Análisis de complejidad temporal y espacial del algoritmo main::

```
public static void main(String[] args) throws WrongEntriesException{
             System.out.println("Please enter the information for star the
program");
             int cant=sn.nextInt();
             sn.nextLine();
             for(int i=0;i<cant;i++) {</pre>
                    String info=sn.nextLine();
                    String[] parts=info.split(" ");
                    if(parts.length!=4 || Integer.parseInt(parts[1])<=0 ||</pre>
Integer.parseInt(parts[2])<=0 || Integer.parseInt(parts[3])<=0) {</pre>
                          throw new WrongEntriesException();
                    }else {
                          String idEdifice=parts[0];
                          int numUser=Integer.parseInt(parts[1]);
                          int numFloors=Integer.parseInt(parts[2]);
                           int
numOfficeForFloor=Integer.parseInt(parts[3]);
                          int contador=0;
                           String[] user=new String[numUser];
                          while(numUser!=0)
                                                                               n^2
                                 user[contador]=sn.nextLine();
                                 //System.out.println(user[contador]);
                                 numUser--;
                                 contador++;
                          createEdifice( idEdifice, numUser, numFloors,
numOfficeForFloor,user);
      //System.out.println(idEdifice+numUser+numFloors+numOfficeForFloor);
```

Complejidad temporal:

$$f(n)=n+n^2$$

$$O\big(f(n)\big)=n+n^2$$

$$O(n+n^2)$$
 Hacemos uso del peor caso (n de grado superior):
$$O(n^2)$$

Por lo tanto, la complejidad temporal del algoritmo main es $O(n^2)$.

Complejidad espacial:

Tipo	Variable	Tamaño de 1	Cantidad de
		valor atómico	valores atómicos
Entrada	cant	32 bits	1
	info	16 bits	n
Auxiliar	i	32 bits	n
	parts [4]	16(4) bits	n
	contador	32 bits	n^2
Salida	idEdifice	16 bits	n
	numUser	32 bits	n^2
	numFloors	32 bits	n
	numOfficeForFloor	32 bits	n
	user	16 bits	n

Complejidad espacial total:

 $Entrada + auxiliar + salida = 1 + n + n^2 = O(n^2)$

Complejidad auxiliar:

$$n + n^2 = O(n^2)$$

Complejidad espacial Auxiliar + Salida:

$$n + n^2 = O(n^2)$$