Sam Tay Professor Schumacher Math 230 Section 3.5: 1,4,6 Section 3.2: 12(c) 10/02/12

Problem 1: If $l \perp m$, then l and m contain rays that make four different right angles.

Proof. Suppose $l \perp m$. By Definition 3.5.8, there is a point A that lies on both l and m, and $B \in l$, $D \in m$ such that rays \overrightarrow{AD} and \overrightarrow{AB} form a right angle $\angle BAD$. Next let $C \in l$ so that C * A * B and $E \in m$ so that E * A * D.

Then of course, since \overrightarrow{AC} and \overrightarrow{AB} are opposite rays, $\angle BAD$ and $\angle DAC$ form a linear pair. By the Linear Pair Theorem,

$$180^{\circ} = \mu(\angle BAD) + \mu(\angle DAC) = 90^{\circ} + \mu(\angle DAC),$$

so $\mu(\angle DAC) = 90^{\circ}$ and thus $\angle DAC$ is a right angle. Next we have opposite rays \overrightarrow{AE} and \overrightarrow{AD} , so that $\angle DAC$ and $\angle CAE$ form a linear pair. Again by the Linear Pair Theorem,

$$180^{\circ} = \mu(\angle DAC) + \mu(\angle CAE) = 90^{\circ} + \mu(\angle CAE),$$

and similarly $\angle CAE$ is a right angle as well. Finally, the opposite rays \overrightarrow{AC} and \overrightarrow{AB} form the linear pair $\angle CAE$ and $\angle EAB$, so that

$$180^{\circ} = \mu(\angle CAE) + \mu(\angle EAB) = 90^{\circ} + \mu(\angle EAB),$$

so we have a fourth right angle $\angle EAB$.

To conclude that these are four distinct right angles, we will show that the four rays \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AC} , \overrightarrow{AE} are distinct. Our initial assumption is that $\mu(\angle BAD) = 90^{\circ} \neq 0^{\circ}$, so $\overrightarrow{AB} \neq \overrightarrow{AD}$. Also since this angle is defined, \overrightarrow{AB} and \overrightarrow{AD} are nonopposite. We defined C such that \overrightarrow{AC} is opposite to \overrightarrow{AB} and thus $\overrightarrow{AC} \neq \overrightarrow{AB}$ and $\overrightarrow{AC} \neq \overrightarrow{AD}$. So the first three rays are distinct. Next, E is defined such that

 \overrightarrow{AE} is opposite to \overrightarrow{AD} , so $\overrightarrow{AE} \neq \overrightarrow{AD}$. Also $\overrightarrow{AE} \neq \overrightarrow{AC}$, otherwise \overrightarrow{AE} would be opposite to \overrightarrow{AB} , implying $\overrightarrow{AD} = \overrightarrow{AB}$, which is not the case. Lastly, $\overrightarrow{AE} \neq \overrightarrow{AB}$, otherwise \overrightarrow{AB} would be opposite to \overrightarrow{AD} , which we already said is not the case. Thus these four rays are distinct, and so are the four right angles they form.

Problem 4: Supplements of congruent angles are congruent.

Proof. Let $\angle ABC \cong \angle DEF$, and suppose $\angle XYZ$ is a supplement to $\angle ABC$ and $\angle UVW$ is a supplement to $\angle DEF$. From this assumption of supplements we have

$$\mu(\angle ABC) + \mu(\angle XYZ) = 180^{\circ}$$

$$\mu(\angle DEF) + \mu(\angle UVW) = 180^{\circ},$$

so that

$$\mu(\angle XYZ) = 180^{\circ} - \mu(\angle ABC)$$

$$\mu(\angle UVW) = 180^{\circ} - \mu(\angle DEF).$$

However the congruence above implies that $\mu(\angle ABC) = \mu(\angle DEF)$, and it follows immediately that $\mu(\angle XYZ) = \mu(\angle UVW)$, and therefore supplements of congruent angles are also congruent.

Problem 6: If A, B, C, D, and E are points such that A * B * C, D and E are on opposite sides of \overrightarrow{AB} , and $\angle DBC \cong \angle ABE$, then D, B, and E are collinear.

Proof. As above, suppose A, B, C, D, and E are points such that A*B*C, D and E are on opposite sides of \overrightarrow{AB} , and $\angle DBC \cong \angle ABE$.

We will first show that A and C are on opposite sides of the line \overrightarrow{BE} . Since E and D are defined to be on opposite sides of \overrightarrow{BA} , we know that $E \notin \overrightarrow{BA}$, where $\overrightarrow{BA} = \overrightarrow{AC}$, so $\overrightarrow{BE} \neq \overrightarrow{AC}$. But $\{B\} \subseteq \overrightarrow{BE} \cap \overrightarrow{AC}$, so these lines are distinct and nonparallel. By Theorem 3.1.7 we know that B is the only point that lies on both \overrightarrow{BE} and \overrightarrow{AC} . Hence $A, C \notin \overrightarrow{BE}$ and, since A * B * C, we have $\{B\} \subseteq \overrightarrow{BE} \cap \overline{AC}$. By Proposition 3.3.4, we know A and C are on opposite sides of \overrightarrow{BE} and can define the two distinct half-planes H_A and H_C that are bounded by \overrightarrow{BE} .

To show that $D \in \stackrel{\longleftrightarrow}{BE}$, suppose instead that $D \notin \stackrel{\longleftrightarrow}{BE}$. Then we have two cases¹: either $D \in H_A$ or $D \in H_C$. If $D \in H_A$, then D and A are on the same side of $\stackrel{\longleftrightarrow}{BE}$.

Since A*B*C, the external point D forms the linear pair $\angle ABD$ and $\angle DBC$. By the Linear Pair Theorem, we have

$$180^{\circ} = \mu(\angle ABD) + \mu(\angle DBC)$$
$$= \mu(\angle ABD) + \mu(\angle ABE),$$

so $\angle ABD$ and $\angle ABE$ are supplementary as well. Note that since $\mu(\angle ABE) < 180^{\circ}$, we have $\angle ABD \neq 0^{\circ}$, so that D does not lie on \overrightarrow{BA} . Therefore we can apply Theorem 3.4.4 to conclude that either D is in the interior of $\angle EBA$ or A is in the interior of $\angle EBD$. However, D cannot be in the interior of $\angle EBA$, because this would require D and E on the same side of AB, which contradicts our original hypothesis. So it must be the case that A is in the interior of $\angle EBD$, and the Angle Addition Postulate implies that

$$\mu(\angle EBD) = \mu(\angle EBA) + \mu(\angle ABD)$$
$$= \mu(\angle ABE) + \mu(\angle ABD) = 180^{\circ}.$$

This of course is a contradiction, as 180° is not in the range of μ . (Our false assumption of $D \in H_A$ implies that rays $\overrightarrow{BE}, \overrightarrow{BD}$ are nonopposite, allowing $\angle EBD$ to be defined.)

Next suppose that $D \in H_C$. Then D and C are on the same side of \overrightarrow{BE} .

¹I think I can suppose without loss of generality that $D \in H_A$, but I'll just present both arguments to be on the safe side.

Since A*B*C, the external point E forms the linear pair $\angle ABE$ and $\angle EBC$. By the Linear Pair Theorem, we have

$$180^{\circ} = \mu(\angle ABE) + \mu(\angle EBC)$$
$$= \mu(\angle DBC) + \mu(\angle EBC),$$

so $\angle DBC$ and $\angle EBC$ are supplementary as well. Note that since $\mu(\angle EBC) < 180^{\circ}$, we have $\angle DBC \neq 0^{\circ}$, so that D does not lie on \overrightarrow{BC} . Then again by Theorem 3.4.4, we know that either D is in the interior of $\angle EBC$ or C is in the interior of $\angle EBD$. However, since E and D are defined to be on opposite sides of $\overrightarrow{AB} = \overrightarrow{BC}$, we cannot have D in the interior of $\angle EBC$. Thus it must be the case that C is in the interior of $\angle EBD$. Then by the Angle Addition Postulate,

$$\begin{split} \mu(\angle EBD) &= \mu(\angle EBC) + \mu(\angle CBD) \\ &= \mu(\angle EBC) + \mu(\angle DBC) = 180^{\circ}. \end{split}$$

We find the same contradiction in either case, and conclude that D is not in either of the half-planes bounded by \overrightarrow{BE} . Of course, this means that $D \in \overrightarrow{BE}$, so that E, B, and D are collinear.

Problem 3.2.12(c): If $f: \ell \to \mathbb{R}$ is a coordinate function for a line ℓ and $h: \ell \to \mathbb{R}$ is another coordinate function for ℓ , then there exists a constant c such that either h(R) = f(R) + c or h(R) = -f(R) + c.

Proof. Since f is a coordinate function there exist $P, Q \in \ell$ such that f(P) = 0 and f(Q) = 1. We know P and Q are distinct because f is well-defined, and since h is injective, the law of trichotomy in \mathbb{R} gives two possibilities: h(P) < h(Q) or h(Q) < h(P). Let c = h(P). If h(P) < h(Q), we will show that h(R) = f(R) + c. First we verify this for the points P and Q. We have

$$h(P) = 0 + h(P) = f(P) + c,$$

and since coordinate functions preserve distance, we find

$$QP = |f(Q) - f(P)| = |f(Q) - 0| = f(Q)$$
$$= |h(Q) - h(P)| = h(Q) - h(P) = h(Q) - c.$$

The penultimate equality follows because h(P) < h(Q). Of course from these equations, we have h(Q) = f(Q) + c. Next, suppose R * P * Q. Then by Theorem 3.2.17, we have f(R) < f(P) < f(Q) and h(R) < h(P) < h(Q) and therefore

$$RP = |f(R) - f(P)| = f(P) - f(R) = -f(R)$$
$$= |h(R) - h(P)| = h(P) - h(R) = c - h(R).$$

Therefore h(R) = f(R) + c. Next we suppose P * R * Q. Then again by Theorem 3.2.17, we have f(P) < f(R) < f(Q) and h(P) < h(R) < h(Q). Then

$$RP = |f(R) - f(P)| = f(R) - f(P) = f(R)$$

= $|h(R) - h(P)| = h(R) - h(P) = h(R) - c$.

Again we find h(R) = f(R) + c. Finally, suppose P * Q * R, so that f(P) < f(Q) < f(R) and h(P) < f(Q) < f(R). Again we have

$$RP = |f(R) - f(P)| = f(R) - f(P) = f(R)$$

= $|h(R) - h(P)| = h(R) - h(P) = h(R) - c$,

identical to the previous case. We have shown now that if h(P) < h(Q), then for any $R \in \ell$, h(R) = f(R) + c.

Next suppose h(Q) < h(P), in which case we will show that h(R) = -f(R) + c. First we verify this for the points P and Q. We have

$$h(P) = -0 + h(P) = -f(P) + c,$$

and

$$QP = |f(Q) - f(P)| = |f(Q) - 0| = f(Q)$$

= $|h(Q) - h(P)| = h(P) - h(Q) = -h(Q) + c$,

from which it follows that h(Q) = -f(Q) + c. Next suppose R * P * Q, so that f(R) < f(P) < f(Q) and h(Q) < h(P) < h(R). Then

$$RP = |f(R) - f(P)| = f(P) - f(R) = -f(R)$$

= $|h(R) - h(P)| = h(R) - h(P) = h(R) - c$,

so h(R) = -f(R) + c. If P * R * Q, then f(P) < f(R) < f(Q) and h(Q) < h(R) < h(P), and

$$RP = |f(R) - f(P)| = f(R) - f(P) = f(R)$$

= |h(R) - h(P)| = h(P) - h(R) = -h(R) + c.

Again it follows that h(R) = -f(R) + c. Lastly, if P * Q * R, then f(P) < f(Q) < f(R) and h(R) < h(Q) < h(P), and

$$RP = |f(R) - f(P)| = f(R) - f(P) = f(R)$$

= |h(R) - h(P)| = h(P) - h(R) = -h(R) + c.

Again we find h(R) = -f(R) + c. This shows that if h(Q) < h(P), then for any $R \in \ell$, we have h(R) = -f(R) + c. We conclude that for any two coordinate functions f, h for a line ℓ , there is a constant c such that h(R) = f(R) + c or h(R) = -f(R) + c.