UKA TARSADIA UNIVERSITY

B.Tech (CE)/B.Tech (IT) (Semester 5) 030080503(2017-18)/030090503(2017-18) Design and Analysis of Algorithms

Date: 11/11/2019 Time: 9:30AM-12:30PM

Max. Marks:60

Instructions:

- 1. Attempt all questions.
- 2. Write each section in a separate answer book.
- 3. Make suitable assumptions wherever necessary.
- 4. Draw diagrams/figures whenever necessary.
- 5. Figures to the right indicate full marks allocated to that question.
- 6. Follow usual meaning of notations/abbreviations.

SECTION - 1

Q 1 A) Sort the list using merge sort algorithm: 10, 20, 16, 29, 39, and 15. What will be the time complexity to [6] sort this list?

<u>OR</u>

Q 1 A) Explain how divide and conquer method help multiplying two large integers and also find its run time complexity.

Q 2 A) Answer the following in brief. (Any 3)

[6]

^{I)} Justify: If $f(n) = 2n^3 + 3n^2 + 1$ than f(n) is not equal to $O(n^2)$.

- II) Why analysis of an algorithm is important? Justify your answer.
- III) Find the asymptotic lower bound for f (n) = n^3 + 20n. Also compute c and n_0 .
- IV) Prove or disprove: $f(n) + O(f(n)) = \Theta(f(n))$.

Q 2 B) Solve following recurrences using master method:

i.
$$T(n) = 2^n T(n/2) + n^n$$

ii. $T(n) = 4T(n/2) + n^2 \log n$

iii.
$$T(n) = 4T(n/3) + n \log n$$

[6]

[2]

iii. $T(n) = 4T(n/3) + n \log n$

OR

Q 2 B) Solve following recurrence relation using recursive tree method.

$$T(n) = 3T(n/3) + n^2$$

Q 3 A) Answer the following in brief. (Any 1)

I) Count the total number of spanning trees generated from given graph.

II) Explain problems of greedy approach with an example

Q 3 B) Answer the following in detail. (Any 2)

[10]

I) Solve the fractional knapsack problem for five items whose weights and values are given in following arrays:

Weight W[] = {5,10,20,30,40}

Value V[] = {30,20,100,90,160}

Find the optimal knapsack items for weight capacity of 60 units. Write time complexity of it.

II) Generate minimum spanning tree for the following graph using Kruskal's algorithm:

Josephal

III) Wrie job scheduling algorithm Consider the following jobs, deadlines and profits. Use scheduling to maximize total profit

Jobs	j1	j2	ј3	j4	j5
Deadline	2	1	3	2	1
Profit	60	100	20	40	20

SECTION - 2

Q 4 A) Answer the following in brief (Any 1)

I) Define: Computational complexity and Optimization problem.

II) When a problem is said to be NP hard?

Vp Herd

Q 4 B) Answer the following (Any 1)

- I) Draw the state transition diagram for string matching automaton for the pattern P = ababbab over the alphabet ∑ ={a,b}.
- II) Apply Rabin-Karp algorithm on text T=31415926535 and pattern P=26 with modulo q=11. Give its time complexity also.

M

[2]

Give its time

Q 5 A) Answer the following in brief. (Any 1)

- I) Define:
 - (a) State space
 - (b) Directed acyclic graph.
- II) Explain minmax principle.

Q 5 B) Answer the following in detail. (Any 2)

[10]

[2]

I) Illustrate the progress of breadth-first search on the graph given below.

Here A is the starting vertex.

BF.5

II) Consider the following instances for Knapsack problem using backtracking with n=3 units

P(25,24,15) W=(18,15,10) M=20. Give the state space tree for the above problem.

Inapsact 7 P.B III) Use branch and bound method to solve the assignment problems using the given cost matrices:

•				
	1	2	3	4
а	11	12	18	40
b	14	15	13	22
С	11	17	19	23
d	17	14	20	28

Q 6 Answer the following in detail. (Any 2)

[12]

lake Chr

I) What station should be chosen from line 1 and which from line 2 in order to minimize the total time through the factory for one auto?

II) Solve making change problem using dynamic programming, where d1=1, d2=4, d3=6 ceins, n=3 items and make a change for N=8 units.

III) Explain how to find out iongest common subsequence of two strings using dynamic programming method. Find longest common subsequence from the given two strings.

A = abcdef

B = acbcf