

Title: Predicting SpaceX Launch Success Using Data Science

Subtitle: IBM Applied Data Science Capstone Project

Presented by: Abdul Wahab

Date: June 2025

Executive Summary

Goal: Analyze SpaceX Falcon 9 launches to identify factors that influence success.

Techniques Used: EDA, SQL, Visualization, Machine Learning (Logistic Regression, SVM,

Random Forest, etc.).

Outcome: Built a model to predict launch success and derived strategic insights.

Introduction

- •Why SpaceX? It represents modern space exploration and commercial launch innovation.
- •Problem: Launch success is not guaranteed—understanding patterns is valuable.
- •Objective: Use data science to analyze historical launch data and build a predictive model.

Data Collection

Sources

SpaceX launch data from SpaceX API and Kaggle Launch site coordinates for Folium visualization **Tools:** Python, Pandas, requests, BeautifulSoup.

Data Wrangling

Cleaned null values
Formatted date/time fields
Created binary target column for success/failure
Joined coordinates with site names for map visualization

EDA with **SQL** – **Methodology**

Imported data into SQLite Performed SQL queries to:

Count launches per year

Find success rates

Explore launch site performance

EDA with **SQL** – **Results**

Example result:

In 2020: 24 launches, 22 successes \rightarrow 91.6% success

SQL output visualized in bar graphs

Interactive Map (Folium)

Used folium to plot launch site locations

Color-coded circles: green = success, red = failure

Popup tooltips for site info

Easy comparison between sites

EDA with Python – Methodology

Used pandas, matplotlib, seaborn

Explored relationships between:

Payload mass

Booster version

Orbit type

Launch site

EDA with Python – Results

Heavier payloads had lower success rates
Booster version B5 showed higher success
Certain orbits had consistently higher success rates

Interactive Dashboard (Plotly Dash)

Dropdown to select launch site Pie chart displays success/failure ratio Built with Dash, dcc, plotly.express

Predictive Analysis – Methodology

Features:

Year

Payload mass

Booster version

Orbit

Models used:

Logistic Regression

SVM

K-Nearest Neighbors

Random Forest

Predictive Analysis – Results

Random Forest gave the best accuracy: $\sim 90\%$ Feature importance:

Booster Version Payload Mass Orbit Type

Conclusion

Machine learning can predict launch success with high accuracy Feature analysis helps understand key factors Insights can assist future mission planning

Extra Insights

Booster B5 had the highest success rates

KNN model was weakest among all

Potential to extend project with real-time launch forecasts

Acknowledgments & Tools Used

Tools: Python, Pandas, SQLite, Folium, Plotly Dash, Scikit-learn

Thanks to: IBM, Coursera, SpaceX data contributors