1. La normal multidimensional

Estadística II, 20-21

Pablo Fernández Gallardo

Vectores aleatorios

Vector aleatorio *n* dimensional:

$$\mathbb{X} = \left(\begin{array}{c} X_1 \\ \vdots \\ X_n \end{array}\right).$$

Su distribución (en el caso continuo) viene dada por una función de densidad conjunta $f_{\mathbb{X}}(x_1,\ldots,x_n)$ tal que

$$f_{\mathbb{X}}(\mathbf{x}) \geq 0$$
 y $\int_{\mathbb{R}^n} f_{\mathbb{X}}(\mathbf{x}) d\mathbf{x} = 1.$

(La independencia de las coordenadas significa que la función de densidad se factoriza: $f_{\mathbb{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$ para todo $(x_1,\ldots,x_n)\in\mathbb{R}^n$).

Vector de medias

Notación: si $\mathbb{M}=(X_{i,j})_{i,j}$ es una *matriz* de dimensiones $n\times m$ cuyas componentes son variables aleatorias, escribiremos $\mathbf{E}(\mathbb{M})$ para referirnos la matriz $(\mathbf{E}(X_{i,j}))_{i,j}$ de medias de esas variables.

El vector de medias asociado a X es

$$\mathbf{E}(\mathbb{X}) = \left(\begin{array}{c} \mathbf{E}(X_1) \\ \vdots \\ \mathbf{E}(X_n) \end{array} \right).$$

Si A, B son matrices $n \times n$, X, Y vectores aleatorios de dimensión n, y $\mathbf{b} \in \mathbb{R}^n$,

$$\mathbf{E}(AX + \mathbf{b}) = A\mathbf{E}(X) + \mathbf{b}$$
 y $\mathbf{E}(AXY^{\mathsf{T}}B) = A\mathbf{E}(XY^{\mathsf{T}})B$.

(Atención: $\mathbf{E}(\mathbb{X}^{\mathsf{T}}A\mathbb{X}) \neq \mathbf{E}(\mathbb{X}^{\mathsf{T}}) A \mathbf{E}(\mathbb{X})$).

Matriz de varianzas/covarianzas

La matriz de covarianzas de X es

$$\mathbf{cov}(\mathbb{X}) = \begin{pmatrix} \mathbf{V}(X_1) & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_n) \\ \operatorname{cov}(X_2, X_1) & \mathbf{V}(X_2) & \cdots & \operatorname{cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \operatorname{cov}(X_n, X_2) & \cdots & \mathbf{V}(X_n) \end{pmatrix}$$

Recuérdese que

$$\begin{aligned} \mathbf{V}(X) &= \mathbf{E}((X - \mathbf{E}(X))^2) = \mathbf{E}(X^2) - \mathbf{E}(X)^2, \\ \operatorname{cov}(X,Y) &= \mathbf{E}\big[(X - \mathbf{E}(X)) \cdot (Y - \mathbf{E}(Y))\big] = \mathbf{E}(XY) - \mathbf{E}(X) \, \mathbf{E}(Y). \end{aligned}$$

1) Se tiene que

$$\mathsf{cov}(\mathbb{X}) = \mathsf{E}\big((\mathbb{X} - \mathsf{E}(\mathbb{X})) \cdot (\mathbb{X} - \mathsf{E}(\mathbb{X}))^{\scriptscriptstyle\mathsf{T}}\big)$$

(Atención: $(\mathbb{X} - \mathbf{E}(\mathbb{X})) \cdot (\mathbb{X} - \mathbf{E}(\mathbb{X}))^{\mathsf{T}}$ es una matriz $n \times n$; mientras que $(\mathbb{X} - \mathbf{E}(\mathbb{X}))^{\mathsf{T}} \cdot (\mathbb{X} - \mathbf{E}(\mathbb{X}))$ es una variable aleatoria).

2) Bajo cambios lineales,

$$cov(AX + b) = A \cdot cov(X) \cdot A^{T}$$
.

3) Una matriz de covarianzas es simétrica y (semi)definida positiva.

Prueba: calcula $V(a^TX)$.

Matriz de correlaciones

La matriz de correlaciones de X es

$$\rho(\mathbb{X}) = \begin{pmatrix} 1 & \rho(X_1, X_2) & \cdots & \rho(X_1, X_n) \\ \rho(X_2, X_1) & 1 & \cdots & \rho(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \rho(X_n, X_1) & \rho(X_n, X_2) & \cdots & 1 \end{pmatrix}$$

Recuérdese que

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\mathbf{V}(X)\mathbf{V}(Y)}} \in [-1,1].$$

- Se tiene que $\mathbf{cov}(\mathbb{X}) = \sqrt{D(\mathbb{X})} \, \rho(\mathbb{X}) \sqrt{D(\mathbb{X})}$, donde $\sqrt{D(\mathbb{X})}$ es la matriz diagonal con las desviaciones típicas.
- ¿Cómo cambia $\rho(X)$ bajo transformaciones lineales?

La normal multidimensional

Dados

- un vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^{\mathsf{T}}$;
- y una matriz $V = (v_{ij})$ de dimensiones $n \times n$ simétrica y definida positiva,

decimos que $\mathbb X$ sigue una distribución normal multidimensional (de dimensión n) con parámetros μ y V, lo que denotaremos por

$$\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, V),$$

si, para todo $\mathbf{x} \in \mathbb{R}^n$, su función de densidad viene dada por

$$f_{\mathbb{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \frac{1}{\sqrt{\det(V)}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} V^{-1}(\mathbf{x} - \boldsymbol{\mu})}.$$

En esta expresión, x es un vector columna.

Como V es simétrica y definida positiva, la podremos escribir como

$$V = UU^{\mathsf{T}},$$

para cierta matriz U no singular. Obsérvese que $\det(V) = \det(U)^2$. Como

$$V^{-1} = (U^{-1})^{\mathsf{T}} U^{-1},$$

 U^{-1} es una raíz cuadrada de V^{-1} .

Podemos reescribir la densidad $f_{\mathbb{X}}$ como

$$f_{\mathbb{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \frac{1}{|\det(U)|} e^{-\frac{1}{2} \|U^{-1}(\mathbf{x} - \mathbf{m})\|^2}.$$

Por ejemplo, si orto-diagonalizamos V,

$$V = O\Lambda O^{\mathsf{T}} = \underbrace{O\Lambda^{1/2}O^{\mathsf{T}}}_{=U} \underbrace{O\Lambda^{1/2}O^{\mathsf{T}}}_{=U^{\mathsf{T}}}$$

y U^{-1} sería

$$U^{-1} = O \Lambda^{-1/2} O^{\mathsf{T}}.$$

Algunas observaciones:

- El caso $\mathcal{N}(\mathbf{0}, I)$ es la normal estándar.
- Si $\mathbb{X} \sim \mathcal{N}(\mu, V)$, entonces
 - ▶ $\mathsf{E}(\mathbb{X}) = \mu \mathsf{y} \mathsf{cov}(\mathbb{X}) = V$,
 - y cada X_i es una normal de media μ_i y varianza v_{ii} .
- Las coordenadas X_1, \ldots, X_n son independientes si y solo si V es diagonal.
- Tipificación:

$$\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, V) \qquad \Longleftrightarrow \qquad \mathbb{X} = \boldsymbol{\mu} + U \, \mathbb{Y}, \quad \mathsf{con} \, \, \mathbb{Y} \sim \mathcal{N}(\boldsymbol{0}, I).$$

Es decir.

$$U^{-1}(\mathbb{X}-\boldsymbol{\mu})\sim \mathcal{N}(\mathbf{0},I).$$

Si $\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, V)$, la variable aleatoria

$$(\mathbb{X} - \mu)^{\mathsf{T}} V^{-1} (\mathbb{X} - \mu)$$

se distribuye como una χ^2 con n grados de libertad.

Recuérdese que una χ^2 con n grados de libertad es una suma de n cuadrados de normales estándar. Basta observar que $(\mathbb{X} - \mu)^{\mathsf{T}} V^{-1}(\mathbb{X} - \mu) = \mathbb{Y}^{\mathsf{T}} \mathbb{Y}$, con $\mathbb{Y} \sim \mathcal{N}(\mathbf{0}, I)$.

Combinaciones lineales de coordenadas

Sea $\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, V)$ una normal de dimensión n.

• Para un vector a, la variable aleatoria

$$\mathbf{a}^{\mathsf{T}}\mathbb{X} = \sum_{j=1}^{n} a_j \, X_j$$

se distribuye como una $\mathcal{N}(\mathbf{a}^{\mathsf{T}}\boldsymbol{\mu}, \mathbf{a}^{\mathsf{T}}V\mathbf{a})$.

 \bullet Para una matriz A y un vector \mathbf{b} , el vector aleatorio

$$AX + \mathbf{b}$$

se distribuye como una $\mathcal{N}(A\mu, AVA^{\mathsf{T}})$.

Reducción de dimensión

Sea $\mathbb{X} \sim \mathcal{N}(\mu, V)$ una normal de dimensión n.

Seleccionamos k índices, $J = \{j_1, \dots, j_k\}$ y definimos \mathbb{X}_J , μ_J y V_J quedándonos con las entradas correspondientes de \mathbb{X}_J , μ y V.

Entonces $\mathbb{X}_J \sim \mathcal{N}(\boldsymbol{\mu}_J, V_J)$.

Condicionando

Sea $\mathbb{X} \sim \mathcal{N}(\mu, V)$ una normal de dimensión n.

Digamos que partimos en

$$\mathbb{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \\ \hline X_{p+1} \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} \mathbb{X}_1 \\ \mathbb{X}_2 \end{pmatrix}$$

Partimos, análogamente,

$$oldsymbol{\mu} = \left(egin{array}{c|c} oldsymbol{\mu}_1 & oldsymbol{\mu}_2 \end{array}
ight) \qquad oldsymbol{y} \qquad oldsymbol{V} = \left(egin{array}{c|c} oldsymbol{V}_{1,1} & oldsymbol{V}_{1,2} \ \hline oldsymbol{V}_{2,1} & oldsymbol{V}_{2,2} \end{array}
ight)$$

Entonces

- Los vectores X_1 y X_2 son independientes si $V_{1,2} = V_{2,1}^{\mathsf{T}}$ tiene todas sus entradas nulas.
- El vector X_1 , condicionado a que $X_2 = \mathbf{a}$, se distribuye como una normal (de dimensión p) con parámetros

$$ilde{\mu} = \mu_1 + V_{1,2} \, V_{2,2}^{-1} (\mathbf{a} - \mu_2) \ ilde{V} = V_{1,1} - V_{1,2} \, V_{2,2}^{-1} \, V_{2,1}.$$

Formas lineales y cuadráticas, y normalidad

Sea
$$\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, V)$$
.

Para ciertos cálculos del curso, interesará conocer la distribución de combinaciones lineales y cuadráticas de las coordenadas de \mathbb{X} :

vectores aleatorios del tipo AX, o variables aleatorias del tipo X^TAX ,

y sus posibles relaciones de dependencia.

Recordamos que una variable Z se distribuye como una χ^2 con n grados de libertad si

$$Z=Z_1^2+\cdots+Z_n^2,$$

donde Z_1, \ldots, Z_n son normales estándar independientes. Se tiene que $\mathbf{E}(Z) = n$ y $\mathbf{V}(Z) = 2n$.

Caso lineal (ya visto):

• Si $\mathbb{X} \sim \mathcal{N}(\mu, V)$ es una normal de dimensión n, y A es una matriz $n \times n$, entonces

$$AX \sim \mathcal{N}(A\boldsymbol{\mu}, AVA^{\mathsf{T}}).$$

(En realidad, A podría ser de dimensiones $p \times n$, con p < n).

En el caso de las formas cuadráticas, tenemos que

• Si $\mathbb{X} \sim \mathcal{N}(\mathbf{0}, I)$ es una normal de dimensión n, entonces

$$\mathbb{X}^{\mathsf{T}}\,\mathbb{X}\sim\chi_{n}^{2}.$$

También hemos visto que

• si $\mathbb{X} \sim \mathcal{N}(\mu, V)$ es una normal de dimensión n, entonces

$$(\mathbb{X} - \boldsymbol{\mu})^{\mathsf{T}} V^{-1}(\mathbb{X} - \boldsymbol{\mu}) \sim \chi_n^2$$

Teorema 1

Si $\mathbb{X} \sim \mathcal{N}(\mathbf{0}, I)$ es una normal de dimensión n, y B es una matriz $n \times n$ simétrica e idempotente, entonces

$$\mathbb{X}^{\mathsf{T}} B \mathbb{X} \sim \chi^2_{\mathsf{traza}(B)}$$
.

Corolario 2

Si $\mathbb{X} \sim \mathcal{N}(\mu, \sigma^2 I)$ es una normal de dimensión n, y B es una matriz $n \times n$ simétrica e idempotente, y se tiene que $\mu^T B \mu = 0$, entonces

$$\frac{1}{\sigma^2} \mathbb{X}^\mathsf{T} B \mathbb{X} \sim \chi^2_{\mathsf{traza}(B)}.$$

Sobre independencia

Teorema 3

Sea $\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$ una normal de dimensión n. Sean

- A una matriz $p \times n$, con $p \le n$;
- $B \ y \ C$ matrices $n \times n$ simétricas e idempotentes.

Entonces,

- si $AB = \mathbf{0}$, entonces $AX y X^TBX$ son independientes;
- si $BC = \mathbf{0}$, entonces $\mathbb{X}^T B \mathbb{X}$ y $\mathbb{X}^T C \mathbb{X}$ son independientes.