基于网络药理学研究大川芎方治疗偏头痛的作用机制

袁荣高1*,顾明华1,古江勇2

(1.江苏联合职业技术学院连云港中医药分院,江苏连云港 222006; 2.广州中医药大学第二临床医学院,广东广州 510006)

摘要:目的 研究大川芎方治疗偏头痛的分子作用机制。方法 结合文献挖掘、分子对接和网络分析研究大川芎方中化合物群与偏头痛相关靶蛋白的相互作用。结果 分子对接发现大川芎中有 38 个活性成分,且大部分具有较好的口服生物利用度和良好的脑内暴露量,进一步网络分析发现 senkyunolide M, riligustilide, levistolide A, chuanxiongterpene 等 16 个化合物为其主要活性成分,可通过与 CGRP、p38、TNF-α、iGluR5、NOS 等 18 个靶蛋白作用,抑制神经源性炎症和神经递质的产生,降低源自三叉神经的感受器对伤害性信息的超敏化,并对抗皮层扩布性抑制,从而发挥治疗偏头痛的作用。结论 通过网络分析明确了大川芎方治疗偏头痛的分子作用机制,诠释了其科学内涵,有助于推动后续相应制剂的药效物质基础研究和分子机制实验研究。

关键词:疼痛;网络分析;分子描述符;分子对接;中药

中图号:R285.5 文献标志码:A 文章编号:1672-0482(2016)06-0571-06

DOI:10.14148/j.issn.1672-0482.2016.0571

Network-assisted Investigation into Mechanism of Dachuanxiong Fang on Migraine

YUAN Rong-gao1*, GU Ming-hua1, GU Jiang-yong2

(1. Lianyungang TCM Branch, Jiangsu Union Vocational Technical Institute, Lianyungang, 222006, China. 2. Second School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China)

ABSTRACT: OBJECTIVE To understand the mechanism of Dachuanxiong Fang on migraine. METHODS Data mining, Molecular docking and Network Analysis were employed to investigate the active compounds and key target protein. RESULTS 38 active hits were identified by virtual screening, of which, most compounds had good oral bioavailability and might be optimal CNS exposure. Among them, 16 molecules (senkyunolide M, levistolide A, chuanxiongterpene, riligustilide, etc.) could significantly contribute to alleviate migraine. And they could target 18 protein (such as CGRP, p38, TNF-α, iGluR5, NOS) to inhibit neurogenic inflammation and neutrotransmitters, to reduce the sensitive of nociceptors originated in the trigeminal ganglion, and to combat the genesis and propagation of cortical spreading depression. CONCLUSION It was illustrated the molecular mechanism and the key active compounds of Dachuanxiong Fang, which was helpful for wet experiments to explore targets and active compounds.

KEY WORDS: pain; network analysis; molecular descriptor; molecular docking; traditional Chinese medicine

大川芎方源于金·刘完素《宣明论方》,由川芎、 天麻2味中药组成,具有活血化瘀、平肝熄风之功效,为治疗偏头痛的经典复方,并已被开发成用于治疗多种头痛的中成药(如天舒胶囊、天舒片、天舒滴丸等)^[1]。而偏头痛是临床常见的、易反复发作的且发作时疼痛剧烈的顽固性疾病,以占主导地位的三叉神经血管学说认为,该病机理主要涉及到脑膜的血管扩张、血管活性肽释放引起神经源性炎症以及 中枢疼痛调节系统的功能异常^[2-3]。正是这种复杂系统与复杂系统间的相互作用极大的限制了大川芎 方及其相应制剂的作用机制解析。

融合系统生物学(Systems biology)和多向药理学(Polypharmacology)提出的网络药理学,利用网络分析(Network analysis)理论从整个系统角度研究药物作用机制^[4-5],这为多成分药物作用机制的阐释提供了另一种研究策略^[6]。而中医药正是在中医

理论指导下由一味或多味中药合理配伍而成的复方,经现代药物化学研究,其恰好是多成分药物的一种典型代表^[7]。因此,网络药理学思想正被引入到中药的药效物质基础和分子作用机制研究中以阐释其科学内涵^[7-8]。在此背景下,本文尝试采用分子对接与网络分析相结合的方法来研究大川芎方治疗偏头痛的分子作用机制,进而诠释其临床应用的科学内涵。

1 材料与方法

1.1 靶蛋白与分子数据集构建

通过文献分析认为,偏头痛是血管神经性脑部疾病,各种原因导致脑膜血管扩张,血浆外渗,造成脑膜周围神经炎症,激活三叉神经产生头痛。同时,

兴奋的神经释放血管激活物质和致痛物质,激活内皮细胞、肥大细胞和血小板,进而引起胞外胺类、AA类代谢物、肽类及多种离子增加,增强感觉神经元的敏感性,造成头痛增强延长^[2,9-11]。基于发病过程分析,根据是否人源、晶体结构分辨率以及是否含配体等方面从 Uniprot 数据库(http://www.rcsb.org/pdb/home/home.do)共筛选出 21 个含原配体靶蛋白晶体复合物(表 1)。同时,根据大川芎处方组成,从 UNPD 数据库(http://pkuxxj.pku.edu.cn/UNPD/)检索建立中药川芎、天麻所含的 111 个小分子三维结构数据库。

表 1 与偏头痛相关的靶蛋白

P292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	X 1 与两人用相人的毛里目						
P12821 3L3N Angiotensin-converting enzyme ACE P42262 3RN8 Glutamate receptor ionotropic AMPA2 Q16602 3N7R Calcitonin gene-related peptide type 1 receptor CGRP1 P23219 3N8X Prostaglandin G/H synthase 1 COX1 P35354 3LN1 Prostaglandin G/H synthase 2 COX2 P14416 2HLB D(2) dopamine receptor D2R P29474 1M9J Nitric oxide synthase, endothelial eNOS P39086 2ZNT Glutamate receptor, ionotropic kainate 1 iGluR5 P35228 4NOS Nitric oxide synthase, inducible iNOS P14555 1J1A Phospholipase A2, membrane associated mPLA2 O14684 3DWW Prostaglandin E synthase PGES P01375 2AZ5 Tumor necrosis factor alpha TNF-α P47712 1CJY Cytosolic phospholipase A2 cPLA2 P07550 3NY8 Beta-2 adrenergic receptor β2-adrenoceptor P41145 4DJH Kappa-type opioid receptor κ opioid receptor P29274 3EML Adenosine receptor A2a A2aR P53778 1CM8 Mitogen-activated protein kinase 12 p38 γ Q15759 3GC9 Mitogen-activated protein kinase 14 p38 β Q16539 1KV1 Mitogen-activated protein kinase 14 p38 α	Uniprot	PDB	名称	缩写			
P422623RN8Glutamate receptor ionotropicAMPA2Q166023N7RCalcitonin gene-related peptide type 1 receptorCGRP1P232193N8XProstaglandin G/H synthase 1COX1P353543LN1Prostaglandin G/H synthase 2COX2P144162HLBD(2) dopamine receptorD2RP294741M9JNitric oxide synthase, endothelialeNOSP390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P09917	3V99	Arachidonate 5-lipoxygenase	5-LOX			
Q166023N7RCalcitonin gene-related peptide type 1 receptorCGRP1P232193N8XProstaglandin G/H synthase 1COX1P353543LN1Prostaglandin G/H synthase 2COX2P144162HLBD(2) dopamine receptorD2RP294741M9JNitric oxide synthase, endothelialeNOSP390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 β	P12821	3L3N	Angiotensin-converting enzyme	ACE			
P232193N8XProstaglandin G/H synthase 1COX1P353543LN1Prostaglandin G/H synthase 2COX2P144162HLBD(2) dopamine receptorD2RP294741M9JNitric oxide synthase, endothelialeNOSP390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P42262	3RN8	Glutamate receptor ionotropic	AMPA2			
P353543LN1Prostaglandin G/H synthase 2COX2P144162HLBD(2) dopamine receptorD2RP294741M9JNitric oxide synthase, endothelialeNOSP390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	Q16602	3N7R	Calcitonin gene-related peptide type 1 receptor	CGRP1			
P144162HLBD(2) dopamine receptorD2RP294741M9JNitric oxide synthase, endothelialeNOSP390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P23219	3N8X	Prostaglandin G/H synthase 1	COX1			
P294741M9JNitric oxide synthase, endothelialeNOSP390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P35354	3LN1	Prostaglandin G/H synthase 2	COX2			
P390862ZNTGlutamate receptor, ionotropic kainate 1iGluR5P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P14416	2HLB	D(2) dopamine receptor	D2R			
P352284NOSNitric oxide synthase, inducibleiNOSP145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P29474	1 M 9J	Nitric oxide synthase, endothelial	eNOS			
P145551J1APhospholipase A2, membrane associatedmPLA2O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P39086	2ZNT	Glutamate receptor, ionotropic kainate 1	iGluR5			
O146843DWWProstaglandin E synthasePGESP013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P35228	4NOS	Nitric oxide synthase, inducible	iNOS			
P013752AZ5Tumor necrosis factor alphaTNF-αP477121CJYCytosolic phospholipase A2cPLA2P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P14555	1J1A	Phospholipase A2, membrane associated	mPLA2			
P47712 1CJY Cytosolic phospholipase A2 cPLA2 P07550 3NY8 Beta-2 adrenergic receptor β2-adrenoceptor P41145 4DJH Kappa-type opioid receptor κ opioid receptor P29274 3EML Adenosine receptor A2a A2aR P53778 1CM8 Mitogen-activated protein kinase 12 p38 γ Q15759 3GC9 Mitogen-activated protein kinase 11 p38 β Q16539 1KV1 Mitogen-activated protein kinase 14 p38 α	O14684	3DWW	Prostaglandin E synthase	PGES			
P075503NY8Beta-2 adrenergic receptorβ2-adrenoceptorP411454DJHKappa-type opioid receptorκ opioid receptorP292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P01375	2AZ5	Tumor necrosis factor alpha	TNF-α			
P41145 4DJH Kappa-type opioid receptor κ opioid receptor P29274 3EML Adenosine receptor A2a A2aR P53778 1CM8 Mitogen-activated protein kinase 12 p38 γ Q15759 3GC9 Mitogen-activated protein kinase 11 p38 β Q16539 1KV1 Mitogen-activated protein kinase 14 p38 α	P47712	1CJY	Cytosolic phospholipase A2	cPLA2			
P292743EMLAdenosine receptor A2aA2aRP537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P07550	3NY8	Beta-2 adrenergic receptor	β2-adrenoceptor			
P537781CM8Mitogen-activated protein kinase 12p38 γQ157593GC9Mitogen-activated protein kinase 11p38 βQ165391KV1Mitogen-activated protein kinase 14p38 α	P41145	4DJH	Kappa-type opioid receptor	κ opioid receptor			
Q15759 3GC9 Mitogen-activated protein kinase 11 p38 β Q16539 1KV1 Mitogen-activated protein kinase 14 p38 α	P29274	3EML	Adenosine receptor A2a	A2aR			
Q16539 1KV1 Mitogen-activated protein kinase 14 p38 α	P53778	1CM8	Mitogen-activated protein kinase 12	р38 γ			
	Q15759	3GC9	Mitogen-activated protein kinase 11	р38 β			
P20274 3FMI Adenosine recentor A2a A2aR	Q16539	1KV1	Mitogen-activated protein kinase 14	р38 α			
120214 OLME Audiosine receptor AZa AZak	P29274	3EML	Adenosine receptor A2a	A2aR			

1.2 分子对接

在建立的小分子三维结构数据库和靶蛋白数据库基础上,依据靶蛋白 uniprot 和化合物 UNPD 编号从 TCMN 数据库筛选大川芎方中小分子与靶点的分子对接得分。分子对接具体参数如下:以AutoDock 4.0 为内核的 DOVIS 2.0 平台上完成分子对接,以原配体为活性中心,盒子大小为 4 nm×4 nm×4 nm×4 nm,格点间隔为 0.0375 nm,分子构象搜索采用拉马克遗传算法(LGA),初始种群数为 150,平移步长为 0.2 nm,旋转步长为 50°,突变率为 0.02,交

叉率为 0.8,局部搜索频率为 0.06,其余为默认值。

1.3 网络构建

根据分子对接得分,在高于原配体基础上,选取得分较高(Score》5.5)的 111 个分子-靶蛋白数据对导入 Cytoscape 3.2.1 软件构建分子-靶蛋白网络,并通过插件 Network analyzer 分析网络特征,识别大川芎方主要活性成分群和可能靶蛋白,以阐释其治疗偏头痛科学内涵。

2 结果

2.1 分子对接结果分析

在分子计算中,分子与靶蛋白对接得分越高,则分子与靶蛋白相互作用的可能性越大。通过对大川芎方分子对接结果分析,发现与偏头痛靶蛋白有较高对接得分(Score≥5.5)的38个分子(表2),其中32个分子(大部分属于苯酞及苯酞二聚体类)来自川芎,6个分子(主要属于酚类化合物)来自天麻。

对 38 个分子活性报道分析发现,川芎内酯 I(Senkyunolide I, UNPD152094)可通过调节神经递质的水平显著提升疼痛阈值来缓解偏头痛小鼠的疼痛^[12];z-藁本内酯(Z-ligustilide, UNPD37822)能抑制小神经胶质细胞介导的促炎反应治疗神经元性炎症反应^[13];diligustilide(UNPD28251)能明显抑制小鼠扭体次数^[14]。综述所述,这个 38 个分子可能是大川芎方发挥治疗偏头痛的活性成分。

表 2 大川芎方中潜在活性成分

	ル [□]		
UNPD 编号	化合物	UNPD 编号	化合物
UNPD135221	chuanxiongterpene	UNPD3918	senkyunolide G
UNPD89491	senkyunolide P	UNPD52794	senkyunolide C
UNPD28251	(Z,Z)-diligustilide	UNPD108196	senkyunolide K
UNPD124155	tokinolide B	UNPD131685	chuanxiongol
UNPD11020	β-sitosterol	UNPD12531	Cnidium lactone
UNPD80200	levistolide A	UNPD138803	3-n-butyl phthalide
UNPD164063	3,8-dihydrodiligustilide	UNPD145684	senkyunolide D
UNPD82739	4,5-dehydrotokinolide B	UNPD148567	senkyunone
UNPD4079	chuanxiongnolide A	UNPD152094	senkyunolideI
UNPD127970	Z,Z-6,87,3'-diligustilide	UNPD159659	senkyunolide A
UNPD127227	chuanxiongnolide B	UNPD101914	senkyunolide E
UNPD133067	4,4'-ethylenebisphenol	UNPD191474	senkyunolide B
UNPD6707	β-daucosterin	UNPD19582	3-butylphthalide
UNPD996	(Z)-6,7-epoxyligustilide	UNPD194163	senkyunolide Q
UNPD7686	4-hydroxy-3-butylphthalide	UNPD196386	senkyunolide M
UNPD56145	2,4-bis(4-hydroxybenzyl)-phenol	UNPD37822	Z-ligustilide
UNPD185608	4,4'-dihydroxybenzyl sulfide	UNPD154927	riligustilide
UNPD105737	3,8-dihydro-6,6':7,3'α-diliguetilide	UNPD60627	cnidilide
UNPD197488	1-(furan-2-yl)-2-(4-hydroxyphenyl)		
	ethanone		
UNPD27958	5-Hydroxymethyl-6-endo-(3'-		
	methoxy-4'-hydroxyphenyl)-8-oxa-		
	bicyclo[3.2.1]-oct-3-en-2-one		

2.2 活性成分的药动学分析

口服大川芎方后,其活性成分经胃肠道吸收入血,再分布到病变部位发挥治疗作用。而这些活性分子透过生物膜屏障人血或到达病灶部位与其结构密切相关。因此,可通过刻画分子结构特征的分子描述符的分析来初步预测化合物进入体内的药代动力学过程。通过 OpenBabel 2.3.2 对 38 个潜在活性分子进行分子描述符计算和结构特征的统计学分析(表 3),从 MW、logP、HBAs 和 HBDs 的均数和中位数可看出,绝大部分化合物均符合"类药 5 规则";分子描述符 RBs 和 PSA 均数远远小于 13,中位数远远小于 1.4 nm²,提示绝大部分化合物可能有较好

口服生物利用度(\geq 20%)^[15]。同时,表 3 中显示,在 38 个化合物中,大部分化合物的 MW<450,HBDs<3,HBAs<7,RB<8,PSA<0.7 nm²,进一步提示这些潜在活性化合物在中枢神经可能也有较高暴露量^[16]。另外,对大川芎方相关药动学研究报道显示,ligustilide、butylphthalide、senkyunolide A、senkyunolide I等苯酞及苯酞二聚体类化合物可吸收入血,senkyunolide I等可移行入脑脊液,并分布到脑组织中^[17-19],吻合了上述部分预测结果。这也进一步说明 38 个化合物可能是大川芎方的活性成分。

分子描述符	均数	最小值	最大值	中位数
Molecular Weight(MW)	295.11	190.24	602.84	262.33
AlogP	3.87	0.90	8.76	3.25
Num_AromaticRings	0.50	0.00	3.00	0.00
$Num_H_Aceeptors(HBAs)$	3.34	1.00	6.00	3.00
$Num_H_Donors(HBDs)$	0.82	0.00	4.00	1.00
Num_Rings	3.18	1.00	6.00	2.00
$Num_RotatableBonds(RBs)$	3.76	2.00	9.00	3.50
Molecular_SurfaceArea	285.24	188.05	608.90	248.51
Polar Surface Area (PSA)	0.51	0.20	0.99	0.52
Molecular_SAVol	494.02	372.56	845.23	438.87
Molecular_SASA	429.00	324.26	723.71	389.98
Molecular_Volume	207.38	126.56	440.75	174.24

表 3 活性分子的主要分子描述符

2.3 分子-靶蛋白作用网络分析

分子对接结果显示,38个活性化合物不仅仅与 一个蛋白或生物通路作用,而是调节多个靶蛋白的 多条生物通路,构成成分与靶蛋白间的复杂作用网 络,这需要有效的数据分析方法来挖掘网络特征,进 一步揭示大川芎方的主要活性成分群和作用机制。 作为计算机生物化学一个分支,网络分析(Network analysis)为复杂数据关系研究提供了有效方法[20], 并在医药领域中被广泛用于病机分析[21]、靶蛋白发 现[22]、老药新用[23]及作用机制预测[23]等。在网络 分析中,网络度(Degree)和介数(Betweenness,BW) 两个参数常被用于刻画节点在维持分子-靶点治疗 网络的重要性[24-25],进而分析大川芎方治疗偏头痛 的主要活性成分群和关键靶蛋白。根据虚拟筛选结 果,构建了由38个分子和18个靶蛋白组成的大川 芎方治疗偏头痛的分子-靶蛋白网(cDTN,见图 1)。 整体网络特征分析发现,cDTN 网由 56 个节点构成 1个模块,整个网络的度分布服从幂律函数,且平均 最短路径 3.19(整个网络直径 6),表明 cDTN 网络 具有典型的无标度(Scale-free)和小世界(Smallworld)特性,是一个稳健(Robustness)的生物网 络[26-27],故 cDTN 网络具有一定抗扰动的能力,能 保证处方在一定范围内的波动不会影响其疗效。进 一步局部网络特征分析,发现16个分子具有较高网 络度和介数(表 4),可与 18 个靶蛋白相互作用,在 保证 cDTN 网络稳定方面具有重要作用,提示 16 个 分子的变化更可能会破坏大川芎方分子-靶蛋白治 疗网络的完整性,进而严重影响治疗偏头痛的效果。 因此,这16个化合物可能是大川芎方主要活性成分 群,也是其制剂质量控制的重要指标。

注:空心圆-分子,菱形-靶蛋白,实线代表分子与蛋白相互作用, 分子编号源于 UNPD 数据库(http://pkuxxj.pku.edu.cn/UNPD/)

图 1 大川芎方分子-靶蛋白网表 4 网络度和/或介数较高的分子

UNPD 编号	化合物	中药	度	介数
UNPD135221	chuanxiongterpene	川芎	10	0.513
UNPD89491	senkyunolide P	川芎	9	0.089
UNPD105737	3,8-dihydro-6,6':	川芎	8	0.061
	7,3'α-diliguetilide			
UNPD28251	(Z,Z')-diligustilide	川芎	8	0.037
UNPD124155	tokinolide B	川芎	7	0.070
UNPD11020	β-sitosterol	天麻	7	0.042
UNPD80200	levistolide A	川芎	7	0.039
UNPD164063	3,8-dihydrodiligustilide	川芎	6	0.023
UNPD82739	4,5-dehydrotokinolide B	川芎	5	0.027
UNPD4079	chuanxiongnolide A	川芎	4	0.020
UNPD127970	Z,Z-6,87,3'-diligustilide	川芎	4	0.008
UNPD127227	chuanxiongnolide B	川芎	4	0.007
UNPD154927	riligustilide	川芎	3	0.008
UNPD6707	β-daucosterin	天麻	3	0.002
UNPD194163	senkyunolide Q	川芎	2	0.002
UNPD196386	senkyunolide M	川芎	2	0.002

同时,在分子-靶蛋白网络中靶蛋白节点网络特征分析显示(表 5),大川芎方中部分活性成分与一氧化氮合酶(iNOS, eNOS)、CGRP 受体(CGRP1)作用,抑制血管激活物质(NO, CGRP, SP)产生与释放^[10],与 ACE 作用促进血管活性物质(P物质、缓激肽)降解^[2],从而降低由 NO-cGMP、CGRP 通路介导的神经性炎症^[9];同时与 mPLA2、COX、PG-ES 作用,抑制 PGE2 合成^[28],与 TNF-α 和 p38 MAPK 激酶(p38 α, p38 β)作用抑制 TNF 介导的

硬脑膜血管感受器对伤害的增敏化^[29],进而缓解偏头痛;还有部分化合物与 NMDA 受体(iGluR5)和 AMPA 受体(AMPA2)作用,对抗由谷氨酸盐参与的偏头痛发作时的皮层扩布性抑制(Cortical spreading depression)的发生和传播^[2,30];另外,还有可与多巴胺受体(D2R)和阿片受体(κ opioid receptor),调控多巴胺能神经,抑制疼痛感受器信息传输^[31]。前期实验研究报道也部分证实,大川芎方能降低偏头痛模型大鼠的 NOS、CGRP 受体表达^[32]。

	7, 0		3-H 1 +0-2		~ 1, -30,71,30	•	
Uniprot	缩写	度	介数	Uniprot	缩写	度	介数
O14684	PGES	19	0.552	P23219	COX1	6	0.065
P29474	eNOS	11	0.062	P39086	iGluR5	5	0.057
P41145	κ opioid receptor	10	0.113	P09917	5-LOX	5	0.036
Q16539	р38 а	8	0.060	P14416	D2R	5	0.008
P01375	TNF-α	7	0.081	P12821	ACE	4	0.022
Q15759	р38 β	7	0.070	P42262	AMPA2	4	0.021
P35228	iNOS	7	0.042	Q16602	CGRP1	3	0.015
P14555	mPLA2	6	0.096	P29274	A2aR	2	0.020

表 5 分子-靶蛋白网络中靶蛋白的网络度和/或介数

3 讨论

随着系统生物学发展,发现疾病是致病因素攻击生物系统,扰动生物网络的平衡,导致生物功能异常,最终造成特定疾病的形成,因此疾病可视为特定的生物网络扰动^[33],与之对应的药物开发策略,也逐渐的由单靶点特异性设计向组合性多靶点药物转变^[34],开始注重强调对整个生物系统的调整,但这种基于系统方法设计药物还面临着诸多挑战^[35-36]。而中药是以中医理论为指导,由单味或多味中药组合配伍后,调整生物体环境,逐渐纠正失衡网络,进而达到治疗疾病目的^[37-38],这恰好吻合了多靶点组合药物设计理念。

目前,虽然对偏头痛的治疗选择很有限包括用于急性发作时的色胺类药物、用于预防发作的onabotulinumtoxin A及舒马普坦,但对偏头痛的病理生理研究不断深入,发现了一些新的病理机制^[39-40]。同时,对偏头痛的治疗也开始向多成分配伍方向发展^[41-42]。而自金代以来,来自中医药的大川芎方已经过丰富的临床实践,对偏头痛有良好疗效,但由于缺乏现代科学内涵诠释,极大了限制其在现代临床中的应用。本文利用分子对接构建了大川芎方治疗偏头痛的分子-靶蛋白网络,并通过网络特征分析,发现大川芎方中的ligustilide、butylphthalide、senkyunolide A、senkyunolide I等 16个主要活性成分通过与 CGRP1、NOS、iGluR5、

TNF-α等 18 个靶蛋白作用,抑制神经源性炎症和神经递质的产生;降低硬脑膜血管感受器对伤害性信息的增敏化;对抗皮层扩布性抑制(Cortical spreading depression)的发生和传播,达到整体治疗偏头痛的目的。这些研究结果揭示了大川芎方的分子作用机制,阐释了其治疗偏头痛的科学内涵。同时,这也将有助于推动大川芎方及其相应制剂的药效物质基础研究和分子机制探索实验开展。

参考文献:

- [1] XIA W, ZHU M, ZHANG Z, et al. Effect of Tianshu capsule in treatment of migraine: a meta-analysis of randomized control trials[J]. J Tradit Chin Med, 2013,33(1): 9-14.
- [2] GALLETTI F, CUPINI LM, CORBELLI I, et al. Pathophysiological basis of migraine prophylaxis[J]. Prog Neurobiol, 2009, 89(2): 176-192.
- [3] MOSKOWITZ MA. Pathophysiology of headache-past and present[J]. Headache, 2007,47 Suppl 1: S58-63.
- [4] HOPKINS AL. Network pharmacology[J]. Nat Biotech, 2007, 25(10): 1110-1111.
- [5] BERGER SI, IYENGAR R. Network analyses in systems pharmacology[J]. Bioinform, 2009,25(19): 2466-2472.
- [6] HASAN S, BONDE BK, BUCHAN NS, et al. Network analysis has diverse roles in drug discovery [J]. Drug Dis Today, 2012,17(15-16): 869-874.
- [7] LI J, LU C, JIANG M, et al. Traditional chinese medicine-based network pharmacology could lead to new multicompound drug discovery [J]. Evid Based Complement Alternat Med, 2012, 2012; 149762.
- [8] LIANG X, LI H, LI S. A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study[J]. Mol Biosyst, 2014,10(5): 1014-1022.
- [9] PEROUTKA SJ. Neurogenic inflammation and migraine: implications for the therapeutics[J]. Mol Interv, 2005,5(5): 304-

311.

- [10] CHAN K, MAASSENVANDENBRINK A. Glutamate receptor antagonists in the management of migraine [J]. Drugs, 2014,74(11): 1165-1176.
- [11] GUPTA S, VILLALON CM. The relevance of preclinical research models for the development of antimigraine drugs: Focus on 5-HT1B/1D and CGRP receptors [J]. Pharm Ther, 2010,128(1): 170-190.
- [12] WANG YH, LIANG S, XU DS, et al. Effect and mechanism of senkyunolide I as an anti-migraine compound from Ligustic-um chuanxiong[J]. J Pharm Pharmacol, 2011,63(2): 261-266.
- [13] ZHU MD, ZHAO LX, WANG XT, et al. Ligustilide inhibits microglia-mediated proinflammatory cytokines production and inflammatory pain[J]. Brain Res Bull, 2014,109: 54-60.
- [14] JUAREZ-REYES K, ANGELES-LOPEZ GE, RIVERO-CRUZ I, et al. Antinociceptive activity of Ligusticum porteri preparations and compounds[J]. Pharm Biol, 2014,52(1): 14-20.
- [15] MEANWELL NA. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety [J]. Chem Res Toxicol, 2011,24(9): 1420-1456.
- [16] RANKOVIC Z. CNS Drug Design: Balancing physicochemical properties for optimal brain exposure[J]. J Med Chem, 2015, 58(6): 2584-2608.
- [17] 王强, 沈岚, 房鑫, 等. 大川芎方沿体外-血浆-脑脊液-脑组织的移行成分研究[J]. 中成药, 2013,35(11): 2364-2371. WANG Q, SHEN L, FANG X, et al. Shift of effective ingredients of Dachuanxiong Decoction along in vitro-plasma-cerebrospinal fluid-brain tissue[J]. Chin Tradit Pat Med, 2013,35 (11): 2364-2371.
- [18] 沈岚, 林晓, 洪燕龙, 等. 大川芎方效应组分血浆及脑脊液 HPLC特征指纹图谱研究[J]. 中国中药杂志, 2012,37(13): 2017-2021.
 - SHEN L, LIN X, HONG YL, et al. Study on HPLC characteristic fingerprint of active components of Dachuanxiong Fang in plasma and cerebrospinal fluid[J]. China J Chin Mater Med, 2012, 37(13): 2017-2021.
- [19] 倪书茂,钱大玮,段金廒,等.大川芎方中藁本内酯及天麻素在家兔血浆中的代谢物研究[J].中成药,2010,32(7):1115-1120.
 - NI SM, QIAN DW, DUAN JA, et al. Metablites of ligustilide and gastrodin from Dachuanxiong Decoction in rabbit plasma [J]. Chin Tradit Pat Med, 2010, 32(7): 1115-1120.
- [20] BROHEE S, FAUST K, LIMA-MENDEZ G, et al. Network Analysis Tools: from biological networks to clusters and pathways[J]. Nat Prot, 2008,3(10): 1616-1629.
- [21] BAUER-MEHREN A, BUNDSCHUS M, RAUTSCHKA M, et al. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases [J]. PLoS One, 2011,6(6); e20284.
- [22] KUSHWAHA SK, SHAKYA M. Protein interaction network analysis: Approach for potential drug target identification in Mycobacterium tuberculosis[J]. J Theor Biol, 2010, 262(2): 284-294.
- [23] IORIO F, BOSOTTI R, SCACHERI E, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses[J]. Proc Natl Acad Sci USA, 2010,107(33): 14621 -14626.
- [24] HWANG WC, ZHANG A, RAMANATHAN M. Identifica-

- tion of information flow-modulating drug targets: a novel bridging paradigm for drug discovery[J]. Clin Pharmacol Ther, 2008,84(5): 563-572.
- [25] TSUCHIYA M, SELVARAJOO K, PIRAS V, et al. Local and global responses in complex gene regulation networks[J]. Physica A.2009.388(8): 1738-1746.
- [26] BARABASI A-L. Scale-Free Networks: A Decade and Beyond [J]. Science, 2009,325(5939); 412-413.
- [27] HERT J, KEISER MJ, IRWIN JJ, et al. Quantifying the relationships among drug classes[J]. J Chem Inf Model, 2008,48 (4): 755-765.
- [28] ANTONOVA M, WIENECKE T, OLESEN J, et al. Prostaglandins in migraine: update[J]. Curr Opin Neurol, 2013,26 (3): 269-275.
- [29] ZHANG XC, KAINZ V, BURSTEIN R, et al. Tumor necrosis factor-alpha induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions[J]. Pain, 2011,152(1): 140-149.
- [30] OLESEN J. The role of nitric oxide (NO) in migraine, tension -type headache and cluster headache[J]. Pharm Ther, 2008, 120(2): 157-171.
- [31] GOADSBY PJ, CHARBIT AR, ANDREOU AP, et al. Neurobiology of migraine[J]. Neuroscience, 2009, 161(2): 327-341.
- [32] 周明眉,杨奎,王一涛. 大川芎方对硝酸甘油偏头痛模型大鼠 硬脑膜血管及三叉神经核 NOS、SP 和 CGRP 受体的影响[J]. 中药药理与临床,2009,25(6): 9-10.
 ZHOU MM, YANG K, WANG YT. Effects of Dachuanxiong Fang on the express of NOS, SP, CGRP in the dural vessels and Trigeminal nerve nuclei of rats with nitroglycerin-induced migraine model[J]. Pharm Clin Chin Mater Med, 2009,25(6): 9-10
- [33] DEL SOL A, BALLING R, HOOD L, et al. Diseases as network perturbations[J]. Curr Opin Biotechnol, 2010, 21(4): 566-571.
- [34] LU JJ, PAN W, HU YJ, et al. Multi-target drugs: The trend of drug research and development[J]. PLoS One, 2012,7(6): e40262.
- [35] CSERMELY P, AGOSTON V, PONGOR S. The efficiency of multi-target drugs: the network approach might help drug design[J]. Trends Pharmacol Sci, 2005,26(4): 178-182.
- [36] HOPKINS AL. Network pharmacology: the next paradigm in drug discovery[J]. Nat Chem Biol, 2008,4(11): 682-690.
- [37] LI S, ZHANG B. Traditional Chinese medicine network pharmacology: theory, methodology and application[J]. Chin J Natl Med, 2013,11(02): 110-120.
- [38] GERTSCH J. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures[J]. Planta Med, 2011,77(11): 1086-1098.
- [39] NAGY AJ, RAPOPORT AM. Update on future headache treatments[J]. Neurol Sci, 2013,34 Suppl 1: S101-108.
- [40] VOLLBRACHT S, RAPOPORT AM. New treatments for headache[J]. Neurol Sci, 2014,35 Suppl 1: 89-97.
- [41] BLUMENFELD A, GENNINGS C, CADY R. Pharmacological synergy; the next frontier on therapeutic advancement for migraine[J]. Headache, 2012,52(4); 636-647.
- [42] GONZALEZ-HERNANDEZ A, CONDES-LARA M. The multitarget drug approach in migraine treatment: the new challenge to conquer[J]. Headache, 2014,54(1): 197-199.

(编辑:董宇)