Project Name: Healthcare PGP

Project Task: Week 1

- BloodPressure
- SkinThickness
- Insulin
- BMI
- 2. Visually explore these variables using histograms. Treat the missing values accor
- 3. There are integer and float data type variables in this dataset. Create a count (the data types and the count of variables.

```
In [2]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns

%matplotlib inline
```

Out[3]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
	0	6	148	72	35	0	33.6	0.627	50
	1	1	85	66	29	0	26.6	0.351	31
	2	8	183	64	0	0	23.3	0.672	32
	3	1	89	66	23	94	28.1	0.167	21
	4	0	137	40	35	168	43.1	2.288	33
	4								•

Descriptive Analysis

```
In [4]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
                                        Non-Null Count Dtype
         #
             Column
         0
             Pregnancies
                                        768 non-null
                                                         int64
                                        768 non-null
                                                         int64
         1
             Glucose
         2
             BloodPressure
                                        768 non-null
                                                         int64
         3
             SkinThickness
                                        768 non-null
                                                         int64
                                        768 non-null
             Insulin
                                                         int64
```

Out[6]:

```
5 BMI 768 non-null float64
6 DiabetesPedigreeFunction 768 non-null float64
7 Age 768 non-null int64
8 Outcome 768 non-null int64
```

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [5]: df.isnull().any()

Out[5]: Pregnancies False Glucose False BloodPressure False SkinThickness False Insulin False BMI False DiabetesPedigreeFunction False False Outcome False dtype: bool

In [6]: df.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedic
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
					_		

In [67]: ### As per the above results, it is observed that the Zero value for Glucose, Blood ## make sense in this dataset and considered as missing values.

Visually explore these variables using histograms. Treat the missing values accordingly.

```
In [7]: plt.figure(figsize=(6,4),dpi=100)
   plt.xlabel('Glucose Class')
   df['Glucose'].plot.hist()
   sns.set_style(style='darkgrid')
   print("Mean of Glucose level is :-", df['Glucose'].mean())
   print("Datatype of Glucose Variable is:",df['Glucose'].dtypes)
```

Mean of Glucose level is :- 120.89453125 Datatype of Glucose Variable is: int64

I am treating missing values which is basically 0 by mean of Glucose level. This is because we can see from histogram most of observation have Glucose level between 100 and 120.

```
df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
 In [8]:
          plt.hist(df['Glucose'])
In [80]:
                        19., 87., 149., 166., 125., 88.,
                                                              54., 44.,
Out[80]:
          array([ 44. , 59.5, 75. , 90.5, 106. , 121.5, 137. , 152.5, 168. ,
                  183.5, 199. ]),
          <BarContainer object of 10 artists>)
          160
          140
          100
          80
          60
          40
          20
                              100
                                    120
                                         140
          plt.figure(figsize=(6,4),dpi=100)
In [10]:
          plt.xlabel('BloodPressure Class')
          df['BloodPressure'].plot.hist()
          sns.set style(style='darkgrid')
          print("Mean of BloodPressure level is :-", df['BloodPressure'].mean())
          print("Datatype of BloodPressure Variable is:",df['BloodPressure'].dtypes)
```

Mean of BloodPressure level is :- 69.10546875 Datatype of BloodPressure Variable is: int64

I am treating missing values which is basically 0 by mean of BloodPressure level. This is because we can see from histogram most of observation have BP level between 70 and 80.

```
In [11]:
          df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].mean())
          plt.hist(df['BloodPressure'])
In [81]:
                          2., 35., 118., 261., 214., 105., 18., 10.,
         (array([
Out[81]:
          array([ 24. , 33.8, 43.6, 53.4, 63.2, 73. , 82.8, 92.6, 102.4,
                 112.2, 122. ]),
          <BarContainer object of 10 artists>)
         250
         200
          150
          100
          50
           0
                     40
                              60
                                                100
                                                         120
          plt.figure(figsize=(6,4),dpi=100)
In [79]:
          plt.xlabel('SkinThickness Class')
          df['SkinThickness'].plot.hist()
          sns.set style(style='darkgrid')
          print("Mean of SkinThickness is :-", df['SkinThickness'].mean())
```

print("Datatype of SkinThickness Variable is:",df['SkinThickness'].dtypes)

Mean of SkinThickness is :- 26.606479220920118 Datatype of SkinThickness Variable is: float64

I am treating missing values which is basically 0 by mean of SkinThickness. This is because we can see from histogram most of observation have SkinThickness between 20 and 30.

```
df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].mean())
In [14]:
In [82]:
          plt.hist(df['SkinThickness'])
         (array([ 59., 368., 181., 118., 36.,
                                                   4.,
                                                         1.,
Out[82]:
          array([ 7., 16.2, 25.4, 34.6, 43.8, 53., 62.2, 71.4, 80.6, 89.8, 99.]),
           <BarContainer object of 10 artists>)
          350
          300
          250
          200
          150
          100
           50
           0
                     20
                                                  80
                                                            100
```

```
In [16]: plt.figure(figsize=(6,4),dpi=100)
    plt.xlabel('Insulin Class')
    df['Insulin'].plot.hist()
    sns.set_style(style='darkgrid')
    print("Mean of Insulin is :-", df['Insulin'].mean())
    print("Datatype of Insulin Variable is:",df['Insulin'].dtypes)
```

Mean of Insulin is :- 79.79947916666667 Datatype of Insulin Variable is: int64

I am treating missing values which is basically 0 by mean of Insulin.

```
df['Insulin']=df['Insulin'].replace(0,df['Insulin'].mean())
In [17]:
          plt.hist(df['Insulin'])
In [83]:
         (array([516., 143., 55., 29.,
                                                                     2.,
Out[83]:
                                            7., 10.,
                                                         4.,
                                                               1.,
          array([ 14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6,
                  762.8, 846. ]),
          <BarContainer object of 10 artists>)
          500
          400
          300
         200
          100
           0
              0
                        200
                                   400
                                             600
                                                        800
```

```
In [19]: plt.figure(figsize=(6,4),dpi=100)
   plt.xlabel('BMI Class')
   df['BMI'].plot.hist()
   sns.set_style(style='darkgrid')
   print("Mean of BMI is :-", df['BMI'].mean())
   print("Datatype of BMI Variable is:",df['BMI'].dtypes)
```

Mean of BMI is :- 31.992578124999977 Datatype of BMI Variable is: float64

I am treating missing values which is basically 0 by mean of BMI

```
df['BMI']=df['BMI'].replace(0,df['BMI'].mean())
In [20]:
             plt.hist(df['BMI'])
In [84]:
            (array([52., 161., 207., 193., 91., 48., 10., 4., 1., 1.]), array([18.2, 23.09, 27.98, 32.87, 37.76, 42.65, 47.54, 52.43, 57.32,
Out[84]:
                       62.21, 67.1]),
             <BarContainer object of 10 artists>)
            200
             175
             150
             125
             100
             75
              50
              0
                                           40
                                                       50
                                                                  60
```

Tn [22].	<pre>df.describe()</pre>		
TII [22].	41 (4656) 156()		

Out[22]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi ç
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	121.681605	72.254807	26.606479	118.660163	32.450805	
	std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374	
	min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
	25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000	
	50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPediç
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

```
freq=pd.DataFrame(df.apply(lambda x: x.value counts()).T.stack(), columns=["Count"])
In [23]:
                            Count
Out[23]:
          Pregnancies
                       0.0
                             111.0
                             135.0
                       1.0
                       2.0
                             103.0
                       3.0
                              75.0
                       4.0
                              68.0
                 Age 70.0
                               1.0
                      72.0
                               1.0
                      81.0
                               1.0
             Outcome
                       0.0
                             500.0
                       1.0
                             268.0
         1256 rows × 1 columns
In [24]:
           import matplotlib.pyplot as plt
           import seaborn as sns
           sns.countplot(df.dtypes.map(str))
```

```
plt.show()
```

C:\Users\Anuj Bhalla\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWa rning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an exp licit keyword will result in an error or misinterpretation. warnings.warn(

In []: