

Topics to be covered

- Revision of Last Class
- 2 Concentration terms
- Relation Between different Concentration Terms
- Home work from modules , MPQ

Rules to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your Magarmach Practice Questions.
- A. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

- 75. Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- 6. Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.

Revision of Last class

Pure substances are rare in everyday life

Most materials are mixtures of two or more pure substances

Usefulness of mixtures depends on their composition

Brass: mixture of copper

and zinc

German silver: mixture of copper, zinc, and ad nickel

Bronze: mixture of copper and in

Topics covered in the unit:

 Properties of solutions such as vapour pressure and colligative propeerties

SUMMARY

Types of solutions

Fluoride in water:

1 ppm helps prevennt tooth decay
1.5 ppm or higher causes
mottled teeth
High concentrations can be
poisonous

Intravenous (IV) injections:

Must match blood plasma ionic concentrations

Focus of the unit:

Discusses liquid solutions and their formation

Focus of the unit:

Discusses liquid solutions and their formation

1. by Volume = VB X 100

Yeh lab hai ya production studio?!

10 ml /40 ml x 100 Sir, 25%! Sahi bola! Volume-volume formula abh yaad rahega, na?

.1. by storength = WB X100

Pookie's Pain Relief Potion – Strong ya Wrong?

Molarity (M)

1 L solution -> nB

Mrs relom reo 1/Lon molen en M

$$1mr = 1cm_3 = 1c.c. = \frac{1000}{1}$$

1	١.,		
ı	1	P	
ġ	1	W	7
	Ľ	=	//

Moles of Solute (n_B)	Volume of solution in Litre	Molarity
2 = 6/3	3-	2=M = NB V(L) M = 2 = 2 M
2	1,	M: 2 = 2 M
H ₁	.4	M=4=1
7.	14	M: 子: = 0.5 M.
6	3	M=====================================
9	3	3
12	4	M= 12 = 3M
18	3	M= 12 = 3M M= 18 = 6M

Calculate the molarity of NaOH in the solution prepared by dissolving its 4 g in enough water to form 250 mL of the solution. If molar mass of NaOH is 40 g.

$$M_{\frac{Nach}{V(L)}} = \frac{n_B}{V(L)} = \frac{1xH}{16 \times 1} = \frac{2}{5} = 0.4M$$
 Got the molarity right for the first time

QUESTION (JEE Main 27-01-2024, Shift-II)

Volume of 3 M NaOH (formula weight 40 g mol⁻¹) which can be prepared from 84 g of NaOH is $\frac{7}{4} \times 10^{-1}$ dm³.

QUESTION (NEET PYQ)

6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution is:

$$M = \frac{\Lambda(T)}{UB} = \frac{0.05 \times 1000}{0.000} \times 1000 = \frac{100}{1000} = 0.01M$$

$$= \frac{1000}{1000} = \frac{1000}{1000} \times 1000 = \frac{1000}{1000} = \frac{1000}{100$$

Question (NCERT: PL-23 | JEE Main Jan. 10, 2019 (II)

The amount of sugar $(C_{12}H_{22}O_{11})$ required to prepare 2 L of its 0.1 M aqueous solution is:

- A 136.8 g
- B 17.1 g
- 68.4 g
- D 34.2 g

Formality (F)

Molarity if solute = ionic Compd.

Question

How many grams of NaOH should be dissolved to make 100 cm³ of 0.15 Me NaOH solution? If gram formula mass of NaOH is 40 g.

Molality (m)

1 Kg solvent has 1 B

mit af m = mol/kg ar mold on m

1	<u> </u>	
и	Ļ,	a
10	M	D
ь.	_	

Moles of Solute (n_B)	Mass of solvent in Kg	Molality
m = 6/2=34	2	m = 6 = 3m
12	6	m = 12 = 2 m
18	6	M=18=3M
30	5	30/5 = 6 m
24	2	Ju/2 = 12 m
10		10/1 = 10m
9	3	9/3 = 3 m
20	0	9/3 = 3 m 90/10 = 2 m

B

If 160 g of NaOH is present in 500 ml of water, find molality if Molar mass of NaOH is 40 g.

Are
$$m = \frac{n_B}{w_A(\kappa_g)} = \frac{4 \times 2}{1} = 8 m$$

$$N_A = V_A \times d_A$$
 $W_B = 500 \times 1 = 5009$
 $= 500 = 1 \times 9$

Question

The molality of a urea solution in which 0.0100 g of urea, [(NH₂)₂CO] is added to 0.3000 dm³ of water at STP is

- B 33.37M
- 3.33 × 10⁻² M
- 0.555 M

at STP is

$$M = \frac{\pi B}{W_{\mu}(K_{g})} = \frac{6001 \times 18}{600 \times 300} = \frac{1}{300} \times 10^{2} \text{ m}$$
 $W_{B} = 0.019$
 $V = 0.3 \, \text{dm}^{3} = 0.3 \, \text{L} = 300 \, \text{ml}$

QUESTION (JEE 1986)

A molal solution is one that contains one mole of a solute in

1000g af solvent

- 1000 g of the solvent
 - One litre of the solvent
 - One litre of the solution
 - 22.4 litres of the solution

Mole fraction (x)

fraction -> moles of Components/Total moles.

Solvent > nA

Solute > NB

(Chi)
$$\chi_{Box} \chi_{B} = \frac{n_{B}}{n_{A} + n_{B}}$$

$$2 \sum_{A} \operatorname{orx} x_{A} = \frac{n_{A}}{n_{B} + n_{B}}$$
Unit law

Binary solution > 2 Component

XA + 26=1

NA + NB = 1

3 Component solv

A B C

$$X_A + X_B + X_C = 1$$
 $\frac{n_A}{n_A + n_B + n_C} + \frac{n_C}{n_A + n_B + n_C} = 1$
 $\frac{n_A}{n_A + n_B + n_C} + \frac{n_C}{n_A + n_B + n_C} = 1$

1	D	
К	ς,	n
11	V	W

Moles of Solute (n_B)	Moles of Solvent (n _A)	Mole Fraction (χ)
5	10	XB = 5-5-1 XA=1-34 5+10-5-3 XA=1-34
2	10	XB=2===================================
5	15	13-30=4/XA=3
4	12 7	83=4=41 XA=3
3	12.	写言1×A=当

A

If 3 moles of water is mixed with 1 mole of sugar. Find mole fraction of water and sugar?

Question (NCERT: PL-23 | JEE Main Jan. 12, 2019 (II)

8 g of NaOH is dissolved in 18 g of H₂O. Mole fraction of NaOH in solution and

molality (in mol kg⁻¹) of the solution respectively are:

$$\chi_{B} = \frac{0.2}{6.211} = \frac{0/2}{1/2} = \frac{1}{6} = 0.167$$

- 0.2, 22.20
- 0.2, 11.11
- 0.167, 11.11
- 0.167, 22.20

$$m = \frac{n_B}{\omega_A(\kappa_g)}$$

QUESTION (JEE Main 30-01-2024, Shift-II)

MB The

If a substance 'A' dissolves in solution of a mixture of 'B' and 'C' with their respective number of moles as n_A , n_B and n_C . Mole fraction of C is in the solution is

$$\chi_{c} = \frac{n_{c}}{n_{A} + n_{B} + n_{c}}$$

$$\frac{n_B}{n_A + n_B}$$

$$\frac{n_C}{n_A + n_B + n_C}$$

$$\frac{n_c}{n_A - n_B - n_C}$$

7 (6 H18 06 = 1 MB = 1809/ml.)

Find molality of 20% w/v of glucose if density of solution is 2g/ml.

$$M = \frac{n_B}{W_A(K_g)} = \frac{1 \times 1000}{9 \times 189} = \frac{5.55}{9}$$

on
$$\frac{1}{189} = \frac{29}{9} = \frac{1}{9}$$
+ $\frac{1}{1}$

That solvers.

A 5.2 molal aqueous solution of methyl alcohol, CH3OH, is supplied. What is the mole fraction of methyl alcohol in the solution?

M=52 -> 52 moles solute present in 1000g solvent (130)

- 0.100
- 2 0.190
- 0.086
- 0.050

XB= NB

Question

The mole fraction of a solvent in aqueous solution of a solute is 0.8. The molality (in mol kg⁻¹) of the aqueous solution is

- 1 X 1000 = 13.88

- 13.88 × 10⁻²
- 2 13.88 × 10⁻¹
- 3 13.88
- 4 13.88 × 10⁻³

Relation Between Mole Fraction (x) & Molality (a)

Magarmach Practice Questions (MPQ)

AGENT MAGIARMACH.

Question

100 g of propane is completely reacted with 1000 g of oxygen. The mole fraction of carbon dioxide in the resulting mixture is $x \times 10^{-2}$. The value of x is (Nearest integer) [Atomic weight: H 1.008, C = 12.00, O = 16.00]

.

Question

Wood's metal contains 50.0% bismuth, 25.0% lead, 12.5% tin and 12.5% cadmium by weight. What is the mole fraction of tin?

(Atomic weights: Bi = 209, Pb = 207, Sn = 119, Cd = 112)

- A 0.202
- B 0.158
- 0.176
- 0.221

Question (NCERT: PL-23 | JEE Mains)

A commercially sold conc. HCl is 35% by mass. If the density of this commercial acid is 1.46 g/mL, the molarity of this solution is : (Atomic mass : Cl = 35.5 amu, H = 1 amu)

- (A) 10.2 M
- B 12.5 M
- C 14.0 M
- D 18.2 M

Question (NCERT: PL-18 | NV, JEE Main Jan. 09, 2020 (I)

The molarity of HNO_3 in a sample which has density 1.4 g/mL and mass percentage of 63% is ______. (Molecular Weight of $HNO_3 = 63$)

Question

138 g of ethyl alcohol is mixed with 72 g of water. The ratio of mole fraction of ethyl alcohol to water is if molar mass of ethyl alcohol is 46 g and of water is 18 g.

- A 3:4
- B 1:2
- C 1:4
- 1:1

QUESTION (JEE Main 2021, 31st Aug 1st Shift)

The molarity of the solution prepared by dissolving 6.3 g of oxalic acid $(H_2C_2O_4.2H_2O)$ in 250 mL of water in mol L⁻¹ is $x \times 10^{-2}$. The value of x is _____. (Nearest integer) [Atomic mass: H: 1.0, C: 12.0, O: 16.0]

