### **Import libraries**

```
In [1]: import pandas as pd # read data and basic plots
   import numpy as np # statistical calculations
   import matplotlib.pyplot as plt # for visualization
   import seaborn as sns # for visualization
```

#### **Read Dataset**

```
In [2]: # read csv as dataframe
    df= pd.read_csv("E:\\Faculty\\dataset\\Salaries.csv")
    df.head()
```

Out[2]:

|   | ld | EmployeeName      | JobTitle                                       | BasePay   | OvertimePay | OtherPay  | Benefits | TotalPay  | TotalPayBenefits | Year | Notes | Agency        | Status |
|---|----|-------------------|------------------------------------------------|-----------|-------------|-----------|----------|-----------|------------------|------|-------|---------------|--------|
| 0 | 1  | NATHANIEL FORD    | GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY | 167411.18 | 0.00        | 400184.25 | NaN      | 567595.43 | 567595.43        | 2011 | NaN   | San Francisco | NaN    |
| 1 | 2  | GARY JIMENEZ      | CAPTAIN III (POLICE DEPARTMENT)                | 155966.02 | 245131.88   | 137811.38 | NaN      | 538909.28 | 538909.28        | 2011 | NaN   | San Francisco | NaN    |
| 2 | 3  | ALBERT PARDINI    | CAPTAIN III (POLICE DEPARTMENT)                | 212739.13 | 106088.18   | 16452.60  | NaN      | 335279.91 | 335279.91        | 2011 | NaN   | San Francisco | NaN    |
| 3 | 4  | CHRISTOPHER CHONG | WIRE ROPE CABLE MAINTENANCE MECHANIC           | 77916.00  | 56120.71    | 198306.90 | NaN      | 332343.61 | 332343.61        | 2011 | NaN   | San Francisco | NaN    |
| 4 | 5  | PATRICK GARDNER   | DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)  | 134401.60 | 9737.00     | 182234.59 | NaN      | 326373.19 | 326373.19        | 2011 | NaN   | San Francisco | NaN    |

## 1-Data Exploration

```
In [3]: # Get the value counts of each column
        for i in df:
           print("\n ********* "+i+" *********\n")
           print("\n",df[i].value_counts())
         1
        99079
                 1
        99099
        99100
                 1
       99101
                 1
        49553
                 1
        49554
        49555
                 1
        49556
                 1
        148654
        Name: Id, Length: 148654, dtype: int64
         In [4]: #get information about data column
       df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 148654 entries, 0 to 148653
        Data columns (total 13 columns):
        # Column
                             Non-Null Count
                                             Dtype
        ---
        0 Id
                              148654 non-null int64
                             148654 non-null object
            EmployeeName
        1
        2
            JobTitle
                              148654 non-null object
                              148045 non-null float64
            BasePay
        3
            OvertimePay
                              148650 non-null float64
            OtherPay
                              148650 non-null float64
                             112491 non-null float64
        6
            Benefits
                              148654 non-null float64
            TotalPay
            TotalPayBenefits 148654 non-null float64
        8
        9
                              148654 non-null int64
            Year
                              0 non-null
        10 Notes
                                              float64
                             148654 non-null object
        11 Agency
                              0 non-null
        12 Status
                                              float64
        dtypes: float64(8), int64(2), object(3)
        memory usage: 14.7+ MB
In [5]: df.isnull().sum()
Out[5]: Id
                               0
       EmployeeName 0
JobTitle 0
BasePay 609
OvertimePay 4
OtherPay 4
Benefits 36163
        TotalPay
        TotalPayBenefits
                               0
        Year
```

- 1- It show that the columns : (Notes, Status) are all null so there is no inforamtion we will get from this columns.
- 2- there is some columns contain null but it's not many.

148654

148654

Notes Agency

Status dtype: int64

3- DataType of numerical columns is float so that is right, String columns as Object and it is right so our dataType of our data is good.

```
In [6]: df.shape # shape of our data
Out[6]: (148654, 13)
```

Data contain 148654 rows and 13 columns

# 2-Descriptive Statistics

```
In [7]: # let's first make function for get statistics of salaries columns
        def statistics(col, data):
            print(f"Mean of {col} is: {str(data[col].mean())}")
            print(f"Median of {col} is: {str(data[col].median())}")
            print(f"Mode of {col} is: {str(data[col].mode())}")
            print(f"minimum of {col} is: {str(data[col].min())}")
            print(f"maximum of {col} is: {str(data[col].max())}")
            print(f"range of {col} is: {str(data[col].max() - data[col].min())}")
            print(f"standard deviation of {col} is: {str(data[col].std())}")
        statistics("BasePay", df)
        Mean of BasePay is: 66325.44884050643
        Median of BasePay is: 65007.45
        Mode of BasePay is: 0
        Name: BasePay, dtype: float64
        minimum of BasePay is: -166.01
        maximum of BasePay is: 319275.01
        range of BasePay is: 319441.02
        standard deviation of BasePay is: 42764.63549525958
```

Out[8]:

|       | ld            | BasePay       | OvertimePay   | OtherPay      | Benefits      | TotalPay      | TotalPayBenefits | Year          | Notes | Status |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|------------------|---------------|-------|--------|
| count | 148654.000000 | 148045.000000 | 148650.000000 | 148650.000000 | 112491.000000 | 148654.000000 | 148654.000000    | 148654.000000 | 0.0   | 0.0    |
| mean  | 74327.500000  | 66325.448841  | 5066.059886   | 3648.767297   | 25007.893151  | 74768.321972  | 93692.554811     | 2012.522643   | NaN   | NaN    |
| std   | 42912.857795  | 42764.635495  | 11454.380559  | 8056.601866   | 15402.215858  | 50517.005274  | 62793.533483     | 1.117538      | NaN   | NaN    |
| min   | 1.000000      | -166.010000   | -0.010000     | -7058.590000  | -33.890000    | -618.130000   | -618.130000      | 2011.000000   | NaN   | NaN    |
| 25%   | 37164.250000  | 33588.200000  | 0.000000      | 0.000000      | 11535.395000  | 36168.995000  | 44065.650000     | 2012.000000   | NaN   | NaN    |
| 50%   | 74327.500000  | 65007.450000  | 0.000000      | 811.270000    | 28628.620000  | 71426.610000  | 92404.090000     | 2013.000000   | NaN   | NaN    |
| 75%   | 111490.750000 | 94691.050000  | 4658.175000   | 4236.065000   | 35566.855000  | 105839.135000 | 132876.450000    | 2014.000000   | NaN   | NaN    |
| max   | 148654.000000 | 319275.010000 | 245131.880000 | 400184.250000 | 96570.660000  | 567595.430000 | 567595.430000    | 2014.000000   | NaN   | NaN    |

In [9]: # may describe the non numericale col also
 df.describe(include="all")

Out[9]:

df = filter\_dataframe(df)

|        | ld            | EmployeeName | JobTitle         | BasePay       | OvertimePay   | OtherPay      | Benefits      | TotalPay      | TotalPayBenefits | Year          | Notes | Agency        | Status |
|--------|---------------|--------------|------------------|---------------|---------------|---------------|---------------|---------------|------------------|---------------|-------|---------------|--------|
| count  | 148654.000000 | 148654       | 148654           | 148045.000000 | 148650.000000 | 148650.000000 | 112491.000000 | 148654.000000 | 148654.000000    | 148654.000000 | 0.0   | 148654        | 0.0    |
| unique | NaN           | 110811       | 2159             | NaN           | NaN           | NaN           | NaN           | NaN           | NaN              | NaN           | NaN   | 1             | NaN    |
| top    | NaN           | Kevin Lee    | Transit Operator | NaN           | NaN           | NaN           | NaN           | NaN           | NaN              | NaN           | NaN   | San Francisco | NaN    |
| freq   | NaN           | 13           | 7036             | NaN           | NaN           | NaN           | NaN           | NaN           | NaN              | NaN           | NaN   | 148654        | NaN    |
| mean   | 74327.500000  | NaN          | NaN              | 66325.448841  | 5066.059886   | 3648.767297   | 25007.893151  | 74768.321972  | 93692.554811     | 2012.522643   | NaN   | NaN           | NaN    |
| std    | 42912.857795  | NaN          | NaN              | 42764.635495  | 11454.380559  | 8056.601866   | 15402.215858  | 50517.005274  | 62793.533483     | 1.117538      | NaN   | NaN           | NaN    |
| min    | 1.000000      | NaN          | NaN              | -166.010000   | -0.010000     | -7058.590000  | -33.890000    | -618.130000   | -618.130000      | 2011.000000   | NaN   | NaN           | NaN    |
| 25%    | 37164.250000  | NaN          | NaN              | 33588.200000  | 0.000000      | 0.000000      | 11535.395000  | 36168.995000  | 44065.650000     | 2012.000000   | NaN   | NaN           | NaN    |
| 50%    | 74327.500000  | NaN          | NaN              | 65007.450000  | 0.000000      | 811.270000    | 28628.620000  | 71426.610000  | 92404.090000     | 2013.000000   | NaN   | NaN           | NaN    |
| 75%    | 111490.750000 | NaN          | NaN              | 94691.050000  | 4658.175000   | 4236.065000   | 35566.855000  | 105839.135000 | 132876.450000    | 2014.000000   | NaN   | NaN           | NaN    |
| max    | 148654.000000 | NaN          | NaN              | 319275.010000 | 245131.880000 | 400184.250000 | 96570.660000  | 567595.430000 | 567595.430000    | 2014.000000   | NaN   | NaN           | NaN    |

It show that there is some salaries negative! how it could be so we need to remove this unlogical values

```
In [10]: # before drop null values we should drop this columns that contain all null values
    df.drop(columns=["Notes", "Status"], inplace = True)
    # drop Agency column it is leak column
    df.drop(columns=["Agency"], inplace = True)

In [11]: # fill null values of benefits with 0 so it can't affect on the total pay column and couse of it has about more than 30000 null value it is so much
    df["Benefits"].fillna(0, inplace=True)

In [12]: # there is some -ve values in (BasePay, OvertimePay, OtherPay, Benefits, TotalPay, TotalPayBenefits) so we need handel it

def filter_dataframe(df):
    df = df.loc[df['OtherPay'] >= 0]
    df = df.loc[df['OtherPay'] >= 0]
    df = df.loc[df['OtherPay'] >= 0]
    df = df.loc[df['TotalPayBenefits'] >= 0]
    df = df.loc[df['TotalPayBenefits'] >= 0]
    df = df.loc[df['Benefits'] >= 0]
    return df
```

```
In [13]: # drop null values now to athor columns witch has little Null values
df.dropna(inplace=True)
```

Out[15]:

|   | ld | EmployeeName      | JobTitle                                       | BasePay   | OvertimePay | OtherPay  | Benefits | TotalPay  | TotalPayBenefits | Year |
|---|----|-------------------|------------------------------------------------|-----------|-------------|-----------|----------|-----------|------------------|------|
| 0 | 1  | NATHANIEL FORD    | GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY | 167411.18 | 0.00        | 400184.25 | 0.0      | 567595.43 | 567595.43        | 2011 |
| 1 | 2  | GARY JIMENEZ      | CAPTAIN III (POLICE DEPARTMENT)                | 155966.02 | 245131.88   | 137811.38 | 0.0      | 538909.28 | 538909.28        | 2011 |
| 2 | 3  | ALBERT PARDINI    | CAPTAIN III (POLICE DEPARTMENT)                | 212739.13 | 106088.18   | 16452.60  | 0.0      | 335279.91 | 335279.91        | 2011 |
| 3 | 4  | CHRISTOPHER CHONG | WIRE ROPE CABLE MAINTENANCE MECHANIC           | 77916.00  | 56120.71    | 198306.90 | 0.0      | 332343.61 | 332343.61        | 2011 |
| 4 | 5  | PATRICK GARDNER   | DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)  | 134401.60 | 9737.00     | 182234.59 | 0.0      | 326373.19 | 326373.19        | 2011 |

### 4- Basic Data Visualization

```
In [16]: # visualize the distribution of salaries
plt.figure(figsize=(10,6))
    sns.histplot(df["TotalPay"], color="skyblue")
    plt.title("Distribution of Salaries")
    plt.xlabel("Total Pay")
    plt.ylabel("Frequency")
    plt.show()
```



```
In [17]: # pie charts to represent the proportion of employees in different Jops
values = df["JobTitle"].value_counts()[:10]
plt.pie(values, labels=values.index, autopct='%1.1f%%', startangle=10)
plt.title("Proportion of Employees in Different Departments")
plt.show()
```

Proportion of Employees in Different Departments







# **5-Grouped Analysis**

In [23]: # Group the data by Year and compare the average salaries across different groups
group\_by\_year = df.groupby("Year")[["BasePay", "OvertimePay", "TotalPay", "TotalPayBenefits"]].mean().reset\_index()
group\_by\_year

Out[23]:

|   | Year | BasePay      | OvertimePay | OtherPay    | TotalPay     | TotalPayBenefits |
|---|------|--------------|-------------|-------------|--------------|------------------|
| 0 | 2011 | 64400.991170 | 4585.995895 | 3608.473545 | 72595.460609 | 72595.460609     |
| 1 | 2012 | 66212.629578 | 5079.317575 | 3636.335804 | 74928.282957 | 101673.802160    |
| 2 | 2013 | 69631.069053 | 5368.577324 | 3811.008327 | 78810.654705 | 102942.460196    |
| 3 | 2014 | 67316.721920 | 5463.032069 | 3499.974803 | 76279.728792 | 101329.827838    |



# **6-Simple Correlation Analysis**

```
In [26]: # plot the heatmap to show correlation between columns
plt.figure(figsize=(20,10))
corr = df.select_dtypes("number").corr()
sns.heatmap(corr)
```

Out[26]: <AxesSubplot:>



as shown there is correaltion between total pay and : (base pay, overtimepay, other pay )

```
In [27]: plt.scatter(df["TotalPay"], df["BasePay"]);
```

Out[27]: <matplotlib.collections.PathCollection at 0x2baec91ce80>



In [ ]: