Нормална околност на така от повержнина

Нека До е околност на т (10, 10) \in Д, \in До - подобласт на Д и $P_0 \in \mathcal{F}: \overline{OP_0} = \overline{C}(n_0, v_0)$. Каато (n_0, v_0) описва До , $\overline{C}(n_0, v_0)$ описва Таст \mathcal{F}_0 от \mathcal{F}_0 , каято се нарига еколност на P_0 . Яхо изобраще нието \mathcal{F}_0 е биективно, то \mathcal{F}_0 се нарига нормална ехолност на P_0 в брху \mathcal{F} .

Пемал важа така от мода повержнина има корнална околност. \mathcal{F}_0 оказательно нека $P_0(x,y,z) \in \mathcal{F}$ е пробов. т. ка, \mathcal{F}_0 - гладка (x_0, x_0) $(x_0, x_0) = \mathcal{F}_0$ околност До на (n_0, v_0) , за кахто системата $(x_0, x_0) = \mathcal{F}_0$ околност До на (n_0, v_0) , за кахто системата $(x_0, x_0) = \mathcal{F}_0$ околност До на (n_0, v_0) , за кахто системата $(x_0, x_0) = \mathcal{F}_0$ околност \mathcal{F}_0 на $(n_0, v_0) = \mathcal{F}_0$ околност \mathcal{F}_0 на $(n_0, n_0) = \mathcal{F}_0$ на $(n_0, n_0) = \mathcal{F}_0$

Воригрателна равнина и пориала към повержина

Нека Ро е произволна можа от надка повержина $F: \vec{\tau} = \vec{\tau}(u, v), (u, v) \in D \subset \mathbb{R}^2$ и с е произволна крива

и рез Ро. Тогава ОРо = $\vec{\tau}(u, v) = \vec{\tau}(u, v) = \vec{\tau}(u, v) = \vec{\tau}(u, v) = \vec{\tau}(u, v)$ Следователно за допирателния векто $\vec{\tau}(u, v) = \vec{\tau}(u, v) = \vec{\tau}(u, v) = \vec{\tau}(u, v)$ От това $\vec{\tau}(u, v) = \vec{\tau}(u, v) = \vec{\tau}(u,$

Теорена Нека Ре мотка от надка поверхнина \mathcal{F} . Тогава допирателните към минаващите през Р крива ощ \mathcal{F} ленат во допирателната равнина а в същата тока. Обратно-вижа прова от а през Р е допирателна към кронва от \mathcal{F} , минаващо през Р. Ако \mathcal{F} : \mathcal{F} = \mathcal{F} (и, v), то а има уравнение $(\mathcal{F}_u(u,v) \times \mathcal{F}_v(u,v))(\mathcal{F}-\mathcal{F}(u,v))=(\mathcal{F}-\mathcal{F}(u,v))\mathcal{F}_u\mathcal{F}_v=0$. Ако мрямо ОКС К \mathcal{F} е задожка с уравнение \mathcal{F} = \mathcal{F} (x, y) (правили). \mathcal{F} м. е. \mathcal{F} : \mathcal{F} и \mathcal{F} и \mathcal{F} на \mathcal{F} н

Допиротенна равшина шоше да се дергинира и по следния наши

Верхниновта F е границата, към колято клони равнината АВС, когато токите В и С клонят по F към А по две различни направления.

По-общо-не е невоходино т. А да е виксирана.

Дорга Допирателната равнина в тогкаба А от повърженната F е гранината, към колто клони равнината ВСД; колто тогките В, С, Д клонят по F към А, така те ДАВС чема безкрайно налки тегли.

За да същенивува праницата е догтатьско да поставин условисто

Mpal xenuxong yemixing -1 Полугава се при двишнението на права права неподвинна права OZ 100 Ha xenuxouda) nod mpab Elen, върти се окого огта и в същото време се двиши постъпатения по посока на оста като скоротите на тези double tens ca moonoprendicather. За проивонический подрашали (параметры) на т. М могне да вземем 1. разстоянието и=ма до оста и 2. Точтот и на завъртане на аразуващита АМ каго отситаше от накое наганно положение. Избиране ОКС К като оста ну приемен За ос Z, а наталното положение на образуващила-за ос x. Тогава x = OR = OPCOSV = MACOSV = UCOSV Y = QP = asinv Tou kamo nomem OA, Menumam om m. A no acma е пропоризионален на ътва V, то Z = 0A = b, където b (xод на xеликоида) е прешестването на xеликоида при завъртане на един радиан. Следовачелно параме-