XUN FU

2505 Hayward St Ann Arbor, MI 48109 USA Email: xunfu@umich.edu

Education

University of Michigan, Ann Arbor, MI USA	
Ph.D. in Robotics, Advisors: Dr. Ram Vasudevan, Dr. Talia Moore	Aug. 2020 – Present
University of Michigan, Ann Arbor, MI USA	
M.S. in Mechanical Engineering	Aug. 2018 – Dec. 2019
Northwestern Polytechnical University (NPU), Xi'an, Shaanxi China	
B.E. in Mechatronics Engineering	Aug. 2014 – June. 2018
Professional Appointment	
University of Michigan, Ann Arbor, MI USA	
Research Engineer, ROAHM Lab	Jan. 2020 – Aug. 2020
Awards and Scholarships	
Graduation with honors at NPU	June. 2018
National Scholarship	Nov. 2017
 NPU Outstanding Student Award & First Prize Scholarship 	Nov. 2017
Samsung Scholarship	Dec. 2016
 NPU Outstanding Student Award & First Prize Scholarship 	Dec. 2016
 NPU Outstanding Student Award & First Prize Scholarship 	Nov. 2015
D 111 (1	

Publications

- Daniel Bruder, Xun Fu, and Ram Vasudevan. Advantages of bilinear koopman realizations for the modeling and control of systems with unknown dynamics. *IEEE Robotics and Automation Letters (RA-L)*, 2021. doi: 10.1109/LRA.2021.3068117
- Daniel Bruder, Xun Fu, Brent Gillespie, C. David Remy, and Ram Vasudevan. Koopman-based control of a soft continuum manipulator under variable loading conditions. *IEEE Robotics and Automation Letters (RA-L)*, 2021. doi: 10.1109/LRA.2021.3095268
- Daniel Bruder, Xun Fu, Brent Gillespie, C. David Remy, and Ram Vasudevan. Data-driven control of soft robots using koopman operator theory. *IEEE Transactions on Robotics (T-RO)*, 2020. doi: 10.1109/TRO.2020.3038693
- Xun Fu, and Xiaojuan Mo. The application of wearable sensors on the diagnosis and monitoring of Parkinson's disease. *DEStech Trans. Eng. Technol. Res, AMEE*, 2018. doi: 10.12783/dtetr/amee2018/25339

Teaching

• ROB599 002: BioInspiration, University of Michigan, Graduate Student Instructor	Winter 2021
• ROB599 003: BioInspiration, University of Michigan, Teaching Assistant	Winter 2020

Research Summary

In my research, I leverage optimization techniques to develop explicit dynamical models of complex systems including soft robots and mammalian tails. These models inform evolutionary studies of functional biomechanics and robotic controllers.

Research Experience

EMBiR Lab, University of Michigan, Advisor: Dr. Talia Moore

Jan. 2020 - Present

• Musculoskeletal modeling of rodent tails

Leveraging optimal control methods to generate predictive, three-dimensional muscle-driven simulations of rodent tails to explore their contributions to locomotion.

ROAHM Lab, University of Michigan, Advisor: Dr. Ram Vasudevan

April. 2019 - Present

• Data-driven modeling and control of soft robots

Utilized koopman operator to construct linear, bilinear, and nonlinear models of soft robots. Applied model predictive control methods to control soft robots and achieved over three times

more accuracy than a benchmark method in terms of average tracking error.

Proved necessary and sufficient conditions for a dynamical system to have a valid linear or bilinear koopman realization.

Accomplished the first demonstration of autonomous pick and place of objects of unknown mass on a soft continuum manipulator.

• System identification for autonomous rovers

Built rovers integrated with various types of sensors including LiDAR, camera, and IMU operating in the Robot Operating System (ROS).

Applied data-driven methods to identify the dynamical model of the rovers.

HaptiX Lab, University of Michigan, *Advisor: Dr. Brent Gillespie*

Nov. 2018 – July. 2019

• Shared control in vehicle steering across routine and off-nominal conditions

Designed and implemented automobile lane keeping and obstacle avoidance controller.

Designed and realized various control sharing schemes to study the interaction between human and autonomous vehicles when transitions between levels of automation occur.

Designed and conducted experiments to understand authority transitions, increase driving safety, and improve driving performance.

• Adaptive haptic shared control

Used grip forces to estimate drivers' mechanical impedance and developed an adaptive haptics shared control scheme.

Designed and conducted experiments to compare the haptic shared control scheme with conventional schemes.

Internship

Beijing Jingdiao Group Co., Ltd., Beijing, China

July. 2017 – Aug. 2017

Optimized planned machining path and improved machining precision and accuracy. Coordinated group to complete building a UAV and a single-cylinder engine metal model.

Reviewer

IEEE Transactions on Robotics (T-RO)

IEEE International Conference on Robotics and Automation (ICRA)