PRINCIPLES OF ANALYSIS SOLUTIONS TO PROBLEM SET D

PAUL L. BAILEY

Problem 1. Let $\mathcal{C}_{[a,b]}$ denote the set of all continuous functions $f:[a,b]\to\mathbb{R}$. Let $X = \mathcal{C}_{[a,b]}$ and for $f, g \in X$ define

$$\rho(f,g) = \int_a^b |f(x) - g(x)| dx.$$

Show that (X, ρ) is a metric space (Hint: open a calculus book and look up properties of integration).

Solution. In order to prove this, we will need these properties of integration:

Lemma 1. Let $f, g : [a, b] \to \mathbb{R}$ be integrable, and let $c \in \mathbb{R}$. Then

(a)
$$\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx;$$

(b) $\int_a^b cf(x) dx = c \int_a^b f(x) dx.$

(b)
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

Lemma 2. Let $f:[a,b] \to [,\infty)$ be a continuous function. If $\int_a^b f(x) dx = 0$, then f(x) = 0 for every $x \in [a,b]$.

Lemma 3. Let $f,g:[a,b]\to [0,\infty)$ be continuous functions. If $f(x)\leq g(x)$ for every $x\in [a,b]$, then $\int_a^b f(x)\,dx\leq \int_a^b g(x)\,dx$.

We have $\rho(f,f)=\int_a^b|f-f|\,dx=\int_a^b0\,dx=0$; moreover, Lemma 2 tells us that if the integral of a nonnegative continuous function is zero, then that function is the zero function; thus $\rho(f,g)=0 \Rightarrow |f-g|=0 \Rightarrow f=g$. Thus (M1) follows:

Since |f-g|=|g-f|, clearly $\rho(f,g)=\rho(g,f)$. Thus (M2) follows. Let $f,g,h\in\mathcal{C}_{[}a,b]$. Then $|f(x)-h(x)|\leq |f(x)-g(x)|+|g(x)-h(x)|$ for every $x \in [a, b]$, by the triangle inequality for \mathbb{R} . Then by Lemmas 3 and 1,

$$\rho(f,h) = \int_{a}^{b} |f(x) - h(x)| dx$$

$$\leq \int_{a}^{b} \left(|f(x) - g(x)| + |g(x) - h(x)| \right) dx$$

$$= \int_{a}^{b} |f(x) - g(x)| dx + \int_{a}^{b} |g(x) - h(x)| dx$$

$$= \rho(f,g) + \rho(g,h).$$

Date: November 22, 2004.

Problem 2. Let (X, ρ) be a metric space, and let G = diam(A) with respect to ρ . Define a function

$$\widehat{\rho}: X \times X \to \mathbb{R}$$
 by $\widehat{\rho}(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}$.

(a) Show that $\hat{\rho}$ is a metric on X. (Hint: let $a = \rho(x, y)$, $b = \rho(y, z)$ and $c = \rho(x, z)$. Write what you have to show, clear denominators, and work backwards.)

Let $H = \operatorname{diam}(X)$ with respect to $\widehat{\rho}$.

- (b) Show that $H \leq 1$.
- (c) Show that if $G = \infty$, then H = 1.
- (d) Show that if X is finite, then $H = \frac{G}{1+G}$.

Solution. Let $x, y, z \in X$; we wish to show that

$$\widehat{\rho}(x,z) \le \widehat{\rho}(x,y) + \widehat{\rho}(y,z).$$

Let $a = \rho(x, y)$, $b = \rho(y, z)$ and $c = \rho(x, z)$. Then we wish to show that $a, b, c \ge 0$ and $c \le a + b$ imply

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}.$$

Now

$$c \le a + b \Rightarrow c \le (a + b) + (2ab + abc) \quad \text{since } a, b, c \ge 0$$

$$\Rightarrow c + ac + bc + abc \le (a + b) + (2ab + abc) + (ac + bc + abc)$$

$$\Rightarrow c(1 + a + b + ab) \le a(1 + b + c + bc) + b(1 + a + c + ac)$$

$$\Rightarrow c(1 + a)(1 + b) \le a(1 + b)(1 + c) + b(1 + a)(1 + c)$$

$$\Rightarrow \frac{c}{1 + c} \le \frac{a}{1 + a} + \frac{b}{1 + b}.$$

Let $x, y \in X$. Then

$$\widehat{\rho}(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)} < \frac{\rho(x,y)}{\rho(x,y)} = 1;$$

thus $H = \sup\{\widehat{(\rho)}(x,y) \mid x,y \in X\} \le 1$.

Suppose that $G = \infty$, and let $\epsilon > 0$. Then there exist $x, y \in X$ such that $\rho(x, y) > \frac{1}{\epsilon} - 1$, so that $1 + \rho(x, y) > \frac{1}{\epsilon}$. Now

$$1 + \rho(x, y) > \frac{1}{\epsilon} \Leftrightarrow \frac{1}{1 + \rho(x, y)} < \epsilon \Leftrightarrow 1 - \frac{\rho(x, y)}{1 + \rho(x, y)} < \epsilon \Leftrightarrow 1 - \widehat{\rho}(x, y) < \epsilon.$$

Since this is true for every epsilon, $H = \sup\{\widehat{(\rho(x,y) \mid x,y \in X)} \ge 1$. Combined with part **(b)**, we have H = 1.

Suppose that X is finite. Then the set $\{\rho(x,y) \mid x,y \in X\}$ is also finite, and thus has a maximum, and this maximum is equal to G. Then there exist $a,b \in X$ such that $\rho(a,b) = G$. Since $f(x) = \frac{x}{1+x}$ is an increasing function, $\rho(a,b) \geq \rho(c,d)$ implies that $\widehat{\rho}(a,b) \geq \widehat{\rho}(c,d)$. Thus

$$\frac{G}{1+G} = \widehat{\rho}(a,b) = \max\{\widehat{\rho}(x,y) \mid x,y \in X\} = H.$$

Definition 1. Let (X, ρ) and (Y, χ) be metric spaces, and let $f: X \to Y$ be a function. We say that f is a homometry if $\chi(f(x), f(y)) = \rho(x, y)$. A bijective homometry is an isometry. An injective homometry is an isometric embedding.

Problem 3. Let X be a set containing 4 points together with the discrete metric $\rho: X \to \mathbb{R}$ given by

$$\rho(x,y) = \begin{cases} 0 & \text{if } x = y; \\ 1 & \text{otherwise.} \end{cases}$$

- (a) Show that X can be isometrically embedded in \mathbb{R}^3 .
- (b) Show that X cannot be isometrically embedded in \mathbb{R}^2 .

Solution.

(a) Let $\alpha = \sqrt{2}$, and map the four points of X onto the set

$$\{(\alpha, 0, 0), (0, \alpha, 0), (0, 0, \alpha), (\alpha, \alpha, \alpha)\}.$$

It is easy to verify that the distance between any two of these points is 1, so this must be an isometric embedding.

- (b) It suffices to show that there is no collection of four points in \mathbb{R}^2 such that the distance between any two of them is equal to 1. To see this, assume that there is such a set. By translation and rotation of the plane, we may assume that three of the points are (0,0), (0,1), and (1,0). Let (x,y) be the fourth point. Then (x, y) is a solution to this system of equations:

 - (1) $x^2 + y^2 = 1$; (2) $(x-1)^2 + y^2 = 1$; (3) $x^2 + (y-1)^2 = 1$.

The intersection of circles (1) and (2) is $\{(\frac{1}{2}, \pm \frac{\sqrt{3}}{2})\}$. The intersection of circles (1) and (3) is $\{(\pm \frac{\sqrt{3}}{2}, \frac{1}{2})\}$. Since there is no common point of intersection, there is no solution to the system of three equations, and no such (x, y) exists.

Problem 4. Let X be a set and define a metric ρ on X by $\rho(x,y)=1$ if $x\neq y$. Let (a_n) be a sequence in X.

(a) Show that $p \in X$ is a limit point of (a_n) if and only if

$$\exists N \in \mathbb{N} \mid n \ge N \Rightarrow a_n = p.$$

(b) Show that $q \in X$ is a cluster point of (a_n) if and only if

$$\forall N \in \mathbb{N} \exists n > N \mid a_n = q.$$

Solution. Note that for $x \in X$, we have $B(x, \frac{1}{2}) = \{x\}$.

(a) Suppose that p is a limit point of (a_n) . Then there exists $N \in \mathbb{N}$ such that $\rho(a_n,p)<\frac{1}{2}$ for $n\geq N$. Then $a_n=p$ for $n\geq N$, which proves the forward direction of the implication. The other direction of the implication is obvious. (b) Suppose that q is a cluster point of (a_n) . Then for every $N \in \mathbb{N}$ there exists $n \geq N$ such that $\rho(a_n,q) < \frac{1}{2}$. Such an a_n must equal q, since q is the only point within $\frac{1}{2}$ of q. Thus for every $N \in \mathbb{N}$ there exists $n \geq N$ such that $a_n = q$.

Again, the reverse direction of the implication is obvious.

DEPARTMENT OF MATHEMATICS & CSCI, SOUTHERN ARKANSAS UNIVERSITY E-mail address: plbailey@saumag.edu