Fiche de TD 1

 $\mathbf{Ex.1}$ – On considère les trois normes usuelles définies sur \mathbb{R}^2 par

$$\|(x_1, x_2)\|_1 = |x_1| + |x_2|, \ \|(x_1, x_2)\|_2 = \sqrt{x_1^2 + x_2^2}, \ \|(x_1, x_2)\|_{\infty} = \max(|x_1|, |x_2|)$$

- 1. Dessiner les boules fermées de centre (3,-1) et de rayon 1 dans \mathbb{R}^2 pour les trois normes.
- 2. Montrer que les trois normes sont équivalentes. On pourra montrer les inégalités

$$\|(x_1, x_2)\|_{\infty} \le \|(x_1, x_2)\|_1 \le \sqrt{2} \|(x_1, x_2)\|_2 \le 2 \|(x_1, x_2)\|_{\infty}$$

Montrer que pour tout a dans \mathbb{R}^2 et tout r > 0 on a $B_{\infty}(a,r) \subset B_2(a,\sqrt{2}r)$.

 $\mathbf{Ex.2} - \text{ On considère la partie de } \mathbb{R}, \ A = \left\{ \frac{\|(x_1,x_2)\|_1}{\|(x_1,x_2)\|_\infty} \,, \ (x_1,x_2) \in \mathbb{R}^2 \setminus \{(0,0)\} \right\}.$ La partie A admet-elle une borne supérieure ? Une borne inférieure ? Si oui, les déterminer.

Ex.3 – Montrer que l'application $N : \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $N(x_1, x_2) = |x_1 + x_2| + |x_1|$ définit une norme sur \mathbb{R}^2 équivalente aux normes usuelles. Dessiner la boule unité pour cette norme.

Ex.4 – On note $C([0,1],\mathbb{R})$ l'espace vectoriel sur \mathbb{R} des fonctions continues de [0,1] dans \mathbb{R} .

1. Montrer que les applications suivantes sont des normes sur $C([0,1],\mathbb{R})$:

$$f \longmapsto ||f||_1 = \int_0^1 |f(t)| dt$$
 , $f \longmapsto ||f||_\infty = \sup f([0, 1])$

2. on considère les fonctions f_n $(n \ge 2)$ définies sur [0,1] par

$$f_n(x) = \begin{cases} nx & \text{si } 0 \le x \le 1/n \\ 2 - nx & \text{si } 1/n \le x \le 2/n \\ 0 & \text{si } 2/n \le x \le 1 \end{cases}$$

3. Montrer que la suite $(f_n)_{n\geq 2}$ converge vers la fonction nulle dans $C([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_1$ mais pas dans $C([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Les deux normes sont-elles équivalentes ?

Ex.5 – Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions. On considère la fonction $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par h(x,y) = f(x) + g(y). On munit \mathbb{R}^2 de la norme infinie et \mathbb{R} de sa norme usuelle.

- 1. Montrer que si f est continue en a et g est continue en b alors h est continue au point (a,b).
- 2. On suppose h continue au point (a,b). f est-elle continue en a? g est-elle continue en b?

Ex.6 – Soit la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par $f(x) = \frac{\|x\|_{\infty}}{\|x\|_2} \cdot x$ si $x \neq 0$ et f(0) = 0.

- 1. Soit $S_{\infty} = \{x \in \mathbb{R}^2, \|x\|_{\infty} = 1\}$ et $S_2 = \{x \in \mathbb{R}^2, \|x\|_2 = 1\}$. Montrer que $f(S_{\infty}) = S_2$.
- 2. Montrer que f est continue en 0, ceci quelque soit la norme dont on munit \mathbb{R}^2 .

Ex.7 – On considère la fonction $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par $\varphi(x_1, x_2) = \frac{x_1 x_2^2}{x_1^2 + x_2^4}$ si $(x_1, x_2) \neq (0, 0)$ et $\varphi(0, 0) = \alpha$, où α est un paramètre réel. On munit \mathbb{R}^2 de la norme infinie et \mathbb{R} de sa norme usuelle.

- 1. Déterminer les limites des suites de termes généraux $(\frac{1}{n}, \frac{1}{n})$ et $\varphi(\frac{1}{n}, \frac{1}{n})$. Que peut-on en déduire à propos de la continuité de φ en (0,0)?
- 2. Déterminer les limites des suites de termes généraux $(\frac{1}{n^2}, \frac{1}{n})$ et $\varphi(\frac{1}{n^2}, \frac{1}{n})$. Que peut-on en déduire à propos de la continuité de φ en (0,0)?

Ex.8 – Dire pour chacune des parties suivantes de \mathbb{R} , si elle est ouverte, fermée, et déterminer son adhérence et son intérieur : $]0,2], [-1,+\infty[,]-2,1[,]-\infty,7[\cup]8,9[,\cup_{n\in\mathbb{N}^*}\left[\frac{1}{n},1\right],\left\{\frac{1}{n},\,n\in\mathbb{N}^*\right\}.$

 $\mathbf{Ex.9}$ – Représenter graphiquement les parties suivantes de \mathbb{R}^2 et pour chacune d'elles, dire si elle est ouverte, fermée, et déterminer son adhérence et son intérieur :

$$\star A_{1} = \left\{ (x,y) \in \mathbb{R}^{2} / x \neq 0 \text{ et } y = 1/x^{2} \right\}$$

$$\star A_{2} = \left\{ (x,y) \in \mathbb{R}^{2} / |x| \neq 1 \text{ et } |y| \neq 1 \right\}$$

$$\star A_{3} = \left\{ (x,y) \in \mathbb{R}^{2} / |x| \neq 1 \text{ ou } |y| \neq 1 \right\}$$

$$\star A_{4} = \left\{ (x,y) \in \mathbb{R}^{2} / x + y \geq 0 \text{ et } x > 0 \right\}$$

$$\star A_{5} = \left\{ (x,y) \in \mathbb{R}^{2} / xy > 1 \right\}$$

$$\star A_{6} = \left\{ (x,y) \in \mathbb{R}^{2} / x^{2} + y^{2} = 1 \text{ et } y > 0 \right\}$$

$$\star A_{7} = \left\{ (x,y) \in \mathbb{R}^{2} / 2 \leq x^{2} + y^{2} \leq 3 \right\}$$

$$\star A_{8} = \left\{ (\cos t, \sin t) / t \in \left[0, \frac{\pi}{2} \right] \right\}$$

Ex.10 – La partie $A=\{(x,y,z)\in\mathbb{R}^3\,/\,x>0\,,\,y>0\ \text{et}\ z\leq 0\}$ de \mathbb{R}^3 est-elle ouverte ? est-elle fermée ?

Ex.11 – Soit f une fonction continue sur un intervalle fermé I de \mathbb{R} . Montrer que son graphe $G = \{(x, f(x)) \, / \, x \in I\}$ est un fermé de \mathbb{R}^2 .

Ex.12 – L'ensemble $\Gamma = \{(t, \sin\left(\frac{1}{t}\right))/t > 0\}$ est-il un fermé de \mathbb{R}^2 ? Déterminer son adhérence.