TD n°1 : Sommes et symbole Σ

Travaux dirigés

Une somme télescopique

1. Posons $S_4 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5}$. Le nombre S_4 est une somme de termes qui sont tous de la forme $\frac{1}{k \times (k+1)}$. Pour quelle valeur de k obtient-on le premier terme de S_4 ? le deuxième ? le troisième ? le quatrième ?

On écrira $S_4 = \sum_{k=1}^4 \frac{1}{k \times (k+1)}$. Cette écriture désigne la somme de tous les termes de la forme $\frac{1}{k \times (k+1)}$ obtenus en remplaçant successivement k par 1 par 2 par 2en remplaçant successivement k par 1, par 2, par 3 et par 4.

- 2. Pour tout entier naturel n non nul, posons $S_n = \sum_{k=1}^n \frac{1}{k \times (k+1)}$.
 - **a.** Écrire sans le symbole Σ les nombres S_5 et S_6 .
 - **b.** Déterminer une relation entre S_{n+1} et S_n .
 - c. Écrire sans le symbole Σ le nombre $\sum_{k=1}^{6} \left(\frac{1}{k} \frac{1}{k+1}\right)$ puis le calculer.
 - **d.** Montrer que $\frac{1}{k \times (k+1)} = \frac{1}{k} \frac{1}{k+1}$ pour tout $k \in \mathbb{N}^*$. En déduire l'expression de S_n en fonction de n.

Remarque

On retiendra l'idée fondamentale suivante :
Si
$$S_n = \sum_{k=1}^n u_k$$
, alors $S_{n+1} = S_n + u_{n+1}$.

Quelques calculs complémentaires

- 1. Écrire sans le symbole Σ le nombre $\sum_{i=1}^{3} k^{2}$.
- 2. Écrire la somme $3 \times 4^2 + 4 \times 5^2 + 5 \times 6^2 + 6 \times 7^2 + 7 \times 8^2$.
- 3. Calculer les sommes suivantes :

a.
$$\sum_{k=1}^{n} 1$$
.

b.
$$\sum_{k=0}^{n} 1$$
.

$$\mathbf{c.} \sum_{k=0}^{n} k.$$

c.
$$\sum_{k=0}^{\infty} k$$
.
d. $\sum_{k=0}^{n} (k+2)$.

e.
$$\sum_{k=0}^{n} 2^k$$
.

e.
$$\sum_{k=0}^{n} 2^{k}$$
.
f. $\sum_{k=0}^{n} 2^{k+3}$.

Exercices à faire: énoncé 2 page 13 (exercice corrigé); 50 et 51 page 24.