ST2334 Cheatsheet AY22/23 — @JasonYapzx

Chapter 1

Observation: Recording of information, numerical or categorical Statistical Exp: Procedure that generates a set of observations Sample Space: Set of all possible outcomes of a statistical experiment, represented by the symbol S.

Sample Points: Every outcome in a sample space.

Events: Subset of sample space.

Simple/Compound Event: Exactly one/More than one outcome or

Sure/null Event: Sample space/Event with no outcomes.

Operations on Events

- Complement: A' Elements not in A
- Mutually Exclusive: $A \cap B = \emptyset$
- Union: $A \cup B$ contains A or B or both elements
- Intersection: $A \cap B$ contains elements common to both
- 1. $A \cap A' = \emptyset$
- 6. $(A \cup B)' = A' \cap B'$
- 7. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 2. $A \cap \emptyset = \emptyset$
- 3. $A \cup A' = S$
- 8. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 9. $A \cup B = A \cup (B \cap A')$
- 4. (A')' = A
- 5. $(A \cap B)' = A' \cup B'$ 10. $A = (A \cap B) \cup (A \cap B')$

 $A \subset B$ if all elements in event A are in event B, if $A \subset B$ and $B \subset A$ then A = B. We assume **contained** means proper subset.

Permutations and Combinations

- P: Arrange r objects from n objects where $r \leq n$, ${}_{n}P_{r} = \frac{n!}{(n-r)!}$
- P: Number of ways around a circle = (n-1)!
- C: No. of ways to select r from n without regard to order: $\binom{n}{r} = {}_{n}C_{r} = \frac{n!}{r!(n-r)!}$
- Conditional: $\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$, if $\Pr(A) \neq 0$
- Multiplicative: $Pr(A \cap B) = Pr(A)Pr(B|A) = Pr(B)Pr(A|B)$
- LoTP: $\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap A_i) = \sum_{i=1}^{n} \Pr(A_i) \Pr(B|A_i)$ Bayes: $\Pr(A_k|B) = \frac{\Pr(A_k)\Pr(B|A_k)}{\sum_{i=1}^{n} \Pr(A_i)\Pr(B|A_i)}$

Properties of Independent Events

- 1. Pr(B|A) = Pr(B) and Pr(A|B) = Pr(A)
- 2. A and B cannot be mutually exclusive if they are independent, supposing Pr(A), Pr(B) > 0
- 3. A and B cannot be independent if they are mutually exclusive
- 4. Sample space S and empty set \emptyset are independent of any event
- 5. If $A \subset B$, then A and B are dependent unless $B = S\overline{.}$

Birthday Problem $p_n = \Pr(A) = 1 - q_n$, once have 23 people, probability exceeds 0.5. How large does a group of randomly selected people have to be such that the probability that someone is sharing his or her birthday with me is larger than 0.5? n s.t. $1 - (\frac{364}{365})^n \ge 0.5$.

 $1 - \frac{n \times n - 1 \times \dots \times n - p + 1}{n^p}$, n is the number of days, p is number of people.

Chapter 2

Random Variable: $R_X = \{x | x = X(s), sS\}$

Equivalent: If $A = \{s \in S | X(s) \in B\}$, A and B are equivalent **Probability Function:** 1. $f(x_i)$ 0 for all x_i 2. $\sum_{i=1}^{\infty} f(x_i) = 1$ Continuous Random Variable: The probability density function (p.d.f.) f(x) of a continuous random variable must satisfy the following conditions

- f(x)0 for all $x \in R_X$. This also means that we may set f(x) = 0 for
- $x \notin R_X$, i.e. $\Pr(A) = 0$ does not imply $A = \bullet$ $\int_{R_X} f(x) dx = 1$, $\int_{\infty} \infty f(x) dx = 1$ does not imply f(x) = 0 for f(x) = 0 for
- For any $(c,d) \subset R_X$, c < d, $\Pr(cXd) = \int_c^d f(x) dx$
- $\Pr(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$

Cumulative Distribution Function c.d.f

F(x) as cumulative distribution function (c.d.f.) of the random variable X where F(x) = Pr(Xx). For any ab,

 $Pr(aBb) = Pr(Xb) - Pr(X < a) = F(b) - F(a^{-})$ where a^{-} is the largest possible value of X that is strictly less than a \bullet $f(x) = \frac{dF(x)}{dx}$

• $F(x) = \int_{-\infty}^{x} f(t)dt$

Expectation

- Variance $g(x) = (x \mu_X)^2$, leads us to the definition of variance. $\sigma_X^2 = V(X) = E[(X \mu_X)^2] =$ $\int \sum_{x} (x - \mu_X)^2 f_X(x), \quad \text{if } X \text{ is discrete,}$
- $\sigma_X = \sqrt{V(X)}$
- E(aX + b) = aE(X) + b, where
- $V(X) = E(X^2) [E(X)]^2$ • $V(X) = E(X^2) - [E(X)]^2$
- a and b are constants
- $\bullet V(aX+b)=a^2V(X)$
- $\bullet V(aX + bY) = a^2V(X) +$ $b^2V(Y) + 2abCov(X,Y)$, if X,Y independent, Cov(X, Y) = 0

Chapter 3

(X,Y) is a two-dimensional random variable, where X, Y are functions assigning a real number to each $s \in S$.

Range Space: $R_{X,Y} = \{(x,y)|x = X(s), y = Y(s), sS\}$

Joint Probability — Discrete Random Variables

 $\int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$, if X is continuous.

With each possible value (x_i, y_j) , we associate a number $f_{X,Y}(x_i, y_j)$ representing $Pr(X = x_i, Y = y_i)$ and satisfying the following conditions:

- 1. $f_{X,Y}(x_i, y_j)$ 0 for all $(x_i, y_j) \in R_{X,Y}$. 2. $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} j = 1 f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} i = 1 \sum_{j=1}^{\infty} j = 1 \text{Pr}(X = x_i, Y = y_j) = 1$.

Joint Probability — Continuous Random Variables

 $f_{X,Y}(x,y)$ is called a joint probability density function if it satisfies the following:

- 1. $f_{X,Y}(x,y)$ 0 for all $(x,y) \in R_{X,Y}$. 2. $\iint_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y) dx dy = 1$ or $\int_{\infty}^{\infty} \int_{\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$.

Marginal Probabilty Densities

- Discrete: $f_X(x) = \sum_y f_{X,Y}(x,y)$ and $f_Y(y) = \sum_x f_{X,Y}(x,y)$
- Cont: $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$, $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$

Conditional Probabilty Densities

The conditional distribution of Y given that X = x is given by

 $f_{Y|X}(y|x)=rac{f_{X,Y}(x,y)}{f_{X}(x)},$ if $f_{X}(x)>0$, for each x within the range of X. Flip the variables for X given Y=y.

Independent Random Variables

Random variables X and Y are independent if and only if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all x, y, extendable to n variables.

Expectation and Covariance

- 1. Discrete, E(g(X,Y)) = $\sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$
- 2. Continous E(g(X,Y)) =
- 6. Cov(aX + b, cY + d) = $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$
- 3. $E(XY) = \int \int xy(f(x,y))dydx$

- 5. If X and Y are independent, then Cov(X, Y) = 0. However,
- acCov(X,Y). $V(aX + bY) = a^2V(X) +$ 4. $Cov(X,Y) = E(XY) - \mu_X \mu_Y$. 8. If $X \perp Y$, Var(aX - bY) = $b^2V(Y) + 2abCov(X,Y).$

independence.

Cov(X, Y) = 0 does not imply

 $a^{2}V(X) + b^{2}V(Y)$ (Cov = 0) 9. Var(X - Y) = V(X) + V(Y)

Chapter 4

Discrete Uniform Distributions

If the random variable X assumes the values x_1, x_2, \dots, x_k with equal probability, then the random variable X is said to have a discrete uniform distribution and the probability function is given by $f_X(x) = \frac{1}{k'}$, $x = x_1, x_2, \dots, x_k$, and 0 otherwise.

- 1. Mean, $\mu = E(X) = \sum_{i=1}^k x_i \frac{1}{k} = \frac{1}{k} \sum_{i=1}^k x_i$.
- 2. Variance, $\sigma^2 = V(X) = \sum_{\text{all } x} (x \mu)^2 f_X(x) = \frac{1}{k} \sum_{i=1}^k (x_i \mu)^2$. 3. Variance, $\sigma^2 = E(X^2) \mu^2 = \frac{1}{k} (\sum_{i=1}^k x_i^2) \mu^2$.

Bernoulli Distributions

Bernoulli experiments only have two possible outcomes, and we can code them as 1 and 0. A random variable X is defined to have a Bernoulli distribution is the probability function of X is given by $f_X(x) = p^x (1-p)^{1-x}, x = 0, 1, \text{ where } 0 <math>f_X(x) = 0 \text{ for all }$ other X values.

- 1. (1-p) is often denoted by q.
- 2. Pr(X = 1) = p and Pr(X = 0) = 1 p = q.
- 3. Mean, $\mu = E(X) = p$ Variance, $\sigma^2 = V(X) = p(1-p) = pq$. Discrete Distributions — Formula Sheet
- Binomial $\sim B(n,p)$: Bernoulli is speical case when n=1number of successes in n trials

- Negative Binomial $\sim NB(k,p)$: Consider a binomial experiment, except that trials repeated until a fixed number of successes occur. Interested in probability of the k^{th} success occurring on the x^{th} trial, where x is the random variable. — x trials needed till k^{th} success
- Geometric $\sim Geometric(p)$: Negative binomial distribution with k=1, stop after 1^{st} success. — x trials needed till 1^{st} success
- Poisson $\sim P(\lambda)$: Yield the number of successes occurring during a given time interval. Poisson process with rate parameter α are: \bullet λ is the number of expected outcomes
- expected number of occurrences in interval of length T is αT
- there are no simultaneous occurences
- no. of occurrences in disjoint time intervals are independent • Approx. to B(n,p): $\lim_{\substack{p\to 0\\ n\to \infty}} \Pr(X=x) = \frac{e^{-np}(np)^x}{x!}$ Continuous Distributions — Formula Sheet

- Uniform $\sim U(a,b)$: Has uniform distribution over interval [a,b]where $-\infty < a < b < \infty$, probability density function given by $f_X(x) = \frac{1}{b-a}$, axb, and 0 otherwise.
- Exponential $\sim Exp(\lambda)$: non-negative values is said to have exponential distribution with parameter $\lambda > 0$.
- No Memory: $Pr(X > s + t \mid X > s) = Pr(X > t)$.
- Normal $\sim N(\mu, \sigma^2)$: symmetric about $x = \mu$, maximum point is at μ and its value is $\frac{1}{\sqrt{2\pi}}$. Total area under curve is 1, as σ increases,

curve flattens. Standardized normal = $Z = \frac{(X-\mu)}{\sigma}$

- Some statistical tables give the 100α percentage points, z_{α} , of a standardized normal distribution, where
- $\begin{array}{l} \alpha = \Pr(Zz_\alpha) = \int_{z_\alpha}^z \frac{1}{\sqrt{2\pi}} \exp(-\frac{z^2}{2}) dx. \rightarrow \\ \Pr(Zz_\alpha) = \Pr(Z-z_\alpha) = \alpha \\ \Phi(z) = \Pr(Zz), 1 \Phi(z) = \Pr(Z>z) \end{array}$
- Approx. to B(n,p) as $n\to\infty$ and $p\to\frac{1}{2}$, generally can approximate when np > 5 and n(1-p) > 5: $Z = \frac{X-np}{\sqrt{npq}}$
- Continuity Correction: When approximating binomial using normal, $Pr(X = k) \approx Pr(k - \frac{1}{2} < X < k + \frac{1}{2})$

Chapter 5

Population: Totality of all possible outcomes/observations of survey or experiment. Sample: Subset of a population SRS: every subset of n observations of the population has same probability of being selected. **Statistic:** A function of a random sample (X_1, X_2, \ldots, X_n) is called a statistic e.g. mean.

Sample Mean: For some random sample of size n represented by X_1, X_2, \cdots, X_n , the sample mean is defined by the statistic \overline{X} $\frac{1}{n}\sum_{i=1}^{n}X_{i}$. If the values in the random sample are observed and they are x_1, x_2, \dots, x_n , then the realization of the statistic \overline{X} is given by

Sample Variance: The sample variance, defined as S^2 $\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$ is a statistic, if the values are observed to be $x_1 \dots x_n$, realization of the statistic S^2 is given by $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

Sampling Distribution: For random samples of size n taken from an infinite population or a finite population with replacement having population mean μ and population standard deviation σ , the sampling distribution of the sample mean \overline{X} has its mean and variance given by: 1. $\mu_{\overline{X}} = \mu_X$, i.e. $E(\overline{X}) = E(X)$. 2. $\sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n}$, i.e. $V(\overline{X}) = \frac{V(X)}{n}$.

Law of Large Numbers: X_1, X_2, \dots, X_n be a random sample of size n from a population having any distribution with mean μ and finite population variance σ^2 . For any $\epsilon \in \mathbb{R}$, $P(|\overline{X} - \mu| > \epsilon) \to 0$ as $n \to \infty$. Central Limit Theorem: The sampling distribution of the sample mean \overline{X} is approximately normal with mean μ and variance $\frac{\sigma^2}{n}$ if n is sufficiently large. Hence $Z=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ follows approximately N(0,1). 1. Central Tendency: $\mu_{\overline{X}}=\mu$. 2. Variation: $\sigma_{\overline{X}}=\frac{\sigma}{\sqrt{n}}$.

Chi-square Distribution $\sim \chi^2(n)$ Let Z_1, \ldots, Z_n be n independent and identically distributed standard normal random variables. A random variable with the same distribution as $Z_1^2 + \ldots + Z_n^2$ is called a χ^2 random variable with n degrees of freedom.

1. For $Y \sim \chi^2(n)$ then E(Y) = n and V(Y) = 2n

- 2. For large $n, \chi^2(n)$ is approximately N(n, 2n)
- 3. Y_1 , Y_2 are independent χ^2 random variables with m, n df, then
- $Y_1 + Y_2$ is a χ^2 random variable with $m + n \, df$.
- 4. All density functions have long right tail.
- 5. Define $\chi^2(n;\alpha)$ such that $Y \sim \chi^2(n)$ s.t $Pr(Y > \chi^2(n;\alpha)) = \alpha$
- 6. Sampling Distribution: $\frac{(n-1)S^2}{\sigma^2}$. If S^2 is variance of random sample of size n taken from a normal population with σ^2 then, random variable $\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2}$ has χ^2 distribution with n-1 df.

	Significance level (α)							
Degrees of								
freedom								
(<i>df</i>)	.99	.975	.95	.9	.1	.05	.025	.01
1		0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932
22	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289
23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642
27	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278
29	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588
30	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892
40	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691
50	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154
60	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379
70	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425
80	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329
100	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116
1000	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807

<u>t</u>-distribution: Suppose $Z \sim N(0,1)$ and $U \sim \chi^2(n)$. If Z and U are independent then $T = \frac{Z}{\sqrt{U/n}}$ follows t-distribution with n df.

- 1. t-distribution with n df denoted by t(n), approaches N(0,1) as parameter $n \to \infty$. When n > 30 we can replace it with N(0, 1).
- 2. If $T \sim t(n)$, then E(T) = 0 and $V(T) = \frac{n}{n-2}$ for n > 2
- 3. Graph of t(n) resembles graph of N(0,1), $Pr(T > t_{n;\alpha}) = \alpha$
- 4. If $X_1, \ldots X_n$ are independent and identically distributed normal random variables with μ , σ^2 then $\frac{\overline{X} - \mu}{\overline{U}}$ follows a t-dist with n-1 df.

ım. prob one-tail	0.50	t.75 0.25	0.20	t.as 0.15	0.10	t.95 0.05	t.975 0.025	t.99 0.01	t.995 0.005	0.001	0.000
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.00
df											
- 1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.5
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.9
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.6
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.8
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.9
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.4
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.0
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.7
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.5
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.4
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.3
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.2
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.1
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.0
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.0
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.9
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.9
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.8
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.8
21 22	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518 2.508	2.831 2.819	3.527 3.505	3.8
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.7
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.7
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.7
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.7
27 28	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.6
	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.6
29	0.000	0.683	0.854	1.055	1.311	1.699 1.697	2.045	2.462	2.756	3.396	3.6
30 40	0.000	0.683	0.854 0.851	1.055	1.310	1.684	2.042	2.457	2.750 2.704	3.385 3.307	3.6
60											
80	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.4
	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.4
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.3
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.3
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.2
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9

F-distribution $\sim F(n_1, n_2)$: Suppose $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ are independent, distirbution of random variable $F = \frac{U/m}{V/n}$ is an F-distribution with (m, n) df.

1. Denoted by F(m,n), if $X \sim F(m,n)$ then $E(X) = \frac{n}{n-2}$ for n > 2

- and $V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$ for n > 42. If $F \sim F(n,m)$ then $1/F \sim F(m,n)$, follows from $\text{def}^{\underline{n}}$ of F-distr.
- 3. Values in F: $F(m, n; \alpha)$ s.t. $P(F > F(m, n; \alpha)) = \alpha$, $F \sim F(m, n)$
- 4. It can be sown that $F(m, n; 1 \alpha) = 1/F(n, m; \alpha)$

Chapter 6

Statistic: Function of random sample, not dependent on unknown parameters.

Estimator: Rule, usually expressed as a formula, indicate how to calculate an estimate based on information in the sample. For example, \overline{X} is an estimator of μ . The value of \overline{X} , denoted by \overline{x} , is an estimate of μ . Unbiased Estimator: A statistic $\widehat{\Theta}$ is said to be an unbiased estimator of the parameter θ if $E(\widehat{\Theta}) = \theta$.

Maximum Error of Estimate: Typically $\overline{X} \neq \mu$, so $\overline{X} - \mu$ measures the difference between the estimator and the true value of the parameter. If the population is normal or if n is large, $\frac{\overline{X} - \mu}{\sigma \sqrt{n}}$ follows an approximately standard normal distribution.

 $\rightarrow Pr(|\overline{X} - \mu| \le z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$, there is a probability error

 $|\overline{X} - \mu| \le E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$, aka maximum error of estimate.

Confidence Interval: An interval estimator is a rule for calculating, from the sample, an interval (a, b) in which you are fairly certain the parameter of interest lies in: $Pr(a < \mu < b) = 1 - \alpha$. Pooled Estimator:

 $\sigma^2 \text{ can be estimated by: } S_p = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2} \text{ with } S_i^2 \text{ being the sample variances of either samples. This follows a } t\text{-distribution with degrees of freedom } n_1+n_2-2 \text{: } T = \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t_{n_1+n_2-2}$

Paired Data:

- $\overline{1.(X_1,Y_1),\cdots},(X_n,Y_n)$ are matched pairs, where X_1,\cdots,X_n is a random sample from population 1, Y_1, \dots, Y_n is a random sample from population 2.
- 2. X_i and Y_i are dependent.
- 3. (X_i, Y_i) and (X_i, Y_i) are independent for any $i \neq j$.
- 4. For matched pairs, define $D_i = X_i Y_i, \mu_D = \mu_1 \mu_2$.
- 5. Now we can treat D_1, D_2, \dots, D_n as a random sample from a single population with mean μ_D and variance σ_D^2 .

Point estimate of μ_D is $\overline{d}=\frac{1}{n}\sum_{i=1}^n d_i=\frac{1}{n}\sum_{i=1}^n (x_i-y_i)$ Point estimate of variance σ_D^2 is given by $s_D^2=\frac{1}{n-1}\sum_{i=1}^n (d_i-\overline{d})^2$

$$\Pr(-t_{n-1;\alpha/2} < T < t_{n-1;\alpha-2}) = 1 - \alpha$$

where $T = \frac{\overline{d} - \mu_D}{s_d/\sqrt{n}}$ t_{n-1} distribution. We have a $(1 - \alpha)100\%$ confidence interval for $\mu_D = \mu_1 - \mu_2$

$$\overline{d} - t_{n-1;\alpha/2}(\frac{S_D}{\sqrt{n}}) < \mu_D < \overline{d} + t_{n-1;\alpha/2}(\frac{S_D}{\sqrt{n}})$$

Sufficiently large sample n > 30, can replace $t_{n-1;\alpha/2}$ by $z_{\alpha/2}$ and get

$$\overline{d} - z_{\alpha/2}(\frac{S_D}{\sqrt{n}}) < \mu_D < \overline{d} + z_{\alpha/2}(\frac{S_D}{\sqrt{n}})$$

Chapter 7

Null and Alternative Hypotheses

Null hypothesis H_0 : Formulated hypothesis with the hope of rejecting. Rejection of $H_0 \to \text{acceptance}$ of an alternative hypothesis, denoted by H_1 . Reject hypothesis: conclude it is false. Accept hypothesis: insufficient evidence to believe otherwise.

	Do not reject H_0	Reject H_0
H_0 True	Correct Decision	Type I Error
H_0 False	Type II Error	Correct Decision

Significance Level vs Power

Level of Significance α : Probability of making a Type I error, $P(Type\ I\ Error) = P(Reject\ H_0|H_0\ true)$ Power of the test β : Define $1 - \beta = P(Reject \ H_0 | H_0 \ false)$ to be power of test. Hypothesis testing concerning mean

• Known Variance (Two-sided) - Critical Value: 1. Variance. σ^2 , known, AND 2. Underlying distribution is normal OR n > 30. Test $H_0 : \mu = \mu_0$ against $H_1 : \mu \neq \mu_0$.

1. $\overline{x}_1 < \overline{X} < \overline{x}_2$ OR $-z_{\alpha/2} < z < z_{\alpha/2}$ defines the acceptance region

2. 2 tails, $\overline{X} < \overline{x}_1$, $\overline{X} > \overline{x}_2$ constitute the critical/rejection region. We need $\overline{x}_1 = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ and $\overline{x}_2 = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$. If \overline{X} falls in the acceptance region, we accept the null hypothesis, else reject. The critical region is often stated in terms of Z instead of \overline{X} , where $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ N(0, 1)

- Known Variance (Two-sided) p-Value: Probability of obtaining test statistic more extreme than the observed sample value given H_0 is true. aka observed level of significance. 1. Sample statistic (\overline{X}) into test statistic (Z), obtain p-value
- 2. Compare p with $\alpha/2$. If $p < \alpha/2$, reject H_0 , else do not reject.
- Known Variance (One-sided) Critical Value: Same as before but alternative hypothesis is now either $H_1: \mu > \mu_0$ or $H_1: \mu < \mu_0$. In both cases, let $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$. Need to check if the observed values of Z is $> z_{\alpha}$ or $< -z_{\alpha}$ respectively.
- Known Variance (One-sided) p-Value: Same as the two-sided known variance approach, just that we will compare against the relevant side, and against α itself.
- Unknown Variance (Two-sided) Critical Value: 1. Variance unknown, AND 2. Underlying distribution is normal. Let $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$, where S^2 is the sample variance. Then H_0 is rejected if the observed value of T, say $t, > t_{n-1;\alpha/2}$ or $< -t_{n-1;\alpha/2}$.

 • Unknown Variance (One-sided) - Critical Value: We test the
- relevant side, $t > t_{n-1;\alpha}$ or $t < -t_{n-1;\alpha}$. When $n \ge 30$ can replace t_{n-1} by $Z \sim N(0,1)$.

Hypotheses Testing Concerning Difference Between Two Means

- Known Variances: 1. ariances σ_1^2 and σ_2^2 are known and 2. Underlying distribution is normal or both n_130, n_230 . Generally, since variance is known, we will be using the Z distribution. For the null hypothesis H_0 : $\mu_1 - \mu_2 = \delta_0$, test statistic given by: $Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1).$
- Unknown Variances (Large Samples): 1. Variances σ_1^2 and σ_2^2 are unknown and 2. Both n_130, n_230 . For the null hypothesis H_0 : $\mu_1 - \mu_2 = \delta_0$, test statistic given by: $Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{S_{1}^2 + S_{2}^2}} \sim N(0, 1)$.

	V 101	2
H_1	Rejection Region	p-value
$\mu_1 - \mu_2 > \delta_0$	$z>z_{\alpha}$	P(Z > z)
$\mu_1 - \mu_2 < \delta_0$	$z<-z_{\alpha}$	P(Z < - z)
$\mu_1 - \mu_2 \neq \delta_0$	$z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$	2P(Z > z)

Unknown but Equal Variances (Small Samples): 1. Variances σ_1^2 and σ_2^2 are unknown but equal and 2. The populations are normal and 3. Both are small samples n_130, n_230 . For the null hypothesis H_0 : $\mu_1 - \mu_2 = \delta_0$, test statistic given by:

$$Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}.$$

<u>Paired Data</u> For paired data, define $D_i = X_i - Y_i$, null hypothesis

 H_0 : $\mu_D = \mu_{D0}$, test statistic given by: $T = \frac{\overline{D} - \mu_{D0}}{S_D / \sqrt{n}}$

- n < 30 and population normally distributed, then $T \sim t_{n-1}$
- $n \ge 30 \text{ then } T \sim N(0,1)$

We can roughly assume equal variance if $\frac{1}{2} \leq \frac{S_1}{S_2} \leq 2$ as statistic not overly sensitive to small differences between population variances.

By parts: $\int uvdx = u \int vdx - \int \frac{du}{dx} (\int vdx)dx$ **Subst:** $I = \int f(x)dx$, $x = g(t) \rightarrow dx = g'(t)dt \mid I = \int f(g(t))g'(t)dt$ Let $\{X_1, X_2, ..., X_n\}$ be a random sample with population mean μ and variance $\sigma^2 > 0$. Denote by S^2 the sample variance based on this random sample, and denote by s^2 the computed value of the sample variance based on one set of observed values of $\{X_1, X_2, \dots, X_n\}$. Which of the following statement is **IMPOSSIBLE**?

- (a) $E(S^2) = \sigma^2$
- (b) $E(S) > \sigma$.
- (c) $s^2 > \sigma^2$
- (d) $s^2 < \sigma^2$.

SOLUTION

The answer is (b)

Note that $[E(S)]^2 \le E(S^2) = \sigma^2$. So (b) cannot be true.

(a) is always true (stated in lectures)

(c) and (d) is possible since they are observed sample variances