Reply to Final Office Action dated February 3, 2011

REMARKS

Claims 1-6, 9, 10 and 13-26 are now in the application.

Claims 1-6, 9, 10, 15, 16, 23 and 24 stand rejected under 35 U.S.C. 102(b) as being anticipated by International Publication No. WO 02/096823 to Yamashita et al. (hereinafter also referred to as "Yamashita")¹. Yamashita does not anticipate claims 1-6, 9, 10, 16, 23 and 24.

Claim 1 relates to a cement admixture (i.e. an admixture for cement) that comprises two or more species of copolymers. The polycarboxylic acid copolymer having a polyalkylene glycol side chain recited in Claim 1 is constituted of two or more species of copolymers with different acid values. At least one of the two or more species of copolymers with different acid values has an oxyalkylene group containing 3 or more carbon atoms. Further, the proportion of the copolymer having a polyalkylene glycol side chain containing an oxyalkylene group having 3 or more carbon atoms (hereinafter, also referred to as C3 copolymer) is determined to be 70% by weight or larger, relative to 100% by weight of the total amount of the two or more species of copolymers.

Yamashita does not anticipate claim 1 since, among other things, Yamashita fails to include any description about the proportion of the C3 copolymers to the two or more species of copolymers. The discussion in Yamashita pointed out by the examiner in the office action (page 15, lines 8-11 of Yamashita) refers to a preferable range of the total amount of plural species of constituent units (constituent units (I) and (II)) contained in one species of copolymer. This is clearly different form the preferable range of the proportion of C3 copolymers mentioned above. In other words, the claimed proportion of C3 copolymers is concerned with its amount relative in the polymer total amount of different copolymers; whereas Yamashita disclosure is concerned with monomeric amounts in a particular copolymer.

As shown below, Yamashita does not specifically disclose a cement admixture

¹ The assignee of Yamashita and this application is the same, Nippon Shokubai Co. Ltd ,with Hiromichi Tanaka being a co inventor in both.

Reply to Final Office Action dated February 3, 2011

containing C3 copolymers satisfying the proportion mentioned above as recited in claim 1.

Among the copolymers specifically disclosed in Yamashita, only the copolymer C-8 obtained in Production Ex. 32 shown in Table 7 corresponds to the C3 copolymer. In Examples 28, 32, 36, and 40 in which copolymers C-8 are used, the proportions of the copolymers C-8 to the entire copolymers are respectively 48.3%, 47.1%, 48.5%, and 34.5%. These proportions are all significantly lower than 70% and do not satisfy the range of 70% or more defined in Claim 1 of the present application.

The following discussion sets forth how to determine proportions of copolymers C-8 in the above Examples of Yamashita.

The copolymer C-8 is constituted of three species of constituent units including IPN-50EO3PO having a polyalkylene glycol side chain containing an oxyalkylene group having 3 or more carbon atoms, an acrylic acid (AA), and 2-hydroxyethyl acrylate (HEA). The IPN-50EO3PO is obtained by adding 50 moles of ethylene oxide (EO) to 3-methyl-3-butene-1-ol and further adding 3 moles of propylene oxide (PO) thereto for introducing an oxyalkylene group having 3 or more carbon atoms therein.

Next, only Examples 28, 32, 36, and 40 in Table 9 correspond to Examples of cement admixtures using C-8 corresponding to the C3 copolymer (please see arrowed Examples in the attachment showing Table 9). In each of these examples, the proportion of C-8 as the C3 copolymer to the entire copolymers contained in the cement admixture is important.

Any of the cement admixtures of Examples in Table 9 is constituted of two or more species of copolymers and the copolymers are listed in boxes of "Formulation". Here, the format in Tables 2 to 5 allows one to see the left-hand copolymer to be a copolymer (A) and the right-hand copolymer to be a copolymer (B), out of the copolymers in the box of "Formulation" in Table 9. Then, the C-8 as the C3 copolymer is a copolymer (A) and the proportion (% by weight) thereof relative to the total amount of copolymers is the value in the box of "Polymer (A)" of the item "Combination ratio of polymer" in Table 9.

Accordingly, the proportions of the copolymers C-8 in Examples 28, 32, 36, and 40 are

Reply to Final Office Action dated February 3, 2011

48.3%, 47.1%, 48.5%, and 34.5%, respectively as mentioned above.

Regarding Claim 3, such recites that the ratio of the acid value of the two or more species of copolymers is 3 or less.

As disclosed in the present specification (lines 27 to 32 in page 7), the ratio of the acid value is obtained by dividing the largest acid value by the smallest acid value among the acid values of the copolymers. Here, as disclosed in the present application (lines 16 to 34 in page 8), "the acid value" in the present application is defined as "a ratio (%) of a monomer having an acid group and/or a sodium salt form of the acid group completely neutralized by sodium hydroxide in a monomer component". For example, when the copolymer is obtained by polymerizing a monomer component, representing a mixing weight of a monomer having an acid group in the monomer component as "a", and representing a mixing weight of a monomer not having an acid group as "b", an acid value "A" can be obtained by the following equation:

Acid value "A" =
$$100 \times a / (a+b)$$

In contrast, Yamashita does not disclose the acid value and the ratio of the acid value.

The disclosure of Yamashita pointed out by the examiner (lines 12 to 30 in page 15 of Yamashita) in the present Office Action is "milliequivalents of carboxyl groups" per gram of one species of copolymers and its preferable range being 0.4 to 3.0 meg/g.

As pointed out in the response to the previous Office Action, "the acid value" and "the ratio of the acid value" are conceptually totally different from "milliequivalents of carboxyl groups". Therefore, "milliequivalents of carboxyl groups" being 3 or less does not provide a basis for "the ratio of the acid value" being 3 or less. Accordingly, what is pointed out by the examiner is obviously incorrect.

As shown below, a cement admixture satisfying the above ratio of the acid value is not specifically disclosed in Yamashita.

The ratios of the acid value of two species of copolymers in Examples 28, 32, 36, and 40 in which the copolymers C-8 are used are respectively calculated to be 4.59, 5.29, 7.24, and 3.62. Accordingly, Yamashita does not disclose 3 or less as the ratio of the acid value defined in Claim

Reply to Final Office Action dated February 3, 2011

3 of the present application.

The following discussion sets forth how to determine the ratio of the acid value in the above Examples of Yamashita.

In the calculation of the ratio of the acid value, it is to be noted that the acid value in the present application refers to a ratio (%) of a monomer having an acid group and/or a sodium salt form of the acid group completely neutralized by sodium hydroxide in a monomer component.

Prior to the calculation of the acid values of 5 species of copolymers used in Examples 28, 32, 36, and 40 of Yamashita, the ratios of the acrylic acid (AA) and the maleic acid (MA) contained in the copolymers should be converted to the ratios of their sodium salts.

More specifically, based on Tables 1 and 8, the acrylic acid (AA: molecular mass of 72) is replaced by sodium acrylate (SA: molecular mass of 94) with regard to C-8, A-9, A-11, and D-3, and the maleic acid (MA: molecular mass of 116) is replaced by sodium maleate (SMA: molecular mass of 160) with regard to E-2. Fig. 1 shows the conversion results of the ratios of respective monomer components.

Reply to Final Office Action dated February 3, 2011

Original IPN-50E03PO	100000000000000000000000000000000000000
After conversion IPN-50E03PO SA	
After conversion 88.0 3.4 8.6 A-9 IPN-50 AA HEA tot After conversion IPN-50 SA HEA tot After conversion 84.4 15.6 0.0 A-11 Original AL-75 AA HEA tot After conversion 85.6 14.4 0.0 0.0 D-3 AL-75 SA HEA tot Original AL-75 SA HEA tot After conversion 80.0 20.0 0.0 0.0 E-2 Original IPN-50 MA HEA tot	100.0
A-9 Original IPN-50 AA HEA tot After conversion AL-75 SA HEA TOT AL-75 SA	
Original IPN-50 AA HEA tot After conversion IPN-50 SA HEA tot After conversion 84.4 15.6 0.0 ISA HEA tot Original AL-75 AA HEA tot ISA HEA tot After conversion AL-75 SA HEA tot D-3 Al-75 AA HEA tot After conversion AL-75 SA HEA tot After conversion 75.4 24.6 0.0 O	100.0
Original 87.6 12.4 0.0 After conversion IPN-50 SA HEA tot A-11 84.4 15.6 0.0 SA HEA tot Original AL-75 AA HEA tot After conversion 82.0 18.0 0.0 D-3 AL-75 AA HEA tot Original 80.0 20.0 0.0 At After conversion AL-75 SA HEA tot 75.4 24.6 0.0 O C	
Original 87.6 12.4 0.0 After conversion IPN-50 SA HEA tot A-11 84.4 15.6 0.0 SA HEA tot Original AL-75 AA HEA tot After conversion 82.0 18.0 0.0 D-3 AL-75 AA HEA tot Original 80.0 20.0 0.0 At After conversion AL-75 SA HEA tot 75.4 24.6 0.0 O C	al
Arter conversion 84.4 15.6 0.0 A-11 Original AL-75 AA HEA tot After conversion AL-75 SA HEA tot D-3 Original AL-75 AA HEA tot After conversion AL-75 SA HEA tot Cricinal IPN-50 MA HEA tot	100.0
A-1] Original AL-75 AA HEA tot After conversion AL-75 SA HEA tot D-3 Original AL-75 AA HEA tot Original AL-75 AA HEA tot After conversion AL-75 AA HEA tot After conversion AL-75 SA HEA tot After conversion AL-75 SA HEA tot Original AL-75 SA HEA tot After conversion AL-75 SA HEA tot Original IPN-50 MA HEA tot	al
Original AL-75 AA HEA tor After conversion AL-75 SA HEA tor D-3 AL-75 AA HEA tor Original AL-75 AA HEA tor After conversion AL-75 SA HEA tor E-2 IPN-50 MA HEA tor	100.0
Original 85.6 14.4 0.0 After conversion AL-75 SA HEA tot D-3 BEA HEA tot Tot No.0 BEA HEA Tot After conversion AL-75 SA HEA Tot F-2 IPN-50 MA HEA Ito	
D-3	
D-3 Al75 AA HEA tot Original Al75 SA HEA tot After conversion 75.4 24.6 0.0 E-2 Original IPN-50 MA HEA tot	100.0
D-3 Original AL75 AA HEA tot After conversion AL75 SA HEA tot 75.4 24.6 0.0 E-2 Original IPN-50 MA HEA tot	
Original AL75 AA HEA tot 80.0 20.0 0.0 0.0 After conversion AL75 SA HEA tot 75.4 24.6 0.0 0.0 E-2 IPN-50 MA HEA tot	100.0
Original 80.0 20.0 0.0 After conversion AL-75 SA HEA tot 75.4 24.6 0.0 HEA tot Original IPN-50 MA HEA tot	****
After conversion AL75 SA HEA tot 75.4 24.6 0.0 E-2 Original IPN-50 MA HEA tot	
After conversion 75.4 24.6 0.0 E-2 Original IPN-50 MA HEA tot	100.0
E-2 Original IPN-50 MA HEA to	al
Original IPN-50 MA HEA to	100.0
() Shell (A) become a few and the control of the co	
EXIMINE E AAA AA AA	
9081 921 001	100.0
After conversion IPN-50 SMA HEA tot	
After conversion 87.7 12.3 0.0	100.0

(Fig. 1)

Based on the acid values obtained from the above conversion results, the ratios of the acid values of two species of copolymers in Examples 28, 32, 36, and 40 of Yamashita are calculated. Fig. 2 shows the obtained values.

Reply to Final Office Action dated February 3, 2011

	C3 copolymer	other copolymers	ratio of acid values
Ex.28	C-8	A-9	15.6/3.4=4.59
Ex.32	C-8	A-11	18.0/3.4== 5.29
Ex.36	C-8	D-3	24.6/3.4=7.24
Ex.40	C8	F-2	12.3/3.4== 3.62

(Fig. 2)

Yamashita fails to anticipate the present invention since anticipation requires the disclosure, in a prior art reference, of each and every recitation as set forth in the claims. See Titanium Metals Corp. v. Banner, 227 USPQ 773 (Fed. Cir. 1985), Orthokinetics, Inc. v. Safety Travel Chairs, Inc., 1 USPQ2d 1081 (Fed. Cir. 1986), and Akzo N.V. v. U.S. International Trade Commissioner, 1 USPQ2d 1241 (Fed. Cir. 1986).

There must be no difference between the claimed invention and reference disclosure for an anticipation rejection under 35 U.S.C. 102. See Scripps Clinic and Research Foundation v. Genetech, Inc., 18 USPQ2d 1001 (CAFC 1991) and Studiengesellschaft Kohle GmbH v. Dart Industries, 220 USPQ 841 (CAFC 1984).

In addition, as stated in *Ex parte Levy*, 17 USPQ2d 1461 (USPTO Board of Patent Appeals and Interferences, 1990) "it is incumbent upon the examiner to identify wherein each and every facet of the claimed invention is disclosed in the applied references." This has not been done in the present case as discussed above.

Claims 13 and 14 stand rejected under 35 U.S.C. 103(a) as being unpatentable over Yamashita in view of International Publication No. WO 2004/099100 to Nishikawa². The cited references do not render unpatentable claims 13 and 14. Nishikawa does not overcome the above discussed deficiencies of Yamashita with respect to rendering unpatentable the present invention.

Claims 17-22, 25 and 26 stand rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent Publication No. 2003/0199616 to Yamashita et al. in view of U.S. Patent

Reply to Final Office Action dated February 3, 2011

Publication No. 2004/0107876 to Tomita³. The cited references do not render unpatentable claims 17-22, 25 and 26. Tomita does not overcome the above discussed deficiencies of Yamashita with respect to rendering unpatentable the present invention.

In view of the above, consideration and allowance are respectfully solicited.

In the event the Examiner believes an interview might serve in any way to advance the prosecution of this application, the undersigned is available at the telephone number noted below.

The Office is authorized to charge any necessary fees to Deposit Account No. 22-0185, under Order No. 21581-00361-US1 from which the undersigned is authorized to draw.

Dated: April 28, 2011

BAA

Respectfully submitted,

Attorney for Assignee

Electronic signature: /Burton A. Amernick/
Burton A. Amernick
Registration No.: 24,852
CONNOLLY BOVE LODGE & HUTZ LLP
1875 Eye Street, NW
Suite 1100
Washington, DC 20006
(202) 331-7111
(202) 293-6229 (Fax)

² The assignee of Nishikawa and this application is the same, Nippon Shokubai Co. Ltd, with Tomiyasu Ueta and Hiromichi Tanaka being co inventors in both.

The assignee of Tomita and this application is the same, Nippon Shokubai Co. Ltd.

YAMASHITA

[Table 9]

molymer (relatives polyathy) bus a montrol of relatives by productive (relatives by productives by makes) Approximation of productives by productives by productives by makes) Approximation of productives by productives by productives by makes) Approximation of productives by productives by productives by productives by productive by makes) Approximation of productives by produc						Addition level of solid matter component (mass%)/cement	kition level of solid netter companent (mass%)/cement	Addition level polymer (net amount (% by mess)	Addition level of polymer (net amount) (% by mees)	Total addition savel of	Total addition level of AD	Total addition layel of	Combination r of polymer (%)	Combination ratio of polymer (%)	T.	Flow value (mm)	e (mm)	
Example 22 Formulation BI 556 A-4 A-5 U.20 0.12 0.18 0.16 0.29 1.18 0.16 0.29 4.11 0.16 0.29 4.14 0.00 1.18 0.11 0.01 <t< th=""><th>······································</th><th></th><th>Formulation of mortar</th><th>§ 8 0 8</th><th></th><th></th><th>Polymer (B) (solid matter component)</th><th>Polymar (A) (net amount)</th><th>Polymer (B) (net amount)</th><th>polymer (net amount) (mass%) /pement</th><th>manamer (relativa to polymer % by mass)</th><th>polyskylene glycol (relativs to polymer % by mass)</th><th>Polymer Z</th><th>Polymar (E)</th><th>efter 5 min</th><th></th><th></th><th>after 93 min</th></t<>	······································		Formulation of mortar	§ 8 0 8			Polymer (B) (solid matter component)	Polymar (A) (net amount)	Polymer (B) (net amount)	polymer (net amount) (mass%) /pement	manamer (relativa to polymer % by mass)	polyskylene glycol (relativs to polymer % by mass)	Polymer Z	Polymar (E)	efter 5 min			after 93 min
Example 23 Formulation B 256 A-B-A-1 6.23 0.19 0.101 0.116 0.218 18.05 10.0 6.92 17.0 6.30 148 14.1 14.1 Example 23 Formulation B 266 A-B-A-1 0.12 0.24 0.109 0.104 0.291 18.00 6.92 17.0 6.20 148 14.1 14.1 14.1 14.1 14.1 14.1 14.1				3.5%	<u> </u>	-	0.12	0.191	0,108	0.299	2,89	4.11	63.9	36.1	125	7.2	134	388
Example 24 Formulation B 75.6 A-5-A-10 0.13 0.24 0.109 0.104 0.291 1650 647 647 677 62.3 146 144 154 154 154 154 154 154 154 154 154				38.6	~~~	4	0.15	0.201	0,115	0.318	13.45	707	83.8	38.4	150	34.	142	128
Example 25 Formulation B 556 A-94-10 0.13 0.24 0.116 0.127 0.139 10.16 6.22 6.17 10.19 10.		Evenols 54	Formulation B	35.6	****	-	0.24	0,100	0.164	0.291	18,83	6.92	37.0	83.0	148	**	134	115
Example 20 Formulation B 256 O-6 A-9 0.05 0.16 0.15 0.134 0.256 6.62 0.077 1.47 0.82 0.15 100 155 148 157 155 Example 20 Formulation B 256 O-7 A-9 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.15		Frame's 75	Formulation B	35.8		ļ	0.24	0.116	6.192	0.309	12,85	6,47	37.7	62.3	148	255	53	*
Example 27 Formulation B 256 G-7-R-9 0.15 0.15 0.13 0.134 0.204 6.12 40.2 6.12 40.2 6.12 40.2 6.13 1.31 1.51 1.52 1.51 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.52 1.51 1.51 1.51 1.52 1.51 1.51 1.51 1.52 0.17 0.15 0.		Evanola M	Formulation B	25.8	*****	ļ	0,18	0.154	0.161	0.328	10,16	6,52	50.5	49.5	£,	160	23	\$
Example 28 Formulation B 56.1 56.2 0.28 0.18		Example 27	Formitation 8	35.8	0.714-9	ļ	0.15	0,132	0.134	0.288	8.52	6,12	49.5	50.5	148	323	155	146
Example 28 Comulation B 5.5.8 G-56-A-11 G.20 G.054 G.179 G.233 5.89 6.71 2.31 78-9 143 158 158 Example 38 Formulation B 25.6 G-6-A-11 G.20 G.28 G.164 G.186 G.286 6.59 47.1 22.9 138 15.8 Example 31 Formulation B 25.8 G-7-A-11 0.15 0.16 0.187 0.288 6.29 4.283 6.29 4.0 146 188 18.8 6.29 4.0 18.8 6.29 4.283 6.29 4.0 18.8 6.29 4.283 6.29 4.0 18.8 6.29 4.283 6.29 4.0 18.8 6.29 4.283 6.29 4.0 18.8 6.29 4.283 6.29 4.283 6.29 4.283 8.29 4.28 7.1 18.8 18.2 18.8 18.2 18.8 18.8 6.29 4.283 8.29 4.283 8.29 4.283 <td>8</td> <td>E. months 23</td> <td>Formulation B</td> <td>35.5</td> <td>C-8-9</td> <td>ļ</td> <td>0.18</td> <td>0.151</td> <td>0,181</td> <td>0.312</td> <td>20.77</td> <td>7.47</td> <td>48.3</td> <td>21.3</td> <td>138</td> <td>157</td> <td>152</td> <td>142</td>	8	E. months 23	Formulation B	35.5	C-8-9	ļ	0.18	0.151	0,181	0.312	20.77	7.47	48.3	21.3	138	157	152	142
Example 31 Formulation B 25.6 C-6-47-11 0.15 0.29 0.164 0.165 0.289 0.287 28.65 5.06 47.1 6.29 136 159 158 1	1	C	Formulation B	35.8	100	ļ	0.20	0.084	0.179	0.233	5.88	6.73	23.1	76.3	143	158	158	20
Example 31 Corrulation 256 C-7-41 0.15 0.15 0.18 0.29 0.29 0.18 0.29 0.29 0.18 0.29 0.29 0.18 0.18 0.28 0.28 0.29 0.18 0.18 0.28 0.28 0.29 0.29 0.18 0.18 0.28 0.28 0.29 0.29 0.18 0.28 0.28 0.29 0.29 0.18 0.28 0.29<		C. C	d containing a	9.5.8		ļ.,	8.28	0.184	0.185	0.348	32,06	8.50	47.1	52.8	138	153	123	133
Example 37 Formulation B 256 C-8-4-11 022 0.010 0.161 0.185 0.286 42.83 0.336 47.1 529 145 155 148 Example 37 Formulation B 256 C-3-4-11 0.056 0.200 0.072 0.189 0.289 38.79 4.28 28.6 17.4 140 156 158 Example 38 Formulation B 256 C-3-6-0-3 0.15 0.16 0.164 0.180 0.324 7.42 3.56 80.7 49.3 157 188 152 Example 38 Formulation B 256 C-3-6-0-3 0.15 0.16 0.187 0.180 0.324 7.42 3.56 80.7 49.3 157 188 157 Example 38 Formulation B 256 C-3-6-0-3 0.15 0.16 0.151 0.160 0.314 1.796 4.27 3.56 80.7 19.7 189 157 Example 39 Formulation B 256 C-3-6-0-3 0.15 0.15 0.15 0.15 0.15 0.284 1.60 1.07 1.70 1.90 1.90 1.91 1.90 Example 39 Formulation B 256 C-3-6-0-3 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15		EXECUPION ON	E continue de la continue de	8 14		1	0.25	0.133	0,165	0,297	28.85	5,06	46.0	54.0	145	152	148	3
Example 43 Formulation B 25.6 C-3 ft-11 G06 G30 G072 G189 G289 36.76 4.28 26.6 73.4 140 158 6.7 Example 33 Formulation B 25.6 C-3 ft-13 0.16 0.164 0.160 0.324 7.42 3.65 50.7 49.3 158 </td <td>j</td> <td></td> <td></td> <td>9 % 6</td> <td></td> <td>1</td> <td>11.28</td> <td>0.181</td> <td>0.185</td> <td>0.336</td> <td>42.83</td> <td>6.33</td> <td>47.1</td> <td>52.9</td> <td>135</td> <td>129</td> <td>148</td> <td>134</td>	j			9 % 6		1	11.28	0.181	0.185	0.336	42.83	6.33	47.1	52.9	135	129	148	134
Example 34 Formulation B 25.6 C-6 C-3 0.20 0.16 0.164 0.160 0.324 742 0.565 50.7 49.3 152 166 159 Example 34 Formulation B 25.6 C-6 C-3 0.15 0.16 0.164 0.102 0.140 0.272 0.136 1.03 0.131 1.036 0.234 1.00 1.07 1.07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				320	~~	-	0.30	0.072	0.198	0.268	38.76	4.28	28,6	73.4	3.50	158	152	144
Example 35 Formulation B 256 C-7 C-2 0.15 0.14 0.102 0.140 0.272 3.73 0.01 48.5 51.5 157 158 163 163 Example 35 Formulation B 256 C-7 C-2 0.15 0.14 0.151 0.150 0.234 1.60 1.97 2.20 7.70 150 161 160 160 Example 35 Formulation B 25.6 C-7 E-2 0.15 0.14 0.155 0.234 1.60 1.97 2.20 7.70 150 161 160 160 Example 40 Formulation B 25.6 C-7 E-2 0.15 0.14 0.150 0.234 1.60 1.97 2.20 7.70 150 161 160 160 Example 41 Formulation B 25.6 C-7 E-2 0.15 0.14 0.150 0.239 0.239 0.2024 7.46 0.15 0.15 150 150 150 150 150 150 150 150 150 1		EXEMPRE 30		35.6		1	8.16	0.164	0,160	0.324	7,42	3,55	50.3	49.3	£25	388	159	35
Example 39 Formulation B 255		Transmit of		3 5 6	:::::::	1	6.14	0.132	0,140	0.272	3,73	3.01	48.5	, 13	123	881	23	25
Example 37 Formulation B 256 G-3 D-3 0.06 0.18 0.054 0.180 0.234 160 1.07 230 77.0 150 161 150 Example 37 Formulation B 256 C-0 E-2 0.15 0.12 0.12 0.195 0.283 5.60 0.283 1.05 0.29	1			38.6	****	-	0.16	0.151	0.160	0.311	17.96	4.37	85 85 85	53.55	148	162	128	3
Formulation B 25.6 C-0FE-2 0.15 0.12 0.123 0.185 0.283 6.78 38.8 61.2 138 157 153 Formulation B 25.6 C-7FE-2 0.15 0.20 0.114 0.109 0.283 980 6.46 40.2 59.8 142 155 152 Formulation B 25.6 C-0FE-2 0.15 0.23 0.103 0.105 0.298 20.24 7.46 6.5 135 155 150 Formulation B 25.6 C-0FE-2 0.04 0.24 0.235 10.73 6.34 15.0 85.0 140 156 153 Formulation B 25.6 C-0FE-2 0.04 0.24 0.235 10.73 6.34 15.0 85.0 140 156 153	`	┈		35.8		_	3.18	0.054	Ø.180	0.234	1,60	191	23.0	77.0	150	181	8	155
Formulation B 25.6 C-7 E-7 613 613 6114 0189 0283 5490 646 402 55.6 142 155 152 Formulation B 25.8 C-0 Fe-2 6115 0123 0103 0105 0298 20.24 746 34.5 66.5 123 155 150 Formulation B 25.8 C-2 E-2 6.04 0.24 0.036 0.203 0.233 10.73 6.34 15.0 85.0 140 156 153 Formulation B 25.6 C-2 E-2 6.04 0.24 0.036 0.203 0.203 10.73 6.34 15.0 85.0 140 156 153 Formulation B 25.6 C-2 E-2 6.04 0.24 0.036 0.203		Example 38	Formulation B	25.8	1-9-0-1 10-0-1	L	0.23	0,123	0.195	9318	12.65	6,78	38.8	81.2	38	157	2	200
Formulation B 25.6 C-e/fc-2 0.15 0.15 0.103 0.195 0.238 20.24 746 34.5 66.5 135 156 150 Formulation B 25.6 C-e/fc-2 0.04 0.24 0.036 0.203 0.239 10.73 6.34 15.0 85.0 140 156 153 A Particulation B 25.6 C-e/fc-2 0.04 0.24 0.036 0.203 0.239 10.73 6.34 15.0 85.0 140 156 153 A Particulation B 25.6 C-e/fc-2 0.04 0.24 0.036 0.203 0.239 10.73 6.34 15.0 85.0 140 156 153 A Particulation B 25.6 C-e/fc-2 0.04 0.24 0.036 0.203 0.239 10.73 6.34 15.0 85.0 140 156 153		Example 32	Freedation B	8 9%	12-12	L	0.20	0.114	0.189	0.283	8,80	6.46	40.2	25.6	142	155	152	3
Formulation B 25.6 G-3 E-2 0.04 0.24 0.636 0.203 0.239 10.73 6.34 15.0 85.0 140 156 153	1	Evenolis 47	Coccumpation B	98.6	100	-	0.33	0.103	0.195	0.298	20.24	7.46	34,5	65.5	135	155	8	148
Solver (A)	`	Example 45		25.6			0.24	0.036	8,203	0.239	10.73	6.34	(80)	85.0	140	156	153	133
Soulverse (A)		- Commenter of the Comm	7	-		age of the contract of the con												
() January					≪													
					en services	(0)												