Norma Estándar de Euclides (Distancia)

Henry R Moncada

September 23, 2024

Introducción a la Norma Euclidiana

La **norma Euclidiana** o **distancia Euclidiana** en \mathbb{R}^n se define como:

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

donde $\mathbf{x} = (x_1, x_2, \dots, x_n)$ es un vector en \mathbb{R}^n . Representa la distancia desde el origen hasta el punto \mathbf{x} en el espacio n-dimensional.

Propiedades de la Norma Euclidiana Algunas propiedades importantes de la norma Euclidiana:

- ▶ $\|\mathbf{x}\|_2 \ge 0$ para cualquier vector $\mathbf{x} \in \mathbb{R}^n$.
- $\| \mathbf{x} \|_2 = 0$ si y solo si $\mathbf{x} = \mathbf{0}$.
- ▶ Para cualquier escalar α y vector $\mathbf{x} \in \mathbb{R}^n$: $\|\alpha \mathbf{x}\|_2 = |\alpha| \|\mathbf{x}\|_2$.

Example 1: 2D, 3D y 4D Vector

Ejemplo 1: Norma en \mathbb{R}^2

Sea x = (3, 4) en \mathbb{R}^2 . La norma Euclidiana se calcula como:

$$\|\textbf{x}\|_2 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Por lo tanto, la norma de x es 5.

Ejemplo 2: Norma en \mathbb{R}^3

Sea $\mathbf{x} = (1, -2, 2)$ en \mathbb{R}^3 . La norma Euclidiana es:

$$\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$

Entonces, la norma de x es 3.

Ejemplo 3: Norma en \mathbb{R}^4

Sea $\mathbf{x} = (2, -1, 3, 2)$ en \mathbb{R}^4 . La norma Euclidiana es:

$$\|\mathbf{x}\|_2 = \sqrt{2^2 + (-1)^2 + 3^2 + 2^2} = \sqrt{4 + 1 + 9 + 4} = \sqrt{18} \approx 4.24$$

Ejemplo 4: Norma en \mathbb{R}^5

Sea $\mathbf{x}=(-1,2,0,-2,1)$ en $\mathbb{R}^5.$ La norma Euclidiana se calcula como:

$$\|\mathbf{x}\|_2 = \sqrt{(-1)^2 + 2^2 + 0^2 + (-2)^2 + 1^2} = \sqrt{1 + 4 + 0 + 4 + 1} = \sqrt{10} \approx 3.16$$

Ejemplo 1: Norma en \mathbb{R}^2

Dado el vector $\mathbf{v} = (3, 4)$ en \mathbb{R}^2 , calculemos su norma:

$$\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Explanation: Este es un caso típico en el que se puede visualizar la norma de un vector como la longitud de la hipotenusa de un triángulo rectángulo con catetos de longitud 3 y 4.

Ejemplo 2: Norma en \mathbb{R}^3

Para el vector $\mathbf{v}=(1,-2,2)$ en \mathbb{R}^3 , la norma es:

$$\|\mathbf{v}\| = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$$

Explanation: En el espacio tridimensional, la norma representa la distancia desde el origen hasta el punto (1, -2, 2).

Ejemplo 3: Norma en \mathbb{R}^n con un vector de muchas componentes

Sea el vector $\mathbf{v}=(2,1,-1,3)$ en \mathbb{R}^4 . Calculamos su norma:

$$\|\mathbf{v}\| = \sqrt{2^2 + 1^2 + (-1)^2 + 3^2} = \sqrt{4 + 1 + 1 + 9} = \sqrt{15}$$

Explanation: Aunque no podemos visualizar directamente en 4 dimensiones, el proceso de cálculo sigue las mismas reglas y representa la distancia en un espacio de dimensión mayor.

Ejemplo 4: Norma de un vector nulo

Consideremos el vector nulo $\mathbf{0} = (0, 0, 0)$ en cualquier espacio \mathbb{R}^n . Su norma es:

$$\|\bm{0}\| = \sqrt{0^2 + 0^2 + \dots + 0^2} = 0$$

Explanation: La norma de un vector nulo siempre es cero, lo que corresponde a la distancia cero desde el origen al propio origen.

Conclusión

La norma estándar de Euclides es una medida fundamental que nos permite calcular la longitud de un vector en cualquier dimensión. Su utilidad se extiende a diversas áreas como la geometría, la física y el análisis de datos.