Lezione N Geometria 2

Federico De Sisti 2025-05-12

0.1 Rivestimenti e svestimenti di alberto agostinelli

Esempi:

1. Sia $p:E\to X$ un omeomorfismo, allora p è un rivestimento. Infatti dato $x \in X$ prendiamo $V \ni x$ aperto banalizzante mettendo V = X, Allora:

$$p^{-1}(V) = E = U_1.$$

infatti $p|_{U_1}:U_1\to V$ è semplicemente $p:E\to X$ omeomorfismo.

2. in \mathbb{R}^2 prendiamo $E = \mathbb{R} \times \mathbb{Z}$

$$p:\!\! E\to \mathbb{R}$$

$$(x,n) \to x$$

proiezione sulla prima coordinata.

È un rivestimento.

Qui posso prendere $V=\mathbb{R}$ allora $p^{-1}(V)=E=\bigcup_{n\in\mathbb{Z}}\mathbb{R}\times\{n\}$ $U_n:=\mathbb{R}\times\{n\}$ è aperto in E e $p|_{U_n}:U_n\to V$ è omeomorfismo

 $_{3.} p: \mathbb{R}^2 \to \mathbb{R}$ $(x,y) \to x$

> non è un rivestimento, infatti prendendo $V \ni x (\in \mathbb{R})$ intorno aperto in \mathbb{R} è vero che

$$p^{-1}(V) = \bigcup_{y \in \mathbb{R}} V \times \{y\}.$$

con $p|_{V\times\{y\}}V\times\{y\}\to V$ è omeomorfismo però $V \times \{y\}$ non è aperto in \mathbb{R}^2

4. p:
$$\mathbb{R} \to S^1$$

 $t \to (\cos(2\pi t, \sin(2\pi t)))$

È un rivestimento.

Non è rivestimento banale poiché se $V = S^1$ fosse aperto banalizzante la sua controimmagine \mathbb{R} sarebbe unione disgiunta di aperti, ciascuno omeomorfo a S^1 non è vero perché \emptyset è l'unico compatto aperto di $\mathbb R$ preso $(x_0, y_0) \in S^1$ scegliamo $t_0 \in \mathbb{R}$ tale che $\rho(t_0) = (x_0, y_0)$

l'intervallo $]t_0 = \frac{1}{4}, t_0 + \frac{1}{4}[$ va nella semicirconferenza che contiene (x_0, v_0)

Allora $\rho^{-1}(V) = \bigcup_{n \in \mathbb{Z}} t_0 - \frac{1}{4} + n, t_0 + \frac{1}{4} + n [con U_n =]t_0 - \frac{1}{5} + n, t_0 + \frac{1}{4} + n [con U_n =]t_0$ sono aperti e disgiunti, ciascuno va omeomorficamente in V tramite ρ (esercizi settimanali)

5. La restrizione $\rho|_{]-2,2[}:]-2,2[\rightarrow S^1$ non è un rivestimento Scegliendo V intorno di (1,0) dato da $V=\rho(]-\varepsilon,\varepsilon[)$ con $\varepsilon>0$ piccolo.

$$p|_{]-2.2[})^{-1}(V) =]-2, 2+\varepsilon[\cup]-1-1\varepsilon, -1+\varepsilon[\cup]0-\varepsilon, 0+\varepsilon[\cup]1-\varepsilon, 1+\varepsilon[\cup]2-\varepsilon, 2[$$

dove il primo e l'ultimo non vanno omomeorficamente su V tramite ρ

Proposizione 1

 $Sia\ p: E \to X\ un\ rivestimento.\ Supponiamo\ X\ connesso.\ Allora\ |p^{-1}(x)| = |p^{-1}(y)|\ \ \forall x,y\in X$

Dimostrazione

Scegliamo $x_0 \in X$ definiamo

$$A = \{x \in X \mid |p^{-1}(x)| = |p^{-1}(x_0)|\}.$$

chiaramente $x_0 \in A$

 $Sia\ V \subseteq X\ aperto\ banalizzante\ contenente\ x_0$

Scriviamo

$$p^{-1}(V) = \bigcup_{i \in I} U_i.$$

come nella definizione di rivestimetno allora ciascuna U_i contiene almeno 1 punto che va in x_0

Cioè
$$|I| = |p^{-1}(x_0)|$$

La stessa cosa vale per ogni punto di V. Segue $V \subseteq A$

lo stesso vale con $y \in X$ al posto di x_0 e un aperto canonizzante W contenente y al posto di V, se $y \in A$. Quindi A intorno di ogni punto, cioè A aperto. Se invece $y \notin A$ allora $\subseteq X \setminus A$ per lo stesso ragionamento.

Cioè $X \setminus A$ è aperto, segue $A \in \{X,\emptyset\}$ ma A è non vuoto, quindi A = X \square Esempio

 $E = \{a, b, c\}$ topologia discreta

 $X = \{d, e\}$ topologia discreta

$$p(a) = p(b) = d$$
 $p(c) = e$

$$p^{-1}(V) = \{a, b\} = \{a\} \cup \{b\} := U_1 \cup U_2$$

 $\forall i \in I = \{1, 2\}$ i U_i è omeomorfo a V tramite p

 $e \in X$ ha aperto banalizzante W

$$p^{-1}(W) = \{e\} = U_1$$
 è omeomorfo a W.

Esercizio [ha chiesto all'esame in passato roba simile]

Esempio analogo con meno di 5 punti in totale.

Definizione 1

Sia $p: E \to X$ rivestimento.

Supponiamo X connesso e $|p^{-1}(x)| = d \in \mathbb{Z}_{\geq 0} \quad \forall x \in X$. Allora p si dice di grado d.

Esempio

1. $\rho: \mathbb{R} \to S^1$ il solito rivestimento non ha grado finito

2. p: $S^1 \to S^1$ Un modo per dimostrare che p è continua e osservare che

$$p(z) = z^2$$
 se $z \in S^1 = \{z \in \mathbb{C} \mid |z| = 1\}.$

analogamente si definiscono rivestimenti $S^1\to S^1$ di grado $n\in\mathbb{Z}_{\geq 1}$ qualsiasi, ponendo $p(z)=z^n$

0.2 azioni propriamente discontinue

Ogni rivestimento suriettivo è un'identificazione (perchè è aperto) quindi possiamo costruire un rivestimento usando i quozienti.

Definizione 2

Sia E spazio topologico, $G \subseteq Omeo(E)$ sottogruppo. Si dice che G agisca in modo propriamente discontinuo se $\forall e \in E \ \exists U \subseteq E \ aperto \ U \ni e, t.c.$ $U \cap g(U) = \emptyset \quad \forall g \in G \setminus \{Id_E\}$

Esempio

1. $E = \mathbb{R} \text{ per } n \in \mathbb{Z}$

$$f_n: \mathbb{R} \to \mathbb{R}$$
$$x \to x + n.$$

 $G=\{f_n\mid n\in\mathbb{Z}\}$ abbiamo visto E/G è omeomorfo a $S^1,$ Qui G agisce in modo propriamente discontinuo, sia $e\in\mathbb{R}$

Basta prendere $U =]e - \frac{1}{2}, e + \frac{1}{2}[$ e avere $f_n(U) \cap U = \emptyset \quad \forall n \neq 0$

Teorema 1

Sia E spazio topologico, sia $G \subseteq Omeo(E)$ sottogruppo che agisce in modo propriamente discontinuo, Allora il quoziente $p: E \to E/G$ è un rivestimento.

Dimostrazione

Sappiamo che p è aperta (vale $\forall G$)

Sia $e \in E$ e considero $[e] \in E/G$

Sia $U \subseteq E$ aperto contenente e come nella definizione precedente, poniamo V = p(U), è aperto in E/G

 $Dimostriamo\ che\ V\ \grave{e}\ aperto\ banalizzante.$

 $p^{-1}(V)=p^{-1}(p(U))=\bigcup_{g\in G}g(U)=$ (tutti i punti equivalenti a qualche punto di U)

Verifichiamo che i sottoinsiemi g(U) sono aperti (ok perché $U \subseteq E$ aperto e $q: E \to E$ è omeomorfismo) e disgiunti cioè $g(U) \cap h(U) = \emptyset$ se $g \neq h$

Abbiamo

$$g(U)\cap h(U)=h((h^{-1}\circ g)(U)\cap U)\\=h(\emptyset)=\emptyset$$

Quindi ho scritto $p^{-1}(V)$ come unione disgiunta di aperti di E. Fissiamo $g \in G$ e considero.

$$p|_g(U):g(U)\to V.$$

Questa restrizione è continua, ed è aperta perché p è aperta e g(U) è aperta in E.

Inoltre $p|_{g(U)}: g(U) \to V$ è iniettiva. Infatti U non ha coppie di punti distinti in relazione, quindi g(U) neppure (verifica per casa).

Inoltre $p|_{g(U)}:g(U)\to V$ è suriettiva, infatti sia $[u]\in V$ punto qualsiasi di V, con $u\not\in U$ Allora $g(u)\in g(U)$ e

$$p(g(u)) = [g(u)] = [u].$$

Quindi p è un rivestimento.

0.3 Sollevamento di cammini e omotopie

Definizione 3

Sia $f:X\to Y$ applicazione fra insiemi qualsiasi. Una sezione di f è un'applicazione $s:Y\to X$ tale che $f\circ s=Id_Y$

Osservazione:

Se f ha almeno una sezione, allora f è suriettiva e ogni sua sezione s è iniettiva **Esempio:**

La solita $\rho: \mathbb{R} \to S^1$ non ha sezioni continue, perché una sezione continua sarebbe $s: S^1 \to \mathbb{R}$ continua e iniettiva, che non esiste.

Definizione 4

Sia $p: E \to X$ rivestimento su $V \subseteq X$ aperto banalizzante, $p^{-1}(V) = \bigcup_{i \in I} U_i$ come nella definizione di rivestimento, $q = p|_U : U \to V$ è omeomorfismo, l'inversa $q^{-1}: V \to U$ è detta sezione locale di p.

Definizione 5

Sia $p: E \to X$ rivestimento, sia Y spazio topologico e $f: Y \to X$ continua. INSERISCI IMMAGINE 17: 27

Un sollevamento q di f è un applicazione continua $g:Y\to E$ tale che $f=p\circ g$

Teorema 2

Siano $p: E \to X, f: Y \to X$ come nella definizione, siano $g, h: Y \to E$ sollevamento di f. Supponiamo Y connesso, allora $g(y) = h(y) \ \forall y \in Y$ oppure $g(y) \neq h(y) \ \forall y \in Y$

Dimostrazione

 $Sia A = \{ y \in Y \mid g(y) = h(y) \}$

Dimostriamo che A è sia aperto che chiuso. Sia $y \in Y$

Sia $V \subseteq X$ aperto banalizzante, $V \ni f(y)$, scriviamo $p^{-1}(V) = \bigcup_{i \in I} U_i$ come nella definizione.

Visto che $f = p \circ g$ e anche $f = p \circ h$ abbiamo $g(y), h(y) \in p^{-1}(V)$ Siano $i, j \in I$ tale che

$$U_i \ni g(y), \quad U_j \ni h(y).$$

 $(eventualmente \ i = j)$

 $Sia\ W = g^{-1}(U_i) \cap h^{-1}(U_j)$

è aperto in Y e contiene g

Supponiamo g(y) = h(y) cioè $y \in A$, i = j.

Allora $w \in W$ abbiamo

$$p(g(w)) = p(h(w)) = f(w).$$

Allora g(w), h(w) sono punti dello stesso U_i che vanno entrami in f(W) tramite n.

 $Ma\ p|_{U_i}U_i \to V\ \ \dot{e}\ \ iniettiva,\ quindi\ g(w)=h(w).$ Segue $W\subseteq A\ \ interno\ \ aperto\ \ di\ y$

Quindi A è aperto

Supponiamo $g(y) \neq h(y)$, cioè $y \notin A$

Allora $U_i \neq U_j$ e $i \neq j$, perché U_i ha solo il punto g(y) che va in f(y) tramite p Ma allora $U_i \cap U_j = \emptyset$, da cui $g(w) \in U_i$, $h(w) \in U_j$ devono essere diversi $\forall w \in W$. Quindi $W \subseteq Y \setminus A$, cioè A è chiuso

 $Y \ e$ connesso, quindi A = Y oppure $A = \emptyset$

Teorema 3 (Sollevameto dei cammini)

Siano $p: E \to X$ un rivestimento

 $\alpha:[0,1]\to X$ cammino, sia $e\in E$ tale che $p(e)=\alpha(0)$ Allora $\exists!$ sollevamento

$$\alpha_e^{\uparrow}:[0,1]\to E.$$

 $di \alpha tale che \alpha_e^{\uparrow}(0) = e$

Dimostrazione

Sia $R = \{V \subseteq X, aperto banalizzante \}$

è ricoprimento aperto di X. Applichiamo il corollario al teorema del numero di Lebesgue otteniamo $n \in \mathbb{Z}_{\geq 0}$ e aperti V_1, \ldots, V_n banalizzanti tali che

$$\alpha([\frac{i-1}{n},\frac{i}{n}]) \subset V_i.$$

Considero $s_1: V \to p^{-1}(V_1)$ se locale tale che $s_1(\alpha(0)) = e$ definisco $\alpha_1: [0, \frac{1}{n}] \to E$ come $\alpha_1 = s_1 \circ \alpha$ Chiaramente α_1 solleva $\alpha|_{[0, \frac{1}{n}]}$ ricoperto da $e_2 = \alpha_1(\frac{1}{n}) \in E$ uso la sezione locale $s_2: V_2 \to p^{-1}(V_2)$ tale che $s(\alpha(\frac{1}{n})) = e_2$ e definisco $\alpha_2: [\frac{1}{n}, \frac{2}{n}] \to E$ come $a\alpha_2 = s_2 \circ \alpha$ Iterando ottengo

$$\alpha: [\frac{i-1}{n}, \frac{i}{n}] \to E.$$

che si incollano per costruzione al cammino α_e^{\uparrow}