Formule du binôme de Newton

1. Coefficients du binôme

a) **Définition**: on fixe $n \in \mathbb{N}$.

(i) Si
$$0 \leqslant k \leqslant n$$
 , on pose $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

(ii) $\underline{\text{Autre expression}}$: on a $\binom{n}{0}=1$ et pour $1\leqslant k\leqslant n,$

Exemple: calculer $\binom{10}{4}$

A savoir:

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = 1 \\
\begin{pmatrix} n \\ 1 \end{pmatrix} = n \\
\begin{pmatrix} n \\ 2 \end{pmatrix} = \frac{n(n-1)}{2}$$

(iii) Extensions: on pose $\binom{n}{-1} = 0$ (convention pratique) et pour k > n, $\binom{n}{k} = 0$ (naturel)

(iv) Triangle de Pascal:

$n \setminus k$	-1	0	1	2	3	4	5	6	7
0	0	1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0
2	0	1	2	1	0	0	0	0	0
3	0	1	3	3	1	0	0	0	0
4	0	1	4	6	4	1	0	0	0
5	0	1	5	10	10	5	1	0	0
6	0	1	6	15	20	15	6	1	0
7	0	1	7	21	35	35	21	7	1

b) Symétrie:
$$\forall k \in [[0, n]], \overline{\binom{n}{n-k} = \binom{n}{k}}$$

En particulier

c) Propriété fondamentale : $\forall n \in \mathbb{N}, \ \forall k \geqslant -1, \ \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

d) Conséquence: $\forall n \in \mathbb{N}, \ \forall k \in [[0,n]], \boxed{\binom{n}{k} \in \mathbb{N}}$

e) <u>Une formule utile</u>: $\forall n \in \mathbb{N}^*, \ \forall k \in \mathbb{N}, \ k \binom{n}{k} = n \binom{n-1}{k-1}$

2. Formule du binôme

a) Formule: soit $n \in \mathbb{N}$, et $(a, b) \in \mathbb{C}^2$. Alors

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

soit

$$(a+b)^n = \binom{n}{n}a^n + \binom{n}{n-1}a^{n-1}b + \binom{n}{n-2}a^{n-2}b^2 + \dots + \binom{n}{1}ab^{n-1} + \binom{n}{0}b^n$$
$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + \frac{n(n-1)}{2}a^2b^{n-2} + nab^{n-1} + b^n$$

Remarque: on l'écrit à l'envers. En fait

$$(a+b)^n = (b+a)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = \sum_{k=0}^n \binom{n-k}{k} a^{n-k} b^k$$

Exemples: $(x+2)^4 =$

 $(x-1)^6 =$

b) Cas particuliers : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{C},$

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k = x^n + nx^{n-1} + \binom{n}{2} x^{n-2} + \dots + nx + 1$$

$$(x-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} x^k = x^n - nx^{n-1} + \binom{n}{2} x^{n-2} - \dots + (-1)^{n-1} nx + (-1)^n$$

Exemples: $(x+1)^3 =$

 $(x+1)^4 =$

 $(x+1)^5 =$

Application: avec x = 1, on obtient $\forall n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \quad \text{et} \quad \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} = 0$$