

Moving beyond typical distributions

- We know how to model
 - Normally distributed targets -> linear regression
 - Bernoulli and Multinomial targets→logistic regression
 - What if target distribution is more complex?

Example 1: Daily Stock prices NASDAQ

- Oper
- High (within day)

Does it seem that the error is normal here?

Example 2: Number of calls to bank

- Y=Number of calls
- X= time

Endless amount of classes → multinomial does not

732A99/TDDE01

201 2

1

2

Exponential family

- More advanced error distributions are sometimes needed!
- Many distributions belong to exponential family:
 - Normal, Exponential, Gamma, Beta, Chi-squared..
 - Bernoulli, Multinoulli, Poisson...

$$p(\boldsymbol{x}|\boldsymbol{\eta}) = h(\boldsymbol{x})g(\boldsymbol{\eta})e^{(\boldsymbol{\eta}^Tu(\boldsymbol{x}))}$$

- · Easy to find MLE and MAP
- Non-exponential family distributions: uniform, Student t

Example: Bernoulli

3

732A99/TDDE0

Generalized linear models

- Assume Y from the exponential family
- Model is $Y \sim EF(\mu, ...)$, $f(\mu) = \mathbf{w}^T \mathbf{x}$
 - $-\operatorname{Alt}\mu=f^{-1}(\boldsymbol{w^Tx})$
 - $-f^{-1}$ is activation function
 - f is link function (in principle, arbitrary)
- Arbitrary f will lead to (s dispersion parameter)

$$p(y|w,s) = h(y,s)g(\mathbf{w},\mathbf{x})e^{\frac{b(\mathbf{w},\mathbf{x})y}{s}}$$

• If f is a canonical link, then

$$p(y|w,s) = h(y,s)g(w,x)e^{\frac{(w^Tx)y}{s}}$$

732A99/TDDE0

Generalized linear models

- · Canonical links are normally used
 - MLE computations simplify
 - MLE \widehat{w} = $F(X^TY)$ → computations do not depend on all data but rather a summary (sufficient statistics)→ computations speed up

Example: Poisson regression $f^{-1}(\mu) = e^{\mu}, Y \sim Poisson(e^{w^T x})$

Generalized linear model: software

• Use glm(formula, family, data) in R

Example: Daily Stock prices NASDAQ

- High (within day)

6

Try to fit usual linear regression, study histogram of residuals

Gamma distribution: Wikipedia

5

Least absolute deviation regression

- Model $Y \sim Laplace(w^T X, b)$
 - Member of exponential family
- Equivalent to minimizing sum of absolute deviations
- Properties
 - Robust to outliers
 - Sensitive to changes in data
 - Multiple solutions possible
- · R: package L1pack

Probabilistic models

- · Why it is beneficial to assume a probabilistic model?
- A common approach to modelling in CS and engineering: y=f(x,w)
- f is known, w is unknown
- Fit model to data with least squares, optimization or ad hoc->

8

Probabilistic models

Arguments against deterministic

- · The model does not really describe actual data (error is not explained)
 - No difference between modelling data A (Poisson) and B (Normal)
 - Estimation strategy for A is not good for B
- The model typically gives a deterministic answer, no information about uncertainty
 - "...The exchange rate tomorrow will be 8.22 ..."

9

Probabilistic models

Probabilistic model

 $Y \sim Distribution(f(x, w), \theta)$

- Data is fully explained (error as well)
- Automatic principle for finding parameters: MLE , MAP or Bayes theorem
- Automatic principle for finding uncertainty (conf. limits)
 - Bootstrap
 - Posterior probability
- Possibility to generate new data of the same type
 - Further testing of the model

10

Uncertainty estimation

- Given estimator $\hat{f} = \hat{f}(x, D)$ (or $\hat{a} = \delta(D)$), how to estimate the uncertainty?
- Answer 1: if the distribution for data D is given, compute analytically the distribution for the estimator→ derive confidence limits
 - Often difficult
 - Example: In simple linear regression, $\widehat{\alpha}$ follows t distribution
- · Answer 2: Use bootstrap

The bootstrap: general principle

We want to determine uncertainty of $\hat{f}(D, X)$

- Generate many different D_i from their distribution
- Use histogram of $\hat{f}(D_i,X)$ to determine confidence limits \rightarrow unfortunately can not be done (distr of D is often unknown)

Instead: Generate many different D_i^* from the empirical distribution (histogram)

11

Nonparametric bootstrap

32A99/TDDE01 13

Nonparametric bootstrap

Given estimator $\widehat{w} = \widehat{f}(D)$

Assume $X \sim F(X, w)$, F and w are unknown

- 1. Estimate \widehat{w} from data $\mathbf{D}=(X_1,...X_n)$
- 2. Generate $\mathbf{D_1} = (\mathbf{X}_{1}^*, \dots \mathbf{X}_{n}^*)$ by sampling with replacement
- 3. Repeat step 2 B times
- 4. The distribution of w is given by $\hat{f}(D_1), ... \hat{f}(D_B)$

Nonparametric bootstrap can be applied to any deterministic estimator distribution-free

732A99/TDDE0

13

14

Parametric bootstrap

Given estimator $\widehat{w} = \widehat{f}(D)$

Assume $X \sim F(X, w)$, F is known and w is unknown

- 1. Estimate \widehat{w} from data $\mathbf{D}=(X_1,...X_n)$
- 2. Generate $\mathbf{D_1} = (\mathbf{X}^*_1, ... \mathbf{X}^*_n)$ by generating from $F(X, \widehat{w})$
- 3. Repeat step 2 B times
- 4. The distribution of w is given by $\hat{f}(D_1), ... \hat{f}(D_B)$

Parametric bootstrap is **more** precise if the distribution form is correct

2A99/TDDE01 15

Uncertainty estimation

- 1. Get D_1 , ... D_B by bootstrap
- 2. Use $\hat{f}(D_1)$, ... $\hat{f}(D_B)$ to estimate the uncertainty
 - Boostrap percentile
 - Bootstrap Bca
 - ...
- Bootstrap works for all distribution types
- Can be bad accuracy for small data sets n < 40 (empirical is far from true)
- · Parametric bootstrap works even for small samples

16

Bootstrap confidence intervals

• To estimate $100(1-\alpha)$ confidence interval for w

Bootstrap percentile method

- Using bootstrap, compute \(\hat{f}(D_1 \), ... \(\hat{f}(D_B \) \), sort in ascending order, get \(w_1 \)... \(w_B \)
 Define \(A_1 \)= ceil(\(B \) \(\alpha/2 \), \(A_2 \)= floor(\(B \)- B \(\alpha/2 \))
- 3. Confidence interval is given by

$$\left(w_{A_1},w_{A_2}\right)$$

Look at the plot...

17

Bootstrap: regression context

- Model Y~F(X, w)
- Data D = $\{(Y_i, X_i), i = 1, ..., n\}$
- Idea: produce several bootstrap sets that are similar to D

Nonparametric bootstrap:

- 1. Using observation set \mathbf{D} , sample $\operatorname{pairs}(X_i, Y_i)$ with replacement and get bootstrap sample $\mathbf{D_1}$
- 2. Repeat step 1 B times \rightarrow get $D_{1,...}$ D_{B}

18

Uncertainty estimation

Parametric bootstrap

- 1. Fit a model to D \rightarrow get $\widehat{w}(D)$.
- 2. Set $X_i^* = X_i$, generate $Y_i^* \sim F(X_i, \widehat{w})$.
- 3. $D_i = \{(X_i^*, Y_i^*), i = 1, ..., n\}$
- 4. Repeat step 2 B times

20

Bootstrap: regression context

Confindence intervals in regression

- Given $Y \sim Distribution(y|x, w)$, $EY|X = \mu|x = f(x, w)$ - Example: $Y \sim N(w^T x, \sigma^2)$, $\mu | x = f(x, w) = w^T x$
- Estimate intervals for $\mu|x=f(x,w)$ for many X, combine in a confidence band
- · What is estimator? $-\mu | x = f(x, w)$

Confindence intervals in regression

Estimation

- 1. Compute $D_1, ... D_B$ using a bootstrap
- 2. Fit model to $D_1, \dots D_B$ \rightarrow estimate $\widehat{W}_1, \dots \widehat{W}_B$
- For a given X, compute $f(X, \widehat{w}_1), ... f(X, \widehat{w}_B)$ and estimate confidence interval by (percentile method)
- Combine confidence intervals in a band

21

22

Bootstrap: R

- Package boot
 - Functions:
 - boot()
 - boot.ci() 1 parameter
 - envelope() many
- · Random random generation for parametic bootstrap:
 - Rnorm()
 - Runif()

boot(data, statistic, R, sim = "ordinary", ran.gen = function(d, p) d, mle = NULL,...)

Bootstrap: R

• Write a function statistic that depends on dataframe and index and returns the estimator

library(boot)
data2=data[order(data\$Area),]#reordering data according to Area

computing bootstrap samples
f=function(data, ind){
 datal=data[ind,]# extract bootstrap sample
 res=im[Price-Area, data=data1) #fit linear model
 #predict values for all Area values from the original data
 priceP-predict(res, newdata=data2)
 return(priceP)
}

res=boot(data2, f, R=1000) #make bootstrap

24

Bootstrap: R

Parametric bootstrap:

25

- Compute value *mle* that estimates model parameters from the data
- Write function ran.gen that depends on data and mle and which generates new data
- Write function statistic that depend on data which will be generated by ran.gen and should return the estimator

32A99/TDDE01 25

Bootstrap

```
mle=lm(Price-Area, data=data2)
rng=function(data, mle) {
    data1=data.frame(Price-data$Price, Area=data$Area)
    n=length(data5Price)
    #generate new Price
    data1$Frice-rnorm(n,predict(mle, newdata=data1),sd(mle$residuals))
    return(data1)
}
fl=function(data1){
    res=lm(Price-Area, data=data1) #fit linear model
    *#predict values for all Area values from the original data
    pricePpredict(res,newdata=data2)
    return(priceP)
}
res=boot(data2, statistic=fi, R=1000, mle=mle,ran.gen=rng, sim="parametric")
```

722A00/TDDE0

26

Uncertainty estimation: R

Bootstrap cofidence bands for linear model

e=envelope(res) #compute confidence bands fil=Im(Price-Area, data=data2) priceP=predict(fil) pol(Area, Price, pch=21, bg="orange") points(data2SArea,priceP,type=T") #plot fitted line

#plot cofidence bands points(data2\$Area,e\$point[2.], type="l", col="blue") points(data2\$Area,e\$point[1.], type="l", col="blue")

27

732A99/TDDE01

Prediction bands

- Confidence interval for Y \mid X= interval for mean $EY \mid X$
- Prediction interval for $Y \mid X = \text{interval for } Y \mid X$

 $Y{\sim}Distribution(x,w)$

Prediction band for parametric bootstrap

- 1. Run parametric bootstrap and get $D_1, ... D_B$
- 2. Fit the model to the data and get $\widehat{w}(D_1)$, ... $\widehat{w}(D_B)$
- 3. For each X, generate from $Distribution(X, \widehat{w}(D_1))$, ... $Distribution(X, \widehat{w}(D_B))$ and apply percentile method
- 4. Connect the intervals → get the band

28

732A99/TDDE0

Example: parametric bootstrap mle=lm(Price-Area, data=data2) f1=function(data1){ res=lm(Price-Area, data=data1) #fit linear model #predict values for all Area values from the original data priceP=predict(res,newdata=data2) n=length(data25price) predictedP=nrorm(n,priceP, sd(mleSresiduals)) return(predictedP) } res=boot(data2, statistic=f1, R=10000, mle=mle,ran.gen=rng, sim="parametric") Why wider band?