Метод ветвей и границ

К идее метода ветвей и границ приходили многие исследователи, но Литтл с соавторами(1965) на основе этого метода разработали удачный алгоритм решения **задачи коммивояжера** и тем самым способствовали популяризации метода.

Идея метода такова: нужно разделить огромное число перебираемых вариантов на классы и получить оценки(снизу -- в задачах минимизации, сверху — в задачах максимизации) для этих классов, чтобы иметь возможность отбрасывать не по одному, а целыми классами. Очевидно, что трудность состоит в том, чтобы найти такое разделение на классы(ветви) и такие оценки(границы). Рассмотрим алгоритм на конкретном примере. Пусть дана полная

сеть с матрицей расстояний:

3	
5 4 1	
10/2	
3 8 5 6	
5 4	

$$D = \begin{bmatrix} - & 4 & 5 & 6 & 8 \\ 4 & - & 5 & 5 & 3 \\ 3 & 5 & - & 10 & 10 \\ 6 & 5 & 10 & - & 5 \\ 8 & 3 & 10 & 5 & - \end{bmatrix}$$

Оценка снизу. Для получения оценки снизу мы воспользуемся следующей леммой.

Лемма. Вычитая любую константу из всех элементов любой строки или столбца **D**, мы оставляем минимальный тур минимальным.

Очевидно, что этим преобразованием необходимо получить больше нулей в матрице **D**. Для этого вычтем из каждой строки ее минимальный элемент, а затем вычтем из каждого столбца его минимальный элемент. После приведения по строкам и столбцам,

соответственно, имеем

COO	IDC	CIDC	. 1 11 10	, , ,	ICC/VI														
I					ı		1	2	3	4	5		_		1	2	3	4	5
-	4	3	6	8		1	_	1	0	3	5	3		1	_	1	0	1	5
4	-	5	5	3		2	1	-	2	2	0	3		2	1	-	2	0	0
3	5	-	10	10		3	0	2	_	7	7	3	=>	3	0	2	_	5	7
6	5	10	-	5		4	1	0	5	-	0	5		4	1	0	5	-	0
8	3	10	5	-		5	5	0	7	2	_	3		5	5	0	7	0	_

Сумма констант приведения по строкам равна 17, сумма по столбцам — 2, общая сумма равна 19.

Теперь будем исходить из последней приведенной матрицы. Если в ней удастся построить требуемый путь, удовлетворяющую трем вышеуказанным требованиям, и путь будет проходить только "через нули", то ясно, что мы получим минимальный тур. Но он же будет минимальным и для исходной матрицы **D**; только для того, чтобы получить правильную стоимость, тура нужно будет обратно прибавить все константы приведения, и стоимость тура изменится с **O** до **19**. Таким образом, минимальный тур не может быть меньше, чем **19**, и мы получили оценку снизу (**границу**) для всех туров.

Ветвление. В этом шаге делается *оценка нулей* приведенной матрицы. Рассмотрим нуль в клетке *(1,3)* приведенной матрицы. Он означает, что цена перехода из города *1* в город *3* равна *0*. Если мы не пойдем из города *1* в город *3*, то все равно нужно *въехать* в город *3* за цены, указанные в третьем столбце.

1 2 3 4 5 1 - 1 0 1 5 2 1 - 2 0 0 3 0 2 - 5 7 4 1 0 5 - 0 5 5 0 7 0 -										
	1	2	3	4	5					
1	_	1	0	1	5					
2	1	-	2	0	0					
3	0	2	-	5	7					
4	1	0	5	-	0					
5	5	0	7	0	-					

Дешевле всего из города 2 за цену равную 2. Все равно надо будет выехать из города 1 за цену, указанную в первой строке. Дешевле всего из городов 1 или 4 за цену равную 1. Суммируя эти два минимума, имеем 2+1=3. Если не ехать "по нулю" из города 1 в город 1, то надо заплатить не меньше 10 это и есть оценка нуля. Оценки всех нулей отмечены на 11 значком вверху.

	1	2	3	4	5
1	-	1	0^{3}	1	5
2	1	_	2	O_0	0_0
3	0^3	2	-	5	7
4	1	O_0	5	-	0_0
5	5	0 ⁰ Рис	7	0_0	-

Выберем максимальную из этих оценок. Их два и равны трем. Выберем клетку **(1,3)**. Разобьем все туры на два класса – включающее ребро (1,3) и не включающее ребро (1,3). Про второй класс можно сказать, что придется приплатить еще *3*, так что туры этого класса "стоят" 22 и больше. Что касается первого класса, то в нем надо рассмотреть матрицу на *рис.2а*, полученную вычеркиванием первой строки и третьего столбца исходной матрицы, и установкой запрета в клетке (3,1), т.к. в эту клетку мы вошли по ребру **(1,3)** и возврат преждевремен.

	1	2	4	5			1	2	4	5	
2	1	-	0	0		2	0			0_0	
3	-	2	5	7	=>	3	_	0^3	3	5	2
4	1	0	_	0		4	0_0	0_0	_	0_0	
5	5	() a)	0	_		5	4	0^{0}_{6}	0_0	-	
'	•	aj			Рис.2		1	0)		

Произведем приведение уменьшенной матрицы на **1** по первому столбцу и на **2** по третьей строке (см. **рис.26**), так что каждый тур, ей отвечающий, стоит не меньше **22**. Мы получили следующее ветвление:

Числа над кружками – оценки снизу.

Продолжим ветвление. Для этого оценим нули в уменьшенной матрице (*puc.26*).

Максимальная оценка равна **3**. Выберем клетку **(3,2)** данной матрицы. Имеем следующее ветвление:

Рис.3

	1	4	5			4	5
2	_	0_0	0_0	->	2	_	0
4	0^4	_	0_0		5	0	_
5	4	0^4	-				
	a	_				б)	

Рис.4

Оценка для нижней правой вершины есть 22+3=25. Для оценки левой ветви нужно вычеркнуть из матрицы на рис.36 строку 3 и столбец 2, и поставить запрет в клетку (2,1), т.к. она уже входит в тур (1,3,2) и возврат преждевремен. Получим матрицу на рис.4а. Эта матрица неприводима, следовательно, оценка положительного варианта не увеличивается и остаётся равным 22.

Оценим нули в матрице *рис.4а*. Нуль с максимальной оценкой *4* находится в клетке *(4,1)*. Отрицательный вариант имеет оценку *22+4=26*. Для получения оценки положительного варианта уберем строку *4* и столбец *1*, ставим запрет в клетку *(2,4)* (*рис.46*). Эта матрица неприводима, следовательно, оценка положительного варианта не увеличивается (*рис.5*)

Теперь, когда осталась матрица **2×2** с запретами по диагонали, достраиваем тур ребрами (**2,5**) и (**5,4**). Результат показан на **рис.5**. Мы не зря ветвились по положительным вариантам. Сейчас получен тур

стоимостью в **22**. При достижении низа по дереву перебора класс туров сузился. Теперь пора пожинать плоды своих трудов. Все классы, имеющие оценку **22** и более, лучшего тура не содержат. Поэтому соответствующие вершины на **рис.5** вычеркиваются. Вычеркиваются также вершины, оба потомка которой вычеркнуты. Поскольку у вершины "все" убиты оба потомка, она убивается тоже. Вершин не осталось, перебор окончен.

Если бы остались не "убитые" вершины, то надо было бы продолжить поиск с этих вершин. Хороших теоретических оценок быстродействия алгоритма Литтла нет, но практика показывает, что на современных машинах он позволяет решать задачу коммивояжера с *п≈1000*.