BackGround

在大规模的数据中心网络中,故障和事故是不可避免的,包括路由错误配置、链路抖动、网络设备硬件 故障和网络设备软件错误

在大型数据中心定位网络故障是一项挑战。考虑到现在数据中心在任何两个终端主机之间都有高度重复的路径,终端主机不清楚发生故障时(例如,TCP重传)应该归咎于哪些链路或设备。而且,由于等成本多路径(ECMP)路由协议,即使路由器也不知道包的整个路由路径。

此外,灰色故障,即局部或细微的故障,在数据中心中普遍存在。它们会导致云环境中的主要可用性故障和性能异常。与fail-stop故障不同,gray故障是有概率地丢弃数据包的,因此不能通过简单地评估连通性来检测。

首先,对于灰色故障的检测,故障定位系统需要一个终端主机的视角。灰色故障被描述为"差分可观测性",这意味着终端主机和其他网络实体(如交换机)对故障的感知不同。因此,传统的监测系统,如SNMP,NetFlow,查询交换机的数据包丢失,无法观察到灰色故障。

NetBouncer可以很好解决fail-stop和gray-failure问题。

System

NetBouncer处理流程

- 1. 控制器设定探测规则, 发送给服务器。
- 2. 服务器发探测包
- 3. 处理器收集探测结果推断故障。

模型如下:

$$y_j = \prod_{i: ext{link}_i \in ext{path}_j} x_i, orall j$$

yj: pathj 不丢包的概率, xi linki无故障的概率

希望解决问题如下:

给定图G,对于图G中的所有路径U,可以找到 $A\subseteq U$ 使得这些路径构成的方程组可以获得所有link的xi的唯一解。下面是识别故障的例子:

Algorithm

1 How to achieve light-weight and explicit probing?

- Which paths should be probed?
- 3 How to infer failures from path probing data?

1. 如何实现轻量化和显式探测

IP in IP(显式探测,可以解决多条路径冗余不知道具体路径问题)

The switch that receives the IP-in-IP packets (i.e., Switch1) would decapsulate the outer IP header and forward the packet to its next destination

Packet bouncing

The probing path contains the route from the server to the switch (H5->T2->L1->S2) and its "bouncing back" route (S2->L1->T2->H5).

- 1. 链路可以被双向探测
- 2. 探测路径的接收方和发送方是同一台服务器。如果不是同一台服务器可能会出现下面的问题: 如果接收方挂掉,会导致假阳性(本来link没问题,结果预测有问题) 如果发送方挂掉,会导致假阴性(?)
- 3. 可以最小化ip-in-ip的header的数目。因为对于Clos network, 从底层服务器到上层交换机有唯一路 谷

2. 如何选择探测路径

选择探测路径需要保证所有的链路可以唯一计算出概率xi 有些情况是不能唯一计算出xi的:

 $log(y_1) = log(x_1) + log(x_3)$ $log(y_2) = log(x_1) + log(x_4)$ $log(y_3) = log(x_2) + log(x_3)$ $log(y_4) = log(x_2) + log(x_4)$

Links success probabilities (x_1-x_4) can be arbitrary

Not full rank

理论:(充分必要条件) 在具有k层交换机 (k>=1) 的Clos网络中, 通过探测从服务器到顶层交换机的所有 路径, 我们可以从测量的路径成功概率中唯一地推断链路成功概率, 当且仅当每个交换机至少被一条成 功概率为1的路径通过。(证明见论文)

3. 如何根据探测结果推断故障 设备故障

对于每个设备, 计算穿过设备的path的成功概率, 如果有一个path成功概率是1, 该设备记录为gooddev, 否则记录为baddev。然后从Graph里面删除baddev部分。Graph = SubGraph + baddev

链路故障

$$egin{array}{ll} ext{minimize} & \sum_{j} \left(y_{j} - \prod_{i: ext{link}_{i} \in ext{path}_{j}} x_{i}
ight)^{2} \ ext{subject to} & 0 \leq x_{i} \leq 1, orall i \end{array}$$

存在问题:

噪音导致假阳性: (1)发送一定数目探测包测的本来就不是准确的概率值(2)因为某些软硬件原因也会导致 丢包(TCP/IP,OS...)

假设最上方链路丢包率是50%, 三条路测到的丢包率分别是50%, 50%, 49%.

前两个测量正确没有影响,最后一个存在误差,带入上面的模型就会导致98%的假阳性问题。 所以加入了正则化项:

$$\sum_{j} \left(y_{j} - \prod_{i: ext{link}_{i} \in ext{eath}_{j}} x_{i}
ight)^{2} + \lambda \sum_{i} x_{i} \left(1 - x_{i}
ight)$$