Problem 1.4

Due on October 12th

Generate a dataset of two-dimensional points, and choose a random line in the plane as your target function f, where one side of the line maps to +1 and the other side to -1. Let the inputs $\mathbf{x}_n \in \mathbb{R}^2$ be random points in the plane, and evaluate the target function f on each \mathbf{x}_n to get the corresponding output $y_n = f(\mathbf{x}_n)$.

Experiment with the perceptron algorithm in the following settings:

- a. Generate a dataset of size 20. Plot the examples $\{(\mathbf{x}_n, y_n)\}$ as well as the target function f on a plane.
- b. Run the perceptron algorithm on the dataset. Report the number of updates that the algorithm takes before converging. Plot the examples $\{(\mathbf{x}_n, y_n)\}$, the target function f, and the final hypothesis g in the same figure.
- c. Repeat everything in b) with another randomly generated dataset of size 20, and compare the result to b).
- d. Repeat everything in b) with another randomly generated dataset of size 100, and compare the result to b).
- e. Repeat everything in b) with another randomly generated dataset of size 1000, and compare the result to b).
- f. Modify the experiment such that $\mathbf{x}_n \in \mathbb{R}^{10}$ instead of \mathbb{R}^2 . Run the algorithm on a randomly generated dataset of size 1000. How many updates does the algorithm take to converge?
- g. Summarize your conclusions regarding the accuracy and running time of the algorithm as a function of N (the number of data points) and d (the number of dimensions).