

Krishna Sankar @ksankar

Applicable to Non-Reciprocal, Sequenced, Temporal Networks

Graph For A Better Tokenomics a.k.a. Token Economy

Problem Statement

- Immutable, Distributed, Consenus-driven & Secure DLT & Blockchain stack is essential for Crypto currency & Web 3.0
 - While the other properties are well implemented, security is still a challenge
- Specifically, this talk addresses the detection of Fraud Rings (e.g., Money Laundering), Camouflaged Fraud (e.g., Fake Product Reviews) and other similar activities

Hypothesis

 Graph representation & algorithms are well suited to analyze payment networks & extract fraud rings of arbitrary complexity

Approach

Tackle one of the complex fraud pattern in a scalable, extensible way

Agenda

- 1. Problem Statement
- 2. Demo
- 3. A few fantastic techniques (and where to find them!)
- 4. TigerGraph and the hard & (yet) unsolved challenges (in payment networks)

Non-Reciprocal, Sequenced, Temporal Networks

Pragmas

- 1. Relationships need not be symmetric or reciprocal
- 2. There is a sequence to the edges i.e. Sequenced Edges
- The edges have a temporal, monotonic component i.e. Temporal Edges

Examples

- 1. Payment Networks Forensics
- 2. Fake Reviews
- 3. Fake News

O Challenges

- 1. Breaks some of the assumptions in traditional graph algorithms
- 2. Traditional Graph Algorithms are not as widely applicable
- 3. In a payment network, edges rule
 - Algorithmically, nodes (while important) have a lesser role
- 4. In short, we need more specific concepts
- O Differences from traditional networks (social et al)
 - 1. PageRank doesn't make sense
 - Just because amzn paid someone doesn't make them any more important
 - 2. Community detection or k-clique are not that relevant
 - 3. Connected component is not that informative either

Let us take an example Fan-In/Fan-Out Fraud Rings

- Money Laundering goes through 3 stages
 - Placement,
 - Layering and
 - Integration
- Layering is the most complex, where the money is piped through a complex web of strategic transactions – mixers, tumblers, long chain of crypto transactions et al., obscuring the money trail
- As we will see later, one essential aspect in understanding the problem is to draw representative graphs the happy path 1^{st} (see next slide)

Money Laundering Graphs

From a traditional network perspective, there are multiple cycles; but from a payment network perspective the view is slightly different

Challenges

- 1. Non-Reciprocal, Sequenced, Temporal Networks
- 2. Payment network is very different from social or other networks
 - Temporal, monotonic time
 - Not symmetric
 - Other attributes (like amount) matters
 - Many of the concepts like connected components and page rank do not mean much
- 3. Money Laundering Layering is not just one cycle
 - But, multiple ordered cycles with a fraud actor at the helm
- 4. Detecting fraud ring is literally finding the proverbial needle in a haystack
 - Class imbalance, Long Fraud Chains spanning different crypto currency ledgers

Approach

- 1. Layered approach with well defined pipeline stages
 - Overlay fraud rings progressively
 - Narrow down and organize the vertices as we progress
 - Always keep time sequencing in the processing
- 2. Customize relevant gsql graph algorithms
 - e.g., Rocha-Thatte Cycle Detection, but it is unordered
 - Also need to combine cycles and find the fraud actor at the helm
- 3. Add runtime attributes to vertices
 - That will help the processing downstream the pipeline
- 4. Start with a simple schema and add more elements as required
- 5. Stay in TigerGraph as much as possible

Design Schema

Schema Information

Vertex information:

- Vertex: account
 - (PRIMARY ID) id: STRING
 - v_type: INT
- Vertex: transaction
 - (PRIMARY ID) id: STRING
 - amt: DOUBLE
 - date time: DATETIME
 - from id: UINT
 - to_id: UINT
- Vertex: Year_
 - (PRIMARY ID) id: STRING
- Vertex: Month_
 - (PRIMARY ID) id: STRING
- Vertex: Day_
 - (PRIMARY ID) id: STRING

Edge information:

- Edge: send
 - Source: account
 - Target: account
 - amount: DOUBLE
 - date time: DATETIME
- reverse edge: reverse_send
- Edge: spend
 - Source: account
 - Target: transaction
- reverse edge: reverse_spend
- Edge: Year_Month_
 - Source: Year
 - Target: Month_
- Edge: Month_Day_
 - Source: Month
 - Target: Day_

Edge: oneDay_trans

- Source: transaction
- Target: Day_
- date_time: DATETIME

Graph #1

Graph #2

- Easier to see
- The fraud ring is evident

Graph #3

- But, finds the tumbler network nicely!
- O Correctly identifies the fraud actor at the helm (#201), in spite of the attempted subterfuge via a tumbler

Challenges / TigerGraph Feature Requests

1. res = SELECT s FROM Start:s - (send:e) -> account:tgt
WHERE tgt IN @@cycle_set

```
// Find all edges and neap them by payment date to get the head hode
//ListAccum<VERTEX<account>> @@aNode = c_list.get(0);
Start = {c_list};
res = SELECT tgt FROM Start:s - (send:e) -> Start:tgt
```

- 2. Lots of object conversions because of container restrictions in the object hierarchy
 - O <TG Feature Request> ListAccum<SetAccum<.. Won't work
 - O <TG Feature Request> Edges are not 1st class objects
 - O <TG Feature Request> HeapAccum<EDGE> (100, .date_time ASC) would be very helpful
- 3. Fine grained temporals: No native support for Time Series or to unroll time
 - O <TG Feature Request> : Add Date Tree as an internal default optional property
- 4. <TG Feature Request> Feature Engineering for Graph Neural Networks
 - O I know this is a priority for TigerGraph product management

Lessons Learned

- 1. Graph representation is appropriate for DLT/Blockchain Fraud Detection
 - TigerGraph is a feature rich, flexible & scalable Graph Database well suited for this problem
 - But it requires disciplined thinking, at times different than what we are used to !
- 2. Spend time thinking about & understanding the problem
- 3. Make simplified assumptions and relax them as you progress (Layered approach)
- 4. Think Graphs & more specifically Parallel Graphs It will take a little time to get used to that concept
 - Read, write & learn the patterns from the GSQL Graph Algorithms and the GSQL code
- 5. Draw graph diagrams to visualize the problem Draw the happy path 1st & then edge cases
- 6. Create datasets depicting multiple scenarios 1^{st} use a small dataset to test the algorithms
- 7. Do as much in TigerGraph as possible, staying true to the platform
 - It is tempting to process a list outside (say in python), after a quick GSQL algorithm; don't stop there, persist (using GSQL) until you have exhausted all graph ideas

Things To Try Next ... This is only the beginning!

- $1.\,\,$ Scale! Load Bitcoin/Ethereum blockchains and apply the algorithms
 - Cross-Ledger tracking of fraud rings
- 2. Fine grained temporals
 - There could be many such rings by the same actors, so need to separate the rings by time
 - Solution: Time Tree "If you need to filter use vertices" TigerGraph pragma
 - Opportunity for supporting Payment Networks natively in TigerGraph Graph Algorithms
 - Refer to <TG Feature Request> in slide #17
- 3. More expressive Graph schema with derived runtime attributes, especially to track cross-ledger behaviors
- 4. Explore Graph Motif extraction, Weighted Graphs
- 5. Graph Neural Networks leveraging the extended dynamic attributes
- 6. Entity Resolution
 - Need to understand heavy spans & differentiate between Exchanges, Tumblers, Mixers -Add Vertex type based customized logic
 - Probably via highest measure of eigenvalue centrality and Graph Neural Networks

