## Matemática Discreta 2024/2025 - Algoritmo de Prim usando uma tabela adequada

Seja o grafo G=(V,E,W)) com matriz de custos  $W=(w_{ij}),$  com  $i,j\in V,\ ij\in E,$  representado por



Aplicando o algoritmo de Prim determinar uma árvore abrangente de custo mínimo, T, para G.

Notando,  $(ij, w_{ij})$  cada par (aresta, custo),  $e^* = i^*j^*$  a aresta de menor custo, Árvore T o desenho da árvore de custo mínimo obtida em cada Iteração, utiliza-se uma tabela adequada com o cabeçalho:

| Iteração | Vértices 
$$V'$$
 | Arestas  $E'$  |  $(ij, w_{ij}), i \in V', j \in V \setminus V'$  |  $e^* = i^*j^*$  | Árvore  $T = (V', E')$  |

Escolhemos (arbitrariamente) o vértice a para iniciar o algoritmo:

| Iteração | Vértices $V'$             | Arestas $E'$                    | $(ij, w_{ij}),$ $i \in V', j \in V \setminus V'$                            | $e^* = i^* j^*,$ $i^* \in V', j^* \in V \setminus V'$ | Árvore $T = (V', E')$ |
|----------|---------------------------|---------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
| 1        | <i>{a}</i>                | Ø                               | $(\mathbf{ab},1)(ac,5)$                                                     | ab                                                    | $a_{ullet}$           |
| 2        | $\{a,b\}$                 | $\{ab\}$                        | $(ac, 5)$ $(\mathbf{bc}, 4) (bd, 8) (be, 7)$                                | bc                                                    | a                     |
| 3        | $\{a,b,c\}$               | $\{ab,bc\}$                     | (bd, 8) (be, 7)<br>$(cd, 6) (\mathbf{cf}, 2)$                               | cf                                                    |                       |
| 4        | $\{a,b,c,f\}$             | $ ab, bc, \\ cf \}$             | (bd, 8) (be, 7) (cd, 6)<br>$(fd, 9) (\mathbf{fe}, 3) (fg, 12)$              | fe                                                    |                       |
| 5        | $\{a,b,c,f,e\}$           | $\{ab, bc, \\ cf, fe\}$         | (bd, 8) ( <b>cd</b> , <b>6</b> ) $(fd, 9)$ $(fg, 12)$ $(ed, 11)$ $(eg, 10)$ | $\operatorname{cd}$                                   |                       |
| 6        | $\{a,b,c,\ f,e,d\}$       | $\{ab, bc, cf, \\ fe, cd\}$     | $(fg,12)(\mathbf{eg},10)$                                                   | eg                                                    |                       |
| 7        | $\{a, b, c, f, e, d, g\}$ | $\{ab, bc, cf, \\ fe, cd, eg\}$ | PARAR! $V' = V$                                                             |                                                       |                       |

A árvore abrangente de custo mínimo é  $\mathbf{T}(\mathbf{V}', \mathbf{E}') = \mathbf{G}[\mathbf{E}'] = \mathbf{G}[\{\mathbf{ab}, \mathbf{bc}, \mathbf{cf}, \mathbf{fe}, \mathbf{cd}, \mathbf{eg}\}],$ com custo total  $\mathbf{W}(\mathbf{T}) = \mathbf{W}(\mathbf{ab}) + \mathbf{W}(\mathbf{bc}) + \mathbf{W}(\mathbf{cf}) + \mathbf{W}(\mathbf{fe}) + \mathbf{W}(\mathbf{cd}) + \mathbf{W}(\mathbf{eg}) = \mathbf{26}.$