## **Problem 1):** Let $f:[0,1] \to \mathbb{R}$ be continuously differentiable and define

$$B_n(x) = \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

**RESULT 1:**  $\sum_{k=0}^{n} b_{n,k} = 1$   $\forall x \in [0,1]$ 

prove that  $\lim_{n\to\infty} B_n(x) = f(x)$  for each  $x\in[0,1]$ . solution):

$$b_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$

By binomial theorem, 
$$n \in \mathbb{N}$$

$$((1-x)+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \qquad \forall x \in [0,1]$$

We will prove this results using four intermediary results. Let define

$$b_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$

 $(n+a)^n = \sum_{n=0}^{\infty} {n \choose n} n^k a^{n-k}$ 

**RESULT 1:** 
$$\sum_{k=0}^{n} b_{n,k} = 1$$
  $\forall x \in [0,1]$ 

**RESULT 1:** 
$$\sum_{k=0}^{n} b_{n,k} = 1$$
  $\forall x \in [0,1]$  By binomial theorem,

$$((1-x)+x)^n = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \qquad \forall x \in [0,1]$$

$$\sum_{k=0}^{\infty} \binom{k}{1}$$

By binomial theorem,

$$\Rightarrow \sum_{k=0}^{\infty}$$

**RESULT 2:**  $\sum_{k=0}^{n} \left(\frac{k}{n}\right) b_{n,k}(x) = x \quad \forall x \in [0,1]$ 

$$\implies \sum_{n=1}^{n} b_{n,k} = 1^{n} = 1$$

$$n_{n,k} = 1^n = 1$$

**RESULT 2:** 
$$\sum_{k=0}^{n} \left(\frac{k}{n}\right) b_{n,k}(x) = x \quad \forall x \in [0,1]$$
 By binomial theorem,

$$\binom{n}{k} p^k q^{n-k}$$

$$\binom{k}{k} p^k q^{n-k}$$

$$\frac{d}{d}(p+q)^n = \frac{d}{d}\sum_{k=1}^n \binom{n}{k} p^k q^{n-k} =$$

$$\frac{d}{dp}(p+q)^n = \frac{d}{dp} \sum_{k=1}^n \binom{n}{k} p^k q^{n-k} = n(p+q)^{n-1}$$

$$\frac{d}{dn}(p+q)^n = \frac{d}{dn}\sum_{k}^{n} \binom{n}{k} p^k q^{n-k} =$$

$$\frac{d}{dp}(p+q)^n = \frac{d}{dp}\sum_{k=0}^{\infty} \binom{n}{k} p^k q^{n-k} =$$

$$\frac{d}{dp}(p+q)^n = \frac{d}{dp} \sum_{k=0}^{\infty} {n \choose k} p^k q^{n-k} = 0$$

 $\sum_{k=0}^{n} \left(\frac{k}{n}\right) b_{n,k}(x) = x \qquad \forall \ x \in [0,1]$ 

**RESULT 3:**  $\sum_{k=0}^{n} {k^2 \choose n^2} b_{n,k}(x) = \frac{n-1}{n} x^2 + \frac{1}{n} x \quad \forall x \in [0,1]$ 

- $\sum_{k=0}^{n} \binom{n}{k} k p^k q^{n-k} = n(p+q)^{n-1} p$

Taking p = x; q = 1 - x we have,

end of the proof of result 2.

Differentiating both sides with respect to p:

end of the proof of result 2.

**RESULT 3:**  $\sum_{k=0}^{n} {k^2 \choose n^2} b_{n,k}(x) = \frac{n-1}{n} x^2 + \frac{1}{n} x \quad \forall x \in [0, 1]$ 

RESULT 3: 
$$\sum_{k=0}^{n} {\frac{\kappa}{n^2}}$$
By binomial theorem,

 $(p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}$ 

Differentiating both sides with respect to 
$$p$$
:
$$d = \begin{pmatrix} d & n \\ n & n \end{pmatrix} \begin{pmatrix} n \\ n \end{pmatrix} \begin{pmatrix} n$$

 $\frac{d}{dp}(p+q)^n = \frac{d}{dp} \sum_{k=0}^n \binom{n}{k} p^k q^{n-k} = n(p+q)^{n-1}$ 

$$\frac{d}{dp}$$

Again differentiating both sides with respect to p, and multiplied by p we

have:

$$\frac{n}{n} (n) (k)$$

 $\sum_{k=0}^{n} \binom{n}{k} \left(\frac{k}{n}\right) p^k q^{n-k} = (p+q)^{n-1} p$ 

$$k=0$$
 (N)

gain differentiating both sides with respect to 
$$p$$
, and mult ave:

Again differentiating both sides with respect to p, and multiplied by p we

 $\sum_{k=0}^{n} \binom{n}{k} \left(\frac{k}{n}\right) p^k q^{n-k} = (p+q)^{n-1} p$ 

 $\frac{d}{dp}(p+q)^n = \frac{d}{dp}\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = n(p+q)^{n-1}$ 

 $(p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k}$ 

have:  $\sum_{k=0}^{n} {n \choose k} \left(\frac{k^2}{n^2}\right) p^k q^{n-k} = \frac{n-1}{n} (p+q)^{n-2} p^2 + \frac{1}{n} (p+q)^{n-1} p^n$ 

Differentiating both sides with respect to p:

Taking p = x; q = 1 - x we have,  $\sum_{n=0}^{\infty} {n \choose n} {k^2 \choose n} n^k a^{n-k} = \frac{n-1}{n-1} x^2 + \frac{1}{n} x^2$ 

$$\sum_{k=0}^{n} \binom{n}{k} \left(\frac{k}{n}\right) p^k q^{n-k} = (p+q)^{n-1} p$$

Again differentiating both sides with respect to p, and multiplied by p we have:

$$\sum_{k=0}^{n} {n \choose k} \left(\frac{k^2}{n^2}\right) p^k q^{n-k} = \frac{n-1}{n} (p+q)^{n-2} p^2 + \frac{1}{n} (p+q)^{n-1} p^n$$

Taking p = x; q = 1 - x we have,

$$\sum_{k=0}^{n} \binom{n}{k} \left(\frac{k^2}{n^2}\right) p^k q^{n-k} = \frac{n-1}{n} x^2 + \frac{1}{n} x$$

end of the proof of result o.

**RESULT 4:** 
$$\sum_{k=0}^{n} \left(\frac{k}{2} - x\right)^2 b$$

end of the proof of result 4

For a given point x and  $\epsilon > 0$ ,

$$\sum_{k=1}^{n} (k)^{2}$$

**RESULT 4:** 
$$\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^2 b_n$$

**RESULT 4:**  $\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} b_{n,k}(x) = \frac{x(1-x)}{n} \quad \forall x \in [0,1]$ 

 $\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} b_{n,k}(x) = \frac{n-1}{n} x^{2} + \frac{1}{n} x - 2x^{2} + x^{2} = \frac{x(1-x)}{n} \quad \forall \ x \in [0,1]$ 

 $\exists M > 0 \text{ such that } |f(x)| \leq M \quad \forall x \in [0,1]$ 

 $\exists \ \delta > 0 \text{ such that } |f(x) - f(y)| \le \epsilon \qquad |x - y| < \delta$ 

Finally we use the fact that f is continuous on [0,1]. i.e.

 $\sum_{k=0}^{n} \left(\frac{k}{n} - x\right)^{2} b_{n,k}(x) = \sum_{k=0}^{n} \left(\frac{k^{2}}{n^{2}}\right) b_{n,k}(x) - 2x \sum_{k=0}^{n} \left(\frac{k}{n}\right) b_{n,k}(x) + x^{2} \sum_{k=0}^{n} b_{n,k}(x)$ 

Finally we use the fact that f is continuous on [0,1]. i.e,

For a given point x and  $\epsilon > 0$ ,

 $|B_n(x)-f(x)|=$ 

 $\exists M > 0 \text{ such that } |f(x)| < M \qquad \forall x \in [0,1]$ 

 $\exists \ \delta > 0 \text{ such that } |f(x) - f(y)| \le \epsilon \qquad |x - y| \le \delta$ 

(Using Result 1)

 $\leq \Big| \sum_{k=0}^{n} {n \choose k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k} - f(x) \Big|$ 

 $\leq \Big| \sum_{k=0}^{n} {n \choose k} \Big( f\Big(\frac{k}{n}\Big) - f(x) \Big) x^k (1-x)^{n-k} \Big|$ 

 $\leq \sum_{k=0}^{n} {n \choose k} \left| \left( f\left(\frac{k}{n}\right) - f(x) \right) \right| x^k (1-x)^{n-k}$ 









$$\exists \ \delta > 0 \text{ such that } |f(x) - f(y)| \le \epsilon \qquad |x - y| \le \delta$$

$$|B_n(x) - f(x)| =$$

$$\le \Big| \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1 - x)^{n-k} - f(x) \Big|$$

(Using Result 1)

 $\leq \Big| \sum_{k=0}^{n} {n \choose k} \Big( f\Big(\frac{k}{n}\Big) - f(x) \Big) x^k (1-x)^{n-k} \Big|$ 

 $\leq \sum_{k=0}^{n} {n \choose k} \left| \left( f\left(\frac{k}{n}\right) - f(x) \right) \right| x^{k} (1-x)^{n-k}$ 

 $\leq \sum_{k=0}^{n} \binom{n}{k} \left| \left( f\left(\frac{k}{n}\right) - f(x) \right) \right| x^{k} (1-x)^{n-k} + \sum_{k=0}^{n} \binom{n}{k} \left| \left( f\left(\frac{k}{n}\right) - f(x) \right) \right| x^{k} (1-x)^{n-k}$ 

 $\leq \epsilon + \frac{2M}{\delta^2} \sum_{\substack{k=0\\ |\frac{k}{n} - x| > \delta}}^{n} \binom{n}{k} \left( \left( \frac{k}{n} \right) - x \right)^2 x^k (1 - x)^{n-k}$ 

 $|B_n(x)-f(x)| \leq 2\epsilon$ 

 $\lim_{n\to\infty} B_n(x) = f(x) \text{ for each } x \in [0,1]$ 

 $n = \binom{n}{k} \binom{k}{n} \binom{k}{n} \binom{k}{n} \binom{k}{n} \binom{k^2}{n} \binom{k}{n} \binom{k^2}{n} \binom{k}{n} \binom{k}$ 

**Problem 2):** If  $f(x) = x^2$  then show that  $B_n(x) = \frac{n-1}{n}x^2 + \frac{1}{n}x$ .

 $\leq \epsilon + \frac{2M}{\delta^2} \frac{x(1-x)}{n} \leq \epsilon + \frac{2M}{n\delta^2}$ 

Taking 
$$n \ge \left\lceil \frac{2M}{\epsilon \delta^2} \right\rceil + 1$$
, we have:

$$\rightarrow$$

$$\Rightarrow$$

$$\rightarrow$$

solution):

$$\lim_{n\to\infty} D_n(x) = f(x) \text{ for each } x \in [0,1]$$

 $b_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$ 

 $((1-x)+x)^n = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \qquad \forall x \in [0,1]$ 

 $\implies \sum_{k=0}^{n} b_{n,k} = 1^n = 1$ 

**Problem 2):** If  $f(x) = x^2$  then show that  $B_n(x) = \frac{n-1}{n}x^2 + \frac{1}{n}x$ .

solution):
$$B_n(x) = \sum_{k=1}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k} = \sum_{k=1}^n \binom{n}{k} \left(\frac{k^2}{n^2}\right) x^k (1-x)^{n-k}$$

**RESULT 1:**  $\sum_{k=0}^{n} b_{n,k} = 1$   $\forall x \in [0,1]$ 

Again we divide this into three intermediary results. Let define

By binomial theorem,

and of the proof of regult 1

end of the proof of result 3. As,  $B_n(x) = \sum_{k=0}^n \left(\frac{k^2}{n^2}\right) b_{n,k}(x)$ ; we have:  $B_n(x) = \frac{n-1}{n} x^2 + \frac{1}{n} x$ .

**Problem 3):** Use the above  $B_n(x)$  to determine n such that  $|B_n(x)-x^2|$ 

something's

missing

 $10^{-2}$  for all  $x \in [0, 1]$ .

solution):

$$|B_n(x) - x^2| \le \left| \frac{n-1}{n} x^2 + \frac{1}{n} x - x^2 \right| \le \frac{1}{n} |x - x^2|$$

Now  $x-x^2=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2$ , is maximize at x=2, and the maximum value is  $\frac{1}{4}$ . Using this,

this, 
$$|B_n(x) - x^2| \le \frac{1}{4n}$$

So, it is enough to solve for the n, for which,  $\frac{1}{4n} \le 10^{-2}$ , i.e  $n > 25 \implies n = 26$ .

**Problem 4):** Use Neville's method to approximate  $\sqrt{3}$  with  $f(x) = 3^x$ and  $x_0 = -2, x_1 = -1, x_2 = 0, x_3 = 1$  and  $x_4 = 2$ . Find the absolute and relative errors.

**Problem 4):** Use Neville's method to approximate  $\sqrt{3}$  with  $f(x) = 3^x$  and  $x_0 = -2, x_1 = -1, x_2 = 0, x_3 = 1$  and  $x_4 = 2$ . Find the absolute and relative errors.

**solution):** The *n*th order polynomial in Neville's method:

$$P_{0,1,2,\cdots,n}(x) = \frac{(x-x_0)P_{1,2,\cdots,n} - (x-x_n)P_{0,1,\cdots,n-1}}{x_n - x_0}$$

We have the following table for  $x = \frac{1}{2}$ :

| i | $x_i$ | $P_i(x)$      | $P_{i-1,i}(x)$ | $P_{i-2,i-1,i}(x)$ | $P_{i-3,i-2,i-1,i}(x)$ | $P_{i-4,i-3,i-2,i-1,i}(x)$ |
|---|-------|---------------|----------------|--------------------|------------------------|----------------------------|
| 0 | -2    | $\frac{1}{9}$ |                |                    |                        |                            |
| 1 | -1    | $\frac{1}{3}$ | $\frac{2}{3}$  |                    |                        |                            |
| 2 | 0     | ĩ             | $\frac{4}{3}$  | $\frac{3}{2}$      |                        |                            |
| 3 | 1     | 3             | 2              | 11 6               | 16<br>9                |                            |
| 4 | 2     | 9             | 0              | 3 2                | $\frac{5}{3}$          | $\frac{41}{24}$            |

Absolute error = 
$$\left| \sqrt{3} - \frac{41}{24} \right| = 0.023717$$

relative errors.

**solution):** The *n*th order polynomial in Neville's method:

$$P_{0,1,2,\cdots,n}(x) = \frac{(x-x_0)P_{1,2,\cdots,n} - (x-x_n)P_{0,1,\cdots,n-1}}{x_n - x_0}$$

We have the following table for  $x = \frac{1}{2}$ :

| i | $x_i$ | $P_i(x)$      | $P_{i-1,i}(x)$ | $P_{i-2,i-1,i}(x)$ | $P_{i-3,i-2,i-1,i}(x)$ | $P_{i-4,i-3,i-2,i-1,i}(x)$ |
|---|-------|---------------|----------------|--------------------|------------------------|----------------------------|
| 0 | -2    | 10            |                |                    |                        |                            |
| 1 | -1    | $\frac{1}{3}$ | $\frac{2}{3}$  |                    |                        |                            |
| 2 | 0     | ĭ             | $\frac{4}{3}$  | $\frac{3}{2}$      |                        |                            |
| 3 | 1     | 3             | 2              | $\frac{11}{6}$     | $\frac{16}{9}$         |                            |
| 4 | 2     | 9             | 0              | $\frac{3}{2}$      | $\frac{5}{3}$          | $\frac{41}{24}$            |

Absolute error = 
$$\left| \sqrt{3} - \frac{41}{24} \right| = 0.023717$$
  
Relative error =  $\frac{\left| \sqrt{3} - \frac{41}{24} \right|}{\sqrt{3}} = 0.013693$ 

**Problem 5):** Use Neville's method to approximate  $\sqrt{3}$  with  $f(x) = \sqrt{3}$  and  $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 4$  and  $x_4 = 5$ . Find the absolute and relative errors.

**solution):** The *n*th order polynomial in Neville's method:

$$P_{0,1,2,\cdots,n}(x) = \frac{(x-x_0)P_{1,2,\cdots,n} - (x-x_n)P_{0,1,\cdots,n-1}}{x_n - x_0}$$

We have the following table for x = 3:

| i | $x_i$ | $P_i(x)$ | $P_{i-1,i}(x)$ | $P_{i-2,i-1,i}(x)$ | $P_{i-3,i-2,i-1,i}(x)$ | $P_{i-4,i-3,i-2,i-1,i}(x)$ |
|---|-------|----------|----------------|--------------------|------------------------|----------------------------|
| 0 | 0     | 0        | -              |                    |                        |                            |
| 1 | 1     | 1        | 3              | -                  |                        |                            |
| 2 | 2     | 1.4142   | 1.4244         | 1.2426             |                        |                            |
| 3 | 4     | 2        | 1.7071         | 1.7475             | 1.6213                 |                            |
| 4 | 5     | 2.2341   | 1.7439         | 1.7260             | 1.7368                 | 1.6906                     |

Absolute error = 
$$|\sqrt{3} - 1.6906| = |1.73205 - 1.6906 = 0.04145|$$

Relative error = 
$$\frac{\left|\sqrt{3} - \frac{41}{24}\right|}{\sqrt{3}} = \frac{\left|1.73205 - 1.6906\right|}{\sqrt{3} - 1.6906} = 0.02393$$

$$P_{0,1,2,\cdots,n}(x) = \frac{(x-x_0)P_{1,2,\cdots,n} - (x-x_n)P_{0,1,\cdots,n-1}}{x_n - x_0}$$

We have the following table for x = 3:

| i | $x_i$ | $P_i(x)$ | $P_{i-1,i}(x)$ | $P_{i-2,i-1,i}(x)$ | $P_{i-3,i-2,i-1,i}(x)$ | $P_{i-4,i-3,i-2,i-1,i}(x)$ |
|---|-------|----------|----------------|--------------------|------------------------|----------------------------|
| 0 | 0     | 0        | =              |                    |                        |                            |
| 1 | 1     | 1        | 3              | -                  |                        |                            |
| 2 | 2     | 1.4142   | 1.4244         | 1.2426             |                        |                            |
| 3 | 4     | 2        | 1.7071         | 1.7475             | 1.6213                 |                            |
| 4 | 5     | 2.2341   | 1.7439         | 1.7260             | 1.7368                 | 1.6906                     |

Absolute error = 
$$\left| \sqrt{3} - 1.6906 \right| = |1.73205 - 1.6906 = 0.04145$$
  
Relative error =  $\frac{\left| \sqrt{3} - \frac{41}{24} \right|}{\sqrt{3}} = \frac{|1.73205 - 1.6906|}{1.73205} = 0.02393$ 

One thing to note: the approximation is better if we choose  $f(x) = 3^x$  instead of  $f(x) = \sqrt{3}$ , as in problem 4; as both the absolute and relative error is smaller in comparison to problem 5.

bronsom or

**Problem 6):** If  $P_3(x)$  is the interpolating polynomial for the following data then we use Neville's method to find y if  $P_3(1.5) = 0$ .

| x    | 0. | .5 | 1 | 2 |
|------|----|----|---|---|
| f(x) | 0  | y  | 3 | 2 |

**solution):** Here we define  $P_{0,1,2,3}$  as the Neville's  $P_3$  polynomial. So we have:  $P_{0,1,2,3}(1.5) = 0$ .

$$P_0 = f(0) = 0$$
;  $P_1 = f(.5) = y$ ;  $P_2 = f(1) = 3$ ;  $P_3 = f(2) = .2$ 

The *n*th order polynomial in Neville's method:

$$P_{0,1,2,\dots,n}(x) = \frac{(x-x_0)P_{1,2,\dots,n} - (x-x_n)P_{0,1,\dots,n-1}}{x_n - x_0}$$

Using this: 
$$P_{0,1}(1.5) = \frac{(1.5-0)y - (1.5-.5) \times 0}{.5} = 3y$$
 
$$P_{1,3}(1.5) = \frac{(1.5-0.5) \times 3 - (1.5-1) \times y}{.5} = 6 - y$$
 
$$P_{2,3}(1.5) = \frac{(1.5-1) \times 2 - (1.5-2) \times 3}{1} = 2.5$$

$$P_{1,3}(1.5) = \frac{(1.5 - 0.5) \times 3 - (1.5 - 1) \times y}{.5} = 6$$

$$P_{2,3}(1.5) = \frac{(1.5 - 1) \times 2 - (1.5 - 2) \times 3}{.5} = 2.$$

 $P_{0,1,2}(1.5) = \frac{(1.5-0)\times(6-y)-(1.5-1)\times3y}{1} = 9-3y$  $P_{1,2,3}(1.5) = \frac{(1.5 - .5) \times 2.5 - (1.5 - 2) \times (6 - y)}{1.5} = \frac{11 - y}{2}$ 

$$P_{1,2,3}(1.5) = \frac{(1.5 - .5) \times 2.5 - (1.5 - 2) \times (6 - y)}{1.5} = \frac{11 - y}{3}$$

$$P_{0,1,2,3}(1.5) = \frac{(1.5 - 0) \times \frac{(11 - y)}{3} - (1.5 - 2) \times (9 - 3y)}{2} = 5 - y = 0$$

$$\implies y = 5$$

**Problem 7):** Use the forward difference formula to construct interpolating polynomials of degree one, two, and three for the following data and approximate  $f(-\frac{1}{3})$ .

| $\boldsymbol{x}$ | -0.75       | -0.5        | -0.25       | 0          |
|------------------|-------------|-------------|-------------|------------|
| f(x)             | -0.07181250 | -0.02475000 | -0.33493750 | 1.10100000 |

**solution):** Note that  $-.75 < -.5 < -\frac{1}{3} < -.25 < 0$ . From the given data data we have the given divided difference table, where divided difference formula is give by ,

$$f[x_i] = f(x_i); \text{ and } f[x_0, x_1, \cdots, x_n] = \frac{f[x_1, x_2, \cdots, x_n] - f[x_0, x_1, \cdots, x_{n-1}]}{x_n - x_0};$$

|           | <i>(((</i> , )) |         |       |   |
|-----------|-----------------|---------|-------|---|
| x         | f(x)            |         |       |   |
| $x_0 =75$ | 0718125         |         |       |   |
|           |                 | .18825  |       |   |
| $x_1 =5$  | 02475           |         | 2.501 |   |
|           |                 | 1.43875 |       | 1 |
| $x_2 =25$ | .3349375        |         | 3.251 |   |

| f(x)                                                                                          | -0.07181250 | -0.02475000 | -0.33493750 | 1.10100000 |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------|-------------|-------------|------------|--|--|--|--|
| <b>solution):</b> Note that $75 <5 < -\frac{1}{3} <25 < 0.$                                   |             |             |             |            |  |  |  |  |
| From the given data data we have the given divided difference table, where divided difference |             |             |             |            |  |  |  |  |
| formula is a                                                                                  | rive by     | -           |             |            |  |  |  |  |

-0.25

formula is give by,

$$f[x_i] = f(x_i)$$
; and  $f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$ :

-0.5

-0.75

| x         | f(x)     |         |       |   |  |
|-----------|----------|---------|-------|---|--|
| $x_0 =75$ | 0718125  |         |       |   |  |
|           |          | .18825  |       |   |  |
| $x_1 =5$  | 02475    |         | 2.501 |   |  |
|           |          | 1.43875 |       | 1 |  |
| $x_2 =25$ | .3349375 |         | 3.251 |   |  |
|           |          | 3.06425 |       |   |  |
| $x_3 = 0$ | 1.101    |         |       |   |  |

For polynomial of degree 1, we use the subtable corresponding to  $|x_1, x_2|$ .  $P_1(x) = -.02475 + 1.43875(x + .5)$ 

$$P_1(-\frac{1}{2}) = -.02475 + 1.43875(-\frac{1}{2} + .5) = .215041$$

For polynomial of degree 2 we use subtable corresponding to 
$$[x_0, x_2]$$
 and denoted it by

For polynomial of degree 2 we use subtable corresponding to 
$$[x_0, x_2]$$
 an  $P_2^1(x)$ , and the subtable corresponding to  $[x_1, x_2]$ , denoting it by  $P_2^2(x)$ .

$$P_2^{1}(x)$$
, and the subtable corresponding to  $[x_1, x_2]$ , denoting it by  $P_2^{2}(x)$ 

$$P_2^1(x)$$
, and the subtable corresponding to  $[x_1, x_2]$ , denoting it by  $P_2^2(x)$ 

$$P_2^1(x) = -.0718125 + .18825(x + .75) + 2.501(x + .75)(x + .5)$$

$$P_2(x) = -.0718125 + .18825(x + .75) + 2.501(x + .75)(x + .5)$$

$$P_2(x) = -.0718125 + .18825(x + .75) + 2.501(x + .75)(x + .5) - .18625(x + .75) + 2.501(x + .75)(x + .5) - .18625(x + .75) + 2.501(x + .75)(x + .5) - .18625(x + .75) + 2.501(x + .75)(x + .5) - .18625(x + .75) + 2.501(x + .75)(x + .5) - .18625(x + .75) + 2.501(x + .75)(x + .75)(x + .75)(x + .75) + 2.501(x + .75)(x + .75)(x$$

$$P_2^1(-\frac{1}{3}) = -.0718125 + .18825(-\frac{1}{3} + .75) + 2.501(-\frac{1}{3} + .75)(-\frac{1}{3} + .5) = .180306$$

$$P_2^1(-\frac{1}{3}) = -.0718125 + .18825(-\frac{1}{3} + .75) + 2.501(-\frac{1}{3} + .75)(-\frac{1}{3} + .5) = .180306$$

 $P_2^2(x) = -.02475 + 1.43875(x + .5) + 3.251(x + .5)(x + .25)$  $P_2^2(-\frac{1}{2}) = -.02475 + 1.43875(-\frac{1}{2} + .5) + 3.251(-\frac{1}{2} + .5)(-\frac{1}{2} + .25) = .169895$ 

Similarly:

For polynomial of degree 3, we will use the entire table corresponding to the interval 
$$[x_0, x_3]$$
.
$$P_3(x) = P_2^1(x) + (x + .75)(x + .5)(x + .25)$$

 $P_3(-\frac{1}{2}) = P_2^1(-\frac{1}{2}) + (-\frac{1}{2} + .75)(-\frac{1}{2} + .5)(-\frac{1}{2} + .25) = .174519$ 

 $P_1(-\frac{1}{2}) = -.02475 + 1.43875(-\frac{1}{2} + .5) = .215041$ For polynomial of degree 2 we use subtable corresponding to  $[x_0, x_2]$  and denoted it by  $P_2^1(x)$ , and the subtable corresponding to  $[x_1, x_2]$ , denoting it by  $P_2^2(x)$ .

 $P_1(x) = -.02475 + 1.43875(x + .5)$ 

For polynomial of degree 1, we use the subtable corresponding to  $|x_1, x_2|$ .

$$P_2^1(x)$$
, and the subtable corresponding to  $[x_1, x_2]$ , denoting it by  $P_2^2(x)$ .  

$$P_2^1(x) = -.0718125 + .18825(x + .75) + 2.501(x + .75)(x + .5)$$

$$P_2^1(-\frac{1}{2}) = -.0718125 + .18825(-\frac{1}{2} + .75) + 2.501(-\frac{1}{2} + .75)(-\frac{1}{2} + .5) = .180306$$

Similarly: 
$$P_2^2(x) = -.02475 + 1.43875(x + .5) + 3.251(x + .5)(x + .25)$$

 $P_2^2(-\frac{1}{2}) = -.02475 + 1.43875(-\frac{1}{2} + .5) + 3.251(-\frac{1}{2} + .5)(-\frac{1}{2} + .25) = .169895$ 

For polynomial of degree 3, we will use the entire table corresponding to the interval  $[x_0, x_3]$ .

 $P_3(-\frac{1}{2}) = P_2^1(-\frac{1}{2}) + (-\frac{1}{2} + .75)(-\frac{1}{2} + .5)(-\frac{1}{2} + .25) = .174519$ **Problem 8):** Use the backward difference formula to construct interpo-

lating polynomials of degret one, two, and three for the following data and

 $P_3(x) = P_2^1(x) + (x + .75)(x + .5)(x + .25)$ 

**Problem 8):** Use the backward difference formula to construct interpolating polynomials of degree one, two, and three for the following data and approximate f(0.25).

| x    | 0.1         | 0.2         | 0.3        | 0.4        |
|------|-------------|-------------|------------|------------|
| f(x) | -0.62049958 | -0.28398668 | 0.00660095 | 0.24842440 |

solution): Note that .1 < .2 < .25 < .3 < .4

From the given data data we have the given divided difference table, where divided difference formula is give by,

$$f[x_i] = f(x_i); \text{ and } f[x_0, x_1, \cdots, x_n] = \frac{f[x_1, x_2, \cdots, x_n] - f[x_0, x_1, \cdots, x_{n-1}]}{x_n - x_0}:$$

| x          | f(x)      |           |         |
|------------|-----------|-----------|---------|
| $x_0 = .1$ | 62049958  |           |         |
|            |           | 3.651286  |         |
| $x_1 = .2$ | 28398668  | -2.2962   | 2615    |
|            |           | 2.9058763 | 4731583 |
| $x_2 = .3$ | .00660095 | -2.4382   | 209     |
|            |           | 2.4182345 |         |

approximate f(0.25).

| x    | 0.1         | 0.2         | 0.3        | 0.4        |
|------|-------------|-------------|------------|------------|
| f(x) | -0.62049958 | -0.28398668 | 0.00660095 | 0.24842440 |

## solution): Note that

$$.1 < .2 < .25 < .3 < .4$$
.

From the given data data we have the given divided difference table, where divided difference formula is give by ,

$$f[x_i] = f(x_i)$$
; and  $f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$ :

| x          | f(x)      |            |          |
|------------|-----------|------------|----------|
| $x_0 = .1$ | 62049958  |            |          |
|            | 3.65      | 1286       |          |
| $x_1 = .2$ | 28398668  | -2.2962615 |          |
|            | 2.90      | 58763 –    | .4731583 |
| $x_2 = .3$ | .00660095 | -2.438209  |          |
|            | 2.41      | 82345      |          |
| $x_3 = .4$ | .24842440 |            |          |
|            |           |            |          |

For polynomial of degree 1, we use the subtable corresponding to  $[x_1, x_2]$ .

$$P_1(x) = .006095 + 2.9058763(x - .3)$$

$$P_1(.25) = .006095 + 2.9058763(.25 - .3) = -.138692365$$

For polynomial of degree 2 we use subtable corresponding to  $[x_1, x_3]$  and denoted it by  $P_2^1(x)$ , and the subtable corresponding to  $[x_0, x_2]$ , denoting it by  $P_2^2(x)$ .

$$P_2^1(x) = .24842440 + 2.4182345(x - .4) - 2.438209(x - .4)(x - .3)$$

$$P_2^1(.25) = .24842440 + 2.4182345(.25 - .4) - 2.438209(.25 - .4)(.25 - .3) = -.13279734$$

$$P_2^2(x) = .00660095 + 2.9058763(x - .3) - 2.2962615(x - .3)(x - .2)$$

$$P_2^2(.25) = .00660095 + 2.9058763(.25 - .3) - 2.2962615(.25 - .3)(.25 - .2) = -.132952$$

For polynomial of degree 3, we will use the entire table corresponding to the interval  $[x_0, x_3]$ .

$$P_3(x) = P_2^1(x) - .4731583(x - .4)(x - .3)(x - .2)$$

$$P_3(.25) = P_2^1(.25) - .4731583(.25 - .4)(.25 - .3)(.25 - .2) = -.13297478$$

**Problem 9):** A fourth degree polynomial P(x) satisfies  $\Delta^4 P(0) = 24, \Delta^3 P(0) = 6$ , and  $\Delta^2 P(0) = 0$ , where  $\Delta P(x) = P(x+1) - P(x)$ .

**Problem 9):** A fourth degree polynomial P(x) satisfies  $\Delta^4 P(0) = 24, \Delta^3 P(0) = 6$ , and  $\Delta^2 P(0) = 0$ , where  $\Delta P(x) = P(x+1) - P(x)$ . Compute  $\Delta^2 P(10)$ .

 ${\bf solution)} :$  We have the following divided difference table:

So our required polynomial will be:

$$P_{\rm E}(x) = P(0) + \Delta P(0)(x-0) + \Delta^2 \frac{P(0)}{(x-0)(x-1)} (x-0)(x-1) + \Delta^3 \frac{P(0)}{(x-0)(x-1)(x-2)}$$

Compute  $\Delta^2 P(10)$ .

**solution):** We have the following divided difference table:

| $\overline{x}$ | f(x) |               |                               |                                 | В                              |
|----------------|------|---------------|-------------------------------|---------------------------------|--------------------------------|
| $x_0 = 0$      | P(0) |               |                               |                                 |                                |
|                |      | $\Delta P(0)$ |                               |                                 |                                |
| $x_1 = 1$      | P(1) |               | $\Delta^2 \frac{P(0)}{2} = 0$ |                                 |                                |
| 20.00          | 14.  | $\Delta P(1)$ | -                             | $\Delta^{3} \frac{P(0)}{6} = 1$ |                                |
| $x_2 = 2$      | P(2) |               | $\Delta^2 \frac{P(1)}{2}$     | V                               | $\Delta^4 \frac{P(0)}{24} = 1$ |
|                |      | $\Delta P(2)$ |                               | $\Delta^3 \frac{P(1)}{6}$       |                                |
| $x_3 = 3$      | P(3) |               | $\Delta^2 \frac{P(2)}{2}$     | V                               | $\Delta^{4} \frac{P(1)}{24}$   |
|                |      | $\Delta P(3)$ | -                             | $\Delta^2 \frac{P(2)}{2}$       | 1                              |
| $x_4 = 4$      | P(4) |               |                               |                                 |                                |
|                |      |               |                               |                                 |                                |

So our required polynomial will be:

$$P_5(x) = P(0) + \Delta P(0)(x - 0) + \Delta^2 \frac{P(0)}{2}(x - 0)(x - 1) + \Delta^3 \frac{P(0)}{6}(x - 0)(x - 1)(x - 2) + \Delta^4 \frac{P(1)}{24}(x - 0)(x - 1)(x - 2)(x - 3)$$

$$\Longrightarrow$$

$$P_5(x) = P(0) + \Delta P(0)x + x(x-1)(x-2) + x(x-1)(x-2)(x-3)$$

$$\Delta^2 P(10) = \Delta P(11) - \Delta P(10) = P(12) - 2P(11) - P(10)$$

$$= 12 \times 11 \times 10 + 12 \times 11 \times 10 \times 9 + 10 \times 9 \times 8 + 10 \times 9 \times 8 \times 7 - 2 \times 11 \times 10 \times 9 - 2 \times 11 \times 10 \times 9 \times 8$$

$$= 1140$$

Ŧ