Examen ¹ **2 Aprilie 2021**

Fie z și l ziua, respectiv, luna din data dumneavoastră de naștere ($z \in \{1, 2, 3, \ldots, 31\}$, $l \in \{1, 2, 3, \ldots, 12\}$) și $v = 20 + ((3 \cdot z + 5 \cdot l) \mod 20)$. Scrieți valorile $z, \ l, \ v$ pe foaia de examen.

- 1. Descrieți un algoritm de tip Karatsuba pentru calculul expresiei a^2 , unde $a \in \mathbb{N}$. Exemplificați-l pentru a = 1000 + v (1p)
- 2. Notăm cu M(n) complexitatea înmulțirii a două polinoame de grad strict mai mic decât n (având, deci, n coeficienți), aceasta fiind cuantificată prin numărul de operații efectuate la nivel de coeficienți (atenție, nu se face deosebirea între înmulțiri și adunări/scăderi). Demonstrați că, oricare ar fi $n \geq 2$, are loc relația $M(n+1) \leq M(n) + 4n$ (2p)
- 3. Fie p prim şi $a, b, c \in \mathbf{Z}_p$. Arătaţi cum se poate calcula eficient tripletul $(a^{-1} \mod p, b^{-1} \mod p, c^{-1} \mod p)$, folosind o singură operaţie de inversare şi cât mai puţine înmulţiri modulare suplimentare (1p)
- 4. Folosind Teorema Chineză a Resturilor, calculați $v^{29} \mod 105$ (2p)
- 5. Fie (a_0, a_1, \ldots, a_t) un lanţ aditiv pentru n şi (b_0, b_1, \ldots, b_s) un lanţ aditiv pentru m. Cum se pot utiliza/combina cele două lanţuri pentru a forma un lanţ aditiv pentru $n \cdot m$, de lungime t + s? Construiţi un lanţ aditiv pentru $8 \cdot v$ (2p)
- 6. Calculați $\left(\frac{v}{71}\right)$ (1p)
- 7. Utilizând testul lui Pépin, decideți dacă numărul $2^{2^2} + 1$ este prim (1p)

¹Timp de lucru: 80 minute, plus înca maxim 10 minute pentru uploadarea fotografiilor soluțiilor în Google Classroom. La 9.30 fix se incheie preluarea solutiilor.