Examen de Systèmes Électroniques Embarqués Université Paris-Sud

Vendredi 10 mai 2019 - durée : 2 heures

Exercice 1: Sur l'allume-cigare

Jean-Michel Cepairtouletan s'achète un GPS. Malheureusement, la seule prise pour le recharger est une prise micro-usb 5 V, et il souhaite le brancher sur l'allume-cigare de sa voiture qui délivre du 12 V. Pour il cela, il réalise un convertisseur DC-DC abaisseur, dont le schéma de principe est le suivant :

Relation Entrée-Sortie

Dans cette partie, on suppose que V_e et V_s sont des tensions constantes. On appelle α le rapport cyclique. La période de découpage est $f_d = 100$ kHz.

Q1: Indiquer quel est le matériau de base pour fabriquer les transistors.

 $\mathbf{Q2}$: $\forall t \in [0, \alpha T]$, on ferme l'interrupteur. Déterminer la tension aux bornes de la diode et indiquer si elle est passante ou bloquée.

Q3: Déterminer la tension v_L en fonction de V_e et de V_s .

 $\mathbf{Q4}$: En déduire si le courant i_L est croissant ou décroissant.

Q5: $\forall t \in [\alpha T, T]$, on ouvre l'interrupteur. Expliquer pourquoi la diode devient passante.

Q6: En déduire la tension v_L en fonction de V_s .

Q7: Sachant que la valeur moyenne de la tension aux bornes d'une inductance est nulle, calculer cette valeur moyenne et en déduire V_s en fonction de α et de V_e .

Q8 : Donner la valeur numérique de α pour obtenir $V_s=5$ V.

Q9: Déterminer la valeur de la résistance modélisant le transfert d'énergie sachant que la puissance de recharge est de 10 W.

Calcul de L et C

Dans cette partie, on cherche à dimensionner L et C, c'est-à-dire donner une valeur à ces composants. Pour cela, on fait apparaître l'ondulation de tension de sortie ainsi que l'ondulation de courant, car ce sont ces ondulations qui vont permettre de déterminer L et C. On peut exprimer tension et courant comme étant une valeur moyenne et une ondulation :

$$i_L = I_L + \Delta i_L$$

$$v_s = V_s + \Delta v_s$$

Q10 : Pour calculer L, on s'impose d'avoir une ondulation de courant de 10 %, ce qui revient à écrire :

 $\frac{\Delta i_L}{I_L} = 0, 1.$

On fait l'approximation que l'ondulation de courant va dans la capacité et que la valeur moyenne du courant va dans la résistance. Sachant que la puissance transmise est $10~\rm W$, donner la valeur de I_L .

Q11 : En déduire la valeur de Δi_L .

Q12 : Sachant que $\Delta i_L = \frac{\alpha(1-\alpha)V_e}{L.f_d}$, en déduire la valeur de L.

Q13 : Pour calculer C, on s'impose d'avoir une ondulation de courant de 10 %, ce qui revient à écrire :

 $\frac{\Delta v_s}{V_S} = 0, 1.$

Sachant que la valeur moyenne V_S correspond bien à la valeur de 5 V désirée, en déduire la valeur de Δv_s .

Q14: Sachant que $\Delta v_s = \frac{\alpha(1-\alpha)V_e}{8.L.C.f_d^2}$, en déduire la valeur de C.

Exercice 2 : Comme sur des roulettes

En 2008 sortait le film d'animation WALL-E. Le protagoniste Jean-Michel WALL-E (Waste Allocation Load Lifter-Earthclass) est un robot qui fonctionne à l'énergie solaire et qui se déplace grâce à des chenilles, dont on supposera ici qu'elles sont actionnées par un moteur à courant continu.

Charge de la batterie

Lorsqu'il les déploie, WALL-E recharge sa batterie grâce à des petits panneaux photovoltaïques. On fait ici l'approximation que la tension V_p issue des panneaux est constante et de valeur $V_p=4$ V. Il faut recharger une batterie de tension $V_b=20$ V. Le convertisseur DC-DC élévateur est le suivant :

Q1: En suivant la même méthodologie ($\forall t \in [0, \alpha T]$, on ferme l'interrupteur et $\forall t \in [\alpha T, T]$ on ouvre l'interrupteur), déterminer V_b en fonction de V_p et de α .

 $\mathbf{Q2}$: Donner la valeur de α correspondant aux données de l'énoncé.

Association Hacheur-MCC

Pour alimenter les moteurs des chenilles, on place entre la batterie et le moteur un hacheur 4 quadrants, appelé aussi un pont en H, appelé aussi un onduleur.

Q3: Expliquer en une phrase pourquoi met-on un hacheur entre la batterie et la MCC.

Q4 : Dessiner le schéma équivalent électrique de l'induit d'une MCC. Nommer chacun des éléments et indiquer lequel correspond à la conversion d'énergie électromécanique.

Q5 : Les quatre équations de la MCC sont classiquement :

$$\begin{cases} c = k.i \\ e = k.\Omega \\ J\frac{d\Omega}{dt} = c - c_r \\ u = R.i + L\frac{di}{dt} + e \end{cases}$$

Indiquer quelles sont les équations électriques, électromécaniques et mécaniques.

Q6: On cherche à déterminer la vitesse de rotation Ω de la MCC lors du fonctionnement. Pour cela, $\forall t \in [0, \alpha T]$, on ferme k_{1h} et k_{2b} ; k_{2h} et k_{1b} restant ouvert. Déterminer l'équation électrique reliant V_b , R, L, i, et e.

3

Q7: $\forall t \in [\alpha T, T]$, on ferme k_{2h} et k_{1b} ; k_{1h} et k_{2b} restant ouvert. Déterminer l'équation électrique reliant V_b , R, L, i, et e.

Q8 : Calculer la valeur moyenne pour faire apparaître Ω en fonction de α et d'autres grandeurs dont on justifiera les éventuelles approximations.

 $\mathbf{Q9}$: Durant son périple, Jean-Michel WALL-E rencontre Marie-Christine EVE (Extraterrestrial Vegetation Evaluator), dont il tombe quelque peu amoureux. Lorsque EVE lui passe devant, il alimente ses moteurs pour lui courir après. Quelle doit être la valeur de α pour alimenter ses moteurs avec le maximum de tension?

Q10: Sachant que pour un tel rapport cyclique, on mesure un courant moyen $\langle i_M \rangle = 1$ A, et que la résistance de l'induit est de 2 Ω , et que la constante électromécanique est de 0,2; déterminer la vitesse de rotation de la machine.

Partie mécanique

Q11 : La roue qui fait tourner les chenilles est reliée à la MCC. Cette roue a un diamètre de 20 cm. Sachant que la vitesse périphérique de la roue est reliée à la vitesse de rotation par l'équation

vitesse peripherique = rayon \times vitesse angulaire

, déterminer si WALL-E est en mesure de rattraper EVE qui avance à la vitesse de 10 m/s? (résultat à démontrer, une simple réponse "OUI" ou "NON" ne sera pas comptabilisée...).

Q bonus : Donner l'unité SI de la constante électromécanique, c'est-à-dire l'unité qui ne peut dépendre que des sept unités de base du Système international :

mètre : mkilogramme : kgseconde : s

Ampère : AKelvin : Kmole : molcandela : cd