

Redes de Información

Ing. Norberto Gaspar Cena Redes de Información

4to Año Ingeniería en Sistemas de Información

Agenda

- Control de Flujo
 - Parada y Espera
 - Ventana Deslizante
- Control de errores
 - ARQ con parada y espera
 - ARQ con vuelta atrás N
 - ARQ con rechazo selectivo
- High Level Data Link Control (HDLC)

Control del enlace de datos

- Sincronización de la trama
- Control de flujo
- Control de errores
- Direccionamiento
- Datos y control sobre el mismo enlace
- Gestión del enlace

Control de Flujo

Previene el buffer overflow

Definiciones:

- Tiempo de Transmisión
- Tiempo de Propagación

Modelo de Transmisión de Tramas

Parada y Espera

- El origen transmite las tramas.
- El destino recibe las tramas y responde con un acknowledgement (ACK).
- El origen espera el ACK antes de enviar la siguiente trama.
- El destino puede parar el flujo no enviando el ACK.
- Este método funciona bien cuando se envía un número reducido de tramas de gran tamaño.

Parada y Espera - Fragmentación

Los bloques de datos pueden ser divididos en tramas mas pequeñas

- Tamaño de memoria temporal del receptor limitado
- Los errores pueden ser detectados antes
- Ante un error la trama tiene que ser retransmitida
- Previene que una estación ocupe el medio por grandes periodos de tiempo

Entonces el método se vuelve algo inadecuado

Utilización del enlace

Ventana Deslizante

Permite que múltiples tramas estén en transito

Si el receptor tiene un buffer W. El transmisor puede enviar W tramas sin esperar el ACK

Cada trama es numerada (secuenciada)

Los ACK incluyen los números de la siguiente trama

Se pueden confirmar varias tramas simultáneamente

El número de secuencia esta limitado por el tamaño reservado en la trama

- El tamaño máximo de la ventana es 2^{k-1}

Ejemplo de Ventana Deslizante

Ejemplo de Ventana Deslizante

Ventana Deslizante

El receptor puede enviar una trama RNR (Receive Not Ready)

ACK para resumir la transmisión

Si las dos estaciones transmiten datos se utiliza la incorporación de confirmación (piggybacking)

- Número de secuencia de la trama y número de secuencia de la trama confirmada
- Se hace necesario la utilización de dos ventanas
- Si una estación tiene datos y confirmaciones, utiliza la trama para enviar ambos
- Si no tiene datos para enviar, usa la trama para enviar el ACK (RR o RNR)

Control de Errores

Tramas perdidas

Tramas dañadas

- Detección de errores
- Confirmaciones positivas
- Retransmisión tras la expiración de un temporizador
- Confirmación negativa y retransmisión

Mecanismos de solicitud de repetición automática (Automatic Repeat reQuest)

- ARQ con parada y espera
- ARQ con vuelta atrás N
- ARQ con rechazo selectivo

ARQ con Parada y Espera

El origen transmite una sola trama y espera por el ACK Primer Caso: Si la trama esta dañada se descarta

- El transmisor tiene un timeout
- Si no recibe el ACK dentro del periodo de tiempo, retransmite la trama

Segundo caso: Si la trama ACK se pierde/daña, el transmisor puede no reconocerlo

- El transmisor retransmite la trama y el receptor recibe dos tramas iguales
- Para estos casos se utiliza ACK0 y ACK1

Diagrama de Parada y Espera

ARQ con vuelta atrás N

Basada en Ventana Deslizante

Si no hay errores, el ACK lleva información de la siguiente trama esperada

Si ocurre un error, se solicita la retransmisión con un REJ

 Se descarta esa trama más las tramas posteriores hasta que la trama con errores sea recibida correctamente

ARQ con vuelta atrás N – Caso: Trama Dañada

- El receptor detecta un error en la trama i
- El receptor envía REJ-i
- El transmisor recibe REJ-i
- El transmisor retransmite la trama i y todas las subsiguientes

ARQ con vuelta atrás N – Caso: Trama Perdida

Trama i se pierde

El transmisor envía i+1

El receptor recibe la trama i+1 fuera de secuencia

El receptor envía reject i

El transmisor retransmite la trama i

ARQ con vuelta atrás N – Caso: Trama Perdida

La trama *i* se pierde y no hay tramas adicionales que enviar

El receptor no recibe la trama y no devuelve ni el acknowledgement ni el REJ

Cuando el temporizador del transmisor se vence envía una trama RR con P bit set to 1

El receptor interpreta este bit P=1 como una obligación a enviar un acknowledges con el numero de la trama que espera

El transmisor retransmite la trama i

Vuelta Atrás N -Diagrama

Rechazo Selectivo

También llamado retransmisión selectiva

Solamente las tramas rechazadas son retransmitidas

Las tramas subsiguientes son aceptadas por el receptor y almacenadas en un buffer

Minimiza la retransmisión

El receptor tiene que debe mantener un buffer lo suficientemente amplio

Mas complejidad en la lógica

Rechazo Selectivo -Diagrama

Tamaño de la ventana

Porque el tamaño de la secuencia en $\mod 2^{k-1}$

Con ventana deslizante

- A transmite 0 y recibe un RR1
- A transmite a B 1,2,3,4,5,6,7,0 y A recibe un RR1

Con rechazo selectivo

- A transmite 0-6 a B
- B recibe las 7 tramas y las confirma RR7
- El ACK de B (RR7) se pierde
- El temporizador de A expira y retransmite 0
- B cambio el tamaño de la ventana y acepta tramas de 7,0 4. B interpreta que se perdió 7 y que la trama 0 es diferente por lo que la acepta

Comparativa

Figure 7.13 ARQ Utilization as a Function of a ($P = 10^{-3}$)

High Level Data Link Control

Es el protocolo de control de enlace de datos mas importante

Es base de otros protocolos de control de enlace

HDLC Características Básicas

Estacion Primaria

- Se encarga de el funcionamiento del enlace
- Las tramas generadas se denominan ordenes
- Mantiene una relación lógica por separado con cada estación secundaria

Estación Secundaria

- Funciona bajo el control de las estaciones primarias
- Las tramas generadas se denominan respuestas

Estación Combinada

Es una combinación de las primarias y las secundarias

HDLC Configuraciones del Enlace

No Balanceada

 Esta formada por una estación primaria y una o más estaciones secundarias

Balanceada

Consiste de dos estaciones combinadas

Emplea transmisión síncrona

Permite transmisiones full duplex como half duplex

Estructura de la Trama

(a) Frame format

Campos de delimitación

El delimitador de los extremos es la secuencia de bits 01111110

Esta secuencia puede abrir y cerrar tramas

El receptor intentará interpretar esa secuencia de bits para sincronizarse

Para evitar confusión con el contenido de los datos se utiliza la técnica de inserción de bit (Bit stuffing)

- Un 0 es insertado en cada secuencia de cinco 1
- Si el receptor detecta cinco 1 examina con detalle el siguiente bit
- Si es 0, se eliminará sin más
- Si es 1 y el séptimo bit es 0, se acepta como delimitador flag
- Si es sexto y el séptimo bit son 1, el transmisor esta indicando una secuencia de cierre

Campos de delimitación

Secuencia a transmitir

- 01101111011111011111100
- 111111111111101111110111111110

Secuencia transmitida por HDLC

- 01101111011111**0**011111**0**100
- 11111**0**11111**0**11011111**0**1011111**0**10

Campo de dirección

Identifica la estación en la red Consta de 8 bits Dirección 1111111

Campo de secuencia de comprobación de trama (FCS)

Se calcula a partir de los bit de la trama

El código utilizado normalmente es el CRC-CCITT de 16 bits

Es usual encontrar CRC-32

Términos Clave

ARQ con parada y espera
ARQ con vuelta atrás N
ARQ con rechazo selectivo
Cabecera
Campo de delimitación
Control de flujo
Control de errores
Control de flujo mediante
parada y espera

Control de flujo mediante ventana deslizante

Control del enlace de datos de alto nivel (HDLC)

Incorporación de confirmación (piggybacking)

Protocolo de control de enlace de datos

Sincronización de trama

Trama de datos

Lectura Recomendada

- Forouzan, Transmisión de datos y redes de comunicaciones 4ta Edición, Mc Graw Hill, capitulo 11
- Stallings, Comunicaciones y redes de computadores (7th edition), Prentice Hall 2004 capitulo 7
- Web Site HDLC
 - ISO 3309, ISO 4335