IE 310 Operations Research Term Project

Fahri Can Şanlı - 2015400096 Burak Yüksel - 2015400225

Due: 31.12.2018

Sets

i: truck ids between 1-56

j: customer ids given in the file "customers.txt"

t: names of the transshipment centers given in the file "trcenters.txt" (Note: This set is not used because it does not have effect on the solution)

k: truck type (either small or large)

Alias

j1, j2: another representation of customer ids

Parameters

w(j): weight of demand of the customer j

v(j): volume of demand of the customer j

a(j1, j2): whether customer j1 and customer j2 can be transported in the same truck

u(j): unit cost of demand of the customer j

p(j, t): relation between customer j and transshipment center t (Note: This parameter is not used because it does not have effect on the solution)

Table

c(j, k): cost of transportation of the customer j with truck type k

Decision Variables

Binary Variables

d_type(j): whether customer j is transported directly or indirectly
(1->direct, 0->indirect)

truck1(i, j): whether customer j is transported by small truck i
truck2(i, j): whether customer j is transported by large truck I
truck1_used(i): whether small truck i is used for transportation
truck2_used(i): whether large truck i is used for transportation

Nonnegative Variables

truck1_max(i): maximum of costs transported in small truck i
truck2 max(i): maximum of costs transported in large truck i

Objective Function

cost: total cost of transportation of all customers

Equations/Constraints

transportation_type(i): a customer can use only one truck or no truck according to its d_type value

$$dtype(j) = \sum_{i} truck1(i,j) + truck2(i,j)$$
 for all j

customer_relation1(i, j1, j2): two customers can be transported together with small truck i if a(j1, j2) is true

$$truck1(i, j1) + truck1(i, j2) = a(j1, j2) + 1$$
 for all i,j1,j2

customer_relation2(i, j1, j2): two customers can be transported together with large truck i if a(j1, j2) is true

$$truck2(i, j1) + truck2(i, j2) = a(j1, j2) + 1$$
 for all i,j1,j2

truck1_capacity(i): number of customers transported in a small truck i should be less than or equal to 3

$$\sum_{j} truck1(i,j) \le 3$$
 for all i

truck2_capacity(i): number of customers transported in a large truck i should be less than or equal to 3

$$\sum_{j} truck2(i,j) \le 3$$
 for all i

truck1_volume(i): total volume of demand of customers transported in a small truck i should be less than or equal to 18

$$\sum_{j} truck1(i,j) \times v(j) \le 18$$
 for all i

truck2_volume(i): total volume of demand of customers transported in a large truck i should be less than or equal to 33

$$\sum_{j} truck2(i,j) \times v(j) \le 33$$
 for all i

truck1_maximum(i,j): enforce truck1_max(i) to be the maximum cost in small truck i $truck1(i,j) \times c(j,'small') \le truck1\max(i)$ for all i,j

truck2_maximum(i,j): enforce truck2_max(i) to be the maximum cost in large truck i $truck2(i,j) \times c(j,'large') \le truck2\max(i)$ for all i,j

truck1_usage(i): enforce truck1_used(i) to one if any customer is transported using small truck i

$$\sum_{i} truck1(i,j) \ge truck1used(i)$$
 for all i

truck2_usage(i): enforce truck2_used(i) to one if any customer is transported using large truck i

$$\sum_{j} truck2(i,j) \ge truck2used(i)$$
 for all i

Optimal Solution

MODEL MFW OBJECTIVE Z

TYPE MIP DIRECTION MINIMIZE

SOLVER XPRESS FROM LINE 4888

OBJECTIVE VALUE 16154.6356

Small trucks used to serve below customers

Truck ID - Customer ID

4 - 30004646

4 - 30008347

7 - 30003002

7 - 30008173

7 - 30006671

16 - 30002989

16 - 30003000

16 - 30007897

21 - 30008775

21 - 30008774

21 - 30000077

46 - 30002985

46 - 30005483

46 - 30008624

48 - 30007858

48 - 30002978

50 - 30003813

50 - 30008444

There are no large trucks used.
All other customers are served indirectly.