PDS0101

Introduction to Digital Systems

Counters I

Lecture outcome

- By the end of today's lecture you should be able to
 - differentiate asynchronous and synchronous counters
 - analyse counter circuits and timing diagrams
 - explain how propagation delays affect counters
 - determine and modify the modulus of counters
 - recognize the difference between 4-bit and decade binary counters

NOTE: contents in this set of slides are intentionally incomplete and content will be shown in class as examples of how they are derived

Counting in binary

As you know, the binary count sequence follows a familiar pattern of 0's and 1's to obtain the increasing count in bit form

The next bit changes on every fourth number.

0 0 0 LSB changes on 0 0 1 every number.

The next bit changes on every other number.

A counter can form the same pattern of 0's and 1's with logic levels. The first stage in the counter represents the least significant bit – notice that these waveforms follow the same pattern as counting in binary

Counters

- Counters are important digital electronic circuits.
- They are sequential logic circuits because timing is obviously important and they need a memory characteristic.
- Digital counters have the following important characteristics:
 - Maximum number of count
 - Up-Down Count
 - Asynchronous or Synchronous Operation
 - Free-Running or Self-Stopping

Asynchronous counters

- Asynchronous counter are sometimes referred to as *ripple counters* because the effect of the input clock pulse is first "felt" by first flip-flop (FF0).
- This pulse cannot get to the second flip-flop (FF1) immediately because of the propagation delay through FF0.
- So the effect of an input clock pulse "ripples" through the counter, taking some time, due to propagation delays, to reach the last flip-flop.

Typically, only the first FFs will receive clock pulse from the source (clock generator) whilst other FFs receive their own "clock pulse" from either Q or Q' of prior FFs

2-bit asynchronous binary counter

- The logic circuit below shows a 2-bit counter connected for asynchronous counter operation
- CLK is applied to the clock input, C, of only the first FF (FF0 or LSB) -FF1 is triggered by the Q' output of FF0

- FF0 changes state at the +ve going transition of the CLK whilst FF1 only changes when triggered by the +ve going transtition of Q'
- Because of inherent propagation delay of FFs, a transition of the CLK and transition of Q' will never occur simultaneously thus the operation is asynchronous

2-bit async counter timing diagram

The timing diagram below shows what happens in the counter when 4 clock pulses are applied to FF0 – both JKFF connected for toggle operation and Q initially LOW

- CLK1 causes Q to go HIGH and Q' LOW FF1 is not triggered
- CLK2 flips FF0 and Q = LOW and Q' = HIGH FF1 triggers to HIGH
- CLK3 flips FF0 again and Q' = LOW − FF1 remains at HIGH
- CLK4 flips to set Q'=HIGH thus FF1 flips its output Q=LOW thus resetting the counter back to all LOW again → recycled back to original state

3-bit asynchronous binary counter

Similar to the 2-bit but now has 8 states before it recycles

Exercise

- Building on previous slide content, build the logic circuit and timing diagram for a 4-bit asynchronous binary counter
 - how many states will the counter hold before it resets? 16 states
 - how many flip-flops are required? 4

Why call them ripple counters?

- Asynchronous counters are sometimes called **ripple** counters, because the stages do not all change together. For certain applications requiring high clock rates, this is a major disadvantage.
- For PDS0101, that is all you need to know

Counter modulus

- The modulus of a counter is the number of unique states that the counter will sequence through before it recycles
- The usual modulus of a n-bit counter is to have 2ⁿ unique states in each cycle
- © Counters can be designed to have a number of states in their sequence that is less than the maximum of 2ⁿ
- To obtain a truncated sequence, it is necessary to force the counter to recycle before going through all of its possible states an example is a asynchronous decade counter using a 4-bit counter as a basis

Asynchronous decade counter

- A decade counter cycles through the values of one (1) decade
- This counter uses partial decoding to recycle the count sequence to zero after the 1001 state.
- The flip-flops are also trailing-edge triggered, so clocks are derived from the Q outputs.
- Other truncated sequences can be obtained using a similar technique to obtain other sequences.

Jock Pulse	Q3	02	01	QO
0	0	0	0	0
10	0	0	0	1
2	0	0	.1	0
3	0	0	1	1
4	0	24	0	0
5	.0	//1-	0	1
6	0	1	1	0
7	0	11	1	. 1
8	1	0	0	0
9	1	0	0	.1

- One way to make the counter recycle after the count of nine (1001) is to decode count ten (1010) with a NAND gate and connect the output of this NAND gate to the clear (CLR) inputs of the flip-flops.
- The inputs of the NAND gate are from the Q output from FF1 and FF3 (from 1010 → FF3 FF2 FF1 FF0)

Exercise

Using the same concepts from the decade counter, construct a asynchronously clocked modulus-12 counter

Synchronous counters

- In a synchronous counter all flip-flops are clocked together with a common clock pulse.
- Synchronous counters overcome the disadvantage of accumulated propagation delays, but generally they require more circuitry to control states changes
- The diagram below shows a 2-bit synchronous binary counter

2-bit counter timing diagrams

 Q_0 (LSB)

 Q_1 (MSB)

SYNCHRONOUS

ASYNCHRONOUS

3-bit synchronous counters

The 3-bit synchronous counter circuit is shown below – note the additional gate between FF1 and FF2

The counter above will perform the same number cycle iteration as per the 3-bit async counter shown previously – but its truth table is slightly more complicated

3-bit sync counter design

- Q0 alternates on every CLK input so input to FF0 remains HIGH to result in toggle operation on each CLK pulse
- Q1 toggles each time Q0 = 1, so the inputs to FF1 is sourced from the Q0 from FF0
- Q2 toggles each time Q1=1 and Q0=1, so the input to FF2 is sourced from the ANDed Qx outputs from FF0 and FF1

CLK	Q2	Q1	Q0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8 (REPEAT)	0	0	0

Exercise

Using similar principles from the 3-bit synchronous counter, design the 4-bit synchronous counter.

CLK PULSE	Q3	Q2	Q1	Q0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16 REPEAT	0	0	0	0

Up/Down Synchronous Counters

- 50 Up/Down counters are built similar to the counters you have seen earlier but the counter is capable of progressing in either direction depending on a direction control input
- The circuit below shows a 3-bit synchronous counter now the outputs from each prior FF is ANDed together to enable the desired result

Common counter ICs

Many common counters are ready-made in the form of integrated circuits for use

Summary

- Counters are logic circuits that cycle through a finite set of states
- Counters can be asynchronous or synchronous depending on whether all the bits in the counter react simultaneously to the CLK input or not
- Counters are built up of multiple J-K flip-flops that are connected in sequence – hence creating a sequential logic circuit