	300 GeV, 10 cm, region 2017			
Cut	$\epsilon_i^{ m CMS}$	$ \epsilon_i^{\mathrm{sim}}, \mathrm{HEPMC} $	$\left \begin{array}{c} \epsilon_i^{\mathrm{sim}}, \mathrm{HEPMC}, \mathrm{no} \mathrm{pileup} \end{array}\right $	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
≥ 1 jet with $p_{\mathrm{T}} > 110\mathrm{GeV}$ and $ \eta < 2.4$	$8.0^{+0.13}_{-0.13} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$ \Delta\phi({ m leading jet}, ar{p}_{ m T}^{ m miss}) > 0.5$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$ 6.3^{+0.08}_{-0.08} \times 10^{-2} $	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } \eta < 2.1$	$6.8^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$3.2^{+0.08}_{-0.08} \times 10^{-2}$	$3.0^{+0.06}_{-0.06} \times 10^{-2}$	$3.0^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$2.2^{+0.07}_{-0.07} \times 10^{-2}$	$ 2.3^{+0.05}_{-0.05} \times 10^{-2} $	$2.3^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$1.3^{+0.05}_{-0.05} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.6^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$1.3^{+0.05}_{-0.05} \times 10^{-2}$	$\begin{array}{c} 1.3^{+0.04}_{-0.04} \times 10^{-2} \\ 1.3^{+0.04}_{-0.04} \times 10^{-2} \\ 1.3^{+0.04}_{-0.04} \times 10^{-2} \end{array}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$1.2^{+0.05}_{-0.05} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$5.8^{+0.34}_{-0.34} \times 10^{-3}$	$ 6.2^{+0.26}_{-0.26} \times 10^{-3} $	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$5.7^{+0.34}_{-0.34} \times 10^{-3}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$5.7^{+0.34}_{-0.34} \times 10^{-3}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$5.5^{+0.33}_{-0.33} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$5.4^{+0.33}_{-0.33} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$5.4_{-0.33}^{+0.33} \times 10^{-3}$	$ 6.1^{+0.25}_{-0.25} \times 10^{-3} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$5.4^{+0.33}_{-0.33} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$5.3^{+0.33}_{-0.33} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.05} \times 10^{-9}$	
≥ 1 track with ≥ 3 missing outer hits	$\parallel 5.2^{+0.33}_{-0.33} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	$5.8^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track 4 layers	$\begin{array}{c} -0.39 \\ 3.0^{+0.25}_{-0.25} \times 10^{-3} \\ 1.2^{+0.15}_{-0.15} \times 10^{-3} \\ 1.2^{+0.15}_{-0.15} \times 10^{-3} \end{array}$	$ 2.6^{+0.17}_{-0.17} \times 10^{-3} $	$2.6^{+0.17}_{-0.17} \times 10^{-3}$	
≥ 1 track 5 layers	$1.2^{+0.15}_{-0.15} \times 10^{-3}$	$1.3^{+0.12}_{-0.12} \times 10^{-3}$	$1.4^{+0.12}_{-0.12} \times 10^{-3}$	
$\geq 1 \text{ track with } \geq 6 \text{ layers}$	$1.0^{+0.15}_{-0.15} \times 10^{-3}$	$1.9^{+0.14}_{-0.14} \times 10^{-3}$	$1.7^{+0.13}_{-0.13} \times 10^{-3}$	

Table 1: Cutflow comparison for 300 GeV, 10 cm, region 2017

	300 GeV, 10 cm, region 2018A			
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{ m sim}, { m HEPMC}$	$\mid \epsilon_i^{ m sim},$ HEPMC, no pileup \mid	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$9.1^{+0.13}_{-0.13} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$9.1^{+0.13}_{-0.13} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$8.9^{+0.13}_{-0.13} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$8.0^{+0.13}_{-0.13} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	
==0 pairs of jets with $\Delta \phi_{\rm jet,\ jet} > 2.5$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$ \Delta\phi({ m leading\ jet}, ar{p}_{ m T}^{ m miss}) > 0.5$	$ \begin{array}{c c} $	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with $ \eta < 2.1$	$6.8^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$3.2^{+0.08}_{-0.08} \times 10^{-2}$	$3.0^{+0.06}_{-0.06} \times 10^{-2}$	$3.0^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$2.0^{+0.06}_{-0.06} \times 10^{-2}$	$2.3^{+0.05}_{-0.05} \times 10^{-2}$	$2.3^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$1.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.6^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$1.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$1.0^{+0.05}_{-0.05} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$5.1^{+0.32}_{-0.32} \times 10^{-3}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$5.1^{+0.32}_{-0.32} \times 10^{-3}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with $ d_z < 0.5 \mathrm{cm}$	$5.1^{+0.32}_{-0.32} \times 10^{-3}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$5.0^{+0.32}_{-0.32} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$4.9^{+0.31}_{-0.31} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track, muon}) > 0.15$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$4.9^{+0.31}_{-0.31} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$4.8^{+0.31}_{-0.31} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with ≥ 3 missing outer hits	$\begin{array}{ c c c c c c }\hline 4.8^{+0.31}_{-0.31} \times 10^{-3} \\ 4.8^{+0.31}_{-0.32} \times 10^{-3} \\ \end{array}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	$5.8^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track 4 layers	$2.6^{+0.23}_{-0.23} \times 10^{-3}$	$2.5^{+0.16}_{-0.16} \times 10^{-3}$	$2.5^{+0.16}_{-0.16} \times 10^{-3}$	
≥ 1 track 5 layers	$1.1^{+0.15}_{-0.15} \times 10^{-3}$	$1.3^{+0.12}_{-0.12} \times 10^{-3}$	$ 1.4_{-0.12} \wedge 10 $	
≥ 1 track with ≥ 6 layers	$1.1^{+0.15}_{-0.15} \times 10^{-3}$	$1.9^{+0.14}_{-0.14} \times 10^{-3}$	$1.7^{+0.14}_{-0.14} \times 10^{-3}$	

Table 2: Cutflow comparison for 300 GeV, 10 cm, region 2018 A

	300 GeV, 10 cm, region 2018B			
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{\mathrm{sim}}$, HEPMC	$\epsilon_i^{ m sim},$ HEPMC, no pileup	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$9.1^{+0.14}_{-0.14} \times 10^{-2}$	$9.2^{+0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$9.1^{+0.14}_{-0.14} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$ 0.0 \pm 0.13 \times 10^{-2} $	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	$9.2^{+0.09}_{-0.09} \times 10^{-2}$	
≥ 1 jet with $p_{\rm T} > 110{ m GeV}$ and $ \eta < 2.4$	$8.0^{+0.13}_{-0.13} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	$7.5^{+0.09}_{-0.09} \times 10^{-2}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$ \Delta\phi({ m leading\ jet}, ec{p}_{ m T}^{ m miss}) > 0.5$	$7.0^{+0.12}_{-0.12} \times 10^{-2}$	$6.3_{-0.08}^{+0.08} \times 10^{-2}$ $6.3_{-0.08}^{+0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with $ \eta < 2.1$	$ 6.8^{+0.12}_{-0.12} \times 10^{-2} $	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	$6.3^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$3.2^{+0.08}_{-0.08} \times 10^{-2}$	$3.0^{+0.06}_{-0.06} \times 10^{-2}$	$3.0^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$2.1^{+0.06}_{-0.06} \times 10^{-2}$	$2.3^{+0.05}_{-0.05} \times 10^{-2}$	$2.3^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$1.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.7^{+0.04}_{-0.04} \times 10^{-2}$	$1.6^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$1.1^{+0.05}_{-0.05} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$\begin{array}{ c c c c c }\hline 1.0^{+0.05}_{-0.05} \times 10^{-2} \\ 5.1^{+0.32}_{-0.32} \times 10^{-3} \\ \hline \end{array}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$	$1.3^{+0.04}_{-0.04} \times 10^{-2}$ $6.0^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with relative track isolation $< 5\%$	$\begin{array}{c} 1.0^{+0.05}_{-0.05} \times 10^{-2} \\ 5.1^{+0.32}_{-0.32} \times 10^{-3} \\ 5.1^{+0.32}_{-0.32} \times 10^{-3} \\ \end{array}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$\begin{array}{c} 5.1_{-0.32}^{+0.32} \times 10^{-3} \\ 5.1_{-0.32}^{+0.32} \times 10^{-3} \\ 5.1_{-0.32}^{+0.32} \times 10^{-3} \\ 5.0_{-0.32}^{+0.32} \times 10^{-3} \end{array}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$5.1^{+0.32}_{-0.32} \times 10^{-3}$	$6.2^{+0.26}_{-0.26} \times 10^{-3}$	$6.0^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with $\Delta R(\text{track, jet}) > 0.5$	$5.0^{+0.32}_{-0.32} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9_{-0.25}^{+0.25} \times 10^{-3}$ $5.9_{-0.25}^{+0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track, electron}) > 0.15$	$4.9^{+0.31}_{-0.31} \times 10^{-3}$	$6.1_{-0.25}^{+0.25} \times 10^{-3}$ $6.1_{-0.25}^{+0.25} \times 10^{-3}$ $6.1_{-0.25}^{+0.25} \times 10^{-3}$	$\begin{array}{c} -0.25 \\ 5.9^{+0.25}_{-0.25} \times 10^{-3} \\ 5.9^{+0.25}_{-0.25} \times 10^{-3} \end{array}$	
$\geq 1 \text{ track with } \Delta R(\text{track, muon}) > 0.15$	$\begin{array}{c} 4.9_{-0.31}^{+0.31} \times 10^{-3} \\ 4.8_{-0.31}^{+0.31} \times 10^{-3} \\ 4.9_{-0.31}^{+0.31} \times 10^{-3} \end{array}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$4.8^{+0.01}_{-0.31} \times 10^{-5}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$4.8^{+0.31}_{-0.31} \times 10^{-3}$	$6.1^{+0.25}_{-0.25} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	
≥ 1 track with ≥ 3 missing outer hits	$4.7^{+0.31}_{-0.31} \times 10^{-3}$	$5.9^{+0.25}_{-0.25} \times 10^{-3}$	$5.8^{+0.25}_{-0.25} \times 10^{-3}$	
$\phi(p_{\rm T}^{\rm miss}) < -1.6 \text{ or } \phi(p_{\rm T}^{\rm miss}) > -0.6$	$4.0^{+0.28}_{-0.28} \times 10^{-3}$	$4.8^{+0.23}_{-0.23} \times 10^{-3}$	$4.7^{+0.22}_{-0.22} \times 10^{-3}$	
≥ 1 track 4 layers	$2.2^{+0.21}_{-0.21} \times 10^{-3}$	$2.1^{+0.15}_{-0.15} \times 10^{-3}$	$2.1^{+0.15}_{-0.15} \times 10^{-3}$	
≥ 1 track 5 layers	$9.4^{+1.39}_{-1.39} \times 10^{-4}$	$1.1^{+0.11}_{-0.11} \times 10^{-3}$	$1.1^{+0.11}_{-0.11} \times 10^{-3}$	
≥ 1 track with ≥ 6 layers	$9.2^{+1.34}_{-1.34} \times 10^{-4}$	$1.5^{+0.12}_{-0.12} \times 10^{-3}$	$1.4^{+0.12}_{-0.12} \times 10^{-3}$	

Table 3: Cutflow comparison for 300 GeV, $10~\mathrm{cm}$, region 2018B