GEOMETRÍA II. Examen del Tema 2

 Doble Grado en Ingeniería Informática y Matemáticas – Curso 2015/16

Nombre:

1. En cada caso, probar la afirmación o dar un ejemplo de que es falsa

- (a) Dos vectores distintos, perpendiculares y no nulos son linealmente independientes.
- (b) Sean $U, W \subset \mathbb{R}^4$ ambos de dimensión 2 y $\mathbb{R}^4 = U \oplus W$. Si g es una métrica en \mathbb{R}^4 tal que $g_{|U}$ y $g_{|W}$ son degeneradas, entonces (\mathbb{R}^4, g) es degenerada.
- (c) Si U es un subespacio vectorial de (V,g), entonces $(U^{\perp})^{\perp} = U$.
- 2. Se considera el espacio métrico (\mathbb{R}^4, g) , donde

$$M_{B_u}(g) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 3 \\ -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \end{pmatrix}.$$

Si $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0, z + t = 0\}$, hallar una base conjugada de U^{\perp} .

- 3. En \mathbb{R}^3 , sean U=<(1,0,0)> y W=<(1,1,0),(1,1,1)>. Hallar, si es posible, $M_{B_u}(g)$ de una métrica g en \mathbb{R}^3 tal que $g_{|U}$ y $g_{|W}$ son definidas negativas y $\sigma(g)=(1,2)$.
- 4. Para la forma cuadrática $\phi(x, y, z) = axz + ay^2 + az^2$, hallar una matriz P regular tal que $P^t M_{B_u}(\phi) P$ sea diagonal y hallar $\sigma(\phi)$ según el parámetro a.

Importante: razonar todas las respuestas

Soluciones

- 1. (a) Falsa. En \mathbb{R}^2 con la métrica de Lorentz-Minkowski, los vectores (1,1) y (2,2) son perpendiculares pero son proporcionales.
 - (b) Falsa. Basta encontrar una matriz simétrica con determinante no nulo y las submatrices de orden 2 en las dos esquinas sean cero: sea

$$M_{B_u}(g) = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \end{array}
ight).$$

Entonces $U=\langle e_1,e_2\rangle$ y $W=\langle e_3,e_4\rangle$ satisface las condiciones, las matrices de las métricas $g_{|U}$ y $g_{|W}$ en las bases anteriores son $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ y $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (degeneradas) pero el determinante de $M_{B_n}(g)$ es -1.

- (c) Falsa. En \mathbb{R}^2 con la métrica $M_{B_u}(g)=\begin{pmatrix}1&0\\0&0\end{pmatrix},$ sea $U=<e_1>.$ Entonces $U^\perp=<e_2>=R(g)$ y $R(g)^\perp=\mathbb{R}^2.$
- 2. Una base de U es $\{e_1 = (1, -1, 0, 0), e_2 = (0, 0, 1, -1)\}$. Entonces $A.e_1 = (1, -1, -1, -3)$, $A.e_2 = (-1, -3, 1, -2)$, luego $U^{\perp} = \{(x, y, z, t) : X^t.A.e_1 = 0, X^t.A.e_2 = 0\} = \{(x, y, z, t) : x y z 3t = 0, -x 3y + z 2t = 0\}$. Damos valores a z y t, exactamente (1, 0) y (0, 1), obteniendo, respectivamente, (1, 0, 1, 0) y (7/4, -5/4, 0, 1), luego $U^{\perp} = \langle v_1 = (1, 0, 1, 0), v_2 = (7, -5, 0, 4) \rangle$. Si $B' = \{v_1, v_2\}$, entonces

$$M_{B'}(g_{U^{\perp}}) = \left(\begin{array}{cc} 0 & 0 \\ 0 & -14 \end{array} \right).$$

Como ya es diagonal, una base conjugada es $\{v_1, v_2/\sqrt{14}\}$.

3. Tomamos $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ y definimos

$$M_B(g) = \begin{pmatrix} -1 & a & b \\ a & -1 & 0 \\ b & 0 & -1 \end{pmatrix}.$$

De esta manera las métricas $g_{|U}$ y $g_{|W}$ son definidas negativas pues sus expresiones matriciales son diagonales formadas sólo por -1: para U es el elemento (1,1), es decir, (-1), y para W la submatriz 2×2 de la esquina inferior derecha, que es menos la identidad.

Empezamos a diagonalizar por congruencias mediante $F_{21}(a)$ y $F_{31}(b)$ y lo mismo con las columnas:

$$M_B(g) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 + a^2 & ab \\ 0 & ab & -1 + b^2 \end{pmatrix}.$$

Como queremos que la signatura de la métrica sea (1,2), basta con que la matriz anterior sea diagonal y que tengamos en la diagonal principal un signo positivo y dos negativos. Tomamos b=0 y hacemos que $-1+a^2>0$. Tomamos a=2, y la métrica buscada es

$$M_B(g) = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Finalmente $M_{B_u}(g) = P^t M_B(g) P$, donde $P = M(1_V, B_u, B)$.

$$P = M(1_V, B_u, B)^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$M_{B_u}(g) = \begin{pmatrix} -1 & 3 & -2 \\ 3 & -6 & 3 \\ -2 & 3 & -2 \end{pmatrix}.$$

4. Tenemos

$$M_{B_u}(\phi) = \begin{pmatrix} 0 & 0 & a/2 \\ 0 & a & 0 \\ a/2 & 0 & a \end{pmatrix}.$$

Si a=0, entonces g=0 y la signatura es (0,0). Suponemos que $a\neq 0$. Hacemos las siguientes operaciones: F_{12} y C_{12} y luego F_{23} y C_{23} , obteniendo

$$\left(\begin{array}{ccc} a & 0 & 0 \\ 0 & a & \frac{a}{2} \\ 0 & \frac{a}{2} & 0 \end{array}\right).$$

Finalmente, $F_{32}(-1/2)$ y $C_{32}(-1/2)$ y así

$$\begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & -\frac{a}{4} \end{pmatrix}.$$

Por tanto, si a > 0 la signatura es (2,1) y si a < 0, es (1,2). La matriz P es la que resulta de hacerle a la matriz identidad las correspondientes operaciones por columnas

$$I o \left(egin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}
ight) o \left(egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight) o \left(egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -rac{1}{2} \end{array}
ight).$$