Separation of Floor Track Example With Practical Challenge

Intro to Moments for Objects Recognition

Objectives: Develop a technical to detect different shaped, different color, different size objects Preprocessing (1): 2D**Image** Acquisition Gaussian Convolution **Features Features Feature** Extraction Extraction Vector Learning **Feature** Decision Vector Making **Moments** V(v1,...,vk)

Pattern Recognition For Binary Images

Note: Starting from

binary images,

images

extended to color

The tool box for pattern recognition for binary images

- 1 Size
- 2. Moments

X

vk etc.

- Perimeter
- 4. Orientation
- Compositions of the above Perimeter and moments: vector
- Invariant operators size invariant orientation invariant illumination invariant

Biologically inspired techniques

Rule 1. Proximity

Rule 2. Similarity

Rule 3. Closure

Rule 4. Good continuation

Rule 5. Symmetry

Rule 6. Simplicity

Note: 'Proximity' usage for clean up binary image and remove noise, as well as growing boundary points per 'good continuation' rule to form a better edge map.

Note: Similarity defines a interesting question, how to describe one object is similar, or somewhat similar to others, neural network and fuzzy logic may help.

> Ground rule: signature of a image, tools including 3 invariant characteristics

Harry Li, PhD. SJSU

Binary Image Processing

Binary Images

Harry Li, Ph.D. SJSU

Example On Simple Pattern Recognition

Given two binary images, derived from two objects, T and O, design a technique to identify

them

Example: Computation of

- (1) Area (size);
- (2) X-bar;
- (3) Y-bar;
- (4) Orientation, theta angle
- (5) Perimeter of an object

Fig2(a),(b)

Fig1(a),(b)

Good continuation or noise? What to do with this noise?

Feature Vector		Size	X-bar	Y-bar	Orientation	Perimeter	
V_1(v1,, v5)	T	v11	v12	v13		v15	From Fig1(b)
V_2(v1,, v5)	L	v21	v22	v23		v25	From Fig2(b)

Harry Li, PhD. SJSU

Intro Feature Characterization

Example: Fill out this table based on the characteristics of each feature

	Perimeter	Area	x_bar	y_bar	Theta	Moments	Hu-Moments
	v1	v2	v3	v4	v5	v6-vi	v(i+1)-vk
Illumination invariant							
Scale invariant			Y	Υ	Y		Y
Orientation Invariant							Υ

Perimeter:

Where B'(x,y) from object whose neighboring pixels belong to background

x_bar:

y_bar can be defined similarly

Moments:

$$M_{pq} = \int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}x^py^qf(x,y)\,dx\,dy$$

Central moments:

Orientation Computation

$$\tan 2\phi \stackrel{\triangle}{=} \frac{b}{a-c}$$

$$\alpha = \iint_{\Omega} (x - \bar{x})^{2} B(x, y) dx dy$$

$$b = \iint_{\Omega} 2(x - \bar{x})(y - \bar{y}) B(x, y) dx dy$$

$$c = \iint_{\Omega} (y - \bar{y})^{2} B(x, y) dx dy ...(4)$$

Example: See my handout

Reference: Robot Vision, by BPK, Horn, Chapter 3, pp. 46-64

Note: my hand calculation use integer, when have access to computer, use Float! (x_bar = 2.8 changed to 3, and y_bar = 2.4 changed to 2)

Raw Moments

The "raw moment" of order (p + q) for image f(x,y) is defined as:

$$M_{pq} = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} x^p y^q f(x,y) \, dx \, dy$$
 (1)

For the discrete function, we have:

$$M_{ij} = \sum_{x} \sum_{y} x^i y^j I(x, y)$$
 (2)

We can treat image intensity as its probability density function

$$\sum_{x} \sum_{y} I(x, y) \tag{3}$$

Note: image I(x,y) can be binary image or gray scale images. But we start the discussion from the binary images first.

Reference: Robot Vision, by BPK, Horn, Chapter 3, pp. 46-64

Color Flood Fill Testing

MATCH DIRCH Hours Number New 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
User Input: 1° Color? Ross). [1] Tab. S. "b3" Ste color I maye to Bic processed; [2° Threshold =? The bittering Shown fix haded. Tart (apts). I. I Any SXS I maye (B: nony I maye) I mut Thr < Total (b, Ubz). Transhow ("", ress) Transhow ("", ress) The state of the processed; The state of the p

Binary Image Features

Moments

Harry Li, Ph.D.

Map To Feature Vectors

