Pie-3 System Environment

USB keybord, USB mouse; USB cable for power USB wifi HDMI cable for monitor SD Card for Raspbian OS

Pie-3 Board

https://www.raspberrypi.org/help/

Expansion Connectors

OS: Raspbian, comes preinstalled with many software. It supports Python, Scratch, Sonic Pi, Java and more.

C++/C programming for pie

https://raspberryprojects.com/pi/category/p rogramming-in-c

Eclipse Linux

Using A Linux PC With A Cross Compiler: this page does not exist

C programming for pie

The Raspbian Operating System via NOOBS Using the NOOBS software to install Raspbian OS on your SD card. Download NOOBS at (https://www.raspberrypi.org /downloads).

https://raspberryprojects.com/pi/programming-inc/getting-your-raspberry-pi-ready-forc-programming

Harry Li, Ph.D.

Raspbian OS for Pie-3

https://www.raspberrypi.org/downloads/raspbian/

Raspbian Stretch with desktop and recommended software

Image with desktop and recommended software based on Debian Stretch

Version: November 2018 Release date: 2018-11-13

Kernel version: 4.14 Release notes: Link

download: zip

Go to the downloads page, grab a copy of the NOOBS zip file, and unpack it onto a freshly formatted 32GB (or larger) SD card.

https://www.raspberrypi.org/blog/introducing-noobs/

When the pie boot up for the first time, you'll see a menu prompting you to install one of several operating systems into the free space on the card. Select the boot of the Pi with a regular OS Raspbian, or with a media-centre OS like RaspBMC.

Prototype Board Layout Design

Power Unit Design

LED Spec

Estimated Power Budget total: 1750 mA

ARM CPU Board MLS303

Motor Drive bd

Rest Glue

GPIO Testing Pie-3 Version B GPIO Pins

https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-note.html

Harry Li, Ph.D.

Pie-3 Version B GPIO Pins

https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry-pi-circuit-note.html

Python GPIO Interface Testing

111 Date: Feb 2019; Coded by: HL sample raspberry pie GPIO code #import the GPIO and time package import RPi.GPIO as GPIO import time print('-----') print(GPIO.RPI INFO) GPIO.setmode(GPIO.BOARD) GPIO.cleanup() Boardpin = 8 GPIO.setup(Boardpin, GPIO.OUT) # loop 5 times, on/off for 1 second for i in range(5): print('GPIO testing program',i) GPIO.output(Boardpin,GPIO.HIGH) time.sleep(1) GPIO.output(Boardpin,GPIO.LOW) time.sleep(1) GPIO.cleanup() print('End')

RPi.GPIO Python package

"Thonny" Python IDE On Pie

```
Thonny - /home/pi/harry/gpio/gpio.py @ 15:37
File Edit View Run Device Tools Help
gpio.py ⋈
     111
   5 #import the GPIO and time package
   6 import RPi.GPIO as GPIO
   7 import time
   8 print('-----')
     print(GPIO.RPI INFO)
  11 GPIO.setmode(GPIO.BOARD)
  12 GPIO.cleanup()
  13 Boardpin = 8
  14 GPIO.setup(Boardpin, GPIO.OUT)
  15 # loop 10 times, on/off for 1 second
  16 for i in range(5):
          print('GPIO testing program',i)
  18
          GPIO.output(Boardpin, GPIO.HIGH)
       time.sleep(1)
  19
  20
          GPIO.output(Boardpin, GPIO.LOW)
          time.sleep(1)
  77 GPIO cleanun()
 Shell ×
   gpio.py:12: Runtimewarning: No channels have been set up yet - nothing to clean up! Try cleaning up at
   the end of your program instead!
    GPIO.cleanup()
   GPIO testing program 0
   GPIO testing program 1
   GPIO testing program 2
   GPIO testing program 3
   GPIO testing program 4
   End
 >>>
```

GPIO Interface Testing

http://www.jetsonhacks.com/2015/12/29/gpio-interfacing-nvidia-jetson-tx1/

Color Code Resistor

Color	Digit	Multiplier	Tolerance (%)
Black	0	10° (1)	
Brown	1	10 ¹	1
Red	2	10 ²	2
Orange	3	10 ³	
Yellow	4	10 ⁴	
Green	5	10 ⁵	0.5
Blue	6	10 ⁶	0.25
Violet	7	10 ⁷	0.1
Grey	8	10 ⁸	
White	9	10 ⁹	
Gold		10 ⁻¹	5
Silver		10 ⁻²	10
(none)			20

Screen Capture with Scrot

- Download the scrot a screen capture tool
 sudo apt-get install scrot
- 2) once done, restart your system, then open a terminal do \$scrot

This will capture the whole screen for you.

Pie-3 C Programming

- 1) Download the Raspbian Wheezy SD card image from the Raspberry Pi website downloads page
- 2) Copy it to a SD card and unzip it.
- 3) Boot your RPi, log in and start the GUI, then select Raspian to boot.
- 4) Once booted, at the top left select the terminal icon, click on it to open.
- 5) Then create your working directory, for example, under /home/pi directory, create your working directory.
- 6) Then use your preferred word editor to create your first test.c program, for example, use "vi" to create test.c.
- 7) Compile and build: \$gcc -Wall test.cpp -o main
- 8) To execute the program, \$./main

