# prabhudayala@gmail.com\_1

March 18, 2019

## 1 Data Visualization with Haberman Dataset

```
In [138]: #import statements
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
```

#### 1.1 Haberman Survival Dataset

Sources: (a) Donor: Tjen-Sien Lim (limt@stat.wisc.edu) (b) Date: March 4, 1999 Past Usage:

Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th International Biometrics Conference, Boston, pp. 104-122. Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing Logistic Regression Models (with discussion), Journal of the American Statistical Association 79: 61-83. Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of Wisconsin, Madison, WI. Relevant Information: The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.

#### 1.1.1 More information about Haberman Survival Dataset

Number of Instances: 306 Number of Attributes: 4 (including the class attribute)

**Attribute Information:** Age of patient at time of operation (numerical) Patient's year of operation (year - 1900, numerical) Number of positive axillary nodes detected (numerical) Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 year

### Missing Attribute Values: None

```
Out[140]: Index(['age', 'operation_at_age', 'number_auxilary_nodes', 'survival_status'], dtype=
In [141]: print("Number of points is %d" %(df.shape[0]))
Number of points is 306
In [142]: print("Number of features is %d" %(df.shape[1]-1))
Number of features is 3
In [143]: len(df['survival_status'].unique())
Out[143]: 2
In [144]: #chnage level 2 to 0
          def change_2_to_0(x):
              if x==2:
                  return 0
              else:
                  return 1
          #print(df['survival_status'][7])
          df['survival_status']=df['survival_status'].apply(change_2_to_0)
          #print(df['survival_status'][7])
In [145]: print("This is a imbalance data set as the ratio of positive to negative points is %
This is a imbalance data set as the ratio of positive to negative points is 225 : 81
In [146]: df['survival_status'].value_counts()
Out[146]: 1
               225
          Name: survival_status, dtype: int64
1.1.2 Observation 1: This might require a upsampling of data
In [147]: sns.set_style("whitegrid")
          sns.FacetGrid(df,hue='survival_status').map(plt.scatter,'number_auxilary_nodes','age
          plt.show()
```



In [148]: sns.pairplot(df,hue='survival\_status',vars=['age', 'operation\_at\_age', 'number\_auxile
Out[148]: <seaborn.axisgrid.PairGrid at 0x1fc13161978>



## 1.1.3 Observation 2:

- if given condition to choose two features I will prefer 'number of auxiliary nodes' and 'operation at age'
- survival status is maximum if the patient has 0

# 1.2 Distribution plots of paired features

In [149]: sns.FacetGrid(df,hue='survival\_status',height=6).map(sns.distplot,'age').add\_legend(
Out[149]: <seaborn.axisgrid.FacetGrid at 0x1fc14591358>



In [150]: sns.FacetGrid(df,hue='survival\_status',height=6).map(sns.distplot,'operation\_at\_age'
Out[150]: <seaborn.axisgrid.FacetGrid at 0x1fc148fcf28>



In [151]: sns.FacetGrid(df,hue='survival\_status',height=6).map(sns.distplot,'number\_auxilary\_neight=6)
Out[151]: <seaborn.axisgrid.FacetGrid at 0x1fc1499c1d0>



### 1.2.1 Observation 3

• plot of auxiliary nodes and survival status seems reasonable, but it has a lot of over lapping too. The model can not be concrete on this feature.

```
[0.20588235 0.29738562 0.38235294 0.45751634 0.55555556 0.65686275 0.74836601 0.83986928 0.92156863 1. ]
[58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]
```

Out[161]: Text(0.5,1,'PDF and CDF of opeartion at age')



```
In [162]: import numpy as np
          count,bin_edges=np.histogram(df['age'],density=True,bins=10)
          pdf=count/sum(count)
          #print(pdf)
          cdf=np.cumsum(pdf)
          print(cdf)
          print(bin_edges)
          plt.plot(bin_edges[1:],pdf)
          plt.plot(bin_edges[1:],cdf)
          plt.legend({'PDF','CDF'})
          plt.xlabel('age')
          plt.ylabel('probability')
          plt.title('PDF and CDF of current age')
[0.05228758 0.14052288 0.29084967 0.46405229 0.64379085 0.77777778
0.91176471 0.97058824 0.99346405 1.
[30. 35.3 40.6 45.9 51.2 56.5 61.8 67.1 72.4 77.7 83.]
```

Out[162]: Text(0.5,1,'PDF and CDF of current age')



```
In [163]: import numpy as np
          count,bin_edges=np.histogram(df['number_auxilary_nodes'],density=True,bins=10)
          pdf=count/sum(count)
          #print(pdf)
          cdf=np.cumsum(pdf)
          print(cdf)
          print(bin_edges)
          plt.plot(bin_edges[1:],pdf)
          plt.plot(bin_edges[1:],cdf)
          plt.legend({'PDF','CDF'})
          plt.xlabel('number_auxilary_nodes')
          plt.ylabel('probability')
          plt.title('PDF and CDF of auxiliary nodes')
[0.77124183\ 0.86928105\ 0.92810458\ 0.95424837\ 0.98366013\ 0.99019608
0.99346405 0.99346405 0.99673203 1.
[ 0.
      5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52. ]
```

Out[163]: Text(0.5,1,'PDF and CDF of auxiliary nodes')



# 1.2.2 Plotting box plot will let us know more about the quantiles

In [164]: sns.boxplot(data=df,x='survival\_status',y='age')

Out[164]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1fc0d521b00>



In [165]: sns.boxplot(data=df,x='survival\_status',y='operation\_at\_age')

Out[165]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1fc14c66470>



In [166]: sns.boxplot(data=df,x='survival\_status',y='number\_auxilary\_nodes')

Out[166]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1fc14cd0a58>



### 1.2.3 Observation 4

- From the above plot of auxiliary nodes and survival status -- there are a lot of outlier points who survived. At this point of time I believe the dataset is in separable using linear models.
- From other two box plots, the data is very less likely to be separable

In [167]: sns.violinplot(data=df,x='survival\_status',y='number\_auxilary\_nodes')

Out[167]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1fc14d335c0>



## 1.2.4 Observation 5

• The distribution of data is slightly skewed

# 1.2.5 Conclusion

1.2.6 Data seems in separable using linear models. Some more complex models which can capture curves in might be helpful here.

In []:

In []: