Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

PATIENT		
Name: 詹仕宇		Patient ID: 31940611
Date of Birth: Jun 21, 1983		Gender: Male
Diagnosis: HCC		
ORDERING PHYSICIAN		
Name: 陳三奇醫師	Tel: 886-228712121	
Facility: 臺北榮總		
Address: 臺北市北投區石牌路二段	201 號	
SPECIMEN		
Specimen ID: S11108839	Collection site: Lung	Type: FFPE tissue
Date received: Mar 09, 2022	Lab ID: AA-22-01128	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	Probable Sensitive in Other	
Alterations/Biomarkers	Sensitive Resistant		Cancer Types
CDK12 R358*	-	-	Olaparib
TSC2 Q90*	-	-	Everolimus

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
CDK12 R358*	Niraparib, Rucaparib	-
CTNNB1 T41A	Imatinib	-
TSC2 Q90*	Temsirolimus	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 1 of 27

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
CDK12	R358*	16.4%
CTNNB1	T41A	17.3%
PIK3C2G	Y1103fs	50.0%
TP53	V203E	21.2%
TSC2	Q90*	37.5%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr17	FLCN, TP53	Heterozygous deletion	1
Chr4	FBXW7	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
I	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	< 1 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 30% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **2** of **27**

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect	
Level 3A			
CDK12 R358*	Olaparib	sensitive	
TSC2 Q90*	Everolimus	sensitive	
Level 3B			
CDK12 R358*	Niraparib, Rucaparib	sensitive	
CTNNB1 T41A	Imatinib	sensitive	
TSC2 Q90*	Temsirolimus	sensitive	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **3** of **27**

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
PIK3C2G	Ovalinlatin	Resistant	Clinical	Colorectal cancer
Y1103fs	Oxaliplatin	Resistant	Cillical	Colorectal cancel

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

Pharmacogenomic implication

Gene	Detection Site	Genotype	Drug Impact	Level of Evidence*
UGT1A1	rs4148323	AG	Irinotecan-based regimens	Level 1B

Clinical Interpretation:

Patients with the AG genotype and cancer who are treated with irinotecan-based regimens may have an increased risk of diarrhea and neutropenia as compared to patients with the GG genotype, or a decreased risk of diarrhea and neutropenia compared to patients with the AA genotype. Other genetic and clinical factors may also influence a patient's risk of diarrhea and neutropenia.

Level 1A: Clinical annotations describe variant-drug combinations that have variant-specific prescribing guidance available in a current clinical guideline annotation or an FDA-approved drug label annotation.

Level 1B: Clinical annotations describe variant-drug combinations with a high level of evidence supporting the association but no variant-specific prescribing guidance in an annotated clinical guideline or FDA drug label.

Level 2A: Variants in Level 2A clinical annotations are found in PharmGKB's Tier 1 Very Important Pharmacogenes (VIPs). These variants are in known pharmacogenes, implying causation of drug phenotype is more likely.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 4 of 27

^{*} Level of evidence was defined by PharmGKB (https://www.pharmgkb.org/page/clinAnnLevels)

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

VARIANT INTERPRETATION

CDK12 R358*

Biological Impact

The cyclin-dependent kinase 12 (CDK12) gene encodes a tumor suppressor involved in the alternative RNA splicing by forming complex with cyclin L1 and $L2^{[1]}$. CDK12 plays a role in the maintenance of genomic stability via regulation of the transcription of homologous recombination repair (HRR) genes, including BRCA1, ATR, FANCI and FAND2^[2].

R358* mutation results in a premature truncation of the CDK12 protein at amino acid 358 (UniProtKB). This mutation is predicted to lead to a loss of CDK12 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[3].

In addition, CDK12 alterations have been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in prostate cancer^[4], and niraparib efficacy in pancreatic cancer (NCT03553004).

CTNNB1 T41A

Biological Impact

The CTNNB1 gene encodes for the β -catenin, a transcriptional activator involves in the canonical Wnt signaling pathway^{[5][6]}. β -catenin also regulates cyclin D1 and MYC expression, which play important roles in cancer development^{[7][8]}. Mutations of CTNNB1 are common in a wide range of solid tumors, including liver, endometrial, colorectal, and lung cancer^{[9][10][11][12][13][14]}. CTNNB1 mutations are more frequently found in hepatocellular carcinomas (HCCs) patients without hepatitis B virus (HBV) infection, which is mostly developed on the well-differentiated, noncirrhotic liver, and displayed cholestasis^{[15][16][17][18]}. Of note, the majority of CTNNB1 alterations identified in cancers are missense mutations and all of which localize in the hotspot exon 3 at S33, S37, S45, T41, D32, and G34^{[19][20]}.

CTNNB1 T41A is a gain-of-function (GOF) mutation which has been shown to increase CTNNB1-dependent transcription^{[21][22]}.

Therapeutic and prognostic relevance

In a retrospective study, patients with desmoid fibromatosis harboring CTNNB1 activating mutations such as S45F or T41A demonstrated a greater progression arrest rate (PAR) at 6 months compared to patients with wild-type CTNNB1 when treated with imatinib, a multi-target inhibitor of c-KIT, PDGFR, and BCR-ABL^[23].

Results from a Phase II study of temsirolimus-containing regiments in advanced endometrial cancer (EC) showed that CTNNB1 exon 3 mutations were associated with longer PFS on temsirolimus^[24]. Besides, patients with recurrent endometrial carcinoma harboring CTNNB1 mutations on exon 3 also responded well to everolimus and letrozole, based on the results of a Phase II study^[25].

PIK3C2G Y1103fs

Biological Impact

The PIK3C2G gene encodes a protein contains a lipid kinase catalytic domain as well as a C-terminal C2 domain, a characteristic of the class II phosphoinositide 3-kinases (PI3Ks). C2 domains act as calcium-dependent phospholipid binding motifs that mediate translocation of proteins to membranes, and may also mediate protein-protein

行動基因僅提供技術檢測服務及檢測報告、檢測結果之臨床解釋及相關醫療處置、請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **5** of **27**

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

interactions^{[26][27]}. PIK3C2G plays roles in the regulation of protein trafficking signaling pathways and glycogen synthase^[28]. Inactivating mutations of PIK3C2G are found in melanomas^[29].

Y1103fs mutation results in a change in the amino acid sequence beginning at 1103, likely to cause premature truncation of the functional PIK3C2G protein (UniProtKB). This mutation is predicted to lead to a loss of PIK3C2G protein function, despite not being characterized in the literature.

Therapeutic and prognostic relevance

Low copy number of PIK3C2G has been reported to associate with shorter overall survival and recurrence-free survival in stage III colorectal cancer patients treated with oxaliplatin-based chemotherapy^[30].

TP53 V203E, Heterozygous deletion

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[31]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[32].

V203E is a missense mutation located in the DNA-binding domain (DBD) of the p53 protein (UniProtKB). This mutation has not been characterized in the scientific literature and its effect on p53 protein function remains unknown.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[33].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[34]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[35].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[36][37][38]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[39]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[40][41]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[42].

TSC2 Q90*

Biological Impact

The tuberous sclerosis complex 2 (TSC2) gene encodes a protein called tuberin, which interact with a protein called hamartin (encoded by the TSC1 gene). This hamartin-tuberin tumor suppressor complex plays a critical role in growth control as a negative regulator of the mammalian target of rapamycin (mTOR) pathway^{[43][44]}. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis complex^{[45][46][47]}, while the loss of heterozygosity (LOH) in TSC1/TSC2 has been identified in head and neck squamous cell carcinoma (HNSCC)^[48]and endometrial cancer^[49]. TSC2 deletion, splicing-mutant, and inactivating mutations such

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **6** of **27**

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

as A1141T, G305V, S1514X, and R1032X, has been identified in TSC2-null hepatocellular carcinoma (HCC) cell lines, patient-derived xenograft, and primary tumors. Mutations in the TSC1 and TSC2 genes cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC)^[50].

Q90* mutation results in a premature truncation of the TSC2 protein at amino acid 90 (UniProtKB). This mutation is predicted to lead to a loss of TSC2 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple cancer types, such as bladder cancer, gastric cancer, sarcoma, thyroid cancer, hepatocellular carcinoma (HCC) as well as head and neck squamous cell carcinoma (HNSCC)^{[51][52][53]}. Results from one Phase II study of advanced endometrial cancer showed that mutations in AKT1, TSC1, and TSC2 might predict sensitivity to temsirolimus^[24]. Recent studies indicated that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets^[54].

Everolimus has been approval by the U.S. FDA for Tuberous Sclerosis Complex (TSC)-associated renal angiomyolipoma and Tuberous Sclerosis Complex (TSC)-associated subependymal giant cell astrocytoma (SEGA). This approval is based on the results from EXIST-1, EXIST-2, and Study 2485 trials (NCT00789828, NCT00790400, and NCT00411619).

FBXW7 Heterozygous deletion

Biological Impact

The F-box/WD repeat-containing protein 7 (FBXW7) gene encodes a protein that belongs to the SCF (SKP1-CUL1-F-box protein) E3 ligase complex. FBXW7 is recognized as a tumor suppressor which is involved in the negative regulation of oncogenes such as c-Myc^{[55][56]}, c-Jun^[57], cyclin E^[58], Notch family members^{[59][60]}, Aurora-A^[61], mTOR^[62], KLF5^[63], and MCL-1^[64]. Inactivating FBXW7 mutation or copy number loss may result in the accumulation of oncoproteins and therefore lead to malignant transformation^[65]. FBXW7 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[63][64][66]}.

Therapeutic and prognostic relevance

Clinical efficacy of mTOR inhibitors was seen in patients harboring aberrations in the FBXW7 gene (one patient with refractory fibrolamellar hepatocellular carcinoma, and one patient with lung adenocarcinoma)^{[67][68]}. Moreover, in vitro assay also suggested that loss or inactivation of FBXW7 may confer sensitivity to mTOR inhibitor^[62].

Preclinical studies suggested that mutations or loss of FBXW7 were associated with regorafenib and oxaliplatin resistance in CRC cell lines and gefitinib resistance in lung cancer cells^{[69][70][71][72]}.

Retrospective studies have indicated that a relatively low expression level of FBXW7 is an independent prognostic marker of poor survival for patients with hepatocellular carcinoma, lung adenocarcinoma and squamous cell carcinoma^{[73][71]}.

FLCN Heterozygous deletion

Biological Impact

The FLCN gene encodes the tumor suppressor, Folliculin, a GTPase activating protein (GAP) for RagC/D GTPase proteins involved in amino acid sensing and signaling to mTORC1^[74]. FLCN has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[75][76]}. Inactivation of the FLCN gene by mutation or deletion results in the activation of the mTOR pathway

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **7** of **27**

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

and AKT signaling^{[77][78]}. Germline mutation of the FLCN gene causes the Birt-Hogg-Dubé syndrome, a rare disorder that is characterized by benign hamartomatous skin lesions and an increased risk of pneumothorax and renal tumors^[79].

Therapeutic and prognostic relevance

In a prospective Phase 2 study, four anaplastic thyroid cancer (ATC)/ poorly differentiated thyroid cancer (PDTC) patients who had PI3K/mTOR/AKT alterations, including TSC2, FLCN or NF1, showed impressive progression-free survival (PFS) of 15.2 months after receiving everolimus^[80]. mTOR inhibition via rapamycin also demonstrated potential in inhibiting the growth of renal cells deficient in FLCN in the preclinical setting^[81].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 8 of 27

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

DADIANT 4[82]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)						
RADIANT-4 ^[82]							
NCT01524783	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]						
DOLEDO ([83]	Breast cancer (Approved on 2012/07/20)						
BOLERO-2 ^[83] NCT00863655	ER+/HER2-						
	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]						
	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on						
EXIST-2 NCT00790400	2012/04/26)						
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]						
DADIANT 0[84]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)						
RADIANT-3 ^[84] NCT00510068							
	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]						
EVIOT 4[85]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)						
EXIST-1 ^[85] NCT00789828							
	Everolimus vs. Placebo [ORR(%): 35.0]						
DECORD 4[86]	Renal cell carcinoma (Approved on 2009/05/30)						
RECORD-1 ^[86]							
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]						

Imatinib (GLEEVEC)

Imatinib is an oral, small molecule inhibitor of tyrosine kinase enzymes, namely, the Abelson proto-oncogene (ABL), c-KIT, and platelet-derived growth factor receptor (PDGFR). Imatinib is developed and marketed by Novartis under the trade name GLEEVEC.

- FDA Approval Summary of Imatinib (GLEEVEC)

[87]	Acute lymphocytic leukemia (Approved on 2013/01/25)						
NCT00022737	-						
NC100022737	Imatinib [EFS(%): 70]						
	Gastrointestinal stromal tumor (Approved on 2012/01/31)						
	KIT positive						
	Imatinib [RFS(%): 42 (imatinib for 12) 25 (imatinib for 36)]						
	Gastrointestinal stromal tumor (Approved on 2009/02/10)						
	KIT positive						
	Imatinib vs. Placebo [RFS(%): 21 vs. 28]						
	Myelodysplastic myeloproliferative cancer (Approved on 2006/10/19)						
	-						
	Imatinib [MCyR(%): 39, CHR(%): 45]						

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **9** of **27**

ACTOnco® + Report

[88]	Acute lymphocytic leukemia (Approved on 2006/10/19)					
13-1	Ph+ ALL					
	Imatinib [MCyR(%): 35, CHR(%): 19]					
	Dermatofibrosarcoma protuberans (Approved on 2006/10/19)					
	-					
	Imatinib [ORR(%): 83.0]					
	Systemic mastocytosis (Approved on 2006/10/19)					
	Imatinib [CHR(%): 29]					
	Chronic eosinophilic leukemia (Approved on 2006/10/19)					
	-					
	Imatinib [CHR(%): 61]					
[89]	Chronic myeloid leukemia (Approved on 2003/05/20)					
NCT00471497	Ph+ CML					
110100471437	Imatinib vs. Nilotinib [MMR(%): 22 vs. 44]					
[90]	Chronic myeloid leukemia (Approved on 2003/04/18)					
NCT00333840						
14010000040	Imatinib vs. Interferon-α+ cytarabine [PFS(%): 81.2 vs. 60.6]					
[91]	Gastrointestinal stromal tumor (Approved on 2002/02/01)					
NCT00009906	-					
140100009900	Imatinib [PFS(M): 18.9 (imatinib 400 mg)] 23.2 (imatinib 800 mg)]					

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2019/10/23)
QUADRA ^[92] NCT02354586	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
NOVA[93]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NOVA ^[93]	
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

AG4-QP4001-02(06)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

ACTOnco® + Report

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

	Prostate cancer (Approved on 2020/05/19)							
PROfound ^[3]	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m, FANCLm,							
NCT02987543	PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm							
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]							
	Ovarian cancer (Approved on 2020/05/08)							
PAOLA-1 ^[94]	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation,							
NCT02477644	and/or genomic instability)							
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]							
POLO ^[95]	Pancreatic adenocarcinoma (Approved on 2019/12/27)							
NCT02184195	Germline BRCA mutation (deleterious/suspected deleterious)							
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]							
COL O 4[96]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)							
SOLO-1 ^[96] NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)							
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]							
Olympi A D[97]	Breast cancer (Approved on 2018/02/06)							
OlympiAD ^[97] NCT02000622	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative							
NC102000022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]							
SOLO-2/ENGOT-Ov21 ^[98]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)							
NCT01874353	gBRCA+							
NC101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]							
C4d40[99]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)							
Study19 ^[99] NCT00753545								
NC100753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]							
C4d., 42[100]	Ovarian cancer (Approved on 2014/12/19)							
Study 42 ^[100] NCT01078662	Germline BRCA mutation (deleterious/suspected deleterious)							
NC1010/0002	Olaparib [ORR(%): 34.0, DOR(M): 7.9]							

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONIA	Prostate cancer (Approved on 2020/05/15)
TRITON2 NCT02952534	gBRCA+, sBRCA
NC102952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 ^[101]	AII HRD tBRCA
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 11 of 27

ACTOnco® + Report

ARIEL2[102]	Ovarian cancer (Approved on 2016/12/19)
NCT01482715,	Germline and/or somatic BRCA mutation
NCT01891344	Rucaparib [ORR(%): 54.0]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[103]	Renal cell carcinoma (Approved on 2007/05/30)
	-
NCT00065468	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **12** of **27**

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **13** of **27**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

•							
Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
CDK12	R358*	2	c.1072A>T	NM_016507	-	16.4%	281
CTNNB1	T41A	3	c.121A>G	NM_001904	COSM5664	17.3%	715
PIK3C2G	Y1103fs	24	c.3299_3306dup	NM_004570	COSM2003816	50.0%	244
TP53	V203E	6	c.608T>A	NM_000546	COSM44411	21.2%	519
TSC2	Q90*	4	c.268C>T	NM_000548	COSM7347840	37.5%	640

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **14** of **27**

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change		cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADH1C	R364H	8	c.1091G>A	NM_000669	-	57.6%	139
ARID1B	A1993V	19	c.5978C>T	NM_017519	-	59.3%	1718
ATR	I2267T	40	c.6800T>C	NM_001184	COSM7346278	56.6%	482
CARD11	A687V	16	c.2060C>T	NM_032415	-	57.8%	488
CDH1	V202I	5	c.604G>A	NM_004360	-	31.4%	722
CIC	S734L	10	c.2201C>T	NM_015125	NM_015125 COSM3287118		158
FANCD2	Splice acceptor	-	c.571-2A>G	NM_001018115	-	54.3%	392
FCGR2B	H139N	4	c.415C>A	NM_004001	-	39.0%	305
FLT4	L966F	21	c.2896C>T	NM_182925	NM_182925 -		575
FLT4	Y651F	13	c.1952A>T	NM_182925	-	31.8%	488
MSH2	F313S	5	c.938T>C	NM_000251	-	34.4%	128
PIK3C2B	R1610H	34	c.4829G>A	NM_002646 -		42.3%	790
POLD1	Splice region	-	c.1138-3C>T	NM_001256849	-	39.2%	497
PTPRD	Splice region	-	c.3715-8T>C	NM_002839	COSM3219206	78.1%	128
SF3B1	Splice region	-	c.196-7A>G	NM_012433	-	51.8%	537
SOX9	G461S	3	c.1381G>A	NM_000346	_		1099
TET1	Splice region	-	c.4673+3A>G	NM_030625	-	46.6%	341

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **15** of **27**

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Mar 2022Facility retrieved: 臺北榮總

- H&E-stained section No.: S11108839

Collection site: Lung

- Examined by: Dr. Yeh-Han Wang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 30%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 30%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 628x
- Target Base Coverage at 100x: 92%

RNA test

- Average unique RNA Start Sites per control GSP2: 10

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(06) page 16 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128 ONC

Date Reported: Mar 22, 2022

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 25, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 17 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫藥資訊研究員 楊杭哲 博士 Hang-Che Yang Ph.D. hay

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號 yehr_

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(06) page **18** of **27**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	ССПН	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	митүн	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page **19** of **27**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
FBXW7	Everolimus, Temsirolimus	sensitive
FLCN	Everolimus, Temsirolimus	sensitive
FBXW7	Gefitinib, Regorafenib	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib

1: Everolimus, Temsirolimus

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 20 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 21 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

REFERENCE

- PMID: 16537916; 2006, Mol Cell Biol;26(7):2736-45
 Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation.
- PMID: 22012619; 2011, Genes Dev;25(20):2158-72
 The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 4. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 5. PMID: 22682243; 2012, Cell;149(6):1192-205 Wnt/β-catenin signaling and disease.
- PMID: 22617422; 2012, EMBO J;31(12):2714-36
 The many faces and functions of β-catenin.
- PMID: 10201372; 1999, Nature;398(6726):422-6
 Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells.
- PMID: 9727977; 1998, Science;281(5382):1509-12
 Identification of c-MYC as a target of the APC pathway.
- PMID: 23788652; 2013, Genome Res;23(9):1422-33
 Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma.
- 10. PMID: 22634756; 2012, Nat Genet;44(7):760-4 Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators.
- PMID: 23636398; 2013, Nature;497(7447):67-73
 Integrated genomic characterization of endometrial carcinoma.
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- PMID: 25079552; 2014, Nature;511(7511):543-50
 Comprehensive molecular profiling of lung adenocarcinoma.
- PMID: 22980975; 2012, Cell;150(6):1107-20
 Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.
- PMID: 17187432; 2007, Hepatology;45(1):42-52
 Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.
- PMID: 17487939; 2007, J Pathol;212(3):345-52
 Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations.
- 17. PMID: 19101982; 2009, Hepatology;49(3):821-31
 Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene.
- PMID: 26171210; 2015, Mol Clin Oncol;3(4):936-940
 β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma.
- 19. PMID: 11957146; 2002, Hum Pathol;33(2):206-12

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 22 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

CTNNB1 mutations and beta-catenin expression in endometrial carcinomas.

- PMID: 11955436; 2002, Cell;108(6):837-47
 Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism.
- PMID: 10698519; 2000, Oncogene;19(4):498-504
 Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas.
- PMID: 12200448; 2002, J Biol Chem;277(44):42386-93
 Transcriptional activation of interleukin-8 by beta-catenin-Tcf4.
- 23. PMID: 26861905; 2016, Ann Surg Oncol;23(6):1924-7
 Correlation of CTNNB1 Mutation Status with Progression Arrest Rate in RECIST Progressive Desmoid-Type Fibromatosis Treated with Imatinib: Translational Research Results from a Phase 2 Study of the German Interdisciplinary Sarcoma Group (GISG-01).
- 24. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- PMID: 25624430; 2015, J Clin Oncol;33(8):930-6
 Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma.
- PMID: 22507127; 2012, Biochem J;443(3):587-601
 Regulation and cellular functions of class II phosphoinositide 3-kinases.
- PMID: 27644332; 2017, J Med Chem;60(1):47-65
 Class II Phosphoinositide 3-Kinases as Novel Drug Targets.
- PMID: 30691999; 2019, Trends Cell Biol;29(4):339-359
 Class II PI3K Functions in Cell Biology and Disease.
- PMID: 28522871; 2017, Sci Rep;7(1):2098
 MUG-Mel2, a novel highly pigmented and well characterized NRAS mutated human melanoma cell line.
- PMID: 25785104; 2015, Int J Clin Exp Med;8(1):1137-43
 PIK3C2G copy number is associated with clinical outcomes of colorectal cancer patients treated with oxaliplatin.
- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 32. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 33. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 35. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 37. PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page 23 of 27

AG4-QP4001-02(06)

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52
 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 42. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 21157483; 2011, Nat Rev Mol Cell Biol;12(1):21-35
 mTOR: from growth signal integration to cancer, diabetes and ageing.
- 44. PMID: 12271141; 2002, Proc Natl Acad Sci U S A;99(21):13571-6
 Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
- PMID: 9242607; 1997, Science;277(5327):805-8
 Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
- PMID: 8269512; 1993, Cell;75(7):1305-15
 Identification and characterization of the tuberous sclerosis gene on chromosome 16.
- PMID: 1303246; 1992, Nat Genet;2(1):37-41
 Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.
- 48. PMID: 18538015; 2008, BMC Cancer;8():163
 Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.
- PMID: 28339086; 2017, Int J Oncol;50(5):1778-1784
 Identification of novel mutations in endometrial cancer patients by whole-exome sequencing.
- PMID: 17005952; 2006, N Engl J Med;355(13):1345-56
 The tuberous sclerosis complex.
- 51. PMID: 22923433; 2012, Science; 338(6104):221
 Genome sequencing identifies a basis for everolimus sensitivity.
- PMID: 26859683; 2016, Oncotarget;7(9):10547-56
 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 53. PMID: 25724664; 2015, Mol Cancer Ther;14(5):1224-35
 Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus.
- 54. PMID: 26412398; 2015, Sci Rep;5():14534
 PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
- 55. PMID: 15498494; 2004, Curr Biol;14(20):1852-7
 A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size.
- PMID: 15103331; 2004, EMBO J;23(10):2116-25
 Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 24 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

57. PMID: 16023596; 2005, Cancer Cell;8(1):25-33

The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase.

58. PMID: 11533444; 2001, Science;294(5540):173-7

Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase.

59. PMID: 11461910; 2001, J Biol Chem;276(38):35847-53

The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.

60. PMID: 11425854; 2001, J Biol Chem;276(37):34371-8

Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor.

61. PMID: 16863506; 2006, Cancer Sci;97(8):729-36

Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation.

62. PMID: 18787170; 2008, Science;321(5895):1499-502

FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression.

63. PMID: 20484041; 2010, Cancer Res;70(11):4728-38

The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.

64. PMID: 21368833; 2011, Nature;471(7336):104-9

SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction.

65. PMID: 18094723; 2008, Nat Rev Cancer;8(2):83-93

FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.

66. PMID: 23032637; 2012, Cancer Inform;11():157-71

Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach.

67. PMID: 24586741; 2014, PLoS One;9(2):e89388

FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.

68. PMID: 24360397; 2014, Lung Cancer;83(2):300-1

Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation.

69. PMID: 27399335; 2017, Oncogene;36(6):787-796

FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation.

70. PMID: 25860929; 2015, Oncotarget;6(11):9240-56

FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15.

71. PMID: 29633504; 2018, Mol Oncol;12(6):883-895

FBXW7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy.

72. PMID: 28522751; 2017, Cancer Res;77(13):3527-3539

Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non-Small Cell Lung Cancer.

73. PMID: 24884509; 2014, Mol Cancer;13():110

Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma.

74. PMID: 24095279; 2013, Mol Cell;52(4):495-505

The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.

75. PMID: 26342594; 2016, Fam Cancer;15(1):127-32

Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.

76. PMID: 23223565; 2013, J Clin Pathol;66(3):178-86

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 25 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Birt-Hogg-Dube syndrome: clinicopathological features of the lung.

- 77. PMID: 19850877; 2009, Proc Natl Acad Sci U S A;106(44):18722-7
 Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2.
- PMID: 24908670; 2014, Hum Mol Genet;23(21):5706-19
 Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation.
- PMID: 15956655; 2005, J Natl Cancer Inst;97(12):931-5
 High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors.
- PMID: 29301825; 2018, Clin Cancer Res;24(7):1546-1553
 Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study.
- 81. PMID: 26418749; 2015, Oncotarget;6(32):32761-73
 Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression.
- 82. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 84. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 85. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- PMID: 18653228; 2008, Lancet;372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 87. PMID: 19805687; 2009, J Clin Oncol;27(31):5175-81 Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study.
- 88. PMID: 12200353; 2002, Blood;100(6):1965-71
 A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias.
- 89. PMID: 21856226; 2011, Lancet Oncol;12(9):841-51
 Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial.
- 90. PMID: 18256322; 2008, Blood;111(8):4022-8 Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study.
- 91. PMID: 28196207; 2017, JAMA Oncol;3(7):944-952
 Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results:
 Analysis of Phase 3 SWOG Intergroup Trial S0033.
- 92. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 94. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428

ACCREDITED COLLEGE OF AMERICAN PATHOLOGISTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 26 of 27

Project ID: C22-M001-00646 Report No.: AA-22-01128_ONC Date Reported: Mar 22, 2022

ACTOnco® + Report

Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 97. PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 98. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 99. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 100. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- 101. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 102. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87
 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(06) page 27 of 27