N8104: Artificial Neural Networks Transfer Learning

Sachchida Nand Chaurasia

Assistant Professor

Department of Computer Science Banaras Hindu University Varanasi

Email id: snchaurasia@bhu.ac.in, sachchidanand.mca07@gmail.com

June 25, 2023

Transfer Learning I

"The choice of CNN architecture depends on the complexity of the image classification task, the size of the dataset, the available computational resources, and the desired level of accuracy."

- If the input data is small and simple, such as images with low resolution, then a smaller CNN architecture such as LeNet or AlexNet might be sufficient.
- If the input data is large and complex, such as high-resolution images or videos, then a larger and more complex CNN architecture such as VGG, Inception, or ResNet might be needed to extract relevant features.
- If the task involves object detection or segmentation, then architectures like YOLO, RCNN, or Mask R-CNN might be suitable.

Transfer Learning II

- If the task involves processing sequential data such as speech or text, then architectures such as Convolutional LSTM or Time Distributed CNN might be used.
- If the available computational resources are limited, then smaller architectures with fewer layers and parameters may be preferred to reduce training time and memory usage.

Transfer Learning III

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Transfer Learning IV

Transfer Learning V

VGG16 MODEL ARCHITECTURE

Transfer Learning VI

Ways of doing Transfer Learning

- Feature Extraction
- 2 Fine Tuning

Transfer Learning VII

Without data augumentation:

Transfer Learning VIII

With data augumentation:

Transfer Learning IX

With Fine Tuning:

Transfer Learning X

Without Data augumentation:

Transfer Learning XI

```
model = Sequential()
model.add(conv_base)
model.add(Flatten())
model.add(Dense(50,activation='relu'))
model.add(Dense(25,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
```

model.summary()

Model: "sequential_4"

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 4, 4, 512)	14714688
flatten_4 (Flatten)	(None, 8192)	Θ
dense_9 (Dense)	(None, 50)	409650
dense_10 (Dense)	(None, 25)	1275
dense_11 (Dense)	(None, 1)	26

Total params: 15,125,639

Trainable params: 410,951 Non-trainable params: 14,714,688

Non-trainable params. 14,714,00

Transfer Learning XII

```
l accuracy: 0.9096
Epoch 2/10
l accuracy: 0.9126
Epoch 3/10
l accuracy: 0.9086
Epoch 4/10
l accuracy: 0.9164
Epoch 5/10
l accuracy: 0.9140
Epoch 6/10
l accuracy: 0.9084
Epoch 7/10
l accuracy: 0.8966
Epoch 8/10
l accuracy: 0.8958
Epoch 9/10
625/625 [============ ] - 2034s 3s/step - loss: 0.0606 - accuracy: 0.9761 - val loss: 0.3662 - va
l accuracy: 0.9080
Epoch 10/10
l accuracy: 0.9022
```

Transfer Learning XIII

