Автоматично Измерване на ton и toff

Изследване влиянието на Шотки диод

Схема

Резултати от симулацията

Измерени закъснения

Изследване влиянието на кондензатор

Схема

Резултати от симулацията

Измерени закъснения

Изследване влиянието на входното напрежение

Схема

Резултати от симулацията

Измерени закъснения

Изследване влиянието на Шотки диод

Схема

Елементът S1 представлява ключ, управляван с напрежение. Поведението му се описва посредством моделът MYSW:

• Когато напрежението Vcnt е по-ниско от 0.5V (Vt=0.5), неговото съпротивление е високо (Roff=100Meg), т.е. ключът е "отворен",

• При Vcnt > 0.5V, ключът е "затворен" (Ron=0.1).

В затворено състояние, S1 включва диода D1 паралелно на прехода база - колектор на Q1.

Операторът .step param Vcnt list 0 1 указва, че симулацията ще се извърши на два етапа, при две различни стоиности на Vcnt:

• Vcnt = 0, т.е. S1 e "отворен", и

.param Vcc=5V

• Vcnt = 1V, т.е. S1 е "затворе".

Резултати от симулацията

Измерени закъснения

След извършване на симулацията, натиснете CTRL L за да видите резултатите от измерванията.

Direct Newton iteration for .op point succeeded.

```
.step vcnt=0
.step vcnt=1
```

Measurement: toff

step	toff FROM		
1			5.38887e-06
2	4.61577e-08	5.0015e-06	5.04766e-06

Measurement: ton

step		FROM		
1	1.352	99e-08	1.0005e-06	1.01403e-06
2	1.958	28e-08	1.0005e-06	1.02008e-06

Без диод: toff=387ns, ton=13ns С диод: toff=46ns, ton=19ns

Изследване влиянието на кондензатор

Схема

PULSE(0 {Vin} 1u 1n 1n 4u 8u)

```
.tran 8u .step param Cb list 0 100n
```

.param Vin=5V .measure ton TRIG v(a) VAL= $\{Vin/2\}$ RISE=1 TARG V(c) VAL= $\{Vcc/2\}$ FALL=1 .param Vcc=5V .measure toff TRIG v(a) VAL= $\{Vin/2\}$ FALL=1 TARG V(c) VAL= $\{Vcc/2\}$ RISE=1

Стойността на кондензаторът е зададен посредством параметър - Сb.

.step param Cb list 0 100n

При Cb=0, кондензаторът не оказва влияние на работата на схемата.

Резултати от симулацията

Измерени закъснения

След извършване на симулацията, натиснете CTRL L за да видите резултатите от измерванията.

Без кондензатор: toff=490ns, ton=2.3ns С кондензатор: toff=65ns, ton=0.39ns

Изследване влиянието на входното напрежение

Схема

PULSE(0 {Vin} 1u 1n 1n 4u 8u)

.tran 8u

.step param Vin list 3V 6V

.param Vcc=6V

.measure toff TRIG v(a) VAL= $\{Vin/2\}$ FALL=1 TARG V(c) VAL= $\{Vcc/2\}$ RISE=1

.measure ton TRIG v(a) VAL= $\{Vin/2\}$ RISE=1 TARG V(c) VAL= $\{Vcc/2\}$ FALL=1

Резултати от симулацията

Измерени закъснения

След извършване на симулацията, натиснете CTRL L за да видите резултатите от измерванията.

Direct Newton iteration for .op point succeeded.

```
step vin=3
step vin=6
```

Measurement: toff

step	toff FROM	TO	
1	3.44578e-07	5.001e-06	5.34558e-06
2	5.37125e-07	5.0015e-06	5.53862e-06

Measurement: ton

step	ton FROM		
1			1.01925e-06
2	8.50078e-09	1.0005e-06	1.009e-06

При Vin = 3V: **toff=344ns**, **ton=18ns** При Vin = 6V: **toff=537ns**, **ton=8.5ns**

