MP309

Experiment 3

BJT Common Base Characteristics

Patel Mihir Hemantkumar

I18PH037

Part 2 :- BJT CB Output Characteristics

EXPERIMENTAL TABLE			
Serial No.	Emitter Current 1.0 mA		
	Base-Collector Voltage V	Collector Current mA	
1	2.080	0.9764	
2	3.080	1.003	
3	4.080	1.007	
4	5.080	1.007	
5	6.080	1.007	
2 3 4 5 6	7.080	1.007	
7	8.080	1.007	
8	9.080	1.007	
9	9.780	1.007	

Figure 1: Observation table for $I_E{=}1\mathrm{mA}$

Figure 2: Collector Current (mA) Vs Base-Collector Voltage (V) for $I_E{=}1\mathrm{mA}$

- 1. Output resistance = \triangle V_{CB} / \triangle I_{C}
- $= (8.080 3.080)V/(1.007 1.003) * 10^{-3}A$
- $=1250000\Omega$
- 2. Average $I_C=1.003~{\rm 2mA}$
- 3. Current Gain = I_C/I_E
- = 1.0032

EXPERIMENTAL TABLE **Emitter Current** mASerial Base-Collector Collector No. Voltage V Current mΑ 1.523 1.000 2.000 1.928 3.000 1.990 4.000 1.999 5.000 2.000 6.000 2.000 7.000 2.000 8.000 2.000 9.000 2.000 10 9.300 2.000

Figure 3: Observation table for $I_E{=}2\mathrm{mA}$

Figure 4: Collector Current (mA) Vs Base-Collector Voltage (V) for $I_E{=}2\mathrm{mA}$

- 1. Output resistance = $\triangle~V_{CB}$ / $\triangle~I_{C}$
- $= (8.0 3.0)V/(2 1.990) * 10^{-3}A$
- $=500000\Omega$
- 2. Average $I_C=1.944~\mathrm{mA}$
- 3. Current Gain = I_C/I_E
- = 1.944/2
- = 0.972

EXPERIMENTAL TABLE			
	Emitter Current 3.0 mA		
Serial No.	Base-Collector Voltage V	Collector Current mA	
1	2.020	2.881	
2	3.020	2.970	
3	4.020	2.982	
4	5.020	2.984	
5	6.020	2.984	
6	7.020	2.984	
7	8.020	2.984	
8	9.020	2.984	

Figure 5: Observation table for $I_E{=}3\mathrm{mA}$

Figure 6: Collector Current (mA) Vs Base-Collector Voltage (V) for $I_E{=}3\mathrm{mA}$

- 1. Output resistance = $\triangle~V_{CB}$ / $\triangle~I_{C}$
- $= (9.020 4.020)V/(2.984 2.982) * 10^{-3}A$
- $=2500000\Omega$
- 2. Average $I_C=2.969~\mathrm{mA}$
- 3. Current Gain = I_C/I_E
- = 2.969/3
- = 0.989