Time: 20 mins

Name: Std. Number:

Prerequisite Quiz (solutions)

Questions

- 1. X and Y are two independently distributed variables each having a uniform distribution on the interval [0,1]. Z being max[X,Y] and W, min[X,Y], what would E[Z-W] be?
- 2. Let X be a continuous random variable with PDF $f_X(x) = \begin{cases} x^2(2x + \frac{3}{2}) & 0 < x \le 1 \\ 0 & otherwise \end{cases}$ if $Y = \frac{2}{X} + 3$ find E[Y] and Var(Y)
- 3. Let $X = \sim Uniform(\frac{-\pi}{2}, \pi)$ and $Y = \sin X$. find $f_Y(y)$.

1.

$$X \rightarrow un$$
; form => $F_{x}(n) = \int_{0}^{\infty} \frac{1}{1} dx = 0$
 $Y \rightarrow un$; form => $F_{y}(y) = \int_{0}^{\infty} \frac{1}{1} dx = 0$
 $P_{y}^{2} = \frac{1}{2} = \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} dy = \frac{1}{2} \int_{0}^{\infty}$

2.

First, note that

$$\operatorname{Var}(Y) = \operatorname{Var}\left(\frac{2}{X} + 3\right) = 4\operatorname{Var}\left(\frac{1}{X}\right),$$
 using Equation 4.4

Thus, it suffices to find Var

 $(\frac{1}{X})=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2.$ Using LOTUS, we have

$$E\left[\frac{1}{X}\right] = \int_0^1 x\left(2x + \frac{3}{2}\right) dx = \frac{17}{12}$$

$$E\left[rac{1}{X^2}
ight] = \int_0^1 \left(2x+rac{3}{2}
ight) dx = rac{5}{2}.$$

Thus, $\text{Var}(\frac{1}{X})=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2=\frac{71}{144}.$ So, we obtain

$$\operatorname{Var}(Y) = 4\operatorname{Var}\left(rac{1}{X}
ight) = rac{71}{36}.$$

Here Y=g(X), where g is a differentiable function. Although g is not monotone, it can be divided to a finite number of regions in which it is monotone. Thus, we can use Equation 4.6. We note that since $R_X=[-\frac{\pi}{2},\pi]$ $R_Y=[-1,1]$. By looking at the plot of $g(x)=\sin(x)$ over $[-\frac{\pi}{2},\pi]$, we notice that for $y\in(0,1)$ there are two solutions to y=g(x), while for $y\in(-1,0)$, there is only one solution In particular, if $y\in(0,1)$, we have two solutions: $x_1=\arcsin(y)$, and $x_2=\pi-\arcsin(y)$. If $y\in(-1,0)$ we have one solution, $x_1=\arcsin(y)$. Thus, for $y\in(-1,0)$, we have

$$f_Y(y) = \frac{f_X(x_1)}{g'(x_1)|}$$

$$= \frac{f_X(\arcsin(y))}{\cos(\arcsin(y))|}$$

$$= \frac{\frac{2}{3\pi}}{\sqrt{1-y^2}}.$$

For $y \in (0,1)$, we have

3.

$$\begin{split} f_Y(y) &= \frac{f_X(x_1)}{|g'(x_1)|} + \frac{f_X(x_2)}{|g'(x_2)|} \\ &= \frac{f_X(\arcsin(y))}{|\cos(\arcsin(y))|} + \frac{f_X(\pi - \arcsin(y))}{|\cos(\pi - \arcsin(y))|} \\ &= \frac{\frac{2}{3\pi}}{\sqrt{1 - y^2}} + \frac{\frac{2}{3\pi}}{\sqrt{1 - y^2}} \\ &= \frac{4}{3\pi\sqrt{1 - y^2}}. \end{split}$$

To summarize, we can write

$$f_Y(y) = \left\{ egin{array}{ll} rac{2}{3\pi\sqrt{1-y^2}} & -1 < y < 0 \ rac{4}{3\pi\sqrt{1-y^2}} & 0 < y < 1 \ 0 & ext{otherwise} \end{array}
ight.$$