Summer 2021

1 Let's Talk Probability

- (a) When is $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ true? What is the general expression for $\mathbb{P}(A \cup B)$ that is always true.
- (b) When is $\mathbb{P}(A \cap B) = \mathbb{P}(A) * \mathbb{P}(B)$ true? What is the general expression for $\mathbb{P}(A \cap B)$ that is always true.
- (c) If A and B are disjoint, does that imply they're independent?

Solution:

- (a) In general, we know $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$. This is the Inclusion-Exclusion Principle. Therefore if A and B are disjoint, such that $\mathbb{P}(A \cap B) = 0$, then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ holds.
- (b) $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ holds if and only if A and B are independent (by definition). The general rule that always holds is $\mathbb{P}(A \cap B) = \mathbb{P}(B|A)\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B)$.
- (c) No, if two events are disjoint, we cannot conclude they are independent. Consider a roll of a fair six-sided die. Let A be the event that we roll a 1, and let B be the event that we roll a 2. Certainly A and B are disjoint, as $\mathbb{P}(A \cap B) = 0$. But these events are not independent: $\mathbb{P}(B \mid A) = 0$, but $\mathbb{P}(B) = 1/6$.

Since disjoint events have $\mathbb{P}(A \cap B) = 0$, we can see that the only time when disjoint A and B are independent is when either $\mathbb{P}(A) = 0$ or $\mathbb{P}(B) = 0$.

2 Balls and Bins

Throw n balls into n labeled bins one at a time.

- (a) What is the probability that the first bin is empty?
- (b) What is the probability that the first k bins are empty?
- (c) Let A be the event that at least k bins are empty. Notice that there are $m = \binom{n}{k}$ sets of k bins out of the total n bins. If we assume A_i is the event that the ith set of k bins is empty. Then we can write A as the union of A_i 's.

$$A = \bigcup_{i=1}^{m} A_i.$$

Write the union bound for the probability A.

- (d) Use the union bound to give an upper bound on the probability A from part (c).
- (e) What is the probability that the second bin is empty given that the first one is empty?
- (f) Are the events that "the first bin is empty" and "the first two bins are empty" independent?
- (g) Are the events that "the first bin is empty" and "the second bin is empty" independent?

Solution: Since the balls are thrown one at a time, there is an ordering, and so we are sampling with replacement where order matters rather than where it doesn't (which would correspond to each configuration in the stars and bars setup being equally likely).

- (a) The probability that ball *i* does not land in the first bin is $\frac{n-1}{n}$. The probability that all of the balls do not land in the first bin is $\left(\frac{n-1}{n}\right)^n$.
- (b) The probability that ball *i* does not land in the first *k* bins is $\frac{n-k}{n}$. The probability that all of the balls do not land in the first *k* bins is $\left(\frac{n-k}{n}\right)^n$.
- (c) We use the union bound. Then

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{i=1}^{m} A_i\right) \leq \sum_{i=1}^{m} \mathbb{P}(A_i)$$

(d) We know the probability of the first *k* bins being empty from part (b), and this is true for any set of *k* bins, so

$$\mathbb{P}(A_i) = \left(\frac{n-k}{n}\right)^n.$$

Then,

$$\mathbb{P}(A) \le m \cdot \left(\frac{n-k}{n}\right)^n = \binom{n}{k} \left(\frac{n-k}{n}\right)^n.$$

(e) Using Bayes' Rule:

$$\mathbb{P}[2\text{nd bin empty} \mid 1\text{st bin empty}] = \frac{\mathbb{P}[2\text{nd bin empty} \cap 1\text{st bin empty}]}{\mathbb{P}[1\text{st bin empty}]}$$

$$= \frac{(n-2)^n/n^n}{(n-1)^n/n^n}$$

$$= \left(\frac{n-2}{n-1}\right)^n$$
(1)

Alternate solution:

We know bin 1 is empty, so each ball that we throw can land in one of the remaining n-1

bins. We want the probability that bin 2 is empty, which means that each ball cannot land in bin 2 either, leaving n-2 bins. Thus for each ball, the probability that bin 2 is empty given that bin 1 is empty is (n-2)/(n-1). For n total balls, this probability is $[(n-2)/(n-1)]^n$.

- (f) They are dependent. Knowing the latter means the former happens with probability 1.
- (g) In part (c) we calculated the probability that the second bin is empty given that the first bin is empty: $[(n-2)/(n-1)]^n$. The probability that the second bin is empty (without any prior information) is $[(n-1)/n]^n$. Since these probabilities are not equal, the events are dependent.