平成18年度 日本留学試験(第1回)

試験問題

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙のおもて面に解答し、もう1科目を裏面に解答してください。

「化学」を選ぶ場合は、右のように、解答用紙の左上にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。選択した科目が正しくマークされていないと、採点されません。

計算には次の数値を用いること。ただし、リットル(liter)はLで表す。

気体定数 (gas constant) : $R = 8.31 \times 10^3 \text{ Pa} \cdot \text{L/(K} \cdot \text{mol)} = 8.31 \text{ J/(K} \cdot \text{mol)}$

 $=0.082 \text{ atm} \cdot \text{L/(K} \cdot \text{mol)}$

原子量 (atomic weight) H:1.0 C:12 O:16 Na:23 Cu:63.5 Zn:65.4

Pt: 195

問1 周期表 (periodic table) の第3周期までの元素に関する次の記述①~④の中から、正しいものを一つ選びなさい。

- ① 同じ族 (group) の元素は、上にあるものほど電子を放出しやすい。
- ② 同じ周期 (period) の元素は、族の番号が大きいほど、イオン化エネルギー (first ionization energy) の値が大きい。
- ③ 同じ周期の典型元素 (typical element) では、希ガス (rare gas) を除き、族の番号が大きいほど陰性 (negativity) が強い。
- ④ 周期表の左下に位置する元素ほど、金属性が小さい。

-11		~
問 2	35 17	Cl-に関する次の記述(a)~(e)のうち,正しい記述の組み合わせを下の①~⑥の中から
)選びなさい。
	(a)	原子番号は17である。
	(b)	総電子数は 17 である。
	(c)	中性子数(the number of neutrons)は 17 である。
	(d)	質量数 (mass number) は 35 である。
	(e)	ステCl-とネアCl-では陽子数(the number of protons)が異なる。
	1	a, b ② a, d ③ b, c ④ b, e ⑤ c, d ⑥ d, e
問 3	1 3	アの記述(a)~(f)のうち,正しい記述の組合せを下の①~⑧の中から一つ選びなさい。
		3
	(a)	金属カリウム(potassium metal)は水と反応しない。
	(b)	アルミナ (alumina) から金属アルミニウム (aluminum metal) を得るには,酸化
	鋖	失(III) (iron(III) oxide) と混ぜて加熱する。
	(c)	ケイ素(silicon)の結晶は金属結合(metallic bond)からできている。
	(d)	リン (phosphorus) には同素体 (allotrope) がある。
	(e)	塩素 (chlorine) は室温, 1 気圧 (1.0×10 ⁵ Pa) では黄色の液体である。
	(f)	アルゴン(argon)は単原子分子(monoatomic molecule)である。

① a, b ② a, d ③ a, f ④ b, d ⑤ b, f ⑥ c, e ⑦ c, f ⑧ d, f

問 4 ピストン (piston) により体積が変えられる容器に、温度 27℃、圧力 1.0×10⁵ Pa (1 atm) で、プロパン C₃H₅ 1 L と空気 50 L を入れて点火した。プロパンを完全燃焼 (complete combustion) させた後、もとの温度・圧力にすると、反応後の気体の体積は何 L になるか。次の①~⑥の中から最も近い値を一つ選びなさい。ただし、空気の組成 (composition) は酸素 20 %、窒素 80 %とし、水蒸気 (water vapor) の圧力は無視する。

4 L

- ① 7 ② 43 ③ 45 ④ 48 ⑤ 51 ⑥ 52

食酢 10 mL を(a)を用いて正確に測り、(b)に入れて 100 mL まで蒸留水 (distilled water) を加えて、10 倍に薄めた。薄めた食酢 10 mL を(a)を用いて正確に測りとって(c) に入れ、0.10 mol/L 水酸化ナトリウム水溶液 (NaOH solution) を(d)に入れて滴定した。

① a, b ② a, c ③ b, c ④ a, b, c ⑤ a, c, d ⑥ b, c, d

間 6 次の(a)~(e)の気体のうち,下の記述(i)~(iii)に該当するものはどれか。その組み合わせと 6 して最も適当なものを下表の①~⑥の中から一つ選びなさい。

- (a) H_2
- (b) CH_4 (c) NH_3
- (d) CO
- (e) SO_2
- (i) 水に溶けにくく、きわめて毒性が高い (poisonous) もの
- (ii) 水に溶けて酸性を示すもの
- (iii) 水に溶けて塩基性 (basic) を示すもの

	(i)	(ii)	(iii)
1	С	a	e
2	с	d	a
3	d	a	b
4	d	e	С
(5)	e	С	b
6	e	d	a

問 7 次のイオン (ion) (a)~(e)の中に,酸性溶液中 (in acidic solution) で硫化物 (sulfide) が沈殿 (precipitate) するものが2つある。その組み合わせを下の①~⑥の中から一つ選 びなさい。 | 7 |

- (a) Na^+ (b) Cu^{2+} (c) Ag^+ (d) Fe^{2+}
- (e) Ni²⁺

- ① a, b
- ② a, d
- 3 b, c 4 c, d 5 c, e
- 6 d, e

問8 0.023 g の金属ナトリウム Na を蒸留水 (distilled water) 100 mL に入れ, 完全に反応さ せた。このときにできる水溶液(aqueous solution)の pH に最も近い値を、次の①~⑤ の中から一つ選びなさい。 8

- 10
- 2 11
- **③** 12 **④** 13
- **(5)** 14

問 9 次の文中の空欄 [A]~[C] に当てはまる化学式の組み合わせとして最も適当なものを、下の①~[A]0の中から一つ選びなさい。

炭酸ナトリウム Na_2CO_3 の工業的な製法に、アンモニアソーダ(ammonia-soda)法がある。これは、飽和の〔 A 〕水溶液(aqueous solution)に、アンモニア NH_3 を十分吸収させてから〔 B 〕を反応させて、炭酸水素ナトリウム $NaIICO_3$ を沈殿(precipitate)させる。この沈殿を分離して、約200°Cで焼くと、炭酸ナトリウム Na_2CO_3 が得られる。〔 C 〕は回収されて、再利用される。

	A	В	С
1	NaCl	CO ₂	NH ₃
2	NaCl	NaOH	NH₄Cl
3	NaCl	H ₂ SO ₄	Na ₂ SO ₄
4	NaOH	CO ₂	NaHCO ₃
5	NaOH	HCl	NH₄Cl
6	NaOH	H ₂ SO ₄	NaCl

問 10 次の化学反応(a)~(e)を、酸化還元反応 (oxidation-reduction reaction) と酸塩基反応 (acid-base reaction) に正しく分類しているものを、下の①~⑥の中から一つ選びなさい。

10

- (a) $2 H_2 + O_2 \rightarrow 2 H_2O$
- (b) $Cu(OH)_2 + H_2SO_4 \rightarrow CuSO_4 + 2 H_2O$
- (c) $2 \text{ NO}_2 \rightarrow \text{N}_2 + 2 \text{ O}_2$
- (d) $C + H_2O \rightarrow CO + H_2$
- (e) $HCl + KOH \rightarrow KCl + H_2O$

	酸化還元反応	酸塩基反応
1	a, b	c, d, e
2	a, c	b, d, e
3	a, c, d	b, e
4	b, e	a, c, d
5	c, d, e	a, b
6	с, е	a, b, d

問 11 ある固体の化合物を加熱したとき、加熱した時間 t とその化合物の温度 T の関係は次 の図のようになった。温度 Ta で起こっている状態変化 (phase transition) と、そのと きの化合物の状態 (state) の組み合わせとして最も適当なものを、下の①~⑨の中から 11 一つ選びなさい。

	状態変化	化合物の状態
1	融解	固体
2	融解	固体と液体
3	融解	液体
4)	蒸発	液体
(5)	蒸発	液体と気体
6	蒸発	気体
7	昇華	固体
8	昇華	固体と気体
9	昇華	気体

注) 融解 (melting), 昇華 (sublimation)

問 12 アセチレン HC≡CH の生成熱 (heat of formation) は-228 kJ/mol, ベンゼン C₆H₆ の生成熱は-49.0 kJ/mol である。次の熱化学方程式

$$3 C_2 H_2 = C_6 H_6 + \square kJ$$

において、「一」に入る数値として最も適当な値を下の①~⑥の中から一つ選びなさい。

12

- (1) + 635

- ② -635 ③ +670 ④ -670 ⑤ +1970
- (6) -1970

間 13 次の図のような装置を用いて電流を流した。通電後の電極 A, B, C, D の質量変化の大きさを正しく表している組み合わせを、下の① \sim ⑥の中から一つ選びなさい。 13

	電極 A, B	電極 C, D
1	A > B	C > D
2	A > B	C = D
3	A > B	C < D
4	A = B	C > D
5	A < B	C = D
6	A = B	C < D

問 14 体積が一定の時、理想気体の圧力 P と温度 t (°C) との関係を表したグラフとして最も適当なものを次の①~⑤の中から一つ選びなさい。

問 15 次の反応

$$2 SO_2 + O_2 = 2 SO_3(g) + 198 kJ$$

が平衡 (equilibrium) に達しているとき,

- (i) 平衡を右に移動させる
- (ii) 反応の速度を大きくする

ためには、反応温度と圧力をそれぞれどうするべきか。(i)と(ii)のために行う次の操作(a) ~(d)の組み合わせとして最も適当なものを下表の①~⑥の中から一つ選びなさい。

15

- (a) 反応温度を上げ、圧力を大きくする。
- (b) 反応温度を上げ、圧力を小さくする。
- (c) 反応温度を下げ、圧力を大きくする。
- (d) 反応温度を下げ、圧力を小さくする。

	(i)	(ii)
1	а	b
① ② ③	а	С
	b	d
4	С	а
(5)	С	đ
6	d	b

問 16 有機化合物は、炭素原子の結合のしかたとその構造によって、次の図のように分類できる。

図中の A~C にあてはまる化合物はそれぞれ次の(i)~(v)の中のどれか。最も適当な組み合わせを下表の①~⑤の中から一つ選びなさい。

(i) (ii) (iii) (iv) (v)
$$H_2$$
 H_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

	A	В	С
1	(v)	(ii)	(i)
2	(ii)	(iii)	(iv)
3	(v)	(i)	(iii)
4	(ii)	(i)	(v)
5	(iii)	(iv)	(ii)

問 17 酸素を含む有機化合物は、その構造と、酸素の結合のしかたによっていくつかに分類される。次の表に示す一般名にあてはまる化合物は、下の(a)~(f)の中のどれか。最も適当な組み合わせを次の①~⑤の中から一つ選びなさい。

	アルコール (alcohol)	エーテル (ether)	アルデヒド (aldehyde)
1	d	f	С
2	e	a	f
3	d	С	b
4	b	f	a
5	e	а	b

問 18 酢酸カルシウム (CH₃COO)₂Ca を熱分解 (乾留) (pyrolysis) すると, A, B 二種類の化合物が生成した。A は塩酸 (hydrochloric acid) と反応して二酸化炭素 (carbon dioxide) を発生した。B はヨードホルム反応 (iodoform reaction) を示した。A, B の化合物の組み合わせとして最も適当なものを次の①~⑤の中から一つ選びなさい。 18

	A	В
1	アセトン CH₃COCH₃	・炭酸カルシウム CaCO ₃
2	水酸化カルシウム Ca(OH)2	2-プロパノール CH₃CHOHCH₃
3	2-プロパノール CH₃CHOHCH₃	酸化カルシウム CaO
4	酸化カルシウム CaO	酢酸 CH₃COOH
5	炭酸カルシウム CaCO₃	アセトン CH ₃ COCH ₃

問 19 次の図はアゾ染料(azo dye)である p-ヒドロキシアゾベンゼン(p-hydroxyazobenzene) を合成する経路を示している。反応に必要な図中の試薬 (A) \sim (C) の組み合わせとして 最も適当なものを下表の① \sim ⑥の中から一つ選びなさい。

	A	В	С
1	濃硫酸	水酸化ナトリウム	亜硝酸ナトリウム
2	硝酸	金属ナトリウム	亜硝酸ナトリウム
3	亜硫酸	炭酸ナトリウム	亜硫酸ナトリウム
4	濃硫酸	炭酸ナトリウム	亜硫酸ナトリウム
5	硝酸	水酸化ナトリウム	硝酸
6	亜硫酸	金属ナトリウム	硝酸

注) 濃硫酸 (concentrated sulfuric acid), 硝酸 (nitric acid), 亜硫酸 (sulfurous acid), 水酸化ナトリウム (sodium hydroxide), 金属ナトリウム (sodium metal), 炭酸ナトリウム (sodium carbonate), 亜硝酸ナトリウム (sodium nitrite), 亜硫酸ナトリウム (sodium sulfate)

問20 有機化合物に関する次の記述①~⑤の中から、正しいものを一つ選びなさい。

20

- ① アセトアルデヒド (acetaldehyde) を還元 (reduce) すると酢酸 (acetic acid) になる。
- ② カルボン酸 (carboxylic acid) とアルコール (alcohol) から脱水するとエステル (ester) になる。
- ③ アセチレン (acetylene) には、シス・トランス異性体 (cis・trans isomer) がある。
- ④ シクロヘキサン (cyclohexane) はヘキサン (hexane) の構造異性体 (structural isomer) である。
- ⑤ ニトロベンゼン (nitrobenzene) は塩基性 (basic) を示す。

化学の問題はこれで終わりです。解答欄の $21 \sim 75$ は、空欄にしてください。

この問題用紙を持ち帰ることはできません。