

(2)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 July 2000 (13.07.2000)

PCT

(10) International Publication Number
WO 00/40614 A3

(51) International Patent Classification⁷: C07K 14/705, C12N 15/12, C12Q 1/68, C12N 5/10, C07K 16/28, G01N 33/53, A61K 38/17

(74) Agent: PLUMER, Elizabeth, R.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

(21) International Application Number: PCT/US99/29996

(81) Designated States (national): AU, CA, JP, US.

(22) International Filing Date:
20 December 1999 (20.12.1999)

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(25) Filing Language: English

Published:

(26) Publication Language: English

— with international search report

(30) Priority Data:

60/114,220	30 December 1998 (30.12.1998)	US
60/120,018	29 January 1999 (29.01.1999)	US
60/140,415	22 June 1999 (22.06.1999)	US

(88) Date of publication of the international search report:
22 February 2001

(48) Date of publication of this corrected version:
30 August 2001

(71) Applicant (for all designated States except US): BETH ISRAEL DEACONESS MEDICAL CENTER, INC. [US/US]; 1 Deaconess Road, Boston, MA 02215 (US).

(15) Information about Correction:
see PCT Gazette No. 35/2001 of 30 August 2001, Section II

(72) Inventor; and

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(75) Inventor/Applicant (for US only): SCHARENBERG, Andrew, M. [US/US]; 12 Skyview Road, Lexington, MA 02420 (US).

(54) Title: CHARACTERIZATION OF THE SOC/CRAC CALCIUM CHANNEL PROTEIN FAMILY

WO 00/40614 A3

(57) Abstract: Nucleic acids encoding SOC/CRAC calcium channel polypeptides, including fragments and biologically functional variants thereof and encoded polypeptides are provided. The nucleic acids and polypeptides disclosed herein are useful as therapeutic and diagnostic agents. Agents that selectively bind to the foregoing polypeptides and genes also are provided.

CHARACTERIZATION OF A CALCIUM CHANNEL FAMILYField of the Invention

This invention relates to nucleic acids coding for a novel family of calcium channel polypeptides, the encoded polypeptides, unique fragments of the foregoing, and methods of 5 making and using same.

Background of the Invention

Calcium channels are membrane-spanning, multi-subunit proteins that facilitate the controlled transport ("flux") of Ca^{2+} ions into and out of cells. Cells throughout the animal kingdom, and at least some bacterial, fungal and plant cells, possess one or more types of 10 calcium channels. In general, "excitable" cells, such as neurons of the central nervous system, peripheral nerve cells, and muscle cells, including those of skeletal muscles, cardiac muscles, and venous and arterial smooth muscles, possess voltage-dependent calcium channels. In a voltage-dependent calcium channel, the transport of Ca^{2+} ions into and out of the cells requires a certain minimal level of depolarization (the difference in potential between 15 the inside of the cell bearing the channel and the extracellular environment) with the rate of Ca^{2+} cell flux dependent on the difference in potential. In "non-excitable" cells, calcium influx is thought to occur predominantly in response to stimuli which cause the release of calcium from intracellular stores. This process, termed *store operated calcium influx*, is not well understood.

Characterization of a particular type of calcium channel by analysis of whole cells is 20 complicated by the presence of mixed populations of different types of calcium channels in the majority of cells. Although single-channel recording methods can be used to examine individual calcium channels, such analysis does not reveal information related to the molecular structure or biochemical composition of the channel. Furthermore, in this type of 25 analysis, the channel is isolated from other cellular constituents that might be important for the channel's natural functions and pharmacological interactions. To study the calcium channel structure-function relationship, large amounts of pure channel protein are needed. However, acquiring large amounts of pure protein is difficult in view of the complex nature of 30 these multisubunit proteins, the varying concentrations of calcium channel proteins in tissue sources, the presence of mixed populations of calcium channel proteins in tissues, and the modifications of the native protein that can occur during the isolation procedure.

Summary of the Invention

The invention is based on the identification of a novel family of calcium channel polypeptides and the molecular cloning and partial characterization of a novel member of this family that is expressed predominantly in human hematopoietic cells, liver, and kidney. This 5 newly identified family of calcium channel polypeptides is designated, "SOC" or "CRAC" or "ICRAC", for Store Operated Channels or Calcium Release Activated Channels. Although not wishing to be bound to any particular theory or mechanism, it is believed that the SOC/CRAC calcium channel polypeptides are transmembrane polypeptides that modulate Ca²⁺ flux "into" and "out of" a cell, for example, in certain instances they may be activated 10 upon depletion of Ca²⁺ from intracellular calcium stores, allowing Ca²⁺ influx into the cell. Accordingly, the compositions disclosed herein are believed to be useful for modulating calcium transport into and out of such intracellular stores and for the treatment of disorders that are characterized by aberrant calcium transport into and out of such intracellular stores. In 15 particular, we believe that the SOC/CRAC calcium channel polypeptides disclosed herein play an important role in the influx of extracellular calcium by mediating the refilling of intracellular calcium stores following their depletion. Accordingly, we believe that the compositions for expressing functional SOC/CRAC calcium channel polypeptides in cells, as disclosed herein, are useful for treating patients having conditions that are characterized by reduced extracellular calcium influx into their SOC/CRAC-expressing cells. Additionally, the 20 compositions of the invention are useful for delivering therapeutic and/or imaging agents to cells which preferentially express SOC/CRAC calcium channel polypeptides and, in particular, for delivering such agents to hematopoietic cells, liver, heart, spleen, and kidney to modulate proliferation and growth of these cells. Moreover, in view of the importance of cellular calcium levels to cell viability, we believe that SOC-2/CRAC-1, SOC-3/CRAC-2, and 25 SOC-4/CRAC-3 as disclosed herein, and/or other members of the SOC/CRAC family of calcium channel polypeptides, represent an ideal target for designing and/or identifying (e.g., from molecular libraries) small molecule inhibitors that block lymphocyte proliferation, as well as other binding agents that selectively bind to SOC/CRAC polypeptides to which drugs or toxins can be conjugated for delivery to SOC/CRAC polypeptide expressing cells.

30 The invention is based, in part, on the molecular cloning and sequence analysis of the novel SOC/CRAC calcium channel molecules disclosed herein (also referred to as a "SOC-2/CRAC-1 molecule," a "SOC-3/CRAC-2 molecule," and/or "SOC-4/CRAC-3 molecule") that are predominantly expressed in human hematopoietic cells, liver, spleen, heart, and

kidney (SOC-2/CRAC-1), kidney and colon (SOC-3/CRAC-2), and prostate (SOC-4/CRAC-3 molecule). As used herein, a "SOC/CRAC molecule" embraces a "SOC/CRAC calcium channel nucleic acid" (or "SOC/CRAC nucleic acid") and a "SOC/CRAC calcium channel polypeptide" (or "SOC/CRAC polypeptide"). Homologs and alleles also are embraced within the meaning of a SOC/CRAC calcium channel molecule.

According to one aspect of the invention, isolated SOC/CRAC nucleic acids which code for one or more member(s) of the SOC/CRAC family of calcium channel polypeptides or unique fragments thereof are provided. The isolated nucleic acids refer to one or more of the following:

- (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31, and which code for a SOC/CRAC polypeptide;
- (b) deletions, additions and substitutions of (a) which code for a respective SOC/CRAC polypeptide;
- (c) nucleic acid molecules that differ from the nucleic acid molecules of (a) or (b) in codon sequence due to the degeneracy of the genetic code, and
- (d) complements of (a), (b) or (c).

The invention in another aspect provides an isolated nucleic acid molecule selected from the group consisting of (a) a unique fragment of a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:29, and SEQ ID NO:31, (b) complements of (a), provided that the unique fragment includes a sequence of contiguous nucleotides which is not identical to any sequence selected from a sequence group consisting of (1) sequences having the SEQ. ID NOS. or GenBank accession numbers of Table I, (2) complements of (1), and (3) fragments of (1) and (2).

According to yet another aspect of the invention, isolated SOC/CRAC polypeptides are provided. The isolated SOC/CRAC polypeptide molecules are encoded by one or more SOC/CRAC nucleic acid molecules of the invention. Preferably, the SOC/CRAC polypeptide contains one or more polypeptides selected from the group consisting of the polypeptides having SEQ. ID Nos. 2, 4, 6, 8, 24, 26, 28, 30, and 32. In other embodiments, the isolated polypeptide may be a fragment or variant of the foregoing SOC/CRAC polypeptide molecules of sufficient length to represent a sequence unique within the human genome, and identifying

with a polypeptide that functions as a calcium channel, provided that the fragment excludes a sequence of contiguous amino acids identified in Table II, and/or excludes a sequence of contiguous amino acids encoded for by a nucleic acid sequence identified in Table I. In another embodiment, immunogenic fragments of the polypeptide molecules described above are provided.

According to another aspect of the invention, isolated SOC/CRAC binding agents (e.g., polypeptides) are provided which selectively bind to a SOC/CRAC molecule (e.g., a SOC/CRAC polypeptide encoded by the isolated nucleic acid molecules of the invention). Preferably, the isolated binding agents selectively bind to a polypeptide which comprises the sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and SEQ ID NO:32, or unique fragments thereof. In the preferred embodiments, the isolated binding polypeptides include antibodies and fragments of antibodies (e.g., Fab, F(ab)₂, Fd and antibody fragments which include a CDR3 region which binds selectively to a SOC/CRAC polypeptide). Preferably, the antibodies for human therapeutic applications are human antibodies.

According to another aspect of the invention, a pharmaceutical composition containing a pharmaceutically effective amount of an isolated SOC/CRAC nucleic acid, an isolated SOC/CRAC polypeptide, or an isolated SOC/CRAC binding polypeptide in a pharmaceutically acceptable carrier also is provided. The pharmaceutical compositions are useful in accordance with therapeutic methods disclosed herein.

According to yet another aspect of the invention, a method for isolating a SOC/CRAC molecule is provided. The method involves:

- a) contacting a SOC/CRAC nucleic acid or a SOC/CRAC binding polypeptide with a sample that is believed to contain one or more SOC/CRAC molecules, under conditions to form a complex of the SOC/CRAC nucleic acid or the SOC/CRAC binding polypeptide and the SOC/CRAC molecule;
- b) detecting the presence of the complex;
- c) isolating the SOC/CRAC molecule from the complex; and
- d) determining whether the isolated SOC/CRAC molecule has SOC/CRAC calcium channel activity. As used herein "SOC/CRAC calcium channel activity" refers to the transport of Ca²⁺ into and out of intracellular stores that is mediated by a SOC/CRAC

polypeptide. In general, the SOC/CRAC calcium channel activity is initiated by a reduction or depletion of intracellular calcium stores.

In certain embodiments, the SOC/CRAC nucleic acid is a SOC-2/CRAC-1 nucleic acid (e.g., a nucleic acid having SEQ. ID NO. 27, or complements thereof); in certain other embodiments, the SOC/CRAC nucleic acid is a SOC-3/CRAC-2 nucleic acid (e.g., a nucleic acid having SEQ. ID NO. 29, or complements thereof); in further embodiments, the SOC/CRAC nucleic acid is a SOC-4/CRAC-3 nucleic acid (e.g., a nucleic acid having SEQ. ID NO. 31, or complements thereof). In yet other embodiments, the SOC/CRAC polypeptide is a SOC-2/CRAC-1 binding polypeptide (e.g., an antibody that selectively binds to a SOC-2/CRAC-1 polypeptide). In yet further embodiments, the SOC/CRAC polypeptide is a SOC-3/CRAC-2 binding polypeptide (e.g., an antibody that selectively binds to a SOC-3/CRAC-2 polypeptide). In some embodiments, the SOC/CRAC polypeptide is a SOC-4/CRAC-3 binding polypeptide (e.g., an antibody that selectively binds to a SOC-4/CRAC-3 polypeptide). In the preferred embodiments, the isolated binding polypeptides include antibodies and fragments of antibodies (e.g., Fab, F(ab)₂, Fd and antibody fragments which include a CDR3 region which binds selectively to a SOC-2/CRAC-1, to a SOC-3/CRAC-2, and/or to a SOC-4/CRAC-3 polypeptide). Preferably the isolated binding polypeptides or other binding agents selectively bind to a single SOC/CRAC molecule, i.e., are capable of distinguishing between different members of the SOC/CRAC family. Accordingly, one or more SOC/CRAC binding agents can be contained in a single composition (e.g., a pharmaceutical composition) to identify multiple SOC/CRAC molecules *in vivo* or *in vitro*.

According to yet another aspect of the invention, a method for identifying agents useful in the modulation of SOC/CRAC calcium channel activity is provided. The method involves:

- 25 a) contacting a SOC/CRAC polypeptide with a candidate agent suspected of modulating SOC/CRAC calcium channel activity, under conditions sufficient to allow the candidate agent to interact selectively with (e.g. bind to) the SOC/CRAC polypeptide;
- 30 b) detecting a Ca²⁺ concentration of step (b) associated with the SOC/CRAC calcium channel activity of the SOC/CRAC polypeptide in the presence of the candidate agent; and
- c) comparing the Ca²⁺ concentration of step (b) with a control Ca²⁺ concentration of a SOC/CRAC polypeptide in the absence of the candidate agent to determine whether the candidate agent modulates (increases or decreases) SOC/CRAC calcium channel activity.

-6-

According to another aspect of the invention, a method for identifying agents useful in the modulation of a SOC/CRAC polypeptide kinase activity is provided. The method involves:

5 a) contacting a SOC/CRAC polypeptide with kinase activity with a candidate agent suspected of modulating SOC/CRAC kinase activity, under conditions sufficient to allow the candidate agent to interact with the SOC/CRAC polypeptide and modulate its kinase activity;

10 b) detecting a kinase activity associated with the SOC/CRAC polypeptide in the presence of the candidate agent; and

15 c) comparing the kinase activity of step (b) with a control kinase activity of a SOC/CRAC polypeptide in the absence of the candidate agent to determine whether the candidate agent modulates (increases or decreases) SOC/CRAC kinase activity. In some embodiments the SOC/CRAC polypeptide comprises amino acids 999-1180 of the SOC-2/CRAC-1 polypeptide (SEQ ID NO:24), or a fragment thereof that retains the kinase activity.

According to yet another aspect of the invention, a method for determining the level of expression of a SOC/CRAC polypeptide in a subject is provided. The method involves:

15 a) measuring the expression of a SOC/CRAC polypeptide in a test sample, and

20 b) comparing the measured expression of the SOC/CRAC polypeptide in the test sample to the expression of a SOC/CRAC polypeptide in a control containing a known level of expression to determine the level of SOC/CRAC expression in the subject. Expression is defined as SOC/CRAC mRNA expression or SOC/CRAC polypeptide expression. Various methods can be used to measure expression. The preferred embodiments of the invention utilize PCR and Northern blotting for measuring mRNA expression, and monoclonal or polyclonal SOC/CRAC antisera as reagents for measuring SOC/CRAC polypeptide expression. In preferred embodiments, the SOC/CRAC molecule (nucleic acid and/or 25 polypeptide) is SOC-2/CRAC-1. In other preferred embodiments, the SOC/CRAC molecule is SOC-3/CRAC-2. In yet further preferred embodiments, the SOC/CRAC molecule is SOC-4/CRAC-3. In certain embodiments, the test samples include biopsy samples and biological fluids such as blood. The method is useful, e.g., for assessing the presence or absence or stage of a proliferative disorder in a subject.

30 The invention also contemplates kits comprising a package including assays for SOC/CRAC epitopes, SOC/CRAC nucleic acids, and instructions, and optionally related materials such as controls, for example, a number, color chart, or an epitope of the expression product of the foregoing isolated nucleic acid molecules of the invention for comparing, for

example, the level of SOC/CRAC polypeptides or SOC/CRAC nucleic acid forms (wild-type or mutant) in a test sample to the level in a control sample having a known amount of a SOC/CRAC nucleic acid or SOC/CRAC polypeptide. This comparison can be used to assess in a subject a risk of developing a cancer or the progression of a cancer. The kits may also include assays for other known genes, and expression products thereof, associated with, for example, proliferative disorders (e.g., BRCA, p53, etc.). In a preferred embodiment, the kit comprises a package containing: (a) a binding agent that selectively binds to an isolated nucleic acid of the invention or an expression product thereof to obtain a measured test value, (b) a control containing a known amount of a SOC/CRAC nucleic acid or a SOC/CRAC polypeptide to obtain a measured control value, and (c) instructions for comparing the measured test value to the measured control value to determine the amount of SOC/CRAC nucleic acid or expression product thereof in a sample.

The invention provides isolated nucleic acid molecules, unique fragments thereof, expression vectors containing the foregoing, and host cells containing the foregoing. The invention also provides isolated binding polypeptides and binding agents which bind such polypeptides, including antibodies, and pharmaceutical compositions containing any of the compositions of the invention. The foregoing can be used, *inter alia*, in the diagnosis or treatment of conditions characterized by the aberrant expression levels and/or the presence of mutant forms of a SOC/CRAC nucleic acid or polypeptide. The invention also provides methods for identifying agents that alter the function of the SOC/CRAC polypeptide.

These and other aspects of the invention, as well as various advantages and utilities, will be more apparent with reference to the detailed description of the preferred embodiments.

Brief Description of the Sequences

SEQ ID NO:1 is a partial nucleotide sequence of the human SOC-2/CRAC-1 cDNA.

SEQ ID NO:2 is the predicted amino acid sequence of the translation product of human SOC-2/CRAC-1 cDNA (SEQ ID NO:1).

SEQ ID NO:3 is a partial nucleotide sequence of the human SOC-2/CRAC-1 cDNA.

SEQ ID NO:4 is the predicted amino acid sequence of the translation product of human SOC-2/CRAC-1 cDNA (SEQ ID NO:3).

SEQ ID NO:5 is a partial nucleotide sequence of the human SOC-2/CRAC-1 cDNA.

SEQ ID NO:6 is the predicted amino acid sequence of the translation product of human SOC-2/CRAC-1 cDNA (SEQ ID NO:5).

SEQ ID NO:7 is a partial nucleotide sequence of the mouse homologue (mSOC-2/CRAC-1) of the human SOC-2/CRAC-1 cDNA.

SEQ ID NO:8 is the predicted amino acid sequence of the translation product of the mSOC-2/CRAC-1 cDNA (SEQ ID NO:7).

5 SEQ ID NO:9 is the nucleotide sequence of the mouse MLSN-1 (SOC-1) cDNA.

SEQ ID NO:10 is the predicted amino acid sequence of the translation product of the mouse MLSN-1 (SOC-1) cDNA (SEQ ID NO:9).

SEQ ID NO:11 is the nucleotide sequence of a human calcium channel cDNA with GenBank Acc. no.: AB001535.

10 SEQ ID NO:12 is the predicted amino acid sequence of the translation product of the human calcium channel cDNA with GenBank Acc. no.: AB001535 (SEQ ID NO:11).

SEQ ID NO:13 is the amino acid sequence of a *C. Elegans* polypeptide at the c05c12.3 locus.

15 SEQ ID NO:14 is the amino acid sequence of a *C. Elegans* polypeptide at the F54D1 locus.

SEQ ID NO:15 is the amino acid sequence of a *C. Elegans* polypeptide at the t01H8 locus.

SEQ ID NO:16 is the nucleotide sequence of a mouse kidney cDNA with GenBank Acc. no.: AI226731.

20 SEQ ID NO:17 is the predicted amino acid sequence of the translation product of the mouse kidney cDNA with GenBank Acc. no.: AI226731 (SEQ ID NO:16).

SEQ ID NO:18 is the nucleotide sequence of a human brain cDNA with GenBank Acc. no.: H18835.

25 SEQ ID NO:19 is the predicted amino acid sequence of the translation product of the human brain cDNA with GenBank Acc. no.: H18835 (SEQ ID NO:18).

SEQ ID NO:20 is the nucleotide sequence of the human EST with GenBank Acc. no.: AA419592.

SEQ ID NO:21 is the nucleotide sequence of the human EST with GenBank Acc. no.: AA419407.

30 SEQ ID NO:22 is the nucleotide sequence of the mouse EST with GenBank Acc. no.: AI098310.

SEQ ID NO:23 is a partial nucleotide sequence of the human SOC-2/CRAC-1 cDNA that contains the SOC-2/CRAC-1 sequences of SEQ ID NO:1, SEQ ID NO:3, and SEQ ID NO:5.

SEQ ID NO:24 is the predicted amino acid sequence of the translation product of human SOC-2/CRAC-1 cDNA (SEQ ID NO:23).

SEQ ID NO:25 is a partial nucleotide sequence of the human SOC-3/CRAC-2 cDNA.

SEQ ID NO:26 is the predicted amino acid sequence of the translation product of human SOC-3/CRAC-2 cDNA (SEQ ID NO:25).

SEQ ID NO:27 is the full nucleotide sequence of the human SOC-2/CRAC-1 cDNA.

SEQ ID NO:28 is the predicted amino acid sequence of the translation product of human SOC-2/CRAC-1 cDNA (SEQ ID NO:27).

SEQ ID NO:29 is the full nucleotide sequence of the human SOC-3/CRAC-2 cDNA.

SEQ ID NO:30 is the predicted amino acid sequence of the translation product of human SOC-3/CRAC-2 cDNA (SEQ ID NO:29).

SEQ ID NO:31 is the full nucleotide sequence of the human SOC-4/CRAC-3 cDNA.

SEQ ID NO:32 is the predicted amino acid sequence of the translation product of human SOC-4/CRAC-3 cDNA (SEQ ID NO:31).

Brief Description of the Drawings

Figure 1 is a schematic depicting the intron/exon organization of the chicken SOC-2/CRAC-1 genomic sequence, as well as the putative transmembrane (TM) domains, and the targeting constructs utilized in the knockout experiments.

Detailed Description of the Invention

One aspect of the invention involves the partial cloning of cDNAs encoding members of a novel family of calcium channel polypeptides, referred to herein as "SOC/CRAC" (designated "SOC" or "CRAC" or "ICRAC", for Store Operated Channels or Calcium Release Activated Channels, or CECH). Although not intending to be bound to any particular mechanism or theory, we believe that a SOC/CRAC family member is a transmembrane calcium channel that modulates Ca^{2+} flux "into" and "out of" a cell; in certain instances it may be activated upon depletion of Ca^{2+} from intracellular calcium stores, allowing Ca^{2+} influx into the cell.

The first three isolated SOC/CRAC members disclosed herein, define a new family of calcium channels which is distinct from previously described calcium channels, such as voltage gated calcium channels, ryanodine receptor/inositol-1,4,5-triphosphate receptor

-10-

5 channels, and Transient Receptor Potential (TRP) channels. The SOC/CRAC family of calcium channels exhibits high selectivity (with a P_{Ca}/P_{Na} ratio near 1000), a unitary conductance below the detection level of the patch clamp method (the conductance estimated at approximately 0.2 picosiemens), and are subject to inhibition by high intracellular calcium levels. Although not intending to be bound to any particular mechanism or theory, we believe that SOC/CRAC calcium channels are responsible for the majority of, for example, calcium entry which occurs when intracellular calcium stores are depleted, and that SOC/CRAC currents are important for initiating various types of calcium-dependent processes. Thus, we believe that SOC/CRAC calcium channels play an important role in cellular calcium homeostasis by, e.g., modulating the supply of calcium to refill intracellular stores when 10 depleted.

15 The isolated full-length sequence of a representative, first member of the SOC/CRAC family, human SOC/CRAC nucleic acid (cDNA), SOC-2/CRAC-1, is represented as the nucleic acid of SEQ ID NO:27. This nucleic acid sequence codes for the SOC-2/CRAC-1 polypeptide with the predicted amino acid sequence disclosed herein as SEQ ID NO:28. A homologous mouse cDNA sequence (>90% identity to the human at the nucleotide level) is represented as the nucleic acid of SEQ ID NO:7, and codes for a unique fragment of a mouse SOC-2/CRAC-1 polypeptide having the predicted, partial amino acid sequence represented as SEQ ID NO:8. Analysis of the SOC-2/CRAC-1 partial sequence by comparison to nucleic acid and protein databases show that SOC-2/CRAC-1 shares a limited homology to mouse 20 MLSN-1 (SOC-1, SEQ ID NOS: 9 and 10). Limited homology is also shared between SOC-2/CRAC-1 and three *C. Elegans* polypeptides (SEQ ID NOS: 13, 14, and 15). We further believe that SOC-2/CRAC-1 plays a role in the regulation of cellular Ca^{2+} fluxing and, in particular, lymphocyte Ca^{2+} fluxing.

25 A second member of the human SOC/CRAC family of calcium channels, SOC-3/CRAC-2, is represented as the nucleic acid of SEQ ID NO:29, and codes for the human SOC-3/CRAC-2 polypeptide having the predicted amino acid sequence represented as SEQ ID NO:30 (this molecule may also be referred to as CECH2). SOC-3/CRAC-2 is predominantly expressed in human hematopoietic cells (including peripheral blood 30 lymphocytes, liver, bone marrow, spleen, thymus, lymph nodes, heart, and kidney. Expression can also be detected (at lesser levels) in brain, skeletal muscle colon, small intestine, placenta, lung, and cells (cell lines) such as HL-60, HeLa, K562, MOLT-4, SW-480, A459, and G361.

5 A third member of the human SOC/CRAC family of calcium channels, SOC-4/CRAC-3, is represented as the nucleic acid of SEQ ID NO:31, and codes for the human SOC-4/CRAC-3 polypeptide having the predicted amino acid sequence represented as SEQ ID NO:32 (this molecule may also be referred to as CECH6). It specifically expressed in the prostate gland/cells.

10 As used herein, a SOC/CRAC calcium channel nucleic acid (also referred to herein as a "SOC/CRAC nucleic acid" refers to a nucleic acid molecule which: (1) hybridizes under stringent conditions to one or more of the nucleic acids having the sequences of SEQ. ID NOS. 7, 27, 29, and/or 31 (sequences of the mouse and human SOC-2/CRAC-1, human SOC-3/CRAC-2, and human SOC-4/CRAC-3 nucleic acids), and (2) codes for a SOC-2/CRAC-1, a SOC-3/CRAC-2 or a SOC-4/CRAC-3 calcium channel polypeptide, respectively, or unique fragments of said SOC-2/CRAC-1, SOC-3/CRAC-2, or SOC-4/CRAC-3 polypeptide.

15 As used herein, a SOC/CRAC calcium channel polypeptide (also referred to herein as a "SOC/CRAC polypeptide") refers to a polypeptide that is coded for by a SOC-2/CRAC-1, a SOC-3/CRAC-2, and/or a SOC-4/CRAC-3 nucleic acid. Preferably, the above-identified SOC/CRAC polypeptides mediate transport of calcium into and out of a cell.

20 SOC/CRAC polypeptides also are useful as immunogenic molecules for the generation of binding polypeptides (e.g., antibodies) which bind selectively to SOC/CRAC (e.g., SOC-2/CRAC-1, SOC-3/CRAC-2, and/or SOC-4/CRAC-3) polypeptides. Such antibodies can be used in diagnostic assays to identify and/or quantify the presence of a SOC/CRAC polypeptide in a sample, such as a biological fluid or biopsy sample. SOC/CRAC polypeptides further embrace functionally equivalent fragments, variants, and 25 analogs of the preferred SOC/CRAC polypeptides, provided that the fragments, variants, and analogs also are useful in mediating calcium transport into and out of intracellular calcium stores.

25 As used herein, "SOC/CRAC calcium channel activity" refers to Ca^{2+} transport (" Ca^{2+} fluxing") across the plasma membrane that is mediated by a SOC/CRAC calcium channel polypeptide. The SOC/CRAC calcium channel polypeptide typically has one or more of the following properties: high selectivity, a unitary conductance below the detection level of the patch clamp method, and are subject to inhibition by high intracellular calcium levels. Such activity can be easily detected using standard methodology well known in the art. See, e.g., the Examples and Neher, E., "Ion channels for communication between and within cells",

Science, 1992; 256:498-502; and Hoth, M., and Penner, R., "Depletion of intracellular calcium stores activates a calcium current in mast cells", Nature, 1992; 355 (6358):353-6.

According to one aspect of the invention, isolated nucleic acid molecules which code for one or more member(s) of the SOC/CRAC family of calcium channel polypeptides are provided. The isolated nucleic acid molecules are selected from the following groups:

- (a) nucleic acid molecules which hybridize under stringent conditions to one or more nucleic acid molecules selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31, and which code for a SOC/CRAC polypeptide;
- (b) deletions, additions and substitutions of (a) which code for a respective SOC/CRAC polypeptide;
- (c) nucleic acid molecules that differ from the nucleic acid molecules of (a) or (b) in codon sequence due to the degeneracy of the genetic code, and
- (d) complements of (a), (b) or (c).

In certain embodiments, the isolated nucleic acid molecule comprises one or more of nucleotides 1-1212 of SEQ ID NO:1; nucleotides 1-739 of SEQ ID NO:3; nucleotides 1-1579 of SEQ ID NO:5; nucleotides 1-5117 of SEQ ID NO:23; the mouse homolog for SOC-2/CRAC-1 corresponding to SEQ ID NO:7; nucleotides 1-2180 of SEQ ID NO:25; nucleotides 382-5976 of SEQ ID NO:27; nucleotides 73-3714 of SEQ ID NO:29; and nucleotides 23-3434 of SEQ ID NO:31. In yet other embodiments, the isolated nucleic acid molecule comprises a molecule which encodes a polypeptide having one or more sequences selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and SEQ ID NO:32.

According to yet another aspect of the invention, an isolated nucleic acid molecule is provided which is selected from the group consisting of:

- (a) a unique fragment of a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31, (of sufficient length to represent a sequence unique within the human genome); and (b) complements of (a), provided that the unique fragment includes a sequence of contiguous nucleotides which is not identical to a sequence in the prior art as represented by the sequence group consisting of: (1) sequences having the SEQ ID NOS or GenBank accession numbers of Table I, (2) complements of (1), and (3) fragments of (1) and (2).

-13-

In some embodiments, the sequence of contiguous nucleotides is selected from the group consisting of (1) at least two contiguous nucleotides nonidentical to the sequence group, (2) at least three contiguous nucleotides nonidentical to the sequence group, (3) at least four contiguous nucleotides nonidentical to the sequence group, (4) at least five contiguous nucleotides nonidentical to the sequence group, (5) at least six contiguous nucleotides nonidentical to the sequence group, (6) at least seven contiguous nucleotides nonidentical to the sequence group.

In other embodiments, the unique fragment has a size selected from the group consisting of at least: 8 nucleotides, 10 nucleotides, 12 nucleotides, 14 nucleotides, 16 nucleotides, 18 nucleotides, 20 nucleotides, 22 nucleotides, 24 nucleotides, 26 nucleotides, 28 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides, 75 nucleotides, 100 nucleotides, 200 nucleotides, 1000 nucleotides and every integer length therebetween.

According to another aspect of the invention, expression vectors and host cells containing (e.g., transformed or transfected with) expression vectors comprising the nucleic acid molecules disclosed herein operably linked to a promoter are provided. In certain preferred embodiments, the host cells are eukaryotic cells.

The isolated nucleic acid molecules disclosed herein have various utilities, including their use as probes and primers to identify additional members of the SOC/CRAC family of calcium channels, as diagnostic reagents for identifying the presence of SOC/CRAC polypeptides in biological or other samples, and as agents for generating SOC/CRAC binding polypeptides (e.g., antibodies) that can be used as reagents in diagnostic and therapeutic assays to identify the presence, absence, and/or amounts of a SOC/CRAC nucleic acid or polypeptide in a biological or other sample.

As used herein with respect to nucleic acids, the term "isolated" means: (i) amplified *in vitro* by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid is one which is readily manipulatable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the

material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulatable by standard techniques known to those of ordinary skill in the art.

As used herein with respect to polypeptides (discussed below), the term "isolated" means separated from its native environment in sufficiently pure form so that it can be manipulated or used for any one of the purposes of the invention. Thus, isolated means sufficiently pure to be used (i) to raise and/or isolate antibodies, (ii) as a reagent in an assay, or (iii) for sequencing, etc.

Homologs and alleles of the SOC/CRAC nucleic acids of the invention can be identified by conventional techniques. Thus, an aspect of the invention is those nucleic acid sequences which code for SOC/CRAC polypeptides and which hybridize to a nucleic acid molecule selected from a group consisting of the nucleic acid of SEQ ID NO:1, the nucleic acid of SEQ ID NO:3, the nucleic acid of SEQ ID NO:5, the nucleic acid of SEQ ID NO:7, the nucleic acid of SEQ ID NO:23, the nucleic acid of SEQ ID NO:25, the nucleic acid of SEQ ID NO:27, the nucleic acid of SEQ ID NO:29, and the nucleic acid of SEQ ID NO:31, under stringent conditions. The term "stringent conditions" as used herein refers to parameters with which the art is familiar. Nucleic acid hybridization parameters may be found in references which compile such methods, e.g. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. More specifically, stringent conditions, as used herein, refers, for example, to hybridization at 65°C in hybridization buffer (3.5 x SSC, 0.02% Ficoll, 0.02% polyvinyl pyrrolidone, 0.02% Bovine Serum Albumin, 2.5mM NaH₂PO₄(pH7), 0.5% SDS, 2mM EDTA). SSC is 0.15M sodium chloride/0.15M sodium citrate, pH7; SDS is sodium dodecyl sulphate; and EDTA is ethylenediaminetetraacetic acid. After hybridization, the membrane upon which the DNA is transferred is washed at 2 x SSC at room temperature and then at 0.1 x SSC/0.1 x SDS at temperatures up to 68°C.

There are other conditions, reagents, and so forth which can be used, and would result in a similar degree of stringency. The skilled artisan will be familiar with such conditions, and thus they are not given here. It will be understood, however, that the skilled artisan will be able to manipulate the conditions in a manner to permit the clear identification of homologs and alleles of the SOC/CRAC nucleic acids of the invention. The skilled artisan also is familiar with the methodology for screening cells and libraries for expression of such

molecules which then are routinely isolated, followed by isolation of the pertinent nucleic acid molecule and sequencing.

In general homologs and alleles typically will share at least 40% nucleotide identity and/or at least 50% amino acid identity to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ 5 ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and/or SEQ ID NO:31, and SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and/or SEQ ID NO:32, respectively. In some instances sequences will share at least 50% nucleotide identity and/or at least 65% amino acid identity and in still other instances sequences will share at least 60% nucleotide 10 identity and/or at least 75% amino acid identity. The homology can be calculated using various, publicly available software tools developed by NCBI (Bethesda, Maryland) that can be obtained through the internet (<ftp://ncbi.nlm.nih.gov/pub/>). Exemplary tools include the BLAST system available at <http://www.ncbi.nlm.nih.gov>. Pairwise and ClustalW alignments (BLOSUM30 matrix setting) as well as Kyte-Doolittle hydrophobic analysis can be obtained 15 using the MacVector sequence analysis software (Oxford Molecular Group). Watson-Crick complements of the foregoing nucleic acids also are embraced by the invention.

In screening for SOC/CRAC related genes, such as homologs and alleles of SOC-2/CRAC-1 and/or SOC-3/CRAC-2, a Southern blot may be performed using the foregoing conditions, together with a radioactive probe. After washing the membrane to which the 20 DNA is finally transferred, the membrane can be placed against X-ray film or a phosphoimager plate to detect the radioactive signal.

Given that the expression of the SOC/CRAC gene is prominent in certain human tissues (e.g., SOC-2/CRAC-1: lymphoid tissue/heart, SOC-3/CRAC-2: kidney/colon, SOC-25 4/CRAC-3: prostate), and given the teachings herein of partial human SOC/CRAC cDNA clones, full-length and other mammalian sequences corresponding to the human SOC/CRAC partial nucleic acid sequences can be isolated from, for example, a cDNA library prepared from one or more of the tissues in which SOC-2/CRAC-1 expression is prominent, SOC-3/CRAC-2 is prominent, and/or SOC-4/CRAC-3 expression is prominent, using standard colony hybridization techniques.

The invention also includes degenerate nucleic acids which include alternative codons to those present in the native materials. For example, serine residues are encoded by the codons TCA, AGT, TCC, TCG, TCT and AGC. Each of the six codons is equivalent for the purposes of encoding a serine residue. Thus, it will be apparent to one of ordinary skill in the 30

-16-

art that any of the serine-encoding nucleotide triplets may be employed to direct the protein synthesis apparatus, *in vitro* or *in vivo*, to incorporate a serine residue into an elongating SOC/CRAC polypeptide. Similarly, nucleotide sequence triplets which encode other amino acid residues include, but are not limited to: CCA, CCC, CCG and CCT (proline codons); CGA, CGC, CGG, CGT, AGA and AGG (arginine codons); ACA, ACC, ACG and ACT (threonine codons); AAC and AAT (asparagine codons); and ATA, ATC and ATT (isoleucine codons). Other amino acid residues may be encoded similarly by multiple nucleotide sequences. Thus, the invention embraces degenerate nucleic acids that differ from the biologically isolated nucleic acids in codon sequence due to the degeneracy of the genetic code.

The invention also provides isolated unique fragments of an isolated nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31. A unique fragment is one that is a 'signature' for the larger nucleic acid. For example, the unique fragment is long enough to assure that its precise sequence is not found in molecules within the human genome outside of the SOC/CRAC nucleic acids defined above (and human alleles). Those of ordinary skill in the art may apply no more than routine procedures to determine if a fragment is unique within the human genome.

Unique fragments, however, exclude fragments completely composed of the nucleotide sequences of any of GenBank accession numbers and SEQ ID NOs listed in Table I (SEQ ID NO:9, AB001535, AI226731, H18835, AA419592, AA261842, AA419407, AI098310, AA592910, D86107, AF071787, Z77132, Z83117, Z68333, AA708532, AA551759, AA932133, R47363, N31660, AC005538, AA654650, AA370110, AA313170, AA493512, AI670079, AI671853, AC005538, AA654650, AA370110, AA313170, AA493512, AI670079, AI671853), or other previously published sequences as of the filing date of this application.

A fragment which is completely composed of the sequence described in the foregoing GenBank deposits and SEQ ID NO:9, is one which does not include any of the nucleotides unique to the sequences of the invention. Thus, a unique fragment must contain a nucleotide sequence other than the exact sequence of those in GenBank or fragments thereof. The difference may be an addition, deletion or substitution with respect to the GenBank sequence or it may be a sequence wholly separate from the GenBank sequence.

Unique fragments can be used as probes in Southern and Northern blot assays to identify such nucleic acids, or can be used in amplification assays such as those employing PCR. As known to those skilled in the art, large probes such as 200, 250, 300 or more nucleotides are preferred for certain uses such as Southern and Northern blots, while smaller fragments will be preferred for uses such as PCR. Unique fragments also can be used to produce fusion proteins for generating antibodies or determining binding of the polypeptide fragments, as demonstrated in the Examples, or for generating immunoassay components. Likewise, unique fragments can be employed to produce nonfused fragments of the SOC/CRAC polypeptides, useful, for example, in the preparation of antibodies, immunoassays or therapeutic applications. Unique fragments further can be used as antisense molecules to inhibit the expression of SOC/CRAC nucleic acids and polypeptides, respectively.

As will be recognized by those skilled in the art, the size of the unique fragment will depend upon its conservancy in the genetic code. Thus, some regions of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31, and complements thereof, will require longer segments to be unique while others will require only short segments, typically between 12 and 32 nucleotides long (e.g. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 bases) or more, up to the entire length of the disclosed sequence. As mentioned above, this disclosure intends to embrace each and every fragment of each sequence, beginning at the first nucleotide, the second nucleotide and so on, up to 8 nucleotides short of the end, and ending anywhere from nucleotide number 8, 9, 10 and so on for each sequence, up to the very last nucleotide, (provided the sequence is unique as described above). Virtually any segment of the region of SEQ ID NO:1 beginning at nucleotide 1 and ending at nucleotide 1212, or SEQ ID NO:3 beginning at nucleotide 1 and ending at nucleotide 739, or SEQ ID NO:5 beginning at nucleotide 1 and ending at nucleotide 1579, or SEQ ID NO:7 beginning at nucleotide 1 and ending at nucleotide 3532, or SEQ ID NO:23 beginning at nucleotide 1 and ending at nucleotide 5117, SEQ ID NO:25 beginning at nucleotide 1 and ending at nucleotide 2180, SEQ ID NO:27 beginning at nucleotide 1 and ending at nucleotide 7419, or SEQ ID NO:29 beginning at nucleotide 1 and ending at nucleotide 4061, or SEQ ID NO:31 beginning at nucleotide 1 and ending at nucleotide 4646, or complements thereof, that is 20 or more nucleotides in length will be unique. Those skilled in the art are well versed in methods for selecting such sequences, typically on the basis of the ability of the unique

fragment to selectively distinguish the sequence of interest from other sequences in the human genome of the fragment to those on known databases typically is all that is necessary, although *in vitro* confirmatory hybridization and sequencing analysis may be performed.

As mentioned above, the invention embraces antisense oligonucleotides that selectively bind to a nucleic acid molecule encoding a SOC/CRAC polypeptide, to decrease SOC/CRAC calcium channel activity. When using antisense preparations of the invention, slow intravenous administration is preferred.

As used herein, the term "antisense oligonucleotide" or "antisense" describes an oligonucleotide that is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide, or modified oligodeoxyribonucleotide which hybridizes under physiological conditions to DNA comprising a particular gene or to an mRNA transcript of that gene and, thereby, inhibits the transcription of that gene and/or the translation of that mRNA. The antisense molecules are designed so as to interfere with transcription or translation of a target gene upon hybridization with the target gene or transcript. Those skilled in the art will recognize that the exact length of the antisense oligonucleotide and its degree of complementarity with its target will depend upon the specific target selected, including the sequence of the target and the particular bases which comprise that sequence. It is preferred that the antisense oligonucleotide be constructed and arranged so as to bind selectively with the target under physiological conditions, i.e., to hybridize substantially more to the target sequence than to any other sequence in the target cell under physiological conditions. Based upon SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31, or upon allelic or homologous genomic and/or cDNA sequences, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense molecules for use in accordance with the present invention. In order to be sufficiently selective and potent for inhibition, such antisense oligonucleotides should comprise at least 10 and, more preferably, at least 15 consecutive bases which are complementary to the target, although in certain cases modified oligonucleotides as short as 7 bases in length have been used successfully as antisense oligonucleotides (Wagner et al., *Nat. Med.* 1(11):1116-1118, 1995). Most preferably, the antisense oligonucleotides comprise a complementary sequence of 20-30 bases. Although oligonucleotides may be chosen which are antisense to any region of the gene or mRNA transcripts, in preferred embodiments the antisense oligonucleotides correspond to N-terminal or 5' upstream sites such as translation initiation, transcription initiation or promoter sites. In

addition, 3'-untranslated regions may be targeted by antisense oligonucleotides. Targeting to mRNA splicing sites has also been used in the art but may be less preferred if alternative mRNA splicing occurs. In addition, the antisense is targeted, preferably, to sites in which mRNA secondary structure is not expected (see, e.g., Sainio et al., *Cell Mol. Neurobiol.* 14(5):439-457, 1994) and at which proteins are not expected to bind. Finally, although, SEQ 5 ID No:1 discloses a cDNA sequence, one of ordinary skill in the art may easily derive the genomic DNA corresponding to this sequence. Thus, the present invention also provides for antisense oligonucleotides which are complementary to the genomic DNA corresponding to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, 10 SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31. Similarly, antisense to allelic or homologous SOC/CRAC cDNAs and genomic DNAs are enabled without undue experimentation.

In one set of embodiments, the antisense oligonucleotides of the invention may be composed of "natural" deoxyribonucleotides, ribonucleotides, or any combination thereof. 15 That is, the 5' end of one native nucleotide and the 3' end of another native nucleotide may be covalently linked, as in natural systems, via a phosphodiester internucleoside linkage. These oligonucleotides may be prepared by art recognized methods which may be carried out manually or by an automated synthesizer. They also may be produced recombinantly by vectors.

20 In preferred embodiments, however, the antisense oligonucleotides of the invention also may include "modified" oligonucleotides. That is, the oligonucleotides may be modified in a number of ways which do not prevent them from hybridizing to their target but which enhance their stability or targeting or which otherwise enhance their therapeutic effectiveness.

The term "modified oligonucleotide" as used herein describes an oligonucleotide in 25 which (1) at least two of its nucleotides are covalently linked via a synthetic internucleoside linkage (i.e., a linkage other than a phosphodiester linkage between the 5' end of one nucleotide and the 3' end of another nucleotide) and/or (2) a chemical group not normally associated with nucleic acids has been covalently attached to the oligonucleotide. Preferred synthetic internucleoside linkages are phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters, alkylphosphonothioates, phosphoramidates, 30 carbamates, carbonates, phosphate triesters, acetamides, carboxymethyl esters and peptides.

The term "modified oligonucleotide" also encompasses oligonucleotides with a covalently modified base and/or sugar. For example, modified oligonucleotides include

-20-

oligonucleotides having backbone sugars which are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3' position and other than a phosphate group at the 5' position. Thus modified oligonucleotides may include a 2'-O-alkylated ribose group. In addition, modified oligonucleotides may include sugars such as 5 arabinose instead of ribose. The present invention, thus, contemplates pharmaceutical preparations containing modified antisense molecules that are complementary to and hybridizable with, under physiological conditions, nucleic acids encoding SOC/CRAC polypeptides, together with pharmaceutically acceptable carriers. Antisense oligonucleotides may be administered as part of a pharmaceutical composition. Such a pharmaceutical 10 composition may include the antisense oligonucleotides in combination with any standard physiologically and/or pharmaceutically acceptable carriers which are known in the art. The compositions should be sterile and contain a therapeutically effective amount of the antisense oligonucleotides in a unit of weight or volume suitable for administration to a patient. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with 15 the effectiveness of the biological activity of the active ingredients. The term "physiologically acceptable" refers to a non-toxic material that is compatible with a biological system such as a cell, cell culture, tissue, or organism. The characteristics of the carrier will depend on the route of administration. Physiologically and pharmaceutically acceptable carriers include diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials 20 which are well known in the art.

The invention also involves expression vectors coding for SOC/CRAC proteins and fragments and variants thereof and host cells containing those expression vectors. Virtually any cells, prokaryotic or eukaryotic, which can be transformed with heterologous DNA or RNA and which can be grown or maintained in culture, may be used in the practice of the 25 invention. Examples include bacterial cells such as E.coli and eukaryotic cells such as mouse, hamster, pig, goat, primate, yeast, xenopus, etc. They may be of a wide variety of tissue types, including mast cells, fibroblasts, oocytes and lymphocytes, and they may be primary cells or cell lines. Specific examples include CHO cells and COS cells. Cell-free transcription systems also may be used in lieu of cells.

30 As used herein, a "vector" may be any of a number of nucleic acids into which a desired sequence may be inserted by restriction and ligation for transport between different genetic environments or for expression in a host cell. Vectors are typically composed of DNA although RNA vectors are also available. Vectors include, but are not limited to,

plasmids, phagemids and virus genomes. A cloning vector is one which is able to replicate in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence may be ligated such that the new recombinant vector retains its ability to replicate in the host cell. In the case of plasmids, replication of the desired sequence may occur many times as the plasmid increases in copy number within the host bacterium or just a single time per host before the host reproduces by mitosis. In the case of phage, replication may occur actively during a lytic phase or passively during a lysogenic phase. An expression vector is one into which a desired DNA sequence may be inserted by restriction and ligation such that it is operably joined to regulatory sequences and may be expressed as an RNA transcript. Vectors may further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transfected with the vector. Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., β -galactosidase or alkaline phosphatase), and genes which visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques (e.g., green fluorescent protein). Preferred vectors are those capable of autonomous replication and expression of the structural gene products present in the DNA segments to which they are operably joined.

As used herein, a coding sequence and regulatory sequences are said to be "operably" joined when they are covalently linked in such a way as to place the expression or transcription of the coding sequence under the influence or control of the regulatory sequences. If it is desired that the coding sequences be translated into a functional protein, two DNA sequences are said to be operably joined if induction of a promoter in the 5' regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably joined to a coding sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide.

The precise nature of the regulatory sequences needed for gene expression may vary between species or cell types, but shall in general include, as necessary, 5' non-transcribed

and 5' non-translated sequences involved with the initiation of transcription and translation respectively, such as a TATA box, capping sequence, CAAT sequence, and the like. Especially, such 5' non-transcribed regulatory sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined gene. 5 Regulatory sequences may also include enhancer sequences or upstream activator sequences as desired. The vectors of the invention may optionally include 5' leader or signal sequences. The choice and design of an appropriate vector is within the ability and discretion of one of ordinary skill in the art.

According to yet another aspect of the invention, isolated SOC/CRAC polypeptides are provided. Preferably, the isolated SOC/CRAC polypeptides are encoded by the isolated SOC/CRAC nucleic acid molecules disclosed herein. More preferably, the isolated SOC/CRAC polypeptides of the invention are encoded by the nucleic acid molecules having SEQ ID Nos. 1, 3, 5, 7, 23, 25, 27, 29, and 31. In yet other embodiments, the isolated SOC/CRAC polypeptides of the invention have an amino acid sequence selected from the group consisting of SEQ ID Nos. 2, 4, 6, 8, 24, 26, 28, 30 and 32. Preferably, the isolated SOC/CRAC polypeptides are of sufficient length to represent a sequence unique within the human genome. Thus, the preferred embodiments include a sequence of contiguous amino acids which is not identical to a prior art sequence as represented by the sequence group consisting of the contiguous amino acids identified in Table II (SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19 and GenBank Acc. Nos. AB001535, AA592910, D86107, AF071787, Z77132, Z83117, Z68333, AA708532, AA551759, AA932133, R47363, N31660, NP003298, CAB00861, NP002411, CAA92726, CAB05572).

In certain embodiments, the isolated SOC/CRAC polypeptides are immunogenic and can be used to generate binding polypeptides (e.g., antibodies) for use in diagnostic and therapeutic applications. Such binding polypeptides also are useful for detecting the presence, absence, and/or amounts of a SOC/CRAC nucleic acid or polypeptide in a sample such as a biological fluid or biopsy sample. Preferably, the SOC/CRAC polypeptides that are useful for generating binding polypeptides are unique polypeptides and, therefore, binding of the antibody to a SOC/CRAC polypeptide in a sample is selective for the SOC/CRAC polypeptide.

Expression vectors containing all the necessary elements for expression are commercially available and known to those skilled in the art. See, e.g., Sambrook et al.,

5 *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor Laboratory Press, 1989. Cells are genetically engineered by the introduction into the cells of heterologous DNA (RNA) encoding a SOC/CRAC polypeptide or fragment or variant thereof. The heterologous DNA (RNA) is placed under operable control of transcriptional elements to permit the expression of the heterologous DNA in the host cell.

10 Preferred systems for mRNA expression in mammalian cells are those such as pRc/CMV (available from Invitrogen, Carlsbad, CA) that contain a selectable marker such as a gene that confers G418 resistance (which facilitates the selection of stably transfected cell lines) and the human cytomegalovirus (CMV) enhancer-promoter sequences. Additionally, suitable for expression in primate or canine cell lines is the pCEP4 vector (Invitrogen, Carlsbad, CA), which contains an Epstein Barr virus (EBV) origin of replication, facilitating the maintenance of plasmid as a multicopy extrachromosomal element. Another expression vector is the pEF-BOS plasmid containing the promoter of polypeptide Elongation Factor 1 α , which stimulates efficiently transcription *in vitro*. The plasmid is described by Mishizuma 15 and Nagata (*Nuc. Acids Res.* 18:5322, 1990), and its use in transfection experiments is disclosed by, for example, Demoulin (*Mol. Cell. Biol.* 16:4710-4716, 1996). Still another preferred expression vector is an adenovirus, described by Stratford-Perricaudet, which is defective for E1 and E3 proteins (*J. Clin. Invest.* 90:626-630, 1992). The use of the adenovirus as an Adeno.P1A recombinant is disclosed by Warnier et al., in intradermal 20 injection in mice for immunization against P1A (*Int. J. Cancer*, 67:303-310, 1996).

25 The invention also embraces so-called expression kits, which allow the artisan to prepare a desired expression vector or vectors. Such expression kits include at least separate portions of each of the previously discussed coding sequences. Other components may be added, as desired, as long as the previously mentioned sequences, which are required, are included.

It will also be recognized that the invention embraces the use of the above described, 30 SOC/CRAC cDNA sequence containing expression vectors, to transfect host cells and cell lines, by these prokaryotic (e.g., *E. coli*), or eukaryotic (e.g., CHO cells, COS cells, yeast expression systems and recombinant baculovirus expression in insect cells). Especially useful are mammalian cells such as mouse, hamster, pig, goat, primate, etc. They may be of a wide variety of tissue types, and include primary cells and cell lines. Specific examples include dendritic cells, U293 cells, peripheral blood leukocytes, bone marrow stem cells and embryonic stem cells. The invention also permits the construction of SOC/CRAC gene

-24-

“knock-outs” in cells and in animals, providing materials for studying certain aspects of SOC/CRAC calcium channel activity.

The invention also provides isolated polypeptides (including whole proteins and partial proteins), encoded by the foregoing SOC/CRAC nucleic acids, and include the polypeptides of SEQ ID NO:2, 4, 6, 8, 24, 26, 28, 30, 32, and unique fragments thereof. Such polypeptides are useful, for example, to regulate calcium transport-mediated cell growth, differentiation and proliferation, to generate antibodies, as components of immunoassays, etc. Polypeptides can be isolated from biological samples including tissue or cell homogenates, and can also be expressed recombinantly in a variety of prokaryotic and eukaryotic expression systems by constructing an expression vector appropriate to the expression system, introducing the expression vector into the expression system, and isolating the recombinantly expressed protein. Short polypeptides, including antigenic peptides (such as are presented by MHC molecules on the surface of a cell for immune recognition) also can be synthesized chemically using well-established methods of peptide synthesis.

A unique fragment of a SOC/CRAC polypeptide, in general, has the features and characteristics of unique fragments as discussed above in connection with nucleic acids. As will be recognized by those skilled in the art, the size of the unique fragment will depend upon factors such as whether the fragment constitutes a portion of a conserved protein domain. Thus, some regions of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and/or SEQ ID NO:32, will require longer segments to be unique while others will require only short segments, typically between 5 and 12 amino acids (e.g. 5, 6, 7, 8, 9, 10, 11 and 12 amino acids long or more, including each integer up to the full length, >1,000 amino acids long). Virtually any segment of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and/or SEQ ID NO:32, excluding the ones that share identity with it (the polypeptides identified in Table II - SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, and GenBank Acc. Nos. AB001535, AA592910, D86107, AF071787, Z77132, Z83117, Z68333, AA708532, AA551759, AA932133, R47363, N31660, NP003298, CAB00861, NP002411, CAA92726, CAB05572) that is 9 or more amino acids in length will be unique.

Unique fragments of a polypeptide preferably are those fragments which retain a distinct functional capability of the polypeptide. Functional capabilities which can be retained in a unique fragment of a polypeptide include Ca^{2+} fluxing, high selectivity, a unitary

conductance below the detection level of the patch clamp method, and/or and are subject to inhibition by high intracellular calcium levels.

One important aspect of a unique fragment is its ability to act as a signature for identifying the polypeptide. Optionally, another aspect of a unique fragment is its ability to provide an immune response in an animal. Those skilled in the art are well versed in methods for selecting unique amino acid sequences, typically on the basis of the ability of the unique fragment to selectively distinguish the sequence of interest from non-family members. A comparison of the sequence of the fragment to those on known databases typically is all that is necessary.

The invention embraces variants of the SOC/CRAC polypeptides described above. As used herein, a "variant" of a SOC/CRAC polypeptide is a polypeptide which contains one or more modifications to the primary amino acid sequence of a SOC/CRAC polypeptide. Modifications which create a SOC/CRAC polypeptide variant are typically made to the nucleic acid which encodes the SOC/CRAC polypeptide, and can include deletions, point mutations, truncations, amino acid substitutions and addition of amino acids or non-amino acid moieties to: 1) reduce or eliminate a calcium channel activity of a SOC/CRAC polypeptide; 2) enhance a property of a SOC/CRAC polypeptide, such as protein stability in an expression system or the stability of protein-protein binding; 3) provide a novel activity or property to a SOC/CRAC polypeptide, such as addition of an antigenic epitope or addition of a detectable moiety; or 4) to provide equivalent or better binding to a SOC/CRAC polypeptide receptor or other molecule. Alternatively, modifications can be made directly to the polypeptide, such as by cleavage, addition of a linker molecule, addition of a detectable moiety, such as biotin, addition of a fatty acid, and the like. Modifications also embrace fusion proteins comprising all or part of the SOC/CRAC amino acid sequence. One of skill in the art will be familiar with methods for predicting the effect on protein conformation of a change in protein sequence, and can thus "design" a variant SOC/CRAC polypeptide according to known methods. One example of such a method is described by Dahiyat and Mayo in *Science* 278:82-87, 1997, whereby proteins can be designed *de novo*. The method can be applied to a known protein to vary only a portion of the polypeptide sequence. By applying the computational methods of Dahiyat and Mayo, specific variants of a SOC/CRAC calcium channel polypeptide can be proposed and tested to determine whether the variant retains a desired conformation.

5 Variants can include SOC/CRAC polypeptides which are modified specifically to alter a feature of the polypeptide unrelated to its physiological activity. For example, cysteine residues can be substituted or deleted to prevent unwanted disulfide linkages. Similarly, certain amino acids can be changed to enhance expression of a SOC/CRAC polypeptide by eliminating proteolysis by proteases in an expression system (e.g., dibasic amino acid residues in yeast expression systems in which KEX2 protease activity is present).

10 Mutations of a nucleic acid which encodes a SOC/CRAC polypeptide preferably preserve the amino acid reading frame of the coding sequence and, preferably, do not create regions in the nucleic acid which are likely to hybridize to form secondary structures, such as hairpins or loops, which can be deleterious to expression of the variant polypeptide.

15 Mutations can be made by selecting an amino acid substitution, or by random mutagenesis of a selected site in a nucleic acid which encodes the polypeptide. Variant polypeptides are then expressed and tested for one or more activities to determine which mutation provides a variant polypeptide with the desired properties. Further mutations can be made to variants (or to non-variant SOC/CRAC polypeptides) which are silent as to the amino acid sequence of the polypeptide, but which provide preferred codons for translation in a particular host. The preferred codons for translation of a nucleic acid in, e.g., *E. coli*, are well known to those of ordinary skill in the art. Still other mutations can be made to the noncoding sequences of a SOC/CRAC gene or cDNA clone to enhance expression of the polypeptide.

20 The skilled artisan will realize that conservative amino acid substitutions may be made in SOC/CRAC polypeptides to provide functionally equivalent variants of the foregoing polypeptides, i.e., the variants retain the functional capabilities of the SOC/CRAC polypeptides. As used herein, a "conservative amino acid substitution" refers to an amino acid substitution which does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references which compile such methods, e.g. *Molecular Cloning: A Laboratory Manual*, J. 25 Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Exemplary functionally equivalent variants of the SOC/CRAC polypeptides include conservative amino acid substitutions of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and/or SEQ ID NO:32. Conservative substitutions of amino acids 30

include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D.

Thus functionally equivalent variants of SOC/CRAC polypeptides, i.e., variants of SOC/CRAC polypeptides which retain the function of the natural SOC/CRAC polypeptides, are contemplated by the invention. Conservative amino-acid substitutions in the amino acid sequence of SOC/CRAC polypeptides typically are made by alteration of a nucleic acid encoding SOC/CRAC polypeptides (e.g., SEQ ID NOS:1, 3, 5, 7, 23, 25, 27, 29, 31). Such substitutions can be made by a variety of methods known to one of ordinary skill in the art. For example, amino acid substitutions may be made by PCR-directed mutation, site-directed mutagenesis according to the method of Kunkel (Kunkel, *Proc. Nat. Acad. Sci. U.S.A.* 82: 488-492, 1985), or by chemical synthesis of a gene encoding a SOC/CRAC polypeptide. The activity of functionally equivalent fragments of SOC/CRAC polypeptides can be tested by cloning the gene encoding the altered SOC/CRAC polypeptide into a bacterial or mammalian expression vector, introducing the vector into an appropriate host cell, expressing the altered SOC/CRAC polypeptide, and testing for a functional capability of the SOC/CRAC polypeptides as disclosed herein (e.g., SOC/CRAC calcium channel activity).

The invention as described herein has a number of uses, some of which are described elsewhere herein. First, the invention permits isolation of SOC/CRAC polypeptides, including the isolation of the complete SOC/CRAC polypeptide. A variety of methodologies well-known to the skilled practitioner can be utilized to obtain isolated SOC/CRAC molecules. The polypeptide may be purified from cells which naturally produce the polypeptide by chromatographic means or immunological recognition. Alternatively, an expression vector may be introduced into cells to cause production of the polypeptide. In another method, mRNA transcripts may be microinjected or otherwise introduced into cells to cause production of the encoded polypeptide. Translation of SOC/CRAC mRNA in cell-free extracts such as the reticulocyte lysate system also may be used to produce SOC/CRAC polypeptides. Those skilled in the art also can readily follow known methods for isolating SOC/CRAC polypeptides. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography and immune-affinity chromatography.

The invention also provides, in certain embodiments, "dominant negative" polypeptides derived from SOC/CRAC polypeptides. A dominant negative polypeptide is an

inactive variant of a protein, which, by interacting with the cellular machinery, displaces an active protein from its interaction with the cellular machinery or competes with the active protein, thereby reducing the effect of the active protein. For example, a dominant negative receptor which binds a ligand but does not transmit a signal in response to binding of the ligand can reduce the biological effect of expression of the ligand. Likewise, a dominant negative inactive SOC/CRAC calcium channel which interacts normally with the cell membrane but which does not mediate calcium transport can reduce calcium transport in a cell. Similarly, a dominant negative transcription factor which binds to a promoter site in the control region of a gene but does not increase gene transcription can reduce the effect of a normal transcription factor by occupying promoter binding sites without increasing transcription.

The end result of the expression of a dominant negative polypeptide in a cell is a reduction in function of active proteins. One of ordinary skill in the art can assess the potential for a dominant negative variant of a protein, and using standard mutagenesis techniques to create one or more dominant negative variant polypeptides. See, e.g., U.S. Patent No. 5,580,723 and Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor Laboratory Press. The skilled artisan then can test the population of mutagenized polypeptides for diminution in a selected and/or for retention of such an activity. Other similar methods for creating and testing dominant negative variants of a protein will be apparent to one of ordinary skill in the art.

According to another aspect, the invention provides a method for isolating a SOC/CRAC molecule having SOC/CRAC calcium channel activity. The method involves contacting a binding molecule that is a SOC/CRAC nucleic acid or a SOC/CRAC binding polypeptide with a sample containing one or more SOC/CRAC molecules under conditions that allow such binding (see earlier discussion) to form a complex, detecting the presence of the complex, isolating the SOC/CRAC molecule from the complex, and determining whether the isolated SOC/CRAC molecule has SOC/CRAC calcium channel activity. Thus, the invention is useful for identifying and isolating full length complementary (cDNA) or genomic nucleic acids encoding SOC/CRAC polypeptides having SOC/CRAC calcium channel activity. Identification and isolation of such nucleic acids and polypeptides may be accomplished by hybridizing/binding, under appropriate conditions well known in the art, libraries and/or restriction enzyme-digested human nucleic acids, with a labeled SOC/CRAC molecular probe. As used herein, a "label" includes molecules that are incorporated into, for

example, a SOC/CRAC molecule (nucleic acid or peptide), that can be directly or indirectly detected. A wide variety of detectable labels are well known in the art that can be used, and include labels that provide direct detection (e.g., radioactivity, luminescence, optical or electron density, etc), or indirect detection (e.g., epitope tag such as the FLAG epitope, enzyme tag such as horseseradish peroxidase, etc.). The label may be bound to a SOC/CRAC binding partner, or incorporated into the structure of the binding partner.

A variety of methods may be used to detect the label, depending on the nature of the label and other assay components. For example, the label may be detected while bound to the solid substrate or subsequent to separation from the solid substrate. Labels may be directly detected through optical or electron density, radioactive emissions, nonradioactive energy transfers, etc. or indirectly detected with antibody conjugates, strepavidin-biotin conjugates, etc. Methods for detecting the labels are well known in the art. Once a library clone or hybridizing fragment is identified in the hybridization/binding reaction, it can be further isolated by employing standard isolation/cloning techniques known to those of skill in the art. See, generally, Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, 2nd Edition, Cold Spring Harbor Laboratory Press. In addition, nucleic acid amplification techniques well known in the art, may also be used to locate splice variants of calcium channel (or calcium channel subunits) with SOC/CRAC calcium channel activity. Size and sequence determinations of the amplification products can reveal splice variants.

The foregoing isolated nucleic acids and polypeptides may then be compared to the nucleic acids and polypeptides of the present invention in order to identify homogeneity or divergence of the sequences, and be further characterized functionally to determine whether they belong to a family of molecules with SOC/CRAC calcium channel activity (for methodology see under the Examples section).

The isolation of the SOC/CRAC cDNA and/or partial sequences thereof also makes it possible for the artisan to diagnose a disorder characterized by an aberrant expression of SOC/CRAC. These methods involve determining expression of the SOC/CRAC gene, and/or SOC/CRAC polypeptides derived therefrom. In the former situation, such determinations can be carried out via any standard nucleic acid determination assay, including the polymerase chain reaction, or assaying with labeled hybridization probes as exemplified below. In the latter situation, such determination can be carried out via any standard immunological assay using, for example, antibodies which bind to the SOC/CRAC protein.

5 The invention also embraces isolated peptide binding agents which, for example, can be antibodies or fragments of antibodies ("binding polypeptides"), having the ability to selectively bind to SOC/CRAC polypeptides. Antibodies include polyclonal and monoclonal antibodies, prepared according to conventional methodology. In certain embodiments, the invention excludes binding agents (e.g., antibodies) that bind to the polypeptides encoded by the nucleic acids of SEQ ID NOs: 10, 12, 13, 14, 15, 17, and 19.

10 Significantly, as is well-known in the art, only a small portion of an antibody molecule, the paratope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W.R. (1986) The Experimental Foundations of Modern Immunology Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford). The pFc' and Fc regions, for example, are effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region, designated an F(ab')₂ fragment, retains both of the antigen binding sites of an intact antibody. Similarly, 15 an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region, designated an Fab fragment, retains one of the antigen binding sites of an intact antibody molecule. Proceeding further, Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd. The Fd fragments are the major determinant of antibody specificity (a single Fd fragment may 20 be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.

25 Within the antigen-binding portion of an antibody, as is well-known in the art, there are complementarity determining regions (CDRs), which directly interact with the epitope of the antigen, and framework regions (FRs), which maintain the tertiary structure of the paratope (see, in general, Clark, 1986; Roitt, 1991). In both the heavy chain Fd fragment and the light chain of IgG immunoglobulins, there are four framework regions (FR1 through FR4) separated respectively by three complementarity determining regions (CDR1 through CDR3). The CDRs, and in particular the CDR3 regions, and more particularly the heavy chain CDR3, 30 are largely responsible for antibody specificity.

It is now well-established in the art that the non-CDR regions of a mammalian antibody may be replaced with similar regions of conspecific or heterospecific antibodies while retaining the epitopic specificity of the original antibody. This is most clearly manifested in the development and use of "humanized" antibodies in which non-human CDRs

are covalently joined to human FR and/or Fc/pFc' regions to produce a functional antibody. Thus, for example, PCT International Publication Number WO 92/04381 teaches the production and use of humanized murine RSV antibodies in which at least a portion of the murine FR regions have been replaced by FR regions of human origin. Such antibodies, including fragments of intact antibodies with antigen-binding ability, are often referred to as "chimeric" antibodies.

Thus, as will be apparent to one of ordinary skill in the art, the present invention also provides for F(ab')₂, Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab')₂ fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or non-human sequences. The present invention also includes so-called single chain antibodies.

Thus, the invention involves binding polypeptides of numerous size and type that bind selectively to SOC/CRAC polypeptides, and complexes containing SOC/CRAC polypeptides. These binding polypeptides also may be derived also from sources other than antibody technology. For example, such polypeptide binding agents can be provided by degenerate peptide libraries which can be readily prepared in solution, in immobilized form, as bacterial flagella peptide display libraries or as phage display libraries. Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptides and non-peptide synthetic moieties.

Phage display can be particularly effective in identifying binding peptides useful according to the invention. Briefly, one prepares a phage library (using e.g. m13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures. The inserts may represent, for example, a completely degenerate or biased array. One then can select phage-bearing inserts which bind to the SOC/CRAC polypeptide or a complex containing a SOC/CRAC polypeptide. This process can be repeated through several cycles of reselection of phage that bind to the SOC/CRAC polypeptide or complex. Repeated rounds lead to enrichment of phage bearing particular sequences. DNA sequence analysis can be conducted to identify the sequences of the expressed polypeptides. The minimal linear

portion of the sequence that binds to the SOC/CRAC polypeptide or complex can be determined. One can repeat the procedure using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. Yeast two-hybrid screening methods also may be used to identify polypeptides that bind to the SOC/CRAC polypeptides. Thus, the SOC/CRAC polypeptides of the invention, or a fragment thereof, or complexes of SOC/CRAC can be used to screen peptide libraries, including phage display libraries, to identify and select peptide binding polypeptides that selectively bind to the SOC/CRAC polypeptides of the invention. Such molecules can be used, as described, for screening assays, for purification protocols, for interfering directly with the functioning of SOC/CRAC and for other purposes that will be apparent to those of ordinary skill in the art.

A SOC/CRAC polypeptide, or a fragment thereof, also can be used to isolate naturally occurring, polypeptide binding partners which may associate with the SOC/CRAC polypeptide in the membrane of a cell. Isolation of binding partners may be performed according to well-known methods. For example, isolated SOC/CRAC polypeptides can be attached to a substrate, and then a solution suspected of containing an SOC/CRAC binding partner may be applied to the substrate. If the binding partner for SOC/CRAC polypeptides is present in the solution, then it will bind to the substrate-bound SOC/CRAC polypeptide. The binding partner then may be isolated. Other proteins which are binding partners for SOC/CRAC, may be isolated by similar methods without undue experimentation.

The invention also provides novel kits which could be used to measure the levels of the nucleic acids of the invention, expression products of the invention or anti-SOC/CRAC antibodies. In the case of nucleic acid detection, pairs of primers for amplifying SOC/CRAC nucleic acids can be included. The preferred kits would include controls such as known amounts of nucleic acid probes, SOC/CRAC epitopes (such as SOC/CRAC expression products) or anti-SOC/CRAC antibodies, as well as instructions or other printed material. In certain embodiments the printed material can characterize risk of developing a disorder that is characterized by aberrant SOC/CRAC polypeptide expression based upon the outcome of the assay. The reagents may be packaged in containers and/or coated on wells in predetermined amounts, and the kits may include standard materials such as labeled immunological reagents (such as labeled anti-IgG antibodies) and the like. One kit is a packaged polystyrene microtiter plate coated with a SOC/CRAC polypeptide and a container containing labeled anti-human IgG antibodies. A well of the plate is contacted with, for example, serum, washed

and then contacted with the anti-IgG antibody. The label is then detected. A kit embodying features of the present invention is comprised of the following major elements: packaging an agent of the invention, a control agent, and instructions. Packaging is a box-like structure for holding a vial (or number of vials) containing an agent of the invention, a vial (or number of vials) containing a control agent, and instructions. Individuals skilled in the art can readily modify packaging to suit individual needs.

Another aspect of the invention is a method for determining the level of SOC/CRAC expression in a subject. As used herein, a subject is a human, non-human primate, cow, horse, pig, sheep, goat, dog, cat or rodent. In all embodiments, human subjects are preferred. Expression is defined either as SOC/CRAC mRNA expression or SOC/CRAC polypeptide expression. Various methods can be used to measure expression. Preferred embodiments of the invention include PCR and Northern blotting for measuring mRNA expression, and monoclonal or polyclonal SOC/CRAC antisera as reagents to measure SOC/CRAC polypeptide expression. In certain embodiments, test samples such as biopsy samples, and biological fluids such as blood, are used as test samples. SOC/CRAC expression in a test sample of a subject is compared to SOC/CRAC expression in control sample to, e.g., assess the presence or absence or stage of a proliferative disorder (e.g., a lymphocyte proliferative disorder) in a subject.

SOC/CRAC polypeptides preferably are produced recombinantly, although such polypeptides may be isolated from biological extracts. Recombinantly produced SOC/CRAC polypeptides include chimeric proteins comprising a fusion of a SOC/CRAC protein with another polypeptide, e.g., a polypeptide capable of providing or enhancing protein-protein binding, sequence specific nucleic acid binding (such as GAL4), enhancing stability of the SOC/CRAC polypeptide under assay conditions, or providing a detectable moiety, such as green fluorescent protein. A polypeptide fused to a SOC/CRAC polypeptide or fragment may also provide means of readily detecting the fusion protein, e.g., by immunological recognition or by fluorescent labeling.

The invention is also useful in the generation of transgenic non-human animals. As used herein, "transgenic non-human animals" includes non-human animals having one or more exogenous nucleic acid molecules incorporated in germ line cells and/or somatic cells. Thus the transgenic animal include "knockout" animals having a homozygous or heterozygous gene disruption by homologous recombination, animals having episomal or chromosomally incorporated expression vectors, etc. Knockout animals can be prepared by

homologous recombination using embryonic stem cells as is well known in the art. The recombination may be facilitated using, for example, the cre/lox system or other recombinase systems known to one of ordinary skill in the art. In certain embodiments, the recombinase system itself is expressed conditionally, for example, in certain tissues or cell types, at certain 5 embryonic or post-embryonic developmental stages, inducibly by the addition of a compound which increases or decreases expression, and the like. In general, the conditional expression vectors used in such systems use a variety of promoters which confer the desired gene expression pattern (e.g., temporal or spatial). Conditional promoters also can be operably linked to SOC/CRAC nucleic acid molecules to increase expression of SOC/CRAC in a 10 regulated or conditional manner. *Trans*-acting negative regulators of SOC/CRAC calcium channel activity or expression also can be operably linked to a conditional promoter as described above. Such *trans*-acting regulators include antisense SOC/CRAC nucleic acids molecules, nucleic acid molecules which encode dominant negative SOC/CRAC molecules, 15 ribozyme molecules specific for SOC/CRAC nucleic acids, and the like. The transgenic non-human animals are useful in experiments directed toward testing biochemical or physiological effects of diagnostics or therapeutics for conditions characterized by increased or decreased SOC/CRAC expression. Other uses will be apparent to one of ordinary skill in the art.

The invention further provides efficient methods of identifying agents or lead 20 compounds for agents active at the level of a SOC/CRAC polypeptide (e.g., a SOC/CRAC polypeptide) or SOC/CRAC fragment dependent cellular function. In particular, such functions include interaction with other polypeptides or fragments thereof, and selective 25 binding to certain molecules (e.g., agonists and antagonists). Generally, the screening methods involve assaying for compounds which interfere with SOC/CRAC calcium channel activity, although compounds which enhance SOC/CRAC calcium channel activity also can 30 be assayed using the screening methods. Such methods are adaptable to automated, high throughput screening of compounds. The target therapeutic indications for pharmacological agents detected by the screening methods are limited only in that the target cellular function be subject to modulation by alteration of the formation of a complex comprising a SOC/CRAC polypeptide or fragment thereof and one or more SOC/CRAC binding targets. Target indications include cellular processes modulated by SOC/CRAC such as Ca^{2+} fluxing, and affected by SOC/CRAC ability to form complexes with other molecules and polypeptides as, for example, may be present in the cell membrane.

5 A wide variety of assays for pharmacological agents are provided, including, expression assays, labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays, cell-based assays such as calcium transport assays, etc. For example, two-hybrid screens are used to rapidly examine the effect of transfected nucleic acids on the intracellular binding of SOC/CRAC or SOC/CRAC fragments to specific intracellular targets (e.g. a tyrosine kinase). The transfected nucleic acids can encode, for example, combinatorial peptide libraries or cDNA libraries. Convenient reagents for such assays, e.g., GAL4 fusion proteins, are known in the art. An exemplary cell-based assay involves transfecting a cell with a nucleic acid encoding a SOC/CRAC polypeptide fused to a 10 GAL4 DNA binding domain and a nucleic acid encoding a reporter gene operably linked to a gene expression regulatory region, such as one or more GAL4 binding sites. Activation of reporter gene transcription occurs when the SOC/CRAC and reporter fusion polypeptides bind such as to enable transcription of the reporter gene. Agents which modulate a SOC/CRAC polypeptide mediated cell function are then detected through a change in the expression of reporter gene. Methods for determining changes in the expression of a reporter gene are 15 known in the art.

In an expression system, for example, a SOC/CRAC polypeptide is attached to a membrane, the membrane preferably separating two fluid environments and being otherwise not permeable to Ca^{2+} . Such separation is preferred so that a change in Ca^{2+} concentration on 20 either side of the membrane is mediated only through the attached SOC/CRAC polypeptide. Preferably, a SOC/CRAC polypeptide is expressed in an intact cell and is present on the cell-membrane (as in physiologic conditions). The cell expressing the SOC/CRAC polypeptide is 25 preferably a eukaryotic cell, and the SOC/CRAC polypeptide is preferably recombinantly expressed, although cells naturally expressing a SOC/CRAC polypeptide may also be used. Synthetic membranes, however, containing SOC/CRAC polypeptides may also be used. See, e.g., K. Kiselyov, et al., Functional interaction between InsP3 receptors and store-operated Htrp3 channels, Nature 396, 478-82 (1998).

The cell expressing the SOC/CRAC polypeptide is incubated under conditions which, 30 in the absence of the candidate agent, permit calcium flux into the cell and allow detection of a reference calcium concentration. For example, depletion of intracellular calcium stores with thapsigargin or other agents (Putney, J.W. Jr., in Capacitative Calcium Entry, R.G. Landes Co. and Chapman & Hall, 1997) would produce a given level of SOC/CRAC channel activation and a given reference calcium concentration. Detection of a decrease in the

foregoing activities (i.e., a decrease in the intracellular calcium concentration) relative to the reference calcium concentration indicates that the candidate agent is a lead compound for an agent to inhibit SOC/CRAC calcium channel activity. Preferred SOC/CRAC polypeptides include the polypeptides of claim 15.

5 SOC/CRAC fragments used in the methods, when not produced by a transfected nucleic acid are added to an assay mixture as an isolated polypeptide. SOC/CRAC polypeptides preferably are produced recombinantly, although such polypeptides may be isolated from biological extracts or chemically synthesized. Recombinantly produced SOC/CRAC polypeptides include chimeric proteins comprising a fusion of a SOC/CRAC 10 protein with another polypeptide, e.g., a polypeptide capable of providing or enhancing protein-protein binding, sequence specific nucleic acid binding (such as GAL4), enhancing stability of the SOC/CRAC polypeptide under assay conditions, or providing a detectable moiety, such as green fluorescent protein or Flag epitope.

15 The assay mixture is comprised of a SOC/CRAC polypeptide binding target (candidate agent) capable of interacting with a SOC/CRAC polypeptide. While natural SOC/CRAC binding targets may be used, it is frequently preferred to use portions (e.g., peptides or nucleic acid fragments) or analogs (i.e., agents which mimic the SOC/CRAC binding properties of the natural binding target for purposes of the assay) of the SOC/CRAC 20 binding target so long as the portion or analog provides binding affinity and avidity to the SOC/CRAC polypeptide (or fragment thereof) measurable in the assay.

25 The assay mixture also comprises a candidate agent (binding target, e.g., agonist/antagonist). Typically, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a different response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration of agent or at a concentration of agent below the limits of assay detection. Candidate agents encompass numerous chemical classes, although typically they are organic compounds. Preferably, the candidate agents are small organic compounds, i.e., those having a molecular weight of more than 50 yet less than about 2500, preferably less than about 1000 and, more preferably, less than about 500. Candidate agents comprise functional chemical groups necessary for 30 structural interactions with polypeptides and/or nucleic acids, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups and more preferably at least three of the functional chemical groups. The candidate agents can comprise cyclic carbon or heterocyclic structure and/or aromatic or

5 polyaromatic structures substituted with one or more of the above-identified functional groups. Candidate agents also can be biomolecules such as peptides, saccharides, fatty acids, sterols, isoprenoids, purines, pyrimidines, derivatives or structural analogs of the above, or combinations thereof and the like. Where the agent is a nucleic acid, the agent typically is a
DNA or RNA molecule, although modified nucleic acids as defined herein are also contemplated.

10 Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides, synthetic organic combinatorial libraries, phage display libraries of random peptides, and the like. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural and synthetically produced libraries and compounds can be
15 readily modified through conventional chemical, physical, and biochemical means. Further, known agents may be subjected to directed or random chemical modifications such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs of the agents. Non-SOC/CRAC calcium channel agonists and antagonists, for example, include agents such as dihydropyridines (DHPs), phenylalkylamines, omega conotoxin (omega-CgTx) and pyrazonoylguanidines.

20 A variety of other reagents also can be included in the mixture. These include reagents such as salts, buffers, neutral proteins (e.g., albumin), detergents, etc. which may be used to facilitate optimal protein-protein, protein-nucleic acid, and/or protein/membrane component binding association. Such a reagent may also reduce non-specific or background interactions of the reaction components. Other reagents that improve the efficiency of the
25 assay such as protease, inhibitors, nuclease inhibitors, antimicrobial agents, and the like may also be used.

30 The mixture of the foregoing assay materials is incubated under conditions whereby, but for the presence of the candidate agent, the SOC/CRAC polypeptide specifically binds the cellular binding target, a portion thereof or analog thereof. The order of addition of components, incubation temperature, time of incubation, and other perimeters of the assay may be readily determined. Such experimentation merely involves optimization of the assay parameters, not the fundamental composition of the assay. Incubation temperatures typically

are between 4°C and 40°C. Incubation times preferably are minimized to facilitate rapid, high throughput screening, and typically are between 0.1 and 10 hours.

After incubation, the presence or absence of specific binding between the SOC/CRAC polypeptide and one or more binding targets is detected by any convenient method available to the user. For cell free binding type assays, a separation step is often used to separate bound from unbound components. The separation step may be accomplished in a variety of ways. Conveniently, at least one of the components is immobilized on a solid substrate, from which the unbound components may be easily separated. The solid substrate can be made of a wide variety of materials and in a wide variety of shapes, e.g., microtiter plate, microbead, dipstick, resin particle, etc. The substrate preferably is chosen to maximum signal to noise ratios, primarily to minimize background binding, as well as for ease of separation and cost.

Separation may be effected for example, by removing a bead or dipstick from a reservoir, emptying or diluting a reservoir such as a microtiter plate well, rinsing a bead, particle, chromatographic column or filter with a wash solution or solvent. The separation step preferably includes multiple rinses or washes. For example, when the solid substrate is a microtiter plate, the wells may be washed several times with a washing solution, which typically includes those components of the incubation mixture that do not participate in specific bindings such as salts, buffer, detergent, non-specific protein, etc. Where the solid substrate is a magnetic bead, the beads may be washed one or more times with a washing solution and isolated using a magnet.

Detection may be effected in any convenient way for cell-based assays such as two- or three-hybrid screens. The transcript resulting from a reporter gene transcription assay of SOC/CRAC polypeptide interacting with a target molecule typically encodes a directly or indirectly detectable product, e.g., β -galactosidase activity, luciferase activity, and the like. For cell-free binding assays, one of the components usually comprises, or is coupled to, a detectable label. A wide variety of labels can be used, such as those that provide direct detection (e.g., radioactivity, luminescence, optical or electron density, etc.) or indirect detection (e.g., epitope tag such as the FLAG epitope, enzyme tag such as horseradish peroxidase, etc.). The label may be bound to a SOC/CRAC binding partner, or incorporated into the structure of the binding partner.

A variety of methods may be used to detect the label, depending on the nature of the label and other assay components. For example, the label may be detected while bound to the solid substrate or subsequent to separation from the solid substrate. Labels may be directly

detected through optical or electron density, radioactive emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, strepavidin-biotin conjugates, etc. Methods for detecting the labels are well known in the art.

Of particular importance in any of the foregoing assays and binding studies is the use of a specific sequence motif identified in the SOC-2/CRAC-1 polypeptide sequence as a kinase catalytic domain. According to the invention, amino acids 999-1180 of the SOC-2/CRAC-1 polypeptide (SEQ ID NO:24) (or a fragment thereof), show a localized homology with the catalytic domains of eukaryotic elongation factor-2 kinase (eEF-2 kinase, GenBank Acc. no. U93850) and *Dictyostelium* myocin heavy chain kinase A (MHCK A, GenBank Acc. no. U16856), as disclosed in Ryazanov AG, et al., *Proc Natl Acad Sci U S A*, 1997, 94(10):4884-4889. Therefore, according to the invention, a method for identifying agents useful in the modulation of SOC/CRAC polypeptide kinase activity is provided. The method involves contacting a SOC/CRAC polypeptide with kinase activity, that includes, for example, amino acids 999-1180 of the SOC-2/CRAC-1 polypeptide (SEQ ID NO:24) with a candidate agent suspected of modulating SOC/CRAC kinase activity, under conditions sufficient to allow the candidate agent to interact with the SOC/CRAC polypeptide and modulate its kinase activity; detecting a kinase activity associated with the SOC/CRAC polypeptide in the presence of the candidate agent; and comparing the kinase activity in the previous step with a control kinase activity of a SOC/CRAC polypeptide in the absence of the candidate agent to determine whether the candidate agent modulates (increases or decreases) SOC/CRAC kinase activity. Other controls for kinase activity can also be performed at the same time, for example, by utilizing eEF-2 kinase and/or *Dictyostelium* MHC Kinase A, in a similar manner to the SOC/CRAC member. Methods for performing such kinase activity assays are well known in the art.

The invention thus provides SOC/CRAC-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, SOC/CRAC-specific agents are useful in a variety of diagnostic and therapeutic applications, especially where disease or disease prognosis is associated with altered SOC/CRAC and SOC/CRAC calcium channel fluxing characteristics. Novel SOC/CRAC-specific binding agents include SOC/CRAC-specific antibodies and other natural intracellular and extracellular binding agents identified with assays such as two hybrid screens, and non-natural intracellular and extracellular binding agents identified in screens of chemical libraries and the like.

5 In general, the specificity of SOC/CRAC binding to a specific molecule is determined by binding equilibrium constants. Targets which are capable of selectively binding a SOC/CRAC polypeptide preferably have binding equilibrium constants of at least about 10^7 M⁻¹, more preferably at least about 10^8 M⁻¹, and most preferably at least about 10^9 M⁻¹. The wide variety of cell based and cell free assays may be used to demonstrate SOC/CRAC-
10 specific binding. Cell based assays include one, two and three hybrid screens, assays in which SOC/CRAC-mediated transcription is inhibited or increased, etc. Cell free assays include SOC/CRAC-protein binding assays, immunoassays, etc. Other assays useful for screening agents which bind SOC/CRAC polypeptides include fluorescence resonance energy transfer (FRET), and electrophoretic mobility shift analysis (EMSA).

15 Various techniques may be employed for introducing nucleic acids of the invention into cells, depending on whether the nucleic acids are introduced *in vitro* or *in vivo* in a host. Such techniques include transfection of nucleic acid-CaPO₄ precipitates, transfection of nucleic acids associated with DEAE, transfection with a retrovirus including the nucleic acid of interest, liposome mediated transfection, and the like. For certain uses, it is preferred to target the nucleic acid to particular cells. In such instances, a vehicle used for delivering a nucleic acid of the invention into a cell (e.g., a retrovirus, or other virus; a liposome) can have a targeting molecule attached thereto. For example, a molecule such as an antibody specific for a surface membrane protein on the target cell or a ligand for a receptor on the target cell
20 can be bound to or incorporated within the nucleic acid delivery vehicle. For example, where liposomes are employed to deliver the nucleic acids of the invention, proteins which bind to a surface membrane protein associated with endocytosis may be incorporated into the liposome formulation for targeting and/or to facilitate uptake. Such proteins include capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half life, and the like. Polymeric delivery systems also have been used successfully to deliver nucleic acids into cells, as is known by those skilled in the art. Such systems even permit oral delivery of nucleic acids.

25 Other delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of the anti-inflammatory agent, increasing convenience to the subject and the physician. Many types of release delivery systems are available and known to those of ordinary skill in the art. They include polymer base systems such as poly(lactide-glycolide), copolyoxalates, polycaprolactones,

-41-

polyesteramides, polyorthoesters, polyhydroxybutyric acid, and polyanhydrides. Microcapsules of the foregoing polymers containing drugs are described in, for example, U.S. Patent 5,075,109. Delivery systems also include non-polymer systems that are: lipids including sterols such as cholesterol, cholesterol esters and fatty acids or neutral fats such as 5 mono- di- and tri-glycerides; hydrogel release systems; sylastic systems; peptide based systems; wax coatings; compressed tablets using conventional binders and excipients; partially fused implants; and the like. Specific examples include, but are not limited to: (a) erosional systems in which an agent of the invention is contained in a form within a matrix such as those described in U.S. Patent Nos. 4,452,775, 4,675,189, and 5,736,152, and (b) 10 diffusional systems in which an active component permeates at a controlled rate from a polymer such as described in U.S. Patent Nos. 3,854,480, 5,133,974 and 5,407,686. In addition, pump-based hardware delivery systems can be used, some of which are adapted for implantation.

15 Use of a long-term sustained release implant may be particularly suitable for treatment of chronic conditions. Long-term release, are used herein, means that the implant is constructed and arranged to delivery therapeutic levels of the active ingredient for at least 30 days, and preferably 60 days. Long-term sustained release implants are well-known to those of ordinary skill in the art and include some of the release systems described above.

20 The invention also contemplates gene therapy. The procedure for performing *ex vivo* gene therapy is outlined in U.S. Patent 5,399,346 and in exhibits submitted in the file history of that patent, all of which are publicly available documents. In general, it involves introduction *in vitro* of a functional copy of a gene into a cell(s) of a subject which contains a defective copy of the gene, and returning the genetically engineered cell(s) to the subject. The 25 functional copy of the gene is under operable control of regulatory elements which permit expression of the gene in the genetically engineered cell(s). Numerous transfection and transduction techniques as well as appropriate expression vectors are well known to those of ordinary skill in the art, some of which are described in PCT application WO95/00654. *In vivo* gene therapy using vectors such as adenovirus, retroviruses, herpes virus, and targeted 30 liposomes also is contemplated according to the invention. See, e.g., U.S. Patent Nos. 5,670,488, entitled "Adenovirus Vector for Gene Therapy", issued to Gregory et al., and 5,672,344, entitled "Viral-Mediated Gene Transfer System", issued to Kelley et al.

The invention will be more fully understood by reference to the following examples. These examples, however, are merely intended to illustrate the embodiments of the invention and are not to be construed to limit the scope of the invention.

Examples

As an initial approach to identifying SOC/CRAC channels, we considered publicly available data and hypothesized that the following characteristics are likely to be exhibited by SOC/CRAC calcium channels: i) SOC/CRAC calcium channels would be integral membrane proteins related (probably distantly) to one of the known calcium channel families (e.g. voltage gated, ligand gated, Trp), and therefore should have a pore region formed by a tetramer of 6-7 transmembrane (TM) regions; ii) high calcium selectivity was likely to come at the price of complexity, and therefore these were likely to be large proteins; iii) the high calcium selectivity of this type of channel was likely to be useful and, therefore, highly conserved; and iv) these channels should be expressed in one or more types of lymphocytes, since ICRAC is best defined in those cell types. Since the full genome of the nematode *C. elegans* is nearing completion, and IP3-dependent calcium signals have recently been shown to be required for one or more aspects of *C. elegans* development, we took the set of proteins encoded by this genome (at the time this search was initiated WORMPEP14 was the available predicted protein set) and began searching for proteins which fit the criteria above. This search began by proceeding in alphabetical order through WORMPEP14 and arbitrarily excluding all proteins below approximately 1000 amino acids in size, followed by focusing on remaining proteins with clear TM spanning regions similar to those of other calcium channels. We stopped this screen on encountering a protein designated C05C12.3, a predicted protein of 1816 amino acids (SEQ ID NO:13). C05C12.3 was notable because its central pore region had some sequence similarity to but was clearly distinct from members of the Trp family of calcium channels, and the hydrophobicity plot of this region showed a characteristically wide spacing between the fifth and sixth TM regions for the amino acid residues which are thought to line the channel pore region and mediate the calcium selectivity of the channels. In addition, it lacked any ankyrin repeats in the region amino-terminal to its pore region, further distinguishing it from other Trp family proteins.

We then used C05C12.3 for BLAST alignment screening of the rest of the *C. elegans* genome and also mammalian databases for homologous proteins, revealing two other *C. elegans* homologues (SEQ ID NO:14 and SEQ ID NO:15), and also a recently cloned mammalian protein named melastatin-1 (MLSN-1/SOC-1, SEQ ID NOs:9 and 10, and

-43-

5 GenBank Acc. No. AF071787). Using these sequences, we subsequently performed an exhaustive screening of publicly accessible EST databases in search of lymphocyte homologues, but were unsuccessful in detecting any homologous transcripts in any lymphocyte lines. Since MLSN-1 (SEQ ID NOs:9 and 10) was expressed exclusively in melanocytes and retina by Northern blot hybridization and by EST database searching, there was no evidence that this type of channel was expressed in the type of cell in which ICRAC-
10 like currents were best defined. Subsequent BLAST searches picked up mouse EST sequence AI098310 (SEQ ID NO:22) from a monocyte cell line. The I.M.A.G.E. consortium clone containing the above-identified EST was then purchased from ATCC (clone ID. 1312756, Manassas, VA) and was further characterized. Using other portions of this sequence in EST searches, we subsequently picked up similar sequences in human B-cells (SEQ ID NOs:20 and 21), and other cell types as well (SEQ ID NOs: 11, 12, 16, 17, 18, and 19). Most of these sequences were subsequently identified to be part of the 3'-UTR or of the carboxy terminal region of the proteins, which are not readily identifiable as Trp channels,
15 providing an explanation for the art's inability to detect any type of Trp related transcripts in lymphocytes. Partial sequences from the 5' and/or 3' ends of the above identified clones were then used to screen leukocyte and kidney cDNA libraries to extend the original sequences more toward the 5' and/or 3' ends.

20 In view of the foregoing, it was concluded that channels of this type were expressed in many types of lymphocytes, and therefore were members of a new family of SOC/CRAC calcium channels.

Experimental Procedures

Screening of the cDNA libraries

25 Leukocyte and kidney cDNA libraries from Life Technologies (Gaithersburg, MD) were screened using the Gene Trapper II methodology (Life Technologies) according to manufacturer's recommendation, using the inserts of I.M.A.G.E. clone ID nos. 1312756 and 1076485 from ATCC (Manassas, VA), under stringent hybridization conditions. Using standard methodology (*Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York), individual cDNA clones were subjected to 3-4 rounds of amplification and purification under the same hybridization conditions.

30 After excision from the vector and subcloning of inserts into the plasmid forms, several clones were sequenced by the Beth Israel Deaconess Medical Center's Automated

Sequencing Facility. Molecular biological techniques such as restriction enzyme treatment, subcloning, DNA extraction, bacterial culture and purification of DNA fragments were performed according to methods well known in the art. Computer analyses of protein and DNA sequences was done using "Assemblylign" (Oxford Molecular, Cambell, CA). Multiple alignments of the SOC/CRAC family members were produced using the CLUSTAL facility of the MacVector program. Restriction endonucleases, expression vectors, and modifying enzymes were purchased from commercial sources (Gibco-BRL). Sequencing vectors for DNA were purchased from Stratagene (La Jolla, CA).

Once the first members of what appeared to be a novel family of calcium channel receptors were identified and characterized, additional BLAST alignments were performed with the newly characterized nucleic acid sequences. An initial match was with genomic DNA fragment NH0332L11 (Genbank Acc. No. AC005538). Using this genomic sequence, primers were designed and a number of cDNA libraries was surveyed by PCR. A prostate specific message was identified and characterized, leading to the isolation and characterization of SOC-4/CRAC-3 (SEQ ID NOs: 31 and 32).

Functional Assays

Transient Expression of SOC/CRAC

In our initial transient expression experiments, we expressed or expect to express a SOC/CRAC molecule transiently in RBL-2H3 mast cells, Jurkat T cells, and A20 B-lymphocytes using both electroporation and vaccinia virus-driven expression, and measured the calcium influx produced by depletion of intracellular calcium stores with thapsigargin. Each of the foregoing techniques is well known to those of ordinary skill in the art and can be performed using various methods (see, e.g., Current Methods in Molecular Biology, eds. Ausubal, F.M., et al. 1987, Green Publishers and Wiley Interscience, N.Y., N.Y.). Exemplary methods are described herein.

Depletion of intracellular calcium stores is accomplished by treating the cells with 1 micromolar thapsigargin; alternative agents which function to deplete intracellular stores are described in by Putney, J.W. Jr., in Capacitative Calcium Entry, R.G. Landes Co. and Chapman & Hall, 1997 and include, for example, ionomycin, cyclopiazonic acid, and DBHQ.

Calcium influx is determined by measuring cytoplasmic calcium as indicated using the fura-2 fluorescent calcium indicator (see, e.g., G. Grynkiewicz, M. Poenie, R. Y. Tsien, A new generation of Ca²⁺ indicators with greatly improved fluorescence properties, J. Biol

-45-

Chem 260, 3440-50 (1985), and M. Poenie, R. Tsien, Fura-2: a powerful new tool for measuring and imaging $[Ca^{2+}]_i$ in single cells, Prog Clin Biol Res 210, 53-6 (1986)).

Patch Clamp Analysis and Determining Selectivity of SOC/CRAC

5 *Patch clamp* analysis of cells injected with SOC/CRAC cRNA is performed by using the general patch technique as described in Neher, E., "Ion channels for communication between and within cells", Science, 1992; 256:498-502. Specific techniques for applying the patch clamp analysis to RBL cells are described in Hoth, M., and Penner, R., "Depletion of intracellular calcium stores activates a calcium current in mast cells", Nature, 1992; 10 355:3535-355. Additional protocols for applying the patch clamp technique to other cell types are described in Putney, J.W. Jr., in Capacitative Calcium Entry, R.G. Landes Co. and Chapman & Hall, 1997

15 An exemplary protocol for patch clamp analysis of SOC/CRAC molecule expressed in RBL-2H3 mast cells using a recombinant vaccinia virus is as follows. The currents elicited by store depletion are determined using the whole cell configuration (Neher, E., Science, 1992; 256:498-502). Currents in SOC/CRAC expressing cells are compared to currents in control cells expressing an irrelevant protein or a classic Trp family calcium channel known as VR1 (M. J. Caterina, et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway [see comments], Nature 389, 816-24 (1997)) in order to assess the contribution of SOC/CRAC expression. In addition, the magnitude of whole cell currents in the presence of 20 extracellular calcium (10 mM), barium (10 mM), or magnesium (10 mM) are compared to determine the relative permeability of the channels to each of these ions (Hoth, M., and Penner, R., Nature, 1992; 355:3535-355) and, thereby, determine the ionic selectivity.

Pharmacologic Behavior of SOC/CRAC

25 For analysis of the pharmacologic behavior of a SOC/CRAC molecule, a SOC/CRAC molecule is expressed in RBL-2H3 mast cells using a recombinant vaccinia virus, and the degree of calcium influx elicited by store depletion is monitored using a bulk spectrofluorimeter or a fluorescence microscope and the calcium sensitive dye fura-2 (G. Grynkiewicz, M. Poenie, R. Y. Tsien, A new generation of Ca^{2+} indicators with greatly improved fluorescence properties, J Biol Chem 260, 3440-50 (1985) and M. Poenie, R. Tsien, Fura-2: a powerful new tool for measuring and imaging $[Ca^{2+}]_i$ in single cells, Prog Clin Biol Res 210, 53-6 (1986)). The level of cytoplasmic calcium in SOC/CRAC expressing cells is compared to the level achieved in control cells expressing an irrelevant protein or a classic Trp. family calcium channels known as VR1 (M. J. Caterina, et al., The 30

capsaicin receptor: a heat-activated ion channel in the pain pathway [see comments], *Nature* 389, 816-24 (1997)). These cells then are pre-incubated with the desired pharmacologic reagent, and again the response to store depletion is monitored. Comparison of the effect of depleting stores in SOC/CRAC expressing cells relative to controls in the presence or absence of the pharmacologic reagent is used to assess the ability of that reagent to modulate SOC/CRAC activity. Sphingosine is an exemplary molecule that can be used as pharmacologic reagents for pharmacologic characterization of SOC/CRAC calcium channels. See, e.g., Mathes, C., et al., Calcium release activated calcium current as a direct target for sphingosine, *J Biol Chem* 273(39):25020-25030 (1998). Other non-specific calcium channel inhibitors that can be used for this purpose include SKR96365 (Calbiochem) and Lanthanum.

Bulk Calcium Assays

Bulk calcium assays can be performed in a PTI Deltascan bulk spectrofluorometer using fura-2 as described in Scharenberg AM, et al., *EMBO J*, 1995, 14(14):3385-94.

Gene Targeting

The method (and reagents) described by Buerstedde JM et al, (*Cell*, 1991, Oct 4;67(1):179-88), was used to generate "knockouts" in cells. Briefly, part of the chicken SOC-2/CRAC-1 genomic sequence coding for the transmembrane region was cloned utilizing the human sequence as the probe in a chicken library screen. Chicken SOC-2/CRAC-1 clones were isolated and characterized using standard methodology. The putative exon and domain arrangement of the chicken SOC-2/CRAC-1, is depicted in Figure 1. The exons coding for TM5 (pore region) and TM6, were replaced with promoter/antibiotic cassettes (see Figure1). These targeting vectors were then used to target (and replace) the endogenous gene in DT-40 cells (chicken B lymphocyte cells).

Results

Example 1: Transient Expression of SOC/CRAC

In the above-identified cell lines and using both of the foregoing expression techniques, SOC/CRAC expression enhances thapsigargin-dependent influx. In addition, SOC/CRAC expression also enhances the amount of intracellular calcium stores. That this effect is likely due to SOC/CRAC acting as a plasma membrane calcium channel can be confirmed by producing an in-frame carboxy-terminal translational fusion with green fluorescent protein followed by confocal microscopy, revealing that SOC/CRAC is expressed predominantly as a plasma membrane calcium channel.

Example 2: Patch Clamp Analysis

-47-

5 The biophysical characteristics of SOC/CRAC enhanced currents when expressed in *Xenopus* oocytes are determined. SOC/CRAC cRNA injection is able to enhance thapsigargin-dependent whole cell currents. In addition, SOC/CRAC does not alter the reversal potential of these currents and the determination of the P_{Ca}/P_{Na} ratio shows that SOC/CRAC channels are highly calcium selective.

10 **Example 3: *Pharmacologic Behavior of SOC/CRAC***

The pharmacologic behavior of SOC/CRAC is evaluated as described above. SOC/CRAC-enhanced influx is inhibited by sphingosine in a manner that is substantially the same as that of endogenous thapsigargin-dependent calcium influx.

15 **Example 4: *Gene targeting***

Transfection of DT-40 cells with the foregoing targeting vectors, selection for antibiotic resistance, and screening, is collectively referred to, herein, as a round of targeting. For the first round of targeting SOC-2/CRAC-1, 18/24 clones with homologous recombination of the targeting construct into one of the endogenous SOC-2/CRAC-1 alleles were obtained. On the second round of targeting (in order to target the second allele and therefore generate a homozygous SOC-2/CRAC-1 mutant cell), 0/48 clones were obtained. These results indicate that a "null" SOC-2/CRAC-1 mutation is detrimental to DT-40 cells, and that SOC-2/CRAC-1 is required for cell viability.

20 **Table I. Nucleotide Sequences with homologies to SOC/CRAC nucleic acids**

Sequences with SEQ ID NOs and GenBank accession numbers:
SEQ ID NO:9, AB001535, AI226731, H18835, AA419592, AA261842, AA419407, AA592910, D86107, AI098310, AF071787, Z77132, Z83117, Z68333, AA708532, AA551759, AA932133, R47363, N31660, AC005538, AA654650, AA370110, AA313170, AA493512, AI670079, AI671853.

25 **Table II. Amino Acid Sequences with homologies to SOC/CRAC polypeptides**

Sequences with SEQ ID NOs and GenBank accession numbers:
SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, AB001535, AA592910, D86107, AF071787, Z77132, Z83117, Z68333, AA708532, AA551759, AA932133, R47363, N31660, NP003298, CAB00861, NP002411, CAA92726, CAB05572.

All references, patents, and patent documents disclosed herein are incorporated by reference herein in their entirety.

What is claimed is presented below and is followed by a Sequence Listing. We claim:

Claims

1. An isolated nucleic acid molecule, comprising:

(a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31, and which code for a SOC/CRAC polypeptide;

(b) deletions, additions and substitutions of (a) which code for a respective SOC/CRAC polypeptide;

(c) nucleic acid molecules that differ from the nucleic acid molecules of (a) or (b) in codon sequence due to the degeneracy of the genetic code, and

(d) complements of (a), (b) or (c).

2. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises SEQ ID NO:1.

3. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises SEQ ID NO:27.

4. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises SEQ ID NO:29.

5. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises SEQ ID NO:31.

20 6. An isolated nucleic acid molecule selected from the group consisting of

(a) a unique fragment of a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:29, and SEQ ID NO:31,

(b) complements of (a),

25 provided that the unique fragment includes a sequence of contiguous nucleotides which is not identical to any sequence selected from a sequence group consisting of

(1) sequences having the SEQ. ID NOS. or GenBank accession numbers of Table I,

(2) complements of (1), and

(3) fragments of (1) and (2).

7. The isolated nucleic acid molecule of claim 6, wherein the sequence of contiguous nucleotides is selected from the group consisting of:

- (1) at least two contiguous nucleotides nonidentical to the sequence group,
- (2) at least three contiguous nucleotides nonidentical to the sequence group,
- 5 (3) at least four contiguous nucleotides nonidentical to the sequence group,
- (4) at least five contiguous nucleotides nonidentical to the sequence group,
- (5) at least six contiguous nucleotides nonidentical to the sequence group,
- (6) at least seven contiguous nucleotides nonidentical to the sequence group.

10 8. The isolated nucleic acid molecule of claim 6, wherein the unique fragment has a size selected from the group consisting of at least: 8 nucleotides, 10 nucleotides, 12 nucleotides, 14 nucleotides, 16 nucleotides, 18 nucleotides, 20, nucleotides, 22 nucleotides, 24 nucleotides, 26 nucleotides, 28 nucleotides, 30 nucleotides, 50 nucleotides, 75 nucleotides, 100 nucleotides, and 200 nucleotides.

15 9. The isolated nucleic acid molecule of claim 6, wherein the molecule encodes a polypeptide which is immunogenic.

10. An expression vector comprising the isolated nucleic acid molecule of claims 1, 2, 3, 4, 5, 6, 7, 8, or 9 operably linked to a promoter.

11. A host cell transformed or transfected with the expression vector of claim 10.

20 12. An isolated polypeptide encoded by the isolated nucleic acid molecule according to anyone of claims 1 or 6, wherein the polypeptide comprises a SOC/CRAC polypeptide or a unique fragment thereof.

13. The isolated polypeptide of claim 12, wherein the isolated polypeptide is encoded by the isolated nucleic acid molecule of claim 2, 3, 4, or 5.

25 14. The isolated polypeptide of claim 13, wherein the isolated polypeptide comprises a polypeptide having the sequence of amino acids selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and SEQ ID NO:32.

-50-

15. An isolated polypeptide encoded by the isolated nucleic acid molecule of claim 1, 2, 3, 4, or 5, wherein the polypeptide, or unique fragment thereof is immunogenic.

16. An isolated binding polypeptide which binds selectively to a polypeptide encoded by the isolated nucleic acid molecule of claim 1, 2, 3, 4, or 5.

5 17. The isolated binding polypeptide of claim 16, wherein the isolated binding polypeptide binds to a polypeptide having the sequence of amino acids selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, and SEQ ID NO:32.

10 18. The isolated binding polypeptide of claim 17, wherein the isolated binding polypeptide is an antibody or an antibody fragment selected from the group consisting of a Fab fragment, a F(ab)₂ fragment or a fragment including a CDR3 region selective for the polypeptide.

15 19. An isolated polypeptide, comprising a unique fragment of the polypeptide of claim 12 of sufficient length to represent a sequence unique within the human genome, provided that the fragment excludes a sequence of contiguous amino acids identified in Table II.

20. A method for isolating a SOC/CRAC molecule having SOC/CRAC calcium channel activity, comprising:

a) contacting a binding molecule that is a SOC/CRAC nucleic acid or a SOC/CRAC binding polypeptide with a sample containing one or more SOC/CRAC molecules, under conditions sufficient to form a complex of the SOC/CRAC nucleic acid or the SOC/CRAC binding polypeptide and the SOC/CRAC molecule;

b) detecting the presence of the complex;

c) isolating the SOC/CRAC molecule from the complex; and

d) determining whether the isolated SOC/CRAC molecule has SOC/CRAC calcium channel activity.

21. The method of claim 20, wherein the binding molecule is a SOC/CRAC nucleic acid.

22. The method of claim 20, wherein the binding molecule is a SOC/CRAC binding polypeptide.

23. The method of claim 21, wherein the SOC/CRAC nucleic acid comprises at least 14 nucleotides from any contiguous portion of a sequence of nucleotides selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, and SEQ ID NO:31.

5 24. A method for identifying agents useful in the modulation of SOC/CRAC calcium channel activity, comprising:

a) contacting a SOC/CRAC polypeptide with a candidate agent suspected of modulating SOC/CRAC calcium channel activity, under conditions sufficient to allow the SOC/CRAC polypeptide to interact selectively with the candidate agent;

10 b) detecting a Ca^{2+} concentration associated with SOC/CRAC calcium channel activity of the SOC/CRAC polypeptide in the presence of the candidate agent; and

c) comparing the Ca^{2+} concentration of step (b) with a control Ca^{2+} concentration of a SOC/CRAC polypeptide in the absence of the candidate agent to determine whether the candidate agent modulates SOC/CRAC calcium channel activity.

15

25. A method for determining the level of SOC/CRAC expression in a subject, comprising:

a) measuring the expression of SOC/CRAC in a test sample obtained from the subject, and

20 b) comparing the measured expression of SOC/CRAC in the test sample to the expression of the SOC/CRAC polypeptide in a control to determine the level of SOC/CRAC expression in the subject.

25 26. The method of claim 25, wherein the expression of SOC/CRAC in (b) is SOC/CRAC mRNA expression.

27. The method of claim 25, wherein the expression of SOC/CRAC in (b) is SOC/CRAC polypeptide expression.

28. The method of claim 25, wherein the test sample is tissue.

29. The method of claim 25, wherein the test sample is a biological fluid.

30. The method of claim 26, wherein SOC/CRAC mRNA expression is measured using the Polymerase Chain Reaction (PCR).

31. The method of claim 26, wherein SOC/CRAC mRNA expression is measured using a method selected from the group consisting of northern blotting, monoclonal antisera to SOC/CRAC and polyclonal antisera to SOC/CRAC.

5

32. A kit, comprising a package containing:

an agent that selectively binds to the isolated nucleic acid of claim 1 or an expression product thereof, and

10

a control for comparing to a measured value of binding of said agent to said isolated nucleic acid of claim 1 or expression product thereof.

33. The kit of claim 32, wherein the control comprises an epitope of the expression product of the nucleic acid of claim 1.

34. A pharmaceutical composition comprising:

15

a pharmaceutically effective amount of an agent comprising of an isolated nucleic acid molecule of claim 1 or an expression product thereof, and

a pharmaceutically acceptable carrier.

35. The pharmaceutical composition of claim 34, wherein the agent is an expression product of the isolated nucleic acid molecule of claim 1.

20

36. A method for identifying agents useful in the modulation of a SOC/CRAC polypeptide kinase activity, comprising:

25

a) contacting a SOC/CRAC polypeptide with kinase activity with a candidate agent suspected of modulating SOC/CRAC kinase activity, under conditions sufficient to allow the candidate agent to interact with the SOC/CRAC polypeptide and modulate its kinase activity;

b) detecting a kinase activity associated with the SOC/CRAC polypeptide in the presence of the candidate agent; and

30

c) comparing the kinase activity of step (b) with a control kinase activity of a SOC/CRAC polypeptide in the absence of the candidate agent to determine whether the candidate agent modulates SOC/CRAC kinase activity.

37. The method of claim 36, wherein the SOC/CRAC polypeptide comprises amino acids 999-1180 of the sequence represented as SEQ ID NO:24, or a fragment thereof that retains the kinase activity.

1/1

Fig. 1

-1-
SEQUENCE LISTING

<110> Beth Israel Deaconess Medical Center, Inc.
Scharenberg, Andrew

<120> CHARACTERIZATION OF A CALCIUM CHANNEL FAMILY

<130> B0662/7026WO/ERP/KA

<150> U.S. 60/114,220
<151> 1998-12-30

<150> U.S. 60/120,018
<151> 1999-01-29

<150> U.S. 60/140,415
<151> 1999-06-22

<160> 32

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 1212
<212> DNA
<213> Homo Sapiens

<400> 1

gcacgaggca aattttttgt tagtacacca tctcagccaa gttgcaaaag ccacttggaa	60
actggaacca aagatcaaga aactgtttgc tctaaagcta cagaaggaga taatacagaa	120
tttgagcat ttgttaggaca cagagatagc atggatttac agaggtttaa agaaacatca	180
aacaagataa aaatactatc caataacaat acttctgaaa acactttgaa acgagtgagt	240
tctcttgctg gatttactga ctgtcacaga acttccattc ctgttcattc aaaacaagaa	300
aaaatcagta gaaggccatc taccgaagac actcatgaag tagattccaa agcagctta	360
ataccggttt gtagatttca actaaacaga tatataattat taaatacatt aaacttttt	420
agataagatc tacaaagatgg tgatatttgg gactatatac aaaattcaaa aaaatttttc	480
ttaagaaaac tgacttttagc atagtagcag ttacagaaaa gtttcttaca gtgaatagtc	540
aggaatttta aagaaaaatt tatcagaat aaaggcagga atctttttt gtttgaattg	600
aagctaatta tatgaactta ttccagctc actgcgataa tgattgatt tgcaaattcc	660
ctttaaaaggc acacactgac aagacaaaaa gctcaggaaa aggcagaaaa attactcctt	720
tataatcaag tattataat aagtcaatgc tcataatttt gctcaagaaa atattgactt	780
acattccat atatctttc tggcatagag agattatgtt gttaaaatca tgttattgaa	840
aaaagttatt tcagtgggg aagaggttag ttaacaaaga gattcacagt aacaaatcct	900
ccttcttgc gggactcttc ctgaccctga gctgcacaac tttgcaacaa attaaaggct	960
aaccgaagat gacctcacaa tggcaattta gaactcatgg gagtcaactt acataaacgg	1020
tatttgcattt ctgataagat agtggaaatta ttggttatag atgacaaaaat aagtatgtt	1080
aaagtgtga tggacataaaa aaagtttaa atataaaaca tgagaaaaaaggagatact	1140
attcaaaaag actggcaaat ttgaaaaact agaaataaaaa aaaaaaaaaaaaatgagcg	1200
gccgcaagct tt	1212

<210> 2
<211> 141
<212> PRT
<213> Homo Sapiens

<400> 2

Ala Arg Gly Lys Phe Phe Val Ser Thr Pro Ser Gln Pro Ser Cys Lys			
1	5	10	15
Ser His Leu Glu Thr Gly Thr Lys Asp Gln Glu Thr Val Cys Ser Lys			
20	25	30	

-2-

Ala Thr Glu Gly Asp Asn Thr Glu Phe Gly Ala Phe Val Gly His Arg
 35 40 45
 Asp Ser Met Asp Leu Gln Arg Phe Lys Glu Thr Ser Asn Lys Ile Lys
 50 55 60
 Ile Leu Ser Asn Asn Asn Thr Ser Glu Asn Thr Leu Lys Arg Val Ser
 65 70 75 80
 Ser Leu Ala Gly Phe Thr Asp Cys His Arg Thr Ser Ile Pro Val His
 85 90 95
 Ser Lys Gln Glu Lys Ile Ser Arg Arg Pro Ser Thr Glu Asp Thr His
 100 105 110
 Glu Val Asp Ser Lys Ala Ala Leu Ile Pro Val Cys Arg Phe Gln Leu
 115 120 125
 Asn Arg Tyr Ile Leu Leu Asn Thr Leu Asn Phe Phe Arg
 130 135 140

<210> 3
 <211> 739
 <212> DNA
 <213> Homo Sapiens

<220>
 <221> unsure
 <222> (5)...(5)
 <223> UNKNOWN

<221> unsure
 <222> (21)...(22)
 <223> UNKNOWN

<221> unsure
 <222> (29)...(29)
 <223> UNKNOWN

<400> 3
 tcgantaggg gtcttccacc nncatactng gatgatggtt ggtgaagtct atgcatacga 60
 aattgatgtg tggcaaaacg attctgttat ccctcaaaatc tgggtcctg ggacgtgttt 120
 gactccattt cttcaagcag tctaccttct tgwacagtat atcattatgg ttaatcttct 180
 tattgcattt ytcaacaatg tgtatttaca agtgaaggca atttccaata ttgyatggaa 240
 gtaccacgtc tatcatttta ttatggctt tcatgagaaa ccagttctgc ctccctccact 300
 tattcattttt agccatatacg tttctctgtt ttgctgcata tgtaagagaa gaaagaaaaga 360
 taagacttcc gatggaccaa aactttctt aacagaagaa gatcaaaaaga aacttcatga 420
 ttttgaagag cagttgttgc aaatgttattt caatgaaaaa gatgacaaat ttcatctgg 480
 gagttttttt agaattcgttgc tcacatggaa aagagtggaa cagatgtgc ttcatgtt 540
 agaagtggaa gatccgttgc aactacatcaa aaagatcatt acaatcatta gattctcaaa 600
 ttggccattt gcaagatctt tcagccctga cggtagatac attaaaaaca ctcactggcc 660
 aaaacgtcg gaagctagca aagttcataa tgaaatcaca cgagaactga gcatttccaa 720
 acacttggct caaaaacctt 739

<210> 4
 <211> 235
 <212> PRT
 <213> Homo Sapiens

<220>
 <221> UNSURE
 <222> (41)...(41)
 <223> UNKNOWN

<221> UNSURE
 <222> (54)...(54)

-3-

<223> UNKNOWN

<221> UNSURE

<222> (68)...(68)

<223> UNKNOWN

<400> 4

Met Met Val Gly Glu Val Tyr Ala Tyr Glu Ile Asp Val Cys Ala Asn
1 5 10 15
Asp Ser Val Ile Pro Gln Ile Cys Gly Pro Gly Thr Trp Leu Thr Pro
20 25 30
Phe Leu Gln Ala Val Tyr Leu Phe Xaa Gln Tyr Ile Ile Met Val Asn
35 40 45
Leu Leu Ile Ala Phe Xaa Asn Asn Val Tyr Leu Gln Val Lys Ala Ile
50 55 60
Ser Asn Ile Xaa Trp Lys Tyr Gln Arg Tyr His Phe Ile Met Ala Tyr
65 70 75 80
His Glu Lys Pro Val Leu Pro Pro Pro Leu Ile Ile Leu Ser His Ile
85 90 95
Val Ser Leu Phe Cys Cys Ile Cys Lys Arg Arg Lys Lys Asp Lys Thr
100 105 110
Ser Asp Gly Pro Lys Leu Phe Leu Thr Glu Glu Asp Gln Lys Lys Leu
115 120 125
His Asp Phe Glu Glu Gln Cys Val Glu Met Tyr Phe Asn Glu Lys Asp
130 135 140
Asp Lys Phe His Ser Gly Ser Glu Glu Arg Ile Arg Val Thr Phe Glu
145 150 155 160
Arg Val Glu Gln Met Cys Ile Gln Ile Lys Glu Val Gly Asp Pro Cys
165 170 175
Gln Leu His Lys Ile Ile Thr Ile Ile Arg Phe Ser Asn Trp Pro
180 185 190
Phe Ala Arg Ser Phe Ser Pro Asp Gly Arg Tyr Ile Lys Asn Thr His
195 200 205
Trp Pro Lys Ala Ser Glu Ala Ser Lys Val His Asn Glu Ile Thr Arg
210 215 220
Glu Leu Ser Ile Ser Lys His Leu Ala Gln Asn
225 230 235

<210> 5

<211> 1579

<212> DNA

<213> Homo Sapiens

<220>

<221> unsure

<222> (368)...(368)

<223> g or c

<221> unsure

<222> (372)...(372)

<223> g or c

<221> unsure

<222> (374)...(374)

<223> g or a

<221> unsure

<222> (375)...(375)

<223> g or c

-4-

<221> unsure
<222> (387)...(387)

<221> unsure
<222> (482)...(482)

<400> 5

acgtcgccctg	caggtaccgg	tccggattc	ccgggtcgac	ccacgcgtcc	ggcatggtgt	60
tgtaaataca	cttagctct	ctttccctca	aggtgatctt	gaaagtaata	atccctttca	120
ttgtaatatt	ttaatgaaag	atgacaaaaga	tccccagtg	aatatatttg	gtcaagactt	180
acctgcagta	ccccagagaa	aagaatttaa	tttccagag	gctggttcct	cttctggtgc	240
cttattccca	agtgtgttt	cccttcaga	actgcgacag	agactacatg	ggtagaact	300
cttaaaaata	ttaataaaaa	atcaaaaatt	aggcagtca	tctactagca	taccacatct	360
gtcatccsca	csarscaaat	tttttgntag	tacaccatct	cagccaagg	gaaaaagcca	420
cttggaaact	ggaaccaaag	atcaagaaac	tgttgtct	aaagctacag	aaggagataa	480
tncagaattt	ggagcattt	taggacacag	agatagcatg	gatttacaga	ggtttaaaga	540
aacatcaaac	aagataaaaa	tactatccaa	taacaatact	tctgaaaaca	cttggaaacag	600
agttagttct	cttgctggat	ttactgactg	tcacagaact	tccattctg	ttcattcaaa	660
acaagaaaaa	atcagtagaa	ggccatctac	cgaagacact	catgaagtag	attccaaagc	720
agctttaata	ccgggttgt	gatttcaact	aaacagat	atattattaa	atacattaaa	780
cttttttaga	taagatctac	aaagtggta	tatttggac	tatataaaaa	attcaaaaaa	840
atttttctta	agaaaaactga	ctttagata	gtacagtt	cagaaaagtt	tcttacagtg	900
aatagtccgg	aattttaaag	aaaaatttat	gcagaataaa	ggcaggaatc	tctttttgtt	960
tgaatttgaag	ctaatttat	gaactcattt	ccagctact	gcgataatga	ttgattttgc	1020
aaattccctt	taaaagcaca	cactgacaag	acaaaaagct	caggaaaagg	cagaaaaatt	1080
actcctttat	aatcaagtgat	tatataataag	tcagtgc	taattttgt	caagaaaata	1140
ttgacttaca	ttccatata	tctgttctg	catagagaga	ttatgttgtt	aaaatcatgt	1200
tattgaaaaa	agttatttca	gtggggaaag	aggttagtt	acaaaagagat	tcacagtaac	1260
aaatccctt	ttctggaggg	actttctg	accctgagct	gcacaactt	gcaacaaaatt	1320
aaagcttaac	cgaagatgac	ctcacaatgg	caatttagaa	ctcatggag	tcaacttaca	1380
taaacggtat	ttgatttctg	ataagatagt	ggaattattt	gttatacatg	acaaaataag	1440
tatgtttaaa	gtgtatgtgg	acataaaaaa	gttttaata	taaaacatga	gaaaagaagg	1500
agatactatt	caaaaagact	ggcaattt	aaaaactaga	aataaaaaaa	aaaaaaaaaaa	1560
atgagcgccc	gcaagcttt					1579

<210> 6
<211> 243
<212> PRT
<213> Homo Sapiens

<220>
<221> UNSURE
<222> (103) ... (105)
<223> UNKNOWN

<221> UNSURE
<222> (109)...(109)
<223> UNKNOWN

<221> UNSURE
<222> (141)...(141)
<223> UNKNOWN

£400> 6

Val	Asn	Thr	Leu	Ser	Ser	Ser	Leu	Pro	Gln	Gly	Asp	Leu	Glu	Ser	Asn
1				5				10					15		
Asn	Pro	Phe	His	Cys	Asn	Ile	Leu	Met	Lys	Asp	Asp	Lys	Asp	Pro	Gln
				20				25					30		
Cys	Asn	Ile	Phe	Gly	Gln	Asp	Leu	Pro	Ala	Val	Pro	Gln	Arg	Lys	Gl
				35				40					45		

-5-

Phe Asn Phe Pro Glu Ala Gly Ser Ser Ser Gly Ala Leu Phe Pro Ser
 50 55 60
 Ala Val Ser Pro Pro Glu Leu Arg Gln Arg Leu His Gly Val Glu Leu
 65 70 75 80
 Leu Lys Ile Phe Asn Lys Asn Gln Lys Leu Gly Ser Ser Ser Thr Ser
 85 90 95
 Ile Pro His Leu Ser Ser Xaa Xaa Xaa Lys Phe Phe Xaa Ser Thr Pro
 100 105 110
 Ser Gln Pro Ser Cys Lys Ser His Leu Glu Thr Gly Thr Lys Asp Gln
 115 120 125
 Glu Thr Val Cys Ser Lys Ala Thr Glu Gly Asp Asn Xaa Glu Phe Gly
 130 135 140
 Ala Phe Val Gly His Arg Asp Ser Met Asp Leu Gln Arg Phe Lys Glu
 145 150 155 160
 Thr Ser Asn Lys Ile Lys Ile Leu Ser Asn Asn Asn Thr Ser Glu Asn
 165 170 175
 Thr Leu Lys Arg Val Ser Ser Leu Ala Gly Phe Thr Asp Cys His Arg
 180 185 190
 Thr Ser Ile Pro Val His Ser Lys Gln Glu Lys Ile Ser Arg Arg Pro
 195 200 205
 Ser Thr Glu Asp Thr His Glu Val Asp Ser Lys Ala Ala Leu Ile Pro
 210 215 220
 Val Cys Arg Phe Gln Leu Asn Arg Tyr Ile Leu Leu Asn Thr Leu Asn
 225 230 235 240
 Phe Phe Arg

<210> 7
 <211> 3532
 <212> DNA
 <213> Mus Musculus

<220>
 <221> unsure
 <222> (2420) ... (2420)
 <223> unknown

<221> unsure
 <222> (2434) ... (2434)
 <223> unknown

<221> unsure
 <222> (2461) ... (2461)
 <223> unknown

<221> unsure
 <222> (2466) ... (2466)
 <223> unknown

<221> unsure
 <222> (2470) ... (2470)
 <223> unknown

<400> 7

attatggctt atcataaaaa accagtccctg cctcctcctc ttatcatcct cagccatata	60
gtttcactgt tttgctgtgt atgaaaaaga agaaaagaag ataaagacttc cgatgggcca	120
aaactttct taacagaaga agataaaaag aaactccatg atttgaaga gcagtgtgtt	180
gagatgtact ttgatgagaa agatgacaaa ttcaattctg ggagtgaaga gagaatccgg	240
gtcactttg aaagagtggaa gcagatgagc attcagatcata aagaagttgg agatcggtc	300
aactacataa aaagatcatt acagtctta gattctcaa ttggtcatct gcaagatctc	360

-6-

tcagccctaa	cagtagatac	atggaaaaca	cttacagccc	agaaaagcttc	agaagcttagt	420
aaagtgcaca	atgagatcac	acgagaattg	agtatttcca	aacacttggc	tcagaatctt	480
attgtatgt	ttccctgtaa	acctttgtgg	gaagaaccta	gtgctgtaaa	cacactgagt	540
tcctcttcc	ctcaagggtg	tcgggaaagt	aataatcctt	ttctttgtaa	tatttttatg	600
aaagatgaaa	aagaccccca	atataatctg	tttggacaag	atttgcctgt	gatacccccag	660
agaaaagaat	tcaacattcc	agaggctggt	tcctcctgtg	gtgccttatt	cccaagtgt	720
gtttctcccc	cagaattacg	acagagacga	catggggtag	aatatgtaaa	aatatttaat	780
aaaatcaaa	aatttaggcag	ttcaccta	agttcaccac	atatgtcctc	cccaccaacc	840
aaatttctg	tgagtacccc	atcccagcca	agttgaaaaa	gtcacttgg	atccacaacc	900
aaagatcaag	aaccctttt	ctataaagct	gcagaagggg	ataacataga	atttggagca	960
tttggggac	acagagatag	tatggactta	cagagggtt	aagaaacatc	aaacaaaata	1020
agagaactgt	tatctaata	tactcctgaa	aacactctga	aacatgtggg	tgtctgtgga	1080
tatatagt	gtttaagac	ttctacttct	cttcaactcg	tgcaagcaga	aagctgttagt	1140
agaagagcgt	cgacggaga	ctctccagaa	gtcgattcta	aagcagctt	gttacccggat	1200
tggttacgag	atagaccatc	aaacagagaa	atgccatctg	aaggaggaac	attaaatgg	1260
cttgcttcc	catttaagcc	cgttttggat	acaaaattact	attattcagc	tgtggaaaga	1320
aataacctga	tgaggttgtc	acagagattt	cccttcgttc	ctgtaccc	acgaggcggag	1380
cctgtcacag	tgtaccgtct	ggaggagagt	tctcccagta	tactgaataa	cagcatgtct	1440
tcatggcttc	agctaggcct	ctgtgc	attgagttt	taagtaaaga	ggaatggaa	1500
ggtggttac	gaagagcgt	caaagtgtg	tgtacctggt	cagagcacga	tatcctgaa	1560
tcagggcata	tctatata	taagtcat	cttctcgagg	tgataa	acac atggtcaagc	1620
atttataaag	aaagatacgtt	tctacatctc	tgtctcgagg	aaatacaca	acagagagca	1680
gcacaaaagc	tcacatttgc	ctttaatcag	atgaaaccca	atccatacc	atatttccca	1740
aggttccctt	aagttttctt	gttgtactgc	cattcagcag	ggcagtgtt	tgtgttagaa	1800
gagtgcata	ctgggtgattt	tagaaaatac	aacaacaata	atggtgatga	aatcatttct	1860
acaataactc	tagaaagagat	catgctagcc	tttagccact	ggacctatga	atataccaga	1920
ggggagttac	tggtaacttga	cttacaagga	gtggggagaaa	acttgactga	cccatctgt	1980
ataaaaagctg	aagaaaaaaag	atcctgtgac	atggttttt	gccctgcca	tctaggagaa	2040
gatgcaataa	aaaacttcaa	gagccaaaca	tccactgtaa	ttcttgctgt	cggaaagctt	2100
aacttccca	atttgaagag	gaatgactac	acgccc	taaaattata	tttctcgagg	2160
atgagtcatc	agatttgaat	cttcaatctg	gaaattccac	caaagaatca	gaagcaacaa	2220
attctgttgc	tctgtatgtt	tagtgctgag	tcattggttt	ttgcctacac	ttcacaaaag	2280
tgtaactgtc	agttttccctt	tcggggaaat	tgtatgtata	ggaagatgtg	tgcaaaaatga	2340
gcttgctggc	cccacacata	gtctagagg	aatgttctca	ttgaaaaacg	cctggaggt	2400
gaggctgcag	atgccagtg	aaagtgtc	ctgn	gtcagtgtc	tccggctgtt	2460
naaggncgg	acccttgc	ctgagatgg	tgttctt	cacctgtgc	aggaccatt	2520
accaaagtca	agtttccaga	tttatttgc	tgctcgtca	cagcccattc	agctaaggaa	2580
actaaaattgc	gcagtttcc	aaatggc	agtcttctc	agtttg	ctatgataat	2640
gatgttagct	ctcaacttagg	tgtttgtgc	cacgggagaa	ctactc	caattttgc	2700
tcacaggcat	gttacaaagc	ctgcactgaa	aaccgtt	cttccctc	tccctccctc	2760
ttttccctgt	agtatttggg	atcaaacc	gggcctcat	aagaccattt	tctaagagac	2820
attttattt	agaatcaact	atagagct	tgtttatgg	tacagcc	ttttgtt	2880
caaaacctga	atttgcaaa	agggtttt	aacatttac	aatgtta	aaaagaaaagc	2940
catgataaaat	aagaattaaac	tcactgttca	atgggtgtt	cctgtgagga	agtttacagt	3000
tgtaacagcc	tgcagttgca	tacatctca	aagatttaca	gacttagt	atcaaata	3060
agtgtcatgt	gagctctcac	attgaaaatt	ctataggat	gtgtcaatgt	gaatttctatt	3120
tctgttactt	aagaaatcag	ttgttggatt	atccttatac	agtatagg	gatcacaata	3180
caactttagt	ccataaaaat	ctaactta	tgcggagata	ttttgtcata	tttgcata	3240
agaaaagctt	atcattttgac	tcaagttt	tgcttctt	ttctttcat	ttccttaggt	3300
ctaattttaa	tttttatttgc	gaaggagcag	tgtaaagctt	acttgattt	aatagtgtat	3360
ctcatagata	cagacaaggc	cgcagagata	agctgtt	tagt	ttttgtt	3420
gagagaaagg	tgtattactt	aaaaatacta	taccatatac	ttttgttata	tcattaaatc	3480
tttaaaagaa	attaaat	ttcttgcata	aaaaaaaaaa	aaaaaaaaaa	aa	3532

<210> 8
<211> 475
<212> PRT
<213> Mus Musculus

<400> 8

-7-

Ile Met Ala Tyr His Glu Lys Pro Val Leu Pro Pro Pro Leu Ile Ile
 1 5 10 15
 Leu Ser His Ile Val Ser Leu Phe Cys Cys Val Cys Lys Arg Arg Lys
 20 25 30
 Lys Asp Lys Thr Ser Asp Gly Pro Lys Leu Phe Leu Thr Glu Glu Asp
 35 40 45
 Gln Lys Lys Leu His Asp Phe Glu Glu Gln Cys Val Glu Met Tyr Phe
 50 55 60
 Asp Glu Lys Asp Asp Lys Phe Asn Ser Gly Ser Glu Glu Arg Ile Arg
 65 70 75 80
 Val Thr Phe Glu Arg Val Glu Gln Met Ser Ile Gln Ile Lys Glu Val
 85 90 95
 Gly Asp Arg Val Asn Tyr Ile Lys Arg Ser Leu Gln Ser Leu Asp Ser
 100 105 110
 Gln Ile Gly His Leu Gln Asp Leu Ser Ala Leu Thr Val Asp Thr Leu
 115 120 125
 Lys Thr Leu Thr Ala Gln Lys Ala Ser Glu Ala Ser Lys Val His Asn
 130 135 140
 Glu Ile Thr Arg Glu Leu Ser Ile Ser Lys His Leu Ala Gln Asn Leu
 145 150 155 160
 Ile Asp Asp Val Pro Val Arg Pro Leu Trp Glu Glu Pro Ser Ala Val
 165 170 175
 Asn Thr Leu Ser Ser Leu Pro Gln Gly Asp Arg Glu Ser Asn Asn
 180 185 190
 Pro Phe Leu Cys Asn Ile Phe Met Lys Asp Glu Lys Asp Pro Gln Tyr
 195 200 205
 Asn Leu Phe Gly Gln Asp Leu Pro Val Ile Pro Gln Arg Lys Glu Phe
 210 215 220
 Asn Ile Pro Glu Ala Gly Ser Ser Cys Gly Ala Leu Phe Pro Ser Ala
 225 230 235 240
 Val Ser Pro Pro Glu Leu Arg Gln Arg Arg His Gly Val Glu Met Leu
 245 250 255
 Lys Ile Phe Asn Lys Asn Gln Lys Leu Gly Ser Ser Pro Asn Ser Ser
 260 265 270
 Pro His Met Ser Ser Pro Pro Thr Lys Phe Ser Val Ser Thr Pro Ser
 275 280 285
 Gln Pro Ser Cys Lys Ser His Leu Glu Ser Thr Thr Lys Asp Gln Glu
 290 295 300
 Pro Ile Phe Tyr Lys Ala Ala Glu Gly Asp Asn Ile Glu Phe Gly Ala
 305 310 315 320
 Phe Val Gly His Arg Asp Ser Met Asp Leu Gln Arg Phe Lys Glu Thr
 325 330 335
 Ser Asn Lys Ile Arg Glu Leu Leu Ser Asn Asp Thr Pro Glu Asn Thr
 340 345 350
 Leu Lys His Val Gly Ala Ala Gly Tyr Ser Glu Cys Cys Lys Thr Ser
 355 360 365
 Thr Ser Leu His Ser Val Gln Ala Glu Ser Cys Ser Arg Arg Ala Ser
 370 375 380
 Thr Glu Asp Ser Pro Glu Val Asp Ser Lys Ala Ala Leu Leu Pro Asp
 385 390 395 400
 Trp Leu Arg Asp Arg Pro Ser Asn Arg Glu Met Pro Ser Glu Gly Gly
 405 410 415
 Thr Leu Asn Gly Leu Ala Ser Pro Phe Lys Pro Val Leu Asp Thr Asn
 420 425 430
 Tyr Tyr Tyr Ser Ala Val Glu Arg Asn Asn Leu Met Arg Leu Ser Gln
 435 440 445
 Ser Ile Pro Phe Val Pro Val Pro Pro Arg Gly Glu Pro Val Thr Val
 450 455 460
 Tyr Pro Ser Gly Gly Arg Val Leu Pro Val Tyr
 465 470 475

```

<210> 9
<211> 5433
<212> DNA
<213> Mus Musculus

<220>
<221> unsure
<222> (5094)...(5094)
<223> unknown

<400> 9
ggctgaaaga gcctgagctg tgcctctcca ttccactgct gtggcagggt cagaatctt
ggatagagaa aacctttgc aaacggaaat gtatcttgc aattcctagc acggaaagact
ctaacaggtg ttgtgtggc cagttcacca accagcatat cccccctctg ccaagtgcac
caccaggaa aatgaagag gaaagcaaac aggtggagac tcagcctgag aatggctcg
ttgcaagca caccaggagc tacccaacag attcctatgg agttcttgc aatggctcg
gcggatattc caataaagcc atgtatattc gtgtatccca tgacaccaag ccagactcac
tgctccatct catggtaaaa gattggcagc tggaaactccc caagctctt atatctgtgc
atggaggcct ccagaacttt gagatgcagc ccaagctgaa acaagtctt gggaaaggcc
tgatcaaggc tgctatgacc accggggcct ggatcttcac cgggggtgtc agcacagggt
ttatcagcca cgtagggat gccttgaag accactccctc caagtccaga ggcgggtt
gtgctatagg aattgtctcca tggggcatcg tggagaataa ggaagactg gttggaaagg
atgtaaacaag atgttacca accatgttca accctcttaa taagctctt gtgtctcaaa
actcccacac ccacttcattc ctggctgaca atggcaccct gggcaagttt ggcggcagg
tgaagctcg aaggtcg aaaaagcaca tctccctcca aagatcaac acaagactgg
ggcagggggt gcccctcg ggtctcg tggaggggggg ccctaactgt gtgtccatcg
tcttggaaaata cctgcaagaa gggctccca tccctgtgg gatttgc ggcagcggac
gtgcctcgga catccctgtcc ttgcgcaca agtactgtga agaaggcga ataataaatg
agtccctcag ggagcagttt ctatgttccca ttccatgggattt aataaggcac
aatcacatca gctgttttgc attataatgg atgtcatgaa gaagaaaagaa ctcgttactg
tgttcagaat ggggtctgag ggccagcagg acatcgatgg gcaattttt actgcccctgc
tgaaggaac aaacgtatct gctccagatc agtgcggctt ggcactggct tggaaaccgc
tggacatagc acgaagccag atctttgtct ttggggccca ctggacgccc ctgggaagcc
tggcacccccc gacggacagc aaagccacgg agaaggagaa gaagccaccc atggccacca
ccaagggagg aagaggaaaa gggaaaggca agaagaaaagg gaaagtggaa gggaaagg
aggaagaaac tgaccccccgg aagatagagc tgctgaactg ggtgaatgt ttggagcaag
cgatgttgc tgcttttagtc tttagatcg tgcactttgtt gaaactcttgc attggaaaacg
gagtgaacat gcaacacttt ctgaccattc cgaggctgg gggactctat aacacaagac
ttggtccacc aaacacactt catctgtgg tgaggatgt gaaaagagc aaccttccgc
ctgatttacca catcagccctc atagacatcg ggctcgatgc ggagttaccc atggaggag
cctaccgtg caactacact cggaaaaact ttccggaccct ttacaacaac ttgtttggac
caaagaggcc taaagcttca aacttctgg gaatggaaaga tggatggactt ccagctaaag
ggaagaaaaaaa aaaaaggagg aagagatcga cattgtatgt gacggaccctg
ccgtgagtcg gttccagttt cccttccacgg agtgcgttgc gttggcaggctg ctgtatggaaac
ggcagaaaaat ggcagtgttc ctctggcagc gagggggaaaga gagcatggcc aaggccctgg
tggcctgcaaa gctctacaag gccatggccc acgacttcctc cgagactgtat ctgtgtggatg
acatctccca ggacttggat aacaatttca aagacttcgg ccagcttgc ttggatgtt
tagaccatgc ctataagcat gacgagcaga tcgctatgaa actcctgacc tacggactga
aaaactggag caacttcgacc tgccctcaaaac tggccgtggc agccaaacac cggggactca
ttgctcacac ctgcagccag atgcgttgc cccatgttgc gatggggaaaga ctggggatgc
ggaaagaccc cggccctgaa gttatcatgg ggattttctt accccccacc atcttggat
tggaaatttcg cactatgtat gatttctgtt atcaacatc caagggaaaac gaggatggca
aagggaaaaga agggaaaat acggatgcaatgcagatgc tggctcaaga aagggggatg
aggagaacga gcaaaaaaaa cagagaagta ttcccatcg aacaaagatc tggatgtt
ataacgcgc cattgttcaag ttctggatggt acacaatatc atacttggc tacctgttgc
tggatgttgc cgttcatccatg gtggatgg atggctggcc gttccctccag gaggatgc
tcatctccca catcgttgc gttccatcg aagatgcagatc acggatccctc atgtcagaac
caggcaact caggccagaaa atcaaagttt ggcttgcggaa gttactggaaac atcacagatc
tcgttggccat ttccatccatc atgattggag caatttgc ctttacacaac caggccctaca

```

-9-

tgggctatgg	ccgggtgatc	tactgtgtgg	atatcatctt	ctggcacatc	cgtgtcctgg	2940
acatctttgg	tgtcaacaag	tatctggggc	catacgtat	gatgatttggaa	aagatgatga	3000
tcgacatgt	gtactttgtg	gtcatcatgc	ttgtcgtgc	catgagtttc	ggagtagccc	3060
gtcaagccat	tctgcatcca	gaggagaagc	cctcttgaa	actggcccgaa	aacatcttct	3120
acatcccta	ctggatgatc	tatggagagg	tgtttgcaga	ccagatagac	ctctacgcca	3180
tgaaaattaa	tcctccttgc	ggtgagaacc	tatatgatga	ggagggcaag	cggcttcctc	3240
cctgtatccc	cggcgccctgg	ctcaactccag	cactcatggc	gtgctatcta	ctggcgcca	3300
acatcctgt	gtgtAACCTG	ctgattgtcg	tgttcaacaa	tacttcttt	gaagtaaaat	3360
caatatccaa	ccaggtgtgg	aaagtccagc	gatatcagct	gattatgaca	tttcatgaca	3420
ggccagtctt	gccccccaccc	atgatcattt	taagccacat	ctacatcatc	attatgcgtc	3480
tcagcggccg	ctgcaggaaa	aagagagaag	gggaccaaga	ggaacgggat	cgtggattga	3540
agctcttcct	tagcgacag	gagctaaaga	ggctgcata	gttcgaggag	cagtgcgtgc	3600
aggagactt	ccgggagaag	gaggatgagc	agcagtcgtc	cagcagcag	cgcacccggg	3660
tcacttctga	aagagtggaa	aatatgtcaa	tgagggtggaa	agaaatcaat	gaaagagaaaa	3720
ctttatgaa	aacttccctg	caagactgtt	accttcgact	tgctcagcta	gaagaattat	3780
ctaacagaat	gtgtaatgt	cttggaaatc	ttgcggaaat	cgacaggct	gacctgatcc	3840
aggcacggtc	ccgggcttct	tctgaatgtg	aggcaacgta	tcttcctcgg	caaagcagca	3900
tcaatagcgc	tgatggctac	agcttgcata	gatatcattt	taacggagaa	gagttattat	3960
ttgagatac	atctctctcc	acgtcaccag	ggacaggagt	caggaaaaaa	acctgttcc	4020
tccgtataaa	ggaagagaag	gacgtaaaaa	cgcacccat	cccagaatgt	cagaacagtc	4080
ttcaccttcc	actgggcaca	agcacatcag	caacccaga	tggcagtcac	ttgcagtag	4140
atgacttaaa	gaacgctgaa	gagtcaaaat	taggtccaga	tattgggatt	tcaaaggaag	4200
atgatgaaag	acagacagac	tctaaaaaaag	aagaaactat	ttcccaagt	ttaaataaaaa	4260
cagatgtat	acatggacag	gacaatcag	atgttcaaaa	cactcagcta	acagtggaaa	4320
cgacaaatat	agaaggcact	atttccatac	ccctggaaaga	aaccaaataat	acacgctatt	4380
tccccatgt	aacgatcaat	gcttggaaaa	caatgaagtc	cagaagcttc	gtcttattccc	4440
ggggaaagaaa	gctggcgtt	ggggtaacc	aggatgtaga	gtacagttca	atcacggacc	4500
agcaatttgc	gacggaaatgg	caatgccaag	ttcaaaagat	cacgcgtct	catagcagac	4560
atattcccta	cattgtgtcg	gaagctgcag	tgcaagctga	gcaaaaagag	cagtttgcag	4620
atatgcaaga	tgaacaccat	gtcgtgaag	caatttcctcg	aatccctcgc	ttgtccctaa	4680
ccattactga	cagaaatggg	atggaaaact	tactgtctgt	gaagccagat	caaactttgg	4740
gattccctatc	tctcaggatca	aaaagtttac	atggacatcc	taggaatgtg	aatccattc	4800
agggaaaagtt	agacagatct	ggacatgcca	gtagtgtaag	cagcttagta	attgtgtctg	4860
gaatgacagc	agaagaaaaaa	aaggtaaga	aagagaaagc	ttccacagaa	actgaatgt	4920
agtctgtttt	gtttctttaa	ttttttttt	taacagtca	aaaccacta	atgggtgtca	4980
tcttggccca	tcctaaacac	atmtccaatt	tcctaaaaac	atttccctt	aaaaaatttt	5040
ggaaatttcag	acttgattta	caatttaatg	cactaaaatg	agtattttgt	tagnatatgt	5100
tagtagctt	agttttttca	gttgcaatgt	tatcaaata	aagtgtatgt	actgtaacga	5160
agataaaatttgc	atataatgt	atacaatgtt	atacaatctc	tttattactg	aggggccacca	5220
aatagcctag	gaaatgtccct	cgagcactga	agtaccatt	aggtcaactca	agaagtaagc	5280
aactagctgg	gcacagtggc	tcatgcctgt	aatccatgca	ctttgggagg	ccaaggcaga	5340
aagatagctt	gagtccagga	gtttgagacc	agcctgggca	acatagtat	accccatctc	5400
ttaaaaaaaaaa	aaaaaaaaaa	ctgcctcg	gcc			5433

<210> 10
 <211> 1533
 <212> PRT
 <213> Mus Musculus

<400> 10

Met	Tyr	Ile	Arg	Val	Ser	Tyr	Asp	Thr	Lys	Pro	Asp	Ser	Leu	Leu	His
1				5				10					15		
Leu	Met	Val	Lys	Asp	Trp	Gln	Leu	Glu	Leu	Pro	Lys	Leu	Ile	Ser	
					20			25				30			
Val	His	Gly	Gly	Leu	Gln	Asn	Phe	Glu	Met	Gln	Pro	Lys	Leu	Lys	Gln
					35			40				45			
Val	Phe	Gly	Lys	Gly	Leu	Ile	Lys	Ala	Ala	Met	Thr	Thr	Gly	Ala	Trp
					50			55				60			

-10-

Ile Phe Thr Gly Gly Val Ser Thr Gly Val Ile Ser His Val Gly Asp
 65 70 75 80
 Ala Leu Lys Asp His Ser Ser Lys Ser Arg Gly Arg Val Cys Ala Ile
 85 90 95
 Gly Ile Ala Pro Trp Gly Ile Val Glu Asn Lys Glu Asp Leu Val Gly
 100 105 110
 Lys Asp Val Thr Arg Val Tyr Gln Thr Met Ser Asn Pro Leu Ser Lys
 115 120 125
 Leu Ser Val Leu Asn Asn Ser His Thr His Phe Ile Leu Ala Asp Asn
 130 135 140
 Gly Thr Leu Gly Lys Tyr Gly Ala Glu Val Lys Leu Arg Arg Leu Leu
 145 150 155 160
 Glu Lys His Ile Ser Leu Gln Lys Ile Asn Thr Arg Leu Gly Gln Gly
 165 170 175
 Val Pro Leu Val Gly Leu Val Val Glu Gly Gly Pro Asn Val Val Ser
 180 185 190
 Ile Val Leu Glu Tyr Leu Gln Glu Pro Pro Ile Pro Val Val Ile
 195 200 205
 Cys Asp Gly Ser Gly Arg Ala Ser Asp Ile Leu Ser Phe Ala His Lys
 210 215 220
 Tyr Cys Glu Glu Gly Gly Ile Ile Asn Glu Ser Leu Arg Glu Gln Leu
 225 230 235 240
 Leu Val Thr Ile Gln Lys Thr Phe Asn Tyr Asn Lys Ala Gln Ser His
 245 250 255
 Gln Leu Phe Ala Ile Ile Met Glu Cys Met Lys Lys Glu Leu Val
 260 265 270
 Thr Val Phe Arg Met Gly Ser Glu Gly Gln Gln Asp Ile Glu Met Ala
 275 280 285
 Ile Leu Thr Ala Leu Leu Lys Gly Thr Asn Val Ser Ala Pro Asp Gln
 290 295 300
 Leu Ser Leu Ala Leu Ala Trp Asn Arg Val Asp Ile Ala Arg Ser Gln
 305 310 315 320
 Ile Phe Val Phe Gly Pro His Trp Thr Pro Leu Gly Ser Leu Ala Pro
 325 330 335
 Pro Thr Asp Ser Lys Ala Thr Glu Lys Glu Lys Lys Pro Pro Met Ala
 340 345 350
 Thr Thr Lys Gly Gly Arg Gly Lys Gly Lys Gly Lys Lys Gly Lys
 355 360 365
 Val Lys Glu Glu Val Glu Glu Thr Asp Pro Arg Lys Ile Glu Leu
 370 375 380
 Leu Asn Trp Val Asn Ala Leu Glu Gln Ala Met Leu Asp Ala Leu Val
 385 390 395 400
 Leu Asp Arg Val Asp Phe Val Lys Leu Leu Ile Glu Asn Gly Val Asn
 405 410 415
 Met Gln His Phe Leu Thr Ile Pro Arg Leu Glu Glu Leu Tyr Asn Thr
 420 425 430
 Arg Leu Gly Pro Pro Asn Thr Leu His Leu Leu Val Arg Asp Val Lys
 435 440 445
 Lys Ser Asn Leu Pro Pro Asp Tyr His Ile Ser Leu Ile Asp Ile Gly
 450 455 460
 Leu Val Leu Glu Tyr Leu Met Gly Gly Ala Tyr Arg Cys Asn Tyr Thr
 465 470 475 480
 Arg Lys Asn Phe Arg Thr Leu Tyr Asn Asn Leu Phe Gly Pro Lys Arg
 485 490 495
 Pro Lys Ala Leu Lys Leu Leu Gly Met Glu Asp Asp Glu Pro Pro Ala
 500 505 510
 Lys Gly Lys Lys Lys Lys Lys Lys Lys Glu Glu Ile Asp Ile
 515 520 525
 Asp Val Asp Asp Pro Ala Val Ser Arg Phe Gln Tyr Pro Phe His Glu
 530 535 540

-11-

Leu Met Val Trp Ala Val Leu Met Lys Arg Gln Lys Met Ala Val Phe
 545 550 555 560
 Leu Trp Gln Arg Gly Glu Glu Ser Met Ala Lys Ala Leu Val Ala Cys
 565 570 575
 Lys Leu Tyr Lys Ala Met Ala His Glu Ser Ser Glu Ser Asp Leu Val
 580 585 590
 Asp Asp Ile Ser Gln Asp Leu Asp Asn Asn Ser Lys Asp Phe Gly Gln
 595 600 605
 Leu Ala Leu Glu Leu Leu Asp Gln Ser Tyr Lys His Asp Glu Gln Ile
 610 615 620
 Ala Met Lys Leu Leu Thr Tyr Glu Leu Lys Asn Trp Ser Asn Ser Thr
 625 630 635 640
 Cys Leu Lys Leu Ala Val Ala Ala Lys His Arg Asp Phe Ile Ala His
 645 650 655
 Thr Cys Ser Gln Met Leu Leu Thr Asp Met Trp Met Gly Arg Leu Arg
 660 665 670
 Met Arg Lys Asn Pro Gly Leu Lys Val Ile Met Gly Ile Leu Leu Pro
 675 680 685
 Pro Thr Ile Leu Phe Leu Glu Phe Arg Thr Tyr Asp Asp Phe Ser Tyr
 690 695 700
 Gln Thr Ser Lys Glu Asn Glu Asp Gly Lys Glu Lys Glu Glu Asn
 705 710 715 720
 Thr Asp Ala Asn Ala Asp Ala Gly Ser Arg Lys Gly Asp Glu Glu Asn
 725 730 735
 Glu His Lys Lys Gln Arg Ser Ile Pro Ile Gly Thr Lys Ile Cys Glu
 740 745 750
 Phe Tyr Asn Ala Pro Ile Val Lys Phe Trp Phe Tyr Thr Ile Ser Tyr
 755 760 765
 Leu Gly Tyr Leu Leu Leu Phe Asn Tyr Val Ile Leu Val Arg Met Asp
 770 775 780
 Gly Trp Pro Ser Leu Gln Glu Trp Ile Val Ile Ser Tyr Ile Val Ser
 785 790 795 800
 Leu Ala Leu Glu Lys Ile Arg Glu Ile Leu Met Ser Glu Pro Gly Lys
 805 810 815
 Leu Ser Gln Lys Ile Lys Val Trp Leu Gln Glu Tyr Trp Asn Ile Thr
 820 825 830
 Asp Leu Val Ala Ile Ser Thr Phe Met Ile Gly Ala Ile Leu Arg Leu
 835 840 845
 Gln Asn Gln Pro Tyr Met Gly Tyr Gly Arg Val Ile Tyr Cys Val Asp
 850 855 860
 Ile Ile Phe Trp Tyr Ile Arg Val Leu Asp Ile Phe Gly Val Asn Lys
 865 870 875 880
 Tyr Leu Gly Pro Tyr Val Met Met Ile Gly Lys Met Met Ile Asp Met
 885 890 895
 Leu Tyr Phe Val Val Ile Met Leu Val Val Leu Met Ser Phe Gly Val
 900 905 910
 Ala Arg Gln Ala Ile Leu His Pro Glu Glu Lys Pro Ser Trp Lys Leu
 915 920 925
 Ala Arg Asn Ile Phe Tyr Met Pro Tyr Trp Met Ile Tyr Gly Glu Val
 930 935 940
 Phe Ala Asp Gln Ile Asp Leu Tyr Ala Met Glu Ile Asn Pro Pro Cys
 945 950 955 960
 Gly Glu Asn Leu Tyr Asp Glu Glu Gly Lys Arg Leu Pro Pro Cys Ile
 965 970 975
 Pro Gly Ala Trp Leu Thr Pro Ala Leu Met Ala Cys Tyr Leu Leu Val
 980 985 990
 Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Val Phe Asn Asn Thr
 995 1000 1005
 Phe Phe Glu Val Lys Ser Ile Ser Asn Gln Val Trp Lys Phe Gln Arg
 1010 1015 1020

-12-

Tyr Gln Leu Ile Met Thr Phe His Asp Arg Pro Val Leu Pro Pro Pro
 1025 1030 1035 104
 Met Ile Ile Leu Ser His Ile Tyr Ile Ile Met Arg Leu Ser Gly
 1045 1050 1055
 Arg Cys Arg Lys Lys Arg Glu Gly Asp Gln Glu Glu Arg Asp Arg Gly
 1060 1065 1070
 Leu Lys Leu Phe Leu Ser Asp Glu Glu Leu Lys Arg Leu His Glu Phe
 1075 1080 1085
 Glu Glu Gln Cys Val Gln Glu His Phe Arg Glu Lys Glu Asp Glu Gln
 1090 1095 1100
 Gln Ser Ser Ser Asp Glu Arg Ile Arg Val Thr Ser Glu Arg Val Glu
 1105 1110 1115 112
 Asn Met Ser Met Arg Leu Glu Glu Ile Asn Glu Arg Glu Thr Phe Met
 1125 1130 1135
 Lys Thr Ser Leu Gln Thr Val Asp Leu Arg Leu Ala Gln Leu Glu Glu
 1140 1145 1150
 Leu Ser Asn Arg Met Val Asn Ala Leu Glu Asn Leu Ala Gly Ile Asp
 1155 1160 1165
 Arg Ser Asp Leu Ile Gln Ala Arg Ser Arg Ala Ser Ser Glu Cys Glu
 1170 1175 1180
 Ala Thr Tyr Leu Leu Arg Gln Ser Ser Ile Asn Ser Ala Asp Gly Tyr
 1185 1190 1195 120
 Ser Leu Tyr Arg Tyr His Phe Asn Gly Glu Glu Leu Leu Phe Glu Asp
 1205 1210 1215
 Thr Ser Leu Ser Thr Ser Pro Gly Thr Gly Val Arg Lys Lys Thr Cys
 1220 1225 1230
 Ser Phe Arg Ile Lys Glu Glu Lys Asp Val Lys Thr His Leu Val Pro
 1235 1240 1245
 Glu Cys Gln Asn Ser Leu His Leu Ser Leu Gly Thr Ser Thr Ser Ala
 1250 1255 1260
 Thr Pro Asp Gly Ser His Leu Ala Val Asp Asp Leu Lys Asn Ala Glu
 1265 1270 1275 128
 Glu Ser Lys Leu Gly Pro Asp Ile Gly Ile Ser Lys Glu Asp Asp Glu
 1285 1290 1295
 Arg Gln Thr Asp Ser Lys Lys Glu Glu Thr Ile Ser Pro Ser Leu Asn
 1300 1305 1310
 Lys Thr Asp Val Ile His Gly Gln Asp Lys Ser Asp Val Gln Asn Thr
 1315 1320 1325
 Gln Leu Thr Val Glu Thr Thr Asn Ile Glu Gly Thr Ile Ser Tyr Pro
 1330 1335 1340
 Leu Glu Glu Thr Lys Ile Thr Arg Tyr Phe Pro Asp Glu Thr Ile Asn
 1345 1350 1355 136
 Ala Cys Lys Thr Met Lys Ser Arg Ser Phe Val Tyr Ser Arg Gly Arg
 1365 1370 1375
 Lys Leu Val Gly Gly Val Asn Gln Asp Val Glu Tyr Ser Ser Ile Thr
 1380 1385 1390
 Asp Gln Gln Leu Thr Thr Glu Trp Gln Cys Gln Val Gln Lys Ile Thr
 1395 1400 1405
 Arg Ser His Ser Thr Asp Ile Pro Tyr Ile Val Ser Glu Ala Ala Val
 1410 1415 1420
 Gln Ala Glu Gln Lys Glu Gln Phe Ala Asp Met Gln Asp Glu His His
 1425 1430 1435 144
 Val Ala Glu Ala Ile Pro Arg Ile Pro Arg Leu Ser Leu Thr Ile Thr
 1445 1450 1455
 Asp Arg Asn Gly Met Glu Asn Leu Leu Ser Val Lys Pro Asp Gln Thr
 1460 1465 1470
 Leu Gly Phe Pro Ser Leu Arg Ser Lys Ser Leu His Gly His Pro Arg
 1475 1480 1485
 Asn Val Lys Ser Ile Gln Gly Lys Leu Asp Arg Ser Gly His Ala Ser
 1490 1495 1500

-13-

Ser	Val	Ser	Ser	Leu	Val	Ile	Val	Ser	Gly	Met	Thr	Ala	Glu	Glu	Lys
1505					1510					1515					152
Lys	Val	Lys	Lys	Glu	Lys	Ala	Ser	Thr	Glu	Thr	Glu	Cys			
						1525				1530					

<210> 11
<211> 6220
<212> DNA
<213> *Homo Sapiens*

<400> 11	60
tgtgcagaat tgcgttttgc	120
ttccctgtgc ggtgttcgt	180
tgcagtcacc tgggttgtt	240
actccccccag agtgtccggg	300
gtgcaggctg atgaagagaa	360
ctctcagaac atcagcctca	420
tctctagaac cccagtgtag	480
ttgcagctgg cgtgggggtc	540
gcaggaggag ggctttgagg	600
tctccggcgc agcaacagca	660
caatgacaag caagaaagcc	720
cgtgtatccc gtggaaagt	780
ctacacgcat gaggcact	840
gtgggaccca aagaaacatg	900
cacgggcctg agccagaagg	960
cgtgtatctac cacctcatga	1020
ggtgaccggg gggccaaga	1080
aggcctggtc aagtggctc	1140
cggcgtcatg aagcaggtag	1200
ggaaggcggag ctcatccca	1260
cctgatecat cccacgggg	1320
gaacctgacc tgcctagaca	1380
cggccagtac ggggtggaga	1440
gaccaaggaa agaggagggt	1500
cggccggggc acgttgacca	1560
tgtggagggc tggggccgc	1620
ggacatcaact atctccctga	1680
gacccctacg gaaagcagga	1740
gcggcagctg ctgactgtct	1800
catcttgacg gccttgc	1860
ggaccaccag ctgaaactgg	1920
cttcatggat gatgtggcgt	1980
catctccaaac aagcttgatg	2040
gtttgtcacc tggacacct	2100
ccacagaag ctgcaaaagg	2160
ggcgcggcgc ctgcagatgc	2220
cacgcagccg ctttatcccc	2280
tccccacgtc aagctcaacg	2340
aggccatgtg accttaccca	2400
gaaccgtcgg gagctggcag	2460
cttggcctgc agcaagatcc	2520
ggaggagatg ctggcgctgg	2580
gtgttacccgg aaggacgaag	2640
ggggaaagacc acctgcctgc	2700
cgggggcattc caggcattcc	2760
gctgtggcgt gtgaccctgt	2820
cttcaggggag aagaggctgc	2880
caccgcaccc gtgggtgtct	2940
gttcgcctac gtgctcatgg	
tggacttcca gcctgtgccc	
tcctggtgcg agtgtgccc	

ctacccctgg	ctcttctcct	tggtgtgcga	ggagatgcgg	cagctttct	atgaccctga	3000
cgagtgcggg	ctgatgaaga	aggcagcctt	gracttcagt	gacttctgga	ataagctgga	3060
cgtcgccgca	atcttgcct	tcgtgcagg	gctgacctgc	aggctcatcc	cggcgacgct	3120
gtaccccggg	cgggtcatcc	tctctctgg	cttcatcctg	ttctgcctcc	ggctcatgca	3180
cattttacc	atcagaaga	cgctggggcc	caagatcatt	attgtgaagc	ggatgtatgaa	3240
ggacgtcttc	ttcttcctct	tcctgtggc	tgtgtgggtg	gtgtccttcg	gggtggccaa	3300
gcagggccatc	ctcatccaca	acgagcggc	ggtggactgg	ctgttccgag	ggggcgctca	3360
ccactcctac	ctcaccatct	tcgggcagat	cccgggctac	atcgacggtg	tgaacttcaa	3420
ccggagcac	tgcagcccc	atggcaccga	cccctacaag	cctaagtgcc	ccgagagcga	3480
cgcgacgcag	cagaggccgg	ccttcctga	gtggctgacg	gtcctcctac	tctgcctcta	3540
cctgctcttc	accaacatcc	tgctgtcaa	cctcctcattc	gccatgttca	actacacctt	3600
ccagcagggt	caggagcaca	cggaccagat	ttgaaagttc	cagcggcatg	actgtatgca	3660
ggagtaccac	ggccgcccc	ccgcggccgc	ccccttcattc	ctcctcagcc	actgtcagct	3720
cttcatcaag	agggtggtcc	tgaagactcc	ggccaagagg	cacaagcage	tcaagaacaa	3780
gctggagaag	aacggaggagg	cggccctgt	atcctggggg	atctacactg	aggagaacta	3840
cctccagaac	cgacagttcc	agcaaaagca	gcccggccgg	cagaagatcg	aggacatcg	3900
caataagtt	gacgccccatgg	tggactgt	gggactggac	ccactgaaga	ggtcgggctc	3960
catggcggcag	agggtggcct	ccctggagga	gcagggtggcc	cagacagccc	gagccctgca	4020
ctggatcgtg	aggacgctgc	gggccagcgg	cttcagctcg	gaggcggacg	tccccactct	4080
ggcctccag	aaggccggcg	aggagccgga	tgctgagccg	ggaggcggaga	agaagacgga	4140
ggagccggc	gacagctacc	acgtaatgc	ccggcacctc	ctctacccca	actgcccctgt	4200
cacgcgttc	cccggtcccc	acgagaaggt	gcccctggag	acggagttcc	tgtatctatga	4260
cccacccctt	tacacggcag	agaggaagga	cgccggccgc	atggacccca	tgggagacac	4320
cctggagcca	ctgtccacga	tccagtacaa	cgtgttggat	ggcctgaggg	accgcccggag	4380
cttccacggg	ccgtacacaa	tgcaggccgg	gttgcctctg	aacccatgg	ggccgacacgg	4440
actgcgtgg	cgccggagcc	tcagctgctt	cgagccaaac	cacacgctgt	accccatgg	4500
cacgcgtgg	aggcggaaacg	aggatggagc	catctgcagg	aagagcataa	agaagatgtc	4560
ggaagtgtc	gtgtgtgaagc	tccctctc	cgagcactgg	gcccctgc	ggggctcccg	4620
ggagccagg	gagatgtcata	ctcggaaatc	gaagcggatc	ctccggcagg	agactgtggc	4680
gtctttgaa	aacttgcgt	agtgcggcat	ggaggtgtac	aaaggctaca	tggatgaccc	4740
gaggaacacg	gacaatgcct	ggatcgagac	ggtggccgtc	agcgccact	tccaggacca	4800
gaatgacgt	gagctgaaca	ggctgaactc	taacctgcac	gcctgcgact	cgggggccctc	4860
catccatgg	cagggtggtg	acaggcgcatt	cccactctat	gcgaaccaca	agaccctctt	4920
ccagaaggca	ggcgctgagt	tcgggctca	ctactgactg	tgcctcagg	ctggcggcgt	4980
ccagtcata	gacgttcccc	ccagaaacca	gggttctct	ctcctgagcc	tggccaggac	5040
tcaggctgtt	cctggccct	gcacatgt	gggtttgggt	gaccctgtc	ccctcacggc	5100
tgcccaagt	ctgctgcaga	tgacctcatg	aactgaaagg	ggtcaaggt	acccgggagg	5160
agagctcaag	acagggcaca	ggctactcag	agctgagggg	cccttggac	ccttggccat	5220
caggcgagg	gctgggcctg	tgcagctggg	cccttggca	gagtcactc	ccttggcgt	5280
tgtgtcacc	cgagcagctt	atccacatgt	gagggttatt	gcctgaggca	agttccccgg	5340
agagtccgg	tccctgtgg	ccccctcagg	cctatgtctg	tgaggaagg	gccctgcccac	5400
tctcccaag	agggcctca	tgtttcgagg	tgccctcaaca	tggacccctt	cctggcctgg	5460
gctaggggca	ctgtctgaac	tcctgactgt	caggataaac	tccgtgggg	tacaggagcc	5520
cagacaaagc	ccaggcctgt	caagagacgc	agagggcccc	tgccagggtt	ggccccagg	5580
accctggac	gaggctgcag	aagctctccc	tccctactcc	ctgggagcca	cgtgtggcc	5640
atgtgccag	ggacggcatt	agcaggaggg	ggggacgtgg	ggcccttctg	gtttgggtgc	5700
aacagctcac	aggagcgtga	accatgagg	ccctcaggag	ggaaacgtgg	taaaacccaa	5760
gacattaaat	ctgccatctc	aggcctggct	ggcttctctg	tgcttccac	aaataaaagt	5820
cctgacacgt	ccaggcctcg	gggctgtgt	acggctgcct	gaagttctcc	tgcaccccc	5880
ggtgagcttc	ctgcagcctg	tggatgtct	gcagcccttc	agccctaccc	ccaagtttct	5940
cctctgaccc	atcagctccc	tgtcttcatt	tccctaaacc	tgggctccag	catcgtcccc	6000
aagccacca	ggccaggatg	caggcatcca	catggccctcc	tccctgggtt	ccccctgcgt	6060
gtggtgccaa	tgtgcccctgg	caccctgtca	gaggctccgg	atggagccctg	gggctgcctg	6120
gccactgagc	actggccgag	gtgatgcca	cccttccctg	gacaggccctc	tgtctccac	6180
ctgacccaaa	gtctcttag	caccccttg	tccccagtag			6220

-15-

<212> PRT
 <213> Homo Sapiens

<400> 12
 Met Glu Pro Ser Ala Leu Arg Lys Ala Gly Ser Glu Gln Glu Glu Gly
 1 5 10 15
 Phe Glu Gly Leu Pro Arg Arg Val Thr Asp Leu Gly Met Val Ser Asn
 20 25 30
 Leu Arg Arg Ser Asn Ser Ser Leu Phe Lys Ser Trp Arg Leu Gln Cys
 35 40 45
 Pro Phe Gly Asn Asn Asp Lys Gln Glu Ser Leu Ser Ser Trp Ile Pro
 50 55 60
 Glu Asn Ile Lys Lys Glu Cys Val Tyr Phe Val Glu Ser Ser Lys
 65 70 75 80
 Leu Ser Asp Ala Gly Lys Val Val Cys Gln Cys Gly Tyr Thr His Glu
 85 90 95
 Gln His Leu Glu Ala Thr Lys Pro His Thr Phe Gln Gly Thr Gln
 100 105 110
 Trp Asp Pro Lys Lys His Val Gln Glu Met Pro Thr Asp Ala Phe Gly
 115 120 125
 Asp Ile Val Phe Thr Gly Leu Ser Gln Lys Val Lys Lys Tyr Val Arg
 130 135 140
 Val Ser Gln Asp Thr Pro Ser Ser Val Ile Tyr His Leu Met Thr Gln
 145 150 155 160
 His Trp Gly Leu Asp Val Pro Asn Leu Ile Ser Val Thr Gly Gly
 165 170 175
 Ala Lys Asn Phe Asn Met Lys Pro Arg Leu Lys Ser Ile Phe Arg Arg
 180 185 190
 Gly Leu Val Lys Val Ala Gln Thr Thr Gly Ala Trp Ile Ile Thr Gly
 195 200 205
 Gly Ser His Thr Gly Val Met Lys Gln Val Gly Glu Ala Val Arg Asp
 210 215 220
 Phe Ser Leu Ser Ser Tyr Lys Glu Gly Glu Leu Ile Thr Ile Gly
 225 230 235 240
 Val Ala Thr Trp Gly Thr Val His Arg Arg Glu Gly Leu Ile His Pro
 245 250 255
 Thr Gly Ser Phe Pro Ala Glu Tyr Ile Leu Asp Glu Asp Gly Gln Gly
 260 265 270
 Asn Leu Thr Cys Leu Asp Ser Asn His Ser His Phe Ile Leu Val Asp
 275 280 285
 Asp Gly Thr His Gly Gln Tyr Gly Val Glu Ile Pro Leu Arg Thr Arg
 290 295 300
 Leu Glu Lys Phe Ile Ser Glu Gln Thr Lys Glu Arg Gly Gly Val Ala
 305 310 315 320
 Ile Lys Ile Pro Ile Val Cys Val Val Leu Glu Gly Gly Pro Gly Thr
 325 330 335
 Leu His Thr Ile Asp Asn Ala Thr Asn Gly Thr Pro Cys Val Val
 340 345 350
 Val Glu Gly Ser Gly Arg Val Ala Asp Val Ile Ala Gln Val Ala Asn
 355 360 365
 Leu Pro Val Ser Asp Ile Thr Ile Ser Leu Ile Gln Gln Lys Leu Ser
 370 375 380
 Val Phe Phe Gln Glu Met Phe Glu Thr Phe Thr Glu Ser Arg Ile Val
 385 390 395 400
 Glu Trp Thr Lys Lys Ile Gln Asp Ile Val Arg Arg Arg Gln Leu Leu
 405 410 415
 Thr Val Phe Arg Glu Gly Lys Asp Gly Gln Gln Asp Val Asp Val Ala
 420 425 430
 Ile Leu Gln Ala Leu Leu Lys Ala Ser Arg Ser Gln Asp His Phe Gly
 435 440 445

-16-

His Glu Asn Trp Asp His Gln Leu Lys Leu Ala Val Ala Trp Asn Arg
 450 455 460
 Val Asp Ile Ala Arg Ser Glu Ile Phe Met Asp Glu Trp Gln Trp Lys
 465 470 475 480
 Pro Ser Asp Leu His Pro Thr Met Thr Ala Ala Leu Ile Ser Asn Lys
 485 490 495
 Pro Glu Phe Val Lys Leu Phe Leu Glu Asn Gly Val Gln Leu Lys Glu
 500 505 510
 Phe Val Thr Trp Asp Thr Leu Leu Tyr Leu Tyr Glu Asn Leu Asp Pro
 515 520 525
 Ser Cys Leu Phe His Ser Lys Leu Gln Lys Val Leu Val Glu Asp Pro
 530 535 540
 Glu Arg Pro Ala Cys Ala Pro Ala Ala Pro Arg Leu Gln Met His His
 545 550 555 560
 Val Ala Gln Val Leu Arg Glu Leu Leu Gly Asp Phe Thr Gln Pro Leu
 565 570 575
 Tyr Pro Arg Pro Arg His Asn Asp Arg Leu Arg Leu Leu Pro Val
 580 585 590
 Pro His Val Lys Leu Asn Val Gln Gly Val Ser Leu Arg Ser Leu Tyr
 595 600 605
 Lys Arg Ser Ser Gly His Val Thr Phe Thr Met Asp Pro Ile Arg Asp
 610 615 620
 Leu Leu Ile Trp Ala Ile Val Gln Asn Arg Arg Glu Leu Ala Gly Ile
 625 630 635 640
 Ile Trp Ala Gln Ser Gln Asp Cys Ile Ala Ala Ala Leu Ala Cys Ser
 645 650 655
 Lys Ile Leu Lys Glu Leu Ser Lys Glu Glu Glu Asp Thr Asp Ser Ser
 660 665 670
 Glu Glu Met Leu Ala Leu Ala Glu Glu Tyr Glu His Arg Ala Ile Gly
 675 680 685
 Val Phe Thr Glu Cys Tyr Arg Lys Asp Glu Glu Arg Ala Gln Lys Leu
 690 695 700
 Leu Thr Arg Val Ser Glu Ala Trp Gly Lys Thr Thr Cys Leu Gln Leu
 705 710 715 720
 Ala Leu Glu Ala Lys Asp Met Lys Phe Val Ser His Gly Gly Ile Gln
 725 730 735
 Ala Phe Leu Thr Lys Val Trp Trp Gly Gln Leu Ser Val Asp Asn Gly
 740 745 750
 Leu Trp Arg Val Thr Leu Cys Met Leu Ala Phe Pro Leu Leu Thr
 755 760 765
 Gly Leu Ile Ser Phe Arg Glu Lys Arg Leu Gln Asp Val Gly Thr Pro
 770 775 780
 Ala Ala Arg Ala Arg Ala Phe Phe Thr Ala Pro Val Val Phe His
 785 790 795 800
 Leu Asn Ile Leu Ser Tyr Phe Ala Phe Leu Cys Leu Phe Ala Tyr Val
 805 810 815
 Leu Met Val Asp Phe Gln Pro Val Pro Ser Trp Cys Glu Cys Ala Ile
 820 825 830
 Tyr Leu Trp Leu Phe Ser Leu Val Cys Glu Glu Met Arg Gln Leu Phe
 835 840 845
 Tyr Asp Pro Asp Glu Cys Gly Leu Met Lys Lys Ala Ala Leu Tyr Phe
 850 855 860
 Ser Asp Phe Trp Asn Lys Leu Asp Val Gly Ala Ile Leu Leu Phe Val
 865 870 875 880
 Ala Gly Leu Thr Cys Arg Leu Ile Pro Ala Thr Leu Tyr Pro Gly Arg
 885 890 895
 Val Ile Leu Ser Leu Asp Phe Ile Leu Phe Cys Leu Arg Leu Met His
 900 905 910
 Ile Phe Thr Ile Ser Lys Thr Leu Gly Pro Lys Ile Ile Ile Val Lys
 915 920 925

Arg Met Met Lys Asp Val Phe Phe Phe Leu Phe Leu Leu Ala Val Trp
 930 935 940
 Val Val Ser Phe Gly Val Ala Lys Gln Ala Ile Leu Ile His Asn Glu
 945 950 955 960
 Arg Arg Val Asp Trp Leu Phe Arg Gly Ala Val Tyr His Ser Tyr Leu
 965 970 975
 Thr Ile Phe Gly Gln Ile Pro Gly Tyr Ile Asp Gly Val Asn Phe Asn
 980 985 990
 Pro Glu His Cys Ser Pro Asn Gly Thr Asp Pro Tyr Lys Pro Lys Cys
 995 1000 1005
 Pro Glu Ser Asp Ala Thr Gln Gln Arg Pro Ala Phe Pro Glu Trp Leu
 1010 1015 1020
 Thr Val Leu Leu Leu Cys Leu Tyr Leu Leu Phe Thr Asn Ile Leu Leu
 1025 1030 1035 104
 Leu Asn Leu Leu Ile Ala Met Phe Asn Tyr Thr Phe Gln Gln Val Gln
 1045 1050 1055
 Glu His Thr Asp Gln Ile Trp Lys Phe Gln Arg His Asp Leu Ile Glu
 1060 1065 1070
 Glu Tyr His Gly Arg Pro Ala Ala Pro Pro Pro Phe Ile Leu Leu Ser
 1075 1080 1085
 His Leu Gln Leu Phe Ile Lys Arg Val Val Leu Lys Thr Pro Ala Lys
 1090 1095 1100
 Arg His Lys Gln Leu Lys Asn Lys Leu Glu Lys Asn Glu Glu Ala Ala
 1105 1110 1115 112
 Leu Leu Ser Trp Glu Ile Tyr Leu Lys Glu Asn Tyr Leu Gln Asn Arg
 1125 1130 1135
 Gln Phe Gln Gln Lys Gln Arg Pro Glu Gln Lys Ile Glu Asp Ile Ser
 1140 1145 1150
 Asn Lys Val Asp Ala Met Val Asp Leu Leu Asp Leu Asp Pro Leu Lys
 1155 1160 1165
 Arg Ser Gly Ser Met Glu Gln Arg Leu Ala Ser Leu Glu Glu Gln Val
 1170 1175 1180
 Ala Gln Thr Ala Arg Ala Leu His Trp Ile Val Arg Thr Leu Arg Ala
 1185 1190 1195 120
 Ser Gly Phe Ser Ser Glu Ala Asp Val Pro Thr Leu Ala Ser Gln Lys
 1205 1210 1215
 Ala Ala Glu Pro Asp Ala Glu Pro Gly Gly Arg Lys Lys Thr Glu
 1220 1225 1230
 Glu Pro Gly Asp Ser Tyr His Val Asn Ala Arg His Leu Leu Tyr Pro
 1235 1240 1245
 Asn Cys Pro Val Thr Arg Phe Pro Val Pro Asn Glu Lys Val Pro Trp
 1250 1255 1260
 Glu Thr Glu Phe Leu Ile Tyr Asp Pro Pro Phe Tyr Thr Ala Glu Arg
 1265 1270 1275 128
 Lys Asp Ala Ala Ala Met Asp Pro Met Gly Asp Thr Leu Glu Pro Leu
 1285 1290 1295
 Ser Thr Ile Gln Tyr Asn Val Val Asp Gly Leu Arg Asp Arg Arg Ser
 1300 1305 1310
 Phe His Gly Pro Tyr Thr Val Gln Ala Gly Leu Pro Leu Asn Pro Met
 1315 1320 1325
 Gly Arg Thr Gly Leu Arg Gly Arg Gly Ser Leu Ser Cys Phe Gly Pro
 1330 1335 1340
 Asn His Thr Leu Tyr Pro Met Val Thr Arg Trp Arg Arg Asn Glu Asp
 1345 1350 1355 136
 Gly Ala Ile Cys Arg Lys Ser Ile Lys Lys Met Leu Glu Val Leu Val
 1365 1370 1375
 Val Lys Leu Pro Leu Ser Glu His Trp Ala Leu Pro Gly Gly Ser Arg
 1380 1385 1390
 Glu Pro Gly Glu Met Leu Pro Arg Lys Leu Lys Arg Ile Leu Arg Gln
 1395 1400 1405

-18-

Glu	His	Trp	Pro	Ser	Phe	Glu	Asn	Leu	Leu	Lys	Cys	Gly	Met	Glu	Val
1410						1415					1420				
Tyr	Lys	Gly	Tyr	Met	Asp	Asp	Pro	Arg	Asn	Thr	Asp	Asn	Ala	Trp	Ile
1425						1430				1435				144	
Glu	Thr	Val	Ala	Val	Ser	Val	His	Phe	Gln	Asp	Gln	Asn	Asp	Val	Glu
						1445				1450				1455	
Leu	Asn	Arg	Leu	Asn	Ser	Asn	Leu	His	Ala	Cys	Asp	Ser	Gly	Ala	Ser
						1460				1465				1470	
Ile	Arg	Trp	Gln	Val	Val	Asp	Arg	Arg	Ile	Pro	Leu	Tyr	Ala	Asn	His
						1475				1480				1485	
Lys	Thr	Leu	Leu	Gln	Lys	Ala	Ala	Ala	Glu	Phe	Gly	Ala	His	Tyr	
						1490				1495				1500	

<210> 13
 <211> 1816
 <212> PRT
 <213> C. Elegans

<400> 13															
Met	Ile	Thr	Asp	Lys	Asn	Leu	Phe	Ser	Arg	Leu	Leu	Ile	Lys	Lys	Asn
1										10					15
Pro	Ile	Arg	Met	His	Ser	Pro	Ser	Phe	Ser	Phe	Ser	Leu	Ile	Thr	Ser
										20		25			30
Leu	Phe	Phe	Thr	Gln	Phe	Phe	Met	Phe	Gln	Leu	Ser	Ser	Met	Ala	Tyr
										35		40			45
Phe	Phe	Phe	Leu	Ile	Ala	Gly	Val	Thr	His	Phe	Tyr	Phe	Pro	Glu	
										50		55			60
Lys	Leu	Leu	Gly	Lys	Ser	Glu	Asn	Leu	Asp	His	Arg	Tyr	Gln	Ser	Ser
										65		70			80
Glu	Gln	Lys	Val	Leu	Ile	Glu	Trp	Thr	Glu	Asn	Lys	Ala	Val	Ala	Glu
										85		90			95
Ser	Leu	Arg	Ala	Asn	Ser	Val	Thr	Val	Glu	Glu	Asn	Glu	Ser	Glu	Arg
										100		105			110
Glu	Thr	Glu	Thr	Gln	Thr	Lys	Arg	Arg	Arg	Lys	Lys	Gln	Arg	Ser	Thr
										115		120			125
Ser	Ser	Asp	Lys	Ala	Pro	Leu	Asn	Ser	Ala	Pro	Arg	His	Val	Gln	Lys
										130		135			140
Phe	Asp	Trp	Lys	Asp	Met	Leu	His	Leu	Ala	Asp	Ile	Ser	Gly	Arg	Lys
										145		150			160
Arg	Gly	Asn	Ser	Thr	Thr	Ser	His	Ser	Gly	His	Ala	Thr	Arg	Ala	Gly
										165		170			175
Ser	Leu	Lys	Gly	Lys	Asn	Trp	Ile	Glu	Cys	Arg	Leu	Lys	Met	Arg	Gln
										180		185			190
Cys	Ser	Tyr	Phe	Val	Pro	Ser	Gln	Arg	Phe	Ser	Glu	Arg	Cys	Gly	Cys
										195		200			205
Gly	Lys	Glu	Arg	Ser	Lys	His	Thr	Glu	Glu	Val	Leu	Glu	Arg	Ser	Gln
										210		215			220
Asn	Lys	Asn	His	Pro	Leu	Asn	His	Leu	Thr	Leu	Pro	Gly	Ile	His	Glu
										225		230			240
Val	Asp	Thr	Thr	Asp	Ala	Asp	Ala	Asp	Asp	Asn	Glu	Val	Asn	Leu	Thr
										245		250			255
Pro	Gly	Arg	Trp	Ser	Ile	Gln	Ser	His	Thr	Glu	Ile	Val	Pro	Thr	Asp
										260		265			270
Ala	Tyr	Gly	Asn	Ile	Val	Phe	Glu	Gly	Thr	Ala	His	His	Ala	Gln	Tyr
										275		280			285
Ala	Arg	Ile	Ser	Phe	Asp	Ser	Asp	Pro	Arg	Asp	Ile	Val	His	Leu	Met
										290		295			300
Met	Lys	Val	Trp	Lys	Leu	Lys	Pro	Pro	Lys	Leu	Ile	Ile	Thr	Ile	Asn
										305		310			320
Gly	Gly	Leu	Thr	Lys	Phe	Asp	Leu	Gln	Pro	Lys	Leu	Ala	Arg	Thr	Phe

-19-

325	330	335
Arg Lys Gly Ile Met Lys Ile Ala Lys Ser Thr Asp Ala Trp Ile Ile		
340	345	350
Thr Ser Gly Leu Asp Glu Gly Val Val Lys His Leu Asp Ser Ala Leu		
355	360	365
His Ala Leu Glu Phe Trp Ser Phe Gly Leu Phe Trp Val Ile Gln Leu		
370	375	380
Asp Val Leu Leu Ala His Ser Met Phe Ile Pro Arg Gly Ser Leu Phe		
385	390	395
Asp His Gly Asn His Thr Ser Lys Asn His Val Val Ala Ile Gly Ile		
405	410	415
Ala Ser Trp Gly Met Leu Lys Gln Arg Ser Arg Phe Val Gly Lys Asp		
420	425	430
Ser Thr Val Thr Tyr Ala Thr Asn Val Phe Asn Asn Thr Arg Leu Lys		
435	440	445
Glu Leu Asn Asp Asn His Ser Tyr Phe Leu Phe Ser Asp Asn Gly Thr		
450	455	460
Val Asn Arg Tyr Gly Ala Glu Ile Ile Met Arg Lys Arg Leu Glu Ala		
465	470	475
Tyr Leu Ala Gln Gly Asp Lys Lys Arg Ser Ala Ile Pro Leu Val Cys		
485	490	495
Val Val Leu Glu Gly Gly Ala Phe Thr Ile Lys Met Val His Asp Tyr		
500	505	510
Val Thr Thr Ile Pro Arg Ile Pro Val Ile Val Cys Asp Gly Ser Gly		
515	520	525
Arg Ala Ala Asp Ile Leu Ala Phe Ala His Gln Ala Val Ser Gln Asn		
530	535	540
Gly Phe Leu Ser Asp Asn Ile Arg Asn Gln Leu Val Asn Ile Val Arg		
545	550	555
Arg Ile Phe Gly Tyr Asp Pro Lys Thr Ala Gln Lys Leu Ile Lys Gln		
565	570	575
Ile Val Glu Cys Ser Thr Asn Lys Ser Leu Met Thr Ile Phe Arg Leu		
580	585	590
Gly Glu Ser Ser Arg Glu Asp Leu Asp His Val Ile Met Ser Cys Leu		
595	600	605
Leu Lys Gly Gln Asn Leu Ser Pro Pro Glu Gln Leu Gln Leu Ala Leu		
610	615	620
Ala Trp Asn Arg Ala Asp Ile Ala Arg Thr Glu Ile Phe Ala Asn Gly		
625	630	635
Thr Glu Trp Thr Thr Gln Asp Leu His Asn Ala Met Ile Glu Ala Leu		
645	650	655
Ser Asn Asp Arg Ile Asp Phe Val His Leu Leu Leu Glu Asn Gly Val		
660	665	670
Ser Met Gln Lys Phe Leu Thr Tyr Gly Arg Leu Glu His Leu Tyr Asn		
675	680	685
Thr Asp Lys Gly Pro Gln Asn Thr Leu Arg Thr Asn Leu Leu Val Asp		
690	695	700
Ser Lys His His Ile Lys Leu Val Glu Val Gly Arg Leu Val Glu Asn		
705	710	715
Leu Met Gly Asn Leu Tyr Lys Ser Asn Tyr Thr Lys Glu Glu Phe Lys		
725	730	735
Asn Gln Tyr Phe Leu Phe Asn Asn Arg Lys Gln Phe Gly Lys Arg Val		
740	745	750
His Ser Asn Ser Asn Gly Gly Arg Asn Asp Val Ile Gly Pro Ser Gly		
755	760	765
Asp Ala Gly Arg Glu Arg Met Ser Ser Met Gln Ile Ser Leu Ile Asn		
770	775	780
Asn Ala Arg Asn Ser Ile Ile Ser Leu Phe Asn Gly Gly Arg Lys		
785	790	795
Arg Glu Ser Asp Asp Glu Asp Phe Ser Asn Leu Glu Glu Ala		800

-20-

805	810	815
Asn Met Asp Phe Thr Phe Arg Tyr Pro Tyr Ser Asp Leu Met Ile Trp		
820	825	830
Ala Val Leu Thr Lys Arg Gln Lys Met Ala Lys Leu Met Trp Thr His		
835	840	845
Gly Glu Glu Gly Met Ala Lys Ala Leu Val Ala Ser Arg Leu Tyr Val		
850	855	860
Ser Leu Ala Lys Thr Ala Ser Leu Ala Thr Gly Glu Ile Gly Met Ser		
865	870	875
Gln Asp Phe Thr Glu Phe Ser Asp Glu Phe Ser Glu Leu Ala Val Glu		
885	890	895
Val Leu Glu Tyr Cys Thr Lys His Gly Arg Asp Gln Thr Leu Arg Leu		
900	905	910
Leu Thr Cys Glu Leu Ala Asn Trp Gly Asp Glu Thr Cys Leu Ser Leu		
915	920	925
Ala Ala Asn Asn Gly His Arg Lys Phe Leu Ala His Pro Cys Cys Gln		
930	935	940
Met Leu Leu Ser Asp Leu Trp Gln Gly Gly Leu Leu Met Lys Asn Asn		
945	950	955
Gln Asn Ser Lys Val Leu Thr Cys Leu Ala Ala Pro Pro Leu Ile Phe		
965	970	975
Leu Leu Gly Phe Lys Thr Lys Glu Gln Leu Met Leu Gln Pro Lys Thr		
980	985	990
Ala Ala Glu His Asp Glu Glu Met Ser Asp Ser Glu Met Asn Ser Ala		
995	1000	1005
Glu Asp Thr Asp Thr Ser Ser Asp Ser Ser Asp Ser Asp Asp Ser		
1010	1015	1020
Asp Glu Glu Asp Ala Lys Leu Arg Ala Gln Ser Leu Ser Ala Asp Gln		
1025	1030	1035
Pro Leu Ser Ile His Arg Leu Val Arg Asp Lys Leu Asn Phe Ser Glu		
1045	1050	1055
Lys Lys Lys Pro Asp Met Gly Ile Ser Arg Ile Val Val Ala Pro Pro		
1060	1065	1070
Ile Val Thr Gly Arg Asn Arg Ala Arg Thr Met Ser Ile Lys Lys Ser		
1075	1080	1085
Lys Lys Asn Val Ile Lys Pro Pro Ala Cys Leu Lys Ile Glu Thr Ser		
1090	1095	1100
Asp Asp Asp Glu Gln Glu Gln Lys Lys Ala Thr Glu Met Cys Lys Ser		
1105	1110	1115
Thr Phe Phe Asp Phe Phe Asp Phe Pro Tyr Ile Asn Arg Thr Gly		
1125	1130	1135
Lys Arg Gly Ser Val Ala Val Ala Met Asn His Asp Asp Met Tyr Ile		
1140	1145	1150
Asp Pro Ser Glu Glu Leu Asp Thr Gln Thr Arg Gln Lys Ser Ser Arg		
1155	1160	1165
Glu Phe Ser Ser Arg Asn Val Thr Val Gln Val Tyr Thr Gln Arg		
1170	1175	1180
Pro Leu Ser Trp Lys Lys Ile Met Glu Phe Tyr Lys Ala Pro Ile		
1185	1190	1195
Thr Thr Tyr Trp Leu Trp Phe Phe Ala Phe Ile Trp Phe Leu Ile Leu		
1205	1210	1215
Leu Thr Tyr Asn Leu Leu Val Lys Thr Gln Arg Ile Ala Ser Trp Ser		
1220	1225	1230
Glu Trp Tyr Val Phe Ala Tyr Ile Phe Val Trp Thr Leu Glu Ile Gly		
1235	1240	1245
Arg Lys Val Val Ser Thr Ile Met Met Asp Thr Ser Lys Pro Val Leu		
1250	1255	1260
Lys Gln Leu Arg Val Phe Phe Gln Tyr Arg Asn Gly Leu Leu Ala		
1265	1270	1275
Phe Gly Leu Leu Thr Tyr Leu Ile Ala Tyr Phe Ile Arg Leu Ser Pro		128

-21-

1285	1290	1295
Thr Thr Lys Thr Leu Gly Arg Ile Leu Ile Ile Cys Asn Ser Val Ile		
1300	1305	1310
Trp Ser Leu Lys Leu Val Asp Tyr Leu Ser Val Gln Gln Gly Leu Gly		
1315	1320	1325
Pro Tyr Ile Asn Ile Val Ala Glu Met Ile Pro Thr Met Ile Pro Leu		
1330	1335	1340
Cys Val Leu Val Phe Ile Thr Leu Tyr Ala Phe Gly Leu Leu Arg Gln		
1345	1350	1355
Ser Ile Thr Tyr Pro Tyr Glu Asp Trp His Trp Ile Leu Val Arg Asn		
1365	1370	1375
Ile Phe Leu Gln Pro Tyr Phe Met Leu Tyr Gly Glu Val Tyr Ala Ala		
1380	1385	1390
Glu Ile Asp Thr Cys Gly Asp Glu Ile Trp Gln Thr His Glu Asp Glu		
1395	1400	1405
Asn Ile Pro Ile Ser Met Leu Asn Val Thr His Glu Thr Cys Val Pro		
1410	1415	1420
Gly Tyr Trp Ile Ala Pro Val Gly Leu Thr Val Phe Met Leu Ala Thr		
1425	1430	1435
Asn Val Leu Leu Met Asn Val Met Val Ala Gly Cys Thr Tyr Ile Phe		
1445	1450	1455
Glu Lys His Ile Gln Ser Thr Arg Glu Ile Phe Leu Phe Glu Arg Tyr		
1460	1465	1470
Gly Gln Val Met Glu Tyr Glu Ser Thr Pro Trp Leu Pro Pro Pro Phe		
1475	1480	1485
Thr Ile Ile Tyr His Val Ile Trp Leu Phe Lys Leu Ile Lys Ser Ser		
1490	1495	1500
Ser Arg Met Phe Glu Arg Lys Asn Leu Phe Asp Gln Ser Leu Lys Leu		
1505	1510	1515
Phe Leu Ser Pro Asp Glu Met Glu Lys Val His Thr Phe Glu Glu Glu		
1525	1530	1535
Ser Val Glu Asp Met Lys Arg Glu Thr Glu Lys Lys Asn Leu Ser Ser		
1540	1545	1550
Asn Asp Glu Arg Ile His Arg Thr Ala Glu Arg Thr Asp Ala Ile Leu		
1555	1560	1565
Asn Arg Val Ser His Leu Thr Gln Leu Glu Phe Thr Leu Lys Glu Glu		
1570	1575	1580
Ile Arg Glu Leu Glu His Lys Met Lys Asn Met Asp Ser Arg His Lys		
1585	1590	1595
Glu Gln Met Asn Leu Met Leu Asp Met Asn Lys Lys Leu Gly Lys Phe		
1605	1610	1615
Ile Ser Gly Lys Tyr Lys Arg Gly Ser Phe Gly Gly Ser Gly Ser Asp		
1620	1625	1630
Gly Gly Gly Ser Ser Asp Asn Ser Lys Leu Glu Pro Asn Asn Ser		
1635	1640	1645
Val Pro Met Ile Thr Val Asp Gly Pro Ser Pro Ile Gly Ser Arg Arg		
1650	1655	1660
Thr Ser Gly Gln Tyr Leu Lys Arg Asp Ser Leu Gln Ala Lys Lys Lys		
1665	1670	1675
Ile Thr Glu Asn Arg Arg Ser Ser Leu Glu Gln Pro Lys Ile Pro Ser		
1685	1690	1695
Ile Gln Phe Asn Leu Met Glu Asp Gln Asp Glu Ser Ala Ala Glu Ser		
1700	1705	1710
Ala Thr Glu Glu Val Ser Ile Ser Ile Pro Val Pro Gln Met Arg Val		
1715	1720	1725
Arg Gln Val Thr Glu Ser Asp Lys Ser Asp Leu Ser Glu Asp Asp Leu		
1730	1735	1740
Ile Thr Arg Glu Asp Ala Pro Pro Thr Ser Ile Asn Leu Pro Arg Gly		
1745	1750	1755
Pro Arg Arg His Ala Leu Tyr Ser Thr Ile Ala Asp Ala Ile Glu Thr		176

-22-

	1765	1770	1775
Glu Asp Asp Phe Tyr Ala Asp Ser Pro Val Pro Met Pro Met Thr Pro			
1780	1785	1790	
Val Gln Pro Ala Asp Gly Ser Phe Phe Gly Glu Asn Asp Ser Arg Tyr			
1795	1800	1805	
Gln Arg Asp Asp Ser Asp Tyr Glu			
1810	1815		

<210> 14
 <211> 1387
 <212> PRT
 <213> C. Elegans

<400> 14			
Met Arg Lys Ser Arg Arg Val Arg Lys Leu Val Arg His Ala Ser Leu			
1	5	10	15
Ile Glu Asn Ile Arg His Arg Thr Ser Ser Phe Leu Arg Leu Leu Asn			
20	25	30	
Ala Pro Arg Asn Ser Met Cys Asn Ala Asn Thr Val His Ser Ile Ser			
35	40	45	
Ser Phe Arg Ser Asp His Leu Ser Arg Lys Ser Thr His Lys Phe Leu			
50	55	60	
Asp Asn Pro Asn Leu Phe Ala Ile Glu Leu Thr Glu Lys Leu Ser Pro			
65	70	75	80
Pro Trp Ile Glu Asn Thr Phe Glu Lys Arg Glu Cys Ile Arg Phe Ala			
85	90	95	
Ala Leu Pro Lys Asp Pro Glu Arg Cys Gly Cys Gly Arg Pro Leu Ser			
100	105	110	
Ala His Thr Pro Ala Ser Thr Phe Phe Ser Thr Leu Pro Val His Leu			
115	120	125	
Leu Glu Lys Glu Gln Gln Thr Trp Thr Ile Ala Asn Asn Thr Gln Thr			
130	135	140	
Ser Thr Thr Asp Ala Phe Gly Thr Ile Val Phe Gln Gly Gly Ala His			
145	150	155	160
Ala His Lys Ala Gln Tyr Val Arg Leu Ser Tyr Asp Ser Glu Pro Leu			
165	170	175	
Asp Val Met Tyr Leu Met Glu Lys Val Trp Gly Leu Glu Ala Pro Arg			
180	185	190	
Leu Val Ile Thr Val His Gly Gly Met Ser Asn Phe Glu Leu Glu Glu			
195	200	205	
Arg Leu Gly Arg Leu Phe Arg Lys Gly Met Leu Lys Ala Ala Gln Thr			
210	215	220	
Thr Gly Ala Trp Ile Ile Thr Ser Gly Leu Asp Ser Gly Val Val Arg			
225	230	235	240
His Val Ala Lys Ala Leu Asp Glu Ala Gly Ile Ser Ala Arg Met Arg			
245	250	255	
Ser Gln Ile Val Thr Ile Gly Ile Ala Pro Trp Gly Val Ile Lys Arg			
260	265	270	
Lys Glu Arg Leu Ile Arg Gln Asn Glu His Val Tyr Tyr Asp Val His			
275	280	285	
Ser Leu Ser Val Asn Ala Asn Val Gly Ile Leu Asn Asp Arg His Ser			
290	295	300	
Tyr Phe Leu Leu Ala Asp Asn Gly Thr Val Gly Arg Phe Gly Ala Asp			
305	310	315	320
Leu His Leu Arg Gln Asn Leu Glu Asn His Ile Ala Thr Phe Gly Cys			
325	330	335	
Asn Gly Arg Lys Val Pro Val Val Cys Thr Leu Leu Glu Gly Gly Ile			
340	345	350	
Ser Ser Ile Asn Ala Ile His Asp Tyr Val Thr Met Lys Pro Asp Ile			
355	360	365	

-23-

Pro Ala Ile Val Cys Asp Gly Ser Gly Arg Ala Ala Asp Ile Ile Ser
 370 375 380
 Phe Ala Ala Arg Tyr Ile Asn Ser Asp Gly Thr Phe Ala Ala Glu Val
 385 390 395 400
 Gly Glu Lys Leu Arg Asn Leu Ile Lys Met Val Phe Pro Glu Thr Asp
 405 410 415
 Gln Glu Glu Met Phe Arg Lys Ile Thr Glu Cys Val Ile Arg Asp Asp
 420 425 430
 Leu Leu Arg Ile Phe Arg Tyr Gly Gln Glu Glu Glu Asp Val Asp
 435 440 445
 Phe Val Ile Leu Ser Thr Val Leu Gln Lys Gln Asn Leu Pro Pro Asp
 450 455 460
 Glu Gln Leu Ala Leu Thr Leu Ser Trp Asn Arg Val Asp Leu Ala Lys
 465 470 475 480
 Ser Cys Leu Phe Ser Asn Gly Arg Lys Trp Ser Ser Asp Val Leu Glu
 485 490 495
 Lys Ala Met Asn Asp Ala Leu Tyr Trp Asp Arg Val Asp Phe Val Glu
 500 505 510
 Cys Leu Leu Glu Asn Gly Val Ser Met Lys Asn Phe Leu Ser Ile Asn
 515 520 525
 Arg Leu Glu Asn Leu Tyr Asn Met Asp Asp Ile Asn Ser Ala His Ser
 530 535 540
 Val Arg Asn Trp Met Glu Asn Phe Asp Ser Met Asp Pro His Thr Tyr
 545 550 555 560
 Leu Thr Ile Pro Met Ile Gly Gln Val Val Glu Lys Leu Met Gly Asn
 565 570 575
 Ala Phe Gln Leu Tyr Tyr Thr Ser Arg Ser Phe Lys Gly Lys Tyr Asp
 580 585 590
 Arg Tyr Lys Arg Ile Asn Gln Ser Ser Tyr Phe His Arg Lys Arg Lys
 595 600 605
 Ile Val Gln Lys Glu Leu Phe Lys Lys Ser Asp Asp Gln Ile Asn
 610 615 620
 Asp Asn Glu Glu Glu Asp Phe Ser Phe Ala Tyr Pro Phe Asn Asp Leu
 625 630 635 640
 Leu Ile Trp Ala Val Leu Thr Ser Arg His Gly Met Ala Glu Cys Met
 645 650 655
 Trp Val His Gly Glu Asp Ala Met Ala Lys Cys Leu Leu Ala Ile Arg
 660 665 670
 Leu Tyr Lys Ala Thr Ala Lys Ile Ala Glu Asp Glu Tyr Leu Asp Val
 675 680 685
 Glu Glu Ala Lys Arg Leu Phe Asp Asn Ala Val Lys Cys Arg Glu Asp
 690 695 700
 Ala Ile Glu Leu Leu Asp Gln Cys Tyr Arg Ala Asp His Asp Arg Thr
 705 710 715 720
 Leu Arg Leu Leu Arg Met Glu Leu Pro His Trp Gly Asn Asn Asn Cys
 725 730 735
 Leu Ser Leu Ala Val Leu Ala Asn Thr Lys Thr Phe Leu Ala His Pro
 740 745 750
 Cys Cys Gln Ile Leu Leu Ala Glu Leu Trp His Gly Ser Leu Lys Val
 755 760 765
 Arg Ser Gly Ser Asn Val Arg Val Leu Thr Ala Leu Ile Cys Pro Pro
 770 775 780
 Ala Ile Leu Phe Met Ala Tyr Lys Pro Lys His Ser Lys Thr Ala Arg
 785 790 795 800
 Leu Leu Ser Glu Glu Thr Pro Glu Gln Leu Pro Tyr Pro Arg Glu Ser
 805 810 815
 Ile Thr Ser Thr Thr Ser Asn Arg Tyr Arg Tyr Ser Lys Gly Pro Glu
 820 825 830
 Glu Gln Lys Glu Thr Leu Leu Glu Lys Gly Ser Tyr Thr Lys Lys Val
 835 840 845

-24-

Thr Ile Ile Ser Ser Arg Lys Asn Ser Gly Val Ala Ser Val Tyr Gly
 850 855 860
 Ser Ala Ser Ser Met Met Phe Lys Arg Glu Pro Gln Leu Asn Lys Phe
 865 870 875 880
 Glu Arg Phe Arg Ala Phe Tyr Ser Ser Pro Ile Thr Lys Phe Trp Ser
 885 890 895
 Trp Cys Ile Ala Phe Leu Ile Phe Leu Thr Thr Gln Thr Cys Ile Leu
 900 905 910
 Leu Leu Glu Thr Ser Leu Lys Pro Ser Lys Tyr Glu Trp Ile Thr Phe
 915 920 925
 Ile Tyr Thr Val Thr Leu Ser Val Glu His Ile Arg Lys Leu Met Thr
 930 935 940
 Ser Glu Gly Ser Arg Ile Asn Glu Lys Val Lys Val Phe Tyr Ala Lys
 945 950 955 960
 Trp Tyr Asn Ile Trp Thr Ser Ala Ala Leu Leu Phe Phe Leu Val Gly
 965 970 975
 Tyr Gly Phe Arg Leu Val Pro Met Tyr Arg His Ser Trp Gly Arg Val
 980 985 990
 Leu Leu Ser Phe Ser Asn Val Leu Phe Tyr Met Lys Ile Phe Glu Tyr
 995 1000 1005
 Leu Ser Val His Pro Leu Leu Gly Pro Tyr Ile Gln Met Ala Ala Lys
 1010 1015 1020
 Met Val Trp Ser Met Cys Tyr Ile Cys Val Leu Leu Leu Val Pro Leu
 1025 1030 1035 104
 Met Ala Phe Gly Val Asn Arg Gln Ala Leu Thr Glu Pro Asn Val Lys
 1045 1050 1055
 Asp Trp His Trp Leu Leu Val Arg Asn Ile Phe Tyr Lys Pro Tyr Phe
 1060 1065 1070
 Met Leu Tyr Gly Glu Val Tyr Ala Gly Glu Ile Asp Thr Cys Gly Asp
 1075 1080 1085
 Glu Gly Ile Arg Cys Phe Pro Gly Tyr Phe Ile Pro Pro Leu Leu Met
 1090 1095 1100
 Val Ile Phe Leu Leu Val Ala Asn Ile Leu Leu Leu Asn Leu Ile
 1105 1110 1115 112
 Ala Ile Phe Asn Asn Ile Tyr Asn Asp Ser Ile Glu Lys Ser Lys Glu
 1125 1130 1135
 Ile Trp Leu Phe Gln Arg Tyr Gln Gln Leu Met Glu Tyr His Asp Ser
 1140 1145 1150
 Pro Phe Leu Pro Pro Phe Ser Ile Phe Ala His Val Tyr His Phe
 1155 1160 1165
 Ile Asp Tyr Leu Tyr Asn Leu Arg Arg Pro Asp Thr Lys Arg Phe Arg
 1170 1175 1180
 Ser Glu His Ser Ile Lys Leu Ser Val Thr Glu Asp Glu Met Lys Arg
 1185 1190 1195 120
 Ile Gln Asp Phe Glu Glu Asp Cys Ile Asp Thr Leu Thr Arg Ile Arg
 1205 1210 1215
 Lys Leu Lys Leu Asn Thr Lys Glu Pro Leu Ser Val Thr Asp Leu Thr
 1220 1225 1230
 Glu Leu Thr Cys Gln Arg Val His Asp Leu Met Gln Glu Asn Phe Leu
 1235 1240 1245
 Leu Lys Ser Arg Val Tyr Asp Ile Glu Thr Lys Ile Asp His Ile Ser
 1250 1255 1260
 Asn Ser Ser Asp Glu Val Val Gln Ile Leu Lys Asn Lys Lys Leu Ser
 1265 1270 1275 128
 Gln Asn Phe Ala Ala Ser Ser Leu Ser Leu Pro Asp Thr Ser Ile Glu
 1285 1290 1295
 Val Pro Lys Ile Thr Lys Thr Leu Ile Asp Cys His Leu Ser Pro Val
 1300 1305 1310
 Ser Ile Glu Asp Arg Leu Ala Thr Arg Ser Pro Leu Leu Ala Asn Leu
 1315 1320 1325

-25-

Gln Arg Asp His Thr Leu Arg Lys Leu Pro Thr Trp Glu Thr Ser Thr
 1330 1335 1340
 Ala Ser Thr Ser Ser Phe Glu Phe Val Phe Tyr Phe Thr Arg His Glu
 1345 1350 1355 136
 Gly Asn Glu Asn Lys Tyr Glu Phe Lys Lys Leu Glu Lys Gly Gly Phe
 1365 1370 1375
 Trp Arg Asn Asn Tyr Val Ile Ser Trp Arg Leu
 1380 1385

<210> 15
 <211> 1868
 <212> PRT
 <213> C. Elegans

<400> 15
 Met Asn Leu Cys Tyr Arg Arg His Arg Tyr Ala Ser Ser Pro Glu Val
 1 5 10 15
 Trp Cys Thr Met Glu Ser Asp Glu Leu Gly Val Thr Arg Tyr Leu Gln
 20 25 30
 Ser Lys Gly Gly Asp Gln Val Pro Pro Thr Ser Thr Thr Gly Gly
 35 40 45
 Ala Gly Gly Asp Gly Asn Ala Val Pro Thr Thr Ser Gln Ala Gln Ala
 50 55 60
 Gln Thr Phe Asn Ser Gly Arg Gln Thr Thr Gly Met Ser Ser Gly Asp
 65 70 75 80
 Arg Leu Asn Glu Asp Val Ser Ala Thr Ala Asn Ser Ala Gln Leu Val
 85 90 95
 Leu Pro Thr Pro Leu Phe Asn Gln Met Arg Phe Thr Glu Ser Asn Met
 100 105 110
 Ser Leu Asn Arg His Asn Trp Val Arg Glu Thr Phe Thr Arg Arg Glu
 115 120 125
 Cys Ser Arg Phe Ile Ala Ser Ser Arg Asp Leu His Lys Cys Gly Cys
 130 135 140
 Gly Arg Thr Arg Asp Ala His Arg Asn Ile Pro Glu Leu Thr Ser Glu
 145 150 155 160
 Phe Leu Arg Gln Lys Arg Ser Val Ala Ala Leu Glu Gln Gln Arg Ser
 165 170 175
 Ile Ser Asn Val Asn Asp Asp Ile Asn Thr Gln Asn Met Tyr Thr Lys
 180 185 190
 Arg Gly Ala Asn Glu Lys Trp Ser Leu Arg Lys His Thr Val Ser Leu
 195 200 205
 Ala Thr Asn Ala Phe Gly Gln Val Glu Phe Gln Gly Gly Pro His Pro
 210 215 220
 Tyr Lys Ala Gln Tyr Val Arg Val Asn Phe Asp Thr Glu Pro Ala Tyr
 225 230 235 240
 Ile Met Ser Leu Phe Glu His Val Trp Gln Ile Ser Pro Pro Arg Leu
 245 250 255
 Ile Ile Thr Val His Gly Gly Thr Ser Asn Phe Asp Leu Gln Pro Lys
 260 265 270
 Leu Ala Arg Val Phe Arg Lys Gly Leu Leu Lys Ala Ala Ser Thr Thr
 275 280 285
 Gly Ala Trp Ile Ile Thr Ser Gly Cys Asp Thr Gly Val Val Lys His
 290 295 300
 Val Ala Ala Ala Leu Glu Gly Ala Gln Ser Ala Gln Arg Asn Lys Ile
 305 310 315 320
 Val Cys Ile Gly Ile Ala Pro Trp Gly Leu Leu Lys Lys Arg Glu Asp
 325 330 335
 Phe Ile Gly Gln Asp Lys Thr Val Pro Tyr Tyr Pro Ser Ser Ser Lys
 340 345 350
 Gly Arg Phe Thr Gly Leu Asn Asn Arg His Ser Tyr Phe Leu Leu Val

-26-

355	360	365
Asp Asn Gly Thr Val Gly Arg Tyr Gly Ala Glu Val Ile Leu Arg Lys		
370	375	380
Arg Leu Glu Met Tyr Ile Ser Gln Lys Gln Lys Ile Phe Gly Gly Thr		
385	390	395
Arg Ser Val Pro Val Val Cys Val Val Leu Glu Gly Gly Ser Cys Thr		
405	410	415
Ile Arg Ser Val Leu Asp Tyr Val Thr Asn Val Pro Arg Val Pro Val		
420	425	430
Val Val Cys Asp Gly Ser Gly Arg Ala Ala Asp Leu Leu Ala Phe Ala		
435	440	445
His Gln Asn Val Thr Glu Asp Gly Leu Leu Pro Asp Asp Ile Arg Arg		
450	455	460
Gln Val Leu Leu Leu Val Glu Thr Thr Phe Gly Cys Ser Glu Ala Ala		
465	470	475
Ala His Arg Leu Leu His Glu Leu Thr Val Cys Ala Gln His Lys Asn		
485	490	495
Leu Leu Thr Ile Phe Arg Leu Gly Glu Gln Gly Glu His Asp Val Asp		
500	505	510
His Ala Ile Leu Thr Ala Leu Leu Lys Gly Gln Asn Leu Ser Ala Ala		
515	520	525
Asp Gln Leu Ala Leu Ala Leu Ala Trp Asn Arg Val Asp Ile Ala Arg		
530	535	540
Ser Asp Val Phe Ala Met Gly His Glu Trp Pro Gln Ala Ala Leu His		
545	550	555
Asn Ala Met Met Glu Ala Leu Ile His Asp Arg Val Asp Phe Val Arg		
565	570	575
Leu Leu Leu Glu Gln Gly Ile Asn Met Gln Lys Phe Leu Thr Ile Ser		
580	585	590
Arg Leu Asp Glu Leu Tyr Asn Thr Asp Lys Gly Pro Pro Asn Thr Leu		
595	600	605
Phe Tyr Ile Val Arg Asp Val Val Arg Val Arg Gln Gly Tyr Arg Phe		
610	615	620
Lys Leu Pro Asp Ile Gly Leu Val Ile Glu Lys Leu Met Gly Asn Ser		
625	630	635
Tyr Gln Cys Ser Tyr Thr Ser Glu Phe Arg Asp Lys Tyr Lys Gln		
645	650	655
Arg Met Lys Arg Val Lys His Ala Gln Lys Lys Ala Met Gly Val Phe		
660	665	670
Ser Ser Arg Pro Ser Arg Thr Gly Ser Gly Ile Ala Ser Arg Gln Ser		
675	680	685
Thr Glu Gly Met Gly Gly Val Gly Gly Ser Ser Val Ala Gly Val		
690	695	700
Phe Gly Asn Ser Phe Gly Asn Gln Asp Pro Pro Leu Asp Pro His Val		
705	710	715
Asn Arg Ser Ala Leu Ser Gly Ser Arg Ala Leu Ser Asn His Ile Leu		
725	730	735
Trp Arg Ser Ala Phe Arg Gly Asn Phe Pro Ala Asn Pro Met Arg Pro		
740	745	750
Pro Asn Leu Gly Asp Ser Arg Asp Cys Gly Ser Glu Phe Asp Glu Glu		
755	760	765
Leu Ser Leu Thr Ser Ala Ser Asp Gly Ser Gln Thr Glu Pro Asp Phe		
770	775	780
Arg Tyr Pro Tyr Ser Glu Leu Met Ile Trp Ala Val Leu Thr Lys Arg		
785	790	795
Gln Asp Met Ala Met Cys Met Trp Gln His Gly Glu Glu Ala Met Ala		
805	810	815
Lys Ala Leu Val Ala Cys Arg Leu Tyr Lys Ser Leu Ala Thr Glu Ala		
820	825	830
Ala Glu Asp Tyr Leu Glu Val Glu Ile Cys Glu Glu Leu Lys Tyr		

835	840	845
Ala Glu Glu Phe Arg Ile Leu Ser Leu Glu Leu Leu	Asp His Cys Tyr	
850	855	860
His Val Asp Asp Ala Gin Thr Leu Gln Leu Leu	Thr Tyr Glu Leu Ser	
865	870	875
Asn Trp Ser Asn Glu Thr Cys Leu Ala	Leu Ala Val Ile Val Asn Asn	
885	890	895
Lys His Phe Leu Ala His Pro Cys Cys Gln Ile Leu	Leu Ala Asp Leu	
900	905	910
Trp His Gly Gly Leu Arg Met Arg Thr His Ser Asn	Ile Lys Val Val	
915	920	925
Leu Gly Leu Ile Cys Pro Pro Phe Ile Gln Met Leu	Glu Phe Lys Thr	
930	935	940
Arg Glu Glu Leu Leu Asn Gln Pro Gln Thr Ala Ala	Glu His Gln Asn	
945	950	955
Asp Met Asn Tyr Ser Ser Ser Ser Ser Ser Ser Ser	Ser Ser Ser Ser Ser Ser Ser Ser	
965	970	975
Ser Ser Ser Ser Asp Ser Ser Phe Glu Asp Asp Asp	Glu	
980	985	990
Asn Asn Ala His Asn His Asp Gln Lys Arg Thr Arg	Lys Thr Ser Gln	
995	1000	1005
Gly Ser Ala Gln Ser Leu Asn Ile Thr Ser Leu Phe	His Ser Arg Arg	
1010	1015	1020
Arg Lys Ala Lys Lys Asn Glu Lys Cys Asp Arg Glu	Thr Asp Ala Ser	
1025	1030	1035
Ala Cys Glu Ala Gly Asn Arg Gln Ile Gln Asn Gly	Gly Leu Thr Ala	
1045	1050	1055
Glu Tyr Gly Thr Phe Gly Glu Ser Asn Gly Val Ser	Pro Pro Pro	
1060	1065	1070
Tyr Met Arg Ala Asn Ser Arg Ser Arg Tyr Asn Asn	Arg Ser Asp Met	
1075	1080	1085
Ser Lys Thr Ser Ser Val Ile Phe Gly Ser Asp Pro	Asn Leu Ser Lys	
1090	1095	1100
Leu Gln Lys Ser Asn Ile Thr Ser Thr Asp Arg Pro	Asn Pro Met Glu	
1105	1110	1115
Gln Phe Gln Gly Thr Arg Lys Ile Lys Met Arg Arg	Phe Tyr Glu	
1125	1130	1135
Phe Tyr Ser Ala Pro Ile Ser Thr Phe Trp Ser Trp	Thr Ile Ser Phe	
1140	1145	1150
Ile Leu Phe Ile Thr Phe Phe Thr Tyr Thr Leu Leu	Val Lys Thr Pro	
1155	1160	1165
Pro Arg Pro Thr Val Ile Glu Tyr Ile Leu Ile Ala	Tyr Val Ala Ala	
1170	1175	1180
Phe Gly Leu Glu Gln Val Arg Lys Ile Ile Met Ser	Asp Ala Lys Pro	
1185	1190	1195
Phe Tyr Glu Lys Ile Arg Thr Tyr Val Cys Ser Phe	Trp Asn Cys Val	
1205	1210	1215
Thr Ile Leu Ala Ile Ile Phe Tyr Ile Val Gly Phe	Phe Met Arg Cys	
1220	1225	1230
Phe Gly Ser Val Ala Tyr Gly Arg Val Ile Leu Ala	Cys Asp Ser Val	
1235	1240	1245
Leu Trp Thr Met Lys Leu Leu Asp Tyr Met Ser Val	His Pro Lys Leu	
1250	1255	1260
Gly Pro Tyr Val Thr Met Ala Gly Lys Met Ile Gln	Asn Met Ser Tyr	
1265	1270	1275
Ile Ile Val Met Leu Val Val Thr Leu Leu Ser Phe	Gly Leu Ala Arg	
1285	1290	1295
Gln Ser Ile Thr Tyr Pro Asp Glu Thr Trp His Trp	Ile Leu Val Arg	
1300	1305	1310
Asn Ile Phe Leu Lys Pro Tyr Phe Met Leu Tyr Gly	Glu Val Tyr Ala	

-28-

1315	1320	1325
Asp Glu Ile Asp Thr Cys Gly Asp Glu Ala Trp Asp Gln His Leu Glu		
1330	1335	1340
Asn Gly Gly Pro Val Ile Leu Gly Asn Gly Thr Thr Gly Leu Ser Cys		
1345	1350	1355
Val Pro Gly Tyr Trp Ile Pro Pro Leu Leu Met Thr Phe Phe Leu Leu		
1365	1370	1375
Ile Ala Asn Ile Leu Leu Met Ser Met Leu Ile Ala Ile Phe Asn His		
1380	1385	1390
Ile Phe Asp Ala Thr Asp Glu Met Ser Gln Gln Ile Trp Leu Phe Gln		
1395	1400	1405
Arg Tyr Lys Gln Val Met Glu Tyr Glu Ser Thr Pro Phe Leu Pro Pro		
1410	1415	1420
Pro Leu Thr Pro Leu Tyr His Gly Val Leu Ile Leu Gln Phe Val Arg		
1425	1430	1435
Thr Arg Leu Ser Cys Ser Lys Ser Gln Glu Arg Asn Pro Ile Leu Leu		
1445	1450	1455
Leu Lys Ile Ala Glu Leu Phe Leu Asp Asn Asp Gln Ile Glu Lys Leu		
1460	1465	1470
His Asp Phe Glu Glu Asp Cys Met Glu Asp Leu Ala Arg Gln Lys Leu		
1475	1480	1485
Asn Glu Lys Asn Thr Ser Asn Glu Gln Arg Ile Leu Arg Ala Asp Ile		
1490	1495	1500
Arg Thr Asp Gln Ile Leu Asn Arg Leu Ile Asp Leu Gln Ala Lys Glu		
1505	1510	1515
Ser Met Gly Arg Asp Val Ile Asn Asp Val Glu Ser Arg Leu Ala Ser		
1525	1530	1535
Val Glu Lys Ala Gln Asn Glu Ile Leu Glu Cys Val Arg Ala Leu Leu		
1540	1545	1550
Asn Gln Asn Ala Pro Thr Ala Ile Gly Arg Cys Phe Ser Pro Ser		
1555	1560	1565
Pro Asp Pro Leu Val Glu Thr Ala Asn Gly Thr Pro Gly Pro Leu Leu		
1570	1575	1580
Leu Lys Leu Pro Gly Thr Asp Pro Ile Leu Glu Glu Lys Asp His Asp		
1585	1590	1595
Ser Gly Glu Asn Ser Asn Ser Leu Pro Pro Gly Arg Ile Arg Arg Asn		
1605	1610	1615
Arg Thr Ala Thr Ile Cys Gly Gly Tyr Val Ser Glu Glu Arg Asn Met		
1620	1625	1630
Met Leu Leu Ser Pro Lys Pro Ser Asp Val Ser Gly Ile Pro Gln Gln		
1635	1640	1645
Arg Leu Met Ser Val Thr Ser Met Asp Pro Leu Pro Leu Pro Leu Ala		
1650	1655	1660
Lys Leu Ser Thr Met Ser Ile Arg Arg Arg His Glu Glu Tyr Thr Ser		
1665	1670	1675
Ile Thr Asp Ser Ile Ala Ile Arg His Pro Glu Arg Arg Ile Arg Asn		
1685	1690	1695
Asn Arg Ser Asn Ser Ser Glu His Asp Glu Ser Ala Val Asp Ser Glu		
1700	1705	1710
Gly Gly Gly Asn Val Thr Ser Ser Pro Arg Lys Arg Ser Thr Arg Asp		
1715	1720	1725
Leu Arg Met Thr Pro Ser Ser Gln Val Glu Glu Ser Thr Ser Arg Asp		
1730	1735	1740
Gln Ile Phe Glu Ile Asp His Pro Glu His Glu Glu Asp Glu Ala Gln		
1745	1750	1755
Ala Asp Cys Glu Leu Thr Asp Val Ile Thr Glu Glu Glu Asp Glu Glu		
1765	1770	1775
Glu Asp Asp Glu Glu Asp Asp Ser His Glu Arg His His Ile His Pro		
1780	1785	1790
Arg Arg Lys Ser Ser Arg Gln Asn Arg Gln Pro Ser His Thr Leu Glu		

-29-

1795	1800	1805
Thr Asp Leu Ser Glu Gly Glu Glu Val Asp Pro Leu Asp Val Leu Lys		
1810	1815	1820
Met Lys Glu Leu Pro Ile Ile His Gln Ile Leu Asn Glu Glu Glu Gln		
1825	1830	1835
Ala Gly Ala Pro His Ser Thr Pro Val Ile Ala Ser Pro Ser Ser Ser		
1845	1850	1855
Arg Ala Asp Leu Thr Ser Gln Lys Cys Ser Asp Val		
1860	1865	

<210> 16
 <211> 489
 <212> DNA
 <213> Mus Musculus

<400> 16

ccctgaaaaga ctcgacttct gctgctagcg ctggagctga gttagtttg agaaggttc	60
ccggggctgt ccttgttcgg tggccctgac caccgcctcc ggagacgctt tccgatagat	120
ggctgcaggc cgccggagggtg gaggaggagc cgctgcccctt ccggagtcgg ccccgtaggg	180
agaatgtccc agaaaatcccg gatagagagc actttgacca agagggagtg tgtatataatt	240
ataccaagct ccaaagaccc tcacagatgt cttccaggat gtcagatttgc ttagcaactt	300
gtcagatgtt tctgtggctcg ttttgtcaag caacatgcat gcttactgc aagtcttgcc	360
atgaaatact cagatgtgaa attgggtgaa cactttaacc aggcaataga agaatggct	420
gtggaaaagc acacggagca gagcccaaca gatgcttatg gagtcatcaa ttttcaaggg	480
gtttctcat	489

<210> 17
 <211> 102
 <212> PRT
 <213> Mus Musculus

<400> 17

Met Ser Gln Lys Ser Trp Ile Glu Ser Thr Leu Thr Lys Arg Glu Cys			
1	5	10	15
Val Tyr Ile Ile Pro Ser Ser Lys Asp Pro His Arg Cys Leu Pro Gly			
20	25	30	
Cys Gln Ile Cys Gln Gln Leu Val Arg Cys Phe Cys Gly Arg Leu Val			
35	40	45	
Lys Gln His Ala Cys Phe Thr Ala Ser Leu Ala Met Lys Tyr Ser Asp			
50	55	60	
Val Lys Leu Gly Glu His Phe Asn Gln Ala Ile Glu Glu Trp Ser Val			
65	70	75	80
Glu Lys His Thr Glu Gln Ser Pro Thr Asp Ala Tyr Gly Val Ile Asn			
85	90	95	
Phe Gln Gly Ser His			
100			

<210> 18
 <211> 410
 <212> DNA
 <213> Homo Sapiens

<220>
 <221> unsure
 <222> (6)...(6)

<221> unsure
 <222> (58)...(58)

<221> unsure

-30-

<222> (89)...(89)

<221> unsure

<222> (406)...(406)

<400> 18

gccgcnggag	cctgagcgga	gggtgtgcgc	agcctcgcca	gcggggggccc	cgggctgnnc	60
cattgcctca	ctgagccagc	gcctgcctnc	tacctcgccg	acagctggaa	ccagtgccac	120
ctagtggctc	tcacctgctt	cctcctgggc	gtgggctgcc	ggctgacccc	gggtttgtac	180
cacctgggcc	gcactgtcct	ctgcatcgac	tcatggtt	tcacggtgcg	gctgcttcac	240
atcttcacgg	tcaacaaaca	gctggggccc	aagatcgta	tcgtgagcaa	gatgatgaag	300
gacgtgttct	tcttccttct	cttcctcgcc	gtgtggctgg	tagctatggg	ttggggccacg	360
gaggggttcc	tgaggccacg	ggacagtgac	ttcccaagta	tcctgncgcc		410

<210> 19

<211> 131

<212> PRT

<213> Homo Sapiens

<220>

<221> UNSURE

<222> (15)...(15)

<223> UNKNOWN

<221> UNSURE

<222> (25)...(25)

<223> UNKNOWN

<221> UNSURE

<222> (131)...(131)

<223> UNKNOWN

<400> 19

Ala Glu Gly Val Arg Ser Leu Ala Ser Gly Gly Pro Gly Leu Xaa His

1 5 10 15

Cys Leu Thr Glu Pro Ala Pro Ala Xaa Tyr Leu Ala Asp Ser Trp Asn

20 25 30

Gln Cys Asp Leu Val Ala Leu Thr Cys Phe Leu Leu Gly Val Gly Cys

35 40 45

Arg Leu Thr Pro Gly Leu Tyr His Leu Gly Arg Thr Val Leu Cys Ile

50 55 60

Asp Phe Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn

65 70 75 80

Lys Gln Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp

85 90 95

Val Phe Phe Phe Leu Phe Leu Gly Val Trp Leu Val Ala Met Gly

100 105 110

Trp Ala Thr Glu Gly Phe Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser

115 120 125

Ile Leu Xaa

130

<210> 20

<211> 389

<212> DNA

<213> Homo Sapiens

<400> 20

caaatttttt	gttagtacac	catctcatcc	aaattgcaaa	agtacatgg	aaactggaac	60
caaagatcaa	gaaactgttt	gctctaaagc	tacagaagga	gataatacag	aatttggagc	120

-31-

atttttagga cacagagata gcatggat-t acagagggtt aaagaaaacat caaacaagat	180
aaaaatacta tccaataaca atacttctga aaacactttg aaacgagtga gttctcttgc	240
tggatttact gactgtcaca gaactccat tcctgttcat tcaaaaacgag aaaagatcag	300
tagaaggcca tctaccgaag acactcatga agtagattcc aaagcagctt taataccggt	360
ttttagattt caactaaaca gatataat	389
<210> 21	
<211> 415	
<212> DNA	
<213> Homo Sapiens	
<400> 21	
atttttagtt tttcaaattt gccagtcattt ttgaatagta tctccttctt ttctcatgtt	60
ttatattaa aactttttt tgccatcat cactttaaac atacttattt tgtcatctat	120
aaccaataat tccactatcat tattcagaat caaataccgt ttatgttaagt tgactccat	180
gagttctaaa ttgcccattt gaggcatct tcggtaggc tttaatttgc tgcaaaagtt	240
tgcagctcag ggtcaggaag agtccctcca gaaaggagga ttgttactg tgaatcttt	300
tgttaactaa cctctttccc cactgaaata actttttca ataacatgtt ttaacaaca	360
taatctctct atgccagaac agatataat gaatgttaagt caatatttc tttag	415
<210> 22	
<211> 405	
<212> DNA	
<213> Mus Musculus	
<400> 22	
ttatttatggc ttatcatgaa aaaccagtcc tgcctcctcc tcttattatcatc ctcagccata	60
tagtttcaact gttttgctgt gtatgcaaaa gaagaaaagaa agataagact tccgatgggc	120
caaaaactttt cttAACAGAA gaagatcaaa agaaactcca tgatttgaa gagcagtgt	180
ttgagatgtt ttgttgcattt aaagatgaca aattcaattt tgggagtgaa gagagaatcc	240
gggtcacttt tgaaaagatgtt gagcagatgtt gcatttcagat taaaagatgtt ggagatcg	300
tcaactacat aaaaagatca ttacagtctt tagattctca aattggtcat ctgcaagatc	360
tctcagccct aacagtagat acattgaaaa cacttacagc ccaga	405
<210> 23	
<211> 5117	
<212> DNA	
<213> Homo Sapiens	
<220>	
<221> unsure	
<222> (2382)...(2382)	
<223> unknown	
<221> unsure	
<222> (4664)...(4664)	
<223> unknown	
<221> unsure	
<222> (4682)...(4682)	
<223> unknown	
<221> unsure	
<222> (4702)...(4702)	
<223> unknown	
<221> unsure	
<222> (5038)...(5039)	
<223> unknown	

<221> unsure
 <222> (5056)...(5056)
 <223> unknown

<221> unsure
 <222> (5071)...(5072)

<400> 23

gatggcaaca tggtaagaa tcaatggcta aagcattagt	tgccctgttaag atctatcg	60
caatggcata tgaagcaaag cagagtggacc tggtagatga	tacttcagaa gaactaaaac	120
agtattccaa tgatgggtt cagttggccg ttgaattatt	agaacagtcc ttccagacaag	180
atgaaaccat ggctatgaaa ttgctcaactt atgaactgaa	gaactggagt aattcaac	240
gccttaagtt acagtttct tcaagactta gacctttgt	agctcacacc tgacacaaa	300
tgttggatc tgatatgtgg atgggaaggc tgaatatgag	gaaaaattcc tggtacaagg	360
tcatactaag cattttagtt ccacctgcca tattgtgtt	agagtataaa actaaggctg	420
aatgtccca tatcccacaa tctcaagatg ctcatcagat	gacaatggat gacagcgaaa	480
acaacttca gacataaca gaagagatcc ccatggaa	gtttaaagaa gtacggatt	540
tggatagtaa tgaaggaaag aatgagatgg agatacaat	gaaatcaaaa aagcttccaa	600
ttacgcgaaa gtttatgccc ttatcatg caccattgt	aaaattctgg tttaacacgt	660
tggcatattt agatttctg atgcttcatg catttgggtt	tcttgataaa atggaacagt	720
taccttcaagt tcaagaatgg attgttattt ctatatttt	tacttatgcc attgagaaag	780
tccgtgagat ctttatgtct gaagctggga aagtaaacc	gaagattaaa gtatggttt	840
gtgattactt caacatcagt gatacaattt ccataattt	tttcttcatt ggatttggac	900
taagatttgg agcaaaatgg aactttgaa atgcatatga	taatcatgtt ttgtggctg	960
gaagattaat ttactgtctt aacataatat ttggatgt	gcgtttgcta gattttctag	1020
ctgtaaatca acaggcagga ctttatgtaa tgatgattgg	aaaaatggt gccaatatgt	1080
tctacattgt agtgattatg gctcttgat tacttagttt	tgggttccc agaaaggcaa	1140
tactttatcc tcatgaagca ccatttttgc ctcttgctaa	agatataatg tttcacccat	1200
actggatgtat ttgtgtgaa gtttatgcat acaaattga	tgtgttgca aatgattctg	1260
ttatccctca aatctgtggt cctgggacgt gtttgactcc	atttctcaa gcgtctacc	1320
tctttgtaca gtatattcatt atggttatttcc ttcttattgc	attttcaac aatgtgtatt	1380
tacaagtggaa gcaattttcc aatattgtat ggaagtttca	gcgttatcat ttattatgg	1440
tttattatcatgaa gaaaccaggat ctgccttc cacttatcat	tcttagccat atagtttctc	1500
tgttttgcgt catatgtaa agaagaaaaga aagataagac	ttccgtatggc ccaaaacttt	1560
tcttaacaga agaagatcaa aagaaacttc atgattttga	agagcagtgt gtgaaatgt	1620
atttcaatga aaaagatgac aaatttcatt ctgggagtgaa	agagagaatt cggtcactt	1680
ttgaaagagt ggaacagatg tgcattcaga ttaaagaatgt	tggagatcgt gtcaactaca	1740
taaaaagatc attacaatca tttagatttc aatattggcca	tttgcaagat cttcagcccc	1800
tgacggtaga tacattaaaa acactcaactg cccagaaagc	gtcggaaagct agcaaagttc	1860
ataatgaaat cacacgagaa ctgaggcattt ccaaacc	ggctcaaaac ctatttgatg	1920
atggctctgt aagaccttct gtagggaaaa agcatgggt	tgtaaataca ctagctcct	1980
ctcttcctca aggtgatctt gaaagatata atcccttca	ttgtaatatt ttaatgaaag	2040
atgacaaaaga tccccaggat aatattttgt gtcagactt	acctgcgtt ccccaagagaa	2100
aagaatttttatttcccttccat gctgggtctt ctctgggtc	tttattccca agtgctgttt	2160
cccctccaga actgcgacag agactacatg ggttagaact	cttaaaaata ttaataaaat	2220
atcaaaaattt aggcagttca tctactagca taccacatct	gtcatccccca ccaacc	2280
ttttgttag tacaccatct cagccaagtt gcaaaagcca	tttggaaact ggaaccaaag	2340
atcaagaaac tggggctctt aaagctacag aaggagataa	tncagaattt ggacatttt	2400
taggacacag agatagcatg gatttacaga ggtttaaaga	aacatcaaac aagataaaaa	2460
tactatccaa taacaataact tctgaaaaca cttgaaac	agtggatctt ctgtctggat	2520
ttactgactg tcacagaact tccatttcctg ttcatcaaa	acaagcagaa aaaatcagta	2580
gaaggccatc taccgaagac actcatgaag tagattccaa	agcagcttta ataccggatt	2640
ggttacaaga tagaccatca aacagagaaa tccatctga	agaaggaaaca ttaatggtc	2700
tcactttctcc attaaagcca gctatggata caaattacta	ttatctgat gtggaaagaa	2760
ataacttgat gagggtatca cagagatttcc catttacacc	tgtgcctcca agaggggagc	2820
ctgtcagat gtatcgatggt gaaagagatgtt caccacat	actaaataac agcatgtctt	2880
cttgggtcaca actaggccctc tggccaaaa tagatttt	aagcaagag gagatgggag	2940
gagggttacg aagagctgtc aaagttacatgtt gtagatgtt	gtacctggtc agaacatgtat	3000
caggccatct ttatatttac aaatcttcc ttccagaggtt	tttataataca tggtaagta	3060
tttataaaaga agatacagtt ctgcatttctt gtttgcagaga	aattcaacaa cagagagcag	3120

-33-

cacaaaagct tacgtttgcc	ttaatcaa	tgaacccaa	atccatacca	tattctccaa	3180
ggtccttga agtttcctg	ctgtatgcc	attcagcagg	acagtggtt	gctgtggaa	3240
aatgtatgac tgagaattt	agaaaataca	acaataaa	tggagatgag	attattccaa	3300
ctaatactct ggaagagatc	atgctagcc	ttagccactg	gacttacgaa	tatacaagag	3360
gggagttact ggtacttgat	ttgcaaggtg	tttgtgaaaa	tttgactgac	ccatctgtga	3420
taaaagcaga agaaaagaga	tcctgtata	tggttttgg	cccagcaa	ctaggagaag	3480
atgcaattaa aacattcaga	gcaaaacatc	actgtattc	ttgctgtaga	aagcttaaac	3540
ttccagatct gaagaggaat	gattatacgc	ctgataaaat	tatattcct	caggatgagc	3600
cttcagattt gaatcttcag	cctggaaatt	ccaccaaaga	atcagaatca	gctaattctg	3660
ttcgtctgat gttataatat	taatattact	gaatcattgg	ttttgcctgc	acctcacaga	3720
aatgttactg tgcactttt	ccctcgggag	gaaattgttt	gtaatata	aaaggtgtat	3780
gcaagttgaa ttgctgact	ccagcacagt	taaaaggtca	atattcttt	gacctgatta	3840
atcagtcaga aagtccctat	aggatagagc	tgcagctga	gaaattttaa	aggtaattga	3900
taatttagtat ttgttaactt	ttaaagggct	ctttgtatag	cagaggatct	catttgactt	3960
tgttttgatg agggtgatgc	cctctttat	gttgtacaat	accattaacc	aaaggttaggt	4020
gtccatgcag attttatttgg	cagctgtttt	atgcatttc	aactaggaa	atgaagaaat	4080
cacgcagcct ttggtaaa	ttggcagtc	aattttctc	agtgtat	ttgtgttcag	4140
tgatgatatactggttccc	aactatgc	tttgtggca	cgggaaggaa	aatgacttgt	4200
tctaattcta ggtcacaga	ggtatgagaa	gcctgaactg	aagaccattt	tcaagaggga	4260
cgttattat gaatcagggt	taggctccat	attdaaagat	agagccagtt	tttttttaa	4320
atagaacccaa aattgtgtaa	aatatgttaat	ttggttttt	aaacattgtt	ttatcaagtc	4380
actgttaagt agaagaaagc	catggtaaac	tgatcataa	cctaaattat	aaaagcagaa	4440
acctaactca ctcgtcaagg	gaagttacct	tttgaggaaa	gtttaagtac	tttttccct	4500
atctgtatct atagcaacaa	cccagaactt	acaaacttct	ccaaagattt	tattgattgt	4560
tatataaaat cagaatgtaa	acatgaactc	ttgcataat	ttaaaattgt	gttggAACat	4620
ttgaacatga atgctgttg	ggtacttaag	aaattrtac	agtnggatta	tcattatgtg	4680
anactggcg attgcagtgc	anccttatgc	caataaaatg	taatttaaca	gccccagata	4740
ttgttgaata ttcaacaata	acaagaaaag	cttttcatct	aagttttatg	ctttaatttt	4800
ttttctttt ttttctttt	cttttgc	cttgtacta	attdaaattt	ttatTTggaa	4860
gggagcagta taagcttat	ttgtat	tagtgtatct	catagataca	gacaaggcaa	4920
gagatgataa gctgtttaaa	tagtgtttaa	tattgattgg	gggtggggag	aaagaaaaag	4980
tgttattactt aaagatacta	tatacgtttt	gtatatcatt	aaatcttaa	aagaaatnna	5040
ataaaatttat ttttncaaa	aaaaaaaccc	nnntaaaaaa	aaagggcg	ccctctagag	5100
gatccctcga	ggggccc				5117

<210> 24
 <211> 1224
 <212> PRT
 <213> Homo Sapiens

<220>
 <221> UNSURE
 <222> (794)...(794)
 <223> UNKNOWN

<400> 24
 Trp Gln His Gly Glu Glu Ser Met Ala Lys Ala Leu Val Ala Cys Lys
 1 5 10 15
 Ile Tyr Arg Ser Met Ala Tyr Glu Ala Lys Gln Ser Asp Leu Val Asp
 20 25 30
 Asp Thr Ser Glu Glu Leu Lys Gln Tyr Ser Asn Asp Phe Gly Gln Leu
 35 40 45
 Ala Val Glu Leu Leu Glu Gln Ser Phe Arg Gln Asp Glu Thr Met Ala
 50 55 60
 Met Lys Leu Leu Thr Tyr Glu Leu Lys Asn Trp Ser Asn Ser Thr Cys
 65 70 75 80
 Leu Lys Leu Ala Val Ser Ser Arg Leu Arg Pro Phe Val Ala His Thr
 85 90 95

-34-

Cys Thr Gln Met Leu Leu Ser Asp Met Trp Met Gly Arg Leu Asn Met
 100 105 110
 Arg Lys Asn Ser Trp Tyr Lys Val Ile Leu Ser Ile Leu Val Pro Pro
 115 120 125
 Ala Ile Leu Leu Leu Glu Tyr Lys Thr Lys Ala Glu Met Ser His Ile
 130 135 140
 Pro Gln Ser Gln Asp Ala His Gln Met Thr Met Asp Asp Ser Glu Asn
 145 150 155 160
 Asn Phe Gln Asn Ile Thr Glu Glu Ile Pro Met Glu Val Phe Lys Glu
 165 170 175
 Val Arg Ile Leu Asp Ser Asn Glu Gly Lys Asn Glu Met Glu Ile Gln
 180 185 190
 Met Lys Ser Lys Lys Leu Pro Ile Thr Arg Lys Phe Tyr Ala Phe Tyr
 195 200 205
 His Ala Pro Ile Val Lys Phe Trp Phe Asn Thr Leu Ala Tyr Leu Gly
 210 215 220
 Phe Leu Met Leu Tyr Thr Phe Val Val Leu Val Gln Met Glu Gln Leu
 225 230 235 240
 Pro Ser Val Gln Glu Trp Ile Val Ile Ala Tyr Ile Phe Thr Tyr Ala
 245 250 255
 Ile Glu Lys Val Arg Glu Ile Phe Met Ser Glu Ala Gly Lys Val Asn
 260 265 270
 Gln Lys Ile Lys Val Trp Phe Ser Asp Tyr Phe Asn Ile Ser Asp Thr
 275 280 285
 Ile Ala Ile Ile Ser Phe Phe Ile Gly Phe Gly Leu Arg Phe Gly Ala
 290 295 300
 Lys Trp Asn Phe Ala Asn Ala Tyr Asp Asn His Val Phe Val Ala Gly
 305 310 315 320
 Arg Leu Ile Tyr Cys Leu Asn Ile Ile Phe Trp Tyr Val Arg Leu Leu
 325 330 335
 Asp Phe Leu Ala Val Asn Gln Gln Ala Gly Pro Tyr Val Met Met Ile
 340 345 350
 Gly Lys Met Val Ala Asn Met Phe Tyr Ile Val Val Ile Met Ala Leu
 355 360 365
 Val Leu Leu Ser Phe Gly Val Pro Arg Lys Ala Ile Leu Tyr Pro His
 370 375 380
 Glu Ala Pro Ser Trp Thr Leu Ala Lys Asp Ile Val Phe His Pro Tyr
 385 390 395 400
 Trp Met Ile Phe Gly Glu Val Tyr Ala Tyr Glu Ile Asp Val Cys Ala
 405 410 415
 Asn Asp Ser Val Ile Pro Gln Ile Cys Gly Pro Gly Thr Trp Leu Thr
 420 425 430
 Pro Phe Leu Gln Ala Val Tyr Leu Phe Val Gln Tyr Ile Ile Met Val
 435 440 445
 Asn Leu Leu Ile Ala Phe Phe Asn Asn Val Tyr Leu Gln Val Lys Ala
 450 455 460
 Ile Ser Asn Ile Val Trp Lys Tyr Gln Arg Tyr His Phe Ile Met Ala
 465 470 475 480
 Tyr His Glu Lys Pro Val Leu Pro Pro Leu Ile Ile Leu Ser His
 485 490 495
 Ile Val Ser Leu Phe Cys Cys Ile Cys Lys Arg Arg Lys Lys Asp Lys
 500 505 510
 Thr Ser Asp Gly Pro Lys Leu Phe Leu Thr Glu Glu Asp Gln Lys Lys
 515 520 525
 Leu His Asp Phe Glu Glu Gln Cys Val Glu Met Tyr Phe Asn Glu Lys
 530 535 540
 Asp Asp Lys Phe His Ser Gly Ser Glu Glu Arg Ile Arg Val Thr Phe
 545 550 555 560
 Glu Arg Val Glu Gln Met Cys Ile Gln Ile Lys Glu Val Gly Asp Arg
 565 570 575

-35-

Val Asn Tyr Ile Lys Arg Ser Leu Gln Ser Leu Asp Ser Gln Ile Gly
 580 585 590
 His Leu Gln Asp Leu Ser Ala Leu Thr Val Asp Thr Leu Lys Thr Leu
 595 600 605
 Thr Ala Gln Lys Ala Ser Glu Ala Ser Lys Val His Asn Glu Ile Thr
 610 615 620
 Arg Glu Leu Ser Ile Ser Lys His Leu Ala Gln Asn Leu Ile Asp Asp
 625 630 635 640
 Gly Pro Val Arg Pro Ser Val Trp Lys Lys His Gly Val Val Asn Thr
 645 650 655
 Leu Ser Ser Ser Leu Pro Gln Gly Asp Leu Glu Ser Asn Asn Pro Phe
 660 665 670
 His Cys Asn Ile Leu Met Lys Asp Asp Lys Asp Pro Gln Cys Asn Ile
 675 680 685
 Phe Gly Gln Asp Leu Pro Ala Val Pro Gln Arg Lys Glu Phe Asn Phe
 690 695 700
 Pro Glu Ala Gly Ser Ser Ser Gly Ala Leu Phe Pro Ser Ala Val Ser
 705 710 715 720
 Pro Pro Glu Leu Arg Gln Arg Leu His Gly Val Glu Leu Leu Lys Ile
 725 730 735
 Phe Asn Lys Asn Gln Lys Leu Gly Ser Ser Ser Thr Ser Ile Pro His
 740 745 750
 Leu Ser Ser Pro Pro Thr Lys Phe Phe Val Ser Thr Pro Ser Gln Pro
 755 760 765
 Ser Cys Lys Ser His Leu Glu Thr Gly Thr Lys Asp Gln Glu Thr Val
 770 775 780
 Cys Ser Lys Ala Thr Glu Gly Asp Asn Xaa Glu Phe Gly Ala Phe Val
 785 790 795 800
 Gly His Arg Asp Ser Met Asp Leu Gln Arg Phe Lys Glu Thr Ser Asn
 805 810 815
 Lys Ile Lys Ile Leu Ser Asn Asn Asn Thr Ser Glu Asn Thr Leu Lys
 820 825 830
 Arg Val Ser Ser Leu Ala Gly Phe Thr Asp Cys His Arg Thr Ser Ile
 835 840 845
 Pro Val His Ser Lys Gln Ala Glu Lys Ile Ser Arg Arg Pro Ser Thr
 850 855 860
 Glu Asp Thr His Glu Val Asp Ser Lys Ala Ala Leu Ile Pro Asp Trp
 865 870 875 880
 Leu Gln Asp Arg Pro Ser Asn Arg Glu Met Pro Ser Glu Glu Gly Thr
 885 890 895
 Leu Asn Gly Leu Thr Ser Pro Phe Lys Pro Ala Met Asp Thr Asn Tyr
 900 905 910
 Tyr Tyr Ser Ala Val Glu Arg Asn Asn Leu Met Arg Leu Ser Gln Ser
 915 920 925
 Ile Pro Phe Thr Pro Val Pro Pro Arg Gly Glu Pro Val Thr Val Tyr
 930 935 940
 Arg Leu Glu Glu Ser Ser Pro Asn Ile Leu Asn Asn Ser Met Ser Ser
 945 950 955 960
 Trp Ser Gln Leu Gly Leu Cys Ala Lys Ile Glu Phe Leu Ser Lys Glu
 965 970 975
 Glu Met Gly Gly Leu Arg Arg Ala Val Lys Val Gln Cys Thr Trp
 980 985 990
 Ser Glu His Asp Ile Leu Lys Ser Gly His Leu Tyr Ile Ile Lys Ser
 995 1000 1005
 Phe Leu Pro Glu Val Val Asn Thr Trp Ser Ser Ile Tyr Lys Glu Asp
 1010 1015 1020
 Thr Val Leu His Leu Cys Leu Arg Glu Ile Gln Gln Gln Arg Ala Ala
 1025 1030 1035 104
 Gln Lys Leu Thr Phe Ala Phe Asn Gln Met Lys Pro Lys Ser Ile Pro
 1045 1050 1055

-36-

Tyr Ser Pro Arg Phe Leu Glu Val Phe Leu Leu Tyr Cys His Ser Ala
 1060 1065 1070
 Gly Gln Trp Phe Ala Val Glu Glu Cys Met Thr Gly Glu Phe Arg Lys
 1075 1080 1085
 Tyr Asn Asn Asn Asn Gly Asp Glu Ile Ile Pro Thr Asn Thr Leu Glu
 1090 1095 1100
 Glu Ile Met Leu Ala Phe Ser His Trp Thr Tyr Glu Tyr Thr Arg Gly
 1105 1110 1115 112
 Glu Leu Leu Val Leu Asp Leu Gln Gly Val Gly Glu Asn Leu Thr Asp
 1125 1130 1135
 Pro Ser Val Ile Lys Ala Glu Glu Lys Arg Ser Cys Asp Met Val Phe
 1140 1145 1150
 Gly Pro Ala Asn Leu Gly Glu Asp Ala Ile Lys Asn Phe Arg Ala Lys
 1155 1160 1165
 His His Cys Asn Ser Cys Cys Arg Lys Leu Lys Leu Pro Asp Leu Lys
 1170 1175 1180
 Arg Asn Asp Tyr Thr Pro Asp Lys Ile Ile Phe Pro Gln Asp Glu Pro
 1185 1190 1195 120
 Ser Asp Leu Asn Leu Gln Pro Gly Asn Ser Thr Lys Glu Ser Glu Ser
 1205 1210 1215
 Ala Asn Ser Val Arg Leu Met Leu
 1220

<210> 25
 <211> 2180
 <212> DNA
 <213> Homo Sapiens

<400> 25

tcgaggccaa	gaattcggca	cgaggccctc	gggcaggccc	cctggagcga	cctgcttctt	60
tggcactgt	tgctgaacag	ggcacagatg	gccatgtact	tctggagat	gggttccaa	120
gcagttcct	cagctttgg	ggcctgtttg	ctgctccggg	tgatggcacg	cctggagcct	180
gacgctgagg	aggcagcacg	gaggaaagac	ctggcggtca	agtttgaggg	gatgggcgtt	240
gaccttttg	gcgagtgcta	tcgcagcagt	gaggtgaggg	ctgcccgcct	cctcctccgt	300
cgctgcccgc	tctggggga	tgccacttgc	ctccagctgg	ccatgcga	tgacgcccgt	360
gcctctttg	cccaggatgg	ggtacagtct	ctgctgacac	agaagtgg	gggagatatg	420
gccagcacta	caccatctg	ggccctgggt	ctgcgccttct	tttgcctcc	actcatctac	480
acccgcctca	tcacccctcag	gaaatcagaa	gaggagccca	cacggagga	gctagagtt	540
gacatggata	gtgtcattaa	tgggaaggg	cctgtcgaaa	cgccggaccc	agccgagaag	600
acgcgcgtgg	gggtcccccgc	ccatgcgggc	cgatgggggtt	gtcgccgggg	ccgctgcggg	660
gggcgcgggt	gcctacgcgc	ctgggtccac	ttctggggcg	cgccgggtgac	catcttcatg	720
ggcaacgtgg	tcaagtcac	gtgttcctg	ctgttttct	cgccgggtgct	gctcgtggat	780
ttccagccgg	cgccgcggcg	ctccctggag	ctgtgtct	atttctggc	tttacgcgtg	840
ctgtgcgagg	aactgcgc	gggcctgagc	ggaggccggg	gcagcctcgc	cagcggggc	900
cccgccctg	gcccgcctc	actgagccag	cgccgcgc	tctacctcgc	cgacagctgg	960
aaccagtgcg	acctagtggc	tctcacctgc	ttcctcctgg	gcgtgggtg	ccggctgacc	1020
ccgggtttgt	accacctggg	ccgcaactg	ctctgcac	acttcatgg	tttacacgg	1080
cggtgcgttc	acatcttac	ggtaacaaa	cagctggggc	ccaagatcg	catcgatggc	1140
aagatgatga	aggacgtgtt	tttcttcctc	ttcttcctcg	gcgtgtgg	gttagcctat	1200
ggcgtggcca	cggaggggct	cctgaggcca	cgggacagt	atccccaa	tatccctgc	1260
cgctgtttct	accgtcccta	cctgcagatc	ttcgggcaga	ttccccagga	ggacatggac	1320
gtggccctca	tggagcacag	caactgtcg	teggagcccg	gttctggc	acacccctct	1380
ggggcccccagg	cgggcaccc	cgtctcccg	tatgcca	ggctgggt	gctgctcctc	1440
gtcatcttcc	tgctcggtgc	caacatctg	ctggtaact	tgctcattgc	catgttc	1500
tacacattcg	gaaagtaca	ggcaacacgc	gatctctact	ggaaggcg	gcgttaccgc	1560
ctcatccggg	aattccactc	tcggccgc	ctggcccccgc	ccttatacg	catctccac	1620
ttgcgcctcc	tgctcaggca	attgtgcagg	cgaccs	gccccagcc	gtcctcccc	1680
gccctcgagc	atttccgggt	ttaccttct	aaggaagccg	agcggaa	gctaacgtgg	1740
gaatcggtgc	ataaggagaa	cttctgt	gcacgcgt	ggacaagcg	ggagagcgac	1800
tccgagmgtc	tgaagcgac	gtccca	gtaag	gctggac	gtggacttgg	1860

atccgcgagt acgaacagcg cctgaaagtg ctggagcggg aggtccagca gtgtacctcg	1920
gccccccgac ctgggtggct tgcctttag gtgagccca tgcctatctg ggccactgtc	1980
aggaccacct ttgggagtgt catccttaca aaccacagca tgcccgctc ctcccagaac	2040
cagtcccagc ctgggaggt caaggcctgg atcccrggcc gttatccatc tggaggctgc	2100
agggtccttg gggtaacagg gaccacagac ccctcaccac tcacagattc ctcacactgg	2160
ggaaataaag ccatttcaga	2180

<210> 26
 <211> 725
 <212> PRT
 <213> Homo Sapiens

<220>
 <221> UNSURE
 <222> (553)...(553)
 <223> UNKNOWN

<221> UNSURE
 <222> (603)...(603)
 <223> UNKNOWN

<400> 26

Ser Arg Pro Arg Ile Arg His Glu Gly Leu Gly Gln Ala Pro Trp Ser	
1 5 10 15	
Asp Leu Leu Leu Trp Ala Leu Leu Leu Asn Arg Ala Gln Met Ala Met	
20 25 30	
Tyr Phe Trp Glu Met Gly Ser Asn Ala Val Ser Ser Ala Leu Gly Ala	
35 40 45	
Cys Leu Leu Leu Arg Val Met Ala Arg Leu Glu Pro Asp Ala Glu Glu	
50 55 60	
Ala Ala Arg Arg Lys Asp Leu Ala Phe Lys Phe Glu Gly Met Gly Val	
65 70 75 80	
Asp Leu Phe Gly Glu Cys Tyr Arg Ser Ser Glu Val Arg Ala Ala Arg	
85 90 95	
Leu Leu Leu Arg Arg Cys Pro Leu Trp Gly Asp Ala Thr Cys Leu Gln	
100 105 110	
Leu Ala Met Gln Ala Asp Ala Arg Ala Phe Phe Ala Gln Asp Gly Val	
115 120 125	
Gln Ser Leu Leu Thr Gln Lys Trp Trp Gly Asp Met Ala Ser Thr Thr	
130 135 140	
Pro Ile Trp Ala Leu Val Leu Ala Phe Phe Cys Pro Pro Leu Ile Tyr	
145 150 155 160	
Thr Arg Leu Ile Thr Phe Arg Lys Ser Glu Glu Glu Pro Thr Arg Glu	
165 170 175	
Glu Leu Glu Phe Asp Met Asp Ser Val Ile Asn Gly Glu Gly Pro Val	
180 185 190	
Gly Thr Ala Asp Pro Ala Glu Lys Thr Pro Leu Gly Val Pro Arg Gln	
195 200 205	
Ser Gly Arg Pro Gly Cys Cys Gly Gly Arg Cys Gly Gly Arg Arg Cys	
210 215 220	
Leu Arg Arg Trp Phe His Phe Trp Gly Ala Pro Val Thr Ile Phe Met	
225 230 235 240	
Gly Asn Val Val Ser Tyr Leu Leu Phe Leu Leu Leu Phe Ser Arg Val	
245 250 255	
Leu Leu Val Asp Phe Gln Pro Ala Pro Pro Gly Ser Leu Glu Leu Leu	
260 265 270	
Leu Tyr Phe Trp Ala Phe Thr Leu Leu Cys Glu Glu Leu Arg Gln Gly	
275 280 285	
Leu Ser Gly Gly Gly Ser Leu Ala Ser Gly Gly Pro Gly Pro Gly	
290 295 300	

-38-

His Ala Ser Leu Ser Gln Arg Leu Arg Leu Tyr Leu Ala Asp Ser Trp
 305 310 315 320
 Asn Gln Cys Asp Leu Val Ala Leu Thr Cys Phe Leu Leu Gly Val Gly
 325 330 335
 Cys Arg Leu Thr Pro Gly Leu Tyr His Leu Gly Arg Thr Val Leu Cys
 340 345 350
 Ile Asp Phe Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val
 355 360 365
 Asn Lys Gln Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys
 370 375 380
 Asp Val Phe Phe Leu Phe Leu Gly Val Trp Leu Val Ala Tyr
 385 390 395 400
 Gly Val Ala Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro
 405 410 415
 Ser Ile Leu Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly
 420 425 430
 Gln Ile Pro Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn
 435 440 445
 Cys Ser Ser Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala
 450 455 460
 Gly Thr Cys Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu
 465 470 475 480
 Val Ile Phe Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile
 485 490 495
 Ala Met Phe Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu
 500 505 510
 Tyr Trp Lys Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg
 515 520 525
 Pro Ala Leu Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu
 530 535 540
 Leu Arg Gln Leu Cys Arg Arg Pro Xaa Ser Pro Gln Pro Ser Ser Pro
 545 550 555 560
 Ala Leu Glu His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys
 565 570 575
 Leu Leu Thr Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg
 580 585 590
 Ala Arg Asp Lys Arg Glu Ser Asp Ser Glu Xaa Leu Lys Arg Thr Ser
 595 600 605
 Gln Lys Val Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr
 610 615 620
 Glu Gln Arg Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Thr Ser
 625 630 635 640
 Ala Pro Ala Pro Gly Gly Leu Val Leu Glu Val Ser Pro Met Ser Ile
 645 650 655
 Trp Ala Thr Val Arg Thr Phe Gly Ser Val Ile Leu Thr Asn His
 660 665 670
 Ser Met Pro Gly Ser Ser Gln Asn Gln Ser Gln Pro Gly Arg Ile Lys
 675 680 685
 Ala Trp Ile Pro Gly Arg Tyr Pro Ser Gly Gly Cys Arg Val Leu Gly
 690 695 700
 Val Thr Gly Thr Thr Asp Pro Ser Pro Leu Thr Asp Ser Ser His Trp
 705 710 715 720
 Gly Asn Lys Ala Ile
 725

<210> 27
 <211> 7419
 <212> DNA
 <213> Homo Sapiens

<400> 27

cggggaccga	ccagccctcc	ggactcttagc	ctaggctttt	gaaaaaagct	attnaggta	60
cactataga	gtacgcctg	caggtaccgg	tccgaaattc	ccgggtcgac	ccacgcgtcc	120
gcagccccgt	cgcggcggga	ggcgggcgcg	ggcgcgtnc	ctgtggccag	tcacccggag	180
gagttgtcg	cacaattatg	aaagactcgg	cttctgtgc	tagcgcggga	gctgagttag	240
ttctgagaag	gttccctgg	gcgttccctg	tccggcgccc	tctgtgcgg	cctccggaga	300
cgcttcccga	tagatggcta	caggccgcgg	aggaggagga	ggtggagttg	ctgcccctcc	360
ggagttccgccc	ccgtgaggag	aatgtcccag	aaatcctgga	tagaaagcac	tttgaccaag	420
agggaatgtg	tatataattat	accaagttcc	aaggaccctc	acagatgcct	tccaggatgt	480
caaatttgc	agcaactcgt	caggtttttt	tgtggtcgt	tggtaagca	acatgcttg	540
tttactgcaa	gtcttgcct	gaaatactca	gatgtgaaat	tgggtgacca	tttaatcag	600
gcaatagaag	atggtctgt	ggaaaagcat	acagaacaga	gccccacgga	tgcttatgga	660
gtcataaatt	ttcaaggggg	ttctcattcc	taacagagct	agtatgttag	gtatccat	720
gacaccaaacc	ctgaagtcat	tctgaactt	ctgtttaaag	aatggcaat	ggagttaccc	780
aaacttgtt	tctctgtaca	tggggcatt	cagaattttt	agcttcaccc	acgaatcaag	840
cagttgtctt	gaaaaggct	tattaaatgt	cgatgtacaa	ctggagccctg	gattttaact	900
ggaggagtagt	aaacaggtt	ggcaaaacat	tttggagatg	cccttcaaga	acatgcttcc	960
agatcatctc	gaaagattt	caactatcgga	atagctccat	ggggagtgt	tgaaaacaga	1020
aatgtctt	tttggagaga	tgtggtgct	ccttatcaaa	ccttattgaa	ccccctgagc	1080
aaattgaatg	ttttgaataa	tctgcattcc	catttcatat	tggtgatga	ttgcactgtt	1140
ggaaaatgt	gggcggaaat	cagactgaga	agagaactt	aaaaaactat	taatcagcaa	1200
agaattcatg	ctaggattgg	ccagggtgtc	cctgtggtg	cacttataatt	tgagggtggg	1260
ccaaatgtt	tcctcacagt	tcttgaatac	cttcaggaaa	gccccctgt	tccagtagtt	1320
gtgtgtgaag	gaacaggcag	agctgcagat	ctgctagcgt	atattcataa	acaaacagaa	1380
gaaggaggg	atcttccctga	tgcagcagag	cccgtatatta	tttccactat	caaaaaaaca	1440
tttaacttt	gccagaatga	agcacttcat	ttatttcaaa	cactgatgga	gtgcattgaaa	1500
agaaaggagc	ttatcactgt	tttccatatt	gggtcagat	aacatcaaga	tatagatgt	1560
gcaataacta	ctgcactgt	aaaaggtact	atgcatctg	catttgcac	gcttattcctt	1620
acatttggcat	gggatagat	tgacattgccc	aaaatcatg	tattttttt	ttggacagcag	1680
tggctgttt	gatcccttgg	acaaggat	cttgcattgtc	ttgtatgg	taggttgc	1740
tttggtaaaac	ttcttatttga	aaatggatg	agcatgcata	aattcattac	cattccgaga	1800
ctggaaagac	tttacaacac	taaacaagg	ccactaattc	caatgcgtt	tcattttgtt	1860
cgagacgtca	aacagggaaa	tcttcctcca	ggatataaga	tcactctgt	tgatataagga	1920
cttggatttt	aatatctcat	gggaggaacc	tacagatgca	cctataactag	gaaacgtttt	1980
cgattaaatat	ataatagtct	ttgtggaaat	atcggagggt	ctggccgaaa	tacctccagc	2040
agcactcctc	agttgcgaaa	gagtcatgaa	tcttttggca	atagggcaga	taaaaaggaa	2100
aaaatgaggc	ataaccattt	cattaagaca	gcacagccct	tccgaccaaa	gattgataca	2160
gttatggaaag	aaggaaagaa	gaaaagaacc	aaagatgaaa	ttttagacat	tgatgtatcca	2220
gaaaccaagc	gttttcctta	tccacttaat	gaaactttaa	tttgggctt	ccttattgaa	2280
aggcaggctca	tggcccgttt	tttatggca	catggtaag	aatcaatggc	taaaggat	2340
gttgctgtta	agatctatcg	tctaatggca	tatgaagcaa	agcagagtgc	cctggtagat	2400
gataacttcg	agaactaaac	acagtattcc	atgattttgc	gtcaggttggc	cgttgaattt	2460
tttagaacatg	ctttcagaca	agatgaaaacc	atggctatga	aattgcac	ttatgaactg	2520
aagaacttgg	gtattcaac	ctgccttaag	tttagcattt	cttcaagact	tagacctttt	2580
gtagctcaca	cctgtacaca	aatgtgtt	tctgtatgt	ggatggaaag	gctgaatatg	2640
aggaaaaatt	cctgttacaa	ggtcatacta	agcatttttgc	ttccacctgc	catattgtct	2700
tttagagtata	aaactaaggc	tgaaatgtcc	catacccccac	aatctcaaga	tgctcatcag	2760
atgacaatgg	atgacagcga	aaacaactt	cagaacataa	cagaagagat	ccccatggaa	2820
gtgtttaaag	agttacggat	tttggatagt	aatgaaggaa	agaatgagat	ggagatataaa	2880
atgaaatcaa	aaaagctcc	aattacgcga	agttttatgt	ccttttatca	tgccaccaatt	2940
gtaaaattct	gttttacac	gttggcatat	tttaggat	tgatgtttt	tacatgttg	3000
gttctgtac	aatggaaaca	gttacccctca	gttcaagaat	ggatgttt	tgcttatatt	3060
tttactttag	ccattggat	agtcggtag	atctttatgt	ctgaagctgg	gaaagtaaac	3120
cagaagat	aaatgtgtt	tagtattac	tcaacatca	gtgatataat	tgccataatt	3180
tctttcttca	tggatgtgg	actaaatgtt	ggagcaaaat	ggaactttgc	aatgcataat	3240
gataatcatg	tttttggc	ttggaaat	atttactgtc	ttaacataat	attttggat	3300
gtgcgttgc	tagatttct	agctgtaaat	caacaggcag	gaccttatgt	aatgtatgt	3360
gaaaaatgg	tggccatata	gttctacatt	gtatgtat	tggcttctgt	attacttagt	3420
tttgggttgc	ccagaaagc	aatactttat	cctcatgaag	caccatcttgc	gactcttgc	3480
aaagatata	tttttcaccc	atactggat	attttgggt	agtttatgc	atacgaaatt	3540

-40-

gatgtgtgtg	caaatgattc	tgttatccct	caaatctgtg	gtcctggac	gtggttgact	3600
ccatttttc	aacgcgtctc	cctcttgc	cagtatata	ttatgttta	tcttcttatt	3660
gcattttca	acaatgtgt	tttacaagg	aaggcaattt	ccaatattgt	atggaaagtac	3720
cagcgttata	attttattat	ggcttatcat	gagaaaccag	ttctgcctcc	tccacttata	3780
attcttagcc	atatagtttc	tctgtttgc	tgcatatgt	agagaagaaa	gaaagataag	3840
acttccgatg	gaccaaaaact	tttcttaaca	gaagaagatc	aaaagaaaact	tcatgatttt	3900
gaagagcagt	gtgttgaat	gtattcaat	gaaaaagatg	acaaatttca	ttctgggagt	3960
gaagagagaa	ttcgtgtcac	tttggaaaga	gtggAACAGA	tgtcattca	gattaaagaa	4020
gttggagatc	gtgtcaacta	cataaaaaga	tcattacaat	cattagattc	tcaaattggc	4080
catttgc	atctttcagc	cctgacggta	gatacattaa	aaacactc	tgcccagaaa	4140
gcgtcggaa	ctagcaaagt	tcataatgaa	atcacacgag	aactgagcat	ttccaaacac	4200
ttggctcaaa	accttattga	tgatgtcct	gtaagacctt	ctgtatggaa	aaagcatggt	4260
gttgtaata	cacttagctc	ctctttcct	caaggtgatc	ttgaagtaa	taatccttt	4320
cattgtata	tttaatgaa	agatgacaaa	gatccccagt	gtaatata	ttgtcaagac	4380
ttacctgcag	taccccgag	aaaagaattt	aattttccag	aggctgttc	ctttctgg	4440
gccttattcc	caagtgcgt	tttccctcca	gaactgcac	agagactaca	tgggttagaa	4500
ctttaaaaa	tatataataa	aaatcaaaaa	ttaggcagt	catctactag	cataccacat	4560
ctgtcatccc	caccaaccaa	atttttgtt	agtacaccat	ctcagccaag	ttgcaaaagc	4620
cacttgaaa	cttggAACAA	agatcaagaa	actgtttgt	ctaaagctac	agaaggagat	4680
aatacagaat	ttggagcatt	tgttaggacac	agagatagca	tggattaca	gaggttaaa	4740
gaaacatcaa	acaagataaa	aatactatcc	aataacaata	cttctgaaaa	cacttgaaa	4800
cgagtgagtt	ctcttgctgg	atttactgac	tgtcacagaa	cttccattcc	tgttcattca	4860
aaacaagcag	aaaaaaatcg	tagaaggcca	tctaccgaag	acactcatga	agtagattcc	4920
aaagcagctt	taataccgga	ttggttacaa	gatagaccat	caaacagaga	aatgcacatc	4980
gaagaaggaa	cattaaatgg	tctcacttct	ccatttaa	cagctatgg	tacaattac	5040
tattattcag	ctgtggaaag	aaataactt	atgaggttat	cacagagcat	tccatttaca	5100
cctgtgcctc	caagagggga	gcctgtcaca	gtgtatcg	tggaaagag	ttcacc	5160
atactaaat	acagcatgtc	ttcttgg	caactaggcc	tctgtccaa	aatagagttt	5220
ttaagcaaag	aggagatggg	aggagttt	cgaagagct	tcaaaat	gtgtacctgg	5280
tcagaacatg	atatacctcaa	atcaggccat	ctttatatta	tcaatctt	tcttccagag	5340
gtggtaata	catggtaa	tatataaaa	gaagataca	ttctgcatt	ctgtctgaga	5400
gaaatcaac	aacagagagc	agcacaaa	tttacgttt	ccttaatca	aatgaaaccc	5460
aaatccatac	catattctcc	aagggtcctt	gaagtttcc	tgctgtatt	ccattcagca	5520
ggacagtgg	ttgctgtgg	agaatgtat	actggagaat	ttagaaaata	caacaataat	5580
aatggagatg	agattattcc	aactaataact	cttggagaga	tcatgtac	ctttagccac	5640
tggacttacg	aatatacaag	aggggagtt	ctggactt	atttgcagg	tgttggtgaa	5700
aatttactg	acccatctgt	gataaaagca	gaagaaaaga	gatccgt	tatgttttt	5760
ggcccagcaa	atctaggaga	agatgcaatt	aaaaacttca	gagcaaaaca	tcactgtat	5820
tcttgcgt	gaaagctt	acttccagat	cttggagaga	atgattatac	gcctgataaa	5880
attatatttc	ctcaggat	gccttcagat	tgaaatctt	agcctggaa	tccaccaaa	5940
gaatcagaat	caactaattc	tgttgcgt	atgttataat	attatattt	ctgatatt	6000
ggtttgcct	gcacccatcaca	gaaatgttac	tgtgtcatt	ttccctcggg	aggaaattgt	6060
ttggtaataat	agaaagggt	atgcaagtt	aatttgcgt	ctccagcaca	gttaaaaggt	6120
caatattctt	ttgacctgt	taatcgtca	gaaatccct	ataggataga	gttggcagct	6180
gagaatttt	aaaggttaatt	gataattgt	atttgcatt	ttttaaagg	ctctttgtat	6240
agcagaggat	ctcatttgc	tttgcgtt	tgagggtgt	gccctctt	atgtggtaca	6300
ataccattaa	ccaaaggtag	gtgtccatgc	agattttatt	ggcagctgtt	ttattgccc	6360
tcaacttaggg	aaatgaagaa	atcaccgc	cttttgg	aatggcagtc	aaaatttcc	6420
tcagtttatt	tagtgcgtt	agtgtatgt	tcactgg	ccaacttagat	gttggtggc	6480
cacggaaagg	gaaatgtactt	gttcttattc	taggttc	gaggtatgag	aagcctgaa	6540
tgaagaccat	tttcaagagg	gacggat	atgaatcagg	gttaggtcc	atatttaa	6600
atagagccag	ttttttttt	aaatagaacc	caaattgtt	aaaaatgtt	attgggttt	6660
ttaaaccattt	ttttatcaag	tcactgtt	gtagaagaaa	gccatgtt	actgatacat	6720
aacctaaattt	ataaaagcg	aaacctaact	cactcgtca	gggaagttac	tttttgagga	6780
aagttaaagt	actttttcc	ctatctgtat	ctatagcaac	aacc	caacaaactt	6840
ctccaaagat	tttattgatt	gttatata	atcagaatgt	aaacat	gaac tcttgcata	6900
atttaaaattt	gtgttgg	atttgcacat	gaatgtt	ttggactt	agaaattrat	6960
tcagtttgc	tatcattat	tganactggc	agattgcgt	gcancctt	gccaataaaa	7020
tgtatatttar	cagccccaga	tattgtt	gaa	tattcaacaa	taacaagaaa	7080
ctaagtttta	tgctttaatt	tttttctt	tttttctt	ttcttgcatt	tccttgg	7140

-41-

taatttaat ttttatttgg aaggagcag tataaagctt atttgtat	7200
ctcatagata cagacaaggc aagagatgat aagctgtt aatagtgktt aatattgatt	7260
gggggtgggg agaaaagaaaa agtgtattac ttaaagatac tatatacslt tktatatca	7320
ttaaatcttt aaaagaaaatn naataaattt attgttnca aaaaaaaaaac ccnnntaaaaa	7380
aaaaagggcg gcccctctag aggatccctc gagggggccc	7419

<210> 28
 <211> 1865
 <212> PRT
 <213> Homo Sapiens

<400> 28
 Met Ser Gln Lys Ser Trp Ile Glu Ser Thr Leu Thr Lys Arg Glu Cys
 1 5 10 15
 Val Tyr Ile Ile Pro Ser Ser Lys Asp Pro His Arg Cys Leu Pro Gly
 20 25 30
 Cys Gln Ile Cys Gln Gln Leu Val Arg Cys Phe Cys Gly Arg Leu Val
 35 40 45
 Lys Gln His Ala Cys Phe Thr Ala Ser Leu Ala Met Lys Tyr Ser Asp
 50 55 60
 Val Lys Leu Gly Asp His Phe Asn Gln Ala Ile Glu Glu Trp Ser Val
 65 70 75 80
 Glu Lys His Thr Glu Gln Ser Pro Thr Asp Ala Tyr Gly Val Ile Asn
 85 90 95
 Phe Gln Gly Ser His Ser Tyr Arg Ala Lys Tyr Val Arg Leu Ser
 100 105 110
 Tyr Asp Thr Lys Pro Glu Val Ile Leu Gln Leu Leu Lys Glu Trp
 115 120 125
 Gln Met Glu Leu Pro Lys Leu Val Ile Ser Val His Gly Gly Met Gln
 130 135 140
 Lys Phe Glu Leu His Pro Arg Ile Lys Gln Leu Leu Gly Lys Gly Leu
 145 150 155 160
 Ile Lys Ala Ala Val Thr Thr Gly Ala Trp Ile Leu Thr Gly Gly Val
 165 170 175
 Asn Thr Gly Val Ala Lys His Val Gly Asp Ala Leu Lys Glu His Ala
 180 185 190
 Ser Arg Ser Ser Arg Lys Ile Cys Thr Ile Gly Ile Ala Pro Trp Gly
 195 200 205
 Val Ile Glu Asn Arg Asn Asp Leu Val Gly Arg Asp Val Val Ala Pro
 210 215 220
 Tyr Gln Thr Leu Leu Asn Pro Leu Ser Lys Leu Asn Val Leu Asn Asn
 225 230 235 240
 Leu His Ser His Phe Ile Leu Val Asp Asp Gly Thr Val Gly Lys Tyr
 245 250 255
 Gly Ala Glu Val Arg Leu Arg Arg Glu Leu Glu Lys Thr Ile Asn Gln
 260 265 270
 Gln Arg Ile His Ala Arg Ile Gly Gln Gly Val Pro Val Val Ala Leu
 275 280 285
 Ile Phe Glu Gly Gly Pro Asn Val Ile Leu Thr Val Leu Glu Tyr Leu
 290 295 300
 Gln Glu Ser Pro Pro Val Pro Val Val Cys Glu Gly Thr Gly Arg
 305 310 315 320
 Ala Ala Asp Leu Leu Ala Tyr Ile His Lys Gln Thr Glu Glu Gly Gly
 325 330 335
 Asn Leu Pro Asp Ala Ala Glu Pro Asp Ile Ile Ser Thr Ile Lys Lys
 340 345 350
 Thr Phe Asn Phe Gly Gln Asn Glu Ala Leu His Leu Phe Gln Thr Leu
 355 360 365

-42-

Met Glu Cys Met Lys Arg Lys Glu Leu Ile Thr Val Phe His Ile Gly
 370 375 380
 Ser Asp Glu His Gln Asp Ile Asp Val Ala Ile Leu Thr Ala Leu Leu
 385 390 395 400
 Lys Gly Thr Asn Ala Ser Ala Phe Asp Gln Leu Ile Leu Thr Leu Ala
 405 410 415
 Trp Asp Arg Val Asp Ile Ala Lys Asn His Val Phe Val Tyr Gly Gln
 420 425 430
 Gln Trp Leu Val Gly Ser Leu Glu Gln Ala Met Leu Asp Ala Leu Val
 435 440 445
 Met Asp Arg Val Ala Phe Val Lys Leu Leu Ile Glu Asn Gly Val Ser
 450 455 460
 Met His Lys Phe Leu Thr Ile Pro Arg Leu Glu Glu Leu Tyr Asn Thr
 465 470 475 480
 Lys Gln Gly Pro Thr Asn Pro Met Leu Phe His Leu Val Arg Asp Val
 485 490 495
 Lys Gln Gly Asn Leu Pro Pro Gly Tyr Lys Ile Thr Leu Ile Asp Ile
 500 505 510
 Gly Leu Val Ile Glu Tyr Leu Met Gly Gly Thr Tyr Arg Cys Thr Tyr
 515 520 525
 Thr Arg Lys Arg Phe Arg Leu Ile Tyr Asn Ser Leu Gly Gly Asn Asn
 530 535 540
 Arg Arg Ser Gly Arg Asn Thr Ser Ser Ser Thr Pro Gln Leu Arg Lys
 545 550 555 560
 Ser His Glu Ser Phe Gly Asn Arg Ala Asp Lys Lys Glu Lys Met Arg
 565 570 575
 His Asn His Phe Ile Lys Thr Ala Gln Pro Phe Arg Pro Lys Ile Asp
 580 585 590
 Thr Val Met Glu Glu Gly Lys Lys Arg Thr Lys Asp Glu Ile Val
 595 600 605
 Asp Ile Asp Asp Pro Glu Thr Lys Arg Phe Pro Tyr Pro Leu Asn Glu
 610 615 620
 Leu Leu Ile Trp Ala Cys Leu Met Lys Arg Gln Val Met Ala Arg Phe
 625 630 635 640
 Leu Trp Gln His Gly Glu Glu Ser Met Ala Lys Ala Leu Val Ala Cys
 645 650 655
 Lys Ile Tyr Arg Ser Met Ala Tyr Glu Ala Lys Gln Ser Asp Leu Val
 660 665 670
 Asp Asp Thr Ser Glu Glu Leu Lys Gln Tyr Ser Asn Asp Phe Gly Gln
 675 680 685
 Leu Ala Val Glu Leu Leu Glu Gln Ser Phe Arg Gln Asp Glu Thr Met
 690 695 700
 Ala Met Lys Leu Leu Thr Tyr Glu Leu Lys Asn Trp Ser Asn Ser Thr
 705 710 715 720
 Cys Leu Lys Leu Ala Val Ser Ser Arg Leu Arg Pro Phe Val Ala His
 725 730 735
 Thr Cys Thr Gln Met Leu Leu Ser Asp Met Trp Met Gly Arg Leu Asn
 740 745 750
 Met Arg Lys Asn Ser Trp Tyr Lys Val Ile Leu Ser Ile Leu Val Pro
 755 760 765
 Pro Ala Ile Leu Leu Glu Tyr Lys Thr Lys Ala Glu Met Ser His
 770 775 780
 Ile Pro Gln Ser Gln Asp Ala His Gln Met Thr Met Asp Asp Ser Glu
 785 790 795 800
 Asn Asn Phe Gln Asn Ile Thr Glu Glu Ile Pro Met Glu Val Phe Lys
 805 810 815
 Glu Val Arg Ile Leu Asp Ser Asn Glu Gly Lys Asn Glu Met Glu Ile
 820 825 830
 Gln Met Lys Ser Lys Lys Leu Pro Ile Thr Arg Lys Phe Tyr Ala Phe
 835 840 845

-43-

Tyr His Ala Pro Ile Val Lys Phe Trp Phe Asn Thr Leu Ala Tyr Leu
 850 855 860
 Gly Phe Leu Met Leu Tyr Thr Phe Val Val Leu Val Gln Met Glu Gln
 865 870 875 880
 Leu Pro Ser Val Gln Glu Trp Ile Val Ile Ala Tyr Ile Phe Thr Tyr
 885 890 895
 Ala Ile Glu Lys Val Arg Glu Ile Phe Met Ser Glu Ala Gly Lys Val
 900 905 910
 Asn Gln Lys Ile Lys Val Trp Phe Ser Asp Tyr Phe Asn Ile Ser Asp
 915 920 925
 Thr Ile Ala Ile Ile Ser Phe Phe Ile Gly Phe Gly Leu Arg Phe Gly
 930 935 940
 Ala Lys Trp Asn Phe Ala Asn Ala Tyr Asp Asn His Val Phe Val Ala
 945 950 955 960
 Gly Arg Leu Ile Tyr Cys Leu Asn Ile Ile Phe Trp Tyr Val Arg Leu
 965 970 975
 Leu Asp Phe Leu Ala Val Asn Gln Gln Ala Gly Pro Tyr Val Met Met
 980 985 990
 Ile Gly Lys Met Val Ala Asn Met Phe Tyr Ile Val Val Ile Met Ala
 995 1000 1005
 Leu Val Leu Leu Ser Phe Gly Val Pro Arg Lys Ala Ile Leu Tyr Pro
 1010 1015 1020
 His Glu Ala Pro Ser Trp Thr Leu Ala Lys Asp Ile Val Phe His Pro
 1025 1030 1035 1040
 Tyr Trp Met Ile Phe Gly Glu Val Tyr Ala Tyr Glu Ile Asp Val Cys
 1045 1050 1055
 Ala Asn Asp Ser Val Ile Pro Gln Ile Cys Gly Pro Gly Thr Trp Leu
 1060 1065 1070
 Thr Pro Phe Leu Gln Ala Val Tyr Leu Phe Val Gln Tyr Ile Ile Met
 1075 1080 1085
 Val Asn Leu Leu Ile Ala Phe Phe Asn Asn Val Tyr Leu Gln Val Lys
 1090 1095 1100
 Ala Ile Ser Asn Ile Val Trp Lys Tyr Gln Arg Tyr His Phe Ile Met
 1105 1110 1115 1120
 Ala Tyr His Glu Lys Pro Val Leu Pro Pro Leu Ile Ile Leu Ser
 1125 1130 1135
 His Ile Val Ser Leu Phe Cys Cys Ile Cys Lys Arg Arg Lys Lys Asp
 1140 1145 1150
 Lys Thr Ser Asp Gly Pro Lys Leu Phe Leu Thr Glu Glu Asp Gln Lys
 1155 1160 1165
 Lys Leu His Asp Phe Glu Glu Gln Cys Val Glu Met Tyr Phe Asn Glu
 1170 1175 1180
 Lys Asp Asp Lys Phe His Ser Gly Ser Glu Glu Arg Ile Arg Val Thr
 1185 1190 1195 1200
 Phe Glu Arg Val Glu Gln Met Cys Ile Gln Ile Lys Glu Val Gly Asp
 1205 1210 1215
 Arg Val Asn Tyr Ile Lys Arg Ser Leu Gln Ser Leu Asp Ser Gln Ile
 1220 1225 1230
 Gly His Leu Gln Asp Leu Ser Ala Leu Thr Val Asp Thr Leu Lys Thr
 1235 1240 1245
 Leu Thr Ala Gln Lys Ala Ser Glu Ala Ser Lys Val His Asn Glu Ile
 1250 1255 1260
 Thr Arg Glu Leu Ser Ile Ser Lys His Leu Ala Gln Asn Leu Ile Asp
 1265 1270 1275 1280
 Asp Gly Pro Val Arg Pro Ser Val Trp Lys Lys His Gly Val Val Asn
 1285 1290 1295
 Thr Leu Ser Ser Ser Leu Pro Gln Gly Asp Leu Glu Ser Asn Asn Pro
 1300 1305 1310
 Phe His Cys Asn Ile Leu Met Lys Asp Asp Lys Asp Pro Gln Cys Asn
 1315 1320 1325

-44-

Ile Phe Gly Gln Asp Leu Pro Ala Val Pro Gln Arg Lys Glu Phe Asn
 1330 1335 1340
 Phe Pro Glu Ala Gly Ser Ser Ser Gly Ala Leu Phe Pro Ser Ala Val
 1345 1350 1355 1360
 Ser Pro Pro Glu Leu Arg Gln Arg Leu His Gly Val Glu Leu Leu Lys
 1365 1370 1375
 Ile Phe Asn Lys Asn Gln Lys Leu Gly Ser Ser Ser Thr Ser Ile Pro
 1380 1385 1390
 His Leu Ser Ser Pro Pro Thr Lys Phe Phe Val Ser Thr Pro Ser Gln
 1395 1400 1405
 Pro Ser Cys Lys Ser His Leu Glu Thr Gly Thr Lys Asp Gln Glu Thr
 1410 1415 1420
 Val Cys Ser Lys Ala Thr Glu Gly Asp Asn Thr Glu Phe Gly Ala Phe
 1425 1430 1435 1440
 Val Gly His Arg Asp Ser Met Asp Leu Gln Arg Phe Lys Glu Thr Ser
 1445 1450 1455
 Asn Lys Ile Lys Ile Leu Ser Asn Asn Asn Thr Ser Glu Asn Thr Leu
 1460 1465 1470
 Lys Arg Val Ser Ser Leu Ala Gly Phe Thr Asp Cys His Arg Thr Ser
 1475 1480 1485
 Ile Pro Val His Ser Lys Gln Ala Glu Lys Ile Ser Arg Arg Pro Ser
 1490 1495 1500
 Thr Glu Asp Thr His Glu Val Asp Ser Lys Ala Ala Leu Ile Pro Asp
 1505 1510 1515 1520
 Trp Leu Gln Asp Arg Pro Ser Asn Arg Glu Met Pro Ser Glu Glu Gly
 1525 1530 1535
 Thr Leu Asn Gly Leu Thr Ser Pro Phe Lys Pro Ala Met Asp Thr Asn
 1540 1545 1550
 Tyr Tyr Tyr Ser Ala Val Glu Arg Asn Asn Leu Met Arg Leu Ser Gln
 1555 1560 1565
 Ser Ile Pro Phe Thr Pro Val Pro Pro Arg Gly Glu Pro Val Thr Val
 1570 1575 1580
 Tyr Arg Leu Glu Glu Ser Ser Pro Asn Ile Leu Asn Asn Ser Met Ser
 1585 1590 1595 1600
 Ser Trp Ser Gln Leu Gly Leu Cys Ala Lys Ile Glu Phe Leu Ser Lys
 1605 1610 1615
 Glu Glu Met Gly Gly Leu Arg Arg Ala Val Lys Val Gln Cys Thr
 1620 1625 1630
 Trp Ser Glu His Asp Ile Leu Lys Ser Gly His Leu Tyr Ile Ile Lys
 1635 1640 1645
 Ser Phe Leu Pro Glu Val Val Asn Thr Trp Ser Ser Ile Tyr Lys Glu
 1650 1655 1660
 Asp Thr Val Leu His Leu Cys Leu Arg Glu Ile Gln Gln Arg Ala
 1665 1670 1675 1680
 Ala Gln Lys Leu Thr Phe Ala Phe Asn Gln Met Lys Pro Lys Ser Ile
 1685 1690 1695
 Pro Tyr Ser Pro Arg Phe Leu Glu Val Phe Leu Leu Tyr Cys His Ser
 1700 1705 1710
 Ala Gly Gln Trp Phe Ala Val Glu Glu Cys Met Thr Gly Glu Phe Arg
 1715 1720 1725
 Lys Tyr Asn Asn Asn Gly Asp Glu Ile Ile Pro Thr Asn Thr Leu
 1730 1735 1740
 Glu Glu Ile Met Leu Ala Phe Ser His Trp Thr Tyr Glu Tyr Thr Arg
 1745 1750 1755 1760
 Gly Glu Leu Leu Val Leu Asp Leu Gln Gly Val Gly Glu Asn Leu Thr
 1765 1770 1775
 Asp Pro Ser Val Ile Lys Ala Glu Glu Lys Arg Ser Cys Asp Met Val
 1780 1785 1790
 Phe Gly Pro Ala Asn Leu Gly Glu Asp Ala Ile Lys Asn Phe Arg Ala
 1795 1800 1805

-45-

Lys His His Cys Asn Ser Cys Cys Arg Lys Leu Lys Leu Pro Asp Leu
 1810 1815 1820
 Lys Arg Asn Asp Tyr Thr Pro Asp Lys Ile Ile Phe Pro Gln Asp Glu
 1825 1830 1835 1840
 Pro Ser Asp Leu Asn Leu Gln Pro Gly Asn Ser Thr Lys Glu Ser Glu
 1845 1850 1855
 Ser Thr Asn Ser Val Arg Leu Met Leu
 1860 1865

<210> 29
 <211> 4061
 <212> DNA
 <213> Homo Sapiens

<400> 29

ggctctggaaag	cagagccggc	ggagggagcg	ccggggccct	gggctgcagg	aggttgcggc	60
ggccgcggca	gcatgggtt	gcccggagaag	gagcagagct	ggatccccaa	gatcttcaag	120
aagaagacct	gcacgacgtt	catagttgc	tccacagatc	cgggaggggac	cttgcgcag	180
tgtgggcgcc	cccggaccgc	ccaccccgca	gtggccatgg	aggatgcctt	cggggcagcc	240
gtggtacccg	tgtgggacag	cgatgcacac	accacggaga	agcccaccga	tgcctacgga	300
gagctggact	tcacgggggc	cgggcgaag	cacagcaatt	tcctccggct	ctctgaccga	360
acggatccag	ctgcagttt	tagtctggc	acacgcacat	ggggcttccg	tgccccgaac	420
ctgtgtgtgt	cagtgtctgg	gggatcgggg	ggcccccgtcc	tccagacctg	gctgcaggac	480
ctgctgcgtc	gtgggctgtt	gccccgtgc	cagagcacag	gagcctggat	tgtcaactggg	540
ggctctgcaca	cgggcacatcg	ccggcatgtt	ggtgtggctg	tacgggacca	tcagatggcc	600
agcaactgggg	gcaccaaaatg	ggtgtggcatg	ggtgtggggcc	cctgggggtgt	gttccggaaat	660
agagacaccc	tcatcaaccc	caagggtctcg	ttccctgcga	ggtaccgggt	gcccgggtgac	720
ccggaggacg	gggtccagg	tccctggac	tacaactact	cgcccttctt	cctggtgac	780
gacggcacac	acggctgcct	ggggggcgag	aaccgttcc	gcttgcgcct	ggagtcctac	840
atctcacagc	agaagacggg	cgtgggaggg	actggaaattg	acatccctgt	cctgctctc	900
ctgattgatg	gtgatgagaa	gatgttgacg	cgaatagaga	acgcccaccca	ggctcagctc	960
ccatgtctcc	tcgtggctgg	ctcaggggg	gctgcggact	gcctggcgga	gaccctggaa	1020
gacactctgg	ccccagggg	tgggggagcc	aggcaaggcg	aagcccgaga	tcgaatcagg	1080
cgtttcttc	ccaaagggga	ccttgagggtc	ctgcaggccc	aggtggagag	gattatgacc	1140
cggaaggagc	tcctgacagt	ctattcttc	gaggatgggt	ctgaggaaatt	cgagaccata	1200
gttttgaagg	cccttgtgaa	ggctctgtggg	agctcgagg	cctcagccct	cctggatgag	1260
ctgcgttgg	ctgtggcttg	gaaccgcgtg	gacattggcc	agatgtact	ctttcggggg	1320
gacatccaat	ggcggtcctt	ccatctcgaa	gcttccctca	tggacgcct	gctgaatgac	1380
cggcctgagt	tcgtgcgtt	gctcattttc	cacggccctca	gcctggggca	cttcctgacc	1440
ccgatgcgcc	tggcccaact	ctacacgcgc	gcgccttcca	actcgctcat	ccgcaacctt	1500
ttggaccagg	cgtccccacag	cgcaggcacc	aaagccccag	ccctaaaagg	gggagctgctg	1560
gagctccggc	cccctgacgt	ggggcatgtg	ctgaggatgc	tgtggggaa	gatgtgcgcg	1620
ccgagggtacc	cctccgggg	cgcttggac	cctcaccctg	gccagggttt	cggggagagc	1680
atgtatctgc	tctcgaccaa	ggcacctcg	ccgctctcgc	tggatgctgg	cctcgggcag	1740
gccccctgga	gcgacctgct	tcttggca	ctgttgcgt	acagggcaca	gatggccatg	1800
tacttctggg	agatgggtt	caatgcagtt	tcctcagtc	ttggggcctg	tttgctgtc	1860
cgggtatgg	cacgccttga	gcctgacgt	gaggaggcag	cacggaggaa	agacctggcg	1920
ttcaagttt	aggggatggg	cgttgacctc	tttggcgagt	gctatcgag	cagtgggtg	1980
agggctgccc	gcctccctct	ccgtgcgtc	ccgctctggg	gggatgcccac	ttgcctccag	2040
ctggccatgc	aagctgacgc	ccgtgcctt	tttgccttgg	atgggttaca	gtctctgtcg	2100
acacagaagt	ggtggggaga	tatggccac	actacaccca	tctggccctt	gttctcgcc	2160
ttcttttgc	ctccactcat	ctacacccgc	ctcatcacct	tcaaggaaatc	agaagaggag	2220
cccacacggg	aggagctaga	gtttgacatg	gatagtgtca	ttaatgggaa	agggcctgtc	2280
gggacggccg	acccagccga	gaagacgccc	ctgggggtcc	cgccgcaggc	gggcgcgtccg	2340
ggttgctgcg	ggggccctg	cggggggcgc	cggtgcctac	gccgcgtgtt	ccacttctgg	2400
ggcgcgcgg	tgaccatctt	catggcaac	gtggtcagct	acctgtcttt	cctgctgtctt	2460
ttctcgccgg	tgctgctctgt	ggatttccag	ccggcgcgc	ccgctccct	ggagctgtct	2520
ctctatattct	gggctttcac	gctgctgtgc	gaggaactgc	gccaggccct	gagcggaggc	2580
gggggcagcc	tcgcccagcgg	ggggccccggg	cctggccatg	cctcaactgag	ccagcgcctg	2640
cgcctctacc	tcgcccagacag	ctgaaaccag	tgcgacactag	tggctctcac	ctgcttcctc	2700

-46-

ctgggcgtgg	gctgccggct	gaccggggt	ttgttaccacc	tggccgcac	tgtcctctgc	2760
atcgacttca	ttgtttcac	ggtgcggctg	cttcacatct	tcacggctaa	caaacagctg	2820
ggcccaaga	tcgtcatctg	gagcaagatg	atgaaggacg	tgttcttctt	cctttcttc	2880
ctcggcgtgt	ggctggtagc	ctatggctg	gccacggagg	ggctcctgag	gccacgggac	2940
agtacttcc	caagtatcct	gcccgcgtc	ttctaccgtc	cctacactgca	gatttcggg	3000
cagattcccc	aggaggacat	ggacgtggcc	ctcatggagc	acagcaactg	ctcgtcggag	3060
cccgcttct	gggcacaccc	ccctggggcc	caggcgggca	cctgctctc	ccagtatgcc	3120
aactggctgg	ttgtgtctgt	cctcgtcatc	ttcctgctcg	ttgccaacat	cctgctggc	3180
aacttgcctca	ttgcccattt	cagttacaca	ttcggcaaaag	tacagggcaa	cagcgatctc	3240
tacttggagg	cgcagcgtta	ccgcctcata	cgggaaattcc	actctcgcc	cgcgctggcc	3300
ccgccttta	tcgtcatctc	ccacttgcgc	ctcctgctca	ggcaattgtg	caggcgcacc	3360
cggagcccc	agccgtcctc	cccggccctc	gagcatttcc	gggtttacct	ttctaaggaa	3420
gcccggcgg	agctgttaac	gtggaaatcg	gtgcataagg	agaactttct	gtggcacgc	3480
gctagggaca	agcgggagag	cgactccgag	cgtctgaagc	gcacgtccca	gaagggtggac	3540
ttggcactga	aacagctggg	acacatccgc	gagtagcgaac	agcgcctgaa	agtgtctggag	3600
cggagggtcc	agcagtgtag	ccgcgtcctg	gggtgggtgg	ccgaggccct	gagccgcct	3660
gccttgcgtc	ccccagggtgg	gccggccaccc	cctgacctgc	ctgggtccaa	agactgagcc	3720
ctgtggcg	acttcaagga	gaagccccca	caggggattt	tgcttctaga	gtaaggctca	3780
tctggccctc	ggcccccgc	cctgtggcc	ttgtccttga	ggtagcccc	atgtccatct	3840
ggggcactgt	caggaccacc	tttgggagtg	tcatccttac	aaaccacage	atgcccggct	3900
cctcccaagaa	ccagtcctcag	cctgggagga	tcaaggccctg	gatccgggc	cgttatccat	3960
ctggaggctg	cagggtcctt	ggggtaacag	ggaccacaga	cccctcacca	ctcacagatt	4020
cctcacactg	gggaaataaa	gccatttcag	aggaaaaaaa	a		4061

<210> 30

<211> 1214

<212> PRT

<213> Homo Sapiens

<400> 30

Met	Val	Val	Pro	Glu	Lys	Glu	Gln	Ser	Trp	Ile	Pro	Lys	Ile	Phe	Lys
1				5				10			15				
Lys	Lys	Thr	Cys	Thr	Thr	Phe	Ile	Val	Asp	Ser	Thr	Asp	Pro	Gly	Gly
						20			25			30			
Thr	Leu	Cys	Gln	Cys	Gly	Arg	Pro	Arg	Thr	Ala	His	Pro	Ala	Val	Ala
						35			40			45			
Met	Glu	Asp	Ala	Phe	Gly	Ala	Ala	Val	Val	Thr	Val	Trp	Asp	Ser	Asp
	50					55				60					
Ala	His	Thr	Thr	Glu	Lys	Pro	Thr	Asp	Ala	Tyr	Gly	Glu	Leu	Asp	Phe
	65					70				75			80		
Thr	Gly	Ala	Gly	Arg	Lys	His	Ser	Asn	Phe	Leu	Arg	Leu	Ser	Asp	Arg
						85			90			95			
Thr	Asp	Pro	Ala	Ala	Val	Tyr	Ser	Leu	Val	Thr	Arg	Thr	Trp	Gly	Phe
	100					105				110					
Arg	Ala	Pro	Asn	Leu	Val	Val	Ser	Val	Leu	Gly	Gly	Ser	Gly	Gly	Pro
	115					120				125					
Val	Leu	Gln	Thr	Trp	Leu	Gln	Asp	Leu	Leu	Arg	Arg	Gly	Leu	Val	Arg
	130					135			140						
Ala	Ala	Gln	Ser	Thr	Gly	Ala	Trp	Ile	Val	Thr	Gly	Gly	Leu	His	Thr
	145						150			155			160		
Gly	Ile	Gly	Arg	His	Val	Gly	Val	Ala	Val	Arg	Asp	His	Gln	Met	Ala
						165			170			175			
Ser	Thr	Gly	Gly	Thr	Lys	Val	Val	Ala	Met	Gly	Val	Ala	Pro	Trp	Gly
	180					185				190					
Val	Val	Arg	Asn	Arg	Asp	Thr	Leu	Ile	Asn	Pro	Lys	Gly	Ser	Phe	Pro
	195					200				205					
Ala	Arg	Tyr	Arg	Trp	Arg	Gly	Asp	Pro	Glu	Asp	Gly	Val	Gln	Phe	Pro
	210					215			220						
Leu	Asp	Tyr	Asn	Tyr	Ser	Ala	Phe	Phe	Leu	Val	Asp	Asp	Gly	Thr	His
	225					230			235			240			

-47-

Gly Cys Leu Gly Gly Glu Asn Arg Phe Arg Leu Arg Leu Glu Ser Tyr
 245 250 255
 Ile Ser Gln Gln Lys Thr Gly Val Gly Gly Thr Gly Ile Asp Ile Pro
 260 265 270
 Val Leu Leu Leu Ile Asp Gly Asp Glu Lys Met Leu Thr Arg Ile
 275 280 285
 Glu Asn Ala Thr Gln Ala Gln Leu Pro Cys Leu Leu Val Ala Gly Ser
 290 295 300
 Gly Gly Ala Ala Asp Cys Leu Ala Glu Thr Leu Glu Asp Thr Leu Ala
 305 310 315 320
 Pro Gly Ser Gly Gly Ala Arg Gln Gly Glu Ala Arg Asp Arg Ile Arg
 325 330 335
 Arg Phe Phe Pro Lys Gly Asp Leu Glu Val Leu Gln Ala Gln Val Glu
 340 345 350
 Arg Ile Met Thr Arg Lys Glu Leu Leu Thr Val Tyr Ser Ser Glu Asp
 355 360 365
 Gly Ser Glu Glu Phe Glu Thr Ile Val Leu Lys Ala Leu Val Lys Ala
 370 375 380
 Cys Gly Ser Ser Glu Ala Ser Ala Tyr Leu Asp Glu Leu Arg Leu Ala
 385 390 395 400
 Val Ala Trp Asn Arg Val Asp Ile Ala Gln Ser Glu Leu Phe Arg Gly
 405 410 415
 Asp Ile Gln Trp Arg Ser Phe His Leu Glu Ala Ser Leu Met Asp Ala
 420 425 430
 Leu Leu Asn Asp Arg Pro Glu Phe Val Arg Leu Leu Ile Ser His Gly
 435 440 445
 Leu Ser Leu Gly His Phe Leu Thr Pro Met Arg Leu Ala Gln Leu Tyr
 450 455 460
 Ser Ala Ala Pro Ser Asn Ser Leu Ile Arg Asn Leu Leu Asp Gln Ala
 465 470 475 480
 Ser His Ser Ala Gly Thr Lys Ala Pro Ala Leu Lys Gly Gly Ala Ala
 485 490 495
 Glu Leu Arg Pro Pro Asp Val Gly His Val Leu Arg Met Leu Leu Gly
 500 505 510
 Lys Met Cys Ala Pro Arg Tyr Pro Ser Gly Gly Ala Trp Asp Pro His
 515 520 525
 Pro Gly Gln Gly Phe Gly Glu Ser Met Tyr Leu Leu Ser Asp Lys Ala
 530 535 540
 Thr Ser Pro Leu Ser Leu Asp Ala Gly Leu Gly Gln Ala Pro Trp Ser
 545 550 555 560
 Asp Leu Leu Leu Trp Ala Leu Leu Leu Asn Arg Ala Gln Met Ala Met
 565 570 575
 Tyr Phe Trp Glu Met Gly Ser Asn Ala Val Ser Ser Ala Leu Gly Ala
 580 585 590
 Cys Leu Leu Leu Arg Val Met Ala Arg Leu Glu Pro Asp Ala Glu Glu
 595 600 605
 Ala Ala Arg Arg Lys Asp Leu Ala Phe Lys Phe Glu Gly Met Gly Val
 610 615 620
 Asp Leu Phe Gly Glu Cys Tyr Arg Ser Ser Glu Val Arg Ala Ala Arg
 625 630 635 640
 Leu Leu Leu Arg Arg Cys Pro Leu Trp Gly Asp Ala Thr Cys Leu Gln
 645 650 655
 Leu Ala Met Gln Ala Asp Ala Arg Ala Phe Phe Ala Gln Asp Gly Val
 660 665 670
 Gln Ser Leu Leu Thr Gln Lys Trp Trp Gly Asp Met Ala Ser Thr Thr
 675 680 685
 Pro Ile Trp Ala Leu Val Leu Ala Phe Phe Cys Pro Pro Leu Ile Tyr
 690 695 700
 Thr Arg Leu Ile Thr Phe Arg Lys Ser Glu Glu Glu Pro Thr Arg Glu
 705 710 715 720

-48-

Glu Leu Glu Phe Asp Met Asp Ser Val Ile Asn Gly Glu Gly Pro Val
 725 730 735
 Gly Thr Ala Asp Pro Ala Glu Lys Thr Pro Leu Gly Val Pro Arg Gln
 740 745 750
 Ser Gly Arg Pro Gly Cys Cys Gly Gly Arg Cys Gly Gly Arg Arg Cys
 755 760 765
 Leu Arg Arg Trp Phe His Phe Trp Gly Ala Pro Val Thr Ile Phe Met
 770 775 780
 Gly Asn Val Val Ser Tyr Leu Leu Phe Leu Leu Phe Ser Arg Val
 785 790 795 800
 Leu Leu Val Asp Phe Gln Pro Ala Pro Pro Gly Ser Leu Glu Leu Leu
 805 810 815
 Leu Tyr Phe Trp Ala Phe Thr Leu Leu Cys Glu Glu Leu Arg Gln Gly
 820 825 830
 Leu Ser Gly Gly Gly Ser Leu Ala Ser Gly Gly Pro Gly Pro Gly
 835 840 845
 His Ala Ser Leu Ser Gln Arg Leu Arg Leu Tyr Leu Ala Asp Ser Trp
 850 855 860
 Asn Gln Cys Asp Leu Val Ala Leu Thr Cys Phe Leu Leu Gly Val Gly
 865 870 875 880
 Cys Arg Leu Thr Pro Gly Leu Tyr His Leu Gly Arg Thr Val Leu Cys
 885 890 895
 Ile Asp Phe Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val
 900 905 910
 Asn Lys Gln Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys
 915 920 925
 Asp Val Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr
 930 935 940
 Gly Val Ala Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro
 945 950 955 960
 Ser Ile Leu Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly
 965 970 975
 Gln Ile Pro Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn
 980 985 990
 Cys Ser Ser Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala
 995 1000 1005
 Gly Thr Cys Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu
 1010 1015 1020
 Val Ile Phe Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile
 1025 1030 1035 1040
 Ala Met Phe Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu
 1045 1050 1055
 Tyr Trp Lys Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg
 1060 1065 1070
 Pro Ala Leu Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu
 1075 1080 1085
 Leu Arg Gln Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro
 1090 1095 1100
 Ala Leu Glu His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys
 1105 1110 1115 1120
 Leu Leu Thr Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg
 1125 1130 1135
 Ala Arg Asp Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser
 1140 1145 1150
 Gln Lys Val Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr
 1155 1160 1165
 Glu Gln Arg Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg
 1170 1175 1180
 Val Leu Gly Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro
 1185 1190 1195 1200

Pro Gly Gly Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp
1205 1210

<210> 31
<211> 4646
<212> DNA
<213> Homo Sapiens

<400> 31						
tcgacccacg	cgtccgccc	cgcgtccgccc	cacgcgtccc	cccacgcgtc	cgccccacgcg	60
tccggccacg	cgtccggggt	gaaagmramy	cmygcktsms	aaaaaccgtc	acttaggaaa	120
agatgtcctt	tcgggcagcc	aggctcagca	tgaggaacag	aaggaatgac	actctggaca	180
gcacccggac	cctgtactcc	agcgcgtctc	ggagcacaga	cttgcattac	agtggaaagcg	240
acttggtaaa	ttttattcaa	gcaaatttta	agaaacgaga	atgtgtcttc	tttaccaaag	300
attccaaggc	cacggagaat	gtgtcaagt	gtggctatgc	ccagagccag	cacatggaaag	360
gcacccagat	caaccaaagt	gagaatgga	actacaagaa	acacaccaag	gaatttccta	420
ccgacgcctt	tggggatatt	cagttgaga	cactggggaa	gaaaggaaag	tatatacgtc	480
tgtctgcga	cacggacgca	gaaatcctt	acgagctgt	gaccacgcac	ttggcacctga	540
aaacacccaa	cctggtcatt	tctgtgaccg	ggggcgccaa	gaacttcgccc	ctgaagccgc	600
gcatgcgcaa	gatcttcagc	cggctcatct	acatcgcgca	gtccaaagggt	gttggattc	660
tcaoggagg	cacccattat	ggcctgatga	agtacatcg	ggaggtggtg	agagataaca	720
ccatcagcag	gagttcagag	gagaatattg	tggccatttg	catagcagct	ttgggcatttg	780
tctccaaccc	ggacaccctc	atcaggaatt	gcgtatgt	gggttatttt	ttagcccaagt	840
accttatgga	tgacttcaca	agagatccac	tgtgtatct	ggacaacaac	cacacacatt	900
tgtctgcgt	ggacaatggc	tgtcatggac	atcccactgt	cgaagcaaag	ctccggaaatc	960
agctagagaa	gtatatactct	gagcgcacta	ttcaagatct	caactatgg	ggcaagatcc	1020
ccattgtgt	ttttggccaa	ggaggtggaa	aagagacttt	gaaagccatc	aataacctcca	1080
tcaaaaataa	aattccttgt	gtgggtgtgg	aaggctcggg	ccagatcgct	gatgtgatcg	1140
ctagcctgtt	ggaggtggag	gatccctgta	catcttctgc	cgtcaaggag	aagctgggtc	1200
gcttttacc	ccgcacgggt	tccggctgc	ctgaggagga	gactgagagt	ttggatcaat	1260
ggctcaaaga	aattctcgaa	tggttctcacc	tattaacagt	tattaaaatg	gaagaagctg	1320
gggatgaaat	tgtgagcaat	gccatctct	acgctctata	caaagccttc	agcaccagtg	1380
agcaagacaa	ggataactgg	aatgggcagc	tgaagcttct	gctggagtgg	aaccagctgg	1440
acttagccaa	tgtatgagatt	ttcacaatg	accggcgatg	ggagctgtct	gaccttcaag	1500
aagtcatgtt	tacggctctc	ataaaggaca	gacccaagggt	tgtccgcctc	tttctggaga	1560
atggcttgaa	cctacggaaag	tttctcacc	atgatgtct	cactgaactc	ttctccaacc	1620
acttcagcac	gcttgtgtac	cggaatctgc	agatcgccaa	gaattcctat	aatgtatgccc	1680
tccctcacgtt	tgttggaaa	ctgggtgcg	acttccgaaag	aggctccgg	aaggaagaca	1740
gaaatggccg	ggacgagatg	gacatagaac	tccacgacgt	gtctcttatt	actcggcacc	1800
ccctgcaagc	tctcttcattc	tgggcatttc	ttcagaataa	gaaggaactc	tccaaagtca	1860
tttgggagca	gaccaggggc	tgcactctgg	cagccctggg	agccagcaag	cttctgaaga	1920
ctctggccaa	agtgaagaac	gacatcaatg	ctgctgggg	gtccqaggag	ctggctaattg	1980
agtacgagac	ccgggctgtt	gagctgtca	ctgagtgta	cagcagcgat	gaagacttgg	2040
cagaacagct	gctggcttat	tcctgtgaag	cttgggggtgg	aagaactgt	ctggagctgg	2100
cggtagggc	cacagaccag	catttcattcg	cccagcctgg	ggtccagaat	tttctttcta	2160
agecaatggta	tggagagatt	tcccgagaca	ccaagaactg	gaagattatc	ctgtgtctgt	2220
ttattatacc	cttgggtggc	tgtggcttt	tatcatttag	gaagaaacct	gtcgacaagc	2280
acaagaagct	gttttggta	tatgtggct	tcttcaccc	cccccttcgt	gttttcttc	2340
ggaatgtggt	cttctacatc	gccttcctcc	tgctgtttgc	ctacgtgt	ctcatggatt	2400
tccattcggt	gccacacccc	cccgagctgg	tcctgtactc	gctggctt	gtcctcttct	2460
gtatgtaaatg	gagacagtgg	tacgtaaatg	gggtgaatta	tttactgac	ctgtggaaatg	2520
tgtatggacac	gttggggttt	ttttacttca	tagcaggaat	tgtatttcg	ctccacttt	2580
ctaataaaag	ctctttgtat	tctggacgag	tcattttctg	tctggactac	attatttca	2640
ctctaagatt	gatccacatt	tttactgtaa	gcagaaactt	aggacccaag	attataatgc	2700
tgcagaggat	gctgtatcgat	gttttcttct	tcctgtttct	cttgcgggt	ttggatgggtgg	2760
ccttggcggt	ggccaggccaa	gggatccctt	ggcagaatga	gcagcgttgg	aggtggat	2820
tcccttcgggt	catctacgag	ccctacctgg	ccatgttgg	ccaggtgccc	agtgacgtgg	2880
atgttaccac	gtatgacttt	gcccactgca	ccttcactgg	gaatgagttcc	aagccactgt	2940
gtgtggagct	ggatgagcac	aacctggccc	ggttccccga	gtggatcacc	atccccctgg	3000
tgtgcatact	catgttatcc	accaacatcc	tgctggtaaa	cctgctggtc	gccatgtttg	3060

-50-

gctacacgggt	gggcaccgtc	caggagaaca	atgaccagg	ctggaaagg	tc	cagaggact	3120		
tcctgggtca	ggagtaactgc	agccgcctca	atatccc	ccc	tttc	atc	gtctcg	3180	
acttctacat	ggttgtgaag	aagtgtctca	agtgttgc	caaggagaaa	aacatgg	agt		3240	
cttctgtctg	ctgtttcaaa	aatgaagaca	atgagact	ct	ggcatgg	gag	ggtgtcatg	3300	
aggaaaacta	ccttgtcaag	atcaacacaa	aagccaa	cac	ctc	agag	gaaatgaggc	3360	
atcgatttag	acaactggat	acaaagctt	atgatct	caa	gggtctt	ctg	aaagagattg	3420	
ctaataaaat	caaataaaac	tgtatgaact	ctaatgg	gaga	aaaatct	aat	tatagcaaga	3480	
tcatattaa	gaaatgtgtat	gaacaattt	gctatcg	act	aaaat	atgag	agat	tttcag	
acccctgggt	acatgggtgg	tgat	ttt	aaa	tcac	ccct	agt	gtgctgagac	3600
aagtgtgt	ttgggttcat	acttgaagac	ggatataa	ag	gaaga	atatt	tc	ctt	ttatgt
gtttctccag	aatgggtgcct	gtttctct	gtgtct	caat	gcctgg	gact	ggaggtt	3720	
agtttaagt	tgttcttacc	gcctcctt	tcctt	taatc	ttat	ttt	tga	acacata	3780
tataggagaa	catctatcct	atgaataaga	ac	ctgg	tc	tact	cc	tgtattgtt	3840
ttttgttcat	ttccaattga	ttctctactt	ttcc	ctt	ttt	tgtattat	gt	gactaatt	3900
ttggcatatt	gtwaaaagtc	tctcaaattt	ggcc	caaggat	tc	aaaacat	gc	tgcagcaaga	3960
ggaccccgct	ctttcagga	aaagtgtt	cattt	ctc	tg	atgtt	ctt	acctgtcaga	4020
ggaggtgaca	aggcagtctc	ttgctctt	ggact	tcacca	ggct	ccatt	ttt	gaaggaacca	4080
ccccccatcc	taaatatgt	aaaagtgc	caa	aatgc	ttt	gaaagg	gg	cactactgac	4140
tttggttctt	ttggatactc	cttttattt	ttat	ttt	ttt	cc	at	atagctgg	4200
attatagaaa	atttagacca	tacagagat	tagaa	agaac	at	aaaatt	gtc	cccattac	4260
taaggttaatc	actgctaaca	atttctggat	gg	ttt	ttt	ca	gt	tattttt	4320
tgtctcaatt	cttttcaaa	attttacaga	at	gtt	at	cat	act	acatata	4380
gtaagcttt	tcacttagta	ttttatcaaa	tat	gtt	ttt	ta	tt	atattccat	4440
aacattat	caataattgc	ataataggca	ac	ctct	atc	g	att	accataa	4500
tgaaggctat	ctccagg	ttgttggat	gag	catctt	tt	gt	catga	at	cctattg
tat	ttggaa	aatttccaa	ggttagattc	caataaaat	at	tat	ttt	ttaaaaaaaa	4620
aaaaaaaaa	agg	gcggccg	tc	at	ttt	ttt	ttt	ttt	ttt
		tagagt							4646

<210> 32
<211> 1104
<212> PRT
<213> Homo Sapiens

<400> 32
 Met Ser Phe Arg Ala Ala Arg Leu Ser Met Arg Asn Arg Arg Asn Asp
 1 5 10 15
 Thr Leu Asp Ser Thr Arg Thr Leu Tyr Ser Ser Ala Ser Arg Ser Thr
 20 25 30
 Asp Leu Ser Tyr Ser Glu Ser Asp Leu Val Asn Phe Ile Gln Ala Asn
 35 40 45
 Phe Lys Lys Arg Glu Cys Val Phe Phe Thr Lys Asp Ser Lys Ala Thr
 50 55 60
 Glu Asn Val Cys Lys Cys Gly Tyr Ala Gln Ser Gln His Met Glu Gly
 65 70 75 80
 Thr Gln Ile Asn Gln Ser Glu Lys Trp Asn Tyr Lys Lys His Thr Lys
 85 90 95
 Glu Phe Pro Thr Asp Ala Phe Gly Asp Ile Gln Phe Glu Thr Leu Gly
 100 105 110
 Lys Lys Gly Lys Tyr Ile Arg Leu Ser Cys Asp Thr Asp Ala Glu Ile
 115 120 125
 Leu Tyr Glu Leu Leu Thr Gln His Trp His Leu Lys Thr Pro Asn Leu
 130 135 140
 Val Ile Ser Val Thr Gly Gly Ala Lys Asn Phe Ala Leu Lys Pro Arg
 145 150 155 160
 Met Arg Lys Ile Phe Ser Arg Leu Ile Tyr Ile Ala Gln Ser Lys Gly
 165 170 175
 Ala Trp Ile Leu Thr Gly Gly Thr His Tyr Gly Leu Met Lys Tyr Ile
 180 185 190
 Gly Glu Val Val Arg Asp Asn Thr Ile Ser Arg Ser Ser Glu Glu Asn
 195 200 205

-51-

Ile Val Ala Ile Gly Ile Ala Ala Trp Gly Met Val Ser Asn Arg Asp
 210 215 220
 Thr Leu Ile Arg Asn Cys Asp Ala Glu Gly Tyr Phe Leu Ala Gln Tyr
 225 230 235 240
 Leu Met Asp Asp Phe Thr Arg Asp Pro Leu Cys Ile Leu Asp Asn Asn
 245 250 255
 His Thr His Leu Leu Val Asp Asn Gly Cys His Gly His Pro Thr
 260 265 270
 Val Glu Ala Lys Leu Arg Asn Gln Leu Glu Lys Tyr Ile Ser Glu Arg
 275 280 285
 Thr Ile Gln Asp Ser Asn Tyr Gly Gly Lys Ile Pro Ile Val Cys Phe
 290 295 300
 Ala Gln Gly Gly Lys Glu Thr Leu Lys Ala Ile Asn Thr Ser Ile
 305 310 315 320
 Lys Asn Lys Ile Pro Cys Val Val Val Glu Gly Ser Gly Gln Ile Ala
 325 330 335
 Asp Val Ile Ala Ser Leu Val Glu Val Glu Asp Ala Leu Thr Ser Ser
 340 345 350
 Ala Val Lys Glu Lys Leu Val Arg Phe Leu Pro Arg Thr Val Ser Arg
 355 360 365
 Leu Pro Glu Glu Glu Thr Glu Ser Trp Ile Lys Trp Leu Lys Glu Ile
 370 375 380
 Leu Glu Cys Ser His Leu Leu Thr Val Ile Lys Met Glu Glu Ala Gly
 385 390 395 400
 Asp Glu Ile Val Ser Asn Ala Ile Ser Tyr Ala Leu Tyr Lys Ala Phe
 405 410 415
 Ser Thr Ser Glu Gln Asp Lys Asp Asn Trp Asn Gly Gln Leu Lys Leu
 420 425 430
 Leu Leu Glu Trp Asn Gln Leu Asp Leu Ala Asn Asp Glu Ile Phe Thr
 435 440 445
 Asn Asp Arg Arg Trp Glu Ser Ala Asp Leu Gln Glu Val Met Phe Thr
 450 455 460
 Ala Leu Ile Lys Asp Arg Pro Lys Phe Val Arg Leu Phe Leu Glu Asn
 465 470 475 480
 Gly Leu Asn Leu Arg Lys Phe Leu Thr His Asp Val Leu Thr Glu Leu
 485 490 495
 Phe Ser Asn His Phe Ser Thr Leu Val Tyr Arg Asn Leu Gln Ile Ala
 500 505 510
 Lys Asn Ser Tyr Asn Asp Ala Leu Leu Thr Phe Val Trp Lys Leu Val
 515 520 525
 Ala Asn Phe Arg Arg Gly Phe Arg Lys Glu Asp Arg Asn Gly Arg Asp
 530 535 540
 Glu Met Asp Ile Glu Leu His Asp Val Ser Pro Ile Thr Arg His Pro
 545 550 555 560
 Leu Gln Ala Leu Phe Ile Trp Ala Ile Leu Gln Asn Lys Lys Glu Leu
 565 570 575
 Ser Lys Val Ile Trp Glu Gln Thr Arg Gly Cys Thr Leu Ala Ala Leu
 580 585 590
 Gly Ala Ser Lys Leu Leu Lys Thr Leu Ala Lys Val Lys Asn Asp Ile
 595 600 605
 Asn Ala Ala Gly Glu Ser Glu Glu Leu Ala Asn Glu Tyr Glu Thr Arg
 610 615 620
 Ala Val Glu Leu Phe Thr Glu Cys Tyr Ser Ser Asp Glu Asp Leu Ala
 625 630 635 640
 Glu Gln Leu Leu Val Tyr Ser Cys Glu Ala Trp Gly Gly Ser Asn Cys
 645 650 655
 Leu Glu Leu Ala Val Glu Ala Thr Asp Gln His Phe Ile Ala Gln Pro
 660 665 670
 Gly Val Gln Asn Phe Leu Ser Lys Gln Trp Tyr Gly Glu Ile Ser Arg
 675 680 685

-52-

Asp Thr Lys Asn Trp Lys Ile Ile Leu Cys Leu Phe Ile Ile Pro Leu
 690 695 700
 Val Gly Cys Gly Phe Val Ser Phe Arg Lys Lys Pro Val Asp Lys His
 705 710 715 720
 Lys Lys Leu Leu Trp Tyr Tyr Val Ala Phe Phe Thr Ser Pro Phe Val
 725 730 735
 Val Phe Ser Trp Asn Val Val Phe Tyr Ile Ala Phe Leu Leu Leu Phe
 740 745 750
 Ala Tyr Val Leu Leu Met Asp Phe His Ser Val Pro His Pro Pro Glu
 755 760 765
 Leu Val Leu Tyr Ser Leu Val Phe Val Leu Phe Cys Asp Glu Val Arg
 770 775 780
 Gln Trp Tyr Val Asn Gly Val Asn Tyr Phe Thr Asp Leu Trp Asn Val
 785 790 795 800
 Met Asp Thr Leu Gly Leu Phe Tyr Phe Ile Ala Gly Ile Val Phe Arg
 805 810 815
 Leu His Ser Ser Asn Lys Ser Ser Leu Tyr Ser Gly Arg Val Ile Phe
 820 825 830
 Cys Leu Asp Tyr Ile Ile Phe Thr Leu Arg Leu Ile His Ile Phe Thr
 835 840 845
 Val Ser Arg Asn Leu Gly Pro Lys Ile Ile Met Leu Gln Arg Met Leu
 850 855 860
 Ile Asp Val Phe Phe Leu Phe Ala Val Trp Met Val Ala
 865 870 875 880
 Phe Gly Val Ala Arg Gln Gly Ile Leu Arg Gln Asn Glu Gln Arg Trp
 885 890 895
 Arg Trp Ile Phe Arg Ser Val Ile Tyr Glu Pro Tyr Leu Ala Met Phe
 900 905 910
 Gly Gln Val Pro Ser Asp Val Asp Gly Thr Thr Tyr Asp Phe Ala His
 915 920 925
 Cys Thr Phe Thr Gly Asn Glu Ser Lys Pro Leu Cys Val Glu Leu Asp
 930 935 940
 Glu His Asn Leu Pro Arg Phe Pro Glu Trp Ile Thr Ile Pro Leu Val
 945 950 955 960
 Cys Ile Tyr Met Leu Ser Thr Asn Ile Leu Val Asn Leu Val
 965 970 975
 Ala Met Phe Gly Tyr Thr Val Gly Thr Val Gln Glu Asn Asn Asp Gln
 980 985 990
 Val Trp Lys Phe Gln Arg Tyr Phe Leu Val Gln Glu Tyr Cys Ser Arg
 995 1000 1005
 Leu Asn Ile Pro Phe Pro Phe Ile Val Phe Ala Tyr Phe Tyr Met Val
 1010 1015 1020
 Val Lys Lys Cys Phe Lys Cys Cys Lys Glu Lys Asn Met Glu Ser
 1025 1030 1035 104
 Ser Val Cys Cys Phe Lys Asn Glu Asp Asn Glu Thr Leu Ala Trp Glu
 1045 1050 1055
 Gly Val Met Lys Glu Asn Tyr Leu Val Lys Ile Asn Thr Lys Ala Asn
 1060 1065 1070
 Asp Thr Ser Glu Glu Met Arg His Arg Phe Arg Gln Leu Asp Thr Lys
 1075 1080 1085
 Leu Asn Asp Leu Lys Gly Leu Leu Lys Glu Ile Ala Asn Lys Ile Lys
 1090 1095 1100

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/29996

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C07K14/705	C12N15/12	C12Q1/68	C12N5/10	C07K16/28
	G01N33/53	A61K38/17			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K C12Q A61K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EPO-Internal, WPI Data, PAJ, MEDLINE, SCISEARCH, EMBASE, BIOTECHNOLOGY ABS, CHEM ABS Data, STRAND, GENSEQ, EMBL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE GENEMBL 'Online! 16 February 1998 (1998-02-16) STRAUSBERG,R.: "ob70f05.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:1336737 3', mRNA sequence" XP002138823 Accession AA809355</p> <p>---</p> <p>DATABASE GENEMBL 'Online! 10 July 1998 (1998-07-10) MARRA ET AL.: "ub28d10.r1 Soares 2NbMT Mus musculus cDNA clone IMAGE:1379059 5' mRNA sequence" XP002149803 Accession AI050262</p> <p>---</p> <p style="text-align: right;">-/-</p>	1,2, 6-19, 25-35
X		1,6-19, 25-35

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

16 October 2000

Date of mailing of the international search report

30.10.00

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

ALCONADA RODRIG., A

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/29996

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE GENEMBL 'Online! 19 July 1997 (1997-07-19) STRAUSBERG, R.: "ni64e11.s1 NCI_CGAP_Pr12 Homo sapiens cDNA clone IMAGE:981644 mRNA sequence" XP002148641 Accession AA523749 ---	1,3, 10-19, 25-35
X	WO 98 15657 A (ABBOTT LAB) 16 April 1998 (1998-04-16) page 4, line 7 -page 5, line 13 page 5, line 24 -page 7, line 28 SEQ ID N0s. 9 and 25 ---	1,4, 6-19, 25-35
Y	---	20-24
X	WO 98 37093 A (CORIXA CORP) 27 August 1998 (1998-08-27) page 7, paragraph 2 page 9, paragraphs 2,3 page 13 -page 17 page 21, paragraph 3 SEQ ID N0s: 109 and 112 ---	1,4, 6-19, 25-35
Y	---	20-24
X	DATABASE GENEMBL 'Online! 18 November 1997 (1997-11-18) STRAUSBERG, R.: "nt76b07.s1 NCI_CGAP_Pr3 Homo sapiens cDNA clone IMAGE:1204405, mRNA" XP002148642 Accession AA654650 ---	1,5-19, 25-35
Y	---	20-24
Y	DATABASE GENEMBL 'Online! 30 November 1998 (1998-11-30) SHIMIZU, N.: "Homo sapiens mRNA complete cds." XP002148643 Accession number AB001535 -& NAGAMINE ET AL.: "Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain" GENOMICS, vol. 54, 15 November 1998 (1998-11-15), pages 124-131, XP000938744 the whole document --- -/-	20-24

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/29996

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	ZHU, XI ET AL: "Molecular cloning of a widely expressed human homologue for the <i>Drosophila trp</i> gene." <i>FEBS LETTERS</i> , (1995) VOL. 373, NO. 3, PP. 193-198., XP000907241 page 194; figures 1,3	20,21, 23,25, 26,28, 29,31
A	HUNTER JOHN J ET AL: "Chromosomal localization and genomic characterization of the mouse melastatin gene (<i>Mlsn1</i>)." <i>GENOMICS</i> NOV. 15, 1998, vol. 54, no. 1, 15 November 1998 (1998-11-15), pages 116-123, XP000910696 ISSN: 0888-7543 cited in the application page 119; figure 2	20,21,23
A	WES PAUL D ET AL: "TRPC1, a human homolog of a <i>Drosophila</i> store-operated channel." <i>PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA</i> 1995, vol. 92, no. 21, 1995, pages 9652-9656, XP002138820 ISSN: 0027-8424 the whole document	20,21, 23,25, 26,28, 29,31
A	ZHU, XI ET AL: "Trp, A novel mammalian gene family essential for agonist-activated capacitative Ca ²⁺ entry." <i>CELL</i> , vol. 85, no. 5, 1996, pages 661-671, XP000907242 page 662 page 665 figures 1,5,6	20,21, 25,26, 28,29,31
A	GARCIA REYNALDO L ET AL: "Differential expression of mammalian TRP homologues across tissues and cell lines." <i>BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS</i> 1997, vol. 239, no. 1, 1997, pages 279-283, XP002138822 ISSN: 0006-291X See Materials and Methods figure 1	25,26, 28-30

		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/29996

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SINKINS WILLIAM G ET AL: "Functional expression of TrpC1: A human homologue of the <i>Drosophila</i> Trp channel." <i>BIOCHEMICAL JOURNAL</i> APRIL, 1998, vol. 331, no. 1, April 1998 (1998-04), pages 331-339, XP000864583 ISSN: 0264-6021 page 333-335; figures 3-5	24
A	PREUSS KLAUS-DIETER ET AL: "Expression and characterization of a trpl homolog from rat." <i>BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS</i> NOV. 7, 1997, vol. 240, no. 1, 7 November 1997 (1997-11-07), pages 167-172, XP002138821 ISSN: 0006-291X figure 2	24
A	OBUKHOV, ALEXANDER G. ET AL: "Direct activation of trpl cation channels by G-alpha-11 subunits." <i>EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL</i> , (1996) VOL. 15, NO. 21, PP. 5833-5838., XP000907243 figure 2	24
P,X	WO 99 09199 A (RYAZANOV ALEXEY G ;PAVUR KAREN S (US); HAIT WILLIAM N (US); UNIV M) 25 February 1999 (1999-02-25) see melanome kinase polynucleotide and polypeptide sequences on page 16-17	1,3, 10-19, 25-36
P,X	WO 99 09166 A (SHAPERO MICHAEL H ;DENDREON CORP (US); LAUS REINER (US); TSAVALER) 25 February 1999 (1999-02-25) page 17, line 24 -page 18, line 9 page 25, line 19-32 page 28, line 1-4 SEQ ID NOS: 27, 28 and 31.	1,5-19, 25-35
T	SCHARENBERG A M ET AL: "MLSN-1/SOC-1 defines a widely expressed Ca ²⁺ /cation channel family involved in Ca ²⁺ homeostasis and store-operated Ca ²⁺ signaling." <i>FIFTY-THIRD ANNUAL MEETING OF THE SOCIETY OF GENERAL PHYSIOLOGISTS</i> ;WOODS HOLE, MASSACHUSETTS, USA; SEPTEMBER 9-11, 1999, vol. 114, no. 1, July 1999 (1999-07), page 14a XP000910708 <i>Journal of General Physiology</i> July, 1999 ISSN: 0022-1295	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 99/29996

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

As a result of the prior review under R. 40.2(e) PCT,
no additional fees are to be refunded.

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

1-36

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 1-5, 10-13, 16-19, 32-35 relate to an extremely large number of possible polynucleotides, polypeptides encoded by them, binding polypeptides, and kits and pharmaceutical compositions containing said polypeptides and polynucleotides. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the polynucleotide of SEQ ID NOS: 1, 27, 29 and 31 and the corresponding polypeptide of SEQ ID NOS: 2, 28, 30 and 32.

Present claims 16 and 17 relate to an extremely large number of possible compounds, namely, a polypeptide that binds to the polypeptide of the invention. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to an antibody, antibody fragment, F(ab)2 fragment or a fragment including a CDR3 region selective for the polypeptides of the invention.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1, 6-36 (partially) and 2 (complete)

An isolated nucleic acid molecule comprising a nucleic acid molecule that hybridizes to a nucleic acid molecule of SEQ ID NO:1 and which code for a SOC/CRAC polypeptide, nucleic acid molecules that differ in codon sequence due to degeneracy of the genetic code and complement thereof, polynucleotides which are not identical to the SEQ ID or sequences of GenBank accession number of Table 1; expression vector, host cells; polypeptide encoded thereof (SEQ ID NO:2); polypeptides binding to the polypeptide of SEQ ID NO:2, including antibodies; kits comprising agents that selectively bind to the polynucleotide (SEQ ID NO:1) or polypeptide (SEQ ID NO:2) of the invention; pharmaceutical compositions containing the polynucleotide or polypeptides of the invention; a method for isolating the SOC/CRAC molecule having SOC/CRAC calcium channel activity comprising contacting a binding molecule that is SOC/CRAC nucleic acid or a SOC/CRAC binding polypeptide with a sample containing SOC/CRAC molecules allowing the formation of the complex, detecting the formation of the complex, isolating the SOC/CRAC molecule and determining whether the isolated SOC/CRAC molecule has SOC/CRAC calcium channel activity; a method for identifying agents useful in the modulation of SOC/CRAC calcium channel activity; a method to determine the level of SOC/CRAC expression in a subject, including expression of SOC/CRAC polypeptide or mRNA in a tissue or biological fluid sample using PCR, Northern blotting, and mono- and polyclonal antisera and a method for identifying agents useful in the modulation of the SOC/CRAC polypeptide kinase activity, comprising the use of aminoacids 999-1180 from SEQ ID NO:4 as a candidate kinase.

2. Claims: 1,6-36 (partially)

As subject 1, but referred to the polynucleotide of SEQ ID NO:3 and to the encoded polypeptide of SEQ ID NO:4

3. Claims: 1,6-36 (partially)

As subject 1, but referred to the polynucleotide of SEQ ID NO:5 and to the encoded polypeptide of SEQ ID NO:6

4. Claims: 1,6-36 (partially)

As subject 1, but referred to the polynucleotide of SEQ ID NO:7 and to the encoded polypeptide of SEQ ID NO:8

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

5. Claims: 1,6-36 (partially) and 37 (complete)

As subject 1, but referred to the polynucleotide of SEQ ID NO:23 and to the encoded polypeptide of SEQ ID NO:24

6. Claims: 1,6-36 (partially)

As subject 1, but referred to the polynucleotide of SEQ ID NO:25 and to the encoded polypeptide of SEQ ID NO:26

7. Claims: 1,10-36 (partially) and 3 (complete)

As subject 1, but referred to the polynucleotide of SEQ ID NO:27 and to the encoded polypeptide of SEQ ID NO:28

8. Claims: 1,6-36 (partially) and 4 (complete)

As subject 1, but referred to the polynucleotide of SEQ ID NO:29 and to the encoded polypeptide of SEQ ID NO:30

9. Claims: 1,6-36 (partially) and 5 (complete)

As subject 1, but referred to the polynucleotide of SEQ ID NO:31 and to the encoded polypeptide of SEQ ID NO:32.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/29996

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9815657 A	16-04-1998	US	5919638 A	06-07-1999
		EP	0954599 A	10-11-1999
		US	6110675 A	29-08-2000
WO 9837093 A	27-08-1998	AU	6181898 A	09-09-1998
		CN	1252837 T	10-05-2000
		EP	1005546 A	07-06-2000
		NO	994069 A	22-10-1999
		PL	335348 A	25-04-2000
		ZA	9801585 A	04-09-1998
WO 9909199 A	25-02-1999	AU	9110098 A	08-03-1999
WO 9909166 A	25-02-1999	AU	9021898 A	08-03-1999
		EP	1005549 A	07-06-2000