玻色-爱因斯坦凝聚

October 12, 2017

[1] 当理想玻色气体的 $n\lambda^3$ 等于或大于 2.612 的临界值时,会出现<mark>玻色-爱因斯坦凝聚</mark>。 考虑由 N 个全同、近独立的玻色子组成的系统,温度为 T、体积为 V。设粒子的自旋为 0。根据玻色分布给出,温度为 T 时,处在能级 e_l 上的粒子数为

$$a_l = \frac{\omega_l}{e^{\frac{\varepsilon_l - \mu}{kT}} - 1} \tag{1}$$

由于处在任一能级上的粒子数不能取负值,因此 $e^{\frac{\varepsilon_1-\mu}{kT}}>1$ 。设 ε_0 为离子的最低能级,则

$$\varepsilon_0 > \mu$$
 (2)

即理想玻色气体的化学势须低于粒子最低能级的能量。若取最低能级为能量的零点, $\varepsilon_0=0,\;\mathbb{M}$

$$\mu < 0$$
 . (3)

化学势 μ 由

$$\frac{1}{V} \sum_{i} \frac{\omega_{l}}{e^{\frac{\varepsilon_{l} - \mu}{kT}} - 1} = \frac{N}{V} = n \tag{4}$$

确定为温度 T、粒子数密度 n = N/V 的函数。 ε_l 和 ω_l 都与温度无关,当粒子数密度 n 给定,温度愈低,该式确定的 μ 值越高 ($|\mu|$ 愈小)。若将求和用积分代替,

$$\frac{2\pi}{h^3} (2m)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2} d\varepsilon}{e^{\frac{\varepsilon - \mu}{kT}} - 1} = n , \qquad (5)$$

该式适用于热力学极限或能级间距远小于 kT 的情形。化学势随温度的降低而升高,当温度降到某一临界温度 T_c 时, μ 将趋于 -0。 $e^{-\frac{t}{kT_c}}$ 趋于 1。临界温度 T_c 由

$$\frac{2\pi}{h^3} (2m)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2} d\varepsilon}{e^{\frac{\varepsilon}{kT}} - 1} = n , \qquad (6)$$

 $\diamondsuit x = \varepsilon/kT, \ \, 则$

$$\frac{2\pi}{h^3} (2mkT_c)^{3/2} \int_0^\infty \frac{x^{1/2} dx}{e^x - 1} = n , \qquad (7)$$

$$\int_0^\infty \frac{x^{1/2} dx}{e^x - 1} = \frac{2.612\sqrt{\pi}}{2}$$

对于给定的粒子数密度 n, 临界温度 T_c 为

$$T_c = \frac{2\pi}{(2.612)^{2/3}} \frac{\hbar^2}{mk} n^{2/3} \tag{8}$$

温度愈低, μ 值越高,但在任何温度下 μ 值必须是负的。当 $T < T_c$ 时, μ 仍趋于 -0。在 T_c 以上, μ 值为负的有限值时,处在能级 $\varepsilon = 0$ 的粒子数与总粒子数相比是一个小量,用积分代替求和引起的误差是可以忽略的。

在 $T < T_c$ 时,

$$n_0(T) + \frac{2\pi}{h^3} (2m)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2} d\varepsilon}{e^{\frac{\varepsilon}{kT}} - 1} = n , \qquad (9)$$

 $n_0(T)$ 是温度为 T 时,处在能级 $\varepsilon=0$ 的粒子数密度;第二项是处在激发能级 $\varepsilon>0$ 的粒子数密度 $n_{\varepsilon>0}$,已取极限 $\mu\to-0$ 。

$$n_{\varepsilon>0} = \frac{2\pi}{h^3} (2m)^{3/2} \int_0^\infty \frac{\varepsilon^{1/2} d\varepsilon}{e^{\frac{\varepsilon}{kT}} - 1} = \frac{2\pi}{h^3} (2mkT)^{3/2} \int_0^\infty \frac{x^{1/2} dx}{e^x - 1} = n \left(\frac{T}{T_c}\right)^{3/2}$$

温度为 T 时,处在最低能级 $\varepsilon = 0$ 的粒子数密度为

$$n_0(T) = n \left[1 - \left(\frac{T}{T_c}\right)^{3/2} \right] \tag{10}$$

即,在 T_c 以下, n_0 与 n 具有相同的量级。

在绝对零度下,粒子将尽可能占据能量最低的状态。对于玻色粒子,一个量子态所能容纳的粒子数目不受限制,因此绝对零度下玻色粒子将全部处在 $\varepsilon=0$ 的最低能级。在 $T < T_c$ 时,有宏观量级的粒子在 $\varepsilon=0$ 的能级凝聚,称为玻色-爱因斯坦凝聚。 T_c 为凝聚温度,凝聚在 ε_0 的粒子集合称为玻色凝聚体。凝聚体能量和动量为 0,对压强没有贡献。由于凝聚体的微观状态完全确定,熵也为 0。

在 $T < T_c$ 时, 理想玻色气体的内能为处在能级 $\varepsilon > 0$ 的粒子能量的统计平均值

$$U = \frac{2\pi V}{h^3} (2m)^{3/2} \int_0^\infty \frac{\varepsilon^{3/2} d\varepsilon}{e^{\frac{\varepsilon}{kT}} - 1}$$
$$= \frac{2\pi V}{h^3} (2m)^{3/2} (kT)^{5/2} \int_0^\infty \frac{x^{3/2} dx}{e^x - 1}$$
$$= 0.770 NkT \left(\frac{T}{T_c}\right)^{3/2}$$

其中 $x = \varepsilon/kT$ 。定容热容量为

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = \frac{5U}{2T} = 1.925Nk \left(\frac{T}{T_c}\right)^{3/2} \tag{11}$$

在 $T < T_c$ 时,理想玻色气体的 C_V 与 $T^{3/2}$ 成正比。到 $T = T_c$ 时, C_V 达到极大值 $C_V = 1.925Nk$,高温时应趋于经典值 $\frac{3}{2}Nk$ 。在 $T = T_c$ 的尖峰处, C_V 连续,但 C_V 对 T 的偏导数存在突变。

$$n\left(\frac{h}{\sqrt{2\pi mkT_c}}\right)^3 = n\lambda^3 = 2.612\tag{12}$$

是理想玻色气体出现凝聚的临界条件。出现凝聚体的条件为

$$n\lambda^3 \geqslant 2.612\tag{13}$$

满足上式时,原子的热波长大于原子的平均间距,量子统计关联起决定性作用。可以通过降低温度和增加气体粒子数密度的方法来实现波色凝聚。

[2] 强简并区,z 接近 1,但仍小于 1 或 e^{α} 接近 1 但仍大于 $1(z \lesssim 1$ 或 $e^{\alpha} > 1)$ 。对于理想玻色气体, $z \geqslant 1$ 或 $e^{\alpha} \leqslant$ 是不允许的。因为任何一个能级上的粒子数不可能是负值,由 $\bar{a}_{\lambda} = g_{\lambda}/(\mathrm{e}^{\alpha+\beta\varepsilon_{\lambda}}-1)$,必须有 $\mathrm{e}^{\alpha+\beta\varepsilon_{\lambda}} > 1$ (对一切 λ)。粒子平均动能的最低能级 ε_{0} 可能取为 0(粒子平动动能的最低能级的量级为

$$\varepsilon_0 \sim \frac{2\pi^2\hbar^2}{mL^2} \; ,$$

若取 $m \sim 10^{-24} \mathrm{~g}, \ L \sim 1 \mathrm{~cm},$ 得到

$$\varepsilon_0 \sim 10^{-30} {\rm erg} \sim 10^{-42} {\rm \ eV}$$
.

称它是零能量态或者零动量态。),故 $e^{\alpha} > 1$ 或 $z = e^{-\alpha} < 1$ 。理想玻色气体在强简并条件下将发生一种新的相变,称为玻色-爱因斯坦凝聚。

$$N = \frac{V}{h^3} (2\pi mkT)^{3/2} g_{3/2}(z) , \qquad (14)$$

$$g_{3/2}(z) = \sum_{\lambda=1}^{\infty} \frac{z^{\lambda}}{\lambda^{3/2}} = z + \frac{1}{2^{3/2}} z^2 + \frac{1}{3^{3/2}} z^3 + \cdots$$
 (15)

 $g_{3/2}(z)$ 在 $0 \le z \le 1$ 的范围内都是收敛的,它随 z 的增加而单调连续的增加,在 z=1 处达到最大值 $g_{3/2}(1) = \zeta\left(\frac{3}{2}\right) \approx 2.612$,其中 ζ 为黎曼 ζ 函数。当 N,V 给定时,随着温度的下降, $g_{3/2}(z)$ 的值增加。由于 $g_{3/2}(z)$ 有上限,必定存在某一非零温度 T_c ,使得

$$N = \frac{V}{h^3} (2\pi m k T_c)^{3/2} g_{3/2}(1) , \qquad (16)$$

$$T_c = \frac{h^2}{2\pi mk} \left[\frac{n}{q_{3/2}(1)} \right]^{2/3} . \tag{17}$$

当 $T < T_c$ 时,

$$N > \frac{V}{h^3} (2\pi mkT)^{3/2} g_{3/2}(1) , (T < T_c) ,$$
 (18)

表明式 (14) 不再成立。

在计算 $\ln \Xi$ 时,对子系量子态求和近似地用子相体积的积分代替。由于态密度 $D(\varepsilon) \sim \varepsilon^{1/2}$,当 $\varepsilon = 0$ 时,D(0) = 0。在积分中把 $\varepsilon = 0$ 态的贡献完全丢掉了。这样做 对 $T \leqslant T_c$ 是合理的,但对 $T < T_c$ 则不行。

$$\ln \Xi = -\sum_{\lambda} g_{\lambda} \ln(1 - e^{-\alpha - \beta \varepsilon_{\lambda}})$$

$$= -\ln(1 - e^{-\alpha}) - \sum_{\varepsilon_{\lambda} \geqslant \varepsilon_{1}} g_{\lambda} \ln(1 - e^{-\alpha - \beta \varepsilon_{\lambda}}) , \qquad (19)$$

右边第一项代表粒子最低能级(即粒子的基态 $\varepsilon_0=0$,已设 $g_0=1$)的贡献,第二项的求和代表所有粒子激发态的贡献, ε_1 为第一激发能级。对于宏观系统, $\frac{\Delta\varepsilon}{kT}\ll 1$,仍可用对子相体积的积分来代替,

$$\ln \Xi = -\ln(1 - e^{-\alpha}) - \int_{\varepsilon_1}^{\infty} \ln(1 - e^{-\alpha - \beta \varepsilon}) D(\varepsilon) d\varepsilon ,$$

$$= \ln(1 - e^{-\alpha}) - \int_{0}^{\infty} \ln(1 - e^{-\alpha - \beta \varepsilon}) D(\varepsilon) d\varepsilon$$
(20)

由 $D(\varepsilon) = 0$ 将第二项积分的下限改成 0。

$$N = -\frac{\partial}{\partial \alpha} \ln \Xi = \frac{1}{e^{\alpha} - 1} + \int_{0}^{\infty} \frac{D(\varepsilon) d\varepsilon}{e^{\alpha + \beta \varepsilon} - 1} = \overline{N}_{0} + \overline{N}_{\text{exc}} , \qquad (21)$$

$$\overline{N}_0 = \frac{1}{e^{\alpha} - 1} \,\,\,(22)$$

$$\overline{N}_{\rm exc} = \int_0^\infty \frac{D(\varepsilon) d\varepsilon}{e^{\alpha + \beta \varepsilon} - 1} , \qquad (23)$$

 \overline{N}_0 和 $\overline{N}_{\mathrm{exc}}$ 分别代表基态和所有激发态上占据的粒子数。由 $z=\mathrm{e}^{-\alpha}$,

$$\overline{N}_0 = \frac{z}{1-z} , \qquad (24)$$

$$\overline{N}_{\text{exc}} = \frac{V}{\lambda_T^3} g_{3/2}(z) = \frac{V}{h^3} (2\pi mkT)^{3/2} g_{3/2}(z) , \qquad (25)$$

当 $T>T_c$ 时,尽管就单个能级, \overline{N}_0 比任何单个激发能级上占据的粒子数都多,但由于绝大多数的粒子都占据在激发能级上,以致 $\overline{N}_{\rm exc}\approx N$,与 $N\sim 10^{20}$ 相比, \overline{N}_0 完全可以忽略。这对 $T\geqslant T_c$ 的一切温度都成立。所有激发态上占据的粒子数的最大值(在忽略 \overline{N}_0 后等于 N)为

$$(\overline{N}_{\text{exc}})_{\text{max}} = \frac{V}{h^3} (2\pi m k T_c)^{3/2} g_{3/2}(1) \ .$$
 (26)

当 $T < T_c$ 时, $\overline{N}_{\rm exc} < (\overline{N}_{\rm exc})_{\rm max}$,且 $\overline{N}_{\rm exc}$ 随 $T \to 0$ 而趋于 0。 \overline{N}_0 随 $T \to 0$ 而趋于 N。对 $T < T_c$,

$$\frac{(\overline{N}_{\rm exc})}{N} = \left(\frac{T}{T_c}\right)^{3/2} \quad (T < T_c) , \qquad (27)$$

$$\overline{N}_0 = N - \overline{N}_{\text{exc}} = N \left[1 - \left(\frac{T}{T_c} \right)^{3/2} \right] . \tag{28}$$

当温度降至 T_c 以下时,将有宏观数量的粒子从激发态聚集到基态上去,这一现象称为玻色-爱因斯坦凝聚。

若把凝聚到基态 (零能量亦即零动量态) 上的粒子看成凝聚相,而把其余处在激发态上的粒子看成与凝聚相达到平衡的"气相",发生 BEC 的系统很像气-液相变。BEC 与通常的气-液相变存在两点不同:

- 1. 气-液相变中,气相与液相在实空间是分开的,分子从气相转变到液相是实空间中的凝聚,而在 BEC 中,粒子从激发态 ($\varepsilon \neq 0$,动量也不为 0) 转变到基态 (零能量与零动量态) 是动量空间从 $p \neq 0$ 的态转变到 p = 0 的态,是动量空间的凝聚。BEC 中激发态的粒子与零动量态的粒子占据实空间中相同的区域,并不分成实空间中的两个部分。
- 2. 通常的气-液相变必须存在分子之间的相互作用力,没有相互作用,相变是不可能的。 BEC 是对理想玻色气体,尽管理想气体分子之间的相互作用力可以忽略,但由于玻色 子之间的量子起源的有效吸引,导致相变成为可能。这是由量子力学起源的相互作用, 即统计关联。

$$\ln \Xi = -\ln(1 - e^{-\alpha}) + \frac{V}{\lambda_T^{3/2}} g_{5/2}(z) ,$$

右边第一项 (来自基态上的粒子的贡献) 只依赖于 α , 而与 V 和 β 均无关, 故第一项对压强和内能均无贡献, 即

$$p = \frac{1}{\beta} \frac{\partial}{\partial V} \ln \Xi = \frac{1}{\beta \lambda_T^{3/2}} g_{5/2}(z) , \qquad (29)$$

$$\overline{E} = -\frac{\partial}{\partial \beta} \ln \Xi = \frac{3}{2} kT \frac{V}{\lambda_T^{3/2}} g_{5/2}(z) . \qquad (30)$$

$$\frac{pV}{kT} = \frac{\overline{E}}{\frac{3}{2}kT} = \frac{V}{\lambda_T^{3/2}} g_{5/2}(z) , \qquad (31)$$

占据在基态 (零动量态) 上的粒子,对压强和内能均无贡献。当 $T < T_c$ 时,由于 $g_{5/2}(z)$ 在 $0 \le z \le 1$ 是连续收敛函数,而在 $T < T_c$ 区,z 接近于 1,

$$\frac{pV}{kT} = \frac{\overline{E}}{\frac{3}{2}kT} = \frac{V}{h^3} (2\pi mkT)^{3/2} g_{5/2}(1) , \qquad (32)$$

其中 $g_{5/2}(1) = \zeta\left(\frac{5}{2}\right) \approx 1.341$ 。

$$\frac{pV}{NkT} = \frac{\overline{E}}{\frac{3}{2}NkT} = \frac{g_{5/2}(1)}{g_{3/2}(1)} \left(\frac{T}{T_c}\right)^{3/2} , \qquad (33)$$

$$C_V = \left(\frac{\partial \overline{E}}{\partial T}\right)_V = \frac{15g_{5/2}(1)}{4g_{3/2}(1)} Nk \left(\frac{T}{T_c}\right)^{3/2} . \tag{34}$$

随 $T\to 0,\ p,\overline{E},C_V$ 分别以 $T^{5/2}$ 和 $T^{3/2}$ 趋于 0。理想玻色气体的 C_V 随 T 趋于 0 符合 热力学第三定律。

当 $T \to \infty(\lambda_T \to 0)$ 时, $\frac{C_V}{Nk} \to 1.5$,即趋于经典极限值。随着温度降低,热容将向着增大的方向偏离经典值,直到 $T = T_c$ 达到最大值。 $T < T_c$,它将随温度下降而趋于 0。在 $T = T_c$ 函数是一个尖点,即 C_V 对 T 的微商在 T_c 点不连续,但 C_V 本身在 T_c 点连续。

$$N = \frac{z}{1-z} + \frac{V}{\lambda_T^3} g_{3/2}(z) , \qquad (35)$$

$$1 = \frac{1}{N} \frac{z}{1-z} + \frac{1}{n\lambda_T^3} g_{3/2}(z) . {36}$$

$$N = \frac{z}{1-z} \,, \tag{37}$$

$$z = \frac{N}{1+N} \ . \tag{38}$$

表明 $T \rightarrow 0, z \rightarrow 1$,但 z 不可能恒等于 1。

References

- [1] 汪志诚. 热力学·统计物理. 《十二五》普通高等教育本科国家级规划教材. 高等教育出版社, 2013.
- [2] 林宗涵. 热力学与统计物理学. 北京大学物理学丛书. 北京大学出版社, 2007.