Введение

Власенко Даниил Научные руководители: Гудкин Борис, Заикин Алесей

14 февраля 2023 г.

Содержание

- Введение
- Классификация
- Оенолитические сети
- Ф Векторизация
- Понижение размерности

Введение

Определение

Функциональная магнитно-резонансная томография или фМРТ — разновидность магнитно-резонансной томографии (получения изображения), которая проводится с целью измерения нейронной активности головного или спинного мозга.

Рис.: фМРТ сканер.

Введение ○●○

Рис.: фМРТ скан.

Цель работы

Пусть мозг может находиться в двух режимах когнитивной деятельности.

Цель работы

Реализация и тестирование нового метода классификации режимов когнитивной деятельности на основе фМРТ данных.

Задачи классификации

Введение

Вероятностная постановка задачи классификации

Пусть есть с.в. $\xi:\Omega \to X$ и с.в. $\eta:\Omega \to Y$. Рассмотрим с.в. $(\xi,\eta):\Omega \to (X,Y)$ с распределением p(x,y).

Задача классификации сводится оценке p(y|x) по выборке $(X, Y) = \{(x_k, y_k), k = 1, ..., N\}$

Алгоритмическая постановка задачи классификации

Пусть X — множество описаний объектов, Y — множество номеров классов. Существует функция $f:X\to Y$, значения которой известны только на объектах выборки $(\widetilde{X},\widetilde{Y}) = \{(x_k,y_k), k=1,\ldots,N\}.$

Требуется построить алгоритм-оценку $\widehat{f}:X o Y$.

Рис.: Классификация на основе построения графов отражающих входные данные.

Обозначения

Пусть $X = \{x_k\}_k$ — множество фМРТ, а $Y = \{y_k\}_k$ — режимы когнитивной активности $\{x_k\}_k$ со значениями I или II.

На основе $x_k \in X$ строиться граф $G_k = (V_k, E_k, R_k, W_k)$, где

- $V_k = \{v_i^k\}_i$ множество вершин,
- \bullet $E_k = \{e_{ii}^k\}_{ii}$ множество неориентированных ребер,
- $R_k = \{r_i^k\}_i$ множество значений вершин,
- $W_k = \{w_{ii}^k\}_{ii}$ множество весов ребер,
- v_i^k вершина отражающая область мозга i,
- e_{ii}^{k} ребро отражающее связь между областями i и j,
- r_i^k значение вершины v_i^k ,
- w_{ii}^k вес ребра e_{ii}^k .

Подсчет весов ребер w_{ij}^k

Вероятностное определение w_{ij}^k

$$w_{ij}^{k} = P(y_{k} = II | r_{i}^{k}, r_{j}^{k}) - P(y_{k} = I | r_{i}^{k}, r_{j}^{k})$$

Пусть $CI:\{y_k|(r_i^k,r_j^k),\{(r_i^n,r_j^n)\}_n,\{y_n\}_n\}_k \to [0,1]$ — вероятностный классификатор.

Алгоритмическое определение w_{ij}^k

$$w_{ij}^{k} = CI(y_{k} = II | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}, \{y_{n}\}_{n}) - CI(y_{k} = I | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}, \{y_{n}\}_{n}),$$

где $\{(r_i^n, r_j^n)\}_n$ — множество пар значений вершин (v_i^n, v_j^n) из выборки \widetilde{X} .

Рис.: Плотность распределения (r_i, r_j) для двух режимов, вычисленная по $\{(r_i^n, r_j^n)\}_n$

NiBabel — библиотека предоставляющая возможность читать различные форматы файлов нейровизуализации.

Рис.: Векторизация фМРТ данных.

Методы понижения размерности

Увеличение размеров вокселя.

Рис.: Воксель 2 мм³ Рис.: Воксель 4 мм³

Рис.: Воксель 10 мм³

Методы понижения размерности

Построение не полного графа.

Введение

- Увеличение размеров вокселя.
- ② Кластеризация векселей.
- Построение не полного графа.