

2023 Spring MIMC Contest!

Please read the instructions carefully before you begin.

INSTRUCTIONS

- 1. DO NOT SCROLL DOWN TO THE PROBLEMS UNTIL YOU ARE READY.
- 2. This is a free-response test. You must prove all answers written in order to get full credit.
- 3. You <u>must</u> simplify your answers to the simplest possible that includes rationalizing the denominator, reducing a fraction, etc. You will **not** receive credit for an unsimplified answer.
- 4. SCORING: Point value for each question is labeled after each question.
- 5. No aids are permitted other than scratch paper, rulers, compass, and erasers. No calculators, smartwatches, or computing devices are allowed. No problems on the test will require the use of a calculator.
- 6. Figures are not necessarily drawn to scale.
- 7. When you are ready to start the test, you can begin working on the problems. You will have 30 minutes to complete the test.
- 8. This is a qualification test, and that being said, every participant with score higher than the threshold would qualify to round 1.
- 9. When you finish the exam, fill in and submit the Google Form.
- 10. Enjoy the problems!

The MIMC Committee reserves the right to disqualify scores from an individual if it determines that the required security procedures were not followed.

Let a_n be a sequence such that $a_n = 2a_{n-1} + 2^{n-1}$ and $a_0 = 0$.

- 1. Find a_1, a_2, a_3, a_4, a_5 . (5 points)
- 2. Find a_{2023} . You may leave your answer in exponential form. (10 points)
- 3. Find and prove an explicit formula for a_n in general. (15 points)
- 4. Let k be an integer such that $0 \le k < n$. Express a_n in terms of a_k . (10 points)
- 5. Define a sequence $b_{n,c} = cb_{n-1,c} + c^{n-1}$ for which $c \in \mathbb{N}$ and $b_{0,c} = 0$. Find an explicit formula for $b_{n,c}$ or prove that it does not exist. (15 points)

Let $f: \mathbb{R} \to \mathbb{R}$ such that $f(n) = a_n$ for all nonnegative integers such that f is continuous and differentiable for all $x \in \mathbb{R}$.

- 6. How many different functions f are there satisfying the conditions? (10 points)
- 7. Is there a polynomial f satisfying the conditions? Give an example or prove otherwise. (15 points)

Let
$$S_n = \sum_{i=0}^n a_i$$
.

- 8. Find an explicit formula for S_n . (10 points)
- 9. Find an explicit formula for $\frac{a_n}{S_n}$. (5 points)
- 10. Find $\lim_{n\to\infty} \frac{a_n}{S_n}$. (5 points)

ADDITIONAL INFORMATION

- 1. The Committee on the Michael595 & Interstigation Math Contest (MIMC) reserves the right to re-examine students before deciding whether to grant official status to their scores. The MIMC also reserves the right to disqualify score from a test taker if it is determined that the required security procedures were not followed.
- 2. The publication, reproduction or communication of the problems or solutions of the MIMC 10 will result in disqualification. Dissemination via copier, telephone, e-mail, World Wide Web or media of any type during this period is a violation of the competition rules except the private discussion form.

Sincerely, the MIMC mock contest cannot come true without the contributions from the following testsolvers, problem writers and advisors:

Michael 595 (Problem Writer)

Interstigation (Problem Writer)