SBML Model Report

Model name: "Sass2009 - Approach to an -synuclein-based BST model of Parkinson's disease"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Audald Lloret i Villas¹ at April thirteenth 2015 at 5:26 p.m. and last time modified at April 14th 2015 at 2:38 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	5
species types	0	species	76
events	0	constraints	0
reactions	58	function definitions	7
global parameters	245	unit definitions	3
rules	13	initial assignments	0

Model Notes

Sass2009 - Approach to an-synuclein-based BST model of Parkinson's disease

This model is described in the article: A pragmatic approach to biochemical systems theory applied to an alpha-synuclein-based model of Parkinson's disease. Sass MB, Lorenz AN, Green RL, Coleman RA.J. Neurosci. Methods 2009 Apr; 178(2): 366-377

¹EMBL-EBI, lloret@ebi.ac.uk

Abstract:

This paper presents a detailed systems model of Parkinson's disease (PD), developed utilizing a pragmatic application of biochemical systems theory (BST) intended to assist experimentalists in the study of system behavior. This approach utilizes relative values as a reasonable initial estimate for BST and provides a theoretical means of applying numerical solutions to qualitative and semi-quantitative understandings of cellular pathways and mechanisms. The approach allows for the simulation of human disease through its ability to organize and integrate existing information about metabolic pathways without having a full quantitative description of those pathways, so that hypotheses about individual processes may be tested in a systems environment. Incorporating this method, the PD model describes alpha-synuclein aggregation as mediated by dopamine metabolism, the ubiquitin-proteasome system, and lysosomal degradation, allowing for the examination of dynamic pathway interactions and the evaluation of possible toxic mechanisms in the aggregation process. Four system perturbations: elevated alpha-synuclein aggregation, impaired dopamine packaging, increased neurotoxins, and alpha-synuclein overexpression, were analyzed for correlation to qualitative PD system hypotheses present in the literature, with the model demonstrating a high level of agreement with these hypotheses. Additionally, various PD treatment methods, including levadopa and monoamine oxidase inhibition (MAOI) therapy, were applied to the disease models to examine their effects on the system. Future additions and refinements to the model may further the understanding of the emergent behaviors of the disease, helping in the identification of system sensitivities and possible therapeutic targets.

This model is hosted on BioModels Database and identified by: BIOMD0000000575.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition dimensionless

2.2 Unit time

Name time

Definition dimensionless

2.3 Unit substance

Name substance

Definition dimensionless

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains five compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Neuronal_cytosol	Neuronal cytosol		3	1	dimensionless	\checkmark	
Vesicle	Vesicle		3	1	dimensionless	$\overline{\checkmark}$	
Autophagosome	Autophagosome		3	1	dimensionless		
Proteasome	Proteasome		3	1	dimensionless		
Lysosome	Lysosome		3	1	dimensionless		

3.1 Compartment Neuronal_cytosol

This is a three dimensional compartment with a constant size of one dimensionless.

Name Neuronal cytosol

3.2 Compartment Vesicle

This is a three dimensional compartment with a constant size of one dimensionless.

Name Vesicle

3.3 Compartment Autophagosome

This is a three dimensional compartment with a constant size of one dimensionless.

Name Autophagosome

3.4 Compartment Proteasome

This is a three dimensional compartment with a constant size of one dimensionless.

Name Proteasome

3.5 Compartment Lysosome

This is a three dimensional compartment with a constant size of one dimensionless.

Name Lysosome

4 Species

This model contains 76 species. The boundary condition of 28 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Protofibril	Protofibril	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹	В	
Fibril	Fibril	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1		
Lewy_body	Lewy_body	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Dopamine	Dopamine	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
ОН	ОН-	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1		
OH_radical	OH_radical	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
H202	H2O2	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1		
Ubiquitin	Ubiquitin	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
E1	E1	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Ub_E1	Ub-E1	${ t Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
UbcH8	UbcH8	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
UbcH8_Ub	UbcH8-Ub	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Parkin	Parkin	${\tt Neuronal_cytosol}$	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Parkin_sub	Parkin-sub	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Parkin_synphilin- _1	Parkin-synphilin-1	${\tt Neuronal_cytosol}$	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Parkin_synphilin- _1_ub	Parkin-synphilin-1-ub	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Parkin_sub_ub4	Parkin-sub-ub4	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Fragments	Fragments	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
UCH_L1	UCH-L1	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
L_Dopa	L-Dopa	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
DOPAL	DOPAL	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
DOPAC	DOPAC	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
GSH	GSH	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹	В	
GSSG	GSSG	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Fe2	Fe2+	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Fe3	Fe3+	${\tt Neuronal_cytosol}$	$\begin{array}{c} \text{dimensionless} \\ \text{dimensionless}^{-1} \end{array}$		
UbcH8ub2	UbcH8ub2	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹		
UbcH8ub3	UbcH8ub3	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	\Box	
UbcH8ub4	UbcH8ub4	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1	\Box	
UbcH13_Uev1a	UbcH13/Uev1a	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹	\Box	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
asyn_UCH_L1	asyn-UCH-L1	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1		
asyn_ub	asyn-ub	${\tt Neuronal_cytosol}$	dimensionless · dimensionless -1		
Protofibril_UCH- _L1	Protofibril-UCH-L1	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Protofibril_Ub	Protofibril-Ub	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹	В	В
Hsc70_asyn	Hsc70-asyn	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Hsc70_Protofibril	Hsc70-Protofibril	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Hsc70_fibril	Hsc70-fibril	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Hsc70	Hsc70	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
DA_S_parkin	DA-S-parkin	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
02	O2-	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
DA_GSH	DA-GSH	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Neuromelanin	Neuromelanin	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Neuromelanin- _ntox_Fe3	Neuromelanin-ntox-Fe3+	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Alpha_synuclein	Alpha_synuclein	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
ATP	ATP	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Synphilin_1	Synphilin-1	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Substrate	Substrate	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	Ø
ТН	TH	${\tt Neuronal_cytosol}$	dimensionless dimensionless $^{-1}$. 🗹	
L_Tyr	L-Tyr	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	
CO2	CO2	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	
Neurotoxins	Neurotoxins	${\tt Neuronal_cytosol}$	dimensionless dimensionless $^{-1}$. 🗹	
Bioamines	Bioamines	${\tt Neuronal_cytosol}$	dimensionless dimensionless $^{-1}$. 🗹	
VMAT2	VMAT2	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	
02_0	O2	${\tt Neuronal_cytosol}$	dimensionless dimensionless $^{-1}$. 🗹	
MAO	MAO	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	
NH3	NH3	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	· Z	
ALDH	ALDH	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	
NAD	NAD+	${\tt Neuronal_cytosol}$	dimensionless dimensionless $^{-1}$		
NADH	NADH	${\tt Neuronal_cytosol}$	dimensionless dimensionless ⁻¹	. 🗹	

10

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Catalase	Catalase	Neuronal_cytosol	dimensionless · dimensionless ⁻¹	Ø	Ø
H20	H2O	${\tt Neuronal_cytosol}$	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Gluta_per	Gluta_per	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
Gluta_red	Gluta_red	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
DDC	DDC	${\tt Neuronal_cytosol}$	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
Preautophagosome- membrane	Preautophagosome_membrane	${\tt Neuronal_cytosol}$	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
SOD	SOD	Neuronal_cytosol	dimensionless · dimensionless ⁻¹		
Cysteine	Cysteine	${\tt Neuronal_cytosol}$	dimensionless · dimensionless ⁻¹		
V_DA	V-DA	Vesicle	dimensionless · dimensionless ⁻¹		
V_ntox_ba	V-ntox-ba	Vesicle	dimensionless · dimensionless ⁻¹		
Vesicle_0	Vesicle	Vesicle	dimensionless · dimensionless ⁻¹	\mathbf{Z}	
Autophagosome_0	Autophagosome	Autophagosome	dimensionless · dimensionless ⁻¹		
Proteasome_0	Proteasome	Proteasome	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Lysosome_0	Lysosome	Lysosome	$\begin{array}{c} \text{dimensionless} & \cdot \\ \text{dimensionless}^{-1} \end{array}$	Ø	

5 Parameters

This model contains 245 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
g11	g11	1.000	Ø
p186	p186	0.500	
p110	p110	1.000	
p19	p19	1.000	\square
p18	p18	1.000	
k1	k1	0.030	
g22	g22	1.000	\square
p286	p286	0.250	\square
p210	p210	0.500	
p29	p29	0.500	
p28	p28	0.500	
i26	i26	-1.000	
k2	k2	0.010	
g326	g326	1.000	\square
g23	g23	1.000	\square
k3	k3	0.007	\mathbf{Z}
k4	k4	0.900	
i41	i41	-0.010	\square
i42	i42	-0.010	\square
i43	i43	-0.010	\mathbf{Z}
g412	g412	1.000	
g415	g415	1.000	\square
g427	g427	1.000	
g430	g430	1.000	
k6	k6	0.500	
g613	g613	1.000	
g614	g614	1.000	
g615	g615	1.000	
k7	k7	0.030	
g715	g715	1.000	
g716	g716	1.000	
g717	g717	1.000	
k8	k8	0.001	
g819	g819	1.000	
g821	g821	1.000	
k9	k9	0.001	
g919	g919	1.000	

onstant	Unit	Value	SBO	Name	Id
		1.000		g920	g920
		0.050		k10	k10
		1.000		g1025	g1025
		1.000		g1072	g1072
		0.050		k11	k11
		1.000		g1124	g1124
		1.000		g1170	g1170
		0.100		k13	k13
		-0.010		i131	i131
		-0.010		i1310	i1310
		1.000		g1335	g1335
		1.000		g1336	g1336
		1.000		g1351	g1351
		3.000		k14	k14
		1.000		g1437	g1437
$\overline{\mathbf{Z}}$		1.000		g1467	g1467
$\overline{\mathbf{Z}}$		0.200		k15	k15
$\overline{\mathbf{Z}}$		-0.100		i152	i152
$\overline{\mathbf{Z}}$		1.000		g156	g156
$\overline{\mathbf{Z}}$		1.000		g1544	g1544
$\overline{\mathbf{Z}}$		1.000		g1545	g1545
$\overline{\mathbf{Z}}$		10^{-4}		k16	k16
$\overline{\mathbf{Z}}$		1.000		g1643	g1643
$\overline{\mathbf{Z}}$		1.000		g1644	g1644
$\overline{\mathbf{Z}}$		10^{-4}		k17	k17
$\overline{\mathbf{Z}}$		1.000		g1742	g1742
$\overline{\mathbf{Z}}$		1.000		g1744	g1744
$\overline{\mathbf{Z}}$		0.020		k18	k18
$\overline{\mathbf{Z}}$		1.000		g186	g186
$\overline{\mathbf{Z}}$		1.000		g1851	g1851
$\overline{\mathbf{Z}}$		0.010		k19	k19
		1.000		g196	g196
		1.000		g1951	g1951
$\overline{\mathbf{Z}}$		1.000		g1953	g1953
		1.000		g1960	g1960
$ \mathbf{Z} $		0.100		k20	k20
$ \mathcal{I} $		1.000			
$ \mathcal{I} $		1.000		g2065	
		0.100		k21	k21
$ \mathbf{Z} $		1.000			
$ \mathbf{Z} $		0.500		k22	k22
		1.000 1.000 0.100 1.000		g209 g2065 k21 g2166	g209 g2065 k21 g2166

Id	Name	SBO	Value	Unit	Constant
g2259	g2259		1.000		
k23	k23		0.500		
g239	g239		1.000		
g2361	g2361		1.000		
g2362	g2362		1.000		
k24	k24		1.000		
g2463	g2463		1.000		$ \overline{\mathbf{Z}} $
g2464	g2464		1.000		$ \overline{\mathbf{Z}} $
k25	k25		0.050		
g2552	g2552		1.000		$\overline{\mathbf{Z}}$
g2555	g2555		0.300		$\overline{\mathbf{Z}}$
g2556	g2556		0.250		$\overline{\mathbf{Z}}$
k26f	k26f		0.050		$\overline{\mathbf{Z}}$
g26f15	g26f15		1.000		$\overline{\mathbf{Z}}$
g26f16	g26f16		1.000		$\overline{\mathbf{Z}}$
g26f18	g26f18		1.000		Z
k26r	k26r		0.005		\mathbf{Z}
g26r30	g26r30		1.000		
g26r68	g26r68		1.000		
k27f	k27f		0.050		
g27f15	g27f15		1.000		\mathbf{Z}
g27f16	g27f16		1.000		
g27f68	g27f68		1.000		
k27r	k27r		0.005		
g27r30	g27r30		1.000		
g27r69	g27r69		1.000		
k28f	k28f		0.050		
g28f15	g28f15		1.000		
g28f16	g28f16		1.000		
g28f69	g28f69		1.000		$ \mathbf{Z} $
k28r	k28r		0.005		
g28r30	g28r30		1.000		
g28r70	g28r70		1.000		
k29	k29		0.050		
g2915	g2915		1.000		
g2916	g2916		1.000		
g2971	g2971		1.000		Z
k30	k30		0.001		Z
g301	g301		1.000		∠ ∠
g3030	g3030		1.000		∠ ∠
k31	k31		0.050		∠ ∠
g3172	g3172		1.000		≥ ≥
80112	53112		1.000		

Id	Name	SBO Value	Unit Constant
g3173	g3173	1.000	
k32	k32	0.001	$\overline{\checkmark}$
g321	g321	1.000	$ \mathbf{Z} $
p328	p328	0.100	
p329	p329	0.100	\square
p3210	p3210	0.100	\square
p3286	p3286	0.050	\square
g3274	g3274	1.000	\square
k33	k33	0.001	\square
g332	g332	1.000	\square
g3330	g3330	1.000	\square
k34	k34	0.050	
g3472	g3472	1.000	
g3475	g3475	1.000	\square
k35	k35	0.001	\square
g352	g352	1.000	\square
p358	p358	0.100	\square
p359	p359	0.100	
p3510	p3510	0.100	
p3586	p3586	0.050	\square
g3576	g3576	1.000	\square
k36	k36	0.050	\square
i368	i368	-0.100	\square
i369	i369	-0.100	\square
i3610	i3610	-0.100	\square
i3686	i3686	-0.050	\square
g3677	g3677	1.000	\square
g3679	g3679	1.000	\square
k37	k37	0.050	\square
g3770	g3770	1.000	\square
g3773	g3773	1.000	\square
k38	k38	0.700	\square
i381	i381	-0.010	\square
i382	i382	-0.010	\square
i383	i383	-0.010	\square
g3812	g3812	1.000	
g3815	g3815	1.000	\square
g3830	g3830	1.000	\square
g3878	g3878	1.000	\square
k43	k43	0.050	\square
g431	g431	1.000	
g4384	g4384	1.000	\mathbf{Z}

Id	Name	SBO Value	e Unit	Constant
k44	k44	0.04	5	Ø
g442	g442	1.00	0	\checkmark
g4484	g4484	1.00	0	\square
k45	k45	0.04	0	\checkmark
g453	g453	1.00	0	\checkmark
g4584	g4584	1.00	0	\checkmark
k46	k46	0.03	0	\square
i468	i468	-0.10	0	$ \overline{\checkmark} $
i469	i469	-0.10	0	$ \overline{\mathbf{Z}} $
i4610	i4610	-0.10	0	$\overline{\mathbf{Z}}$
i4686	i4686	-0.05	0	$\overline{\mathbf{Z}}$
g4677	g4677	1.00	0	$\overline{\mathbf{Z}}$
g4681	g4681	1.00	0	$\overline{\mathbb{Z}}$
k47	k47	0.03	0	$\overline{\mathbb{Z}}$
i478	i478	-0.10	0	$\overline{\mathbf{Z}}$
i479	i479	-0.10	0	$\overline{\mathbf{Z}}$
i4710	i4710	-0.10		$\overline{\mathbf{Z}}$
i4786	i4786	-0.05		$\overline{\mathbf{Z}}$
g4777	g4777	1.00		$\overline{\mathbf{Z}}$
g4782	g4782	1.00		$ \mathbf{Z} $
k48	k48	0.03		$ \mathbf{Z} $
i488	i488	-0.10		$ \mathbf{Z} $
i489	i489	-0.10		$ \mathbf{Z} $
i4810	i4810	-0.10		$ \mathbf{Z} $
i4886	i4886	-0.05		\mathbf{Z}
g4877	g4877	1.00		$ \mathbf{Z} $
g4883	g4883	1.00		$ \mathbf{Z} $
k50	k50	0.05		$ \mathbf{Z} $
g501	g501	1.00		$ \mathbf{Z} $
g5080	g5080	1.00		\mathbf{Z}
k51	k51	0.05		$ \mathbf{Z} $
g512	g512	1.00		$ \mathbf{Z} $
g5180	g5180	1.00		$\overline{\mathbf{Z}}$
k52	k52	0.05		$ \mathbf{Z} $
g523	g523	1.00		\mathbf{Z}
g5280	g5280	1.00		\mathbf{Z}
k53	k53	0.05		Z
g534	g534	1.00		₩
g5380	g5380	1.00		₩
k54	k54	0.00		₩
g5410	g5410	1.00		≥ ≥
g5419	g5419	1.00		₩
50 110	55 (1)	1.00	•	

Id	Name	SBO Value Unit	Constant
k55	k55	0.050	\overline{Z}
g556	g556	1.000	$\overline{\mathbf{Z}}$
g5586	g5586	1.000	$ \overline{\mathbf{Z}} $
k56	k56	0.050	$\overline{\mathbf{Z}}$
g5686	g5686	1.000	$\overline{\mathbf{Z}}$
g5687	g5687	1.000	$\overline{\mathbf{Z}}$
k57	k57	0.005	$\overline{\mathbf{Z}}$
g5710	g5710	1.000	$\overline{\mathbf{Z}}$
g5762	g5762	1.000	$\overline{\mathbf{Z}}$
k100	k100	0.005	$\overline{\mathbf{Z}}$
g10037	g10037	1.000	$\overline{\mathbf{Z}}$
g10051	g10051	1.000	\mathbf{Z}
g100115	g100115	1.000	\mathbf{Z}
k101	k101	0.005	\mathbf{Z}
g10136	g10136	1.000	$\overline{\mathbf{Z}}$
g10151	g10151	1.000	\mathbf{Z}
g101115	g101115	1.000	\mathbf{Z}
k102	k102	0.005	\mathbf{Z}
g10210	g10210	1.000	\mathbf{Z}
g10251	g10251	1.000	\mathbf{Z}
g102115	g102115	1.000	$\overline{\mathbf{Z}}$
k115	k115	0.500	\mathbf{Z}
g11565	g11565	1.000	$\overline{\mathbf{Z}}$
g11566	g11566	1.000	\mathbf{Z}
g115118	g115118	1.000	\mathbf{Z}
k116	k116	0.500	\mathbf{Z}
g11642	g11642	1.000	\mathbf{Z}
g116118	g116118	1.000	$\overline{\mathbf{Z}}$
k1_0	k1'	$5.4 \cdot 10^{-5}$	
k2_0	k2'	$-1.91 \cdot 10^{-4}$	
$k4_0$	k4'	$-2.475 \cdot 10^{-5}$	
k13_0	k13'	$-2.5 \cdot 10^{-6}$	
k15_0	k15'	-10^{-5}	
k32_0	k32'	$1.8 \cdot 10^{-7}$	
k35_0	k35'	$1.8 \cdot 10^{-7}$	
k36_0	k36'	$-9 \cdot 10^{-6}$	
k38_0	k38'	$-1.925 \cdot 10^{-5}$	
k46_0	k46'	$-5.4 \cdot 10^{-6}$	
k47_0	k47'	$-5.4 \cdot 10^{-6}$	
k48_0	k48'	$-5.4 \cdot 10^{-6}$	

6 Function definitions

This is an overview of seven function definitions.

6.1 Function definition J3Sub

Name J3Sub

Arguments K, X1, G1, X2, G2, X3, G3

Mathematical Expression

$$\mathbf{K} \cdot \mathbf{X} \mathbf{1}^{G1} \cdot \mathbf{X} \mathbf{2}^{G2} \cdot \mathbf{X} \mathbf{3}^{G3} \tag{1}$$

6.2 Function definition J1Sub

Name J1Sub

Arguments K, X, G

Mathematical Expression

$$K \cdot X^G$$
 (2)

6.3 Function definition J2Sub

Name J2Sub

Arguments K, X1, G1, X2, G2

Mathematical Expression

$$K \cdot X1^{G1} \cdot X2^{G2} \tag{3}$$

6.4 Function definition J1Sub3Mod

Name J1Sub3Mod

Arguments K, X1, G1, X2, G2, X3, G3, X4, G4

Mathematical Expression

$$K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \cdot X4^{G4}$$
 (4)

6.5 Function definition J2Sub1Mod

Name J2Sub1Mod

Arguments K, X1, G1, X2, G2, X3, G3

Mathematical Expression

$$K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \tag{5}$$

6.6 Function definition J1Sub1Mod

Name J1Sub1Mod

Arguments K, X1, G1, X2, G2

Mathematical Expression

$$K \cdot X1^{G1} \cdot X2^{G2} \tag{6}$$

6.7 Function definition J3Sub1Mod

Name J3Sub1Mod

Arguments K, X1, G1, X2, G2, X3, G3, X4, G4

Mathematical Expression

$$K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \cdot X4^{G4}$$
 (7)

7 Rules

This is an overview of 13 rules.

7.1 Rule k1_0

Rule k1_0 is an assignment rule for parameter k1_0:

$$k1_{-}0 = 3 \cdot 10^{-4} \cdot (p18 \cdot [OH_radical] + p19 \cdot [H2O2] + p110 \cdot [DA_quinone] + p186 \cdot [O2])$$
 (8)

7.2 Rule k2_0

Rule k2_0 is an assignment rule for parameter k2_0:

$$k2_0 = 10^-4 \cdot (i26 \cdot [Dopamine] + p28 \cdot [OH_radical] + p29 \cdot [H2O2] + p210$$
$$\cdot [DA_quinone] + p286 \cdot [O2])$$
(9)

7.3 Rule k4_0

Rule k4_0 is an assignment rule for parameter k4_0:

$$k4_{-}0 = 0.0090 \cdot (i41 \cdot [Alpha_synuclein] + i42 \cdot [Protofibril] + i43 \cdot [Fibril])$$
 (10)

7.4 Rule k13_0

Rule k13_0 is an assignment rule for parameter k13_0:

$$k13_{-}0 = 0.0010 \cdot (i131 \cdot [Alpha_synuclein] + i1310 \cdot [DA_quinone])$$
 (11)

7.5 Rule k15_0

Rule k15_0 is an assignment rule for parameter k15_0:

$$k15_0 = 0.0020 \cdot i152 \cdot [Protofibril] \tag{12}$$

7.6 Rule k32_0

Rule k32_0 is an assignment rule for parameter k32_0:

$$k32_0 = 1.0E - 5 \cdot (p328 \cdot [OH_radical] + p329 \cdot [H2O2] + p3210 \cdot [DA_quinone] + p3286 \cdot [O2])$$
(13)

7.7 Rule k35_0

Rule k35_0 is an assignment rule for parameter k35_0:

$$k35_0 = 1.0E - 5 \cdot (p358 \cdot [OH_radical] + p359 \cdot [H2O2] + p3510 \cdot [DA_quinone] + p3586 \cdot [O2])$$
(14)

7.8 Rule k36_0

Rule k36_0 is an assignment rule for parameter k36_0:

$$k36_{-}0 = 5 \cdot 10^{-4} \cdot (i368 \cdot [OH_radical] + i369 \cdot [H2O2] + i3610 \cdot [DA_quinone] + i3686 \cdot [O2])$$
 (15)

7.9 Rule k38_0

Rule k38_0 is an assignment rule for parameter k38_0:

$$k38.0 = 0.0070 \cdot (i381 \cdot [Alpha_synuclein] + i382 \cdot [Protofibril] + i383 \cdot [Fibril])$$
 (16)

7.10 Rule k46_0

Rule k46_0 is an assignment rule for parameter k46_0:

$$k46_{-}0 = 3 \cdot 10^{-4} \cdot (i468 \cdot [OH_radical] + i469 \cdot [H2O2] + i4610 \cdot [DA_guinone] + i4686 \cdot [O2])$$
 (17)

7.11 Rule k47_0

Rule k47_0 is an assignment rule for parameter k47_0:

$$k47_{-}0 = 3 \cdot 10^{-4} \cdot (i478 \cdot [OH_radical] + i479 \cdot [H2O2] + i4710 \cdot [DA_quinone] + i4786 \cdot [O2])$$
 (18)

7.12 Rule k48_0

Rule k48_0 is an assignment rule for parameter k48_0:

$$k48_{-}0 = 3 \cdot 10^{-4} \cdot (i488 \cdot [OH_radical] + i489 \cdot [H2O2] + i4810 \cdot [DA_quinone] + i4886 \cdot [O2])$$
 (19)

7.13 Rule Fe2

Rule Fe2 is a rate rule for species Fe2:

$$\frac{d}{dt} \text{Fe2} = \text{J21} - \text{J20} + 0.01 \tag{20}$$

22

8 Reactions

This model contains 58 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation SBO
1	J1	J1	Alpha_synuclein, Alpha_synuclein, Alpha_synuclein, Alpha_synuclein, Alpha_synuclein
•			Protofibril, Proto
2	J2	J2	
3	Ј3	J3	$Fibril + Parkin_synphilin_1_ub \\ Fibril, Parkin_synphilin_1_ub, Fibril, Fibri$
4	J4	J4	Parkin_sub_ub4 Proteasome_0, ATP, UCH_L1, Parkin_sub_ub4, Proteasome_0, ATP,
			Fragments + 4 Ubiquitin
~	7.0	1/	Ubiquitin + E1 ATP, Ubiquitin, E1, ATP, Ubiquitin, E1, ATP, Ubiquitin, E1, ATP, U
5	J6	J6	Ubiquitin+El
6	J7	J7	Ub_E1+UbcH8 ATP, Ub_E1, UbcH8, ATP, UbcH8,
			UbcH8 Ub
7	Ј8	Ј8	Parkin+Substrate Parkin, Substrate, Parkin, Substra
,	10	10	Parkin Symphilin 1 Parkin Symphilin 1 Parkin Symphilin 1 I
8	J9	J9	Parkin+Synphilin_1 Parkin, Synphilin_1, Parkin, Synphilin_1, Parkin, Synphilin_1, Farkin, Synphilin_1, Synphi
9	J10	J10	Parkin_synphilin_1 +
			UbcH13_Uev1a_ub Parkin_synphilin_1, UbcH13_Uev1a_ub, Parkin_synphilin_1, Ubc
			UbcH13_Uev1a
10	J11	J11	Parkin_sub + UbcH8ub4 Parkin_sub, UbcH8ub4, Parkin_sub, UbcH8ub4, Parkin_sub,
			UbcH8
11	T1 9	112	L_Tyr+O2_0 TH, L_Tyr, O2_0, TH, L_Tyr, O2_0, TH, L_Tyr, O2_0, TH, L_Tyr, O2_0
11	J13	J13	L_1yI+U2_U

	N⁰	Id	Name	Reaction Equation	SBO
	12	J14	J14	L_Dopa DDC, L_Dopa, DDC, L_Dopa, DDC, L_Dop	oa, DDC, L_Dopa, DDC, L_Dopa,
	12			CO2	
	13	J15	J15	Dopamine + Vesicle_0 VMAT2, Dopamine, Vesicle_0), VMAT2, Dopamine, Vesicle_0,
	14	J16	J16	Bioamines + Vesicle_0 Bioamines, Vesicle_0, Bioami	nes, Vesicle_0, Bioamines, Vesicle
	15	J17	J17	Neurotoxins + Vesicle 0 Neurotoxins, Vesicle_0, Neu	rotoxins, Vesicle_0, Neurotoxins,
	16	J18	J18	Dopamine + O2_0 Dopamine, O2_0, Dopamine, O2_0	O, Dopamine, O2_O, Dopamine, O
				O2	
P_1	17	J19	J19	Dopamine + O2_0 +	
лро.				H2O MAO, Dopamine, O2_0, H2O, MAO, Dopamin	ie, O2_0, H2O, MAO, Dopamine,
icea				DOPAL + H2O2	
l by	18	J20	J20	H2O2+Fe2 H2O2, Fe2, H2O2, Fe2, H2O2, Fe2, H2O2	2O2, Fe2, H2O2, Fe2, H2O2, Fe2,
8				OH_radical + OH	
Produced by SBML216TEX	19	J21	J21	Fe3 Fe3, Fe3, Fe3, Fe3, Fe3, Fe3, Fe3, F	
AE.	20	J22	J22	H2O2 Catalase, H2O2, Catalase, H2O2, Catalase, H2O2	
~	20	JZZ	322	02_0	
	21	100	122	H2O2+GSH Gluta_per, H2O2, GSH, Gluta_per, H2	O2, GSH, Gluta_per, H2O2, GSH
	21	J23	J23	GSSG	
	22	104	124	GSSG Gluta_red, GSSG, Gluta_red, GSSG, Gluta_red	d, GSSG, Gluta_red, GSSG, Gluta
	22	J24	J24	DOPAL+NAD ALDH, DOPAL, NAD, ALDH, DOI	PAL NAD ALDH DOPAL NAI
	23	J25	J25		, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
				NADH ATP LIB E1 LIBCHS LIB ATP	IIN E1 IINCHS IIN ATD IIN E1
	24	J26f	J26f	Ub_E1+UbcH8_Ub ATP, Ub_E1, UbcH8_Ub, ATP,	OULEI, OUCHOLOU, AIF, OULEI,
				UbcH8ub2	

24	Nº Id	Name	Reaction Equation SBO
	25 J26r	J26r	UbcH8ub2 UCH_L1, UbcH8ub2, UCH_L1, UbcH8ub2, UCH_L1, UbcH8ub2, UCH_
	26 1076	1076	2 Ubiquitin Ub_E1+UbcH8ub2 ATP, Ub_E1, UbcH8ub2, ATP, Ub_E1, UbcH8ub2, ATP, Ub_E
	26 J27f	J27f	UbcH8ub3
	27 J27r	J27r	UbcH8ub3 UCH_L1, UbcH8ub3, UCH_L1, UbcH8ub3, UCH_L1, UbcH8ub3, UCH_S UbcH8ub3, UCH_L1, UbcH8ub3, Uch_L
	28 J28f	J28f	Ub_E1+UbcH8ub3 ATP, Ub_E1, UbcH8ub3, ATP, Ub_E1, UbcH8ub3, ATP, Ub_E UbcH8ub4
Produ	29 J28r	J28r	UbcH8ub4 UCH_L1, UbcH8ub4, UCH_L1, UbcH8ub4, UCH_L1, UbcH8ub4, UCH_L4, UbcH8ub4, UCH_L1, UbcH8ub4, UCH_L6, UbcH8ub4, UbcH8
Produced by SBML2ATEX	30 J29	J29	Ub_E1+UbcH13_Uev1a ATP, Ub_E1, UbcH13_Uev1a, ATP, Ub_E1, UbcH13_Uev1 UbcH13_Uev1a_ub
AZIMB	31 Ј30	J30	Alpha_synuclein + UCH_L1 Alpha_synuclein, UCH_L1, Alpha_synuclein, UCH_L1, Alpha_synuclein, UCH_L1
ΤEX	32 J31	J31	UbcH13_Uev1a_ub + asyn_UCH_L1 UbcH13_Uev1a_ub, asyn_UCH_L1, UbcH13_Uev1a_ub, asyn_UCH_L
			UCH_L1 + asyn_ub
	33 J32	J32	Alpha_synuclein + asyn_ub Alpha_synuclein, asyn_ub, Alpha_synuclein, asyn_ub, Alpha_synuclein, asyn_ub, Alpha_synuclein, asyn_ub
	34 J33	J33	Protofibril + UCH_L1 Protofibril, UCH_L1, Protofibril, UCH_L1, Protofibril, UCH_L
	35 J34	J34	UbcH13_Uev1a_ub + UbcH13_Uev1a_ub_Protofibril_UCH_I_1_UbcH13_Uev1a_ub_F
			Protofibril_UCH_L1 UCH_L1 + Protofibril_Ub
	36 J35	J35	Protofibril_Protofibril_Ub Protofibril_Ub, Pro

					_
	N⁰	Id	Name	Reaction Equation SBO	_
	37	J36	J36	Autophagosome_0 Lysosome_0, Autophagosome_0, Lysosome_0), Autophagosome_0,
	38	J37	J37	UbcH8ub4+asyn_UCH_L1 UbcH8ub4, asyn_UCH_L1, UbcH8uUbcH8	ib4, asyn_UCH_L1, U
	39	J38	J38	UCH_L1_asyn_ub4 Proteasome_0, ATP, UCH_L1, UCH_L1_asyn_UCH_L1 + 4 Ubiquitin	n_ub4, Proteasome_0,
	40	J43	J43	Alpha_synuclein + Hsc70 Alpha_synuclein, Hsc70, Alpha_synuclein, Hsc70, Alpha	_synuclein, Hsc70, Al
P	41	J44	J44	Protofibril + Hsc70 Protofibril, Hsc70, Protofibril, Hsc70, Protofi	ibril, Hsc70, Protofibr
rodu	42	J45	J45	Fibril + Hsc70 Fibril, Hsc70, Fibril, Hsc70, Fibril, Hsc70, Fibril,	, Hsc70, Fibril, Hsc70
Produced by SBML2l ^{ET} EX	43	J46	J46	Hsc70_asyn Lysosome_0, Hsc70_asyn, Lysosome_0, Hsc70_asyn Fragments	
SEMIZE.	44	J47	J47	Hsc70_Protofibril Lysosome_0, Hsc70_Protofibril, Lysosome_0, Fragments	Hsc70_Protofibril, Lys
TEX .	45	J48	J48	Hsc70_fibril Lysosome_0, Hsc70_fibril, Lysosome_0, Hsc70_fibri	il, Lysosome_0, Hsc70
	46	J50	J50	Fragments Alpha symulain	ome membrane Alpha
				Preautophagosome_membrane Alpha_synuclein, Preautophagosome_Protofibril_Preautophagosome_membrane	hagosome_membrane,
	47	J51	J51	Protofibril + Preautophagosome_membrane Fibril, Preautophagosome	
	48	J52	J52	Fibril + Preautophagosome_membrane ————————————————————————————————————	and a constant of the constant
	49	J53	J53	Lewy_body + Preautophagosome_membrane Lewy_body, Preautophagosome_membrane	opnagosome_membra:
	50	J54	J54	DA_quinone + Parkin DA_quinone, Parkin, DA_quinone, Parkin,	DA_quinone, Parkin,

Nº Id	Name	Reaction Equation SBO	
51 J55	J55	Dopamine + O2 Dopamine, O2, Do	O2, Dopai
52 J56	J56	DA_quinone O2 SOD, O2, SOD, O2, SOD, O2, SOD, O2, SOD, O2, SOD, O2 O3 O	2, SOD, O
53 J57	J57		SH, DA_q
54 J100	Ј100	L_Dopa + O2_0 + L_Dopa, O2_0, Cysteine, L_Dopa, O2_0, Cysteine, L_Dopa, O2_0,	Cysteine,
		H2O2 + CO2	
55 J101	J101		yr, O2_0, 0
56 J102	J102	DA quinone $+$ $O2.0$ $+$	iinone, O2
		CO2	
57 J115	J115	Fe3 + Neuromelanin Fe3, Neuromelanin, Fe3, Neuromelanin, Fe3, Neurome	elanin, Fe3
58 J116	J116	Neuromelanin + Neurotoxins Meurotoxins, Neuromelanin, Neurotoxins, Neuromelanin, Neurotoxins	eurotoxins
	 52 J56 53 J57 54 J100 55 J101 56 J102 57 J115 	52 J56 53 J57 54 J100 55 J101 56 J102 J102 57 J115 J15	Dopamine, O2,

8.1 Reaction J1

This is an irreversible reaction of one reactant forming one product influenced by nine modifiers.

Name J1

Notes Protofibril aggregation

Reaction equation

Alpha_synuclein, Alpha_

(21)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
Alpha_synuclein	Alpha_synuclein	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
Alpha_synuclein Alpha_synuclein Alpha_synuclein Alpha_synuclein Alpha_synuclein Alpha_synuclein	Alpha_synuclein Alpha_synuclein Alpha_synuclein Alpha_synuclein Alpha_synuclein Alpha_synuclein	
Alpha_synuclein Alpha_synuclein Alpha_synuclein	Alpha_synuclein Alpha_synuclein Alpha_synuclein	

Product

Table 8: Properties of each product.

Id	Name	SBO
Protofibril	Protofibril	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J1Sub} (k1, [\text{Alpha_synuclein}], g11)$$
 (22)

$$J1Sub(K, X, G) = K \cdot X^{G}$$
(23)

$$J1Sub(K, X, G) = K \cdot X^{G}$$
(24)

8.2 Reaction J2

This is an irreversible reaction of one reactant forming one product influenced by nine modifiers.

Name J2

Notes Fibril aggregation

Reaction equation

Protofibril, Proto

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Protofibril	Protofibril	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
Protofibril	Protofibril	

Id	Name	SBO
	Protofibril	
Protofibril	Protofibril	

Product

Table 11: Properties of each product.

Id	Name	SBO
Fibril	Fibril	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J1Sub} (k2, [\text{Protofibril}], g22)$$
 (26)

$$J1Sub(K, X, G) = K \cdot X^{G}$$
(27)

$$J1Sub(K, X, G) = K \cdot X^{G}$$
(28)

8.3 Reaction J3

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J3

Notes Lewy Body formation

Reaction equation

 $Fibril + Parkin_synphilin_1_ub \\ \frac{Fibril, Parkin_synphilin_1_ub, Fibril, Fibril$

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
Fibril	Fibril	
$Parkin_synphilin_1_ub$	Parkin-synphilin-1-ub	

Modifiers

Table 13: Properties of each modifier.

Table 13. Hoperties of each modifier.			
Id	Name	SBO	
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		
Fibril	Fibril		
Parkin_synphilin_1_ub	Parkin-synphilin-1-ub		

Product

Table 14: Properties of each product.

Id	Name	SBO
Lewy_body	Lewy_body	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (k3, [\text{Fibril}], g23, [\text{Parkin_synphilin_1_ub}], g326)$$
 (30)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (31)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (32)

8.4 Reaction J4

This is an irreversible reaction of one reactant forming three products influenced by 39 modifiers.

Name J4

Notes Proteasome Degradation of parkin-sub-ub4

Reaction equation

Parkin_sub_ub4 Proteasome_0, ATP, UCH_L1, Parkin_sub_ub4, Proteasome

(33)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
Parkin_sub_ub4	Parkin-sub-ub4	

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
Proteasome_0	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	

Id	Name	SBO
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
Parkin_sub_ub4	Parkin-sub-ub4	
Proteasome_0	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	

Products

Table 17: Properties of each product.

Tuble 17: 11 operates of cuen products		
Id	Name	SBO
Parkin	Parkin	
Fragments	Fragments	
Ubiquitin	Ubiquitin	
Fragments	Fragments	

Kinetic Law

Derived unit contains undeclared units

$$\begin{array}{c} \nu_{4}=vol\left(Neuronal_cytosol\right)\cdot J1Sub3Mod\left(k4,[Parkin_sub_ub4],g427,[Proteasome_0],\\ g412,[ATP],g415,[UCH_L1],g430) \end{array} \eqno(34)$$

$$J1Sub3Mod\left(K,X1,G1,X2,G2,X3,G3,X4,G4\right) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \cdot X4^{G4} \quad (35)$$

$$J1Sub3Mod\left(K,X1,G1,X2,G2,X3,G3,X4,G4\right) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \cdot X4^{G4} \quad (36)$$

8.5 Reaction J6

This is an irreversible reaction of two reactants forming one product influenced by 28 modifiers.

Name J6

Notes Ubiquitin Activation

Reaction equation

Ubiquitin + E1 ATP, Ubiquitin, E1, ATP, Ubiqui

(37)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
Ubiquitin	Ubiquitin	
E1	E1	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	

Id	Name	SBO
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	
Ubiquitin	Ubiquitin	
E1	E1	
ATP	ATP	

Product

Table 20: Properties of each product.

Id	Name	SBO
Ub_E1	Ub-E1	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = vol\left(Neuronal_cytosol\right) \cdot J2Sub1Mod\left(k6, [Ubiquitin], g613, [E1], g614, [ATP], g615\right) \quad (38)$$

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
(39)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (40)

8.6 Reaction J7

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J7

Notes Ubiquitin Conjugation

Reaction equation

Reactants

Table 21: Properties of each reactant.

Id	Name	SBO
Ub_E1	Ub-E1	
UbcH8	UbcH8	

Modifiers

Table 22: Properties of each modifier.

22: Properties of each mod		
Id	Name	SBO
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8	UbcH8	
ATP	ATP	

Products

Table 23: Properties of each product.

Id	Name	SBO
E1	E1	
UbcH8_Ub	UbcH8-Ub	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub1Mod} (k7, [\text{Ub_E1}], g716, [\text{UbcH8}], g717, [\text{ATP}], g715)$$
 (42)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (43)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (44)

8.7 Reaction J8

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J8

Notes Substrate ligation

Reaction equation

Parkin + Substrate Parkin, Substrate, Parkin, Subst

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
Parkin	Parkin	
Substrate	Substrate	

Modifiers

Table 25: Properties of each modifier.

Id	Name	SBO
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	
Parkin	Parkin	
Substrate	Substrate	

Table 26: Properties of each product.

Id	Name	SBO
Parkin_sub	Parkin-sub	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k8}, [\text{Parkin}], \text{g819}, [\text{Substrate}], \text{g821})$$
 (46)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(47)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(48)

8.8 Reaction J9

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J9

Notes Synphilin-1 ligation

Reaction equation

Parkin + Synphilin_1 Parkin, Synphilin_1, S

Reactants

Table 27: Properties of each reactant.

Id	Name	SBO
Parkin	Parkin	
${\tt Synphilin_1}$	Synphilin-1	

Table 28: Properties of each modifier.

Id	Name	SBO
Parkin	Parkin	
$Synphilin_1$	Synphilin-1	
Parkin	Parkin	
$Synphilin_1$	Synphilin-1	
Parkin	Parkin	
Synphilin_1	Synphilin-1	
Parkin	Parkin	
Synphilin_1	Synphilin-1	
Parkin	Parkin	
Synphilin_1	Synphilin-1	
Parkin	Parkin	
Synphilin_1	Synphilin-1	
Parkin	Parkin	
Synphilin_1	Synphilin-1	
Parkin	Parkin	
Synphilin_1	Synphilin-1	
Parkin	Parkin	

Id	Name	SBO
Synphilin_1	Synphilin-1	

Table 29: Properties of each product.

Id	Name	SBO
Parkin_synphilin_1	Parkin-synphilin-1	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (k9, [\text{Parkin}], g919, [\text{Synphilin_1}], g920)$$
 (50)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(51)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(52)

8.9 Reaction J10

This is an irreversible reaction of two reactants forming two products influenced by 18 modifiers.

Name J₁₀

Notes K63 Synphilin-1 Ubiquitination

Reaction equation

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
Parkin_synphilin_1 UbcH13_Uev1a_ub	Parkin-synphilin-1 UbcH13/Uev1a-ub	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$Parkin_synphilin_1$	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$Parkin_synphilin_1$	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Parkin_synphilin_1	Parkin-synphilin-1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	

Products

Table 32: Properties of each product.

Id	Name	SBO
Parkin_synphilin_1_ub UbcH13_Uev1a	Parkin-synphilin-1-ub UbcH13/Uev1a	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vol (Neuronal_cytosol) \cdot J2Sub (k10, [Parkin_synphilin_1], g1025, [UbcH13_Uev1a_ub], g1072)$$
(54)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (55)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (56)

8.10 Reaction J11

This is an irreversible reaction of two reactants forming two products influenced by 18 modifiers.

Name J11

Notes K48 Substrate Ubiquitination

Reaction equation

Parkin_sub + UbcH8ub4 Parkin_sub, UbcH8ub4, UbcH8ub4,

(57)

Reactants

Table 33: Properties of each reactant.

Id	Name	SBO
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	

Table 34: Properties of each modifier.

Id	Name	SBO
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	
UbcH8ub4	UbcH8ub4	
Parkin_sub	Parkin-sub	

Id	Name	SBO
UbcH8ub4	UbcH8ub4	

Table 35: Properties of each product.

Id	Name	SBO	
Parkin_sub_ub4	Parkin-sub-ub4		
UbcH8	UbcH8		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k11}, [\text{Parkin_sub}], \text{g1124}, [\text{UbcH8ub4}], \text{g1170})$$
 (58)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(59)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (60)

8.11 Reaction J13

This is an irreversible reaction of two reactants forming one product influenced by 28 modifiers.

Name J13

Notes L-Dopa formation

Reaction equation

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
L_Tyr 02_0	L-Tyr O2	

Modifiers

Table 37: Properties of each modifier.

Id	Name	SBO
TH	TH	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
$02_{-}0$	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
$02_{-}0$	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
$02_{-}0$	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
TH	TH	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
TH	TH	

Product

Table 38: Properties of each product.

Id	Name	SBO
L_Dopa	L-Dopa	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{11} = vol\left(Neuronal_cytosol\right) \cdot J2Sub1Mod\left(k13, [L_Tyr], g1336, [O2_0], g1351, [TH], g1335\right) \tag{62}$$

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (63)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (64)

8.12 Reaction J14

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J14

Notes Dopamine formation

Reaction equation

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
L_Dopa	L-Dopa	

Table 40: Properties of each modifier.

Id	Name	SBO
DDC	DDC	
L_Dopa	L-Dopa	
DDC	DDC	
L_Dopa	L-Dopa	
DDC	DDC	
L_Dopa	L-Dopa	

Id	Name	SBO
DDC	DDC	
L_Dopa	L-Dopa	
DDC	DDC	
L_Dopa	L-Dopa	
DDC	DDC	
L_Dopa	L-Dopa	
DDC	DDC	
$L_{-}Dopa$	L-Dopa	
DDC	DDC	
$L_{-}Dopa$	L-Dopa	
DDC	DDC	
L_Dopa	L-Dopa	
DDC	DDC	

Table 41: Properties of each product.

Id	Name	SBO
Dopamine CO2	Dopamine CO2	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J1Sub1Mod} (\text{k14}, [\text{L_Dopa}], \text{g1437}, [\text{DDC}], \text{g1467})$$
 (66)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(67)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (68)

8.13 Reaction J15

This is an irreversible reaction of two reactants forming one product influenced by 28 modifiers.

Name J₁₅

Notes Dopamine vesicle packaging

Reaction equation

Dopamine + Vesicle_0 VMAT2, Dopamine, Vesicle_0, VMAT2, Dopamine, Vesicle_0, VMAT2, Dopamine, Vesicle

(69)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
Dopamine Vesicle_O	Dopamine Vesicle	

Table 43: Properties of each modifier.

Id	Name	SBO
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	
Dopamine	Dopamine	
${\tt Vesicle_0}$	Vesicle	

Id	Name	SBO
VMAT2	VMAT2	
Dopamine	Dopamine	
$Vesicle_0$	Vesicle	
VMAT2	VMAT2	

Table 44: Properties of each product.

Id	Name	SBO
V_DA	V-DA	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = J2Sub1Mod(k15, [Dopamine], g156, [Vesicle_0], g1544, [VMAT2], g1545)$$
 (70)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (71)

8.14 Reaction J16

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J₁₆

Notes Bioamine vesicle packaging

Reaction equation

Bioamines + Vesicle_0 Bioamines, Vesicle_0, Bioamines, Vesicle_0,

Reactants

Table 45: Properties of each reactant.

Id	Name	SBO
Bioamines	Bioamines	
Vesicle_0	Vesicle	

Modifiers

Table 46: Properties of each modifier.

Id	Name	SBO
Bioamines	Bioamines	
$Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$\tt Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$\tt Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$Vesicle_0$	Vesicle	
Bioamines	Bioamines	
$\tt Vesicle_0$	Vesicle	

Product

Table 47: Properties of each product.

Id	Name	SBO
V_ntox_ba	V-ntox-ba	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = J2Sub(k16, [Bioamines], g1643, [Vesicle_0], g1644)$$
 (73)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(74)

8.15 Reaction J17

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J17

Notes Neurotoxin vesicle packaging

Reaction equation

Neurotoxins + Vesicle_0 Neurotoxins, Vesicle_0, Neurotoxins, Vesicle_0, Neurotoxins, Vesicle_0, Neurotoxins, Vesicle_0 (75)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
Neurotoxins Vesicle_0	Neurotoxins Vesicle	

Table 49: Properties of each modifier.

Id	Name	SBO
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
$Vesicle_0$	Vesicle	
Neurotoxins	Neurotoxins	
Vesicle_0	Vesicle	

Table 50: Properties of each product.

Id	Name	SBO
V_ntox_ba	V-ntox-ba	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = J2Sub (k17, [Neurotoxins], g1742, [Vesicle_0], g1744)$$
 (76)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(77)

8.16 Reaction J18

This is an irreversible reaction of two reactants forming two products influenced by 18 modifiers.

Name J₁₈

Notes DA quinone and superoxide radical synthesis

Reaction equation

Dopamine + O2_0 Dopamine, O2_0, Dopamine, O2_0

Reactants

Table 51: Properties of each reactant.

Id	Name	SBO
Dopamine 02_0	Dopamine O2	

Table 52: Properties of each modifier.

Id	Name	SBO
Dopamine	Dopamine	

Id	Name	SBO
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	
Dopamine	Dopamine	
02_0	O2	

Table 53: Properties of each product.

Id	Name	SBO
DA_quinone 02	DA_quinone O2-	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = vol(Neuronal_cytosol) \cdot J2Sub(k18, [Dopamine], g186, [O2_0], g1851)$$
 (79)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(80)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2} \tag{81}$$

8.17 Reaction J19

This is an irreversible reaction of three reactants forming three products influenced by 37 modifiers.

Name J19

 ${f Notes}$ DOPAL and H2O2 synthesis

Reaction equation

(82)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
Dopamine	Dopamine	
02_0	O2	
H20	H2O	

Table 55: Properties of each modifier.

Id	Name	SBO
MAO	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
OAM	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
MAO	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
OAM	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
OAM	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
OAM	MAO	
Dopamine	Dopamine	
02_0	O2	

Id	Name	SBO
	Name	300
H20	H2O	
OAM	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
MAO	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
MAO	MAO	
Dopamine	Dopamine	
02_0	O2	
H20	H2O	
MAO	MAO	

Table 56: Properties of each product.

Id	Name	SBO
NH3	NH3	
DOPAL	DOPAL	
H202	H2O2	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = vol \text{ (Neuronal_cytosol)}$$

$$\cdot J3Sub1Mod \text{ (k19, [Dopamine], g196, [O2_0], g1951, [H2O], g1960, [MAO], g1953)}$$

$$J3Sub1Mod \text{ (K, X1, G1, X2, G2, X3, G3, X4, G4)} = \text{K} \cdot \text{X1}^{G1} \cdot \text{X2}^{G2} \cdot \text{X3}^{G3} \cdot \text{X4}^{G4}$$

$$J3Sub1Mod \text{ (K, X1, G1, X2, G2, X3, G3, X4, G4)} = \text{K} \cdot \text{X1}^{G1} \cdot \text{X2}^{G2} \cdot \text{X3}^{G3} \cdot \text{X4}^{G4}$$

$$(85)$$

8.18 Reaction J20

This is an irreversible reaction of two reactants forming three products influenced by 18 modifiers.

Name J20

 $oldsymbol{\mathsf{Notes}}$ Iron oxidation and formation of OH radicals

Reaction equation

H2O2 + Fe2 H2O2, Fe2, H2O2, H2O2,

(86)

Reactants

Table 57: Properties of each reactant.

Id	Name	SBO
H202	H2O2	
Fe2	Fe2+	

Modifiers

Table 58: Properties of each modifier.

Id	Name	SBO
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	
H202	H2O2	
Fe2	Fe2+	

Products

Table 59: Properties of each product.

Id	Name	SBO
Fe3	Fe3+	
$\mathtt{OH_radical}$	OH_radical	
OH	OH-	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k20}, [\text{H2O2}], \text{g209}, [\text{Fe2}], \text{g2065})$$
 (87)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(88)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(89)

8.19 Reaction J21

This is an irreversible reaction of one reactant forming one product influenced by nine modifiers.

Name J21

Notes Iron reduction

Reaction equation

Fe3
$$\xrightarrow{\text{Fe3}, \text{Fe3}, \text{Fe3}, \text{Fe3}, \text{Fe3}, \text{Fe3}, \text{Fe3}, \text{Fe3}}$$
 Fe2 (90)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
Fe3	Fe3+	

Table 61: Properties of each modifier.

Id	Name	SBO
Fe3	Fe3+	_

Id	Name	SBO
Fe3	Fe3+	

Table 62: Properties of each product.

Id	Name	SBO
Fe2	Fe2+	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol} \left(\text{Neuronal_cytosol} \right) \cdot \text{J1Sub} \left(\text{k21}, [\text{Fe3}], \text{g2166} \right)$$
 (91)

$$J1Sub(K,X,G) = K \cdot X^{G}$$
 (92)

$$J1Sub(K, X, G) = K \cdot X^{G}$$
(93)

8.20 Reaction J22

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J22

Notes H2O2 depletion by catalase

Reaction equation

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
H202	H2O2	

Modifiers

Table 64: Properties of each modifier.

Id	Name	SBO
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	
H202	H2O2	
Catalase	Catalase	

Products

Table <u>65</u>: Properties of each product.

Id	Name	SBO
H20	H2O	
02_0	O2	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}\left(\text{Neuronal_cytosol}\right) \cdot \text{J1Sub1Mod}\left(\text{k22}, [\text{H2O2}], \text{g229}, [\text{Catalase}], \text{g2259}\right)$$
 (95)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(96)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(97)

8.21 Reaction J23

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J23

Notes H2O2 depletion by GSH

Reaction equation

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
H202	H2O2	
GSH	GSH	

Table 67: Properties of each modifier.

Id	Name	SBO
Gluta_per	Gluta_per	
H202	H2O2	
GSH	GSH	
${\tt Gluta_per}$	Gluta_per	
H202	H2O2	
GSH	GSH	
Gluta_per	Gluta_per	
H202	H2O2	
GSH	GSH	
Gluta_per	Gluta_per	

Id	Name	SBO
H202	H2O2	
GSH	GSH	
${\tt Gluta_per}$	Gluta_per	
H202	H2O2	
GSH	GSH	
Gluta_per	Gluta_per	
H202	H2O2	
GSH	GSH	
Gluta_per	Gluta_per	
H202	H2O2	
GSH	GSH	
Gluta_per	Gluta_per	
H202	H2O2	
GSH	GSH	
${\tt Gluta_per}$	Gluta_per	
H202	H2O2	
GSH	GSH	
Gluta_per	Gluta_per	

Table 68: Properties of each product.

Id	Name	SBO
H20	H2O	
GSSG	GSSG	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol} (\text{Neuronal_cytosol})$$

 $\cdot \text{J2Sub1Mod} (\text{k23}, [\text{H2O2}], \text{g239}, [\text{GSH}], \text{g2362}, [\text{Gluta_per}], \text{g2361})$ (99)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \tag{100}$$

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \tag{101}$$

8.22 Reaction J24

This is an irreversible reaction of one reactant forming one product influenced by 19 modifiers.

Name J24

Reaction equation

GSSG Gluta_red, GSSG, GSSG,

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
GSSG	GSSG	

Table 70: Properties of each modifier.

Id	Name	SBO
Gluta_red	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
${\tt Gluta_red}$	Gluta_red	
GSSG	GSSG	
Gluta_red	Gluta_red	

Table 71: Properties of each product.

Id	Name	SBO
GSH	GSH	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J1Sub1Mod} (\text{k24}, [\text{GSSG}], \text{g2463}, [\text{Gluta_red}], \text{g2464})$$
 (103)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(104)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (105)

8.23 Reaction J25

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J25

Notes DOPAC formation

Reaction equation

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
DOPAL NAD	DOPAL NAD+	

Table 73: Properties of each modifier.

Id	Name	SBO
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	
DOPAL	DOPAL	
NAD	NAD+	
ALDH	ALDH	

Table 74: Properties of each product.

Id	Name	SBO
DOPAC	DOPAC	
NADH	NADH	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol} (\text{Neuronal_cytosol})$$

$$\cdot \text{J2Sub1Mod} (\text{k25}, [\text{DOPAL}], \text{g2552}, [\text{NAD}], \text{g2556}, [\text{ALDH}], \text{g2555})$$

$$(107)$$

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (108)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (109)

8.24 Reaction J26f

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J26f

Notes Forward ubiquitination tag 2

Reaction equation

Reactants

Table 75: Properties of each reactant.

Id	Name	SBO
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	

Table 76: Properties of each modifier.

Id	Name	SBO
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	

Id	Name	SBO
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8_Ub	UbcH8-Ub	
ATP	ATP	

Table 77: Properties of each product.

Id	Name	SBO
E1	E1	
UbcH8ub2	UbcH8ub2	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol} (\text{Neuronal_cytosol})$$

 $\cdot \text{J2Sub1Mod} (\text{k26f}, [\text{Ub_E1}], \text{g26f16}, [\text{UbcH8_Ub}], \text{g26f18}, [\text{ATP}], \text{g26f15})$ (111)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (112)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (113)

8.25 Reaction J26r

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J26r

Notes Reverse ubiquitination tag 2

Reaction equation

UbcH8ub2 UCH_L1, UbcH8ub2, UCH

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
UbcH8ub2	UbcH8ub2	

Table 79: Properties of each modifier.

Id	Name	SBO
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	

Id	Name	SBO
UCH_L1	UCH-L1	
UbcH8ub2	UbcH8ub2	
$UCH_{-}L1$	UCH-L1	

Table 80: Properties of each product.

Id	Name	SBO
UbcH8	UbcH8	
Ubiquitin	Ubiquitin	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = vol\left(Neuronal_cytosol\right) \cdot J1Sub1Mod\left(k26r, [UbcH8ub2], g26r68, [UCH_L1], g26r30\right) \tag{115}$$

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (116)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(117)

8.26 Reaction J27f

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J27f

Notes Forward ubiquitination tag 3

Reaction equation

Reactants

Table 81: Properties of each reactant.

Id	Name	SBO
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	

Modifiers

Table 82: Properties of each modifier.

Id	Name	SBO
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub2	UbcH8ub2	
ATP	ATP	

Products

Table 83: Properties of each product.

Id	Name	SBO
E1	E1	
UbcH8ub3	UbcH8ub3	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol (Neuronal_cytosol)}$$

 $\cdot \text{J2Sub1Mod (k27f, [Ub_E1], g27f16, [UbcH8ub2], g27f68, [ATP], g27f15)}$ (119)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (120)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (121)

8.27 Reaction J27r

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J27r

Notes Reverse ubiquitination tag 3

Reaction equation

Reactant

Table 84: Properties of each reactant.

Id	Name	SBO
UbcH8ub3	UbcH8ub3	

Table 85: Properties of each modifier.

Id	Name	SBO
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
UCH_L1	UCH-L1	
UbcH8ub3	UbcH8ub3	
$UCH_{-}L1$	UCH-L1	

Table 86: Properties of each product.

Id	Name	SBO
UbcH8	UbcH8	
Ubiquitin	Ubiquitin	

Kinetic Law

Derived unit contains undeclared units

$$\textit{v}_{27} = vol\left(Neuronal_cytosol\right) \cdot J1Sub1Mod\left(k27r, [UbcH8ub3], g27r69, [UCH_L1], g27r30\right) \tag{123}$$

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (124)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (125)

8.28 Reaction J28f

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J28f

Notes Forward ubiquitination tag 4

Reaction equation

Ub_E1 + UbcH8ub3 ATP, Ub_E1, UbcH8ub3, ATP, UbcH8ub3

Reactants

Table 87: Properties of each reactant.

Id	Name	SBO
Ub_E1	Ub-E1	_
UbcH8ub3	UbcH8ub3	

Table 88: Properties of each modifier.

Id	Name	SBO
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	

Id	Name	SBO
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH8ub3	UbcH8ub3	
ATP	ATP	

Table 89: Properties of each product.

Id	Name	SBO
E1	E1	
UbcH8ub4	UbcH8ub4	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol} (\text{Neuronal_cytosol})$$

 $\cdot \text{J2Sub1Mod} (\text{k28f}, [\text{Ub_E1}], \text{g28f16}, [\text{UbcH8ub3}], \text{g28f69}, [\text{ATP}], \text{g28f15})$ (127)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \tag{128}$$

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (129)

8.29 Reaction J28r

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J28r

Notes Reverse ubiquitination tag 4

Reaction equation

UbcH8ub4 UCH_L1, UbcH8ub4, UCH

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
UbcH8ub4	UbcH8ub4	

Modifiers

Table 91: Properties of each modifier.

Id	Name	SBO
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	
UbcH8ub4	UbcH8ub4	
UCH_L1	UCH-L1	

Products

Table 92: Properties of each product.

Id	Name	SBO
UbcH8	UbcH8	
Ubiquitin	Ubiquitin	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = vol\left(Neuronal_cytosol\right) \cdot J1Sub1Mod\left(k28r, [UbcH8ub4], g28r70, [UCH_L1], g28r30\right) \tag{131}$$

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(132)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(133)

8.30 Reaction J29

This is an irreversible reaction of two reactants forming two products influenced by 28 modifiers.

Name J29

Notes UbcH13/Uev1a conjugation

Reaction equation

Reactants

Table 93: Properties of each reactant.

Id	Name	SBO
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	

Table 94: Properties of each modifier.

Id	Name	SBO
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	
Ub_E1	Ub-E1	
UbcH13_Uev1a	UbcH13/Uev1a	
ATP	ATP	

Products

Table 95: Properties of each product.

Id	Name	SBO
E1	E1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol} (\text{Neuronal_cytosol}) \\ \cdot \text{J2Sub1Mod} (\text{k29}, [\text{Ub_E1}], \text{g2916}, [\text{UbcH13_Uev1a}], \text{g2971}, [\text{ATP}], \text{g2915})$$
 (135)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (136)

$$J2Sub1Mod(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (137)

8.31 Reaction J30

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J30

Notes Asyn ligation to UCH-L1

Reaction equation

Alpha_synuclein + UCH_L1 Alpha_synuclein, UCH_L1, Alpha_synuclein, UCH_

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
Alpha_synuclein UCH_L1	Alpha_synuclein UCH-L1	

Table 97: Properties of each modifier.

Id	Name	SBO
Alpha_synuclein UCH_L1	Alpha_synuclein UCH-L1	
Alpha_synuclein UCH_L1	Alpha_synuclein UCH-L1	

Id	Name	SBO
Alpha_synuclein	Alpha_synuclein	
UCH_L1	UCH-L1	
Alpha_synuclein	Alpha_synuclein	
UCH_L1	UCH-L1	
${\tt Alpha_synuclein}$	Alpha_synuclein	
UCH_L1	UCH-L1	
${\tt Alpha_synuclein}$	Alpha_synuclein	
UCH_L1	UCH-L1	
${\tt Alpha_synuclein}$	Alpha_synuclein	
UCH_L1	UCH-L1	
${\tt Alpha_synuclein}$	Alpha_synuclein	
UCH_L1	UCH-L1	
${\tt Alpha_synuclein}$	Alpha_synuclein	
UCH_L1	UCH-L1	
UCH_L1 Alpha_synuclein UCH_L1 Alpha_synuclein UCH_L1 Alpha_synuclein UCH_L1 Alpha_synuclein UCH_L1 Alpha_synuclein UCH_L1 Alpha_synuclein	UCH-L1 Alpha_synuclein UCH-L1 Alpha_synuclein UCH-L1 Alpha_synuclein UCH-L1 Alpha_synuclein UCH-L1 Alpha_synuclein UCH-L1 Alpha_synuclein	

Product

Table 98: Properties of each product.

Id	Name	SBO
asyn_UCH_L1	asyn-UCH-L1	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (k30, [\text{Alpha_synuclein}], g301, [\text{UCH_L1}], g3030)$$
 (139)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (140)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(141)

8.32 Reaction J31

This is an irreversible reaction of two reactants forming three products influenced by 18 modifiers.

Name J31

Notes Alpha synuclein K63 ubiquitination

Reaction equation

UbcH13_Uev1a_ub + asyn_UCH_L1 <u>UbcH13_Uev1a_ub</u>, asyn_UCH_L1, UbcH13_Uev1a_ub, asyn_UCH_L1, UbcH
(142)

Reactants

Table 99: Properties of each reactant.

Id	Name	SBO
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	

Modifiers

Table 100: Properties of each modifier.

	N	
Id	Name	SBO
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
$asyn_UCH_L1$	asyn-UCH-L1	

Products

Table 101: Properties of each product.

Id	Name	SBO
UbcH13_Uev1a	UbcH13/Uev1a	
UCH_L1	UCH-L1	
$\mathtt{asyn}_\mathtt{ub}$	asyn-ub	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = vol (Neuronal_cytosol) \cdot J2Sub (k31, [UbcH13_Uev1a_ub], g3172, [asyn_UCH_L1], g3173)$$

$$(143)$$

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(144)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (145)

8.33 Reaction J32

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J32

Notes Asyn reaction with asyn-ub to form protofibrils

Reaction equation

Alpha_synuclein + asyn_ub Alpha_synuclein, asyn_ub, Alpha_synuclein, a

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Alpha_synuclein	Alpha_synuclein	
asyn_ub	asyn-ub	

Table 103: Properties of each modifier.

Id	Name	SBO
Alpha_synuclein	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
asyn_ub	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	
${\tt Alpha_synuclein}$	Alpha_synuclein	
$asyn_ub$	asyn-ub	

Product

Table 104: Properties of each product.

Id	Name	SBO
Protofibril	Protofibril	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k32}, [\text{Alpha_synuclein}], \text{g321}, [\text{asyn_ub}], \text{g3274})$$
 (147)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (148)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (149)

8.34 Reaction J33

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J33

Notes Protofibril ligation to UCH-L1

Reaction equation

Protofibril + UCH_L1 Protofibril, UCH_L1, Protofibr

Reactants

Table 105: Properties of each reactant.

Id	Name	SBO
Protofibril	Protofibril	
UCH_L1	UCH-L1	

Table 106: Properties of each modifier.

Id	Name	SBO
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	
UCH_L1	UCH-L1	
Protofibril	Protofibril	

Id	Name	SBO
UCH_L1	UCH-L1	

Product

Table 107: Properties of each product.

Id	Name	SBO
Protofibril_UCH_L1	Protofibril-UCH-L1	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k33}, [\text{Protofibril}], \text{g332}, [\text{UCH_L1}], \text{g3330})$$
 (151)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(152)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(153)

8.35 Reaction J34

This is an irreversible reaction of two reactants forming three products influenced by 18 modifiers.

Name J34

Notes Protofibril K63 ubiquitination

Reaction equation

UbcH13_Uev1a_ub + Protofibril_UCH_L1 UbcH13_Uev1a_ub, Protofibril_UCH_L1, UbcH13_Uev1a_ub, Protofibril_UCH_L1 (154)

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
UbcH13_Uev1a_ub Protofibril_UCH_L1	UbcH13/Uev1a-ub Protofibril-UCH-L1	

Table 109: Properties of each modifier.

Id	Name	SBO
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	
UbcH13_Uev1a_ub	UbcH13/Uev1a-ub	
Protofibril_UCH_L1	Protofibril-UCH-L1	

Products

Table 110: Properties of each product.

Id	Name	SBO
UbcH13_Uev1a	UbcH13/Uev1a	
UCH_L1	UCH-L1	
Protofibril_Ub	Protofibril-Ub	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k34}, [\text{UbcH13_Uev1a_ub}], \text{g3472}, [\text{Protofibril_UCH_L1}], \text{g3475})$$
 (155)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (156)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (157)

8.36 Reaction J35

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J35

Notes Protofibril reaction with protofibril-ub to form fibrils

Reaction equation

Protofibril + Protofibril_Ub Protofibril_Ub, Protofibril, Protofibril_Ub, Prot

Reactants

Table 111: Properties of each reactant.

Id	Name	SBO
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	

Table 112: Properties of each modifier.

Id	Name	SBO
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	
${\sf Protofibril_Ub}$	Protofibril-Ub	
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	
Protofibril_Ub	Protofibril-Ub	
Protofibril	Protofibril	

Id	Name	SBO
Protofibril_Ub	Protofibril-Ub	

Product

Table 113: Properties of each product.

Id	Name	SBO
Fibril	Fibril	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k35}, [\text{Protofibril}], \text{g352}, [\text{Protofibril_Ub}], \text{g3576})$$
 (159)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (160)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(161)

8.37 Reaction J36

This is an irreversible reaction of one reactant forming one product influenced by 19 modifiers.

Name J36

Notes Lysosomal degradation of autophagosome

Reaction equation

Autophagosome_0, Autophagosome_0, Lysosome_0, Autophagosome_0, Lysosome_0, Autophagosome_0 (162)

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
Autophagosome_0	Autophagosome	

Table 115: Properties of each modifier.

Id	Name	SBO
Lysosome_0	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
${\tt Lysosome_0}$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	
${\tt Autophagosome_0}$	Autophagosome	
$Lysosome_0$	Lysosome	

Product

Table 116: Properties of each product.

Id	Name	SBO
Fragments	Fragments	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{J1Sub1Mod}(k36, [\text{Autophagosome}_0], g3679, [\text{Lysosome}_0], g3677)$$
 (163)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (164)

8.38 Reaction J37

This is an irreversible reaction of two reactants forming two products influenced by 18 modifiers.

Name J37

Notes Asyn K48 ubiquitination

Reaction equation

UbcH8ub4 + asyn_UCH_L1 UbcH8ub4, asyn_UCH_L1, UbcH8ub4, asyn_UCH_L1,

Reactants

Table 117: Properties of each reactant.

	L	
Id	Name	SBO
UbcH8ub4	UbcH8ub4	
$asyn_UCH_L1$	asyn-UCH-L1	

Table 118: Properties of each modifier.

ne SBO
cH8ub4
n-UCH-L1
cH8ub4

Id	Name	SBO
asyn_UCH_L1	asyn-UCH-L1	

Products

Table 119: Properties of each product.

Id	Name	SBO
UCH_L1_asyn_ub4 UbcH8	UCH-L1-asyn-ub4 UbcH8	

Kinetic Law

Derived unit contains undeclared units

 $v_{38} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (k37, [\text{UbcH8ub4}], g3770, [\text{asyn_UCH_L1}], g3773)$ (166)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(167)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (168)

8.39 Reaction J38

This is an irreversible reaction of one reactant forming three products influenced by 39 modifiers.

Name J38

Notes Proteasomal degradation of UCH-L1-asyn-ub4

Reaction equation

UCH_L1_asyn_ub4 Proteasome_0, ATP, UCH_L1, UCH_L1_asyn_ub4, Proteasome_0, ATP, UCH_L1, UCH_L1_asyn_ub4 (169)

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	

Table 121: Properties of each modifier.

Id	Name	SBO
Proteasome_0	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	
Proteasome_0	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
$UCH_L1_asyn_ub4$	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
$UCH_L1_asyn_ub4$	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
$UCH_L1_asyn_ub4$	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
$UCH_L1_asyn_ub4$	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	
UCH_L1	UCH-L1	
UCH_L1_asyn_ub4	UCH-L1-asyn-ub4	
${\tt Proteasome_0}$	Proteasome	
ATP	ATP	

Id	Name	SBO
UCH_L1	UCH-L1	

Products

Table 122: Properties of each product.

Id	Name	SBO
Fragments	Fragments	
UCH_L1	UCH-L1	
Ubiquitin	Ubiquitin	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J1Sub3Mod} (k38, [\text{UCH_L1_asyn_ub4}], g3878, [\text{Proteasome_0}], g3812, [\text{ATP}], g3815, [\text{UCH_L1}], g3830)$$
 (170)

$$J1Sub3Mod(K,X1,G1,X2,G2,X3,G3,X4,G4) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \cdot X4^{G4} \quad (171)$$

$$J1Sub3Mod(K, X1, G1, X2, G2, X3, G3, X4, G4) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \cdot X4^{G4}$$
 (172)

8.40 Reaction J43

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J43

Notes hsc70-asyn formation

Reaction equation

Reactants

Table 123: Properties of each reactant.

Id	Name	SBO
Alpha_synuclein Hsc70	Alpha_synuclein Hsc70	

Table 124: Properties of each modifier.

Id	Name	SBO
Alpha_synuclein	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	
${\tt Alpha_synuclein}$	Alpha_synuclein	
Hsc70	Hsc70	

Product

Table 125: Properties of each product.

Id	Name	SBO
Hsc70_asyn	Hsc70-asyn	

Kinetic Law

Derived unit contains undeclared units

 $v_{40} = vol\left(Neuronal_cytosol\right) \cdot J2Sub\left(k43, [Alpha_synuclein], g431, [Hsc70], g4384\right) \quad (174)$

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(175)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (176)

8.41 Reaction J44

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J44

Notes Hsc70-protofibril formation

Reaction equation

Protofibril + Hsc70 Protofibril, Hsc70, Protofibril, Hsc70, Protofibril, Hsc70, Protofibril, Hsc70, Protofibril, Hsc70, (177)

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
Protofibril Hsc70	Protofibril Hsc70	

Table 127: Properties of each modifier.

Id	Name	SBO
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	

Id	Name	SBO
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	
Protofibril	Protofibril	
Hsc70	Hsc70	

Product

Table 128: Properties of each product.

Id	Name	SBO
Hsc70_Protofibril	Hsc70-Protofibril	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k44}, [\text{Protofibril}], \text{g442}, [\text{Hsc70}], \text{g4484})$$
 (178)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(179)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (180)

8.42 Reaction J45

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J45

Notes Hsc70-fibril formation

Reaction equation

Fibril + Hsc70 Fibril, Hsc70, Fibril, Hsc70, Fibril, Hsc70, Fibril, Hsc70, Fibril, Hsc70, Fibril, Hsc70, Fibril, Hsc70 (181)

Reactants

Table 129: Properties of each reactant.

Id	Name	SBO
Fibril	Fibril	
Hsc70	Hsc70	

Table 130: Properties of each modifier.

Id	Name	SBO
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	
Fibril	Fibril	
Hsc70	Hsc70	

Product

Table 131: Properties of each product.

Id	Name	SBO
Hsc70_fibril	Hsc70-fibril	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k45}, [\text{Fibril}], \text{g453}, [\text{Hsc70}], \text{g4584})$$
 (182)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(183)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (184)

8.43 Reaction J46

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J46

Notes Lysosomal degradation of Hsc70-asyn

Reaction equation

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
Hsc70_asyn	Hsc70-asyn	

Table 133: Properties of each modifier.

Id	Name	SBO
Lysosome_0	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
$Lysosome_0$	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
$Lysosome_0$	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
Lysosome_0	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
$Lysosome_0$	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
$Lysosome_0$	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
Lysosome_0	Lysosome	

Id	Name	SBO
Hsc70_asyn	Hsc70-asyn	
$Lysosome_0$	Lysosome	
Hsc70_asyn	Hsc70-asyn	
$Lysosome_0$	Lysosome	
${\tt Hsc70_asyn}$	Hsc70-asyn	
Lysosome_0	Lysosome	

Products

Table 134: Properties of each product.

Id	Name	SBO
Hsc70	Hsc70	
Fragments	Fragments	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = vol\left(Neuronal_cytosol\right) \cdot J1Sub1Mod\left(k46, [Hsc70_asyn], g4681, [Lysosome_0], g4677\right) \tag{186}$$

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (187)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (188)

8.44 Reaction J47

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J47

Notes Lysosomal degradation of Hsc70-protofibril

Reaction equation

Reactant

Table 135: Properties of each reactant.

Id	Name	SBO
Hsc70_Protofibril	Hsc70-Protofibril	

Table 136: Properties of each modifier.

Id	Name	SBO
Lysosome_0	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
Lysosome_0	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
$Lysosome_0$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
$Lysosome_0$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
${\tt Lysosome_0}$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
${\tt Lysosome_0}$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
$Lysosome_0$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
${\tt Lysosome_0}$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
${\tt Lysosome_0}$	Lysosome	
Hsc70_Protofibril	Hsc70-Protofibril	
Lysosome_0	Lysosome	

Products

Table 137: Properties of each product.

Id	Name	SBO
Hsc70	Hsc70	
Fragments	Fragments	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = \text{vol} (\text{Neuronal_cytosol})$$

 $\cdot \text{J1Sub1Mod} (\text{k47}, [\text{Hsc70_Protofibril}], \text{g4782}, [\text{Lysosome_0}], \text{g4777})$ (190)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
(191)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (192)

8.45 Reaction J48

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J48

Notes Lysosomal degradation of Hsc70-fibril

Reaction equation

Hsc70_fibril Lysosome_0, Hsc70_fibril, Lysos

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
Hsc70_fibril	Hsc70-fibril	

Table 139: Properties of each modifier.

Id	Name	SBO
Lysosome_0	Lysosome	
${\tt Hsc70_fibril}$	Hsc70-fibril	
Lysosome_0	Lysosome	
${\tt Hsc70_fibril}$	Hsc70-fibril	
Lysosome_0	Lysosome	
${\tt Hsc70_fibril}$	Hsc70-fibril	
$Lysosome_0$	Lysosome	
${\tt Hsc70_fibril}$	Hsc70-fibril	
$Lysosome_0$	Lysosome	

Id	Name	SBO
Hsc70_fibril	Hsc70-fibril	
$Lysosome_0$	Lysosome	
Hsc70_fibril	Hsc70-fibril	
$Lysosome_0$	Lysosome	
Hsc70_fibril	Hsc70-fibril	
${\tt Lysosome_0}$	Lysosome	
${\tt Hsc70_fibril}$	Hsc70-fibril	
${\tt Lysosome_0}$	Lysosome	
${\tt Hsc70_fibril}$	Hsc70-fibril	
${\tt Lysosome_0}$	Lysosome	

Products

Table 140: Properties of each product.

Id	Name	SBO
Hsc70	Hsc70	
Fragments	Fragments	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = vol\left(Neuronal_cytosol\right) \cdot J1Sub1Mod\left(k48, [Hsc70_fibril], g4883, [Lysosome_0], g4877\right) \tag{194}$$

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (195)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (196)

8.46 Reaction J50

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J50

Notes Autophagosome engulf alpha-synuclein

Reaction equation

Alpha_synuclein + Preautophagosome_membrane Alpha_synuclein, Preautophagosome_membrane, Alpha_synuclein (197)

Reactants

Table 141: Properties of each reactant.

Id	Name	SBO
Alpha_synuclein Preautophagosome_membrane	Alpha_synuclein	

Modifiers

Table 142: Properties of each modifier.

<u>^</u>	erties of each modifier.	
Id	Name	SBO
${\tt Alpha_synuclein}$	Alpha_synuclein	
Preautophagosome_membrane	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
Preautophagosome_membrane	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
Preautophagosome_membrane	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
${ t Alpha_synuclein}$	Alpha_synuclein	
Preautophagosome_membrane	Preautophagosome_membrane	
Alpha_synuclein	Alpha_synuclein	
Preautophagosome_membrane	Preautophagosome_membrane	

Product

Table 143: Properties of each product.

Id	Name	SBO
Autophagosome_0	Autophagosome	

Kinetic Law

Derived unit contains undeclared units

 $v_{46} = J2Sub(k50, [Alpha_synuclein], g501, [Preautophagosome_membrane], g5080)$ (198)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (199)

8.47 Reaction J51

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J51

Notes Autophagosome engulf protofibril

Reaction equation

Protofibril + Preautophagosome_membrane Protofibril, Preautophagosome_membrane, Protofibril, Preautophagosome_membrane (200)

Reactants

Table 144: Properties of each reactant.

Id	Name	SBO
Protofibril	Protofibril	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	

Table 145: Properties of each modifier.

Id	Name	SBO
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	

Id	Name	SBO
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Protofibril	Protofibril	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	

Product

Table 146: Properties of each product.

Id	Name	SBO
Autophagosome_0	Autophagosome	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = J2Sub(k51, [Protofibril], g512, [Preautophagosome_membrane], g5180)$$
 (201)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (202)

8.48 Reaction J52

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J52

Notes Autophagosome engulf fibril

Reaction equation

Fibril + Preautophagosome_membrane Fibril, Preautophagosome_membrane, Fibril, Preautophagosome_membrane, (203)

Reactants

Table 147: Properties of each reactant.

Id	Name	SBO
Fibril	Fibril	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	

Table 148: Properties of each modifier.

Id	Name	SBO
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Fibril	Fibril	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Fibril	Fibril	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	
Fibril	Fibril	
Preautophagosome_membrane	Preautophagosome_membrane	

Product

Table 149: Properties of each product.

Id	Name	SBO
Autophagosome_0	Autophagosome	

Kinetic Law

Derived unit contains undeclared units

 $v_{48} = J2Sub(k52, [Fibril], g523, [Preautophagosome_membrane], g5280)$ (204)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (205)

8.49 Reaction J53

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J53

Notes Autophagosome engulf lewy body

Reaction equation

 $Lewy_body + Preautophagosome_membrane \\ \frac{Lewy_body, Preautophagosome_membrane, Lewy_body, Lewy_body, Preautophagosome_membrane, Lewy_body, Prea$

Reactants

Table 150: Properties of each reactant.

Id	Name	SBO
Lewy_body Preautophagosome_membrane	Lewy_body Preautophagosome_membrane	

Table 151: Properties of each modifier.

Id	Name	SBO
Lewy_body	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	
Lewy_body	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	
Lewy_body	Lewy_body	
${\tt Preautophagosome_membrane}$	Preautophagosome_membrane	
Lewy_body	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	
Lewy_body	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	
Lewy_body	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	
Lewy_body	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	
Lewy_body	Lewy_body	

Id	Name	SBO
Preautophagosome_membrane	Preautophagosome_membrane	
${\tt Lewy_body}$	Lewy_body	
Preautophagosome_membrane	Preautophagosome_membrane	

Product

Table 152: Properties of each product.

Id	Name	SBO
Autophagosome_0	Autophagosome	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = J2Sub (k53, [Lewy_body], g534, [Preautophagosome_membrane], g5380)$$
 (207)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (208)

8.50 Reaction J54

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J54

Notes DA-S-Parkin formation

Reaction equation

DA_quinone + Parkin DA_quinone, Parkin, DA_quinone, DA

Reactants

Table 153: Properties of each reactant.

Id	Name	SBO
DA_quinone	DA_quinone	
Parkin	Parkin	

Table 154: Properties of each modifier.

Id	Name	SBO
$\mathtt{DA}_{\mathtt{quinone}}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
Parkin	Parkin	

Product

Table 155: Properties of each product.

Id	Name	SBO
DA_S_parkin	DA-S-parkin	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k54}, [\text{DA_quinone}], \text{g5410}, [\text{Parkin}], \text{g5419})$$
 (210)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2} \tag{211}$$

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (212)

8.51 Reaction J55

This is an irreversible reaction of two reactants forming two products influenced by 18 modifiers.

Name J55

 $\ensuremath{\mathsf{Notes}}$ DA-quinone synthesis from DA and superoxide

Reaction equation

Dopamine + O2 Dopamine, O2, Do

Reactants

Table 156: Properties of each reactant.

Id	Name	SBO
Dopamine	Dopamine	
02	O2-	

Table 157: Properties of each modifier.

Id	Name	SBO
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	
02	O2-	
Dopamine	Dopamine	

Id	Name	SBO
02	O2-	

Products

Table 158: Properties of each product.

Id	Name	SBO
H202	H2O2	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k55}, [\text{Dopamine}], \text{g556}, [\text{O2}], \text{g5586})$$
 (214)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (215)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (216)

8.52 Reaction J56

This is an irreversible reaction of one reactant forming two products influenced by 19 modifiers.

Name J56

Notes Superoxide dismutase reaction

Reaction equation

$$O2 \xrightarrow{SOD, O2, SOD, O2, SOD} H2O2 + O(217)$$

Reactant

Table 159: Properties of each reactant.

Id	Name	SBO
02	O2-	

Table 160: Properties of each modifier.

Name	SBO
SOD	
O2-	
SOD	
	SOD O2- SOD O2- SOD O2- SOD O2- SOD O2- SOD O2- SOD O2- SOD O2- SOD O2- SOD

Products

Table 161: Properties of each product.

Id	Name	SBO
H202	H2O2	
02_0	O2	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \text{vol}(\text{Neuronal_cytosol}) \cdot \text{J1Sub1Mod}(\text{k56}, [\text{O2}], \text{g5686}, [\text{SOD}], \text{g5687})$$
 (218)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (219)

$$J1Sub1Mod(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (220)

8.53 Reaction J57

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J57

Notes DA-GSH formation

Reaction equation

DA_quinone + GSH DA_quinone, GSH, DA_qui

Reactants

Table 162: Properties of each reactant.

Id	Name	SBO
DA_quinone GSH	DA_quinone GSH	

Modifiers

Table 163: Properties of each modifier.

Id	Name	SBO
DA_quinone	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
GSH	GSH	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	

Id	Name	SBO
GSH	GSH	

Product

Table 164: Properties of each product.

Id	Name	SBO
DA_GSH	DA-GSH	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{vol}\left(\text{Neuronal_cytosol}\right) \cdot \text{J2Sub}\left(\text{k57}, [\text{DA_quinone}], \text{g5710}, [\text{GSH}], \text{g5762}\right) \quad (222)$$

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (223)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (224)

8.54 Reaction J100

This is an irreversible reaction of three reactants forming three products influenced by 27 modifiers.

Name J100

Notes Neuromelanin synthesis from L-DOPA

Reaction equation

Reactants

Table 165: Properties of each reactant.

Id	Name	SBO
L_Dopa	L-Dopa	
02_0	O2	
Cysteine	Cysteine	

Modifiers

Table 166: Properties of each modifier.

Id	Name	SBO
L_Dopa	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_\mathtt{Dopa}$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_\mathtt{Dopa}$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{\mathtt{D}}opa$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{-}Dopa$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
${\tt L_Dopa}$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_\mathtt{Dopa}$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
${\tt L_Dopa}$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	
${\tt L_Dopa}$	L-Dopa	
02_0	O2	
Cysteine	Cysteine	

Products

Table 167: Properties of each product.

SBO

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J3Sub} (k100, [\text{L_Dopa}], g10037, [\text{O2_0}], g10051, [\text{Cysteine}], (226) g100115)$$

$$J3Sub(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (227)

$$J3Sub(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (228)

8.55 Reaction J101

This is an irreversible reaction of three reactants forming three products influenced by 27 modifiers.

Name J101

Notes Neuromelanin synthesis from L-Tyr

Reaction equation

$$L_{-}Tyr + O2_{-}0 + Cysteine \\ \frac{L_{-}Tyr, O2_{-}0, Cysteine, L_{-}Tyr, O2_{-}0, Cysteine, L_{-}Tyr,$$

Reactants

Table 168: Properties of each reactant.

Id	Name	SBO
L_Tyr	L-Tyr	
02_0	O2	
Cysteine	Cysteine	

Modifiers

Table 169: Properties of each modifier.

Id	Name	SBO
L_Tyr	L-Tyr	
02_0	O2	
Cysteine	Cysteine	

Id	Name	SBO
 L_Tyr	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$L_{-}Tyr$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{\mathtt{T}}\mathtt{yr}$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{-}Tyr$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{\mathtt{T}}\mathtt{yr}$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{-}Tyr$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{\mathtt{T}}\mathtt{yr}$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{L}_{\mathtt{-}}Tyr$	L-Tyr	
02_0	O2	
Cysteine	Cysteine	

Products

Table 170: Properties of each product.

Id	Name	SBO
Neuromelanin H2O2 CO2	Neuromelanin H2O2 CO2	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = vol (Neuronal_cytosol)$$

$$\cdot J3Sub (k101, [L_Tyr], g10136, [O2_0], g10151, [Cysteine], g101115)$$

$$(230)$$

$$J3Sub(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (231)

$$J3Sub(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3}$$
 (232)

8.56 Reaction J102

This is an irreversible reaction of three reactants forming two products influenced by 27 modifiers.

Name J₁₀₂

Notes Neuromelanin synthesis from DA quinone

Reaction equation

Reactants

Table 171: Properties of each reactant.

Id	Name	SBO
DA_quinone	•	
02_0	O2	
Cysteine	Cysteine	

Modifiers

Table 172: Properties of each modifier.

Id	Name	SBO
DA_quinone	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_{\mathtt{quinone}}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	

Id	Name	SBO
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_\mathtt{quinone}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	
$\mathtt{DA}_{-}\mathtt{quinone}$	DA_quinone	
02_0	O2	
Cysteine	Cysteine	

Products

Table 173: Properties of each product.

Id	Name	SBO
Neuromelanin CO2	Neuromelanin CO2	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol} (\text{Neuronal_cytosol})$$

 $\cdot \text{J3Sub} (\text{k102}, [\text{DA_quinone}], \text{g10210}, [\text{O2_0}], \text{g10251}, [\text{Cysteine}], \text{g102115})$ (234)

$$J3Sub\left(K,X1,G1,X2,G2,X3,G3\right) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \tag{235}$$

$$J3Sub(K, X1, G1, X2, G2, X3, G3) = K \cdot X1^{G1} \cdot X2^{G2} \cdot X3^{G3} \tag{236}$$

8.57 Reaction J115

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J115

Notes Neuromelanin Fe3+ sequestration

Reaction equation

Fe3 + Neuromelanin Fe3, Neuromelanin, Fe3, Neuromel

(237)

Reactants

Table 174: Properties of each reactant.

Id	Name	SBO
Fe3	Fe3+	
Neuromelanin	Neuromelanin	

Modifiers

Table 175: Properties of each modifier.

Id	Name	SBO
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	
Neuromelanin	Neuromelanin	
Fe3	Fe3+	

Id	Name	SBO
Neuromelanin	Neuromelanin	

Product

Table 176: Properties of each product.

Id	Name	SBO
Neuromelanin_ntox_Fe3	Neuromelanin-ntox-Fe3+	

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{vol} (\text{Neuronal_cytosol}) \cdot \text{J2Sub} (\text{k}115, [\text{Fe}3], \text{g}11565, [\text{Neuromelanin}], \text{g}115118)$$
 (238)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (239)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (240)

8.58 Reaction J116

This is an irreversible reaction of two reactants forming one product influenced by 18 modifiers.

Name J116

Notes Neuromelanin neurotoxin sequestration

Reaction equation

Neuromelanin + Neurotoxins Meurotoxins, Neurotoxins, Neurotoxins, Neurotoxins, Neurotoxins, Neurotoxins, Neurotoxins, (241)

Reactants

Table 177: Properties of each reactant.

Id	Name	SBO
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	

Modifiers

Table 178: Properties of each modifier.

Id	Name	SBO
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	
Neuromelanin	Neuromelanin	
Neurotoxins	Neurotoxins	

Product

Table 179: Properties of each product.

Id	Name	SBO
Neuromelanin_ntox_Fe3	Neuromelanin-ntox-Fe3+	

Kinetic Law

Derived unit contains undeclared units

 $v_{58} = vol\left(Neuronal_cytosol\right) \cdot J2Sub\left(k116, [Neuromelanin], g116118, [Neurotoxins], g11642\right) \tag{242}$

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (243)

$$J2Sub(K, X1, G1, X2, G2) = K \cdot X1^{G1} \cdot X2^{G2}$$
 (244)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species Protofibril

Name Protofibril

Notes Alpha synuclein protofibril

Initial concentration 0.05 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{Protofibril} = v_1 + v_{33} - v_2 - v_{34} - v_{36} - v_{41} - v_{47}$$
 (245)

9.2 Species Fibril

Name Fibril

Notes Alpha synuclein fibril

Initial concentration 0.025 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Fibril} = |v_2| + |v_{36}| - |v_3| - |v_{42}| - |v_{48}| \tag{246}$$

9.3 Species Lewy_body

Name Lewy_body

Notes Lewy Bodies

Initial concentration 0.01 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Lewy_body} = |v_3| - |v_{49}| \tag{247}$$

9.4 Species Dopamine

Name Dopamine

Notes Dopamine

Initial concentration 2 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{Dopamine} = |v_{12}| - |v_{13}| - |v_{16}| - |v_{17}| - |v_{51}|$$
(248)

9.5 Species OH

Name OH-

Notes Hydroxide

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{OH} = v_{18} \tag{249}$$

9.6 Species OH_radical

Name OH_radical

Notes Hydroxyl radical

Initial concentration 0.02 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{OH_radical} = v_{18} \tag{250}$$

9.7 Species H202

Name H2O2

Notes Hidrogen Peroxide

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}H2O2 = |v_{17}| + |v_{51}| + |v_{52}| + |v_{54}| + |v_{55}| - |v_{18}| - |v_{20}| - |v_{21}|$$
(251)

9.8 Species DA_quinone

Name DA_quinone

Notes Dopamine quinone (oxidized form)

Initial concentration 0.05 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}DA_{\text{quinone}} = |v_{16}| + |v_{51}| - |v_{50}| - |v_{53}| - |v_{56}|$$
(252)

9.9 Species Ubiquitin

Name Ubiquitin

Notes Ubiquitin

Initial concentration 1 dimensionless · dimensionless ⁻¹

This species takes part in 15 reactions (as a reactant in J6 and as a product in J4, J26r, J27r, J28r, J38 and as a modifier in J6, J6, J6, J6, J6, J6, J6, J6, J6, J6).

$$\frac{d}{dt}Ubiquitin = 4 v_4 + 2 v_{25} + 3 v_{27} + 4 v_{29} + 4 v_{39} - v_5$$
 (253)

9.10 Species E1

Name E1

Notes Ubiquitin-activating enzymes (E1)

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

This species takes part in 15 reactions (as a reactant in J6 and as a product in J7, J26f, J27f, J28f, J29 and as a modifier in J6, J6, J6, J6, J6, J6, J6, J6, J6, J6).

$$\frac{\mathrm{d}}{\mathrm{d}t}E1 = v_6 + v_{24} + v_{26} + v_{28} + v_{30} - v_5 \tag{254}$$

9.11 Species Ub_E1

Name Ub-E1

Notes Ubiquitin - Ubiquitin-activating enzymes (E1)

Initial concentration 0.35 dimensionless · dimensionless ⁻¹

This species takes part in 51 reactions (as a reactant in J7, J26f, J27f, J28f, J29 and as a product in J6 and as a modifier in J7, J7, J7, J7, J7, J7, J7, J7, J7, J26f, J26f, J26f, J26f, J26f, J26f, J26f, J27f, J28f, J29, J29, J29, J29, J29, J29, J29).

$$\frac{d}{dt}Ub_E1 = |v_5| - |v_6| - |v_{24}| - |v_{26}| - |v_{28}| - |v_{30}|$$
(255)

9.12 Species UbcH8

Name UbcH8

Notes Ubiquitin/ISG15-conjugating enzyme E2

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

This species takes part in 15 reactions (as a reactant in J7 and as a product in J11, J26r, J27r, J28r, J37 and as a modifier in J7, J7, J7, J7, J7, J7, J7, J7, J7).

$$\frac{d}{dt}UbcH8 = |v_{10}| + |v_{25}| + |v_{27}| + |v_{29}| + |v_{38}| - |v_{6}|$$
(256)

9.13 Species UbcH8_Ub

Name UbcH8-Ub

Notes Ubiquitin - Ubiquitin/ISG15-conjugating enzyme E2

Initial concentration 0.35 dimensionless · dimensionless ⁻¹

This species takes part in eleven reactions (as a reactant in J26f and as a product in J7 and as a modifier in J26f, J26

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{UbcH8}_{-}\mathrm{Ub} = v_6 - v_{24} \tag{257}$$

9.14 Species Parkin

Name Parkin

Notes E3 ubiquitin-protein ligase parkin

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} Parkin = |v_4 - v_7| - |v_8| - |v_{50}|$$
 (258)

9.15 Species Parkin_sub

Name Parkin-sub

Notes E3 ubiquitin-protein ligase parkin - Substrate

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Parkin_sub} = |v_7| - |v_{10}| \tag{259}$$

9.16 Species Parkin_synphilin_1

Name Parkin-synphilin-1

Notes E3 ubiquitin-protein ligase parkin - synphilin-1 complex

Initial concentration 1.3 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Parkin_synphilin_1} = |v_8| - |v_9| \tag{260}$$

9.17 Species Parkin_synphilin_1_ub

Name Parkin-synphilin-1-ub

Notes E3 ubiquitin-protein ligase parkin - synphilin-1-ubiquitin complex

Initial concentration 2.5 dimensionless · dimensionless ⁻¹

This species takes part in eleven reactions (as a reactant in J3 and as a product in J10 and as a modifier in J3, J3, J3, J3, J3, J3, J3, J3, J3).

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Parkin_synphilin_1_ub} = |v_9| - |v_3| \tag{261}$$

9.18 Species Parkin_sub_ub4

Name Parkin-sub-ub4

Notes E3 ubiquitin-protein ligase parkin - 4 Ubiquitinated substrate

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

This species takes part in eleven reactions (as a reactant in J4 and as a product in J11 and as a modifier in J4, J4, J4, J4, J4, J4, J4, J4, J4, J4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Parkin_sub_ub4} = |v_{10}| - |v_4| \tag{262}$$

9.19 Species Fragments

Name Fragments

Notes Degraded fragments

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

This species takes part in six reactions (as a product in J4, J36, J38, J46, J47, J48).

$$\frac{d}{dt} \text{Fragments} = v_4 + v_{37} + v_{39} + v_{43} + v_{44} + v_{45}$$
 (263)

9.20 Species UCH_L1

Name UCH-L1

Notes Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1)

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}UCH_L1 = v_{32} + v_{35} + v_{39} - v_{31} - v_{34}$$
 (264)

9.21 Species L_Dopa

Name L-Dopa

Notes L-3,4-dihydroxyphenylalanine

Initial concentration 1 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}L_Dopa = |v_{11}| - |v_{12}| - |v_{54}| \tag{265}$$

9.22 Species DOPAL

Name DOPAL

Notes 3,4-Dihydroxyphenylacetaldehyde (DOPAL)

Initial concentration 0.05 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DOPAL} = |v_{17}| - |v_{23}| \tag{266}$$

9.23 Species DOPAC

Name DOPAC

Notes 3,4-Dihydroxyphenylacetic acid (DOPAC)

Initial concentration 0.3 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J25).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DOPAC} = v_{23} \tag{267}$$

9.24 Species GSH

Name GSH

Notes Glutathione (GSH)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GSH} = |v_{22}| - |v_{21}| - |v_{53}| \tag{268}$$

9.25 Species GSSG

Name GSSG

Notes Glutathione disulfide (GSSG)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GSSG} = v_{21} - v_{22} \tag{269}$$

9.26 Species Fe2

Name Fe2+

Notes Iron (2+)

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

Involved in rule Fe2

9.27 Species Fe3

Name Fe3+

Notes Iron (Fe3+)

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{Fe3} = |v_{18}| - |v_{19}| - |v_{57}| \tag{270}$$

9.28 Species UbcH8ub2

Name UbcH8ub2

Notes 2 Ubiquitin - Ubiquitin/ISG15-conjugating enzyme E2

Initial concentration 0.35 dimensionless · dimensionless ⁻¹

This species takes part in 21 reactions (as a reactant in J26r, J27f and as a product in J26f and as a modifier in J26r, J26r, J26r, J26r, J26r, J26r, J26r, J26r, J27f, J27f,

$$\frac{d}{dt}UbcH8ub2 = v_{24} - v_{25} - v_{26}$$
 (271)

9.29 Species UbcH8ub3

Name UbcH8ub3

Notes 3 Ubiquitin - Ubiquitin/ISG15-conjugating enzyme E2

Initial concentration 0.35 dimensionless · dimensionless ⁻¹

This species takes part in 21 reactions (as a reactant in J27r, J28f and as a product in J27f and as a modifier in J27r, J28f, J28f,

$$\frac{d}{dt}UbcH8ub3 = |v_{26}| - |v_{27}| - |v_{28}|$$
 (272)

9.30 Species UbcH8ub4

Name UbcH8ub4

Notes 4 Ubiquitin - Ubiquitin/ISG15-conjugating enzyme E2

Initial concentration 0.35 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}UbcH8ub4 = |v_{28}| - |v_{10}| - |v_{29}| - |v_{38}|$$
 (273)

9.31 Species UbcH13_Uev1a

Name UbcH13/Uev1a

Notes Ubiquitin-conjugating enzyme (E2) / Ubiquitin-conjugating enzyme (Uev1a)

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{UbcH13_Uev1a} = |v_9| + |v_{32}| + |v_{35}| - |v_{30}|$$
 (274)

9.32 Species UbcH13_Uev1a_ub

Name UbcH13/Uev1a-ub

Notes Ubiquitin - Ubiquitin-conjugating enzyme (E2) / Ubiquitin-conjugating enzyme (Uev1

Initial concentration 0.35 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{UbcH13_Uev1a_ub} = |v_{30}| - |v_{9}| - |v_{32}| - |v_{35}|$$
 (275)

9.33 Species asyn_UCH_L1

Name asyn-UCH-L1

Notes Alpha synuclein - Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1)

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \operatorname{asyn_UCH_L1} = |v_{31}| - |v_{32}| - |v_{38}|$$
 (276)

9.34 Species asyn_ub

Name asyn-ub

Notes Ubiquitinated alpha synuclein

Initial concentration 0.05 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{asyn_ub} = |v_{32}| - |v_{33}| \tag{277}$$

9.35 Species Protofibril_UCH_L1

Name Protofibril-UCH-L1

Notes Alpha synuclein protofibril - Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UC

Initial concentration 0.025 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Protofibril_UCH_L1} = v_{34} - v_{35} \tag{278}$$

9.36 Species Protofibril_Ub

Name Protofibril-Ub

Notes Ubiquitinated alpha synuclein protofibril

Initial concentration 0.013 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Protofibril_Ub} = |v_{35}| - |v_{36}| \tag{279}$$

9.37 Species UCH_L1_asyn_ub4

Name UCH-L1-asyn-ub4

Notes Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) - 4 Ubiquitinated alpha

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{UCH}_{-}\mathrm{L1}_{-}\mathrm{asyn}_{-}\mathrm{ub4} = |v_{38}| - |v_{39}| \tag{280}$$

9.38 Species Hsc70_asyn

Name Hsc70-asyn

Notes Alpha synuclein - Heat shock cognate 70 kDa protein (chaperone)

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} Hsc70_asyn = |v_{40}| - |v_{43}|$$
 (281)

9.39 Species Hsc70_Protofibril

Name Hsc70-Protofibril

Notes Alpha synuclein protofibril - Heat shock cognate 70 kDa protein (chaperone)

Initial concentration 0.025 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Hsc70_Protofibril} = v_{41} - v_{44} \tag{282}$$

9.40 Species Hsc70_fibril

Name Hsc70-fibril

Notes Alpha synuclein fibril - Heat shock cognate 70 kDa protein (chaperone)

Initial concentration 0.013 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Hsc70_fibril} = v_{42} - v_{45} \tag{283}$$

9.41 Species Hsc70

Name Hsc70

Notes Heat shock cognate 70 kDa protein (chaperone)

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}Hsc70 = v_{43} + v_{44} + v_{45} - v_{40} - v_{41} - v_{42}$$
(284)

9.42 Species DA_S_parkin

Name DA-S-parkin

Notes Dopamine quinone (oxidized form) - E3 ubiquitin-protein ligase parkin Initial concentration $0.2 \, \mathrm{dimensionless} \cdot \mathrm{dimensionless}^{-1}$

This species takes part in one reaction (as a product in J54).

$$\frac{d}{dt}DA_S_parkin = v_{50}$$
 (285)

9.43 Species 02

Name O2-

Notes Superoxide radical (02-)

Initial concentration 0.02 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}O2 = |v_{16}| - |v_{51}| - |v_{52}| \tag{286}$$

9.44 Species DA_GSH

Name DA-GSH

Notes Dopamine - Glutathione (GSH)

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J57).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DA}.\mathrm{GSH} = v_{53} \tag{287}$$

9.45 Species Neuromelanin

Name Neuromelanin

Notes Neuromelanin (NM)

Initial concentration 1 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{Neuromelanin} = |v_{54}| + |v_{55}| + |v_{56}| - |v_{57}| - |v_{58}|$$
 (288)

9.46 Species Neuromelanin_ntox_Fe3

Name Neuromelanin-ntox-Fe3+

Notes Neuromelanin (NM) with neurotoxins and Fe2+. Neurotoxins such as rotenone and MPTP

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

This species takes part in two reactions (as a product in J115, J116).

$$\frac{d}{dt} \text{Neuromelanin_ntox_Fe3} = |v_{57}| + |v_{58}|$$
 (289)

9.47 Species Alpha_synuclein

Name Alpha_synuclein

Notes Alpha synuclein

Initial concentration 0.2 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Alpha_synuclein} = 0 \tag{290}$$

9.48 Species ATP

Name ATP

Notes Adenosine triphosphate (ATP)

Initial concentration 2 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ATP} = 0\tag{291}$$

9.49 Species Synphilin_1

Name Synphilin-1

Notes Synphilin-1

Initial concentration 0.05 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt}Synphilin_{1} = 0 (292)$$

9.50 Species Substrate

Name Substrate

Notes Substrate

Initial concentration 0.4 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Substrate} = 0 \tag{293}$$

9.51 Species TH

Name TH

Notes Tyrosine hydroxylase (TH)

Initial concentration 0.6 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TH} = 0\tag{294}$$

9.52 Species L_Tyr

Name L-Tyr

Notes L-Tyrosine

Initial concentration 5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L}_{-}\mathbf{T}\mathbf{y}\mathbf{r} = 0 \tag{295}$$

9.53 Species CO2

Name CO2

Notes Carbon dioxide (CO2)

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

This species takes part in four reactions (as a product in J14, J100, J101, J102), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO2} = 0\tag{296}$$

9.54 Species Neurotoxins

Name Neurotoxins

Notes Neurotoxins such as rotenone and MPTP

Initial concentration 0.01 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Neurotoxins} = 0 \tag{297}$$

9.55 Species Bioamines

Name Bioamines

Notes Biogenic amine

Initial concentration 0.1 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Bioamines} = 0 \tag{298}$$

9.56 Species VMAT2

Name VMAT2

Notes vesicular monoamine transporter 2 (VMAT2)

Initial concentration 2 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}VMAT2 = 0\tag{299}$$

9.57 Species 02_0

Name O2

Notes Oxygen (02)

Initial concentration 2 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O}2_{-}0 = 0\tag{300}$$

9.58 Species MAO

Name MAO

Notes L-Monoamine oxidases (MAO)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MAO} = 0\tag{301}$$

9.59 Species NH3

Name NH3

Notes Ammonia (NH3)

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J19), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NH3} = 0\tag{302}$$

9.60 Species ALDH

Name ALDH

Notes Aldehyde dehydrogenases (ALDH)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ALDH} = 0\tag{303}$$

9.61 Species NAD

Name NAD+

Notes Nicotinamide adenine dinucleotide (oxidized)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NAD} = 0\tag{304}$$

9.62 Species NADH

Name NADH

Notes Nicotinamide adenine dinucleotide (reduced)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J25), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADH} = 0\tag{305}$$

9.63 Species Catalase

Name Catalase

Notes Catalase

Initial concentration 1 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Catalase} = 0 \tag{306}$$

9.64 Species H20

Name H2O

Notes Water (H2O)

Initial concentration 3 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{H2O} = 0\tag{307}$$

9.65 Species Gluta_per

Name Gluta_per

Notes Glutathione peroxidase

Initial concentration 0.8 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gluta_per} = 0\tag{308}$$

9.66 Species Gluta_red

Name Gluta_red

Notes Glutathione reductase

Initial concentration 0.8 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gluta_red} = 0 \tag{309}$$

9.67 Species DDC

Name DDC

Notes Aromatic L-amino acid decarboxylase (DDC)

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DDC} = 0\tag{310}$$

9.68 Species Preautophagosome_membrane

Name Preautophagosome_membrane

Notes Preautophagosome membrane

Initial concentration 1 dimensionless · dimensionless ⁻¹

 $\frac{\mathrm{d}}{\mathrm{d}t} \text{Preautophagosome_membrane} = 0 \tag{311}$

9.69 Species SOD

Name SOD

Notes Superoxide dismutases (SOD)

Initial concentration 0.6 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOD} = 0\tag{312}$$

9.70 Species Cysteine

Name Cysteine

Notes Cysteine

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

This species takes part in 30 reactions (as a reactant in J100, J101, J102 and as a modifier in J100, J100, J100, J100, J100, J100, J100, J100, J101, J102, J102,

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Cysteine} = 0 \tag{313}$$

9.71 Species V_DA

Name V-DA

Notes Vesicular dopamine

Initial concentration 10 dimensionless · dimensionless ⁻¹

This species takes part in one reaction (as a product in J15).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{V}_{-} \mathbf{D} \mathbf{A} = \mathbf{v}_{13} \tag{314}$$

9.72 Species V_ntox_ba

Name V-ntox-ba

Notes Vesicular neurotoxins and bio-amines. Neurotoxins such as rotenone and MPTP.

Initial concentration 0.3 dimensionless · dimensionless ⁻¹

This species takes part in two reactions (as a product in J16, J17).

$$\frac{d}{dt}V_{-n}tox_{-}ba = |v_{14}| + |v_{15}|$$
 (315)

9.73 Species Vesicle_0

Name Vesicle

Notes Vesicle

Initial concentration 1 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Vesicle}_{-}0 = 0 \tag{316}$$

9.74 Species Autophagosome_0

Name Autophagosome

Notes Autophagosome

Initial concentration 0.5 dimensionless · dimensionless ⁻¹

$$\frac{d}{dt} \text{Autophagosome}_{0} = v_{46} + v_{47} + v_{48} + v_{49} - v_{37}$$
(317)

9.75 Species Proteasome_0

Name Proteasome

Notes Proteasome

Initial concentration 1.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Proteasome} = 0 \tag{318}$$

9.76 Species Lysosome_0

Name Lysosome

Notes Lysosome

Initial concentration 2.5 dimensionless · dimensionless ⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Lysosome}_{0} = 0 \tag{319}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany