SEQUENCE LISTING

**THE 28

<120> USE OF AN ENTEROBACTERIUM OmpA PROTEIN ASSOCIATED WITH AN ANTIGEN FOR GENERATING AN ANTIVIRAL, ANTIPARASITIC OR ANTITUMORAL CYTOTOXIC RESPONSE

ANTITUMORAL CYTOTOXIC RESPONSE <130> D 17921 <140> PCT/FR 00/00393 <141> 2000-02-17 <150> FR 99 01917 <151> 1999-02-17 <160> 6 <170> PatentIn Ver. 2.1 <210> 1 <211> 1035 <212> DNA <213> Klebsiella pneumoniae <220> <221> exon <222> (1)..(1032) <220> <221> terminator <222> (1033)..(1035) <220> <221> CDS <222> (1)..(1035) <400> 1 atg aaa gca att ttc gta ctg aat gcg gct ccg aaa gat aac acc tgg Met Lys Ala Ile Phe Val Leu Asn Ala Ala Pro Lys Asp Asn Thr Trp 1 tat gca ggt ggt aaa ctg ggt tgg tcc cag tat cac gac acc ggt ttc Tyr Ala Gly Gly Lys Leu Gly Trp Ser Gln Tyr His Asp Thr Gly Phe 20 tac ggt aac ggt ttc cag aac aac ggt ccg acc cgt aac gat cag Tyr Gly Asn Gly Phe Gln Asn Asn Gly Pro Thr Arg Asn Asp Gln 35 40 ctt ggt gct ggt gcg ttc ggt ggt tac cag gtt aac ccg tac ctc ggt Leu Gly Ala Gly Ala Phe Gly Gly Tyr Gln Val Asn Pro Tyr Leu Gly 50 55 ttc gaa atg ggt tat gac tgg ctg ggc cgt atg gca tat aaa ggc agc Phe Glu Met Gly Tyr Asp Trp Leu Gly Arg Met Ala Tyr Lys Gly Ser

65

70

	•			-										
													gct Ala 95	288
													ctg Leu	336
													acc Thr	384
													gct Ala	432
													gaa Glu	480
_		-				-							cgt Arg 175	528
													cag Gln	576
													gaa Glu	624
_		-			-	_		_	-				ttc Phe	672
	_		-	_	_		_	_	_	_	-	_	ctg Leu	720
													gtt Val 255	768
													ctg Leu	816
													ggc Gly	864
													ccg Pro	912
													atc Ile	960

gaa gtt gta act cag ccg gcg ggt taa Glu Val Val Thr Gln Pro Ala Gly 340 1035

<210> 2 <211> 344 <212> PRT

<213> Klebsiella pneumoniae

<400> 2

Met Lys Ala Ile Phe Val Leu Asn Ala Ala Pro Lys Asp Asn Thr Trp 1 5 10 15

Tyr Ala Gly Gly Lys Leu Gly Trp Ser Gln Tyr His Asp Thr Gly Phe 20 25 30

Tyr Gly Asn Gly Phe Gln Asn Asn Gly Pro Thr Arg Asn Asp Gln 35 40 45

Leu Gly Ala Gly Ala Phe Gly Gly Tyr Gln Val Asn Pro Tyr Leu Gly 50 55 60

Phe Glu Met Gly Tyr Asp Trp Leu Gly Arg Met Ala Tyr Lys Gly Ser 65 70 75 80

Val Asp Asn Gly Ala Phe Lys Ala Gln Gly Val Gln Leu Thr Ala Lys
85 90 95

Leu Gly Tyr Pro Ile Thr Asp Asp Leu Asp Ile Tyr Thr Arg Leu Gly 100 105 110

Gly Met Val Trp Arg Ala Asp Ser Lys Gly Asn Tyr Ala Ser Thr Gly 115 120 125

Val Ser Arg Ser Glu His Asp Thr Gly Val Ser Pro Val Phe Ala Gly 130 135 140

Gly Val Glu Trp Ala Val Thr Arg Asp Ile Ala Thr Arg Leu Glu Tyr 145 150 155 160

Gln Trp Val Asn Asn Ile Gly Asp Ala Gly Thr Val Gly Thr Arg Pro 165 170 175

Asp Asn Gly Met Leu Ser Leu Gly Val Ser Tyr Arg Phe Gly Gln Glu 180 185 190

Asp Ala Ala Pro Val Val Ala Pro Ala Pro Ala Pro Ala Pro Glu Val 195 200 205

Ala Thr Lys His Phe Thr Leu Lys Ser Asp Val Leu Phe Asn Phe Asn 210 215 220

Lys Ala Thr Leu Lys Pro Glu Gly Gln Gln Ala Leu Asp Gln Leu Tyr

225 • 230 235 240

Thr Gln Leu Ser Asn Met Asp Pro Lys Asp Gly Ser Ala Val Leu 245 - 250 255

Gly Tyr Thr Asp Arg Ile Gly Ser Glu Ala Tyr Asn Gln Gln Leu Ser 260 265 270

Glu Lys Arg Ala Gln Ser Val Val Asp Tyr Leu Val Ala Lys Gly Ile 275 280 285

Pro Ala Gly Lys Ile Ser Ala Arg Gly Met Gly Glu Ser Asn Pro Val 290 295 300

Thr Gly Asn Thr Cys Asp Asn Val Lys Ala Arg Ala Ala Leu Ile Asp 305 310 315 320

Cys Leu Ala Pro Asp Arg Arg Val Glu Ile Glu Val Lys Gly Tyr Lys 325 330 335

Glu Val Val Thr Gln Pro Ala Gly 340

<210> 3

<211> 10

<212> PRT

<213> Homo sapiens

<220>

<223> Peptide derived from the Mart-1/MelanA antigen expressed by melanoma cells.

<400> 3

Glu Leu Ala Gly Ile Gly Ile Leu Thr Val 1 5 10

<210> 4

<211> 8

<212> PRT

<213> Homo sapiens

<220>

<223> Derivative of tyrosinase-related protein 2 (TRP-2).

<400> 4

Val Tyr Asp Phe Phe Val Trp Leu