Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра теоретической прикладной информатики

Лабораторная работа № 4 по дисциплине «Операционные системы, среды и оболочки»

Анализ структуры кадра/фрейма технологии Етнеплет

Факультет: ПМИ

Группа: ПМ-92

Бригада: 8

Студенты: Иванов В., Кутузов И.

Преподаватель: Кобылянский В. Г.

Новосибирск

Цель работы

Спроектировать и реализовать программу, выполняющую анализ структуры кадра/фрейма технологии Ethernet.

Залание

Разработать программу, выполняющую анализ потока кадров (вывод на экран информации по каждому кадру и итоговой статистики). Потоки кадров представлены в виде файла двоичного формата ethers08.bin. В кадрах отсутствует преамбула и контрольная сумма, для исходящего кадра длина может быть меньше минимальной. Предусмотреть возможность ввода имени файла с клавиатуры. Выполнить полный анализ кадра с номером 8.

Код программы

```
#include <stdio.h>
#include <conio.h>
#include <string.h>
const int maxFrameLength = 0x05FE;
const int Ethernet802_3 = 0xFFFF;
const int EthernetSNAP = 0xAA;
const int numMAC = 6;
int numRaw = 0;
int numSNAP = 0;
int numLLC = 0;
int numIPv4 = 0;
int numARP = 0;
int readFrame(FILE* in);
int readDatagram(FILE* in);
int BPDU(FILE* in);
int ARP(FILE* in);
void printStat(int);
int main()
    char fileName[20];
    int i = 1;
    printf("Enter the file name: ");
    gets s(fileName); // читаем название файла
    fopen_s(&in, fileName, "rb+"); // открываем файл
    do
    {
        printf("\nFrame %d\n", i); // выводим номер кадра
    } while (!readFrame(in)); // перебираем все кадры
    printStat(i); // выводим общую статистику
    return 0;
```

```
}
int readFrame(FILE* in)
   int i;
   bool flag = false;
   unsigned char MAC[numMAC], BUF[2], OUI[3], LLC3;
   unsigned short int orgType, firstTwoBytes, typeLength;
   while (!flag)
   {
        if (fread(MAC, 1, numMAC, in) != numMAC)
            return 1;
        for (i = 0; i < numMAC; i++)</pre>
           flag = flag || MAC[i];
   }
   printf("MAC (Target): ");
   printf("%02X", MAC[0]);
   for (i = 1; i < numMAC; i++)</pre>
        printf("-%02X", MAC[i]);
   fread(MAC, 1, numMAC, in); // записываем в MAC 6 байтов из in
   printf("\nMAC (Sender): ");
   printf("%02X", MAC[0]); // выводим первый байт MAC-адреса
    for (i = 1; i < numMAC; i++) // через дефис выводим остальные 5
        printf("-%02X", MAC[i]);
   fread(BUF, 1, 2, in); // записываем в буфер длину кадра (2 байта)
   typeLength = (BUF[0] << 8) | BUF[1]; // побитовое 'или' между вторым
байтом и сдвигом влево на 8 бит первого байта вторым байтом
   if (typeLength > maxFrameLength) // если больше 0x05FE - это DIX
       printf("\nFrame Type: Ethernet II (%04X)\n", typeLength);
        if (typeLength == 0x0800) // если 0800 - это IPv4
            readDatagram(in); // переходим к обработке IPv4-дейтаграммы
           numIPv4++;
        if (typeLength == 0x0806) // если 0806 - это ARP
           ARP(in); // переходим к обработке ARP
           numARP++;
        }
   else // иначе продолжаем проверку: если первые 2 байта равны 0xFFFF
        fread(BUF, 1, 2, in);
        firstTwoBytes = (BUF[0] << 8) | BUF[1];</pre>
        if (firstTwoBytes == Ethernet802 3)
        {
            printf("\nFrame Type: Ethernet 802.3 Raw\n");
           numRaw++; // TO 3TO RAW
           printf(" Length: %d", firstTwoBytes);
           readDatagram(in); // переходим к обработке IPv4-дейтаграммы
        } // в противном случае если оба байта равны 0хАА - это SNAP
```

```
else if (BUF[0] == EthernetSNAP && BUF[1] == EthernetSNAP)
           printf("\nFrame Type: EthernetSNAP\n");
           fread(&LLC3, 1, 1, in); // выводим его LLC-заголовок
           printf(" LLC: %2X-%2X\n", BUF[0], BUF[1], LLC3);
           fseek(in, 1, SEEK CUR);
           // и SNAP-заголовок (OUI и T)
           fread(OUI, 1, 3, in); // организационно уникальный идентификатор
           printf(" Organization by Standart:");
           for (i = 0; i < 2; i++)
               printf("%02X-", OUI[i]);
           printf("%02X\n", OUI[2]);
           fread(BUF, 1, 2, in); // тип, задаваемый организацией, его
уникальность обеспечивается OUI
           orgType = (BUF[0] << 8) | BUF[1];
           printf(" Frame Type by Organization: (%04X)\n", orgType);
            readDatagram(in); // переходим к обработке IPv4-дейтаграммы
           numSNAP++;
        }
        else // если ничего не подходит - это обычный Ethernet 802.3/802.2
           printf("\nFrame Type: Ethernet 802.3/LLC\n");
           fread(&LLC3, 1, 1, in); // выводим его LLC-заголовок
                     LLC: %0X-%0X-%0X\n", BUF[0], BUF[1], LLC3);
           printf("
           // проверяем тип пакета
           if (BUF[0] == 0x6 \&\& BUF[1] == 0x6)
                readDatagram(in); // переходим к обработке IPv4-дейтаграммы
            if (BUF[0] == 0x42 \&\& BUF[1] == 0x42)
                BPDU(in); // переходим к обработке BPDU
           numLLC++;
        }
    }
   return 0;
}
int readDatagram(FILE* in)
{
   int i;
   unsigned short int datagramLength, ident, BUF2, checksum;
   unsigned char BUF, TOS, TTL, protocol, bufArr[2], ipSender[4], ipTarget[4];
   fread(&BUF, 1, 1, in);
   unsigned char version = (BUF & 0xF0) >> 4; // версия протокола IP
   unsigned char headerLength = BUF & 0x0F; // длина заголовка для
определения его конца и начала данных
   unsigned char flags;
   unsigned short offset;
              Version: %X\n", version);
   printf("
   printf(" Header Lenght: %d bytes\n", headerLength);
```

```
fread(&TOS, 1, 1, in); // тип службы для возможности разделять
ІР-дейтаграммы на типы
   printf(" TOS: %X\n", TOS);
   fread(&bufArr, 2, 1, in); // полная длина дейтаграммы
   datagramLength = (bufArr[0] << 8) | bufArr[1];</pre>
   printf(" Datagram Lenght: %d bytes\n", datagramLength);
   fread(&bufArr, 2, 1, in);
   ident = (bufArr[0] << 8) | bufArr[1];</pre>
   printf(" Identificator: %X\n", ident);
   fread(&bufArr, 2, 1, in);
   BUF2 = (bufArr[0] << 8) \mid bufArr[1];
   flags = (BUF2 \& 0xE000) >> 13;
   printf("
             Flags: %X\n", flags);
   offset = (BUF2 & 0x1FFF);
   printf(" Fragment Offset: %d\n", offset);
   fread(&TTL, 1, 1, in); // время жизни для предотвращения вечной
циркуляции в сети
   printf(" TTL: %d\n", TTL);
    fread(&protocol, 1, 1, in); // какому протоколу транспортного уровня
передать данные из дейтаграммы (6 - TCP, 17 - UDP)
   printf(" Protocol of Higher Level: %d\n", protocol);
   fread(&bufArr, 2, 1, in); // контрольная сумма для проверки целостности
    checksum = (bufArr[0] << 8) | bufArr[1];</pre>
   printf(" Header Checksum: %d\n", checksum);
   fread(&ipSender, 1, 4, in); // IP отправителя
   printf(" IP (Sender): ");
   for (i = 0; i < 3; i++)
        printf("%d.", ipSender[i]);
   printf("%d\n", ipSender[3]);
   printf(" IP (Target): "); // IP получателя
   fread(&ipTarget, 1, 4, in);
   for (i = 0; i < 3; i++)
        printf("%d.", ipTarget[i]);
   printf("%d\n", ipTarget[3]);
   fseek(in, datagramLength - 20, SEEK CUR);
   return 0;
}
int BPDU(FILE* in)
   int i;
   unsigned int rootPathCost;
   unsigned char BUF, BUF2[2], BUF4[4], BUF8[8];
   short unsigned protID, portIdent, msgAge, maxAge, helloTime, forwardDelay;
```

```
fread(&protID, 2, 1, in); // идентификатор версии протокола STP
   printf(" Protocol Identifier: %X\n", protID);
   fread(&BUF, 1, 1, in); // версия STP
   printf(" Protocol Version Identifier: %X\n", BUF);
   fread(&BUF, 1, 1, in);
   if (BUF == 0x00)
        printf("
                 BPDU Type: Configurational\n");
   else
       printf(" BPDU Type: Topology Changed\n");
   fread(&BUF, 1, 1, in);
   printf(" Flags: %X\n", BUF);
   fread(&BUF8, 1, 8, in); // идентификатор корневого коммутатора
   printf(" Root Identifier: ");
   for (i = 0; i < 7; i++)
        printf("%X-", BUF8[i]);
   printf("%X\n", BUF8[7]);
   fread(&BUF4, 1, 4, in); // расстояние до корневого коммутатора
   rootPathCost = (BUF4[0] << 32) | (BUF4[1] << 16) | (BUF4[2] << 8) | BUF4[3];
   printf(" Root Path Cost: %d\n", rootPathCost);
   fread(&BUF8, 1, 8, in); // идентификатор моста
   printf(" Bridge Identifier: ");
   for (i = 0; i < 7; i++)
        printf("%X-", BUF8[i]);
   printf("%X\n", BUF8[7]);
   fread(&BUF2, 1, 2, in); // идентификатор порта
   portIdent = (BUF2[0] << 8) | BUF2[1];</pre>
   printf(" Port Identifier: %d\n", portIdent);
   fread(&BUF2, 1, 2, in); // TTL
   msgAge = (BUF2[0] << 8) | BUF2[1];
   printf("
             Message Age: %d\n", msgAge);
   fread(&BUF2, 1, 2, in); // max TTL
   maxAge = (BUF2[0] << 8) | BUF2[1];
             Max Age: %d\n", maxAge);
   printf("
   fread(&BUF2, 1, 2, in); // интервал, через который посылаются пакеты BPDU
   helloTime = (BUF2[0] << 8) | BUF2[1];
   printf(" Hello Time: %d\n", helloTime);
   fread(&BUF2, 1, 2, in);
   forwardDelay = (BUF2[0] << 8) | BUF2[1];</pre>
   printf(" Forward Delay: %d\n", forwardDelay);
   return 0;
int ARP(FILE* in)
   int i;
```

}

```
unsigned char hlen, plen, BUF2[2], BUF4[4];
unsigned char *bufnh, *bufnp;
short unsigned hwType, protocolType, operation;
// номер канального протокола (для Ethernet - 0x0001)
fread(&BUF2, 1, 2, in);
hwType = (BUF2[0] << 8) | BUF2[1];
         Hardware Type: %X\n", hwType);
printf("
// код сетевого протокола
fread(&BUF2, 1, 2, in);
protocolType = (BUF2[0] << 8) | BUF2[1];</pre>
printf(" Protocol Type: %X\n", protocolType);
// длина физического адреса
fread(&hlen, 1, 1, in);
printf("
         Hardware Length: %d\n", hlen);
// длина логического адреса
fread(&plen, 1, 1, in);
printf(" Protocol Length: %d\n", plen);
bufnh = new unsigned char[hlen];
bufnp = new unsigned char[plen];
// код операции отправителя (0х0001 - запрос, 0х0002 - ответ)
fread(&BUF2, 1, 2, in);
operation = (BUF2[0] << 8) | BUF2[1];
printf(" Operation: %X\n", operation);
fread(bufnh, 1, hlen, in); // физический адрес отправителя
printf(" Sender Hardware Address: ");
for (i = 0; i < hlen - 1; i++)
    printf("%02X-", bufnh[i]);
printf("%02X\n", bufnh[i]);
fread(bufnp, 1, plen, in); // логический адрес отправителя
printf(" Sender Protocol Address: ");
for (i = 0; i < plen - 1; i++)</pre>
    printf("%d.", bufnp[i]);
printf("%d\n", bufnp[i]);
fread(bufnh, 1, hlen, in); // физический адрес получателя
printf(" Target Hardware Address: ");
for (i = 0; i < hlen - 1; i++)
    printf("%02X-", bufnh[i]);
printf("%02X\n", bufnh[i]);
fread(bufnp, 1, plen, in); // физический адрес получателя
printf(" Target Protocol Address: ");
for (i = 0; i < plen - 1; i++)
    printf("%d.", bufnp[i]);
printf("%d\n", bufnp[i]);
return 0;
```

}

```
void printStat(int i)
{
    printf("\n");
    printf("Number of Frames: %d\n", i - 2);
    printf("Number of IPv4 Frames: %d\n", numIPv4);
    printf("Number of LLC Frames: %d\n", numLLC);
    printf("Number of ARP Frames: %d\n", numARP);
    printf("Number of Raw Frames: %d\n", numRaw);
    printf("Number of SNAP Frames: %d\n", numSNAP);
}
```

Результаты

Результат анализа программой файла ethers08.bin

```
Frame 1
                                                                 Frame 3
                                Frame 2
MAC (Target): 00-02-16-09-FA-40 MAC (Target): 00-90-27-A1-36-D0 MAC (Target): 00-02-16-09-FA-40
MAC (Sender): 00-90-27-A1-36-D0 MAC (Sender): 00-16-17-A8-C2-4C
                                                                 MAC (Sender): 00-90-27-A1-36-D0
Frame Type: Ethernet II (0800) Frame Type: Ethernet II (0800)
                                                                 Frame Type: Ethernet II (0800)
   Version: 4
                                   Version: 4
                                                                    Version: 4
   Header Lenght: 5 bytes
                                   Header Lenght: 5 bytes
                                                                    Header Lenght: 5 bytes
   Datagram Lenght: 59 bytes
                                                                    Datagram Lenght: 1064 bytes
                                   Datagram Lenght: 1117 bytes
   Identificator: 1FBB
                                   Identificator: 546A
                                                                    Identificator: EC84
   Flags: 2
                                                                    Flags: 2
                                   Flags: 2
   Fragment Offset: 0
                                                                    Fragment Offset: 0
                                   Fragment Offset: 0
   TTL: 255
                                                                    TTL: 64
                                   TTL: 128
   Protocol of Higher Level: 17
                                   Protocol of Higher Level: 6
                                                                    Protocol of Higher Level: 6
                                                                    Header Checksum: 8650
   Header Checksum: 53805
                                   Header Checksum: 6008
   IP (Sender): 195.62.2.11
                                                                    IP (Sender): 195.62.2.11
                                   IP (Sender): 195.62.2.49
                                                                    IP (Target): 83.222.15.90
   IP (Target): 195.62.1.65
                                   IP (Target): 195.62.2.11
                                Frame 5
Frame 4
                                                                  Frame 6
MAC (Target): 00-16-17-A8-C2-4C MAC (Target): 00-90-27-A1-36-D0 MAC (Target): 00-02-16-09-FA-40
MAC (Sender): 00-90-27-A1-36-D0 MAC (Sender): 00-02-16-09-FA-40
                                                                 MAC (Sender): 00-90-27-A1-36-D0
                                Frame Type: Ethernet II (0800)
                                                                  Frame Type: Ethernet II (0800)
Frame Type: Ethernet II (0800)
                                   Version: 4
   Version: 4
                                                                    Version: 4
                                   Header Lenght: 5 bytes
   Header Lenght: 5 bytes
                                                                    Header Lenght: 5 bytes
                                   TOS: 0
                                                                    TOS: 0
                                   Datagram Lenght: 136 bytes
                                                                    Datagram Lenght: 136 bytes
   Datagram Lenght: 40 bytes
                                   Identificator: 4FA
   Identificator: 939
                                                                    Identificator: 31EB
                                   Flags: 2
   Flags: 2
                                                                    Flags: 2
                                   Fragment Offset: 0
                                                                    Fragment Offset: 0
   Fragment Offset: 0
                                                                    TTL: 64
                                   TTL: 51
   TTL: 64
                                   Protocol of Higher Level: 6
                                                                    Protocol of Higher Level: 6
   Protocol of Higher Level: 6
                                   Header Checksum: 56489
                                                                    Header Checksum: 41656
   Header Checksum: 42718
                                   IP (Sender): 81.181.78.206
                                                                    IP (Sender): 195.62.2.11
   IP (Sender): 195.62.2.11
                                   IP (Target): 195.62.2.11
                                                                    IP (Target): 81.181.78.206
   IP (Target): 195.62.2.49
```

Frame 7 MAC (Target): 00-90-27-A1-36-D0 MAC (Sender): 00-02-16-09-FA-40 Frame Type: Ethernet II (0800) Version: 4 Header Lenght: 5 bytes TOS: 0 Datagram Lenght: 125 bytes Identificator: 5E10 Flags: 0 Fragment Offset: 0 TTL: 61 Protocol of Higher Level: 17 Header Checksum: 38295 IP (Sender): 195.62.1.65 IP (Target): 195.62.2.11	Frame 8 MAC (Target): 01-80-C2-00-00-00 MAC (Sender): 00-04-4D-8A-B0-D5 Frame Type: Ethernet 802.3/LLC LLC: 42-42-3 Protocol Identifier: 0 Protocol Version Identifier: 0 BPDU Type: Configurational Rags: 0 Root Identifier: 80-0-0-4-4D-8A-B0-C0 Root Path Cost: 0 Bridge Identifier: 80-0-0-4-4D-8A-B0-C0 Port Identifier: 32803 Message Age: 0 Max Age: 5120 Hello Time: 512 Forward Delay: 3840	Frame 9 MAC (Target): 00-02-16-09-FA-40 MAC (Sender): 00-90-27-A1-36-D0 Frame Type: Ethernet II (0800) Version: 4 Header Lenght: 5 bytes TOS: 0 Datagram Lenght: 70 bytes Identificator: 4FF5 Flags: 2 Fragment Offset: 0 TTL: 255 Protocol of Higher Level: 17 Header Checksum: 54608 IP (Sender): 195.62.2.11 IP (Target): 208.11.193.11
Frame 10	Frame 11	Frame 12
MAC (Target): 00-90-27-A1-36-	00 MAC (Target): 00-90-27-A1-36-D0 40 MAC (Sender): 00-02-16-09-FA-40) Frame Type: Ethernet II (0800)	MAC (Target): 00-02-16-09-FA-40
Frame 13 MAC (Target): 00-90-27-A1-36-MAC (Sender): 00-02-16-09-FA-4 Frame Type: Ethernet II (0800) Version: 4 Header Lenght: 5 bytes TOS: 0 Datagram Lenght: 60 bytes Identificator: E514 Flags: 2 Fragment Offset: 0 TTL: 51 Protocol of Higher Level: 0 Header Checksum: 64730 IP (Sender): 81.181.78.206 IP (Target): 195.62.2.11	Frame Type: Ethernet II (0800) Version: 4 Header Lenght: 5 bytes TOS: 0 Datagram Lenght: 64 bytes Identificator: 31ED Flags: 2 Fragment Offset: 0 TTL: 64 Protocol of Higher Level: 6 Header Checksum: 41726	

Frame 16

MAC (Target): 00-02-16-09-FA-40 MAC (Sender): 00-90-27-A1-36-D0

Frame Type: Ethernet II (0800)

Version: 4

Header Lenght: 5 bytes

TOS: 0

Datagram Lenght: 139 bytes

Identificator: 4B16

Flags: 2

Fragment Offset: 0

TTL: 64

Protocol of Higher Level: 6 Header Checksum: 61199 IP (Sender): 195.62.2.11 IP (Target): 88.247.226.6 Frame 17

MAC (Target): 01-80-C2-00-00-00 MAC (Sender): 00-04-4D-8A-B0-C3 Frame Type: Ethernet 802.3/LLC

LLC: 42-42-3
Protocol Identifi

Protocol Identifier: 0 Protocol Version Identifier: 0 BPDU Type: Configurational

Rags: 0

Root Identifier: 80-0-0-4-4D-8A-B0-C1

Root Path Cost: 0

Bridge Identifier: 80-0-0-4-4D-8A-B0-C1

Port Identifier: 32783

Message Age: 0
Max Age: 5120
Hello Time: 512
Forward Delay: 3840

Frame 19

MAC (Target): 01-80-C2-00-00-00 MAC (Sender): 00-04-4D-8A-B0-C4 Frame Type: Ethernet 802.3/LLC

LLC: 42-42-3

Protocol Identifier: 0 Protocol Version Identifier: 0 BPDU Type: Configurational

Rags: 0

Root Identifier: 80-0-0-4-4D-8A-B0-C1

Root Path Cost: 0

Bridge Identifier: 80-0-0-4-4D-8A-B0-C1

Port Identifier: 32784

Message Age: 0 Max Age: 5120 Hello Time: 512 Forward Delay: 3840

Frame 19

MAC (Target): 01-80-C2-00-00-00 MAC (Sender): 00-04-4D-8A-B0-C5 Frame Type: Ethernet 802.3/LLC

LLC: 42-42-3

Protocol Identifier: 0

Protocol Version Identifier: 0 BPDU Type: Configurational

Rags: 0

Root Identifier: 80-0-0-4-4D-8A-B0-C1

Root Path Cost: 0

Bridge Identifier: 80-0-0-4-4D-8A-B0-C1

Port Identifier: 32785

Message Age: 0 Max Age: 5120 Hello Time: 512 Forward Delay: 3840 Number of Frames: 19

Number of IPv4 Frames: 15

Number of LLC Frames: 4

Number of ARP Frames: 0 Number of Raw Frames: 0

Number of SNAP Frames: 0

Кадр 802.3/LLC

6	6	2	1	1	1(2)	46–1497 (1496)	4
DA	SA	L	DSAP	SSAP	Control	Data	FCS
			Заг	ол ово к	LLC		

Кадр Raw 802.3/Novell 802.3

6	6	2	46–1500	4	
DA	SA	L	Data	FCS	

Кадр Ethernet DIX (II)

6	6	2	46–1500	4
DA	SA	Т	Data	FCS

Кадр Ethemet SNAP

			Заг	оп ово к	LLC	Загол SN			
			AA	AA	03	000000			
DA	SA	L	DSAP	SSAP	Control	OUI	Т	Data	FCS
6	6	2	1	1	1	3	2	46–1492	4

В потоке кадров были обнаружены лишь фреймы типов Ethernet 802.3/LLC и Ethernet DIX (II).

Теперь проведем анализ кадра с номером 8, информация о котором представлена справа.

Для получения hex-представления файла был использован сервис hexed.it.

MAC (Target): 01-80-C2-00-00-00 MAC (Sender): 00-04-4D-8A-B0-D5 Frame Type: Ethernet 802.3/LLC

LLC: 42-42-3

Protocol Identifier: 0

Protocol Version Identifier: 0 BPDU Type: Configurational

Rags: 0

Root Identifier: 80-0-0-4-4D-8A-B0-C0

Root Path Cost: 0

Bridge Identifier: 80-0-0-4-4D-8A-B0-C0

Port Identifier: 32803

Message Age: 0 Max Age: 5120 Hello Time: 512 Forward Delay: 3840

Перейдем к участку файла с кадром 8, в первых 6-ти байтах заголовка которого видим MAC-адрес получателя (**Target**):

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0F	00	00	02	16	09	FΑ

Заметим, что первый бит старшего байта указывает на тип адреса multicast. Это значит, что данный адрес предназначается для группы узлов. Второй бит определяет способ назначения адреса - в нашем случае он назначен централизованно (комитетом IEEE).

За ним следует MAC-адрес отправителя (Sender):

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	ВО	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0F	00	00	02	16	09	FA

Заметим, что первый бит адреса отправителя всегда равен 0.

Следующие 2 байта - длина кадра, что в переводе из шестнадцатеричной системы счисления равно 38:

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0F	00	00	02	16	09	FΑ

Далее находится **LLC-заголовок**, в котором первые 2 байта указывают на то, что кадр имеет тип Ethernet 802.3/LLC, причем для передачи этого кадра используется протокол **STP**:

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	88	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0 F	00	00	02	16	09	FΑ

Цель полей SSAP и DSAP - идентифицировать вышестоящий протокол.

И, как правило, протоколы STP используют пакеты типа **BPDU**, первые 3 байта (идентификатор протокола и его версия) которых всегда равны 0:

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	ΘF	00	00	02	16	09	FΑ

Четвертый байт со значением 0 здесь указывает на тип BPDU - конфигурационный.

Следующий байт содержит флаги, говорящие об изменении конфигурации:

Далее 8 байт отведено под ID корневого коммутатора (**Root Identifier**) - некого аналога IP-адреса в IP-пакете:

После чего следуют 2 байта для значения **расстояния** от корневого коммутатора до текущего узла (моста):

Далее находится ID текущего узла (Bridge Identifier):

Поскольку он совпадает с ID корневого коммутатора, становится понятно, почему значение расстояния нулевое.

Далее имеем идентификатор порта (Port Identifier):

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0 F	00	00	02	16	09	FΑ

Время жизни сообщения (**TTL** / **Message Age**), равное нулю, поскольку ID моста и корневого коммутатора совпадают:

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0F	00	00	02	16	09	FA

Максимальная продолжительность жизни (Max Age):

Когда пакет BPDU имеет TTL больше максимального, коммутаторы начинают его игнорировать.

Следующие 2 байта содержат значение времени приветствия (**Hello Time**) - времени, через которое посылаются пакеты BPDU корневым коммутатором:

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	8A	ВО	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	8A	ВО	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0F	00	00	02	16	09	FΑ

Наконец, последние 2 байта пакета отведены под задержку смены состояний (**Forward Delay**) - значения минимального времени перехода портов коммутатора в активное состояние:

00000AD0	01	51	80	00	00	02	58	01	80	C2	00	00	00	00	04	4D
00000AE0	88	В0	D5	00	26	42	42	03	00	00	00	00	00	80	00	00
00000AF0	04	4D	88	В0	C0	00	00	00	00	80	00	00	04	4D	88	В0
00000B00	C0	80	23	00	00	14	00	02	00	0 F	00	00	02	16	09	FΑ