7. Übung zur Komplexen Analysis (alle Gruppen)

- 1. Man beweise, dass durch $w(z)=e^{i\varphi}\frac{z-z_0}{1-\bar{z}_0z}$ mit $\varphi\in\mathbb{R}$ und $z_0\in\mathbb{E}$ die Automorphismen der Einheitskreisscheibe \mathbb{E} gegeben sind.
- 2. Man zeige, dass $\mathbb{C}\setminus[-1,1]$ zu $\mathbb{E}\setminus\{0\}$ konform äquivalent ist.
- 3. Man gebe jeweils eine biholomorphe Abbildung zwischen den angegebenen Gebieten an $(E_{\alpha} := \{re^{i\phi} : 0 < \phi < \alpha, 0 < r < 1\}$ bezeichne den Kreissektor zum Winkel α):
 - (a) Kreissektor $E_{\frac{\pi}{8}}$ und Kreisscheibe $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\},\$
 - (b) erster Quadrant $Q := \{x + iy : x, y > 0\}$ und Viertelkreisscheibe $E_{\frac{\pi}{4}}$.

 $\mathit{Hinweis}\colon \mathrm{Sie}\ \mathrm{d\"{u}rfen}\ \mathrm{verwenden},\ \mathrm{dass}\ z\mapsto \frac{z-i}{z+i}\ \mathrm{die}\ \mathrm{obere}\ \mathrm{Halbebene}\ \mathbb{H}:=\{z\in\mathbb{C}: \mathrm{Im}\ z>0\}$ biholomorph auf die Kreisscheibe $\mathbb{E}\ \mathrm{abbildet}.$

- 4. $T = \{z \in \mathbb{C} : |z| = 1\} \times \{z \in \mathbb{C} : |z| = 1\}, h : \mathbb{C} \to T \text{ mit } h(z) = (e^{2\pi i x}, e^{2\pi i y}).$ Geben Sie mit Hilfe von h einen Atlas an, der T zu einer Riemann'schen Fläche macht!
- 5. Sei $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\}$ die Einheitskreisscheibe und $h : \mathbb{C} \to \mathbb{E}$ definiert durch $h(z) = \frac{z}{1+|z|}$. Zeigen Sie: $\mathcal{A} = \{(U, h^{-1}) : U \text{ offen in } \mathbb{E}\}$ ist ein Atlas von \mathbb{E} und $(\mathbb{E}, \mathcal{A})$ somit eine Riemann'sche Fläche.

Riemann'sche Flächen $(M_1, \mathcal{A}_1), (M_2, \mathcal{A}_2)$ heißen *isomorph*, wenn es eine biholomorphe Abbildung $h: M_1 \to M_2$ gibt. Ist $(\mathbb{E}, \mathcal{A})$ isomorph zu $(\mathbb{E}, \{id\})$?

- 6. Sei $\bar{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ die Zahlkugel aufgefasst als Riemann'sche Fläche. Zeigen Sie:
 - (a) Ist $f: \bar{\mathbb{C}} \to \mathbb{C}$ analytisch, so ist f konstant.
 - (b) Ist $f \in \mathcal{M}(\bar{\mathbb{C}})$, so ist f eine rationale Funktion.
 - (c) Ist $f: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ biholomorph, so ist $f(z) = \frac{az+b}{cz+d}$ mit geeigneten $a, b, c, d \in \mathbb{C}$.
- 7. Zeigen Sie, die beiden folgenden Aussagen
 - (a) Jede nicht konstante analytische Abbildung zusammenhängender Riemann'scher Flächen ist offen.
 - (b) Eine analytische Funktion auf einer zusammenhängenden Riemann'schen Fläche, welche ein Betragsmaximum annimmt, ist konstant
- 8. Man zeige: Jede nicht konstante analytische Abbildung $f:X\to Y$ von einer zusammenhängenden kompakten Riemann'schen Fläche X in eine zusammenhängende Riemann'sche Fläche Y ist surjektiv.

Da man Polynome als analytische Abbildungen der Zahlkugel in sich selbst auffassen kann, erhält man einen Beweis des Fundamentalsatzes der Algebra.