

Chapitre V – La fonction logarithme népérien

Bacomathiques — https://bacomathiqu.es

TABLE DES MATIÈRES	
I - Propriétés du logarithme népérien	1
1. Définition	1
2. Relations algébriques	1
3. Représentation graphique	2
II - Étude de la fonction	4
1. Limites	4
2. Dérivée	5
3. Variations	5

I - Propriétés du logarithme népérien

1. Définition

À RETENIR 💡

Définition

Le **logarithme népérien** notée ln est la fonction définie sur $]0; +\infty[$ telle que pour tout x > 0 et y réels :

$$ln(x) = y \iff x = e^y$$

Ainsi, a tout réel **strictement positif** x, la fonction logarithme népérien y associe **son unique antécédent** y par rapport à la fonction exponentielle. De même pour la fonction exponentielle.

On dit que ces fonctions sont des **fonctions réciproques** (à la manière de sin et arcsin ou cos et arccos).

À LIRE 👀

Exemple

Cette relation peut sembler compliquer à assimiler mais il n'en est rien! Prenons x = 0, on a :

 $e^0=1$ (tout réel mis à la puissance zéro vaut un), la relation précédente nous donne $\ln(1)=0$.

Si on prend maintenant x = 1, on a:

 $e^1 = e$, on a donc $\ln(e) = 1$.

Les relations suivantes sont par conséquent disponibles :

À RETENIR 💡

Relations entre fonctions réciproques

Pour tout réel x **strictement positif**, on a $e^{\ln(x)} = x$.

Et pour tout réel x, on a $ln(e^x) = x$.

2. Relations algébriques

Le logarithme népérien a plusieurs propriétés intéressantes qu'il faut connaître.

À RETENIR 🕴

Formules

Pour tous réels x et y strictement positifs :

$$--\ln(x \times y) = \ln(x) + \ln(y)$$

$$-\ln(x^n) = n \times \ln(x) \text{ pour } n \in \mathbb{Z}$$

$$-\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

$$-\ln\left(\frac{1}{y}\right) = -\ln(y)$$

$$-\ln(x^{\prime}) = \ln(x) \text{ pour } n \in \mathbb{Z}$$

$$-\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

$$-\ln\left(\frac{1}{y}\right) = -\ln(y)$$

$$-\ln\left(\sqrt[p]{x}\right) = \frac{1}{p} \times \ln(x) \text{ pour } p \in \mathbb{N}^*$$

Certaines de ces propriétés peuvent se déduire les unes des autres.

3. Représentation graphique

Voici une représentation graphique de la fonction logarithme népérien :

On voit sur ce graphique plusieurs propriétés données précédemment : ln(1) = 0 et ln(e) = 1 par exemple. On trace maintenant le graphe de la fonction logarithme népérien, avec celui de la fonction exponentielle. On trace également la droite d'équation y = x:

On remarque plusieurs choses : le graphe de la fonction logarithme népérien est le symétrique de celui de la fonction exponentielle par rapport à la droite y=x et on voit que la fonction logarithme népérien croît moins vite que la fonction puissance qui ellemême croît moins vite que la fonction exponentielle. Cette propriété est importante : c'est la **croissance comparée**.

II - Étude de la fonction

1. Limites

À RETENIR 💡

Limites

Les limites de la fonction logarithme népérien aux bornes de son ensemble de définition sont :

$$-\lim_{x \to 0^+} \ln(x) = -\infty$$

$$-\lim_{x \to +\infty} \ln(x) = +\infty$$

Il faut aussi savoir que la fonction puissance "l'emporte" sur le logarithme népérien (voir la partie "Représentation graphique").

À RETENIR 💡

Croissances comparées

Pour tout $n \in \mathbb{N}$:

$$-\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0.$$

$$-\lim_{x \to 0^+} x^n \ln(x) = 0.$$

DÉMONSTRATION 🧶

Croissances comparées

Nous allons démontrer le second point en utilisant le premier (qui n'est pas éligible à une démonstration au lycée) dans le cas n=1. Pour tout x>0, posons $y=\frac{1}{x}$.

On a donc pour tout, $x \ln(x) = \frac{1}{y} \ln\left(\frac{1}{y}\right) = -\frac{\ln(y)}{y}$.

Or, quand x tend vers 0^+ , y tend vers $+\infty$. Par le premier point :

$$\lim_{y \to +\infty} \frac{\ln(y)}{y} = 0 \iff \lim_{y \to +\infty} -\frac{\ln(y)}{y} = 0$$

Et en remplaçant y par $\frac{1}{x}$ dans le résultat ci-dessus, on a bien ce que l'on cherchait.

Pour finir, on donne une limite qu'il peut être utile de savoir redémontrer.

À RETENIR 💡

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

DÉMONSTRATION

La fonction logarithme népérien est dérivable en 1 (voir sous-section suivante), on peut donc écrire :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{\ln(x+1) - \ln(1)}{x} = \ln'(1) = \frac{1}{1} = 1$$

2. Dérivée

À RETENIR 💡

Dérivée d'une composée

Soit une fonction u dérivable et **strictement positive** sur un intervalle I, on a pour tout x appartenant à cet intervalle :

$$\ln'(u(x)) = \frac{u'(x)}{u(x)}$$

À RETENIR 💡

Dérivée

Ainsi, si pour tout $x \in I$ on a u(x) = x, on trouve :

$$\ln'(x) = \frac{1}{x}$$

3. Variations

Avec la dérivée donnée précédemment ainsi que les limites données, il est désormais possible d'obtenir les variations de la fonction logarithme népérien.

À RETENIR 🕴

Signe et variations

On remarque qu'avec le tableau de variation, il est possible d'obtenir le signe de la fonction (avec le théorème des valeurs intermédiaires).

Ainsi, sur]0;1[, ln est **strictement négative** et sur]1; $+\infty$ [, $\ln(x)$ est **strictement positive** et, comme vu précédemment, $\ln(1) = 0$.

On observe également les variations de la fonction : strictement croissante sur son ensemble de définition.