II

Растяжение

u

с ж атие.

Растяжние-сжатие прямого стержня

Растяжением (сжатием) называется такой вид нагружения стержня, при котором из 6 внутренних силовых факторов в его поперечных сечениях не равна нулю *только* осевая растягивающая сила N (puc. 1.6):

N>0 –растяжение; N<0 – сжатие.

Гипотеза плоских сечений (гипотеза Бернулли): при растяжении (сжатии) поперечные сечения стержня остаются плоскими и перемещаются вдоль оси стержня.

В поперечном сечении действуют только нормальные напряжения σ . В силу гипотезы Бернулли, распределены они по сечению равномерно.

Связь внутренних сил

с внешними нагрузками

Рассмотрим равновесие двух бесконечно коротких участков сжатого/растянутого стержня:

Внешняя сосредоточенная сила скачкообразно изменяет значение N на величину своего модуля.

$$\Sigma F_{Z} = 0 = -\cancel{N} + q \cdot dz + \cancel{N} + dN$$

$$q \cdot dz = -dN$$

$$q = -\frac{dN}{dz} \qquad (II.1)$$

Внешняя распределённая нагрузка q является производной от внутренней растягивающей осевой силы N по осевой координате.

Перемещения и деформации при растяжении (сжатии)

При растяжении и при сжатии стержня перемещения его точек возможны лишь вдоль оси Oz. Обозначаются эти перемещения w и имеют размерность [м].

Puc. II.2.

При растяжении стержня его поперечные сечения сместятся на разные расстояния. Более всех сместится сечение с точкой D; сечение с точкой O не сдвинется вообще.

Сечения 1 и 2 первоначально расположенные на бесконечно малом расстоянии dz друг от друга также сместятся на разные расстоянии: w_A и $w_A + dw$, соответственно.

Удлинение продольного отрезка АВ между ними составит:

$$\Delta dz = (w_A + dw) - w_A = dw$$

Продольная деформация:

$$\mathcal{E}_{AB} = \mathcal{E}_{Z} = \frac{\Delta dz}{dz} = \frac{dw}{dz}$$

Таким образом, продольная деформация \mathcal{E}_Z есть производная от продольного перемещения w по осевой координате z:

$$\varepsilon_z = \frac{dw}{dz} \tag{II.3}$$

При растяжении стержень становится тоньше, при сжатии – толще:

Puc. II.3.

 $\mathcal{E}_{y} = \frac{\Delta KG}{KG}$ <0 — при растяжении стержень утончается, KG укорачивается; >0 — при сжатии стержень утолщается, KG удлиняется.

Продольная деформация \mathcal{E}_Z и поперечная \mathcal{E}_y всегда разных знаков: Растяжение $\to \mathcal{E}_Z > 0$ (удлинение), $\mathcal{E}_y < 0$ (сужение);

Сжатие $\rightarrow \mathcal{E}_Z < 0$ (укорочение), $\mathcal{E}_y > 0$ (утолщение).

Экспериментально установлено, что поперечная деформация пропорциональна продольной:

$$v = \left| \frac{\mathcal{E}_{\text{попер}}}{\mathcal{E}_{\text{прод}}} \right|$$
 — коэффициент Пуассона (II.4)

 $v_{Memann} = 0,25...0,3$; $v_{peзuha} = 0,5$; $v_{npo\delta\kappa a} = 0$.

У любого материала: $0 \le v \le 0,5$

Напряжения при растяжении/сжатии

В поперечных сечениях стержня действуют только равномерно распределенные нормальные напряжения σ :

В наклонной площадке, составляющей угол α с поперечной плоскостью, полные напряжения p будут направлены также вдоль оси z, иначе отсеченная часть не была бы уравновешена по вертикали.

$$A_{lpha}=rac{A}{\coslpha}$$
 — площадь наклонного сечения;
$$\sum F_z=0=-p\cdot A_{lpha}+\sigma\cdot A \qquad \Rightarrow \qquad p=\sigmarac{A}{A_{lpha}}=\sigma\cdot\coslpha$$

Раскладываем полное напряжение p на нормальную σ_{α} и касательную τ_{α} составляющие:

$$\sigma_{\alpha} = p \cdot \cos \alpha = \sigma \cdot \cos \alpha \cdot \cos \alpha = \sigma \cdot \cos^{2} \alpha$$
$$\tau_{\alpha} = p \cdot \sin \alpha = \sigma \cdot \sin \alpha \cdot \cos \alpha = \frac{1}{2} \cdot \sigma \cdot \sin 2\alpha$$

Puc. II.4.

Наибольшие касательные напряжения действуют в сечениях, наклонённых под 45°:

$$\tau_{\text{max}} = \tau_{45} = \frac{\sigma}{2}$$

В продольных сечениях ($\alpha = 90^{\circ}$): $\sigma_{90} = 0$, $\tau_{90} = 0$.

Закон Гука при

растяжении (сжатии)

На гранях элементарных объёмов, ориентированных вдоль оси растянутого (сжатого) стержня, действуют только нормальные напряжения только по направлению одной координатной оси z :

Puc. II.5.

Такое напряжённое состояние (н.с.) точек стержня называют «одноосным». Экспериментально установлено, что в случае упругого одноосного н.с., напряжения и деформации по указанному направлению пропорциональны друг другу:

$$σ_Z = E \cdot ε_Z$$
 - sakoh Γyka (II.6)

Коэффициент E [Πa] называется модулем упругости первого рода (модулем Юнга). Определяется экспериментально. Чем больше модуль Юнга, тем больше жёсткость материала:

Алмаз: $E = 10,5 \cdot 10^5 \,\mathrm{MHa}$

Сталь: $E \approx 2 \cdot 10^5$ МПа

Алюминий: $E \approx 0.7 \cdot 10^5 \ \mathrm{M\Pi a}$

Дерево: $E = 0.1 \cdot 10^5$ МПа

Изменение объёма при растяжении/сжатии

Объёмная деформация в произвольной точке стержня:

Элементарный объем в окрестностях точки

Puc. II.6.

При растяжении: $\begin{cases} \varepsilon_z > 0 & \text{— продольный размер увеличивается;} \\ \varepsilon_x < 0, \quad \varepsilon_y < 0 & \text{— поперечные размеры уменьшаются.} \end{cases}$

$$e = \varepsilon_x + \varepsilon_y + \varepsilon_z = -\nu \cdot \frac{\sigma_z}{E} - \nu \cdot \frac{\sigma_z}{E} + \frac{\sigma_z}{E} = \frac{\sigma_z}{E} (1 - 2 \cdot \nu)$$
(II.7)

v = 0.5 \Rightarrow e = 0 – «несжимаемый материал»;

 ν < 0,5 — материал увеличивает объем при растягивающих нагрузках и уменьшает при сжимающих;

 $\nu > 0.5$ – Hohcehc.

Работа внешних сил при растяжении/сжатии.

Вспоминаем физику.

Работа постоянной силы:

Работа переменной силы:

В курсе «*сопротивление материалов*» мы рассматриваем статическое нагружение: внешние силы прикладываются к конструкции медленно (силы инерции пренебрежимо малы), равномерно возрастая от нуля до своих конечных значений.

Пропорционально силам увеличиваются перемещения точек тела.

На перемещениях точек своих приложений внешние силы и совершают работу.

$$\begin{split} W &= W_{F_B} + W_{F_C} + W_{F_{\mathcal{A}}} = \\ &= \frac{1}{2} \cdot F_B^{\text{max}} \cdot w_B^{\text{max}} + \frac{1}{2} \cdot F_C^{\text{max}} \cdot w_C^{\text{max}} \\ &+ \frac{1}{2} \cdot F_D^{\text{max}} \cdot w_D^{\text{max}} = \\ &= \frac{1}{2} \cdot F \cdot 0 - \frac{1}{2} \cdot 2 \cdot F \cdot \frac{F \cdot l}{E \cdot A} \\ &+ \frac{1}{2} \cdot 3F \cdot \frac{4 \cdot F \cdot l}{E \cdot A} = \\ &= \frac{5 \cdot F^2 \cdot l}{E \cdot A} \ [\text{\mathcal{A}}\text{>}\text{\mathcal{B}}\text{\mathcal{C}}] \end{split}$$

Работа отдельной силы может быть <0, суммарная работа всегда >0!

Следует помнить: перемещение точки приложения внешней силы есть результат действия всех сил системы, а не только её одной. Поэтому принцип независимости действия сил к вычислению работы неприменим.

Потенциальная энергия деформации.

Внешние нагрузки порождают по всему объёму тела силы внутренние, изменяющие его форму и запасающие, таким образом, в его частицах потенциальную энергию упругой деформации.

При снятии внешних нагрузок эта энергия высвобождается, возвращая упругому телу первоначальные размеры. Этот эффект используется, например, в заводных пружинах часов.

При вычислении потенциальной энергии исходят из предположения: в упругом теле накапливается энергия, в точности равная работе внутренних сил <u>при нагружении</u> на перемещениях точек тела:

$$dU = dW_N = \frac{1}{2} \cdot N \cdot \Delta dz = \frac{1}{2} \cdot N \cdot \frac{N}{E \cdot A} \cdot dz = \frac{N^2}{2 \cdot E \cdot A} \cdot dz$$

$$U = \int dU = \int_0^\ell \frac{N^2}{2 \cdot E \cdot A} \cdot dz$$
(II.8)

 $\Delta dz = \mathcal{E}_Z \cdot dz = \frac{\sigma_Z}{F} \cdot dz = \frac{N}{F \cdot A} \cdot dz$

Связь потенциальной энергии и работы внешних сил.

При нагружении без нагрева упругого тела, работа внешних сил в точности равна потенциальной энергии, накопленной в теле:

$$W = U \tag{II.9}$$

В упругой, нагретой конструкции, это правило уже, не соблюдается — свой вклад вносит тепловая энергия через коэффициент теплового расширения.

<u>Стадии решения статически определимых задач на осевое</u> растяжение/сжатие прямого стержня:

- 1) Ввести глобальную систему координат XYZ, направив Z по оси стержня. Начало отсчета целесообразно установить на закреплённом конце стержня;
- 2) Избавиться от заделки, заменив её реакцией опоры, исходя из уравнения равновесия всего стержня:

$$\sum F_Z = 0$$

- 3) Разбить стержень на участки: ①, ②, ③... и т.д. Границами участков служат:
 - а) Концы стержня;
 - б) Точки приложения сосредоточенных сил;
 - в) Границы действия распределённых сил;
 - г) Изменения площади поперечного сечения;
 - д) Изменения значения модуля упругости.
- 4) На каждом из участков ввести свои локальные системы координат X_{l} , Y_{l} , Z_{l} , ..., X_{i} , Y_{i} , Z_{i} ,... Оси Z_{i} локальных систем координат целесообразно направить по направлению оси Z глобальной системы;
- 5) Методом сечений (РОЗУ) определить распределение внутренней осевой растягивающей силы N по стержню:

$$\sum F_{Z_i} = 0$$
 — уравнение равновесия отсечённой части

6) На каждом из участков построить эпюру осевых напряжений:

$$\sigma_i = \frac{N_i}{A_i}$$
 где A_i – площадь поперечного сечения на $i^{\underline{M}}$ участке);

7) По эпюрам напряжений построить эпюры деформаций:

$$\mathcal{E}_i = \frac{\sigma_i}{E_i}$$
 где E_i – модуль упругости материала на $\mathrm{i}^{\underline{\mathrm{M}}}$ участке;

8) Построить эпюры осевых перемещений:

$$w_i = w_{i-1}^{\kappa_{OH}} + \int_0^i \mathcal{E}_i \cdot dz_i$$
 где $w_{i-1}^{\kappa_{OH}}$ перемещение в конце предыдущего участка.

Признаки правильности полученного решения:

- 1) На свободном от сосредоточенных сил конце стержня значения эпюр N, σ и ε равны нулю;
- 2) Если на конце стержня приложена сосредоточенная сила, значение эпюры N в этой точке численно равно значению силы;
- 3) В точках приложения сосредоточенных сил эпюра N имеет скачки, равные по величине этим силам;
- 4) На эпюре *w* разрывов не бывает;
- 5) q=N':
- 6) $\varepsilon = w'$:
- 7) В заделке w=0;
- 8) Проверить правильность построения эпюры N можно, пересчитав задачу при направлениях локальных осей z_i против глобальной оси Z.

Пример *II.1*

Условие равновесия:

$$\sum F_z = 0 = -R + F \implies R = F$$

Реакция R положительна, значит направление её на расчётной схеме указано пунктиром верно. Если расчёт показывает R < 0, значит реакция направлена в другую сторону.

$$\sum F_{z_I} = 0 = -F + N_I \quad \Rightarrow \quad N_I = F$$

$$\sigma_I = \frac{N_I}{A_I} = \frac{F}{A}$$

$$\mathcal{E}_{I} = \frac{\sigma_{I}}{E_{I}} = \frac{F}{E \cdot A}$$

$$W_I = W_0^{KOH} + \int_0^{z_I} \mathcal{E}_I \cdot dz_I = 0 + \int_0^{z_I} \frac{F}{E \cdot A} \cdot dz_I = \frac{F \cdot z_I}{E \cdot A}$$

Начало участка:

T. C:
$$z_1 = 0$$
: $w_1^{Haq} = 0$

Конец участка:

T. D:
$$z_l = l$$
: $w_l^{KOH} = \frac{F \cdot l}{F \cdot A}$

Работа внешних сил:

$$W = \sum_{i} \frac{1}{2} \cdot F_{j} \cdot w_{j} = \frac{1}{2} \cdot F_{C} \cdot w_{C} + \frac{1}{2} \cdot F_{D} \cdot w_{D} = \frac{1}{2} \cdot F \cdot 0 + \frac{1}{2} \cdot F \cdot \frac{F \cdot l}{E \cdot A} = \frac{F^{2} \cdot l}{2 \cdot E \cdot A} \quad [\text{Дж}]$$

Потенциальная энергия деформации:

$$U = \sum_{i} \frac{N_i^2 \cdot l_i}{2 \cdot E_i \cdot A_i} = \frac{N_I^2 \cdot l_I}{2 \cdot E_I \cdot A_I} = \frac{F^2 \cdot l}{2 \cdot E \cdot A} \quad [\text{Дж}]$$

$$W = U$$

Пример *II.2*

$$\sum F_z = 0 = -R - q \cdot l$$

$$R = -q \cdot l$$

R < 0 значит реакция будет направлена в другую сторону

$$\sum F_{z_I} = 0 = q \cdot l - q \cdot z_I + N_I$$

$$N_I = q \cdot (z_I - l)$$

$$m. B: z_1 = 0: N_1 = -q \cdot l$$

$$m. C: z_1 = l: N_1 = 0$$

$$\sigma_{I} = \frac{N_{I}}{A_{I}} = \frac{q \cdot (z_{I} - l)}{A}$$

$$m. B: \quad z_1 = 0: \quad \sigma_1 = -\frac{q \cdot l}{\Lambda}$$

$$m. C: z_1 = l: \sigma_1 = 0$$

$$\mathcal{E}_{I} = \frac{\sigma_{I}}{E_{I}} = \frac{q \cdot (z_{I} - l)}{E \cdot A}$$

$$m.B: z_1 = 0: \varepsilon_1 = -\frac{q \cdot l}{EA}$$

$$m. C: z_1 = l: \varepsilon_1 = 0$$

$$\begin{aligned} w_I &= w_0^{\kappa_{OH}} + \int_0^{z_I} \mathcal{E}_I \cdot dz_I = \\ &= \int_0^{z_I} \frac{q \cdot (z_I - l)}{E \cdot A} \cdot dz_I = \frac{q \cdot z_I^2}{2 \cdot E \cdot A} - \frac{q \cdot l}{E \cdot A} \cdot z_I \end{aligned}$$

m. B:
$$z_{I} = 0$$
: $w_{I}^{HAY} = 0$; m. C: $z_{I} = l$: $w_{I}^{KOH} = -\frac{q \cdot l^{2}}{2 \cdot E \cdot A}$

Площадь эпюры перемещений:

$$Q = \int_{0}^{l} w_{I}(z_{I}) \cdot dz_{I} = \int_{0}^{l} \left(\frac{q \cdot z_{I}^{2}}{2 \cdot E \cdot A} - \frac{q \cdot l \cdot z_{I}}{E \cdot A} \right) \cdot dz_{I} = -\frac{q \cdot l^{3}}{3 \cdot E \cdot A};$$

Работа внешних сил:

$$W = \int_{0}^{l} \frac{1}{2} \cdot \underbrace{\left(-q\right) \cdot dz_{l}}_{\text{personal properties}} \cdot \underbrace{w_{l}\left(z_{l}\right)}_{\text{personal properties}} = \frac{1}{2} \cdot \left(-q\right) \cdot Q = \frac{1}{2} \cdot \left(-q\right) \cdot \left(-\frac{q \cdot l^{3}}{3 \cdot E \cdot A}\right) = \frac{q^{2} \cdot l^{3}}{6 \cdot E \cdot A} \quad \left[\text{ Джс} \right]$$

Потенциальная энергия деформации:

$$U = \sum_{i} \int_{0}^{l_{i}} \frac{N_{i}^{2} \cdot dz_{i}}{2 \cdot E_{i} \cdot A_{i}} = \int_{0}^{l} \frac{N_{I}^{2} \cdot dz_{I}}{2 \cdot E_{I} \cdot A_{I}} = \int_{0}^{l} \frac{q^{2} \cdot (z_{I} - l)^{2} \cdot dz_{I}}{2 \cdot E \cdot A} = \frac{q^{2} \cdot l^{3}}{6 \cdot E \cdot A} \quad [\text{ Джc}]$$

$$W = U$$

Пример *II.3*

Работа внешних сил:

$$\begin{split} W &= \sum_{j} \frac{1}{2} \cdot F_{j} \cdot w_{j} = \\ &= \frac{1}{2} \cdot F_{G} \cdot w_{G} + \frac{1}{2} \cdot F_{D} \cdot w_{D} \cdot \frac{1}{2} \cdot F_{C} \cdot w_{C} + \frac{1}{2} \cdot F_{B} \cdot w_{B} = \\ &= \frac{1}{2} \cdot \left(-2 \cdot F \right) \cdot 0 + \frac{1}{2} \cdot \left(2 \cdot F \right) \cdot \frac{2 \cdot F \cdot l}{E \cdot A} + \frac{1}{2} \cdot F \cdot \frac{2 \cdot F \cdot l}{E \cdot A} + \frac{1}{2} \cdot \left(-F \right) \cdot \frac{F \cdot l}{E \cdot A} = \frac{5}{2} \cdot \frac{F^{2} \cdot l}{E \cdot A} \quad \left[\text{ Дж} \right] \end{split}$$

Потенциальная энергия деформации:

$$\begin{split} U &= \sum_{i} \int_{0}^{l_{i}} \frac{N_{i}^{2} \cdot dz_{i}}{2 \cdot E_{i} \cdot A_{i}} = \\ &= \int_{0}^{l_{l}} \frac{N_{l}^{2} \cdot dz_{l}}{2 \cdot E_{l} \cdot A_{l}} + \int_{0}^{l_{2}} \frac{N_{2}^{2} \cdot dz_{2}}{2 \cdot E_{2} \cdot A_{2}} + \int_{0}^{l_{3}} \frac{N_{3}^{2} \cdot dz_{3}}{2 \cdot E_{3} \cdot A_{3}} = \\ &= \int_{0}^{l} \frac{\left(2 \cdot F\right)^{2} \cdot dz_{l}}{2 \cdot E \cdot A} + 0 + \int_{0}^{l} \frac{\left(-F\right)^{2} \cdot dz_{3}}{2 \cdot E \cdot A} = \frac{4}{2} \cdot \frac{F^{2} \cdot l}{E \cdot A} + \frac{1}{2} \cdot \frac{F^{2} \cdot l}{2 \cdot E \cdot A} = \frac{5}{2} \cdot \frac{F^{2} \cdot l}{E \cdot A} \quad \left[\text{ Дж} \right] \end{split}$$

Статически неопределимые задачи

От размерности задачи зависит количество независимых уравнений статического равновесия тела:

Одномерные задачи – $o \partial ho$ уравнение равновесия:

Двумерные (плоские) задачи – три уравнения равновесия:

Трехмерные задачи – шесть уравнений равновесия

Если количество внешних связей *меньше* количества уравнений равновесия – перед нами однозначно **механизм**:

Если количество внешних связей *равно* количеству уравнений равновесия (и они, препятствуют перемещению тела по каждой из степеней свободы) — перед нами *статически определимая система*. Реакции связей полностью определяются из системы уравнений равновесия:

Если количество внешних связей *превышает* число уравнений равновесия и они препятствуют перемещению тела по каждой из степеней свобод – перед нами *статически неопределимая система*:

Здесь уравнений статики уже не хватает для определения всех реакций связей. Нужны дополнительные уравнения.

Необходимое количество дополнительных уравнений называется **степенью статической неопределимости** системы:

$$n = n_{\text{HeU36.}} - n_{\text{VD.}} \tag{II.10}$$

где

 $n_{_{\! Heu36.}}$ – количество неизвестных (реакций связи);

 $n_{yp.}$ – количество независимых уравнений равновесия.

Используя метод сечений, можно в качестве неизвестных вместо реакций рассматривать внутренние силовые факторы. Значение n это не меняет:

 $n_{\text{неизв.}} = 2 \quad (N_2 \text{ и } N_1)$

 n_{yp} = 1 (уравнение (1'))

Дополнительные уравнения не используют условия равновесия.

В стержневых системах при растяжении/сжатии они отражают соотношения между удлинениями участков стержней при перемещении точек системы. Внешняя нагрузка при этом не учитывается!

Потом через закон Гука
$$\left(\Delta \ell_i = \boldsymbol{\varepsilon} \cdot \ell_i = \frac{\sigma_i}{E_i} \cdot \ell_i = \frac{N_i \cdot \ell_i}{E_i \cdot A_i}\right)$$
 соотношения

между $\Delta \ell_i$ пересчитываются в соотношения между N_i :

Решая совместно *(1')* и *(2')*, находим неизвестные $N_{\rm 1}$ и $N_{\rm 2}$.

Дополнительные уравнения также называются *уравнениями* перемещений или *уравнениями* совместности деформаций.

Замечание:

При нагреве:

Упругая Температурная составляющая
$$\varepsilon = \varepsilon^e + \varepsilon^t = \frac{N_i}{E_i \cdot A_i} + \alpha \cdot \Delta t$$

тогда:

$$\Delta \ell_i = \varepsilon \cdot \ell_i = \frac{N_i \cdot \ell_i}{E_i \cdot A_i} + \alpha \cdot \Delta t \cdot \ell_i$$

Механические характеристики

материалов

В случаях одноосного напряжённого состояния при возрастании нагрузки малоуглеродистая сталь ведет себя следующим образом:

Puc.II.8.

- схематизация Прандтля (идеальный упруго-пластический материал).

$$\sigma_{TP} \approx -\sigma_{TC} = \sigma_{T}$$

Эта диаграмма растяжения/сжатия называется **условной**, ибо напряжение σ_Z вычисляется приблизительно, делением растягивающей стержень силы на <u>первоначальную</u> площадь поперечного сечения:

$$\sigma_Z \approx \frac{F}{A_o}$$
 $(\sigma_Z \approx \frac{N}{A_o} = |N = F| = \frac{F}{A_o})$

На самом же деле, стержень утончается при растяжении и утолщается при сжатии. А при напряжениях, выше точки \mathcal{I} вообще образуется местное утонение — \mathbf{wex} — площадь поперечного сечения и \mathcal{E}_z в которой значительно отличаются от первоначальных.

Если бы мы вычисляли осевое напряжение σ_Z делением текущей силы F на текущую площадь поперечного сечения A

$$\sigma_Z = \frac{F}{A}$$

то получили бы истинную диаграмму растяжения/сжатия:

Puc.II.9.

HO!

- 1) Постоянно замерять текущую площадь поперечного сечения образца (и, особенно, рассчитываемой конструктором детали) для постоянного сравнения с диаграммой задача трудоёмкая;
- 2) На участке *OB* (самом используемом) эти диаграммы мало отличаются. Поэтому на практике всегда пользуются диаграммой условной.

Характерные напряжения условной диаграммы называются пределами:

- σ_{nu} предел пропорциональности наибольшее напряжение до которого справедлив закон Гука: $\sigma_Z = E \cdot \varepsilon_Z$;
- σ_y *предел упругости* наибольшее напряжение, до которого материал проявляет только упругие свойства;
- σ_T *предел текучести* напряжение, по достижении которого начинается интенсивный рост деформаций без заметного приращения нагрузки (материал «течёт»);
- σ_B *предел прочности* наибольшее напряжение, которое способен выдержать материал. У пластичных материалов есть только σ_{BP} (далее шейка и разрыв) и нет σ_{BC} (плющить можно до бесконечности). У хрупких есть и σ_{BP} и σ_{BC} .

 $\sigma_{nu} pprox \sigma_{V} pprox \sigma_{T}$ — поэтому в расчётах чаще всего используют σ_{T} .

Примечание:

Предел текучести и предел прочности по диаграмме растяжения определяются однозначно.

Определения пределов пропорциональности и упругости весьма условны. Так эти величины и называются: условные (технические) характеристики. Если остановиться на них, то разными исследователями будут названы для одного и того же материала субъективно разные цифры, ведь никаких идеально прямых участков на реальных диаграммах нет и быть не может (вы это видели на первой лабораторной работе), а пластические деформации в отдельных кристаллах возникают с самого начала нагружения.

Необходимы чёткие определения понятий «заканчивается линейный участок» и «проявляются только упругие свойства». Такие определения есть, они рассмотрены ниже, но для их понимания требуется предварительно ознакомиться с физическим явлением «закон разгрузки».

Закон разгрузки

Линия разгрузки пластичного материала представляет собой прямую, параллельную начальному участку диаграммы. Повторное нагружение осуществляется по этой же прямой.

В т. M предел текучести материала стержня $\tilde{\sigma}$ уже больше первоначального σ_T . Такое «поднятие» предела текучести, предела упругости и предела пропорциональности предварительным нагружением называется **наклёпом** или **нагартовкой**.

Предел прочности σ_{B} наклёп изменить не может.

Технические (условные) характеристики

механических свойств материалов

Процедура определения условных механических характеристик материалов одинакова для всех отраслей машиностроения. Отличаются цифры, принятые для себя каждой отраслью. Приведём наиболее распространённые:

Предел пропорциональности: напряжение, на уровне которого тангенс угла наклона касательной к диаграмме в полтора раза больше тангенса такого же угла в начале нагружения;

Предел упругости: напряжение, при котором остаточные деформации составляют 0,01%=0,0001;

Для сталей, диаграмма нагружения которых не имеет площадки текучести, вводят условный предел текучести: напряжение, при котором остаточные деформации составляют 0.2%=0.002.

Схематизация диаграмм

Использовать в прочностных расчётах диаграмму растяжения/сжатия столь сложной формы затруднительно. Да и участок B-E в технике почти не используется. Удобно провести **схематизацию** — заменить реальную диаграмму её упрощенным аналогом.

Схематизация диаграммы малоуглеродистой стали — диаграмма идеального упруго-пластического материала — показана на *рис. II.8*. схематизации диаграмм некоторых других материалов (зона сжатия не показана, она считается симметричной):

Puc.II.12.

Расчёт на прочность

В зависимости от назначения детали, её способность противостоять разрушению может быть предсказана (рассчитана) двумя способами: 1) *Расчётом по напряжениям*; 2) *Расчётом по нагрузкам*. Первый способ применяется чаще, его рассмотрением и ограничимся в дальнейшем.

Общее условие прочности конструкции:

$$\sigma_{\max} \le \sigma_{nped}$$
 (II.11)

где

 σ_{\max} — максимальное напряжение в конструкции;

 σ_{nped} — предельное напряжение – напряжение, при котором в материале происходят качественные изменения:

 $\sigma_{nped} = \sigma_{T}$ — для пластичных материалов;

 $\sigma_{nped} = \sigma_{B}$ — для хрупких материалов.

Расчётный коэффициент запаса прочности показывает во сколько раз ожидаемое максимальное напряжение в конструкции меньше предельного для данного материала:

$$n = \frac{\sigma_{nped}}{\sigma_{\text{max}}} \tag{II.12}$$

n всегда ≥1 (условие II.11). Из-за неточности определения нагрузок и погрешностей расчёта реальное напряжение в конструкции может превысить ожидаемое. Из-за отклонения свойств материала от заявленных может понизиться σ_{npeq} . Для того, чтобы условие II.11 заведомо не нарушалось и предусматривается некоторый запас по прочности. Чем меньше конструктор уверен в достоверности результатов расчёта, тем с большим n он проектирует конструкцию.

Минимально допустимые (из опыта проектирования) значения *п* законодательно установлены для каждой отрасли и называются нормативными коэффициентами запаса прочности:

$$[n] = n_{\min} \tag{II.13}$$

Условие гарантированной прочности конструкции:

$$\sigma_{\max} \le [\sigma] \tag{II.14}$$

где

$$[\sigma] = \frac{\sigma_{npeo}}{[n]}$$
 — допустимое напряжение.

V

При своём создании конструкция проходит через два расчёта:

I) Проектировочный:

Составляется общая схема будущего изделия (компоновка); размеры деталей подбираются такими, чтобы удовлетворить условию гарантированной прочности (*II.14*).

Выпускаются чертежи.

II) Проверочный (поверочный):

По размерам деталей на чертежах вычисляются расчётные коэффициенты запасов прочности n деталей. Все вычисленные n должны быть больше, или равны [n], только тогда изделие идёт в производство.

Наименьший из вычисленных при проверочном расчёте n называется коэффициентом запаса прочности всей конструкции.

Расчёт несущей способности упруго-пластических конструкций («расчёт по предельным нагрузкам»)

Большинство элементов конструкций и деталей машин работают упруго.

Есть, однако, такие, в которых допускаются небольшие пластические деформации: корпуса турбин, заклёпочные швы и т.д.

Пока не потеряна упругая связь области приложения нагрузки с опорами, конструкция способна удерживать возрастающую нагрузку, даже имея «потёкшие» части.

II.4 Цвет участков соответствует деформациям:

а) Конструкция не нагружена:

б) Оба участка упруги:

в) Второй участок на пределе упругости:

г) Второй участок течёт:

д) Первый участок на пределе упругости, второй течёт (предельное состояние):

е) Механизм – оба участка текут:

Если на стадии "z)" остановить возрастание нагрузки (допустим, при значении F=F*) и медленно разгрузить конструкцию, то напряжение σ_i , внутренние силы N_i и перемещения точек стержней w_i , подчиняясь закону разгрузки ($puc.\ II.10$.) будут убывать по прямым, параллельным начальным ($puc.\ II.14$.).

При этом в участке 2 накопились остаточные пластические деформации ε^P (подобные *puc. II.10.*, т. М). Пытаясь раздвинуть свои поперечные сечения на длину, большую первоначальной, участок 2 сжимает участок 1 и сам остается сжатым:

$\overline{II.5}$ Цвет стержней соответствует деформациям:

Значение предельной нагрузки можно определить без постадийного расчёта. Следует рассмотреть все возможные варианты предельных состояний и выбрать тот, для поддержания которого требуется минимальная нагрузка.

II.6 Цвет стержней соответствует деформациям:

<u>Вариант 1</u> — начинают течь первый и второй участки:

$$\sum M_0 = 0 =$$

$$= -\sigma_T \cdot A \cdot 4 \cdot a + F_{np} \cdot 3 \cdot a -$$

$$-\sigma_T \cdot A \cdot 2 \cdot a$$

Вариант 2 — начинают течь первый и третий участки :

$$\sum M_{C} = 0 =$$

$$= -\sigma_{T} \cdot A \cdot 2 \cdot a + F_{np} \cdot a -$$

$$-\sigma_{T} \cdot A \cdot 2 \cdot a$$

$$F_{np} = 4 \cdot \sigma_{T} \cdot A$$

Вариант 3 — начинают второй и третий участки:

$$\sum M_B = 0 =$$

$$= -F_{np} \cdot a + \sigma_T \cdot A \cdot 2 \cdot a +$$

$$+ \sigma_T \cdot A \cdot 4 \cdot a$$

$$F_{np} = 6 \cdot \sigma_T \cdot A$$

II.7 Цвет стержней соответствует деформациям:

Вариант 1 — начинают течь первый и второй участки:

Вариант 2 — начинают течь второй и третий участки:

Вариант 3 — начинают течь первый и третий участки:

II.8 Цвета участков соответствуют деформациям:

Вариант 1 — начинают течь первый и третий участки:

Вариант 2 – начинают течь первый и второй участки:

 $F_{np_{\min}} = 3 \cdot \sigma_{T} \cdot A$, значит, на практике реализуется Вариант 1.

Характеристики пластичности материалов при растяжении

Примеры II.4 ... II.8 решены в предположении о том, что «потёкший» стержень тянуться (сокращаться) может до бесконечности (рис. II.15a.). А это, естественно, не так. При каком-то $\mathcal{E}_{\hat{A}}$ начинает развиваться процесс разрушения (рис. II.156.).

В этом случае используют справочную характеристику, называемую относительное удлинение при разрыве:

$$\delta = \frac{l_{\hat{e}} - l_0}{l_0} \cdot 100\% \tag{II.15}$$

Образец до и после испытания на растяжение (1, 2 и 3 — поперечные сечения до нагружения, смещающиеся в положения 1', 2' и 3' соответственно после нагружения):

Puc. II.16.

Относительное удлинение при разрыве δ примерно равно остаточной деформации при разрушении $\mathcal{E}_{\mathit{ocm}}$ (рис. II.156.).

 δ - основная характеристика пластичных свойств материала (отожжённая медь, например, имеет δ = 60%; материал с δ > 8% уже можно считать пластичным). Однако для специалистов, занимающихся штамповкой или волочением, одной этой величины бывает недостаточно.

Второй характеристикой пластичности материала является относительное сужение при разрыве:

$$\psi = \frac{A_0 - A_k}{A_0} \cdot 100\% \tag{II.16}$$

где (см. *рис. II.16.*)

 $A_0 = \frac{\pi \cdot d_0^2}{4}$ - поперечное сечение рабочей части образца до испытания;

 $A_{\hat{e}} = \frac{\pi \cdot d_{\hat{e}}^2}{4}$ - наименьшее поперечное сечение рабочей части образца после испытания.

Ни в какие расчётные формулы ψ и δ не входят.

Величину δ , впрочем, за неимением лучшей справочной информации инженеры используют при схематизации диаграмм деформирования материала для определения \mathcal{E}_{B} (рис. II.156.):

$$\varepsilon_B \approx \delta + \frac{\sigma_B}{E}$$
 (II.17)

Влияние различных факторов на механические характеристики материалов при растяжении и сжатии

Диаграммы растяжения или сжатия, приведенные ранее, получены при определённых условиях: комнатной температуре, статическом нагружении (силы инерции ничтожно малы) без остановок в процессе испытания.

Подобную нагрузку испытывают большинство деталей машин, работающих рядом с нами. Но не все. Детали двигателей, например, работают в экстремальных условиях. Случается, что и весь аппарат для таких условий работы создан (ракета, например). Иногда необходимо моделировать поведение проектируемого изделия в аварийных ситуациях.

Нужно знать факторы, изменяющие механические свойства привычных для нас материалов и степень их влияния на эти свойства. Эти факторы:

- скорость изменения нагрузки;
- температура;
- период нагружения.

Скорость изменения нагрузки:

В этом случае различают «статическое нагружение» и «быстрое нагружение». Определение зависит от того, успевают ли в процессе нагружения пластические деформации реализоваться в полной мере или нет. В первом случае материал проявляет пластические свойства, во втором ведёт себя, как хрупкий и более прочный (рис. II.17). Качественно так же на металл влияет, например, закалка — он становится хрупким и более прочным.

Температура:

С повышением температуры металла уменьшаются его модуль упругости E, предел текучести σ_T (или σ_{02}) и предел прочности σ_B . На этом эффекте, кстати, основана ковка. Меняются они, примерно так, как показано на $puc.\ II.18$.

Следует, однако, заметить, что изменение механических свойств материала «отстаёт» от изменения температуры. Графики, показанные на *рис*. *II.18а*. получены при условии длительной выдержки металла при указанной температуре перед испытаниями.

Поэтому, например, в ракетостроении, где нагрев изделий при эксплуатации происходит очень быстро, пренебрегают изменением свойств материала, если нагрев произошёл за 5-10 минут до расчётного периода.

Период нагружения:

Зависимости, показанные на puc. II.18. получены на основе наблюдений за всё время эксперимента. Эксперимент длится минуты. Действительно в продолжении этого времени образец под действием, допустим, напряжения σ^* (puc. II.18a.), не сломается. А, если под действием этого напряжения его оставить в испытательной машине на 100 часов? 1000 часов? 10000 часов? Не факт, что не лопнет.

При высоких температурах (свыше 300° C) необходимы исследования **длительной прочности** с коррекцией обеих кривых $\sigma_T(t^{\circ})$ $\sigma_B(t^{\circ})$. Кривые длительной прочности для стали 12MX показаны на *рис. II.19*. Предел прочности, как функция времени и температуры называется **пределом длительной прочности**.

Столь обширные экспериментальные исследования чрезвычайно дороги. Поэтому, чаще всего, построение кривых длительной прочности проводят по приближённым методикам, например Ларсона-Миллера.

Предел текучести, как функция времени и температуры называется **пределом** ползучести. Его изучением (как и явлением ползучести вообще) занимается отдельная наука **Теория** ползучести.