شروین ایران عقیده

نام استاد: ابوالفضل تهرانیان

نام درس:

مبانی جبر

aH=bH ق<mark>ضیه:</mark> فرض کنیم H یک زیرگروه G باشد، آنگاه دو هم مجموعه H یا برابرند یا از هم مجزا. (یعنی: یا

یا $H \cap bH = \emptyset$ و تعداد عناصر هم مجموعههای H یکسانند و هر عضو G متعلق به یک هم مجموعه H است.

است، پس $c \in bH$ و $c \in aH$ وجود دارد که $c \in aH$ است، پس $c \in bH$ است، پس

 $c=bh_2$ و $c=ah_1$ وجود دارند به طوری که $c=bh_2$ و h_2 از h_2 وجود دارند به طوری که

$$c = ah_1 = bh_2 \rightarrow a = bh_2 h_1^{-1}$$

حال مىخواهيم نشان دهيم كه: aH=bH:

فرض کنیم x=ah پس $(h \in H)$ $x \in aH$ در نتیجه:

$$X = bh_2 h_1^{-1}h = bh_c \rightarrow x \in bH$$

 $h_c \in H$

$$h_c \in H$$

X همچنین عضو aH هم بود پس:

 $a \in G$ به ازای |aH| = |H| به ازای (۲) نشان می دهیم که

تابع \ \lambda \ \ را به صورت:

$$\lambda_a: H \to aH$$

$$h\lambda_a = ah$$

حال اگر:

$$h_1 \lambda_a = h_2 \lambda_a$$
, $(h_1, h_2 \in H) \to ah_1 = ah_2 \to h_1 = h_2$

$$|aH| = |H|$$
 پس λa تابعی یک به یک است پس: λa

$$a \in G$$
 یس: $a \in G$ یس: $a \in G$ یس:

$$a = ae \in aH$$

پایان