

Variational Quantum Eigensolver

Omar Shehab

Staff Research Scientist

IBM Quantum

Road Map

- Build up high-level description of VQE
- Discuss theoretical underpinnings
- Sample code walk through

Quantum Phase Estimation recap

Quantum phase estimation

Iterative quantum phase estimation

VQE: Motivation

Goal: minimize the energy of a system

- $E: \mathbb{R}^k \mapsto \mathbb{R}$
- parameters

real number

- Initialize params $heta_0$
- Repeat:
 - Evaluate $E(\theta_i)$
 - Choose θ_{i+1}

VQE: Motivation

Goal: minimize the energy of a system

- Evaluate $E(\theta_i)$
- Choose θ_{i+1}

Quantum Computer

Qiskit | Global Summer School 2023

Cost Function: What is a Hamiltonian?

If the system is in state $|\psi\rangle$, the energy of the system is: $\langle\psi|H|\psi\rangle$

We want to know the minimum energy of H. In other words: the lowest eigenvalue, λ_0

$$\begin{aligned} & \underset{|\psi\rangle}{min} \langle \psi | H | \psi \rangle \\ &= \langle \psi_0 | H | \psi_0 \rangle \\ &= \lambda_0 \end{aligned}$$

Trial States + The Variational Principle

Parameterize some continuous subset M_k of quantum states

$$|\psi(\theta)\rangle \in M_k \subset \mathbb{C}^{2^n}$$

Where $k = \dim(\theta) = \mathcal{O}(poly)$

Note: we are not guaranteed that M_k contains the ground state!

WHP: $|\psi_0\rangle \notin M_k$

Trial States + The Variational Principle

Trial States

Parameterize some continuous subset M_k of quantum states

$$|\psi(\theta)\rangle \in M_k \subset \mathbb{C}^{2^n}$$

Where $k = \dim(\theta) = \mathcal{O}(poly)$

Note: we are not guaranteed that M_k contains the ground state!

WHP: $|\psi_0\rangle \notin M_k$

The Variational Principle

$$\langle \psi(\theta)|H|\psi(\theta)\rangle \ge \langle \psi_0|H|\psi_0\rangle$$

(Still holds if $|\psi(\theta)\rangle$ isn't pure)

$$\frac{\langle \psi(\theta) | H | \psi(\theta) \rangle}{\langle \psi(\theta) | \psi(\theta) \rangle} \ge \langle \psi_0 | \psi_0 \rangle$$

Proof attached after conclusions | Global Summer School 2023

Cost Function Breakdown

Cost Function Breakdown

Compile θ into a quantum circuit

Generate pulse sequences for quantum circuit

Execute circuit and prepare trial state

 $|\psi(\theta)\rangle$

Measure Pauli Strings

 $\langle \psi(\theta)|P_i|\psi(\theta)\rangle$

Combine results to estimate

 $\langle \psi(\theta)|H|\psi(\theta)\rangle$ $=E(\theta)$

 $E(\theta)$

The whole VQE-nchillada

Advantages:

- Uses shallow circuits
- Results in an efficient representation of the ground † state

Robust to incoherent **AND** coherent noise

† Approximate representation & only when successful.

The whole VQE-nchillada

- 1. Optimizer
- 2. Hamiltonian Mapping
- 3. Hamiltonian Mapping & Reduction
- 4. Initial States + Variational Forms
- 5. Hardware Control
- 6. Error Mitigation Techniques

VQE Application Areas

Chemistry

- Ground State Preparation
- Excited state prep

Optimization

- Constraint Satisfaction
 - Traveling Salesman
- Clustering

When should you try VQE?

Your problem is naturally expressed with a Hamiltonian & the solution finding states with high ground-state overlap.

When does VQE perform well?

Not so easy to answer.

VQE under the following conditions:

Where depth and # VQE iterations is $\mathcal{O}(poly)$ † The VQE ansatz has 2D connectivity

Qiskit | Global Summer School 2023

Easy for Classical

Classical algorithms for quantum mean values

Sergey Bravyi, David Gosset, Ramis Movassagh

(Submitted on 25 Sep 2019)

The Complexity of the Local Hamiltonian Problem

Julia Kempe, Alexei Kitaev, Oded Regev

(Submitted on 24 Jun 2004 (v1), last revised 2 Oct 2005 (this version, v2))

The Power of Quantum Systems on a Line

Dorit Aharonov, Daniel Gottesman ☑, Sandy Irani & Julia Kempe

A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians

Zeph Landau¹, Umesh Vazirani¹ and Thomas Vidick²*

er

Key take aways

VQE is a heuristic algorithm that:

- Extends the reach of classical techniques
- Is suited to near term hardware
 - Requires only shallow circuits
 - Shows robustness to coherent and incoherent noise

The whole VQE-nchillada

- 1. Optimizer
- 2. Hamiltonian Mapping
- 3. Hamiltonian Mapping & Reduction
- 4. Initial States + Variational Forms
- 5. Hardware Control
- 6. Error Mitigation Techniques

Check out Qiskit Textbook demo

https://learn.qiskit.org/course/ch-applications/simulating-molecules-using-vqe

The Variational Principle (quick proof)

Expand Hamiltonian

$$H = \sum_{i=1}^{k} \lambda_{i} |\psi_{i}\rangle\langle\psi_{i}| for \, eigenvalues \lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{k}$$

$$\langle\psi(\theta)|H|\psi(\theta)\rangle = \sum_{i=1}^{k} \lambda_{i}\langle\psi(\theta)|\psi_{i}\rangle\langle\psi_{i}|\psi(\theta)\rangle$$

$$\langle\psi(\theta)|H|\psi(\theta)\rangle = \sum_{i=1}^{k} \lambda_{i} |\langle\psi(\theta)|\psi_{i}\rangle|^{2}$$

$$min\langle\psi(\theta)|H|\psi(\theta)\rangle = \lambda_0 \rightarrow |\psi(\theta)\rangle = |\psi_0\rangle$$

Thank you

