特性描述

TM1637 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数 字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。主要应用于电磁炉、 微波炉及小家电产品的显示屏驱动。采用DIP/SOP20的封装形式。

功能特点

- ➤ 采用功率CMOS 工艺
- ▶ 显示模式(8 段×6 位),支持共阳数码管输出
- ▶ 键扫描(8×2bit),增强型抗干扰按键识别电路
- ▶ 辉度调节电路(占空比 8 级可调)
- ▶ 两线串行接口(CLK, DIO)
- ▶ 振荡方式: 内置RC 振荡 (450KHz+5%)
- ▶ 内置上电复位电路
- ▶ 内置自动消隐电路
- ▶ 封装形式: DIP20/SOP20

管脚信息

GND	1 🔘	20	K2
SEG1/KS1	2	19	K1
SEG2/KS2	3	18	CLK
SEG3/KS3	4	17	DIO
SEG4/KS4	5	16	VDD
SEG5/KS5	6	15	GRID1
SEG6/KS6	7	14	GRID2
SEG7/KS7	8	13	GRID3
SEG8/KS8	9	12	GRID4
GRID6	10	11	GRID5
			J

管脚功能

符号	管脚名称	管脚号	说明		
DIO	数据输入/输出	17	串行数据输入/输出,输入数据在 SLCK 的低电平变化,在 SCLK 的高电平被传输,每传输一个字节芯片内部都将在第 八个时钟下降沿产生一个 ACK		
CLK	时钟输入	18	在上升沿输入/输出数据		
K1~K2	键扫数据输入	19-20	输入该脚的数据在显示周期结束后被锁存		
SG1~SG8	输出(段)	2-9	段输出(也用作键扫描), N 管开漏输出		
GRID6~GRID1	输出(位)	10-15	位输出,P 管开漏输出		
VDD	逻辑电源	16	5V±10%		
GND	逻辑地	1	接系统地		

在干燥季节或者干燥使用环境内,容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切 适当的集成电路预防处理措施,如果不正当的操作和焊接,可能会造成ESD损坏或者性能下降,芯片无法正常 工作。

读键扫数据

键扫矩阵为8×2bit,如下所示:

在有按键按下时,读键数据如下:

	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8
K1	1110_11	0110_11	1010_11	0010_11	1100_11	0100_11	1000_11	0000_11
	11	11	11	11	11	11	11	11
K2	1111_01	0111_01	1011_01	0011_01	1101_01	0101_01	1001_01	0001_01
	11	11	11	11	11	11	11	11

注意: 在无按键按下时, 读键数据为: 1111_1111, 低位在前, 高位在后。由于在电磁炉等厨房电器应用中, 由于干扰 较强,为改善这个问题,TM1637采用负沿触发方式解决误触发现象,即所谓"跳键"现象。

显示寄存器地址和显示模式

该寄存器存储通过串行接口从外部器件传送到TM1637的数据,地址00H-05H共6个字节单元,分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	
X	xHL (们	既四位)		2	xxHU(∤			
ВО	В1	B2	В3	B4	B5	В6	В7	
	00	HL			00	GRID1		
	01	HL		01HU G F				GRID2
	02	HL		02HU GRID				GRID3
	03HL				03	GRID4		
	04	HL		04HU GRI				GRID5
	05	HL			05	HU		GRID6

接口说明

微处理器的数据通过两线总线接口和 TM1637 通信,在输入数据时当 CLK 是高电平时, DIO 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时, DIO 上的信号才能改变。数据输入的开始条件是 CLK 为高电平时, DIO 由高变低;结束条件是 CLK 为高时, DIO 由低电平变为高电平。

TM1637 的数据传输带有应答信号 ACK, 当传输数据正确时, 会在第八个时钟的下降沿, 芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低, 在第九个时钟结束之后释放 DIO 口线。

1、指令数据传输过程如下图(读按键数据时序)

Command: 读按键指令; S0、S1、S2、K1、K2组成按键信息编码, S0、S1、S2为 SGn的编码, K1、K2为 K1和 K2键的编码,读按键时,时钟频率应小于250K,先读低位,后读高位。

LED 驱动控制专用电路

TM1637

2、写 SRAM 数据地址自动加 1 模式

Command1: 设置数据 Command2: 设置地址 Data1~N: 传输显示数据 Command3: 控制显示

3、写 SRAM 数据固定地址模式

Command1: 设置数据 Command2: 设置地址 Data1~N: 传输显示数据 Command3: 控制显示

数据指令

指令用来设置显示模式和LED 驱动器的状态。

在CLK下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的指令。

В7	В6	指令			
0	0 1 数据命令设置				
1	0	显示控制命令设置			
1	1	地址命令设置			

如果在指令或数据传输时发送STOP命令,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)

__ 1、数据命令设置

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB

В7	В6	B5	B4	В3	B2	В1	во	功能	说明		
0	1	无关项,填						0	0	数据读写模式设置	写数据到显示寄存器
0	1					1	0	数16 庆与庆 人以直	读键扫数据		
0	1				0			地址增加模式设置	自动地址增加		
0	1	()		1			地址培加铁八区且	固定地址		
0	1			0				测试模式设置(内	普通模式		
0	1			1				部使用)	测试模式		

2、地址命令设设置

LSB **MSB**

В7	В6	B5	B4	В3	B2	В1	во	显示地址
1	1			0	0	0	0	00H
1	1				0	0	1	01H
1	1	无关项	页,填	0	0	1	0	02H
1	1	(0		0	1	1	03H
1	1				1	0	0	04H
1	1			0	1	0	1	05H

该指令用来设置显示寄存器的地址;如果地址设为0C6H 或更高,数据被忽略,直到有效地址被设定; 上电时, 地址默认设为00H。

3、显示控制

MSB LSB

B7	В6	B5	В4	В3	B2	В1	во	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0		设置脉冲宽度为 4/16
1	0				0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关项	页,填		1	0	0	/ 月儿 奴 里以直	设置脉冲宽度为 11/16
1	0	()		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小开大权直	显示开

显示和键扫周期

程序流程图

1、采用地址自动加一模式的程序流程图

2、采用固定地址的程序设计流程图


```
参考程序
```

```
/*
*版权信息:
         深圳天微电子
        TM1637
*文件名:
*当前版本:
         1.0
*单片机型号: AT89$52
*开发环境: Keil uVision3
*晶震频率: 11.0592M
          把 TM1637 所有显示寄存器地址全部写满数据 Oxff, 并开显示, 然后再读按键值。
*程序功能:
*/
#include<reg52.h>
#include<intrins.h>
//定义端口
sbit clk = P1^2;
sbit dio = P1 \wedge 1;
void Delay_us(unsigned int i) //nus 延时
{
     for(;i>0;i--)
     _nop_();
}
void I2CStart(void)
                  //1637 开始
     clk = 1;
     dio = 1;
     Delay_us(2);
     dio = 0;
}
void I2Cask(void)
                     //1637 应答
{
   clk = 0;
   Delay_us(5);
                    //在第八个时钟下降沿之后延时 5us, 开始判断 ACK 信号
   while(dio);
     clk = 1;
   Delay_us(2);
     clk=0;
```



```
void I2CStop(void)
                              // 1637 停止
{
        clk = 0;
        Delay_us(2);
        dio = 0;
        Delay_us(2);
        clk = 1;
        Delay_us(2);
        dio = 1;
}
void I2CWrByte(unsigned char oneByte) //写一个字节
{
    unsigned chari;
       for(i=0;i<8;i++)
           clk = 0;
           if(oneByte&0x01)
                               //低位在前
           {
                dio = 1;
           }
            else
           {
                dio = 0;
           Delay_us(3);
           oneByte=oneByte>>1;
           clk=1;
           Delay_us(3);
       }
}
unsigned char ScanKey(void)
                                       //读按键
{
     unsigned char rekey,rkey,i;
        12CStart();
        I2CWrByte(0x42);
                                         //读按键命令
        I2Cask();
        dio=1;
                                         // 在读按键前拉高数据线
        for(i=0;i<8;i++)
                                      //从低位开始读
           clk=0;
             rekey=rekey>>1;
```

```
Delay_us(30);
              clk=1;
              if(dio)
                  rekey=rekey | 0x80;
              }
              else
              {
                 rekey=rekey | 0x00;
              }
              Delay_us(30);
          I2Cask();
          I2CStop();
       return (rekey);
  }
   void SmgDisplay(void)
                                  //写显示寄存器
      unsigned char i;
      12CStart();
      I2CWrByte(0x40);
                                  // 40H 地址自动加 1 模式,44H 固定地址模式,本程序采
用自加1模式
      I2Cask();
      I2CStop();
      12CStart();
      I2CWrByte(0xc0);
                                  //设置首地址,
      I2Cask();
        for(i=0;i<6;i++)
                                  //地址自加,不必每次都写地址
         {
             I2CWrByte(0xff);
                                    //送数据
             I2Cask();
      }
         I2CStop();
         I2CStart();
         I2CWrByte(0x8f);
                                 //开显示 , 最大亮度
         I2Cask();
         I2CStop();
   }
                _____
```



```
void init()
                   //初始化子程序
  //初始化略
}
void main(void)
{
  unsigned char keydate;
  init();
                   //初始化
  SmgDisplay();
                    //写寄存器并开显示
  while(1)
     keydate=Scankey();
                      //读按键值 ,读出的按键值不作处理。
  }
}
```


硬件连接图

电路图中所接数码管为共阳数码管

电气参数:

1、极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~+7.0	٧
逻辑输入电压	VII	-0.5 ~ VDD + 0.5	٧
LED SEG 驱动输出电流	IO1	-200	mA
LED GRID 驱动输出电流	IO2	+20	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ~ +85	$^{\circ}$
储存温度	Tstg	-65 ∼+150	°C

2、正常工作范围 (Ta = -40~+85℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		٧	-
高电平输入电压	VIH	0.7 VDD	ı	VDD	٧	-
低电平输入电压	VIL	0	-	0.3 VDD	٧	-

3、电气特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	loh1	-20	-25	-40	mA	GRID1~GRID6, Vo=vdd-2V
	loh2	-20	-30	-50	mA	GRID1~GRID6, Vo = vdd-3V
低电平输出电流	IOL1	80	140	-	mA	SEG1~SEG8 Vo=0.3V
低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容许量	Itolsg	-	-	5	%	VO=VDD - 3V, GRID1∼GRID6

输出下拉电阻	RL		10		ΚΩ	K1~K2
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	ı		V	CLK, DIN
低电平输入电压	VIL	ı	ı	0.3 VDD	V	CLK, DIN
滞后电压	VH	-	0.35	-	٧	CLK, DIN
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

4、开关特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测	试条件
振荡频率	fosc	-	450	-	KHz		
	†PLZ	-	-	300	ns	CLK → DIO	
传输延迟时间	†PZL	-	-	100	ns	CL = 15p	oF, RL = 10K Ω
	TTZH 1	-	-	2	μs	CL =	GRID1∼ GRID6
上升时间	TTZH 2	-	-	0.5	μs	300p F	SEG1~ SEG8
下降时间	TTHZ	-	-	120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	-	-	500	KHz	占空比50%	
输入电容	CI	-	-	15	pF	-	

5、时序特性 (Ta = -40 ~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	1	-	ns	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	†HOLD	100	-	-	ns	-
等待时间	tWAIT	1	-	-	μs	CLK↑→CLK↓

IC封装示意图 DIP20

R サ	最 小(m)	最大(100)	尺 寸 标注	最小(mm)	最 大(=)
A	24.50	24.70	C2	2.9	
A1	1. 40TYP		C3	1.56TYP	
A2	0.43 0.57		C4	0.80TYP	
A3	2. 54TYP		D	7. 87	8. 60
A4	0.62TYP		D1	0.20	0.35
A5	0.95TYP		D2	7.62	7.87
В	6.3	6.5	91	8°	TYP
С	7. 5IYP		θ 2	5°	TYP
C1	3.30	3. 50			

SOP20

Symbol	Dimen	sions In Mill	meters	Dimensions In Inches			
Symbol	Min	Nom	Max	Min	Nom	Max	
Α	2.15	2.35	2.55	0.085	0.093	0.100	
A1	0.05	0.15	0.25	0.002	0.006	0.010	
b		0.40			0.016		
С		0.25			0.010		
D	12.40	12.70	13.00	0.488	0.500	0.512	
E	7.40	7.65	7.90	0.291	0.301	0.311	
е		1.27			0.050		
Н	10.15	10.45	10.75	0.400	0.411	0.423	
K		0.50			0.020		
L	0.60	0.80	1.00	0.024	0.031	0.039	
α	o°		8 *	0 0		8°	
β		45°			45°		

修改说明

版本	修改日期	修改说明
Ver1.0	2011-06-28	初版发行
Ver2.0	2011-09-22	1.更改对 ack 信号的说明 2.更改例程中 ack 信号的程序错误
Ver1.2	2012-08-12	1、修改排版格式 2、修改例程中 STOP 的时序 3、修改关于 ACK 信号的描述