北京三帆中学 2014-2015 学年度第一学期期中考试试卷

初二 数学

姓名 学号 班级 分层班

- 一、选择题(本题共30分,每小题3分)
- 1. 若分式 $\frac{3}{x-1}$ 有意义,则 x 的取值范围是().
- B. x=1
- C. $x\neq 1$
- **D.** x = -1
- 2. 下列等式从左到右的变形,属于因式分解的是(
 - A. a(x-y)=ax-ay

- B. $x^3-x=x(x+1)(x-1)$
- C. $(x+1)(x+3)=x^2+4x+3$
- **D.** $x^2+2x+1=x(x+2)+1$
- 3. 下列计算正确的是().

 - A. $a+a^2=a^3$ B. $2a \cdot 3a=6a$

- 4. 已知图中的两个三角形全等,则 21 等于(
 - A. 72°
- C. 50°
- D. 58°

- 5. 若 $\sqrt{x-1}$ +(y+2)²=0,则(x+y)²⁰¹⁴等于(
 - A. -1 B. 1

- 6. 若分式 $\frac{3y}{x+y}$ 中的 x、y 的值同时扩大到原来的 5 倍,则分式的值(
- A. 是原来的 15 倍 B. 是原来的 5 倍 C. 是原来的 $\frac{1}{5}$
- D. 不变

- 7. 下列运算错误的是(
 - **A.** $\frac{(a-b)^2}{(b-a)^2} = 1$

B. $\frac{-a-b}{a+b} = -1$

 $\frac{0.5a+b}{0.2a-0.3b} = \frac{5a+10b}{2a-3b}$

- **D.** $\frac{a-b}{a+b} = \frac{b-a}{b+a}$
- 8. 用直尺和圆规作一个角等于已知角,如图,能得出 $\angle A'O'B' = \angle AOB$ 的依据是(
 - A. SAA
- B. SSS
 - C. ASA
- D. AAS

- 9. 点 P 在 $\angle AOB$ 的平分线上,点 P 到 OA 边的距离等于 5,点 O 是 OB 边上的任意一点,下列选 项正确的是().
 - A. $PO \ge 5$ B. PO > 5 C. PO < 5 D. $PO \le 5$

- 10. 如右图,已知图中有 3 个正方形 ABCD、EBFG 和 KHIJ,若把图 中全 等的三角形看成一类,则图中三角形的种类数量为(
 - A. 5 B. 6
- C. 7
- D. 8

- 二、填空题(本题共24分,每小题3分)
- $\overline{A} = \overline{A} =$
- **分解因式:** $ax^2 9ay^2 =$
- 13. 如图, AB = AC, 要使 $\triangle ABE \cong \triangle ACD$, 应添加的条件 是 . (添加一个条件即可).

- 14. 已知: $m \times n$ 为两个连续的整数,且 $m < \sqrt{29} < n$,则 m+n=
- 已知 $\frac{5m}{3m+n} = \frac{1}{3}$,则 $\frac{m}{n} = \frac{1}{3}$ **15.**
- 某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每 天修建道路的速度比原计划快了20米,结果提前2天完成任务. 若设原计 划每天修建道路 x 米,则根据题意可列方程为

- 17. 如图,已知 $\triangle ABC$ 中,点 D 为 BC 上一点,E、F 两点分别在边 AB、AC 上, 若 BE=CD, BD=CF, ∠B=∠C, ∠A=50°, 则∠EDF=____°.
- 18. 设 a_1 , a_2 , ..., a_{2014} 是从 1, 0, -1 这三个数中取值的一列数, 若 $a_1+a_2+...+a_{2014}=73$, $(a_1+1)^2+(a_2+1)^2+...+(a_{2014}+1)^2=4001$, 则 $a_1, a_2, ..., a_{2014}$ 中为 0 的个数是 ...

- 三、解答题(本题共 30 分, 第 19 题每小题 3 分, 第 20~23 题每小题 5 分, 第 24 题 4 分)
- 19. 因式分解

(1)
$$m^4 - 81$$

(2)
$$-3x^2 + 6xy - 3y^2$$

解:

解:

20. 计算: $(\sqrt{8} + \sqrt{3}) \times \sqrt{6} - \sqrt{32}$.

解:

21. 解分式方程 $\frac{x}{x-1} + 1 = \frac{3}{2x-2}$.

解:

22. 先化简,再求值: $\left(1 - \frac{1}{a+1}\right) \div \frac{a}{a^2 + 2a + 1}$, 其中 $a = \sqrt{3} - 1$.

解.

23. 如图,点 B 在线段 AD 上, BC // DE, AB = ED, BC = DB.

求证: $\angle A = \angle E$.

证明:

24. 已知:如图, $\angle MON$ 及边 ON 上一点 A. 在 $\angle MON$ 内部求作:点 P,使得 $PA \perp ON$,且点 P

到*MON* 两边的距离相等. (请用尺规作图,保留作图痕迹,不要求写出作法,不必证明).

- 四、解答题(本题共10分,每小题5分)
- 25. 小马自驾私家车从 A 地到 B 地,驾驶原来的燃油汽车所需油费 108 元,驾驶新购买的纯电动车 所需电费 27 元,已知每行驶 1 千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的 电费多 0.54 元,求新购买的纯电动汽车每行驶 1 千米所需的电费.

解:

26. 已知:如图,点 $B \setminus C \setminus E$ 三点在同一条直线上,CD 平分 $\angle ACE$,

DB=DA, *DM* ⊥ *BE* 于 *M*, 若 *AC*=2, *BC*=1, 求 *CM* 的长.

解:

五、解答题(本题6分)

- 27. 已知:如图,Rt△ABC中,∠BAC=90°.
 - (1) 按要求作出图形:
 - ①延长 BC 到点 D, 使 CD=BC;
 - ②延长 CA 到点 E, 使 AE=2CA;
 - ③连接 AD, BE.

(2) 猜想(1) 中线段 AD 与 BE 的大小关系, 并证明你的结论.

解: (1) 完成作图

(2) AD 与 BE 的大小关系是_____

证明:

六、填空题(本题共6分)

28. 观察下列等式:

第一个等式:
$$a_1 = \frac{3}{1 \times 2 \times 2^2} = \frac{1}{1 \times 2} - \frac{1}{2 \times 2^2}$$
; 第二个等式: $a_2 = \frac{4}{2 \times 3 \times 2^3} = \frac{1}{2 \times 2^2} - \frac{1}{3 \times 2^3}$; 第三个等式: $a_3 = \frac{5}{3 \times 4 \times 2^4} = \frac{1}{3 \times 2^3} - \frac{1}{4 \times 2^4}$; 第四个等式: $a_4 = \frac{6}{4 \times 5 \times 2^5} = \frac{1}{4 \times 2^4} - \frac{1}{5 \times 2^5}$. 按上述规律,回答以下问题:

七、解答题(本题共14分,第29题6分,第30题8分)

- **29**. 已知关于 x、y 的方程 $2x^2 y 3 = 0$.
 - (1) 请你直接写出该方程的两组整数解;

(2) 若
$$\begin{cases} x = m \\ y = n \end{cases}$$
 和 $\begin{cases} x = n \\ y = m \end{cases}$ 是方程 $2x^2 - y - 3 = 0$ 的两组不同的解,

求
$$2m^3 - 2mn + 2n^3$$
 的值.

解: (1)

(2)

30. 【问题提出】

同学们已经学习了三角形全等的判定方法(即"SAS"、"ASA"、"ASA"、"SSS"、"HL"),请大家继续对"两个三角形满足两边和其中一边的对角对应相等"的情形进行研究.

【初步思考】

不妨将问题用符号语言表示为: 在 $\triangle ABC$ 和 $\triangle DEF$ 中,AC=DF,BC=EF, $\angle B=\angle E$,然后,对 $\angle B$ 进行分类,可分为" $\angle B$ 是直角、钝角、锐角"三种情况进行探究.

【深入探究】

第一种情况: 当 $\angle B$ 是直角时, $\triangle ABC \cong \triangle DEF$.

如图①,在 $\triangle ABC$ 和 $\triangle DEF$,AC=DF,BC=EF, $\angle B=\angle E=90$ °,

根据判定方法 _____,可以知道 $Rt \triangle ABC \cong Rt \triangle DEF$.

第二种情况: 当 $\angle B$ 是钝角时, $\triangle ABC \cong \triangle DEF$.

如图②,在 $\triangle ABC$ 和 $\triangle DEF$,AC=DF,BC=EF, $\angle B=\angle E$,且 $\angle B$ 、 $\angle E$ 都是钝角,

证明:

求证: $\triangle ABC \cong \triangle DEF$.

图②

第三种情况: 当 $\angle B$ 是锐角时, $\triangle ABC$ 和 $\triangle DEF$ 不一定全等.

- (1) 在 $\triangle ABC$ 和 $\triangle DEF$, AC=DF, BC=EF, $\angle B=\angle E$, 且 $\angle B$ 、 $\angle E$ 都是锐角,请你用尺规在图③中作出 $\triangle DEF$,使 $\triangle DEF$ 和 $\triangle ABC$ 不全等. (不写作法,保留作图痕迹)
- (2) $\angle B$ 还要满足什么条件,就可以使 $\triangle ABC \cong \triangle DEF$? 请直接写出结论:在 $\triangle ABC$ 和 $\triangle DEF$ 中,AC=DF,BC=EF,

 $\angle B$ = $\angle E$,且 $\angle B$ 、 $\angle E$ 都是锐角,若 $\underline{\hspace{1cm}}$,则 $\triangle ABC$ ≌ $\triangle DEF$.

北京三帆中学 2014-2015 学年度第一学期期中考试

初二数学 答案及评分参考标准

班级______ 姓名_____ 学号_____ 成绩_____

一、选择题(本题共30分每小题3分,)

题	号	1	2	3	4	5	6	7	8	9	10
答	案	С	В	С	D	В	D	D	В	A	C

二、填空题(每小题 3 分, 共 24 分)

11.
$$x \ge 2$$
 ; 12. $a(x+3y)(x-3y)$; 13. $\underline{\angle B} = \underline{\angle C}$ 或 $\underline{AE} = \underline{ADC}$ (答案不唯一) ; 14. $\underline{11}$; 15. $\underline{\frac{1}{12}}$; 16. $\underline{\frac{1200}{x} - \frac{1200}{x+20}} = 2$; 17. $\underline{\underline{65}^{\circ}}$; 18. $\underline{\underline{173}}$.

- 三、解答题(本题共30分,第19题每小题3分,第20~23题每小题5分,第24题4分)
- 19. 因式分解

(1)
$$m^4 - 81$$

$$(2) \quad -3x^2 + 6xy - 3y^2$$

20. 计算: $(\sqrt{8} + \sqrt{3}) \times \sqrt{6} - \sqrt{32}$.

21. 解分式方程
$$\frac{x}{x-1}+1=\frac{3}{2x-2}$$
.

解得
$$x = \frac{5}{4}$$
 . 4 分

所以,原分式方程的解是 $x = \frac{5}{4}$.

22. 先化简,再求值:
$$\left(1 - \frac{1}{a+1}\right) \div \frac{a}{a^2 + 2a + 1}$$
, 其中 $a = \sqrt{3} - 1$.

$$= \frac{a+1-1}{a+1} \div \frac{a}{a^2+2a+1} \dots 2 \,$$

$$= \frac{a}{a+1} \cdot \frac{(a+1)^2}{a} \qquad ... 3 \,$$

当
$$a=\sqrt{3}-1$$
时,

23. 如图,点B在线段AD上,BC//DE,AB = ED,BC = DB.

求证: $\angle A = \angle E$.

证明: :BC//DE,

在△ABC 与△EDB 中

$$\begin{cases} BC = DB \\ \angle ABC = \angle EDB \\ AB = ED \end{cases}$$

24. 已知:如图, $\angle MON$ 及边 ON 上一点 A. 在 $\angle MON$ 内部求作:点 P,使得 $PA \perp ON$,且点 P 到 $\angle MON$ 两边的距离相等. (请用尺规作图,保留作图痕迹,不要求写出作法,不必证明).

四、解答题(本题共10分,每小题5分)

25. 小马自驾私家车从 *A* 地到 *B* 地,驾驶原来的燃油汽车所需油费 108 元,驾驶新购买的纯电动车 所需电费 27 元,已知每行驶 1 千米,原来的燃油汽车所需的油.费比新购买的纯电动汽车所需的 电费多 0.54 元,求新购买的纯电动汽车每行驶 1 千米所需的电费.

答: 新购买的纯电动汽车每行驶 1 千米所需电费为 0.18 元.5 分

26. 已知:如图,点 B、C、E 三点在同一条直线上,CD 平分 $\angle ACE$, DB=DA, $DM \perp BE$ 于 M,若 AC=2,BC=1,求 CM 的长.

解:作 $DN \perp AC$ 于N,

- ∵CD 平分∠ACE, DM LBE
- ∴DN=DM1 分

在 $Rt\triangle DCN$ 和 $Rt\triangle DCM$ 中,

$$\begin{cases} CD = CD, \\ DN = DM, \end{cases}$$

- $\therefore Rt \triangle DCN \cong Rt \triangle DCM \ (HL),$
- ∴CN=CM, 2分

在 $Rt \triangle ADN$ 和 $Rt \triangle BDM$ 中,

$$\begin{cases} AD = BD, \\ DN = DM, \end{cases}$$

- $\therefore Rt \triangle ADN \cong Rt \triangle BDM \ (HL),$
- AN=AC-CN, BM=BC+CM,
- ::AC-CN=BC+CM
- ::AC-CM=BC+CM
- ∴2CM=AC-BC,......4 分
- AC=2, BC=1,
- ∴CM=0.55 分

五、解答题(本题6分)

- 27. 已知:如图,Rt△ABC中,∠BAC=90°.
 - (1) 按要求作图: (保留作图痕迹)
 - ①延长 BC 到点 D, 使 CD=BC; ②延长 CA 到点 E, 使 AE=2CA;

③连接 AD, BE, 并猜想线段 AD 与 BE 的大小关系;

(2) 证明(1) 中你对线段 AD 与 BE 大小关系的猜想.

猜想 AD=BE2 分

(2) 在 AE 上截取 AF=AC, 连结 BF,

- **∵**∠BAC=90°,
- $\therefore \angle BAF = 180^{\circ} 90^{\circ} = 90^{\circ}$,
- $\therefore \angle BAC = \angle BAF$

在△ABF 与△ABC 中

$$\begin{cases} AB = AB, \\ \angle BAF = \angle BAC, \\ AF = AC, \end{cases}$$

- ∴ △ABF≌ △ABC (SAS),
- ∴∠2=∠1.

- $\therefore \angle 1 + \angle 3 = 180^{\circ}, \angle 2 + \angle 4 = 180^{\circ}.$
- ∴ <u>∠3=∠4.</u> 3 分
- AE=2CA, AF=AC,
- ∴ EF = AE AF = 2CA AC = AC , 即 AC = EF 4分
- : CD=BC, FB=BC.
- ∴ CD= FB.

在 $\triangle ACD$ 和 $\triangle EFB$ 中。

$$AC = EF$$
,
 $\angle 3 = \angle 4$,
 $CD = FB$,

证法二: 延长 AC 到点 F, 使 CF=CA, 连接 BF, 那么 AF=2CA. (见图 9) 在 $\triangle BCF$ 和 $\triangle DCA$ 中,

$$CF = CA$$
,
 $\angle BCF = \angle DCA$,
 $BC = DC$,

- ∴ △BCF≌△DCA. (SAS) ... 3分
- : AE=2CA, AF=2CA,
- $\therefore AE = AF$.
- $\therefore \angle BAF=90^{\circ}$,
- $\therefore \angle BAE=180^{\circ} -90^{\circ} =90^{\circ}$,
- $\therefore \angle BAF = \angle BAE$

在△ABE 与△ABF 中

$$\begin{cases} AB = AB, \\ \angle BAE = \angle BAF, \\ AE = AF, \end{cases}$$

 $\therefore \triangle ABE \cong \triangle ABF \ (SAS)$,

六、填空题(本题共6分)

28. 观察下列等式:

第一个等式:
$$a_1 = \frac{3}{1 \times 2 \times 2^2} = \frac{1}{1 \times 2} - \frac{1}{2 \times 2^2}$$
; 第二个等式: $a_2 = \frac{4}{2 \times 3 \times 2^3} = \frac{1}{2 \times 2^2} - \frac{1}{3 \times 2^3}$; 第三个等式: $a_3 = \frac{5}{3 \times 4 \times 2^4} = \frac{1}{3 \times 2^3} - \frac{1}{4 \times 2^4}$; 第四个等式: $a_4 = \frac{6}{4 \times 5 \times 2^5} = \frac{1}{4 \times 2^4} - \frac{1}{5 \times 2^5}$. 按上述规律,回答以下问题:

(2) 用含 n 的代数式表示第 n 个等式:
$$a_6 = \frac{n+2}{n \times (n+1) \times 2^{n+1}} = \frac{1}{n \times 2^n} - \frac{1}{(n+1) \times 2^{n+1}} \dots 6$$
 分

八、解答题(本题共14分,第29题6分,第30题8分)

- **29.** 已知关于 x、y 的方程 $2x^2 y 3 = 0$.
 - (1) 请你直接写出该方程的两组整数解;

(2) 若
$$\begin{cases} x = m \\ y = n \end{cases}$$
和 $\begin{cases} x = n \\ y = m \end{cases}$ 是方程 $2x^2 - y - 3 = 0$ 的两组不同的解,求 $2m^3 - 2mn + 2n^3$ 的值.

$$\therefore 2m^2 - n - 3 = 0, \quad 2n^2 - m - 3 = 0, \quad \dots 3$$

$$\therefore 2(m^2 - n^2) + m - n = 0$$
.

$$\therefore 2(m-n)(m+n) + (m-n) = 0.$$

$$(m-n)[2(m+n)+1]=0$$
.

- $: m \neq n$,
- $\therefore 2(m+n)+1=0.$

$$\therefore m+n=-\frac{1}{2}.$$

$$\therefore 2m^2 = n+3$$
, $2n^2 = m+3$,

$$\therefore 2m^3 - 2mn + 2n^3$$

$$=2m^2\cdot m-2mn+2n^2\cdot n$$

$$= (n+3) \cdot m - 2mn + (m+3) \cdot n$$

$$=-\frac{3}{2}.$$

30. 【问题提出】

同学们已经学习了三角形全等的判定方法(即"SAS"、"ASA"、"AAS"、"SSS"、"HL"),

请大家继续对"两个三角形满足两边和其中一边的对角对应相等"的情形进行研究.

【初步思考】

不妨将问题用符号语言表示为: 在 $\triangle ABC$ 和 $\triangle DEF$ 中,AC=DF,BC=EF, $\angle B=\angle E$,然后,对 $\angle B$ 进行分类,可分为" $\angle B$ 是直角、钝角、锐角"三种情况进行探究.

【深入探究】

第一种情况:当 $\angle B$ 是直角时, $\triangle ABC \cong \triangle DEF$. 如图①,在 $\triangle ABC$ 和 $\triangle DEF$,AC=DF,BC=EF, $\angle B=\angle E=90$ °,根据判定方法 _____,可以知道 $Rt \triangle ABC \cong Rt \triangle DEF$. A B D E 第二种情况:当 $\angle B$ 是钝角时, $\triangle ABC \cong \triangle DEF$.

如图②,在 $\triangle ABC$ 和 $\triangle DEF$,AC=DF,BC=EF, $\angle B=\angle E$,且 $\angle B$ 、 $\angle E$ 都是钝角,

求证: $\triangle ABC \cong \triangle DEF$.

证明:

第三种情况: 当 $\angle B$ 是锐角时, $\triangle ABC$ 和 $\triangle DEF$ 不一定全等.

(2) 在 $\triangle ABC$ 和 $\triangle DEF$, AC=DF, BC=EF, $\angle B=\angle E$, 且 $\angle B$ 、 $\angle E$ 都是锐角,请你用尺规在图③中作出 $\triangle DEF$,使 $\triangle DEF$ 和 $\triangle ABC$ 不全等. (不写作法,保留作图痕迹)

(2) ∠B 还要满足什么条件,就可以使△ABC ≅ △DEF?

请直接写出结论: 在 $\triangle ABC$ 和 $\triangle DEF$ 中,AC=DF,BC=EF, $\angle B=\angle E$,且 $\angle B$ 、 $\angle E$ 都是锐角,若 ____ ,则 $\triangle ABC \cong \triangle DEF$.

加水	
胜台	:

第一种情况 <u>HL;</u>1 分

第二种情况:

证明: 如图, 过点 C 作 $CG \perp AB$ 交 AB 的延长线于 G, 过点 F 作 $DH \perp DE$ 交 DE 的延长线于 H, $\angle CBG = \angle FEH = 90^\circ$,

∴ ∠B=∠E,且∠B、∠E 都是钝角,

 \therefore 180 ° - $\angle B$ =180 ° - $\angle E$,

在 $\triangle CBG$ 和 $\triangle FEH$ 中,

$$\begin{cases} \angle CBG = \angle FEH, \\ \angle G = \angle H, \\ BC = EF, \end{cases}$$

 $\therefore \triangle CBG \cong \triangle FEH \ (AAS),$

∴CG=FH,4 分

在 $Rt \triangle ACG$ 和 $Rt \triangle DFH$ 中,

$$\begin{cases} AC = DF, \\ CG = FH, \end{cases}$$

 $\therefore Rt \triangle ACG \cong Rt \triangle DFH \ (HL),$

(3)解:如图,7分

