IIT HYDERABAD

PCB DESIGN AND LAYOUT FOR ELECTRONIC SYSTEMS

P SRIKAR VARMA
R V S S S R VARUN
RADHA SAI SUJAN
K MANOHAR
PILLI KALYAN
P HARSHA VARDHAN
KURRE VINAY

EE23BTECH11215
EE23BTECH11220
EE23BTECH11219
EE23BTECH11208
EE23BTECH11216
EE23BTECH11214
EE23BTECH11036

OLED Display Integration with DA14531 MCU

The objective of this project is to design a schematic and PCB layout for interfacing an SPI-based OLED display (e.g., SSD1306 128x64) with the DA14531 microcontroller (MCU). The design ensures proper signal routing, decoupling, and includes level shifters if necessary to handle compatible voltage levels.

<u>Design Process</u>

Device selection

- Microcontroller: DA14531 (supports interrupts on GPIO pins).
- Microcontroller: DA14531 (supports SPI communication).
- OLED Display: SSD1306 128x64 (SPI interface).
- Level Shifter: AOM12864A0-1.54WW-ANO

Block Diagram

Component Selection

Schematic

The schematic includes:

- Power Supply:
 - 3V coin cell (CR1220) with filtering capacitors (C1, C2).
- SPI Interface:
 - o DA14531 GPIO pins connected to the OLED display via the level shifter.
 - SPI signals: SCLK, MOSI, CS, and RST.
- Decoupling Capacitors:
 - Placed near power pins of the MCU and OLED display to reduce noise.
- Pull-Up Resistors :
 - Used on SPI lines (SCLK, MOSI, CS) to ensure stable high levels.

Schematic

• Schematic rules check

PCB design

Top layer

• Bottom layer

• Design rules check

Button Interface Expansion for DA14531 Dev Board

The objective of this question is to modify the existing DA14531 development board design to include four tactile buttons with proper debouncing circuits. The buttons are connected to GPIO pins that support interrupt functionality, ensuring reliable detection of button presses.

Design Process

Device selection

- Microcontroller: DA14531 (supports interrupts on GPIO pins).
- Buttons: Tactile momentary switches (SWI, SW2, SW3, SW4).
- Debouncing Components : Pull-up resistors and capacitors for each button.

Block Diagram

Component Selection

COMPONENT	VALUE / MODEL	PURPOSE
DA14531	мси	Main controller
SW1-SW4	Tactile Momentary Switches	User input
R1-R8	10 kΩ	Pull-up resistors
C1-C5	10 μF	Debouncing capacitors

Schematic

Each button is connected as follows:

- One side of the switch connects to a GPIO pin.
- The other side connects to GND through a pull-down resistor.
- A capacitor is placed between the GPIO pin and GND to debounce the signal.

schematic rules check

schematic

PCB design

• Top layer

• Int 1 (GND)

• Int 2 (3V3)

• Bottom layer

• Layers and thickness

Design rules check

Temperature Monitoring Circuit Design Using DA14531 MCU and TMP102

TThe objective of this project is to design a temperature monitoring circuit using the DA14531 microcontroller (MCU) and an I2C temperature sensor (TMP102). The circuit includes proper power supply filtering, decoupling capacitors, I2C pull-up resistors, and an LED indicator that toggles when the temperature exceeds a predefined threshold.

<u>Design Process</u>

Device selection

MCU: DA14531 (low-power, I2C support, BLE optional)

Sensor : TMP102 (I2C digital temperature sensor)

LED: Standard red LED

• Passives: Resistors, capacitors for filtering, pull-ups.

Block Diagram

Temperature Monitoring System

Component Selection

Schematic

the basics schematic includes:

- Power supply connected to VDD of both DA14531 and TMP102.
- Decoupling capacitors placed near each VDD pin.
- I2C lines (SDA, SCL) with pull-up resistors.
- TMP102 connected to I2C bus.
- LED connected to a GPIO pin through a resistor.

schematic

schematic rules check

PCB design

• layers

Design rules check