

Well-defined formulation of the stone puzzle:

states: square content - 5 variables, 3 values each

white (O), black (X), empty (-)

initial state: (OO-XX)

(XX - OO)goal test:

operators:

- MoveToRight: $(O-) \rightarrow (-O)$ - MoveToLeft: $(-X) \rightarrow (X-)$

- JumpToRight: $(OX-) \rightarrow (-XO)$

- JumpToLeft: $(-OX) \rightarrow (XO-)$

number of operators used (1 for all ops) path cost:

Problem search tree and solution:

- valid, reachable states only (subset of the state space)
- symmetric portion of the search tree not shown

Characteristics of the search space:

nb of branches: 2 * 15 = 30

non-terminal nodes: 1 + 2 * 10 = 21

average branching factor: 30 / 21 ≈ 1.43

depth of the 2 solutions: 8

space complexity:

- actual space required = 31 nodes

- theoretical = 1+ 1.43 + 1.43² + ... + 1.43⁸ ≈ 55

Most suitable search algorithm:

(note: for small problems, any algorithm will do!)

- heuristic function? no → non-informed search
- any solution ok? low branching factor → DFS
- optimal solution? low branching factor → BFS,
- variable operator cost? → UCS

Formulation of the chain problem:

<u>states</u>: - set of *n* chains

- chains of k links, circular or not (l = 0 or 1)

- links open or closed (c = 0 or 1)

 \rightarrow { ... (k, l, c) ... } (note: c=0 for k>1)

<u>initial state</u>: { (3,0,0) (3,0,0) (3,0,0) (3,0,0) }

goal state: { (12,1,0) }

operators: OS: open a single link

"open" $(1,0,0) \rightarrow (1,0,1)$

OE: open a link at the end of a chain

 $(k,1,0) \rightarrow (1,0,1) + (k-1,0,0)k > 1$

OM(m): open a link in the middle of a chain

$$(k,0,0) \rightarrow (1,0,1) + (m,0,0)$$
 $k > 2$
+ $(k-m-1,0,0)$ $k-1>m>0$

Tutorial 2

Problem Solving

2-2

operators: CS: close a single link

"close" $(1,0,1) \rightarrow (1,0,0)$

CE(I): close a link at the end of a chain $(1,0,1) + (k,0,0) \rightarrow (k+1,l,0)$

CM: close a link in between two chains $(k,0,0) + (m,0,0) + (1,0,1) \rightarrow (k+m+1,0,0)$

path cost: number of operators applied (1 for all ops)

Optimal solution to the chain problem:

 $\{(3,0,0), (3,0,0), (3,0,0), (3,0,0)\}$

OM(1): $\{(3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,0), (1,0,0)\}$

OS(): $\{(3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,1), (1,0,0)\}$

OS(): $\{(3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,1), (1,0,1)\}$

CM(): $\{ (7,0,0), (3,0,0), (1,0,1), (1,0,1) \}$

CM(): $\{ (11,0,0), (1,0,1) \}$

CE(1): { (12,1,0) }

6 steps only