$12n_{0249} (K12n_{0249})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{25} + 2u^{24} + \dots + b - 1, \ u^{27} + 2u^{26} + \dots + a - 2, \ u^{28} + 2u^{27} + \dots - 3u - 1 \rangle$$

$$I_2^u = \langle -u^3 + u^2 + b - 2u + 1, \ u^4 + 3u^2 + a + 1, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{25} + 2u^{24} + \dots + b - 1, \ u^{27} + 2u^{26} + \dots + a - 2, \ u^{28} + 2u^{27} + \dots - 3u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{27} - 2u^{26} + \dots - 4u + 2 \\ -u^{25} - 2u^{24} + \dots + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{27} - 4u^{26} + \dots - 2u + 3 \\ u^{27} + 2u^{26} + \dots - 3u^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{6} - 3u^{4} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{27} - u^{26} + \dots - 6u + 2 \\ -u^{26} - 2u^{25} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} + 6u^{7} + 11u^{5} + 6u^{3} + u \\ -u^{9} - 5u^{7} - 7u^{5} - 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{28} + 6u^{27} + \dots + 17u + 1$
c_2, c_4	$u^{28} - 6u^{27} + \dots + 5u - 1$
c_3, c_8	$u^{28} + u^{27} + \dots + 96u + 32$
<i>C</i> ₅	$u^{28} - 2u^{27} + \dots + 331u - 445$
$c_6, c_7, c_{10} \\ c_{11}, c_{12}$	$u^{28} - 2u^{27} + \dots + 3u - 1$
<i>C</i> 9	$u^{28} + 2u^{27} + \dots + 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{28} + 38y^{27} + \dots - 17y + 1$
c_2, c_4	$y^{28} - 6y^{27} + \dots - 17y + 1$
c_3, c_8	$y^{28} - 33y^{27} + \dots - 14848y + 1024$
<i>C</i> ₅	$y^{28} + 22y^{27} + \dots - 315151y + 198025$
c_6, c_7, c_{10} c_{11}, c_{12}	$y^{28} + 38y^{27} + \dots - 15y + 1$
<i>c</i> ₉	$y^{28} + 34y^{27} + \dots - 15y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.152944 + 1.016320I		
a = 1.019950 - 0.193834I	3.33821 - 2.49897I	-1.28357 + 4.65842I
b = -0.647472 - 0.451263I		
u = 0.152944 - 1.016320I		
a = 1.019950 + 0.193834I	3.33821 + 2.49897I	-1.28357 - 4.65842I
b = -0.647472 + 0.451263I		
u = -0.068154 + 0.917237I		
a = -1.70138 - 0.42865I	0.674371 + 1.046210I	-3.66596 + 0.45443I
b = 0.734706 + 1.073090I		
u = -0.068154 - 0.917237I		
a = -1.70138 + 0.42865I	0.674371 - 1.046210I	-3.66596 - 0.45443I
b = 0.734706 - 1.073090I		
u = 0.285643 + 0.852384I		
a = -0.007992 - 0.695316I	1.29412 - 2.63752I	-1.01481 + 5.30921I
b = -0.322158 + 0.381569I		
u = 0.285643 - 0.852384I		
a = -0.007992 + 0.695316I	1.29412 + 2.63752I	-1.01481 - 5.30921I
b = -0.322158 - 0.381569I		
u = -0.329759 + 1.077170I		
a = -1.84555 + 1.40687I	9.87396 + 8.39825I	-2.23865 - 5.97376I
b = 1.245350 - 0.642218I		
u = -0.329759 - 1.077170I		
a = -1.84555 - 1.40687I	9.87396 - 8.39825I	-2.23865 + 5.97376I
b = 1.245350 + 0.642218I		
u = -0.274632 + 1.124510I		
a = 1.67793 - 1.18741I	10.62160 + 1.12711I	-1.11248 - 1.21587I
b = -0.957433 + 0.342031I		
u = -0.274632 - 1.124510I		
a = 1.67793 + 1.18741I	10.62160 - 1.12711I	-1.11248 + 1.21587I
b = -0.957433 - 0.342031I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.540472 + 0.396254I		
a = 0.247984 + 1.063200I	5.82690 - 1.64297I	-5.31123 - 0.95700I
b = -1.162050 + 0.222187I		
u = -0.540472 - 0.396254I		
a = 0.247984 - 1.063200I	5.82690 + 1.64297I	-5.31123 + 0.95700I
b = -1.162050 - 0.222187I		
u = -0.578535 + 0.310326I		
a = -0.10564 - 1.64155I	5.55026 + 5.30570I	-6.25062 - 5.57146I
b = 1.025040 - 0.012062I		
u = -0.578535 - 0.310326I		
a = -0.10564 + 1.64155I	5.55026 - 5.30570I	-6.25062 + 5.57146I
b = 1.025040 + 0.012062I		
u = 0.487302		
a = -0.909458	-1.29054	-7.57330
b = 0.360823		
u = 0.303248 + 0.234862I		
a = -0.89894 - 1.21637I	-0.528965 - 0.938472I	-8.01967 + 7.23093I
b = 0.057075 + 0.523211I		
u = 0.303248 - 0.234862I		
a = -0.89894 + 1.21637I	-0.528965 + 0.938472I	-8.01967 - 7.23093I
b = 0.057075 - 0.523211I		
u = 0.06577 + 1.67605I	40.40=00.00.00=	
a = 0.310611 + 0.424504I	10.18720 - 3.94206I	0. + 4.56823I
b = -0.225680 - 1.128100I		
u = 0.06577 - 1.67605I	10.10700 + 0.040067	0 4 5 6 0 0 0 7
a = 0.310611 - 0.424504I	10.18720 + 3.94206I	0 4.56823I
b = -0.225680 + 1.128100I		
u = -0.01320 + 1.71171I	10 19960 + 1 996507	2.41.446 + 0.7
a = 1.60962 + 0.03543I	10.13260 + 1.33652I	-3.41446 + 0.I
b = -3.88484 - 0.84278I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.01320 - 1.71171I		
a = 1.60962 - 0.03543I	10.13260 - 1.33652I	-3.41446 + 0.I
b = -3.88484 + 0.84278I		
u = 0.03667 + 1.72969I		
a = -0.912721 + 0.574767I	13.19840 - 3.25610I	0
b = 2.22990 - 0.67323I		
u = 0.03667 - 1.72969I		
a = -0.912721 - 0.574767I	13.19840 + 3.25610I	0
b = 2.22990 + 0.67323I		
u = -0.08755 + 1.74259I		
a = 2.19448 - 0.74449I	-19.5529 + 10.1409I	0
b = -5.13344 + 2.15584I		
u = -0.08755 - 1.74259I		
a = 2.19448 + 0.74449I	-19.5529 - 10.1409I	0
b = -5.13344 - 2.15584I		
u = -0.253230		
a = 3.12683	-2.04618	-0.133650
b = 0.636261		
u = -0.06900 + 1.75500I		
a = -2.19704 + 0.73339I	-18.5160 + 2.5730I	0
b = 5.04246 - 1.77736I		
u = -0.06900 - 1.75500I		
a = -2.19704 - 0.73339I	-18.5160 - 2.5730I	0
b = 5.04246 + 1.77736I		

$$II. \\ I_2^u = \langle -u^3 + u^2 + b - 2u + 1, \ u^4 + 3u^2 + a + 1, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - 3u^{2} - 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} - 3u^{2} - 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} - u^{3} - 3u^{2} - 2u - 1 \\ 2u^{3} - u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^4 + 5u^3 20u^2 + 14u 21$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^5$
c_3, c_8	u^5
c_4	$(u+1)^5$
c_5, c_9	$u^5 - u^4 + u^2 + u - 1$
c_{6}, c_{7}	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_{10}, c_{11}, c_{12}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_8	y^5
c_{5}, c_{9}	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
c_6, c_7, c_{10} c_{11}, c_{12}	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.233677 + 0.885557I		
a = 0.827780 - 0.637683I	0.17487 - 2.21397I	-7.62657 + 4.39306I
b = -0.340036 + 0.807849I		
u = 0.233677 - 0.885557I		
a = 0.827780 + 0.637683I	0.17487 + 2.21397I	-7.62657 - 4.39306I
b = -0.340036 - 0.807849I		
u = 0.416284		
a = -1.54991	-2.52712	-18.4270
b = -0.268586		
u = 0.05818 + 1.69128I		
a = -0.552827 + 0.534136I	9.31336 - 3.33174I	-6.15976 + 1.26157I
b = 1.47433 - 1.63485I		
u = 0.05818 - 1.69128I		
a = -0.552827 - 0.534136I	9.31336 + 3.33174I	-6.15976 - 1.26157I
b = 1.47433 + 1.63485I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{28} + 6u^{27} + \dots + 17u + 1)$
c_2	$((u-1)^5)(u^{28} - 6u^{27} + \dots + 5u - 1)$
c_{3}, c_{8}	$u^5(u^{28} + u^{27} + \dots + 96u + 32)$
c_4	$((u+1)^5)(u^{28} - 6u^{27} + \dots + 5u - 1)$
c_5	$(u^5 - u^4 + u^2 + u - 1)(u^{28} - 2u^{27} + \dots + 331u - 445)$
c_6, c_7	$ (u5 - u4 + 4u3 - 3u2 + 3u - 1)(u28 - 2u27 + \dots + 3u - 1) $
<i>C</i> 9	$(u^5 - u^4 + u^2 + u - 1)(u^{28} + 2u^{27} + \dots + 5u + 1)$
c_{10}, c_{11}, c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{28} - 2u^{27} + \dots + 3u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^{28} + 38y^{27} + \dots - 17y + 1)$
c_2, c_4	$((y-1)^5)(y^{28}-6y^{27}+\cdots-17y+1)$
c_3, c_8	$y^5(y^{28} - 33y^{27} + \dots - 14848y + 1024)$
<i>C</i> 5	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{28} + 22y^{27} + \dots - 315151y + 198025)$
c_6, c_7, c_{10} c_{11}, c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{28} + 38y^{27} + \dots - 15y + 1)$
<i>C</i> 9	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{28} + 34y^{27} + \dots - 15y + 1)$