Canonic Signed Digit (CSD) Representation

Instructor: Pei-Yun Tsai

Hardware Reduction

- Constant multiplication
 - Can be replaced by shift-and-add
 - In binary representation, $C = \sum_{k=0}^{N-1} a_k 2^k$ $a_k \in \{0,1\}$
 - The more "1"s, the more shifters and adders
 - CSD provides method to reduce shifters and adders

$$C = \sum_{k=0}^{N-1} c_k 2^k \quad c_k \in \{-1,0,1\}$$

Examples

Binary representation

00111010111 471_{dec}

CSD

00111010111

00111011001

00111101001

01000101001

512-1-8-32=471

Binary representation

11001011101 -419_{dec}

CSD

11001100101

11010100101

01010100101

-512+128-32-4+1=-419

Properties of CSD

- No 2 consecutive bits in a CSD number are non-zero.
- The CSD representation of a number contains the minimum possible number of non-zero bits.
- The CSD representation of a number is unique.
- CSD numbers cover the range (-4/3,4/3), out of which the values in the range [-1,1) are of greatest interest.

Systematic Approach (1/2)

$$B=(b_{N-1},b_{N-2},...,b_1,b_0) \qquad c=(c_{N-1},c_{N-2},...,c_1,c_0)$$
 Initialization
$$b_{-1}=0 \qquad \qquad \text{for } i=0 \text{ to } N-1$$

$$g_{-1}=0 \qquad \qquad \{\\b_N=b_{N-1} \qquad \qquad s_i=b_i\oplus b_{i-1} \\q_i=\overline{q_{i-1}}\cdot s_i \\c_i=(1-2b_{i+1})q_i \qquad \text{Disable when } \\Consecutive$$

Systematic Approach (2/2)

i	N	N-1								0	-1
b _i	1	1	0	1	1	1	0	0	1	1	
S _i		1	1	0	0	1	0	1	0	1	
g_{i}		0	1	0	0	1	0	1	0	1	0
1-2b _{i+1}		-1	-1	0	-1	-1	-1	1	1	-1	
C _i		0	-1	0	0	-1	0	1	0	-1	