

IIC1253 — Matemáticas Discretas — 1' 2020

TAREA 6

Publicación: Viernes 5 de Junio.

Entrega: Jueves 11 de junio hasta las 23:59 horas.

Indicaciones

• Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

- 1. Una función $f: \mathbb{N} \to \mathbb{N}$ es creciente si para todo $n, m \in \mathbb{N}$ tal que n < m entonces f(n) < f(m). Demuestre que el conjunto $\mathcal{C} = \{f: \mathbb{N} \to \mathbb{N} \mid f \text{ es una función creciente}\}$ no es numerable.
- 2. Sean A y B dos conjuntos tal que $A \subseteq B$. Demuestre que si A no es numerable entonces B tampoco es numerable. Concluya que $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ es una función inyectiva}\}$ es un conjunto no numerable.

Pregunta 2

Para dos funciones $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$, decimos que $f \in o(g)$ si, y solo si, para todo $c \in \mathbb{R}$ con c > 0, existe $n_0 > 0$, tal que para todo $n \ge n_0$ se cumple que $f(n) \le c \cdot g(n)$.

- 1. Demuestre que si $f \in o(g)$, entonces $f \in \mathcal{O}(g)$ y $g \notin \mathcal{O}(f)$.
- 2. Demuestre que para todo $k \in \mathbb{N} \setminus \{0\}$, para todo polinomio $p(x) = a_k x^k + \ldots + a_1 x + a_0$ tal que $a_i \in \mathbb{R}$ y para todo $\epsilon > 0$, se tiene que $p(x) \in o(x^{k+\epsilon})$.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.