Matematika Diskret dan Logika

Dasar-Dasar Logika 2

Dr. I Wayan Mustika, ST., M.Eng.

Inferensi Logika

- Argumen adalah suatu himpunan 2 atau lebih proposisi yang berhubungan satu sama lain dimana semua kalimat kecuali yg terakhir disebut hipotesa (premises). Kalimat tersebut akan memberikan dukungan pada kalimat terakhir yang disebut kesimpulan (conclusion)
- Ketika semua hipotesa benar maka kesimpulannya juga benar, argumen tersebut dikatakan valid.
 Sebaliknya, jika semua hipotesa benar tapi ada kesimpulan yang salah maka argumen tersebut dikatakan invalid

Langkah-Langkah Membuktikan Validitas Suatu Argumen

- (1) Identifikasi hipotesa (*premises*) dan kesimpulan (*conclusion*) dari argumen
- (2) Buatlah tabel kebenaran dari hipotesa dan kesimpulan
- (3) Temukan baris-baris kritis dimana semua hipotesa bernilai **benar**
- (4) Pada masing-masing baris dalam step (3), jika kesimpulannya adalah benar maka argumen tersebut valid, jika ada nilai kesimpulan yang salah maka argumen tersebut adalah invalid

Metode-metode Inferensi

Modus Ponens

$$\begin{array}{ccc}
p & \rightarrow & q \\
\hline
p & & a
\end{array}$$

Modus Tollens

$$\begin{array}{c} p \rightarrow q \\ \sim q \\ \hline \vdots & \sim p \end{array}$$

p	q	$p \rightarrow q$	$\sim q$	$\sim p$
T	T	T	F	F
Т	F	F	T	F
F	T	T	F	T
F	F	Т	T	T

Contoh

Tunjukkan bahwa argumen dibawah ini invalid

$$\begin{array}{ccc} p & \rightarrow & q \\ \hline q & & \\ \vdots & & p \end{array}$$

 Karena baris ketiga menunjukkan bahwa kesimpulan bernilai salah maka argumen tersebut adalah invalid

Penambahan Disjungtif

p	q	$p \lor q$
Т	Т	T
Т	F	T
F	Т	T
F	F	F

atau

$$\frac{q}{p \vee q}$$

p	q	$p \lor q$
T	Т	T
T	F	Т
F	Т	T
F	F	F

Penyederhanaan Konjungtif

$$\frac{p \wedge q}{\therefore p}$$

p	q	$p \wedge q$	
Т	Т	T	
Т	F	F	
F	Т	F	
F	F	F	

atau

$$\frac{p \wedge q}{\therefore q}$$

p	q	$p \wedge q$
T	Т	T
T	F	F
F	T	F
F	F	F

Silogisme Disjungtif (pilihan)

p	q	$\sim p$	$\sim q$	$p \lor q$
Т	T	F	F	T
Т	F	F	Т	T
F	T	T	F	T
F	F	T	Т	F

atau

p	q	$\sim p$	$\sim q$	$p \lor q$
T	T	F	F	T
\mathbf{T}	F	F	T	T
F	T	T	F	T
F	F	Т	Т	F

Silogisme Hipotesis

$$\begin{array}{c}
p \to q \\
q \to r \\
\hline
\therefore p \to r
\end{array}$$

Konjungsi

$$p$$
 q
 $\therefore p \wedge q$

p	q	r	p o q	$q \rightarrow r$	$p \rightarrow r$
T	Т	T	Т	T	T
T	T	F	T	F	F
T	F	T	F	T	T
T	F	F	F	T	F
F	T	T	Т	T	T
F	T	F	T	F	Т
F	F	T	Т	Т	Т
F	F	F	T	T	T

p	q	$p \wedge q$	
Т	Т	T	
Т	F	F	
F	T	F	
F	F	F	

Predikat dan Kalimat Berkuantor

- Predikat adalah kalimat-kalimat yang memerlukan subyek
- Suatu predikat P(x) terdiri atas 2 bagian: variabel x adalah subyek kalimat dan fungsi proposisi P adalah sifat yang dimiliki oleh subyek
- Nilai kebenaran dari P(x) bisa ditentukan ketika x diberikan suatu nilai (x dibatasi dalam hal ini)
- Cara lain untuk membuat proposisi adalah dengan menambahkan kuantor pada kalimat.
- Kuantor bisa digunakan untuk mengidentifikasi seberapa sering suatu predikat P(x) bernilai benar:
 - Kuantor Universal ∀ (untuk semua nilai x dalam semesta pembicaraan)
 - Kuantor Eksistensial ∃ (setidaknya ada satu nilai x dalam semesta pembicaraan)
- Kalimat berkuantor bisa dinegasikan

Arti kalimat berkuantor

Quantifiers

Statement	When True?	When False?
$\forall x P(x)$	P(x) benar untuk setiap x	Ada suatu nilai <i>x</i> yang mana <i>P</i> (<i>x</i>) salah
$\exists x P(x)$	Ada setidaknya satu x yang mana P(x) benar	P(x) salah untuk setiap x

Menegasikan Kalimat Berkuantor

Negation	Equivalent Statement	When Is Negation True?	When False?
¬∃ <i>x P</i> (<i>x</i>)	$\forall x \neg P(x)$	Untuk setiap x, P(x) salah	Ada salah satu x yang mana P(x) benar
$\neg \forall x P(x)$	$\exists x \neg P(x)$	Ada salah satu <i>x</i> yang mana <i>P(x)</i> salah	P(x) benar untuk setiap x

Contoh

- a. Terdapatlah bilangan bulat x sedemikian hingga $x^2 = 25$
- a. Semua dinosaurus telah punah
- b. Semua program C++ mempunyai panjang lebih dari 25 baris

Solusi

- a. Kalimat mula-mula: $(\exists x \in \text{bilangan bulat}) x^2 = 25$ Ingkaran: $(\forall x \in \text{bilangan bulat}) x^2 \neq 25$
- b. Kalimat mula-mula: $(\forall x \in Dinosaurus)$ (x telah punah) Ingkaran: $(\exists x \in Dinosaurus)$ (x belum punah)
- c. Kalimat mula-mula: $(\forall x \in \text{program C++})$ (panjang x>25 baris)
 - Ingkaran: $(\exists x \in \text{program C++})$ (x (panjang x \le 25 baris)

Tugas

1. Sederhanakanlah proposisi dibawah ini :

$$(\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r).$$

- 2. Tunjukkan bahwa proposisi dibawah ini $s = (p \land \sim q) \land (\sim p \lor q)$ adalah suatu kontadiksi
- 3. Gunakan tabel kebenaran untuk menentukan apakah argumen dibawah ini valid.

$$p \rightarrow q$$

 $q \rightarrow p$
 $\therefore p \vee q$

4. Gunakan aturan logika inferensi untuk menurunkan ~s from dari hipotesis dibawah ini

$$(s \ v \ q) \rightarrow p$$

 $\sim a$
 $p \rightarrow a$

