Technologies Cloud et Sécurité - AZURE - Partie II

Anis Hanniz

30 novembre 2024

Table des matières

1	Services de Conteneurs Azure	3
	1.1 Comparaison ACI vs ACA vs AKS	3
2	Architecture Conteneurs et Kubernetes	3
	2.1 Concepts Fondamentaux	
	2.2 Ingress Controller	
	2.3 Azure Monitor vs Azure Analytics Workspace	4
3	Backup et Disaster Recovery 3.1 Solutions Kubernetes	4
4	Guide Pratique AKS 4.1 Configuration Initiale et Création du Cluster	4
5	Gestion des Node Pools 5.1 Déploiement d'Applications	5

1 Services de Conteneurs Azure

1.1 Comparaison ACI vs ACA vs AKS

Caractéristique	ACI	ACA	AKS
Type	Serverless	Serverless + Orches-	Orchestration com-
		tration légère	plète
Usage	Dev/Test, Tâches	Applications modé-	Production complexe,
	ponctuelles	rées, Microservices	Grande échelle
Scaling	Manuel	Auto-scaling basé sur	Auto-scaling avancé,
		métriques	HPA
Complexité	Simple	Moyenne	Élevée
Coût	Pay-as-you-go	Pay-as-you-go + Ser-	Nodes + Services ma-
		vices managés	nagés
Staging	Non	Oui (Révisions)	Oui (Namespaces)

2 Architecture Conteneurs et Kubernetes

2.1 Concepts Fondamentaux

— Conteneurs : Unités d'application isolées

— **Pods**: Plus petite unité déployable, peut contenir plusieurs conteneurs

— **Node :** Machine virtuelle hébergeant des pods

— TANZU: Solution VMware pour Kubernetes enterprise

2.2 Ingress Controller

- Gestion avancée du routage
- Configuration des redirections URL
- SSL/TLS termination
- Load balancing applicatif

2.3 Azure Monitor vs Azure Analytics Workspace

Azure Monitor	Log Analytics Workspace
Collecte temps réel	Analyse approfondie
Métriques de base	Requêtes KQL complexes
Alertes simples	Corrélation de logs
Visualisation basique	Insights avancés
Focus performance	Focus troubleshooting

3 Backup et Disaster Recovery

3.1 Solutions Kubernetes

— Veeam Kasten:

- Backup natif K8s
- Restore granulaire
- Support multi-cloud
- Automation policies

— Portworx PX-Backup:

- Backup applications stateful
- Intégration CI/CD
- Disaster recovery
- Réplication cross-cluster

4 Guide Pratique AKS

4.1 Configuration Initiale et Création du Cluster

```
# Configuration des variables d'environnement
   export RESOURCE_GROUP=rg-contoso-video
   export CLUSTER_NAME=aks-contoso-video
   export LOCATION=eastus
   # Création du groupe de ressources
   az group create --name=$RESOURCE_GROUP --location=$LOCATION
   # Création du cluster AKS avec support Windows
   az aks create \
10
       --resource-group $RESOURCE_GROUP \
       --name $CLUSTER_NAME \
       --node-count 2 \
13
       --generate-ssh-keys \
       --node-vm-size Standard_B2s \
       --network-plugin azure \
       --windows-admin-username localadmin
```

5 Gestion des Node Pools

```
# Ajout d'un pool de noeuds Windows
   az aks nodepool add \
      --resource-group $RESOURCE_GROUP \
3
       --cluster-name $CLUSTER_NAME \
       --name uspool \
       --node-count 2 \
       --node-vm-size Standard_B2s \
       --os-type Windows
   # Récupération des informations d'identification
10
   az aks get-credentials \
       --name $CLUSTER_NAME \
12
       --resource-group $RESOURCE_GROUP
13
  # Vérification des noeuds
  kubectl get nodes
16
17
  # Affichage détaillé des noeuds avec OS
18
  kubectl get nodes -o custom-columns=NAME:.metadata.name,\
19
  TYPE:.metadata.labels.kubernetes\.azure\.com/mode,\
  {\tt OS:.status.nodeInfo.osImage}
22
  # Liste des clusters AKS
23
  az aks list --query "[].{Name:name,ResourceGroup:resourceGroup}" -o table
```

5.1 Déploiement d'Applications

```
# deployment.yaml
   apiVersion: apps/v1
   kind: Deployment
   metadata:
     name: contoso-website
   spec:
6
     selector:
       matchLabels:
         app: contoso-website
     template:
10
       metadata:
11
         labels:
12
           app: contoso-website
13
       spec:
14
         nodeSelector:
15
           kubernetes.io/os: linux
16
         containers:
         - image: mcr.microsoft.com/mslearn/samples/contoso-website
18
           name: contoso-website
19
           resources:
20
             requests:
                cpu: 100m
22
                memory: 128Mi
              limits:
25
                cpu: 250m
                memory: 256Mi
26
           ports:
27
            - containerPort: 80
28
              name: http
```

```
# Application du déploiement
kubectl apply -f ./deployment.yaml

# Nettoyage du contexte
kubectl config delete-context aks-contoso-video
```