УДК 541.13+11

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ТЕРМИЧЕСКИХ ПРОЦЕССОВ С УЧАСТИЕМ РАДИОНУКЛИДОВ КАЛЬЦИЯ, СТРОНЦИЯ И ЦЕЗИЯ ПРИ НАГРЕВЕ РАДИОАКТИВНОГО ГРАФИТА В АТМОСФЕРЕ УГЛЕКИСЛОГО ГАЗА

<u> Н.М. Барбин*,**, И.А. Сидаш**, Д.И. Терентьев**, С.Г Алексеев**</u>

* Уральский государственный аграрный университет 620075, г. Екатеринбург, ул. Карла Либкнехта, 42 ** Уральский институт ГПС МЧС России 620062, г. Екатеринбург, ул. Мира, 22

При проектировании ядерных реакторов не предусматривались технические решения по выводу из эксплуатации, а также отсутствовали безопасные технологии обращения с облученным реакторным графитом. Вывод из эксплуатации уран-графитовых реакторов представляет собой комплекс сложных задач, связанных с выбором оптимальных способов и методов обращения с радиоактивным графитом. Компьютерное моделирование процесса переработки реакторного графита нагреванием в углекислом газе позволяет определить поведение радиоактивных элементов. С помощью компьютерного моделирования изучено поведение Ca, Sr, Cs при нагреве радиоактивного графита в атмосфере углекислого газа. Установлено, что кальций присутствует, в виде паров Ca, CaO, CaCl, CaCl, ионов Ca+, CaO+ и в конденсированных формах $CaCO_2$, $CaCl_2$, CaO. Стронций присутствует в виде паров Sr, SrO, SrCl, $SrCl_2$, ионов Sr^+ , SrO^+ и в конденсированных формах $SrCl_2$, SrCO₃, SrO. Цезий присутствует в виде паров Cs, CsCl, ионов Cs⁺ и в конденсированной фазе CsCl₂. Выявлены основные реакции и определены их константы равновесия. Полученные данные показывают, что при температурах 573 – 973 К происходит образование паров хлоридов кальция, стронция и цезия. Увеличение температуры до 1373 К приводит к протеканию термической ионизации хлорида цезия и образованию ионизированного цезия. При увеличении температуры до 2273 К наблюдается термическая ионизация стронция и цезия и образуются ионизированные кальций и стронций.

Ключевые слова: термодинамическое моделирование, термические процессы, константа равновесия, радионуклиды, радиоактивный графит, нагревание, углекислый газ.

ВВЕДЕНИЕ

Атомные станции являются одним из основных источников выработки электроэнергии. В России 40% АЭС используют в конструкции ядерных реакторов графит в качестве замедлителя и отражателя нейтронов. При проектировании ядерных реакторов не

предусматривались технические решения по выводу из эксплуатации, а также отсутствовали безопасные технологии обращения с облученным реакторным графитом [1, 2].

Вывод из эксплуатации уран-графитовых реакторов представляет собой комплекс сложных задач, связанных с выбором оптимальных способов и методов обращения с радиоактивным графитом [3].

Одним из способов снижения радиоактивности графита является его высокотемпературная термическая обработка в различных средах. Под действием температуры часть радионуклидов переходит в газообразное состояние и удаляется из системы [4, 5].

Окисление радиоактивного графита газообразными газифицирующими агентами, такими как воздух, кислород, углекислый газ, водяной пар и их смеси, испытывается в лабораторных масштабах. Компьютерное моделирование процесса переработки реакторного графита нагреванием в углекислом газе позволяет предварительно оценить поведение радиоактивных элементов.

В работе рассматривается поведение кальция, стронция и цезия при нагревании реакторного графита в атмосфере углекислого газа. Нагревание графита в атмосфере углекислого газа возможно при возникновении запроектной аварии на графитогазовом ядерном реакторе.

МЕТОДИКА РАСЧЕТА

Исследования проводили с использованием метода термодинамического моделирования [6-10], который успешно применялся для изучения неорганических веществ при высоких температурах в материаловедении [9-13], а также в физике [10-16].

Термодинамическое моделирование заключается в термодинамическом анализе равновесного состояния систем в целом (полный термодинамический анализ). Теоретические основы термодинамического моделирования изложены в работах [7 – 10].

Радиоактивные элементы, присутствующие в реакторном графите, и их химические соединения, термодинамические свойства которых были учтены при термодинамическом моделировании, приведены в табл. 1. Химические свойства стабильных нерадиоактивных элементов не отличаются от свойств их радиоактивных изотопов [6, 7].

Таблица 1 Радионуклиды в графите

Радионуклид	Период полураспада, лет [17]	Тип соединения		
⁴¹ Ca	102 000	Ca(r), CaO(конд.), CaO(r), CaCl(r), CaCl ₂ (конд.), CaCl ₂ (r), CaCO ₃ (конд.), CaUO ₄ (конд.), Ca ⁺ , CaO ⁺ , CaOl ⁺		
⁹⁰ Sr	28,90	Sr(r), SrO _(конд.) , SrO _(г) , SrCl _(г) , SrCl _{2(конд.)} , SrCl _{2(г)} , SrCO _{3(конд.)} , Sr ⁺ , SrO ⁺ , SrCl ⁺		
¹³⁷ Cs, ¹³⁴ Cs	30,1671 2,0652	Cs(r), CsO(r), CsCl(конд.), CsCl(r), Cs+		

Для расчета использовалось программное обеспечение TEPPA, предназначенное для проведения исследования высокотемпературных процессов [18]. Исходно в задании к расчету предполагалось, что с учетом заданной атмосферы углекислого газа в исследуемом температурном интервале возможно образование твердого идеального раствора продуктов взаимодействия (ИРПВ), в состав которого могут войти вышеперечисленные оксиды и соли обсуждаемых радионуклидов. Также предполагалось, что летучие соединения, содержащие эти радионуклиды, могут принять участие в образовании идеального газового раствора продуктов взаимодействия.

Численный эксперимент проводился в атмосфере углекислого газа при начальном

давлении одна техническая атмосфера. Равновесная температура изменялась от 373 до 3273 К с шагом 100 К. Время изменения фазового состояния, газообмен с окружающей средой и скорость протекания реакций в рамках метода термодинамического моделирования равновесного состояния системы не рассматриваются.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате компьютерного моделирования было изучено распределение кальция, стронция и цезия по равновесным фазам.

Рис.1. Распределение кальция по фазам

Согласно результатам моделирования, в равновесной системе помимо газовой фазы имеются две конденсированных: углеродная (графит) и твердый оксидно-солевой раствор продуктов взаимодействия. Углеродная фаза существует только в температурном интервале 373 — 973 K, а твердый раствор — в интервале 373 — 2873 K. Соединения-участники твердого оксидно-солевого раствора в данной статье отмечены индексом (конд.).

Причиной исчезновения углеродной фазы при 973 К следует считать взаимодействие с атмосферой ${\rm CO}_2$ с образованием соответствующих количеств газообразного ${\rm CO}$.

Распределение кальция по фазам представлено на рис. 1. В интервале 373 – 873 К практически весь кальций системы находится в составе твердого оксидно-солевого раствора в виде $CaCO_{3(конд.)}$ (~60% мол.) и $CaCl_{2(конд.)}$ (~40% мол.). Дальнейшее увеличение температуры до 1473 К приводит к появлению и росту содержания СаО(конд.) в твердом растворе, а также парообразного CaCl₂ в газовой фазе. Эти изменения в равновесном составе фаз соответствуют реакциям 5, 18 (табл. 2). В интервале температур от 1473 до 2073 К содержание $CaO_{(конд.)}$ в твердом оксидно-солевом растворе увеличивается, а содержание парообразного $CaCl_2$ в газовой фазе уменьшается, что может быть описано реакцией 23 (см. табл. 2). Увеличение равновесной температуры до 2373 К приводит к переходу в газовую фазу до 70% от общего количества кальция в системе в виде парообразного Са, что объясняется реакцией 4. В составе твердого раствора при этой температуре остается около 20% от общего числа кальция в виде СаО(конд.). Остальная часть кальция (~10%) находится в газовой фазе в виде СаО в соответствии с реакцией 6. При температурах выше 2673 К весь кальций системы находится в составе газовой фазы. При увеличении температуры до 3273 К кальций распределяется в газовой фазе следующим образом: в виде парообразного Са (~42% мол.); в виде парообразного ионизированного Са+ (~31% мол.); в виде парообразного CaO (\sim 18% мол.); в виде ионизированного CaO+ (\sim 9% мол.).

Процессы, протекающие в рассматриваемой системе

Таблица 2

Наименование группы	Nº	Реакция	Температурный интервал, К	
Химическая реакция,	1	CaCO _{3(конд.)} +SrCl ₂ = CaCl ₂ +SrCO _{3(конд.)}	973 – 1373	
протекающая между конденсированным веществом и газом	2	2CaCl _{2(конд.)} +3CO ₂ +C _(конд.) = 2CaO _(конд.) +4ClCO	973 – 1573	
	3	CaO _(KOHД.) +CO = Ca+CO ₂	2073 – 2473	
(паром)	4	CaO _(KOHД.) +CO = Ca+CO ₂	2073 – 2373	
	5	$CaCl_{2(KOHA,)} = CaCl_2$	973 – 1373	
Термическое испарение	6	CaO _(конд.,) = CaO	2273 – 2673	
конденсированных	7	$SrCl_{2(KOH,L)} = SrCl_2$	1173 – 1573	
веществ	8	$CsCl_{(KOH,L)} = CsCl$	573 – 973	
	9	$SrO_{(KOH,L)} = SrO$	2073-2573	
Термическая	10	CaCl ₂ = Ca+Cl ₂	1873 – 2173	
диссоциация в паровой фазе	11	SrCl ₂ = Sr+2Cl	2073 – 2573	
	12	CaO = Ca++O-	2373 – 3173	
	13	SrO = Sr++O-	2573 – 3273	
Термическая ионизация	14	SrO = SrO++e-	2573 – 3273	
в паровой фазе	15	$Sr + O_2 = SrO^+ + O^-$	2373 – 3273	
	16	Sr = Sr⁺+e⁻	2373 – 3273	
	17	CsCl=Cs++Cl⁻	1373 – 2573	
Термическое	18	$CaCO_{3(KOH_{\mathcal{A}})} = CaO_{(KOH_{\mathcal{A}})} + CO_2$	873 – 1373	
разложение твердых веществ	19	$SrCO_{3(KOH_{\mathcal{I}})} = SrO_{(KOH_{\mathcal{I}})} + CO_2$	973 – 1573	
Твердофазные химические реакции	20	SrCl _{2(конд.)} +CaCO _{3(конд.)} = SrCO _{3(конд.)} +CaCl _{2(конд.)}	873 – 1073	
	21	SrCl ₂ +2CO = Sr+2ClCO	1773 – 2373	
Химические реакции в паровой фазе	22	2SrCl ₂ +3O ₂ = 2SrO+4ClO	1873 – 2573	
	23	CaCl ₂ +CO ₂ = CaO _(конд.) +2Cl+CO	1473-2073	

Распределение стронция по фазам представлено на рис. 2. В интервале температур от 373 до 973 К весь стронций системы находится в составе твердого оксидно-солевого раствора преимущественно в виде $SrCl_{2(конд.)}$, а также $SrCO_{3(конд.)}$. При увеличении равновесной температуры до 1073 К становится заметным перестроение состава, которое можно описать реакцией 20 (см. табл. 2). Дальнейшее увеличение температуры от 973 до 1573 К приводит к появлению и быстрому увеличению содержания парообразного $SrCl_2$ до 97% от общего количества стронция в системе в результате протекания реакции 7. В этом же температурном интервале происходит разложение $SrCO_{3(конд.)}$ в соответствии с реакцией 19. В температурном интервале от 2073 до 2573 К наблюдается разложение паров $SrCl_2$, а также происходит испарение оставшейся части $SrO_{(конд.)}$ в соответствии с реакциями 9, 11. При температуре 2573 К весь стронций оказывается в газовой фазе. В интервале темпе

ратур от 2373 до 3273 К наблюдается ионизация паров, содержащих стронций, в соответствии с реакциями 14, 16.

Рис.2. Распределение стронция по фазам

Рис.3. Распределение цезия по фазам

Распределение цезия по фазам представлено на рис. 3. При температурах 373-673 К весь цезий системы находится в составе оксидно-солевого твердого раствора в виде $CsCl_{(конд.)}$. При увеличении равновесной температуры до 773 К начинается переход цезия в газовую фазу с образованием паров CsCl в результате реакции 8. При температурах выше 973 К цезий содержится только в газовой фазе. В интервале температур от 1373 до 2373 К наблюдается разложение CsCl по схеме 17 (см. табл. 2).

На основании полученных температурных зависимостей распределения радионуклидов по фазам и численных результатов моделирования был записан минимальный набор основных реакций.

Константы равновесия реакций (см. табл. 2) определяли используя найденные в модельных расчетах концентрации (в мольных долях) компонентов конденсирован-

ной и газовой фаз. Константы представлены в аналитической форме:

$$\ln K_i = \alpha_i + b_i(1/T).$$

Коэффициенты α_i и b_i уравнения рассчитаны методом наименьших квадратов и сведены в табл. 3.

Коэффициенты констант равновесия

Таблица 3

Реакция	Интервал температур, К	α	b	Δα	Δb
1	973 – 1373	-12,12	31197,14	0,740	849,007
2	973 – 1573	73,3	-143825,39	0,553	677,754
3	2073 – 2473	12,95	-60927,82	0,02	44,084
4	2073 – 2373	12,98	-60983,94	0,02	43,79
5	973 – 1373	14,88	-32491,48	0,444	509,528
6	2273 – 2673	18,56	-78565,34	0,021	51,414
7	1173 – 1573	-13,33	6331,49	0,278	375,7
8	573 – 973	16,44	-23174	0,117	85,551
9	2073 - 2573	16,85	-65069,52	0,02	50,18
10	1873 – 2173	-12,2	-29932,11	0,771	1553,540
11	2073 – 2573	23,54	-108741,08	0,02	37,53
12	2373 – 3173	12,38	-99390,87	0,036	97,979
13	2573 – 3273	12,29	-99275,61	0,032	91,678
14	2573 – 3273	9,67	-79104,59	0,003	8,303
15	2373 – 3273	-7,49	-26562,55	0,945	2624,889
16	2373 – 3273	8,77	-72938,43	0,036	100,719
17	1373 – 2573	8,86	-56766,34	0,006	12,042
18	873 – 1373	17,73	-20537,16	0,208	225,457
19	973 - 1573	18,00	-26836,36	0,28	341,88
20	873 – 1073	-1,16	-1351,71	0,05	45,97
21	1773 – 2373	-1,24	-101279,11	0,009	18,006
22	1873 – 2573	15,99	-117665,58	3,392	7418,614
23	1473 –2073	11,45	-47844,75	0,03	51,30

ЗАКЛЮЧЕНИЕ

Представлены результаты компьютерного моделирования термических процессов с участием Ca, Sr, Cs при нагреве радиоактивного графита в атмосфере углекислого газа. В результате моделирования получены графики температурной зависимости распределения радионуклидов по фазам в рассматриваемой системе. Определены характерные реакции и температурные интервалы, в которых они наблюдаются. Найдены температурные интервалы перехода радионуклидов из твердого оксидно-солевого раствора в газовую фазу. Рассчитаны константы равновесия.

Полученные данные показывают, что углекислый газ взаимодействует и с графитом, и с содержащимися в нем радиоактивными примесями. Показано, что цезий, имеющийся в рассмотренной системе, способен полностью перейти в газовую фазу

при равновесной температуре 973 K, а при равновесной температуре 1373 K – практически весь стронций. При этой же температуре в газовую фазу переходит около 40% от общего количества кальция, находящегося в системе. Температурой полного перехода этих трех радионуклидов в газовую фазу следует считать 2573 K.

Литература

- 1. *Блинова И.В., Соколова И.Д*. Обращение с радиоактивными графитовыми отходами // Атомная техника за рубежом. 2012. №6. С. 3-14.
- 2. Цыганов А.А., Хвостов В.И., Комаров Е.А., Котлярский С.Г., Павлюк А.О., Шаманин И.В., Нестеров В.Н. Проблемы утилизации реакторного графита остановленных промышленных уран-графитовых реакторов // Известия Томского политехнического универститета. 2007. Т. 310. № 2. С. 94-98
- 3. Роменков А.А, Ярмоленко О.А., Андреева Л.А., Ермошин Ф.Е., Туктаров М.А., Семенихин В.И., Уфаев Н.Н. Вывод из эксплуатации ядерных и радиационно опасных объектов, обращение с отработавшим ядерным топливом и радиоактивными отходами // Атомная энергия. 2006. Т. 101. № 5. С. 372-379
- 4. *Роменков А.А., Туктаров М.А., Пышкин В.П.* Беспламенное сжигание РАО в расплаве солей // Междун. журнал «Безопасность окружающей среды» 2006. № 3. С. 50-65.
- 5. Скачек М. А. Обращение с отработанным ядерным топливом и радиоактивными отходами АЭС. М.: Изд. дом МЭИ, 2007.
- 6. Барбин Н.М., Пешков А.В. Оценка поведения радионуклидов при горении радиоактивного графита // Безопасность критических инфраструктур и территорий: Тезисы докладов II Всероссийской конференции и XII Школы молодых ученых. Екатеринбург: Уро-РАН. 2008. С. 67.
- 7. *Барбин Н.М., Терентьев Д.И., Пешков А.В., Алексеев С.Г.* Термодинамическое моделирование поведения радионуклидов при нагреве (сжигании) радиоактивного графита в атмосфере воздуха // Пожаровзрывобезопасность. 2014. № 3. С. 58-67.
- 8. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Металлургия, 1994. 352 с.
- 9. Барбин Н.М., Алексеев С.Г., Алексеев К.С. Применение термодинамического моделирования для изучения полимеров при нагревании // Известия Южного федерального университета. Технические науки. -2013.-T.145.-№ 8.-C.245-247.
- 10. Терентьев Д.И., Барбин Н.М., Борисенко А.В., Алексеев С.Г. Термодинамическое исследование состава газовой фазы над расплавами системы Pb+Bi // Перспективные материалы. -2011.-№13.-C.858-864.
- 11. Терентьев Д.И., Барбин Н.М., Борисенко А.В., Алексеев С. Γ . Состав и теплофизические свойства системы (Pb-Bi) пар при различных условиях // Прикладная физика. 2012. № 3. С. 23.
- 12. Barbin N.M., Terentiev D.I., Alekseyev S.G. Computer calculations for thermal behavior of Na₂CO₃-Li₂CO₃ melt // Journal of Engineering Thermophysics. 2011. Vol. 20. No. 3. PP. 308-314.
- 13. *Терентьев Д.И., Барбин Н.М., Борисенко А.В., Алексеев С.Г.* Термодинамическое моделирование испарения расплавов Pb + Bi при различных давлениях // Химическая физика и мезоскопия. 2011. Т. 13. № 3. С. 350.
- 14. *Барбин Н.М.* Термодинамическое моделирование термического поведения расплавов Li $_2$ CO $_3$ + Na $_2$ CO $_3$ и CaCO $_3$ + Na $_2$ CO $_3$ // Химическая физика и мезоскопия. 2008. Т. 10. № 3. C. 354-360.
- 15. Барбин Н.М., Тикина И.В., Терентьев Д.И., Алексеев С.Г. Термодинамическое моделирование паровой фазы при испарении расплавленного сплава Вуда при различных давлениях // Прикладная физика. 2014. —№ 3. —С.12-16.
- 16. *Барбин Н.М., Овчиникова И.В., Терентьев Д.И., Алексеев С.Г.* Термодинамическое моделирование термических процессов, происходящих в расплавленном сплаве Вуда при различных условиях // Прикладная физика. −2014. − № 3. − С. 8-11.
- 17. Баженов В.А., Булдаков Л.А., Василенко И.Я. Вредные химические вещества. Радиоактивные вещества. Л.: Химия, 1990.

18. Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. – М.: МГТУ имени Н.Э. Баумана, 2013.

Поступила в редакцию 09.06.2016 г.

Авторы

<u>Барбин</u> Николай Михайлович, заведующий кафедрой, доктор техн. наук

E-mail: NMBarbin@mail.ru

Сидаш Илья Андреевич, старший преподаватель

E-mail: sidash_ilia@mail.ru

<u>Терентьев</u> Дмитрий Иванович, доцент, кандидат хим. наук

E-mail: svireppey@mail.ru

Алексеев Сергей Геннадьевич, старший научный сотрудник, кандидат хим. наук

E-mail: 3608113@mail.ru

UDC 541.13+11

COMPUTER MODELING OF THERMAL PROCESSES WITH CALCIUM, STRONTIUM AND CESIUM RADIONUCLIDES WHEN RADIOACTIVE GRAPHITE IS HEATED IN THE CARBON DIOXIDE ATMOSPHERE

Barbin N.M.*, Sidash I.A.**, Terentiev D.I.**, Alekseyev S.G.**

- * Ural State Agrarian University
- 42 Karl Libknekht str., Ekaterinburg, 620075 Russia
- ** Ural Institute of State Fire Service of EMERCOM of Russia
- 22 Mira str., Ekaterinburg, 620062 Russia

ABSTRACT

Nuclear power plants are one of the main sources of power generation. In designing nuclear reactors, no technical solutions for decommissioning were provided, nor were there safe technologies of handling irradiated reactor graphite. Decommissioning of uranium-graphite reactors represents a complex of difficult tasks connected with the choice of optimum ways and methods for handling radioactive graphite. Computer modeling of reactor graphite processing by heating in carbon dioxide makes it possible to determine the behavior of radioactive elements. Using computer modeling, the behavior of Ca, Sr and Cs was studied when the radioactive graphite was heated in the carbon dioxide atmosphere. It is found that calcium is present as vapors (Ca, CaO, CaCl, CaCl₂), ions (Ca+, CaO+) and condensed forms (CaCO₃, CaCl₂, CaO). Strontium is present as vapors (Sr, SrO, SrCl, SrCl₂), ions (Sr⁺, SrO⁺) and condensed forms (SrCl₂, SrCO₃, SrO). Cesium is present as vapors (Cs, CsCl), ions (Cs) and a condensed form (CsCl₂). The main reactions are identified and their equilibrium constants are determined. The obtained data show that, at temperatures of 573 to 973 K, vapors of calcium, strontium and cesium chlorides are generated. A temperature increase to 1373 K leads to the thermal ionization of cesium chloride and formation of ionized cesium. A temperature increase to 2273 K results in the thermal ionization of strontium and cesium and formation of ionized calcium and strontium.

Key words: thermodynamic modeling, thermal processes, equilibrium constant, radionuclides, radioactive graphite, heat, carbon dioxide.

REFERENCES

- 1. Blinova I.V., Sokolov I.D. Obrashcheniye s radioaktivnymi grafitovymi otkhodami [Radioactive graphite waste]. *Atomnaya tekhnika za rubezhom*, 2012, no. 6, pp. 3–14 (in Russian).
- 2. Tsyganov A.A., Khvostov V.I., Komarov E.A., Kotlyarevskiy S.G., Pavlyuk A.O., Shamanin I.V., Nesterov V.N. Problemy utilizatsii reaktornogo grafita ostavlennykh promyshlennykh uran-grafitovykh reaktorov [The problems of utilizing graphite of stopped graphite-uranium reactors]. *Izvestiya Tomskogo Politekhnicheskogo Universiteta*, 2007, no. 2, pp. 88–92 (in Russian).
- 3. Romenkov A.A., Yarmolenko O.A., Andreyeva L.A., Yermoshin F.E., Tuktarov M.A., Semenikhin V.I., Ufayev N.N. Vyvod iz ekspluatatsii yadernykh i radiatsionnoopasnykh obyektov, obrashcheniye s otrabotavshym yadernym toplivom i radioaktivnymi otkhodami [Decommissioning of nuclear and radiation hazardous objects, handling of spent nuclear fuel and radioactive waste]. Atomnaya energiya, 2006, no. 5, pp. 372–379 (in Russian).
- 4. Romenkov A.A., Tuktarov M.A., Pyshkin V.P. Besplamennoye szhiganiye RAO v rasplave soley [Flameless combustion of waste in salt melt]. *Bezopasnost' okruzhayuschey sredy*, 2006, no. 3, pp.50–65 (in Russian).
- 5. Skachek M.A. Obrashcheniye s otrabotannym yadernym toplivom i radioaktivnymi otkhodami AES [Handling of NPP spent nuclear fuel and radioactive nuclear waste]. Moscow, Izdatelskiy dom MEI Publ., 2007 (in Russian).
- 6. Barbin N.M., Peshkov A.V. Otsenka povedeniya radionuklidov pri gorenii radioaktivnogo grafita. Bezopasnost kriticheskikh infrastruktur i territoriy [Evaluation of the behavior of radionuclides during burning of radioactive graphite. Security of critical infrastructures and territories] *Proc. of the 2nd All-Russian Conf. and 12th School of Young Scientists*. Ekaterinburg. Ural branch of RAS Publ., 2013, p. 67 (in Russian).
- 7. Barbin N.M., Terentyev D.I., Peshkov A.V., Alekseyev S.G. Termodinamicheskoye modelirovaniye povedeniya radionuklidov pri nagreve (szhiganii) radioaktivnogo grafita v atmosfere vozdukha [Thermodynamic modeling of radionuclide behavior during heating (burning) of radioactive graphite in the air atmosphere]. *Pozharovzryvobezopasnost'*, 2014, no. 3, pp. 58–67 (in Russian).
- 8. Vatolin N.A., Moiseyev G.K., Trusov B.G. *Termodinamicheskoye modelirovaniye v vysokotemperaturnykh neorganicheskikh sistemakh* [Thermodynamic modeling in High Temperatureinorganic systems]. Moscow. Metallurgy Publ., 1994 (in Russian).
- 9. Barbin N.M., Alekseyev S.G., Alekseyev K.S. Primeneniye termodinamicheskogo modelirovaniya dlya izucheniya polimerov pri nagrevanii [Application of thermodynamic modeling for studying of polymers at heating]. *Izvestiya Yuzhnogo Federalnogo Universiteta*. *Tehnicheskie nauki*, 2013, v. 145, no. 8, pp. 245–247 (in Russian).
- 10. Terentyev D.I., Barbin N.M., Borisenko A.V., Alekseyev S.G. Termodinamicheskoye issledovaniye sostava gazovoy fazy nad rasplavami sistemy Pb+Bi [Thermodynamic study of the composition of the gas phase above the melts of the Pb+Bi system]. *Perspektivnye materialy*, 2011, no. 13, pp. 858–864 (in Russian).
- 11. Terentyev D.I., Barbin N.M., Borisenko A.V., Alekseyev S.G. Sostav i teplofizicheskiye svoystva sistemy (Pb-Bi) par pri razlichnykh usloviyakh [Composition and thermophysical properties of the (Pb+Bi) melt vapor systems at various conditions]. *Prikladnaya fizika*, 2012, no. 3, p. 23 (in Russian).
- 12. Barbin N. M., Terentiev D. I., Alekseyev S.G. Computer calculations for thermal behavior of Na₂CO₃-Li₂CO₃ melt. *Journal of Engineering Thermophysics*, 2011, v. 20, no. 3, pp. 308–314.
- 13. Terentyev D.I., Barbin N.M., BorisenkoA.V., Alekseev S.G. Termodinamicheskoye modelirovaniye ispareniya rasplavov Pb + Bi pri razlichnykh davleniyakh [Thermodynamic simulation of vaporization of Pb + Bi melts at different pressures]. *Himicheskaya fizika i mezoskopiya*, 2011, v. 13, no. 3, p. 350 (in Russian).
- 14. Barbin N.M. Termodinamicheskoye modelirovaniye termicheskogo povedeniya rasplavov Li₂CO₃ + Na₂CO₃ i CaCO₃ + Na₂CO₃ [Thermodynamic modeling of the thermal behavior of melts Li₂CO₃ + Na₂CO₃ and CaCO₃ + Na₂CO₃]. *Himicheskaya fizika i mezoskopiya*, 2008, v. 10, no. 3, pp. 354–360 (in Russian).
- 15. Barbin N.M., Tikina I.V., Terentyev D.I., Alekseyev S.G. Termodinamicheskoye

modelirovaniye parovoy fazy pri isparenii rasplavlennogo splava Vuda pri razlichnykh davleniyakh [Thermodynamic modeling of a vapor phase at evaporation of the Wood alloy at various pressures]. *Prikladnaya fizika*, 2014, no. 3, pp. 12–16 (in Russian).

- 16. Barbin N.M., Ovchinikova I.V., Terentyev D.I., Alekseyev S.G. Termodinamicheskoye modelirovaniye termicheskikh protsessov, proiskhodyaschikh v rasplavlennom splave Vuda pri razlichnykh usloviyakh [Thermodynamic modeling thermal processes of the Wood alloy in various conditions]. *Prikladnaya fizika*. 2014, no. 3, pp. 8–11 (in Russian).
- 17. Bazhenov V.A., Buldakov L.A., Vasilenko I.Ya. *Vrednye knimicheskiye veschestva. Radioaktivnye veschesvta* [Harmful chemical substances. Radioactive substances]. Leningrad. Himiya Publ., 1990 (in Russian).
- 18. Belov G.V., Trusov B.G. *Termodinamicheskoye modelirovaniye khimicheski reagiruyuschikh sistem* [Thermodynamic modeling of chemically reacting systems]. Moscow. Bauman MSTU Publ., 2013 (in Russian).

Authors

<u>Barbin</u> Nikolaj Mikhajlovich, Head of Department, Doc. Sci. (Engineering)

E-mail: NMBarbin@mail.ru

Sidash I'lya Andreevich, Senior Lecturer

E-mail: sidash_ilia@mail.ru

<u>Terentyev</u> Dmitrij Ivanovich, Assistant Professor, Cand. Sci (Chemistry)

E-mail: svireppey@mail.ru

Alekseev Sergej Gennad'evich, Senior Researcher, Cand. Sci (Chemistry)

E-mail: 3608113@mail.ru