Capítulo 6

Santiago Espinoza

René Delgado

6.1

- a) Stepwise and backwardstepwise, si es que tenemo suerte, si no todavía es mejor best subset.
- b) Best Subset.

c)

- i. Veradero
- ii. Veradero
- iii. Veradero
- iv. Veradero
- v. Falso

6.2

a)

la iii. es verdadera. Lasso tiene menor flexibilidad, menor varianza y mayor sezgo.

b)

la iii. tambien aplica para Ridge.

c)

la ii. es verdadera. Los modelos no lineales son más flexibles y tienen varianza alta y sezgo bajo.

6.3

- a) La respuesta es i debido a que en los extremos tienen demasiado bias o demasiada varianza.
- b) La respuesta es i debido a que en los extremos tienen demasiado bias o demasiada varianza.
- c) Steadily decrease, debido a la reducción sobre los coeficientes.
- d) Steadily increase, debido a que estamos despresiando coeficientes.
- e) Se manteine constante.

6.4

a)

La iii. es verdadera. Al incrementar λ de 0 el RSS de entrenamiento incrementará ya que las β 's se irán reduciendo a 0.

- b) La ii. es verdadera. El RSS de prueba decrementará al inicio, pero luego crecerá. En $\lambda=0$, el modelo tratará de apegarse a los datos de entrenamiento, por lo que habrá overfitting y el RSS será grande. Conforme se incrementa λ , las β 's se irán reduciendo a 0, y se reducirá el overfitting, por lo que el RSS decrecerá. Conforme las β 's se acerquen más a 0, se comenzara a simplificar el modelo y el RSS de prueba comenzará a incrementar.
- c) la iv. es verdadera. Conforme se aumenta λ , las β 's decrementan y el modelo se simplifica, por lo que la varianza disminuye. En $\lambda \to \infty$, las β 's son 0 y no hay varianza.
- d) la ii. es verdadera. En $\lambda=0$ el modelo tine el menor sezgo posible. Conforme aumenta λ el ajuste del modelo se aleja de los datos de entrenamiento y por tanto aumenta el sezgo. En $\lambda\to\infty$, el sezgo es máximo.
- e)
 La v. es verdadera. El error irreducible no depene del modelo, por tanto no cambiará.

6.5

a)

$$minimizado[(y_1 - a(eta_1 + eta_2))^2 + (-y_1 + a(eta_1 + eta_2))^2 + \lambda(eta_1^2 + eta_2^2)]$$

$$minimizado[2(y_1-a(eta_1+eta_2))^2+\lambda(eta_1^2+eta_2^2)]$$

Derivando e igualando a cero para ambas betas resulta la ecuación:

$$2\lambda(\beta_1 - \beta_2) = 0$$

- b) Por lo tanto las betas deben de ser iguales, para que se cumpla la ecuación anterior.
- c)

$$minimizado[2(y_1-a(eta_1+eta_2))^2+\lambda(|eta_1|+|eta_2|)]$$

Da:

$$\lambda(rac{eta_1}{|eta_1|}-rac{eta_2}{|eta_2|})=0$$

d) La ecuación anterior implica que $\frac{\beta_1}{|\beta_1|}=\frac{\beta_2}{|\beta_2|}$, y esto se cumple siempre que las betas tengan el mismo signo. Por lo que beta 1 y beta 2 no tienen el mismo valor único.

6.6

a)

Para p=1 tenemos que (6.12) tiene la forma $(y-eta)^2+eta\lambda^2$ y se grafica para $y=2,\lambda=2$.

```
y = 2
lambda = 2
b = seq(-10,10,0.1)
f = (y-b)^2 + lambda*b^2
plot(b,f,pch = 20, xlab = "beta",ylab = "Ridge")
est.b = y/(1+lambda)
est.f = (y-est.b)^2+lambda*est.b^2
points(est.b,est.f,col = "red",pch = 20,lwd = 5)
```


El punto rojo indica el mínimo, el cual sí esta dado por $eta=y/(1+\lambda)$

b) Para p=1, (6.13) tiene la forma $(y-eta)^2+\lambda |eta|$, y se grafica para $y=2,\lambda=2$.

```
y = 2
lambda = 2
b = seq(-10,10,0.1)
f = (y-b)^2 + lambda*abs(b)
plot(b,f,pch=20,xlab = "beta",ylab = "Lasso")
est.b = y-lambda/2
est.f = (y-est.b)^2+lambda*abs(est.b)
points(est.b,est.f,col="red",pch = 20,lwd = 5)
```


El punto rojo es el mínimo, y si es $eta=y-\lambda/2$

6.7

a) Obtenemos la función de likehood usando la distribución normal, con media cero.

$$L = \prod_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}} exp\left(-rac{(y_i - (eta_0 + \sum_{j=1}^p x_{ij}eta_j))2}{2\sigma^2}
ight)$$

=

$$\left(rac{1}{\sqrt{2\pi\sigma^2}}
ight)^n exp\left(-rac{\sum_{i=1}^n(y_i-(eta_0+\sum_{j=1}^px_{ij}eta_j))^2}{2\sigma^2}
ight)$$

b)Al multiplicar el likehood con la distribución de eta obtenemos la probabuulidad posterior.

$$\left(rac{1}{\sqrt{2\pi\sigma 2}}
ight)^n exp\left(-rac{\sum_{i=1}^n(yi-(eta_0+\sum_{j=1}^px_{ij}eta_j))^2}{2\sigma^2}
ight)\prod_{j=1}^nrac{1}{2b}exp\left(rac{-|eta_j|}{b}
ight)$$

=

$$\left(rac{1}{\sqrt{2\pi\sigma 2}}
ight)^n exp\left(-rac{\sum_{i=1}^n (yi - (eta_0 + \sum_{j=1}^p x_{ij}eta_j))^2 - rac{2\sigma^2}{b}\sum_{j=1}^n |eta_j|}{2\sigma^2}
ight)$$

c) Viendo la ecuación se observa que si $\lambda=\frac{2\sigma^2}{b}$, entonces cahemos en el caso de lasso. Al minimizar encontramos la el máximo de la ecuanción anterior. Encotrando asi la moda.

d)

$$\left(rac{1}{\sqrt{2\pi\sigma^2}}
ight)^n exp\left(-rac{\sum_{i=1}^n(y_i-(eta_0+\sum_{j=1}^px_{ij}eta_j))^2}{2\sigma^2}
ight)\prod_{j=1}^nrac{1}{\sqrt{2\pi c}}exp\left(-rac{eta_j^2}{2c}
ight)$$

=

$$\left(rac{1}{\sqrt{2\pi\sigma 2}}
ight)^n exp\left(-rac{\sum_{i=1}^n(yi-(eta_0+\sum_{j=1}^px_{ij}eta_j))^2+rac{\sigma^2}{c}\sum_{j=1}^peta_j^2}{2\sigma^2}
ight)$$

e)

Viendo la ecuación se observa que si $\lambda = rac{\sigma^2}{c}$.

Entonces estamos en el caso de ridge.

$$\left(rac{1}{\sqrt{2\pi\sigma^2}}
ight)^n exp\left(-rac{\sum_{i=1}^n(y_i-(eta_0+\sum_{j=1}^px_{ij}eta_j))^2+\lambda\sum_{j=1}^peta_j^2}{2\sigma^2}
ight)$$

Al minimizar se maximiza la ecuación anterior, y como sigue el posterior una distribución normal en el posterior es la moda como la media. Se puede observar facilmente por la simetría generada al generar el mínimo de ridge.

6.8

```
a)  \begin{split} & \text{set.seed(1)} \\ & \text{X = rnorm(100)} \\ & \text{e = rnorm(100)} \\ \\ & \text{b)} \\ & Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon \\ \\ & \text{beta0 = 1} \\ & \text{beta1 = 2} \\ & \text{beta2 = 3} \\ & \text{beta3 = 4} \\ \\ & \text{Y = beta0 + beta1 * X + beta2 * X^2 * beta3 * X^3 + e} \\ \\ & \text{c)} \end{split}
```

```
library(leaps)
data = data.frame(y = Y, x = X)
modelo = regsubsets(y~poly(x,10,raw = T),data = data,nvmax = 10)
sum.modelo = summary(modelo)

# Modelo para mejor cp,BIC y adjr2
min.cp = which.min(sum.modelo$cp)
min.cp
plot(sum.modelo$cp,xlab = "subset",ylab = "cp",pch = 20, type = "l")
points(min.cp,sum.modelo$cp[min.cp],pch = 20,col="red",lwd = 5)
```


subset

```
min.bic = which.min(sum.modelo$bic)
min.bic
plot(sum.modelo$bic,xlab = "subset",ylab = "BIC",pch = 20, type = "1")
points(min.bic,sum.modelo$bic[min.bic],pch = 20,col="red",lwd = 5)
```



```
max.r = which.max(sum.modelo$adjr2)
max.r
plot(sum.modelo$adjr2,xlab = "subset",ylab = "adjr2",pch = 20, type = "1")
points(max.r,sum.modelo$adjr2[max.r],pch = 20,col="red",lwd = 5)
```



```
coef(modelo,min.cp)
coef(modelo,min.bic)
coef(modelo,max.r)
```

(Intercept): 1.07200774585594 poly(x, 10, raw = T)1: 2.38745595852041

poly(x, 10, raw = T)2: -0.154243589624806 poly(x, 10, raw = T)3:

-0.442025738722733 poly(x, 10, raw = T)5: 12.0807229152065

(Intercept): 0.962852265623081 poly(x, 10, raw = T)1: 1.96230857957747

poly(x, 10, raw = T)5: 12.0042041082966

(Intercept): 1.07200774585594 poly(x, 10, raw = T)1: 2.38745595852041

poly(x, 10, raw = T)2: -0.154243589624806 poly(x, 10, raw = T)3:

-0.442025738722733 poly(x, 10, raw = T)5: 12.0807229152065

De acuerdo con Cp y \mathbb{R}^2 se tienen como el mejor modelo el de 4 variables, para el caso de BIC se tiene el modelo de 2 variables.

EL moelo con 4 variables elige a X,X^2,X^3 y X^5 , mientras que el modelo de 2 variables elige a X y X^5

d)

```
#Forwards
 fwd = regsubsets(y\sim poly(x,10,raw=T),data=data,nvmax = 10,method = "forward")
 sum.fwd = summary(fwd)
 min.cp.fwd = which.min(sum.fwd$cp)
 min.bic.fwd = which.min(sum.fwd$bic)
 max.adjr2.fwd = which.max(sum.fwd$adjr2)
 par(mfrow = c(1, 3))
 plot(sum.fwd$cp,xlab = "subset",ylab = "cp",pch = 20, type = "l")
 points(min.cp.fwd,sum.fwd$cp[min.cp.fwd],pch = 20,col="red",lwd = 5)
 plot(sum.fwd$bic,xlab = "subset",ylab = "BIC",pch = 20, type = "1")
 points(min.bic.fwd,sum.fwd$bic[min.bic.fwd],pch = 20,col="red",lwd = 5)
 plot(sum.fwd$adjr2,xlab = "subset",ylab = "adjr2",pch = 20, type = "l")
 points(max.adjr2.fwd,sum.fwd$adjr2[max.adjr2.fwd],pch = 20,col="red",lwd = 5)
 coef(fwd,min.cp.fwd)
 coef(fwd,min.bic.fwd)
 coef(fwd,max.adjr2.fwd)
 min.cp.fwd
 min.bic.fwd
 max.adjr2.fwd
                  1.07200774585592 poly(x, 10, raw = T)1:
(Intercept):
                                                                    2.38745595852048
poly(x, 10, raw = T)2:
                             -0.154243589624778 poly(x, 10, raw = T)3:
       -0.442025738722776 poly(x, 10, raw = T)5:
                                                           12.0807229152065
(Intercept):
                  0.962852265623078 poly(x, 10, raw = T)1:
                                                                     1.9623085795775
poly(x, 10, raw = T)5:
                             12.0042041082966
                  1.07200774585592 poly(x, 10, raw = T)1:
(Intercept):
                                                                    2.38745595852048
poly(x, 10, raw = T)2:
                             -0.154243589624778 poly(x, 10, raw = T)3:
       -0.442025738722776 poly(x, 10, raw = T)5:
                                                           12.0807229152065
```


Forward con 4 variables elige a X^2 y X^3 . Forward con 2 variables elige a X.

```
#Backwards
 bwd = regsubsets(y \sim poly(x, 10, raw=T)), data=data, nvmax = 10, method = "backward")
 sum.bwd = summary(bwd)
 min.cp.bwd = which.min(sum.bwd$cp)
 min.bic.bwd = which.min(sum.bwd$bic)
 max.adjr2.bwd = which.max(sum.bwd$adjr2)
 par(mfrow = c(1, 3))
 plot(sum.bwd$cp,xlab = "subset",ylab = "cp",pch = 20, type = "1")
 points(min.cp.bwd,sum.bwd$cp[min.cp.bwd],pch = 20,col="red",lwd = 5)
 plot(sum.bwd$bic,xlab = "subset",ylab = "BIC",pch = 20, type = "l")
 points(min.bic.bwd,sum.bwd$bic[min.bic.bwd],pch = 20,col="red",lwd = 5)
 plot(sum.bwd$adjr2,xlab = "subset",ylab = "adjr2",pch = 20, type = "1")
 points(max.adjr2.bwd,sum.bwd$adjr2[max.adjr2.bwd],pch = 20,col="red",lwd = 5)
 coef(bwd,min.cp.bwd)
 coef(bwd,min.bic.bwd)
 coef(bwd,max.adjr2.bwd)
 min.cp.bwd
 min.bic.bwd
 max.adjr2.bwd
(Intercept):
                  0.950627949808828 poly(x, 10, raw = T)1:
                                                                      2.3511280545862
                             -0.388876182486243 poly(x, 10, raw = T)5:
poly(x, 10, raw = T)3:
       12.0674382997048
                  0.96285226562308 poly(x, 10, raw = T)1:
                                                                    1.96230857957751
(Intercept):
poly(x, 10, raw = T)5:
                             12.0042041082966
(Intercept):
                  1.05440153828734 poly(x, 10, raw = T)1:
                                                                    2.37700110594467
poly(x, 10, raw = T)3:
                             -0.429704569321137 poly(x, 10, raw = T)5:
       12.0791718754771
                            poly(x, 10, raw = T)6:
                                                         -0.146642390763945
```

-0.00558781739576375

3

2

Backward con 3 variables elige a X^3 . Con 2 variables se elige a X, y con 6 variables se elige a X^3, X^6 y X^{10}

e)

```
library(glmnet)
xmat = model.matrix(y~poly(x,10,raw=T),data = data)[,-1]
lasso = cv.glmnet(xmat,Y,alpha=1)
b.lambda = lasso$lambda.min
b.lambda
plot(lasso)
```

4.22327361965489

 $Log(\lambda)$

```
b.mod = glmnet(xmat,Y,alpha=1)
predict(b.mod,s=b.lambda,type = "coefficients")
11 x 1 sparse Matrix of class "dgCMatrix"
(Intercept)
                        1.3603482
poly(x, 10, raw = T)1
poly(x, 10, raw = T)2
poly(x, 10, raw = T)3
                        0.7183963
poly(x, 10, raw = T)4
poly(x, 10, raw = T)5
                       11.5950641
poly(x, 10, raw = T)6
poly(x, 10, raw = T)7
poly(x, 10, raw = T)8
poly(x, 10, raw = T)9
poly(x, 10, raw = T)10
```

El modelo Lasso escoge X^3

```
beta7 = 7
Y = beta0 + beta7 * X^7 + e
d = data.frame(y=Y,x=X)
mod = regsubsets(y~poly(x,10,raw=T),data=d,nvmax = 10)
mod.sum = summary(mod)

min.cp = which.min(mod.sum$cp)
min.bic = which.min(mod.sum$bic)
min.bic
max.adjr2 = which.max(mod.sum$adjr2)
max.adjr2

coef(mod,min.cp)
coef(mod,min.bic)
coef(mod,max.adjr2)
```

2

1

```
(Intercept):
                  1.0704903676263 poly(x, 10, raw = T)2: -0.141708425295704
poly(x, 10, raw = T)7:
                           7.00155518856387
(Intercept):
                  0.958940246745048 poly(x, 10, raw = T)7:
                                                                  7.00077047427057
(Intercept):
                  1.07625244968326 poly(x, 10, raw = T)1:
                                                                 0.291401607645005
poly(x, 10, raw = T)2:
                         -0.161767130528574 poly(x, 10, raw = T)3:
       -0.252652678281851 poly(x, 10, raw = T)7:
                                                        7.00913375439678
 xmat = model.matrix(y \sim poly(x, 10, raw = T), data = d)[, -1]
 lasso = cv.glmnet(xmat, Y, alpha = 1)
 b.lambda = lasso$lambda.min
 b.lambda
12.3688375183107
 b.mod = glmnet(xmat,Y,alpha=1)
 predict(b.mod,s=b.lambda,type = "coefficients")
 11 x 1 sparse Matrix of class "dgCMatrix"
                             1
 (Intercept)
                       1.820215
 poly(x, 10, raw = T)1.
 poly(x, 10, raw = T)2.
 poly(x, 10, raw = T)3.
 poly(x, 10, raw = T)4.
 poly(x, 10, raw = T)5.
 poly(x, 10, raw = T)6.
 poly(x, 10, raw = T)7 6.796694
 poly(x, 10, raw = T)8.
 poly(x, 10, raw = T)9.
```

Tatno BIC como Lasso toman modelos de 1 sola variable. Sin embargo sus interceptos difieren; 0.96 y 1.8 respectivamente.

poly(x, 10, raw = T)10.

a,b)

El error me dio 428.2365 de MSE.

```
library(ISLR)
library (glmnet )
D <- College
D <- D[,-1]
print(dim(D)[1])
print(dim(D)[1]*(2/3))
index <- sample(D[,1],dim(D)[1]*(2/3),replace=FALSE)</pre>
D.train <- D[index,]</pre>
D.test <- D[-index,]</pre>
summary(D)
reg <- lm(Apps~.,D.train)</pre>
y_hat <- predict(reg,D.test,interval='prediction',se.fit=TRUE)</pre>
print(mean(y_hat$se.fit))
grid =10^ seq (10,-2, length =100)
ridge.mod =glmnet (model.matrix(Apps~.,D.train),D.train$Apps,alpha =0, lambda =grid)
lasso.mod =glmnet (model.matrix(Apps~.,D.train),D.train$Apps,alpha =1, lambda =grid)
cv.r <- cv.glmnet (model.matrix(Apps~.,D.train),D.train$Apps,alpha =0)</pre>
cv.l <- cv.glmnet (model.matrix(Apps~.,D.train),D.train$Apps,alpha =1)</pre>
blr = cv.r$lambda.min
ridge.pred=predict (ridge.mod ,s=blr ,newx=model.matrix(Apps~.,D.test))
mean(( ridge.pred -D.test$Apps)^2)
bll = cv.l$lambda.min
lasso.pred=predict (lasso.mod ,s=bll,newx=model.matrix(Apps~.,D.test))
mean(( lasso.pred -D.test$Apps)^2)
```

Usando ridge la labmda fue 374.4288 con un error cuadrado de 1005367.

Usando lasso la labmda fue 16.97 con un error cuadrado de 982832.8.

6.10

```
a)
 n = 1000
 p = 20
 x = matrix(rnorm(n*p),n,p)
 B = rnorm(p)
 B[2]=0
 B[4]=0
 B[6]=0
 B[8]=0
 B[10]=0
 e = rnorm(p)
 y = x %*% B + e
b)
 index = sample(seq(1000),100,replace=FALSE)
 y.train = y[index,]
 y.test = y[-index,]
 x.train = x[index,]
 x.test = x[-index,]
 train = data.frame(x = x.train,y = y.train)
c)
 reg = regsubsets(y~.,data=train,nvmax = p)
 errors = rep(NA,p)
 x.cols = colnames(x,do.NULL = FALSE, prefix = "x.")
 for(i in 1:p){
     cof = coef(reg, id=i)
     pred = as.matrix(x.train[,x.cols %in% names(cof)]) %*% cof[names(cof) %in% x.cols]
     errors[i] = mean((y.train-pred)^2)
 }
 plot(errors,ylab = "training MSE",pch = 20, type = "b")
```



```
d)
```

```
errors = rep(NA,p)
for(i in 1:p){
    cof = coef(reg,id = i)
    pred = as.matrix(x.test[,x.cols %in% names(cof)]) %*% cof[names(cof) %in% x.cols]
    errors[i] = mean((y.test-pred)^2)
}
plot(errors,ylab = "test MSE",pch = 20, type = "b")
```



```
e)
 which.min(errors)
```

12

El modelo con 12 variables tiene el MSE más pequeño.

```
f)
 coef(reg,id=12)
```

(Intercept):

0.0543882522028183 x.1:

1.24043125688552

0.995175578563397 **x.5**: 1.13815614567743 **x.7**: 0.614815017358444

x.9: 1.4057673788986 **x.11:** 1.04404823334838 **x.13:**

0.922830427670553 **x.15**: -0.868412971264274 **x.16**:

0.981618194961501 *x.17*: -0.875376222215272 *x.19*:

-1.94492196238762 **x.20**: -0.745186752285308

Casi todos los coeficientes estan cerca de cero salvo por x.1,x.5,x.9,x.11 y x.19

```
g)
```

```
erros = rep(NA,p)
a = rep(NA,p)
b = rep(NA,p)

for (i in 1:p){
    cof = coef(reg, id = i)
    a[i] = length(cof) - 1
    b[i] = sqrt(sum((B[x.cols %in% names(cof)]-cof[names(cof) %in% x.cols])^2)+sum(B[!(x.cols %in% names(cof))])
plot(x=a,y=b, xlab = "# de coeficientes",ylab = "error")

which.min(b)
```


De nuevo se tiene que el modelo con menor error es aquel que contiene 12 variables.

3.11

a,b,c)

Usando Best Bubset y K-folds.

Genero un data frame con todos los posibles modelos resultantes del Best Bubset para cada fold, uso 25 folds, y calculo para cada caso su MSE, por lo que con eso voy a poder comparar posteriormente cual es el mejor subset en general.

```
library(ISLR)
library(MASS)
library(glmnet)
library(leaps)
D <- Boston
D$chas <- as.factor(D$chas)
n=dim(Boston)[1]
k=25
v=dim(Boston)[2]-1
MSE = data.frame("id" = "1","mse" = 1,"vnum" = 1,stringsAsFactors = FALSE)
ver=TRUE
folds <- cut(1:n,k,labels=FALSE)</pre>
for (i in 1:k) {
    index <- folds == i</pre>
    D.train <- D[!index,]</pre>
    D.test <- D[index,]</pre>
    regfit.full=regsubsets (crim~.,data=D.train,nvmax=dim(Boston)[2])
    mat <- summary(regfit.full)$which</pre>
    for(r in 1:dim(mat)[1] ){
      id <- names(mat[r,-1])[which(mat[r,-1]==TRUE)]</pre>
      reg <- lm(D.train$crim~.,data=D.train[,mat[r,]])</pre>
      y hat <- predict(reg, D.test, interval='prediction', se.fit=TRUE)</pre>
      MSE <- rbind(MSE,c(paste(id,collapse=" "),mean(y_hat$se.fit),length(id)))</pre>
}
MSE <- MSE[-1,]
MSE$mse <- as.numeric(MSE$mse)</pre>
MSE$vnum <- as.numeric(MSE$vnum)</pre>
MSE$id <- as.factor(MSE$id)
library(dplyr)
MSE[1,]
MSE %>% group_by(id,vnum) %>% summarize(meanMSE = mean(mse)) %>% arrange(meanMSE,vnum)
```

Los resultados fueron que se encontraron 58 sets totales diferentes que eran los mejores para su numero de variables en los distintos k-folds.

Sin embargo los más presentes, aquellos que se encuentran en la mayoría d elos folds fueron:

id	vnum	meanMSE	countID
rad	1	0.4233392	25
zn indus chas1 nox rm age dis rad tax ptratio black Istat medv	13	1.1721844	25
rad Istat	2	0.4856907	23
rad black Istat	3	0.5247603	22
zn indus chas1 nox rm dis rad tax ptratio black Istat medv	12	1.1238416	22
zn dis rad medv	4	0.6619813	20
zn dis rad black medv	5	0.7081495	19
zn indus nox dis rad ptratio black lstat medv	9	0.9573117	17
zn nox dis rad black medv	6	0.7272673	15
zn nox dis rad ptratio black medv	7	0.8239574	15

Además en general el mejor modelo fue el que utiliza solamente rad como preditor con el menor MSE de entre todos los k-folds, le sigue rad Istat para el modelo con dos variebles y rad black Istat para el modelo con tres variables.

Este método toma en cuenta todolos los posibles modelos para cada k-fold y encuentra el mejor, para mejorar podría no usar k-folds y usar algún método más exaustivo para generar la validación cruzada.