

FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution

Binpeng Shi¹, Yu Luo¹, Jingya Wang¹, Yongxin Zhao¹, Shenglin Zhang¹, Bowen Hao¹, Chenyu Zhao¹, Yongqian Sun¹, Zhi Zhang², Ronghua Sun², Haihua Li², Wei Song², Xiaolong Chen², Jingbo Miao², Dan Pei³

¹Nankai University,

²Huawei,

³Tsinghua University

Reporter: Binpeng Shi

Email: shibinpeng23@mail.nankai.edu.cn

Outline

What are the typical resolutions for a cloud incident?

→ Workflow, step-by-step guidance and executable scripts

How to transform a naive LLM into a workflow generator in the field of cloud services?

→ Support of domain knowledge, alignment of application capability

Framework design

→ Knowledge Base Construction, Multi-Agent Coevolution

Evaluation

→ Benchmark tests, online deployment, case study

Impact of Incidents

Incidents → Unsatisfying customers → Economic loss

Typical Resolutions for Cloud Incidents

Process Step A[Incident: Low optical power] --> B [Clean the optical module interface] # Decision Step B --> C[Check if the optical power has returned to normal?] # Process Step C -- No --> D[Repair or contact support] # Terminal Step C -- Yes --> E[Complete]

Step-by-step guidance

- Executable scripts
- All agent equipped with tool invocation and result analysis capabilities

Most cloud service providers abstract troubleshooting into workflows, which follow a structured sequence of core steps

Workflow Usage and Acquisition

Heavy Usage

- Workflow Recommendations Based on Similar Cases
- Automated Incident Execution and Analysis

Difficult Acquisition

- For a workflow: 7 Hours + 7 OCEs
- Including contributions from 2 experts

Workflows play a critical role in troubleshooting, which urgently needs to shift from manual creation to automated orchestration

Outline

What are the typical resolutions for a cloud incident?

→ Workflow, step-by-step guidance and executable scripts

How to transform a naive LLM into a workflow generator in the field of cloud services?

→ Support of domain knowledge, alignment of application capability

Framework design

→ Knowledge Base Construction, Multi-Agent Coevolution

Evaluation

→ Benchmark tests, online deployment, case study

Design Motivation

From naive LLM to workflow generator

Challenges in the Transformation Process

Outline

What are the typical resolutions for a cloud incident?

→ Workflow, step-by-step guidance and executable scripts

How to transform a naive LLM into a workflow generator in the field of cloud services?

→ Support of domain knowledge, alignment of application capability

Framework design

→ Knowledge Base Construction, Multi-Agent Coevolution

Evaluation

→ Benchmark tests, online deployment, case study

FlowXpert Overview

A Framework dedicated to transforming naive LLMs into high-quality workflow generators

Module #1 Knowledge Base Construction

Module #1 Extract Incidents from Chunks

Module #1 Fill in Incident-Aware Nodes

Module #1 Merge and Refine Nodes across Chunks

Module #2 Multi-Agent Coevolution

Module #2 PPO for Planner

Module #2 DPO for Scorer

Outline

What are the typical resolutions for a cloud incident?

→ Workflow, step-by-step guidance and executable scripts

How to transform a naive LLM into a workflow generator in the field of cloud services?

→ Support of domain knowledge, alignment of application capability

Framework design

→ Knowledge Base Construction, Multi-Agent Coevolution

Evaluation

→ Benchmark tests, online deployment, case study

Evaluation: Dataset and Metric

Evaluation Dataset:

- From operation documents of Huawei Cloud's datacenter network (DCN team)
- 252 user queries and their corresponding standard workflows
- 4 domains: hardware, interface, network, top

Metric:

- We propose STEPScore as a tailored metric
- The Precision indicates how closely the generated steps match the standard steps.
- The *Recall* indicates how well the standard steps are retrieved in the generated

steps.
$$Precision = \frac{1}{|S_g|} \sum_{s_i \in S_g} max_{s_j \in S_r} \cos(E(S_i), E(S_j)) \qquad Recall = \frac{1}{|S_r|} \sum_{s_j \in S_r} max_{s_i \in S_g} \cos(E(S_i), E(S_j))$$

Evaluation: Overall Performance

Seed LLM	Method	STEPScore in Different Scenarios (%)														
		Hardware			Interface			Ne	etwork		TOP			Average		
		Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Qwen-2.5-7B-Instruct	zero-shot	76.4	72.3	73.7	70.1	67.2	68.0	75.6	69.5	71.9	66.4	60.0	62.5	71.6	66.8	68.5
	w/ VectorRAG	78.1	75.3	76.2	68.6	69.9	68.8	74.5	75.6	74.6	67.9	68.4	67.9	72.2	71.9	71.7
	w/ GraphRAG	73.8	77.0	74.9	70.1	70.8	70.1	65.3	65.8	64.9	65.8	67.9	66.3	69.3	71.2	69.8
	w/ CoT	76.6	76.7	76.4	71.7	73.2	72.1	68.7	73.1	70.5	64.9	67.4	65.8	70.7	72.5	71.2
	w/ SFT	67.5	70.5	68.5	65.7	70.5	67.5	63.2	68.6	65.3	61.6	66.2	63.3	64.6	68.8	66.2
	w/ RL_GPT4o	76.1	76.6	76.0	69.7	72.2	70.5	69.0	70.0	69.1	67.3	70.0	68.2	70.9	72.6	71.3
	FlowXpert (0th iteration)	74.8	78.1	76.0	70.2	71.7	70.7	70.0	73.0	71.0	63.8	66.0	64.5	69.6	72.1	70.4
	FlowXpert (1st iteration)	77.3	78.2	77.4	68.4	71.7	69.6	68.4	74.5	70.9	66.6	70.4	68.0	70.7	73.8	71.8
	FlowXpert (2nd iteration)	77.2	78.3	77.5	71.0	73.3	71.7	70.7	73.0	71.4	67.6	67.0	66.7	71.9	72.9	71.9
Llama-3.1-8B-Instruct	zero-shot	65.8	62.5	63.6	49.7	45.6	47.3	71.0	65.6	67.2	56.4	49.1	51.9	59.8	54.8	56.6
	w/ VectorRAG	75.2	74.7	74.6	70.6	67.8	68.6	69.5	70.8	69.7	63.9	63.5	63.2	69.8	69.0	69.0
	w/ GraphRAG	71.0	74.1	72.1	67.6	70.2	68.6	64.0	68.0	65.5	64.6	66.7	65.3	67.3	70.1	68.2
	w/ CoT	78.2	73.4	75.4	70.2	67.0	68.2	72.4	74.8	73.1	66.0	64.8	64.8	71.7	69.3	70.0
	w/ SFT	79.6	72.7	75.3	71.4	66.1	68.2	70.7	62.3	65.1	69.0	61.5	64.6	73.2	66.3	69.0
	w/ RL_GPT4o	77.8	72.8	74.7	71.0	66.4	68.1	69.9	72.5	70.6	66.0	63.3	64.2	71.4	68.2	69.3
	FlowXpert (0th iteration)	76.7	75.6	75.7	71.0	69.1	69.5	70.6	71.5	70.6	65.7	64.2	64.4	71.1	69.9	70.0
	FlowXpert (1st iteration)	77.0	72.8	74.4	69.7	68.2	68.6	71.4	71.9	71.1	65.5	63.9	64.1	70.9	68.8	69.3
	FlowXpert (2nd iteration)	74.8	71.9	72.3	70.7	66.5	68.1	69.8	70.5	69.7	62.4	59.2	60.3	69.2	66.4	67.3
InternLM-2.5-7B-Chat	zero-shot	74.0	72.4	72.4	69.3	67.9	67.9	71.9	65.6	67.3	67.2	59.3	62.5	70.5	66.3	67.5
	w/ VectorRAG	76.6	72.7	74.0	69.3	66.3	67.1	77.2	72.2	74.0	66.5	61.5	63.3	71.8	67.5	69.0
	w/ GraphRAG	71.4	75.6	72.7	71.4	69.8	69.9	70.8	66.8	67.9	64.9	64.8	64.5	69.2	69.7	68.8
	w/ CoT	75.0	73.3	73.5	71.9	67.9	69.2	70.6	73.5	71.3	65.3	60.7	61.7	70.6	68.0	68.4
	w/ SFT	82.0	76.2	78.5	70.7	68.0	68.9	71.6	71.6	71.1	72.2	65.5	68.3	75.0	70.3	72.1
	w/ RL_GPT4o	75.2	74.0	74.0	69.3	71.2	69.9	66.9	69.3	67.7	66.5	67.5	66.5	70.0	70.6	69.9
	FlowXpert (0th iteration)	72.5	75.9	73.5	66.7	71.7	68.8	66.3	72.0	68.6	64.3	65.5	64.4	67.8	71.1	68.9
	FlowXpert (1st iteration)	73.2	75.8	73.8	69.8	71.4	70.3	67.1	70.8	68.3	64.2	68.4	65.8	68.7	71.8	69.7
	FlowXpert (2nd iteration)	72.3	74.8	72.8	68.2	70.4	68.9	70.0	72.0	70.1	65.7	69.3	66.8	68.9	71.7	69.6

Online Deployment: For OCEs

For OCEs: (1) A 10-week deployment in Huawei Cloud DCN, 189 common incident types, 34K incident tickets; (2) average 22.1 seconds for a workflow v.s. 7-hour effort of a 7-person OCE team, including 2 experts.

Step-by-step execution

Case Study: For Al Executors

Query: How to handle the incident <DELETE_DEFAULT_ROUTE> ? (2)

[Workflow] for <DELETE DEFAULT ROUTE>

[Step1] Query the incident details based on the incident ID.

[Step2] Query the device's current default route entries by instance ID and device IP.

[Step3] If default routes >1, proceed. Else, end. Disposal: report immediately.

[Step4] Query shutdown tickets in 12 hours by device IP.

[Step5] If shutdowns > 3, contact OCEs. Else, shut down the ticket directly.

Executor

STEP1: Process (Due to the non-disclosure agreement, we replace the actual query result with [Event]...)

Function Call: Query incident information.

Response: [Event] [Area] [Instance ID] [Device IP] [Interface ExitIf]...

Function Call: Query the number of default route entries for a given device.

Response: [Default number of route entries, n 1].

STEP3: Decision

Logical judgment: Determine based on the number of default route entries.

Response: [Logic code] n > 1 [Result] Perform step 4.

STEP4: Process

Function Call: Query the number of 12-hour shutdowns.

Response: [Number of shutdown tickets, n 2].

STEP5: Decision & Terminal

Logical judgment: Determine based on the number of shutdown tickets.

Response: [Logic code] $n_2 > 3$ [Disposal Suggestion] Contact OCEs for support.

For AI Executors: A case study of autonomous Al Executor for incident handling.

Future Directions

- Novel Incident Handling: ...
- Quality of Retrieved Knowledge: ...
- Execution Constraints: ...

Takeaways

- We propose FlowXpert, a framework that orchestrates troubleshooting workflows by integrating domain knowledge support and aligned knowledge application. Specifically, we (1) define a domain ontology to guide the knowledge base construction, (2) implement multi-agent coevolution through PPO and DPO tuning, (3) design a preference data synthesis method controlled by contextual richness.
- We introduce STEPScore, a metric designed around core characteristics of workflows, and conduct extensive benchmark tests based on real-world incidents from Huawei Cloud DCN team.

The same directions of DCNI arms from a resolution of the last of

Thank you!

Reporter: Binpeng Shi

• Email: shibinpeng23@mail.nankai.edu.cn