Übungsblatt 3 zur Algebra I

Abgabe bis 6. Mai 2013, 17:00 Uhr

Aufgabe 1. Beispiele für algebraische Zahlen

- a) Ist die Zahl cos 10° algebraisch?
- b) Zeige, dass die Polynomgleichung $X^3-2X+5=0$ genau eine reelle Lösung α besitzt.
- c) Zeige, dass diese Lösung α invertierbar ist, und finde eine normierte Polynomgleichung mit rationalen Koeffizienten, die α^{-1} als Lösung besitzt.

Aufgabe 2. Produkt algebraischer Zahlen

- a) Seien x und y Zahlen mit $x^5 x + 1 = 0$ und $y^2 2 = 0$. Finde eine normierte Polynomgleichung mit rationalen Koeffizienten, die die Zahl $x \cdot y$ als Lösung besitzt.
- b) Der Grad einer algebraischen Zahl z ist der kleinstmögliche Grad einer normierten Polynomgleichung mit rationalen Koeffizienten, die z als Lösung besitzt. Finde eine Abschätzung für den Grad des Produkts zweier algebraischer Zahlen in Abhängigkeit der Grade der Faktoren.

Aufgabe 3. Eigenschaften algebraischer Zahlen

- a) Zeige, dass der Betrag einer jeden algebraischen Zahl algebraisch ist.
- b) Zeige, dass rationale ganz-algebraische Zahlen schon ganzzahlig sind.
- c) Sei f ein normiertes Polynom mit rationalen Koeffizienten und z eine transzendente Zahl. Zeige, dass dann auch f(z) eine transzendente Zahl ist.

Aufgabe 4. Spielen mit Einheitswurzeln

- a) Finde alle komplexen Lösungen der Gleichung $X^6 + 1 = 0$.
- b) Finde eine Polynomgleichung, deren Lösungen genau die Ecken desjenigen regelmäßigen Siebenecks in der komplexen Zahlenebene sind, dessen Zentrum der Ursprung der Ebene ist und das die Zahl $1+\mathrm{i}$ als eine Ecke besitzt.
- c) Zeige, dass die Gleichung $X^{n-1} + X^{n-2} + \cdots + X + 1 = 0$ genau n-1 Lösungen besitzt, und zwar alle n-ten Einheitswurzeln bis auf die 1.
- d) Sei ζ eine n-te und ϑ eine m-te Einheitswurzel. Zeige, dass $\zeta \cdot \vartheta$ eine k-te Einheitswurzel ist, wobei k das kleinste gemeinsame Vielfache von n und m ist.

Aufgabe 5. Primitive Einheitswurzeln

Eine n-te Einheitswurzel ζ heißt genau dann primitiv, wenn jede n-te Einheitswurzel eine ganzzahlige Potenz von ζ ist. Sei $\Phi(n)$ die Anzahl der zu n teilerfremden Zahlen in $\{1, \ldots, n\}$.

- a) Kläre ohne Verwendung von b): Wie viele primitive vierte Einheitswurzeln gibt es?
- b) Zeige, dass es genau $\Phi(n)$ primitive n-te Einheitswurzeln gibt.