Maths - MP2I

Axel Montlahuc

2024/2025

1.20 Somme des carrés et des cubes 1.39 Formule du capitaine 1.41 Formule du capitaine 1.42 Formule du binome de Newton 3		lculs Algébriques
1.41 Formule du capitaine 1.42 Pormule du binôme de Newton 2 Logique 2 Logique 2.175 Equivalence logiques 2.175 Quantitativité 2.175 Commutativité 2.173 Associativité 2.174 Loi de Morgan 2.175 Double implication 3.175 Double implication 3.175 Double implication 3.18 Propriètés du produit cartésien 3.19 Propriètés du produit cartésien 3.19 Propriètés du produit cartésien 3.19 Propriètés des relations 3.10 Propriètés des relations 3.10 Propriètés des relations réciproques 3.11 3.20 Propriètés des relations réciproques 4.13 Sociomose d'injections incurrer l'injectivité/surjectivité/hijectivité 4.13 Sociomose d'injections/surjections 4.33 Composition de fonctions 4.35 Compose d'injections/surjections 4.36 Condition nécessaire pour une composition injective/surjective 4.23 Reinjeuque et bijection 4.23 Reinjeuque et bijection 4.24 Exemple 4.25 Condition nécessaire et suffisante de bijectivité 4.26 Centre de symétrie 4.27 Axe de symétrie 4.28 Remarque 4.29 Remarque 4.20 Primitives d'une fonction sur un intervalle 4.20 Primitives d'une fonction sur un intervalle 4.21 Exemple 4.22 Exemple 4.23 Remarque 4.24 Remarque 4.25 Encomple 4.26 Exemple 4.27 Exemple 4.28 Propriétés de la fonction logarithme 4.29 Propriétés de la fonction logarithme 5.20 Propriétés de la fonction puissance 5.21 Propriétés de la fonction puissance 5.22 Croissances comparées en +∞ 5.23 Croissances comparées en +∞ 5.24 Croissances comparées en +∞ 5.25 Libertivé d'une fonction puissance 5.26 Croissances comparées en +∞ 5.27 Croissances comparées en +∞ 5.28 Croissances comparées en +∞ 5.29 Croissances comparées en +∞ 5.20 Croissances comparées en +∞ 5.21 Dérivée d'une fonction puissance 5.22 Croissances comparées en +∞ 5.23 Eromule de trigonométrie hyperbolique 5.24 Croissances comparées en +∞ 5.25 Croissances comparées en +∞ 5.26 Croissances comparées en +∞ 5.27 Croissances comparées en +∞ 5.28 Croissances comparées en +∞ 5.29 Croissances comparées en +∞ 5.20 Croissances comparées en +∞ 5.20 Croissances comparées en +∞ 5.20 Croissances comparées en +∞	1.2	O Somme des carrés et des cubes
2 Logique 2.17 Equivalence logiques 2.17.1 Double négation 2.17.2 Commutativité 2.17.3 Associativité 2.17.3 Associativité 2.17.4 Loi de Morgan 2.17.5 Double implication 2.17.6 Dosributivité 3.17.5 Double implication 2.17.6 Dosributivité 3.2 Ensembles et applications 3.12 Propriétés du produit cartésien 3.14 Associativité des relations 3.12 Propriétés des relations (16.3.20 Propriétés des relations (16.3.20 Propriétés des relations réciproques (16.3.20 Propriétés des relations réciproques (17.3.20 Composition de fonctions (17.3.20 Composition de fonctions (17.3.3.30 Schemas de raisonnement : montrer l'injectivité/sur		
2 Logique 2.17 Equivalence logiques 3 2.17.1 Double négation 3 2.17.2 Commutativité 5 2.17.3 Associativité 5 2.17.3 Associativité 5 2.17.3 Associativité 5 2.17.4 Loi de Morgan 5 2.17.5 Double implication 8 2.17.6 Distributivité 5 5 5 5 5 5 5 5 5		
2.17. Equivalence logiques 2.17.1 Double négation 2.17.2 Commutativité 2.17.3 Associativité 2.17.3 Associativité 2.17.4 Loi de Morgan 2.17.5 Double implication 2.17.6 Distributivité 5.2.17.6 Distributivité 5.2.17.6 Distributivité 6.2.17.7 Double implication 3.12 Propriétés du produit cartésien 3.12 Propriétés des roduit cartésien 3.12 Propriétés des relations 3.12 Propriétés des relations 3.12 Propriétés des relations 3.13 Oschémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 1.1 3.30 Composition de fonctions 1.3 3.30 Condition nécessaire pour une composition injective/surjectivité/bijectivité 1.3 3.5 Composée d'injections surjections 3.3 Gordition nécessaire pour une composition injective/surjective 1.3 3.3 Inverse d'une composée de bijections 3.3 Condition nécessaire et suffisante de bijectivité 1.2 Généralités sur les fonctions 1.3 421 Excemple 1.4 Généralités sur les fonctions 1.4 21 Excemple 1.4 4.27 Axo de symétrie 1.4 4.28 Centre de symétrie 1.4 4.29 Centre de symétrie 1.4 4.29 Centre de symétrie 1.4 4.40 Primitives d'une fonction sur un intervalle 1.4 4.60 Intégration par partie 1.6 6 Excemple 1.6 6 Excemple 1.7 Exc	1.4	2 Formule du binôme de Newton
2.17. Equivalence logiques 2.17.1 Double négation 2.17.2 Commutativité 2.17.3 Associativité 2.17.3 Associativité 2.17.4 Loi de Morgan 2.17.5 Double implication 2.17.6 Distributivité 5.2.17.6 Distributivité 5.2.17.6 Distributivité 6.2.17.7 Double implication 3.12 Propriétés du produit cartésien 3.12 Propriétés des roduit cartésien 3.12 Propriétés des relations 3.12 Propriétés des relations 3.12 Propriétés des relations 3.13 Oschémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 1.1 3.30 Composition de fonctions 1.3 3.30 Condition nécessaire pour une composition injective/surjectivité/bijectivité 1.3 3.5 Composée d'injections surjections 3.3 Gordition nécessaire pour une composition injective/surjective 1.3 3.3 Inverse d'une composée de bijections 3.3 Condition nécessaire et suffisante de bijectivité 1.2 Généralités sur les fonctions 1.3 421 Excemple 1.4 Généralités sur les fonctions 1.4 21 Excemple 1.4 4.27 Axo de symétrie 1.4 4.28 Centre de symétrie 1.4 4.29 Centre de symétrie 1.4 4.29 Centre de symétrie 1.4 4.40 Primitives d'une fonction sur un intervalle 1.4 4.60 Intégration par partie 1.6 6 Excemple 1.6 6 Excemple 1.7 Exc	2 Lo	gique
2.17.1 Double négation 2.17.2 Commutativité 2.17.3 Associativité 2.17.4 Loi de Morgan 2.17.5 Double implication 8.12 Propriétés du produit cartésien 3.12 Propriétés du produit cartésien 3.12 Propriétés du produit cartésien 3.13 Associativité des relations 3.12 Propriétés des relations réciproques 3.13 Associativité des relations 3.14 Associativité des relations (16 3.20 Propriétés des relations réciproques 3.15 Associativité des relations (17 3.20 Propriétés des relations réciproques 3.21 Composition de fonctions 3.22 Ornoposition de fonctions 3.23 Schiens de raisonnement : montrer l'injectivité/surjectivité/bijectivité 3.24 Condition nécessaire pour une composition injective/surjective 3.25 Réciproque et bijection 3.26 Condition nécessaire pour une composition injective/surjective 3.27 Réciproque et bijection 3.28 Inverse d'une composée de bijections 3.29 Condition nécessaire et suffisante de bijectivité 4.21 Exemple 4.22 Associativité sur les fonctions 4.21 Exemple 4.23 Remarque 4.24 Associativité sur les fonctions 4.24 Exemple 4.25 Théorème de la bijection dérivable 4.26 Primitives d'une fonction sur un intervalle 4.26 Primitives d'une fonction sur un intervalle 4.27 Ax de symétrie 4.28 Remarque 4.29 Associativité d'une fonction sur un intervalle 4.29 Théorème de la bijection dérivable 4.20 Primitives d'une fonction sur un intervalle 4.21 Exemple 4.22 Exemple 4.23 Remarque 4.44 Méthode 4.75 Exemple 5.75 Propriétés du logarithme 5.76 Limites usuelles 5.76 Propriétés du logarithme 5.77 Exemple 5.78 Propriétés du logarithme 5.79 Propriétés d'une fonction plissance 5.79 Propriétés d'une fonction plissance 5.70 Propriété fondamentale de l'exponentielle 5.70 Propriété fondamentale de l'exponentielle 5.75 Propriétés d'une fonction puissance 5.75 Propriétés d'une fonction p		
2.17.2 Commutativité 2.17.3 Associativité 2.17.4 Loi de Morgan 2.17.5 Double implication 2.17.6 Distributivité 3.18 Associativité 3.19 Propriétés du produit cartésien 3.12 Propriétés du produit cartésien 3.12 Propriétés des relations 3.12 Propriétés des relations 3.12 Propriétés des relations 3.13 O Propriétés des relations 3.14 Associativité des relations 3.15 Composition de fonctions 3.16 Condition nécessaire pour une composition injective/surjectivité/bijectivité 111 3.35 Composée d'injections/surjections 3.36 Condition nécessaire pour une composition injective/surjectivité 12 3.37 Réciproque et bijection 3.38 Inverse d'une composée de bijections 12 3.39 Condition nécessaire et suffisante de bijectivité 12 4 Généralités sur les fonctions 13 4.21 Exemple 14 4.23 Remarque 14 4.27 Axe de symétrie 14 4.28 Remarque 14 4.27 Axe de symétrie 14 4.28 L'axemple 14 4.26 Exemple 14 4.61 Primitives d'une fonction sur un intervalle 15 Théorème de la bijection dérivable 16 Remarque 17 4.66 Exemple 18 4.66 Exemple 19 4.66 Exemple 19 4.67 Changement de variable 19 4.68 Exemple 19 4.69 Intégration par partie 19 4.70 Changement de variable 19 4.71 Exemple 10 1.72 Exemple 11 5 Pronctions usuelles 12 Propriétés du logarithme 13 Propriété fondamentale du logarithme 14 5.75 Exemple 15 Fonctions usuelles 16 Propriété d'une fonction logarithme 17 Exemple 18 5.70 Propriétés de la fonction logarithme 19 5.75 Propriétés d'une fonction puissance 20 2 Croissances comparées en +∞. 21 2.27 Croissances comparées en +∞. 22 Croissances comparées en +∞. 23 2 Croissances comparées en +∞. 24 25 Exemple 25 Propriété fondamentale de lexponentielle 26 Exemple 27 Exemple 22 Croissances comparées en +∞. 28 2 Propriétés d'une fonction puissance 29 5.24 Croissances comparées en +∞. 20 5.24 Croissances comparées en +∞. 21 5.22 Croissances comparées en +∞. 22 10 Structures algébriques 23 10.3 Exemple 24 25 Exemple 25 Exemple 26 Structures algébriques		•
2.17.3 Associativité 2.17.5 Double implication 2.17.5 Double implication 2.17.6 Distributivité 8 8 8 Ensembles et applications 3.12 Propriétés du produit cartésien 3.12 Propriétés des relations réciproques 3.12 Propriétés des relations réciproques 3.13 Associativité des relations réciproques 3.13 Associativité des relations réciproques 3.23 Composition de fonctions 3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 11 3.35 Composée d'injections/surjections 3.36 Composée d'injections/surjections 3.37 Réciproque et bijection 3.38 Inverse d'une composée de bijections 3.39 Condition nécessaire et suffisante de bijectivité 4 Généralités sur les fonctions 4.21 Exemple 4.23 Remarque 4.42 Remarque 4.42 Axo de symétrie 4.42 Remarque 4.43 Remarque 4.44.5 Exemple 4.64 Primitives d'une fonction sur un intervalle 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Romarque 4.64 Exemple 4.66 Exemple 4.66 Exemple 4.67 Changement de variable 4.76 Changement de variable 4.77 Axo de symétrie 4.78 Exemple 4.79 Changement de variable 4.70 Changement de variable 4.71 Méthode 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.76 Changement de variable 4.77 Changement de variable 4.78 Exemple 4.79 Propriétés du logarithme 5.10 Propriétés du logarithme 5.20 Propriétés d'une fonction puissance 5.21 Croissances comparées en 0 5.22 Croissances comparées en 0 5.23 Croissances comparées en 0 5.24 Croissances comparées en 0 5.25 Exemple 5.27 Fornute de trigonométrie hyperbolique 520 Structures algébriques 521 53 Exemple 54 Structures algébriques 54 Structures algébriques 55 Exemple 56 Structures algébriques 57 Double d'une fonction exponentielle 57 Structures algébriques		<u> </u>
2.17.4 Loide Morgan		
2.17.5 Double implication 2.17.6 Distributivité 8 3 Ensembles et applications 9 3.12 Propriétés du produit cartésien 16 3.18 Associativité des relations réciproques 16 3.20 Propriétés des relations réciproques 17 3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 11 3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 11 3.35 Composée d'injections/surjections 11 3.36 Condition nécessaire pour une composition injective/surjective 12 3.37 Réciproque et bijection 12 3.38 Inverse d'une composée de bijections 12 3.39 Condition nécessaire et suffisante de bijectivité 12 4 Généralités sur les fonctions 12 4.21 Exemple 14 4.22 Axe de symétrie 14 4.23 Centre de symétrie 14 4.24 Axe de symétrie 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 14 4.62 Exemple 15 4.63 Remarque 16 4.64 Exemple 16 4.65 Remarque 17 4.66 Exemple 16 4.70 Changement de variable 16 4.72 Exemple 17 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 17 5 Propriétés du logarithme 17 5 Ponctions usuelles 17 5 Propriétés de la fonction logarithme 19 5 Propriétés de la fonction logarithme 19 5 Propriétés de la fonction logarithme 19 5 Propriétés de la fonction parance 19 5.21 Croissances comparées en 1∞ 22 5.22 Croissances comparées en 1∞ 22 5.43.2 Formule de trigonométrie hyperbolique 22 5 Stemple 24 5 Stemple 24 6 Stemple 25 6 Stemple 25 6 Stemple 25 6 Stemple 25 6 Stemple 27 6 Stemple		
2.17.6 Distributivité 8 8 8 8 1 1 1 1 1 1		
3 Ensembles et applications 3.12 Propriétés du produit cartésien 3.13 Associativité des relations 3.20 Propriétés des relations 3.20 Propriétés des relations féciproques 3.21 Composition de fonctions 3.22 Composition de fonctions 3.23 Composition de fonctions 3.25 Composée d'injections/surjections 3.26 Condition nécessaire pour une composition injective/surjectivité/bijectivité 3.27 Réciproque et bijection 3.28 Inverse d'une composée de bijections 3.29 Condition nécessaire et suffisante de bijectivité 4.20 Condition nécessaire et suffisante de bijectivité 4.21 Exemple 4.22 Exemple 4.23 Remarque 4.24 Axe de symétrie 4.25 Centre de symétrie 4.26 Centre de symétrie 4.27 Axe de symétrie 4.28 Centre de la bijection dérivable 4.61 Exemple 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Remarque 4.64 Remarque 4.65 Remarque 4.66 Exemple 4.67 Changement de variable 4.69 Intégration par partie 4.60 Intégration par partie 4.74 Méthode 4.75 Exemple 5.76 Propriétés du logarithme 5.77 Propriétés du logarithme 5.78 Propriétés de la fonction exponentielle 5.79 Propriétés de la fonction exponentielle 5.99 Propriétés de la fonction logarithme 5.10 Propriétés de la fonction exponentielle 5.99 Propriétés de la fonction exponentielle 5.99 Propriétés de la fonction passance 5.10 Croissances comparées en 1∞ 5.11 Croissances comparées en 0 5.12 Croissances comparées en 0 5.13 Exemple 5.14 Stemple 5.15 Dérivée d'une fonction puissance 5.16 Structures algébriques 5.17 Stemple 5.18 Structures algébriques 5.19 Structures algébriques 5.20 Croissances comparées en 0 5.21 Croissances comparées en 0 5.22 Croissances comparées en 0 5.23 Exemple 5.24 Croissances comparées en 0 5.25 Ligar Exemple 5.26 Croissances comparées en 0 5.27 Croissances comparées en 0 5.28 Exemple 5.29 Formule de trigonométrie hyperbolique		
3.12 Propriétés du produit cartésien 3.18 Associativité des relations 10 3.20 Propriétés des relations féciproques 11 3.21 Composition de fonctions 11 3.22 Composition de fonctions 11 3.33 Schémas de raisonnement : montrer l'injectivité/sujectivité/bijectivité 11 3.35 Composée d'injections/surjections 11 3.36 Condition nécessaire pour une composition injective/surjectivité 12 3.37 Réciproque et bijection 12 3.38 Inverse d'une composée de bijections 12 3.39 Condition nécessaire et suffisante de bijectivité 12 3.39 Condition nécessaire et suffisante de bijectivité 12 4 Généralités sur les fonctions 13 4.21 Exemple 14 4.23 Remarque 4.4.24 Remarque 4.4.25 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Remarque 4.66 Remarque 4.66 Remarque 4.66 Remarque 4.67 Ake de symétrie 4.68 Intégration par partie 4.69 Intégration par partie 4.60 Intégration par partie 4.74 Méthode 4.75 Exemple 5.75 Propriétés du logarithme 5.76 Propriétés du logarithme 5.77 Propriétés du logarithme 5.78 Propriétés de la fonction exponentielle 5.89 Propriétés de la fonction exponentielle 5.90 Propriétés de la fonction exponentielle 5.91 Propriétés de la fonction exponentielle 5.92 Propriétés du logarithme 5.15 Dérivée d'une fonction puissance 21 5.15 Dérivée d'une fonction puissance 22 5.17 Croissances comparées en +∞ 5.18 Exemple 10 5 Structures algébriques 22 5.43.2 Formule de trigonométrie hyperbolique		
3.18 Associativité des relations 3.20 Propriétés des relations réciproques 3.23 Composition de fonctions 3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 3.35 Composée d'injections/surjections 3.36 Condition nécessaire pour une composition injective/surjective 3.37 Réciproque et bijection 3.38 Inverse d'une composée de bijections 3.39 Condition nécessaire et suffisante de bijectivité 4 Généralités sur les fonctions 4.21 Exemple 4.23 Remarque 4.24 Exemple 4.25 Remarque 4.26 Leure de symétrie 4.27 Exemple 4.51 Exemple 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Exemple 4.64 Exemple 4.65 Remarque 4.66 Exemple 4.66 Exemple 4.70 Changement de variable 4.72 Exemple 4.74 Méthode 4.75 Exemple 5. Propriétés du logarithme 5. Propriétés du logarithme 5. Propriétés de la fonction exponentielle 5. Propriétés de la fonction exponentielle 5. Propriétés de la fonction pursance 5. Propriétés de la fonction pagarithme 5. Dirivée d'une fonction pursance 5. Propriétés de la fonction pagarithme 5. Dirivée d'une fonction pursance 5. Propriétés de la fonction pagarithme 5. Dirivée d'une fonction pursance 5. Propriétés de la fonction pagarithme 5. Dirivée d'une fonction pursance 5. Dirivée d'une comparées en +∞ 5. Dirivée d'une fonction pursance 5. Dirivée d'une fonctio		
3.20 Propriétés des relations réciproques 3.23 Composition de fonctions 3.30 Schémas de raisonement : montrer l'injectivité/surjectivité/bijectivité 3.35 Composée d'injections/surjections 3.36 Condition nécessaire pour une composition injective/surjective 3.37 Réciproque et bijection 3.38 Inverse d'une composée de bijections 3.39 Condition nécessaire et suffisante de bijectivité 4 Généralités sur les fonctions 4.21 Exemple 4.22 Exemple 4.23 Remarque 4.24 Axe de symétrie 4.25 Centre de symétrie 4.4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Remarque 4.64 Remarque 4.65 Remarque 4.66 Exemple 4.67 Changement de variable 4.70 Changement de variable 4.71 Méthode 4.72 Exemple 4.74 Méthode 4.75 Exemple 5. Propriétés du logarithme 5. Propriétés de la fonction logarithme 5. Propriété doulamentale du logarithme 5. Propriété de la fonction exponentielle 5. Propriété de la fonction exponentielle 5. Propriété d'une fonction puissance 5. Propriété fondamentale de l'exponentielle 5. Propriété fondamentale d'exponentielle 5. Propriété d'une fonction puissance 5. Propriété d'une fonction puissance 5. Propriété fondamentale d'exponentielle 5. Propriété fondamentale d'exponenti		
3.23 Composition de fonctions 3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 11 3.35 Composée d'injections/surjections 3.36 Condition nécessaire pour une composition injective/surjective 12 3.37 Réciproque et bijection 12 3.38 Inverse d'une composée de bijections 13 3.39 Condition nécessaire et suffisante de bijectivité 12 4 Généralités sur les fonctions 13 4.21 Exemple 14 4.23 Remarque 14 4.27 Axe de symétrie 4.4.27 Axe de symétrie 4.4.52 Théorème de la bijection dérivable 4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.65 Remarque 4.66 Exemple 4.66 Exemple 4.70 Changement de variable 4.71 Méthode 4.72 Exemple 4.73 Exemple 5. Propriétés du logarithme 5. Propriétés du logarithme 5. Propriétés du logarithme 5. Propriétés de la fonction exponentielle 5. Propriétés d'une fonction puisance 2. Propriétés d'une fonction puisance 2. Propriétés d'une fonction puisance 2. 2. 2. Croissances comparées en +∞ 2. 2. 2. 2. Croissances comparées en +∞ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		
3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité 11 3.35 Composée d'injections/surjections 11 3.36 Condition nécessaire pour une composition injective/surjective 12 3.37 Réciproque et bijection 12 3.38 Inverse d'une composée de bijections 12 3.39 Condition nécessaire et suffisante de bijectivité 12 4 Généralités sur les fonctions 13 4.21 Exemple 14 4.23 Remarque 14 4.27 Axe de symétrie 14 4.28 Centre de symétrie 14 4.25 Centre de symétrie 14 4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 16 4.62 Exemple 16 4.63 Remarque 17 4.66 Exemple 17 4.66 Exemple 17 4.70 Changement de variable 17 4.70 Changement de variable 17 4.71 Exemple 17 4.72 Exemple 17 4.73 Exemple 17 4.74 Méthode 17 4.75 Exemple 17 4.75 Exemple 17 4.75 Exemple 17 4.75 Exemple 17 4.76 Exemple 17 4.77 Exemple 17 4.78 Exemple 17 4.79 Propriétés du logarithme 17 5.19 Propriétés de la fonction logarithme 17 5.20 Propriétés de la fonction logarithme 17 5.3 Propriété fondamentale du logarithme 17 5.4 Limites usuelles de la fonction logarithme 17 5.5 Proctions usuelles 17 5.75 Propriétés de la fonction exponentielle 17 5.75 Propriétés de la fonction puissance 17 5.75 Propriétés d'une fonction puissance 17 5.75 Exemple 17 5.75 Exe		
3.35 Composée d'injections/surjections 3.36 Condition nécessaire pour une composition injective/surjective 3.37 Réciproque et bijection 3.38 Inverse d'une composée de bijections 3.39 Condition nécessaire et suffisante de bijectivité 4 Généralités sur les fonctions 4.21 Exemple 4.23 Remarque 4.4.27 Axe de symétrie 4.28 Centre de symétrie 4.28 Centre de symétrie 4.51 Exemple 4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.65 Remarque 4.66 Exemple 4.66 Exemple 4.67 Changement de variable 4.69 Intégration par partie 4.70 Changement de variable 4.74 Méthode 4.75 Exemple 4.75 Exemple 5 Fonctions usuelles 5.2 Propriétés du logarithme 5.3 Propriété fondamentale du logarithme 5.4 Limites usuelles de la fonction logarithme 5.5 Propriété fondamentale du logarithme 5.6 Propriétés de la fonction puissance 5.7 Propriété fondamentale de l'exponentielle 5.8 Propriétés d'une fonction puissance 5.9 Propriété fondamentale de l'exponentielle 5.15 Dérivée d'une fonction puissance 5.10 Croissances comparées en 10 5.10 Structures algébriques 5 Structures algébriques 5 Stemple 5 Stemple 5 Structures algébriques 5 Stemple		
3.36 Condition nécessaire pour une composition injective/surjective 3.37 Réciproque et bijection 3.38 Inverse d'une composée de bijections 3.39 Condition nécessaire et suffisante de bijectivité 4 Généralités sur les fonctions 4.21 Exemple 4.23 Remarque 4.27 Axe de symétrie 4.28 Centre de symétrie 4.28 Centre de symétrie 4.51 Exemple 4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Remarque 4.64 Exemple 4.65 Remarque 4.66 Exemple 4.66 Exemple 4.70 Changement de variable 4.70 Changement de variable 4.71 Méthode 4.72 Exemple 5 Fonctions usuelles 5.2 Propriétés du logarithme 5.3 Propriétés du logarithme 5.4 Limites usuelles de la fonction logarithme 5.5 Propriété fondamentale du logarithme 5.5 Propriété fondamentale de l'exponentielle 5.9 Propriété de la fonction puissance 5.10 Dérivée d'une fonction puissance 5.21 Croissances comparées en +∞ 5.22 Croissances comparées en +∞ 5.23 Formule de trigonométrie hyperbolique 22 Destructures algébriques 10 Structures algébriques 23 10.3 Exemple 24 Exemple 25 Exemple 26 Structures algébriques		
3.37 Réciproque et bijection		<u>.</u>
3.38 Inverse d'une composée de bijections 3.39 Condition nécessaire et suffisante de bijectivité 12 4 Généralités sur les fonctions 13 4.21 Exemple 4.23 Remarque 14 4.27 Axe de symétrie 14 4.26 Centre de symétrie 14 4.51 Exemple 4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Remarque 4.66 Exemple 4.66 Exemple 4.66 Exemple 4.70 Changement de variable 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 5.7 Propriétés du logarithme 5.7 Propriétés du logarithme 5.8 Propriétés du logarithme 5.9 Propriétés de la fonction logarithme 5.10 Exemple 5.11 Dérivée d'une fonction puissance 5.12 Croissances comparées en 0 5.13 Exemple 22 5.14 Croissances comparées en 0 5.15 Structures algébriques 5 Stemple 5 Stemple 5 Structures algébriques 5 Stemple 5 Stemple 5 Stemple 5 Structures algébriques 5 Stemple 5 Stemple 5 Stemple 5 Structures algébriques 5 Stemple		
3.39 Condition nécessaire et suffisante de bijectivité 4 Généralités sur les fonctions 4.21 Exemple 14 4.23 Remarque 14 4.27 Axe de symétrie 14 4.28 Centre de symétrie 14 4.25 Centre de symétrie 14 4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.65 Remarque 15 4.66 Exemple 16 4.70 Changement de variable 16 4.70 Changement de variable 16 4.71 Méthode 17 4.75 Exemple 16 4.75 Exemple 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 19 5.5 Propriété fondamentale du logarithme 20 5.8 Propriété fondamentale du logarithme 21 5.9 Propriété fondamentale du logarithme 22 5.10 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en +∞ 22 5.22 Croissances comparées en 0 22 5.24.3.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 24		
4 Généralités sur les fonctions 4.21 Exemple 4.23 Remarque 4.27 Axe de symétrie 4.28 Centre de symétrie 4.451 Exemple 4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Exemple 4.64 Exemple 4.65 Remarque 15 4.66 Exemple 4.66 Exemple 4.70 Changement de variable 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.70 Changement de variable 4.70 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.79 Exemple 4.70 Exemple 4.70 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.79 Exemple 4.70 Exemple 4.70 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Exemple 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.70 Exemple 4.70 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.70 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.70 Exemple 4.70 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.70 Exemple 4.70 Exemple 4.70 Exemple 4.71 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.79 Exemple 4.70 Exemple 4.70 Exemple 4.70 Exemple 4.70 Exemple 4.71 Exemple 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Exemple 4.75 Exemple 4.75 Exemple 4.76 Exemple 4.77 Exemple 4.78 Exemple 4.78 Exemple 4.79 Exemple 4.70 Exemp		
4.21 Exemple 14 4.23 Remarque 14 4.27 Axe de symétrie 14 4.28 Centre de symétrie 14 4.28 Centre de symétrie 14 4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.65 Remarque 15 4.66 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.70 Changement de variable 16 4.74 Méthode 16 4.75 Exemple 17 5 Fonctions usuelles 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 17 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 19 5.5 Propriétés de la fonction exponentielle 19 5.5 Propriété fondamentale du logarithme 19 5.5 Dérivée d'une fonction puissance 19 5.70 Croissances comparées en 1∞ 19 5.71 Croissances comparées en 1∞ 19 5.72 Croissances comparées en 1∞ 19 5.73 Proprièté fondamentale de l'exponentielle 19 5.74 Croissances comparées en 1∞ 19 5.75 Croissances comparées en 1∞ 19 5.75 Croissances comparées en 10 1	ა. ა	9 Condition necessaire et sumsante de dijectivite
4.23 Remarque 14 4.27 Axe de symétrie 14 4.28 Centre de symétrie 14 4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.63 Remarque 15 4.65 Remarque 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.71 Exemple 16 4.72 Exemple 17 4.73 Exemple 17 5 Fonctions usuelles 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 15 5.3 Propriétés du logarithme 15 5.4 Limites usuelles de la fonction logarithme 15 5.5 Propriétés de la fonction logarithme 20 5.8 Propriétés de la fonction logarithme 21 5.9 Propriétés de la fonction exponentielle 21 5.15 Dérivée d'une fonction puissance 22 5.21 Croissances comparées en 1∞ 5.22 Croissances comparées en 0 5.23 Exemple 22 10 Structures algébriques 22 10 Structures algébriques 22 10 Structures algébriques 24	4 Gé	néralités sur les fonctions
4.23 Remarque 14 4.27 Axe de symétrie 14 4.28 Centre de symétrie 14 4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.63 Remarque 15 4.65 Remarque 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.71 Exemple 16 4.72 Exemple 17 4.73 Exemple 17 5 Fonctions usuelles 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 15 5.3 Propriétés du logarithme 15 5.4 Limites usuelles de la fonction logarithme 15 5.5 Propriétés de la fonction logarithme 20 5.8 Propriétés de la fonction logarithme 21 5.9 Propriétés de la fonction exponentielle 21 5.15 Dérivée d'une fonction puissance 22 5.21 Croissances comparées en 1∞ 5.22 Croissances comparées en 0 5.23 Exemple 22 10 Structures algébriques 22 10 Structures algébriques 22 10 Structures algébriques 24	4.2	1 Exemple
4.27 Axe de symétrie 14 4.28 Centre de symétrie 14 4.29 Centre de symétrie 14 4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.52 Théorème de la bijection sur un intervalle 15 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.63 Remarque 15 4.64 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.70 Changement de variable 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriétés du logarithme 19 5.4 Limites usuelles de la fonction logarithme 19 5.8 Propriétés de la fonction logarithme 20 5.8 Propriétés de la fonction puissance 21 5.11 Dérivée d'une fonction puissance 22 5.21 Croissances comparées en 1∞ 22 5.23 Croissances comparées en 0 22 5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		-
4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.63 Remarque 15 4.66 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.72 Exemple 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 20 5.8 Propriétés de la fonction exponentielle 21 5.9 Propriété fondamentale de l'exponentielle 21 5.15 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		
4.51 Exemple 14 4.52 Théorème de la bijection dérivable 14 4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.63 Remarque 15 4.66 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.72 Exemple 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 20 5.8 Propriétés de la fonction exponentielle 21 5.9 Propriété fondamentale de l'exponentielle 21 5.15 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		
4.52 Théorème de la bijection dérivable 4.61 Primitives d'une fonction sur un intervalle 4.62 Exemple 4.63 Remarque 4.65 Remarque 4.66 Exemple 4.69 Intégration par partie 4.70 Changement de variable 4.70 Changement de variable 4.71 Exemple 4.72 Exemple 4.73 Exemple 4.74 Méthode 4.75 Exemple 4.75 Exemple 4.76 Propriétés du logarithme 5.1 Propriété fondamentale du logarithme 5.2 Propriété fondamentale du logarithme 5.3 Propriétés de la fonction logarithme 5.4 Limites usuelles de la fonction logarithme 5.8 Propriétés de la fonction exponentielle 5.9 Propriété fondamentale de l'exponentielle 5.10 Dérivée d'une fonction puissance 5.21 Croissances comparées en +∞ 5.22 Croissances comparées en +∞ 5.23 Croissances comparées en +∞ 5.24 Croissances comparées en 0 5.43.2 Formule de trigonométrie hyperbolique 10 Structures algébriques 21 22 24 25 26 Structures algébriques 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20		
4.61 Primitives d'une fonction sur un intervalle 15 4.62 Exemple 15 4.65 Remarque 15 4.66 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.72 Exemple 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 20 5.8 Propriétés de la fonction exponentielle 21 5.9 Propriété fondamentale de l'exponentielle 21 5.15 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en $+\infty$ 21 5.23 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		
4.62 Exemple 15 4.65 Remarque 15 4.66 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.72 Exemple 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 20 5.8 Propriétés de la fonction exponentielle 21 5.9 Propriété fondamentale de l'exponentielle 21 5.15 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en 0 22 5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		
4.66 Exemple 16 4.69 Intégration par partie 16 4.70 Changement de variable 16 4.72 Exemple 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 20 5.8 Propriétés de la fonction exponentielle 21 5.9 Propriété fondamentale de l'exponentielle 21 5.15 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en +∞ 21 5.22 Croissances comparées en 0 22 5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		
$ 4.69 \text{ Intégration par partie} \\ 4.70 \text{ Changement de variable} \\ 4.72 \text{ Exemple} \\ 4.74 \text{ Méthode} \\ 4.75 \text{ Exemple} \\ 17 \\ 4.75 \text{ Exemple} \\ 17 \\ 4.75 \text{ Exemple} \\ 17 \\ 5 \text{ Fonctions usuelles} \\ 5.2 \text{ Propriétés du logarithme} \\ 5.3 \text{ Propriété fondamentale du logarithme} \\ 5.4 \text{ Limites usuelles de la fonction logarithme} \\ 5.8 \text{ Propriétés de la fonction exponentielle} \\ 5.9 \text{ Propriété fondamentale de l'exponentielle} \\ 5.15 \text{ Dérivée d'une fonction puissance} \\ 5.21 \text{ Croissances comparées en } +∞ \\ 5.22 \text{ Croissances comparées en } 0 \\ 5.43.2 \text{ Formule de trigonométrie hyperbolique} \\ 20 \\ 5.43.2 \text{ Formule de trigonométrie hyperbolique} \\ 21 \\ 22 \\ 24 \\ 25 \\ 25 \\ 25 \\ 25 \\ 26 \\ 26 \\ 26 \\ 26$	4.6	5 Remarque
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.6	6 Exemple
4.72 Exemple 16 4.74 Méthode 17 4.75 Exemple 17 5 Fonctions usuelles 18 5.2 Propriétés du logarithme 19 5.3 Propriété fondamentale du logarithme 19 5.4 Limites usuelles de la fonction logarithme 19 5.8 Propriétés de la fonction exponentielle 19 5.9 Propriété fondamentale de l'exponentielle 19 5.15 Dérivée d'une fonction puissance 19 5.21 Croissances comparées en 10 19 5.22 Croissances comparées en 10 19 5.23 Formule de trigonométrie hyperbolique 19 10 Structures algébriques 10 10 Structures algébriques 10	4.6	Intégration par partie
4.74 Méthode17 4.75 Exemple18 5 Fonctions usuelles18 5.2 Propriétés du logarithme19 5.3 Propriété fondamentale du logarithme19 5.4 Limites usuelles de la fonction logarithme20 5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24	4.7	Changement de variable
4.75 Exemple175 Fonctions usuelles18 5.2 Propriétés du logarithme19 5.3 Propriété fondamentale du logarithme19 5.4 Limites usuelles de la fonction logarithme20 5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24	4.7	2 Exemple
5 Fonctions usuelles18 5.2 Propriétés du logarithme19 5.3 Propriété fondamentale du logarithme19 5.4 Limites usuelles de la fonction logarithme20 5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24	4.7	$4~{ m M\'ethode}$
5.2 Propriétés du logarithme19 5.3 Propriété fondamentale du logarithme19 5.4 Limites usuelles de la fonction logarithme20 5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24	4.7	5 Exemple
5.2 Propriétés du logarithme19 5.3 Propriété fondamentale du logarithme19 5.4 Limites usuelles de la fonction logarithme20 5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24	r Tra	
5.3 Propriété fondamentale du logarithme19 5.4 Limites usuelles de la fonction logarithme20 5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 022 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24		
5.4 Limites usuelles de la fonction logarithme 20 5.8 Propriétés de la fonction exponentielle 21 5.9 Propriété fondamentale de l'exponentielle 21 5.15 Dérivée d'une fonction puissance 21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 0 22 $5.43.2$ Formule de trigonométrie hyperbolique 25 10 Structures algébriques 23 10.3 Exemple 24	-	
5.8 Propriétés de la fonction exponentielle21 5.9 Propriété fondamentale de l'exponentielle21 5.15 Dérivée d'une fonction puissance21 5.21 Croissances comparées en $+\infty$ 21 5.22 Croissances comparées en 022 $5.43.2$ Formule de trigonométrie hyperbolique22 10 Structures algébriques23 10.3 Exemple24		
5.9 Propriété fondamentale de l'exponentielle		
5.15 Dérivée d'une fonction puissance		
5.21 Croissances comparées en $+\infty$		
5.22 Croissances comparées en 0 22 5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24	_	
5.43.2 Formule de trigonométrie hyperbolique 22 10 Structures algébriques 23 10.3 Exemple 24		•
10 Structures algébriques 23 10.3 Exemple 24	9.2	•
10.3 Exemple		
•		
111 6 10		•

11	Matrices	25
	11.11Produit matriciel	26
	11.12Produit matriciel, lignes par colonnes	26
	11.16Produit de deux matrices élémentaires	26
	11.17Propriétés du produit matriciel, matrice identité	
	11.24Exemple	
	11.25Produit par bloc	
	11.27Propriétés de la transposition	
	11.21 Forme linéaire sur $\mathcal{M}_n(\mathbb{K})$	
	11.33Exemple	
	11.37Stabilité des matrices diagonales ou triangulaires	
	11.41 Nilpotence des matrices triangulaires	
	11.44Opérations	
	11.48Caractérisation de $GL_2(\mathbb{K})$	
	11.49Matrices diagonales inversibles	
	11.50Exemple	
	11.51 Matrices triangulaires inversibles	
	11.54Exemple	32
	11.61Exemple	32
	11.65 Caractérisation des matrices inversibles par les sytèmes linaires	33
	11.74Système équivalents et opérations élémentaires	33
12	Arithmétique	34
	12.1 Propriété fondamentale de $\mathbb Z$	35
	12.4 Division euclidienne	35
	12.9 Divisibilité et multiple	
	12.11 Entiers associés	
	12.14Intégrité de la divisibilité	
	12.24Application basique	
	12.26Théorème de Bézout	
	12.28Proposition	
	12.29Proposition	
	12.30Théorème de Gauss	
	12.31 Equation de Bézout	40
	12.32Proposition	40
	12.37Lien avec les idéaux	41
	12.38 Préparation au calcul pratique d'un $pgcd$	41
	12.39 Caractérisation du $pgcd$	41
	12.40Propriétés du <i>pgcd</i>	42
	12.44Définition du PPCM	43
	12.45 Caractérisation du $ppcm$	43
	12.46Propriétés du <i>ppcm</i>	44
	12.50Propriétés	45
	12.51Petit théorème de Fermat	45
	12.52Décomposition en produit de facteurs premiers	46
	12.54 Caractérisation de la valuation	47
	12.55 Valuation et décomposition en produit de facteurs premiers	47
	12.56Propriétés de la valuation	47
19	Polynômes	49
тэ	Polynômes 12.6 Produit de deux polynômes	
	13.6 Produit de deux polynômes	50
	13.7 Structure d'anneau de $\mathbb{A}[X]$	50
	13.11Monômes	51
	13.12 Expression d'un polynôme à l'aide de l'indéterminée formelle	51
	13.26Dérivée de produits	52
	±	
	13.34Degré d'une somme, d'un produit, d'une dérivée	5.3

Démonstrations - MP2I

	13.36Théorème de permanence de l'intégrité	
	13.42 Corollaire du degré d'une dérivée dans $\mathbb{K}[X],$ avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}	
14	Suites numériques	56
	14.18Premier théorème de comparaison	57
	14.22 Unicité de la limite	
	14.23Limite et inégalité	
	14.24Convergence et bornitude	
	9	
	14.29Minoration d'une extraction	58
	14.30Extraction d'une suite convergente	58
	14.32Pair, impair et convergence	58
	14.34 Opérations usuelles sur les limites	59
	$14.35 Conservation \ des \ inégalités \ larges \ par \ passage \ \grave{a} \ la \ limite \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	60
	$14.37 Th\'{e}or\`{e}me~d\'{e}ncadrement~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.$	60
	$14.38 Produit d'une suite bornée par une limite nulle \dots $	60
	14.39Exemple	60
	14.40Comparaison puissance factorielle	61
	14.41 Caractérisation séquentielle de la borne supérieure	61
	14.42 Caractérisation séquentielle de la borne supérieure	62
	14.48Théorème de comparaison	62
	14.49Limites infinies et opérations	63
	14.50Théorème de la limite monotone	64
	14.54Exemple	64
	14.55 Convergence des suites adjacentes	65
	$14.56 Th\'{e}or\`{e}me \ de \ Bolzano-Weierstrass \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	65
	14.63Exemple	66
	14.64Exemple	66
	14.66 Monotonie d'une suite récurrente définie par une relation $u_{n+1} = f(u_n)$	67
	14.68Exemple	67
	14.69Exemple	68
	14.72 Convergence et parties réelles et imaginaires	68
	14.73Théorème de Bolzano-Weierstrass pour les suites complexes	
	The Theorems de Bondaro Helefstein peut les suives completes + + + + + + + + + + + + + + + + + + +	00
15	Limites et continuité	70
	15.6 Limite en un point du domaine	71
	15.15 Comparaison des limites de deux fonctions coincidant au voisinage de a	71
	15.17Unicité de la limite, cas réel	71
	15.23Propostion	71
	15.30Composition de limites	72
	*	
	15.32Limites et inégalités strictes	72
	15.33Limite et inégalités larges	73
	15.34 Caractérisations séquentielle de la limite d'une fonction	73
	15.39Théorème de la limite monotone	74
	$15.59 Th\'{e}or\`{e}me \ des \ valeurs \ interm\'{e}diaires: version 1 \dots $	74
	$15.60 Th\'{e}or\`{e}me \ des \ valeurs \ interm\'{e}diaires: version 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	75
	$15.61 Th\'{e}or\`{e}me \ des \ valeurs \ interm\'{e}diaires: version \ 3 \ \dots \dots$	75
	$15.65 Th\'{e}or\`{e}me~de~Heine~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.$	75
	15.67 Caractérisation des intervalles compacts	76
	15.68Image d'un compact par une fonction continue	76
	15.69Image d'un segment par une fonction continue	76
	15.72Théorème 15.72	76
	15.73Théorème 15.73	77
	15.76Théorème de la bijection	77
	TO HOTH COLOUR OF ICE DISCOULDED TO A COLOUR COLOR COL	1 1

16	Arithmétique des polynômes		7 8
	16.1 Division euclidienne		
	16.7 Proposition 16.7		
	16.15 Principalité de $\mathbb{K}[X]$		80
	16.17 Existence de $pgcd$		81
	16.18 Principalité de $\mathbb{K}[X]$		81
	16.24Lemme de préparation au calcul pratique du PGCD unitaire		81
	16.26Exemple		82
	16.27Propriétés du PGCD		82
	16.29Existence de PPCM		82
	16.30 Caractérisation des PPCM par les idéaux		83
	16.42 Cas d'unicité d'une relation de Bézout		83
	16.43Corollaire		84
	16.44 Caractérisation des PGCD et PPCM		
	16.53 Caractérisation des racines par la divisibilité		
	16.56Formule de Taylor pour les polynômes		
	16.57 Caractérisation de la multiplicité par les dérivées		
	16.59 Caractérisation de la multiplicité des racines par la divisibilité		
	16.63Polynômes formels et fonctions polynomiales		
	16.66 Caractérisation des polynômes interpolateurs		
	16.69Corollaire		
	16.74Proposition		
	16.76Relation de Viète		
	16.88Lemme		
	16.98Caractérisation de la divisibilité dans $\mathbb{C}[X]$ par les racines		89
	16.99 Caractérisation des polynômes à coefficients réels		89
	16.10 Racine complexe d'un polynôme réel		90
	16.10 Polynômes irréductibles de $\mathbb{R}[X]$		90
17	Fractions rationnelles		92
	17.2 Addition, multiplication et produit par un scalaire		93
	17.10Degré d'une fraction		93
	17.13 Propriété du degré		93
	$17.19 Th\'{e}or\`{e}me \ldots \ldots$		94
	17.20Fraction dérivée		94
	17.24Dérivée logarithmique d'un produit		94
	17.25Partie entière		95
	$17.31 \\ Existence \\ \ d'une \\ \ d\'{e} composition \\ \ \ldots \\ $		95
	17.32Théorème		96
	17.38Cas d'un pôle simple		96
	17.39Exemple		97
	17.40Cas d'un pôle double		97
	17.42Exemple		97
	17.44Parties polaires conjuguées d'une fraction réelle		98
	17.45Exemple		99
	17.46Exemple		99
	17.51Exemple - Calcul de la dérivée n -ième d'une fraction		
18	Dérivabilité		101
	18.43 Théorème de prolongement de classe \mathcal{C}^n - HP		102
	18.45 IAF pour les fonctions à valeurs dans $\mathbb C$		
19	Convexité]	104

Calculs Algébriques

1.20 Somme des carrés et des cubes

— Somme des carrés :

Pour tout $n \in \mathbb{N}$, on note la proposition :

$$P(n): \ll \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 »

Démontrons-la par récurrence.

Initialisation: Pour n = 0, on a:

$$\sum_{k=1}^{0} k^2 = 0$$

et:

$$\frac{0\times(0+1)\times(2\times0+1)}{6}=0$$

Donc P(0) est vraie.

<u>Hérédité</u>: On suppose P(n) vraie pour un n fixé dans \mathbb{N} . On a :

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n+1}{6}(n(2n+1) + 6(n+1))$$

$$= \frac{n+1}{6}(2n^2 + 7n + 6)$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

Donc P(n+1) est vraie aussi.

Conclusion : D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

— Somme des cubes :

Pour tout $n \in \mathbb{N}$, on note la proposition :

$$P(n): \ll \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$
 »

Démontrons-la par récurrence.

Initialisation: Pour n = 0, on a:

$$\sum_{k=1}^{0} k^3 = 0$$

et:

$$\frac{0 \times (0+1)^2}{4} = 0$$

Donc P(0) est vraie.

<u>Hérédité</u>: On suppose P(n) vraie pour un n fixé dans \mathbb{N} . On a :

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= \frac{(n+1)^2}{4} (n^2 + 4(n+1))$$

$$= \frac{(n+1)^2}{4} (n^2 + 4n + 4)$$

$$= \frac{(n+1)^2(n+2)^2}{4}$$

Donc P(n+1) est vraie aussi.

Conclusion : D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} k^2 = \frac{n^2(n+1)^2}{4}$$

1.39 Formule de Pascal

Démontrons pour tout $(n,p) \in (\mathbb{N}^*)^2$ la relation :

$$\begin{pmatrix} n \\ p \end{pmatrix} = \binom{n-1}{p-1} + \binom{n-1}{p}$$

La relation est vraie si p > n (on a 0 = 0 + 0) et si p = n (qui donne 1 = 0 + 1).

Soit $1 \le p \le n$:

$$\binom{n-1}{p} + \binom{n-1}{p-1} = \frac{(n-1)!}{p!(n-1-p)!} + \frac{(n-1)!}{(p-1)!(n-p)!}$$

$$= \frac{(n-1)!}{(p-1)!(n-1-p)!} \left(\frac{1}{p} + \frac{1}{n-p}\right)$$

$$= \frac{(n-1)! \times n}{(p-1)!(n-1-p)! \times p(n-p)}$$

$$= \frac{n!}{p!(n-p)!}$$

$$= \binom{n}{p}$$

1.41 Formule du capitaine

Démontrons pour n et p deux entiers tels que $1 \le p \le n$ la relation :

On a:

$$n \binom{n-1}{p-1} = n \times \frac{(n-1)!}{(p-1)!(n-p)!} = p \times \frac{n!}{p!(n-p)!} = p \binom{n}{p}$$

1.42 Formule du binôme de Newton

Soit $(x,y) \in \mathbb{C}^2$. Pour tout $n \in \mathbb{N}$, on note la proposition :

$$P(n) : (x + y)^n = \sum_{k=0}^n x^k y^{n-k}$$

Démontrons-la par récurrence.

Initialisation : Pour n = 0, on a :

$$(x+y)^0 = 1$$

 et

$$\sum_{k=0}^{0} \binom{0}{k} x^k y^{0-k} = \binom{0}{0} x^0 y^0 = 1$$

Donc P(0) est vraie.

<u>Hérédité</u>: On suppose P(n) vraie pour un n fixé dans \mathbb{N} . On a :

$$(x+y)^{n+1} = (x+y)(x+y)^n$$

$$= (x+y)\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (hypothèse de récurrence)
$$= \sum_{k=0}^n \binom{n}{k} (x^{k+1}y^{n-k} + x^k y^{n+1-k})$$
 (linéarité)
$$= \sum_{k=0}^n \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^n \binom{n}{k} x^k y^{n+1-k}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} x^k y^{n-k} + \sum_{k=0}^n \binom{n}{k} x^k y^{n+1-k}$$
 (translation)
$$= x^{n+1} + \sum_{k=1}^n x^k y^{n+1-k} \binom{n}{k-1} + \binom{n}{k} + y^{n+1}$$

$$= x^{n+1} + \sum_{k=1}^n \binom{n+1}{k} x^k y^{n+1-k} + y^{n+1}$$
 (formule de Pascal)
$$= \sum_{k=0}^{n+1} x^k y^{n+1-k}$$

Donc P(n+1) est vraie aussi.

Conclusion : D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Logique

2.17 Equivalence logiques

2.17.1 Double négation

p	$\neg p$	$\neg(\neg p)$
V	F	V
F	V	F

On remarque que la première et la deuxième colonne sont identiques, on a donc :

$$p \iff \neg(\neg p)$$

2.17.2 Commutativité

p	q	$p \wedge q$	$q \wedge p$
V	V	V	V
V	F	F	F
F	V	F	F
F	F	F	F

On remarque que la troisième et la quatrième colonne sont identiques, on a donc :

$$p \wedge q \iff q \wedge p$$

Raisonnement analogue pour la disjonction \vee .

2.17.3 Associativité

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	F	V	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

On remarque que la cinquième et la septième colonne sont identiques, on a donc :

$$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$$

Raisonnement analogue pour la disjonction \vee .

2.17.4 Loi de Morgan

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

On remarque que la quatrième et la septième colonne sont identiques, on a donc :

$$\neg (p \land q) \iff (\neg p) \lor (\neg q)$$

Raisonnement analogue pour $\neg(p \lor q) \iff (\neg p) \land (\neg q)$

2.17.5 Double implication

p	q	$p \Leftrightarrow q$	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

On remarque que la troisième et la sixième colonne sont identiques, on a donc :

$$(p \Leftrightarrow q) \iff ((p \Rightarrow q) \land (q \Rightarrow p))$$

2.17.6 Distributivité

p	q	r	$p \wedge q$	$r \lor (p \land q)$	$r \lor p$	$r \lor q$	$(r \vee p) \wedge (r \vee q)$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	F	V	F	F
F	V	V	F	V	V	V	V
F	V	F	F	F	F	V	F
F	F	V	F	V	V	V	V
F	F	F	F	F	F	F	F

On remarque que la cinquième et la huitième colonne sont identiques, on a donc :

$$r \lor (p \land q) \iff (r \lor p) \land (r \lor q)$$

Ensembles et applications

3.12 Propriétés du produit cartésien

Soit x et y. On a :

1.

$$(x,y) \in E \times F \Leftrightarrow x \in E \text{ et } y \in F$$

Donc $(x,y) \notin E \times F \Leftrightarrow x \notin E \text{ ou } y \notin F$

2.

$$E \times F \neq \emptyset \Leftrightarrow \exists (x,y) \in E \times F$$
$$\Leftrightarrow \exists x \in E \text{ et } \exists y \in F$$
$$\Leftrightarrow E \neq \emptyset \text{ et } F \neq \emptyset$$
$$\Leftrightarrow \text{non } (E = \emptyset \text{ ou } F = \emptyset)$$

3.

$$E \times F = F \times E \Leftrightarrow \begin{cases} E \times F = F \times E \text{ et } E = \emptyset \\ E \times F = F \times E \text{ et } F = \emptyset \\ E \times F = F \times E \text{ et } E \neq \emptyset \text{ et } F \neq \emptyset \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall (x,y) \in E \times F, (x,y) \in F \times E \text{ et } \forall (a,b) \in F \times E, (a,b) \in E \times F \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall x \in E, x \in F \text{ et } \forall y \in F, y \in E \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall x \in E, x \in F \text{ et } \forall y \in F, y \in E \end{cases}$$

$$\Leftrightarrow \begin{cases} E = \emptyset \text{ ou } F = \emptyset \\ E \neq \emptyset \text{ et } F \neq \emptyset \text{ et } \forall x \in E, x \in F \text{ et } \forall y \in F, y \in E \end{cases}$$

4.

$$\begin{split} (x,y) \in (E \times F) \cup (F \times G) &\Leftrightarrow (x,y) \in E \times F \text{ ou } (x,y) \in F \times G \\ &\Leftrightarrow (x \in E \text{ et } y \in F) \text{ ou } (x \in F \text{ et } y \in G) \\ &\Leftrightarrow x \in E \text{ et } y \in F \cup G \end{split}$$

5.

$$\begin{split} (x,y) \in (E \times F) \cap (G \times H) &\Leftrightarrow (x,y) \in E \times F \text{ et } (x,y) \in G \times H \\ &\Leftrightarrow x \in E \text{ et } y \in F \text{ et } x \in G \text{ et } y \in H \\ &\Leftrightarrow x \in E \cap G \text{ et } y \in F \cap H \\ &\Leftrightarrow (x,y) \in (E \cap G) \times (F \cap H) \end{split}$$

3.18 Associativité des relations

Les ensembles de départ et d'arrivée sont bien égaux (à E et H respectivement). Soit $(x,y) \in E \times H$

$$x(\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R}y \Leftrightarrow \exists z \in F, x(\mathcal{T} \circ \mathcal{S})z \text{ et } z\mathcal{R}y$$

$$\Leftrightarrow \exists z \in F, \exists v \in G, (x\mathcal{T}v \text{ et } v\mathcal{S}z) \text{ et } z\mathcal{R}y$$

$$\Leftrightarrow \exists z \in F, \exists v \in G, x\mathcal{T}v \text{ et } (v\mathcal{S}z \text{ et } z\mathcal{R}y)$$

$$\Leftrightarrow \exists v \in G, x\mathcal{T}v \text{ et } v(\mathcal{S} \circ \mathcal{R})y$$

$$\Leftrightarrow x\mathcal{T} \circ (\mathcal{S} \circ \mathcal{R})y$$

3.20 Propriétés des relations réciproques

— RAF

— Les ensembles de départ sont égaux respectivement à E et à G. Soit $(x,y) \in G \times E$. On a :

$$x\mathcal{R}^{-1} \circ \mathcal{S}^{-1}y \Leftrightarrow \exists \alpha \in F, x\mathcal{S}^{-1}\alpha \text{ et } \alpha\mathcal{R}^{-1}y$$

 $\Leftrightarrow \exists \alpha \in F, \alpha\mathcal{S}x \text{ et } y\mathcal{R}\alpha$
 $\Leftrightarrow y\mathcal{S} \circ \mathcal{R}x$
 $\Leftrightarrow x(\mathcal{R} \circ \mathcal{S})^{-1}y$

3.23 Composition de fonctions

Soit f une fonction de E vers F. Soit g une fonction de E vers G.

 $g \circ f$ est une relation de E vers G

Soit $(x, y, y') \in E \times G \times G$. On suppose

$$\begin{cases} x(g \circ f)y \\ x(g \circ f)y' \end{cases}$$

Donc on choisit α dans F tel que :

$$xf\alpha$$
 et αgy

et β dans F tel que :

$$xf\beta$$
 et $\beta gy'$

Or f est une fonction, donc $\alpha = \beta$.

Donc αgy et $\alpha gy'$, or g est une fonction, donc y=y'. Par définition, $g\circ f$ est une fonction.

3.30 Schémas de raisonnement : montrer l'injectivité/surjectivité/bijectivité

```
\begin{array}{c} \underline{\text{Injectivit\'e}:}\\ \text{Soit } (x,x') \in E^2.\\ \text{On suppose que } f(x) = f(x').\\ \vdots\\ \text{Donc } x = x'.\\ \\ \underline{\text{Surjectivit\'e}:}\\ \text{Soit } y \in F.\\ \vdots\\ \text{On choisit } \dots \text{ tel que :}\\ \vdots\\ \text{Donc} f(x) = y \end{array}
```

Bijectivité:

Pour la bijectivité, on montre l'injectivité et la surjectivité séparément.

3.35 Composée d'injections/surjections

Soit
$$f: E \to F$$
 et $g: F \to G$.

— On suppose que f et g sont injectives. Soit $(x, x') \in E^2$.

On suppose que
$$g \circ f(x) = g \circ f(x')$$

Donc $g(f(x)) = g(f(x'))$
Donc $f(x) = f(x')$ (g est injective)
Donc $x = x'$ (f est injective)

— On suppose que f et g sont surjectives.

Soit $y \in G$.

Par surjectivité de g, on choisit $\alpha \in F$ tel que $g(\alpha) = y$.

Par surjectivité de f, on choisit $x \in E$ tel que $f(x) = \alpha$.

Donc $g \circ f(x) = y$.

Donc $q \circ f$ est surjective.

3.36 Condition nécessaire pour une composition injective/surjective

— Soit $(x, x') \in E^2$ tels que :

$$f(x) = f(x')$$

Donc $g(f(x)) = g(f(x'))$
Donc $x = x'$

Donc f est injective.

— On suppose $g \circ f$ surjective. Soit $y \in G$. Soit $\alpha \in E$ tel que $g \circ f(\alpha) = y$. On pose $x = f(\alpha) \in F$. Donc g(x) = y Donc g est surjective.

3.37 Réciproque et bijection

Soit $f: E \to F$ et f^{-1} la relation réciproque de f — f^{-1} est une fonction si et seulement si f est injective. — Si f^{-1} est une fonction, c'est une application. ssi. $Def(f^{-1}) = F$ ssi. f est surjective.

3.38 Inverse d'une composée de bijections

Propositions (3.35), (3.27) et (3.20)

3.39 Condition nécessaire et suffisante de bijectivité

 \Longrightarrow On suppose que f est bijective. On pose $g=f^{-1}$ sa bijection réciproque. On a bien $g\circ f=id_E$ et $f\circ g=id_F$.

Soit $g: F \to E$ vérifiant $g \circ f = id_E$ et $f \circ g = id_F$. En particulier, $g \circ f$ est injective, donc f est injective. En particulier, $f \circ g$ est surjective, donc f est surjective. Donc f est bijective. Or $f \circ g = id_F$. Donc $f^{-1} \circ f \circ g = f^{-1} \circ id_F$. Soit $g = f^{-1}$.

Généralités sur les fonctions

4.21 Exemple

On suppose que $f \geq g$. Ainsi :

$$|f - g| = f - g \Leftrightarrow \frac{f + g + |f - g|}{2} = f$$

4.23 Remarque

Soit $a \in \mathbb{Q}^*$. Soit $x \in \mathbb{R}$.

- Si $x \in \mathbb{Q}$, alors $x + a \in \mathbb{Q}$, donc $\mathbb{1}_{\mathbb{Q}}(x + a) = 1 = \mathbb{1}_{\mathbb{Q}}(x)$.
- Si $x \notin \mathbb{Q}$, alors $x + a \notin \mathbb{Q}$, donc $\mathbb{1}_{\mathbb{Q}}(x + a) = 0 = \mathbb{1}_{\mathbb{Q}}(x)$.

4.27 Axe de symétrie

Soit $f: I \to \mathbb{R}$ une fonction et \mathcal{C}_f sa courbe représentative.

Soit $(x, x') \in I^2$.

M et M' sont symétriques par rapport x=a

ssi.
$$\begin{cases} a = \frac{x+x'}{2} \\ f(x) = f(x') \end{cases}$$

ssi.
$$\begin{cases} x' = 2a - x \\ f(x) = f(x') \end{cases}$$

4.28 Centre de symétrie

On reprend les mêmes notations qu'à la (4.27).

M et M' sont symétriques par rapport à A(a,b)

ssi.
$$\begin{cases} a = \frac{x+x'}{2} \\ b = \frac{f(x)+f(x')}{2} \end{cases}$$

ssi.
$$\begin{cases} x' = 2a - x \\ f(x') = 2b - f(x) \end{cases}$$

4.51 Exemple

- 1. $f'(x) = -\frac{2x+1}{(x+x^2)^2}$
- 2. $f'(x) = -\frac{1}{2x\sqrt{x}}e^{\frac{1}{\sqrt{x}}}$
- 3. $f'(x) = -3\frac{e^x(x-1)}{r^2}\sin\left(\frac{e^x}{r}\right)\cos^2\left(\frac{e^x}{r}\right)$

4.52 Théorème de la bijection dérivable

On suppose la dérivabilité de f^{-1} . Par définition :

$$f \circ f^{-1} = \mathrm{Id}_I$$

D'après la proposition (4.48.4), on a :

$$(f^{-1})' \circ f' \times f^{-1} = (f \circ f^{-1})'$$

= Id'_I
= 1

Comme f ne s'annule pas sur I, on a :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

4.61 Primitives d'une fonction sur un intervalle

— Si F et G sont deux primitives de f sur l'intervalle I, alors :

$$\forall n \in I, (F - G)'(x) = F'(x) - G'(x)$$
$$= f(x) - f(x)$$
$$= 0$$

Comme I est un intervalle, F - G est constante (4.53).

Réciproquement, pour tout $a \in \mathbb{R}$, F + a est aussi une primitive de f sur I.

— Soit G une primitive de f sur I. Soit $a \in \mathbb{R}$ et $x_0 \in I$. Or pour $F = G + a - G(x_0)$, F est une primitive de f sur I et F(x) = a.

L'unicité est donnée par le point précédent.

4.62 Exemple

1. Sur $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. Pour tout $x \in I$,

$$\tan x = \frac{\sin x}{\cos x}$$
$$= -\frac{\sin x}{\cos x}$$

La primitive de tan sur I est : $x \mapsto -\ln|\cos x| = \ln\cos x$.

2. Sur $I =]-\frac{\pi}{2}; \frac{\pi}{2}[.$

$$\forall x \in I$$
, $\tan^2 x = \tan^2 x + 1 - 1$

Une primitive de $\tan^2 \operatorname{sur} I \operatorname{est} : x \mapsto \tan x - x$.

3. Sur $I = \mathbb{R}$.

$$\forall x \in \mathbb{R}, x\sqrt{1+x^2} = x(1+x^2)^{\frac{1}{2}}$$
$$= \frac{1}{2} \times 2x \times (1+x^2)^{\frac{1}{2}}$$

Une primitive de $x \mapsto x(1+x^2)^{\frac{1}{2}}$ sur \mathbb{R} est : $x \mapsto \frac{1}{2} \times \frac{2}{3}(1+x^2)^{\frac{3}{2}} = \frac{1}{3}(1+x^2)^{\frac{3}{2}}$.

4. Sur $I = \mathbb{R}_+^*$.

$$\forall x > 0, \frac{\ln x}{x} = \frac{1}{x} \ln x$$

Une primitive de $x \mapsto \frac{\ln x}{x}$ sur \mathbb{R}_+^* est : $x \mapsto \frac{1}{2} \ln^2 x$.

4.65 Remarque

 $G: y \mapsto yg(y) - F(g(y)) + \lambda, \lambda \in \mathbb{R}.$

$$G'(y) = g(y) + yg'(y) - g'(y)f(g(y))$$

$$= g(y) + yg'(y) - g'(y)y$$

$$= g(y)$$

4.66 Exemple

$$\left| \int_{-1}^{1} \frac{t^{n}}{1+t^{2}} dt \right| \leq \int_{-1}^{1} \frac{|t^{n}|}{1+t^{2}} dt \qquad (Inégalité triangulaire)$$

$$\leq \int_{-1}^{1} |t|^{n} dt \qquad (\forall t, \frac{|t|^{n}}{1+t^{2}} \leq |t|^{n})$$

$$= (-1)^{n} \int_{-1}^{0} t^{n} dt + \int_{0}^{1} t^{n} dt \qquad (Relation de Chasles)$$

$$= (-1)^{n} \left[\frac{t^{n+1}}{n+1} \right]_{-1}^{0} + \left[\frac{t^{n+1}}{n+1} \right]_{0}^{1}$$

$$= -\frac{(-1)^{n} (-1)^{n+1}}{n+1} + \frac{1}{n+1}$$

$$= \frac{2}{n+1}$$

4.69 Intégration par partie

$$\int_{a}^{b} f'(t)g(t) dt + \int_{a}^{b} f(t)g'(t) dt = \int_{a}^{b} (f'(t)g(t) + f(t)g'(t)) dt$$
$$= \int_{a}^{b} (fg)'(t) dt$$
$$= [f(t)g(t)]_{a}^{b}$$

4.70 Changement de variable

Comme f est une fonction continue sur [a,b], on choisit une primitive F de f sur [a,b]. (Théorème fondamental du calcul in Ainsi :

$$\int_{u(a)}^{u(b)} f(t) dt = [F(t)]_{u(a)}^{u(b)}$$
$$= F \circ u(b) - F \circ u(a)$$

Or:

$$\int_a^b f(u(t))u'(t) dt = \int_a^b F'(u(t)) \times u'(t) du(t)$$
$$= [F \circ u(t)]_a^b$$

4.72 Exemple

Si $x = \sin t$, alors $dx = \cos t dt$. Pour t = 0, $x = \sin 0 = 0$. Pour $t = \frac{\pi}{2}$, $x = \sin \frac{\pi}{2} = 1$. Or $t \mapsto \sin t \in \mathcal{C}^1(\left[0; \frac{\pi}{2}\right], \mathbb{R})$. D'après le théorème de changement de variable :

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} t} \cos t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2} t} \cos t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} t \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} \, dt$$

$$= \left[\frac{1}{4} \sin 2t \right]_{0}^{\frac{\pi}{2}} + \frac{\pi}{4}$$

$$= \frac{\pi}{4}$$

4.74 Méthode

Pour tout $x \in \mathbb{R} \setminus \{a; b\}$, trouver c et d tel que $\frac{\alpha x + \beta}{(x-a)(x-b)} = \frac{c}{x-a} + \frac{d}{x-b}$:

$$\frac{\alpha x + \beta}{(x - b)} = c + \frac{d(x - a)}{(x - b)}$$
(On multiplie par $(x - a)$)
$$c = \frac{\alpha a + \beta}{a - b}$$

$$d = \frac{\alpha b + \beta}{b - a}$$
($x = a$)
$$(x = b)$$

4.75 Exemple

$$f: x \mapsto \frac{2x-1}{(x+1)(x-3)} = \frac{4}{3(x+1)} + \frac{4}{5(x-3)}$$

Une primitive de f sur] -1;3[est : $x \mapsto \frac{3}{4} \ln|x+1| + \frac{5}{4} \ln|x-3| = \frac{3}{4} \ln(x+1) + \frac{5}{4} \ln(x-3)$

Fonctions usuelles

5.2 Propriétés du logarithme

Par définition, ln est définie et dérvable sur \mathbb{R}_+^* et :

$$\forall x > 0, \ln'(x) = \frac{1}{x}$$

On montre par récurrence sur $n \geq 1$ que

"In est dérivable
$$n$$
 fois et $\forall n > 0, \ln^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ "

<u>Initialisation:</u>

La propriété est vraie pour n = 1.

<u>Hérédité</u>:

Si elle est vraie pour $n \geq 1$, par théorème d'opérations, $\ln^{(n)}$ est encore dérivable et :

$$\forall x > 0, ln^{(n+1)}(x) = \left[\ln^{(x)}\right](x)$$

= $(-1)^n n! x^{-n-1}$

Comme $\ln' > 0$ sur \mathbb{R}_+^* , alors \ln est strictement croissante sur \mathbb{R}_+^* .

5.3 Propriété fondamentale du logarithme

On montre seulement la propriété pour a>0 et b>0. On fixe b>0 et on considère :

$$f: \mathbb{R}_+^* \to \mathbb{R}; x \mapsto \ln(xb)$$

Par composition, $f \in \mathcal{D}^1(\mathbb{R}_+^*, \mathbb{R})$ et :

$$\forall x > 0, f'(x) = b \times \frac{1}{xb} = \frac{1}{x}$$

Donc f est une primitive de $\frac{1}{x}$ sur \mathbb{R}_+^* . On choisit $c \in \mathbb{R}$ tel que :

$$f = \ln + c$$

En particulier:

$$f(1) = \ln 1 + c$$

Soit:

$$\ln b = c$$

Ainsi:

$$\forall x > 0, \ln(xb) = \ln x + \ln b$$

On a par conséquent :

$$\forall x \in \mathbb{R}_+^*, 0 = \ln 1$$
$$= \ln(x \times \frac{1}{x})$$
$$= \ln x + \ln \frac{1}{x}$$

Donc pour a > 0 et b > 0, on a :

$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right)$$
$$= \ln a + \ln\frac{1}{b}$$
$$= \ln a - \ln b$$

5.4 Limites usuelles de la fonction logarithme

On commence par montrer que :

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$

On sait que ln est croissante sur \mathbb{R}_+^* , donc d'après le théorème de la limite monotone :

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$
 ou $\ln x \xrightarrow[x \to +\infty]{} \lambda$

Soit $n \ge 1$. On a :

$$\ln n = \int_{1}^{n} \frac{dt}{t}$$

$$= \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{t}$$

$$\geq \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{k+1}$$

$$= \sum_{k=1}^{n-1} \frac{1}{k+1}$$

$$= \sum_{k=1}^{n} \left(\frac{1}{k}\right) - 1$$

Or:

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right) - 1 \underset{n \to +\infty}{\longrightarrow} +\infty$$

Par théorème de comparaison :

$$\ln n \xrightarrow[n \to +\infty]{} +\infty$$

Donc:

$$\ln x \xrightarrow[x \to +\infty]{} +\infty$$

Enfin:

$$\forall x > 0, \ln x = -\ln\left(\frac{1}{x}\right)$$

Donc par composition:

$$\ln x \underset{x \to 0^+}{\longrightarrow} -\infty$$

Par taux d'accroissement, en introduisant :

$$f: \mathbb{R}_+ \to \mathbb{R}; x \mapsto \ln(1+x)$$
$$f \in \mathcal{D}^1(\mathbb{R}_+, \mathbb{R})$$
$$\frac{\ln(x+1)}{x} = \frac{f(x) - f(0)}{x - 0} f'(0) = 1$$

5.8 Propriétés de la fonction exponentielle

D'après les résultas précédents (5.2), (5.4), on applique le théorème de la bijection dérivable. La fonction exponentielle est dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \exp' x = \frac{1}{\ln' \circ \exp x}$$
$$= \exp x$$

On obtient directement que $\exp \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}_{+}^{*})$ et que $\exp^{(n)} = \exp n$ pour tout $n \in \mathbb{N}$.

5.9 Propriété fondamentale de l'exponentielle

Soit $(x,y) \in \mathbb{R}^2$. On choisit $(a,b) \in (\mathbb{R}_+^*)^2$ tel que :

$$x = \ln a$$
 et $y = \ln b$

Ainsi:

$$\exp(x + y) = \exp(\ln a + \ln b)$$

$$= \exp(\ln(ab))$$

$$= ab$$

$$= \exp x \times \exp y$$

Ainsi, $\exp 0 = \exp(0+0) = \exp^2 0$.

Donc $\exp 0 \in \{0; 1\}$

Or exp est à valeur dans \mathbb{R}^*_{\perp} , donc exp 0 = 1, donc :

$$\forall x \in \mathbb{R}_+^*, \exp 0 = \exp(x - x) = \exp x \times \exp(-x) = 1$$

5.15 Dérivée d'une fonction puissance

Soit y > 0. On pose $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto y^x = \exp(x \ln y)$. $f \in \mathcal{D}^1(\mathbb{R}, \mathbb{R})$, donc par composition :

$$\forall x \in \mathbb{R}, f'(x) = \ln y \times \exp(x \ln y)$$
$$= \ln y \times y^{x}$$

5.21 Croissances comparées en $+\infty$

1. On commence par montrer que $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$. Soit x > 1. On a:

$$0 \le \frac{\ln x}{x} = \frac{1}{x} \int_{1}^{x} \frac{dt}{t}$$

$$\le \frac{1}{x} \int_{1}^{x} \frac{dt}{\sqrt{t}}$$

$$= \frac{1}{x} \left[2\sqrt{t} \right]_{1}^{x}$$

$$= \frac{2(\sqrt{x} - 1)}{x}$$

$$= 2\left(\frac{1}{\sqrt{x}} - \frac{1}{x} \right)$$

$$\xrightarrow{x \to +\infty} 0$$

D'après le théorème d'encadrement, $\frac{\ln x}{x} \xrightarrow[x \to +\infty]{} 0$.

Soit a > 0 et x > 0:

$$\frac{\ln x}{x^a} = \frac{1}{a} \times \frac{\ln x^a}{x^a} \underset{x \to +\infty}{\longrightarrow} 0$$

(composition et théorème d'opérations)

2. On utilise le changement de variable :

$$x = (\ln y)^{\frac{1}{a}}$$
, soit $y = e^{ax}$

Ainsi:

$$\frac{x^a}{e^x} = \frac{\ln y}{y^{\frac{1}{a}}} \underset{x \to +\infty}{\longrightarrow} \begin{cases} 0 \text{ par composition si } a > 0 \\ 0 \text{ par th\'eor\'eme d'op\'erations si } a \leq 0 \end{cases}$$

5.22 Croissances comparées en 0

On utilise la proposition (5.21.1) avec $y = \frac{1}{x}$.

5.43.2 Formule de trigonométrie hyperbolique

Soit $(a, b) \in \mathbb{R}^2$.

$$ch(a)ch(b) + sh(a)sh(b) = \frac{(e^a + e^{-a})(e^b + e^{-b})}{4} + \frac{(e^a - e^{-a})(e^b - e^{-b})}{4}$$
$$= \frac{2e^{a+b} + 2e^{-(a+b)}}{4}$$
$$= ch(a+b)$$

Structures algébriques

10.3 Exemple

Exemple

Soit E =]-1;1[. Pour $(x,y) \in E^2$, on pose : $x \star y = \frac{x+y}{1+xy}$. Montrer que l'on définit ainsi une lci dans E.

On fixe $y \in E$. On note $\varphi : [-1;1] \to \mathbb{R}; x \mapsto x \star y = \frac{x+y}{1+xy}$. $\varphi \in \mathcal{D}^1([-1;1],\mathbb{R})$ et :

$$\forall x \in E, \varphi'(x) = \frac{1 + xy - y(x+y)}{(1+xy)^2}$$
$$= \frac{1-y^2}{(1+xy)^2}$$
$$> 0$$

Comme E est un intervalle : φ est strictement croissante sur E et :

$$\forall x \in E, -1 = \varphi(-1) < \varphi(x) < \varphi(1) = 1$$

Donc:

$$\forall (x,y) \in E^2, x \star y \in E$$

10.6 Exemple

Exemple

Soit E =]-1;1[. Pour $(x,y) \in E^2$, on pose $x\star y = \frac{x+y}{1+xy}$. Montrer que \star est associative et commutative.

- <u>Commutativité</u> : RAF
- -- <u>Associativité</u> :

Soit $(x, y, z) \in E^3$. On a:

$$x \star (y \star z) = x \star \left(\frac{y+z}{1+yz}\right)$$

$$= \frac{x + \frac{y+z}{1+yz}}{1 + x\frac{y+z}{1+yz}}$$

$$= \frac{x(1+yz) + y + z}{1 + yz + xy + xz}$$

$$= \frac{x + y + z + xyz}{1 + yz + xy + xz}$$

C'est une expression symétrique en x, y et z donc :

$$x \star (y \star z) = (x \star y) \star z$$

Matrices

11.11 Produit matriciel

$$\begin{pmatrix} 2 & 8 & 4 \\ -1 & -1 & -1 \\ 2 & 0 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} -2 & 6 & 2 \\ 6 & -10 & -6 \end{pmatrix}$$

11.12 Produit matriciel, lignes par colonnes

$$-A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \text{ et } C_i = \begin{pmatrix} 0 \\ \vdots \\ i \\ \vdots \\ 0 \end{pmatrix} = (\delta_{ij})_{1 \le j \le p} \in \mathcal{M}_{p,1}(\mathbb{K})$$

$$(AC_i)_{k,1} = \sum_{l=1}^p a_{kl}(C_i)_{l,1}$$

$$= \sum_{l=1}^p a_{kl}\delta_{il}$$

$$= a_{ki}$$

$$-L_j = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix} = (\delta_{ji})_{1 \le i \le n}$$

$$(L_jA)_{1k} = \sum_{l=1}^n (L_j)_{1,e} \times a_{ek}$$

$$= \sum_{l=1}^n \delta_{je}a_{lk}$$

— On note
$$A = \begin{pmatrix} C_1 & | \dots | & C_p \end{pmatrix}$$
 et $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \sum_{k=1}^p x_k \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \end{pmatrix}$

$$AX = \sum_{k=1}^{p} x_k A \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \sum_{k=1}^{p} x_{kC_k}$$

11.16 Produit de deux matrices élémentaires

Soit $1 \le k \le n; 1 \le l \le m$

$$(E_{ij} \times E_{rs})_{k,l} = \sum_{p=1}^{t} (E_{ij})_{kp} \times (E_{rs})_{pl}$$

$$= \sum_{p=1}^{t} \delta_{ik} \delta_{pj} \delta_{rp} \delta_{sl}$$

$$= \delta_{rj} \delta_{ik} \delta_{sl}$$

$$= \delta_{rj} (E_{is})_{kl}$$
Donc $E_{ij} \times E_{rs} = \delta_{jr} E_{is}$

11.17 Propriétés du produit matriciel, matrice identité

— Soit
$$(A, B, C) \in \mathcal{M}_{i,p}(\mathbb{K}) \times \mathcal{M}_{q,r}(\mathbb{K})$$

$$(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$$

$$[(AB)C]_{il} = \sum_{t=1}^{q} (AB)_{it} C_{tl}$$

$$= \sum_{t=1}^{q} \sum_{k=1}^{p} A_{ik} B_{kt} C_{tl}$$

$$= \sum_{k=1}^{p} A_{ik} \sum_{t=1}^{q} B_{kt} C_{tl}$$

$$= \sum_{k=1}^{p} A_{ik} (BC)_{kl}$$

$$= (A(BC))_{il}$$

- RAF
- RAF

11.24 Exemple

On écrit
$$A = I_3 + N$$
 avec $N = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

$$N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Soit $k \in \mathbb{N}$. Comme I_3 et N commutent,

$$A^{k} = (I_{3} + N)^{k}$$

$$= \sum_{i=0}^{k} {k \choose i} N^{i}$$

$$= I_{3} + {k \choose 1} N$$

$$= I_{3} + kN$$

$$= \begin{pmatrix} 1 & k & 2k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(Binôme de Newton)
$$(N^{2} = 0)$$

11.25 Produit par bloc

On le fait pour un bloc. Soit $1 \le i \le n$ et $1 \le j \le s$.

$$\begin{bmatrix}
\begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix} \Big]_{i,j} = \sum_{k=1}^{p+q} \begin{pmatrix} A & C \\ B & D \end{pmatrix}_{ik} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix}_{kj}
= \sum_{k=1}^{p} \begin{pmatrix} A & C \\ B & D \end{pmatrix}_{ik} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix}_{kj} + \sum_{k=p+1}^{p+q} \begin{pmatrix} A & C \\ B & D \end{pmatrix}_{ik} \begin{pmatrix} A' & C' \\ B' & D' \end{pmatrix}_{kj}
= \sum_{k=1}^{p} A_{ik} A'_{kj} + \sum_{k=1}^{q} C_{ik} B_{kj}
= (AA' + CB')_{ij}$$

11.27 Propriétés de la transposition

- RAF
- RAF
- Soit $(i, j) \in [1, q] \times [1, n]$

$$[^{t}(AB)]_{ij} = (AB)_{ji}$$

$$= \sum_{k=1}^{p} A_{jk} B_{ki}$$

$$= \sum_{k=i}^{p} [^{t}B]_{ik} [^{t}A]_{kj}$$

$$= [^{t}B^{t}A]_{ij}$$

11.31 Forme linéaire sur $\mathcal{M}_n(\mathbb{K})$

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $\lambda \in \mathbb{K}$.

— Trace d'une somme de matrices :

$$tr(A+B) = \sum_{i=1}^{n} (A+B)_{ii}$$
$$= \sum_{i=1}^{n} A_{ii} + B_{ii}$$
$$= \sum_{i=1}^{n} A_{ii} + \sum_{i=1}^{n} B_{ii}$$
$$= tr(A) + tr(B)$$

— Trace d'un produit par un scalaire :

$$tr(\lambda A) = \sum_{i=1}^{n} (\lambda A)_{ii}$$
$$= \lambda \sum_{i=1}^{n} A_{ii}$$
$$= \lambda tr(A)$$

— Trace d'un produit de matrices :

$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik} B_{ki}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} B_{ki} A_{kj}$$

$$= \sum_{k=1}^{n} (BA)_{kk}$$

$$= tr(BA)$$

11.33 Exemple

On suppose A et B solutions. Donc $AB - BA = I_n$ Donc $tr(AB - BA) = tr(I_n) = n$ Or tr(AB - BA) = 0Absurde.

11.37 Stabilité des matrices diagonales ou triangulaires

On montre le résultat pour les matrices triangulaires supérieures (ensemble noté $\mathcal{T}_n^+(\mathbb{K})$). Soit $(A,B) \in \mathcal{T}_n^+(\mathbb{K})^2$. On a bien $A+B \in \mathcal{T}_n^+(\mathbb{K})$ et aussi $\lambda A \in \mathcal{T}_n^+(\mathbb{K})$ pour tout $\lambda \in \mathbb{K}$ Soit i>j, on a :

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- Si
$$i > j$$
, $A_{ik} = 0$.
- Si $i = j$, $B_{kj} = 0$.

Donc $(AB)_{ij} = 0$.

Donc $AB \in \mathcal{T}_n^+(\mathbb{K})$.

Si
$$(AB) \in \mathcal{T}_n^+(\mathbb{K})^2$$
, alors ${}^t(AB) = \underbrace{{}^tB}_{\in \mathcal{T}_n^+(\mathbb{K})} \times \underbrace{{}^tA}_{\in \mathcal{T}_n^+(\mathbb{K})} \in \mathcal{T}_n^+(\mathbb{K})$

Donc $AB \in \mathcal{T}_n^+(\mathbb{K})$

Le résultat est vrai pour les matrices diagonales, à la fois triangulaires supérieures et inférieures.

11.41 Nilpotence des matrices triangulaires

Soit $T \in \mathcal{T}_n^{++}(\mathbb{K})$.

On va montrer par récurrence sur $k \in [1, n]$ que :

$$\text{" } T^k = \begin{pmatrix} O & - & O & - & \triangle \\ & & & & | \\ & & & O \\ & & & & | \\ & & & O \end{pmatrix} \text{"}$$

C'est-à-dire que pour tout $(i,j) \in [\![1,n]\!]^2, i+k-1 \geq j \Rightarrow T^k_{ij} = 0$. On suppose le résultat vrai pour $k \in [\![1,n-1]\!]$. Soit $i+k \geq j$.

$$(T^{k+1})_{ij} = (T^k T)_{ij}$$

= $\sum_{p=1}^{n} T_{ip}^k T_{pj}$

- Si
$$p \le i + k - 1$$
, $T_{ip}^k = 0$
- Si $p \ge i + k$, $T_{pj} = 0$

Donc $(T^{k+1})_{ij} = 0$.

Par réccurence, P(k) est vrai pour tout $k \in [1, n]$. En particulier, pour k = n, on obtient $T^n = 0$.

11.44 Opérations

$$\begin{array}{ll} - \ ^tA \times ^t (A^{-1}) = ^t (A^{-1}A) = ^t I_n = I_n \\ - \ ^t(A^{-1}) \times ^tA = ^t (AA^{-1}) = ^t I_n = I_n \\ \operatorname{Donc}(^tA)^{-1} = ^t (A^{-1}) \end{array}$$

11.48 Caractérisation de $GL_2(\mathbb{K})$

On note
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 et $N = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$.

$$M.N = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$
$$= \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix}$$
$$= det(M)I_2$$

- Si $det(M) \neq 0$, alors $M \times \left(\frac{1}{det(M)}N\right) = I_2$. Donc M est inversible et $M^{-1} = \frac{1}{det(M)}N$. Si det(M) = 0, alors M.N = 0 donc M n'est pas inversible.

11.49 Matrices diagonales inversibles

Soit
$$D = Diag(\lambda_1, \ldots, \lambda_n)$$
.

On suppose que:

$$\forall i \in [1, n], \lambda_i \neq 0$$

$$D \times Diag(\lambda_1^{-1}, \dots, \lambda_n^{-1}) = Diag(\lambda_1 \times \lambda_1^{-1}, \dots, \lambda_n \times \lambda_n^{-1})$$
$$= Diag(1, \dots, 1)$$
$$= I_n$$

Donc D est inversible et

$$D^{-1} = Diag(\lambda_1^{-1}, \dots, \lambda_n^{-1})$$

Par contraposée, soit $i \in [1, n]$ tel que $\lambda_i = 0$.

$$D \times Diag(0, \dots, \underbrace{1}_{i^{\text{ème}} \text{ place}}, \dots, 0) = 0$$

Donc D est un diviseur de 0, donc D n'est pas inversible.

11.50Exemple

On a:

$$\begin{pmatrix} 1 & & & a_{1n} \\ & \ddots & & \vdots \\ & & a_{n-1,n} \\ & & & 1 \end{pmatrix} \times \begin{pmatrix} 1 & & & -a_{1n} \\ & \ddots & & \vdots \\ & & & -a_{n-1,n} \\ & & & 1 \end{pmatrix} = \begin{pmatrix} 1 & & & 0 \\ & \ddots & & \vdots \\ & & & 0 \\ & & & 1 \end{pmatrix}$$

Matrices triangulaires inversibles 11.51

On raisonne par récurrence forte sur $n \in \mathbb{N}^*$. Pour n = 1 RAF.

Pour n = 2, RAS (11.48).

On suppose le résultat vrai pour $n \in \mathbb{N}^*$.

Soi $T \in \mathcal{T}_{n+1}^+(\mathbb{K})$. Donc T est de la forme :

$$T = \begin{pmatrix} \mathcal{U} & X \\ 0 & a \end{pmatrix} \quad \text{avec } \mathcal{U} \in \mathcal{T}_n^+(\mathbb{K}), \, X \in \mathcal{M}_{n,1}(\mathbb{K}) \text{ et } a \in \mathbb{K}$$

 \Rightarrow

On $\overline{\text{sup}}$ pose que la diagonale de T ne contient aucun 0.

Donc \mathcal{U} est inversible d'après l'hypothèse de réccurence.

On choisit $V \in \mathcal{T}_n^+(\mathbb{K})$ tel que (Hypothèse de récurrence).

$$UV = I_n$$

On a:

$$T \times \begin{pmatrix} V & 0 \\ 0 & \underbrace{a^{-1}}_{a \neq 0} \end{pmatrix} = \begin{pmatrix} \mathcal{U} & X \\ 0 & a \end{pmatrix} \begin{pmatrix} V & 0 \\ 0 & a^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} U_n & a^{-1}X \\ 0 & 1 \end{pmatrix}$$

Donc (11.50):

$$T \times \begin{pmatrix} V & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} I_n & -a^{-1}X \\ & 1 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$$

Donc T est inversible d'inverse dans $\mathcal{T}_{n+1}^+(\mathbb{K})$.

 \Leftarrow

On suppose que la diagonale de T contient un 0.

- Si
$$T_{11} = 0$$
, alors $T = \begin{pmatrix} 0 & L \\ & W \end{pmatrix}$
Et $T \times \underbrace{E_{11}}_{\neq 0} = 0$
Donc $T \notin GL_{n+1}(\mathbb{K})$

— On suppose que le premier 0 apparait à T_{kk} avec $k \geq 2$.

$$T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$
 avec $A = \begin{pmatrix} F & G \\ 0 & 0 \end{pmatrix}, F \in \mathcal{T}_{k-1}^+(\mathbb{K})$

La diagonale de F ne contient aucun 0 donc $F \in GL_{k-1}(\mathbb{K})$ et :

$$A \times \begin{pmatrix} 0 & -F^{-1}G \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} F & G \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -F^{-1}G \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Alors:

$$T \times \underbrace{\begin{pmatrix} H & 0 \\ 0 & 0 \end{pmatrix}}_{\neq 0} = 0$$

Donc $T \notin GL_{n+1}(\mathbb{K})$.

11.54 Exemple

Soit $X \in \mathbb{K}^2$.

$$X \in \ker A \Leftrightarrow AX = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x + 2y = 0 \\ y = 0 \end{cases}$$

$$\Leftrightarrow X = 0$$

Donc $\ker A = \{0\}.$

$$X \in \ker B \Leftrightarrow BX = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x + y = 0 \\ x + y = 0 \end{cases}$$

$$\Leftrightarrow x + y = 0$$

$$\Leftrightarrow X \in \left\{ \begin{pmatrix} x \\ -x \end{pmatrix}, x \in \mathbb{K} \right\}$$

$$\Leftrightarrow X \in \mathbb{K}. \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Donc $\ker B = \mathbb{K} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

11.61 Exemple

$$\begin{cases} x + 2y - z = 1 \\ 2x + 5y + z = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - z = 1 \\ 3x + 7y = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - a = 1 - 2y \\ 3x = 3 - 7y \end{cases}$$

$$\Leftrightarrow \begin{cases} -3z = y \\ x = 1 - \frac{7}{3}y \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 1 - \frac{7}{3}y \\ z = -\frac{1}{3}y \end{cases}$$

$$\Leftrightarrow X = \begin{pmatrix} 1 - \frac{7}{3}y \\ y \\ -\frac{1}{3}y \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} -\frac{7}{3} \\ 1 \\ -\frac{1}{3} \end{pmatrix}$$

Donc
$$S = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mathbb{K} \begin{pmatrix} -\frac{7}{3} \\ 1 \\ -\frac{1}{3} \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mathbb{K} \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}$$

11.65 Caractérisation des matrices inversibles par les sytèmes linaires

 $\overrightarrow{RAF}: (11.63)$

En Pour tout $i \in [\![1,n]\!],$ on note $Y_i \in \mathcal{M}_{n,1}(\mathbb{K})$ définie par :

$$Y_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

Par hypothèse, on choisit $X_i \in \mathbb{K}^n$ tel que :

$$AX_i = Y_i$$

On pose $B = (X_1 \dots X_n)$ et on remarque que :

$$(Y_1 \ldots Y_n) = I_n$$

Par construction:

$$AB = I_n$$

11.74 Système équivalents et opérations élémentaires

Soit Σ un système et Σ' un système obtenu après avoir effectué une opération élémentaire. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ la matrice du système Σ et $B \in \mathbb{K}^n$ son second membre.

Soit $X \in \mathbb{K}^p$. Effectuer une opération élémentaire revient à choisir une matrice P de la forme P_{ij} , $Q_i(\lambda)$, $R_{ij}(\lambda)$. Ainsi:

$$X \in \mathcal{S}(\Sigma) \Leftrightarrow AX = B$$

$$\Leftrightarrow PAX = PB$$

$$\Leftrightarrow X \in \mathcal{S}(\Sigma')$$

Donc $S(\Sigma) = S(\Sigma')$

Chapitre 12

Arithmétique

12.1 Propriété fondamentale de $\mathbb Z$

Théorème 12.1

Toute partie non vide et minorée de \mathbb{Z} admet un plus petit élément.

Soit A une partie non vide et minorée de \mathbb{Z} .

On note \mathcal{M} l'ensemble des minorants de A.

Par hypothèse, $\mathcal{M} \neq \emptyset$.

Supposons par l'absurde que :

$$\forall a \in \mathbb{Z}, a \in \mathcal{M} \Rightarrow a+1 \in \mathcal{M}$$

D'après le principe de récurrence, si $a_0 \in \mathcal{M}$ est fixé :

$$\forall n \geq a_0, n \in \mathcal{M}$$

En particulier, pour $n \in A \ (A \neq \emptyset)$ on a :

 $n \ge a_0$ (a_0 est un minorant)

Donc $n \in \mathcal{M}$.

Donc $n+1 \in \mathcal{M}$.

Donc n+1 est un minorant de A.

Donc $n+1 \le n$.

Absurde.

Ainsi, on choisit $a \in \mathbb{Z}$ avec $a \in \mathcal{M}$ et $a + 1 \notin \mathcal{M}$.

On choisit donc $n \in A$ tel que :

$$a \le n < a + 1$$

Donc $n = a \in A$.

Donc $a = \min(A)$.

12.4 Division euclidienne

Théorème 12.4

Soit $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$. Il existe un unique coupe $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que :

$$a = bq + r$$

avec $0 \le r < |b|$. Cette égalité est appelée division euclidienne de a par b, l'entier q est alors appelé quotient et l'entier r le reste, tandis que a porte le nom de dividende et b celui de diviseur.

Existence:

On suppose dans un premier temps que b > 0.

Soit $a \in \mathbb{Z}$.

On note $A = \{n \in \mathbb{Z}, bn \leq a\}$.

A est un sous-ensemble non vide de $\mathbb Z$ et majoré.

Il admet donc un plus grand élément, noté q. On a donc $q \in A$ et $q + 1 \notin A$.

$$bq \le a < b(q+1)$$
 donc $0 \le a - bq < b$

On pose alors r = a - bq. L'exsitence est alors prouvée pour b > 0.

Si b < 0, alors -b > 0 et on choisit $(q, r) \in \mathbb{Z}^2$ tel que :

$$a = -b \times q + r$$
 avec $0 \le r < -b$

Le couple (-q, r) convient.

<u>Unicité</u>:

On suppose a = bq + r = bq' + r' avec $0 \le r,' < |b|$.

$$\begin{array}{l} \text{Donc } b(q-q')=r'-r.\\ \text{Donc } \underbrace{|b|}_{>0}\times|q-q'|=|r'-r|<\underbrace{|b|}_{>0}.\\ \text{Donc } |q-q'|<1.\\ \text{Donc } q=q'.\\ \text{Puis } r=r'. \end{array}$$

12.9 Divisibilité et multiple

Propostion 12.9

Soit a et b deux entiers. Alors a est divisble par b si et seulement si a est un multiple de b.

$$\Rightarrow$$
 Si $b|a$, alors :

$$a = bq + 0$$
$$= bq$$
$$\in b\mathbb{Z}$$

12.10 Divisibilité et normes

Propostion 12.10

Soit a et b deux entiers avec $a \neq 0$ et b|a. Alors $|b| \leq |a|$.

Si b|a, alors $a = b \times n$ avec $n \neq 0$ var $a \neq 0$. Donc:

$$|a| = |b| \times |n|$$
$$\geq |b| \times 1$$

12.11 Entiers associés

Propostion 12.11

Soit a et b deux entiers. Alors

$$a\mathbb{Z} = b\mathbb{Z} \Leftrightarrow a = \pm b$$

On dit alors que a et b sont associés.

$$\subseteq$$
 Si $a = \pm b$, alors $a\mathbb{Z} = b\mathbb{Z}$.

$$|a| \le |b|$$
 et $|b| \le |a|$

Donc
$$|a| = |b|$$

12.14 Intégrité de la divisibilité

Propostion 12.14

Soit a, b et c trois entiers, avec $c \neq 0$. Si nb|na, alors n|a.

Si cb|ca, alors ca = ncb.

Or c est régulier dans $\mathbb Z$ donc :

a = nb

Donc b|a.

12.20 Cas d'une divisibilité

Lemme 12 20

Si a|b, alors

$$\mathcal{D}_{a,b} = \mathcal{D}_a$$

Si a|b, si c|a, alors c|b.

Donc $\mathcal{D}_b \supset \mathcal{D}_a$.

Ainsi, $\mathcal{D}_a \cap \mathcal{D}_b = \mathcal{D}_a$

12.21 Préparation à l'algorithme d'Euclide

Lemme 12.21

Soit a, b et q trois entiers, alors

$$\mathcal{D}_{a,b} = \mathcal{D}_{a-bq,b}$$

Soit $n \in \mathcal{D}_{a,b}$, alors:

$$n|a \text{ et } n|b$$

donc
$$n|a-bq$$

donc
$$n \in \mathcal{D}_{a-bq,b}$$

$$\begin{array}{c}
\boxed{\bigcirc}\\
\text{Soit } n \in \mathcal{D}_{a-bq,b}
\end{array}$$

$$n|a-bq \text{ et } n|b$$

donc
$$n|a - bq + bq$$

donc
$$n \in \mathcal{D}_{a,b}$$

12.23 Algorithme d'Euclide étendu ou théorème de Bézout

Lemme 12.23

Soit a et b deux entiers. Soit r le dernier reste non nul dans l'algorithme d'Euclide appliqué à a et b. Il existe deux entiers u et v tels que

$$au + bv = r$$

On utilise les notations du lemme (12.22).

On démontre par récurrence double que :

$$\forall n, "\exists (u_n, v_n) \in \mathbb{Z}^2, au_n + bv_n = r_n"$$

<u>Initialisation</u>:

Pour n=0 il s'agit de la division euxlidienne de a par b ($u_0=$ et $v_0=-q$). Pour n=1:

$$a = bq + r$$

$$b = r \times q_1 + r_1$$

$$donc \ r = b - rq_1$$

$$= b - q_1(a - bq)$$

$$= -q_1a + b(1 + q_1q)$$

Hérédité :

On suppose le résultat vrai aux rangs n et n + 1.

$$a_n = b_n q_n + r_n$$

$$b_n = r_n q_{n+1} + r_{n+1}$$

$$r_n = r_{n+1} q_{n+2} + r_{n+2}$$

Donc:

$$r_{n+2} = r_n - r_{n+1}q_{n+2}$$

$$= au_n + bv_n - (au_{n+1} + bv_{n+1})q_{n+2}$$

$$= a\underbrace{(u_n - u_{n+1}q_{n+2})}_{\in \mathbb{Z}} + b\underbrace{(v_n - v_{n+1}q_{n+2})}_{\in \mathbb{Z}}$$

On utilise le principe de récurrence avec la dernière étape de l'algorithme.

12.24 Application basique

Exemple 12.24

Appliquer l'algorithme d'Euclide aux entiers 121 et 26.

$$121 = 26 \times 4 + 17$$
$$26 = 17 \times 1 + 9$$
$$17 = 9 \times 1 + 8$$
$$9 = 8 \times 1 + 1$$
$$8 = 1 \times 8 + 0$$

On remonte l'algorithme :

$$1 = 9 - 8$$

$$= 9 - (17 - 9)$$

$$= 2 \times 9 - 17$$

$$= 2 \times (26 - 17) - 17$$

$$= 2 \times 26 - 3 \times 17$$

$$= 2 \times 26 - 3 \times (121 - 4 \times 26)$$

$$= 14 \times 26 - 3 \times 121$$

12.26 Théorème de Bézout

Théorème 12.26

Soit a et b deux entiers. Alors a et b sont premiers entre eux si et seulement si il existe $(u,v)\in\mathbb{Z}^2$ tel que

$$au + bv = 1$$

 \Rightarrow

On suppose a et b premiers entre eux.

Donc $\mathcal{D}_{a,b} = \{\pm 1\}.$

Soit r le dernier reste non nul dans l'algorithme d'Euclide,

$$\mathcal{D}_r = \mathcal{D}_{a,b} = \{\pm 1\}$$

Donc $r = \pm 1$.

D'après le théorème de Bézout, il existe deux entiers u et v tels que :

$$au + bv = 1$$

 \Leftarrow

Réciproquement, si au + bv = 1, alors pour tout $d \in \mathcal{D}_{a,b}$ d|au + bv donc d|1 donc $d = \pm 1$. Donc $\mathcal{D}_{a,b} = \{\pm 1\}$.

12.28 Proposition

Propostion 12.28

Si a est premier avec b et c, alors a est premier avec bc.

D'après le théorème de Bézout, on écrit :

$$au_1 + bv_1 = 1$$

$$au_2 + cv_2 = 1$$

avec $(u_1, u_2, v_1, v_2) \in \mathbb{Z}^4$.

Donc:

$$1 = (au_1 + bv_1)(au_2 + cv_2)$$
$$= a\underbrace{(au_1u_2 + bv_1u_2 + cu_1v_2)}_{\in \mathbb{Z}} + \underbrace{v_1v_2}_{\in \mathbb{Z}}bc$$

Donc a et bc sont premiers entre eux d'après le théorème de Bézout.

12.29 Proposition

Propostion 12.29

Si a est premier avec b, que a|c et b|c, alors ab|c.

D'après le théorème de Bézout :

$$au + bv = 1, (u, v) \in \mathbb{Z}^2$$

Donc:

$$auc + bvc = c$$

Or a|c et b|c, donc :

$$c = ka$$
 et $c = pb$

Donc:

$$ab\underbrace{[pu+vk]}_{\in\mathbb{Z}} = c$$

Donc ab|c.

12.30 Théorème de Gauss

Théorème 12.30

Si a|bc et que a est premier avec b, alors a|c.

D'après le théorème de Bézout :

$$au + bv = 1$$
 avec $(u, v) \in \mathbb{Z}^2$

Donc auc + bvc = c. Or a|bc donc a|auc + bvc. Soit a|c.

12.31 Equation de Bézout

Exemple 12.31

Résoudre l'équation d'inconnue $(x, y) \in \mathbb{Z}^2$, 3x - 2y = 7.

On remarque que 3 et 2 sont premiers entre eux.

$$\begin{aligned} 3-2 &= 1\\ \text{donc } 3\times 7 - 2\times 7 &= 7\\ \text{donc } (7,7) &\in \mathcal{S} \end{aligned}$$

On note (x_0, y_0) cette solution.

Soit $(x, y) \in \mathcal{S}$.

Donc:

$$7 = 3x - 2y$$

$$7 = 3x_0 - 2y_0$$
 donc
$$3(x - x_0) = 2(y - y_0)$$

Or $3|3(x-x_0)$ et 3 premier avec 2.

Donc $3|y-y_0$.

Donc $y - y_0 = 3k$, avec $k \in \mathbb{Z}$. (Théorème de Gauss)

De la même manière, $x-x_0=2l$, avec $l\in\mathbb{Z}$. (Théorème de Gauss)

Réciproquement, soit $x = x_0 + 2l$ et $y = y_0 + 3k$.

$$(x,y) \in \mathcal{S} \Leftrightarrow 7 = 3x - 2y = 3x_0 - 2y_0 + 6l - 6k$$

 $\Leftrightarrow 6l - 6k = 0$
 $\Leftrightarrow k = l$

Donc $S = \{(x_0 + 2k, y_0 + 3k), k \in \mathbb{Z}\}\$

12.32 Proposition

Propostion 12.32

Si $ar \equiv br \mod n$ et si r et n sont premiers entre eux, alors $a \equiv b \mod n$.

Si $ar \equiv br \mod n$, alors n|r(a-b).

Donc n|a-b (n premier avec r et théorème de Gauss).

Donc $a \equiv b \mod n$.

12.37 Lien avec les idéaux

Propostion 12.37

Soit a et b deux entiers, alors d est le pgcd de a et b si et seulement si $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Soit $(a, b) \in \mathbb{Z}^2$. $a\mathbb{Z}$ et $b\mathbb{Z}$ dont des idéaux de \mathbb{Z} .

Donc $a\mathbb{Z} + b\mathbb{Z}$ est un idéal de \mathbb{Z} , donc en particulier un sous-groupe de \mathbb{Z} .

On choisit donc $d \ge 0$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Montrons que $d = pgcd(a, b) = a \wedge b$.

D'une part :

$$d \in d\mathbb{Z}$$

$$donc d = au + bv (avec $(u, v) \in \mathbb{Z}^2$
$$e a\mathbb{Z} + b\mathbb{Z}$$

$$donc a \wedge b|a \text{ et } a \wedge b|b$$

$$donc a \wedge b|au + bv$$

$$soit a \wedge b|d$$$$

D'autre part, $a \wedge b$ est le dernier reste non nul de l'algorithme d'Euclide, donc (12.23) :

$$a \wedge b = au + bv \text{ (avec } (u, v) \in \mathbb{Z}^2)$$

 $\in a\mathbb{Z} + b\mathbb{Z}$
 $\in d\mathbb{Z}$

Donc $d|a \wedge b$.

Ainsi, d et $a \wedge b$ sont positifs et associés, donc égaux.

12.38 Préparation au calcul pratique d'un pgcd

Lemme 12.38

Si a et b sont tous les deux non nuls, alors pour tout $q \in \mathbb{Z}$, pgcd(a,b) = pgcd(a-bq,b).

$$\mathcal{D}_{pgcd(a,b)} = \mathcal{D}_{a,b}$$

$$= \mathcal{D}_{a-bq,b}$$

$$= \mathcal{D}_{pgcd(a-bq,b)}$$

Les deux pgcd sont associés, donc égaux car positifs.

12.39 Caractérisation du pgcd

Propostion 12.39

Soit a et b deux entiers et $d \in \mathbb{N}$. Alors d = pgcd(a, b) si et seulement si il existe $(u, v) \in \mathbb{Z}^2$ avec u et v premiers entre eux, tels que a = du et b = dv.

 \Rightarrow

On suppose que $d = a \wedge b$.

Donc d|a et d|b.

On écrit donc a = du et b = dv avec $(u, v) \in \mathbb{Z}^2$.

Notons $n = u \wedge v$. On écrit $u = n \times u'$ et $v = n \times v'$ avec $(u', v') \in \mathbb{Z}^2$.

Donc $a = d \times n \times u'$ et $b = d \times n \times v'$.

Donc $dn \in \mathcal{D}_{a,b} = \mathcal{D}_d$.

Donc dn|d.

Donc n=1.

 \Leftarrow

On suppose que a = du et b = dv avec $u \wedge v = 1$.

D'après le théorème de Bézout :

$$uu' + vv' = 1 \text{ (avec } (u', v') \in \mathbb{Z}^2)$$

Donc duu' + dvv' = d.

Soit au' + bv' = d.

Donc $d \in a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$.

Donc $a \wedge b|d$.

Par ailleurs, $d \in \mathcal{D}_{a,b} = \mathcal{D}_{a \wedge b}$.

Donc $d|a \wedge b$.

Ainsi, $a \wedge b$ et d sont associés (et positifs) donc égaux.

12.40 Propriétés du pgcd

Propostion 12.40

Soit a et b deux entiers tous deux non nuls.

- 1. pour tout $n \in \mathbb{Z}$, si n|a et n|b, alors n|pgcd(a,b);
- 2. pour tout $k \in \mathbb{N}^*$, pgcd(ka, kb) = kpgcd(a, b);
- 3. pour tout $n \in \mathbb{N}$, $pgcd(a^n, b^n) = pgcd(a, b)^n$;
- 4. si a et c sont premiers entre eux, alors pgcd(a,bc) = pgcd(a,b).
- 1. RAF (définition)
- 2. Soit $k \in \mathbb{N}^*$. On écrit (12.39) :

$$a = (a \wedge b)u$$

 $b = (a \wedge b)v \text{ (avec } u \wedge v = 1)$

Donc:

$$ka = [k(a \wedge b)] u$$

 $kb = [k(a \wedge b)] v$

Donc (12.39):

$$pgcd(ka, kb) = k(a \wedge b)$$

3. Avec une partie des notations de 2. :

$$a^{n} = (a \wedge b)^{n} u^{n}$$
$$b^{n} = (a \wedge b)^{n} v^{n}$$

Avec $(u^n) \wedge (v^n) = 1$. Donc (12.39):

$$pgcd(a^n, b^n) = (a \wedge b)^n$$

4.

$$a = (a \wedge b)u$$

 $b = (a \wedge b)v \text{ (avec } u \wedge v = 1)$

 Donc

$$bc = (a \wedge b) \times vc$$

Or, puisque $a \wedge c = 1$ et que u|a, alors :

$$u \wedge c = 1$$

Donc (12.28):

$$u \wedge (vc) = 1$$

Donc (12.39):

$$pgcd(a,bc) = a \wedge b$$

12.44 Définition du PPCM

Propostion 12.44

Soit a et b deux entiers non nuls. On appelle **PPCM** (plus petit commun multiple) l'unique entier $m \in \mathbb{N}$ tel que

$$(a\mathbb{Z}) \cap (b\mathbb{Z}) = m\mathbb{Z}.$$

Cet entier est noté ppcm(a, b) ou encore $a \vee b$.

 $a\mathbb{Z}$ et $b\mathbb{Z}$ ont des idéaux de \mathbb{Z} .

Donc $a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal de \mathbb{Z} , donc un sous-groupe de \mathbb{Z} .

Donc il existe un unique entier $m \in \mathbb{N}$ tel que :

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$$

Comme $a \neq 0$ et $b \neq 0$, alors $m \neq 0$.

12.45 Caractérisation du ppcm

Propostion 12.45

Soit a et b deux entiers, et $m \in \mathbb{N}$. Alors m = ppcm(a, b) si et seulement si il existe $(u, v) \in \mathbb{Z}^2$, premiers entre eux tels que m = au = bv.

 \Rightarrow

On suppose que $m = a \vee b$.

Donc $m \in a\mathbb{Z} \cap b\mathbb{Z}$.

Donc m = au = bv.

On note d = pgcd(u, v).

On écrit donc :

$$u = da'$$

$$v = db'$$

Donc:

$$ada' = bdb'$$

 ${\rm Donc}:$

$$aa' = bb' = m'$$

Donc:

$$m' \in a\mathbb{Z} \cap b\mathbb{Z}$$

$$\in m\mathbb{Z}$$

Donc:

$$dm' = m|m'$$

Donc:

$$d = 1$$

 \leftarrow

On suppose que m = au = bv avec pgcd(u, v) = 1.

D'une part :

$$m \in a\mathbb{Z} \cap b\mathbb{Z} = ppcm(a, b)\mathbb{Z}$$

Donc:

D'autre part, d'après le théorème de Bézout :

$$uu' + vv' = 1 \text{ avec } (u', v') \in \mathbb{Z}^2$$

Donc:

$$uu'\underbrace{ppcm(a,b)}_{ka} + vv'\underbrace{ppcm(a,b)}_{qb} = ppcm(a,b)$$

Donc:

$$m(u'k + vq') = ppcm(a, b)$$

Donc m|ppcm(a,b).

12.46 Propriétés du ppcm

Propostion 12.46

Soit a et b deux entier non nuls, alors :

- 1. pour tout $n \in \mathbb{Z}$, si a|n et b|n, alors ppcm(a,b)|n;
- 2. si a et b sont premiers entre eux, alors ppcm(a, b) = |ab|;
- 3. pour tout $k \in \mathbb{N}^*$, ppcm(ka, kb) = kppcm(a, b);
- 4. $ppcm(a, b) \times pgcd(a, b) = |ab|$;
- 5. pour tout $n \in \mathbb{N}$, $ppcm(a^n, b^n) = ppcm(a, b)^n$.
- 1. RAF (12.44)
- 2. On suppose que a > 0 et b > 0.

$$ab = ba$$

avec $a \wedge b = 1$.

D'après (12.45):

$$ppcm(a, b) = ab$$

3. On écrit (12.45):

$$ppcm(a,b) = au = bv \text{ (avec } u \land v = 1)$$

Alors:

$$b \wedge ppcm(a, b) = (ak)u$$
$$= (bk)v$$

Donc (12.45):

$$ppcm(ak, bk) = kppcm(a, b)$$

5. Avec les mêmes notations :

$$ppcm(a,b)^n = a^n u^n$$

= $b^n v^n$ (avec $u^n \wedge v^n = 1$)

Donc (12.45):

$$ppcm(a^n, b^n) = ppcm(a, b)^n$$

4. D'après (12.39) (avec a > 0 et b > 0):

$$\begin{aligned} a &= pgcd(a,b)u \\ b &= pgcd(a,b)v \text{ (avec } u \land v = 1) \\ pgcd(a,b) \times ppcm(a,b) &= pgcd(a,b)ppcm(pgcd(a,b)u, pgcd(a,b)v) \\ &= pgcd(a,b)^2ppcm(u,v) \\ &= pgcd(a,b)^2uv \\ &= ab \end{aligned}$$

12.50 Propriétés

Propostion 12.50

- 1. Si $p \in \mathbb{P}$, alors pour tout $n \in \mathbb{Z}$, soit p|n soit pgcd(n,p) = 1.
- 2. Si $n \ge 2$, alors n possède au moins un diviseur premier.
- 3. L'ensemble \mathbb{P} est infini.
- 4. Si n > 1 n'as pas de diviseur dans $[2; \sqrt{n}]$, alors n est premier.
- 5. Si $p \in \mathbb{P}$, alors pour tout a et b entiers, on a $(a+b)^p \equiv a^p + b^p \pmod{p}$.
- 1. On suppose que $p \nmid n$.

Soit $d \in \mathcal{D}_p \cap \mathcal{D}_n$.

d > 0 et $d \neq p$.

Donc d = 1.

Donc $p \wedge n = 1$.

- 2. On raisonne par récurrence forte \rightarrow cf. (2.41).
- 3. On suppose par l'absurde que :

$$\mathbb{P} = \{p_1, p_2, \dots, p_n\}$$

On pose:

$$m = \prod_{i=1}^{n} (p_i) + 1$$

Soit $p_i \in \mathbb{P}$ tel que $p_i|m$ (12.50.2).

Donc $p_i|1$.

Absurde.

4. On suppose $n \notin \mathbb{P}$.

Soit n = ab avec $a \ge 2$ et $b \ge 2$.

Si $a > \sqrt{n}$ et $b > \sqrt{n}$, alors $ab = n > \sqrt{n^2} = n$.

Absurde.

5. D'après le binôme de Newton:

$$(a+b)^{p} = \sum_{k=0}^{p} {p \choose k} a^{k} b^{p-k}$$
$$= a^{p} + b^{p} + \sum_{k=1}^{p-1} {p \choose k} a^{k} b^{p-k}$$

Or, pour $k \in [1; p-1], p\binom{p-1}{k-1} = k\binom{p}{k}$ (formule du capitaine).

Or $k \wedge p = 1$ et $p \mid p \binom{p-1}{k-1}$ soit $p \mid \binom{p}{k}$.

Donc:

$$p \left| {p \choose k} \right|$$

Donc:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

12.51 Petit théorème de Fermat

Théorème 12.51

Pour tout $n \in \mathbb{Z}$ et $p \in \mathbb{P}$, on a $n^p \equiv n \pmod{p}$. En outre, si pgcd(n,p) = 1, alors $n^{p-1} \equiv 1 \pmod{p}$.

Soit $p \in \mathbb{P}$. On montre le résultat pour $n \geq 0$ par récurrence.

On a bien $0^p = 0 \equiv 0 \pmod{p}$. Si $n^p \equiv n \pmod{p}$, alors :

$$(n+1)^p \equiv n^p + 1^p \pmod{p}$$
 (12.50.5).
 $\equiv n+1 \pmod{p}$ (Hypothèse de récurrnce)

Soit $n \in \mathbb{N}$.

— Si $p \geq 3$ (donc p est impair), alors :

$$n^{p} \equiv n \pmod{p}$$
$$(-n)^{p} \equiv \max_{p \text{ impair}} -n^{p} \pmod{p}$$
$$\equiv -n \pmod{p}$$

— Si $p = 2, -1 \equiv 1 \pmod{2}$. Donc:

$$(-n)^2 \equiv n^2 \pmod{2}$$

 $\equiv n \pmod{2}$
 $\equiv -n \pmod{2}$

Décomposition en produit de facteurs premiers 12.52

Soit $n \in \mathbb{Z} \setminus \{-1, 0, 1\}$, alors il existe des nombres premiers p_1, \ldots, p_r tous distincts, et $(\alpha_1, \ldots, \alpha_r) \in (\mathbb{N}^*)^r$ et $\epsilon \in \{\pm 1\}$ tels que

$$n = \epsilon p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r}$$

Cette décomposition est unique à l'ordre près.

Existence:

On montre l'existence par récurrence forte sur $\mathbb{N}\setminus\{0,1\}$.

- RAF si n=2.
- On suppose le résultat vrai pour tout $k \in [2; n]$.
 - Si $n+1 \in \mathbb{P}$: RAF
 - Si $n+1 \notin \mathbb{P}$, on écrit :

$$n + 1 = k \times q \text{ avec } (k, q) \in [2, n]^2$$

Donc k et q sont des produits de facteurs premiers.

Donc n + 1 = kq est aussi un produit de facteurs premiers.

Le résultat est donc vrai pour tout $n \in \mathbb{N}$ et par extension pour -n ($\epsilon = -1$).

$\underline{Unicit \acute{e}:}$

On suppose que:

$$n = \epsilon p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r} = \epsilon' q_1^{\beta_1} \times \dots \times q_s^{\beta_s}$$

Nécessairement, $\epsilon = \epsilon'$.

Soit
$$p_i \in \{p_1, \ldots, m_r\}$$
.

On a
$$p_i | n$$
 donc $p_i | q_1^{\beta_1} \times \cdots \times q_s^{\beta_s}$.

Il existe $p_i \in \mathbb{P}$ donc $j \in [1; s]$ tel que $p_i | q_i$.

Donc
$$p_i = \underbrace{q_j}_{\in \mathbb{P}}$$

Ainsi:

$$\{p_1,\ldots,p_r\}\subset\{q_1,\ldots,q_s\}$$

Par symétrie:

$$\{p_1, \dots, p_r\} = \{q_1, \dots, q_s\}$$

Donc r = s et quitte à renommer q_i , on peut supposer que :

$$\forall i \in [1; r], p_i = q_i$$

$$p_i^{\alpha_i} | n \text{ donc } p_i^{\alpha_i} \left| \prod_{j=1}^r p_j^{\beta_j} \right|$$

donc $\alpha_i \leq \beta_i$

Par symétrie, $\alpha_i = \beta_i$.

L'unicité est prouvée.

12.54 Caractérisation de la valuation

Théorème 12.54

Soit $n \in \mathbb{Z}^*$ et $p \in \mathbb{P}$ et $d \in \mathbb{N}$. Alors $d = v_p(n)$ si et seulement si $n = p^d u$, avec $u \wedge p = 1$.

On a:

$$d = v_p(n) \Leftrightarrow (p^d | n \text{ et } p^{d+1} \not | n)$$

$$\Leftrightarrow \exists u \in \mathbb{Z}, n = p^d u \text{ et } p^{d+1} \not | u$$

$$\Leftrightarrow \exists u \in \mathbb{Z}, n = p^d u \text{ et } p \not | u$$

$$\Leftrightarrow \exists u \in \mathbb{Z}, n = p^d u \text{ et } u \land p = 1$$

12.55 Valuation et décomposition en produit de facteurs premiers

Théorème 12.55

Si p|n, alors $v_p(n)$ est la puissance de p intervenant dans la décomposition en produit de facteurs premiers de p.

On écrit la décomposition :

$$n = \epsilon \prod_{i=1}^{r} p_i^{\alpha_i}$$

Soit $k \in [1, r]$.

$$n = \epsilon \times p_k^{\alpha_k} \times \underbrace{\prod_{i \neq k} p_i^{\alpha_i}}_{:=u \text{ (avec } u \wedge p_k = 1)}$$

Donc (12.54):

$$v_{p_k}(n) = \alpha_k$$

12.56 Propriétés de la valuation

Propostion 12.56

Pout tout $(n,m) \in \mathbb{Z}^2$ et $p \in \mathbb{P}$, on a

- 1. p|n si et seulement si $v_p(n) > 0$;
- 2. $v_p(mn) = v_p(m) + v_p(n)$;
- 3. $v_p(n+m) \ge \min(v_p(n), v_p(m))$ avec égalité si les valuations sont distinctes;
- 4. $n|m \Leftrightarrow (\forall q \in \mathbb{P}, v_q(n) \leq v_q(m));$
- 5. si de plus n et m sont non nuls alors

$$v_p(n \wedge m) = \min(v_p(n), v_p(m))$$
 et $v_p(n \vee m) = \max(v_p(n), v_p(m))$.

- 1 RAF
- 2. On écrit $m=p^{v_p(m)}\times u$ et $n=p^{v_p(n)}\times v$ avec $u\wedge p=1=v\wedge p$ (12.54). Donc $mn=p^{v_p(m)+v_p(n)}\times uv$. Or $p\wedge (uv)=1$. Donc (12.54) :

$$v_p(mn) = v_p(m) + v_p(n)$$

3. On suppose que $v_p(m) \le v_p(n)$. Ainsi :

$$n + m = p^{v_p(n)} \times v + p^{v_p(m)} \times u$$
$$= p^{v_p(m)} \left[u + v_p^{v_p(n) - v_p(m)} \right]$$

Ainsi, $p^{v_p(m)}|n+m$.

Par définition :

$$v_p(m+n) \ge v_p(m) = \min(v_p(m), v_p(n))$$

Si on suppose de plus que $v_p(m) \neq v_p(n)$, alors

$$p \wedge (u + v \times p^{v_p(n) - v_p(m)}) = p \wedge u = 1$$

Donc (12.54):

$$v_p(n+m) = v_p(m) = \min(v_p(m), v_p(n))$$

4. On a:

n|m ssi la décomposition en produit de facteurs premiers de n se retrouve dans celle de m.

ssi pour tout $p \in \mathbb{P}$ tel que p|n, alors $v_p(n) \leq v_p(m)$.

5. On a $(n \wedge m)|n$ et $(n \wedge m)|m$.

Donc (12.56.4) $v_p(n \land m) \le \min(v_p(n), v_p(m))$

On suppose par exemple que $v_p(n) \leq v_p(m)$.

Donc $p^{v_p(n)}|n$ et $p^{v_p(n)}|m$.

Donc $p^{v_p(n)}|n \wedge m$.

Par définition $v_p(n \wedge m) \geq v_p(n)$

Donc:

$$v_p(n \wedge m) = \min(v_p(n), v_p(m))$$

On rappelle que $(n \wedge m) \times (n \vee m) = |nm|$.

Donc $v_p((n \wedge m) \times (n \vee m)) = v_p(nm)$.

Donc (12.56.2):

$$\begin{aligned} v_p(n \lor m) &= v_p(n) + v_p(m) - v_p(n \land m) \\ &= v_p(n) + v_p(m) - \min(v_p(n), v_p(m)) \\ &= \boxed{\max(v_p(n), v_p(m))} \end{aligned}$$

Les preuves ont été rédigées avec les hypothèses $n \neq 0$ et $m \neq 0$. Si l'un des entiers est nul, on vérifie les assertions avec la convention $v_p(0) = +\infty$.

Chapitre 13

Polynômes

13.6 Produit de deux polynômes

Définition 13.6

Soit $P = (a_n)$ et $Q = (b_n)$ deux polynômes de $\mathbb{A}[X]$. Soit pour tout $n \in \mathbb{N}$, $c_n = \sum_{k=0}^n a_k b_{n-k}$. Alors la suite $(c_n)_{n \in \mathbb{N}}$ est un polynôme. On définit alors $PQ = (c_n)$. La suite $c = (c_n)$ est appelée **produit de convolution** (ou **produit de Cauchy**) des suites $a = (a_n)$ et $b = (b_n)$ et est parfois noté $c = a \star b$.

Montrons que (c_n) est un polynôme. Soit N te M dans \mathbb{N} tels que :

$$\begin{cases} \forall n \in \mathbb{N}, n \ge N, a_n = 0 \\ \forall n \in \mathbb{N}, n \ge M, b_n = 0 \end{cases}$$

Soit $n \ge M + N$, on a:

$$c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

— Si
$$k \ge N$$
, $a_k = 0$.
— Si $k \le N$, $n - k \ge M$, donc $b_{n-k} = 0$.
Donc $c_n = 0$.

13.7 Structure d'anneau de $\mathbb{A}[X]$

Théorème 13.7

La somme et le produit définis ci-dessus munissent $\mathbb{A}[X]$ d'une structure d'anneau commutatif.

suites d'éléments de A

- $(\mathbb{A}[X], +)$ est un sous-groupe de ($\mathbb{A}^{\mathbb{N}}$, +) abélien donc est bien un sous-groupe abélien.
- Montrons que \times est associative. Soit $(P, R, Q) \in \mathbb{A}[X]$. On note $P = (p_k)_{k \in \mathbb{N}}, \ R = (r_k)_{k \in \mathbb{N}}, \ Q = (q_k)_{k \in \mathbb{N}}$. Soit $n \in \mathbb{N}$.

$$(P \times (RQ))_n = \sum_{k=0}^n p_k (RQ)_{n-k}$$

$$= \sum_{i+j=n} p_i (RQ)_j$$

$$= \sum_{i+j=n} \left(p_i \sum_{k+l=j} r_k q_l \right)$$

$$= \sum_{i+k+l=n} p_i r_k q_l$$

$$= ((PR) \times Q)_n$$

— Notons $E = (1, 0, ...) = (\delta_{0n})_{n \in \mathbb{N}}$. On a pour tout $n \in \mathbb{N}$:

$$(E \times P)_n = \sum_{i+j=n} E_i \times P_j$$
$$= \sum_{i+j=n} \delta_{0i} \times P_j$$
$$= P_n \ (i = 0, j = n)$$
$$= (P \times E)_n$$

Donc E est l'élément neutre de $\mathbb{A}[X]$.

$$\begin{split} [P \times (R+Q)]_n &= \sum_{i+j=n} p_i (R+q)_j \\ &= \sum_{i+j=n} p_i (r_j + a_j) \\ &= \sum_{i+j=n} p_i r_j + \sum_{i+j=n} p_i q_j \\ &= (PR)_n + (PQ)_n \\ &= [PR + PQ]_n \end{split}$$

- Donc \times est distributive sur +.
- Comme A est commutatif:

$$\sum_{i+j=n} p_i q_j = \sum_{i+j=n} q_j p_i$$

Donc \times est commutatif.

13.11 Monômes

Propostion 13.11

Pour tout $n \in \mathbb{N}$, on a $X^n = (\underbrace{0, \dots, 0}_{n \text{ zéros}}, 1, 0, \dots)$, le 1 est donc à l'indice n (soit $X^n = (\delta_{n,k})_{k \in \mathbb{N}}$)

Pour n=0, on a bien $X^0=(1,0,\ldots)$ Pour n=1, RAF On suppose le résultat vrai pour $n\in\mathbb{N}$. Soit $k\in\mathbb{N}$:

$$\begin{split} \left[X^{n+1}\right]_k &= \left[X^n \times X\right] \\ &= \sum_{i+j=k} \left[X^n\right]_i X_j \\ &= \sum_{i+j=k} \delta_{n,i} \times \delta_{j,1} \\ &= \delta_{k,n+1} \end{split}$$

13.12 Expression d'un polynôme à l'aide de l'indéterminée formelle

Corollaire 13.12

Soit $P = (a_n)$ un polynôme de $\mathbb{A}[X]$. Alors $P = \sum_{k=0}^{+\infty} a_k X^k$, cette somme ayant un sens puisqu'elle est en fait finie, les a_k étant nuls à partir d'un certain rang.

$$P = (a_n)_{n \ge 0}$$

$$= (a_0, a_1, a_2, \dots)$$

$$= a_0(1, 0, 0, \dots) + a_1(0, 1, 0, \dots) + a_2(0, 0, 1, \dots) + \dots$$

$$= a_0 X^0 + a_1 X^1 + a_2 X^2 + \dots$$

13.26 Dérivée de produits

Propostion 13.26

— Soit P et Q deux polynômes à coefficients dans \mathbb{A} . Alors

$$(PQ)' = P'Q + Q'P.$$

— Soit P_1, \ldots, P_n des polynômes à coefficients dans \mathbb{A} , alors

$$(P_1 \dots P_n)' = \sum_{i=1}^n P_1 \dots P_{i-1} P_i' P_{i+1} \dots P_n.$$

— Formule de Leibniz : Soit P et Q deux polynômes à coefficients dans \mathbb{A} et $n \in \mathbb{N}$. Alors

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}.$$

Soit
$$P = \sum_{k \ge 0} a_k X^k, P' = \sum_{k \ge 1} k a_k X^{k-1}$$
 et $Q = \sum_{k \ge 0} b_k X^k, Q' = \sum_{k \ge 1} k b_k X^{k-1}$.

On a:

$$PQ = \sum_{k \ge 0} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) X^n$$

Donc:

$$(PQ)' = \sum_{n \{geq1} \left[n \sum_{k=0}^{n} a_k b_{n-k} \right] X^{n-1}$$
et $P'Q = \sum_{n \geq 0} \left[\sum_{k=0}^{n} (k+1) a_{k+1} b_{n-k} \right] X^n$
et $PQ' = \sum_{n \geq 0} \left[\sum_{k=0}^{n} a_k (n-k+1) b_{n-k+1} \right] X^n$
donc $P'Q + Q'P = \sum_{n \geq 0} \left[\sum_{k=0}^{n} (k+1) a_{k+1} b_{n-k} \right] X^n + \sum_{n \geq 0} \left[\sum_{k=0}^{n} (n-k+1) a_k b_{n-k+1} \right] X^n$

$$= \sum_{n \geq 0} \left[\sum_{k=1}^{n+1} k a_k b_{n-k+1} \right] X^n + \sum_{n \geq 0} \left[\sum_{k=0}^{n} (n-k+1) a_k b_{n-k+1} \right] X^n$$

$$= \sum_{n \geq 0} \left[(n+1) a_{n+1} b_0 + \sum_{k=1}^{n} (n+1) a_k b_{n-k+1} + (n+1) a_0 b_{n+1} \right] X^n$$

$$= \sum_{n \geq 0} \left[(n+1) \sum_{k=0}^{n+1} a_k b_{n-k+1} \right] X^n$$

13.28 Dérivée d'une composition

Propostion 13.28

Soit P et Q dans $\mathbb{A}[X]$, alors

$$(Q \circ P)' = P' \times (Q' \circ P)$$

Soit
$$Q = \sum_{k \ge 0} a_k X^k$$
.
Ainsi $Q \circ P = \sum_{k \ge 0} a_k p^k$.

Donc:

$$(Q \circ P)' = \sum_{k \ge 0} a_k (p_k)' \quad (13.24)$$

$$= \sum_{k \ge 1} k a_k p' p^{k-1} \quad (13.27)$$

$$= P' \times \sum_{k \ge 1} k a_k p^{k-1}$$

$$= P' \times Q' \circ P$$

13.34 Degré d'une somme, d'un produit, d'une dérivée

Propostion 13.34

Soit P et Q deux polynômes de $\mathbb{A}[X]$ et $\lambda \in \mathbb{A}$.

- 1. On a $\deg(P+Q) \leq \max(\deg(P), \deg(Q))$ avec égalité si $\deg(P) \neq \deg(Q)$.
- 2. Si A est intègre et si $\lambda \neq 0$, alors $\deg(\lambda P) = \deg(P)$.
- 3. Si \mathbb{A} est intègre alors $\deg(PQ) = \deg(P) + \deg(Q)$.
- 4. On a $deg(P') \leq deg(P) 1$.
- 5. Si \mathbb{A} est intègre alors $\deg(Q \circ P) = \deg(Q) + \deg(P)$, sauf si P = 0 ou si Q = 0 et $P \in \mathbb{A}_0[X]$.
- 1. On note $p = \deg(P), q = \deg(Q)$.

$$P = \sum_{k=0}^{p} a_k X^k, Q = \sum_{k=0}^{q} b_k X^k$$

Supposons $p \geq q$.

On écrit alors :

$$Q = \sum_{k=0}^p b_k X^k$$
 et ainsi $P+Q = \sum_{k=0}^p (a_k+b_k) X^k$ et donc $\deg(P+Q) \leq p$

Si de plus p > q, alors :

$$P + Q = a_p X^p + \sum_{k=0}^{p-1} (a_k + b_k) X^k \ (b_p = 0)$$

donc $(a_p \neq 0)$, $\deg(P+Q) = p$

2.

$$\lambda P = \sum_{k=0}^{p} \lambda a_k X^k$$

Or $\lambda a_p \neq 0$ car $a_p \neq 0$ et \mathbb{A} intègre.

3.

$$P.Q = \sum_{n \ge 0} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) X^n$$

Si n > p + q, alors:

$$\sum_{k=0}^{n} a_k b n - k = 0 \text{ (preuve (13.6))}$$

Or:

$$(PQ)_{p+q} = \sum_{k=0}^{p+q} a_k b_{p+q-k}$$

$$= \underbrace{a_p}_{\neq 0} \underbrace{b_q}_{\neq 0}$$

$$\neq 0 \text{ car } \mathbb{A} \text{ intègre}$$

4. Si $P \in \mathbb{A}_0[X]$, l'inégalité est vérifiée. Sinon :

$$p' = \sum_{k=0}^{p-1} (k+1)a_{k+1}X^k$$
 et $\deg(P') \le d-1 = \deg(P) - 1$

5. On a:

$$Q \circ P = \sum_{k=0}^{q} b_k p_k$$

Or, pour $k \in [0, q-1]$, $\deg(b_k p^k) < \deg(\underbrace{b_q}_{\neq 0} p^q)$ ((13.34.2) et (13.34.3) avec \mathbb{A} intègre)

Donc:

$$deg(Q \circ P) = deg(b_q p^q)$$
$$= q \times deg(P)$$
$$= deg(Q) \times deg(P)$$

13.36 Théorème de permanence de l'intégrité

Corollaire 13.36

Si \mathbb{A} est intègre, alors $\mathbb{A}[X]$ est intègre.

Si $P \neq 0$ et $Q \neq 0$

$$\deg(P \times Q) = \deg(P) + \deg(Q) \text{ (\mathbb{A} est intègre)}$$

$$> 0$$

13.39 Propriété de stabilité

Corollaire 13.39

- $\mathbb{A}_n[X]$ est un sous-groupe additif de $\mathbb{A}[X]$.
- La dérivation $D: \mathbb{A}[X] \to \mathbb{A}[X]$ induit un homomorphisme de groupe $D_n: \mathbb{A}_n[X] \to \mathbb{A}_{n-1}[X]$.
- Si \mathbb{K} est un corps de caractéristique nulle, D_n est une surjection. Autrement dit, tout polynôme de $\mathbb{K}_{n-1}[X]$ est primitivable formellement dans $\mathbb{K}_n[X]$.
- RAF
- RAF
- carac(\mathbb{K}) = 0. Soit $P = \sum_{k=0}^{n-1} a_k X^k \in \mathbb{K}_{n-1}[X]$.

Pour $k \in [1, n], k = k \times 1 \neq 0$ dans \mathbb{K} car \mathbb{K} est de caractéristique nulle.

Donc k^{-1} est bien défini dans \mathbb{K} . On pose :

$$Q = \sum_{k=1}^{n} k^{-1} q_{k-1} X^k$$

Alors:

$$Q' = \sum_{k=0}^{n-1} (k+1)(k+1)^{-1} a_k X^k = P.$$

13.42 Corollaire du degré d'une dérivée dans $\mathbb{K}[X]$, avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}

Corollaire 13 42

Soit \mathbb{K} un corps de caractéristique nulle et soit P et Q deux polynômes de $\mathbb{K}[X]$. Alors P'=Q' si et seulement si P et Q diffèrent d'une constante.

Soit $P \in \ker(D)$, où $D : \mathbb{K}[X] \to \mathbb{K}[X], P \mapsto P'$. Donc P' = 0. Si $\deg(P) > 0$, alors $\deg(P') \ge 0$ (13.41). Donc nécessairement, $\mathbb{K}_0[X] \subset \ker(D)$. Donc $\ker(D) = \mathbb{K}_0[X]$.

Chapitre 14

Suites numériques

14.18 Premier théorème de comparaison

Théorème 14.18

Si à partir d'un certain rang on a

$$|u_n - l| \le v_n$$

avec
$$v_n \xrightarrow[n \to +\infty]{} 0$$
, alors $u_n \xrightarrow[n \to +\infty]{} l$.

Soit $u_n \in \mathbb{N}$ tel que :

$$\forall n \geq N_1, |u_n - l| \leq v_n$$

Comme $v_n \xrightarrow[n \to +\infty]{} 0$, pour tout $\epsilon > 0$, on choisit $N_2 \in \mathbb{N}$ tel que :

$$\forall n \ge N_2, |v_n - 0| = |v_n| < \epsilon$$

On pose $N = \max(N_1, N_2)$. Ainsi :

$$\forall n \geq \mathbb{N}, |u_n - l| \leq v_n = |v_n| < \epsilon$$

 $\operatorname{Donc}\left[u_n \underset{n \to +\infty}{\longrightarrow} l\right]$

14.22 Unicité de la limite

Propostion 14.22

Si u admet une limite $l \in \mathbb{R}$, alors celle-ci est unique.

On suppose que u admet comme limite l et l' dans \mathbb{R} . Soit $\epsilon > 0$. On choisit N et N' dans \mathbb{N} tels que :

$$\forall n \ge N, |u_n - l| < \epsilon$$
$$\forall n \ge N', |u_n - l'| < \epsilon$$

Pour tout $n \ge \max(N, N')$:

$$\begin{aligned} |l-l'| &= |l-u_n + u_n - l'| \\ &\leq |l-u_n| + |u_n - l'| \text{ (Inégalité triangulaire)} \\ &< l\epsilon \end{aligned}$$

Nécessairement :

$$|l - l'| = 0$$

14.23 Limite et inégalité

Propostion 14.23

Si u converge vers l et si $\alpha < l$, alors à partir d'un certain rang, $\alpha < u_n$. De la même manière, si $\beta > l$, alors à partir d'un certain rang, $u_n < \beta$.

On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} l$. Soit $\alpha < l$. On pose $\epsilon = \frac{|l-\alpha|}{2}$. D'après la définition, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, |u_n - l| < \epsilon$$

Soit:

$$\forall n \geq N, \underbrace{u_n}_{>\alpha} \in]\underbrace{l-\epsilon}_{>\alpha}, l+\epsilon[$$

14.24 Convergence et bornitude

Propostion 14.24

Une suite convergente est bornée.

Soit u une suite convergente. Notons $l = \lim_{n \to +\infty} u_n$.

On pose $\epsilon =$.

Par définition, soit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l-1, l+1[$$

 $\text{Donc }\{u_n,n\geq N\} \text{ est born\'e. Donc }\{u_n,n\in\mathbb{N}\} = \underbrace{\{u_n,n\in[\![0,N-1]\!]\}}_{\text{ensemble fini}} \cup \underbrace{\{u_n,n\geq N\}}_{\text{born\'e.}} \text{ est born\'e.}$

14.29 Minoration d'une extraction

Lemme 14.29

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ une application strict ement croissante, alors

$$\forall n \in \mathbb{N}, n < \sigma(n).$$

Par récurrence.

Comme $\sigma(0) \in \mathbb{N}$, on a bien $\sigma(0) \geq 0$.

Si $\sigma(n) \ge n$, alors $\sigma(n+1) > \sigma(n) \ge n$.

Donc $\sigma(n+1) \ge n+1$.

14.30 Extraction d'une suite convergente

Propostion 14.30

Toute suite extraite d'une suite qui tend vers $l \in \mathbb{R}$ est une suite convergente vers l.

On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}$ (à adapter pour $l = \pm \infty$)

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ strictement croissante.

On note $v = u \circ \sigma$.

Soit $\epsilon > 0$. Soit $N \in \mathbb{N}$ tel que :

$$\forall n \geq \mathbb{N}, |u_n - l| < \epsilon$$

Pour $n \geq N$, on a :

$$\sigma(n) \underset{(14.29)}{\geq} n \geq N$$

$$\operatorname{donc} |u_{\sigma(n)} - l| < \epsilon$$

$$\operatorname{soit} |v_n - l| < \epsilon$$

$$\operatorname{donc}\left[v_n \underset{n \to +\infty}{\longrightarrow} l\right]$$

14.32 Pair, impair et convergence

Propostion 14.32

Si $\lim u_{2n} = \lim u_{2n+1} = l \in \mathbb{R}$, alors $\lim u_n = l$

Soit $\epsilon > 0$. Soit N_1 et N_2 dans $\mathbb N$ telq que :

$$\forall n \ge N_1, |u_{2n} - l| \le \epsilon$$

$$\forall n \ge N_2, |u_{2n+1} - l| \le \epsilon$$

Or pour $N = \max(2N_1, 2N_2 + 1)$. Soit n > N.

— Si n=2p, alors $p \geq N_1$

$$|u_n - l| = |u_{2p} - l| \le \epsilon$$

— Si n = 2p + 1, alors $p \ge N_2$

$$|u_n - l| = |u_{2p+1} - l| \le \epsilon$$

Dans tous les cas, $|u_n - l| \le \epsilon$

14.34 Opérations usuelles sur les limites

Théorème 14 34

Soit u et v deux suites qui convergent respectivement vers l et l' et soit $\lambda \in \mathbb{R}$, alors

- u + v converge ver l + l'
- λu converge vers λl
- uv converge vers ll'
- Si $l \neq 0$, alors à partir d'un certain rang, la suite des termes u_n sont tous nuls et la suite $\frac{1}{u}$ converge vers $\frac{1}{l}$
- Soit $n \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, |u_n - l| \le \epsilon \text{ et } |v_n - l'| \le \epsilon$$

Donc:

$$\forall n \in \mathbb{N}, |u_n + v_n - (l + l')| \le |u_n - l| + |v_n - l'| \text{ (Inégalité triangulaire)} < \epsilon$$

- RAS $(\lambda = 0 \text{ et } \lambda \neq 0)$
- Comme u converge, u est bornée. Soit $M \in \mathbb{R}_+$ tel que :

$$\forall n \in N, |u_n| \leq M$$

Pour $n \in \mathbb{N}$:

$$\begin{aligned} |u_n v_n - ll'| &= |u_n v_n - u_n l' + u_n l' - ll'| \\ &\leq |M||v_n - l'| + |l'| \times |u_n - l| \\ &\leq M \times \epsilon + |l'| \times \epsilon \\ &= (M + |l'|) \times \epsilon \end{aligned}$$

Donc
$$u_n v_n \xrightarrow[n \to +\infty]{} ll'$$
.

— On suppose $l \neq 0$. D'après (14.23), à partir d'un certain rang $u_n > 0$ (ou $u_n < 0$). Il existe en outre $N \in \mathbb{N}$ tel que :

$$0 < \frac{l}{2} < u_n \text{ et } |u_n - l| < \epsilon$$

Pour $n \ge N$:

$$\left| \frac{1}{u_n} - \frac{1}{l} \right| = \frac{|l - u_n|}{|u_n l|}$$

$$\leq 2 \frac{|l - u_n|}{l^2}$$

$$< \frac{2\epsilon}{l^2}$$

14.35 Conservation des inégalités larges par passage à la limite

Théorème 14.35

Soit u et v deux suites réelles. Si u converge vers l et v converge vers l' et si à partir d'un certain rang $u_n \le v_n$ alors $l \le l'$.

On raisonne par l'absurde : $l>l^{\prime}.$

On pose $\epsilon = \frac{|l'-l|}{2}$.

On choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$
 et $v_n \in]l' - \epsilon, l' + \epsilon[$

En particulier:

$$\forall n \geq N, u_n > v_n$$

Absurde.

14.37 Théorème d'encadrement

Théorème 14.37

Soit u, v et w trois suites réelles. Si u et v convergent vers l et si à partir d'un certain rang, $u_n \le w_n \le v_n$, alors w converge vers l.

Soit $\epsilon > 0$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in]l - \epsilon[$$
 et $v_n \in]l - \epsilon, l + \epsilon[$

A partir d'un certain rang M, par connexité de l'intervalle $]l - \epsilon, l + \epsilon[$:

$$\forall n \geq M, w_n \in]l - \epsilon, l + \epsilon[$$

14.38 Produit d'une suite bornée par une limite nulle

Théorème 14 38

Soit u et v deux suites réelles. Si u converge vers 0 et si v est bornée, alors w converge vers 0.

Soit $M \in \mathbb{R}_+$ telq ue:

$$\forall n \in \mathbb{N}, |v_n| \leq M$$

Alors:

$$\forall n \in \mathbb{N}, |u_n v_n| \le M \times |u_n| \underset{n \to +\infty}{\longrightarrow} 0$$

Donc:

$$|u_n v_n| \underset{n \to +\infty}{\longrightarrow} 0$$

Soit:

$$u_n v_n \xrightarrow[n \to +\infty]{} 0$$

14.39 Exemple

Exemple 14.39

Soit (u_n) une suite strictement positive et $\eta \in]0;1[$. On suppose qu'à partir d'un certain rang, on a $\frac{u_{n+1}}{u_n} \leq \eta$. Alors $\lim u_n = 0$.

On suppose que :

$$\forall n \ge n_0, \frac{u_{n+1}}{u_n} \le 2$$

Donc $(u_n > 0)$:

$$\forall n \ge n_0, 0 < u_n < \underbrace{\eta^{n-n_0}}_{\substack{n \to +\infty}} \times u_{n_0}$$

Par encadrement:

$$\boxed{u_n \underset{n \to +\infty}{\longrightarrow} 0}$$

14.40 Comparaison puissance factorielle

Théorème 14.40

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} \frac{x^n}{n!} = 0.$$

Pour $x \in \mathbb{R}$ fixé, non nul.

On note pour tout $n \in \mathbb{N}$:

$$u_n = \frac{|x|^n}{n!} > 0$$

Or:

$$\frac{u_{n+1}}{u_n} = \frac{|x|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

A partir d'un certain rang:

$$\frac{u_{n+1}}{u_n} \le \frac{1}{2}$$

Donc (14.39):

$$u_n \underset{n \to +\infty}{\longrightarrow} 0$$

14.41 Caractérisation séquentielle de la borne supérieure

Théorème 14.41

Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$. Alors M est la borne supérieure (resp. inférieure) de A si et seulement si M majore (resp. minore) A et s'il existe une suite d'éléments de A qui converge vers M.

 \Rightarrow

On suppose que $M = \sup A$. Donc M majore A.

On rappelle que:

$$\forall \epsilon > 0, \exists a \in A, M - \epsilon < a$$

Donc:

$$\forall n \in \mathbb{N}, \exists a \in A, M - \frac{1}{n+1} < a_n \leq M \ (M \text{ est un majorant})$$

D'après la suite $(a_n) \in A^{\mathbb{N}}$ étant ainsi définie, d'après le théorème d'encadrement :

$$a_n \xrightarrow[n \to +\infty]{} M$$

On choisit $(a_n) \in A^{\mathbb{N}}$ telle que :

$$a_n \xrightarrow[n \to +\infty]{} M$$
 (majorant de A)

Soit $\epsilon > 0$. On choisit $a_n \in A$ tel que:

$$a_n \in]M - \epsilon, M + \epsilon[$$

Donc $M - \epsilon$ ne majore pas A.

Donc:

$$M = \sup A$$

Caractérisation séquentielle de la borne supérieure 14.42

Soit A une partie non vide de \mathbb{R} , alors A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite d'éléments de A qui converge vers x.

 \Rightarrow

On suppose que A est dense dans \mathbb{R} . Soit $x \in \mathbb{R}$.

$$\forall \epsilon > 0, \exists a \in A, a \in]x - \epsilon, x + \epsilon[$$

En particulier:

$$\forall n \in \mathbb{N}, \exists a_n \in A, x - \frac{1}{n+1} < a_n < x + \frac{1}{n+1}$$

La suite $(a_n) \in A^{\mathbb{N}}$ étant fixée ainsi :

$$a_n \xrightarrow[n \to +\infty]{} x$$
 (théorème d'encadrement)

Soit]x,y[un intervalle non vide de \mathbb{R} . On pose $z = \frac{x+y}{2}$. On pose $\epsilon = \frac{|y-x|}{2}$. On choisit $(a_n) \in A^{\mathbb{N}}$ telle que :

$$a_n \xrightarrow[n \to +\infty]{} z$$

On choisit $N \in \mathbb{N}$ tel que :

$$a_n \in]z - \epsilon, z + \epsilon[=]x, y[$$

Donc:

$$A\cap]x,y[\neq\emptyset$$

Théorème de comparaison 14.48

Soit u et v deux suites réelles.

- 1. Si $\lim u = +\infty$ et si à partir d'un certain rang on a $u_n \le v_n$, alors $\lim v = +\infty$;
- 2. Si $\lim v = -\infty$ et si à partir d'un certain rang on a $u_n \le v_n$, alors $\lim u = -\infty$;
- 3. Si $\lim u = +\infty$ (resp. $-\infty$) et si v est minorée (resp. majorée), alors $\lim u + v = +\infty$ (resp. $-\infty$).

1. Soit $A \geq 0$. On choisit $n \in \mathbb{N}$ tel que :

$$\forall n \geq N, A \leq u_n \text{ et } u_n \leq v_n$$

Donc:

$$\begin{array}{c|c}
v_n & \longrightarrow +\infty \\
 & \\
n \to +\infty
\end{array}$$

- 2. RAS
- 3. Si (v_n) est minorée, alors à partir d'un certain rang :

$$m + u_n \le u_n + v_n$$

En adaptant le premier point (A' = A - m), on a :

$$u_n + v_n \xrightarrow[n \to +\infty]{} + \infty$$

Limites infinies et opérations 14.49

Soit u et v deux suites réelles de limites respectives l et l' dans $\overline{\mathbb{R}}$ et soit $\lambda \in \mathbb{R}$. On a

- $\lim u + v = l + l'$ (sauf si $l = +\infty$ et $l' = -\infty$ ou inversement)
- $\lim \lambda u = \lambda l$ sauf si $\lambda = 0$ auquel cas la suite λu est la suite nulle.
- $\lim u \times v = l \times l'$ sauf si $\lambda = 0$ et $l' = \pm \infty$ ou inversement
- Si à partir d'un certain rang, la suite u ne s'annule pas, alors la suite $\frac{1}{u}$:
 - si $l \in \mathbb{R}^*$, tend vers \bar{l} ;
 - si $l = \pm \infty$, tend vers 0;
 - si l = 0 et $u_n > 0$, tend vers $+\infty$;
 - si l = 0 et $u_n < 0$, tend vers $-\infty$;
 - n'a pas de limite dans les autre cas
- On suppose $l' \in \mathbb{R}$ et $l = +\infty$. Donc v est bornée. Donc (14.48):

$$u_n + v_n \xrightarrow[n \to +\infty]{} +\infty$$

- $-\lambda \neq 0, \lambda > 0$ et $l = +\infty$. Pour $A \in \mathbb{R}$, on choisit un rang à partir duquel $u_n > \frac{A}{\lambda}$.
- On suppose l > 0 et $l' = +\infty$.

Comme $u_n \underset{n \to +\infty}{\longrightarrow} l$, alors à partir d'un certain rang, $u_n > m$ avec $m = \begin{cases} 1 \text{ si } l = +\infty \\ \frac{l}{2} \text{ sinon} \end{cases}$

$$u_n v_n > m v_n \xrightarrow[n \to +\infty]{} +\infty$$

Donc:

$$u_n v_n \xrightarrow[n \to +\infty]{} +\infty$$
 (14.48)

 $-l = +\infty.$

Soit $\epsilon > 0$, à partir d'un certain rang :

$$u_n > \frac{1}{\epsilon} > 0$$

Donc:

$$0 < \frac{1}{u_n} < \epsilon$$

$$\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} 0$$

Si l = 0 et $u_n > 0$ à partir d'un certain rang. Pour $A \in \mathbb{R}_+^*$, à partir d'un certain rang :

$$u_n > 0$$
 et $u_n < \frac{1}{A}$
donc $\frac{1}{u_n} > A$
 $\frac{1}{u_n} \underset{n \to +\infty}{\longrightarrow} +\infty$

14.50 Théorème de la limite monotone

Théorème 14.50

Si u est une suite croissante et majorée (resp. décroissante et minorée), alors u converge vers $\sup_{n\in\mathbb{N}}(u_n)$ (resp. vers $\inf_{n\in\mathbb{N}}(u_n)$).

Si u est une suite croissante et non majorée (resp. décroissante et non minorée) alors u tend vers $+\infty$ (resp. vers $-\infty$).

— On suppose u croissante et majorée.

L'ensemble $A = \{u_n | n \in \mathbb{N}\}$ est non vide et majoré. Cet ensemble possède une borne supérieure notée l (propriété fondamentale de \mathbb{R}).

Soit $\epsilon >$. Comme $l - \epsilon < u_n$ ne majore pas A, on choisit $N \in \mathbb{N}$ tel que $l - \epsilon < u_n$.

Or (u_n) est croissante donc :

$$\forall n \ge N, l - \epsilon < u_N \le u_n \le l$$

Donc:

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$

Soit:

$$u_n \underset{n \to +\infty}{\longrightarrow} l$$

— On suppose u croissante et non majorée. Soit $A \in \mathbb{R}_+$. Soit $N \in \mathbb{N}$ tel que :

$$u_N \ge A \ (u \text{ non major\'ee})$$

Donc:

$$\forall n \geq N, A \leq u_N \leq u_n \ (u \text{ croissante})$$

Soit:

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.54 Exemple

Exemple 14.54

Soit u et v les suites définies par

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \frac{1}{k!} \text{ et } v_n = u_n + \frac{1}{n \times n!}$$

Ces deux suites sont adjacentes.

$$\forall n \in \mathbb{N}^*, u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$$

Donc (u_n) est croissante.

$$\forall n \in \mathbb{N}^* v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{n!} \left[\frac{1}{n+1} + \frac{1}{(n+1)^2} - \frac{1}{n} \right]$$

$$= \frac{1}{n!(n+1)^2 n} [(n+1)n + n - (n+1)^2]$$

$$= -\frac{1}{n!(n+1)^2 n}$$

$$\leq 0$$

$$\forall n \in \mathbb{N}^*, v_n - u_n = \frac{1}{n \times n!}$$

Donc:

$$v_n - u_n \xrightarrow[n \to +\infty]{} 0$$

Donc u et v sont adjacentes et convergent alors vers une limite commune. (TCSA)

14.55 Convergence des suites adjacentes

Théorème 14.55

Deux suites adjacentes convergent vers une limite commune.

Soit u et v deux suites adjacentes avec u croissante et v décroissante.

Soit w = v - u. Par opération, w est décroissante.

Par hypothèse:

$$w_n \underset{n \to +\infty}{\longrightarrow} 0$$

Donc $w \le 0$, soit $u \le v$.

La suite u est donc majorée par v_0 , et croissante donc convergente d'après le théorème de la limite monotone. Pour les mêmes raisons, v converge.

Or, par théorème d'opérations :

$$\lim_{n \to +\infty} v_n - \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (v_n - u_n) = 0$$

14.56 Théorème de Bolzano-Weierstrass

${ m Th\'eor\`eme}~14.56$

On peut extraire de toute suite réelle bornée une suite convergente.

Soit u une suite bornée. On note a et b un minorant et majorant de u. On construit deux suites (a_n) et (b_n) par récurrence de la manière suivante :

- On initialise $a_0 = a$ et $b_0 = b$.
- Si l'intervalle $\begin{bmatrix} a_0, \frac{a_0+b_0}{2} \end{bmatrix}$ contient une infinité de valeurs de la suite (u_n) , alors $a_1 = a_0$ et $b_1 = \frac{a_0+b_0}{2}$. Sinon, l'intervalle $\begin{bmatrix} \frac{a_0+b_0}{2}, b_0 \end{bmatrix}$ contient une infinité de valeurs, alors $a_1 = \frac{a_0+b_0}{2}$ et $b_1 = b_0$. On note $\sigma(0) = 0$ et comme $[a_1, b_1]$ contient une infinité de valeurs, on dixe $u_{n_1} \in [a_1, b_1]$ avec $n_1 > 0$. On pose alors $\sigma(1) = n_1$.
- Supposons construits (a_n) , (b_n) et σ avec le principe précédent :

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = a_n \text{ et } b_{n+1} = \frac{a_n + b_n}{2} \\ \text{ou} \\ a_{n+1} = \frac{a_n + b_n}{2} \text{ et } b_{n+1} = b_n \end{cases}$$

Selon que $\left[a_n, \frac{a_n+b_n}{2}\right]$ contient une infinité de valeurs ou $\left[\frac{a_n+b_n}{2}, b_n\right]$ et v(n+1) > v(n) et $u_{\sigma(n+1)} \in [a_{n+1}, b_{n+1}]$.

$$\forall n \in \mathbb{N}, a_n \leq u_{\sigma(n)} \leq b_n$$

$$\forall n \in \mathbb{N}, |b_{n+1} - a_{n+1}| = \frac{|b_n - a_n|}{2}$$

$$\forall n \in \mathbb{N}, |b_n - a_n| = \frac{|b_0 - a_0|}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$$

Donc (a_n) et (b_n) sont adjacentes donc convergent vers la même limite (TCSA) donc $(u_{\sigma(n)})$ converge (TE).

14.63 Exemple

Exemple 14.63

La suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + e^{u_n}$ diverge vers $+\infty$.

 R_+ est stable par $f: x \mapsto x + e^x$. Comme $0 \in \mathbb{R}_+$, la suite (u_n) est bien définie.

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n) = u_n + e^{u_n} \ge u_n$$

Donc (u_n) est croissant.

Supposeons que $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+$.

Par théorème d'opération, $l = l + e^l$.

Absurde.

Donc d'après le TLM :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.64 Exemple

Exemple 14.64

La suite (u_n) défine par $u_0=1$ et pour tout $n\in\mathbb{N}, u_{n+1}=\frac{u_n}{1+u_n^2}$ converge vers 0.

[0,1] est stable par $f: x \mapsto \frac{x}{x^2+1}$ et $1 \in [0,1]$.

Donc (u_n) est bien définie et est minorée.

Or:

$$\forall n \in \mathbb{N}, u_{n+1}) f(u_n) = \frac{u_n}{u_n^2 + 1} \le u_n$$

Donc (u_n) est décroissante donc converge vers $l \in [0,1]$ d'après le TLM. Par théorème d'opération :

$$l = \frac{l}{l^2 + 1}$$

donc
$$l^2 = 0$$

donc
$$l=0$$

14.66 Monotonie d'une suite récurrente définie par une relation $u_{n+1} = f(u_n)$

Théorème 14.66

Soit D une partie de \mathbb{R} , $u_0 \in D$ et $f: D \to D$ une fonction (autrement dit, D est stable par f). On note (u_n) l'unique suite définie sur \mathbb{N} par $u_{n+1} = f(u_n)$.

- 1. Si pour tout $x \in D$, $f(x) \ge x$, alors (u_n) est croissante. Si pour tout $x \in D$, $f(x) \le x$, alors (u_n) est décroissante. Le signe de la fonction $x \mapsto f(x) x$ renseigne donc sur la monotonie de la suite (u_n) .
- 2. Si f est croissante, alors (u_n) est monotone. Son sens de variation dépend alors du signe de $u_1 u_0$.
- 3. Si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraires. Leur sens de variation est entièrement déterminé par le signe de $u_2 u_0$.
- 1. Si:

$$\forall n \in D, f(x) \ge x$$

Alors:

$$\forall n \in \mathbb{N}, f(u_n) = u_{n+1} > u_n$$

Donc (u_n) est croissante.

2. On suppose f croissate et $u_0 \leq u_1$. Alors :

$$u_1 = f(u_0) \le f(u_1) = u_2$$

On termine par récurrence.

3. Si f est décroissante, alors $f^2 = f \circ f$ est croissante. Or :

$$\forall n \in \mathbb{N}, u_{2n+2} = f^2(u_{2n})$$
$$u_{2n+1} = f^2(u_{2n-1})$$

Donc (14.66.2) (u_{2n}) et (u_{2n+1}) sont monotones. Or, si $u_2 \le u_0$, alors $u_3 = f(u_2) \le f(u_0) = u_1$

14.68 Exemple

Exemple 14.68

On note (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + u_n$ et notons $f : x \mapsto 1 + \frac{1}{x}$. Etudier la convergence de la suite (u_n) .

 \mathbb{R}_+ est stable par $f: x \mapsto x^2 + x$ et $1 \in \mathbb{R}_+$.

Donc (u_n) est bien définie.

Comme:

$$\forall x \in \mathbb{R}_+, f(x) - x > 0$$

 (u_n) est croissante.

On suppose que:

$$u_n \xrightarrow[n \to +\infty]{} l \ge 1 = u_0$$

Comme $f \in \mathcal{C}^{\infty}(\mathbb{R}_+, \mathbb{R}_+)$.

On a f(l) = l donc $l^2 = 0$.

Absurde.

Donc, d'après le ${\rm TLM}$:

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

14.69 Exemple

Exemple 14.69

On note (u_n) la suite définie apr $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 + \frac{1}{u_n}$, et notons $f : x \mapsto 1 + \frac{1}{x}$. Etudier la convergence de la suite (u_n) .

[1,2] est stable par $f: x \mapsto 1 + frac1x$ et $1 \in [1,2]$.

Donc (u_n) est bien définie et est bornée.

Comme f est décroissante sur [1,2], (u_{2n}) et (u_{2n+1}) sont monotones de monoties contraires.

Comme $u_0 = 1 = \min([1, 2]), (u_{2n})$ est croissante et (u_{2n+1}) décroissante, puis convergentes (TLM) vers des points fixes de f^2 (car f^2 est continue sur [1, 2])

Soit $x \in [1, 2]$.

$$f^{2}(x) = x \Leftrightarrow 1 + \frac{1}{1 + \frac{1}{x}} = x$$

$$\Leftrightarrow x + 1 + x = x(x + 1)$$

$$\Leftrightarrow x^{2} - x - 1 = 0$$

$$\Leftrightarrow \left(x - \underbrace{\frac{1 + \sqrt{5}}{2}}_{\in [1, 2]}\right) \left(x - \underbrace{\frac{1 - \sqrt{5}}{2}}_{\notin [1, 2]}\right) = 0$$

$$\Leftrightarrow x = \frac{1 + \sqrt{5}}{2}$$

Donc (u_{2n}) et (u_{2n+1}) convergent nécessairement vers $\frac{1+\sqrt{5}}{2}$. Donc :

$$u_n \underset{n \to +\infty}{\longrightarrow} \frac{1 + \sqrt{5}}{2}$$

14.72 Convergence et parties réelles et imaginaires

Théorème 14.72

Soit u une suite complexe et $l \in \mathcal{C}$. Alors la suite u converge vers l si et seulement si la suite $(Re(u_n))$ converge vers Re(l) et $(Im(u_n))$ converge vers Im(l).

 \Rightarrow

Pour tout $n \in \mathbb{N}$:

$$|Re(u_n) - Re(l)| \le |u_n - l| \underset{n \to +\infty}{\longrightarrow} 0$$

 $|Im(u_n) - Im(l)| \le |u_n - l| \underset{n \to +\infty}{\longrightarrow} 0$

Ainsi, $Im(u_n) \underset{n \to +\infty}{\longrightarrow} Im(l)$ et $Re(u_n) \underset{n \to +\infty}{\longrightarrow} Re(l)$.

← On a :

$$|u_n - l| = \sqrt{(Im(u_n) - Im(l))^2 + (Re(u_n) - Re(l))^2}$$

$$\underset{n \to +\infty}{\longrightarrow} 0 \text{ (théorème d'opérations)}$$

14.73 Théorème de Bolzano-Weierstrass pour les suites complexes

Remarque 14.73

Si u est bornée, on peut en extraire une suite convergente (Bolzano-Weierstrass).

```
\begin{array}{l} u_n=a_n+b_n \ {\rm born\acute{e}e}.\\ (a_n)\ {\rm et}\ (b_n)\ {\rm sont}\ {\rm born\acute{e}s}.\\ (a_n)\ {\rm born\acute{e}\'e}\ {\rm donc}\ (a_{\sigma(n)})\ {\rm converge}.\\ (b_{\sigma(n)})\ {\rm born\acute{e}\'e}\ {\rm donc}\ (b_{\sigma\circ\varphi(n)})\ {\rm converge}.\\ (a_{\sigma\circ\varphi(n)})\ {\rm extraite}\ {\rm de}\ (a_{\sigma(n)})\ {\rm donc}\ {\rm converge}.\\ (u_{\sigma\circ\varphi(n)})\ {\rm converge}. \end{array}
```

Chapitre 15

Limites et continuité

Limite en un point du domaine 15.6

Si $a \in X$ et si f(x) admet une limite finie en a, alors cette limite est nécessairement égale à f(a).

Comme f(x) admet une limite finie b quand $x \to a$:

$$\forall \epsilon, \exists \nu > 0, \forall x \in X, |x - a| \le \nu \Rightarrow |f(x) - b| \le \epsilon$$

Or pour tout $\epsilon > 0$:

$$|a-a| \le \nu$$
 (quelque soit ν)

Donc:

$$\forall \epsilon, |f(a) - b| \le \epsilon$$

Donc |f(a) = b|

15.15 Comparaison des limites de deux fonctions coincidant au voisinage de a

Soit f et g deux fonctions coincidant au voisinage d'un point a. Alors, si f admet une limite (finie ou infinie) en a, alors g aussi et

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

On choisit $W \in \mathcal{V}(a)$ tel que $W \cap X = W \cap Y$ et $f|_{W \cap X} = g|_{W \cap Y}$. Soit $b \in \mathbb{R}$ tel que f(x) tend vers b quand $x \to a$.

Soit $V \in \mathcal{V}(b)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V$$

Or

$$W \cap U \in \mathcal{V}(a)$$
 et $\subset f(W \cap U \cap X)_{g(W \cap U \cap Y)} \subset V$

Donc g admet une limite en a égale à b

15.17Unicité de la limite, cas réel

Soit $a \in \overline{X}$ et f une fonction réelle. Sous réserve d'existence, la limite de f(x), lorsque x tend vers a est

Par l'absurde. On suppose que f possède deux limites $l \neq l'$ en a.

On choisit $u \in \mathcal{V}(l)$ et $u' \in \mathcal{V}(l')$ tels que $u \cap u' = \emptyset$.

Par définition, on choisit $(W, W') \in \mathcal{V}(a)^2$ tels que $f(W \cap X) \subset U$ et $f(W' \cap X) \subset U'$. Or $W \cap W' \notin \mathcal{V}(a)$ et $f(W \cap W' \cap X) \subset U \cap U' = \emptyset$.

Or
$$\underbrace{W \cap W'}_{\neq \emptyset} \notin \mathcal{V}(a)$$
 et $f(\underbrace{W \cap W' \cap X}_{\neq \emptyset}) \subset U \cap U' = \emptyset$

Absurde.

15.23Propostion

Soit $a \in \overline{X}$. Soit $(Z_i)_{i \in I}$ une famille **finie** de sous-ensembles de \mathbb{R} tels que $X \in \bigcup Z_i$ (on dit que (Z_i) est un **recouvrement** de X). La fonction f admet au point a une limite ℓ (finie ou infinie) si et seulement si pour tout i tel que la limite de f en a sur Z_i est envisageable, cette limite existe et vaut ℓ .

Soit
$$V \in \mathcal{V}(\ell)$$
. On choisit $U \in \mathcal{V}(a)$ tel que $f(U \cap X) \subset V$.
EN particulier $f(U \cap X \cap Z_i) \subset V = f|_{Y \cap Z_i} (U \cap X \cap Z_i)$.

EN particulier
$$f(\underbrace{U \cap X \cap Z_i}) \subset V = f|_{X \cap Z_i} (U \cap X \cap Z_i).$$

$$\Leftarrow$$

Notons $J \subset I$ l'ensemble des indices pour lesquels la limite est envisageable en Z_i .

Soit $V \in \mathcal{V}(\ell)$. Pour tout $i \in J$, comme $\lim_{x \to ax \in Z_i} = \ell$ on choisit $U_i \in \mathcal{V}(a)$ tel que $f|_{Z_i \cap X} (U_i \cap Z_i \cap X) \subset V$.

On pose $U = \bigcap_{i \in J} U_i \in \mathcal{V}(a)$ car J est fini.

On choisit
$$U' \in \mathcal{V}(a)$$
 tel que $U' \cap \left(\bigcup_{i \in I \setminus J} Z_i\right) = \emptyset$.

$$f(U \cap U' \cap X) \subset V$$

$$f(U\cap U'\cap X)\subset V$$
 Donc
$$\lim_a f=\ell$$
.

Composition de limites 15.30

Soit $f: X \to \mathbb{R}, g: Y \to \mathbb{R}$ deux fonctions avec $f(X) \subset Y$. Soit $a \in \overline{X}, b \in \overline{Y}$ et $c \in \overline{\mathbb{R}}$. Si $\lim_{x \to \infty} f = b$ et si $\lim_{b} g = c$, alors $\lim_{a} g \circ f = c$.

Soit $W \in \mathcal{V}(c)$. On choisit $V \in \mathcal{V}(b)$ tel que :

$$g(V \cap Y) \subset W$$

On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U\cap X)\subset V\cap Y\ (\lim_a f=b)$$

On a alors:

$$g \circ f(U \cap X) \subset W$$

15.32 Limites et inégalités strictes

Soit $f: X \to \mathbb{R}$, $a \in \overline{X}$, $m \in \mathbb{R}$ et $M \in \mathbb{R}$.

- 1. Si $\lim_{a} f < M$ alors f(x) < M au voisinage de a
- 2. Si $\lim_{x \to a} f > m$ alors f(x) > m au voisinage de a.
- 1. Notons $b = \lim_{M \to \infty} f \in \mathbb{R}$. Si b < M, on choisit $U \in \mathcal{V}(b)$ et $U' \in \mathcal{V}(M)$ avec U < U'. Comme $\lim_{a} f = b$, on choisit $W \in \mathcal{V}(a)$ tel que :

$$f(W \cap X) \subset U$$

Limite et inégalités larges 15.33

Soit $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$ deux fonctions et $a \in \overline{X}$. On suppose que f et g possède des limites finies

Si $f(x) \leq g(x)$ au voisinage de a, alors $\lim_{x \to a} f \leq \lim_{x \to a} g$.

Ce résultat est le plus souvent utilisé lorsqu'une des deux fonctions est constante.

RAF : absurde + (15.32)

15.34 Caractérisations séquentielle de la limite d'une fonction

Soit $f:X\to\mathbb{R}$ une fonction et $a\in\overline{X}$ et $\ell\in\overline{\mathbb{R}}$. Sont équivalentes :

1.
$$\lim_{a} f = \ell \Leftrightarrow \forall u_n \to a, \lim_{n \to a} f(u_n) = \ell (= f(\lim_{n \to a} u_n))$$

2. Pour toute suite (u_n) de limite a à valeurs dans X, la suite $(f(u_n))$ a pour limite ℓ .

$$1 \Rightarrow 2$$

On suppose que $\lim_{a} f = \ell$. Soit $(u_n) \in X^{\mathbb{N}}$ avec $u_n \xrightarrow[n \to +\infty]{} a$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V \ (\lim_{a} f = \ell)$$

Comme $u_n \xrightarrow[n \to +\infty]{} a$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n > N, u_n \in U \cap X$$

Donc:

$$\forall n \geq N, f(u_n) \in V$$

Donc:

$$f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$$

$$1 \Leftarrow 2$$

Par contraposée. On suppose que f n'admet pas ℓ comme limite en a. Pour tout $n \in \mathbb{N}$, on note :

$$V_n = \begin{cases} \left[a - \frac{1}{n+1}, a + \frac{1}{n+1} \right] & \text{si } a \in \mathbb{R} \\ \left[n, +\infty \right] & \text{si } a = +\infty \\ \left[-\infty, -n \right] & \text{si } a = -\infty \end{cases}$$

Par définition, il existe $W \in \mathcal{V}(\ell)$ tel que pour tout $V \in \mathcal{V}(a)$, il existe $x \in V \cap X$ et $f(x) \neq W$. Pour tout $n \in \mathbb{N}$, on choisit $x_n \in V_n \cap X$ tel que $f(x_n) \neq W$. Par construction:

$$(x_n) \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a \text{ et } f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

15.39 Théorème de la limite monotone

Théorème 15.39

Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b et $f : [a, b] \to \mathbb{R}$ une fonction croissante.

- 1. La limite $\lim_{a^+} f$ existe et est finie. Plus précisément, on a $f(a) \leq \lim_{a^+} f$.
- 2. Pour tout $c \in]a,b[$, $\lim_{c^-} f$ et $\lim_{c^+} f$ existent et sont finies. Plus précisément : $\lim_{c^-} f \leq f(c) \leq \lim_{c^+} f$.
- 3. La limite $\lim_{h} f$ existe et est soit finie, soit égale à $+\infty$.
- 1. On note F = f(]a, b[). Comme f est définie au voisinage de a, $]a, b[\neq \emptyset \text{ et } F \neq \emptyset \text{.}$

Par ailleurs, comme f est croissante sur a, b, F est minorée par f(a).

D'après la propriété fondamentale de \mathbb{R} , F possède une borne inférieure notée α , avec $f(a) \leq \alpha$. Montrons par définition que $\lim f = \alpha$.

Soit $\epsilon > 0$, $\alpha + \epsilon$ n'est pas un minorant de F par définition de α . On choisit :

$$\alpha \le f(x_0) < \alpha + \epsilon$$

Par croissance de f sur a, b:

$$\forall x \in]a, x_0[, \alpha \le f(x) \le f(x_0) < \alpha + \epsilon$$

On pose $\eta = x_0 - a > 0$, on a montré que :

$$\forall x \in]a - \eta[\cap]a, b[, |f(x) - \alpha| < \epsilon]$$

2. Pour $c \in]a,b[$, en appliquant (15.39.1) à $f|_{[a,b[},$ on montre que $\lim_{c^+} f$ existe et $f(x) \leq \lim_{x^+} f$.

On adapte ensuite la preuve de $\left(15.39.1\right)$:

$$F = f(a, c), \alpha = \sup(F)$$

pour montrer que $\lim_{x \to a} f$ existe et

- 3. Par disjonction de cas.
 - Si f est majorée : on adapte la 2ème partie de (15.39.2).
 - Si f n'est pas majorée. Soit $A \in \mathbb{R}$. Comme f n'est pas majorée, on choisit $x_0 \in]a, b[$ tel que $f(x_0) > A$. Comme f est croissante :

$$\forall x > x_0, f(x) > A$$

Donc $\lim_{h} f = +\infty$.

15.59 Théorème des valeurs intermédiaires : version 1

Théorème 15.59

Soit f une fonction continue sur un intervalle I d'extrémité a et b dans $\overline{\mathbb{R}}$ (avec existence des limites dans le cas des bornes infinies). Alors si f(a) > 0 et f(b) < 0 (ou l'inverse), il exsite $c \in]a,b[$, tel que f(c) = 0.

On note $A = \{x \in I, f(x) > 0\}.$

- $A \neq \emptyset$ car f est définie et strictement positive au voisinage de a (15.32).
- A est majoré car f est strictement négative au voisinage de b (et tout élément dans ce voisinage est un majorant).

D'après la propriété fondamentale de \mathbb{R} , A possède une borne supérieure notée $c \in]a,b[$.

- On a $c \notin A$. En effet, si f(x) > 0, alors f est strictement postivie sur un voisinage de c, et comme f est définie à droite de c, cela contredirait que c'est un majorant de A. Donc $f(c) \leq 0$.
- Si f(c) < 0, alors f est strictement négative au voisinage à gauche de c. Absurde car c est le plus petit des majorants.

Conclusion, f(c) = 0.

15.60 Théorème des valeurs intermédiaires : version 2

Théorème 15.60

Soit f une fonction continue sur un intervalle I et soit $M = \sup_I f(x)$ et $m = \inf_I f(x)$ (éventuellement infinies).

Alors f prend toutes les valeurs de l'intervalle [m; M[:

$$\forall x_0 \in]m; M[, \exists c \in I, f(c) = x_0.$$

RAF: (15.59) à $f - x_0$.

15.61 Théorème des valeurs intermédiaires : version 3

Théorème 15.61

L'image d'un intervalle quelconque par une fonction continue est un intervalle.

Définition d'un intervalle par connexité.

15.65 Théorème de Heine

Théorème 15.65

Une fonction continue sur un segment est uniformément continue sur ce segment.

Rappel:

$$C^{0}(I): \forall x \in I, \forall \epsilon > 0, \exists \eta > 0, \forall y \in I, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

$$Cu(I): \forall \epsilon > 0, \exists \eta > 0, \forall (x, y) \in I^{2}, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

On raisonne par l'absurde. Soit f continue sur [a,b] mais non uniformément continue sur [a,b]. On choisit ϵ tel que :

$$\forall \eta > 0, \exists (x, y) \in [a, b]^2, |x - y| < \eta \text{ et } |f(x) - f(y)| \ge \epsilon$$

Ainsi, pour tout $b \in \mathbb{N}^*$, on choisit un couple $(x_n,y_n) \in [a,b]^2$ tel que :

$$|x_n - y_n| < \frac{1}{n} \text{ et } \underbrace{|f(x_n) - f(y_n)|}_{(*)} \ge \epsilon$$

En particulier (x_n) est bornée donc d'après le théorème de Bolzano-Weierstrass, on en extrait $(x_{\varphi(n)})$ suite convergente vers ℓ .

D'après le TCILPPL, $\ell \in [a, b]$.

Comme:

$$\forall n \in \mathbb{N}, |x_{\varphi(n)} - y_{\varphi(n)}| < \frac{1}{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} 0$$

Alors:

$$y_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell$$

Par continuité:

$$f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell)$$
 et $f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell)$

Donc par opération:

$$|f(x_{\varphi(n)}) - f(y_{\varphi(n)})| \underset{n \to +\infty}{\longrightarrow} 0$$

Absurde d'après (*).

15.67 Caractérisation des intervalles compacts

Lemme 15.67

Les intervalles compacts de $\mathbb R$ sont exactement les segments, c'est-à-dire les intervalles fermés bornés [a,b].

Les segments sont bien compacts (BW et TCILPPL).

— Si
$$I =]-\infty, a[$$
,

$$u_n = a - n - 1 \underset{n \to +\infty}{\longrightarrow} -\infty \notin I$$

$$u_n = a - \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} a \notin I$$

15.68 Image d'un compact par une fonction continue

Lemme 15.68

L'image continue d'un compact est compact.

Soit I un segment, donc un intervalle.

Comme f est continue sur I, f(I) est un intervalle (TVI v3).

Montrons que f(I) est compact.

Soit $(y_n) \in f(I)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, soit $x_n \in I$ tel que :

$$y_n = f(x_n)$$

Or I est compact (15.67), on choisit:

$$x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell \in I$$

 $y_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} f(\ell)$ car f est continue sur I.

15.69 Image d'un segment par une fonction continue

Corollaire 15.69

Soit f continue sur un segment I, alors f(I) est un segment.

$$(15.68) + TVI v3 + (15.67)$$

15.72 Théorème 15.72

Théorème 15.72

Soit I un intervalle et f une fonction continue sur I. Alors f est injective si et seulement si f est strictement monotone.

 \Rightarrow

Supposons f non strictement monotone.

On peut supposer qu'il existe alors :

tels que f(x) < f(y) et f(z) < f(y). Soit :

$$\lambda = \frac{f(y) + \max(f(y), f(z))}{2} \in]f(x), f(y)[$$
$$\in]f(z), f(y)[$$

Par continuité de f sur les intervalles [x, y] et [y, z], il existe $\alpha \in]x, y[$ et $\beta \in]y, z[$ tels que :

$$f(\alpha) = \lambda = f(\beta)$$

Donc f n'est pas injective.

15.73 Théorème 15.73

Théorème 15.73

Soit I un intervalle et f monotone sur I. Si f(I) est un intervalle, alors f est continue sur I.

On suppose f croissante sur I.

On suppose que f n'est pas continue sur I.

On applique le TLM:

$$\forall a \in I, \lim_{a^{-}} f \leq f(a) \leq \lim_{a^{+}} f \text{ (quand tout existe)}$$

Comme f n'est pas continue sur I, on choisit $a \in I$ tel que :

$$\lim_{a^{-}} f < f(a) \text{ ou } f(a) < \lim_{a^{+}} f$$

On pose:

$$\lambda = \frac{f(a) + \lim_{a^-} f}{2} \text{ ou } \lambda = \frac{f(a) + \lim_{a^+} f}{2}$$

 $f(a) \neq \lambda$ et par croissance :

$$\forall x < a, f(x) < \lambda$$

 $\forall x > a, f(x) > \lambda$

Donc $\lambda \notin f(I)$.

Donc f(I) n'est pas connexe, donc f(I) n'est pas un intervalle.

15.76 Théorème de la bijection

Théorème 15.76

Soit I un intervalle d'extrémités a et b. Soit $f:I\to\mathbb{R}$ strictement monotone et continue. Soit

$$\alpha = \lim_{x \to a} f(x)$$
 et $\beta = \lim_{x \to b} f(x)$.

(ces limites existent car f et monotone). Alors f(I) est un intervalle d'extrémité α et β , et f est un homémorphisme de I sur f(I).

Plus précisément, la borne α de f(I) est ouverte si et seulement si la borne a de I est ouverte (et de même pour β).

- f(I) est un intervalle : (15.61).
- f induit une bijection de I sur f(I) (15.72 $\overline{\leftarrow}$).
- f^{-1} est strictement monotone et définie sur $\overline{f}(I)$ intervalle, d'image I intervalle donc f^{-1} est continue sur f(I) (15.73 \Longrightarrow).

Ainsi, f induit un homéomorphisme de I sur f(I).

La nature des bornes (fermées ou ouvertes) provient de la monotonie de f.

Chapitre 16

Arithmétique des polynômes

Division euclidienne 16.1

Théorème 16.1

Soit $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X]$ non nul, il existe un unique couple de polynômes (Q, R) tel que A = BQ + Ravec $\deg R < \deg B$. Le polynôme Q est appelé **quotient** et R le **rest**e.

Existence:

On raisonne par récurrence sur le degré de A.

- Pour $n = \deg A = 0$. Soit $A \in \mathbb{K}[X]$.
 - Si $\deg B > 0$, alors (0, A) convient.
 - Si deg B=0, le couple $(B^{-1}\times A,0)$ convient (comme B est constant et non nul), alors $B\in\mathbb{K}^*$ donc inversible).
- On suppose le résultat vrai pour tout $A \in \mathbb{K}_n[X]$.

Soit
$$A \in \mathbb{K}_{n+1}[X]$$
 avec $\deg A = n+1$.
On écrit $A = \underbrace{a}_{\neq 0} X^{n+1} + A_1$ avec $A_1 \in \mathbb{K}_n[X]$.

- Si $\deg A < \deg B$, le couple (0, A) convient.
- Si $\deg A \ge \deg B$ et on note b le coefficient dominant de B :

$$A - ab^{-1}B \times X^{n+1-\deg B} \in \mathbb{K}_n[X]$$

D'après l'hypothèse de récurrence, on choisit $(Q,R) \in \mathbb{K}[X]^2$ tel que $\deg R < \deg B$ et $A-ab^{-1}B \times B$ $X^{n+1-\deg B} = QB + R.$

Donc:

$$A = \left[Q + ab^{-1}X^{n+1-\deg A}\right] \times B + R$$

<u>Unicité</u>:

On suppose que $A = BQ + R = BQ_1 + R_1$.

$$B(Q-Q_1) = R_1 - R$$

$$\operatorname{donc} \underbrace{\deg (B(Q-Q_1))}_{\operatorname{deg} B + \operatorname{deg} Q - Q_1} = \operatorname{deg} (R_1 - R)$$

$$\leq \max(\operatorname{deg} R_1, \operatorname{deg} R)$$

$$< \operatorname{deg} B$$

$$\operatorname{donc} \operatorname{deg} (Q - Q_1) < 0$$

$$\operatorname{donc} Q - Q_1 = 0$$

$$\operatorname{puis} R_1 - R = 0$$

16.7Proposition 16.7

On a:

- 1. Soit A et P deux polynômes non nuls. Si A|P et si P|A, alors il existe $\alpha \in \mathbb{K}^*$ tel que $P = \alpha A$. (La relation de divisibilité n'est pas antisymétrique)
- 2. Si A|B et si B|C, alors A|C. La relation de divisibilité est transitive.
- 3. Pour tout $A \in \mathbb{K}[X]$ non nul, A|A. La relation de divisibilité est réflexive.
- 1. $P \neq 0$, $A \neq 0$. Si A|P et P|A, alors (16.6.2):

$$\deg A \le \deg P$$
 et $\deg P \le \deg A$

Donc:

$$\deg P = \deg A$$

Or A|P, alors:

$$P = A \times Q$$

Puis:

 $\deg P = \deg(AQ) = \deg A + \deg Q \ (\mathbb{K} \text{ est intègre})$

Donc:

 $\deg Q = 0$

Donc:

 $Q = \alpha \in \mathbb{K}^*$

- 2. RAS
- 3. RAS

16.15 Principalité de $\mathbb{K}[X]$

Théorème 16.15

Soit I un idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$. Il existe un unique polynôme unitaire D tel que

$$I = D\mathbb{K}[X]$$

Existence:

Soit $I \neq \{0\}$ un idéal.

On note $A = \{ \deg P, P \in I \setminus \{0\} \} \subset \mathbb{N}$.

 $A \neq \emptyset$ $(I \neq \{0\})$, d'après la propriété fondamentale de \mathbb{N} , A possède un plus petit élément noté $n \geq 0$.

Comme $n \in A$, on choisit $D \in I$ tel que deg D = n.

Comme I est un idéal de $\mathbb{K}[X]$ et que $\mathbb{K} = \mathbb{K}_0[X] \subset \mathbb{K}[X]$, on a :

$$\forall \alpha \in \mathbb{K}, \alpha D \in I$$

On peut donc supposer D unitaire. Comme I est un idéal de $\mathbb{K}[X]$, on a :

$$D \times \mathbb{K}[X] \subset I$$

Soit $P \in I$. On effectue la division euclidienne de P par $D \neq 0$:

$$P = BD + R$$

avec $\deg R \subset \deg D$.

Or:

$$R = \underbrace{P}_{\in I} - \underbrace{BD}_{\in I}$$

$$\in I$$

Par définition de $\deg D = n$, R = 0.

Unicité:

$$I = D\mathbb{K}[X] = J\mathbb{K}[X]$$

avec D et J unitaires.

Or ils sont associés, donc égaux.

16.17 Existence de pgcd

Propostion 16.17

Si A et B sont deux polynômes non nuls, de tels PGCD existent.

Soit A, B dans $\mathbb{K}[X]$, $(A, B) \neq (0, 0)$.

On note $C = \{ \deg P, P | A \text{ et } P | B \text{ et } P \neq 0 \} \subset \mathbb{N}.$

 $\mathcal{C} \neq \emptyset$ car $0 \in \mathcal{C}$ et \mathcal{C} est majoré par $\deg B$ (max($\deg A, \deg B$)).

L'existence est assurée par la propriété fondamentale de \mathbb{N} .

16.18 Principalité de $\mathbb{K}[X]$

Propostion 16.18

Soit A et B deux polynômes non tous deux nuls. Soit $D \in \mathbb{K}[X]$. Alors Δ est un PGCD de A et B si et seulement si

$$A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X].$$

D'après (16.15), on choisit $F \in \mathbb{K}[X]$ tel que :

$$A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Soit $D \in \mathbb{K}[X]$.

 \Rightarrow

On suppose que D est un PGCD.

Donc D|A et D|B.

Donc D|F (combinaison $F \in A\mathbb{K}[X] + B\mathbb{K}[X]$).

Or F|A et F|B $(A \in F\mathbb{K}[X], B \in F\mathbb{K}[X])$.

Par maximalité de $\deg D$, on a F et D associés.

 \Leftarrow

$$D\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X] = F\mathbb{K}[X]$$

Donc D|A et D|B.

Pour tout diviseur commun P de A et B, P|A et P|B.

Donc $P|D \ (D \in A\mathbb{K}[X] + B\mathbb{K}[X]).$

Donc $\deg D$ est maximal pour la divisibilité.

16.24 Lemme de préparation au calcul pratique du PGCD unitaire

Lemme 16.24

Soit A et B deux polynômes tels que $B \neq 0$. Pour tout $Q \in \mathbb{K}[X]$, on a $A \wedge B = (A - BQ) \wedge B$. En particulier, si Q et R sont le quotient et le reste de la division euclidienne de A par B Alors $A \wedge B = B \wedge R$.

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= (A - BQ)\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= ((A - BQ) \wedge B)\mathbb{K}[X]$$

Donc $A \wedge B$ et $(A - BQ) \wedge B$ sont associés, unitaires par définition, donc égaux.

16.26 Exemple

Exemple alternatif 16.26

Trouver les PGCD de $A = X^5 + 2X$ et de $B = X^4 + 2X^3 + 4$ et une relation de Bézout.

$$X^{5} + 2X = (X^{4} + 2X^{3} + 4)(X - 2) + 4X^{3} - 2X + 8$$

$$X^{4} + 2X^{3} + 4 = (4X^{3} - 2X + 8)(\frac{1}{4}X + \frac{1}{2}) + \frac{1}{2}X^{2} - X$$

$$4X^{3} - 2X + 8 = (\frac{1}{2}X^{2} - X)(8X + 16) + 14X + 8$$

$$\frac{1}{2}X^{2} - X = (14X + 8)(\frac{1}{28}X - \frac{9}{14 \times 7}) + \frac{9 \times 4}{7^{2}}$$

$$A \wedge B = 1$$

$$\frac{9 \times 4}{7^2} = \frac{1}{2}X^2 - X - (14X + 8)(\frac{1}{28}X - \frac{9}{2 \times 7^2})$$
$$= \frac{1}{2}X^2 - X - (4X^3 - 2X + 8 - (\frac{1}{2}X^2 - X)(8X + 16))(\frac{1}{28}X - \frac{9}{2 \times 7^2})$$

16.27 Propriétés du PGCD

Propostion 16.27

L'opération \wedge est commutative et associative. Par ailleurs, si C est unitaire, alors $(A \wedge B)C = (AC) \wedge (BC)$.

Soit $(A, B, C) \in \mathbb{K}[X]^3$ non tous nuls.

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$
$$= B\mathbb{K}[X] + A\mathbb{K}[X]$$
$$= (B \wedge A)\mathbb{K}[X]$$

Donc $A \wedge B$ et $B \wedge A$ sont associés et unitaires donc égaux.

$$\begin{split} ((A \wedge B) \wedge C) \mathbb{K}[X] &= (A \wedge B) \mathbb{K}[X] + C \mathbb{K}[X] \\ &= A \mathbb{K}[X] + B \mathbb{K}[X] + C \mathbb{K}[X] \\ &= (A \wedge (B \wedge C)) \mathbb{K}[X] \end{split}$$

Donc $A \wedge (B \wedge C)$ et $(A \wedge B) \wedge C$ sont associés et unitaires donc égaux. On suppose C unitaire. On a :

$$(A \wedge B)\mathbb{K}[X] = A\mathbb{K}[X] + B\mathbb{K}[X]$$

donc $(A \wedge B)C\mathbb{K}[X] = AC\mathbb{K}[X] + BC\mathbb{K}[X]$
 $= ((AC) \wedge (BC))\mathbb{K}[X]$

Ainsi $C(A \wedge B)$ et $(AC) \wedge (BC)$ sont associés et unitaires donc égaux.

16.29 Existence de PPCM

Propostion 16.29

Soit \mathbb{K} un corps. Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$. Alors A et B admettent des PPCM.

On note $\mathcal{D} = \{ \deg P, A | P, B | P, P \neq 0 \} \subset \mathbb{N}$.

$$\deg AB \in \mathcal{D} \neq \emptyset$$

On conclut avec la propriété fondamentale de \mathbb{N} .

16.30 Caractérisation des PPCM par les idéaux

Propostion 16.30

Soit A et B deux polynômes non nuls de $\mathbb{K}[X]$ et soit $P \in \mathbb{K}[X]$. Alors P est un PPCM de A et B si et seulement si

$$A\mathbb{K}[X] \cap B\mathbb{K}[X] = P\mathbb{K}[X].$$

 $A\mathbb{K}[X] \cap B\mathbb{K}[X]$ est un idéal de $\mathbb{K}[X]$, donc de la forme $M\mathbb{K}[X]$ (16.15).

Montrons que P est un PPCM de A et B si et seulement si P et M sont associés.

 \Rightarrow

On a donc:

$$P \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$$
$$\in M\mathbb{K}[X]$$

Donc M|P.

Or M est un multiple commun à A et B, donc par définition de P, on a :

$$\deg P \le \deg M$$

Donc P et M sont associés.

On suppose P et M associés, donc :

$$\begin{split} P\mathbb{K}[X] &= M\mathbb{K}[X] \\ &= A\mathbb{K}[X] \cap B\mathbb{K}[X] \end{split}$$

En particulier, P est un multiple commun à A et B et pour tout $Q \in A\mathbb{K}[X] \cap B\mathbb{K}[X]$, donc P|Q. Donc :

$$degP \le \deg Q$$

16.42 Cas d'unicité d'une relation de Bézout

Propostion 16.42

Soit A et B non constants et premiers entre eux. Il existe un unique couple $(U,V) \in \mathbb{K}[X]^2$ tel que

$$AU + BV = 1$$
 et $\deg U < \deg B$ et $\deg V < \deg A$.

Existence:

 $\overline{\text{Soit }(C,D)} \in \mathbb{K}[X]^2 \text{ tel que } (16.37 - \text{B\'ezout}) :$

$$AC + BD = 1$$

On effectue la dviision euclidienne de C par B:

$$C = BE + U \text{ avec } \deg U < \deg B$$

$$\operatorname{donc} AU + B(\underbrace{D + AE}_{V}) = 1$$

$$\operatorname{donc} \operatorname{deg}(AU + BV) = 0$$

Si $\deg V \ge \deg A$, alors :

$$\deg B + \deg V \ge \deg B + \deg A$$
$$> \deg U + \deg B$$
$$= \deg AU$$

Donc deg(AU + BV) = deg BV > 0.

Absurde.

L'exsitence est prouvée.

Unicité:

Avec es hypothèses correspondantes :

$$AU_1 + BV_1 = 1 = AU_2 + BV_2$$

donc $A(U_1 - U_2) = B(V_2 - V_1)$
donc $A|B(V_2 - V_1)$

Or $A \wedge B = 1$, donc $A|(V_2 - V_1)$.

Or $\deg(V_2 - V_1) < \deg A$.

Donc $V_2 - V_1 = 0$.

Puis $A(U_1 - U_2) = 0$, donc $U_1 - U_2 = 0$ car $\mathbb{K}[X]$ est intègre avec $A \neq 0$.

16.43 Corollaire

Corollaire 16.43

Soit A, B et C trois polynômes avec A et B premiers entre eux. Alors $A \wedge (BC) = A \wedge C$.

- $A \wedge C | A \text{ donc } A \wedge C | A \wedge (BC)$. Donc $A \wedge C | BC$.
- $A \wedge (BC)|A$. Or $A \wedge B = 1$ donc on peut écrire AU + BV = 1. Donc ACU + BCV = C. Or $A \wedge (BC)|ACU + BCV$ soit $A \wedge (BC)|C$. Donc $A \wedge (BC)|A \wedge C$.

Ainsi, $A \wedge C$ et $A \wedge (BC)$ sont associés et unitaires donc égaux.

16.44 Caractérisation des PGCD et PPCM

Propostion 16.44

Soit A et B deux polynômes non nuls, M et D deux polynômes. Alors

$$M = A \lor B \Leftrightarrow (M \text{ unitaire et } \exists (U, V) \in \mathbb{K}[X]^2, M = AU = BV \text{ et } U \land V = 1).$$
 $D = A \land B \Leftrightarrow (D \text{ unitaire et } \exists (U, V) \in \mathbb{K}[X]^2, A = DU \text{ et } B = DV \text{ et } U \land V = 1).$

—
$$\Longrightarrow$$
 $M=A\vee B$. On écrit $M=AU+BV$ avec $(U,V)\in\mathbb{K}[X]^2$. On note $R=U\wedge V$. On écrit $U=RU_1$ et $V=RV_1$. Ainsi:

$$M = RAU_1 = RBV_1$$
donc $R(AU_1 - BV_1) = 0$ donc $AU_1 = BV_1$ ($\mathbb{K}[X]$ est intègre)

Donc $M_1 = AU_1 = BV_1$ est un multiple commun et par minimalité des degrés :

$$RM_1 = M|M_1 \text{ donc } R = 1$$

 \Leftarrow

Par hypothèse, M est un multiple commun, donc :

$$M \in A\mathbb{K}[X] \cap B\mathbb{K}[X] = (A \vee B)\mathbb{K}[X]$$

Donc $A \vee B|M$.

Donc $M = D \times A \vee B$.

Or $A \vee B = AU_1 = BV_1$.

Donc $M = DAU_1 = DBV_1 = AU = BV$.

Donc:

$$A(DU_1 - U) = 0$$

$$B(DV_1 - V) = 0$$

Or $\mathbb{K}[X]$ est intègre donc $DU_1 = U$ et $DV_1 = V$.

Donc $D|U \wedge V = 1$.

- \Rightarrow

 $D = A \wedge B$. On écrit A = DU et B = DV.

Or pour $R = U \wedge V$, on écrit $U = RU_1$ et $V = RV_1$.

Donc $A = DRU_1$ et $B = DRV_1$.

Donc DR|A et DR|B.

Donc DR|D.

Nécessairement, R = 1.

 \Leftarrow

Par hypothèse, D|A et D|B, donc $D|A \wedge B$.

Comme $U \wedge V = 1$, d'après le théorème de Bézout :

$$UU_1 + VV_1 = 1$$

donc
$$DUU_1 + DVV_1 = D$$

soit
$$AU_1 + BV_1 = D$$

donc
$$A \wedge B|D$$

Ainsi, $A \wedge B$ et D sont associés. Or ils sont unitaires, donc égaux.

16.53 Caractérisation des racines par la divisibilité

Théorème 16.53

Soit \mathbb{K} un corps, $P \in \mathbb{K}[X]$ et $r \in \mathbb{K}$. Alors r est racine de P si et seulement si X - r divise P. Donc s'il existe $Q \in \mathbb{K}[X]$ tel que P = (X - r)Q.

Si P = (X - r)Q, alors :

$$\tilde{P}(r) = (X - r)\tilde{Q}(r)$$
$$= 0 \times \tilde{Q}(r)$$
$$= 0$$

 \Rightarrow

On suppose r racine de P.

On effectue la division euclidienne de P par X-r:

$$P = (X - r)Q + R, R \in \mathbb{K}_0[X]$$

Donc $0 = \tilde{P}(r) = \tilde{R}(r)$.

Donc R = 0.

Donc X - r|P.

16.56 Formule de Taylor pour les polynômes

Théorème 16.56

Soit \mathbb{K} un corps de caractéristique nulle, P un polynôme de $\mathbb{K}[X]$ de degré d et $a \in \mathbb{K}$, alors

$$P = \sum_{k=0}^{d} \frac{P^{(k)}(a)}{k!} (X - a)^{k}.$$

On note $E_k = X^k$, pour $k \in \mathbb{N}$. On a, pour $i \in \mathbb{N}$:

$$E_k^{(i)} = \begin{cases} \frac{k!}{(k-i)!} X^{k-i} & \text{si } i \leq k \\ 0 & \text{si } i > k \end{cases}$$

Ainsi:

$$E_{k}(X + a) = (X + a)^{k}$$

$$= \sum_{i=0}^{k} {k \choose i} a^{k-i} X^{i}$$

$$= \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} a^{k-i} X^{i}$$

$$= \sum_{i=0}^{k} \frac{E_{k}^{(i)}(a)}{i!} X^{i}$$

Soit
$$P = \sum_{k=0}^{d} a_k X^k = \sum_{k=0}^{d} a_k E_k$$
.
Ainsi :

$$P(x+a) = \sum_{k=0}^{d} a_k E_k(X+a)$$

$$= \sum_{k=0}^{d} a_k \sum_{i=0}^{k} \frac{E_k^{(i)}(a)}{i!} X^i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} \left(\sum_{k=i}^{d} a_k E_k^{(i)}(a) \right) X_i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} \left(\sum_{k=0}^{d} a_k E_k^{(i)}(a) \right) X_i$$

$$= \sum_{i=0}^{d} \frac{1}{i!} P^{(i)}(a) X^i$$

16.57 Caractérisation de la multiplicité par les dérivées

Théorème 16.57

Soit \mathbb{K} un corps de caractéristique nulle, $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Le réel a est racine d'ordre multiplicité k de P si et seulement si

$$P(a) = P'(a) = \dots = P^{(k-1)}(a) = 0 \text{ et } P^{(k)}(a) \neq 0.$$

 \Leftarrow

D'après la formule de Taylor :

$$P = \sum_{i=0}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i}$$

$$= \sum_{i=k}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i}$$

$$= (X - a)^{k} \underbrace{\sum_{i=k}^{d} \frac{P^{(i)}(a)}{i!} (X - a)^{i-k}}_{=Q}$$

$$Q(a) = \frac{P^{(k)}(a)}{k!} \neq 0$$

$$P = (\underbrace{X - a}_B)^k Q \text{ avec } Q(a) \neq 0.$$

Pour tout $i \in [0, k-1]$:

$$P^{(i)} = (BQ)^{(i)}$$

$$= \sum_{l=0}^{i} {i \choose l} B^{(l)} Q^{(i-l)}$$

$$P^{(i)}(a) = 0$$

$$P^{(k)} = {k \choose k} B^{(k)}(a) \times Q^{(k-k)}(a)$$

$$= k! \times Q(a) \neq 0$$

16.59 Caractérisation de la multiplicité des racines par la divisibilité

Théorème 16 59

Soit \mathbb{K} un corps. Soit $P \in \mathbb{K}[X]$ et r_1, \ldots, r_k des racines deux à deux distinctes de P, de multiplicités respectives a_1, \ldots, a_k . Alors $(X-r_1)^{a_1} \ldots (X-r_k)^{a_k}$ divise P et r_1, \ldots, r_k ne sont pas racines du quotient.

RAF:

$$(X - r_i)^{\alpha_1} \wedge (X - r_k)^{\alpha_k} = 1 \text{ si } i \neq k$$

16.63 Polynômes formels et fonctions polynomiales

Théorème 16.63

Soit \mathbb{K} un corps infini. Alors l'application de $\mathbb{K}[X]$ dans $\mathbb{K}[x]$ qui à un polynôme formel associe sa fonction polynomiale est un isomorphisme d'anneaux.

RAF : $\varphi(P) = \varphi(Q)$ donc $\varphi(P - Q) = 0$ $\tilde{P} - \tilde{Q}$ s'annule sur \mathbb{K} infini et on applique (16.62).

16.66 Caractérisation des polynômes interpolateurs

Lemme 16.66

Le polynôme L_i est l'unique polynôme de degré au plus n tel que pour tout $j \in [0, n], L_i(x_j) = \delta_{ij}$.

Existence: RAF Unicité: (16.61.3)

Corollaire 16.69

Soit P le polynôme d'interpolation de Lagrange associé à la famille $(x_i)_{0 \le i \le n}$ et aux valeurs $(y_i)_{0 \le i \le n}$ Soit $P_0 = (X - x_0) \dots (X - x_n)$. L'ensemble E des polynômes Q (sans restriction de degré) tel que pour tout $i \in [0, n], Q(x_i) = y_i$ est décrit par

$$E = P + (P_0) = \{P + (X - x_0) \dots (X - x_n)R, R \in \mathbb{K}[X]\}$$

Si
$$Q = P + (X - x_0) \dots (X - x_n)R$$
, alors :

$$\forall i \in [0, n], Q(x_i) = P(x_i) = y_i$$

Donc $Q \in E$.

Soit $Q \in E$, alors x_0, \ldots, x_n sont racines de Q - P. Donc $(X - x_0) \ldots (X - x_n)|Q - P$.

16.74 Proposition

Soit P un polynôme scindé non constant de $\mathbb{R}[X]$ à racines simples. Alors P' est scindé, et ses racines séparent celles de P.

Soit
$$P = \prod_{k=1}^{n} (x - x_k)$$
 avec $x_1 < \ldots < x_n$

Soit $P = \prod_{k=1}^{n} (x - x_k)$ avec $x_1 < \ldots < x_n$. D'après le théroème de Rolle, comme $P(x_1) = P(x_2) = \ldots = P(x_n)$ pour tout $k \in [1, n-1]$, on choisit $y_k \in]x_k, x_{k+1}[$ tel que $P'(y_k) = 0.$

On a donc:

$$x_1 < y_1 < x_2 < y_2 < \ldots < y_{n-1} < x_n$$

et y_1, \ldots, y_{n-1} sont n-1 racines distinctes de P' de degré n-1 (\mathbb{R} de caractéristique nulle). Donc P' est scindé (à racines simples).

Relation de Viète 16.76

Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme de degré n, scindé, de racines (éventuellement non distinctes, apparaissant dans la liste autant de fois que sa multiplicité) r_1, \ldots, r_n alors pour tout $k \in [0, n]$:

$$\sum_{1 \le i_1 < \dots < i_k \le n} r_{i_1} \dots r_{i_k} = (-1)^k \frac{a_{n-k}}{a_n}$$

$$P = \sum_{k=0}^{n} a_k X^k$$
$$= a_n \prod_{k=1}^{n} (X - r_k)$$

Les relations de Viète consistent simplement à développer l'expression de droite et à identifier les mnômes de degré n-k.

$$a_{n-k} = (-1)^k a_n \sum_{1 \le i_1 < \dots < i_k \le n} r_{i_1} \dots r_{i_k}$$

16.88 Lemme

Lemme 16.88

Soit P un polynôme irréductible de $\mathbb{K}[X]$ et A un polynôme non multiple de P. Alors A et P ont premiers entre eux.

Soit D unitaire $\in \mathcal{D}_{A,P}$. Si $P \not\mid A$, alors $D \neq U(P)$. Donc D = 1. Donc $P \wedge A = 1$.

16.98 Caractérisation de la divisibilité dans $\mathbb{C}[X]$ par les racines

Théorème 16.98

Soit P et Q deux polynômes de $\mathbb{C}[X]$. Alors P divise Q si et seulement si toute racine de P est aussi une racine de Q, et que sa multiplicité dans Q est supérieure ou égale à sa multiplicité dans P.

 \Rightarrow

Supposons P|Q.

Soit r une racine de P de multiplicité α . Donc :

$$(X-r)^{\alpha}|P$$
 donc $(X-r)^{\alpha}|Q$

Donc r est racine de Q de multiplicité supérieure à α .

 \Leftarrow

On décompose $P = \lambda \prod_{i=1}^{n} (X - r_i)^{\alpha_i}$ (P est scindé sur \mathbb{C}).

Par hypothèse, $\prod_{i=1}^{n} (X - r_i)^{\alpha_i} |Q|$. Donc P|Q|.

16.99 Caractérisation des polynômes à coefficients réels

Théorème 16.99

Soit $P \in \mathbb{C}[X]$. Les propositions sont équivalents :

- 1. P est à coefficients réels;
- 2. $P(\mathbb{R}) \subset \mathbb{R}$;
- 3. pour tout $z \in \mathbb{C}, \overline{P(z)} = P(\overline{z}).$

 $\begin{array}{c} \boxed{1 \Rightarrow 2} \\ \text{RAF} \end{array}$

 $2 \Rightarrow 1$ On suppose que $P(\mathbb{R}) \subset \mathbb{R}$.

Soit $z \in \mathbb{C}$.

$$P = \sum_{k=0}^{n} a_k X^k$$

$$\overline{P(z)} = \sum_{k=0}^{n} a_k z^k$$

$$= \sum_{k=0}^{n} \overline{a_k} (\overline{z})^k$$

Par hypothèse, pour $z \in \mathbb{R}$, $P(z) \in \mathbb{R}$, soit $\overline{P(z)} = P(z)$. Ainsi, pour $z \in \mathbb{R}$:

$$\sum_{k=0}^{n} \overline{a_k} z^k = \sum_{k=0}^{n} a_k z^k$$

Les deux polynômes $\sum_{k=0}^{n} \overline{a_k} X^k$ et $\sum_{k=0}^{n} a_k X^k$ coincident sur une infinité de valeurs, donc (théorème de rigidité) ils sont égaux.

Donc:

$$\forall k \in [0, n], a_k = \overline{a_k}$$

Donc $P \in \mathbb{R}[X]$.

$$\begin{array}{c} \boxed{1 \Rightarrow 3} \\ \text{RAF} \end{array}$$

$$\frac{\lfloor 3 \Rightarrow 2 \rfloor}{P(z) = P(\overline{z}) \text{ pour tout } z \in \mathbb{C}, \text{ alors en particulier pour } z \in \mathbb{R}, \overline{P(z)} = P(z) \text{ soit } P(z) \in \mathbb{R}.$$

16.100 Racine complexe d'un polynôme réel

Corollaire 16.100

Soit P un polynôme à coefficients réels et r une racine de P dans \mathbb{C} . Si $r \notin \mathbb{R}$, alors \overline{r} est aussi une racine de P et elles ont la même multiplicité.

Soit r une racine complexe de P.

Donc P(r) = 0.

Donc $\overline{P(r)} = 0$.

Donc (16.99.3) $P(\bar{r}) = 0$.

Donc \overline{r} est aussi une racine de P.

Donc $(X - \overline{r})(X - r)|P$.

Donc $P = (X - \overline{r})(X - r)Q$ et si r est une racine de Q, \overline{r} également, ce qui justifie que \overline{r} ala même multiplicité que r.

16.101 Polynômes irréductibles de $\mathbb{R}[X]$

Théorème 16.101

- 1. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant strictement négatif.
- 2. Ainsi, tout polynôme $P \in \mathbb{R}[X]$ peut être factorisé en produit de polynômes de $\mathbb{R}[X]$ de degré 1 ou de degré 2, de discriminant strictement négatif.

1. Les polynômes annoncés sont bien les seuls irréductibles dans $\mathbb{R}_2[X]$.

Soit $P \in \mathbb{R}[X]$, avec deg $P \geq 3$. Dans $\mathbb{C}[X]$, P est scindé.

Si P admet une racine dans \mathbb{R} , P est réductible.

Supposons maintenant que toutes les racines de P sont complexes. Soit r l'une d'entre elles.

Alors $\overline{r} \neq r$ est aussi une racine de P.

Donc
$$(X-r)(X-\overline{r})|P$$
.

Donc:

$$P = (X - r)(X - \overline{r})Q \text{ avec } Q \in \mathbb{C}[X]$$
$$= (\underbrace{x^2 - 2Re(r)X + |r|^2}_{:=R \in \mathbb{R}[X]})Q$$

Donc P = RQ est la division euclidienne de P par R dans $\mathbb{C}[X]$ et aussi dans $\mathbb{R}[X]$. Par unicité, on a donc $Q \in \mathbb{R}[X]$ et P est réductible dans $\mathbb{R}[X]$.

2. RAF

Chapitre 17

Fractions rationnelles

17.2 Addition, multiplication et produit par un scalaire

Soit $\frac{P}{Q}$ et $\frac{R}{S}$ deux fractions rationnelles et soit $\lambda \in \mathbb{K}$. On pose

$$\frac{P}{Q} + \frac{R}{S} = \frac{PS + QR}{QS}, \ \frac{P}{Q} \times \frac{R}{S} = \frac{PR}{QS} \text{ et } \lambda \times \frac{P}{Q} = \frac{\lambda P}{Q}.$$

Montrons que l'addition est bien définie.

Soit $\frac{P_1}{Q_1} = \frac{P}{Q}$ et $\frac{R}{S}$ dans $\mathbb{K}(X)$. Montrons que :

$$\frac{PS + QR}{QS} = \frac{P_1S + Q_1R}{Q_1S}$$

On a:

$$(PS + QR)Q_1S - (P_1S + Q_1R)QS = S^2(\underbrace{PQ_1 - P_1Q}_{=0}) + RS(\underbrace{QQ_1 - Q_1Q}_{=0})$$

$$= 0$$

On raisonne de la même manière pour $\frac{R}{S} = \frac{R_1}{S_1}$ et ainsi, l'opération est bien définie.

17.10Degré d'une fraction

Soit $F = \frac{P}{Q}$ une fraction. On pose $\deg(F) = -\infty$ si F = 0 et $\deg(F) = \deg(P) - \deg(Q)$ sinon. Le degré d'une fraction est donc un élément de $\mathbb{Z} \cup \{-\infty\}$.

Si
$$\frac{P_1}{Q_1} = \frac{P}{Q}$$
, alors:

$$P_1Q = PQ_1$$

$$\operatorname{donc} \ \operatorname{deg}(P_1Q) = \operatorname{deg}(PQ_1)$$

$$\operatorname{donc} \ \operatorname{deg}(P_1) + \operatorname{deg}(Q) = \operatorname{deg}(P) + \operatorname{deg}(Q_1) \ (\mathbb{K} \ \operatorname{int\`egre})$$

$$\operatorname{donc} \ \operatorname{deg}(P_1) - \operatorname{deg} Q_1 = \operatorname{deg}(P) - \operatorname{deg}(Q)$$

17.13 Propriété du degré

Soit F et G deux fractions rationnelles. On a

$$\deg(F+G) \le \max(\deg(F), \deg(G))$$
 et $\deg(F \times G) = \deg(F) + \deg(G)$.

On retrouve les mêmes propriétés que pour les polynômes.

Soit
$$F = \frac{P}{Q}$$
 et $G = \frac{R}{S}$.

$$\begin{split} \deg(F+G) &= \deg(\frac{PS+QR}{QS}) \\ &= \deg(PS+QR) - \deg(QS) \\ &\leq \max(\deg(PS), \deg(QR)) - \deg(QS) \\ &= \max(\deg(PS) - \deg(QS), \deg(QR) - \deg(QS)) \\ &= \max\left(\deg\left(\frac{P}{Q}\right), \deg\left(\frac{R}{Q}\right)\right) \\ &= \max(\deg(F), \deg(G)) \end{split}$$

17.19 Théorème

Soit F et G deux fractions rationnelles. Si les fonctions rationnelles \tilde{F} et \tilde{G} sont égales sur une partie infinie $\mathcal{D}_F \cap \mathcal{D}_G$ alors les fractions rationnelles sont égales, i.e. F = G.

On note $F = \frac{P}{Q}$ et $G = \frac{R}{S}$ avec $P \wedge Q = 1$ et $R \wedge S = 1$.

$$\forall x \in \mathcal{D} \subset \mathcal{D}_F \cap \mathcal{D}_G, \tilde{F}(x) = \tilde{G}(x)$$

Soit:

$$\forall x \in \mathcal{D}, \tilde{P(x)} \times \tilde{S(x)} = \tilde{R(x)} \times \tilde{Q(x)}$$

Comme \mathcal{D} est infini, d'après le théorème de rigidité, PS = RQ, donc F = G.

17.20Fraction dérivée

Soit $F = \frac{P}{Q} \in \mathbb{K}(X)$. On appelle **fraction dérivée** de F la fraction notée F' (ou $\frac{dF}{dX}$) définie par

$$F' = \frac{P'Q - PQ'}{Q^2}.$$

Le résultat ne dépend pas du représentant de F choisi. On définit également les dérivées successives de F en posant $F^{(0)} = F$ et pour tout $n \in \mathbb{N}, F^{(n+1)} = (F^{(n)})'$.

On écrit $F = \frac{P}{Q} = \frac{R}{S}$

Montrons que $\frac{P'Q-Q'P}{Q^2} = \frac{R'S-RS'}{S^2}$

Comme $\frac{P}{Q} = \frac{R}{S}$, on a PS = RQ. Donc P'S + S'P = R'Q + Q'R.

Ainsi:

$$\begin{split} [P'Q - PQ']S^2 - [R'S - RS']Q^2 &= P'SQ^2 + S'PQ^2 - R'QS^2 - Q'RS^2 \\ &= QS(P'S - R'Q) + Q^2RS' - S^2Q'P \\ &= QS(Q'R - S'P) + PSQS' - SQRQ' \\ &= 0 \end{split}$$

17.24Dérivée logarithmique d'un produit

Théorème 17.24

Si F est une fraction non nulle qui se facotorise en $F = F_1 \times \ldots \times F_n$ dans $\mathbb{K}(X)$ avec $n \in \mathbb{N}$ alors

$$\frac{F'}{F} = \frac{F_1'}{F_1} + \ldots + \frac{F_n'}{F_n}.$$

Pour n=2 seulement.

$$F = F_1 \times F_2 \neq 0$$

Donc:

$$F' = F_1' F_2 + F_1 F_2'$$

Donc:

$$\frac{F'}{F} = \frac{F_1' F_2}{F_1 F_2} + \frac{F_1 F_2'}{F_1 F_2} = \frac{F_1'}{F_1} + \frac{F_2'}{F_2}$$

17.25 Partie entière

Théorème 17.25

Soit $F \in \mathbb{K}(X)$. Il existe un unique polynôme Q tel que $\deg(F-Q) < 0$. Celui-ci est appelé **partie entière** de F, c'est le quotient dans la division euclidienne du numérateur de F par le dénominateur.

Existence:

Soit $F = \frac{A}{B}$ avec $A \wedge B = 1$.

Soit la division euclidiene de A par B:

$$A = BQ + R$$
 avec $\deg(R) < \deg(B)$

Donc:

$$F = \frac{A}{B} = \frac{BQ + R}{B} = Q + \frac{R}{B}$$

Donc:

$$\deg(F-Q) = \deg\left(\frac{R}{B}\right) = \deg(R) - \deg(B) < 0$$

Unicité:

On suppose que :

$$F = Q + G = Q_1 + G_1 \text{ avec } (Q_1, G_1) \in \mathbb{K}[X]^2 \text{ et } \deg(G), \deg(G_1) < 0$$

Donc:

$$Q - Q_1 = G_1 - G$$

$$\operatorname{deg}(Q - Q_1) = \operatorname{deg}(G_1 - G)$$

$$\leq \max(\operatorname{deg}(G_1), \operatorname{deg}(G))$$

$$< 0$$

Or $Q - Q_1 \in \mathbb{K}[X]$, donc $Q = Q_1$.

17.31 Existence d'une décomposition

Théorème 17.31

Si T et S sont deux polynômes premiers entre eux et si deg $\left(\frac{A}{TS}\right) < 0$, alors il existe deux polynômes U et V tels que

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S}, \text{ avec } \deg(U) < \deg(T) \text{ et } \deg(V) < \deg(S).$$

Comme $T \wedge S = 1$, d'après le théormème de Bézout, on écrit :

$$CT + DS = 1$$

Donc:

$$ACT + DSA = A$$

Donc:

$$\frac{A}{TS} = \frac{ACT + DSA}{TS}$$
$$= \frac{DA}{T} + \frac{AC}{S}$$

On écrit la division euclidienne de DA par T et de AC par S:

$$\begin{split} DA &= TQ + U \text{ avec } \deg(U) < \deg(T) \\ AC &= SH + V \text{ avec } \deg(V) < \deg(S) \end{split}$$

Donc:

$$\frac{A}{TS} = \frac{U}{T} + \frac{V}{S} + Q + H$$

Ainsi:

$$\begin{split} \deg(Q+H) &= \deg\left(\frac{A}{TS} - \frac{U}{T} - \frac{V}{S}\right) \\ &\leq \max(\ldots,\ldots,\ldots) \\ &< 0 \end{split}$$

Donc Q + H = 0.

17.32 Théorème

Théorème 17.33

Si T est un polynôme irréductible unitaire et si deg $\left(\frac{A}{T^n}\right) < 0$ (avec $n \ge 1$), alors il existe des polynômes V_1, \ldots, V_n tels que

$$\frac{A}{T^n} = \sum_{k=1}^n \frac{V_k}{T^k}, \text{ avec } \deg(V_k) < \deg(T).$$

C'est une décomposition en éléments simples.

Par récurrence sur n.

- Pour n = 1, RAF.
- On suppose le résultat vrai pour $n \ge 1$ fixé. On écrit la division euclidienne de A par T:

$$A = BT + V_{n+1}$$
 avec $\deg(V_{n+1}) < \deg(T)$

Ainsi:

$$\begin{split} \frac{A}{T^{n+1}} &= \frac{BT + V_{n+1}}{T^{n+1}} \\ &= \frac{B}{T^n} + \frac{V_{n+1}}{T^{n+1}} \\ &= \sum_{k=1} \frac{V_k}{T^k} + \frac{V_{n+1}}{T^{n+1}} \text{ (Hypothèse de récurrence)} \end{split}$$

17.38 Cas d'un pôle simple

Propostion 17.38

Si a est un pôle simple de $F = \frac{A}{B}$, alors la partie polaire de F relative à a est

$$P_F(a) = \frac{c}{X-a}$$
 avec $c = \frac{A(a)}{B'(a)} = \frac{A(a)}{Q(a)}$ où $B = (X-a)Q$.

D'après le théorème d'existence de la DES

$$\frac{A}{B} = F = E + \frac{c}{X - a} + G$$

Donc:

$$c = \frac{(X-a)A}{B} - (X-a)E - (X-a)G$$
$$= \frac{A}{Q} - (X-a)E - (X-a)G$$

Donc
$$c = \frac{A(a)}{Q(a)}$$
.
Si $B = (X - a)Q$, alors $B'(a) = Q(a)$.

17.39 Exemple

Exemple <u>17.39</u>

Décomposer en éléments simples dan $\mathbb{C}(X)$ la fraction raitonnelle $F = \frac{1}{X^n - 1}$ avec $n \ge 1$.

- $-- \deg F = -n < 0.$
- F possède n pôles simples. $e^{\frac{2ik\pi}{n}} = \omega_k$.
- D'après le théorème de DES :

$$F = \sum_{k=0}^{n-1} \frac{c_k}{X - \omega_k}$$

Or, pour tout $k \in [0, n-1], c_k = \frac{1}{nw_k^{n-1}} = \frac{\omega_k}{n}$.

$$F = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\omega_k}{X - \omega_k}$$

17.40 Cas d'un pôle double

Propostion 17.40

Si a est un pôle double de $F = \frac{A}{B}$, alors la partie polaire de F relative à a est

$$P_F(a) = \frac{\alpha}{X-a} + \frac{\beta}{(X-a)^2}$$
 avec $\beta = H(a)$ et $\alpha = H'(a)$ en posant $H = (X-a)^2 F$.

On a (notations 17.38):

$$F = E + \frac{\alpha}{X - a} + \frac{\beta}{(X - a)^2} + G$$
$$\beta + (X - a)\alpha = \underbrace{(X - a)^2 F}_{:=H} - (X - a)^2 E - (X - a)^2 G$$

En évaluant en $a:\beta=H(a)$.

On dérive et on évalue en $a: \alpha = H'(a)$.

17.42 Exemple

Exemple 17.42

Décomposer $F = \frac{X^6}{(X-1)^2(X^3+1)}$ en éléments simples dans $\mathbb{C}(X)$.

$$-- \deg F = 1 \ge 0$$

$$X^6 = (X-1)^2(X^3+1)(X+2) + R$$
 avec deg $R < 5$

— D'après le théorème DES :

$$F = \frac{X^6}{(X-1)^2(X+1)(X+j)(X+j^2)}$$

$$= X + 2 + \frac{a}{X-1} + \frac{b}{(X-1)^2} + \frac{c}{X+1} + \frac{d}{X+j} + \frac{e}{x+j^2}$$

$$c = (x+1)\tilde{F}(-1) = \frac{1}{4}$$

$$d = (x+j)\tilde{F}(-j)$$

$$= \frac{1}{(j+1)^2(1-j)(-j+j^2)}$$

$$= \frac{1}{(1+j)(1-j^2)(j-1)j}$$

$$= \frac{-1}{(1-j^2)^2j}$$

$$= \frac{-1}{j(-3j^2)}$$

$$= \frac{1}{3}$$

$$e = (x+j^2)\tilde{F}(-j^2) = \frac{1}{3}$$

$$H = (X-1)^2F = \frac{X^6}{X^3+1}$$

$$b = H(1) = \frac{1}{2}$$

$$a = H'(1) = \frac{9}{4}$$

17.44 Parties polaires conjuguées d'une fraction réelle

Propostion 17.44

Si F est à coefficients réels, alors les parties polaires relatives aux pôles conjugués sont conjuguées.

Soit $F \in \mathbb{R}(X) \subset \mathbb{C}(X)$.

On écrit $F = \frac{A}{B}$ avec $A, B \in \mathbb{R}(X)^2$.

Soit r un pôle de multiplicité m.

Comme $F \in \mathbb{R}(X)$, \overline{r} est un pôle de multiplicité m. On suppose que $r \neq \overline{r}$

D'après le théorème de DES, on écrit :

$$F = E + P_F(r) + G$$
 avec $(E, r) \in \mathbb{R}(X)^2, G \in \mathbb{C}(X)$

r n'est pas un pôle de G (\overline{r} oui).

Ainsi:

$$F = \overline{F}$$

$$= \overline{E + P_F(r) + G}$$

$$= \overline{E} + P_F(\overline{r}) + \overline{G}$$

$$= E + \overline{P_F(r)} + \overline{G}$$

Or r n'est pas un pôle de $\overline{P_F(r)}$ mais \overline{r} est un pôle de $\overline{P_F(r)}$.

De la même manière, comme r n'est pas un pôle de G, \overline{r} n'est pas un pôle de \overline{G} .

Donc $P_F(\overline{r}) = \overline{P_F(r)}$.

17.45 Exemple

Exemple 17.45

Décomposer en éléments simples $F = \frac{1}{(X^2 + X + 1)^2}$ dans $\mathbb{C}(X)$.

$$F = \overline{(x^2 + x + 1)^2}, \deg(F) = -4 < 0.$$

Les pôles de F sont j et j^2 (de multiplicité 2).

D'après le théorème de DES :

$$F = \frac{a}{X - j} + \frac{b}{(X - j)^2} + \frac{c}{X - j^2} + \frac{d}{(X - j^2)^2} \operatorname{car} F \in \mathbb{R}(X)$$

On pose $H = (X - j)^2 F = \frac{1}{(x - j^2)^2}$.

On trouve $b = H(j) = \frac{j}{(1-j)}$ et $a = H'(j) = \frac{-2}{(1-j)^3} = \frac{-2j^2}{3(1-j)j}$.

17.46 Exemple

Exemple 17.47

Décomposer en éléments simples $F = \frac{X^4 + 1}{X(X^2 - 1)^2}$ dans $\mathbb{R}(X)$.

$$F = \frac{X^4 + 1}{X(X^2 - 1)^2}, \deg F = -1 < 0.$$
 Donc:

$$F = \frac{a}{X} + \frac{b}{X-1} + \frac{c}{(X-1)^2} + \frac{d}{X+1} + \frac{e}{(X+1)^2}$$

F est impaire donc:

$$F(-X) = -\frac{a}{X} + \frac{b}{-X-1} + \frac{c}{(-X-1)^2} + \frac{d}{-X+1} + \frac{e}{(-X+1)^2}$$

$$= -\frac{a}{X} - \frac{b}{X+1} + \frac{c}{(X+1)^2} - \frac{d}{X-1} + \frac{e}{(X-1)^2}$$

$$= -F$$

$$= -\frac{a}{X} - \frac{b}{X-1} - \frac{c}{(X-1)^2} - \frac{d}{X+1} - \frac{e}{(X+1)^2}$$

Par unicité:

$$\begin{cases} a = a \\ -b = -d \\ -c = e \end{cases} \quad \text{soit } \begin{cases} b = d \\ e = -c \end{cases}$$

On a : $a = \tilde{XF}(0) = 1$. On pose :

$$H = (X - 1)^{2}F = \frac{X^{4} + 1}{X(X + 1)^{2}}$$

$$c = H(1) = \frac{1}{2}$$

$$b = H'(1)$$

$$= \frac{4 \times 4 - 2 \times (3 + 4 + 1)}{4}$$

$$= 0$$

17.51 Exemple - Calcul de la dérivée n-ième d'une fraction

Exemple 17.51

Soit $f(x) = \frac{1}{x^2+1}$. Calculer $f^{(n)}(x)$.

Soit $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{x^2+1} \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On définit :

$$F = \frac{1}{X^2 + 1} \in \mathbb{R}(X)$$
$$\in \mathbb{C}(X)$$

D'après le théorème de DES, car les pôles de F sont simples, égaux à i et -i:

$$F = \frac{\frac{1}{-2i}}{X+i} + \frac{\frac{1}{2i}}{X-i}$$

$$F^{(n)} = \frac{\frac{i}{2}(-1)^n n!}{(X+i)^{n+1}} + \frac{\frac{-i}{2}(-1)^n n!}{(X-i)^{n+1}}$$

$$= \frac{(-1)^n n!}{(X^2+i)^{n+1}} \frac{i}{2} \left[(X-i)^{n+i} - (X+i)^{n+i} \right]$$

$$= \frac{(-1)^n n!}{(X^2+1)^{n+1}} \frac{i}{2} \sum_{k=0}^{n+1} \binom{n+1}{k} \left[(-i)^k - i^k \right] X^{n+1-k}$$

$$= \frac{(-1)^n n!}{(X^2+1)^{n+1}} \sum_{0 \le 2k+1 \le n+1} \binom{n+1}{2k+1} (-i)^{k+1} X^{n-2k}$$

Donc:

$$f^{(n)}(x) = \frac{(-1)^n n!}{(x^2+1)^{n+1}} \sum_{0 \le 2k+1 \le n+1} \binom{n+1}{2k+1} (-i)^{k+1} x^{n-2k}$$

Chapitre 18

Dérivabilité

18.43 Théorème de prolongement de classe \mathcal{C}^n - HP

Théorème 18 43 - HP

Soit I un intervalle et $x_0 \in I$. Soit f une fonction définie de classe C^n sur $I \setminus \{x_0\}$. Si $f^{(n)}$ admet une limite finie en x_0 , alors f est prolongeable en une fonction de classe C^n sur I.

— On prouve le théorème pour n=1. On suppose $f\in \mathcal{C}^1(I\setminus\{x_0\},\mathbb{R})$ et que f' admet une limite finie en x_0 .

On prolonge f' en une fonction g par continuité en x_0 . Ainsi, $g \in \mathcal{C}^0(I, \mathbb{R})$.

On remarque que pour tout $x \neq x_0$:

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

où $a \in I \setminus \{x_0\}$ quelconque.

$$f(x) = \underbrace{f(a) + \int_a^x g(t) \, dt}_{\text{Admet une limite finie quand } x \to x_0}$$

Donc f(x) admet également une limite finie quand $x \to x_0$. On prolonge alors f par continuité en \tilde{f} , de classe \mathcal{C}^1 sur I.

— On raisonne par récurrence. Pour $n \in \mathbb{N}$, on pose :

P(n): "Pour tout $f \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$, si $f^{(n)}$ admet une limite finie en x_0 , alors f se prolonge en $\tilde{f} \in \mathcal{C}^n(I, \mathbb{R})$ ".

Pour n = 0, c'est le prolongement par continuité.

Pour n = 1, c'est fait.

On suppose P(n) vraie pour $n \geq 1$.

Soit $f \in \mathcal{C}^{n+1}(I \setminus \{x_0\}, \mathbb{R})$, etc...

Donc $f' \in \mathcal{C}^n(I \setminus \{x_0\}, \mathbb{R})$ et $f^{(n)}$ admet une limite finie en x_0 .

D'après P(n), on prolonge f' en $q \in \mathcal{C}^n(I, \mathbb{R})$.

En particulier, g est continue sur I.

Donc f' admet une limite finie en x_0 .

On applique P(1). On prolonge f en $\tilde{f} \in \mathcal{C}^{n+1}(I,\mathbb{R})$.

Or $\tilde{f}' = g \in \mathcal{C}^n(I, \mathbb{R})$.

Donc $\tilde{f} \in \mathcal{C}^{n+1}(I, \mathbb{R})$.

18.45 IAF pour les fonctions à valeurs dans $\mathbb C$

Théorème 18.45

Soit $f \in \mathcal{C}^1([a,b],\mathbb{C})$ et M un réel tel que $|f'| \leq M$ sur]a,b[. Alors

$$|f(b) - f(a)| \le M|b - a|$$

Si $f \in C^1([a,b],\mathbb{R})$, alors:

$$f(b) - f(a) = \int_a^b f'(t) dt$$

D'après l'inégalité triangulaire intégrale :

$$|f(b) - f(a)| = \left| \int_{a}^{b} f'(t) dt \right|$$

$$\leq \int_{a}^{b} |f'(t)| dt$$

$$\leq \int_{a}^{b} M dt$$

$$= M|b - a|$$

Chapitre 19

Convexité

19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes

Propostion 19.7

Soit $f: I \to \mathbb{R}$ une fonction convexe et $(x,y) \in I^2$ avec x < y. Le graphe de f est situé en-dessous de sa sécante sur l'intervalle [x,y] et au-dessus à l'extérieur, soit sur $I \cap]-\infty,x] \cup [y,+\infty[$.

On pose $g: \mathbb{R} \to \mathbb{R}; t \mapsto \frac{f(y) - f(x)}{y - x}(t - x) + f(x)$. g paramètre la sécante passant par les points (x, f(x)) et (y, f(y)).

- Sur [x, y], RAF car f est convexe.
- Soit t > y. On pose $\lambda = \frac{y-x}{t-x} \neq 0 \in [0,1]$. On a :

$$\lambda t + (1 - \lambda)x = \frac{y - x}{t - x}t + \left(1 - \frac{y - x}{t - x}\right)x$$
$$= \frac{t(y - x) + x(t - y)}{t - x}$$
$$= y$$

Par convexité de f:

$$f(y) = f(\lambda t + (1 - \lambda)x)$$

$$\leq \lambda f(t) + (1 - \lambda)f(x)$$

$$\operatorname{donc} f(t) \geq \frac{1}{y}f(y) - \left(\frac{1}{y} - 1\right)f(x)$$

$$= \frac{t - x}{y - x}f(y) - \left(\frac{t - x}{y - x} - 1\right)f(x)$$

$$= \frac{t - x}{y - x} \times (f(y) - f(x)) + f(x)$$

$$= g(t)$$

— On raisonne de la même manière si $t \le x < y$.

19.8 Inégalités des pentes

Propostion 19.8

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- 1. f est convexe si et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur $I \setminus \{a\}$.
- 2. Si f est convexe, alors pour tout $(a, b, c) \in I^3$ avec a < b < c,

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$$

 $1. \Rightarrow$

On suppose f convexe. Soit $a \in I$ et x < y dans $I \setminus \{a\}$.

— On suppose x < a < y. D'après (19.7) :

$$f(y) \le \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Si x < a < y, d'après (19.7) :

$$f(y) \ge \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Les autres cas s'y ramènent.

 \Leftarrow

On suppose que pour tout $a \in I$, $g_a : I \setminus \{a\} \to \mathbb{R}$; $x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante. Soit x < y et $\lambda \in]0, 1[$. On pose $a = \lambda y + (1 - \lambda)x$. g_a est croissante sur $I \setminus \{a\}$, donc :

$$g_a(x) \le g_a(y)$$

Donc:

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(y) - f(a)}{y - a}$$

Donc:

$$x - a < 0 \text{ et } y - a > 0$$

$$(f(x) - f(a))(y - a) \le (f(y) - f(a))(x - a)$$

$$\text{donc } f(a)(y - x) \le f(x)(y - a) - f(y)(x - a)$$

$$\text{soit } f(a) \le f(x)\frac{y - a}{y - x} + f(y)\frac{a - x}{y - x}$$

$$= (1 - \lambda)f(x) + \lambda f(y)$$

2. Soit a < b < c.

$$g_a(b) \le g_a(c) = g_c(a) \le g_c(b)$$

19.9 Continuité et dérivabilité des fonctions convexes

Théorème 19.9

Soit f une fonction convexe sur un intervalle I ouvert. La fonction f est alors continue et possède des dérivées à gauche et à droite en tout point (où les limites osnt envisageables). Pour tout $a \in I$, on a

$$f'_g(a) \le f'_d(a)$$

Pour $a \in I$, on note encore $g_a: I \setminus \{a\} \to \mathbb{R}; x \mapsto \frac{f(x) - f(a)}{x - a}$.

Comme g est définie à gauche et à droite de a (I est ouvert) et que g est croissante sur $I \setminus \{a\}$, d'après le TLM g admet des limites finies à gauche et à droite de a et :

$$\lim_{a^{+}} g = f'_{d}(a) \ge f'_{g}(a) = \lim_{a^{-}} g$$

$$\forall x \ne a, f(x) = \frac{f(x) - f(a)}{x - a} (x - a) + f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

19.11 Caractérisation des fonctions convexes par les variations de la dérivée

Théorème 19.11

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur I. Alors f est convexe si et seulement si f' est croissante.

 \Rightarrow

On suppose f convexe. Soit x < y. Soit a tel que x < a < y.

D'après l'inégalité des pentes (f est convexe), on a :

$$\frac{f(a)-f(x)}{a-x} \leq \frac{f(y)-f(x)}{y-x} \leq \frac{f(y)-f(a)}{y-a}$$

En considérant les limiets $a \to x^+$ et $a \to y^-$ et par TCILPPL :

$$f'(x) \le \frac{f(y) - f(x)}{y - x} \le f'(y)$$

Donc f' est croissante.

 \Leftarrow

On suppose f' croissante sur I. Soit x < y. Soit $a \in]x, y[$.

On applique deux fois le TAF : on choisit $\alpha \in]x, a[$ et $\beta \in]a, y[$ tels que :

$$\frac{f(a) - f(x)}{-x + a} = f'(\alpha) \text{ et } \frac{f(y) - f(a)}{y - a} = f'(\beta)$$

Comme f' est croissante, on a $f'(\alpha) \leq f'(\beta)$, soit :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(a)}{y - a}$$
$$\operatorname{donc} f(a) \le \frac{a - x}{y - x} f(y) + \frac{y - a}{y - x} f(x)$$

Comme $a \in]x, y[$, $a = \lambda y + (1 - \lambda)x$ et aussi :

$$f(a) = f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x)$$

Donc f est convexe (sur I).

19.13 Caractérisation des fonctions convexes par les tangentes

Propostion 19.13

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors f est convexe sur I si et seulement si le graphe de f est situé au-dessus de toutes ses tangentes.

 \Rightarrow

On suppose f convexe. Soit $a \in I$ et soit $\varphi : \mathbb{R} \to \mathbb{R}$; $t \mapsto f'(a)(t-a) + f(a)$.

On pose $h = f - \varphi \in \mathcal{D}^1(I, \mathbb{R})$ et h' = f' - f'(a).

Or f est convexe donc f' est croissante sur I. Donc :

a			
h'	_	0	+
h	X	0	7
h		+	

 \Leftarrow

Soit x < y et $a = \lambda y + (1 - \lambda)x \in]x, y[$.

Par hypothèse, le graphe de f est situé au-dessus de sa tangente en a.

$$\forall t \in I, f(t) \ge f'(a)(t-a) + f(a)$$

En particulier:

$$f(x) \ge f'(a)(x-a) + f(a)$$

$$f(y) \ge f'(a)(y-a) + f(a)$$

Donc:

$$(y-a)f(x) + (a-x)f(y) \ge (y-a)f(a)$$
$$\operatorname{donc} f(a) \le \frac{y-a}{y-x}f(x) + \frac{a-x}{y-x}f(y)$$
$$= (1-\lambda)f(x) + \lambda f(y)$$

19.17 Somme de fonctions convexes

Propostion 19.17

La somme de deux fonctions convexes et convexe.

Soit f et g convexes. Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda)f(y)$$

$$g(a) \le \lambda g(x) + (1 - \lambda)g(y)$$

Donc:

$$(f+g)(a) \le \lambda(f+g)(x) + (1-\lambda)(f+g)(y)$$

Donc f + g est convexe.

19.18 Composition de fonctions convexes

Propostion 19.18

Soit $f: I \to J$ et $g: J \to \mathbb{R}$ deux fonctions convexes avec g croissante. Alors $g \circ f$ est convexe sur I.

Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda) f(y)$$

donc $g \circ f(a) \le g(\lambda f(x) + (1 - \lambda) f(y))$
 $\le \lambda (g \circ f(x)) + (1 - \lambda) (g \circ f(y))$

Donc $g \circ f$ est convexe.

19.19 Réciproque de fonctions convexes

Propostion 19.19

Soit $f: I \to J$ une fonction convexe bijective avec I ouvert. Alors $g = f^{-1}$ est soit concave, soit convexe sur J.

Comme f est convexe sur I ouvert, f est continue sur I (19.9). Or f est bijective, donc f est strictement monotone sur I (15.72).

— Supposons f strictement croissante sur I. Soit x < y dans J = f(I). Soit $\lambda \in]0,1[$. Alors g est strictement croissante.

On pose x = f(a) et y = f(b). On a :

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

$$\le \lambda x + (1 - \lambda)y$$

Or g est strictement croissante, donc :

$$\lambda g(x) + (1 - y)g(y) = \lambda a + (1 - \lambda)b$$

$$\leq g(\lambda x + (1 - \lambda)y)$$

Donc g est concave sur J.

— Si f est strictement décroissante (et donc g strictement décroissante), alors g est concave sur J.

19.20 Extrema des fonctions convexes

Propostion 19.20

Soit f une fonction convexe définie par un intervalle I ouvert. Alors f admet un minimum global en un point a si et seulement si a est un point critique.

 \Leftarrow

On suppose que a est un point critique. Donc f'(a) = 0.

Or le graphe de f est situé au-dessus de sa tangente en a, soit :

$$\forall x \in I, f(x) \ge \underbrace{f'(a)}_{0}(x-a) + f(a) = f(a)$$

Donc f(a) est un minimum global de f.

19.24 Inégalité de Jensen

Théorème 19 24

Soit $f: I \to \mathbb{R}$ une fonction convexe. Soit $n \geq 2$. Pour tout $(x_1, \dots, x_n) \in I^n$ et $(\lambda_1, \dots, \lambda_n) \in [0; 1]^n$ avec $\sum_{k=1}^n \lambda_k = 1$, alors

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k)$$

Par récurrence.

- Pour n = 2, RAF (cf. définition)
- On suppose la propriété vraie au rang n.

Soit
$$(x_1, \ldots, x_{n+1}) \in I^{n+1}, (\lambda_1, \ldots, \lambda_{n+1}) \in [0, 1]^{n+1}$$
 avec $\sum_{i=1}^{n+1} \lambda_i = 1$.

Si $\lambda_{n+1} = 0$, on applique directement l'hypothèse au rang n (RAF).

On suppose $\lambda_{n+1} \neq 0$. On a :

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\sum_{i=1}^{n-1} \lambda_i x_i + \lambda_n x_n + \lambda_{n+1} x_{n+1}\right)$$

$$= f\left(\sum_{i=1}^{n-1} \lambda_i x_i + (\lambda_n + \lambda_{n+1}) \times \left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} x_n + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} x_{n+1}\right)\right)$$

$$\leq \sum_{i=1}^{n-1} \lambda_i f(x_i) + (\lambda_n + \lambda_{n+1}) \times f\left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} x_n + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} x_{n+1}\right)$$

$$\leq \sum_{i=1}^{n-1} \lambda_i f(x_i) + (\lambda_n + \lambda_{n+1}) \times \left(\frac{\lambda_n}{\lambda_n + \lambda_{n+1}} f(x_n) + \frac{\lambda_{n+1}}{\lambda_n + \lambda_{n+1}} f(x_{n+1})\right)$$

$$= \sum_{i=1}^{n} \lambda_i f(x_i)$$

19.25 Exemple - Inégalité arithmético-géométrique

Exemple 19.25

Soit $n \geq 1$. Pour tout $(x_1, \ldots, x_n) \in (\mathbb{R}_+^*)^n$

$$\frac{n}{\sum_{k=1}^{n} \frac{1}{x_k}} \le \sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k$$

La fonction logarithme est concave sur \mathbb{R}_+^* . Soit $(x_1,\ldots,x_n)\in(\mathbb{R}_+^*)^n$.

On remarque que $\sum_{k=1}^{n} \frac{1}{n} = 1$. D'après l'inégalité de Jensen :

$$\ln\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right) \ge \frac{1}{n}\sum_{k=1}^{n}\ln(x_{k})$$

$$= \frac{1}{n}\ln\left(\prod_{k=1}^{n}x_{k}\right)$$

$$= \ln\left(\sqrt[n]{\prod_{k=1}^{n}x_{k}}\right)$$

On compose alors par exp (strictement croissante).

D'après le résultat précédent appliqué à $\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$:

$$0 < \frac{1}{\sqrt[n]{\prod_{k=1}^{n} x_k}} = \sqrt[n]{\prod_{k=1}^{n} \frac{1}{x_k}} \le \frac{1}{n} \sum_{k=1}^{n} \frac{1}{x_k}$$

Donc $(x \mapsto \frac{1}{x} \text{ est strictement décroissante sur } \mathbb{R}_+^*)$:

$$\frac{n}{\sum\limits_{k=1}^{n}\frac{1}{x_k}} \leq \sqrt[n]{\prod\limits_{k=1}^{n}x_k}$$

19.26 Inégalités de Holder et Minkowski

Théorème 19.26

Soit $n \in \mathbb{N}^*$, p et q deux nombres réels strictement positifs vérifiant

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Soit $(a_1,\ldots,a_n)\in(\mathbb{R}_+^*)^n$ et $(b_1,\ldots,b_n)\in(\mathbb{R}_+^*)^n$. On a

$$\sum_{k=1}^n a_k b_k \leq \sqrt[p]{\sum_{k=1}^n a_k^p} \sqrt[q]{\sum_{k=1}^n b_k^q}$$
 Inégalité de Holder

$$\sqrt[p]{\sum_{k=1}^n (a_k+b_k)^p} \leq \sqrt[p]{\sum_{k=1}^n a_k^p} + \sqrt[p]{\sum_{k=1}^n b_k^p} \text{ Inégalité de Minkowski}$$

— On rappelle que le logarithme est concave sur \mathbb{R}_+^* , donc pour tout u>0 et v>0, on a :

$$\ln\left(\frac{u^p}{p} + \frac{v^q}{q}\right) \ge \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(v^q) = \ln(uv)$$

Donc:

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Et en particulier:

$$u^{\frac{1}{p}}v^{\frac{1}{q}} \le \frac{u}{p} + \frac{v}{q}$$

En particulier, pour tout $k \in [1, n]$:

$$\underbrace{\left[\frac{a_k^p}{\sum\limits_{i=1}^n a_i^p}\right]^{\frac{1}{p}}}_{} \times \left[\frac{b_k^q}{\sum\limits_{i=1}^n b_i^q}\right]^{\frac{1}{q}} \leq \frac{1}{p} \frac{a_k^p}{\sum\limits_{i=1}^n a_i^p} + \frac{1}{q} \frac{b_k^q}{\sum\limits_{i=1}^n b_i^q}$$

Donc:

$$\sum_{k=1}^{n} \frac{a_k b_k}{\sqrt[p]{\sum_{i=1}^{n} a_i^p} \sqrt[q]{\sum_{i=1}^{n} b_i^q}} \le \frac{1}{p} \sum_{k=1}^{n} \frac{a_k^p}{\sum_{i=1}^{n} a_i^p} + \frac{1}{q} \sum_{k=1}^{n} \frac{b_k^q}{\sum_{i=1}^{n} b_i^q}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

Donc:

$$\frac{\sum_{k=1}^{n} a_k b_k}{\sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} b_k^q}} \le 1$$

$$\sum_{k=1}^{n} (a_k + b_k)^p = \sum_{k=1}^{n} (a_k + b_k)(a_k + b_k)^{p-1} \quad (p \neq 1)$$
$$= \sum_{k=1}^{n} a_k (a_k + b_k)^{p-1} + \sum_{k=1}^{n} b_k (a_k + b_k)^{p-1}$$

D'après l'inégalité de Holder $\left(q = \frac{p}{p-1}\right)$:

$$\sum_{k=1}^{n} (a_k + b_k)^p \le \sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^{(p-1)q}} + \sqrt[p]{\sum_{k=1}^{n} b_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^{(p-1)q}}$$

$$= \sqrt[p]{\sum_{k=1}^{n} a_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^p} + \sqrt[p]{\sum_{k=1}^{n} b_k^p} \sqrt[q]{\sum_{k=1}^{n} (a_k + b_k)^p}$$

donc
$$\left[\sum_{k=1}^{n} (a_k + b_k)\right]^{\left(1 - \frac{1}{q}\right)} = \sqrt[p]{\sum_{k=1}^{n} a_k^p} + \sqrt[p]{\sum_{k=1}^{n} b_k^p}$$

Pour p = 1, RAF.

Chapitre 20

Espace Vectoriels