MATH 417

txample: Consider the linear transformation f: [R' > R' Given by f(v) = Av when $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$. Does f map the vector subspace (plane) V with band $B: \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} / \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 40$ the vector subspace (plane) with band $C: \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$? If so, find cfB. Solution: f(0) = (121)(11) = (58) Annoe: fdoor not not (23) = (69) more vinto W.

If $f: U \to V$ and $g: V \to W$ are linear transformations and if B is a home of U, C is a home of V, and D it a home of W then:

D(gof) B = Dgc oct B.

In particular, if f is hipodire (invertible), then

alf c = (dp)

Two vector govers of the same dimension lack exactly alike.

Madhenedral wad: isomorphic

A hojective linear transformation $f: V \rightarrow W$ is called an isomorphism.

"Any vector space V is evacly like 12th as long as we pich a basis B of V." When we say that a linear transformation $f:\mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ is given by f(v) = Av where A is an $m \times n$ metwo, this really $A = E_{m}f E_{m}$ $E_{m}is$ the standard basis $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ What about the base change metrix cMB (B,C are bases of the same verto spice V)? The identity on a sel S is the maffing Ids: S-1S given by Ids(x) = x. The hone-change matrix is the martix of the identity: [MB = c(Id))B]

This tells us how to transform the metric of a linear Fransformetical when we charge the barrie in the domain and for the codomain. Example: Consider the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ which has metrical () sither report to the standard basis in the domain and codemain: A= EJE. What is the matrix cfB where B: (2), (4), C: (1), (3)?

Solution: cfs = c Id E · E J E · E IdB $\binom{3}{4} \cdot \binom{5}{7} \binom{2}{3} \cdot \binom{4}{1} = \binom{21}{29} \cdot \binom{17}{29}$ C^{-1} $\binom{3}{4}$ $\binom{2}{7}$ $\binom{2}{3}$ $\binom{4}{1}$ $(\frac{3}{7})(\frac{21}{29})(\frac{17}{29}) = (\frac{34}{13})(\frac{28}{13})(\frac{34}{13})(\frac{34}{1$ $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ ded (2 3)=3-2=1

The ceason we study linear fransformations is that they are the first affroximation of non-linear transformations led V, W be finite-dimensional victor spaces, and we have some mapping $f: V \rightarrow W$. If $x \in V$, $v \in V$. The decirative of f by v at x (if one exists) is "point" "rector" $(\partial_y f)_x = \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}$ (he |R) If we fix a point D, we can define Dfx: V -> W $Pf_{x}(r) = (\partial_{r}f)_{x}$. Then bfx is a linear fransformedion called the total differential of f at x. We have a linear apparation (more precisely, "office affinition")

[f(y) ~ f(x) + Dfx - (y-x).]

Example: Find the linear approximation of
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 give by

 $f\left(\frac{s}{t}\right) = \begin{pmatrix} s^2 - 2st \\ t^2 + s \end{pmatrix}$

of $\binom{s}{t} = \binom{1}{2}$.

Solution: The matrix of the total differential with repeat to the standard bases is the meetix of partial deviations (Tocols' meetix):

 $A = \begin{pmatrix} \partial f / \partial s & \partial f_1 / \partial t \\ \partial f_2 / \partial s & \partial f_2 / \partial t \end{pmatrix} = \begin{pmatrix} 2s + t & -2s \\ 1 & 2s \end{pmatrix} \begin{pmatrix} s \\ s \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} s \\ s \end{pmatrix} - 2s \end{pmatrix}$
 $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2$

(HW) (3) Find the linear approximation of $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(\frac{5}{t}) = (\frac{5^3 - 25t^2}{5^2 + t^2 + 25t})$ at $(\frac{5}{t}) = (\frac{1}{2})$ (4) [ad 1: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear territor where

The lef $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear tensformation where $efe = \begin{pmatrix} -1 & 4 \\ 2 & 3 \end{pmatrix}$. Find cfs where $B: \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, C: \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}$