FONDAMENTI DI MATEMATICA

Enrico Martini v1.0 - 2015 - 2019

Indice

1	Geometria analitica	3					
	1.1 Punto	3					
	1.2 Retta	3					
	1.3 Circonferenza	3					
	1.4 Parabola	4					
	1.5 Ellisse	4					
	1.6 Iperbole	4					
	1.6.1 Funzione omografica	4					
	1.7 Coniche generali	4					
2	Trasformazioni geometriche	5					
3	Solidi	6					
4	Geometria analitica dello spazio	7					
5	Coordinate						
6	Probabilità						
7	Calcolo combinatorio						
8	Goniometria	12					
9	Trigonometria	14					
10	Esponenziali	15					
11	Logaritmi	15					
12	Limiti	16					
13	Derivate	17					
14	Integrali	20					
15	Equazioni differenziali	23					
16	Studio di funzione	24					
10	16.1 Studio del dominio	24					
	16.2 Studio del limite e degli asintoti	$\frac{24}{24}$					
	16.3 Parità/Disparità	25					
	16.4 Incontro con gli assi	$\frac{25}{25}$					
	16.5 Studio del segno	$\frac{25}{25}$					
	16.6 Punti di massimo e minimo	$\frac{25}{25}$					
	16.7 Punti di flesso	25					

1 Geometria analitica

1.1 Punto

Rappresentazione:

$$P(x_P; y_P)$$

Distanza tra due punti:

$$d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Punto medio:

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\right)$$

Baricentro:

$$G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}\right)$$

Area di un triangolo:

$$A = \frac{1}{2} \cdot \left| \begin{array}{ccc} x_C - x_A & y_C - y_A \\ x_B - x_A & y_B - y_A \end{array} \right|$$

1.2 Retta

Rappresentazione:

$$y = mx + q \qquad \qquad \lor \qquad \qquad ax + by + c = 0$$

Retta passante per due punti:

$$\frac{y - y_A}{y_B - y_A} = \frac{x - x_A}{x_B - x_A}$$

Fascio di rette passante per un punto:

$$y - y_0 = m(x - x_0)$$

Distanza punto-retta:

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

1.3 Circonferenza

Rappresentazione:

$$x^{2} + y^{2} + ax + by + c = 0$$
 $(x - \alpha)^{2} + (y - \beta)^{2} = r^{2}$

Coordinate del centro:

$$C\left(-\frac{a}{2};-\frac{b}{2}\right)$$

Raggio:

$$r=\frac{1}{2}\sqrt{a^2+b^2-4c}$$

1.4 Parabola

Rappresentazione:

$$y = ax^2 + bx + c x = ay^2 + by + c$$

Vertice:

$$V\left(-\frac{b}{2a};-\frac{\varDelta}{4a}\right) \qquad \qquad V\left(-\frac{\varDelta}{4a};-\frac{b}{2a}\right)$$

1.5 Ellisse

Rappresentazione:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Con a > b:

$$F(\pm c; 0) c = \sqrt{a^2 - b^2}$$

Con a < b:

$$F(0; \pm c) c = \sqrt{b^2 - a^2}$$

1.6 Iperbole

Rappresentazione:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Se rivolta all'asse x:

$$F(\pm c; 0)$$
 $c^2 = a^2 + b^2$ $y = \pm \frac{b}{a}x$

Se equilatera:

$$x^2 - y^2 = a^2 y = \pm x$$

1.6.1 Funzione omografica

Rappresentazione:

$$y = \frac{ax+b}{cx+d} \qquad C\left(-\frac{d}{c}; \frac{a}{c}\right)$$

1.7 Coniche generali

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

2 Trasformazioni geometriche

$\mathbf{Simmetria}$

Simmetria rispetto ad un punto $P(\alpha, \beta)$:

$$\begin{cases} x' = 2\alpha - x \\ y' = 2\beta - y \end{cases}$$

Simmetria rispetto all'asse y:

$$\begin{cases} x' = -x \\ y' = y \end{cases}$$

Simmetria rispetto all'asse x:

$$\begin{cases} x' = x \\ y' = -y \end{cases}$$

Traslazione

Traslazione rispetto ad un vettore $\vec{v}(a;b)$:

$$\begin{cases} x' = x + a \\ y' = y + b \end{cases}$$

Rotazione

Rotazione rispetto ad un angolo α :

$$\begin{cases} x = x' \cdot \cos(\alpha) + y' \cdot \sin(\alpha) \\ y = -x' \cdot \sin(\alpha) + y' \cdot \cos(\alpha) \end{cases} \begin{cases} x' = x \cdot \cos(\alpha) - y \cdot \sin(\alpha) \\ y' = x \cdot \sin(\alpha) + y \cdot \cos(\alpha) \end{cases}$$

Omotetia

Omotetia di centro O(0;0) e rapporto h:

$$\begin{cases} x' = hx - x_c \\ y' = hx - y_c \end{cases}$$

Affinità

$$\begin{cases} x' = ax + by + h \\ y' = cx + dy + k \end{cases} con \Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

${\bf Solidi}$ 3

Cilindro

$$S_L = 2p \cdot h$$
$$S_B = \pi r^2$$

$$S_{TOT} = S_L + 2S_B$$
$$V = S_b \cdot h$$

Cono

$$S_L = \pi r a$$

$$S_B = \pi r^2$$

$$S_{TOT} = S_L + 2S_B$$

$$V = \frac{1}{3}\pi r^2 h$$

Sfera

$$S=4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

Prisma

$$S_{\tau} = 2n \cdot h$$

$$S_L = 2p \cdot h$$
 $S_{TOT} = S_L + 2S_B$ $V = S_b \cdot h$

$$V = S_b \cdot l$$

Piramide

$$S_L = pa$$

$$S_B = l^2$$

$$S_{TOT} = S_L + S_B$$

$$V = \frac{1}{3}S_B \cdot h$$

4 Geometria analitica dello spazio

Equazione del piano

$$\alpha : ax + by + cz + d = 0$$
 $d = -a^2 - b^2 - c^2$

Punto medio

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right)$$

Equazione di una retta

$$\begin{cases} ax + by + cz + d = 0 \\ ex + fy + gz + h = 0 \end{cases}$$

Retta passante per due punti

$$\frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A} = \frac{z-z_A}{z_B-z_A} = \lambda$$

Distanza tra piano e punto

$$d(A; \alpha) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Piano parallelo ad un altro piano passante per un punto

$$\alpha = \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 0$$

Retta perpendicolare ad un piano passante per un punto

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Piano passante per un punto perpendicolare ad una retta

$$\alpha = l(x - x_0) + m(y - y_0) + n(z - z_0) = 0$$

Parallelismo tra piani

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} \neq \frac{d}{d'}$$

Perpendicolarità tra piani

$$aa' + bb' + cc' = 0$$

Calcolare i punti stazionari

1. Calcolare le derivate parziali del primo ordine

$$f_x'(x,y)$$
 $f_y'(x,y)$

2. Risolvere i sistema con le derivate uguali a zero

$$\begin{cases} f'_x(x,y) = 0\\ f'_y(x,y) = 0 \end{cases}$$

3. Ricavare i punti stazionari

$$P(x_P, y_P)$$

4. Calcolare le derivate parziali del secondo ordine

$$f_{xx}^{\prime\prime}(x,y) \hspace{1cm} f_{xy}^{\prime\prime}(x,y) \hspace{1cm} f_{yx}^{\prime\prime}(x,y) \hspace{1cm} f_{yy}^{\prime\prime}(x,y)$$

5. Costruire la matrice Hessiana

$$H_f(x,y) = \begin{bmatrix} f''_{xx}(x,y) & f''_{xy}(x,y) \\ f''_{yx}(x,y) & f''_{yy}(x,y) \end{bmatrix}$$

6. Calcolare il determinante della matrice Hessiana

$$det(H_f(x,y)) = \begin{vmatrix} f''_{xx}(x,y) & f''_{xy}(x,y) \\ f''_{yx}(x,y) & f''_{yy}(x,y) \end{vmatrix}$$

Considero i casi:

- $f_{xx}^{"}(x_0, y_0) > 0 \land det(H_f) > 0 \rightarrow minimo locale$
- $f_{xx}''(x_0, y_0) < 0 \land det(H_f) > 0 \rightarrow \text{massimo locale}$
- $det(H_f) < 0 \rightarrow$ punto di sella

5 Coordinate

Coordinate sferiche

Si noti che $\rho \geq 0$, $\varphi \in [0, \pi]$ e $\Theta \in [0, 2\pi]$.

$$\begin{cases} x = \rho \cdot \sin(\varphi) \cos(\Theta) \\ y = \rho \cdot \sin(\varphi) \sin(\Theta) \\ z = p \cdot \cos(\varphi) \end{cases} \qquad p = \sqrt{x^2 + y^2 + z^2}$$

$$\int \int \int_D f(x,y,z) dx dy dz = \int \int \int_D f(\rho,\varphi,\Theta) \cdot \rho^2 \cdot \sin(\varphi) d\rho d\varphi d\Theta$$

Coordinate cilindriche

Si noti che $p \geq 0$, $z \in \mathcal{R}$ e $\Theta \in [0, 2\pi]$.

$$\begin{cases} x = \rho \cdot \cos(\Theta) \\ y = \rho \cdot \sin(\Theta) \\ z = z \end{cases}$$
 $p = \sqrt{x^2 + y^2}$

6 Probabilità

$$p(E) = \frac{casi_{POSSIBILI}}{casi_{TOTALI}} \qquad 0 \le p(E) \le 1$$

Probabilità della somma logica di eventi

$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$$

Probabilità condizionata

$$p(E_1|E_2) = \frac{p(E_1 \cap E_2)}{p(E_2)}$$

Probabilità del prodotto logico di eventi

$$\begin{cases} p(E_1 \cap E_2) = p(E_1) \cdot p(E_1 | E_2) & dipendenti \\ p(E_1 \cap E_2) = p(E_1) \cdot p(E_2) & indipendenti \end{cases}$$

Problema delle prove ripetute

• n : numero di estrazioni

• k : numero delle volte in cui deve uscire

• p : probabilità che si verifichi

• q : probabilità che non si verifichi

$$P_{k,n} = \binom{n}{k} p^k q^{n-k}$$

Teorema di Bayes

$$p(E_i|E) = \frac{p(E_i) \cdot p(E|E_i)}{p(E)}$$

7 Calcolo combinatorio

Disposizione semplice

Tutti i gruppi con k elementi su h elementi diversi per contenuto e ordine non ripetuti.

$$D_{n,k} = n(n-1)(n-2)...(n-k+1)$$

Disposizione con ripetizione

$$D'_{n,k} = n^k$$

Permutazione semplice

Tutti i gruppi con n elementi con ordine diverso.

$$P_n = n!$$

Permutazione con ripetizione

$$P_n^{(n;k)} = \frac{n!}{n!k!}$$

Combinazione semplice

Scegliere k elementi su n, senza ripetizione e senza cambiare l'ordine.

$$C_{n,k} = \binom{n}{k} = \frac{D_{n,k}}{P_k} = \frac{n(n-1)(n-2)...(n-k+1)}{k!}$$

Combinazione con ripetizione

$$C'_{n,k} = C_{n+k-1,k} = \binom{n+k-1}{k}$$

8 Goniometria

Formula fondamentale:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

Formule derivate:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \qquad \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$
$$\sec(\alpha) = \frac{1}{\sin(\alpha)} \qquad \csc(\alpha) = \frac{1}{\cos(\alpha)}$$

Somma e differenza:

$$\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$
$$\sin(\alpha - \beta) = \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha - \beta) = \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta)$$

Duplicazione:

$$\sin(2\alpha) = 2\sin(\alpha) \cdot \cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

Bisezione:

$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos(\alpha)}{2}} \qquad \qquad \sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{2}}$$

$$\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}} = \frac{\sin(\alpha)}{1+\cos(\alpha)} = \frac{1-\cos(\alpha)}{\sin(\alpha)}$$

Formule parametriche:

$$\sin(\alpha) = \frac{2t}{1+t^2} \qquad \cos(\alpha) = \frac{1-t^2}{1+t^2} \qquad t = \tan\left(\frac{\alpha}{2}\right)$$

$$0.5 \qquad -\cos(x)$$

$$-0.5 \qquad -1 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$$

quadrante	angolo	seno	coseno	tangente	cotangente		
	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3		
primo	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1		
	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$		
	120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$		
opuooas	135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1		
	150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$		
	210°	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3		
terzo	225°	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1		
	240°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$		
	300°	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$		
quarto	315°	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1		
	330°	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							

Figura 1: Tabella degli angoli associati

9 Trigonometria

Teorema dei seni

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

Teorema del coseno

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

10 Esponenziali

11 Logaritmi

$$\log_a b = x \qquad \begin{cases} b > 0 \\ a > 0 \land a \neq 0 \end{cases}$$

Proprietà

$$\log_a(b \cdot c) = \log_a b + \log_a c \qquad \qquad \log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$$
$$\log_a b^n = n \log_a b \qquad \qquad \log_a b = \frac{\log_c b}{\log_c a}$$

Casi particolari

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1$$

12 Limiti

Verifica dei limiti

$$\forall \epsilon > 0 \exists I(x_0) : |f(x) - l| < \epsilon \qquad \forall x \in I(x_0), x \neq x_0 \qquad l, x_0 \in \mathcal{N}$$

$$\forall M > 0 \exists I(x_0) : f(x) - l > M \qquad \forall x \in I(x_0), x \neq x_0 \qquad l = +\infty$$

$$\forall M > 0 \exists I(x_0) : f(x) - l < -M \qquad \forall x \in I(x_0), x \neq x_0 \qquad l = -\infty$$

$$\forall \epsilon > 0 \exists c > 0 : |f(x) - l| < \epsilon \qquad \forall x > c \qquad x_0 = +\infty$$

$$\forall \epsilon > 0 \exists c > 0 : |f(x) - l| < \epsilon \qquad \forall x < -c \qquad x_0 = -\infty$$

Forme indeterminate

$$+\infty - \infty$$
 $0 \cdot \infty$ $\frac{0}{0}$ $\frac{\infty}{\infty}$ 0^0 ∞^0 1^∞ $\log_1 1$ $\log_0 \infty$ $\log_0 0$

Limiti notevoli

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \qquad \lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right) = 1 \qquad \lim_{x \to 0} \left(\frac{1 - \cos x}{x^2} \right) = \frac{1}{2}$$

$$\lim_{x \to \infty} (1 + x)^{\frac{1}{x}} = e \qquad \lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1$$

Teorema del confronto

$$\begin{cases} \mathcal{D}_{f(x)} = \mathcal{D}_{g(x)} = \mathcal{D}_{h(x)} \\ f(x) \le g(x) \le h(x) \end{cases} \to \lim f(x) = \lim h(x) \to = \lim g(x)$$

13 Derivate

Derivate immediate

$$k \in \mathcal{N} \to 0 \qquad \qquad x^a \to ax^{a-1}$$

$$x \to 1 \qquad \qquad \sqrt{x} \to \frac{1}{2\sqrt{x}}$$

$$\sqrt[n]{x} \to \frac{1}{n\sqrt[n]{x}} \qquad \qquad \frac{1}{x} \to -\frac{1}{x^2}$$

$$a^x \to a^x \ln a \qquad \qquad e^x \to e^x$$

$$\log_a x \to \frac{1}{x} \log_a e \qquad \qquad \ln x \to \frac{1}{x}$$

$$\sin x \to \cos x \qquad \qquad \cos x \to -\sin x$$

$$\arctan x \to \frac{1}{1+x^2} \qquad \qquad \arcsin x \to \frac{1}{\sqrt{1-x^2}}$$

$$\arccos x \to -\frac{1}{\sqrt{1-x^2}}$$

Proprietà

• Somma:

$$d(f(x) + g(x)) = d(f(x)) + d(g(x))$$

• Prodotto:

$$d(k \cdot f(x)) = k \cdot d(f(x))$$

$$d(f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

• Quoziente:

$$d\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

• Reciproco:

$$d\left(\frac{1}{f(x)}\right) = -\frac{f'(x)}{f(x)^2}$$

 \bullet Inverso:

$$d\left(f(x)^{-1}\right) = \frac{1}{f'(x)}$$

Teorema di Rolle

Requisiti:

- f(x) continua e derivabile in (a;b)
- f(a) = f(b)

$$\exists c \in \mathcal{N}f'(c) = 0$$

Teorema di Cauchy

Requisiti:

- f(x) continua e derivabile in (a; b)
- g(x) continua e derivabile in (a; b)

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Teorema di Lagrange

Requisiti:

• f(x) continua e derivabile in (a; b)

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Teorema delle derivate successive

Massimo:

$$\begin{cases} f'(x_0) = 0\\ f''(x_0) < 0 \end{cases}$$

Minimo:

$$\begin{cases} f'(x_0) = 0\\ f''(x_0) > 0 \end{cases}$$

Flesso ascendente a tangente orizzontale:

$$\begin{cases} f'(x_0) = 0 \\ f''(x_0) = 0 \\ f'''(x_0) > 0 \end{cases}$$

Flesso discendente a tangente orizzontale:

$$\begin{cases} f'(x_0) = 0 \\ f''(x_0) = 0 \\ f'''(x_0) < 0 \end{cases}$$

Flesso ascendente a tangente obliqua:

$$\begin{cases} f'(x_0) \neq 0 \\ f''(x_0) = 0 \\ f'''(x_0) > 0 \end{cases}$$

Flesso discendente a tangente obliqua:

$$\begin{cases} f'(x_0) \neq 0 \\ f''(x_0) = 0 \\ f'''(x_0) < 0 \end{cases}$$

Formula della tangente obliqua:

$$y - y_0 = f'(x_0)(x - x_0)$$

14 Integrali

Proprietà

$$\int kf(x)dx = k \int f(x)dx$$

$$\int [f_1(x) + f_2(x) + f_3(x)] dx = \int f_1(x)dx + \int f_2(x)dx + \int f_3(x)dx$$

Integrali immediati

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c \qquad \qquad \int \frac{1}{x} dx = \ln|x| + c \qquad \qquad \int \sin(x) dx = -\cos(x) + c$$

$$\int \cos(x) dx = \sin(x) + c \qquad \int \frac{1}{1+x^2} dx = \arctan(x) + c \qquad \int \frac{1}{\cos^2(x)} dx = \tan(x) + c$$

$$\int e^x dx = e^x + c \qquad \qquad \int a^x dx = \frac{a^x}{\ln(a)} + c \qquad \int \frac{1}{\sqrt{a-x^2}} dx = \arcsin(x) + c$$

$$\int \frac{1}{\sin^2(x)} dx = -\cot(x) + c \qquad \qquad \int 1 dx = x + c$$

Integrali mediati

$$\int [f(x)]^{\alpha} \cdot f'(x)dx = \frac{[f(x)]^{\alpha+1}}{\alpha+1} + c \qquad \qquad \int \frac{f'(x)}{f(x)}dx = \ln|f(x)| + c$$

$$\int f'(x) \cdot \sin[f(x)]dx = -\cos[f(x)] + c \qquad \int f'(x) \cdot \cos[f(x)]dx = \sin[f(x)] + c$$

$$\int e^{f(x)} \cdot f'(x)dx = e^{f(x)} + c \qquad \qquad \int \frac{f'(x)}{\sqrt{1 - f^2(x)}}dx = \arcsin[f(x)] + c$$

$$\int a^{f(x)} \cdot f'(x)dx = \frac{a^{f(x)}}{\ln(a)} + c \qquad \qquad \int \frac{f'(x)}{1 + f^2(x)}dx = \arctan[f(x)] + c$$

$$\int \frac{f'(x)}{\cos^2[f(x)]}dx = \tan[f(x)] + c$$

Funzioni non banali

Risoluzione con formule parametriche:

$$\sin(x) = \frac{2t}{1+t^2}$$
 $\cos(x) = \frac{1-t^2}{1+t^2}$ $t = \tan(\frac{x}{2})$

Risoluzione di integrali irrazionali:

$$\int \sqrt{x^2 \pm \alpha^2} dx \qquad \int \frac{1}{\sqrt{x^2 \pm \alpha^2}} dx \quad \to t = x + \sqrt{x^2 \pm \alpha^2}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + \frac{x}{2}\sqrt{a^2 - x^2} \qquad \to x = a\sin(t)$$

Risoluzione per parti:

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$$

Teorema della media

$$f(c) = \frac{\int_{a}^{b} f(x)dx}{b-a}$$

Volume nei solidi di rotazione

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

Metodo dei rettangoli

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i) \qquad \lor \qquad \int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=0}^{n} f(x_i)$$

Metodo dei trapezi

$$\frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_i+1)}{2} = \int_a^b f(x) dx$$

Integrali doppi

$$I = \int_{a}^{b} dy \int_{c}^{d} f(x, y) dx$$

Integrali di linea di prima specie

$$I = \int_{a}^{b} f(\gamma(t)) \cdot ||\gamma'(t)|| dt$$

Integrali tripli

• Parallelepipedi regolari:

$$D = [a,b] \times [c,d] \times [e,h] \rightarrow \int_a^b \left(\int_c^d \left(\int_e^h f(x,y,z) dz \right) dy \right) dx$$

• Per fili:

$$D = \{(x, y, z) \in \mathcal{R}^2 : (x, y) \in \Omega, g_1(x, y) \le z \le g_2(x, y)\} \text{ to } \int \int_{\Omega} \left(\int_{g_1(x, y)}^{g_2(x, y)} f(x, y, z) dz \right) dx dy$$

• Per strati:

$$D = \left\{ (x, y, z) in \mathcal{R}^2 : z_1 \le z \le z_2, (x, y) \in \Omega(z) \right\} \to \int_{z_1}^{z_2} \left(\int \int_{\Omega(z)} f(x, y, z) dx dy \right) dz$$

15 Equazioni differenziali

Primo ordine

$$F(y'; y; x) = 0$$

1. y' = f(x)

$$\frac{dy}{dx} = f(x) y = \int f(x)dx$$

2. $y' = g(x) \cdot h(x) \operatorname{con} h(y) \neq 0$

$$\frac{dy}{dx} = g(x)h(y)$$
 $\frac{dy}{h(y)} = g(x)dx$ $\int \frac{dy}{h(y)} = \int g(x)dx$

3. y' + a(x)y = b(x)

$$y = e^{-\int a(x)dx} \cdot \left[\int b(x) \cdot e^{\int a(x)dx} dx + c \right]$$

Secondo ordine

1. F(y''; y'; y; x) = 0

$$y'' + by' + cx = 0 \to z^2 + bz + c = 0 \begin{cases} y = c_1 e^{z_1 x} + c_2 e^{z_2 x} & \Delta > 0 \\ y = e^{z_1 x} + c_2 e^{z_2 x} & \Delta > 0 \\ y = e^{z_1 x} + c_2 e^{z_2 x} & \Delta > 0 \\ y = e^{z_1 x} + c_2 e^{z_2 x} & \Delta > 0 \end{cases}$$

2.
$$y'' + by' + cy = r(x)$$

Risolvere la soluzione omogenea y''+by'+cy=0 e poi valutare la soluzione particolare r(x):

- r(x) polinomio $\rightarrow p(x) = x(ax^2 + bx + c)$
- $r(x) = A \cdot e^{hx} \rightarrow p(x) = C \cdot e^{rx}$, r = h
- $r(x) = A\cos\omega x + B\sin\omega x \rightarrow p(x) = C\cos\omega x + D\sin\omega x$

16 Studio di funzione

16.1 Studio del dominio

Verificare la presenza di:

16.2 Studio del limite e degli asintoti

Discontinuità

• Funzione continua:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

• Discontinuità di prima specie:

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x) \in \mathcal{R}$$

• Discontinuità di seconda specie:

$$\lim_{x\to x_0^-}f(x)\neq \lim_{x\to x_0^+}f(x)=\pm\infty$$

• Discontinuità di terza specie:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \land x \neq x_0$$

Asintoto

ullet Orizzontale

$$\lim_{x \to \pm \infty} f(x) = q \qquad y = q$$

• Verticale

$$\lim_{x \to q} f(x) = \pm \infty \qquad x = q$$

• Obliquo

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \qquad y = mx + q$$

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \qquad q = \lim_{x \to \pm \infty} f(x) - mx$$

16.3 Parità/Disparità

• Funzione pari: funzione simmetrica rispetto all'asse y.

$$f(x) = f(-x)$$

• Funzione dispari: funzione con simmetria centrale rispetto all'origine.

$$f(x) = -f(-x)$$

16.4 Incontro con gli assi

$$\begin{cases} x = 0 \\ y = f(0) \end{cases} \qquad \qquad \begin{cases} y = 0 \\ f(x) = 0 \end{cases}$$

16.5 Studio del segno

Funzione crescente:

$$\forall x_1, x_2 \in \mathcal{D}, x_1 < x_2 \to f(x_1) < f(x_2)$$

Funzione decrescente:

$$\forall x_1, x_2 \in \mathcal{D}, x_1 > x_2 \to f(x_1) > f(x_2)$$

16.6 Punti di massimo e minimo

Line up:

- 1. Calcolo della derivata prima
- 2. Studio del dominio
- 3. Studio del segno
- 4. Estrazione del massimo e minimo locale/globale

16.7 Punti di flesso