Transportation Problem

Dr. M. Angélica Salazar A. / Vincent Boyer

Graduate Program in Systems Engineering (PISIS) Facultad de Ingeniería Mecánica y Eléctrica Universidad Autónoma de Nuevo León

Content

- Optimization Model
- Systems Engineering Universidad Autónoma de Nuevo León Balanced Transportation Problem
- Solution Approaches

Agenda

- 2 Balanced Transportation Problem
 3 Solution Approaches

 Gradua Transportation Problem Universidad Autónoma de Nuevo León

Definition

The transportation problem is a special type of LP problem where the objective is to minimize the cost of transportation of a product from a number of origins (suppliers) to a number of destinations (customers). Each origin has a number of products that it can supply, and each destination has a demand of products. $s_1 \qquad .$

General Model

Decision

Number of products to transport from each origin to each destination.

Objective

Minimize the total transportation cost.

Constraints

- The origins' supply capacity cannot be exceeded.
- The destinations' demand has to be satisfied.

ineering

General Model

Decision Variables

• x_{ij} : the number of products sent from origin i to destination j.

Objective

• $z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$, where c_{ij} is the cost of transporting one unit of product from origin i to destination j.

Constraints

- Supply Capacity of Origin i: $\sum_{i=1}^{n} x_{ij} \leq s_i$,
- Demand of destination j: $\sum_{i=1}^{m} x_{ij} \ge d_j$.

General Model

The Mathematical Model:

oering

Agenda

- Systems Engineering Universidad Autónoma de Nuevo León Balanced Transportation Problem
- Gradua Approaches

Definition

s Engineering Definition of a Balanced Transportation Problem

A transportation problem is said balanced when the total number of products that the origins can supply is equal to the total demand of the destinations (i.e. $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$).

Universid

Mathematical Model

Mathematical Model of a Balanced Transportation Problem

With matrical Model of a Balanced Transportation Problem
$$Min \quad z = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$
 $s.t. \quad \sum_{j=1}^n x_{ij} = s_i, \quad \forall i \in \{1,...,m\},$
$$\sum_{i=1}^m x_{ij} = d_j, \quad \forall j \in \{1,...,n\},$$

$$x_{ij} \geq 0, \quad \forall i \in \{1,...,m\}, \ \forall j \in \{1,...,n\}.$$

PowerCo has three electric power plants that supply the power needs of four cities. Each power plant can supply the following numbers of kilowatt-hours (kwh) of electricity: plant 1, 35 million; plant 2, 50 million; plant 3, 40 million. The peak power demands in these cities which occur at the same time (2 p.m.), are as follows (in kwh): city 1, 45 million; city 2, 20 million; city 3, 30 million; city 4, 30 million.

The costs of sending 1 million kwh of electricity from plant to city depend on the distance the electricity must travel. Formulate an LP to minimize the cost of meeting each city's peak power demand.

aduat		TO				SUPPLY*
	FROM	City 1	City 2	City 3	City 4	SUPPLY*
	Plant 1	\$8	\$6	\$10	\$9	35
	Plant 2	\$9	\$12	\$13	\$7	50
	Plant 3	\$14	\$9	\$16	\$5	40
•	DEMAND*	45	20	30	30	
	*Million kwh					Food

BALANCED TP

Decision Variables

• x_{ij} : the number of Mkwh of electricity sent from Plant i to City j.

Objective

•
$$z = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} +$$

• $9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} +$
• $14x_{31} + 9x_{32} + 16x_{33} + 5x_{34} +$

Constraints

- Supply of Plants.
- Demand of Cities.

Decision Variables

Objective

Constraints

- Supply of Plant 1: $x_{11} + x_{12} + x_{13} + x_{14} = 35$
 - Supply of Plant 2: $x_{21} + x_{22} + x_{23} + x_{24} = 50$
 - Supply of Plant 3: $x_{31} + x_{32} + x_{33} + x_{34} = 40$
 - Demand of City 1: $x_{11} + x_{21} + x_{31} = 45$
 - Demand of City 2: $x_{12} + x_{22} + x_{32} = 20$
 - Demand of City 3: $x_{13} + x_{23} + x_{33} = 30$
 - Demand of City 4: $x_{14} + x_{24} + x_{34} = 30$

The Model

Min
$$z = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$$

s.t. $x_{11} + x_{12} + x_{13} + x_{14} = 35$
 $x_{21} + x_{22} + x_{23} + x_{24} = 50$
 $x_{31} + x_{32} + x_{33} + x_{34} = 40$
 $x_{11} + x_{21} + x_{31} = 45$
 $x_{12} + x_{22} + x_{32} = 20$
 $x_{13} + x_{23} + x_{33} = 30$
 $x_{14} + x_{24} + x_{34} = 30$
 $x_{ii} \ge 0, \ \forall i \in \{1, 2, 3\}, \ \forall j \in \{1, 2, 3, 4\}$

BALANCED TP

The Model

Min
$$z = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$$

s.t. $x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 35$
 $x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 50$
 $x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 40$
 $x_{11} + x_{21} + x_{31} = 45$
 $x_{12} + x_{22} + x_{32} = 20$
 $x_{13} + x_{23} + x_{33} = 30$
 $x_{14} + x_{24} + x_{34} = 20$
 $x_{15} + x_{25} + x_{35} = 10$
 $x_{ij} \ge 0, \ \forall i \in \{1, 2, 3\}, \ \forall j \in \{1, 2, 3, 4, 5\}$

UNBALANCED TP

BALANCED TP

The Model

Min
$$z = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34} + 20x_{41} + 40x_{42} + 30x_{43} + 10x_{44}$$

s.t. $x_{11} + x_{12} + x_{13} + x_{14} = 35$
 $x_{21} + x_{22} + x_{23} + x_{24} = 50$
 $x_{31} + x_{32} + x_{33} + x_{34} = 30$
 $x_{41} + x_{42} + x_{43} + x_{44} = 10$
 $x_{11} + x_{21} + x_{31} + x_{41} = 45$
 $x_{12} + x_{22} + x_{32} + x_{42} = 20$
 $x_{13} + x_{23} + x_{33} + x_{43} = 30$
 $x_{14} + x_{24} + x_{34} + x_{44} = 30$
 $x_{ij} \ge 0, \ \forall i \in \{1, 2, 3, 4\}, \ \forall j \in \{1, 2, 3, 4\}$

The Model

Min
$$z = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34} + 20x_{41} + 40x_{42} + 30x_{43} + 10x_{44} \rightarrow Penalization Cost$$

s.t. $x_{11} + x_{12} + x_{13} + x_{14} = 35$
 $x_{21} + x_{22} + x_{23} + x_{24} = 50$
 $x_{31} + x_{32} + x_{33} + x_{34} = 30$
 $x_{41} + x_{42} + x_{43} + x_{44} = 10$
 $x_{11} + x_{21} + x_{31} + x_{41} = 45$
 $x_{12} + x_{22} + x_{32} + x_{42} = 20$
 $x_{13} + x_{23} + x_{33} + x_{43} = 30$
 $x_{14} + x_{24} + x_{34} + x_{44} = 30$
 $x_{ij} \ge 0, \ \forall i \in \{1, 2, 3, 4\}, \ \forall j \in \{1, 2, 3, 4\}$

Agenda

- 2 Balanced Transportation Problem
 Solution Approaches Universidad Autónoma de Nuevo León

$$z = 0$$

$$z = 0$$

$$z = 8 \times 35$$

Programe or Normotion on Strome

z = 1180

Minimum Cost Method

$$z = 0$$

Minimum Cost Method

$$z = 5 \times 30$$

Minimum Cost Method

$$z = 5 \times 30 + 6 \times 20$$

$$z = 5 \times 30 + 6 \times 20 + 8 \times 15$$

z = 1080

$$z = 0$$

z = 0

$$z = 5 \times 30$$

$$z = 5 \times 30$$

$$z = 5 \times 30 + 9 \times 10$$

$$z = 5 \times 30 + 9 \times 10$$

$$z = 5 \times 30 + 9 \times 10 + 6 \times 10 + 9 \times 45 + 10 \times 25$$

$$z = 5 \times 30 + 9 \times 10 + 6 \times 10 + 9 \times 45 + 10 \times 25 + 13 \times 5$$
 PISIS

z = 1020

