CS234: Reinforcement Learning – Problem Session #1

Winter 2021-2022

Problem 1

Suppose we have a MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma \rangle$ and we know that the maximal reward we can observe in \mathcal{M} is given by $R_{\text{MAX}} \triangleq \max_{s,a} \mathcal{R}(s,a)$. The following questions focus on Algorithm 1 which assumes access to a sub-routine for running Value Iteration (value_iteration).

```
Algorithm 1:
Data: MDP \mathcal{M}, Threshold parameter M \in \mathbb{N}, Reward upper bound R_{\text{MAX}} \in \mathbb{R}
Initialize N(s, a) = 0, \forall s, a \in \mathcal{S} \times \mathcal{A}
                                                                                                                      \triangleright Counter for state-action pair (s, a)
Initialize N(s, a, s') = 0, \forall s, a, s' \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}
                                                                                                                              \triangleright Counter for transition (s, a, s')
                                                                                            \triangleright Total reward observed for state-action pair (s, a)
Initialize r(s, a) = 0, \forall s, a \in \mathcal{S} \times \mathcal{A}
Initialize approximate reward function \widehat{\mathcal{R}}(s, a) = R_{\text{MAX}}, \forall s, a \in \mathcal{S} \times \mathcal{A}
Initialize approximate transition function \hat{T}(s, a, s') = \mathbb{1}_{s=s'}, \forall s, a, s' \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}
Initialize approximate action-value function \widehat{Q}^{\star}(s,a) = \frac{R_{\text{MAX}}}{(1-\gamma)}, \forall s, a \in \mathcal{S} \times \mathcal{A}
for t = 1, 2, 3, ... do
       Observe state s
       Take action a = \arg \max \widehat{Q}^{\star}(s, a')
       Observe reward r and next state s'
       r(s, a) = r(s, a) + r
       N(s,a) = N(s,a) + 1
       N(s, a, s') = N(s, a, s') + 1
       if N(s,a) = M then
            \begin{split} \widehat{\mathcal{R}}(s, a) &= \frac{r(s, a)}{N(s, a)} \\ \widehat{\mathcal{T}}(s, a, s') &= \frac{N(s, a, s')}{N(s, a)} \\ \widehat{Q}^{\star} &= \texttt{value\_iteration}(\mathcal{S}, \mathcal{A}, \widehat{\mathcal{R}}, \widehat{\mathcal{T}}, \gamma) \end{split}
end
```

1. Is Algorithm 1 a model-free or model-based reinforcement-learning algorithm? Provide a brief explanation of your answer.

2. Consider all of the unvisited state-action pairs in each timestep. Is the agent more likely or less likely to visit these state-action pairs as time passes? In other words, do you expect the total number of unvisited state-action pairs to increase or decrease as time passes? Provide a brief justification.

3. Consider the MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma \rangle$ and the MDP $\widehat{\mathcal{M}} = \langle \mathcal{S}, \mathcal{A}, \widehat{\mathcal{R}}, \widehat{\mathcal{T}}, \gamma \rangle$. We will use subscripts to distinguish between arbitrary value functions $V_{\mathcal{M}}$ and $V_{\widehat{\mathcal{M}}}$ of MDPs \mathcal{M} and $\widehat{\mathcal{M}}$, respectively. For simplicity, we will assume that $0 \leq V_{\mathcal{M}}(s) \leq 1$ and $0 \leq V_{\widehat{\mathcal{M}}}(s) \leq 1, \forall s \in \mathcal{S}$. If \exists two constants $\varepsilon_1, \varepsilon_2 \geq 0$ such that

$$\max_{s,a \in \mathcal{S} \times \mathcal{A}} |\mathcal{R}(s,a) - \widehat{\mathcal{R}}(s,a)| \leq \varepsilon_1 \qquad \max_{s,a \in \mathcal{S} \times \mathcal{A}} \sum_{s' \in \mathcal{S}} |\mathcal{T}(s'|s,a) - \widehat{\mathcal{T}}(s'|s,a)| \leq \varepsilon_2,$$

then we know that for any policy $\pi: \mathcal{S} \to \mathcal{A}$, $||V_{\mathcal{M}}^{\pi} - V_{\widehat{\mathcal{M}}}^{\pi}||_{\infty} \leq \frac{\varepsilon_1 + \gamma \varepsilon_2}{(1 - \gamma)}$. Discuss the importance of this result in the context of Algorithm 1. In particular, contrast running Algorithm 1 on \mathcal{M} with M = 1 vs. M = 100.

4. Now, instead of assuming that we may freely represent any policy, let's account for the approximation error that we incur when we can only represent a subset of all policies. Let $\Pi = \{\pi \mid \pi : \mathcal{S} \to \mathcal{A}\}$ denote the set of all possible stationary policies and define $\overline{\Pi} \subseteq \Pi$ as some restricted subset of policies. Take \mathcal{M} and $\widehat{\mathcal{M}}$ as defined in the previous part and let $\pi_{\mathcal{M}}^{\star}$ and $\pi_{\widehat{\mathcal{M}}}^{\star}$ denote the optimal policies for \mathcal{M} and $\widehat{\mathcal{M}}$, respectively. Similarly, let $\rho_{\mathcal{M}}^{\star}$ and $\rho_{\widehat{\mathcal{M}}}^{\star}$ denote the optimal policies in $\overline{\Pi}$ for \mathcal{M} and $\widehat{\mathcal{M}}$, respectively. Show that for any state $s \in \mathcal{S}$

$$|V_{\mathcal{M}}^{\pi_{\mathcal{M}}^{\star}}(s) - V_{\mathcal{M}}^{\rho_{\widehat{\mathcal{M}}}^{\star}}(s)| \leq |V_{\mathcal{M}}^{\pi_{\mathcal{M}}^{\star}}(s) - V_{\mathcal{M}}^{\rho_{\mathcal{M}}^{\star}}(s)| + 2 \max_{\rho \in \overline{\Pi}} |V_{\mathcal{M}}^{\rho}(s) - V_{\widehat{\mathcal{M}}}^{\rho}(s)|.$$