Strain rates and Elasticity

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

TKT4150 Biomechanics

Recap

- Strain measures
 - Longitudinal strain (ϵ)
 - Shear strain (γ)
 - Volumetric strain (ϵ_{ν})
- Strain tensors
 - ► Deformation gradient F
 - Green's deformation tensor C
 - ► Displacement gradient H
 - Green's strain tensor E
- All strain measures may be expressed by the Green strain tensor
- The expressions are simplified for small deformations

Strain rates

- Eulerian coordinates for fluid dynamics
- ▶ Velocity $\mathbf{v}(\mathbf{r}, t)$ for particle
- ▶ Displacement $d\mathbf{u} = \mathbf{v} dt$
- Deformations expressed by the displacement gradient tensor

$$dH_{ik} = \frac{\partial v_i}{\partial x_k} dt \equiv v_{i,k} dt$$

- ▶ Velocity gradient $L_{ik} = v_{i,k}$
- Strain rate tensor

$$\mathbf{D} = \frac{1}{2} \left(\mathbf{L} + \mathbf{L}^{\mathsf{T}} \right)$$

$$D_{ik} = \frac{1}{2} (v_{i,k} + v_{k,i})$$

- ▶ General: E = D dt
- ▶ Small deformations: $\mathbf{D} = \dot{\mathbf{E}}$

Elasticity

A material is (Cauchy) elastic if

$$T = T(E, r)$$

- which is a constitutive or material equation
- Homogeneous if the elastic properties are the same in every particle

$$T = T(E)$$

- Isotropic if the elastic properties are the same in every direction
- Linear elastic if stress is linear function of strain

Fundamental properties of elastic materials

- Reversibility
 Identical loading/unloading
 stress-strain curves
- Path and rate independence
 The stress depends only on the level of strain not strain history or rate
- Non-dissipative
 The deformation energy may be recovered upon unloading

Isotropic linear elastic material

▶ Uniaxial stress ($\sigma_1 \neq 0, \sigma_2 = \sigma_3 = 0$)

$$\epsilon_1 = \frac{\sigma_1}{\eta}, \quad \epsilon_2 = \epsilon_2 = -\nu \frac{\sigma_1}{\eta}$$

- η modulus of elasticity
- ν Poisson's ratio
- Superposition valid due to isotropic and linear stress/strain relationship

$$\epsilon_i = \frac{1+\nu}{\eta} \, \sigma_i - \frac{\nu}{\eta} \, (\sigma_1 + \sigma_2 + \sigma_3) = \frac{1+\nu}{\eta} \, \sigma_i - \frac{\nu}{\eta} \, \operatorname{tr} \mathbf{T}$$

The generalized Hooke's law

Matrix representation in Ox-system with base vectors || to principal directions

$$\epsilon_i \, \delta_{ij} = \frac{1+\nu}{\eta} \, \sigma_i \, \delta_{ij} - \frac{\nu}{\eta} \, \operatorname{tr} \mathbf{T} \, \delta_{ij}$$

In an arbitrary Ox-system

$$E_{ij} = rac{1+
u}{\eta} T_{ij} - rac{
u}{\eta} T_{kk} \delta_{ij}$$

Tensor representation

$$\mathbf{E} = \frac{\mathbf{1} + \nu}{\eta} \mathbf{T} - \frac{\nu}{\eta} \operatorname{tr} \mathbf{T} \mathbf{1}$$

Equivalent forms of Hooke's law

Strain on LHS

$$E_{ij} = \frac{1+\nu}{\eta} T_{ij} - \frac{\nu}{\eta} T_{kk} \delta_{ij}$$
$$E = \frac{1+\nu}{\eta} \mathbf{T} - \frac{\nu}{\eta} \operatorname{tr} \mathbf{T} \mathbf{1}$$

► Stress on LHS

$$T_{ij} = \frac{\eta}{1+\nu} \left(E_{ij} + \frac{\nu}{1-2\nu} E_{kk} \delta_{ij} \right)$$
 $\mathbf{T} = \frac{\eta}{1+\nu} \left(\mathbf{E} + \frac{\nu}{1-2\nu} E_{kk} \mathbf{1} \right)$

Properties of the Hookean solid

- Isotropic linear elastic
- ightharpoonup Only two independent material parameters η and ν
- Normal stresses only result in longitudinal strains
- Shear stresses only result in shear strains
- Not the case for anisotropic materials in general

Volumetric strain for the Hookean solid

 $ightharpoonup \epsilon_V$ obtained from the strain version lacktree

$$\epsilon_{V} = E_{ii} = \frac{1+\nu}{\eta} T_{ii} - \frac{\nu}{\eta} T_{kk} \delta_{ii} = \frac{1-2\nu}{\eta} T_{ii}$$

which may be represented: $\epsilon_{\it V}={1\over\kappa}\,\sigma^0$

- ▶ Mean normal stress: $\sigma^0 = \frac{1}{3}T_{ii}$
- ▶ Bulk modulus: $\kappa = \frac{\eta}{3(1-2\nu)}$
- ▶ Possion's ratio: $0 \le \nu \le 0.5$
- ▶ Incompressible Hookean material $\varepsilon \equiv 0$

$$T = -p1 + 2\mu E$$

2D theory of elasticity

Thin plate loaded by

- Body forces b
- Contact forces t on the boundary A
- $ightharpoonup
 abla au_{i3} = 0 ext{ and }
 onumber
 onumber$

Governing equations for thin plate in plane stress

Cauchy equations of motion¹

$$\nabla \cdot \mathbf{T} + \rho \mathbf{b} = \rho \ddot{\mathbf{u}} \Leftrightarrow T_{\alpha\beta,\beta} + \rho b_{\alpha} = \rho \ddot{u}_{\alpha}$$

Hooke's law for plane stress

$$\mathcal{T}_{lphaeta} = 2\mu \left[\mathcal{E}_{lphaeta} + rac{
u}{1-
u} \, \mathcal{E}_{
ho
ho} \delta_{lphaeta}
ight], \quad 2\mu = rac{\eta}{1+
u}$$

Green strains for small displacements

$$E_{\alpha\beta} = \frac{1}{2} \left(u_{\alpha,\beta} + u_{\beta,\alpha} \right)$$

¹Repeated Greek indices imples sum from 1 to 2

Navier equations for plane stress

▶ Hooke's law and $E_{\alpha\beta}$ in Cauchy equations \Rightarrow

$$u_{\alpha,\beta\beta} + \frac{1+\nu}{1-\nu} u_{\beta,\beta\alpha} + \frac{\rho}{\mu} (b_{\alpha} - \ddot{u}_{\alpha}) = 0$$

Boundary conditions

$$t_{\alpha} = t_{\alpha}^*, \quad \text{on } A_{\sigma}$$
 $u_{\alpha} = u_{\alpha}^*, \quad \text{on } A_{u}$

Spherical shell of steel

- ▶ $d_0 = 2000$ mm, $t_0 = 5$ mm \Rightarrow thin walled
- Steel: η = 210 GPa, ν = 0.3
- ▶ Load: *p* = 1.5 MPa
- Find $\triangle d$ and $\triangle t$ due to the imposed load
- From stress analysis

$$\sigma_{\phi} = \sigma_{\theta} = \sigma = \frac{1}{2} \frac{r}{t} p$$

$$= \frac{1}{2 (5 \cdot 10^{-3})} 1.5 \cdot 10^{6} = 150 \text{ MPa}$$

Spherical shell of steel (contd)

Hooke's law

$$E_{ij} = rac{1+
u}{\eta} T_{ij} - rac{
u}{\eta} T_{kk} \delta_{ij}$$

▶ Azimuthal direction $\sigma_r \ll \sigma \Rightarrow \sigma_r \approx 0$

$$arepsilon_{ heta} = E_{11} = rac{1 + \nu}{\eta} \sigma_{ heta} - rac{\nu}{\eta} (\sigma_{ heta} + \sigma_{\phi}) = rac{1 - \nu}{\eta} \sigma_{\phi}$$

$$= rac{1 - 0.3}{210 \cdot 10^9} \cdot 150 \cdot 10^6 = 0.5 \cdot 10^{-3}$$

Circumferential strain:

$$\varepsilon_{\theta} = \frac{\pi d - \pi d_0}{\pi d_0} = \frac{d - d_0}{d_0} = \frac{\Delta d}{d_0}$$

$$\Rightarrow \Delta d = \varepsilon_{\theta} d_0 = 0.5 \cdot 10^{-3} 2000 = 1 \text{ mm}$$

Spherical shell of steel (contd)

Radial direction

$$arepsilon_r = E_{33} = -\frac{\nu}{\eta} \left(\sigma_{\theta} + \sigma_{\phi} \right) = \frac{-2\nu}{\eta} \sigma$$

$$= \frac{-0.6}{210 \cdot 10^9} \cdot 150 \cdot 10^6 = -\frac{3}{7} \cdot 10^{-3}$$

Radial strain

$$\varepsilon_r = \frac{t - t_0}{t_0} = \frac{\Delta t}{t_0}$$

$$\Rightarrow \Delta t = \varepsilon_r t_0 = -\frac{3}{7} \cdot 10^{-3} \approx -2.1 \cdot 10^{-3} \text{mm}$$

Mechanical energy balance

Work per unit time on volume V

$$P = \int_{V} \mathbf{b} \cdot \mathbf{v} \, \rho \, dV + \int_{A} \mathbf{t} \cdot \mathbf{v} \, dA$$

By using Cauchy's stress theorem and Gauss

$$P = \dot{K} + P_d$$

Kinetic energy

$$\dot{K} = \int_{V} \dot{\mathbf{v}} \cdot \mathbf{v} \rho \, dV, \quad K = \int_{V} \frac{\mathbf{v} \cdot \mathbf{v}}{2} \rho \, dV$$

Stress power

$$P_d = \int_V \mathbf{T} : \mathbf{D} \, dV$$

Stress work

Deformation power for a body of volume V

$$P_d = \int_V T_{ij} D_{ij} \, dV$$

ightharpoonup Deformation power per unit volume ω

$$\omega = T_{ij}D_{ij}$$

- For small deformations $\mathbf{D} = \dot{\mathbf{E}}$
- Stress work per unit volume

$$w = \int_{t_0}^t \omega \, dt = \int_{E_0}^E T_{ij} \, dE_{ij}$$

Hyperelastic materials and strain energy

- Hyperelastic material
 - If ω and w may derived from a scalar valued potential $\phi(\mathbf{E})$ such that

$$\omega = \dot{\phi} = rac{\partial \phi}{\partial E_{ij}} \, \dot{E}_{ij}$$

and

$$extbf{ extit{w}} = \int_{t_0}^t \omega \ extit{d}t = [\phi]_{t_0}^t = \phi(extbf{ extit{E}}) - \phi(extbf{ extit{E}}_0)$$

• $\phi(\mathbf{E})$ is called *elastic energy* or *strain energy* per unit volume

Example: Uniaxial stress

$$w = \int_{t_0}^t \omega \, dt = \int_{t_0}^t \sigma \dot{\epsilon} \, dt = \int_{\epsilon_0}^\epsilon \sigma \, d\epsilon$$

Strain energy and stress tensor

The stress power is represented by two expressions for a hyperelastic material

$$\omega = T_{ij}\dot{E}_{ij} = \frac{\partial\phi}{\partial E_{ij}}\dot{E}_{ij}$$

▶ As the strain energy is a function of strain only (i.e. $\phi(\mathbf{E})$) and not the strain rate \dot{E}_{ij} , we get:

$$T_{ij} = \frac{\partial \phi}{\partial E_{ij}}$$

- ▶ Thus T = T(E)
- ► Hyperelasticity ⇒ elasticity

Large deformations and hyperelasticity

- ▶ Use elastic energy per mass unit $\psi(\mathbf{C})$ rather than per volume unit $\phi(\mathbf{E})$
- Hyperelastic condition
 - ▶ The stress power ω dV must be derived from the potential $\psi \rho dV$ in the following manner
 - $\omega \, dV = \frac{d}{dt} \left(\psi \rho \, dV \right) = \dot{\psi} \, \rho dV$
- Consequently

$$\omega =
ho \dot{\psi} =
ho rac{\partial \psi}{\partial extbf{ extit{C}_{ij}}} \dot{ extbf{ extit{C}}_{ij}}$$

Rate of the Green deformation tensor

 Rate of deformation gradient, velocity gradient and strain rate

$$F_{ik} = \frac{\partial x_i}{\partial X_k} \text{ and } L_{il} = v_{i,l} \text{ and } D_{ik} = \frac{1}{2}(v_{i,k} + v_{k,i})$$

$$\dot{F}_{ik} = \frac{\partial^2 x_i}{\partial t \partial X_k} = \frac{\partial}{\partial X_k} \left(\frac{\partial x_i}{\partial t}\right) = \frac{\partial}{\partial X_k} v_i = \frac{\partial v_i}{\partial x_l} \frac{\partial x_l}{\partial X_k}$$

- ▶ Which yields: $\dot{\mathbf{F}} = \mathbf{L} \cdot \mathbf{F}$ and $\dot{\mathbf{F}}^T = \mathbf{F}^T \cdot \mathbf{L}^T$
- ▶ Green's deformation tensor $\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F}$
- Rate of the Green deformation tensor

$$\dot{\mathbf{C}} = \dot{\mathbf{F}}^T \cdot \mathbf{F} + \mathbf{F}^T \cdot \dot{\mathbf{F}}
= 2\mathbf{F}^T \cdot \mathbf{D} \cdot \mathbf{F}$$

Elastic energy and stress tensor

 From the definition of stress power and the conditions for hyperelasticity

$$\omega = \mathcal{T}_{ij} \mathcal{D}_{ij} =
ho \dot{\psi} =
ho rac{\partial \psi}{\partial \mathcal{C}_{ij}} \dot{\mathcal{C}}_{ij}$$

▶ By using the expression for \dot{C}_{ij} ●

$$\dot{\psi} = rac{\partial \psi}{\partial C_{ij}} \dot{C}_{ij} = rac{\partial \psi}{\partial C_{ij}} \left(2F_{ki}D_{kl}F_{lj}
ight) = 2 \left(\mathbf{F} rac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^T
ight) : \mathbf{D}$$

- ▶ Thus by substitution $\omega = \mathbf{T} : \mathbf{D} = \left(2 \, \rho \mathbf{F} \frac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^T\right) : \mathbf{D}$
- As ψ is independent of **D**

$$\mathbf{T} = 2 \,
ho \mathbf{F} rac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^T$$

Stress tensors for large deformations

- ► The stress and strain energy relations may be simplified
- ► Introduce the second Piola-Kirchhoff's stress tensor

Summary