Automata and Grammars (BIE-AAG) 4. Regular expressions

Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

© Jan Holub, 2020

Regular expressions

Definition

Regular expression V over alphabet Σ is defined as follows:

- 1. $\emptyset, \varepsilon, a$ are regular expressions for all $a \in \Sigma$.
- 2. If x, y are regular expressions over Σ , then:
 - (a) (x + y) (union, alternation),
 - (b) (x.y) (concatenation), and
 - (c) $(x)^*$ (Kleene star)

are regular expressions over Σ .

Note: If there is no ambiguity then parentheses and dots may be omitted.

Regular expressions ONLy Calains Tring

Definition

Value h(x) of regular expression x is defined as follows:

1.
$$h(\emptyset) = \emptyset, h(\varepsilon) = \{\varepsilon\}, h(a) = \{a\}, a \in \Sigma$$

1.
$$h(\emptyset) = \emptyset, h(\varepsilon) = \{\varepsilon\}, h(a) = \{a\}, a \in \Sigma$$

2. $h(x+y) = h(x) \cup h(y),$
 $h(x.y) = h(x).h(y),$ Concations $h(x^*) = (h(x))^*$, where x, y are regular expressions.

Equivalence of regular expressions

Definition (identical, equivalent, and similar r.e.)

Regular expressions x, y are called *identical* (denoted by $x \equiv y$) if x a y are two exactly same strings of symbols.

Regular expressions x, y are called equivalent (denoted by x = y) if they have the same value, h(x) = h(y), that is, the regular sets described by these equations are identical.

Regular expressions x, y are called <u>similar</u> (denoted by $x \cong y$) if they can be converted into each other using the following identities:

$$A_1: x+x=x$$

$$A_2: \quad x+y=y+x$$

$$A_3: (x+y)+z=x+(y+z)$$

$$A_4: x + \emptyset = x$$

$$A_5: x.\emptyset = \emptyset.x = \emptyset$$

$$A_6: x.\varepsilon = \varepsilon.x = x$$

Example

Is expression $(\varepsilon + \emptyset)(0+1)^*1 + (0+1)^*\emptyset$ similar to expression $(0+1)^*1$?

$$(\varepsilon + \emptyset)(0+1)^*1 + (0+1)^*\emptyset = x \cdot \emptyset = \emptyset$$

$$= (\varepsilon + \emptyset)(0+1)^*1 + \emptyset = x + \emptyset = x$$

$$= (\varepsilon + \emptyset)(0+1)^*1 = x + \emptyset = x$$

$$= \varepsilon(0+1)^*1 = \varepsilon \cdot x = x$$

$$= (0+1)^*1.$$

Regular expressions — properties

Observation

```
Let x, y, z be regular expressions. It holds:
```

```
P_1: \quad x+(y+z)=(x+y)+z \quad \text{(associativity of union)}, P_2: \quad x+y=y+x \quad \text{(commutativity of union)}, P_3: \quad x+\emptyset=x \quad \text{(}\emptyset \text{ is the identity element of union)}, P_4: \quad x+x=x \quad \text{(idempotence of union)}, P_5: \quad x.(y.z)=(x.y).z \quad \text{(associativity of concatenation)}, P_6: \quad \varepsilon x=x\varepsilon=x \quad \text{(}\varepsilon \text{ is the identity element of concatenation)}, P_7: \quad \emptyset x=x\emptyset=\emptyset \quad \text{(}\emptyset \text{ is the identity element of concatenation)}, P_8: \quad x.(y+z)=x.y+x.z \quad \text{(left distributivity)},
```

 $P_9: \quad (x+y).z = x.z + y.z$ (right distributivity),

 $P_{10}: x^* = \varepsilon + x^*x,$ $P_{11}: x^* = (\varepsilon + x)^*.$

Theorem

Let x, α, β be regular expressions. It holds:

 $V_1: \quad x = x\alpha + \beta \Rightarrow x = \beta\alpha^*$ (solution of left regular equation), $V_2: \quad x = \alpha x + \beta \Rightarrow x = \alpha^*\beta$ (solution of right regular equation).

Theorems in the theory of regular expressions

```
V_{1}: \quad \emptyset^{*} = \varepsilon
V_{2}: \quad x^{*} + x = x^{*}
V_{3}: \quad (x^{*})^{*} = x^{*}
V_{4}: \quad (x + y)^{*} = (x^{*}y^{*})^{*}
V_{5}: \quad x^{*}y = y + x^{*}xy
V_{6}: \quad x^{*}y = y + xx^{*}y
V_{7}: \quad x^{*}y = (x^{n})^{*}.(y + xy + x^{2}y + \dots + x^{n-1}y)
V_{8}: \quad xx^{*} = x^{*}, \text{if } \varepsilon \in h(x)
V_{9}: \quad (xy)^{*}x = x(yx)^{*}
V_{10}: \quad (x + y)^{*} = (x^{*} + y^{*})^{*}
```

Example

Regular expressions

$$x = \varepsilon + 1^*(011)^*(1^*(011)^*)^*$$
$$y = (1 + 011)^*$$

Are they equivalent?

$$x = \varepsilon + 1^*(011)^*(1^*(011)^*)^*$$

$$= (1^*(011)^*)^*$$

$$= (1 + 011)^*$$

$$= y.$$

$$\varepsilon + xx^* = x^*$$
$$(x^*y^*)^* = (x+y)^*$$

Example

Equivalent REs that cannot be converted one to the other using the identities and theorems of this lecture:

$$\blacksquare B = (10^*1 + 0)^*(10^*1 + 0)$$

$$B' = 0^* (1(0+10^*1)^*(100^*+1)+0)$$

Regular equations

Example

Find a regular expression describing the language of all words containing even number of ones (no zeros) followed by string 010.

$$x = 11x + 010$$

solution:
$$x = (11)^*010$$

 $(11)^*010 = 11(11)^*010 + 010$
 $(11)^*010 = (11(11)^* + \varepsilon)010$
 $(x = \alpha x + \beta \Rightarrow x = \alpha^*\beta)$
 $(xy + y = (x + \varepsilon)y)$
 $(xx^* + \varepsilon = x^*)$

Regular equations

Definition

Standard system of regular equations has form:

 $X_i = \alpha_{i0} + \alpha_{i1}X_1 + \alpha_{i2}X_2 + \cdots + \alpha_{in}X_n, 1 \le i \le n$, where X_1, X_2, \dots, X_n are variables and α_{ij} are regular expressions over alphabet Σ , which does not contain X_1, X_2, \dots, X_n .

Regular equations

Example

$$A = 1A + 1B$$
$$B = 0A + 0B + 0$$

$$A = 1*1B$$

$$B = 01*1B + 0B + 0$$

$$B = (01*1 + 0)B + 0$$

$$B = (01*1 + 0)*0 = (0(1*1 + \varepsilon))*0 = (01*)*0$$

Solution:

$$A = 1*1(01*)*0$$
$$B = (01*)*0$$

Derivatives of regular expressions

Informal definition

Derivative $\frac{\mathrm{d}}{\mathrm{d}x}$ of regular expression V with respect to string $x \in \Sigma^*$: $h(\frac{\mathrm{d}V}{\mathrm{d}x}) = \{y : xy \in h(V)\}.$

Derivatives of regular expressions

Definition

Derivative $\frac{d}{dx}$ of regular expression V with respect to string $x \in \Sigma^*$:

1.
$$\frac{\mathrm{d}V}{\mathrm{d}\varepsilon} = V$$

2. For $a, b \in \Sigma$ it holds that:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}a} = \emptyset$$

$$\frac{\mathrm{d}b}{\mathrm{d}a} = \left\langle \begin{array}{l} \emptyset, \text{ if } a \neq b \\ \varepsilon, \text{ if } a = b \end{array} \right.$$

$$\frac{\mathrm{d}(U+V)}{\mathrm{d}a} = \frac{\mathrm{d}U}{\mathrm{d}a} + \frac{\mathrm{d}V}{\mathrm{d}a}$$

$$\frac{\mathrm{d}(U+V)}{\mathrm{d}a} = \left\langle \begin{array}{l} \frac{\mathrm{d}U}{\mathrm{d}a}V, \text{ if } \varepsilon \notin h(U), \\ \frac{\mathrm{d}U}{\mathrm{d}a}V + \frac{\mathrm{d}V}{\mathrm{d}a}, \text{ if } \varepsilon \in h(U) \right.$$

$$\frac{\mathrm{d}(V^*)}{\mathrm{d}a} = \frac{\mathrm{d}V}{\mathrm{d}a}.V^*$$

3. For $x = a_1 a_2 \dots a_n, a_i \in \Sigma$ it holds that $\frac{dV}{dx} = \frac{d}{da_n} \left(\frac{d}{da_{n-1}} \left(\cdots \frac{d}{da_2} \left(\frac{dV}{da_1} \right) \cdots \right) \right)$

Derivatives of regular expressions

Example

Regular expression $y = (0+1)^*.1$.

$$\frac{dy}{d\varepsilon} = (0+1)^*.1
\frac{dy}{d1} = \frac{d(0+1)^*}{d1}.1 + \frac{d1}{d1}
= \frac{d(0+1)}{d1}.(0+1)^*.1 + \varepsilon
= (\frac{d0}{d1} + \frac{d1}{d1})(0+1)^*.1 + \varepsilon
= (0+1)^*.1 + \varepsilon
= (0+1)^*.1 + \varepsilon
\frac{dy}{d0} = \frac{d(0+1)^*}{d0}.1 + \frac{d1}{d0}
= \frac{d(0+1)}{d0}.(0+1)^*.1 + \emptyset
= (\varepsilon + \emptyset).(0+1)^*.1 + \emptyset
= (0+1)^*.1$$

Integral of regular expressions

Definition

Integral of regular expression V in respect to string $x \in \Sigma^*$ is defined as:

$$h(\int V \, dx) = \{xy : y \in h(V)\}.$$

For the integration of regular expressions the following rules apply:

- 1. $\int V d\varepsilon = V$
- 2. for $a \in \Sigma$ it holds:

$$\int \varepsilon \, da = a,$$

$$\int \emptyset \, da = \emptyset,$$

$$\int b \, da = ab,$$

$$\int (U + V) \, da = \int U \, da + \int V \, da,$$

$$\int (U.V) \, da = aUV,$$

$$\int V^* \, da = aV^*.$$

3. for $x = a_1 a_2 \cdots a_n \in \Sigma^*$ it hols: $\int V \, dx = \int \cdots \left[\int (\int V \, da_n) \, da_{n-1} \right] \cdots da_1.$

Integral of regular expressions

$$\frac{\mathrm{d}}{\mathrm{d}x} \int V \, \mathrm{d}x = V,$$

$$\int \frac{\mathrm{d}V}{\mathrm{d}x} \, \mathrm{d}x = V. \tag{?}$$

Integral with an integration constant Z:

$$\int_{\frac{\mathrm{d}Z}{\mathrm{d}x}} V \, \mathrm{d}x = xV + Z$$

Integral of regular expressions

Example

Regular expression $(0+1)^*.1$.

$$\int (0+1)^* \cdot 1 \ d1 = 1 \cdot (0+1)^* \cdot 1 + Z_1,$$

$$\int (0+1)^* \cdot 1 \ d0 = 0 \cdot (0+1)^* \cdot 1 + Z_0.$$

Relations between formal systems of RL

Relations between formal systems for description of RL

Kleene's Theorem

Theorem (Kleene)

A language over an alphabet is regular iff it can be accepted by a finite automaton.

Algorithm NFA for a given regular grammar

Input: Regular grammar $G = (N, \Sigma, P, S)$.

Output: NFA M such that L(G) = L(M).

- 1: $Q \leftarrow N \cup \{A\}, A \notin N$
- 2: $\delta(B, a) \leftarrow \{C : (B \rightarrow aC) \in P\}, \forall a \in \Sigma, \forall B \in N$
- 3: $\delta(B,a) \leftarrow \delta(B,a) \cup \{A: (B \rightarrow a) \in P\}, \forall a \in \Sigma, \forall B \in N$
- 4: $q_0 \leftarrow S$
- 5: $F \leftarrow \{S, A\}$, if $(S \rightarrow \varepsilon) \in P$, $F \leftarrow \{A\}$, otherwise
- 6: $M \leftarrow (Q, \Sigma, \delta, q_0, F)$
- 7: return M

Example

$$G = (\{C\}, \{d\}, \{C \to d \mid dC\}, C).$$

 $M = (\{C, A\}, \{d\}, \delta, C, \{A\}), \text{ where } \delta$:

δ	d	
C	$\{C,A\}$	
$\mid A \mid$		

Example

 $G = (\{ID, ZI\}, \{p, c\}, P, ID), \text{ where } P$:

$$ID \rightarrow p ZI \mid p$$

$$ZI \rightarrow p ZI \mid c ZI \mid p \mid c$$
.

(Grammar generates identifiers according to the usual definition (p - alphabet letter, c - digit).)

 $M = (\{\mathit{ID}, \mathit{ZI}, \mathit{A}\}, \{p, c\}, \delta, \mathit{ID}, \{\mathit{A}\})$, where δ

δ	p	c		
ID	$\{ZI,A\}$			
ZI	$\{ZI,A\}$	$\{ZI,A\}$		
A				

Example

Language describing strings of the form: list id; c; id; id; ...; c; c; id#

$$G = (\{S, L, R\}, \{list, id, c, ;, \#\}, P, S), \text{ where } P$$
:

$$S \rightarrow list L$$
, $L \rightarrow id R \mid cR$, $R \rightarrow ; L \mid \#$

$$M = (\{S, L, R, A\}, \{list, id, c, \#, ; \}, \delta, S, \{A\}), \text{ where } \delta$$
:

δ	list	id	c	;	#
S	L				
$oxedsymbol{L}$		R	R		
R				$oxed{L}$	A
A					

Relationship between FA and RG

Algorithm Regular grammar for a given NFA **Input:** NFA $M = (Q, \Sigma, \delta, q_0, F), Q \cap \Sigma = \emptyset.$ **Output:** Regular grammar G, L(M) = L(G). 1: $N \leftarrow Q$; $S \leftarrow q_0$ 2: $P \leftarrow \{B \rightarrow aC : C \in \delta(B, a), B, C \in Q, a \in \Sigma\}$ 3: $P \leftarrow P \cup \{B \rightarrow a : C \in \delta(B, a), B \in Q, C \in F, a \in \Sigma\}$ 4: if $q_0 \in F$ then if S is at righthand side of no rule then 5: $P \leftarrow P \cup \{S \rightarrow \varepsilon\}$ 6: else 7: $N \leftarrow N \cup \{S'\}, S' \notin Q$ 8: $P \leftarrow P \cup \{S' \rightarrow \varepsilon\} \cup \{S' \rightarrow \alpha : (S \rightarrow \alpha) \in P\}$ $S \leftarrow S'$ $\triangleright S'$ is set as the start symbol of grammar G10: end if 11: 12: **end if** 13: $G \leftarrow (N, \Sigma, P, S)$ 14: return G

Relationship between FA and RG

Example

We construct a regular grammar for NFA:

The resulting regular grammar $G=(\{\mathit{ID},\mathit{ZI},A\},\{p,c\},P,\mathit{ID})$, where $P:\mathit{ID}\to p\mathit{ZI}\mid p\mid pA$ $\mathit{ZI}\to p\mathit{ZI}\mid pA\mid c\mathit{ZI}\mid cA\mid p\mid c$.

Relationship between FA and RG

Example

We construct a regular grammar for NFA:

The resulting regular grammar $G=(\{A,B,C\},\{a,b\},P,A)$, where P: $A\to aA\mid aB\mid bA$ $B\to bC\mid b$.