02 范畴当中的箭头

LATEX Definitions are here.

沿用上一节提到的自由变量。我们规定:

• $c_1 \stackrel{c}{\rightarrow} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

i Note

上述断言仅对于**局部小范畴**成立 , 其他范畴里 $\mathbf{c}_1 \overset{\mathsf{c}}{\to} \mathbf{c}_2$ 未必构成集 。

范畴 C 中特定的箭头可以进行复合运算:

如果我们还知道箭头 f_1 , i , f_2 分别属于 $c_1' \overset{c}{\to} c_1$, $c_1 \overset{c}{\to} c_2$, $c_2 \overset{c}{\to} c_2'$ 那么便可知

• $(f_1 \circ i) \circ f_2 = f_1 \circ (i \circ f_2)$, 即箭头复合运算具有**结合律**。

另外固定住一侧实参便可获得新的函数:

•
$$(f_1 \overset{\mathsf{C}}{\circ} _) : (\mathsf{c}_1 \overset{\mathsf{C}}{\to} _) \xrightarrow{\mathsf{C} \overset{\mathsf{C}}{\to} \mathsf{Set}} (\mathsf{c}_1' \overset{\mathsf{C}}{\to} _)$$

称作**前复合** 。下图有助于形象理解

• $(_ \circ f_2) : (_ \xrightarrow{\mathsf{C}} \mathsf{c}_2) \xrightarrow{\mathsf{C} \xrightarrow{\mathsf{Set}}} (_ \xrightarrow{\mathsf{C}} \mathsf{c}_2')$ • $(_ \circ f_2) : (_ \xrightarrow{\mathsf{C}} \mathsf{c}_2) \xrightarrow{\mathsf{C}} (i \circ f_1)$

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1 \circ _)^{\stackrel{\mathsf{C}}{\circ} \to \mathsf{Set}} \circ (_ \circ f_2) = (_ \circ f_2)^{\stackrel{\mathsf{C}}{\circ} \to \mathsf{Set}} \circ (f_1 \circ _)$ 复合运算具有**结合律**,即后面提到的**自然性**;
- $(-\circ i)^{\overset{\mathsf{C}}{\longrightarrow}\mathsf{Set}}(-\circ f_2) = (-\circ (i\circ f_2))$ 前复合与复合运算的关系
- $(i \overset{\mathsf{C}}{\circ} _) \overset{\mathsf{C}\overset{\mathsf{Cat}}{\longrightarrow} \mathsf{Set}}{\circ} (f_1 \overset{\mathsf{C}}{\circ} _) = ((f_1 \overset{\mathsf{C}}{\circ} i) \overset{\mathsf{C}}{\circ} _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

 $ullet c_1 i = c_1 \overset{\mathsf{c}}{\circ} i$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

•
$$c_1 \operatorname{id} : c_1 \xrightarrow{\mathsf{C}} c_1$$
 $c_1 \mapsto c_1$

如此我们便可以得出下述重要等式:

•
$$_{:c_1} \operatorname{id} \overset{\mathsf{C}}{\circ} \boldsymbol{i} = \boldsymbol{i}$$

$$= \boldsymbol{i} \overset{\mathsf{C}}{\circ} \cdot _{:c_2} \operatorname{id}$$

此外还可以得知

- $(:c_1 id \circ _) : (c_1 \xrightarrow{C} _) \xrightarrow{c \xrightarrow{C} Set} (c_1 \xrightarrow{C} _)$ 为恒等自然变换,可以记成是 $:(c_1 \xrightarrow{C} _) id$; $(_ \circ :c_2 id) : (_ \xrightarrow{C} c_2) \xrightarrow{c \xrightarrow{C} Set} (_ \xrightarrow{C} c_2)$
- 为恒等自然变换 , 可以记成是 $\frac{c}{(c-c)}$ c,) id 。

单满态以及同构

接下来给出单/满态和同构的定义。

• i 为**单态**当且仅当对任意 \mathbf{c}_1' 若有 f_1 , f_1' : $\mathbf{c}_1' \overset{\mathsf{c}}{\to} \mathbf{c}_1$ 满足 $f_1 \overset{\mathsf{c}}{\circ} i = f_1' \overset{\mathsf{c}}{\circ} i$ 则有 $f_1 = f_1'$ 。详情见下图:

• i 为**满态**当且仅当对任意 c_2' 若有 f_2 , f_2' : $\mathsf{c}_2 \overset{\mathsf{c}}{ o} \mathsf{c}_2'$ 满足 $i \overset{\mathsf{c}}{\circ} f_2 = i \overset{\mathsf{c}}{\circ} f_2'$ 则有 $f_2 = f_2'$ 。详情见下图:

• i 为**同构**当且仅当存在 i': $c_2 \stackrel{c}{\rightarrow} c_1$ 使得 $i \circ i' = {}_{:c_1} id$ 且 $i' \circ i = {}_{:c_{\epsilon}} id$ 。 此时 c_1, c_2 间的关系可记作 $c_1 \cong c_2$ 。

若还知道 $i=i_1$ 且 i_2 : $c_2\stackrel{\mathsf{c}}{\to} c_3$ 则有

- 若 i₁, i₂ 为单态
 则 i₁ ° i₂ 为单态;
- 若 i₁, i₂ 为满态
- 若 👣 , 👣 为同构 则 $\overline{i_1} \stackrel{\mathsf{C}}{\circ} \overline{i_2}$ 为同构 ;
- 若 i₁ ° i₂ 为同构 且 i_1 , i_2 中有一个为同构 则 i_1 , i_2 两者皆构成同构 。

不仅如此我们还可以得出下述结论:

- c₁ 为单态, 由 $:c_1!$ 的唯一性可知;
- _{:0}! = _{:1};为同构, 因为 $0 \stackrel{c}{\rightarrow} 0 = \{ :_0 \mathrm{id} \}$ 并且 $1\stackrel{\mathsf{C}}{ o} 1 = \{:_1\mathrm{id}\}$

同构与自然性

下图即为自然性对应的形象解释。 后面会将自然性进行进一步推广。

现提供自然变换 η_2 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $\mathbf{f}: (\mathbf{c}' \xrightarrow{\mathbf{c}} \mathbf{c})$ 都有 $(\mathbf{f} \xrightarrow{\mathbf{c}} \mathbf{c}_2) \overset{\text{Set}}{\circ} \mathbf{c}'^{\frac{\mathbf{\eta}_2}{2}} = \mathbf{c}^{\frac{\mathbf{\eta}_2}{2}} \overset{\text{Set}}{\circ} (\mathbf{f} \xrightarrow{\mathbf{c}} \mathbf{c}'_2):$

那么我们便会有下述结论:

• $c_2 \stackrel{c}{\cong} c_2'$ 当且仅当对任意 C 中的对象 c $c^{\frac{\eta_2}{2}}$ 都是同构 。此时称 $\frac{\eta_2}{2}$ 为**自然同构** 。

现提供自然变换 η_1 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $\mathbf{f}: \mathbf{c} \xrightarrow{\mathsf{C}} \mathbf{c}'$ 都有 $(\mathbf{c}_1 \xrightarrow{\mathsf{C}} \mathbf{f}) \overset{\mathsf{Set}}{\circ} \mathbf{c}'^{\mathbf{\eta}_1} = \mathbf{c}^{\mathbf{\eta}_1} \overset{\mathsf{Set}}{\circ} (\mathbf{c}_1' \xrightarrow{\mathsf{C}} \mathbf{f}):$

那么我们便会有下述结论:

• $c_1 \overset{c}{\cong} c_1'$ 当且仅当对任意 C 中的对象 c c^{η_1} 都是同构 。此时称 η_1 为**自然同构** 。

上一页的第一条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_2 :

为了方便就用 etc 表示 $c_2 \operatorname{id}(\mathbf{c}^{\eta_2})$ 。由上图 $\mathbf{f}(\mathbf{c}'^{\eta_2}) = (\mathbf{f} \circ \operatorname{etc})$ 右图底部和右侧箭头,故 $\mathbf{c}'^{\eta_2} = \mathbf{c}' \to \operatorname{etc}$ 注意到箭头 $\mathbf{f} : \mathbf{c}' \to \mathbf{c}$;而 $\mathbf{c}'^{\eta_2} = \mathbf{c}' \to \operatorname{etc} = \mathbf{c}'^{(-\operatorname{oetc})}$ 始终是同构故 $\operatorname{etc} : \mathbf{c}_2 \to \mathbf{c}_2'$ 也是同构。

高亮部分省去了部分推理过程, 具体在**米田嵌入**处会详细介绍。

上一页的第二条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_1 :

为了方便就用 etc 表示 $_{:c_1}id(c^{\eta_1})$ 。由上图 知 $f(c'^{\eta_1}) = (\text{etc} \circ f)$ 右图底部和右侧箭头,故 $c'^{\eta_1} = \text{etc} \circ c'$ 注意到箭头 $f: c \circ c'$;而 $c'^{\eta_1} = \text{etc} \circ c' = c'^{(\text{etc} \circ _)}$ 始终是同构 故 $etc: c_1 \circ c'_1$ 也是同构 。

高亮部分省去了部分推理过程, 具体在**米田嵌入**处会详细介绍。