Exact POMDP Solutions: α -vectors

Recap

- POMDP
- Belief Updates

 $(S, A, O, R, T, Z, \gamma)$

$$b_t(s) = P(s_t = s \mid h_t)$$

$$b'= au(b,a,o)$$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

MDP Sense-Plan-Act Loop

POMDP Sense-Plan-Act Loop

Exercise 1: Crying Baby Belief Update

$$S = \{h, \neg h\}$$
 $T(h \mid h, \neg f) = 1.0$
 $A = \{f, \neg f\}$ $T(h \mid \neg h, \neg f) = 0.1$
 $O = \{c, \neg c\}$ $T(\neg h \mid \cdot, f) = 1.0$
 $R(s, a) = R(s) + R(a)$
 $R(s) = \begin{cases} -10 \text{ if } s = h \\ 0 \text{ otherwise} \end{cases}$
 $R(a) = \begin{cases} -5 \text{ if } a = f \\ 0 \text{ otherwise} \end{cases}$
 $Z(c \mid \cdot, h) = 0.8$
 $Z(c \mid \cdot, \neg h) = 0.1$
 $\gamma = 0.9$

$$b'(s') \propto Z(o \mid a, s') \sum_s T(s' \mid s, a) \, b(s)$$

Starting at a b(h) = 0, calculate b' with $a = \neg f$ and o = c.

Belief Dynamics

POMDP Sense-Plan-Act Loop

Guiding Quesiton

How do we calculate the optimal action in a POMDP?

One-step utility

One-step utility

Reward: +10 empty door -1 Listen -100 Tiger

Exercise 2: Crying Baby 1-Step Utility

$$S = \{h, \neg h\}$$
 $T(h \mid h, \neg f) = 1.0$
 $A = \{f, \neg f\}$ $T(h \mid \neg h, \neg f) = 0.1$
 $O = \{c, \neg c\}$ $T(\neg h \mid \cdot, f) = 1.0$
 $R(s, a) = R(s) + R(a)$
 $R(s) = \begin{cases} -10 \text{ if } s = h \\ 0 \text{ otherwise} \end{cases}$
 $R(a) = \begin{cases} -5 \text{ if } a = f \\ 0 \text{ otherwise} \end{cases}$
 $Z(c \mid \cdot, h) = 0.8$
 $Z(c \mid \cdot, \neg h) = 0.1$
 $\gamma = 0.9$

Draw the 1-step utility α -vectors for the Crying Baby problem.

Alpha Vectors for Conditional Plans

Conditional Plans: fixed-depth history-based policies

1 Step: (1) (1) 2 Step: (2) (1)

 $|A|^{rac{(|O|^h-1)}{(|O|-1)}}$

27 two step plans!

Alpha Vectors for Conditional Plans

For 1-step:
$$U^{\pi}(s) = R(s,\pi())$$

$$U^{\pi}(s) = R(s, \pi()) + \gamma \left[\sum_{s'} T(s' \mid s, \pi()) \sum_{o} O(o \mid \pi(), s') U^{\pi(o)}(s') \right]$$

POMDP Value Functions

$$V^*(b) = \max_{lpha \in \Gamma} lpha^ op b$$

Exercise: 2-Step Crying Baby α Vectors

$$S = \{h, \neg h\}$$
 $T(h \mid h, \neg f) = 1.0$ $A = \{f, \neg f\}$ $T(h \mid \neg h, \neg f) = 0.1$ $O = \{c, \neg c\}$ $T(\neg h \mid \cdot, f) = 1.0$

$$egin{aligned} R(s,a) &= R(s) + R(a) \ R(s) &= egin{cases} -10 ext{ if } s = h \ 0 ext{ otherwise} \ \end{cases} \ R(a) &= egin{cases} -5 ext{ if } a = f \ 0 ext{ otherwise} \ \end{cases} \ Z(c \mid \cdot, h) = 0.8) \ Z(c \mid \cdot,
egin{cases} \gamma &= 0.9 \end{aligned}$$

$$U^{\pi}(s) = R(s, \pi(s)) + \gamma \left[\sum_{s'} T(s' \mid s, \pi(s)) \sum_{s'} O(s \mid \pi(s), s') U^{\pi(s)}(s') \right]$$

α -Vector Pruning

Alpha Vector Expansion

POMDP Value Iteration (horizon d)

```
\Gamma^0 \leftarrow \emptyset for n \in 1 \dots d Construct \Gamma^n by expanding with \Gamma^{n-1} Prune \Gamma^n
```

Finite Horizon POMDP Value Iteration

Finite Horizon POMDP Value Iteration

P(2 failed components)

Recap

- A POMDP is an MDP on the <u>belief space</u>
- The value function of a discrete POMDP can be represented by a set of α -vectors
- Each α vector corresponds to a conditional plan