

600V CoolGaN™ enhancement-mode Power Transistor

Features

- Enhancement mode transistor Normally OFF switch
- Ultra fast switching
- No reverse-recovery charge
- Capable of reverse conduction
- Low gate charge, low output charge
- Superior commutation ruggedness
- Qualified for industrial applications according to JEDEC Standards (JESD47 and JESD22)

Source SK G

Benefits

- Improves system efficiency
- Improves power density
- Enables higher operating frequency
- System cost reduction savings
- Reduces EMI

Gate 8 Drain drain contact Kelvin Source 7 Source 1,2,3,4,5,6

Applications

Industrial, telecom, datacenter SMPS based on the half-bridge topology (half-bridge topologies for hard and soft switching such as Totem pole PFC, high frequency LLC).

For other applications: review CoolGaN™ reliability white paper and contact Infineon regional support

Table 1 Key Performance Parameters at $T_i = 25$ °C

Parameter	Value	Unit	
$V_{DS,max}$	600	V	
$R_{DS(on),max}$	190	mΩ	
$Q_{G,typ}$	3.2	nC	
I _{D,pulse}	23	A	
Q _{oss} @ 400 V	16	nC	
Q _{rr}	0	nC	

Table 2 Ordering Information

Type / Ordering Code	Package	Marking	Related links
IGT60R190D1	PG-HSOF-8-3	60R190D1	see Appendix A

600V CoolGaN™ enhancement-mode Power Transistor

Table of Contents

Featu	ıres	
Benefi	fits	1
	cations	
	of Contents	
1		
2	_	
3	Electrical characteristics	
4	Electrical characteristics diagrams	7
5	Test Circuits	
6	Package Outlines	14
7	Appendix	
8	Revision History	

1 Maximum ratings

at T_j = 25 °C, unless otherwise specified. Continuous application of maximum ratings can deteriorate transistor lifetime. For further information, contact your local Infineon sales office.

Table 3 Maximum ratings

Parameter	Symbol		Values		Unit	Note/Test Condition	
		Min.	Тур.	Мах.			
Drain Source Voltage, continuous ¹	$V_{DS,max}$	-	-	600	V	V _{GS} = 0 V	
Drain source destructive breakdown voltage ²	V _{DS,bd}	800	-	-	V	$V_{GS} = 0 \text{ V}, I_{DS} = 4.3 \text{ mA}$	
Drain source voltage, pulsed ²	$V_{DS,pulse}$	-	-	750	V	$T_j = 25$ °C; $V_{GS} \le 0$ V; ≤ 1 hour of total time	
		-	-	650	V	$T_j = 125$ °C, $V_{GS} \le 0$ V; ≤ 1 hour of total time	
Switching surge voltage, pulsed ²	$V_{DS,surge}$	-	-	750	V	DC bus voltage = 700 V; turn off $V_{DS,pulse}$ = 750 V; turn on $I_{D,pulse}$ = 10 A; T_j = 105 °C; $f \le 100$ kHz, $t \le 100$ secs (10	
						million pulses)	
Continuous current, drain source	I _D	-	-	12 5.5	Α	T _c = 25 °C; T _c = 125 °C;	
Pulsed current, drain source ³⁴	I _{D,pulse}	-	-	23	А	$T_C = 25$ °C; $I_G = 9.6$ mA; See Figure 3;	
Pulsed current, drain source 45	I _{D,pulse}	-	-	11	А	$T_C = 125$ °C; $I_G = 9.6$ mA; See Figure 4;	
Gate current, continuous 456	$I_{G,avg}$	-	-	7.7	mA	$T_j = -55 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C};$	
Gate current, pulsed 46	$I_{G,pulse}$	-	-	770	mA	$T_j = -55 ^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$; $t_{\text{PULSE}} = 50 \text{ns}, f = 100 \text{kHz}$	
Gate source voltage, continuous ⁶	V_{GS}	-10	-	-	V	$T_j = -55 ^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$;	
Gate source voltage, pulsed ⁶	$V_{GS,pulse}$	-25	-	-	V	T _j = -55 °C to 150 °C;	
						t _{PULSE} = 50 ns, f = 100 kHz; open drain	
Power dissipation	P _{tot}	-	-	52	W	T _c = 25 °C	
Operating temperature	Tj	-55	-	150	°C		
Storage temperature	T _{stg}	-55	-	150	°C	Max shelf life depends on storage conditions.	

¹ All devices are 100% tested at I_{DS} = 4.3 mA to assure $V_{DS} \ge 800 \text{ V}$

Final Data Sheet 3 Rev. 2.0

² Provided as measure of robustness under abnormal operating conditions and not recommended for normal operation

³ Limits derived from product characterization, parameter not measured during production

⁴ Ensure that average gate drive current, I_{G,avg} is ≤ 7.7 mA. Please see figure 27 for I_{G,avg}, I_{G,pulse} and I_G details

⁵ Parameter is influenced by rel-requirements. Please contact the local Infineon Sales Office to get an assessment of your application

⁶ We recommend using an advanced driving technique to optimize the device performance. Please see gate drive application note for details

600V CoolGaN™ enhancement-mode Power Transistor

Drain-source voltage slew-rate	dV/dt		200	V/ns
3	,			, -

2 Thermal characteristics

Table 4 Thermal characteristics

Parameter	Symbol		Values		Unit	Note/Test Condition
		Min.	Тур.	Мах.		
Thermal resistance, junction-case	R_{thJC}	-	-	2.4	°C/W	
Thermal resistance, junction-ambient	R_{thJA}	-	-	62	°C/W	Device on PCB, minimum footprint
Thermal resistance, junction-ambient for SMD version	R_{thJA}	1	35	45	°C/W	Device on 40mm*40mm* 1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Reflow soldering temperature	T_{sold}	-	-	260	°C	MSL1

600V CoolGaN™ enhancement-mode Power Transistor

3 Electrical characteristics

at T_i = 25 °C, unless specified otherwise

Table 5 Static characteristics

Parameter	Symbol		Value	S	Unit	Note/Test Condition
		Min.	Тур.	Max.		
Gate threshold voltage	$V_{GS(th)}$	0.9	1.2	1.6	V	$I_{DS} = 0.96 \text{ mA}; V_{DS} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C}$
		0.7	1.0	1.4		$I_{DS} = 0.96 \text{ mA}; V_{DS} = 10 \text{ V}; T_j = 125 ^{\circ}\text{C}$
Gate-Source reverse clamping voltage	$V_{GS,clamp}$	-	-	-8	٧	I _{GSS} = -1 mA
Drain-Source leakage current		-	0.4	40	μΑ	$V_{DS} = 600 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$
	DSS	-	8	-		$V_{DS} = 600 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$
Drain-Source leakage current at application conditions ¹	I _{DSSapp}	-	23	-	μΑ	V _{DS} = 400 V; V _{GS} = 0 V; T _j = 125 °C
Drain-Source on-state resistance		-	0.14	0.19	Ω	$I_G = 9.6 \text{ mA}; I_D = 5 \text{ A}; T_j = 25 ^{\circ}\text{C}$
	$R_{DS(on)}$	-	0.26	-		$I_G = 9.6 \text{ mA}; I_D = 5 \text{ A}; T_j = 150 ^{\circ}\text{C}$
Gate resistance	$R_{G,int}$	-	0.86	-	Ω	LCR impedance measurement; f = f _{res} ; open drain;

Table 6Dynamic characteristics

Parameter	Symbol	Values			Unit	Note/Test Condition
		Min.	Тур.	Max.		
Input capacitance	C _{iss}	-	157	-	pF	$V_{GS} = 0 \text{ V}; V_{DS} = 400 \text{ V};$ f = 1 MHz
Output capacitance	C _{oss}	-	28	-	pF	$V_{GS} = 0 \text{ V}; V_{DS} = 400 \text{ V};$ f = 1 MHz
Reverse Transfer capacitance	C _{rss}	-	0.36	-	pF	$V_{GS} = 0 \text{ V}; V_{DS} = 400 \text{ V};$ f = 1 MHz
Effective output capacitance, energy related ²	C _{o(er)}	-	32.5	-	pF	V _{DS} = 0 to 400 V
Effective output capacitance, time related ³	C _{o(tr)}	-	40	-	pF	$V_{GS} = 0 \text{ V}; V_{DS} = 0 \text{ to } 400 \text{ V};$ Id = const
Output charge	Q _{oss}	-	16	-	nC	V _{DS} = 0 to 400 V
Turn- on delay time	t _{d(on)}	-	13	-	ns	see Figure 23
Turn- off delay time	t _{d(off)}	-	12	-	ns	see Figure 23
Rise time	t _r	-	14	-	ns	see Figure 23
Fall time	t _f	-	14	-	ns	see Figure 23

¹ Parameter represents end of use leakage in applications

 $^{^2}$ C_{o(er)} is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 400 V

 $^{^3}$ C_{o(tr)} is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 400 V

600V CoolGaN™ enhancement-mode Power Transistor

Table 7Gate charge characteristics

Parameter	Symbol	Values			Unit	Note/Test Condition
		Min.	Тур.	Max.		
Gate charge	Q _G	,	3.2	-	nC	$I_{GS} = 0$ to 3.8 mA; $V_{DS} = 400$ V; $I_D = 5$ A

Table 8 Reverse conduction characteristics

Parameter	Symbol		Values		Unit	Note/Test Condition
		Min.	Тур.	Мах.		
Source-Drain reverse voltage	V_{SD}	-	2.5	3	V	$V_{GS} = 0V; I_{SD} = 5 A$
Pulsed current, reverse	I _{S,pulse}	-	-	23	Α	I _G = 9.6 mA
Reverse recovery charge	Q _{rr} ¹	-	0	-	nC	$I_{SD} = 5 \text{ A}, V_{DS} = 400 \text{V}$
Reverse recovery time	t _{rr}	-	0	-	ns	
Peak reverse recovery current	I _{rrm}	-	0	-	Α	

Final Data Sheet 6 Rev. 2.0 2022-05-18

4 Electrical characteristics diagrams

at T_i = 25 °C, unless specified otherwise

Rev. 2.0 2022-05-18

Parameter is influenced by rel-requirements. Please contact the local Infineon Sales Office to get an assessment of your application.

5 Test Circuits

Package Outlines 6

Figure 28 PG-HSOF-8-3 Package Outline, dimensions (mm)

600V CoolGaN™ enhancement-mode Power Transistor

7 Appendix A

Table 9 Related links

- IFX CoolGaN™ webpage: <u>www.infineon.com/why-coolgan</u>
- IFX CoolGaN™ reliability white paper: <u>www.infineon.com/gan-reliability</u>
- IFX CoolGaN™ gate drive application note: <u>www.infineon.com/driving-coolgan</u>
- IFX CoolGaN[™] applications information:
 - o www.infineon.com/gan-in-server-telecom
 - o <u>www.infineon.com/gan-in-wirelesscharging</u>
 - o <u>www.infineon.com/gan-in-audio</u>
 - o www.infineon.com/gan-in-adapter-charger

600V CoolGaN™ enhancement-mode Power Transistor

8 Revision History

Major changes since the last revision

Revision	Date	Description of change
2.0	2022-05-18	Final release

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2021 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.