安徽大学 2019—2020 学年第一学期 《 高等数学 A (一)》期末考试试卷

(闭卷 时间 120 分钟)

(N14	ह भग्नाम्य	120 71 7	. /	
一、选择题(每小题2分,共10	分)			
1. 函数 $f(x) = \frac{ x \sin(x-2)}{x(x-1)(x-2)^2}$ 在下	例()[区间内有界	Ų.	
(A) $(-1,0)$ (B) $(0,1)$	((C) (1,2)	(D)	(2,3)
2. 设函数 $y = f(x)$ 具有二阶导数	,且 $f'(x)$ >	0, f''(x) >	0, Δx 为自变	量 x 在点 x_0 处的增
量, Δy 与 dy 分别为 $f(x)$ 在点 x_0	处对应的增加	量与微分,	若 $\Delta x > 0$,	则().
(A) $dy < \Delta y < 0$ (B) $\Delta y <$	dy < 0 (C) $0 < dy$	$<\Delta y$ (I	$0 < \Delta y < dy$
3. 设 $f(x)$ 有二阶连续导函数,且	f(0) = f'(0)	$(x) = 0 , \lim_{x \to 0}$	$\frac{f''(x)}{ x } = -1 ,$,则存在 $\delta > 0$,有
(A) $\int_{-\delta}^{\delta} f(x) dx > 0$	(B) $\int_{-\delta}^{\delta}$	$\int_{\delta} f(x) dx < \int_{\delta} f(x) dx$	0	
(C) $\int_{-\delta}^{\delta} f(x) dx = 0$	(D) $\int_{-\delta}^{\delta}$	$\int_{\delta} f(x) dx >$	$0 且 \int_{-\delta}^{\delta} f(x)$	dx < 0
4. 曲线 $y = \frac{1+x}{1-e^{-x}}$ 有()条渐过	近线.			
(A) 0 (B) 1 5. 下列反常积分中收敛的是().	(C) 2	in en d	(D) 3
(A) $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$ (B) $\int_{1}^{2} \frac{dx}{(x-x)^{2}}$	$\frac{x}{(-1)^3}$ (C) \int	$\frac{1}{x^{(\ln \sqrt{x})}}$	$\frac{1}{2}dx$ (D)	$\int_0^{+\infty} \frac{1}{x(x+1)} dx$
二、填空题(每小题2分,共10)分)			
6. 设 $y = y(x)$ 由方程 $e^{-y} + x(y - x)$)=1+x 所确	角定,则曲约		x=0处的切线方积
为				
7. 曲线 $\begin{cases} x = 3t^2 \\ 2t = 3 \end{cases}$ 在点 $t = 1$ 处	的曲率半径	为	hilm) i	

8. 设 f(x) 有连续导函数且 f(x) > 0, $\ln f(x) = \sin x$, 则 $\int \frac{xf'(x)}{f(x)} dx = \int \frac{xf'(x)}{f(x)} dx$

9.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{4n^2-1^2}} + \frac{1}{\sqrt{4n^2-2^2}} + \dots + \frac{1}{\sqrt{4n^2-n^2}} \right) = \underline{\hspace{1cm}}$$

- **10.** 半径为 1 的半圆周 $x^2 + y^2 = 1$ ($y \ge 0$)的质心坐标为_____
- 三、计算题 (每小题 9 分, 共 54 分)
- 12. 求 $f(x) = |xe^{-x}|$ 的极值与拐点.
- 13. 计算不定积分 $\int \ln \left(1+\sqrt{\frac{1+x}{x}}\right) dx$.
- 14. 计算 $\int_{2}^{+\infty} \frac{dx}{x\sqrt{x^2+4x}}$
- 15. 已知 $a_n = \int_0^{2\pi} e^{-x} \sin nx dx$ (n为正整数), 求 $\lim_{n \to \infty} na_n$.
- 16 设 f(x), g(x) 在区间 [-a,a](a>0) 上连续, g(x) 为偶函数,且 f(x) 满足条件 f(x)+f(-x)=A (A 为常数).
 - (1) 证明: $\int_{-a}^{a} f(x)g(x) dx = A \int_{0}^{a} g(x) dx$;
 - (2) 利用(1)的结果计算 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin x| \arctan e^x dx$.
- 四、应用题 (每小题 12 分, 共 12 分)
- 17. 设曲线 $y = a(1-x^2)(a>0)$ 在点 A(1,0) 和点 B(-1,0) 处的法线与曲线所围成封闭图 形为 D.
 - (1) 当D的面积最小时,求a的值和最小面积.
 - (2) 当D的面积最小时,求D绕y轴旋转一周所得旋转体的体积.
- 五、证明题 (每小题 7分, 共 14分)
- **18.** 设 f(x) 可导,f(0) = 0,f'(x) 单调递减. 证明: 对 $x \in (0,1)$,有 f(1)x < f(x) < f'(0)x.
- 19. 已知 f(x) 在 [0,2] 上连续,在 (0,2) 上二阶可导,且 $\lim_{x \to \frac{1}{2}} \left(\frac{f(x)}{x \frac{1}{2}} \right) = 0$, f(2) = 0
- $2\int_{1}^{\frac{3}{2}} f(x)dx$. 试证: 存在 $\xi \in (0,2)$ 使得 $f''(\xi) = 0$.