ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Π рофиль: «Анализ данных и принятие решений в экономике и финанcax» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 107

- 1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей
 - Здесь очень много исчерпывающей информации о выборках из генеральной совокупности и про различные виды выборок
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,475 \leqslant Z \leqslant 4,811)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{3x}{16}, 0 \leqslant x \leqslant \frac{8}{3} \approx 2,667; \\ 1 \frac{4}{3x}, x \geqslant \frac{8}{3}; \end{cases}$ 2) Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x \leqslant 0; \\ 1 \frac{4}{3x}, x \geqslant \frac{8}{3}; \end{cases}$

3) вероятность равна: $\P(2,475 \leqslant Z \leqslant 4,811) = 0,25884$.

3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 75,0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 20%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 8000

4. Создайте эмперические совокупности ехр и соѕ вида $\exp(1), \exp(2), ..., \exp(57)$ и $\cos(1), \cos(2), ..., \cos(57)$.

Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности exp, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков ехр и сов на совокупности натуральных чисел от 1 до 57.

Используя

$$E(X) = sum(X)/n$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$\mu_{4}(X) = E((X - E(X))^{4})$$

$$Ex = \frac{\mu_{4}(X)}{[\sigma(X)]^{4}} - 3$$

$$r_{xy} = \frac{E(XY) - E(X) * E(Y)}{\sigma(X) * \sigma(Y)}$$

рассчитаем искомые значения.

Ответы: $1.57801343872465 \cdot 10^{23}$, $7.94364472492678 \cdot 10^{23}$, $1.66305653632206 \cdot 10^{97}$, 38.76647,

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	1	18	12
X = 300	31	26	12

Из Ω случайным образом без возвращения извлекаются 12 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.6 2) стандартное отклонение $\sigma(\bar{X})$: 256.084
- 3) ковариацию $Cov(\bar{X}, \bar{Y})$: -1.9911
- 6. Известно, что доля возвратов по кредитам в банке имеет распределение $F(x) = x^{\beta}, 0 \le x \le 1$. Наблюдения показали, что в среднем она составила 55.0%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 50.0%.

$$f(x) = F'(x) = \beta \cdot x^{\beta - 1}$$

$$\mu_1 = E(X) = \int_{-\inf}^{\inf} x \cdot f(x) = \int_{-\inf}^{\inf} \beta \cdot x^{\beta} = \beta \cdot \frac{x^{\beta+1}}{\beta+1} \Big|_{0}^{1} = \frac{\beta}{\beta+1}$$

$$\beta = (\beta + 1) \cdot 55.0$$

$$\beta = \frac{55.0}{1 - 55.0}$$

$$P(x \le 50.0) = F(50.0) = 50.0^{1.22}$$

Ответ: 1.22, 0.43

Подготовил

Рабов П.Е. Рябов

Утверждаю: Первый заместитель руководителя департамента

Дата 01.06.2021

Рекши Феклин В.Г.