	<pre>from sklearn.metrics import log_loss from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import A2_algorithm_function as ut import A2_loss_function as lf from A7_algorithm_function import * import warnings from c_svm import SVM import matplotlib.pyplot as plt</pre>
	from prince import CA • The cleaned COMPAS dataset is provided in/output/compas-scores-two-years_cleaned.csv . Section 1: Load Data
n [2]: ut[2]:	0 Male 25 - 45 African-American -0.733607 F 1 -0.167773
	1 Male < 25 African-American 0.055928 F 1 -0.340654 2 Male 25 - 45 Caucasian 2.029767 F 1 -0.244609 # change categorical data into numerical le = LabelEncoder() df['sex'] = le.fit_transform(df['sex']) df['age_cat'] = le.fit_transform(df['age_cat'])
	<pre>df['race'] = le.fit_transform(df['race']) df['c_charge_degree'] = le.fit_transform(df['c_charge_degree']) Encode categorical variables with numerical variables: sex : 1 for male and 0 for female age_cat : 2 for > 45, 0 for 25 - 45 and 1 for < 25</pre>
n [4]:	 race: 1 for caucasian and 0 for african-american c_charge_degree: 0 for F and 1 for M # df['sex'].value_counts(), df['age_cat'].value_counts(), df['race'].value_counts(), df['c_charge_degree'].value_counts()
it[4]:	(1 4751 0 1164 Name: sex, dtype: int64, 0 3378 1 1281 2 1256 Name: age_cat, dtype: int64, 0 3537
[5]:	<pre>1 2378 Name: race, dtype: int64, 0 3904 1 2011 Name: c_charge_degree, dtype: int64) features = df[['sex', 'age_cat', 'c_charge_degree', 'length_of_stay', "priors_count"]]</pre>
	<pre>sensitive = df['race'] target = df['two_year_recid'] X_train, X_test, y_train, y_test, race_train, race_test = \ train_test_split(features, target, sensitive, test_size=0.3, random_state=6, shuffle = True) • Protected: Caucasians (i.e., race == 1) • Not protected: African-Americans (i.e., race == 0)</pre>
ıt[6]:	df.head() sex age_cat race priors_count c_charge_degree two_year_recid length_of_stay 0 1 0 0 -0.733607 0 1 -0.167773 1 1 1 0 0.055928 0 1 -0.340654
	2 1 0 1 2.029767 0 1 -0.244609 3 0 0 1 -0.733607 1 0 -0.321445 4 1 1 1 -0.536224 0 1 -0.359864 The p-rule function is commonly used in evaluate fairness in machine learning model, by checking whether the model's positive predictions are distributed similarly across different sensitive groups. The higher the p-rule, the better the model's positive predictions are distributed similarly across different sensitive groups. The higher the p-rule, the better the model's positive predictions are distributed similarly across different sensitive groups.
[7]:	<pre>fairness. # Function to compute p-rule def p_rule(sensitive_var, y_pred): protected = np.where(sensitive_var == 1)[0] not_protected = np.where(sensitive_var == 0)[0] protected_pred = np.where(y_pred[protected] == 1)</pre>
.	<pre>not_protected_pred = np.where(y_pred[not_protected] == 1) protected_percent = protected_pred[0].shape[0]/protected.shape[0] not_protected_percent = not_protected_pred[0].shape[0]/not_protected.shape[0] ratio = min(protected_percent/not_protected_percent, not_protected_percent/protected_percent) return ratio, protected_percent, not_protected_percent</pre>
[8]:	<pre>def calibration(y_true, y_pred, sensitive_features): y_true = np.array(y_true) y_pred = np.array(y_pred) c_index = np.where(sensitive_features == 1)[0] a_index = np.where(sensitive_features == 0)[0] y_pred_c = y_pred[c_index]</pre>
	<pre>y_true_c = y_true[c_index] acc_c = sum(y_pred_c == y_true_c)/len(y_pred_c) y_pred_a = y_pred[a_index] y_true_a = y_true[a_index] acc_a = sum(y_pred_a == y_true_a)/len(y_pred_a)</pre>
	return(calibration) * 100 return(calibration) The "80% rule" (or the p%-rule) is a guideline established by the U.S. Equal Employment Opportunity Commission (EEOC) to help identify potential discrimination in hiring, promotion, or other employment decisions. It's a way to measure fairness and equal opportunity in these processes, particularly concerning sensitive attributes such as race, gender, age, or disability. Section 2: Logistic Regression
[9]:	2.1 Baseline Model First, we train a baseline model without constaint, and then evaluate it's accuaracy and fairness. clf = LogisticRegression(random_state= 6).fit(X_train, y_train) coeff = clf.coef_
	<pre>intercept = clf.intercept_ optimal_loss = log_loss(y_train, clf.predict_proba(X_train)) print(f'The optimal loss of logistic model is: {optimal_loss}') The optimal loss of logistic model is: 0.6407097826469522 • Accuracy & Fairness check:</pre>
[10]:	<pre>results_lr = {"Classifier": ["LR", "LR"],</pre>
[10]:	pd.DataFrame(results_lr) Classifier Set Accuracy (%) P-rule (%) Protected (%) Not protected (%) 0 LR Train 63.743961 55.108121 21.962896 39.854192 1 LR Test 62.028169 59.382529 24.186704 40.730337
	Interpretation: The p-rule, a fairness metric, indicates that there is some bias in the model (lower than 80%). This suggests that the classifier's performance could be improved in terms of both accuracy and fairness, particularly by addressing the disparity in positive outcomes between the protected and non-protected groups. 2.2 Optimizing classifier accuracy subject to fairness constraints
	The fairness constraint is set to achieve a 0 covariance between the sensitive feature (race) and the distance to the decision boundary. A 0 covariance means there is no correlation between the two variables, which helps promote fairness. 1. Train the model using constraints to extract model weights (cweight).
[11]:	<pre># Setting Constrains #In this case, only fairness constraints are applied (apply_fairness_constraints = 1) # While accuracy constraint and separate constraint are not applied (both set to 0). fairness_constraint = 1 accuracy_constraint = 0 separate_constraint = 0 gamma = None</pre>
[12]:	<pre>sensitive_attrs = ['race'] sensitive_attrs_to_cov_thresh = {'race': 0} x_control = {'race': race_train} # Training model with constraints np.random.seed(704) cweight = ut.train_model(X_train,</pre>
	x_control, lflogistic_loss, fairness_constraint, accuracy_constraint, separate_constraint, sensitive_attrs, sensitive_attrs_to_cov_thresh, gamma)
	2. Feed the model with trained weights # Feeding model with coefficients and weights m = LogisticRegression() m.coef_= cweight.reshape((1,-1))
	<pre>m.intercept_ = 0 m.classes_ = np.array([0, 1]) • Accuracy & Fairness check: # Print the results</pre>
	<pre>warnings.filterwarnings("ignore") results_clr = {"Classifier": ["C-LR", "C-LR"],</pre>
[14]:	Classifier Set Accuracy (%) P-rule (%) Protected (%) 0 C-LR Train 48.405797 99.319527 94.733692 95.382746 1 C-LR Test 49.633803 99.378233 95.190948 95.786517
	Interpretation: The accuracy is lower compared to the based-model. Fairness wise, p-rule is drastically improved nearing 100% indicating the model is fair vis-a-vis to race. Section 3: Support Vector Machine (SVM)
[15]:	<pre>3.1 Baseline Model from sklearn import svm from sklearn.svm import SVC # Train model svm_model = SVC(kernel = 'linear', probability = True) clf= svm_model_fit(Y_train_v_y_train)</pre>
[16]:	<pre>clf= svm_model.fit(X_train, y_train) optimal_loss = log_loss(y_train, clf.predict_proba(X_train)) print(f'The optimal loss of SVM model is: {optimal_loss}') The optimal loss of SVM model is: 0.6445082714142158 # Display results results_svm = {"Classifier": ["SVM", "SVM"],</pre>
[16]:	"Accuracy (%)": [clf.score(X_train, y_train)*100, clf.score(X_test, y_test)*100], "P-rule (%)": [p_rule(race_train, clf.predict(X_train))[0]*100, p_rule(race_test, clf.predict(X_test))[0]*100], "Protected (%)": [p_rule(race_train, clf.predict(X_train))[1]*100, p_rule(race_test, clf.predict(X_test))[1]*100], "Not protected (%)": [p_rule(race_train, clf.predict(X_train))[2]*100, p_rule(race_test, clf.predict(X_test))[2]*100]} pd.DataFrame(results_svm) Classifier Set Accuracy(%) P-rule(%) Protected(%) Not protected(%)
[17].	0 SVM Train 62.850242 51.049930 15.858767 31.065209 1 SVM Test 61.352113 53.767411 17.821782 33.146067 3.2 Optimizing SVM classifier accuracy subject to fairness constraints # Fairness Constraints: Mechanisms for Fair Classification
	<pre>svm = SVM() x_control_train = {'race': race_train} weights = svm.train(X_train, y_train, x_control_train, C=1, max_iter=100, lamb=1, gamma=None, apply_fairness_constraints=1, sensitive_attrs=['race'], sensitive_attrs_to_cov_thresh={'race_y_test = np.sign(np.dot(X_test, weights))} pred_y_train = np.sign(np.dot(X_train, weights)) csvm_test_acc = sum(pred_y_test == y_test)/len(y_test) csvm_train_acc = sum(pred_y_train == y_train)/len(y_train)</pre>
[18]:	<pre>Running custom model results_csvm = {"Classifier": ["C-SVM", "C-SVM"],</pre>
	<pre>"P-rule (%)": [p_rule(race_train, pred_y_train)[0]*100, p_rule(race_test, pred_y_test)[0]*100], "Protected (%)": [p_rule(race_train, pred_y_train)[1]*100, p_rule(race_test, pred_y_test)[1]*100], "Not protected (%)": [p_rule(race_train, pred_y_train)[2]*100, p_rule(race_test, pred_y_test)[2]*100]} pd.DataFrame(results_csvm)</pre>
[18]:	Classifier Set Accuracy (%) Calibration (%) P-rule (%) Protected (%) Not protected (%) O C-SVM Train 47.042254 14.350005 99.488510 94.733692 95.220737 1 C-SVM Test 45.362319 11.422029 98.986143 94.908062 95.880150 Section 4: Information Theoretic Measures for Fairness-aware Feature Selection (FFS)
	An another method to deal with machine learning fairness is called Information Theoretic Measures for Fairness-aware Feature selection (FFS) . In short, from the joint statistics of the data, the framework proposes that two information theoretic measures can be used to quantify the accuracy and discrmination aspect for each subset of the feature space. We then compute to Shapley coefficients for each feature to capture its effect on the sensitive/protected group. Below is how we choose features by using FFS Algorithm.
[17]:	<pre># this code block takes ~ 20 min to run, so we directly load results from local file y=df["two_year_recid"] y=y.to_numpy() y=np.reshape(y,(-1,1)) a=df["race"] a=a.to_numpy()</pre>
	<pre>a=np.reshape(a,(-1,1)) arr=["sex", "age_cat", "priors_count", "c_charge_degree", "length_of_stay"] for i in arr: print("Feature:", end="") print(i)</pre>
	<pre>print("Marginal Accuracy Coefficient:",end="") print(shapley_accuracy(i,y,a)) print("Marginal Discrimination Coefficient:",end="") print(shapley_discrimination(i,y,a)) Feature:sex Marginal Accuracy Coefficient:0.003568314907946012 Marginal Discrimination Coefficient:8.16082890138538e-06</pre>
	Feature:age_cat Marginal Accuracy Coefficient:0.011273246895526084 Marginal Discrimination Coefficient:4.4881509198872635e-05 Feature:priors_count Marginal Accuracy Coefficient:0.02427159853758174 Marginal Discrimination Coefficient:4.464995590653898e-05 Feature:c_charge_degree Marginal Accuracy Coefficient:0.001958893676796756
[19]:	Marginal Accuracy Coefficient:0.001958893676796756 Marginal Discrimination Coefficient:6.936830123648318e-06 Feature:length_of_stay Marginal Accuracy Coefficient:0.005168319175750994 Marginal Discrimination Coefficient:1.0984742883746511e-05 # display result shapley_results = pd.DataFrame() arr=["sex", "age_cat", "priors_count", "c_charge_degree", "length_of_stay"]
[19]:	shapley_results["Feature"] = arr shapley_results["Accuracy Coefficient"] = [0.003568314907946012, 0.011273246895526084, 0.02427159853758174, 0.001958893676796756, 0.005168319175750994] shapley_results["Discrimination Coefficient"] = [8.16082890138538e-06, 4.4881509198872635e-05, 4.464995590653898e-05, 6.936830123648318e-06, 1.0984742883746511e-05] shapley_results Feature Accuracy Coefficient Discrimination Coefficient
	0 sex 0.003568 0.000008 1 age_cat 0.011273 0.000045 2 priors_count 0.024272 0.000045 3 c_charge_degree 0.001959 0.000007 4 length_of_stay 0.005168 0.000011
	From the table above, we can see that Discrimination Coefficient of priors_count is highest, but Accuracy Coefficient is also high, so we can't ignore this feature. length_of_stay has a little high Discrimination Coefficient , and its Accuracy Coefficient is low, so we can ignore this feature. So finally, we can choose these four features: • priors_count • age_cat
[20]:	 sex c_charge_degree 4.1 Logistic Regression using FFS features = df[['sex', 'age_cat', 'c_charge_degree', 'priors_count']] sensitive = df['race']
[21]:	<pre>target = df['two_year_recid'] X_train, X_test, y_train, y_test, race_train, race_test = \</pre>
	<pre>coeff = clf.coef_ intercept = clf.intercept_ optimal_loss = log_loss(y_train, clf.predict_proba(X_train)) print(f'The optimal loss of logistic model is: {optimal_loss}') # Display results results_ffs_lr = {"Classifier": ["FFS-LR", "FFS-LR"],</pre>
[21]:	<pre>"P-rule (%)": [p_rule(race_train, clf.predict(X_train))[0]*100, p_rule(race_test, clf.predict(X_test))[0]*100],</pre>
[81]	0 FFS-LR Train 63.405797 58.808292 23.937762 40.704739 1 FFS-LR Test 61.802817 65.541470 26.449788 40.355805 4.2 SVM using FFS
:	<pre>svm_model = SVC(kernel = 'linear', probability = True) clf= svm_model.fit(X_train, y_train) optimal_loss = log_loss(y_train, clf.predict_proba(X_train)) print(f'The optimal loss of SVM model is: {optimal_loss}') # Display results results_ffs_svm = {"Classifier": ["FFS-SVM", "FFS-SVM"],</pre>
	<pre>"Set": ["Train", "Test"],</pre>
[81]:	Classifier Set Accuracy (%) P-rule (%) Protected (%) Not protected (%) 0 FFS-SVM Train 62.463768 50.574145 15.260323 30.174160 1 FFS-SVM Test 61.183099 57.589169 18.387553 31.928839 Section 5: Evaluation
[82]:	In this session, we compare all models from paper A2 and A7 using both accuracy and P-rule score as a measure of fairnes. results = [results_lr, results_clr, results_svm, results_csvm, results_ffs_lr, results_ffs_svm] results_df = [pd.DataFrame(r) for r in results]
[82]:	results_combined = pd.concat(results_df, axis=0) results_combined = results_combined[results_combined["Set"] == "Test"] results_combined = results_combined.drop(columns=["Set", "Calibration(%)"]) results_combined Classifier Accuracy(%) P-rule(%) Protected(%) Not protected(%) 1
	1 LR 62.028169 59.382529 24.186704 40.730337 1 C-LR 49.633803 99.378233 95.190948 95.786517 1 SVM 61.352113 53.767411 17.821782 33.146067 1 C-SVM 45.362319 98.986143 94.908062 95.880150 1 FFS-LR 61.802817 65.541470 26.449788 40.355805 1 FFS-SVM 61.183099 57.589169 18.387553 31.928839
	1 FFS-SVM 61.183099 57.589169 18.387553 31.928839 If we take both accuracy and fairness into account, we would recommend FFS-LR with 61.8% accuracy as the second highest of all models, and with p-rule score 65.54% that's reasonably well (third highest of all models). The reason we don't choose C-LR or C-SVM is because despite their high P-rule value, their accuracy is too low for a binary classifier. The reason we don't choose traditional LR or SVM is because despite their relative high accuracy they do not take fairness into account.
[84]:	<pre>fig, ax = plt.subplots(figsize = (10,4)) x = range(len(results_combined.index)) width = 0.1 ax.bar(x, results_combined['Accuracy (%)'], width, label='Accuracy') ax.bar([i + width for i in x], results_combined['P-rule (%)'], width, label='P-rule')</pre>

