Homework #3

Sam Fleischer

April 19, 2016

Problem 1	•		•					•					 •	•		•						•			•	•	•		2
Problem 2												•	 									•							2
Problem 3																													2
Problem 4												•	 									•							3
Problem 5												•	 								•							•	3
Problem 6												•	 									•							3
Problem 7																													4
Problem 8																													4

Problem 1

If $u \in L^p(\mathbb{R}^n)$ for $1 \le p < \infty$, and $u^{\varepsilon} = \eta_{\varepsilon} * u$, for η_{ε} the standard mollifier. Show that

$$u^{\varepsilon} \to u$$

in $L^p(\mathbb{R}^n)$ as $\varepsilon \to 0$.

Proof.

$$\begin{split} \left\| \eta_{\varepsilon} * u - u \right\|_{p}^{p} &= \int_{\mathbb{R}^{n}} \left| \eta_{\varepsilon} * u - u \right|^{p} \mathrm{d}x \\ &= \int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} \eta_{E}(y) u(x - y) \mathrm{d}y - u(x) \right|^{p} \mathrm{d}x \\ &= \int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} \eta_{\varepsilon}(y) (u(x - y) - u(x)) \mathrm{d}y \right|^{p} \mathrm{d}x \\ &= \int_{\mathbb{R}^{n}} \left| \int \eta_{\varepsilon}(x - y) (u(y) - u(x)) \right|^{p} \mathrm{d}x \\ &\leq \int_{\mathbb{R}^{n}} \frac{C}{\varepsilon^{n}} \left| \int \left| u(y) - u(x) \right| \mathrm{d}y \right|^{p} \mathrm{d}x \end{split}$$

 $\tilde{u} \in C_C(\mathbb{R}^n) \implies \tilde{u}$ is uniformly continuous.

$$\begin{aligned} \|u - \tilde{u}\|_{p} &\leq \frac{\tilde{\epsilon}}{\epsilon} \\ \implies \|\eta_{\epsilon} * u - u\|_{p} &\leq \|\eta_{\epsilon} * u - \eta_{\epsilon} * \tilde{u}\|_{p} + \|\eta_{\epsilon} * \tilde{u} - \tilde{u}\|_{p} + \|\tilde{u} - u\|_{p} \end{aligned}$$

Problem 2

Let Ω denote an open and smooth subset of \mathbb{R}^n . Prove that $\mathscr{C}_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$ for $1 \leq p < \infty$.

Proof. Ω open \Longrightarrow smooth Urysohn's Lemma: Ω open $\subset \mathbb{R}^n$, and C_0 , $C_1 \subset \Omega$ disjoint nonempty, then $\exists f: \Omega \to [0,1]$, smooth, $f(C_0) = \{0\}$, $f(C_1) = \{1\}$. Let $\varepsilon > 0$. Pick $A \subset \Omega$. By inner and outer regularity of Lebesgue measure, there is a compact subset K of Ω and $\omega \subset \Omega$ such that $K \subset A \subset \omega$ with $\mu(\omega \setminus A) < \varepsilon$, $\mu(A \setminus K) < \varepsilon$.

 $\Omega \subset \mathbb{R}^n$ implies Ω is locally compact and Hausdorff, which implies \exists precompact $O, U \subset \Omega$ such that $K \subset O \subset \overline{O} \subset U \subset \overline{U} \subset W$. Apply smooth Urysohn's Lemma to $K = C_1$ and $\overline{U} \setminus O = C_0$. $f_k : \Omega \to [0,1]$, $f(K) = \{1\}$, $f(\Omega \setminus W) = \{0\}$.

$$\int_{\Omega} \left| \mathcal{X}_{A} - f_{k} \right|^{p} d\mu = \int_{A \setminus K} \left| \mathcal{X}_{A} - f_{k} \right|^{p} d\mu + \int_{W \setminus A} \left| \mathcal{X}_{A} - f_{k} \right|^{p} d\mu \le M2\varepsilon$$

which implies $C_C^{\infty}(\Omega)$ dense in ISF (Integral Simple Functions) dense in $L^p(\Omega)$.

The integral is split by $\Omega = (\Omega \setminus W) \cup (W \setminus A) \cup (A \setminus K) \cup K$. But integral over $\Omega \setminus W$ and over K are 0 for various reasons..

Problem 3

Prove that if $u \in L^1_{\mathrm{loc}}(\Omega)$ satisfies $\int_\Omega u(x) \, v(x) \, \mathrm{d} x = 0$ for all $v \in \mathscr{C}^\infty_c(\Omega)$, then u = 0 a.e. in Ω .

Proof. Suppose $u \neq 0$. Then $\exists E \subset \Omega$ with $\mu(E) > 0$ and $u(x) \neq 0$ for all $x \in E$. Let $K \subset E$ be compact and set $v = \mathcal{X}_K \operatorname{sgn}(u)$. Then

$$\int_{\Omega} u(x)v(x)dx = \int_{K} |u(x)|dx > 0$$

This is a contradiction.

If $f \in L^p_{loc}$ and η_{ε} is the standard mollifier, then $\eta_{\varepsilon} * f \to f$ pointwise a.e.

$$\int \eta_{\varepsilon}(x-y)\mu(y)\mathrm{d}y = 0 \,\forall \varepsilon > 0$$

 $\Omega_{\varepsilon} = \{ x \in \Omega : d(x, \Omega^C) \ge \varepsilon \}.$

Problem 4

Let $u \in L^{\infty}(\mathbb{R}^n)$ and let η_{ε} be a standard mollifier. For $\varepsilon > 0$ consider the sequence $\psi_{\varepsilon} \in L^{\infty}(\mathbb{R}^n)$ such that

$$\|\psi_{\varepsilon}\|_{\infty} \le 1 \ \forall \varepsilon > 0 \ \text{and} \ \psi_{\varepsilon} \to \psi \text{ a.e. in } \mathbb{R}^n$$
,

define

$$v^{\varepsilon} = \eta_{\varepsilon} * (\psi_{\varepsilon} u)$$
 and $v = \psi u$.

- (a) Prove that $v^{\varepsilon} \stackrel{*}{\rightharpoonup} v$ in $L^{\infty}(\mathbb{R}^n)$.
- (b) Prove that $v^{\varepsilon} \to v$ in $L^1(B)$ for every ball $B \subset \mathbb{R}^n$.

Proof. (a) We want to show $\phi_{v^{\varepsilon}}(f) \to \phi_{v}(f)$ for all $f \in L^{1}(\mathbb{R})$, where ϕ_{v} and $\phi_{v^{\varepsilon}}$ are the continuous linear functionals associated with v and v^{ε} , respectively.

Problem 5

For $u \in \mathcal{C}^0(\mathbb{R}^n;\mathbb{R})$, spt (u) is the closure of the set $\{x \in \mathbb{R}^n : u(x) \neq 0\}$, but this definition may not make sense for functions $u \in L^p(\Omega)$. For example what is the support of $\mathcal{X}_{\mathbb{Q}}$, the indicator over the rationals?

Let $u: \mathbb{R}^n \to \mathbb{R}$, and let $\{\Omega_\alpha\}_{\alpha \in A}$ denote the collection of all open sets on \mathbb{R}^n such that for each $\alpha \in A$, u = 0 a.e. on Ω_α . Define $\Omega = \bigcup_{\alpha \in A} \Omega_\alpha$. Prove that u = 0 a.e. on Ω .

The support of u, spt (u), is Ω^C , the complement of Ω . Notice that if v = w a.e. on \mathbb{R}^n , then spt $(v) = \sup (w)$; furthermore, if $u \in \mathscr{C}^0(\mathbb{R}^n)$, then $\Omega^C = \overline{\{x \in \mathbb{R}^n : u(x) \neq 0\}}$. (Hint: Since A is not necessarily countable, it is not clear that f = 0 a.e. on Ω , so find a countable family U_n of open sets in \mathbb{R}^n such that every open set on \mathbb{R}^n is the union of some of the sets from $\{U_n\}$.)

Proof. Since $\mathscr{X}_{\mathbb{Q}}$ is nonzero on $\mathbb{R} \setminus \mathbb{Q}$, which is a dense subset of \mathbb{R} , then spt $(\mathscr{X}_{\mathbb{Q}}) = \mathbb{R}$. This is nonsence, however, since $\mathscr{X}_{\mathbb{Q}}$ is equivalent to 0 in $L^p(\mathbb{R})$.

Problem 6

Prove that if $u \in L^1(\mathbb{R}^n)$ and $v \in L^p(\mathbb{R}^n)$ for $1 \le p \le \infty$, then

$$\operatorname{spt}(u * v) \subset \operatorname{\overline{spt}(u) + spt(v)}.$$

Proof. Suppose $x \notin \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}$ and define the set $[x - \operatorname{spt}(u)]$ as the shift of the support of u by the vector x:

$$[x - \operatorname{spt}(u)] = \{y : x - y \in \operatorname{spt}(u)\}$$

Then

$$(u*v)(x) = \int_{\mathbb{R}^n} u(x-y)v(y)dy = \int_{[x-\operatorname{spt}(u)]\cap\operatorname{spt}(v)} u(x-y)v(y)dy$$

If $x_0 \in \operatorname{spt}(v) \cap [x - \operatorname{spt}(u)]$, then $x_0 \in \operatorname{spt}(v)$ and $x - x_0 = 0 \in \operatorname{spt}(u)$. Then since $x = (x - x_0) + (x_0)$, then $x \in \operatorname{spt}(u) + \operatorname{spt}(v)$, which is a contradiction since $x \notin \operatorname{spt}(u) + \operatorname{spt}(v)$. Thus $[x - \operatorname{spt}(u)] \cap \operatorname{spt}(v) = \emptyset$, and therefore

$$(u * v)(x) = \int_{[x-\text{spt }(u)] \cap \text{spt }(v)} u(x-y)v(y) dy = \int_{\emptyset} u(x-y)v(y) dy = 0$$

and thus $x \notin \text{spt } (u * v)$. This shows

$$\operatorname{spt}(u * v) \subset \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}.$$

Problem 7

Suppose that $1 . If <math>\tau_y f(x) = f(x - y)$, show that f belongs to $W^{1,p}(\mathbb{R}^n)$ if and only if $\tau_y f$ is a Lipschitz function of y with values in $L^p(\mathbb{R}^n)$; that is,

$$\|\tau_y f - \tau_z f\|_p \le C|y - z|.$$

What happens in the case p = 1?

Proof.

Problem 8

If $u \in W^{1,p}(\mathbb{R}^n)$ for some $p \in [1,\infty)$ and $\frac{\partial u}{\partial x_j} = 0$, j = 1,...,n, on a connected open set $\Omega \subset \mathbb{R}^n$, show that u is equal a.e. to a constant on Ω . (Hint: approximate u using that $\eta_{\varepsilon} * u \to u$ in $W^{1,p}(\mathbb{R}^n)$, where η_{ε} is a sequence of standard mollifiers. Show that $\frac{\partial}{\partial x_i}(\eta_{\varepsilon} * u) = 0$ on $\Omega_{\varepsilon} \subset \Omega$ where $\Omega_{\varepsilon} \nearrow \Omega$ as $\varepsilon \to 0$.)

More generally, if $\frac{\partial u}{\partial x_j} - f_j \in C(\Omega)$, $1 \le j \le n$, show that u is equal a.e. to a funtion in $\mathscr{C}^1(\Omega)$.

Proof.