

Year 12 Mathematics Specialist Units 3, 4 Test 1 2020

Section 1 Calculator Free **Complex Numbers and Functions**

STUDENT'S NAME

SOLUTIONS (PRESSER)

DATE: Wednesday 4 March

TIME: 28 minutes

MARKS: 29

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

(a) Express
$$5 cis \frac{5\pi}{6}$$
 in the form $z = a + bi$

$$= 5 \left[cob \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right]$$

$$= -5 \frac{\sqrt{3}}{2} + i \times \frac{5\pi}{2} \frac{1}{2}$$

$$= -5 \frac{\sqrt{3}}{2} + \frac{5\pi}{2} i$$

(b) Express
$$\frac{\overline{2-i}}{(1+i)^2}$$
 in the form $z = a+bi$

$$= \frac{2+i}{2i} \times \frac{i}{i}$$

$$= \frac{2+i}{2i} \times \frac{i}{i}$$

$$= \frac{2i-1}{-2}$$

$$= \frac{1}{2} - i$$

$$= \frac{2+i}{2} \times \frac{i}{i}$$

$$= \frac{1}{2} - i$$

2. (5 marks)

Solve $z^4 + 8i = 0$. Answers may be given in polar form.

$$= \frac{1}{2} = \frac{8^{1/4} \cos\left(-\frac{\pi}{8}\right)}{8}$$

$$Z_1 = 8^{14} \text{ (is } \frac{3\pi}{8}$$

$$Z_2 = 8^{\frac{1}{4}} \text{ is } \frac{7\pi}{8}$$

angle =
$$\frac{2\pi}{4}$$

$$= \frac{4\pi}{8}$$

3. (7 marks)

Consider the expression $z^4 + 3z^3 - 3z^2 + 3z - 4$

Show that z-i is a factor of the above expression. (a)

Z-i is a factor =)
$$z=i$$
 is a root

$$(i)^{4} + 3(i)^{3} - 3(i)^{2} + 3(i) - 4$$

$$= 1 - 3i + 3 + 3i - 4$$

$$= 0$$
State another factor for the above expression.

1/ was i substitutés a expands

[2]

[1]

7+1

V answer

Hence, or otherwise, solve $z^4 + 3z^3 - 3z^2 + 3z - 4 = 0$ (c)

[4]

I quadratic

$$\Rightarrow a=1$$

$$b=3$$

(by inspection)

1 weshicus

$$(7+i)(2-i)(2^2+32-4) = 0$$

c = -4

V factorised

/ solutions

4. (5 marks)

Sketch the function $f(x) = \frac{3x - x^2}{x - 2}$, showing all intercepts, poles and asymptotes. It is not necessary to identify any stationary points.

$$\begin{array}{r}
-x + 1 \\
x - 2 - x^2 + 3x + 0 \\
-x^2 + 2y \\
x + 0 \\
x - 2 \\
2
\end{array}$$

$$f(n) = \frac{2}{x-2} + (-x+1)$$

.. pule
$$x=2$$

oblique $y=-x+1$

asymptote

$$y-int f(0) = \frac{0}{-2}$$

$$= 0$$

rooks
$$O = 3x - x^2$$

= $x(3-x)$

$$\therefore x = 0$$
, 3

5. (6 marks)

Given
$$f(x) = \frac{3}{x^2 - 3}$$
 and $g(x) = \sqrt{x^2 - 1}$

(a) By considering the restricted domain $\{x: x \in \mathbb{R}, x \ge 0, x \ne \sqrt{3}\}$, determine $f^{-1}(x)$ and state the restricted range of $f^{-1}(x)$. [3]

(If
$$y = \frac{3}{x^2 - 3}$$

=> $yx^2 - 3y = 3$
=> $x^2 = \frac{3y + 3}{y}$
 $x = \frac{3y + 3}{y}$
 $x = \frac{3x + 3}{y}$
(only to due to domain)
Range $f'(x) = \frac{3x + 3}{2x}$

(b) Determine an expression for $f \circ g(x)$ and state the domain of $f \circ g(x)$. [3]

$$f(\sqrt{2^{2}-1})$$

$$= \frac{3}{(\sqrt{2^{2}-1})^{2}-3}$$

$$= \frac{3}{(\sqrt{2^{2}-1})^{2}-3}$$

$$fon \sqrt{2^{2}-1} \qquad \chi^{2}-1 > 0$$

$$= \frac{3}{2^{2}-4}$$

$$fon \sqrt{2^{2}-1} \qquad \chi^{2}-1 > 0$$

$$= \frac{3}{2^{2}-4}$$

$$fon \sqrt{2^{2}-4} \qquad \chi^{2}-4 \neq 0$$

$$\chi \neq \pm 2$$

. Oomain $fog(x) = \{x: x \in \mathbb{R}, x \leq -1, x \geq 1, x \neq \pm 2'\}$

Year 12 Mathematics Specialist Units 3, 4 Test 1 2020

Section 2 Calculator Assumed Complex Numbers and Functions

STUDENT'S NAME			
DATE: Wednesday 4 March		TIME: 22 minutes	MARKS: 22
INSTRUCTION	S:		
Standard Items:	Pens, pencils, drawing templates, eraser		
Special Items:	Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)		
Questions or parts of	questions worth more th	nan 2 marks require working to be shown to rece	eive full marks.

This page has been left blank intentionally

6. (11 marks)

(a) Describe fully the shaded region below

Let
$$z = x + iy$$

$$\therefore x + iy + x - iy = 4$$

$$2x = 4$$

$$x = 2$$

[3]

(c) Sketch the set of locus $\left\{z: \left| Arg(z-1) \right| \le \frac{\pi}{4} \right\}$

[3]

(d) The sketch of the locus of a complex number $\{z: |z-6-3i|=3\}$ is given below:

distance from 0

Determine the maximum value for |z| as an exact value.

[2]

$$max |2| = x + 3$$

$$= \sqrt{6^2 + 3^2} + 3$$

$$= \sqrt{45} + 3$$

$$= 3\sqrt{5} + 3$$
Page 3 of 6

7. (6 marks)

Consider the following function

(a) Sketch
$$\frac{1}{f(x)}$$
 [2]

(d) Hence, or otherwise, solve f(x)|f(|x|)| = 1 for $x \ge 0$

 \Rightarrow $|f|x| = \frac{1}{f(x)}$

 $\Rightarrow \alpha = 1, 3$

[2]

graphs intersect

1 rearrange

/ solns

8. (5 marks)

The graph of $f(x) = |x-1| + \left| \frac{x}{2} + 1 \right|$ is given below:

 $\sqrt{\text{vertex}(-1,\frac{5}{2})}$ $\sqrt{\text{inverted}}$

The solution to the equation $a|x+b|+c=|x-1|+\frac{|x|}{2}+1$ is $\{x:-1\leq x\leq 1\}$.

- (a) Sketch a possible graph of g(x) = a|x+b|+c on the axes above. [2]
- (b) Determine the values of the real constants a, b and c. [3]

$$a = -\frac{1}{2} \quad (\text{think gradient})$$

$$b = 1 \quad (\text{think vertex})$$

$$c = \frac{5}{2} \quad (\text{think then } t \neq p)$$