

Induced functors on Drinfeld centers via monoidal adjunctions

Robert LaugwitzUniversity of Nottingham

Joint work with
Johannes Flake (Bonn) and Sebastian Posur (Münster)
https://arxiv.org/abs/2402.10094

QGS: Quantum Groups Seminar February 19, 2024

Outline

- 1. Motivation & Background
- 2. The projection formula morphisms
- 3. Functors on Drinfeld centers
- 4. Monoidal Kleisli and Eilenberg-Moore adjunctions
- 5. Functors of Yetter-Drinfeld modules
- 6. Outlook

Motivation — Morphisms of centers

Classical problem:

- $f: R \to S$ is a morphism of rings
- No restriction to a map $Z(R) \to Z(S)$ in general

Categorical analogues:

- Ring $(A, m, 1) \leadsto$ monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$
- Center $Z(A) \rightsquigarrow Drinfeld center \mathcal{Z}(C)$
- Morphism of rings \leadsto (strong) monoidal functor $G \colon \mathcal{C} \to \mathcal{D}$

$$G(A)\otimes G(B)$$
 $G(A\otimes B)$ + coherences...

• Result (Flake–L.–Posur): The right adjoint of G (often) induces a braided lax monoidal functor $\mathcal{Z}(R): \mathcal{Z}(\mathcal{D}) \to \mathcal{Z}(\mathcal{C})$.

Some motivating examples

• $\phi \colon \mathsf{H} \hookrightarrow \mathsf{G}$ finite groups, $\omega \in H^3(\mathsf{G}, \mathbb{k}^{\times})$ 3-cocycle,

$$\mathcal{Z}(\operatorname{Rep}\mathsf{H}) o \mathcal{Z}(\operatorname{Rep}\mathsf{G})$$
 [Flake–Harman–L.] $\mathcal{Z}(\mathbf{Vect}^{\phi^*\omega}_{\mathsf{L}}) o \mathcal{Z}(\mathbf{Vect}^{\omega}_{\mathsf{G}})$ [Hannah–L.–Ros Camacho]

braided Frobenius monoidal functors

- Application: classifying connected étale algebras in $\mathcal{Z}(\mathbf{Vect}_{\mathsf{G}}^{\omega})$ [Davydov, Davydov–Simmons, L.–Walton, H.–L.–R.C.]
- For all $n \in \mathbb{Z}_{\geq 0}$, $t \in \mathbb{C}$,

$$\underline{\operatorname{Ind}} \colon \mathcal{Z}(\operatorname{Rep} S_n) \longrightarrow \mathcal{Z}(\underline{\operatorname{Rep}} S_t)$$

braided Frobenius monoidal functor [Flake–Harman–L.]

• Application: classify indecomposable objects in $\mathcal{Z}(\underline{\operatorname{Rep}}\,S_t)$ [F.-H.-L.]

Goal: General results on induced functors on centers

Background — The Drinfeld center

 $\mathcal C$ monoidal category, $\mathcal M$ a $\mathcal C$ -bimodule

Definition ($\mathcal{Z}_{\mathcal{C}}(\mathcal{M})$, Gelaki–Naidu–Nikshych, Greenough, ...)

• **Objects:** (M,c), where $M \in \mathcal{M}$ and c half-braiding, a natural isomorphism $c_A^M \colon M \triangleleft A \xrightarrow{\sim} A \triangleright M$ satisfying:

$$c_{A\otimes B}^M=(A\triangleright c_B^M)(c_A^M\triangleleft B)$$

• Morphisms: $f:(M,c^M) \to (N,c^N) \stackrel{\text{corresponds to}}{\longleftrightarrow} f \in \text{Hom}_{\mathcal{M}}(M,N)$ s.t.:

$$M \triangleleft A \xrightarrow{c_A^M} A \triangleright M$$

$$\downarrow f \triangleleft A \qquad \qquad \downarrow A \triangleright f$$

$$N \triangleleft A \xrightarrow{c_A^N} A \triangleright N.$$

Background — The Drinfeld center

Special cases:

- ullet Creg the *regular* C-bimodule, action via \otimes
- $\mathcal{Z}(\mathcal{C}) := \mathcal{Z}_{\mathcal{C}}(\mathcal{C}^{\mathrm{reg}})$ is *braided monoidal* the Drinfeld center of \mathcal{C}
- A monoidal functor $G\colon \mathcal{C}\to \mathcal{D}$ makes \mathcal{D} a \mathcal{C} -bimodule, \mathcal{D}^G restricting $\mathcal{D}^{\mathrm{reg}}$ along G
- $\mathcal{Z}_{\mathcal{C}}(\mathcal{D}^G)$ is a monoidal category [Majid]

Proposition (2-Functoriality [Shimizu])

A C-bimodule functor $F \colon \mathcal{M} \to \mathcal{N}$ induces a functor of categories

$$\mathcal{Z}_{\mathcal{C}}(F) \colon \mathcal{Z}_{\mathcal{C}}(\mathcal{M}) \to \mathcal{Z}_{\mathcal{C}}(\mathcal{N}).$$

Bimodule transformation $\eta \colon F \to G$ gives a natural transformation $\mathcal{Z}_{\mathcal{C}}(\eta) \colon \mathcal{Z}_{\mathcal{C}}(F) \to \mathcal{Z}_{\mathcal{C}}(G) \Longrightarrow 2\text{-functor } \mathcal{Z}_{\mathcal{C}} \colon \mathcal{C}\text{-}\mathbf{BiMod} \to \mathbf{Cat}$

Monoidal adjunctions

Define a **2-category** $\mathbf{Cat}^{\otimes}_{\mathrm{lax}}$:

- Objects: monoidal categories
- 1-Morphisms: *lax* monoidal functors
- 2-Morphisms: monoidal natural transformations $\eta: F \to G$:

$$F(X) \otimes F(Y) \xrightarrow{\operatorname{lax}_{X,Y}^{F}} F(X \otimes Y) \qquad \qquad \underset{\operatorname{lax}_{0}^{G}}{\downarrow} \eta_{X} \otimes \eta_{Y} \qquad \downarrow f(\mathbb{1}) \xrightarrow{\eta_{1}} G(\mathbb{1})$$

Definition (Monoidal adjunction)

A monoidal adjunction $G \dashv R$ is an adjunction internal to $\mathbf{Cat}^{\otimes}_{lav}$.

- $G \dashv R$ monoidal adjunction $\Longrightarrow G$ is strong monoidal
- G strong monoidal $\Rightarrow \exists !$ lax structure on R s.t. $G \dashv R$ is monoidal

The projection formula morphisms

Definition (Projection formula morphisms)

If proj^l and proj^r are invertible, say: the *projection formula holds* for R.

• In representation theory (Frobenius reciprocity): $H \subset G$ finite groups, Ind $\neg \text{Res (op)}$ monoidal adjunction,

$$\operatorname{proj}_{V,W}^{l} \colon \operatorname{Ind}_{H}^{G}(\operatorname{Res}_{H}^{G}(V) \otimes W) \xrightarrow{\sim} V \otimes \operatorname{Ind}_{H}^{G}(W)$$

• In algebraic geometry: $f: X \to Y$ morphism of schemes, $f^* \dashv f_*$, $\mathcal{E} \in \mathbf{QCoh}(Y)$, $\mathcal{F} \in \mathbf{QCoh}(X)$ locally free, $\mathrm{proj}_{\mathcal{E},\mathcal{F}}^l \colon \mathcal{E} \otimes_{\mathcal{O}_X} f_*(\mathcal{F}) \xrightarrow{\sim} f_*(f^*(\mathcal{E}) \otimes_{\mathcal{O}_X} \mathcal{F})$

The projection formula morphisms

- If C, D have finite products, they are monoidal categories with ⊗ = ×, these are cartesian closed if (-) × A has a right adjoint (-)^A.
 A product preserving functor G: C → D with left adjoint gives a (op)monoidal adjunction L ⊢ G.
- Such G is cartesian closed, i.e, $G(A^B) \simeq GA^{GB} \iff \operatorname{proj}_{A,X}^l = (\operatorname{counit}_A L\pi_A, L\pi_X) \colon L(GA \times X) \xrightarrow{\sim} A \times LX$ is an isomorphism [Johnstone]

A sufficient criterion:

Proposition (Fausk–Hu–May, Flake–L.–Posur)

 \mathcal{C} rigid (left and right duals exist) \Longrightarrow the projection formula holds for R

Categorical bimodule functors

Proposition (F.–L.–P.)

Let $G \dashv R$ be a monoidal adjunction. projection formula \Longrightarrow morphism of C-bimodules $R: \mathcal{D}^G \to \mathcal{C}$ with:

$$R(A \triangleright X) \xrightarrow{\lim_{A,X} A} A \triangleright RX \qquad R(X \triangleleft A) \xrightarrow{\lim_{X,A} RX} RX \triangleleft A$$

$$R(GA \otimes X) \xrightarrow{(\operatorname{proj}_{A,X}^{l})^{-1}} A \otimes RX \qquad R(X \otimes GA) \xrightarrow{(\operatorname{proj}_{X,A}^{r})^{-1}} RX \otimes A$$

Monoidal adjunction: Monoidal adjunctions of C-bimodules/categories:

$$\mathcal{C} \overset{G}{\underset{R}{\smile}} \mathcal{D}^{G} \quad \Longrightarrow \quad \mathcal{Z}_{\mathcal{C}}(\mathcal{C}) \overset{\mathcal{Z}_{\mathcal{C}}(G)}{\underset{\mathcal{Z}_{\mathcal{C}}(R)}{\smile}} \mathcal{Z}_{\mathcal{C}}(\mathcal{D}^{G})$$

 \ldots since $\mathcal{Z}_{\mathcal{C}} \colon \mathcal{C}\text{-}\mathbf{BiMod} \to \mathbf{Cat}$ is a 2-functor

Functors on Drinfeld centers

We can now **compose**:

$$\mathcal{Z}(\mathcal{D}) \xrightarrow{\mathcal{Z}(R)} \mathcal{Z}_{\mathcal{C}}(\mathcal{C}) = \mathcal{Z}(\mathcal{C})$$

$$F^{G} \mathcal{Z}_{\mathcal{C}}(\mathcal{D}^{G}) \xrightarrow{\mathcal{Z}_{\mathcal{C}}(R)}$$

$$F^G \colon \mathcal{Z}(\mathcal{D}) \hookrightarrow \mathcal{Z}(\mathcal{D}^G), \qquad (M, c^M) \mapsto (M, c^M_{G(-)})$$

Theorem (Flake–L.–Posur)

For a monoidal adjunction $G \dashv R$ satisfying the projection formula, R induces a braided lax monoidal functor $\mathcal{Z}(R) \colon \mathcal{Z}(\mathcal{D}) \to \mathcal{Z}(\mathcal{C}), \ (X,c) \mapsto (RX,c^R),$

$$c_A^R = \left(RX \otimes A \xrightarrow{\operatorname{proj}_{X,A}^r} R(X \otimes GA) \xrightarrow{R(c_{GA})} R(GA \otimes X) \xrightarrow{(\operatorname{proj}_{A,X}^l)^{-1}} A \otimes RX\right).$$

$$\operatorname{lax}_{(X,c),(Y,d)}^{\mathcal{Z}(R)} = \operatorname{lax}_{X,Y}^R \qquad \operatorname{lax}_0^{\mathcal{Z}(R)} = \operatorname{lax}_0^R$$

Implication and Examples

Corollary

The functor $\mathcal{Z}(\mathcal{D}) \xrightarrow{\mathcal{Z}(R)} \mathcal{Z}(\mathcal{C})$ maps (commutative) monoids in $\mathcal{Z}(\mathcal{D})$ to (commutative) monoids in $\mathcal{Z}(\mathcal{C})$.

Example:

• $H \subset G$ finite groups, monoidal adjunction $\operatorname{Rep}(G)$ $\xrightarrow{\perp}$ $\operatorname{Res}(H)$ $\operatorname{CoInd} \simeq \operatorname{Ind}$

Res

- $\mathcal{Z}(\operatorname{Rep} \mathsf{H}) \simeq {}_{\mathsf{H}}^{\mathsf{H}}\mathbf{YD}$ Yetter–Drinfeld modules Objects: $V \in \operatorname{Rep} \mathsf{H}$ with coaction $\delta \colon V \to \mathsf{H} \otimes V$, $v \mapsto |v| \otimes v$, satisfying $|h \cdot v| = h|v|h^{-1}$
- Obtain braided lax monoidal functor $\mathcal{Z}(R) \colon {}^{\mathsf{H}}_{\mathsf{H}}\mathbf{Y}\mathbf{D} \to {}^{\mathsf{G}}_{\mathsf{G}}\mathbf{Y}\mathbf{D}$, $\mathcal{Z}(R)(V) = \mathsf{G} \otimes_{\mathsf{H}} V$ with coaction $\delta^{\mathrm{Ind}}(g \otimes v) = g|v|g^{-1} \otimes v$

Monoidal monads

Definition

A monoidal monad $T \colon \mathcal{C} \to \mathcal{C}$ is a monad in $\mathbf{Cat}^{\otimes}_{\mathrm{lax}}$.

This means:

- \bullet T is a monad
- ullet C a monoidal category
- T comes equipped with a lax structure $\underset{A,B}{\operatorname{lax}}: T(A) \otimes T(B) \to T(A \otimes B)$
- $\operatorname{unit}_A^T \colon A \to T(A)$ and $\operatorname{mult}_A^T \colon T^2(A) \to T(A)$ are *monoidal* transformations

Lemma

 $G \dashv R$ monoidal adjunction $\Longrightarrow T := RG$ monoidal monad

Commutative central monoids

Definition (Schauenburg . . .)

A commutative central monoid M in \mathcal{C} is an commutative monoid (M, c^M) in $\mathcal{Z}(\mathcal{C})$. Structure: $\operatorname{mult}^M : M \otimes M \to M, \operatorname{unit}^M : \mathbb{1} \to M$.

Now construct the monad

$$T_M \colon \mathcal{C} \to \mathcal{C}, \quad A \mapsto A \otimes M.$$

$$\operatorname{unit}_A^T := A \xrightarrow{A \otimes \operatorname{unit}^M} A \otimes M, \quad \operatorname{mult}_A^T := A \otimes M \otimes M \xrightarrow{A \otimes \operatorname{mult}^M} A \otimes M$$

• Lax structure: $\operatorname{lax}_0^T := \mathbb{1} \xrightarrow{\operatorname{unit}^M} M$ and

$$\operatorname{lax}_{A,B}^T := A \otimes M \otimes B \otimes M \xrightarrow{A \otimes \operatorname{swap}_B \otimes M} A \otimes B \otimes M \otimes M \xrightarrow{A \otimes B \otimes \operatorname{mult}^M} A \otimes B \otimes M$$

Proposition

M commutative central monoid $\Longrightarrow T_M$ monoidal monad

Commutative central monoids

Another interpretation of the projection formula morphisms:

Proposition (F.-L.-P.)

Let $G \dashv R$ be a monoidal adjunction such that the projection formula holds.

(i) Then
$$M := R(1)$$
 with

$$c^{R1} := R1 \otimes A \xrightarrow{\operatorname{proj}_{1,A}^r} RA \xrightarrow{(\operatorname{proj}_{A,1}^r)^{-1}} A \otimes R1$$

$$\operatorname{mult} = \operatorname{lax}_{1,1}^R \quad \text{and} \quad \operatorname{unit} = \operatorname{lax}_0^R \colon 1 \to R1$$

is a commutative central monoid in \mathcal{C} .

(ii)
$$T_M = (-) \otimes R(1) \xrightarrow{\operatorname{proj}_{-,1}^l} RG(-)$$
 isomorphism of monoidal monads.

Example: $H \subset G$ groups, monoidal adjunction $\operatorname{Res} \dashv \operatorname{CoInd}$. $\Rightarrow R(1) = \operatorname{CoInd}(\mathbb{k}) = \operatorname{Hom}_{\operatorname{Rep}(H)}(\mathbb{k}G, \mathbb{k}) \cong \mathbb{k}(G/H)$, the *algebra of functions* on G/H. **Note:** $\operatorname{\mathbf{Mod}}_{\operatorname{Rep}(G)} - \mathbb{k}(G/H) \simeq \operatorname{Rep}(H)$ [Kirillov–Ostrik]

Monoidal Kleisli adjunctions

Assumption: $G \dashv R$ is an adjunction such that RG = T.

- Kleisli category **Klei**(*T*):
 - Same objects as $\mathcal C$
 - Morphisms $\operatorname{Hom}_{\mathbf{Klei}(T)}(A,B) = \operatorname{Hom}_{\mathcal{C}}(A,TB)$
- Diagram of functors:

- T monoidal monad $\Longrightarrow \mathbf{Klei}(T)$ monoidal category
 - Same tensor product \otimes of objects as \mathcal{C} , same unit 1
 - tensor product of morphisms:

$$A \otimes C \xrightarrow{f \otimes g} TB \otimes TD \xrightarrow{\operatorname{lax}_{B,D}^T} T(B \otimes D) \in \operatorname{Hom}_{\mathbf{Klei}(T)}(A \otimes C, B \otimes D)$$

Monoidal Kleisli adjunctions

Theorem (Universal property, F.–L.–P.)

Assume T is a monoidal monad.

- (i) The adjunction $C \xrightarrow{\text{Free}} \mathbf{Klei}(T)$ becomes a monoidal adjunction.
- (ii) Free ⊢ Forg *is the initial monoidal adjunction*.

Theorem (Characterization theorem, F.-L.-P.)

 $G \dashv R$ monoidal adjunction

- (i) projection formula holds for $R \Rightarrow$ projection formula holds for Forg
- (ii) G is also essentially surjective $\Rightarrow \tilde{G} \colon \mathbf{Klei}(T) \to \mathcal{D}$ monoidal equivalence

Monoidal Kleisli adjunctions

Example:

- H finite-dimensional Hopf algebra, fiber functor $F \colon H\operatorname{\!-Mod} \to \operatorname{\mathbf{Vect}}_{\Bbbk}$ is
 - (i) strong monoidal
 - (ii) essentially surjective, and(iii) the projection formula holds (by rigidity).
- $R(1) \cong H^*$ is a commutative central monoid.
- The characterization theorem implies:

$$\mathbf{Vect}_{\Bbbk} \simeq \mathbf{Klei}(T_{H^*}) \simeq \{ \text{free } H^* \text{ modules in } H\text{-}\mathbf{Mod} \}$$

- \Rightarrow Fundamental theorem of Hopf modules
- More generally: B finite-dimensional Hopf algebra object in ${}^K_K\mathbf{YD}$ set $H:=B\rtimes K$ Radford-Majid biproduct.
- $H ext{-}\mathbf{Mod} \xrightarrow[\operatorname{CoInd}_K^H]{\operatorname{Res}_K^H} K ext{-}\mathbf{Mod}$ is a monoidal adjunction satisfying (i)–(iii).
- $K\text{-}\mathbf{Mod} \simeq \mathbf{Klei}(T_{B^*}) \simeq \{\text{free } B^*\text{-modules in } H\text{-}\mathbf{Mod}\}$

Monoidal Eilenberg-Moore categories

Idea: *free* modules (Kleisli) → *all* modules (Eilenberg–Moore)

Recall: Projection formula for $G \dashv R \Rightarrow$ isomorphism of *monoidal monads*:

$$RG \cong T_M = (-) \otimes M$$

for the commutative central monoid $M=R(\mathbb{1})$

Corollary

Eilenberg–Moore categories are given by $\mathbf{Mod}_{\mathcal{C}}$ -M:

- Objects: right M-modules internal to C
- ullet Morphisms: morphisms in ${\mathcal C}$ commuting with M-action

General construction of monoidal structure on Eilenberg-Moore category [Seal]

Monoidal Eilenberg-Moore categories

Assumption: $\mathcal C$ has *reflexive coequalizers* and \otimes preserves them in both components

Theorem (Pareigis, Schauenburg,...)

 $\mathbf{Mod}_{\mathcal{C}}\text{-}M$ is monoidal with relative tensor product

$$A\otimes M\otimes B \xrightarrow[(A\otimes {\rm act}^B)c_B^M]{} A\otimes B \xrightarrow{\operatorname{quo}_{A,B}} A\otimes_M B,$$

Consequence: Monoidal Eilenberg–Moore adjunction:

Monoidal Eilenberg-Moore categories

Assumption: C has *reflexive coequalizers* and \otimes preserves them in both components.

Theorem (Universal property, F.–L.–P.)

 $G \dashv R$ monoidal adjunction, projection formula holds for R

- (i) The projection formula holds for Forg
- (ii) There is a unique induced lax monoidal functor \tilde{R} :

(iii) Free ⊢ Forg is the terminal monoidal adjunction.

Note: We can derive a crude monoidal monadicity theorem

Local modules

Definition (Local Modules [Pareigis])

 (M,c^M) commutative central monoid

$$\mathbf{Mod}^{\mathrm{loc}}_{\mathcal{Z}(\mathcal{C})}$$
- $M \subseteq \mathbf{Mod}_{\mathcal{Z}(\mathcal{C})}$ - M

Full subcategory on *local* M-modules (A, act^A) , i.e.:

$$\operatorname{act}^A \Psi_{M,A} \Psi_{A,M} = \operatorname{act}^A.$$

 $\mathbf{Mod}^{\mathrm{loc}}_{\mathcal{Z}(\mathcal{C})}$ -M is braided monoidal [Pareigis]

Theorem (Schauenburg)

There is an equivalence of braided monoidal categories

$$\mathcal{Z}(\mathbf{Mod}_{\mathcal{C}}-M) \simeq \mathbf{Mod}^{\mathrm{loc}}_{\mathcal{Z}(\mathcal{C})}-M.$$

Local modules

Assumption: C has *reflexive coequalizers* and \otimes preserves them in both components.

We can recognize the induced functor $\mathcal{Z}(Forg)$ on Drinfeld centers:

Corollary (F.–L.–P.)

Forg: $\mathbf{Mod}_{\mathcal{C}}$ - $M \to \mathcal{C}$ induces braided lax monoidal functor

$$\mathcal{Z}(\text{Forg}) \colon \mathcal{Z}(\mathbf{Mod}_{\mathcal{C}}\text{-}M) \to \mathcal{Z}(\mathcal{C})$$

Schauenburg's equivalence implies $\mathcal{Z}(Forg)$ corresponds to

Forgloc:
$$\mathbf{Mod}^{\mathrm{loc}}_{\mathcal{Z}(\mathcal{C})}$$
- $M \to \mathcal{Z}(\mathcal{C})$

Lax monoidal structure: the coequalizer morphism $A \otimes B \to A \otimes_M B$.

Functors of Yetter-Drinfeld modules

Application: functors of Yetter–Drinfeld categories over Hopf algebras.

- $\varphi \colon K \to H$ morphism of Hopf algebras:
- Comodule induction $\operatorname{Ind}^{\varphi}(V) = H \square_K V$ always satisfies the projection formula
- Module coinduction $\operatorname{CoInd}^{\varphi}(V) = \operatorname{Hom}_K(H, V)$ satisfies the projection formula if H is *finitely-generated projective* as a left K-module.
- induced functors:

$$\mathcal{Z}(\mathrm{CoInd}_{\varphi}) \colon {}_{K}^{K}\mathbf{Y}\mathbf{D} \to {}_{H}^{H}\mathbf{Y}\mathbf{D} \quad \text{or} \quad \mathcal{Z}(\mathrm{Ind}^{\varphi}) \colon {}_{H}^{H}\mathbf{Y}\mathbf{D} \to {}_{K}^{K}\mathbf{Y}\mathbf{D}$$

Examples

- Morphism of affine algebraic groups $\phi \colon \mathsf{K} \to \mathsf{G}$ (morphism of Hopf algebras $\varphi = \phi^* \colon \mathcal{O}_\mathsf{G} \to \mathcal{O}_\mathsf{K}$)
 - Braided lax monoidal functor

$$\mathcal{Z}(\operatorname{Ind}^{\phi^*}) \colon \mathbf{QCoh}(\mathsf{K}/^{\operatorname{ad}}\mathsf{K}) \to \mathbf{QCoh}(\mathsf{G}/^{\operatorname{ad}}\mathsf{G}).$$

- $\mathcal{Z}(\operatorname{Rep} G) = \mathcal{Z}(\mathcal{O}_G\operatorname{-\mathbf{Comod}}) \simeq \mathbf{QCoh}(G/^{\operatorname{ad}}G)$, quasi-coherent sheaves on the quotient stack $G/^{\operatorname{ad}}G$
- Convolution tensor product
- Kac–De Concini quantum group $U_{\epsilon}(\mathfrak{g})$ (odd root of unity ϵ)
 - central Hopf subalgebra \mathcal{O}_H , for $H = (N^- \times N^+) \rtimes T$
 - Inclusion $\iota \colon \mathcal{O}_{\mathsf{H}} \hookrightarrow U_{\epsilon}(\mathfrak{g})$
 - induces a braided lax monoidal functor

$$\mathcal{Z}(\operatorname{CoInd}_{\iota}) \colon \mathbf{QCoh}(\mathsf{H}/^{\operatorname{ad}}\mathsf{H}) \longrightarrow U_{\epsilon}(\mathfrak{g}) \mathbf{YD},$$

• Image of $\mathbb{1}=\Bbbk$: central commutative monoidal $u_{\epsilon}(\mathfrak{g})^*\cong \mathrm{CoInd}_{\iota}(\Bbbk)$ over $U_{\epsilon}(\mathfrak{g})$

Outlook — Frobenius monoidal functors

- Monoidal ambiadjunctions $F \dashv G \dashv F$
- ullet Left and right adjoint F both gives two projection formula morphisms
- If these are mutual inverses, the $\mathcal{Z}(F)$ is a Frobenius monoidal functor
- Hopf algebra case: New concept of Frobenius monoidal extension of Hopf algebras

... Thank you for your attention!