Modifikasi Permutasi dari Reversible Data Hiding dengan Menggunakan Difference Histogram Shiffting pada Medical Image Terenkripsi

Muhammad Fadhlan Putranto

1301140418

Bahasan

- 1. Latar Belakang
- 2. Gambaran Sistem
- 3. Eksperimen dan Analisis
- 4. Kesimpulan

Latar belakang

Latar belakang Lanjt.

Batasan

- 1. dataset yang digunakan adalah dataset gambar rontgen (X-ray) yang berukuran 1024 x 1024 piksel
- 2. total dataset yang digunakan sejumlah 30 gambar.
- 3. Gambar memiliki format *Portable Network Graphics* (PNG)

Dataset

Sistem yang Dibangun

Embedding

A. Enkripsi Gambar

- 1. Bagi gambar menjadi beberapa subblok ukuran 3 x 3
- 2. Hasilkan kunci sepanjang N (blok) menggunakan RC4
- 3. Lakukan operasi XOR, mengikuti persamaan di bawah

$$E_{i,j} = P_{i,j} \oplus K_i$$

dimana:

i: Blok ke-i ($1 \le i \le N$)

j: piksel tiap subblok ($1 \le j \le 9$)

A. Enkripsi Gambar Lanjt.

4. Lakukan permutasi dengan melakukan pertukaran blok ke-i dengan blok ke- Y_i ,. Dimana Y_i mengikuti persamaan di bawah

$$Y_i = g^x mod P$$

dimana:

 Y_i : angka yang dihasilkan

P: Bilangan prima setelah N

g: angka yang relative prima terhadap P (1 \leq g \leq P-1)

B. Penyembunyian Data

 Lakukan pergeseran histogram yang memiliki nilai piksel 0 dan 255, mengikuti persamaan dibawah ini dan simpan kedalam L-map, (0 jika nilai piksel 1 / 254 dan 1 jika nilai piksel 0 / 255

$$C'_{i,j} = \begin{cases} 254 & jika \ C_{i,j} = 255 \\ 1, & jika \ C_{i,j} = 0 \\ C_{i,j}, & lainnya \end{cases}$$

2. Hitunglah selisih tiap piksel pada gambar mengikuti persamaan

$$D_{ij} = C_{i,j} - C_{i,1}$$

3. Sisipkan pesan megikuti persamaan;

$$C''_{i,j} = \begin{cases} C'_{i,j} - 1, & \text{jika } D_{i,j} < -1 \\ C'_{i,j} - b, & \text{jika } D_{i,j} = -1 \\ C'_{i,j} + b, & \text{jika } D_{i,j} = 0 \\ C'_{i,j} + 1, & \text{jika } D_{i,j} > 0 \end{cases}$$

Ekstraksi data

Ekstraksi Pesan

1. Ekstraksi pesan menggunakan persamaan

$$b^* = \begin{cases} 0, & \text{jika } C''_{i,j} - C''_{i,1} = 0, -1 \\ 1, & \text{jika } C''_{i,j} - C''_{i,j} = 1, -2 \end{cases}$$

2. Rekontruksi gambar;

$${C_{i,j}^{'}}^* = egin{cases} {C_{i,j}'' - 1, & jika \ C_{i,j}'' - C_{i,1}'' > 0} \ {C_{i,j}'' + 1, & jika \ C_{i,j}'' - C_{i,j}'' < -1} \ {C_{i,j}'', & lainnya} \end{cases}$$

Observasi

- 1. Ketahanan jumlah korelasi antar tetangga piksel Pada domain terenkripsi
- 2. Kapasitas penyimpanan dan kualitas dari gambar
- 3. Keamanan

Ketahanan jumlah korelasi antar tetangga piksel Pada domain terenkripsi

Kapasitas penyimpanan dan kualitas dari gambar

	Kapasitas Penyisipan			
	(bits)			
Gambar 1	911997			
Gambar 2	375320			
Gambar 3	381175			
Gambar 4	176035			
Gambar 5	99713			
Gambar 6	686576			
Gambar 7	614096			
Gambar 8	712379			
Gambar 9	695552			
Gambar 10	289499			
Gambar 11	299350			
Gambar 12	346925			

Kapasitas Penyimpanan dan Kualitas dari Gambar Lanjt.

	DHS1		DHS2		DHS3	
	PSNR 1	PSNR 2	PSNR 1	PSNR 2	PSNR 1	PSNR 2
Gambar 1	69,16	31,95	69,1607	28,57165	69,1607	26,40822
Gambar 2	69,19	26,52	69,19602	25,51501	69,19602	25,40996
Gambar 3	69,12	26,4	69,12931	25,50724	69,12931	25,42543
Gambar 4	69,18	25,22	69,18861	25,19485	69,18861	25,19485
Gambar 5	69,11	25,98	69,1189	25,98612	69,1189	25,98992
Gambar 6	69,41	28,83	69,41586	27,96458	69,41586	26,85564
Gambar 7	69,01	28,12	69,01511	27,35289	69,01511	26,48029
Gambar 8	69,29	28,33	69,29398	26,7831	69,29398	25,23355
Gambar 9	69,19	28,2	69,19284	26,62274	69,19284	25,09933
Gambar 10	69,17	25,91	69,177	25,61252	69,177	25,61252
Gambar 11	69,21	26,14	69,21086	25,78227	69,21086	25,78227
Gambar 12	69,15	25,54	69,15702	25,00996	69,15702	25,00996

Keamanan

