

Function of the test

Cochran's Q test is used for testing the significance of two or more matched set of frequencies, where a binary response (eg. 0 or 1) is recorded from each condition within each subject. In Friedman test, the responses are numerical (at least ordinal level). When the responses are binary, the Friedman test becomes Cochran's Q test.

Examples of binary responses are: True/Fail, Present/Absent, For/Against, Positive reaction/Negative reaction, Pass/Fail in exam etc. For such variable we assign only two values 1 for success and 0 for failure.

Test Assumptions

- 1. Each k treatment/condition is independently applied to n subjects. Each subject responds to k different conditions so that there is k matched pairs.
- 2. Responses are binary. Each outcome Xij, (i = 1, 2, ..., n; j = 1, 2, ..., k) is scored as 0 (failure) or scored as 1 (success).
 - Xij = 1 if category of interest is present
 - O if category of interest is not present
- 3. The cases (participants) are selected randomly from the population of all possible cases. (For large sample approximation, cases must be large)

Data Arrangement

Data are arranged in a two-way table consisting of n rows and k columns.

Block	Condition/Treatment			
	1	2		k
1	X ₁₁	X ₁₂		X _{1k}
2	X ₂₁	X ₂₂		X_{2k}
n	X _{n1}	X _{n2}		X _{nk}

Xij = 1 if category of interest is present

O If category of interest is not present

(i = 1, 2, ..., n and j = 1, 2, ..., k)

Test Hypothesis

Let the proportions, π_1 , π_2 , ..., π_k , represent the proportions of 'successes' in each of the k groups.

H_o: Proportion of responses of a particular kind is the same in each column/condition

$$(H_0: \Pi_1 = \Pi_2 = ... = \Pi_k)$$

H₁: Proportion in at least one group is different from at least one other group.

 $(H_1: \pi_a \neq \pi_b \text{ for at least one pair } \pi_a, \pi_b \text{ with a } \neq b \text{ and } 1 \leq a, b \leq k)$

Test Statistics

The test statistics is given by,

$$Q = \frac{(k-1)(k C - T^2)}{k T - R}$$

Where,

k = Number of groups/conditions/treatments/columns

n = Number of subjects/blocks/rows

G_i = Total number of successes in jth column/group (Sum of 1's in group 'j')

B_i = Total number of successes in ith row/block (Sum of 1's in block 'i')

$$C = \sum_{j=1}^{k} \left(\sum_{i=1}^{n} X_{ij}\right)^{2} = G_{1}^{2} + G_{2}^{2} + \dots + G_{k}^{2}$$

$$R = \sum_{i=1}^{n} \left(\sum_{i=1}^{k} X_{ii}\right)^{2} = B_{1}^{2} + B_{2}^{2} + \dots + B_{n}^{2}$$

$$T = \sum_{i=1}^{n} \sum_{j=1}^{k} X_{ij} = G_1 + G_2 + \dots + G_k = B_1 + B_2 + \dots + B_n$$

Distribution of Q statistic

The distribution of statistic Q is chi-square with k-1 degrees of freedom. The condition required for the chi-square approximation is that $k \ge 4$ and $nk \ge 24$. Otherwise, we have to consider it as small sample and follow exact distribution of Q.

Decision Rule

Reject H₀ if calculated Q is greater than or equal to critical value of chi-square distribution with k – 1 degrees of freedom i.e. $\chi_{\alpha}^{2}(k-1)$

The p-value of the test is computed as,

p-value =
$$Pr\{cal\ Q \ge \chi_{\alpha}^2(k-1)\}$$

Note: Cochran's Q test is right sided test.