

Valorização de biocarvões e cinzas de gaseificação /combustão em processos de remediação de efluentes

Octávio Alves, Catarina Nobre, Margarida Gonçalves, Paulo Brito, Eliseu Monteiro, Benilde Mendes

Abril de 2017

1. Introdução

- Efluentes em foco:
 - lixiviado de aterro sanitário: mistura de águas da chuva infiltrantes com matéria orgânica em decomposição:

Contaminantes	Propriedades
 Acidos húmicos e fúlvicos, álcoois, aldeídos. Metais pesados (Pb, Cr, Cd). PAH's, fenóis, dioxinas. 	 pH ácido (<6). Elevado CQO (>10 g/L). Alto índice de cor (>1500).

 condensado de gaseificação: fração líquida formada durante o arrefecimento do syngas:

Contaminantes	Propriedades	
 Compostos aromáticos (naftaleno, tolueno, furanos). 	Elevado CQO (≈30 g/L).Alto índice de cor.	

1. Introdução (cont.)

- Etapas convencionais de remediação de efluentes:
 - lagoas de depuração;
 - osmose inversa (membranas);
 - adsorção com carvão ativado.
- Desvantagens:
 - maiores custos;
 - longo tempo de processamento;
 - saturação dos materiais;
 - impacto ambiental (cheiros, contaminação de solos).

Motivação: preparação de novos adsorventes de contaminantes a partir de resíduos da combustão/gaseificação de biomassa.

1. Introdução (cont.)

Processo de combustão:

■ Processo de gaseificação:

■ Matérias-primas testadas: arroz, estilha de madeira, bagaço açúcar, trigo, lamas.

1. Introdução (cont.)

- Caraterísticas das cinzas e biocarvões da combustão/gaseificação:
 - composição essencialmente inorgânica/carbonácea;
 - elevada área superficial e porosidade;
 - grupos funcionais superficiais (carboxilos e hidroxilos);
 - carga elétrica negativa;
 - hidrofobicidade.

- Maior poder de adsorção de contaminantes aquosos;
- recuperação de um resíduo → melhora a sustentabilidade dos processos.

Cinzas Biocarvão

2. Objetivos

- Definir uma estratégia para descontaminação dos efluentes por adsorção em cinzas/biocarvões.
- Comparar propriedades químicas dos efluentes antes e após a adsorção.
- Apurar o grau de descontaminação utilizando biocarvões diferentes.

3. Materiais

- Efluentes:.
 - lixiviado de aterro de resíduos industriais não perigosos;
 - condensados da gaseificação em leito fluidizado de vários materiais e resíduos.
- Cinzas: co-combustão de biomassa e CDR num forno de uma fábrica de cerâmica.
- Biocarvões de gaseificação:

Matéria-prima	Condições gaseificação	Código
Estilha acácia	 Reator downdraft. Temperatura: 950-1020 °C. Caudal ar: 40 m³/h. 	EA
Bagaço azeitona	 Reator leito fluidizado. Temperatura: 791 °C. Caudal ar: 77 m³/h. Caudal biomassa: 50 kg/h. 	ВА
Mistura biocarvões lenhocelulósicos	Reator leito fluidizado.Diversas condições.	MB

4. Metodologia

Adsorção simples em cinzas e biocarvões:.

Adsorção em cinzas e 3 vezes em biocarvão BA:

4. Metodologia (cont.)

- Análises químicas efetuadas (Standard Methods, APHA):
 - teor de sólidos;
 - pH;
 - condutividade elétrica;
 - CQO.

5. Resultados

■ Propriedades e aspeto dos efluentes brutos:

Efluente	Teor sólidos (g/L)		рН	Condutividade elétrica	CQO	
	Totais	Voláteis	Fixos		(mS/cm)	(g O ₂ /L)
Lixiviado aterro	20,1	4,8	15,2	8,0	27,6	8,1
Condensado gaseificação	14,8	13,3	1,5	6,8	9,8	30,3

Lixiviado aterro

Condensado gaseificação

Conteúdo em sólidos (adsorção simples):

Conteúdo em sólidos (adsorção tripla em biocarvão BA):

■ pH:

Condutividade elétrica (σ):

■ Eficiência na remoção de CQO (Δ_{CQO}):

6. Conclusões preliminares

- Tratamento com cinzas + BA pode reduzir sólidos voláteis.
- Adição de cinzas → aumento da alcalinidade e carga iónica.
- Adsorção tripla em BA → redução ligeira da alcalinidade e carga iónica.
- Adição de cinzas → elevados Δ_{COO} para o lixiviado de aterro.
- Δ_{CQO} é máximo (90 %) no tratamento com cinzas + 2 adsorções em BA.
- Limitação do n.º de adsorções em biocarvão BA (devido à possível libertação de poluentes).

7. Possíveis trabalhos futuros

- Apurar a composição orgânica e inorgânica dos efluentes tratados.
- Definir novas soluções para redução eficaz da alcalinidade e carga iónica.
- Integração de um pré-tratamento biológico para colocar CQO nos limites legais.
- Testar a remediação com biocarvões da gaseificação de lamas / CDR's.

OBRIGADO PELA ATENÇÃO!