Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Радиоэлектронные системы и устройства (РЛ1)»

Домашнее задание №2 по дисциплине «Схемотехника» Вариант № 9

Выполнил ст. группы РЛ6-51 Филимонов С. В.

Преподаватель Русов Ю.С.

ЗАДАЧА 1

Рассчитать компаратор на основе триггера Шмитта, используя вариант упрощённого расчёта на основе инвертирующего компаратора с положительной обратной связью.

Дано (для 9 варианта):

Напряжение срабатывания U_{on} , [В]	Максимальное напряжение ОУ на входе $U_{\text{вых } max}$, [В]	Напряжение отпускания <i>U</i> _{отп} , [В]
2	10	0,8 · <i>U</i> _{оп}

Расчётная часть:

1. Определим коэффициент, характеризующий цепь параллельной обратной связи по формуле:

$$\gamma = \frac{U_{\text{отп}} - U_{\text{оп}}}{-U_{\text{вых } max} - U_{\text{оп}}} = \frac{0.8 \cdot 2 - 2}{-10 - 2} = 0.033$$

2. Рассчитаем напряжение срабатывания:

$$U_{\text{сраб}} = (U_{\text{вых } max} - U_{\text{оп}}) \cdot \gamma + U_{\text{оп}} = (10 - 2) \cdot 0,0604 + 2 = 2,27 \text{ [B]}$$

3. Определим величины навесных сопротивлений схемы триггера Шмитта R1 и R2 использованием соотношения

$$\gamma = \frac{R_2}{R_1 + R_2}$$

Сопротивление в цепи обратной связи R1 должно быть во много раз больше R2 и составлять десятки кОм. Пусть R1 = 15 [кОм] (ряд E24). Тогда

$$R_2 = \frac{R_1 \cdot \gamma}{1 - \gamma} = \frac{15 \cdot 10^3 \cdot 0,033}{1 - 0,033} = 512,24 \text{ [OM]}$$

Возьмем $R_2 = 510$ [Ом] из ряда номиналов сопротивлений E24.

Практическая часть:

1. Тип операционного усилителя задаётся как OPAMP 3T VIRTUAL.

В настройках операционного усилителя выставляем максимальное напряжение на входе $(U_{\text{вых } max} = 10 \text{ [B]}).$

Pисунок 1.1 - Oкно параметров усилителя.

2. Выставляем напряжение U_{SIN} большим, чем напряжение срабатывания $U_{cpa6} = 2,27$ [B].

Схема имеет вид:

Рисунок 1.2 – Схема компаратора на основе триггера Шмитта.

3. Построим осциллограмму:

Рисунок 1.3

4. Триггер обладает двумя устойчивыми состояниями. В исходное положение схема возвращается в случае уменьшения отпирающего напряжения. Стоит отметить, что напряжение отпускания не равно напряжению срабатывания, можно сказать, что зависимость выходного напряжения имеет вид петли гистерезиса. Наличие гистерезиса — необходимое условие правильной работы схемы, иначе схема не будет иметь двух устойчивых состояний.

Рисунок 1.4 – Осциллограмма отношения входного сигнала к выходному.

Спроектировать инвертирующий суммирующий усилитель. Провести моделирование в программе Multisim, показав правильность расчёта и соответствие варианту.

Дано (для варианта 6):

Параметры усилителя:

Amplifier parameters		
Voltage gain (Av):	-1	
Feedback resistor value (Rf):	1	kΩ 🚔
Positive rail voltage (VSW+):	12	V
Negative rail voltage (VSW-):	-12	V

Количество	Максимальное	Частота
входных	напряжение ОУ на входных	
сигналов	выходе	сигналов,
	U_{BHXMAX} , [B]	[кГц]
3	10	100

Расчётная часть:

1. Рассчитаем резисторы операционного усилителя

$$V_{out} = -V_{in} \cdot \frac{R_f}{R_{in}},$$
 где $R_f = 1$ [кОм]

 R_{in} - состоит из набора резисторов

Следовательно, так как у входных сигналов напряжение складывается и не пригодно для выполнения условия что на выходе сигнал не должен превышать $10 \, [\mathrm{B}]$, то рассчитаем резисторы, а именно выразим R_{in}

2. Рассчитаем компенсирующий резистор, который равен сумме всех резисторов, сложных параллельно.

$$R_{\rm x} = (R_1 || R_2 || R_3) = 333 \text{ [OM]}$$

Практическая часть:

1.Собирём следующую схему:

Рисунок 2.1 – Схема инвертирующего суммирующего усилителя с 4-мя входными сигналами.

2. Получаемая осциллограмма:

Рисунок 2.2 – Осциллограмма 3-х входных сигналов и 1 выходного сигнала.

Сумматор, с рассматриваемыми нами параметрами корректно работает в соответствие с техническим заданием, что видно из проверки его работы.

ЗАДАЧА 3

Спроектировать интегратор на основе операционного усилителя, с параметрами, соответствующими варианту. Провести моделирование в программе Multisim, показав правильность расчета и соответствие варианту.

Дано:

Амплитуда входного сигнала, [В]	Максимальное напряжение ОУ на выходе $U_{ m BMXMAX}$, [B]	Диапазон частот, [кГц]	Используемый операционный усилитель
10	0,4	100	OPAMP 3T VIRTUAL

Расчетная часть:

- 1. Рассчитаем элементы интегрирующего усилителя. Возьмем емкость равной 1 [мк Φ], однако необходимо, чтобы выполнялось условие $X_c \ll R_F$
- 2. Чтобы интегрировать на частотах от 100 [Гц] и выше требуется, чтобы критическая частота fc <<100 [Гц]. Выберем критическую частоту на одну декаду ниже, то есть f_c =10 [Гц] Используя формулу, находим R_f :

$$R_f = \frac{1}{2\pi f_c C} = \frac{1}{2 \cdot \pi \cdot 10 \cdot 1 \cdot 10^{-6}} = 15,92 [кОм]$$

Возьмем $R_f = 16$ [кОм].

3. Резистор R_1 нужно выбрать таким, чтобы на частоте $f=250~[\mbox{к}\Gamma\mbox{ц}]$

$$\left| \frac{\mathbf{v}_0}{\mathbf{v}_i} \right| = \frac{0.4}{10} = 0.04$$

На частоте $f=250~[\kappa\Gamma _{\rm II}]$ влиянием R_f можно пренебречь. Применимо уравнение коэффициента усиления идеального интегратора:

$$\left|\frac{\mathbf{v}_0}{\mathbf{v}_i}\right| = \frac{1}{2\pi f R_1 C_F}$$

Тогда

$$R_1 = \frac{1}{2\pi f \left| \frac{V_0}{V_i} \right| C} = \frac{1}{2 \cdot \pi \cdot 100 \cdot 10^3 \cdot 0.04 \cdot 1 \cdot 10^{-6}} = 39,78 \text{ [OM]}$$

Возьмем $R_1 = 39$ [Ом] из ряда номиналов резисторов Е24.

Практическая часть:

1.Соберём следующую схему:

Pисунок 3.1 — Cхема интегратора на основе операционного усилителя.

2. Работа интегратора на частоте 100 [кГц]:

Рисунок 3.2 – Осциллограмма.

ЗАДАЧА 4

Спроектировать активный фильтр нижних частот первого порядка, с параметрами, соответствующими варианту. Провести моделирование в программе Multisim, показав правильность расчет и соответствие варианту.

Дано:

Граничная частота, [кГц]	Используемый операционный усилитель
90	OPAMP 3T VIRTUAL

Расчетная часть:

1. Для моделирования фильтра нижних частот в MS находим емкость через ее связь с верхней частотой среза фильтра (пусть C=0.01 [мк Φ]) :

$$R = \frac{1}{2\pi Cf_{_H}} = \frac{1}{2 \cdot \pi \cdot 0.01 \cdot 10^{-6} \cdot 90 \cdot 10^{3}} = 176.83 \text{ [Om]}$$

Возьмем R = 180 [Ом] – из ряда номиналов резисторов Е24

2. Возьмём коэффициент усиления, равный 2. Он определяется выражением:

$$s = 1 + \frac{R_f}{R_1}$$

Тогда возьмем $R_f=R_1=1$ [кОм] , а $R_L=R_f=1$ [кОм] — эти резисторы присутствуют в ряде номиналов E24.

Практическая часть:

1. Соберём схему:

Рисунок 4.1

2. Проведем AC Sweep анализ, задав нужные параметры:

Рисунок 4.2 – Настройка частотных параметров в AC Sweep анализе.

Рисунок 4.3 – Параметры вывода в AC Sweep анализе.

3. На выходе получаем необходимый фильтр нижних частот. На графике видно, что на частоте 90,859 [кГц] потери составляют :

$$L1 - L2 = 6,0205 - 2,8625 = 3,158$$
 [дБ]

Pисунок 4.4 - AЧX моделируемого фильтра нижних частот.