

Lecture 33: Infinite Sequences and Series.

MA2032 Vector Calculus

Lecturer: Larissa Serdukova

School of Computing and Mathematical Science University of Leicester

December 5, 2022

Sequences. Representing Sequences

- Sequences are fundamental to the study of infinite series and to many aspects of mathematics.
- A sequence is a **list of numbers**

$$a_1, a_2, a_3, \ldots, a_n, \ldots$$

- in a given order. Order is important!
- Each of a_1, a_2, a_3 and so on **represents a number**. These are the **terms** of the sequence.
- The integer n is called the index of a_n , and indicates where a_n occurs in the list.
- An **infinite sequence of numbers is a function of index** *n* whose domain is the set of positive integers.

Sequences. Representing Sequences

• For example, the function associated with the sequence

$$2, 4, 6, 8, 10, 12, \ldots, 2n, \ldots$$

- \bullet sends 1 to $a_1=2$, 2 to $a_2=4$, and so on.
- The **general behavior** of this sequence is described by the **formula** $a_n = 2n$.
- Sequences can be **described by writing rules** that specify their terms, such as $a_n = \sqrt{n}$ or **by listing terms**

$$\{a_n\} = \{\sqrt{1}, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots\}$$

• We also sometimes write a sequence using its rule, as with

$$\{a_n\} = \{\sqrt{n}\}_{n=1}^{\infty}$$

Sequences. Representing Sequences

• Figure shows two ways to **represent sequences graphically**.

Convergence and Divergence

DEFINITIONS The sequence $\{a_n\}$ converges to the number L if for every positive number ε there corresponds an integer N such that

$$|a_n - L| < \varepsilon$$
 whenever $n > N$.

If no such number L exists, we say that $\{a_n\}$ diverges.

If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the **limit** of the sequence (Figure 10.2).

Convergence and Divergence

DEFINITION The sequence $\{a_n\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than N, $a_n > M$. If this condition holds we write

$$\lim_{n \to \infty} a_n = \infty \quad \text{or} \quad a_n \to \infty.$$

Similarly, if for every number m there is an integer N such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

$$\lim_{n\to\infty} a_n = -\infty \qquad \text{or} \qquad a_n \to -\infty.$$

Calculating Limits of Sequences

THEOREM 1 Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let A and B be real numbers. The following rules hold if $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.

1. Sum Rule:
$$\lim_{n\to\infty} (a_n + b_n) = A + B$$

2. Difference Rule:
$$\lim_{n\to\infty} (a_n - b_n) = A - B$$

3. Constant Multiple Rule:
$$\lim_{n\to\infty} (k \cdot b_n) = k \cdot B$$
 (any number k)

4. Product Rule:
$$\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$$

5. Quotient Rule:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B} \quad \text{if } B \neq 0$$

Calculating Limits of Sequences

THEOREM 2—The Sandwich Theorem for Sequences

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \le b_n \le c_n$ holds for all n beyond some index N, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$ also.

Calculating Limits of Sequences

EXAMPLE

Since $1/n \rightarrow 0$, we know that

(a)
$$\frac{\cos n}{n} \to 0$$
 because $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$;

(b)
$$\frac{1}{2^n} \rightarrow 0$$
 because $0 \le \frac{1}{2^n} \le \frac{1}{n}$;

(c)
$$(-1)^n \frac{1}{n} \to 0$$
 because $-\frac{1}{n} \le (-1)^n \frac{1}{n} \le \frac{1}{n}$.

(d) If
$$|a_n| \to 0$$
, then $a_n \to 0$ because $-|a_n| \le a_n \le |a_n|$.

Using L'Hôpital's Rule

THEOREM 3—The Continuous Function Theorem for Sequences

Let $\{a_n\}$ be a sequence of real numbers. If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \to f(L)$.

THEOREM 4 Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{n \to \infty} a_n = L \qquad \text{whenever} \qquad \lim_{x \to \infty} f(x) = L.$$

Using L'Hôpital's Rule

EXAMPLE

Does the sequence whose *n*th term is

$$a_n = \left(\frac{n+1}{n-1}\right)^n$$

converge? If so, find $\lim_{n\to\infty} a_n$.

Solution The limit leads to the indeterminate form 1^{∞} . We can apply l'Hôpital's Rule if we first change the form to $\infty \cdot 0$ by taking the natural logarithm of a_n :

$$\ln a_n = \ln \left(\frac{n+1}{n-1} \right)^n = n \ln \left(\frac{n+1}{n-1} \right).$$

Then,

Solution. Example

$$\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} n \ln \left(\frac{n+1}{n-1} \right) \qquad \infty \cdot 0 \text{ form}$$

$$= \lim_{n \to \infty} \frac{\ln \left(\frac{n+1}{n-1} \right)}{1/n} \qquad \frac{0}{0} \text{ form}$$

$$= \lim_{n \to \infty} \frac{-2/(n^2-1)}{-1/n^2} \qquad \text{L'Hôpital's Rule: differentiate numerator and denominator.}$$

$$= \lim_{n \to \infty} \frac{2n^2}{n^2-1} = 2. \qquad \text{Simplify and evaluate.}$$

Since $\ln a_n \to 2$ and $f(x) = e^x$ is continuous, Theorem 3 tells us that

$$a_n = e^{\ln a_n} \longrightarrow e^2$$
.

The sequence $\{a_n\}$ converges to e^2 .

Commonly Occurring Limits

THEOREM 5 The following six sequences converge to the limits listed below:

$$1. \lim_{n\to\infty} \frac{\ln n}{n} = 0$$

$$2. \lim_{n\to\infty} \sqrt[n]{n} = 1$$

3.
$$\lim_{n \to \infty} x^{1/n} = 1$$
 $(x > 0)$

4.
$$\lim_{n \to \infty} x^n = 0$$
 ($|x| < 1$)

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \quad (\text{any } x)$$

$$6. \lim_{n \to \infty} \frac{x^n}{n!} = 0 \qquad (\text{any } x)$$

In Formulas (3) through (6), x remains fixed as $n \to \infty$.

Infinite Series

DEFINITIONS Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

is an **infinite series**. The number a_n is the **nth term** of the series. The sequence $\{s_n\}$ defined by

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$
 \vdots

is the **sequence of partial sums** of the series, the number s_n being the **nth partial sum**. If the sequence of partial sums converges to a limit L, we say that the series **converges** and that its **sum** is L. In this case, we also write

$$a_1 + a_2 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n = L.$$

If the sequence of partial sums of the series does not converge, we say that the series **diverges**.

Geometric series are series of the form

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

in which a and r are fixed real numbers and $a \neq 0$. The series can also be written as $\sum_{n=0}^{\infty} ar^n$. The **ratio** r can be positive, as in

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} + \dots, \qquad r = 1/2, a = 1$$

or negative, as in

$$1 - \frac{1}{3} + \frac{1}{9} - \dots + \left(-\frac{1}{3}\right)^{n-1} + \dots$$
 $r = -1/3, a = 1$

If r = 1, the *n*th partial sum of the geometric series is

$$s_n = a + a(1) + a(1)^2 + \cdots + a(1)^{n-1} = na,$$

and the series diverges because $\lim_{n\to\infty} s_n = \pm \infty$, depending on the sign of a. If r = -1, the series diverges because the nth partial sums alternate between a and 0 and never approach a single limit. If $|r| \neq 1$, we can determine the convergence or divergence of the series in the following way:

$$s_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$rs_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

$$s_n - rs_n = a - ar^n$$

$$s_n(1 - r) = a(1 - r^n)$$

$$s_n = \frac{a(1 - r^n)}{1 - r}, \qquad (r \neq 1).$$

Write the nth partial sum.

Multiply s_n by r.

Subtract rs_n from s_n . Most of the terms on the right cancel.

Factor.

We can solve for s_n if $r \neq 1$.

If |r| < 1, then $r^n \to 0$ as $n \to \infty$ (as in Section 10.1), so $s_n \to a/(1-r)$ in this case. On the other hand, if |r| > 1, then $|r^n| \to \infty$ and the series diverges.

If |r| < 1, the geometric series $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ converges to a/(1-r):

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \qquad |r| < 1.$$

If $|r| \ge 1$, the series diverges.

EXAMPLE

The geometric series with a = 1/9 and r = 1/3 is

$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots = \sum_{n=1}^{\infty} \frac{1}{9} \left(\frac{1}{3}\right)^{n-1} = \frac{1/9}{1 - (1/3)} = \frac{1}{6}.$$

EXAMPLE

The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$$

is a geometric series with a = 5 and r = -1/4. It converges to

$$\frac{a}{1-r} = \frac{5}{1+(1/4)} = 4.$$

The nth-Term Test for a Divergent Series

• One reason that a series may fail to converge is that its terms don't become small.

We now show that $\lim_{n\to\infty} a_n$ must equal zero if the series $\sum_{n=1}^{\infty} a_n$ converges. To see why, let S represent the series' sum and $s_n = a_1 + a_2 + \cdots + a_n$ the nth partial sum. When n is large, both s_n and s_{n-1} are close to S, so their difference, a_n , is close to zero. More formally,

$$a_n = s_n - s_{n-1} \quad \to \quad S - S = 0.$$

Difference Rule for sequences

This establishes the following theorem.

THEOREM 7 If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $a_n \to 0$.

Theorem 7 leads to a test for detecting the kind of divergence

The nth-Term Test for Divergence

 $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero.

Combining Series

THEOREM 8 If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then

- 1. Sum Rule: $\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B$
- **2.** Difference Rule: $\sum (a_n b_n) = \sum a_n \sum b_n = A B$
- 3. Constant Multiple Rule: $\sum ka_n = k\sum a_n = kA$ (any number k).

- 1. Every nonzero constant multiple of a divergent series diverges.
- **2.** If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n + b_n)$ and $\sum (a_n b_n)$ both diverge.

Combining Series

EXAMPLE

Find the sums of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{6^{n-1}} \right)$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}}$$
$$= \frac{1}{1 - (1/2)} - \frac{1}{1 - (1/6)}$$
$$= 2 - \frac{6}{5} = \frac{4}{5}$$

Difference Rule

Geometric series with a = 1 and r = 1/2, 1/6

(b)
$$\sum_{n=0}^{\infty} \frac{4}{2^n} = 4 \sum_{n=0}^{\infty} \frac{1}{2^n}$$
$$= 4 \left(\frac{1}{1 - (1/2)} \right)$$
$$= 8$$

Constant Multiple Rule

Geometric series with a = 1, r = 1/2