Конечные автоматы

1

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

2

Конечный автомат с магазинной памятью (ДМПА):

$$P = (Q, \Sigma, \Gamma, \delta, q_o, \gamma_o, F),$$

где

- Q конечное множество состояний;
- Σ конечное множество входных символов (алфавит);
- Г конечный алфавит магазинных символов;
- δ функция переходов, отображение множества $Q\times(\Sigma\cup\{e\}\cup\{\bot\})\times\Gamma$ во множество $Q\times\Gamma^*$;
- $q_0 \in Q$ начальное состояние;
- $\gamma_0 \in \Gamma^*$ символ (или цепочка символов), находящийся в магазине в начальный момент (начальный символ);
- $F \subseteq Q$ множество заключительных состояний.

Способы записи функции переходов:

• В виде отображения: $\delta(q_0, x, y) = (q_1, \alpha), \delta(q_0, x, z) = (q_2, \beta), ...$

• В виде множества: $\delta = \{((q_0, x, y), (q_1, \alpha)), ((q_0, x, z), (q_2, \beta)) ...\}$

• В виде графа:

4

Способы записи функции переходов:

• В виде таблицы:

	\mathbf{x}, \mathbf{y}	\mathbf{x},\mathbf{z}
q_o	q_1, α	q_2, β
${f q_1}$		
$ m q_{_2}$		

Таблица переходов ДМПА:

	$\mathbf{a_1}, \mathbf{z_1}$	$\mathbf{a_2},\mathbf{z_2}$		$ot, \mathbf{z_n}$
$\mathbf{q_o}$	$\delta(q_0, a_1, z_1)$	$\delta(q_0, a_2, z_2)$	•••	$\delta(q_0, \perp, z_n)$
${f q_1}$	$\delta(q_1, a_1, z_1)$	$\delta(q_1, a_2, z_2)$	•••	$\delta(q_1, \bot, z_n)$
${f q_2}$	$\delta(q_2, a_1, z_1)$	$\delta(q_2, a_2, z_2)$		$\delta(q_2, \perp, z_n)$
•••	•••	•••		

 $\delta(q, a, z)$:

- $(q', \beta);$
- $HALT(a = \bot, q \in F);$
- ERROR.

6

Возможные ситуации:

- a = e (в этом случае символ из входной цепочки не считывается, т.е. не важно, на каком символе стоит считывающая головка, и головка при переходе к следующему состоянию не перемещается);
- z = e (в этом случае символ из стека не извлекается, т.е. не важно, какой символ расположен на вершине стека);
- $z = \emptyset$ (в этом случае переход возможен лишь в том случае, если стек пуст);
- $\beta = e$ (в этом случае новые символы на стек не помещаются).

Если $z = \beta = e$, то переход осуществляется без участия стека. Если $z = \beta = e$ для всех переходов ДМПА, то имеем обычный ДКА.

- 1. Проще всего сначала построить граф переходов, а потом по описанным выше правилам преобразовать его в таблицу переходов.
- 2. Построение графа начинается с начального состояния $q_{\rm o}$. Если начальное состояние может являться также и конечным, помечаем это двойной границей окружности.
- 3. Для каждого состояния графа q_i определяем, есть ли из данного состояния такие переходы (a, z, β) , которые соответствуют допустимому символу a из входной цепочки, допустимому символу z на вершине стека и при этом требуется помещение на стек цепочки β , которые пока еще отсутствуют в графе. Если есть, то проверяем, ведет ли данный переход в уже имеющееся состояние q_k . Если да, то добавляем в граф только новый переход (a, z, β) из состояния q_i в состояние q_k . Если нет, то добавляем в граф новое состояние q_j и переход (a, z, β) в него из состояния q_i . Если новое состояние может являться конечным, помечаем это двойной границей окружности.
- 4. Если в процессе выполнения шага 3 в графе появились новые состояния или переходы, возвращаемся на шаг 3, иначе граф переходов построен.

Примечание 1. В ДМПА конечное состояние может быть достижимо только при определенном состоянии стека. В таблице это показать легко:

	•••	\perp, \mathbf{z}
•••	•••	•••
$ m q_{i}$	•••	HALT
•••	•••	•••

При этом, если $z = \emptyset$, то это равносильно требованию пустоты стека (т.е. разбор может быть успешно завершён лишь в том случае, если стек пуст). Если z = e, то разбор завершается при любом содержимом стека (т.е. успешное завершение разбора возможно при любом содержимом стека).

В графе это показать сложнее. По умолчанию, в конечном состоянии разбор завершается при любом содержимом стека:

Если это не так, то вводится дополнительное искусственное

10

Если таких символов на стеке несколько, можно извлечь их перед завершением разбора:

Примечание 2. Если это более удобно, можно в реализации ДМПА положить, что разбор по умолчанию успешно завершается только при пустом стеке.

Основные понятия:

• конфигурация ДМПА Р

$$(q, \alpha, \gamma) \in Q \times \Sigma^* \times \Gamma^*;$$

- начальная конфигурация − (q_0, α, γ_0) , где $\alpha \in \Sigma^*$;
- заключительная конфигурация (q, \perp, γ) , где $q \in F, \gamma \in \Gamma^*$ (обычно $\gamma = e$);
- такт работы ДМПА P при $\delta(q, a, z) = (q', \beta)$, где $q, q' \in Q, a \in \Sigma \cup \{e\} \cup \{\bot\}, z \in \Gamma, \beta \in \Gamma^*$:

$$(q, a\alpha, z\gamma) \Rightarrow (q', \alpha, \beta\gamma)$$

12

Частные случаи:

- a = e (e-takt): $(q, a_1 a_2 ... a_n \bot, z_1 z_2 ... z_m) \Rightarrow (q', a_1 a_2 ... a_n \bot, \beta z_2 ... z_m)$
- z = e: $(q, a_1 a_2 ... a_n \bot, z_1 z_2 ... z_m) \Rightarrow (q', a_2 ... a_n \bot, \beta z_1 z_2 ... z_m)$
- $z = \emptyset$: $(q, a_1 a_2 ... a_n \bot, e) \Rightarrow (q', a_2 ... a_n \bot, \beta)$
- $\beta = e$: $(q, a_1 a_2 ... a_n \bot, z_1 z_2 ... z_m) \Rightarrow (q', a_2 ... a_n \bot, z_2 ... z_m)$

Алгоритм работы ДМПА

13

Пусть $\alpha = a_1 a_2 ... a_n \bot$ – входная цепочка, M – магазин (стек). Тогда:

- 1. Полагаем $M \leftarrow \gamma_0, q \leftarrow q_0, k \leftarrow 1$.
- 2. Ищем $\delta(q, a, z)$, где: $a = a_k$ или a = e; z элемент на вершине магазина M, либо $z = \emptyset$ и магазин M пуст, либо z = e.
- 3. Если $\delta(q, a, z)$ не определена, то ошибка в позиции k. Если значений $\delta(q, a, z)$
- z) несколько таблица переходов построена неверно. Если $\delta(q, a, z) = (q', \beta)$, то:
 - 3.1. Переходим в новое состояние $q \leftarrow q'$.
 - 3.2. Если $a \neq e$ и $a \neq \bot$, то $k \leftarrow k + 1$ (переходим к следующему символу).
 - 3.3. Если $z \neq e$ и $z \neq \emptyset$, то $z \leftarrow M$ (т.е. извлекаем элемент с вершины стека).
 - 3.4. Если $\beta \neq e$, то $M \leftarrow \beta$ (помещаем элемент в стек).
- 4. Если $\delta(q, a, z) = HALT$, то разбор успешно завершен.
- 5. Если $\delta(q, a, z) = ERROR$, то имеем во входной цепочке синтаксическую ошибку в позиции k.
- 6. Иначе возврат на шаг 2.

14

Пример. Рассмотрим язык L, описывающий обращение к элементу массива. При этом размерность массива может быть любой, а в качестве индексов можно использовать целые константы $i \geq 0$, а также идентификаторы, в т.ч. элементы других массивов. Идентификатор начинается с латинской буквы, после которой могут следовать другие буквы и цифры. Индексы заключаются в квадратные скобки и отделяются друг от друга запятыми. Например:

- a[1];
- a2[5,b[2],z];
- mas[x[4],y[4]] и т.д.

15

Выполним анализ языка:

1. В алфавит войдут буквы латинского алфавита, цифры, квадратные скобки, запятая. Теоретически, буквы могут быть как большими, так и маленькими, но для упрощения в примере будем использовать только маленькие буквы. Также в реальных языках программирования для отделения индексов и других синтаксических конструкций друг от друга можно использовать пробелы и другие символы-разделители, но для упрощения языка мы их рассматривать не будем.

16

2. В магазин будем помещать какой-либо символ, встречая открывающую квадратную скобку. Встречая закрывающую квадратную скобку, будем этот символ из магазина извлекать. Таким образом, мы сможем отследить парность открывающих и закрывающих скобок. Соответственно, в начальный момент времени стек должен быть пустым, т.к. никакие скобки ещё не были считаны. А в конечном состоянии стек должен быть пуст, т.к. любая открывающая скобка должна встретить соответствующую ей закрывающую скобку. Символ, помещаемый на стек, может быть любым, пусть это будет $\ll + \gg$.

17

Получили следующие компоненты ДМПА:

- $\Sigma = \{a-z, o-9, [,], ,\};$
- $\Gamma = \{+\};$
- $q_o = q_o$;
- $\gamma_0 = e$.

Также мы определили, что успешное завершение разбора возможно только при пустом стеке.

Далее определим множества Q, δ , F.

18)

 \mathbf{q}_{c}

19

20)

25

Табличное представление функции переходов:

	a-z, 🥴	0-9, 🥴	[, e],+	,, e	,, +	⊥,Ø
q_{o}	q_1, e						
$q_{_1}$	q_1, e	q_1, e	q_2 , +				
$\mathbf{q_2}$	q ₄ , e	q ₃ , e					
${\bf q_3}$		q_3 , e		q ₅ , e	q_2 , e		
${f q}_4$	q ₄ , e	q ₄ , e	q ₂ , +	q ₅ , e	q ₂ , e		
q_5				q ₅ , <i>e</i>		q ₂ , +	HALT

В 5-м столбце стек не может быть пуст, поэтому можно объединить столбцы №5 и №6.

26

Табличное представление функции переходов:

	a-z, e	0-9, 🥴	[, e],+	,, +	⊥,Ø
q_{o}	q_1 , e					
$q_{\scriptscriptstyle 1}$	q ₁ , <i>e</i>	q_1 , e	$q_2, +$			
q_2	q ₄ , <i>e</i>	q ₃ , <i>e</i>				
${f q}_3$		q ₃ , <i>e</i>		q ₅ , <i>e</i>	q ₂ , +	
q_4	q ₄ , e	q ₄ , <i>e</i>	q ₂ , +	q ₅ , e	q ₂ , +	
${f q}_5$				q ₅ , <i>e</i>	q ₂ , +	HALT

28

При этом на графе переходов ДМПА полагается, что для успешного завершения разбора в состоянии q_5 стек должен быть пуст.

Таким образом,

```
• Q = \{q_0, q_1, q_2, q_3, q_4, q_5\};
```

```
• \delta = \{((q_0, a-z, e), (q_1, e)), ((q_1, a-z, e), (q_1, e)), ((q_1, o-9, e), (q_1, e)), ((q_1, e), ((q_2, e)), ((q_2, e)), ((q_2, a-z, e), (q_4, e)), ((q_3, o-9, e), (q_3, e)), ((q_3, o-9, e), (q_4, e)), ((q_4, o-9, e), (q_4, e)), ((q_5, o-9, e), (q_5, o-9, e), (q_6, e)), ((q_6, o-9, e),
```

• $F = \{q_5\}.$

Проверка ДМПА

Как проверить, что ДМПА описан правильно?

- Построить дерево вывода. Если дерево содержит все правильные цепочки языка, и не содержит неправильные цепочки, то автомат описан правильно.
- 2. Осуществить запуск ДМПА. Если для всех правильных цепочек разбор окончится символом HALT, а всех неправильных символом ERROR, то автомат описан правильно.

39

• Для правильной цепочки:

$$(q_{0}, a[b[c],2]\perp, e) \Rightarrow^{1} (q_{1}, [b[c],2]\perp, e)$$

$$\Rightarrow^{2} (q_{2}, b[c],2]\perp, +)$$

$$\Rightarrow^{3} (q_{4}, [c],2]\perp, ++)$$

$$\Rightarrow^{4} (q_{2}, c],2]\perp, ++)$$

$$\Rightarrow^{5} (q_{4},],2]\perp, ++)$$

$$\Rightarrow^{6} (q_{5}, ,2]\perp, +)$$

$$\Rightarrow^{7} (q_{2}, 2]\perp, +)$$

$$\Rightarrow^{8} (q_{3},]\perp, +)$$

$$\Rightarrow^{9} (q_{5}, \perp, e)$$

$$\Rightarrow^{10} HALT$$

40

• Для неправильной цепочки:

$$(q_{0}, a[2],b[2]\perp, e) \Rightarrow^{1} (q_{1}, [2],b[2]\perp, e)$$

 $\Rightarrow^{2} (q_{2}, 2],b[2]\perp, +)$
 $\Rightarrow^{3} (q_{3},],b[2]\perp, +)$
 $\Rightarrow^{4} (q_{5}, ,b[2]\perp, e)$
 $\Rightarrow^{5} ERROR$

Причина ошибки – в состоянии q₅ определён только один переход, когда текущим символом входной цепочки является запятая:

$$\delta(q_5, ,, +) = (q_2, +),$$

но стек пуст.

41

• Для неправильной цепочки:

$$(q_{0}, a[b[2]\bot, e) \Rightarrow^{1} (q_{1}, [b[2]\bot, e)$$

$$\Rightarrow^{2} (q_{2}, b[2]\bot, +)$$

$$\Rightarrow^{3} (q_{4}, [2]\bot, +)$$

$$\Rightarrow^{4} (q_{2}, 2]\bot, ++)$$

$$\Rightarrow^{5} (q_{3},]\bot, ++)$$

$$\Rightarrow^{6} (q_{5}, \bot, +)$$

$$\Rightarrow^{7} ERROR$$

Причина ошибки — в состоянии q_5 функция переходов $\delta(q_5, \bot, +)$ не определена, т.е. $\delta(q_5, \bot, +) = ERROR$. Успешное завершение разбора возможно только в том случае, если стек пуст: $\delta(q_5, \bot, \varnothing) = HALT$.