Extremale Gitter mit großen Automorphismen

Simon Berger

21. September 2018

Definition

Sei L ein \mathbb{Z} -Gitter der Dimension n. Ein großer Automorphismus von L ist ein $\sigma \in \operatorname{Aut}(L)$ von Ordnung $m \in \mathbb{N}$, sodass $\Phi_m|\mu_\sigma$ und $\frac{n}{2} < \varphi(m) \le n$.

Definition

Sei L ein \mathbb{Z} -Gitter der Dimension n. Ein großer Automorphismus von L ist ein $\sigma \in \operatorname{Aut}(L)$ von Ordnung $m \in \mathbb{N}$, sodass $\Phi_m|\mu_\sigma$ und $\frac{n}{2} < \varphi(m) \le n$.

→ Ziel: Gitter mit großen Automorphismen klassifizieren.

Sei L Gitter mit großem Automorphismus σ der Ordnung m in Vektorraum V.

Sei L Gitter mit großem Automorphismus σ der Ordnung m in Vektorraum V.

$$\Rightarrow V = \mathsf{Kern}(\frac{\mu_{\sigma}}{\Phi_{m}}(\sigma)) \perp \mathsf{Kern}(\Phi_{m}(\sigma))$$

$$M:=L_1\perp L_p:=L\cap \mathsf{Kern}(rac{\mu_\sigma}{\Phi_m}(\sigma))\perp L\cap \mathsf{Kern}(\Phi_m(\sigma))$$

$$M:=L_1\perp L_p:=L\cap \mathsf{Kern}(rac{\mu_\sigma}{\Phi_m}(\sigma))\perp L\cap \mathsf{Kern}(\Phi_m(\sigma))$$

• Falls ein $p \in \mathbb{P}$ existiert, sodass $\frac{\mu_{\sigma}}{\Phi_m} \mid (X^{\frac{m}{p}} - 1)$, dann ist $L_1 = L \cap \operatorname{Kern}(\sigma^{\frac{m}{p}} - 1)$ das Fixgitter und $L_p = L \cap \operatorname{Bild}(\sigma^{\frac{m}{p}} - 1)$ das Bildgitter eines Automorphismus von Primzahlordnung.

• Primteiler p von m mit $ggT(p, \ell) = 1$ durchgehen.

- Primteiler p von m mit $ggT(p, \ell) = 1$ durchgehen.
- Mögliche Automorphismentypen der Ordnung *p* durchgehen.

- Primteiler p von m mit $ggT(p, \ell) = 1$ durchgehen.
- Mögliche Automorphismentypen der Ordnung p durchgehen.
- Mögliche Bildgitter aufzählen.

- Primteiler p von m mit $ggT(p, \ell) = 1$ durchgehen.
- Mögliche Automorphismentypen der Ordnung p durchgehen.
- Mögliche Bildgitter aufzählen.
- Mögliche Fixgitter aufzählen.

- Primteiler p von m mit $ggT(p, \ell) = 1$ durchgehen.
- Mögliche Automorphismentypen der Ordnung p durchgehen.
- Mögliche Bildgitter aufzählen.
- Mögliche Fixgitter aufzählen.
- Kandidaten für σ aufzählen.

- Primteiler p von m mit $ggT(p, \ell) = 1$ durchgehen.
- Mögliche Automorphismentypen der Ordnung p durchgehen.
- Mögliche Bildgitter aufzählen.
- Mögliche Fixgitter aufzählen.
- Kandidaten für σ aufzählen.
- L als σ -invariantes Obergitter von $L_1 \perp L_p$ konstruieren.

- 1 Automorphismen von Primzahlordnung
- 2 Bildgitter
- 3 Fixgitter
- $igg(\Phi)$ Kandidaten für σ
- 5 Konstruktion von Obergittern

Automorphismen von Primzahlordnung

Satz

Sei L gerade, n-dim. von q.-freier Stufe ℓ , $Det(L) = \ell^k$. Sei zudem $\sigma \in Aut(L)$ von Typ $p - (n_1, n_p) - s - q_1 - (k_{1,1}, k_{p,1}) - \dots$, wobei $ggT(p, \ell) = 1$. Dann gilt:

- $n_1 + n_p = n$.
- $s \in \{0, \ldots, \min(n_1, \frac{n_p}{p-1})\}.$
- $s \equiv_2 \frac{n_p}{p-1}$ und für p=2 zusätzlich $s \equiv_2 0$.
- $k_{1,i} \in \{0,\ldots,\min(n_1,k)\}.$
- $k_{1,i} \equiv_2 k$.
- $k_{p,i} \in \{0,\ldots,\min(n_p,k)\}.$
- $k_{p,i} \equiv_2 0$.
- $(2f(q_i))|k_{p,i}$, wobei $f(q_i)$ den Trägheitsgrad von $q_i\mathbb{Z}_{\mathbb{Q}(\zeta_p+\zeta_p^{-1})}$ bezeichne.
- $k_{1,i} + k_{p,i} = k$.

- Automorphismen von Primzahlordnung
- 2 Bildgitter
- Fixgitter
- $igg(\Phi)$ Kandidaten für σ
- 5 Konstruktion von Obergittern

Bildgitter

Da $\varphi(m) > \frac{n}{2}$ ist Kern (Φ_m) ein eindimensionaler $\mathbb{Q}(\zeta_m)$ -Vektorraum $\leadsto L_p$ ist Ideal-Gitter.

Bildgitter

Da $\varphi(m) > \frac{n}{2}$ ist Kern (Φ_m) ein eindimensionaler $\mathbb{Q}(\zeta_m)$ -Vektorraum $\leadsto L_p$ ist Ideal-Gitter.

⇒ Effizient berechenbar mit dem Algorithmus aus dem ersten Teil!

- 1 Automorphismen von Primzahlordnung
- 2 Bildgitter
- Fixgitter
- $igg(\Phi)$ Kandidaten für σ
- 5 Konstruktion von Obergittern

• Für das Fixgitter kennen wir Dimension, Determinante und Stufe.

- Für das Fixgitter kennen wir Dimension, Determinante und Stufe.
- ⇒ Finden wir nur mittels Geschlechteraufzählung.

- Für das Fixgitter kennen wir Dimension, Determinante und Stufe.
- ⇒ Finden wir nur mittels Geschlechteraufzählung.
- Falls p > 2 und ℓ prim, kennen wir genau das Geschlechtssymbol von L_1 .

- Für das Fixgitter kennen wir Dimension, Determinante und Stufe.
- ⇒ Finden wir nur mittels Geschlechteraufzählung.
- Falls p > 2 und ℓ prim, kennen wir genau das Geschlechtssymbol von L_1 .
- Ansonsten zumindest die Elementarteiler.

- Für das Fixgitter kennen wir Dimension, Determinante und Stufe.
- ⇒ Finden wir nur mittels Geschlechteraufzählung.
- Falls p > 2 und ℓ prim, kennen wir genau das Geschlechtssymbol von L_1 .
- Ansonsten zumindest die Elementarteiler.
- Nach Konstruktion von Vertretern mit passenden Elementarteilern (David Lorch) Aufzählung des gesamten Geschlechts mit der Kneser'schen Nachbarmethode.

Satz

Sei L ein Gitter von Dimension ≥ 3 . Hat für jede Primzahl $q \in \mathbb{P}$ die Jordanzerlegung von $\mathbb{Z}_q \otimes L$ mindestens eine Komponente von Dimension ≥ 2 , so besteht der Nachbarschafts-Graph von L aus genau einer Zusammenhangskomponente.

Satz

Sei L ein Gitter von Dimension ≥ 3 . Hat für jede Primzahl $q \in \mathbb{P}$ die Jordanzerlegung von $\mathbb{Z}_q \otimes L$ mindestens eine Komponente von Dimension ≥ 2 , so besteht der Nachbarschafts-Graph von L aus genau einer Zusammenhangskomponente.

- Schwache Bedingung ist beinahe immer erfüllt.
- Wir erhalten durch sukzessive Nachbarbildung das gesamte Geschlecht.
- Benutzen als Abbruchbedingung das Maß des Geschlechtes.

- 1 Automorphismen von Primzahlordnung
- 2 Bildgitter
- Fixgitter
- f 4 Kandidaten für σ
- 5 Konstruktion von Obergittern

• σ operiert auf den Faktorgruppen $L_1^{\#,p}/L_1$ und $L_p^{\#,p}/L_p$.

- σ operiert auf den Faktorgruppen $L_1^{\#,p}/L_1$ und $L_p^{\#,p}/L_p$.
- Die Faktorgruppen sind isomorph als $\mathbb{F}_p[\sigma]$ -Moduln.

- σ operiert auf den Faktorgruppen $L_1^{\#,p}/L_1$ und $L_p^{\#,p}/L_p$.
- Die Faktorgruppen sind isomorph als $\mathbb{F}_p[\sigma]$ -Moduln.
- ullet \Rightarrow Minimalpolynome der Operationen von σ auf den beiden Faktorgruppen sind identisch.

- σ operiert auf den Faktorgruppen $L_1^{\#,p}/L_1$ und $L_p^{\#,p}/L_p$.
- Die Faktorgruppen sind isomorph als $\mathbb{F}_p[\sigma]$ -Moduln.
- ullet \Rightarrow Minimalpolynome der Operationen von σ auf den beiden Faktorgruppen sind identisch.
- Das Minimalpolynom auf den Faktorgruppen ist $\Phi_{\frac{m}{p}}$, falls [L:M]>1.

- σ operiert auf den Faktorgruppen $L_1^{\#,p}/L_1$ und $L_p^{\#,p}/L_p$.
- Die Faktorgruppen sind isomorph als $\mathbb{F}_p[\sigma]$ -Moduln.
- ullet \Rightarrow Minimalpolynome der Operationen von σ auf den beiden Faktorgruppen sind identisch.
- Das Minimalpolynom auf den Faktorgruppen ist $\Phi_{\frac{m}{p}}$, falls [L:M]>1.
- Wähle Vertreter σ_1 und σ_p der Konjugiertenklassen der Automorphismen von L_1 und L_p , die mit dem richtigen Minimalpolynom auf $L_1^{\#,p}/L_1$ und $L_p^{\#,p}/L_p$ operieren. Setze $\sigma := \operatorname{diag}(\sigma_1, \sigma_p)$.

- 1 Automorphismen von Primzahlordnung
- 2 Bildgitter
- 3 Fixgitter
- $igg(\Phi)$ Kandidaten für σ
- 5 Konstruktion von Obergittern

• Die ganzen Obergitter von M mit Index p^s haben die Form

$$L_{\varphi} := \{(x_1, x_p) \in L_1^{\#,p} \perp L_p^{\#,p} \mid \varphi(x_1 + L_1) = x_p + L_p\}$$

für die Isometrien
$$\varphi: (L_1^{\#,p}/L_1,\overline{b_1}) \to (L_p^{\#,p}/L_p,-\overline{b_p})$$

• Die ganzen Obergitter von M mit Index p^s haben die Form

$$L_{\varphi} := \{ (x_1, x_p) \in L_1^{\#, p} \perp L_p^{\#, p} \mid \varphi(x_1 + L_1) = x_p + L_p \}$$

für die Isometrien $\varphi: (L_1^{\#,p}/L_1, \overline{b_1}) \to (L_p^{\#,p}/L_p, -\overline{b_p})$

• Damit L_{φ} invariant unter $\sigma = \text{diag}(\sigma_1, \sigma_p)$ ist, muss $\varphi \circ \sigma_1 = \sigma_p \circ \varphi$ gelten.

• Die ganzen Obergitter von M mit Index p^s haben die Form

$$L_{\varphi} := \{ (x_1, x_p) \in L_1^{\#,p} \perp L_p^{\#,p} \mid \varphi(x_1 + L_1) = x_p + L_p \}$$

für die Isometrien $\varphi: (L_1^{\#,p}/L_1,\overline{b_1}) \to (L_p^{\#,p}/L_p,-\overline{b_p})$

- Damit L_{φ} invariant unter $\sigma = \text{diag}(\sigma_1, \sigma_p)$ ist, muss $\varphi \circ \sigma_1 = \sigma_p \circ \varphi$ gelten.
- Für $c \in C_{\operatorname{Aut}(L_1)}(\sigma_1)$ ist $L_{\varphi} \cong L_{\varphi c}$.

ullet Die ganzen Obergitter von M mit Index p^s haben die Form

$$L_{\varphi} := \{ (x_1, x_p) \in L_1^{\#,p} \perp L_p^{\#,p} \mid \varphi(x_1 + L_1) = x_p + L_p \}$$

für die Isometrien $\varphi: (L_1^{\#,p}/L_1, \overline{b_1}) \to (L_p^{\#,p}/L_p, -\overline{b_p})$

- Damit L_{φ} invariant unter $\sigma = \text{diag}(\sigma_1, \sigma_p)$ ist, muss $\varphi \circ \sigma_1 = \sigma_p \circ \varphi$ gelten.
- Für $c \in C_{\operatorname{Aut}(L_1)}(\sigma_1)$ ist $L_{\varphi} \cong L_{\varphi c}$.
- Damit können wir die Obergitter aufzählen, indem wir die relevanten Isometrien modulo $C_{\text{Aut}(L_1)}(\sigma_1)$ durchgehen.

Konstruktion von Obergittern

• Die ganzen Obergitter von M mit Index p^s haben die Form

$$L_{\varphi} := \{ (x_1, x_p) \in L_1^{\#,p} \perp L_p^{\#,p} \mid \varphi(x_1 + L_1) = x_p + L_p \}$$

für die Isometrien $\varphi:(L_1^{\#,p}/L_1,\overline{b_1}) \to (L_p^{\#,p}/L_p,-\overline{b_p})$

- Damit L_{φ} invariant unter $\sigma = \text{diag}(\sigma_1, \sigma_p)$ ist, muss $\varphi \circ \sigma_1 = \sigma_p \circ \varphi$ gelten.
- Für $c \in C_{\operatorname{Aut}(L_1)}(\sigma_1)$ ist $L_{\varphi} \cong L_{\varphi c}$.
- Damit können wir die Obergitter aufzählen, indem wir die relevanten Isometrien modulo $C_{\operatorname{Aut}(L_1)}(\sigma_1)$ durchgehen.
- Bemerkung: In vielen Fällen können wir einfach alle ganzen Obergitter von M mit Index p^s aufzählen, ohne auf σ-Invarianz zu achten; so erhalten wir ggf. noch mehr Gitter!

Finaler Algorithmus

Alle Teilschritte können nun zu einem Algorithmus zusammengesetzt werden.

n ℓ	1	2	3	5	6	7	11	14	15	23
2	I –	_	1	_	_	_	-	_	-	_
4	-	1	1	_	-	_	1	1	_	1
6	I -	_	1	_	-	1	1	_	_	_
8	1	1	1	1	1	1	1	1	1	_
10	I -	_	1	_	_	_	1	_	_	_
12	I -	2	1	1	1	_	_	1	1	_
14	I -	_	1	_	_	_	_	_	_	_
16	2	1	2	_	1	3	_	_	1	_
18	I -	_	1	_	-	_	_	_	_	_
20	I -	1	3	_	1	_	_	_	_	_
22	I -	_	2(1*)	_	_	_	_	_	_	_
24	1	8(2*)	1	1	5(3*)	_	_	_	_	_
26	I -	_	2	_	_	_	_	_	_	_
28	I -	35(25*)	3(2*)	_	_	_	_	_	_	_
30	_	_	_	_	_	_	_	_	_	_
32	_	2	67(65*)	_	_	_	_	_	_	_
34	I -	_	_	_	_	_	_	_	_	- 1
36	_	_	_	_	_	_	_	_	_	_

Table: Anzahl der durch den Algorithmus konstruierten extremalen stark ℓ -modularen Gitter in Dimension $n \leq 36$ sowie ggf. der Anzahl der bisher unbekannten Gitter darunter

Vollständigkeit

• Erinnerung: Es muss ein $p \in \mathbb{P}$ mit $ggT(p,\ell) = 1$ existieren, sodass $\frac{\mu_{\sigma}}{\Phi_m} \mid (X^{\frac{m}{p}} - 1)$

Vollständigkeit

- Erinnerung: Es muss ein $p \in \mathbb{P}$ mit $ggT(p,\ell) = 1$ existieren, sodass $\frac{\mu_{\sigma}}{\Phi_m} \mid (X^{\frac{m}{p}} 1)$
- → Wie stark ist diese Voraussetzung?

Vollständigkeit

- Erinnerung: Es muss ein $p \in \mathbb{P}$ mit $ggT(p,\ell) = 1$ existieren, sodass $\frac{\mu_{\sigma}}{\Phi_{m}} \mid (X^{\frac{m}{p}} 1)$
- → Wie stark ist diese Voraussetzung?
- Dazu: Gitter charakterisieren, die nicht auf diese Weise konstruiert werden können.

Sei
$$\ell = 3$$
, $n = 24$.

Sei
$$\ell = 3$$
, $n = 24$.

Die möglichen Automorphismentypen von Ordnung $\in \mathbb{P}_{\neq 3}$ sind:

$$\begin{array}{lll} 2-(12,12)-12-(6,6) & (1 \ \text{Fixgitter}) \\ 2-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ 5-(8,16)-4-(8,4) & (5 \ \text{Fixgitter}) \\ 5-(8,16)-4-(4,8) & (4 \ \text{Fixgitter}) \\ 5-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ 7-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ 11-(4,20)-2-(2,10) & (1 \ \text{Fixgitter}) \\ 13-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ \end{array}$$

Sei
$$\ell = 3$$
, $n = 24$.

Die möglichen Automorphismentypen von Ordnung $\in \mathbb{P}_{\neq 3}$ sind:

$$\begin{array}{lll} 2-(12,12)-12-(6,6) & (1 \ \text{Fixgitter}) \\ 2-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ 5-(8,16)-4-(8,4) & (5 \ \text{Fixgitter}) \\ 5-(8,16)-4-(4,8) & (4 \ \text{Fixgitter}) \\ 5-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ 7-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ 11-(4,20)-2-(2,10) & (1 \ \text{Fixgitter}) \\ 13-(0,24)-0-(0,12) & (1 \ \text{Fixgitter}) \\ \end{array}$$

Für $12 < \varphi(m) \le 24$ und da m keine Primteiler > 13 hat: $m \in \{25, 27, 32, 33, 40, 44, 45, 48, 50, 54, 60, 66, 72, 84, 90\}.$

$$m=25$$
: $\Phi_{25} \mid \mu_{\sigma}$, $\frac{\mu_{\sigma}}{\Phi_{25}} | (X^5-1) \Rightarrow$ wird von Alg. gefunden.

Sei L ein Gitter mit einem Automorphismus σ der Ordnung m, sodass $\frac{n}{2} < \varphi(m) \le n$, aber L kann nicht durch den Algorithmus gefunden werden.

Sei L ein Gitter mit einem Automorphismus σ der Ordnung m, sodass $\frac{n}{2} < \varphi(m) \le n$, aber L kann nicht durch den Algorithmus gefunden werden.

Betrachte die charakteristischen Polynome

$$\chi_{\sigma} := \Phi_{d_1}^{c_1} \dots \Phi_{d_k}^{c_k}$$

für die Teiler $d_1 < d_2 < \cdots < d_k$ von m.

Sei L ein Gitter mit einem Automorphismus σ der Ordnung m, sodass $\frac{n}{2} < \varphi(m) \le n$, aber L kann nicht durch den Algorithmus gefunden werden.

Betrachte die charakteristischen Polynome

$$\chi_{\sigma} := \Phi_{d_1}^{c_1} \dots \Phi_{d_k}^{c_k}$$

für die Teiler $d_1 < d_2 < \cdots < d_k$ von m.

• Für Ordnung m: $kgV\{d_i|c_i>0\}\stackrel{!}{=}m$.

Sei L ein Gitter mit einem Automorphismus σ der Ordnung m, sodass $\frac{n}{2} < \varphi(m) \le n$, aber L kann nicht durch den Algorithmus gefunden werden.

Betrachte die charakteristischen Polynome

$$\chi_{\sigma} := \Phi_{d_1}^{c_1} \dots \Phi_{d_k}^{c_k}$$

für die Teiler $d_1 < d_2 < \cdots < d_k$ von m.

- Für Ordnung m: $kgV\{d_i|c_i>0\}\stackrel{!}{=}m$.
- Wenn

$$c_k = 1$$
 und $kgV\{d_i \mid i \in \{1, \dots, k-1\} \text{ und } c_i > 0\} \mid \frac{m}{p}$

für ein $p \in \mathbb{P}$, $ggT(p, \ell) = 1$ erfüllt ist, wird L gefunden.

Kennt man für eine Menge von Primteilern $p_1, \dots, p_t \mid m$ die Typen

$$p_1-(n_{1,1},\ldots$$

$$\vdots$$

$$p_t-(n_{t,1},\ldots$$

der Automorphismen $\sigma^{\frac{m}{p_1}}, \sigma^{\frac{m}{p_2}}, \ldots, \sigma^{\frac{m}{p_t}}$, so muss $c := (c_1, \ldots, c_k)$ eine Lösung von $cM = (n_{1,1}, n_{2,1}, \ldots, n_{t,1}, n)$ mit der Matrix

$$M \in \mathbb{N}_0^{k \times (t+1)}, \quad M_{i,j} := egin{cases} arphi(d_i) &, d_i \mid rac{m}{p_j} \text{ oder } j = t+1 \\ 0 &, \text{sonst} \end{cases}$$

sein.

Für $p \mid m$ ist

$$|\sigma_1| = \operatorname{\mathsf{kgV}}\{d_i \mid \nu_p(d_i) < \nu_p(m) \text{ und } c_i > 0\}.$$

$$|\sigma_p| = \operatorname{kgV}\{d_i \mid \nu_p(d_i) = \nu_p(m) \text{ und } c_i > 0\}.$$

Für $p \mid m$ ist

$$|\sigma_1| = \operatorname{kgV}\{d_i \mid \nu_p(d_i) < \nu_p(m) \text{ und } c_i > 0\}.$$
$$|\sigma_p| = \operatorname{kgV}\{d_i \mid \nu_p(d_i) = \nu_p(m) \text{ und } c_i > 0\}.$$

 \leadsto Wenn für $\sigma^{\frac{m}{p}}$ alle möglichen Fix- oder Bildgitter aufgezählt werden können, muss mindestens eines davon einen Automorphismus der passenden Ordnung haben.

Seien $p_1, p_2 \mid m$. Wenn für alle Faktoren $\Phi_{d_i} \mid \chi_{\sigma}$, immer entweder $\nu_{p_1}(d_i) = \nu_{p_1}(m)$ oder $\nu_{p_2}(d_i) = nu_{p_2}(m)$ gilt, induzieren p_1 und p_2 dasselbe Teilgitter.

```
Seien p_1, p_2 \mid m.
Wenn für alle Faktoren \Phi_{d_i} \mid \chi_{\sigma}, immer entweder \nu_{p_1}(d_i) = \nu_{p_1}(m) oder \nu_{p_2}(d_i) = nu_{p_2}(m) gilt, induzieren p_1 und p_2 dasselbe Teilgitter.
\Rightarrow Index 1!
```

```
Seien p_1, p_2 \mid m.
Wenn für alle Faktoren \Phi_{d_i} \mid \chi_{\sigma}, immer entweder \nu_{p_1}(d_i) = \nu_{p_1}(m) oder \nu_{p_2}(d_i) = nu_{p_2}(m) gilt, induzieren p_1 und p_2 dasselbe
```

Teilgitter. $\nu_{p_2}(u_i) = nu_{p_2}(m)$ gnt, mut

 \rightsquigarrow Index 1!

z.B: $\mu_{\sigma} = \Phi_{12}\Phi_{20}$, dann induzieren σ^{12} und σ^{20} dasselbe Teilgitter.

Satz

Sei L ein extremales 3-modulares Gitter in einem bilinearen Vektorraum (V,b) der Dimension 24. Dann hat L keine Automorphismen der Ordnung 7 sowie der Ordnung $p \in P_{\geq 13}$. Ist $\sigma \in Aut(L)$ von Ordnung m mit $12 < \varphi(m) \leq 24$, so ist $m \in \{27, 33, 48, 54, 60, 66, 72\}$. Außerdem gelten folgende Einschränkungen:

•
$$m = 27 \Rightarrow \Phi_{27} | \mu_{\sigma}$$

•
$$m = 33 \Rightarrow \chi_{\sigma} = \Phi_1^2 \Phi_3 \Phi_{11}^2$$

•
$$m = 48 \Rightarrow \chi_{\sigma} = \Phi_{16}\Phi_{48}$$

•
$$m = 54 \Rightarrow \Phi_{24} | \mu_{\sigma} \text{ und } \sigma^{27} \text{ hat Typ } 2 - (0, 24) - 0 - (0, 12).$$

•
$$m = 60 \Rightarrow \chi_{\sigma} = \Phi_4^2 \Phi_{12} \Phi_{20}^2$$

•
$$m = 66 \Rightarrow \mu_{\sigma} | \Phi_2 \Phi_6 \Phi_{22} \Phi_{66}$$

•
$$m = 72 \Rightarrow \Phi_8 | \mu_\sigma$$

Methoden zur Analyse der charakteristischen Polynome in MAGMA implementiert und verschiedene ℓ und n ausgewertet.

Ende

Vielen Dank für eure Aufmerksamkeit!