PiE C^{++} Final Assignment

Name: Duc Nguyen, student number: $s1630512^*$

November 7, 2015

 $^{{\}rm *Email\; address\; for\; correspondence:\; nguyenmanhduc@student.utwente.nl\; or\; ngmaduc@gmail.com}$

Exercise 1

Question 1.1

Write a C++ program to compute the first N prime numbers, where N is given by the user. Use dynamic arrays to store the primes and use this information in the mod test.

Answer.

Three functions are used for this question including bruteForce, modTest and print_primes for finding prime numbers and printing out the result in console. Passing by reference are chosen to avoid unnecessary copy of variables.

```
std::vector <unsigned long int> bruteForce (int &n);
std::vector <unsigned long int> modTest (int &n);
void print_primes (int &n, const std::vector <unsigned long int>& primes);
```

The method chosen to create dynamic arrays to store the primes is std::vector. The range [0, 2147483647] of unsigned long int fits to the scope of the question. The idea of bruteForce, modTestDiv are shown in the following code snippets.

```
bruteForce
         primes.push_back(2);
           unsigned long int c;//need to be the type of primes for mode test
2
           int count = 1;
3
           for (int count = 1; count < n; ){//counter from 1; "2" included before
4
               for (c = 2; c < num; c++)
                   if (\text{num } \% \text{ c} = 0) {//mod test from 2 to n
                        break;
9
               if (c = num) {//to this point means no divisor up to n, Prime!
10
                   primes.push_back(num);//push to result vector of Prime
11
                   count++;//increase counter
12
13
               num++;
14
15
```

```
if (num % primes[i] ==0) {//non-primes are products of primes
                      isPrime = false;
6
                      break;
7
                    }
8
               }
9
               if (isPrime == true) {
10
                    primes.push_back(num);
11
                    count++;//increase counter
12
               }
13
               num++;
14
```

Question 1.2

Write to the screen a list of the first 10000 primes in the format below; where p(n) is the n^{th} prime number. Report only the last five lines. Comment on the behaviour of the ratio n * ln(p(n))/p(n) as n gets large.

Answer.

The void print_ratio (int &n, const std::vector <unsigned long int>& primes) and prime number finding functions together generate the required ratio. As n gets large, the ratio tends to converge to 1. Until $10^5 - th$ prime number, the ratio is 1.103.

The last five lines are and the print_ratio are listed below:

```
      1
      9996
      :
      104707
      :
      1.10348856177824

      2
      9997
      :
      104711
      :
      1.10356044403989

      3
      9998
      :
      104717
      :
      1.10361306655082

      4
      9999
      :
      104723
      :
      1.10366568381267

      5
      10000
      :
      104729
      :
      1.10371829582629
```

Question 1.3

Based on question 2, give an estimate of the $10^6 - th$ prime number.

Answer.

We use 1.1 for the value of the ratio with $n = 10^6$:

$$10^6 * ln(p(10^6))/p(10^6) \approx 1.1$$

Using Wolfram Alpha to solve this equation, the estimate of the $10^6 - th$ prime number is:

$$p(10^6) \approx 15022800$$

Question 1.4

Instead of writing to the screen, write to a file (on disk) a list containing just the prime numbers. Print eight numbers per line, such that all numbers have the same space.

Answer.

Question 2

Use symbolic dierentiation from the matlab symbolic toolbox to derive the magnitude of the force as a function of r_{ij} .

ANSWER

Question 3

Plot the force fij as a function of the distance r_{ij} .

ANSWER

Question 4

Write two matlab functions that solve the differential equations, for a 1D system of particles, using Euler Forward algorithm and the Verlet algorithm. Comment on which algorithm you prefer and state why?

ANSWER

Question 5

Plot the potential V_{ij} as a function of the distance rij . Plot separately both the attractive and repulsive contribution.

ANSWER

Question 6

Plot the potential V_{ij} as a function of the distance rij . Plot separately both the attractive and repulsive contribution.

ANSWER