Global Superstore Sales Data

DAX (Data Analysis Expressions) in Power BI enables calculations and data analysis in reports, allowing users to create custom measures, calculated columns, and tables for data summarization, filtering, and transformation.

1. Types of DAX Functions

- o Aggregate Functions: Summarize data.
 - SUM(), AVERAGE(), etc.
- Logical Functions: Conditional logic.
 - IF(), SWITCH(), etc.
- o **Text Functions:** Manipulate text.
 - CONCATENATE(), LEFT(), RIGHT(), etc.
- o **Time Intelligence Functions:** Work with dates.
 - DATEADD(), TOTALYTD(), etc.
- o Filter Functions: Modify data.
 - FILTER(), ALL(), etc.
- o Mathematical Functions: Perform calculations.
 - ROUND(), ABS(), etc.

2. How DAX Works

- o Measures: Dynamic calculations.
- o Calculated Columns: New data added to tables.
- o Calculated Tables: Tables generated from existing ones using DAX.

3. Example of DAX Formula:

Measure Example (Total Sales):

Total Sales = SUM(Sales[Amount])

This measure will calculate the sum of all sales amounts.

4. Detailed Description of the Global Superstore Sales Dataset

The Global Superstore Sales dataset offers insights into customer behavior, sales performance, shipping, and profitability.

Figure 1 : Global Superstore Sales Dataset

i. Overview

o **Purpose:** Captures transactions from a fictional "Global Superstore" to analyze sales operations and customer segmentation.

o Structure:

- Rows: Unique orders.
- **Columns:** 24 fields covering orders, customers, locations, products, sales metrics, and shipping.

ii. Key Columns

- o **Row ID:** Unique index for entries.
- Order ID: Identifies each order for product grouping.
- o **Order Date:** Date of order placement for time-series analysis.
- o **Ship Date:** Date of shipment for delivery efficiency.
- o **Order Priority:** Indicates priority level (Low, Medium, High, Critical) for shipping performance analysis.

Customer and Segment Details

- Customer ID / Name: Identifies individual customers for profitability analysis.
- Segment: Classifies customers into:
 - o Consumer: Individual customers.
 - o Corporate: Business buyers.
 - o Home Office: Small businesses/home offices.

This segmentation reveals trends across customer types.

Location Information

• City / State / Country / Postal Code: Provides geographical context for regional analysis and sales comparisons.

• Market / Region:

- o Market: Broad areas (e.g., APAC, EMEA).
- o **Region:** Specific areas (e.g., South, West).

These fields enable regional sales performance tracking.

Product and Category Data

- **Product ID / Name:** Unique product identifiers.
- Category / Sub-Category: Groups products (e.g., Furniture, Technology) for:
 - o Sales and profit analysis by category.
 - o Identification of best-selling and low-performing sub-categories.

Sales and Profitability Metrics

- Sales: Revenue from orders for performance analysis.
- Quantity: Units sold per product to identify high-volume items.
- **Discount:** Discounts applied, analyzing their impact on profit margins.
- **Profit:** Net profit from orders, crucial for:
 - o Profitability analysis at various levels.
 - o Identifying profitable customers, products, or regions.

Shipping Information

- **Ship Mode:** Delivery methods (e.g., Standard, First Class) for analyzing preferences and delivery trends.
- **Shipping Cost:** Costs incurred for shipping, useful for identifying high expenses and their impact on profits.

5. Why This Dataset is Valuable for Business Analysis

Insights include:

- Operational Efficiency: Shipping performance and order prioritization.
- **Customer Behavior:** Preferences by segment and region.
- Sales Trends: Identifying valuable customers, products, and regions.
- **Product Optimization:** Recognizing top and low-performing categories.

6. List of Dax Function Which I have used for this dataset:

1st DAX Function: "Average Discount"

Dax Formula : Average Discount = AVERAGE('Orders'[Discount])

This function calculates the mean discount across all orders, providing insight into the average discount offered to customers.

Function Used – AVERAGE:

- Calculates the arithmetic mean of values in the specified column.
- Uses the 'Orders' [Discount] column, which contains discount percentages.
- Sums all discount values and divides by the total number of records for the overall average.

Card Visual Setup:

 A Card Visual displays this value prominently, highlighting the average discount as a key metric.

2nd Column Chart: Average Discount by Region

Dax Formula : Average Discount = AVERAGE('Orders'[Discount])

Calculates the mean discount percentage across orders to identify regional discount variations.

Function Used – AVERAGE:

• Computes the average from the 'Orders' [Discount] column.

Purpose: Analyze regional discount strategies to determine if adjustments are needed for sales effectiveness.

Why Use a Clustered Column Chart?

- Visual Comparison
- Clear Insights

Benefits:

• Optimize Performance, Redirect Resources and Inform Sales Strategy

3rd Line Chart: Average Shipping Cost Over Time

DAX Formula:

Average Shipping Cost = AVERAGE('Orders'[Shipping Cost])

Purpose:

Calculates the average shipping cost for all orders, visualized in a line chart to track fluctuations and identify patterns or operational changes.

Function Used – AVERAGE:

• Computes the mean of the 'Orders' [Shipping Cost] column by summing costs and dividing by the number of orders.

Why Use a Line Chart?

• Trend Visualization, Time Series Analysis

Benefits:

• Cost Control, Seasonal Adjustments and Profitability Insight

4th Profit per Customer

DAX Formula:

Profit per Customer = CALCULATE(SUM('Orders'[Profit]), ALLEXCEPT('Orders', 'Orders'[Customer ID]))

Purpose:

Calculates total profit generated by each customer, allowing identification of the most profitable customers using a Clustered Column Chart.

Detailed Breakdown:

- CALCULATE: Changes the context for calculations, summing 'Orders'[Profit] for each customer.
- ALLEXCEPT ('Orders', 'Orders'[Customer ID]): Removes all filters except for Customer ID, isolating profit per customer.

Benefits of Visualization:

• Identify Key Customers, Target High-Value Customers, Analyze Profit Distribution and Operational Insights

Why Use a Clustered Column Chart?

• Clear Comparison, Scalable

5th Sales Contribution

DAX Formula:

Sales Contribution = DIVIDE(SUM(Orders[Sales]), CALCULATE(SUM(Orders[Sales]), ALL(Orders)))

Purpose:

Calculates the percentage contribution of a segment (e.g., Category or Region) to total sales, providing insight into each segment's performance.

Function Breakdown:

- SUM(Orders[Sales]): Total sales for the filtered segment.
- CALCULATE(SUM(Orders[Sales]), ALL(Orders)): Total sales for all orders, ignoring filters.
- DIVIDE: Safely performs division to return the percentage contribution.

Benefits:

• Performance Tracking, Resource Allocation and Strategic Decision-Making

6th Sales December Filter

DAX Formula:

Sales December Filter = CALCULATE(SUM('Orders'[Sales]), FILTER('Orders', MONTH('Orders'[Order Date]) = 12))

Purpose:

Calculates total sales for December to analyze seasonal trends and performance.

Function Breakdown:

- CALCULATE: Adjusts context to sum only December's sales.
- FILTER: Includes only orders placed in December.

Why Used:

December sales are typically high due to holiday shopping, making it crucial to analyze this month's performance for evaluating promotional strategies.

Benefits:

• Campaign Effectiveness, Seasonal Planning and Product Focus

7. Sales South Filter

DAX Formula:

Sales South Filter = CALCULATE(SUM(Orders[Sales]), Orders[Region] = "South")

Function Breakdown:

- a. SUM(Orders[Sales]): Sums total sales.
- b. Orders[Region] = "South": Filters for orders from the South region.
- c. CALCULATE: Applies the South region filter to modify context.

Purpose:

Calculates total sales for the South region, providing insights into its contribution to overall sales.

Benefits:

• Regional Optimization, Product Alignment and Comparison

8. Selected Category Sales (Office Supplies)

DAX Formula:

Selected Category Sales = CALCULATE(SUM('Orders'[Sales]), FILTER('Orders', 'Orders'[Category] = "Office Supplies"))

Function Breakdown:

- a. SUM('Orders'[Sales]): Sums total sales.
- b. FILTER('Orders', 'Orders'[Category] = "Office Supplies"): Restricts data to "Office Supplies" category.
- c. CALCULATE: Applies the category filter and recalculates the sum.

Purpose:

Calculates total sales for the "Office Supplies" category to analyze its performance over time.

Benefits:

• Category Insights, Trend Analysis and Product Strategy

9. YTD Sales (Year-to-Date)

DAX Formula:

YTD Sales = TOTALYTD(SUM('Orders'[Sales]), 'Orders'[Order Date])

Function Breakdown:

- i. SUM('Orders'[Sales]): Calculates total sales.
- ii. TOTALYTD: Accumulates sales from the start of the year to the current date.

Purpose:

Calculates cumulative sales for the year, providing a running total.

Benefits:

• Goal Tracking, Seasonal Trends and Performance Management

10. Total Quantity Sold

DAX Formula:

Total Quantity Sold = SUM('Orders'[Quantity])

Function Breakdown:

SUM('Orders'[Quantity]): Sums the total quantity sold across all orders.

Purpose:

Calculates total quantity sold, aiding in sales volume tracking.

Benefits:

• Inventory Management, Sales Trends and Promotions

11. Month-to-Date (MTD) Sales

DAX Formula:

MTD Sales = TOTALMTD(SUM('Orders'[Sales]), 'Orders'[Order Date])

Function Breakdown:

- a. SUM('Orders'[Sales]): Sums current month sales.
- b. TOTALMTD: Accumulates sales for the current month up to the current date.

Purpose:

Calculates sales from the start of the month to the current date.

Benefits:

• Real-Time Monitoring, Adjust Strategies and Short-Term Goals

Final Thoughts

These DAX measures and visualizations help businesses to:

- Identify top contributors and underperformers.
- Monitor seasonal trends and regional variations.
- Track cumulative performance and monthly growth.
- Optimize product management based on sales volume.

