

Description

The VSM20N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =60V,I_D =20A

 $R_{DS(ON)}$ <35m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ <40m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM20N06-TC	VSM20N06	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	20	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100°C)	14	А	
Pulsed Drain Current	I _{DM}	60	А	
Maximum Power Dissipation	P _D	45	W	
Derating factor		0.3	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\!\mathbb{C}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{0JC}	3.3	°C/W	
---	------------------	-----	------	--

Electrical Characteristics (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.6	2.5	V
Drain-Source On-State Resistance	-	V _{GS} =10V, I _D =20A	-	24	35	m0
	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A		30	40	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =5A	11	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	\/ 45\/\/ 0\/	-	590	-	PF
Output Capacitance	C _{oss}	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	70	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	64	-	PF
Switching Characteristics (Note 4)	•		•			•
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, I_{D} =2A, V_{GS} =10V, R_{G} =3 Ω	-	6	-	nS
Turn-on Rise Time	t _r		-	6.1	-	nS
Turn-Off Delay Time	$t_{\sf d(off)}$		-	17	-	nS
Turn-Off Fall Time	t _f		-	3	-	nS
Total Gate Charge	Qg	V 00V/1 40A	-	25.3		nC
Gate-Source Charge	Q _{gs}	V _{DS} =30V,I _D =10A,	-	4.7		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6.1		nC
Drain-Source Diode Characteristics	-		J			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	20	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =20A	-	29.5	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	50	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition:Tj=25 $^{\circ}$ C,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

V_{GS}=10V 2 I_D=10 A Normalized On-Resistance 1.8 1.6 1.4 1.2 0.8 0 50 75 100 125 150 175

Figure 4 Rdson-Junction Temperature

T_J-Junction Temperature(°C)

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance