Crux

Published by the Canadian Mathematical Society.

http://crux.math.ca/

The Back Files

The CMS is pleased to offer free access to its back file of all issues of Crux as a service for the greater mathematical community in Canada and beyond.

Journal title history:

- The first 32 issues, from Vol. 1, No. 1 (March 1975) to Vol. 4, No.2 (February 1978) were published under the name *FUREKA*.
- Issues from Vol. 4, No. 3 (March 1978) to Vol. 22, No. 8 (December 1996) were published under the name Crux Mathematicorum.
- Issues from Vol 23., No. 1 (February 1997) to Vol. 37, No. 8 (December 2011) were published under the name Crux Mathematicorum with Mathematical Mayhem.
- ➤ Issues since Vol. 38, No. 1 (January 2012) are published under the name *Crux Mathematicorum*.

EUREKA

Vol. 1, No. 6

August, 1975

Sponsored by Carleton-Ottawa Mathematics Association Mathématique d'Ottawa-Carleton

Published at

Algonquin College Ottawa, Ontario

Léo Sauvé, Editor

Editorial Correspondence

Send all communications to the editor:

Léo Sauvé
Math-Architecture
Algonquin Colege
Colonel By Campus
281 Echo Drive
Ottawa, Ontario
K1S 5G2

Notice

Since Léo Sauvé was on vacation during the month of July, the present edition of EUREKA was prepared by John Thomas, Jacques Marion and G. D. Kaye.

PROBLEMS -- PROBLÈMES

Problem proposals, preferably accompanied by a solution, should be sent to the editor, whose address appears on page 47.

Solutions to the problems appearing in this issue, if available, will appear in EUREKA NO. 9 to be published around November 15, 1975. To facilitate their consideration, your solutions, typewritten or neatly handwritten on signed separate sheets, should be mailed to the editor no later than 1 October 1975.

51. Proposed by H.G. Dworschak, Algorquin College. Solve the following equation for the positive integers x and y:

$$(360 + 3x)^2 = 492, y04$$
.

- 52. Proposed by Viktors Linis, University of Ottawa.

 The sum of one hundred positive integers, each less than 100, is 200. Show that one can select a partial sum equal to 100.
- 53. Proposé par Léo Sauvé, Collège Algonquin. Montrer que la somme de tous les entiers positifs inférieurs à 10n qui ne sont pas des multiples de 2 ou 5 est $20n^2$.
 - 54. Proposé par Léo Sauvé, Collège Algonquin. Si a, b, c>o et a < b + c, montrer que

$$\frac{a}{1+a} < \frac{b}{1+b} + \frac{c}{1+c} .$$

- 55. Proposed by Viktors Linis, University of Ottawa. What is the last digit of $1+2+\ldots+n$ if the last digit of $1^3+2^3+\ldots+n^3$ is 1?
- 56. Proposed by F.G.B. Maskell, Algonquin College. The area of a triangle in terms of its sides is $\sqrt{s(s-a)(s-b)(s-c)}$, where 2s=a+b+c. What is the area in terms of its medians m_1, m_2, m_3 ?

- 57. Proposé par Jacques Marion, Université d'Ottawa. Soit G un groupe d'ordre p^n ou p est premier et $p \ge n$. Si H est un sous-groupe d'ordre p alors H est normal dans G.
 - 58. Proposé par Jacques Marion, Université d'Ottawa. Soit $f\colon \{z: Rez=o\} \longrightarrow R$ une fonction continue et bornée. Si l'on définit $\mu: \{z: Rez>o\} \longrightarrow R$ par

$$\mu(z) = \mu(x+iy) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x \int_{-\infty}^{+\infty} \frac{x \int_{-\infty}^{+\infty} \frac{x}{x^2 + (y-t)^2}}{x^2 + (y-t)^2} dt$$

montrer que $f(ic) = \lim_{z \to ic} \mu(z)$.

59. Proposed by John Thomas.

Find the shortest proof to the following proposition: every open subset of $\ensuremath{\mathbb{R}}$ is a countable disjoint union of open intervals.

60. Proposé par Jacques Marion, Université d'Ottawa. Soit f une fonction analytique sur le disque fermé $\overline{\mathcal{B}}(o,R)$ telle que |f(z)| < M, et |f(o)| = a > o. Montrer que le nombre de zéros de f dans $\overline{\mathcal{B}}(o,R)$ est inférieur ou égal à $\frac{1}{\log 2}$ $\log \frac{M}{a}$.

Une Note Concernant Le Problème 10.

par J. Marion

On démontre de façon plus générale que la fonction $e^{\lambda z}$ - p(z), où p(z) est un polynôme, possède une infinité de zéros.

<u>Démonstration</u>: Posons $\{(z) = e^{\lambda z} - p(z)\}$. Cette fonction est entière. D'Après le théorème de factorization d'Hadamard on peut écrire $\{(z) = z^m \exp(g(z)) \ P(z), \text{ où } g(z) \text{ est un polynôme de dégré inférieur ou égal à l'ordre exponentiel de <math>\{(z) \text{ et } P(z) = \prod_{n=1}^{\infty} \mathbb{E}_{p}(z/a_n) \text{ est le } n=1$

produit canonique de Weierstrass correspondant aux zéros a_1 , a_2 , ... de $\{(z)\}$.

(Voir J.B. Conway, "Functions of One Complex Variable", Springer Verlag, 1973, p. 164-165, p. 285-291). En particulier si $\{(z)\}$ ne possède qu'un nombre fini de zéros, P(z) devient alors un polynôme. De plus l'ordre exponential de $\{(z)\}$ est egal à l (puisque l'ordre d'un polynôme est 0). Donc on peut écrire $\{(z)\}$ = $\{(exp\{cx)\}\}$ $P_{o}(z)$, ou $P_{o}(z)$ est le polynôme z^{m} $P\{z\}$ et c une constante. Par dérivée logarithmique on obtient

$$\frac{\lambda e^{\lambda z} - p'(z)}{e^{\lambda z} - p(z)} = \frac{P'_0(z)}{P_0(z)} + c,$$

ce qui implique que $e^{\lambda z}$ est une fonction rationnelle. Cette contradiction prouve l'existence d'une infinité de zéros de $\{(z)\}$.

CLASSR<u>O</u>OM NOTES

Convergence of "P" Series with Missing Terms

by J. THOMAS

Let k and q be integers with $q\geqslant 2$ and $o\leqslant k\leqslant q-1$. For any subset D_k consisting of k elements of the set of q-adic digits $\{o,1,\ldots,q-1\}$ let E_k denote the set of numbers whose q-adic representations do not involve any of the digits of D_k .

THEOREM. The Exponent of Convergence, α , of the Series $\sum_{n \in E_k} \frac{\sum_{n \in E_k} n^{-p}}{\ell n \cdot q}$

The proof of this theorem will involve properties of growth of the counting functions $\mathrm{E}(x) = \Sigma \ 1$.

n<x neE

Before proceeding we will simplify our notation as follows: if E is an infinite set of positive integers and x and p real numbers with $x\geqslant 1$ we write

$$E(x) = \sum_{n < x} X_{E}(n)$$
 and $L_{E}(p, x) = \sum_{n < x} \frac{X_{E}(n)}{n^{p}}$,

where X_E is the characteristic function of E, that is, the arithmetical function defined by $X_E(n)=1$ if $n\in E$ and $X_E(n)=o$ otherwise.

If p < o, $\lim_{E} L_E(p,x) = +\infty$ so we shall restrict our attention to positive values of p and write $\lim_{X \to +\infty} L_E(p,x) = L(p,E)$.

If f, g and h are positive real-valued function then by writing

$$\{(x, \varepsilon) \leqslant g(x) \leqslant h(x, \varepsilon)\}$$

we shall mean that given ϵ > 0, there exists positive constants η_ϵ and μ_ϵ such that

$$\eta_{\varepsilon} \ \{(x,\varepsilon) < g(x) < \mu_{\varepsilon} \ h(x,\varepsilon)$$

for all $x \ge 1$.

<u>LEMMA</u> If E is an infinite set of positive integers and α a positive real constant such that

$$(1) x^{\alpha-\varepsilon} \leqslant_{\varepsilon} E(x) \leqslant_{\varepsilon} x^{\alpha+\varepsilon}$$

then α is the exponent of convergence of the series

$$L(p,E) = \sum_{m \in E} \frac{1}{m^{p}}$$

<u>PROOF</u> From the definition of the Riemann-Stieltjes integral we can write

$$L_{E}(p,x) = \int_{1}^{x} t^{-p} dE(t) .$$

Upon integrating by parts we therefore obtain

(2)
$$L_{E}(p,x) = \frac{E(x)}{r^{p}} + p \int_{1}^{x} t^{-p-1} E(t) dt$$

Now let $\varepsilon > \varepsilon_1 > 0$ and set $p = \alpha + \varepsilon$.

From Relation (1) we have

$$\frac{E(x)}{x^p} < \mu_{\varepsilon} \quad \text{for all } x > 1,$$

and

$$\int_{1}^{x} t^{-p-1} E(t) dt = \int_{1}^{x} t^{-(\alpha+\epsilon_{1}+\epsilon-\epsilon_{1})-1} \cdot E(t) dt$$

$$\leq \mu_{\varepsilon_1} \int_{1}^{x} t^{-(\varepsilon - \varepsilon_1) - 1} dt$$

$$< \mu_{\varepsilon_1} \int_{1}^{\infty} t^{-(\varepsilon - \varepsilon_1) - 1} dt$$

$$= \mu_{\varepsilon_1} \frac{1}{\varepsilon - \varepsilon_1} < + \infty.$$

Thus both terms on the R.H.S. of Relation (2) are bounded. Therefore $L_{\mathcal{E}}(p,x)$ is bounded and since it increases with x it follows that

(3)
$$\lim_{x \to +\infty} L_{E}(p,x) < +\infty$$

Now set
$$p = \alpha - \epsilon$$
. Again from Relation (1)
 $x - (\alpha - \epsilon) - 1$

$$\int_{1}^{x - (\alpha - \varepsilon) - 1} E(t) dt > \eta_{\varepsilon} \ln x , x \ge 1$$

and therefore (in view of Relation (2)),

(4)
$$\lim_{x\to\infty} L_E(p,x) = +\infty$$
.

From Relations (3) and (4) we deduce the lemma.

<u>PROOF OF THE THEOREM</u> We shall establish inequalities of the form (1) for the function $E_b(x)$.

Observe that for each n the number of q-adic representations $a_n q^n + a_{n-1} q^{n-1} + \ldots + a_1 q + a_0$, $a_j \in \{0, 1, \ldots, q-1\} \setminus \mathcal{D}_k$,

is $(q-k)^{n+1}$. Therefore with $x=q^u$ where $u \in \mathbb{R}$,

$$E_k(x) = E_k(q^u) \le E_k(q^{[u]+1}) \le (q-k)^{u+1},$$

and

$$E_k(x) = E_k(q^u) \ge E_k(q^{[u]}) \ge (q-k)^{u-1}$$

setting $\alpha = \frac{\ln(q-k)}{\ln q}$ in the identity

$$(q-k)^{u} = (q^{u}) \frac{\ln(q-k)}{\ln q},$$

we can write the preceding inequalities in the form

(5)
$$(q-k)^{-1} x^{\alpha} \le E_b(x) \le (q-k)x^{\alpha}, x \ge 1.$$

Applying the lemma to the set of inequalities (5) we conclude that α is the exponent of convergence of the series $L(p, E_b)$. Q.E.D.

<u>REMARK</u> If we apply the set of inequalities (5) to Relation (2) we obtain another set of inequalities, namely,

$$(q-k)^{-1}(1+\alpha \ln x) \leq L_{E_k}(\alpha,x) \leq (q-k)(1+\alpha \ln x), x \geqslant 1,$$

from which we can conclude that

$$n\varepsilon E_{k} \frac{1}{n^{\alpha}} = + \infty.$$