Name	
I (CIIIC	

REAL ANALYSIS QUALIFYING EXAM Fall 1998 (Saeki & Vaninsky)

Do all of the problems below.

Let (X, \mathcal{A}, μ) be a measure space.

- **1.** Let $\varphi: X \to \Omega$, where Ω is a topological space.
 - (a) What does it meant that φ is measurable?
 - (b) Suppose φ is measurable and E is a Borel subset of Ω . Prove that $\varphi^{-1}(E)$ is measurable.
- **2.** Let $f \in L^1(\mu)$. Prove that $\left| \int f \, d\mu \right| \leq \int |f| d\mu$.
- **3.** Let $1 \leq p < \infty$. Prove the completeness of $L^{P}(\mu)$.
- 4. Prove the Dominated Convergence Theorem by applying Fatou's Lemma.

- **5.** Let $\varphi: X \to \Omega$ be measurable, where Ω is a topological space. Define $\nu(E) := \mu(\varphi^{-1}(E))$ for each $E \in \mathcal{B}_{\Omega}$ (the Borel subsets of Ω). Prove:
 - (a) ν is a Borel measure.
 - (b) Let $f: \Omega \to [0, \infty]$ be Borel measurable. Then

$$\int_{\Omega} f \, d\nu = \int_{X} f \circ \varphi \, d\mu.$$

- **6.** Let $f: X \times [0,1] \to \mathbb{C}$. State (nontrivial) conditions on f that guarantee
 - (*) $\frac{d}{dt} \int f(x,t) \, d\mu(x) = \int \frac{\partial f}{\partial t}(x,t) \, d\mu(x) \quad \forall \ t \in (0,1)$ and then prove (*).
- 7. Let $L^{\infty}(\mu) + L^{1}(\mu) = \{g + h : g \in L^{\infty}(\mu), h \in L^{1}(\mu)\}$. Prove that $L^{P}(\mu) \subset L^{\infty}(\mu) + L^{1}(\mu) \quad \forall p \in [1, \infty].$
- **8.** Let $\varepsilon > 0$. Construct a compact set $K \subset [0,1]\mathbf{Q}$ such that $|K| > 1 \varepsilon$, where |K| is the Lebesgue measure of κ .