Защита информации

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 15 - ЭЦП

Общий вид

ЭЦП RSA

ЭЦП по Эль Гамалю

ЭЦП DSA

Опр.

Система цифровой подписи - это набор алгоритмов $G(), S(\cdot, \cdot), V(\cdot, \cdot, \cdot)$:

- (pk, sk) := G()
- $\sigma := S(sk, m)$
- $v := V(pk, m, s) \in \{0, 1\}$
- $\forall (pk, sk) \ V(pk, m, S(sk, m)) = 1$

pk всем известен.

Поэтому каждый может проверить подпись.

(Картинка: сначала зл-к получает у системы подписи для *q* сообщений, потом пытается создать новую верную пару (сообщение, подпись).)

Опр.

ЭЦП называется стойкой (к созданию подделки), если $\forall A \in PPT$

 $P(A \text{ создаст новую верную пару (сообщение, подпись)}) < \varepsilon(n).$ n - длина подписи.

На практике - конкретное ε .

ЭЦП и МАС

$$A \xrightarrow{m, t(m)} B$$
$$A \xrightarrow{m, \sigma(m)} B$$

MAC	ЭЦП
А,В знают <i>k_{AB}</i>	A знает (pk_A, sk_A) ; В знает pk_A
A создает $t_{AB} := MAC(k_{AB}, m)$	A создает $\sigma_{A}:=S(\mathit{sk}_{A},\mathit{m})$
В проверяет целостность т	В проверяет целостность т
$\forall m'$ В может создать $MAC(k_{AB},m)$	В не может создать $S(\mathit{sk}_A, m')$
т двум получателям:	т двум получателям:
$t_{AB} := MAC(k_{AB}, m)$	$\sigma_{\mathcal{A}} := \mathcal{S}(sk_{\mathcal{A}}, m)$
$t_{AC} := MAC(k_{AC}, m)$	
	Арбитр тоже знает pk_A
	B м. предъявить арбитру (s,m)

MAC:

- целостность сообщения при передаче
- проверяется приватно
- могут создать обе стороны

ЭЦП:

- целостность сообщения при передаче
- проверяется любым желающим
- невозможность отказа от авторства документа

Эксперимент:

- $1. \; (pk,sk) := G(), \; n$ параметр длины ключа
- 2. pk o A и доступ к ч.я. (оракулу) $S(sk,\cdot)$ создает подписи сообщений
- 3. A получает подписи сообщений $m_1,...,m_q$.
- 4. A выбирает $m \neq m_i$, создает $\sigma(m)$.
- 5. $b = V(pk, m, \sigma)$

Опр.

Алгоритм ЭЦП (G,S,V) наз. стойким к атаке с выбором сообщения (existentially unforgeable), если $\forall A \in \mathrm{BPP}$ $P(b=1) < \varepsilon(n)$

Раздел 15 - ЭЦП

Общий вид

ЭЦП RSA

ЭЦП по Эль Гамалю

ЭЦП DSA

Подпись "RSA из учебника"

- 1. (N, e, d) := G(). При ЭЦП e секретный ключ, (N, d) о.к.
- 2. $m \in \mathbb{Z}_N^*$, $\sigma := m^e \mod N$
- 3. $V(d, m, \sigma)$: $\sigma^d \mod N \stackrel{?}{=} m$
- 4. Корректность очевидна.

Атаки на "RSA из учебника"

1. Создание новой верной пары сообщение, подпись. Значение сообщения зависит от подписи.

Зл-к знает (N,d). Возьмет $\forall x \in \mathbb{Z}_n$. $m:=x^d \mod N$. Пара (m,x) - верная: $x^d \equiv m \mod N$.

Подпись "RSA из учебника" не стойкая.

2. Коммутативное свойство подписей.

Если $m=m_1m_2$ и известны подписи σ_1,σ_2 для m_1,m_2 , то $\sigma(m)=\sigma_1\cdot\sigma_2$ mod N

Проверка:
$$\sigma^d = (\sigma_1 \sigma_2)^d = m_1^{de} m_2^{de} = m_1 m_2 = m \mod N$$
.

Если получили у оракула подписи для t сообщ., т.о. можно создать подписи для 2^t-t новых сообщений.

Hashed RSA

- $1.\;(N,e,d):=G().\;$ Здесь e секретный ключ, (N,d) о.к.
- 2. $H: \{0,1\}^* \to \mathbb{Z}_N^*$. $\sigma := (H(m))^e \mod N$
- 3. $V(d, m, \sigma)$: $\sigma^d \mod N \stackrel{?}{=} H(m)$
- 4. Корректность очевидна.

Теорема 1

Hashed RSA стойкая к атаке с выбором сообщения в модели со случайным оракулом.

Без док-ва.

Раздел 15 - ЭЦП

Общий вид

ЭЦП RSA

ЭЦП по Эль Гамалю

ЭЦП DSA

ЭЦП DSA

ЭЦП по Эль Гамалю (Taher ElGamal, 1984)

H - крипт. х/ф, p - большое простое, g - \forall генератор \mathbb{Z}_p^* , m - любое.

1. Создание ключа

$$\begin{aligned} x &\xleftarrow{R} \{1,...,p-1\} \\ y &:= g^x \bmod p \\ (p,g,y) - \text{o.k., } x - \text{c.k.} \end{aligned}$$

2. Подпись.

$$k \stackrel{R}{\leftarrow} \mathbb{Z}_{p-1}^*$$
 $r := g^k \mod p$
 $s := (H(m) - xr)k^{-1} \mod (p-1)$
если $s = 0$, выбрать другое k
 $(r,s) = (g^k \mod p,s)$ - подпись m .

3. Проверка.

$$0 < r < p,$$

$$0 < s < p - 1,$$

$$g^{H(m)} \stackrel{?}{=} y^r r^s \mod p$$

4. Корректность.

$$H(m) \equiv xr + sk \mod (p-1).$$

 $y^r r^s \mod p \equiv g^{xr} g^{ks} \equiv g^{H(m)} \mod p.$

k - случайный, секретный, не повторяется (иначе узнаем x).

Утверждение

Без x/ф ElGamal - не стойкая подпись.

Док-во

По условию, алгоритм $s(m) = (m - xr)k^{-1} \mod (p - 1)$.

Создадим новую верную пару сообщение, подпись.

Цель: $y^r r^s \equiv g^m \mod p$.

Пусть $k \xleftarrow{R} \mathbb{Z}_{p-1}^*$. Выберем одновременно r, s, m.

Избавимся от y^r в левой части: хотим $r^s \equiv y^{-r}z \mod p$ для нек. z.

Док-во (Продолжение.)

Пусть $r := yg^k \mod p$, $s := -r \mod p - 1$.

Тогда $y^r r^s \equiv y^r (yg^k)^{-r} \equiv g^{-kr} \mod p - 1$. Чтобы все сошлось, $m := -kr \mod p - 1$.

Значит, $(r, -r \bmod p - 1)$ - верная подпись для $m \equiv -kr \bmod (p-1)$, где $r \equiv yg^k \bmod p$, для произв. фикс. $k \in \mathbb{Z}_{p-1}^*$.

Теорема 2 (О стойкости подписи по ЭльГамалю к атаке с выбором сообщения)

Если зл-к может создать новую подпись по ЭльГамалю в модели со случайным оракулом с не пренебрежимо малой вероятностью, то задача дискретного логарифма может быть решена за полиномиальное время.

Без док-ва.

Замеч.: Т.о. свели решение задачи дискретного логарифма к атаке на подпись. Считается, что дискретный логарифм - трудная задача.

Пример (Подпись по Эль-Гамалю)

$$p = 11, g = 2, x = 8$$

 $y = g^x \mod p = 2^8 \mod 11 = 3$
o.k: 11, 2, 3.

Подпишем сообщение m: H(m) = 5. Выберем случайное k = 9, HOД(9, 11 - 1) = 1. $a = g^k \mod p = 2^9 \mod 11 = 6$ $5 = (8 * 6 + 9 * b) \mod 10 \implies b = 3 \ (ExtGCD)$ Подпись: пара a = 6, b = 3.

Проверка: $y^a a^b \mod p \stackrel{?}{=} g^{H(m)} \mod p$, т.е. $3^6 * 6^3 \mod 11 \stackrel{?}{=} 2^5 \mod 11$ - верно.

Раздел 15 - ЭЦП

Общий вид

ЭЦП RSA

ЭЦП по Эль Гамалю

ЭЦП DSA

DSA - стандарт цифровой подписи США. (DSS: 1991, FIPS 186, -1, -2, -3 (2009))
В ее основе - подпись по ElGamal.

1. Создание ключа

p - простое длины L бит, (от 512 до 3072) q - простое, длины N бит (от 160 до 256), делитель p-1. (NSA предл. спец. алгоритм генерации p,q.)

Нужен \forall элемент $g\in \mathbb{Z}_p^*$ порядка q. Найдем его: если $h^{(p-1)/q} \bmod p \neq 1$, тогда $g:=h^{(p-1)/q} \bmod p$. Поиск - перебором h.

$$x \stackrel{R}{\leftarrow} \{1,...,q-1\}$$
 - c. κ ., $y := g^x \mod p$. (p,q,g,y) - o. κ .

Утверждение

$$g^{x+y} \mod p = g^{(x+y) \mod q} \mod p,$$

 $g^{x\cdot y} \mod p = g^{x\cdot y \mod q} \mod p$

Док-во

 $g^{x+y} \mod p = g^{(x+y) \mod q + qn} \mod p \stackrel{g^q=1}{=} g^{(x+y) \mod q} \mod p.$ Аналогично для произведения.

с.к.
$$x \stackrel{R}{\leftarrow} \{1, ..., q-1\}$$
, о.к. $y := g^x \mod p$.

2. Подпись.

$$k \stackrel{R}{\leftarrow} \{1,...,q-1\}$$
 $r := (g^k \mod p) \mod q$
 $s := (H(m) + xr)k^{-1} \mod q$
Подпись - это пара (r,s) .

3. Проверка:

$$u_1 = (H(m) \cdot s^{-1}) \mod q$$

 $u_2 = (rs^{-1}) \mod q$
 $v = (g^{u_1} \cdot y^{u_2} \mod p) \mod q$.
 $v \stackrel{?}{=} r$

4. Корректность:

$$k = (H(m) + xr)s^{-1} \mod q$$

T.K. $g^q = 1 \mod p$, to $g^k = g^{H(m)s^{-1}}g^{xrs^{-1}} = g^{H(m)s^{-1}}y^{rs^{-1}} = g^{u_1}y^{u_2} \mod p$

$$r = (g^k \mod p) \mod q = g^{u_1} y^{u_2} \mod p \mod q = v$$
 - верно.

k - случайный, секретный, не повторяется (иначе узнаем x).

Пример

Sony Playstation 3 (2010): k=const. Хакеры нашли секретный ключ подписи ECDSA.

Задача

Пусть k известно и фиксировано. Найти x.

Теорема 3 (О стойкости DSA к атаке с выбором сообщения)

Если зл-к может создать новую подпись DSA в модели со случайным оракулом с не пренебрежимо малой вероятностью, то задача дискретного логарифма в группе \mathbb{Z}_p^* может быть решена за полиномиальное время.

Без док-ва.

Следствие:

Heoбх. условия стойкости подписи DSA и Эль-Гамаль:

- -k выбир. случайно, равномерно, не повторяется
- *H* уст. к коллизиям
- задача дискретного логаримфа сложная в группе \mathbb{Z}_p^* .

"Побочный эффект": перестановка RSA с пом. DSA. (*)

Пусть DSAsign(p,q,g,k,x,r,s) - функция подписи DSA. n - модуль, $m \in \mathbb{Z}_n$ - сообщение. Пусть e - открытый ключ. RSA-шифр-е: DSAsign(n,n,m,e,0,r,0). r - шифротекст.

 $r := (m^e \bmod n) \bmod n$ $s := e^{-1} \cdot H(m) \bmod n$

Пусть d - секретный ключ. Тогда расшифр-е: DSAsign(n, n, m, d, 0, r, 0). m - сообщение.

Литература к лекции

- 1. Pointcheval, Stern. "Security Proofs for Signature Schemes" (Описание и стойкость подписи ElGamal) http://www.di.ens.fr/~pointche/Documents/Papers/1996_eurocrypt.pdf
- 2. Vaudenay, "The Security of DSA and ECDSA",
 https:
 //www.iacr.org/archive/pkc2003/25670309/25670309.pdf
- 3. Обзор разных протоколов ЭЦП: http://courses.cs.tamu.edu/pooch/665_spring2008/ Australian-sec-2006/less19.html