

Approximate inference: Sampling and variational inference

Niko Beerenwinkel

Outline

- Markov chain Monte Carlo (MCMC)
- Metropolis-Hastings
- Gibbs sampling
- Structure and Order based DAG sampling (slides by Jack Kuipers)
- Factorial HMM
- Variational inference

Approximate inference via sampling

Bayesian learning of network structure

MAP learning:

$$G^* = \operatorname*{argmax} P(G \mid \mathcal{D})$$

If several networks have similar posterior, we rather want

$$P(G \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid G)P(G)}{P(\mathcal{D})}$$
$$= \frac{P(\mathcal{D} \mid G)P(G)}{\sum_{G'} P(\mathcal{D} \mid G')P(G')}$$

Sampling from the posterior

In general, sampling from the posterior

$$P(G \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid G)P(G)}{\sum_{G'} P(\mathcal{D} \mid G')P(G')}$$

is difficult, because the marginal likelihood can be intractable and the sum involves all network structures.

Sampling from a distribution

 More generally, we want to approximate an unknown distribution P(X) by a finite sample X⁽¹⁾, ..., X^(R), such that

$$\left\{X^{(r)}\right\}_{r=1}^{R} \sim P(X)$$

How can we obtain such a sample?

Markov Chain Monte Carlo (MCMC)

Idea: Construct a Markov chain X⁽ⁿ⁾ such that

$$\{X^{(n)}\}_n \supset \{X^{(r)}\}_{r=1}^R \sim P(X)$$

Then any feature f of X can be estimated as

$$\mathsf{E}_P[f] = \int f(X)P(X)dX \approx \frac{1}{R} \sum_{r=1}^R f\left(X^{(r)}\right)$$

Markov chain

The transition matrix T of the Markov chain has entries

$$T_{xy} = P\left(X^{(n+1)} = x \mid X^{(n)} = y\right)$$

 If the Markov chain is ergodic (aperiodic and irreducible), then

$$P\left(X^{(n+1)} = x\right) = \int_{y} T_{xy} P\left(X^{(n)} = y\right)$$

converges to a unique stationary distribution:

$$\lim_{n \to \infty} P\left(X^{(n)}\right) \to P_{\infty}(X)$$

Detailed balance

If the detailed balance equations hold,

$$T_{xy}P(X=y)=T_{yx}P(X=x)$$

then the stationary distribution characterized by

$$P_{\infty}(X=x) = \int_{\mathcal{Y}} T_{xy} P(X=y)$$

is the target distribution P(X), because detailed balance implies

$$\int_{y} T_{xy} P(X = y) = \int_{y} T_{yx} P(X = x) = P(X = x)$$

Metropolis-Hastings

- Proposal distribution Q_{xy}
- Acceptance probability A_{xv}
- The transition probability is $T_{xy} = Q_{xy} A_{xy}$
- For T to fulfill detailed balance, we need to have

$$Q_{xy}A_{xy}P(X=y) = Q_{yx}A_{yx}P(X=x),$$
 or
$$\frac{A_{xy}}{A_{yx}} = \frac{Q_{yx}P(X=x)}{Q_{xy}P(X=y)}$$

For this, it is sufficient to set

$$A_{xy} := \min \left\{ \frac{P(X=x)Q_{yx}}{P(X=y)Q_{xy}}, 1 \right\}$$

Metropolis-Hastings algorithm

- Start with a random guess X⁽⁰⁾
- For n = 1, ..., N
 - Generate a new point X⁽ⁿ⁾ from the proposal distribution Q,

$$X^{(n)} \sim Q_{X^{(n)},X^{(n-1)}}$$

Accept the new value with probability

$$A(X^{(n)} = x \mid X^{(n-1)} = y) = A_{xy} = \min\left\{\frac{P_x Q_{yx}}{P_y Q_{xy}}, 1\right\}$$

otherwise, leave the value unchanged, $X^{(n)} = X^{(n-1)}$.

- Discard initial burn-in phase X⁽⁰⁾, ..., X^(N-R)
- Compute expectations

$$\widehat{f} = \frac{1}{R} \sum_{r=N-R+1}^{N} f\left(X^{(r)}\right)$$

Example: Q = isotropic Gaussians

Example: Q = isotropic Gaussians

- ρ = scale of proposal distribution Q
- $\rho \approx \sigma_{\min}$ results in a random walk and collecting samples every $(\sigma_{\max} / \sigma_{\min})^2$ steps gives (approximately) independent samples

Gibbs sampling

Sample conditional probabilities of P(X₁, ..., X_M) iteratively:

$$X_{1}^{(n+1)} \sim P\left(X_{1} \mid X_{2}^{(n)}, \dots, X_{M}^{(n)}\right)$$

$$X_{2}^{(n+1)} \sim P\left(X_{2} \mid X_{1}^{(n+1)}, X_{3}^{(n)}, \dots, X_{M}^{(n)}\right)$$

$$\vdots$$

$$X_{j}^{(n+1)} \sim P\left(X_{j} \mid X_{1}^{(n+1)}, \dots, X_{j-1}^{(n+1)}, X_{j+1}^{(n)}, \dots, X_{M}^{(n)}\right)$$

$$\vdots$$

$$X_{M}^{(n+1)} \sim P\left(X_{M} \mid X_{1}^{(n+1)}, \dots, X_{M-1}^{(n+1)}\right)$$

Gibbs sampling as an instance of Metropolis-Hastings

- Regard the conditionals as the proposal distributions Q.
- For the transition $X^{(n)} \rightarrow X^{(n+1)}$ involving variable k, we have

$$Q_{xy} = P\left(X_k^{(n+1)} = x_k \mid X_{\backslash k}^{(n)} = y_{\backslash k}\right)$$
 and
$$x_{\backslash k} = y_{\backslash k}$$

• Because $P(X^{(n)} = x) = P(x_k \mid x_{\setminus k})P(x_{\setminus k})$, we find

$$A_{xy} = \frac{P_x Q_{yx}}{P_y Q_{xy}} = \frac{P(x_k \mid x_{\setminus k}) P(x_{\setminus k}) P(y_k \mid x_{\setminus k})}{P(y_k \mid y_{\setminus k}) P(y_{\setminus k}) P(x_k \mid y_{\setminus k})} = 1$$

Example: correlated Gaussian target

 $O((L/l)^2)$ steps to obtain an independent sample

Gibbs sampling for graphical models

- Gibbs sampling is particularly useful, if it is much easier to sample from the conditionals P(X_k | X_{\k}) than from the joint distribution P(X₁, ..., X_M).
- For graphical models, P(X_k | X_{\k}) = P(X_k | X_{MB(k)}).

MCMC diagnostics

- How can we tell whether the Markov chain has converged?
- We can not. We can only try to spot obvious convergence problems:
 - 1. Large portions of the sample are drawn from different distributions.
 - The (effective) sample size is too small.
- Measures to consider:
 - Segment MCMC sample and compare per-segment distributions (e.g., split and compare means; compute MC standard errors)
 - Run multiple chains and compare them (e.g., their means or other moments; Gelman-Rubin statistic)
 - Examine trace plots
 - Examine autocorrelation function (ACF) plots.

Trace and ACF plots

From: Taboga M, 2021, "MCMC diagnostics"

MCMC sample

Sampling graph structures

Metropolis-Hastings for Bayesian networks: Sampling from $P(G \mid D)$

- Start with a random DAG G⁽⁰⁾
- For n = 1, ..., N
 - Generate a new DAG G⁽ⁿ⁾ from the proposal distribution Q,

$$G^{(n)} \sim Q\left(G^{(n)} \mid G^{(n-1)}\right)$$

Accept the new graph with probability

$$A\left(G^{(n)} \mid G^{(n-1)}\right) = \min \left\{ \frac{P(\mathcal{D} \mid G^{(n)})P(G^{(n)})Q(G^{(n-1)} \mid G^{(n)})}{P(\mathcal{D} \mid G^{(n-1)})P(G^{(n-1)})Q(G^{(n)} \mid G^{(n-1)})}, 1 \right\}$$

otherwise, leave the value unchanged, $G^{(n)} = G^{(n-1)}$.

• If $Q\left(G^{(n)} \mid G^{(n-1)}\right) = Q\left(G^{(n-1)} \mid G^{(n)}\right)$, then Q cancels out and the Hastings ratio is 1 in A, and the algorithm reduces to the Metropolis algorithm.

Elementary MCMC moves for DAGs

DAG neighborhoods and Hastings ratio

Structure MCMC example

Set $P(G \mid D) \propto e^E$ with E # edges

• 2 steps from one high scoring DAG to another

Madigan and York, ISR, 1995

- · fair amount of correlation
- slowish convergence

Structure MCMC edge reversal

Now allow edges to be reversed

Combination of deleting and adding an edge

- Better convergence Giudici and Castelo, ML 2003
- Numerical speed-ups

Order MCMC

Define order on nodes as permutation π Friedmann and Koller, ML 2003

· Parents only further down chain

$$Pa\{\pi(i)\} \subseteq \{\pi(j) \mid j > i\}$$

- stops cycles
- · Combine all DAGs consistent with order and sum scores

$$P(\pi \mid D) = \sum_{G}^{G < \pi} P(G \mid D)$$

- Build MCMC chain on orders
 - propose a new order π' by swapping two elements
 - accept move with probability $\min\left(1, \frac{P(\pi'|D)}{P(\pi|D)}\right)$

Order MCMC example

Sample DAG from the order

sample node's parents from permissible scores

- Better convergence
 - combining smooths score landscape
 - smaller space

Friedmann and Koller, ML 2003

Order space

Order space is much smaller

Orders =
$$n!$$
 # DAGs $\approx n! \frac{2^{\frac{n(n-1)}{2}}}{(0.574)(1.48)^n}$

But not the space of DAGs!

#DAGs per order =
$$2^{\frac{n(n-1)}{2}}$$

- · DAGs exponentially overcounted
- · Order MCMC gives a biased sample

Permuted lower triangular matrices instead

consistent with 8 orders

Outpoints and partitions

Outpoints have no incoming arcs

(2)

- · removing outpoints leaves smaller DAG
- · remove till no arcs remain
- · sequence k of number removed is ordered partition of n

$$\sum k_i = n$$
, eg $k = [3, 1, 1]$, $3 + 1 + 1 = 5$

Partition MCMC

Unique representation in space of partitions

· join or break elements or swap nodes between them

- · Convergence slightly worse than order
 - but unbiased
 - much better than structure

Kuipers and Moffa, JASA 2017

Approximate inference via variational inference

Recall the phylo-HMM

 The phylo-HMM performs poorly in distinguishing rate variation from topology change due to recombination.

Phylogenetic factorial HMM (Phylo-FHMM)

indicates changes in topology (recombination)

indicates changes in the rate of evolution (selection pressure)

Factorial HMM

Distributed state space:

- Let K be the number of states per random variable.
- Let M be the number of hidden Markov chains.
- In the FHMM, we need M transition matrices each of dimension K², rather than one K^M × K^M transition matrix in a single HMM.

$$P(X,Z) = \prod_{t=1}^{N} \prod_{m=1}^{M} P(Z_{t}^{(m)} | Z_{t-1}^{(m)}) P(X_{t} | Z_{t})$$

Linear Gaussian observations

- If P(X | Z) is Gaussian with
 - mean vector μ ; each μ_t is a linear combination of the hidden variables, one from each chain,

$$\mu_t = \sum_{m=1}^{M} W^{(m)} Z_t^{(m)}$$

covariance matrix C,

then the marginals P(X_t) are Gaussian mixture models

$$P(X_t \mid Z_t) = |C|^{-1/2} (2\pi)^{-D/2} \exp\left\{-\frac{1}{2} (X_t - \mu_t)^t C^{-1} (X_t - \mu_t)\right\}$$

Conditional dependencies

- Observation of X introduces dependencies among chains.
- The green path is not blocked, hence $Z_{n+1}^{(1)}$ is not independent of $Z_{n-1}^{(1)}$ given $Z_n^{(1)}$.

Exact inference is computationally expensive

- Exact inference is exponential in M
 - Naïve implementation (forward-backward on big chain): O(NK^{2M})
 - Junction tree algorithm: O(NMK^{M+1})
 - → approximate inference

Gibbs sampling for the FHMM

$$Z_{t}^{(m)} \sim P\left(Z_{t}^{(m)} \mid Z_{t}^{(\backslash m)}, Z_{t-1}^{(m)}, Z_{t+1}^{(m)}, X_{t}\right)$$

$$\propto P\left(Z_{t}^{(m)} \mid Z_{t-1}^{(m)}\right) P\left(Z_{t}^{(m)} \mid Z_{t+1}^{(m)}\right) P\left(X_{t} \mid Z_{t}\right)$$

- O(NMK) per sampling step.
- The MCMC sample can be used in the EM algorithm to compute expectations.

Recall the EM algorithm:

Iterative maximization of the lower bound

$$\log P(X \mid \theta) = F(q, \theta) + D_{\mathsf{KL}}(q \parallel P)$$

$$\geq F(q, \theta) = \sum_{Z} q(Z) \log \frac{P(X, Z \mid \theta)}{q(Z)}$$

- In the E step, the posterior distribution over the hidden variables, q(Z) = P(Z | X, θ), is computed.
 - This is the (hard) inference problem for FHMMs.
- In the M step, F is maximized with respect to the model parameters.
 - Easy for FHMMs.

Variational approximation

• Because the lower bound holds for any q, we select a simpler family of distributions $q(Z \mid \lambda)$,

$$\log P(X \mid \theta) \geq F(q(Z \mid \lambda), \theta)$$

and maximize with respect to the *variational parameters* λ .

- The complexity of exact inference is determined by the conditional independence relations, not by the parameters.
- Thus, we make simplifying assumptions on the dependency structure, typically removing some of the dependencies in the original model.

Mean field approximation for the FHMM

The hidden variables Z_t encode K states as binary vectors,

$$Z_{t,k}^{(m)} \in \{0,1\}$$
 and $\sum_{k=1}^{K} Z_{t,k}^{(m)} = 1$

The mean field approach assumes complete independence

$$q(Z \mid \lambda) = \prod_{t=1}^{N} \prod_{m=1}^{M} q(Z_t^{(m)} \mid \lambda_t^{(m)})$$

The variational parameters are the means of the latent variables, and

$$q(Z_t^{(m)} \mid \lambda_t^{(m)}) = \prod_{k=1}^K \left(\lambda_{t,k}^{(m)}\right)^{Z_{t,k}^{(m)}}$$

Tighten the bound

- To maximize the lower bound F, we minimize the KL divergence D_{KL}(q(Z | λ) || P).
- We obtain the fixed point equation

$$\lambda_t^{(m)\,\text{new}} = \varphi \left\{ W^{(m)'} C^{-1} \bar{X}_t^{(m)} - \frac{1}{2} \Delta^{(m)} + (\log T^{(m)}) \lambda_{t-1}^{(m)} + (\log T^{(m)})' \lambda_{t+1}^{(m)} \right\}$$

where

- $\bar{X}_t^{(m)} = X_t \sum_{\ell \neq m} W^{(\ell)} \lambda_t^{(\ell)}$ is the prediction error,
- $\Delta^{(n)} = diag(W^{(m)}, C^{-1} W^{(m)})$,
- φ is the softmax operator, $\varphi(A)_i = \exp(A_i)/\sum_j \exp(A_j)$,
- and log T^(m) is the elementwise logarithm of the transition matrix.

Mean field equation, O(NMK²)

$$\lambda_t^{(m)\,\text{new}} = \varphi \left\{ W^{(m)'}C^{-1}\bar{X}_t^{(m)} - \frac{1}{2}\Delta^{(m)} + (\log T^{(m)})\lambda_{t-1}^{(m)} + (\log T^{(m)})'\lambda_{t+1}^{(m)} \right\}$$

Projection of the error in reconstructing the observations onto the weights of the state vector: the more a state vector reduces this error, the larger the associated variational parameter No second order correlations under the variational distribution

backward and forward time dependencies among variational parameters

- The fixed point equations introduce dependencies among variational parameters across the Markov blanket.
- The stochastic coupling of the Markov chains is approximated by the deterministic coupling of their means.

FHMM variational inference

Summary

- Markov chain Monte Carlo (MCMC) is a powerful method for drawing samples from distributions that are difficult to assess. Popular MCMC algorithms are Metropolis-Hastings and, especially for graphical models, the Gibbs sampler.
- Order based samplers combine large groups of graphical models for more efficient inference.
- Variational inference refers to approximating the marginal distribution of interest by a simpler parametric family of distributions. In the mean field approach, this distribution is fully factorized. Minimizing the KL divergence gives fixed point equations for the variational parameters.

References

- Bishop CM. Pattern Recognition and Machine Learning.
 Springer, 2007.
- Jordan MI (ed.). Learning in Graphical Models. Kluwer Academic Publishers, 1998.
 - MacKay DJC. Introduction to Monte Carlo methods.
 - Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An introduction to variational methods for graphical models.
- Ghahramani Z, Jordan MI (1997). Factorial hidden Markov models. Machine Learning 29, 245–273.