Engenharia de Software Moderna

Cap. 4 - Modelos

Prof. Marco Tulio Valente

https://engsoftmoderna.info, @engsoftmoderna

Motivação

- Existe uma lacuna entre os seguintes mundos:
 - Requisitos: "o que" o sistema faz; possuem um nível de abstração alto
 - Código: "como" o sistema opera; possui nível de abstração baixo

Modelos de Software

- Objetivo: preencher essa "lacuna"
- Via uma notação com um nível de abstração intermediário
- Ajudar a conceber, especificar, entender e documentar uma solução para o problema delimitado pelos requisitos

Comuns em outras Engenharias

Natural que fossem propostos também para software

Modelos de Software

- Infelizmente, não são tão efetivos e largamente usados, como em outras engenharias
- Modelos de software podem ser:
 - Formais: menos comuns; não serão estudados aqui
 - Gráficos: UML é a notação mais comum

UML: Unified Modelling Language

- Proposta em 1995, para fundir outras notações
- Processo mais comum na época: RUP
 - Documentação e planejamento detalhados
 - Código era escrito após meses ou anos de trabalho

Fonte: Wikipedia

Ferramentas CASE

- CASE: Computer-Aided Software Engineering
- Equivalente a ferramentas CAD, mas para Eng. Software

Como usar UML?

- 1. Blueprint (planta detalhada)
- 2. Linguagem de programação (geração automática código)
- 3. Sketches (esboços, rascunhos)

Neste curso, vamos estudar o uso de UML como sketches

UML como Sketch

- Uso mais comum de UML com métodos ágeis
- UML é usada para:
 - Conversar sobre uma parte do código ou do projeto
 - Documentar uma parte do código ou do projeto
- Uso mais informal e leve da notação
- Objetivo não é ter um modelo completo

UML como Sketch

Engenharia Avante vs Engenharia Reversa

- Engenharia Avante ("Forward")
 - Modelo é usado para discutir alternativas de projeto,
 antes de ter qualquer linha de código implementada
- Engenharia Reversa
 - Modelo é usado para explicar um código que já existe
- Sketches são úteis nos dois casos

Diagramas UML

Diagramas UML

- UML é uma notação ou linguagem gráfica para modelagem de software
- Um conjunto de diagramas, organizados em 2 grupos:
 - Diagramas Estáticos: modelam a estrutura do código
 - Diagramas Dinâmicos: modelam a execução do código (o comportamento do sistema)

Diagramas UML

Emvermelho, os diagramas que vamos estudar

Versão de UML que iremos usar

Diagrama de Classes

Formato genérico

[nome da classe]

[atributos]

[métodos]

Exemplo com duas classes

Pessoa

- nome: String

- sobrenome: String

- fone: Fone

+ setPessoa(nome, sobrenome, fone)

+ getPessoa(): Pessoa

Fone

codigo: Stringnumero: Stringcelular: Boolean

+ setFone(codigo, numero, celular)

+ getFone(): String + isCelular(): Boolean

-: private

+: public

Associações

Associações

Multiplicidade (exemplo 1)

Multiplicidade (exemplo 2)


```
class Pessoa {
    private Fone[] fone;
    ...
}
class Fone {
    ...
}
```

Associação bidirecional


```
class Pessoa {
    ...
    private Fone fone;
    ...
}
class Fone {
    ...
    private Pessoa[] dono;
    ...
}
```

Herança

Dependências (setas tracejadas)

Relacionamento entre duas classes, mas que não é devido a associação ou herança

Exemplo de Diagrama de Classes (um pouco maior e mais completo)

Fonte: Martin Fowler. UML Distilled

Diagrama de Pacotes

Diagrama de Pacotes

Diagrama de Pacotes

Diagrama de Sequência

Diagramas de Sequência

- São diagramas comportamentais ou dinâmicos
- Modelam:
 - Alguns objetos de um sistema
 - Métodos que eles executam em um determinado contexto

Diagrama de Sequência (exemplo 1)

Diagrama de Sequência (exemplo 2)

```
class A {
 void g() {
    . . .
 void f() {
    g();
 main() {
    A = new A();
    a.f();
```


Diagrama de Sequência (exemplo 3)

Diagrama de Atividades

Diagramas de Atividades

- São também diagramas comportamentais ou dinâmicos
- Modelam em alto nível um processo ou fluxo de negócio

Imagine que existe uma ficha (token) que caminha pelos nodos do diagrama de atividades.

Fim