What is claimed is:

1

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

- 1. test device for detecting whether the 2 alignment of bit line contacts and active areas in DRAM 3 devices is normal, wherein the test device is disposed in a scribe line region of a wafer, comprising: 4
 - a bar-type active area, disposed in the scribe line, having a center;
 - a bit line contact disposed on the center of bartype active area;
 - a bit line having a center coupled to the bit line contact, and a first terminal and a second terminal, wherein the bit line is essentially perpendicular to the bar-type active area; and
 - two plugs disposed on the first terminal and the second terminal of the bar-type active area respectively, wherein the two plugs are electrically coupled to the first terminal and the second terminal of the bar-type active arearespectively.
 - 2. The test device as claimed in claim 1, further comprising two word lines disposed above two sides of the bar-type active area respectively, and the two word lines are essentially parallel to each other.
- 1 3. The test device as claimed in claim 1, wherein 2 a first resistance is detected by the first terminal of 3 the bit line and one of the two plugs, and a second 4 resistance is detected by the second terminal of the bit 5 line and the other of the two plugs, the alignment of the

6	bit line contact and the bar-type active area is
7	abnormal.
1	4. A method for detecting whether the alignment of
2	bit line contacts and active areas in DRAM devices is
3	normal, comprising:
4	providing a wafer with at least one scribe and at
5	least one memory area;
6	forming a plurality of memory cells in the memory
7	area and at least one test device in the scribe
8	line simultaneously, wherein the memory area
9	has bit line contacts and active areas, the
10	test device including:
11	a bar-type active area disposed in the scribe
12	line, having a center;
13	a bit line contact disposed on the center of
14	bar-type active area;
15	a bit line having a center coupled to the bit
16	line contact, and a first terminal and a
17	second terminal, wherein the bit line is
18	essentially perpendicular to the bar-type
19	active area; and
20	two plugs disposed on the first terminal and
21	the second terminal of the bar-type active
22	area respectively, wherein the two plugs
23	are electrically coupled to the first
24	terminal and the second terminal of the
25	bar-type active area respectively;
26	detecting a first resistance by the first terminal
27	of the bit line and one of the two plugs;

28	detecting a second resistance by the second terminal
29	of the bit line and the other of the two plugs;
30	determining whether the alignment of the bit line
31	and the bar-type active area of the test device
32	is normal according to the first resistance and
33	the second resistance; and
34	determining whether the alignment of the bit line
35	contacts and the active areas in the memory
36	areas is normal according to whether the
37	alignment of the bit line contact and bar-type
38	active area of the test device.
1	5. The method as claimed in claim 4, wherein the
2	test device further comprises two word lines disposed
3	
4	above two sides of the bar-type active area respectively,
4 5	and the two word lines are essentially parallel to each other.
5	other.
1	6. The method as claimed in claim 4, wherein the
2	alignment of the bit line contact and the bar-type active
3	area is abnormal if the first resistance is not equal to
4	the second resistance.
1	7. A method for detecting whether the alignment of
2	bit line contacts and active areas in DRAM devices is
3	normal, comprising:
4	providing a wafer with at least one scribe and at
5	least one memory area;
6	forming a plurality of memory cells in the memory

area and at least one test device in the scribe

line at the same time, wherein the memory area

7

8

9	has bit line contacts and active areas, the
10	test device including:
11	a bar-type active area disposed in the scribe
12	line, having a center, a predetermined
13	width, and a predetermined resistivity;
14	a bit line contact disposed on the center of
15	bar-type active area;
16	a bit line having a center coupled to the bit
17	line contact, and a first terminal and a
18	second terminal, wherein the bit line is
19	essentially perpendicular to the bar-type
20	active area; and
21	two plugs disposed on the first terminal and
22	the second terminal of the bar-type active
23	area respectively, wherein the two plugs
24	are electrically coupled to the first
25	terminal and the second terminal of the
26	bar-type active area respectively;
27	detecting a first resistance by the first terminal
28	of the bit line and one of the two plugs;
29	detecting a second resistance by the second terminal
30	of the bit line and the other of the two plugs;
31	determining whether the alignment of the bit line
32	and the bar-type active area of the test device
33	is normal according to the first resistance and
34	the second resistance; and
35	determining whether the alignment of the bit line
36	contacts and the active areas in the memory
37	areas is normal according to whether the

- alignment of the bit line contact and bar-type active area of the test device.
 - 1 8. The method as claimed in claim 7, wherein the 2 alignment of the bit line contact and the bar-type active 3 area is abnormal if the first resistance is not equal to 4 the second resistance.
 - The method as claimed in claim 8, further 9. 1 comprising a step of determining the alignment shift of 2 the bit line contact and the bar-type active area 3 according to the first resistance, the second resistance, 4 the predetermined predetermined width and 5 the resistivity. 6
 - 1 10. The method as claimed in claim 9, wherein the 2 alignment shift (ΔL) is determined by an equation:

$$\Delta L = W \times \frac{R_1 - R_2}{2R_{AA}} ;$$

wherein R_1 is the first resistance, R_2 is the second resistance, R_{AA} is the predetermined resistivity and W is the predetermined width.