

MACH LOGIC

Môn học: Kiến trúc máy tính & Hợp ngữ

Mạch số

- Là thiết bị điện tử hoạt động với 2 mức điện áp:
 - Cao: thể hiện bằng giá trị luận lý (quy ước) là 1
 - Thấp: thể hiện bằng giá trị luận lý (quy ước) là 0
- Được xây dựng từ những thành phần cơ bản là cổng luận lý (logic gate)
 - Cổng luận lý là thiết bị điện tử gồm 1 / nhiều tín hiệu đầu vào (input) -1 tín hiệu đầu ra (output)
 - output = F(input_1, input_2, ..., input_n)
 - Tùy thuộc vào cách xử lý của hàm F sẽ tạo ra nhiều loại cống luận lý
- Hiện nay linh kiện cơ bản để tạo ra mạch số là transistor

Cổng luận lý (Logic gate)

Tên cổng	Hình vẽ đại diện	Hàm đại số Bun
AND		x.y hay xy
OR		x + y
XOR		x⊕ y
NOT	>	x' hay x
NAND		$(x .y)' hay \overline{x.y}$
NOR	\Rightarrow	(x + y)' hay $x + y$
NXOR		$(x \oplus y)'$ hay $\overline{x \oplus y}$

Bảng chân trị

AND

Α	В	out
0	0	0
0	1	0
1	0	0
1	1	1

OR

Α	В	out
0	0	0
0	1	1
1	0	1
1	1	1

NOT

Α	out
0	1
1	0

Bảng chân trị

NAND

Α	В	out	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR

Α	В	out
0	0	1
0	1	0
1	0	0
1	1	0

XOR

Α	В	out
0	0	0
0	1	1
1	0	1
1	1	0

Lược đô Venn

A

A

A+B

A.B

____ A.B

 $\overline{A+B}$

Lược đô Venn

Ví dụ cổng luận lý

A	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Ví dụ mạch số

Một số đẳng thức cơ bản

x + 0 = x	x . 0 = 0
x + 1 = 1	x . 1 = x
x + x = x	$x \cdot x = x$
x + x' = 1	$x \cdot x' = 0$
x + y = y + x	xy = yx
x + (y + z) = (x + y) + z	x(yz) = (xy)z
x(y + z) = xy + xz	x + yz = (x + y)(x + z)
(x + y)' = x'.y' (De Morgan)	(xy)' = x' + y' (De Morgan)
(x')' = x	10

Mạch tổ hợp (tích hợp)

- Gồm n ngõ vào (input); m ngõ ra (output)
 - Mỗi ngõ ra là 1 hàm luận lý của các ngõ vào

Mạch tổ hợp không mang tính ghi nhớ:
 Ngõ ra chỉ phụ thuộc vào Ngõ vào hiện
 tại, không xét những giá trị trong quá khứ

Ví dụ mạch tổ hợp

- Chip 7400 có 4 cổng NAND.
- Hai chân bổ sung cung cấp nguồn (+5 V) và nối đất (GND).

Độ trễ mạch

- Độ trễ mạch (Propagation delay / gate delay) = Thời
 điểm tín hiệu ra ổn định thời điểm tín hiệu vào ổn định
 - Mục tiêu thiết kế mạch: làm giảm thời gian độ trễ mạch

Mô tả mạch tổ hợp

- Bằng ngôn ngữ
- Bằng bảng chân trị
 - n input m output
 - -2^n hàng -(n + m) cột
- Bằng công thức (hàm luận lý)
- Bằng sơ đồ

Thiết kế

- Thường trải qua 3 bước:
 - Lập bảng chân trị

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Viết hàm luận lý

$$F = (AB)'$$

Vẽ sơ đồ mạch và thử nghiệm

SOP - Sum of Products

- Giả sử đã có bảng chân trị cho mạch n đầu vào x₁,...,x_n và 1
 đầu ra f
- Ta dễ dàng thiết lập công thức (hàm) logic theo thuật toán sau:
 - Úng với mỗi hàng của bảng chân trị có đầu ra = 1 ta tạo thành 1 tích có dạng $u_1.u_2...u_n$ với:

$$u_i = \begin{cases} x_i & \text{n\'eu } x_i = 1 \\ (x_i)' & \text{n\'eu } x_i = 0 \end{cases}$$

Cộng các tích tìm được lại thành tổng → công thức của f

X ₁	X ₂	X ₃	<u>f</u>
0	0	0	0
0	0	1	$1 \rightarrow \overline{x}_1.\overline{x}_2.x_3$
0	1	0	$1 \rightarrow \overline{x}_1.x_2.\overline{x}_3$
0	1	1	0
1	0	0	0
1	0	1	$1 \rightarrow x_1.\overline{x}_2.x_3$
1	1	0	0 ,
1	1	1	$f = X_1 X_2 X_3 + X_1 X_2 X_3 + X_1 X_2 X_3$

POS - Product of Sum

- Trường hợp số hàng có giá trị đầu ra = 1
 nhiều hơn = 0, ta có thể đặt g = (f)'
- Viết công thức dạng SOP cho g
- Lấy f = (g)' = (f')' để có công thức dạng
 POS (Tích các tổng) của f

x	у	Z	f	g
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$g = \overline{x}.y.\overline{z} + x.\overline{y}.\overline{z}$$

$$f = \overline{g} = (x + \overline{y} + z)(\overline{x} + y + z)$$

Đơn giản hoá hàm logic

- Sau khi viết được hàm logic, ta có thể vẽ sơ đồ của mạch tổ hợp từ những cổng luận lý cơ bản
 - Ví dụ: f = xy + xz
- Tuy nhiên ta có thể viết lại hàm logic sao cho sơ đồ mạch sử dụng ít cổng hơn
 - Ví dụ: f = xy + xz = x(y + z)
- Cách đơn giản hoá hàm tổng quát? Một số cách phổ biến:
 - Dùng đại số Bun (Xem lại bảng 1 số đẳng thức cơ bản để áp dụng)
 - Dùng bản đô Karnaugh (Cac-nô)

Đại số Boole

- Dùng các phép biến đổi đai số Bun để lược giản hàm logic
- Khuyết điểm:
 - Không có cách làm tổng quát cho mọi bài toán
 - Không chắc kết quả cuối cùng đã tối giản chưa
- Ví dụ: Đơn giản hoá các hàm sau
 - -F(x,y,z) = xyz + x'yz + xy'z + xyz'

Bản đô Karnaugh

- Mỗi tổ hợp biến trong bảng chân trị gọi là bộ trị (tạm hiểu là 1 dòng)
- → Biểu diễn hàm có n biến thì sẽ cho ra tương ứng 2ⁿ bộ trị, với vị trí các bộ trị được đánh số từ 0
- → Thông tin trong bảng chân trị có thể cô đọng bằng cách:
 - Liệt kê vị trí các bộ trị (minterm) với giá trị đầu ra = 1 (SOP)
 - Liệt kê vị trí các bộ trị (maxterm) với giá trị đầu ra = 0 (POS)

•
$$F(x,y,z) = m_1 + m_4 + m_5 + m_6 + m_7 = \Sigma(1,4,5,6,7)$$

•
$$F(x,y,z) = M_0 M_2 M_3 = \Pi(0,2,3)$$

Vị trí	X	y	Z	minterm	maxterm	F
0	0	0	0	m0 = x'y'z'	M0 = x + y + z	0
1	0	0	1	m1 = x'y'z	M1 = x + y + z'	1
2	0	1	0	m2 = x'yz'	M2 = x + y' + z	0
3	0	1	1	m3 = x'yz	M3 = x + y' + z'	0
4	1	0	0	m4 = xy'z'	M4 = x' + y + z	1
5	1	0	1	m5 = xy'z	M5 = x' + y + z'	1
6	1	1	0	m6 = xyz'	M6 = x' + y' + z	1
7	1	1	1	m7 = xyz	M7 = x' + y' + z'	1 23

Các dạng bản đô Karnaugh cơ bản

• $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$

Nhận xét

- Bộ trị giữa 2 ô liền kề trong bản đồ chỉ khác nhau 1 biến
 - Biến đó bù 1 ô, không bù ở ô kế hoặc ngược lại
- →Các ô đầu / cuối của các dòng / cột là các ô liền kề
- →4 ô nằm ở 4 góc bản đồ cũng coi là ô liền kề

Đơn giản hàm theo dạng SOP

- Hàm logic F biểu diễn bảng chân trị được đưa vào bản đô bằng các trị 1 tương ứng
- Các ô liền kề có giá trị 1 được gom thành nhóm sao cho mỗi nhóm sau khi gom có tổng số ô là luỹ thừa của 2 (2, 4, 8,...)
- Các nhóm có thể dùng chung ô có giá trị 1 để tạo thành nhóm lớn hơn. Cố gắng tạo những nhóm lớn nhất có thể
- Nhóm 2/4/8 ô sẽ đơn giản bớt 1/2/3 biến trong số hạng
- Mỗi nhóm biểu diễn 1 số hạng nhân (Product), Cộng (Sum OR)
 các số hạng này ta sẽ được biểu thức tối giản của hàm logic F

• $F(A, B, C) = \Sigma(3, 4, 6, 7)$

$$F(A, B, C) = BC + AC'$$

Ví du 2

• $F(A, B, C) = \Sigma(0, 2, 4, 5, 6)$

$$F(A, B, C) = C' + AB'$$

• $F(A, B, C, D) = \Sigma(0, 1, 2, 6, 8, 9, 10)$

Đơn giản hàm theo dạng POS

- Đôi khi biểu diễn dạng tổng các tích (SOP) sẽ khó làm khi số
 bộ trị có đầu ra = 1 < số bộ trị có đầu ra = 0
- → Dùng phương pháp tích các tổng (POS)

- Hoàn toàn giống phương pháp đơn giản hàm theo dạng SOP,
 chỉ khác ta nhóm các ô liền kề = 0 thay vì 1
- → Tìm được F'
- \rightarrow F = (F')'

Ví du 3

• $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$

$$F'(A, B, C) = CD + BD' + AB$$

$$F = (F')' = (A' + B')(C' + D')(B' + D)$$

Điều kiện không cần / tuỳ chọn

- Trong 1 số trường hợp ta không cần quan tâm đến giá tri ngõ ra của 1 số bộ trị nào đó (1 hay 0 đều đươc)
- Trong bản đồ ta sẽ ghi tương ứng những ô đó là x (gọi là giá trị tuỳ chọn /không cần)
- x có thể dùng để gom nhóm với các ô liền kề nhằm đơn giản hàm
- Lưu ý: Không được gom nhóm bao gồm toàn những ô có giá trị x

- $F(A, B, C) = \Sigma(0, 2, 6)$
- $d(A, B, C) = \Sigma(1, 3, 5)$

Vị trí	A	В	C	F
0	0	0	0	1
1	0	0	1	X
2	0	1	0	1
3	0	1	1	X
4	1	0	0	0
5	1	0	1	X
6	1	1	0	1
7	1	1	1	0

$$\Box$$
 F(A, B, C) = Σ (0, 2, 6)

$$\Box$$
 d(A, B, C) = Σ (1, 3, 5)

$$F(A, B, C) = A' + BC'$$

Bài tập thiết kế mạch tổ hợp

Yêu cầu: Thiết kế mạch tổ hợp 3 ngõ vào,
 1 ngõ ra, sao cho giá trị logic ở ngõ ra là
 giá trị nào chiếm đa số trong các ngõ vào

Bước 1: Lập bảng chân trị

Gọi các ngô vào là x, y, z - ngô ra là f

X	у	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f(x, y, z) = \Sigma(3, 5, 6, 7)$$

Bước 2: Viết hàm logic

 \Box f(x, y, z) = Σ (3, 5, 6, 7)

$$f(x, y, z) = xz + xy + yz = x.(y+z) + yz$$

Bước 3: Vẽ sơ đô mạch và Thử nghiệm

Phần 2: Một số mạch tổ hợp cơ bản

- Mạch toàn cộng (Full adder)
- Mạch giải mã (Decoder)
- Mạch mã hoá (Encoder)

Mạch toàn cộng (Full adder - FA)

- Mạch tổ hợp thực hiện phép cộng số học 3 bit
- Gồm 3 ngõ vào (A, B: bit cần cộng C_i: bit nhớ) và 2 ngõ ra (kết quả có thể từ 0 đến 3 với giá trị 2 và 3 cần 2 bit biểu diễn − S: ngõ tổng, C₀: ngõ nhớ)

_	<i>//</i>				
	A	В	C _i	S	C_0
	0	0	0	0	0
	0	1	0	1	0
	1	0	0	1	0
	1	1	0	0	1
	0	0	1	1	0
	0	1	1	0	1
	1	0	1	0	1
	1	1	1	1	1

$$S = F(A, B, Ci)$$

= $\Sigma(1, 2, 4, 7)$

$$C_0 = F(A, B, Ci)$$

= $\Sigma(3, 5, 6, 7)$

Bước 2: Viết hàm logic

$$S = F(A, B, Ci) = \Sigma(1, 2, 4, 7)$$

$$S = A'BCi' + AB'Ci' + A'B'Ci + ABCi$$

$$S = A \oplus B \oplus Ci$$

(Lưu ý: $x \oplus y = x'y + xy'$)

$$C_0 = F(A, B, Ci) = \Sigma(3, 5, 6, 7)$$

$$C_0 = AB + BCi + ACi$$

Mạch mã hoá nhị phân (Binary Encoder)

- Có 2ⁿ (hoặc ít hơn) ngõ vào, n ngõ ra
- Quy định chỉ có duy nhất một ngõ vào mang giá trị = 1
 tại một thời điểm
- Nếu ngô vào = 1 đó là ngô thứ k thì các ngô ra tạo thành số nhị phân có giá trị = k

x0	x1	x2	х3	y1	y0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Sơ đô mạch 4-2 Binary Encoder

- Ngõ vào: X0, X1, X2, X3
- Ngõ ra: Y0, Y1

$$Y0 = X1 + X3$$

 $Y1 = X2 + X3$

Mạch giải mã (Decoder)

- Có n ngô vào, 2ⁿ (hoặc ít hơn) ngô ra
- Quy định chỉ có duy nhất một ngõ ra mang giá trị = 1 tại một thời điểm
- Nếu các ngõ vào tạo thành số nhị phân có giá trị = k thì ngõ ra = 1
 đó là ngõ thứ k

х1	x0	y0	у1	y2	у3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$y0 = x1.x0$$

$$y1 = \overline{x1}.x0$$

$$y2 = x1.\overline{x0}$$

$$y3 = x1.x0$$

Sơ đồ mạch 2-4 Decoder

Bài tập: Thiết kế mạch ALU

- F = (5X + 2Y) % 4
- Input: X (2 bit), Y (2 bit)
- Output: F (2 bit)
- → Có 4 ngõ vào, 2 ngõ ra (mỗi ngõ có 1 tín hiệu biểu diễn cho 1 bit)

Bước 1: Lập bảng chân trị

X	Y	F
0 (00)	0 (00)	0 (00)
0 (00)	1 (01)	2 (10)
0 (00)	2 (10)	0 (00)
0 (00)	3 (11)	2 (10)
1 (01)	0 (00)	1 (01)
1 (01)	1 (01)	3 (11)
1 (01)	2 (10)	1 (01)
1 (01)	3 (11)	3 (11)
2 (10)	0 (00)	2 (10)
2 (10)	1 (01)	0 (00)
2 (10)	2 (10)	2 (10)
2 (10)	3 (11)	0 (00)
3 (11)	0 (00)	3 (11)
3 (11)	1 (01)	1 (01)
3 (11)	2 (10)	3 (11)
3 (11)	3 (11)	1 (013)7

Bước 2: Xác định hàm

$$F1 = X1.Y0' + X1'.Y0$$

$$F0 = X0$$

Bước 3: Về mạch

