

FOOD AND DRUG

LABORATORY

OF THE

DEPARTMENT OF TRADE AND COMMERCE

OTTAWA, CANADA

BULLETIN No. 425

MINERAL WATERS

NOTES AND COMMENTS.

Under this heading, as occasion arises, the Bulletins issued by this Department will contain, as an appendix, such comment as may seem necessary or advisable upon matters relating to the work of the Department in connection with the administration of the Adulteration Act, the Fertilizers Act, the Feeding Stuffs Act or the Proprietary Medicines Act.

It frequently happens that correspondents ask information regarding the above Acts, of such a nature that the matter in question possesses general interest, and comment upon it would prove acceptable and useful to others than the immediate questioner. In such cases the reply may find a place in these columns. For convenience of reference these notes will be numbered in series.

A. MoGILL,

Chief Analyst.

FOOD AND DRUG.

LABORATORY

OF THE

DEPARTMENT OF TRADE AND COMMERCE OTTAWA, CANADA

BULLETIN No. 425

MINERAL WATERS

MARCH 8, 1919.

F. C. T. O'Hara, Esq.,
Deputy Minister of Trade and Commerce,
Ottawa, Ont.

Sm,—I beg to enclose a report upon Mineral Waters of both domestic and foreign origin, as sold in Canada.

A number of complaints regarding this class of articles have been made during recent years. These claim that much substitution and imitation exist; and that incorrect and misleading description is found on the labels.

The investigation is attended with many difficulties and the report furnished herewith is, in my opinion, very creditable to Mr. Johnson, who has spared no pains to make it as complete as possible. He has received assistance in the analytical work from the an Josts in charge at Halifax, Winnipeg and Vancouver; but the greater part of this work has been performed by himself.

We have in the years given a good deal of attention to domestic water supplies (Bulletins 5, 18, 15, 18, 51 and 149), but this is the first occasion upon which so-called Mineral Waters have been systematically examined. The report should interest both the public and the importer and producer; and may enable this department to formulate conditions for the regulation of this class of articles.

I beg to recommend its publication as Bulletin No. 425 of our series.

I have the honour to be, Sir, Your obedient servant,

A. McGILL

Chief Analyst.

"Dr. A. MoGill, Chief Analyst, Ottawa, Ont.

DEAR SIE,—I beg to submit herewith a report dealing with the examination of 138 samples of mineral water representing 62 brands purchased by our inspectors during September, 1918. Of these, 64 samples are Canadian waters and represent 33 brands.

Number	of	samples	examined	at	Halfax Sub-laboratory.	 ×		**	16
		**	44		Winnipeg Sub-laboratory. Vancouver Sub-laboratory				15
**		**	46		Ottawa Laboratory				20

This is the first collection of mineral water to be examined by this Department, the object being to determine whether there was any ground for the complaints that:

(1) natural native mineral water and imported waters of reputation are being imitated by artificial solutions; (2) native waters have exaggerated therapeutic claims made for them and are therefore incorrectly described.

DEFINITIONS.

Mineral water has not yet been legally defined by the Canadian authorities. It will not be out of place, therefore, to briefly trace the changes to which the definition of mineral water has been subjected. Originally the term was restricted to signify a natural spring water used only for medicinal properties, which were attributed to the mineral constituents or gases, held in solution by the water. At the present time the term is given much wider interpretation. A more comprehensive definition is that adopted by the International Food Congress' held in Paris in 1909. "A mineral water is a natural water proposed for consumption on account of its special therapeutic or hygienic properties." This does not distinguish between mineral waters valued because of their medicinal qualities and "table waters" used chiefly on account of their purity or hygienic properties.

In order to limit the use of the word natural water as distinguished from artificial water, it is necessary to define the term. When a water laden with mineral matter and carbon dioxide issues from the earth, it will in a short time deposit iron and calcium salts and thus greatly alter in composition. Yet to all intents and purposes it is still a natural water. Considering such question as this the International Food Congress aforementioned adopted the following resolution: "A natural water is, from a commercial point of view, a water free from harmful germs, which at its place of origin, as it bursts from the ground, is directly placed in the same receptacle in which it is delivered to the consumer." They also specified that the term "table water" should be applied exclusively to natural waters and that the words "gaseous" or "aerated" should also imply a natural mineral water. Further it was decided that "all manipulations must be visibly indicated on the label affixed to the receptacle containing the water, in which receptacle it is delivered to the consumer."

According to the definition adopted by the Board of Food and Drug Inspection, (2) United States Department of Agriculture, a natural mineral water is a water that has had nothing added to it or abstracted from it after issuing from source.

ANALYTICAL DISCUSSION.

The examination consisted in checking some of the principal constituents to which the value of the water was attributed. This was limited in many cases where the amount of sample was very small. Whenever the label did not bear a statement of

¹ Compte rendu des travaux du 2e congrès international pour la répressien des fraudes alimentaires et pharmaceutiques, Paris, 1909. U. S. Dept. of Agr., Bur. of Chem., Bul. 139 p. 9.
² U.S. Dept. of Agr., Bul. 139, p. 9, ref. made to Food Inspection Decision.

analysis, effort was made to obtain such from the manufacturer, failing which, recourse was made to the literature and the most recent available has been used for comparison. To expedite the work as much as possible, samples of the same brand and the same label were mixed and a representative amount examined. When two or more analyses have been made of one brand (same label), the published results are averages. Advertised and previous analyses when quoted are reported according to the general rules as given in Standard Methods (1) of Water Analysis. Standard methods (2) have been used throughout. Advertised analyses and those found in various references have been calculated to their ions and expressed in parts per million (milligrams per litre) except in the case of silica (3) which is reported as such (SiO2).

Calculation of hypothetical combinations has not been attempted for the reason that according to the modern theory of solution, it is believed that the elements are more or less, if not entirely, dissociated into electrically charged particles or ions and that they do not necessarily exist in the form of salts. "That such a combination (hypothetical) has no basis in fact is doubtless true, since we have every reason to believe that in cases where various acids and basic ions are present in solution, no base unites with any one acid to the exclusion of all other acids, or vice versa, but all possible combinations of the various basic and acidic ions in solution are formed to some Over forty sets of rules exist for the calculation of hypothetical combinations; small wonder then that analyses of the same water by different commercial analysts do not always agree. These rules are all based on the respective solubilities of the component salts. "But these rules are based on false assumptions because the solubility of each salt when alone in solution is different from its solubility in a solution of other salts."6

The importance of having analyses stated in ionic form is readily seen from consideration of the following: If one part per million of lithium be present one can compute 5.8 parts of lithium carbonate, 6.1 parts of lithium caloride, 7.9 parts of lithium sulphate, 9.8 parts of lithium bicarbonate. If special therapeutic properties are attributed to the lithium content, it will exert those physiologic reactions in proportion to the amount of the lithium ion present. The layman interested, let us say, in the lithium as a diuretic and not concerned with the interpretation of the labelled analysis, will be under the impression that he is getting a water higher in lithium, when it is reported as lithium bicarbonate, than when it is stated in ionic form.

Many samples have a vacue and unsatisfactory advertised analysis. . . that no statement is given to show in what terms the result as expressed. American authorities have decreed that all water results be stated a parts per million (milligrams per litre). Until the Canadian authorities adopt the system, it is suggested that this Department require that the terms in which advertised analyses are expressed, whether in grains per pint; grains per United States gallon amins per imperial gallon; grams per litre, be indicated on the label.

Most of the waters, having curative claims some exceptions to this, however, make it necessar claims are made for the water, the receptacle in which sold to the consumer should bear a quantitative analysis. Or, that such an analysis be available upon request. In the absence of medicinal claims, as in the case of "table waters," freedom from

for them, bear an analysis; when therapeutic

dur-

ent

hat:

ated

ande

It

tion

fy a the

the

that

ater

C OF

lued

t of

ırti-

eral

iron

puronal

ater

its

acle

able

" OF

that

con-

ion,

that

hich the t of udes p. 9.

¹ Amer. Public Health Assn., 1917, p. 14.

^{**}Jour. A. O. A. C., vol 2, part 2, p. 41.

**S'OUR. A. O. A. C., vol 2, part 2, p. 41.

**Whether silica exists in waters in combination as a solution of in cellcidal ferm has not been definitely determined." (U.S. Dept. of Agr., Bul. 10. 17.)

**U.S. Dept. of Agr., Bul. 20, Mineral Springs of Canada, part 2.

**Turrentine. The Composition of U.S. Salines, Jour. Ind. Eng. 10. 689, 1015.

**R. B. Dole, Hypothetical Combinations in Water Analysis. 10. 689, 1015.

pollution would seem to be the only requirement necessary. These statements apply more especially to waters of Canadian origin as foreign waters of reputation have been investigated repeatedly.

It will be noted that in the case of heavily mineralized waters, there is often a marked difference between some of the advertised analyses and those of these laboratories. Variations of this kind are often attributed to the amount of rain or snowfall. Through absorption from the air, of small quantities of nitric acid, carbon dioxide and ammonia, the solvent action of rain water is considerably increased. Haywood and Smith¹ summarize their study of Saratoga waters thus:—

- (1) The waters are in nearly all cases markedly weaker in mineral content than they were about thirty-five years ago.
- (2) There is a great variation in the total mineral content of individual springs from time to time.
- (8) The rarer elements, such as lithium and bromin, seem to vary to a greater extent than the other elements present.

This would seem to explain many differences in the results obtained. Without a more complete analysis or intimate knowledge of the various sources, interpretation of results must, of necessity, be very cautious.

In formulating regulations to govern Canadian mineral waters, I would respectfully recommend:—

- (1) That natural mineral water be defined.
- (2) When medicinal claims are made for the water, that labels bear an analysis, expressed in parts per million and preferably in ionic form.
 - (3) That artificial or fortified waters be plainly so marked,

I have the honour to be, Sir, Your obedient servant,

L ERLE JOHNSON

Public Analyst.

AETNA MINERAL WATER

St. Severe Co., St. Maurice, Que.

Sample No. 8068

Constituente	Found	†Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid . (804) Bicarbonic acid . (HCOs) Carbonic acid . (COs) Nitric acid . (NOs) Nitrica acid . (NOs)	trace 1,600	trace 1,700	2,000
(NOs) (NOs	7,900	8,900 4,400 77	9,400 15 9 37 14-3
ros	90	77 78 270 1-3 38	14-3 71
fagreeium (hf4) .ithium (Li) otassium (K) odium (Na) ummonium (NH4)	450	406 17 288 4,400	479 3-8 170 5,700

[†]By F. Fafard, Laval University (1887). *Dept. of Mines, Buil. 20, Part 2, p. 101 (1914).

RADIUM MINERAL WATER

Sample No. 88810

Viauville Springe, Montreal.

Constituents	Found	†Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
Salphurie aeid (804) Bicarboaie acid (HCOs) Carboaie acid (COs) Nitric acid (NOs)	3,000	2,000 400	2,360 640
Vitrous seid. (NOs) hosphoric seid. (POs) Allorine. (Cl) tromine. (Br)	3,600	2,500	3,800
odine	• • • • • • • • • • • • • • • • • • • •	14 03	10 4·7
fascances	108 86	56	01 2-3 06
		16 2,560	3,400 1.02

^{*}Dept. of Mines, Bul. 20, Part 2, p. 77 (1914).

†Analysis made in 1839.

Nors.—In view of the remarkable therapeutic properties attributed to the presence of radium or radium emanation in mineral waters, the radioactivity of Canadian mineral springs has been investigated by the Department of Mines. Regarding "Radium" water—"The radioactivity is low and no radium salts in solution could be detected, therefore, the bottled water after a few days will possess no radioactivity whatever. These results confirm those of Dr. McIntosh of McGill University, who found about as much radium emanation as is found in St. Lawrence River water." Elworthy, Department of Mines, Bul. 20, part 2, p. 76

SOURCE SEBASTIEN

Ste. Ursule, Que.

Sample No. 8067

Constituents	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Salphuric acid (SO4) Bicarbonic acid (HCO2) Carbonic acid (CO2) Nitric acid (NO2) Nitrous acid (NO2)	traces 1,500 none	4,600 1,500	
Phosphoric acid	4,600	traces 130 12 91 12 1.05	
fanganese (Mn) Jaloium (Ca) strontium (Sr)		66.	
fagnesium(Mg)	• • • • • • • • • • • • • • • • • • • •	110	
ithium (Li) otassium (K) odulm (Na) mmonium (NH ₄) olids dried at 100° C	8,980	110 2,500 18 9,100	- *

Note.—In the advertised analysis it is probable that chlorine has been calculated as sulphate.

SOURCE SAINT. JULIEN

St. Uraule, Que.

Constituents	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Sulphuric acid. (80) Bicarbonic acid. (HCO) Carbonic acid. (CO) Nitric acid. (NO)	1,200	1, 200	
Nitrous acid. (NO: Phosphoric acid. (PO: Jhlorine. (Cl Brownine. (Broodine. (present 2,300	0·68 224 2,100	
Silies (SiO) For (Fe, Al		41 trace	
Ianganese (Mn alcium (Ca trontium (Sr	}	31	
lagnesium	}	70	
odium(Na mmonium(NHo olids dried at 100°C(NHo	4,800	1,800	

SAUGEEN NATURAL MINERAL WATER

Southampion, Ont.

Sample No. 88187

	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Bicarbonic acid(HC	O ₀)	12 320	
Nitric scid. (N Nitrous scid (N Phosphoric scid (P Dhlorine. (P Sromine (R	O ₄)	2-7	
odine	(I) O ₂) Al)	11 12	
trontium	Ca) 520 Sr)	57 26	
Agnesium (1 Athium (1 Otassium (2) Odium (1) Apmonium (N	(K) Na)	3 9.5	

Nors.—Advertised analysis submitted expressed in grains per gallon. In the absence of definite information on this point, Imp-rial gallon has been assumed (the water being of Canadian origin) and advertised analysis calculated on that basis. Considerable difference is evident in the sulphuric acid content.

GURD'S CALEDONIA WATER (NATURAL SALINE).

Caledonia Springe, Can.

Sample Nos. 8053-86806

	Found	Advertised	*Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Sulphuric acid	760		197 610
Vitric acid. (NOs) Vitrous acid. (NOs) Vhosphoric acid. (POs) Vhosphoric acid. (POs) Vholorine (Cl)	3,800		10 1.6 5,400
romine (Br) odine (I) ilios (SiO ₁)			18 0-5 12-0
luminum (Mn) anganese (Ca)			83
rontium (Sr) agnesium (Mg) thium (Li)			10 107 1·6
otassium (K. Otassium (Na Nammonium (NH4)			3,300 2-8

^{*}Analysis of Gurd's saline spring by Elworthy, Mines Branch Bul. 20, part 2, p. 56 Nors.—No claims are made for this water either analytic or medicinal. 59734—2

SOURCE AUGUSTINS

Sample No. 86809

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid (SO4) Bicarbonic acid (HCO2) Zarbonic acid (CO2) Nitric acid (NO2)	160 700	200 4,500	
fitrous acid (Nos) hosphoric acid (PO4) hlorine (Cl) rom'ne (Br) dine (I)	1,400	47 440	
ics. (SiO ₃) on. (Fe)	1.6	54 2·5	
acium(Ca) rontium(Sr)	74	120	
agnesium (Mg) (bium (Li) btassium (K) dium (Na) mmonium (NHA)	trace	47 26 140 1,700	

CARABANA MINERAL WATER

Spain

Sample Nos. 84397, 86803, 86945, 88314

Constituents	Found	Ad-ertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid	59,000	70,000	
National	2,400	12 1,500	
ilica (SiO ₂) ron (Fe, Al)	***************		
alcium. (Ca) trontium. (Sr)	1,000	230	
(Mg (Mg) (Mg	1,000	740	

HUNYADI JANOS WATER

Budapest, Hungary

Bample Nos. 66727, 86408, 88313

Constituents	Found	Advertised	*Previous Analysis
Comutants	Parts per million	Parts per million	Parts per million
Carbonio acid	(SO ₄) HCO ₉) (CO ₉)		33,000 1,200
Nitric acid	(NO ₄) (NO ₄) (PO ₄) (Cl) 740		1,000
odine	(SiO ₂) (SiO ₂) (Fe, Al) 10		12
anganese. alcium trontium agnesium	(Ma) 470 (Ca) 470 (Sr) 3,100		200 120 4,500
ithium. otasium. odium. 	(K) (NA) (NH)		8, 100

[&]quot;Bunson=see p. 30. Ingram and Royle="Natural Mineral Waters."

PERRIER TABLE WATER.

· France.

Sample Nos. 86957, 88,107, 88,196.

Constituents	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
alphuric acid(E		25	36
Parbonic roid	(O ₂) 18	200 trace.	160 trace.
litrous acid(N hosphoric acid(I	204)		*:-
hlorine		13	15
	iO ₃)		24 8-
anganess	Ca)	130	210
rontium	(Sr) Mg) (Li)	6-5	8-
otassium odium((K) Na) Ha	21	12

By Dr. H. Wilson Hake.

VERONICA WATER.

Santa Barbara, Cal.

Sample No. 88152.

Constituents ·	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphurie acid. (SOa) Blearbonie acid. (HCOs) Carbonie acid. (COs) Nitrie acid. (NOs) Nitrous acid. (NOs)	16,000 1,100 none	12,000 1,100 68 3,600	12,000 1,000 none 1,706
Facephoric acid. (PO.) Chlorine. (Cl) Bromine. (Cl)	2, 200	trace 1,800	trace 2,000
Codine (I) Silion (SiO ₂) Iron (Fe, Al) Aluminum (Fe, Al) Manganese (Ma)	2-4	trace 18 2·5	(a) 18 2·6
Calcium (Ca) Strontium (Sr)	370	500	500
Lagnesium (Mg)	3,200	3,000	2,900
Potassium (K) lodium Na) lammosium (NH4)	*************	89 2,000	2, 100 -06

^oU.S. Dept. Agr. Bur. of Chem. Bul. 91, p. 35, 1907. (a) Heavy trace.

BUFFALO LITHIA (SPRINGS) WATER.

Bufalo Lithia Springe, Va.

Sample Nos. 86947, 83151.

Parts per million 400 78	Parts per million	Parts per million
	360	85
••••••	• • • • • • • • • • • • • • • • • • • •	2-2
(a) 11·	-80 18	trace (a) 11
39	36 -06	35 8
250	180	170
7-¢ trace	6·7 ·026 trace	6-4 trace
	39 350 7-¢	39 36 06 350 180 7-4 6-7 trace -038

^eU.S. Dept. Agr., Bur. of Chem. Bul. 91, p. 44. (a) Heavy trace.

POLAND WATER

South Poland, Mo.

ample Nos. 36438, 36962, 38108, 38149s

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
ulphuric acid(80a)	• • • • • • • • • • • • • • • • • • • •	1.5	2-6
arbonic acid. (CO.)	58	21	48
itric acid(NOs)			5-9
comphoric acid	• • • • • • • • • • • • • • • • • • • •		.00
hlorine (Cl)	4.7	2.7	trace
dine(Br)	• • • • • • • • • • • • • • • • • • • •		
lica(8iO ₁)	20	19	24
on (Fe, Al)	• • • • • • • • • • • • • • • • • • • •		-4
Ange 4(Mn)	• • • • • • • • • • • • •		
alcium(Ca(rontium(Sr)	14	8-4	14
agnesium	1-6	2.7	2-1
thium			COMIS
dium(K)	• • • • • • • • • • • • •	1.2	2.4
mmonium(NHA)		2.9	6-9

^oU. S. Dept. of Agr., Bur. of Chem. Bul. 91., p. 32. 1907.

CARLSBADER SPRUDEL (TERMAL)

Austria

Samp'e No. 86944

Constituents	Found	Advertised	Previous Authoris
	Parts per million	Parts per million	Po: ta per million
ulphuric acid(80	1700		1600
icarbonic acid(HCO	48		700
itric acid(NO itrous acid(NO			
hosphorie acid(PO		• • • • • • • • • • • • • • • • • • • •	10
omine			- All
ica. (SiO		• • • • • • • • • • • • • •	190
uminum)		• • • • • • • • • • • • • • • • • • • •	7-1
lcium(Ci	5	• • • • • • • • • • • • • •	
rontium. (S.			12
hium	}	• • • • • • • • • • • • • • • • • • • •	10
dium(N		• • • • • • • • • • • • •	1000

By Gottl. see Walton-Mineral Springs p. 362

SAINT-YORRE SOURCE LUMIERE

Barsin de Vicky, France

Samp-e No. 86903

Constituents	Found	Advertised	Previous Analysis
Constitution	Ports per n.idion	Parts per million	Parts per million
Sulphuric acid (20a) Picarbonic acid (HCOa) Sarbonic acid (COa)	160 3000	220 4700	
Nitric acid (NOs) Nitrous acid (NOs) Phosphoric acid (POs)			
	340	330 15	,
ron (Fe, Al) luminum langanese (Mn) alcium (Ca)		10	
actum (Ca) trontium (Sr) lagneaium (Mg) ithium (JA)	**********	110 13 2·8	
otassium (K) odium (Na) odium (NH)	*****	1900	

HATHORN WATER (SPRING No. 2)

Seretoge Springe, N.Y.

Constituents	Found	Advertised	Analysis
Commence	Parts per million	Parts per million	Parts per million
kulphuric soid(804)			12
Bicarbonic acid(HCOs)	4,800		5,780
Vitrio acid(NOs) Vitrous acid(NOs)			
hosphoric acid(PO4)			
Comine. (CI)	7,100		7,000
odine(I)			30
ilica (SiOs) (SiOs) (Fe, Al)	18		8-1 16
[anganese(Mn)			trace
Calcium (Ca)	910		970
(Mg)	430		470
ithium(Li)			12 440
odium(Na)			4,400

By Milford, Jour. Ind. and Eng. Chem. Aug. 1912, p. 594.

RED RAVEN SPLITS

Red Reven, Pa.

Sample Nos. 69671, 68725, 84369, 88147

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Para per million	Parts per million
Bulphuric acid	(8O ₄) 870		970 284
Carbonic acid	(CO ₂) (NO ₂)		
Vitrous acid Thosphoric acid	(NO ₂) (PO ₄) 22,000		10.000
chlorine	(Ci) 80		18,000
odine	(I)		
	(SiO ₂) (Fe, Al)		61
anganose			
alciumtrontium	(Ca)		
agnosium.	(Mg)		
ithiumotassium	(Li)		
odium	(Na) (NHa)		9,000

^{*}U.S. Dept. Agr. Bur. of Chem. Bul 91, p. 66 (1907).

CONTREXEVILLE MINERAL WATER

Source du Pavillon, France

Sample Nos. 84395, 86330, 86426, 86946

.1

Constituents	Found	Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
alpluric acid(80	(a) 200		1,300
arbonic acid	(a)		
hosphorie seid	(i)		
dine(Sid			14-9
luminum anganese(M	(n)		1-30
alcium(C	(r)		500 13
thiumtassium	(X)		0-07 3-1 77
odium. (N mmonium. (NE resuic (AS-			77

^{*}Ingram and Royle "Natural Mineral Waters," 12th Ed. p. 21. (s) Heavy Trace.

BETHESDA MINERAL WATER (CARBONATED)

Wanbesks, Wie.

Sample No. 84400

	Found	Advertised	Previous Analysis
Constitutents	Parts per millior	Parts per million	Parts per raillion
	440		11
Nitrie acid	296		trace 13
odine	5		34 2
langanese GMn alcium CGa trontium (Sr	}		72 40
lagnesium (Mg ithium (Li obtassium (K odium (Na) .)		3-1 17

*Analyses of Bethoede (natural) water by Prof. Chandler. Norz.—Difference in chlorine content satisfactorily accounted for.

WHITE ROCK WATER (LITHIATED)

Wenkeska, Wisconsin.

Sample No. 68662, 86658, 88102, 88195

	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
hilphuric acid(E	(CO ₂)	40 350	40 350
litrie acidlitrous acid	(CO ₁) (NO ₁) (NO ₂)	7.9	4-4
hlorineromine	((1))	260	430
dine	(SiO ₂)	13	12
on luminum }(F	e, Al) 3	75	4
anciumtrontium	(Ca) . 140	82	81
agnesiumithiumotassium	(Mg) 35 (Li) 30	81 46 , 3	38 18 8
odium	(Na) NEA	7-4	290

^{*}U.S. Dept. of Agr. Bur. of Chem., Bul. 91, p. 63 (1907).

AETNA MINERAL WATER (Braz

St. Severe, Que.

No. 8072

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Pares per million	Parts per million
sulphuric acid(SO ₄)	trace		2.1
icarbonic acid	1,800	• • • • • • • • • • • • • • • • • • • •	. 2, 000
itric acid(NOs)			29-
hosphoric acid.			'(
hlorine(CI)	9,400		9,400
dine (Br)			15.
lion(SiO ₂)			27
uminum			14-5
ADCADOOD			
rontium. (Ca)	84		71
Pernocium	540		470
thium			3.8
dium(Na)			5,700
mmonium(NHA)			23
ma ma aminora	17,708		17,4

^{*}Dept. of Mines, Bul. 20, Pt. 2, p. 101 (1914). | Dried at 100°C.

STAR MINERAL WATER

Sample No. 8073

403

Ste. Genevieve de Batisons, Que.

Constituents	Found	Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphutic acid. (80a) Sion Sonic acid (HCOs) Parbouic acid. (COs) Nitrio acid. (NOs) Nitrious acid. (NOs)	620	700	2·9 1, 100
Phosphorie acid (PO4) Informe. (Ci) Fromine (Br) oddine (Br)	9,500	260 15,000	17,000 34
ilioa	22	46 36 14	7 11 27
Anganose Min Alcum Ca Ca Ca Ca Ca Ca Ca C	180 870	460 200 920	200 7·8 800
otassium. (K) odium. (Na) mmoaium. (NH)		7,800 2 7,800	260 9, 100 55
Barium (Ba) olids=dried at 100°C.	17,294	24,045	20,200†

^{*}Dept. of Mines Bul. 30, part 2, p. 102 (1914).
†Dried at 110°C.
Norz.—Star Water is tlaimed to "oure Rheumatism, Dyspepsia, Indigestion, Constipation, Debility, Hondache, Blood Poison, Liver and Kidney, etc."

STAR SPRING MINERAL WATER

Ste. Genevisue de Batiocan, Que.

Sample No. 8074

Found	Advertised	*Previous Analysis
Parts per million	Parts per million	Parts per million
1,100 34		1,100 •
17,000		17,000- 34
6-4		11 27
380 1,000		290 7·3
		1·0: 280 9,100 55
	Parts per million 1, 100 34 17,000 6-4	Parts per million Parts per million 1,100 24

^oDept. of Mines, Bul. 20, Part 2, p. 102. †Dried at 110°C.

DUNCAN APERIENT WATER (CONCENTRATED)

Caledonia Springs, Ont.

Sample Nos. 68713, 80200, 86321, 86801, 88185

Constituents	Found	Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
ulphuric acid (804	58,000	73,000	3-4
Sicarbonic acid(HCO.		12,000	1,200
arbonic acid(COs	78	660	2,250
)		•
hosphorie acid(PO ₄			1.2
romine(Br	4,400	3,900	5,100
dine			10
lica(SiO	1		11
(Fe. A1			1.56
luminum (1.00
anganese(Mn			-05
alcium(Ca	64	100	- 44
arongium(Sr			1.8
thium /T	9,008	11,000	145
tasium (F	,		17
dium(Na		17,000	86 3,300
mmonium(NH4		. 17,000	10-75
pecific gravity (average) at 15°C.	1-0659		1.007

^oAnalysis of Duncan Spring (1915) by Mines Branch, Bul. 20, part 2, p. 54.

DUNCAN LAXATIVE WATER (CONCENTRATED)

Caladonia Springe, Ont.

Sample Nos. 81377, 83664, 84364, 86413, 86664

Constituents	Found	Advertised	Previous' Analysis
	Parts per million	Parts per million	Parts per million
learbonie acid(HC			3·4 1,200
litrous acid. N hosphorie acid. (P hlorine. (P romine. (C	O ₂ /		1·8 5 10PR
dine			5 36
anganeee	(n) Ca) 1,300 Sr)		05
thium thasium dium	(g) 7,100 Li) K)	********	
	H ₄) 1.0667		10 75

^oAnalysis of Dunoan Spring (1915) by Mines Branch, Bul. 20, part 2, p. 54.
Nors.—Unable to obtain an advertised analysis of this water.

MAH-PU MINERAL WATER

Sample No 80205

rious lysis s per liou

2·9 09

-03 7-3 90 1-01 80 00 55 60†

ione yeis

. 2

5 -56 -06 -8

75 0073 Uphem, N.B.

Constituents	Found	Adversional	Tr.,
	Parts per million	Parts per million	ł in die
Salphuric acid	1,300	1,400	
Carbonic acid. (CO ₃) Nitric acid. (NO ₃) Nitrous acid. (NO ₂) Phosphoric acid. (PO ₄)	••••••		
Chlorine(Cl) Bromine(Br) Iodine(Tl)	8,800	3,500	
Silica(SiOs) iron(Fe, Al). Aluminum			
Manganese (Mn) Calcium (Ca) Strontium (Sr)	770	1,100	
Magnesium (Mg) Lithium (Li) Potassium (K)	trace	16 39 130	
Sodium(Na) Ammonium(NH ₄) Solids on evaporation.	2,100 8,500	1,900 8,851	•

Nors.—The difference between lithium found and advertised is most significant. Label reads—"Nature's remedy for all kidney troubles, uric acid, diathesis, nausea, dyspepsia, rehumatism, sour stomach, internal disorders, gout, etc."

MANITOU MINERAL WATER

Watrous, Soak,

Sample No. 83070

Constituents	Found '	Advertised	Previous Analysis
Constituting .	Parts per million	Parts per million	Parts per million
Sulphurie acid	16,000 380	6,000 700	
itrous seid (NO ₃) hosphorie seid (PU ₄) hlorins (Cl) romins (Br)	6,000	12,000	
dine.	•	*	
Ca Ca	370 2,700	440 1,000	
Dtassium (K)		750 8,100	

liors.—Considerable variation in this water. It would appear probable that sulphate has been calculated as chlorine in the advertised analysis.

ST. LEON MINERAL WATER (CONCENTRATED)

St. Loon Waters, Limited.

Constituents	Found	Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid	(804) 7.800		41
Bicarbonic acid(H	CO ₃ 1, 200 CO ₃ 86		2,300
	NO _a)		-8
hosphoric acid	PO ₄)		trace
hlorine	(C1) 28,000		6,500
odine(f	(I)		2.5
On(Fe			81 4·5
anganese.			
aiciumtrontium	(Ca) 286 (Sr)		265
agnosiumithium		• • • • • • • • • • • • • • • • • • • •	807
tassium	(K)		197
	(Na)		4,000

Analysis of St. Leon Spring (Lupien), Que., by Elworthy, Dept. of Mines, Bul. 20, Part 2, p. 98.

Nors.—Unable to obtain an advertised analysis of this water. Among other therapeutic claims labelled there is the following—"It (St. Leon Mineral Water) never fails to eliminate the uric acid from the blood".—"St. Leon water drunk warm will positively our piles."

RIGA PURGATIVE WATER

Sample Nos. 80002, \$1275, \$2000, \$2002, \$4300, \$6404, \$6004, \$5043, \$2162

Constitutents	Found Parts per million	Advertised Assumed grams per litre	Advertised Analysis converted to Parts per million
Nitrous soid. (NOs) Paesphorie seid. (POs) Jalorine (CI)	3,009	1-00	1,990
Odline	************		
langaneee	trace 8,800	18 9-8	100 9, 200
otaasium. (K) odium. (Na) mmonium. (NH)	18,000	68	85,006

Nors.—Very large differences occur in this water. In the absence of definite information as to how results are expressed, the usual French outtom of reporting in grams per litre has been assumed. "Highly recommended by the Physicians, Infallible for Dyspopsia, Fevers, Bilious Affections, Skin Discass, Ecusems, Rheumatism, Apopleny, etc., etc." No statement on label as to whether it is a concentrated or fertified water.

ABILENA MINERAL WATER

Walkerville, Ontario

Sample Nos. 66640, 68724, 81276, 82096, 86220, 86403, 88110, 88128

vious Liyeis

te per Ilion

300 41

6. claims id from

Constituente	Found	Advertised	Previous Analysis
	Parts per million	Parts per unillion	Parts per millioa
Sulphurie acid(804) Bicarbonie acid(HCOs)	41,000	39,000	
Carbonic acid(CO.)	260	266	
NILTIC acid	• • • • • • • • • • • • • • • • • • • •	7.1	
Nitrous acid. (NOs) Phosphoric acid. (PO4)			
inlorine	780	690	
(Br)			
ilica. (SiO.)	14		
ron	50	4.9	
Calcium			
trontium	430	276	
Agnosium	220	260	
otassium. (La)			
odium(%)	38,000	10 000	
mmonium.	10,000	18,000	

BYTHINIA MINERAL WATER

Sample No. 86430

	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Sulphuric acid)] 650	17,000	
Carbonic acid. (CO: Nitric acid. (NO: Nitrous acid. (NO: Phosphoric acid. (PO:)	3,300	
Chlorine. (C. Bromine (B. C. Brownine (B. C.	5	1,700	
Bilica. (SiO	1) 30	28 21	
Manganese (M. Calcium (C. Strontium (S. Stro	r)	470	
Magnesium. (M. Lithium. (L.	4,100	4, 160	
Potassium (Ni Ammonium (NE		2,700	

VICHY ST. GEORGE

Papineauville, Que.

	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Sulphuric acid. (fi Bicarbonic acid. (HC Carbonic acid. (HC	CO ₈)	160 2,300	
Vitric acid	(O ₂) (O ₂) (O ₁) (C1) 4,400	trace 4,400	
odine	(I) (iO ₃) (Al)	38 20	
Manganese Jaleium Strontium	(Sr)	290 270	
	(1)	(a) 71 3,000	

⁽a) Heavy Trace.

ADANAC WATER

Sample Nos. 86961, 88108

vious Lysis ta per Ilion

revious nalysis

arts per aillion The Caledonia Springs Co., Ltd.

Constituents	Found	Advertised	Previous Analysis
,	Parts per million	Parts per million	Parts per million
sulphuric acid(80.)			
Bicarbonic acid			5.7
arponic acid	76		
itric acid			45
TUTOUS BOID			20
hosphoric acid(NOs)		* * * * * * * * * * * * * * * * * * * *	
romine(CI)	14		10
dine(Br)			10
Dien (1)			
Yon (SiO ₂)			
luminum (Fe, Al)			
Anganese.			
alcium			
trontium.			24
agnesium			
thium	• • • • • • • • • • • • • • • • • • • •		2.2
otassium			
odium(Na)		************	19
			13
pecific gravity at 15°C(NH4)	1-0001		1-0002

^{*}By Prof. T. A. Starkey, McGill University.

MAGI WATER

Caledonia Springe, Can.

Sample Nos. 86430, 86060, 88109, 88197

Constituents	Found	Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
learbonic acid (HC	SO ₄) CO ₃) 940 CO ₃)		2·1 930
rerous acid (N hosphoric acid (F hlorine (F romine (N	(C ₁) (C ₁) (C ₁) (B ₂)		trace 4,200
dine	(I) (O ₂)		10 1 · \$ 15 1 · 4
loum	Mn) 71 (Sr) 170	•	41 2-9 140
igm	Li) (K) Na)		2·4 78 2,700
otal solids in solution residue dried at 100° C	7,818		7,7621

^{*}Dept. of Mines Bul. 29—pt. 2, p. 47 (1915). †Dried at 116° C.

RADNOR MINERAL WATER

Sample Nos. 86959, 88101, 88189

Radnor, Quebec

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid	240	110 120 120	110 230 3-9
Thornine (Cl) Fromine (Br)	880	890	870 1.7
ilica. (SiO ₁) on (Fe, Al) luminum (Impanese (Mn)	• • • • • • • • • • • • • •	14	12 4·7
rontium(Ca)		180	97
agnesium(Mg)	****	25	57
otassium. (K) ddium. (Na) mmonium. (NH ₄) secific Gravity at 15° C.	1.0010	10 620	14 480 -02 -1-0015

^{*}Dept. of Mines Bul. 20, pt. 2, p. 88 (1914).

SALUTARIS MINERAL WATER

St. Clair, Mich.

Found	Advertised	Previous Analysis
Parts per million	Parts per million	Parts per million
27 650	traces	
none		
830	860	
6-6	9-7	
, , , , , , , , , , , , , , , , , , , ,	22	
	11	
	Parts per million 27 650 none 330	Parts per million 27 traces 180 nose 330 860 6-6 9-7

Norm.—The terms in which analysis advertised is expressed are not stated. Comparison is made on the assumption that grains per U.~8. gallon are meant.

FRIEDRICHSHALL MINERAL WATER

Save-Meiningen, Germany.

Sample Nos. 84392, 86904

ious lysis

on lion

·9 ·01 ·7

02 0015

ous reis per on

de on

. Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphurie acid(SC Sicarbonic acid(HCC			9,400
Zarbonie acid. (CC Vitrie acid. (NC Vitrous acid. (NC	00)		390
hosphorie acid(PC hlorine(C romine(E	26,000		7,700 85
odine(SiC	9)		traces
luminum. langanese	(n)		400
rontium (E	r)		2,200
otassium(K) dium(N mmogium(N	a)		90 5,100

^{*}Calculated from analysis in Eaux Douces et Eaux Minerales by F. Dienert (1912).

HELENEN QUELLE

Pyrmont, Gernany

Constituents	Found	Advertised	Previous Analysis
Constituenta	Parts per million	Parts per million	Parts per million
ulphuric acid(SO4)	30		1,100
lice honic acid (HCOs)			-,
arbonic acid(COs)	[470
litric acid(NOs)			•4
itrous acid(NO:)		l	
hosphoric acid(PO4)			trace
hlorine(C1)	570		110
romine(Br)		1	trace
odine(I)			trace
ilien(SiO ₂)		[31
on			12-8
anganese(Mn)			1.2
alcium(Ca)	440		570
trontium(8r)			2.1
agnesium(Mg)	240		110
thium(Li)			-13
otassium(K)			6.9
odium(Na)			71
mmonium(NH ₄)			1.11

By Freezius in "Undersuchung das Wassers," p. 393 (1889).

FRANZ JOSEF APERIENT WATER

Sample Nos. 80205, 84398, 88191

Hungary

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid	28,000	36,000	37,009
Jarbonic acid. (CO ₂) Vitric acid (NO ₂) Vitrous acid (NO ₂)			1,100
hosphoric acid (PO4) hlorine (C1) romine (Br)	880	• • • • • • • • • • • • • • • • • • • •	1,300
dine. (I) lica. (SiO ₃) on. (Fe, Al) luminum			12·4 6·3
anganese (Mn) sleium (Ca)	680		540
gnesium (Sr)	4,200	5,000	8, 300
tassium. (K) dium. (Na) nmonium (NH)	5,450	8,000	8,200

^{*}By Prof. Attfield quoted in "Natural Mineral Waters" by Ingram and Royle (1911), p. 26.

RUBINAT MINERAL WATER

Condal Spring, Spain

Sample Nos. 80207, 86329, 86407, 88105

Constituents	Found	Advertised	*Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphurie acid	33,000 410	67,000	89,000
Vitrous acid. (NOs) Phosphoric acid. (POs) Chlorine (CI) Rromine (CI)	1,600	1,210	1,200
odins. (1) ilics. (SiO ₂) ron (SiO ₂) luminum (Fe, Al)		36	
anganese (Ma) alcium (Ca) trontium (Sr) agnesium (Sr)	510	560	570
ithium(Mg)	1,900	640	650
otassium. (Ki) odium. (Na) mmosium. (NH)	280 12,000	100 31,000	100 32,000

⁶"Natural Mineral Waters," Ing and Royle (1911) p. 45, analysis of the Rubinat-Llorach Spring by Prof. Bouchardat.

SAINT RENE (ST-Youar PRES VICET)

Bassin de Vichy, France

Sample No. 86943

vious lysis ts per llion

000 100

300

12-4

540 300 00

ysis per ion

,000

, 200

Spring

Constituents	Found	Advertised	Previous Analysis
Vitations to	Parts per million	Parts per million	Parts per million
ulphuric acid. (804) itar-Lonic acid. (HCOs) arbunic acid. (COs)	110 4,100	160 4,600	
litric acid	250	820	
Deline	9·2 14	Fe=130	
alcium	280 trace	150 12	
thium (Li) tassium (K) dium (Na) mmonium (NH ₄)		130 1,600	

WEST BADEN SPRUDEL WATER

West Baden, Indiana

Constituents	Found	Advertised	Previous Analysis
Constituents	Parts per million	Parts per million	Parts per million
Sulphuric acid		62,000	
Bicarbonic acid	(HCO ₃) (CO ₃)	190	
litric acid	(NO ₂)		
hosphorie acidhlorine	(PO ₄)(Cl) 2,100	1,500	
romine	(Br)		
ilioa	(SiO ₂)	8	
luminum }	00		
alcium	(Ca) 800	610	
lagnesiumithium	(Mg) 6,600	6,500	•
otassium	(K)		
lodium.	(NH ₄)	18,000	

Nors.—Analysis of West Baden Springs, Ind., quoted by Walton in his "Mineral Springs" (1892) gives total solids 3,380 per million; Labelled analysis of sample, total solids, 85,818 per million "Concentrated" or "fortified" does not appear on label.

SAINT LOUIS MINERAL WATER (No. 2)

Sample No. 86808

St.-Yorrs pres Vichy, France

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts er million
Sulphuric acid	100 4,400	150 4,800	
Vitrous acid. (NOs) *hosphoric acid. (POs) Chlorine. (CI) *romine. (CI)	330	trace 200	
Deline	************	26 9·7	
trontium(Ca)	180	140	
Lagraceium (Mg) ithium (Li) 'otassium (K) odium (Na) mmonium (NHd)	trace	42 2·9 110 1,700	

APENTA APERIENT WATER

Budapest, Hungary

Sample Nos. 68726, 80208, 88192

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid(8 Bicarbonic acid(YEC			31,000
Name and a series of the serie			0,000
Vitrie acid	0.)		510
Vitrous acid(N			
hosphoric acid			
Chlorine	Cl) 920		1, 100
	Br)		8.8
ilica(Si	(1)		
ron /Fe	AIS	• • • • • • • • • • • • • • • • • • • •	32 53
Muminum			9.0
fanganese(1	(n)		
Amount in the second se	Ca) 510		820
fagnesium	Sr)		
ithium	(g) 4,500		4,300
otassium	K(9·5 37
odium	(a) 5,700	***********	8,300
Ammonium(N)	FA)		0,000

^{*&}quot;Natural Mineral Waters" by Ingram & Royle, p. 9, analysis by Tichborne.

VICHY CELESTINS

Vicky, France

Sample Nos. 68628, 80203, 82005, 84203, 86867, 88186

revious nalysis arts per nillion

evious nalysis rts per nillion

1,000 510

l, 100 8-5

830 1,300 9.5 37 1,300

Constituents	Found	Advertised	*Previous Analysis
V	Parts per million	Parts per million	Parts per million
ulphuric acid(80	210		180
Bicarbonic acid(ECO			
arbonic acid(CO			2,300
itrous acid(NO			
hosphoric acid(PO			
hlorine(C	1) 270		210
romine	2		
ilies(SiO	[{]		
on)	26	•••••	40
luminum (•/		traces
anganese	2)		
alcium(C	170		900
trontium(8			
agnosium(M.			20
			8-
otaasum(F		************	130
mmonium(NH			1,600

[&]quot;"Eaux Douces et Eaux Minerales" by Dienert (1912) Table 2.

APOLLINARIS MINERAL WATER

Rhenish Prussis

Sample Nos. 68677, 80210, 83993, 88104

Constituents	Found	Advertised	Previous Analysis
	Parts per million	Parts per million	Parts per million
Sulphuric acid(SC	220		170
Sicarbonic acid(HCC	2,100		2.50
arbonic acid(CC			2,00
litric scid(NO			
litrous acid(NC			
hosphoric acid(PC			27
		,	17
romine(B	<u>r)</u>		
	1)		
on(Sio			3
anganese			
alcium(C			
trontium(8			
agnesium		• • • • • • • • • • • • • • • • • • • •	
ithium	2/1 444	**********	: 14
otassium			
odium(N		***********	96
mmonium(NE		************	•

^{*}Analysis in parts per million calculated from those given in Mineral and Aerated Waters by C. A. Mitchell, expressed in grains per pint. Analysis by Kyll (1907).

VANCOUVER B. C. PLUTO CONCENTRATED SPRING WATER

Prench Lick, Ind., U.S.A.

Sample Nos. 68639, 68672, 68714, 80304, 81374, 83068, 83901, 84300, 86406, 86063, 88184

	Constituents	Found	Advertised	*Previous Analysis
1.2	Committee	Parts per million	Parts per million	Parts per million
Bulphurie acid Bicarbonie acid Carbonie acid	••••••	(SO ₄) 68,000 (HCO ₃) 246	70,000 240	68,000
litric acid litrous acid hosphoric acid.	••••••••••••••	(NO ₃) (NO ₃)		trace
hlorine		(Cl) 1,400 (Br) (I)	1,800	1,400
ilica		(SiO ₂) . 28	13	trace 29 3-4
alciumtrontium	****************************	(Ca) 540	520	300
agnesium	•	(Mg) 6,600	6,900	6,100
otassium odium mmonium		(K) (Na) (NH ₄) 19,009	21,000 5-7	6,100 (a) 280 22,000

^{*}U.S. Dept. of Agr. Bur. of Chem., Bul. 91, p. 65. (a) Heavy Trace.

REGENTE

St. Yorre pres Vichy, France

Sample Nos. 86405, 86414

Constituents	Found	Advertised	Previous Analysis
· ·	Parts per million	Parts per million	Parts per million
Sulphuric acid. (SO ₄) Bicarbonic acid. (HCO ₂ Carbonic acid. (CO ₂) Nitric acid. (NO ₃)	67 1,100	250 4,200 2,300	
Nicous acid (NO ₁) Phosphoric acid (PO ₄) Zalorine (Cl) Bromine (Br)	120	340	
odine. (I) Silica. (SiOa) ron. (Fe). (Ann)	16 10	19 9-1	
Calcium (Ca) Strontium (Sr) fagnesium (Mg) .ithium (Mg)	14 6-6 2-0	100	
Otassium (K) odium (Na) mmonium (NH ₄) result (ASO	2.0	170 1,700	

AESCULAP MINERAL WATER

Sample Nos. 68676, 6673

evicus alysis rts per illica

3,000 220 Page

7,400 Fisce 29 3-5

vious dysis ts per llion

	onstituents	Parts ner			
		Parts per million	Parts per million	Parts per million	
Sulphuric acid	(80	29,000	25,000	25,000	
Carbonic acid	(80) (HCO) (CO) (NO) (NO) (PO)) 	590	800	
Phosphorie acid	(NO (PO (C) (B)	1,700	1,800	1,800	
	(SiO ₁ (F ₀ , Al		9.2	trace	
a la com		//	21	AigO ₂ =31	
trontium	(Sr	4,300	8,500	3,500	
otassium	(Ca (Br (Mg (Li (Na (NH		6,100 1.7	trace 6, 100	
int are recalculated.	und in Mineral and Aerated Wat SEBASTIEN SPRING Ste. Ureule, Que	WATER			
Sulphurie acid Bicarbonie acid Carbonie acid Chlorine Total solids dried	(SO ₄) (HCO ₄). (CO ₅) (CI)		760 ** 760 ** 760 **	nillion	
No. 8070	SAINT JULIEN SPRIN Ste. Ureule, Que				
Bicarbonic acid Carbonic acid Phosphoric acid Chlorine	(SO ₄)(HCO ₉)(CO ₅)(CO ₅)(CO ₅)(CI)(SiO ₂)at 100°C.	1,3	8-3 parts per n 00 " 84 " ace 00 "	million '	
Total Bollus (IIIIa)	MEYER'S MOUNT CLEM	ENS WATER			
THE STREET	(Cl) (Ca)		,000 parts per n ,000 " 440 " ,300 "	nillion	
Note.—Unable to dota	LITHIA WATE	R			
o. 80201 No trace of lithium cou	Sussex, N.B. ald be detected with the spectro	cope after oquo	entration of the	whole many	
225 cc). Total solids on eva No therapeutic val	poration	******	145 ры. тп	illion	
the state of the s					
SOU	RCE GRANDE GROTTE (S	T- KORRE PRES	VECET)	50 25 SEE 618	

Nos. 8047, 8050.	LANORAIE NA	TURAL I	MINERAL W	ATER			
Sulphysic sold		101		-			
Bioarbonie aci	d	HCO ₄).	************		barre ber	million "	
Chlorine		CI)		4,800	**	**	
Calcium	(Ca)		. 46	66	**	
NOTE Unable to	obtain an analysis of th	hie water.					
	LAURENTI	DE MINI	ERAL WATE	R			
No. 8043	d	Joliette, Q	we.	- 1			
Chlorine		CI)		. 5,300	parts per	million	
Bioarbonic acid	3	BO ₄)	***********	. 64		44	
Calcium	• • • • • • • • • • • • • • • • • • • •	Ca)		24	44	4	
Unable to obtain dyspepsia, stomach as While only a very gen	an analysis of this wa ad liver troubles — a eral statement of com-	ter. Medi- universal position is	cinal claims or beverage, mil- made.	d lazativ	'Specific alterat	in rhoums ive and to	tion mio.
	LA SOUVER						
No. 8060		20.1		400		9994	
Bicarbonic acid	1	HCO.)		3 600	herite bet	million "	
Chlorine		C1)		260	44	44	
Magnesium		(a)		41	44	44	
Unable to obtain	analysis of this water.	Label re	ada "It is uno	cualled i	a all line	er and etc	
Unable to obtain complaints, troubles of stay at Vichy."	the bowels, diseases of About two bottl	f the kidne les a day n	ys, diabetes, any effect the	gout, rhee	matism at hom	dyspopsis	i, etc
stay at vieny."	armurunt a	ATTN: 2 T					
No. 88194	OUTHERTIN	Hamilton, (THIA WATE	E.			
	-1 -1 1000 C	AT SIMILEON, (/mi.	1 1	a least of	-	
Chlorine	ied at 100° C	CD		804	parts per	taillion	
Lithium	(1	u)		present			
Sample very small label) it to be "Useful	. The manufacturers	have not	had an analys	s made	lthough	they clain	n (o
rement it to be Ceefal	in dyspopsia, rheumat	ism, kidne;	y and all blade	ier troubi	84."	3	
	EA	U MINE	RALE				
No. 8055	St. F	eliz de Valo	is, Que.				
C' lorise	EA St. F (C)	21)	************	4,600	parts per	million	
Calcium.	(8	(a)		09	44		
Lithium	(i	A)	************	present		46	
Magnesium	(A)	(g)					1
This water is fortified prominent on label.	No medicinal claims	and lithia made for i	salt "faite av t.	es l'eau d	les sourc	es de Ram	reea,
IA	DUISEVILLE NATU	JRAL MI	NERAL WAT	CER			
No. 8054	1	Louiseville,	Que.				
Chlorine	(0	(1)		9,300	parts per	million	
Unable to obtain a	(C) (E) nalysis of this water;	100a)	otto alat	830			
OWNER OF ODERIT R	natymes of this water;	no tuerape	tuc ciaims ma	de for it.			
No. 86805		Montreal 6	IVE WATER				
Supplyric sold	/9	0.1		119 000 -	ante no-	million	
	(S						
Statement on label : purgative properties are Statement in letter ! Ottawa under No. 2589,	reads—"Corona Purgnt e universally known, e from manufacturer reads otc., etc."	tive Water to." The fo	is not an arti	ificial wa	ter. Its	medicinal a was give	and on to
	ST. CATHARI						
		Catharines,	Ont.				
No. 88156							
Sulphuric acid.				390 p	arts per .	million	
Calcium.	(C	3		7,200	6/	"	
Magnesium				1,900 210	"		
	sed analysis of this we				100		
A MINIST IN AN ACIVILLE	THE PERSON OF THE PERSON OF THE PERSON	ALBERT PHILE OF	TERROTOR OF PASS	ILLE TO DOE	THE SCHOOL OF	ART WALL	AP 10

There is an advertised analysis of this water but expression of results is not made clear. Water is claimed to be "For medicinal purpo as only."

(08