Optimal State Estimator

•

0:25

D

:25 / 6:43

^{*}To simplify graphic, each set of the black X's represents all 100 trials.

^{*}To simplify graphic, each set of the black X's represents all 100 trials.

^{*}To simplify graphic, each set of the black X's represents all 100 trials.

^{*}To simplify graphic, each set of the black X's represents all 100 trials.

*To simplify graphic, each set of the black X's represents all 100 trials.

1:22

*To simplify graphic, each set of the black X's represents all 100 trials.

1:21:29

10

CC

Zero bias + Minimum variance

$$x_{\scriptscriptstyle k} = \begin{bmatrix} velocity \\ position \end{bmatrix}$$

$$x_k = \begin{bmatrix} position \end{bmatrix}$$

$$C = 1$$

$$x_{\scriptscriptstyle k} = \begin{bmatrix} position \end{bmatrix}$$

$$C = 1$$

$$v \sim N(0, R)$$

Car's position x

Car's position x

Initial state estimate

4:58 / 6:42

cc **-**

5:34 /

6:33 / 6:4

< □ 🖿 #

6:33 /