

Universidad Adolfo Ibañez

Derivados Avanzados

TUTORIAL EXTRACTION OF IMPLIED VOLATILITY WITH NEWTON-RAPHSON IN PRICING OF EUROPEAN FORWARDS

Alumno: Felipe Ignacio Durán Aranda

> Profesor: Jacques Burrus

Ayudantes:
- Alejandro Olguín
- Guillermo Sepúlveda

February 25, 2021

Contenidos

1	Prefacio	2
2	Pregunta Uno	2
3	Pregunta Dos	5
	3.1 Pregunta Dos A)	5
	3.2 Pregunta Dos B)	5
	3.3 Pregunta Dos C)	6
	3.4 Pregunta Dos D)	
	3.5 Pregunta Dos E)	6
4	Pregunta Tres	7
5	Pregunta Cuatro	8
6	Pregunta Cinco	9
7	Pregunta Seis	11
8	Pregunta Siete	13

1 Prefacio

Mediante este informe se busca exponer los resultados conseguidos en los cálculos de: la volatilidad implícita, del *Greek Vega* (indicador de sensibilidad de mercado del instrumento derivado) así como del *Fair Value* para las diversas opciones presentadas en la actividad *Tutorial Extraction Of Implied Volatility With Newton-Raphson In Pricing Of European Forwards*, a través de la aplicación de la fórmula de *Black-Scholes* y del algoritmo de *Newton-Raphson*, implementados mediante el programa *Matlab*.

2 Pregunta Uno

Para esta pregunta, se pide confeccionar una función llamada valueBS que compute tanto el Fair Value de una European Vanilla Call como el Greek Vega (Que representa la sensibilidad del instrumento derivado respecto a su volatilidad), utilizando la fórmula de Black-Scholes. Dicha función será usada más adelante para evaluar los instrumentos con diversos parámetros, que son presentados a continuación:

Para la totalidad de la actividad, se tienen los siguientes parámetros que se mantendrán fijos:

$$S_0 = 679$$

 $r = 0.04$
 $q = 0.01$ (1)

Con "r" siendo la tasa libre de riesgo doméstica (CLP), "q" la tasa libre de riesgo extranjera (USD), "T" el Tenor de la opción y "S" el $Spot\ Price$ del instrumento.

Para encontrar el Fair Value de los instrumentos, se utilizó el modelo de valorización para opciones FX Garman–Kohlhagen, expresado a continuación:

$$V_0 = \epsilon \cdot S_0 \cdot e^{-qT} \cdot N \left(\epsilon \cdot d_1 \right) - \epsilon \cdot K \cdot e^{-rT} \cdot N \left(\epsilon \cdot d_2 \right)$$
 (2)

En donde ϵ corresponde a una variable indicadora, siendo (1) para una opción call y (-1) para una opción put. Así mismo se utilizaron las siguientes ecuaciones auxiliares para estos cálculos:

$$d_1 = \frac{\ln S_0/K + (r-q)T}{\sigma\sqrt{T}} + \frac{\sigma\sqrt{T}}{2}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$
(3)

Con "N" representando la función de densidad acumulada de una normal estándar. Por otra parte, para el cálculo del $Greek\ Vega$ se utilizó la siguiente ecuación:

$$\nu = S_0 \cdot e^{-qT} \cdot n(d_1) \cdot \sqrt{T} \tag{4}$$

En donde "n" representa la función densidad de probabilidad de una distribución normal estándar. Finalmente, para los $Strike\ Price\ (K)$ y valores de mercado de las opciones (C), se utilizaron los parámetros presentados a continuación.

Valores para los Strike Price (K):

Tenor [yrs]			Strike K [CLP]		
0,083	610	640	680	720	760
0,167	585	630	680	740	800
0,250	565	620	685	755	830
0,333	550	610	685	770	855
0,417	535	605	690	785	880
0,500	525	595	690	795	905
0,583	515	590	690	805	925
0,667	505	585	695	815	950
0,750	500	585	695	825	970
0,833	490	580	695	835	990
0,917	485	575	700	845	1010
1,000	475	570	700	855	1030

Figura 1: Strike Price (K) de Diversas Opciones.

Parámetros para los valores de mercado (C) de las diversas opciones:

Tenor [yrs]		European van	illa call market	t value [CLP]	
0,083	74,61	49,09	24,50	12,72	9,64
0,167	103,20	65,28	35,39	18,94	14,42
0,250	125,40	80,42	42,78	23,45	19,12
0,333	143,29	93,56	50,16	28,25	23,95
0,417	160,76	103,90	56,28	31,20	27,08
0,500	172,84	115,82	62,42	36,55	31,19
0,583	185,57	125,47	70,15	41,82	36,04
0,667	198,16	133,36	73,50	45,06	40,13
0,750	205,50	139,43	80,95	50,16	44,98
0,833	217,70	146,81	85,95	55,30	49,88
0,917	226,06	155,97	91,22	58,10	52,63
1,000	236,60	165,01	98,53	63,24	57,56

Figura 2: Valores de mercado (C) de Diversas Opciones.

Finalmente la función implementada valueBS fue utilizada para realizar diversos cálculos en preguntas posteriores.

3 Pregunta Dos

El objetivo de esta pregunta consiste en realizar múltiples cálculos utilizando como base una opción European Vanilla Call, con los siguientes parámetros:

$$T = 1$$
 $K = 700$
 $C_0 = 98.53$
 $\sigma_0 = 0.10$
(5)

3.1 Pregunta Dos A)

En este apartado, se pide computar el Fair Value así como el Greek Vega utilizando los valores presentados anteriormente, así como la fórmula (2) de Garman–Kohlhagen y la fórmula (4) de Black-Scholes para el caso del Greek Vega. Utilizando la función valueBS diseñada en la pregunta 1 se obtuvieron los siguientes resultados:

Fair Value =
$$26.6595$$

Greek Vega (ν) = 267.9101 (6)

3.2 Pregunta Dos B)

El objetivo de este apartado consiste en ajustar la volatilidad inicial (σ_0 =0.10) que se nos entrega, acorde al valor de mercado que presenta la opción, siendo este de 98.53. Para realizar dicho ajuste, debe utilizarse la fórmula de Newton-Raphson, presentada a continuación:

$$x_1 = x_0 + \frac{f^* - f(x_0)}{f'(x_0)} x_{n+1} = x_n + \frac{f^* - f(x_n)}{f'(x_n)}$$
(7)

En donde de manera recursiva se puede ir ajustando el valor de la volatilidad implícita en la fórmula de Black-Scholes y el valor de mercado de la opción. En nuestro caso, "x" representa la volatilidad (σ), " f^* " representa el valor de mercado de la opción, que se mantiene constante durante el algoritmo, " $f(x_n)$ " representando el cálculo del $Fair\ Value\ y\ ("f'(x_n)")$ el cálculo del $Greek\ Vega$, siendo estos dos últimos aplicados de manera recursiva en las iteraciones del algoritmo.

Para esta pregunta, aplicando el algoritmo de Newton-Raphson tal como se especificó anteriormente, se obtuvo un valor para σ de 0.3683.

3.3 Pregunta Dos C)

En este apartado se pide volver a calcular el Fair Value, así como el Greek Vega para la opción, esta vez con el valor de sigma actualizado a través del algoritmo de Newton-Raphson tal como fue calculado en la pregunta anterior, siendo este valor de 0.3683. Utilizando esta volatilidad se obtuvieron los siguientes resultados:

$$Fair Value = 98.0762$$

$$Greek Vega (\nu) = 263.7388$$
(8)

De los resultados obtenidos se puede concluir que actualizar la volatilidad permite acercarnos mediante la fórmula de *Black-Scholes* al valor real de mercado del instrumento, siendo la diferencia mucho menor respecto a los resultados presentados en la pregunta dos A).

3.4 Pregunta Dos D)

En este apartado, se pide repetir los 3 apartados anteriores, aplicados para el cálculo de la opción, hasta obtener una precisión (accuracy) de 1pb (1 punto base=0.01%=0.0001) en la volatilidad implícita.

Para lograr dicho objetivo fue necesario aplicar un total de 3 iteraciones (sin tomar en cuenta los avances hechos en los apartados anteriores), del cuál se pudo obtener el siguiente computo:

Fair Value =
$$98.5300$$

Greek Vega (ν) = 263.6969
 $\sigma = 0.3700$ (9)
diferencia = $1.3649e - 07$
 $steps = 3$

Tal como se puede observar, se obtuvo una diferencia menor a 0.0001, por lo que podemos decir que se obtuvo la volatilidad implícita con la precisión deseada, siendo esta de 0.3700.

3.5 Pregunta Dos E)

Tal como se menciona en la pregunta anterior, fueron necesarias 3 iteraciones del algoritmo sin contar los avances hechos en las secciones A), B) y C) para lograr obtener la volatilidad implícita con la precisión deseada.

4 Pregunta Tres

De manera similar a la pregunta anterior, se pide calcular la volatilidad implícita con una precisión de 0.0001, utilizando esta vez un valor inicial para la volatilidad σ_0 de 1.00. Los resultados obtenidos se presentan a continuación:

Fair Value =
$$98.5300$$

Greek Vega (ν) = 263.6969
 $\sigma = 0.3700$ (10)
diferencia = $7.1135e - 05$
 $steps = 3$

De los resultados obtenidos se puede observar que la cantidad de iteraciones respecto a la pregunta anterior no cambió, sin embargo, podemos ver como la holgura se redujo drásticamente, pasando de 9.9864e-05 a 2.8865e-05, lo que podría ser un indicador de que efectivamente el número de iteraciones podría cambiar en otros casos o utilizando otros parámetros.

5 Pregunta Cuatro

Para esta pregunta, se pide recrear el proceso hecho en la pregunta anterior, esta vez utilizando parámetros de una opción financiera distinta. Los parámetros son presentados a continuación:

$$T = 0.083$$

 $K = 760$
 $C_0 = 9.64$
 $\sigma_0 = 1$ (11)

Aplicando el mismo procedimiento que para las preguntas anteriores, con estos nuevos datos, se obtuvieron los siguientes resultados:

Fair Value =
$$9.6400$$

Greek Vega (ν) = 56.3525
 $\sigma = 0.4400$
 $diferencia = 1.7493e - 06$
 $steps = 4$ (12)

De acuerdo a lo observado, resulta acertada la conclusión de la pregunta anterior, en relación a que con otros parámetros efectivamente podría cambiar el número necesario de iteraciones para llegar a la precisión deseada, como por ejemplo en esta ejecución con 4 iteraciones.

Tambien se solicita en esta pregunta plantear un valor correcto en caso de estandarizar el número de iteraciones al aplicar el algoritmo. Viendo los casos aplicados en las preguntas anteriores, las cuales necesitaron de 3 y 4 iteraciones respectivamente, diría que establecer un estándar de 5 iteraciones sería un valor adecuado, considerando una holgura respecto a esta pregunta.

6 Pregunta Cinco

En esta pregunta se pide confeccionar una función llamada volBS1 que calcule la volatilidad implícita de una opción, en base a los parámetros comunes de un instrumento y el número de iteraciones a aplicar en la utilización del algoritmo de Newton-Raphson. Como condición, se especifica que en esta opción debe utilizarse un bucle for, cuyo delimitador sea el número de iteraciones deseadas. Finalmente, se pide comprobar esta función con los resultados de las preguntas 2 D), 3, y 4; cómputos que son presentados a continuación:

Resultados de replicación de la pregunta 2 D):

$$Iteraciones = 3$$

$$Fair\ Value = 98.5300$$

$$Greek\ Vega\ (\nu) = 263.6969$$

$$\sigma = 0.3700$$

$$\sigma_0 = 0.10$$

$$diferencia = 1.3649e - 07$$

$$steps = 3$$

$$(13)$$

Resultados de replicación de la pregunta 3:

$$Iteraciones = 3$$

$$Fair\ Value = 98.5300$$

$$Greek\ Vega\ (\nu) = 263.6969$$

$$\sigma = 0.3700$$

$$\sigma_0 = 1$$

$$diferencia = 7.1135e - 05$$

$$steps = 3$$

$$(14)$$

Resultados de replicación de la pregunta 4:

$$Iteraciones = 4$$

$$Fair\ Value = 9.6400$$

$$Greek\ Vega\ (\nu) = 56.3525$$

$$\sigma = 0.4400$$

$$\sigma_0 = 1$$

$$diferencia = 1.7493e - 06$$

$$steps = 4$$

$$(15)$$

Como se puede observar, los resultados obtenidos al aplicar esta función coinciden con los conseguidos en las preguntas previas, lo cual sería indicador de que se aplicó el bucle de manera correcta. Sin embargo, en relación a la metodología usada en esta pregunta, podemos observar el contra de que un ciclo for queda limitado al número de iteraciones inicial que le sea indicado, privando al algoritmo de alcanzar un nivel de precisión en específico. Por otra parte, por este mismo motivo, podríamos encontrarnos con valores no convergentes de volatilidad implícita en la aplicación del algoritmo, por lo cuál podemos concluir que el uso de un ciclo for para la aplicación de el algoritmo de Newton-Raphson no es recomendado.

7 Pregunta Seis

En esta pregunta, se pide confeccionar una función llamada volBS2 que calcule la volatilidad implícita, de manera similar a la pregunta anterior, esta vez utilizando un bucle while. Esta función, debe recibir los parámetros comunes de una opción, tal como los utilizados en preguntas anteriores, así como la precisión que se desea alcanzar, valor que será utilizado para finalizar el ciclo while. Finalmente, se pide comprobar esta función con los resultados de las preguntas 2 D), 3, y 4; cálculos que son presentados a continuación:

Resultados de replicación de la pregunta 2 D):

Fair Value = 98.5300
Greek Vega (
$$\nu$$
) = 263.6969
 σ = 0.3700
 σ_0 = 0.10
diferencia = 1.3649e - 07
steps = 3

Resultados de replicación de la pregunta 3:

Fair Value = 98.5300
Greek Vega (
$$\nu$$
) = 263.6969
 σ = 0.3700
 σ_0 = 1
diferencia = 7.1135e - 05
steps = 3

Resultados de replicación de la pregunta 4:

Fair Value = 9.6400
Greek Vega (
$$\nu$$
) = 56.3525
 σ = 0.4400
 σ_0 = 1
diferencia = 1.7493e - 06
steps = 4

Como se puede observar, los resultados coinciden con las preguntas respectivas, así como también concuerdan con la pregunta anterior. Esto, indicaría que el algoritmo fue correctamente implementado, dado que simplemente automatiza los procesos aplicados con anterioridad en un bucle con una condición de término.

Por otra parte, podemos observar que el uso de un ciclo *while* presenta múltiples ventajas respecto al uso de un ciclo *for*, dado que este no está limitado por un número inicial de iteraciones, por lo cual es más probable encontrar una convergencia en la volatilidad implícita, además es posible encontrar una precisión en específico en el cálculo de la volatilidad implícita o la cercanía al valor de mercado de la call (utilizado como condición de término del ciclo).

Finalmente, como desventajas en el uso del ciclo while tenemos un posible uso excesivo de memoria, en el caso de no haber convergencia en el uso del algoritmo de Newton-Raphson, por lo cuál es recomendable (y es utilizado por funciones de carácter profesional) incluir una condición de término considerando un número de iteraciones máximo. Matlab, sin embargo, incluye dentro de sus funciones el fin de un ciclo while en caso de no encontrar convergencia a la condición de término del bucle, por lo cual no fue necesario implementar esta característica en la función.

8 Pregunta Siete

Finalmente, en esta pregunta, se pide aplicar la función confeccionada en la pregunta (6) volBS2, para todos los Strike Price, Tenores y Market Value de las opciones presentados en las figuras 1 y 2. Los resultados se presentan como anexos al final del documento.

De los resultados obtenidos podemos concluir que a medida que más nos alejamos de estar At the Money, es decir, con un Spot Price cercano al Strike Price; aumenta la volatilidad implícita del instrumento. Por otra parte, podemos observar que a medida que presentamos Tenores mayores, nuevamente aumenta la volatilidad implícita del instrumento.

En vista del comportamiento anterior, podemos decir que efectivamente los valores de las opciones presentados en la figura 2 se ven factibles, dado que en medidas At the Money el valor del instrumento crece a medida que aumenta la volatilidad implícita. Así mismo, en medidas Out the Money podemos observar que aumenta el valor de la opción a medida que nos encontramos con Strike Price más alejados del Spot Price, así como al aumentar la volatilidad implícita de los instrumentos. De manera similar, en medidas In the Money también aumenta el valor de la opción a medida que aumenta la volatilidad implícita, sin embargo lo hace de manera significativamente menor a las medidas Out the Money y At the Money.

Finalmente, podemos concluir que a *Tenores* más largos, el valor del instrumento financiero aumenta, dado que aumenta la volatilidad que este conlleva, con una mayor probabilidad a fluctuar el valor de la opción a lo largo del tiempo, como consecuencia de la mayor probabilidad de cambios en el valor del *Spot Price* en el transcurso de su duración. Además, podemos observar que los precios de las medidas *In the Money* son mayores respecto a aquellos de medidas *Out the Money*. Lo anterior, podría deberse a la característica de la opción *European Vanilla Call*, en la cual cambios en el *Spot Price* de una medida *In the Money* podrían significar ganancias mayores, mientras que cambios en el *Spot Price* de una medida *Out the Money* podrían simplemente implicar un cambio hacia una medida ligero o moderadamente *In the Money*, en la cual resultaría raro ver un cambio que haga pasar una opción *Out the Money* a estar *In the Money* en magnitudes exageradas.

0.3400	0.3100	0.3100	0.3500	0.4400
0.3500	0.3100	0.3100	0.3600	0.4500
0.3500	0.3200	0.3200	0.3600	0.4600
0.3600	0.3200	0.3200	0.3700	0.4700
0.3700	0.3300	0.3300	0.3700	0.4700
0.3700	0.3300	0.3300	0.3800	0.4800
0.3800	0.3400	0.3400	0.3900	0.4900
0.3900	0.3400	0.3400	0.3900	0.5000
0.3900	0.3500	0.3500	0.4000	0.5100
0.4000	0.3500	0.3500	0.4100	0.5200
0.4100	0.3600	0.3600	0.4100	0.5200
0.4100	0.3700	0.3700	0.4200	0.5300

Table 1: Volatilidad Implícita Calculada a Través de Newton-Raphson

4.0000	3.0000	3.0000	3.0000	3.0000
4.0000	3.0000	3.0000	3.0000	3.0000
4.0000	3.0000	3.0000	3.0000	3.0000
4.0000	3.0000	3.0000	3.0000	3.0000
4.0000	3.0000	3.0000	3.0000	3.0000
4.0000	3.0000	3.0000	3.0000	3.0000
4.0000	3.0000	3.0000	3.0000	3.0000
3.0000	3.0000	3.0000	3.0000	2.0000
3.0000	3.0000	3.0000	3.0000	2.0000
3.0000	3.0000	3.0000	3.0000	3.0000
3.0000	3.0000	3.0000	3.0000	3.0000
3.0000	3.0000	3.0000	3.0000	3.0000

Table 2: Iteraciones Necesarias para el Cálculo de la Volatilidad Implícita

74.6087	49.0877	24.4989	12.7153	9.6380
103.1984	65.2803	35.3861	18.9356	14.4226
125.4004	80.4247	42.7765	23.4469	19.1198
143.2898	93.5600	50.1585	28.2509	23.9464
160.7611	103.9039	56.2803	31.2008	27.0832
172.8359	115.8223	62.4238	36.5512	31.1908
185.5724	125.4657	70.1481	41.8206	36.0359
198.1642	133.3616	73.4979	45.0568	40.1302
205.4998	139.4309	80.9481	50.1600	44.9787
217.6961	146.8145	85.9498	55.3032	49.8785
226.0594	155.9674	91.2200	58.0959	52.6339
236.5965	165.0074	98.5342	63.2411	57.5596

Table 3: Fair Value Calculado a Través de Black-Scholes

39.4014	59.5240	77.8531	68.5940	56.3490
57.1557	86.8532	110.0535	98.6218	81.9985
67.2965	106.1142	134.7541	121.6641	103.8444
78.9269	119.6370	155.0375	141.7003	123.8590
87.9186	135.6976	173.4939	158.4485	139.9750
95.9792	144.1972	189.3936	176.1583	156.0246
105.1513	156.5647	203.7552	192.4467	172.5199
113.2327	166.1900	217.9929	206.6223	186.8869
121.3647	180.0111	230.2692	220.9264	201.7066
127.3575	187.6537	241.8633	234.4764	215.8733
136.7564	196.2716	253.6033	246.3952	227.5932
138.4952	204.1005	263.6965	258.7724	240.7482

Table 4: Greek Vega Calculado a Través de Black-Scholes.

0.0000	0.0001	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0001	0.0000	0.0000	0.0000	0.0000
0.0001	0.0000	0.0000	0.0000	0.0000
0.0001	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000

Table 5: Diferencias en el Cálculo de la Volatilidad Implícita.