Flight of the Flying Squirrel

การเดินทางของกระรอกบินอาศัยการกระโจนจากต้นไม้ต้นหนึ่งไปยังอีกต้นหนึ่ง สมมติว่ากระรอกจะกระโจนจาก ยอดไม้เท่านั้น ดังนั้นการกระโจนจะทำได้ก็ต่อเมื่อต้นไม้ต้นทางมีความสูงมากกว่าต้นไม้ปลายทาง และระหว่าง ต้นไม้ทั้งสองต้นจะต้องมีทัศนะวิสัยปลอดโปร่ง กำหนดให้ต้นไม้แต่ละต้นในป่าสามารถแทนได้ด้วยตัวเลขจำนวน เต็มบวก n (0 <= n <= 2000) และให้ต้นไม้หมายเลข n สูง h_n (เมตร)

เมื่อให้ข้อมูลเพิ่มเติมว่าจากต้นไม้หมายเลข n มีทัศนะวิสัยปลอดโปร่งไปถึงต้นไม้หมายเลขไหนบ้าง (สมมติเรียก ต้นไม้เหล่านั้นว่าต้นไม้เพื่อนบ้าน) ให้นักเรียนเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาว่า กระรอกบินตัวหนึ่งจะ เดินทางจาก ต้นหมายเลข s ไปยังต้นหมายเลข t ได้เร็วที่สุดในเวลาเท่าใด ให้ระยะเวลาในการกระโจนจากต้น s ถึง t คือผลต่างของความสูงต้น s กับ ต้น t (หน่วยเป็นวินาที)

ข้อมูลขาเข้า

N (จำนวนต้นไม้ในป่า) s (หมายเลขต้นไม้ต้นทาง) t (หมายเลขต้นไม้ปลายทาง) หมายเลขต้นไม้เพื่อนบ้านต้นที่ 1 ... หมายเลขต้นไม้เพื่อน บ้านต้นที่ m

ข้อมูลขาออก

เวลาที่เร็วที่สุดในการเดินทาง (วินาที) หากไม่สามารถเดินทางไปถึงได้ให้ตอบ -1

Input	Output
504	70
0 100 3 1 2 3	
1 40 2 0 4	
2 70 1 3	
3 10 0	
4 30 2 0 1	

คำอธิบาย

กระโดดจากต้นที่ 0 ไปต้นที่ 1 เสียเวลา 60 วินาที จากนั้นกระโดดจาก ต้นที่ 1 ไปต้นที่ 4 เสียเวลา 10 วินาที รวม เวลาเดินทาง 70 วินาที