Ministerul Educației Tineretului și Sportului al Republicii Moldova

Universitatea Tehnică a Moldovei

REFERAT

Lucrarea de Laborator nr. 3

Tema: Determinarea momentelor de inerție principale ale rigidului cu ajutorul pendulului de torsiune

A efectuat		Studentul grupei				
	sen	nnătura		nume, prenume		
A verificat _	nota	data	semnătura	nume, prenume profesor		

Chisinău _____

1. Scopul lucrări:

2. Aparate și accesorii:

3. Schema instalației

Unde:

1

2

3 _____

4

5

6_____

7 _____

8

9

10_____

4. Formula de calcul:

$$I = \frac{D}{4\pi^2} (T_1^2 - T_0^2) = \frac{N}{8\pi} \frac{d^4}{16L} (T_1^2 - T_0^2), \quad I = I_x \cos^2 \alpha + I_y \cos^2 \beta + I_z \cos^2 \gamma.$$

unde _____

_	7D 1 1	_	J		T 4	
5.	Tabela	masu	rarilor	SI	deter	minărilor

data / semnătura profesorului

	m
L	
ΔL	
d	
Δd	
а	
b	
C	

	10 ¹⁰ Pa	
N		
ΔN		-

π	
$\Delta\pi$	

	oscilații
n	

Nr	<i>t</i> ₀ , s	$T_0 = \frac{t_0}{n}, s$	ΔT_0 , s	t_x , s	$T_x = \frac{t_x}{n}$, s	ΔT_x , s	$I_x, 10^{-4}\mathrm{kg}\cdot\mathrm{m}^2$	ΔI_x , 10^{-4} kg·m ²	\mathcal{E}_x , %
1									
2									
3									
4									
5									
6									

Nr	t_y , s	$T_{y} = \frac{t_{y}}{n}$, s	ΔT_y , s	I_y , 10^{-4} kg·m ²	ΔI_y , $10^{-4} \mathrm{kg} \cdot \mathrm{m}^2$	\mathcal{E}_y , %
1						
2						
3						
4						
5						

Nr	t_z , S	$T_z = \frac{t_z}{n}$, s	ΔT_z , s	I_z , 10^{-4} kg·m ²	ΔI_z , $10^{-4} \mathrm{kg} \cdot \mathrm{m}^2$	\mathcal{E}_z , %
1						
2						
3						
4						
5						

Nr	t, s	$T = \frac{t}{n}$,s	ΔT , s	$I,10^{-4}\mathrm{kg}\cdot\mathrm{m}^2$	$\Delta I, 10^{-4} \mathrm{kg} \cdot \mathrm{m}^2$	ε, %
1						
2						
3						
4						
5						

6. Exemplul de calcul

$$I_x = \underline{\hspace{2cm}}$$

$$I_y = \underline{\hspace{1cm}}$$

$$I_z =$$

$$I = \frac{1}{\cos \alpha} = \frac{\cos \beta}{\cos \gamma} = \frac{\cos \gamma}{\cos \gamma}$$

Verificarea valabilității relației:

$$I = I_x \cdot \cos^2 \alpha + I_y \cdot \cos^2 \beta + I_z \cdot \cos^2 \gamma$$
: \approx

7	A -1	. 1			.•1	
/.	C A	CU	ıuı	eroi	~	() r:

 $\Delta I =$

$$\Delta I_x = \frac{10^{-4} \text{ kg} \cdot \text{m}^2}{10^{-4} \text{ kg} \cdot \text{m}^2},$$

$$\Delta I_y = \frac{10^{-4} \text{ kg} \cdot \text{m}^2}{10^{-4} \text{ kg} \cdot \text{m}^2},$$

$$\Delta I_z = \frac{10^{-4} \text{ kg} \cdot \text{m}^2}{10^{-4} \text{ kg} \cdot \text{m}^2},$$

8. Rezultatul final

$$I_x = \frac{10^{-4} \, kg \cdot m^2}{5}; \quad \varepsilon_x = \frac{9}{6};$$

$$I_y = \frac{10^{-4} \, kg \cdot m^2}{5}; \quad \varepsilon_y = \frac{0}{0};$$

$$I_z = \frac{10^{-4} \, kg \cdot m^2}{5}; \qquad \varepsilon_z = \frac{9}{6}$$

$$I = \frac{10^{-4} \, kg \cdot m^2}{\varepsilon}$$
; $\varepsilon = \frac{\%}{0}$.

9. Concluzii