Určení svítivosti OJ 287

F3190: Praktikum z astronomie 1 Artem Gorodilov

22. června 2024

1. Abstrakt

V této práci jsme analyzovali pozorování OJ 287 ve filtru B. Analyzovali jsme jeden OBS-ID s dobou expozice 120 s. Pomocí Pogsonova zákona jsme zjistili svítivost objektu v magnitudách. A z počtu detekovaných fotonů z objektu jsme vypočítali světelný proud, ze kterého jsme získali svítivost v erg/s. Ze snímků jsme vybrali hvězdy 4,10 a 11, viz. obr(1), pro které jsme provedli výpočty jasnosti, které byly následně použity k výpočtu zdánlivé hvězdné velikosti OJ 287.

Výpočty jsme se snažili provádět automatizovanou metodou pomocí pythonové pipeline.

2. Teorie

2.1. Pogsonův zákon

Pogsonův zákon je metoda používaná pro kalibraci magnitudy objektu na základě každého srovnávacího objektu je základní formou diferenciální fotometrie. Při diferenciální fotometrii se magnituda cílového objektu určuje vzhledem k jedné nebo více srovnávacím objektam se známou magnitudou. Tento přístup pomáhá zmírnit vliv atmosférických změn, změn citlivosti přístrojů a dalších faktorů, které mohou ovlivnit pozorovanou jasnost nebeských objektů.

Vztah mezi jasností a hvězdnou velikostí je dán Pogsonovým zákonem:

$$m_1 - m_2 = -2.5 \log \left(\frac{I_1}{I_2}\right) \tag{1}$$

kde m_1 a m_2 jsou hvězdné velikosti dvou objektu a I_1 a I_2 jsou jejich jasnosti.

2.2. Tok a svítivost

Světelný tok je fyzikální veličina, která udává množství světla emitovaného nebo procházejícího plochou za jednotku času. Světelný tok se měří v jednotkách W/s nebo erg/s/m²

Figure (1) Landessternwarte Heidelberg-Königstuhl 0851+203 (OJ 287)

Světelný tok lze vypočítat z počtu fotonů N detekovaných během expoziční doby T, průměru hlavního zrcadla dalekohledu d a vlnové délky λ odpovídající použitému filtru podle vzorce:

$$F = \frac{Nhc}{\lambda T 4\pi d^2} \tag{2}$$

kde h je Planckova konstanta a c je rychlost světla. Svítivost je fyzikální veličina, která udává množství světla, které vydává nebo odráží těleso. Svítivost se měří v jednotkách W nebo erg/s (1 W = 10^7 erg/s). Svítivost lze vypočítat z vztahu mezi svítivostí a světelným tokem:

$$L = 4\pi D^2 F \tag{3}$$

kde D je vzdálenost mezi pozorovatelem a objektem.

3. Zpracování dat

3.1. Popis paipelinu

Analyzovali jsme snímek oblohy v okolí OJ 287 pořízený 30.04.2024 v 19:51 UT. Pozorování bylo provedeno v observatoři v Vyškově.

Figure (2) Vizualizace apertury a prstence pro výpočet jasnosti hvězdy.

K dispozici máme hvězdné velikosti tří hvězd (4, 10 a 11), se kterými budeme porovnávat změnu jasnosti proměnné hvězdy, viz. obr.(1).

Pro automatizaci analýzy jsme použili pipeline, která zpracovává data pomocí knihoven: photutils a astropy.

Algoritm pipelinu je rozdělen do tří kroků:

- Kalibrace obrazu vytvořením master bias, master dark a master flat obrazů. Poté provedeme korekci analyzovaného snímku, abychom získali čistý světelný proud objektů.
- 2. Určení svítivosti na základě analýzy snimku . fits, kde na vybrané oblasti obrázku bude zkonstruována apertura a prstenec o určitých poloměrech viz. obr.(2), poté pomocí funkce measure_brightness() vypočítáme jasnost vybraných hvězd pro každý obrázek. Poté pomocí Pogsonova zákona vypočítáme hvězdnou velikost proměnné hvězdy a sestrojíme její světelnou křivku pro případy porovnání se třemi hvězdami zvlášť.
- Výpočet svítivosti objektu na základě počtu detekovaných fotonů z objektu a výpočtu světelného toku a svítivosti podle vzorců (2) a (3).

3.2. Kalibrace snimku

Pro fungování pipeline je třeba zadat název objektu, se kterým pracujete, a filtr, ve kterém bylo pozorování provedeno:

Figure (3) Apertura a prstenec pro výpočet jasnosti OJ 287.

Pro kalibraci snímku jsme vytvořili master bias, master dark a master flat obrazy. Master bias byl vytvořen z 30 bias snímků, master dark z 8 dark snímků a master flat z 13 flat snímků v B-filtru.

K vytvoření master snimku jsme použili funkci create_master_frame(). Pro bias a flat bereme střední hodnotu np.mean() a pro dark hodnotu bereme medián np.median().

Ke kalibraci obrazu jsme použili funkci apply_calibration(). Tato funkce provede kalibraci původního (znečištěného) snímku podle vzorce:

$$calib = \frac{orig - bias - dark}{flat} \times flat_median$$
 (4)

kde orig je původní snímek, bias je master bias, dark je master dark, flat je master flat a flat_median je medián master flat.

Výsledkem bude kalibrovaný snímek a tři master snímky. Výsledek je vidět na obrázku (5).

3.3. Určení svítivosti v magnitudách

Pro určení svítivosti objektu použijeme funkci measure_brightness(), která vytvoří apertury a prstenec kolem vybraných hvězd a vypočítá jejich jasnost.

Určete polohy [x,y] v px pro tři hvězdy se známou hvězdnou velikostí (4, 10, 11) a polohu objektu (OJ 287) a poté tyto hodnoty vložte do proměnné position. Nastavte poloměr apertury, vnitřní poloměr prstence a vnější poloměr prstence tak, že je vložíte do proměnných, aperture_radius, annulus_inner_radius a annulus_outer_radius.

V našem případě jsme zvolili hodnoty 9, 16 a 25 resp. Do proměnné mag_comparisons zapíšeme magnitudy nám známých hvězd ve stejném pořadí jako v position.

Z LHK^[1] jsme zjistili svítivosti srovnávacích hvězd:

Hvězda	B [mag]
4	15.01(6)
10	15.01(5)
11	15.47(7)

Dále pro každý snímek určíme jasnost těchto hvězd pomocí funkce measure_brightness(), která kolem vybraných hvězd sestaví apertury a anuly a pomocí fotometrických výpočtů vrátí jasnosti těchto hvězd, viz. obr.(3).

Posledním krokem bude výpočet magnitudy objektu pomocí Pogsonova zákona podle vzorce (1), kde m_1 bude naš object a m_2 hvězda se známou hvězdnou velikostí.

3.4. Určení svítivosti v erg/s

Pro výpočet svítivosti L jsme použili funkci luminosity(), která vypočítá svítivý proud podle vzorce (2) a poté vypočítá svítivost podle vzorce (3). Počet detekovaných fotonů je uložen v prvku seznamu net_brightness[-1].

Pro výpočty potřebujeme hodnoty průměru hlavního zrcadla dalekohledu d=0.5 [m], vzdálenost k objektu D, kterou získáme ze známého červeného posuvu $z=0.306^{[5]}$ pomocí funkce redshift_to_distance() pro převod červeného posuvu na [m], a vlnovou délku filtru, kterou použijeme $\lambda_B=440$ [nm].

4. Výsledky

Po výpočtech jsme získali následující hodnotu svítivosti OJ 287:

$$m_B = 15.6(2)$$
 [mag]

Pro porovnání našich výsledků s literaturou jsme použili práci (*M.-P. Véron-Cetty - P. Véron*, 2010)^[2]. V ní byla svítivost ve filtru B odhadnuta na 15.91 [mag]. Námi získaná hodnota se tedy odchyluje o 0.3(2) [mag]. Získali jsme také velikost zářivého toku:

$$F = 1.2(1) \times 10^{-9} \text{ [erg/s/cm}^2\text{]}$$

Figure (4) Světelná křivka OJ 287 ve filtru B.

a svítivost:

$$L = 2.2(2) \times 10^{43} \text{ [erg/s]} = 5.8(6) \times 10^9 \text{ L}_{\odot}$$

Je však třeba vzít v úvahu, že zdroj OJ 287 je proměnlivý vzhledem ke konfiguraci systému ^[3]. Ve filtru B je pozorována proměnlivost v intervalu 30 h ^[4]. Jiné prace ^[5] vykazují variabilitu v delším časovém intervalu. To je patrné z obrázku (4).

5. Závěr

Námi odvozená hodnota svítivosti objektu OJ 287 15.6(2) [mag] souhlasí s literárními údaji 15.91 [mag] a má odchylku 0.3(2) mag. Tato odlišnost může být způsobena jednak nepříliš přesnými měřeními, protože byla prováděna za ne zrovna ideálních povětrnostních podmínek, a také tím, že místo pozorování bylo nevýznamně vzdáleno od civilizace. Je třeba si uvědomit, že údaje z literatury nejsou aktuální, protože se nepodařilo najít žádné novější pozorování OJ 287 ve filtru B.

Svítivost OJ 287 byla určena na $L=2.2(2)\times 10^{43}$ [erg/s] = $5.8(6)\times 10^9$ L $_\odot$. Tato hodnota je v souladu s (*Sillanpaa., Haarala., et al. 1988*)^[6], které uvádějí hodnoty v rozmezí 10^{44} [erg/s] - 10^{47} [erg/s]. Tento rozdíl je opět způsoben zvláštnostmi systému a jeho proměnlivostí v důsledku procesů, které v něm probíhají.

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python^[7]. Chyby byly rozšířeny o Studentův koeficient (2-Tail Confidence Level) s ohledem na stupně volnosti pro každou hodnotu, pro interval spolehlivosti 68.27%.

Script je dostupný na github.com/PoruchikRzhevsky/photometry_pipeline.

Odkazy

- [1] Landessternwarte Heidelberg-Königstuhl OJ287. Available online: https://www.lsw.uni-heidelberg.de/users/jheidt/spm/target/oj287/oj287.html
- [2] M.-P. Véron-Cetty P. Véron, A Catalogue of Quasars and Active Nuclei: 13th edition, Astronomy & Astrophysics 518, A10 (2010) https://doi.org/10.1051/0004-6361/201014188
- [3] Britzen, Silke, Zajaček M., et al. Precession-induced Variability in AGN Jets and OJ 287. The Astrophysical Journal, Volume 951, Issue 2, id.106, 38 pp. (2023) https://ui.adsabs.harvard.edu/link_gateway/2023ApJ...951..106B/doi:10.3847/1538-4357/accbbc
- [4] Prince, Raj, et al. Multiwavelength analysis and modeling of OJ 287 during 2017-2020. Astronomy Astrophysics, Volume 654, id.A38, 14 pp. (2021) https://ui.adsabs.harvard.edu/link_gateway/2021A&A...654A..38P/doi:10.1051/0004-6361/202140708
- [5] Valtonen, Mauri J., et al. Host galaxy magnitude of OJ 287 from its colours at minimum light. Monthly Notices of the Royal Astronomical Society, Volume 514, Issue 2, pp.3017-3023 (2022) https://ui.adsabs.harvard.edu/link_gateway/2022MNRAS.514.3017V/doi: 10.1093/mnras/stac1522
- [6] Sillanpää, A., Haarala, S., et al. OJ 287: Binary Pair of Supermassive Black Holes. Astrophysical Journal v.325, p.628 (1988) https://ui.adsabs.harvard.edu/link_gateway/1988ApJ...325..628S/doi:10.1086/166033
- [7] Uncertainties, Dostupné online: https://pypi.org/project/uncertainties

Figure (5) Kalibrovaný snímek (vlevo nahoře), master bias (vpravo nahoře), master dark (vlevo dole), master flat (vpravo dole).