Text Summarization

Dr. Liao

2/4/2020

Overview

- ► Text Summarization
 - ▶ What to Summarize?
 - ► How to Summarize?
 - ► Extractive Summarization
 - ► Abstractive Summarization
 - Steps of Simple Summarize Methods
 - ► TF-IDF
 - Web Scraping in BeautifulSoup
 - ► In-Class Hands-On Programming with Python, NLTK, Gemsim, and BeatuifulSoup

What to Summarize?

How to Summarize?

- Extractive Method
 - Extract key sentences from a text without modifying any word.
 - ▶ **Pros**: robust, straightforward
 - ► Cons: lack in flexibility
- ► Abstractive Method Like what humans do
 - ▶ Generate new sentences to summarize the entire set.
 - ▶ Pros: more fluent and natural intelligent
 - ► Cons: much harder
- Hybrid method use both

Extractive Summarization

- Feature based
 - Weighted scores
 - ► Term frequency
 - ► Length of the sentence
 - Position of the sentence
 - > Presence of the verb in the sentence
 - Luhn's Algorithm (1958) Significance of the word (*frequency*)
 - And more ...
- ➤ Graph based TextRank (for single doc) & LexRank (for multi-docs)
- ► Topic based Latent Semantic Analysis (LSA)
- Gramma based

Abstractive Summarization

- Recurrent Neural Network (RNN)
- Sequence to Sequence
- Pointer-generator Network
- Deep Reinforced Model
- And more...

Steps of the Simple Summarization Method

- Word Frequency Based Statistical Methods
 - ► Text preprocessing
 - Word frequency calculation
 - Weighted frequency (many ways)
 - ▶TF-IDF
 - ► Other mathematical methods
 - Score each sentence with each word weighted frequency
 - Build a summary with the sentences with highest scores

TF-IDF - Vectorization

- ► TF(Term Frequency)
 - defines the probability of finding a word in the document
- ► IDF (Inverse Document Frequency)
- ► TF-IDF
 - The multiplication of TF and IDF values
 - Intend to reflect how important a word is to a document in a collection or corpus
 - Weight rare words higher than common words
 - One of the most popular termweighting schemes today

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

Vector Space Model

Documents and queries are represented as a vector of features representing terms (words) that occur with in the collection

Features

cat	hat	green	eggs	ham	sam	grinc	stole	••••	tree
						• •			

All of the content words with in the collection

Feature Vector for Document

whether the feature exists with in the document

Term weighting

0	0	1	1	1	1	0	0	••••	0		
Frequency Vector											
0	0	5	10	6	50	0	0	••••	0		

IDF Vector

$$\mathrm{idf}(t,D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

with

- N: total number of documents in the corpus
- $|\{d\in D:t\in d\}|$: number of documents where the term t appears (i.e., $\mathrm{tf}(t,d)\neq 0$). If the term is not in the corpus, this will lead to a division-by-zero. It is therefore common to adjust the denominator to $1+|\{d\in D:t\in d\}|$.

Term weighting

$$tfidf(t, d, D) = tf(t, d) \times idf(t, D)$$

NLP Hands-On Programming in Class

- ► Code Examples & Tutorials for Text Summarization with NLTK, Gensim, BeautifulSoup, Python
 - Dr. Liao wrote them <u>particularly</u> for
 - this course learning
 - ► Assignments, labs, and final project examples
- ► All programming tutorials & code example demos
 - ► Using online <u>Jupyter Lab</u> in class
- More code examples & tutorials in coming classes...

Homework

- Video Lecture Report 1
 - ► Watch Robot Sophia <u>video</u>
 - ▶ Due on 2/11
- Optional Individual Lab 1
 - Text Summarization
 - ▶ Due on 2/18
 - Extra credit
- Programming Assignment 1
 - Chatbot Eliza
 - 3 weeks
 - Due on 2/25

