Klassendiagramm

Klassen werden – wie bereits bekannt – durch *Klassenkarten* veranschaulicht. In einer Klassenkarte können sowohl Datentypen von Attributen als auch die Rückgabetypen von Methoden angegeben werden. Sie werden mit einem Doppelpunkt hinten angehängt. Des Weiteren können die Modifikatoren durch ein + für public und ein – für private dargestellt werden.

Beispiel: einfache Klassenkarte

KREIS

(erweiterte) Klassenkarte

KREIS

farbe : intradius : int

+KREIS()

+nenneRadius(): int

setzeRadius(rNeu : int) : void

verschiebenUm(x : int, y : int) : void

Zwischen Klassen können verschiedene **Beziehungen** bestehen. Ein Klassendiagramm stellt dar, welche Beziehungen Objekte einer Klasse prinzipiell eingehen können. Diese Beziehung wird durch eine Verbindung der Klassen **inklusive Beschriftung** dargestellt.

Durch "vereinfachte" Klassenkarten werden die Beziehungen in Klassendiagramm übersichtlicher, da die Attribute und die Methoden nicht angegeben werden.

<u>Beispiel:</u> Dargestellt werden soll die Beziehung in einem Sportverein mit Mannschaften, Trainern und Spielern.

SPIELER spielt in MANNSCHAFT trainiert TRAINER

<u>Multiplizitäten</u>

Des Weiteren beinhaltet das Klassendiagramm Informationen darüber, mit wie vielen anderen Objekten ein Objekt in Beziehung stehen kann – die *Multiplizität*. Das Konzept der Multiplizität ist verwandt mit dem der Kardinalität (1:1 n:1 n:m) in der Datenbankmodellierung. Dies wird am Ende der jeweiligen Beziehungslinie notiert. Die Multiplizität wird in der Regel mit einem *Intervall untereSchranke..obereSchranke* angegeben. Beispiele: 0...1 1...5 0...* 1...1 oder 1

Wenn die Objektanzahl genau bestimmt werden kann, sprich die obere Schranke gleich der unteren Schrank ist, reicht es aus eine Zahl anzugeben. Der * bedeutet unbeschränkt viele Objekte. (Falls diese exakte Zahl 1 ist, kann man die Multiplizität auch weglassen.)

Beispiele:

Ein Mathematiklehrer hat *mehrere* Schüler (mindestens einen), jeder Schüler hat jedoch *genau einen* Mathelehrer.

Für ein Billardspiel werden genau 16 Kugeln und 2 Queues benötigt.

In einem Sportverein kann jedes Mitglied an *mehreren* Sportgruppen (auch an keiner) teilnehmen und jede Sportgruppe kann von *mehreren* Mitgliedern (auch keinen) besucht werden. (Der Sportverein wird nicht genauer beschrieben, daher muss er nicht im Klassendiagramm behandelt werden. Er gibt somit nur den Rahmen des Szenarios an.)

Vererbung

Vererbung gibt eine *"ist-ein"-Beziehung* zwischen Klassen an. Sie wird durch einen Pfeil mit einem Dreieck als Spitze angegeben.

Aggregation und Komposition

Aggregation und Komposition sind spezielle Formen der Assoziation (=normale Beziehung). Hier wird eine Teil-eines-Ganzen-Beziehung dargestellt. Sie unterscheiden sich in der Existenzabhängigkeit.

Der Reifen ist ein Teil des Autos; kann aber ohne das Auto existieren.

Der Raum ist ein Teil des Gebäudes; kann aber nicht ohne das Gebäude existieren.