Global Optimisation Applied To Molecular Architecture

by

Wayne John Pullan

A thesis submitted toward the degree of

Doctor of Philosophy

Central Queensland University

Department of Mathematics and Computing

Faculty of Applied Science

November, 1996

Abstract

This thesis addresses the problem of identifying configurations of molecular structures which correspond to the globally minimum potential energy for that structure. Molecular structures arise as a result of non-bonded and bonded atomic interactions and experimental evidence shows that, in the great majority of cases, the potential energy global minimum corresponds to the most stable configuration of the molecular structure. This configuration is of particular importance as it dictates most of the physical properties of the molecular structure.

The potential energy of a molecular structure may be calculated, as a function of the atomic positions, using appropriate molecular models. However, as these give rise to potential energy functions that are typically nonconvex with many local minima, finding the global minima is an extremely difficult problem. For many years this problem has been investigated by chemists and physicists however, in more recent years, researchers from optimisation and computer science have also become involved and, in fact, the minimisation of non-convex potential energy functions arising from molecular conformation or protein folding problems has become one of the most important interdisciplinary problems [43].

This thesis develops and analyses a molecular structure global optimisation method using both deterministic local and stochastic global optimisation techniques within a genetic algorithm based environment. By incorporating different genetic operators, the one basic method was able to globally optimise a number of different types of molecular structures.

From an experimental point of view, the method was particularly successful and found

• all currently accepted global minima for scaled Lennard-Jones atomic

clusters of 2 to 80 atoms.

- two new global minima for 77 and 78 atom scaled Lennard-Jones atomic clusters.
- all currently accepted and some improved global minima for mixed argon-xenon atomic clusters of 7, 13 and 19 atoms. In addition, minima were determined for all remaining clusters in the 2,...,20 atom range.
- all currently accepted global minima for clusters of benzene molecules
 of 2 to 6 molecules and new minima for clusters of 8 to 12 molecules.
- all currently accepted global minima for a two-dimensional model molecular structure where the number of atoms ranged from 3 to 42.
- currently accepted global minima for a number of small molecules.

Of particular importance is that, in determining these global minima, the method always started from randomly generated initial configurations and at no stage used any heuristic information to accelerate the search.

From a theoretical point of view, this thesis presents an analytical comparison of the phenotype crossover operators used in the method with the more standard (genotype) crossover operators normally used in genetic algorithms. This analysis is confirmed with experimental results. In addition, a proof of convergence for the stochastic global optimisation technique used within the genetic algorithm environment and analytical evaluation of all potential energy gradients required by the deterministic local optimiser are presented.

Chapter 1 of this thesis describes the molecular architecture problem and presents a review of local and global optimisation techniques. Chapter

2 describes the development of APSE, the stochastic global optimisation technique used in this study while the results obtained by applying APSE to the pure atomic cluster problem are presented in Chapter 3.

Chapter 4 describes the development of GEM*, the major computational method used in this study. GEM* implements a combination of local optimisation and APSE probabilistic searches within a genetic algorithm based environment. The results obtained by applying GEM* to the pure atomic cluster problem and a theoretical comparison of phenotype genetic crossover operators with more standard genetic crossover operators are presented in Chapter 5.

The results obtained by applying GEM* to mixed argon-xenon atomic cluster problems are described in Chapter 6 while the optimisation of clusters of benzene and water molecules by GEM* is discussed in Chapter 7. Chapter 8 describes the GEM* optimisation results obtained for a model molecular structure and Chapter 9 presents the GEM* optimisation results for a number of small molecules.

A summary and future research directions are presented in Chapter 10 while the appendices contain the analytical derivation of the potential energy gradients required for the implementation of the BFGS local optimiser and tables describing the structures obtained for mixed atomic clusters.

Within this thesis

- Chapter 2 and Sections 3.3.1 and 3.4.1 appeared in the Australian Computer Journal, Vol. 28, No. 4, November 1996.
- Chapter 6 has been accepted for publication by the Journal of Computational Chemistry.
- Sections 4.2, 5.2, 5.3 and 5.4 have been submitted to the Journal of

Global Optimization.

- Section 3.3.2 appeared as Technical Report 95 010, Department of Mathematics and Computing, Central Queensland University.
- Chapter 7 appeared as Technical Report 96 005, Department of Mathematics and Computing, Central Queensland University.
- Chapters 8 and 9 appeared as Technical Report 96 006, Department of Mathematics and Computing, Central Queensland University.

Contents

1	Intr	oducti	on	1
	1.1	Overvi	iew	1
	1.2	Molecu	ılar Architecture	2
		1.2.1	Atomic Clusters	6
		1.2.2	Molecular Clusters	7
		1.2.3	Molecules	9
	1.3	Local	Optimisation	12
	1.4	Global	l Optimisation	13
		1.4.1	Random Search	14
		1.4.2	Simulated Annealing	14
		1.4.3	Genetic Algorithms	15
	1.5	Outlin	ne of Thesis	20
2	AP	SE Con	mputational Method	24
	2.1	Introd	luction	24
	2.2	APS a	and APSE Algorithms	25
	2.3	Conve	ergence of APSE	29
	2.4	Test F	Functions	32
		2.4.1	Beale Function	32
		2.4.2	Goldstein-Price Function	34
		2/2	Postrigin Function	25

		2.4.4	Griewank-2 Function	37
		2.4.5	Variable Dimension Test Function	38
	2.5	Discus	ssion	40
3	APS	SE Op	etimisation of Pure Atomic Clusters	42
	3.1	Introd	duction	42
	3.2	Pure .	Atomic Clusters	43
	3.3	Comp	outational Methods	51
		3.3.1	APSE and Atomic Build-up	53
		3.3.2	APSE and PES Smoothing	54
	3.4	Resul	ts	65
		3.4.1	APSE and Atomic Build-up	65
		3.4.2	APSE and PES Smoothing	65
	3.5	Discu	ssion	67
4	GE	M* C	omputational Method	70
	4.1	Intro	duction	70
	4.2	GEM	* Algorithm	72
	4.3	GEM	* Software	77
	4.4			
	4.4	Discu	assion	78
5			ptimisation of Pure Atomic Clusters	78 80
5		M* 0		80
5	GE	M* O	ptimisation of Pure Atomic Clusters	80
5	GE 5.1	M* O	ptimisation of Pure Atomic Clusters	80 80 80
5	GE 5.1 5.2	M* O Introd GEM Resul	ptimisation of Pure Atomic Clusters duction	80 80 80 84
5	GE 5.1 5.2 5.3	M* O Introd GEM Resul	ptimisation of Pure Atomic Clusters duction	80 80 80 84 94
5	GE 5.1 5.2 5.3	M* O Intro- GEM Resul GEM	ptimisation of Pure Atomic Clusters duction	80 80 80 84 94

	5.5	Discussion	4
6	GEI	M* Optimisation of Mixed Atomic Clusters 10	5
	6.1	Introduction	5
	6.2	Mixed Atomic Clusters	6
	6.3	GEM* Computational Method	9
	6.4	Results	0
	6.5	Discussion	0
7	GE:	M* Optimisation of Molecular Clusters 12	1
	7.1	Introduction	!1
	7.2	Molecular Clusters	22
		7.2.1 Benzene Clusters	23
		7.2.2 Water Clusters	25
	7.3	GEM* Computational Method	29
		7.3.1 Genetic Encoding	29
		7.3.2 Genetic Mutation	31
	7.4	Results	31
		7.4.1 Benzene Clusters	31
		7.4.2 Water Clusters	33
	7.5	Discussion	36
8	GE	M* Optimisation of a Model Molecular Structure 13	37
	8.1	Introduction	37
	8.2	Model Molecular Structure	38
	8.3	GEM* Computational Method	41
		8.3.1 Genetic Encoding	41
		8.3.2 Genetic Crossover	42
		8.3.3 Genetic Mutation	43

	8.4	Results	5	
	8.5	Discuss	sion	,
9	GEN	/I* Opt	timisation of Molecules 147	
	9.1	Introdu	action	,
	9.2	Molecu	les	;
		9.2.1	United Atom Butane)
		9.2.2	Pseudoethane)
		9.2.3	Acetyl Chloride	2
	9.3	GEM*	Computational Method	Ł
		9.3.1	Genetic Encoding	į
		9.3.2	Genetic Mutation	1
	9.4	Results	s	5
		9.4.1	United Atom Butane	5
		9.4.2	Pseudoethane	5
		9.4.3	Acetyl Chloride	5
	9.5	Discuss	sion	5
10	Con	clusior	n 150	6
	10.1	Thesis	Summary	6
		10.1.1	APSE	7
		10.1.2	GEM*	8
		10.1.3	Pure Atomic Clusters	1
		10.1.4	Mixed Atomic Clusters	1
		10.1.5	Benzene Clusters	2
		10.1.6	Water Clusters	2
		10.1.7	Model Molecular Structure	3
		10.1.8	Molecules	3

	10.2	rurtner vvork	T03		
ві	BIBLIOGRAPHY 165				
Al	PPE	NDICES	174		
A	Ana	lytical Energy Gradients	174		
	A.1	Pure Atomic Clusters	174		
	A.2	Mixed Atomic Clusters	175		
	A.3	Benzene Clusters	175		
	A.4	Water Clusters	178		
	A.5	Model Molecular Structure	186		
В	Arg	on-Xenon Clusters	189		

List of Figures

1.1	Optimal structure - 55 atom Lennard-Jones cluster	8
1.2	Optimal structure - benzene tetramer	10
1.3	Octane molecule	11
1.4	GA parameter mappings to objective function	19
2.1	Beale function - effect of λ and β	33
2.2	Beale function - comparison of APS and APSE	33
2.3	Goldstein-Price function - effect of λ and β	34
2.4	Goldstein-Price function - comparison of APS and APSE	35
2.5	Rastrigin function - effect of λ and β	36
2.6	Rastrigin function - comparison of APS and APSE	36
2.7	Griewank-2 function - effect of λ and β	37
2.8	Griewank-2 function - comparison of APS and APSE	38
2.9	Number of minima for $F(x)$	39
2.10	Comparison of APS and APSE for $F(x)$	40
3.1	Scaled Lennard-Jones pair potential	43
3.2	Optimal structures - $N=8,\ldots,13$ atomic clusters	45
3.3	Lennard-Jones and Morse pair potentials	54
3.4	Three atom cluster configuration	56
3.5	Cross-section of PES for $N=3.$	56
3.6	Pair potentials for $v_1(\alpha, r)$	58

3.7	Pair potentials for $v_2(\alpha, r)$	59
3.8	Pair potentials for $v_3(lpha,r)$	59
3.9	PES around global minimum, $N=6, v_3(\alpha, r)$	60
3.10	PES around global minimum, $N=18, v_3(\alpha,r).$	61
3.11	PES around global minimum, $N=29,v_3(\alpha,r).$	61
3.12	Minimal energy structures - $N=29,\ldots,31$ atomic clusters	69
4.1	GEM* processing context	77
5.1	GEM* optimised structure - $N=77$ atomic cluster	84
5.2	GEM* optimised structure - $N = 78$ atomic cluster	85
5.3	Minimum, maximum and average population energies, $N=72$.	85
5.4	Generations required to optimise atomic clusters, $N=2,\ldots,80$.	86
5.5	Multiprocessor scalability of GEM*	87
5.6	Structures found - GEM* optimisation of an $N=18$ cluster.	89
5.7	Structures found - GEM* optimisation of an $N=18$ cluster.	90
5.8	Structures found - GEM* optimisation of an $N=56$ cluster.	91
5.9	Structures found - GEM* optimisation of an $N=56$ cluster.	92
5.10	Structures found - GEM* optimisation of $N=37,38$ clusters.	93
5.11	Initial and final energies for χ_1 crossover	95
5.12	Initial and final energies for χ_2 crossover	95
5.13	Energy trajectories for χ_1 crossover	96
5.14	Energy trajectories for χ_2 crossover	96
5.15	Effect of close atoms on the BFGS optimised energy	97
5.16	Expected number of close atoms from a χ_1 crossover	99
5.17	Expected number of close atoms from a χ_2 crossover	102
5.18	Expected and average number of close atoms for χ_1	103
5.19	Expected and average number of close atoms for χ_2	103

6.1	Lennard-Jones pair potentials for Ar , Xe
6.2	Minimum population energies for $Ar_{10}Xe_{10}$
6.3	Optimised structure for Ar_5Xe_2
6.4	ΔE for $Ar_{7-n}Xe_n$, $Ar_{13-n}Xe_n$ and $Ar_{19-n}Xe_n$
6.5	ΔE for $Ar_{10-n}Xe_n$
6.6	GEM* optimised structures - $Ar_5Xe_5, \ldots, Ar_2Xe_8$ 116
6.7	ΔE for $Ar_{12-n}Xe_n$
6.8	GEM* optimised structures - Ar_1Xe_{11} , Ar_0Xe_{12}
6.9	ΔE for $Ar_{17-n}Xe_n$
6.10	GEM* optimised structures - $Ar_6Xe_{11}, \ldots, Ar_3Xe_{14}, \ldots$ 119
7.1	Intermolecular pair potentials for benzene molecules 124
7.2	Intramolecular pair potentials for water molecules 128
7.3	Intermolecular pair potentials for water molecules 128
7.4	Coulombic potentials for water molecules
7.5	GEM* optimised structures - benzene dimerpentamer 134
7.6	GEM* optimised structures - benzene hexamernonamer 135
7.7	GEM* optimised structures - water dimer and hexamer 136
8.1	Globally optimal $N=61$ model molecular structure 139
8.2	Globally optimal energies - model molecular structure 139
8.3	Changes in optimal energy - model molecular structure 140
8.4	Genetic encoding for the model molecular structure 142
8.5	GEM* optimised structures - model molecular structure 145
8.6	GEM* optimised structures - model molecular structure 146
9.1	Structure of the united atom butane molecule
9.2	Structure of the pseudoethane molecule
QЗ	Structure of the acetyl chloride molecule

List of Tables

2.1	Summary test results for APS and APSE 40
3.1	Minimum energies - atomic clusters, $N=2,\ldots,105.$ 46
3.2	Counts of Lennard-Jones and Morse local minima
3.3	APSE function evaluations required for $N=3,\ldots,20.$ 65
3.4	Energy trajectories for APSE with PES smoothing 66
3.5	Total energy trajectories for APSE with PES smoothing 66
6.1	Lennard-Jones parameters for Ar and Xe pair potentials 106
7.1	Structural parameters for benzene
7.2	Potential energy parameters for benzene
7.3	RWK2 potential parameters
7.4	Optimised potential energy values for benzene clusters 133
7.5	Optimised potential energy values for water clusters 133
8.1	Performance of search methods - model molecular structure 141
8.2	Packed hexagonal energies for the model molecular structure. 144
9.1	Lennard-Jones parameters - pseudoethane
9.2	Local minima for pseudoethane
9.3	Van der Waals parameters for acetyl chloride
94	Acetyl chloride Cartesian coordinates 153

Acknowledgments

I first commenced doctoral studies in optimal control theory and, while investigating optimisation theory in that context, had the good fortune to meet my current supervisor, Professor Graham Wood. I certainly must thank him for introducing me to the fascinating field of molecular optimisation. Over the last few years Graham has been very supportive and encouraging. In particular, his high academic standards and professionalism set a standard which I hope that I have gone some way towards achieving. In addition, I must thank him for the provision of Newton, an IBM RS6000 workstation, without which none of this work would have been possible.

During the course of these studies I had the opportunity to be present at a considerable number of seminars/discussion groups on various aspects of global optimisation. I certainly benefited from these occasions and would like to thank Graham, Dr. Victor Korotkich, Professor Zelda Zabinsky (University of Washington) and Dr. Bill Baritompa (University of Canterbury) for sharing their knowledge.

I also owe a considerable debt to the late Professor John Smith who provided me with the opportunity to come to Central Queensland University and commence these studies. Finally, I would like to acknowledge the support I received from Central Queensland University, in particular the Department of Mathematics and Computing and the Faculty of Applied Science, in providing the resources and time away that were so necessary for this work.

Declaration

All computer software used to produce the results contained in this thesis

is, with the exception of the BFGS local optimiser, the Powell Direction Set

local optimiser and the XMOL software, the work of the candidate.

Except for that attributed to other authors and included for the purpose

of setting the appropriate context, all material in this thesis is the work and

writing of the candidate. Of the material due to the candidate, only the

following has appeared, or is expected to appear, elsewhere:

• Chapter 2 and Sections 3.3.1 and 3.4.1 appeared in the Australian

Computer Journal, Vol. 28, No. 4, November 1996.

• Chapter 6 has been accepted for publication by the Journal of Com-

putational Chemistry.

• Sections 4.2, 5.2, 5.3 and 5.4 have been submitted to the Journal of

Global Optimization.

Section 3.3.2 appeared as Technical Report 95 − 010, Department of

Mathematics and Computing, Central Queensland University.

• Chapter 7 appeared as Technical Report 96 - 005, Department of

Mathematics and Computing, Central Queensland University.

• Chapters 8 and 9 appeared as Technical Report 96 - 006, Department

of Mathematics and Computing, Central Queensland University.

Wayne Pullan (C9302023X)

Whill

χv