Funções

José Antônio O. Freitas

MAT-UnB

Uma **função**

Uma **função** $f: \underline{A} \rightarrow \underline{B}$,

Uma **função** $f: A \rightarrow B$, de um conjunto A

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B,

Uma **função** f (A) de um conjunto A em um conjunto B, é uma relação que associa os elementos de A

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$,

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$, existe $\underline{y \in B}$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $\underline{x} \in A$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1 \in \mathcal{D}$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2 \in B$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 ,

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$,

- (i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
 - ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de imagem

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** f (A → B, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de domínio

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por (dom(f),

Uma **função** $f: A \rightarrow (B, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\underline{\mathrm{Im}(f)} =$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\mathrm{Im}(f) = \{\underline{f(x)}$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\}$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- $Se \ x \in A \ \'e \ tal \ que \ f(x) = \underbrace{y_1}_{} e \ f(x) = \underbrace{y_2}_{} com \ y_1, \ y_2 \in B, \ ent \~ao$

Nesse caso y é chamado de **imagem** de x segundo f.

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \nsubseteq B$$

Uma **função** f : A B de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

Uma **função** f : A de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- ightharpoonup i) Para todo $x \in A$, existe $y \in B$ tal que $f(x) = \underline{y}$.
 - ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

1) Sejam $A = \{0, 1, 2, 3\}$

1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$.

1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$

- c) $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$
- d) $R_4 = \{(0,5), (1,5), (2,6), (3,7)\}$

SOLU(As: a) R, = {(0,5); (1,6); (2,7)} NAS E FUNCAO POIS 3E A E

OU SETA, NÃO EXISTE UM PAR

3 NÃO POSSUL VMA IMAGEM,

ORDENADO (3, y), com y 6 B, TAL OUT (3, Y) ∈ R.

b) P2 = { (0,4), (1,5), (1,6); (2,7), (3,8) 9 Não É FUNÇÃO POIS (1,5), (1,6) ERZ

 $E NO EMANTO, 5 \neq 6.$

E UMA FUNÇÃO POIS SATÍSFAZ

AS DVAS COMPICOES DA DEFI-

vição de Função.

d) Ry = ((0,5); (3,5); (2,6); (3,7)]

A DEFINICIO.

È uma punção pois SATISFAZ

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

3)
$$R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}$$

$$\frac{2}{1}$$

E NO ENTANTO 1 ± -1. ASSIN

FALHA A CONDITAD (ii) DA

FALHA A CONDIÇÃO (CO) DA

DE FINIÇÃO DE FUNÇÃO.

+ (3) = 1 + 3 = 1

E MO ENTANTO 13 + - 12. LOG

FALHA A CONDIÇÃO (i)
DEFINICÃO DE FUNÇÃO.

O) Rr É MA FUNÇAD POIS SATIS-FAZ AS DUAS CONDIÇÕES DA DEFINIÇÃO.

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora**

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados <u>x</u>₁,

Seja f $(A) \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) =$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $\underline{f(x_1)} = \underline{f(x_2)}$, entã $o_1x_1 = x_2$.

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora**

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 .

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora**

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$,

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$

Seja f : A → Buma função.

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, $existe x \in A$ tal que f(x) = y.

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é bijetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é bijetora se f for injetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é bijetora se f for injetora e sobrejetora

Seja f : A→ B uma função.

- i) Dizemos que f é **injetora** se dados $\underline{x_1, x_2 \in A}$ tais que $\underline{f(x_1)} = \underline{f(x_2)}$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $\underline{f(x_1)} \neq \underline{f(x_2)}$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

- i) Dizemos que f é **injetora** se dados $\underline{x_1, x_2 \in A}$ tais que $\underline{f(x_1) = f(x_2)}$ então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $\underline{f(x_1) \neq f(x_2)}$.
- ii) Dizemos que f é **sobrejetora** se para todo $\underline{y} \in B$, existe $x \in A$ tal que $\underline{f}(x) = \underline{y}$.
- iii) Dizemos que f é **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

Verifique se as seguintes funções são injetoras

Verifique se as seguintes funções são injetoras ou sobrejetoras:

Verifique se as seguintes funções são injetoras ou sobrejetoras:

1)
$$f: \mathbb{Z} \to \mathbb{Z}$$
 dada por $f(x) = 3x + 1$

SOLVAD: SEJAM
$$(\chi_1, \chi_2 \in \mathbb{Z})$$
 TAIS
QUE $f(\chi_1) = f(\chi_2)$ $\chi_1 = \chi_2$

ASSi M $3\chi_1 + L = 3\chi_2 + L$

ASSIM
$$3\chi_1 + \lambda = 3\chi_2$$

DA! $1, -\chi_2 = 0$, ISTO $E(\chi_1 = \chi_2)$.

PORTANTO, f(E) UMA FUNCAS INJE-

A60 NA & NÃO É SOBRETETORA

TOPA.

ROIS PANA Y = 0 & Z NÃO EXISTE XEZZ TAL QUE

uma VEZ AUG 3×+1=0

1(x) =0

$$3\chi = -1$$

E ESSA E QUA GO NÃO TEM SOLUÇÃO EM Z.

Exemplos

2)
$$g: \mathbb{Z}_5 \times \mathbb{Z}_9 \to \mathbb{Z}_{\underline{5}} \times \mathbb{Z}_9$$
 tal que $g(\bar{x}, \bar{y}) = (\overline{2}\bar{x} + \overline{3}, \overline{4}\bar{y} + \overline{5})$

$$(\overline{a}, \overline{b}) \in \mathbb{Z}_{S} \times \mathbb{Z}_{S}, \ \exists i \forall \overline{b} \ (\overline{x}, \overline{y}) \in \mathbb{Z}_{S} \times \mathbb{Z}_{S} \ T. \otimes \mathbb{Z}_{S}$$

$$(\overline{x}, \overline{y}) = (\overline{a}, \overline{b})$$

$$(\overline{y}, \overline{z}) = \overline{b} = \overline{b} = \overline{b}$$

$$(\overline{x}, \overline{y}) = (\overline{a}, \overline{b})$$

$$(\overline{x}, \overline{y}) = \overline{b} = \overline{b} = \overline{b} = \overline{b}$$

$$(\overline{x}, \overline{y}) = (\overline{a}, \overline{b})$$

$$(\overline{x}, \overline{y}) = (\overline{a}, \overline{b})$$

$$(\overline{y}, \overline{z}) = \overline{b} = \overline{b$$

SOLU(S): SEJAM
$$(\overline{X}_3, \overline{y}_3)$$
; $(\overline{X}_7, \overline{y}_2) \in \mathbb{Z}_5 \times \mathbb{Z}_9$

TAIS Que
$$\overline{g(\overline{X}_3, \overline{y}_3)} = g(\overline{X}_{21}, \overline{y}_2)$$

Assim
$$(\overline{2}\overline{\chi}, +\overline{3}, \overline{4}\overline{y}, +\overline{5}) = (\overline{2}\overline{\chi}_2 + \overline{3}, 4\overline{y}_2 + \overline{5})$$

$$2x_{1}$$

$$2x_{2} + 3 = 2x_{2} + 3 + 2$$

$$2x_{3} + 5 = 4y_{2} + 5 + 4$$

com I SSO DETEMOS

$$\frac{7}{5}$$
 $\frac{1}{5}$ $\frac{1}$

×T

(2) \(\bar{\chi}_1 = \bar{2} \chi_2

4 y = 9 y2

ASSIM

OU SEJA, $(\overline{Y}_1, \overline{y}_1) = (\overline{X}_2, \overline{y}_2)$

PORTANTO g É INJETOM.

AGONA DADS (a, b) EZSXZIG TOME (3a+I, 9b t] = ZsaZg. Assim

y(3a+1,7b+1) = 2(3a+1)+3,4(7b+1)+5)

$$= (\overline{\alpha} + \overline{2} + 3) \overline{b} + \overline{4} + \overline{5} = (\overline{\alpha}, \overline{b}).$$

LOGO g & SOBREJETONA.

PORTANTO 9 É BIJETONA.

Exemplos

3)
$$h: \mathbb{R} \to \mathbb{R}$$
 dada por $h(x) = x^2$

$$y \in \mathbb{R}$$
; ExiSTE $x \in \mathbb{R}$ T. A
$$h(x) = y$$
?
$$x^2 = y \in x = \pm \sqrt{y}$$

$$y \ge 0$$

TEMOS

 $\gamma(\lambda^{7}) = (-7)^{7} = 1 = \gamma(\lambda^{5})$

E NO ENTAND X, = X2.

L NÃO É SOBRETETORA ROIS, POR EXEMPLO, PARA Y=-JER NÃO EXISTE X GR TAL QUE

 $\chi = -2$. $\lambda(\chi) = -1$