:title:

:authors:

:place:

:date:

ESCOLA DE MATEMÁTICA APLICADA

Slide Title

Lorem ipsum dolor sit amet.

Block Title

You can use the command highlight to have emphasize some words.

Theorem 1: Weak Law of Large Numbers

Let X_1,X_2,\ldots,X_n be a random sample of size n from a distribution with mean μ and variance σ^2 . Then, for any $\epsilon>0$,

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| > \epsilon\right] o 0 \text{ as } n o \infty.$$

In other words, $\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{\mathbb{P}}{\to} \mu$.

Definition 1: Consistency

Let $\hat{\theta}_n$ be an estimator of θ . We say that $\hat{\theta}_n$ is consistent if $\hat{\theta}_n \stackrel{\mathbb{P}}{\to} \theta$.

Remark 1

Theorem ?? together with Definition ?? implies that the sample mean is a consistent estimator of the population mean.

Proof of Theorem ??

Let $\epsilon > 0$. By Chebyshev's inequality,

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>\epsilon\right]\leq\frac{\sigma^{2}}{n\epsilon^{2}}.$$

Since σ^2 is a constant, the result follows.

Other useful envs could be:

Example 1: Example Title

This is an example.

Lemma 1: Lemma Title

This is a lemma.

Thanks!

Any thoughts?

Special thanks to :special-thanks: