Nom:		Note: / 10
Prénom :		

\square Exercice 1 : Conversions

Commpléter le tableau de conversion suivant :

Décimal	Binaire	Hexadécimal
$\overline{205}^{10}$	$\overline{11001101}^2$	\overline{CD}^{16}
$\overline{327}^{10}$	$\overline{101000111}^{2}$	$\overline{147}^{16}$
$\overline{1068}^{10}$	$\overline{10000101100}^2$	$\overline{42C}^{16}$
$\overline{912}^{10}$	$\overline{1110010000}^2$	$\overline{390}^{16}$
$\overline{2654}^{10}$	$\overline{101001011110}^2$	$\overline{A5E}^{16}$

☐ Exercice 2 : Complément à deux

Dans cet exercice, on suppose que les nombres entiers sont représentés en complément à deux sur 10 bits.

1. Quelle est l'ensemble des nombres représentables?

```
L'ensemble des nombres représentables est [-2^9; 2^9 - 1], c'est à dire [-512; 511]
```

2. Donner la représentation de $\overline{-421}^{10}$

On calcule celle de $421 \ sur \ 10 \ bits$, on inverse tous les bits, on ajoute 1, on obtient : $\overline{1001011011}^2$

3. Donner la représentation de $\overline{-59}^{10}$

```
De la même façon, on obtient : \overline{11\,1100\,0101}^2
```

\square Exercice 3 : Un programme en C

Le programme C ci dessous compile correctement (et ne produit aucun warning avec l'option -Wall) quel sera le résultat de son exécution? Commenter et justifier.

La variable i déclarée dans la boucle est de type uint8_t, par conséquent elle prend ses valeurs dans [0; 255] et un dépassement de capacité n'est pas un comportement indéfini, on effectue simplement les calculs modulo 256.

Lorsque la variable i atteint zéro, l'opération i = i - 1 donne i=255 (puisque $-1 \mod 256 = 255$). La condition de sortie de boucle est i<0 et elle n'est donc jamais réalisée, par conséquent, ce programme affiche les entiers de 10 à 0 puis boucle indéfiniment en affichant les entiers de 255 à 0.