

Métodos cuantitativos II: introducción a R

Jose M Sallan jose.maria.sallan@upc.edu

Outline

Introducción a **R** y RStudio

Estructuras de datos en R

Leyendo archivos en R

Bibliotecas (paquetes) de R

Introducción a análisis de datos con R

Introducción a R y RStudio

Estructuras de datos en R

Leyendo archivos en R

Bibliotecas (paquetes) de R

Introducción a análisis de datos con R

El lenguaje R

R es un conjunto integrado de programas para manipulación de datos, cálculo y gráficos

Entre otras características dispone de:

- una amplia, coherente e integrada colección de herramientas para análisis de datos
- posibilidades gráficas para análisis de datos
- un lenguaje de programación bien desarrollado, simple y efectivo, que incluye condicionales, ciclos, funciones recursivas y posibilidad de entradas y salidas

R es sofware de código abierto, que puede extenderse mediante paquetes según las necesidades del usuario.

RStudio

RStudio es un entorno de desarrollo integrado (IDE) para \mathbf{R} , que incluye:

- una consola
- un editor de sintaxis que apoya la ejecución de código
- herramientas para el trazado, la depuración y la gestión del espacio de trabajo
- previsualización de gráficos y de ayuda del sistema

Utilizaremos RStudio desktop (gratuito)

Obteniendo R y RStudio

R y RStudio están disponibles para la mayoría de sistemas operativos

- Obtener e instalar R
- Obtener e instalar RStudio

Introducción a R y RStudio

Estructuras de datos en R

Leyendo archivos en R

Bibliotecas (paquetes) de R

Introducción a análisis de datos con R

Variables numéricas

- > x <- 2
- > X <- 3
- > x
- [1] 2
- > X
- [1] 3
- > x <- x +1
- > x
- [1] 3

- ▶ Podemos almacenar valores en variables en una sesión de R
- Es preferible usar <- como operador de asignación
- Las variables se pueden actualizar, y distinguen mayúsculas y minúsculas

Variables de texto

R también pueden almacenarse en variables cadenas de texto. Se declaran con dobles comillas.

```
> a <- "Hello World"
```

> a

> b

> c

La variable **b** es una cadena y la variable **c** es numérica

Factores

Podemos representar variables categóricas mediante factores, en las que cada individuo toma el valor de un nivel especificado.

```
> estado <- c("tas", "qld", "sa", "sa", "sa", "vic", "nt",
+ "act", "qld", "nsw", "wa", "nsw", "nsw", "vic", "vic",
+ "vic", "nsw", "qld", "qld", "vic", "nt", "wa", "wa",
+ "qld", "sa", "tas", "nsw", "nsw", "wa", "act")
> estado <- factor(estado)
> levels(estado)

[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"
```

Vectores

Un conjunto de valores de variables pueden almacenarse en vectores

Vector numérico de longitud 5

> d

Definiendo un vector usando c()

> e

Vector de variables texto:

> f

Vector de variables lógicas:

> g

Podemos obtener un subconjunto de valores que cumplen determinada condición en un vector usando which

> which(s>5)

[1] 4 5

> s[which(s>5)]

[1] 6 9

En **R** las posiciones de un vector comienzan por 1.

Matrices

A partir de un vector, pueden definirse matrices de dos o más dimensiones. Se ha de especificar si se definen por filas o columnas.

Matrices

Acceso a elementos de matrices

> A					> A[2, 3]
	[,1]	[,2]	[,3]	[,4]	[1] 10
[1,] 1	5	9	13	> A[,3]
[2,	2	6	10	14	> A[,5]
[3,] 3	7	11	15	[1] 9 10 11 12
[4,] 4	8	12	16	> A[2,]
					[1] 2 6 10 14

Listas

Una lista es una colección ordenada de objetos, que son sus componentes. Pueden ser de diferentes tipos:

- > list <- list(albert = 54, bryan = A, carlos = c(1,2,3))
- > list[[1]]
- [1] 54
- > list\$carlos
- [1] 1 2 3

Hojas de datos (data frames)

Una hoja de datos es una lista de vectores de la misma longitud. Tiene características específicas:

- ► Filas y columnas de una hoja de datos tienen nombres, accesibles con rownames and colnames, respectivamente.
- Podemos acceder a la fila i la columna j de df haciend df[i,] and df[, j].
- ▶ Del mismo modo que las listas, podemos acceder a las columnas por nombre usando \$.
- Las columnas de texto de una hoja de datos son factores por defecto. Podemos cambiar esto haciendo stringsAsFactors = FALSE al cargar la hoja de datos.

Hojas de datos (data frames)

Extrayendo información de hojas de datos

> head(mtcars) #principio del df

```
mpg cyl disp hp drat
                                          wt qsec vs am gear carb
Mazda RX4
                 21.0
                       6 160 110 3.90 2.620 16.46
Mazda RX4 Wag
                 21.0
                       6 160 110 3.90 2.875 17.02
Datsun 710
                 22.8
                       4 108 93 3.85 2.320 18.61
Hornet 4 Drive
                 21.4
                       6 258 110 3.08 3.215 19.44 1
Hornet Sportabout 18.7
                       8 360 175 3.15 3.440 17.02 0
Valiant
                 18.1
                       6 225 105 2.76 3.460 20.22 1 0
```

> tail(mtcars)#final del df

```
mpg cyl disp hp drat
                                        wt qsec vs am gear carb
Porsche 914-2
              26.0
                     4 120.3 91 4.43 2.140 16.7
Lotus Europa
              30.4
                     4 95 1 113 3 77 1 513 16 9 1
Ford Pantera L 15.8
                     8 351.0 264 4.22 3.170 14.5
Ferrari Dino
              19.7
                     6 145.0 175 3.62 2.770 15.5
Maserati Bora 15.0
                     8 301.0 335 3.54 3.570 14.6 0
Volvo 142E
              21.4
                     4 121.0 109 4.11 2.780 18.6 1 1
```

Hojas de datos (data frames)

Accediendo a elementos de hojas de datos

- > length(mtcars) #variables
- [1] 11
- > nrow(mtcars) #observaciones
- [1] 32
- > mtcars[3,] #observación 3
- mpg cyl disp hp drat wt qsec vs am gear carb Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
- > mtcars\$mpg[1:10] #primeros 10 valores de mpg
 - [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2

Introducción a R y RStudio

Estructuras de datos en R

Leyendo archivos en R

Bibliotecas (paquetes) de R

Introducción a análisis de datos con R

Formatos de archivo en R

En el contexto de análisis de datos, lo habitual es estructurarlos en forma de hojas de datos

Formatos usuales de lectura de archivo:

- Archivos de texto .txt: función read.table
- Archivos separados por comas .csv: función read.csv
- Otros formatos de archivo: paquete foreign

Para leer datos de hoja de cálculo lo más conveniente es guardarlos como .csv

Leyendo un archivo en R

Pasos a seguir:

- Fijar directorio de trabajo: función setwd o ventana Files de RStudio
- Leer archivo como data frame y asignarle un nombre
- Tener en cuenta si el archivo incluye nombres de las variables (parámetro header)

Introducción a R y RStudio

Estructuras de datos en R

Leyendo archivos en R

Bibliotecas (paquetes) de R

Introducción a análisis de datos con R

Bibliotecas (paquetes) en R

R se suministra con un conjunto de funciones base. En función de las necesidades, pueden añadirse nuevas funciones y datos con bibliotecas (paquetes) disponibles desde el repositorio CRAN

- Los paquetes se instalan en el sistema haciendo install.packages("psych")
- Cuando se quiere acceder al paquete: library(psych)

Bibliotecas (paquetes) en R

Algunos ejemplos de paquetes de R disponibles en CRAN

psych lavaan corrplot igraph car dplyr AER ggplot2

Introducción a R y RStudio

Estructuras de datos en R

Leyendo archivos en R

Bibliotecas (paquetes) de R

Introducción a análisis de datos con R

R permite analizar datos de naturaleza diversa, y con objetivos diversos. En nuestro caso queremos usarlo para *análisis estadístico* para investigación.

Algunos pasos del análisis inicial de datos:

- Examinar inicio y final de los datos
- Examinar estructura de los datos con str
- Estadísticos de las variables con summary
- Detectar y tratar datos faltantes con is.na

Visualización del inicio y el final de los datos

> head(airquality)

	Ozone	Solar.R	Wind	Temp	Month	Day
1	41	190	7.4	67	5	1
2	36	118	8.0	72	5	2
3	12	149	12.6	74	5	3
4	18	313	11.5	62	5	4
5	NA	NA	14.3	56	5	5
6	28	NA	14.9	66	5	6

> tail(airquality)

	Ozone	Solar.R	Wind	Temp	Month	Day
148	14	20	16.6	63	9	25
149	30	193	6.9	70	9	26
150	NA	145	13.2	77	9	27
151	14	191	14.3	75	9	28
152	18	131	8.0	76	9	29
153	20	223	11.5	68	9	30

Estructura de los datos

> str(airquality)

```
'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
$ Month : int 5 5 5 5 5 5 5 5 5 5 5 ...
$ Day : int 1 2 3 4 5 6 7 8 9 10 ...
```

> summary(airquality)

Ozo	ne	Sol	ar.R	W	ind	Te	emp
Min.	: 1.00	Min.	: 7.0	Min.	: 1.700	Min.	:56.00
1st Qu.	: 18.00	1st Qu	.:115.8	1st Qu	.: 7.400	1st Qu.	:72.00
Median	: 31.50	Median	:205.0	Median	: 9.700	Median	:79.00
Mean	: 42.13	Mean	:185.9	Mean	: 9.958	Mean	:77.88
3rd Qu.	: 63.25	3rd Qu	.:258.8	3rd Qu	.:11.500	3rd Qu.	:85.00
Max.	:168.00	Max.	:334.0	Max.	:20.700	Max.	:97.00
NA's	:37	NA's	:7				
Mon	th	Da	y				
Min.	:5.000	Min.	: 1.0				
1st Qu.	:6.000	1st Qu.	: 8.0				
Median	:7.000	Median	:16.0				
Mean	:6.993	Mean	:15.8				
3rd Qu.	:8.000	3rd Qu.	:23.0				
Max.	:9.000	Max.	:31.0				

Análisis de datos faltantes

```
UNIVERSITAT POLITÈCNICA DE CATALUNYA
BARCELOMATECH
Fundació Politècnica de Catalunya
```

Ozone	Solar.R	Wind	Temp
Min. : 1.0	Min. : 7.0	Min. : 2.30	Min. :57.00
1st Qu.: 18.0	1st Qu.:113.5	1st Qu.: 7.40	1st Qu.:71.00
Median : 31.0	Median :207.0	Median: 9.70	Median :79.00
Mean : 42.1	Mean :184.8	Mean : 9.94	Mean :77.79
3rd Qu.: 62.0	3rd Qu.:255.5	3rd Qu.:11.50	3rd Qu.:84.50
Max. :168.0	Max. :334.0	Max. :20.70	Max. :97.00
Month	Day		
Min. :5.000	Min. : 1.00		
1st Qu.:6.000	1st Qu.: 9.00		
Median:7.000	Median :16.00		
Mean :7.216	Mean :15.95		
3rd Qu.:9.000	3rd Qu.:22.50		
Max. :9.000	Max. :31.00		

Histogramas

- > par(mfrow=c(1,2))
- > hist(aq.clean\$Ozone, col="red", main="Ozono")
- > hist(aq.clean\$Solar.R, col="blue", main="Rad. solar")

Densidad

- > d.ozone <- density(aq.clean\$Ozone)
- > d.solar <- density(aq.clean\$Solar.R)
- > par(mfrow=c(1,2))
- > plot(d.ozone, main="Ozono")
- > plot(d.solar, main="Rad. Solar")

0 50

N = 111 Bandwidth = 11.52

150

Ozono

Gráfico de dispersión

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Fundació Politècnica de Catalunya

> plot(aq.clean\$Wind, aq.clean\$Ozone, pch=16)

Gráficos de dispersión

- > par(mfrow=c(1,2))
- > plot(aq.clean\$Wind, aq.clean\$Ozone, pch=16, xlab="Wind", ylab="Ozone")
- > plot(aq.clean\$Wind, aq.clean\$Solar.R, pch=16, xlab="Wind", ylab="Solar.R")

Gráfico de dispersión

> plot(aq.clean, pch=16)

Gráfico de dispersión

- > plot(aq.clean, pch=16,
- + col=aq.clean\$Month)

Comparación de medias

Evaluación de la temperatura media en los meses $5\ y\ 9$ de airquality

Correlaciones con psych

```
> library(psych)
> corr.test(aq.clean[, 1:4])
Call:corr.test(x = aq.clean[, 1:4])
Correlation matrix
       Ozone Solar.R Wind Temp
     1.00 0.35 -0.61 0.70
Ozone
Solar.R 0.35 1.00 -0.13 0.29
Wind -0.61 -0.13 1.00 -0.50
Temp 0.70
             0.29 -0.50 1.00
Sample Size
[1] 111
Probability values (Entries above the diagonal are adjusted for multiple tests.)
       Ozone Solar.R Wind Temp
Ozone
               0.00 0.00
Solar.R
           0 0.00 0.18
Wind
             0.18 0.00
Temp
             0.00 0.00
```

To see confidence intervals of the correlations, print with the short=FALSE option

Correlaciones con corrplot

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Fundació Politècnica de Catalunya

- > library(corrplot)
- > par(mfrow=c(1,2))
- > cor.aq <- cor(aq.clean[, 1:4])
- > corrplot(cor.aq, method = "circle")
- > corrplot(cor.aq, method = "number")

	Ozone	Solar.R	Wind	Temp	
Ozone	1	0.35	-0.61	0.7	0.8
Solar.R	0.35	1		0.29	0.4
Wind	-0.61		1	-0.5	-0.2
Temp	0.7	0.29	-0.5	1	-0.6 -0.8

Conclusiones

- 1. **R** proporciona una plataforma potente para análisis de datos (no sólo estadística para investigación)
- 2. La curva de aprendizaje de **R** puede reducirse con RStudio
- 3. R puede extenderse mediante librerías (packages)
- 4. R permite un análisis previo de los datos, necesario antes de análisis más sofisticados