1. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ FUNDAMENTALE, ÎN SISTEMUL INTERNAȚIONAL

NR.	DENUMIREA MĂRIMII FIZICE (SIMBOLUL)	UNITATEA DE MĂSURĂ (SIMBOLUL)
1.	Lungimea (I)	metrul (m)
2.	Masa (m)	kilogramul (kg)
3.	Timpul (t)	secunda (s)
4.	Temperatura (T)	Kelvinul (K)
5.	5. Intensitatea curentului electric (I) Amperul (A)	
6.	Intensitatea luminoasă (I) candela (cd)	
7.	Cantitatea de substanţă(μ)	kmolul (kmol)

MECANICA

2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL NR. DENUMIREA MĂRIMII FIZICE UNITATEA DE FORMULA DE

NR.	DENUMIREA MĂRIMII FIZICE	UNITATEA DE	FORMULA DE DEFINIȚIE	VALOAREA
	(SIMBOLUL)	MĂSURĂ (SIMBOLUL)		ECHIVALENTĂ ÎN UNITĂȚI S.I.
1.	Viteza (v)	metru·secundă ⁻¹ (m·s ⁻¹⁾	$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$	1 m·s ⁻¹
2.	Accelerația ($ec{a}$)	metru·secundă ⁻² (m·s ⁻²)	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$	1 m·s ⁻²
3.	Forța ($ec{F}$)	Newton (N)	$\vec{F} = m \cdot \vec{a}$	1N = 1kg·m·s ⁻²
4.	Forța de greutate (\vec{G})	Newton (N)	$ec{G} = m \cdot ec{g}$	1N = 1kg·m·s ⁻²
5.	Forța elastică ($ec{F}_e$)	Newton (N)		1N = 1kg·m·s ⁻²
6.	Forța de frecare $(ec{F}_f)$	Newton (N)	$\vec{F}_e = -k \cdot x$ $\vec{F}_f = \mu \cdot \vec{N}$	1N = 1kg·m·s ⁻²
7.	Lucrul mecanic (L)	Joule (J)	$L = \vec{F} \cdot \vec{d} = F \cdot d \cdot \cos \alpha$	$1J = 1kg \cdot m^2 \cdot s^{-2}$
8.	Lucrul mecanic al forței de greutate	Joule (J)	$L_G = m \cdot g \cdot h$	$1J = 1kg \cdot m^2 \cdot s^{-2}$
9.	Lucrul mecanic al forței elastice	Joule (J)	$L_e = -\frac{kx^2}{2}$	$1J = 1 \text{kg·m}^2 \cdot \text{s}^{-2}$
10.	Lucrul mecanic al forței de frecare	Joule (J)	$L_f = -\mu \cdot N \cdot d$	$1J = 1kg \cdot m^2 \cdot s^{-2}$
11.	Puterea mecanică (P)	Watt (W)	$P = \frac{\Delta L}{\Delta t}$, sau $P = \frac{L}{\Delta t}$ pentru L = const.	1W= 1kg·m ² ·s ⁻³
12.	Energia cinetică (E _c)	Joule (J)	$E_{\rm c} = \frac{\rm mv^2}{2}$	$1J = 1 \text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
13.	Energia potențială gravitațională	Joule (J)	$E_G = m \cdot g \cdot h$	$1J = 1kg \cdot m^2 \cdot s^{-2}$
14.	Energia potențială elastică	Joule (J)	$E_e = \frac{kx^2}{2}$	$1J = 1 \text{kg·m}^2 \cdot \text{s}^{-2}$
15.	Impulsul mecanic al punctului material (\vec{p})	Newton-secundă (N-s)	$\vec{p} = m \cdot \vec{v}$	1N·s=1kg·m·s ⁻¹
16.	Impulsul mecanic al unui sistem de $\bf n$ puncte materiale, impulsul total (\vec{P})	Newton-secundă (N-s)	$\vec{P} = \sum_{i=1}^{n} \vec{p}_i$	1N·s=1kg·m·s ⁻¹
17.	Constanta de elasticitate (k)	Newton·metru ⁻¹	$k = \frac{E \cdot l_0}{S_0}$	1N·m ⁻¹ = 1kg·s ⁻²
18.	Alungirea absolută (∆I)	metru	$\Delta l = l - l_0$	1m
19.	Alungirea relativă (ϵ)	Nu are	$\varepsilon = \frac{\Delta l}{l_0}$	
20.	Efortul unitar (σ)	Newton·metru ⁻²	$\sigma = \frac{F}{S_0}$	$1 \text{N} \cdot \text{m}^{-2} = 1 \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$
21.	Randamentul planului înclinat	Nu are	$\eta = \frac{1}{1 + \mu \cdot ctg\alpha}$	
		PRINCIPII ȘI LEGI	ÎN MECANICĂ	
1.	Principiul I al dinamicii, sau Principiul inerției.	Un corp se mișcă rectiliniu și uniform, sau se află în repaus, atâta timp cât asupra lui nu acționează alte corpuri din exterior, care să-i schimbe starea de mișcare.		
2.	Principiul al II-lea al dinamicii, sau Principiul fundamental.	Forța este mărimea fizică vectorială egală cu produsul dintre masă și vectorul accelerație: $\vec{F} = m \cdot \vec{a}$.		

3.	Principiul al III-lea al dinamicii,	Dacă un corp acționează asupra altui corp cu o forță, numită acțiune, cel de-al doilea				
J.	sau Principiul acțiunilor reciproce.					
	· · · · · · · · · · · · · · · · · · ·	răspunde cu o forță egală și de sens contrar, numită reacțiune: $\vec{F} = - \vec{F'}$.				
4.	Legea I a frecării de alunecare	Forța de frecare de alunecare dintre două corpuri nu depinde de aria suprafețelor în contact.				
5.	Legea a II-a a frecării de	Forța de frecare de alunecare dintre două corpuri este direct proporțională cu forța de				
	alunecare	apăsare normală pe suprafața de contact: $\vec{F}_f = \mu . \vec{N}$, unde μ este coeficientul de frecare.				
6.	Legea lui Hooke	E – modulul de elasticitate longitudinal, sau modulul lui Young				
		$\Delta l = rac{1}{E} \cdot rac{F}{S_0} \cdot l_0$ F – forța deformatoare				
		S_0,l_0 — secțiunea, respectiv lungimea inițială materialului solicitat				
	TEOREME DE VARIAȚIE ȘI LEGI DE CONSERVARE ÎN MECANICĂ					
1.	Teorema de variație a energiei	Variația energiei cinetice a unui punct material, care se deplasează în raport cu un sistem				
	cinetice a punctului material	de referință inerțial, este egală cu lucrul mecanic al rezultantei forțelor externe ce				
		acționează asupra punctului material, în timpul acestei variații: $\Delta E_c = L$				
2.	Variația energiei potențiale	Variația energiei potențiale a unui sistem este egală și de semn opus cu lucrul mecanic al				
		forțelor conservative care acționează asupra sistemului: $\varDelta E_p = -L$				
3.	Legea conservării energiei	$E=E_c+E_p=const.$ Energia mecanică a unui sistem izolat în care acționează forțe				
	mecanice	conservative este constantă în timp, adică se conservă.				
4.	*Teorema de variație a impulsului	Impulsul forțelor externe ce acționează asupra unui sistem este egal cu impulsul total al				
		sistemului: $ec{F}\cdot \Delta t = \Delta ec{P}$				
5.	*Legea conservării impulsului	Dacă rezultanta forțelor externe care acționează asupra sistemului este egală cu zero,				
		impulsul total se conservă.				

ACCELERAȚIA PE PLANUL ÎNCLINAT CU FRECARE

ACCELERAȚIA PE PLANUL ORIZONTAL CU FRECARE

SCRIPETELE

Urcare pe plan: $a_u = -g(\sin \alpha + \mu \cdot \cos \alpha)$

 $\mathbf{a} = -\mathbf{\mu} \cdot \mathbf{g}$

- De regulă, forța de frecare acționează în sens invers mișcării.
- Deci, pentru a deduce sensul mișcării este suficient să sesizăm sensul forței de frecare.

Coborâre pe plan: $a_c = g(\sin \alpha - \mu \cdot \cos \alpha)$