Parcial - Machine Learning para Inteligencia Artificial 13 de Julio 2023

Duración: 3 horas Con material: NO

Puntaje mínimo / máximo: 0 / 30 puntos

Importante:

- Escribir con letra clara y prolija.
- Las respuestas deben ser completas, precisas y claras, sin ambigüedad.
- La ausencia de alguno de los puntos anteriores puede implicar la quita de puntos.

Ejercicio 1

Se utilizó el dataset de **Palmer Penguins** para predecir la variable **species** en función de los atributos **flipper length** (mm) y **body mass** (g). La tabla siguiente describe brevemente los datos:

Item	flipper length	body mass	Species	Count	
count	342	342	Adelie	151	
mean	200.9	4201.8	Gentoo	123	
std	14.1	802.0	Chinstrap	68	
min	172	2700	Total	342	
25%	190	3550			
50%	197	4050			
75%	213	4750			
may	221	6300			

Se dividió el conjunto de datos disponibles (N = 342) en un conjunto de entrenamiento *Train* ($N_{train} = 273$) y un conjunto de *Test* ($N_{test} = 69$). Con el objetivo de aplicar el algoritmo de *K-Vecinos más cercanos* (*KNN*) se utilizó el método *Repeated Holdout* con 25 repeticiones y un tamaño para el conjunto de validación del 25% de *Train*.

Figura 1: resultado de Repeated Holdout.

Figura 2: Learning Curve para el valor elegido de K

1. Explique en qué consiste el algoritmo de K-Vecinos más cercanos (KNN), indicando cuáles son los hiper-parámetros que determinan su sesgo inductivo.

- 2. Dado el resumen de los datos disponibles, indique qué tipo de preprocesamiento considera adecuado para KNN.
- 3. Explique el objetivo de dividir el conjunto de datos disponibles en *Train* y *Test*. Relacione las componentes de error en la descomposición *Sesgo-Varianza-Error irreducible* con éstos subconjuntos de datos.
- 4. Explique las curvas de la Figura 1 indicando qué representa cada una, por qué tienen la forma mostrada y cuál es el objetivo de realizar *Repeated Holdout*.
- 5. Indique qué valor de K elegiría a partir de la Figura 1. Justifique su respuesta.
- 6. A partir de lo mostrado por las curvas de la Figura 2, ¿qué conclusiones se obtienen sobre el desempeño del algoritmo con el valor de K elegido?

Ejercicio 2

Considere los siguientes pseudo-códigos de dos algoritmos de ensemble:

Ensemble A

Entrada: Conjunto de datos de entrenamiento *D* **Salida**: Clasificador ensemble

- **1.** Repetir *K* veces:
 - **1.1.** Muestrear aleatoriamente con reemplazo un subconjunto de entrenamiento *D'* de tamaño *N*=|*D*| a partir de *D*.
 - **1.2.** Entrenar un clasificador base *C* utilizando *D'*.
 - **1.3.** Agregar *C* al conjunto de clasificadores base del ensemble.
- Devolver el clasificador ensemble con voto mayoritario.

Ensemble B

Entrada: Conjunto de datos de entrenamiento *D* **Salida**: Clasificador ensemble

- **1.** Repetir K veces:
 - 1.1. Muestrear aleatoriamente con reemplazo un subconjunto de entrenamiento D' de tamaño N=|D| a partir de D.
 - **1.2.** Seleccionar aleatoriamente un subconjunto de atributos *M* de tamaño *m* (donde *m* es menor al número total de atributos).
 - **1.3.** Entrenar un clasificador base *C* utilizando *D'* y *M*.
 - Agregar C al conjunto de clasificadores base del ensemble.
- Devolver el clasificador ensemble con voto mayoritario.

Se pide:

- 1. Al utilizar el voto mayoritario como clasificador ensemble, ¿en qué aspecto de la descomposición de sesgo-varianza se espera mejorar en comparación con los clasificadores base individuales?
- 2. ¿Qué condiciones se deberían cumplir para que lo postulado en el punto 1. logre efectivamente obtener mejores resultados?
- 3. ¿Cuál es el propósito de la selección aleatoria de subconjuntos de atributos en la construcción del clasificador Ensemble B? Justifique su respuesta.

Ejercicio 3

Se desea predecir si un estudiante pasará o no un examen basado en dos variables: el número de horas de estudio (X_1) y la cantidad de horas de sueño (X_2) la noche anterior al examen. El resultado deseado está representado por la variable Y, donde Y=1 si el estudiante pasa el examen y Y=0 si no lo pasa. Para esto, se utiliza un modelo de regresión logística con la función de decisión dada por $f(X)=\sigma(\beta_0+\beta_1X_1+\beta_2X_2)$, en donde σ representa la función sigmoidea.

A continuación se muestra un pequeño dataset de validación con los resultados obtenidos:

ld	X ₁	X ₂	Υ	f(X)
1	3	4	0	0.03
2	4	5	0	0.11
3	5	5	0	0.24
4	4	7	0	0.30
5	5	6	1	0.37
6	6	6	0	0.59
7	6	7	1	0.72
8	7	6	1	0.78
9	7	8	1	0.92
10	8	7	1	0.94

- 1. Indicar de qué tipo de problema de Machine Learning se trata y qué representa cada una de las columnas de la tabla.
- 2. Realizar un scatterplot de X_1 y X_2 , indicando con un círculo las observaciones para las cuales Y=0 y con una cruz aquellas donde Y=1. Hacer un bosquejo de la curva f(X)=0.5, para esto haga un análisis intuitivo de la ubicación de la curva.
- 3. Para cada uno de los siguientes umbrales [1.0, 0.72, 0.59, 0.37, 0.0] calcular la matriz de confusión para el dataset de validación. Usar la convención en la cual $\hat{Y}=1$ si y sólo si $f(X) \ge umbral$.
- 4. Hacer un gráfico detallado de la curva ROC usando los umbrales mencionados en la parte anterior.
- 5. Calcular el área bajo la curva ROC (AUC-ROC) y determinar qué tan bueno es el rendimiento del modelo en términos de su capacidad para distinguir entre las clases.

Ejercicio 4

Se desea construir un árbol de decisión para predecir si un correo electrónico es spam o no spam, basado en dos atributos: "Longitud del correo" (en palabras) y "Número de enlaces" presentes en el correo. Se dispone de un conjunto de entrenamiento con 50 correos electrónicos, donde 30 son spam y 20 no son spam. Los datos se resumen en las siguientes tablas:

Tabla 1: Longitud del correo

Longitud	Correos	Spam	No Spam
Corto	28	25	3
Largo	22	5	17

Tabla 2: Número de enlaces

Enlaces	Correos	Spam	No Spam
Вајо	25	15	10
Alto	25	15	10

Se pide:

- 1. Describa el procedimiento mediante el cual se elige la pregunta a realizar en el nodo raíz de un árbol de decisión. Indique cuáles son los criterios comúnmente utilizados.
- 2. A partir de las Tablas 1 y 2, ¿qué atributo elige para particionar la raíz del árbol de decisión? Dibuje los dos árboles posibles como ayuda en la justificación de la elección.

Ejercicio 5

Este ejercicio contiene las siguientes preguntas sobre el obligatorio, responder brevemente en un **máximo de media página**:

- 1. ¿Qué métricas de clasificación utilizó y por qué?
- ¿Cuál fue su metodología para seleccionar y validar modelos?
- 3. ¿Qué algoritmos le dieron mejores resultados?