LABORATORIO 4

Unidad 5

Camila Paladines

Computación Científica

Profesor: Hernán Darío Vargas Cardona, PhD

Mayo 14 de 2021

RESUMEN

ABSTRACT

${\bf Contenido}$

1.	Introducción														1					
2.	Materiales y Métodos													2						
	2.1.	2.1. Materiales												2						
	2.2.	Métod	los (HA	Y QI	UE	AM	IPL	IAI	RL.	A)							 			2
		2.2.1.	Difere	enciac	ión	nui	mér	ica									 			2
		2.2.2.	Integr	ación	nu	méi	rica													3
3.	Res	ultado	s de la	as Sir	mu]	laci	ione	es												4
	3.1.	Diferen	nciació	n													 			4
		3.1.1.	Ejem	plo 1																4
		3.1.2.	Ejem	plo 2													 			4
		3.1.3.	Ejem	plo 3													 			4
	3.2.	Integra	ación														 			5
		3.2.1.	Ejem	plo 1																5
		3.2.2.	Ejem	plo 2													 			5
		3.2.3.	Ejem	plo 3																5
4.	Disc	cusión	y Ana	álisis																6
	4.1.	Diferen	nciació	n													 			6
	4.2.	Integra	ación																	6
5.	Con	Conclusiones													7					
6.	Refe	erencia	as																	8

Índice de Figuras

Índice de Tablas

1. Introducción

2. Materiales y Métodos

2.1. Materiales

Para el desarrollo de esta unidad se usó Python 3.7, con las siguientes librerías:

- numpy. Para funciones matemáticas como promedio, desviación estándar, entre otros.
- pyplot. Para graficar las funciones en el plano y las estadísticas de los métodos con respecto a su exactitud y tiempo de ejecución.
- time. Para calcular los tiempos de cómputo de cada uno de los métodos en diferenciación e integración.
- sympy. Para modelar la variable t dentro de las operaciones de los métodos de diferenciación e integración.

2.2. Métodos (HAY QUE AMPLIARLA)

2.2.1. Diferenciación numérica

Dada una función f(x), su primera derivada se puede hallar mediante los siguientes métodos, con un $h \in \mathbb{R}$ seleccionado:

■ Diferencias Finitas Hacia Adelante

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Diferencias Finitas Hacia Atrás

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

■ Diferencias Finitas Centrada

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Además, se puede hallar la segunda derivada de f(x) mediante la siguiente expresión:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

2.2.2. Integración numérica

Dada una función f(x), su integral definida $\int_a^b f(x) dx$ se puede hallar mediante los siguientes métodos o reglas de cuadratura compuesta:

■ Regla del Punto Medio

$$I(f) = M_c(f) = \sum_{i=1}^{n} (x_i - x_{i-1}) f\left(\frac{x_{i-1} + x_i}{2}\right)$$

• Regla del Trapezoide

$$I(f) = T_c(f) = \frac{1}{2} \sum_{i=1}^{n} (x_i - x_{i-1}) [f(x_{i-1}) + f(x_i)]$$

■ Regla de Simpson

$$I(f) = S_c(f) = \frac{1}{6} \sum_{i=1}^{n} (x_i - x_{i-1}) \left[f(x_{i-1}) + 4f\left(\frac{x_{i-1} + x_i}{2}\right) + f(x_i) \right]$$

3. Resultados de las Simulaciones

- 3.1. Diferenciación
- 3.1.1. Ejemplo 1
- 3.1.2. Ejemplo 2
- 3.1.3. Ejemplo 3

- 3.2. Integración
- **3.2.1.** Ejemplo 1
- 3.2.2. Ejemplo 2
- 3.2.3. Ejemplo 3

- 4. Discusión y Análisis
- 4.1. Diferenciación
- 4.2. Integración

5. Conclusiones

6. Referencias

- Material del curso, disponible en BlackBoard
- \blacksquare Bornemann, F., 2016. Numerical linear algebra. 1st ed. Simson, W.
- Mathews, J., Fink, K., Fernández Carrión, A. & Contreras Márquez, M., 2011. Métodos Numéricos con MATLAB. 3rd ed. Madrid: Pearson Prentice Hall.
- Librería Numpy
- Librería Pyplot (Matplotlib)
- <u>Librería Time</u>
- Librería Sympy