1

1.

CLAIMS

A method of measuring a power spectrum of an optical

2	signal, comprising:	
3	transmitting the optical signal through an optical fiber;	
4	coupling a power of at least one wavelength of the optical signal	
5	from a first mode to a second mode of the waveguide; and	
6	measuring the power of the optical signal coupled from the first	
7	mode to the second mode at a detector.	
1	2. The method of claim 1, wherein a mode coupler is provided	
2	to couple the power of the at least one wavelength.	
1	3. The method of claim 2, wherein the mode coupler is selected	
2	from an acoustic grating, a UV grating, a bending grating and a stress	
3	induced grating.	
1	4. The method of claim 2, wherein the mode coupler includes	
2	an acoustic wave generator and an acoustic wave propagation member	
3	coupled to the optical fiber.	
1	5. The method of claim 1, further comprising:	
2	removing that portion of the at least one wavelength that is not	
3	coupled from the first mode to the second mode	
1	6. The method of claim 4, wherein the wavelength of the optical	
2	signal coupled from the first mode to the second mode is changed by	
3	varying a frequency of an acoustic wave produced by a mode coupler	
4	coupled to the optical fiber.	
1	7. The method of claim 1, wherein the mode coupler produces	
2	multiple acoustic signals with individual controllable strengths and	

- 3 frequencies and each of the signals provides a coupling between one mode
- 4 to a different mode.
- 1 8. The method of claim 1, wherein an amount of the optical
- 2 signal coupled from the first mode to the second mode is changed by
- 3 varying an amplitude of a signal applied to the mode coupler.
- 1 9. The method of claim 1, wherein at least one core mode is
- 2 converted to a different core mode.
- 1 10. The method of claim 1, wherein at least one core more is
- 2 converted to a cladding mode.
- 1 11. The method of claim 1, wherein at least one cladding mode is
- 2 converted to a core mode.
- 1 12. The method of claim 1, wherein at least one cladding mode is
- 2 converted to a different cladding mode.
- 1 13. The method of claim 1, wherein the wavelength coupled
- 2 from the first mode to the second mode is changed by varying a frequency
- 3 of an acoustic wave produced by the mode coupler.
- 1 14. The method of claim 1, wherein a mode converter is
- 2 provided to produce multiple acoustic signals with individual controllable
- 3 strengths and frequencies and each of an acoustic signals provides a
- 4 coupling between one mode to a different mode.
- 1 15. The method of claim 1, wherein a mode coupler is coupled to
- 2 the optical fiber and configured to provide at least one perturbation in the
- 3 optical fiber to create a coherent coupling between a first mode to a second
- 4 mode in the optical fiber.

1		16.	The method of claim 1, further comprising:
2		chang	ing the polarization of the optical signal prior to coupling the
3	light.		
1		17.	The method of claim 1, wherein the first and second modes
2	have d	lifferen	t polarization states in the optical fiber.
1		18.	The method of claim 1, further comprising:
2		detec	ting a power spectrum of a band of wavelengths that have been
3	couple	ed.	
1		19.	The method of claim 1, further comprising:
2		detec	ting a power spectrum of coupled second mode wavelengths.
2		actor	
1		20.	The method of claim 1, further comprising:
2		adjus	ting a strength of a signal that provides coupling between the
3	first a	nd seco	ond modes.
1		21.	The method of claim 1, further comprising:
2		scanı	ning through a range of signals that provide coupling between
3	the fir	rst and	second modes.
1		22.	The method of claim 1, further comprising:
2		adius	sting a strength of a signal that provides coupling between the
3	first and second mode to maximize coupling between the first and second		
	mode		one mode to maximize coup-ing
4	mode	55.	
1		23.	The method of claim 1, further comprising:
2		dithe	ering a strength of a signal that provides coupling between the
3	first a	and sec	ond mode to maximize coupling between the first and second
4	mode	es.	

1	24. A method of monitoring a power spectrum of an optical	
2	signal, comprising:	
3	changing polarizations of the optical signal in a polarization	
4	scrambler;	
5	coupling a first mode of the optical signal to a second mode at a	
6	mode converter;	
7	detecting the second mode at a detector;	
8	generating a signal responsive to detection of the second mode;	
9	averaging the signal to measure a power of the second mode,	
0	wherein measurement of the power of the second mode is	
11	polarization independent.	
1	25. The method of claim 24, wherein a wavelength of the optical	
2	signal coupled from the first mode to the second mode is changed by	
3	varying a frequency of an acoustic signal applied to the mode coupler.	
1	26. The method of claim 24, wherein the mode coupler produces	
2	multiple acoustic signals with individual controllable strengths and	
3	frequencies and each of the acoustic signals provides a coupling between	
4	one mode to a different mode.	
1	27. The method of claim 24, wherein an amount of the optical	
2	signal coupled from the first mode to the second mode is changed by	
3	varying an amplitude of an acoustic signal applied to the mode coupler.	
1	28. The method of claim 24, wherein at least one core mode is	
2	coupled to a different core mode.	
1	29. The method of claim 24, wherein at least one core mode is	
2	coupled to a cladding mode.	

1	30.	The method of claim 24, wherein at least one cladding mode	
2	is coupled to a core mode.		
1	31.	The method of claim 24, wherein at least one cladding mode	
2	is coupled to	a different cladding mode.	
	20	TI 41.1.1.6.1	
1	32.	The method of claim 24, wherein a wavelength coupled from	
2	the first mode	e to the second mode is changed by varying the frequency of an	
3	acoustic signa	al applied to the mode coupler.	
1	33.	The method of claim 24, wherein the mode converter	
2	produces mul	tiple acoustic signals with individual controllable strengths and	
3	frequencies a	nd each of the acoustic signals provides a coupling between	
4	one mode to	a different mode.	
1	34.	The method of claim 24, wherein the mode converter	
2	provides at le	east one perturbation in the optical fiber to create a coherent	
3	•	ween the first mode to the second mode in the optical fiber.	
1	35.	A spectral monitor, comprising:	
2	an op	tical fiber with multiple modes;	
3	_	de coupler coupled to the optical fiber, the mode coupler	
4	provides at le	east one perturbation in the optical fiber to create a coherent	
5	coupling between the first mode to the second mode in the optical fiber;		
6	a detector positioned to detect a coupling power spectrum of the		
7	coupling from the first mode to the second mode; and		
8	a feedback control coupled to the mode coupler and the detector to		
9	control the p	ower of the coupling power.	

59

1	36.	The apparatus of claim 35, wherein the mode coupler is	
2	selected from an acoustic grating, a UV grating, a bending grating and a		
3	stress induced grating.		
1	37.	The apparatus of claim 35, wherein the mode coupler	
2	includes an ac	oustic wave generator and an acoustic wave propagation	
3	member coupled to the optical fiber.		
1	38.	The monitor of claim 35, further comprising:	
2	a pola	rization scrambler coupled to the optical fiber and the mode	
3	coupler.		
1	39.	The monitor of claim 35, further comprising:	
2	a mod	al filter coupled to the mode coupler and the detector.	
1	40.	A spectral monitor, comprising:	
2	an opt	ical fiber with multiple modes;	
3	-	le coupler coupled to the optical fiber and configured to	
4		st one perturbation in the optical fiber to create a coherent	
5	-	veen a first mode to a second mode in the optical fiber; and	
6		e-blocking membercoupled to the optical fiber, the core	
7	blocking mer	mber configured to substantially block those portions of the first	
8	mode that are	e not coupled to the second mode.	
1	41.	The monitor of claim 40, wherein thecoreblocking member	
2		flective material positioned over a core region of a distal end	
3	of the optical fiber.		
3	of the optical		
1	42.	The monitor of claim 40, wherein the mode coupler is	
2	selected fron	n an acoustic grating, a UV grating, a bending grating and a	
3	stress induced grating.		

60

1	43. The monitor of claim 40, wherein the mode coupler includes		
2	an acoustic wave generator and an acoustic wave propagation member		
3	coupled to the optical fiber.		
1	44. The monitor of claim 40, further comprising:		
2	a polarization scrambler coupled to the optical fiber and the mode		
3	coupler.		
1	45. A polarization independent spectral monitor, comprising:		
2	an optical fiber with multiple modes;		
3	a first mode coupler coupled to the optical fiber, the first mode		
4	coupler producing a first acoustic wave in the optical fiber to couple a first		
5	mode of an optical signal to a second mode in the optical fiber; and		
6	a second mode coupler coupled to the optical fiber, the second mode		
7	coupler producing a second acoustic wave in the optical fiber that is		
8	orthogonal to the first acoustic wave.		
1	46. The monitor of claim 41, wherein each mode coupler		
2	includes an acoustic wave generator and an acoustic wave propagation		
3	member coupled to the optical fiber.		
1	47. The monitor of claim 41, further comprising:		
2	a modal filter coupled to the second mode coupler and the optical		
3	fiber; and		
4	a detector coupled to the modal filter.		
1	48. A polarization independent spectral monitor, comprising:		
2	an optical fiber with multiple modes; and		
3	a mode coupler coupled to the optical fiber and configured to		
4	produce independent orthogonal acoustic waves in the optical fiber that		
5	couple a first mode to a second mode; and		

6	a detector positioned to detect a coupling power spectrum of the
7	coupling from the first mode to the second mode.

- 1 49. The spectral monitor of claim 48, wherein the mode coupler 2 includes, a first pair and a second pair of electrodes, the first and second 3 pairs producing the horizontal and vertical independent acoustic waves in 4 response to application of first and second voltages to each pair of 5 electrodes.
- 1 50. The monitor of claim 48, further comprising: 2 a modal filter coupled to the mode coupler and the optical fiber; and 3 a detector coupled to the modal filter.