3.1 Exercises Answers to selected odd-numbered problems begin on page ANS-4.

3.1.1 Initial-Value and Boundary-Value Problems

In Problems 1-4, the given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem.

1.
$$y = c_1 e^x + c_2 e^{-x}$$
, $(-\infty, \infty)$; $y'' - y = 0$, $y(0) = 0$, $y'(0) = 1$

2.
$$y = c_1 e^{4x} + c_2 e^{-x}$$
, $(-\infty, \infty)$; $y'' - 3y' - 4y = 0$, $y(0) = 1$, $y'(0) = 2$

3.
$$y = c_1 x + c_2 x \ln x$$
, $(0, \infty)$; $x^2 y'' - x y' + y = 0$, $y(1) = 3$, $y'(1) = -1$

4.
$$y = c_1 + c_2 \cos x + c_3 \sin x$$
, $(-\infty, \infty)$; $y''' + y' = 0$, $y(\pi) = 0$, $y'(\pi) = 2$, $y''(\pi) = -1$

5. Given that
$$y = c_1 + c_2 x^2$$
 is a two-parameter family of solutions of $xy'' - y' = 0$ on the interval $(-\infty, \infty)$, show that constants c_1 and c_2 cannot be found so that a member of the family satisfies the initial conditions $y(0) = 0$, $y'(0) = 1$. Explain why this does not violate Theorem 3.1.1.

6. Find two members of the family of solutions in Problem 5 that satisfy the initial conditions
$$y(0) = 0$$
, $y'(0) = 0$.

7. Given that
$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t$$
 is the general solution of $x'' + \omega^2 x = 0$ on the interval $(-\infty, \infty)$, show that a solution satisfying the initial conditions $x(0) = x_0, x'(0) = x_1$, is given by

$$x(t) = x_0 \cos \omega t + \frac{x_1}{\omega} \sin \omega t.$$

8. Use the general solution of
$$x'' + \omega^2 x = 0$$
 given in Problem 7 to show that a solution satisfying the initial conditions $x(t_0) = x_0, x'(t_0) = x_1$, is the solution given in Problem 7 shifted by an amount t_0 :

$$x(t) = x_0 \cos \omega (t - t_0) + \frac{x_1}{\omega} \sin \omega (t - t_0).$$

In Problems 9 and 10, find an interval centered about x = 0 for which the given initial-value problem has a unique solution.

9.
$$(x-2)y'' + 3y = x$$
, $y(0) = 0$, $y'(0) = 1$

10.
$$y'' + (\tan x)y = e^x$$
, $y(0) = 1$, $y'(0) = 0$

11. (a) Use the family in Problem 1 to find a solution of
$$y'' - y = 0$$
 that satisfies the boundary conditions $y(0) = 0$, $y(1) = 1$.

(c) Show that the solutions in parts (a) and (b) are equivalent.

12. Use the family in Problem 5 to find a solution of
$$xy'' - y' = 0$$
 that satisfies the boundary conditions $y(0) = 1$, $y'(1) = 6$.

In Problems 13 and 14, the given two-parameter family is a solution of the indicated differential equation on the interval $(-\infty,\infty)$. Determine whether a member of the family can be found that satisfies the boundary conditions.

13.
$$y = c_1 e^x \cos x + c_2 e^x \sin x$$
; $y'' - 2y' + 2y = 0$

(a)
$$y(0) = 1, y'(\pi) = 0$$
 (b) $y(0) = 1, y(\pi) = -1$

(b)
$$y(0) = 1, y(\pi) = -1$$

(c)
$$y(0) = 1$$
, $y(\pi/2) = 1$ (d) $y(0) = 0$, $y(\pi) = 0$

(**d**)
$$y(0) = 0, y(\pi) = 0$$

14.
$$y = c_1 x^2 + c_2 x^4 + 3$$
; $x^2 y'' - 5xy' + 8y = 24$

(a)
$$y(-1) = 0$$
, $y(1) = 4$ (b) $y(0) = 1$, $y(1) = 2$

(b)
$$y(0) = 1, y(1) = 2$$

(c)
$$y(0) = 3, y(1) = 0$$

(d)
$$y(1) = 3, y(2) = 15$$

3.1.2 Homogeneous Equations

In Problems 15-22, determine whether the given set of functions is linearly dependent or linearly independent on the interval $(-\infty, \infty)$.

15.
$$f_1(x) = x$$
, $f_2(x) = x^2$, $f_3(x) = 4x - 3x^2$

$$f_3(x) = 4x - 3x^2$$

16.
$$f_1(x) = 0$$

$$f_2(x) = x$$

16.
$$f_1(x) = 0$$
, $f_2(x) = x$, $f_3(x) = e^x$

17.
$$f_1(x) = 5$$
, $f_2(x) = \cos^2 x$, $f_3(x) = \sin^2 x$

$$f_2(x)$$
:

$$f_3(x) = \sin^2 x$$

18.
$$f_1(x) = \cos 2x$$
, $f_2(x) = 1$, $f_3(x) = \cos^2 x$

$$f_2(x) = 1$$

$$f_3(x) = \cos^2 x$$
$$f_3(x) = x + 3$$

19.
$$f_1(x) = x$$
,

19.
$$f_1(x) = x$$
, $f_2(x) = x - 1$,
20. $f_1(x) = 2 + x$, $f_2(x) = 2 + |x|$

22.
$$f_1(x) = e^x$$
,

21.
$$f_1(x) = 1 + x$$
, $f_2(x) = x$, $f_3(x) = x^2$
22. $f_1(x) = e^x$, $f_2(x) = e^{-x}$, $f_3(x) = \sin x$

$$f_3(x) = x^2$$
$$f_3(x) = \sinh x$$

In Problems 23-30, verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Form the general solution.

23.
$$y'' - y' - 12y = 0$$
; e^{-3x} , e^{4x} , $(-\infty, \infty)$

24.
$$y'' - 4y = 0$$
; $\cosh 2x$, $\sinh 2x$, $(-\infty, \infty)$

25.
$$y'' - 2y' + 5y = 0$$
; $e^x \cos 2x$, $e^x \sin 2x$, $(-\infty, \infty)$

26.
$$4y'' - 4y' + y = 0$$
; $e^{x/2}$, $xe^{x/2}$, $(-\infty, \infty)$

27.
$$x^2y'' - 6xy' + 12y = 0$$
; $x^3, x^4, (0, \infty)$

28.
$$x^2y'' + xy' + y = 0$$
; $\cos(\ln x)$, $\sin(\ln x)$, $(0, \infty)$

29.
$$x^3y''' + 6x^2y'' + 4xy' - 4y = 0$$
; $x, x^{-2}, x^{-2} \ln x$, $(0, \infty)$

30.
$$y^{(4)} + y'' = 0$$
; 1, x, cos x, sin x, $(-\infty, \infty)$

3.1.3 Nonhomogeneous Equations

In Problems 31-34, verify that the given two-parameter family of functions is the general solution of the nonhomogeneous differential equation on the indicated interval.

31.
$$y'' - 7y' + 10y = 24e^x$$
;

$$y = c_1 e^{2x} + c_2 e^{5x} + 6e^x, (-\infty, \infty)$$

32.
$$y'' + y = \sec x$$
;

$$y = c_1 \cos x + c_2 \sin x + x \sin x + (\cos x) \ln(\cos x),$$

 $(-\pi/2, \pi/2)$

33.
$$y'' - 4y' + 4y = 2e^{2x} + 4x - 12;$$

$$y = c_1 e^{2x} + c_2 x e^{2x} + x^2 e^{2x} + x - 2, (-\infty, \infty)$$

⁽b) The DE in part (a) has the alternative general solution $y = c_3 \cosh x + c_4 \sinh x$ on $(-\infty, \infty)$. Use this family to find a solution that satisfies the boundary conditions in part (a).

34.
$$2x^2y'' + 5xy' + y = x^2 - x;$$

 $y = c_1x^{-1/2} + c_2x^{-1} + \frac{1}{15}x^2 - \frac{1}{6}x, (0, \infty)$

35. (a) Verify that $y_{p_1} = 3e^{2x}$ and $y_{p_2} = x^2 + 3x$ are, respectively, particular solutions of

$$y'' - 6y' + 5y = -9e^{2x}$$

and
$$y'' - 6y' + 5y = 5x^2 + 3x - 16$$
.

(b) Use part (a) to find particular solutions of

$$y'' - 6y' + 5y = 5x^2 + 3x - 16 - 9e^{2x}$$

and
$$y'' - 6y' + 5y = -10x^2 - 6x + 32 + e^{2x}$$
.

36. (a) By inspection, find a particular solution of

$$y'' + 2y = 10.$$

(b) By inspection, find a particular solution of

$$y'' + 2y = -4x.$$

- (c) Find a particular solution of y'' + 2y = -4x + 10.
- (d) Find a particular solution of y'' + 2y = 8x + 5.

■ Discussion Problems

27. Let n = 1, 2, 3, ... Discuss how the observations $D^n x^{n-1} = 0$ and $D^n x^n = n!$ can be used to find the general solutions of the given differential equations.

(a)
$$y'' = 0$$

(b)
$$y''' = 0$$

(c)
$$y^{(4)} = 0$$

(d)
$$y'' = 2$$

(e)
$$y''' = 6$$

(f)
$$v^{(4)} = 24$$

- **38.** Suppose that $y_1 = e^x$ and $y_2 = e^{-x}$ are two solutions of a homogeneous linear differential equation. Explain why $y_3 = \cosh x$ and $y_4 = \sinh x$ are also solutions of the equation.
- **39.** (a) Verify that $y_1 = x^3$ and $y_2 = |x|^3$ are linearly independent solutions of the differential equation $x^2y'' 4xy' + 6y = 0$ on the interval $(-\infty, \infty)$.
 - (b) Show that $W(y_1, y_2) = 0$ for every real number x. Does this result violate Theorem 3.1.3? Explain.
 - (c) Verify that $Y_1 = x^3$ and $Y_2 = x^2$ are also linearly independent solutions of the differential equation in part (a) on the interval $(-\infty, \infty)$.
 - (d) Find a solution of the differential equation satisfying y(0) = 0, y'(0) = 0.
 - (e) By the superposition principle, Theorem 3.1.2, both linear combinations $y = c_1y_1 + c_2y_2$ and $Y = c_1Y_1 + c_2Y_2$ are solutions of the differential equation. Discuss whether one, both, or neither of the linear combinations is a general solution of the differential equation on the interval $(-\infty, \infty)$.
- **40.** Is the set of functions $f_1(x) = e^{x+2}$, $f_2(x) = e^{x-3}$ linearly dependent or linearly independent on the interval $(-\infty, \infty)$? Discuss.
- **41.** Suppose $y_1, y_2, ..., y_k$ are k linearly independent solutions on $(-\infty, \infty)$ of a homogeneous linear nth-order differential equation with constant coefficients. By Theorem 3.1.2 it follows that $y_{k+1} = 0$ is also a solution of the differential equation. Is the set of solutions $y_1, y_2, ..., y_k, y_{k+1}$ linearly dependent or linearly independent on $(-\infty, \infty)$? Discuss.
- **42.** Suppose that $y_1, y_2, ..., y_k$ are k nontrivial solutions of **a** homogeneous linear nth-order differential equation with constant coefficients and that k = n + 1. Is the set of solutions $y_1, y_2, ..., y_k$ linearly dependent or linearly independent on $(-\infty, \infty)$? Discuss.

3.2 Reduction of Order

Introduction In Section 3.1 we saw that the general solution of a homogeneous linear scond-order differential equation

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0 (1)$$

solutions $y = c_1y_1 + c_2y_2$, where y_1 and y_2 are solutions that constitute a linearly spendent set on some interval I. Beginning in the next section we examine a method for emining these solutions when the coefficients of the DE in (1) are constants. This method, ich is a straightforward exercise in algebra, breaks down in a few cases and yields only a gle solution y_1 of the DE. It turns out that we can construct a second solution y_2 of a homoeous equation (1) (even when the coefficients in (1) are variable) provided that we know nontrivial solution y_1 of the DE. The basic idea described in this section is that the linear first-order equation (1) can be reduced to a linear first-order DE by means of a substitution olving the known solution y_1 . A second solution, y_2 of (1), is apparent after this first-order is solved.

Reduction of Order Suppose y(x) denotes a known solution of equation (1). We seek a solution $y_2(x)$ of (1) so that y_1 and y_2 are linearly independent on some interval *I*. Recall