.7 18.0	28.8 30.5 32.5 35.3 38.8	19.2 20.3 21.6 23.5 25.8
	16 17 18 19 20	13.4 15.1 16.9 18.8 20.9	8.89 10.0 11.3 12.5 13.9	21.6 22.5 23.4 24.5 26.1	14.4 14.9 15.6 16.3 17.4	25.1 28.3 31.7 35.4 39.2	16.7 18.8 21.1 23.5 26.1	30.9 33.4 35.9 38.3 40.7	20.6 22.2 23.9 25.5 27.1	30.8 34.8 39.0 43.5 48.2	20.5 23.1 26.0 28.9 32.0	42.4 45.9 49.4 52.9 56.4	28.2 30.5 32.9 35.2 37.5
	21 22 23 24 25	23.0 25.3 27.6 30.1 32.6	15.3 16.8 18.4 20.0 21.7	27.8 29.4 31.0 32.6 34.2	18.5 19.6 20.6 21.7 22.8	43.2	28.7	43.2	28.7				
				0	ther Co	ıstants	and Pro	perties					
$\begin{array}{ccc} b_y \times 10^3, (\text{kip-ft})^{-1} & 41.6 \\ t_y \times 10^3, (\text{kips})^{-1} & 4.72 \\ t_r \times 10^3, (\text{kips})^{-1} & 5.79 \end{array}$		3.	7 14 86		42 66	41.7 3.61 4.44		76.5 6.35 7.80		50.9 4.22 5.20			
	r/r _y			12				77				79	
	, in.			61	1		1.	26			1.	23	
Note: Heavy line indicates <i>KL/r_y</i> equal to or greater than 200.													

Table 6-1 (continued) Combined Flexure and Axial Force

W-Shapes

	W8×													
Sha	ape		1	5				o× ∣3			10	c, f		
Design		D ×	10 ³	_	103	p×		_	10 ³	p×10 ³			<i>b</i> _x × 10 ³	
		(kips)-1		(kip-ft)−1		(kips)-1		(kip-ft) ⁻¹		(kips)-1		(kip-ft)−1		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	7.52	5.01	26.2	17.4	8.70	5.79	31.3	20.8	11.7	7.78	40.6	27.0	
Effective length, KL (ft), with respect to least radius of gyration, r_{f} , or Unbraced Length, L_b (ft), for X-X axis bending	1 2 3 4 5	7.63 7.95 8.51 9.37 10.6	5.07 5.29 5.66 6.23 7.05	26.2 26.2 26.2 27.6 29.4	17.4 17.4 17.4 18.4 19.5	8.83 9.23 9.94 11.0 12.6	5.87 6.14 6.61 7.34 8.38	31.3 31.3 31.3 33.4 35.7	20.8 20.8 20.8 22.2 23.8	11.8 12.3 13.1 14.3 16.4	7.88 8.18 8.71 9.55 10.9	40.6 40.6 40.6 43.2 46.7	27.0 27.0 27.0 28.8 31.1	
	6 7 8 9 10	12.3 14.7 18.1 22.8 28.1	8.20 9.80 12.0 15.2 18.7	31.3 33.6 36.2 39.3 42.9	20.8 22.4 24.1 26.1 28.6	14.8 18.0 22.5 28.4 35.1	9.86 12.0 14.9 18.9 23.4	38.5 41.7 45.4 50.0 57.4	25.6 27.7 30.2 33.2 38.2	19.3 23.4 29.3 37.1 45.8	12.8 15.6 19.5 24.7 30.4	50.8 55.7 61.6 71.3 84.3	33.8 37.0 41.0 47.4 56.1	
	11 12 13 14	34.0 40.5 47.5 55.1	22.6 26.9 31.6 36.7	48.9 54.9 60.9 66.9	32.5 36.5 40.5 44.5	42.5 50.6 59.3 68.8	28.3 33.6 39.5 45.8	65.8 74.3 82.7 91.2	43.8 49.4 55.0 60.7	55.4 65.9 77.3 89.7	36.8 43.8 51.5 59.7	97.6 111 125 139	64.9 73.9 83.0 92.2	
				0	ther Co	nstants	and Pro	perties						
$b_y \times 10^3$, (kip-ft) ⁻¹ $t_y \times 10^3$, (kips) ⁻¹ $t_r \times 10^3$, (kips) ⁻¹			52 24	I	8 01 16	166 110 218 8.70 5.79 11.3 10.7 7.12 13.9		1.3	145 7.51 9.24					
r_{χ}	/r _y		3.7	76			3.8	31			3.8	33		
r _y ,	in.		3.0	376			0.0	343			3.0	841		

 $^{^{\}rm c}$ Shape is slender for compression with $F_y = 50$ ksi.

^f Shape does not meet compact limit for flexure with $F_y = 50$ ksi.