Herbst 23 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $A := \{(x, y) \in \mathbb{R}^2 | x_1 \ge 5\}$. Wir betrachten auf A die Abbildung

$$F: A \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto \left(7 + 3 \cdot \frac{3 + x_2^2}{2 + x_2^2}, e^{-x_1^2}\right)$.

Weiter bezeichne $\|.\|$ die euklidische Norm auf dem \mathbb{R}^2 .

- a) Zeigen Sie, dass für alle Punkte $(x, y) \in A$ gilt: $||F(x)|| \ge 10$.
- b) Bestimmen Sie alle Punkte $x \in A$ sodass $||F(x)||^2 \ge ||F(y)||^2$ für alle $y \in A$. Begründen Sie, warum es keine weiteren Punkte als die von Ihnen gefundenen geben kann.
- c) Die Abbildung $F:A\to\mathbb{R}^2$ ist ein Vektorfeld und beschreibt damit eine Differentialgleichung y'=F(y) erster Ordnung auf A. Es sei $\mu:[0,2]\to A$ eine Lösung dieser Differentialgleichung mit Anfangspunkt $\mu(0)=(7,3)$. Zeigen Sie, dass die (euklidische) Länge der Kurve μ mindestens 20 beträgt.

Lösungsvorschlag:

- a) Für alle $x \in \mathbb{R}^2$ gilt $||x|| = \sqrt{x_1^2 + x_2^2} \ge \sqrt{x_1^2} = |x_1|$ nach der Monotonie der Wurzelfunktion. Für alle $x \in A$ ist daher $||F(x)|| \ge |7 + 3 \cdot \frac{3 + x_2^2}{2 + x_2^2}| = 7 + 3 \cdot \frac{3 + x_2^2}{2 + x_2^2}$, weil letzteres positiv ist. Wegen $3 + x_1^2 \ge 2 + x_2^2$ für alle $x_2 \in \mathbb{R}$ können wir den letzten Term also nach unten gegen $7 + 3 \cdot 1 = 10$ abschätzen, was zu zeigen war.
- b) Die beiden Komponenten von F(x) sind unabhängig voneinander und nehmen nur positive Werte an. Also wird $||F(x)||^2 = 7 + 3 \cdot \frac{3 + x_2^2}{2 + x_2^2} + e^{-x_1^2}$ genau dann maximal, wenn beide Summanden maximal werden. Der zweite Summand wird wegen des Steigungsverhalten von e^{-z^2} auf \mathbb{R} (streng monoton steigend auf $(-\infty, 0]$ und streng monoton fallend auf $[0, \infty)$) und der Achsensymmetrie zur y-Achse genau dann am größten, wenn |z| am kleinsten wird, hier also für $|x_1| = 5$. Jedes Maximum erfüllt also $x_1 = \pm 5$. Für die erste Komponente formen wir um. Es ist $7 + 3 \cdot \frac{3 + x_2^2}{2 + x_2^2} = 7 + 3 + \frac{3}{2 + x_2^2}$. Dies wird genau dann maximal, wenn der Nenner minimal wird, was wegen $x_2^2 + 2 \ge 2$ genau für $x_2 = 0$ der Fall ist. Damit sind die gesuchten Punkte genau die beiden Punkte (-5,0) und (5,0) mit $||F(\pm 5,0)||^2 = 11,5 + e^{-25}$.
- c) Weil F normbeschränkt und stetig differenzierbar ist und beide Komponenten strikt positiv sind, sind die Teilkurven μ_1, μ_2 monoton wachsend und wegen $\mu_1(0) = 7 \ge 5$ ist die Lösung zumindest auf (ε, ∞) für ein $\varepsilon < 0$ definiert, die Länge auf [0,2] also wohldefiniert. Diese lässt sich berechnen als $\int_0^2 \|\mu'(t)\| dt = \int_0^2 \|F(\mu(t))\| dt \ge \int_0^2 10 dt = 20$, wie zu zeigen war.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$