Interactive Data Visualization with Bokeh 1). Basic plotting with Bokeh

a). A Simple scatter plot

Import figure from bokeh.plotting

from bokeh.plotting import figure

Import output_file and show from bokeh.io

from bokeh.io import output_file, show

Create the figure: p

p = figure(x_axis_label='fertility (children per woman)', y_axis_label='female_literacy (% population)')

Add a circle glyph to the figure p

p.circle(fertility, female_literacy)

Call the output_file() function and specify the name of the file

output_file('fert_lit.html')

Display the plot

Chapter 1

b). A scatter plot with different shapes

Create the figure: p

 $p = figure(x_axis_label = 'fertility', y_axis_label = 'female_literacy \ (\% \ population)')$

Add a circle glyph to the figure p

p.circle(fertility_latinamerica,female_literacy_latimamerica)

Add an x glyph to the figure p

p.x(fertility_africa,female_literacy_africa)

Specify the name of the file

output_file('fert_lit_separate.html')

Display the plot

Chapter 1

c). Customizing your scatter plots

Create the figure: p

p = figure(x_axis_label='fertility (children per woman)', y_axis_label='female_literacy (% population)')

Add a blue circle glyph to the figure p

p.circle(fertility_latinamerica, female_literacy_latinamerica, color='blue', size=10, alpha=0.8)

Add a red circle glyph to the figure p

 $p.circle(fertility_africa,female_literacy_africa,color='red',size=10,alpha=0.8)$

Specify the name of the file

output_file('fert_lit_separate_colors.html')

Display the plot


```
d). Lines
```

Import figure from bokeh.plotting from bokeh.plotting import figure

Create a figure with x_axis_type="datetime": p
p = figure(x_axis_type='datetime', x_axis_label='Date', y_axis_label='US Dollars')

Plot date along the x axis and price along the y axis
p.line(date,price,)

Specify the name of the output file and show the result
output_file('line.html')
show(p)

e). Lines and markers

Import figure from bokeh.plotting

from bokeh.plotting import figure

Create a figure with x_axis_type='datetime': p

 $p = figure(x_axis_type='datetime', x_axis_label='Date', y_axis_label='US\ Dollars')$

Plot date along the x-axis and price along the y-axis p.line(date,price)

With date on the x-axis and price on the y-axis, add a white circle glyph of size 4 p.circle(date, price, fill_color='white', size=4)

Specify the name of the output file and show the result
output_file('line.html')

f). Patches

Create a list of az_lons, co_lons, nm_lons and ut_lons: x
x = [az_lons, co_lons, nm_lons, ut_lons]

Create a list of az_lats, co_lats, nm_lats and ut_lats: y
y = [az_lats, co_lats, nm_lats, ut_lats]

Add patches to figure p with line_color=white for x and y
p.patches(x,y,line_color='white')

Specify the name of the output file and show the result
output_file('four_corners.html')
show(p)


```
g). Plotting data from numpy arrays# Import numpy as npimport numpy as np
```

```
# Create array using np.linspace: x
x = np.linspace(0,5,100)
# Create array using np.cos: y
```

Add circles at x and y
p.circle(x,y)

y = np.cos(x)

Specify the name of the output file and show the result
output_file('numpy.html')
show(p)

Chapter 1

```
h). Plotting data from Pandas DataFrames

# Import pandas as pd

# Read in the CSV file: df

df = pd.read_csv('auto.csv')

# Import figure from bokeh.plotting

from bokeh.plotting import figure

# Create the figure: p

p = figure(x_axis_label='HP', y_axis_label='MPG')

# Plot mpg vs hp by color

p.circle(df['hp'],df['mpg'],color=df['color'],size=10)
```

Specify the name of the output file and show the result

 $output_file('auto\text{-}df.html')$

i). The Bokeh ColumnDataSource (continued)

Import the ColumnDataSource class from bokeh.plotting

from bokeh.plotting import ColumnDataSource

Create a ColumnDataSource from df: source

source = ColumnDataSource(df)

Add circle glyphs to the figure p

p.circle('Year','Time',size=8,source=source,color='color')

Specify the name of the output file and show the result

output_file('sprint.html')

Chapter 1

j). Selection & non selection glyphs

Create a figure with the "box_select" tool: p

 $p = figure(x_axis_label = 'Year', y_axis_label = 'Time', tools = 'box_select')$

Add circle glyphs to the figure p with the selected and non-selected properties p.circle('Year','Time',selection_color='red',nonselection_alpha=0.1,source=source)

Specify the name of the output file and show the result
output_file('selection_glyph.html')
show(p)

Specify the name of the output file and show the result output_file('hover_glyph.html') show(p)


```
l).Colormapping
```

#Import CategoricalColorMapper from bokeh.models from bokeh.models import CategoricalColorMapper

Convert df to a ColumnDataSource: source source = ColumnDataSource(df)

Make a CategoricalColorMapper object: color_mapper

color_mapper = CategoricalColorMapper(factors=['Europe', 'Asia', 'US'],

palette=['red', 'green', 'blue'])

Specify the name of the output file and show the result
output_file('colormap.html')
show(p)

