MULTIPLE REGRESSION

Relationship between DV and IVs

Question 1:

Suppose you are an owner of a courier delivery service and interested to develop a model that will allow you to predict the total delivery time that will be taken up by the person to deliver the product to the customers. To develop the model, let's assume we have collected the data for last 10 trips and got four piece of information 1.) distance covered in miles, 2.) number of deliveries, 3.) gas price, and 4.) total delivery time taken (in hours). What will be the total delivery time for the 11th trip?

collected data for 10 trips

Data Collected for 10 Trips

X ₁ (distance covered in miles)	X ₂ (number of deliveries)	X ₃ (gas price)	y (total delivery time in hours)
89	4	3.84	7
66	1	3.19	5.4
78	3	3.78	6.6
111	6	3.89	7.4
44	1	3.57	4.8
77	3	3.57	6.4
80	3	3.03	7
66	2	3.51	5.6
109	5	3.54	7.3
76	3	3.25	6.4

DV: total delivery time in hours (Y)

IV's: distance covered in miles (X_1) ; number of deliveries (X_2) ; and gas price (X_3)

Description between DV and IV's and among IV's

Desirable: Strong linear relationship between IV & DV = Y & X1 and Y &X2

Desirable: Strong linear relationship between IV & DV = Y & X1 and Y &X2

No relationship Between Y & X3 Strong Linear relationship exist between X1 & X2: Not desirable No relationship exist between X1 & X3 and X2 & X3: Desirable

Desirable: Strong linear relationship between IV & DV = Y & X1 and Y &X2

No relationship Between Y & X3 Strong Linear relationship exist between X1 & X2: Not desirable No relationship exist between X1 & X3 and X2 & X3: Desirable

Desirable: Strong linear relationship between IV & DV = Y & X1 and Y &X2

No relationship Between Y & X3 Strong Linear relationship exist between X1 & X2: Not desirable

No relationship exist between X1 & X3 and X2 & X3: Desirable

Desirable: Strong linear relationship between IV & DV = Y & X1 and Y &X2

No relationship Between Y & X3 Strong Linear relationship exist between X1 & X2: Not desirable No relationship exist between X1 & X3 and X2 & X3: Desirable

Desirable: Strong linear relationship between IV & DV = Y & X1 and Y &X2

No relationship Between Y & X3 Strong Linear relationship exist between X1 & X2: Not desirable No relationship exist between X1 & X3 and X2 & X3: Desirable

Scatter Plots (DV Vs. IVs)

The IV $(X_1 \& X_2)$ shows linear relationship with the DV (Y) whereas IV (X_3) does not show the linear relationship with the DV (Y)

Scatter Plots (IV Vs. IVs)

The IV (X_1) shows strong linear relationship with the IV (X_2) whereas IV (X_1) with IV (X_3) and IV (X_2) with IV (X_3) does not show the linear relationship

Correlation Coefficient for DV and IVs

- "r" for DV (Y) Vs. IV $(\mathbf{X_1}) = 0.928179$ Confirms Strong Linear Relationship
- "r" for DV (Y) Vs. IV $(\mathbf{X}_2) = 0.916443$ Confirms Strong Linear Relationship
- "r" for DV (Y) Vs. IV $(\mathbf{X}_3) = 0.267212$ does not have linear relationship
- "r" for IV $(\mathbf{X_1})$ Vs. IV $(\mathbf{X_2}) = 0.955898$ Confirms Strong Linear Relationship
- "r" for IV (\mathbf{X}_1) Vs. IV $(\mathbf{X}_3) = 0.355796$ does not have linear relationship
- "r" for IV $(\mathbf{X_2})$ Vs. IV $(\mathbf{X_3}) = 0.498242 \text{does not have linear relationship}$
 - > Scatter Plot Results are confirmed with the correlation coefficients

Univariate Regression Model using IV (X₁)

SUMMARY OUTPUT								
Regression Statisti	cs							
Multiple R	0.928179	Same as c	orrelation	coefficien	t "r"			
R Square	0.861515	Coefficie	nt of deter	mination	(R Square) ind	icates the	amount of	variahility
Adjusted R Square	0.844205				lable that is acc			•
Standard Error	0.342309		in the depo	endent var	lable that is acc	ounted by	maepenaer	it variable
Observations	10	(\mathbf{X}_1)	_					
		Standard 6	error shows	the averag	ge distance that t	the observe	ed values fa	ll from
ANOVA		the regres	sion line					
	df	SS	MS	F	Significance F			
Regression	1	5.831597	5.831597	49.76813	0.000106676			
Residual	8	0.937403	0.117175					
Total	9	6.769						
		Standard						
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.18556	0.466951	6.822047	0.000135	2.108769788	4.262351	2.10877	4.262351
X Variable 1	0.040257	0.005706	7.054653	0.000107	0.027097763	0.053416	0.027098	0.053416

* Y = 3.18556 + 0.040257 (X_1); For one mile increase in X_1 , the travels time is expected to increase by 0.040257 times

Univariate Regression Model using IV (X₂)

SUMMARY OUTPUT								
Regression Stat	istics							
Multiple R	0.916443	Same as co	orrelation c	oefficient "i	r ⁹⁹			
R Square	0.839868							
Adjusted R Square	0.819852							
Standard Error	0.368091							
Observations	10							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	5.68507	5.68507	41.95894	0.000193			
Residual	8	1.08393	0.135491					
Total	9	6.769						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	4.845415	0.265345	18.26079	8.32E-08	4.233528	5.457302	4.233528	5.457302
X Variable 1	0.498253	0.07692	6.477572	0.000193	0.320876	0.675631	0.320876	0.675631

 $[\]Upsilon$ = 4.845415 + 0.498253(X_2); For unit increase in the number of deliveries, the travels time is expected to increase by 0.498253

Univariate Regression Model using IV (X₃)

SUMMARY OUTPUT								
Regressio	n Statistics							
Multiple R	0.267211531							
R Square	0.071402002	Very less						
Adjusted R Square	-0.044672747							
Standard Error	0.886402832							
Observations	10							
ANOVA								
	df	SS	MS	F	Significance F			
						Not		
Regression	1	0.48332015	0.48332	0.6151381	0.455453413	Significant		
Residual	8	6.28567985	0.78571					
Total	9	6.769						
		Standard					Lower	
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.0%	Upper 95.0%
Intercept	3.536488198	3.64903876	0.969156	0.3608511	-4.878210281	11.95118668	-4.8782103	11.95118668
X Variable 1	0.811348252	1.03447735	0.784307	0.4554534	-1.574160801	3.196857305	-1.5741608	3.196857305

^{*} $Y = 3.536488198 + 0.811348252(X_3)$; For unit increase in the gas price, the travels time is expected to increase by 0.811348252

Bivariate Regression Model using IV's (X₁ & X₂)

SUMMAR	Y OUTPUT							
Regressio	on Statistics							
Multiple R	0.933487816							
R Square	0.871399503							
Adjusted R Square	0.834656504							3,00
Standard Error	0.352642426				Shock!			13
Observations	10							9
		The overall	regressio	n model is	significant bu	it the indivi	dual IV is not sign	nificant; why?
ANOVA			Ü	^	C		J	, ·
	df	SS	MS	F \angle	Significance F			
Regression	2	5.8985032	2.94925	23.716069	0.000762692			
Residual	7	0.8704968	0.12436					
Total	9	6.769						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.732158132	0.8869736	4.20774	0.0039969	1.634798789	5.8295175	1.634798789	5.829517474
X Variable 1	0.026222566	0.0200161	1.31008	0.2315209	-0.02110789	0.073553	-0.021107895	0.073553027
X Variable 2	0.184040518	0.2509086	0.7335	0.487089	-0.40926407	0.7773451	-0.409264074	0.777345109

* $Y = 3.732158132 + 0.026222566 (X_1) + 0.1844040518 (X_2)$; For one mile increase in X_1 , the travels time is expected to increase by 0.026222566 provided the value of variable ' X_2 ' is constant

Bivariate Regression Model using IV's (X₁ & X₂)

SUMMAR	Y OUTPUT							
Regressio	n Statistics							
Multiple R	0.933487816							
R Square	0.871399503							
Adjusted R Square	0.834656504							3.00
Standard Error	0.352642426				Shock!			3
Observations	10							W
	ŗ	The overall	regressio	n model is	significant bu	t the indivi	dual IV is not sign	nificant; why?
ANOVA			U	^	S		C	
	df	SS	MS	F \angle	Significance F			.
Regression	2	5.8985032	2.94925	23.716069	0.000762692		Multicollin	earity Problem!
Residual	7	0.8704968	0.12436					·
Total	9	6.769						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.732158132	0.8869736	4.20774	0.0039969	1.634798789	5.8295175	1.634798789	5.829517474
X Variable 1	0.026222566	0.0200161	1.31008	0.2315209	-0.02110789	0.073553	-0.021107895	0.073553027
X Variable 2	0.184040518	0.2509086	0.7335	0.487089	-0.40926407	0.7773451	-0.409264074	0.777345109

* $Y = 3.732158132 + 0.026222566 (X_1) + 0.1844040518 (X_2)$; For one mile increase in X_1 , the travels time is expected to increase by 0.026222566 provided the value of variable ' X_2 ' is constant

Bivariate Regression Model using IV's (X₂ & X₃)

SUMMARY OUTPU	Γ								
Regression	n Statistics								
Multiple R	0.94211797								
R Square	0.88758627								
Adjusted R Square	0.855468062								
Standard Error	0.329703013								
Observations	10				Shock!				
ANOVA	The	e overall reg	ression mod	lel is signific	ant but the ind	lividual IV i	s not signific	eant; why?	0
	df	SS	MS	F ∠	Significance F				
Regression	2	6.008071	3.004036	27.63499	0.00047629				
Residual	7	0.760929	0.108704						
Total	9	6.769		V	/				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	7.324307017	1.457572	5.025005	0.001522	3.87769682	10.77092	3.877697	10.77092	
X Variable 1	0.566500812	0.079463	7.129079	0.000189	0.37859975	0.754402	0.3786	0.754402	
X Variable 2	-0.764987072	0.443787	-1.72377	0.12841	-1.81437682	0.284403	-1.81438	0.284403	

^{*} Y = 7.324307017 + 0.566500812 (X_1) - 0.764987072 (X_2); For one unit increase in X_1 , the travels time is expected to increase by 0.566500812 provided the value of variable ' X_2 ' is constant

Bivariate Regression Model using IV's (X₂ & X₃)

SUMMARY OUTPU	Γ								
Regression	n Statistics								
Multiple R	0.94211797								
R Square	0.88758627								
Adjusted R Square	0.855468062								
Standard Error	0.329703013								
Observations	10				Shock!				
ANOVA	The	e overall reg	ression mod	lel is signific	cant but the inc	dividual IV i	s not signific	cant; why?	
	df	SS	MS	F ∠	Significance F				C
Regression	2	6.008071	3.004036	27.63499	0.00047629				
Residual	7	0.760929	0.108704			There	is no relatio	nship betw	eer
Total	9	6.769		V			DV and Ga	as Price	
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	7.324307017	1.457572	5.025005	0.001522	3.87769682	10.77092	3.877697	10.77092	
X Variable 1	0.566500812	0.079463	7.129079	0.000189	0.37859975	0.754402	0.3786	0.754402	
X Variable 2	-0.764987072	0.443787	-1.72377	0.12841	-1.81437682	0.284403	-1.81438	0.284403	

^{*} Y = 7.324307017 + 0.566500812 (X_1) - 0.764987072 (X_2); For one unit increase in X_1 , the travels time is expected to increase by 0.566500812 provided the value of variable ' X_2 ' is constant

Bivariate Regression Model using IV's (X₃ & X₁)

SUMMARY OUTPUT	Γ							
Regression	n Statistics							
Multiple R	0.93062562							
R Square	0.86606405							
Adjusted R Square	0.82779663							
Standard Error	0.3598834							
Observations	10				Shock!			
ANOVA	Th	e overall reg	ression mod	lel is signific	eant but the inc	dividual IV i	s not signific	eant; why?
	df	SS	MS	F \angle	Significance F			
Regression	2	5.862388	2.9311938	22.63189335	0.000879306			
Residual	7	0.906612	0.1295161			There	is no relatio	nship betw
Total	9	6.769		V			DV and Ga	ıs Price
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.86756989	1.482416	2.6089638	0.034966016	0.362212889	7.372927	0.362213	7.372927
X Variable 1	-0.21912293	0.44941	-0.487579	0.640746929	-1.28180896	0.843563	-1.28181	0.843563
X Variable 2	0.04137042	0.006419	6.4445363	0.000352083	0.026190818	0.05655	0.026191	0.05655

^{*} $Y = 3.86756989 - 0.21912293 (X_1) + 0.04137042 (X_2)$; For one unit increase in X_1 , the travels time is expected to decrease by 0.21912293 provided the value of variable ' X_2 ' is constant

Multiple Regression Model using IV (X₁, X₂ & X₃)

SUMMARY OU'	TPUT								
Regressio	on Statistics								
Multiple R	0.945877513								
R Square	0.894684269								
Adjusted R Square	0.842026404								
Standard Error	0.344693628								
Observations	10			Shock!					3.0
		The overall regr	ession model is	significant but	the individua	l IV is not	significan	t: why?	0
ANOVA		0		^		1	0		U
	df	SS	MS	F \leq	Significance F				
Regression	3	6.056117819	2.01870594	16.99051534	0,002452078				
Residual	6	0.712882181	0.118813697						
Total	9	6.769							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.09	6
Intercept	6.211377664	2.320572882	2.676657007	0.036699328	0.533/140378	11.88961	0.53314	11.88961	
X Variable 1	0.014121891	0.022207306	0.635911928	0.548306757	-0,040217429	0.068461	-0.04022	0.068461	
X Variable 2	0.383150235	0.300056891	1.276925301	0.248817455	-0.351062526	1.117363	-0.35106	1.117363	
X Variable 3	-0.606552713	0.526627587	-1.151767829	0.293234725	-1.895163998	0.682059	-1.89516	0.682059	

 $[\]Upsilon = 6.211377664 + 0.014121891(X_1) + 0.383150235(X_2) - 0.606552713(X_3);$

Multiple Regression Model using IV (X₁, X₂ & X₃)

SUMMARY OU'	TPUT							
Regressio	on Statistics							
Multiple R	0.945877513							
R Square	0.894684269							
Adjusted R Square	0.842026404							
Standard Error	0.344693628							
Observations	10			Shock!				t; why?
		The overall regr	ession model is	significant but	the individua	l IV is not	significan	t; why?
ANOVA		S		^	_	1	Ü	
	df	SS	MS	F \leq	Significance F			
Regression	3	6.056117819	2.01870594	16.99051534	0,002452078			
Residual	6	0.712882181	0.118813697					
Total	9	6.769					Multicolli	inearity &
							Overfitt	ing Issue
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	6.211377664	2.320572882	2.676657007	0.036699328	0.533140378	11.88961	0.53314	11.88961
X Variable 1	0.014121891	0.022207306	0.635911928	0.548306757	-0,040217429	0.068461	-0.04022	0.068461
X Variable 2	0.383150235	0.300056891	1.276925301	0.248817455	-0.351062526	1.117363	-0.35106	1.117363
X Variable 3	-0.606552713	0.526627587	-1.151767829	0.293234725	-1.895163998	0.682059	-1.89516	0.682059

 $[\]Upsilon = 6.211377664 + 0.014121891(X_1) + 0.383150235(X_2) - 0.606552713(X_3);$

Important Issues in Regression Model

• Multicollinearity: It happens when independent variables in the regression model are highly correlated to each other.

• Overfitting: It occurs when the model is too complex and we have a independent variable in the regression model which is irrelevant and does not help in explaining any variability that is present in the dependent variable.

> Overfitting issue occurs when a model is too closely fit the training set and getting a drastic difference of fitting in test set.