Zadanie 1.

Dana jest transmitancja operatorowa układu otwartego $G_0(s)$ (tabela – wybierasz wariant zgodny z ostatnią cyfrą wyniku dzielenia mod 43 numeru Twojego albumu).

- 1. Narysuj asymptotyczne charakterystyki częstotliwościowe układu otwartego (wykorzystaj układ współrzędnych umieszczony na stronie przedmiotu) i na ich podstawie:
 - A. Odczytaj jakie sygnały ustalą się na wyjściu tego układu jeśli na wejście podamy kolejne sinusoidy o amplitudzie równej 1 i pulsacjach 1 i 10.
 - B. **Zaznacz** na charakterystykach i **podaj** ile wynosi pulsacja odcięcia ω_0 , zapas fazy $\Delta \varphi$, pulsacja dla argumentu $-\pi \omega_{-\pi}$, zapas modułu ΔL .
 - C. Oblicz okres drgań układu na granicy stabilności.
 - D. Jakie opóźnienie w pomiarze uchybu regulacji spowoduje dwukrotne zmniejszenie zapasu fazy układu zamkniętego?
 - E. Jakie dodatkowe wzmocnienie/tłumienie w układzie otwartym zwiększy dwukrotnie zapas modułu układu zamkniętego.
- 2. Następnie powtórz punkty od A do E (z punktu 1) obliczając wartości dokładne i zestaw je w tabeli z wartościami uzyskanymi na podstawie charakterystyk asymptotycznych.
- 3. Oblicz wartość współczynnika wzmocnienia układu zamkniętego.
- 4. Oblicz uchyb ustalony dla wymuszenia u(t) = 1(t) w układzie zamkniętym.
- 5. Dla jakiej wartości współczynnika wzmocnienia regulatora proporcjonalnego, układ zamknięty będzie wykazywał zapas fazy $\frac{\pi}{9}$. Jaki będzie wówczas zapas modułu?

Nie stosuj edytora tekstu, zeskanuj lub zrób zdjęcia, sprawdź czytelność przesyłanych materiałów.

wariant	Transmitancja $G_0(s)$
0	$\frac{(\sqrt{10}s+1)}{\sqrt{10}s(10s+1)^2(0.1s+1)}$
1	$\frac{10(10s+1)}{s(\sqrt{10}s+1)(0,01s+1)^2}$
2	$\frac{(10s+1)}{s(s+1)(\sqrt{0,001}s+1)^2}$
3	$\frac{\sqrt{10}(s+1)}{s(0,1s+1)(0,01s+1)^2}$
4	$\frac{(10s+1)}{\sqrt{10}s(0,1s+1)(0,01s+1)^2}$

wariant	Transmitancja $G_0(s)$
5	$\frac{\sqrt{10}}{s(\sqrt{0.1}s+1)(0.01s+1)}$
6	$\frac{(10s+1)}{\sqrt{10}s(s+1)(\sqrt{0,001}s+1)^2}$
7	$\frac{\sqrt{10}}{(10s+1)(s+1)(0,1s+1)^2}$
8	$\frac{\sqrt{10}}{(0.1s+1)(0.01s+1)^2}$
9	$\frac{\sqrt{10}(s+1)}{s(\sqrt{0.1}s+1)(0.1s+1)^2}$

Zadanie 2

Na kolejnych rysunkach znajdują się charakterystyki asymptotyczne elementów minimalnofazowych (zera i bieguny układu leżą w lewej półpłaszczyźnie, występuje także biegun zerowy – całkowanie). Wybierz rysunek, którego numer jest zgodny z ostatnią cyfrą wyniku dzielenia numeru Twojego albumu modulo 37. Są to charakterystyki układu otwartego.

- 1. Na podstawie charakterystyki wyznacz transmitancję operatorową.
- 2. Narysuj charakterystykę fazową.
- 3. Sprawdź, czy układ zamknięty jest stabilny? Jeśli tak, wyznacz miary odporności układu: na zmianę wzmocnienia w układzie oraz opóźnienie.

charakterystyka elementu minimalnofazowego - wariant 0

charakterystyka elementu minimalnofazowego - wariant 1

charakterystyka elementu minimalnofazowego - wariant 2

Automatyka i sterowanie – zadania 21 kwietnia

charakterystyka elementu minimalnofazowego - wariant 3

charakterystyka elementu minimalnofazowego - wariant 4

charakterystyka elementu minimalnofazowego - wariant $5\,$

charakterystyka elementu minimalnofazowego - wariant $\boldsymbol{6}$

Automatyka i sterowanie – zadania 21 kwietnia

charakterystyka elementu minimalnofazowego - wariant 7

charakterystyka elementu minimalnofazowego - wariant $8\,$

charakterystyka elementu minimalnofazowego - wariant $9\,$

