Digital Systems Design and Laboratory [4. Applications of Boolean Algebra]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Spring 2019

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Objectives

- ☐ Design a combinational logic circuit starting with a <u>word</u> <u>description (specification)</u> of the desired circuit behavior
- ☐ Steps
 - > Translate the word description into a switching function
 - Boolean expression or truth table
 - Simplify the function
 - > Realize it using available logic gates
- Example
 - Mary watches TV <u>if and only if</u> it is Monday night <u>and</u> she has finished her homework
 - F: Mary watches TV
 - A: It is Monday night
 - B: Mary has finished her homework
 - $F = A \bullet B$

Another Example

- ☐ The alarm will ring <u>if and only if</u> the alarm switch is turned on <u>and</u> the door is <u>not</u> closed, <u>or</u> it is after 6pm <u>and</u> the window is <u>not</u> closed
 - > Z: The alarm will ring
 - > A: the alarm switch is on
 - > B: The door is closed
 - C: It is after 6pm
 - > D: The window is closed

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Threshold Detector (1/2)

- ☐ Design a detector that outputs 1 when input is greater than 2
 - > Inputs (A, B, C)₂ represent a binary number N
 - \rightarrow If N = (A, B, C)₂ \geq 3, output f = 1; otherwise f = 0

Α	В	С	f	f'	
0	0	0	0	1	F
0	0	1	0	1	E
0	1	0	0	1	_ (
0	1	1	1	0	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	t
1	1	1	1	0	J

Show the condition to make output = 1

$$\triangleright$$
 f = A'BC + AB'C' + AB'C + ABC' + ABC (SOP)

= A'BC + ABC + AB'C' + AB'C + ABC' + ABC

$$= A + BC$$

Threshold Detector (2/2)

- ☐ By counting 1's, we have SOP
- ☐ What if counting 0's

А	В	С	f	f'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Show the condition to make output = 0

$$f = (A'B'C' + A'B'C + A'BC')'$$

$$= (A'B'C')' \bullet (A'B'C)' \bullet (A'BC')' = (A + B + C) \bullet (A + B + C') \bullet (A + B' + C)$$

Logic Design Using a Truth Table

- ☐ Steps
 - ➤ Make a truth table according to the word description
 - Generate a Boolean expression
 - Sum-of-products (SOP): check 1's
 - Product-of-sums (POS): check 0's
 - Have f' in SOP and then derive f in POS
 - Simplify the Boolean expression

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- **☐** Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Minterm and Maxterm

- Definition: A <u>minterm/maxterm</u> of n variables is a product/sum of n literals in which each variable appears exactly once in either true or complement form (but not both)
 - > A literal is a variable or its complement (A or A')
 - > Examples of 3 variables
 - Minterm: A'BC, AB'C'
 - Maxterm: A+B+C, A+B+C'

$$(m_i)' = M_i$$

		\ 1/	I
Row No.	ABC	Minterm m _i ←	→ Maxterm M _i
0	000	m ₀ = A'B'C'	$M_0 = A + B + C$
1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
2	010	m ₂ = A'BC'	$M_2 = A + B' + C$
3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
4	100	$m_4 = AB'C'$	$M_4 = A' + B + C$
5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Minterm Expansion

- A <u>minterm expansion</u> or a <u>standard sum of products</u> is a function is written as a sum of minterms
 - Counting 1's
- Example

```
f = A'BC + AB'C' + AB'C + ABC' + ABC
= m_3 + m_4 + m_5 + m_6 + m_7 \quad (m-notation)
= \sum m(3, 4, 5, 6, 7)
```


Row No.	ABC	Minterm m _i	Maxterm M _i
0	000	$m_0 = A'B'C'$	$M_0 = A + B + C$
1	001	$m_1 = A'B'C$	$M_1 = A + B + C'$
2	010	$m_2 = A'BC'$	$M_2 = A + B' + C$
3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
4	100	m ₄ = AB'C'	$M_4 = A' + B + C$
5	101	m ₅ = AB'C	$M_5 = A' + B + C'$
6	110	m ₆ = ABC'	$M_6 = A' + B' + C$
7	111	m ₇ = ABC	$M_7 = A' + B' + C'$

Maxterm Expansion

- A <u>maxterm expansion</u> or a <u>standard product of sums</u> is a function written as a product of maxterms
 - Counting 0's
- Example

$$F = (A + B + C) \bullet (A + B + C') \bullet (A + B' + C)$$

$$= M_0 M_1 M_2 \quad (M-notation)$$

$$= \prod M(0, 1, 2)$$

F	Row No.	ABC	Minterm m _i	Maxterm M _i
	0	000	m ₀ = A'B'C'	$M_0 = A + B + C$
	1	001	m ₁ = A'B'C	$M_1 = A + B + C'$
	2	010	m ₂ = A'BC'	$M_2 = A + B' + C$
	3	011	$m_3 = A'BC$	$M_3 = A + B' + C'$
	4	100	$m_4 = AB'C'$	$M_4 = A' + B + C$
	5	101	$m_5 = AB'C$	$M_5 = A' + B + C'$
	6	110	$m_6 = ABC'$	$M_6 = A' + B' + C$
	7	111	$m_7 = ABC$	$M_7 = A' + B' + C'$

Complement by Minterms/Maxterms

- \square (m_i)' = M_i
- Complement of f
 - Counting 0's in f (find f' directly)
 - $f' = m_0 + m_1 + m_2 = \sum m(0, 1, 2)$
 - $f' = M_3 M_4 M_5 M_6 M_7 = \prod M(3, 4, 5, 6, 7)$
 - Counting 1's in f (find f and then complement it)

•
$$f' = (m_3 + m_4 + m_5 + m_6 + m_7)'$$

 $= m_3' m_4' m_5' m_6' m_7'$
 $= M_3 M_4 M_5 M_6 M_7$
 $= \prod M(3, 4, 5, 6, 7)$
• $f' = (M_0 M_1 M_2)'$
 $= M_0' + M_1' + M_2'$
 $= m_0 + m_1 + m_2$
 $= \sum m(0, 1, 2)$

А	В	С	f	f'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Another Example

```
\Box Example: f(a, b, c, d) = a'(b' + d) + acd'
     f(a, b, c, d)
   = a'(b' + d) + acd'
   = a'b' + a'd + acd'
   = a'b'(c + c')(d + d') + a'd(b + b')(c + c') + acd'(b + b')
   = a'b'c'd' + a'b'c'd + a'b'cd' + a'b'cd + a'bc'd + a'bcd + abcd' + ab'cd'
       0000
                0001
                         0010
                                  0011 0101
                                                    0111 1110
                                                                    1010
   = \sum m(0, 1, 2, 3, 5, 7, 10, 14) ... Minterm Expansion
     f(a, b, c, d)
   = (a' + cd')(a + b' + d) = (a' + c)(a' + d')(a + b' + d)
   = (a' + bb' + c + dd')(a' + bb' + cc' + d')(a + b' + cc' + d)
   = ...
   = \prod M(4, 6, 8, 9, 11, 12, 13, 15) ... Maxterm Expansion
```

Summary

- ☐ Convert a Boolean expression to a minterm/maxterm expansion
 - > Use truth table
 - Sometimes there are too many terms
- ☐ Use Boolean algebra
 - \triangleright SOP: multiply out and use $(X + X') = 1 \rightarrow$ minterm expansion
 - \triangleright POS: factor and use XX'=0 \rightarrow maxterm expansion

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

General Truth Table

- ☐ Given n Boolean variables, how many different Boolean functions can you produce?
 - Each a_i can be assigned with either 0 or 1
 - $> 2^{(2^n)}$

Α	В	С	f
0	0	0	a_0
0	0	1	a_1
0	1	0	a_2
0	1	1	a_3
1	0	0	a_4
1	0	1	a ₅
1	1	0	a_{6}
1	1	1	a ₇

AND of Minterm Expansions

- Given $f_1 = \sum m(0, 2, 3, 5, 9, 11)$ and $f_2 = \sum m(0, 3, 9, 11, 13, 14)$, find $f_1f_2 = ?$
 - > AND: take the numbers that appear in both expansions:
 - $rac{1}{2}$ $f_1 f_2 = \sum m(0, 3, 9, 11)$
- ☐ AND for two maxterm expansions?
- ☐ OR for two minterm expansions?
- ☐ OR for two maxterm expansions?

Conversion of Forms (1/2)

☐ Convert between a minterm and a maxterm expansion

TABLE 4-3				DESIRED FORM		
Conversion of Forms © Cengage Learning 2014			Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'
	GNEN FORM	Minterm Expansion of F		maxterm nos. are those nos. not on the minterm list for F	list minterms not present in F	maxterm nos are the same as minterm nos. of F
	0 -	Maxterm Expansion of F	minterm nos. are those nos. not on the maxterm list for F		minterm nos. are the same as maxterm nos. of F	list maxterm not present in F

Conversion of Forms (2/2)

☐ Convert between a minterm and a maxterm expansion

TABLE 4-4			DE	SIRED FORM		
Application of Table 4.3 © Cengage Learning 2014	FORM		Minterm Expansion of f	Maxterm Expansion of f	Minterm Expansion of f'	Maxterm Expansion of f'
	GIVEN	$f = \Sigma m(3, 4, 5, 6, 7)$	2	П M(0, 1, 2)	Σ m(0, 1, 2)	П M(3, 4, 5, 6, 7)
	O	$f = \Pi M(0, 1, 2)$	Σ m(3, 4, 5, 6, 7)	10 To	Σ m(0, 1, 2)	П M(3, 4, 5, 6, 7)

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- **☐** Incompletely Specified Functions
- ☐ Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Incompletely Specified Functions (1/2)

- ☐ A large digital system is usually divided into subcircuits
- \square Assume N₁ never generates ABC = 001/110 for any w, x, y, z

Α	В	С	F
0	0	0	1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

- ☐ F: Incompletely specified function
- ☐ A'B'C, ABC': don't care terms
 - > "don't care" (DC) terms can be assigned with either 0 or 1

Incompletely Specified Functions (2/2)

- ☐ Impact of don't care terms on Boolean simplification
 - > Try exhaustive combinations of DCs to find the best
 - (may be stupid but works for now)
 - > Assign 0 to both "X"
 - F = A'B'C' + A'BC + ABC = A'B'C' + BC
 - > Assign 1 to 1st "X" and 0 to 2nd "X" (seems to be the simplest)
 - F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC
 - > Assign 1 to both "X"
 - F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB
 - > ...
 - > 2. is the simplest solution

Notation

- $F = \sum m(0, 3, 7) + \sum d(1, 6)$
- $F = \prod M(2, 4, 5) \bullet \prod D(1, 6)$

Α	В	С	F
0	0	0	1
0	0	1	Х
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	Х
1	1	1	1

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- **☐** Examples of Truth Table Construction
- ☐ Design of Binary Adders and Subtracters

Error Detector for 6-3-1-1 Codes (1/2)

☐ Design an error detector for 6-3-1-1 codes:

- The output F = 1 iff inputs (A, B, C, D) represent an <u>invalid</u> code combination
- > Step 1: construct the truth table

Decimal Digit	6-3-1-1 Code
0	0000
1	0001
2	0011
3	0100
4	0101
5	0111
6	1000
7	1001
8	1011
9	1100

ABCD	F
0000	0
0001	0
0010	1
0011	0
0100	0
0101	0
0110	1
0111	0
1000	0
1001	0
1010	1
1011	0
1100	0
1101	1
1110	1
1111	1

Error Detector for 6-3-1-1 Codes (2/2)

☐ Design an error detector for 6-3-1-1 codes:

- The output F = 1 iff inputs (A, B, C, D) represent an **invalid** code combination
- > Step 2: simplify the function

```
F(A, B, C, D)
```

- $= \sum m(2, 6, 10, 13, 14, 15)$
- = A'B'CD' + A'BCD' + AB'CD' + ABCD' + ABC'D + ABCD
- = A'CD' + ACD' + ABD
- = CD' + ABD
- > Step 3: realize it

ABCD	F
0000	0
0001	0
0010	1
0011	0
0100	0
0101	0
0110	1
0111	0
1000	0
1001	0
1010	1
1011	0
1100	0
1101	1
1110	1
1111	1

Another Example

- \Box The output Z = 1 iff the 8-4-2-1 BCD number (A, B, C, D) is
 - divisible by 3
 - > Step 1: construct the truth table
 - > Step 2: simplify the function

$$= \sum m(0, 3, 6, 9) +$$

- > Step 3: realize it
 - ?
 - Unit 5!

$\begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ C \longrightarrow \\ D \longrightarrow \end{array}$	BCD % 3 == 0?	→ Z
---	------------------	------------

Decimal	6-3-1-1	
Digit	Code	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	Г
5	0101	L
6	0110	
7	0111	
8	1000	
9	1001	

ABCD	Z			
0000	1			
0001	0			
0010	0			
0011	1			
0100	0			
0101	0			
0110	1			
0111	0 0 1			
1000				
1001				
1010	X			
1011	Х			
1100	X			
1101	Х			
1110	X			
1111	Х			

Outline

- ☐ Conversion of English Sentences to Boolean Equations
- ☐ Combinational Logic Design Using a Truth Table
- ☐ Minterm and Maxterm Expansions
- ☐ General Minterm and Maxterm Expansions
- ☐ Incompletely Specified Functions
- Examples of Truth Table Construction
- **☐** Design of Binary Adders and Subtracters

1-Bit Half Adder (HA)

☐ Step 1: construct the truth table

X	Υ	Carry	Sum		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

- ☐ Step 2: simplify the function
 - \triangleright C = XY

$$\triangleright$$
 S = X'Y + XY' = X \bigoplus Y

☐ Step 3: realize it

1-Bit Full Adder (FA)

Χ

- ☐ Step 1: construct the truth table
- ☐ Step 2: simplify the function

$$>$$
 S = X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}

☐ Step 3: realize it

S

 $\mathsf{C}_{\mathsf{out}}$

4-Bit Parallel Adder (1/3)

 \Box A = (A₃A₂A₁A₀), B = (B₃B₂B₁B₀)

Example

- ☐ How?
 - > Step 1: construct the truth table
 - > ...

4-Bit Parallel Adder (2/3)

- ☐ Decompose the 4 bit adder into four modules
 - ➤ Each module adds two bits and a carry → use full adder
- ☐ Extend to negative numbers
 - > Consider 1's complement
 - Add just as if all numbers are positive
 - Add the carry out back to the rightmost bit
 - > How to detect overflow?
 - Check the sign
 - -(+)+(+) becomes (-)
 - -(-)+(-) becomes (+)

Case 1	Case 2	Case 3		Case 4		Case 5		Case 6
+3 0011	+5 <mark>0</mark> 101	+5 0101	- 5	1010	- 3	1100	- 5	1 010
$\frac{+4}{+7}$ $\frac{0100}{0111}$	$\frac{+6}{1011}$	$\frac{-6}{-1}$ $\frac{1001}{1110}$	<u>+6</u> +1	$\frac{0110}{0000}$	$\frac{-4}{-7}$	$\frac{1011}{0111}$	<u>-6</u>	$\frac{1001}{0011}$
				$\frac{1}{0001}$		$\frac{1}{1000}$		$\frac{1}{0100}$

4-Bit Parallel Adder (3/3)

FIGURE 4-3

Parallel Adder Composed of Four Full Adders

© Cengage Learning 2014

end-around carry for 1's complement

■ Overflow detection?

- $> V = A_3'B_3'S_3 + A_3B_3S_3'$
- ➤ Why?

Binary Subtracter (1/2)

- \Box Consider A B = A + (-B) in 2's complement
 - \rightarrow A B = A + (-B) = A + B* = A + \overline{B} + 1
 - ➤ Convert B to 2's complement: inverse and then add 1
- ☐ Discard the carry from the sign bit

Binary Subtracter (2/2)

☐ Or design a full subtracter

 \triangleright D = X – Y: difference

➤ B: borrow

Q&A