Math 302, PSET 4

- (1) Let U_1, U_2 be independent uniform random variables on (0,1), and let $X = |U_1 U_2|$.
 - (a) Compute $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.
 - (b) Compute $Corr(U_1, X)$.
 - (c) Determine a formula for the conditional probability density $f_{U_1|X}(u|x)$ of U_1 given X.
- (2) Let X be a Poisson(1) random variable, and let Y be the random variable distributed as Uniform(0, X).
 - (a) Compute $\mathbb{E}Y$.
 - (b) Compute Corr(X, Y).
 - (c) Determine a formula for the conditional probability density $f_{X|Y}(x|y)$ of X given Y.
 - (d) What is the distribution of the conditional expectation $\mathbb{E}[X|Y]$? What about $\mathbb{E}[Y|X]$?
- (3) (Anderson, 4.16) Choose 500 numbers uniformly from the interval [1.5, 4.8].
 - (a) Approximate the probability that less than 65 of the numbers start with the digit 1.
 - (b) Approximate the probability of the event that more than 160 of the numbers start with the number 3.
- (4) Let X_1, X_2, \ldots, X_n be independent Bernoulli(1/2) random variables, i.e. a sequence of n coin flips.
 - (a) Let T_n be the number of indices $0 \le i \le n-2$ where X_i , X_{i+1} and X_{i+2} are all 1. Find $\mathbb{E}T$ and $\operatorname{Var}(T)$.
 - (b) Fix n = 5. Describe the distribution of the conditional expectation $\mathbb{E}[T|X_3]$ in terms of the X_i 's.
- (5) Let Z_1, Z_2 be independent N(0,1) random variables. Identify the distribution of $Z_1 + Z_2$ (it should be familiar) in two different ways:
 - (a) Using the convolution formula.
 - (b) Using moment generating functions.
- (6) Let Z_1, Z_2 be independent N(0,1) random variables. Identify the distribution of $Z_1^2 + Z_2^2$ (it should be familiar) in two different ways:
 - (a) Using the convolution formula.
 - (b) Using moment generating functions.
- (7) Give an example of two jointly continuous random variables X, Y satisfying:
 - X and Y are not independent
 - X and Y do not have the same marginal distribution
 - Cov(X,Y) = 0.
- (8) Suppose X is a random variable with moment generating function $M_X(t) = \frac{1}{4}e^{-t} + \frac{1}{4} + \frac{1}{2}e^{4t}$.
 - (a) Find the mean and variance of X by differentiating M.
 - (b) Find the PMF of X, and use it to check your answers from part (a).
- (9) (Anderson, 8.12) Let Z be Gamma(2, λ) distributed for some $\lambda > 0$, i.e.

$$f_Z(z) = \begin{cases} \lambda^2 z e^{-\lambda z}, & z \ge 0\\ 0, & \text{otherwise} \end{cases}$$

(a) Find the moment generating function of Z.

- (b) Let X,Y be independent Exponential(λ) random variables. Show that X+Y has the same distribution as Z.
- (10) Let C be a Cauchy random variable, i.e. C has density function

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

- (a) Show that the moment generating function $M_C(t)$ of C is infinite, except at t=0.
- (b) For which numbers $\alpha > 0$ is $\mathbb{E}[C^{\alpha}] < \infty$?
- (c) Let Z_1, Z_2 be independent r.v.'s with N(0,1) distribution. Show that Z_1/Z_2 has the same distribution as C.
- (d) Let C_1, C_2 be independent r.v.'s with Cauchy distribution. Show that $\frac{1}{2}(C_1 + C_2)$ has the same distribution as C. [Challenging]
- (11) Let $\theta_1, \theta_2, \theta_3$ be independent uniform random variables on $[0, 2\pi]$. Let T be the random triangle with vertices on the unit circle at angles $\theta_1, \theta_2, \theta_3$, and let X be the area of T.
 - (a) Let $\alpha = \min\{\theta_2, \theta_3\}, \beta = \max\{\theta_2, \theta_3\}, \gamma = \beta \alpha = |\theta_3 \theta_2|$. Find the PDF's of α, β, γ .
 - (b) Show that X is equal in distribution to

$$X = \frac{1}{2} \left(\sin \alpha - \sin \beta + \sin \gamma \right).$$

(Hint: assume WLOG that $\theta_1 = 0$.)

(c) Use the expression from part (b) to find $\mathbb{E}X$.

Additional exercises: Anderson 4.20, 6.28, 6.48, 6.58, 8.29, 8.64