Лабораторная работа 4.3.4. ПРЕОБРАЗОВАНИЕ ФУРЬЕ В ОПТИКЕ

Державин Андрей, Б01-901

10 марта 2021 г.

Содержание

<u></u>	Мультиплипипование
_	жению спектра
	Определение периода решёток по увеличенному изобра-
Ļ	Определение периода по спектру на удалённом экране .
Ļ	Определение периода решёток
13	Определение ширины щели по её спектру
12	Определение ширины щели с помощью линзы
1	Определение ширины щели
1;	Код работы
1	Экспериментальная установка
	Мультипликация изображения предмета
	Метод Аббе
_	дической последовательности таких функций
	Спектр функции пропускания щелевой диафрагмы и перио-
	решётки
	Спектр функции пропускания амплитудной синусоидальной
٥.5	Георетические сведения

Цель работы: исследование особенностей применения пространственного преобразования Фурье для анализа дифракционных явлений.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

Теоретические сведения

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например,представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет али транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если ва предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы. даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

Спектр функции пропускания амплитудной синусоидальной решётки

Рассмотрим вначале простой пример: дифракцию плоской монохроматической волны на синусоидальной амплитудной решётке. Пусть решётка с периодом d расположена в плоскости Z=0, a её штрихи ориентированы вдоль оси Y. Функция пропускания такой решётки имеет вид

$$t(x) = \beta + \alpha \cos(ux) = \beta + \alpha \frac{e^{iux} + e^{-iux}}{2}$$
 (1)

с постоянными α , β и и $(u=2\pi/d$ - пространственная частота)

Если на решётку падает плоская монохроматическая волна, распространяющаяся вдоль оси Z,

$$E(\vec{r},t) = E_0 e^{-i(\omega t - kz)} \tag{2}$$

где ω — круговая частота, k — волновой вектор ($k=2\pi/\lambda$), E_0 — амплитуда, то на выходе из решётки мы получим три плоских волны:

$$E_{1} = \beta \cdot E_{0} e^{-i(\omega t - kz)};$$

$$E_{2} = \frac{\alpha}{2} \cdot e^{-i(\omega t - ux - z\sqrt{k^{2} - u^{2}})};$$

$$E_{3} = \frac{\alpha}{2} \cdot e^{-i(\omega t + ux - z\sqrt{k^{2} - u^{2}})}.$$
(3)

Действительно, легко видеть, что в плоскости Z=0 амплитуда колебаний, создаваемая суммой этих волн, описывается функцией (1), а фаза колебаний постоянна. Таким образом, в силу единственности решения волнового уравнения при заданных граничных условиях мы нашли искомую суперпозицию плоских волн. Каждая из этих трёх плоских волн фокусируется линзой в точку в задней фокальной плоскости.

Волна $E_1=\beta\cdot E_0\,e^{-i(\omega\,t-kz)}$, распространяющаяся вдоль оси линзы (оси Z), фокусируется в начало координат, а волны E_2 и E_3 , распространяющиеся в направлении $\sin\theta=\pm(u/k)$, фокусируются в точках $x_{1-2}=\pm Fu/k=\pm F\lambda/d$ (F – фокусное расстояние линзы).

Функция t(x) с самого начала задана в виде суммы гармонических составляющих, т.е. в виде ряда Фурье. Каждой гармонической составляющей мы поставили в соответствие с (3) плоскую волну, собираемую линзой в точку в задней фокальной плоскости (её обычно называют фурье-плоскостью). Проводя аналогию с «временной» координатой, мы можем заключить, что спектр функции t(x) представлен в фурье-плоскости тремя пространственными частотами: 0, +u, -u; с амплитудами соответственню: β , $\alpha/2$, $\alpha/2$.

Теорема Фурье, доказываемая в курсе магематического анализа, утверждает, что широкий класс периодических функций t(x) может быть представлен в виде суммы бесконечного множества гармонических составляющих, имеющих кратные частоты, т. е. в виде ряда Фурье. В комплексной форме этот ряд имеет вид

$$t(x) = \sum_{n = -\infty}^{\infty} c_n e^{inux}$$
 (4)

Рассуждая так же, как в случае амплитудной синусоидальной решётки, мы придём к выводу, что картина, наблюдаемая в фурье-плоскости, представляет собой эквидистантный набор точек с координатами

$$x_n = \frac{Fu}{k}n = \frac{F\lambda}{d}n$$

Строим график $\Delta y = f(1/d_c)$, где d_c – периоды решёток, определённые по спектру.

Рис. 9: Зависимость периода «фиктивных» решеток от $1/d_{\rm c}$

У, мм	σ_{Y} , mm	ᄼᅩ	u	ΔY , mm	$\sigma_{\Delta Y}$, mm
54	0,5	7	-	27,0	0,3
35	0,5	7	7	17,5	0,3
20	0,5	7	3	10,0	0,3
21	0,5	4	4	5, 25	0,13
15	0,5	2	5	7,5	0,3

Таблица 6: Собранные данные

σ_{1/d_c} , mm^{-1}	0,3	0,3	0,3	0,3	0,3
$1/d_c$, MM^{-1}	87,4	58,7	28,7	15,0	12,0
$\sigma_{\Delta y}$, MM	0,04	0,04	0,04	0,02	0,04
Δy, mm	4,38	2,84	1,62	0,85	1,22

Таблица 7: Результат

Рассчитываем периоды Δy «фиктивных» решёток, которые дали бы такую же периодичность на экране: $\Delta y = \Delta Y/\Gamma_2$, где $\Delta Y = Y/K$.

и амплитудами, пропорциональными с_п. Таким образом, с помощью динзы в оптике осуществляется пространственное преобразование Фурье: при освещении транспаранта плоской монохроматической волной картина, наблюдаемая в задней фокальной плоскости линзы, установленной за транспарантом, представляет собой фурье-образ функции пропускания транспаранта.

Последнее утверждение нуждается в уточнении. Распределение света в задней фокальной плоскости линзы будет воспроизводить распределение амплитуд плоских волн, продифрагировавших на транспаранте, но фазовые соотношения при этом, вообще говоря, оказываются искажёнными и не соответствуют аргументам комплексных амплитуд в выражении (4). При изменении расстояния между транспарантом и линзой фазовые соотношения изменяются. Можно доказать, что если транспарант установлен в передней фокальной плоскости линзы, то в её задней фокальной плоскости восстанавливаются и амплитудные, и фазовые соотношения между плоскими волнами, и таким образом строго осуществляется комплексное фурье-преобразование (4).

Во многих практически важных случаях функция пропускания транспаранта чисто амплитудная, как, например, в случае амплитудной синусоидальной решётки (1). Тогда для того, чтобы найти фурье-образ функции пропускания транспаранта, достаточно определить только пространственные частоты и соотношение между амплитудами плоских волн на выходе из транспаранта. Для амплитудной синусоидальной решётки мы получили три плоских волны с пространственными частотами 0, +u, -u и амплитудами, пропорциональными β , α /2. В соответствии с (1) мы можем утверждать, что нашли пространственный фурье-образ функции пропускания амплитудной синусоидальной решётки.

Интересно заметить, что наблюдаемая визуально картина фраунгоферовой дифракции в задней фокальной плоскости линзы не зависит от расстояния между транспарантом и линзой, так как глаз не реагирует на фазу волны, а регистрирует только интенсивность (усреднённый по времени квадрат амплитуды поля). Условия наблюдения дифракции Фраунгофера можно выполнить и без применения линзы, если наблюдать дифракционную картину на достаточно удалённом экране. Таким образом, пространственное преобразование Фурье может осуществляться и в свободном пространстве при наблюдении дифракции Фраунгофера.

Спектр функции пропускания щелевой диафрагмы и периодической последовательности таких функций

Картина дифракции Фраунгофера на щели и на дифракционной решётке, имеющей вид периодического набора щелей, хорошо известна из курса оптики. Спектр дифракционной решётки представлен на рис. Если размеры дифракционной решётки неограничены, то дифракционные максимумы в спектре бесконечно узки. Чем меньше размер решётки (полное число щелей), тем шире каждый отдельный максимум.

Рис. 1: а) $g_1(x)$ — функция пропускания дифракционной решётки (последовательности прозрачных и непрозрачных полос); 6) $G_1(u)$ — спектр функции пропускания дифракционной решётки

Направление на главные максимумы $\theta_n=un/k=\lambda n/d$ $(n-\mu)$ (пределяется периодом решётки d, а распределение амплитуд в спектре (огибающая) – фурье-образом функции пропускания отдельного штриха.

$$g_2(x) = \begin{cases} 1, -D/2 \le x \le D/2; \\ 0, -D/2 > x > D/2. \end{cases}$$
 (5)

Так как функция $g_2(x)$ непериодична, её фурье-образ представляется непрерывным множеством точек и определяется интегральным преобразованием Фурье:

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(u) e^{iux} du,$$

$$G(u) = \int_{-\infty}^{\infty} g(x) e^{-iux} dx.$$
(6)

Определение периода решёток по увеличенному изображению спектра

Схема установки изображена на рис.

Поставили линзу Λ_2 с максимальным фокусом ($F_2=11$ см) на расстоянии F_2 от кассеты. В плоскости Φ линза Λ_2 даёт фурье-образ сетки — её спектр, а короткофокусная линза Λ_3 ($F_3=2.5$ см) создаёт на экране увеличенное изображение этого спектра.

Измерили X и т для всех сеток, где это возможно. Зная увеличение линзы Λ_3 ($\Gamma_3=b_3/a_3$), можно рассчитать расстояние между максимумами Δx в плоскости Φ , а затем период сетки d_{Λ} :

$$\Delta x = \frac{\Delta X}{\Gamma_3} = \frac{\lambda}{d_x} F_2 \tag{11}$$

38	52, 5	104	205	294	Х, мм
0,5	0, 5	0, 5	0, 5	0, 5	σ_X , mm
_	1	1	1	1	m
5	4	3	2	1	n
82	59, 5	30	15, 2	10, 6	d_1 , mkm
2	1,4	0,7	0,3	0,2	σ_{d_1} , mkm

Таблица 5: Сбор данных для d_л

Мультиплицирование

Ставим тубус с щелью к окну лазера (рис. ??) и находим на экране резкое изображение щели с помощью линзы Λ_2 ($F_2 \approx 10$ см).

Подбираем такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для всех сеток

Снимаем зависимость Y (расстояние между удалёнными изображениями щели) и K (число промежутков между изображениями) от N° (номер сетки) для фиксированной ширины входной щели.

Рис. 8: Зависимость экспериментально рассчитанной ширины щели от измеренной

Определение периода решёток

Определение периода по спектру на удалённом экране

Ставим кассету с двумерными решётками (сетками) вплотную к выходному окну лазера. Для каждой сетки измеряем расстояние X между \mathfrak{m} -ми максимумами. Также измеряем расстояние L от кассеты до экрана. Рассчитайте расстояния X между соседними максимумами и определяем период каждой решётки $d_c = f(N^o)$, используя соотношения

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{d_c} L \tag{10}$$

$\sigma_{ m d_c}$, mkm	0,04	0,09	0,4	1,3	2
d_c , MKM	11,44	17,05	34,8	8,99	84
u	-	7	3	4	2
ш	-	-	1	1	1
σ_{X} , MM	0,5	0,5	0,5	0,5	0,5
χ , mm	146	86	48	25	20

Таблица 4: Зависимость d_c от X

Говорят, что в таком виде g(x) и G(u) представляют собой пару преобразований Фурье: G(u) — спектр или фурье-образ функции g(x).

Рис. 2: а) $g_1(x)$ — функция пропускания щелевой диафрагмы; 6) $G_1(u)$ — спектр функции пропускания щелевой диафрагмы

Спектр функции $g_2(x)$ хорошо известен, он соответствует картине дифракции Фраунгофера на щели и описывается функцией вида $\frac{\sin x}{x}$ (рис.).

Получим спектр $G_2(\mathfrak{u})$ ещё раз с помощью преобразования Φ_{y^-} рье:

$$G_2(u) = \int\limits_{-\infty}^{\infty} g_2(x) \, e^{-iux} \, dx = \int\limits_{D/2}^{D/2} e^{-iux} \, dx = D \frac{\sin(uD/2)}{uD/2}.$$

Отсюда видно, что направление на первый минимум θ_1 в огибающей спектра пропускания дифракционной решётки определяется шириной функции пропускания отдельного штриха: $\theta_1 = u/k = \lambda/D$. Если ввести понятия протяжённости функции пропускания транспаранта по координате (Δx) и ширины её спектра (Δu), то

$$\Delta \mathbf{u} \cdot \Delta \mathbf{x} = \mathbf{const.} \tag{7}$$

для частного случая функции пропускания щелевой диафрагмы, определяя ширину её спектра по первому нулю функции $\frac{\sin(uD/2)}{uD/2}$, получаем

$$\Delta u \cdot \Delta x = \frac{2\pi}{D} \cdot D = 2\pi.$$

Соотношение (7) в волновой физике играет чрезвычайно важную роль. Его называют соотношением неопределённости.

Измерив на удалённом экране расстояния между максимумами или минимумами в спектре пропускания щели (рис. б) или решётки (рис. б), можно рассчитать размер щели или период решётки.

Размер малого объекта можно рассчитать, если получить его изображение, увеличенное с помощью линзы.

Метод Аббе

Рассмотрим кратко схему образования изображения. Пусть предмет расположен в плоскости P_1 на расстоянии от линзы большем, чем фокусное. Тогда существует сопряжённая предметной плоскости P_1 плоскость P_2 , где образуется изображение предмета-щели.

Рис. 3: Схема, поясняющая метод Аббе построения изображения

Аббе предложил рассматривать схему прохождения лучей от предмета к изображению в два этапа. Сначала рассматривается изображение спектр в задней фокальной плоскости Φ линзы Λ_1 (это изображение Аббе назвал первичным).

Затем это изображение рассматривается как источник волн, создающий изображение предмет а в плоскости P_2 (вторичное изображение). Такой подход опирается на принцип Гюйгенса-Френеля, согласно которому любой участок волнового фронта можно рассматривать как источник излучения.

Картина, наблюдаемая в плоскости P_2 , зависит от распределения амплитуды и фазы в плоскости Φ – в первичном изображении. Если плоскость P_2 сопряжена с предметной плоскостью P_1 , то фазовые соотношения в первичном изображении оказываются именно такими, что в плоскости P_2 мы наблюдаем соответственно увеличенное или уменьшенное изображение предмета. Поэтому иногда говорят, что линза дважды осуществляет преобразование Φ урьє: сначала в зад-

рию измерений X(m), меняя ширину щели в тех же пределах, что и в предыдущем пункте. Также измеряем расстояние L от щели до экрана.

По результатам измерений спектра рассчитываем ширину щели D_c («с» — по спектру), используя соотношение

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{D_c} L \tag{9}$$

Длина волны He-Ne лазера $\lambda = 6328~{
m \AA}.$

MKM OD, MKM 10 10 10 10 10 10 60 10 60 10 10 10 10 10 10 10 10 10 10 10 10 10 1																
MKM OD, MKM X, MM OX, MM Dc, MKM 10 10 142 1 11,76 110 1286 1 11,68 60 60 10 28 1 60 60 60 10 54 1 61,9 60 60 10 33 1 101 209 200 10 8 1 209 200 10 25 1 200 200 10 25 1 200 300 10 6 1 27 1 304 418 400 10 9 1 371 301 557 580 10 6 1 557	2	1	2	_	2	1	3	2	1	2	1	2	1	2	_	π
X, MM OX, MM Dc, MKM 142 1 11,76 286 1 11,68 28 1 60 54 1 61,9 17 1 98 33 1 101 8 1 209 17 1 197 25 1 200 6 1 278 11 304 4 1 418 9 1 371 6 1 557	580	580	400	400	300	300	200	200	200	001	001	09	09	10	10	D, mkm
OX, MM Dc, MKM 1 11, 76 1 11, 68 1 160 1 60 1 61, 9 1 198 1 101 1 209 1 197 1 220 1 278 1 304 1 418 1 371 1 557	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	σ_D , mkm
D _c , MKM 11, 76 11, 68 60 61, 9 98 101 209 197 200 278 304 418 371 557	6	3	9	4	11	6	25	17	8	33	17	54	28	286	142	Х, мм
	_	1	1	1	1	1	1	1	1	1	1	1	1	1	_	σ_X , MM
ODE, MRM 0,08 0,04 2 1,1 6 3 26 12 8 46 46 28 104 41 186 93	557	557	371	418	304	278	200	197	209	101	98	61,9	60	11,68	11,76	D_c , mkm
	93	186	41	104	28	46	8	12	26	3	6	1,1	2	0,04	0,08	σ_{D_c} , mkm

Таблица 2: Зависимость размера изображения от ширины щели

Определим подобным образом ширину человеческого волоса.

2	1	m
32,5	17	X, mm

Таблица 3: Измерения спектра волоса

Строим графики $D_{\rm a}=f(D)$ и $D_{\rm c}=f(D)$ – рис. .

шётки дают на экране очень мелкую картину спектра, которую трудно промерить. В этом случае используют две линзы (рис.): первая (длиннофокусная) формирует первичное изображение — спектр, вторая (короткофокусная) — проецирует на экран увеличенное изображение спектра.

Ход работы

Определение ширины щели

Определение ширины щели с помощью линзы

Схема установки изображена на рис.

Измеряем расстояния a_1 и b_1 для определения увеличения Γ системы: $a_1=4.5$ см, $b_1=126.6$ см. Находим те же a_1 и b_1 с помощью формулы тонкой линзы: $a_1^{\rm reop}\approx 3.9$ см, $b_1^{\rm reop}\approx 128.1$ см.

С помощью короткофокусной линзы Λ_1 ($F_1=3.8$ см) получаем на экране Э увеличенное изображение щели. Меняя ширину щели от 50 до 500 мкм (5 - 50 делений от нового нуля), снимаем зависимость размера изображения D_1 от ширины щели D. Также, зная величение линзы и размер изображения, рассчитаем по формуле (8) ширину входной щели D_{Λ} .

$\sigma_{\mathrm{D}_{\mathrm{L}}}$, mkm	18	18	18	18	16	16	16	16	20	20
D_L , mkm	36	68	142	195	231	284	320	355	391	427
σ_{D_1} , mkm	500	500	200	200	200	200	200	200	200	200
D_1 , mkm	1000	2500	4000	5500	6500	8000	0006	10000	11000	12000
σ_{D} , mkm	10	10	10	10	10	10	10	10	10	10
D, мкм	20	100	150	200	250	300	350	400	450	200

Таблица 1: Зависимость размера изображения от ширины щели

Определение ширины щели по её спектру

Получаем на удалённом экране спектр щели, как на рис. . Измеряем ширину спектра для самой маленькой щели. Проводим се-

Рис. 4: а) $G_2(x)$ – спектр функции пропускания щелевой диафрагмы; x – координаты в задней фокальной плоскости линзы;

6) $\Phi_1(x)$ – функция пропускания решетки, установленной в фурьеплоскости линзы;

в) $\mathsf{G}_1(\mathsf{x})$ – отфильтрованный спектр щелевой диафрагмы (ср. с рис.)

ней фокальной плоскости Ф линзы получается световое поле, соответствующее фурье-образу функции пропускания предмета (с точностью до фазы), а затем на промежутке между фокальной плоскостью Ф и плоскостью изображений Р₂ осуществляется обратное преобразование Фурье, и в плоскости Р₂ восстанавливается таким образом изображение предмета.

Мультипликация изображения предмета

Рассмотрим, что произойдёт с изображением предмета, если мы установим в задней фокальной плоскости линзы решётку. Сопоставим вначале спектры щелевой диафрагмы (рис.) и периодической после-

6

довательности щелевых диафрагм (рис.).

Легко видеть, что спектр, изображённый на рис., можно получить из спектра, изображённого на рис., если исключить из него часть пространственных частот, поместив в фурье-плоскость решётку последовательность прозрачных и непрозрачных линий (рис.).

Отфильтрованный таким образом спектр не будет отличаться ни по амплитуде, ни по фазе от спектра периодической последовательности щелевых диафрагм, и в плоскости P₂ мы получим вместо изображения одиночной щели изображение периодической последовательности щелей.

Эти рассуждения можно повторить и для предмета с произвольным спектром, необходимо только, чтобы период решётки был заметно меньше ширины спектра (точное соотношение можно получить из теоремы Котельникова). Таким образом, установив в задней фокальной плоскости линзы решётку, мы вместо изображения одиночного предмет а получим эквидистантный набор изображений таких предметов, т. е. осуществим мультипликацию изображения предмета (увидим изображение несуществующей «фиктивной» решётки).

Поменяв местами сетку и щель, можно проследить влияние размера щели на изображение сетки.

Экспериментальная установка

Схема установки представлена на рис. . Щель переменной ширины D, снабжённая микрометрическим винтом B, освещается параллельным пучком света, излучаемым лазером (радиус кривизны фронта волны велик по сравнению с фокусными расстояниями используемых в схеме линз).

Рис. 5: Схема для определения ширины щели с помощью линзы

 ${
m V}$ величенное изображение щели с помощью линзы ${
m \Lambda}_1$ проеци-

руется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета – α_1 и до изображения – b_1 , т. е. от увеличения Γ системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1} \tag{8}$$

Изображение спектра щели образуется в задней фокальной плоскости Φ линзы Λ_1 . Размещая в плоскости Φ двумерные решёткисетки, можно влиять на первичное изображение и получать мультиплицированное изображение щели.

Рис. 6: Схема для определения ширины щели по спектру

Рис. 7: Схема определения периода решётки по увеличенному изображению спектра

Убрав линзу, можно наблюдать на экране спектр щели (рис.), а если заменить щель решёткой – спектр решётки. Крупные ре-