Chapter 2 Stability

December 17, 2021

1 Historic remarks and motivations

- Can a first order theory T determine its models;
- Any theory T with an infinite model has models of arbitrary infinite cardinalities (L-S-T);
- For a fixed infinite cardinal κ , how many models of T has cardinal κ ?;
- Consider the function $I_T(-): \kappa \mapsto \#\{\text{models of } T \text{ of card. } \kappa\}.$
- Then $1 \leq I_T(\kappa) \leq 2^{\kappa}$;
- $\#\{L\text{-structures of card. }\kappa\} \leq 2^{\kappa};$

Fact 1.1. [Morley's Theorem] Let T be a countable theory. If $I_T(\kappa) = 1$ for some uncountable cardinal κ , then $I_T(\kappa) = 1$ for all uncountable cardinal κ . (Categoricity)

Example 1.2. .

- The Theory of infinite sets;
- The theory of vector space over a fixed coundtable field;
- The theory of algebraicly closed fields with fixed char;
- The theory of $(\mathbb{Z}, S, 0)$.

Shelah's stability theory intended to generalize Morley's Theory and classify the complete first order theories.

Conjecture 1.3. [Morley] Let T be countable, then the function $I_T(\kappa)$ is non-decreasing on uncountable cardinals.

Fact 1.4. [Shelah's Main gap theorem] Let T be a countable first order complete theory T. then one of these situations holds:

- $\forall \alpha, I_T(\aleph_\alpha) = 2^{\aleph_\alpha}$
- $\forall \alpha, I_T(\aleph_\alpha) < \beth_{\aleph_1}(|\alpha|).$

Here, $\beth_0(\kappa) = \kappa$, $\beth_\alpha(\kappa) = 2^{\beth_{\alpha+1}(\kappa)}$, and $\beth_\nu(\kappa) = \sup\{\beth_\alpha(\kappa) | \alpha < \nu\}$ for limit ordinals ν . Remark 1.5. .

- The name "Main Gap" refers to the gap between $\beth_{\aleph_1}(|\alpha|)$ and $2^{\aleph_{\alpha}}$ $(\alpha \geq \omega)$
- Depending on α this may be no gap at all;
- But in general $\beth_{\aleph_1}(|\alpha|)$ goes only moderately compared to $2^{\aleph_{\alpha}}$;
- The case $I_T(\aleph_\alpha) = 2^{\aleph_\alpha}$ is called the non-structure case, we have a kind of chaos.
- The second case, namely, the case where there are relatively few non-isomorphic models, is called the structure case;
- In this case every model can be characterized up to isomorphism in terms of certain invariants;
- The most important "dividing lines" on the space of first-order theories is "stability";
- Main gap theorem says that: "If T is a first-order theory and is stable and . . . , then the class of models looks like Otherwise, there no hope".

2 Counting types and stability

Definition 2.1. For a complete first order theory T, let $f_T : \text{Card} \to \text{Card}$ be defined by

$$f_T(\kappa) = \sup\{ |S_1 M| : M \models T, |M| = \kappa \},$$

for κ an infinite cardinal.

It is esay to see that $\kappa \leq f_T(\kappa) \leq 2^{\kappa + |T|}$.

Fact 2.2. Let T be an arbitrary complete theory in a first order language. The $f_T(\kappa)$ is one of the following functions

$$\kappa, \kappa + 2^{\aleph_0}, \operatorname{ded} k, (\operatorname{ded} k)^{\aleph_0}, 2^{\kappa}$$

Here

 $\operatorname{ded} \kappa = \sup\{ |I| : I \text{ is a linear order with a dense subset of size } \kappa \}$ $\operatorname{ded} \kappa = \sup\{ \lambda : There \text{ is a linear order of size } \kappa \text{ with } \lambda \text{ cuts} \}$ Lemma 2.3. $\kappa < \operatorname{ded} \kappa \leq 2^{\kappa}$.

Proof. $\kappa < \operatorname{ded} \kappa$:

- Let μ be minimal such that $2^{\mu} > \kappa$;
- Consider 2^{μ} as a set of 0-1 sequence of length μ ;
- then $2^{<\mu}$ is a dense subset of 2^{μ} ;
- $\mu \le \kappa \implies 2^{<\mu} \le \kappa$;
- so ded $\kappa \ge \mu > \kappa$.

 $\operatorname{ded} \kappa \leq 2^{\kappa}$:

• Every cut is determined by the subset of elements in its lower half.

Definition 2.4. Let $M \models T$.

• A formula $\phi(x, y)$, with its variables partitioned into two groups x, y, has the k-order property, $k \in \omega$, if there are some $a_i \in M_x$, $b_j \in M_y$ for i, j < k such that

$$M \models \phi(a_i, b_j) \iff i < j$$

- $\phi(x,y)$ has the order property if it has the k-order property for all $k \in \omega$;
- We say that a formula $\phi(x,y) \in L$ is stable if there is some $k \in \omega$ such that it does not have the k-order property.
- A theory is stable if it implies that all formulas are stable (note that this is indeed a property of a theory).

Proposition 2.5. Assume that T is unstable, then $f_T(\kappa) \ge \operatorname{ded} \kappa$ for all cardinals $\kappa \ge |T|$.

- *Proof.* Fix a cardinal κ . Let $\phi(x,y) \in L$ be a formula has the k-order property for all $k \in \omega$;
 - Let (I, <) be a dense linear order order of size κ ;
 - Let $a_{i \in I}$ and $b_{i \in I}$ be two sequences of new constants;
 - Then $\{\phi(a_i, b_j) | i < j\} \cup \{\neg \phi(a_i, b_j) | i \ge j\}$ is consistent with T;
 - By compactness, there is a model $\mathcal{M} \models T$ and $a_{i \in I}$, $b_{i \in I}$ from M such that

$$\mathcal{M} \models \phi(a_i, b_j) \iff i < j$$

- By L-S-T, we may assume that $|M| = \kappa$;
- For any cut C = (A, B) in I

$$\Phi_C(x) = \{ \phi(x, b_j) | i \in B \} \cup \{ \neg \phi(x, b_j) | j \in A \}$$

is a partial type over M;

- It is easy to see that $C_1 \neq C_2 \implies \Phi_{C_1} \cup \Phi_{C_2}$ is inconsistent;
- Let $p_C(x) \in S_x(M)$ be a complete extension of $\Phi_C(x)$;
- Then $|S_x(M)| \ge \text{number of cuts in } I$;
- As I is arbitrary,

$$f_T(\kappa) = \sup\{|S_x(M)| \ M \models T, |M| = \kappa\} \ge \operatorname{ded} \kappa$$

Recall

Fact 2.6 (Ramsey Theory). $\aleph_0 \to (\aleph_0)_k^n$ holds for all $n, k \in \omega$ (i.e.for any coloring of subsets of N of size n in k colors, there is some infinite subset I of N such that all n-element subsets of I have the same color).

Lemma 2.7. Let $\phi(x,y)$, $\psi(x,z)$ be stable formulas (where y,z are not necessarily disjoint tuples of variables). Then:

- 1. Let $\phi^*(y,x) = \phi(x,y)$, i.e. we switch the roles of the variables. Then $\phi^*(y,x)$ is stable.
- 2. $\neg \phi(y, x)$ is stable.
- 3. $\theta(x,yz) := \phi(x,y) \wedge \psi(x,z)$ and $\theta'(x,yz) := \phi(x,y) \vee \psi(x,z)$ are stable.
- 4. If y = uv and $c \in M_v$ then $\theta(x, u) := \phi(x, uc)$ is stable.
- 5. If T is stable, then every L^{eq} -formula is stable as well.

Proof. .

- (1) and (2) are trivial.
- (3):
 - Suppose that $\theta(x, yz) := \phi(x, y) \wedge \psi(x, z)$ is unstable;
 - there are $(a_i, b_i, c_i | i \in \mathbb{N})$ such that

$$\phi(a_i, b_j) \vee \psi(a_i, c_j) \iff i < j$$

4

• Let $f: [\mathbb{N}]^2 \to \{0,1\}$ defined by: for each $i < j \in \mathbb{N}$

$$f(i,j) = 1 \iff \models \psi(a_i,c_j) \text{ and } f(i,j) = 0 \iff \models \neg \psi(a_i,c_j)$$

- By Ramsey, there is a infinite subset $I \subseteq J$ such that
- f is constant on I;
- If f(I) = 1, then $\forall i, j \in I(\psi(a_i, b_i) \iff i < j)$
- If f(I) = 0, then $\forall i, j \in I(\phi(a_i, b_i) \iff i < j)$
- So either ϕ or ψ is unstable.

(4): Trivial.
$$\Box$$

Theorem 2.8 (Erdös-Makkai). Let B be an infinite set, $\mathcal{F} \subseteq \mathcal{P}(B)$ a collection of subsets of B with $|B| < |\mathcal{F}|$. Then there are sequences $(c_{i<\omega}) \subseteq B$ and $(S_{i<\omega}) \subseteq \mathcal{F}$ such that one of the following holds:

- 1. $c_i \in S_j \iff j < i(\forall i, j \in \omega),$
- 2. $c_i \in S_i \iff i < j(\forall i, j \in \omega)$.

We need the following lemma:

Lemma 2.9. Let X be a set and $Y_1, ..., Y_n$ are subsets of X. Define:

$$E(x,y) := \bigwedge_{i=1}^{n} (x \in X_i \iff y \in X_i).$$

Then E is an equivalence relation on X and $Z \subseteq X$ is a boolean combination of X_i 's iff

$$E(x,y) \implies (x \in Z \iff y \in Z)$$

Proof. Exercise. \Box

We now proof the Theorem 2.8

Proof. • Choose $\mathcal{F}' \subseteq \mathcal{F}$ such that

- $|\mathcal{F}'| = |B|;$
- For any finite $B_0, B_1 \subseteq B$,

$$\exists S \in \mathcal{F}(B_1 \subseteq S \land B_2 \subseteq B \backslash S) \implies \exists S' \in \mathcal{F}'(B_1 \subseteq S' \land B_2 \subseteq B \backslash S').$$

• \mathcal{F}' exists as there are at most |B|-many different pairs of finite subsets of B;

- $|\mathcal{F}| > |\mathcal{F}'| \implies \exists S^* \in \mathcal{F}$ which is not a boolean combination of elements of \mathcal{F}' ;
- Let $a_0 \in S^*$ and $b_0 \notin S^*$;
- There is $S_0 \in \mathcal{F}'$ s.t. $a_0 \in S_0$ and $b_0 \notin S_0$;
- Since S^* is NOT a b. c. of $\{S_0\}$, there are a_1, b_1 s.t. :
 - $-a_1 \in S_0 \iff b_1 \in S_0$, and ;
 - $-a_1 \in S^*$ but $b_1 \notin S^*$.
- Now $\{a_0, a_1\} \subseteq S^*$ and $\{b_0, b_1\} \subseteq B \setminus S^*$;
- By the assumption of \mathcal{F}' , $\exists S_1 \in \mathcal{F}'(\{a_0, a_1\} \subseteq S_1 \land \{b_0, b_1\} \subseteq B \setminus S_1)$;
- Since S^* is NOT a b. c. of $\{S_0, S_1\}$, there are a_2, b_2 s.t. :
 - $-a_2 \in S_i \iff b_2 \in S_i$, for i < 2, and ;
 - $-a_2 \in S^*$ but $b_2 \notin S^*$.
- ...
- Inductively, we have infinite sequences $(a_{i<\omega})\subseteq S^*$ and $(b_{i<\omega})\subseteq B\backslash S^*$ s.t.
 - $-a_n \in S_i \iff b_n \in S_i$, for i < n;
 - $\{a_0,, a_n\} \subseteq S_n, \{b_0,, b_n\} \subseteq B \setminus S_n$

By Ramsey, there is an infinite $I \subseteq \omega$ such that

- either $\forall i < j \in I(a_i \in S_j) \implies \forall i < j \in I(b_i \in S_j \iff i > j)$,
- or $\forall i < j \in I(a_i \notin S_j) \implies \forall i < j \in I(a_i \in S_j \iff i \le j)$
- In the first case we set $c_i = b_i$;
- In the second case we set $c_i = a_{i+1}$;

Definition 2.10. Let $\phi(x,y)$ be a formula, by a complete ϕ -type over a set of parameters $A \subseteq M_y$ we mean a maximal consistent collection of formulas of the form $\phi(x,b), \neg \phi(x,b)$ where b ranges over A. Let $S_{\phi}(A)$ be the space of all complete ϕ -types over A.

Proposition 2.11. Assume that $|S_{\phi}(B)| > |B|$ for some infinite set of parameters B. Then $\phi(x,y)$ is unstable.

Proof. .

• For $a \in \mathbb{M}_x$, $\operatorname{tp}_{\phi}(a/B)$ is determined by $\phi(a,B) = \{b \in B | \models \phi(a,b)\};$

- $|S_{\phi}(B)| > |B| \implies |\{\phi(a,B)| \ a \in \mathbb{M}_x\}| > |B| \ ;$
- By Erdös-Makkai, there are sequences $(a_{i<\omega})$ and $(a_{i<\omega})$ s.t.

either
$$\models \phi(a_i, b_j) \iff i < j$$
, or $\models \phi(a_i, b_j) \iff j < i$.

3 Local ranks and definability of types

Definition 3.1. We define Shelahs local 2-rank taking values in $\{-\infty\} \cup \omega \cup \{+\infty\}$ by induction on $n \in \omega$. Let Δ be a set of L-formulas, and $\theta(x)$ a partial type over \mathbb{M} .

- $R_{\Delta}(\theta(x)) \geq 0 \iff \theta$ is consistent (and $-\infty$ otherwise);
- $R_{\Delta}(\theta(x)) \ge n+1$ if $\exists \phi(x,y) \in \Delta$ and $a \in \mathbb{M}_y$ s.t.

$$R_{\Delta}(\theta(x) \land \phi(x, a)) \ge n$$
 and $R_{\Delta}(\theta(x) \land \neg \phi(x, a)) \ge n$

- $R_{\Delta}(\theta(x)) = n$ if $R_{\Delta}(\theta(x)) \ge n$ and $R_{\Delta}(\theta(x)) \not\ge n+1$
- $R_{\Delta}(\theta(x)) = +\infty$ if $R_{\Delta}(\theta(x)) \ge n$ for all $n \in \omega$.

If ϕ is a formula, we write R_{ϕ} instead of $R_{\{\phi\}}$.

Proposition 3.2. $\phi(x,y)$ is stable iff $R_{\phi}(x=x)$ is finite.

Proof. Assume that $\phi(x,y)$ is unstable:

• By compactness, there is a sequence $(a_ib_i|i\in[0,1])$ such that

$$\models \phi(a_i, b_j) \iff i < j$$

- Both $\phi(x, b_{\frac{1}{2}})$ and $\neg \phi(x, b_{\frac{1}{2}})$ contain dense subsequences of a_i 's.
- Each of these sets can be split again, by $\phi(x, b_{\frac{1}{4}})$ and $\phi(x, b_{\frac{3}{4}})$;
- •

Conversely, assume that the rank is infinite:

• We can find a infinity tree of parameters

$$B = \{b_{\eta} | \ \eta \in 2^{<\omega}\}$$

such that

• for each $\eta \in 2^{\omega}$, let

$$\Phi_{\eta} = \{ \phi^{\eta(n)}(x, b_{\eta|n}) | n \in \omega \},$$

where $\phi^1 = \phi$ and $\phi^0 = \neg \phi$;

- Then each Φ_{η} is consistent;
- Different Φ_{η} 's are inconsistent;
- $|S_{\phi}(B)| \ge 2^{|B|} \implies \phi(x, y)$ is unstable.

Definition 3.3.

• Let $\phi(x,y) \in L$ be given. A type $p(x) \in S_{\phi}(A)$ is definable over B if there is some L(B)-formula $\psi(y)$ such that for all $a \in A$

$$\phi(x,a) \in p \iff \models \psi(a)$$

- A type $p \in S_x(A)$ is definable over B if $p|_{\phi}$ is definable over B forall $\phi(x,y) \in L$.
- A type is definable if it is definable over its domain.
- We say that types in T are uniformly definable if for every $\phi(x, y)$ there is some $\psi(y, z)$ such that every type can be defined by an instance of $\psi(y, z)$, i.e. if for any A and $p \in S_{\phi}(A)$ there is some $b \in A$ such that

$$\phi(x,a) \in p \iff \models \psi(a,b),$$

for all $a \in A$.

Remark 3.4. .

- Let $A \subseteq \mathbb{M}_x$, and $B \subseteq A$. We say that B is externally definable if there is some \mathbb{M} -definable set X such that $B = X \cap A$
- If $X = \phi(\mathbb{M}, c)$. Then $\operatorname{tp}_{\phi}(c/A)$ is definable iff B is in fact internally definable.
- A set is called stably embedded if for every externally definable subset of it is internally definable.

Example 3.5. Consider $(\mathbb{Q}, <) \models DLO$, and let $p = \operatorname{tp}(\pi/\mathbb{Q})$. Then $x < y \in p(x) \iff x < \pi$. By QE, p is not definable.

Lemma 3.6. .

- 1. The set $\{e \in \mathbb{M}^k | R_{\phi}(\theta(x,e)) \geq n\}$ is definable for all $n \in \omega$;
- 2. If $R_{\phi}(\theta(x)) = n$, then for any $a \in \mathbb{M}_y$, at most one of $\theta(x) \wedge \phi(x, a)$, $\theta(x) \wedge \neg \phi(x, a)$ has R_{ϕ} -rank n.

Proof. (1):

- Induction on n.
- $n = 0 \implies R_{\phi}(\theta(x, e)) \ge 0 \iff \exists x(\theta(x, e));$

 \bullet $n = k + 1 \Longrightarrow$

$$R_{\phi}(\theta(x,e)) \ge k+1 \iff \exists y (\left(R_{\phi}(\theta(x,e) \land \phi(x,y)) \ge k\right) \land \left(R_{\phi}(\theta(x,e) \land \neg \phi(x,y)) \ge k\right))$$

$$\square$$
 (2): Trivial.

Proposition 3.7. Let $\phi(x,y)$ be a stable formula. Then all ϕ -types are uniformly definable. Proof. .

- Suppose that $R_{\phi}(x=x)$ is $n \in \omega$;
- Let $p \in S_{\phi}(A)$;
- Then there is $\chi(x) \in p$ such that $R_{\phi}(\chi(x)) = \min\{R_{\phi}(\varphi(x)) | \varphi \in p\};$
- For each $b \in A_y$, either $\phi(x,b) \in p$ or $\neg \phi(x,b) \in p$;
- either $R_{\phi}(\chi(x) \land \phi(x,b)) < n$ or $R_{\phi}(\chi(x) \land \neg \phi(x,b)) < n$;
- $R_{\phi}(\chi(x))$ is minimal $\Longrightarrow (\phi(x,b) \in p \iff R_{\phi}(\chi(x) \land \phi(x,b)) = n).$

Theorem 3.8. The following are equivalent for a formula $\phi(x,y)$.

- 1. $\phi(x,y)$ is stable;
- 2. $R_{\phi}(x=x) < \omega;$
- 3. All ϕ -types are uniformly definable;
- 4. All ϕ -types over models are uniformly definable;
- 5. $S_{\phi}(M) \leq \kappa \text{ for all } \kappa \geq |L| \text{ and } M \models T \text{ with } |M| = \kappa;$
- 6. There is some κ such that $|S_{\phi}(M)| < \operatorname{ded} \kappa$ for all $M \models T$ with $|M| = \kappa$.

Proof. .

- $(1) \iff (2)$ by Proposition 3.2;
- $(2) \implies (3)$ by Proposition 3.7;
- $(3) \implies (4)$ is obvious;
- (4) \Longrightarrow (5), each ϕ -type is determined by a L(M)-formula, its own definition;
- $(5) \implies (6)$ is obvious;

• $(6) \implies (1)$ is by Proposition 2.5.

Global case:

Theorem 3.9. Let T be a complete theory. Then the following are equivalent.

- 1. T is stable;
- 2. There is NO sequence of tuples $(c_i|i\in\omega)$ from \mathbb{M} and formula $\phi(z_1,z_2)\in L(M)$ such that

$$\models \phi(c_i, c_j) \iff i < j;$$

- 3. $f_T(\kappa) \leq \kappa^{|T|}$ for all infinite cardinals κ ;
- 4. There is some κ such that $f_T(\kappa) \leq \kappa$;
- 5. There is some κ such that $f_T(\kappa) < \operatorname{ded} \kappa$;
- 6. All formulas of the form $\phi(x,y)$ where x is a singleton variable, are stable;
- 7. All types over models are definable.

Proof. .

- $(1) \Longrightarrow (2)$ by definition;
- \bullet (2) \Longrightarrow (1):
 - Let $\psi(x,y)$ be a formula with order property witnessed by sequence

$$\{(a_i, b_i) | i < \omega\};$$

- Let $\phi(x_1y_1; x_2y_2) := \psi(x_1, y_2)$ and $c_i := a_ib_i$;
- Then $\models \phi(c_i, c_j) \iff i < j$.
- (1) \Longrightarrow (3) $:S_x(M) \to \prod_{\phi \in L} S_\phi(M)$ is injective;
- $(3) \implies (4)$ is obvious;
- $(4) \implies (5)$ is obvious;
- $(5) \implies (1)$ is by Proposition 2.5.
- (6) \iff (1 5): Fix some κ , then $S_1(M) \leq \kappa$ for all M with $|M| = \kappa$ iff $S_n(M) \leq \kappa$ for all M with $|M| = \kappa$;
- $(7) \iff (1-5)$ by Theorem 3.9

 $\textbf{Example 3.10.} \quad \bullet \ \text{Stability} \iff \text{all types over all models are definable};$

• Some unstable theories have certain special models over which all types are definable;

- $\mathcal{M} = (\mathbb{R}, +, \times, 0, 1)$, all types over \mathbb{R} are uniformly definable;
- $\mathcal{M} = (\mathbb{Q}_p, +, \times, 0, 1)$, all types over \mathbb{Q}_p are uniformly definable.