Stereoisomerism

□ Octahedral Complexes

MA₅B Case:

MA₅B octahedral complex

MA₄B₂ Case:

MA₄B₂ octahedral complex, cis isomer

MA₄B₂ octahedral complex, trans isomer

 ${\it cis-} tetra a mmine dichloro cobalt (III)\ chloride$

trans-tetraamminedichlorocobalt(III) chloride

trans-[Co(NH₃)₄Cl₂]Cl

Stereoisomerism

□ Octahedral Complexes

MA₃B₃ Case: facial and meridional isomers

MA₃B₃ octahedral complex, fac isomer

MA₃B₃ octahedral complex, mer isomer

- ☐ *fac*-isomers have 3 identical ligands on one triangular face
- ☐ *mer*-isomers have 3 identical ligands in a plane bisecting the molecule

[Co(NH₃)₃Cl₃]

 $[Co(NH_3)_3(NO_2)_3]$

Bonding in Coordination Compounds

- □ Valence Bond Theory
 - ☐ Proposed by Linus Pauling (Nobel Prize 1954) for nature of chemical bonds and elucidation of structure of complex systems.
 - The model utilizes hybridization of metal valence orbitals to account for the observed structures and magnetic properties of complexes. (n-1)d, ns and np undergo hybridization to give hybridized orbitals. An empty hybrid orbital on the metal center can accept a pair of electrons from a ligand to form a σ-bond.

Valence Bond Theory: Limitations

 $[\underline{PtCl}_4]^{2-}$ which is diamagnetic – d^8 square planar

 dsp^2

 $[\underline{NiCl_4}]^{2-}$ which is paramagnetic – d^8 tetrahedral

sp³

- ☐ Limitations of Valence Bond Theory
- ☐ Electronic and spectroscopic properties (color) of coordination complexes is not explained.
- **Quantitative interpretation of magnetic data is impossible.**
- ☐ Whether a complex of coordination number four is square planar or tetrahedral cannot be exactly predicted.
- ☐ Effect of ligands of different donor ability is neglected or high-spin and low-spin complexes cannot be distinguished.

Crystal Field Theory (CFT)

☐ Assumptions/Features of CFT
☐ The interaction between the metal ion and the ligand is assumed to be purely electrostatic (ionic) in nature.
☐ The ligands are treated as point charges.
☐ Examines the energetics (splitting) of <i>d</i> -orbitals in certain geometries.
☐ Nature of Interaction between Metal and Ligand
☐ The approaching ligand is considered to be a point charge repelled by the electrons in a metal's <i>d</i> -orbitals.
\Box Therefore, the d orbitals on a metal in a complex would not remain degenerate.
☐ Those that point toward ligands would be higher in energy than those that do

not.

d-Orbitals

These three atomic orbitals point *in between the axes*

These two atomic orbitals point along the axes

Metal Ion in an Octahedral Field

- ☐ The corners of octahedron are assumed to be placed on the axes.
- ☐ The ligands approach along the axes and occupy the corners
- ☐ Electrons in the *d* orbitals lying along the axes are repelled the most, while those lying in between the axes are less repelled

t_{2g}: triply degenerate set of orbitals

e_g: doubly degenerate set of orbitals g = gerade; symmetric with respect to center

of inversion

u = ungerade; antisymmetric w.r.t. center of inversion

Barycenter

- \Box Δ_o = crystal field splitting parameter; The energy separation between the two levels is denoted by Δ_o or 10 Dq.
- \Box The higher energy set of orbitals (d_{z2} and d_{x2-y2}) are labeled as e_g and the lower energy set is labeled as t_{2g} . These notations are based on the symmetry of the orbitals.
- \Box To maintain the average energy, the e_g orbitals need to be destabilized by 0.6 Δ_o (6 Dq) and the t_{2g} orbitals to be stabilized to the extent of 0.4 Δ_o (4 Dq)

The Complete Picture

Tetrahedral Field

- ☐ No orbitals directly pointing toward the ligands.
- \Box The *e* orbitals point between the two ligands present at opposite corners of a cube (thereby being less effected than the t_2 orbitals).
- \square The t_2 orbitals lie half an edge of the cube from ligand and point more directly toward ligands (destabilized).

Tetrahedral Field

 \Box The crystal field splitting in the tetrahedral field is intrinsically smaller than in the octahedral field. For most purposes the relationship may be represented as Δ_t = 4/9 Δ_o

Comparison of Octahedral and Tetrahedral Fields

Determination of Δ

Absorbance 670 400 500 λ /nm 25 15 $\tilde{v}/(10^3 \text{ cm}^{-1})$

Determination of Δ

- \Box [Ti(H₂O)₆]³⁺ is a d¹ complex. The single electron in the t_{2g} orbitals absorb energy in the form of light and gets promoted to the e_g orbitals to show it's purple color.
- \Box For [Ti(H₂O)₆]³⁺, this corresponds to 493 nm (Δ₀ = 20,300 cm⁻¹ = 243 kJ/mol).
- For $t_{2g}^{1}e_{g}^{0}$ configuration: stabilization energy = 243 x 0.4 = 97 kJ/mol, this extra stabilization due to the splitting of *d*-orbitals called crystal field stabilization energy (CFSE).

octahedral
$$[M(H_2O)_6]^{3+} \qquad t_{2g} \stackrel{\bullet}{ } \stackrel{-}{ } \stackrel{-}{ } \stackrel{-}{ } \stackrel{2/5\Delta_0}{ } \qquad \downarrow^{2/5\Delta_0}$$