Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Métodos Numéricos

Sucesiones y Series Numéricas

Alumno:

Demagistris, Santiago Ignacio

1 Ejercicio 1

En cada caso determinar si la sucesión $\{a_n\}$ converge o diverge y en caso de ser convergente hallar su límite.

a)
$$a_n = \frac{1}{n^{\alpha}}, \ \alpha > 0$$

Sea $f(x) = a_x$:

$$f(x) = \frac{1}{x^{\alpha}} = x^{-\alpha} \Rightarrow f'(x) = -\alpha x^{-(\alpha+1)}$$

Como x > 0 ya que f(x) está definida con dominio en N y por consigna sabemos que $\alpha > 0$, entonces f'(x) es negativa por lo que f(x) es estrictamente decreciente.

Criterio de la integral:

$$\int_{1}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{1}^{b} x^{-\alpha} dx = \lim_{b \to \infty} \left[\frac{x^{1-\alpha}}{1-\alpha} \right]_{1}^{b} =$$

$$\int_{1}^{\infty} f(x)dx = \lim_{b \to \infty} \left(\frac{b^{1-\alpha}}{1-\alpha} - \frac{1^{1-\alpha}}{1-\alpha} \right) = \lim_{b \to \infty} \left(\frac{b^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} \right) =$$

$$\int_{1}^{\infty} f(x)dx = \lim_{b \to \infty} \left(\frac{b^{1-\alpha}}{1-\alpha} \right) - \frac{1}{1-\alpha}$$

Caso $\alpha > 1$

Considero $c = 1 - \alpha$, donde c es negativo.

$$\int_{1}^{\infty} f(x)dx = \lim_{b \to \infty} \left(\frac{b^{c}}{1-\alpha}\right) - \frac{1}{c} = \lim_{b \to \infty} \left(\frac{1}{(1-\alpha)b^{c}}\right) - \frac{1}{c} = 0 - \frac{1}{c} = -\frac{1}{c} \Rightarrow s_{n} = \sum_{n=1}^{\infty} a_{n}$$
 converge $\Rightarrow^{(1)} \lim_{n \to \infty} a_{n} = 0$

Por lo tanto a_n converge a 0.

Caso $\alpha < 1$

Sabemos que a_n es estrictamente decreciente. Verifiquemos que está acotada por 0:

Sea $n \in \mathbb{N}$, supongamos que $\exists k \leq 0, \frac{1}{n^{\alpha}} \leq k$

$$\frac{1}{n^{\alpha}} \leq k \iff 1 \leq k n^{\alpha} \Rightarrow n^{\alpha} < 0 \iff n < 0.$$
 Contradicción.

Por lo tanto $\forall k \leq 0, \frac{1}{n^{\alpha}} > k \Rightarrow 0$ es cota inferior de a_n . Como sabemos que es estrictamente decreciente y tiene cota inferior, entonces a_n converge.

$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0$$

(1): Condición necesaria para la convergencia de una serie.

Como $\lim_{n\to\infty}a_n=0$, a_n converge a 0.

b)
$$a_n = \frac{n-1}{n} - \frac{n}{n-1}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{n-1}{n} - \frac{n}{n-1}\right) = (1)$$

$$\lim_{n \to \infty} a_n = (1) \lim_{n \to \infty} \left(\frac{n-1}{n}\right) - \lim_{n \to \infty} \left(\frac{n}{n-1}\right) =$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{n}{n-1}\right) = (2)$$

$$\lim_{n \to \infty} a_n = (2) \lim_{n \to \infty} \left(1\right) - \lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{n}{n-1}\right) =$$

$$\lim_{n \to \infty} a_n = (1 - 0) - \lim_{n \to \infty} \left(\frac{n}{n-1}\right) = 1 - \lim_{n \to \infty} \left(\frac{n}{n-1}\right) = (3)$$

$$\lim_{n \to \infty} a_n = (3) 1 - \lim_{n \to \infty} \left(\frac{1}{1}\right) = 1 - 1 = 0$$

(1) Regla del producto del límite.

 $\lim_{n\to\infty} a_n = 0$

- (2) Regla de la diferencia del límite.
- (3) L'hopital caso $\frac{\infty}{\infty}$.

Como $\lim_{n\to\infty}a_n=0$, a_n converge a 0.

$$c) \ a_n = \frac{3n^2 - n + 4}{2n^2 + 1}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{3n^2 - n + 4}{2n^2 + 1}\right) = (1)$$

$$\lim_{n \to \infty} a_n = (1) \lim_{n \to \infty} \left(\frac{3n^2}{2n^2 + 1}\right) - \lim_{n \to \infty} \left(\frac{n}{2n^2 + 1}\right) + \lim_{n \to \infty} \left(\frac{4}{2n^2 + 1}\right) =$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{3n^2}{2n^2 + 1}\right) - \lim_{n \to \infty} \left(\frac{n}{2n^2 + 1}\right) + 0 =$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{3n^2}{2n^2 + 1}\right) - \lim_{n \to \infty} \left(\frac{n}{2n^2 + 1}\right) = (2)$$

$$\lim_{n \to \infty} a_n = (2) \lim_{n \to \infty} \left(\frac{6n}{4n}\right) - \lim_{n \to \infty} \left(\frac{1}{4n}\right) =$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{6n}{4n}\right) - 0 = (2) \lim_{n \to \infty} \left(\frac{6}{4}\right) = \frac{3}{2}$$

- (1) Regla de la suma y diferencia del límite.
- (2) L'hopital caso $\frac{\infty}{\infty}$.

 $\lim_{n\to\infty} a_n = \frac{3}{2}$

Como $\lim_{n\to\infty}a_n=\frac{3}{2}$, a_n converge a $\frac{3}{2}$.

d)
$$a_n = \cos \frac{n\pi}{2}$$

$$lim_{n\to\infty} a_n = lim_{n\to\infty} \cos \frac{n\pi}{2}$$

Como $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\cos\frac{n\pi}{2}$, cuando n tiende a infinito a_n está acotado entre 1 y -1 pero no presenta un límite. Por lo tanto la sucesión diverge.

e)
$$a_n = \frac{n!}{n}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n!}{n}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n(n-1)!}{n}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (n-1)! = \infty$$

Como $\lim_{n\to\infty}a_n=\infty$, a_n diverge.

$$f) \ a_n = \frac{n^p}{e^n}, \quad p > 0$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\frac{n^p}{e^n}\right) = (1)$$
$$\lim_{n\to\infty} a_n = (1) \lim_{n\to\infty} \left(\frac{pn^{p-1}}{e^n}\right) = \dots =$$
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\frac{p^p}{e^n}\right) = (2) = 0$$
$$\lim_{n\to\infty} a_n = 0$$

- (1) L'hopital caso $\frac{\infty}{\infty}$.
- (2) $\epsilon > 1$, por lo cual $\epsilon^n \to \infty$ cuando $n \to \infty$.

Como $\lim_{n\to\infty}a_n=0$, a_n converge a 0.

$$g) a_n = \sqrt[n]{n}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (\sqrt[n]{n}) = \lim_{n \to \infty} n^{1/n} = (1)$$
$$\lim_{n \to \infty} a_n = (1) \lim_{n \to \infty} e^{\ln n^{1/n}} = e^{\lim_{n \to \infty} \frac{1}{n} \ln n}$$
$$\lim_{n \to \infty} a_n = e^{\lim_{n \to \infty} \frac{\ln n}{n}} = (2) e^{\lim_{n \to \infty} \frac{1}{n}} = e^0 = 1$$

- (1) L'hopital caso ∞^0 .
- (2) L'hopital caso $\frac{\infty}{\infty}$.

Como $\lim_{n\to\infty} a_n = 1$, a_n converge a 1

2 Ejercicio 2

En cada caso determinar si la serie converge o diverge y en caso de ser convergente hallar su suma.

a)
$$s_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Podemos observar que $a_n = \frac{1}{n(n+1)}$

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\frac{1}{n(n+1)}\right) = 0 \Rightarrow s_n$ puede converger.

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \Rightarrow b_n = \frac{1}{n}$$
 (1)

$$(1) \Rightarrow \qquad s_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = \sum_{n=1}^{\infty} b_n - b_{n-1} = (1) b_1 - b_{n+1} = 1 - \frac{1}{n+1}$$
 (2)

$$(2) \Rightarrow \lim_{n \to \infty} s_n = \lim_{n \to \infty} 1 - \frac{1}{n+1} = (2) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n+1} = 1 + 0 = 1$$

- (1) Propiedad telescópica.
- (2) Regla de la diferencia del límite.

La serie s_n converge a 1.

b)
$$s_n = \sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

Podemos observar que $a_n = \frac{1}{n(n+2)}$

 $lim_{n\to\infty}a_n=lim_{n\to\infty}(\frac{1}{n(n+2)})=0\Rightarrow s_n$ puede converger.

$$s_n = \sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+2} =$$

$$s_n = \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+2} = \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=2}^{\infty} \frac{1}{n+1} =$$

$$s_n = 1 + \sum_{n=2}^{\infty} \frac{1}{n} - \sum_{n=2}^{\infty} \frac{1}{n+1} = 1 + \sum_{n=2}^{\infty} \frac{1}{n} - \frac{1}{n+1} \quad (1)$$

Sea $b_n = \frac{1}{n}$, por (1) y propiedad telescópica, $s_n = 1 + (b_1 - b_{n+1} - (1 - \frac{1}{2})) = \frac{1}{2} + 1 - \frac{1}{n+1} = \frac{3}{2} - \frac{1}{n+1}$ (2)

$$(2) \Rightarrow lim_{n\to\infty} s_n = lim_{n\to\infty} (\frac{3}{2} - \frac{1}{n+1}) = \frac{3}{2}$$
. Por lo tanto s_n converge a 1.5

c)
$$s_n = \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$$

Podemos observar que $a_n = \frac{n}{\sqrt{n^2+1}}$

$$lim_{n\to\infty}a_n=lim_{n\to\infty}(\frac{n}{\sqrt{n^2+1}})=lim_{n\to\infty}\frac{n}{\sqrt{n^2(1+\frac{1}{n^2})}}=$$

$$lim_{n\to\infty}a_n=lim_{n\to\infty}\frac{n}{\sqrt{n^2}\sqrt{(1+\frac{1}{n^2})}}=lim_{n\to\infty}\frac{n}{n\sqrt{(1+\frac{1}{n^2})}}=$$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{(1+\frac{1}{n^2})}} = 1$$

En vista de que a_n converge en 1 y por el teorema 7, entonces la serie s_n diverge.

d)
$$s_n = \sum_{n=1}^{\infty} (-\frac{1}{2})^n$$

Podemos observar que s_n es una serie geométrica y que r < 0, por lo que nos encontramos frente a una serie alternada. Sabemos que:

$$s_n = \frac{1 - r^{n+1}}{1 - r}$$

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{1-r^{n+1}}{1-r} = \frac{1}{1-r} = \frac{1}{3/2} = \frac{2}{3}$$

Por lo tanto s_n converge a $\frac{2}{3}$.

e)
$$s_n = \sum_{n=1}^{\infty} 3(\frac{3}{2})^n$$

$$s_n = \sum_{n=1}^{\infty} 3(\frac{3}{2})^n = 3\sum_{n=1}^{\infty} (\frac{3}{2})^n \Rightarrow \frac{s_n}{3} = \sum_{n=1}^{\infty} (\frac{3}{2})^n$$

Se puede observar que $\sum_{n=1}^{\infty}(\frac{3}{2})^n$ es una serie geométrica y como $r=\frac{3}{2}$ sabemos que:

$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n = \frac{1 - r^{n+1}}{1 - r} \quad y \quad \lim_{n \to \infty} \frac{1 - r^{n+1}}{1 - r} = \infty \quad (1)$$

(1)
$$\Rightarrow lim_{n\to\infty}s_n = 3 \ lim_{n\to\infty}\frac{1-r^{n+1}}{1-r} = 3 \ \infty = \infty$$
. Por lo tanto s_n diverge.

f)
$$s_n = \sum_{n=1}^{\infty} \frac{2^n + 1}{2^{n+1}}$$

Corolario 1. Si $\sum_{n=1}^{\infty} a_n$ converge y $\sum_{n=1}^{\infty} b_n$ diverge, entonces $\sum_{n=1}^{\infty} (a_n + b_n)$ diverge.

Podemos observar que $a_n = \frac{2^n + 1}{2^{n+1}} = \frac{2^n}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{1}{2} \frac{2^n}{2^n} + \frac{1}{2} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{2} \frac{1}{2^n} = \frac{1}{2} (1 + \frac{1}{2^n})$

- (1) Por lo tanto $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{2} (1 + \frac{1}{2^n}) = \frac{1}{2} \sum_{n=1}^{\infty} 1 + \frac{1}{2^n}$
- (2) Sea $b_n = 1$, $t_n = \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} 1 = \infty \Rightarrow t_n$ diverge.
- (3) Sea $c_n = \frac{1}{2^n}$, $k_n = \sum_{n=1}^{\infty} c_n$, donde k_n es una serie geométrica con $r = \frac{1}{2}$. Por lo tanto k_n converge. Por corolario 1, (1), (2) y (3) a_n diverge.

g)
$$s_n = \sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$$

Podemos observar que $a_n = \frac{1}{(2n+1)(2n+3)}$. Intentaré buscar a y b tal que $\frac{1}{(2n+1)(2n+3)} = \frac{a}{(2n+1)} - \frac{b}{(2n+3)}$

$$\frac{a}{(2n+1)} - \frac{b}{(2n+3)} = \frac{a(2n+3) - b(2n+1)}{(2n+1)} = \frac{2n(a-b) + 3a - b}{(2n+1)(2n+3)}$$

$$1 = 2n(a - b) + 3a - b \iff a = b \text{ y } 1 = 3a - b = 2a \implies b = a = 1/2$$
 (1)

$$(1) \Rightarrow a_n = \frac{1}{2} \left(\frac{1}{(2n+1)} - \frac{1}{(2n+3)} \right)$$

Sea $b_n = \frac{1}{2n+1}$, entonces $a_n = b_n - b_{n+1}$ y por propiedad telescópica:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \left(b_1 + b_{n+1} \right) = \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{2n+1} \right) = {2 \choose 3} + \lim_{n \to \infty} \frac{1}{2n+1} = \frac{1}{3} + 0 = \frac{1}{3}$$

(2) Regla de la suma del limite

Por lo tanto s_n converge a $\frac{1}{3}$

h)
$$s_n = \sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right)$$

Podemos trabajar a s_n como :

$$s_n = \sum_{n=1}^{\infty} \frac{1}{2^n} - \sum_{n=1}^{\infty} \frac{1}{3^n} = t_n - k_n$$

Sea
$$b_n = \frac{1}{2^n}$$

$$t_n = \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} (\frac{1}{2})^n \Rightarrow^{(1)} t_n = \frac{1-r^{n+1}}{1-r}$$

$$\lim_{n\to\infty} t_n = \lim_{n\to\infty} \frac{1-r^{n+1}}{1-r} = {}^{(2)} \frac{1}{1-r} = \frac{1}{\frac{1}{2}} = 2$$

Sea
$$c_n = \frac{1}{3^n}$$

$$k_n = \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} (\frac{1}{3})^n \Rightarrow^{(1)} k_n = \frac{1-r^{n+1}}{1-r}$$

$$\lim_{n\to\infty} t_n = \lim_{n\to\infty} \frac{1-r^{n+1}}{1-r} = (2) \frac{1}{1-r} = \frac{1}{\frac{2}{2}} = \frac{3}{2}$$

Propiedad de linealidad

Sea
$$\beta=-1$$
 y $\alpha=1,$ entonces $s_n=\sum_{n=1}^{\infty}\alpha b_n+\beta c_n=$, como t_n y k_n

convergen, entonces por propiedad de linealidad s_n converge en $\alpha 2 + \beta \frac{3}{2} = 2 - \frac{3}{2} = \frac{1}{2}$

i)
$$s_n = \sum_{n=1}^{\infty} \frac{n!}{2^n},$$
 por lo tanto sabemos que $a_n = \frac{n!}{2^n}$

Criterio del cociente

$$lim_{n\to\infty}\tfrac{a_{n+1}}{a_n}=lim_{n\to\infty}\left(\tfrac{(n+1)!}{2^{n+1}}\tfrac{2^n}{n!}\right)=lim_{n\to\infty}\left(\tfrac{(n+1)n!}{2(2^n)}\tfrac{2^n}{n!}\right)=lim_{n\to\infty}\left(\tfrac{(n+1)!}{2}\right)=\infty$$

Por lo tanto s_n diverge.