Contextualized Offline Relevance Weighting for Efficient and Effective Neural Retrieval

蒋浩南_20221021_论文笔记

	发表刊物	Sigir202	1	发表 年份	2021	第一完成单位(国内)	中国科学院大学
基本信息		Xuanano	n Chen F	l	Kai Hui		Le Sun Vinafei Sun
			g Chen, Ben He, Kai Hui, Yiran Wang, Le Sun, Yingfei Sun 神经信息检索,高效,离线相关性加权,BERT				
	关键词 (英文)						
论内	作者 Xuanang 关键词(中文)		Neural IR: Efficiency; Offline Relevance Weighting: BERT 在检索应用中部署大规模预训练语言模型有很高的在线搜索延迟。所以如果要部署,就要平衡有效性和延迟。本论文提出的模型,可以实现利用大规模预训练模型的有效且高效的在线搜索。 将昂贵(高延时)的在线的查询-文档匹配分解为两部分,即在线的查询-伪查询匹配和离线的伪查询-文档相关性加权。				

		其中α权衡语义相关性得分和 BM25 得分之间的权重(归一化为
		[0,1]) 。
		」 3、根据每个候选文档的相关性得分排序。
	仍旧存在的问	1、预计算的花费高,需要高昂的计算硬件来减少大量计算所需的
	题(注明论文	计算时间。(论文说明)
	中说明的问题	2、所需的空间大,按照论文中给出的数据 1 个文件有 5 个伪查
	或自己认为存	询一个伪查询占 34B,共 170B,1000 个相邻文档,加上 5000
	在的问题)	(1000*5) 个分数,每个 4B 共 200170B。
	[[[]]] () ()	
		本模型只为 ColBERT 的 0.2 倍做对比。这样看 0.2 看似不大,其
		实还是占很大空间。(我认为)
		3、对于非固定的语料库,需要经常更新离线的相关性得分,而
		日计算量是庞大且耗时的。(我认为)
		工作,开重定况入工作URJIIJ。(JXW//J)
	实验采用的数	MS MARCO 数据集,测试查询来自 TREC 2019 and 2020 Deep
	」 括集	Learning (DL)Track 与 NIST assessors 的手动多级判断一起使用,
	אר אויי	以计算不同池深的精确度和召回率。
	数据集内容是	是
	否和待解决问	
	题模型对应	
	实验是否涉及	否
	实际应用场景	I
	实验采用的对	
	比方法	传统模型有 BM25、,BM25+RM3、DeepCT、doc2query 和
		docTTTTTquery。
	实验任务	1、分别在 TREC 2019 and 2020DLTrack 上再分别测试检索
实验		passage 或 document 排序任务的实验指标。
内容		2、 在将不同模型排序后的段在经过 BERT-Base 或 ColBERT 再
		次排序后比较 NDCG@10。
		3、测试延时。
	实验衡量指标	评估指标为 MRR, NDCG@10 和 MAP
		和用来测试候选集质量的召回率 R@100, R@500 和 R@1000。
	实验说明所提	1、对于段排序和文件排序都有在基本所有测试的绝大多数测
	出方法的优点	试指标都优于其他模型。少数也非常接近最优。
		2、经过本模型排序过的段,在经过 BERT-Base 或 ColBERT 再
		次排序后,与其他模型相比排序在重排后得到更好的效果,
		所以只需少量候选集就可以得到很好的效果。
		3、 延迟方面,在种子文件不超过 50 的时候有着优于 ColBERT
		的延时。由 2 可知只需要少量的候选集,在此情况下需要的
		延时也少,所以竞争性很高。
	1	

内 容	点是什么	
(阅	论文仍然可以	有些重复的东西。可以对涉及的模型的介绍。增加更多的评价指
读 论	改进的地方是	标和实验设置。
文 后	什么	
自己	以此论文为出	首先需要了解该领域的各种预训练模型, 然后熟悉相关训练集和
思 考	发点,如果需	测试。要有大空间的硬盘存储大量数据集和产生的中间文件,和
填	要你做一篇和	高性能的 GPU 等硬件来加快大量数据的计算。
充)	其相关的顶会	
	论文, 你需要	
	的资源是什	
	么?数据,硬	
	件,技术支持	
	等	
	其他想要补充	本质来说还是把 BERT 计算文档-查询匹配这种的高延时的计算
	说明的内容	在离线的时候都算好存起来。但却是迂回实现了端到端和在线搜
		索的低延时。而且保证了有效且高效。(但离线计算量是恐怖的,
		实际应用的成本很大估计,可能要等神经网络模型的发展)。