Wstęp do Teorii Zbiorów

notatki na podostawie wykładów J. Kraszewskiego

Weronika Jakimowicz

Ze wstępem do matematyki jest jak z uświadamianiem sekualnym dzieci - mówi im się prawde, ale nie mówi im się wszystkiego.

JEZYK LOGIKI

1.1 **FUNKCJE**

FUNKCJA - zbiór par uporządkowanych o właśności jednoznaczości, czyli nie ma dwóch par o tym samym poprzedniku i dwóch różnych następnikach.

Teraz dziedzinę i przeciwdziedzinę określamy poza definicją funkcji – nie są na tym samym poziomie co sama funkcja:

$$dom(f) = \{x : (\exists y) \langle x, y \rangle \in f\}$$
$$rng(f) = \{y : (\exists x) \langle x, y \rangle \in f\}.$$

Warto pamiętać, że definicja funkcji jako podzbioru $f\in X imes Y$ takiego, że dla każdego x \notin X istnieje dokładnie jeden y \in Y takie, że $\langle x,y \rangle \in f$ jest tak samo poprawną definicja, tylko kładzie nacisk na inny aspekt funkcji.

OPERACJE UOGÓLNIONE 1.2

Dla rodziny indeksowanej $\{A_i\,:\,i\in I\}$ definiujemy:

- jej sumę: $\bigcup_{i\in I}A_i=\{x\,:\,(\exists\;i\in I)\;x\in A_i\}$ - jej przekrój: $\bigcap_{i\in I}A_i=\{x\,:\,(\forall\;i\in I)\;x\in A_i\}$

Dla nieindeksowanej rodziny zbiorów ${\cal A}$ definiujemy:

- suma: $\bigcup A = \{x : (\exists A \in A) x \in A\}$

- przekrój: $\bigcap \mathcal{A} = \{x : (\forall A \in \mathcal{A}) \ x \in A\}$

Formalnie, indeksowana rdzina zbiorów jest funkcją ze zbioru indeksów w rodzinę zbiorów, więc powinna być zapisywana w nawiasach trójkątnych (para uporządkowana). Stosowany przez nas zapis w nawiasach klamrowych oznacza zbiór wartości takiej funkcji i nie ma znaczenia czy dany podzbiór pojawi się w nim wielokrotnie. Nie przeszkadza to więc w definiowaniu sumy czy przekroju.

UOGÓLNIONY ILOCZYN KARTEZJAŃSKI (uogólniony produkt) zbiorów:

Dla dwóch i trzech zbiorów mamy odpowiednio:

$$A_1 \times A_2 = \{ \langle x, y \rangle : x \in A_1 \land y \in A_2 \}$$

$$A_1\times A_2\times A_3=\{\langle x,y,z\rangle\ :\ x\in A_1\wedge y\in A_2\wedge z\in A_3\}.$$

Pierwszym pomysłem na definiowanie iloczynu kartezjańskiego trzech i wiecej zbiorów będzie definicja rekurencyjna:

$$A_1 \times A_2 \times A_3 := (A_1 \times A_2) \times A_3.$$

Pojawia się problem formalny - iloczyn kartezjański nie jest łączny:

$$(A_1 \times A_2) \times A_3 \neq A_1 \times (A_2 \times A_3)$$

$$\langle \langle a_1, a_2 \rangle a_3 \rangle \neq \langle a_1, \langle a_2, a_3 \rangle \rangle.$$

Mimo, że iloczyn kartezjański nie jest łączny, matematycy nie mają problemu uznawać, że jest łączny, gdyż istnieje naturalna, kanoniczna bijekcja, która lewej stronie przypisuje prawą stronę.

Niech $\langle A_i:i\in I
angle$ będzie indeksowaną rodziną zbiorów, czyli

$$A:I\to\bigcup_{i\in I}A_i$$

$$A(i) = A_i$$

Wyobraźmy sobie iloczyn kartezjański dwóch zbiorów nie jako punkt na płaszczyźnie, ale jako dwuelementowy ciąg:

To przedstawienie łatwo jest przełożyć na nieskończenie długi iloczyn kartezjański, wystarczy dorysować kolejne osie z elementami kolejnego podzbioru rodziny:

W ten sposób powstaje funkcja, która kolejnym indeksom przypisuje element z tego indeksu:

$$f:I\to\bigcup_{i\in I}A_i$$

 $f(i) \in A_i$.

Według tego, uogólniony iloczyn kartezjański to zbiór funkcji ze zbioru indeksowego w rodzinę indeksowaną:

$$\prod_{i \in I} A_i = \{f \in (\bigcup_{i \in I} A_i)^I \ : \ (\forall \ i \in I) \ f(i) \in A_i\}$$

Jednak dla $I=\{1,2\}$ nie zachodzi równość:

$$\prod_{i \in I} A_i \neq A_1 \times A_2$$

Po lewej mamy zbiór funkcji, a po prawej iloczyn kartezjański. Możemy pokazać naturalną bijekcję między lewą a prawą stroną, ale byty są róże. Wystarczy pamiętać, że mamy co innego i możemy się tym nie przejmować <3

1.3 JĘZYK PIERWSZEGO RZĘDU

JĘZYK RZĘDU ZERO, czyli rachunek zdań: $\mathrm{p,q,r,...,V,\Lambda,\lnot,}\Longrightarrow,\Longleftrightarrow$

JĘZYK PIERWSZEGO RZĘDU jest nadzbiorem języka rzędu zero

część logiczna:

- 1. symbole zmiennych: $V = \{x_0, x_1, ...\}$
- 2. symbole spójników logicznych: $\{\neg, \lor, \land, \Longrightarrow, \longleftrightarrow\}$
- 3. symbole kwantyfikatorów: $\{\forall,\exists\}$
- 4. symbol równości: =

cześć pozalogiczna:

- 1. symbole funkcyjne: $F = \{f_i : i \in I\}$
- 2. symbole relacyjne (predykaty): $R = \{r_j \,:\, j \in J\}$
- 3. symbole stale: $C = \{c_k : k \in K\}$

ARNOŚĆ - odpowiada liczbie argumentów funkcji lub relacji. Każdy symbol ma swoją arność.

SYGNATURA – zawiera informację o tym, ile jest symboli funkcyjnych, relacyjnych lub stałych i jakiej są arności w danym języku. Sygnatura charakteryzuje język.

1.4 SYNTAKTYKA vs SEMANTYKA

Znała suma cała rzeka, Więc raz przbył lin z daleka I powiada: "Drogi panie, Ja dla pana mam zadanie, Jeśli pan tak liczyć umie, Niech pan powie, panie sumie, Czy pan zdoła w swym pojęciu, Odjąć zero od dziesięciu?" "To dopiero mam z tym biedę -

Może dziesięc? Może jeden?"

Jak odjąc 0 od 10:

semantycznie: 10 - 0 = 10

syntaktycznie: od ciągu 1 i 0 odjęcie 0 to zostawienie tylko 1

SEMANTYKA – patrzy na znaczenie zapisów, nie sam napis. SYNTAKTYKA – interesuje ją tylko zapis, język, a znaczenia nie ma.

1.5 KONSTRUOWANIE JĘZYKA

TERMY - bazowy zbiór termów to zbiór zmiennych i zbiór stałych:

$$T_0 = V \cup C$$

Do ich budowy wykorzystujemy symbole funkcyjne (F)

Załóżmy, że mamy skonstruowane termy aż do rzędu f n i chcemy skonstruować termy rzędu m n+1. Jeśli mamy symbol funkcyjny arności m k, to termem jest zastosowanie tego symbolu do wczesniej skonstruowanych termów, których mamy k:

 $f \in F$ f -arności k

$$F(t_1,...,t_k) \quad t_1,...,t_k \in \bigcup_{i=0}^n T_i$$

Czylil jeśli mamy zbiór termów, to biorąc wszystkie dostępne symbole funkcyjne i stosą nowe termy.

Termy to potencjalne wartości funkcji

FORMUŁY - budowane są rekurencyjnie, zaczynając od formuł atomowych:

$$t = s, t, s \in TM$$

stosując wszystkie relacje równoważności termów

$$r \in R$$
 $r(t_1, ..., t_k)$

zastosowanie symbolu relacyjnego na odpowiedniej ilości termów tworzy formułę

Bazowym poziomem frmuł jest formuła atomowa:

$$F_{m_0} = \{ \varphi : \varphi - \text{formula atomowa} \}$$

Jeśli mamy $\mathrm{F}_{\mathrm{m}_{\mathrm{c}}}$ dla pewnego $\mathrm{k} < \mathrm{n}$, czyli wszystkie formuły poniżej n zostały skonstruowane, to

$$F_{m_n} \,:\, \neg \, (\varphi), \; \varphi \vee \phi, \; \varphi \wedge \phi, ... \quad \text{dla} \; \varphi, \phi \in \bigcup_{k < n} F_{m_k},$$

czyli używamy wszystkich spójników logicznych dla poprzednich formuł

$$F_{m_n} \,:\, (\forall\; \varphi)\; (\exists\; x_i) \quad \text{dla}\; \varphi \in \bigcup_{k < n} F_{m_k},\; x_i \in V$$

kwantyfikujemy też po wszystkich możliwych zmiennych wszystkiemożliwe formuły

$$FM = \bigcup_{n=0}^{\infty} F_{m_n}$$

1.6 JĘZYK TEORII MNOGOŚCI

$$L = \{ \in \}$$

składa się z jednego binarnego predykatu, który nie jest jeszcze należeniem

W racuhnku zdań przejście z syntaktyki do semantyki to nadanie symbolom wartości prawda lub fałsz.

SYSTEM ALGEBRAICZNY:

$$\mathcal{A} = \langle A, \{F_i \ : \ i \in I\}, \{R_j \ : \ j \in J\}, \{C_k \ : \ k \in K\} \rangle$$

odpowiednio: zbiór (uniwersum), funkcje na A, relacje na A, stałe w A

przykłady: $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$, $\langle \mathbb{R}, +, \cdot, 0, 1 \leq \rangle$

Język L możemy interpretować w systemie ${\mathcal A}$ o ile mają one tę samą sygnaturę.

INTERPRETACJA to funkcja ze zbioru wartości w uniwersum:

$$i: V \to A$$
,

którą można rozszerzyć do funkcji ze zbioru termów w uniwersum:

$$\begin{array}{ccc} \bar{i} \ : \ TM \to \mathcal{A} \\ & i \subseteq \bar{i} \end{array}$$

Ponieważ sygnatury są takie same, to każdemu symbolowi funkcyjnemu możemy przypisać funkcję o dokładnie tej samej arności. Czyli jeśli dany symbol funkcyjny jest nakładany na termy, to odpowiadająca mu funkcja jest nakładana na wartości tych termów.

W systemie ${\cal A}$ formuła φ jest spełniona przy interpretacji i:

$$\mathcal{A} \models \varphi[i]$$

Zaczynamy od formuł atomowych, czyli:

 $\mathcal{A} \models (t=s)[i]$ wtedy i tylko wtedy, gdy mają tę samą interpretację (czyli $\overline{\mathbf{i}}(t) = \overline{\mathbf{i}}(s)$) wtedy i tylko wtedy, gdy odpowiedająca temu predykatowi relacja

 $\mathcal{A} \models r_j(t_1,...,t_k)$ zachodzi na wartościach termów (czyli $R_j(ar{i}(t_1),...,ar{i}(t_k))$)

 $\mathcal{A}\models(\neg\,\varphi)[\mathrm{i}]$ where $\mathcal{A}\models\varphi[\mathrm{i}]$, it is tak ze wszy-

stkimi spójnikami logicznymi

 $\mathcal{A}\models(\forall \ x_m)\ \varphi[i]$ when which is tylko which, gdy dla każdego $a\in\mathcal{A}$ mamy $\mathcal{A}\models\varphi[i(\frac{x_m}{a})]$ (sprawdzamy dla konkretnego a czy spełnia φ , a potem dla x_m przypisujemy to (x_m)

a, natomiast inne wartości dostają podstawienie $(\frac{X_m}{a})$?)

2 AKSJOMATY

Zbiór oraz należenie uznajemy za pojęcia pierwotne, więc nie definiujemy ich tylko opisujemy ich własności.

2.1 AKSJOMAT EKSTENSJONALNOŚĆI

zbiór jest jednoznacznie wyznaczony przez swoje elementy $(\forall\;x)\;(\forall\;y)\;(x=y\iff(\forall\;z)\;(z\in x\iff z\in y))$

Od tego momentu zakładamy, że *istnieją wyłącznie zbiory*. Nie ma nie-zbiorów. Naszym celem jest budowanie uniwersum zbiorów i okazuje się, że w tym świecie można zinterpretować całą matematykę.

2.2 AKSJOMAT ZBIORU PUSTEGO

istnieje zbiór pusty \emptyset $(\exists x)(\forall y)\neg y \in x$

Na podstawie aksjomatu ekstensjonalności oraz aksjomaty zbioru pustego można udowodnić, że istnieje dokładnie jeden zbiór pusty.

- 1. istnienie: aksjomat zbioru pustego
- 2. jedyność: niech P_1,P_2 będą zbiorami pustymi. Wtedy dla dowolnego z zachodzi $\neg\,z\in P_1 \wedge \neg\,z\in P_2$, czyli $z\in P_1\iff z\in P_2$. Wobec tego, na mocy aksjomatu ekstensjonalności mamy $P_1=P_2$.

Przyjrzyjmy się następującemy systemowi algebraicznemu:

$$\mathcal{A}_1 = \langle \mathbb{N} \cap [10, +\infty), < \rangle$$

W systemie spełnione są oba te aksjomaty:

$$A_1 \models A_1 + A_2$$

Ponieważ nie mamy podanej interpretacji, a nasze aksjomaty są spełnione, to spełnione są dla dowolnej interpretacji.

2.3 AKSJOMAT PARY

dla dowolnych zbiorów x,y istnieje para $\{x,y\}$ $(\forall x,y) (\exists z) (\forall t) (t \in z \iff t=x \lor t=y)$

Para nieuporządkowana jest jednoznacznie wyznaczona. Aksjomat mówi tylko o istnieniu z, a można łatwo udowodnić, korzystając z aksjomatu ekstencjonalności, że takie z istnieje tylko jedno.

Niech P_1,P_2 będa parami nieuporządkowanymi x,y. W takim razie jesli $t\in P_1$, to $t=x\lor t=y$. Tak samo $t\in P_2\iff t=x\lor t=y$. Czyli $P_1=P_2$ bo posiadają te same elementy.

SINGLETONEM elementu x nazywamy zbiór $\{x\} := \{x, x\}$

PARĄ UPORZĄDKOWANĄ (wg. Kuratowskiego) elementów x i y nazyway zbiór:

$$\langle \mathbf{x}, \mathbf{y} \rangle := \{ \{ \mathbf{x} \}, \{ \mathbf{x}, \mathbf{y} \} \}$$

Dla dowolnych elementów a,b,c,d zachodzi:

$$\langle a, b \rangle = \langle c, d \rangle \iff a = c \land b = d$$

DOWOD:

Rozważmy dwa przypadki:

1. a = b

$$\langle a, a \rangle = \{ \{a\}, \{a, a\} \} = \{ \{a\} \}$$

Czyli jeśli $x \in \{\{a\}\}$, to $x = \{a\}$. Z drugiej strony mamy

$$\langle c, d \rangle = \{\{c\}, \{c, d\}\}\$$

A więc jeśli $x\in\{\{c\},\{c,d\}\}$, to $x=\{c\}$ lub $x=\{c,d\}$. W takim razie mamy $\{a\}=\{c\}=\{c,d\}$, a więc z aksjomatu ekstensjonalności, a=c=d.

2. $a \neq b$

$$\langle \mathbf{a}, \mathbf{b} \rangle = \{\{\mathbf{a}\}, \{\mathbf{a}, \mathbf{b}\}\}\$$

Jeśli więc $x \in \langle a,b
angle$, to $x = \{a\}$ lub $x = \{a,b\}$. Z drugiej strony mamy

$$\langle \mathbf{c}, \mathbf{d} \rangle = \{\{\mathbf{c}\}, \{\mathbf{c}, \mathbf{d}\}\}\$$

Jeśli $x \in \langle c, d \rangle$, to $x = \{c\}$ lub $x = \{c, d\}$. W takim razie otrzymujemy $\{c\} = \{a\}$ i $\{c, d\} = \{a, b\}$. Z aksjomatu ekstensjonalności mamy a = c oraz d = b.

i smiga

2.4 AKSJOMAT SUMY

Dla dowolnego zbioru istnieje jego suma $(\forall x) (\exists y) (\forall z) (z \in y \iff (\exists t) (t \in x \land z \in t))$

Ponieważ wszystko w naszym świecie jest zbiorem, to każdy zbiór możemy postrzegać jako rodzinę zbiorów – jego elementy też są zbiorami. W takim razie suma tego zbioru to suma rodziny tego zbioru.

Suma jest określona jednoznacznie i oznaczamy ją $\bigcup x.$

DOWOD:

Załóżmy nie wprost, ze istnieją dwie sumy zbioru x: S_1 i S_2 . Wtedy

$$(\forall z)(z \in S_1 \iff (\exists t \in x)(z \in t))$$

$$(\forall z)(z \in S_2 \iff (\exists t \in x)(z \in t))$$

Zauważamy, że

$$z \in S_1 \iff (\exists t \in x)z \in t \iff z \in S_2$$

a więc S_1 i S_2 mają dokładnie te same elementy, więc z aksjomatu ekstencjonalności są tym samym zbiorem.

i smiga

$$x \cup y := \bigcup \{x,y\}$$

DOWOD:

Ustalmy dowolne z. Wtedy mamy

$$\begin{split} z \in \bigcup \{z,y\} & \stackrel{4}{\Longleftrightarrow} (\exists \ t) \ (t \in \{x,y\} \land z \in t) & \stackrel{3}{\Longleftrightarrow} (\exists \ t) ((t = x \lor t = y) \land z \in t) \iff \\ & \iff (\exists \ t) \ ((t = x \land z \in t) \lor (t = y \land z \in t)) \iff \\ & \iff (exists \ t) (t = x \land z \in t) \lor (\exists \ t) (t = y \land z \in t) \implies \\ & \implies (\exists \ t) (z \in x) \lor (\exists \ t) (z \in y \iff z \in x \lor z \in y) \end{split}$$

2.5 AKSJOMAT ZBIORU POTĘGOWEGO

dla każdego zbioru istnieje jego zbiór potęgowy $(\forall \ x)(\exists \ y)(\forall \ z)z \in y \iff (\forall \ t \in z)t \in x$ $(\forall \ x)(\exists \ y)(\forall \ z)\ z \in y \iff z \subseteq x$

Zbiór potęgowy jest wyznaczony jednoznacznie i oznaczamy go $\mathcal{P}(\mathrm{x})$

DOWOD:

Załóżmy, nie wprost, że istnieją dwa różne zbiory potęgowe P_1 i P_2 dla pewnego zbioru x . Wówczas

$$(\forall z) z \in P_1 \iff z \subseteq x$$

$$(\forall z) z \in P_2 \iff z \subseteq x$$

Zauważamy, że

$$z\in P_1\iff z\subseteq x\iff z\in P_2,$$

czyli zbiory P_1 i P_2 mają dokładnie te same elementy, więc na mocy aksjomatu ekstencjonalności $P_1=P_2$

2.6 <u>AKSJOMAT WYRÓŻNIANIA</u>

To tak naprawdę schemat aksjomatu, czyli nieskończona rodzina aksjomatów

SIMPLIFIED VERSION: niech $\varphi(t)$ będzie formułą języka teorii mnogości. Wtedy dla tej formuły mamy $A_{6\varphi}$ dla każdego zbioru x istnieje zbiór, którego elementy spełniają własność φ

$$(\forall \ x)(\exists \ y)(\forall \ t)(t \in y \iff t \in x \land \varphi(t))$$

FULL VERSION: niech $\varphi(t,z_0,...,z_n)$ będzie formułą jezyka teorii mnogści. Wtedy pozostałe zmienne wolne będa parametrami (zapis skrócony $z_0,...,z_n:=\overline{z})$

Dla każdego układu parametrów i dla każdego x istnieje y taki, że dla każdego t \in y t należy do x i t spełnia formułę φ

$$(\forall z_0)...(\forall z_n)(\forall x)(\exists y)(\forall t)(t \in y \iff t \in x \land \varphi(t, z_0, ..., z_n))$$

Weźmy półprostą otwartą:

$$(0, +\infty) = \{x \in \mathbb{R} : x > 0\},\$$

druga półprosta to

$$(1, +\infty) = \{x \in \mathbb{R} : x > 1\}$$

i tak dalej. Czyli ogólna definicja półprostej to:

$$(a, +\infty) = \{x \in \mathbb{R} : x > a\}.$$

Dla każdej z tych półprostych trzeba wziąc inną formułę, które wszystkie są zdefiniowane za pomocą formuły

$$\varphi(\mathbf{x}, \mathbf{a}) = (\mathbf{x} > \mathbf{a}),$$

gdzie ${
m a}$ funkcjonuje jako parametr.

2.7 AKSJOMAT ZASTEPOWANIA

Ostatni aksjomat konstrukcyjny, jest to schemat rodziny aksjomatów

SIMPLIFIED VERSION: niech $\varphi(x,y)$ będzie formułą języka teorii mnogości taką, że:

$$(\forall x)(\exists ! y)\varphi(x, y).$$

Wówczas dla każdego zbioru x istnieje zbiór $\{z: (\exists t \in x) \varphi(t,z)\}$ $(\forall x)(\exists y)(\forall z) (z \in y \iff (\exists t \in x) \varphi(t,z))$

Czyli każdy zbiór można opisać za pomocą operacji.

FULL VERSION: niech $\varphi(x,y,p_0,...,p_n)$ będzie formułą języka teorii mnogości.

$$(\forall p_0), ..., (\forall p_n) ((\forall x) (\exists !y) \varphi(x, y, \overline{p}) \implies (\forall x)(\exists y)(\forall z) (z \in y \iff (\exists t \in x) \varphi(t, z, \overline{p})))$$

2.8 KONSTRUKCJE NA ZBIORACH SKOŃCZONYCH

Niech x,y będą dowolnymi zbiorami. Wtedy definiujemy:

$$x \cap y = \{t \in x : t \in y\}$$
$$x \setminus y = \{t \in x : t \notin y\}$$

$$x\times y = \{z\in \mathcal{P}(\mathcal{P}(x\cup y)) \ : \ (\exists\ s\in x)(\exists\ t\in y)\ z = \langle s,t\rangle\}$$

Formalnie stara definicja iloczynu kartezjańskiego nie działa w nowych warunkach, bo nie wiemy z czego wyróżnić tę parę uporządkowaną. Ponieważ $s,t\in x\cup y$, mamy

$$\{s\}, \{s, t\} \subseteq x \cup y,$$

a więc

$$\{\{s\}, \{s, t\}\} \subseteq \mathcal{P}(x \cup y).$$

Czyli nasza para uporządkowana jest elementem zbioru potęgowego zbioru potęgowego sumy zbiorów.

$$\bigcap x = \{z \in \bigcup x \,:\, (\forall\; y \in x)\; z \in y\} \text{ i wówczas } \bigcap \emptyset = \emptyset$$

......

RELACJA - definiujemy rel(r) jako dowolny zbiór par uporządkowanych:

$$rel(r) := (\exists x)(\exists y) r \subseteq x \times y$$

FUNKCJA – relcja, która nie ma dwóch par o tym samym poprzedniku i różnych następnikach:

$$\texttt{fnc}(f) := \texttt{rel}(f) \wedge (\forall \; x)(\forall \; y)(\forall \; z) \; (\langle x,y \rangle \in f \wedge \langle x,z \rangle \in f) \implies y = x$$

Dziedzinę i zbiór wartości możemy wówczas zdefiniować jako:

$$dom(f) = \{x \in \bigcup f : (\exists y)\langle x, y \rangle \in f\}$$

$$\text{rng}(f) = \{y \in \bigcup \int \int f \ : \ (\exists \ x) \langle x,y \rangle \in f\},$$

ponieważ

$$\{\{x\}, \{x, y\}\} \in f \implies \{x\}, \{x, y\} \in \bigcup f \implies x, y \in \bigcup \bigcup f$$

Dopóki działamy na zbiorach skończonych, wynikiem operacji zawsze będzie kolejny zbiór skończony – niemożliwe jest otrzymanie zbioru nieskończonego.

2.9 AKSJOMAT NIESKOŃCZONOŚCI

Istnieje zbiór induktywny:

$$(\exists x) (\emptyset \in x \land (\forall y \in x) (y \cup \{y\} \in x))$$

Na początku do naszego zbioru x dodajemy \emptyset . Potem, skoro \emptyset należy do x, to należy też $\{\emptyset\}$. Ale skoro do x należy $\emptyset \cup \{\emptyset\}$, to również $\{\emptyset \cup \{\emptyset\}\}$ jest jego elementem i tak dalej.

TW. Istnieje zbiór induktywny najmniejszy względem zawierania, czyli taki, który zawiera się w każdym innym zbiorze induktywnym.

DOWOD:

Niech x będzie zbiorem induktywnym, który istnieje z aksjomatu nieskończoności. Niech

$$\omega = \bigcap \{ y \in \mathcal{P}(x) : y \text{ jest zbiorem induktywnym} \}$$

Chce pokazać, że ω jest zbiorem induktywnym, czyli $\emptyset \in \omega$.

$$\emptyset \in \omega \iff \emptyset \in y$$
 dla każdego zbioru induktywnego $y \subseteq x$

Ponieważ każdy zbiór induktywny zawiera \emptyset , także ω zawiera \emptyset .

Pozostaje pokazać, że dla dowolnego $t \in \omega$ mamy

$$t \cup \{t\} \in \omega$$

Dla każdego zbioru induktywnego $\mathbf{y} \subseteq \mathbf{x}$ mamy $\mathbf{t} \in \mathbf{y}$. ale ponieważ \mathbf{y} jest zbiorem induktyw-

$$t \cup \{t\} \in y$$
.

Z definicji przekroju zbioru x mamy

$$t \cup \{t\} \in \bigcap \{y \in \mathcal{P}(x) \ : \ y \text{ jest zbiorem induktywnym}\} = \omega$$

Czyli istnieje zbiór induktywny ω będący przekrojem wszystkich innych zbiorów indukty ${\sf w-}$ nych. Pokażemy teraz, że jest to zbiór najmniejszy.

Niech z będzie dowolnym zbiorem induktywnym. Wtedy z \cap x jest zbiorem induktywnym i $z \cap x \subseteq x$. Czyli z jest jednym z elementów rodziny, której przekrój daje ω :

$$z \cap x \supseteq \{y \in \mathcal{P}(x) : Y \text{ zb. ind.}\} = \omega$$

i smiga

Każdy element $\emptyset,\ \{\emptyset\},\ \{\emptyset,\{\emptyset\}\}...$ możemy utoższamić z kolejnymi liczbami naturalnymi. W takim razie ten najmniejszy zbiór induktywny będzie utożsamiany ze zbiorem liczb naturalnych. Konsekwencją tego jest zasada indukcji matematycznej.

Niech $\varphi(\mathbf{x})$ będzie formułą ozakresiie zmiennej $\mathbf{x} \in \mathbb{N}$ takiej, że zachodzi $\varphi(0)$ oraz

$$(\forall n \in \mathbb{N}) \varphi(n) \implies \varphi(n+1).$$

Wówczas

 $(\forall z \in \mathbb{N}) \varphi(n)$

DOWOD:

Niech

$$A = \{n \in \mathbb{N} : \varphi(n)\}.$$

Wtedy $A \in \mathbb{N}$ oraz A jest induktywny. Kolejne zbiory należące do zbioru induktywnego utożsamialiśmy z $n\in\mathbb{N}$, więc skoro arphi(n) należy do tego zbioru induktywnego, to również $arphi(\mathrm{n}+1)$ należy do A . Skoro A jest zbiorem induktywnym, to $\mathbb{N}\subseteq\mathrm{A}$, więc $\mathrm{A}=\mathbb{N}$.

i smiga

2.10 AKSJOMAT REGULARNOŚCI

Do tej pory poznaliśmy aksjomaty o instnieniu i serie aksjomatów konstrukcyjnych. Aksjomat regularności nie jest żadnym z nich.

W każdym niepustym zbiorze istnieje element \in -minimalny:

$$(\forall x) x \neq \emptyset \implies ((\exists y \in x) (\forall z \in x) \neg z \in y)$$

a więc eliminowane są patologie jak np: $x \in x$, $y \in y \in x$.

Antynomia Russlla,

$$\{x : x \notin x\},\$$

jest eliminowana przez aksjomat regularności.

2.11 AKSJOMAT WYBORU

Dla każdej rozłącznej rodziny parami rozłącznych zbiorów niepustych istnieje SELEKTOR

$$(\forall x) ((\forall y, z \in x) (y \neq \emptyset \land (y \neq z \implies y \cap z = \emptyset)) \implies (\exists s)(\forall y \in x)(\exists !t) t \in s \cap y)$$

Problematyczne nie jest znalezienie punktów, które są reprezentantami zbiorów naszej rodziny, a wskazanie zbioru, który je wszystkie zawiera. Dlatego w tym może nam pomóc akjomat wyboru. Wystarczy pokazać, że rozważamy rodzinę rozłącznych zbiorów i już z tego wiemy, że możemy wybrać selektor. Handy.

PARADOKS BANACHA-TARSKIEGO:

Kulę możemy rozłożyć na 5 kawałków i przesuwać je izometrycznie w taki sposób, żeby złożyć z nich dwie identyczne kule jak ta, którą mieliśmy na początku. Kawałki na które dzielimy są niemieżalne, nie mają objętości, są maksymalnie patologiczne, ale nadal możemy powiedzieć że istnieją korzystając z aksjomatu wyboru. Daje on nam tylko informację, że istnieje selektor, a nie o tym jak on wygląda, więc może być absurdalny i patologiczny jak tylko ma ochotę.

.....

FUNKCJA WYBORU - niech $\mathcal A$ będzie rodziną zbiorów niepustych. Funkcją wyboru dla rodziny $\mathcal A$ nazywamy wtedy dowolną funkcję f:

$$\begin{split} f: \mathcal{A} &\to \bigcup \mathcal{A} \\ (\forall \ A \in \mathcal{A}) \ f(A) \in A \end{split}$$

Aksjomat wyboru jest równoważny temu, że dla każdej rozłącznej rodziny niepustych zbiorów istnieje funkcja wyboru (selektor).

Dla dowolnych dwóch zbiorów A, B zachodzi $|A| \leq |B| \vee |B| \leq |A|$

DOWOD:

Musimy skonstruować zbiór częściowo uporządkowany X, do którego będziemy mogli zastosować LKZ. Elementami tego zbioru niech będą przybliżenia tego, co chcemy otrzymać:

$$X = \{f : fnc(f) \land dom(f) \subseteq A \land rng(f) \subseteq B \land f \text{ jest } 1 - 1\}$$

3 LICZBY PORZĄDKOWE

3.1 LEMAT KURATOWSKIEGO-ZORNA

LEMAT KURATOWSKIEGO-ZORNA:

Jeśli $\langle X, \leq \rangle$ jest zbiorem częściowo uporządkowanym, w którym każdy łańcuch jest ograniczony z góry, to w X istnieje element maksymalny.

Suma przeliczalnie wielu przeliczalnych zbiorów jest przeliczalna:

$$(\forall \ n \in \mathbb{N}) \ |A_n| \leq \aleph 0 \implies \aleph_0 \geq \bigcup_{n \in \mathbb{N}} A_n$$

DOWOD:

Ponieważ $|\mathrm{A_n}| \leq leph_0$, to istnieje bijekcja

$$f_n: \mathbb{N} \to A_n$$
.

Chcemy pokazać, że istnieje też bijekcja:

$$f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n$$

$$f(n,k) = f_n(k) \quad (\clubsuit)$$

Musimy znać wszystkie elementy (f_n) jednocześnie, więc skorzystamy z aksjomatu wyboru. Rozpatrzmy zbiór funkcji:

 $\mathrm{F_n} = \{arphi \in \mathrm{S}_\mathrm{n}^\mathbb{N} \,:\, arphi$ jest bijekcją $\}$

dla $n \in \mathbb{N}$, gdzie $S_n^\mathbb{N}$ oznacza wszstkie funkcje

$$g: \mathbb{N} \to A_n$$

Niech F będzie funkcją wyboru dla rodziny

$$\{F_n : n \in \mathbb{N}\},\$$

czyli każdej rodzinie przypisujemy element tej rodziny:

$$F(F_n) \in F_n$$
.

Opiszmy (👛) korzystając z funkcji wyboru:

$$f(n,k) = F(F_n)(k).$$

Ponieważ $F(F_n)$ jest bijekcją, to również funkcja f jest bijekcją.

i smiga

Dla dowolnych zbiorów A, B zachodzi

$$|A| \le |B| \lor |B| \le |A|$$

DOWOD:

Musimy skonstruować zbiór częściowo uporządkowany X, do którego będziemy mogli zastosować LKZ. Chcemy pokazać, że istnieje iniekcja lub suriekcja między tymi dwoma zbiorami, więc potrzebujemy zbioru zawierającego funkcje z jednego do drugiego:

$$X = \{f : fnc(f) \land dom(f) \subseteq A \land rng(f) \subseteq B \land f \text{ jest } 1 - 1\}.$$

Rozpatrzmy porządek $\langle X,\subseteq .$ Aby zastosować do niego LKZ musimy sprawdzić założenia. Weźmy łańcuch X:

$$\mathcal{L} \subseteq X$$
.

Musimy pokazać, że ma on ograniczenie górne. Niech

$$L = \bigcup \mathcal{L}.$$

Ponieważ każdy element $\mathcal{L} \in \mathrm{L}$, to L jest ograniczeniem górnym $\mathcal{L}.$

Należy teraz pokazać, że L jest elementem zbioru X, czyli spełnia warunki:

- 1. L jest zbiorem par uporządkowanych bezpośrednio z tego, że L jest sumą łańcucha $\mathcal{L}\subseteq X$.
 - 2. L jest funckją, czyli

$$(\forall \ x,y,z) \ (\langle x,z\rangle \in L \ \land \ \langle x,z\rangle \in L) \implies y=z.$$

Ustalmy dowolne x,y,z takie, że $\langle x,y \rangle \in L$ oraz $\langle x,z \rangle \in L$. Zatem istnieją $F,G \in \mathcal{L}$ takie, że

$$\langle x,y\rangle \in F \wedge \langle x,z\rangle \in G.$$

Ponieważ $\mathcal L$ ma ograniczenie górne i jest łańcuchem, to wszystkie jego elementy mogą być między sobą porównywane. Bez straty ogólności możemy więc założyć, że $F\subseteq G$ i z tego wynika, że

$$(\langle x, y \rangle \in G \ i \ \langle x, z \rangle \in G) \implies y = z,$$

bo fnc(G).

- 3. $dom(L) \subseteq A$ z tego, że $\mathcal{L} \subseteq X$.
- 4. $rng(L) \subseteq A$ z tego, że $\mathcal{L} \subseteq X$.
- 5. L jest funkcją różnowartościową, czyli $\langle x,y\rangle = \langle z,y\rangle \implies x=z$.

Ustalmy dowolne x, y, z takie, że

$$\langle x, y \rangle \in L \ i \ \langle z, y \rangle \in L.$$

Zatem istnieją $F,G\in\mathcal{L}$ takie, że

$$\langle x, y \rangle \in F \land \langle z, y \rangle \in G.$$

Ponieważ $\mathcal L$ jest łańcuchem, to możemy założyć, że $F\subseteq G$, a ponieważ $\mathcal L\subseteq X$ i X zawiera jedynie iniekcje, to

$$\langle x,y\rangle \in G \ \land \ \langle z,y\rangle \in G \implies x=z.$$

Ponieważ pokazaliśmy, że dowolny łańcuch X jerst ograniczony z góry, to na mocy LKZ w X istnieje element maksymalny

$$\varphi \in X$$
.

Rozpatrzmy trzy możliwości: 1. $\operatorname{dom}(\varphi) = A$: wówczas z definicji zbioru X otrzymujemy

$$\varphi: A \xrightarrow{1-1} B$$

a więc $|A| \leq |B|$.

2. $rng(\varphi) = B$: wtedy $|B| \le |A|$, bo

$$\varphi : \operatorname{dom}(\varphi) \xrightarrow{1-1} \operatorname{B}$$

$$\varphi^{-1} : B \xrightarrow{1-1} dom(\varphi) \subseteq A.$$

3. $\operatorname{dom}(\varphi) \neq A \wedge \operatorname{rng}(\varphi) \neq B$: czyli $\operatorname{dom}(\varphi) \subsetneq A$ i $\operatorname{rng}(\varphi) \subsetneq B$, zatem istnieją $s \in A \setminus \operatorname{dom}(\varphi)$ oraz $t \in B \setminus \operatorname{rng}(\varphi)$. W takim razie φ może być rozszerzona do:

$$\varphi' = \varphi \cup \{\langle \mathbf{s}, \mathbf{t} \rangle\}.$$

$$\varphi' \in X$$

nie jest iniekcją, bo $\mathrm{t}
otin \mathrm{rng}(arphi)$. Dodatkowo,

$$\varphi \subseteq \varphi'$$
,

czyli arphi nie jest elementem maksymalnym w X, stąd zachodzi tylko 1 lub 2, czyli $|A| \leq |B|$ lub $|B| \leq |A|$.

3.2 DOBRE PORZĄDKI

Dobry porządek – w każdym niepustym podzbiorze $\langle \mathrm{X}, \leq
angle$ istnieje element najmniejszy.

CZĘŚCIOWY LINIOWY DOBRY PORZĄDEK
$$\langle X, \leq \rangle$$
, $\text{Lin}(X)$???
 $(\forall \ A \subseteq X) \ A \neq \emptyset \implies ((\exists \ a \in A)(\forall \ x \in A) \ x \leq A)$
 $(\forall \ a, b \in A) \ a \leq b \ \lor \ b \leq a$

oraz ≤ jest zwrotny, przechodni i słabo antysymetryczny.

Do tej pory ostry porządek < definiowaliśmy jako skrót

$$x < y \iff x \le y \land x \ne y.$$

Teraz chcemy, żeby stał się on bytem. Seria twierdzeń z tym związanych:

- relacja < jest przechodznia i silnie antysymetryczne
- jeśli < jest relacją przechodnią i silnie antysymetryczną, to relacja zadana warunkiem $x \le y \iff x < y \lor x = y$ jest częściowym porządkiem
- każdemu częściowemu porządkowi odpowiada tylko jeden osry porządek i każdemu ostremu porządkowi odpowiada tylko jeden częściowy porządek.

SPÓJNOŚĆ to warunek mówiący, że
$$(\forall x, y) x \neq y \implies (xRy \lor yRx)$$

PRZYKŁADY – dobry porządek

- 1. $\langle \mathbb{N}, \leq
 angle$ 0 zasada minimum mówi, że w każdym niepustym podzbiorze \mathbb{N} istnieje element najmnijszy, co jest róownoważne zasadzie indukcji matematycznej
 - 2. $\langle \{1-\frac{1}{n+1}\,:\,n\in\mathbb{N}\},\leq \rangle$ izomorficzne ze zbiorem $\mathbb N$
 - 3. $\langle \{1-\frac{1}{n+1}\} \cup \{1\}, \leq \rangle$
 - 4. $\langle \{1 \frac{1}{n+1}\} \cup \{2 \frac{1}{n+1}\}, \leq \rangle$
 - 5. $\langle n \frac{1}{m} : n, m \in \mathbb{N}, \leq \rangle$

ODCINEK POCZĄTKOWY – niech $\langle X, \leq \rangle$ będzie zbiorem z dobrym porządkiem \leq i $a \in X$. Wówczas odcinkiem początkowym tego zbioru wyznaczonym przez a jest zbiór $\operatorname{pred}(X,a,\leq) = \{x \in X \,:\, x < a\}$

W przykładach wyżej każdy zbiór jest odcinkiem początkowym dla zbioru następnego. Krótsze porządki' są odcinkami początkowymi dla dłuższych porządków.

TWIERDZENIE: dla dowolnego $a \in X$

 $\operatorname{pred}(X, a, <) \not\simeq X$

DOWOD:

Przypuśćmy, nie wprost, że dla pewnego $a \in X$ mamy

$$\operatorname{pred}(X, a, \leq) \simeq X,$$

czyli isitnieje izomorfizm

$$f: X \to \operatorname{pred}(X, a, \leq).$$

Wtedy f(a) < a, bo izomorfizm zachowuje porządek, i zbiór

$$A = \{x \in X : f(x) < x\}$$

jest niepusty. Niech $b = \min A$, ale wtedy

$$f(b) < b \implies f(f(b)) < f(b),$$

czyli $b>f(b)\in A$, co jest sprzeczne z $b=\min A$.

Niech $\langle X, \leq_X
angle, \, \langle Y, \leq_Y
angle$ będą zbiorami dobrze uporządkowanymi. Wtedy zachodzi jedna z trzech możliwości:

1. te dwa zbiory są izomorficzne $(X\simeq Y)$, czyli są tej samej długości pierwszy jest dłuższy od drugiego:

$$(\exists \ a \in X) \ \langle \operatorname{pred}(X, a, \leq_X), \leq \rangle \simeq \langle Y, \leq_Y \rangle$$

3. drugi jest dłuższy od pierwszego:

$$(\exists \ a \in Y) \ \langle \operatorname{pred}(Y, a, \leq_Y), \leq \rangle \simeq \langle X, \leq_X \rangle$$

Wypadałoby to wszystko udowodnić, ale to jest przyjemny wykład i uznamy, że wszystko śmiga, żeby przejść do bardziej podniecających rzeczy, gdzie będziemy korzystać z poprawności tego nieistniejącego dowodu :3

3.3 ZBIÓR TRANZYTYWNY

Elementy moich elemntów są moimi elementami!

Zbiór A nazywamy zbiorem TRANZYTYWNYM, gdy każdy jego element jest zarazem jego podzbiorem:

$$(\forall x \in A) x \subseteq A$$

 \emptyset jest zbiorem tranzytywym, bo nie ma elementów – ponieważ nie istnieją, to mogą mieć dowolne własności, w szczególnośći mogą być podzbiorami \emptyset . Tak jak wwierszy *Na wyspach Bergamota*.

 $\{\emptyset\}$ - jego jedyny element to zbiór pusty, który jest jednocześnie jego podzbiorem.

 $\operatorname{Tran}(\omega)$ – każda liczba naturalna jest zbiorem liczb od siebie mniejszych – dowód na liście zadanek :v

Jeżeli zbiór jest tranzytywny, to tranzytywna jest też jego suma, zbiór potęgowy i jego następnik:

 $\operatorname{Tran}(A) \Longrightarrow \operatorname{Tran}(A) \Longrightarrow \operatorname{Tran}(A \cup \{A\})$

DOWOD:

Udowodnimy, że $Tran(A) \Longrightarrow Tran(A \cup \{A\})$

Ustalmy dowolne $x \in A \cup \{A\}$. Wtedy zachodzi jeden z dwóch przypadków:

1. $x \in A$, a ponieważ Tran(A), to

$$(\forall y \in x) y \in A$$

2. $x \in \{A\}$, czyli x = A, a więc z Tran(A) otrzymujemy, że $y \in x \implies y \in A \implies y \in \{A\}$.

3.4 LICZBY PORZĄDKOWE

Zbiór tranzytywny A nazywamy LICZBĄ PORZĄDKOWĄ, jeśli spełnia warunek

$$(\forall x, y \in A) \ x \in y \lor x = y \lor y \in x$$
 i używamy oznaczenia $On(A)$.

Jeśli ${
m On}(lpha)$, to lpha jest dobrze uporządkowane przez \in , czyli każdy niepusty zbiór ${
m A}\subseteqlpha$ ma element \in -minimalny:

$$(\forall \ A \subseteq \alpha) \ A \neq \emptyset \implies (\exists \ x \in A)(\forall \ y \in A) \ x = y \ \lor \ x \in y,$$

co wynika z aksjomatu regularności.

.....

PODSTAWOWE WŁASNOŚCI LICZB PORZĄDKOWYCH:

lpha,eta – liczby porządkowe, $ext{C-}$ zbiór liczb porządkowych

1. $(\forall \ x \in \alpha) \ On(\alpha)$ - elementy liczby porządkowej są liczbami porzadkowymi. Ustalmy dowolne $x \in \alpha$. Ponieważ $Tran(\alpha)$, to

 $x \in \alpha$.

Zatem $\mathrm{Lin}(\mathbf{x})$, bo $\mathrm{Lin}(\alpha)$. Ustalmy dowolne $\mathbf{y} \in \mathbf{x}$ i $\mathbf{x} \in \mathbf{y}$. Skoro $\mathbf{x} \subseteq \alpha$, to $\mathbf{y} \in \alpha$, czyli $\mathbf{y} \subseteq \alpha$, zatem $\mathbf{z} \in \alpha$. W takim razie \mathbf{x}, \mathbf{z} są porównywalne jako elementy α . Mamy trzy możliwości: $\mathbf{z} \in \mathbf{x}$, $\mathbf{x} \in \mathbf{z}$ (sprzeczne z aksj. regularności), $\mathbf{z} = \mathbf{x}$ (sprzeczne z aksj. regularności).

- 2. $\alpha \in \beta \iff \alpha \subset \beta$
- 3. $\alpha \in \beta \ \lor \ \alpha = \beta \ \lor \ \beta \in \alpha$ dowolne dwie liczby porządkowe są porównywalne.

Niech $A = \alpha \cap \beta$. Wtedy On(A). Przypuśćmy, że

$$A \neq \alpha \land A \neq \beta$$
.

Wówczas Λ jest prawdziwym podzbiorem zarówno lpha jak i eta. Ale z 2 mamy

$$A \in \alpha \land A \in \beta$$
,

czyli

$$A \in \alpha \cap \beta = A$$
.

Jest to sprzeczne z aksjomatem regularności, więc $A=\alpha$ lub $A=\beta$, czyli $\alpha\subseteq\beta$ lub $\beta\subseteq\alpha$, co z 2 daje nam $\alpha\in\beta$ lub $\beta\in\alpha$.

- 4. $Tran(C) \implies On(C)$
- 5. $C \neq \emptyset \implies (\exists \alpha \in C)(\forall \beta \in C) \alpha = \beta \lor \alpha \in \beta$

Liczbę porządkową α utożsamiamy ze zbiorem dobrze uporządkowanym $\langle \alpha, \in \rangle$. Możemy w takim razie mówić o pred (α, \in, β) , ale skrócimy to do zapisu:

$$\operatorname{pred}(\alpha, \in, \beta) = \operatorname{pred}(\alpha, \beta) = \{x \in \alpha : x \in \beta\} = \beta,$$

czyli każda liczba porządkowa jest zbiorem liczb porządkowych od niej mniejszych.

Jeśli $\mathrm{On}(lpha)$, to wtedy $lpha \cup \{lpha\}$ jest najmniejszą liczbą porządkową większą od lpha i nazywamy ją NASTĘPNIKIEM porządkowym liczby lpha

$$\alpha \cup \{\alpha\} := \alpha + 1$$

Nie istnieje zbiór wszystkich liczb porządkowych paradoks Burali-Forti

DOWOD:

Przypuścmy nie wprost, że ON jest zbiorem wszystkich liczb porządkowych. Wtedy $\mathrm{Tran}(\mathrm{ON}),$

bo jeśli $lpha\in\mathrm{ON}$ i $eta\inlpha$, to $eta\in\mathrm{ON}$. Ponadto, $\mathrm{Lin}(\mathrm{ON})$ z własności 3. Zatem $\mathrm{On}(\mathrm{ON}),$

czyli $ON \in ON$, co jest sprzeczne z aksjomatem regularności.

Nich $\langle X, <
angle$ będzie zbiorem dobrze uporządkowanym. Wtedy istnieje dokładnie jedna liczba porządkowa lpha taka, że

$$\langle X, < \rangle \simeq \langle \alpha, \in \rangle$$

Czyli każdy zbiór dobrze uporządkowany jest izomorficzny z jakąś liczbą porządkową.

DOWOD:

1. JEDYNOŚĆ

Przypuśćmy, nie wprost, że istnieją dwie różne liczby porządkowe α,β spełniające zależność z twierdzenia. Wtedy

$$\alpha \simeq \beta$$

co jest sprzeczne z ich różnością – któraś musi być mniejsza i wyznaczać odcinek początkowy w drugiej. Zbiór nie może być izomorficzny ze swoim odcinkiem poczatkowym.

2. ISTNIENIE

Zdefiniujmy zbiór

$$Y = \{ a \in X : (\exists ! \gamma_a) \operatorname{On}(\gamma_a) \land \langle \operatorname{pred}(X, a, <), < \rangle \simeq \gamma_a \},\$$

czyli wybieram podzbiory X, dla których twierdzenie zachodzi. Zauważmy, że $Y
eq \emptyset$, bo w X istnieje element minimalny (z dobrego porządku).

Dla $a \in Y$ rozważmy izomorfizm

$$\varphi_{\mathbf{a}} : \operatorname{pred}(\mathbf{X}, \mathbf{a}, <) \to \gamma_{\mathbf{a}}.$$

Niech $b \in Y$ o b < a. Wtedy

$$\varphi_a(b) \in \gamma_a$$

$$b$$

$$a$$

$$\varphi_a(b)$$

$$\gamma_a$$

W takim razie, $arphi_{a|\mathrm{pred}(X,b,<)}$ jest izomorfizmem pomiędzy $\mathrm{pred}(X,b,<)$ i $arphi_a(b)$. W takim razie $b\in Y$, czyli Y jest zamknięty w dół.

Stąd możemy wnioskować, że X=Y lub $Y=\mathrm{pred}(X,c,<)$. Załóżmy, że $Y=\mathrm{pred}(X,c,<)$:

$$X \neq Y \implies X \setminus Y \neq \emptyset.$$

Niech $c = \min(X \setminus Y)$, wówczas

$$Y = \operatorname{pred}(X, c, <).$$

Mam węc zbiór ${
m Y}$, z którego każdym elementem jest związana jakaś liczba porządkowa. Z aksjomatu zastępowania mogę stworzyć zbiór wszystkich tych liczb porządkowych.

$$f: Y \to ON$$

$$f(a) = \gamma$$

$$A = rng(f) = \{ \gamma_a : a \in Y \}.$$

Wystarczy pokazać:

1. $\operatorname{Tran}(A) \Longrightarrow \operatorname{On}(A)$ (z 4.):

Ustalmy $\xi\in A$ oraz $\zeta\in \xi$. Skoro $\xi\in A$, to $\xi=\gamma_a$ dla pewnego $a\in Y$. Wtedy istnieje b< atakie, że $\varphi_{\mathbf{a}}(\mathbf{b}) = \zeta$. Stąd wynika, że $\zeta = \gamma_{\mathbf{b}}$, czyli $\zeta \in \mathbf{A}$.

2. f jest izomorfizmem porządkowym.

Jest funkcją 1-11 z definicji zbioru ${
m Y}_{m r}$ a funkcją ńaź definicji zbioru ${
m A}_{m r}$ Zachowuje porządek, bo rozważamy odcinki początkowe.

3. X = Y

 ${
m Y}={
m pred}({
m X},{
m c},<)$, a pokazaliśmy, że c \in ${
m Y}$, bo ${
m Y}\simeq{
m On}(lpha)$, więc jest dobrym porządkiem (ma elememnt najmniejszy). W takim razie tu byłaby sprzeczność.

Wyżej zakładaliśmy, że $X \neq Y \implies Y = \operatorname{pred}(X, c, <)$. Ponieważ !?!?!?!?!?

<code>TWIERDZENIE HARTOGSA</code> - <code>Dla każdego zioru X</code> istnieje liczba porządkowa lpha, dla której nie istnieje funkcja różnowartościowa w zbiór X

TYPEM PORZDKOWYM zbioru dobrze uporządkowanego nazywamy liczbę porządkową, z którą jest on homeomorficzny.

$$\begin{split} \operatorname{ot}(\mathbb{N},\leq) &= \operatorname{ot}(\langle \{1-\frac{1}{n+1} \ : \ n \in \mathbb{N}\} \rangle, \leq) = \omega \\ \operatorname{ot}(\langle \{1-\frac{1}{n+1} \ : \ n \in \mathbb{N}\} \cup \{1\}, \leq \rangle) &= \omega + 1 \end{split}$$

3.5 DZIAŁANIA NA LICZBACH PORZĄDKOWYCH

Niech $lpha,\,eta$ będą liczbami porządkowymi. Wówczas dodawanie definiujemy:

$$\alpha+\beta=\operatorname{ot}(\alpha\times\{0\}\cup\beta\times\{1\},\leq)$$

czyli najpierw rozdzielamy je, a potem sumujemy. Relację porządku na sumie liczb porządkowych definiujemy (porządek leksykograficzny):

$$\langle \gamma, i \rangle \leq_{\text{lex}} \langle \xi, j \rangle \iff i < j \lor (i = j \land \gamma < \xi).$$

Mnożenie liczb porządkowych to z kolei typ porządkowy ich iloczynu z porządkiem leksy-kograficznym:

$$\alpha \cdot \beta = \operatorname{ot}(\beta \times \alpha, \leq_{\operatorname{lex}})$$

czyli bierzemy eta kopii lpha – wygodniej na to patrzeć jak na takiego jerzyka z iloczynu kartezjańskiego.

Kilka przykładów:

$$\begin{aligned} \omega + \omega &= \mathrm{ot}(\{1 - \frac{1}{n+1} \ : \ n \in \mathbb{N}\} \cup \{2 - \frac{1}{n+1} \ : \ n \in \mathbb{N}\}, \leq) \\ \omega + \omega + 1 &= \mathrm{ot}(\{1 - \frac{1}{n+1} \ : \ n \in \mathbb{N}\} \cup \{2 - \frac{1}{n+1} \ : \ n \in \mathbb{N}\} \cup \{3\}, \leq) \\ \omega \cdot \omega &= \mathrm{ot}(\{m - \frac{1}{n} \ : \ n, m \in \mathbb{N}\}, \leq) \end{aligned}$$

WŁASNOŚCI DZIAŁAŃ NA LICZBACH PORZĄDKOWYCH

- dodawanie i mnożenie są łączne
- nie są przemienne kolejność jest ważna

$$\omega + 1 \neq 1 + \omega = \omega$$

- mnożenie jest rozdzielne względem dodawania

NASTĘPNIKIEM liczby porządkowej α nazywamy liczbę porządkową $\alpha \cup \{\alpha\} = \alpha + 1 = \beta$: Succ $(\beta) \iff (\exists \alpha) \operatorname{On}(\alpha) \land \beta = \alpha + 1$

LICZBĄ GRANICZNĄ nazywamy liczbę porządkową $\operatorname{Lim}(\beta)$, jeśli nie jest ona następnikiem innej liczby.

Najmniejszą liczbą graniczną jest 0, kolejną jest ω , a wszytkie liczby naturalne są następnikami.

$$Lim(\alpha) \iff \alpha = \bigcup \alpha$$

DOWOD:

Wiem, że $\operatorname{Lim}(lpha)$, czyli

$$\neg (\exists \beta) \alpha = \beta \cup \{\beta\}.$$

Jeśli założymy, że

Ponieważ $\mathrm{Tran}(lpha)$, to również $\mathrm{Tran}(\bigcup lpha)$. Załóżmy, nie wprost, że $\mathrm{Succ}(lpha)$, czyli $(\exists \ eta) \ lpha = eta \cup \{eta\}.$

Wtedy

$$\bigcup \alpha = \bigcup (\beta \cup \{\beta\}) = \beta,$$

ale wówczas

$$\beta \cup \{\beta\} = \beta$$
,

czyli wówczas $\beta \in \beta \cup \{\beta\} = \beta$, co daje nam sprzeczność.

3.6 INDUKCJA POZASKOŃCZONA

Niech $\varphi(\mathbf{n})$ będzie formułą języka teorii mnogości taką, że

$$(\forall \beta)(\forall \alpha < \beta) \varphi(\alpha) \implies \varphi(\beta)$$

Wtedy $(\forall \alpha)\varphi(\alpha)$.

Jest to TWIERDZENIE O INDUKCJI POZASKOŃCZONEJ

DOWOD:

Przypuśćmy, nie wprost, że

$$(\exists \alpha) \neg \varphi(\alpha).$$

Wtedy zbiór

$$C = \{ \gamma \in \alpha \cup \{\alpha\} : \varphi(\gamma) \}$$

jest niepustym zbiorem liczb porządkowych. Wtedy w C istnieje element najmniejszy ξ . Jego minimalność oznacza, że

$$(\forall \varepsilon < \xi) \varphi(\varepsilon).$$

Z założenia, że

$$(\forall \alpha)(\forall \beta < \alpha) \varphi(\beta) \implies \varphi(\alpha)$$

wynika, że $\varphi(\xi)$, czyli mamy sprzeczność z $\xi \in {
m C}$.

Struktura indukcji:

- 1. krok bazowy sprawdzamy dla najmniejszej możliwej liczby
- 2. krok indukcyjny:
 - krok następnikowy
 - krok graniczny

3.7 REKURSJA POZASKOŃCZONA

Od twierdzenia o indukcji różni się swoją istotą – indukcja służy dowodzeniu, a rekursja – tworzeniu konstrukcji.

Niech $\varphi(\mathbf{x},\mathbf{y})$ będzie formułą języka teorii mnogości taką, że $(\forall \; \mathbf{x})(\exists \; !\mathbf{y}) \; \varphi(\mathbf{x},\mathbf{y}).$

Wówczas dla każdej liczby porządkowej α istnieje funkcja f taka, że $\mathrm{dom}(\mathbf{f}) = \alpha$

i spełniony jest warunek

$$(\forall \beta < \alpha) \varphi(f \upharpoonright \beta, f(\beta)) \quad (\clubsuit)$$

Tworzymy pozaskończony ciąg indeksowany liczbami porządkowymi, gdzie kolejny krok wynika z tego co juz mamy.

DOWOD:

JEDYNOŚĆ

Przypuśćmy, że dla pewnego lpha istnieją dwie różne funkcje $f_1,\,f_2$ o dziedzinie lpha spełniające (blue). Wtedy zbiór jest niepusty

$$\{\beta \in \alpha : f_1(\beta) \neq f_2(\beta)\} \neq \emptyset.$$

Niech eta_0 będzie najmniejszym elementem tego zbioru. Wtedy dla $arepsilon < eta_0$ mamy

$$f_1(\varepsilon) = f_2(\varepsilon),$$

czyli $f_1 \upharpoonright \beta_0 = f_2 \upharpoonright \beta_0$, czyli z (\clubsuit) i $\operatorname{fnc}(\varphi)$ $f_1(\beta_0) = f_2(\beta_0),$ co daje sprzeczność. ISTNIENIE Indukcja po lpha2. Krok indukcyjny Ustalmy α takie, że dla $\gamma < \alpha$ istnieje funkcja taka, że $\mathrm{dom}(f)_{\gamma} = \gamma$ i spełnia (\clubsuit). krok następnikowy $\alpha=\beta+1$ Wtedy istnieje f_eta jak powyżej. Wiemy, że istnieje dokładnie jedno y takie, że zachodz i $\varphi(f_{\beta}, y)$. Niech $f_{\alpha} = f_{\beta} \cup \{\langle \beta, y \rangle\}.$ Wtedy $\mathrm{fnc}(\mathrm{f}_{\alpha})$ oraz $dom(f_{\alpha}) = dom(f_{\beta}) \cup \{\beta\} = \beta \cup \{\beta\} = \beta + 1 = \alpha.$ Wystarczy pokazać, że f_lpha spełnia (lue). Trzeba ustalić jakieś $\eta < \alpha = \beta + 1$. Więc jeśli $\eta<eta$, to $f_lpha \upharpoonright \eta=f_eta \upharpoonright \eta$ oraz $f_lpha(\eta)=f_eta(\eta)$. Czyli spełnia z założenia indukcyj-Jeśli $\eta=\beta$, to mamy $\varphi(f_{\alpha} \upharpoonright \beta, f_{\alpha}(\beta))$, bo $f_{\alpha}(\beta)=y$, co również jest prawdziwe. krok graniczny $Lim(\alpha)$ Wiemy, że $\operatorname{Lim}(\alpha) \iff \alpha = \bigcup \alpha.$

4 LICZBY KARDYNALNE

Mamy kolekcję zbiorów, które wszystkie mają tę samą moc. Ale my byśmy chcieli wiedzieć co to jest ta moc – liczby kardynalne pozwalają nam wybierać zbiory według ich mocy.

LICZBA KARDYNALNA to liczba porządkowa, która nie jest równoliczna z żadnym swoim elementem.

$$Card(\alpha) := On(\alpha) \land (\forall \beta < \alpha) |\beta| < |\alpha|$$

Zazwyczaj oznaczamy je κ,λ , chociaż kiedyś używało się gotyku.

Każda liczba kardynalna jest liczbą porządkową graniczną

Card(0)

 $\operatorname{Card}(\omega)$, ale już $\neg \operatorname{Card}(\omega + \omega)$, $\neg \operatorname{Card}(\omega \cdot \omega)$ i $\neg \operatorname{Card}(\omega^{\omega})$.

 $(orall \ n \in \omega) \ \mathrm{Card}(n)$ – dowód później

4.1 WŁASNOŚĆI

Każdy zbiór jest równoliczny z pewną liczbą kardynalną.

DOWOD:

Ustalmy dowolny zbiór X. Wiemy, że X można dobrze uporządkować przez <. Wtedy istnieje liczba porządkowa lpha z nim izomorficzna:

$$\varphi: X \xrightarrow[1-1]{\text{izo}} \alpha$$

W takim razie arphi jest bijekcją między X a lpha, więc

$$|X| = |\alpha|$$
.

Niech

$$\kappa = \min\{\alpha : |\alpha| \ge |X|\}$$

Wtedy $\kappa \sim X$, a z minimalności κ mamy $\operatorname{Card}(\kappa)$.

Jeśli $|\mathrm{X}|=|\kappa_1|$ i $|\mathrm{X}|=|\kappa_2|$, to $|\kappa_1|=|\kappa_2|$. NOWY WYKŁAD

4.2 DZIAŁANIA NA LICZBACH KARDYNALNYCH

Niech κ , λ będą liczbami kardynalnymi, wtedy:

$$\kappa + \lambda = |(K \times \{0\}) \cup (\lambda \times \{1\})|$$
$$\kappa \cdot \lambda = |\kappa \times \lambda|$$

.....

Jeśli
$$\kappa \geq \omega$$
, to $\kappa \cdot \kappa = \kappa$

DOWOD:

Indukcja po liczbach kardynalnych lub po liczbach porządkowych - obie wersje będą poprawne.

- 1. $\kappa = \omega |\omega \times \omega| = |\omega|$
- 2. Przypśćmy, że dla nieskończonych liczb kardynalnych $< \kappa$ teza zachodzi.

Na $\kappa \times \kappa$ definiujemy dobry porządek:

$$\begin{split} \langle \alpha, \beta \rangle \prec \langle \zeta, \xi, \rangle &\iff \max\{\alpha, \beta\} < \max\{\zeta, \xi\} \lor \\ &\lor (\max\{\alpha, \beta\} = \max\{\zeta, \xi\} \land \alpha < \zeta) \lor \\ &\lor (\max\{\alpha, \beta\} = \max\{\zeta, \xi\} \land \alpha = \zeta \land \beta < \xi) \end{split}$$

Sprawdzanie, że to jest częściowy porządek zostaje na liście

Niech $\gamma = \operatorname{ot}(\kappa \times \kappa, \prec)$. Niech $\langle \alpha, \beta \rangle \in \kappa \times \kappa$ i niech $\delta = \max\{\alpha, \beta\}$. Wtedy

$$\langle \alpha, \beta \rangle \leq \langle \delta, \delta \rangle$$

i mamy

$$\operatorname{pred}(\kappa \times \kappa, \prec, \langle \alpha, \beta \rangle) \subseteq \operatorname{pred}(\kappa \times \kappa, \prec, \langle \delta, \delta \rangle) \subseteq (\delta + 1) \times (\delta + 1)$$

Ale $\delta < \kappa$, wiec

$$|\operatorname{pred}(\kappa \times \kappa, \prec \langle \alpha, \beta \rangle)| \le |\delta + 1|^2 < \kappa$$

Jeśli wezmę dowolne $\eta<\gamma$, to η jest odcinkiem początkowym γ , czyli $\eta<\kappa$. Wobec tego $\gamma\leq\kappa$. Ale $|\gamma|=|\kappa\times\kappa|$, zatem

$$\kappa \cdot \kappa = |\kappa \times \kappa| \le \kappa$$
.

Zdeciniujmy funckję

$$f: \kappa \to \kappa \times \kappa$$

$$f(\alpha) = \langle \alpha, 0 \rangle$$

któa jest inikcją, więc

$$|\kappa| \le |\kappa \times \kappa|$$

Czyli $\kappa \cdot \kappa = |\kappa \times \kappa| = \kappa$.

Wniosek:

$$\kappa, \lambda \leq \omega \implies \kappa + \lambda = \kappa \times \lambda = \max\{\kappa, \lambda\}$$

DOWOD:

$$\max\{\kappa,\lambda\} \le \kappa + \lambda \le \kappa \cdot \lambda \le \max\{\kappa,\lambda\} \cdot \max\{\kappa,\lambda\} = \max\{\kappa,\lambda\}$$

Wypadałoby pokazać, że $\kappa+\lambda\leq\kappa\cdot\lambda$, ale to się narysuje

Dla każdej liczby kardynalnej istnieje liczba kardynalna od niej większa.

DOWOD:

Ustalmy dowolne κ . Wtedy $|\mathcal{P}(\kappa)| > \kappa$ z twierdzenia Cantora.

DOWOD:

Wersja bez aksjomatu wyboru:

Z twierdzenia Harcośtam: Dla każdego zbioru X istnieje liczba porządkowa, z którą nie istnieje iniekcja z lpha w X.

$$X \mapsto H(X) = \min\{\alpha : \neg (\exists \varphi : \alpha \to X) \varphi \text{ to iniekcja}\}\$$

Utalmy κ . Wtedy $\operatorname{Card}(H(\kappa))$ i $H(\kappa) > \kappa$.

NASTĘPNIKIEM liczby κ nazywamy najmniejszą liczbę kardynalną od niej większą i oznaczamy ją κ^+

Czyli κ ma dwa następniki: kardynalny i porządkowy.

Liczbę kardynalną κ nazywamy NASTĘPNIKIEM, jeśli $\kappa=\lambda^+$ dla pewnego $\operatorname{Card}(\lambda)$.

Liczbę kardynalną nazywamy GRANICZNĄ, jeśli nie jest następnikiem.

4.3 HIERARCHIA ALEFÓW

Konstrukcja rekurencyjna:

$$\begin{split} \aleph_0 &= \omega \\ \aleph_{\alpha+1} &= \aleph_{\alpha}^+ \\ \aleph_{\gamma} &= \bigcup_{\xi < \gamma} \aleph_{\xi} \operatorname{Lim}(\gamma) \end{split}$$

Alternatywny zapis to $\aleph_{lpha}=\omega_{lpha}$, ale używamy \aleph żeby podkreślić kardynalny charakter badanego obiektu.

$$CARD = \omega \cup \{\aleph_{\gamma} : \gamma \in On\}$$

Każda nieskończoa liczba kardynalna jest jakimś ℵ.

DOWOD:

Przypuśćmy nie wprost, że istnieje $\kappa \geq \omega$

$$(\forall \alpha \in ON) \kappa \neq \aleph_{\alpha}$$

Bez zmniejszenia ogólności κ jest minimalna.

Rozważmy zbiór

$$A = \{ \xi : \aleph_{\xi} < \kappa \} \neq \emptyset.$$

Jest to zbiór niepusty, ponieważ $\kappa
eq \omega$, bo $\omega = leph_0$. W takim razie

$$\beta = \bigcup A \wedge \operatorname{On}(\beta).$$

Są dwie możliwości:

1. $eta\in A$, czyli eta jest największym elementem A. Ale wówczas istnieje największa liczba kardnalna mniejsza od $\kappa\colon\ leph_eta$. Ale wtedy $\kappa=leph_{eta+1}$.

2. $\beta \notin A$, czyli $Lim(\beta)$. Wtedy $\kappa = \aleph_{\beta}$.

i smiga

4.4 POTEGOWANIE

Hipoteza continuum Czym jest \mathfrak{c} ?

$$\mathfrak{c} > \aleph_0 \implies \mathfrak{c} \ge \aleph_1$$

 $\mathfrak{c} = \aleph_1 \mathfrak{c}$

POTĘGOWANIE liczb kardynalnych:

$$\kappa^{\lambda} := |\kappa^{\lambda}|$$

Bierzemy zbiór funkcji z λ w κ i to jest moc tego zbioru.

$$2^{\kappa} > \kappa$$
$$\kappa \le \lambda \implies \kappa^{\mu} \le \lambda^{\mu}$$
$$\kappa^{\mu+\lambda} = \kappa^{\mu} \cdot \kappa^{\lambda}$$
$$(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$$
$$(\kappa^{\lambda})^{\mu} = \kappa^{\mu \cdot \lambda}$$

Niech $2 \leq \kappa \leq \lambda$ oraz $\lambda \geq \omega$. Wtedy $\kappa^{\lambda} = \lambda^{\lambda} = 2^{\lambda}.$

DOWOD:

$$2^{\lambda} \le \kappa^{\lambda} \le \lambda^{\lambda} \le |\mathcal{P}(\lambda \times \lambda)| = |\mathcal{P}(\lambda)| = 2^{\lambda}$$

4.5 UOGÓLNIONE OPERACJE NA LICZBACH KARDYNALNYCH

Niech $\langle \kappa_i : i \in I \rangle$ będzie indeksowaną rodziną liczb kardynalnych. Wówczas dla tej rodziny definiujemy:

$$\text{sume}: \quad \sum_{i \in I} \kappa_i = |\bigcup_{i \in I} \kappa_i \times \{i\}|$$

iloczyn:
$$\prod_{i \in I} \kappa_i := |\prod_{i \in I} \kappa_i|$$
,

przy czym po prawej mamy uogólniony iloczyn kartezjański zbiorów

Niech $(orall\, i\in I)\ \kappa_i=\kappa$. Wtedy

$$\begin{split} \sum_{i \in I} \kappa_i &= \bigcup_{i \in I} \kappa \times \{i\} = \kappa \times \bigcup_i \{i\} = \kappa \cdot |I| \\ &\prod_{i \in I} \kappa_i = \kappa^{|I|} \end{split}$$

Za tydzień:

$$\langle \kappa_i \ : \ i \in I \rangle, \langle \lambda_i \ : \ i \in I \rangle \quad (\forall \ i \in I) \ \kappa_i < \lambda_i$$

wtedy

$$\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$$