04/13/2016

Singular Value Decomposition (SVD)

- Problems: Computing X^TX takes $\mathcal{O}(nd^2)$ time.
- X^TX is poorly conditioned \rightarrow numerically inaccurate eigenvectors.
- Fact: If $n \ge d$, we can find a singular value decomposition

- Poorly conditioned: look at biggest and smallest eigenvalues, divide.
- Fact: v_i is an eigenvector of $X^T X$ with eigenvalue δ_i^2 .
- Proof: $X^TX = VDU^TUDV^T = VD^2V^T$ which is an eigen-decomposition of X^TX .
- Fact: We can find the k greatest singular values and the corresponding vectors in $\mathcal{O}(ndk)$ time.

Clustering

- Partition data into clusters so points within a cluster are more similar than across clusters.
- Why?
 - Discovery: find songs similar to songs you like; determine market segments.
 - Hierarchy: Find good taxonomy of species from genes
 - Quantization: Compress a data set by reducing choices.
 - Graph partitioning: Image segmentation; find groups in social network.

k-Means Clustering aka Lloyd's Algoritm

- Goal: Partition n points into k disjoint clusters. Assign each input point X_i a cluster label $y_i \in [1, k]$.
- Cluster i's mean is $\mu_i = \frac{1}{n_i} \sum_{y_j=i} X_j$, where $n_i = \#$ of points in i.

Find y that minimizes
$$\sum_{i=1}^{k} \sum_{y_j=i} |X_j - \mu_i|^2$$

- NP-Hard problem. Solvable in $\mathcal{O}(nk^n)$ time.
- k-means heuristic: Alternate between:
 - 1. y_j 's are fixed; update μ_i 's.
 - One can show (w/calculus) the optimal μ_i is the mean of the points in cluster i.
 - 2. μ_i 's are fixed; update y_j 's.
 - The optimal y assigns each point X_j to closest center μ_i .

Halt when step 2. changes no assignments.

- Both steps decrease objective function unless they change nothing. We never revisit the same set of assignments.
- Hence algorithm must terminate.
- Usually very fast in practice.
- Finds a local minimum, often not global.

- Getting started:
 - Forgy method: Choose k random sample points to be initial μ_i 's; go to step 2.
 - Random partition: randomly assign each sample point to a cluster; go to step 1.
- For best results, run k-means multiple times with random starts.
- Equivalent objective function: the within-cluster variation

Find y that minimizes
$$\sum_{i=1}^k \frac{1}{n_i} \sum_{y_j=i} \sum_{y_m=i} |X_j - X_m|^2$$

• Normalize the data? Same advice as for PCA.

k-Medoids Clustering

- Generalizes k-means beyond Euclidean distance.
- Specify a distance function d(x, y) between points x, y aka dissimilarity.
- Can be arbitrary; ideally satisfies triangle inequality, $d(x,y) \leq d(x,z) + d(z,y)$.
- Replace mean computation with <u>medoid</u>, the sample point that minimizes total distance to other points in same cluster.

Hierarchical Clustering

- Creates a tree; every subtree is a cluster.
- Bottom-up, aka agglomerative clustering: start with each point a cluster; repeatedly <u>fuse</u> pair of clusters.
- Top-down, aka <u>divisive clustering</u>: start with all points in one cluster; repeatedly split it. We need a distance function for clusters A, B:
 - complete linkage: $d(A, B) = \max\{d(w, x) : w \in a, x \in B\}.$
 - single linkage: $d(A, B) = \min\{d(w, x) : w \in a, x \in B\}.$
 - average linkage: $d(A, B) = \frac{1}{|A||B|} \sum_{w \in A} \sum_{x \in B} d(w, x)$.
 - centroid linkage: $d(A, B) = d(\mu_A, \mu_B)$.
- Greedy agglomerative algorithm:
 - Repeatedly fuse the 2 clusters that minimize d(A, B). Naively takes $\mathcal{O}(n^3)$ time.
- Dendrogram: Illustration of cluster hierarchy (tree) in which the vertical axis encodes all the linkage distances.

• Warning: centroid linkage can cause <u>inversions</u> where a parent cluster is fused at a lower height than its children.