CSC411 Assignment 3

Yue Guo

November 25, 2017

1 Kernels

1.1 Positive semidefinite and quadratic form

Assume K is symmetric, we can decompose K into $U\Lambda U^T$

$$\begin{split} x^T K x &= x^T (U \Lambda U^T) x = (x^T U) \Lambda (U^T x) \\ &= \Sigma_{i=1}^d \lambda_i ([x^T U_i])^2 >= 0 \end{split}$$

1.2 Kernel properties

1.2.1 α

 $K_{ij} = \alpha$, the matrix K has dimension of x or y, and each element is α . Since $\alpha > 0$, and all elements are equal, K is positive semidefinite

1.2.2
$$f(x), f(y)$$

$$K_{ij} = \langle \phi(x), \phi(y) \rangle$$
, define $\phi(x) = f(x), \forall f : \mathbb{R}^d \to \mathbb{R}$ define $\phi(y) = f(y), \forall f : \mathbb{R}^d \to \mathbb{R}$
Since $f(x)$ and $f(y)$ produce a scalar, $\langle \phi(x), \phi(y) \rangle = f(x) \cdot f(y)$

1.2.3 k1 and k2