

Verkabelter Multiplizierer

Inhaltsverzeichnis

1	Ziel]					
2	Multiplizierer für natürliche Zahlen	2					
	2.1 Algorithmus	2					
	2.2 Analyse	2					
	2.3 Schaltung	2					
	2.4 Erstellung	3					
3	Multiplizierer für Arithmetische Zahlen						
	3.1 Algorithmus	4					
	3.2 Analyse	4					
	3.3 Erstellung	4					
4	Analyse	_					

1 Ziel

In diesem Labor wird der Entwurf von iterativen arithmetischen Schaltungen anhand von kombinatorischen Logikgattern geübt. Das Labor zeigt die Realisierungstechnik von Multiplizierern für natürliche wie auch für ganze Zahlen.

2 Multiplizierer für natürliche Zahlen

2.1 Algorithmus

Abbildung 1 stellt den Algorithmus zur Multiplikation von 2 Zahlen von je 4 Ziffern dar. Das Produkt ist gegeben durch die Summe von Teilprodukten. Die Teilprodukte werden erstellt durch die Multiplikation von einer der Zahlen durch eine Ziffer der anderen Zahl.

				a_3	a_2	a_1	$a_{\scriptscriptstyle 0}$
				\times b ₃	\mathbf{b}_2	b_1	\mathbf{b}_0
				$b_{0*}a_3$	$b_{0*}a_2$	$b_{0*}a_1$	$b_{0*}a_0$
			$b_{1*}a_3$	$b_{1*}a_2$	$b_{1*}a_{1}$	$b_{1*}a_0$	
		$b_{2*}a_3$	$b_{2*}a_2$	$b_{2*}a_1$	$b_{2*}a_0$		
	$b_{3*}a_3$	$b_{3*}a_2$	$b_{3*}a_1$	$b_{3*}a_0$			
$\overline{\mathbf{p}_7}$	p_6	p_5	p_4	p_3	p_2	p_1	p_0

Abbildung 1: Multiplikationsalgorithmus

2.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten natürlichen Zahlen (unsigned), bestimmen Sie den Binärwert des grösstmöglichen Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit n_1 , respektiv mit n_2 Bits codiert sind.

2.3 Schaltung

Abbildung 2 zeigt die Schaltung eines Multiplizierers, welcher nach dem oben angegebenen Algorithmus arbeitet.

Abbildung 2: Architektur des Multiplizierers

2.4 Erstellung

Mit Hilfe von INV, UND, ODER und XOR Gattern, ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 und überprüfen Sie seine Funktionalität.

3 Multiplizierer für Arithmetische Zahlen

3.1 Algorithmus

Abbildung 3 stellt den Algorithmus von Baugh-Wooley zur Multiplikation von zwei im Zweier-Komplement codierten arithmetischen Zahlen (signed) mit derselben Anzahl an Bits dar.

				a_3	a_2	a_1	a_0
				\times b ₃	b_2	b_1	b_0
			1	$b_{0*}a_3$	$b_{0*}a_2$	$b_{0*}a_1$	$b_{0*}a_0$
			$b_{1*}a_3$	$b_{1*}a_2$	$b_{1*}a_{1}$	$b_{1*}a_0$	
		$b_{2*}a_3$	$b_{2*}a_2$	$b_{2*}a_1$	$b_{2*}a_0$		
1	$b_{3*}a_3$	$b_{3*}a_2$	$b_{3*}a_1$	$b_{3*}a_0$			
\mathbf{p}_7	p_6	\mathbf{p}_{5}	p_4	p_3	p_2	p_1	p_0

Abbildung 3: Multiplikationsalgorithmus für Zahlen im Zweier-Komplement

3.2 Analyse

Für die Multiplikation von 2 mit 4 Bits codierten ganzen Zahlen, bestimmen Sie den minimalen und den maximalen Wert des Resultates. Schliessen Sie daraus die Anzahl benötigter Bits für das Produkt von 2 natürlichen Zahlen, welche mit n1, respektiv mit n2 Bits codiert sind.

3.3 Erstellung

Ergänzen Sie das hierarchische Schema des Multiplizierers der Abbildung 2 mit Hilfe von kombinatorischen Logikgattern und überprüfen Sie seine Funktionalität.

4 Analyse

Unter der Annahme, dass alle Logikgatter dieselbe Verzögerung von 1 ns vorweisen, bestimmen Sie die maximale Berechnungsverzögerung der erstellten Operatoren.

Schlagen Sie eine andere Struktur vor, um die Geschwindigkeit dieser Operatoren zu vergrössern.