Higher Degree Total Variation for 3-D Image Recovery

Greg Ongie*, Yue Hu, Mathews Jacob

Computational Biomedical Imaging Group (CBIG) University of Iowa

ISBI 2014 Beijing, China

Motivation: Compressed sensing MRI recovery

- Highly undersampled k-space
- Use image penalty to enforce sparsity
- Recon is minimizer of cost function

Total Variation (TV) penalty for CS-MRI

- Promotes recons with sparse gradient <-> piecewise constant regions
- Advantages: fast algorithms, easy to implement
- Disadvantages: loss of detail at high accelerations
- Ex: 3-D MRA dataset, 5-fold acceleration, random k-space samples

Fully-sampled (MIP)

TV recon, 5x accel., SNR = 13.87 dB

Higher Degree Total Variation (HDTV) in 2-D

Higher Degree Total Variation (HDTV) penalties in 2-D

- Family of penalties for general inverse problems.
- HDTV generalizes TV to higher degree derivatives

$$\mathsf{TV}(\mathsf{f}) = rac{1}{4} \int_0^{2\pi} \| \overline{\partial_{ heta} \mathsf{f}} \|_1 \, \mathrm{d} heta$$

$$\Rightarrow$$
 HDTVn(f)= $\int_0^{2\pi} \|\partial_{\theta}^{n} f\|_1 d\theta$ L¹-norm of all nth degree directional derivatives

ex:
$$HDTV2(\mathbf{f}) = \int_0^{2\pi} \|\cos^2(\theta) \cdot \mathbf{f}_{xx} + \sin(2\theta) \cdot \mathbf{f}_{xy} + \sin^2(\theta) \cdot \mathbf{f}_{yy}\|_1 d\theta$$

- Promotes sparse higher degree directional derivatives
- Rotation- and translation-invariant, preserves edges, convex

Comparison of HDTV and TV in 2-D

- HDTV routinely outperforms TV for many image recovery problems
- Modest increases in computation time (~2-4 fold)

2-D TV Comparison. SNR (in dB) of recovered images with optimal reg. param. (Hu et al, 2014)

	Denoising		Deblurring		CS-MRI	
	Lena	Brain	Cell1	Cell2	Brain	Wrist
TV	27.35	27.60	15.66	16.67	22.77	20.96
HDTV2	27.65	28.05	16.19	17.21	22.82	21.20
HDTV3	27.45	28.30	16.17	17.20	22.53	21.02

SNR vs. CPU time of HDTV and TV. (Hu, Y., & Jacob, M., 2012)

CS-MRI, 2x accel.

CS-MRI, 4x accel.

Denoising, SNR=15dB

Fully-sampled

TV recon, SNR = 22.77 dB

2-D CS-MRI

- 1.5x acceleration
- random Gaussian k-space samples

HDTV2 recon, SNR = 22.82 dB

HDTV2 and Hessian-Schatten Norms, (Lefkimmiatis et al., 2013)

- HS_p = sum of L^p -norm of Hessian eigenvalues over all pixels
- HS₁ "equivalent to" HDTV2 for real-valued images in 2-D:

$$0.63 \cdot \mathsf{HS}_1(\mathsf{f}) \leq \mathsf{HDTV2}(\mathsf{f}) \leq \mathsf{HS}_1(\mathsf{f})$$

- Inequality only where Hessian eigenvalues have mixed sign
- No equivalence when image is complex-valued, e.g. CS-MRI.

Table 2: HDTV2 vs. HS₁. SNR (in dB) of recovered images with optimal reg. param.

	Denoising		Deblurring		CS-MRI	
	Lena	Brain	Cell1	Cell2	Brain	Wrist
HDTV2	27.65	28.05	16.19	17.21	22.82	21.20
HS1	27.51	28.08	16.17	17.13	22.50	20.51

Deblurring of 2-D Cell Florescence Microscopy Image

HDTV2, SNR = 16.19 dB

HS1, SNR = 16.17 dB

HDTV2 and Hessian-Schatten Norms, (Lefkimmiatis et al., 2013)

- HS_p = sum of L^p-norm of Hessian eigenvalues over all pixels
- HS₁ "equivalent to" HDTV2 for real-valued images in 2-D:

$$0.63 \cdot \mathsf{HS}_1(\mathsf{f}) \leq \mathsf{HDTV2}(\mathsf{f}) \leq \mathsf{HS}_1(\mathsf{f})$$

- Inequality only where Hessian eigenvalues have mixed sign
- No equivalence when image is complex-valued, e.g. CS-MRI.

Table 2: HDTV2 vs. HS₁. SNR (in dB) of recovered images with optimal reg. param.

	Denoising		Deblurring		CS-MRI	
	Lena	Brain	Cell1	Cell2	Brain	Wrist
HDTV2	27.65	28.05	16.19	17.21	22.82	21.20
HS1	27.51	28.08	16.17	17.13	22.50	20.51

Why use HDTV?

- Easily adaptable to complex-valued images
- Extends to higher degree deriatives (n > 2)

Extension of HDTV to 3-D

Extension of HDTV to 3-D

L¹-norm of all nth degree directional derivatives in 3-D

$$\mathsf{HDTVn}(\mathsf{f}) = \int_{|\mathsf{u}| = 1} \|\partial_\mathsf{u}^\mathsf{n} \mathsf{f}\|_1 \, \mathsf{d}\sigma(\mathsf{u})$$

surface integral over unit sphere

- Problem: How to implement this efficiently for inverse problems?
 - 1. Discretize integral using an efficient quadrature
 - 2. Exploit steerability of directional derivatives
 - 3. Employ a fast alternating minimization algorithm

1. Discretize integral using an efficient quadrature

Quadrature of sphere: {unit-directions u_i and weights w_i i=1,...,K }

$$\mathsf{HDTVn}(\mathsf{f}) \approx \sum_{\mathsf{i}=1}^{\mathsf{K}} \mathsf{w}_{\mathsf{i}} \| \partial_{\mathsf{u}_{\mathsf{i}}}^{\mathsf{n}} \mathsf{f} \|_{1}$$

- Lebedev quadrature: efficient, symmetric (Lebedev & Laikov, 1999)
- Exploits symmetry of directional derivatives: $|\partial_u^n f| = |\partial_{-u}^n f|$

Numerical experiments show that 30-50 samples are sufficient

SNR vs. #quadrature points in a denoising experiment

2. Exploit steerability of directional derivatives

- HD directional derivatives are weighted sum of partial derivatives
- Significantly reduces # filtering operations: 6 for HDTV2, 10 for HDTV3.

- Compute discrete partial derivatives with finite differences
- Obtain all K dir. derivatives with matrix multiplication O(KN), N= # voxels.

3. Employ a fast alternating minimization algorithm

- Adapt a new fast algorithm for 2-D HDTV
- Based on variable splitting and quadratic penalty method

Linear Inverse Problem with 3-D HDTV regularization

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \sum_{i=1}^K \|\mathbf{D}_i\mathbf{x}\|_1$$

$$\min_{\mathbf{x},\mathbf{z}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \sum_{\mathbf{i}=1}^K \|\mathbf{z}_{\mathbf{i}}\|_1 \quad \text{subj. to} \quad \mathbf{D}_{\mathbf{i}}\mathbf{x} = \mathbf{z}_{\mathbf{i}} \quad \begin{array}{c} \mathbf{z} = \text{ auxiliary variable} \\ \beta = \text{ continuation parameter} \end{array}$$

$$x = image$$

A = linear measurement operator

b = noisy measurement vector

 D_i = directional derivative operators

 $\lambda=\,$ regularization parameter

$$\min_{\mathbf{x},\mathbf{z}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \sum_{i=1}^K \|\mathbf{z}_i\|_1 + \frac{\lambda \beta}{2} \|\mathbf{D}_i \mathbf{x} - \mathbf{z}_i\|_2^2; \quad \beta \to \infty$$

- z-subproblem: shrinkage of directional derivatives
- x-subproblem: invert linear system -> FFTs or CG

Estimated computation time

- CS-MRI recovery experiment @1.6x acceleration
- 256x256x76 dataset
- MATLAB implementation running on CPU (Intel Xeon 3.6 GHz, 4 cores)
- Running time:
 - TV: 1.5 minutes
 - HDTV2:7.5 minutes
 - HDTV3:10 minutes

Results

3-D Quantitative Results

Table 3: 3-D Comparisons. SNR (in dB) of recovered images with optimal reg. param.

	Denoising		Deblurring			CS-MRI		
	Cell1	Cell2	Cell1	Cell2	Cell3	Angio, acc=5	Angio, acc=1.5	Cardiac
TV	17.12	16.25	19.02	16.43	14.50	13.87	14.53	18.37
HDTV2	17.25	16.70	19.15	16.60	14.87	14.23	15.11	18.56
HDTV3	17.68	17.14	19.73	17.43	15.23	14.01	14.70	18.50

- HDTV outperforms TV in all experiments
- HDTV3 better for denoising and deblurring
- HDTV2 better for CS-MRI

Denoising of 3-D Florescence Microscopy

- 1024x1024x17 voxels
- Additive Gaussian noise, mean = 0, std. dev. = 1
- Noisy image has SNR = 15 dB
- Optimized regularization parameter

original dataset (z-slice)

Deblurring of 3-D Florescence Microscopy

- 1024x1024x17 voxels
- 3x3x3 Gaussian blur kernel, std. dev = 0.05
- 5 dB additive Gaussian noise
- Optimized regularization parameter

original dataset (z-slice)

3-D Compressed Sensing MRA

- 512x512x76 voxel MRA dataset obtained from physiobank (see ref. [6])
- Simulated single coil acquisition
- Retroactively undersampled at 1.5-fold acceleration
- Random Gaussian sampling of k-space
- 5 dB additive Gaussian noise
- Optimized regularization parameter

MIP of original MRA dataset

Conclusion

Summary

- We extended the HDTV penalties to 3-D
- Implemented efficiently: quadrature, steerabililty, alternating minimize
- HDTV outperformed TV in our 3-D image recovery experiments
- 3-D HDTV2 showed promising application to CS-MRI recovery
- 3-D HDTV3 denoising and deblurring

Code

MATLAB implementation available at:

CBIG Website: http://research.engineering.uiowa.edu/cbig

Acknowledgements

Hans Johnson

Thank You!

Supported by grants:

NSF CCF-0844812, NSF CCF-1116067,

NIH 1R21HL109710-01A1, ACS RSG-11-267-01-CCE, and ONR-N000141310202.

References

[1] Hu, Y., & Jacob, M. (2012). HDTV regularization for image recovery. IEEE TIP, 21(5), 2559-2571

[2] Hu, Y., Ongie, G., Ramani, S., & Jacob, M. (2014). Generalized Higher degree total variation (HDTV). IEEE TIP (in press).

[3] Lefkimmiatis, S., Ward, J. P., & Unser, M. (2013). Hessian Schatten-Norm Regularization for Linear Inverse Problems. IEEE TIP, 22, 1873-1888.

[5] V.I. Lebedev, and D.N. Laikov (1999). A quadrature formula for the sphere of the 131st algebraic order of accuracy. Doklady Mathematics, Vol. 59, No. 3, pp. 477-481.

[6] Physiobank: http://physionet.org/physiobank/database/images/,

Higher Degree Total Variation for 3-D Image Recovery

Code:

http://research.engineering.uiowa.edu/cbig http://github.com/cbig-iowa/hdtv

Contact Info:

Greg Ongie (gregory-ongie@uiowa.edu) Graduate Research Assistant Computational Biomedical Imaging Group

Department of Mathematics University of Iowa 14 MacLean Hall Iowa City, Iowa 52245