

Preliminary Data Sheet

CX700 Series

Advanced All-in-One System Processor

Preliminary Revision 0.9 December 1, 2005

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2005 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 2005 S3 Graphics Incorporated. All rights reserved. If you have received this document from S3 Graphics Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Graphics Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Graphics Incorporated. The material in this document is for information only and is subject to change without notice. S3 Graphics Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

CX700 and CX700M may only be used to identify products of VIA Technologies. Intel™, Pentium™, MMX™ and SpeedStep™ are registered trademarks of Intel Corporation. Windows XP™, Windows 2000™, Windows ME™, Windows 98™, VMR™ and Plug and Play™ are registered trademarks of Microsoft Corp. AGP™ is a trademark of the AGP Implementors Forum. PCI™ is a trademark of the PCI Special Interest Group. PS/2™ is a trademark of International Business Machines Corp. All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated USA Office: 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654 Home Page: http://www.viatech.com

VIA Technologies Incorporated Taiwan Office:

1st Floor, No. 531

Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

S3 Graphics Incorporated

USA Office: 1045 Mission Court Fremont, CA 94539

Tel: (510) 687-4900 Fax: (510) 687-4901

USA

Home Page: http://www.s3graphics.com

REVISION HISTORY

Document Release	Date	Revision	Initials
0.32	7/1/05	Changed RAMDAC pixel rate to 350 MHz	EY
		Updated the attribute of DVP1TVCLKR	
		Corrected miscellaneous errors in this document	
0.33	7/22/05	Changed the product name	EY
		Updated I/O type of SMBCLK[2:1] and SMBDATA[2:1]	
		Added power sequence	
0.34	8/19/05	Remove TV resolutions 1080p support from display interface	EY
		Modified HADSTB0P# / HADSTB0N# signal descriptions	
0.5	9/20/05	Updated BREQ0 IO attribute to I	DA
0.81	10/7/05	Removed C3 CPU support	DA
0.82	10/19/05	Updated pins ENVDD[2:1] and ENVBLD[2:1] IO attribute	DA
0.83	10/20/05	Updated ECC support in product features	DA
0.84	10/31/05	Corrected ball list	DA
		Fixed misc. error in "IO Pads with Integrated Pull Up Resistors"	
0.85	11/9/05	Reversed strapping state of PDDACK#	DA
		Updated DVP1TVFLD IO attribute	
		Corrected TP8 signal description	
		Updated ball AN14 and AN22 ball definition and description for IR interface	
0.9	12/1/05	Updated SATALED# IO attribute to O	DA
		Updated power sequence (modified Figure 4, Table 6 and removed Figure 5-14)	

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	V
PRODUCT FEATURES	1
CX700 / CX700M SYSTEM OVERVIEW	8
HOST INTERFACE	
MEMORY CONTROLLER	
2D / 3D GRAPHICS PROCESSOR	
Unified Video Decoding Accelerator (CX700M)	9
HIGH QUALITY VIDEO PROCESSOR	
DISPLAY INTERFACE	9
High Definition Audio Interface	9
STORAGE DEVICE INTERFACE	9
USB Interface	
BALLOUTS	10
BALL MAP	
SIGNAL BALL LIST	10
SIGNAL DESCRIPTIONS	
SIGNAL DESCRIPTIONSCPU Interface	
DDR/DDR2 SDRAM Memory Interface	15 17
LVDS / DVI Interface	
CRT / TV Monitor Interface	
Digital Video Port 0 (DVP0) / Video Capture Port Interface	
Digital Video Port 1 (DVP1) Interface	21
PCI Bus Interface	22
USB 2.0 Interface	
SATA Interface	
SMBus Interface	
Enhanced IDE Interface	
LPC Bus Interface	
Serial Port Interface	
IR Interface	
Speaker Interface	
Internal Keyboard Controller Interface	
Serial IRQ Interface	
PC / PCI DMA Interface	
General Purpose Input Interface	
General Purpose Output Interface	
General Purpose Input/Output Interface	
Power Management Control and Event Signals	
Clock, Test and Miscellaneous Signals	30

Compensation and Reference Voltage Signals	
Power / Ground Signals	
Strapping Signal TableIO Pads with Integrated Pull Up Resistors	
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	36
PACKAGE WEIGHT SPECIFICATIONS	36
POWER SEQUENCE	37
MECHANICAL SPECIFICATIONS	39
The confidential red	

LIST OF FIGURES

FIGURE 1. SYSTEM BLOCK DIAGRAM	8
FIGURE 2. CX700/CX700M BALL MAP (C7 AND P4 CPU INTERFACE) - LEFT SIDE TOP VIEW	
FIGURE 3. CX700/CX700M BALL MAP (C7 AND P4 CPU INTERFACE) – RIGHT SIDE TOP VIEW	
FIGURE 4. POWER ON SEQUENCE AND RESET SIGNAL TIMING	
FIGURE 5. MECHANICAL SPECIFICATIONS – FCBGA-958 BALL GRID ARRAY PACKAGE	39
FIGURE 6. LEAD-FREE MECHANICAL SPECIFICATIONS – FCRGA-958 BALL GRID ARRAY PA	CKAGE40

LIST OF TABLES

TABLE 1.	CX700/CX700M SIGNAL BALL LIST (LISTED BY BALL NAME)	Ľ
	POWER / GROUND BALL LIST	
	ABSOLUTE MAXIMUM RATINGS	
	DC CHARACTERISTICS	
	PACKAGE WEIGHT SPECIFICATIONS	
	POWER SECTION OF BEHAVIOUS	

CX700 / CX700M

ALL-IN-ONE SYSTEM PROCESSOR

533 / 400 MHz FSB VIA C7 and Intel Pentium-M Processor
DDR2 533 / 400, DDR400 / 333 SDRAM Controller
Integrated UniChrome Pro II 3D / 2D Graphics & Video Processor
Unified Video Decoding Accelerator
Integrated HDTV Encoder and LVDS / DVI Transmitter
High Definition Audio Controller
Two Serial ATA Ports
One UltraDMA-133 EIDE Channel
Six USB 2.0 / 1.1 Ports
PCI 32-bit 33MHz Bus
Two RS-232 Serial Ports
RTC and LPC, SMBus, Modem Interfaces
ACPI and Sophisticated Power Management

PRODUCT FEATURES

- Process Technology and Package
 - 0.15um, 1.5V core voltage
 - 37.5mm x 37.5mm Flip Chip BGA
- CPU Interface
 - Supports 533 / 400 MHz FSB VIA C7 and Intel Pentium-M processors
- Memory System
 - Supports DDR2 and DDR SDRAM
 - DDR2 Mode
 - Supports DDR2 533 / 400 SDRAM
 - Supports 64Mb / 128Mb / 256Mb / 512Mb / 1024Mb (x8 / x16 / x32)
 - Supports CL 2 / 3 / 4 / 5
 - Supports ECC for DDR2 400 only
 - DDR Mode
 - Supports DDR 400 / 333 SDRAM
 - Supports 64Mb / 128Mb / 256Mb / 512Mb / 1024Mb (x8 / x16 / x32)
 - Supports CL 2 / 2.5 for DDR 333, CL 2.5 / 3 for DDR 400
 - Supports ECC
 - Supports 1 or 2 unbuffered or register double-sided DIMMs with different clock buffering scheme
 - Supports 64/32-bit data width

• Integrated 3D / 2D / Video Processors

- Optimized Unified Memory Architecture (UMA)
- Supports 32 / 64 / 128 MB Frame Buffer sizes
- 200 MHz Graphics Engine Clock

2D Graphics Processor

- 128-bit 2D graphics engine
- Hardware 2D rotation
- Supports ROP3, 256 operations
- Supports 8bpp, 15/16bpp and 32bpp color depth modes
- BitBLT (Bit BLock Transfer) functions including alpha BLTs
- True-color hardware cursor (64x64x32bpp) with 256-level blending effect
- Color expansion, source Color Key and destination Color Key
- Bresenham line drawing / style line function
- Transparency mode
- Window clipping
- Text function

3D Graphics Processor

3D Graphics Processor

- 128-bit 3D graphics engine
- Dual pixel rendering pipelines and dual texture units
- Floating-point setup engine
- Internal full 32-bit ARGB format for high rendering quality
- 8K Texture Cache

Capability

- Supports ROP2
- Supports various texture formats including 16/32bpp ARGB, 8bpp Palletized (ARGB), YUV 422/420 and compressed texture (DXTC)
- Texture sizes up to 2048x2048 with Microsoft DirectX texture compression
- High quality texture filter for Nearest, Linear, Bi-linear, Tri-linear and Anisotropic modes
- Flat and Gouraud shading
- Vertex Fog and Fog Table
- Z-Bias, LOD-Bias, Polygon offset, Edge Anti-aliasing and Alpha Blending
- Bump mapping and cubic mapping
- Hardware back-face culling
- Specular lighting

Performance

- Two textures per pass
- Triangle rate up to 4.5 million triangles per second
- Pixel rate up to 200 million pixels per second per texture
- Texel bilinear fill rate up to 400 million texels per second
- High quality dithering

Hi-Def Video Processor

High Quality Video Processor

- RGB555, RGB565, RGB8888 and YUV422 video playback formats
- High quality 5-tap horizontal and 5-tap vertical scaler for both horizontal and vertical scaling (linear interpolation for horizontal and vertical p-scaling and filtering for horizontal and vertical down-scaling)
- Independent graphics and video gamma tables
- 2 sets of Color and Chroma Key support
- Color enhancement for contrast, hue, saturation and brightness
- YUV-to-RGB color space conversion
- Display rotation in clockwise and counter-clockwise directions
- Bob, Weave, Median-filter and Adaptive de-interlacing modes
- 3:2 / 2:2 pull-down detection
- De-blocking mode support
- Combining of many special effects such as filter, scaling up or down, sub-picture blending, de-interlacing and deblocking to one pass process
- Tear-free double / triple buffer flipping
- Input video vertical blanking or line interrupt
- Video gamma correction

Video Overlay Engine

- Simultaneous graphics and TV video playback overlay
- Supports video window overlays
- Supports Microsoft VMR™ Through Front-End Video Scaling, Color Space Conversion and Blending
- Supports both YUV and RGB format Chroma Key
- Supports 16 operations for Color and Chroma Key
- Hardware sub-picture blending

Video Capture Capability

- Dual Transport Stream inputs or dual 8-bit or one 16-bit CCIR656/601input
- Video capture and playback tear free auto flipping
- External Hsync / Vsync support

External Display Support

CRT / HDTV (CX700M) Display Interface

- 30-bit true-color RAMDAC up to 350 MHz pixel rate with gamma correction capability
- Supports RGB / YPbPr (CX700M) / CompYC (CX700M)
- Supports CRT resolutions up to 2048x1536
- Supports TV resolutions up to 1920x1080i (CX700M)
- Support Macrovision copy protection, GCMS/A and CC (CX700M)

LVDS Panel Interface

- Compatible with TIA/EIA-644
- Support panel resolution from VGA through UXGA (1600 x 1200)
- Supports 1 x Dual-Channel / 2 x Single-Channel LVDS panel

DVI Panel Interface (optional)

- Standard compliant with DVI 1.0
- Supports panel resolution from VGA through UXGA (1600 x 1200)
- Supports 1 x Single-Channel DVI panel
- Hot Plug detection input

TV-Out Interface (DVP0 or DVP1)

- 12-bit interface to external TV encoder for NTSC or PAL TV or HDTV display
- Optional 20-bit interface to external TV encoder (DVP1)
- Supports simultaneous SDTV and HDTV display output with the integrated HDTV encoder. (CX700M)

12-bit DVI Transmitter Interface (DVP0 or DVP1)

- Double-data-rate data transfer with clock rates up to 165 MHz
- Built-in digital phase adjuster to fine-tune signal timing between clock and data bus
- Optional 16-bit ARGB interface (DVP0 and DVP1)

• DuoView+TM Dual Image Capability

- WinXP, WinME and Win98 multi-monitor, extended desktop support
- Two independent display engines which can display completely different information at different resolutions, pixel depths, and refresh rates
- CRT, LVDS/DVI panel and TV refresh rates are independently programmable for optimum image quality
- Improved display flexibility with simultaneous CRT / LVDS (or DVI), TV / LVDS (or DVI), TV / HDTV and other combined operations

• Full Software Support

- Microsoft DirectX 7.0, 8.0 and 9.0 compatible
- Microsoft DirectX Texture Compression (DXTC / S3TC)
- Supports OpenGLTM
- Drivers for major operating systems and APIs: Windows® 9x / ME, Windows 2000, Windows XP, Direct3D™,
 DirectDraw™, DirectShow™ and OpenGL™ ICD for Windows 9x / ME and XP
- Windows NT 4.0 Standard VGA driver

Graphics Power Management Support

- Built-in reference voltage generator and monitor sense circuits
- Automatic panel power sequencing and VESA DPMS (Display Power Management Signaling) CRT power-down
- External I/O signal controls enabling of graphics accelerator into standby / suspend-off state
- Dynamic clock gating for inactive functions to achieve maximum power saving
- I2C Serial Bus and DDC / E-DDC Monitor Communications for Plug-and-Play configuration

• Unified Video Decoding Accelerator

MPEG-2 Decoding Mode

- Supports VLD (Various Length Decode)
- Supports iDCT
- Supports motion compensation
- Supports MP@HL

MPEG-4 Decoding Mode (CX700M)

- Supports ASP (Advanced Simple Profile) Level 5
- Supports GMC (Global Motion Compensation) L0 / L1
- Supports ¹/₄-pixel MC support
- High video quality and performance

WMV9 Decoding Mode (CX700M)

- Accelerates MP@HL decoding from iDCT to motion compensation
- Supports adaptive macroblock quantization
- Supports variable-sized iDCT Transform
- Supports pre-processing function
- Supports intensity compensation
- Supports 4 MVs and long motion vector mode
- Supports V9 loop filter
- Supports simple and full quarter-pixel motion compensation
- Video auto-flipping
- Hardware DVD sub-picture blending

Integrated HDTV Encoder (CX700M)

- VIA Advance ProScale Technology for studio grade HDTV output
- HDTV tri-level synchronization and broad pulse insertion
- Separate adjustable Y U V delay
- Programmable 2D scaling
- Adaptive deflicker filter to enhance TV image quality
- Programmable sharpness / adaptive filter control
- Support for CGMS-A / Wide Screen Signaling (WSS) / Closed Captioning for variable clock rates adheres to EIAJ-1204, 1204-1, 1204-2 and EN 300 294 standards
- Multiple Chroma and Luma filters
- Programmable power save management
- P:P2 clocking mode or fixed clock mode for full TV screen
- Automatic detection of TV presence
- Hot plug interrupt support
- DAC auto adjustment
- High Quality 3x10-Bit Video DAC (shared with CRT output)
 - Three flexible and programmable DACs for each specific video signal output
- Output format
 - Compliant with NTSC (M and J) or PAL (B, D, G, H, I, M, N and Nc) TV system
 - Composite, S-Video, Component (YPbPr), Analog RGB (SCART) with interlaced or non-interlaced scan output
 - SDTV output mode (525p or 625p) compliant with EIA770-1 and EIA770-2
 - HDTV support for 1080i (D3) and 720p (D4) compliant with EIA770-1, EIA770-2, EIA770-3 and ITU-RBT 709-4
 - Output resolution support NTSC 525i (480i), 525p (480p), PAL 625i (576i), 625p (576p), HDTV 1080i,
 720p
 - D-Terminal support from D1 ~ D4 stage
- Macrovision
 - MacrovisionTM 7.1.L1 copy protection support
 - MacrovisionTM 1.2 AGC copy protection with 525p / 625p progressive scan output

• Integrated LVDS / DVI Transmitter

LVDS transmitter

- Compatible with TIA/EIA-644
- Support panel resolution from VGA through UXGA (1600 x 1200)
- Supports one Dual-Channel and two Single-Channel LVDS panel(s)

DVI transmitter

- Standard compliant with DVI 1.0
- Supports panel resolution from VGA through UXGA (1600 x 1200)
- Supports one Single-Channel DVI panel
- Hot Plug detection input

• High Definition (HD) Audio Controller

- High performance audio controller with 192 KHz sample rate, 32-bit per sample and up to 8 channels
- Microsoft UAA (Universal Audio Architecture) driver support
- Up to two independent playback streams and audio codecs
- Multiple recording channels for array microphone
- Supports jack sensing / retasking

• MC'97 Controller

- MC'97 modem controller supports up to V.92 standard
- Modem controller supported by all HSP modem companies

• Serial ATA Controller

- Supports up to 2 SATA devices*
- Integrated SATA PHY supporting 1.5 Gbit/s and 3 Gbit/s transfer rate
- Complies with Serial ATA II PHY Specification
- Complies with Serial ATA Specification Revision 1.0

Ultra DMA-133 / 100 / 66 / 33 Bus Master EIDE

- Single channel EIDE controller supporting 2 Enhanced IDE devices
- Data transfer rate up to 133 MB/sec to cover PIO mode 4, multi-word DMA mode 2, and UltraDMA-133 interface
- Full scatter gather capability
- Supports ATAPI compliant devices including DVD devices
- Supports PCI native and ATA compatibility modes

Universal Serial Bus Controller

- Six USB 2.0 ports, one USB 2.0 root hub, and three USB 1.1 root hubs
- USB 2.0 and Enhanced Host Controller Interface (EHCI) v1.0 compliant
- USB 1.1 and Universal Host Controller Interface (UHCI) v1.1 compliant
- Legacy keyboard and PS/2 mouse support
- One USB 2.0 debug port

Concurrent PCI Bus Controller

- PCI 2.3 compliant, 33MHz, 32 bit, 3.3V PCI interface with 5V tolerant inputs
- Supports up to four PCI masters
- Zero wait state PCI master and slave burst transfer rate, with up to 132 MB/sec data transfer rate
- PCI master snoop ahead and snoop filtering
- Byte merging in the write buffers to reduce the number of PCI cycles
- Supports delay transaction
- Transaction timer for fair arbitration between PCI masters
- Symmetric arbitration between Host / PCI bus for optimized system performance
- Complete steerable PCI interrupts
- Supports PC / PCI DMA

• System Management Bus Interface

- Compliant with System Management Bus (SMBus) Revision 2.0
- I2C devices compatible
- Supports SMBus Address Resolution Protocol (ARP) by using host commands through software
- Supports slave interface for external SMBus masters to control resume events
- Supports Alarm-On-LAN 2 through a SMBus-interfaced register

Plug and Play Functions

- Steerable PCI interrupts
- Steerable interrupts for integrated peripheral controllers
- Microsoft Windows XP, Windows NT, Windows 2000, Windows 98 and plug and play BIOS compliant

• Integrated Legacy Functions

- Integrated Keyboard Controller with PS2 mouse and password wake-up support
- Integrated two RS-232 serial ports (optional)
- Integrated IR interface (optional)
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM, Day / Month Alarm and century field
- Integrated DMA, timer, and interrupt controller
- Fast reset and Gate A20 operation

Sophisticated Power Management

- ACPI 2.0 and APM v1.2 Compliant
- Supports CPU clock throttling and clock stop during ACPI C2 / C3 / C4 states
- Supports PCI clock run, Power Management Enable (PME) control, and PCI / CPU clock generator stop control
- Supports multiple system suspend types: Power-on Suspend (POS) with flexible CPU / PCI bus reset options,
 Suspend to DRAM (STR), and Suspend to Disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- Integrates an idle timer, a peripheral timer and a general purpose timer, plus a 24/32-bit ACPI compliant timer
- Supports normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- Supports system event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, and external modem ring indicator
- Multiple internal and external SMI sources for flexible power management models
- Thermal alarm on external temperature sensing circuit
- Dynamic clock gating control on functional blocks
- Dynamic I/O pad driving control
- I/O pad leakage control

Built-in NAND-tree pin scan test capability

CX700 / CX700M SYSTEM OVERVIEW

Figure 1. System Block Diagram

The VIA CX700/CX700M is the most advanced and complete all-in-one x86 system processor for today and next generation computing and media processing platforms. From quadruple host data bus, DDR2 memory controller, HDTV interface to Serial ATA and USB ports, the CX700/CX700M integrates all the desired, high quality, high performance controllers of modern media and computing platforms:

Host Interface

The CX700/CX700M supports VIA C7 and Intel Pentium-M processors with up to 533MHz data transfer speed. The host bus protocol is determined through automatic negotiation between CPU and the system processor during reset.

Memory Controller

The CX700/CX700M memory controller supports two DDR/DDR2 DIMMs, up to 4GB system memory. A memory clock buffer is integrated for 1-DIMM system memory architecture. For applications that do not require large system memory or high memory bandwidth, CX700/CX700M supports 32-bit memory data width to reduce total system cost while maintaining adequate memory performance. The memory ECC scheme is integrated to improve the system robustness in applications where high reliability is a priority.

2D / 3D Graphics Processor

The integrated 200MHz, 128-bit UniChrome Pro II graphics processor is implemented on Unified Memory Architecture with frame buffer size of up to 128MB. 32bpp color depth, hardware 2D rotation, true-color hardware cursor and window clipping functions are supported. The high performance 3D graphics processor includes dual pixel rendering pipelines and dual texture units. It delivers up to 4.5 million/second triangle rate, 200 million pixels/second per texture and 400 million texels/second bilinear fill rate for advanced 3D applications.

Unified Video Decoding Accelerator (CX700M)

The CX700M integrates an industry unique, high performance "Unified Video Decoding Accelerator" for high definition MPEG-2/4 as well as the latest WMV9 HD video stream decoding. This feature significantly reduces host processor utilization rate enabling advanced media applications to be implemented without the needs of high frequency CPU, and further reduces the power consumption of the overall platform.

High Quality Video Processor

The video processor supports RGB555 / 565 / 8888 and YUV422 video formats, and it provides complete video processing capability such as 5-tap horizontal and vertical scaling, clockwise / counter-clockwise display rotation, video de-interlacing / interlacing, de-blocking and video gamma correction. Advanced video display features such as video window overlays, sub-picture blending and Microsoft VMRTM support are also implemented for new generation media applications.

Display Interface

The CX700/CX700M provides several types of display interfaces for different applications:

CRT Interface: Three 10-bit 350MHz RAMDAC are integrated for high quality, high resolution (up to 2048x1536 @75Hz refresh rate) monitor.

TV Interface: The CX700M integrates a high definition TV Encoder, and supports RGB, YPbPr, CompYC TV interface modes through the three RAMDACs. Supported TV resolutions include NTSC - 525i (480i), 525p (480p), PAL - 625i (576i), 625p (576p), and HDTV - 1080i, 720p.

LCD Panel Interface: A LVDS/DVI Transmitter is integrated, which supports LCD Panel in three different modes:

- One Dual-Channel LVDS Interface
- > Two Single-Channel LVDS Interface
- ➤ One Single-Channel DVI Interface
- > DVO Interface: Two 16-bit DVO interfaces are provided for interfacing to external TV Encoder or DVI Transmitter.

The DuoView^{+TM} feature is implemented with two independent display engines. Each engine can display completely different contents at different resolution, pixel depth and refresh rate. DuoView^{+TM} includes WinXP, WinME and Win98 multi-monitor, extended desktop support; the CRT, LVDS/DVI LCD panel, TV refresh rates are independently programmable for optimum image quality.

High Definition Audio Interface

A high definition audio controller with up to 32-Bit Sample Size @192KHz Sampling Rate is implemented in CX700/CX700M for high-end media applications with up to 8 high definition audio channels.

Storage Device Interface

The CX700/CX700M integrates the Serial ATA and EIDE Controllers. These two controllers provide maximum flexibility in selecting storage devices (both HD and Optical drives). The Serial ATA controller is Serial ATA II PHY compliant and supports up to two SATA IDE devices with 3Gb/s data transfer rate. The EIDE controller supports up to two EIDE devices in PIO mode 4, multi-word DMA mode 2, and UltraDMA-33/66/100/133 modes.

USB Interface

Six USB 2.0/1.1 ports are integrated to support wide ranging connectivity needs on the platform.

In addition, the CX700/CX700M supports PCI bus, LPC bus, MC97, UART, IR as well as legacy functions, such as PS/2 keyboard/mouse and RTC CMOS RAM. Through sophisticated power management scheme and state-of-the-art system functions, VIA CX700/CX700M makes High Performance, Low Power, Thin-&-Light computing/media processing a reality!

BALLOUTS

Ball Map

Figure 2. CX700/CX700M Ball Map (C7 and P4 CPU Interface) – Left Side Top View

Figure 3. CX700/CX700M Ball Map (C7 and P4 CPU Interface) – Right Side Top View

Signal Ball List

Table 1. CX700/CX700M Signal Ball List (Listed by Ball Name)

Ball#	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball#	Ball Name	Ball #	Ball Name
E30	A20M#	AH21	DCD1	AH22	GPI0	A17	HD03#	B08	HDSTB2P#	G30	MA13
U01	AB	AM22	DCD2	AP12	GPI1	F15	HD04#	A02	HDSTB3N#	AP12	MCBCLK
AN10	AD0	D18	DEFER#	AN12	GPI2	H14	HD05#	A03	HDSTB3P#	AD35	MCLKO0-
AM10	AD1	AL07	DEVSEL#	AN14	GPI3	G17	HD06#	A18	HIT#	AD34	MCLKO0+
AT09	AD2	B31	DFTIN#	AP14	GPI4	E17	HD07#	D20	HITM#	R35	MCLKO1-
AR09	AD3	AB08	DISPCLKI1	AN15	GPI5	H17	HD08#	E19	HLOCK#	R34	MCLKO1+
AP09	AD4	AB06	DISPCLK12	AN17	GPI6	C16	HD09#	C21	HREQ0#	E33	MCLKO2-
AT08	AD5	AB07	DISPCLKO1 DISPCLKO2	AT13	GPI7 GPI8	G14 G16	HD10# HD11#	D22 A22	HREQ1#	E32	MCLKO2+ MCRST
AR08 AP08	AD6 AD7	AB05 A31	DMCOMP	AL14 AP16	GPI9	J14	HD11# HD12#	A20	HREQ2# HREQ3#	AL12 AN12	MCSDIN
AN09	AD8	B30	DPSLP#	C28	GPI10	C17	HD12# HD13#	A21	HREQ4#	AR12	MCSDOUT
AN08	AD9	F18	DPWR#	AM18	GPI11	E14	HD14#	AA06	HSYNC	AM12	MCSYNC
AM08	AD10	AC30	DQM0	AB08	GPIA	J16	HD15#	D19	HTRDY#	AC27	MD0
AN07	AD11	W32	DQM1	AB06	GPIB	B15	HD16#	E29	IGNNE#	AB29	MD1
AL09	AD12	AB36	DQM2	AL16	GPIO0	D15	HD17#	B29	INIT#	AC32	MD2
AM07	AD13	W33	DQM3	AK16	GPIO1	A11	HD18#	AL01	INTA#	AB32	MD3
AT07	AD14	M34	DQM4	AK09	GPIO2	C11	HD19#	AL03	INTB#	AB27	MD4
AR07	AD15	H36	DQM5	AK08	GPIO3	A15	HD20#	AL02	INTC#	AB28	MD05
AN06	AD16	D36	DQM6	AL22	GPO0	C15	HD21#	AM01	INTD#	AC31	MD06
AT04	AD17	C33	DQM7	AT20	GPO1	A16	HD22#	A30	INTR	AB31	MD07
AP05	AD18	AB30	DQS0	AT22	GPO2	A14	HD23#	AN17	INTRUDER#	W28	MD08
AT06	AD19	W31	DQS1	AG22	GPO3	C13	HD24#	AP06	IRDY#	W29	MD09
AN05	AD20	AB33	DQS2	AR22	GPO4	B14	HD25#	AH22	IRQ15	V33	MD10
AT03	AD21	W36	DQS3	AM12	GPO5	E13	HD26#	AR20	IRRX	V30	MD11
AR03 AT02	AD22 AD23	M35 H33	DQS4 DQS5	AL12 AL18	GPO6 GPO7	E12 D11	HD27# HD28#	AN22 AP22	IRRX1 IRSCLK	V29 W30	MD12 MD13
AL06	AD24	D35	DQS5 DQS6	AM15	GPO7 GPO8	D11	TIDOOU	AJ22	IRTX	V31	MD14
AM04	AD25	A33	DQS7	AR13	GPO9	A12	HD29# HD30#	AL13	KBCK	V31	MD15
AL05	AD26	P32	DQS8	AM14	GPO10	A13	HD31#	AM13	KBDT	AC34	MD16
AL04	AD27	E18	DRDY#	AB07	GPOA	E08	HD32#	N03	LCD1CLK-	AC36	MD17
AR02	AD28	AP21	DSR1	AB05	GPOB	E09	HD33#	N02	LCD1CLK+	AA34	MD18
AT01	AD29	AH20	DSR2	H20	GTLVREF0	A07	HD34#	T02	LCD1DO0-	AA36	MD19
AN02	AD30	AN20	DTR1	J12	GTLVREF1	A08	HD35#	T03	LCD1DO0+	AC33	MD20
AP03	AD31	AL20	DTR2	B21	HA03#	C09	HD36#	R01	LCD1DO1-	AC35	MD21
A19	ADS#	AJ02	DVP0DE	D25	HA04#	B09	HD37#	R02	LCD1DO1+	AA35	MD22
U02	AG	AD02	DVP1CLK	A24	HA05#	A09	HD38#	P02	LCD1DO2-	AA33	MD23
AN14	AOL	AB03	DVP1D0	D24	HA06#	D10	HD39#	P01	LCD1DO2+	Y34	MD24
V01	AR	AC02	DVP1D1	B24	HA07#	F09	HD40#	M04	LCD1DO3-	Y35	MD25
AR11	AZBITCLK	AC03	DVP1D2	C25	HA08#	D07	HD41#	M03	LCD1DO3+	U33	MD26
AR10	AZRST#	AD04	DVP1D3	C24	HA09#	E07	HD42#	L01	LCD2CLK-	U34	MD27
AT11 AP11	AZSDIN0 AZSDIN1	AC01 AD03	DVP1D4 DVP1D5	A25 B25	HA10# HA11#	E10 D09	HD43# HD44#	L02 J02	LCD2CLK+ LCD2DO0-	Y36 Y33	MD28 MD29
AT12	AZSDINI	AD03	DVP1D5 DVP1D6	A26	HA11# HA12#	G10	HD44# HD45#	J02 J01	LCD2DO0+	V36	MD30
AP10	AZSYNC	AF05	DVP1D7	E25	HA13#	G09	HD46#	K03	LCD2DO1-	U35	MD31
L29	BA0	AE03	DVP1D8	D26	HA14#	D08	HD47#	K02	LCD2DO1+	N36	MD32
L32	BA1	AG05	DVP1D9	E26	HA15#	F07	HD48#	L04	LCD2DO2-	M33	MD33
AP14	BATLOW#	AF03	DVP1D10	E27	HA16#	A05	HD49#	L03	LCD2DO2+	L36	MD34
AA05	BISTIN	AG03	DVP1D11	A27	HA17#	E06	HD50#	M02	LCD2DO3-	K33	MD35
F19	BNR#	AG01	DVP1D12	F27	HA18#	B02	HD51#	M01	LCD2DO3+	N35	MD36
E20	BPRI#	AH01	DVP1D13	D21	HA19#	A04	HD52#	AT13	LID#	M36	MD37
C19	BREQ0#	AH02	DVP1D14	E24	HA20#	A06	HD53#	AR19	LPCAD0	L33	MD38
AM09	CBE0#	AF04	DVP1D15	E23	HA21#	C06	HD54#	AT19	LPCAD1	K36	MD39
AP07	CBE1#	AG04	DVP1DE	G23	HA22#	B03	HD55#	AN19	LPCAD2	J36	MD40
AR05	CBE2#	AE05	DVP1DET	F22	HA23#	C05	HD56#	AM19	LPCAD3	J33	MD41
AP04	CBE3#	AB04	DVP1HS	E22	HA24#	B06	HD57#	AK19	LPCDRQ0#	G35	MD42
	CIRRX		DVP1TVCLKR	J22	HA25#	C01	HD58#		LPCDRQ1#	G34	MD43
T31 T30	CKE0 CKE1		DVP1TVFLD	H21 H22	HA26# HA27#	C02 C03	HD59# HD60#	AP19	LPCFRAME# MA0	J34 J35	MD44 MD45
T32	CKE1 CKE2	AC04 Y04	DVP1VS ENVBLD1	E21	HA2/# HA28#	C03	HD60# HD61#	L30 L28	MA1	G36	MD45 MD46
T33	CKE2 CKE3	Y04 Y06	ENVBLD1 ENVBLD2	F23	HA28# HA29#	A01	HD61# HD62#	N27	MA1 MA2	F33	MD46 MD47
AP18	CLKRUN#	Y03	ENVBLD2 ENVDD1	B27	HA30#	D06	HD62# HD63#	N30	MA3	F36	MD48
D01	CPURST#	Y05	ENVDD1 ENVDD2	H23	HA31#	H16	HDBI0#	N32	MA4	F35	MD49
AK17	CPUSTP#	AN15	EXTSMI#	A23	HADSTB0N#	C14	HDBI1#	P30	MA5	D33	MD50
K29	CS0#	D30	FERR#	C23	HADSTB0P#	A10	HDBI2#	N31	MA6	A36	MD51
H32	CS1#	AT05	FRAME#	G22	HADSTB1#	D04	HDBI3#	P28	MA7	F34	MD52
G32	CS2#	K11	GCLK	K23	HCLK-	F14	HDSTB0N#	P29	MA8	E36	MD53
G31	CS3#	AN01	GNT0#	L23	HCLK+	E15	HDSTB0P#	P27	MA9	D34	MD54
AP20	CTS1	AM02	GNT1#	J17	HD00#	C12	HDSTB1N#	L31	MA10	C36	MD55
AG20	CTS2	AM03	GNT2#	G15	HD01#	B11	HDSTB1P#	T28	MA11	B35	MD56
B19	DBSY#	AR01	GNT3#	E16	HD02#	C08	HDSTB2N#	T29	MA12	A34	MD57

CX700/CX700M Signal Ball List Continued (Listed by Ball Name)

Ball #	Ball Name	Ball#	Ball Name	Ball#	Ball Name	Ball#	Ball Name	Ball#	Ball Name	Ball #	Ball Name
C32	MD58	AH21	PDD6	AJ23	SATALED#	AK15	TESTIN#	AT25	USBP4+		
A32	MD59	AG21	PDD7	AJ33	SATAR50COMP	AP16	THRM#	AN25	USBP5-		
A35	MD60	AG20	PDD8	K30	SCAS#	C28	THRMTRIP#	AM25	USBP5+		
D32	MD61	AH20	PDD9	AM20	SDOUT1	J10	TP1	AR23	USBREXT		
B33	MD62	AJ20	PDD10	AK21	SDOUT2	J11	TP2	AH05	VCP0CLK		
D31	MD63	AL20	PDD11	AM17	SERIRQ	H12	TP3	AG09	VCP0D0		
K28	MEMVREF0	AL21	PDD12	AR06	SERR#	J24	TP4	AH07	VCP0D1		
V27	MEMVREF1	AK21	PDD13	AK20	SIN1	H24	TP5	AG07	VCP0D2		
T35	MPD0		PDD14	AL21	SIN2	AJ19	TP6	AH06	VCP0D3		
T36	MPD1		PDD15	B28	SLP#	AJ16	TP7	AH04	VCP0D4		
P33	MPD2	AJ22	PDDACK#	AP15	SMBALRT#	AH09	TP8	AH03	VCP0D5		
N34	MPD3	AR20	PDDREQ	AM16		AM05	TRDY#	AJ05	VCP0D6		
U36	MPD4		PDIOR#	AK16	SMBCLK2	AJ02	TS0ERR		VCP0D7		
T34	MPD5		PDIORDY	AN16	SMBDATA1	AK07	TS1ERR		VCP0HS		
P36	MPD6		PDIOW#	AL16	SMBDATA2	Y02	TVXI	AG06	VCP0VS		
N33	MPD7	AL08	PERR#	D29	SMI#	Y01	TVXO	AJ03	VCP1CLK		
AN13	MSCK		PME#	AA02	SPCLK1	R01	TX0-	AJ04	VCP1D0		
AP13	MSDT		PWRBTN#	AA03	SPCLK1	R02	TX0+	AK01	VCP1D1		
C30	NMI			AA01	SPD1	P02	TX1-	AJ07	VCP1D2		
H29	ODT0		REQ0#	AA04	SPD2	P01	TX1+	AJ08	VCP1D3		
G33	ODT1			AL18	SPKR	N03	TX2-	AK04	VCP1D4		
F32	ODT2		REQ1# REQ2#	K32	SRAS#	N03	TX2+	AK04 AK05	VCP1D4 VCP1D5		
F30	ODT3		REQ2# REQ3#	AJ34	SREXT	T02	TXC-	AK05	VCP1D6		
AR04	PAR	AG21	RI1	AT35	SRX0-	T03	TXC+	AJ06	VCP1D6 VCP1D7		
AL10	PCICLK	AT21	RI2	AR35	SRX0+	AT23	USBCLK	AK02	VCP1D7 VCP1HS		
AK08		AL14 C18	RING# RS0#	AT33	SRX1-	AL23 AP23	USBOC0#	AK03	VCP1VS VGATE		
AK09	PCIDREQ	B18		AR33	SRX1+	AN23	USBOC1# USBOC2#	AM18			
AT10	PCIRST#	G19	RS1#	AM06	STOP# STPCLK#	AM23	USBOC2# USBOC3#	AL17	VRDSLP VSYNC		
AN18	PCISTP#		RS2#	C29				AA07			
AT22	PDA0		RSET POMPOT!	AN35		AK23	USBOC4#	AB09	XIN		
AG22	PDA1		RSMRST#	AM35	STX0+	AK24	USBOC5#				
AR22	PDA2	K25	RSVD0	AN33		AN29	USBP0-				
AN22		J25	RSVD1	AM33	STX1+	AM29	USBP0+		Y		
AP22	PDCS3#		RSVD2	AM15	SUSA#	AR29	USBP1-				
AP20	PDD0		RSVD3	AR13	SUSB#	AT29	USBP1+				
AP21	PDD1		RSVD4	AM14	SUSC#	AR27	USBP2-				
AN21	PDD2		RTCX1	T05	SW_REXT	AT27	USBP2+	k.			
	PDD3		RTCX2	K31	SWE#	AN27	USBP3-				
	PDD4	AN21		AK35		AM27	USBP3+				
AM20	PDD5	AJ20	RTS2	AK36	SXO	AR25	USBP4-				
				. (7						
		V	7								
	1										
					,						
					\ \ \ \ \						
				7							
					>						

Table 2. Power / Ground Ball List

Ball Name	Ball Numbers
GND	B01, B04, B05, B07, B10, B12, B13, B16, B17, B20, B22, B23, B26, B32, B34, B36 C07, C10, C20, C22, C26, C27, C31, C34, C35, D02, D03, D05, D12, D13, D16, D17, D23, D27 E05, E31, E34, E35, F08, F10, F12, F13, F16, F17, F20, F21, F24, F25, F26, G08, G11, G12, G13, G18, G20, G21, G24 H15, H35, J15, J18, J21, K34, K35, L34, L35, P34, P35, R33, R36, T16, T18, T20, U17, U19, U21, U30, U31 V16, V18, V20, V34, V35, W17, W19, W21, W27, W34, W35, Y16, Y18, Y20, Y28, Y30, Y31 AA17, AA19, AA28, AA30, AA31, AB34, AB35, AC28, AC29, AD32, AD33, AD36, AF21, AH12, AH13, AJ21, AM21, AR21
GNDA15SATA	AK34, AL32, AL33, AL34, AL35, AL36, AM32, AM34, AM36, AN32, AN34, AN36, AP32, AP33, AP34, AP35, AP36, AR32, AR34, AR36, AT32, AT34, AT36
GNDA15PLLUSB	AH23
GNDA33SATA	AK31, AL31, AM31
GNDA33PLLUSB	AG23
GNDADAC	U03, U06, V02
GNDAHCK	1.24
GNDALVDS	R04
GNDALVDSPLL	M05, P05
GNDAPLL	V05, V07, W04
GNDAPLLSATA	AK32
GNDASXO	AJ35
GNDATVPLL	W02
GNDLVDS	K01, K04, N01, N04, N07, P07, P14, P15, R03, R05, R07, R14, R15, T01, T04, T07, T14, T15
GNDUSB	AL24, AL25, AL26, AL27, AL28, AL29, AL30, AM24, AM26, AM28, AM30 AN24, AN26, AN28, AN30, AP24, AP25, AP26, AP27, AP28, AP29, AP30 AR24, AR26, AR28, AR30, AT24, AT26, AT28, AT30
VBAT	AT17
VCC15	T17, T19, T21, U16, U18, U20, V17, V19, V21, W16, W18, W20, Y17, Y19, Y21 AA16, AA18, AA20, AA21, AA22, AA23, AB21, AB22, AB23, AC21, AC22, AC23, AD28, AD29, AD30, AD31 AE28, AE29, AE30, AE31, AE32, AE33, AE34, AE35, AE36, AF28, AF29, AF30, AF31, AF32, AF33, AF34, AF35, AF36 AG28, AG29, AG30, AG31, AG32, AG33, AG34, AG35, AG36, AH28, AH29, AH30, AH31, AH32, AH33, AH34, AH35, AH36
VCC33	Y14, Y15, AA14, AA15, AB14, AB15, AB16, AB17, AB19, AB20, AC14, AC15, AC16, AC17, AC19, AC20
VCC33CPU	P23
VCC33LVDS	M06, N06, P06, R06, T06
VCC33USB	AJ25, AJ26, AJ27, AK25, AK26, AK27
VCCA15SATA	AJ28, AJ29, AK28, AK29
VCCA15SXO	AJ36
VCCA15PLLUSB	AJ24
VCCA33DAC[2:1]	U05, U04
VCCA33HCK	K24
VCCA33LVDS	P03
VCCA33LVDSPLL[2:1]	P04, N05
VCCA33PLL[3:1]	V04, V06, W03
VCCA33SATA	AN31, AP31, AR31, AT31
VCCA33PLLSATA	AK33
VCCA33TVPLL	W01
VCCA33PLLUSB	AH24
VCCMEM	F31, H30, H31, J29, J30, J31, M28, M29, M30, M31, N28, N29, P31, R23, R28, R29, R31, R32 T22, T23, U22, U23, V22, V23, W22, W23, Y22, Y23
VSUS15	AJ12, AJ13
VSUS15MEM	V26
VSUS15USB	AG24
VSUS33	AB18, AK11, AK12, AK13
VTT	E01, E02, E03, E04, F01, F02, F03, F04, F05, F06, G01, G02, G03, G04, G05, G06, G07 H01, H02, H03, H04, H05, H06, H07, H08, J03, J04, J05, J06, J07, J08, K05, K06, K07, K08 L06, L07, L08, P16, P17, P18, P19, P20, P21, P22, R16, R17, R18, R19, R20, R21, R22

Signal Descriptions

CPU Interface

The CPU interface supports two possible host protocols: VIA V4 and Intel P4. Strapping ball TP[7:5] are used to select the operating mode for the interface. See the Strapping Table for the setup.

CPU Interface (VIA V4 or Intel P4 Host Protocol)							
Signal Name	Ball #	I/O	Signal Description	Power Plane			
HCLK+/-	L23, K23	I	Host Clock. CPU clock (100 / 133 MHz).	VTT			
HA[31:3]#	(see ball list)	IO	P4 Host Data Address. (P4 Host Protocol) HA[31:3] connect to the address bus of the host CPU. During CPU cycles HA[31:3] are inputs. These signals are driven by CX700 during cache snooping operations. (V4 Host Protocol) Signal balls HA[30] and HA[16:3] are used. Host data addresses are transferred in 4X rate in V4 host protocol. On beat 0 and 2, address bits HA[30, 16:3] are transferred on signal balls HA[30, 16:3]. On beat 1 and 3, address bits HA[31, HAP, 29:17] are transferred on signal balls HA[30, 16:3].	VTT			
HD[63:0]#	(see ball list)	IO	Host Data. These signals are connected to the CPU data bus.	VTT			
ADS#	A19	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.	VTT			
BNR#	F19	Ю	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.	VTT			
BPRI#	E20	IO	Priority Agent Bus Request. The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted.	VTT			
DBSY#	B19	IO	Data Bus Busy. Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.	VTT			
DEFER#	D18	Ю	Defer. A dynamic deferring policy is used to optimize system performance. The DEFER# signal is also used to indicate a processor retry response.	VTT			
DRDY#	E18	Ю	Data Ready . Asserted for each cycle that data is transferred.	VTT			
HIT#	A18	Ю	Hit . Indicates that a caching agent holds the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.	VTT			
HITM#	D20	I	Hit Modified . Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the L1 cache and needs to be written back.	VTT			
HLOCK#	E19	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.	VTT			
HREQ[4:0]#	A21, A20, A22, D22, C21	IO	Host Request Command. (P4 Host Protocol) Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type. (V4 Host Protocol) Signal balls HREQ[2:0] are used. Host request commands are transferred in 4X rate in V4 host protocol. On beat 0 and 2, host request bits HREQ[2:0] are transferred on signal balls HREQ[2:0]. On beat 1 and 3, host request bits HREQ[4:3] are transferred on signal balls HREQ[1:0].				

	CPU Interface (VIA V4 or Intel P4 Host Protocol) – continued								
Signal Name	Ball #	I/O	Signal Description	Power Plane					
HTRDY#	D19	IO	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.	VTT					
RS[2:0]#	G19, B18, C18	Ю	Response Signals. Indicates the type of response per the table below: RS[2:0]# 000 Idle State 001 Retry Response 010 Defer Response 011 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data	VTT					
CPURST#	D01	О	CPU Reset. Reset output to CPU. External pull-up and filter capacitor to ground should be provided per CPU manufacturer's recommendations.	VTT					
BREQ0#	C19	I	Bus Request 0. Connect to CPU bus request 0.	VTT					
HDBI[3:0]#	D04, A10, C14, H16	IO	Host Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data signal group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted to limit the number of switching data signals simultaneously.	VTT					
HADSTB0P#	C23	IO	Host Address Strobe.	VTT					
HADSTB0N# HADSTB1#	A23 G22		(P4 Host Protocol) Source synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at a 2x transfer rate. HADSTB1# is the strobe for HA[31:17]# and HADSTB0P# is the strobe for HA[16:3] and HREQ[4:0]#. (V4 Host Protocol) HADSTB0P# / HADSTB0N# are differential synchronous strobes used to transfer HA[30, 16:3]# and HREQ[2:0]# at a 4x transfer rate.						
HDSTB[3:0]P# HDSTB[3:0]N#	A03, B08, B11, E15 A02, C08, C12, F14	Ю	Host Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# & HDBI[3:0]# at a 4x transfer rate. HDSTB3P# / HDSTB3N# are the strobes for HD[63:48]# & HDBI3#; HDSTB2P# / HDSTB2N# are the strobes for HD[47:32]# & HDBI2#; HDSTB1P# / HDSTB1N# are the strobes for HD[31:16]# & HDBI1#; and HDSTB0P# / HDSTB0N# are the strobes for HD[15:0]# & HDBI0#.	VTT					
DPWR#	F18	О	Data Bus Power Reduction. Request to reduce power on the mobile CPU data bus input buffer. Connect to mobile CPU if used.	VTT					

	CPU Control Interface (VIA V4 and Intel P4 Host Protocols)							
Signal Name	Signal Name Ball # I/O Signal Description Po							
A20M#	E30	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation. Logical combination of the A20GATE input (from internal or external keyboard controller) and Port92 bit-1 (Fast_A20).	VCC33CPU				
FERR#	D30	Ι	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the CPU. Internally generates interrupt 13 if active.	VCC33CPU				
IGNNE#	E29	OD	Ignore Numeric Error. This signal is connected to the CPU "ignore error" signal.	VCC33CPU				

	CPU Control Interface (VIA V4 and Intel P4 Host Protocols) - continued							
Signal Name	Ball #	I/O	Signal Description	Power Plane				
INIT#	B29	OD	Initialization. INIT# is asserted if a shut-down special cycle on the PCI bus is detected or if a soft reset is initiated by the register.	VCC33CPU				
INTR	A30	OD	CPU Interrupt. INTR is driven by the CX700 to signal the CPU that an interrupt request is pending and needs service.	VCC33CPU				
NMI	C30	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. CX700 generates an NMI when PCI bus SERR# is asserted.	VCC33CPU				
SLP#	B28	OD	Sleep. Used to put the CPU into a sleep state.	VCC33CPU				
SMI#	D29	OD	System Management Interrupt. SMI# is asserted by CX700 to the CPU in response to power management events.	VCC33CPU				
STPCLK#	C29	OD	Stop Clock. This signal is asserted by the CX700 to throttle the processor clock.	VCC33CPU				
THRMTRIP# / GPI10	C28	I	Thermal Detect Power Down. This signal indicates a thermal trip from the processor. THRMSTRIP# can optionally be used as GPI10.	VCC33CPU				
DPSLP#	B30	OD	CPU Deep Sleep. Used to put the CPU into a deeper sleep mode.	VCC33CPU				

DDR/DDR2 SDRAM Memory Interface

SDRAM Memory Interface supports two operating modes: DDR or DDR2 mode. Signal ball TP8 is used to select the operating mode for the interface. See the Strapping Table for the setup.

induction the interface	DDR/DDR2 SDRAM Memory Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane		
MA[13:0]	(see ball list)	О	DRAM Row/Column Address.	VCCMEM		
BA[1:0]	L32, L29	0	DRAM Bank Address.	VCCMEM		
SRAS#	K32	0	DRAM Row Address Strobe.	VCCMEM		
SCAS#	K30	O	DRAM Column Address Strobe.	VCCMEM		
SWE#	K31	O	DRAM Write Enable.	VCCMEM		
MD[63:0]	(see ball list)	IO	Memory Data. In 32-bit memory interface mode, connect memory data	VCCMEM		
4			lines to MD[31:0].			
MPD[7:0]	(see ball list)	IO	Memory Parity Data Bits. For ECC function.	VCCMEM		
DQM[7:0]	(see ball list)	О	Memory Data Mask. Data mask for the eight data bytes.	VCCMEM		
ODT[3:0]	F30, F32,	O	DDR2 On-Die Termination Enable. For the four DDR2 memory	VCCMEM		
	G33, H29		banks.			
			Not used in DDR mode.			
DQS[8:0]	(see ball list)	IO	DDR/DDR2 Memory Data Strobes. Data strobe for the eight data	VCCMEM		
			bytes and the MPD[7:0] byte.			
CS[3:0]#	G31, G32,	О	Memory Chip Select. Chip select for the four memory banks.	VCCMEM		
	H32, K29					
CKE[3:0]	T33, T32,	О	Memory Clock Enable. For the four memory banks to enable DRAM	VCCMEM		
	T30, T31		power down mode.			
MCLKO[2:0]+	E32, R34,	О	Differential Memory Clock Output. In one DIMM system memory	VCCMEM		
	AD34		configuration, connect memory clock outputs to the DIMM socket			
MCLKO[2:0]-	E33, R35,		directly.			
	AD35		Use Zero Delay buffer for two DIMM system memory configurations.			

LVDS / DVI Interface

LVDS/DVI interface supports three possible operating modes: one dual-channel LVDS mode, two single-channel LVDS mode or one single-channel DVI mode. Signal balls DVP1D[15:14] are used to select the operating mode for the interface. See the

Strapping Table for the setup.

			LVDS Interface	
Signal Name	Ball #	I/O	Signal Description	Power Plane
LCD1DO0+/-	T03, T02	О	LVDS Single Channel Mode:	VCC33LVDS
			LVDS Differential Data Output 0 for Panel 1.	
			LVDS Dual Channel Mode:	
			LVDS Differential Data Output 0.	
TXC+/-			In DVI Mode, used as DVI Differential Clock Output.	
LCD1DO1+/-	R02, R01	О	Single Channel Mode:	VCC33LVDS
			LVDS Differential Data Output 1 for Panel 1.	
			Dual Channel Mode:	
			LVDS Differential Data Output 1.	
TX0+/-			In DVI Mode, used as DVI Differential Data Output 0.	
LCD1DO2+/-	P01, P02	О	Single Channel Mode:	VCC33LVDS
			LVDS Differential Data Output 2 for Panel 1	
			Dual Channel Mode:	
			LVDS Differential Data Output 2.	
TX1 + /			In DVI Made and a DVI D'Marrifold Date Out of the	
TX1+/- LCD1DO3+/-	M02 M04		In DVI Mode, used as DVI Differential Data Output 1.	VCC22LVDC
LCD1DO3+/-	M03, M04	О	Single Channel Mode: LVDS Differential Data Output 3 for Panel 1.	VCC33LVDS
			Dual Channel Mode:	
			LVDS Differential Data Output 3.	
LCD2DO0+/-	J01, J02	0	Single Channel Mode:	VCC33LVDS
LCD2DO01/-	301, 302		LVDS Differential Data Output 0 for Panel 2.	VCC35LVDS
			Dual Channel Mode:	
			LVDS Differential Data Output 4.	
LCD2DO1+/-	K02, K03	О	Single Channel Mode:	VCC33LVDS
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		LVDS Differential Data Output 1 for Panel 2.	
			Dual Channel Mode:	
			LVDS Differential Data Output 5.	
LCD2DO2+/-	L03, L04	О	Single Channel Mode:	VCC33LVDS
			LVDS Differential Data Output 2 for Panel 2	
			Dual Channel Mode:	
			LVDS Differential Data Output 6.	
LCD2DO3+/-	M01, M02	О	Single Channel Mode:	VCC33LVDS
			LVDS Differential Data Output 3 for Panel 2	
			Dual Channel Mode:	
			LVDS Differential Data Output 7.	
LCD1CLK+/-	N02, N03	О	Single Channel Mode:	VCC33LVDS
			LVDS Differential Clock Output for Panel 1.	
			Dual Channel Mode:	
			Not Connected.	
TX2+/-			In DVI mode, used as DVI Differential Data Output 2.	
LCD2CLK+/-	L02, L01	О	Single Channel Mode:	VCC33LVDS
			LVDS Differential Clock Output for Panel 2.	
			Dual Channel Mode:	
			LVDS Differential Clock Output.	

DVI Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane
TXC+/-	T03, T02	О	DVI Differential Clock Output.	VCC33LVDS
LCD1DO0+/-			In LVDS mode, used as Channel 1 differential data output 0.	
TX0+/-	R02, R01	О	DVI Differential Data Output 0.	VCC33LVDS
LCD1DO1+/-			In LVDS mode, used as Channel 1 differential data output 1.	
TX1+/-	P01, P02	О	DVI Differential Data Output 1.	VCC33LVDS
LCD1DO2+/-			In LVDS mode, used as Channel 1 differential data output 2.	
TX2+/-	N02, N03	О	DVI Differential Data Output 2.	VCC33LVDS
LCD1CLK+/-			In LVDS mode, used as Channel 1 differential clock output.	
SW_REXT	T05	ΑI	Voltage Swing Adjustment of Pixel Channel in DVI Mode	VCC33LVDS
			This signal controls the amplitude of the DVI output voltage swing. A	
			pull-up resistor REXT should connect this ball to VCCA33LCD. For	
			remote display applications, 510 ohm is recommended. For notebook	
			computers (in DVI mode), 680 ohm is recommended.	

LCD Panel Power Control					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
ENVDD[2:1]	Y05, Y03	О	Enable Panel VDD Power. For the two panels.	VCC33	
ENVBLD[2:1]	Y06, Y04	О	Enable Panel Back Light. For the two panels.	VCC33	

CRT / TV Monitor Interface

The CRT / TV Interface supports 5 possible operating modes, signal balls DVP1D[10:8] should be strapped to a defined state for the desired operating mode. Please see the Strapping Table for the setup of DVP1D[10:8].

CRT / TV Monitor Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
AR, AG, AB	V01, U02,	AO		VCCA33DAC		
	U01		Analog Red / Green / Blue. DAC outputs.			
			TV Mode:			
			The AR / AG / AB outputs could be used as C / Y / CVBS or C / Y /			
			Y or R / G / B or Pr / Y / Pb outputs depends on the strapping settings.			
			soungs.			
			See the Strapping Table for DVP1D[10:8] strapping setup for the			
			desired DAC operating mode.			
HSYNC	AA06	О	Horizontal Sync.	VCC33		
VSYNC	AA07	О	Vertical Sync.	VCC33		
RSET	V03	ΑI	Reference Resistor. Tie to GNDADAC through an external resistor	VCCA33DAC		
			to control the RAMDAC full-scale current.			
SPCLK2	AA03	IO	Serial Port (SMBus) Clock and Data. The SPCLKn signals are the	VCC33		
SPD2	AA04		clocks for serial data transfer. The SPDn signals are the data signals			
			used for serial data transfer. SPCLK1/SPD1 is typically used for DVI			
SPCLK1	AA02		monitor communications and SPCLK2/SPD2 is typically used for			
SPD1	AA01		DDC for CRT monitor communications.			

Digital Video Port 0 (DVP0) / Video Capture Port Interface

DVP0 Interface supports multiple operating modes, signal balls VCP0D6 and DVP1D[7:0] are used to select the operating mode for the interface. See the Strapping Table for the setup.

		Vide	o Capture Port (VCP) / Digital Video Port 0 (DVP0)	
Signal Name	Ball #	I/O	Signal Description	Power Plane
VCP1D[7:0] / TS1D[7:0] / DVP0D[15:8]	(see ball list)	Ю	Video Capture Mode: VCP1D[7:0] is 8-bit CCIR-601/656 Port 1 or Upper half of 16-bit CCIR-601/656. VCP0D[7:0] is 8-bit CCIR-601/656 Port 0 or Lower half of 16-bit CCIR-601/656.	VCC33
VCP0D[7:0] / TS0D[7:0] / DVP0D[7:0]			VCP1D[7:0] plus VCP0D[7:0] can be used for 16-bit CCIR-601/656. Transport Stream Input Mode: TS1D[7:0] is 8-bit Transport Stream Port 1. TS0D[7:0] is 8-bit Transport Stream Port 0. Digital Video Output Mode: DVP0D[15:0] supports either 12-bit DVO interface or 16-bit ARGB interface.	
VCP0HS / TS0VLD / DVP0HS	AG08	Ю	Video Capture Mode: VCP0HS: Video Capture Port 0 Horizontal Sync. Transport Stream Input Mode: TS0VLD: Transport Stream Port 0 Data Valid. Digital Video Output Mode: DVP0HS: Digital Video Port 0 Horizontal Sync.	VCC33
VCP0VS / TS0SYNC / DVP0VS	AG06	IO	Video Capture Mode: VCP0VS: Video Capture Port 0 Vertical Sync. Transport Stream Input Mode: TS0SYNC: Transport Stream Port 0 Data Sync Digital Video Output Mode: DVP0VS: Digital Video Port 0 Vertical Sync.	VCC33
VCP1HS / TS1VLD / NC	AK02	I	Video Capture Mode: VCP1HS: Video Capture Port 1 Horizontal Sync. Transport Stream Input Mode: TS1VLD: Transport Stream Port 1 Data Valid. Digital Video Output Mode: NC: Not Connected.	VCC33
VCP1VS / TS1SYNC / NC	AK03	I	Video Capture Mode: VCP1VS: Video Capture Port 1 Vertical Sync. Transport Stream Input Mode: TS1SYNC: Transport Stream Port 1 Data Sync. Digital Video Output Mode: NC: Not Connected.	VCC33
NC / TS0ERR / DVP0DE	AJ02	Ю	Video Capture Mode: NC: Not Connected. Transport Stream Input Mode: TS0ERR: Transport Stream Port 0 Error. Digital Video Output Mode: DVP0DE: Digital Video Port 0 Data Enable.	VCC33
VCP0CLK / TS0CLK / DVP0CLK	AH05	Ю	Video Capture Mode: VCP0CLK: Video Capture Port 0 Clock. Transport Stream Input Mode: TS0CLK: Transport Stream Port 0 Clock. Digital Video Output Mode: DVP0CLK: Digital Video Port 0 Clock.	VCC33

	Video Capture Port (VCP) / Digital Video Port 0 (DVP0) - continued					
Signal Name	Ball #	I/O	Signal Description	Power Plane		
VCP1CLK / TS1CLK / (DVP0CLKR, DVP0DET)	AJ03	IO	Video Capture Mode: VCP1CLK: Video Capture Port 1 Clock. Transport Stream Input Mode: TS1CLK: Transport Stream Port 1 Clock. Digital Video Output Mode: TV Interface: DVP0CLKR: Digital Video Port 0 TV Clock Return. DVI Interface: DVP0DET: Digital Video Port 0 Display Detect).	VCC33		
NC / TS1ERR / NC	AK07	I	Video Capture Mode: NC: Not Connected. Transport Stream Input Mode: TS1ERR: Transport Stream Port 1 Error. Digital Video Output Mode: NC: Not Connected.	VCC33		

Note: Please use the **bold signal name** to find the ball location in the signal ball list.

Digital Video Port 1 (DVP1) Interface

DVP1 Interface supports multiple operating modes, signal balls VCP0D[13:11] are used to select the operating mode for the interface. See the Strapping Table for the setup.

Digital Video Port 1 (DVP1) Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
DVP1D [15:0]	(see ball list)	О	12-Bit Digital Video Output Mode:	VCC33	
		A (DVP1D [11:0] is for 12-Bit DVO Interface.		
			20-Bit TV Output Mode:		
			DVP1D [15:0] is the first 16 Bits of the TV Interface.		
			ARGB Mode:		
			DVP1D[15:0] supports 16-bit ARGB interface.		
DVP1HS/	AB04	О	12-Bit Digital Video Output Mode:	VCC33	
DVP1D[16]			DVP1HS is Digital Video Port 1 Horizontal Sync.		
			20-Bit TV Output Mode:		
	1.001		DVP1D[16] is the 17 th Bit of the TV Interface.	710000	
DVP1VS /	AC04	О	12-Bit Digital Video Output Mode:	VCC33	
DVP1D[17]			DVP1VS is Digital Video Port 1 Vertical Sync.		
			20-Bit TV Output Mode: DVP1D[17] is the 18 th Bit of the TV Interface.		
DVD1DE /	A CO4	0	,	VCC22	
DVP1DE /	AG04	О	12-Bit Digital Video Output Mode:	VCC33	
DVP1D[18]			DVP1DE is Digital Video Port 1 Data Enable. 20-Bit TV Output Mode:		
			DVP1D[18] is the 19 th Bit of the TV Interface.		
DVP1TVFLD /	AG02	Ю	12-Bit Digital Video Output Mode:	VCC33	
DVP1D[19]	AG02	10	DVP1TVFLD is Digital Video Port 1 Field Out.	70033	
D (1 1D[19]			20-Bit TV Output Mode:		
			DVP1D[19] is the 20 th Bit of the TV Interface.		
DVP1DET	AE05	I	Display Detect. Tie to GND if not used.	VCC33	
DVP1CLK	AD02	О	Digital Video Port 1 Clock / TV Clock	VCC33	
DVP1TVCLKR	AE04	I	TV Return Clock.	VCC33	

Note: Please use the **bold signal name** to find the ball location in the signal ball list.

PCI Bus Interface

			PCI Bus Interface	
Signal Name	Ball #	I/O	Signal Description	Power Plane
AD[31:0]	(see ball list)	Ю	Address / Data Bus. Multiplexed address and data. The address is driven with FRAME# assertion and data is driven or received in following cycles.	VCC33
CBE[3:0]#	AP04, AR05, AP07, AM09	IO	Command / Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.	VCC33
DEVSEL#	AL07	IO	Device Select. The CX700 asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a CX700-initiated transaction and is also sampled when decoding whether to substractively decode the cycle.	VCC33
FRAME#	AT05	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one additional data transfer is desired by the cycle initiator.	VCC33
IRDY#	AP06	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.	VCC33
TRDY#	AM05	IO	Target Ready. Asserted when the target is ready for data transfer.	VCC33
STOP#	AM06	IO	Stop. Asserted by the target to request the master to stop the current transaction.	VCC33
SERR#	AR06	Ι	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the CX700 can be programmed to generate an NMI to the CPU.	VCC33
PERR#	AL08	-	Parity Error. PERR#, sustained tri-state, is only for the reporting of data parity errors during all PCI transactions except a Special Cycle.	VCC33
PAR	AR04	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.	VCC33
INTA#	AL01	I	PCI Interrupt Request . The INTA# through INTD# signal balls are	VCC33
INTB# INTC#	AL03 AL02		typically connected to the PCI bus INTA#-INTD# signals per the table below. BIOS settings must match the physical connection method.	
INTD#	AM01		NTA#	
REQ3#, REQ2#, REQ1#, REQ0#	AN04 AP02 AP01 AN03	Ι	PCI Request. These signals connect to the CX700 from each PCI slot (or each PCI master) for access request to the PCI bus.	VCC33
GNT3#, GNT2#, GNT1#, GNT0#	AR01 AM03 AM02 AN01	О	PCI Grant. These signals are driven by the CX700 to grant PCI bus access to a specific PCI master.	VCC33
PCIRST# PCICLK	AT10 AL10	O	PCI Reset. This signal is used to reset devices attached to the PCI bus.PCI Clock. This signal provides timing for all transactions on the PCI	VCC33 VCC33
			Bus.	

USB 2.0 Interface

USB 2.0 Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
USBP0+/-	AM29, AN29	IO	USB Port 0 Differential Data	VCC33USB	
USBP1+/-	AT29, AR29	IO	USB Port 1 Differential Data	VCC33USB	
USBP2+/-	AT27, AR27	IO	USB Port 2 Differential Data	VCC33USB	
USBP3+/-	AM27, AN27	IO	USB Port 3 Differential Data	VCC33USB	
USBP4+/-	AT25, AR25	IO	USB Port 4 Differential Data	VCC33USB	
USBP5+/-	AM25, AN25	IO	USB Port 5 Differential Data	VCC33USB	
USBCLK	AT23	I	USB Clock. 48 MHz clock input for the USB interface	VCC33USB	
USBOC0#	AL23	I	USB Port 0 Over Current Detect. Port 0 is disabled if low.	VCC33USB	
USBOC1#	AP23	I	USB Port 1 Over Current Detect. Port 1 is disabled if low.	VCC33USB	
USBOC2#	AN23	I	USB Port 2 Over Current Detect. Port 2 is disabled if low.	VCC33USB	
USBOC3#	AM23	I	USB Port 3 Over Current Detect. Port 3 is disabled if low.	VCC33USB	
USBOC4#	AK23	I	USB Port 4 Over Current Detect. Port 4 is disabled if low.	VCC33USB	
USBOC5#	AK24	I	USB Port 5 Over Current Detect. Port 5 is disabled if low.	VCC33USB	
USBREXT	AR23	AI	USB External Resistor	VCC33USB	

SATA Interface

SATA Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
SRX0+/-	AR35, AT35	I	SATA Port 0 Differential Receiver	VCCA33SATA	
SRX1+/-	AR33, AT33	I	SATA Fort 1 Differential Receiver	VCCA33SATA	
STX0+/-	AM35, AN35	I	SATA Port 0 Differential Transmitter	VCCA33SATA	
STX1+/-	AM33, AN33	I	SATA Port 1 Differential Transmitter	VCCA33SATA	
SXI	AK35	I	SATA Crystal In.	VCCA33SATA	
SXO	AK36	O	SATA Crystal Out.	VCCA33SATA	
SREXT	AJ34	ΑI	SATA External Resistor.	VCCA33SATA	
SATALED#	AJ23	О	SATA LED.	VCC33	

SMBus Interface

	SMBus Interface				
Signal Name	Ball #	I/O	Signal Description	Power Plane	
SMBCLK1	AM16	OD	SMB Channel 1 Clock. Master Mode.	VSUS33	
SMBDATA1	AN16	OD	SMB Channel 1 Data. Master Mode.	VSUS33	
SMBCLK2 /	AK16	OD	SMB Channel 2 Clock. Slave Mode.	VSUS33	
GPIO1			SMBCLK2 can optionally be used as GPIO1.		
SMBDATA2 / GPIO0	AL16	OD	SMB Channel 2 Data. Slave Mode. SMBDATA2 can optionally be used as GPIO0.	VSUS33	
SMBALRT#	AP15	I	SMB Alert. (With optional 10K ohms built-in pull-up resistor) Enabled by System Management Bus I/O space. When enabled, SMBALRT# assertion generates an IRQ or SMI interrupt or a power management resume event.	VSUS33	

Enhanced IDE Interface

Enhanced IDE is enabled when signal ball PDDACK# is strapped HIGH.

	Enhanced IDE Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane			
PDIORDY	AK22	Ι	UltraDMA Mode: PDIORDY: Device ready indicator (Write) PDDMARDY: Output flow control. The device may assert PDDMARDY to pause output transfers (Read) PDSTROBE: Input data strobe (both edges). The device may stop assertion of PDSTROBE to pause input data transfers	VCC33			
PDIOR# / GPO0	AL22	0	EIDE Mode: PDIOR#: Device read strobe UltraDMA Mode: (Write) PHSTROBE: Output data strobe (both edges). The host may stop assertion of PHSTROBE to pause output data transfers (Read) PHDMARDY: Input flow control. The host may assert PHDMARDY to pause input transfers PDIOR# can optionally be used as GPO0.	VCC33			
PDIOW# / GPO1	AT20	0	UltraDMA Mode: PSTOP: Stop transfer. Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of PSTOP by the host during or after data transfer signals the termination of the burst. PDIOW# can optionally be used as GPO1.	VCC33			
PDDREQ / IRRX	AR20	I		VCC33			
PDDACK# / IRTX	AJ22	0	IDE Device DMA Acknowledge PDDACK# can optionally be used as IRTX.	VCC33			
PDCS1# / IRRX1	AN22	О	IDE Master Chip Select.	VCC33			
PDCS3#	AP22	О	IDE Slave Chip Select.	VCC33			
PDA[2:0] / GPO[4:2]	AR22, AG22, AT22	0	IDE Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed. PDA[2:0] can optionally be used as GPO[4:2].	VCC33			
PDD[15:0]	(see ball list)	IO	IDE Data Bus.	VCC33			
IRQ15 / GPI0	AH22	I	IDE Channel Interrupt Request.	VCC33			

LPC Bus Interface

LPC Bus Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
LPCAD[3:0]	AM19, AN19, AT19, AR19	IO	LPC Address / Data.	VCC33		
LPCFRAME#	AP19	О	LPC Frame.	VCC33		
LPCDRQ0#	AK19	I	LPC DMA / Bus Master Request 0.	VCC33		
LPCDRQ1#	AL19	I	LPC DMA / Bus Master Request 1.	VCC33		

Serial Port Interface

Serial ports are enabled when signal ball PDDACK# is strapped LOW.

Serial Port Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
SDOUT1 / PDD5	AM20 O		Transmit Data for Serial Port 1.	VCC33		
			SDOUT1 can optionally be used as PDD5.			
SDOUT2 / PDD13	AK21	О	Transmit Data for Serial Port 2.	VCC33		
			SDOUT2 can optionally be used as PDD13.			
SIN1 / PDD4	AK20	I	Receive Data for Serial Port 1.	VCC33		
			SIN1 can optionally be used as PDD4.			
SIN2 / PDD12	AL21	I	Receive Data for Serial Port 2.	VCC33		
			SIN2 can optionally be used as PDD12.			
RTS1 / PDD2	AN21	О	Request To Send for Serial Port 1.	VCC33		
			RTS1 can optionally be used as PDD2.			
RTS2 / PDD10	AJ20	О	Request To Send for Serial Port 2.	VCC33		
			RTS2 can optionally be used as PDD10.			
CTS1 / PDD0	AP20	I	Clear To Send for Serial Port 1.	VCC33		
			CTS1 can optionally be used as PDD0.			
CTS2 / PDD8	AG20	I	Clear To Send for Serial Port 2.	VCC33		
			CTS2 can optionally be used as PDD8.			
DTR1 / PDD3	AN20	О	Data Terminal Ready for Serial Port 1.	VCC33		
			DTR1 can optionally be used as PDD3.			
DTR2 / PDD11	AL20	О	Data Terminal Ready for Serial Port 2.	VCC33		
			DTR2 can optionally be used as PDD11.			
DSR1 / PDD1	AP21	I	Data Set Ready for Serial Port 1.	VCC33		
			DSR1 can optionally be used as PDD1.			
DSR2 / PDD9	AH20	I	Data Set Ready for Serial Port 2.	VCC33		
			DSR2 can optionally be used as PDD9.			
DCD1 / PDD6	AH21	I	Data Carrier Detect for Serial Port 1.	VCC33		
			DCD1 can optionally be used as PDD6.			
DCD2 / PDD14	AM22	Í	Data Carrier Detect for Serial Port 2.	VCC33		
			DCD2 can optionally be used as PDD14.			
RI1 / PDD7	AG21	I	Ring Indicator for Serial Port 1.	VCC33		
			RI1 can optionally be used as PDD7.			
RI2 / PDD15	AT21	I	Ring Indicator for Serial Port 2.	VCC33		
	i.		RI2 can optionally be used as PDD15.			

IR Interface

IR ports are enabled when signal ball PDDACK# is strapped LOW.

IR Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
IRTX / PDDACK#	AJ22	О	Infrared Transmit Data. IRTX can optionally be used as PDDACK#.	VCC33	
IRRX / PDDREQ	AR20	I	Infrared Receive Data. IRRX can optionally be used as PDDREQ.	VCC33	
CIRRX / AOL / GPI3	AN14	Ι	CIR Receive Data. CIRRX can optionally be used as AOL or GPI3.	VSUS33	
IRSCLK / PDCS3#	AP22	О	Infrared Transceiver Clock. IRSCLK can optionally be used as PDCS3#.	VCC33	
IRRX1 / PDCS1#	AN22	О	Infrared Receive Data 1. This signal can also be used to turn off transceiver module. IRRX1 can optionally be used as PDCS1#.	VCC33	

High Definition Audio and MC97 Interface

Signal Name	Ball #	I/O	Signal Description	Power Plane		
			High Definition Audio			
AZRST#	AR10	О	High Definition Audio Reset.	VSUS33		
AZBITCLK	AR11	О	High Definition Audio Bit Clock. 24.00 MHz.	VCC33		
AZSYNC	AP10	О	High Definition Audio Sync. 48 KHz Frame Sync and outbound tag signal.	VCC33		
AZSDOUT	AT12	О	High Definition Audio Serial Data Output.	VCC33		
AZSDIN[1:0]	AP11, AT11	I	High Definition Audio Serial Data Input.	VSUS33		
	MC97					
MCSDOUT / GPO11	AR12	О	MC97 Serial Data Output MCSDOUT can optionally be used as GPO11.	VCC33		
MCBCLK / GPI1	AP12	I	MC97 Bit Clock MCBCLK can optionally be used as GPI1	VCC33		
MCSDIN / GPI2	AN12	I	MC97 Serial Data Input MCSDIN can optionally be used as GPI2.	VSUS33		
MCSYNC / GPO5	AM12	О	MC97 Sync Signal. MCSYNC can optionally be used as GPO5.	VCC33		
MCRST / GPO6	AL12	О	MC97 Reset. MCRST can optionally be used as GPO6.	VSUS33		

Speaker Interface

Speaker Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
SPKR / GPO7	AL18	0	Speaker Out.	VCC33		
			SPKR can optionally be used as GPO7.			

Internal Keyboard Controller Interface

Internal Keyboard Controller Interface							
Signal Name	Ball #	I/O	Signal Description	Power Plane			
MSCK	AN13	IO	Mouse Clock. From internal mouse controller.	VSUS33			
MSDT	AP13	IO	Mouse Data. From internal mouse controller.	VSUS33			
KBCK / A20GATE	AL13	Ю	Keyboard Clock. From internal keyboard controller. This signal is used as A20GATE to connect to external keyboard controller's A20Gate signal if external KBC is used.	VSUS33			
KBDT / KBC_CPURST#	AM13	Ю	Keyboard Data. From internal keyboard controller. This signal is used as KBC_CPURST# to connect to external keyboard controller's CPURST# signal if external KBC is used.	VSUS33			

Note: Please use the **bold signal name** to find the ball location in the signal ball list.

Serial IRQ Interface

Serial IRQ Interface						
Signal Name Ball # I/O Signal Description Power						
SERIRQ	AM17	I	Serial IRQ. This signal has an internal pull-up resistor.	VCC33		

PC / PCI DMA Interface

PC / PCI DMA Interface									
Signal Name									
PCIDREQ / GPIO2	AK09	Ι	PC / PCI DMA Request. PCIDREQ can optionally be used as GPIO2.	VCC33					
PCIDGNT / GPIO3	AK08	О	PC / PCI DMA Grant. PCIDGNT can optionally be used as GPIO3.	VCC33					

General Purpose Input Interface

General Purpose Input Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
GPI0 / IRQ15	AH22	I	General Purpose Input 0.	VCC33	
GPI1 / MCBCLK	AP12	I	General Purpose Input 1.	VCC33	
GPI2 / MCSDIN	AN12	I	General Purpose Input 2.	VSUS33	
GPI3 / AOL / CIRRX	AN14	I	General Purpose Input 3.	VSUS33	
GPI4 / BATLOW#	AP14	I	General Purpose Input 4.	VSUS33	
GPI5 / EXTSMI#	AN15	I	General Purpose Input 5.	VSUS33	
GPI6 / INTRUDER#	AN17	I	General Purpose Input 6.	VBAT	
GPI7 / LID#	AT13	I	General Purpose Input 7.	VSUS33	
GPI8 / RING#	AL14	I	General Purpose Input 8.	VSUS33	
GPI9 / THRM#	AP16	I	General Purpose Input 9.	VSUS33	
GPI10 / THRMTRIP#	C28	I	General Purpose Input 10.	VCC33	
GPI11/ VGATE	AM18	I	General Purpose Input 11. Can be enabled to trigger	VSUS33	
			assertion of SMI/SCI signal when GPI11 is asserted.		
GPIA / DISPCLKI1	AB08	I	General Purpose Input A.	VCC33	
GPIB / DISPCLKI2	AB06	I	General Purpose Input B.	VCC33	

General Purpose Output Interface

General Purpose Output Interface						
Signal Name	Ball #	I/O	Signal Description	Power Plane		
GPO0 / PDIOR#	AL22	0	General Purpose Output 0.	VCC33		
GPO1 / PDIOW#	AT20	0	General Purpose Output 1.	VCC33		
GPO2 / PDA0	AT22	0	General Purpose Output 2.	VCC33		
GPO3 / PDA1	AG22	О	General Purpose Output 3.	VCC33		
GPO4 / PDA2	AR22	О	General Purpose Output 4.	VCC33		
GPO5 / MCSYNC	AM12	0	General Purpose Output 5.	VCC33		
GPO6 / MCRST	AL12	0	General Purpose Output 6.	VSUS33		
GPO7 / SPKR	AL18	0	General Purpose Output 7.	VCC33		
GPO8 / SUSA#	AM15	О	General Purpose Output 8.	VSUS33		
GPO9 / SUSB#	AR13	О	General Purpose Output 9.	VSUS33		
GPO10 / SUSC#	AM14	0	General Purpose Output 10.	VSUS33		
GPO11 / MCSDOUT	AR12	Ó	General Purpose Output 11.	VCC33		
GPOA / DISPCLKO1	AB07	О	General Purpose Output A.	VCC33		
GPOB / DISPCLKO2	AB05	О	General Purpose Output B.	VCC33		

General Purpose Input/Output Interface

General Purpose Input/Output Interface					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
GPIO0 / SMBDATA2	AL16	IO	General Purpose I/O 0.	VSUS33	
GPIO1 / SMBCLK2	AK16	Ю	General Purpose I/O 1.	VSUS33	
GPIO2 / PCIDREQ	AK09	IO	General Purpose I/O 2.	VCC33	
GPIO3 / PCIDGNT	AK08	IO	General Purpose I/O 3.	VCC33	

Power Management Control and Event Signals

	Pov	wer M	anagement Control and Event Signals	
Signal Name	Ball #	I/O	Signal Description	Power Plane
PWRBTN#	AJ15	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. Internal logic powered by VSUS33.	VSUS33
EXTSMI# / GPI5	AN15	Ю	External System Management Interrupt. When enabled, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. EXTSMI# can optionally be used as GPI5.	VSUS33
PME#	AL15	I	Power Management Event.	VSUS33
LID# / GPI7	AT13	Ι	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high or high-to-low transitions to generate an SMI#. LID# can optionally be used as GPI7.	VSUS33
INTRUDER# / GPI6	AN17	I	Intrusion Indicator. INTRUDER# can optionally be used as GPI6.	VBAT
THRM# / GPI9	AP16	I	Thermal Alarm Monitor. This signal is to enable the throttling mode of the STPCLK# signal for thermal control. THRM# can optionally be used as GPI9.	VSUS33
RING# / GPI8	AL14	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. RING# can optionally be used as GPI8.	VSUS33
BATLOW# / GPI4	AP14	I	Battery Low Indicator. BATLOW# can optionally be used as GPI4.	VSUS33
CPUSTP#	AK17	О	CPU Clock Stop. Signals the system clock generator to disable the CPU clock outputs. Not connected if not used.	VCC33
PCISTP#	AN18	0	PCI Clock Stop. Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.	VCC33
SUSA#/GPO8	AM15	0	Suspend Plane A Control. Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. SUSA# can optionally be used as GPO8.	VSUS33
SUSB# / GPO9	AR13	0	Suspend Plane B Control. Asserted during power management STR and STD suspend states. Used to control the secondary power plane. SUSB# can optionally be used as GPO9.	VSUS33
SUSC#/GPO10	AM14	О	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry. SUSC# can optionally be used as GPO10.	VSUS33
AOL / GPI3 / CIRRX	AN14	I	Alert On LAN. AOL may optionally be used as GPI3 or CIRRX.	VSUS33
CLKRUN#	AP18	Ю	PCI Clock Run. Suspend PCICLK when CLKRUN# is high. See PCI Specification for CLKRUN# protocol.	VCC33
VGATE / GPI11	AM18	I	Voltage Gate. This signal is not implemented. VGATE may optionally be used as GPI11.	VSUS33
VRDSLP	AL17	OD	Voltage Regulator Deep Sleep. Connected to the CPU voltage regulator. High selects the proper voltage for deep sleep mode.	VCC33

Clock, Test and Miscellaneous Signals

Signal Name	Ball #	I/O	Signal Description	Power Plane
	С	lock Signa	als of Graphics & Video Processors	
DISPCLKI1 / GPIA	AB08	I	SSC Dot Clock 1 (Pixel Clock) In.	VCC33
			DISPCLKI1 can optionally be used as GPIA.	
DISPCLKO1/ GPOA	AB07	О	Dot Clock 1 (Pixel Clock) Out.	VCC33
			DISPCLKO1 can optionally be used as GPOA.	
DISPCLKI2 / GPIB	AB06	I	SSC Dot Clock (Pixel Clock) In.	VCC33
			DISPCLKI2 can optionally be used as GPIB.	
DISPCLKO2 / GPOB	AB05	O	Dot Clock (Pixel Clock) Out.	VCC33
			DISPCLKO2 can optionally be used as GPOB.	
GCLK	K11	I	Graphics clock (66Mhz)	VCC33
TVXI	Y02	I	TV Encoder Crystal Input.	VCCA33TVPLL
TVXO	Y01	O	TV Encoder Crystal Output.	VCCA33TVPLL
XIN	AB09	I	14.31818MHz Reference Frequency Input.	VCC33
			External 14.31818 MHz clock source. All internal	
			graphics controller clocks and internal timer are	
			synthesized on chip using this frequency as a	
			reference.	
			RTC Crystal Interface	
RTCX1	AT16	I	RTC Crystal Input: 32,768 KHz Crystal Input.	VBAT
RTCX2	AR16	O	RTC Crystal Output: 32.768 KHz Crystal Output.	VBAT
		Pov	ver State and System Reset	
PWRGD	AR17	I	Power Good. Connected to the Power Good signal	VBAT
		40	on the Power Supply. Internal logic powered by	
			VBAT.	
RSMRST#	AP17	I	Resume Reset. When asserted, this signal resets the	VBAT
	A 0		CX700 and sets all register bits to the default value.	
			The rising edge of this signal is used to sample all	
			power-up strap options	
			t and Miscellaneous Signals	
TESTIN#	AK15	I	Test In. This signal is used for testing.	VSUS33
DFTIN#	B31	I	DFT In. This signal is used for testing.	VCCMEM
BISTIN	AA05	I	BIST In. This signal is used for testing.	VCC33
TP1	J10	- <u>/</u>	Test Pad.	VTT
	71.1		Also served as a strapping pin.	
TP2	J11	-	Test Pad.	VTT
TD2	1110	Y	Also served as a strapping pin.	\$ //D/D
TP3	H12	-	Test Pad.	VTT
TP4	124		Also served as a strapping pin.	VCC22CDII
1174	J24	-	Test Pad. Also served as a strapping pin.	VCC33CPU
TP5	H24	_	Test Pad.	VCCMEM
113	П24	-	Also served as a strapping pin.	VCCMEN
TP6	AJ19	_	Test Pad.	VCC33
110	A313	-	Also served as a strapping pin.	70033
TP7	AJ16		Test Pad.	VCC33
11 /	AJ10	-	Also served as a strapping pin.	, cc33
TP8	AH09	_	Test Pad.	VCC33
110	AHU	-	Also served as a strapping pin.	, CC33
RSVD[4:0]	AC07, AC06,	_	Reserved.	_
IN TELETON		-		
	AC08, J25, K25		No connection.	

Compensation and Reference Voltage Signals

Compensation					
Signal Name	Ball #	I/O	Signal Description	Power Plane	
DMCOMP	A31	ΑI	DRAM Compensation.	VCCMEM	
SATAR50COMP	AJ33	ΑI	Serial ATA Auto Compensation.	VCCA33SATA	

	Reference Voltages				
Signal Name	Ball #	I/O	Signal Description		
GTLVREF[1:0]	J12, H20	ΑI	Host CPU Interface AGTL+ Voltage Reference.		
			Set it to 2/3 of VTT.		
MEMVREF[1:0]	V27, K28	ΑI	Memory Voltage Reference.		
			Set it to 1/2 of VCCMEM.		

Power / Ground Signals

		Analog Power / Ground
Signal Name	Ball #	Signal Description
		Host Interface
VCCA33HCK	K24	Power for Host CPU Clock PLL. 3.3V ±5%.
GNDAHCK	L24	Ground for Host CPU Clock PLL
		Graphics and Video
VCCA33PLL[3:1]	V04, V06, W03	Power for Graphics Controller PLL. 3.3V ±5%.
GNDAPLL	V05, V07, W04	Ground for Graphics Controller PLL.
VCCA33DAC[2:1]	U05, U04	Power for DAC. $3.3V \pm 5\%$.
GNDADAC	U03, U06, V02	Ground for DAC.
		LVDS Transmitter
VCCA33LVDSPLL[2:1]	P04, N05	LVDS PLL Power. 3.3V ±5%
GNDALVDSPLL	M05, P05	LVDS PLL Ground.
VCCA33LVDS	P03	LVDS Analog Power. 3.3V ±5%
GNDALVDS	R04	LVDS Analog Ground.
		TV Encoder
VCCA33TVPLL	W01	TV Encoder PLL Power. 3.3V ±5%
GNDATVPLL	W02	TV Encoder PLL Ground.
		SATA Controller
VCCA15SXO	AJ36	SATA Oscillator Power. 1.5V ±5%.
GNDASXO	AJ35	SATA Oscillator Ground.
VCCA15SATA	(see ball list)	SATA Analog Power. 1.5V ±5%.
GNDA15SATA	(see ball list)	SATA Analog Ground.
VCCA33SATA	AN31, AP31,	SATA Analog Power. 3.3V ±5%.
	AR31, AT31	
GNDA33SATA	AK31, AL31,	SATA Analog Ground.
NGC 1 22 PL I G 1 TI 1	AM31	GATTA DIA A DE DE CONTROL
VCCA33PLLSATA	AK33	SATA PLL Analog Power. 3.3V ±5%.
GNDAPLLSATA	AK32	SATA PLL Analog Ground.
VICE ALERY VICE	1 70 /	USB Controller
VCCA15PLLUSB	AJ24	USB PLL Analog Voltage. 1.5V ±5%.
GNDA15PLLUSB	AH23	USB PLL Analog Ground.
VCCA33PLLUSB	AH24	USB PLL Analog Voltage. 3.3V ±5%.
GNDA33PLLUSB	AG23	USB PLL Analog Ground.

		Digital Power / Ground
Signal Name	Ball #	Signal Description
VTT	(see ball list)	Power for CPU I/O Interface Logic. Voltage is CPU dependent.
VCCMEM	(see ball list)	Power for Memory I/O Interface Logic. 2.5V (DDR) /1.8V (DDR2) ±5%.
VSUS15MEM	V26	Suspend Power for Memory Module. $1.5V \pm 5\%$
VSUS15	AJ12, AJ13	Suspend Power. 1.5V ±5%
VSUS15USB	AG24	Suspend Power for USB. 1.5V ±5%
VSUS33	AB18, AK11, AK12, AK13	Suspend Power. $3.3V \pm 5\%$. Always available unless the mechanical switch of the power supply is turned off. If the "soft-off" state is not implemented, then these signal balls can be connected to VCC33.
VCC15	(see ball list)	Core Power. $1.5V \pm 5\%$. This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high.
VCC33	(see ball list)	I/O Power. 3.3V ±5%
VCC33CPU	P23	Power for 3.3V CPU Interface. 3.3V ±5%
VBAT	AT17	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2).
GND	(see ball list)	Ground. Connect to primary motherboard ground plane.
VCC33LVDS	(see ball list)	Power for LVDS Transmitter. 3.3V ±5%.
GNDLVDS	(see ball list)	Ground for LVDS Transmitter.
VCC33USB	(see ball list)	Power for USB. $3.3V \pm 5\%$.
GNDUSB	(see ball list)	Ground for USB.

Strapping Signal Table

		Strapp	ing Signal	
(Ext	ernal pull-u	p / pulldown straps are required to	8 8	eans the strapping is ignored.)
Signal	Ball #	Function	Description	
TP[2:1]	J11, J10	FSB Clock	State (TP[2:1])	Mode (MHz)
[]	,,,,,,	- 32 33333	LL	100 Mhz
			LH	133 Mhz
			HL	Reserved
			HH	Auto
TP3	H12	IO Queue Depth	L: 8-level deep	H: 1-level deep
TP4	J24	GTL Pull-up	L: Enable internal GTL I	
			H: Disable internal GTL	Pull-up
TP[5:6]	H27 AF17	Host Protocol Mode V4 or P4	LL: P4	LH: V4
TP7	AJ16	Host Protocol Mode 2:	L: 64 bit	H: 32 bit
11 /	A310	V4 Data Width	TP7 strapping is valid if	
PDCS1#	AN22	Dual Processor Configuration	L: Single Processor	H: Dual Processor
TP8	AH09	Memory Type	L: DDR	H: DDR2
SPKR	AL18	CPU Frequency Strapping	L: Enable	H: Disable
AZSDOUT	AT12	Auto Reboot	L: Enable	H: Disable
AZSYNC	AP10	LPC FWH Command	L: Enable	H: Disable
PDDACK#	AJ22	COM/IR Port Enable	L: Enable COM/IR ports	
		A Continue	Reduit	

(External	null-un /	Strapping Signal - cont	tinued " / "L". "X" means the strapping is ignored.)
Signal	Ball #	Function DVB1 Output Salastian	Description LLX: DVP-TV output
VCP1D[5:3]	AK05 AK04	DVP1 Output Selection	LHX: DVP-1 v output LHX: DVP with alpha output
	AK04 AJ08		HLL: DCVI 10-bit data output
	AJUo		HLH: DCVI 8-bit data output
			HHL: DCVI 3-bit data output
			HHH: DCVI 16-bit data output
VCP1D2	AJ07	Reserved	Always strapped LOW.
VCP1D1	AK01	Reserved	Always strapped LOW.
VCP1D0	AJ04	Reserved	Always strapped HIGH.
VCP0D7	AJ01	Reserved	Always strapped LOW.
VCP0D6	AJ05	DVP0/Capture Port Selection	L: Capture input port
VCIODO	AJUJ	DV10/Capture 1 of t Selection	H: DVP output port
VCP0D[3:0]	AH06	Panel Type Selection	11. DV1 Output port
VC1 0D[3.0]	AG07	Tanel Type Selection	Ġ ′
	AH07		.7
	AG09		
DVP1D[15:14]	AF04	LVDS/DVI Mode Selection	LL: Two Single LVDS Channel: LVDS1 + LVDS2
2 , 1 12 [1011.]	AH02		LH: Reserved
		400	HL: One Dual LVDS Channel (High resolution
			panel)
			HH: One DVI only
DVP1D[10:8]	AF03	DAC (CRT/TV) Output Mode	LXX: DAC $A/B/C = R/G/B$ for CRT
, ,	AG05	Selection	HLL: DAC A/B/C = $C/Y/CVBS$ for TV
	AE03		HLH: DAC A/B/C = $C/Y/Y$ for TV
			HHL: DAC A/B/C = $R/G/B$ for TV
			HHH: DAC A/B/C = $Pr/Y/Pb$ for TV
DVP1D[7:4]	AF05	Video Capture Port 1 Type Selection	LLLL: CAP 8 bit CCIR656
	AD01		LLLH: CAP 8 bit CCIR601
	AD03	TA II I CHICDODO	LLHL: CAP 8 bit VIP 1.1
	AC01	Valid if VCP0D6 is strapped LOW.	LLHH: CAP 8 bit VIP 2.0
			LHLL: CAP 16 bit CCIR656
_	7		LHLH: CAP 16 bit CCIR601
			LHHL: CAP 16 bit VIP 1.1
	,		LHHH: CAP 16 bit VIP 2.0
DV/D1D12.01	A D04	Video Contune Dort O Tune Colection	HXXX: TS 8 bit
DVP1D[3:0]	AD04	Video Capture Port 0 Type Selection	LLLL: CAP 8 bit CCIR656
	AC03 AC02		LLLH: CAP 8 bit CCIR601 LLHL: CAP 8 bit VIP 1.1
	AB03	Valid if VCP0D6 is strapped LOW.	LLHE CAP 8 bit VIP 2.0
	ADUS	17 02 0 10 3 mapped 120 111.	LHLL: CAP 16 bit CCIR656
			LHLH: CAP 16 bit CCIR601
			LHHL: CAP 16 bit VIP 1.1
			LHHL: CAP 16 bit VIP 1.1 LHHH: CAP 16 bit VIP 2.0 HXXX: TS 8 bit

IO Pads with Integrated Pull Up Resistors

Some of the CX700/CX700M IO pads, as listed below, are integrated with internal 10K Ohms \pm 30% Pull Up resistor to reduce component counts on the motherboards.

- 1. IO pads with hardwired Pull Up: LPCFRAME#, LPCAD[3:0], MSCK, MSDT, KBCK, KBDT, PDCS1#, SERIRQ
- 2. IO pads with programmable Pull Up:
 - ▶ PCI bus signals: FRAME#, TRDY#, IRDY#, STOP#, DEVSEL#, PERR#, SERR#
 - ➤ PCI bus signals: INT[A, B, C, D]#, REQ[0-3]#, GNT[0-3]#
 - ➤ EIDE signals: PDIORDY, IRQ15
 - > Power management event signals: BATLOW#, THRM#, PME#, RING#, EXTSMI#, LID#, SMBALT#, PWRBTN#

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T_{C}	Operating case temperature	0	85	oC	1
T_{S}	Storage temperature	- 55	125	oC	1
$V_{\rm IN}$	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V _{OUT}	Output voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface voltage is CPU dependent. Memory is 2.5V (DDR) or 1.8V (DDR2). Graphics / Display is 3.3V.

DC Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} \pm 5\%$, $V_{CORE} = 1.5V \pm 5\%$, GND=0V

Table 4. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	-0.50	0.8	V	
V_{IH}	Input High Voltage	2.0	$V_{CC} + 0.5$	V	
V_{OL}	Output Low Voltage		0.55	V	$I_{OL} = 4.0 \text{mA}$
V_{OH}	Output High Voltage	2.4		V	$I_{OH} = -1.0 \text{mA}$
${ m I}_{ m IL}$	Input Leakage Current		±10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	-	±20	uA	$0.55 < V_{OUT} < V_{CC}$

Package Weight Specifications

Table 5. Package Weight Specifications

To Be Provided

Power Sequence

Figure 4. Power On Sequence and Reset Signal Timing

The Confine Co

Table 6. Power Sequence

	Parameter	Min	Max	Unit	Note
T01	VBAT supply active to 5VSUS supply active	0	_	ms	
T02	5VSUS supply active to 1.5VSUS supply active	0	_	ms	
T03	1.5VSUS supply active to 3.3VSUS supply active	0.5	_	ms	
T04	3.3VSUS supply active to RSMRST# inactive	5	_	ms	
T05	RSMRST# inactive to SUSCLK running	_	_	ms	
T06	PWRBTN# active width	1	_	RTCCLK	
T07	PWRBTN# rising to SUS[A-C]# inactive	4	5	RTCCLK	
T08	5V supply active to 1.5V supply active	0	_	ms	
T09	1.5V supply active to 3.3V supply active	0.5	_	ms	
T10	3.3V/VTT supplies active to VCCMEM supply	0	20	ms	
	active		,		
T11	VCCMEM supply active to PWRGD active	99	_	ms	
T12	PWRGD active to PCIRST# inactive	7	_	ms	

MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications – FCBGA-958 Ball Grid Array Package

Figure 6. Lead-Free Mechanical Specifications – FCBGA-958 Ball Grid Array Package