Star Trek

Spojená federace planet je aliancí N planet, očíslovaných od 1 do N. Některé planety jsou propojeny tunely. Kosmická loď může tunelem rychle prolétat oběma směry. Ve vesmíru je právě N-1 tunelů a mezi každými dvěma planetami se lze pomocí těchto tunelů dostat.

Existuje D dalších paralelních vesmírů, jež jsou přesnými kopiemi vesmíru našeho; mají stejné planety a tunely. Jsou očíslovány od 1 do D (náš vesmír má číslo 0). Planetu x ve vesmíru i označíme P_x^i . Mezi vesmíry lze cestovat přes portály. Pro každé i ($0 \le i \le D-1$) umístíme právě jeden portál umožňující cestovat od planety $P_{A_i}^i$ k planetě $P_{B_i}^{i+1}$ pro daná čísla planet A_i a B_i (tj. $1 \le A_i, B_i \le N$).

Jakmile jsou portály umístěny, vydá se kosmická loď Batthyány na první cestu. Začíná na oběžné dráze kolem planety P_1^0 . Kapitánka Ágnes a poručík Gábor se rozhodli zahrát si následující hru: budou si střídavě vybírat planetu, kam poletí. Planeta může být ve stejném vesmíru (vede-li k ní tunel) nebo v jiném vesmíru (vede-li k ní portál). Cílem je navštívit planetu, kde ještě nikdo předtím nebyl. Tudíž jakmile navštívili planetu P_x^i , už se tam nikdy nevrátí, mohou ovšem navštívit planetu x v jiném vesmíru. Kapitánka Ágnes volí cíl jako první, potom Gábor, potom opět Ágnes atd. Nemůže-li jeden z hráčů zvolit planetu, kde dosud nikdo nebyl, prohrává.

Kapitánka Ágnes a poručík Gábor jsou oba velmi chytří a znají umístění všech tunelů a portálů a oba hrají optimálně. Otázka zní: Kolik existuje možností, kam rozmístit portály, aby vyhrála Ágnes? Dvě rozmístění jsou různá, jestliže existuje číslo i $(0 \le i \le D-1)$ takové, že i-tý portál spojuje v těchto dvou rozmístěních různé dvojice planet, tj. A_i nebo B_i se liší.

Hledané číslo může být velké, zajímá nás proto jeho modulo $10^9 + 7$.

Vstup

První řádek obsahuje dvě celá čísla N a D oddělená mezerami.

Každý z následujících N-1 řádků obsahuje dvě celá čísla u a v udávající, že planety P_u^i a P_v^i jsou propojené tunelem pro všechna i $(0 \le i \le D)$.

Výstup

Úkolem je vypsat jedno celé číslo udávající počet možných rozmístění portálů tak, aby Ágnes vyhrála, modulo $10^9 + 7$. Výsledné číslo je tedy z rozsahu hodnot $0, 1, 2, \ldots, 10^9 + 6$.

1

Příklad

Vstup	$V \! \acute{y} stup$
3 1	4
1 2	
2 3	

v4

Vysvětlení

Existuje pouze jeden portál a má 3*3=9 možných různých umístění. Následující 4 umístění jsou taková, že Ágnes vyhraje.

Omezení

 $\begin{array}{l} 2 \leq N \leq 10^5 \\ 1 \leq D \leq 10^{18} \\ 1 \leq u, v \leq N \end{array}$

Časový limit: 0.2 s

Paměťový limit: 32 MiB

Bodování

Podúloha	Body	Omezení
1	0	příklad ze zadání
2	7	N = 2
3	8	$N \leq 100$ a $D = 1$
4	15	$N \leq 1000$ a $D = 1$
5	15	D=1
6	20	$N \le 1000 \text{ a } D \le 10^5$
7	20	$D \le 10^5$
8	15	žádná další omezení

2

v4