Calculus II Final

Winter Term, AY1997-8

ID 番号、氏名を、各解答用紙に、また、問題番号も忘れずに書いて下さい。

(Write your ID number and your name on each of your solution sheet. Do not forget to write the problem number as well.)

- 1. $f(x,y) = 4xy 2y^2 x^4$ とする。
 - (a) 点 P(1,2,f(1,2)) における接平面の方程式を求めよ。(Find the equation of the tangent plane at the point P(1,2,f(1,2)).)
 - (b) 停留点をすべて求めよ。(Find all stationary points.)
 - (c) 停留点が極点かどうかを判定し、極点の場合には、極値を求めよ。 (Determine extremum and find the values at each relative maximum and relative minimum point.)
- 2(a) 次の積分の順序を変更せよ。ただし、答えは、いくつかの積分の和になっても構わない。(Change the order of the integrals of the following. The solution may be a sum of several integrals.)

$$\int_0^1 \left\{ \int_{y/2}^{2y} 2xy e^{x^2} dx \right\} dy.$$

- (b) 上の積分の値を計算せよ。積分の順序は、どちらを使っても良い。 (Evaluate the integral above. You may choose any order in iterated integral.)
- 3(a) $x=x(r,\theta,\phi)=r\sin\theta\cos\phi,\ y=y(r,\theta,\phi)=r\sin\theta\sin\phi,\ z=z(r,\theta,\phi)=r\cos\theta$ としたとき、ヤコビ行列式の値は、 $r^2\sin\theta$ であることを示せ。 (Show that the Jacobian becomes $r^2\sin\theta$, when $x=x(r,\theta,\phi)=r\sin\theta\cos\phi,\ y=y(r,\theta,\phi)=r\sin\theta\sin\phi,\ z=z(r,\theta,\phi)=r\cos\theta$.)
- (b) 球 $x^2 + y^2 + z^2 \le 9$ と、 円錐 $z^2 \ge x^2 + y^2$ 、で囲まれた、 $x \ge 0$, $y \ge 0$, $z \ge 0$ の部分の体積を求めよ。(Find the volume of a part of a sphere $x^2 + y^2 + z^2 \le 9$ bounded by a cone $z^2 \ge x^2 + y^2$ and $x \ge 0$, $y \ge 0$, $z \ge 0$.)

4(a) 次のべき級数の収束半径 r を求めよ。(Determine the radius of convergence of the following power series.)

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} x^n.$$

- (b) x = r としたとき上の級数は収束するか。判定し、証明せよ。(Determine and prove whether the series above with x = r converges.)
- 5. $D = \{(x,y) \mid x \ge 0, y \ge 0, 0 \le x^2 + y^2 \le a^2\}$ としたとぎ、(Let $D = \{(x,y) \mid x \ge 0, y \ge 0, 0 \le x^2 + y^2 \le a^2\}$.)
 - (a) $\iint_D e^{-(x^2+y^2)} dxdy$ を求めよ。(Evaluate the integral $\iint_D e^{-(x^2+y^2)} dxdy$.)
 - (b) 前問を利用して、 $\int_0^\infty e^{-x^2} dx$ を求めよ。(Evaluate the integral $\int_0^\infty e^{-x^2} dx$ using the value of the previous problem.)
- 6. $f(x) = \int_0^x e^{x^2} dx$ を項別積分を用いてべき級数 $\sum_{n=0}^\infty a_n x^n$ で表すとき、 a_n 及び、そのべき級数の収束半径を求めよ。ただし、 $e^t = \sum_{n=0}^\infty \frac{t^n}{n!}$ は用いても良い。 (Apply termwise integration to express $f(x) = \int_0^x e^{x^2} dx$ by a power series $\sum_0^\infty a_n x^n$. Find a_n and the radius of convergence. You may assume that $e^t = \sum_{n=0}^\infty \frac{t^n}{n!}$.)