IMI, кафедра загальної та медичної фізики Ю. М. Дудзінський

<mark>МЕХАНИКА</mark> <mark>МЕХАНІКА</mark>

КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ КІНЕМАТИКА ПОСТУПАЛЬНОГО РУХУ

- **1.01.** Тело брошено вертикально вверх с начальной скоростью v_0 =4m/c. Когда оно достигло верхней точки полёта из того же начального пункта, стой же скоростью v_0 вертикально вверх брошено второе тело. На каком расстоянии от начального пункта встретятся тела? Сопротивление воздуха не учитывать.
- **1.01.** Тіло кинуте вертикально нагору з початковою швидкістю v_0 =4m/c. Коли воно досягло верхньої точки польоту з того ж початкового пункту, з тією ж швидкістю v_0 вертикально нагору кинуте друге тіло. На якій відстані від початкового пункту зустрінуться тіла? Опір повітря не враховувати.
- **1.02.** Материальная точка движется прямолинейно с ускорением $a=5m/c^2$. Определить на сколько путь, пройденный в n- ω секунду, будет больше пути, пройденного за предыдущую (n 1)- ω секунду.
- **1.02.** Матеріальна точка рухається прямолінійно з прискоренням $a=5m/c^2$. Визначити на скільки шлях, який пройдено у n-y секунду, буде більше шляху, який пройдено за попередню (n-1)-y секунду.
- **1.03.** Два автомобиля движутся по дорогам, угол между которыми α =60°. Скорость автомобилей v_1 =54 $\kappa m/q$ и v_2 =72 $\kappa m/q$. С какой скоростью v удаляются машины одна от другой?
- **1.03.** Два автомобілі рухаються по дорогах, кут між якими α =60°. Швидкість автомобілів v_1 =54 κ м/z и v_2 =72 κ м/z. З якою швидкістю v віддаляються машини одна від одної?
- **1.04.** Материальная точка движется прямолинейно с начальной скоростью $v_0=10 m/c$ и постоянным ускорением $a=-5m/c^2$. Определить во сколько раз путь Δs превышает модуль перемещения Δr через $\delta t=4c$ после начала отсчёта времени ($\delta S/\delta r$)?
- **1.04.** Матеріальна точка рухається прямолінійно з початковою швидкістю v_0 =10 m/c і постійним прискоренням a= $-5m/c^2$. Визначити, у скільки разів шлях, який пройшла крапка за час δt =4c, буде перевищувати модуль її переміщення ($\delta S/\delta r$)?
- 1.05. Велосипедист ехал из одного пункта в другой. Первую треть пути он проехал со скоростью $v_1=18\kappa m/u$. Далее половину оставшегося времени он ехал со скоростью $v_2=22\kappa m/u$, после чего до конечного пункта он шёл пешком со скоростью $v_3=5\kappa m/u$. Определить среднюю скорость v_{cp} велосипедиста.
- **1.05.** Велосипедист їхав з одного пункту в іншій. Першу третину шляху він проїхав зі швидкістю $v_1=18\kappa m/z$. Далі половину часу, що залишилося, він їхав зі швидкістю $v_2=22\kappa m/z$, після чого до кінцевого пункту він йшов пішки зі швидкістю $v_3=5\kappa m/z$. Визначити середню швидкість v_{cp} велосипедиста.
- 1.06. Две материальные точки движутся согласно уравнениям $x_1 = A_1 t + B_1 t^2 + C_1 t^3$; $x_2 = A_2 + B_2 t^2 + C_2 t^3$, где $A_1 = 4 m/c$; $B_1 = 8 m/c^2$; $C_1 = -16 m/c^3$; $A_2 = 2 m/c$; $B_2 = -4 m/c^2$; $C_2 = 1 m/c^3$. В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости этих точек v_1 и v_2 в этот момент времени.
- **1.06.** Дві матеріальні точки рухаються відповідно до рівнянь $x_1 = A_1 t + B_1 t^2 + C_1 t^3$; $x_2 = A_2 + B_2 t^2 + C_2 t^3$, где $A_1 = 4 \text{м/c}$; $B_1 = 8 \text{м/c}^2$; $C_1 = -16 \text{м/c}^3$; $A_2 = 2 \text{м/c}$; $B_2 = -4 \text{м/c}^2$; $C_2 = 1 \text{м/c}^3$. У який момент часу t прискорення цих крапок однакові? Які величини швидкостей v_1 і v_2 тіл у цей момент часу?
- 1.07. Уравнение движения материальной точки вдоль оси имеет вид $x=At+Bt+Ct^2$, где A=2m, B=1m/c, $C=-0.5m/c^2$. Найти координату x, скорость v_x , ускорение a_x точки в момент времени t=2c.
- **1.07.** Рівняння руху матеріальної крапки уздовж осі має вид, $x=A+Bt+Ct^2$, де A=2m, B=1m/c, $C=-0.5m/c^2$. Знайти координату x, швидкість v_x , прискорення a_x точки в момент часу t=2c.
- **1.08.** Тело брошено с башни горизонтально со скоростью $v_0=5m/c$ и упало на расстоянии S=15m от её основания. Вычислить: 1) высоту башни h; 2) скорость тела в момент его падения на землю v_{max} .

IMI, кафедра загальної та медичної фізики Ю. М. Дудзінський

- **1.08.** Тіло кинуте з вежі горизонтально зі швидкістю $v_0=5m/c$ і упало на відстані S=15m від її основи. Обчислити: 1) висоту вежі h; 2) швидкість тіла в момент його падіння на землю v_{max} .
- **1.09.** Тело брошено под углом α =30° к горизонту со скоростью v_0 =30m/c. Каковы будут нормальное a_n и тангенциальное a_τ ускорения тела через время t=1c после начала движения?
- **1.09.** Тіло кинуте під кутом α =30° до обрію зі швидкістю v_0 =30m/c. Які будуть нормальне a_n і тангенціальне a_τ прискорення тіла через час t=1c після початку руху?
- **1.10.** Тело брошено с башни горизонтально со скоростью $v_0=25m/c$. Вычислить скорость тела v, радиус кривизны траектории r через время t=1c после начала движения.
- **1.10.** Тіло кинуте з вежі горизонтально зі швидкістю $v_0=25 \text{м/c}$. Обчислити швидкість тіла v, радіус кривизни траєкторії r через час t=1c після початку руху.
- **1.11** Камень брошен горизонтально со скоростью $v_0=15 m/c$. Найти нормальное a_n и тангенциальное a_τ ускорения камня через t=1c после начала движения.
- **1.11.** Камінь кинули горизонтально зі швидкістю $v_0=15 m/c$. Знайти нормальне a_n і тангенціальне a_τ прискорення каменю через $t=1 ce\kappa$ після початку руху.
- **1.12.** С поверхности земли вертикально вверх брошено тело с начальной скоростью $v_0=25m/c$. В этот же момент времени с высоты H=20m сбросили вниз с нулевой начальной скоростью другое тело. На какой высоте h от поверхности земли они встретятся?
- **1.12.** З поверхні землі вертикально нагору кинуте тіло з початковою швидкістю $v_0=25 m/c$. У цей же момент часу з висоти H=20m скинули вниз з нульовою початковою швидкістю інше тіло. На якій висоті h від поверхні землі вони зустрінуться?
- **1.13.** Тело, брошенное вверх, находилось на высоте h=8,6m над поверхностью земли дважды с интервалом времени Δt =3c. С какой начальной скоростью было брошено тело?
- **1.13.** Тіло, яке кинули нагору, знаходилося на висоті h=8,6m над поверхнею землі двічі з інтервалом часу Δt =3c. З якою початковою швидкістю було кинуте тіло?
- **1.14.** Материальная точка перемещается по закону $x=x_0+v_0t+at^2$, где $x_0=0.5m$; $v_0=2.5 \text{ m/c}$; $a=-0.5\text{m/c}^2$. Вычислить перемещение r и путь s, пройденный точкой за время t=7c.
- **1.14.** Матеріальна точка переміщається за законом $x=x_0+v_0t+at^2$, де $x_0=0.5m$; $v_0=2.5m/c$; $a=-0.5m/c^2$. Обчислити переміщення r і шлях s, який пройдено точкою за час t=7c.
- **1.15.** Скорость поезда при торможении за δt =1*мин* упала от 40*км/ч* до 28*км/ч*. Определить: 1) ускорение; 2) время до полной остановки; 3) путь торможения.
- **1.15.** Швидкість потяга при гальмуванні за $\delta t = 1 x \varepsilon$ упала від $40 \kappa m/\varepsilon$ до $28 \kappa m/\varepsilon$. Визначити: 1) прискорення; 2) час до повної зупинки; 3) шлях гальмування.
- **1.16.** Тело брошено горизонтально со скоростью $v_0=20 m/c$ с башни высотой h и упало на землю на расстоянии S=2h от основания башни. Найти высоту башни.
- **1.16.** Тіло, яке кинули горизонтально зі швидкістю $v_0=20$ м/с з вежі висотою h, упало на землю на відстані S=2h від фундаменту вежі. Знайти висоту вежі.
- **1.17.** Тело брошено под углом к горизонту со скоростью v_0 . Продолжительность полёта t = 2, 2c. Найти наибольшую высоту поднятия этого тела.
- **1.17.** Тіло кинули під кутом до обрію зі швидкістю v_0 . Тривалість польоту t=2,2c. Знайти найбільшу висоту підняття цього тіла.
- **1.18.** Тела движутся масами $m_1 = \kappa z$ і $m_2 = 1,5\kappa z$ по законам $x_1 = 1+0,8t-0,1t^2$; $x_2 = 0,5-0,9t+0,05t^2$. В какой момент времени импульсы тел равны? Определить: 1) момент времени t, 2) ускорения этих тел в момент t, 3) перемещения $x_1(t)$, $x_2(t)$.
- **1.18.** Тіла масами m_1 =1 κ 2 і m_2 =1,5 κ 2 рухаються за законами: x_1 =1+0,8t-0,1t², x_2 =0,5-0,9t+0,05t². У який момент часу імпульси тіл рівні? Визначити: 1) момент часу t, 2) прискорення цих тіл у момент t, 3) переміщення $x_1(t)$, $x_2(t)$.

КИНЕМАТИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ КІНЕМАТИКА ОБЕРТАЛЬНОГО РУХУ

1.19. Материальная точка вращается вокруг неподвижной оси по закону $\varphi = A + Bt + Ct^2$, где A = 10pad, B = 20pad/c, $C = -2pad/c^2$. Найти полное ускорение точки, находящейся на расстоянии R = 0,1м от оси вращения, для момента времени t = 4c.

- **1.19.** Матеріальна точка обертається навколо нерухомої осі за законом $\varphi = A + Bt + Ct^2$, де A = 10pad, B = 20pad/c, $C = -2pad/c^2$. Знайти повне прискорення точки, що знаходиться на відстані R = 0,1м від осі обертання, для моменту часу t = 4c.
- **1.20.** Материальная точка вращается по окружности с постоянной угловой скоростью $\omega = \pi/6pa\partial/c$. Во сколько раз путь, пройденный точкой за время t=4c, будет больше модуля её перемещения? Принять, что в начальный момент времени радиус-вектор r, задающий положение точки на окружности, относительно исходного положения был повёрнут на угол $\varphi_0 = \pi/3pa\partial$.
- **1.20.** Матеріальна точка обертається по окружності з постійною кутовою швидкістю $\omega = \pi/6pa\partial/c$. У скільки разів шлях, який пройшла точка за час t=4c, буде більше модуля її переміщення? Прийняти, що в початковий момент часу радіус-вектор r, що задає положення точки на окружності, щодо початкового положення був повернений на кут $\varphi_0 = \pi/3pa\partial$.
- **1.21.** Ротор электродвигателя, вращавшийся с линейной частотой v_0 =1500o6/мин, после отключения электропитания остановился через время t=10c. Определить: 1) угловое ускорение ε , 2) сколько оборотов N совершит ротор до полной остановки?
- **1.21.** Ротор електродвигуна, що обертався з лінійною частотою v_0 =1500*об/хв*, після відключення електроживлення зупинився через час t=10c. Визначити: 1) кутове прискорення ε , 2) скільки оборотів N зробить ротор до повної зупинки?
- **1.22.** Маховое колесо набирает обороты с угловым ускорением $\varepsilon = 2,5pa\partial/c^2$. Радиус колеса R = 0,25 M. Вычислить тангенциальное a_{τ} , нормальное a_n и полное a ускорения точки на ободе через промежуток времени t = 4c. Сколько оборотов N совершит колесо за это время?
- **1.22.** Махове колесо набирає обороти з кутовим прискоренням $\varepsilon=2,5pa\partial/c^2$. Радіус колеса R=0,25m. Обчислити тангенціальне a_{τ} , нормальне a_n і повне a прискорення точки на ободі через проміжок часу t=4c. Скільки оборотів N зробить колесо за цей час?
- **1.23.** Колесо вращается по закону $\varphi = 0.1 + t + 0.05t^2(pad)$. Найти радиус колеса и полное ускорение a через $\delta t = 2c$, если в этот момент времени нормальное ускорение $a_n = 3.46 \text{м/c}^2$.
- **1.23.** Колесо обертається за законом φ =0,1+t+0,05 t^2 (pad). Знайти радіус колеса і повне прискорення a через δt =2c, якщо в цей момент часу нормальне прискорення a_n =3,46m/ c^2 .
- **1.24.** По дуге окружности радиусом R=10M движется точка. В некоторый момент времени нормальное ускорение $a_n=4,9M/c^2$. В этот момент вектора полного и нормального ускорений образуют угол $\varphi=60^\circ$. Найти тангенциальное a_τ ; полное a ускорение и скорость тела v в этот момент времени.
- **1.24.** По дузі кола радіусом R=10 M рухається точка. У деякий момент часу нормальне прискорення $a_n=4,9 M/c^2$. У цей момент вектора повного і нормального прискорень утворять кут $\varphi=60^{\circ}$. Знайти тангенціальне a_{τ} ; повне a прискорення і швидкість тіла v у цей момент часу.
- **1.25.** Точка движется по окружности радиусом R=30cm с постоянным угловым ускорением ε . Определить тангенциальное ускорение a_{τ} , скорость v, если известно, что за время t=4c она совершила N=3ofopoma и её нормальное ускорение $a_n=2,7m/c^2$.
- **1.25.** Точка рухається по окружності радіусом R=30cM з постійним кутовим прискоренням ε . Визначити тангенціальне прискорення a_{τ} , швидкість v, якщо відомо, що за час t=4c вона зробила N=3ofopomu і її нормальне прискорення $a_n=2.7m/c^2$.
- **1.26.** Колесо радиусом R=0,1M вращается с угловым ускорением ε =3,14 $pa\partial/c^2$. Найти через δt =2c: 1) угловую скорость ω ; 2) линейную скорость v; 3) тангенциальное ускорение a_τ ; 4) полное ускорение a.
- **1.26.** Колесо радіусом R=0,1M обертається з кутовим прискоренням ε =3,14 $pa\partial/c^2$. Знайти через δt =2c: 1) кутову швидкість ω ; 2) лінійну швидкість v; 3) тангенціальне прискорення a_t ; 4) повне прискорення a.
- **1.27.** Начальная частота вращения вала v=1800o6/мин, а тормозится с угловым ускорением $\varepsilon=3pa\partial/c$. 1) Через сколько времени вал остановится? 2) Сколько оборотов он сделает до полной остановки?
- **1.27.** Початкова частота обертання вала v=1800o6/xв, а гальмується з кутовим прискоренням $\varepsilon=3pa\partial/c$. 1) Через скільки часу вал зупиниться? 2) Скільки оборотів він зробить до повної зупинки?

IMI, кафедра загальної та медичної фізики Ю.М. Дудзінський

- **1.28.** Маховое колесо спустя 1*мин* после начала движения приобретает частоту вращения v=720*об/мин*. Найти угловое ускорение и общее число оборотов N колеса за эту минуту.
- **1.28.** Махове колесо через 1xe після початку руху здобуває частоту обертання v=720e6/xe. Знайти кутове прискорення і загальне число оборотів N колеса за цю хвилину.
- **1.29.** Точка вращается по закону: $\varphi = 10 + 20t 2t^2(pad)$. Найти полное линейное ускорение точки, находящейся на расстоянии R = 0,1м от оси вращения через t = 4c.
- **1.29.** Точка обертається за законом: $\varphi = 10 + 20t 2t^2(pad)$. Знайти повне лінійне прискорення точки, що знаходиться на відстані R = 0,1 M від осі обертання через t = 4c.
- **1.30.** Вал вентилятора вращается со скоростью, которая соответствует частоте $900 o \delta / muh$. После отключения вентилятор, вращаясь равнозамедленно, сделал до остановки $N=75 o \delta o \rho o \delta muh$. Вычислить: 1) время до полной остановки t; 2) угловое ускорение ε .
- **1.30.** Вал вентилятора обертається зі швидкістю, що відповідає частоті $900 o \delta / x \epsilon$. Після відключення вентилятор, обертаючись з рівномірним гальмуванням, зробив до зупинки $N=75 o 6 o p o m i \epsilon$. Обчислити: 1) час до повної зупинки t; 2) кутове прискорення ϵ .
- **1.31.** Винт аэросаней радиусом $R=1_M$ вращается с частотой $\omega=3000$ об/мин, а сани поступательно перемещаются с постоянной линейной скоростью $v_0=36$ км/ч. Вычислить полную скорость v точки на конце винта.
- **1.31.** Гвинт аеросаней радіусом $R=1_M$ обертається з частотою $\omega=3000o6/x_B$, а сани поступально переміщуються з постійною лінійною швидкістю $v_0=36\kappa m/e$. Обчислити повну швидкість v точки на кінці гвинта.
- **1.32.** Цилиндр, на который намотана нить, может вращаться вокруг собственной оси. За время t=3c груз опустился на высоту h=1,5m. Определить угловое ускорение ε цилиндра, если его радиус t=4c.
- **1.32.** Циліндр, на який намотана нитка, може обертатися навколо власної осі. За час t = 3c вантаж опустився на висоту h = 1,5m. Визначити кутове прискорення ε циліндра, якщо його радіус r = 4cm.

ДИНАМИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ДИНАМІКА ПОСТУПАЛЬНОГО РУХУ

- **1.33.** Шар массой $m=2\kappa z$ движется под действием некоторой силы F согласно закону $x(t)=t+t^2-0,2t^2$. Найти значения этой силы в моменты времени $t_1=2c$ и $t_2=5c$. В какой момент времени τ сила равна нулю?
- **1.33.** Куля масою $m=2\kappa z$ рухається під дією деякої сили F відповідно до закону $x(t)=t+t^2-0.2t^3$. Знайти значення цієї сили в моменти часу $t_1=2c$ и $t_2=5c$. У який момент часу τ сила дорівнює нулю?

- **1.34.** Массы тел: m_1 =10 $\kappa \varepsilon$; m_2 =5 $\kappa \varepsilon$; m_3 =8 $\kappa \varepsilon$, коэффициент трения о поверхность стола r=0,05. С каким ускорением движутся грузы? Чему равны силы натяжения нити \vec{P}_1 , \vec{P}_2 ? Массой блоков пренебречь.
- **1.34.** Маси тіл: m_1 =10 κ 2; m_2 =5 κ 2; m_3 =8 κ 2, коефіцієнт тертя об поверхню столу r=0,05. З яким прискоренням рухаються вантажі? Чому рівні сили натягу нитки \vec{P}_1 , \vec{P}_2 ? Масою блоків знехтувати.

- **1.35.** Жёсткости пружин $k_1=2\kappa H/m$; $k_2=6\kappa H/m$. Масса гири $m=10^3\kappa z$. Определить общее удлинение пружин в двух случаях 1) последовательного соединения; 2) параллельного соединения.
- **1.35.** Пружності пружин $k_1 = 2\kappa H/m$; $k_2 = 6\kappa H/m$. Маса гирі $m=10^3 \kappa z$. Визначити загальне подовження пружин у двох випадках 1) послідовної сполуки; 2) паралельної сполуки.
- **1.36.** Тело скользит по наклонной плоскости, составляющей с горизонтом угол α =45°. Пройдя расстояние S=35cm, тело приобретает скорость v=2m/c. Чему равен r коэффициент трения тела о плоскость?
- **1.36.** Тіло сковзає по похилій площині, що складає з обрієм кут α =45°. Пройшовши відстань S = 35 c M, тіло здобуває швидкість v = 2 M/c. Чому дорівнює r коефіцієнт тертя тіла об площину?
- **1.37.** Автомат выпускает 600*пуль/мин*. Масса пули m=10г, скорость v=500м/с. Масса автомата M=4кг. Определить силу отдачи \vec{F} и ускорение \vec{a} .
- **1.37.** Автомат випускає $600 n y \pi b / x \theta$. Маса кулі $m = 10 \epsilon$, швидкість v = 500 m / c. Маса автомата $M = 4 \kappa \epsilon$. Визначити силу віддачі \vec{F} та прискорення \vec{a} .
- **1.38.** Цепь, длиной $\ell=1$ *м* и массой m=5 κz лежит на столе, частично свисая с края. Коэффициент трения цепи о стол r=0,05. Какая часть цепи должна свисать, чтобы цепь начала скользить?
- **1.38.** Ланцюг, довжиною $\ell=1$ *м* і масою m=5 κz лежить на столі, частково звисаючи з краю. Коефіцієнт тертя ланцюга об стіл r=0,05. Яка частина ланцюга повинна звисати, щоб ланцюг почав сковзати?
- **1.39.** Два тела одинаковой массы m=1 кг находятся на наклонённых под углами $\alpha=60^{\circ}$ и $\beta=30^{\circ}$ к горизонту плоскостях и соединены нерастяжимой нитью, перекинутой через блок. Коэффициент трения тел о плоскости r=0,01. С каким ускорением \vec{a} движутся грузы? Чему равны силы натяжения нити \vec{T}_1 и \vec{T}_2 ?
- **1.39.** Два тіла однакової маси m=1 $\kappa 2$ знаходяться на нахилених під кутами $\alpha=60^\circ$ і $\beta=30^\circ$ до обрію площинах і з'єднані нерозтяжною ниткою, яка перекинута через блок. Коефіцієнт тертя тіл по площині r=0,01. З яким прискоренням \vec{a} рухаються вантажі? Чому рівні сили натягу нитки \vec{T}_1 і \vec{T}_2 ?

IMI, кафедра загальної та медичної фізики Ю.М. Дудзінський

МОМЕНТ ИНЕРЦИИ * ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ МОМЕНТ ІНЕРЦІЇ * ДИНАМІКА ОБЕРТАЛЬНОГО РУХУ

- **1.40.** Физический маятник составлен из стержня длиной $\ell=1$ *м* и массой $m_1=1$ κz и диска массой $m_2=0,5$ κz и радиусом $R=\ell/4$. Найти момент инерции и центр масс маятника.
- **1.40.** Фізичний маятник складений зі стрижня довжиною $\ell=1$ м і масою $m_1=1$ $\kappa 2$ і диска масою $m_2=0,5$ $\kappa 2$ і радіусом $R=\ell/4$. Знайти момент інерції і центр мас маятника.

- **1.41.** Определить моменты инерции J_1 и J_2 проволочного равностороннего треугольника массой $m=12\varepsilon$ и стороной $a=10\varepsilon M$ в двух случаях 1) ось проходит через вершину; 2) ось совпадает с одной из сторон треугольника.
- **1.41.** Визначити моменти інерції J_1 і J_2 дротового рівностороннього трикутника масою $m=12\kappa z$ і стороною a=10c m у двох випадках 1) вісь проходить через вершину; 2) вісь збігається з однією зі сторін трикутника.
- **1.42.** Вычислить момент инерции проволочного прямоугольника со сторонами a=12cm и b=16cm относительно оси, проходящей через середины меньших сторон. Линейная плотность массы проволоки $\tau=0,1\kappa z/m$.
- **1.42.** Обчислити момент інерції дротового прямокутника зі сторонами a=12cM і b=16cM щодо осі, що проходить через середини менших сторін. Лінійна густина маси дроту $\tau=0,1\kappa z/M$.

- **1.43.** Физический маятник состоит из диска диаметром d=20cm и массой m=0,3 κ z, а также двух точечных грузов массами 0,5m и 2m, расположенных на ободе. Найти момент инерции и расстояние от оси вращения до центра масс.
- **1.43.** Фізичний маятник складається з диска діаметром d=20cm і масою $m=0,3\kappa c$, а також двох точкових вантажів масами 0,5m і 2m, які розташовані на ободку. Знайти момент інерції і відстань від осі обертання до центра мас.

- **1.44.** Определить момент инерции физического маятника, состоящего из двух стержней, относительно оси О О" и расстояние от оси до центра масс, если ℓ_1 =0,4m, m_1 =0,9 κ e, ℓ_2 =0,3m, m_2 =0,7 κ e. Чему равно расстояние от оси вращения до центра масс маятника?
- **1.44.** Визначити момент інерції фізичного маятника, що складається з двох стрижнів, щодо осі "O O" і відстань від осі до центра мас, якщо ℓ_1 =0,4 κ , m_1 =0,9 κ , ℓ_2 =0,3 κ m_2 =0,7 κ . Чому дорівнює відстань від осі обертання до центра мас маятника?

- **1.45.** Из тонкой проволоки, единица длины которой имеет массу τ =0,01 κ г/M, свернуты кольца с радиусами R=1M и R/2. Ось вращения т. О. Определить момент инерции и расстояние от оси вращения до центра масс.
- **1.45.** З тонкого дроту, одиниця довжини якого має масу τ =0,01 κ г/м, згорнуті кільця з радіусами R=1M і R/2. Вісь обертання т. О. Визначити момент інерції і відстань від осі обертання до центра мас.
- **1.46.** Физический маятник состоит из однородного стержня (ℓ =1M; m=1 κ 2), точечного груза массой m и цилиндра массой 2m и радиусом R=0,1M. Определить момент инерции и расстояние от оси до центра масс.
- **1.46.** Фізичний маятник складається з однорідного стрижня (ℓ =1M; m=1 κ 2), крапкового вантажу масою m і циліндра масою 2m і радіусом R=0,1M. Визначити момент інерції і відстань від осі до центра мас.

- **1.47.** Из однородного диска радиусом R=0,5m с поверхностной плотностью σ =0,1 κ 2m2 вырезали диск радиусом R/2. Ось вращения находится в т.О. Вычислить момент инерции и расстояние от оси до центра масс.
- **1.47.** З однорідного диска радіусом R=0.5 M з поверхневою густиною $\sigma=0.1 \kappa c/M^2$ вирізали диск радіусом R/2. Вісь обертання знаходиться в т.О. Обчислити момент інерції і відстань від осі до центра мас.

- **1.48.** Цилиндр может вращаться вокруг оси, совпадающей с осью цилиндра. Масса цилиндра m_1 =12 κ г. На него намотана нить и подвешен груз массой m_2 =1 κ г. Сила трения нити о цилиндр F_{mp} =0,1H. С каким ускорением опускается груз?
- **1.48.** Циліндр може обертатися навколо осі, що збігається з віссю циліндра. Маса циліндра m_1 =12 κ г. На нього намотана нитка і підвішене вантаж масою m_2 =1 κ г. Сила тертя нитки об циліндр F_{mp} =0,1H. З яким прискоренням опускається вантаж?

- **1.49.** Через блок перекинута нить, к концам которой прикреплены грузы m_1 =0,3 κ 2 и m_2 =0,7 κ 2, масса блока m=0,4 κ 2. Определить силы натяжения нитей \vec{T}_1 и \vec{T}_2 .
- **1.49.** Через блок перекинута нитка, до кінців якої прикріплені вантажі m_1 =0,3 κ г і m_2 =0,7 κ г, маса блоку m=0,4 κ г. Визначити сили натягу ниток \vec{T}_1 і \vec{T}_2 .
- **1.50.** Гиря массой $m=50\varepsilon$, привязанная к нити длиной $\ell=25\varepsilon M$, совершает вращение с частотой $v=2\Gamma y$. 1) Чему равна кинетическая энергия гири? 2) Чему равны силы натяжения нити в верхней (т.А) и нижней(т.В) точках?
- **1.50.** Тягар масою m=50г, яка прив'язана до нитки довжиною $\ell=25$ см, робить обертання з частотою $v=2\Gamma u$. 1) Чому дорівнює кінетична енергія гирі? 2) Чому рівні сили натягу нитки у верхній(т.А) і нижній(т.В) точках?

- **1.51.** Маятник Обербека представляет собой четыре стержня длиной ℓ =0,3m и массой m_1 =150 ϵ , на концах которых закреплены четыре гири массой m_2 =250 ϵ и колесо радиусом R=0,08m и массой m_4 =50 ϵ . На колесо намотана нить, на конце которой закреплена гиря массой m_3 =450 ϵ . Тело m_4 поднято на высоту h=1,5m. С каким ускорением опускается груз m_4 ? Чему равно время разматывания нити?
- **1.51.** Маятник Обербека являє собою чотири стрижні довжиною ℓ =0,3M і масою m_1 =150M, на кінцях яких закріплені чотири вантажі масою m_2 =250 ℓ і колесо радіусом R=0,08M і масою m_4 =50 ℓ . На колесо намотана нитка, на кінці якої закріплено вантаж масою m_3 =450 ℓ . Тіло m_4 під-

IMI, кафедра загальної та медичної фізики Ю.М. Дудзінський

няте на висоту h=1,5*м*. З яким прискоренням опускається вантаж m_4 ? Чому дорівнює час розмотування нитки?

- **1.52.** Тонкий однородный стержень длиной ℓ =50cm и массой m=400 ϵ вращается с угловым ускорением ϵ =3pa ∂/c^2 вокруг оси, проходящей через его середину. Определить силу \vec{F} .
- **1.52.** Тонкий однорідний стрижень довжиною ℓ =50cm і масою m=400c обертається з кутовим прискоренням ε =3 pad/c^2 навколо осі, що проходить через його середину. Визначити силу \vec{F}

Импульс * Момент импульса * <mark>Работа. Энерги</mark>з

- **1.53.** На спокойной воде стоит лодка длиной L=5м и массой $M=250\kappa 2$. Человек массой $m=70\kappa 2$ переместился с кормы на нос. На какое расстояние переместилась лодка? Трением о воду можно пренебречь.
- **1.53.** На спокійній воді знаходиться човен довжиною L=5m і масою $M=250\kappa z$. Людина масою $m=70\kappa z$ перемістилась з корми на ніс. На яку відстань перемістився човен? Тертям об воду можна зневажити.
- **1.54.** Тела массами $m_1=10\kappa z$ и $m_2=4\kappa z$ сталкиваются (центральный неупругий удар) и движутся как единое целое. Скорости до удара $v_1=4m/c$; $v_2=12m/c$. Найти общую скорость шаров u в двух случаях: 1) второй шар догоняет первый; 2) шары движутся навстречу.
- **1.54.** Тіла масами m_1 =10 κz і m_2 =4 κz зіштовхуються (центральний не пружний удар) і рухаються як єдине ціле. Швидкості до удару v_1 =4u/c; v_2 =12u/c. Знайти загальну швидкість куль u у двох випадках: 1) друга куля доганяє першу; 2) кулі рухаються назустріч.
- **1.55.** Человек массой m_1 =70 κ 2, бегущий со скоростью v_1 =9 κ m/u, догоняет тележку массой m_2 =190 κ 2, движущуюся со скоростью v_2 =3,6 κ m/u, и вскакивает на неё. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке?
- **1.55.** Людина масою m_1 =70 κ 2, що біжить зі швидкістю v_1 =9 κ m/20 σ 2, доганяє візок масою m_2 =190 κ 2, що рухається зі швидкістю v_2 =3,6 κ m/20 σ 2, і стрибає на нього. З якою швидкістю стане рухатися візок з людиною? З якою швидкістю буде рухатися візок з людиною, якщо людина до стрибка бігла назустріч візку?
- **1.56.** Шар массой m_1 =3 κz движется со скоростью v_1 =2m/c и сталкивается с покоящимся шаром массой m_2 =5 κz . Определить скорость u после неупругого удара. Какая работа будет совершена при деформации шаров?
- **1.56.** Куля масою $m_1=3\kappa z$ рухається зі швидкістю $v_1=2m/c$ і зіштовхується з нерухомою кулею масою $m_2=5\kappa z$. Визначити швидкість u після непружного удару. Яка робота буде зроблена при деформації куль?
- **1.57.** При горизонтальном полёте со скоростью v=250 м/c снаряд массой m=8 кг разорвался на две части. Большая часть массой $m_1=6 \text{кг}$ получила скорость $u_1=400 \text{м/c}$ в направлении полёта снаряда. Определить модуль и направление скорости u_2 меньшей части снаряда.
- **1.57.** При горизонтальному польоті зі швидкістю v=250 м/c снаряд масою m=8 кг розірвався на дві частини. Велика частина масою $m_1=6 \text{кг}$ одержала швидкість $u_1=400 \text{м/c}$ у напрямку польоту снаряда. Визначити модуль і напрямок швидкості u_2 меншої частини снаряда.

- **1.58.** Шар, двигавшийся горизонтально, столкнулся с неподвижным шаром и передал ему 64% кинетической энергии. Удар прямой, центральный, абсолютно упругий. Во сколько раз масса второго шара больше, чем первого (m_2/m_1) ?
- **1.58.** Куля, що рухалася горизонтально, зштовхнлася з нерухомою кулею і передала їй 64% кінетичної енергії. Удар прямий, центральний, абсолютно пружний. У скільки разів маса другої кулі більше, ніж першої (m_1/m_2) ?
- **1.59.** Снаряд массой $m=10\kappa 2$ и скоростью v=200m/c, летящий горизонтально, разорвался на две части. Меньшая массой $m_1=3\kappa 2$ получила скорость $u_1=400m/c$ под углом $\varphi_1=60^\circ$ вверх от линии горизонта. Определить скорость u_2 и её направление φ_2 второй части снаряда.
- **1.59.** Снаряд масою $m=10\kappa\varepsilon$ і швидкістю v=200m/c, що летить горизонтально, розірвався на дві частини. Менша масою $m_1=3\kappa\varepsilon$ одержала швидкість $u_1=400m/c$ під кутом $\varphi_1=60^\circ$ нагору від лінії обрію. Визначити швидкість u_2 і її напрямок φ_2 другої частини снаряда.
- **1.60.** Два человека массами m_1 =50 κ 2 и m_2 =80 κ 2 на коньках (трением пренебречь) держат в руках натянутый шнур. Первый из них укорачивает шнур со скоростью v=1m/c. С какими скоростями относительно льда будут двигаться конькобежцы?
- **1.60.** Два чоловіки масами m_1 =50 κz і m_2 =80 κz на ковзанах (тертям зневажити) тримають у руках натягнутий шнур. Перший з них укорочує шнур зі швидкістю v=1m/c. З якими швидкостями щодо льоду будуть рухатися ковзанярі?
- **1.61.** В лодке массой m_1 =240 κ 2 стоит человек массой m_2 =60 κ 2. Лодка плывёт со скоростью v=2m/c. Человек спрыгивает с лодки со скоростью u=4m/c: 1) в направлении движения лодки; 2) против движения лодки. Определить скорость лодки в обоих случаях.
- **1.61.** У човні масою m_1 =240 κ г стоїть людина масою m_2 =60 κ г. Човен пливе зі швидкістю v=2m/c. Людина стрибає з човна зі швидкістю u=4m/c: 1) у напрямку руху човна; 2) проти руху човна. Визначити швидкість човна в обох випадках.
- **1.62.** Из пружинного пистолета выстрелили пулей массой $m=5\varepsilon$. Жёсткость пружины $k=1,25\kappa H/m$. Пружина была сжата на $\Delta \ell=8cm$. Определить скорость пули на вылете.
- **1.62.** З пружинного пістолета вистрілили кулею масою m=5г. Пружність пружини $k=1,25\kappa H/m$. Пружина була стиснута на $\Delta \ell = 8cm$. Визначити швидкість кулі на вильоті.
- **1.63** Масса автомобиля $1000\kappa 2$, сила трения составляет 0,1 *часть* его веса. Какую работу должен совершить двигатель, чтобы увеличить скорость от $v_1 = 10\kappa m/4$ до $v_2 = 40\kappa m/4$ на пути S = 500m?
- **1.63.** Маса автомобіля $1000\kappa z$, сила тертя складає 0,1 *частину* його ваги. Яку роботу повинний зробити двигун, щоб збільшити швидкість від $v_1 = 10\kappa m/z$ до $v_2 = 40\kappa m/z$ на шляху S = 500m?
- **1.64.** Масса платформы с орудием M=20mонн. Производится выстрел под углом α =30° к горизонту снарядом массой m=10 κ 2 со скоростью v=1000m/c. На какое расстояние ℓ откатится орудие, если коэффициент трения качения r=0,002?
- **1.64.** Маса платформи з гарматою M=20mонn. Виробляється постріл під кутом α =30° до обрію снарядом масою m=10 κ 2 зі швидкістю v=1000m/c. На яку відстань ℓ відкотиться гармата, якщо коефіцієнт тертя катання r =0,002?
- **1.65** Найти мощность, развиваемую двигателем автомобиля массой 1 *тонна*, движущегося горизонтально со скоростью $v=36\kappa m/u$. Коэффициент трения колёс о дорогу r=0,07.
- **1.65.** Знайти потужність, що розвивається двигуном автомобіля масою 1*тона*, що рухається горизонтально зі швидкістю $v=36\kappa m/c$. Коефіцієнт тертя коліс об дорогу r=0.07.
- **1.66** Тело скользит по наклонной плоскости, составляющей с горизонтом угол α =45°. Пройдя расстояние S=35cm, тело приобретает скорость v=2m/c. Чему равен r коэффициент трения тела о плоскость?
- **1.66.** Тіло сковзає по похилій площині, що складає з обрієм кут α =45°. Пройшовши відстань S=35cm, тіло здобуває швидкість v=2m/c. Чому дорівнює r коефіцієнт тертя тіла об площину?
- **1.67.** При вертикальном подъёме груза массой $m=2\kappa z$ на высоту h=1м постоянной силой F была совершена работа $A=80 \mathcal{I} \mathcal{M}$. С каким ускорением \vec{a} поднимали груз?
- **1.67.** При вертикальному під'йомі вантажу масою $m=2\kappa z$ на висоту h=1м постійною силою F була зроблена робота $A=8\mathcal{I}ж$. З яким прискоренням \vec{a} піднімали вантаж?

- **1.68** Кинетическая энергия вращающегося маховика $1 \kappa \mathcal{D} \mathscr{M}$. Под действием тормозящего момента \vec{M} маховое колесо остановилось, сделав N=780оборотов. Определить \vec{M} .
- **1.68.** Кінетична енергія обертового маховика $1 \kappa \mathcal{D} \mathscr{H}$. Під дією гальмуючого моменту \vec{M} махове колесо зупинилося, зробивши N=780оборотів. Визначити \vec{M} .
- 1.69 По наклонной плоскости высотой h=0.5м и длиной склона S=1м скользит тело массой $m=3\kappa z$. Тело приходит к основанию склона со скоростью v=2.45м/с. Найти: 1) коэффициент r трения, 2) работу силы трения A_{mn} .
- **1.69.** По похилій площині висотою h=0,5m і довжиною схилу S=1m сковзає тіло масою m=3 κ c. Тіло приходить до підстави схилу зі швидкістю v=2,45m/c. Знайти: 1) коефіцієнт r тертя, 2) роботу сили тертя A_{mp} .
- **1.70.** Молот массой m_1 =500 κ г ударяет в сваю массой m_2 =100 κ г. Определить: 1) КПД удара η , 2) на сколько углубится свая, если коэффициент трения о грунт r=0,1? Удар неупругий.
- **1.70.** Молот масою m_1 =500 κ 2 вдаряє в палю масою m_2 =100 κ 2. Визначити: 1) КПД удару η , 2) на скільки поглибиться паля, якщо коефіцієнт тертя об грунт r=0,1? Удар не пружний.
- 1.71 Из шахты глубиной h=600м поднимают лифт массой m=3000кг на тросе, каждый метр которого имеет массу $\Delta m=1.5$ кг/м. Какова полная работа $A[\mathcal{L}m]$? Чему равен КПД η ?
- **1.71.** З шахти глибиною h=600M піднімають ліфт масою m=3000K2 на тросі, кожен метр якого має масу Δm =1,5K2M. Яка повна робота $A[\mathcal{J}\mathcal{H}]$? Чому дорівнює КПД η ?
- 1.72 По куску железа, мягкого после нагрева, ударяет молот массой m_2 =8 κ 2. Масса наковальни с железом m_1 =300 κ 2. Определить $K\Pi \not \!\!\! / \eta$ удара, если удар абсолютно неупругий. Полезной считать энергию, затраченную на деформацию куска железа.
- **1.72.** По шматку заліза, м'якого після нагрівання, ударяє молот масою m_2 =8 κ 2. Маса ковадла з залізом m_1 =300 κ 2. Визначити $K\Pi \mathcal{I} \eta$ удару, якщо удар абсолютно непружний. Корисною вважати енергію, яка витрачається на деформацію шматка заліза.
- **1.73** Из шахты глубиной h=1000м поднимают на поверхность трос, каждый погонный метр которого имеет массу $\tau=2\kappa c/m$. Какая работа при этом выполнена?
- **1.73.** Із шахти глибиною h=1000м піднімають на поверхню трос, кожний погонний метр якого має масу $\tau=2\kappa z/m$. Яка робота при цьому виконана?

- **1.74.** Человек стоит на круглой платформе (момент инерции человека с платформой $J=6\kappa\varepsilon\cdot m^2$) и держит вертикально стержень длиной $\ell=2,4m$ и массой $m=8\kappa\varepsilon$. Платформа вращается с частотой $v_1=1\Gamma u$. Какова будет частота v_2 , если человек повернёт стержень в горизонтальное положение?
- **1.74.** Людина стоїть на круглій платформі (момент інерції людини з платформою $J=6\kappa\varepsilon\cdot m^2$) і тримає вертикально стрижень довжиною $\ell=2,4m$ і масою $m=8\kappa\varepsilon$. Платформа обертається з частотою $v_1=1\Gamma u$. Яка буде частота v_2 , якщо людина поверне стрижень у горизонтальне положення?
- **1.75.** Платформа, имеющая форму диска, может вращаться вокруг вертикальной оси. На краю платформы стоит человек. На какой угол φ повернется платформа, если человек, обойдя её, вернётся в исходную точку? Масса платформы m_1 =280 κ 2, масса человека m_2 =80 κ 2. Считать человека точечным телом.
- **1.75.** Платформа, що має форму диска, може обертатися навколо вертикальної осі. На краю платформи стоїть людина. На який кут φ повернеться платформа, якщо людина, обійшов-

IMI, кафедра загальної та медичної фізики Ю.М. Дудзінський

ши її, повернеться у вихідну точку? Маса платформи $m_1=280\kappa z$, маса людини $m_2=80\kappa z$. Вважати людини точечним тілом.

1.76. Человек стоит на круглой платформе (суммарный момент инерции $J=6\kappa c\cdot m^2$) и ловит рукой мяч массой $m=0,4\kappa c$, летящий горизонтально со скоростью v=20m/c. Траектория мяча проходит на расстоянии r=0,8m от оси вращения платформы. С какой угловой скоростью ω начнёт вращаться платформа?

1.76. Людина стоїть на круглій платформі (сумарний момент інерції $J=6\kappa c\cdot m^2$) і ловить рукою м'яч масою $m=0,4\kappa c$, що летить горизонтально зі швидкістю v=20m/c. Траєкторія м'яча проходить на відстані r=0,8m від осі обертання платформи. З якою кутовою швидкістю ω почне обертатися платформа?

1.77. Однородный диск массой $m=0,2\kappa\varepsilon$ и радиусом $R=20\varepsilon m$ может вращаться вокруг оси в т. С. В т. А попадает пластилиновый шарик массой $m_2=10\varepsilon$, летящий со скоростью $v=10m/\varepsilon$. Определить угловую скорость ω и линейную скорость u точки О.

1.77. Однорідний диск масою $m=0,2\kappa\varepsilon$ і радіусом R=20cM може обертатися навколо осі в т. С. У т. А попадає пластилінова кулька масою $m_2=10\varepsilon$, що летить зі швидкістю $v=10M/\varepsilon$. Визначити кутову швидкість ω і лінійну швидкість u крапки О.

1.78. Однородный стержень длиной $\ell=1$ м и массой $m_1=0,2$ кг может свободно вращаться вокруг оси. В верхний конец стержня попадает пластилиновый шарик массой $m_2=10$ г, имевший скорость v=10м/с и прилипает. Определить угловую скорость ω стержня и линейную скорость u его нижнего конца.

1.78. Однорідний стрижень довжиною $\ell=1$ *м* і масою $m_1=0,2\kappa \varepsilon$ може вільно обертатися навколо осі. У верхній кінець стрижня попадає пластилінова кулька масою $m_2=10$ *м*, що мала швидкість v=10*м*/c і прилипає. Визначити кутову швидкість ω стрижня і лінійну швидкість u його нижнього кінця.

1.79. Момент инерции платформы $(R=1_M) J=120\kappa \varepsilon M^2$ и она вращается с частотой $v_1=606/muH$. На краю платформы стоит человек (точечное тело) массой $m=80\kappa \varepsilon$. С какой частотой v_2 будет вращаться платформа, если человек переместится в её центр?

1.79. Момент інерції платформи (R=1м) J=120кг·м² і вона обертається з частотою $v_1=60$ б/хв. На краю платформи стоїть людина (точечне тіло) масою m=80кг. З якою частотою v_2 буде обертатися платформа, якщо людина переміститься в її центр?

1.80 Стабилизатор угловой скорости состоит из двух стержней (массой пренебречь) длиной ℓ =0,5m и двух точечных грузов массой m=1 κ 2 каждый. Система вращается с угловой скоростью ω =5pad/c. На какой угол α отклонился каждый груз?

IMI, кафедра загальної та медичної фізики Ю.М. Дудзінський

- **1.80.** Стабілізатор кутової швидкості складається з двох стрижнів(масою зневажити) довжиною ℓ =0,5m і двох точечних вантажів масою m=1 κ 2 кожний. Система обертається з кутовою швидкістю ω =5pad/c. На який кут α відхилився кожен вантаж?
- **1.81.** На оси платформы (момент инерции $J=6\kappa r \cdot m^2$) находится колесо массой $m=3\kappa r$ и радиусом r=20cm. Платформа неподвижна, колесо вращается с частотой $v=10\Gamma \mu$. С какой частотой будет вращаться платформа, если колесо остановить?
- **1.81.** На осі платформи (момент інерції $J=6\kappa e^{-\kappa u^2}$) знаходиться колесо масою $m=3\kappa e$ і радіусом r=20cm. Платформа нерухома, колесо обертається з частотою $v=10\Gamma u$. З якою частотою буде обертатися платформа, якщо колесо зупинити?

- **1.82.** Однородный стержень длиной $\ell=1$ *м* может вращаться вокруг оси, проходящей через один из его концов. Стержень отклонили на угол $\varphi=60^{\circ}$ от положения равновесия и отпустили. Определить скорость \vec{V} конца стержня в момент прохождения им положения равновесия.
- **1.82.** Однорідний стрижень довжиною $\ell=1$ м може обертатися навколо осі, що проходить через один з його кінців. Стрижень відхилили на кут $\varphi=60^{\circ}$ від положення рівноваги і відпустили. Визначити швидкість \vec{v} кінця стрижня в момент проходження їм положення рівноваги.

ДВИЖЕНИЕ АБСОЛЮТНО ТВЁРДОГО ТЕЛА РУХ АБСОЛЮТНО ТВЕРДОГО ТІЛА

- **1.83.** Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=1m.
- **1.83.** Визначити лінійну швидкість у центра кулі, що скатились без ковзання з похилої площини висотою h=1*м*.

- **1.84.** Обруч и сплошной цилиндр, имеющие одинаковую массу $m=2\kappa z$, катятся без скольжения с линейной скоростью v=5m/c. Радиус цилиндра R=0,15m, толщина обруча $\Delta \ell=0,01m$, плотность материала ρ для обоих тел одинакова, высоты обруча и цилиндра одинаковы. Найти полные кинетические энергии E_1 и E_2 этих твёрдых тел.
- **1.84.** Обруч і суцільний циліндр, що мають однакову масу $m=2\kappa z$, котяться без ковзання з лінійною швидкістю v=5m/c. Радіус циліндра R=0,15m, товщина обручини $\Delta \ell=0,01m$, густина матеріалу ρ для обох тіл однакова, висоти обручини і циліндра однакові. Знайти повні кінетичні енергії E_1 і E_2 цих твердих тел.

- **1.85.** Обруч скатывается по наклонной плоскости с высоты h=90cm. Какова линейная скорость \vec{V} центра кольца?
- **1.85.** Обруч скачується по похилій площині з висоти h=90cm. Яка лінійна швидкість \vec{v} центра кільця?

- **1.86.** Колесо представляет собой обод массой m_1 = 10κ 2 и радиусом R=0,25 M с пятью спицами (однородные стержни) массой m_2 = 1κ 2 каждая. Центр масс колеса перемещается со скоростью v=10 M/c. Какую долю от полной кинетической энергии колеса составляет кинетическая энергия его поступательного движения (E_{nocm}/E_{κ})?
- **1.86.** Колесо має вигляд ободку з масою m_1 = $10\kappa 2$ і радіусом R=0,25 m та п'ять спиць (однорідні стрижні) масою m_2 = $1\kappa 2$ кожна. Центр мас колеса переміщується зі швидкістю v=10 m/c. Яка доля від повної кінетичної енергіїї колеса представлена кінетичною енергією його поступального руху (E_{nocm}/E_{κ})?