Dominik Wawszczak numer indeksu: 440014

numer grupy: 6

Zadanie 2.1

Rozpatrzmy gramatykę bezkontekstową $\mathcal{G} = (\{a,b\},\{S,X,Y,Z\},P,S)$ z produkcjami:

- \bullet $S \longrightarrow aXbYa$,
- $X \longrightarrow ZaXb \mid \varepsilon$,
- $Y \longrightarrow bYaZ \mid \varepsilon$,
- $Z \longrightarrow bZ \mid \varepsilon$.

Rozpocznijmy od udowodnienia, że X generuje wszystkie słowa postaci $b^{n_1}ab^{n_2}a\dots ab^{n_k}$, gdzie $n_k=k-1$. W tym celu skorzystamy z indukcji matematycznej po długości słowa w generowanego przez X.

Pierwszy krok: Jeżeli |w| = 0, to $w = \varepsilon$, czyli k = 1, a $n_1 = 0 = k - 1$.

<u>Krok indukcyjny:</u> Dla słowa w o długości n większej niż 0 pierwszą użytą produkcją musi być $X \longrightarrow ZaXb$. Łatwo zauważyć, że Z generuje język b^* , zatem dla pewnego $w' = b^{n_1}ab^{n_2}a\dots ab^{n_k}$, gdzie $n_k = k-1$, zachodzi

$$w = b^{n_0}aw'b = b^{n_0}ab^{n_1}ab^{n_2}a\dots ab^{n_k+1}$$

Zmieniając nieco oznaczenia kolejnych wykładników dostajemy tezę.

Wykażemy teraz, że każde słowo postaci $b^{n_1}ab^{n_2}a\dots ab^{n_k}$, gdzie $n_k=k-1$ jest generowane przez X. Niech więc $w=b^{n_1}ab^{n_2}a\dots ab^{n_k}$, gdzie $n_k=k-1$. Skorzystajmy k-1 razy z produkcji $X \longrightarrow ZaXb$, a następnie z produkcji $X \longrightarrow \varepsilon$, otrzymując

$$\underbrace{ZaZa\dots aZa}_{k-1 \text{ wystąpień } Za} b^{k-1}.$$

Z każdego nieterminala Z możemy uzyskać odpowiednią liczbę wystąpień smymbolu b, otrzymując słowo w, co kończy dowód.

Analogicznie dowodzimy, że Y generuje wszystkie słowa postaci $b^{m_1}ab^{m_2}a\dots ab^{m_l}$, gdzie $m_1 = l-1$.

Z powyższego wnioskujemy, że S, oprócz słowa a, generuje słowa postaci

$$ab^{n_1}ab^{n_2}a...ab^{n_k}bb^{m_1}ab^{m_2}a...ab^{m_l}a$$
, gdzie $n_k = k-1$ oraz $m_1 = l-1$.

Inaczej, po zmienieniu oznaczeń i uproszczeniu, są to słowa postaci

$$ab^{n_1}ab^{n_2}a\dots ab^{n_k}a$$
, gdzie $\exists_{i\in[1,k]\cap\mathbb{Z}} n_i=k$.

Łatwo też pokazać, że każde słowo tej postacji jest generowane przez S. Dla $w = ab^{n_1}a \dots ab^{n_k}a$ takiego, że $n_i = k$, dla konkretnego $i \in [1, k] \cap \mathbb{Z}$, po skorzystaniu z produkcji $S \longrightarrow aXbYa$ wystarczy z X wygenerować słowo $b^{n_1}a \dots ab^{n_{i-1}}ab^{i-1}$, a z Y słowo $b^{k-i}ab^{n_{i+1}}a \dots ab^{n_k}$.

Z powyższego wynika, że $L(\mathcal{G}) = L_{\exists}$, co kończy rozwiązanie zadania.

Zadanie 2.2

Na początek zauważmy, że

$$L_{\forall} = \left\{ a \left(b^n a \right)^n : n \in \mathbb{Z}^+ \cup \{0\} \right\},\,$$

co wynika wprost z definicji języka L_{\forall} . Wnioskujemy stąd, że dla każdego $n \in \mathbb{Z}^+$ istnieje dokładnie jedno słowo $w \in L_{\forall}$ spełniające $\#_a(w) = n$ i jest to słowo $a \left(b^{n-1} a \right)^{n-1}$.

Udowodnimy, że język L_{\forall} nie jest bezkontekstowy. W tym celu skorzystamy z lematu o pompowaniu dla języków bezkontekstowych. Niech więc N będzie stałą z lematu o pompowaniu dla języka L_{\forall} .

Weźmy słowo $w = a (b^N a)^N \in L_{\forall}$. Wówczas $|w| \geqslant N$, zatem istnieje faktoryzacja

$$w = prefix \cdot left \cdot infix \cdot right \cdot suffix$$

taka, że dla dowolnego $k \in \mathbb{Z}^+ \cup \{0\}$ zachodzi

$$prefix \cdot left^k \cdot infix \cdot right^k \cdot suffix \in L_{\forall},$$

przy czym $|left \cdot right| \ge 1$ oraz $|left \cdot infix \cdot right| \le N$. Niech $m = |left \cdot right|$. Oczywiście $1 \le m \le N$.

Z powyższego wnioskujemy, że $\#_a\left(left \cdot infix \cdot right\right) \leqslant 1$, mamy więc dwa przypadki:

1. $\#_a(left \cdot right) = 0$

Wtedy $\#_b(left \cdot right) = |left \cdot right| = m$. Rozpatrzmy słowo

$$w' = prefix \cdot left^2 \cdot infix \cdot right^2 \cdot suffix.$$

Z lematu o pompowaniu wynika, że $w' \in L_{\forall}$. Zauważmy, że

$$\#_a(w') = N+1 = \#_a(w) \text{ oraz } \#_b(w') = N^2 + m > N^2 = \#_b(w),$$

zatem $w' \neq w$. Otrzymujemy więc sprzeczność z poczynioną na początku obserwacją.

2. $\#_a(left \cdot right) = 1$

Wówczas $\#_b(left \cdot right) = |left \cdot right| - 1 = m - 1$. Ponownie będziemy rozpatrywać słowo

$$w' = prefix \cdot left^2 \cdot infix \cdot right^2 \cdot suffix,$$

które oczywiście należy do języka L_{\forall} . Niech $v=a\left(b^{N+1}a\right)^{N+1}\in L_{\forall}$. Łatwo zauważyć, że

$$\#_a(w') = \#_a(w) + 1 = N + 2 = \#_a(v).$$

Ponadto

$$\#_b(w') = \#_b(w) + m - 1 = N^2 + m - 1 \leq N^2 + N - 1 < (N+1)^2 = \#_b(v),$$

toteż $w' \neq v$. Tym razem również dostajemy sprzeczność z obserwacją z początku, co kończy rozwiązanie zadania.