AMENDMENTS TO THE CLAIMS

Claim 1. (Currently Amended) A compound which has the structure

$$\begin{array}{c|c}
R^{2a} & R^{2b} \\
R^{2a} & R^{2} \\
R^{2c} & R^{2c}
\end{array}$$

$$\begin{array}{c|c}
R^{2b} & R^{3} \\
C(CH_{2})_{m} & C(CH_{2})_{n}
\end{array}$$

$$\begin{array}{c|c} R^{2a} & R^{2b} & R^{2} \\ \hline \\ Q & X_{m} & X_{m} & X_{m} \\ \hline \\ R^{2c} & A & R^{1} \end{array}$$

wherein X_x is a carbon chain of 1, 2, 3 or 4 carbon atoms which is selected from alkylene, alkenylene, allenyl or alkylene;

 X_m is a carbon chain of 1 or 2 carbon atoms which is selected from alkylene, alkenylene or alkynylene;

 X_n is a carbon chain of 1 or 2 carbon atoms which is selected from alkylene, alkenylene or alkynylene;

Q is C;

A is O;

Z is O;

R¹ is H or lower alkyl;

X is N;

R² is H, alkyl, alkoxy, halogen, amino or substituted amino;

R^{2a}, R^{2b} and R^{2c} are the same or different and are selected from H or alkyl;

R³ is alkyl, arylalkyl, alkoxyarylalkyl, heteroarylalkyloxyarylalkyl, arylalkoxyarylalkyl, <u>or</u> alkylaryloxyarylalkyl heteroaryloxyarylalkyl;

Y is CO₂R⁴ where R⁴ is H or alkyl, or a prodrug ester;

or stereoisomers thereof, a prodrug ester thereof, or a pharmaceutically acceptable salt thereof.

Claim 2. (Currently Amended) The compound as defined in Claim 1 having the structure

$$\begin{array}{c|c}
R^{2a} & R^{2a} & R^{3} \\
R^{2c} & R^{2a} & R^{3} \\
R^{2c} & R^{2a} & R^{3} \\
R^{2c} & R^{2a} & R^{3} \\
R^{2b} & R^{2a} & R^{3} \\
R^{2c} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2c} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2c} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2c} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2c} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2c} & R^{3}$$

Claim 3. (Currently Amended) The compound as defined in Claim 1 having the structure

$$\begin{array}{c|c}
R^{2a} & R^{2b} & R^{2} & R^{3} \\
R^{2a} & R^{2b} & R^{2} & R^{3} \\
R^{2a} & R^{2b} & R^{2b} & R^{2} \\
R^{2a} & R^{2b} & R^{2} & R^{3} \\
R^{2a} & R^{2b} & R^{2b} & R^{3} \\
R^{2a} & R^{2b} & R^{2b} & R^{3} \\
R^{2a} & R^{2b} & R^{3} & R^{3} \\
R^{2a} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R^{3} & R^{3} & R^{3} \\
R^{2b} & R^{3} & R$$

Claim 4. (Currently Amended) The compound as defined in Claim 1 having structure

$$\begin{array}{c|c}
R^{2} & R^{3} \\
\hline
(CH_{2})_{m} & CO_{2}R^{4}
\end{array}$$

$$X_{x}$$
 X_{x}
 X_{x

$$\begin{array}{c|c}
 & X_m & X_n \\
 & X_m & X_n & X_n & X_n \\
 & X_m & X_m & X_n & X_n \\
 & X_m & X_m & X_n & X_n \\
 & X_m & X_m & X_n & X_n \\
 & X_m & X_m & X_m & X_n \\
 & X_m & X_m & X_m & X_n \\
 & X_m & X_m & X_m & X_n \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_m & X_m \\
 & X_m & X_m & X_$$

Claim 5. (Currently Amended) The compound as defined in Claim 1 wherein $\frac{(CH_2)x}{X_x}$ is alkylene, alkenylene, allenyl, or alkynylene.

Claims 6 to 8. (Cancelled).

Claim 9. (Currently Amended)-The compound as defined in Claim 1 having the structure

$$(CH_2)_x (CH_2)_n - CO_2H$$

$$R^1$$

$$X_{m}$$
 X_{m}
 X_{n}
 X_{n

wherein R1 is H or lower alkyl; and

R³ is alkyl, arylalkyl, alkoxyarylalkyl, arylalkoxyarylalkyl or alkylaryloxyarylalkyl.

Claim 10. (Currently Amended) The compound as defined in Claim 1 wherein $\frac{(CH_2)_x}{X_x}$ is $\frac{CH_3}{CH_2}$, $\frac{CH_3}{CH_2}$, $\frac{CH_3}{N_m}$ is $\frac{CH_3}{N_m}$ is $\frac{CH_2}{N_m}$ is $\frac{R_a}{CH_2}$ where R_a is alkyl or alkenyl, $\frac{(CH_2)_n}{N_m}$ is $\frac{N_m}{N_m}$ is $\frac{CH_2}{N_m}$ is $\frac{N_m}{N_m}$ is $\frac{CH_2}{N_m}$ is $\frac{N_m}{N_m}$ is aryloxyarylalkyl, arylalkyl, or alkoxyarylalkyl, which may be optionally substituted. --

Claims 11 and 12. (Cancelled).

Claim 13. (Currently Amended) The compound as defined in Claim 1 wherein $\frac{x + is + 2}{x}$, $\frac{X_x + is}{x}$ is $\frac{CH_2CH_2}{x}$, $\frac{A_x + A_y}{x}$ is $\frac{CH_2CH_2}{x}$.

Claim 14. (Currently Amended) The compound as defined in Claim 1 having the structure

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

wherein R¹ is H or lower alkyl; and R³ is alkyl, arylalkyl, alkoxyarylalkyl, arylalkoxyarylalkyl or alkylaryloxyarylalkyl.

Claim 15. (Currently Amended) The compound as defined in Claim 1 having the structure

where
$$\frac{CH_3}{I}$$
 where $\frac{CH_3}{I}$ is CH_2 or $\frac{CH_3}{I}$

R1 is H or lower alkyl; and

R³ is alkyl, arylalkyl, alkoxyarylalkyl, arylalkoxyarylalkyl or alkylaryloxyarylalkyl.

Claim 16. (Cancelled).

Claim 17. (Previously Amended) The compound as defined in Claim 1 having the structure

$$\begin{array}{c|c} Ph & & \\ \hline O & & \\ \hline CH_3 & & \\ \hline \end{array}$$

Claims 18 to 32. (Cancelled).

Claim 33. (Original) A pharmaceutical composition comprising a compound as defined in Claim 1 and a pharmaceutically acceptable carrier therefor.

Claim 34. (Previously Amended) A method for lowering blood glucose levels or for treating diabetes or for treating an early malignant disease, a malignant disease, or a dysplastic disease, which comprises administering to a patient in need of treatment a therapeutically effective amount of a compound as defined in Claim 1.

Claim 35. (Original) A method for treating diabetes which comprises administering to a patient in need of treatment a therapeutically effective amount of a compound as defined in Claim 1.

Claims 36 to 54. (Cancelled).