

Metodo di bisezione e metodo di Newton Laboratorio di Calcolo Numerico

Federico Piazzon

3 Maggio 2022

Outline

Metodo di bisezione

Metodo di Newton

Attenzione!!

Lezione altamente interattiva!

Per seguire questa lezione è necessario fare i propri programmi.

- Preparare una cartella di lavoro odierna
- Avviare matlab e settate tale cartella come current folder
- Scaricare i programmi forniti dal docente (ultime versioni) nella cartella di lavoro.

Metodo di bisezione

Richiamo teorico

- Ipotesi: $[a, b] \subset \mathbb{R}$, $f \in \mathcal{C}^0([a, b])$, $f(a) \cdot f(b) < 0$
- Algoritmo (con test dello scarto):

```
INPUT f a,b, toll
   n=0
   WHILE (b - a) > toll D0
            x=(a+b)/2
            IF f(a)f(x)<0 D0
                     h=x
            FLSF DO
                     a=x
            FND IF
10
            n=n+1
   END WHILE
```

- Convergenza: garantita sempre dalla stima a priori $|\xi - x_n| \le (b - a)2^{-(n+1)}$
- Test alternativo: residuo pesato approssimato

Metodo di bisezione e metodo di Newton

5/21

Implementazione

Esercizio 4.1

Creare una **function** mybisezione.m che implementi l'algoritmo sopra descritto.

Creare poi uno script testbisezione.m che testi la function con i seguenti dati $a = -\pi/6$ $b = \pi/4$ $f(x) = \sin(x)$, toll=1e-9 maxit=50.

Obiettivo

Es 4.2 (svolto)

Scrivere una function Bisezione.m che implementi il metodo di bisezione con scelta del test di arresto e controllo sulla possibile convergenza in numero finito di passi.

NB:

- nel test dello scarto possiamo stimare a priori le iterazioni necessarie: $n^*(toll) := \lceil \log_2(b-a) \log_2(toll) \rceil 1$ (in matlab si usa ceil).
- vogliamo poter scegliere se usare scarto, residuo pesato approssimato o il minimo dei 2
- vogliamo effettuare un controllo sui dati in input: f(a)f(b) < 0?
- vogliamo controllare ad ogni passo se $f(x_n) = 0$

help Bisezione

```
Editor - /home/federico/Bisezione.m
  radicesecgrado.m x pigreco.m x untitled2* x succricorrente.m x Bisezione.m x +
     □ function[zero,res,wres,iterates,flag]=Bisezione(f,a,b,toll,method)
2
     %% METODO DE RESEZIONE
3
                       function handle di una funzione continua da [a.b] in R
                       double [1 x 1] estr inf intervallo
                       double [1 x 1] sup intervallo
       % toll
                      double [1 x 1] tolleranza per criterio di arresto
9
       % method
                      char [1 x 1] test di arresto:
10
                               method = 's' test dello scarto
11
                               method = 'r' test del residuo pesato approssimato
12
                               method = 'm' minimo delle due stime < toll
13
14
               ----OUTPUT---
15
                       double [1 x 1] ultima approssimazione della radice
       % zero
                       double [1 x 1] modulo del residuo
16
       % res
       % wres
                       double [1 x 1] modulo del residuo pesato approssimato
                       double [3 x N] iterate del metodo di bisezione:
18
       % iterates
19
                              iterates(1,:)= x_0,x_1,...
20
                              iterates(2,:)= a 0,a 1,...
                               iterates(3.:)= b 0.b 1....
21
22
       % flag
                     char [1 x 1] stato:
23
                               flag = 's' uscita per test dello scarto
                               flag = 'r' uscita per test dell residuo pesato approssimato
24
                               flag = 'b' uscita causata da entrambi i test
                               flag = 'f' residuo O in numero finito di iterazioni
26
27
```

Scarichiamo il file da moodle e vediamo lo su matlab

Alcuni commenti ed osservazioni

- iterates viene inizializzato (per efficienza) calcolando i massimo numero di componenti che potrà avere grazie alla stima a priori
- Per calcolare il residuo pesato approssimato serve avere già iterato il metodo almeno una volta: in caso contrario wres viene inizializzato a NaN. Si noti l'iterazione prima del ciclo while senza controllo su wres per non generare errori.

Esercizio 4.3 (calcolo di $\sqrt{2}$)

Tempo: 10-15 min.

Si scriva uno script che

- definisca l'anonymous function $f(x) := x^2 2$ e la plotti (figure(1)) in [1,2] assieme alla retta y = 0
- Calcoli lo zero di f chiamando Bisezione.m con il metodo 'm' e toll= 10^{-12}
- Stampi a video i risultati salienti tra cui il criterio per il quale si è arrestato l'algoritmo.
- Faccia un grafico semilogaritmico (figure (2)) dell'errore delle iterate e del modulo dei residui.
- Stampi il rapporto errori vs moduli dei residui e la retta che vale costantemente $1/f'(\sqrt{2})$.

Si ripeta l'esperimento con $f = (x^2 - 2)^3$ e toll= 10^{-4} . Si motivino i risultati.

Pro e contro di Bisezione

Pro

- Convergenza globale garantita (sotto semplici ipotesi)
- Non necessita di conoscenza della derivata

Contro

- Radici doppie di funz che non cambiano segno: inapplicabilità.
- Relativa lentezza della successione di iterate (in che senso?)

Ordine di convergenza

Si ricorda che una successione $\{x_k\}_{k\in\mathbb{N}}$ convergente a $x^*\in\mathbb{R}$ ha ordine di convergenza:

- p = 1 se $\exists L \in (0,1)$: $\lim_k \frac{|x_{k+1} x^*|}{|x_k x^*|} = L$
- p > 1 se $\exists L \in (0, +\infty)$: $\lim_k \frac{|x_{k+1} x^*|}{|x_k x^*|^p} = L$

Una tale *L* è detta costante asintotica del metodo.

Si noti che per k >> 1 e per successioni di ordine $p \ge 1$ abbiamo

$$e_k := |x_k - x^*| \le L|x_{k-1} - x^*|^p =: e_{k-1} \le \cdots \le L^{2k-1}e_0^{p^k}.$$

Osservazione

Il metodo di bisezione non ha ordine di convergenza, ma la sua stima a priori ha ordine ${\bf 1}$

Stima della costante asintotica

Il rapporto tra gli errori non è calcolabile senza conoscere la soluzione. Vale però il seguente fatto:

Stima con lo scarto

Se $x_k \to x^*$ con ordine $p \ge 1$ e costante L allora

$$\lim \frac{|s_{k+1}|}{|s_k|^p} := \lim \frac{|x_{k+1} - x_k|}{|x_k - x_{k-1}|^p} = L.$$

- Se $L_{k,p} := \frac{|s_{k+1}|}{|s_k|^p}$ si mantiene limitato per k >> 1 possiamo presupporre che l'ordine sia p e
- in tal caso consideriamo l'approssimazione $L \sim L_{k,p}$ per k >> 1.

Metodo di Newton

Richiamo teorico

Convergenza locale di Newton

Supponiamo $f \in \mathcal{C}^2([a,b])$, $\exists x^* \in [a,b] : f(x^*) = 0$ con $f'(x) \not\equiv 0$ in un intorno forato di x^* , allora esiste $\epsilon > 0$ tale che, per ogni scelta di $x_0 \in (x_0 - \epsilon, x_0 + \epsilon)$, la successione

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)} =: x_k - s_k$$

converge a x^* con ordine almeno 1.

Se inoltre $f'(x^*) \neq 0$ allora (al più diminuendo ϵ) l'ordine di convergenza è p=2

- Se $f'(x^*) \neq 0$ (radice semplice) allora p = 2 e $L = \frac{f''(x^*)}{2f'(x^*)}$
- Se $f(x^*) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$ e $f^{(m)}(x^*) \neq 0$ (radice di ordine m) allora p = 1 e $L = \frac{m-1}{m}$

Algoritmo

Un implementazione elementare può essere:

```
INPUT f,df,x0, toll,itmax
  x=x0; n=0; s=toll+1
  WHILE abs(s)>toll AND n<itmax D0
           IF df(x)=0 D0
5
                   ERROR
           ELSE DO
                   s=f(x)/df(x)
                   x=x-s
           END IF
           n=n+1
  END WHILE
```

Arrestare Newton?

Test di arresto

Il test dello scarto è lo standard per il metodo di Newton perchè:

- Radici Semplici: in caso di convergenza almeno quadratica $|e_k| \le |s_k|$ per k >> 1
- Radici di ordine m: in caso di convergenza lineare $|e_k| \sim m|s_k|$ per $k \to +\infty$

Implementazione di base Newton

Esercizio 4.4

Creare una **function** mynewton.m con l'implementazione dell'algoritmo sopra descritto in pseudocodice.

Modificare lo script testbisezione.m per ottenere uno script testnewton. che risolva la stessa equazione ma con il metodo di Newton appena implementato.

help Newton.m

```
Editor - /home/federico/Newton.m
  Bisezione.m × provabisez.m × Newton.m × provanewton.m × +
     □ function[zero,res,iterates,flag]=Newton(f,df,x0,toll,itmax,method)
     1 % METODO DI NEWTON CON SCELTA DEL CRITERIO DI ARRESTO
                                                       Versione 04-19-2021
                                                        Federico Piazzon
                       function handle di una funzione continua da [a.b] in R
9
       % df
                       double [1 x 1] punto di partenza
10
       % x0
                       double [1 x 1] tolleranza per criterio di arresto
11
       % toll
       % itmax
                       double [1 X 1] massimo numero di iterazioni
12
                       char [1 x 1] test di arresto:
13
       % method
14
                               method = 's' test dello scarto
                               method = 'r' test del residuo pesato approssimato
15
16
                               method = 'm' minimo delle due stime < toll
17
18
                  - OLTPLT-
19
                       double [1 x 1] ultima approssimazione della radice
       % zero
                       double [1 x 1] modulo del residuo
20
       % res
                       double [1 x N] iterate del metodo di bisezione:
       % iterates
21
22
       % flag
                       char [1 x 1] stato:
23
                               flag = 's' uscita per test dello scarto
24
                               flag = 'r' uscita per test dell residuo
                               flag = 'a' uscita per entrambi i test
25
26
                               flag = 'e' raggiunto il massimo numero di
27
                                          iterazioni
28
                               flag = 'f' residuo 0 in numero finito di iterazioni
29
                   FUNCTION BODY-----
```

Scarichiamo la function e vediamola su nell'editor

Esercizio 4.5 (importantissimo)

Tempo stimato 30 min.

Si crei uno script che:

- ① definisca le funzioni $f_1(x) := x^2 2$, $f_3(x) = (x^2 2)^3$ ed $f_5(x) := (x^2 2)^5$ e le loro derivate prime tramite anonymous functions. Plotti funzioni e derivate in [1, 2] in tre grafici con legenda e titolo. Stampi a video iterazioni errore finale motivo dello stop.
- ② Approssimi la soluzione $x^* = \sqrt{2}$ di $f_m(x) = 0$ (nei tre casi m = 1, 3, 5) chiamando il metodo di Newton con il criterio dello scarto con $x_0 = 2$, tolleranza 10^{-8} e al più 100 iterazioni.
- 3 Crei un grafico semilogaritmico (per i 3 valori di *m*) con modulo del residuo, modulo dello scarto ed errore ad ogni passo.
- **4** Crei un grafico semilogaritmico (per i 3 valori di m) con $|s_{k+1}|/|s_k|^{p_m}$ dove p_m va opportunamente scelto al variare di m.
- **5** Crei un grafico semilogaritmico (per i 3 valori di m) con rapporto $e_k/|s_k|^{p_m}$.

Quali sono i limite teorici delle successioni plottate ai punti 3,4,5?

Esercizio 4.6

Tempo stimato 15 min

Si ripeta sostanzialmente l'esercizio precedente (saltando il punto 4), ma con due metodi: Newton e Bisezione, il primo con il criterio dello scarto e il secondo con il residuo pesato approssimato.

Si consideri a tal fine la funzione $f(x) := \exp(1 - 1/x) - e + 0.01$ definita su x > 0, si richieda una tolleranza di 10^{-12} per entrambi i metodi.