| Apellidos | Vizcoino de la Huerga |
|-----------|-----------------------|
| Nombre    | Roblo                 |

Preguntas sobre grupos:

1. (4 puntos) Sea  $\mathbb{F}_3 = \mathbb{Z}/(3)$  el cuerpo con 3 elementos y  $GL(2,\mathbb{F}_3)$  el grupo de matrices invertibles  $2 \times 2$  con entradas en  $\mathbb{F}_3$ .



- (a) ( $\frac{1}{2}$  punto) En el conjunto de vectores no nulos  $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$  definimos una relación  $\sim$  de la siguiente manera:  $\vec{v} \sim \vec{w}$  si y solo si  $\vec{v} = \pm \vec{w}$ . Prueba que  $\sim$  es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos  $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$ , comprobando que hay exactamente cuatro.
- (b) ( $\frac{1}{2}$  punto) Dada  $A \in GL(2, \mathbb{F}_3)$ , demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) (½ punto) Enumera los elementos de  $\mathbb{P}^2(\mathbb{F}_3)$  cuya lista has dado en el primer apartado, y que denotaremos  $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$ . Prueba que, para todo  $A \in GL(2, \mathbb{F}_3)$ , la aplicación  $\varphi_A$  es biyectiva y deduce que existe una única permutación  $\sigma_A \in S_4$  tal que  $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$  para todo i.
  - (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

$$A \longmapsto \sigma_A$$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición  $(ij) \in S_4$  existe  $A \in GL(2, \mathbb{F}_3)$  tal que  $\sigma_A = (ij)$  y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre  $S_4$  y un cociente de  $GL(2, \mathbb{F}_3)$ , describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de  $GL(2, \mathbb{F}_3)$ .



Vizcoino

a) Veanco que co reflexiva:

アーマ (=) アニナアノ

Sime mica:

プレママ(=) ポープ

7 = + W (=) W= + ? /

Transition:

 $\vec{V} = \vec{T} \vec{W} \wedge \vec{W} = \vec{T} \vec{Q} = \vec{V} = \vec{T} \vec{Q}$ 

Veamos ahora P2 (T3):

 $P^{2}(F_{3}) = \frac{1}{2} \cdot \overline{(0,1)}, \overline{(1,0)}, \overline{(1,1)}, \overline{(1,2)}$ 

(0,1) = \ (0,1), (0,2) \

(1,0)= \ (1,0), (2,0) \ \

(1,1)= 4(1,1), (2,2) 9

(1,2)= 4(1,2), 12,119

Dado que 
$$A \in GL(2, T_3)$$
  
el producto de  $A_{2\times2}$  ·  $V_{2\times1}$  está  
bien definido, y dará como resultado  
dos vectores de  $R^2(T_3)$ 

d) Para demostrar que es un homamosframo trez que comprobar que

Vecomos que es injectiva: tedo elemento tiene imagene

$$X = X'$$
 (=)  $f(x) = f(x)$   $\forall xx' \in P^2(f_{\overline{s}})$ 

Sobrejectiva:

$$\forall y \in Y \exists x tq f(x) = g$$

$$f(x) : A \times V \times \in \mathbb{P}^2(F_3)$$

Es bigeotiva.