Lesson 2

José M. Corcuera. University of Barcelona. We put some constraints about the self-financing strategies.

Definition

A strategy ϕ is admissible if it is self-financing and $V_n(\phi) \geq 0$, for all $0 \leq n \leq N$.

Definition

An arbitrage (opportunity) is an admissible strategy ϕ with zero initial value and with final value different from zero, that is

- 1. $V_0(\phi) = 0$,
- 2. $V_N(\phi) \ge 0$,
- 3. $\mathbb{P}(V_N(\phi) > 0) > 0$.

Characterization of arbitrage and martingales

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a finite probability space. With $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mathbb{P}(\{\omega\}) > 0$, for all ω . Consider a filtration $\mathbb{F} = (\mathcal{F}_n)_{0 \leq n \leq N}$, with $\mathcal{F}_0 = \{\phi, \Omega\}$.

Definition

We say that a sequence of random variables $X=(X_n)_{0\leq n\leq N}$ is adapted (to $\mathbb F$) if X_n is $\mathcal F_n$ -measurable, $0\leq n\leq N$.

Definition

An adapted sequence $(M_n)_{0 \le n \le N}$, is said to be a

```
submartingale if \mathbb{E}(M_{n+1}|\mathcal{F}_n) \geq M_n martingale if \mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n supermartingale if \mathbb{E}(M_{n+1}|\mathcal{F}_n) \leq M_n
```

for all
$$0 \le n \le N-1$$

Remember that $\mathbb{E}(X|\mathcal{G})$ means a \mathcal{G} -measurable random variable, say Y, such that for every $A \in \mathcal{G}$

$$\mathbb{E}\left(\mathbf{1}_{A}Y\right)=\mathbb{E}(\mathbf{1}_{A}X).$$

Let $\mathcal G$ a σ -field generated by a partition of Ω say $(A_i)_{i=1}^n$, then

$$\mathbb{E}(X|\mathcal{G}) = \sum_{i=1}^{n} \mathbb{E}(X|A_i) \mathbf{1}_{A_i}$$

where

$$\mathbb{E}(X|A_i) = \sum_i x_j \mathbb{P}(X = x_j | A_i)$$

We have the following important properties:

1. If \mathcal{H} is a sub- σ -field of \mathcal{G} , then

$$\mathbb{E}\left(\left.\mathbb{E}(X|\mathcal{G})\right|\mathcal{H}\right) = \mathbb{E}(X|\mathcal{H})$$

2. If Z is G-measurable

$$\mathbb{E}(ZX|\mathcal{G}) = Z\mathbb{E}(X|\mathcal{G})$$

The above definition can be extended to the multi-dimensional case in a component-wise fashion. If $(M_n)_{0 \le n \le N}$ is a martingale is easy to see that $\mathbb{E}(M_{n+j}|\mathcal{F}_n) = M_n, j \ge 0; \mathbb{E}(M_n) = M_0, n \ge 0$ and that if $(N_n)_{0 \le n \le N}$ is another martingale, $(aM_n + bN_n)_{0 \le n \le N}$ is also a martingale.

Proposition

Let $(M_n)_{0 \le n \le N}$ be a d-dimensional martingale and $(H_n)_{1 \le n \le N}$ a d-dimensional predictable sequence, let $\Delta M_n = M_n - M_{n-1}$. Then, the sequence defined by

$$X_n = X_0 + \sum_{i=1}^n H_j \cdot \Delta M_j, 1 \leq n \leq N$$
 is a martingale, $X_0 \in \mathbb{R}$

It is enough to see that for all $0 \le n \le N$

$$\mathbb{E}(X_{n+1}-X_n|\mathcal{F}_n)=\mathbb{E}(H_{n+1}\cdot\Delta M_{n+1}|\mathcal{F}_n)=H_{n+1}\cdot\mathbb{E}(\Delta M_{n+1}|\mathcal{F}_n)=0$$

The previous transform is called martingale transform of $(M_n)_{0 \le n \le N}$ by $(H_n)_{1 < n < N}$. Remind that

$$ilde{V}_n(\phi) = V_0 + \sum_{j=1}^n \phi_j \cdot \Delta ilde{S}_j$$
 ,

with $(\phi_n)_{1 \leq n \leq N}$ predictable. Then if $(\tilde{S}_n)_{0 \leq n \leq N}$ is a martingale, we will have that $(\tilde{V}_n)_{0 \leq n < N}$ is a martingale and in particular $\mathbb{E}(\tilde{V}_n(\phi)) = V_0$.

Proposition

An adapted process $(M_n)_{0 \le n \le N}$ is a d-dimensional martingale if and only if for all d-dimensional predictable process $(H_n)_{1 \le n \le N}$ we have

$$\mathbb{E}\left(\sum_{j=1}^{N}H_{j}\cdot\Delta M_{j}\right)=0\tag{1}$$

Assume that $(M_n)_{0 \le n \le N}$ is a d-dimensional martingale, then (1) follows by the previous proposition. Assume that (1) is satisfied, then we can take $H_n^i = 0, 1 \le n \le j, H_{j+1}^i = 1_A$ with $A \in \mathcal{F}_j$, $H_n^i = 0, n > j, H_n^k = 0, 1 \le n \le N, k \ne i$. So

$$\mathbb{E}(\mathbf{1}_{\mathcal{A}}(M_{i+1}^i-M_i^i))=0.$$

Since this is true for all $A \in \mathcal{F}_j$, this is equivalent to $\mathbb{E}(M_{j+1}^i | \mathcal{F}_j) = M_j^i$, and this is also true for all $j \geq 0$ and i = 1, ..., d.

Definition

We say that a probability \mathbb{P}^* in \mathcal{F} is equivalent to \mathbb{P} , we write $\mathbb{P}^* \sim \mathbb{P}$, if $\mathbb{P}^*(A) = 0 \Leftrightarrow \mathbb{P}(A) = 0$.

Remark

In our case $\mathbb{P}^* \sim \mathbb{P}$ if and only if $\mathbb{P}^*\left(\{\omega\}\right) > 0$ for all ω .

Now we have the First Fundamental Theorem of Asset Pricing (FFTAP).

Theorem (FFTAP)

A financial market is viable (free of arbitrage opportunities) if and only if there exists \mathbb{P}^* equivalent to \mathbb{P} such that the discounted prices of the stocks $((\tilde{S}_n^j)_{0 \le n \le N}, j=1,...,d)$ are \mathbb{P}^* -martingales.

Assume there exists $\mathbb{P}^* \sim \mathbb{P}$ and let φ be an admissible strategy with zero initial value, then

$$ilde{V}_n = \sum_{i=1}^n arphi_i \cdot \Delta ilde{S}_i, n \geq 1, \, ilde{V}_0 = 0,$$

is a \mathbb{P}^* -martingale and consequently

$$\mathbb{E}_{\mathbb{P}^*}(\tilde{V}_N)=\tilde{V}_0=0,$$

and since $\tilde{V}_N \geq 0$ we have $\tilde{V}_N = 0$ (because $\mathbb{P}^*(\omega) > 0$ for all ω). So, there is not an arbitrage.

Suppose now that there is not arbitrage. First, let L^0 be the linear space of all random variables. In our case if $|\Omega|=k$ we can identify each random variable X to a vector in $(X(\omega_1),...,X(\omega_k))$, so $L^0=\mathbb{R}^k$. Denote the set of positive random variables:

$$L^0_+ := \{X, X \ge 0\}$$

and $\Lambda=\{X,X=\tilde{V}_N(\phi),(\phi_n)_{1\leq n\leq N}$ predictable and admissible: $\tilde{V}_n=\sum_{j=1}^n\phi_j\cdot\Delta \tilde{S}_j,\; \tilde{V}_n(\phi)\geq 0 \; \text{for all}\; 1\leq n\leq N\}.$ No-arbitrage means that

$$\Lambda \cap L^0_+ = \{0\} \tag{2}$$

Consider the subset $S \subseteq L^0_+ \setminus \{0\}$ of random variables such that $\sum_{i=1}^k X\left(\omega_i\right) = 1$, it is compact and convex. In fact is bounded and closed and if $X, Y \in S$

$$\lambda X + (1 - \lambda)Y \in S$$
, for all $0 \le \lambda \le 1$.

Set $L=\{X,X=\tilde{V}_N(\phi),(\phi_n)_{1\leq n\leq N} \text{ predictable, } \tilde{V}_N=\sum_{j=1}^N\phi_j\cdot\Delta \tilde{S}_j \}$, then L is a vector subspace of L_0 since

$$\alpha \tilde{V}_{N}(\phi^{(1)}) + \beta \tilde{V}_{N}(\phi^{(2)}) = \tilde{V}_{N}(\alpha \phi^{(1)} + \beta \phi^{(2)})$$

for all $\alpha, \beta \in \mathbb{R}$ and $L \supseteq \Lambda$. Now, assume the, a priori, stronger condition

$$L \cap L_{+}^{0} = \{0\},$$
 (3)

Later, in the next lesson, we will see that $(2)\Rightarrow(3)$. Then we have that (3) implies that $L\cap S=\phi$. Therefore we have a vector space L and a convex a compact set that are disjoint in $L^0=\mathbb{R}^k$. By the separating hyperplane theorem, there exists a linear map, say A, such that A(Y)>0 for all $Y\in S$ and A(Y)=0 if $Y\in L$. By the linearity we can write $A(Y)=\sum_{i=1}^k \lambda_i Y(\omega_i)$. Then, all $\lambda_i>0$, since A(Y)>0 for all $Y\in S$, and we can define

$$\mathbb{P}^*(\omega_i) = \frac{\lambda_i}{\sum_{i=1}^k \lambda_i}, i = 1, ..., k.$$

Now for all ϕ predictable

$$\mathbb{E}_{\mathbb{P}^*}\left(\sum_{i=1}^N \phi_i \cdot \Delta \tilde{S}_i\right) = \mathbb{E}_{\mathbb{P}^*}(\tilde{V}_N) = \frac{A(\tilde{V}_N)}{\sum_{i=1}^K \lambda_i} = 0.$$

So, by the previous proposition, \tilde{S} is a \mathbb{P}^* -martingale.