

Lecture 2: Growth of Functions

曹刘娟

厦门大学信息学院计算机系

caoliujuan@xmu.edu.cn

Review (复习)

- An algorithm is a sequence of computational steps that transform the input into the output to solve a given problem.
- Example: The sorting (排序问题) problem.
 - Input: A sequence of n numbers $A = \langle a_1, a_2, ..., a_n \rangle$.
 - Output: A permutation (reordering) $A' = \langle a_1', a_2', ..., a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq ... \leq a_n'$.

- Problem (问题): A question to which we seek an answer.
 - Find the non-decreasing order of a sequence of n numbers A.
- Algorithm (算法): A step-by-step procedure applying a technique for solving the problem.
 - Insertion sort
 - Quicksort
 - Mergesort
 - •

- Parameters (参数): Variables that are not assigned specific values in the statement of the problem.
 - *A*.
- Instance (实例): Specific assignment of values to the parameters.
 - $A = \langle 3,6,1,7,2 \rangle$.
- Solution (答案): The answer to the problem in that instance.
 - $A' = \langle 1, 2, 3, 6, 7 \rangle$.

- Finite (有穷性): An algorithm consists of finite number of operations.
- Feasible (可行性): Every operation is executable.
- Deterministic (确定性): Every operation must not be ambiguous (generate random results).
- Input (输入): 0 or more, describe the initial state.
- Output (输出): 1 or more, describe the result process from the input.

* PI S NOTAS ANOTAS

PSEUDOCODE (伪代码)

- Pseudocode (伪代码) is a plain language description of the steps in an algorithm, irrelevant to specific programming language.
- We have the following conventions:
 - "←" represents variable assignment (变量赋值).
 - Indentation (缩进) indicates block structure. "{}" 不是必须
 - While, for, repeat, if, then, and else have the same interpretation as in most programming language.
 - // indicates comments.
 - Composite data type (复合类型) are typically organized into objects, which are comprised of attributes or fields, e.g. T.Lchild.
 - Array elements (数组) are accessed by specifying the array name followed by the index in square brackets, e.g. A[i].
 - Most of the time, we start the index i from 1, instead of 0.

LOOP INVARIANTS (循环不变量)

- At the start of each iteration of the for loop, the subarray A[1...j-1] consists of the elements originally in A[1...j-1] but in sorted order.
- We state these properties of A[1...j-1] formally as a loop invariants (循环不变量).
- 使用loop invariants 来证明算法的正确性 why an algorithm is correct.
- ■很多时候采用数学归纳法

插入排序算法的正确性

The loop invariants are:

A[1...j-1] is sorted before each iteration.

The proof is similar to mathematical induction (数学归纳法):

- Initiation 初始化 (归纳基础): It is true prior to the first iteration of the loop.
- Maintenance (归纳步骤): If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination(终止): When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

EFFICIENCY OF ALGORITHM

- Is correctness of an algorithm enough? How good is an algorithm?
- Time complexity (时间复杂度)
 - Indicates how fast an algorithm runs.
 - How many CPU cycles needed.
- Space complexity (空间复杂度)
 - Amount of memory units required by an algorithm.
- Does there exist a better algorithm?
- How to compare algorithms?

TIME COMPLEXITY (时间复杂度)

- Running time of an algorithm on a particular input generally be the number of primitive operations or "steps" executed.
- Define the notion of step so that it is as machine independent as possible. (比较与具体的计算机配置无关)
 - 一个算法在一台586 CPU 上的运行时间和在i9 CPU上的运行时间比较 是没有意义的
- The comparison should be instance independent. (比较与具体的数据输入无关)
 - 我们不是比较算法在某个特定输入数据的情况,而是比较一个问题 的通用情况

TIME COMPLEXITY (时间复杂度)

- The worst-case time complexity (最坏情形时间复杂度) of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
- The best-case time complexity (最好情形时间复杂度) of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.
- The average-case time complexity (平均情形时间复杂度) of an algorithm is the function defined by an average number of steps taken on any instance of size n.
- Which of these is the best to use?

WORST CASE OF INSERTION SORT

- The worst case occurs if the array is in reverse sorted order. In this case:
 - The key is always moving to the front in the while loop and thus $t_i = j$.
- Then, T(n) becomes:

$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} j$$

$$+ c_5 \sum_{j=2}^{n} (j - 1) + c_6 \sum_{j=2}^{n} (j - 1) + c_7 (n - 1) + c_8$$

$$= \left(\frac{c_4^{j=2}}{2} + \frac{c_5}{2} + \frac{c_6}{2}\right) n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7\right) n$$

$$-(c_2 + c_3 + c_4 + c_7 - c_8)$$

■ This running time is a quadratic function of *n*.

本节课内容-Growth of Functions

ASYMPTOTIC NOTATION (渐进符号)

引进渐进符号简化时间复杂度的计算和分析

Intuitively, just look at the dominant term.

$$T(n) = 9.1n^3 + 10n^2 + 5n + 25$$

- Drop lower-order terms $10n^2 + 5n + 25$.
- Ignore constant 0.1.
- But we can't say that T(n) equals to n^3 .
 - It grows like n^3 . But it doesn't equal to n^3 .
- We define asymptotic notations (渐进符号) like $T(n) = \Theta(n^3)$ to describe the asymptotic running time of an algorithm.
 - "Asymptotic" here means "as something tends to infinity", as we want to compare algorithms for very large n.

BIG O NOTATION 大O

为描述最坏情形时间复杂度以及上界的概念,引进BIG O

Definition 2.2

For a given complexity function g(n), O(g(n)) is the set of complexity functions f(n) for which there exists some positive real constant c and some nonnegative integer n_0 such that for all $n \ge n_0$,

$$0 \le f(n) \le cg(n).$$

- 上面的定义要注意,是存在正整数c和 n_0 使得对所有的 $n \ge n0$ 都成立
- O(g(n)) is a set of functions in terms of g(n) that satisfy the definition.
- If f(n) = O(g(n)), it represents that f(n) is an element in O(g(n)). We say that f(n) is "big O (大O)" of g(n).
 - Strictly, we should use "∈" instead of "=". However, it is conventional to use "=" for asymptotic notations.

- 我们关心的是当算法规 模n非常大的情况
- No matter how large f(n) is, it will eventually be smaller than cg(n) for some c and some n_0 .
- Big O notation describes an upper bound (上界). We use it to bound the worst-case running time (最差运行时间) of an algorithm on arbitrary inputs.

DISPLAY OF GROWTH OF FUNCTIONS

Big-O Complexity Chart

Elements

Example 1

We show that
$$n^2+10n=O(n^2)$$
. Because, for $n\geq 1$,
$$n^2+10n\leq n^2+10n^2=11n^2,$$

we can take c=11 and $n_0=1$ to obtain our result.

- To show a function is in big O of another function, the key is to find a specific value of c and n_0 that make the inequality hold.
- More examples of functions in $O(n^2)$:
 - n^2 , $n^2 + n$, $n^2 + 1000n$, $1000n^2 + 1000n$, n, n/1000, $n^{1.99999}$, $n^2/\lg \lg \lg n$.

CLASSROOM EXERCISE (课堂练习)

Use the definition of Big O notation to show:

Is
$$2^{2n} = O(2^n)$$
?

CLASSROOM EXERCISE (课堂练习)

Proof:

We prove it by contradiction (反证法). Assume there exist constants c>0 and $n_0\geq 0$, such that

$$2^{2n} \le c2^n,$$

for all $n \geq n_0$. Then

$$2^{2n} = 2^n 2^n \le c 2^n,$$

$$2^n \le c.$$

But we can't find any constant c is greater than 2^n for all $n \ge n_0$. So the assumption leads to a contradiction. Then we can certify that $2^{2n} \ne O(2^n)$.

How about $2^{n+1} = O(2^n)$?

BIG Ω NOTATION (发音 OMEGA)

为描述最好情形时间复杂度以及下界的概念,引进BIG Ω

Definition 2.3

For a given complexity function g(n), $\Omega(g(n))$ is the set of complexity functions f(n) for which there exists some positive real constant c and some nonnegative integer n_0 such that for all $n \geq n_0$,

$$0 \le cg(n) \le f(n)$$
.

- $\Omega(g(n))$ is the opposite of O(g(n)).
- If $f(n) = \Omega(g(n))$, it represents that f(n) is an element in $\Omega(g(n))$. We say that f(n) is "big Ω ($\mathcal{L}\Omega$)" of g(n).

- No matter how small f(n) is, it will eventually be larger than cg(n) for some c and some n_0 .
- Big Ω notation describes an lower bound (下界). We use it to bound the best-case running time (最佳情况) of an algorithm on arbitrary inputs.

🔭 BIG Θ NOTATION (发音THETA)

为描述平均时间复杂度的概念,引进 $BIG \Theta$

Definition 2.1

For a given complexity function g(n), $\Theta(g(n))$ is the set of complexity functions f(n) for which there exists some positive real constants c_1 and c_2 and some nonnegative integer n_0 such that, for all $n \ge n_0$,

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n).$$

- If $f(n) = \Theta(g(n))$, we say that f(n) is "big Θ (大 Θ)" or has the same order (数量级) of g(n).
- $\bullet \Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$
- 0 代表既是上界、又是下界

- Big Θ can also be used to bound the worst-case time complexity.
 - For insertion sort, the worst-case is both $\Theta(n^2)$ and $O(n^2)$.
- However, we usually use Big O notation because we don't care the best-case.

RELATION BETWEEN BIG O, BIG Ω AND BIG Θ (关系)

圆圈里面的函数的 上界是O(n²) 圆圈里面的函数的 下界是 $\Omega(n^2)$ 交集里面的函数的 上确界和下确界是 Θ(n²)

■ Now we have O, Ω , and Θ . Intuitively, they just like " \leq ", "=", and " \geq " for complexity functions.

PROPERTIES OF ASYMPTOTIC NOTATIONS(性质)

Theorem 2.1 (定理)

For any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

 \bullet $\Theta = 0$ and Ω .

$$f(n) = \Theta(g(n))$$
 implies $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Theorem 2.2(定理)

For any two functions $f_1(n)$ and $f_2(n)$, if $f_1(n)=O\bigl(g_1(n)\bigr)$ and $f_2(n)=O\bigl(g_2(n)\bigr)$, we have $f_1(n)+f_2(n)=O(\max\{g_1(n),\ g_2(n)\})$.

Pick the larger one.

PROPERTIES OF ASYMPTOTIC NOTATIONS(性质)

■ Transitivity (传递性)

- If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$.
- Same for O and Ω .

■ Additivity (可加性)

- If $f(n) = \Theta(h(n))$ and $g(n) = \Theta(h(n))$ then $f(n) + g(n) = \Theta(h(n))$.
- Same for O and Ω .

■ Reflexivity (自反性)

- $\bullet f(n) = \Theta(f(n)).$
- Same for O and Ω .

■ Symmetry (对称性)

- $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- Not hold for O and Ω.

PROPERTIES OF ASYMPTOTIC NOTATIONS(性质)

- ■比较复杂度函数
- Consider the following ordering of complexity categories: $\Theta(\lg n) \ \Theta(n) \ \Theta(n\lg n) \ \Theta(n^2) \ \Theta(n^j) \ \Theta(n^k) \ \Theta(a^n) \ \Theta(b^n) \ \Theta(n!)$ where $k \geq j \geq 2$ and $b \geq a \geq 1$.
- If f(n) is to the left of g(n) in the above sequence, then f(n) = O(g(n))
- Notice: Big Θ is a set of functions. We can't say $\Theta(\lg n) < \Theta(n)$.

PROPERTIES OF ASYMPTOTIC NOTATIONS (性质)

Example 2

Given $f(n) = \frac{1}{2}n(n-1)$, prove that $f(n) = \Theta(n^2)$

Proof:

By the property, we first show that $f(n) = O(n^2)$:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 (for $c = \frac{1}{2}$ and $n_0 = 0$).

Then we show that $f(n) = \Omega(n^2)$:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n = \frac{1}{4}n^2 \text{ (for } c = \frac{1}{4} \text{ and } n_0 = 2\text{)}.$$

Thus $f(n) = \Theta(n^2)$.

In addition to proving by definition, we can also use limit to get asymptotic notations.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{cases} = c & \text{implies } f(n) = \Theta(g(n)) & \text{if } 0 < c < \infty \\ = 0 & \text{implies } f(n) = O(g(n)) \\ = \infty & \text{implies } f(n) = \Omega(g(n)) \end{cases}$$

Example 3

Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 .

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2}\lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2}\lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2},$$

Thus,
$$\frac{1}{2}n(n-1) = \Theta(n^2)$$
.

Compare the orders of growth of a^n and b^n , when b > a > 0

CLASSROOM EXERCISE

Solution:

$$\lim_{n\to\infty} \frac{a^n}{b^n} = \lim_{n\to\infty} \left(\frac{a}{b}\right)^n = \mathbf{0}.$$

The limit is 0 because $0 < \frac{a}{b} < 1$. Thus, $a^n = O(b^n)$.

• When calculating $\lim_{n\to\infty}\frac{f(n)}{g(n)}$, how to deal with the following cases? $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}g(n)=0 \text{ or } \pm\infty$

L'Hôpital's Rule (洛必达法则)

If f(x) and g(x) are both differentiable with derivatives f'(x) and g'(x), respectively, and if

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0 \text{ or } \pm \infty,$$

then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)},$$

whenever the limit on the right exists.

Example 4

$$\lg n = O(n)$$

because

$$\lim_{x \to \infty} \frac{\lg x}{x} = \lim_{x \to \infty} \frac{d(\lg x)/dx}{dx/dx} = \lim_{x \to \infty} \frac{1/(x \ln 2)}{1} = 0.$$

 $\frac{d(\log_a x)}{dx} = \frac{1}{x \ln a}$

Show the correctness of the following statements.

$$n = O(n \lg n)$$

After this lecture, you should know:

- Why do we need asymptotic notation?
- What are the meaning of these asymptotic notations big O, big Θ , or big Ω ?
- How to prove a complexity function is big O, big Θ , or big Ω ?
- How to compare the order of two complexity function?

- Page 19
 - 2.1
 - 2.2
 - 2.3
 - 2.9

有问题欢迎随时跟我讨论

LOGARITHM 复习

efinition

 $\log_b a$ is the unique number c s.t. $b^c = a$.

Notations:

- $\lg n = \log_2 n$ (binary logarithm)
- $\ln n = \log_e n$ (natural logarithm)
- $\lg^k n = (\lg n)^k$ (exponentiation)
- $\lg \lg n = \lg (\lg n)$ (composition)

Derivative:

$$\frac{d(\log_a x)}{dx} = \frac{1}{x \ln a}$$

- Useful identities for all real a>0, b>0, c>0, and n, and where logarithm bases are not 1:
 - $\log_c(ab) = \log_c a + \log_c b$
 - $\bullet \log_b a^n = n \log_b a$
 - $\log_b\left(\frac{1}{a}\right) = -\log_b a$

$$\log_b a = (\log_a b)^{-1}$$

现代希腊语字母表															
字体序号				rial	Garamond		Monotype Corsiva		PMingLiu		Lucida Sans Unicode		英文注音	音标注音	中文注音
1	A	α	Α	α	A	α	А	α	Α	α	Α	α	alpha	[ˈælfə]	阿尔法
2	В	β	В	β	В	β	B	β	В	β	В	β	beta	['beitə]	1贝塔 2比特
3	Γ	γ	Г	γ	Γ	γ	T	y	Γ	γ	Г	Υ	gamma	['gæmə]	伽马
4	Δ	δ	Δ	δ	Δ	δ	Д	δ	Δ	δ	Δ	δ	delta	['deltə]	德尔塔
5	Е	3	E	3	E	ε	E	ε	Е	ε	E	€	epsilon	[ep'sailen]	读普西龙
6	Z	ζ	Z	ζ	Z	ζ	Z	3	Z	ζ	Z	ζ	zeta	['zi:tə]	1日-伊塔 2日-诶塔
7	Н	η	Н	η	Н	η	\mathcal{H}	η	Н	η	Н	η	eta	['i:tə]	伊塔
8	Θ	θ	Θ	θ	Θ	θ	Θ	θ	θ	θ	Θ	θ	theta	['0i:tə]	西塔
9	I	ı	1	T	I	t	I	1	I	ι	- 1	ι	iota	[aiˈəutə]	1爱欧塔 2哟塔
10	K	κ	K	K	K	и	K	к	K	κ	K	К	kappa	[kæpə]	卡帕
11	Λ	λ	Λ	λ	Λ	λ	Я	λ	Λ	λ	Λ	λ	lambda	['læmdə]	兰-布达
12	M	μ	М	μ	M	μ	M	μ	M	μ	M	μ	mu	[mju:]	1谬 2木
13	N	ν	N	V	N	ν	N	v	N	ν	N	ν	nu	[nju:]	1拗(niu) 2怒
14	Ξ	ξ	Ξ	ξ	Ξ	ž	5	ξ	Ξ	£,	Ξ	ξ	xi	[ksai]	1克-赛2然-爱3可-西
15	0	0	0	0	0	0	0	0	0	0	O	0	omicron	[oumaik'rən]	1欧麦克荣2欧米克荣
16	П	π	П	π	П	π	π	π	П	π	П	π	pi	[pai]	派
17	P	ρ	Р	ρ	P	6	P	ρ	P	ρ	Р	ρ	rho	[rou]	楼
18	Σ	σ	Σ	٥	Σ	σ	Σ	σ	Σ	σ	Σ	σ	sigma	['sigmə]	西格玛
19	T	τ	T	Т	T	τ	\mathcal{T}	τ	T	τ	T	Т	tau	[tau]	1套 2拓
20	Y	υ	Y	U	Υ	υ	Y	υ	Υ	υ	Υ	υ	upsilon	[ju:p'silən]	1宇普西龙2哦普斯龙
21	Φ	φ	Ф	φ	Φ	φ	Φ	φ	Φ	φ	Ф	ф	phi	[fai]	1佛-爱 2佛-伊
22	X	χ	X	X	X	χ	X	х	X	χ	X	X	chi	[kai]	1恺 2可-亿
23	Ψ	Ψ	Ψ	Ψ	Ψ	ψ	Ψ	Ψ	Ψ	ψ	Ψ	Ψ	psi	[psai]	1普西 2普赛
24	Ω	ω	Ω	ω	Ω	ω	Ω	ω	Ω	(J)	Ω	ω	omega	['oumigə]	1欧美伽 2欧米伽

注:所有的各种注音仅供参考,与标准的希腊语发音有区别。中文注音按照标准希腊语发音标注,并参考网上及教科书的中文注音,力求准确,但与标准的希腊语发音仍有出入。有些字母的读音不只一种,中文注音给出了不同的发音,需要连读为一个音节的,用"-"连结。 制作:MIIL 2013/08/12