Fakultät für Elektro- und Informationstechnik, Professur für Grundlagen der Elektrotechnik und Elektronik

FliK Modul 2020

# **Data Pipeline and Keras**

Steffen Seitz, Marvin Arnold & Markus Fritzsche

Prof. Ronald Tetzlaff

Dresden, 19-23.10.

# **Data Pre-Adjustments**Normalization

Data is normalized, before given to the network.



For **skewed classes**, learning will be slower!

This is why you need to scale the input values to have unit variance and zero mean:



### **Data Pre-Adjustments**

### Train Test Validation splitting





### **Label Pre-Adjustments**

## One-Hot Encoding

| index | label          |  |  |  |  |  |
|-------|----------------|--|--|--|--|--|
| 0     | airplane (0)   |  |  |  |  |  |
| 1     | automobile (1) |  |  |  |  |  |
| 2     | bird (2)       |  |  |  |  |  |
| 3     | cat (3)        |  |  |  |  |  |
| 4     | deer (4)       |  |  |  |  |  |
| 5     | dog (5)        |  |  |  |  |  |
| 6     | frog (6)       |  |  |  |  |  |
| 7     | horse (7)      |  |  |  |  |  |
| 8     | ship (8)       |  |  |  |  |  |
| 9     | truck (9)      |  |  |  |  |  |
|       |                |  |  |  |  |  |
|       |                |  |  |  |  |  |



| lah al     | index |   |   |   |   |   |   |   |   |   |  |  |
|------------|-------|---|---|---|---|---|---|---|---|---|--|--|
| label      | 0     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |
| airplane   | 1     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| automobile | 0     | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| bird       | 0     | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| cat        | 0     | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| deer       | 0     | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |  |
| dog        | 0     | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |
| frog       | 0     | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |  |  |
| horse      | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |
| ship       | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |  |
| truck      | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |

original label data

one-hot-encoded label data



# The Keras Software & Hardware Stack

Keras is a "top level" python class inheriting from other important liberies written in python.

It inhertis neural networks functions from packages like tensorflow (Google) or torch (Facebook).





### **Keras Sequential API**

Lets classify cloths (10 classes)!







### **Keras Sequential API**

Lets classify cloths (10 classes)!

#### Sequential API



#### Load Data:

```
fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
```

#### Define Model:

```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
```

#### Define Optimizer:

#### Train the Model

```
model.fit(train_images, train_labels, epochs=5)
```

#### Test the Model

```
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```

#### Use model to make predictions:

```
predictions = model.predict(test_images)
```



#### **Keras Functional API**

Lets classify cloth and if is's female or male clothing with the same **neural network**! We gonna need **branching** for this which is part of the more flexibel **Functional API**.



#### **Define Model:**

```
# input layer
data = Input(shape=(28,28))
# feature extraction
hidden1 = Dense(128, activation='relu')(data)
hidden2 = Dense(128, activation='relu')(hidden1)
# classification
class1 = Dense(1, activation='softmax')(hidden2) # male of female clothing?
class2 = Dense(10, activation='softmax')(hidden2) # classification color
# output
model = Model(inputs=data, outputs=[class1, class2])
```

Everything else stays the same!



## 4. Exercise

Let's train our first classifier with Keras!

