Chapitre 5 – Réactions d'oxydo-réduction

Plan du cours

I Oxydants et réducteurs

- I.1 Couple oxydant-réducteur
- **I.2** Nombre d'oxydation
- I.3 Réaction d'oxydo-réduction

II Piles électrochimiques

- II.1 Étude expérimentale de la pile Daniell
- II.2 Interprétation
- II.3 Description d'une pile

III Potentiel d'oxydo-réduction

- III.1 Électrode standard à hydrogène
- III.2 Potentiel d'électrode
- III.3 Formule de Nernst
- IV Équilibre d'oxydo-réduction

Ce qu'il faut savoir et savoir faire

- \rightarrow Identifier une réaction d'oxydo-réduction.
- \rightarrow Identifier l'oxydant et le réducteur d'un couple.
- → Décrire le fonctionnement d'une pile à partir d'une mesure de tension à vide ou à partir des potentiels d'électrode.
- → Écrire l'équation d'une réaction d'oxydoréduction.
- → Prévoir qualitativement ou quantitativement le caractère thermodynamiquement favorisé ou défavorisé d'une réaction d'oxydo-réduction à partir des potentiels standard des couples.

Le fonctionnement des piles et accumulateurs utilisés dans la vie courante repose sur des réactions d'oxydo-réduction. La compréhension de ces phénomènes permet alors d'optimiser le stockage d'énergie par voie chimique.

1 Oxydants et réducteurs

Le terme « redox » remplace souvent le mot « oxydo-réduction ».

1.1 Couple oxydant-réducteur

Un **réducteur** (Red) est une espèce susceptible de **céder** un ou plusieurs électrons. Un **oxydant** (Ox) est une espèce susceptible de **capter** un ou plusieurs électrons.

Un exemple de moyen mnémotechnique :

À tout oxydant correspond un réducteur pour lesquels on peut écrire la **demi-équation** d'oxydo-réduction :

$$Ox + ne^- \rightarrow Red.$$

L'oxydant et le réducteur forment un couple redox, noté Ox/Red.

Exemple:
$$Zn^{2+}/Zn : Zn^{2+}(aq) + 2e^{-} = Zn(s)$$

Application 1 – Demi-équations d'oxydo-rédaction

Écrire les demi-équations d'oxydo-réduction en milieu acide associées aux couples redox : $\mathrm{Cl_2/Cl^-}$, $\mathrm{HClO/Cl_2}$, $\mathrm{MnO_4^-/Mn^{2+}}$ et $\mathrm{Cr_2O_7^{2-}/Cr^{3+}}$.

Pour écrire une demi-équation d'oxydo-réduction en milieu acide :

- on écrit de part et d'autre du signe = les deux espèces du couple redox;
- on assure la conservation des éléments autres que H et O;
- on assure la conservation de l'élément O avec des molécules d'eau;
- on assure la conservation de l'élément H avec des protons H⁺;
- on assure la conservation de la charge avec des électrons e⁻.

1.2 Nombre d'oxydation

Le **nombre d'oxydation** (n.o.) d'un élément chimique traduit son état d'oxydation, c'està-dire du nombre d'électrons qu'il a perdu ou gagné, que cet élément soit seul ou dans un édifice polyatomique (molécule, ion, etc.). C'est un nombre entier, algébrique et noté en chiffres romains.

Détermination du nombre d'oxydation

Plusieurs cas peuvent se présenter :

• le n.o. d'un élément d'une espèce monoatomique est égal à la charge de cette espèce.

Exemple:

• quand deux éléments sont unis par une liaison covalente, les électrons de la liaison sont attribués arbitrairement à l'élément le plus électronégatif : le n.o. de chaque élément est alors égal à la charge formelle qui lui est attribuée.

Exemple : Cas de l'eau

Pour une liaison entre deux atomes identiques, les électrons de la liaison sont partagés équitablement.

• pour un édifice polyatomique, la somme des n.o. de tous les éléments est égale à la charge de l'édifice.

Dans beaucoup d'espèces chimiques, l'oxygène est l'élément le plus électronégatif : il a un n.o. égal à -II. L'hydrogène est souvent le moins électronégatif : il a un n.o. égal à +I.

$Application\ 2-Nombres\ d'oxydation$

Déterminer le nombre d'oxydation de chaque élément dans les espèces suivantes : Ne, Cl₂, H₂, HCl, $SO_4^{\ 2-}$, $MnO_4^{\ -}$, $Cr_2O_7^{\ 2-}$ et H_2O_2 .

Lorsqu'un élément est **oxydé**, son nombre d'oxydation **augmente**. Lorsqu'un élément est **réduit**, son nombre d'oxydation **diminue**.

Quel est alors le point commun des demi-équations de réaction de l'application 1?

1.3 Réaction d'oxydo-réduction

Une **réduction** correspond à un **gain d'électrons**.

Une oxydation correspond à une perte d'électrons.

Lorsqu'un oxydant Ox_1 et un réducteur Red_2 sont en solution, il s'établit un équilibre redox qui met en jeu un transfert d'électron de Red_2 vers Ox_1 . Au cours de cette transformation, Ox_1 est réduit et Red_2 est oxydé.

Application 3 – Réaction de Cu²⁺ avec Zn

Lors de la réaction entre les ions Cu^{2+} et le zinc, les couples mis en jeu sont Zn^{2+}/Zn et Cu^{2+}/Cu .

- 1. Écrire les demi-équations de réaction.
- 2. Indiquer le sens dans lequel elles se produisent lors de l'expérience considérée. En déduire l'élément qui est oxydé et celui qui est réduit.
- 3. Écrire l'équation de la réaction.

Les électrons n'existent pas libres dans l'eau : tout électron libéré par un réducteur doit être capté par un oxydant. Les électrons ne doivent pas apparaître dans le bilan de la réaction.

Application 4 – Équation bilan d'oxydo-réduction

On s'intéresse aux couples MnO_4^-/Mn^{2+} , $HClO(aq)/Cl_2(g)$ et $Cl_2(g)/Cl^-$. L'ion MnO_4^- est l'ion permanganate et HClO est l'acide hypochloreux.

- 1. Écrire et équilibrer les demi-équations de chacun des couples en milieu acide.
- 2. Lorsque la réaction est possible, écrire l'équation bilan de la réaction entre :
 - l'acide hypochloreux et l'ion manganèse;
 - l'ion manganèse et l'ion chlorure;
 - l'ion manganèse et le dichlore;
 - le permanganate et le dichlore;
 - le permanganate et l'ion chlorure;
 - le dichlore sur lui-même.

Pour équilibrer les réactions redox, on écrit les deux demi-équations électroniques, on est les multiplie pour avoir le même nombre d'électrons échangés puis on les ajoute pour obtenir l'équation bilan.

Couples de l'eau

L'eau appartient à deux couples redox : $\rm H_2O/H_2$ (ou $\rm H^+/H_2)$ et $\rm O_2/H_2O$.

2 Piles électrochimiques

2.1 Étude expérimentale de la pile Daniell

La pile Daniell repose sur les couples redox $\mathrm{Zn^{2+}/Zn}$ et $\mathrm{Cu^{2+}/Cu}$.

L'équation de la réaction associée à cette transformation est donc :

Sa constante d'équilibre vaut $K \approx 4 \times 10^{36}$.

Réaction électrochimique

On parle de réaction **électrochimique** lorsque le transfert d'électrons est indirect. Il est alors possible d'obtenir une pile électrochimique.

2.2 Interprétation

Les électrons circulent de la plaque de zinc vers la plaque de cuivre : ils sont libérés par l'oxydation du zinc selon la demi-équation $Zn(s) \to Zn^{2+}(aq) + 2e^-$ et sont consommés à l'interface métal/solution par la réduction des ions Cu^{2+} selon la demi-équation $Cu^{2+}(aq) + 2e^- \to Cu(s)$.

Il y a un transfert spontané d'électrons du zinc vers les ions Cu²⁺. Le transfert se fait de façon indirecte via le circuit extérieur. L'équation bilan est

On a obtenu une pile électrochimique.

2.3 Description d'une pile

Une pile est toujours constituée de deux demi-piles.

Une **demi-pile** est un ensemble constitué par :

- les deux espèces Ox et Red d'un couple redox;
- un électrolyte en contact avec un conducteur métallique, appelé électrode.

Exemple:

L'électrode siège de la **réduction** est appelée **cathode**. C'est le pôle (+) de la pile, de potentiel électrique le plus élevé.

L'électrode siège de l'**oxydation** est appelée **anode**. C'est le pôle (-) de la pile, de potentiel électrique le plus faible.

Exemple: Pour la pile Daniell, le cuivre joue le rôle de cathode et le zinc d'anode.

En associant deux demi-piles, à l'aide d'un pont salin par exemple, on obtient une pile.

On appelle **force électromotrice** (f.é.m.) d'une pile la différence de potentiel entre les deux électrodes à courant nul :

$$e = (V_+ - V_-)_{i=0}.$$

Représentation symbolique d'une pile

Application 5 – Autres piles

Réaliser deux nouvelles piles, l'une exploitant les couples du zinc et de l'argent, l'autre ceux du cuivre et de l'argent. Toutes les solutions ont la même concentration $c = 0.1 \, \mathrm{mol} \cdot \mathrm{L}^{-1}$.

- 1. Dans caque cas:
 - mesurer la f.é.m.;
 - identifier l'anode et la cathode;
 - en déduire l'équation bilan;
 - $\bullet\,\,$ représenter schématiquement la pile.
- 2. Quelle relation simple lie les f.é.m. de la pile Daniell et de ces deux piles?

3 Potentiel d'oxydo-réduction

3.1 Électrode standard à hydrogène

On ne peut mesurer que des différences de potentiel électrique : le potentiel d'une demipile n'est définit que par rappport à une autre.

L'électrode standard à hydrogène (ESH) est une demi-pile qui met en jeu le couple $\mathrm{H}^+/\mathrm{H}_2$ dans les conditions standard. Par convention, le potentiel de l'ESH est $V_{\mathrm{ESH}}=0\,\mathrm{V}$ quelle que soit la température.

3.2 Potentiel d'électrode

Le **potentiel d'électrode** E(Ox/Red) d'un couple Ox/Red est la force électromotrice d'une pile dans laquelle la demi-pile de gauche est l'ESH et la demi-pile de droite est constituée par le couple considéré :

$$E(Ox/Red) = V_{Ox/Red} - V_{ESH}$$

où $V_{\text{Ox/Red}}$ est le potentiel électrique de l'électrode du couple Ox/Red.

Le potentiel d'électrode est une grandeur algébrique. Il dépend de la **température** et des **activités** des espèces chimiques impliquées dans la demi-équation du couple.

Si les constituants de la demi-pile relative au couple étudié sont dans leur état standard, alors la f.é.m. correspond au **potentiel standard** $E^{\circ}(Ox/Red)$ du couple à Ox/Red. Il ne dépend que de la température.

Exemple:

Couple	E° (V) à 25 °C
O_2/H_2O	1,23
Ag^{+}/Ag	0,80
$\mathrm{Cu}^{3+}/\mathrm{Cu}^{2+}$	0,34
$\mathrm{H^+/H_2}$	0
$\mathrm{Zn}^{2+}/\mathrm{Zn}$	-0.76

3.3 Formule de Nernst

On considère un couple Ox/Red. La demi-équation électronique s'écrit :

$$\alpha Ox + \gamma H^{+} + ne^{-} = \beta Red + \delta H_{2}O.$$

Le potentiel d'électrode du couple Ox/Red est donné par la formule de Nernst :

$$E(\text{Ox/Red}) = E^{\circ}(\text{Ox/Red}) + \frac{RT}{n\mathcal{F}} \ln \left(\frac{a(\text{Ox})^{\alpha} a(\text{H}^{+})^{\gamma}}{a(\text{Red})^{\beta}} \right),$$

- $E^{\circ}(Ox/Red)$ le potentiel standard du couple à la température T, en V;
- R la constante des gaz parfaits;
- T la température (en K);
- \mathcal{F} la constante de Faraday (charge d'une mole d'électrons) : $\mathcal{F} = 96\,500\,\mathrm{C}\cdot\mathrm{mol}^{-1}$;
- n le nombre d'électrons échangés;
- a(X) l'activité de l'espèce chimique X.

À 298 K, on remarque $\frac{RT}{\mathcal{F}} \ln 10 = 0.059 \,\mathrm{V} \approx 0.06 \,\mathrm{V}.$

$$E(\text{Ox/Red}) = E^{\circ}(\text{Ox/Red}) + \frac{0.06}{n} \log \left(\frac{a(\text{Ox})^{\alpha} a(\text{H}^{+})^{\gamma}}{a(\text{Red})^{\beta}} \right)$$

Application 6 - Loi de Nernst

Exprimer les potentiels d'électrode associés aux couples suivants.

1.
$$\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}$$
.

2.
$$Cu^{2+}/Cu$$
.

3.
$$Cl_2/Cl^-$$
.

4.
$$MnO_4^-/Mn^{2+}$$
.

Connaissant les potentiels d'électrode de chacun des couples d'une pile, il est possible de déterminer sa f.é.m. En effet :

$$e = V_{+} - V_{-} = (V_{+} - V_{ESH}) - (V_{-} - V_{ESH}).$$

La **f.é.m.** d'une pile électrochimique est donnée par :

$$e = E(Ox/Red)_{+} - E(Ox/Red)_{-},$$

où $E(Ox/Red)_{\pm}$ sont les potentiels d'électrode des couples redox présents à la cathode (+) et à l'anode (-).

Application 7 - Loi de Nernst

Retrouver les f.é.m. des piles réalisées précédemment.

Données: $E^{\circ}(Ag^{+}/Ag) = 0.80 \,\text{V}, \ E^{\circ}(Cu^{2+}/Cu) = 0.34 \,\text{V} \ et \ E^{\circ}(Zn^{2+}/Zn) = -0.76 \,\text{V}.$

4 Équilibre d'oxydo-réduction

La réaction spontanée est la réaction de l'oxydant du couple de plus grand potentiel d'électrode avec le réducteur de plus faible potentiel d'électrode. À l'équilibre les potentiels des deux couples sont égaux.

Pour déterminer qualitativement la réaction la plus favorable, on utilise à nouveau la règle du γ .

On peut définir, en solution aqueuse, le **diagramme de prédominance** d'un couple rédox en fonction du potentiel de la solution :

Dans le cas des couples Cu^{2+}/Cu et Zn^{2+}/Zn , on remarque que les espèces Cu et Zn^{2+} ont des domaines de prédominance disjoints : elles réagissent spontanément.

Constante d'équilibre

La constante d'équilibre d'une réaction s'écrit en exploitant l'égalité des potentiels des deux couples, obtenus avec la loi de Nernst.

Exemple: Retrouver la constante d'équilibre de la réaction associée à la pile Daniell.

Application 8 – Constantes d'équilibre

Trouver les réactions entre les couples suivant et donner leur constante d'équilibre.

- 1. Cu^{2+}/Cu ($E^{\circ} = 0.34 \, V$) et Fe^{3+}/Fe^{2+} ($E^{\circ} = -0.44 \, V$).
- **2.** H^+/H_2O ($E^{\circ} = 0 V$) et Zn^{2+}/Zn ($E^{\circ} = -0.76 V$).
- **3.** $\text{MnO}_4^-/\text{Mn}^{2+}$ ($E^{\circ} = 1.51 \,\text{V}$) et $\text{O}_2/\text{H}_2\text{O}$ ($E^{\circ} = 1.23 \,\text{V}$).

Si l'écart entre les potentiels redox est supérieur à 0,2 V, alors la réaction peut être considérée comme totale.