Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления	
КАФЕДРА	Системы обработки информации и управления	

Отчет по рубежному контролю № 1 «Технологии разведочного анализа и обработки данных»

по дисциплине «Технологии машинного обучения» Вариант 20

Студент <u>ИУ5-65Б</u>		Д.А. Шиленок
(Группа)	(Подпись, дата)	(И.О.Фамилия)
Преподаватель		Ю.Е. Гапанюк
•	(Подпись, дата)	(И.О.Фамилия)

Москва

Содержание

Задание	3
Ход выполнения	3
Загрузка данных и первичный анализ	4
Парные диаграммы	5
Масштабирование данных	6
Преобразование категориальных признаков в количественные .	7

Задание

Номер варианта	Номер задачи	Номер набора данных,
		указанного в задаче
20	3	4

Задача №3. Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Для набора данных построить "парные диаграммы".

Ход выполнения

TMO PK Nº1

Шиленок Даниил Андреевич ИУ5-65Б

Вариант 20

Номер варианта	Номер задачи	Номер набора данных, указанного в задаче					
20	3	4					

Задача №3. Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Для набора данных построить "парные диаграммы".

Загрузка данных и первичный анализ

Загрузка данных и первичный анализ

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-Null Cou	nt Dtype
0	age	1025 non-nul	l int64
1	sex	1025 non-nul	l int64
2	ср	1025 non-nul	l int64
3	trestbps	1025 non-nul	l int64
4	chol	1025 non-nul	l int64
5	fbs	1025 non-nul	l int64
6	restecg	1025 non-nul	l int64
7	thalach	1025 non-nul	l int64
8	exang	1025 non-nul	l int64
9	oldpeak	1025 non-nul	l float64
10	slope	1025 non-nul	l int64
11	ca	1025 non-nul	l int64
12	thal	1025 non-nul	l int64
13	target	1025 non-nul	l int64
		./	- \

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

Парные диаграммы

Парные диаграммы

Построим парные диаграммы для числовых полей датасета

```
sns.pairplot(data[["age","trestbps","chol","thalach","oldpeak"]])
plt.suptitle("Парные диаграммы (pairplot)")
plt.show()

✓ 1.4s
```


Масштабирование данных

Масштабирование данных

Произведём масштабирование данных колонки "chol" при помощи масштабирования данных на основе Z-оценки:


```
plt.hist(data_scaled, 50)
plt.show()

    0.0s
```


Преобразование категориальных признаков в количественные

Преобразование категориальных признаков в количественные

В нашем датасете категориальные признаки уже закодированы, поэтому для начала создам новый признак на основе возраста. Установим следующие возрастные категории:

```
Child = (0, 12]
Teen = (12, 18]
Adult = (18, 45]
Middle Aged = (45, 65]
Eldery = (65, 120]
```

```
bins = [0, 12, 18, 45, 65, 120]
labels = ['Child', 'Teen', 'Adult', 'Middle Aged', 'Eldery']

# Создание категориального признака
data["age_group"] = pd.cut(data["age"], bins=bins, labels=labels)

print(data[["age", "age_group"]].head())
```

```
age age_group
0 52 Middle Aged
1 53 Middle Aged
2 70 Eldery
3 61 Middle Aged
4 62 Middle Aged
```

Преобразуем категориальный признак "age_group" в количественный с использованием двух методов: "Label encoding" и "One hot encoding"

Label encoding

Label Encoding — это метод преобразования категориальных признаков в числовые значения. Он присваивает каждой уникальной категории целое число.

Label Encoding вводит порядок между значениями, которого может не быть на самом деле.

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()

data["age_group"] = encoder.fit_transform(data["age_group"])

unique_rows_LE = data.drop_duplicates(subset="age_group")
print(unique_rows_LE)
```

```
age sex cp trestbps chol fbs restecg thalach exang oldpeak \
 52 1 0 125 212 0 1 168 0
                                           1.0
0
  70 1 0
                            1 125 1
0 136 1
               145 174 0
                                            2.6
             132 341 1
11 43 0 0
                                            3.0
  slope ca thal target age_group
0
         3 0
2
     0
       0
           3
                 0
                        1
11
      0
          3
                 0
                        0
```

Как видим, было создано три группы, так как данные даны по людям от 29 до 77 лет:

```
print(min(data["age"]),max(data["age"]))
```

29 77

One hot encoding

One-Hot Encoding — это метод кодирования категориальных признаков, при котором каждая уникальная категория превращается в отдельную бинарную колонку. В отличие от Label Encoding, не вводит потенциально ложного порядка между значениями.

```
from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()
data_OHE = encoder.fit_transform(data[["age_group"]])
print(data_OHE.todense()[0:10])

[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]
[[0. 0. 1.]]
```

Как видим образовалось три столбца, кодирующих каждое уникальное значение признака