

Propósito

Aplicar os conceitos da integração para determinar comprimentos de curvas, áreas de função e entre funções, como também área de superfície de revolução, além de empregar os conceitos de integração no cálculo de volumes de um sólido qualquer e de sólidos obtidos por revolução.

Preparação

Antes de iniciar o conteúdo deste tema, tenha em mãos papel, caneta e uma calculadora científica ou use a calculadora de seu smartphone/computador.

Objetivos

- Aplicar o conceito da integração no cálculo do comprimento de arcos de curva.
- Empregar o conceito da integral na obtenção do cálculo de áreas.
- Aplicar o conceito da integral na obtenção do cálculo de volumes.

Introdução

Diversas aplicações relacionadas a cálculos geométricos podem ser tratadas com o conceito de integral, como cálculo de áreas sob o gráfico de uma função, determinação de volumes de sólido e comprimento de curvas. O conhecimento aprofundado desse conceito será o foco de nosso estudo. Vamos juntos!

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Comprimento de arco de uma curva

Neste vídeo, explicaremos o comprimento do arco de uma curva e a função comprimento do arco.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Em algumas aplicações, precisamos calcular **o comprimento de uma curva**, isto é, o comprimento do gráfico de uma função entre dois pontos do gráfico.

Se o gráfico for uma reta, é fácil obter as distâncias entre os dois pontos, mas o caso geral é quando o gráfico da função é definido pela função f(x). Nesta situação, adotamos a seguinte estratégia:

- Dividimos o gráfico em pontos com uma distância bem pequena entre eles, de forma a transformar essa distância numa reta;
- Dizemos que vamos aproximar o comprimento do arco do gráfico por uma poligonal, isto é, um gráfico montado apenas por retas.

Vamos utilizar a fórmula que nos permitirá obter esse comprimento, considerando, inicialmente, o comprimento da distância entre dois pontos do gráfico através de uma aproximação por uma reta.

```
Seja a função <math xmlns="http://www.w3.org/1998/Math/MathML">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math>e deseja-se obter a distância do gráfico entre os pontos <math xmlns="http://www.w3.org/1998/
Math/MathML">
<msub>
 <mi>P</mi>
 <mrow data-mjx-texclass="ORD">
  <mi>i</mi>
  <mo>-</mo>
  <mn>1</mn>
 </mrow>
</msub>
</math> e <math xmlns="http://www.w3.org/1998/Math/MathML">
<msub>
 <mi>P</mi>
 <mrow data-mjx-texclass="ORD">
  <mi>i</mi>
 </mrow>
</msub>
</math>.
```



```
Seja L, a distância entre <math xmlns="http://www.w3.org/1998/Math/MathML" >
<msub>
 <mi>P</mi>
 <mrow data-mjx-texclass="ORD">
  <mi>i</mi>
  <mo>-</mo>
  <mn>1</mn>
 </mrow>
</msub>
<msub>
 <mi>P</mi>
 <mi>i</mi>
</msub>
<mo>.</mo>
Como as coordenadas de <math xmlns="http://www.w3.org/1998/Math/MathML" >
<msub>
 <mi>P</mi>
 <mi>i</mi>
</msub>
</math> são <math xmlns="http://www.w3.org/1998/Math/MathML" >
<mfenced open="(" close=")" separators="|">
 <mrow>
  <msub>
   <mrow data-mjx-texclass="ORD">
    <mi mathvariant="normal">x</mi>
   </mrow>
   <mrow data-mjx-texclass="ORD">
    <mrow data-mjx-texclass="ORD">
     <mi mathvariant="normal">i</mi>
    </mrow>
    <mo>-</mo>
    <mn>1</mn>
   </mrow>
  </msub>
  <mo>,</mo>
  <msub>
   <mrow data-mjx-texclass="ORD">
    <mi mathvariant="normal">y</mi>
   </mrow>
   <mrow data-mjx-texclass="ORD">
    <mrow data-mjx-texclass="ORD">
     <mi mathvariant="normal">i</mi>
```

```
</mrow>
    <mo>-</mo>
    <mn>1</mn>
   </mrow>
  </msub>
 </mrow>
</mfenced>
<mo>=</mo>
<mfenced open="(" close=")" separators="|">
 <mrow>
  <msub>
   <mrow data-mjx-texclass="ORD">
    <mi mathvariant="normal">x</mi>
   <mrow data-mjx-texclass="ORD">
    <mrow data-mjx-texclass="ORD">
     <mi mathvariant="normal">i</mi>
    </mrow>
    <mo>-</mo>
    <mn>1</mn>
   </mrow>
  </msub>
  <mo>,</mo>
  <mrow data-mjx-texclass="ORD">
   <mi mathvariant="normal">f</mi>
  </mrow>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msub>
     <mrow data-mjx-texclass="ORD">
      <mi mathvariant="normal">x</mi>
     </mrow>
     <mrow data-mjx-texclass="ORD">
      <mrow data-mjx-texclass="ORD">
       <mi mathvariant="normal">i</mi>
      </mrow>
      <mo>-</mo>
      <mn>1</mn>
     </mrow>
    </msub>
   </mrow>
  </mfenced>
 </mrow>
</mfenced>
</math> e <math xmlns="http://www.w3.org/1998/Math/MathML" >
 <mrow data-mix-texclass="ORD">
  <mi mathvariant="normal">P</mi>
 </mrow>
 <mrow data-mjx-texclass="ORD">
  <mrow data-mjx-texclass="ORD">
   <mi mathvariant="normal">i</mi>
  </mrow>
 </mrow>
</msub>
<mfenced open="(" close=")" separators="|">
 <mrow>
  <msub>
   <mrow data-mjx-texclass="ORD">
    <mi mathvariant="normal">x</mi>
```

```
</mrow>
   <mn>1</mn>
  </msub>
  <mo>,</mo>
  <msub>
   <mrow data-mjx-texclass="ORD">
    <mi mathvariant="normal">y</mi>
   </mrow>
   <mn>1</mn>
  </msub>
 </mrow>
</mfenced>
<mo>=</mo>
<mfenced open="(" close=")" separators="|">
 <mrow>
  <msub>
   <mrow data-mix-texclass="ORD">
    <mi mathvariant="normal">x</mi>
   </mrow>
   <mn>1</mn>
  </msub>
  <mo>,</mo>
  <mrow data-mjx-texclass="ORD">
   <mi mathvariant="normal">f</mi>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msub>
     <mrow data-mjx-texclass="ORD">
      <mi mathvariant="normal">x</mi>
     </mrow>
     <mn>1</mn>
    </msub>
   </mrow>
  </mfenced>
 </mrow>
</mfenced>
```

$$\begin{split} L_i &= \overline{P_{i-1}P_1} = \sqrt{\left(y_i - y_{i-1}\right)^2 + \left(x_i - x_{i-1}\right)^2} \\ \text{Mas, } &(y_i - y_{i-1})^2 = (f\left(x_i\right) - f\left(x_{i-1}\right))^2 \\ \text{Com } x_i - x_{i-1} = \Delta x_i \end{split}$$

Existe um teorema conhecido como **teorema do valor médio** que nos diz que, em um intervalo <math xmlns="http://www.w3.org/1998/Math/MathML">

```
<msub>
<mi>x</mi>
<mrow data-mjx-texclass="ORD">
<mrow>
<mn>1</mn>
</mrow>
</msub>
</math> e <math xmlns="http://www.w3.org/1998/Math/MathML">
<msub>
<mi>x</mi>
<mrow>
<mrow>
<mrow>
<mrow>
<mrow>
cmi>x</mi>
<mrow>
cmrow data-mjx-texclass="ORD">
```

```
<mn>2</mrow>
</msub>
</math>, sempre existirá um ponto <math xmlns="http://www.w3.org/1998/Math/MathML">
<msub>
<mi>c</mi>
<mrow data-mjx-texclass="ORD">
<mi>i</mi>
</mrow>
</msub>
</msub>
</msub>
</msub>
</msub>
</math> que:
```

$$f'\left(c_{i}\right) = \frac{f\left(x_{i}\right) - f\left(x_{i-1}\right)}{x_{i} - x_{i-1}} \to \Delta f\left(x_{i}\right) = f'\left(c_{i}\right) \Delta x_{i}$$
Assim, $\left(f\left(x_{i}\right) - f\left(x_{i-1}\right)\right)^{2} = \left(\Delta f\left(x_{i}\right)\right)^{2} = \left(f'\left(c_{i}\right) \Delta x_{i}\right)^{2}, \cos x_{i-1} \le c_{i} \le x_{i}$

$$L_{i} = \sqrt{\left(f\left(x_{i}\right) - f\left(x_{i-1}\right)\right)^{2} + \Delta x_{i}^{2}} = \sqrt{\left(f'\left(c_{i}\right)\right)^{2} \Delta x_{i}^{2} + \Delta x_{i}^{2}} = \Delta x_{i} \sqrt{1 + \left(f'\left(c_{i}\right)\right)^{2}}$$

Estamos interessados em calcular o comprimento do gráfico de <math xmlns="http://www.w3.org/1998/Math/MathML">

<mi>f</mi>

<mo stretchy="false">(</mo>

<mi>x</mi>

<mo stretchy="false">)</mo>

</math> entre os pontos do domínio [a,b]. Dividiremos os pontos [a,b] em uma partição <math xmlns="http://www.w3.org/1998/Math/MathML">

<mi>P</mi>

</math>:

$$a < x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

Assim, o comprimento da poligonal que liga os pontos deste gráfico será dado por:

$$L(P) = \sum_{i=1}^{n} \sqrt{(f(x_i) - f(x_{i-1}))^2 + (x_i - x_{i-1})^2}$$
$$L(P) = \sum_{i=1}^{n} \Delta x_i \sqrt{1 + (f'(c_i))^2}$$

A poligonal aproximará melhor a curva do gráfico quando a distância entre os pontos, <math xmlns="http://www.w3.org/1998/Math/MathML" >

<mi mathvariant="normal">∆</mi>

<mi>x</mi>

</math>, tender a zero. Assim:

$$L = \sum_{i=1}^{n} \Delta c_i \sqrt{1 + (f'(c_i))^2}$$

```
Fazer <math xmlns="http://www.w3.org/1998/Math/MathML" > <mi mathvariant="normal">\Delta</mi> <mi>x</mi> <mo stretchy="false">\rightarrow</mo> <mn>0</mn> </math> é semelhante a ter uma partição com um número infinito de intervalos, isto é, <math xmlns="http://www.w3.org/1998/Math/MathML" > <mi>i</mi> <mo stretchy="false">\rightarrow</mo> <mi mathvariant="normal">\rightarrow</mi> <mo>.</mo> </mo> </math>
```

Usando a mesma analogia da definição da integral definida:

$$L = \lim_{\Delta x \to 0} \sum_{i=1}^{n} \Delta x_i \sqrt{1 + \left(f'\left(c_i\right)\right)^2} = \int_a^b \sqrt{1 + \left(f'(x)\right)^2} dx$$

Vamos ver um exemplo:

```
Determine o comprimento do arco do gráfico da função <math xmlns="http://www.w3.org/1998/Math/
MathML" >
<mi>y</mi>
<mo>=</mo>
<mn>3</mn>
<msup>
 <mi>x</mi>
 <mn>2</mn>
</msup>
<mo>+</mo>
<mn>2</mn>
</math> entre os pontos <math xmlns="http://www.w3.org/1998/Math/MathML" >
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math> e <math xmlns="http://www.w3.org/1998/Math/MathML" >
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math>.
```

Solução:

A resolução é dada com aplicação direta da fórmula:

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$
 Como $f(x) = 3x^{2} + 2 \rightarrow f'(x) = 6x$, Assim:
$$L = \int_{x=0}^{x=1} \sqrt{1 + (6x)^{2}} dx = \int_{0}^{1} \sqrt{1 + 36x^{2}} dx$$

Agora, necessitamos usar as técnicas de integração para calcular esta integral. Para resolver integrais do tipo <math xmlns="http://www.w3.org/1998/Math/MathML" >

```
<msqrt>
<mn>1</mn>
<mo>+</mo>
<msup>
<mi mathvariant="bold-italic">a</mi>
<mn>2</mn>
</msup>
<msup>
<mi mathvariant="bold-italic">x</mi>
<msup>
<mi mathvariant="bold-italic">x</mi>
<mn>2</mn>
</msup>
</msup
```

$$\operatorname{tg}\alpha=ax\to sec^2\alpha d\alpha=adx$$

Assim:

$$\sqrt{1+a^2x^2} = \sqrt{1+\operatorname{tg}^2\alpha} = \sqrt{\sec^2\alpha} = |\sec\alpha|$$

Portanto, no exemplo

$$\operatorname{tg} \alpha = 6x \to \operatorname{sec}^2 \alpha d\alpha = 6dx$$

Para

$$x=0 o \operatorname{tg} \alpha = 0 o \alpha = 0$$

Para

$$x = 1 \to \text{tg} = 6 \to = \text{arctg } 6$$

$$L = \int_{x=0}^{x=1} \sqrt{1 + (6 \ x)^2} \ d \ x = \int_0^{\text{arctg } 6} \sec \frac{1}{6} \sec^2 \ d$$

$$L = \frac{1}{6} \int_0^{\text{arctg } 6} \sec^3 \ d$$

Ainda não temos uma integral imediata.

Obtenção das integrais com integrando <math xmlns="http://www.w3.org/1998/Math/MathML" > <msup> <mi>sec</mi> <mi>n</mi> </msup> <mo data-mjx-texclass="NONE"></mo> <mi>a</mi></mi></math>

$$I = \int \sec \alpha d\alpha$$

Para calcular esta integral, multiplica-se e divide-se o integrando por <math xmlns="http://www.w3.org/1998/Math/MathML" >
 <mo stretchy="false">(</mo>
 <mi>seca</mi>
 <mo>+</mo>
 <mi>tg</mi>
 <mi>a</mi>
 <mo stretchy="false">)</mo>
 </math>.

$$\int \sec \alpha d\alpha = \int \sec \alpha \frac{\sec \alpha + \tan \alpha}{\sec \alpha + \tan \alpha} d\alpha = \int \frac{\sec^2 \alpha + \sec \alpha \tan \alpha}{\sec \alpha + \tan \alpha} d\alpha$$

Fazendo

$$u = \sec \alpha + \operatorname{tg} a \to du = (\sec \alpha \operatorname{tg} \alpha + \sec^2 \alpha) d\alpha$$

Assim:

$$\int \frac{\sec^2\alpha + \sec\alpha \tan\alpha}{\sec\alpha + \tan\alpha} d\alpha = \int \frac{du}{u} = ln|u| + k, k \, \mathrm{real}$$

Dessa forma,

$$\int$$
 sec $da=\ln\,|\sec\,+\mathrm{tg}\,|+k,\;k$ real
$$I=\int\,\sec^{\,2}\,d$$

Esta é uma integral Imediata, pois a derivada de $~{
m tg}\,lpha~$ vale $~{
m sec}^2\,lpha.$ Portanto, ~lpha.

$$\int \sec^2 d = \operatorname{tg} + k, k$$

$$I = \int \sec^3 d$$

Para calcular esta integral, utilizaremos a integral por partes:

$$\int \sec^3 \alpha d\alpha = \int \sec \alpha \sec^2 \alpha d\alpha$$

$$u = \sec \alpha \to du = \sec \alpha \operatorname{tg} \alpha d\alpha \ e \ dv = \sec^2 \alpha d\alpha \to v = \operatorname{tg} \alpha$$

$$\int \sec^3 \alpha d\alpha = \sec \alpha \operatorname{tg} \alpha - \int \operatorname{tg} \alpha \sec \alpha \operatorname{tg} \alpha d\alpha$$

Mas

$$\int \operatorname{tg} \ a \ \sec \ a \ \operatorname{tg} \ a \ d = \int \operatorname{sec} \ a \ \operatorname{tg}^{-2} \ d \ a = \int \operatorname{sec} \ a \left(\operatorname{sec}^{-2} \ a - 1 \right) \ d = \int \left(\operatorname{sec}^{-3} - \operatorname{sec} \ a \right) d$$

$$\int \operatorname{sec}^{-3} \ d = \operatorname{sec} \ \operatorname{tg} - \int \operatorname{sec}^{-3} \ d + \int \operatorname{sec} \ d$$

Desta forma,

$$2\int \sec^3 \alpha da = \sec atg\alpha + \int \sec ad\alpha$$

Substituindo o valor de <math xmlns="http://www.w3.org/1998/Math/MathML" > <mo data-mjx-texclass="OP">{</mo>

```
<mi>sec</mi>
<mo data-mjx-texclass="NONE"></mo>
<mi>a</mi>
<mi>d</mi>
<mi>a</mi>
<mi>a</mi>
<mi>mi>a</mi>
```

$$\int \sec^3 \alpha da = \frac{1}{2} \sec \alpha \operatorname{tg} \alpha + \frac{1}{2} \ln |\sec \alpha + \operatorname{tg} \alpha| + k, k \operatorname{real}!$$

Atenção

Para integrais da forma , com inteiro e maior do que 3, usa-se a técnica da integral por partes, como descrito no item anterior.

Assim,

$$L=\tfrac{1}{6}\int_0^{\arctan 6}\sec^3\alpha d\alpha=\tfrac{1}{6}\left[\tfrac{1}{2}\sec\alpha\operatorname{tg}\alpha+\tfrac{1}{2}\ln|\sec\alpha+\operatorname{tg}\alpha|\right]_0^{\arctan 6}$$

Lembrando que

$$\operatorname{tg}(\operatorname{arctg} 6) = 6 \to \operatorname{sec}(\operatorname{arctg} 6) = \sqrt{1 + \operatorname{tg}^2(\operatorname{arctg} 6)} = \sqrt{1 + 36} = \sqrt{37}$$

e que

$$\sec \ 0 = 1$$

$$e$$

$$\ \ \, \text{tg} \ 0 = 0$$

$$L = \frac{1}{12}[(\sqrt{37} \ \cdot \ 6 + \ln \ |\sqrt{37} + 6|) - (1.0 + \ln \ |1 + 0|)] = \frac{1}{2} \sqrt{37} + \frac{1}{12} \, \ln \, (6 + \sqrt{37})$$

Função comprimento de arco

Baseado na fórmula obtida no item anterior, pode-se definir uma função, chamada de função comprimento de arco, a que tem o objetivo de medir o comprimento de um arco de gráfico de uma função a partir de um ponto particular até outro ponto qualquer.

Assim, se a curva \mathbf{C} tem seu gráfico definido pela função f(x), define-se s(x) como a função comprimento de arco dada por:

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} dt$$

Vamos ver mais um exemplo:

```
Obtenha a função comprimento de arco, definida pela função g(x) = 16 - \frac{1}{8} \ln x + x^2, para medir o arco a
partir do ponto inicial <math xmlns="http://www.w3.org/1998/Math/MathML">
<mo stretchy="false">(</mo>
<mrow data-mix-texclass="ORD">
 <mn mathvariant="bold">1</mn>
</mrow>
<mo>,</mo>
<mrow data-mjx-texclass="ORD">
 <mn mathvariant="bold">1</mn>
 <mn mathvariant="bold">7</mn>
</mrow>
<mo stretchy="false">)</mo>
</math>. Determine o comprimento do arco do gráfico entre o ponto inicial e o ponto <math xmlns="http://
www.w3.org/1998/Math/MathML">
<mi>com</mi>
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
<mo>.</mo>
```

Solução:

```
Como g (x) = 16 - 18 ln x + x 2 \rightarrow g'(x) = -18 x + 2 × 1 + 2 x - 18 × 2 = 1 + 4 × 2 - 12 + 164 × 2 = 2 x + 18 × 2 = 2 x + 18 x Portanto, (x) = \int 1x + 1 + 2t - 18t + 2 + 18t + 18t + 2 + 18t +
```

Mão na massa

Questão 1

Marque a alternativa que apresenta a integral que deve ser calculada para determinar o comprimento do arco gerado pela função $g(x)=3\ln x$, para $1\leq x\leq 3$

$$L = \int_{1}^{3} \sqrt{1 + 9 \ln^{2} x} dx$$

В

$$L = \int_{1}^{3} \frac{\sqrt{9+x^2}}{x} dx$$

$$L = \int_1^3 (1+3\ln x) dx$$

D

$$L = \int_{1}^{2} \sqrt{1 + \frac{1}{x^{2}}} dx$$

Е

$$L=\int_1^3 \sqrt{1+\frac{1}{x^3}} dx$$

A alternativa B está correta.

Usando a fórmula para calcular o comprimento do arco:

$$L=\int_a^b\sqrt{1+\left(f'(x)\right)^2}dx$$
Como $f(x)=3\ln x\to f'(x)=\frac{3}{x}$

Assim,

$$L=\int_{1}^{3}\sqrt{1+\left(\frac{3}{x}\right)^{2}}dx=\int_{1}^{3}\frac{\sqrt{9+x^{2}}}{x}dx$$

Questão 2

Marque a alternativa que indica a integral que representa o comprimento do arco para a função $f(x)=4e^x$, a partir do ponto x=4 .

$$\int_0^x \sqrt{1 - 16e^{2x}} dx$$

$$\int_{4}^{x} \sqrt{1 + e^{2x}} dx$$

$$\int_4^x \sqrt{1 + 16e^{2x}} dx$$

$$\int_0^x \sqrt{1 + 16e^x} dx$$

$$\int_0^x \sqrt{1 + 18e^x} dx$$

A alternativa C está correta.

Usando a fórmula para calcular a função comprimento do arco:

$$amp; s(x) = \int_{4}^{x} \sqrt{1 + (f'(x))^2} dx$$

Assim,

$$s(x) = \int_4^x \sqrt{1 + (4e^x)^2} dx = \int_4^x \sqrt{1 + 16e^{2x}} dx$$

Assim,

$$s(x) = \int_4^x \sqrt{1 + (4e^x)^2} dx = \int_4^x \sqrt{1 + 16e^{2x}} dx$$

Questão 3

Determine o valor de $s(\frac{\pi}{4})$, em que s(x) é a função comprimento de arco que determina o comprimento do arco da função $g(x) = \ln(\cos x)$, a partir do ponto com x = 0.

 $\ln 2$

 $ln(\sqrt{3} + 1)$

 $\ln 5$

 $\ln(\sqrt{2}+1)$

 $\ln 2\sqrt{3}$

A alternativa D está correta.

Usando a fórmula para calcular a função de comprimento do arco:

 $s(x) = \int_{0}^{x} \sqrt{1 + (f'(x))^{2}} dx$

Como

$$f(x) = \ln(\cos x) \rightarrow f'(x) = -\frac{\sin x}{\cos x} = -\operatorname{tg} x$$

Assim,

$$s(x)=\int_0^x\sqrt{1+(-\operatorname{tg} x)^2}dx=\int_0^x\sqrt{1+\operatorname{tg}^2 x}dx=\int_0^x|\sec x|dx=\ln|\sec x+\operatorname{tg} x|$$

Logo,

$$s\left(\frac{\pi}{4}\right) = \ln\left(\sec\frac{\pi}{4} + tg\frac{\pi}{4}\right) = \ln(\sqrt{2} + 1)$$

Questão 4

Determine o comprimento do arco constituído do gráfico da curva $h(x)=\frac{2}{3}\left(x^2+1\right)^{3/2}$ entre os pontos $A\in B$, com abscissas $0\in 1$, respectivamente.

Α

 $\frac{5}{3}$

В

 $\frac{1}{5}$

С

3

D

3

Ε

4

A alternativa A está correta.

Assista ao vídeo com a resolução da questão sobre como usar a fórmula para calcular o comprimento do arco:

Questão 5

Determine o comprimento do arco formado pelo gráfico da função $g(x)=\frac{1}{8}x^4+\frac{1}{4x^2}$ entre as abscissas 1 e 4

Α

 $\frac{33}{16}$

В

16

С

 $\frac{33}{4}$

D

33

Ε

 $\frac{33}{5}$

A alternativa A está correta.

Assista ao vídeo com a resolução da questão sobre Função comprimento do arco

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Questão 6

Determine a função comprimento do arco determinado pela função $g(x)=x^2+8,\,$ do ponto x=0 até o ponto $x=\frac{\pi}{2}.$

$$s(x) = \frac{1}{2} \left(\sqrt{1 + 4x^2} + \ln \left(\sqrt{1 + 4x^2} \right) \right)$$

$$s(x) = \frac{1}{4} \left(2x\sqrt{1+4x^2} + \ln\left(\sqrt{1+4x^2} + 2x\right)\right)$$

$$s(x) = \frac{1}{4} \left(\sqrt{1 + 4x^2} - \ln \left(\sqrt{1 + 4x^2} \right) \right)$$

$$s(x) = \frac{1}{2} (x\sqrt{1+x^2} + \ln(\sqrt{1+x^2} + x))$$

$$s(x) = \frac{1}{3} (2x\sqrt{1+x^2} + \ln(\sqrt{1+x^2} + 3x))$$

A alternativa B está correta.

Assista ao vídeo com a resolução da questão sobre comprimento do arco.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Teoria na prática

Um arquiteto pretende construir um arco parabólico, virado para baixo, em um monumento. Ele deseja saber quantos metros de metal serão necessários para a obra. Sabe-se que o arco terá uma distância entre as duas pontas que tocam ao chão de 4 m e a altura do ponto médio será de 8 m.

Chave de resposta

Assista ao vídeo sobre comprimento do arco.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Determine o comprimento do arco da curva $h(x)=x^{3/2}, \ {\rm para} \ 0 \le x \le 1.$

$$\frac{1}{27}(13\sqrt{13}-8)$$

В

$$\tfrac{1}{27}(\sqrt{13}-4)$$

С

$$\frac{1}{3}(3\sqrt{3}-2)$$

D

$$\frac{1}{9}(8 - \sqrt{13})$$

Ε

$$\frac{1}{27}(8-3\sqrt{13})$$

A alternativa A está correta.

Usando a fórmula para calcular o comprimento do arco:

$$L = \int_a^b \sqrt{1 + \left(f'(x)\right)^2} dx$$

Como

$$f(x) = x^{3/2} \rightarrow f'(x) = \frac{3}{2}\sqrt{x}$$

Assim,

$$L = \int_{0}^{1} \sqrt{1 + \left(\frac{3}{2}\sqrt{x}\right)^{2}} dx = \int_{0}^{1} \frac{1}{2}\sqrt{4 + 9x} dx$$

Fazendo uma substituição de variável

$$u = 4 + 9u \rightarrow du = 9d\varepsilon$$

Para
$$z=0 \rightarrow u=4$$
 e para $z=1 \rightarrow u=13$

$$L = \int_4^{13} \frac{1}{2} \sqrt{u} \frac{1}{9} du = \frac{1}{18} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_4^{13} = \frac{1}{27} (13 \sqrt{13} - 8)$$

Questão 2

Marque a alternativa que apresenta a função comprimento do arco do gráfico da função $f(x)=\ln(\sec x)$, do ponto x=0 até $x=\frac{\pi}{2}$.

$$s(x) = \ln(\sec x - \operatorname{tg} x), 0 \le x \le \frac{\pi}{2}$$

$$s(x) = \ln(\sec x + \operatorname{tg} x), 0 \le x \le \tfrac{\pi}{2}$$

$$s(x) = \ln(\sec x) + \ln(\operatorname{tg} x + 1), 0 \le x \le \tfrac{\pi}{2}$$

$$s(x) = 2 - \ln(\operatorname{tg} x + 1), 0 \le x \le \frac{\pi}{2}$$

$$s(x) = 2 - \ln(\operatorname{tg} x + 1), 0 \le x \le \frac{\pi}{2}$$

A alternativa B está correta.

Usando a fórmula para calcular o comprimento do arco:

$$s(x) = \int_{0}^{x} \sqrt{1 + (f'(x))^{2}} dx$$

Assim,

$$s(x)=\int_0^x\sqrt{1+\mathrm{tg}^2}dx=\int_0^x|\sec x|dx=[\ln|\sec x+\mathrm{tg}\,x|]_0^x=\ln|\sec x+\mathrm{tg}\,x|$$

$$s(x) = \ln(\sec x + \operatorname{tg} x), 0 \le x \le \tfrac{\pi}{2}$$

Cálculo de área de uma função

Neste vídeo, falaremos sobre os cálculos de área de uma função, de área entre funções e o de área de uma superfície de revolução.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

A definição da integração definida se baseia no cálculo do limite de um somatório, denominado de <u>soma de</u> Riemann.

Soma de Riemann

Na matemática, a soma de Riemann é uma aproximação obtida pela expressão. É nomeada em homenagem ao matemático alemão Bernhard Riemann. Uma aplicação muito comum é a aproximação da área de funções ou linhas em um gráfico, mas também o comprimento das curvas e outras aproximações.

Assim, a integral definida de f(x) de a para b será dada por:

$$\int_{a}^{b} f(x)dx = \lim_{\Delta u_{\text{max}} \to 0} \sum_{i=1}^{n} f(p_i) \Delta u_i$$

As parcelas do somatório são as áreas dos retângulos, formados abaixo da curva f(x), quando a função está em cima do eixo, ou serão as áreas dos retângulos multiplicados por (– 1) quando a função estiver abaixo dos eixos.

Como área é sempre uma medida positiva, torna-se necessário trabalhar apenas com termos positivos. Assim, pode-se calcular a área A, entre a função f(x) e o eixo x, para $a \le x \le b$, pela integral:

$$A=\int_a^b|f(x)|dx$$

Para resolver esta integral, teremos que dividir em intervalos de integração em que o sinal de f(x) é sempre positivo ou sempre negativo.

Vamos ver um exemplo:

Determine a área entre o gráfico da função $g(x)=2\cos x$ e o eixo x , para x entre $\frac{\pi}{4}$ e $\frac{3\pi}{4}$

Solução:

A área A será obtida pela integral.

$$A=\int_a^b|f(x)|dx=\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}|2\cos x|dx$$

A função $\cos x$ é positiva para

$$\frac{\pi}{4} \le x \le \frac{\pi}{2} \rightarrow |2\cos x| = 2\cos x$$

A função $\cos x$ é negativa para

$$\frac{\pi}{2} \leq x \leq \frac{3\pi}{4} \rightarrow |2\cos x| = -2\cos x$$

Assim:

$$A = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} |2\cos x| dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 2\cos x dx + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (-2\cos x) dx = [2 + \sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$A = (2 + \sin x)_{\frac{\pi}{4}}^{\frac{\pi}{4}}$$

$$A = (2 + \sin x)_{\frac{\pi}{4}}^{\frac{\pi}{4}} - 2 + \cos x$$

$$\sec x \frac{\pi}{2} - 2$$

$$\sec x \frac{\pi}{4} + (-2 + \cos x)$$

$$\sec x \frac{\pi}{4} + 2$$

$$\sec x \frac{\pi}{4} + 2$$

$$\sec x \frac{\pi}{2} = 2 - 2 \cdot \frac{\sqrt{2}}{2} - 2 \cdot \frac{\sqrt{2}}{2} + 2 = 4 - 2$$

Repare que, se fosse feita a integral sem o módulo, o valor seria diferente, pois as parcelas abaixo do eixo diminuiriam das parcelas acima do eixo, ao invés de se somarem.

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} 2\cos x dx = [2\sin x]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = 2\sin\frac{3\pi}{4} - 2\sin\frac{\pi}{4} = 0$$

Cálculo de área entre funções

Deseja-se agora obter a área que se encontra entre dois gráficos f(x) e g(x).

Neste caso, também precisamos ter a noção em que intervalos f(x) é maior que g(x), estando acima no desenho dos gráficos, e onde f(x) é menor que g(x), estando abaixo no desenho dos gráficos.

Se observarmos, no gráfico, a área entre as funções f(x) e g(x) para a $\leq x \leq d$ é dada por $A=A_1+A_2+A_3$.

Repare que, em A_1 e A_3 , a função f(x) está acima de g(x), assim, estas áreas podem ser obtidas como se fossem área entre f(x) e o eixo x menos a área entre g(x) e o eixo x. Portanto:

$$A_{1} = \int_{a}^{b} (f(x) - g(x))dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$

$$A_{3} = \int_{c}^{d} (f(x) - g(x))dx = \int_{c}^{d} f(x)dx - \int_{c}^{d} g(x)dx$$

Para o caso de A_2 , a função f(x) está abaixo de g(x) . Logo, esta área pode ser obtida como a diferença entre a área de g(x) e o eixo x e a área entre f(x) e o eixo x.

Assim:

$$A_2 = \int_b^c (g(x) - f(x)) dx = \int_b^c g(x) dx - \int_b^c f(x) dx$$

Podemos, então, juntar todas essas integrais utilizando o módulo, pois, assim, o integrando será calculado sempre pelo maior valor, menos o menor valor.

Desta forma, a área entre f(x) e g(x) para $a \le x \le d$ é dada por:

$$A = \int_{a}^{d} |f(x) - g(x)| dx$$

Esta integral deve ser separada em intervalos nos quais a posição relativa entre as funções no gráfico não se altera. Assim, no exemplo do gráfico:

$$A = \int_a^d |f(x) - g(x)| dx = \int_a^b (f(x) - g(x)) dx + \int_b^c (g(x) - f(x)) dx + \int_c^d (f(x) - g(x)) dx$$

Vamos a um exemplo:

Calcule a área da região compreendida entre os gráficos da função $f(x)=27x \, {\rm e} \, g(x)=3x^3 \, {\rm com} \, 0 \leq x \leq 5.$

Solução:

Precisamos, inicialmente, verificar a posição relativa entre f(x) e g(x).

Os pontos onde estes gráficos se interceptam, com $0 \le x \le 5$, serão:

$$27x=3x^3\rightarrow x=0$$
e $x=3$

Analisando os gráficos, para $0 \le x \le 3$, f(x) está acima de g(x) e para $3 \le x \le 5$, g(x) está acima de f(x)

Desta forma,

$$A = \int_0^5 |27x - 3x^3| \, dx = \int_0^3 \left(27x - 3x^3\right) \, dx + \int_3^5 \left(3x^3 - 27x\right) \, dx$$

$$A = \left[\frac{27}{2}x^2 - \frac{3}{4}x^4\right]_0^3 + \left[\frac{3}{4}x^4 - \frac{27}{2}x^2\right]_3^5 = \frac{27}{2}9 - \frac{3}{4}81 + \frac{3}{4}625 - \frac{27}{2}25 - \frac{3}{4}81 + \frac{27}{2}9$$

$$A = \frac{243}{4} + 408 - 216 = \frac{1011}{4}$$

Cálculo de área de uma superfície de revolução

Inicialmente, precisamos definir o que é uma superfície de revolução.

Uma superfície de revolução é uma área formada ao girar uma curva em torno de uma reta. Assim, tal superfície é a fronteira lateral de um sólido, denominado de sólido de revolução.

Por exemplo, imagine um retângulo de lados **a** e **b**. Vamos rotacionar este retângulo ao redor de um eixo de rotação colocado em um dos lados. Será formado um cilindro de revolução, com **altura b** e **raio da base a**.

A área da superfície de revolução será a área lateral do cilindro, que valerá $A=2\pi rh=2\pi ab$.

Poderíamos imaginar de forma contrária, isto é, desenrolando a superfície de um cilindro, assim se geraria um retângulo. Outros exemplos podem ser encontrados na literatura de referência.

Vamos agora realizar um caso geral. Imagine a curva definida pela função f(x) para $a \leq x \leq b$.

A função f(x) deve ser positiva e ter derivada contínua. Considere a superfície gerada ao rotacionar esta função ao redor do eixo x.

Considere uma faixa de valores de $\,x_{i-1}\,$ até $\,x_i$.

Os valores foram escolhidos bem afastados na figura para facilitar o entendimento da fórmula.

Ao girar em torno do eixo x, esta faixa vai gerar, aproximadamente, a lateral de um tronco de cone circular.

Da geometria aprendemos que a área da lateral do tronco de cone circular vale $A=\pi(r+R)L$. Quando aproximamos os dois pontos r e R tendem a ter o mesmo valor, assim $A=2\pi rL$. Comparando com o gráfico da função f(x). O valor de $r=f\left(x_{i-1}\right)$ e o valor de $L=P_iP_{i-1}$

Mas já aprendemos no módulo de comprimento de arco que:

$$L_{i} = \sqrt{\left(f\left(x_{i}\right) - f\left(x_{i-1}\right)\right)^{2} + \Delta x_{i}^{2}} = \sqrt{\left(f'\left(c_{i}\right)\right)^{2} \Delta x_{i}^{2} + \Delta x_{i}^{2}} = \Delta x_{i} \sqrt{1 + \left(f'\left(c_{i}\right)\right)^{2}}$$

Em que $\,c_i\,$ está entre $\,x_{i-1}\,$ e $\,x_i\,$

Se fizemos Δx_i tender a zero, melhor será a aproximação da superfície de revolução com o tronco de cone gerado. Além disso, x_{i-1} é praticamente igual a x_i que será praticamente igual a c_i .

Portanto, a área gerada por uma faixa tendendo a zero em torno do ponto x_i será:

$$\Delta A = \lim_{\Delta x \rightarrow 0} 2\pi f\left(x_{i}\right) \Delta x_{i} \sqrt{1 + \left(f'\left(x_{i}\right)\right)^{2}}$$

A área total será a soma das áreas desde x = a até x = b. Usando o mesmo princípio utilizado na definição da integração definida, obtém-se a fórmula da área da superfície de revolução gerada ao girar o gráfico de f(x) ao redor do eixo x:

$$A = \int_a^b 2\pi f(x) \sqrt{1 + \left(f'(x)\right)^2} dx$$

De forma análoga, demonstra-se que a área da superfície de revolução gerada ao girar o gráfico da função f(x) ao redor do eixo y será:

$$A = \int_{a}^{b} 2\pi x \sqrt{1 + (f'(x))^{2}} dx$$

Observe neste caso que o raio do tronco não será mais f(x), e sim o valor da abscissa x.

Vamos a mais um exemplo?

Determine a área da superfície de revolução gerada ao girar a função $y=2x^2$, para $0\leq x\leq 1$, ao redor do eixo y.

Solução:

$$f(x) = 2x^2 \rightarrow f'(x) = 4x$$

Assim,

$$A = \int_{0}^{1} 2\pi x \sqrt{1 + (f'(x))^{2}} dx = \int_{0}^{1} 2\pi x \sqrt{1 + (4x)^{2}} dx$$

Para resolver a integral, faz-se

$$u = 1 + 16x^2 \rightarrow du = 32xdx$$

Para $x=0 \rightarrow u=1$ e para $x=1 \rightarrow u=17$. Portanto:

$$A=\int_{1}^{17}2\pi\frac{1}{32}\sqrt{u}du=\frac{\pi}{16}\left[\frac{2}{3}u^{\frac{3}{2}}\right]_{1}^{17}=\frac{\pi}{24}(17\sqrt{17}-1)$$

Mão na massa

Questão 1

Determine a área da região formada entre a função f(x)=4-2x e o eixo x para $1\leq x\leq 3$

Α

1

2

3

4

5

A alternativa B está correta.

A área será a área entre f(x) e o eixo $1 \leq x \leq 3$.

Assim:

$$A = \int_{1}^{3} |f(x)| dx = \int_{1}^{3} |4 - 2x| dx$$

Temos que analisar os intervalos em que f(x) são positivos ou negativos:

1.
$$f(x) \ge 0 \rightarrow 4 - 2x \ge 0 \rightarrow 2x \le 4 \rightarrow x \le 2$$

2.
$$f(x) \ge 0 \to 4 - 2x \le 0 \to 2x \ge 4 \to x \ge 2$$

Assim,

$$A = \int_{1}^{3} |4 - 2x| dx = \int_{1}^{2} (4 - 2x) dx + \int_{2}^{3} (2x - 4) dx$$

$$A = \left[4x - x^2\right]_1^2 + \left[x^2 - 4x\right]_2^3 = (8 - 4) - (4 - 1) + (9 - 12) - (4 - 8) = 4 - 3 - 3 - 4 = 2$$

Questão 2

Determine a área da superfície de revolução gerada ao girar a função $h(x)=3x^3$, para 0x2, ao redor do eixo y.

Α

$$A = \int_0^2 6\pi x^3 \sqrt{1 + 81x^4} dx$$

В

$$A=\int_0^2 2\pi x \sqrt{1+9x^2} dx$$

С

$$A = \int_{0}^{2} 2\pi x \sqrt{1 + 81x^{4}} dx$$

D

$$A = \int_0^2 3\pi x^3 \sqrt{1 + 9x^2} dx$$

Ε

$$A = \int_{0}^{2} 4\pi x^{3} \sqrt{1 + 27x^{4}} dx$$

A alternativa C está correta.

$$f(x) = 3x^3 \to f'(x) = 9x^2$$

Assim,

$$A = \int_0^2 2\pi x \sqrt{1 + (f'(x))^2} dx = \int_0^2 2\pi x \sqrt{1 + (9x^2)^2} dx \quad A = \int_0^2 2\pi x \sqrt{1 + 81x^4} dx$$

Determine a área limitada superiormente por $f(x)=16\,$ e inferiormente por $g(x)=2x^2,\,$ para os valores de x no intervalo [0,2]. В С D A alternativa A está correta. $\operatorname{augr} A = \int_0^2 |f(x) - g(x)| dx = \int_0^2 (f(x) - g(x)) dx = \int_0^2 \left(16 - 2x^2\right) dx = \left[16x - \frac{2}{3}x^3\right]_0$

Questão 4

vegs, $A=32-\frac{2}{3}\cdot 8=\frac{80}{3}$

Determine a área da região formada entre a função $\,f(x)=2x^2-6x-8$, o eixo $\,x\,$ e as retas $\,x=-2\,$ e $\,x=6\,$

В

 $\frac{76}{3}$

С

 $\frac{218}{3}$

D

511

Ε

A alternativa C está correta.

Assista ao vídeo com a resolução da questão sobre área entre funções.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Questão 5

Determine a área da região limitada pela função $f(x)=x, g(x)=x^3$ e pelas retas x=-2 e x=3 .

 $\frac{75}{4}$

 $\frac{85}{4}$

95

Ε

 $\frac{35}{4}$

A alternativa B está correta.

Assista ao vídeo com a resolução da questão sobre área entre funções.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Determine a área da superfície de revolução gerada ao girar a função $h(x)=e^x$, para $1\leq x\leq 2$, ao redor do eixo x


```
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>A</mi>
<mo>=</mo>
< mi > \pi < / mi >
<mfenced open="[" close="]" separators="|">
 <mrow>
  <msup>
   <mi>e</mi>
   <mn>2</mn>
  </msup>
  <msqrt>
   <mn>1</mn>
   <mo>+</mo>
   <msup>
    <mi>e</mi>
    <mn>4</mn>
   </msup>
  </msqrt>
  <mo>+</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msup>
     <mi>e</mi>
     <mn>2</mn>
    </msup>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
     <mo>+</mo>
     <msup>
      <mi>e</mi>
      <mn>4</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
 </mrow>
</mfenced>
В
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
< mi > \pi < / mi >
<mfenced open="[" close="]" separators="|">
 <mrow>
  <msup>
   <mi>e</mi>
   <mn>2</mn>
```

```
</msup>
  <msqrt>
   <mn>1</mn>
   <mo>-</mo>
   <msup>
    <mi>e</mi>
    <mn>4</mn>
   </msup>
  </msqrt>
  <mo>+</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msup>
     <mi>e</mi>
     <mn>2</mn>
    </msup>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
     <mo>-</mo>
     <msup>
      <mi>e</mi>
      <mn>4</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
  <mo>-</mo>
  <mi>e</mi>
  <msqrt>
   <mn>1</mn>
   <mo>-</mo>
   <msup>
    <mi>e</mi>
    <mn>2</mn>
   </msup>
  </msqrt>
  <mo>+</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <mi>e</mi>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
     <mo>-</mo>
     <msup>
      <mi>e</mi>
      <mn>2</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
 </mrow>
</mfenced>
```

```
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
< mi > \pi < / mi >
<mfenced open="[" close="]" separators="|">
 <mrow>
  <msup>
   <mi>e</mi>
   <mn>2</mn>
  </msup>
  <msqrt>
   <mn>1</mn>
   <mo>+</mo>
   <msup>
    <mi>e</mi>
    <mn>4</mn>
   </msup>
  </msqrt>
  <mo>-</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msup>
     <mi>e</mi>
     <mn>2</mn>
    </msup>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
     <mo>+</mo>
     <msup>
      <mi>e</mi>
      <mn>4</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
  <mo>+</mo>
  <mi>e</mi>
  <msqrt>
   <mn>1</mn>
   <mo>+</mo>
   <msup>
    <mi>e</mi>
    <mn>2</mn>
   </msup>
  </msqrt>
  <mo>-</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <mi>e</mi>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
```

```
<mo>+</mo>
     <msup>
      <mi>e</mi>
      <mn>2</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
 </mrow>
</mfenced>
D
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>A</mi>
<mo>=</mo>
< mi > \pi < / mi >
<mfenced open="[" close="]" separators="|">
 <mrow>
  <msup>
   <mi>e</mi>
   <mn>2</mn>
  </msup>
  <msqrt>
   <mn>1</mn>
   <mo>+</mo>
   <msup>
    <mi>e</mi>
    <mn>4</mn>
   </msup>
  </msqrt>
  <mo>+</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msup>
     <mi>e</mi>
     <mn>2</mn>
    </msup>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
     <mo>+</mo>
     <msup>
      <mi>e</mi>
      <mn>4</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
  <mo>-</mo>
  <mi>e</mi>
  <msqrt>
   <mn>1</mn>
   <mo>+</mo>
   <msup>
    <mi>e</mi>
    <mn>2</mn>
```

```
</msup>
  </msqrt>
  <mo>-</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <mi>e</mi>
    <mo>+</mo>
    <msqrt>
     <mn>1</mn>
     <mo>+</mo>
     <msup>
      <mi>e</mi>
      <mn>2</mn>
     </msup>
    </msqrt>
   </mrow>
  </mfenced>
 </mrow>
</mfenced>
Ε
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
< mi > \pi < / mi >
<mfenced open="[" close="]" separators="|">
 <mrow>
  <msup>
   <mi>e</mi>
   <mn>2</mn>
  </msup>
  <msqrt>
   <mn>1</mn>
   <mo>-</mo>
   <msup>
    <mi>e</mi>
    <mn>4</mn>
   </msup>
  </msqrt>
  <mo>+</mo>
  <mi>ln</mi>
  <mo data-mjx-texclass="NONE"></mo>
  <mfenced open="(" close=")" separators="|">
   <mrow>
    <msup>
     <mi>e</mi>
     <mn>2</mn>
    </msup>
    <mo>-</mo>
    <msqrt>
     <mn>1</mn>
     <mo>+</mo>
     <msup>
      <mi>e</mi>
      <mn>4</mn>
```

```
</msup>
</msqrt>
</mrow>
</mfenced>
</mrow>
</mfenced>
</mfenced>
</math>
```


A alternativa D está correta.

Assista ao vídeo com a resolução da questão sobre Área de superfície de revolução.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Teoria na prática

Determine a fórmula da área de uma elipse de eixo maior 2a e eixo menor 2b.

Chave de resposta

Assista ao vídeo sobre Área abaixo de uma função.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Determine a área da região formada entre a função $f(x) = 3\ln x$ e o eixo x, para x entre 0,5 e 2.

 $3 \ln 2 - \frac{3}{2}$

 $\ln 2 + \frac{3}{2}$

$$\frac{9}{2} \ln 2 - \frac{3}{2}$$

$$\frac{7}{2} \ln 2 + \frac{3}{2}$$

$$6 \ln 2 - \frac{3}{2}$$

A alternativa C está correta.

A área será aquela entre f(x) e o eixo x , para $0,5 \le x \le 2$. Assim:

$$A = \int_{0.5}^{2} |f(x)| dx = \int_{0.5}^{2} |3\ln(x)| dx = 3 \int_{0.5}^{2} \ln(x) | dx$$

Temos que analisar os intervalos em que f(x) são positivos ou negativos.

 $smp; |\ln x \ge 0 \rightarrow x \ge 1$ $smp; |\ln x \le 0 \rightarrow x \le 1$

$$A = 3 \int_{0.5}^2 |\ln(x)| dx = 3 \int_{0.5}^1 -\ln(x) dx + 3 \int_1^2 \ln(x) dx$$

Deve ser resolvido $\int \ln(x) dx$.

Utilizaremos a integral por partes.

$$u=\ln(x) \rightarrow du = \frac{1}{x} dx$$
 e $dv = dx \rightarrow v = x$

$$\int \ln(x) dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - x + k, k$$
 real

 $\begin{aligned} & \sin A = 3 \int_{0,2}^{1} (-\ln(c)dc + 3 \int_{1}^{1} \ln(c)dc - 3) \ln c - c \|_{2,1}^{2} + 3) \ln c - c \|_{2} \\ & \exp(c - 3) \left[3 \ln 3 - 1 + \left(\frac{1}{3} \ln \left(\frac{1}{3} \right) - \frac{1}{2} \right) \right] + 3(2 \ln 2 - 2) - (1 \ln 2) - 10 \right] \\ & \approx 3 - \frac{3}{4} \ln 2 - \frac{3}{4} + 10 + 2 - 8 + 2 - \frac{3}{4} \ln 2 - \frac{3}{4} \end{aligned}$

Questão 2

Determine a área da superfície de revolução gerada ao girar a função $g(x)=\sqrt{9-x^2}$, para $0\leq x\leq 3$, ao redor do eixo x

	_	_	
	E	3)

 18π

 32π

 45π

 9π

A alternativa B está correta.

Aplicação direta da fórmula:

$$A = \int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} dx$$
 $f(x) = \sqrt{9 - x^2} \rightarrow f'(x) = -\frac{x}{\sqrt{9 - x^2}}$

Assim,

$$A = \int_0^3 2\pi \sqrt{9 - x^2} \sqrt{1 + \left(f'(x)\right)^2} dx = \int_0^3 2\pi \sqrt{9 - x^2} \sqrt{1 + \left(-\frac{x}{\sqrt{9 - x^2}}\right)^2} dx \quad \text{Mas } 1 + \left(-\frac{x}{\sqrt{9 - x^2}}\right)^2 = 1 + \frac{x^2}{9 - x^2} = \frac{9}{9 -$$

Portanto,

$$\begin{split} A &= \int_0^1 2 \sigma \sqrt{9-\sigma^2} \sqrt{1 + \left(-\frac{x}{\sqrt{9-\sigma^2}}\right)^2} d\sigma = \\ &= \int_0^1 2 \sigma \sqrt{9-\sigma^2} \sqrt{\frac{9}{9-x^2}} dx = \int_0^1 6 \sigma dx = 16 \end{split}$$

Cálculo de volume de sólido de rotação

Neste vídeo, mostraremos o cálculo de volume de sólido de rotação.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Outra aplicação importante para integral é o cálculo de volumes.

Uma função contínua e positiva gera uma área entre seu gráfico e o eixo x. Da mesma forma, esta função também gera uma área entre seu gráfico e o eixo y.

Cada uma destas duas áreas descritas podem ser rotacionadas em torno do eixo x ou do eixo y, gerando quatro sólidos de revolução diferentes. A integral definida pode ser usada para se calcular o volume destes sólidos.

Seja uma função f(x) contínua e com $f(x) \ge 0$ para [a,b].

Seja C o conjunto de pontos obtidos pela rotação, em torno do eixo x, da área A da região limitada por f(x) e o eixo x com a $\leq x \leq b$.

Estamos interessados em obter o volume da região gerada pelo conjunto C.

Vamos analisar uma faixa de valores entre x_{i-1} e x_i :

- Ao rotacionar esta faixa de valores, a região do espaço formada por ela pode ser aproximada por um cilindro de altura $\Delta x_i = x_i x_{i-1}$ e raio dado por $f\left(x_{i-1}\right)$ ou $f\left(x_i\right)$.
- ullet Quanto menor o valor do $^{\Delta x_i}$ melhor é a aproximação. Assim, podemos considerar que o volume da região C será composto pela soma de cilindros, com alturas $^{\Delta x_i}$ tendendo para zero;
- Observe que quando $\Delta x_i \to 0$, \circ valor de $f(x_i)$ fica praticamente igual ao valor de $f(x_{i-1})$.

O volume do cilindro infinitesimal é dado por $\Delta V = \pi r^2 h = \pi [f(x_i)]^2 \Delta x_i$.

$$V = \lim_{\Delta x \to 0} \sum_{i=1}^{n} \pi (f(x_i))^2 \Delta x_i$$

Com o mesmo raciocínio da **Soma de Riemann** utilizado na definição da integral definida, define-se o volume formado pela rotação de f(x) em torno do **eixo** x, para $a \le x \le b$ como:

$$V = \int_a^b \pi(f(x))^2 dx$$

Vamos a mais um exemplo:

Determine o volume do sólido gerado pela rotação, em torno do eixo x, do conjunto de pontos formados pela função $f(x)=\sqrt{1-x^2}$ e o eixo x, para $-1\leq x\leq 1$.

Solução:

A função f(x) é contínua e positiva neste intervalo. Usando a fórmula do volume:

$$V = \int_a^b (f(x))^2 dx = \int_{-1}^1 \left(\sqrt{1 - x^2}\right)^2 dx = \int_{-1}^1 \left(1 - x^2\right) dx$$

$$V = \left[x - \frac{x^3}{3}\right]_{-1}^1 = \left(1 - \frac{1}{3}\right) - \left(-1 - \frac{-1}{3}\right) = \frac{4}{3}$$

Observe que este resultado já era conhecido.

- ullet A área formada por f(x) entre $-1 \leq x \leq 1$ é de uma semicircunferência de raio 1 ;
- Ao rodar em torno do eixo x, gera uma esfera de raio 1;
- ° O volume da esfera de raio r é conhecido da Geometria como $V=\frac{4}{3}\pi r^{3}$, confirmando a resposta obtida

Além do sólido de rotação apresentado inicialmente, pode-se gerar mais três sólidos de rotação, ao rotacionar as áreas relacionadas à função f(x) contínua e positiva em torno dos eixos x ou y.

A demonstração destas fórmulas segue o raciocínio análogo ao anterior, ou ao **teorema de Pappus**, e pode ser encontrada em qualquer uma de nossas referências.

Seja f(x) uma função contínua e positiva em [a,b].

Α

Seja a área A formada pelo conjunto de pontos entre $f(\mathbf{x})$ e o eixo x para a $\leq \mathbf{x} \leq \mathbf{b}$.

В

Seja a área **B** formada pelo conjunto de pontos entre f(x) e o eixo **y** para $\mathbf{a} \le \mathbf{x} \le \mathbf{b}$.

Serão gerados quatro sólidos de rotação:

- Rotação da área A em torno do eixo x;
- Rotação da área A em torno do eixo y;

- Rotação da área B em torno do eixo x;
- Rotação da área B em torno do eixo y.

As fórmulas para calcular o volume de cada um destes sólidos são apresentadas a seguir.

Para rotação da área $\,B$, necessita-se definir a função $\,g(y)$, que é a inversa de $\,f(x)$. Lembre-se de que só existe função inversa de funções em um intervalo em que $\,f(x)\,$ será estritamente crescente ou estritamente decrescente.

Desta forma, tem-se:

- 1. Volume gerado pela rotação da área A em torno do eixo x , para $V=\int_a^b\pi[f(x)]^2dx$
- 2. Volume gerado pela rotação da área B em torno do eixo y, para $\,V=\int_c^d\pi[g(y)]^2dy\,$
- 3. Volume gerado pela rotação da área $\,A\,$ em torno do eixo y, para $\,V=\int_a^b 2\pi x f(x) dx$
- 4. Volume gerado pela rotação da área B em torno do eixo $\,^x$, para $\,^V\int_c^d 2\pi y g(y) dy$

Um ponto importante. Nas integrais do item 2 e item 4, o limite inferior deve ser sempre o menor número, assim, se $d \ge c$ os limites serão $\int_c^d I(y) dy$ mas se d < c, os limites serão $\int_d^c I(y) dy$.

Veja a seguir uma sequência de exemplos.

Exemplo 1

Determine o volume do sólido gerado pela rotação, em torno do eixo x, do conjunto de pontos formados pela função $f(x)=x^2$ e o eixo x, para $0 \le x \le 2$.

Solução:

Desejamos, aqui, o volume do sólido gerado por uma área do tipo A em torno do eixo x.

Assim:

$$V_1 = \int_a^b \pi(f(x))^2 dx = \int_0^2 \pi \left(x^2\right)^2 dx = \pi \left[\frac{x^5}{5}\right]_0^2 = \frac{32\pi}{5}$$

Exemplo 2

Determine o volume do sólido gerado pela rotação, em torno do eixo y, do conjunto de pontos formados pela função $f(x)=x^2$ e o eixo x, para $0 \le x \le 2$.

Solução:

Observe que desejamos o volume do sólido gerado por uma área do tipo A em torno do eixo y-

Assim:

$$V_2 = \int_a^b 2\pi x f(x) dx = \int_0^2 2\pi x x^2 dx = \int_0^2 2\pi x^3 dx = 2\pi \left[\frac{x^4}{4}\right]_0^2 = 8\pi$$

Exemplo 3

Determine o volume do sólido gerado pela rotação, em torno do eixo y, do conjunto de pontos formados pela funcão $f(x)=x^2$ e o eixo y, para $0 \le x \le 2$

Solução:

Nesta questão, desejamos o volume do sólido gerado por uma área do tipo B em torno do eixo y .

Necessitamos da função $g(y)=f^{-1}(x)$. Se $f(x)=x^2 \to g(y)=\sqrt{y}$.

Para
$$x = 0 \to f(0) = c = 0$$
 e $x = 2 \to f(2) = d = 4$

Assim:

$$V_3 = \int_c^d \pi(g(y))^2 dy = \int_0^4 \pi(\sqrt{y})^2 dy = \int_0^4 \pi y dy = \pi \left[\frac{y^2}{2}\right]_0^4 = 8\pi$$

Exemplo 4

Determine o volume do sólido gerado pela rotação, em torno do eixo x, do conjunto de pontos formados pela função $f(x)=x^2$ e o eixo y, para $0 \le x \le 2$.

Solução:

Nesta questão, queremos o volume do sólido gerado por uma área do tipo B em torno do eixo x.

Necessitamos da função $g(y) = f^{-1}(x)$. Se $f(x) = x^2 \rightarrow g(y) = \sqrt{y}$.

Para
$$x=0 \rightarrow f(0)=c=0$$
 e $x=1 \rightarrow f(2)=d=4$

Assim:

$$V_4 = \int_c^d 2\pi y g(y) dy = \int_0^4 2\pi y \sqrt{y} dy = \int_0^4 2\pi y^{3/2} dy = 2\pi \left[\frac{2}{5} y^{5/2} \right]_0^4 = \frac{128\pi}{5}$$

Repare que existe uma relação entre os volumes obtidos.

Se você desenhar o gráfico de f(x) e observar, os volumes V_1 e V_4 se completam formando um cilindro que foi obtido por uma rotação de um retângulo de lados 2 e 4 em torno do eixo x. Isto é, o cilindro terá raio da base x0 e altura x1, portanto, volume x3.

Veja que
$$V_1+V_4=32\pi$$
 .

Igualmente, os volumes V_2 e V_3 se completam formando um cilindro que foi obtido por uma rotação de um retângulo de lados 4 e 2 em torno do eixo y. Isto é, o cilindro terá raio da base 2 e altura 4, portanto, volume 16π . Veja que $V_2+V_3=16\pi$.

Foi visto o volume gerado por uma área definida por uma função, mas caso se deseje volume gerado por áreas entre funções, pode-se usar o conceito de um volume menos o outro, aplicando-se as fórmulas aqui apresentadas para calcular o volume individual para cada função.

Vamos a mais um exemplo:

Determine o volume gerado pela rotação, em torno do eixo x , da área entre as funções f(x)=x e $g(x)=x^2$ para $0 \le x \le 1$

Solução:

Para este intervalo, a função f(x) sempre estará acima da função g(x). Portanto, podemos enxergar este volume gerado como a diferença entre o volume gerado pela rotação da área de f(x), com o eixo x, e o volume gerado pela rotação da área gerada por g(x) com o eixo x.

Assim:

$$V_f = \int_a^b (f(x))^2 dx = \int_0^1 (x)^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{\pi}{3}$$

$$e$$

$$V_g = \int_a^b (g(x))^2 dx = \int_0^1 (x^2)^2 dx = \left[\frac{x^5}{5}\right]_0^1 = \frac{\pi}{5}$$

Portanto,

$$V = V_f - V_g = \frac{\pi}{3} - \frac{\pi}{5} = \frac{5\pi - 3\pi}{15} = \frac{2\pi}{15}$$

Mão na massa

Questão 1

Determine o volume do sólido gerado pela rotação, em torno do eixo x, do conjunto de pontos formados pela função $f(x)=2\sqrt{x}$ e o eixo \mathbf{x} , para $0\leq x\leq 1$.

Α

1

 2π

 3π

 4π

0

A alternativa B está correta.

Desejamos, aqui, o volume do sólido gerado por uma área do tipo A em torno do eixo x.

Assim,

$$V=\int_{a}^{b}\pi(f(x))^{2}dx=\int_{0}^{1}\pi(2\sqrt{x})^{2}dx=\int_{0}^{1}4\pi xdx=4\pi\left[\frac{x^{2}}{2}\right]^{1}_{0}=2\pi$$

Questão 2

Determine o volume do sólido gerado pela rotação, em torno do eixo y, do conjunto de pontos formados pela função $f(x)=25x^3$ e o eixo x, para $0\leq x\leq 3$.

 200π

В

С
2000π
D
2430π
E
234π
A alternativa D está correta.
Assista ao vídeo com a resolução da questão sobre Cálculo de volume de sólido de revolução.
Conteúdo interativo
Acesse a versão digital para assistir ao vídeo.
Questão 3
Questão 3 $ \text{Determine o volume do sólido gerado pela rotação, em torno do eixo } x \text{ , do conjunto de pontos formados pela função } f(x) = \sqrt[5]{x} \text{ e o eixo } \mathbf{y} \text{, para } 0 \leq x \leq 1 \text{ . } $
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo \mathbf{y} , para $0\leq x\leq 1$.
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo y, para $0\leq x\leq 1$.
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo ${\bf y}$, para $0\leq x\leq 1$.
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo y, para $0\leq x\leq 1$.
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[8]{x}$ e o eixo y, para $0\leq x\leq 1$.
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo \mathbf{y} , para $0\leq x\leq 1$. A B B $\frac{\pi}{7}$
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo ${\bf y}$, para $0\leq x\leq 1$. A $\frac{\pi}{6}$ B $\frac{\pi}{7}$ C $\frac{2\pi}{7}$
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo \mathbf{y} , para $0\leq x\leq 1$. A B B $\frac{\pi}{7}$
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo ${\bf y}$, para $0\leq x\leq 1$. A $\frac{\pi}{6}$ B $\frac{\pi}{7}$ C $\frac{2\pi}{7}$
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[3]{x}$ e o eixo y , para $0\leq x\leq 1$. A $\frac{\pi}{6}$ B $\frac{\pi}{7}$ C $\frac{2\pi}{7}$ D
Determine o volume do sólido gerado pela rotação, em torno do eixo x , do conjunto de pontos formados pela função $f(x)=\sqrt[5]{x}$ e o eixo y, para $0\leq x\leq 1$. A $\frac{\pi}{6}$ B $\frac{\pi}{7}$ C $\frac{2\pi}{7}$ D $\frac{\pi}{2}$

A alternativa C está correta.

Nessa questão, queremos o volume do sólido gerado por uma área do tipo B em torno do eixo x.

Assim:

$$V=\int_{0}^{1}2\pi yg(y)dy=\int_{0}^{1}2\pi yy^{5}dy=\int_{0}^{1}2\pi y^{6}dy=2\pi\left[\frac{1}{7}y^{7}\right]_{0}^{1}=\frac{2\pi}{7}$$

Questão 4

Determine o volume do sólido gerado pela rotação, em torno do eixo x, da área existente entre as funções $g(x)=8\sqrt{x}$ e $h(x)=x^2$, para $0\leq x\leq 2$.

Α

 $\frac{16\pi}{5}$

В

 $\frac{62\pi}{5}$

С

 $\frac{128\pi}{5}$

D

 $\frac{608\pi}{5}$

Е

 $\frac{32\pi}{5}$

A alternativa D está correta.

Assista ao vídeo com a resolução da questão sobre cálculo de volume de sólido de revolução.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Questão 5

Determine o volume do sólido gerado pela rotação, em torno do eixo y, do conjunto de pontos formados pela função f(x)=2 arccos (x) e o eixo y, para $0 \le x \le 1$.

Α	
Δ	

$$\frac{\pi^2}{2}$$

$$\frac{\pi^2}{4}$$

$$2\pi^2$$

$$\pi^2$$

$$3\pi^2$$

A alternativa A está correta.

Desejamos, aqui, o volume do sólido gerado por uma área do tipo B em torno do eixo y.

Necessitamos da função $\,g(y)=f^{-1}(x)\,.$

Se
$$f(x) = 2\arccos x \rightarrow g(y) = \cos\left(\frac{y}{2}\right)$$

Para

$$x=0 \to f(0)=c=\pi \text{ e } x=1 \to f(1)=d=0$$

Observe que a função $f(x)=2\arccos(x)$ é decrescente, assim gerou um dlt;c .

Assim:

$$V = \int_d^c \pi(g(y))^2 dy = \int_0^\pi \pi \left(\cos\left(\frac{y}{2}\right)\right)^2 dy = \int_0^\pi \pi \cos^2\left(\frac{y}{2}\right) dy$$

Usando a relação

$$\cos^2\left(\frac{y}{2}\right) = \frac{1}{2}\cos y + \frac{1}{2}$$

Assim:

 $V = \int_0^\pi \pi \cos^2\left(\frac{y}{2}\right) dy = \int_0^\pi \frac{\pi}{2} \cos y dy + \int_0^\pi \frac{\pi}{2} dy = \frac{\pi}{2} [\sin y]_0^\pi + \frac{\pi}{2} [y]_0^\pi = \frac{\pi^2}{2}$

Questão 6

Determine o volume do sólido gerado pela rotação, em torno do eixo x, da região definida pela função $f(x)=\ln x$, e a reta x=e.

Α

1

В

2

С

 $\frac{1}{2}$

D

 $\frac{1}{4}$

Ε

1 8

A alternativa B está correta.

Assista ao vídeo com a resolução da questão sobre cálculo de volume de sólido de revolução.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Teoria na prática

Determine a fórmula do volume de um elipsoide gerado pela rotação de uma semielipse de **eixo maior 2a** e **eixo menor 2b**. Com **a** e **b** reais positivos.

Chave de resposta

Assista ao vídeo sobre a fórmula do volume de um elipsoide.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Determine o volume do sólido gerado pela rotação, em torno do eixo x, do conjunto de pontos formados pela função $f(x)=2e^x$ e o eixo x, para $0\leq x\leq 2$.

$$2\pi \left(e^{2}-1\right)$$

$$2\pi (e^4 - 1)$$

 $2\pi e^2$

$$2\pi \left(e^4 + 1\right)$$

$$\pi (e^4 + 1)$$
 |

A alternativa B está correta.

Desejamos, aqui, o volume do sólido gerado por uma área do tipo A em torno do eixo x.

Assim,

$$\begin{split} amp; & |V = \int_a^b \pi (f(x))^2 dx = \int_0^2 \pi \left(2e^x\right)^2 dx = \int_0^2 4\pi e^{2x} dx = 4\pi \left[\frac{1}{2}e^{2x}\right]_0^2 = 4\pi \left(\frac{1}{2}e^4 - \frac{1}{2}\right) \\ & amp; & |V = 2\pi \left(e^4 - 1\right) \end{split}$$

Questão 2

Determine o volume do sólido gerado pela rotação, em torno do eixo x, do conjunto de pontos formados pela função $f(x)=x^2+1$ e o eixo y, para $0\leq x\leq 1$.

Λ	
А	

 $\frac{30\pi}{16}$

 $\frac{16\pi}{15}$

32π 15

 $\frac{\pi}{15}$

 $\frac{8\pi}{15}$

A alternativa C está correta.

Desejamos, aqui, o volume do sólido gerado por uma área do tipo B em torno do eixo x.

Necessitamos da função $g(y) = f^{-1}(x)$.

Se
$$f(x) = x^2 + 1 \rightarrow g(y) = \sqrt{y-1}$$
.

Para
$$x=0 \rightarrow f(0)=c=1$$
 e $x=1 \rightarrow f(1)=d=2$

Assim:

$$V=\int_1^2 2\pi y g(y) dy = \int_1^2 2\pi y \sqrt{y-1} dy$$

Resolver a integral por substituição $\,u=y-1
ightarrow du=dy\,$

Para
$$y=1 \rightarrow u=0$$
 e $y=2 \rightarrow u=1$

$$\begin{split} \sup V &= \int_{1}^{2} 2\pi p \sqrt{g-1} \, \mathrm{d} y = \int_{0}^{2} 2\pi (n+1) \sqrt{n} \mathrm{d} n = 2\pi \int_{0}^{2} \left(n^{\frac{3}{2}} + n^{\frac{3}{2}}\right) \mathrm{d} n \\ & \sup V &= 2\pi \left[\frac{n}{2} n^{\frac{3}{2}}\right]_{0}^{1} + 2\pi \left[\frac{n}{2} n^{\frac{3}{2}}\right]_{0}^{1} = 2\pi \left(\frac{2}{\delta} + \frac{n}{2}\right) - \frac{32\pi}{13} \end{split}$$

Considerações finais

Ao longo deste tema, foi utilizado a integração definida de uma função real na aplicação de cálculos de comprimentos, áreas e volumes.

No primeiro módulo, empregamos a integral na determinação do comprimento do arco de um gráfico de uma função. No segundo, a integral foi usada para calcular áreas entre uma função e o eixo x, entre funções e até mesmo de superfícies de revolução. Por fim, no último módulo, a integração foi aplicada no cálculo de quatro superfícies diferentes de revolução.

Explore +

Para ter acesso a fontes adicionais sobre aplicações de integral, consulte plataformas de universidades em geral, como a Khan Academy, em seu portal eletrônico.

Referências

HALLET, H. et al. Cálculo, a uma e a várias variáveis. 5. ed. São Paulo: LTC, 2011. cap. 8, p.353-374.

LARSON, R.; EDWARDS, B. H. Cálculo, com aplicações. 6. ed. São Paulo: LTC, 2003. cap. 5, p.359-378.