- After performing Expand, we have a prime cover without single cube containment now.
- We want to find a proper subset which is also a cover (irredundant).

• Proposition:

A set of cubes C covers a cube p if and only if C_p is a tautology.

proof:

$$\Rightarrow C \cap p = p$$

$$\Rightarrow (C \cap p)_p = p_p$$

$$\Rightarrow C_p \cap p_p = 1$$

$$\Rightarrow C_p = 1$$

$$<=$$
 $C_p = 1$
=> $C_P \cap P = P$
=> $C \cap P = P$

Example

Ex:
$$p = 1 \ 1 \ 2$$

$$C = 2 \ 1 \ 0$$

 $1 \ 2 \ 1$

$$C_{p} = \begin{array}{ccc} 2 & 2 & 0 \\ 2 & 2 & 1 \end{array}$$

Check tautology(C_p)

If (C_p) is a tautology, C covers p.

Property of Unate Function

• Proposition:

A unate cover is a tautology if and only if it contains a row of 2's.

pf:

(<=) trivial

(=>) Assume the cover represent a monotone increasing function, the function contains 1's and 2's.

The minterm (0,0,....0) must be covered. Unless the cover contains (2,2,....2), the minterm (0,0,...0) will not be covered.

Tautology Check

1. speed-up by unate variables

Let $F(x_1,x_2,...x_n)$, x_1 : positive unate

$$- F(x_1,x_2,...x_n) = x_1A(x_2,...x_n) + B(x_2,...x_n)$$

A: terms with x_1

B: terms without x_1

$$F_{x1} = A + B \quad F_{x1}' = B$$

- If $(F_{x1}, = B)$ is tautology, $F_{x1} = A + B$ is a tautology.
- If $(F_{x1}) = B$ is not a tautology, F is not a tautology.

If x is positive unate, test if F is a tautology.

 $<=>F_x$, is a tautology

Tautology Check

2. Other techniques

- a row of 2's, answer 'Yes'
- a column of all 1's or all 0's, answer 'No'
- compute an upper bound on the no. of minterms of on-set

- n \leq 7, test by truth table

Primes in F

- (1) relatively essential cube c of F (E)
 - F {c} is not a cover
- (2) redundant cubes
 - Totally redundant (R_t)
 a cube covered by relatively essential cubes and Don't care
 - Partially redundant (R_p)

Example

$$F = \{c_1, c_2, c_3\}$$

$$E = \{c_1, c_3\}$$

$$R_t = \{c_2\}$$

$$R_p = \phi$$

$$F = \{c_1, c_2, c_3, c_4\}$$

$$E = \{c_1, c_4\}$$

$$R_t = \emptyset$$

$$R_p = \{c_2, c_3\}$$

- (1) Check whether cubes are relatively essential
 - 1. tautology (F-c)_C
 - 2. If not tautology (F-c)_c, c is relatively essential.
 - (2) Check partially, totally redundant
 - 1. tautology $(E \cup D)_C$ (D : don't care)
 - 2. If yes, c is totally redundant If no, c is partially redundant

- (3) Minimal Irredundant (R_p)
 - Find a minimum subset of partially irredundant set such that combining with relatively essential cubes, it forms a cover.
 - •For each $r \in R_p$, define the minimal set S such that $(R_p S) \cup E \cup D$ is NOT a cover

ex:

$$\begin{split} R_p &= \{c_4, c_3, c_2\} \\ S_4 &= \{\{c_4, c_3\}\} \\ S_3 &= \{\{c_3, c_4\}, \{c_3, c_2\}\} \\ S_2 &= \{\{c_2, c_3\}\} \end{split}$$

 Define a matrix B. Each rows corresponds to a S_i

$$B_{ij} = 1$$
 if R_{pj} in S_i
0 otherwise

Ex:
$$R_p = \{c_4, c_3, c_2\}$$

 $S_4 = \{\{c_4, c_3\}\}$
 $S_3 = \{\{c_3, c_4\}, \{c_3, c_2\}\}$
 $S_2 = \{\{c_2, c_3\}\}$

$$egin{array}{cccc} & c_2 & c_3 & c_4 \\ S_4 & & 1 & 1 \\ S_{3.1} & & 1 & 1 \\ S_{3.2} & & 1 & 1 \\ S_2 & & 1 & 1 \\ \end{array}$$

minimum column cover of B

≡ minimal irredundant cover

- Two things:
 - 1. find minimal set S
 - 2. find minimal column covering

Find Minimal Set S

For each r in R_p, find all minimal sets S

 $(R_p - S) \cup E \cup D$ does not cover r

- \equiv Tautology(($R_p S$) $\cup E \cup D$)_r is not a tautology.
- \equiv Let $A = (R_p)_r$ $B = (E \cup D)_r$

 $A \cup B \equiv 1$ determine all minimal subset $S \subseteq A$ such that $(A - S) \cup B \not\equiv 1$

Find Minimal Set S

Let
$$E \cup D = \emptyset$$

 $A = (R_p)_r$
taut(A)
If A is a unate cover with $(A \equiv 1)$, then
there must be at least one row of 2's in the
cover A
take S to be the set of all such cubes, then
 $A - S \not\equiv 1$
else
binate select x_j
split A_{xj} , A_{xj} ,
 $S_{xj} \leftarrow \text{taut}(A_{xj})$
 S_{xj} , $\leftarrow \text{taut}(A_{xj})$
merge: $S = S_x \square S_x$,
 $(\because (A-S) \not\equiv 1 \Leftrightarrow (A_x - S_x) \not\equiv 1 \text{ OR}$
 $(A_y - S_y) \not\equiv 1$

Let
$$A = (R_p)_r$$
 $B = (E \cup D)_r$
 $A \cup B \equiv 1$

find subset $S \subseteq A$ such that $(A - S) \cup B \not\equiv 1$

If
$$B \neq 0$$
 then

 $\frac{A}{B}$

listed in two parts

Split the function until it becomes unate. If (2, 2, ...2) appears in B part, then there will be no "S" set for this subspace.

Example

$$ex: A = (R_p)_r \qquad B = \emptyset$$

$$x_4x_5x_6$$

$$0 \ 2 \ 2(4) \ \{\{5,7\},\{5,6\},\{4,7\},\{4,6\}\}\}$$

$$1 \ 2 \ 2(5)$$

$$2 \ 0 \ 2(6)$$

$$2 \ 1 \ 2(7)$$

$$2 \ 2 \ 1(8)$$

$$\{\{5,7\},\{5,6\}\}\}_{x_4} \qquad 1 \ 2 \ 1(9) \qquad x_4, \qquad \{\{4,7\},\{4,6\}\}\}$$

$$2 \ 2 \ 2(5) \qquad 2 \ 2 \ 2(4)$$

$$2 \ 0 \ 2(6) \qquad 2 \ 0 \ 2(6)$$

$$2 \ 1 \ 2(7) \qquad 2 \ 1 \ 2(7)$$

$$2 \ 2 \ 1(8) \qquad 2 \ 2 \ 1(8)$$

$$2 \ 2 \ 2(5) \qquad 2 \ 2 \ 2(6) \qquad 2 \ 2 \ 2(4)$$

$$2 \ 2 \ 2(7) \qquad 2 \ 2 \ 2(6) \qquad 2 \ 2 \ 2(6)$$

$$2 \ 2 \ 1(8) \qquad 2 \ 2 \ 1(8) \qquad 2 \ 2 \ 1(8)$$

$$2 \ 2 \ 1(9) \qquad 2 \ 2 \ 1(9)$$