પ્રશ્ન 1(અ) [3 ગુણ]

કમ્પ્યુટર નેટવર્કની વિવિદ્ય નેટવર્ક ટોપોલોજીની યાદી બનાવો અને કોઈપણ એકને સમજાવો.

જવાબ:

નેટવર્ક ટોપોલોજીઓનું ટેબલ:

ટોપોલોજી	นย์า
ક્ટાર	કેન્દ્રીય હબ બધા ઉપકરણોને જોડે છે
િરંગ -	ઉપકરણો વર્તુંળાકાર શૃંખલામાં જોડાયેલા
બસ	સિંગલ કેબલ બેકબોન કનેક્શન
મેશ	દરેક ઉપકરણ બીજા બધા સાથે જોડાય છે
ટ્રી	લવાલવ શાખાઓનું માળખું
હાઇબ્રિડ	અનેક ટોપોલોજીનું મિશ્રણ

સ્ટાર ટોપોલોજી સમજૂતી:

• **કેન્દ્રીય હબ**: બધા ઉપકરણો એક કેન્દ્રીય બિંદુ સાથે જોડાય

• **સરળ ઇન્સ્ટોલેશન**: ઉપકરણો ઉમેરવા/દૂર કરવા સરળ

• **સિંગલ પોઇન્ટ ફેલ્ચર**: હબ નિષ્ફળતા આખા નેટવર્કને અસર કરે

મેમરી ટ્રીક: "SRBMTH - સ્ટાર રિંગ બસ મેશ ટ્રી હાઇબ્રિડ"

પ્રશ્ન 1(બ) [4 ગુણ]

LAN, WAN અને MAN ની સરખામણી કરો.

જવાબ:

સરખામણી ટેબલ:

પેરામીટર	LAN	MAN	WAN
કવરેજ	બિલ્ડિંગ/કેમ્પસ	શહેર/મેટ્રોપોલિટન	દેશ/વૈશ્વિક
સ્પીડ	અત્યંત વધુ (1-100 Gbps)	વધુ (10-100 Mbps)	મધ્યમ (1-100 Mbps)
કિંમત	ઓછી	મધ્યમ	વધુ
માલિકી	ખાનગી	સાર્વજનિક/ખાનગી	સાર્વજનિક

મુખ્ય મુદ્દાઓ:

• LAN: નાના વિસ્તારો માટે લોકલ એરિયા નેટવર્ક

• MAN: શહેરો માટે મેટ્રોપોલિટન એરિયા નેટવર્ક

• WAN: મોટા અંતર માટે વાઇડ એરિયા નેટવર્ક

મેમરી ટ્રીક: "LMW - લોકલ મેટ્રોપોલિટન વાઇડ"

પ્રશ્ન 1(ક) [7 ગુણ]

OSI સંદર્ભ મોડેલનું સ્તરીય આર્કિટેક્ચર દોરો અને મોડેલના દરેક સ્તર દ્વારા પૂરી પાડવામાં આવતી ઓછામાં ઓછી બે સેવાઓ લખો.

જવાબ:

દરેક લેયરની સેવાઓ:

લેયર	સેવાઓ
એપ્લિકેશન (7)	ઇમેઇલ સેવાઓ, ફાઇલ ટ્રાન્સફર
પ્રેઝન્ટેશન (6)	ડેટા એન્ક્રિપ્શન, ડેટા કમ્પ્રેશન
સેશન (5)	સેશન સ્થાપના, સેશન સમાપ્તિ
ટ્રાન્સપોર્ટ (4)	ફ્લો કંટ્રોલ, એરર કરેક્શન
નેટવર્ક (3)	રૂટિંગ, પાથ નિર્ધારણ
ડેટા લિંક (2)	ફ્રેમ સિંક્રોનાઇઝેશન, એરર ડિટેક્શન
ફિઝિકલ (1)	બિટ ટ્રાન્સમિશન, સિગ્નલ કન્વર્ઝન

મેમરી ટ્રીક: "All People Seem To Need Data Processing"

પ્રશ્ન 1(ક OR) [7 ગુણ]

TCP/IP મોડેલના દરેક સ્તરને તેના પ્રોટોકોલ સાથે સમજાવો.

જવાબ:

TCP/IP મોડેલ લેચર્સ:

લેયર	પ્રોટોકોલ	รเช้
એપ્લિકેશન	HTTP, FTP, SMTP, DNS	યુઝર એપ્લિકેશન્સ
ટ્રાન્સપોર્ટ	TCP, UDP	અંત-થી-અંત ડિલિવરી
ઇન્ટરનેટ	IP, ICMP, ARP	પેકેટ રૂટિંગ
નેટવર્ક એક્સેસ	Ethernet, Wi-Fi	ફિઝિકલ ટ્રાન્સમિશન

મુખ્ય લક્ષણો:

• **સરળ મોડેલ**: OSI ના 7 ની સામે માત્ર 4 લેયર

• પ્રોટોકોલ સ્થૂટ: સંપૂર્ણ નેટવર્કિંગ સોલ્યુશન

• ઇન્ટરનેટ સ્ટાન્ડર્ડ: આધુનિક ઇન્ટરનેટનો આધાર

મેમરી ટ્રીક: "ATIN - એપ્લિકેશન ટ્રાન્સપોર્ટ ઇન્ટરનેટ નેટવર્ક"

પ્રશ્ન 2(અ) [3 ગુણ]

નીચેના નેટવર્ક ઉપકરણોના કાર્યો સમજાવો: રીપીટર, હબ

જવાબ:

ઉપકરણ કાર્યો:

ઉપકરણ	รเช่	લેચર
રીપીટર	સિગ્નલ એમ્પ્લિફિકેશન, રેન્જ વિસ્તરણ	ફિઝિકલ (1)
હબ	સિગ્નલ બ્રોડકાસ્ટિંગ, કોલિઝન ડોમેન શેરિંગ	ફિઝિકલ (1)

વિગતો:

• રીપીટર: લાંબા અંતર પર નબળા સિગ્નલને પુનર્જનરેટ કરે છે

• હલ: સ્ટાર ટોપોલોજીમાં અનેક ઉપકરણોને જોડે છે

• શેર્ડ મીડિયમ: બંને સિંગલ કોલિઝન ડોમેન બનાવે છે

મેમરી ટીક: "RH - રીપીટ હબ સિગ્નલ્સ"

પ્રશ્ન 2(બ) [4 ગુણ]

નીચેના શબ્દને સમજાવો 1) FDDI 2) ARP, RARP

જવાબ:

FDDI (ફાઇબર ડિસ્ટ્રિબ્યુટેડ ડેટા ઇન્ટરફેસ):

• ટેકનોલોજી: 100 Mbps ફાઇબર ઓપ્ટિક નેટવર્ક

• ટોપોલોજી: ફોલ્ટ ટોલરન્સ માટે ડ્યુઅલ રિંગ

• એપ્લિકેશન: બેકબોન નેટવર્ક્સ, ઉચ્ચ વિશ્વસનીયતા

ARP (એડ્રેસ રિઝોલ્યુશન પ્રોટોકોલ):

• કાર્ય: IP એડ્રેસને MAC એડ્રેસ સાથે મેપ કરે છે

• પ્રક્રિયા: રિક્વેસ્ટ બ્રોડકાસ્ટ કરે, રિપ્લાય મેળવે

RARP (રિવર્સ ARP):

• **કાર્ય**: MAC એડ્રેસને IP એડ્રેસ સાથે મેપ કરે છે

• ઉપયોગ: ડિસ્કલેસ વર્કસ્ટેશન્સ, બૂટ પ્રક્રિયા

મેમરી ટ્રીક: "FAR - FDDI ARP RARP"

પ્રશ્ન 2(ક) [7 ગુણ]

સિદ્ધાન્તો અને કર્બેરોસ-કન્સેપ્ટ સાથે નેટવર્ક સુરક્ષામાં ફાયરવોલનું કાર્ય સમજાવો

જવાબ:

ફાયરવોલ કાર્યો:

કાયરવોલ સિદ્ધાન્તો:

• પેકેટ ફિલ્ટરિંગ: પેકેટ હેડર્સની તપાસ કરે છે

• સ્ટેટફલ ઇન્સ્પેક્શન: કનેક્શન સ્ટેટ્સને ટ્રેક કરે છે

• એપ્લિકેશન ગેટવે: ડીપ પેકેટ ઇન્સ્પેક્શન

કર્બેરોસ કન્સેપ્ટ:

• ઓથેન્ટિકેશન સર્વિસ: સુરક્ષિત યુઝર વેરિફિકેશન

• ટિકિટ સિસ્ટમ: સમય-મર્યાદિત એક્સેસ ટોકન્સ

• **થ્રી-પાર્ટી પ્રોટોકોલ**: ક્લાયંટ, સર્વર, key ડિસ્ટ્રિબ્યુશન સેન્ટર

સુરક્ષા લાલો:

• **એક્સેસ કંટ્રોલ**: અનધિકૃત પ્રવેશ અટકાવે છે

• નેટવર્ક પ્રોટેક્શન: આંતરિક સંસાધનોને સુરક્ષા આપે છે

મેમરી ટ્રીક: "FPK - ફાયરવોલ કર્બેરોસ સાથે પ્રોટેક્ટ કરે"

પ્રશ્ન 2(અ OR) [3 ગુણ]

નીચેના નેટવર્ક ઉપકરણોના કાર્યો સમજાવો: સ્વિચ , રાઉટર

જવાબ:

ઉપકરણ કાર્યો:

ઉપકરણ	รเช่	લેચર
સ્વિય	MAC એડ્રેસ લર્નિંગ, ફ્રેમ ફોરવર્ડિંગ	ડેટા લિંક (2)
રાઉટર	IP રૂટિંગ, પાથ સિલેક્શન	નેટવર્ક (3)

વિગતો:

• સ્વિચ: દરેક પોર્ટ માટે અલગ કોલિઝન ડોમેન બનાવે છે

• રાઉટર: વિવિધ નેટવર્ક્સને જોડે છે, રૂટિંગ નિર્ણયો લે છે

• **ઇન્ટેલિજન્સ**: સ્વિચ MAC શીખે છે, રાઉટર રૂટિંગ ટેબલ રાખે છે

મેમરી ટ્રીક: "SR - સ્વિચ રૂટ્સ ઇન્ટેલિજન્ટલી"

પ્રશ્ન 2(બ OR) [4 ગુણ]

નીચેના શબ્દ સમજાવો 1) CDDI 2) DHCP અને BOOTP

જવાબ:

CDDI (કોપર ડિસ્ટ્રિબ્યુટેડ ડેટા ઇન્ટરફેસ):

• ટેકનોલોજી: કોપર કેબલ પર FDDI

• સ્પી**ડ**: ટ્વિસ્ટેડ પેર પર 100 Mbps

• કિંમત: ફાઇબર FDDI કરતાં સસ્તું વિકલ્પ

DHCP (ડાયનેમિક હોસ્ટ કન્ફિગરેશન પ્રોટોકોલ):

• કાર્ય: ઓટોમેટિક IP એડ્રેસ અસાઇનમેન્ટ

• પ્રક્રિયા: ડિસ્કવર, ઓફર, રિક્વેસ્ટ, એકનોલેજ

• **લાલો**: કેન્દ્રીકૃત IP મેનેજમેન્ટ

BOOTP (બૂટસ્ટ્રેપ પ્રોટોકોલ):

• કાર્ય: ડિસ્કલેસ ક્લાયંટ્સ માટે નેટવર્ક બૂટસ્ટ્રેપ

• સ્ટેટિક: ફિક્સ્ડ IP એડ્રેસ અસાઇનમેન્ટ

• **પૂર્વવર્તી**: DHCP નું અગાઉનું વર્ઝન

મેમરી ટ્રીક: "CDB - CDDI DHCP BOOTP"

પ્રશ્ન 2(ક OR) [7 ગુણ]

સોફ્ટવેર ડિફાઇન નેટવર્ક(SDN) ને તેના આર્કિટેક્ચર, એપ્લિકેશન, એડવાન્ટેજ અને મર્યાદા સાથે સમજાવો.

જવાબ:

SDN આર્કિટેક્ચર:

- **કંટ્રોલ પ્લેન**: કેન્દ્રીકૃત નેટવર્ક ઇન્ટેલિજન્સ
- **ડેટા પ્લેન**: પેકેટ ફોરવર્ડિંગ ઉપકરણો
- એપ્લિકેશન પ્લેન: નેટવર્ક એપ્લિકેશન્સ અને સેવાઓ

એપ્લિકેશન્સ:

- કલાઉડ કમ્પ્યુટિંગ: ડાયનેમિક રિસોર્સ એલોકેશન
- નેટવર્ક વર્ચ્યુઅલાઇઝેશન: મલ્ટિપલ વર્ચ્યુઅલ નેટવર્ક્સ
- ટ્રાફિક એન્જિનિયરિંગ: ઓપ્ટિમાઇઝ્ડ પાથ સિલેક્શન

કાયદાઓ:

- કેન્દ્રીકૃત કંટ્રોલ: સરળ નેટવર્ક મેનેજમેન્ટ
- પ્રોગ્રામેબિલિટી: કસ્ટમ નેટવર્ક બિહેવિયર
- લવચીકતા: ઝડપી સેવા ડિપ્લોયમેન્ટ

મર્યાદાઓ:

- સિંગલ પોઇન્ટ ફેલ્ચર: કંટ્રોલર ડિપેન્ડન્સી
- સ્કેલેબિલિટી: પર્કોર્મન્સ બોટલનેક્સ
- સુરક્ષા: નવા એટેક વેક્ટર્સ

મેમરી ટ્રીક: "SCAP - સોફ્ટવેર કંટ્રોલ એપ્લિકેશન પ્રોગ્રામેબલ"

પ્રશ્ન 3(અ) [3 ગુણ]

નીચેના IP સરનામાનો વર્ગ શોદ્યો.

- 1) 01111000 00001111 10101010 11000000
- 2) 11101000 01010101 11111111 11000011

જવાબ:

IP એડ્રેસ વર્ગીકરણ:

બાઇનરી એડ્રેસ	ડેસિમલ	પ્રથમ ઓક્ટેટ	qวí
01111000	120.15.170.192	120 (64-127)	qวi A
11101000	232.85.255.195	232 (224-239)	ี่ dəį D

વર્ગ રેન્જ:

• **นว**์ **A**: 1-126 (0xxxxxxx)

• **4วโ B**: 128-191 (10xxxxxx)

• **4วโ C**: 192-223 (110xxxxx)

• **นว์ D**: 224-239 (1110xxxx)

પરિણામો:

• પ્રથમ IP: વર્ગ A (યુનિકાસ્ટ)

• **બીજું IP**: વર્ગ D (મલ્ટિકાસ્ટ)

ਮੇਮਰੀ ਟ੍ਰੀs: "ABCD - A(1-126) B(128-191) C(192-223) D(224-239)"

પ્રશ્ન 3(બ) [4 ગુણ]

IPv4 અને IPv6 વચ્ચે તફાવત આપો.

જવાબ:

IPv4 vs IPv6 સરખામણી:

લક્ષણ	IPv4	IPv6
એડ્રેસ લેન્થ	32 બિટ્સ	128 બિટ્સ
એડ્રેસ ફોર્મેટ	ડોટેડ ડેસિમલ	હેક્સાડેસિમલ
એડ્રેસ સ્પેસ	4.3 બિલિયન	340 અન્ડેસિલિયન
હેડર સાઇઝ	વેરિયેબલ (20-60 બાઇટ્સ)	ફિક્સ્ડ (40 બાઇટ્સ)
સુરક્ષા	વૈકસ્પિક (IPSec)	બિલ્ટ-ઇન (IPSec)
કન્ફિગરેશન	મેન્યુઅલ/DHCP	ઓટો-કન્ફિંગરેશન

મુખ્ય તફાવતો:

• **એડ્રેસિંગ**: IPv6 વધુ વિશાળ એડ્રેસ પ્રદાન કરે છે

• **સુરક્ષા**: IPv6 માં ફરજિયાત સુરક્ષા લક્ષણો છે

• **પર્ફોર્મન્સ**: IPv6 માં સરળ હેડર સ્ટ્રક્ચર છે

મેમરી ટ્રીક: "IPv4 થી IPv6 = વધુ એડ્રેસ, બેહતર સુરક્ષા"

પ્રશ્ન 3(ક) [7 ગુણ]

સ્ટેટિક અને ડાયનેમિક રૂટિંગ અલ્ગોરિધમ્સ સમજાવો.

જવાબ:

સ્ટેટિક રૂટિંગ:

ડાયનેમિક રૂટિંગ:

સરખામણી ટેબલ:

પાસાં	સ્ટેટિક રૂટિંગ	ડાયનેમિક રૂટિંગ
કન્ફિગરેશન	મેન્યુઅલ સેટઅપ	ઓટોમેટિક ડિસ્કવરી
અડેપ્ટેબિલિટી	કોઈ અડેપ્ટેશન નહીં	ફેરફારોને અડેપ્ટ કરે
રિસોર્સ યુસેજ	ઓછું CPU/મેમરી	વધારે CPU/મેમરી
સ્કેલેબિલિટી	મોટા નેટવર્ક માટે નબળું	મોટા નેટવર્ક માટે સાટું
પ્રોટોકોલ	કોઈ જરૂરી નહીં	RIP, OSPF, BGP

એપ્લિકેશન્સ:

• સ્ટેટિક: નાના નેટવર્ક્સ, વિશિષ્ટ પાથ્સ

• ડાયનેમિક: મોટા નેટવર્ક્સ, ફોલ્ટ ટોલરન્સ

મેમરી ટ્રીક: "SD - સ્ટેટિક=સિમ્પલ, ડાયનેમિક=ઓટોમેટિક"

પ્રશ્ન 3(અ OR) [3 ગુણ]

CIDR સમજાવો.તે પરંપરાગત IP સરનામું ફાળવણી પદ્ધતિઓથી કેવી રીતે અલગ છે?

જવાબ:

CIDR (ક્લાસલેસ ઇન્ટર-ડોમેન રૂટિંગ):

• કન્સેપ્ટ: વેરિયેબલ લેન્થ સબનેટ માસ્કિંગ

• **નોટેશન**: IP એડ્રેસ/પ્રીફિક્સ લેન્થ (દા.ત., 192.168.1.0/24)

• લવચીકતા: કોઈપણ સાઇઝના સબનેટ્સ

પરંપરાગત vs CIDR:

પદ્ધતિ	ફાળવણી	કાર્યક્ષમતા
પરંપરાગત	ફિક્સ્ડ વર્ગ બાઉન્ડરીઝ	વેસ્ટફુલ (વર્ગ B = 65,536 IPs)
CIDR	વેરિયેબલ સબનેટ સાઇઝ	કાર્યક્ષમ ફાળવણી

લાલો:

• **એડ્રેસ કન્ઝર્વેશન**: IP એડ્રેસ વેસ્ટેજ ઘટાડે છે

• 32 એગ્રીગેશન: મલ્ટિપલ રૂટ્સનો સારાંશ આપે છે

મેમરી ટ્રીક: "CIDR = ક્લાસલેસ ઇન્ટેલિજન્ટ એડ્રેસ રૂટિંગ"

પ્રશ્ન 3(બ OR) [4 ગુણ]

DSL ટેકનોલોજીના પ્રકારો, ફાયદા અને મર્યાદાઓ નું વર્ણન કરો.

જવાબ:

DSL (ડિજિટલ સબસ્ક્રાઇબર લાઇન):

• ટેકનોલોજી: ટેલિફોન લાઇન્સ પર હાઇ-સ્પીડ ઇન્ટરનેટ

• ક્રીક્વન્સી: વોઇસ કરતાં વધારે ફ્રીક્વન્સીનો ઉપયોગ

DSL પ્રકારો:

язіг	સ્પીડ	એપ્લિકેશન
ADSL	એસિમેટ્રિક (ઝડપી ડાઉનલોડ)	ઘર વપરાશકર્તાઓ
SDSL	સિમેટ્રિક (સમાન અપ/ડાઉન)	બિઝનેસ
VDSL	અત્યંત ઉચ્ચ ગતિ	ટૂંકા અંતર

કાયદાઓ:

• હંમેશા-ઓન કનેક્શન: ડાયલ-અપની જરૂર નહીં

• **હાલનું ઇન્ફ્રાસ્ટ્રક્ચર**: ફોન લાઇન્સનો ઉપયોગ

• કિકાયતી: પોસાય તેવી હાઇ-સ્પીડ એક્સેસ

મર્યાદાઓ:

• અંતર આધારિત: અંતર વધે તો સ્પીડ ઘટે

• **લાઇન ક્વોલિટી**: સારી કોપર લાઇન્સની જરૂર

• ઉપલબ્ધતા: બધે ઉપલબ્ધ નથી

મેમરી ટ્રીક: "DSL = ડિજિટલ સ્પીડ અંતરથી મર્યાદિત"

પ્રશ્ન 3(ક OR) [7 ગુણ]

ડેટા લિંક લેયર પર error control અને flow control વિસ્તરવાર સમજાવો.

જવાબ:

એરર કંટ્રોલ:

એરર કંટ્રોલ પદ્ધતિઓ:

પદ્ધતિ	ટેકનીક	એપ્લિકેશન
પેરિટી ચેક	સિંગલ બિટ એરર ડિટેક્શન	સિમ્પલ સિસ્ટમ્સ
ચેકસમ	ગાણિતિક સરવાળો વેરિફિકેશન	TCP/UDP
CRC	પોલિનોમિયલ ડિવિઝન	Ethernet, Wi-Fi
ARQ	ઓટોમેટિક રિપીટ રિક્વેસ્ટ	વિશ્વસનીય પ્રોટોકોલ્સ

ફ્લો કંટ્રોલ:

ફ્લો કંટ્રોલ ટેકનીક્સ:

• સ્ટોપ-એન્ડ-વેઇટ: એક ફ્રેમ મોકલો, ACK ની રાહ જુઓ

• **સ્લાઇડિંગ વિન્ડો**: મલ્ટિપલ ફ્રેમ્સ ટ્રાન્ઝિટમાં

• બફર મેનેજમેન્ટ: ઓવરફ્લો અટકાવે છે

ઇમ્પ્લિમેન્ટેશન:

• હાર્ડવેર લેવલ: બફર સ્ટેટસ સિગ્નલ્સ

• સોફ્ટવેર લેવલ: પ્રોટોકોલ એકનોલેજમેન્ટ્સ

મેમરી ટ્રીક: "EF - એરર ડિટેક્શન, ફ્લો રેગ્યુલેશન"

પ્રશ્ન 4(અ) [3 ગુણ]

Video over IP સમજાવો.

જવાબ:

વિડિયો ઓવર IP (VoIP):

• ટેકનોલોજી: IP નેટવર્ક્સ પર વિડિયો સિગ્નલ્સ ટ્રાન્સમિટ કરે છે

• ડિજિટાઇઝેશન: એનાલોગ વિડિયોને ડિજિટલ પેકેટ્સમાં કન્વર્ટ કરે છે

• રિયલ-ટાઇમ: ઓછી લેટન્સી ટ્રાન્સમિશનની જરૂર

કમ્પોનન્ટ્સ:

• એનકોડર: વિડિયો ડેટાને કમ્પ્રેસ કરે છે

• **નેટવર્ક**: ટાન્સપોર્ટ માટે IP ઇન્ક્રાસ્ટક્ચર

• ડીકોડર: ડેસ્ટિનેશન પર ડીકમ્પ્રેસ કરે છે

એપ્લિકેશન્સ:

• વિડિયો કોન્ફરન્સિંગ: બિઝનેસ કમ્યુનિકેશન્સ

• સ્ટ્રીમિંગ: મનોરંજન સેવાઓ

• સર્વેલન્સ: સુરક્ષા સિસ્ટમ્સ

જરૂરિયાતો:

• બેન્ડવિડ્થ: ઉચ્ચ ડેટા રેટની જરૂર

• QoS: કોવાલિટી ઓફ સર્વિસ ગેરંટીઝ

મેમરી ટીક: "VIP = વિડિયો ઇન્ટરનેટ પ્રોટોકોલ"

પ્રશ્ન 4(બ) [4 ગુણ]

ઇલેક્ટ્રોનિક-મેઇલ તેના પ્રોટોકોલ સાથે સમજાવો.

જવાબ:

ઇમેઇલ સિસ્ટમ કમ્પોનન્ટ્સ:

ઇમેઇલ પ્રોટોકોલ્સ:

પ્રોટોકોલ	รเช้	પોર્ટ
SMTP	મેસેજ મોકલો/રિલે કરો	25, 587
РОР3	મેસેજ ડાઉનલોડ કરો	110
IMAP	સર્વર-બેસ્ડ એક્સેસ	143

પ્રોટોકોલ વિગતો:

• SMTP: મોકલવા માટે સિમ્પલ મેઇલ ટ્રાન્સફર પ્રોટોકોલ

• POP3: લોકલ ડિવાઇસ પર મેઇલ ડાઉનલોડ કરે છે

• IMAP: મેઇલ સર્વર પર રાખે છે, મલ્ટિ-ડિવાઇસ એક્સેસ

મેસેજ ક્લો:

• કમ્પોઝિશન: યુઝર મેસેજ બનાવે છે

• **સબમિશન**: SMTP સર્વર પર મોકલે છે

• ડિલિવરી: સર્વર પ્રાપ્તકર્તા પર કોરવર્ડ કરે છે

• **રિટીવલ**: POP3/IMAP મેસેજ ડાઉનલોડ કરે છે

મેમરી ટીક: "SPI - SMTP મોકલે, POP3/IMAP મેળવે"

પ્રશ્ન 4(ક) [7 ગુણ]

DNS- ડોમેન-નેમ સિસ્ટમની ભૂમિકા સમજાવો DNS રિઝોલ્યુશનની પ્રક્રિયાનું વર્ણન કરો.

જવાબ:

DNS ભૂમિકા:

• નેમ રિઝોલ્યુશન: ડોમેન નેમ્સને IP એડ્રેસમાં કન્વર્ટ કરે છે

• હાયરાર્કિકલ સિસ્ટમ: વિતરિત ડેટાબેસ સ્ટ્રક્ચર

• ઇન્ટરનેટ નેવિગેશન: વેબ બ્રાઉઝિંગને યુઝર-ફ્રેન્ડલી બનાવે છે

DNS રિઝોલ્યુશન પ્રક્રિયા:

રિઝોલ્યુશન સ્ટેપ્સ:

1. **લોકલ કેશ ચેક**: લોકલ DNS કેશ ચેક કરો

2. **રિકર્સિવ ક્વેરી**: લોકલ DNS સર્વરનો સંપર્ક કરો

3. **રટ સર્વર**: TLD સર્વર રેફરન્સ મેળવો

4. **TLD સર્વર**: ઓથોરિટેટિવ સર્વર રેફરન્સ મેળવો

5. **ઓથોરિટેટિવ સર્વર**: અંતિમ IP એડ્રેસ મેળવો

6. **રિસ્પોન્સ રિટર્ન**: ક્લાયંટને IP એડ્રેસ પરત કરો

DNS રેકોર્ડ પ્રકારો:

• A રેકોર્ડ: નેમને IPv4 એડ્રેસ સાથે મેપ કરે છે

• AAAA રેકોર્ડ: નેમને IPv6 એડ્રેસ સાથે મેપ કરે છે

• **CNAME**: કેનોનિકલ નેમ એલિયાસ

• MX: મેઇલ એક્સચેન્જ સર્વર

લાલો:

• યુઝર ફ્રેન્ડલી: નંબર્સ નહીં, નેમ્સ યાદ રાખો

• **લોડ ડિસ્ટ્રિબ્યુશન**: મલ્ટિપલ IP એડ્રેસ

• સર્વિસ લોકેશન: વિશિષ્ટ સેવાઓ શોધો

મેમરી ટ્રીક: "DNS = ડાયરેક્ટરી નેમ સર્વિસ"

પ્રશ્ન 4(અ OR) [3 ગુણ]

WWW, HTML સમજાવો.

જવાબ:

WWW (વર્લ્ડ વાઇડ વેબ):

• વ્યાખ્યા: ઇન્ટરલિંક્ડ ડોક્યુમેન્ટ્સની માહિતી સિસ્ટમ

• **એક્સેસ**: HTTP ઉપયોગ કરીને વેબ બ્રાઉઝર દ્વારા

• કમ્પોનન્ટ્સ: વેબ પેજ, લિંક્સ, URLs

HTML (હાઇપરટેક્સ્ટ માર્કઅપ લેંગ્વેજ):

• હેતુ: વેબ પેજ માટે સ્ટાન્ડર્ડ માર્કઅપ લેંગ્વેજ

• સ્ટ્રક્ચર: ટેગ્સ ડોક્યુમેન્ટ એલિમેન્ટ્સ વ્યાખ્યાયિત કરે છે

• હાઇપરલિંક્સ: વિવિધ વેબ રિસોર્સ કનેક્ટ કરે છે

સંબંધ:

• **WWW**: સિસ્ટમ/પ્લેટફોર્મ

• **HTML**: કન્ટેન્ટ ફોર્મેટ

• **ઇન્ટિગ્રેશન**: HTML WWW કન્ટેન્ટ બનાવે છે

મેમરી ટ્રીક: "WWW કન્ટેન્ટ માટે HTML નો ઉપયોગ કરે છે"

પ્રશ્ન 4(બ OR) [4 ગુણ]

HTTP અને FTP સમજાવો.

જવાલ:

પ્રોટોકોલ સરખામણી:

લક્ષણ	НТТР	FTP
હેતુ	વેબ પેજ ટ્રાન્સફર	ફાઇલ ટ્રાન્સફર
પોર્ટ	80 (HTTP), 443 (HTTPS)	21 (કંટ્રોલ), 20 (ડેટા)
કનેક્શન	સ્ટેટલેસ	સ્ટેટફુલ
સુરક્ષા	સુરક્ષા માટે HTTPS	સુરક્ષા માટે FTPS

HTTP (હાઇપરટેક્સ્ટ ટ્રાન્સફર પ્રોટોકોલ):

• કાર્ય: વેબ માટે રિક્વેસ્ટ-રિસ્પોન્સ પ્રોટોકોલ

• મેથડ્સ: GET, POST, PUT, DELETE

• સ્ટેટલેસ: દરેક રિક્વેસ્ટ સ્વતંત્ર

FTP (કાઇલ ટાન્સકર પ્રોટોકોલ):

• કાર્ય: સિસ્ટમ્સ વચ્ચે ફાઇલો અપલોડ/ડાઉનલોડ

• મોડ્સ: એક્ટિવ અને પેસિવ

• ઓથેન્ટિકેશન: યુઝરનેમ/પાસવર્ડ જરૂરી

એપ્લિકેશન્સ:

• **HTTP**: વેબ બ્રાઉઝિંગ, API કોલ્સ

• FTP: ફાઇલ શેરિંગ, વેબસાઇટ મેઇન્ટેનન્સ

મેમરી ટ્રીક: "HF - HTTP હાઇપરટેક્સ્ટ માટે, FTP ફાઇલો માટે"

પ્રશ્ન 4(ક OR) [7 ગુણ]

કનેક્શન ઓરિએન્ટેડ અને કનેક્શન લેસ નેટવર્કના સંબંધમાં ટ્રાન્સપોર્ટ લેયરમાં TCP અને UDP પ્રોટોકોલ સમજાવો.

જવાબ:

ટ્રાન્સપોર્ટ લેયર પ્રોટોકોલ્સ:

પ્રોટોકોલ સરખામણી:

લક્ષણ	ТСР	UDP
કનેક્શન	કનેક્શન-ઓરિએન્ટેડ	કનેક્શનલેસ
વિશ્વસનીયતા	ગેરંટીડ ડિલિવરી	બેસ્ટ એફર્ટ
સ્પીડ	ધીમું (ઓવરહેડ)	ઝડપી (મિનિમલ ઓવરહેડ)
હેડર સાઇઝ	20 બાઇટ્સ	8 બાઇટ્સ
ફ્લો કંટ્રોલ	હા	ना
એરર કંટ્રોલ	હા	મર્યાદિત

TCP (ટ્રાન્સમિશન કંટ્રોલ પ્રોટોકોલ):

• થ્રી-વે હેન્ડશેક: SYN, SYN-ACK, ACK

• વિશ્વસનીય: એકનોલેજમેન્ટ અને રીટ્રાન્સમિશન

• ફ્લો કંટ્રોલ: બફર ઓવરફ્લો અટકાવે છે

• એપ્લિકેશન્સ: વેબ બ્રાઉઝિંગ, ઇમેઇલ, ફાઇલ ટ્રાન્સફર

UDP (યુઝર ડેટાગ્રામ પ્રોટોકોલ):

• કોઈ કનેક્શન સેટઅપ નહીં: સીધું ડેટા ટ્રાન્સમિશન

• લાઇટવેઇટ: મિનિમલ પ્રોટોકોલ ઓવરહેડ

• ક્રોઈ ગેરંટી નહીં: ફાયર-એન્ડ-ફોરગેટ એપ્રોય

• **એપ્લિકેશન્સ**: વિડિયો સ્ટ્રીમિંગ, DNS, ગેમિંગ

કનેક્શન મોડલ્સ:

• કનેક્શન-ઓરિએન્ટેડ: સ્થાપિત, ટ્રાન્સફર, સમાપ્ત

• કનેક્શનલેસ: સેટઅપ વિના સીધું ટ્રાન્સમિશન

સિલેક્શન માપદંડ:

• TCP ઉપયોગ કરો: જ્યારે વિશ્વસનીયતા મહત્વપૂર્ણ હોય

• UDP ઉપયોગ કરો: જ્યારે સ્પીડ વધુ મહત્વપૂર્ણ હોય

મેમરી ટ્રીક: "TCP = સંપૂર્ણ, UDP = અલ્ટ્રા-ફાસ્ટ"

પ્રશ્ન 5(અ) [3 ગુણ]

હેકિંગ અને તેની સંબંધિત સાવચેતીઓનું વર્ણન કરો.

જવાબ:

હેકિંગ વ્યાખ્યા:

• અન**ધિકૃત પ્રવેશ**: કમ્પ્યુટર સિસ્ટમમાં પ્રવેશ

• દુષ્ટ હેતુ: ડેટા ચોરી, સુધારો અથવા નાશ

• **સુરક્ષા લંગ**: સિસ્ટમ નબળાઈઓનો ગેરફાયદો

હેકિંગના પ્રકારો:

• એથિકલ હેકિંગ: અધિકૃત સુરક્ષા પરીક્ષણ

• મેલિશિયસ હેકિંગ: ગુનાહિત પ્રવૃત્તિઓ

• સોશિયલ એન્જિનિયરિંગ: માનવીય વર્તણૂકની હેરાફેરી

સાવચેતીઓ:

સુરક્ષા માપ	અમલીકરણ
મજબૂત પાસવર્ડ	જટિલ, અનન્ય પાસવર્ડ
સોફ્ટવેર અપડેટ્સ	નિયમિત પેથ અને અપડેટ્સ
ફાયરવોલ	નેટવર્ક એક્સેસ કંટ્રોલ
એન્ટિવાયરસ	મેલવેર ડિટેક્શન અને દૂર કરવું
બેકઅપ	નિયમિત ડેટા બેકઅપ
યુઝર ટ્રેનિંગ	સુરક્ષા જાગરૂકતા કાર્યક્રમો

મેમરી ટ્રીક: "HSPFAB - હેકિંગ પાસવર્ડ, ફાયરવોલ, એન્ટિવાયરસ, બેકઅપથી અટકાવાય"

પ્રશ્ન 5(બ) [4 ગુણ]

IPSec આર્કિટેક્ચર સમજાવો.

જવાબ:

IPSec (ઇન્ટરનેટ પ્રોટોકોલ સિક્યુરિટી):

IPSec કમ્પોનન્ટ્સ:

કમ્પોનન્ટ	รเช้
АН	ઓથેન્ટિકેશન અને ઇન્ટેગ્રિટી
ESP	ગુપ્તતા અને ઓથેન્ટિકેશન
SA	સુરક્ષા પેરામીટર એગ્રીમેન્ટ
IKE	કી મેનેજમેન્ટ પ્રોટોકોલ

ઓપરેટિંગ મોડ્સ:

• ટ્રાન્સપોર્ટ મોડ: માત્ર પેલોડને સુરક્ષા આપે છે

• **ટનલ મોડ**: સંપૂર્ણ IP પેકેટને સુરક્ષા આપે છે

સુરક્ષા સેવાઓ:

• ઓથેન્ટિકેશન: મોકલનારની ઓળખ ચકાસો

• ઇન્ટેગ્નિટી: ડેટા અપરિવર્તિત છે તેની ખાતરી

• ગુપ્તતા: ડેટા કન્ટેન્ટ એન્ક્રિપ્ટ કરો

• એન્ટિ-રિપ્લે: પેકેટ રિપ્લે એટેક અટકાવો

મેમરી ટ્રીક: "AISE - AH, IPSec, SA, ESP"

પ્રશ્ન 5(ક) [7 ગુણ]

નેટવર્ક સુરક્ષા ટોપોલોજી સમજાવો.

જવાબ:

નેટવર્ક સુરક્ષા ટોપોલોજીઓ:

સુરક્ષા ઝોન્સ:

ઝોન	હેતુ	સુરક્ષા સ્તર
ઇન્ટરનેટ	બાહ્ય અવિશ્વસનીય નેટવર્ક	સૌથી ઓછું
DMZ	સેમિ-ટ્રસ્ટેડ પબ્લિક સેવાઓ	મધ્યમ
આંતરિક	ખાનગી વિશ્વસનીય નેટવર્ક	સૌથી વધુ

ટોપોલોજી કમ્પોનન્ટ્સ:

• **પેરિમીટર સિક્યુરિટી**: ફાયરવોલ, IDS/IPS

• **નેટવર્ક સેગમેન્ટેશન**: VLANs, સબનેટ્સ

• એક્સેસ કંટ્રોલ: ઓથેન્ટિકેશન, ઓથોરાઇઝેશન

• **મોનિટરિંગ**: લોગિંગ, SIEM સિસ્ટમ્સ

સુરક્ષા સિદ્ધાન્તો:

• **ડિફેન્સ ઇન ડેપ્થ**: મલ્ટિપલ સુરક્ષા સ્તરો

• લીસ્ટ પ્રિવિલેજ: મિનિમમ જરૂરી એક્સેસ

• નેટવર્ક આઇસોલેશન: ક્રિટિકલ સિસ્ટમ્સ અલગ કરો

અમલીકરણ વ્યૂહરચનાઓ:

• ફાયરવોલ નિયમો: ટ્રાફિક ફ્લો કંટ્રોલ કરો

• VPN એક્સેસ: સુરક્ષિત રિમોટ કનેક્શન્સ

• નેટવર્ક મોનિટરિંગ: ધમકીઓ શોધો

• ઇન્સિડન્ટ રિસ્પોન્સ: સુરક્ષા ઘટનાઓ હેન્ડલ કરો

લાલો:

• રિસ્ક રિડક્શન: એટેક સર્ફેસ મિનિમાઇઝ કરો

• કમ્પ્લાયન્સ: નિયમન જરૂરિયાતો પૂરી કરો

• બિઝનેસ કન્ટિન્યુટી: ઓપરેશન્સને સુરક્ષા આપો

મેમરી ટ્રીક: "NST = નેટવર્ક સિક્યુરિટી ટોપોલોજી ડિઝાઇન દ્વારા"

પ્રશ્ન 5(અ OR) [3 ગુણ]

ISO સમજાવો અને તે માહિતી સુરક્ષામાં કેવી રીતે ફાળો આપે છે?

જવાબ:

ISO (ઇન્ટરનેશનલ ઓર્ગેનાઇઝેશન ફોર સ્ટેન્ડર્ડાઇઝેશન):

• ગ્લોબલ સ્ટેન્ડર્ડ્સ: આંતરરાષ્ટ્રીય ધોરણો વિકસાવે છે

• ક્વોલિટી એશ્યુરન્સ: સતત પ્રથાઓની ખાતરી કરે છે

• બેસ્ટ પ્રેક્ટિસિસ: અમલીકરણ માટે ફ્રેમવર્ક પ્રદાન કરે છે

ISO 27001 - ઇન્ફર્મેશન સિક્યુરિટી:

• ISMS: ઇન્ફર્મેશન સિક્યુરિટી મેનેજમેન્ટ સિસ્ટમ

• રિસ્ક મેનેજમેન્ટ: સુરક્ષા માટે વ્યવસ્થિત અભિગમ

• **સતત સુધારણા**: નિયમિત સમીક્ષા અને અપડેટ્સ

ઇન્ફર્મેશન સિક્યુરિટીમાં યોગદાન:

• ફ્રેમવર્ક: સુરક્ષા માટે સંરચિત અભિગમ

• **કમ્પ્લાયન્સ**: નિયમન જરૂરિયાતો પૂરી કરો

• રિસ્ક એસેસમેન્ટ: ધમકીઓ ઓળખો અને ઘટાડો

લાલો:

• **સ્ટેન્ડર્ડાઇઝેશન**: સામાન્ય સુરક્ષા ભાષા

• **વિશ્વસનીયતા**: આંતરરાષ્ટ્રીય માન્યતા

• **સુધારણા**: ચાલુ સુરક્ષા વૃદ્ધિ

મેમરી ટ્રીક: "ISO = ઇન્ટરનેશનલ સિક્યુરિટી ઓર્ગેનાઇઝેશન"

પ્રશ્ન 5(બ OR) [4 ગુણ]

સમપ્રમાણ અને અસમપ્રમાણ એન્ક્રિપ્શન અલ્ગોરિદ્યમ્સ વચ્ચે તકાવત આપો.

જવાબ:

એન્ક્રિપ્શન અલ્ગોરિદ્યમ સરખામણી:

લક્ષણ	સમપ્રમાણ	અસમપ્રમાણ
કીઓ	સિંગલ શેર્ડ કી	કી પેર (પબ્લિક/પ્રાઇવેટ)
સ્પીડ	ઝડપી	ધીમું
કી ડિસ્ટ્રિબ્યુશન	મુશ્કેલ	સરળ
સ્કેલેબિલિટી	નબળું (n²-1 કીઓ)	બેહતર
સુરક્ષા	કી ગુપ્તતા પર આધાર	ગાણિતિક જટિલતા

સમપ્રમાણ એન્ક્રિપ્શન:

• **G**ียเย่งยา้: AES, DES, 3DES

• પ્રક્રિયા: સમાન કી એન્ક્રિપ્ટ અને ડિક્રિપ્ટ કરે છે

• પડકાર: સુરક્ષિત કી ડિસ્ટ્રિબ્યુશન

અસમપ્રમાણ એન્ક્રિપ્શન:

• **G**ียเ**๔ะยi**: RSA, ECC, Diffie-Hellman

• પ્રક્રિયા: પબ્લિક કી એન્ક્રિપ્ટ કરે, પ્રાઇવેટ કી ડિક્રિપ્ટ કરે

• ફાયદો: કી ડિસ્ટ્રિબ્યુશન સમસ્યા નથી

હાઇબ્રિડ અભિગમ:

• કોમ્બિનેશન: બંને પ્રકારનો સાથે ઉપયોગ

• પદ્ધતિ: કી એક્સચેન્જ માટે અસમપ્રમાણ, ડેટા માટે સમપ્રમાણ

એપ્લિકેશન્સ:

• સમપ્રમાણ: બલ્ક ડેટા એન્ક્રિપ્શન

• અસમપ્રમાણ: ડિજિટલ સિગ્નેયર, કી એક્સચેન્જ

મેમરી ટ્રીક: "SA = સમપ્રમાણ શેર્ડ, અસમપ્રમાણ અલગ"

પ્રશ્ન 5(ક OR) [7 ગુણ]

IEmail સુરક્ષાને તેના standards સાથે સમજાવો.

જવાબ:

ઇમેઇલ સુરક્ષા પડકારો:

ઇમેઇલ સુરક્ષા સ્ટેન્ડર્ડ્સ:

સ્ટેન્ડર્ડ	હેતુ	ธเน้
S/MIME	સુરક્ષિત ઇમેઇલ કન્ટેન્ટ	એન્ક્રિપ્શન અને ડિજિટલ સિગ્નેચર
PGP	પ્રિટી ગુડ પ્રાઇવસી	એન્ડ-ટુ-એન્ડ એન્ક્રિપ્શન
TLS	ટ્રાન્સપોર્ટ સુરક્ષા	સુરક્ષિત ઇમેઇલ ટ્રાન્સમિશન
SPF	સેન્ડર ઓથેન્ટિકેશન	ઇમેઇલ સ્પૂર્ફિંગ અટકાવો
DKIM	મેસેજ ઇન્ટેગ્રિટી	ડિજિટલ સિગ્નેથર વેરિફિકેશન
DMARC	પોલિસી એન્ફોર્સમેન્ટ	ઇમેઇલ ઓથેન્ટિકેશન પોલિસી

સુરક્ષા મેકેનિઝમ્સ:

• **એન્ક્રિપ્શન**: મેસેજ કન્ટેન્ટ સુરક્ષા

• ડિજિટલ સિગ્નેચર: સેન્ડર આઇડેન્ટિટી વેરિફાય કરો

• ઓથેન્ટિકેશન: મેસેજ ઓરિજિન કન્ફર્મ કરો

• ઇન્ટેગ્નિટી: મેસેજ અપરિવર્તિત છે તેની ખાતરી

અમલીકરણ સ્તરો:

• ટ્રાન્સપોર્ટ લેયર: TLS/SSL એન્ક્રિપ્શન

• મેસેજ લેચર: S/MIME, PGP એન્ક્રિપ્શન

• પોલિસી લેયર: SPF, DKIM, DMARC

બેસ્ટ પ્રેક્ટિસિસ:

• યુઝર એજ્યુકેશન: ફિશિંગ પ્રયાસો ઓળખો

• ગેટવે ફિલ્ટરિંગ: દુષ્ટ ઇમેઇલ્સ બ્લોક કરો

• રેગ્યુલર અપડેટ્સ: સુરક્ષા સોફ્ટવેર અપ-ટુ-ડેટ રાખો

• બેકઅપ સિસ્ટમ્સ: ડેટા લોસ સામે સુરક્ષા

લાલો:

• ગુપ્તતા: ખાનગી સંવાદ

• ઓથેન્ટિકેશન: વેરિફાઇડ સેન્ડર્સ

• કમ્પ્લાયન્સ: નિયમન જરૂરિયાતો પૂરી કરો

• ટ્રસ્ટ: સુરક્ષિત બિઝનેસ કમ્યુનિકેશન્સ

મેમરી ટ્રીક: "SPTSD = S/MIME, PGP, TLS, SPF, DKIM ઇમેઇલ સુરક્ષા આપે છે"