MUTAGENIC SCREENING OF THREE DYES FOR MARKER GRENADES IN THE SALMONELLA REVERSION ASSAY, THE L5178Y/TK+/- MOUSE LYMPHOMA ASSAY, AND IN VIVO SISTER CHROMATID EXCHANGE IN MICE

AD-A152 110

Final Report

Prepared by

Martha Moore, Ph.D.
James Allen, Ph.D.
Larry Claxton, Ph.D.

20030116007

Genetic Toxicology Division
Health Effects Research Laboratory
US Environmental Protection Agency
Research Triangle Park, North Carolina 27711

September 30, 1984

Supported by

US Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21701

US Army Project Order No. 3804

Project Officers: Mary C. Henry, Ph.D., CPT Gary M. Bratt, P.E., CIH

Performed by
Genetic Toxicology Division
Health Effects Research Laboratory
US Environmental Protection Agency
Research Triangle Park, North Carolina 27711

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

85 03 13 252

OTIC FILE COPY

SECURITY CLASSIFICATION OF THIS PAGE (Phon Date	Entered)	Jan Salah
REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	1. RECIPIENT'S CATALOG NUMBER F
4. TITLE (and Substite) Mutagenic Screening for Marker Grenades in the Salmo Reversion Assay, the L5178Y/TK+/Lymphoma Assay, and In Vivo Sist Chromatid Exchange in Mice	nella -	5. TYPE OF REPORT & PERIOD COVERED Final Report December 1982-August 1984 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) Martha Moore, Ph.D. James Allen, Ph.D. Larry Claxton, Ph.D.		8. CONTRACT OR GRANT NUMBER(*) US Army Project Order No. 3804
Genetic Toxicology Division Health Effects Research Laborator US Environmental Protection Agent Research Triangle Park, NC 27711	ry	19. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 6277A (3E16277A878
US Army Medical Research and Deve Fort Detrick, Frederick, MD 21701	1	January 30, 1985 HUMBER OF PAGES 223
US Army Medical Bioengineering Re Development Laboratory Fort Detrick, Frederick, MD 21701	esearch and	Unclassified Unclassified Security CLASS. (of this report) Unclassified Security CLASS. (of this report)
Approved for public release; dist		
IS. SUPPLEMENTARY NOTES		
C.I. Solvent Yellow 33; C.I. Solvent Green 3; 2-(2-Quinoly1)-1,3-Indandione; Dyes;	· Mutagenicity; Salmonella Reve L5178Y/TK+/- Mor	rsion; use Lymphoma; Chromatid Exchange.
Two dyes, C.I. Solvent Yellow No. C.I. Solvent Yellow No. 33 mixtur the Salmonella Reversion Assay, t and for Sister Chromatid Exchange mutagenicity assays were performe activation provided by Aroclor in sample of the yellow dye [2-(2-qu tested with and without exogenous (continued on next page)	33, and a C.I. (c) were tested for the L5178Y/TK ⁺ /-) (c) SCE) in vivo in the control of the co	r mutagenicity in Mouse Lymphoma Assay, n mice. The in vitro without exogenous 5-9. A >99.9% pure

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- · Pages with background color or light colored printing.
- · Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

		if th	is block	c is ci	hecked,	the co	py fur	nished 1	to DTIC	
									produced	
В	lac	k and	White,	may	change	detail	of the	origina	i copy.	

Item #20 Continued

Reversion Assay and the L5178Y/TK^{+/-} Mouse Lymphoma Assay. Neither C.I. Solvent Yellow No. 33 nor the C.I. Solvent Green No. 3 — C.I. Solvent Yellow No. 33 mixture were positive in inducing in vivo SCE. All three dyes were tested in the standard plate incorporation test in seven strains TA100, TA102, TA104, TA1535, TA1537, TA1538, and TA98. The dyes were negative with and without exogenous activation in TA98, TA1535 and TA1538. One test with TA1537 was positive using the >99.97 pure yellow dye. All three dyes gave weakly positive results (less than a twofold increase) with S-9 in TA100. All three dyes were clearly positive in TA102 and TA104 both with and without S-9. All three dyes were found to induce mutation at the thymidine kinase locus in mouse lymphoma cells. Preliminary experiments (not financially supported under this IAG) indicate that the three dyes are clastogenic to mouse lymphoma cells.

oral souther keyour wir who

ΔĐ		
w		

MUTAGENIC SCREENING OF THREE DYES FOR MARKER GRENADES IN THE SALMONELLA REVERSION ASSAY, THE L5178Y/TK^{+/-} MOUSE LYMPHOMA ASSAY, AND IN VIVO SISTER CHROMATID EXCHANGE IN MICE

Final Report

Prepared by

Martha Moore, Ph.D. James Allen, Ph.D. Larry Claxton, Ph.D.

Genetic Toxicology Division
Health Effects Research Laboratory
US Environmental Protection Agency
Research Triangle Park, North Carolina 27711

September 30, 1984

Supported by

US Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21701

US Army Project Order No. 3804

Project Officers: Mary C. Henry, Ph.D., CPT Gary M. Bratt, P.E., CIH

Performed by
Genetic Toxicology Division
Health Effects Research Laboratory
US Environmental Protection Agency
Research Triangle Park, North Carolina 27711

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

FOREWORD

All of the mutagenicity assays were performed in the Genetic Toxicology Division of the Health Effects Research Laboratory (HERL), US Environmental Protection Agency (USEPA), Research Triangle Park, NC. The Salmonella Reversion Assays were performed under the direction of Drs. Joellen Lewtas and Larry Claxton. The L5178Y/TK^{+/-} Mouse Lymphoma Assays were performed under the direction of Dr. Martha Moore, and the in vivo Sister Chromatid Exchange assays were performed under the direction of Dr. James Allen. The purified yellow dye (>99.9% pure 2-(2-quinolyl)-1, 3-indandione) was supplied by Drs. Rogene Henderson and Roger McClellan, Inhalation Toxicology Research Institute, Lovelace Biomedical and Environmental Research Institute, Inc., Albuquerque, New Mexico.

EXECUTIVE SUMMARY

Dyes are used by the military in M18 marker signaling grenades. A number of organic dyes are presently being evaluated for potential use in these grenades. In add, on to engineering studies for their performance in the field, the US Army is concerned with evaluating any potential health hazards that might result from personal contact with the dyes in the industrial setting. A part of this testing is the analysis of potential genetic toxicity.

Three dyes, C.I. Solvent Yellow No. 33, a purified C.I. Solvent Yellow No. 33 [>99.9% 2-(2-quinolyl)-1,3-indandione], and a C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture were tested for potential genotoxicity. All three dyes were tested for mutagenicity in the Salmonella Reversion Assay and the L5178Y/TK+/- Mouse Lymphoma Assay. The C.I. Solvent Yellow No. 33 and the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture were also tested for sister chromatid exchange (SCE) induction in vivo in mice. The in vitro mutagenicity assays were performed both with and without exogenous activation provided by Aroclor induced rat liver S-9.

Neither the C.I. Solvent Yellow No. 33 nor the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture were positive in inducing in vivo SCE. All three dyes were tested in the standard plate incorporation test using Salmonella typhimurium. Seven tester strains were used (TA98, TA100, TA1535, TA1537, TA1538, TA102 and TA104). The dyes were not mutagenic either with or without exogenous activation in TA98, TA1535 and TA1538. One test with TA1537 was positive using the pure yellow dye. All three dyes gave weakly positive results (less than a twofold increase) with S-9 activation in TA100. All three dyes were clearly positive in TA102 and TA104 both with and without S-9. All three dyes were found to induce mutation at the thymidine kinase locus in mouse lymphoma cells. Preliminary experiments (not financially supported under this IAG) indicate that the dyes are also clastogenic to mouse lymphoma cells.

TABLE OF CONTENTS

																														Page
FORE	vor:	D.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	1
EXEC	JTI	VΕ	St	M	1AI	RY	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
LIST	OF	F	IGI	JRI	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
LIST	OF	T.	ABI	ES	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
INTRO	שמט	CT:	IO	1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
MATE	RIA	LS	Αľ	₹D	MI	ETI	IOF	s		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	Sa L5 In	178	3Y/	T	+	-	Mo	us	se	L	mi	h	oma	a <i>A</i>	lss	ay	٠.		•	•	•						•	•		9 12 17
RESUI	TS	Al	ΝD	D	[S	cus	SS	:01	ı.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
	Sa L5 In	178	BY/	T1	+/	-	Mo	us	se	Ly	mp	h	ma	a A	lss	ay	٠.	•	•	•	•	•	•	•	•	•				19 22 39
LITER	TAS	JRI	Ξ (CI.	CEI	٠.	•	•	•	•		•				•	•	•	•	•	•	•	•	•	•		•			52
DIST	RIB	JT]	101	I	.IS	ST	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•		•	•	•	•	•	54
APPEN	ŒΙ	C A	١.	5	al	lmc	ne	11	<u>.a</u>	ty	:is	iin	ur	iı	m	bi	oa	185	ay	'S	οí	•								Δ

LIST OF FIGURES

	·	Page
1.	Relative size distribution of TFT-resistant mutants following treatment with 20 µg/ml of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture, without exogenous metabolic activation	36
2.	Relative size distribution of TFT-resistant mutants following treatment with 20 μ g/ml of C.I. Solvent Yellow No. 33, without exogenous metabolic activation	37
3.	Relative size distribution of TFT-resistant mutants following treatment with 10 μ g/ml of >99.9% pure yellow dye, without exogenous metabolic activation	38
4.	Gross aberration frequency in L5178Y/TK ^{+/-} Mouse Lymphoma cells following treatment with the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture, without exogenous metabolic activation	40
5.	Gross aberration frequency in L5178Y/TK ^{+/-} Mouse Lymphoma cells following treatment with C.I. Solvent Yellow No. 33, without exogenous metabolic activation	41
6.	Gross aberration frequency in L5178Y/TK ^{+/-} Mouse Lymphoma cells following treatment with the >99.9% pure yellow dye, without exogenous metabolic activation.	42

LIST OF TABLES

		Page
1.	A. Mutagenicity of three Army dyes as detected by Salmonella typhimurium plate incorporation and preincubation tests (Qualitative Results)	20
	B. Mutagenicity of three Army dyes as detected by Salmonella typhimurium plate incorporation and preincubation tests	21
2.	Dose ranging experiment for C.I. Solvent Yellow No. 33 and the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture in the Mouse Lymphoma Assay	23
3.	Mouse lymphoma assay of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture and C.I. Solvent Yellow No. 33 with metabolic activation	24
4.	Mouse lymphoma assay of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture and C.I. Solvent Yellow No. 33 with metabolic activation	25
5.	Mouse lymphoma assay of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture with metabolic activation	26
6.	Mouse lymphoma assay of the C.I. Solvent Yellow No. 33 with metabolic activation	27
7.	Mouse lymphoma assay of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture and C.I. Solvent Yellow No. 33 without metabolic activation	29
8.	Mouse lymphoma assay of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture without metabolic activation	30
9.	Mouse lymphoma assay of the C.I. Solvent Yellow No. 33 without metabolic activation	31
10.	Mouse lymphoma assay of the purified yellow dye with metabolic	22

		rage
11.	Mouse lymphoma assay of the purified yellow dye with metabolic activation	33
12.	Mouse lymphoma assay of the purified yellow dye without metabolic activation	34
13.	Mouse lymphoma assay of the purified yellow dye without metabolic activation	35
14.	SCE and cell replication kinetics analyses of mouse bone marrow cells after in vivo single exposure (I.P.) to C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture: summary/individual animal	43
15.	SCE and cell replication kinetics analyses of mouse bone marrow cells after in vivo single exposure (I.P.) to the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture: summary/treatment group	44
16.	SCE and cell replication kinetics analyses of mouse bone marrow cells after in vivo single exposure (I.P.) to C.I. Solvent Yellow No. 33: summary/individual animal	45
17.	SCE and cell replication kinetics analyses of mouse bone marrow cells after in vivo single exposure (I.P.) to C.I. Solvent Yellow No. 33: summary/treatment group	46
18.	SCE and cell replication kinetics analyses of mouse bone marrow cells after in vivo repeated (over 3 days) exposures (I.P.) to C.I. Solvent Yellow No. 33: summary/individual animal	47
19.	SCE and cell replication kinetics analyses of mouse bone marrow cells after in vivo repeated (over 3 days) exposures (I.P.) to	48

日 电记录器经验 上点

13300000

INTRODUCTION

Dyes are used by the military in M18 marker signaling grenades. A number of organic dyes are presently being evaluated for potential use in these grenades. In addition to engineering studies for their performance in the field, the US Army is concerned with evaluating any potential health hazards that might result from personal contact with the dyes in the industrial setting. A part of this testing is the analysis of potential genetic toxicity.

Three dyes, a yellow dye (C.I. Solvent Yellow No. 33), a purified yellow dye (purified C.I. Solvent Yellow No. 33) and a green-yellow dye which is a mixture of C.I. Solvent Yellow No. 33 and C.I. Solvent Green No. 3 were tested in this study. C.I. Solvent Yellow No. 33 is classified chemically as a quinoline. The principle color additive of the C.I. Solvent Yellow No. 33 is 2-(2-quinolyl)-1,3-indandione. and the additive of the C.I. Solvent Green No. 3 is 1-4-di-p-toluidino anthraquinone.

In preliminary tests, (unpublished results) different production lots (from those used in this study) of the C.I. Solvent Yellow No. 33 and C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture were evaluated in the Salmonella Reversion Assay (using strains TA98, TA100, TA1535, TA1537 and TA1538) and found to be non-mutagenic. The L5178Y/TK^{+/-} Mouse Lymphoma Assay and in vivo Sister Chromatid exchange analysis were chosen to analyze more fully the genotoxic potential of the dyes. In the course of the study it was established that both dyes were clearly positive in the Mcuse Lymphoma Assay. Since the lots used in the present studies were different from those originally tested in the Salmonella Reversion Assay, these new lots of the dyes were retested in this assay. In these studies two new strains (TA102 TAl04) were utilized in addition to the five standard strains. In order to determine if the principle color additive in the yellow dye or one of the impurities was responsible for the mutagenic activity, arrangements were made to obtain a >99.9% pure sample of 2-(2-quinoly1) -1,3-indandione from the Lovelace Biomedical and Environmental Research Institute, Inc. (BRDL). This pure dye was tested both in the Mouse Lymphoma Assay and also in the Salmonella Reversion Assay (using all seven tester strains).

MATERIALS AND METHODS

Organic Dyes

The dyes tested were:

Yellow Dye - [C.I. Solvent Yellow No. 33, 2-(2-quinoly1)-1,3-indandione]

Yellow-Green Dye - [a mixture of C.I. Solvent Yellow No. 33 and C.I. Solvent Green No. 3 (1-4-di-p-toluidino anthraquinone)]

Purified Yellow Dye - [C.I. Solvent Yellow No. 33, >99.9% pure

2-(2-quinoly1)-1,3-indandione]

Chemicals

C.I. Solvent Yellow No. 33 and the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture were supplied by BRDL. Each was analyzed by high presure liquid chromatography (HPLC; reverse phase column; gradient of 90:10 methanol:water to 100% methanol in 10 minutes; 1 ml/min flow rate; UV detection at 254 nm). C.I. Solvent Yellow No. 33 was 93.1% 2-(2-quinoly1)-1,3-indandione, <1.8% phthalic acid/anhydride and <0.4% quinaldine by weight. The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture was 95.0% 2-(2'-quinoly1)-1,3-indandione and 1,4-di-p- toluidino anthraquinone (in a 1:2 ratio), <0.6% phthalic acid/ anhydride, 0.2% quinaldine, 0.1% p-toluidine and <0.1% quinazarin.

Purified yellow dye was prepared by recrystallizing C.I. Solvent Yellow No. 33 three times from ethyl acetate. HPLC analysis showed that the sum of unknown UV absorbing impurities (quantities based on peak heights relative to parent compound), and phthalic acid/anhydride and quinaldine (quantitated using standards) was <0.1% of the 2-(2'-quinoly1)-1,3-indandione present.

SALMONELLA REVERSION ASSAY

The procedures used were those of Ames, et al. (1975) with minor modifications. Modifications are included in the description that follows. For each sample, seven histidine-requiring strains were used. The strains used were TA100, TA102, TA104, TA1535, TA1537, TA1538, and TA98. The mechanisms by which each of these strains revert to prototrophy are fully discussed in other publications (Ames et al., 1975; Maron and Ames, 1983). In addition to these basic mechanisms, the reader should keep in mind the following salient points. These strains carry an rfa mutation which produces a deficiency in bacterial cell wall lipopolysaccharides and increases the cell's permeability to large molecules; the uvrB mutation which decreases genetic repair; the R-factor plasmid in strains TA98 and TAIOO increases their sensitivity by participating in error-prone repair and causes a higher spontaneous mutation rate. The seven strains differ in the number of spontaneous revertants per plate generally found. Compounts which are known mutagens for the different strains, with and without activation, were included in each assay as positive controls. The retention of phenotypic characteristics were checked with each test by examining for histidine auxotrophy (lack of growth on histidine deficient medium), deep rough character (sensitivity to crystal violet on a disk), UV-repair deficiency (sensitivity to UV light), and the presence of the appropriate plasmid (resistance to ampicillin on a disk).

Frozen permanent cultures containing fresh nutrient broth cultures with dimethylsulfoxide (DMSO) were maintained at -80°C. A working source of these cultures was maintained on master plates. All strains were initially grown in nutrient (Difco) broth at 37°C for 16 hours.

Preparation of Rat Liver S-9 Mix

Male CD-1 (Fisher derived) rats weighing approximately 200 g were given a single intraperitoneal injection of Aroclor 1254 (Ar) in corn oil (200 mg/ml) at a dose of 50 mg/kg of body weight. One day prior to termination the animals were taken off food but provided water ad libitum. The livers were aseptically removed and washed in sterile cold 0.15 M KCl. All subsequent steps were performed at 0° to 4°C with cold sterile solutions and sterile glassware. The livers were minced with scissors in 0.15 M KCl (3 ml/g wet weight liver) and homogenized with a Potter-Elvehjem homogenizer. The homogenate was centrifuged for 10 min at 9,000 x g, the supernatant (S-9) decanted and stored in convenient aliquots at -80°C.

The S-9 is mixed with a cofactor solution containing 8 μ mol MgCl, 32 μ mol KCl, 5 μ mol glucose-6-phosphate and 4 μ mol nicotinamide adenine dinucleotide in 100 μ mol of sodium phosphate buffer, pH 7.4. The amount of S-9 used in the S-9 mix was between 0.05 and 0.1 ml S-9/ml cofactor solution.

Test Procedure

For revertant selection, minimal Vogel-Bonner medium E supplemented with 1.5 percent Difco bacto agar and 2 percent glucose was used for base agar layers. The top agar (0.6 percent Difco bacto agar, 0.5 percent NaCl) at 45°C was supplemented with minimal amounts of histidine and biotic, the bacterial broth culture (1-2x109 viable cells per ml) and the test material dissolved in DMSG (supplied sterile, spectrophotometric grade). For tests without activation, 0.5 ml of buffer was added instead of the S-9 mix to the top agar. The plates were incubated in the dark at 37°C for 72 hr. The plates were examined for background growth and the number of colonies per plate were counted using an Artek 880 automatic colony counter.

Preincubation was accomplished by incubating the bacteria, the compound and/or solvent, and the activation system (S-9) (when required) at 37°C in a water bath. The culture medium was the same as the overlay agar except that the melted agar was not added until the incubation was completed. The preincubation period was 30 minutes. All other aspects of the procedure were the same as the plate incorporation test.

Statistical Analyses

Statistical tests and computer programs used were those of Stead, et al. (1981). This model assumes revertant colony formation at any dose follows a Poisson process, while the mean number of revertants per plate is a nonlinear function of up to four parameters. The resultant system of nonlinear equations is solved using a modified Gauss-Newton iterative scheme to obtain maximum likelihood estimates of the model parameters. Significance of the key parameters was tested by fitting reduced models and using likelihood ratio tests.

The determination of positives was based on the following criteria:

- The data must not vary significantly from a Poisson distribution (p >0.01).
- The data must be acceptable by the test of adequacy of fit of the the model (p >0.01).
- The test for mutagenicity, the slope of the curve, must be significant (p <0.01).
- At least a twofold increase must have occurred over spontaneous levels at one or more doses; otherwise, the response is recorded as weak and/or questionable
- All positive and negative controls must have given expected responses as compared to HERL, USEPA historical values and those published by Ames et al. (1975).
- Histidine cross-feeding and/or contamination must not have been shown to occur.

The modeling of the bioassay provides a valuable aid to the researcher; however, each curve was (and needs to be) examined individually in order to assure confidence in the apparent conclusions of the statistical process. For example, if the dose response data "tit" statistically a horizontal line (response vs. dose), the model will under some circumstances record a mutagenicity p-value less than 0.01; however, since the slope equals zero the response is negative.

The reader must also keep in mind that these particular tests were performed to maximize the chance of detecting a mutagenic response and not to provide comparative slope values. Examination of the data, therefore, shows that test doses were often adjusted due to results of a previous test. These adjustments obviously can shift results from a negative response to positive result (e.g. if a compound was initially tested at too low a dose response range) and may alter the slope value (e.g. providing more doses in the central portion of the dose—response curve).

The minimum testing requirements were as follows:

- A minimum of five doses at half-log intervals with the highest dose being highly toxic, as shown by background clearing and/or reduction in expected revertant counts per plate.
- Spontaneous and positive controls done at least in duplicate and providing the expected response as compared to HERL, USEPA historical values and those published by Ames et al. (1975).
- Positive controls (in duplicate) for the microsomal activation combination used are within normal ranges as compared to HERL, USEPA historical values and those published by Ames et al. (1975).
- These minimum criteria are carefully explained in other publications (Ames, 1975; de Serres and Shelby, 1979).

L5178Y/TK+/- MOUSE LYMPHOMA ASSAY

TO THE TO CARGO CASE OF THE PARTY OF THE PAR

The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture, C.I. Solvent Yellow No. 33 and the purified yellow dye were evaluated for mutagenicity in the L5178Y/TK^{+/-} Mouse Lymphoma Assay using the procedures of Clive and Spector, 1975, as amended by Clive et al., 1979, and Moore and Clive 1982. This in vitro mammalian system evaluates mutations affecting the thymidine kinase locus. This assay may be particularly useful in a test battery since the mutants quantitated can be divided, by colony size, into two distinct groups (small colony and large colony mutants). These two classes of mutants appear to reflect the relative clastogenic and mutagenic potential of the compound tested. Hozier ct al. (1981, 1983) have shown that the majority of small colony mutants reflect chromosome damage affecting chromosome 11 (the location of the thymidine kinase gene), while large colony mutants appear to represent small scale, perhaps single gene damage.

Cell Line and Cell Maintanence

The TK^{+/-}-3.7.2C heterozygote of L5178Y mouse lymphoma cells (supplied by Dr. Donald Clive) was utilized. This cell line was routinely grown in supplemented Fischer's Medium for Leukemic Cells of Mice (see below). Cells were monitored daily (except for weekends)

for acceptable growth rates. For weekends, the cells were sufficiently diluted so that they would remain in log phase growth; weekend cell doubling times were always determined. Weekly, prior to use in the assay, cells were cleansed of spontaneous $TK^{-/-}$ cells by 24 hr growth in the presence of thymidine ($3\mu g/ml$), hypoxanthine ($5\mu g/ml$), methotrexate (0. $1\mu g/ml$) and glycine (7. $5\mu g/ml$) (THMG). This was followed by 24 hr growth in THG (THMG minus methotrexate) medium. Stock cells are stored in liquid nitrogen.

Media

TK^{+/-} -3.7.2C cells were cultivated in Fischer's Medium for Leukemic Cells of Mice supplemented with 31 μ g/ml penicillin (1650 units/mg), 50 μ g/ml streptomycin sulfate, 0.1% Pluronic F68, 0.22 mg/ml sodium pyruvate(F₀P), and 10% horse serum to make F₁₀P. Medium was heat inactivated at 55° C for 45 minutes. Cells were cloned in the above described supplemented medium using 20% rather than 10% horse serum. In addition, 0.37% Noble agar was added to solidify the cloning medium for colony formation. The selective agent used for mutation at the TK locus was 1 μ g/ml trifluorothymidine (TFT).

Preparation of Chemical Solutions

Concentrations were prepared on a weight per volume basis. DMSO was used as the solvent. A fresh stock of test material was used for each separate experiment.

Preparation of the Metabolic Activation System

Aroclor 1242-.254 induced rat liver S-9 was purchased from EG&G Mason Research Institute. Rats weighing 200-300 g were injected intraperitoneally with a 2:1 mixture of Aroclor 1242 and 1254 in corn oil (500 mg of total Aroclor/kg body weight). After 5 days the animals were sacrificed by CO₂ exclusion of air. They were totally immersed in a solution of Wescodyne for approximately three seconds and their heads quickly excised. The livers were removed and placed in preweighed beakers containing 0.25M sucrose. Livers were washed three times in 50-100 ml portions of cold 0.25M sucrose to yield 3 ml per gram of liver. Livers were minced and then homogenized in a teflon pestle tissue grinder. The homogenate was centrifuged at 9000 x g for

10 min at 4°C. The lipid layer was removed and discarded. The supernatant was pooled and aliquoted into sterile serum vials, and placed directly into liquid nitrogen vapor phase containers for storage prior to shipping. A sterility check and activity test for standard promutagens in the Salmonella Reversion Assay were performed prior to shipping.

Upon receipt the S-9 was stored at -70°C in a Revco freezer and tested for the ability to activate 2-acetylaminofluorene to mutagenic metabolites as based on induced mutant frequency in the standard mouse lymphoma assay.

The cofactor mix made just prior to addition was comprised of 600 mg of triphosphopyridine nucleotide (TPN) and 1125 mg of isocitric acid (trisodium salt, trihydrate) to 75 mls of F_{OP} (Fischer's medium supplemented but without horse serum). This solution was filter-sterilized, placed on ice and mixed with 25 ml of freshly thawed S-9 to form the S-9 mix. This mix was kept on ice until used.

Dose-Ranging Assay

The dose-ranging experiment consisted of increasing doses of the test compound to the level of highest solubility (in the DMSO solvent). One 50 ml Corning polypropylene tube seeded with 6 x 106 cells in 6.0 ml of medium with a reduced amount of serum (5% instead of 10%) was used for each dose. Four ml of serum-free Fischer's medium (F_0P) were added to each tube. The compound was dissolved in DMSO at 100 x the highest concentration to be tested. Sufficient solvent was added to each tube so that after addition of the test compound all tubes contained the same final solvent concentration. Normally 1% DMSO is the maximum used in this assay to deliver the test compound. Because of the low solubility of these dyes in DMSO the dose which could be delivered in 1% DMSO was significantly below the 1000 µg/ml normally used in a dose-ranging assay as the highest dose. Therefore, the amount of dye delivered in 2% and 3% (final concentration) DMSO and the appropriate solvent controls were also used. The test compound was added to each appropriately labelled tube, the tubes were then regassed with 5% CO2-in-air and incubated in a roller drum at 37° C for 4 hr. Following the 4 hr exposure period the tubes are centrifuged for 10 min at 200 x g and the supernatant containing the test compound was discarded. The cells were then washed twice in 10 ml of $F_{10}P$ (2 X 10 minute centrifugations at 200 x g), and resuspended in 20 ml of fresh $F_{10}P$ to a final cell concentration of 3 X 10^{3} cells/ml. The tubes were regassed with 5% CO2-in-air and incubated in the roller drum at 37°C.

restanting for the first of the confidence of the control of the c

Cell counts were determined with a Coulter Counter Model ZBI at 24 hours after exposure to the compound. Relative growth (as compared to the negative control) was calculated for each culture.

Mutagenicity Assay

The doses chosen for the mutagenicity assay were based on the results of the dose-ranging study. Because the doses delivered in 3% DMSO showed no greater cell toxicity after 24 hr than the doses delivered in 2% DMSO, the 3% DMSO doses were not used. The dosing protocol is identical to that used in the dose-ranging study (i.e. cells were treated for four hours, washed and incubated at 37°C). Positive control compounds were tested with each experiment. Methyl methanesulfonate (MMS, 15 µg/ml) was used without exogenous activation, and 2-acetylaminofluorene (2-AAF, 40 µg/ml) with S-9 activation. Cell counts were determined with a Coulter Counter Model ZBI at 24 and 48 hrs. after exposure to the compound. Each culture was diluted daily to 2 \times 10⁵ cells/ml. At the end of 48 hrs the cells were cloned. Cloning allows for the selective growth and enumeration of mutant cells in a soft agar cloning medium (CM) and for the determination of cloning efficiency. Following dilution, the cells were allowed to mix for at least 30 minutes to minimize trauma. Fifteen ml of each culture was spun at 200 x g for 10 min and the supernatant decanted. Approximately 1-2 ml of $F_{10}P$ was added to each culture for resuspension of the cell pellet. The cell pellet was vigorously resuspended to ensure a single cell suspension and placed in 100 ml of CM to give a cell concentration of 3 X 10⁴ cells/ml. The flasks were labelled with the appropriate culture number and selective agent to be used (TFT). The cells were allowed to acclimate for 30 minutes and then a 1:50 dilution was made. (1.0 ml was transferred from each culture to prelabelled flasks containing 50 ml of CM.) After mixing for 15 minutes. 1.0 ml from each 50-ml flask was transferred to 100 ml of CM and labelled with the culture number and "VC" (cell concentration = 6 cells/ml). The selective agent, 1 µg/ml TFT, was added to the flasks containing 3 X 104 cells/ml. Three petri plates per "TFT" and "VC" flask were poured, 33 ml per 100 mm petri plate. The plates were chilled at -20° C for 12 minutes, placed in a lucite box, sealed, and gassed with 5% CO2-in-air or placed in a 5% CO2 incubator. The boxes were incubated for 10-11 days at 37° C.

At the end of the incubation period the plates were scored for the number of colonies per plate using an Artek Colony Counter, Model 880. TFT-resistant colonies from selected cultures showing positive mutagenicity were sized by differential counts at periodic size discriminator settings. This information was expressed as histograms showing the relative proportions of small and large colony TFT-resistant mutants. This approach is a possible means of characterizing the type of mutagenic events occurring [i.e. single gene mutations (large colonies) or chromosomal aberrations affecting the TK and other genes (small colonies)].

Calculation of Mutant Frequency

The mutant frequency was calculated by dividing the total number of mutant colonies for each culture by the number of viable cells plated for the culture (as determined by the VC plates). The spontaneous mutant frequency (solvent control) was subtracted from the total mutant frequency to give the induced mutant frequency.

Criteria for the Evaluation of the Results

The following criteria (based on the statistical methods of Clive et al., 1979) must be met to designate the test compound as a definite positive:

- 1. One or more doses (from at least 2 separate assays) must show a significant increase (usually at least a doubling) over the background mutant frequency at reasonable (>10%) survival.
- 2. There must be a multi-point dose-related response at adequate (>10% survival) cytotoxicities.

If there is no significant increase of the mutant frequency over background and if the compound has been adequately tested (with and without metabolic activation, reasonably spaced doses, adequate cytotoxicity—sufficient doses in the 10-20% survival range) then the results will be interpreted as negative.

The minimum criteria for an acceptable assay are: (1) the plating efficiency of the solvent control is between 50 and 1157, (2) the spontaneous mutant frequency of the solvent control is less than $100~\rm X~10^6$ and (3) the positive controls show a definite positive response.

Method for Analysis of Gross Aberrations in L5178Y/TK+/- Mouse Lymphoma Cells

For the analysis of gross aberrations, samples were taken from the treated cells 24 hr after the midpoint of the 4 hr treatment period. Colcemid was added and cells treated with hypotonic KCl and fixed in acetic acid: methanol (1:4). Slides were made and cells stained with Wright's Stain. Metaphase spreads showing a near normal number of chromosomes were scored for aberrations.

IN VIVO SISTER CHROMATID EXCHANGE ANALYSIS IN MICE

Male C57BL/6 mice, 3-4 mos. old, were obtained from the Jackson Laboratory, Bar Harbor, Maine, and were acclimatized for at least 10 days after receipt. Inimals were housed 5 per cage in an USEPA animal facility in laminar-flow rooms, with 15 cycles/hr of biocleaned air at 60-68% relative humidity. The room temperature was maintained at 68-70° F with a 12 hr light-dark cycle. Animals were fed lab chow (non-certified Purina) and water ad libitum.

Sister Chromatid Exchange (SCE) frequencies and cell replication kinetics were analyzed in mouse bone marrow cells after DNA labelling with 5-bromodeoxyuridine (BrdU; Sigma Chemical Company, St. Louis, Mo.). In vivo labelling was achieved with BrdU tablet methodology (Allen et al., 1978; McFee et al., 1983). Fifty mg BrdU tablets were prepared with a Parr Pellet Press and 0.178 in diameter punch and die (Parr Instrument Co., Moline, II.) and coated over approximately 85% of the surface area with melted embedded paraffin (Fisher). Each experimental animal (weighing from 22 to 30 g) was implanted subcutaneously (lateral abdominal region) with a 50 mg BrdU tablet after brief anesthetization with Metofane (Pittman-Moore) inhalation.

Dye effectiveness to induce SCEs was determined by administering the test chemical as a single intraperitoneal injection (I.P.) (≤ 0.2 ml volume) over a 3-4 point dose range, 3-4 mice per dose. The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture was administered in 0.1 ml DMSO + 0.1 ml corn oil. The C.I. Solvent Yellow No. 33 was administered in 0.1 ml corn oil. The C.I. Solvent Yellow No. 33 was administered in 0.1 ml (per 30g) DMSO only. (Higher volumes of DMSO were determined in preliminary experiments to be toxic, as evidenced by animal death or inhibited marrow cell-cycling. While corn oil appeared to enhance the solubility of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture, it reduced the solubility of C.I. Solvent Yellow No. 33.) The dye injections were given 1/2 hr after BrdU tablet implantation. Negative control animals

were those which received no injections, and those which were injected with the solvent only. Positive control mice were injected with 15 or 30 mg/kg cyclophosphamide (Mead-Johnson). Approximately 23 hr later, all control mice were injected I.P. with 0.6 mg/kg of colchicine (Sigma) in order to collect metaphases. Treated mice were injected with colchicine after an additional 3-4 hr since preliminary chemical injection trials had indicated that cell-cycle delays were occurring. Two hours after colchicine injection, animals were sacrificed by cervical dislocation, marrow cells were harvested and processed through hypotonic (0.075 M KCl) and fixative (3:1 methanol: glacial acetic acid) steps, and slides were prepared in accordance with standard cytogenetic methodology (Latt et al., 1981). Chromatid differential staining was achieved with the Fluorescence-plus-Giemsa (FPG) technique (Wolff and Perry, 1974; Goto et al., 1978). For each mouse SCE frequencies were analyzed in 30 randomly selected, well-differentiated second division metaphase cells which contained the diploid ± 2 chromosomal complement. Cell replication kinetics were also assessed in 200 marrow cells/ animal. The proportions of first (M_1) , second (M_2) and third (M_3) division cells were determined from chromosome stain patterns.

Additional studies were performed to determine if: 1) the injected test dye was dispersing or remaining localized within the peritoneum. and 2) higher marrow cell SCE frequencies would result from giving injections over three consecutive days. Concerning the former studies, animals were examined at the time of marrow cell harvest for the appearance of internal localizations of dye particles. Peritoneal cells from control and high dose (35 mg/kg C.I. Solvent Yellow No. 33) animals were saline-washed from the peritoneum, pelleted and compared for evidence of dye crystals, and for viability (Trypan Blue Exclusion). Differential peritoneal cell counts (Wright's Stain) were also made. In the latter studies, concerned with multiple exposures to the test dye, all experimental design and cytogenetic features were the same as those described for the single exposure trials. The only protocol modification was the administration of 3 I.P. injections of the test material given 24 hr apart. BrdU tablet implantation was carried out just prior (1/2 hr) to the last injection, and cells harvested 24 - 28 hrlater.

RESULTS AND DISCUSSION

SALMONELLA REVERSION ASSAY

The Salmonella bioassay is frequently used to screen substances for genotoxicity including potential carcinogenicity. The three dyes were tested in the standard plate incorporation assay using seven strains supplied by Dr. Bruce Ames. The seven strains used were TA100, TA102, TA104, TA1535, TA1537, TA1538, and TA98. In addition, the three dyes were also tested using TA100 in a preincubation assay. A summary of the results is in Tables IA and IB. The actual data and statistical analysis can be found in Appendix A. The results are very heterogeneous. Two of the strains that detect frame shift mutagens, namely TA98 and TA1538, gave negative responses both with and without exogenous metabolic activation for all three dyes. Although TA1537 gave a clearly positive response in only one test (with the purified yellow dye), all three dyes showed a consistent tendency for increased revertant numbers at the higher dose levels. The strain that responds almost exclusively to base pair substitution mutagens, TA1535, provided negative results both with and without exogenous metabolic activation. Even though negative results were associated with strains TA1535, TA1538, and TA98, the more non-specific strain TA100 gave a positive though weak response to all three dyes when S-9 was present. Without this mammalian metabolic activation, the TA100 results were negative. Strains TA102 and TA104 provided the clearest indication of the mutagenicity of these compounds. All three dyes were clearly positive both with and without S-9 when TA102 and TA104 were used. In contrast to the other five strains which detect mutations within GC sequences, these two strains require reversion to prototrophy within an AT rich region. These results may be typical of quinones (Maron and Ames, 1983). The use of the preincubation assay with TA100 did not provide a significant enough advantage to warrant its continued use with the other strains. Although a clear indication of mutagenicity was seen using three different strains, the three dyes were difficult to test primarily due to their solubilities. The samples began to precipitate out of solution at approximately the 100 µg per plate dose. This solubility problem not only narrowed the linear dose response range but also may have contributed to increased plate-to-plate variation. Within the bacterial assays, all three dyes gave very similar results. Since the purified yellow dye tended to yield a slope value greater than either of the other two dyes, the purified yellow dye is at least one of the major mutagenic components within the other dyes. Whether or not other mutagens are present within these dyes is not readily apparent from these data.

TABLE 1A MUTAGENICITY OF THREE ARMY DYES AS DETECTED BY SALMONELLA TYPHIMURIUM PLATE INCORPORATION AND PREINCUBATION (*) TESTS: (QUALITATIVE RESULTS)

Sample			Salmonel	lla Typhir	nurium St	rain:	
(Number)	TA100	TA102	TA104	TA1535	TA1537	TA1538	TA98
			WITH	ACTIVATIO)N		
C.I. Solvent Green No. 3-							
C.I. Solvent Yellow No. 33	+	+	+	-	?2	-	
Mixture	+	+	+	•	?1	-	-
(BMGS-84-0001)	+*	+	• • •	•••	•••		•••
C.I. Solvent Yellow No. 33	+	_	? 5	_	_	_	_
(BMGS-84-0002)	+	+	+	_	?	-	_
(1000-04-0002)	+*	+	• • •	•••	•••	-	•••
Purified Yellow	+	+	? 5	-	· ?	-	_
(BMGS-84-0003)	+	+	+	-	+	-	_
	+*	+	•••	•••	•••	•••	•••
			WITHO	UT ACTIVA	TION	 	·
C.I. Solvent Green No. 3 -	?1	+	+	-	-	_ 3	-
C.I. Solvent Yellow No. 33	-	+	+	-	-	-	
Mixture (BMGS-84-0001)	- *	+	•••	•••	•••	-	• • •
C.I. Solvent Yellow No. 33	? 6	?4	-	_	?	-	_
(BMGS-84-0002)	-	+	+	_ 2,3	?	-	-
•	-*	+	•••	•••	• • •		•••
Purified Yellow	-	?4	+	-	-	-	-
(BMGS-84-0003)	-	+	+ -	-	?	-	-
	. -*	+	•••	• • •	•••	• • •	• • •

Footnotes:

- 1 Positive slope apparently due to single plate value.
- 2 Positive slope apparently due to a single dose.
- 3 Outlier was included in original calculation.
- 4 Spontaneous control outside of normal range.
- 5 Model did not converge adequately and results are borderline in nature.
- * Preincubation assay.

Results are recorded as follows: -, Negative; ?, questionable +, positive.

TABLE 1B MUTAGENICITY OF THREE ARMY DYES AS DETECTED BY SALMONELLA TYPHIMURIUM PLATE INCORPORATIO" AND PREINCUBATION (*) TESTS:

Sample			Salmone	lla Typhim	urium St	rain:	
(Number)	TA100	TA102	TA104	TA1535	TA1537	TA1538	TA98
				ACTIVATIO	N		
C.I. Solvent Green No. 3-							
C.I. Solvent Yellow No. 33	0.2	6.9	6.1	Neg	22	Neg	Neg
Mixture	0.7	3.1	4.2	Neg	?1	Neg	Neg
(BMGS-84-0001)	1.2*	8.0	• • •	• • •	• • •	Neg	• • •
C.I. Solvent Yellow No. 33	1.8	2.6	? 5	Neg	Neg	Neg	Neg
(BMGS-84-0002)	1.5	5.6	2.9	Neg	?	Neg	Neg
	1.5*	5.8	•••	•••	•••	Neg	•••
Purified Yellow	1.1	4.2	_? 5	Neg	?	Neg	Neg
(BMGS-84-0003)	1.1	9.1	7.9	Neg	0.3	Neg	Neg
(Birds 84 0003)	2.1*	7.6	•••	•	•••		-
	2.1	7.0	• • •	• • •	• • •	• • •	•••
			WITH(OUT ACTIVA	rion		
C.I. Solvent Green No. 3 -	?1	5.0	2.4	Neg	Neg	Neg3	Neg
C.I. Solvent Yellow No. 33	Neg	3.3	2.4	Neg	Neg	Neg	Neg
Mixture (BMGS-84-0001)	Neg*	5.1	• • •	•••	•••	Neg	•••
	45.5	- /					
C.I. Solvent Yellow No. 33	(?)6	?4	Neg	Neg	?	Neg	Neg
(BMGS-84-0002)	Neg	1.6	3.5	$Neg^2,3$?	Neg	Neg
	Neg*	2.3	• • •	•••	• • •	Neg	•••
Purified Yellow	Neg	?4	1.9	Neg	Neg	Neg	Neg
(BMGS-84-0003)	Neg	4.8	1.5	Neg	?	Neg	Neg
	Neg*	6.0	• • •	• • •		• • •	•••

Footnotes:

Results are recorded as follows: Neg, Negative; ?, questionable ; or as Revertants per μg substance per plate if positive. Each value represents an individual independent experiment.

^{1 -} Positive slope apparently due to single plate value.

 $[\]frac{2}{3}$ - Positive slope apparently due to a single dose.

^{3 -} Outlier was included in original calculation.

^{4 -} Spontaneous control outside of normal range.

^{5 -} Model did not converge adequately and results are borderline in nature.

^{6 -} Value determined (1.2) appears to be an outlier since results could not be replicated.

^{* -} Preincubation assay.

L5178Y/TK^{+/-} Mouse Lymphoma Assay

The three dyes were tested both with and without exogenous metabolic activation in the L5178Y/TK+/- Mouse Lymphoma Assay. The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture and the C.I. Solvent Yellow No. 33 were determined to be only slightly soluble in DMSO making testing over the normally prescribed (doses to 1000 µg/ml.) preliminary dose range impossible. A severely truncated dose range experiment was performed. Because of the solubility in DMSO problem and the concern that the dose delivered in 1% DMSO might not cause any toxicity, doses, and the appropriate solvent controls, delivered in 2% and 3% DMSO were also tested. (Normally the highest concentration of DMSO used for this assay is 1%). The results from this preliminary dose ranging experiment are found in Table 2. The actual mutagenesis experiments were performed using Joses delivered in up to 2% DMSO. The pure yellow dye was found to be slightly more soluble in DMSO than the C.I. Solvent Yellow No. 33. Consequently, it was possible to test this compound at doses up to 50 μ g/ml by delivering the dose in 1% DMSO. No dose-ranging study was necessary since the dose-range had already been established for the C.I. Solvent Yellow No. 33.

Table 3 shows the first experiment testing both the C.I. Solvent Yellow No. 33 and the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture with metabolic activation. The C.I. Solvent Yellow No. 33 is clearly positive while the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture gives only a (weak) positive response at 40 µg/ml. The cultures dosed with 6 µg/ml and above of the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture showed some precipitate following the treatment and after the first centrifugation. No precipitate was observed following the final resuspension. No precipitate was observed for the C.I. Solvent Yellow No. 33. In the repeat experiment (Table 4), the C.I. Solvent Yellow No. 33 is again clearly positive. The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture gives a questionable response, with a possible positive at the high (40 μ g/ml) dose. Precipitate was seen during the cell wash at doses above 16 µg/ml. Table 5 shows the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture tested over an expanded dose range. As in the previous tests, the C.I. Solvent Green No. 3 -C.I. Solvent Yellow No. 33 mixture shows a positive response only at the highest dose tested. Precipitate was observed during the cell wash in cultures treated at 15 µg/ml or more. The expanded dose range test for the C.I. Solvent Yellow No. 33 with metabolic activation (Table 6) confirms the positive response.

TORROW OF THE STATE OF THE STAT

TABLE 2. DOSE RANGING EXPERIMENT FOR C.I. SOLVENT YELLOW NO. 33 AND C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN THE MOUSE LYMPHOMA MUTAGENICITY ASSAY

Concentration 24 hr.	Relative Growth
	(*)
negative control	100
1% DMSO	100
2% DMSO	100
3% DMSO	100
C.I. Solvent Green No. 3 -	C.I. Solvent Yellow No. 33 Mixture
2.07 µg/ml	90.1
4.14 µg/ml	92.9
8.30 µg/ml	84.4
12.4 µg/mï	70.2
16.6 µg/ml	66.2
20.7 μg/ml	75.6
41.4 μg/ml (2% DMSO)	74.0
62.1 µg/ml (3% DMSO)	85.0
C.I. Solvent Yellow No. 33	
1.94 µg/ml	81.2
3.90 µg/ml	83.5
7.8 µg/ml	74.9
11.6 µg/ml	74.7
15.5 μg/ml	69.8
19.4 µg/ml	76.9
38.8 µg/ml (2% DMSO)	82.8
58.2 μg/ml (3% DMSO)	72.2

TABLE 3. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO.33 MIXTURE AND C.I. SOLVENT YELLOW NO. 33 WITH METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control (w/o S-9)	100.0	448	90	100.0	100.0	40.2	
Neg. Control	100.0	594	121	100.0	100.0	40.7	
Solvent Cont. (1% DMSO)	100.0	466	131	100.0	100.0	56.2	
Solvent Cont. (2% DMSO)	100.0	476	139	100.0	100.0	58.4	
Pos. Control				•			,
(40 μg/ml 2 AAF) 29.5	435	815	93.3	27.5	374.7	318.5
C.I. Solvent Gr	een No. 3 -	C.I. Sol	vent Yel	low No. 33 M	ixture		
2 μg/ml	112.4	484	185	103.8	116.7	76.4	20.2
6 μg/ml*	108.8	547	116	117.4	127.7	42.4	
12 μg/ml*	112.4	420	106	90.1	101.3	50.5	
16 μg/m1*	105.8	543	189	116.5	123.3	69.6	13.4
20 μg/ml*	109.3	515	159	110.4	120.7	61.8	5.6
40 μg/ml* (2% DMSO)	74.2	475	358	99.8	74.1	150.7	92.3
C.I. Solvent Yel	llow No.33						
2 µg/ml	110.8	546	142	117.1	129.7	52.0	
6 µg/ml	110.3	570	165	122.3	134.9	57.9	1.7
12 µg/ml	97.1	436	342	93.6	90.9	156.8	100.6
16 µg/ml	66.9	416	485	89.2	59.7	233.3	177.1
20 µg/ml	36.2	339	523	72.7	26.3	308.5	252,3
40 μg/ml (2% DMSO)	toxic						

^{*}Showed some precipitate

TABLE 4. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE AND C.I. SOLVENT YELLOW NO. 33 WITH METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)	
Neg. Control (w/o S-9)	100.0	435	106	100.0	100.0	48.7		
Neg. Control	100.0	435	119	100.0	100.0	54.7		
Solvent Cont. (1% DMSO)	100.0	407	145	100.0	100.0	71.3		
Solvent Cont. (2% DMSO)	100.0	456	157	100.0	100.0	68.9		
Pos. Control (40 µg/ml 2 AAF	r) 75.8	318	401	78.2	59.3	252.2	180.9	
C.I. Solvent Gr	een No. 3 -	C.I. Sol	vent Yel	low No. 33 M	ixture	•		
2 μg/ml	100.0	381	117	93.6	93.6	61.4		
6 µg/m1	121.9	498	143	122.4	149.2	57.4		
12 µg/ml	114.5	395	130	97.0	111.1	65.9		
16 μg/m1*	124.7	446	145	109.6	139.6	65.0		
20 μg/m1*	108.1	427	127	105.0	113.5	59.4		
40 μg/m1* (2% DMSO)	84.2	372	261	81.6	68.7	140.3	71.4	
C.I. Solvent Yellow No. 33								
2 µg/m1	121.0	432	132	106.2	128.5	61.1		
6 μg/ml	124.2	445	145	109.4	135.9	65.1		
12 µg/ml	116.1	377	232	92.6	107.5	123.1	51.8	
16 μg/ <u>m</u> ±	100.C	309	316	76.0	76.0	204.5	133.2	
20 μg/ml	75.8	288	327	70.8	53.7	227.1	155.8	
40 μg/ml (2% DMSO)	toxic							

^{*}Showed some precipitate

TABLE 5. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE WITH METABOLIC ACTIVATION

Concen tation	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Effic. (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control (w/o S-9)	100.0	378	92	100.0	100.0	48.7	
Neg. Control	100.0	301	89	100.0	100.0	59.1	
Solvent Cont. (1% DMSO)	100.0	374	93	100.0	100.0	49.8	
Solvent Cont. (2% DMSO)	100.0	344	79	100.0	100.0	46.0	
Pos. Control (40 µg/ml 2 AAF	37.3	272	523	72.7	27.1	384.8	335.0
C.I. Solvent Gr	een No. 3 -	C.I. Sol	vent Yel	low No. 33	Mixture		
						,	
6 μg/ml	97.9	358	100	95.8	93.8	55.8	6.0
8 μg/ml	98.3	365	108	97.6	95.9	59.2	9.4
9 μg/ml	99.3	336	109	89.9	89.3	64.9	15.1
10 µg/m1	94.2	386	135	103.2	97.2	70.0	20.2
ll µg/ml	83.0	329	96	87.9	71.9	58.4	8.6
12 µg/m1	87.3	364	105	97.4	85.1	57.7	7.9
13 μg/m1	86.8	347	117	92.8	80.6	67.5	17.7
14 µg/m1	95.1	319	103	85.4	81.2	64.5	14.7
15 μg/m 1 *	91.5	357	107	95.5	87.4	60.0	10.2
16 µg/m1*	89 • 1	320	115	85.5	76.2	71.9	22.1
17 μg/m1*	90.2	334	118	89.4	80.6	70.6	20.8
18 µg/m1*	82.7	304	97	81.4	67.3	63.8	14.0
19 μg/ml*	85.8	309	101	82.7	70.9	65.4	15.6
20 μg/ml*	84.3	319	138	85.4	72.0	86.5	36.7
40 μg/m1* (2% DMSO)	42.3	248	340	66.3	27.8	274.4	228.4

^{*}Showed some precipitate

and a second contract the contract

TABLE 6. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT YELLOW NO. 33
WITH METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control (w/o S-9)	100.0	326	90	100.0	100.0	55.2	
Neg. Cont.	100.0	359	110	100.0	100.0	61.3	
Solvent Cont. (1% DMSO)	100.0	304	62	100.0	100.0	40.8	
Pos. Control (40 µg/ml 2 AAF	52.3	230	426	75.5	39.5	370.8	330.0
C.I. Solvent Ye	11ow No. 33					•	
2 µg/ml	114.1	244	108	80.3	91.6	88.4	47.6
6 μg/ml	102.1	228	107	75.0	76.5	93.9	53.1
8 μg/ml	102.1	214	128	70.4.	71.9	119.5	78.7
9 µg/ml	86.4	272	(no TFT)	89.3	77.2	-	-
10 μg/ml	90.6	281	107	92.3	83.6	76.2	35.4
ll μg/ml	85.0	249	151	81.8	69.5	121.3	80.5
12 µg/ml	78.8	225	198	74.0	58.3	176.0	135.2
13 μg/ml	66.2	261	238	85.8	56.8	182.4	141.6
14 μg/ml	70.3	281	196	92.3	64.9	139.6	98.8
15 μg/ml	66.0	179	201	58.8	38.8	224.8	184.0
16 µg/ml	52.9	255	162	83.8	44.3	127.1	86.3
17 µg/ml	57.9	209	235	68.6	39.7	225.1	184.3
18 µg/ml	45.6	169	180	55.6	25.4	212.8	172.0
19 μg/ml	48.8	235	275	77.3	37.7	233.8	193.0
20 μg/ml	39.4	220	173	72.4	28.5	157.1	116.3

productiva indice productiva di la distribuita di la compania di la compania di la compania di la compania di l

The first test of the two dyes without exogenous metabolic activation is shown in Table 7. Both the C.I. Solvent Yellow No. 33 and the C.I. Solvent Green No. 3 — C.I. Solvent Yellow No. 33 mixture were clearly positive. Green precipitate was observed during the cell wash at the 20 and 40 μ g/ml doses of the C.I. Solvent Green No. 3 — C.I. Solvent Yellow No. 33 mixture. The repeat experiments (Tables 8 and 9) confirmed the positive response of both dyes without exogenous activation. Precipitate was visible in the C.I. Solvent Green No. 3 — C.I. Solvent Yellow No. 33 mixture treated cultures at doses above 8 μ g/ml.

Both the C.I. Solvent Yellow No. 33 and the C.I. Solvent Green No. 3 C.I. Solvent Yellow No. 33 mixture give higher mutagenic activity without exogenous activation (Tables 7-9) than with activation (Tables 3-6). Both dyes are positive without metabolic activation at doses which do not show a precipitate. The C.I. Solvent Yellow No. 33 dye is also mutagenic with S-9 activation. The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture is not mutagenic at doses showing no precipitate when S-9 activation is added to the system.

The purified yellow dye was also tested both with and without activation. The results are shown in Tables 10-13. As with the C.I. Solvent Yellow No. 33, the results are clearly positive. The response with exogenous activation is much weaker (Tables 10 and 11) than the response without activation (Tables 12 and 13).

It should be noted that this mutagenicity data obtained using the mouse lymphoma assay does not in all cases show a clear increasing dose-response relationship with increasing dose. This does not negate the positive nature of the data. Compounds which have solubility problems (i.e. are tested at doses near the limit of their solubility) tend to give plateau type dose-response curves similar to those observed in these studies. In addition it is not unusual or surprising that doses as close together as those used for these studies yield mutant frequencies which do not increase with each dose. In fact the closely spaced doses can almost be considered as replicates.

An analysis of the colony size distribution of the TFT-resistant mutants indicates that all three dyes produce significant proportions of small colony mutants (Figures 1-3, data with exogeneous activation not shown). This would predict that these dyes might also be clastogenic as well as mutagenic. To evaluate this possibility, gross aberration analysis of $TK^{+/-}$ mouse lymphoma cells treated with the dyes was performed. (This aspect of the research was not a part of

TABLE 7. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE AND C.I. SOLVENT YELLOW NO. 33 WITHOUT METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)		
Neg. Control	100.0	384	119	100.0	100.0	62.0			
Solvent Cont. (1% DMSO)	100.0	519	147	100.0	100.0	56.6			
Solvent Cont. (2% DMSO)	100.0	588	137	100.0	100.0	46.6			
Pos. Control (15 µg/ml MMS)	57.2	257	683	49.5	28.3	531.9	469.9		
C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture									
2 μg/ml	90.1	454	177	87.5	78.8	77.9	21.3		
6 μg/ml	77.5	286	422	55.0	42.6	295.5	238.9		
12 μg/ml	65.7	253	561	48.8	32.1	443.1	386.5		
16 µg/ml	68.6	322	658	62.1	42.6	408.4	. 351.8		
20 µg/ml*	59.2	253	473	48.8	28.9	373.6	317.0		
40 µg/m1* (2% DMSO)	65.3	83	158	14.1	9.2	381.6	335.0		
C.I. Solvent Yellow No. 33									
2 μg/ml	80.6	275	464	52.9	42.6	337.7	281.1		
6 µg/ml	70.2	250	498	48.2	33.8	398.1	341.5		
12 µg/ml	67.6	241	397	46.5	31.4	329.2	272.6		
16 µg/ml	66.5	235	441	45.3	30.1	375.0	318.4		
20 µg/ml	61.4	244	510	47.0	28.9	417.7	361.1		
40 μg/ml (2% DMSO)	57.8	244	596	41.5	24.0	488.1	441.5		

^{*}Showed some precipitate

and a sign of the second of th

TABLE 8. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE WITHOUT METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x106)	Induced Mutant Freq (x106)		
Neg. Control	100.0	433	73	100.0	100.0	33.7			
Solvent Cont. (1% DMSO)	100.0	422	110	100.0	100.0	52.1			
Pos. Control (15 µg/ml MMS)	53.0	170	763	40.2	18.8	898.7	865.0		
C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture									
2 μ g/ml	92.9	411	129	97.4	90.5	62.7	10.6		
6 μg/ml	58.0	235	408	55.8	32.3	347.0	294.9		
8 μg/ml	70.4	285	(no TFT	67.6	47.6				
9 μg/m1*	70.8	253	473	60.0	42.5	373.6	321.5		
10 μg/ml*	65.7	204	542	48.4	31.8	531.4	479.3		
11 µg/m1*	60.9	248	611	58.7	35.7	493.1	441.0		
12 μg/ml*	61.7	321	504	76.1	47.0	314.0	261.9		
13 μg/ml*	58.4	248	546	58.7	34.3	440.7	388.6		
14 µg/ml*	56.5	254	582	60.2	34.0	458.6	406.5		
15 µg/m1*	65.3	256	587	60.7	39.7	458.2	406.1		
16 μg/ml*	62.8	227	512	53.8	33.8	451.5	399.4		
17 μg/ml*	63.0	268	645	63.6	40.0	481.0	428.9		
18 µg/m1*	59.8	256	575	60.7	36.3	448.9	396.8		
19 µg/m1*	57.4	262	611	62.2	35.7	466.0	413.9		
20 μg/ml*	62.1	245	699	58.0	36.0	571.1	519.0		

^{*}Showed some precipitate

TABLE 9. MOUSE LYMPHOMA ASSAY OF C.I. SOLVENT YELLOW NO. 33 WITHOUT METABOLIC ACTIVATION

Concentration	Relative Suspensica Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control	100.0	476	116	100.0	100.0	48.8	
Solvent Cont. (1% DMSO)	100.0	540	134	100.0	100.0	49.6	
Solvent Cont. (2% DMSO)	100.0	514	132	100.0	100.0	51.3	
Pos. Control (15 µg/ml MMS)	69.8	230	942	42.5	29.7	819.8	770.2
C.I. Solvent Ye	110w No. 33			•			
2 μg/ml	77.6	257	545	47.6	36.9	424.4	374.8
6 µg/ml	58.4	193	739	35.8	20.9	765.0	715.4
8 μg/ml	59.6	225	773	41.7	24.3	687.1	637.5
9 µg/ml	56.6	258	725	47.8	27.0	562.0	512.4
10 µg/ml	68.6	185	674	34.2	23.5	729.4	679.8
ll µg/ml	59.1	202	792	37.4	22.1	783.4	733.8
12 µg/m1	47.7	239	654	44.2	21.1	547.7	498.1
13 μg/ml	61.0	212	767	39.2	23.9	724.3	674.7
14 µg/ml	55.7	220	737	40.8	22.7	669.4	619.8
15 µg/ml	61.7	225	697	41.7	25.7	619.6	570.0
16 µg/ml	62.0	276	796	51.1	31.7	576.8	527.2
17 µg/ml	58.0	192	674	35.6	20.6	702.1	652.5
18 µg/ml	53.5	187	624	34.7	18.6	666.7	617.1
19 μg/ml	64.4	219	657	40.6	26.1	600.0	550.4
20 µg/ml	57.7	241	636	44.7	25.8	527.4	477.8
40 μg/ml (2% DMSO)	41.8	157	812	30.6	12.8	1033.1	981.8

TABLE 10. MOUSE LYMPHOMA ASSAY OF PURIFIED YELLOW DYE WITH METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control	100.0	363	67	100.0	100.0	36.90	
Neg. Control (w/o S-9)	100.0	334	79	100.0	100.0	47.40	
Solvent Cont.	100.0	294	83	100.0	100.0	56.50	
Solvent Cont. (w/o S-9)	100.0	263	70	100.0	100.0	53.30	
Pos. Control (40 µg/ml 2AAF)	74.2	227	219	77.1	57.2	193.12	136.66
Purified Yellow	Dye						
5 µg/ml	95.3	278	62	94.5	90.0	44.60	
10 µg/ml	78.3	247	123	84.1	65.8	99.50	43.0
l2 µg/ml	68.9	248	180	84.3	58.1	145.30	88.88
14 μg/ml	45.5	273	232	92.9	42.2	170.00	113.5
16 μg/ml	52.6	243	186	82.6	43.5	153.10	96.6
18 µg/m1	43.2	227	197	77.1	33.3	173.70	117.2
20 μg/ml	51.8	242	142	82.2	42.6	117.40	60.9
22 μg/ml	34.8	274	203	93.1	33.4	148.40	91.9
24 μg/ml	45.7	197	188	66.9	30.6	191.10	134.6

TABLE 11. MOUSE LYMPHOMA ASSAY OF PURIFIED YELLOW DYE WITH METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control	100.0	420	113	100.0	100.0	53.8	
Neg. Control (w/out S-9)	100.0	508	178	100.0	100.0	70.1	
Solvent Cont.	100.0	457	82	100.0	100.0	35.9	
Solvent Cont. (w/out S-9)	100.0	475	205	190.0	100.0	86.3	
Pos. Control (40 µg/ml 2AAF)	16.4	320	772	69.9	11.5	482.8	446.9
Purified Yellow	Dye						
2.5 µg/ml	92.9	458	113	100.1	92.9	49.4	13.5
5 μg/ml	93.1	508	105	111.0	103.3	41.4	5.5
10 μg/ml	92.4	415	194	90.8	83.9	93.4	57.5
12 μg/m1	75.1	430	251	93.9	70.6	116.9	81.0
14 μg/ml	73.3	393	188	86.0	63.0	95.7	59.8
16 µg/m1	54.4	462	286	101.0	55.0	123.8	87.9
18 μg/ml	41.3	423	279	92.5	38.2	131.9	96.0
20 μg/ml	60.1	515	310	112.6	67.7	120.4	84.5
22 μg/ml	30.7	497	405	108.6	33.4	163.0	127.1
24 μg/ml	27.2	487	446	106.6	29.0	183.1	147.2

TABLE 12. MOUSE LYMPHOMA ASSAY OF PURIFIED YELLOW DYE WITHOUT METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Murant Clones	Relative Cloning Effic. (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control	100.0	447	90	100.0	100.0	40.3	
Solvent Cont.	100.0	471	104	100.0	100.0	44.2	
Pos. Control (15 µg/ml MMS)	61.1	237	645	53.0	32.4	544.3	504.0
Purified Yellow	Dye						
0.1 µg/ml	110.9	503	103	106.8	118.4	41.0	
0.5 μg/ml	107.9	372	144	79.0	85.2	77.4	33.2
2.5 µg/ml	60.7	262	683	55.5	33.6	525.9	461.7
5 μg/ml	50.2	200	493	42.4	21.3	493.5	449.3
10 μg/ml	33.3	130	542	27.5	9.2	836.4	792.2
20 μg/ml	30.9	120	566	25.5	7.9	943.3	899.1
30 μg/m1	53.3	224	476	47.5	25.3	425.4	381.2
40 μg/ml	57.5	239	506	50.7	29.2	423.8	379.6
50 μg/ml	53.8	181	353	38.3	20.6	390.9	346.7

Frank Amilian to Comy

TABLE 13. MOUSE LYMPHOMA ASSAY OF PURIFIED YELLOW DYE WITHOUT METABOLIC ACTIVATION

Concentration	Relative Suspension Growth (%)	Total Viable Clones	Total Mutant Clones	Relative Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Freq (x10 ⁶)	Induced Mutant Freq (x10 ⁶)
Neg. Control	100.0	299	116	100.0	100.0	77.6	
Solvent Cont.	100.0	326	150	100.0	100.0	92.1	
Positive Contro (15 μg/ml MMS)	01 74.4	183	289	61.2	45.6	315.8	238.2
Purified Yellow	Dye					·	
0.1 µg/ml	120.1	323	116	98.9	118.8	72.0	
0.5 µg/ml	87.4	250	148	76.8	67.1	118.3	26.2
1.0 µg/ml	54.7	168	198	51.6	28.2	235.7	143.6
2.5 µg/ml	71.5	203	239	62.2	44.5	235.7	143.6
5 µg/ml	62.9	153	212	46.9	29.5	277.1	185.0
10 μg/ml	61.4	151	263	46.4	28.5	347.9	255.8
20 μg/ml	52.9	158	258	48.4	25.6	326.9	234.8
30 μg/ml	49.6	134	212	41.1	20.4	316.9	224.8
40 µg/ml	57.3	142	203	43.6	25.0	385.5	293.4
50 μg/ml	43.8	127	222	39.0	17.8	349.1	257.0

Figure 1: Relative size distribution of TFT-resistant mutants following treatment with 20 μ g/ml of C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33, without exogenous metabolic activation. The small colonies are shown in the left peak; the large colonies in the right peak.

Figure 2: Relative size distribution of TFT-resistant mutants following treatment with 20 μ g/ml of C.I. Solvent Yellow No. 33, without exogenous metabolic activation. The small colonies are shown in the left peak; the large colonies in the right peak.

Figure 3: Relative size distribution of TFT-resistant mutants following treatment with 10 $\mu g/ml$ of >99.9% pure yellow dye, without exogenous metabolic activation. The small colonies are shown in the left peak; the large colonies in the right peak.

the work requested by the US Army. It is included because of its significance and usefulness in the evaluation of these dyes for potential human health hazard.) All three dyes were found to be clastogenic (Figures 4-6) to these mouse lymphoma cells. It should be noted that 100 cells/dose were analyzed in Figures 4 an 5 while 50 cells/dose were analyzed for Figure 6. Chromosome breaks, translocations and chromosome deletions were induced by the dyes.

In Vivo Sister Chromatid Exchange Analysis in Mice

Z

The results from analyses of marrow cell 3CEs and cell kinetics are presented in Tables 14 thru 19. Individual animal mean SCE values and relative proportions of metaphase cells at the first, second and third division after BrdU and a single C.I. Solvent Green No. 3 -C.I. Solvent Yellow No. 33 mixture exposure are provided in Table 14. Data for each exposure group are summarized in Table 15. Cyclophosphamide was clearly effective as a positive control. SCE frequencies were 7-8 times higher than negative control values, and significantly higher numbers of first division cells (with lower numbers of second and third division cells) evidenced a cytotoxic effect. However, there was no increase in SCE frequency at any dose due to exposure to the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture. A greater prevalence of third division cells sometimes noted in the dye treatment group was likely caused by the later times of cell harvest. The C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture was observed to be dissolved in solution at the 10 and 20 mg/kg doses, and precipitated out of solution at the 40 mg/kg dose.

Data similarly tabulated for single intraperitoneal exposure trials with the C.I. Solvent Yellow No. 33 are presented in Tables !6 and 17. This dye was also ineffective in inducing SCEs. Cyclo-phosphamide clearly induced SCEs and slowed cell-cycling; however, no such effects were observed after exposure to the C.I. Solvent Yellow No. 33. SCE levels were not significantly different from control levels, and higher numbers of third division cells (lower numbers of first division cells) probably were a reflection of later cell harvest times. The C.I. Solvent Yellow No. 33 was observed to be in solution at the 5 and 15 mg/kg doses and precipitated out of solution at the 25 and 35 mg/kg doses.

Similar negative results were obtained after exposure to multiple injections of the C.I. Solvent Yellow No. 33 (Tables 18 and 19). Cyclophosphamide was effective; however, the dye-treated animals generally showed no greater SCE frequencies or cytotoxicity. One

Figure 4: Gross aberration frequency in L5178Y/TK^{+/-} Mouse Lymphoma cells following treatment with C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture, without exogenous metabolic activation.

Figure 5: Gross aberration frequency in L5178Y/TK^{+/-} Mouse Lymphoma cells following treatment with C.I. Solvent Yellow No. 33, without exogenous metabolic activation.

Figure 6: Gross aberration frequency in L5178Y/TK^{+/-} Mouse Lymphoma cells following treatment with the >99.9% pure yellow dye, without exogenous metabolic activation.

TABLE 14. SCE AND CELL REPLICATION KINETICS ANALYSES OF MOUSE BONE MARROW CELLS AFTER IN VIVO SINGLE EXPOSURE (I.P.) TO C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE: SUMMARY/INDIVIDUAL ANIMAL

		SCE/Cell ^a	Cel1	Kinetics (%)b
Treatment	Animal	Mean ± (S.D.)	<u>M1</u>	M2 M3
Negative Control	1	4 (1.7)	26.5	
	2	5 (2.2)	20.0	71.5 8.5
	3	4 (1.8)	34.0	64.0 2.0
	4	No SCDC		
Solvent Control	1	4 (2.0)	31.0	68.0 1.0
(DMSO + Corn 011)	2	3 (1.5)	28.0	66.0 6.0
	3	4 (1.7)	12.5	
	4	4 (1.9)	12.0	82.0 6.0
Positive Control	1	26 (6.8)	48.0	45.0 7.0
(Cyclophosphamide	2	33 (7.3)	50.0	47.0 3.0
15 mg/kg)	3	29 (8.1)	35.5	58.0 6.5
	4	29 (6.7)	57.0	42.0 1.0
C.I. Solvent Green	No. 3	- C.I. Solvent Yellow No. 33 Mi	xture	
10 mg/kg	1	4 (1.9)	20.5	74.5 5.0
	2	3 (1.4)	14.5	74.0 11.5
	3	4 (2.2)	11.6	78.4 10.0
	4	3 (2.0)	17.5	81.0 1.5
20 mg/kg	1	3 (1.5)	5.0	55.0 40.0
5 0	2	4 (2.1)	13.5	
	3	3 (1.5)	5.5	37.0 57.5
•	4	No SCD		
40 mg/kg	1	3 (1.8)	12.0	29.5 58.5
3		3 (1.6)	42.0	58.0 0.0
	2 3	3 (1.3)	23.5	60.9 15.6
	4	4 (2.0)	31.5	59.0 9.5

a - Mean of 30 cells/animal

b - Based on 200 spreads/animal

c - SCD= Sister Chromatid Differentiation

TABLE 15. SCE AND CELL REPLICATION KINETICS ANALYSES OF MOUSE BONE MARROW CELLS AFTER IN VIVO SINGLE EXPOSURE (I.P.) TO DYE C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE: SUMMARY/TREATMENT GROUP

	Number of	SCE/Ce	11 ^a	Cell	Kineti	cs (%)a
Treatment	Animals	<u>Mean</u> ±	(S.E.)	<u>M1</u>	М2	мз
Negative Control	3	4	(0.8)	27	66	7
Solvent Control (DMSO + Corn Oil)	4	4	(0.6)	21	74	5
Positive Control (Cyclophosphamide 15 mg/kg)	4	29	(2.6)	48	48	4
C.I. Solvent Green	No. 3 - C.I. S	olvent Yel	low No. 33 N	fixture		
10 mg/kg	4	3	(0.4)	16	77	7
20 mg/kg	3	3	(0.6)	8	52	40
40 mg/kg	4	3	(0.4)	27	52	21

a Mean of 3-4 animals/group

Thesi Amildio Cons

TABLE 16. SCE AND CELL REPLICATION KINETICS ANALYSES OF MOUSE BONE MARROW CELLS AFTER IN VIVO SINGLE EXPOSURE (I.P.) TO C.I. SOLVENT YELLOW NO. 33: SUMMARY/INDIVIDUAL ANIMAL

Treatment	Animal	SCE/Cell ^a Mean ± (S.D.)	Cell Kinetics (%)b MI M2 M3
Negative Control	1 2 3 4	4 (1.9) 4 (2.1) 4 (2.2) 4 (1.9)	33.5 54.0 12.5 15.5 69.5 15.0 17.5 77.5 5.0 12.5 77.5 10.0
Solvent Control (DMSO)	1 2 3 4	4 (1.9) 5 (2.1) 5 (1.9) 4 (1.3)	6.0 83.0 11.0 25.0 65.0 10.0 12.5 80.0 7.5 10.0 63.0 27.0
Positive Control (Cyclophosphamide 30 mg/kg)	1 2 3 4	57 (11.2) 53 (9.6) 50 (11.1) 50 (10.6)	79.0 21.0 0.0 23.5 75.0 1.5 29.0 65.0 6.0 45.0 53.0 2.0
C.I. Solvent Yellow	No 33		
5 mg/kg	1 2 3 4	5 (2.2) 4 (2.1) 5 (2.9) 5 (2.6)	14.0 70.0 16.0 12.5 49.0 38.5 8.0 60.0 32.0 14.0 70.0 16.0
15 mg/kg	1 2 3 4	4 (1.9) 5 (2.8) 3 (1.1) No SCD ^c	7.5 62.5 30.0 6.0 70.0 24.0 6.0 34.0 60.0
25 mg/kg	1 2 3 4	2 (1.5) 4 (2.3) 3 (1.9) No SCD	14.5 46.5 39.0 19.5 58.0 22.5 13.5 26.5 60.0
35 mg/kg	1 2 3 4	2 (1.2) 3 (1.6) 4 (2.5) 4 (2.6)	2.5 14.5 83.0 4.5 29.0 66.5 14.0 56.5 29.5 6.0 32.0 62.0

a Meen f 30 cells/animal

b Based on 200 spreads/animal

c SCn - Sister Chromatid Differentiation

TABLE 17. SCE AND CELL REPLICATION KINETICS ANALYSES OF MOUSE BONE MARROW CELLS AFTER IN VIVO SINGLE EXPOSURE (I.P.) TO C.I. SOLVENT YELLOW NO. 33: SUMMARY/TREATMENT GROUP

	Number of	SCE/0	Cell ^a	Cell Ki	netics ((%)a
Treatment	Animals	Mean	± (S.E.)	<u>M1</u>	M2	М3
Negative Control	4	4	(0.3)	19.8	69.6	10.6
Solvent Control (DMSO)	4	5	(0.7)	13.4	72.8	13.8
Positive Control (Cyclophosphamide 30 mg/kg)	4	52	(3.5)	44.1	53.5	2.4
C.I. Solvent Yellov	No. 33					
5 mg/kg	4	5	(0.5)	12.2	62.3	25.5
15 mg/kg	3	4	(8.0)	6.5	55.5	38.0
25 mg/kg	3	3	(0.7)	5.8	43.7	40.5
35 mg/kg	4	3	(0.7)	6.8	33.0	60.2

a mean of 3-4 animals/group

Door Available Copy

TABLE 18. SCE AND CELL REPLICATION KINETICS ANALYSES OF MOUSE BONE MARROW CELLS AFTER IN VIVO REPEATED (OVER 3 DAYS) EXPOSURES (I.P.) TO C.I. SOLVENT YELLOW NO. 33: SUMMARY/INDIVIDUAL ANIMAL

Treatment	Animal	SCE/Cel Mean ±		Cell Ml	Kineti M2	cs (%)b
Negative Control	1 2 3 4	3 (3 ((1.8) (1.9) (1.5) (1.2)	12.0 10.0 5.0 10.0	73.0 84.0 85.0 76.0	15.0 6.0 10.0 14.0
Solvent Control (DMSO)	1 2 3 4	4 ((1.7) (2.6) (2.1) (1.6)	4.0 1.0 4.0 2.0	66.0 27.0 64.0 46.0	30.0 72.0 32.0 52.0
Positive Control (Cyclophosphamide 15 mg/kg)	1 2 3 4	35 (33 ((8.5) (8.7) (5.0) (7.3)	6.0 15.0 4.0 7.0	82.0 71.0 84.0 86.0	12.0 14.0 12.0 7.0
C.I. Solvent Yellow No. 33					·	
5 mg/kg/day	1 2 3 4	4 (3 ((2.0) (2.1) (1.2) (2.0)	2.0 0.0 0.0 0.0	40.0 49.0 19.0 32.0	58.0 51.0 81.0 68.0
15 mg/kg/day	1 2 3 4	4 (3 ((2.1) (1.9) (1.5) (1.7)	4.0 5.0 4.0 3.0	59.0 75.0 57.0 31.0	37.0 20.0 39.0 66.0
25 mg/kg/day	1 2 3 4	4 (3 ((1.5) (1.5) (1.9) (1.3)	1.0 2.0 3.0 0.0	53.0 36.0 53.0 13.0	41.0 62.0 44.0 87.0
35 mg/kg/day	1 2 3 4	7 (4 ((1.6) (2.5) (2.1) (1.4)	0.0 21.0 0.0 3.7	6.0 75.0 54.0 31.0	94.0 4.0 46.0 66.0

a Mean of 30 cells/animal

b Mean of 200 spreads/animal

TABLE 19. SCE AND CELL REPLICATION KINETICS ANALYSES OF MOUSE BONE MARROW CELLS AFTER IN VIVO REPEATED (OVER 3 DAYS) EXPOSURES (I.P.) TO C.I. SOLVENT YELLOW NO. 33: SUMMARY/TREATMENT GROUP

Treatment	Number of Animals		/Cell ^a n ± (S.E.)	Cell Ml	Kinetics M2	(%)a M3
Negative Control	4	3	(0.1)	9	80	11
So ent Control (DMSO)	4	4	(0.2)	3	51	46
Positive Control (Cyclophosphamide 15 mg/kg)	4	33	(1.3)	8	81	11
C.I. Solvent Yellow No.	. 33					
5 mg/kg/day	4	4	(0.7)	1	35	64
15 mg/kg/day	4	4	(0.2)	4	55	41
25 mg/kg/day	4	3	(0.4)	1	40	59
35 mg/kg/day	4	4	(1.7)	6	42	52

a Mean of 4 animals/treatment

exceptional animal at the highest dose did reveal a small but significant SCE increase, and slowed cell-cycling as well. The exposure group as a whole did not reveal SCE induction or cytotoxicity effects.

Dye coloration or crystal evidence was not apparent in the peritoneum of animals dissected at the time of marrow cell harvest. There were also no crystals of dye evident in peritoneal cell pellets examined under a microscope. Peritoneal cell viabilities from 2 mice treated with 35 mg/kg C.I. Solvent Yellow No. 33 were similar to those of control (96.9% ani 97.7% for treated animals vs. 95.2% and 97.5% for control animals). The percentage of cells represented as macrophages was also comparable between negative control and treated mice (83-84%). No traces of the dyes were observed in the marrow cell preparations.

Higher dose testing of both the C.I. Solvent Green No. 3 -C.I. Solvent Yellow No. 33 mixture and C.I. Solvent Yellow No. 33 was constrained by DMSO toxic effects and dye solubility in DMSO. Regardless of dye concentration, DMSO was determined in preliminary trials to inhibit cell cycling at injection volumes approximating 0.15 ml, and to cause animal death at higher doses. Toses considered to be at, or near, the limits of solubility in 0.1 ml of DMSO (20 mg/kg C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture; 15 mg/kg C.I. Solvent Yellow No. 33), and higher doses clearly as particulate suspensions, failed to give any clear evidence of SCE induction or cytotoxicity. Preliminary experiments suggesting cell-cycle delay effects from the dyes were not confirmed. It is now felt that these effects probably stemmed from the DMSO solvent initially used at higher concentrations. With the exception of one mouse revealing an approximate doubling of the control SCE values after multiple C.I. Solvent Yellow No. 33 injections at the highest dose, the data for both dyes were uniformly negative.

Although it is possible that the dyes may not have been distributed to the bone marrow, there was no evidence of dye localization in or around the peritoneal cavity. Further, there was no indication that peritoneal cells were stimulated by the dye. In the context of the present study, it is presumed that the I.P. injected dyes are distributed to marrow cells, and are inactive for SCE induc' on. Additional studies to evaluate effects after alternative routes of exposure (i.e. oral), in different cell-types (i.e. lung-from primary cell cultures established after inhalation exposure), and/or in cell cultures after in vitro exposure (so as to circumvent possible ''ver detoxification effects) are suggested if further confirmation of

TO SECURE TO SEC

negative activity for this genotexic end-point is desired. In conclusion, cytogenetic evaluations, specifically SCE analysis in bone marrow cells of mice exposed in vivo, have not revealed any evidence of genotoxic potential associated with these dyes.

Conclusions

Two dyes, C.I. Solvent Yellow No. 33 and a C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 mixture were tested for mutagenicity in seven strains of Salmonella typhimurium, the L5172Y/TK^{+/-} mouse lymphoma assay and in vivo in mice for sister chromatid exchange analysis. A purified C.I. Solvent Yellow No. 33 was tested in the seven strains of Salmonella typhimurium, and the L5178Y/TK^{+/-} mouse lymphoma assay. In vivo, the two dyes were incapable of inducing SCEs. In vitro all three dyes gave a positive response for gene mutation in Salmonella strains TA102 and TA104. In vitro, all three dyes induced gene mutation at the TK locus in the mouse lymphoma assay. A large proportion of the mutants were small colonies predicting that the dyes might be clastogenic. (Preliminary studies for gross aberrations using mouse lymphoma cells confirm that the dyes can induce chromosome breaks, translocations and chromosome deletions.)

In evaluating the significance of the results from this test battery it is important to consider the differences between the in vivo and the in vitro results, as well as the different sensitivities of the endpoints. The negative in vivo results could have resulted from the non-genotoxic nature of the dyes, the failure of the dyes to reach the target tissue, or the specific inability of the dyes to induce SCEs. In performing the tests, care was taken to observe that dye crystals were not apparent in the peritoneum of animals dissected at the time of marrow cell harvest.

The ability of the dyes to induce SCEs was also questioned. In preliminary studies (Doerr and Moore, unpublished data, U.S. EPA, 1984) the pure yellow dye was evaluated for its ability to induce SCEs in mouse lymphoma cells in vitro. The results were negative. It appears therefore that the negative in vivo results may be due to the insensitivity of the endpoint to the dyes rather than a true in vivo nongenotoxicity of the dyes. If a further evaluation of these dyes is desired, it would be interesting to test them in vivo for the induction of gross aberrations and in a different cell line (possibly human lymphocytes) in vitro for gross aberrations.

The purified C.I. Solvent Yellow No. 33 was tested to determine if the dye itself or the impurities were responsible for the observed mutagenic activity. This purified dye was found to be mutagenic in Salmonella, and at the TK locus of mouse lymphoma cells. It was also found to be clastogenic to mouse lymphoma cells. From these studies it is clear that the dye itself, not an impurity, is mutagenic. This dye is present both in the yellow dye and the green-yellow mixture.

LITERATURE CITED

- 1. Allen, J.W., C.F. Shuler, and S.A. Latt. 1978. Bromodeoxyuridine tablet methodology for in vivo studies of DNA synthesis. Somat. Cell. Genet. 4:393-405.
- 2. Ames, B.N., J. McCann, and E. Yamasahi. 1975. Methods of detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. Mutation Res. 31:347-364.
- 3. Clive, D., and J.F.S. Spector. 1975. Laboratory procedure for assessing specific locus mutations at the TK locus in cultured L5178Y mouse lymphoma cells, <u>Mutation Res</u>. 31:17-29.

ĝ.

D

- 4. Clive, D., K.O. Johnson, J.F.S. Spector, A.G. Batson and M.M.M. Brown. 1979. Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. <u>Mutation Res.</u> 59:61-108.
- 5. de Serres, F.J. and M.D. Shelby. 1979. Recommendations on data production and analysis using Salmonella/microsome mutagenicity assay. Environ. Mutag. 1:87-92.
- 6. Goto, K., S. Maeda, Y. Kano, and T. Sugiyama. 1978. Factors involved in differential Giemsa-staining of sister chromatids. Chromosoma 66:351-359.
- 7. Hozier, J., J. Sawyer, M. Moore, B. Howard, and D. Clive. 1981. Cytogenetic analysis of the L5178Y/TK^{+/-}-TK^{-/-} mouse lymphoma mutagenesis assay system. Mutation Res. 84:169-181.
- 8. Hozier, J., J. Sawyer, D. Clive, and M.M. Moore. 1983. Cytogenetic analysis of small-colony L5178Y TK-/- mutants early in their clonal history. In G.M. Williams, V.C. Dunkel, and V.A. Ray, eds. Cellular Systems for Toxicity Testing pp. 423-425. The New York Academy of Sciences, New York, N.Y.
- 9. Latt, S.A., J. Allen, S.E. Bloom, A. Carrano, E. Falke, D. Kram, E. Schneider, R. Schreck, R. Tice, B. Whitfield, and S. Wolff. 1981. Sister-chromatid exchanges: a report of the Gene-Tox Program. Mutation Res. 87:17-62.

the property of the contract of the property of the contract of the contract of the contract of the contract of

Dania Arelining Committee

- 10. Maron, D. and B. Ames. 1983. Revised methods for the Salmonella mutagenicity test. Mutation Res. 105:1-77.
- 11. McFee, A.F., K.W. Lowe, and J.R. San Sebastian. 1983. Improved sister-chromatid differentiation using paraffin-coated bromodeoxyuridine tablets in mice. Mutation Res. 119:83-88.
- 12. Moore, M.M. and D. Clive. 1982. The quantitaton of the TK^{-/-} and HGPRT mutants of L5178Y/TK^{+/-} mouse lymphoma cells at varying times post-treatment, Environ. Mutagenesis, 4:499-519.
- 13. Stead, A.G., V. Hasselblad, J.P. Creason, and L. Claxton. 1981. Modeling the Ames Test. Mutation Res. 85:13-27.
- 14. Wolff, S., and P. Perry. 1974. Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. <u>Chromosoma</u> 48:341-353.

DOCUMENT DISTRIBUTION LIST

No. of Copies	
4	Commander US Army Medical Research and Development Command ATTN: SGRD-RMS Fort Detrick Frederick, MD 21701
12	Defense Technical Information Center (DTIC) ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314
1	Dean School of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20014
1	Commandant Academy of Health Sciences, US Army ATTN: AHS-COM Fort Sam Houston, TX 78234
1	Librarian US Army Medical Bioengineering Research and Development Laboratory ATTN: SCRD-UBZ-I Fort Detrick Frederick, MD 21701
25	Commander US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBG-M Fort Detrick Frederick, MD 21701

Appendix A

Data and statistical analysis for the <u>Salmonella typhimurium</u> bioassays of 3 Army dyes. The data is ordered in the following manner. Data sheets for individual experiments which include testing of a single compound both with and without activation are followed by two pages showing the statistical analysis of the data with and without activation. Cultures with S-9 activation are indicated as RLA026 or RLA027. BMGS-84-0001 is the code for the C.I. Solvent Green No. 3 - C.I. Solvent Yellow No. 33 Mixture; BMGS-84-0002 is C.I. Solvent Yellow No. 33; and BMGS-84-0003 is the purified yellow dye.

IN VITAO ASSA'S WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN
RESEARCH LAB: GBBA ON 33/30/84

08/27/84

TEST TIPE:	STANDA	D PLATE I	NCORPO	RATION			\$ 1	RAIN: TA10	C
	A			HI	STIDINE	REVERTA	NTS PE	R PLATE	
	C	UGS PER							
COMPGUND	Ţ	PLATE	A	ə	c	9	Ε	MEAN	STO
POS CONTROL									
MAALLDE	-	3.00	1179	1205	1100			4440 00	4
S-VV	ALAG26		363	360	2 + 8			1188.00 340.33	14.73 30.69
NEG CONTROL									
DIMETHYLSULF	RLADZ6	106.600	105	1C1	163			103.60	2.00
	•	136.000	103	134	97			111.33	19.86
6MGS-34-uCD1									,
	RLADZ6	1.00	108	ذ10				105.50	• • •
	HLAD26		126	132				129.00	3.54
	RLACZO		142	109				125.50	4.24
	ALACZ6	30	133	164					23.33
	ALADZ6		138	100				118.50 122.CO	20.51
	RLACZE	100.00	173	165				169.00	5.66
	RLACES	300.00	153	144				148.50	6.36
	RLAC26	5CL.00	161	150			,	159.50	2.12
	ALA026	1606.00	142	134				138.00	5.66
	-	1.40	114	125				121.00	9.90
	-	5 • úC	102	144				123.00	29.70
	-	10.00	108	72				90.C0	25.46
	-	36.GO	132	127				129.50	3.54
	•	50.00	116	125				120.50	6.36
	-	100.00	131	113				122.60	12.73
	•	306.30	110	136		_		124.00	19.80
	•	500.00	165	145				155.00	14.14
	•	1000.00	131	117				124.00	G.Gn

PHENGCOPY CHECK: TRUE MUTANTS STERILITY S-F: NOT CONTAMINATED SAMPLE STERILITY: NOT CONTAMINATED ACT MIA/PLATE: SCGUGS	N-NGS M-MGS	1-4M 8-668
	 0.063	C-OH

en des la <mark>carres</mark> de <mark>dese</mark>ntados de respuesa de defenda en la carres de la carres

Door Assettation Comme

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN

RESEARCH LAB: GBAA

ON 03/30/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TATCO

+RLAC26

ABOVE 100 UG/PLATE. THE SAMPLE APPEARS TO PRECIPITATE OUT OF SOLUTION.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

6	8 C 80 701		M	61	99 11CS 195 191 192	501	66	
8.0	MEAN S.D	DOSE UNITS PLATE COUNTS	S	COUNT	DOSE UNITS PLATE COUNTS	UNITS	DOSE	
5 6	+ RLAB	SAMPLE ID, BMGS-84-000! LAB, CBBA ACTIVATION: + RLA026 STRAIN, TA100 DATE: 03/30/84 TECHNICIAN; MJK	LAB: CBBA 03/30/84	0001 Date:	CS-84-	10. BH TA:00	SAMPLE	

MEAN S.D.		340.33 36.69	50	129.00 4.24	50	50	88	169 00 5.66	8.50	ISPLAYED	1900 NO 0X3 # 300			×	******	× ,	-)				
										COMPUTATION BUT NOT DISPLAYED		- 1	X - 6/1	×		7-1-051		**	*	125	 *
DOSE UNITS PLATE COUNTS	SON	# UCS 363 360	108	30 UCS 126	UGS 142	NGS 133	UCS 138	SON	300.00 UCS 153 1	DOSE LEVELS USED IN	B(0) B(1) B(2) B(3)		103.565 1.8926 .4446 .00058	CHI-SQUARE DF P LOGL		POISSON 13 14 11 .2842 -76.8837	2000 : 32 · 0	CITY 54.67 2 .0000	AVERAGE SLOPE (NONLIN. MODEL) = .210	. 960.	AVERAGE SLOPE (LINEAR RECR.) = .095 95% CONF. LIMITS = (.040, .150)
										MORE			ESTS.	TEST	1 1	POISSON	TOXI	HUT,	AVEF	36	AVEF 95

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-000! LAB: GBBA ACTIVATION: -STRAIN: TA100 DATE: 03/30/84 TECHNICIAN: MJK

MEAN S.D.	33	28 25. 6. 4.55.	DISPLAYED OBS & EXP VS DO	×	×××	
DOSE UNITS PLATE COUNTS	000 000 000 000 000	10.00 UCS 102 144 30.00 UCS 132 127 50.00 UCS 116 125 100.00 UCS 131 113	THAN 9 DOSE LEVELS USED IN COM B(0) B(1) B(2)	DF P LOCL	CITY 17.72 2 .0001 -103 SLOPE (NOWLIN: MODEL) = NF. LIMITS = (.133,)	AVERAGE SLOPE (LINEAR REGR.) =071 95% CONF. LIMITS = (.020, .121)

50-

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

. RESEARCH LAB: GBBA

ON C4/06/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION	TEST	TYPE:	STANDARD	PLATE	INCORPORATION
---	------	-------	----------	-------	---------------

\$ Ť	•	Ť	N	٠	7	•	1	90	,

	A			n1	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C T	UGS PER Plate	A	8	Ç	Đ	E	MEAN	STD
POS CONTROL									
-	_	1							
NAAZIDE		3.00	1253	1356	1320			1307.67	49.66
2-NF 4	rryoše	U-50	953	814	5+3			869.00	74.28
NEG CONTROL									
	LAC26	100.000	115	125	114			118.00	6.08
	-	100.0Cu	109	102	110			107.00	4.36
			, ,					107.00	4.50
8465-84-6001									
4	LADZ6	1.00	129	127				128.00	1.41
A	LAC26	5.CO	143	141				142.00	1.41
Ŕ	LAC25	15.00	158	173				165.50	10.61
Á	LADZ6	30.00	146	154					5.66
R	LAJZS	50.00	151	164				157.50	9.19
Ŕ	LAUZ6	105.60	185	166				176,50	12.02
R .	LAG26	300.00	173	153	•			163.00	14.14
	-	1.00	113	129				121.00	11.31
	-	5.0G	125	161				143.00	25.46
	-	10.00	:15	114				114.50	0.71
	•	30.60	130	131				130.50	0.71
	•	56.60	137	117				127.00	14.14
	•	100.00	139	111				1 3.60	1.41
	•	300.00	129	12â				1.3.50	0.71

PHENOCOPY CHECK :	TRUE MUTANTS		N-NGS	
STERILITY 5-9 :	NOT CONTAMINATED	T+-TOXIC	M-MGS	8-228
SAMPLE STERILITY:	NOT CONTAMINATED	INTC-TOO NUMEROUS TO COUNT	L-NLS	1
ACT MIX/PLATE :	5CCuGS	NATC-NGT ABLE TO COUNT	UTULS	C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT CREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-000! LAB: CBBA ACTIVATION: + RLA026 STRAIN: TAI00 DATE: 04/06/84 TECHNICIAN: MJK

		188	28	=	=	= 9	و م	90	•			_			×	_		×				
	S.D.	6.6	4	-	-	9.6	0 C	12.02	-		ليا					1						
! !			_								DOSE											
HJK	HEAN	00	80	00	90	58	5 5 6	176.50	9							lacksquare	-	4	···		_	
_	Ĭ	18	69	28	45	65	50.0 57.0	76.			EXP VS											
ż		-	Φ	_	_		_		-	Į	Ě				$\ \ $			1				
V I 3		!								,	085 &		×		H	\		\dashv			+	
Ξ		į								į	08				į '	ackslash	,	J	,			
TECHNICIAN																7	S	री	×			
		1										1	П	Н	7	1	A	Ŧ	*	1	* 7	5
8		i !									200	3		75.	2			150	3		125-	
96,		i !									·	•									_	
DATE: 04/06/84		! !								3	į	98	بر	!	33	9	2	9	М	<u></u>	9 =	
<u>-</u>	PLATE COUNTS	1	842							B(3)	1 1	90000	רסכר	į	60	56	-64.5952	325	.673	.396)	.460	,
Y	חמ		_		_ •	.						·			60.	63.	64.	82.		-	•	•
_	W I	125	3	>:	•	5	164	168)	_	•	Ω			ı	i	i	ł		_		
	LAT	ומו	v) (D F	0 0	ם נכ	_	10 KG		8(2)		3095	٩	t	ស		4 (2	"	.324,	. 1 =	
		- (S C		u	<u> 4</u>	5	185			• '			1	9025	176	. 1024	gag	DEL	W.		
SIKAINI IAIBB	DOSE UNITS	ဟုပ	ָת נ	n u	n u	n v	ဟ	ဟ ဟ)	_		~	LL.		G	•		·	MODEL 1		ÆG	
_	S			ב כ	ב ב	39	2	ngs ngs)	B(:)	1 1	2./855	: DF	i	<u> </u>				ż	_	۳, _	
Ž	띯	99	*00.	9 6	9 6	9 9	9	<u> </u>	l	_		N	CHI-SOUARE		. 13	80 (75.57	7	Z	" S	NEA S	
۲ ۲	Ö		•	- u	ה מ	30.00	9.6	100.00 300.00	 - 				Sau	1	4 (9 (V (0	2		111	
n	1				-	- M	ល	30)	B(0)		Ď	==	1					'n.		רוה בי	
										T	i,	*A* . / . I	ت	i			1	_	, CO		F	
											:	_		•	Z (د ⊢ د ۲	ر 1 - ح	ב ב	S	N 0	SON	
											,		_	į	֓֞֞֝֞֜֞֝֞֜֝֓֞֝֓֞֜֜֝֓֓֓֓֞֜֜֜֓֓֓֓֡֓֜֜֜֜֜֓֓֡֓֜֜֡֡֡֓֜֜֝֡֓֡֓֡֡֡֡֡֡֓֜֡֡֡֡֡֡֡֡	٠ ا	يا د	֝֟֝֝֟֝֝֟֝֝֓֓֓֓֓֓֓֓֓֓֡	MCE	×	¥CE	
											1	בים.	TEST	1 0	25	קר היי	MITACENICITY		AVERAGE SLOPE (NONLIN.	3	AVERACE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = {	
											Ĺ	u	_	1 (. <	< ⊢	- Σ	=	<		<	

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

H.JK
ACTIVATION
LAB, CBBA , 04/66/84
SAMPLE ID, BHGS-84-0001 L STRAIN, TAIDO DATE,
SAMPLE ID. STRAIN, TA

MEAN S.D.	187.00 4.36 1307.67 49.66 121.00 11.31 143.00 25.46 114.50 71 130.50 71 127.00 14.14 110.00 1.41	OBS & EXP VS DOSE	*	
		180 081	150 X X X X X X X X X X X X X X X X X X X	× × × 601
DOSE UNITS PLATE COUNTS	109 102 110 1253 1350 1320 113 129 125 161 115 114 137 117 109 111	B(2) 	P LOCL 3 .5801 -60.1832 5 .0421 -65.9395 2 .0343 -69.3111 MODEL) = .060	GR.) = .019
DOSE UNITS	3.00 UCS 1.20 UCS 5.00 UCS 10.00 UCS 30.00 UCS 50.00 UCS 100.00 UCS 100.00 UCS 100.00 UCS	B(0) B(1) ESTS. 107.000 2.8846	TEST CHI-SQUARE DF POISSON 7.55 9 ADEQUACY 11.51 5 MUTAGENICITY 6.74 2 AVERAGE SLOPE (NONLIN. MI 95% CONF. LIMITS = (AVERAGE SLOPE (LINEAR REGR.) 95x CONF. LIMITS = (0

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBBA ON 04/06/84

08/27/84

TEST	TYPE:	PLATE	TEST -	PREINCUBATIO	N
------	-------	-------	--------	--------------	---

STRAIN: TA100

	A C	uGS PER		HI:	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	. T	PLATE	A	8	c	0	٤	MEAN	STO
POS CONTROL									
NAAZIDE	-	3.40	1227	1273	1267			1257.33	26.84
2-AA	ALAO26	u • 50	354	307	337			332.67	23.80
NEG CONTROL									
DIMETHYLSULF	RLA026	100.000	105	117	115			113.33	4.73
	•	100.300	144	132	147			134.33	8.74
amgs-34-J001									
	RLA026	1.00	115	137				126.00	15.56
	RLA026	5.00	137	141				139.60	2.83
	RLAC26	13.30	135	149				127.00	31.11
	REACES	35.00	139	123				138.50	0.71
	RLA026	50.30	165	17ú			•	167.50	3.54
	ALAG26	100.00	166	184				175.00	12.73
	RLA026	300.00	163	152				157.50	7.78
	-	1.00	165	142				123.50	26.16
	-	5.00	108	131				119.50	16.26
	•	10.00	137	115				124.00	15.56
	•	30.00	145	145				1.5.00	C.CO
	•	Su.00	161	125				145.CO	22.63
	•	100.00	117	120				118.50	2.12
	-	336.30	117	113				117.50	G.71

G-PGS P-PPM PHENOCOPY CHECK : TRUE MUTANTS N-NGS STERILITY 5-9 : NOT CONTAMINATED T*-TOXIC M-MGS 8-668 SAMPLE STERILITY: NOT CONTAMINATED THTC-TOO NUMEROUS TO COUNT L-NLS I-MM NATC-NGT ABLE TO COUNT C-UM : SCOUGS U-ULS ACT MIX/PLATE

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT CREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

SAMPLE ID, BMGS-84-0001 LAB, GBBA ACTIVATION, + RLA026 STRAIN, TA100 DATE, 04/06/84 TECHNICIAN, MJK

	S.D.	23.80 15.56 2.83 31.11 3.54 12.73	DOSE	<i>X</i> X	
ACI INVIDING TO SO .	MEAN	113.33 332.67 126.00 139.00 127.00 138.50 167.50	200 OBS & EXP VS D	× ×	×
	COUNTS	337	B13)	L CCL -63.3098 -66.3387 -69.6224 -89.5874	1.195 3.0291 .579
!	PLATE COUNTS	354 307 115 137 137 141 105 149 159 138 165 170 163 152	B(2) 7883	2504 1949 1000	MODEL) = .471, .471, EGR.) = .359,
	DOSE UNITS		B(0) B(1) S. 118.077 1.1529	TEST CHI-SQUARE DF	AVERAGE SLOPE (NONLIN. MODEL 95% CONF. LIMITS = (.4 AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (.3
			ESTS	POIS ADEO TOXI	A V B V B V B V B V B V B V B V B V B V

STATISTICAL ANALYSIS: MUTAGENICITY OF C.1. SOLVENT GREEN NO. 3 - C.1. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

HJK
ı
ACTIVATION: TECHNICIAN:
LAB: CBBA 04/06/84
GS-84-0001 DATE:
1D, BH
SAMPLE STRAIN,

AN S	134.33 8.74 1257.33 26.84 123.50 26.16 119.50 16.26 126.00 15.56 145.00 22.63 118.50 2.12	OBS & EXP VS DOSE	×	× × × × ×
DOSE UNITS PLATE COUNTS	i – N	B(0) B(1) B(2) B(3) 180- ESTS. 127.989 .0841 .6859 .00151 180-	TEST CHI-SQUARE DF P LOGL	TY 1.27 2.5292 -70. OPE (NONLIN. MODEL) = LIMITS = (008, 18. OPE (LINEAR REGR.) = LIMITS = (252, 1.

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

ESEARCH LAB: GBBA ON 06405/84 '08/27/84

TEST TYPE:	STANDARD	PLATE I	CORPO	RATION			ST	RAIN: TATO	?
	A	44		m1:	STIDINE	REVERT	ANTS PE	R PLATE	
CORPUUND	A C T	UGS PER Plate	A		c	D	E	MEAN	STD
POS CONTROL									
OTHER PGS	ALAG27	30.00	1253	1203	1096		•	1184.00	80.21
	•	0.50	1451	1509	1507			1489.00	32.92
NEG CONTROL									
DIMETHYLSULF	RLADZ7	100.000	269	325	302			298.67	28.15
	•	160.000	215	213	243			210.33	0.43
6MGS-34-0C01									
	RLAG27	10.00	311	336				324.50	19.09
	RLASET	36.00	395	448				421.50	37.45
	ALACET	50.00	480	520				503.CO	32.53
	O ACLT	100.00	586	631				608.50	31.62
	FLAC47	300.00	654	69~				674.00	20.23
	•	14.50	301	294				295.50	7.78
	•	34.40	380	413				396.50	23.33
	•	50.00	456	407				431.50	34.65
	•	104.00	477	389				433.00	62.23
	•	300.60	500	3â3				441.50	82.73

		6-662	T-PPT
FHENGCOPY CHECK : TRUE MUTANTS		N-NGS	P-PP
STERILITY S-9 : NOT CONTAMINATED	TTOXIC	M-MG S	8-PP9
SAMPLE STERILITY: NOT CONTAMINATED	INTC-TGO NUMEROUS TO COUNT	L-NLS	IM
ACT MIX/PLATE : SCOUGS	NATC-NOT ABLE TO COUNT	U-ULS	C-U#

Doct Available Copy

.JTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMCNELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN ON 06/05/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA102

+RLAG27

POSITIVE CONTROL USED WAS DANTHRON.

MITCHYCIN-C WAS USED AS THE POSITIVE CONTROL.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.1. SOLVENT GREEN NO. 3 - C.1. SOLVENT YELLOW NO. 33 HIXTURE IN SALMONELLA TYPHIMURIUM

...

.

SAMPLE ID: BMGS-84-000! LAB: C88A ACTIVATION: + RLA027 STRAIN: TAI02 DATE: 06/05/84 TECHNICIAN: MJK

MEAN S.D.	298.67 28 1184.88 88 324.58 19 421.58 37 583.88 32 688.58 31 674.88 28
TE COUNTS	25 302 03 1006 38 1006 48 26 31
PLA	000-0880 000-0804
20	30.00 UCS 30.00 UCS 30.00 UCS 30.00 UCS 50.00 UCS 100.00 UCS 300.00 UCS

200-

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

.

ľ

Í

Ę

•

	ПJх
ı	
ACT I VAT ION:	TECHNICIAN,
LAB: CBBA	06/05/84
SAMPLE 10, BMCS-84-0001	IO2 DATE
10	Y
SAMPLE	STRAIN

S	6 43 32 92 7 78 23 33 34 65 62 23 82 73
MEAN	
UNTS	603
TE CO	213 1509 290 413 407 389 383
PLA	215 1451 381 388 456 477 588
DOSE UNITS PLATE COUNTS	\$300 \$300 \$300 \$300 \$300 \$300 \$300 \$300
DOSE	# 88888888 8888888 8888888

IN VITRO ASSAYS SITH SALMONELLA TYPHIMURIUM

RESEARCH LAB: GBBA

ON G6/08/84

08/27/54

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1C2

	A C	UCS BED		H1	STIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	ī	UGS PER PLATE	A	•	¢	9	E	MEAN	STD
POS CONTAGL									
OTHER PUS	ALAC27	36.00	(4)	1176	1268			1192.00	22.63
	•	u.50	1182	116ā	1170			1173.33	7.57
NEG CONTACL									
DIMETHYLSULF	RLAC27	100.000	257	234	239			243.33	12.10
	•	100.006	154		4) 145			149.50	0.36
6MGS-84-0001									
	ALAG27	10.00	(4)	270				270.00	0.66
	ALAC27	36.00	412	4Cú				404.00	8.49
	ALAC27	50.00	453	417				445.00	11.31
	RLAC27	160.00	547	507				527.CO	25.28
	RLADZ7	30C.G0	684	666				672.CO	10.77
	•	10.00	214	203				208.50	7.78
	-	10.00	375	335				352.50	31.82
	•	56.60	346	392				369.00	32.53
	•	106.50	432	449				440.50	12.02
	•	300.00	482	490				486.00	5.66

		G-PGS	1-061
PHENOCOPY CHECK : TRUE MUTANTS		N-NGS	P-PPM
STERILITY S-9 : NOT CONTAMINATED	T=-TOXIC	M-MGS	8-008
SAMPLE STERILITY: NOT CONTAMINATED	INTC-TGG NUMEROUS TO COUNT	L-NLS	
ACT MIX/PLATE : SCOUGS	MATC-NOT ABLE TO COUNT	U-ULS	C-UM

IN VITRO ASSAY: WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBBA ON

ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TAIGE

BACKGHOUNDS:

(4) CONTAMINATED

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBBA

ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TAIC2

+RLAG27

DANTHRON WAS USED AS A POSITIVE CONTROL.

MITCHYCIN C WAS USED AS A POSITIVE CONTROL.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 HIXTURE IN SALMONELLA TYPHIMURIUM

+ RLA027 MJK ACTIVATION, TECHNICIAN, SAMPLE 1D, BMCS-84-0001 LAB, CBBA STRAIN: TA102 DATE: 06/08/84

_	UNITS	P.	TE CC	UNTS	MEAN	S.D.
00.	SON	257		239	243.33	12.10
30.00*			1176	1208	1192.80	22.63
10.00			270		270.00	
30.00	กฉร	412	400		496.80	œ
50.00		453	437		445	_
100.001	_	547	507		527.00	28
300.00	_	684	660		672.00	18

TO THE PROPERTY OF THE PROPERT

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

	S.D.	6.36 7.57 7.78 31.82 32.53 12.02 5.66
ACTIVATION: - TECHNICIAN: MJK	MEAN	149.58 1173.33 208.58 352.58 369.08 440.58
SAMPLE 10: BMGS-84-0001 LAB: G8BA STRAIN: TA102 DATE: 06/08/84	S	UCS 154 145 145 UCS 214 203 UCS 375 330 UCS 346 392 UCS 482 449 UCS 482 490
SAMPLE STRAIN:	DOSE	

OBS & EXP VS DOSE	. ××	**
- 009	400	200
B(3)	LOCL -48.7717 -55.7794 -71.7453	3.335 5.4091 900
B(2)	3500 . 3500 . 00009 . 00000	10DEL) = 2.056.
B(1) 2.9088	CHI-SQUARE DF 6.69 6 14.02 2 31.93 1	MONLIN. F 175 = (1NEAR RE
B(Ø) 146.049	C _	AVERAGE SLOPE (NONLIN. MODEL) = 95% CONF. LIMITS = (2.056, AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (.427,
ESTS.	TEST POISSON ADEQUAC TOXICIT MUTAGEN	AVERAC 95% AVERAC 95%

100

Dest Available Copy

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN RESEARCH LAB: GBBA ON 06/15/84

50.00

106.60

348

437

08/27/84

388.00

443.GO

446.50

56.57

8.49

14.85

RESEARCH LA	8: G88A	QI	H 067	15/84				08/	27/84
TEST TYPE:	STANDARD	PLATE I	NCORPO	RATION			STR	AIN: TA10	2
	A			HI:	STIDINE	REVERTA	NTS PER	PLATE	
	A C	UGS PER							
COMPCUND	Ţ	PLATE	A	8	Ç	Þ	E	MEAN	STO
POS CONTROL									
OTHER PUS	ALAD27	ü.50	1252	1377	1392	1370		1347.75	64.49
	-	36.00	1383	1320	1303			1361.GO	35.54
NEG CONTROL									
DIMETHYLSULF	RLAG27	100.000	264	264	205			264.67	1.15
	-	100.000	202	18c	213			201.00	12.53
EMGS-84-0001									
	HLAG47	1.00	281	26a				274.50	9.19
		5.00	286	252				269.00	
	RLAGET	16.30		281				287.CO	
		30.30	33€	363			•	360.50	31.è2
	RLAC27	50.00	426	380				403.CG	32.53
	RLAG27	100.00	601	53ū				565.50	50.20
	RLAC27	300.30	712	710				714.60	2.83
	•	10	203	196				196.50	9.19
	•	5.00	216	255				235.50	27.58
	-	10.00	241	230				239.50	2.12
	-	36.00	328	312				350.00	11.31

420

447

430

PHENOCOPY CHECK: TRUE MUTANTS
STERILITY S-9: NOT CONTAMINATED
SAMPLE STERILITY: NOT CONTAMINATED
ACT MIX/PLATE: SUCUGS

ACT MIX/PLATE: SUCUGS

ACT MIX/PLATE

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN RESEARCH LAB: GBBA CN 06/15/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA102

+RLAG27

MITOMYCTA C WAS USED AS THE POSITIVE CONTROL.

GANTHRON WAS USED AS THE POSITIVE CONTROL.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

I

ľ

...

+ RLA027 MJK
ACT I VAT 10N. TECHNICIAN:
LAB: GBBA 06/15/84
SAMPLE ID, BMGS-84-0001 LA STRAIN, TAI02 DATE, 0
ID, BMGS- TAI02
SAMPLE STRAIN:

MJK		67 1.16 7.75 64.49 1.50 9.19 1.00 8.4.04 1.00 8.1.82 1.50 31.82 1.50 50.20	vs DOSE	*	
TECHNICIAN:		264 1347 274 269 287 360 403 565 714	OBS & EXP VS		
DATE: 06/15/84	PLATE COUNTS	264 266 377 1392 1370 268 252 281 383 380 530	B(3) 800-	LOCL -71.9629 -73.0906 600- -86.5600	7.993 26.8751 400- 1.547 1.8331
STRAIN: TAIB2	DOSE UNITS PLATE	UGS 264 UGS 1252 1 UGS 286 UGS 293 UGS 338 UGS 426 UGS 601	B(1) B(2) 	RE DF P P P P P P P P P P P P P P P P P P	-IN. MODEL) = (2.377, EAR REGR.) = = (1.260,
STRAIN	DOSE	- 10	B(0) ESTS. 267.118	1EST CHI-SQUARE POISSON 12.62 ADEQUACY 2.26 TOXICITY 26.94 MUTAGENICITY 957.75	AVERAGE SLOPE (NONLIN. MODEL 95% CONF. LIMITS = (2.3 AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (1.2

STATISTICAL ANALYSIS: MUTAGENICITY OF C.1. SOLVENT GREEN NO. 3 - C.1. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

SAMPLE ID, BMCS-84-0001 LAB, CBBA ACTIVATION: -STRAIN: TAI02 DATE: 06/15/84 TECHNICIAN: MJK

HEAN S.D.	201.00 12.53 1361.00 35.54 196.50 9.19 235.50 27.58 239.50 2.12 320.00 11.31 388.00 56.57 443.00 8.49 446.50 14.85	600 8 8 EXP VS DOSE	100 × × × × × × × × × × × × × × × × × ×	200
DOSE UNITS PLATE COUNTS	.00 UCS 202 188 213 30.00* UCS 1380 1320 1383 1.00 UCS 203 190 5.00 UCS 216 255 10.00 UCS 241 238 30.00 UCS 328 312 50.00 UCS 348 428 100.00 UCS 437 449 300.00 UCS 457 436	B(0) B(1) B(2) B(3)	TEST CHI-SOUARE DF P LOGL POISSON 14.54 9 1042 -72 9985 ADEQUACY 3.96 4 4108 -72 9809 TOXICITY 50.55 1 00000 -98.2539 MUTACENICITY 552.01 2 00000 -348.9849	AVERACE SLOPE (NONLIN. MODEL) = 5.133 95x CONF. LIMITS = (4.358, 6.046) AVERAGE SLOPE (LINEAR RECR.) = 3.767 95x CONF. LIMITS = (3.101, 4.433)

IN VITRO ASSATS WITH SALMONELLA TYPHIMURIUM

PARAT I

ON 06/05/84

08/27/84

			DI ATE	INCORPORATION
75 47	T T D .	\	PLAIR	INCURPUSEING

STRAIN: TATC4

	A C			#IS	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C T	UGS PER PLATE	A	•	c	0	E	PEAN	510
POS CONTROL	ALACZ7	3.00	2424	234a	2444			2405.33	50.65
Z-AA OTHER PUS	-	\$5.00	1736	1657	1706			1726.33	65.04
NEG CONTROL		100 000	750	310	2 y 0			318.67	30.09
DIMETHYLSULF	RLAC27	195.600 196.800	35C 241	222	252			238.33	15.18
6MGS-34-J001				••				334.CO	28.25
	RLAGE?	1.60	314 314	354 354				334.60	28.28
	HLADET HLACET	5.23 10.00	361	360				360.50	0.71
	ALAU47	30.00	450	455				452.50	3.54
	RLAC27	56.60	532	505				518.50	19.09
	RLAC 47	106.60	544	51 à				531.00	18.38
	ALAC47	300.00	512	390				454.00	84.02
	•	1.00	306	242				271.00	41.01
	-	5.00	263	205				234.00	41.01
	•	10.00	266	262				264.CO	2.63
	•	36.40	283	287	•			285.00	2.63
	-	50.00	328	280				304.60	33.94
	-	106.00	330	325				327.50	3.54
	-	30u.ú0	305	289				297.00	11031

		C-602	1-441
PHENGCOPY CHECK : TRUE MUTANTS		N-NGS	P-PPM
	T*-TOXIC	M-MGS	8-229
STERILITY 5-9 : NOT CONTAMINATED		L-NLS	1
SAMPLE STERILITY: NOT CONTAMINATED	141C-100 HO: From 10 dogs		
ACT MIX/FLATE : SUGUGS	HATC-NUT ABLE TO COUNT	n-nr2	(-0,-

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN RESEARCH LAB: GBBA ON 06/G5/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1Q4

METHTL GLYOXAL WAS USED AS THE POSITIVE CONTROL.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

ľ

SAMPLE ID: BMCS-84-000: LAB: CBBA ACTIVATION; + RLA027 STRAIN: TAI04 DATE: 06/05/84 TECHNICIAN: MJK

MEAN S.D.	318.67 30.09 2405.33 50.65 334.00 28.28 334.00 28.28 360.50 71 452.50 3.54 518.50 19.09 531.00 18.38	600 c f vp vs DOSE	500 × × × × × × × × × × × × × × × × × ×	300 🗶
DOSE UNITS PLATE COUNTS	23316 3354 3354 3354 5055 5055 306	B(0) B(1) B(2) B 	TEST CHI-SQUARE DF P LOGL	AVERAGE SLOPE (NONLIN. MODEL) = 6.062 95% CONF. LIMITS = (5.258, 6.988) AVERAGE SLOPE (LINEAR REGR.) = 4.041 95% CONF. LIMITS = (3.430, 4.651)

STATISTICAL ANALYSIS: MUTAGENICITY OF C.1. SOLVENT CREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

- HJK
ACTIVATION: TECHNICIAN:
LAB, GBBA , 06/05/84
: ID: BMCS-84-0001 I: TAI04 DATE:
ID:
SAMPLE STRAIN:

	. Ma	
e l	8 4 5 8 8 8 4 5 K	7
S	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DOSE
,	00000000000000000000000000000000000000	
MEAN		\$
_	1 W U L W Q Q Q Q Q Q	EXP
	_	40
		OBS
		ō × ×
		350
8	! ! ! (\) (0	B(3) 00396 LOCL 1519 2695 1734 4142 2.444 2.444 1.183 9633
L N	252 786	
5	1	- 2 - 8 - 8
PLATE COUNTS	222 242 2657 2657 267 287 280 280 280	5 6 17
PLA.	l	B(2) .9951 .9951 .9006 .9006 .10EL) =
,	_	B6. .99 .0833 .08833 .08833 .08833 .0886 .08833 .0886
DOSE UNITS	\cdot \circ	BILL) 0130 14 44 10 2 10 2 10 7
3		SOUARE DF 19.64 9 8.24 4 11.81 1 50.29 2 (NONLIN. MITS = (
SE	************	B(0) B 245.663 .9 CHI-SOUARE CHI-SOUARE CHI-SOUARE TY 19.64 TY 19.81 NICITY 50.29 E SLOPE (NONL) CONF. LIMITS =
	58. 18. 38. 388.	S = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =
	. — M	245.663 245.663 CHI- CHI- Y Y IICITY IICITY SLOPE ONF. LI
		245 TCI ICI ONF
		CE CE CE
		ESTS. 245.663 .9130 .8 TEST CHI-SQUARE DF POISSON 19.64 9 .021 ADEQUACY 8.24 4 .08 10x1C1TY 11.81 1 .000 AVERACE SLOPE (NONLIN. MODE) 95x CONF. LIMITS = (1.88) AVERAGE SLOPE (LINEAR RECR. 95)
		ES PO AV AV

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN RESEARCH LAB: GBBA ON

OM 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TATC4

COMPOUND T PLATE A B C B E MEAN STD POS CONTROL 2-AA RLAC27 3.00 2053 2002 20c6 2047.00 42.32 OTHER PUS - 50.00 1810 1716 1740 1769.33 46.92 NEG CONTROL DIMETHYLSULF RLAG27 100.000 363 402 375 380.00 19.97 - 100.000 277 266 279 274.00 7.00 EMGS-84-UCC1 RLAG27 1.00 353 351 352.00 1.41 RLAG27 1.00 405 370 382.00 1.41 RLAG27 1.00 405 370 3870 382.00 1.41 RLAG27 3.00 416 469 42.50 37.48 RLAG27 100.00 532 532 5460 485.50 27.58 RLAG27 100.00 532 532 532 532.00 0.00 RLAG27 300.00 532 532 546 274.00 33.94 - 1.00 298 250 274.00 33.94 - 1.00 298 250 274.00 33.94 - 1.00 298 250 274.00 33.94 - 1.00 298 250 274.00 33.94 - 1.00 298 250 274.00 33.94 - 1.00 298 250 279.00 15.56 - 1.00 305 310 311.50 9.19 - 30.00 307 317 319 318.00 1.41 - 50.00 307 376 376 376.00 0.00 - 300.00 376 376 376 376.00 0.00 - 300.00 376 376 376 376.00 0.00 - 300.00 330 352 341.00 15.55		A C			H1:	STIDINE	REVERTA	NTS PE	R PLATE	
2-AA	COMPOUND	Ť	UGS PER PLATE	A	8	¢	D	E	PEAN	STO
NEG CONTROL DIMETHYLSULF RLAG27 1CG.GOU 363 402 375 380.00 19.97 - 1CU.GOU 277 266 279 274.CO 7.00 EMGS-84-UCC1 RLAG27 1.00 353 351 352.CO 1.41 RLAG27 5.00 383 381 382.00 1.41 RLAG27 10.00 405 37C 387.50 24.75 RLAG27 30.00 416 469 42.50 37.48 RLAG27 50.00 505 466 485.50 27.88 RLAG27 10C.00 532 532 532.00 0.60 RLAG27 30C.00 532 532 532.00 0.60 RLAG27 30C.00 532 532 524 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 266 279.00 15.56 - 10.00 305 316 311.50 9.19 - 3C.00 317 319 318.00 1.41 - 5G.CO 308 317 319 318.00 1.41 - 5G.CO 308 317 319 318.00 1.41 - 5G.CO 308 317 319 318.00 1.41	POS CONTROL									
NEG CONTROL DIMETHYLSULF RLAG27 1CG.COU 363 402 375 380.00 19.97 - 1CG.COU 277 266 279 274.CO 7.00 BMGS-84-UCC1 RLAG27 1.00 353 351 352.CO 1.41 RLAG27 5.CO 383 381 382.00 1.41 RLAG27 10.00 405 37C 387.50 24.75 RLAG27 30.00 416 469 442.50 37.48 RLAG27 30.00 416 469 442.50 37.48 RLAG27 10C.00 532 532 532 532.00 0.CO RLAG27 10C.00 532 532 532 532.00 0.CO RLAG27 30C.00 532 524 528.CO 5.66 - 1.00 298 250 274.00 33.94 - 5.CO 290 260 279.00 15.56 - 10.00 3GS 31a 311.50 9.19 - 3C.CO 338 317 318.00 1.41 - 50.CO 338 317 312.50 6.36 - 100.CO 376 376 370 376.00 0.CC	2-44	RLACET	3.00	2053	2002	6006			2047.00	42.32
DIMETHYLSULF RLAG27 100.000 363 402 375 380.00 19.97 274.00 7.00 EMGS-84-USO1 RLAG27 1.00 353 351 352.00 1.41 41.00 405 37C 387.50 24.75 81.0027 30.00 416 469 42.50 37.48 RLAG27 30.00 505 460 485.50 27.58 RLAG27 100.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 50.00 532 532 532 532.00 0.00 81.0027 50.00 532 532 532 532.00 0.00 81.0027 50.00 50.0	OTHER PUS	•	50.00	1810	1716	1760			1769.33	46.92
DIMETHYLSULF RLAG27 100.000 363 402 375 380.00 19.97 274.00 7.00 EMGS-84-USO1 RLAG27 1.00 353 351 352.00 1.41 41.00 405 37C 387.50 24.75 81.0027 30.00 416 469 42.50 37.48 RLAG27 30.00 505 460 485.50 27.58 RLAG27 100.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 300.00 532 532 532 532.00 0.00 81.0027 50.00 532 532 532 532.00 0.00 81.0027 50.00 532 532 532 532.00 0.00 81.0027 50.00 50.0	NEG CONTROL									
### Tours of the first of the f		ALADZ7	100.000	363	402	375			380.00	10.07
BMGS-84-UCC1 RLAC27 1.00 353 351 352.CO 1.41 RLAC27 5.00 383 381 382.00 1.41 RLAC27 10.00 405 37C 387.50 24.75 RLAC27 30.00 416 469 .42.50 37.48 RLAC27 50.30 505 460 485.50 27.58 RLAC27 10C.00 532 532 532 532.00 0.00 RLAC27 30C.00 532 532 524 528.CO 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 260 274.00 33.94 - 10.00 305 310 311.50 9.19 - 3C.00 317 319 318.00 1.41 - 50.00 338 317 319 318.00 1.41 - 50.00 376 376 376 00 0.00		-			_					
RLA027 1.00 353 351 352.C0 1.41 RLA027 5.00 383 381 382.00 1.41 RLA027 10.00 405 37C 387.50 24.75 RLA027 30.00 416 469 42.50 37.48 RLA027 50.30 505 460 485.50 27.58 RLA027 100.00 532 532 532 532.00 0.00 RLA027 300.00 532 532 532 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 260 279.00 15.56 - 10.00 305 31a 311.50 9.19 - 30.00 317 319 318.00 1.41 - 50.00 376 376 376 376.00 0.00						•••			6,400	, , , ,
ALAC27 5.00 383 381 382.00 1.41 ALAC27 10.00 405 37C 387.50 24.75 ALAC27 30.00 416 469 .42.50 37.48 ALAC27 50.00 505 460 485.50 27.58 ALAC27 100.00 532 532 532 532.00 0.00 ALAC27 300.00 532 524 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 260 279.00 15.56 - 10.00 305 31a 311.50 9.19 - 30.00 317 319 318.00 1.41 - 50.00 308 317 319 318.00 0.00	102J-48-29MB									
RLAG27 5.00 383 381 382.00 1.41 RLAG27 10.00 405 37C 387.50 24.75 RLAG27 30.00 416 469 .42.50 37.48 RLAG27 50.30 505 460 485.50 27.58 RLAG27 10C.00 532 532 532 532.00 0.00 RLAG27 30C.00 532 524 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 260 279.00 15.56 - 1C.G0 305 310 311.50 9.19 - 3C.G0 317 319 318.00 1.41 - 50.G0 308 317 319 318.00 1.41 - 50.G0 376 376 376 00 0.60		RLA027	1.00	353	351				352.C0	1.41
RLAC47 10.00 405 37C 387.50 24.75 RLAC27 30.00 416 469 .442.50 37.48 RLAC27 50.00 505 460 485.50 27.58 RLAC27 100.00 532 532 532.00 0.00 RLAC47 300.00 532 524 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 260 279.00 15.56 - 10.00 305 31a 311.50 9.19 - 30.00 317 319 318.00 1.41 - 50.00 308 317 312.50 6.36 - 100.00 376 376 376.00 0.00		ALAC27	5.00	383	381					1.41
RLAG27 5G.JQ 505 466 485.5Q 27.58 RLAG27 1QG.JQ 532 532 532.0Q Q.GQ RLAGL7 3QG.JQ 532 524 528.QQ 5.66 - 1.JQ 298 25Q 274.QQ 33.94 - 5.CQ 29Q 266 279.QQ 15.56 - 1G.GQ 3GS 316 311.5Q 9.19 - 3G.JQ 317 319 318.QQ 1.41 - 5Q.GQ 3J8 317 312.5Q 6.36 - 1QU.JQ 376 376 376 QQ Q.GQ		HLACL7	14.40	405	370				387.50	24.75
RLACZ7 10C.00 532 532 532 532.00 0.00 RLACZ7 30C.00 532 524 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 266 279.00 15.56 - 1C.00 30S 31a 311.50 9.19 - 3C.00 317 319 318.00 1.41 - 50.00 308 317 319 312.50 6.36 - 100.00 376 376 376 376.00 0.00		ALAG27			469				442.50	37.48
#LACL7 30C.00 532 524 528.00 5.66 - 1.00 298 250 274.00 33.94 - 5.00 290 266 279.00 15.56 - 1C.00 305 316 311.50 9.19 - 3C.00 317 319 318.00 1.41 - 50.00 308 317 319 312.50 6.36 - 100.00 376 376 376 376.00 0.00		RLA027			460				485.50	27.58
- 1.00 298 250 274.00 33.94 - 5.00 290 260 279.00 15.56 - 10.00 305 31a 311.50 9.19 - 30.00 317 319 318.00 1.41 - 50.00 308 317 312.50 6.36 - 100.00 376 370 376.00 0.00		RLAG27	100.30	532	532				532.00	0.00
- 5.00 290 266 279.00 15.56 - 10.00 305 316 311.50 9.19 - 30.00 317 319 318.00 1.41 - 50.00 308 317 312.50 6.36 - 100.00 376 376 376 376.00 0.00		ALACL7	300.00	532	524				528.00	5.66
- 10.00 305 31a 311.50 9.19 - 30.00 317 319 318.00 1.41 - 50.00 308 317 312.50 6.36 - 100.00 376 376 376 376.00 0.00		•	1.00	298	25 ü				274.00	33.94
- 3C.00 317 319 318.00 1.41 - 50.00 308 317 312.50 6.36 - 100.00 376 376 376 376.00 0.00		•	5.00	290	260				279.00	15.56
- 50.00 308 317 312.50 6.36 - 100.00 376 376 376 376.00 0.00		-	10.00	355	310				311.50	9.19
- 10ù.ú0 376 376 376.00 ú.ú0		-	30.00	317	319				318.00	1.41
- 10ù.CO 376 370 376.OO C.CC		•		338	317				312.50	6.36
		•	100.00	376	370				376.00	
		-	300.00	330	352				341.00	15.56

		G-PES	T-PPT
PHENOCOPY CHECK : TRUE MUTANTS		N-NGS	P-PPM
STERILITY S-9 : NOT CONTAMINATED	TTOXIC	M-MGS	8-PP8
SAMPLE STERILITY: NOT CONTAMINATED	THIC-TOO NUMEROUS TO COUNT	L-NLS	I - m w
ACT MIX/PLATE : SUCUS	NATE-NOT ABLE TO COUNT	U-ULS	C-U#

STATISTICAL ANALYSIS: MUTAGENICITY OF C.1. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

24.75 37.48 27.58 .000 5.66 S.D. **OBS & EXP VS DOSE** ACTIVATION: + RLAB27 TECHNICIAN: HJK MEAN 380.00 2047.00 352.00 387.50 442.50 485.50 532.00 528.00 500-600 400 SAMPLE 1D, BMCS-84-0001 LAB, CBBA STRAIN, TA104 DATE, 06/08/84 DATE: 06/08/84 -73.2709 -84.5231 -156.3335 1 729 00374 -71.3638 8(3) LOCL 11.2031 1 1 1 PLATE COUNTS 2002 350 351 351 370 469 466 532 1.543, 8(2) 1.0030 AVERACE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (1.369, AVERAGE SLOPE (NONLIN. MODEL)
95% CONF. LIMITS = (1.543 ٩ 4854 .0000 .0000 363 2053 353 383 405 416 505 532 532 DOSE UNITS 1.4110 8 CHI-SOUARE DF 8 49 3 81 22.50 166.13 . 00 3. 00* 1.00 5.00 18.00 39.98 59.99 199.99 8(0) 367.656 **TUTAGENICITY** TOXICITY ADEQUACY POISSON ESTS TEST

300.

250 —

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

3

- HJK	MEAN
ACTIVATION: TECHNICIAN:	; ; ; ; ; ; ; ;
SAMPLE ID: BMGS-84-0001 LAB: CBBA ACTIVATION: STRAIN: TAI04 DATE: 06/08/84 TECHNICIAN:	DOSE UNITS PLATE COUNTS

S.F	7.00 46.92 33.94 15.56 9.19 1.41 6.36 15.56	DOSE	
0/84 (ECHNICIAN) HJK	274.00 1769.33 274.00 279.00 311.50 318.00 312.50 376.00	350 X X X X X X X X X X X X X X X X X X X	_ <
DOSE UNITS PLATE COUNTS	.00 UGS 277 266 279 50.00* UGS 1810 1718 1780 1.00 UGS 298 250 5.00 UGS 298 268 10.00 UGS 305 318 50.00 UGS 317 319 50.00 UGS 376 376 300.00 UGS 330 317	ESTS. 275.931 1.0077 9704 00347 TEST CHI-SQUARE DF P LOGL	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN

RESEARCH LAB: GBBA ON 06/05/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION STRAIN: TA1535

	A			HI	STIDINE	REVERTA	NTS PE	R PLATE	
	C T	UGS PER							
COMPOUND	Ť	PLATE	A	8	C	0	E	MEAN	STD
POS CONTROL									
NAAZIDE	•	3.00	1008	1057	1018			1047.67	26.27
2-AA	HLA027	3.00	154	154	157			155.60	1.73
NEG CONTROL									
DIMETHYLSULF	HLAG27	100.000	32	33	18		•	27.67	6.39
	•	100.000	55	Šú	40			48.33	7.64
6MGS-84-0031									
	RLAC 27	16.60	25	15				20.50	6.36
	HLA027	30.00	24	15 29				26.50	3.54
	HLAC27	56.68	28	29				28.50	0.71
	RLACZT	100.60	17	2.				. 18.50	2.12
	RLAGE7	30C.GG	14	21				17.53	4.95
	•	14.40	61	52				56.50	6.36
	•	30.00	28	32				30.CO	2.83
	•	50.00	40	32				36.00	5.06
	-	100.00	51	41				46.00	7.07
	-	300.00	36	42				39.00	4.24

		0-163	1-551
PHENOCOPY CHECK : TRUE MUTANTS		N-NG S	P-PP#
STERILITY S-9 : NOT CONTAMINATED	T+-TOXIC	M-M6 2	9-229
SAMPLE STERILITY: NOT CONTAMINATED	THIC-TOO NUMEROUS TO COUNT	L-NLS	I m be
ACT MIX/PLATE : SCOUGS	NATE-NOT ABLE TO COUNT	U-ULS	C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-000! LAB: CBBA ACTIVATION: + RLA027 STRAIN: TA1535 DATE: 06/05/84 TECHNICIAN, MJK

DOSE UNITS	S PLATE		COUNTS	MEAN	S.D.
90	32	33	18	77.67	8.39
	_	- 54	157	155.00	1.73
90		91		20.50	6.36
00		53		26.50	. S.
50.00 003	58	58		28.50	. 71
90		20		18.50	2.12
00		5		6, 71	4.95

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

HJK ACTIVATION: TECHNICIAN; SAMPLE 1D: BMGS-84-000! LAB: GBBA STRAIN: TA1535 DATE: 06/05/84

DOSE	DOSE UNITS PLATE COUNTS	PL	TE CC	JUNTS	MEAN	S.D.
8	ונט	•	100	40.		
700			ני		48.33	•
3.00*		1000	200	8 9	1947 67	26 2
100 · 000	SOO	9	52			
20 00		000	6		90 · 90	٠. م
		9	70		30.00	2.8
20.00		4	52		שמ אב	Ľ
200		<u>.</u>	-			5
		- (- I		46.00	7
200 000		26	42		29 88	10.1
					30.00	,

200

20-

IN VITRO ASSAYS WITH SALMONELLA TYPHIPURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBGA

ON 06/08/84

08/27/84

G-PGS T-PPT

P-PPM

E-PP9

I-MM

C-UM

****	****			*********	
1571	TYPE:	STANDARD	PLAIL	INCURPOR	AIIUN

	S	T	R	A	I	N	:		Ŧ	A	1	5	3	5	
--	---	---	---	---	---	---	---	--	---	---	---	---	---	---	--

	A			н	SVIDINE	REVERTA	NTS PE	R PLATE	
	C	UGS PER							
COMPSUND	T	PLATE	A	8	Ç	D	٤	MEAN	STD
POS CONTROL									
BCISAAN	•	3.60	1003	479	1014			998.67	17.90
2-44	HLAC27	3.00	89	163	109			100.33	10.26
6 - 4 4		3.00	•	.03	, •,			100133	
NEG CONTROL									
DIMETHYLSULF	RLAC27	100.000	25	24	18			22.33	3.79
	•	105.500	43	2 0	٤ 8			32.33	9.29
8MGS-34-5001									
	RLACE7	16.30	14	14				14.00	5.00
	ALAGE7	30.00	19	1 á				17.00	2.83
	ALAG27	50.40	17	1 a				17.50	5.71
		100.00	21	21				21.00	5.00
	HLAGE7	300.00	11	٠,			•	10.00	1.41
		13.00	36	27				31.50	c . 26
	_	35.00	36	17				26.50	13.44
	•							28.50	0.36
		50.00	24	33					9.90
	•	100.00	41	27				34.00	
	-	300.00	21	17				19.00	2.83

PHENGCOPY CHECK : TRUE MUTANTS STERILITY S-5 : NOT CINTAMINATED SAMPLE STERILITY: NOT CONTAMINATED ACT MIA/PLATE : SCOUGS

T++TOXIC M-MGS
TNTC-TGO NUMEROUS TO COUNT L-NLS
NATC-NGT ABLE TO COUNT U-ULS

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

		10000-0-						~	
	S.D	2.83.79							
_	S	WØ	SE						-
92			DOSE						t
+ RLA027 MJK	MEAN	22 33 34 1 4 4 8 8 3 3 3 1 1 2 1 8 8 8 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 					
ŒE	Ä	100400-0	>						٠ + ١
		1000-	Ϋ́						E
ŽΖ		! !	LI C					İ	F
2		1	9			\times		<u> </u>	
¥10			085 & EXP VS						
E £		₹ . ¢					×Υ	ļ	-
ACTIVATION: TECHNICIAN:		!			<u></u>		_^x		
		• •		1 1	 	بدآب	111		1116
8 4 8		i I	20	90		20		<u> </u>	6
001 LAB: CBBA DATE: 06/08/84		i							ш
- 0		i I							.010 .0761 CONVERGE
AB 06						ا ا	14 79 79	99	6.5 VE.
-	PLATE COUNTS	8 8				1001	-31.3414 -38.4079 -38.4079	.000	. 010 .0761 CONVER
===	<u>₹</u>	-						•	
986	S	42428-0		-			-31 -38 -38		Ō
J -	E	-	2	90				II .	" ~ ~
Ď	4	27.79	8(2)	9999		ا ۵	.9608 .0027 .0000	EL) = .000.	357
5	<u>a.</u>	255	_	•			9608 0027 0000	DE I	8 1 -1
BH 53	S							MODEL)	EG
<u></u> <	IT	88888888888888888888888888888888888888	_	7156	7	DF 	23		æ _ €
	5	1	8	71	C		@ M @	Z "	A 11 A
SAMPLE 1D: BMGS-84-0001 STRAIN: TA1535 DAT	DOSE UNITS	3.00* 10.00 30.00 50.00 50.00		17.386-663.7156	×	CHI-SOUARE	4. 98	SIL	SE
7 ₹	90	3.00 10.00 30.00 50.00 50.00 100.00		99	10	3	-4	S.	1-E
A T	Щ ;	- 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5		ī	5 !		2	7 5
0,0,	ì	— 1-7	8(0)	.386		Ξ:	≽	PE	P - P
			w	7	NO EVIDENCE OF TOXICITY	ı ب	POISSON ADEQUACY MUTAGENICITY	AVERAGE SLOPE (NONLIN. 95% CONF. LIMITS = 1	AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (057, VARNING: 4 PARAMETER MODEL DID NOT
				_	E		2 N Z	űŐ	, 6
					= -		SOI	¥CE	N C
				ES15.	ũ	51	POISSON ABEQUACY MUTAGENI	ER. 953	850 805 805 805 805 805 805 805 805 805
				ES	Q	TEST	245	<u>></u>	> 4
									-

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 HIXTURE IN SALMONELLA TYPHIHURIUM

	S.D.	9.20	17.98	6.36	13.44	6.36	96.6	2.83
ACTIVATION: - TECHNICIAN: MJK	MEAN	32.33	67 868	31.50	26.50	28.50	34.00	00.01
SAMPLE 1D, BMGS-84-0001 LAB, CBBA STRAIN, TA1535 DATE, 06/08/84	JUNTS	28	1014					
14-008 D/	TE CC	96	979	27	17	33	27	17
MGS-8 35	PLA	43	1003	36	36	24	-	21
1D: B TA15	UNITS		_	_	_	_	ncs	_
SAMPLE STRAIN,		90	3.00*	10.00	30.00	50.00	100.00	300.00

-	0					1		- 1	\checkmark	
• 500	can					××	×		×	×
	200	י מר	1 1	•	3	1	1	702	2	92 1
8(3)	1 1	.01309	100T		-42.6575	-42:8187	-50.1831	-44.7902	9041	- 097
8(2)	! !	2.1060	۵	:	.0113	. 8511	1000.	. 1393	MODFL) = .203,	EGR.) = 373,
800	1 1 1	-5.1746	CHI-SOUARE DF		18.16 7	. 32 2	14.73	3.94 2	. –	AVERAGE SLOPE (LINEAR REGR. 95% CONF. LIMITS = (
B(0)	1 1	33.140	CHi-S	1 1 1	7	.	7	ZIC11X	\sim	E SLOPE (
		ES15.	TEST	1 1 1 1	POISSON	ADEOUACY	10×1C11Y	MUTAGENICITY	AVERAGE SLO 95% CONF.	AVERACE 95%

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN RESEARCH LAB: GBBA CN 06/05/84

G8/27/84

TEST TYPE:	STANDARD	PLATE I	NCORPO	RATION			\$ 7	RAIN: TA15	17
	A			HI.	STIDINE	REVERT	NTS PE	R PLATE	
COMPOUND	C T	UGS PER PLATE	A	8	C	٥	£	MEAN	STD
POS CONTROL									
9-44	•	100.00	1258	1335	1422			1348.33	97.68
2-44	RLAC27	3.20	561	472	408			48C.33	76.84
-				_				30000	
NEG CONTROL									
DIMETHYLSULF	RLADET	106.300	20	16	17			17.67	80.5
2	•	106.366	•	3	17 9			8.33	C.58
amgs-3u011									
34 34	ALA027	10.30	14	2 =				21.00	9.90
	_	30	25	28 25				22.50	3.54
	NLACC7		39	21				35.60	12.73
		101.10	Šá	2.				27.00	4.24
	HLAG27	300.00	27	20				26.50	J.71
	-	16.50	16	14				1/ 00	2.83
	•	30.38	14	17				15.50	2.12
	•	50.00	14	ŽĹ				17.60	4.24
	•	103.30	16	14				15.60	1.41
	_	300 00	14	13				14 55	3 43

PHENGEGRY CHECK : TRUE MUTANTS		N-NGS	
STERILITY S-9 : NOT CONTAMINATED	T+-TQXIC	M-465	8-008
SAMPLE STERILITY: NOT CONTAMINATED	THTC-TGO NUMEROUS TO COUNT	L-NLS	I#
ACT MIX/PLATE : SUBUGS	NATC-NUT ABLE TO COUNT	しーしもら	C-UM

AVERAGE SLOPE (LINEAR REGR.) = 05% CONF. LIMITS = (.004,

ωl	STATISTICAL ANALYSIS:	CAL A	NALYS	IS:	MUTAGEN	ICITY	OF C.I	. SOLVENT	MUTAGENICITY OF C.I. SOLVENT GREEN NO.	,				
l	C.1. S(JLVEN	T YEL	LOW	0. 33 F	IXTUR	E IN SA	LMONELLA						
•.,	3.07	SAMP	E E	SAMPLE ID, BMG STRAÍN, TAI537	SAMPLE ID, BMGS-84-0001 Strain, tai537 dat	70 D/0	w	LAB, CBBA , 06/05/84	ACTIVATION: TECHNICIAN:	•	RLA027 HJK	127		
	i	Ö	DOSE U	UNITS	PLAT	LE CC	PLATE COUNTS				MEAN		Ö.	
	- 67	3 00 00 00 00 00 00 00 00 00 00 00 00 00		8500 8500 8500 8500 8500	26 56 14 25 39 38 27	20 20 20 21 24 26 26	4 08	! ! ! ! !	(; 1 t 1 1 1	480 480 21 22 30 30 27 27 26	17.67 180.33 21.00 22.50 30.00 27.00 26.50	9.00	98 98 98 73 73	
ES15.	B(0) 	57:	an i⊗i i	B(1)	B(2)	= 1 M	B(3)	4	088 X	& EXP	EXP VS [DOSE	Г	
TEST CH POISSON ADEQUACY TOXICITY MUTAGENICITY	Y Y 1CI	-50	UARE 1.80 1.50 1.25 9.33	FI 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P 1074 4723 2627 0094	- 39 - 39 - 43	LOGL 8.2940 9.0441 9.6713	- 98	**************************************				- }	
AVERAGE SLOPE (NONLIN. 95% CONF. LIMITS = (SLOPE CONF. L	N. I.	JNL IP	∃ ∃	MODEL) =	μ.	.255	- 20→	XX				T	

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

	S.D.	97.69 2.83 2.12 4.24 1.41
ACTIVATION: - TECHNICIAN: MJK	MEAN	1348.33 14.000 15.500 17.000 14.500
SAMPLE 1D: BMGS-84-0001 LAB: GBBA STRAIN: TA1537 DATE: 06/05/84	DOSE UNITS PLATE COUNTS	

1							
S DOSE							
OBS & EXP VS DOSE							
988		×		×	×		
20	1		15	1 1	1	 * * <u>•</u>	u
			1001	0200 0C-	-30.3354 -34.7979	137	. 162
					N. W.	•	
B(2)	1820		۵	- 9312		AVERAGE SLOPE (NONLIN MODEL) = 95% CONF. LIMITS = (007,	GR.) =
8(1)	. 8945	CITY	E DF	4 7	m N	Ē Z	AR RE
	_	10XI	CHI-SQUARE DF	2.44	. 68 8. 92	(NONL MJ 15	(LINE MITS
(0) 8	8.333	NO EVIDENCE OF TOXICITY	CHI-	} 	YICITY	SLOPE ONF. LI	AVERAGE SLOPE (LINEAR REGR.) = 95x CONF. LIMITS = (.067
	ESTS.	O EVID	TEST	POISSON	ADEQUACY MUTAGENICITY	VERACE 95% C	VERAGE 95% C
	ш	Z	- 1	Δ.	<£	⋖	⋖

Lest Available Copy

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN RESEARCH LAB: GBBA ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPURATION

STRAIN: TA1537

	A C	UGS PER		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	ī	PLATE	A	8	c	D	£	MEAN	STO
POS CONTROL									
9-44	•	100.00	512	605	453			523.33	76.63
2-44	RLAGZ7	3.00	314	316	311			313.67	2.52
NEG CONTROL									
DIMETHYLSULF	RLADET	133.300	20	10	16			18.00	2.00
	-	106.006	12	7	17			12.00	5.00
6MGS-34-J031									
	RLAG27	10.38	26	15				20.50	7.78
	RLADET	34.30	20	31				25.50	7.78
	ALACE7	54.30	21	24				22.50	2.12
	RLACE?	100.00	(4)	3 7				39.00	0.00
	RLAG27	300.00	24	29				26.50	3.54
	-	10.00	25	21				23.60	2.53
	-	30.00	17	Ā				17.50	C.71
	•	54.00	13	16				14.50	2.12
	-	100.00	18	10				17.00	1.41
	•	30u.30	24	27				25.50	2.12

		G-662	1-661
PHENOCOPY CHECK : TRUE MUTANTS		N-NGS	P- PP4
STERILITY S-9 : NCT CONTAMINATED	1 * - TO X 1 C	M-MGS	8-008
SAMPLE STERILITY: NOT CONTAMINATED	INTC-TOO NUMEROUS TO COUNT	L-NLS	1
ACT MIX/PLATE : SUCUES	NATC-NGT ABLE TO COUNT	U-ULS	C-UM

IN VITRO ASSAYS WITH SALHOHELLA TYPHIMURIUM

OF ARMY DYE GREE

ESEARCH LAB: GBBA ON 06/C8/84

C8/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1537

BACKGHOUNDS:

(4) CONTAMINATED

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

27	S.D.	2.00	2.52	7.78	7 . 78	2.12	. 00	3.54
+ RLAB	MEAN	18.00	513.67	20.50	25.50	22.50	39.00	26.50
ACTIVATION: + RLAB27 TECHNICIAN: MJK		; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
BMGS-84-0001 LAB; GBBA 1537 DATE; 06/08/84	UNTS	16						
4-000 DA	TE CO	81.	0 u	C =	7 0	7 0	0 0	D V
MGS-8 37	PLA	20	200	9 6	2 -	J	76	7
1D, B	UNITS	500						_
SAMPLE ID, BMG STRAIN: TA1537	DOSE UNITS PLATE COUNTS	. 66	. 61	30.00	20.00	200	200.000	

STATISTICAL ANALYSIS: MUTAGENICITY OF G.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

	S.D.	1	0. CC	٠	2.83	7	2			\ \
- HJK	EA	12 00	52 22 E	00.00	23 00	17.58	14.50	00 71	90.75	200
ACT IVATION: TECHNICIAN;		! ! ! !	ď	ז						
SAMPLE ID: BMGS-84-000! LAB: GBBA STRAIN: TA!537 DATE: 06/08/84	! ! ! ! !									
ַ בּי	UNTS	17	453							
4-888 DA	TE COL	7	605	2	- 0	0 (٩	9	27	,
8-S2L 82	PLA	12	512	25	- (2	®	24	
TA15	UNITS	ncs	SON	SUC	200		000	S	SON)
SAMPLE STRAIN:	DOSE UNITS PLATE COUNTS	. 60	100.00×	10.00	20.00			99.99	300.00	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBBA

ON 36/05/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPGRATION

STRAIN: TA1538

COMPOUND T PLATE A B C D E MEAN STD POS CONTROL 2-NF - 3.00 615 652 628 631.67 18.77 2-AA RLAGZ? 0.50 1051 1063 1052 1058.67 5.36		A C			HI	STIDINE	REVERTA	NTS PE	R PLATE	
POS CONTHOL 2-NF - 3.00 615 652 628 631.67 18.77		_			_					
2-NF - 3.00 615 652 628 631.67 18.77	COMPUUND	Ť	PLATE	A	8	C	D	E	MEAN	STO
93101	POS CONTROL									
93101	2 - N F	-	3.00	615	652	AZR			481 47	19 77
2 44 45,057 5130 1031 1003 1032 1032		61 4027								
	•	neade.	0.70	.03.	,,,,,	1032			1038.67	3.50
NEG CONTROL	NEG CONTROL									
DIMETHYLSULF HLAD27 100.000 41 19 36 32.00 11.53		mLA027	100.000	41	1 9	3.6			12 00	44 67
						16				
- 1CU.CCU 18 13 15 15.33 2.52			100100		13	13			12.33	2.52
8MGS-34-∪CJ1	aMGS-34-02J1									
RLA027 10.00 36 33 34.50 2.12		RLAG27	10.00	36	3.3				34 5 0	2 12
RLAG27 30.00 42 33 37.50 6.36		_			33					
		-							_	
ALA027 300.00 19 19 19 19.00 0.00										
- 10.00 19 10 17.50 2.12										
- 30.00 17 17 17 17.00 0.00									17.00	0.00
		-							17.50	3.54
- 100.00 130 19 59.50 57.28		-	120.00	150	19				59.50	57.28
- 300.00 15 12 13.50 2.12		•	300.00	15	12				13.50	2.12

PHENGCOPY CHECK: TRUE MUTANTS
STERILITY S-9: NOT CONTAMINATED
SAMPLE STERILITY: NOT CONTAMINATED
ACT MIX/FLATE: SOCUES

THORY

T

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

	SAMPLE STRAIN,	18- B	3-82-8 38	34-60 0	SAMPLE ID: BMGS-84-000: LAB: CBBA STRAIN: TA1538 DATE: 06/05/84	ACTIVATION: + RLAB27 TECHNICIAN: MJK	+ RLAB	73
	DOSE	DOSE UNITS PLATE COUNTS	PL	VTE CO	DUNTS		MEAN	S.
		S20	1861	19	36		32.00	=
	10.00		36	33		=	34.50	o ∨
	50.63	520 520	32	40			37.58	ကဏ
	300.00 300.00		4 –	26 19			33.00 19.00	0
•								

200

0

AVERAGE SLOPE (LINEAR REGR.) = .413 95% CONF. LIMITS = (.057, .769) WARNING: 4 PARAMETER MODEL DID NOT CONVERGE

50-

7.574

AVERAGE SLOPE INONLIN. MODEL)

STATISTICAL ANALYSIS: MITAGENICITY OF C.1. SOLVENT CREEN NO.

6	C.I. SOL	VEN	YEI	LOW N	33 h	IXTUR	OF C.1.	SOLVENT	C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM	. 1			
٠,	38.8	AMPL FRA I	<u>ч</u> <u>г</u>	D: 81 TA15	SAMPLE ID, BMGS-84-000) Strain, Tai538 Dati	1-886 DA	1881 LABI CBBA Date: 06/05/84	CBBA 35784	ACT IVATION: TECHNICIAN;	ı	НJК		
		000	ָ ה	DOSE UNITS	PLA	PLATE COUNTS	JNTS			E	MEAN	Ś	S.D.
	- 1 - N	M	3.008 30.00 30.00 50.00 100.00	: SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	6 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	652	15 628	; 	\$ 4 5 1 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	631.67 17.88 17.88 17.88 17.88 17.58 13.58	500 500 500 500 500 500	57.5	727
ESTS	B(0) 18.419		B(1) 	B(1)	B(2)	5!5	B(3)	- 001	OBS & EXP VS	EXP	d S/	DOSE	
TEST CHI POISSON ADEQUACY TOXICITY MUTAGENICITY	CHI-SOUARE 57 27 Y 7.73 Y 86.01 ICITY 110.96	-50U 57 7 86 110	50UARE 57 27 7.73 86.01	DF 2 2 2 2	90000 92100 90000 90000	-62 -66 -189	LOCL -62,3009 -66,1655 -109,1693 -121,6466	ව 					

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN

RESEARCH LAB: GBBA ON J6/08/84

C8/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1538

	A C	UGS PER		HIS	TIDINE	REVERTA	INTS PE	R PLATE	
COMPUUND	Ť	PLATE	A	8	C	0	ε	MEAN	STO
POS CONTROL									
2-4F	-	3.00	502	604	528			544.67	53.00
2-44	RLACET	3.50	816	807	828			817.00	10.54
NEG CONTROL									
DIMETHYLSULF	RLACZT	100.300	àO	62	73			71.67	9.07
	•	180.060	21	1 ô	19			19.33	1.53
āMGS-34-JC01									
	FLAJCT	10.00	52	50				51.00	1.41
		32.30	áC	67				73.50	9.19
	HLACET	50.00	57	62				59.50	3.54
		135.38	47	65				56.00	12.73
	RLAG27	300.00	33	23			•	30.50	10.51
	•	10.00	15	12				13.50	2.12
	•	33.60	16	1 6				17.00	1.41
	•	50.00	17	1 2				14.50	3.54
	•	180.08	13	15				14.00	1.41
	•	302.00	11	10				13.50	3.54

******		0-PG3	1 - B P T
PHENCEGPY CHECK : TRUE "LTANTS		N-NGS	P-0P4
STERILITY S-9 : NOT CONTAMINATED	T*-TOXIC	M-MGS	
SAMPLE STERILITY: VCT CONTAMINATED	THIC-TOO NUMEROUS TO COUNT	L-NLS	1
ACT MIX/PLATE : 500ugs	NATE-NET ABLE TO COUNT	U-ULS	C-UM

MUTAGENICITY TESTING OF C.I. SOLVENT GRZEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 HIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN

RESEARCH LAB: 688A CN 06/08/84

08/27/84

APPLIER CONTROL OF A CONTROL REPORT OF A CONTROL OF

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1536

+RLAG27

SPONTANEOUS COUNT IS HIGH DUE TO SMALL SALMONELLA COLONIES ON THE PLATE.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

		S.D.	.07	54	7	0 -	54	12.73	9	
1	27	S	6	9	_	6	₩	12	0	
	7. U. M.	MEAN	67	00	00	20	50	80	28	
,	+	H	71	317.	5	73.	59	56	30.58	
	ACTIVATION: + RLABZ/ TECHNICIAN: HJK			w						
	SANPLE ID: BNGS-84-8080 LAB: UBBA STRAIN: TA1538 DATE: 96/08/84	S	M	60						
	 	IND	73	82						
	4-866 A D A	TE CO	62	807	50	6 3	62	65	23	
	8-57L 38	PLA	80	816	25	80	57	47	38	
	101 1415	DOSE UNITS PLATE COUNTS	SOD	SON	SON	SON	SON	SON	SON	
	STRAIN,	DOSE	. 60	. 50*	10.00	30.00	50.00	169.66	300.00	

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 HIXTURE IN SALMONELLA TYPHIMURIUM

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN

ı

RESEARCH LAB: GBBA ON Q6/20/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1538

	A C	1:55 05b		HIS	TIDINE	REVERTA	NTS PE	PLATE	
COMPOUND	Ť	UGS PER Plate	A	6	c	0	E	MEAN	STD
POS CONTROL				50/					••
2-NF 2-AA	ALAU27	3.00 0.50	492 668	504 714	551 737			515.67 706.33	31.18
NEG CONTROL									
DIMETHYLSULF	RLAG27	100.000 100.000	45	39 12	36 16			40.00 12.00	4.58 4.00
BMGS-84-1001									
	FLAGET	10.00	41	31				36.00	7.07
	RLAG27	36.00	5 G	41				45.50	6.36
	ALAC27	50.00	38	39				38.50	6.71
	RLAU27	105.00	51	40				49.50	2.12
	RLAC27	350.00	25	27				26.00	1.41
	-	14.30 33.60	9 13	1 5 1 6				12.00	4.24
	-	50.00	17	10				14.50 17.50	2.12 0.71
	•	196.38	17	17				15.00	1.41
	•	300.00	ŽÍ	16				18.50	3.54

PHENOCOPY CHECK: TRUE MUTANTS
STERILITY S-9: NOT CONTAMINATED
SAMPLE STERILITY: NOT CONTAMINATED
ACT MIX/PLATE: 5004GS

THORTOMIC STERILITY: NOT CONTAMINATED
ATT-NUT ABLE TO COUNT

G-PGS T-PPT
N-N-MCS P-PPM
M-MGS B-PPB
TNIC-TGO NUMEROUS TO COUNT
L-NLS I-MM
NATC-NUT ABLE TO COUNT
U-ULS C-UM

20-

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT CREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

		58 38 77 77 77 77 77 77 77 77 77 77 77 77 77						
<u> </u>	8.0	35.55 6.35 7	DOSE					
ACTIVATION, + RLA027 TECHNICIAN, MJK	MEAN	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	00 S					
+	Æ	40.00 36.00 45.50 38.50 49.50 26.00	OBS & EXP VS					
ION		1 1 1	~ €		,	(
IVAT		† † 	088				*	
ACT					*	××	X	×
84 84	1		60		50	, , , ,	2 2 1	30-
, GB /20/	! !	 						
LAB ' 06	15	36	B(3)	86600	 4507	-38.8712 -46.8525 -42.9354	998	. 187
301 3ATE	NOO		ω.	<u>a</u>	37.4	38 46 42 9	3.6	
14-106 I	TE	84 84 84 84 84 84	5	79			11 -	
SAMPLE 1D; BMGS-84-0001 LAB; GBBA Strain, tai538 Date, 06/20/84	PLATE COUNTS	668 668 58 38 51 25	8(2)	1.5179 _P	.8342	.2416 .0001 .0172	AVERAGE SLOPE (NONLIN. MODEL) = 95% CONF. LIMITS = ('063,	. 3 = .
, BM A153	115	\$500 \$500 \$500 \$500 \$500	2 ! !	308		<i>ν</i> - <i>ν</i>	Ã	REGA
91	DOSE UNITS	<u></u>	8(1)	w		2.84 5.96 8.13	LIN.	EAR = (
MPLE	DOSE	. 68 10. 68 30. 68 50. 68 160. 68	'	VIII)5	. W	9.50.00	(NON MITS	(LIN
STS		- w 10 90 91	8(0)	59.614 -2.4	·	<u>}</u>	OPE . LI	JPE L L
				86			SL (SLO
			(· -	POISSON	ADEOUACY TOXICITY MUTAGENICITY	RAGE 5% C	AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (.0
÷.			, 1	ES15	P018	ADE 10X	AVE 9	AVE.

SAMPLE ID, BMCS-84-0001 LAB; CBBA ACTIVATION; - STRAIN; TA1538 DATE; 06/20/84 TECHNICIAN; MJK DOSE UNITS PLATE COUNTS .00 UGS 8 12 16 3.00* UGS 9 15 50.00 UGS 13 16 50.00 UGS 17 18 100.00 UGS 17 18 100.00 UGS 21 16 300.00 UGS 21 16		S.D.	4.08 4.24 2.12 2.12 71 1.41 3.54
### TELLOW NO. 33 HIXTURE IN SALMONELLA TYPHIMURIUM ###################################	1	MEAN	515.67 12.88 14.58 17.58 18.88
HPLE 1D, BMGS-84-0001 LAB: CBBA RAIN: TA1538 DATE: 06/20/84 DOSE UNITS PLATE COUNTS .00 UGS 8 12 16 0.00 UGS 13 16 0.00 UGS 17 18 0.00 UGS 19 17 0.00 UGS 21 16	ACT IVATION. TECHNICIAN.		:
HPLE 1D, BMCS-84-0001 RAIN: TA1538 DATE; DOSE UNITS PLATE COUNTS: 0.00 UCS 13 16 0.00 UCS 17 18 0.00 UCS 19 17 0.00 UCS 19 17 0.00 UCS 21 16	SALMONELLA AB: CBBA 06/20/84	(0.	(O —
MPLE 1D, BMCS-84-000 RAIN: TA1538 DA DOSE UNITS PLATE CO .00 UCS 8 12 3.00* UCS 8 15 0.00 UCS 13 16 0.00 UCS 13 16 0.00 UCS 13 16 0.00 UCS 19 17	RE IN	UNT	52.00
MPLE 1D, BMGS-84 RAIN; TA1538 DOSE UNITS PLAT - 00 UGS 13 0.00 UGS 17 0.00 UGS 17 0.00 UGS 19 0.00 UGS 21	11xTUI 1-000 D/	ECC	504 15 16 17 17
HPLE 1D, Br RAIN: TA155 DOSE UNITS .000 UGS 0.000 UGS 0.000 UGS 0.000 UGS	0. 33 P	PLAT	
DOSE	ID, Br	UNITS	
SA ST	SOLVENT Y	DOSE	3.00* 10.00* 30.00* 50.00* 100.00

Š

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBBA ON 03/30/64

TEST TYPE: STANDARD PLATE INCORPORATION

G8/27/84

STRAIN: TA98

	• • • • • • • • • • • • • • • • • • • •						317	M144	
	A C	UGS PER		H15	TIDINE	REVERTA	NTS PER	PLATE	
COMPGUND	T	PLATE		8	¢	D	£	MEAN	STD
POS CONTROL									
2-NF	-	3.40	300	312	315			309.00	7 04
2-AA	RLAU25		875	837	853			855.00	
NEG CONTROL									
DIMETHYLSULF	ALACZE	196.888	60	4.1	48			49.67	9.61
	•		28	33	30			30.33	2.52
6MGS-84-0001					/				
	ALAD26	1.00	51	Sü				50.50	0.71
	ALAC26		50	40				45.60	7.67
			53	42			4		7.78
	ALADZ6	30.00	53	46				50.50	3.54
		50.00	49	5 a				53.50	6.36
			54	57				55.50	2.12
	HLA026	300.00	49	61				55.00	8.49
		500.00	63	47				55.00	
, , , , , , , , , , , , , , , , , , ,	RLA026	1200.50	52	Z٥				39.00	18.38
	•	1.30	24	27				25.50	6.12
	•	5.30	27	25				26.00	1.41
	•	13.00	32	54				43.00	15.56
	-	30.00	26	30				28.00	2.83
	-	50.00	25	2 à					0.00
	-	100.00	29	2 G				24.50	0.36
	•	300.30	19	25				22.50	4.95
,	-	500.00	21	25				23.00	2.83
	•	1000.00	25	1 à				21.50	4.95

			G-FG2	1-991
PHENOCOPY CHECK :	TRUE MUTANTS		N-NGS	P-PPM
STERILITY 5-9 :	OT CONTAMINATED	T==TOXIC	M-MGS	8-668
SAMPLE STERILITY:	NOT CONTAMINATED	INTC-TOO NUMEROUS TO COUNT	L-NLS	1
ACT MIX/PLATE :	5 G C G G S	NATC-NUT ABLE TO COUNT	U-ULS	C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

	_:	61 008 71 78 78 54 36	1 <u>0</u> _	X	
	S.D.	 	-	^	Λ
ω	S	100 7786	, œ ∺}		
+ RLA026 MJK			T DISPLAYED OBS & EXP VS DOSE		
₹ ¥	Z	1 ~ 0 0 0 0 0 0 0		1	/
독	MEAN	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>6</u> 8		/
	Ï	45 67 58 58 58 58 58 58 58 58 58 58 58 58 58	3		
		ነ መ ነ <i>ፋ</i> የየየፋፋየየየ	나요 많아		×
ACTIVATION. TECHNICIAN:		1	E	/	
55		i	≟ •	1/	į
		1	S S	X X	×
<=		1	= 8		
- =		i		1.1.	İ
E C		<u> </u>	5	\XX.	٠. ا
₹₽		į	ž		× ×
		! 	COMPUTATION BUT NOT 8131 80	· 1 —	, J. 1
SAMPLE 10, BMGS-84-0001 LAB, GBBA Strain, tage Date: 03/30/84		∤ 1	BU1	89	6
<u> </u>		i i	_	_	•
S S			6		
a m			=-18	1 1 10 fb 10 m	0 - 0 -
₹ 60	10	I	KW 4	LOCL 0896 7680 1486 2698	. 170 8881 . 330 3181
	Ë	853 853	B (3)	LOCL 0896 7689 1486 2698	170 888 - 330 818)
===	Ź,	ω	<u> </u>	Ø Ø W ♣	m l
88	PLATE COUNTS		_0	-70 -70 -75 -74	• •
6	1.1	84 587 468 478 58 57	w		
Ť		w	B(2) B(2)		1, "9
a a		@U-@MM04	B (2)	P .0527 .9684 .0031	EL) = .007,
ပ္သ	4	8 4 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	USED USED B B	9527 9684 9831 9301	
Ĕ,	, i	•	Š	9.0.0.0	10
m Qi	DOSE UNITS	ល់សំលំលំលល់ល	00-IM	41-9-0	MODEL) .007
۵¥	2	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200	VEL 9 B (1) B (1)	H 1 1 9 1 2	
-	5	<u> </u>	> 0 1 9	ARE 50 36 76 00 00	- " K"
ωŽ	ا پيا		UEVELS LEVELS B(1) -1.6163	ARE 50 36 76 000	AS AS
٦ •	0.5	000000000	SS 1	9-8	<u> </u>
<u> </u>	Ā	-500000	2 S	S :	
Sis	i	- 1001001	500 00 00 00 00 00 00 00 00 00 00 00 00	-	
	1		560 N 9 DO: B (0) 48.329	CHI-SOUARE 19.50 1.36 8.76 1Y 7.00	AVERAGE SLOPE (NONLIN. MODEL) 95% CONF. LIMITS = (.00 AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (-1.47)
			₹ ₹	7 7 2	S S S S
			Ŧ	NO L N	Mg Mg
					XX XX
			<u> </u>	S E	95 95 95
			MORE THAN ESTS. 48	TEST CH POISSON ADEQUACY TOXICITY MUTAGENICITY	3 3 3
•					•

20-

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

ACTIVATION: - TECHNICIAN: MJK	MEAN S.D.	1	> 1		*/* **
ACT 1 TECH		6 6 1 6	10N	×	*
LAB; CBBA , 03/30/84			10N BUT 60-	40-	20-
001 LAB; CBBA DATE; 03/32/84	JUNTS	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B(3)	LGGL -59, 1673 -69, 4521 -77, 3966 -67, 5145	094 (*****) 1.269 2.615)
3-84-06(D/	DOSE UNITS PLATE COUNTS	24 212 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	23 29 90) = 100. **1
D: BMGS FA98	VITS F	UGS 300 UGS 300 UGS 27 UGS 27 UGS 32 UGS 26 UGS 29		DF P P P P P P P P P P P P P P P P P P P	1. MODE
SAMPLE ID: BMGS-84-0001 STRAIN: TA98 DATE	DOSE UN	.	SE LEV	CHI-SQUARE 10.81 20.57 15.89 17	AVERAGE SLOPE (NONLIN. MODEL) 95% CONF. LIMITS = (.00% AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (07)
J. V.	i		MORE THAN 9 00 8(0) ESTS. 30.469	γ Υ 101	SE SLOPE CONF. 1 SE SLOPE CONF. L
			MORE 1	TEST POISSON ABEQUACY TOXICITY HUTAGENI	AVERA(95% AVERAC

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE GREEN

RESEARCH LAB: GBBA

ON 04/06/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA98

POS CONTROL 2-NF - 3.00 250 270 255 258.33 10.41 2-AA RLAGZ6 0.50 740 825 817 794.00 40.94 NEG CONTROL DIMETHYLSULF RLAGZ6 10J.GOU 42 31 43 38.67 6.66 - 100.GOU 23 29 20 24.00 24.00 458 EMGS-84-JCG1 RLAGZ6 1.00 37 40 38.50 2.12 RLAGZ6 5.00 61 45 53.00 11.31 RLAGZ6 5.00 61 45 53.00 11.31 RLAGZ6 30.00 50 44 52.00 50.66 RLAGZ6 100.JG 50 40 49.00 5.66 RLAGZ6 100.JG 50 40 49.00 5.66 RLAGZ6 30.00 50 50 40 49.00 1.41 RLAGZ6 30.00 50 50 40 49.00 5.66 RLAGZ6 100.JG 50 50 40 49.00 5.66 RLAGZ6 100.JG 50 40 49.00 5.66 RLAGZ6 100.JG 50 50 40 49.00 5.66 RLAGZ6 100.JG 50 50 50 50 50 50 50 50 50 50 50 50 50		A C	UGS PER		#IS	TIDINE	REVERTA	NTS PE	R PLATE	
2-NF 2-AA RLAGZ6	COMPUUND	ř		A	9	c	0	E	MEAN	STO
REG CONTROL DIMETHYLSULF RLA026 100.30U 42 31 43 38.67 6.66 - 100.30U 23 27 20 24.C0 4.58 EMGS-84-JC01 RLA026 5.00 61 45 53.00 11.31 ALA026 10.00 29 32 30.50 2.12 ALA026 30.00 50 40 52.00 5.66 ALA026 50.60 45 53 49.00 5.66 ALA026 100.30 50 40 49.00 1.41 ALA026 30.00 50 40 49.00 1.41 ALA026 30.00 50 50 50 50 53.00 1.41 ALA026 30.00 50 50 50 50 50 50 60 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 27 28.00 5.66 - 10.00 25 3: 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 27 29.50 C.71 - 50.00 30 27 29.50 C.71	POS CONTROL									
REG CONTROL DIMETHYLSULF RLA026 10J.30U 42 31 43 38.67 6.66 - 100.30U 23 29 20 24.C0 4.58 EMGS-34-JC01 RLA026 1.30 37 40 38.50 2.12 RLA026 16.00 29 34 30.50 2.12 RLA026 30.00 50 46 527 26.50 0.71 - 5.66 21 29 25.60 5.66 - 10.00 25 3: 28.60 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29 26.50 6.71 - 50.00 30 29 29 25.50 6.71 - 50.00 30 29 29 29 20 29.50 6.71	2-NF	•	3.00	250	270	255			258 77	10 /1
### ##################################	2-44	RLAGCE								
- 100.00u 23 29 20 24.00 4.58 6MGS-84-J001 RLA326 1.00 37 40 38.50 2.12 RLA026 5.00 61 45 53.00 11.31 RLA026 30.00 50 44 52.00 5.06 RLA026 50.60 45 53 49.00 5.06 RLA026 100.00 50 40 49.00 1.41 RLA026 300.00 50 50 40 49.00 1.41 RLA026 300.00 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.50 5.66 - 10.00 25 3: 28.00 4.24 - 30.00 26 27 26.50 5.61 - 10.00 25 3: 28.00 4.24 - 50.00 30 29 25.50 6.71 - 50.00 30 29 25.50 6.71	NEG CONTROL									
### 100.000 23 29 20 24.00 4.58 #### 24.00 4.58 ###################################	DIMETHYLSULF	READES	103.304	42	31	43			79 47	4 4 4
6MGS-84-JCQ1 RLAJ26 1.00 37 4G 38.50 2.12 RLAQ26 5.00 61 45 53.00 11.31 RLAQ26 10.00 29 32 30.50 2.12 RLAQ26 30.00 50 44 52.00 5.06 RLAJ26 100.00 50 40 49.00 5.06 RLAJ26 100.00 50 50 40 49.00 1.41 RLAJ26 300.00 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.06 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 10.26		•		_						
RLAD26 1.00 37 40 38.50 2.12 RLAD26 5.00 61 45 53.00 11.31 RLAD26 10.00 29 32 30.50 2.12 RLAD26 30.00 50 44 52.00 5.66 RLAD26 50.00 45 53 49.00 5.66 RLAD26 100.00 50 40 49.00 1.41 RLAD26 300.00 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.66 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 10.26					• •	•			24.60	4.35
HLA026 5.00 61 45 53.00 11.31 HLA026 10.00 29 32 30.50 2.12 HLA026 30.00 50 44 52.00 5.06 HLA026 50.00 45 53 49.00 5.06 HLA026 100.00 50 40 49.00 1.41 HLA026 300.00 50 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.06 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 10.26	6MGS-34-J001									
HLA026 5.00 61 45 53.00 11.31 HLA026 10.00 29 32 30.50 2.12 HLA026 30.00 50 4a 52.00 5.66 HLA026 50.00 45 53 49.00 5.66 HLA026 100.00 50 40 49.00 1.41 HLA026 300.00 50 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.66 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 10.26		ALAJ26	1.30	37	60				11.50	. 49
#LA026 1G.GO 29 32 30.50 2.12 #LA026 3U.GO 50 44 52.00 5.66 #LA026 5U.GO 45 53 49.00 5.66 #LA026 1GG.GO 50 40 49.00 1.41 #LA026 3GG.GO 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.GC 21 29 25.GO 5.66 - 1U.GO 25 31 28.GO 4.24 - 3U.GO 26 27 26.50 C.71 - 5C.GO 30 29 29.50 10.26		HLAO26	5.00							
#LA026 30.00 50 44 52.00 5.06 #LA026 50.00 45 53 49.00 5.06 #LA026 100.00 50 40 49.00 1.41 #LA026 300.00 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.06 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 0.71 - 100.00 41 14 29.50 10.26		ALAOZ6								
ALAD26 50.00 45 53 49.00 5.66 RLAD26 100.00 50 40 49.00 1.41 RLAD26 300.00 50 50 50 50 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.66 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 0.71 - 100.00 41 14 29.50 16.26		ALAGE								
RLAD26 100.00 50 40 49.00 1.41 HLAD26 300.00 50 50 50 50 50 50 50 50 50 60 53.00 4.24 50.50 50.71 50.00 26 27 26.50 5.66 50 50.71 50.00 25 31 28.00 4.24 50.50 50.71 50.00 26 27 26.50 50.71 50.00 26 27 50.50 50.71 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.70 50.								•		
#LAJ26 300.00 50 56 53.00 4.24 - 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.66 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 0.71 - 100.00 41 14 29.50 16.26										
- 1.00 26 27 26.50 0.71 - 5.00 21 29 25.00 5.66 - 10.00 25 31 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 0.71 - 100.00 41 14 29.50 16.26		RLAJ26	300.00							
- 5.00 21 29 25.00 5.66 - 10.00 25 3: 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 0.71 - 100.00 41 14 29.50 16.26		-							_	
- 10.00 25 3; 28.00 4.24 - 30.00 26 27 26.50 0.71 - 50.00 30 29 29.50 0.71 - 100.00 41 14 29.50 16.26		-	5.00							
- 30.00 26 27 26.50 C.71 - 5C.00 30 29 29.50 G.71 - 10G.GO 41 14 29.50 16.26		-		25						
- 5C.00 30 29 29.50 G.71 - 10G.00 41 1a 29.50 16.26		•								
- 100.00 41 14 29.50 16.26		-								
10160		- ,								
		-	300.00	20	31				25.50	7.78

PHENOCOPY CHECK : TRUE MUTAN	N-NGS	P-PPM
STERILITY S-9 : NOT CONTAM SAMPLE STERILITY: NOT CONTAM ACT MIX/PLATE : SJOUGS	M-MG S L-NL S U-UL S	[- m m

MUTAGENICITY TESTING OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTUPE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE GREEN RESEARCH LAB: GBBA ON

ON 04/06/84

G8/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA9E

+RLAGZo

ABOVE 100 UG/PLATE, THE SAMPLE APPEARS TO PRECIPITATE OUT OF SOLUTION.

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 - C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0001 LAB: GBBA ACTIVATION: -STRAIN: TA98 DATE: 04/06/84 TECHNICIAN: MIK

	•				ב ב	DA1E: 01/00/04	00/04	IECHNICIAN	N. MJK	¥	
	1	DOSE	DOSE UNITS		PLATE COUNTS	JNTS			MEAN	N S.D	D.
		3.00*	SON 1	23 250	29	28 255	1 1 1 1 1 1	; ; ; ; ; ;	24 0	-	58
		- 60		5 6	27)			26.5		
		ပ အ အ ရ	_	21	58				25.0	ີພ	99
	- (A)	90.00	-	52 26	27				28.0	•	5.
	m) 2	00 00		30	29				29.5 29.5		
	30 - 60	300.00		20	31				29.5 25.5	16.	26 78
	8(0)		8(1)	B(2)	~	B(3)					
5616			1	1 6	! !	1 1	50.1	OBS	OBS & EXP VS	DOSE	
F510.	765 - 47	t	171	. 5262	25	.00166	3				_
TEST	-IHO	CHI-SQUARE	E DF	Q.		L OGL					
POTCON	1		ı	1 .	ì		40	×			
ABEQUACY	, ≻,	9) 4	9618	ביר	2741 3741					
TOXICII	<u>_</u>	1	76 1	3825	1						_
MUTAGENICITY	VICITY	2.00	. 2	3672	-5		70.	, ×			×
AVERAGE 95%	AVERAGE SLOPE (NONLIN.	(NONL	IN. MC	MODELI	#	139	3	***			1
? (-	9	•	2/41	ć	~ ≯			
AVERACE 95% C	AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (0	(LINE MITS	AR REC	5R.1 = 018	🕰	1781	9	×			*

200

STATISTICAL ANALYSIS: MUTAGENICITY OF C.I. SOLVENT GREEN NO. 3 C.I. SOLVENT YELLOW NO. 33 MIXTURE IN SALMONELLA TYPHIMURIUM

STRAIN: TA98 STRAIN: TA98 DOSE UNITS PLATE COUNTS .00 UGS 42 31 43 .50* UGS 740 825 817
SAMPLE 10: BRUS-84-0001 LAB: UBBA STRAIN: TA98 DATE: 04/06/84 DOSE UNITS PLATE COUNTS .00 UGS 42 31 43
STRAIN: TA98 DOSE UNITS PLATE COUNT .00 UGS 42 31 4 .50* UGS 740 825 81
STRAIN: TA98 DOSE UNITS PLA .00 UGS 42
STRAIN: TA98 DOSE UNITS .000 UGS
STRAIN: DOSE (100

		OSE	DOSE UNITS PLATE COUNTS	PLA'	TE COL	JNTS			٣	MEAN	S.D.	D
	}	90	1	42	3.1	43			38	.67		99
		.50*	k UGS	740	825	817			794.00	00	46.	94
	-	. 20		37	40				38	50		12
	ED)	000.		61	45				53	00		31
	3.01	00.		58	32				30	50	۵.	12
	36	00.		26	48				52	90	S	99
	50	90.		45	53				49	00	2	99.
	100	3.00		20	48				49	00	_	-
	308	90.		20	56				53	00	4	24
	ć			ì	;			OBC	AR FYP VS DUSE	ט א	טטנ	
	919		611	1218	7		80					ſ
	1 - 1 - 1		!!!!!	i	1		}					
	38.301	_	.0715	. 2941	-							
	ני נייני		;				1					
>	VIDENCE OF IDVICIIT	Š										
								_				

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

ARMY DYE YELLOW RESEARCH LAB: 688A

ON 03/30/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION STRAIN: T	FATOC
---	-------

	Å			HI.	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C T	UGS PER PLATE	A	8	Ç	5	ε	MEAN	STO
POS CONTROL									
NAAZIDE	-	3.û0	1179	1205	1180			1188.00	14.73
2-44	ALA026	0.50	363	360	298			340.33	36.69
NEG CONTROL									
DIMETHYLSULF	READZE	106.600	105	101	163			103.00	2.00
	•	105.000	103	134	¥7			111.33	19.86
8MG\$+34+4043									
	HLAC26	1.00	133	131				132.GO	1.41
	RLAG26	5 • QQ	115	132				123.50	12.02
	RLASZS	10.00	137	150				146.50	13.44
	HLAG26	33.30	172	206				186.00	19.80
	65CAJR	50.00	170	162			•	166.00	5.66
			146	161				153.50	10.61
		300.00	149	138				143.50	7.78
	RLA026	504.20	132	130				131.00	1.41
	RLACES	1305.00	125	135				130.GO	7.07
	•	1.ú0	129	113				121.00	11.31
	-	5.00	141	141				141.00	0.00
	•	15.00	120	144				132.00	16.97
	•	30.00	154	166				160.00	8.49
	•	53.00	151	154				152.50	2.12
	•	100.00	142	141				141.50	0.71
	. •	300.00	129	135				132.00	4.24
	•	500.00	139	168				123.50	21.92
	•	1300.00	32	114				102.50	13.44

			002	ISPPI -
PHENOCUPY CHECK :	TRUE MUTANTS		N-NGS	P-P#
STERILITY 5-9 :	NOT CONTAMINATED	T*-TOXIC	H-HES	8-229
SAMPLE STERILITY:	NGT CONTAMINATED	THIC-TUO NUMEROUS TO COUNT	L-MLS	I-MM
ACT MIA/PLATE :	5CCUGS	NATC-NOT ARLE TO COUNT	U-ULS	C-UM

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

1.41 12.02 13.44 19.80 5.66 10.61 2.00 VS DOSE ACTIVATION: + RLA026 TECHNICIAN: MJK 183.88 348.33 132.88 123.58 14c.58 186.00 166.00 153.50 143.50 MEAN EXP SED IN COMPUTATION BUT NOT DISPLAYED • X 085 200 150 100 SAMPLE ID: BMGS-84-0002 LAB: CBBA STRAIN: TA100 DATE: 03/30/84 -74.1956 -87.1344 -95.7803 00046 1.779 8(3) 3.2421 LOGL 103 PLATE COUNTS 101 360 131 132 156 200 161 138 B(2) 1430 516, AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (1.699, . 8498 . 8882 . 8888 ٩ AVERAGE SLOPE (NONLIN. MODEL) 95x CONF. LIMITS = (.510 105 363 133 115 172 172 176 146 DOSE UNITS .000 UCS 1.000 UCS 5.000 UCS 10.000 UCS 30.000 UCS 50.000 UCS 50.000 UCS 1000.000 UCS 1000.000 UCS 1000.000 UCS 1000.000 UCS 1000.000 UCS 4880 H 6.35 25.88 17.29 52.69 CHI-SOUARE M 102.328 MUTAGENICITY MORE THAN 10×1C11Y ADECUACY POISSON ESTS TEST

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0002 LAB: GBBA ACTIVATION: -STRAIN: TA100 DATE: 03/30/84 TECHNICIAN: MJK

500

IM VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE YELLOW LAB: GBBA ON Q4/06/84

RESEARCH LAB: GBBA

08/27/84

TFST	TYPE .	STANDARD	PIATE	INCORPORATION
1531		31840848	- MIE .	TUCCULLOUVITOU

STRAIN: TATCO

	A	UGS PER		HIS	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C T	PLATE	A	8	C	D	E	MEAN	SID
POS CONTROL									
NAAZIDE	-	3.00	1253	1350	1320			1307.67	49.66
2-44	4LAC26	J.50	953	814	942			869-00	74.28
NEG CONTROL									
DIMETHYLSULF	RLA026	100.000	115	125	114			115.00	6.08
	•	100.000	109	102	110			107.00	4.36
8MGS-34-0002									
	ALAG26	1.30	132	151				141.50	13.44
	RLAGZO	5.40	144	132				138.00	8.49
	RLA026	16.30	153	149				151.00	2.83
	RLAG26	30.00	174	ذ15				163.50	14.65
	HLA026	50.00	146	174				· 160.00	19.80
	RLA026	100.00	167	151				159.00	11.31
	8LAJ26	300.00	156	135				145.50	14.35
	-	1.00	130	136				130.00	0.00
	-	> 00	112	129				120.50	12.03
	-	10.00	128	112				120.00	11.31
	-	34.30	9.8	117				107.50	13.44
	-	50.00	126	132				129.00	4.24
	-	100.00	140	126				133.00	9.90
	•	300.00	111	11 à				114.50	4.95

		G-PGS	T-PPT
PHENOCOPY CHECK : TRUE MUTANTS		N-NGS	P-PP#
STERILITY S-9 : NOT CONTAMINATED	T+-TOXIC	M-MGS	8-PPS
SAMPLE STERILITY: NOT CONTAMINATED	THTC-TUO NUMERCUS TO COUNT	L-NLS	I - w w
ACT MIX/PLATE : 500ugs	NATC-NOT ABLE TO COUNT	U-ULS	C-UM

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYFHIMURIUM

6.08 74.28 13.44 8.49 2.83 14.85 19.86 31 S.D. EXP VS DOSE + RLA026 MJK MEAN ACTIVATION. TECHNICIAN: **8** S80 × X 180 160 140 120 SAMPLE 1D: BMGS-84-0002 LAB: GBBA STRAIN: TA100 DATE: 04/06/84 -62.9979 -62.9979 -65.2215 -76.0619 1.245 1.486 2.909) .00102 8(3) LOGL PLATE COUNTS 125 812 151 132 153 153 151 151 2489 8(2) AVERAGE SLOPE (NONLIN MODEL) = 95% CONF. LIMITS = 1 760, 4753 8061 0358 0000 115 132 144 153 174 146 167 156 AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (.5 DOSE UNITS 800 2.9511 CHI-SOUARE 1.62 4.45 26.13 8.60 8(0) 118.182 MUTAGENICITY TOXICITY **ADEDUACY** POISSON ESTS

100.

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

in: – mjk	MEAN S.D.	1807.00 4.36 1307.67 49.66 130.00 12.00 120.50 12.02 120.00 11.31 107.50 13.44 129.00 4.24 133.00 9.90	EXP VS DOSE	* *	
ACTIVATION: TECHNICIAN:			\$ 580	× × × ×	×
.0002 LAB: GBBA Date: 04/06/84	PLATE COUNTS	102 110 350 1320 130 129 112 112 132 126	B(3) .00017 140	1.0GL -58.9452 -62.9552 -63.2139 -65.5729	347 2.972) 100 . 129 . 497) NOT CONVERGE
SAMPLE ID, BMGS-84-0002 Strain: Taioo Date	UNITS PLATE	UCS 189 13 UCS 1253 13 UCS 138 1 UCS 128 1 UCS 128 1 UCS 128 1 UCS 126 1	B(1) B(2) 2.8538 .0000	DF P P P P P P P P P P P P P P P P P P P	3. 39.
SAMPLE I STRAIN:	DOSE	.000 3.00* 1.00* 5.00 30.00 50.00 100.00 300.00	B(Ø) 1Ø6.793	TEST CHI-SQUARE POISSON 5.39 ADEQUACY 8.02 TOXICITY 5.24	AVERAGE SLOPE (NONLIN MODEL 95% CONF. LIMITS = (.0 AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (-2 WARNING, 3 PARAMETER MODEL D
4,			ESTS.	TEST POISSON ADEQUACY TOXICITY MUTAGENIC	AVERACE 95% CO AVERACE 95% CO VARNING:

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA

ON 04/06/84

08/27/84

TEST TYPE: PLATE TEST - PREINCUBATION

STRAIN: TATOC

	A C	. 66 060		HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	T	UGS PER	A	а	c	0	E	MEAN	STO
POS CONTROL									
NAAZIDE	•	٥٠٠٥	1227	1278	1267			1257.33	26.84
2-44	RLAC26	J.50	354	307	337			332.67	23.80
NEG CONTROL									
DIMETHYLSULF	RLAC26	100.000	105	117	115			113.33	4.73
	•	100.500	144	132	147			134.33	8.74
5MGS-84-0002									
	RLAC26	1.00	129	133				131.00	2.83
	ALACEG	5.00	132					132.00	0.00
	HLACES	10.00	151	14G				145.50	7.78
	RLAS26	30.00	156	180				168.00	16.97
	HLAG25	50.00	194	203				198.50	6.36
	REACES	150.60	155	154			•	154.50	5.71
	RLAG26	300.50	172	137				154.50	24.75
	•	1.00	111	129				120.00	12.73
	-	5.00	111	137			•	124.00	10.39
	•	16.30	100	133				116.50	22.33
	-	30.00	139	161				120.60	26.67
	•	56.33	194	125				159.50	48.79
	•	100.00	:63	110				106.50	4.95
	•	300.60	123	115				119.00	5.66

		G-PGS	T-PPT
PHENCCOPY CHECK : TRUE MUTANTS		N-NGS	P-PP*
STERILITY S-9 : NOT CONTAMINATED	TTOXIC	M-MGS	6-668
SAMPLE STERILITY: NCT CONTAMINATED	INTC-TOO NUMEROUS TO COUNT	L-NLS	I-wm
ACT MIX/PLATE : 500UGS	NATC-NGT ABLE TO COUNT	U-ULS	C-UM

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

4.73 23.80 2.83 2.83 7.78 16.97 6.36 24.75 S.D. + RLA026 MJK OBS & EXP VS DOSE MEAN 332.67 131.00 132.00 145.50 168.00 198.50 154.50 ACTIVATION: TECHNICIAN: XX X SAMPLE ID: BMGS-84-0302 LAB: CBBA STRAIN: TA100 DATE: 04/06/84 250 200 150 -57.9736 -65.3314 -71.7061 B(3) 1.543 1.548 1111 .00191 LOGL -93, 1984 PLATE COUNTS 140 180 203 154 137 307 3898 B(2) AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (1.250, AVERAGE SLOPE (NONLIN. MODEL) 95% CONF. LIMITS = (1.022 . 5631 . 0053 . 0004 . 0000 ٩ 354 354 129 151 151 156 194 155 DOSE UNITS 000 s 200 s 8(1) 2.8208 1 1 1 CHI-SQUARE 6.76 14.72 12.75 55.73 . 500 50* 1.00 5.00 10.00 30.00 50.00 100.00 8(0) 112.794 MUTAGENICITY ADEQUACY TOXICITY POISSON ESTS TEST

200

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-8002 LAB: GBBA ACTIVATION: -STRAIN: TAI00 DATE: 04/06/84 TECHNICIAN: MJK

•.

MEAN S.D.	134.33 8.74 1257.33 26.84 120.00 12.73 124.00 18.38 116.50 23.33 120.00 26.87 159.50 48.79 106.50 4.95	OBS & EXP VS DOSE		× × × × ×
DOSE UNITS PLATE COUNTS	3.00 UGS 144 132 127 1.00 UGS 127 1278 1267 1.00 UGS 111 129 1267 10.00 UGS 111 137 10.00 UGS 180 133 100.00 UGS 194 125 100.00 UGS 123 115	ESTS. 126.876 -1.4883 .7835 .00074 200	TEST CHI-SOUARE DF P LOGL	AVERAGE SLOPE (NONLIN. MODEL) = .066 95% CONF. LIMITS = (.000,******) AVERAGE SLOPE (LINEAR REGR.) =033 95% CONF. LIMITS = (151, .086) WARNING: 3 PARAMETER MODEL DID NOT CONVERGE

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE YELLOW

RESEARCH LAB: GBBA CN 06/01/84

08/27/84

TEST	TYPE:	STANDARD	PLATE	INCORPORATION	STRAIN: TA102

	A			HI	STIDINE	REVERTA	NTS PE	R PLATE	
	C	UGS PER							
COMPOUND	T	PLATE	A	6	C	0	E	PEAN	STD
POS CONTROL									
OTHER PUS	RLAG27	30.00	1111	984	1059			1034.67	67.28
2	•	Ü-50	349	335	302			355.33	24.13
NEG CONTROL			•						
DIMETHYLSULF	RLAC27	100.000	108	109	100			105.67	4.93
	•	100.000	57	40	42			46.33	9.29
cMGS=34=0002	•								
	HLAG27	16.00	100	100				100.00	0.60
	HLAG27	34.00	144	162				153.00	12.73
	RLAO47	54.00	186	137				186.50	0.71
	ALAG27	100.00	213	190				201.50	10.26
	RLAUZ7	303.00	188	200				197.00	12.73
	-	10.50	55	101				93.00	11.31
	-	34.00	113	91				102.60	15.56
	•	50.00	113	110				111.50	2.12
	-	100.00	76	163				87.00	10.38
	-	300.00	96	115				105.50	13.44

G-PGS PHENOCOPY CHECK : TRUE MUTANTS N-NGS STERILITY 5-4 : NOT CONTAMINATED T+-TOXIC M-MGS SAMPLE STERILITY: NOT CONTAMINATED THIC-TUD NUMEROUS TO COUNT L-NLS !--M NATC-NOT ABLE TO COUNT ACT MIX/PLATE : SCOUGS U-ULS C-UM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW

RESEARCH LAB: 688A ON 06/01/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1C2

+RLAC27

POSITIVE CONTROL USED WAS DANTHRON. DYES START TO PRECIPITATE OUT OF SCLUTION AT THE 3COUG DOSE.

POSITIVE CONTROL USED WAS MITOMYCIN C.

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

٠.

300

200

100

C.1. SOLVENT YELLOW NO. 33 IN SALHONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0002 LAB: CBBA ACTIVATION: -STRAIN: TAIDZ EATE: E6/01/84 TECHNICIAN: MJK

HEAN S.D.	46.33 355.33 93.00 102.00 111.50 105.50
UNTS	382
PLATE COUNTS	335 100 100 100 100 15
	12484 1248 134 134 134 137 137 137 137 137 137 137 137 137 137
UNITS	\$30 \$30 \$30 \$30 \$30 \$30
DOSE UNITS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* ****** ** *** **** **** **** ***

IN VITRO ASSAYS WITH SALMONELLA TYPHIPURIUM

OF ARMY DYE YELLOW

ON 06/08/84 RESEARCH LAB: GBBA

08/27/64

TEST TYPE:	STANDARD	PLATE I	NCORP	GRATION			\$ 1	RAIN: TA10	?
	A C	65 B64		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	T	DGS PER	A	•	C	0	ŧ	MEAN	STD
POS CONTROL									
OTHER POS	HLAC27	30.00		116q	1248			1192.60	22.63 7.57
NEG CONTHOL									
DIMETHYLSULF	FLAG27		257 154		219 3 145			243.33 149.50	12.10
6MGS-84-1002									
	ALAG27	16.00	463	441				422.00	26.87
			538					501.00	52.33
	RLAG27	54.00	603					605.50	3.54
	RLAGZ7	100.00	640	665				652.50	17.68
	RLAC27	304.40	678	662				670.00	11.31
	•	14.00	341					345.50	0.36
	•	34.40	474						24.04
	-	50.00	506						57.98
	•	100.00	441					452.00	15.56
	•	300.00	465	517				501.00	22.63

			G-PGS	Y-PPT
PHENGCOPY CHECK :	TRUE MUTANTS		N-NGS	p-ppm
STERILITY S-9 :	NOT CONTAMINATED	T+-TOXIC	M-MGS	8-998
SAMPLE STERILITY:	NOT CONTAMINATED	THTC-TOO NUMEROUS TO COUNT	L-NLS	1 - m M
ACT MIX/PLATE :	5 d C U G S	NATC-NUT ABLE TO COUNT	U-ULS	C-UM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA ON

ON 06/06/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA102

BACKGROUNDS:

(4) CONTAMINATED

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW

RESEARCH LAB: 688A ON 06/08/84

08/27/84

医二种 医二种种的

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TATGE

+RLAC27

DANTHRON WAS USED AS THE POSITIVE CONTROL.

MITCHYCIN C WAS USED AS THE POSITIVE CONTROL.

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

ACTIVATION: + RLAB27 TECHNICIAN: MJK SAMPLE 1D: BMCS-84-0002 LAB: C88A STRAIN: TA102 DATE: 06/08/84

٠.

	900	SE U	NITS	DOSE UNITS PLATE COUNTS	TE CC	UNTS			Ξ	MEAN	Ś	S.D.
	38 . 88 18 . 88 38 . 88 38 . 88 188 . 88 188 . 88	00000000000000000000000000000000000000	8900 000 000 000 000 000 000	257 403 538 603 678	234 1176 441 608 665 665	239	 	\$	243 1192 422 501 605 678	W Ø Ø Ø Ø Ø Ø Ø	528.55	68 33 33 31 31 31
ESTS. 2	B(0) 243.447	æ + ø.	B(1)	B(2)	52	B(3)	- 908	088	OBS & EXP VS DOSE	d S/	OSE	Г
TEST CH POISSON ADEQUACY TOXICITY MUTACENICITY	CHI-SOUARE 9 07 3 93 24 06 CITY 768 54	JARE	F120-0	2477 14477 1464	-56 -58 -78	LOGL 6.3735 8.3571 8.3655	809	**			<i>[</i> -	*
AVERAGE 95% COI AVERAGE 95% COI	Π <u>.</u> . Π <u>.</u>	S = S	N. MC	DEL) = 4.325, R.) = 2.480,		10 W	400	X				

200

100

200-

X

LOGL

400

-51.6990 -58.2338 -61.1818 -325.5995

.0015 .0015 .0152

POISSON 10.44
ADEQUACY 13.07
TOXICITY 5.90
MUTAGENICITY 534.73

POISSON

600

.00087

2383

4.8437

149.142

ESTS.

CHI-SOUARE

TEST

200-

1.647

1.2831

AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (.052,

AVERAGE SLOPE (NONLIN. MODEL) 95% CONF. LIMITS = (1.32

300

0

SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM STATISTICAL ANALYSIS: MUTAGENICITY OF

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

RESEARCH LAB: GBBA

ON 06/15/84

08/27/84

TEST	TYPE:	STANDARD	PLATE	INCORPORATION
------	-------	----------	-------	---------------

STRAIN: TATO2

	A C	ugs per		HI:	STIDINE	REVERTA	NTS PER	PLATE	
COMPGUND	T	PLATE	A	8	Ç	D	£	MEAN	STD
FOS CONTROL									
OTHER POS	ALAC27	U.50	1252	1377	1392	137G		1347.75	64.49
	-	30.00	1380	1320	1363			1361.00	35.54
NEG CONTAGL									
DIMETHYLSULF	RLAC27	100.300	264	264	206			264.67	1.15
	•	106.460	232	186	213			201.00	12.53
6MGS-34-0002								•	•
	RLAG47	1.00	283	292				287.50	6.36
	HLAG47	5.00	317	377				347.00	42.43
	RLACE?	10.60	433	341				372.GO	43.84
	ALAO47	30.00	549	522				535.50	19.09
	RLAUZ7	56.60	698	649			•		34.65
		100.00	711	707				709.00	2.53
	RLADZ7	300C	777	701				739.00	53.74
	•	1.00	217	191				204.60	10.33
	-	5.00	30C	385				290.00	14.14
	•	10.00	363	359				371.00	16.97
	•	30.00	417	413				415.60	2.53
	-	5u.ū0	445	443				445.50	3.54
	-	100.00	463	461				462.00	1.41
	••	300.30	435	500				467.50	45.96

		0-bc2	
PHENGCOPY CHECK : TRUE MUTANTS		N-NGS	6 - 6 b m
STERILITY 5-9 : NOT CONTAMINATED	T+-TOXIC	M-MGS	6-66
SAMPLE STERILITY: NOT CONTAMINATED	INTC-TOO NUMEROUS TO COUNT	L-NLS	[-m4
ACT MIX/PLATE : SCOUGS	NATC-NUT ABLE TO COUNT	U-ULS	(-um

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPH IMURIUM

į

SAMPLE ID: BMGS-84-0002 LAB: CBBA ACTIVATION: + RLA027 STRAIN: TAI02 DATE: 06/15/84 TECHNICIAN: MJK

IITS PLAT	MEAN	S.D.
.50* UCS 1252 1377 1392 1370		-
165 283 165 317		4 P()
GS 403	· ,	•
GS 549		80 68 80 68
65 711 65 711	· • •	90
CS 777	739.00	2.83 53.74
_		
ESTS. 261,427 3.3232 .7267 .00337 1000 085	& EXP VS	DOSE
TEST CHI-SOUARE DF P LOGL		
15.48 4 .0038 -82 5601) /
.0000 -133.7075 .0000 -722.4327	×	×
AVERAGE SLOPE (NONLIN. MODEL) = 5.838		
AVERAGE SLOPE (LINEAR REGR.) = 1.490 400 400 85% CONF. LIMITS = (.797, 2.184)		

200

100

200-

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

A.LR
1
ACTIVATION: TECHNICIAN;
LAB: GBBA 06/15/84
LAB 06
SAMPLE ID: BMGS-84-0002 STRAIN: TAID2 DATE:
ID.
SAMPLE STRAIN,

		ı m	• 0		~ ~) -	- (^				د_	_	۷_						
	S.D.	i iv	0 K		.97 28		96				-		Γ	Ţ				T	
	S	12	ი ი	7	9 ^	4 M	45		DOSE										
77	MEAN	90	900	00	2 2	200	200		SD			L		1				1	
	핃					4. 0.00			>										
-		201	28	290	3 4	4	4 4		ä		- 1								
Z <									-		1	Ļ	(1			-	L	
ָרָ ב		į							OBS & EXP VS										
TECHNICIAN:		¦ 							٦				X						
-		!							-		-		_	Þ	<u>≫</u>	*	×);	K	
•		<u>i</u>							600 ~)				400 -		•		992	•
, }		! ! !							9	5				46				22	
		! !						_		_				_	_				
	S	MM)					8(3)	1 6	61299	1001		208	568	-108.6019	747	2.312	200	724
	N	213)					33	' 6	2	_	I	5.5	4	9	ت	~	D	• =
•	2	188	=	ž ö	M	M -	· @						9-	-8	100	378	·	•	-
	E E	132	3	~ ~	4	4 4	52	5	1 6	20							" a		" m
	PLA	202	25	9 10	7	B 10	32	8(2)	40.00	4 5 W B	۵.	•	4140	0000	0000	0000	DEL) =	5	. 1 =
	10	32	N i	N N	4	4 4	4						4	Ö	90	ĕ	MODEL)	•	
	DOSE UNITS PLATE COUNTS	S OCS OCS	ပ္သင့္သ	နှင့်	SS	ဗ္ဗ	SS	_		0	DF	1	ō	4		~		,	E.
	5							811	7210 7	D		!	ဖွ	~	დ :	4	Z,	ì	AR "
	SE	99	90	9 9	00	28.88 .00.00	00		M	9	CHI-SOUARE	i	6	۳.	50.29	9	JON T	•	INE TS
	ă	30	u	9	30	00 00	90	_			-50	1		N	រស (D C	SE	•	ZE.
	1					_	M	8(0)	192,567)	E	1					PE)	PE _
								•	. 6	,	_	٠				3	SLO		SLO
									_	•			Z	ز	\ 	2	щÖ		ii O
									Ś		-	!	POISSON	3	֓֞֞֜֝֞֜֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֓֓֓֓֡֓֜֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֡֓֡֡֡֡֡֡	IOI AGENICI I I	RAC		RA(5x
									ESTS	,) ,	TEST		P0.	ADEDUALY	Š	5	AVERAGE SLOPE (NONLIN. 95% CONF. LIMITS = 1		AVERACE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (.2
													_	-			-		-

Eact Available Copy

MUTAGENICITY TESTING OF C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW

RESEARCH LAB: GBBA ON 36/01/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TATC4

	A C T	UGS PER		HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	Ţ	PLATE	A	8	¢	D	E	MEAN	STD
POS CONTROL									
2-AA OTHER PUS	HLAUZ7	3.60 17.00	2393 765	2440 851	2467 777			2433.33	37.45
OTHER PUS	•	17.00	703	651	///			797.67	46.58
NEG CONTROL									
DIMETHYLSULF	RLAC 47	120.686	312	311	3+G			321.00	10.45
	-	100.565	595	323	271			285.33	32.93
5MGS-84-0002									
	RLAG27	16.60	485	467				476.00	12.73
		30.00	406	491				478.50	17.68
	ALAC 47	54.60	483	465				474.GC	12.73
	ALAC27	104.00	474	496				483.CQ	12.73
	RLAC27	300.00	341	340				343.50	3.54
	•	16.60	343	3C3				323.GO	26.28
	•	3u.ú0	29G	290				292.50	3,54
	•	56.30	305	325				315.00	14.14
	•	100.00	323	319				321.30	2.83
	-	0ن.بادر	293	314				306.00	15.39

		6-662	1-bb1
PHENOCOPY CHECK : TRUE MUTANTS		N- NGS	P-PP4
STERILITY S-y : NOT CONTAMINATED	TTOXIC	M-MGS	9-009
SAMPLE STERILITY: NOT CONTAMINATED	INTC-TGO NUMEROUS TO COUNT	L-NLS	: - WM
ACT MIX/FLATE : SCOUGS	NATC-NCT ABLE TO COUNT	U-ULS	C-UM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE TELLOW

RESEARCH LAB: GBBA ON 36/01/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA104

POSITIVE CONTROL USED WAS METHYL GLYCXAL.

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

16.46 37.45 12.73 17.68 12.73 12.73 3.54 + RLA027 MJK 321.00 2433.33 476.00 478.50 474.00 483.00 343.50 MEAN ACTIVATION, TECHNICIAN: SAMPLE ID: BMGS-84-0002 LAB: CBBA STRAIN: TAI04 DATE: 06/01/84 340 PLATE COUNTS 2440 467 455 346 312 2393 485 466 483 474 341 DOSE UNITS

STATISTICAL ANALYSIS: NUTAGENICITY OF C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-8002 LAB: GBBA ACTIVATION: -STRAIN: TA104 DATE: 06/01/84 TECHNICIAN: MJK

1			
S	ATE COUNTS	PLATE COU	1
i –	23	262 323	UCS 262 323
~	851 777		851
,		303	UGS 343 303
	295		UGS 290
) (C		100 201
	273		
	518		UCS 523
	210		262 590
))

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW

RESEARCH LAB: GBBA ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA104

	A C	UGS PER		HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	Ť	PLATE	A	8	Ç	D	ε	MEAN	STD
POS CONTROL									
2-AA	RLAG27	3.00	2053	2002	2006			2547.00	42.32
OTHER PUS	•	56.00	1810	1718	1700			1769.33	46.92
NEG CONTROL		•							
DIMETHYLSULF	RLACZ7	180.000	363	402	375			380.00	40.63
	•	100.300	277	260	279			274.00	19.97
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••		217			214.00	7.00
6MG 5-84-0002									
	HLAC27	1.00	329	361				315.00	19.80
	RLAGE7	5.00	361	358				359.50	2.12
	RLACET	10.50	442	463				462.50	28.99
	ALAC27	30.00	533	502				517.50	21.92
	HLAG47	50.00	560	53e				518.00	25.46
	ALAC27	136.60	476	SUG				488.CO	16.97
	ALAC27	390.00	452	451				451.50	C.71
	•	1.30	258	281				269.50	16.26
	-	5.0Q	317	271				294.00	12.53
	•	10.60	324	314				319.CO	7.07
	•	35.00	324	317				320.50	4.55
	-	50.00	347	295				323.00	33.94
•	-	126.4G	343	320				334.50	12.02
	-	300.00	336	340				338.00	2.83

			G-PGS	T-PPT
PHENCCOPY THECK :	TRUE MUTANTS		N-NGS	9-99M
STERILITY S-9 :	NOT CONTAMINATED	TTOXIC	M-MGS	
SAMPLE STERILITY:		INTC-TOO NUMERCUS TO COUNT	L-HLS	I-MM
ACT MIX/PLATE :	5 L C U G S	NATE-NUT ABLE TO COUNT	u-uLS	C-UM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

QF ARMY DYE TELLOW RESEARCH LAB: GBBA ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA104

METHIL GLYCHAL WAS USED AS A POSITIVE CONTROL.

STATISTICAL ANALYSIS: MUTAGENICITY OF SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

ACTIVATION: + RLAB27 TECHNICIAN: MJK	MEAN S.D.	380.00 19.97 2047.00 42.32 315.00 19.80 359.50 2.12 462.50 28.99 517.50 21.92 518.00 25.46 481.50 16.97	OBS & EXP VS DOSE	*** *** ***		0 X 100 200 30
SAMPLE ID; BMCS-84-0002 LAB; CBBA STRAIN; TAI04 DATE; 06/08/84	DOSE UNITS PLATE COU	3.00 UGS 363 402 375 3.00 UGS 329 301 1.00 UGS 351 358 10.00 UGS 361 358 30.00 UGS 533 502 50.00 UGS 536 100.00 UGS 476 500 300.00 UGS 476 500	B(0) B(1) B(2) . 600	VIDENCE OF TOXICITY CHI-SQUARE DF	POISSON 7.94 9.5397 -71.0742 ADEQUACY 114.24 5.00000 -128.1922 MUTAGENICITY 84.98 2.00000 -170.6841 AVERAGE SLOPE (NONLIN, MODEL) = 2.890 95x CONF. LIMITS = (2.367, 3.527)	AVERAGE SLOPE (LINEAR REGR.) = 5.704 95% CONF. LIMITS = (3.429, 7.978) WARNING: 4 PARAMETER MODEL DID NOT CONVERGE

C.I. SOLVENT YELLOW NO. 33 IN SALHONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0002 LAB: CBBA ACTIVATION: -STRAIN: TAI04 DATE: 06/08/84 TECHNICIAN: MIK

	1	1				00/00/00/04	- ECONICIAN:	: :	25		
ă)SE (STIN	1	TE CC	UNTS				MEAN	8	0.0
	88	SON	277	566	279		8 1 1 1 1 1	2			6
50.		SUC	1810	1718	1780			17		-	. 92
- u		ა ე	BC.	182				Ñ			•
ָּה פ		3 C	710					Ñ			•
9 6		200	374	4 1				M			•
0 0		200	524	517				M		•	Ğ
ה		ი ე :	547	567		-		M		×	•
99.		200 200 200	543	3 26				M		_	•
9005		ราก	336	340				M			•
B(0)		300	8	5)	8	3)					
	•	1	i	:	i			•	P VS	DOSE	
. 935	8	5639	. 42.	48	000		×	→	1	1	
CH1-50	IUARE	E DF	۵		Č		-	4			\mathcal{T}
11111					, ,		\ -		-		
			4196		A AGE	7.0	××	× -			
			4978		5.57	. u	×××				
			1 205		1 556	2 0	<u>></u>				
CITY 3	_		0000		7.068		; 		-		
							×				
-	ONL 1		DEL 1 . 908	 	3.45	53	-,) ;				
OPE (L	INE	IR REC	. C.		4.78	<u>.</u>	않(¥)				
			7.77	,	7.33	S	× i				
		50.0081 10.000 10.000 30.000 30.000 30.000 30.000 33.00 10.11 33.00 11.11 11.11	50.00 L 50.00	50.00E UNITS 50.00E UGS 2 5.00 UGS 3 10.00 UGS 3 80.00 DOSE UNITS PLATE - 00 UCS 277 26 50.00# UCS 277 26 5.00 UCS 317 27 10.00 UCS 324 31 50.00 UCS 343 32 60.00 UCS 347 29 60.00 UCS 343 32 60.00 UCS 343	DOSE UNITS PLATE COUNTS - 00 UCS 277 266 279 - 00 UCS 2810 1718 1780 - 00 UCS 317 271 - 00 UCS 317 271 - 00 UCS 324 314 - 00 UCS 343 326 - 00 UCS 340 -	DOSE UNITS PLATE COUNTS - 00 UCS 277 266 279 - 00 UCS 281 1780 - 00 UCS 317 271 - 00 UCS 324 314 - 00 UCS 324 317 - 00 UCS 347 299 - 00 UCS 343 326 - 00 UCS 344 8 . 00072 - 00 UCS 348	DOSE UNITS PLATE COUNTS - 00 UCS 277 266 279 - 00 UCS 2810 1718 1780 - 1.00 UCS 317 271 - 00 UCS 324 314 - 00 UCS 324 317 - 00 UCS 347 299 - 00 UCS 343 326 - 00 UCS 343 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 326 - 00 UCS 348 348 - 00 UCS 348 368 - 00 UCS 3	DOSE UNITS PLATE COUNTS - 00 UCS 277 266 279 - 1 00 UCS 1810 1718 1780 - 1 00 UCS 317 271 - 1 0 00 UCS 324 314 - 2 0 0 UCS 343 326 - 2 0 0 0 UCS 343 326 - 2 0 0 0 UCS 346 340 - 2 0 0 0 UCS 346 340 - 3 0 0 UCS 346 340 - 4 0 0 UCS 3	DOSE UNITS PLATE COUNTS - 00	DOSE UNITS PLATE COUNTS	

250-

VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF Accid dye yellow LAB: GBBA ON 06/01/84

RESEARCH LAB: GBSA

08/27/84

TEST	TYPE:	STANDARD	PLATE	INCORPORATION	STRAIN: T	A1535
------	-------	----------	-------	---------------	-----------	-------

	A			HIS	TIDINE	REVERTA	NTS PE	PLATE	
	Ç	UGS PER							
COMPGUND	T	PLATE	A	9	C	b.	٤	MEAN	STD
POS CONTROL									
MAAZIDE	•	3.00	1021	1031	459			1003.67	39.00
Z-AA	REAC27	3.00	153	164	132			149.67	10.26
NEG CONTROL									
DIMETHYLSULF	RLAC27	100.000	26	24	29			26.33	2.52
	•	130.200	37	44	3 د			38.00	5.57
EMGS-34+0002									
5.400	ALAC47	10.00	27	55				27.50	0.71
		34.30	18	25				21.50	4.95
		50.00	17	21				19.60	2.83
		100.00	19	15				17.00	2.63
	RLACL7	300.00	25	15				21.50	4.95
		10.00	48	30				42.G0	0.49
	•	30.00	31	Žá				29.50	2.12
	-	50	24	32				28.60	5.06
	•	100.00	3 é	36				36.60	6.63
	•	300.00	55	37				46.CO	12.73
			• •	•				-0100	

		G-PG5	T-PPT
PHENGCOPT CHECK : TRUE MUTANTS		N-RGS	P-PP#
STERILITY S-9 : NOT CONTAMINATED	T*-TGXIC	M-MGS	6-66
SAMPLE STERILITY: NOT CONTAMINATED	THIC-TUO NUMEROUS TO COUNT	L-NLS	
ACT MIA/PLATE : SCOUGS	NATC-NGT ABLE TO COUNT	U-ULS	C-UM

C.1. SOLVENT YELLOW NO. 33 IN SALHONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-8002 LAB: GBBA ACTIVATION: + RLA827 STRAIN: TA1535 DATE: 06/01/84 TECHNICIAN: MJK

	•			i		1				:		
	A :-	OSE 1	DOSE UNITS	PLAT	PLATE COUNTS	JNTS			MEAN	Z	S.D	
	, mg	888	Son	26 153	164	29 132			60	33 67 1	2.52 6.26	1 (0 (0
	960	30.00 30.00 30.00 30.00		18	32 72 73					8 8 8	7.0.	ص ا
	90 00	99		6 - 6 -	21 15				•	98	2.0 8 a	MM
	300	. 00		52	8					200	• •	າເດ
	8(0)	•	8(1)	8(2)	21	8(3)		088	& EXP VS	S DOSE	يب	
ESTS.	27.364	-10.	4407	2.7614	•	68200	30			•		
TEST	CHI-SOUARE	OUAR		۵		רספר		.×>				_
POISSON	! ! !	3.6	i	8169	K		不	رب				
ADEOUAC	> :	S.		7705	-34		25	 				×
MUTAGEN	10117	7.68 6.33	- ~ - ~	0422	-38	3.0263 7.3520	本 T					
AVERAGE S	SLOPE JF. LI	1		MODEL)	= , 823		29	×				
AVERAGE 95% CO	SLOPE NF. L	LINEA ITS =	(LINEAR REGR.) IMITS = (0	. B.) = 040	•	015	7 7 7	×	<u> </u>		, ,	×_

.

人名英格兰 医多种 医多种 人名英格兰 医多种病 医克勒氏病 医克勒氏病 医克勒氏虫虫 计数据数据数据 医神经系统

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0002 LAB: GBBA ACTIVATION; -STRAIN: TA1535 DATE: 06/01/84 TECHNICIAN; MJK

SIKAIN: IAIDSD	۲ ا	55	Y	DAIE: 06/01/84 TECHNICIAN,	TECHNICIAN	МJК	
DOSE	UNITS	PLA	DOSE UNITS PLATE COUNTS	UNTS		MEAN	S.D.
00.	S	37	4	33		38 00	F 57
3.00*	S	1021	1031	959	Ğ	03.67	30.05
00.00	55	48	36			42.00	
. 00 · 00	55	31	28			20.00	- 0
99.00	55	24	32			20.00	י ה ה
100.00	55	36	36			36.00	5
00.00	33	52	37			46.00	12.73
						1)

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA ON

ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1535

	À			HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	C T	UGS PER PLATE	A	8	ć	D	ε	MEAN	STD
POS CONTROL									
BOISAAK	•	3.50	1003	779	1014			998.67	17.90
2-44	RLA027	3.30	9.9	163	109			100-33	10.26
NEG CONTROL									
DIMETHYLSULF	ALAG27	136.204	25	2.	18			22.33	3.79
	•	100.000	63	26	.8			32.33	9.29
BMGS-34-0002									
	ALAC27	16.00	20	26				20.00	3.63
		30.30	9	1 e				13.50	6.35
•		50.00	15	1.				14.50	0.71
	HLAGE7	100.00	20	17				18.50	2.12
	ALAC27	300.00	1 G	16				13.00	4.24
	•	14.40	25	21				28.00	4.26
	•	30.00	32	30				34.00	2.83
	- ,	50.00	36	33				34.50	2.12
	•	196.00	41	50				45.50	5.36
	•	300.00	29	3.				31.50	3.54

PHENOCOPY CHECK :	TRUE MUTANTS		N-NGS	
STERILITY S-5 : SAMPLE STERILITY:	NOT CONTAMINATED	T+-TGXIC TNTC-TUG NUMEROUS TG COUNT	M-MGS	8-66
ACT MIX/PLATE :	500068	NATCHNOT AGLE TO COUNT	U-ULS	C-6M

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

ACTIVATION: + RLA027 TECHNICIAN: MJK	MEAN S.D.	22.33 3.79 100.33 10.26 20.00 .00 13.50 6.36 14.50 .71 18.50 2.12 13.00 4.24	30 - 08S & EXP VS DOSE	× × × × × × × × × × × × × × × × × × ×
SAMPLE ID, BMGS-84-0002 LAB, GBBA STRAIN, TAI535 DATE, 06/08/84	DOSE UNITS PLATE COUNTS	3.00* UGS 25 24 18 18.00* UGS 20 20 20 30.00 UGS 20 18 50.00 UGS 9 18 14 100.00 UGS 20 17 300.00 UGS 16 16	B(0) B(1) B(2) B(3) 	TEST CHI-SOUARE DF P LOGL POISSON 5.95 7.5461 -33.3539 ADEQUACY 6.25 2.0440 -36.4774 TOXICITY 3.84 1.0500 -38.3974 MUTAGENICITY 00 21.0000 -36.4774 AVERAGE SLOPE (NONLIN, MODEL) = .000 95% CONF. LIMITS = (.000, .000) 95% CONF. LIMITS = (040)

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE ID, BMGS-84-0002 LAB, GBBA ACTIVATION, -STRAIN, TA1535 DATE, 86/08/84 TECHNICIAN, MJK

	S. D.	9.29	7.90	1.24	2.83	2.12	3.36	3.54
	-		_	•	. •	•	_	
	MEAN	33	.67	00	00	50	. 50	. 50
	HE	32	866	28	34	34	45	31
	1							
	1							
	Ì							
)		 						
	UNTS	:	1014					
•	DOSE UNITS PLATE COUNTS	26	979	3	36	33	50	34
)	PLA		1003	22	32	36	7	58
	UNITS							
	OSE (ļ	*00	99	00	99	00	90
	00		M.	9	30	50		500.
,	i						_	171

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE YELLOW RESEARCH LAB: GODA GN 06/01/84

08/27/84

TELT	TYDE .	STABBADA	DIATE	INCORPGRATION
1531	1	3 I A M U A K U	PLAIL	INLUKPUKAITUN

S 1	10	4 7	 T 4 1	537	

	A			HIS	TIDINE	REVERT	INTS PE	R PLATE	
COMPGUND	C T	UGS PER PLATE	A	8	C	Ð	E	MEAN	STO
POS CONTÁCL 9-88 2-86	ALAG27	100.30	1129	1111 38C	£60 343			1640.60 342.33	138.86 23.38
NEG CONTROL DIMETHYLSULF	RLAG27	106.608 185.004	17 14	15 1a	ž7 5			19.67 13.33	6.43 5.03
∺MGS-å≒-uCJ2		10.00 30.00 100.00 100.00 30.00 100.00 300.00	19 25 22 32 15 13 15 25	29 25 33 25 14 15 16 17 23			,	23.50 25.60 30.50 28.50 13.50 13.60 21.60 24.60	7.78 0.00 3.54 4.95 2.12 3.01 5.66

		G-PGS	T-PPT
PHENGCOPY CHECK : TRUE MUTANTS		N-NGS	P-PP=
STERILITY S-y : NCT CONTAMINATED	T+-T0x1C	m-MGS	9-009
SAMPLE STERILITY: NOT CONTAMINATED	THIC-TUD NUMERCUS TO COUNT	L-NLS	[-MM
ACT MIX/PLATE : SCOUGS	NATC-NUT ABLE TO COUNT	U-ULS	C-UP

C.I. SOLVENT YELLOW NO. 33 IN SALMONFILA TYPHIMURIUM

	-	1	ď	ř		5 u	ָה (Ĵ
121	S	1	9 0) [•	N	n •	•
RL AB	MEAN S.D	67	~ ~) E	9 6		9 6	מ
+	Ï	-	742 44	, C	, v	0 0	9 6	¥ \
ACTIVATION: + RLAB27 TECHNICIAN: HJK		2 3 6 4 6 6 7 1 1						
SAMPLE ID: BHGS-84-0002 LAB: CBBA STRAIN: TA1537 DATE: 06/01/84								
7E: (UNTS	27	343					
14-000 DA	DOSE UNITS PLATE COUNTS		380	58	25	33	ر ا)
HGS-8	PL	17	304	8	25	58	22)
18: BI	UNITS		SON					
SAMPLE TRAIN:	DOSE	88	3.00*	10.00	30.00	50.00	00.00)
-,, v,	i							

OBS & EXP VS DOSE		 ×	\\ 	×		
	1	<u> </u>	×	×	X X 	(
4	r		3.0		20	<u> </u>
			1001	-31.6221 -32.0554 -35.1536	159	. 365)
B(2)	3628		۰. ۱	.6484 .6484	10DEL) =	.GR.) = .035.
800	.6530	TOXICITY	CHI-SOUARE DF	8.05 6 .87 2 6.20 2	AVERAGE SLOPE (NONLIN. MODEL) 395x CONF. LIMITS = (.064	AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (
8(0)	19.603	NO EVIDENCE OF TOXICITY	CHI-	POISSON NDEQUACY HUTAGENICITY	CONF. LIF	E SLOPE (
	ESTS.	NO EV	TEST	POISSON ADEDUACY MUTAGENI	AVERAC 95x	AVERAG 95%

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE STRAIN:	ID: 87	1CS-84-00 57 D	SAMPLE ID: BMCS-84-0002 LAB: CBBA STRAIN: TA1537 DATE: 06/01/84	ACTIVATION: - MJR.	
DOSE	UNITS	DOSE UNITS PLATE COUNTS	OUNTS	MEAN	S.D.
100.00 10.00 30.00 50.00 100.60	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1129 1111 15 111 13 13 18 16 25 17 25 23	888	13.33 1846.68 13.58 13.88 17.88 21.88	5.03 138.86 2.12 2.12 1.41 5.66
8(0)	800	B(2)	B(3)	085 & EXP VS DOSE	DOSE

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA ON G6/05/84

08/27/84

TEST	TYPE:	STANDARD	PLATE	INCORPORATION	

STRAIN: TA1537

	A			HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C	UGS PER Plate	A		c	D	E	MEAN	ST0
POS CONTROL									
9-44	•	100.00	512	605	453			523.33	76.63
Z-AA	RLAC27	3.00	314	316	311			313.67	2.52
NEG CONTROL									
DIMETHYLSULF	RLAD27	100.000	20	1 á	16			18.00	2.00
72 2 2112	•	136.636	12	1 á 7	16 17			1,2.60	5.00
SMGS-44-UCGZ									
	HLAGLT	15.00	26	17				21.50	6.36
	RLAGE7	3u.ca	27	33				30.CO	4.24
	RLAG27	50.00	36	40				38.CO	2.33
	RLASC7	100.00	24	31			•	27.50	4.95
	ALAC27	300	31	26				28.50	3.54
	•	15.50	12	12				12.60	0.00
	•	34.00	29	1 ÷				24.00	7.07
	•	50.00	28	Ž۵				27.CO	1.41
	•	100.30	15	1 🔻				18.50	0.71
	•	300.00	50	15				17.5C	3.54

		G-62	T - P P T
PHENOCOPY CHECK : TPUE MUTANTS		N-NGS	
STERILITY S-9 : NOT CONTAMINATED	TTOXIC	M-MGS	6-060
SAMPLE STERILITY: NOT CONTAMINATED	INIC-TUD NUMEROUS TO COUNT	L-NLS	:- * #
ACT MIX/PLATE : SUCUGO	MATC-NOT ABLE TO COUNT	b-ULS	(-u#

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPL	E Z	10, Br TA153	16S-8	4-006 DA	SAMPLE ID: BMGS-84-0002 LAB: GBBA STRAIN: TA1537 DATE: 06/08/84	84 84	ACTIVATION: + RLAB27 TECHNICIAN: MJK	+ RLAG	327	
SCC	SE	DOSE UNITS PLATE COUNTS	PLA	TE CO	UNTS			MFAN	ď	ر د
3.00* 10.00 10.00 30.00 50.00 100.00	* 9999999	890 890 890 890 890	3.26 2.4 3.2 3.4 3.1 3.1	316 17 33 40 31 26	3 - 5			18.00 21.50 30.00 30.00 38.00 27.50 28.50) NN04N4W	25 25 25 25 25 25 25 25 25 25 25 25 25 2
B(Ø) 17.685	B 1 C	8(1) 7996	B(2)	- 10	B(3) 00292	6	OBS & EXP VS DOSE	XP VS D	OSE	

200

100

.

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

5.663 76.63 7.67 1.41 1.41 12.00 12.00 12.00 24.00 27.00 18.50 17.50 MEAN ACTIVATION, TECHNICIAN, SAMPLE 1D: 8MGS-84-0002 LAB: CBBA STRAIN: TA153/ DATE: 06/08/84 PLATE COUNTS 685 20 26 50 50 50 8(2) 29 29 29 29 29 29 29 DOSE UNITS 8(1) 100.004 10.00 30.00 50.00 100.00 8(0)

AVERACE SLOPE (NONLIN. MODEL) = 95% CONF. LIMITS = (.176,

MUTAGENICITY TOXICITY ADEGUACY POISSON

. 4221 . 0143 . 0199 . 0005

AVERAGE SLOPE (LINEAR REGR.)
95% CONF. LIMITS = 1

0699

2026

11.475

ESTS. **TEST**

CHI-SOUARE

. .

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA ON

CN G6/01/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1538

	A C	UGS PER		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	Ť	PLATE	A	8	C	D	£	MEAN	STD
POS CONTROL									
2-WF	•	٥٥٠٤	476	432	512			473.33	45.67
Z-AA	FLAGET	J.50	704	729	472			708.33	16.88
NEG CONTROL									
DIMETHYLSULF	ALAC_7	100.404	26	25	٤4			25.00	1.00
	•	100.000	17	13	18			16.00	2.65
6MG5-34+u662									
5. 43. 34.4005	RLAC C 7	10.00	44	7.					
		30.00	2 9	36 27				46.00	5.66
	HLAC27	50.00	31	27				28.50	0.71
		150.50	36	27				29.00	2.83
	ALACZ7	306.60	28	33				32.50	4.95
	*****	10.4C	28				•	33.00	7.67
	_	30.00	13	21				24.50	4.95
	•			٠				10.50	3.54
		50.00	15	21				18.00	4.24
	-	105.00	18	17				17.50	J.71
	-	301.50	19	25				24.00	7.57

PHENCCOPY CHECK: TRUE MUTANTS

STERILITY S-Y: NOT CONTAMINATED TM-TOXIC M-MGS

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

1.000 18.88 5.66 7.01 7.07 0 S + RLA027 HJK 25.00 708.33 40.00 28.50 29.00 32.50 33.00 MEAN ACT IVATION. TECHNICIAN. SAMPLE 1D: BMCS-84-0002 LAB: CBBA STRAIN: TA1538 DATE: 06/01/84 24 692 PLATE COUNTS 25 36 29 29 29 38 26 28 31 36 28 28 28 DOSE UNITS .58* 10.00 30.00 50.00 100.00

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0002 LAB: CBBA ACTIVATION: -STRAIN: TA1538 DATE: 06/01/84 TECHNICIAN: MJK

S.D.	2.65 4.95 3.54 4.24 7.1
MEAN	16.00 473.33 24.50 10.50 17.50 24.00
,	
1	512
TE COU	
PLA	28 28 13 15 19
DOSE UNITS PLATE COUNTS	\$50 \$50 \$50 \$50 \$50 \$50
DOSE	* *

: .·

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW

RESEARLH LAB: GBBA ON 06/08/84

08/27/84

	TVBC.			INCORPORATION	
1571	ITPE	2 I ARUARU	PLAIE	INCUMPURATION	

STRAIN: TA153b

	A C	UGS PER		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	Ī	PLATE	A	0	C	0	E	MEAN	STO
POS CONTROL									
2-NF	•	غ•∸0	502	604	548			544.67	53.00
2-AA	RLACE?	0.50	816	867	848			617-00	10.54
NEG CONTROL									
DIMETHYLSULF	RLAG27	100.000	áC	62	73			71.67	9.67
	•	100.000	21	16	73 19			19.33	1.53
6#GS-84-0002									
	HLAG27	15.00	31	31				31.G0	0.00
	HLAGE?	3ŭ.uC	37	27				32.00	7.67
	ALACL7	50.00	38	35				38.50	3.71
	RLACET	106.68	37	2.5				32.50	0.36
	RLASZ7	330.03	25	20				28.00	u.G0
	•	15.46	e ç	13				10.50	3.54
	•	36.GC		1+				11.50	3.54
	•	56.60	14	2 ,				21.50	10.61
	•	100.00	17	17				18.00	1.41
	•	30i.ŭG	12	1 6				15.00	4.24

PHENCCOPY CHECK: TRUE MUTANTS

STERILITY 5-Y: NOT CONTAMINATED

SAMPLE STERILITY: NOT CONTAMINATED

ACT FIX/FLATE: SCOUGS

THE TOXIC

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE YELLOW

RESEARCH LAB: GBBA

ON 06/08/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1536

+RLAG27

SPONTANEOUS COUNT FOR 1538 IS HIGH. SMALL COLONIES ON THE PLATE ACCOUNTE D FOR THE HIGH COUNT. SMALL COLONIES WERE SALMONELLA.

DOSE

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

.	S.D.	10.0	10.54	99	7.07	.71	6.36	90
ACTIVATION: + RLABZ7 TECHNICIAN: HJK	MEAN	71.67	817.00	31.00	32.00	38.50	32.50	28.00
SAMPLE ID: BMGS-84-0002 LAB: GBBA STRAIN: TA1538 DATE: 06/08/84	UNTS	73	828					
84-666 DA	DOSE UNITS PLATE COUNTS	i i	_				58	
8MCS-: 538	S PL	!					37	
10. TA1.	UNIT	SON						
SAMPLE STRAIN:	DOSE	00.	. 501	10.00	30.00	50.00	100.00	300.00

OBS & EXP VS					-		*	/	×-
) 88	()	× , -	×	90			*X	<u> </u>	×
8(3)	.00240	LOGL	-38.2959	-65.5830 149.1949	-65.5829	000		579	. 188
8(2)	0000	a 1	.6454	- 00000	. 9950	MODEL) =	. 200	CR.) =	-1.160,
8(1)	48,430 -82,0591	CHI-SOUARE DF	5.12 7	54.57 Z	.01			AVERAGE SLOPE (LINEAR RECR.)) = SIIL
B(Ø)	48.430	CH1-6	;		CITY	AVERACE SLOPE (NONLIN.		SE SLOPE	
	ESTS.	TEST	POISSON	ADEDUALY TOXICITY	MUTAGE	AVERA(2	AVERA(108

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

ちゃくれる 一方のものい

ľ

7

SAMPLE ID: BMGS-84-0002 LAB: GBBA ACTIVATION, -STRAIN, TA1538 DATE, 06/08/84 TECHNICIAN, MJK

	53.088 3.54 3.54 18.61
MEAN	19.33 18.50 11.50 21.50 18.00
UNTS	19 528
TE CO	604 13 29 19 19
PLA	502 88 17
UNITS	
DOSE UNITS PLATE COUNTS	3.00# 10.00 30.00 30.00 50.00 100.00

300

200

90

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA ON 06/20/84

08/27/84

TEST	TYPE:	STANDARD	PLATE !	INCORPURATIO	
				7 14 P A 4 L A 4 L 4 L 7 A	•

STRAIN: TA1538

	A C	UGS PER		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	ī	PLATE	A	9	c	٥	E	MEAN	STD
POS CONTROL									
5-46	-	3.ûQ	492	504	551			515.67	31.18
2-44	RLA027	G.50	668	714	737			706.33	35.13
NEG CONTROL							•		
DIMETHYLSULF	RLAU27	100.600	45	39	36			40.00	4.58
	•	104.604	5	39 12	16			12.60	00
64GS+64-000Z									
	RLACET	14.50	31	25				29.50	٠.12
		36.30	31 31	28				29.50	2.12
	ALAC . 7	54.30	39	43				41.00	2.63
	RLACET	100.00	36	32				34.00	2.83
	ALAC27	304.00	25	ذ 2				24.00	1.41
	•	14.66	19	20				19.50	ŭ.71
	•	36.60	17	7				12.00	7.07
	-	50.00	14	15				14.50	0.71
	•	100.00	16	17				17.50	2.12
	•	300.00	17	15				16.00	1.41

PHENOCOPY CHECK: TRUE MUTANTS

STERILITY S-9: GCT CONTAMINATED

SAMPLE STERILITY: GOT CONTAMINATED

ACT MIX/PLATE: SCCUGU NATORNOOF TO COUNT U-ULS C-UM

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

7.00.7

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPH IMURIUM

SAMPLE ID; BMGS-84-0002 LAB; GBBA ACTIVATION; STRAIN; TA1538 DATE; 06/20/84 TECHNICIAN; MJK

DOSE UNITS PLATE COUNTS

.00 UGS 8 12 16
3.00 UGS 19 20
50.00 UGS 17 7
50.00 UGS 14 15
100.00 UGS 16 19
100.00 UGS 17 7
100.00 UGS 17 15
100.00 UGS 17 15
100.00 UGS 17 15
100.00 UGS 17 15
100.00 UGS 17 15

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW

RESEARCH LAB: GBBA ON 03/30/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA98

	A C	ugs per		MIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	Ť	PLATE	A	6	c	D	Ę	MEAN	STD
FOS CONTROL									
2-4F 2-4A	HLAD26	3.40 4.50		312	315			309.00	7.94
5-84	REAUZO	J. 30	575	337	553			•55. CQ	19.38
NEG CONTROL									
DIMETHYLSULF	RLAC26	100.000	٥C	41	48			49.57	9.61
	-	104.500	28	33	30			30.33	2.52
64GS-34-UCC2									
8-63-34-0002	ALAC 46	1.50	57	51				F / 00	
	RLACZO	5.40	55	5.				54.00 52.50	4.24 3.54
	RLACZÓ	10.00	45	52				48.50	4.95
	RLA046	30.00	55	57				50.CO	1.41
	mLmG26	50.00	67	54			•	60.50	9.19
		106.60	61	45				53.00	11.31
		300.00	48	51				49.50	2.12
	ALASZO	500.00	48	43				45.50	3.54
		1300.30	29	46				34.50	7.75
	-	1.00 5.00	29	20				27.50	2.12
	•		30 48	36				30.50	0.00
	•	16.60 36.63	36	33 16				40.50	10.61
	•	50.00	21	2 %				27.00	12.73
	•	106.00	29	20				25.00 24.50	5.06 0.36
	•	300.00	26	3 u				29.50	ŭ.71
	•	506.00	37	2 5				32.50	0.36
	•	1666.68	32	2.1				27.50	0.36

		G-PGS	T-PPT
PHENGCOPY CHECK : TRUE MUTANTS		N-NGS	P-PPM
STERILITY STY : NOT CONTAMINATED	T TOXIC	M-MGS	9-009
SAMPLE STERILITY: NOT CONTAMINATED	INTC-TOO NUMEPOUS TO COUNT	L-NLS	:
ACT MIX/PLATE : SCCUGS	NATC-NOT ABLE TO COUNT	U-ULS	C-UM

500

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

4.95 3.54 7.1 08S & EXP VS DOSE + RLA026 MJK MEAN 855.88 54.88 52.88 52.58 56.88 56.88 56.88 56.88 56.88 58.58 DISPLAYED ACT IVATION, TECHNICIAN, 48 51 USED IN COMPUTATION BUT NOT **109** 80 40 SAMPLE 1D: BMGS-84-0002 LAB: GBBA STRAIN: TA98 DATE: 03/30/84 -65.6976 -66.9672 -76.7056 -68.1645 145 8(3) . 188 3701 .00068 LOGL PLATE COUNTS 837 50 52 54 54 55 . 2968 AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (.006, .4635 .8640 .0000 AVERAGE SLOPE (NONLIN, MODEL)
95% CONF. LIMITS = (.036 .3020 68 875 57 55 55 67 61 DOSE UNITS 1.00 UCS 5.00 UCS 30.00 UCS 30.00 UCS 50.00 UCS 300.00 UCS 300.00 UCS 800 占 1 1 .8167 10.76 2.54 19.48 2.39 CHI-SQUARE .50* 49.708 B (Ø) MUTAGENICITY MORE THAN 9 ADEOUACY TOXICITY POISSON ESTS. TEST

500

C. I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE YELLOW RESEARCH LAB: GBBA ON U4/06/84

C8/27/84

TEST TYPE:	STANDARD PLATE	INCORPORATION

ST	RA	IN	:	TA	98
----	----	----	---	----	----

	A C			HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	T	UGS PER Plate	A	•	Ċ	D	E	MEAN	\$10
FOS CONTROL									
2-46	•	3.30	250	27G	255			258.33	10.41
2-AA	RLA026	ŭ.50	740	825	817			794.60	46.94
NEG CONTROL									
DIMETHYLSULF	RLACZ6	100.600	42	31	43			38.67	6.66
	•	100.000	23	29	20			24.00	4.55
8MGS-84+1002									
	RLADZÓ	1.00	45	45				45.GQ	6.60
i i	ALA026	5.00	45	54				49.50	6.30
	ALAGEO	15.58	43	56				48.00	11.31
	READLS	36.30	62	έγ				65.50	4.95
	HLADZL	50.30	49	51			•	50.00	1.41
	RLAG26	100.00	49	40				44.50	6.36
	HLAC26	300.00	56	52				54.00	2.63
	-	1.00	31	25				25.50	7.78
	•	5.60	33	Zá				29.00	5.66
	•	16.68	27	21				24.00	4.24
	•	36.60	28	31				29.50	2.12
	•	56.00	54	26				27.00	1.41
	•	100.00	17	33				23.50	ÿ.19
	-	300.00	20	35				27.50	10.61

			G-PGS	T-PPT
PHENOCOPY CHECK : TRUE "	PUTANTS		N-NGS	P-PPM
STERILITY STY : NOT CO	11KUT-+T GSTANIMATHO		M-MGS	8-229
SAMPLE STERILITY: NOT CO)NTAMINATED INTC-TO	NUMEROUS TO COUNT	L-NLS	I - m M
ACT MIX/PLATE : SCOUG	SS NATC-NU	T AULE TO COUNT	U-ULS	C-UM

C.I. SOLVENT VELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

6.66 6.98 6.36 1.31 4.95 -.41 6.36 6.36 S.D. RLA026 MJK 38.67 45.00 45.00 49.50 48.00 65.50 50.00 50.00 54.50 MEAN ACTIVATION: +
TECHNICIAN: SAMPLE 1D, BMCS-84-0002 LAB, CBBA STRAIN, TA98 DATE: 04/06/84 43 PLATE COUNTS 827 455 56 56 57 57 57 DOSE UNITS . 588 1.888 5.888 380.88 380.88 580.88

200

200

100

The second section of

THE STATE OF THE S

C.I. SOLVENT YELLOW NO. 33 IN SALMONELLA TYPHIMURIUM

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIKURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: GBBA ON 03/3C/84

G8/27/84

TEST TYPE: STANDARD PLATE	INCORPORATION	STRAIN: TA1CO
TEST TITLE STATES TEAT	. 1	SIMAIN: IAICU

	A C	ugs per		H1:	STIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	ī	PLATE	A	8	c	0	€	MEAN	STD
POS CONTROL									
NAAZIDE 2-aa	RLAOCE	3.00 0.50	1179 363	1205 360	1160 258			1188.00 340.33	14.73
NEG CONTROL									
DIMETHYLSULF	ALAC26	164.684	165	101	163			103.00	2.00
	-	106.300	103	134	97			111.33	19.86
6MGS-84-0003									
	RLAC26	1.00	112	164				108.CG	5.06
	ALAC25	5.00	138	134				136.00	2.83
	RLASZÓ	10.30	111	112				111.50	ü.71
	ALAT?	36.30	153	144				148.50	6.36
	RLAG26	52.00	149	143				144.00	4.24
	ALAC26	100.40	131	142				136.50	7.78
	RLAGEE	300.00	127	126				124.30	3.54
	ALAC26	500.00	113	106				139.50	4.95
	ALA026	1500.40	101	117				109.00	11.31
	•	1.00	125					107.60	26.87
	•	5.00	101	127				114.00	16.38
	•	15.50	36	113				105.50	10.61
	•	30.50	102	133			•	117.50	21.92
	•	56.56	127	117				122.00	7.07
	•	106.60	125	109				117.00	11-31
	•	300.00	98	120				109.60	15.56
	•	500.00	113	104				108.50	0.36
	•	1606.00	88					88.00	J.60

		G-PGS	T-PPT
PHENOCOPY CHECK : TRUE MUTANT	'\$	N-NGS	
STERILITY 5-9 : NOT CONTAMI	NATED T**TOXIC	M-MGS	844-9
SAMPLE STERILITY: NOT CONTAMI	NATED THIC-TUO NUMERCUS TO COUNT	L-ALS	: - m m
ACT MIX/PLATE : SCSUGS	NATC-NOT ABLE TO COUNT	U-ULS	C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

36.69 36.69 2.83 6.36 7.71 7.78 3.54 08S & EXP VS DOSE ACTIVATION: + RLA026 TECHNICIAN: MJK 103.00 340.33 108.00 136.00 111.50 148.50 142 142 122 124.50 18 COMPUTATION BUT NOT DISPLAYED MEAN 160 140 120 SAMPLE 10: BMCS-84-0003 LAB: CBBA STRAIN: TAI00 DATE: 03/30/84 -80.6168 -68.6153 -92.0788 1.089 1.326 8(3) .00047 LOCL -71.0675 1**03** 298 PLATE COUNTS 101360 104 AVERAGE SLOPE (NONLIN. MOBEL) = 95x CONF. LIMITS = (198, . 1777 AVERAGE SLOPE (LINEAR REGR.) = 05% CONF. LIMITS = 1 .663, . 9934 . 6646 . 6661 53 149 131 27 DOSE UNITS 850 850 850 850 850 850 DOSE LEVELS 2.8822 CHI-SQUARE DF 2.77 19.89 16.81 22.94 161.857 8(0) MUTAGENICITY MORE THAN 8 ADEOUACY TOXICITY POISSON ESTS TEST

人名英格兰 医多克氏 医多克氏 医多氏性 医多生性 医克勒氏管 医克勒氏管 医克勒氏管 医克勒氏管 医动物性皮肤溃疡 医前足术

Best Available Copy

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0003 LAB: GBBA ACTIVATION:	r
STRAIN: TAIDD DAIE: 03/30/84 TECHNICIAN:	HJK
SAMPLE ID: BMGS-84-0003 LAB: CBBA	ACTIVATION:
STRAIN: TAIDD DAIE: 03/30/84	TECHNICIAN:
4,0,	SAMPLE ID: BMGS-84-0003 LAB: CBBA STRAIN: TAIDD DAIE: 03/30/84

		1.00		m -	- ~		_ ((,										
	S.D.	98.	8	38	92	67	. 5. 5.0						Т				T	
	S	0 7	56	8 5	- C	~ :	- 10)	SE				1					
		İ	•		•				DOSE									
2	Z	ME	8	90.5	500	88											X	
_	MEAN	11.33 88.88	• •	•		22.	 . a		>								1	
		1 = 8	107		=	2	- 0	ED	Α	-			+		×	\not	\downarrow	
2		-	•					₹	OBS & EXP VS									
		l i						7	•	1			\downarrow		/		L	
		∮ !						<u> </u>	985	1			T		1		r	
		! !							O	1		V				,		
١		:						Ĭ			×	ጸ <u>`</u> '	1:	Ł,	` >			
								_			* 	**	\top		1	_	77	
		!						COMPUTATION BUT NOT DISPLAYED		40			150				100	
`								- -		_			-				=	
)	1	} 						ē										
)	_							Y	5	59	ರ	845	9	93	8	. 264	i)	229 731
	115	97						Ę	H (5)	.00059	רסכר	38	55	50	97	~	42	17
10/20/50		_						Ē		0		8	0	M			<u>.</u>	
i	DOSE UNITS PLATE COUNTS	134	88	M	M	<u> </u>	202	\Box				-7	-79,6594	8	-8			
	ш	13	w :	2 -	2			Z	- !	8						11		
	*	M (7)	ش .	<u> </u>	~1	~ .c	m		1718	5198	٩	- 2	Ō.	2	ស	-	.049,	
	<u>a</u>	103	2	98	9	127	6	SEI,	יע			30.2	.8629	0052	4	Ä		R.1 =
	S	-						Š					Ψ.			MODEL)		ָבָּי נפ
•	L	SON	SS	200 200 200	SS	ည်း	ncs	Si.	- i	3003	DF	10	9		2		_	₩_
•	3 1	22)	- -	> :	> =) _	LEVELS	בון	30		D	S.	9	~	Z	11	¥ "
	ַ עַ	. 000. 3.000.¥	9	<u> </u>	9	<u> </u>	9	T T		•	AR	. 6	2.55	ω.	œ .	Z,	S	SE
	900	9.0			000	20 0		щ			8	26	~	7	~	2	-	L.1
	7	, ,	— (2	36	28.88 88.88	300.00	DOSE	2!	25	CHI-SQUARE	!				;	<u> </u>	E
,	i					_	13.7	0	010	2	Ξ	!			>	PE.		F -
										109.252	U	,			-	7,	≒	7.E
								ZYN Z		=		~	≿	⊱ׂ	=	0, 6	5	°, €
												50	Z		Ę.	S. C.	ب د	F GE
							1	MORE		ESIS.	ST	186	ă	<u>ا</u> ×	MUTAGENICITY	2	Ĉ	35.7
								2		ES	TEST	P015	ADEQUACY	0	5	AVERAGE SLOPE (NONLIN		AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (7
												_			_	-		-

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE PURIFIED YELLOW LAB: GBBA ON 04/06/84

RESEARLH LAB: GBBA

C8/27/84

TEST TYPE:	STANDARD	PLATE I	NCORPO	RATION			ST	RAIN: TA1G	0
	A C T			HI	STIDINE	REVERTA	NTS PE	R PLATE	
	C	UGS PER							
COMPOUND	T	PLATE	A	8	Ç	D	Ε	MEAN	STD
POS CONTROL									
NAAZIDE	•	00 د د	1253	1350	1320			1307.67	49.65
2-AA	RLAC26	G.50	953	812	842			869.00	74.28
NEG CONTROL									
DIMETHYLSULF	61 AC 26	100.000	115	125	114			118.00	6.08
51		100.000	109	102	110			107.50	4.36
	_	100.000	107	102	110			107.00	4.70
EMGS-84-0003									
	RLAC26	1.úC	168	127				117.50	13.44
	RLAC26	5.00	150	113				131.50	20.16
	RLAGZO	10.00	152	133				142.50	13.44
	ALAD25	36.uC	186	175				177.50	3.54
	RLAGIO	50.00	125	144					12.62
	RLADZ6	100.50	152	134				143.GO	12.71
	RLAC26	300.00	144	16G				152.00	11.31
	•	1.00	115	156				135.50	28.95
	-	50	114	137				125.50	10.20
	•	10.00	98	132				115.00	24.67
	•	30.00	115	136				127.00	10.91
	•	50.00	132	116				121.00	15.5
	•	105.00	151	102				126.50	34.0
	•	300.60	116	110				117.00	1.41
	-	200.00		114				177.00	• • •

			0-F02	,
PHENGCGPY CHECK :	TRUE MUTANTS		N-NGS	P-PP
STERILITY S-y :	NOT CONTAMINATED	T*-TOXIC.	M-MGS	8 - P P
SAMPLE STERILITY: /	NOT CONTAMINATED	THTC-TUO NUMEROUS TO COUNT	L-NLS	[- M M
ACT MIX/PLATE :	SCCUGS	NATC-NUT ABLE TO COUNT	U-ULS	C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

SAMPLE 1D, BMGS-84-0003 LAB, GBBA ACTIVATION, + RLA026 STRAIN: TAI00 DATE, 04/06/84 TECHNICIAN: MJK

MEAN S.D. 118.00 6.08 869.00 74.28 117.50 13.44 131.50 26.16 142.50 13.44 177.50 3.54 143.00 12.73 152.00 11.31	OBS & EXP VS DOSE	* * * * * * * * * * * * * * * * * * *	
DOSE UNITS PLATE COUNTS .00 UGS 115 125 114 .50* UGS 108 127 5.00 UGS 150 113 10.00 UGS 152 133 30.00 UGS 125 142 100.00 UGS 125 142 500.00 UGS 152 134	ESTS. 116.104 2.4457 .3172 .00075 200	P LOGL 	AVERAGE SLOPE (LINEAR REGR.) = 2.005 + 4 g5x CONF. LIMITS = (1.360, 2.650)

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0003 LAB: GBBA ACTIVATION: -STRAIN: TAIOO DATE: 04/06/84 TECHNICIAN: MJK

	į	DOSE	DOSE UNITS	ŀ	PLATE COUNTS	UNTS	1	; 	Æ	MEAN	S.	۵.
		3.000 3.000 1.000 10.000 3.000 5.000 5.000 3.00.000	\$500 \$500 \$500 \$500 \$500 \$500 \$500 \$500	1253 1253 115 115 115 115 115 116	1350 1350 137 137 139 110 118	1320			187. 1387. 135. 125. 115. 127. 126.	50000000000000000000000000000000000000	24.24 24.24 24.24 34.66 34.66	55 66 66 66 67 65 65 65
ESTS	B(0) 107.000	8.	B(1)	B(2)		B(3)	160	088	& EXP V	vs DO	DOSE	_
TEST CHI- POISSON ADEQUACY TOXICITY MUTAGENICITY AVERAGE SLOPE 95x CONF. LI VARNING: 3 PAR	CHI-	27.4 3.8 3.8 6.8 6.8 (NONL 1115 (LINE	FU S S S S S S S S S S S S S S S S S S S	DF P P P P P P P P P P P P P P P P P P P	7-7-1 ION	LOGL 0.1066 2.0157 2.4547 5.4241 1.880 2.4291 2.4291 .079 3.4891 CONVERCE	200	× × ×				

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: GBBA ON 04/06/84

08/27/84

STRAIN: TA1CO

TEST TYPE: PLATE TEST - PREINCUBATION

			-						
	A			HI	STIDINE	REVERTA	NTS PE	R PLATE	
	C	UGS PER							
COMPOUND	T	PLATE	A	•	C	D	E	MEAN	STD
POS CONTROL									
NAAZIDE	-	3.00	1227	1278	1267			1257.33	26.24
2-AA	ALA026	0.50	354	307	337			332.67	23.80
NEG CONTROL									
DIMETHYLSULF	ELAG26	104.000	108	117	115			113.33	4.73
	•	106.000	144	132	127			134.33	5.74
6MGS-84-u003									
	RLAG26	1.60	126	146				136.00	14.14
	RLAC26	5.00	141	155				148.00	9.90
	RLAG26	16.60	153	145				149.00	5.66
		30.00	167	177				172.00	7.67
		50.00	190	159			•	174.50	21.92
		100.00	173	180				176.50	4.95
	RLAC26	300.60	173	144				158.50	20.51
	-	1.60	137	129				133.00	5.66
	•	5.00	130	131				130.50	0.71
	•	10.00	131	150				140.50	13.44
	-	30.00	91	119				105.00	19.80
	-	5ú.00	107	126				116.50	13.44
	-	100.00	113	116				115.50	3.54
	•	306.00	89	92				90.50	2.12
			•						

			G-PGS	T-PPT
PHENGCOPY CHECK :	TRUE MUTANTS		N-N65	P-PPM
STERILITY S-9 :	NGT CONTAMINATED	1tox1C	M-MGS	8-PPB
SAMPLE STERILITY:	NOT CONTAMINATED	THIC-TOO NUMEROUS TO COUNT	L-NLS	I-HM
ACT MIX/PLATE :	5 C C u G S	MATC-NOT ABLE TO COUNT	u-uLS	C-UM

STATISTICAL ANALYSIS: MUTACENICITY OF PURIFIED YELLOW

DVF IN SALMONELLA TVPHIMIRIUM		
NVP IN		

	SAMPLE I STRAIN.	MPLE RAIN:	ID: BI	D: BM(TA100	BMCS-84-0003 00 DATE	00-1	ב עו	AB: 04/6	AB: GBBA 04/06/84	ACTIVATION: TECHNICIAN:	+	926	•	
•	š !	- 1	5 !	<u>.</u> i	K	- 1			i i	1 1 1 1		ה ו	: ¦	
		00°5	UCS		108	117	337	10.0				4,0	73	
	- 1	8			126	146						-	•	
	ญ์ ลี	8		ທຸ	141	155							•	
	300	30.00		n vo	167	177						0 ~	.00	• ~
	50	.00	၁	S	190	159					•	2	.92	
	300.	99	25	ဟ ဟ	173	180					158.50	46		
m	B (0)		8:13	_	B (2	2	9	(3)		•		1		
-	!		1	1	1	!	i	!!!!		9 580	EXP VS	DOSE		
•	. 551	W	8278	0	. 3241	-	00	00145		;				
	CHI-SQUARE	JUAR	E DF	L	a		۲	רספר		→ ×				
1		1	1	,			;	1 1		\\\\\\	-			
		8.5		ੋ. ਹ	4771			101		×-	1	1	~	<u>_</u>
			9	•	9514		-62.8	197		<u> </u>	<u> </u>	/	_/	
			ڡؚ	٠	0040			522		- × -			7	
	17	55.3	31	7.	0000			4723	150	×				
		MUM IN	2		MODEL	i	Ċ	1,70	;)	**			~	۷.
	95x CONF. LIMITS	115			1 170	76.		471						
· •	AVERAGE SLOPE (LIN 95% CONF. LIMITS	(LINEAR		REGR.	R) = .983	ıı M	2 3	354)		× ,×				
					I					~				

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

SAMPLE 1D, BMGS-84-0003 LAB, GBBA ACTIVATION, -STRAIN, TAIOO DATE, 04/06/84 TECHNICIAN, MJK

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: GBBA ON 06/01/84

08/27/84

TEST	TYPE:	STANDARD	PLATE	INCORPORATION
------	-------	----------	-------	---------------

5	T	R	A	I	N	:	T	A	1	0	5		

	A C	UGS PER		HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	i	PLATE	A	8	c	0	Ē	MEAN	570
POS CONTROL									
OTHER PCS	RLAC27	30.00	1111	984	1009			1034.67	67.21
	-	C-50	349	335	362			355.33	24.11
NEG CONTROL									
DIMETHYLSULF	RLAGET	105.00u	108	109	160			105.67	4.93
	•	124.604	57	40	-2			46.33	9.29
6#GS-34-0CG3									
	ALAC27	10.30	103	87				95.00	11.31
		36.00	177	177				177.00	0.60
	RLACET	50.00	197	200				198.50	2.12
		106.80	221	202				211.50	13.44
	RLAGZ7		136	12a			•	132.00	5.66
	•	16.00	99	111				105.00	8.49
	-	34.60	111	127				119.00	11.31
	-	50.00	66	80				91.60	7.67
	•	100.50	100	161				130.50	43.13
	•	306.60	138	131				134.50	4.95

			0-502	I-bbi
PHENCCOPY CHECK :	TRUE MUTANTS		N-NGS	P-PPM
STERILITY S-9 :	NOT CONTAMINATED	T+-TOXIC	M-MGS	6-66
SAMPLE STERILITY:	NOT CONTAMINATED	INTC-TUD NUMEROUS TO COUNT	L-NLS	I-WM
ACT MIX/PLATE :	SCCUGS	NATC-NUT ABLE TO COUNT	U-ULS	C-UM

Best Available Copy

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

08/27/84

RESEARCH LAB: GBBA ON 06/01/84

STRAIN: TA102

+RLAG27

POSITIVE CONTROL USED WAS DANTHRON.

TEST TYPE: STANDARD PLATE INCORPORATION

FOSITIVE CONTROL USED WAS MITOMYCIN C.

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

4.03 67.28 11.31 .00 2.12 13.44 5.66 5.0. + RLA027 HJK 105.67 1034.67 95.00 177.00 198.50 211.50 MEAN ACTIVATION, TECHNICIAN, SAMPLE 1D: BMGS-84-0003 LAB: CBBA STRAIN: TA102 DATE: 06/01/84 PLATE COUNTS 189 984 87 177 208 202 128 168 111 177 177 197 221 DOSE UNITS 30.00# 10.00# 30.00# 50.00 100.00

9	DUSE					
2	UDS & CAP VS DUSE					
900	San		*	~		
	250	(997	200	1777	86- 86-
8(3)	.00838	1901	-45.6625	-182,7911	4.220	1,197
8(2)	1.1552	ه ۱			ODEL! = 2.928,	GR.1 = .755,
8(1)	. 7251	CHI-SOUARE DF	2.93 7 7.78 2	96.48 1 163.70 2	NLIN. M	NEAR RES
B(Ø)	99.484		_	HUTAGENICITY 162	AVERACE SLOPE (NONLIN. MODEL) = 95x CONF. LIMITS = 1 2.928,	AVERAGE SLOPE (LINEAR REGR.) = 95x CONF. LIMITS = (755
	ESTS.	TEST	ADEQUAC	MUTAGE	AVERAC 95x	AVERAGI 95x

化多种物质 化邻苯甲基苯甲基 医克尔氏试验

206

100

50 -

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID, BMCS-84-0003 LAB, GBBA ACTIVATION, -STRAIN, TAI02 DATE, 06/01/84 TECHNICIAN, MJK

.00 UCS 57 40 42 .50# UCS 349 335 382 10.00 UCS 111 127 50.00 UCS 111 127 50.00 UCS 100 161 300.00 UCS 138 131	DOSE UNITS PLATE COUNTS	MEAN	S.D.
UCS 349 335 UCS 99 111 UCS 111 127 UCS 100 161 UCS 138 131	707		
UCS 549 535 UCS 111 127 UCS 16 86 UCS 100 161 UCS 138 131	1	_	9.29
UGS 99 111 UGS 111 127 UGS 96 86 UGS 100 161 UGS 138 131	555		21 12
100 100 100 100 130 130	-		7.7
001 SON 000 138		_	3 T R
UCS 96 UCS 188 UCS 138			1 2 1
063 188 065 138 065 138			70.
UGS 188			7.017
UCS 138			
22 22			10.0
,		134.50	4.95

200

100

To the state of the state of

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE PURIFIED YELLOW RESEARCH LAB: GBBA ON 06/05/84

08/27/84

TEST	TYPE .	STANDARD	DIATE	INCORPORATION	
1621	IIPEI	7 WW W K D	PLAIL	INCURPORATION	

S	T	R	A	Î	N	•	T	A	1	G 2	•
---	---	---	---	---	---	---	---	---	---	-----	---

	A			нІ	STIDINE	REVERTA	NTS PER	PLATE	
	Ç	UGS PER							
COMPOUND	T	PLATE	A	8	c	D	E	MEAN	STD
POS CONTROL									
OTHER POS	RLAG27	30.00	1253	1203	1096			1134.CO	80.21
	-	6.50	1451	1509	1567			1489.00	32.92
			-						••••
NEG CONTROL									
DIMETRYLSULF	RLAC27	136.680	269	325	332			298.67	28.15
	•	100.GGU	215	213	203			210.33	0.43
				4.0				• • • • • • • • • • • • • • • • • • • •	
BMGS-34-0003									
· · · · · · · · · · · · · · · · · · ·	HLACE?	10.30	478	407				442.50	50.20
	ALAGE?	36.00	575	551				563.CD	16.57
	ALAG27	50.00	642	592				617.00	35.36
		100.68	656	587				622.50	47.38
	RLAG27	300.00	429	455			•		
	******	15.68	466	503				441.50	19.09
	_	35.00						451.50	72.63
	_		456	441				448.50	10.61
	•	90.00	468	429				448-50	27.58
	-	100.00	402	427				444.50	24.75
	•	300.00	447	424				435.5 0	10.26

PMENGCOPY CHECK : T	RUE MUTANTS		G-PGS	• •
STERILITY 5-9 : N	OT CONTAMINATED	JIKOT-+T	M-M62	8-009
SAMPLE STERILITY: N ACT MIX/PLATE :		THIC-TOO NUMEROUS TO COUNT NATC-NUT ABLE TO COUNT	L-NLS U-ULS	- 1

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: G88A

ON 06/05/84

C8/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA102

+RLAG27

POSITIVE CONTROL USED WAS DANTHRON.

POSITIVE CONTRUL USED WAS MITOMYCIN C.

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

+ RLAB27
ACT IVATION:
LAB, C38A 06/05/84
SAMPLE 1D: BHGS-84-0003 STRAIN: TA102 DATE.
SAMPLE 10 STRAIN, 17

	S.D.	28.15 80.21 50.20 16.07 35.36 47.38
¥ Y	MEAN	288.67 184.00 442.50 563.00 617.00 622.50
DATE: BOXBOXB4 TECHNICIAN;		
49/C9/99		
- U	CNTS	302 1086
2	TE CO	325 1203 407 551 592 589 455
J	DOSE UNITS PLATE COUNTS	269 1253 478 575 642 656 428
	NITS	850 850 850 850 850 850 850 850 850 850
	SE U	\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	8	36.688 36.688 36.688 36.888 36.888 366.888

《1917年·1919年 1919年 1919年 1918

-

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0003 LAB: GBBA ACTIVATION: -STRAIN: TAI02 DATE: 06/05/84 TECHNICIAN: MJK

Ë	STRAIN: TAIBZ	7	Š	UAIE: 05/03/84	I E CHN I C I AN :	425		
=	NITS	DOSE UNITS PLATE COUNTS	TE CO	UNTS		MEAN	S.D.	<u>.</u> !
	SON		213	203	210		6.43	13
	SUN	1451	1509	1507	1489		32.	32
	ngs	400	503		451		72.1	93
	SUL	456	44		448		9	<u>.</u>
	SON	468	429		448	•	27	28
	SON	462	427		777	50	24	75
	SON	447	424		435	•	9	92

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE PURIFIED YELLOW RESEARCH LAB: GBBA ON 36/15/84

08/27/44

			DIATE	INCORPORATION
TFST	I I PE:	ZIANDAKU	PLAIE	THEOREGENIAUM

STRAIN: TA102

	٨			nI:	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C T	UGS PER PLATE	A	8	C	D	E	MEAN	STD
POS CONTROL OTHER PUS	ALAC27	0 د ن	1252	1377	1392	137G		1347.75	64,47
g i nga ' o o	-	30.00	1380	1320	1303			1361.00	35.54
NEG CONTROL				•	9.4			264.67	1.15
DIMETHYLSULF	RLAC27	120.30u 10u.30u	264	264 188	206 213			201.00	14.53
6MG5-34C-3								250.00	36 70
	KLAC47	1.00	279	239				259.00 331.50	26.28 3.54
	RLACA?	5.00	329	33+ 392				378.00	19.80
	FLAC 47	16.00 30.00	364 538	532				535.00	4.24
	RLAGE? RLAGE?	50.00	626	636			·	632.GO	8.49
		100.00	656	043				049.50	9.19
	RLACE?	300.60	539	61,				029.60	14.14
	-	1.00	211	217				214.CO	4.24
	•	5.00	313	304				306.50	0.36
	-	16.60	341	342				341.50	0.71
	•	36.66	404	420				415-00	15.56
	•	50.00	475	407				441.00	46.08 15.60
	•	100.00	441	413				427.CD 384.00	22.63
	•	300.00	368	40.				364.00	66.03

PHENOCOPY CHECK: TRUE MUTANTS
STERILITY S-9: NCT CONTAMINATED
SAMPLE STERILITY: NCT CONTAMINATED
ACT MIX/PLATE: SCCUGS

T+-TGXIC H-MGS
TNTC-TOO NUMEROUS TO COUNT L-NLS
NATC-NGT ABLE TO COUNT U-ULS

G-UES C-UM

P-PPM

844-8

I-MM

G-PGS

200.

THE MANAGED SAME SECTION AS BEST OF SECTION OF THE PROPERTY PROPERTY BODD

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

				_					_	_	
			16	8	28	54	80	24	49	8	
27		S.D	_	64	28	M	6	₹	30	Œ	4
LAB	<u> </u>	MEAN	67	75	00	50	00	00	00	50	00
+	T.	HE	264	347.	259.	331	378	535.	632.	649.	629
ACTIVATION: + RLAB27	TECHNICIAN			_							_
18: CBBA	15/84			1370							
3 [/	7E:	UNTS	266	1392							
SAMPLE ID: BMCS-84-0003 LAB:	A	PLATE COUNTS	264	1377	239	334	392	532	638	643	619
HCS-B	<u>ي</u>		264	1252	279	328	364	538	979	929	633
1D: B	TA 10	DOSE UNITS	_		_	_	_		SON		
ř E	Z	SE	00	50 *	00	00	00	88	00		
SAMP	STRA	00)))	•	-	ις.	9	30.	50	100	300.

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

- MJK	
ACTIVATION: TECHNICIAN:	
LAB, CBBA E, 06/15/84	
1D: BMGS-84-0003 : TA102 DATE	
SAMPLE 1D: STRAIN: TA	

MEAN S.D.	201.00 12.53 1361.00 35.54 214.00 4.24 308.50 6.36 341.50 15.56 441.00 48.08 427.00 19.80	OBS & EXP VS DOSE	
DOSE UNITS PLATE COUNTS	.00 UCS 202 188 213 30.00* UCS 1380 1320 1383 1.00 UCS 211 217 5.00 UCS 313 304 10.00 UCS 341 342 30.00 UCS 404 426 50.00 UCS 475 407 190.00 UCS 441 413 300.00 UCS 368 400	B(1) B(2)	IMITS = (3.219, 6

IN VITRO ASSAYS WITH SALMONELLA TYPHINURIUM OF ARMY DYE PURIFIED YELLOW

ON 06/01/84 RESEARCH LAB: GBBA C8/27/84

TEST TYPE:	STANDARD	PLATE I	CORPOR	RATION			STR	AIN: TATO4	•
	A			HIS	STIDINE	REVERTA	NTS PER	PLATE	
COMPOUND	C T	UGS PER PLATE	A	8	c	0	ε	MEAN	STD
POS CONTROL									
2-44	HLAD27	3.00	2393	2440	2457			2433.33	37.45
OTHER PUS	•	17.00	765	851	777			797.67	46.58
NEG CONTROL									
DIMETHYLSULF	RLA027	100.60u	312	311	340			321.00	16.46
	-	106.000	262	323	271			285.33	32.93
6MGS-34-0003									
	RLAOL7	16.00	460	515				487.50	38.89
	RLAG27	30.50	476	510				496.60	28.28
	RLAC27	50.60	485	412				448.50	51.62
		100.00	273	30 i			•	287.00	19.80
	KLA027	300.00	439	377				4C8.60	43.04
	-	16.00	381	37a				379.50	2.12
	-	30.00	347	341				344.GO	4.24
	•	54.40	330	340				338.00	11.31
	-	106.60	359	310				338.50	26.99
	-	300.00	309	297				303.GO	8.49

G-PGS T-PPT PHENGCOPY CHECK : TRUE MUTANTS 9-99M N-NGS STERILITY S-9 : NOT CONTAMINATED M-MGS T+-TOXIC : - MM SAMPLE STERILITY: NOT CONTAMINATED INTC-TUO NUMEROUS TO COUNT L-NLS U-ULS C-UM MATCHNUT ABLE TO COUNT ACT MIX/PLATE : 5000GS

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMCS-84-0003 LAB: CBBA ACTIVATION: + RLA027

311 340 16.46 2440 2467 2447 2467 515 515 516 48.5 50 38.89 516 48.5 51.62 321 00 16.46 447 50 38.89 448 5 51.62 321 287 01 19.80 377 408 00 43.84
321.00 2433.33 487.50 496.00 448.57 287.01 408.00
2433.33 487.50 496.00 448.57 287.00 408.00
487.50 496.80 448.57 287.01 408.00
496.88 448.57 287.8t 488.88
448.57 287.01 408.00
287.0t 408.00
408.00

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW
DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID, BMGS-84-0003 LAB; GBBA ACTIVATION, -STRAIN, TAI04 DATE: 06/01/84 TECHNICIAN: MJK

			i				
DOSE	DOSE UNITS PLATE COUNTS	PLATE	E COI	JNTS	MEAN	s.	
. 00 17. 00* 10. 00 30. 00 50. 00 100. 00	222222	662 887 89 89 89	323 323 378 341 346 318	27.1	285.33 797.27 379.50 374.66 338.60 338.50	22. 46. 28.	400-1200 400-4200 400-450
B(Ø) 85.337 4	B(1)	B(2) 	C 1 8	B(3) 	400 J OBS & EXP VS DOSE	DOSE	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW RESEARCH LAB: GBBA ON 06/05/84

08/27/84

TEST	TYPE:	STANDARD	PLATE	INCORPORATION
				•

STRAIN: TAIG4

	A C	UGS PER		HI:	STIDINE	REVERTA	NTS PE	R PLATE	
CORPOUND	Ť	PLATE	A	6	¢	9	E	MEAN	STD
FOS CONTROL									
2-AA	RLA027	3.00	2424	2346	2444			2405.33	50.65
OTHER PUS	•	50.00	1657	1786	1736			1726.33	65.64
NEG CONTHOL									
DIMETHYLSULF	RLAGE7	100,600	350	310	290			318.67	36.09
	-	100.300	241	252	242			238.33	15.18
			J						
BMG\$-84-0003									
	HLAC27	1.ú0	352	334				343.00	12.73
	RLACL7	5.00	424 -	366				395.00	41.61
	RLAG27	16.60	439	477				458.00	26.87
	KLAU27	35.00	526	503				514.50	10.26
	RLAC 47	50.00	491	540				515.50	34.65
	ALAC 47	100.00	447	440				443.50	4.95
	NLAC27	306.00	410	402				406.60	5.66
	•	1.00	263	254				258.50	6.36
	•	5.00	258	286				273.60	21.21
	•	13.60	291	3C1				296.00	7.07
	-	36.60	294	29G				292.00	2.83
	•	5u.ū0	315	307				311.60	5.66
	•	106.60	293	291				292.00	1.41
	•	300.00	294	284				299.60	7.67

PHENOCOPY CHECK: TRUE MUTANTS

STERILITY 5-9: NOT CONTAMINATED THITCHTON NUMEROUS TO COUNT HINGS B-PPB ACT MIX/PLATE: SCOUGS NATC-NOT ABLE TO COUNT U-ULS C-UM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: GBBA ON 06/05/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA104

POSITIVE CONTROL USED WAS METHYL GLYOXAL.

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

ACTIVATION: + RLAB27 TECHNICIAN: MJK SAMPLE 1D: BMCS-84-0003 LAB: CBBA STRAIN: TA104 DATE: 06/05/84

MEAN S.D.	318.67 38.89 2485.33 58.65 343.88 12.73 385.88 41.81 458.88 26.87 514.58 16.26 515.58 34.65 443.58 4.95	600 XX	200 - 100 200 300
DOSE UNITS PLATE COUNTS	3.88* UCS 358 316 288 3.88* UCS 2424 2348 2444 1.88 UCS 352 334 5.88 UCS 424 366 18.68 UCS 424 366 38.88 UCS 439 477 52.88 UCS 526 583 52.88 UCS 491 548 188.88 UCS 447 448	ESTS. 312.210 3 9616 .4431 .00394 TEST CHI-SQUARE DF P LOGL POISSON 14.97 9 .0919 -74.2715 ADEQUACY 88.65 4 .0000 -118.5981 TOXICITY 2.50 1 .1136 -119.8498 MUTAGENICITY 116.51 2 .0000 -176.8549 AVERAGE SLOPE (LINEAR RECR.) = 6.283 95% CONF. LIMITS = (4.136, 8.430)	

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW RESEARCH LAB: GBBA. ON 06/05/84

08/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1G4

POSITIVE CONTROL USED WAS METHYL GLYOXAL.

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

	OQ ,	SE	DOSE UNITS		PLATE COUNTS	UNTS		E	MEAN	S.	Ġ.
	388 - 588 -	58.88 18.88 18.88 58.88 58.80 58	2500 2500 2500 2500 2500 2500 2500 2500	241 253 258 259 294 315 293 293	252 254 254 288 381 381 291 291	222 1736	1 1 1 1 1 1 1 1 1 1 1 1 1	238 1726 258 273 292 292 292 292 292	**************************************	26.50	83.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
ESTS. 2	B(Ø) 	M	B(1)	B(2)	2)	B(3) 	350 - 08S & EXP VS DOSE	EXP	SN -	DOSE	
TEST CH POISSON ABEQUACY 10XICITY MUTAGENICITY	CHI-Si	DUARE 4.22 3.10 4.01	E DF 2 - 4 - 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	8966 5428 0452		LOGL -65.5625 -67.1101 -69.1151	3008			/	
AVERAGE SLOPE 95% CONF. L1 AVERAGE SLOPE 95% CONF. L1		(NONLIN MITS = (LINEAR	IN MC = (AR REC	MODEL) = 711, EGR.) = .606,	" - " · · · ·	3.0841 1.179 1.7531	250 × ×				

200

200 -

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: GBBA ON 06/01/84

08/27/84

1221	TYDE .	CTAMBARB	BI ATE	INCORPORATION
1631			FLAIL	THEANLAWNI TAIL

STRAIN: TA1535

	A			RIN	TIDINE	REVERTA	NTS PE	PLATE	
	C	UGS PER							
COMPOUND	Ţ	PLATE	A	8	Ç	D	E	MEAN	STD
POS CONTROL									
NAAZIDE	•	3.00	1021	1031	959			1603.67	39.00
2-44	ALAC27	3.60	153	164	132			149.67	10.26
NEG CONTROL									
DIMETHYLSULF	RLADET	195.000	26	24	29			26.33	2.52
	•	100.000	37	44	33			38.60	5.57
BMGS-34-1003									
	RLACET	16.00	18	13				15.50	3.54
	HLAGL?	36.60	14	1 a				15.CQ	1.41
	ALAG27	50.00	27	1 9				23.G0	5.66
	ALAC47	100.30	19	17				18.GO	1.41
	RLAC27	30G.G0	22	2 C				21.00	1.41
	•	10.00	29	46				35.50	9.19
	•	32.00	44	40			•	42.60	2.83
	•	50.00	36	32				34.00	2.83
	•	101.60	36	42				39.00	4.24
	-	300.00	42	•				42.00	3.20

PHENOCOPY CHECK: TRUE MUTANTS

STERILITY S-9: NOT CONTAMINATED

SAMPLE STERILITY: NOT CONTAMINATED

ACT MIX/PLATE: SGOUGS

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXIC

TOTOXI

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

第2010年以及1200年 A 1000年
Y I'V	[A153	2	DA	STRAIN: TA1535 DATE: 06/01/84	TECHNICIAN, MJK	HJK HJK	,
5	NITS	PLA	DOSE UNITS PLATE COUNTS	STNL		MEAN S.D.	S
	SOC	26	24	29		75 33	1
3.00* (SON	153	164	132		149.67	16.26
	Sor	8	-3			15.50	M
	SOC	*	9			15.00	_
	S	27	<u>o</u>		•	23.00	ດ
	S	0	17			18.00	
	SS	22	20			21.00	141

30-	20	
8(3) 66000	LOGL -32.9037 -44.9131 -48.4184 -38.7526	EL) = .000 .000,****** .) =001 .030, .027
B(2)	. 8833 . 0000 . 0000 . 0081	ODEL) = .000,4 .000,4 .000,1
B(1) -2.7822	CHI-SQUARE DF 3.02 7 24.02 2 7.01 1	AVERAGE SLOPE (NONLIN. MODEL) = 95% CONF. LIMITS = 1 .000, AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (030,
B(0) 26.272	CH1-8	E SLOPE (CONF. LIME SLOPE (CONF. LIME CONF.
ESTS.	TEST CH POISSON ADEQUACY TOXICITY MUTAGENICITY	AVERAGI 95% (AVERAGI 95% (

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW
DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID, BMCS-84-0003 LAB; CBBA ACTIVATION, -STRAIN, TA1535 DATE: 06/01/84 TECHNICIAN; MJK

00	SE 1	UNITS	PLA		UNTS	HEAN		S. D.
•	90	ncs	37	44	33	00.88	!	5
M	3.00*	SOO	1021	1031	959	1893.67		39.00
3	00	SON		42		35.50		3
30	00	SON	4.4	40		42.00		8
50	00	SON	36	32		34.00		8
00	00	SON	36	42		39.00		2.
. 00	00	SON	45			. 42.00		90
6			ā	0121	0 (2)			
	_	-	2	. 5		DDC 1 CVD VC DOCE	מטטע	
1	•	1 1 1	1	1 1	1111	CA LYI O CON	こつこ	

25.

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAS: GOBA

7

ON 06/05/84

98/27/84

TEST TYPE: STANDARD PLATE INCORPORATION

STRAIN: TA1535

	A C	UGS PER		HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	Ī	PLATE	A	8	C	0	E	MEAN	STD
POS CONTROL									
NAAZIDE	-	3.40	1068	1057	1018			1047.67	20.27
2-AA	RLAG27	3.00	154	154	157			155.00	1.73
NEG CONTROL									
DIMETHYLSULF	RLAC47	106.000	32	33	18			27.67	6.39
	•	106.000	55	5ú	40			48.33	7.64
EMGS-84-0003									
	RLA027	16.60	14	18				16.00	2.83
	RLAC47	30.00	9	17				13.00	5.66
	RLAC 47	56.00	24	23				26-00	2.83
	RLAGL7	100.60	19	ZU			•	19.50	0.71
	FLAJ27	306.60	21	2.2				21.50	0.71
	-	16.00	42	55				48.50	9.19
	•	36.00	39	39				39.00	0.50
	•	5ú.ú0	50	37				43.50	9.19
	•	100.00	48	43				45.50	3.54
	•	30C+G0	51	5 J				50.50	G.71

PHENCCOPY CHECK: TRUE MUTANTS
STERILITY S-9: NOT CONTAMINATED
SAMPLE STERILITY: NOT CONTAMINATED
ACT MIX/PLATE: 50003S

G-PGS T-PPT
N-NGS P-PPM
T+-TOXIC
TNTC-TGO NUMEROUS TO COUNT
U-ULS C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

ACTIVATION, + RLAB27 TECHNICIAN, HJK	MEAN S.D.	27.67 8.39 155.00 1.73 16.00 2.83 13.00 5.65 26.00 2.83 19.50 .71	OBS & EXP VS DOSE	TT-	*	× ×	× × ×	×	· 1
SAMPLE ID, BMCS-84-0003 LAB; CBBA STRAIN; TA1535 DATE; 06/05/84	DOSE UNITS PLATE COUNTS	3.00 UCS 32 33 18 3.00 UCS 154 157 10.00 UCS 14 18 30.00 UCS 24 28 100.00 UCS 19 20 300.00 UCS 21 22	B(0) B(1) B(2) 40	ESTS. 21.160-320.3121 .0000	NO EVIDENCE OF TOXICITY 30	TEST CHI-SQUARE DF P LOGL	SON 8.40 7.2984 -35. UACY 17.87 3.0005 -44. GENICITY 00 21.0000 -44.	AVERAGE SLOPE (NONLIN. MODEL) = 0000 10 95% CONF LIMITS = (.000, .000)	AVERAGE SLOPE (LINEAR REGR.) =002

D. 64 227 227 199 199 199 154 17

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW
DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0003 LAB: CBBA ACTIVATION: -STRAIN: TAI535 DATE: 06/05/84 TECHNICIAN: NJK

IECHNICIAN: FIJA	MEAN S.I	48.33 7.0 1047.67 26. 48.50 9. 39.00 43.50 9. 45.50 3.	085 & EXP VS DOSE	;	× ×	*	×
			69	- X 	*	6 ↓ ↓ ∦ -	
UAIE: 00/03/84	UNTS	9 4 8 8	8(3) 	LOGL 	-46.0889 -49.5500 -42.0575	.013 226.752)	. 014 . 049) F CONVERGE
	PLATE COUNTS	55 50 42 55 39 38 50 37 48 43 51 50	B(2)		00023 1 00085 1 9950 1	MODEL) =	3R.) = 021, EL DID NOT
SIKAIN: IAIDSD	DOSE UNITS	3.000 UGS 1 10.000 UGS 1 30.000 UGS 50.000 UGS 300.000 UGS 3000 UG	B(1) 1.3938	RE DF 38 7	12.11 2 . 6.92 1 . .01 2 .		AVERAGE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (00 WARNING: 3 PARAMETER MODEL D
X .	9	300 300 300 300 300	B(0) 48.332	CHI-S	ADEQUACY TOXICITY MUTAGENICITY	AVERAGE SLOPE (NONLIN. 95% CONF. LIMITS = 1	SE SLOPE (CONF. LIM 4G: 3 PARA
			ESTS.	TEST POISSON	ADEOU, TOXIC MUTAGE	AVERA(95%	AVERA(95% WARNIP

200

30

第2000年1000年200日の第200日に

Best Available Copy

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: GBBA

ON 06/01/84

08/27/84

	_				
TEST	TYPE:	STANDARD	PLATE	INCORPORATION	

STRAIN: TA1537

	A	UGS PER		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	ī	PLATE	A	8	c	0	E	MEAN	STD
POS CONTROL									
9-44	-	100.00	1129	1111	8 á Q			1640.GO	138.86
2-AA	RLACZ?	00 و د	304	38C	3+3			342.33	36.00
NEG CONTROL									
DIMETHYLSULF	RLAU27	100.000	17	15	27			19.67	6.43
	•	106.000	14	18	8			13.33	5.03
6MGS-34-4C63									
	RLA027	10.00	18	19				18.50	0.71
	ALAG27	30.00	36	33				34.50	2.12
		50.00	39	38				38.50	0.71
	RLAC47	100.00	24	22				23.00	1.41
	ALAG67	300.00	21	19				20.00	1.41
	•	10.30	19	12				15.50	4.95
	-	30.00	14	17				15.50	2.12
	•	56.00	20	7				13.50	9.19
	•	100.60	26	14				20.G0	8.49
	-	300.00	12	10				11.60	1.41

		G-PGS T-PPT
PHENGCOPY CHECK : TRUE MUT	NNTS	N-NGS P-PPM
STERILITY S-9 : NOT CONT.	MINATED T - TOXIC	M-MGS 5-PPB
SAMPLE STERILITY: NOT CONT.	MINATED INTC-TGO NUME	ROUS TO COUNT L-NLS I-MM
ACT MIX/PLATE : SUCUGS	NATC-NOT ABLE	TO COUNT U-ULS C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

	S.D.	43	38.00	.71	. 12	.71	7.	7
927								
RLA MJK	MEAN	9.67	2.33	3.50	1.50	3.50	23.00	9.00
+	٠.	-	34	=	m	36	~	2
ACTIVATION: + RLAB27 TECHNICIAN: HJK								
	į							
SAMPLE ID: BMGS-84-0003 LAB: GBBA STRAIN: TA1537 DATE: 06/01/84	UNTS	27	343					
4-800 DA	DOSE UNITS PLATE COUNTS	15	380	<u>6</u>	33	38	25	6
MGS-8	PLA	7	304	8	36	39	24	21
ID: BI	UNITS	\supset			_			
PLE MIN:	OSE (90	*00.	. 60	. 60	. 69	99.	. 60
SAF			F4.)	2	36	56	- 00	305

	nust.			/		
	UBS & EXP VS DUSE		/		~~	
Ċ	se ×	: × :	× (* /./
	40	11	2	i N	20	TXIXI
B(3)	10200	רספר	-34.8443	-41.8119 -48.2346 -48.7252	.9291	. 587)
8(2)	.6336	٩	7134	. 00003 . 00100	ODEL) = . 191,	GR.) =
8(1)	.5697	CHI-SOUARE DF	4.56 7	2.85 3.83 2.83	JONE IN. M	INEAR RE
8(0)	18.882	0S-1H0	>	, , , , , , , , , , , , , , , , , , ,	AVERAGE SLOPE (NONLIN. MODEL) 95% CONF. LIMITS = : .191	AVERACE SLOPE (LINEAR REGR.) 95% CONF. LIMITS = (.2
	ES1S.	TEST	POISSON	TOXICITY HUTAGENICITY	AVERAGE 95% C	AVERAGE 95% C

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

¥	
- MJK	
ACTIVATION: TECHNICIAN	
SAMPLE ID: BMCS-84-0003 LAB: CBBA STRAIN: TA1537 DATE: 06/01/84	
1D: BMG TA1537	
SAMPLE STRAIN:	

	s.		138.86	4.95	2.12	8.18	8	1.4
ĦJĸ	MEAN	13.33	340.00	15.50	15.50	13.50	20.00	1:00
TECHNICIAN,		• • • • • • • • • • • • • • • • • • •	3-					
DATE: Ø6/Ø1/84 TECHNICIAN	SINIS	8	880					
DA	TE COL	18		-2	17	^	4	9
137	DOSE UNITS PLATE COUNTS	-	1129	<u>0</u>	-	20	5 6	12
TAIS	UNITS	SON						
STRAIN: TA1537	DOSE	99.	100.00*	10.00	30.00	50.00	100.00	300.00

30	20	<u>-</u>
B(3) 	LOGL -37.2216 -38.0917 -40.6723 -39.9550	248 .887) .003
B(2)	P P P P P P P P P P P P P P P P P P P	ODEL) = .069, .069, .0R.) =
B(1) -3.95@6	CHI-SOUARE DF 15.71 7 1.74 2 5.16 1	INONLIN. M 11TS = (ILINEAR RE
B(0) 14.348	 	AVERAGE SLOPE (NONLIN, MODEL): 95x CONF. LIMITS = (.069, AVERAGE SLOPE (LINEAR REGR.) = 95x CONF. LIMITS = (168,
ESTS.	TEST POISSON ADEQUACY TOXICITY MUTAGENIE	AVERA(95% AVERAC

IN VITRO ASSATS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED YELLOW ON 06/05/84 RESEARCH LAB: GBBA

G8/27/84

16.GO 16.50

0.36

TEST TYPE:	STANDARD	PLATE I	NCORPO	RATION			ST	RAIN: TA15	37
·	A			HI:	STIDINE	REVERTA	NTS PE	R PLATE	
COMPGUND	C T	UGS PER PLATE	A	8	c	0	ε	MEAN	STD
POS CONTHOL									
9-44	•	100.30	1258	1335	1452			1348.33	97.68
Z-AA	RLA027	٥٠٥٥	561	472	408			480.33	76.84
NEG CONTROL									
DIMETHYLSULF	RLAG27	105.000	20	16	17			17.67	2.08
	•	106.000	8	ò	9			8.33	ū.58
6MGS-84-0003									
	RLAG27	10.00	28	20				27.60	1.41
-	ALAU47	30.00	42	30				39.00	4.24
	ALAD27	50.00	30	30				30.00	0.00
	RLAC27	100.GG	37	31				. 34.00	4.24
	RLAG27	306.60	19	3 G				24.50	7.75
	-	16.60	2 G	26				2C.GG	0.00
	•	36.00	17	19				18.00	1.41
	•	5 ù • ŭ 🛭	14	12				13.00	1.41
•	-	106.00	13	19				16.60	4.24
		207. 30	74	4.3				14 60	484

12

21

300.00

		0-P62	1-661
PHENGCOPY CHECK : TRUE MUTANTS		N-NGS	P-PPM
STERILITY S-9 : NOT CONTAMINATED	TTOXIC	M-MGS	_
SAMPLE STERILITY: NOT CONTAMINATED	THTC-TOO NUMEROUS TO COUNT	L-NLS	1
ACT MIX/PLATE : 5CCGS	NATC-NOT ABLE TO COUNT	u-uLS	C = U#

20-

AVERAGE SLOPE (LINEAR REGR.) = 95% CONF. LIMITS = (.016,

AVERAGE SLOPE (NONLIN, MODEL)
95% CONF. LIMITS = (.062

9

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

A ACTIVATION: + RLAB27 4 TECHNICIAN: MJK	S	17.67 2.08 480.33 76.84 27.00 1.41 39.00 4.24 38.00 .00 34.00 4.24 24.50 7.78	50 - 08S & EXP VS DOSE	× × × × × × × × × × × × × × × × × × ×
SAMPLE 1D, BHGS-84-0003 LAB, GBBA STRAIN: TA1537 DATE, 06/05/84	DOSE UNITS PLATE COUNTS	20 16 17 561 472 408 28 26 42 36 30 30 37 31	B(2) B(3) 3689 00300	P LOCL 7769 -35.3616 1723 -37.1201 .0159 -40.0245
SAMPLE 1D. STRAIN: TAI	DOSE UNIT	3.00 UGS 3.00* UGS 10.00 UGS 30.00 UGS 50.00 UGS 100.00 UGS 300.00 UGS	B(0) B(1) ESTS, 17.613 1.6844	TEST CHI-SOUARE DF POISSON 4.02 7 ADEQUACY 3.52 2 10XICITY 5.81 1 MUTAGENICITY 21.64 2

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0003 LAB: GBBA ACTIVATION: -STRAIN: TA1537 DATE: 06/05/84 TECHNICIAN: MJK

S. D.	97.69 97.69 1.41 1.41 4.24 6.36
MEAN	1348.33 20.00 18.00 13.00 16.00
UNTS	1452
TE C	1335 20 20 10 10 10
PL/	1258 20 20 17 17 13
UNITS	\$500 \$500 \$500 \$500 \$500 \$500 \$500 \$500
DOSE	100.00# 10.00# 30.00 50.03 100.00

Best Available Copy

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DYE PURIFIED TELLOW RESEARCH LAB: GOBA ON G6/01/84

08/27/84

TEST T	YPE:	STAMBARD	PLATE	INCORPORATION

STRAIN: TA1538

	A C	UGS PER		HIS	TIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	C T	PLATE	A	8	c	D	£	MEAN	STO
POS CONTROL									
2-NF	•	3.00	476	432	512			473.33	40.07
2-AA	RLA027	0.50	704	729	692			708.33	16.88
NEG CONTROL									
DIMETHYLSULF	RLAG27	106.200	26	25	24			25.00	1,00
	•	100.300	17	25 13	24 18			16.00	2.65
BMGS+34-0003									
	RLAG27	16.60	25	3 č				31.50	9.19
	RLAC27	36.60	29	28				28.50	0.71
	HLAD27	50.30	21	37				29.00	11.31
	RLADZT	100.30	17	42				29.50	17.68
	HLAUL7	300.00	28	ZC			•	24.00	5.66
	•	16.00	26	17				22.50	4.95
	•	3C.GO	19	1 à				18.50	3.71
	-	50.00	20	17				18.50	2.12
	-	104.00	15	1 7				17.00	2.63
	•	300.40	21	17				19.60	2.83

PHENGCOPY CHECK: TRUE MUTANTS
STERILITY S-9: NOT CONTAMINATED
SAMPLE STERILITY: NOT CONTAMINATED
ACT MIX/PLATE: SCOUGS

G-PGS T-PPT
N-NGS P-PPM
T+-TOXIC
TNTC-TOO NUMEROUS TO COUNT
U-ULS C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMCS-84-0003 LAB: CBBA ACTIVATION: + RLA027 STRAIN: TA1538 DATE: 06/01/84 TECHNICIAN: MJK

_	DOSE UNITS PLATE COUNTS	PLA	TE CO	INTS	Z	S.D.
: -		26	25	24	90	
	ncs	704	729	692	708.33	18.88
	SOO	25	38			•
	SON	29	28			7
	CS	2	37			11.31
	ncs	17	42			17.68
	SON	28	28		•	5.66

300

208

100

ė

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

١

SAMPLE ID, BMGS-84-0003 LAB, CBBA ACTIVATION, -STRAIN, TA1538 DATE, 06/01/64 TECHNICIAN, MJK

-	DECIVI INTVIIO	0	(DAIE! BO/BI/O4 ECHNICIAN:	45	•
SE	DOSE UNITS PLATE COUNTS	PLA1	E C01	UNTS	MEAN	S.D.
00	SON	17	13		16.00	
.00*	SON	476	432	512	473.33	
. 00	SON	5 6	6		22.50	
90	SON	<u>.</u>	8		18.50	
90	SON	20	17		18.50	
163.66	SON	<u>.</u>	6		17.00	2.83
.00	SON	7	1		19.00	

A SERVICE OF A SER

· 一名人名人名英格兰· 中国人名 · 安全的 · 中心人名人名 · 公

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM OF ARMY DIE PURIFIED VELLOW RESEARCH LAB: GBBA ON 06/05/84

08/27/84

Ľ.

おんだいいい しょう あんない こうしゅ またかなななななな

TEST TYPE:	STANDARD	PLATE I	NCGRPG	RATION			5.7	RAIN: TA15	3 à
	A C			HI	STIDINE	REVERTA	NTS PE	R PLATE	
COMPOUND	ť	UGS PER PLATE	A	8	c	0	E	MEAN	570
POS CONTROL									
2-NF	-	3.00	615	652	628			631.67	18.77
2-AA	RLA027	ŭ.50	1061	1063	1052			1058.67	5.86
NEG CONTROL									
DIMETHYLSULF	RLAC47	100.000	41	19	36			32.00	11.53
	•	106.304	18	13	15			15.33	2.52
8MGS-84-0063									
	RLAC27	16.60	32	30				31.00	1.41
	ALAG27	32.60	44	45				44.50	0.71
	RLAU27	50.00	27	33				30.C0	4.24
	ALAD27	100.00	30	32				31.GO	1.41
	RLAG27	300.00	29	32				30.50	2.12
	•	10.00	14	1-				14.60	0.00
	-	3G.u0	20	1 à				19.00	1.41
	•	50.00	9	10				12.50	4.95
	•	10C.GG	19	14				16.50	3.54
	-	300.00	9	17				13.00	5.66

PHENGCGPY CHECK: TRUE MUTANTS
STERILITY S-9: NOT CONTAMINATED
SAMPLE STERILITY: NOT CONTAMINATED
ACT MIX/PLATE: SGGUGS

G-PGS T-PPT
N-NGS P-PPM
TH-TOXIC M-MGS 8-PP8
TNTC-TGO NUMEROUS TO COUNT L-NLS I-MM
NATC-NGT ABLE TO COUNT U-ULS C-UM

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOM DYE IN SALMONELLA TYPHIMURIUM

+ RLA027 HJK
ACTIVATION: TECHNICIAN:
LAB: C9BA 06/05/84
1D, BMCS-84-6003 TA1538 DATE,
SAMPLE 1D, B STRAIN, TA15

27	S.D.	5.86 1.41 7.71 1.41 2.12
+ RLA0	Z	1058.67 31.000 30.000 30.000 31.000 30.500
ACTIVATION: + RLAG27 TECHNICIAN: MJK		-
SAMPLE ID, BMCS-84-0003 LAB, CBBA STRAIN, TA1538 DATE, 06/05/84	UNTS	36 1052
14-666 DA	DOSE UNITS PLATE COUNTS	1063 30 32 32 32
MCS-8	PLA	1061 32 44 27 30 29
10. B TA15	UNITS	כככככככ
SAMPLE	DOSE	.00 .50* 10.00 30.00 50.00 100.00

300

203

9

一番の人をのける 美 成りなる さつなり 素 しんりつ

Contract Spaces of Coppose for the Space Bose to

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW
DYE IN SALMONELLA TYPHIMURIUM

の名がは、このないのでは、 東京 しょうしゃ

2

j...

まっている しきょうろんし

		i
- HJK	MEAN	1
SAMPLE ID, BMGS-84-0003 LAB; GBBA ACTIVATION; STRAIN; TA1538 DATE; 06/05/84 TECHNICIAN;	,	
LAB: GBBA 06/05/84	S	
BOOS Date:	COUNT	
:S-84-(PLATE	
ID: BMC TA1536	DOSE UNITS PLATE COUNTS	
AMPLE TRAIN:	DOSE 1	
လ လ	ŀ	

S.D.	2.52 18.77 18.77 1.41 1.95 5.66
MEAN	631.67 14.00 19.00 12.50 13.00
į	62
PLATE COUNTS	523
PLA	20 20 20 20 20 20 20
UNITS	\$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20
DOSE UNITS	.00 3.00 10.00 30.00 50.00 100.00

Best Available Copy

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIPURIUM OF ARMY DYE PURIFIED YELLOW

RESEARCH LAB: 688A

ON 03/30/84

08/27/84

TECT	TYDC .	STANBAGE	STAIR	INCORPORATI	O.L
1521	ITPE	3 I AND ARL	, PLAIL	INCURPURALI	UR

STRAIN: TA98

	A			HIS	TIDINE	REVERTA	NTS PER	PLATE	
COMPOUND	C T	UGS PER PLATE	A		c	D	E	MEAN	STO
POS CONTROL									
2-NF	-	3.00	300	312	315			309.00	7.94
2-AA	RLAC26	u•\$0	575	237	853			855.00	19.68
NEG CONTROL									
DIMETHYLSULF	RLA026	100.000	60	41	+8			49.67	9.61
	•	100.000	28	33	20			30.33	2.52
6MGS+84-0003									
BM 0 3 - 3 4 - C 0 0 3	RLAG26	1.50	49	32				40.50	12.62
	RLAG26	5.00	48					48.00	
	ALADZ6	16.60	45	40 37				41.00	0.30 5.66
	KLA026	36.00	37	5 Ü				43.50	9.19
	HLAU26	50.00	43	61			•	52.00	12.73
	RLAC 26	136.60	45	43				44.00	1.41
	REACEO	355.50	37	22				29.50	10.01
	RLAUZO	500.00	32	35				33.50	2.12
	RLAUZO	1000.00	36	35				35.50	0.71
	-	1.30	21	26				23.50	3.54
	•	5.00	26	25				25.50	0.71
	-	14.00	25	2 6				26.50	2.12
	-	36.40	21	24				22.50	2.12
	-	50.00	22	30				26.60	5.66
	-	100.60	17	24				20.50	4.95
	•	306.00	43	27				35.00	11.31
	•	500.60	20	20				23.00	4.24
	•	1404.30	23	25				24.60	1.41

			G-PGS	T-PPT
PHENCCOPY CHECK :	TRUE MUTANTS		N-NGS	P-PP#
STERILITY S-9 :	NOT CONTAMINATED	T*-TOXIC	M-MGS	8-66
SAMPLE STERILITY:	NOT CONTAMINATED	INTC-TUO NUMEROUS TO COUNT	L-NLS	I
ACT MIX/PLATE :	5 C O U G S	NATC-NOT ABLE TO COUNT	U-ULS	て一し押

1000

500

20-

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

+ RLA026 HJK	MEAN S.D.	20.00	DISPLAYED OBS & EXP VS DOSE		***
ACTIVATION, TECHNICIAN:			T NOT DISPLAY	**	×
SAMPLE 1D; BMGS-84-0003 LAB; CBBA STRAIN; TA98 DATE; 03/30/84	DOSE UNITS PLATE COUNTS	.00 UCS 60 41 48 .50* UCS 875 837 853 1.00 UCS 49 32 5.00 UCS 48 48 10.00 UCS 45 37 50.00 UCS 43 61 100.00 UCS 45 43 300 UCS 45 61	EVELS USED IN B(1) B(2) 	TEST CHI-SOUARE DF P LOGL	AVERAGE SLOPE (NONLIN. MODEL) = .0000 95% CONF. LIMITS = (.000,******) 40- AVERAGE SLOPE (LINEAR REGR.) =504 95% CONF. LIMITS = (-1.914, .906)

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

SAMPLE ID: BMGS-84-0003 LAB: GBBA ACTIVATION, -STRAIN: TA98 DATE: 03/30/84 TECHNICIAN: MJK

Ö.	552 71 12 12 66	26.2 C	
S.1	100 to 200 • •		
		1	
Z	NG G G G G G NG G G G G G G	99	
MEAN	1	9 N	
	3888 233 255 256 257 257 258		
	1	4	
	\$ \$	20.50 4 35.00 11 DISPLAYED OBS & EXP VS DOSE	×
	!		
	† 	10	X X X
	 	2	TITTE TO POST OF THE TENT
İ		8U1 58	40 30 20
] 	Z O	
		H = 1 8	71-070 0- 4-
15	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	COMPUTATION BUT NOT B(3) 50	100CL 5101 1109 9737 8130 620) 620)
Š	m	7 J 9	LWWW
PLATE COUNTS	22 22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	24 27 00	- 53 - 63 - 63 - 63
E	M		W 11.4
۲. ا	368 368 22 25 22 22 22	13 10 1N B(2) 5624	73 73 73 73 73 73 73 73 73 73 73 73 73 7
	M	1 / 43 USED USED B	6873 6 0823 1 1898 2 4956 MODEL 1
DOSE UNITS			DF 11
Z	\$500 S500 S500 S500 S500 S500 S500 S500	UGS UGS VELS B(1)	TIONNO TI VI
ָ עַוּ	88888888 88888888	1.1	CHI-SOUARE 8.29 11.20 17.31 17.40 OPE (NONL II LIMITS =
200	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2 3 3 - 1	100.00 300.00 DOSE LE (0)	
1	l	38 N 9 D0 B(0) 	T
		AR 26	TEST CHI-SQUAR POISSON 8.2 ADEQUACY 11.2 TOXICITY 1.7 HUTAGENICITY 1.4 AVERAGE SLOPE (NONL 95% CONF. LIMITS 95% CONF. LIMITS
		Ĭ	
		MORE THAN	TEST POISSON ADEGUACY TOXICITY HUTAGENI AVERAGE 95% CO
		MORE ESTS	TEST CHI-SQUARE DF POISSON 8.29 11 68 ADEQUACY 11.20 6 08 TOXICITY 1.40 2.49 AVERAGE SLOPE (NONLIN. MODE) 95x CONF. LIMITS = ()
			<u></u> . •

MUTAGENICITY TESTING OF PURIFIED YELLOW DYE IN SALMONELLA TYPHIMURIUM

IN VITRO ASSAYS WITH SALMONELLA TYPHIMURIUM

OF ARMY DYE PURIFIED YELLOW RESEARCH LAB: GBBA ON 04/06/84

08/27/84

TEST	T V DC +	STANDARD	PLATE	INCORPGRATION
1571	ITPEI	21265245	F 6 7 1 6	7 14 6 6 14 1 6 14 14 1 5 C 14

STRAIN: TA98

-	A			ніѕ	TIDINE :	REVERTA	NTS PE	PLATE	
COMPOUND	C T	PLATE	A	9	c	•	£	MEAN	STD
POS CONTROL 2-NF	RLA026	0.50 3.40	740 250	825 270	817 255			794.00 258.33	46.94
NEG CONTROL DIMETHYLSULF	RLADŽ6	100.00u 100.00u	42 23	31 29	43 20			38.67 24.00	0.66 4.58
BMG S = 3 4 = 4 CD 3	RLACZÓ RLAOZÓ RLAOZÓ RLAOZÓ RLAOZÓ RLAOZÓ	1.60 5.50 16.60 36.60 56.60 100.00 300.00 1.00 30.00 10.00	24 42 52 50 52 63 36 37 28 39 27 20	39 42 74 562 320 224 14 44 21			,	31.50 42.00 50.50 62.00 53.00 62.50 34.50 24.50 24.50 28.50 33.50	10.61 0.00 2.12 16.97 1.41 0.71 2.83 0.36 2.63 14.85 9.19 0.71

PHENOCOPY CHECK: TRUE MUTANTS STERILITY S-9: NOT CONTAMINATED SAMPLE STERILITY: NOT CONTAMINATED ACT MIX/PLATE: SCCUGS	T+-TOX1C	G-P63 N-NG5 M-MGS L-NLS U-ULS	9-PPH 9-PP8 1-#M
--	----------	---	------------------------

Best Available Copy

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW
DYE IN SALMONELLA TYPHIMURIUM

STRAIN, TAGB DAIE: 04/06/84 IECHNICIAN: TRE DOSE UNITS PLATE COUNTS 100 UCS 42 31 43 31.0
DATE:
BAIN, TABB DOSE UNITS PLATE
RAIN. DOSE

STATISTICAL ANALYSIS: MUTAGENICITY OF PURIFIED YELLOW

DYE IN SALMONELLA TYPHIMURIUM

SAMPLE 1D, BMCS-84-0003 LAB; CBEA ACTIVATION, -STRAIN; TA98 DATE; 04/06/84 TECHNICIAN, MJK

MEAN S.D.	24.00 4.58 258.33 10.41 32.50 6.36 24.50 6.36 26.00 2.83 28.50 14.85 33.50 9.19 20.50 71 30.00 2.83	40 XX EXP VS DOSE	× × × × × × × × × × × × × × × × × × ×	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.00 UCS 23 29 20 3.00* UCS 250 270 255 1.00 UCS 37 28 5.00 UCS 29 20 50.00 UCS 29 24 50.00 UCS 27 40 100.00 UCS 20 21 300.00 UCS 20 21	ESTS. 24.000 1.7260 .0000	TEST CHI-SQUARE DF P LOGL	AVERAGE SLOPE (LINEAR REGR.) = .007 95% CONF. LIMITS = (030, .043)