Acto2 - Tema 6

(lunes - 1 punto)

Apellidos y Nombre: Díaz-Alejo León, Stéphane

(IMPORTANTE: todos los cálculos se mostrarán redondeados a tres decimales)

Se proporcionan unas tablas para rellenar, haciendo uso de las filas y columnas que se necesiten

- 1) Dadas las siguientes páginas web y los enlaces entre ellas representadas como un grafo, se pide calcular el pagerank de cada página. Se debe calcular:
- i) la matriz de enlaces,
- ii) la matriz de probabilidades de transición,
- iii) la matriz de probabilidades de transición con teletransporte (utiliza un α =0,15 para el teletransporte),
- iv) las iteraciones para calcular el pagerank. Realiza como máximo 6 iteraciones.

(0,6 puntos)

i) la matriz de enlaces,

	D0	D1	D2	D3	D4
D0	1	0	0	1	1
D1	1	1	0	1	0
D2	1	0	0	0	1
D3	0	0	0	0	0
D4	0	0	0	0	0

ii) la matriz de probabilidades de transición sin teletransporte,

	D0	D1	D2	D3	D4
D0	0.333	0	0	0.333	0.333
D1	0.333	0.333	0	0.333	0
D2	0.5	0	0	0	0.5
D3	0	0	0	0	0
D4	0	0	0	0	0

iii) la matriz de probabilidades de transición con teletransporte (α =0.15)

	D0	D1	D2	D3	D4
D0	0.313	0.03	0.03	0.313	0.313
D1	0.313	0.313	0.03	0.313	0.03
D2	0.455	0.03	0.03	0.03	0.455
D3	0.2	0.2	0.2	0.2	0.2
D4	0.2	0.2	0.2	0.2	0.2

iv) las iteraciones para calcular el pagerank. Realiza como máximo 6 iteraciones.

	d0	d1	d2	d3	d4
t=0	1	0	0	0	0
t=1					
	0.313	0.03	0.03	0.313	0.313
t=2					
	0.246	0.145	0.136	0.233	0.238
t=3					
	0.279	0.151	0.11	0.221	0.238
t=4					
	0.276	0.151	0.108	0.23	0.234
t=5					
	0.275	0.151	0.109	0.229	0.233
t=6					
	0.275	0.151	0.108	0.229	0.233

SOLUCIÓN: π = [0.275 0.151 0.108 0.229 0.233]

2) Dadas las páginas web y los enlaces entre ellas de la pregunta anterior, se pide calcular los valores HUB y AUTHORITY de cada página utilizando la aproximación HITS. Realiza 6 iteraciones normalizando al final. (0,4 puntos)

i) la matriz de enlaces,

	D0	D1	D2	D3	D4
D0	1	0	0	1	1
D1	1	1	0	1	0
D2	1	0	0	0	1
D3	0	0	0	0	0
D4	0	0	0	0	0

ii) HUB y AUTHORITY utilizando la aproximación HITS. Cinco iteraciones normalizando al final.

HUB						
	d0	d1	d2	d3	d4	
t=0	1	1	1	1	1	
t=1	3	3	2	0	0	
t=2	7	6	5	0	0	
t=3	19	17	13	0	0	
t=4	43	37	30	0	0	
t=5	117	102	81	0	0	
Normal	0.39	0.34	0.27	0	0	

AUTHORITY

	d0	d1	d2	d3	d4
t=0	1	1	1	1	1
t=1	3	1	0	2	2
t=2	8	3	0	6	5
t=3	18	6	0	13	12
t=4	49	17	0	36	32
t=5	110	37	0	80	73
Normal	0.367	0.123	0	0.267	0.243

SOLUCIÓN: h= [0.39 0.34 0.27 0 0]

a= [0.367 0.123 0 0.267 0.243]