On the configurations of even unimodular lattices of rank 48

By

Місню Одекі

1. Introduction. Let Γ_{8k} $(k \ge 1)$ be the genus consisting of all isomorphic classes of positive definite even unimodular lattices of rank 8k. Let L be an element of Γ_{8k} . An element x of L is called a 2m-vector if it satisfies (x,x)=2m, where (,) is the metric attached to L. We let $\mathcal{L}_{2m}(L)$ denote the sublattice of L generated by all 2m-vectors in L, and $\mathcal{L}_{2m_1+2m_2}(L)$ the sublattice of L generated by all $2m_1$ -vectors and $2m_2$ -vectors in L. Let a(2t,L) be the number of 2t-vectors in L for positive integer t. For a sublattice L_1 of L, the rank of L_1 , which is denoted by rank L_1 , is defined to be the maximal number of linearly independent vectors over \mathbb{Q} in L_1 , where \mathbb{Q} is the field of rational numbers.

We use the notations A_n , D_n and E_n to denote the root lattices, i.e. the irreducible lattices generated by 2-vectors in them of the indicated rank n.

The main purpose of this paper is to prove

Theorem 1. Let L be an element of Γ_{48} . If it hold that a(2, L) = a(4, L) = 0, then we have

$$\mathcal{L}_6(L) = L.$$

and

Theorem 2. Let L be an element of Γ_{48} . Assume that either a(2,L) > 0 or a(4,L) > 0 holds. Then we have,

- (i) when rank $\mathcal{L}_2(L) \geq 3$, then it holds rank $\mathcal{L}_4(L) = 48$,
- (ii) when rank $\mathcal{L}_2(L) = 2$ and $\mathcal{L}_2(L) \cong A_2$ (isomorphic), then either rank $\mathcal{L}_4(L) = 48$ or rank $\mathcal{L}_6(L) = 48$ holds,
- (iii) when rank $\mathcal{L}_2(L) = 2$ and $\mathcal{L}_2(L) \cong A_1 \oplus A_1$, then it holds rank $\mathcal{L}_4(L) = 48$,
- (iv) when rank $\mathcal{L}_2(L) = 1$, then it holds either rank $\mathcal{L}_4(L) = 48$ or rank $\mathcal{L}_6(L) = 48$,
- (v) when rank $\mathcal{L}_2(L) = 0$, then it holds rank $\mathcal{L}_4(L) = 48$.

In the first version of this paper, the form of Theorem 1 is weaker than that of the present version. We have refined it. Note that Theorem 1 is also stated in [8] without proof. Theorems 1 and 2 include the Theorem in [5] as a special result.

2. Preliminary results. Let L be an element in Γ_{8k} , then theta-series of degree 1 attached to L is defined by

$$\vartheta(\mathbf{z}, L) = \sum_{x \in L} \mathbf{e}((x, x) \mathbf{z}),$$

where z is the variable of the upper-half plane H and $e(\cdot) = \exp(\pi i \cdot)$. Theta-series with spherical function P_{ν} of degree ν attached to L is defined by (Conf. [1], [5], [6])

$$\vartheta(\mathbf{z}, P_{\nu}, L) = \sum_{x \in L} \{P_{\nu}(x; \alpha)\} \mathbf{e}((x, x)\mathbf{z}),$$

where α is a vector in $L \otimes_{\mathbb{Z}} \mathbb{Q}$ and \mathbb{Z} is the ring of rational integers. If we use the finite set

$$\Lambda_{2t}(L) = \{ x \in L \, | \, (x,x) = 2t \},$$

then we have

$$\vartheta(\mathbf{z}, L) = 1 + \sum_{t=1}^{\infty} \sum_{x \in A_{2t}(L)} \mathbf{e}((x, x) \mathbf{z})$$

$$= \sum_{t=0}^{\infty} a(2t, L) \mathbf{e}(2t\mathbf{z}) \quad \text{and}$$

$$\vartheta(\mathbf{z}, P_{\nu}, L) = \sum_{t=1}^{\infty} \sum_{x \in A_{2t}(L)} \{P_{\nu}(x; \alpha)\} \mathbf{e}((x, x) \mathbf{z}).$$

Here we give the precise forms of the spherical function $P_{\nu}(x;\alpha)$ of degree ($\nu=6,8$), which are not given in [1]:

$$P_{6}(x;\alpha) = (x,\alpha)^{6} - 15/(f+8) \quad (x,\alpha)^{4} (x,x) (\alpha,\alpha)$$

$$+ 45/(f+8) (f+6) \quad (x,\alpha)^{2} (x,x)^{2} (\alpha,\alpha)^{2}$$

$$- 15/(f+8) (f+6) (f+4) \quad (x,x)^{3} (\alpha,\alpha)^{3},$$

$$P_{8}(x;\alpha) = (x,\alpha)^{8} - 28/(f+12) \quad (x,\alpha)^{6} (x,x) (\alpha,\alpha)$$

$$+ 210/(f+12) (f+10) \quad (x,\alpha)^{4} (x,x)^{2} (\alpha,\alpha)^{2}$$

$$- 420/(f+12) (f+10) (f+8) \quad (x,\alpha)^{2} (x,x)^{3} (\alpha,\alpha)^{3}$$

$$+ 105/(f+12) (f+10) (f+8) (f+6) \quad (x,x)^{4} (\alpha,\alpha)^{4},$$

where f is the rank of the lattice L.

Let $\mathbf{M}(1, k)$ (resp. $\mathbf{S}(1, k)$) be the linear space of modular (resp. cusp) forms of degree 1 and weight k belonging to $SL(2, \mathbb{Z})$.

From now on, we specify the lattice L to be in Γ_{48} . Then it is known that

(1)
$$\vartheta(\mathbf{z}, L) \in \mathbf{M}(1, 24), \quad \vartheta(\mathbf{z}, P_{\nu}, L) \in \mathbf{S}(1, 24 + \nu)$$

and

(2)
$$\dim \mathbf{M}(1, 24) = 3$$
, $\dim \mathbf{S}(1, 26) = 1$, $\dim \mathbf{S}(1, 24 + \nu) = 2$ $\nu = 4, 6, 8$.

We choose $\mathbf{E}_{4}^{6}(\mathbf{z})$, $\mathbf{E}_{4}^{3}(\mathbf{z})$ $\Delta_{12}(\mathbf{z})$, $\Delta_{12}^{2}(\mathbf{z})$ (resp. $\mathbf{E}_{14}(\mathbf{z})$ $\Delta_{12}(\mathbf{z})$) as the basis (resp. base) for $\mathbf{M}(1, 24)$ (resp. $\mathbf{S}(1, 26)$), where $\mathbf{E}_{k}(\mathbf{z})$ is the normalized Eisenstein series of weight k and $\Delta_{12}(\mathbf{z})$ is the normalized cusp form of weight 12. Their Fourier expansions can be easily calculated. By the above facts, we get

(3)
$$\vartheta(\mathbf{z}, P_2, L) = c_1 \mathbf{E}_{14}(\mathbf{z}) \Delta_{12}(\mathbf{z})$$

and

(4)
$$\vartheta(\mathbf{z}, L) = c_2 \mathbf{E}_4^6(\mathbf{z}) + c_3 \mathbf{E}_4^3(\mathbf{z}) \Delta_{12}(\mathbf{z}) + c_4 \Delta_{12}^2(\mathbf{z}),$$

with suitable constants c_1 , c_2 , c_3 , c_4 in \mathbb{C} , the field of complex numbers. From (3), we have the relations

(5)
$$\sum_{x \in A_{1}(L)} \{(x, \alpha)^{2} - (\alpha, \alpha)(x, x)/48\} = c_{1},$$

(6)
$$\sum_{y \in A_4(L)} \{ (y, \alpha)^2 - (\alpha, \alpha) (y, y) / 48 \} = -48 c_1$$

and

(7)
$$\sum_{w \in A_6(L)} \{ (w, \alpha)^2 - (\alpha, \alpha) (w, w) / 48 \} = -195804 c_1.$$

By comparing the Fourier coefficients in the both sides of (4), we get

$$c_2 = 1$$
,

(8)
$$a(2, L) = 1440 + c_3$$

(9)
$$a(4, L) = 876960 + 696c_3 + c_4$$

and

(10)
$$a(6, L) = 292\,072\,320 + 162\,252\,c_3 - 48\,c_4.$$

By noting

$$\sum_{x \in A_{t}(I)} (x, x) = 2t \ a(2t, L) \quad \text{for } t \ge 1,$$

we see that the relations (5) and (6) (resp. (5) and (7)) can be unified to

(11)
$$\sum_{y \in A_4(L)} (y, \alpha)^2 - (\alpha, \alpha) \ a(4, L)/12$$
$$= -48 \sum_{x \in A_2(L)} (x, \alpha)^2 + 2(\alpha, \alpha) \ a(2, L)$$

and

(12)
$$\sum_{w \in A_6(L)} (w, \alpha)^2 - (\alpha, \alpha) \ a(6, L)/8$$
$$= -195804 \sum_{x \in A_2(L)} (x, \alpha)^2 + 16317(\alpha, \alpha) \ a(2, L)/2$$

respectively.

Throughout the following Props. 1-3, we suppose that L is an element of Γ_{48} . First we prove

Proposition 1. If a(2, L) = 0 holds, then we have either

rank
$$\mathcal{L}_4(L) = 48$$
 or rank $\mathcal{L}_6(L) = 48$.

Proof. Since it hold that a(2, L) = 0 and $A_2(L) = \emptyset$ (empty set), the Eqs. (9) and (10) become

(13)
$$\sum_{y \in A_4(L)} (y, \alpha)^2 = (\alpha, \alpha) \ a(4, L)/12$$

and

(14)
$$\sum_{w \in A_{6}(L)} (w, \alpha)^{2} = (\alpha, \alpha) \ a(6, L)/8$$

respectively.

First we assume that $a(4, L) \neq 0$. If it holds that rank $\mathcal{L}_4(L) < 48$, then we can find a non-zero vector $\alpha \in L \otimes_{\mathbb{Z}} \mathbb{Q}$ so that $(y, \alpha) = 0$ for any $y \in \Lambda_4(L)$. Thus the left-hand side of (13) equals zero, whereas the right-hand side is not zero. This is a contradiction, so that we must have

rank
$$\mathcal{L}_{A}(L) = 48$$
.

Next we assume that a(2, L) = a(4, L) = 0. Then by (8), (9) and (10), we get

$$a(6, L) = 52416000.$$

If it holds that rank $\mathcal{L}_6(L) < 48$, then we can find a non-zero vector $\alpha \in L \otimes_{\mathbb{Z}} \mathbb{Q}$ so that $(w, \alpha) = 0$ for any $w \in \Lambda_6(L)$. This leads to a contradiction on the both sides in (14), so that we must have

$$\operatorname{rank} \mathscr{L}_{6}(L) = 48.$$

Proposition 2. If a(4, L) = 0 holds, then we have either

rank
$$\mathcal{L}_2(L) = 48$$
 or rank $\mathcal{L}_6(L) = 48$.

Proof. From the assumption a(4, L) = 0 and the formula (11), we obtain

(15)
$$\sum_{x \in A_2(L)} (x, \alpha)^2 = (\alpha, \alpha) \ a(2, L)/24.$$

Combining (12) with (15), we obtain

(16)
$$\sum_{w \in A_6(L)} (w, \alpha)^2 = (\alpha, \alpha) \ a(6, L)/8.$$

If a(2, L) > 0, then we can conclude that

rank
$$\mathcal{L}_2(L) = 48$$
,

using a similar reasoning to that of the proof of Prop. 1.

If a(2, L) = 0 and a(4, L) = 0, then we should have a(6, L) > 0, because $\vartheta(\mathbf{z}, L)$ vanishes when a(2, L) = a(4, L) = a(6, L) = 0. Then by virtue of (16), we can conclude that

$$\operatorname{rank} \mathscr{L}_6(L) = 48.$$

Proposition 3. If either a(2, L) > 0 or a(4, L) > 0 holds, then we have

rank
$$\mathcal{L}_{2+4}(L) = 48$$
.

Proof. We rewrite the formula (11) to the form

(17)
$$\sum_{y \in A_4(L)} (y, \alpha)^2 + 48 \sum_{x \in A_2(L)} (x, \alpha)^2 = (\alpha, \alpha) [a(4, L)/12 + 2a(2, L)].$$

Suppose it holds that

rank
$$\mathcal{L}_{2+4}(L) < 48$$
,

then we can find a non-zero vector $\alpha \in L \otimes_{\mathbb{Z}} \mathbb{Q}$ so that $(y, \alpha) = 0$ for any $y \in \Lambda_4(L)$ and $(x, \alpha) = 0$ for any $x \in \Lambda_2(L)$. Hence the left-hand side of (17) is zero, and the right-hand side of (17) is positive, so that we must have

$$\operatorname{rank} \mathcal{L}_{2+4}(L) = 48.$$

Lemma 1. If the linearly independent 2-vectors x_1, \ldots, x_r ($r \ge 3$) form an irreducible (or reducible), lattice, then from them we can make r linearly independent 4-vectors.

Proof. In [3], we have proved that the lattice L generated by 2-vectors x_1, \ldots, x_r has basis consisting of 2-vectors (Prop. 2-2) and that such L can be decomposed into an orthogonal sum of some of A_n , D_n , E_6 , E_7 and E_8 (admitting the repetitions). We can easily show that

(*)
$$A_n (n \ge 3)$$
 (resp. D_n, E_n) contains n linearly independent 4-vectors.

For instance, let u_1, u_2, \ldots, u_n be linearly independent 2-vectors in A_n satisfying $(u_1, u_2) = (u_2, u_3) = \cdots = (u_{n-1}, u_n) = -1$ and $(u_i, u_j) = 0$ for $|i - j| \ge 2$, then u_1, \ldots, u_n are the basis of A_n and $u_1 + u_3, \ldots, u_1 + u_n$, $u_1 - u_3$ and $u_1 + 2u_2 + u_3$ are linearly independent 4-vectors. For the cases D_n , E_6 , E_7 or E_8 , we can similarly show the above fact (*). When L is irreducible the proof is already over.

When L is reducible, then the combinations u + v, where u and v are 2-vectors taken from different irreducible components, form a desired system – we may pick up from some of them when the number of the members exceeds r –.

3. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let L be an element of Γ_{48} satisfying a(2,L)=a(4,L)=0. Two vectors x_1 and x_2 in L are said to be equivalent mod $\mathcal{L}_6(L)$ if they satisfy $x_1-x_2\in\mathcal{L}_6(L)$. This is an equivalence relation on L, and we divide L into equivalence classes.

We shall show that each equivalence class is represented by a 6-vector. This implies that $\mathcal{L}_6(L) = L$.

Let K be any one of the equivalence classes, and x_0 be a minimal representative of K, that is, a non-zero vector satisfying

$$(x_0, x_0) \le (y, y) \quad \forall y \in K.$$

Suppose that x_0 is not a 6-vector, then it holds that $(x_0, x_0) = 2m$ for some $m \ge 4$. Furthermore, we see that

(18)
$$|(x_0, y)| \leq 3 \quad \text{for any } y \in \Lambda_6(L).$$

For, if $(x_0, y) > 3$, then $z = x_0 - y$ satisfies $(z, z) < (x_0, x_0)$, contradicting to the minimality of x_0 in K.

We introduce similar quantities to those given in [7], namely:

$$N_k(x_0)$$
 = the cardinality of $\{y \in \Lambda_6(L) | (x_0, y) = k\}$ $0 \le k \le 3$

We see that

(19)
$$\sum_{\substack{x \in A_6(L_0)}} (x, x_0)^{2a} = 2N_1(x_0) + 2^{2a+1} N_2(x_0) + 2 \cdot 3^{2a} N_3(x_0) \quad \text{for } a \ge 1.$$

The conditions (1), (2) and a(2, L) = a(4, L) = 0 leads to

$$\vartheta(\mathbf{z}, P_{\nu}, L) = 0$$
 for $\nu = 2, 4, 6, 8$.

This implies

(20)
$$\sum_{x \in A_{2r}(L)} P_{\nu}(x; \alpha) = 0 \quad t \ge 1, \ \nu = 2, 4, 6, 8.$$

If we take $\alpha = x_0$ and t = 3, then by virtue of (20) and the explicit forms of P_{ν} we obtain

(21)
$$\sum_{x \in A_6(L)} (x, x_0)^2 = 1/48 \sum_{x \in A_6(L)} (x, x) (x_0, x_0)$$
$$= 6552000 (x_0, x_0),$$

(22)
$$\sum_{x \in A_6(L)} (x, x_0)^4 = 2358720 (x_0, x_0)^2,$$

(23)
$$\sum_{x \in A_6(L)} (x, x_0)^6 = 1360800 (x_0, x_0)^3 \text{ and}$$

(24)
$$\sum_{x \in A_6(L)} (x, x_0)^8 = 1058400 (x_0, x_0)^4.$$

From (19), (21), (22), (23), we have

$$\begin{split} N_1(x_0) &= 28\,350\,(x_0,x_0)^3 - 638\,820\,(x_0,x_0)^2 + 4\,914\,000\,(x_0,x_0),\\ N_2(x_0) &= -11\,340\,(x_0,x_0)^3 + 196\,560\,(x_0,x_0)^2 - 491\,400\,(x_0,x_0),\\ N_3(x_0) &= 1\,890\,(x_0,x_0)^3 - 16\,380\,(x_0,x_0)^2 + 36\,400\,(x_0,x_0). \end{split}$$

We substitute the above equations into (19) with a = 4, then by (24) we get

$$1058400 (x_0, x_0)^4 = 19051200 (x_0, x_0)^3 - 115577280 (x_0, x_0)^2 + 235872000 (x_0, x_0).$$

This equation does not hold for $(x_0, x_0) \ge 8$, so that we reach a contradiction. And we must have $(x_0, x_0) \le 6$. This completes the proof of Theorem 1.

Proof of Theorem 2. First we treat the case (i). By Prop. 3, we can find 2-vectors $x_1, x_2, x_3, \ldots, x_r$ $(r \ge 3)$ and 4-vectors y_1, \ldots, y_s such that r + s = 48 and $x_1, \ldots, x_r, y_1, \ldots, y_s$ are linearly independent over \mathbb{Q} .

By Lemma 1, we can make r 4-vectors w_1, \ldots, w_r which are linearly equivalent to x_1, \ldots, x_r over \mathbb{Q} . Then w_1, \ldots, w_r and y_1, \ldots, y_s are the desired system, and this implies

rank
$$\mathcal{L}_4(L) = 48$$
.

Next we prove (ii). By Prop. 3, we can find 2-vectors x_1, x_2 and 4-vectors y_1, y_2, \ldots, y_{46} that are linearly independent over \mathbb{Q} . We may suppose that

$$(25) (x_1, x_2) = 1 and$$

(26)
$$|(x_i, y_j)| \le 2$$
 with $i = 1, 2, 1 \le j \le 46$.

The equality (25) is derivable from the assumption that $\mathcal{L}_2(L) \cong A_2$, and (26) is derivable from the inequality

$$(x_i, y_i)^2 \le (x_i, x_i) (y_i, y_i) = 8.$$

There are four subcases (a) \sim (d) to treat separately.

(a) When $(x_1, y_j) = (x_2, y_j) = 0$ hold for $1 \le j \le 46$. Then we can verify that $x_1 - y_1$, $x_1 - y_2, \dots, x_1 - y_{46}, x_1 + x_2$ and $x_1 - 2x_2$ are linearly independent 6-vectors, so that we have

rank
$$\mathcal{L}_6(L) = 48$$
.

(b) When it hold that $(x_1, y_j) = 0$ for all $1 \le j \le 46$ and $(x_2, y_k) = \pm 1$ for some $1 \le k \le 46$. We may assume that $(x_2, y_k) = 1$, for if $(x_2, y_k) = -1$ we use $-y_k$ instead of y_k . Then we can verify that $y_1, y_2, \ldots, y_{46}, -x_1 + x_2 - y_k$ and $x_2 - y_k$ are linearly independent 4-vectors over \mathbb{Q} , so that we have

rank
$$\mathcal{L}_{\Lambda}(L) = 48$$
.

(c) When $(x_1, y_j) = \pm 1$ and $(x_2, y_k) = \pm 1$ hold for some $1 \le j, k \le 46$. Then we can verify that $y_1, \ldots, y_{46}, x_1 - (x_1, y_j) y_j$ and $x_2 - (x_2, y_k) y_k$ are linearly independent 4-vectors over \mathbb{Q} , so that we have

rank
$$\mathcal{L}_4(L) = 48$$
.

(d) When either $(x_1, y_k) = \pm 2$ or $(x_2, y_k) = \pm 2$ holds for some $1 \le k \le 46$. If $(x_1, y_k) = \pm 2$, then x_1, x_2 and $x_1 - (x_1, y_k) y_k$ are linearly independent 2-vectors, so that we have rank $\mathcal{L}_2(L) \ge 3$, contrary to the assumption of (ii). The case $(x_2, y_k) = \pm 2$ is equally treated. This completes the proof of (ii).

Proof of (iii). By Prop. 3, we can find 2-vectors x_1 and x_2 and 4-vectors y_1, \ldots, y_{46} , linearly independent over \mathbb{Q} . By our assumption, it holds that $(x_1, x_2) = 0$. It is easy to see that $x_1 + x_2, x_1 - x_2, y_1, \ldots, y_{46}$ are linearly independent 4-vectors over \mathbb{Q} , so that we have

rank
$$\mathcal{L}_4(L) = 48$$
.

Proof of (iv). By Prop. 3, we can find a 2-vector x_1 and 4-vectors y_1, \ldots, y_{47} in L which are linearly independent over \mathbb{Q} . We may assume that $|(x_1, y_j)| \le 1$ for all $1 \le j \le 17$. There are two subcases (a) and (b) to treat separately.

(a) When it holds that $(x_1, y_j) = 0$ for all $1 \le j \le 47$, then $-x_1 + y_1$, $x_1 + y_j$, $1 \le j \le 47$, are linearly independent 6-vectors, so that we have

rank
$$\mathcal{L}_6(L) = 48$$
.

(b) When it holds that $(x_1, y_k) = \pm 1$ for some $1 \le k \le 47$, then y_1, \dots, y_{47} and $x_1 - (x_1, y_k) y_k$ are linearly independent 4-vectors. Hence we have

rank
$$\mathcal{L}_4(L) = 48$$
.

Proof of (v). In the case, we know a(2, L) = 0 and a(4, L) > 0 by the assumption of this theorem. And the assertion follows from the proof of Prop. 1.

R e m a r k 1. In Theorems 1 and 2, we have enumerated all possible lattices in Γ_{48} , but it is not clear whether each possibility actually occurs.

R e m a r k 2. We can give some examples of lattices in Γ_{48} characterized in Theorems 1 and 2.

- (i) The lattice $L_1 \in \Gamma_{48}$ with the properties $\mathcal{L}_2(L_1) = \emptyset$ and rank $\mathcal{L}_4(L_1) = 48$ is given by an orthogonal sum of two copies of Leech lattice of rank 24.
- (ii) The lattices $L_2 \in \Gamma_{48}$ with the properties $\mathcal{L}_2(L_2) = \mathcal{L}_4(L_2) = \emptyset$ and $\mathcal{L}_6(L_2) = L_2$ are given by the lattices constructed from Pless code or quadratic residue code. (Conf. [2]).

References

- [1] E. Hecke, Analytische Arithmetik der positiven quadratischen Formen. Konigh. Danske Videnskabernes Selskab. Math.-Fys. Medd. 17, 12 (1940).
- [2] J. LEECH and N. J. A. SLOANE, Sphere packings and error-correcting codes. Canad. J. Math. 23, 718-745 (1971).
- [3] M. OZEKI, Note on the positive definite integral quadratic lattice. J. Math. Soc. Japan 28, 421-446 (1976).
- [4] M. OZEKI, On even unimodular lattices of rank 32. To appear. in Math. Z.
- [5] M. Peters, Definite unimodular 48-dimensional quadratic forms. Bull. London Math. Soc. 15, 18-20 (1983).
- [6] B. B. VENKOV, On the classification of integral even unimodular 24-dimensional quadratic forms. Proc. Steklov Inst. Math. 148, 63-74 (1980).
- [7] B. B. Venkov, Even unimodular Euclidean lattices of dimension 32 (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116, 44-55 (1982).
- [8] B. B. Venkov, On even unimodular extremal lattices (Russian). Trudy Mat. Inst. AN SSSR 165, 43-48 (1984).

Eingegangen am 18. 12. 1984*)

Anschrift des Autors:

Michio Ozeki Department of Mathematics Faculty of Liberal Arts Nagasaki University 1-14, Bunkyo-machi, Nagasaki Japan

^{*)} Eine Neufassung ging am 17, 7, 1985 ein.