

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 2 Дискретные системы

(Лекция 1)

Дискретные системы определение

- □ Дискретная система
 (система дискретного времени) —
 устройство или программа для
 преобразования одного дискретного
 сигнала в другой по некоторому закону
 - Система имеет вход и выход

Линейность и стационарность

- □ В данной теме рассматриваются только линейные стационарные системы (ЛСС)
 - **Линейность** выполнение принципа суперпозиции
 - Реакция на сумму воздействий есть сумма реакций на отдельные воздействия
 - Стационарность независимость свойств системы от времени
 - Задержка входного сигнала приводит только к такой же задержке выходного сигнала

Свойство причинности

- □ Система, обладающая свойством причинности (causality):
 - Выходной сигнал зависит только от текущего и предыдущих отсчетов входного сигнала (не зависит от будущих отсчетов входного сигнала)

Инерционность

- Чтобы пропускать сигналы
 с разными частотами по-разному,
 выходной сигнал должен зависеть
 от нескольких входных отсчетов
 - Система должна быть инерционной,
 то есть обладать памятью
 - При обработке сигнала
 в него неизбежно вносится задержка

Сущность линейной дискретной обработки — нерекурсивный фильтр

Пример 1: y(k) = x(k) + x(k-1)

Вход	Выход
	• • •
1	• • •
1	1 + 1 = 2
1	1 + 1 = 2
1	1 + 1 = 2
• • •	

Вход	Выход
• • •	• • •
1	• • •
-1	-1 + 1 = 0
1	1 + (-1) = 0
-1	-1 + 1 = 0
• • •	

Вход	Выход
1	
0	0 + 1 = 1
-1	-1 + 0 = -1
0	0+(-1)=-1
1	1 + 0 = 1
0	0 + 1 = 1

Сущность линейной дискретной обработки — рекурсивный фильтр

Пример 2: y(k) = x(k) + y(k-1)

Вход	Выход
• • •	0
1	1 + 0 = 1
1	1 + 1 = 2
1	1 + 2 = 3
1	1 + 3 = 4
• • •	•••

Выходной сигнал *неограниченно возрастает*

Из-за наличия обратных связей рекурсивные фильтры могут быть *неустойчивыми*

Сущность линейной дискретной обработки — рекурсивный фильтр

 \square Пример 3: y(k) = x(k) + 0.5 y(k-1)

Вход	Выход
• • •	0
1	$1 + 0.5 \times 0 = 1$
1	$1 + 0.5 \times 1 = 1.5$
1	$1 + 0.5 \times 1.5 = 1.75$
1	$1 + 0.5 \times 1.75 = 1.875$
1	$1 + 0.5 \times 1.875 = 1.9375$

Переходные процессы в рекурсивных фильтрах являются *бесконечными*