Введение в искусственный интеллект. Машинное обучение Лекция 9. Бустинг

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

1 декабря 2020 г.

AdaBoost

- AdaBoost
- AnyBoost

- AdaBoost
- AnyBoost
- 3 GB / SGB

- AdaBoost
- AnyBoost
- 3 GB / SGB
- TreeBoost

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^T \alpha_t b_t, \alpha_t \in \mathbb{R}.$

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$.

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$.

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

AnyBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от отступа $L(y_i a(x_i))$

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$.

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

AnyBoost

- $oldsymbol{\bullet}$ Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от отступа L(y_ia(x_i))

Gradient Boosting

- Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от пары L(y_i, a(x_i))

ullet Базовый алгоритм $b_t:X o\{-1,+1\}$

- ullet Базовый алгоритм $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} lpha_t b_t(x_i)}$

- ullet Базовый алгоритм $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} lpha_t b_t(x_i)}$
- ullet Нормировка: $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_j} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$

- ullet Базовый алгоритм $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)}$
- ullet Нормировка: $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- ullet Вероятностный вектор $U^m = (u_1, \dots, u_m)$: $\sum_{i=1}^m u_i = 1, u_i \geq 0$,

- ullet Базовый алгоритм $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)}$
- ullet Нормировка: $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- ullet Вероятностный вектор $U^m = (u_1, \dots, u_m)$: $\sum_{i=1}^m u_i = 1, u_i \geq 0$,
- Взвешенное число правильных классификаций алгоритма b(x) по вектору U^m : $P(b; U^m) = \sum_{i=1}^m u_i [b(x) = y_i]$
- Взвешенное число ошибочных классификаций алгоритма b(x) по вектору U^m : $N(b; U^m) = \sum_{i=1}^m u_i [b(x) = -y_i]$

- ullet Базовый алгоритм $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)}$
- ullet Нормировка: $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- ullet Вероятностный вектор $U^m = (u_1, \dots, u_m)$: $\sum_{i=1}^m u_i = 1, u_i \geq 0$,
- Взвешенное число правильных классификаций алгоритма b(x) по вектору U^m : $P(b; U^m) = \sum_{i=1}^m u_i [b(x) = y_i]$
- Взвешенное число ошибочных классификаций алгоритма b(x) по вектору U^m : $N(b; U^m) = \sum_{i=1}^m u_i [b(x) = -y_i]$
- P + N = 1.

Классический AdaBoost – теорема

Пусть A – достаточно богатое семейство базовых алгоритмов.

Теорема

Если для любого нормированного вектора U^m существует алгоритм $b \in A$, т.ч. $N(b; U^m) < \frac{1}{2}$, то минимум аппроксимированного Э.Р. \widetilde{R}_T достигается на:

Классический AdaBoost – теорема

Пусть A – достаточно богатое семейство базовых алгоритмов.

Теорема

Если для любого нормированного вектора U^m существует алгоритм $b \in A$, т.ч. $N(b; U^m) < \frac{1}{2}$, то минимум аппроксимированного Э.Р. \widetilde{R}_T достигается на:

•
$$b_T = \operatorname{arg\,min}_{b \in A} N(b; \widetilde{W}^m)$$

Классический AdaBoost – теорема

Пусть A – достаточно богатое семейство базовых алгоритмов.

Теорема

Если для любого нормированного вектора U^m существует алгоритм $b \in A$, т.ч. $N(b; U^m) < \frac{1}{2}$, то минимум аппроксимированного Э.Р. \widetilde{R}_T достигается на:

- $b_T = \operatorname{arg\,min}_{b \in A} N(b; \widetilde{W}^m)$
- $\alpha_T = \frac{1}{2} \ln \frac{1 N(b; \widetilde{W}^m)}{N(b; \widetilde{W}^m)}$

Алгоритм

• Инициализация весов: $w_i = \frac{1}{m}, i = 1, \dots, m$,

²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Алгоритм

ullet Инициализация весов: $w_i = rac{1}{m}, i = 1, \dots, m$,

\Box ля $t=1,\ldots,T$

• Обучение базового алгоритма $b_t = \arg\min_{b \in A} N(b; \widetilde{W}^m)$,

²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Алгоритм

ullet Инициализация весов: $w_i = rac{1}{m}, i = 1, \dots, m$,

$oxedsymbol{D}$ ля $t=1,\ldots,T$

- ullet Обучение базового алгоритма $b_t = rg \min_{b \in A} \mathcal{N}(b; \widetilde{W}^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)}$,

²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Алгоритм

ullet Инициализация весов: $w_i = \frac{1}{m}, i = 1, \dots, m$,

$oxedsymbol{D}$ ля $t=1,\ldots,T$

- ullet Обучение базового алгоритма $b_t = rg \min_{b \in A} \mathcal{N}(b; \widetilde{W}^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)}$,
- \bullet Обновление весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m,$

²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Алгоритм

ullet Инициализация весов: $w_i = rac{1}{m}, i = 1, \dots, m$,

$oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

- ullet Обучение базового алгоритма $b_t = rg \min_{b \in A} \mathcal{N}(b; \widetilde{W}^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)}$,
- \bullet Обновление весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m,$
- ullet Перенормировка весов $w_i := rac{w_i}{\sum_{i=1}^m w_i}, i=1,\ldots,m.$

²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Замечание относительно шага обновления весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m.$

ullet в ошибается на объекте $x_i \Rightarrow y_i
eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$

- ullet b ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$

- ullet в ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b;U^m)<\frac{1}{2}$ для любого нормированного U^m , то $lpha_t=\frac{1}{2}\ln\frac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>\frac{1}{2}\ln\frac{\frac{1}{2}}{\frac{1}{2}}=\frac{1}{2}\ln 1=0$

- ullet b_t ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b;U^m)<rac{1}{2}$ для любого нормированного U^m , то $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{1}{rac{1}{2}}=rac{1}{2}\ln 1=0$
- ullet Вес объекта x_i увеличивается в e^{lpha_t} раз, когда b_t допускает на нем ошибку,

- ullet в ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b;U^m)<rac{1}{2}$ для любого нормированного U^m , то $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{1}{rac{1}{2}}=rac{1}{2}\ln 1=0$
- ullet Вес объекта x_i увеличивается в e^{lpha_t} раз, когда b_t допускает на нем ошибку,
- ullet Вес объекта x_i уменьшается в e^{lpha_t} раз, когда b_t правильно его классифицирует,

- ullet в ошибается на объекте $x_i \Rightarrow y_i
 eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку $N(b;U^m)<rac{1}{2}$ для любого нормированного U^m , то $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{1}{rac{1}{2}}=rac{1}{2}\ln 1=0$
- ullet Вес объекта x_i увеличивается в e^{lpha_t} раз, когда b_t допускает на нем ошибку,
- ullet Вес объекта x_i уменьшается в e^{lpha_t} раз, когда b_t правильно его классифицирует,
- Т.о. наибольший вес будет у тех объектов, которые чаще неправильно классифицировались предыдущими алгоритмами (т.е. классификатору прежде всего нужно сосредоточиться именно на них!).

• После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:

- После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами \widetilde{w}_i , скорее всего, являются шумовыми выбросами

- После построения некоторого количества базовых алгоритмов (например, $T=10\ldots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами $\widetilde{w_i}$, скорее всего, являются шумовыми выбросами
 - Их нужно исключить из выборки

- После построения некоторого количества базовых алгоритмов (например, $T=10\ldots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами \widetilde{w}_i , скорее всего, являются шумовыми выбросами
 - Их нужно исключить из выборки
 - После чего начать построение композиции заново

О фильтрации выбросов

- После построения некоторого количества базовых алгоритмов (например, $T=10\dots 30$) можно проанализировать распределение весов объектов:
 - ullet Объекты с максимальными весами \widetilde{w}_i , скорее всего, являются шумовыми выбросами
 - Их нужно исключить из выборки
 - После чего начать построение композиции заново
- Бустинг можно использовать как универсальный метод фильтрации выбросов перед применением любого другого метода классификации

Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Теоретическое обоснование "на пальцах": взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Теоретическое обоснование "на пальцах": взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов
 - Т.к. стараемся увеличить отступы $y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)$

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
 - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Теоретическое обоснование "на пальцах": взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов
 - Т.к. стараемся увеличить отступы $y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)$
 - Тем не менее, бустинг не идеален: иногда получается его переобучить

Обобщающая способность бустин<u>га: теор</u>ия³

• Пусть семейство базовых алгоритмов A конечно: $|A| < \infty$,

³R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods".

Обобщающая способность бустинга: теория³

- ullet Пусть семейство базовых алгоритмов A конечно: $|A|<\infty$,
- Ансамбль $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$ (без sign!),

³R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

Обобщающая способность бустинга: теория³

- ullet Пусть семейство базовых алгоритмов A конечно: $|A|<\infty$,
- Ансамбль $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$ (без sign!),
- D вероятностное распределение над $X \times \{-1, +1\}$,

³R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

Обобщающая способность бустинга: теория 3

- Пусть семейство базовых алгоритмов A конечно: $|A| < \infty$.
- Ансамбль $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$ (без sign!),
- D вероятностное распределение над $X \times \{-1, +1\}$.
- S-m независимых примеров из D (например, множество X^m). Тогда верна

³R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods".

Обобщающая способность бустинга: теория³

- ullet Пусть семейство базовых алгоритмов A конечно: $|A|<\infty$,
- Ансамбль $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$ (без sign!),
- D вероятностное распределение над $X \times \{-1, +1\}$,
- S-m независимых примеров из D (например, множество X^m). Тогда верна

Теорема

Для $\forall \theta > 0$, $\forall 0 < \delta < 1$ с вероятностью $1 - \delta$ верно следующее:

$$\mathsf{P}_D(y\mathsf{a}(x) \leq 0) \leq \mathsf{P}_S(y\mathsf{a}(x) \leq \theta) + \mathsf{O}\left(\sqrt{\frac{\ln m \ln |A|}{m\theta^2}} + \frac{1}{m} \ln \frac{1}{\delta}\right)$$

³R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

Обобщающая способность бустинга: теория³

- ullet Пусть семейство базовых алгоритмов A конечно: $|A|<\infty$,
- Ансамбль $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$ (без sign!),
- ullet D вероятностное распределение над $X imes \{-1,+1\}$,
- S-m независимых примеров из D (например, множество X^m). Тогда верна

Теорема

Для $\forall \theta > 0$, $\forall 0 < \delta < 1$ с вероятностью $1 - \delta$ верно следующее:

$$P_D(ya(x) \le 0) \le P_S(ya(x) \le \theta) + O\left(\sqrt{\frac{\ln m \ln |A|}{m\theta^2}} + \frac{1}{m} \ln \frac{1}{\delta}\right)$$

Вывод. Верхняя оценка не зависит от T: с увеличением T растет значение $ya(x) \Rightarrow$ увеличивая θ , уменьшим верхнюю оценку и в итоге улучшим обобщающую способность

³R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

• Что использовать в качестве базовых классификаторов:

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - ullet Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \lessgtr r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \leqslant r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
 - SVM используется редко (обучается достаточно долго, прироста большого не дает)

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \leqslant r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
 - SVM используется редко (обучается достаточно долго, прироста большого не дает)
- Если вдруг при обучении получается нулевая ошибка (N=0), то формула для выбора оптимального коэффициента приобретает вид $lpha=rac{1}{2}\lnrac{1-N+rac{1}{m}}{N+rac{1}{m}}=rac{1}{2}\ln(m+1)$

- Что использовать в качестве базовых классификаторов:
 - Чаще всего используют решающие деревья
 - Также используют совсем вырожденные случаи т.н. "пни": $b(x) = [f_j(x) \leqslant r_j]$, где $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
 - SVM используется редко (обучается достаточно долго, прироста большого не дает)
- Если вдруг при обучении получается нулевая ошибка (N=0), то формула для выбора оптимального коэффициента приобретает вид $lpha=rac{1}{2}\lnrac{1-N+rac{1}{m}}{N+rac{1}{m}}=rac{1}{2}\ln(m+1)$
- Нужно периодически производить фильтрацию выбросов в обучающей выборке

Визуализация работы основных методов классификации

Посмотрим результаты работы основных классификаторов на трех разных задачах⁴.

⁴https:

^{//}scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Визуализация работы основных методов классификации

Посмотрим результаты работы основных классификаторов на трех разных задачах⁴.

⁴https:

//scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html =

Плюсы

• Хорошая обобщающая способность (сложно переобучить)

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

• Чувствителен к выбросам

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема
- Базовые алгоритмы должны быть достаточно простыми, и их должно быть много (а лучше бы наоборот)

Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема
- Базовые алгоритмы должны быть достаточно простыми, и их должно быть много (а лучше бы наоборот)
- Необходимость в достаточно большой обучающей выборке (т.к. нет процедуры бутстрэпа)

Перейдём к более общему случаю:

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent" a c

Перейдём к более общему случаю:

ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent"

$AnyBoost^5 - обоснование$

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq R_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent"

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \widetilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent"

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \tilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

• Пусть $x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent" a c

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \tilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

- Пусть $x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$
- ullet Тогда $\widetilde{R}_T pprox \sum_{i=1}^m L(h_{T-1}(x_i)) + lpha_T \sum_{i=1}^m L'(h_{T-1}(x_i)) y_i b_T(x_i)$

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent" a c

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е. $b_t:X o\mathbb{R}$
- ullet Функции потерь $L(h_T)$, гладкой от отступа $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \tilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки x_0 :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

- ullet Пусть $x = h_{T-1}(x_i) + lpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$
- ullet Тогда $\widetilde{R}_T pprox \sum_{i=1}^m L(h_{T-1}(x_i)) + lpha_T \sum_{i=1}^m L'(h_{T-1}(x_i)) y_i b_T(x_i)$
- $m{\Theta}$ Обозначив за $w_i = -L'(h_{T-1}(x_i))$, получаем $\widetilde{R}_T pprox \sum_{i=1}^m L(h_{T-1}(x_i)) lpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$

⁵Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent"

AnyBoost – обоснование

$$\widetilde{R}_T \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав α_T , переходим от задачи двумерной оптимизации $\widetilde{R}_T \to \min_{\alpha_T,b_T}$ к одномерной (по алгоритму):

AnyBoost – обоснование

$$\widetilde{R}_T \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав α_T , переходим от задачи двумерной оптимизации $\widetilde{R}_T \to \min_{\alpha_T,b_T}$ к одномерной (по алгоритму):

$$\sum_{i=1}^m w_i y_i b_T(x_i) \to \max_{b_T}$$

AnyBoost – обоснование

$$\widetilde{R}_T \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав α_T , переходим от задачи двумерной оптимизации $\widetilde{R}_T \to \min_{\alpha_T,b_T}$ к одномерной (по алгоритму):

$$\sum_{i=1}^m w_i y_i b_T(x_i) \to \max_{b_T}$$

Затем определяем α_T , подставив найденный b_T .

Алгоритм

• Инициализация отступов: $h_0(x_i) = 0, i = 1, \dots, m$,

Алгоритм

ullet Инициализация отступов: $h_0(x_i) = 0, i = 1, \ldots, m$,

$oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

• Вычисление весов $w_i = -L'(h_{t-1}(x_i)),$

Алгоритм

• Инициализация отступов: $h_0(x_i) = 0, i = 1, \dots, m$,

\H Для $t=1,\ldots,T$

- Вычисление весов $w_i = -L'(h_{t-1}(x_i)),$
- Обучение нового базового алгоритма $b_t = \arg\max_{b \in A} \sum_{i=1}^m w_i y_i b(x_i)$,

Алгоритм

• Инициализация отступов: $h_0(x_i) = 0, i = 1, ..., m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- Вычисление весов $w_i = -L'(h_{t-1}(x_i)),$
- ullet Обучение нового базового алгоритма $b_t = rg \max_{b \in \mathcal{A}} \sum_{i=1}^m w_i y_i b(x_i)$,
- ullet Вычисление нового веса $lpha_t = rg \min_{lpha} \sum_{i=1}^m L(h_{t-1}(x_i) + lpha y_i b_t(x_i)),$

Алгоритм

• Инициализация отступов: $h_0(x_i) = 0, i = 1, \dots, m$,

\Box ля $t=1,\ldots,T$

- Вычисление весов $w_i = -L'(h_{t-1}(x_i)),$
- ullet Обучение нового базового алгоритма $b_t = rg \max_{b \in \mathcal{A}} \sum_{i=1}^m w_i y_i b(x_i)$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(h_{t-1}(x_i) + \alpha y_i b_t(x_i)),$
- Обновление отступов $h_t(x_i) = h_{t-1}(x_i) + \alpha_t y_i b_t(x_i)$.

Градиентный бустинг 6 – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества: $\widetilde{R}_T = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$.

⁶Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Градиентный бустинг – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества: $\widetilde{R}_T = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$. Обозначения:

ullet Приближение для объекта x_i на шаге t: $f_t(x_i)$,

⁶Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Градиентный бустинг⁶ – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества: $\widetilde{R}_T = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$. Обозначения:

- Приближение для объекта x_i на шаге t: $f_t(x_i)$,
- Тогда функционал качества примет вид: \tilde{z}

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

⁶Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$ullet$$
 $f_{\mathcal{T}}(x_i) = f_{\mathcal{T}-1}(x_i) - \eta g_i$, где $g_i = L'(f_{\mathcal{T}-1}(x_i), y_i)$

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\bullet$$
 $f_T(x_i) = f_{T-1}(x_i) - \eta g_i$, где $g_i = L'(f_{T-1}(x_i), y_i)$

Сравните с итерацией бустинга:

•
$$f_T(x_i) = f_{T-1}(x_i) + \alpha_T b_T(x_i)$$

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\bullet$$
 $f_T(x_i) = f_{T-1}(x_i) - \eta g_i$, где $g_i = L'(f_{T-1}(x_i), y_i)$

Сравните с итерацией бустинга:

•
$$f_T(x_i) = f_{T-1}(x_i) + \alpha_T b_T(x_i)$$

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\bullet$$
 $f_T(x_i) = f_{T-1}(x_i) - \eta g_i$, где $g_i = L'(f_{T-1}(x_i), y_i)$

Сравните с итерацией бустинга:

•
$$f_T(x_i) = f_{T-1}(x_i) + \alpha_T b_T(x_i)$$

Основная идея градиентного бустинга

Поиск нового базового алгоритма b_T для приближения антиградиента $(-L'(f_{T-1}(x_i), y_i))$, т.е. минимизация квадратичной ошибки:

$$b_T = \arg\min_{b \in A} \sum_{i=1}^m (b(x_i) - (-L'(f_{T-1}(x_i), y_i)))^2$$
.

Алгоритм

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

Алгоритм

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

\Box ля $t=1,\ldots,T$

ullet Обучение нового базового алгоритма $b_t = rg \min_{b \in A} \sum_{i=1}^m \left(b(x_i) + L'(f_{t-1}(x_i), y_i) \right)^2$,

Алгоритм

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

$oxed{\mathsf{Д}}$ ля $t=1,\ldots,T$

- ullet Обучение нового базового алгоритма $b_t = rg \min_{b \in \mathcal{A}} \sum_{i=1}^m \left(b(x_i) + L'(f_{t-1}(x_i), y_i) \right)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(f_{t-1}(x_i) + \alpha b_t(x_i), y_i)$,

Алгоритм

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Обучение нового базового алгоритма $b_t = rg \min_{b \in A} \sum_{i=1}^m \left(b(x_i) + L'(f_{t-1}(x_i), y_i)
 ight)^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(f_{t-1}(x_i) + \alpha b_t(x_i), y_i),$
- Обновление приближений $f_t(x_i) = f_{t-1}(x_i) + \alpha_t b_t(x_i), i = 1, \dots, m.$

Связь градиентного бустинга с другими вариантами бустинга

На самом деле, градиентный бустинг – наиболее общий вариант бустинга:

Связь градиентного бустинга с другими вариантами бустинга

На самом деле, градиентный бустинг – наиболее общий вариант бустинга:

• Если положим $L(y_i, a(x_i)) = L(-y_i a(x_i))$, то получим AnyBoost,

Связь градиентного бустинга с другими вариантами бустинга

На самом деле, градиентный бустинг – наиболее общий вариант бустинга:

- ullet Если положим $L(y_i,a(x_i))=L(-y_ia(x_i))$, то получим AnyBoost,
- ullet Если положим $L(y_i,a(x_i))=e^{-y_ia(x_i)}$ и ограничим $b_t(x_i)\in\{-1,+1\}$, то получим AdaBoost.

Используем не всю обучающую выборку, а случайное подмножество объектов.

⁷Friedman, J. H. (1999). "Stochastic gradient boosting".

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB^7

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

22 / 27

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB⁷

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,

22 / 27

Используем не всю обучающую выборку, а случайное подмножество объектов.

Aлгоритм SGB⁷

• Инициализация приближений: $f_0(x_i) = 0, i = 1, ..., m$,

Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I \subseteq \{1,\ldots,m\}$,
- Обучение нового базового алгоритма $b_t = \arg\min_{b \in A} \sum_{i \in I} (b(x_i) + L'(f_{t-1}(x_i), y_i))^2$,

⁷Friedman, J. H. (1999). "Stochastic gradient boosting".

Используем не всю обучающую выборку, а случайное подмножество объектов.

Aлгоритм SGB⁷

• Инициализация приближений: $f_0(x_i) = 0, i = 1, ..., m$,

Для $t=1,\ldots,T$

- Выбор случайного подмножества $I \subseteq \{1, ..., m\}$,
- Обучение нового базового алгоритма $b_t = \arg\min_{b \in A} \sum_{i \in I} (b(x_i) + L'(f_{t-1}(x_i), y_i))^2$,
- Вычисление нового веса $\alpha_t = \arg\min_{\alpha} \sum_{i \in I} L(f_{t-1}(x_i) + \alpha b_t(x_i), y_i),$

22 / 27

⁷Friedman, J. H. (1999). "Stochastic gradient boosting".

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB⁷

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = rg \min_{b \in \mathcal{A}} \sum_{i \in I} \left(b(x_i) + L'(f_{t-1}(x_i), y_i)
 ight)^2$,
- ullet Вычисление нового веса $lpha_t = rg \min_{lpha} \sum_{i \in I} \mathcal{L}(f_{t-1}(x_i) + lpha b_t(x_i), y_i),$
- ullet Обновление приближений $f_t(x_i) = f_{t-1}(x_i) + lpha_t b_t(x_i), i \in I$.

⁷Friedman, J. H. (1999). "Stochastic gradient boosting".

Используем не всю обучающую выборку, а случайное подмножество объектов.

Алгоритм SGB⁷

ullet Инициализация приближений: $f_0(x_i) = 0, i = 1, \dots, m$,

$oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества $I\subseteq\{1,\ldots,m\}$,
- ullet Обучение нового базового алгоритма $b_t = rg \min_{b \in \mathcal{A}} \sum_{i \in I} \left(b(x_i) + L'(f_{t-1}(x_i), y_i)
 ight)^2$,
- ullet Вычисление нового веса $lpha_t = rg \min_{lpha} \sum_{i \in I} \mathcal{L}(f_{t-1}(x_i) + lpha b_t(x_i), y_i),$
- ullet Обновление приближений $f_t(x_i) = f_{t-1}(x_i) + lpha_t b_t(x_i), i \in I$.

Замечание. Последние два шага можно делать и для всей выборки, но это медленнее (хотя и точнее).

⁷Friedman, J. H. (1999). "Stochastic gradient boosting".

Плюсы SGB

• Уменьшение времени обучения

Плюсы SGB

- Уменьшение времени обучения
 - Меньше объектов на каждом шаге

Плюсы SGB

- Уменьшение времени обучения
 - Меньше объектов на каждом шаге
- Ускорение сходимости

Плюсы SGB

- Уменьшение времени обучения
 - Меньше объектов на каждом шаге
- Ускорение сходимости
 - Меньше шагов

Градиентный бустинг на решающих деревьях

Пусть каждый базовый алгоритм – это CART-дерево $b_t(x) = \sum_{j=1}^{J^t} r_j^t[x \in R_j^t]$, где

⁸Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Пусть каждый базовый алгоритм – это CART-дерево $b_t(x) = \sum_{j=1}^{J^t} r_j^t[x \in R_j^t]$, где

ullet Пространство делится на J^t непересекающихся областей (листов) $R_1^t,\dots,R_{J^t}^t,$

⁸Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Пусть каждый базовый алгоритм – это CART-дерево $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$, где

- ullet Пространство делится на J^t непересекающихся областей (листов) $R_1^t,\dots,R_{J^t}^t,$
- Значение r_j^t в листе R_j^t это среднее значение по обучающим примерам из этой области: $r_j^t = \frac{\sum_{i=1}^m y_i[x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

⁸Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Пусть каждый базовый алгоритм – это CART-дерево $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$, где

- ullet Пространство делится на J^t непересекающихся областей (листов) $R_1^t,\dots,R_{J^t}^t,$
- Значение r_j^t в листе R_j^t это среднее значение по обучающим примерам из этой области: $r_j^t = \frac{\sum_{i=1}^m y_i[x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

Варианты бустинга на деревьях 8 :

⁸Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Пусть каждый базовый алгоритм – это CART-дерево $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$, где

- ullet Пространство делится на J^t непересекающихся областей (листов) $R_1^t,\dots,R_{J^t}^t,$
- Значение r_j^t в листе R_j^t это среднее значение по обучающим примерам из этой области: $r_j^t = \frac{\sum_{i=1}^m y_i [x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

Варианты бустинга на деревьях⁸:

• Общего вида. На каждом шаге находится ровно один параметр α_t : $f_t(x_i) = f_{t-1}(x_i) + \alpha_t b_t(x_i),$

⁸Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

Пусть каждый базовый алгоритм – это CART-дерево $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$, где

- ullet Пространство делится на J^t непересекающихся областей (листов) $R_1^t,\dots,R_{J^t}^t,$
- Значение r_j^t в листе R_j^t это среднее значение по обучающим примерам из этой области: $r_j^t = \frac{\sum_{i=1}^m y_i [x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

Варианты бустинга на деревьях⁸:

- Общего вида. На каждом шаге находится ровно один параметр α_t : $f_t(x_i) = f_{t-1}(x_i) + \alpha_t b_t(x_i),$
- Улучшенный. На каждом шаге находятся J^t параметров α_j^t : $f_t(x_i) = f_{t-1}(x_i) + \sum_{i=1}^{J^t} \alpha_i^t r_i^t [x_i \in R_i^t].$

⁸Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

• Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Бэггинг лучше всего параллелится,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Бэггинг лучше всего параллелится,
- Бустинг позволяет фильтровать выбросы,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Бэггинг лучше всего параллелится,
- Бустинг позволяет фильтровать выбросы,
- Метод случайных подпространств (бутстрэп на признаках) необходим, когда у нас признаков очень много (или много шумовых).

Дорожная карта Scikit-Learn⁹

Источники

Ha основе материалов сайта http://www.machinelearning.ru.

