Chapter 7 (Part I) Latches and Flip-Flops

Latches

- Temporary storage device that has two stable states (bistable) or multivibrator.
- Be able to:
 - I. Explain the operation of basic S-R latch
 - 2. Explain the operation of a gated S-R latch
 - 3. Explain the operation of a gated D latch
 - Implement an S-R or D latch with logic gates

S-R (Set-Reset) Latch

Active-HIGH input S-R latch

S	R	Q	$ar{Q}$	Remarks
0	0	NC	NC	No change
0	Ī	0	I	Latch RESET
I	0	I	0	Latch SET
I	I	?	?	Invalid Condition

Truth table for active-HIGH input S-R Latch

The active-HIGH S-R latch is in a stable (latched) condition when both inputs are LOW.

Assume the latch is initially RESET (Q = 0) and the inputs are at their inactive level (0). To SET the latch (Q = 1), a momentary HIGH signal is applied to the S input while the R remains LOW.

To RESET the latch (Q = 0), a momentary HIGH signal is applied to the R input while the S remains LOW.

• Active-LOW input $\bar{S} - \bar{R}$ latch

\bar{S}	$ar{R}$	Q	$ar{Q}$	Remarks	
0	0	?	?	Invalid Condition	
0	Ī	I	0	Latch SET	
ı	0	0	Ī	Latch RESET	
I	I	NC	NC	No change (latch remain in present state, stable condition)	

Truth table for active-LOW input $\bar{S} - \bar{R}$ Latch

The active-LOW S-R latch is in a stable (latched) condition when both inputs are HIGH.

Assume the latch is initially RESET (Q = 0) and the inputs are at their inactive level (I). To SET the latch (Q = I), a momentary LOW signal is applied to the \overline{S} input while the \overline{R} remains HIGH.

To RESET the latch a momentary LOW is applied to the \overline{R} input while \overline{S} is HIGH.

Never apply an active set and reset at the same time (invalid).

If the $\bar{S}-\bar{R}$ waveforms are applied to the inputs of the latch. Determine the waveform that will be observed on the Q output. Assume that Q is initially LOW

Solution

Gated S-R (Set-Reset) Latch

- A gate input is added to the S-R latch to make the latch synchronous.
- The gated latch has an additional input, called enable (EN) that must be HIGH in order for the latch to respond to the S and R inputs.
- When the enable input is LOW, the latch remains in the hold condition.

Determine the Q output waveform if the inputs shown below are applied to a gated S-R latch that is initially RESET

Solution

Keep in mind that S and R are only active when EN is HIGH.

Gated D Latch

 $D \longrightarrow D$ $EN \longrightarrow \overline{Q}$ $\bigcirc \overline{Q}$

Figure 7.9: Logic diagram for gated D Latch

Figure 7.10: Logic symbol for gated D Latch

D	EN	Q	$ar{oldsymbol{Q}}$	Remarks
0	I	0	I	RESET
1	I	I	0	SET
X	0	NC	NC	No Change

Table 7.3: Truth table for gated D Latch

A simple rule for the *D* latch is:

Q follows D when the Enable is active.

Example

Determine the Q output waveform if the inputs shown below are applied to a gated D latch that is initially RESET

Solution

Notice that the Enable is not active during these times, so the output is latched.

- Synchronous bistable devices aka bistable multivibrators.
- Be able to:
 - Differentiate between latches and flip-flop
 - 2. Explain the operation of basic S-R, D and J-K flip-flop
 - 3. Explain flip-flop operating characteristic
 - 4. Discuss flip-flop applications

- The output changes state only at a specified point on the triggering input called CLOCK (CLK), control input.
- Can be either positive edge triggered (no bubble at clock (*C*) input) or negative edge triggered (bubble at clock (*C*) input).

Edge-triggered flip-flop logic symbols (top: positive edge-triggered; bottom: negative edge-triggered).

Clock Signal

 Clock signal is a periodic square wave that indefinitely switches values from 0 to 1 and 1 to 0 at fixed intervals.

Clock signal.

Edge triggered S-R flip-flop

- SET (S) and RESET (R) inputs of the S-R flip-flop are called synchronous input.
- Data on these inputs are transferred to the output only on the triggering edge of the clock pulse.

Logic symbol for positive edge triggered S-R flip-flop

	<u></u>						
S	R	CLK	Q	\overline{Q}	Remarks		
X	X	X	NC	NC	No Change		
0	I	\uparrow	0	I	RESET		
ı	0	\uparrow	I	0	SET		
I	I		?	?	Invalid Condition		
1 = clock transition from LOW to HIGH							
X = Don't care (0 or 1)							
NC = No change							
? = Invalid condition							
Touch table for a siting adea to ground C.D. flip floor							

Truth table for positive edge triggered S-R flip-flop

Determine the Q and \overline{Q} output waveform of the positive edge triggered S-R flip-flop for the S, R and CLK input below. Assume that the flip-flop is initially RESET

Solution

Edge triggered D flip-flop

Logic symbol for positive edge triggered D flip-flop

D	CLK	Q		Remarks			
X	X	NC	NC	No Change			
I	\uparrow	Í	0	SET			
0	↑	0	Y	RESET			
= clock transition from LOW to HIGH							
X = Don't care (0 or 1)							
	NC = No change						

Truth table for positive edge triggered D flip-flop

A positive edge-triggered D flip-flop formed with an S-R flip-flop and an inverter

From the waveform for the D input and the clock, determine the Q output waveform if the flip-flop starts out RESET

Solution

Edge triggered J-K flip-flop

 Edge triggered J-K will only accept the J and K inputs during the active edge of the clock.

Logic symbol for positive edge triggered J-K flip-flop

J	K	CLK	Q	$ar{Q}$	Remarks		
X	X	X	Q_0	$\overline{Q_0}$	No Change		
0	0	\uparrow	Q_0	$\overline{Q_0}$	No Change		
0	İ	\uparrow	0	I	RESET		
I	0	\uparrow	Ι	0	SET		
1	I \uparrow $\overline{Q_0}$ Q_0 Toggle						
\uparrow = clock transition from LOW to HIGH							
$Q_{f 0}$ = output level prior to clock transition							
X = Don't care (0 or 1)							

Truth table for positive edge triggered J-K flip-flop

Example

From the waveform for the positive edge triggered J-K input and the clock, determine the Q output waveform if the flip-flop starts out RESET

Solution

How about for negative edge triggered J-K flip flop?

Asynchronous Preset and Clear Inputs

- Most flip-flops have other inputs that are asynchronous, meaning they affect the output independent of the clock.
- They are labeled as \overline{PRE} (preset) and \overline{CLR} (clear).
- An active level on preset input will set the flip-flop, and an active level on clear input will reset it.
- In normal condition, preset and clear would not be LOW at the same time. But must be kept HIGH for synchronous operation

Determine the Q output shown in the timing diagram

if Q is initially LOW.

Solution

Flip-flop Operating Characterictic

Propagation delay time is specified for the rising and falling outputs. It is measured between the 50% level of the clock to the 50% level of the output transition.

The typical propagation delay time for the 74AHC family (CMOS) is 4 ns. Even faster logic is available for specialized applications.

Set-up time and **hold time** are times required before and after the clock transition that data must be present to be reliably clocked into the flip-flop.

Setup time is the minimum time for the data to be present *before* the clock.

Hold time is the minimum time for the data to *remain* after the clock.

Maximum clock frequency, f(max), highest rate at which a flip-flop can be reliably triggered. Above that the flip-flop will be unable to respond quickly.

- Examples of application of flip-flops are as follow:
 - Parallel Data Storage.
 - Frequency Division.
 - Counting.
- Discuss all the above applications by showing its logic circuit and timing diagram.
- Create a problem to show its application.
- Due date: 5th May 2014

THE END OF PART III