

Représentation des nombres entiers

3470
A99ACF
500866592
71011011011

Représentation des données

Représentation des données

- Toutes les données sont stockées sous forme binaire de tailles différentes
- Ces données peuvent être interprétées pour représenter des données de différents types et formats via un langage de programmation
 - float, char, bool, int, etc.

Représentation des nombres

- L'arithmétique utilisée par les ordinateurs
 - Précision finie (et fixe)
 - Limitations
 - Une notation binaire
- Représentation s'effectue selon une chaîne binaire d'une longueur fixée à n bits
 - Sur 8 bits, 16 bits ...

Entier

• Pas de partie fractionnaire

```
Exemples: -2022
-213
0
1
666
54323434565434
```

Représentation des nombres entiers signés

- Conventions
 - Valeur signée
 - Codage DCB (Décimal Codé Binaire)
 - Complément à 1
 - Complément à 2

Représentation des nombres entiers signés

- Le choix entre des conventions
 - Le constructeur de la machine
 - Éventuellement par le programmeur
 - Langage C
 int -2 octets, complément à 2
 unsigned short 8 bits, non signé

Entiers positifs

- Représentation des entiers positifs
 - Une approche évidente
 - Codage en binaire
 - 8 bits => 256 valeurs
 - 32 bits =>

4294967296 valeurs

En Général (binaire)

	Binaire		
Nombre de bits	Min	Max	
n	0	2 ⁿ - 1	
Important !!			

de 0 à $(2^n - 1) = 2^n$ valeurs différentes!

Convention du codage DCB

- Décimal Codé Binaire
 - Chaque chiffre du nombre N ₁₀ est codé par son équivalent binaire
 - 10 valeurs différentes
 - 4 bits
 - Le codage du signe peut suivre différentes conventions
 - +: 1011₂
 - - : 1101₂

Convention du codage DCB

- Exemple + 7 7 + 7 10 11 0111 0111₂
 - $-77_{10}: 1101\ 0111\ 0111_2$
- Préféré pour certaines applications (affaires) où il est nécessaire d'avoir une représentation exacte du nombre décimal
- Conversion DCB \rightarrow caractère est facile

Intervalles de formats de données

Nb. de bits	Binaire	BCD	ASCII
1	0 - 1		
2	0 – 3		
3	0 - 7		
4	0 - 15	0 – 9	
5	0 - 31		
6	0 - 63		
7	0 - 127		
8	0 - 255	0 – 99	0-9
9	0 – 511		
16	0 - 65,535	0 – 9999	0 – 99
24	0 - 16,777,215	0 – 999999	0 – 999
Etc.			

Le nombre de valeurs codées en DCB est moins important qu'en binaire

Convention du codage DCB

Inconvénients

- Codage ne se prête pas directement aux opérations arithmétiques
 - Résultat un code binaire sans signification
- L'arithmétique en DCB est plus difficile qu'en binaire et plus lente

$76 \rightarrow 0111\ 0110_{\rm b}$	convertir les sommes partielles
$\underline{x} 7 \rightarrow 0111_{b}$	cd
$42 \rightarrow 101010_{\rm b}$	\rightarrow 0100 0010 _{bcd}
$49 \rightarrow 110001_{bin}$	\rightarrow +0100 1001 _{bcd}
$\overline{4^{13}}2 \rightarrow$	0100 1101 0010
13 ← ajuster la retenu	e convertir 13 +0001 0011
	en DCB
532 →	0101 0011 0010
	= 532 en DCB

Convention de la valeur signée

• Réserver un bit pour le signe (le bit le plus à gauche); les autres bits codent la valeur absolue du nombre

•
$$0 = \langle \langle + \rangle \rangle$$
 et $1 = \langle \langle - \rangle \rangle$

• Représentation de +5 et -5 en valeur signée sur 6 bits

Convention de la valeur signée

- Difficultés: Deux représentations de la valeur zéro
 - Représentation en valeur signée sur 6 bits

```
0:0 \ 0 \ 0 \ 0 \ 0 \ 0 \Rightarrow +0

0:1 \ 0 \ 0 \ 0 \ 0 \ 0 \Rightarrow -0
```

- La réalisation d'une opération de type soustraction nécessite un circuit particulier différent de celui permettant la réalisation des additions
- Le système doit tester à la fin de chaque calcul pour assurer qu'il n'y a qu'un seul zéro

Intervalles des nombres

	Intervalle en base 10				Intervalle en base 10		
	Non signé		Valeur signée				
Longueur de la chaîne de bits	Min	Max	Min	Max			
1	0	1					
2	0	3	-1	1			
3	0	7	-3	3			
4	0	15	-7	7			
5	0	31	-15	15			
6	0	63	-31	31			
Etc.							

La moitié des codes est affectée au nombres positifs et l'autre moitié au nombres négatifs

Convention de la valeur signée

	Valeur signée		
Nombre de bits	Min	Max	
n	$-(2^{n-1}-1)$	2 ⁿ⁻¹ - 1	

- Complément: soustraire une valeur de la valeur base
- Complément à 1(restreint ou logique), base 2
 - Complément à 9 en base 10
- Complément à 2 (vrai), base 2
 - Complément à 10, base 10

Complément logique

- En base 10
- Supposons
 - 3 digits décimaux
 - Diviser l'intervalle de représentation

500	Base 10	999	0	Base 10	499
-499 ₁₀	encodage	- 0 ₁₀	0 ₁₀	encodage	499 ₁₀

- 5xx, 6xx, 7xx, 8xx, 9xx nombres négatifs
- Complément → 999-Nombre

Complément logique

- Complément à 9
- Représenter -467₁₀ en complément à 9 (3 digits)?

$$-467_{10} \rightarrow 532$$

• Représenter -467₁₀ en complément à 9 (4 digits)? 9999

$$-467_{10} \rightarrow 9532$$

Complément logique

- Complément à 9
- Quelles sont la valeur du signe et la magnitude de 9990 lorsque celui-ci est une représentation en complément à 9 sur 4 digits?
 - Le premier digit est supérieur à 4, donc → signe négative

9999 -9990 0009

Donc, 9990 en complément à 9 sur 4 digits représente: -9

• En conséquence, une procédure pour additionner 2 chiffres dans le cas où le résultat s'étend au-delà du nombre maximum de digits consiste à ajouter la dernière retenue

```
-200_{10} + 100_{10} en complément à 9 sur 3 digits
```

$$-200_{10} + 300_{10}$$
 en complément à 9 sur 3 digits

$$\begin{array}{r}
 799 \\
 \hline
 100 \\
 \hline
 899 \\
 \hline
 \hline
 1 \\
 \hline
 1 \\
 \hline
 100 \\
 \hline
 \hline
 1 \\
 \hline
 100 \\
 \hline
 1 \\
 \hline
 100 \\
 \hline
 1 \\
 1 \\
 \hline
 1 \\
 1 \\
 \hline
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
 1$$

- Pour soustraire, on prend le complément du chiffre que l'on doit soustraire et on réalise l'addition
 - Possibilité de débordement (overflow)
 - Exemple: 300 + 300 = 600 (-399)?
 - Si les deux entrées de l'addition ont le même signe et le signe du résultat est différent alors on a un problème de débordement

- Convention du complément à 1
 - 0 dans le bit le plus à gauche => « + »
 - 1 => << >>
 - Nombre positif
 - Représentation binaire sur n bits
 - 6: 0 0 0 1 1 0 (6 bits)
 - Nombre négatif
 - Inverser tous les bits $0 \rightarrow 1$ et $1 \rightarrow 0$
 - -6: 1 1 1 0 0 1 (6 bits)

• Intervalle des nombres représentables en complément à 1 sur 8 bits

1000000	11111111	00000000	01111111
-127 ₁₀	-0 ₁₀	010	127 ₁₀

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition

Chapter 4, Figure 04-10

• Cette méthode est aujourd'hui obsolète

- Inconvénient important
 - Deux représentation distinctes de la valeur 0

Fig. 28. - Double représentation possible du zéro.

$$00101101 = 45_{10}$$
$$00111010 = 58_{10}$$
$$01100111 = 103_{10}$$

$$01101010 = 106_{10}$$

$$111111101 = -2_{10}$$

$$1011001111 = 103_{10}$$

$$+1$$

$$01101000 = 104_{10}$$

Complément arithmétique (vrai)

- En base 10
 - Supposons
 - 3 digits décimaux
 - Diviser l'intervalle de représentation

500	999	0	499
-500 ₁₀	- 001 ₁₀	0 ₁₀	499 ₁₀

- 5xx, 6xx, 7xx, 8xx, 9xx nombres négatifs
- Trouver un complément sur 3 digits, 2 méthodes:
 - 1) 1000-Nombre
 - 2) Complément à 9 sur 3 digits + 1

Complément vrai

- Complément à 10
- Représenter -467₁₀ en complément à 10 (3 digits)?

Représenter -467₁₀ en complément à 10 (4 digits)?
 10000 9532

Complément vrai

- Complément à 10
- Quelles sont la valeur du signe et la magnitude de 9990 lorsque celui-ci est une représentation en complément à 10 sur 4 digits?
 - Le premier digit est supérieur à 4, donc → signe négative

$$\begin{array}{ccc}
10000 & 0009 \\
-9990 & + 1 \\
\hline
0010 & 0010
\end{array}$$

Donc, 9990 en complément à 10 sur 4 digits représente: -10

Complément vrai

- Complément à 10
- Additions simples!
 - $-200_{10} + 100_{10}$ en complément à 10 sur 3 digits
 - $-200_{10} + 300_{10}$ en complément à 10 sur 3 digits

$$\begin{array}{r}
800 \\
+ 100 \\
\hline
900
\end{array}$$

$$\begin{array}{r}
+ 300 \\
\hline
1100
\end{array}$$
On laisse tomber la retenue

• Toute retenue au-delà du nombre de digit n'est pas prise en compte

Convention la plus utilisée

- 0 dans le bit le plus à gauche signifie le nombre positif => « + »
- 1 => << >>>

• Nombre positif

• Représentation binaire sur *n* bits

```
+6: 0 0 0 1 1 0 (6 bits)
```

- Nombre négatif -N
 - 1. Soustraire la valeur au modulus
 - 2. Complément à 1 de son équivalent positif, +N, et ajouter 1
 - Inverser tous les bits $0 \to 1$ et $1 \to 0$ dans la représentation binaire de +N sur n bits et ajouter la valeur 1

• Exemple

$$6 (6 \text{ bits}): +6 => 0 \ 0 \ 0 \ 1 \ 1 \ 0$$

$$-6 (6 \text{ bits})$$

• 1. Nombre positif 6 sur 6 bits => 0 0 0 1 1 0

2. Complément à 1

1000000

-6 c- à- 2 sur 6 bits => 111010

• Intervalle des nombres représentables en complément à 2 sur 8 bits

1000000	11111111 C	0000000	01111111
-128 ₁₀	-1 ₁₀ 0) ₁₀	127 ₁₀

Englander: The Architecture of Computer Hardware and Systems Software, 2nd edition

Chapter 4, Figure 04-12

Signe

- Convention du complément à 2, le bit de poids fort (MSB) :
 - 0 = nombre positif
 - 1 = nombre négatif

Notion de "Complément"

Exemple

Exercice – Conversion en C-à-2

- Représenter -20₁₀ en c-à-2 sur 8-bits Réponse:
- 1100011 est une représentation en c-à-2 sur 7-bits. Donnez la valeur?

Réponse:

Détails pour -20 -11101100

```
-20<sub>10</sub>: Valeur positive sur 8 bits = 00010100
```

"Inverser": Complément à 1 1101011

Ajouter 1: ______ + __1

11101100

Exercice – Conversion en C-à-2

Réponse

Représenter -20₁₀ en c-à-2 sur 8-bits
 Réponse: <u>11101100</u>

• 1100011 est une représentation en c-à-2 sur 7-bits. Donnez la valeur?

Réponse : -29

Intervalle des nombres représentables en complément à 2

• 6 bits

Intervalles des nombres

	Binaire							
Nb. de bits	Non signés		Valeur signée		C-à-2			
	Min	Max	Min	Max	Min	Max		
1	0	1						
2	0	3	-1	1	-2	1		
3	0	7	-3	3	-4	3		
4	0	15	-7	7	-8	7		
5	0	31	-15	15	-16	15		
6	0	63	-31	31	-32	31		
Etc.								

En Général (intervalles)

	Binaire							
Nb. de bits	Non signés		Valeur sig	gnée	Complément à 2			
de bits	Min	Max	Min	Max	Min	Max		
n	0	2 ⁿ - 1	$-(2^{n-1}-1)$	2^{n-1} -1	-2^{n-1}	$2^{n-1} - 1$		

Addition en complément à 2

- Facile
- Pas des règles spéciales
- Simplement additionner

+5 plus -5?

• Zéro, bien sûr, mais on va voir?

Valeur signée	C-à-2
+5 0 0 0 1 0 1	+5 0 0 0 1 0 1
-5 1 0 0 1 0 1	-5 1 1 1 0 1 1
1 0 1 0 1 0	0 (1)0 0 0 0 0

Soustraction en complément à 2

- Facile
- Pas de règles spéciales
- Simplement additionner

- 7, bien sûr,
- On utilise une représentation sur 6-bits

$$10 - (-3)$$
?

- 13, bien sûr, mais...
- Représentation sur 6 bits

-(-3)=+3

-3

000011

111100

111101

000010

000011

Notion de carry et d'overflow

- Notion de carry = retenue
 - Lors d'une opération arithmétique effectuée sur des nombres de p bits, un p+1er bit peut être généré (bit de carry)

Convention du c-à-2 sur 8 bits

$$0111\ 11111_{2}$$

$$1111\ 11110_{2}$$

$$1\ 0111\ 1101_{2}$$

Notion de carry et d'overflow

- Notion d'overflow ou de dépassement de capacité
 - Lors d'une opération arithmétique mettant en jeu des nombres de p bits et de même signe, le résultat peut se révéler être trop grand ou trop petit pour être représentable par la machine
 - Résultat est en dehors de l'intervalle des nombres représentables sur p bits par la convention choisie
 - Résultat => erroné
 - Dépassement de capacité

Notion de carry et d'overflow

- Notion d'overflow ou de dépassement de capacité
 - Exemple

Convention du c-à-2 sur 8 bits

$$+127_{10}$$
 0111 1111₂
 $+2_{10}$ 0000 0010₂
 $+129 \neq -127_{10}$ 1000 0001₂

Dépassement de capacité!!!

Convention du c-à-2 sur 8 bits => $[-128_{10}, +127_{10}]$

"Overflows" et "Carries"

Convention c-à-2 sur 4 bits

$$(+4) + (+2)$$
 $(+4) + (+6)$
0100 no overflow, 0100 overflow,
0100 no carry 0110 no carry
0110 = (+6) 1010 = (-6) the result is incorrect