A5-Draft_CSaben

Clark Saben

December 5, 2023

1. (7 points) Consider the alternating group A_4 and its subgroup $H = \langle (134) \rangle$.

Problem 1a. (a) Calculate the right cosets of H in A_4 . Do not repeat. Each right coset must be written as $H\alpha = \{\ldots\}$, for example,

$$H(1) = \{(1), (134), (143)\}$$

Hint: Do not use any elements that are not in A_4 . For example, H(123) is a coset of H in A_4 , but H(12) is not.

$$H(1) = \{(1), (134), (143)\}$$

$$H(123) = \{(123), (1234), (124)\}$$

$$H(132) = \{(132), (14)(23), (243)\}$$

$$H(421) = \{(421), (423), (42)(13)\}$$

Problem 1b. (b) Show that H is not a normal subgroup of A_4 . Hint: Again, do not use any elements that are not in A_4 .

For H to be a normal subgroup of A_4 , we must have gH = Hg for all $g \in A_4$. However, we can see that $H(123) \neq (123)H$ since $(123)H = \{(123), (234), (14)(23)\}$ and $H(123) = \{(123), (1234), (124)\}$.

Problem 1c. (c) What is the index $(A_4:H)$ of H in A_4 ? Justify your answer.

The index of H in A_4 is the number of right cosets of H in A_4 . Since we have 4 cosets, the index is 4. In other words, index = $(A_4 : H) = 4$.

2. (7 points) Let $G = \{x \in \mathbb{R} : x \neq -1\}$. Define an operation * on G by a*b = a+b+ab. For example, $2*3 = 2+3+2\cdot 3 = 11$. Then $\langle G, * \rangle$ is a group. (Take this as given.) Recall that \mathbb{R}^* is the group of nonzero real numbers with ordinary multiplication.

Problem 2a. (a) Prove that $f: \mathbb{R}^* \to G$ defined by f(x) = x - 1 is a homomorphism.

Proof. Let $a, b \in \mathbb{R}^*$. Then we have

$$f(ab) = ab - 1$$

and,

$$f(a)f(b) = (a-1)*(b-1)$$

$$= (a-1) + (b-1) + (a-1)(b-1)$$

$$= a+b-2+ab-a-b+1$$

$$= ab-1$$

Therefore, f(ab) = f(a)f(b) and f is a homomorphism.

Problem 2b. (b) Find the kernel of f. Justify your answer.

The kernel of f is the set of all elements in \mathbb{R}^* that map to the identity in G. Since f(x) = x - 1, we have f(x) = 0 when x = 1. Thus, the kernel of f is $\{1\}$.

3. (6 points) Let H be any subgroup of G and let K be a normal subgroup of G. Define a subset S of G by

$$S = \{ hk : h \in H \text{ and } k \in K \}$$

Problem 3. Prove that S is a subgroup of G.

Hint: Recall that K is a normal subgroup of G if and only if Ka = aK for every $a \in G$.

Proof. Note that S is nonempty since H and K are nonempty. Note K is a normal subgroup of G if and only if Ka = aK for every $a \in G$. Let $a, b \in S$. Then a = hk and b = h'k' for some $h, h' \in H$ and $k, k' \in K$. Then we have,

$$ab^{-1} = (hk)(h'k')^{-1}$$

= $(hk)(k'^{-1}h'^{-1})$
= $h(kk'^{-1})h'^{-1}$

Since H is a subgroup of G, $h(kk'^{-1})h'^{-1} \in H$. Since K is a normal subgroup of G, $kk'^{-1} \in K$. So, $h(kk'^{-1})h'^{-1} \in H$ and $kk'^{-1} \in K$. Therefore, S is a subgroup of G.