2023~ 2024 学年第 1 学期

开课学院	课程名称 概率论与数理统计 C 卷	(<u>理工)</u> 考核方式 <u> </u>
考试时间 <u>120</u> 分钟 _ 考生姓名	考生班级	考生学号
) 个小题,每小题 2 分,共 2	
1. 设 $P(A) = \frac{1}{4}$, $P(B A)$	$=\frac{1}{3}$, $P(A B)=\frac{1}{2}$, $\mathbb{M}P(A\cup B)$	3)=()
	(B) $\frac{1}{3}$ (C) $\frac{1}{4}$	
2. 设事件 A 与 B 相互独	立,则下列结论错误的是()
(A) A与 <u>B</u> 独立	(B) A与B独立	
(C) $P(\overline{AB}) = P(\overline{A})P(B)$	(D) $A = B - 1$	定互斥
·	$\int kx, 0 \le x < 3$	
3. 设随机变量 X 的密度	函数为 $f(x) = \begin{cases} 2 - \frac{x}{2}, & 3 \le x \\ 0, & \text{ 其他} \end{cases}$	≤ 4 , $\bigcup k = ($
	0, 其他	
	$\frac{1}{4}$ (C) $\frac{1}{5}$	
4. 设随机变量 X ~ N(4	$,5^2$),又常数 c 满足 $P\{X \le c\}$	$=P\{X>c\}$,则 c 等于 ()
(A) 4 (B)		(D) 7
5. 设随机变量 $X \sim B(r)$	1, p)则有()	
(A) $E(2X-1) = 2np$	(B) <i>E</i>	T(2X+1) = 4np+1
(C) $D(2X+1) = 4np$	1 1	O(2X-1) = 4np(1-p)
6. 设(X,Y)的联合概题	率密度为 $f(x,y) = \begin{cases} 4xy, 0 \le x \\ 0, & \text{其他} \end{cases}$	x ≤1,0 ≤ y ≤1 , 若 F(x,y) 为分布函 也
数,则 F(0.5,2)=	()	
(A) 0 (B)	$\frac{1}{2}$ (C) $\frac{1}{4}$	(D) 1
7. 下列结论中,不能	作为随机变量 X 与 Y 不相关的	的充要条件是()
(A) $E(XY) = E(\lambda X)$	Y(E(Y)) (B)	D(X+Y) = D(X) + D(Y)

2023~ 2024 学年第 1 学期

开课学院 <u>理学院</u> 考试时间 <u>120</u> 分钟	课程名称 <u>概率</u>	<u> </u>	考核方式 闭卷 第 2 页 共 4 页
考生姓名	考生班级	考:	生学号
(C) $Cov(X,Y) = 0$		(D) X与Y相3	五独立
8. 假设总体 X 服从参	数为 λ 的泊松分布,	X_1, X_2, \cdots, X_n 是取	R自总体 X 的简单随机样本,
其均值为X,方差为S	S^2 ,已知 $\hat{\lambda} = a\overline{X} + (2)$	-3a)S ² 为 λ 的无位	扁估计,则 ()
(A) 0	(B) $\frac{1}{2}$	(C) $\frac{1}{3}$	(D) $\frac{1}{4}$
9. 设 $X \sim N(3,5^2), (X_1,$	X_2, \dots, X_n) 为总体 X	的一个样本,则以	【下结果正确的是()
(A) $\frac{\overline{X}-3}{5} \sim N(0,1)$	(B)	$\frac{\overline{X}-3}{25} \sim N(0,1)$	
(C) $\frac{\overline{X}-3}{5} \sim N(0,1)$	(D) =	$\frac{\overline{X}-3}{5/\sqrt{n}} \sim N(0,1)$	
10. 设 $X_1, X_2,, X_n$ 是为	於自正态总体 N(μ,σ	一²)的一个简单随机	几样本,其中 μ 未知 , σ² 已
知,则下列不是统计量	的是()		
(A) $\max_{1 \le i \le n} \{X_i\}$ (B)	$\sum_{i=1}^{n} \left(\frac{X_i}{\sigma}\right)^2 \qquad (C) \frac{1}{n}$	$\sum_{i=1}^{n} (X_i - \overline{X})^2$	(D) $\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$
二、填空题(本大题共	10个小题,每空2	分,共20分)	
11. 设 A, B, C 表示三个	随机事件,则恰好有	了一个事件发生表	示为
12. 若盒子中有 8 个黑耳抽到白球的概率为	球,2个白球,不放 	回的从中抽取 10	次,每次抽一个,则第5次
13. 设随机变量 $X \sim N(X)$	2,5 ²), $\bigcup P\{X=2\}$ =	4	
14. 设 X 和 Y 为两个互构	目独立的随机变量,	且分别服从参数为	11与参数为4的指数分布,
则(X,Y)的联合密度函	数 $f(x,y)=$		
15. 已知随机变量 X 的	数学期望 $E(X)=2$,	$D(Y)=1$, $\bigcup E(X)$	$(X^2) =$
16. 己知随机变量 X 的机	既率密度函数为 f_x ((x),则 $Y=3X+1$ 自	的概率密度函数 $f_{\gamma}(y) = $
17. 设二维随机变量(X,	Y)的概率密度函数		

2023~ 2024 学年第 1 学期

开课学院___理学院__

课程名称_概率论与数理统计(理工) 考核方式 闭卷

考试时间 120 分钟

_C 卷

第3页共4页

考生姓名____

考生班级

考生学号

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le y \le 1 \\ 0, & 其他, \end{cases}$$

18. 设 $X_1 \sim N(2,4)$, $X_2 \sim N(0,1)$, $X_3 \sim N(1,5)$, 且 X_1 , X_2 , X_3 相 互 独 立 , 设 $Y = X_1 + 2X_2 - 3X_3$,则 $Y \sim$ ______.

19. 随机变量 X 与 Y 相互独立,则相关系数 $\rho_{XY} = _____$.

20. 已知一批零件的长度 X (单位: cm) 服从正态分布 $N(\mu, 1)$, 从中随机地抽取 16 个零

件,得到长度的平均值为 40cm,则μ的置信度为 0.95 的置信区间是

(注:标准正态分布函数值 $\Phi(1.96) = 0.975, \Phi(1.645) = 0.95$)

三、 计算题(本大题共6小题,每道10分,共60分)

21. 已知男子有5%是色盲患者,女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人,恰好是色盲者,问此人是男性的概率是多少?.

22. 袋中有 4 个白球,2 个红球,从中任取 3 个球,以 X 表示所取 3 个球中红球的个数,(1)求 X 的分布律. (2)求 X 的分布函数.

23. 若随机变量 X 在区间 (1,6) 上服从均匀分布,则关于 y 的方程 $y^2 + Xy + 1 = 0$ 有实根的概率是多少?

24. 二维随机变量(X,Y)的联合分布律如下表所示

Y	2	5	8
0. 4	0. 15	0.30	0. 35
0.8	0.05	0.12	0.03

2023~ 2024 学年第 1 学期

开课学院	里学院	果程名称_	概率论与数理统计(理工	考核方	式_ 闭	卷	
考试时间	20 分钟	C \$			第4页	共 4页	
-let, the date to		北州北西	1	KAL MA III			

- (1) 求关于 X和Y 的边缘分布律;
- (2) 判断 X与Y 是否相互独立;
- (3) 求Z=Y-X分布律.

25. 设总体 X 的概率分布如下表所示,其中 $\theta(0 < \theta < \frac{1}{2})$ 为未知参数,对总体 X 中抽取容量为 8 的一组样本,即 $\{3,1,3,0,3,1,2,3\}$,求 θ 的极大似然估计值.

X	0	1	2	3
p	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$

26. 某手机生产商在其广告宣传中声称其生产的某品牌手机待机时间的平均值为 72 小时,质监部门抽查了这种品牌手机 6 部,得到的待机时间为 69,68,72,70,66,75. 设手机的待机时间 $X \sim N(\mu, 24)$,试用这些数据说明:手机待机时间与广告宣传是否有显著差异?(显著性水平 $\alpha = 0.05$)

 $z_{0.025} = 1.96$, $z_{0.05} = 1.645$, $t_{0.025}(5) = 2.5706$, $t_{0.05}(5) = 2.015$

重庆理工大学本科生课程考试 参考答案及评分标准

2023-2024 学年第 1 学期

课程编号:

课程名称:概率论与数理统计「理工] 试卷类别:C卷

一、单项选择题(本大题共10小题,每小题2分,总计20分)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
В	D	В	A	D	C	D	В	D	D

二、填空题(本大题共10小题,每小题2分,总计20分)

(11)	(12)	(13)	(14)	(15)
$A\overline{B}\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}\overline{B}C$	$\frac{1}{5}$	0	$\begin{cases} 4e^{-(x+4y)}, & x > 0, y > 0 \\ 0, & 其他 \end{cases}$	5
(16)	(17)	(18)	(19)	(20)
$\frac{1}{3}f_X\left(\frac{y-1}{3}\right)$	$\begin{cases} 4y^3, & 0 \le y \le 1 \\ 0, & 其他 \end{cases}$	N(-1,53)	0	(39.51, 40.49)
3'x(3)	[0, 其他	1,(1,33)	3	或(39.5, 40.5)

三、解答题(本大题共6小题,每小题10分,总计60分)

21、解:设事件 B表示"任选一个人是色盲",

$$A$$
表示"任选一个是男人" \overline{A} 表示"任选一个是女人"(2 分)

$$P(A) = P(\overline{A}) = \frac{1}{2} \qquad (2 \%)$$

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$

$$= \frac{\frac{1}{2} \times 5\%}{\frac{1}{2} \times 5\% + \frac{1}{2} \times 0.25\%} = \frac{20}{21} \dots (6 \%)$$

22. X 所有可能的取的值为 0、1、2, 且

$$P\{X=0\} = \frac{C_4^3}{C_6^3} = \frac{1}{5}, \qquad P\{X=1\} = \frac{C_4^2 C_2^1}{C_6^3} = \frac{3}{5}, \qquad P\{X=2\} = \frac{C_4^1 C_2^2}{C_6^3} = \frac{1}{5}.$$

则X的分布律为

X	0	1	2
p	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

.....(5分)

分布函数为
$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{5}, & 0 \le x < 1 \\ \frac{4}{5}, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

.....(5分)

23、解:由于
$$X \sim U(1,6)$$
,所有其密度函数为 $f(x) = \begin{cases} \frac{1}{5}, 1 < x < 6 \\ 0, 其他 \end{cases}$ (2分)

记事件 A 为 "方程 $y^2 + Xy + 1 = 0$ 有实根"

$$P(A) = P\{X^2 - 4 \ge 0\} = 1 - P\{-2 < X < 2\} = 1 - \int_1^2 \frac{1}{5} dx = \frac{4}{5}.$$

.....(8分)

24. 解: (1) X与Y 的边缘分布分别为

X	0.2	0.8
p	0.8	0.2

Y	2	5	8
p	0.2	0.42	0.38

.....(4分)

(2) 若对所有的 (x_i, y_j) ,都有 $P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$,则X 与 Y相互独立,

若存在一组 (x_i, y_i) ,使得 $P(X = x_i, Y = y_i) \neq P(X = x_i)P(Y = y_i)$,则X 与 Y相互不独立.

如 $P(X = 0.4, Y = 2) \neq P(X = 0.4)P(Y = 2)$ (选其他点亦可)

故X与Y不相互独立.

.....(3分)

(3)

Y-X	1.2	1.6	4.2	4.6	7.2	7.6
p	0.05	0.15	0.12	0.30	0.03	0.35

.....(3分)

25. 解: 已知总体 X 的概率分布为 $p_i = P(X = x_i) = P(x_i; \theta)$, 故样本值 $x_i (1 \le i \le 8)$ 的似然函数为

$$L(x_1, \dots, x_8; \theta) = \prod_{i=1}^8 P(x_i; \theta) = \theta^2 [2\theta (1-\theta)]^2 \theta^2 (1-2\theta)^4$$
$$= 4\theta^6 (1-\theta)^2 (1-2\theta)^4. \qquad (4 \%)$$

$$\ln L(\theta) = \ln 4 + 6\ln \theta + 2\ln(1-\theta) + 4\ln(1-2\theta)$$
 (2 \(\frac{1}{2}\))

即 $12\theta^2 - 14\theta + 3 = 0$,解得 $\theta = \frac{7 \pm \sqrt{13}}{12}$,因为 $\theta = \frac{7 + \sqrt{13}}{12} > \frac{1}{2}$ 不合题意,故

$$\theta$$
的极大似然估计值为 $\hat{\theta} = \frac{7 - \sqrt{13}}{12}$ (2分)

26、解: 设
$$H_0$$
: $\mu = \mu_0 = 72$ H_1 : $\mu \neq 72$ (2分)

取统计量 $z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$, 在 H_0 成立的条件下

$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1) \tag{2 \(\frac{1}{2}\)}$$

拒绝域:
$$|\mathbf{z}| > \mathbf{z}_{\frac{\alpha}{2}}$$
 (2分)

由题意
$$\bar{x} = \frac{69 + 68 + 72 + 70 + 66 + 75}{6} = 70$$

从而
$$|\mathbf{z}| = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| = \left| \frac{70 - 72}{\sqrt{24} / \sqrt{6}} \right| = 1 < z_{0.025} = 1.96$$
 (2 分)