Refine Search

Your wildcard search against 10000 terms has yielded the results below.

Your result set for the last L# is incomplete.

The probable cause is use of unlimited truncation. Revise your search strategy to use limited truncation.

Search Results -

Terms	Documents
L28 and (portab\$ or hand\$ or light\$) and reason\$ and (information\$ with fusion\$)	1

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Monday, May 22, 2006 Printable Copy Create Case

Set Name side by side	Hit Set Count Pesult result
DB=USPT; THES=ASSIGNEE; PLUR=YES; OP=OR	
L29 L28 and (portab\$ or hand\$ or light\$) and reason\$ and	1 <u>L29</u>

(information\$ with fusion\$) L28 6434512.pn. 1 L28 DB=PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; THES=ASSIGNEE; PLUR=YES; OP=OR L25 and (portab\$ or hand\$ or light\$) and reason\$ and L27 1 L27 (information\$ with fusion\$) L25 and portab\$ and reason\$ and (information\$ with L26 fusion\$) and (realtime or "real-time" or (real\$ adj 0 L26 time)) L25 | 121 or 122 or 123 or 124 145 L25 DB=USPT; THES=ASSIGNEE; PLUR=YES; OP=OR (6301514 | 6128560 | 5592386 | 4961575 | 4644351 | 5925817 | 5331431 | 5445347 | 5543802 | 5535428 | 5481255 | 5924695 | 5236200 | 5751245 | 4951039 | 6297742 | 6434481 | 5173688 | 5142279 | 5754965 | 5942969 | 6024655 | 5337013 | 5400018 | 5481906 | 5446678 | 6023241 | 5495344 | 5638383 | 6157894 | 57 L24 5452356 | 5491785 | 6003808 | 5933100 | 5517419 | 6084542 | 4415065 | 6230089 | 6208948 | 5679075 | 5613212 | 5239468 | 5929609 | 6381537 | 6415224 | 5508695 | 5566091 | 5045850 | 4496149 | 5661666 | 5184312 | 5648898 | 6144903 | 5646629 | 6006146 | 6385536 | 5060156)![PN] DB=PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; THES=ASSIGNEE; PLUR=YES; OP=OR ('JP2001259105A'| '6320495'| 'JP02004176887A'| '6434512'| '5942969'| 'JP02001259105A'| '6219597'| L23 'JP2004176887A'| '6515621'| '6278938') 16 L23 [ABPN1,NRPN,PN,TBAN,WKU] ('JP2001259105A'| '6320495'| 'JP02004176887A'| L22 '6434512'| '5942969'| 'JP02001259105A'| '6219597'| 74 L22 'JP2004176887A'| '6515621'| '6278938')[URPN] L21 L1 or 15 or 16 or 117 or 118 10 L21 L20 6219597.pn. or 6434512.pn. 4 L20 DB=PGPB; THES=ASSIGNEE; PLUR=YES; OP=OR

<u>L19</u>	2004176887	0	<u>L19</u>
DB	=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD;		
THES	=ASSIGNEE; PLUR=YES; OP=OR		
<u>L18</u>	2004176887	2	<u>L18</u>
DB	=PGPB; THES=ASSIGNEE; PLUR=YES; OP=OR		
<u>L17</u>	20030377881	0	<u>L17</u>
	=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; =ASSIGNEE; PLUR=YES; OP=OR		
	L10 and L14	0	L16
	L14 not L10	_	L15
	L13 and (flight\$ and (vehicle or air\$))		L14
	L12 and (diagnos\$ with fault\$)		L13
	portab\$ and reason\$ and (information\$ with fusion\$)		
<u>L12</u>		89	<u>L12</u>
L11	L10 and (flight\$ and (vehicle or air\$))	0	L11
	L9 and (diagnos\$ with fault\$)	6	L10
<u>L9</u>	portab\$ and reason\$ and (information\$ with fusion\$) and (realtime or "real-time" or (real\$ adj time)) and @pd<=20040105	55	
<u>L8</u>	portab\$ and (("on-board" or onboard) with reason\$) and (information\$ with fusion\$) and @pd<=20040105	0	<u>L8</u>
<u>L7</u>	portab\$ and (("on-board" or onboard) with reason\$) and (information\$ with fusion\$) and @ad<=20040105	1	<u>L7</u>
<u>L6</u>	2001259105	2	<u>L6</u>
DB	=USPT; THES=ASSIGNEE; PLUR=YES; OP=OR		
<u>L5</u>	5942969.pn. or 6278938.pn. or 6515621.pn. or 6320495.pn.	4	<u>L5</u>
<u>L4</u>	L1 and (portab\$ or hand\$ or light\$)	2	<u>L4</u>
<u>L3</u>	L1 (portab\$ or hand\$ or light\$)	2415005	<u>L3</u>
DB	=PGPB,USPT; THES=ASSIGNEE; PLUR=YES; OP=0	OR	
<u>L2</u>	L1 and ("real-time" or (real adj time) or realtime)	2	<u>L2</u>
L1	6219597.pn, or 6434512.pn	2	T.1

Refine Search

Search Results -

Terms	Documents
2004176887	0

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Monday, May 22, 2006 Printable Copy Create Case

Set Name Query side by side	Hit Set Name result set
DB=PGPB; THES=ASSIGNEE; PLUR=YES; OP=OR <u>L15</u> 2004176887	0 <u>L15</u>
DB=PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; THES=ASSIGNEE; PLUR=YES; OP=OR	·
<u>L14</u> 2004176887 <i>DB=PGPB</i> ; <i>THES=ASSIGNEE</i> ; <i>PLUR=YES</i> ; <i>OP=OR</i>	2 <u>L14</u>
<u>L13</u> 20030377881	0 <u>L13</u>

DB=	=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD;		
THES=	=ASSIGNEE; PLUR=YES; OP=OR		
<u>L12</u>	l6 and l10	0	<u>L12</u>
<u>L11</u>	L10 not 16	6	<u>L11</u>
<u>L10</u>	L9 and (flight\$ and (vehicle or air\$))	6	<u>L10</u>
<u>L9</u>	L8 and (diagnos\$ with fault\$)	13	<u>L9</u>
<u>L8</u>	portab\$ and reason\$ and (information\$ with fusion\$) and (realtime or "real-time" or (real\$ adj time)) and @ad<=20040105	89	<u>L8</u>
<u>L7</u>	L6 and (flight\$ and (vehicle or air\$))	0	<u>L7</u>
<u>L6</u>	L5 and (diagnos\$ with fault\$)	6	<u>L6</u>
<u>L5</u>	portab\$ and reason\$ and (information\$ with fusion\$) and (realtime or "real-time" or (real\$ adj time)) and @pd<=20040105	55	<u>L5</u>
<u>L4</u>	portab\$ and (("on-board" or onboard) with reason\$) and (information\$ with fusion\$) and @pd<=20040105	0	<u>L4</u>
<u>L3</u>	portab\$ and (("on-board" or onboard) with reason\$) and (information\$ with fusion\$) and @ad<=20040105	1	<u>L3</u>
<u>L2</u>	2001259105	2	<u>L2</u>
DB=	=USPT; THES=ASSIGNEE; PLUR=YES; OP=OR		
<u>L1</u>	5942969.pn. or 6278938.pn. or 6515621.pn. or 6320495.pn.	4	<u>L1</u>

END OF SEARCH HISTORY

10/750868

Hit List

First Hit Your wildcard search against 10000 terms has yielded the results below.

Your result set for the last L# is incomplete.

The probable cause is use of unlimited truncation. Revise your search strategy to use limited truncation.

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 6 of 6 returned.

☐ 1. Document ID: US 20050149238 A1

Using default format because multiple data bases are involved.

L10: Entry 1 of 6

File: PGPB

Jul 7, 2005

PGPUB-DOCUMENT-NUMBER: 20050149238

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050149238 A1

TITLE: System and method for monitoring and reporting $\underline{aircraft}$ quick access

recorder data

PUBLICATION-DATE: July 7, 2005

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Stefani, Rolf West River MD US Scherbina, Alexander Annapolis MD US

US-CL-CURRENT: 701/33; 701/29, 701/35

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMC Draw D

2. Document ID: US 7020701 B1

L10: Entry 2 of 6

File: USPT

Mar 28, 2006

US-PAT-NO: 7020701

DOCUMENT-IDENTIFIER: US 7020701 B1

TITLE: Method for collecting and processing data using internetworked wireless integrated network sensors (WINS)

□ 3. Document ID: US 6859831 B1

L10: Entry 3 of 6

File: USPT

Feb 22, 2005

US-PAT-NO: 6859831

DOCUMENT-IDENTIFIER: US 6859831 B1

TITLE: Method and apparatus for internetworked wireless integrated network sensor

(WINS) nodes

Full Title Citation Front Review Classification Date Reference **Sequences Attachments** Claims KMC Draw D

☐ 4. Document ID: US 6832251 B1

L10: Entry 4 of 6

File: USPT

Dec 14, 2004

US-PAT-NO: 6832251

DOCUMENT-IDENTIFIER: US 6832251 B1

TITLE: Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS)

Full Title Citation Front Review Classification Date Reference Sequences Ettachments Claims KWC Draw. D

□ 5. Document ID: US 6826607 B1

L10: Entry 5 of 6

File: USPT

Nov 30, 2004

US-PAT-NO: 6826607

DOCUMENT-IDENTIFIER: US 6826607 B1

TITLE: Apparatus for internetworked hybrid wireless integrated network sensors

(WINS)

Full Title Citation Front Review Classification Date Reference Secuences Affactiments Claims KWIC Draw, D

□ 6. Document ID: US 6735630 B1

L10: Entry 6 of 6

File: USPT

May 11, 2004

US-PAT-NO: 6735630

DOCUMENT-IDENTIFIER: US 6735630 B1

TITLE: Method for collecting data using compact internetworked wireless integrated

network sensors (WINS)

Full	Title Citation Front Review Classification Date Reference Sequences	Attachments Claims KWIC Draw. (
Clear	Generate Collection Print Fwd Refs Bkwd	Refs Generate OACS
	Terms	Documents
	L9 and (flight\$ and (vehicle or air\$))	6

Display Format: - Change Format

<u>Previous Page</u> <u>Next Page</u> <u>Go to Doc#</u>

Record Display Form Page 1 of 5

First Hit Fwd Refs

Previous Doc N

Next Doc

Go to Doc#

Generate Collection

Print

L10: Entry 2 of 6

File: USPT

Mar 28, 2006

US-PAT-NO: 7020701

DOCUMENT-IDENTIFIER: US 7020701 B1

TITLE: Method for collecting and processing data using internetworked wireless

integrated network sensors (WINS)

DATE-ISSUED: March 28, 2006

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Gelvin; David C.	Escondido	CA		US
Girod; Lewis D.	Los Angeles	CA		US
Kaiser; William J.	Los Angeles	CA		US
Merrill; William M.	Los Angeles	CA		US
Newberg; Fredric	San Diego	CA		US
Pottie; Gregory J.	Los Angeles	CA		US
Sipos; Anton I.	Los Angeles	CA		US
Vardhan; Sandeep	Walnut	CA		US

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE Sensoria Corporation San Diego CA US 02

APPL-NO: 09/684565 [PALM] DATE FILED: October 4, 2000

RELATED-US-APPL-DATA:

us-provisional-application US 60158013 00 19991006 us-provisional-application US 60170865 00 19991215 us-provisional-application US 60208397 00 20000530 us-provisional-application US 60210296 00 20000608

INT-CL-ISSUED:

TYPE	IPC	DATE	IPC-OLD
IPCP	G06F15/173	20060101	G06F015/173
IPCS	G06F9/44	20060101	G06F009/44
IPCS	H04L12/28	20060101	H04L012/28
IPCS	H01L25/00	20060101	H01L025/00

INT-CL-CURRENT:

TYPE IPC DATE
CIPP G06 F 15/173 20060101
CIPS G06 F 9/44 20060101

Record Display Form Page 2 of 5

CIPS <u>H01</u> <u>L</u> <u>25/00</u> 20060101 CIPS <u>H04</u> L 12/28 20060101

US-CL-ISSUED: 709/224; 370/390, 250/332, 717/100 US-CL-CURRENT: 709/224; 250/332, 370/390, 717/100

FIELD-OF-CLASSIFICATION-SEARCH: 709/201, 709/218, 709/224, 713/201, 719/313, 370/230, 370/390, 370/351, 370/228, 340/539.12, 340/539.19, 380/229, 707/4,

250/332, 717/100

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search ALL

Clear

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL 4406016 September 1983 Abrams et al. 455/19 June 1985 П 4520674 Canada et al. 73/660 4649524 March 1987 Vance 367/13 4812820 March 1989 П Chatwin 340/518 4855713 August 1989 П Brunius 340/506 П 4951029 August 1990 Severson 340/506 5241542 August 1993 Natarajan et al. 370/95.3

Search Selected

- 5247564
 September 1993
 Zicker
 379/40

 5295154
 March 1994
 Meier et al.
 375/1
- 5428636
 June 1995
 Meier
 375/202

 5475687
 December 1995
 Markkula, Jr. et al.
 370/85.1
- <u>5534697</u> July 1996 Creekmore et al. 250/332
- 5553076 September 1996 Behtash et al. 370/95.3 5563948 October 1996 Diehl et al. 380/229
- <u>5659195</u> August 1997 Kaiser et al. 257/415
- <u>5726911</u> March 1998 Canada et al. 364/550
- <u>5732074</u> March 1998 · Spaur et al. 370/313
- <u>5737529</u> April 1998 Dolin, Jr. et al.
- <u>5760530</u> June 1998 Kolesar
- <u>5852351</u> December 1998 Canada et al. 318/490
- <u>5854994</u> December 1998 Canada et al. 702/56

5907491	May 1999	Canada et al.	364/468.15
5937163	August 1999	Lee et al.	709/218
5959529	September 1999	Kail, IV	340/539.12
5978578	November 1999	Azarya et al.	717/100
6009363	December 1999	Beckert et al.	
6028537	February 2000	Suman et al.	
6028857	February 2000	Poor	370/351
6078269	June 2000	Markwell et al.	340/825.5
6144905	November 2000	Gannon	
6145082	November 2000	Gannon et al.	
6175789	January 2001	Beckert et al.	
6181994	January 2001	Colson et al.	
6185491	February 2001	Gray et al.	
6202008	March 2001	Beckert et al.	
6208247	March 2001	Agre et al.	340/539.19
6246935	June 2001	Buckley	
6389483	May 2002	Larsson	719/313
6414955	July 2002	Clare et al.	370/390
6477143	November 2002	Ginossar	370/230
6499027	December 2002	Weinberger	707/4
6504631	January 2003	Barry et al.	398/83
6550012	April 2003	Villa et al.	713/201
6661773	December 2003	Pelissier et al.	370/228
6735630	May 2004	Gelvin et al.	709/224
6859831	February 2005	Gelvin et al.	709/224
9917477	April 1999		
0054237	September 2000		

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	CLASS
2245963	February 2000	CA	
19743137	April 1999	DE	
0814393	December 1997	EP	

OTHER PUBLICATIONS

Ann Bhatnagar, et al., "Layer Net: A New Self-Organizing Network Protocol"; 1990 IEEE Military Communications Conference, Monterey, CA., Sep. 30 thru Oct. 3; pp. 845-849. cited by other
Norman Abramson, "The Throughput of Packet Broadcasting Channels", IEEE

- Transactions on Communications, vol. Com-25, No. 1, Jan. 1977, pp. 117-128. cited by other
- C. David Young, "USAP: A Unifying Dynamic Distributed Multichannel TDMA Slot Assignment Protocol", Milcom 96 Conference Proceedings, Oct. 22-24, 1996, pp. 235-239. cited by other
- G. Asada, et al. "Low Power Wireless Communication and Signal Processing Circuits for Distributed Microsensors", Proceedings of 1997 IEEE International Symposium on Circuits and Systems; Jun. 9-12, 1997, Hong Kong, pp. 2817-2820. cited by other K. Bult, et al. "Low Power Systems for Wireless Microsensors", 1996 International Symposium on Low Power Electronics and Design; pp. 17-21. cited by other Anthony Ephremides, et al. "A Design Concept for Reliable Mobile Radio Networks with Frequency Hopping Signaling"; Proceedings of the IEEE, vol. 75, No. 1, Jan. 1987; pp. 56-73. cited by other
- K. Bult, et al., "Wireless Integrated Microsensors"; Solid-State Sensor and Actuator Workshop, Hilton Head South Carolina, Jun. 3-6, 1996, pp. 205-210. cited by other
- C. David Young, "A Unifying Dynamic Distributed Multichannel TDMA Slot Assignment Protocol", Rockwell International Working Paper, Oct. 25, 1995, pp. 1-29. cited by other
- Tsung-Hsien Lin, et al, "Wireless Integrated Network Sensors (WINS) for Tactical Information Systems", Rockwell Science Center, Thousand Oaks, Jan. 1998, pp. 1-6. cited by other
- Michael J. Dong, et al. "Low Power Signal Processing Architectures for Network Microsensors"; University of California, Los Angeles, ISLPED 97, International Symposium on Low Power Electronics and Design, Jan. 1998, pp. 1-5. cited by other K. Sohrabi, J. Gao, V. Ailawadhi, G. Pottie, "A Self-Organizing Wireless Sensor Network," Proc. 37.sup.th Allerton Conf. On Comm., Control, and Computing, Monticello, IL, Sep. 1999. cited by other
- D.J. Baker and A. Ephremides, "The Architectural Organization of a Mobile Radio Network via a Distributed Algorithm," IEEE Transactions on Communications, vol. Com-29, No. 11, Nov. 1981, pp. 1694-1701. cited by other
- J. Elson, L. Girod, and D. Estrin, "Fine-Grained Network Time Synchronization Using Reference Broadcasts," submitted to SIGCOMM 2002. cited by other
- W. Merrill, K. Sohrabi, L. Girod, J. Elson, F. Newberg, and W. Kaiser, "Open Standard Development Platforms for Distributed Sensor Networks," Aerosense Conference, Orlando, FL, Apr. 2002. cited by other
- M. Gerla and J. Tzu-Chieh Tsai, "Multicluster, Mobile, Multimedia Radio Network," ACM-Baltzer Journal of Wireless Networks, vol. 1, No. 3, pp. 255-265, 1995. cited by other
- C. R. Lin and M. Gerla, "Adaptive Clustering for Mobile Wireless Networks.". cited by other
- S. Natkunanathan, et al., "A Signal Search Engine for Wireless Integrated Network Sensors", ASFL Annual Symposium, Mar. 2000, pp. 1-4. cited by oth- er Michael J. Dong, et al., "Low Power Signal Processing Architectures for Network Microsensors", 1997 International Symposium on Low Power Electronics and Design; Digest of Technical Papers (1997) pp. 173-177. cited by other Tsung-Hsien Lin, et al., "CMOS Front End Components for Micropower RF Wireless
- Tsung-Hsien Lin, et al., "CMOS Front End Components for Micropower RF Wireless Systems", Proceedings of the 1998 International Symposium on Low Power Electronics & Design, pp. 11-15, Aug. 1998. cited by other
- G. Asada, et al.., "Wireless Integrated Network Sensors: Low Power Systems on a Chip", Proceedings of the 1998 European Solid State Circuits Conference (ESSCIRC), pp. 1-8 The Hague, The Netherlands, Sep. 22-24, 1998. cited by other Gregory J. Pottie, R&D Quarterly and Annual Status Report for AWAIRS, pp. 1-28; Jan. 1, 1999-Apr. 31, 1999. cited by other
- Gregory J. Pottie, et al., Wireless Integrated Network Sensors: Towards Low Cost and Robust Self-Organizing Security Networks, SPIE Conference on Sensors, C3I, Information and Training Tech. for Law Enforcement, Boston, MA.; pp. 1-10; Nov. 3-5, 1998. cited by other
- Loren P. Clare, et al., "Self-Organizing Distributed Sensor Networks", SPIE 13.sup.th. Annual Symposium on Aerosense/Defense Sensing, Simulation and Controls,

UGS Technologies and Applications Conference, Orlando, Florida; pp. 1-9; Apr. 5-9, 1999. cited by other J. Agre, et al., "Autoconfigurable Distributed Control Systems", Proceedings of the

2. sup.nd. International Symposium on Autonomous Decentralized Systems (ISADS 95), Phoenix, Arizona; pp. 1-8; Apr. 25-27, 1995. cited by other
Jonathan R. Agre, et al., "Development Platform for Self-Organizing Wireless Sensor Networks", SPIE 13. sup.th. Annual Symposium on Aerosense/Defense Sensing, Simulation and Controls, Unattended Ground Sensor Technologies adn Applications Conference, Orlando, Florida; pp. 1-12; Apr. 5-9, 1999. cited by other
Asada, G., et al., "Wireless Integrated Network Sensors (WINS)" Proceedings of the SPIE, SPIE, Bellingham, VA 3673:11-18 (1999). cited by other
Lohle, H., et al., "Bordermaster 2000- An Advanced Border Surveillance System", Electrical Communication, Alcatel. Brussels, BE 153-158 (1994). cited by other

ART-UNIT: 2154

PRIMARY-EXAMINER: Follansbee; John

ASSISTANT-EXAMINER: Lee; Philip

ATTY-AGENT-FIRM: Courtney Staniford & Gregory LLP

ABSTRACT:

The Wireless Integrated Network Sensor Next Generation (WINS NG) nodes provide distributed network and Internet access to sensors, controls, and processors that are deeply embedded in equipment, facilities, and the environment. The WINS NG network is a new monitoring and control capability for applications in transportation, manufacturing, health care, environmental monitoring, and safety and security. The WINS NG nodes combine microsensor technology, low power distributed signal processing, low power computation, and low power, low cost wireless and/or wired networking capability in a compact system. The WINS NG networks provide sensing, local control, remote reconfigurability, and embedded intelligent systems in structures, materials, and environments.

62 Claims, 53 Drawing figures

Previous Doc Next Doc Go to Doc#

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection : Print

L6: Entry 5 of 6

File: USPT

Oct 15, 1996

US-PAT-NO: 5566092

DOCUMENT-IDENTIFIER: US 5566092 A

TITLE: Machine <u>fault diagnostics</u> system and method

DATE-ISSUED: October 15, 1996

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Wang; Hsu-Pin	Tallahassee	FL		
Huang; Hsin-Hao	Kaohsiung			TW
Knapp; Gerald M.	Baton Rouge	LA		
Lin; Chang-Ching	Tallahassee	FL		
Lin; Shui-Shun	Tallahassee	FL		
Spoerre; Julie K.	Tallahassee	FL		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Caterpillar Inc.	Peoria	IL			02

APPL-NO: 08/176482 [PALM]
DATE FILED: December 30, 1993

PARENT-CASE:

CROSS-REFERENCE TO CO-PENDING APPLICATIONS The following applications are assigned to the assignee of the present application: U.S. Patent Application entitled "Supervised Training of a Neural Network," Ser. No. 08/176,458, naming as inventors Hsin-Hoa Huang, Shui-Shun Lin, Gerald M. Knapp, and Hsu-Pin Wang, filed concurrently herewith, pending the disclosure of which is hereby incorporated by reference in its entirety. U.S. Patent Application entitled "Machine Performance Monitoring and Fault Classification Using an Exponential Weighted Moving Average Scheme," Ser. No. 08/176,456, naming as inventors Julie M. Spoerre, Chang-Ching Lin, and Hsu-Pin Wang, filed concurrently herewith, pending the disclosure of which is hereby incorporated by reference in its entirety.

INT-CL-ISSUED: [06] G01 B 7/00

US-CL-ISSUED: 364/551.02; 364/131, 364/474.01, 364/474.11, 364/474.16, 395/904,

395/912

US-CL-CURRENT: <u>702/185</u>; <u>700/159</u>, <u>700/169</u>, <u>700/174</u>, 700/2, 706/904, <u>706/912</u>

FIELD-OF-CLASSIFICATION-SEARCH: 364/131, 364/164, 364/474.01, 364/474.11, 364/474.15-474.17, 364/505, 364/506, 364/550, 364/551.01, 364/551.02, 364/579, 364/578, 395/3, 395/11, 395/21, 395/22, 395/50, 395/66, 395/75, 395/77, 395/82-84, 395/88, 395/93, 395/97, 395/900, 395/903, 395/904, 395/906, 395/907, 395/909, 395/911, 395/912, 395/914

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

		Search	n Selected	Search ALL	Clear	
	PAT-NO	ISSUE-DATE		PATENTEE-NAME		US-CL
	4803736	February 1989)	Grossberg et a	1.	
	4839823	June 1989		Matsumoto		395/907
	4901218	February 1990)	Cornwell		364/131
	4914708	April 1990		Carpenter et a	1.	
口	5040214	August 1991		Grossberg et a	1.	
匚	5121467	June 1992		Skeirik		395/22
	<u>5130936</u>	July 1992		Sheppard et al	•	395/22
	5133021	July 1992		Carpenter et a	1.	
口	5142590	August 1992		Carpenter et a	1.	
	<u>5157738</u>	October 1992		Carpenter et a	1.	
	5214715	May 1993		Carpenter et a	1.	
	5249257	September 199	3	Akahori et al.		395/3
	5303331	April 1994		Namba		395/906
	5329465	July 1994		Arcella et al.		395/915
	5357449	October 1994		Oh		364/551.01
	5402519	March 1995		Inoue et al.		395/22
	5402520	March 1995		Schnitta		395/21
	5414645	May 1995		Hirano		364/551.01
			2022201	22.77.17.		
			FOREIGN	PATENT DOCUMENT	15	
	EIGN-PAT-NO 4483B1		PUBN-DAT		COUNTRY EP	CLASS
	213306		August 1		WO	

OTHER PUBLICATIONS

Huang et al., Tandem Artmap Neural Networks for Feedback Process Control: A Welding Example, Nov. 8-13, 1992, PED-vol. 57, Neural Networks in Manufacturing and Robotics, ASME, pp. 11-22.

Ibrahim et al., A Modified Flow Enforcement Technique for Preventive Congestion Control in ATM Networks, 1993, pp. 45-53.

Carpenter et al., "Art 2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns," Applied Optics, vol. 26, No. 23, pp. 4919-4930, Dec. 1,

1987.

Carpenter et al., "ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network," Neural Networks, vol. 4, pp. 565-588, 1991.

Huang et al., "Machine Fault Classification Using an ART 2 Neural Network, "Nov. 1991, Accepted for International Journal of Advance Manufacturing Technology, May 1992.

Huang et al., "Artmap Neural Networks for Closed-Loop Welding Process Control," to appear in Artificial Intelligence in Optimal Design and Manufacturing, edited by Z. Dong, Oct. 1992.

Spoerre, Julie K., "Machine Performance Monitoring and Fault Classification Using an Exponentially Weighted Moving Average Scheme, "Thesis, May 1993.

ART-UNIT: 244

PRIMARY-EXAMINER: Voeltz; Emanuel T.

ASSISTANT-EXAMINER: Wachsman; Hal P.

ATTY-AGENT-FIRM: Sokohl; Robert

ABSTRACT:

The invention provides a machine <u>fault diagnostic</u> system to help ensure effective equipment maintenance. The major technique used for <u>fault diagnostics</u> is a <u>fault diagnostic</u> network (FDN) which is based on a modified ARTMAP neural network architecture. A hypothesis and test procedure based on fuzzy logic and physical bearing models is disclosed to operate with the FDN for detecting faults that cannot be recognized by the FDN and for analyzing complex machine conditions. The procedure described herein is able to provide accurate <u>fault diagnosis</u> for both one and multiple—<u>fault</u> conditions. Furthermore, a transputer—based parallel processing technique is used in which the FDN is implemented on a network of four T800-25 transputers.

25 Claims, 28 Drawing figures

Previous Doc Next Doc Go to Doc#

Hit List

First Hit Generate Collection Print EwdiRefs Bkwd Refs Generate OACS

Search Results - Record(s) 1 through 6 of 6 returned.

□ 1. Document ID: US 20030158587 A1

Using default format because multiple data bases are involved.

L6: Entry 1 of 6

File: PGPB

Aug 21, 2003

PGPUB-DOCUMENT-NUMBER: 20030158587

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030158587 A1

TITLE: Adaptive method and apparatus for forecasting and controlling neurological

disturbances under a multi-level control

PUBLICATION-DATE: August 21, 2003

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY Esteller, Rosana Marietta US GΑ Echauz, Javier Ramon Atlanta GA US Litt, Brian Merion Station PΑ US Vachtsevanos, George John Marietta GΑ US

US-CL-CURRENT: <u>607/45</u>

chments Claims KWIC Draw.D

□ 2. Document ID: US 20020103512 A1

L6: Entry 2 of 6

File: PGPB

Aug 1, 2002

PGPUB-DOCUMENT-NUMBER: 20020103512

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020103512 A1

TITLE: Adaptive method and apparatus for forecasting and controlling neurological

disturbances under a multi-level control

PUBLICATION-DATE: August 1, 2002

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY
Echauz, Javier Ramon	Atlanta	GA	US
Litt, Brian	Merion Station	PA	US
Esteller, Rosana	Marietta	GA	US
Vachtsevanos, George John	Marietta	GA	US

US-CL-CURRENT: 607/9

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWC	Drawu D
		•										
	3.	Docu	ımen	t ID:	US 6594	452 ⁴	l B2				•	***************************************
_		ry 3 of				le: [Jul 15,	000	_

US-PAT-NO: 6594524

DOCUMENT-IDENTIFIER: US 6594524 B2

TITLE: Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control

File: USPT

Full	Title	Citation Front Re	view Classifica	tion Date	Reference	21	Claims	KWIC	Draw. D
	4.	Document I	D: US 65	546785	5 B1				

US-PAT-NO: 6546785

DOCUMENT-IDENTIFIER: US 6546785 B1

L6: Entry 4 of 6

TITLE: System and method for dynamic lubrication adjustment for a lubrication analysis system

Full Title Citation Front Review Classification Date Reference Sequences Attentiments Claims KWC Draw, D

☐ 5. Document ID: US 5566092 A

L6: Entry 5 of 6

File: USPT

Oct 15, 1996

Apr 15, 2003

US-PAT-NO: 5566092

DOCUMENT-IDENTIFIER: US 5566092 A

TITLE: Machine <u>fault diagnostics</u> system and method

☐ 6. Document ID: US 4251688 A

L6: Entry 6 of 6

File: USPT

Feb 17, 1981

US-PAT-NO: 4251688

DOCUMENT-IDENTIFIER: US 4251688 A

TITLE: Audio-digital processing system for demultiplexing stereophonic/quadriphonic

input audio signals into 4-to-72 output audio signals

Full	Title Cit	ation	Front	Review	Classificati	on Date	Reference	e 895	Marie Para	/ 4/15=0		Claims	KWIC	Draw. C
Clear	Ge	enerate	e Colle	ection	Prir	nt F	wd Refs		Bkwo	l Refs		Genera	ate O	ACS 🗼
	Term	າຣ								Do	cum	ents		
	L5 a	ınd	(d:	iagn	ios\$	with	fau	lt\$)				6	

Display Format: - Change Format

Previous Page Next Page Go to Doc#

First Hit Previous Doc Next Doc Go to Doc#

End of Result Set

☐ Generate Collection Print

L3: Entry 1 of 1

File: PGPB

Jul 7, 2005

PGPUB-DOCUMENT-NUMBER: 20050149238

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20050149238 A1

TITLE: System and method for monitoring and reporting aircraft quick access

recorder data

PUBLICATION-DATE: July 7, 2005

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY

Stefani, Rolf West River MD US Scherbina, Alexander Annapolis MD US

ASSIGNEE-INFORMATION:

NAME CITY STATE COUNTRY TYPE CODE

ARINC INC. Annapolis MD US 02

APPL-NO: 10/750868 [PALM]
DATE FILED: January 5, 2004

INT-CL-PUBLISHED: [07] G06 F 19/00

US-CL-PUBLISHED: 701/033; 701/029, 701/035 US-CL-CURRENT: 701/33; 701/29, 701/35

REPRESENTATIVE-FIGURES: 1

ABSTRACT:

Systems and methods for monitoring and reporting a quick access recorder (QAR) data in real time. The system includes a QAR for recording fault information, a removable portable hardware component that stores, analyzes and displays the fault information, an onboard data communication network that enables the QAR and the portable hardware component to exchange information, and an air-ground data transmitting device for transmitting the fault information from the vehicle. The removable portable hardware component may be an Electronic Flight Bag (EFB) that hosts a QAR Manager application and communication technologies to manage and report all applications on the EFB.

Previous Doc Next Doc Go to Doc#

First Hit

Previous Doc

Next Doc

Go to Doc#

☐ Generate Collection

Print

L2: Entry 1 of 2

File: JPAB

Sep 25, 2001

PUB-NO: JP02001259105A

DOCUMENT-IDENTIFIER: JP 2001259105 A

TITLE: ORIENTEERING TYPE COMMUNICATION STYLE GAME SYSTEM

PUBN-DATE: September 25, 2001

INVENTOR-INFORMATION:

NAME COUNTRY

TSUJI, SHINTARO

ASSIGNEE-INFORMATION:

NAME COUNTRY

SANRIO CO LTD

APPL-NO: JP2000079003 APPL-DATE: March 21, 2000

INT-CL (IPC): A63 B 71/06

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an orienteering type communication style game system that can amuse a large number of participants without limitations on the time and area and is practicable at small cost.

SOLUTION: This orienteering type communication style game system employs mobile communication terminals 1 with an Internet connection function, a host device 4 for receiving access from the mobile communication terminals and sending indication thereto, and a plurality of checkpoints located in a game zone at intervals and provided with announcing means 6a to 6k for displaying different command addresses in the host device. With the aid of the indication, including the next questions and orienteering clues, that the host device sends to the mobile communication terminals, the participants carrying the mobile communication terminals repeat more than one process of finding their way to the next checkpoint, until the host device represents or implies the final answer.

COPYRIGHT: (C) 2001, JPO

Previous Doc Next Doc Go to Doc#

Aircraft condition analysis and management system

Patent number:

EP1455313

Publication date:

2004-09-08

Inventor:

KENT RENEE (US); MARTOLINI

ANTONY (US); MUNNS TOM

(US); SHEPPARD JOHN (US)

Applicant:

ARINC INC (US)

Classification:

- international: G05B23/02; G07C5/00; G07C5/08;

G05B23/02; G07C5/00; (IPC1-7):

G07C5/00

- european:

G05B23/02; G07C5/00T;

G07C5/08D

Application number: EP20040251264 20040304

Priority number(s): US20030377881 20030304

Also published as:

図 US2004176887 (A²

Cited documents:

US5400018

US2003216889

WO0218879

XP002284367

XP010548433

XP010515995

XP010548420

less <<

Report a data error here

Abstract of EP1455313

The invention provides a health management system and method for a complex system having at least one information source with data sources, an Aircraft Condition Analysis and Management system (ACAMS) for monitoring the data sources, an information controller for collecting and processing the data sources and a diagnostic/prognostic reasoner for fusing the collected data sources to establish current and future states and conditions of the complex system.

Data supplied from the esp@cenet database - Worldwide

First Hit Fwd Refs End of Result Set

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L27: Entry 1 of 1

File: USPT

Aug 13, 2002

US-PAT-NO: 6434512

DOCUMENT-IDENTIFIER: US 6434512 B1

TITLE: Modular data collection and analysis system

DATE-ISSUED: August 13, 2002

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Discenzo; Frederick M. Brecksville OH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Reliance Electric Technologies, Mayfield
LLC Heights OH 02

APPL-NO: 09/410253 [PALM]

DATE FILED: September 30, 1999

PARENT-CASE:

CROSS REFERENCE TO A RELATED APPLICATION This application is a continuation-in-part of U.S. patent application Ser. No. 09/118,287, filed Jul. 17, 1998, pending; U.S. patent application Ser. No. 09/300,645, filed Apr. 27, 1999, pending, which is a continuation-in-part of U.S. patent application Ser. No. 09/054,117, filed Apr. 2, 1998, pending; U.S. patent application Ser. No. 09/257,680, filed Feb. 25, 1999, pending, which is also a continuation-in-part of U.S. patent application Ser. No. 09/054,117, filed Apr. 2, 1998, pending; and U.S. patent application Ser. No. 09/257,785, filed Feb. 22, 1999.

INT-CL-ISSUED: [07] G06 F 11/26

US-CL-ISSUED: 702/184; 714/798 US-CL-CURRENT: 702/184; 714/798

FIELD-OF-CLASSIFICATION-SEARCH: 702/183, 702/184, 702/185, 702/187, 702/188, 702/182, 714/100, 714/1, 714/25, 714/31, 714/37, 714/47, 714/48, 714/798, 700/3, 700/9, 700/19-21, 700/108, 700/109, 700/204, 700/258, 701/2, 701/24, 701/33,

701/29, 701/30

See application file for complete search history.

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

ł

	PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
	5337013	August 1994	Langer et al.	324/537
	5400018	March 1995	Scholl et al.	340/825.54
	5481906	January 1996	Nagayoshi et al.	73/116
	5566091	October 1996	Schricker et al.	702/34
	5592386	January 1997	Gaultier	701/99
	5648898	July 1997	Moore-McKee et al.	700/86
	5661666	August 1997	Pawlak	702/182
	5754965	May 1998	Hagenbuch	701/35
	5925817	July 1999	Kidokoro et al.	73/40
	5929609	July 1999	Joy et al.	322/25
	6006146	December 1999	Usui et al.	701/29
	6128560	October 2000	Ishii	701/29
	6144903	October 2000	Tousignant	701/29
	6157894	December 2000	Hell et al.	702/54
	6208948	March 2001	Klinger et al.	702/183
	6230089	May 2001	Lonn et al.	701/48
	6297742	October 2001	Canada et al.	340/635
	6301514	October 2001	Canada et al.	700/108

ART-UNIT: 2853

PRIMARY-EXAMINER: Hoff; Marc S.

ASSISTANT-EXAMINER: Raymond; Edward

ATTY-AGENT-FIRM: Amin; Himanshu S. Walbrun; William R. Gerasimow; Alexander M.

ABSTRACT:

A diagnostics/prognostics system and related method for collecting and processing data relating to a plurality of subsystems of a dynamic system includes a plurality of sensors, each sensor gathering data and generating a data signal indicative of the health of a corresponding one of the subsystems. In addition, the diagnostics/prognostics system includes a plurality of subsystem modules coupled to corresponding ones of the sensors for generating a subsystem health signal in response to corresponding ones of the data signals. Further, a master diagnostics module is coupled to the subsystems to generate an overall system health signal in response to the subsystem health signals. Preferably, the master diagnostics module includes a memory having an embedded model to facilitate generating the overall system health signal and a related trend analysis. Preferably, a controller is used to generate a control signal in response to at least one of a group consisting of the subsystem health signals and the vehicle health signal, the control signal causing an operation parameter of at least one of the subsystems to change. The

Ì

diagnostics/prognostics system is especially well suited for vehicles, but can also be applied to other dynamic systems.

44 Claims, 30 Drawing figures

Previous Doc Next Doc Go to Doc#

Aircraft condition analysis and management system

Legal status (INPADOC) of EP1455313

EPF

04251264 A

(Patent of invention)

PRS Date:

2004/09/08

PRS Code:

AK

Code Expl.:

+ DESIGNATED CONTRACTING

STATES:

KD OF CORRESP. PAT.:

AT BE BG CH CY CZ DE DK EE ES FI FR GB

DESIGNATED COUNTR.: GR HU IE IT LI LU MC NL PL PT RO SE SI SK

TR

A1

PRS Date:

2004/09/08

PRS Code:

AX

Code Expl.:

+ EXTENSION OF THE EUROPEAN PATENT TO

CONCERNED

COUNTRIES:

AL HR LT LV MK

PRS Date:

2005/05/25

PRS Code:

AKX

Code Expl.:

+ PAYMENT OF DESIGNATION

FEES

PRS Date:

2005/06/30

PRS Code:

REG DE 8566

Code Expl.:

- DESIGNATED COUNTRY DE

NOT LONGER VALID

PRS Date:

2006/01/04

PRS Code:

18D

Code Expl.:

- DEEMED TO BE WITHDRAWN

EFFECTIVE DATE:

20050309

IS Tasks | AR Tasks | P&E Tasks
AR: Previous | Next

On-Board Traverse Science Data Analysis

NASA Jet Propulsion Laboratory

Becky Castano (JPL/MLS)

Abstract

The Mars Science Laboratory (MSL) rover may spend as much as 43% of its mission time moving between science/exploration sites. This research task will develop science data collection, analysis, and prioritization capabilities for this traverse time. In particular, the rover will be able to recognize pre-specified "science alert" spectral signatures, detect novel spectral or image features that are worth logging and storing for their possible scientific interest, and construct a summary catalog of what it has

seen during its traverse. Autonomous reactions to identified science opportunities could include taking an extra image or sensor measurement, changing the rover path to take a contact measurement, or stopping to call back to Earth. For routine observations, the system will use onboard reasoning to summarize and prioritize data for downlink. The techniques will be applicable to other in-situ and orbital missions as well.

Task Description

Objective:

Space probes, orbiters, and Mars rovers lose a lot of science observation time if they have to call back to Earth for instructions. This research subtask is developing on-board data analysis capability so that a science platform can choose what path to follow and what measurements to take in order to maximize its mission success. Capabilities to be developed and integrated include efficient data analysis (e.g., image segmentation, rock characterization); mapping of features to science data priorities; and planning and scheduling to support opportunistic science collection during a rover traverse.

Applications:

Mission science maximization from rovers, probes, etc., with high data-collection capability and limited downlink

communication.

NASA Benefit:

On-board science data analysis can be used to increase the science return on any orbital or in situ exploration mission with fixed downlink bandwidths. This subtask research has direct mission relevance to the Mars Science Laboratory (MSL) and Astrobiology Field Laboratory (AFL) missions, and ground data analysis of Mars Exploration Rovers (MER) data.

Keywords:

rover on-board data analysis, observation prioritization, intelligent traverse, science alerts

Research Plan

Prior Technology:

Pathfinder/Sojourner activities were commanded from Earth, with three sols needed for an approach and contact measurement.

FY04 Milestone:

Science alert demo: stop and call home. Path adjustment to take additional measurements.

Progress

FY04 Quadchart Slide:

AR DIR Castano OnbdAnal.ppt.

Accomplishments:

Grayscale rockfinder; sky detector; interactive rock identification tool (RockIT) for MER; FIDO science alert test; image prioritization.

For More Information

Parent Task:

Intelligent Decision-Making for Autonomous Rover Operations.

Contacts:

Rebecca Castano (PI), <u>JPL Machine</u> <u>Learning Systems Group</u>.

Intelligent Systems | Automated Reasoning | Planning and Execution

AR: Previous | Next

Responsible NASA Official: Joseph C. Coughlan. Program Support: <u>Kenneth I. Laws</u>. / Updated: 29-Nov-2004 Mail Stop 269-3, NASA Ames Research Center, Moffett Field, CA 94035-1000

NASA Privacy Statement. For Section 508-accessible information, contact access@mail.arc.nasa.gov.