VMLS Cheatsheet[1-9] - meanmachin3	•Additivity: For any n-vectors x and y,	$a^{T}b = a b cos(\angle(a,b))$	independent	•Commutativity: $A + B = B + A$
	f(x+y) = f(x) + f(y) Affine functions $f: R_n \to R$ is affine if	Classification of angles	5.2 Basis	•Associativity: $(A + B) + C = A + (B + C)$ •Addition with zero matrix: $A+0 = 0+A = 0$
1 Vectors	and only if it can be expressed as $f(x) =$	$\theta = \pi/2$: $a \perp b$	basis: A collection of n linearly in-	A
Vectors	$a^T x + b$ for some n-vector a and scalar b,	$\theta = 0 \colon a^T b = a b $	dependent(maximum possible size) n-	•Transpose of sum: $(A + B)^T = A^T + B^T$
•An ordered finite list of numbers.	which is sometimes called the offset •Anv	$\theta = \pi = 180^{\circ} : a^{T} b = - a b $	vectors Independence-dimension ine-	If A is a matrix and β , γ are scalars $(\beta + \gamma)A = \beta A + \gamma A, (\beta \gamma)A = \beta(\gamma A)$
•Block or stacked vectors $(a = [b, c, d])$,	ujjine scarar varucu runction satisfies the	$\theta \le \pi/2 = 90^\circ = a^T b \ge 0$	quality •a linearly independent set of n-vectors can have at most n elements	
Subvectors ($a_{r:s} = (a_r,, a_s)$), Zero vectors (all elements equal to zero), Unit		$\theta \ge \pi/2 = 90^{\circ} = a^{T}b \le 0$	•any set of $n + 1$ or more n -vectors is linear-	Matrix norm $ A = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij}^2}$ ma-
vectors($(e_i = 1)$), Ones vector((1_n) &	property: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$, where $\alpha + \beta = 1$	Correlation Coeficient $ ho = \frac{\tilde{a}^T \tilde{b}}{\ \tilde{a}\ \ \tilde{b}\ }$	ly dependent	trix norm satisfies the properties of any
Sparsity $(nnz(x))$	2.2 Taylor approximation	With $u = \tilde{a}/\operatorname{std}(a) \& u = \tilde{b}/\operatorname{std}(\tilde{b})$,	5.3 Orthonomal Vectors	norm 6.4 Matrix-vector multiplication
Vector addition	The (first-order) Taylor approximation of	$\rho = u^T v/n \text{ where } u = v = n$	$a_1,,a_k$ are (mutually) orthogonal if $a_i \perp a_i$ for i!= j	A is an $m \times n$ matrix and x is an n-vector,
•Commutative: $a + b = b + a$ •Associative: $(a + b) + c = a + (b + c)$	f near (or at) the point z:	3.5 Complexity	They are normalized if $ a_i = 1$ for $i=1,,k$	then the matrix-vector product $y = Ax$
• $a + 0 = 0 + a = a$	$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$	•norm: 2n	orthonormal if orthogonal & normalized	$y_i = \sum_{k=1}^n A_{ik} x_k = A_{i1} x_1 + + A_{in} x_n$ for
$\bullet a - a = 0$	Alternatively, $\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$	•rms: 2n •dist(a,b): 3n	 can be expressed using inner products 	i = 1m
1.1 Scalar-vector multiplication	2.3 Regression model	•∠(a,b): 6n	$a_i^T a_j = \begin{cases} 1, & \text{if } i = j \\ 0, & i \neq j \end{cases}$	•Row and column interpretations.
(-2)(1,9,6) = (-2,-18,-12) •Commutative: $\alpha a = a\alpha$	Regression model is (the affine function of		•orthonormal sets of vectors are linearly	$y = Ax$ can be expressed as $y_i = b_i^T x, i = \sum_{i=1}^{T} a_i x_i$
•Left-distributive: $(\beta + \gamma)a = \beta a + \gamma a$	$\mathbf{x})\ \hat{\mathbf{y}} = \mathbf{x}^T \mathbf{\beta} + \mathbf{v}$	4 Clustering	independent	1,, m where b_1^T ,, b_m^T are rows of A
• Right-distributive: $a(\beta + \gamma) = a\beta + a\gamma$	3 Norm and distance 3.1 Norm	4.1 Clustering 4.2 A clustering Objective	• $a_1,,a_n$ is an orthonormal basis, we ha-	• $y = Ax$ could also be expressed in terms of column $y = x_1 a_1 + x_2 a_2 + + x_n a_n$
Linear combinations: $\beta_1 a_1 + + \beta_m a_m$	Euclidean norm (or just norm) is	$G_i = \{i c_i = j\}$ where G_i is set of all	ve for any n-vector $x = (a_1^T x)a_1 + +$	6.5 Complexity
•With Unit vectors: $b = b_1e_1 + + b_ne_n$		indices i for which $c_i = i$	$(a_n^T x)a_n$	addition: mn
•If $\beta_1 + + \beta_m = 1$, linear combination is	$ x = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$	Group representatives: We want each rep	5.4 Gram-Schmidt(orthogonalization)	vector multiplication: $m(2n-1) \approx 2mn$
said to be affine combination	Properties •homogeneity: $\ \beta x\ = \beta \ x\ $	to be close to the vectors, i.e $ x_i - z_{c_i} $	An algorithm to check if $a_1,,a_k$ are linearly independent	
1.2 Inner product	•triangle inequality: $ x + y \le x + y $	where x_i is in group $j = c_i$ so z_{c_i} is the representative vector associated with		7.1 Geometric transformations • Scaling: $y = Ax$ with $A = aI$ stretches a
$a^Tb = a_1b_1 + a_2b_2 + + a_nb_n$ Properties: •Commutativity: $a^Tb = b^Ta$	•non negativity: $ x \ge 0$	data vector x_i	given n-vectors a_1,a_n	vector by the factor $ a $ (or shrinks it when
•Scalar multiplication Associativity:	•definiteness: $ x = 0$ only if $x = 0$	$J^{clust} = (\ x_1 - z_{c_1}\ ^2 + \dots + \ x_N - z_{c_N}\ ^2)/N$	for i = 1,,k 1.Orthogonalization:	a < 1), and it flips the vector (reverses
$(\gamma a)^T b = \gamma (a^T b)$	positive definiteness = non negativity + definiteness	Partitioning vectors with representatives	$\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \dots - (q_{i-1}^T a_i)q_{i-1}$	its direction) if $a < 0$
• Vector addition Distributivity:	$\mathbf{rms}(\mathbf{x}) = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{\ \mathbf{x}\ }{\sqrt{n}}$	fixed: $ x_i - z_{c_i} = \min_{j=1,\dots,k} x_i - z_j $	2. Test for linear dependence:	•Dilation: $y = Dx$, where D is a diagonal matrix, $D = diag(d1, d2)$. Stretches the
$(a+b)^T c = a^T c + b^T c.$,	if $\tilde{a} = 0$, quit	vector x by different factors along the
General examples:	•Norm of a sum:	$J^{clust} = \left(\min_{j=1,\dots,k} x_1 - z_j ^2 + \dots + \right)$	3. Normalization: $q_i = \tilde{q}_i / \tilde{q}_i $	two different axes. (Or shrinks, if $ d_i < 1$,
•Unit vector: $e_i^T a = a_i$	$ a+b ^2 = (x+y)^T (x+y) = x ^2 + 2x^T y + b ^2$		•if G-S does not stop early (in step 2),	and flips, if $di < 0$.)
•Sum: $1^T a = a^1 + + a^n$	Norm of block vectors $ (a,b,c) =$	$\min_{j=1,\ldots,k} x_N - z_j ^2 / N$	$a_1,,a_k$ are linearly independent	•Rotation Matrix: $y = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} x$
•Average: $(1/n)^T a = (a^1 + + a^n)/n$	$\sqrt{\ a\ ^2 + \ b\ ^2 + \ c\ ^2} = \ (\ a\ , \ b\ , \ c\)\ $ Chebyshev inequality k of its entries sa-	Optimizing group representatives with	•if G–S stops early in iteration $i = j$, then	• Reflection Suppose that v is the vector
•Sum of squares: $a^T a = a_1^2 + + a_n^2$	tisfy $ x_i \ge a$, then $\frac{k}{n} \le (\frac{\text{rms}(x)}{a})^2$	assignment fixed: $J^{clust} = J_1 + + J_k$	a_j is a linear combination of $a_1,,a_{j-1}$ (so	obtained by reflecting x through the line
•Selective sum: If $b_i = 1 \text{ or } 0$, $b^T a$ is the sum of elements for which $b_i = 1$,	tisry $ x_i \ge a$, then $\frac{1}{n} \le (\frac{1}{a})^n$ 3.2 Distance	where $J_j = (1/N) \sum x_i - z_j ^2$	$a_1,,a_k$ are linearly dependent) Complexity: $2nk^2$	that passes through the origin, inclined θ radians with respect to horizontal.
Block vectors	dist(a,b) = a-b	$i \in G_j$	6 Matrices	$[cos(2\theta) sin(2\theta)]$
$a^T b = a_1^T b_1 + \dots + a_k^T b_k$	Triangle Inequality: $ a-c ^2 = (a-b)+(b-c) ^2$	To minimize mean square distance	6.1 Matrices	$y = [\sin(2\theta) - \cos(2\theta)]^x$
1.3 Complexity of vector computations	$ c \le a-b + b-c $	$z_j = (1/ G_j) \sum_{i=0}^{\infty} x_i$ where $ G_j $ is stan-	The set of real $m \times n$ matrices is denoted	• Projection into a line Projection of point
Space: 8n bytes	z_j is the nearest neighbor of x if	$i \in G_j$ dard notation for number of elements in	R ^{m×n}	x onto a set is the point in the set that is closest to x.
Complexity of vector operations: $x^T y = 2n - 1$ flops (n scalar multiplications and	$ x-z_j \le x-z_i , i = 1,,m$	set G_i	6.2 Zero and identity matricesZero: All elements equals 0.	$n = [(1/2)(1 + \cos(2\theta))]$ $(1/2)\sin(2\theta)$
2n-1 flops (n scalar multiplications and $n-1$ scalar additions)	3.3 Standard Deviation	4.3 The k-means algorithm	•Identity: All elements equals 0 and dia-	$y = [(1/2)sin(2\theta) (1/2)(1 - cos(2\theta))]$ 7.2 Selectors
2 Linear functions	de-meaned vector: $\tilde{x} = x - \mathbf{avg}(x)1$	4.4 Examples	gonal element equals 1.	An $m \times n$ selector matrix A is one in which
2.1 Linear functions	standard deviation: $std(x) = rms(\tilde{x}) =$	4.5 Applications	• Sparse: If many entries are 0 • Diagonal: off-diagonal entries are zero	each row is a unit vector (transposed):
$f: \mathbb{R}^n \to \mathbb{R}$ means f is a function mapping		5 Linear Independence	• Triangular: upper triangular if A_{ij} =	$\lceil e^T \rceil$
n-vectors to numbers Superposition & linearity: $f(\alpha x + \beta y) =$	$rms(x)^2 = avg(x)^2 + std(x)^2$	$(a_1,,a_k)$ is linearly dependent if $\beta_1 a_1 + + \beta_k a_k = 0$, for some $\beta_1,,\beta_k$, that	0 for $i > j$, and it is lower triangular if	$\left[egin{array}{c} e_{k_1}^T \end{array} ight]$
$\alpha f(x) + \beta f(y)$	By Chebyshev inequality, $ x_i - \mathbf{avg}(x) \ge$	are not all zero	$A_{ij} = 0 \text{ for } i < j$	
$\bullet f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + \dots +$	α std(x) is no more than $1/\alpha^2$ (for $\alpha > 1$)	5.1 Linear Independence	6.3 Transpose, addition and norm	$\left e_{k}^{T}\right $
$\alpha_k f(x_k)$	Cauchy–Schwarz inequality: $ a^Tb \le a b $	$(a_1,,a_k)$ is linearly independent if	Block matrix Transpose	When it multiplies a vector, it simply
A function that satisfies superposition is called <i>linear</i>	3.4 Ángle	$\beta_1 a_1 + + \beta_k a_k = 0 \& \beta_1 = = \beta_k = 0$ •Adding vector to linearly dependent	$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}$	copies the k_i th entry of x into the <i>i</i> th
Linear function satisfies	angle between two nonzero vectors a, b	makes new vector linearly dependent		entry of $y = Ax$:
• Homogeneity: For any n-vector x and any	defined as $(a^T b)$	•Removing vector from linearly inde-	Symmetric matrix: $A = A^T$	$y = (x_{k_1}, x_{k_2},, x_{k_m})$
$scalar \ \alpha, f(\alpha x) = \alpha f(x)$	$\angle(a,b) = \arccos(\frac{a^T b}{\ a\ \ b\ })$	pendent makes new vector linearly	Properties of matrix addition	

7.3 Incidence matrix

Directed graph: A directed graph consists of a set of vertices (or nodes), labeled 1,...,n, and a set of directed edges (or branches), labeled 1,...,m.

$$A_{ij} = \begin{cases} 1, & \text{edge j points to node i} \\ -1, & \text{edge j points from node i} \\ 0, & \text{otherwise} \end{cases}$$

7.4 Convolution

8 Linear equations

8.1 Linear and affine functions

```
Superposition condition: f(\alpha x + \beta y) =
\alpha f(x) + \beta f(y)
Such an f is called Linear
Matrix vector product function: A is mXn
matrix such that f(x) = Ax and f is linear
f(\alpha x + \beta y) = A(\alpha x + \beta y) = \alpha f(x) + \beta f(y)
Converse is true: If f: \mathbb{R}^n \mapsto \mathbb{R}^m is linear,
then f(x) = f(x_1e_1 + x_2e_2 + ...x_ne_n)
= x_1 f(e_1) + x_2 f(e_2) + ... x_n f(e_n)
= Ax \text{ with } A = [f(e_1) + f(e_2) + ... f(e_n)]
Affine Functions: f: \mathbb{R}^n \mapsto \mathbb{R}^m is affine
if it is a linear function plus a constant
i.e f(x) = Ax + b same as f(\alpha x + \beta y) =
\alpha f(x) + \beta f(y) holds for all x, y and \alpha, \beta
such that \alpha + \beta = 1
A and B can be calculated as
A = [f(e_1) - f(0) \ f(e_2) - f(0)...f(e_n) -
f(0)]; b = f(0)
Affine functions sometimes incorrectly
called linear functions
```

8.2 Linear function models

Price elasticity of demand $\delta_i^{price} = (p_i^{new} - p_i)/p_i$: fractional changes in prices $\delta_i^{dem} = (d_i^{new} - d_i)/d_i$: fractional change in demand Price demand elasticity model: $\delta^{dem} = E\delta^{price}$ Taylor series approximation Regression model

8.3 Systems of linear equations

- 9 Linear dynamical systems
- 9.1 Linear dynamical systems
- 9.2 Population dynamics
- 9.3 Epidemic dynamics
- 9.4 Motion of a mass
- 9.5 Supply chain dynamics