Systems Concept Review: Autonomous Delivery Robot System

Team 3 Xinyi Yang, Manu Madhu Pillai, Sidney Leigh Molnar, Mukundhan Rajendiran (Muku)

Outline

- Introduction
 - Purpose and Background
 - Team and Responsibilities
- System Concept
 - Users and Statement of Need
 - Capabilities and Measures of Effectiveness
 - Project Development Life Cycle Model, Scope and Status
- System Architecture
- Requirements
- Conclusions
 - Insights
 - Next Steps

Briefing Purpose

- Evaluate scope
- Evaluate System-level Architecture Diagrams
- Define Stakeholder Requirements
- Receive System Development Approval (SDA) to enter System Requirements and Preliminary Design Phase
- Receive feedback to integrate into next presentation, Preliminary Design Review (PDR)

Team & Team Responsibilities

Team Responsibilities

CDRL and Responsibilities Matrix						
CLIN	Covered	Draft Due	Final Due	Deliverable Name	Туре	Product Lead(s)
HW1	Week 1	N/A	Week 2	Personal Autobiographies	Individual	N/A
HW2	Week 3	N/A	Week 2	Myers Briggs Personality Results	Individual	N/A
HW3	Week 2	Week 4	Week 6	Project Proposal	Team	Xinyi (Cindy) Yang
HW4	Week 3	N/A	Week 4	Project SEMP	Team	Xinyi (Cindy) Yang
HW5	Week 3-4	Week 5	Week 7	System Concept Description-Part I	Team	Manu Pillai
HW6	Week 5-6	Week 7	Week 9	System Concept Description-Part II	Team	Manu Pillai
HW7	Week 5	Week 8	Week 10	Stakeholders' Requirements Document	Team	Mukundhan Rajendiran
HW8	Week 7	Week 9	Week 12	System-Level Architecture	Team	Sidney Molnar
HW9	Week 7	Week 9	Week 12	System Requirements Document	Team	Mukundhan Rajendiran
HW10	Week 10	N/A	Week 12	RAM Performance Analysis	Individual	N/A
HW11	Week 12	Week 13	Week 14	Project Tradeoff Analysis	Team	Sidney Molnar
HW12	Week 12	Week 13	Week 14	Risk Analysis	Individual	N/A
HW13	N/A	N/A	Week 15	Teammate Assessment	Individual	N/A
P1	Week 1-7	Week 7	Week 8	System Concept Review Presentation	Team	Xinyi (Cindy) Yang/Manu Pillai
P2	Week 9-13	N/A	Week 14	Preliminary Design Review Presentation	Team	Mukundhan Rajendiran/Sidney Molnar

Stakeholders

ID	Stakeholder	Role(s)	Priority
SH1	Uber Eats	Customer, User & Maintainer	Primary
SH2	DoorDash	Customer, User & Maintainer	Primary
SH3	Grubhub	Customer, User & Maintainer	Primary
SH4	FedEx	Customer, User & Maintainer	Primary
SH5	UPS	Customer, User & Maintainer	Primary
SH6	Public Universities	Potential Customer & User	Secondary
SH7	Private Universities	Potential Customer & User	Secondary

Statement of Need

- Students and staff in the universities spend considerable time and effort collecting various items such as food, books, documents, etc..
- Issues with conventional delivery systems: Logistics Issues, Fixed Working Times, High Operational Cost, Safety Issues.
- The proposed system would help alleviate issues by delivering the required items to their doorstep such as:
 - Reduces Human Errors
 - 2. Contactless deliveries
 - 3. 24/7 Delivery possibilities
 - 4. Environment Friendly
 - 5. Efficient Logistics Handling
 - 6. Enhanced Safety

Top-level Capabilities

Capability I.D.	Capability	
C1.1	Detect sidewalks, roads, pedestrian crossings, and road signs.	1
C1.2	Detect Motor vehicles, pedestrians, cyclists, animals, and similar dynamic obstacles.	2
C1.3	Detect plants, trees, buildings, railings, and similar static obstacles.	3
C1.4	Detect and identify other ADRs.	4
C2	Avoid Collisions with dynamic and static obstacles in the surroundings.	5
C3	Navigate on the given path following road safety laws.	6
C4	Carry payloads from source to destination as assigned.	7
C5	Monitor the remaining battery and return to the charging station at the failsafe level.	8
C6.1	Provide tracking status and maintain communication with the central server.	9
C6.2	Report theft, vandalism, or tampering with the ADR and its payload.	10
C7	Open respective payload bay among the segmented payload bays when authorized.	11

Measures of Effectiveness (MOE)

Cap ID	Attributes	Metric	MOE ID	Definition	Threshold Value (units)	Objective Value (units)
C5	Endurance	Continuous operating time	MOE1	Maximum Operational Time on a single charge.	> 4 hours	> 8 hours
C3 & C5	Operational Range	Operational radius	MOE2	Maximum operational range (radius) on a single charge.	> 1 mile	> 2 miles
C4	Payload	Payload Capacity	MOE3	Maximum payload capacity.	> 50 lbs	> 100 lbs
C5	Charging Time	Time to charge	MOE4	Empty to full charging time.	< 4 hours	< 2 hours
C6	Communication Range	Radius for optimal communication	MOE5	Maximum communication (telemetry) range from central server.	> 1 mile	> 2 miles
C1 & C2	Collision avoidance	Farthest object detected	MOE6	Perception Range for Collision avoidance.	> 66 ft	> 165 ft
C3	Operational Speed	Maximum safe navigational speed	МОЕ7	Maximum Operational speed.	> 5 mph	> 15 mph

Project Development Life Cycle Model

V Development Life Cycle Model (LCM)

Project Development Scope and Status

-			• Market	
		Project Deve	lopment Scope and Status	
	Phase	Concept Phase	Systems Requirements Phase	Preliminary Design Phase
			Stakeholders' Requirements Document	
		Project Proposal	System-Level Architecture	
Project Systems Engineering Management Plan (SEMP)		Project Systems Engineering Management Plan (SEMP)	System Requirements Document	
System Concept Description		System Concept Description	RAM Performance Analysis	
			Project Trade-Off Analysis	
	Deliverables	Preliminary Stakeholders' Requirements Document	Risk Analysis	Preliminary System Architecture Design
Exit Gate System Concept Review		System Concept Review	Requirements Baseline	Preliminary Design Review
	Key	Completed	Current Status	Future Deliverables

(Context-Level) System Architecture:

System Concept

- Domain Definition Block Definition Diagram (BDD)
- System Context Internal Block Diagram (IBD)
- Interface Definition Block Definition Diagram (BDD)
- System Operational Concept
 - Use Case Diagram (UC)
 - Activity Diagram for Primary Use Case

System Concept

Domain Definition Block Definition Diagram

Academic Version for Teaching Only

Organical Development is strictly Prohibited

System Context Internal Block Diagram

Interface Definition Block Definition Diagram

System Operational Concept

- Users: Faculty, Staff, and Students on large university campuses
- Orders placed on customer's app (UberEats, GrubHub, etc.)
- ADR navigates to order location before navigating to user location
 - Static and dynamic obstacle avoidance
 - Inclement weather conditions
- Payloads containing orders may be accessed by scanning QR code
- Management team provides maintenance tasks
 - Field maintenance, scheduled maintenance
 - Daily ADR evaluations
 - Charging and cleaning tasks

Use Case Diagram

Primary Use Case Activity Diagram

Stakeholder Requirements

Programmatic Requirements

- Schedule Requirement
- System Life Cycle Cost
- Operational Life
- Regulations

Technical Requirements

- Operation Time
- Operational Range
- Payload Capacity
- Automated Charging
- Collision Avoidance

Interface Requirements

- Authenticated Payload Bay
- Emergency Stop
- Power Button
- Data Logging
- Firmware Update

Programmatic Requirements

ID	Name	Requirement
SHR1.1	Schedule Requirement	The ADR system shall be operational by May 2023.
SHR1.2	System Life Cycle Cost	The ADR shall have a unit cost less than \$7000.
SHR1.3	Operational Life	The ADR shall have an operational life greater than 5 years.
SHR1.4	Regulations	The ADR shall get the necessary certifications and follow safety regulations.

Technical Capabilities

ID	Name	Requirement
SHR2.1	Operation Time	The ADR shall be able operate for at least 8 hours on a single charge.
SHR2.2	Operational Range	The ADR shall be fully functional within a 2 mile radius from the central server.
SHR2.3	Payload Capacity	The ADR shall be able to carry packages upto 100 lbs.
SHR2.4	Automated Charging	The ADR shall be able to monitor battery levels and charge when needed.
SHR2.5	Collision Avoidance	The ADR shall be able to detect its surroundings and avoid collision.

Interface Requirements

ID	Name	Requirement	
SHR3.1	Authenticated Payload Bay	The sender and receiver using the ADR shall be able to open the payload bay by scanning a QR code.	
SHR3.2	Emergency Stop	The ADR shall have an emergency stop button that can be triggered by the central server and the maintainer.	
SHR3.3	Power Button	The maintainer shall be able to power off the ADR.	
SHR3.4	Data Logging	The maintainer shall be able to access the sensor feed, telemetry log and event log of the ADR.	
SHR3.5	Firmware Update	The maintainer shall be able to load and update firmware on the ADR.	

Insights

- The unique segmented payload system of the ADR eliminates the risk of the delivery item being misdelivered or damaged by other delivery items.
- The ADR's self diagnosing feature to detect and rectify minor issues on the run, which helps the maintainers by cutting down time and effort needed for repair.
- Team Development activities played a vital role in visualizing this project efficiently.
- Cameo Systems Modeller is a powerful tool for creating and simulating systems architectures. It has smart, robust, and intuitive tools to define, track, and visualize all aspects of systems in the most standard-compliant SysML models and diagrams.

Next Steps

- Obtain System Development Approval (SDA)
- Stakeholders' Requirements Document
- System-Level Architecture
- System Requirements Document
- RAM Performance Analysis
- Project Trade-off Analysis
- Risk Analysis
- Preliminary Design Review (PDR)

Backup Slides

- Project Schedule
- Package Diagram
- Primary Use Case Narrative
- Sequence Diagram
- State Machine Diagram
- Complete Set of SH RDs
- Complete SH Reqs Table
- Activity diagrams for remaining use cases

Project Schedule

Package Diagram

Primary Use Case Narrative

Use Case Narrative: UCN1 Order Placement and Execution

Trigger: An order is placed for the ADR to pick up and deliver.

Main Success Scenario:

- 1) The central server receives an order.
- 2) The central server sends the pickup location to the nearest available ADR.
- 3) The ADR navigates to the order location.
- The package is placed in the payload bay of ADR.
- 5) The ADR accepts the customer location from the central server.
- 6) The ADR navigates to the customer location.
- 7) The customer accesses the package being carried by the ADR and closes the lid.
- 8) The ADR notifies the central server that the order is complete.
- 9) The central server notifies the ADR of the next order location or if all orders are satisfied.
- 10) The ADR navigates to the next location request.

Sequence Diagram

State Machine Diagram

Stakeholder Requirements Diagram

Programmatic Requirements Diagram

Technical Requirements Diagram

Interface Requirements Diagram

Activity Diagram for UCN2- Maintain system battery levels

Activity Diagram for UCN3- Operability inspection & service

Activity Diagram for UCN4- Field inspection & service

Activity Diagram for UCN5- Functionality inspection & service

