BÔ MÔN	MÔN	: Thiết kế IC, IT4251	LÃN:cuối kì				
•	LỚP	·		ĐỀ			
KTMT	Họ và tên	·	STT:				
	Thời gian làm bài: 60 phút Ngày thi: 25/12/2014						
	Được phép sử dụng tài liệu						
	Mỗi câu hỏi có duy nhất một đáp án đúng. Không trừ điểm khi trả lời sai.						
	Đáp án phải được ghi vào phần trả lời mới hợp lệ, và nộp lại đề thi.						

PHẦN TRẢ LỜI TRẮC NGHIỆM

Câu hỏi	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Trả lời															

PHÀN CÂU HỔI TRẮC NGHIỆM (7.5 điểm)

Câu 1: Cho sơ đồ mạch như hình vẽ với V_{01} là điện áp đầu ra của bô đảo 1, V_{I2} là điện áp đầu vào của bô đảo 2.

Cả 2 bộ đảo đều có đặc tính giống nhau với V_{DD}=5V; $V_{IL}=1.35V$; $V_{IH}=3.15V$; $V_{OL}=0.33V$; $V_{OH}=3.84V$. Hãy cho biết biên chống nhiễu mức cao NM_H bằng bao nhiêu?

1) 0.69 V

2) 1.02 V

3) 1.16 V

4) 1.85 V

Câu 2: Một cổng AND có 4 đầu vào được thiết kế từ mấy transistor? Biết rằng thiết kế không sử dụng Psedo-nMOS. **1)** 8 **2)** 10 **3)** 12

Câu 3: Cho 4 thiết kế từ bộ ghép kênh 2x1. Cho biết thiết kế nào tương ứng với mạch OR.

Câu 4: Hãy xác định thiết kế không tương đương với các sơ đồ còn lai?

Câu 5: Sử dụng bảng LUT với K=2 để thực hiện mạch sau. 2 giá trị X, Y còn thiếu trong bảng bằng bao nhiêu

1) X=10, Y=01

2) X=01, Y=10

3) X=11, Y=01

4) X=00, Y=10

Câu 6: Trong số các mạch sau đây, mạch nào là mạch tổ hợp? (Trong các hình dưới, € là một mạch tổ hợp)

1) mạch 1 và 2

2) mạch 3 và 4

3) mạch 1, 3 và 4 4) mạch 1, 2, 4

Câu 7: Thiết kế hàm Y bằng bộ mux 4x1 như hình vẽ. Hãy cho biết biểu thức của Y theo 3 đầu vào A, B, C?

Câu 8: Sơ đồ thiết kế mức transistor sau đây là của cổng logic nào?

Câu 9: Một mạch có 4 đầu vào A3:0 tương ứng với các số nguyên từ 0 tới 15. Đầu ra Q sẽ chỉ bằng 1 khi số nguyên đầu vào chia 9 dư 2. Cho biết biểu thức logic của Q?

1) $\overline{A3}$. $\overline{A2}$. $\overline{A1}$. A0 + A3. $\overline{A2}$. A1. $\overline{A0}$

2) $\overline{A3}$. $\overline{A2}$. A1. A0 + A3. A2. $\overline{A1}$. $\overline{A0}$

3) $\overline{A3}$. A2. $\overline{A1}$. $\overline{A0}$ + A3. A2. $\overline{A1}$. A0

4) $\overline{A3}$. $\overline{A2}$. A1. $\overline{A0}$ + A3. $\overline{A2}$. A1. A0

Câu 10: Cho sơ đồ ALU thực hiện phép cộng Acc = [R1] + [R2] trong đó R1, R2 là giá trị lấy từ các thanh ghi tương ứng A, B, C tương ứng. Hãy cho biết trong các phép toán

sau, ALU **không** thực hiện được phép nào? (Lưu ý trình tự R1 + R2)

Câu 11: Cho sơ đồ FSM

Cho giản đồ sóng tín hiệu của tín hiệu vào CLK và A như hình dưới. CLK tích cực sườn lên. Biết tại chu kì CLK thứ 1, FSM ở trạng thái S1.

Vậy ở chu kì CLK thứ 5, FSM ở trạng thái nào? **1)** S2 **2)** S3 **3)** S4 **4)** S5

Câu 12: Với mạch tổ hợp dưới, người ta đặt thêm một thanh ghi pipeline để tăng tốc độ xử lý của mạch lên gấp đôi. Hãy **vẽ một nét đậm** cắt ngang mạch để thể hiện vị trí đặt thanh ghi pipeline. Bỏ qua trễ trên dây dẫn.

Câu 13: Thiết kế nào là của mạch Latch có 3 trạng thái?

```
1)
                          2)
architecture arch of
                          architecture arch of
ent is
                          ent is
begin
                          begin
  process (CP, X)
                            process (CP, X)
  begin
                            begin
    if (X = '0') then
                              if (X = '0') then
      Q <= '0';
                                Q <= 'Z';
                              elsif CP='0' then
    elsif
(rising_edge(CP) then
                                Q <= D;
      Q <= D;
                              end if;
    end if;
                            end process
                          end architecture;
  end process
end architecture;
```

```
architecture arch of
                          architecture arch of
ent is
                          ent is
begin
                          begin
 process (CP, X)
                            process (CP, X)
                            begin
  begin
    if (X = '1') then
                              if (X = '1') then
                                Q <= '0';
      Q <= 'Z';
    elsif
                              elsif CP='1' then
(rising_edge(CP) then
                                O <= D;
      0 \le D;
                              end if:
    end if;
                            end process
                          end architecture;
  end process
end architecture;
```

Câu 14: Đoạn mã VHDL sau mô tả RAM dua-port.

```
entity dualportram is
  port(
    clk1 : in STD LOGIC;
    clk2 : in STD_LOGIC;
    wr en : in STD LOGIC;
    addrA : in std logic vector(9 downto 0);
    addrB : in std logic vector(9 downto 0);
    data_in : in std_logic_vector(7 downto 0);
    data_outA : out STD_LOGIC_VECTOR(7 downto 0);
data_outB : out STD_LOGIC_VECTOR(7 downto 0)
end dualportram;
architecture dualportram of dualportram is
type ram t is array(0 to 1023) of
std logic vector (7 downto 0);
shared variable ram : ram t;
begin
process (clk1)
begin
  if clk1'event and clk1 = '1' then
    if wr en = '0' then
      ram(conv integer(addrA)):= data in;
    end if;
    data outA <= ram(conv integer(addrA));</pre>
  end if:
end process;
process (clk2)
begin
  if clk2'event and clk2 = '1' then
    data outB <= ram(conv integer(addrB));</pre>
end process;
end dualportram;
```

Với thiết kế trên nhân xét nào sau đây đúng?

- 1) có thể ghi dữ liệu đồng thời lên 2 ngăn nhớ khác nhau
- 2) có thể đọc dữ liêu đồng thời từ 2 ngăn nhớ khác nhau
- 3) thiếu khai báo tín hiệu wr_en trong danh sách tín hiệu
- tích cực của process (...)

 4) tốc độ ghi dữ liệu nhanh gấp 2 lần loại RAM singe-port trong cùng điều kiện

Câu 15: Dung lương của thanh RAM trên là bao nhiêu?

- **1)** 2¹⁰ x 8 bit
- **2)** 2²⁰ x 8 bit
- **3)** 2¹¹ x 16 bit
- 4) 2¹⁰ x 16 bit

PHẦN CÂU HỎI TỰ LUẬN (2.5 điểm)

Với một bộ đếm 3 bit đồng bộ, có thể đếm từ 0 tới 7. Hãy cải tiến thiết kế bộ đếm đó, để có thể thực hiện được phép đếm tăng như sau: 0, 2, 3, 5, 7, 0, 2, 3, 5, 7...

Sơ đồ thiết kế như sau:

Hãy điền **các lệnh còn thiếu (1.5đ)** vào ô trống trong đoạn chương trình VHDL bên dưới Và hãy **vẽ chi tiết module còn thiếu trong khung nét đứt (1đ),** chỉ sử dụng các phần tử logic cơ bản, mux, thanh ghi, bộ cộng nếu có

```
architecture arch of StepCounter is
signal step : STD LOGIC VECTOR(2 downto 0);
begin
    - Thực hiện quá trình đếm
  process (CLK)
  begin
    if (Reset = '0') then
         R <= '0';
       {\tt if} rising_edge(CLK) then
                                               ;
    end if;
  end process;
  -- Bước nhảy của bộ đếm
  process(R)
  begin
    if
                                           then
       step = "001";
    end if;
  end process;
end arch;
```

Điểm thưởng (1đ):

Hãy thiết kế lại "Bộ xác định bước nhảy" để trở thành bộ đếm ngược 0, 7, 5, 3, 2, 0, 7, 5, 3, 2...