Manual for Artery Segmentation

Step-wise guide to setup the environment and using the resources.

Environment setup

Use conda to create a virtual environment.

```
pip install monai
pip install torchio
pip install notebook
```

Torchio is required only if you are using resizing and pixel spacing transforms. In the beginning I used resizing and spacing transforms. However, recently I excluded them.

Folder Structure

Create a folder for dataset. Inside the folder create five more folder and sub-folders as follows as follows.

```
data_new
|-data_original
 |-train
   |-volumes
    |-masks
|-data_processed
  |-train
   |-volumes
   |-masks
|-data_splitted
  |-train
    |-volumes
    |-masks
  |-val
    |-volumes
    |-masks
|-data_16_groups
  |-train
    |-images
   |-labels
  |-val
    |-iamges
    |-labels
|-data_test
  |-data_original
  |-data_patients
  |-data_groups
```

Preprocessing

Steps

- · Checking labels
- · Resizing and fixing pixel spacing
- · Splitting data
- · Creating sub-volumes
- · Remove empty

Scripts

Following scripts will be used.

```
label_mismatch_fix.ipynb
label_extra_class_fix.ipynb
label_swap.ipynb
preprocessing_train.ipynb
create_slice_groups.ipynb
remove_empty_volumes.ipynb
preprocessing_test.ipynb
```

Procedure

While using any script, write the input and output paths according to your folder structure.

- · Create the dataset folders as shown in the tree above.
- Copy all the training volumes and masks inside data_original/train/ folder.
 - Rename all the volumes with numbers starting from 1, 2 and so on.
 - volume and masks for one patient should have same name.
 - Example

```
1.nii.gz
2.niigz
.
.
.
.
.
50.nii.gz
```

- We don't usually need to do this but some preprocessing scrips might use strign split methods for which we should keep this naming convention.
- Copy all the test volumes inside data_test/data_original/ folder.
- After organizing the data, the first step is to check and fix the labels.

- Manually open each mask in **3D Slicer** and verify the labels.
 - Note the names of masks for which the labels are opposite. We will use these names later.
- Use the label_mismatch_fix.ipynb Or label_extra_class_fix.ipynb to fix the extra class issue.
 - Input dataset directory should be /data_new/data_original
 - Give an output directory to store the resulting masks
 - Copy and paste these masks inside /data_original/train/masks folder.
- Then use label_swap.ipynb to fix the issue of opposite labels.
 - Give input directory path i.e. /data_original/train/masks
 - Save resulting masks at desired location by providing out_path
 - Copy and paste these masks inside /data_original/train/masks folder.
- (Optional) Next step is to resize and fix spacing of training data. Use preprocessing_train for that purpose. The resulting data will go inside data_processed folder.
- Use data_split.ipynb to split the training data into train and val data. The resulting data should go inside data_splitted folder.
 - Provide input path as /data_original/train
 - If you see data_16_orignal instead of data_original, then change it to data_original
 - Provide output folder path as data_splitted to save the results
- Use create sub-volumes of the patients. Do it for both validation and training data. Also do it for both masks and volumes. Resulting data should go in data_16_groups folder. Put training data inside train folder and validation inside val folder.
 - Training and validation data
 - Do it for training volumes and masks
 - Then for validation volumes and masks
 - Provide in_path and out_path
 - For example

```
# For validation volumes
in_path = '/media/trojan/evo/3D-CT-Artery-Segmentation/data/data_new/data_splitted/val/volumes'
out_path = '/media/trojan/evo/3D-CT-Artery-Segmentation/data/data_new/data_16_groups/val/images'
# For validation masks
in_path = '/media/trojan/evo/3D-CT-Artery-Segmentation/data/data_new/data_splitted/val/masks'
out_path = '/media/trojan/evo/3D-CT-Artery-Segmentation/data/data_new/data_16_groups/val/labels'
```

- In paths, replace data_augmented with data_splitted. We are not using augmentation data anymore.
- Nest use remove_empty_volumes.ipynb to remove the images and labels with no foreground class.
 - Do for train and then val data
 - Paths should be \(\frac{16_groups}{train} \) and \(\frac{16_anew}{data_16_groups} \) rain \(\frac{16_anew}{data_16_groups} \) and \(\frac{16_anew}{data_16

Training

Use train.ipynb to train the model. Save the resulting model at a desired location.

Testing

For testing there are three notebooks.

- test.ipynb to test a single model on both validation and test data and then save results.
- test_ensemble.ipynb to test three models ensemble on both valdiation and test data.
- test_ensemble_fast to test three models ensemble on test data and save results.

Pay attention to the code for some hard-coded stuff like paths, patient numbers etc.