Recitation #7

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Announcement

Next recitation session on Wed 28th October will be a midterm review.

The office hours on Thr 29th October is moved to Wed 28th 9 AM EST after the recitation

recall: how to find an eigenvalue

Exercise 0

Let $A \in \mathbb{R}^{n \times n}$ have an eigenvalues . How would you find its eigenvector $v \in \mathbb{R}^n$ that is $Av = \lambda v$

recall: spectral theorem

Spectral theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

Let's get things clear

- If A is symmetric then $A^T = A$ and it diagonalizes $A = PDP^{-1}$
- P is an orthonormal matrix therefore $P^T = P^{-1}$

Exercise 1

Prove that if $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix then $Tr(A) = \sum_{i=1}^{n} \lambda_i$ where $\lambda_i, i = 1..n$ are the eigenvalues of A.

Exercise 2

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Show that A is invertible if and only if $\lambda_i \neq 0$ for all eigenvalues of A.

Exercise 3

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $\lambda_1,...,\lambda_n \in \mathbb{R}$ be its eigenvalues. Show that

A is positive semi-definite if and only if $\lambda_i \geq 0$ for all i = 1..n

Exercise 3

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $\lambda_1,...,\lambda_n \in \mathbb{R}$ be its eigenvalues. Show that

A is positive semi-definite if and only if $\lambda_i \geq 0$ for all i = 1..n

recall: Principal Component Analysis (PCA)

PCA

Problem: we have data $a_1,..,a_n \in \mathbb{R}^d$ with d very large. We wish to represent the dataset in a lower dimension.

recall: PCA

Method

To perform PCA on a dataset we have to:

- $oldsymbol{0}$ Calculate th sample covariance matrix S
- ② Find the eigenvector v_1 of S with largest eigenvalue. v_1 is the first singular vector
- **3** Continue finding as many eigenvectors v_k of S as necessary by decreasing order with respect to the respective eigenvalues λ_k .
- **3** The dimensionally reduced data set will be composed by the projection of the data into the $v_1, ... v_k$ eigenbasis.

practice: PCA

Exercise 4

Suppose there are two eigenvectors of the covariance matrix that correspond to large eigenvalues and the rest of eigenvalues are small. How do we interpret this geometrically?

recall: Singular Value decomposition

SVD

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that

$$A = U\Sigma V^T$$

with $\Sigma_{11}, \Sigma_{22}, ..., \Sigma_{11} \geq 0$ and $\Sigma_{\it ij} \neq 0$

practice: SVD

Exercise 5

Let $A \in \mathbb{R}^{n \times m}$ give a method to compute numerically rank(A) using SVD.

practice: SVD

Exercise 6

Let $A \in \mathbb{R}^{n \times m}$ explain why the set $\{Ax | \|x\| = 1\}$ is an ellipsoid.

Announcement

Next recitation session on Wed 28th October will be a midterm review.

The office hours on Thr 29th October is moved to Wed 28th 9 AM EST after the recitation