# Churn Analysis ¶

```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import classification_report, confusion_matrix
         from sklearn.preprocessing import LabelEncoder
        data = pd.read excel('view churn data.xlsx')
         data.head(5)
Out[2]:
                                                  State Number_of_Referrals Tenure_in_Months Value_Deal Phone_Service Multiple_Lines ... Paym
             Customer ID Gender Age Married
              19877-DEL
                           Male
                                 35
                                         No
                                                   Delhi
                                                                        7
                                                                                        27
                                                                                                 None
                                                                                                                Yes
                                                                                                                              No ...
              58353-MAH
                                 45
                                                                        14
                                                                                        13
                                                                                                                             Yes ...
                         Female
                                         Yes
                                            Maharashtra
                                                                                                 None
                                                                                                                Yes
                                                   West
          2
              25063-WES
                           Male
                                 51
                                         No
                                                                        4
                                                                                        35
                                                                                                Deal 5
                                                                                                                Yes
                                                                                                                              No
                                                                                                                                      Ban
                                                 Bengal
          3
              59787-KAR
                           Male
                                 79
                                         No
                                               Karnataka
                                                                        3
                                                                                        21
                                                                                                Deal 4
                                                                                                                Yes
                                                                                                                              No ...
                                                                                                                                      Ban
              28544-TAM Female
                                 80
                                              Tamil Nadu
                                                                        3
                                                                                         8
                                                                                                 None
                                                                                                                Yes
                                                                                                                              No ...
         5 rows × 32 columns
        data.shape
In [3]:
Out[3]: (6007, 32)
```

| In [4]: | <pre>data.isnull().sum()</pre>   |        |
|---------|----------------------------------|--------|
| Out[4]: | Customer_ID                      | 0      |
|         | Gender                           | 0      |
|         | Age                              | 0      |
|         | Married                          | 0      |
|         | State                            | 0      |
|         | Number_of_Referrals              | 0      |
|         | Tenure_in_Months                 | 0      |
|         | Value_Deal                       | 0      |
|         | Phone_Service                    | 0      |
|         | Multiple_Lines                   | 0      |
|         | Internet_Service                 | 0      |
|         | Internet_Type                    | 0      |
|         | Online_Security                  | 0      |
|         | Online_Backup                    | 0      |
|         | Device_Protection_Plan           | 0      |
|         | Premium_Support                  | 0      |
|         | Streaming_TV                     | 0<br>0 |
|         | Streaming_Movies Streaming_Music | 0      |
|         | Unlimited Data                   | 0      |
|         | Contract                         | 0      |
|         | Paperless_Billing                | 0      |
|         | Payment_Method                   | 0      |
|         | Monthly_Charge                   | 0      |
|         | Total_Charges                    | 0      |
|         | Total_Refunds                    | 0      |
|         | Total_Extra_Data_Charges         | 0      |
|         | Total_Long_Distance_Charges      | 0      |
|         | Total_Revenue                    | 0      |
|         | Customer_Status                  | 0      |
|         | Churn_Category                   | 0      |
|         | Churn Reason                     | 0      |
|         | dtype: int64                     |        |
|         | · ·                              |        |

```
In [5]: data.describe()
```

### Out[5]:

|       | Age         | Number_of_Referrals | Tenure_in_Months | Monthly_Charge | Total_Charges | Total_Refunds | Total_Extra_Data_Charges | Total_Long |
|-------|-------------|---------------------|------------------|----------------|---------------|---------------|--------------------------|------------|
| count | 6007.000000 | 6007.000000         | 6007.00000       | 6007.000000    | 6007.000000   | 6007.000000   | 6007.000000              |            |
| mean  | 47.289163   | 7.439820            | 17.39454         | 65.087598      | 2430.986173   | 2.038612      | 7.015149                 |            |
| std   | 16.805110   | 4.622369            | 10.59292         | 31.067808      | 2267.481294   | 8.065520      | 25.405737                |            |
| min   | 18.000000   | 0.000000            | 1.00000          | -10.000000     | 19.100000     | 0.000000      | 0.000000                 |            |
| 25%   | 33.000000   | 3.000000            | 8.00000          | 35.950000      | 539.950000    | 0.000000      | 0.000000                 |            |
| 50%   | 47.000000   | 7.000000            | 17.00000         | 71.100000      | 1556.850000   | 0.000000      | 0.000000                 |            |
| 75%   | 60.000000   | 11.000000           | 27.00000         | 90.450000      | 4013.900000   | 0.000000      | 0.000000                 |            |
| max   | 84.000000   | 15.000000           | 36.00000         | 118.750000     | 8684.800000   | 49.790000     | 150.000000               |            |
| 4     |             |                     |                  |                |               |               |                          | •          |

# **Data Preprocessing**

```
In [7]: data.head(5)
```

#### Out[7]:

|   | Gender | Age | Married | State          | Number_of_Referrals | Tenure_in_Months | Value_Deal | Phone_Service | Multiple_Lines | Internet_Service | <br>C  |
|---|--------|-----|---------|----------------|---------------------|------------------|------------|---------------|----------------|------------------|--------|
| 0 | Male   | 35  | No      | Delhi          | 7                   | 27               | None       | Yes           | No             | Yes              |        |
| 1 | Female | 45  | Yes     | Maharashtra    | 14                  | 13               | None       | Yes           | Yes            | Yes              | <br>tc |
| 2 | Male   | 51  | No      | West<br>Bengal | 4                   | 35               | Deal 5     | Yes           | No             | Yes              | <br>tc |
| 3 | Male   | 79  | No      | Karnataka      | 3                   | 21               | Deal 4     | Yes           | No             | Yes              | <br>tc |
| 4 | Female | 80  | No      | Tamil Nadu     | 3                   | 8                | None       | Yes           | No             | Yes              | <br>to |

5 rows × 29 columns

```
In [8]: # Encode categorical variables except the target variable
label_encoders = {}
```

for column in columns\_to\_encode:
 label\_encoders[column] = LabelEncoder()
 data[column] = label encoders[column].fit transform(data[column])

data[column] = label\_encoders[column].fit\_transform(data[column])

```
# Manually encode the target variable 'Customer_Status'
data['Customer_Status'] = data['Customer_Status'].map({'Stayed': 0, 'Churned': 1})
```

## In [9]: # Split data into features and target

```
X = data.drop('Customer_Status', axis=1)
y = data['Customer Status']
```

# Split data into training and testing sets

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)

# **Train Random Forest Model**

```
In [10]: # Initialize the Random Forest Classifier
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
# Train the model
rf_model.fit(X_train, y_train)
```

Out[10]: RandomForestClassifier(random\_state=42)

### **Evaluate Model**

```
In [11]: # Make predictions
         y pred = rf model.predict(X test)
         # Evaluate the model
         print("Confusion Matrix:")
         print(confusion matrix(y test, y pred))
         print("\nClassification Report:")
         print(classification report(y test, y pred))
         # Feature Selection using Feature Importance
         importances = rf model.feature importances
         indices = np.argsort(importances)[::-1]
         # Plot the feature importances
         plt.figure(figsize=(15, 6))
         sns.barplot(x=importances[indices], y=X.columns[indices])
         plt.title('Feature Importances')
         plt.xlabel('Relative Importance')
         plt.vlabel('Feature Names')
         plt.show()
         Confusion Matrix:
         [[791 50]
          [125 236]]
         Classification Report:
                       precision
                                    recall f1-score
                                                        support
                            0.86
                                       0.94
                                                 0.90
                                                            841
                            0.83
                    1
                                       0.65
                                                 0.73
                                                            361
                                                 0.85
                                                           1202
             accuracy
                                                 0.81
                                                           1202
            macro avg
                            0.84
                                       0.80
         weighted avg
                            0.85
                                       0.85
                                                 0.85
                                                           1202
```



# **Use Model for Prediction on New Data**

```
In [12]: new data = pd.read excel('view churn joined.xlsx')
          new data.head(5)
Out[12]:
              Customer_ID Gender Age Married
                                                   State Number_of_Referrals Tenure_in_Months Value_Deal Phone_Service Multiple_Lines ... Paymer
                93520-GUJ
                           Female
                                   67
                                           No
                                                  Gujarat
                                                                         13
                                                                                          19
                                                                                                  Deal 5
                                                                                                                  Yes
                                                                                                                                Yes ...
                                                                                                                                         Bank \
           0
                                                                                           7
           1
                57256-BIH
                          Female
                                   18
                                           No
                                                   Bihar
                                                                         9
                                                                                                   None
                                                                                                                  Yes
                                                                                                                                No ...
                                                                                                                                             (
                                                 Madhya
               72357-MAD Female
                                   53
                                           No
                                                                         14
                                                                                          12
                                                                                                  Deal 5
                                                                                                                  Yes
                                                                                                                                No ...
                                                                                                                                             (
                                                 Pradesh
               66612-KAR Female
                                                                                                                                No ...
                                   58
                                               Karnataka
                                                                                                                                             (
                                                                         11
                                                                                          18
                                                                                                   None
                                                                                                                  Yes
                                                   West
               22119-WES
                                   31
                                           Yes
                                                                          5
                                                                                           5
                                                                                                                  Yes
                                                                                                                                No ...
                                                                                                                                             (
                             Male
                                                                                                   None
                                                  Bengal
          5 rows × 32 columns
          new data.shape
In [13]:
Out[13]: (411, 32)
In [14]: # Retain the original DataFrame to preserve unencoded columns
          original_data = new_data.copy()
```

```
In [15]: original_data.head(5)
```

#### Out[15]:

|   | Customer_ID | Gender | Age | Married | State             | Number_of_Referrals | Tenure_in_Months | Value_Deal | Phone_Service | Multiple_Lines | <br>Paymer |
|---|-------------|--------|-----|---------|-------------------|---------------------|------------------|------------|---------------|----------------|------------|
| 0 | 93520-GUJ   | Female | 67  | No      | Gujarat           | 13                  | 19               | Deal 5     | Yes           | Yes            | <br>Bank \ |
| 1 | 57256-BIH   | Female | 18  | No      | Bihar             | 9                   | 7                | None       | Yes           | No             | <br>(      |
| 2 | 72357-MAD   | Female | 53  | No      | Madhya<br>Pradesh | 14                  | 12               | Deal 5     | Yes           | No             | <br>(      |
| 3 | 66612-KAR   | Female | 58  | Yes     | Karnataka         | 11                  | 18               | None       | Yes           | No             | <br>(      |
| 4 | 22119-WES   | Male   | 31  | Yes     | West<br>Bengal    | 5                   | 5                | None       | Yes           | No             | <br>(      |

5 rows × 32 columns

```
In [16]: # Retain the Customer_ID column
customer_ids = new_data['Customer_ID']
```

```
In [17]: # Drop columns that won't be used for prediction in the encoded DataFrame
new_data = new_data.drop(['Customer_ID', 'Customer_Status', 'Churn_Category', 'Churn_Reason'], axis=1)
```

```
In [18]: # Encode categorical variables using the saved label encoders
for column in new_data.select_dtypes(include=['object']).columns:
    new_data[column] = label_encoders[column].fit_transform(new_data[column])
```

```
In [19]: # Make predictions
new_predictions = rf_model.predict(new_data)

# Add predictions to the original DataFrame
original_data['Customer_Status_Predicted'] = new_predictions

# Filter the DataFrame to include only records predicted as "Churned"
original_data = original_data[original_data['Customer_Status_Predicted'] == 1]
```

In [20]: original\_data

# Out[20]:

|     | Customer_ID | Gender | Age | Married | State             | Number_of_Referrals | Tenure_in_Months | Value_Deal | Phone_Service | Multiple_Lines | <br>Mont |
|-----|-------------|--------|-----|---------|-------------------|---------------------|------------------|------------|---------------|----------------|----------|
| 0   | 93520-GUJ   | Female | 67  | No      | Gujarat           | 13                  | 19               | Deal 5     | Yes           | Yes            | <br>     |
| 1   | 57256-BIH   | Female | 18  | No      | Bihar             | 9                   | 7                | None       | Yes           | No             |          |
| 2   | 72357-MAD   | Female | 53  | No      | Madhya<br>Pradesh | 14                  | 12               | Deal 5     | Yes           | No             |          |
| 3   | 66612-KAR   | Female | 58  | Yes     | Karnataka         | 11                  | 18               | None       | Yes           | No             |          |
| 4   | 22119-WES   | Male   | 31  | Yes     | West<br>Bengal    | 5                   | 5                | None       | Yes           | No             |          |
|     |             |        |     |         |                   |                     |                  |            |               |                |          |
| 405 | 21065-HAR   | Male   | 27  | No      | Haryana           | 5                   | 10               | None       | Yes           | No             |          |
| 406 | 31412-HAR   | Female | 81  | Yes     | Haryana           | 14                  | 29               | None       | Yes           | No             |          |
| 407 | 54997-UTT   | Female | 55  | No      | Uttar<br>Pradesh  | 7                   | 23               | None       | Yes           | No             |          |
| 408 | 56728-RAJ   | Male   | 40  | No      | Rajasthan         | 0                   | 1                | None       | Yes           | No             |          |
| 409 | 47624-TAM   | Female | 62  | Yes     | Tamil<br>Nadu     | 7                   | 29               | None       | Yes           | No             |          |

376 rows × 33 columns

4

```
In [21]: # Save the results
    original_data.to_csv(r"C:\Users\prira\Downloads\Power BI\Churn\Predictions.csv", index=False)
In []:
```