21. Differenzierbarkeit

In diesem Paragraphen seien stets: $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

Definition

- (1) f heißt in $x_0 \in I$ differenzierbar (db) genau dann, wenn der $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert und $\in \mathbb{R}$ ist. ($\iff \exists \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ und ist $\in \mathbb{R}$). In diesem Fall heißt $f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ die **Ableitung von** f in x_0 .
- (2) f heißt auf I differenzierbar genau dann, wenn f in jedem $x \in I$ differenzierbar ist. In diesem Fall wird durch $x \mapsto f'(x)$ eine Funktion $f': I \to \mathbb{R}$ definiert, die **Ableitung von** f **auf** I.

Beispiele:

- (1) Sei $c \in \mathbb{R}$ und $f(x) = c \ \forall x \in I$. f ist differenzierbar auf I, $f'(x) = 0 \ \forall x \in I$.
- (2) Sei $I = \mathbb{R}$, $n \in \mathbb{N}$ und $f(x) = x^n$. Seien $x, x_0 \in \mathbb{R}$, $x_0 \neq x$. $\frac{f(x) f(x_0)}{x x_0} = \frac{x^n x_0^n}{x x_0} \stackrel{\S 1}{=} x^{n-1} + x_0^{n-2}x + x^{n-3}x^2 + \dots + x_0x^{n-2} + x^{n-1} \to nx_0^{n-1} \ (x \to x_0)$. f ist also differenzier auf \mathbb{R} und $f'(x) = nx^{n-1} \ \forall x \in \mathbb{R}$. Kurz: $(x^n)' = nx^{n-1}$ auf \mathbb{R} .
- (3) $I = \mathbb{R}$, f(x) = |x|, $x_0 = 0$. $x \neq 0$: $\frac{f(x) f(x_0)}{x x_0} = \frac{|x|}{x} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases} \implies f \text{ ist in } x_0 = 0$ nicht differenzierbar. (Beachte: f ist stetig in x_0)
- (4) $I = \mathbb{R}, f(x) = e^x$. 17.3 $\Longrightarrow \lim_{h \to 0} \frac{e^{x_0 + h} e^{x_0}}{h} = e^{x_0} \ \forall x_0 \in \mathbb{R}$. Kurz: $(e^x)' = e^x$.

Satz 21.1 (Differenzierbarkeit und Stetigkeit)

Ist f differenzierbar in $x_0 \in I$, so ist f stetig in x_0

Beweis

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \xrightarrow{x \to x_0} f'(x_0) \cdot 0 = 0 \ (x \to x_0) \implies \lim_{x \to x_0} f(x) = f(x_0) \blacksquare$$

Satz 21.2 (Ableitungsregeln)

 $g: I \to \mathbb{R}$ sei eine weitere Funktion, f und g ableitbar in $x_0 \in I$.

(1) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g$ differenzierbar in x_0 und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

(2) fg ist differenzierbar in x_0 und

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

(3) Es sei $g(x) \neq 0 \ \forall x \in I. \ \frac{f}{g}$ differenzierbar in x_0 und

$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$

Beweis

- (1) Klar. Für (2) und (3) beachte: $f(x) \to f(x_0), g(x) \to g(x_0)$ $(x \to x_0)$ (wegen 21.1)
- $(2) \frac{f(x)g(x) f(x_0)g(x_0)}{x x_0} = \frac{f(x) f(x_0)}{x x_0}g(x) + \frac{g(x) g(x_0)}{x x_0}f(x_0) \to f'(x_0)g(x_0) + g'(x_0)f(x_0) (x \to x_0)$

(3)
$$h := \frac{f}{g} : \frac{h(x) - h(x_0)}{x - x_0} = \frac{1}{g(x)g(x_0)} \left(\frac{f(x) - f(x_0)}{x - x_0} g(x_0) - \frac{g(x) - g(x_0)}{x \to x_0} f(x_0) \right) \to \frac{1}{g(x_0)^2} (f'(x_0)g(x_0) - g'(x_0)f(x_0))$$

Beispiele:

(1)
$$f(x) = e^{-x} = \frac{1}{e^x}, f'(x) = \frac{-e^x}{(e^x)^2} = -\frac{1}{e^x} = -e^{-x} \ \forall x \in \mathbb{R}$$

(2)
$$(\cosh x)' = (\frac{1}{2}(e^x + e^{-x}))' = \frac{1}{2}(e^x - e^{-x}) = \sinh x \text{ auf } \mathbb{R}.$$

 $(\sinh x)' = (\frac{1}{2}(e^x - e^{-x}))' = \frac{1}{2}(e^x + e^{-x}) = \cosh x \text{ auf } \mathbb{R}.$

Satz 21.3 (Kettenregel)

Sei $J \subseteq \mathbb{R}$ ein Intervall, $g: J \to \mathbb{R}$ eine Funktionen und $g(J) \subseteq I$. Weiter sei g differenzierbar in $x_0 \in J$ und f differenzierbar in $y_0 := g(x_0)$. Dann ist $f \circ g: J \to \mathbb{R}$ differenzierbar in x_0 und $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$

Beispiele:

- (1) Sei $I = \mathbb{R}$, a > 0, $a^x = e^{x \log a} = f(g(x))$ mit $f(x) = e^x$, $g(x) = x \log a \implies (a^x)' = f'(g(x))g'(x) = e^{x \log a} \log a = a^x \log a$ auf \mathbb{R}
- (2) $I = [0, \infty), f(x) = x^2, f'(x) = 2x, f'(0) = 0$ $f^{-1}(x) = \sqrt{x} \ (x \in [0, \infty)).$ Es gilt: $x = f(f^{-1}(x))(*) \ \forall x \ge 0$ Annahme: f^{-1} ist differenzierbar in $x_0 = 0$ $\xrightarrow{21.3, (*), x_0 = 0}$ $1 = \underbrace{f'(f^{-1}(0))}_{0} \cdot (f^{-1})'(0) = 0$ Widerspruch!

Das heißt $f^{-1}(x_0)$ ist in $x_0 = 0$ nicht differenzierbar.

Satz 21.4 (Ableitung der Umkehrfunktion)

 $f \in C(I)$ sei streng monoton, f differenzierbar in $x_0 \in I$ und $f'(x_0) \neq 0$. Dann ist f^{-1} : $f(I) \to I$ differenzierbar in $y_0 := f(x_0)$ und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

Beweis

Sei
$$(y_n)$$
 eine Folge in $f(I)\setminus\{y_0\}$ und $y_n\to y_0$ und $\alpha_n=\frac{f^{-1}(y_n)-f^{-1}(y_0)}{y_n-y_0}$. Zu zeigen: $\alpha_n\to\frac{1}{f'(x_0)}$ $(n\to\infty)$ $x_n:=f^{-1}(y_n)\implies y_n=f(x_n),\ x_n\in I,\ \forall n\in\mathbb{N}\implies \alpha_n=\frac{x_n-x_0}{f(x_n)-f(x_0)}\to\frac{1}{f'(x_0)}$ $(n\to\infty)$

Beispiele:

- (1) $I = \mathbb{R}, f(x) = e^x, f^{-1}(y) = \log y \ (y > 0)$. Sei y > 0, also $y = e^x \ (x \in \mathbb{R}) \implies (f^{-1})(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{y}$. Kurz: $(\log x)' = \frac{1}{x}$ auf $(0, \infty)$.
- (2) Sei $\alpha \in \mathbb{R}$ und $f(x) = x^{\alpha}$ (x > 0), dann: $f(x) = e^{\alpha \log x} \implies f'(x) = e^{\alpha \log x} \cdot (\alpha \log x)' = x^{\alpha} \cdot \frac{\alpha}{x} = \alpha x^{\alpha 1}$. Kurz: $(x^{\alpha})' = \alpha x^{\alpha 1}$ auf $(0, \infty)$
- (3) Für $\alpha = \frac{1}{2}$ liefert Beispiel (2): $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ auf $(0, \infty)$

Definition

Zu $\emptyset \neq M \subseteq \mathbb{R}$ und $x_0 \in M$. x_0 heißt ein **innerer Punkt** von M genau dann, wenn es ein $\delta > 0$ gibt, so dass $U_{\delta}(x_0) \subseteq M$.

Beispiele:

- (1) M ist offen genau dann, wenn jedes $x \in M$ ein innerer Punkt von M ist.
- (2) Sei $a < b, M \in \{[a, b], (a, b), [a, b), (a, b]\}$. $x_0 \in M$ ist innerer Punkt von M genau dann, wenn $x_o \in (a, b)$
- (3) \mathbb{Q} hat keine inneren Punkte

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}$, $g: D \to \mathbb{R}$ und $x_0 \in D$, g hat in x_0 ein **relatives Maximum**: $\iff \exists \delta > 0$: $g(x) \leq g(x_0) \ \forall x \in D \cap U_{\delta}(x_0)$.

Sei $\emptyset \neq D \subseteq \mathbb{R}$, $g: D \to \mathbb{R}$ und $x_0 \in D$, g hat in x_0 ein **relatives Minimum**: $\iff \exists \delta > 0$: $g(x) \geq g(x_0) \ \forall x \in D \cap U_{\delta}(x_0)$.

Ein relatives Extremum ist ein relatives Maximum oder Minimum.

Satz 21.5 (Erste Ableitung am relativen Extremum)

f sei differenzierbar in $x_0 \in I$, f habe in x_0 ein relatives Extremum und x_0 sei ein innerer Punkt von I. Dann gilt: $f'(x_0) = 0$.

Beweis

f habe in x_0 ein relatives Maximum. Dann existiert $\delta > 0$: $U_{\delta}(x_0) \subseteq I$ und $f(x) \leq f(x_0) \ \forall x \in U_{\delta}(x_0)$.

Sei
$$x \in U_{\delta}(x_0)$$
 und $x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \implies f'(x_0) \quad (x \to x_0 -)$
> $\leq \qquad (x \to x_0 +)$

Also: $f'(x_0) = 0$.

Bemerkungen:

- (1) Die Voraussetzung " x_0 ist ein innerer Punkt von I" ist wesentlich. Beispiel: $f(x) = x, x \in [0,1], x_0 = 0$ oder $x_0 = 1$.
- (2) Ist f differenzierbar in x_0 und $f'(x_0) = 0$, so muss f in x_0 kein relatives Extremum haben. Beispiel: $f(x) = x^3$, $x_0 = 0$.

Satz 21.6 (Mittelwertsatz der Differenzialrechnung)

Sei I = [a, b] (a < b), $f, g \in C(I)$ und f und g seien differenzierbar auf (a, b). Weiter sei $g'(x) \neq 0 \ \forall x \in (a, b)$.

(1) **Satz von Rolle**: Es sei f(a) = f(b). Dann existiert $\xi \in (a, b)$:

$$f'(\xi) = 0.$$

(2) Mittelwertsatz (MWS) der Differenzialrechnung:

$$\exists \xi \in (a,b) : \frac{f(b) - f(a)}{b - a} = f'(\xi).$$

(3) Erweiteter Mittelwertsatz: Es ist $g(b) \neq g(a)$ und $\exists \xi \in (a,b)$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Beweis

(1) $18.3 \implies \exists s, t \in [a, b] : f(s) \le f(x) \le f(t) \ \forall x \in [a, b].$

Fall 1: $s, t \in \{a, b\} \implies f$ ist auf I konstant $\implies f' = 0$ auf $I \implies$ Beh.

Fall 2: $s \in (a, b)$ oder $t \in (a, b)$. Etwa: $s \in (a, b) \implies s$ ist ein innerer Punkt von I und f hat in s ein Minimum. 21.5 $\implies f'(s) = 0$.

- (2) folgt aus (3) mit g(x) = x.
- (3) h(x) := (f(b) f(a))g(x) (g(b) g(a))f(x) ($x \in I$). Dann gilt: $h \in C(I)$, h ist differenzierbar auf (a, b).

$$h(a) = h(b) \stackrel{(1)}{\Longrightarrow} \exists \xi \in (a,b) : 0 = h'(\xi) = (f(b) - f(a))g'(\xi) - (g(b) - g(a))f'(\xi)$$

$$\implies (f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi).$$

Aus (1) folgt: $g(a) \neq g(b)$ (sonst existierte $x_0 \in (a, b)$ mit $g'(x_0) = 0$).

$$\implies \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Folgerungen 21.7

 $f, g: I \to \mathbb{R}$ seien differenzierbar auf I.

(1) Ist f' = 0 auf $I \implies f$ ist auf I konstant

wachsend ≥ < × fallend

streng wachsend

streng fallend

(2) Ist f' = g' auf $I \implies \exists c \in \mathbb{R} : f = g + c$ auf I.

- (1) Seien $x_1, x_2 \in I$ und $x_1 < x_2$. 21.6 (2) $\implies \exists \xi \in (x_1, x_2) : f(x_2) f(x_1) = f'(\xi)(x_2 \xi)$ $x_1) \implies \text{Beh.}$
- (2) $h := f g \implies h' = 0$ auf $I \stackrel{(1)}{\Longrightarrow}$ Beh.

Beispiele:

(1) Es existiert genau ein $x_0 \in \mathbb{R} : e^{-x_0} = x_0$.

 $f(x) := e^{-x} - x \ (x \in \mathbb{R}) \quad f(0) = 1 > 0, \ f(1) = \frac{1}{e} - 1 < 0. \ 18.2 \implies \exists x_0 \in (0,1) :$ $f(x_0) = 0$, also: $e^{-x_0} = x_0$.

 $f'(x) = -e^{-x} - 1 < 0 \ \forall x \in \mathbb{R} \stackrel{21.7}{\Longrightarrow} f$ ist streng fallend $\Longrightarrow f$ hat genau eine Nullstelle, nämlich x_0 . \Longrightarrow Beh.

(2) Ist $f: \mathbb{R} \to \mathbb{R}$ differenzierbar auf \mathbb{R} und f' = f auf $\mathbb{R} \implies \exists c \in \mathbb{R} : f(x) = ce^x \ (x \in \mathbb{R}).$

 $h(x) := \frac{f(x)}{e^x} \implies h'(x) = \frac{f'(x)e^x - e^x f(x)}{(e^x)^2} = 0 \ \forall x \in \mathbb{R} \implies \exists c \in \mathbb{R} : h(x) = c \ \forall x \in \mathbb{R} \implies \exists c \in \mathbb{R} : h(x) = c \ \forall x \in \mathbb{R} \implies b(x) = b(x)$ Beh.

Satz 21.8 (Die Regeln von de l'Hospital)

 $f,g:(a,b)\to\mathbb{R}$ seien auf (a,b) differenzierbar und es sei $g'(x)\neq 0 \ \forall x\in(a,b)\ (a=-\infty)$ oder $b=\infty$ zugelassen). Weiter existiere $L:=\lim_{\substack{x\to a\\x\to b}}\frac{f'(x)}{g'(x)}$ $(L=\pm\infty$ zugelassen) und es gelte

- (I) $\lim_{\substack{x \to a \\ x \to b}} f(x) = \lim_{\substack{x \to a \\ x \to b}} g(x) = 0 \text{ oder}$
- (II) $\lim_{\substack{x \to a \\ x \to b}} f(x) = \lim_{\substack{x \to a \\ x \to b}} g(x) = \pm \infty.$

Dann gilt: $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

Beweis

Nur unter der Voraussetzung (I) und nur für $x \to a$.

Fall 1:
$$a \in \mathbb{R}$$
. $f(a) := g(a) := 0 \xrightarrow{(I)} f, g \in C[a, b)$.

Sei $x \in (a, b)$. 21.6 (3) $\implies \exists \xi = \xi(x) \in (a, x) : \frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(x)}{g'(x)} \to L$ (für $x \to a$, da dann auch $\xi \to a$).

<u>Fall 2</u>: $a = -\infty$. Substituiere $x = \frac{1}{t}$, also $t = \frac{1}{x}$ $(x \to a = -\infty \iff t \to 0-)$.

$$\varphi(t) := f(\frac{1}{t}) = f(x), \ \psi(t) := g(\frac{1}{t}) = g(x). \ \text{z.z.:} \ \frac{\varphi(t)}{\psi(t)} \to L \ (t \to 0-)$$

$$\varphi'(t) = f'(\frac{1}{t})(\frac{1}{-t^2}) = f'(x)(-x^2)$$

$$\psi'(t) = g'(x)(-x^2)$$

$$\implies \frac{\varphi'(t)}{\psi'(t)} = \frac{f'(x)}{g'(x)} \to L \ (t \to 0-) \stackrel{\text{Fall} 1}{\Longrightarrow} \frac{\varphi(t)}{\psi(t)} \to L \ (t \to 0-).$$

Beispiele:

(1)
$$a, b > 0$$
: $\lim_{x \to 0} \frac{a^x - b^x}{x} = \lim_{x \to 0} \frac{a^x \log a - b^x \log b}{1} = \log a - \log b$

$$(2) \lim_{x \to \infty} \frac{\log x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

(3)
$$\lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} e^{\frac{\log x}{x}} = e^0 = 1$$

(4)
$$\lim_{z \to 0} \frac{\log(1+tz)}{z} = \lim_{z \to 0} \frac{\frac{1}{1+tz} \cdot t}{1} = t \ (t \in \mathbb{R})$$

(5) Für
$$t \in \mathbb{R}$$
: $\lim_{x \to \infty} (1 + \frac{t}{x})^x = e^t$ (insbesondere $\lim_{n \to \infty} (1 + \frac{t}{n})^n = e^t$, $n \in \mathbb{N}$)

Beweis

$$\varphi(x) := (1 + \frac{t}{r})^x.$$

$$\lim_{x \to \infty} \log \varphi(x) = \lim_{x \to \infty} x \log \left(1 + \frac{t}{x}\right)^{z = \frac{1}{x}} \lim_{x \to \infty} \frac{\log \left(1 + tz\right)}{z} = t$$

$$\implies \varphi(x) \to e^t \ (x \to \infty).$$

Satz 21.9 (Ableitung von Potenzreihen)

Sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe mit Konvergenzradius $r>0, I:=(x_0-r,x_0+r), (I=\mathbb{R}, \text{ falls } r=\infty) \text{ und } f(x):=\sum_{n=0}^{\infty} a_n(x-x_0)^n (x\in I)$

- (1) Die Potenzreihe $\sum_{n=0}^{\infty} n a_n (x-x_0)^{n-1}$ hat den Konvergenzradius r.
- (2) f ist auf I differenzierbar und $f'(x) := \sum_{n=0}^{\infty} na_n(x-x_0)^{n-1} \quad \forall x \in I$, also $(\sum_{n=0}^{\infty} a_n(x-x_0)^n)' = \sum_{n=0}^{\infty} (a_n(x-x_0)^n)'$

\mathbf{Beweis}

- (1) $\limsup \sqrt[n]{|na_n|} = \limsup \sqrt[n]{n} \sqrt[n]{|a_n|} = \limsup \sqrt[n]{|a_n|} \implies \text{Behauptung.}$
- (2) Später

Beispiele:

- (1) $(\sin x)' = \sum_{n=0}^{\infty} ((-1)^n \frac{x^{2n+1}}{(2n+1)!})' = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x \text{ auf } \mathbb{R}.$
- $(2) (\cos x)' = -\sin x$

Satz 21.10 (Eigenschaften trigonometrischer Funktionen)

- (1) $\forall x \in \mathbb{R} : \cos^2 x + \sin^2 x = 1, |\cos x| \le 1, |\sin x| \le 1, |\sin x| \le |x|$
- (2) Additions theoreme: $\forall x, y \in \mathbb{R} : \sin(x+y) = \sin x \cos y + \cos x \sin y, \cos(x+y) = \cos x \cos y \sin x \sin y$
- (3) $\sin x > x \frac{x^3}{3!} > 0 \ \forall x \in (0,2)$; insbesondere: $\sin 1 > \frac{5}{6}$.
- (4) $\exists \xi_0 \in (0,2) \text{ mit } \cos \xi_0 = 0 \text{ und } \cos x \neq 0 \ \forall x \in [0,\xi_0), \pi := 2\xi_0 \text{ (Pi). Also: } \pi \in (0,4) \ (\pi \approx 3,14..), \cos \frac{\pi}{2} = 0, \cos x \neq 0 \ \forall x \in [0,\frac{\pi}{2}).$
- $(5) \sin \frac{\pi}{2} = 1$
- (6) $\sin(-x) = -\sin x$, $\cos(-x) = \cos x$ $\sin(x + \frac{\pi}{2}) = \cos x$, $\cos(x + \frac{\pi}{2}) = -\sin x$ $\sin(x + \pi) = -\sin x$, $\cos(x + \pi) = -\cos x$ $\sin(x + 2\pi) = \sin x$, $\cos(x + 2\pi) = \cos x$
- (7) Für $x \in [0, \pi] : \cos x = 0 \iff x = \frac{\pi}{2}$
- (8) $\sin x = 0 \iff \exists k \in \mathbb{Z} : x = k\pi.$ $\cos x = 0 \iff \exists k \in \mathbb{Z} : x = k\pi + \frac{\pi}{2}.$

Beweis

- (1) $f(x) := \cos^2 x + \sin^2 x 1$. $f'(x) = 2\cos x(-\sin x) + 2\sin x \cos x = 0$. 21.7 $\Longrightarrow f$ ist auf \mathbb{R} konstant. $f(0) = 0 |\cos x| = \sqrt{\cos^2 x} \le \sqrt{\cos^2 x + \sin^2 x} = 1$, ObdA $x \ne 0$. $\sin x = \sin x \sin 0 \stackrel{\text{MWS}}{=} |\cos \xi| |x| \le |x|$
- (2) Sei $y \in \mathbb{R}$ und $f(x) := (\sin(x+y) \sin x \cos y \cos x \sin y)^2 + (\cos(x+y) \cos x \cos y + \sin x \sin y)^2$. Klar: f(0) = 0. Nachrechnen: f' = 0 auf \mathbb{R} . 21.7 $\implies f \equiv 0$ auf \mathbb{R} .
- (3) Für $x \in (0,2)$: $\sin x = \underbrace{\left(x \frac{x^3}{3!}\right)}_{>0} + \underbrace{\left(\frac{x^5}{5!} \frac{x^7}{7!}\right)}_{>0} + \cdots \implies \text{Behauptung.}$
- (4) $\cos 0 = 1 > 0$. $\cos 2 = \cos(1+1) = \cos^2 1 \sin^2 1 = \cos^2 1 + \sin^2 1 2\sin^2 1 = 1 2\sin^2 1 \stackrel{(3)}{<}$ $1 - 2\frac{25}{36} < 0$. $18.2 \implies \exists \xi_0 \in (0,2) : \cos \xi_0 = 0$, In (0,2): $(\cos x)' = -\sin x \stackrel{(3)}{<} 0 \implies \cos x$ ist in (0,2) streng monoton fallend $\implies \cos x \neq 0 \ \forall x \in [0,\xi_0)$
- (5) $\sin^2 \frac{\pi}{2} = 1 \cos^2 \frac{\pi}{2} = 1 \implies \sin \frac{\pi}{2} = \pm 1$. (3) $\implies \sin \frac{\pi}{2} > 0 \implies \sin \frac{\pi}{2} = 1$.
- (6) Die erste Behauptung mit kann mit Potenzreihen, der Rest mit den Additionstheoremen bewiesen werden.

- (7) "\(\iff ": \text{klar}, \, \, \iff ": \text{Sei } x \in [0, \pi] \text{ und } \cos x = 0 \infty \frac{4}{\iff } x \geq \frac{\pi}{2}, y := \pi x, y \in [0, \frac{\pi}{2}] \text{ und } \cos y = \cos(x + \pi) \infty \frac{6}{\iff } \cos(-x) = -\cos(x) \infty \frac{4}{\iff } y \leq \frac{\pi}{2}, x = \frac{\pi}{2}.
- (8) In den gr. Übungen ■

Definition 21.11 (Tangens)

$$\tan x := \frac{\sin x}{\cos x} \text{ für } x \in \mathbb{R} \setminus \{k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\}.$$

$$I:=\left(-\frac{\pi}{2},\frac{\pi}{2}\right);\;f(x):=\tan x\;(x\in I).\;\;\mathrm{Dann:}\;f\in C(I).\;\lim_{x\to\frac{\pi}{2}}f(x)=\infty,\;\lim_{x\to-\frac{\pi}{2}}f(x)=-\infty,$$

$$f'(x)=\frac{\cos^2 x+\sin^2 x}{\cos^2 x}=\frac{1}{\cos^2 x}=1+\frac{\sin^2 x}{\cos^2 x}=1+\tan^2 x>0\;\mathrm{auf}\;I\implies f\;\mathrm{ist}\;\mathrm{auf}\;I\;\mathrm{streng}\;\mathrm{monoton}$$
 wachsend $\Longrightarrow\exists f^{-1}:\mathbb{R}\to I,\;\mathrm{arctan}\;x:=f^{-1}(x)(x\in\mathbb{R})\;\mathrm{Arcustangens}.\;\mathrm{Sei}\;y=\tan x\;(x\in I).$
$$(f^{-1})'(y)=\frac{1}{f'(x)}=\frac{1}{1+\tan^2 x}=\frac{1}{1+y^2}.\;\mathrm{Also:}\;(\mathrm{arctan}\;x)'=\frac{1}{1+x^2}\;\mathrm{auf}\;\mathbb{R}.$$

Definition

Sei $I \subseteq \mathbb{R}$ ein Intervall; $f: I \to \mathbb{R}$ eine Funktion und $x_0 \in I$. f wird in einer Umgebung von x_0 durch eine Potenzreihe dargestellt: $\iff \exists \delta > 0$ und \exists eine Potenzreihe $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ mit Konvergenzradius $\geq \delta$ und $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \ \forall x \in I \cap U_{\delta}(x_0)$.

Beispiele:

- (1) $I = (-\infty, 1), f(x) = \frac{1}{1-x}$. Bekannt: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ für $x \in (-1, 1)$. Also: $f(x) = \sum_{n=0}^{\infty} x^n$ für $x \in (-1, 1)$
- (2) $I = \mathbb{R}, f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} \ (x \in (-1,1))$
- (3) $I = (-1, \infty), f(x) = \log(1+x)$. Behauptung: (*) $\log(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} (x \in (-1, 1))$

Beweis

Bewels
$$g(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} \ (x \in (-1,1)) \ 21.9 \implies g \text{ ist auf } (-1,1) \text{ differenzierbar und } g'(x) = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1-(-x)} = \frac{1}{1+x} = f'(x) \ \forall x \in (-1,1). \ 21.7 \implies \exists c \in \mathbb{R} : f(x) = g(x) + c \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) = g(0)$$