Poisson Processes and Jump Diffusion

Thomas Lonon

Division of Financial Engineering Stevens Institute of Technology

April 19, 2016

Outline

Poisson Processes

Poisson Processes Compound Poisson

Jump Processes

Jump Processes
Quadratic Variation
Ito
Change of Measure
Change of Measure for Compound Poisson and Brownian Motion

Exponential Random Variables

Let τ be a random variable with pdf

$$f_{\tau}(t) = egin{cases} \lambda e^{-\lambda t}, t \geq 0 \\ 0, t < 0 \end{cases}$$

We have $\mathbb{E}[\tau] = \frac{1}{\lambda}$ and cdf

$$F_{\tau}(t) = \mathbb{P}(\tau \leq t) = 1 - e^{-\lambda t}, t \geq 0$$

This is a memoryless random variable, or

$$\mathbb{P}(au > t) = \mathbb{P}(au > t + s | au > s)$$

Construct a sequence of i.i.d. exponential random variables $\{\tau_i\}$ with parameter λ . The "jump" times can then be defined as

$$S_n = \sum_{i=1}^n \tau_i$$

We have a resulting Poisson process that we call N(t) that counts the number of jumps before a given time

$$N(t) = \left\{ egin{array}{ll} 0, 0 \leq t < S_1 \ 1, S_1 \leq t < S_2 \ dots \ n, S_n \leq t < S_{n+1} \ dots \end{array}
ight.$$

Lemma 11.2.2 The Poisson process N(t) with intensity λ has the distribution

$$\mathbb{P}(N(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, k = 0, 1, \dots$$

[1]

Theorem 11.2.3: Let N(t) be a Poisson process with intensity $\lambda > 0$, and let $0 = t_0 < t_1 < \cdots < t_n$ be given. Then the increments

$$N(t_1) - N(t_0), N(t_2) - N(t_1), \dots, N(t_n) - N(t_{n-1})$$

are stationary and independent, and

$$\mathbb{P}(N(t_{j+1}) - N(t_j) = k) = \frac{\lambda^k (t_{j+1} - t_j)^k}{k!} e^{-\lambda(t_{j+1} - t_j)}, k = 0, 1, \dots$$

Poisson Increments

As a result of Theorem 11.2.3, we have the following results about our Poisson increments for $0 \le s < t$

$$\mathbb{P}(N(t) - N(s) = k) = \frac{\lambda^k (t - s)^k}{k!} e^{-\lambda(t - s)}, k = 0, 1, \dots$$

$$\mathbb{E}[N(t) - N(s)] = \lambda(t - s)$$

$$\mathbb{V}[N(t) - N(s)] = \lambda(t - s)$$

Martingale Property

Theorem 11.2.4: Let N(t) be a Poisson process with intensity λ . We define the compensated Poisson process

$$M(t) = N(t) - \lambda t$$

Then M(t) is a martingale.[1] Proof: Let $0 \le s < t$ be given.

$$\mathbb{E}[M(t)|\mathcal{F}(s)] = \mathbb{E}[M(t) - M(s)|\mathcal{F}(s)] + \mathbb{E}[M(s)|\mathcal{F}(s)]$$

$$= \mathbb{E}[N(t) - N(s) - \lambda(t-s)|\mathcal{F}(s)] + M(s)$$

$$= \mathbb{E}[N(t) - N(s)] - \lambda(t-s) + M(s)$$

$$= M(s)$$

Compound Poisson Process

Let N(t) be a Poisson process with intensity λ , and let $\{Y_i\}$ be a sequence of i.i.d. random variables with $\mathbb{E}[Y_i] = \beta$ that are independent of both each other and of the Poisson process. We define the **compound Poisson process** as

$$Q(t) = \sum_{i=1}^{N(t)} Y_i, t \ge 0$$

Using this definition and previous results we have

$$\mathbb{E}[Q(t)] = \beta \lambda t$$

Theorem 11.3.1: Let Q(t) be the compound Poisson process. Then the compensated Poisson process

$$Q(t) - \beta \lambda t$$

is a martingale.[1]

Theorem 11.3.2: Let Q(t) be a compound Poisson process and let $0 = t_0 < t_1 < \cdots < t_n$ be given. The increments

$$Q(t_1) - Q(t_0), Q(t_2) - Q(t_1), \ldots, Q(t_n) - Q(t_{n-1})$$

are independent and stationary. In particular, the distribution of $Q(t_j) - Q(t_{j-1})$ is the same as the distribution of $Q(t_j - t_{j-1})[1]$

Definition 11.4.1: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\mathcal{F}(t), t > 0$, be a filtration on this space. We say that a Brownian motion W(t) is a Brownian motion relative to this filtration if W(t) is $\mathcal{F}(t)$ -measurable for every t and for every u > t the increment W(u) - W(t) is independent of $\mathcal{F}(t)$. Similarly, we say that a Poisson process *N* is a Poisson process relative to this filtration if N(t) is $\mathcal{F}(t)$ -measurable for every tand for every u > t the increment N(u) - N(t) is independent of $\mathcal{F}(t)$. Finally, we say that a compound Poisson process Q is a compound Poisson process relative to this filtration if Q(t) is $\mathcal{F}(t)$ -measurable for every t and for every u > t the increment Q(u) - Q(t) is independent of $\mathcal{F}(t)$.[1]

We need to define the stochastic integral

$$\int_0^t \Phi(s) dX(s)$$

where X can have jumps. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space on which $\mathcal{F}(t), t \geq 0$, is a filtration. All processes are adapted to this filtration from the previous definition and will be right-continuous and can be expressed as

$$X(t) = X(0) + I(t) + R(t) + J(t)$$

A pure jump process J(t) is an adapted, right-continuous process with J(0)=0 and $J(t)=\lim_{s\downarrow t}J(s)$

Definition 11.4.2: A process X(t) of the form in the previous slide, with Itô integral part I(t), Riemann integral part R(t), and pure jump part I(t) will be called a jump process. The continuous part of this process is $X^c(t) = X(0) + I(t) + R(t)$.[1]

Definition 11.4.3: Let X(t) be a jump process of the previous form and let $\Phi(s)$ be an adapted process. The stochastic integral of Φ with respect to X is defined to be

$$\int_0^t \Phi(s) dX(s) = \int_0^t \Phi(s) \Gamma(s) dW(s) + \int_0^t \Phi(s) \Theta(s) ds + \sum_{0 < s \le t} \Phi(s) \Delta J(s)$$

or in differential notation,

$$\Phi(t)dX(t) = \Phi(t)dI(t) + \Phi(t)dR(t) + \Phi(t)dJ(t)$$

= $\Phi(t)dX^{c}(t) + \Phi(t)dJ(t)$

Theorem 11.4.5: Assume that the jump process X(s) is a martingale, the integrand $\Phi(s)$ is left-continuous and adapted, and

$$\mathbb{E}\left[\int_0^t \mathsf{\Gamma}^2(s) \mathsf{\Phi}^2(s) ds\right] < \infty, \forall t \geq 0$$

Then the stochastic integral $\int_0^t \Phi(s) dX(s)$ is also a martingale.

Quadratic Variation

For a partition Π , we denote, as usual, the sample quadratic variation of a process as:

$$Q_{\Pi}(X) = \sum_{j=0}^{n-1} (X(t_{j+1}) - X(t_j))^2$$

And then to get the actual quadratic variation of the process X(t), we let $||\Pi|| \to 0$ to get [X,X](t). For the processes $X_1(t)$ and $X_2(t)$ we define the sample cross variation as

$$C_{\Pi}(X) = \sum_{j=0}^{n-1} (X_1(t_{j+1}) - X_1(t_j))(X_2(t_{j+1}) - X_2(t_j))$$

Theorem 11.4.7: Let $X_1(t) = X_1(0) + I_1(t) + R_1(t) + J_1(t)$ be a jump process, where $I_1(t) = \int_0^t \Gamma_1(s) dW(s)$, $R_1(t) = \int_0^t \Theta(s) ds$, and $J_1(t)$ is a right continuous pure jump process. Then $X_1^c(t) = X_1(0) + I_1(t) + R_1(t)$ and

$$\begin{aligned} [X_1, X_1](T) &= [X_1^c, X_1^c](T) + [J_1, J_1](T) \\ &= \int_0^T \Gamma_1^2(s) ds + \sum_{0 < s \le T} (\Delta J_1(s))^2 \end{aligned}$$

Define $X_2(t)$ similarly to $X_1(t)$.

$$\begin{aligned} [X_1, X_2](T) &= [X_1^c, X_2^c](T) + [J_1, J_2](T) \\ &= \int_0^T \Gamma_1(s) \Gamma_2(s) ds + \sum_{0 < s \le T} \Delta J_1(s) \Delta J_2(s) \end{aligned}$$

Ito Formula for One Jump Process

Theorem 11.5.1: Let X(t) be a jump process and f(x) a function for which f'(x) and f''(x) are defined and continuous. Then

$$f(X(t)) = f(0, X(0)) + \int_0^t f'(X(s))dX^c(s) + \frac{1}{2} \int_0^t f''(X(s))dX^c(s)dX^c(s) + \sum_{0 < s \le T} [f(X(s)) - f(X(s-))]$$

Corollary 11.5.3: Let W(t) be a Brownian motion and let N(t) be a Poisson process with intensity $\lambda > 0$, both defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and relative to same filtration $\mathcal{F}(t)$, $t \geq 0$. Then the processes W(t) and N(t) are independent.

Two Dimensional Ito Formula

Theorem 11.5.4: Let $X_1(t)$ and $X_2(t)$ be jump processes, and let $f(t, x_1, x_2)$ be a function whose first and second partial derivatives appearing in the following formula are defined and continuous. Then

$$\begin{split} f(t,X_1(t),X_2(t)) &= f(0,X_1(0),X_2(0)) + \int_0^t f_t(s,X_1(s),X_2(s))ds \\ &+ \int_0^t f_{X_1}(s,X_1(s),X_2(s))dX_1^c(s) + \int_0^t f_{X_2}(s,X_1(s),X_2(s))dX_2^c(s) \\ &+ \frac{1}{2} \int_0^t f_{X_1,X_1}(s,X_1(s),X_2(s))dX_1^c(s)dX_1^c(s) \\ &+ \int_0^t f_{X_1,X_2}(s,X_1(s),X_2(s))dX_1^c(s)dX_2^c(s) \\ &+ \frac{1}{2} \int_0^t f_{X_2,X_2}(s,X_1(s),X_2(s))dX_2^c(s)dX_2^c(s) \\ &+ \sum_{0 < s \le t} [f(s,X_1(s),X_2(s)) - f(s-,X_1(s-),X_2(s-))] \end{split}$$

Ito Product Rule for Jump Processes

Corollary 11.5.5: Let $X_1(t)$ and $X_2(t)$ be jump processes, Then

$$\begin{split} X_1(t)X_2(t) &= X_1(0)X_2(0) + \int_0^t X_2(s)dX_1^c(s) + \int_0^t X_1(s)dX_2^c(s) \\ &+ [X_1^c, X_2^c](t) + \sum_{0 < s \le t} [X_1(s)X_2(s) - X_1(s-)X_2(s-)] \\ &= X_1(0)X_2(0) + \int_0^t X_2(s-)dX_1(s) + \int_0^t X_1(s-)dX_2(s) \\ &+ [X_1, X_2](t) \end{split}$$

[1]

Corollary 11.5.6: Let X(t) be a jump process. The **Doleans-Dade exponential** of X is defined to be the process

$$Z^{X}(t) = e^{X^{c}(t) - \frac{1}{2}[X^{c}, X^{c}](t)} \prod_{0 < s \le t} (1 + \Delta X(s))$$

This process is the solution to the stochastic differential equation

$$dZ^X(t) = Z^X(t-)dX(t)$$

with initial condition $Z^X(0) = 1$, which in integral form is

$$Z^X(t) = 1 + \int_0^t Z^X(s-)dX(s)$$

[1]

Let $\tilde{\lambda}$ be a positive number and define:

$$Z(t) = e^{(\lambda - \tilde{\lambda})t} \left(\frac{\tilde{\lambda}}{\lambda}\right)^{N(t)}$$

Fix a time T > 0, and we will use Z(T) to change to measure $\tilde{\mathbb{P}}$ under which N(t) has intensity $\tilde{\lambda}$ instead of λ .

Lemma 11.6.1: The process Z(t) satisfies:

$$dZ(t) = rac{ ilde{\lambda} - \lambda}{\lambda} Z(t_{-}) dM(t)$$

In particular, Z(t) is a martingale under \mathbb{P} and $\mathbb{E}[Z(t)] = 1$ for all t.[1]

Theorem 11.6.2 (Change of Poisson Intensity): Under the probability measure $\tilde{\mathbb{P}}$, the process N(t), $0 \le t \le T$, is Poisson with intensity $\tilde{\lambda}$.[1]

Define:

$$Z_m(t) = e^{(\lambda_m - \tilde{\lambda_m})t} \left(rac{ ilde{\lambda_m}}{\lambda_m}
ight)^{N_m(t)}$$
 $Z(t) = \prod_{m=1}^M Z_m(t)$

Theorem 11.6.4: The process Z(t) is a martingale. In particular, $\mathbb{E}[Z(t)] = 1$ for all t.

Theorem 11.6.5: Under $\widetilde{\mathbb{P}}$, Q(t) is a compound Poisson process with intensity $\widetilde{\lambda} = \sum_{m=1}^{M} \widetilde{\lambda}_m$, and Y_1, Y_2, \ldots are independent, identically distributed random variables with

$$\widetilde{\mathbb{P}}\{Y_i=y_m\}=\widetilde{p}(y_m)=\frac{\widetilde{\lambda}_m}{\widetilde{\lambda}}$$

[1]

Lemma 11.6.6: For Z(t) given by

$$Z(t) = e^{(\lambda - \tilde{\lambda})t} \prod_{i=1}^{N(t)} \frac{\tilde{\lambda}\tilde{f}(Y_i)}{\lambda f(Y_i)}$$

this process is a martingale. In particular, $\mathbb{E}[Z(t)] = 1$ for all $t \ge 0$.

Define:

$$Z_1(t) = e^{-\int_0^t \theta(u)dW(u) - \frac{1}{2}\int_0^t \theta^2(u)du}$$

$$Z_2(t) = e^{(\lambda - \tilde{\lambda})t} \prod_{i=1}^{N(t)} \frac{\tilde{\lambda}\tilde{f}(Y_i)}{\lambda f(Y_i)}$$

$$Z(t) = Z_1(t)Z_2(t)$$

Lemma 11.6.8: The process Z(t) is a martingale. In particular, $\mathbb{E}[Z(t)] = 1$ for all $t \ge 0$.[1]

Theorem 11.6.9: Under the probability measure $\widetilde{\mathbb{P}}$, the process

$$\widetilde{W}(t) = W(t) + \int_0^t \theta(s) ds$$

is a Brownian motion, Q(t) is a compound Poisson process with intensity $\tilde{\lambda}$ and independent, identically distributed jump sizes having density $\tilde{f}(y)$, and the processes $\widetilde{W}(t)$ and Q(t) are independent.[1]

[1] S.E. Shreve. *Stochastic Calculus for Finance II: Continuous-Time Models*. Number v. 11.