Below is a **step-by-step** walkthrough showing how to build and simplify a 3-variable K-map for the output Y_1 . We assume our inputs are (X_2, X_1, X_0) , and we have a truth table giving us Y_1 for each combination of these inputs.

1. Set Up the K-Map

- 1. Determine K-map size:
 - With three inputs, the K-map has $2^3 = 8$ cells.
- 2. Label the rows and columns:
 - Put X_2 on the rows (top row for $X_2 = 0$, bottom row for $X_2 = 1$).
 - Use **Gray code** for the columns with (X_1, X_0) in the order 00, 01, 11, 10.

Your blank K-map will look like this:

	(X1X0) 00	01	11	10
X2 = 0				
X2 = 1				

2. Fill the K-Map Using the Truth Table

- 1. Go row by row through your truth table for (X_2, X_1, X_0) .
- 2. Check Y_1 for each row:
 - If $Y_1 = 1$, place a 1 in the K-map cell that matches (X_2, X_1, X_0) .
 - If $Y_1 = 0$, place a 0.
- 3. Repeat until all 8 cells are filled.

Tip: Each row in the truth table tells you exactly one cell in the K-map to fill. The row where $(X_2, X_1, X_0) = (0, 0, 0)$ goes in the top-left cell $(X_2 = 0, X_1X_0 = 00)$, etc.

3. Identify Groups of 1's

Once you've placed all the 1s and 0s:

- 1. **Look for adjacent 1-cells**—in powers of two (1, 2, 4, 8). Cells are considered adjacent if they differ by only **one** input bit.
- 2. Circle (or group) those 1s. Larger groups mean simpler terms.

Common group sizes:

- Pairs (2 cells)
- Quads (4 cells)
- Octets (8 cells, if everything is 1)

4. Extract the Simplified Expression

For each group:

- 1. **Determine which inputs are constant** across that group (i.e., which input bits do *not* change).
- 2. Form the product term (AND) with those constant bits, using the original or complemented form (e.g., X_1 or $\overline{X_1}$) as required.
- 3. **Sum** (OR) all the product terms if you have multiple groups.

That final sum of products gives you the simplified Boolean expression for Y_1 .

For example, if all the 1s in the K-map appear only in columns where $X_1 = 0$, then X_1 must be complemented in the expression, leading to $Y_1 = \overline{X_1}$.

Example Outcome

Often, you'll discover that Y_1 depends on fewer variables than the full set (X_2, X_1, X_0) . In many seven-segment or decoder circuits, it might turn out that

$$Y_1 = \overline{X_1}$$
 (just an example),

meaning that Y_1 is "1" whenever X_1 is "0," regardless of X_2 or X_0 .

That's it! By systematically labeling, filling, and grouping your K-map, you get a straightforward simplification of Y_1 . Once you see this process in action a few times, it becomes much more intuitive for any output column you might want to map.