Certifying Robustness to Programmable Data Bias in Decision Trees

Anna P. Meyer, Aws Albarghouthi, and Loris D'Antoni

Is the model fair?

accurate?

trustworthy?

Is the dataset biased?

complete?

representative?

Is the dataset biased?

complete?

representative?

Probably not.

What is the impact on the model's predictions?

Goal: certify robustness to training-data bias

Types of data bias

Incorrect labels

e.g., historical biases like women marked as "not hired" for a job even though they were qualified

Missing data

e.g., neglected to collect data from a minority neighborhood

Fake data

e.g., fake answers submitted through crowdsourcing

bias robustness of \boldsymbol{x}

for all D' that disagree with D on $\leq n$ labels show that $f_{D'}(x) = f_D(x)$

bias robustness of \boldsymbol{x}

for all D' that disagree with D on $\leq n$ labels show that $f_{D'}(x) = f_D(x)$

Dataset $oldsymbol{D}$

VXXXVVXV

etc.

etc.

|D| = 1000 n = 10 $\sim 10^{23}$ datasets!

bias robustness of \boldsymbol{x}

for all D' that disagree with D on $\leq n$ labels show that $f_{D'}(x) = f_D(x)$

Key challenge Combinatorial explosion in the number of datasets

large set of training datasets

abstract

decision-tree learning algorithm

large set of decision trees

Dataset $oldsymbol{D}$

Dataset $oldsymbol{D}$

Dataset **D**

Dataset **D**

Gini Impurity =
$$\checkmark \cdot (1-\checkmark) + \checkmark \cdot (1-\checkmark)$$

= $(4/5)(1-(4/5)) + (1/5)(1-(1/5)) = 0.32$

Abstraction of Dataset $oldsymbol{D}$

Abstraction of Dataset D

Abstraction of Dataset D

Gini Impurity =
$$\checkmark \cdot (1-\checkmark) + \times \cdot (1- \times)$$

= $([3,5]/5)(1 - ([3,5]/5)) + ([0,2]/5)(1 - ([0,2]/5))$
= $[0, 0.8]$

Abstract decision-tree-learner pipeline

- 1. Build an abstract decision tree
- 2. Find the prediction of x under each of the trees constructed with the best predicates
- 3. See whether all predictions agree

If so, x is certifiably robust!

If not, inconclusive.

Experimental results

Certification rate

Given n% bias, what percentage of test data points are certifiably robust?

		Bias amount as a percentage of training set					
Bias type	Dataset	0.05	0.1	0.2	0.4	0.7	1.0
MISS (missing data)	Drug Consumption COMPAS Adult Income (AI)	94.5 89.0 96.0	94.5 81.9 86.9	94.5 52.9 72.8	94.5 45.3 60.9	85.1 9.3	85.1 9.2
	COMPAS targeted AI targeted	89.0 98.8	89.0 97.2	81.9 86.6	52.9 73.0	47.8 62.0	42.3

Certification rate

Given n% bias, what percentage of test data points are certifiably robust?

		Bias amount as a percentage of training set						
Bias type	Dataset	0.05	0.1	0.2	0.4	0.7	1.0	
MISS (missing data)	Drug Consumption COMPAS Adult Income (AI)	94.5 89.0 96.0	94.5 81.9 86.9	94.5 52.9 72.8	94.5 45.3 60.9	85.1 9.3	85.1 9.2	
	COMPAS targeted AI targeted	89.0 98.8	89.0 97.2	81.9 86.6	52.9 73.0	47.8 62.0	42.3 31.6	

 $< 10^{50}$

 $< 10^{10}$

Bias-set size color scheme

 $< \overline{10^{100}}$

 $> 10^{500}$

infinite

 $< 10^{500}$

Certification discrepancy between demographic groups

COMPAS dataset (but discrepancies exist for Adult Income, too)

Future work

- Extensions to other ML algorithms
- Counter-examples to robustness