Обозначения. В этом листке символом \mathbb{K} всегда будет обозначаться некоторое поле. Множество всех многочленов с коэффициентами из \mathbb{K} обозначается $\mathbb{K}[x]$.

Задача 1. Дайте определение суммы и произведения многочленов из $\mathbb{K}[x]$.

Определение 1. Многочлен положительной степени из $\mathbb{K}[x]$ называется *неприводимым* ($nad \mathbb{K}$), если он не может быть представлен в виде произведения двух многочленов меньшей степени из $\mathbb{K}[x]$.

Задача 2. Докажите, что над любым полем существует бесконечно много неприводимых многочленов.

Задача 3. Разложите на неприводимые множители над \mathbb{R} :

a)
$$5x + 7$$
; 6) $x^2 - 2$; B) $x^3 + x^2 + x + 1$; r) $x^2 + 1$; A) $x^3 - 6x^2 + 11x - 6$; e) $x^4 + 4$.

Определение 2. Многочлен со старшим коэффициентом 1 называется приведённым.

Определение 3. Наибольшим общим делителем (НОД(A, B)) двух многочленов A и B из $\mathbb{K}[x]$, хотя бы один из которых ненулевой, называют приведённый многочлен наибольшей степени, который делит и A, и B.

Задача 4. а) Верно ли, что $HOД(A, B) = HOД(A, B - A \cdot C)$, где C — любой многочлен?

б) Сформулируйте и докажите алгоритм Евклида вычисления НОД многочленов.

Задача 5. Докажите, что HOД(A, B) делится на любой общий делитель A и B.

Задача 6. Пусть многочлены A(x) и B(x) из $\mathbb{K}[x]$ взаимно просты (то есть, HOД(A,B)=1). Докажите, что тогда существуют такие многочлены U(x) и V(x) из $\mathbb{K}[x]$, что AU+BV=1.

Задача 7. Докажите, что если неприводимый над \mathbb{K} многочлен P(x) из $\mathbb{K}[x]$ делит произведение двух многочленов A(x) и B(x) из $\mathbb{K}[x]$ ненулевой степени, то он делит один из этих многочленов.

Задача 8. Докажите, что любой многочлен из $\mathbb{K}[x]$ однозначно (с точностью до множителей из \mathbb{K}) раскладывается в произведение неприводимых над \mathbb{K} многочленов.

Многочлены с целыми коэффициентами

Обозначение. Множество многочленов с целыми коэффициентами обозначается $\mathbb{Z}[x]$.

Определение 4. Многочлен положительной степени из $\mathbb{Z}[x]$ называется *неприводимым* (над \mathbb{Z}), если он не может быть представлен в виде произведения двух многочленов меньшей степени из $\mathbb{Z}[x]$. (Это определение несколько отличается от общепринятого: обычно требуют еще, чтобы коэффициенты многочлена были взаимно просты).

Задача 9. (Признак Эйзенштейна) Если для многочлена $P(x) \in \mathbb{Z}[x]$ можно указать такое простое число p, что старший коэффициент этого многочлена не делится на p, а все остальные коэффициенты делятся на p, причём свободный член этого многочлена, делясь на p, не делится на p^2 , то многочлен P(x) неприводим над \mathbb{Z} .

Задача 10. Докажите, что следующие многочлены неприводимы над $\mathbb Z$:

a)
$$x^4 - 8x^3 + 12x^2 - 6x + 2$$
; 6) $x^5 - 12x^3 + 36x - 12$

Задача 11. Пусть p, p_1, \dots, p_k — различные простые числа. Докажите, что многочлены

а)
$$x^n - p$$
; б) $x^n - p_1 \dots p_k$ неприводимы над \mathbb{Z} .

Задача 12. Какие из многочленов задачи 4 неприводимы над \mathbb{Z} ?

Задача 13. Докажите, что многочлен $P(x) = x^{n-1} + x^{n-2} + \cdots + x + 1$ неприводим над $\mathbb Z$ тогда и только тогда, когда n — простое число. (Указание: рассмотрите многочлен P(x+1).)