Deep Imbalanced Regression

Yuzhe Yang¹ Kaiwen Zha¹ Ying-Cong Chen¹ Hao Wang² Dina Katabi¹

¹MIT Computer Science & Artificial Intelligence Laboratory ²Department of Computer Science, Rutgers University ICML 2021

Presenter: Gianmarco Midena

26 November 2024

Overview

Problem Settings

- $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$: training set
- $\mathbf{x}_i \in \mathbb{R}^d$: input
- $y_i \in \mathcal{Y}$: continuous label or target
- $b_i \in \mathcal{B}$: discrete label or target
- $\mathcal{Y} \subset \mathbb{R}$: continuous label space
- $\mathcal{B} = \{1, \dots, M\} \subset \mathbb{Z}^+$: index space
 - divides $\mathcal Y$ into M groups (bins) with equal intervals $[t_j,t_{j+1})$
 - $\{[t_0, t_1), \ldots, [t_{M-1}, t_M)\}$: discrete label space
 - $t_k \in \mathcal{Y}$
 - minimum resolution
 - ★ e.g., $\delta y \triangleq t_{j+1} t_j = 1$ in age estimation
- $\hat{y}_i = g(\mathbf{z}_i) \in \mathbb{R}$: predicted continuous label
- $\mathbf{z}_i = f(\mathbf{x}_i; \theta) \in \mathbb{R}^{d'}$: learned representation
- θ : trainable model parameters

Evaluation

- Divide target space into disjoint regions (bins)
 - ► *Many-shot*: > 100 training examples
 - ▶ *Medium-shot*: 20-100 training examples
 - ► Few-shot: < 20 training examples
 - ► *Zero-shot*: 0 training examples
 - Inspired by Liu et al. 2019

Metrics

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Pearson Correlation (PCC)
- Geometric Mean Error (GM)

$$GM = \sqrt[n]{\prod_{i=1}^{n} |y_i - \hat{y}_i|}$$

★ Pros: + fairness (uniformity) in prediction

Datasets - Overview

Dataset	Target type	Target ran	ge	Bin size	Max bin densit	у	Min bin density	/ # Training set	# Val. set	# Test set
IMDB-WIKI-DIR	Age	0 - 186		1	7,149	Π	1	191,509	11,022	11,022
AgeDB-DIR	Age	0 - 101		1	353		1	12,208	2,140	2,140
STS-B-DIR	Text similarity score	0 - 5		0.1	428	-	1	5,249	1,000	1,000
NYUD2-DIR	Depth	0.7 - 10		0.1	1.46×10^{8}	T	1.13×10^{6}	$ 50,688 (3.51 \times 10^9)$	-	654 (8.70 × 10 ⁵)
SHHS-DIR	Health condition score	0 - 100		1	275	Т	0	1,892	369	369

(Training) Datasets - Label Distributions

Label Distribution Smoothing (LDS)

Imbalanced Categorical vs. Continuous Label Space (1/3)

- (a) Classification
- ullet task: picture \longrightarrow class
- data souce: CIFAR-100

- (b) Regression
- task: person's picture — person's age
- age subrange: 0-99
- data souce: IMDB-WIKI
- Simulated label imbalance
- Label density distributions forced to be equal
 - Balanced test sets

Imbalanced Categorical vs. Continuous Label Space (2/3)

- (a) Classification
- the error distribution *correlates* with the label density distribution
- majority classes with more examples are better learned than minority classes

- (b) Regression
- the error distribution DOES NOT correlate well with the label density distribution
- smoother error distribution

Imbalanced Categorical vs. Continuous Label Space (3/3)

(a) Classification

Compensating for the imbalance in the empirical label density distribution WORKS WÉLL.

(b) Regression

- Compensating for the imbalance in the empirical label density distribution is INÀCCURATE
- The empirical density does not accurately reflect the imbalance as seen by the model.
- Intuition: dependence between features at nearby labels.
- Proposed solution: Label Distribution Smoothing (LDS)

Label Distribution Smoothing (LDS) - Overview

Label Distribution Smoothing (LDS)

- Starting points
 - Dependence between features at nearby continuous labels
 - Expected density estimation
 - * Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation
- Functioning
 - ► Convolves a symmetric kernel with the empirical label density distribution.
 - Extracts a kernel-smoothed label density accounting for the feature overlap of neighbouring labels.
- Symmetric kernel
 - E.g., Gaussian or Laplacian kernel
 - ▶ Similarity between target values w.r.t. their distance in the target space.
- Effective label density distribution

$$\tilde{p}(y') \triangleq \int_{\mathcal{V}} k(y, y') p(y) dy$$

where

- \triangleright p(y): nr. occurrences of label y in training data
- How to use it in practice?
 - ▶ Possible direct adaptation of class imbalance techniques.
 - ► E.g., loss weighted by inverse effective label density

- Starting points
 - lacktriangledown Continuity in the **feature** space \longleftrightarrow Continuity in the **feature** space

- Starting points
 - Ontinuity in the target space ←→ Continuity in the feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets

- Starting points
 - Ontinuity in the target space ←→ Continuity in the feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets
- Feature statistics: mean and variance (or covariance) w.r.t. each bin

$$\{\boldsymbol{\mu}_b, \boldsymbol{\sigma}_b\}_{b=1}^B$$

- Starting points
 - Ontinuity in the target space ←→ Continuity in the feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets
- Feature statistics: mean and variance (or covariance) w.r.t. each bin

$$\{\boldsymbol{\mu}_b, \boldsymbol{\sigma}_b\}_{b=1}^B$$

- (next slides) Feature statistics similarity: cosine similarity of feature statistics between one anchor bin b_0 and all other bins
 - $b_0 = 0, 30, 60, 90$ (age): chosen anchor bins
 - ▶ different target densities: many (>100), medium (20-100), few (<20) examples</p>
 - ▶ task: person's picture → person's age
 - data source: IMDB-WIKI

Feature statistics similarity (1/4)

Anchor age 30

- High similarity in neighbourhood
- High similarities with further regions
- Lower similarities with some closer regions

- (b) FDS
- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (2/4)

Anchor age 60

- High similarity in neighbourhood
- High similarities with further regions
- Lower similarities with some closer regions

- (b) FDS
- Improved feature statistics calibration:
 - ► High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (3/4)

Anchor age 0

- (a) Baseline
- High similarity in neighbourhood for mean
- High similarities with further regions
- Lower similarities with some closer regions, e.g., variance neighbourhood

(b) FDS

- Improved feature statistics calibration:
 - ► High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (4/4)

Anchor age 90

- (a) Baseline
- High similarity in neighbourhood, esp. for mean
- High similarities with further regions
- I ower similarities with some closer regions

- (b) FDS
- Improved feature statistics calibration:
 - ► High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Change of feature statistics w.r.t. epoch

- ullet μ, Σ : Running mean and covariance
- $oldsymbol{ ilde{\mu}}, ilde{oldsymbol{\Sigma}}$: Smoothed mean and covariance

Feature Distribution Smoothing (FDS) - Overview

Feature Distribution Smoothing (FDS)

- Transfers the feature statistics between nearby bins.
- Aim: calibrate the potentially biased estimates of feature distribution, esp. for underrepresented target values in training data.
- General functioning
 - lacktriangle Estimates mean μ_b and covariance Σ_b feature statistics by each target bin.
 - Smooths the feature statistics over the target bins $\mathcal B$ by a symmetric kernel $k(y_b,y_b')$. Obtains the smoothed mean $\tilde{\mu}_b$ and covariance $\tilde{\Sigma}_b$ feature statistics.
 - ▶ Whitens features (Sun et al. 2016):

$$oldsymbol{z}^w = oldsymbol{\Sigma}_b^{-rac{1}{2}}(oldsymbol{z} - oldsymbol{\mu}_b)$$

▶ Re-colors whitened features (Sun et al. 2016):

$$oldsymbol{z}^r = ilde{oldsymbol{\Sigma}}_b oldsymbol{z}^w + ilde{oldsymbol{\mu}}_b$$

- Integration into deep learning
 - Feature calibration layer after the final feature map.
 - lacktriangle Momentum update running statistics $\{\mu_b, \Sigma_b\}$ across each epoch.
 - ★ Exponential Moving Average (EMA)
 - ightharpoonup Smoothed statistics $\{ \tilde{\Sigma}_b, \tilde{\mu}_b \}$ updated across different but fixed within each training epoch.

Baselines (1/2)

- Vanilla: neglects data imbalance
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Defines frequent and rare regions using label density.
 - 2 Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ► SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise
- Focal-R

$$\frac{1}{n} \sum_{i=1}^{n} \sigma(|\beta e_i|)^{\gamma} e_i$$

- Error-aware loss
- ▶ Maps the absolute error into [0, 1].
- e_i : L_1 error for the *i*-th sample
- \triangleright β , γ : hyper-parameters
- ▶ Inspired by Focal Loss (Lin 2017) for classification

Baselines (2/2)

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - 2 Re-train regressor with inverse re-weighting and frozen encoder.
 - ▶ Inspired by Kang et al. 2019
- Cost-sensitive re-weighting: re-weighting schemes based on label distribution
 - Inverse-frequency weighting (INV)
 - Square-root weighting variant (SQINV)

Results

Inferring Age from Images

Metrics		MA	£↓		GM ↓					
Shot	All	Many	Med.	Few	All	Many	Med.	Few		
VANILLA	8.06	7.23	15.12	26.33	4.57	4.17	10.59	20.46		
SMOTER (Torgo et al. 2013)	8.14	7.42	14.15	25.28	4.64	4.30	9.05	19.46		
SMOGN (Branco et al. 2017)	8.03	7.30	14.02	25.93	4.63	4.30	8.74	20.12		
SMOGN + LDS	8.02	7.39	13.71	23.22	4.63	4.39	8.71	15.80		
SMOGN + FDS	8.03	7.35	14.06	23.44	4.65	4.33	8.87	16.00		
${ m SMOGN} + { m LDS} + { m FDS}$	7.97	7.38	13.22	22.95	4.59	4.39	7.84	14.94		
Focal-R	7.97	7.12	15.14	26.96	4.49	4.10	10.37	21.20		
Focal-R $+$ LDS	7.90	7.10	14.72	25.84	4.47	4.09	10.11	19.14		
Focal-R $+$ FDS	7.96	7.14	14.71	26.06	4.51	4.12	10.16	19.56		
${\small \textbf{Focal-R}} + \textbf{LDS} + \textbf{FDS}$	7.88	7.10	14.08	25.75	4.47	4.11	9.32	18.67		
RRT	7.81	7.07	14.06	25.13	4.35	4.03	8.91	16.96		
RRT + LDS	7.79	7.08	13.76	24.64	4.34	4.02	8.72	16.92		
RRT + FDS	7.65	7.02	12.68	23.85	4.31	4.03	7.58	16.28		
RRT + LDS + FDS	7.65	7.06	12.41	23.51	4.31	4.07	7.17	15.44		
SQInv	7.87	7.24	12.44	22.76	4.47	4.22	7.25	15.10		
SQInv + LDS	7.83	7.31	12.43	22.51	4.42	4.19	7.00	13.94		
SQInv + FDS	7.83	7.23	12.60	22.37	4.42	4.20	6.93	13.48		
$\mathrm{SQInv} + \mathrm{LDS} + \mathrm{FDS}$	7.78	7.20	12.61	22.19	4.37	4.12	7.39	12.61		
Ours (best) VS. VANILLA	+0.41	+0.21	+2.71	+4.14	+0.26	+0.15	+3.66	+7.85		

- Either LDS, FDS, or both leads to performance gains.
- LDS + FDS often achieves the best results:
 - maintains or improves performance overall and on many-shot regions,
 - boosts performance for medium-shot and few-shot regions.

Inferring Age from Images

AgeDB

Metrics		M	λE↓			GI	M ↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few
VANILLA	7.77	6.62	9.55	13.67	5.05	4.23	7.01	10.75
SMOTER (Torgo et al. 2013)	8.16	7.39	8.65	12.28	5.21	4.65	5.69	8.49
SMOGN (Branco et al. 2017)	8.26	7.64	9.01	12.09	5.36	4.90	6.19	8.44
SMOGN + LDS	7.96	7.44	8.64	11.77	5.03	4.68	5.69	7.98
SMOGN + FDS	8.06	7.52	8.75	11.89	5.02	4.66	5.63	8.02
SMOGN + LDS + FDS	7.90	7.32	8.51	11.19	4.98	4.64	5.41	7.35
Focal-R	7.64	6.68	9.22	13.00	4.90	4.26	6.39	9.52
Focal-R $+$ LDS	7.56	6.67	8.82	12.40	4.82	4.27	5.87	8.83
Focal- $R + FDS$	7.65	6.89	8.70	11.92	4.83	4.32	5.89	8.04
Focal-R + LDS + FDS	7.47	6.69	8.30	12.55	4.71	4.25	5.36	8.59
RRT	7.74	6.98	8.79	11.99	5.00	4.50	5.88	8.63
RRT + LDS	7.72	7.00	8.75	11.62	4.98	4.54	5.71	8.27
RRT + FDS	7.70	6.95	8.76	11.86	4.82	4.32	5.83	8.08
RRT + LDS + FDS	7.66	6.99	8.60	11.32	4.80	4.42	5.53	6.99
SQInv	7.81	7.16	8.80	11.20	4.99	4.57	5.73	7.77
SQInv + LDS	7.67	6.98	8.86	10.89	4.85	4.39	5.80	7.45
SQInv + FDS	7.69	7.10	8.86	9.98	4.83	4.41	5.97	6.29
$\mathrm{SQInv} + \textbf{LDS} + \textbf{FDS}$	7.55	7.01	8.24	10.79	4.72	4.36	5.45	6.79
Ours (best) VS. VANILLA	+0.30	-0.05	+1.31	+3.69	+0.34	-0.02	+1.65	+4.46

- Either LDS, FDS, or both leads to performance gains.
- LDS + FDS often achieves the best results:
 - maintains or improves performance overall and on many-shot regions,
 - boosts performance for medium-shot and few-shot regions.

Inferring Text Similarity Score STS-B

Metrics		MS	Ε↓		Pearso	on corre	elation	(%) ↑
Shot	All	Many	Med.	Few	All	Many	Med.	Few
VANILLA	0.974	0.851	1.520	0.984	74.2	72.0	62.7	75.2
SMOTER (Torgo et al. 2013)	1.046	0.924	1.542	1.154	72.6	69.3	65.3	70.6
SMOGN (Branco et al. 2017)	0.990	0.896	1.327	1.175	73.2	70.4	65.5	69.2
SMOGN + LDS	0.962	0.880	1.242	1.155	74.0	71.5	65.2	69.8
SMOGN + FDS	0.987	0.945	1.101	1.153	73.0	69.6	68.5	69.9
SMOGN + LDS + FDS	0.950	0.851	1.327	1.095	74.6	72.1	65.9	71.7
Focal-R	0.951	0.843	1.425	0.957	74.6	72.3	61.8	76.4
Focal-R $+$ LDS	0.930	0.807	1.449	0.993	75.7	73.9	62.4	75.4
Focal-R $+$ FDS	0.920	0.855	1.169	1.008	75.1	72.6	66.4	74.7
Focal-R + LDS + FDS	0.940	0.849	1.358	0.916	74.9	72.2	66.3	77.3
RRT	0.964	0.842	1.503	0.978	74.5	72.4	62.3	75.4
RRT + LDS	0.916	0.817	1.344	0.945	75.7	73.5	64.1	76.6
RRT + FDS	0.929	0.857	1.209	1.025	74.9	72.1	67.2	74.0
RRT + LDS + FDS	0.903	0.806	1.323	0.936	76.0	73.8	65.2	76.7
Inv	1.005	0.894	1.482	1.046	72.8	70.3	62.5	73.2
Inv + LDS	0.914	0.819	1.319	0.955	75.6	73.4	63.8	76.2
Inv + FDS	0.927	0.851	1.225	1.012	75.0	72.4	66.6	74.2
Inv + LDS + FDS	0.907	0.802	1.363	0.942	76.0	74.0	65.2	76.6
Ours (best) VS. VANILLA	+.071	+.049	+.419	+.068	+1.8	+2.0	+5.8	+2.1

• Both LDS and FDS improve results for various methods, esp. medium- and few-shot regions.

Inferring Depth

Metrics		RM	SE ↓			$\delta_1 \uparrow$				
Shot	All	Many	Med.	Few	All	Many	Med.	Few		
VANILLA	1.477	0.591	0.952	2.123	0.677	0.777	0.693	0.570		
Vanilla + LDS	1.387	0.671	0.913	1.954	0.672	0.701	0.706	0.630		
Vanilla + FDS	1.442	0.615	0.940	2.059	0.681	0.760	0.695	0.596		
Vanilla + LDS + FDS	1.338	0.670	0.851	1.880	0.705	0.730	0.764	0.655		
Ours (best) VS. VANILLA	+.139	024	+.101	+.243	+.028	017	+.071	+.085		

FDS and LDS

- alleviates overfitting on many-shot regions,
- generalizes better to all regions,
- slightly degrades many-shot region,
- boosts other regions.

Inferring Health Score SHHS-DIR

Metrics		MA	ιΕ↓			GN	1 ↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few
Vanilla	15.36	12.47	13.98	16.94	10.63	8.04	9.59	12.20
Focal-R	14.67	11.70	13.69	17.06	9.98	7.93	8.85	11.95
Focal-R $+$ LDS	14.49	12.01	12.43	16.57	9.98	7.89	8.59	11.40
Focal-R $+$ FDS	14.18	11.06	13.56	15.99	9.45	6.95	8.81	11.13
$\overline{\mathrm{Focal-R} + \mathrm{LDS} + \mathrm{FDS}}$	14.02	11.08	12.24	15.49	9.32	7.18	8.10	10.39
RRT	14.78	12.43	14.01	16.48	10.12	8.05	9.71	11.96
RRT + LDS	14.56	12.08	13.44	16.45	9.89	7.85	9.18	11.82
RRT + FDS	14.36	11.97	13.33	16.08	9.74	7.54	9.20	11.31
RRT + LDS + FDS	14.33	11.96	12.47	15.92	9.63	7.35	8.74	11.17
Inv	14.39	11.84	13.12	16.02	9.34	7.73	8.49	11.20
Inv + LDS	14.14	11.66	12.77	16.05	9.26	7.64	8.18	11.32
Inv + FDS	13.91	11.12	12.29	15.53	8.94	6.91	7.79	10.65
Inv + LDS + FDS	13.76	11.12	12.18	15.07	8.70	6.94	7.60	10.18
Ours (best) VS. VANILLA	+1.60	+1.41	+1.80	+1.87	+1.93	+1.13	+1.99	+2.02

- Both FDS and LDS are effective.
- FDS + LDS often get highest gains over all tested regions.
- Note: SMOTER and SMOGN not directly applicable.

Could LDS + FDS help when the label distribution is skewed with one or more Gaussian peaks?

- Experimental setup
 - Curated skewed label distributions with 1-4 Gaussian peaks on IMDB-WIKI-DIR
 - Compared with the vanilla model
- Findings
 - Robustness to distribution change
 - Brings improvement

Skewed label distribution with one Gaussian peak

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with two Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with three Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with four Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with two Gaussian peaks on IMDB-WIKI-DIR

Metrics	rics				GM↓					
Shot	All	w/ data	Interp.	Extrap.	All	w/ data	Interp.	Extrap.		
Vanilla	11.72	9.32	16.13	18.19	7.44	5.33	14.41	16.74		
Vanilla + LDS	10.54	8.31	14.14	17.38	6.50	4.67	12.13	15.36		
Vanilla + FDS	11.40	8.97	15.83	18.01	7.18	5.12	14.02	16.48		
Vanilla + LDS + FDS	10.27	8.11	13.71	17.02	6.33	4.55	11.71	15.13		
Ours (best) VS. VANILLA	+1.45	+1.21	+2.42	+1.17	+1.11	+0.78	+2.70	+1.61		

Table: Interpolation & extrapolation results

Best results by smoothing both label & feature distributions

Different skewed label distributions on IMDB-WIKI-DIR

Metrics				MAE							GM			
Shot	All	Many	Med.	Few	Zero	Interp.	Extrap.	All	Many	Med.	Few	Zero	Interp.	Extrap.
1 peak:														
Vanilla	11.20	6.05	11.43	14.76	22.67	_	22.67	7.02	3.84	8.67	12.26	21.07	_	21.07
Vanilla + LDS	10.09	6.26	9.91	12.12	19.37	-	19.37	6.14	3.92	6.50	8.30	16.35	_	16.35
Vanilla + FDS	11.04	5.97	11.19	14.54	22.35	-	22.35	6.96	3.84	8.54	12.08	20.71	_	20.71
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	10.00	6.28	9.66	11.83	19.21	-	19.21	6.09	3.96	6.26	8.14	15.89	-	15.89
2 peaks:														
VANILLA	11.72	6.83	11.78	15.35	16.86	16.13	18.19	7.44	3.61	8.06	12.94	15.21	14.41	16.74
Vanilla + LDS	10.54	6.72	9.65	12.60	15.30	14.14	17.38	6.50	3.65	5.65	9.30	13.20	12.13	15.36
Vanilla + FDS	11.40	6.69	11.02	14.85	16.61	15.83	18.01	7.18	3.50	7.49	12.73	14.86	14.02	16.48
$\mathrm{Vanilla} + \textbf{LDS} + \textbf{FDS}$	10.27	6.61	9.46	11.96	14.89	13.71	17.02	6.33	3.54	5.68	8.80	12.83	11.71	15.13
3 peaks:														
VANILLA	9.83	7.01	9.81	11.93	20.11	_	20.11	6.04	3.93	6.94	9.84	17.77	-	17.77
Vanilla + LDS	9.08	6.77	8.82	10.48	18.43	-	18.43	5.35	3.78	5.63	7.49	15.46	_	15.46
Vanilla + FDS	9.65	6.88	9.58	11.75	19.80	-	19.80	5.86	3.83	6.68	9.48	17.43	-	17.43
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	8.96	6.88	8.62	10.08	17.76	-	17.76	5.38	3.90	5.61	7.36	14.65	-	14.65
4 peaks:														
Vanilla	9.49	7.23	9.73	10.85	12.16	8.23	18.78	5.68	3.45	6.95	8.20	9.43	6.89	16.02
$\mathrm{Vanilla} + \textbf{LDS}$	8.80	6.98	8.26	10.07	11.26	8.31	16.22	5.10	3.33	5.07	7.08	8.47	6.66	12.74
Vanilla + FDS	9.28	7.11	9.16	10.88	11.95	8.30	18.11	5.49	3.36	6.35	8.15	9.21	6.82	15.30
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	8.76	7.07	8.23	9.54	11.13	8.05	16.32	5.05	3.36	5.07	6.56	8.30	6.34	13.10

References

Branco, Paula, Luís Torgo, and Rita P Ribeiro (2017). "SMOGN: a pre-processing approach for imbalanced regression". In: First international workshop on learning with imbalanced domains: Theory and applications. PMLR, pp. 36–50.

Kang, Bingyi et al. (2019). "Decoupling representation and classifier for

long-tailed recognition". In: arXiv preprint arXiv:1910.09217.

Lin, T (2017). "Focal Loss for Dense Object Detection". In: arXiv preprint arXiv:1708.02002.

Liu, Ziwei et al. (2019). "Large-scale long-tailed recognition in an open world". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2537–2546.

Parzen, Emanuel (1962). "On estimation of a probability density function

Parzen, Emanuel (1962). "On estimation of a probability density function and mode". In: *The annals of mathematical statistics* 33.3, pp. 1065–1076.

Sun, Baochen, Jiashi Feng, and Kate Saenko (2016). "Return of frustratingly easy domain adaptation". In: *Proceedings of the AAAI conference on artificial intelligence*. Vol. 30. 1.

Torgo, Luís et al. (2013). "Smote for regression". In: *Portuguese*