### САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и кибербезопасности высшая школа компьютерных технологий и информационных систем

# РАСЧЁТНОЕ ЗАДАНИЕ «Построение модели операции»

по дисциплине «Системный анализ и принятие решений»

| Выполнил:                 |           |             |
|---------------------------|-----------|-------------|
| студент гр. 5130901/20102 |           | Вагнер A.A. |
|                           | (подпись) |             |
| Преподаватель:            |           | Сиднев А.Г. |
|                           | (подпись) |             |
|                           | « »       | 2024 г.     |

#### Исходные данные:

#### Вариант 3

$$\max \{2,0 * x_1 + 1,0 * x_2\}$$

$$\begin{cases} 1,0 * x_1 + 1,0 * x_2 \le 5,6 \\ 1,0 * x_1 - 1,0 * x_2 \le -2,4 \\ x_1, x_2 \ge 0 \end{cases}$$

#### Оглавление

| 1. Геометрическая интерпретация задачи и ее графическое                                                                                                                                                                                                      |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| решение.                                                                                                                                                                                                                                                     | 3 |
| 2. Обозначение опорных точек и соответствующих им наборов базисных переменных                                                                                                                                                                                | 4 |
| 3. Решение задачи симплекс-методом в табличной форме. Для получения допустимого базиса использовать метод искусственных переменных с решением вспомогательной задачи. Продолжить решение исходной задачи табличным методом до получения конечного результата | 4 |
| 4. Представить также решение модифицированной задачи с измененной целевой функцией $f(x)=C^TX-M^*$ (сумма искусственных переменных).                                                                                                                         | X |
| 5. Решение модифицированной задачи симплекс-методом в матричной форме.                                                                                                                                                                                       | 7 |
| 6. Введение дополнительного ограничения, отсекающего оптимальную точку. Решение новой задачи двойственным симплекс-методом в табличной форме                                                                                                                 | 9 |
| 7. Формулировка задачи, двойственной по отношению к исходной Графическое решение двойственной задачи                                                                                                                                                         |   |
| 8. Определение координат сопряженных опорных точек прямой и двойственной задач. Нахождение оптимального решения двойственной задачи по оптимальному решению прямой задачи 1                                                                                  |   |
|                                                                                                                                                                                                                                                              |   |

## 1. Геометрическая интерпретация задачи и ее графическое решение.

Для начала построим графические интерпретации следующих ограничений.

$$x_1 + x_2 \le 5.6$$
 – фиолетовая область

$$x_1 - x_2 \le -2.4$$
 – чёрная область

$$x_1$$
,  $x_2 \ge 0$  – красная и синяя область

Функция зелёного цвета — целевая, направление стрелки примерно отображает направление возрастания целевой функции.



Найдём пересечения  $x_1 + x_2 = 5.6$  и  $x_1 - x_2 = -2.4$ , решив систему уравнений

$$\begin{cases} x_1 + x_2 = 5.6 \\ x_1 - x_2 = -2.4 \end{cases}$$

Результат – (1.6, 4), согласно графическому представлению целевой функции, эта точка и будет оптимальным решением.

ОДЗ находится внутри треугольника со следующими вершинами: (0, 2.4); (1.6, 4); (5.6, 0).

Оценим значения целевой функции в этих точках:

$$F(0,2.4) = 2.4$$
  
 $F(1.6,4) = 7.2$   
 $F(0,5.6) = 5.6$ 

2. Обозначение опорных точек и соответствующих им наборов базисных переменных.

$$(0, 2.4) - x_2, s_2$$

$$(0, 5.6) - x_2, s_1$$

$$(1.6, 4) - x_1, x_2$$

3. Решение задачи симплекс-методом в табличной форме. Для получения допустимого базиса использовать метод искусственных переменных с решением вспомогательной задачи. Продолжить решение исходной задачи табличным методом до получения конечного результата.

Воспользуемся свободными переменными для перевода неравенств из системы в равенства.

$$\begin{cases} x_1 + x_2 + s_1 = 5,6 \\ x_1 - x_2 + s_2 = -2,4 \\ x_1, x_2, s_1, s_2 \ge 0 \end{cases}$$

Умножим коэффициенты 2 неравенства на -1

$$\begin{cases} x_1 + x_2 + s_1 = 5,6 \\ -x_1 + x_2 - s_2 = 2,4 \\ x_1, x_2, s_1, s_2 \ge 0 \end{cases}$$

Для поиска базиса решим вспомогательную задачу. Введём искусственную переменную во второе равенство.

$$\begin{cases} x_1 + x_2 + s_1 = 5,6 \\ -x_1 + x_2 - s_2 + R_1 = 2,4 \\ x_1, x_2, s_1, s_2, R_1 \ge 0 \end{cases}$$

Для постановки задачи на максимум запишем целевую функцию:

$$F(X) = -R_1 \rightarrow max$$

Из уравнений выразим искусственные переменные

$$R_1 = 2.4 + x_1 - x_2 + s_2$$
$$s_1 = 5.6 - x_1 - x_2$$

Решим систему относительно базисных переменных  $s_1$ ,  $R_1$ , так как они образуют единичную матрицу.

|       | b    | $x_1$ | $x_2$ | S2 |
|-------|------|-------|-------|----|
| $S_I$ | 5.6  | -1    | -1    | 0  |
| $R_1$ | 2.4  | 1     | -1    | 1  |
| F     | -2.4 | -1    | 1     | -1 |

Выберем ведущий столбец как максимальное из значений с, то есть х<sub>2</sub>

Выберем ведущую строку по следующему правилу  $\min\left(-\frac{b_i}{a_{i2}}\right)$ , где  $a_{ij}<0$ 

В новой таблице заменим в базисе переменную  $R_1$  на  $x_2$ 

Получаем новую таблицу:

|                | b   | $x_{I}$ | $R_1$ | S2 |
|----------------|-----|---------|-------|----|
| $S_I$          | 3.2 | -2      | 1     | -1 |
| $x_2$          | 2.4 | 1       | -1    | 1  |
| $\overline{F}$ | 0   | 0       | -1    | 0  |

Так как выполняются условия допустимости ( $b \ge 0$ ) и оптимальности ( $c \le 0$ ), следовательно, базис ( $s_1$ ;  $s_2$ ) является допустимым. В этом можно убедиться из графического представления задачи.

Так как мы перешли к другой задаче, значит надо определить новые коэффициенты свободных переменных в целевой функции:

$$F = 3x_1 + s_2 + 2.4$$

Составим таблицу.

|                | ь   | $\mathbf{x}_1$ | $s_2$ |
|----------------|-----|----------------|-------|
| $s_1$          | 3.2 | -2             | -1    |
| $\mathbf{x}_2$ | 2.4 | 1              | 1     |
| F              | 2.4 | 3              | 1     |

 $\overline{B}$  базисе заменим  $s_1$  на  $x_1$ . РЭ равен -2.

|                | ь   | $s_1$ | S <sub>2</sub> |
|----------------|-----|-------|----------------|
| $\mathbf{x}_1$ | 1.6 | -0.5  | -0.5           |
| X <sub>2</sub> | 4   | -0.5  | 0.5            |
| F              | 7.2 | -1.5  | -0.5           |

Так как выполняются условия допустимости ( $b \ge 0$ ) и оптимальности ( $c \le 0$ ), делаем вывод, что получено оптимальное решение F(1.6; 4) = 7.2. Также отметим, что оно сходится с графическим решением.

4. Представить также решение модифицированной задачи с измененной целевой функцией  $f(x)=C^TX-M^*(\text{сумма})$  искусственных переменных).

Решим следующую задачу:

$$\max\left\{2,0*x_1+x_2-M*R_1\right\}$$

$$\begin{cases} x_1 + x_2 + s_1 = 5,6 \\ -x_1 + x_2 - s_2 + R_1 = 2,4 \\ x_1, x_2, s_1, s_2, R_1 \ge 0 \end{cases}$$

$$R_1 = 2.4 + x_1 - x_2 + s_2$$

$$F = 2x_1 + x_2 - MR_1 = 2x_1 + x_2 - M(2.4 + x_1 - x_2 + s_2)$$

$$= (2 - M)x_1 + (1 + M)x_2 - Ms_2 - 2.4M$$

Таблица:

|         | b     | $x_{I}$ | $x_2$ | $S_2$ |
|---------|-------|---------|-------|-------|
| $S_I$   | 5.6   | -1      | -1    | 0     |
| $R_{I}$ | 2.4   | 1       | -1    | 1     |
| F       | -2.4M | 2-M     | I+M   | -M    |

В новой таблице заменим в базисе переменную  $R_1$  на  $x_2$ 

|       | b   | $x_1$ | $R_1$ | S2 |
|-------|-----|-------|-------|----|
| $S_I$ | 3,2 | -2    | 1     | -1 |
| $x_2$ | 2.4 | 1     | -1    | 1  |
| F     | 2.4 | 3     | -1-M  | 1  |

В новой таблице заменим в базисе переменную  $s_1$  на  $x_1$ 

|       | b   | $S_1$ | $R_1$   | S2   |
|-------|-----|-------|---------|------|
| $x_1$ | 1.6 | -0.5  | 0.5     | -0.5 |
| $x_2$ | 4   | -0.5  | -2      | 2    |
| F     | 7.2 | -1.5  | 0.5 - M | -0.5 |

Так как выполняются условия допустимости ( $b \ge 0$ ) и оптимальности ( $c \le 0$ ), делаем вывод, что получено оптимальное решение F(1.6; 4) = 7.2. Результат совпадает с полученным в предыдущем пункте.

5. Решение модифицированной задачи симплекс-методом в матричной форме.

Каноническая запись формулировки задачи:

$$\max \{2,0 * x_1 + x_2\}$$

$$\begin{cases} x_1 + x_2 + s_1 = 5,6 \\ -x_1 + x_2 - s_2 = 2,4 \\ x_1, x_2, s_1, s_2 \ge 0 \end{cases}$$

Матричная форма:

$$\max(C^{T}X)$$

$$AX = b$$

$$C^{T} = (2, 1, 0, 0)$$

$$b^{T} = (5.6, 2.4)$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & -1 \end{pmatrix}$$

В качестве базиса выберем пару переменных, которая гарантированно может быть допустимым базисом, например  $x_2$ и  $s_1$ . Это было доказано в пункте 3.

Применим признак допустимости опорной точки  $\tilde{X}^{\mathsf{F}_0} = P_0^{-1}b \geq 0$ 

$$B_0 = \begin{pmatrix} 2 & 3 \\ P_0 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \\
P_0^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \\
X^{B_0} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} * \begin{pmatrix} 5.6 \\ 2.4 \end{pmatrix} = \begin{pmatrix} 2.4 \\ 3.2 \end{pmatrix}$$

Базис является допустимым.

Проверим базис на оптимальность.

$$\Delta_{1} = C^{TE_{0}} P_{0}^{-1} A_{1} - c_{1} = (1 \quad 0) \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} - 2 = -1 - 2 = -3$$

$$\Delta_{4} = (1 \quad 0) \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} - 0 = -1$$

Признак оптимальности не выполняется.  $x_1$  следует включить в базис, так как  $\Delta_1 < \Delta_4$ . Определим переменную, которую следует исключить из базиса.

$$z_k = P_0^{-1} A_k = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
$$\frac{x_{jk}^0}{z_{lk}} = \min_i \frac{x_{ji}^0}{z_{ik}} |_{z_{ik} > 0} = 3.2$$

Следовательно из базиса исключаем s<sub>1</sub>

$$\begin{aligned} \mathbf{E}_1 &= \begin{pmatrix} 1 & 2 \end{pmatrix} \\ P_1 &= \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \\ P_1^{-1} &= \begin{pmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{pmatrix} \\ X^{\mathbf{E}_1} &= \begin{pmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{pmatrix} * \begin{pmatrix} 5.6 \\ 2.4 \end{pmatrix} = \begin{pmatrix} 1.6 \\ 4 \end{pmatrix} \end{aligned}$$

Значения больше нуля следовательно базис является допустимым.

$$\Delta_3 = C^{TB_1} P_1^{-1} A_3 - c_3 = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 0 = 1$$

$$\Delta_4 = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} - 0 = 0$$

Значения  $\geq 0$  следовательно выполняется признак оптимальности.

Найдём значение целевой функции в точке оптимального решения.

$$F = C^{TE_1}P_1^{-1}b = (2 \quad 1)\begin{pmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}\begin{pmatrix} 5.6 \\ 2.4 \end{pmatrix} = 7.2$$

Результат соответствует ожидаемому.

6. Введение дополнительного ограничения, отсекающего оптимальную точку. Решение новой задачи двойственным симплекс-методом в табличной форме.

Добавим ограничение, отсекающее ранее предложенное решение, например  $x_2 \le 3$ . Получим следующую систему ограничений:

$$\begin{cases} x_1 + x_2 \le 5.6 \\ x_1 - x_2 \le -2.4 \\ x_1 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$



Целевая функция та же:

$$\max \{2.0 * x_1 + 1.0 * x_2\}$$

Представим в канонической форме:

$$\begin{cases} x_1 + x_2 + s_1 = 5,6 \\ -x_1 + x_2 - s_2 = 2,4 \\ x_1 + s_3 = 1 \\ x_1, x_2, s_1, s_2, s_3 \ge 0 \end{cases}$$

Воспользуемся таблицей, полученной на последнем этапе третьего пункта:

|                | ь   | $s_1$ | $s_2$ |
|----------------|-----|-------|-------|
| $\mathbf{x}_1$ | 1.6 | -0.5  | -0.5  |
| $\mathbf{x}_2$ | 4   | -0.5  | 0.5   |
| F              | 7.2 | -1.5  | -0.5  |

Добавим в базис  $s_3$ , предварительно выразив его через свободные переменные.

$$s_3 = 1 - x_1 = 1 + 0.5s_1 + 0.5s_2 - 1.6 = -0.6 + 0.5s_1 + 0.5s_2$$

|                | ь    | $s_1$ | S <sub>2</sub> |
|----------------|------|-------|----------------|
| $\mathbf{x}_1$ | 1.6  | -0.5  | -0.5           |
| $\mathbf{x}_2$ | 4    | -0.5  | 0.5            |
| S <sub>3</sub> | -0.6 | 0.5   | 0.5            |
| F              | 7.2  | -1.5  | -0.5           |

Признак допустимости выполняется, признак оптимальности нет, следует перейти к иному базису.

|                | b    | $s_1$ | $s_2$ |
|----------------|------|-------|-------|
| $\mathbf{x}_1$ | 1.6  | -0.5  | -0.5  |
| $\mathbf{x}_2$ | 4    | -0.5  | 0.5   |
| S <sub>3</sub> | -0.6 | 0.5   | 0.5   |
| F              | 7.2  | -1.5  | -0.5  |

|                | b   | $s_1$ | S <sub>2</sub> |
|----------------|-----|-------|----------------|
| $\mathbf{x}_1$ | 1   | 0     | -1             |
| $\mathbf{x}_2$ | 4.6 | -1    | 1              |
| S <sub>3</sub> | 1.2 | -1    | 2              |
| F              | 6.6 | -1    | -1             |

Базис оптимален и допустим. Оптимально решение — F(1; 4.6)=6.6 Ответ соответствует графическому решению.

7. Формулировка задачи, двойственной по отношению к исходной. Графическое решение двойственной задачи.

Исходная задача в каноническом виде:

$$\max (C^{T}X)$$

$$AX = b$$

$$X \ge 0$$

$$C^{T} = (2, 1, 0, 0)$$

$$b^{T} = (5.6, 2.4)$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & -1 \end{pmatrix}$$

Значит двойственная задача будет следующей:

$$\min(b^{T}Y)$$

$$A^{T}Y \ge C$$

$$C^{T} = (2, 1, 0, 0)$$

$$b^{T} = (5.6, 2.4)$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & -1 \end{pmatrix}$$

Представим в виде системы:

$$\min(5.6y_1 + 2.4y_2)$$

$$\begin{cases} y_1 - y_2 \ge 2 \\ y_1 + y_2 \ge 1 \\ y_1 \ge 0 \\ -y_2 \ge 0 \end{cases}$$

Произведём замену -у2на у2:

$$\min(5.6y_1 - 2.4y_2)$$

$$\begin{cases} y_1 + y_2 \ge 2 \\ y_1 - y_2 \ge 1 \\ y_1, y_2 \ge 0 \end{cases}$$



8. Определение координат сопряженных опорных точек прямой и двойственной задач. Нахождение оптимального решения двойственной задачи по оптимальному решению прямой задачи.

Найдём сопряжённую опорную точку.

$$X_{opt}^{\rm B}=(x_1,x_2)$$

$$A_i = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$C_i = \begin{pmatrix} 2 & 1 \end{pmatrix}$$

$$A_i^T Y = C_i$$

С учётом замены -у $_2$ на у $_2$  получаем систему:

$$\begin{cases} y_1 + y_2 = 2 \\ y_1 - y_2 = 1 \end{cases}$$

Результат – 
$$y_1 = 1.5$$
,  $y_2 = 0.5$ .  $F = 5.6 * 1.5 - 2.4 * 0.5 = 7.2$ 

Решение совпадает с ожидаемым.