<u>ALL CALCULATIONS – 01APR2021</u>

Variance

Variance describes how much a random variable differs from its expected value. It entails computing squares of deviations.

$$s^{2} = \frac{\sum_{i=1}^{n-1} (x_{i} - \overline{x})^{2}}{n}$$

$$x : Individual data points$$

$$n : Total number of data points$$

$$\overline{x} : Mean of data points$$

Standard Deviation

Deviation is the difference between each element from the mean.

Deviation =
$$(x_i - \mu)$$

Population Variance is the average of squared deviations.

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} = (x_i - \mu)^2$$

Sample Variance is the average of squared differences from the mean.

$$s^2 = \frac{1}{(n-1)} \sum_{i=1}^{N} = (x_i - \bar{x})^2$$

Standard Deviation is the measure of the dispersion of a set of data from its mean.

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

The formula for computing the covariance of the variables X and Y is

COV =
$$\frac{\sum_{i=1}^{n} (X_i - \bar{x})(Y_i - \bar{y})}{n-1}$$
,

with \bar{x} and \bar{y} denoting the means of X and Y, respectively.

Covariance Matrix

$$C = \left(egin{array}{ccc} \sigma(x,x) & \sigma(x,y) \ \sigma(y,x) & \sigma(y,y) \end{array}
ight)$$

$$COV(x,y) = \sigma_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n - 1}$$
$$VAR(x) = \sigma_x^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$$

$$CORR(X,Y) = \frac{COV(X,Y)}{SD(X) \times SD(Y)}$$

3.19 Theorem. The covariance satisfies:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

The correlation satisfies:

$$-1 \le \rho(X, Y) \le 1.$$

If Y = aX + b for some constants a and b then $\rho(X,Y) = 1$ if a > 0 and $\rho(X,Y) = -1$ if a < 0. If X and Y are independent, then $Cov(X,Y) = \rho = 0$. The converse is not true in general.

Input Data:

Day	Х	У
1	30	5
2	35	8
3	40	8
4	25	4
5	35	5

Solution:

Х	Υ	Z	XI - MEAN(X)	YI - MEAN(Y)	ZI - MEAN(Z)	E*F	E * G	F*G	SQRDEV(X)	SQRDEV(Y)	SQRDEV(Z)
4	2	0.6	-0.1	-0.08	-0.004	0.008	0.0004	0.00032	0.01	0.0064	0.000016
4.2	2.1	0.59	0.1	0.02	-0.014	0.002	-0.0014	-0.00028	0.01	0.0004	0.000196
3.9	2	0.58	-0.2	-0.08	-0.024	0.016	0.0048	0.00192	0.04	0.0064	0.000576
4.3	2.1	0.62	0.2	0.02	0.016	0.004	0.0032	0.00032	0.04	0.0004	0.000256
4.1	2.2	0.63	0	0.12	0.026	0	0	0.00312	0	0.0144	0.000676
4.1	2.08	0.6			SUM VALUE	0.03	0.007	0.0054	0.1	0.028	0.00172
				COV VALUES	SUM/(n-1)	0.0075	0.00175	0.00135	0.025	0.007	0.00043
						COV(X,Y)	COV(X, Z)	COV(Y, Z)	VAR(X)	VAR(Y)	VAR(Z)
		со	variance Mat	COV(X, X)	0.025	0.15811388	CORR(X, Y)				
0.16				COV(X, Y)	0.008						
				COV(X, Z)	0.002						
				COV(Y, X)	0.008						
				COV(Y, Y)	0.007	0.083666	CORR(Y, Z)				
				COV(Y,Z)	0.001						
				COV(Z, X)	0.002						
				COV(Z, Y)	0.001						
				COV(Z, Z)	0.00043	0.02073644	CORR(X, Z)				

Input Data:

Market outcome	P(X,Y)	Х	Υ	X-E(X)	Y-E(Y)	(X-E(X))(Y-E(Y))
Booming	0.15	10	-3			
Favourable	0.35	6	-1			
Even	0.25	3	2			
Unfavourable	0.2	-8	4			
Crash	0.05	-15	10			
	Mean					
	Var					
	ST Dev					
	COV(X,Y)		1			
	CORR(X,Y)					

Solution:

			VAR	IANCE-COV	'ARIAN	CE CA	LCUL	ATIO	N - DIS	CRETE	PROBAE	BILISTIC	DATA		
p(X, Y)	x	Y		X * P(X,Y)		Y * P(X, Y)	X - E(X)	Y - E(Y)		COV(X, Y) = [(X - E(X)) * (Y - E(Y))] * P(X, Y)		SQUARE (X - E(X))	M * P(X, Y)	SQUARE (Y - E(Y))	O * P(X, Y)
0.15	10	-3		1.5		-0.45	8	-4	-32	-4.8		64	9.6	16	2.4
0.35	6	-1		2.1		-0.35	4	-2	-8	-2.8		16	5.6	4	1.4
0.25	3	2		0.75		0.5	1	1	1	0.25		1	0.25	1	0.25
0.2	-8	4		-1.6		0.8	-10	3	-30	-6		100	20	9	1.8
0.05	##	10		-0.75		0.5	-17	9	-153	-7.65		289	14.45	81	4.05
			MEAN(X) = SUM(X * P(X, Y))	2	MEAN(Y) = SUM(Y * P(X,Y))	1				-21	SUM	470	49.9	111	9.9
	П			T T											
					Х	Υ									
				MEAN	2 2	Υ 1									
				MEAN VAR											
			SQRT(VAR)		2	1									
			SQRT(VAR) STDEV(X) * STDEV(Y) * P(X, Y)	VAR	2 49.9	9.9 3.15									

Input Data:

1. Calculate the correlation coefficient between the two variables x and y shown below:

$$C = \frac{\sum_{x \in X_{x}} (\sum_{x} x)^{2} - \sum_{x} x \sum_{y} (\sum_{x} y)^{2}}{\sum_{x} (\sum_{x} x)^{2} - (\sum_{x} x)^{2} - (\sum_{x} x)^{2}}$$

Solution:

	V	Υ	v * v	X * X	v * v		
	X	Y	XTY	X · X	A . A		
	1	2	2	1	4	n * sum(xy)	126
	2	4	8	4	16	sum(x) * sum(y)	100
	3	7	21	9	49	n * sum(x* x)	546
	4	9	36	16	81	sum(x) * sum(x)	441
	5	12	60	25	144	n * sum(y * y)	294
	6	14	84	36	196	sum(y) * sum(y)	230
SUM	21	48	211	91	490		
						Numerator =	258
						dr1 =	105
						dr2 =	636
						dr1 * dr2	6678
						sqrt(dr1 * dr2)	258.4
						_	
						R Value =	0.99