

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2002-0019444
Application Number

REC'D 28 APR 2003
WIPO PCT

출 원 년 월 일 : 2002년 04월 10일
Date of Application APR 10, 2002

출 원 인 : 주식회사 하이닉스반도체
Applicant(s) Hynix Semiconductor Inc.

2003 년 04 월 10 일

특 허 청
COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0001
【제출일자】	2002.04.10
【발명의 명칭】	비사각형의 메모리 뱅크를 갖는 반도체메모리장치
【발명의 영문명칭】	memory device with non-quadrangular memory bank
【출원인】	
【명칭】	주식회사 하이닉스반도체
【출원인코드】	1-1998-004569-8
【대리인】	
【명칭】	특허법인 신성
【대리인코드】	9-2000-100004-8
【지정된변리사】	변리사 정지원, 변리사 원석희, 변리사 박해천
【포괄위임등록번호】	2000-049307-2
【발명자】	
【성명의 국문표기】	전준현
【성명의 영문표기】	CHUN, Jun Hyun
【주민등록번호】	660519-1812419
【우편번호】	361-300
【주소】	충청북도 청주시 흥덕구 봉명동 90-8 삼정아파트 5-304
【국적】	KR
【취지】	특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대 리인 성 (인)
【수수료】	
【기본출원료】	14 면 29,000 원
【가산출원료】	0 면 0 원
【우선권주장료】	0 건 0 원
【심사청구료】	0 황 0 원
【합계】	29,000 원
【첨부서류】	1. 요약서·명세서(도면)_1통

【요약서】**【요약】**

본 발명은 하이 테크롤러지의 개발 없이 보다 더 집적화된 메모리장치를 규격화된 패키지 사이즈내에 구현하므로써 저비용으로 고집적, 고효율을 가지는 메모리장치를 제공하는데 그 목적이 있는 것으로, 이를 위한 본 발명은, X-디코더와 Y-디코더를 구비하는 메모리 블록을 적어도 3개 이상의 흘수개로 구비하고, 서로 이웃하는 메모리 블록이 서로 다른 개수의 단위 메모리 블록을 갖고 있어 비사각형의 형태를 갖는 다수의 메모리 뱅크; 및 칩의 단축 방향으로 서로 이웃하는 뱅크 사이의 빈 공간에 배치된 패드/컨트롤 블록을 포함하여 이루어진 반도체 메모리 장치를 제공한다.

【대표도】

도 3

【색인어】

메모리장치, 어레이, 패드, 비사각형, X-디코더, Y-디코더

【명세서】**【발명의 명칭】**

비사각형의 메모리 뱅크를 갖는 반도체메모리장치{memory device with non-quadrangular memory bank}

【도면의 간단한 설명】

도1은 통상적인 메모리 장치의 뱅크 구성을 보여주는 개략도,

도2는 종래의 메모리 장치의 문제점을 보여주는 개략도,

도3은 본 발명에 따른 반도체장치의 구성을 보여주는 개략도,

도4a 및 도4b는 종래기술과 본 발명을 대비하기 위한 개략도,

도5a 및 도 5b는 본 발명의 다른 실시예를 보여주는 개략도.

【발명의 상세한 설명】**【발명의 목적】****【발명이 속하는 기술분야 및 그 분야의 종래기술】**

<6> 본 발명은 반도체메모리장치에 관한 것으로, 특히 메모리 블록 및 패드/컨트롤블록의 어레이에 관련된 것이다.

<7> 잘 알려진 바와 같은 동기식 메모리 장치는 독립적인 데이터 액세스가 가능한 다수의 메모리 뱅크로 이루어져 있으며, 통상 4개의 뱅크로 이루어지고, 각각의 메모리 뱅크

는 다시 4개의 메모리 블록으로 분할되는 것이 통상적이다. 여기서 메모리블록이라 함은 동일한 X-디코더와 Y-디코더에 의해 선택되는 다수의 메모리 셀 어레이를 일컫는다.

- <8> 도1은 통상적인 메모리 장치의 메모리 블록의 어레이 구조를 보여주는 것으로, 512Mbit 메모리를 일례로써 도시한 것이다.
- <9> 도1을 참조하면, 메모리 칩(10)은 정사각형 또는 직사형 영역을 갖는 16개의 메모리 블록(MB)을 포함하며, 4개의 메모리 블록이 하나의 뱅크를 이루게 된다. 도1에서 4개의 메모리 뱅크(Bank_0, Bank_1, Bank_2, Bank_3)가 각기 직사각형 또는 정방형의 영역으로 구성되어 있다.
- <10> 각 메모리블록은 32Mbit에 상응하는 다수의 단위셀로 구성되고, 8Mbit에 상응하는 단위 메모리 블록(UMB)이 4개 모여 구성되게 된다. 각 메모리 블록은 어느 하나의 메모리 셀을 선택하기 위하여 장축(X축) 및 단축(Y축)으로 X-디코더(X-decoder)와 Y-디코더(Y-decoder)를 하나씩 구비하게 된다.
- <11> 메모리 칩에는 메모리 블록(MB) 이외에도 패드(12) 및 컨트롤 블록(14)을 배치하여 야 하는 바, 종래기술에 따른 메모리 칩(10)에서는 도1에 도시된 바와 같이 칩의 장축(X축)을 가로 질러 칩 중앙에 패드(12) 및 컨트롤 블록(14)을 배치하고 있다. 잘 알려진 바와 같이 패드(12)는 칩 외부와 신호를 교환하기 위한 것이며, 컨트롤 블록(14)은 칩 외부의 신호의 제어에 의해 메모리 셀의 데이터를 입출력하게끔 하는 회로들을 의미한다
- <12> 상기한 바와 같이 종래의 메모리 칩은 직사각형 또는 정방형의 메모리 블록 및 메모리 뱅크를 가지게 되는 바, 이러한 구조의 메모리 블록 및 뱅크의 배치는

메모리가 점차 고집적화 되어가고 그에 따라 셀 사이즈가 증가하게 되면서 통상적인 패키지 사이즈로는 패키지 제작이 어려워진다.

<13> 도 2는 이러한 문제점을 도시하고 있는 바, JEDEC에서 규정하고 있는 패키지 사이즈 내에 기준보다 집적화가 증대된(예컨대 256M에서 516M로 고집적화될 때) 16개의 메모리 블록(MB)을 배치함에 있어, 16개의 메모리 블록이 패키지 사이즈 내에 구현될 수 없음을 보여준다. 따라서, 규격화된 패키지 내에 상술한 종래기술에 따른 배치 방법으로 칩을 구현하기 위해서는 하이 테크롤러지의 디자인 룰을 필요로 하게 된다. 그러나, 0.145 μm 이하의 하이 테크롤러지의 개발을 위해서는 많은 비용 및 시간이 소비되게 되고, 이는 적시에 고집적화 메모리 칩을 제공하여야 하는 메모리 제조 회사의 입장에서 큰 문제점이 아닐 수 없다.

【발명이 이루고자 하는 기술적 과제】

<14> 본 발명은 하이 테크롤러지의 개발없이 보다 더 집적화된 메모리장치를 규격화된 패키지 사이즈내에 구현하므로써 저비용으로 고집적, 고효율을 가지는 메모리장치를 제공하는데 그 목적이 있다.

【발명의 구성 및 작용】

<15> 상기 목적을 달성하기 위하여 본 발명은, X-디코더와 Y-디코더를 구비하는 메모리 블록을 적어도 3개 이상의 홀수개로 구비하고, 서로 이웃하는 메모리 블록이 서로 다른 개수의 단위 메모리 블록을 갖고 있어 비사각형의 형태를 갖는 다수

의 메모리 뱅크; 및 칩의 단축 방향으로 서로 이웃하는 상기 메모리 뱅크 사이의 빈 공간에 배치된 패드/컨트롤블록을 포함하여 이루어진 반도체 메모리 장치를 제공한다.

<16> 이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.

<17> 본 발명의 실시예들은 512Mbit 메모리 장치를 예로써 설명한 것이다.

<18> 도3은 본 발명에 따른 메모리장치를 보여준다.

<19> 도3을 참조하면, 본 발명의 제1실시예에 따른 반도체메모리장치는 12개의 메모리 블록(MB_0 내지 MB_11)으로 구성되며, 각 메모리 블록은 하나의 메모리 셀을 선택하기 위하여 장축(X축) 및 단축(Y축)으로 X-디코더(X-decoder)와 Y-디코더(Y-decoder)를 하나 씩 구비하게 된다.

<20> 그리고, 본 발명의 반도체 메모리 장치는 3개의 메모리 블록(MB)이 하나의 뱅크를 이루어서, 각기 독립적으로 데이터 입출력이 가능한 4개의 메모리 뱅크(Bank_0, Bank_1, Bank_2, Bank_3)로 이루어지게 된다.

<21> 하나의 뱅크(Bank_0)를 이루는 3개의 메모리 블록(MB_0 내지 MB_2)을 각각 살펴보면, 제1메모리블록(MB_0)은 8Mbit 메모리 셀을 갖는 단위 메모리 블록(UMB)을 6개 포함하고 있어 48Mbit를 이루고 있다. 제2 및 제3 메모리블록(MB_1, MB_2)는 각기 5개의 단위 메모리 블록(UMB)으로 구성되어 40Mbit를 이루게 된다. 나머지 3개의 뱅크(Bank_1, Bank_2, Bank_3)도 동일한 구성을 가지고 있다. 따라서, 각 메모리 뱅크는 직사각형 또는 정방형이 아닌 비사각형의 형태를 가지게 된다.

<22> 한편, 48MBit 메모리 블록은 X-디코더가 연속되는 단위 메모리 블록(UMB)의 사이의 공간에 형성될 수 있는 바, 이는 이웃하는 40Mbit 메모리 블록의 X-디코더와 그 설계를 유사하게 가져가기 위한 것으로, 48MBit 메모리 블록의 어느 곳에 위치하여도 무방하다.

<23> 도 3에서 뱅크(Bank_0)가 2사분면에 배치되어 있고, 뱅크(Bank_1)이 3사분면에 배치되어 있다. 뱅크(Bank_2)는 1사분면에 배치되어 있고, 뱅크(Bank_3)이 4사분면에 배치되어 있다. 뱅크 Bank_0의 48Mbit 메모리 블록(MB_0)과 뱅크 Bank_1의 48Mbit 메모리 블록(MB_4)은 각 뱅크의 영역에서 최 좌측에 배치되어 있고, 뱅크 Bank_2의 48Mbit 메모리 블록(MB_8)과 뱅크 Bank_4의 48Mbit 메모리 블록(MB_11)은 각 뱅크의 영역에서 최 우측에 배치되어 있다.

<24> 상하(y축 방향)로 이웃하고 있는 48Mbit 메모리 블록 MB_0 및 MB_3 또는 MB_8 및 MB_11의 사이에는 패드 및 컨트롤블록이 배치될 정도의 공간이 제공되지 않으나, 상하 이웃하고 있는 40Mbit 메모리 블록들 간에는 충분한 공간이 제공되기에 이 공간에 패드(120) 및 컨트롤 블록(140)이 배치된다. 즉, 패드(120) 및 컨트롤 블록(140)은 칩의 장축(X축)을 가로 질러 칩 중앙에 배치되며, 칩의 X축을 6등분하였을 때, 2/6 내지 5/6에 지점에만 배치된다.

<25> 도 4a 내지 도 4b는 종래기술과 본 발명을 대비하기 위한 것으로서, 동일 테크놀러지 하에서 본 발명(도 4b)의 경우 규격화된 패키지 사이즈를 만족하고 있음을 알 수 있다.

<26> 결국, 본 발명은 종래의 정형화된 사각형 형태의 뱅크 구조를 벗어나, 비 사각형의 뱅크 구조를 가짐으로 해서, 규격화된 패키지 사이즈내에 하이 테크롤러지의 개발없이 고집적화 메모리의 구현을 가능하게 하여 준다.

<27> 도 5a 및 도 5b는 본 발명의 다른 실시예를 보여주는 것으로, 도 5a는 48Mbit 메모리 블록(MB)을 전체 칩의 중앙에 배치하는 경우를 도시한 것이고, 도 5b는 48Mbit 메모리 블록(MB)을 각 뱅크 영역의 중앙에 배치하는 경우를 도시한 것으로, 도 5a 및 도 5b의 경우에는 패드 및 컨트롤블록(PAD & Control Block)이 2개 영역 또는 3개 영역으로 나뉘어 배치되게 되지만, 규격화된 패키지 사이즈를 모두 만족하고 있다.

<28> 본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.

【발명의 효과】

<29> 본 발명은 종래의 정형화된 사각형 형태의 뱅크 구조를 벗어나, 비 사각형의 뱅크 구조를 가짐으로 해서, 규격화된 패키지 사이즈내에 하이 테크롤러지의 개발없이 고집적화 메모리의 구현을 가능하게 하여 주므로, 저비용으로 고집적, 고효율의 메모리장치를 구현하는 것이 가능하게 된다.

【특허청구범위】**【청구항 1】**

X-디코더와 Y-디코더를 구비하는 메모리 블록을 적어도 3개 이상의 홀수개로 구비하고, 서로 이웃하는 메모리 블록이 서로 다른 개수의 단위 메모리 블록을 갖고 있어 비사각형의 형태를 갖는 다수의 메모리 뱅크; 및
칩의 단축 방향으로 서로 이웃하는 상기 메모리 뱅크 사이의 빈 공간에 배치된 패드/컨트롤블록
을 포함하여 이루어진 반도체 메모리 장치.

【도면】

【도 1】

【도 2】

【도 3】

20020019444

출력 일자: 2003/4/17

【도 4a】

30020019444

출력 일자: 2003/4/17

【도 4b】

【도 5a】

20020019444

출력 일자: 2003/4/17

【도 5b】

