UVA

Cálculo Elementar - Lista 1 - Funções

Profa: Adriana Ma Balena Tostes

1) Considere a representação gráfica da função y = f(x), e complete as questões:

- a) f(8) =
- b) f(-1) =
- c) Qual o domínio de f?
- d) Qual a imagem de f?
- e) Se f(a) = 3, então a =

2) Para responder os itens abaixo, use o gráfico da função:

- a) g(3) =
- b) g(-2) =
- c) Qual o domínio de g?
- d) Qual a imagem de g?
- e) Se g(a) = 3, explique porque não se pode concluir que a =-2.

3) Observe a função f cujo gráfico está representado:

- a) indique o domínio e a imagem de f.
- b) indique os intervalos onde f é crescente e decrescente.
- c) indique os intervalos onde f > 0 e f < 0.
- d) calcule o valor de f(0) + f(2) + f(4) + f(8) + f(12) + f(24)

Profa: Adriana Ma Balena Tostes

4) Dado o gráfico da função f mostrada, responda.

- a) Qual o domínio e a imagem da função?
- b) Em que intervalos a função é crescente? E constante?
- c) Em que intervalo a função é decrescente?
- d) Qual o valor de $\frac{f(5)}{f(-3)-f(2)}$?

5) Dada a função f: $R \rightarrow R$ (ou seja, o domínio e a contradomínio são os números reais, definida por $f(x) = x^2 - 5x + 6$, calcule:

- a) f(2), f(3) e f(0);
- b) o valor de x cuja imagem vale 2.

6) Considere as funções com domínio nos números reais dadas por: $f(x) = 3x^2 - x + 5$ e g(x) = -2x + 9.

- a) Calcule o valor de $\frac{f(0)+g(1)}{f(1)}$
- b) Determine o valor de x tal que f(x) = g(x).

7) Se uma função f, do primeiro grau, é tal que f(1)=190 e f(50)=2.052, então f(20) é igual a:

- a) 901
- b) 909
- c) 912
- d) 937
- e) 981

8) Determine o domínio das funções:

a)
$$y = \sqrt{3 - x}$$

b)
$$f(x) = \frac{5x}{\sqrt[3]{x^2 - 2}}$$

c)
$$y = \frac{1}{x+7}$$

d)
$$y = \frac{3x+1}{\sqrt{x-3}}$$

Profa: Adriana Ma Balena Tostes

e)
$$y = \frac{\sqrt[4]{5x+2}}{\sqrt{-2x+4}}$$

$$f) f(x) = \frac{x+1}{x^2-7}$$

g)
$$f(x) = \frac{1}{x^2 - 6x + 5} + \frac{1}{x + 4}$$

$$h) f(x) = \frac{\sqrt{x-2}}{\sqrt{x+2}}$$

$$i) \ \frac{\sqrt{1+x}}{\sqrt{x-4}}$$

- 9) O valor de um carro novo é de R\$9.000,00 e, com 4 anos de uso, é de R\$4.000,00. Supondo que o preço caia com o tempo, segundo uma linha reta, o valor de um carro com 1 ano de uso é:
- a) R\$8.250,00
- b) R\$8.000,00
- c) R\$7.750,00
- d) R\$7.500,00
- e) R\$7.000,00
- 10) Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8. Portanto, o valor de f(10) é:
- a) 16
- b) 17
- c) 18
- d) 19
- e) 20
- 11) A soma do coeficiente angular com o coeficiente linear da reta que passa pelos pontos A(1, 5) e B(4, 14) é igual a :
- a) 4
- b) -5
- c) 3
- d) 2
- e) 5
- 12) Em cada um dos itens abaixo, ache o vértice, o eixo de simetria do gráfico e a imagem de cada uma das funções. Classifique o vértice como um ponto de máximo ou de mínimo da função dada. Trace o gráfico e confira com um plotador gráfico.
- a) $f(x) = x^2 + 8x + 9$
- b) $f(x) = 9 x^2$
- c) $f(x) = 9x x^2$
- d) $f = 3 \left(x \frac{5}{3}\right)(x 8)$
- e) $f(x) = -(x + \sqrt{7})(x \sqrt{7})$

Profa: Adriana Ma Balena Tostes

- 13) Chutando-se um bola para cima, notou-se que ela descrevia a função quadrática $h(x) = 48x 8x^2$, onde h é a altura em metros e x o tempo em segundos depois do lançamento. Qual será a altura máxima atingida pela bola?
- 14) Um garoto ao lançar uma pedra para cima, observou que sua trajetória era dada pela função: $F(X) = -x^2 + 4x + 20$, onde h é a altura em metros e x o tempo em segundos. Qual será altura máxima que esta pedra conseguiu atingir?
- 15) Numa sapataria, o custo diário da produção de x sapatos é dado por $P(x) = x^2 40x + 410$, onde P é a produção de sapatos e x a quantidade de sapatos produzida. O dono da sapataria quer saber qual é o custo mínimo da produção diária?
- 16) Uma bola de basquete é arremessada por um jogador para o alto, percorrendo uma trajetória descrita por $h(x) = -2x^2 + 12x$, em que h é a altura, em metros, e x o tempo, em segundos. Qual foi a altura máxima atingida por esta bola?
- 17) Uma bala é atirada de um canhão e descreve uma parábola de equação $y = -3x^2 + 60x$ onde x é a distância e y é a altura atingida pela bala do canhão. Determine:
- a) a altura máxima atingida pela bala;
- b) o alcance do disparo.

- 18) Trace o gráfico e determine o domínio, a imagem, as raízes, o ponto de máximo ou de mínimo e o sinal das funções:
- a) $y = x^2 6x + 5$
- b) $f(x) = -2x^2 + 6x$
- c) $g(x) = 3x^2$
- d) $h(x) = 2x^2 8$

Profa: Adriana Ma Balena Tostes

19) Faça o estudo do sinal das funções do 2º grau:

a)
$$f(x) = x^2 - 1$$

b)
$$f(x) = -x^2 + 2x - 1$$

c) $f(x) = x^2 - 2x + 3$

c)
$$f(x) = x^2 - 2x + 3$$

d)
$$f(x) = x^2 - 6x + 5$$

e)
$$f(x) = -x^2 + 4x - 3$$

f)
$$f(x) = x^2 - x + 2$$

20) Sabe-se que o custo C para produzir x peças de um carro é dado por $C = x^2 - 40x + 2000$. Nessas condições, calcule a quantidade de peças a serem produzidas para que o custo seja mínimo. Calcule também qual será o valor deste custo mínimo.

21) O lucro de uma empresa é dado por L = F - C, onde L é o lucro, F o faturamento e C o custo. Sabe-se que, para produzir x unidades, o faturamento e o custo variam de acordo com as equações: $F(x) = 1500x - x^2 e C(x) = x^2 - 500x$. Nessas condições, qual será o lucro máximo dessa empresa e quantas peças deverá produzir?

22) Na figura temos os gráficos das funções f e g. Se $f(x)=2x^2$, então calcule g(3):

UVA

Cálculo Elementar - Lista 1 - Funções

Profa: Adriana Ma Balena Tostes

Respostas

1) a)
$$f(8) = 5$$
 b) $f(-1) = 1$ c) $[-1,8]$ d) $[1,5]$ e) $a = 6$

2) a) g(3) = -1 b) g(-2) = 3 c) [-2,9] d) [-1,7] e) Porque existe um outro ponto b, entre 6 e 7, tal que g(b) = -2.

3) a)
$$D(f) = [0,24]$$
 Im $(f) = [-5,13]$ b) crescente $[4,12]$ decrescente $[0,4] \cup [12,24]$

c) f > 0 nos intervalos [0,2[e]8,24], f < 0 no intervalo [2,8] d) 16

4) a) D(f) = [-3, 6] b) Im (f) = [-3, 1] ou {3} b) Em nenhum intervalo a função é crescente. No intervalo]2, 6] a função

é constante. c) A função é decrescente no intervalo [-3, 2]. d) 3/4

6) a) 12/7 b) x'=1 e x''=-4/3

7) C

8) a)
$$D =]-\infty,3]$$
 b) $D = IR - \{\pm\sqrt{2}\}$ c) $D = IR - \{-7\}$ d) $D(y) =]3,+\infty[$ e) $D(y) = \left|-\frac{2}{5},2\right|$

f) $D = IR - \{\pm\sqrt{7}\}$ g) D= IR - {-4, 1, 5} h) D = [2,+ ∞ [i) D= {x \in R/x>4}

9) C

10) E

11) E

12) a) V (-4, -7), eixo de simetria: x = -4, Im = [-7, $+\infty$ [

b) V (0, 9), eixo de simetria:x = 0, Im =]- \propto , 9]

c) V (9/2, 81/4), eixo de simetria: x = 9/2, $Im =]- \infty$, 81/4]

d) V (29/6, -361/12), eixo de simetria: x = 29/6, $Im = [-361/12, +\infty]$

e) V (0, 7), eixo de simetria: x = 0 Im = $]-\infty$, 7]

13) 72m

14) 24m

15) 10

16) 18 m

17)a) 300 m b) 20 m

18)

 $\underline{\mathsf{Domf}} = \Re \ \underline{\mathsf{Imf}} = [-4; +\infty[$

zeros: 1 e 5 min.:yv = -4

 $f > 0]-\infty;1[\cup] 5;+\infty[$ f < 0]1;5[

 $\underline{\mathsf{Domf}} = \Re \quad \underline{\mathsf{Imf}} =]-\infty; \frac{9}{2} 1$

zeros: 0 e 3 $máx.:yv = \frac{9}{2}$

 $\max_{x:yy} = \frac{y}{2}$ $f > 0 \]0;3[$ $f < 0 \]-\infty;0[\cup]3;+\infty[$

 $\frac{\text{Domf} = \Re}{\text{zeros: 0}} \quad \text{Imf=[0;+\infty[}$

zeros: 0 min.:yy= 0 f > 0: $\Re * =]-\infty;0[\cup]0;+\infty[$

Domf = \Re Imf = [-8;+ ∞ [
zeros: -2 e 2
min.:yx = -8

min.:yv = -8 $f > 0]-\infty;-2[\cup]2;+\infty[$ f < 0]-2;2[

19) a)
$$f(x) > 0$$
 para $x < -1$ ou $x > 1$ $f(x) = 0$ para $x = -1$ ou $x = 1$ $f(x) < 0$ para $-1 < x < 1$

b) f(x) = 0 para x = 1 f(x) < 0 para $x \ne 1$

c) f(x) > 0 para todo x real

d) f(x) > 0 para x<1 ou x>5 e) f(x) > 0 para 1<x<3 f(x) = 0 para x=1 ou x=5 f(x) = 0 para x=1 ou x=3

f(x)<0 para 1<x<5 f(x)<0 para x<1 ou x>3

f) f(x) > 0 para todo real

20) R= 20, R\$1600

21) R = 500 peças, R\$ 500.000,00

22) g(3) = 6