

Introduction à l'Intelligence Artificielle (L2 Portail Sciences et Technologies)

Andrea G. B. Tettamanzi Laboratoire I3S – Équipe SPARKS

andrea.tettamanzi@univ-cotedazur.fr

univ-cotedazur.fr

Séance 6 Apprentissage non supervisé (règles d'association, analyse formelle de concepts)

Plan pour cette séance

- Apprentissage non-supervisé
- Analyse de patrons fréquents
- Règles d'association
 - Algorithme Apriori
 - Algorithme FPGrowth
 - Mesures d'intérêt
- Analyse formelle de concepts

Apprentissage

- Apprentissage automatique :
 - « apprendre » à partir d'exemples
 - résoudre des tâches sans être explicitement programmés pour chacune
- Approches basés sur
 - Mathématiques et statistiques
 - Algorithmique et structures de données
 - Calcul intensif (de plus en plus)

Apprentissage non supervisé

Selon les informations disponibles durant la phase d'apprentissage, l'apprentissage est qualifié de :

- Supervisé si les données sont étiquetées (c-àd la réponse est connue pour chaque exemple)
- Non supervisé pas d'étiquette (cas le plus général)
 - on cherche à déterminer la structure sousjacente des données

Analyse de patrons fréquents

- Patron fréquent : un patron (ensembre d'articles, sous-séquences, sous-structures, couples attribut-valeur, etc.) qui apparaît fréquemment dans un jeu de données
- Proposé originairement par Agrawal, Imielinski et Swami [AIS93] dans le contexte de la fouille de données
- Motivation : trouver des régularités inhérentes dans les données
 - Quels produits sont souvent achetés ensemble— Bière et couches ?!
 - Qu'est-ce qu'on achète après avoir acheté un ordi?
 - Quels types d'ADN sont sensibles à ce nouveau médicament ?
 - Pouvons-nous classifier automatiquement des pages Web ?
- Applications :
 - Analyse des données du panier, marketing croisé, conception de catalogue, analyse des campagnes de vente, analyse de logs Web (click stream), analyse des séquences ADN.

Pourquoi est-elle importante?

- Expose les propriétés intrinsèques et importantes des jeux de données
- Constitue la base de nombreuses tâches essentielles d'exploration de données
 - Analyse d'association, de corrélation et de causalité
 - Motifs séquentiels, structurels (par exemple, sous-graphes)
 - Analyse des tendances en matière de données spatio-temporelles, multimédia, chronologiques et de flux
 - Classification: classification associative
 - Analyse de clusters : regroupement fréquent basé sur des modèles
 - Entreposage de données : hypercubes et gradient de cubes
 - Compression sémantique des données
 - Beaucoup d'applications

Concepts de base : patrons fréquents et règles d'association

ld Transaction	Articles achetés
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Itemset $X = \{x_1, ..., x_k\}$
- Trouver toutes les règles $X \rightarrow Y$ ayant support et confiance \geq minimum
 - support, s, probabilité que une transaction contienne X ∪ Y
 - confiance, c, probabilité
 conditionnelle que une
 transaction contenant X contient
 aussi Y

Soit
$$sup_{min} = 50\%$$
, $conf_{min} = 50\%$
Pat. Freq. : {A:3, B:3, D:4, E:3, AD:3}
Règles d'association :
 $A \rightarrow D$ (60%, 100%)
 $D \rightarrow A$ (60%, 75%)

Patrons fermés et maximaux

• Un patron long contient un nombre combinatoire de souspatrons, p.ex., les sous-patrons de $\{a_1, ..., a_{100}\}$ sont

$$\binom{1}{100} + \binom{2}{100} + \ldots + \binom{100}{100} = 2^{100} - 1 = 1.27 \cdot 10^{30}$$

- Solution: n'extraire que patrons fermés et max-patrons
- Un itemset X est fermé si X est fréquent et qu'il n'existe aucun super-patron Y > X, ayant le même support que X
- Un itemset X est un max-patron si X est fréquent et qu'il n'existe aucun super-patron fréquent Y ⊃ X
- Un patron fermé est une compression sans perte d'information de patrons fréquents
 - On réduit le nombre de patrons et de règles

Méthodes efficaces pour la fouille de patrons fréquents

- Propriété de fermeture descendante de patrons fréquents
 - Tout sousensemble d'un itemset fréquent est fréquent
 - Si {bière, couches, cacahuètes} est fréquent, alors {bière, couches} l'est aussi
 - En effet, toute transaction contenant {bière, couches, cachuètes} contient aussi {bière, couches}
- Méthodes efficaces : trois approches majeures
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: une approche basée sur la génération et test de candidats

- Principe d'élagage d'Apriori : S'il y a un itemset qui est infréquent, ses super-ensembles ne devraient pas être générés/testés !
 (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Méthode :
 - Première passe : trouver les 1-itemsets (articles) fréquents
 - Générer itemsets candidats de taille (k + 1) à partir des itemsets fréquent de taille k
 - Tester ces candidats par rapport aux données
 - Terminer dès qu'aucun itemset candidat ne peut plus être généré

Exemple

Apriori : pseudocode

```
C_k: Itemsets candidats de taille k
L_k: Itemsets fréquents de taille k
L_1 = \{ \text{ articles fréquents } \};
   pour (k = 1; L_k \neq \emptyset; k++):
      C_{k+1} = candidats générés de L_k;
      pour toute transaction t dans BD:
        incrementer le comptage des candidats dans
        C_{k+1} qui sont contenus en t
      L_{k+1} = candidats dans C_{k+1} avec min support
   renvoyer \bigcup_k L_k;
```

Quelques détails importants

- Comment génère-t-on les candidats?
 - Étape 1 : faire une auto-jointure de L_k
 - Étape 2 : élagage
- Comment compte-t-on les supports des candidats ?
- Exemple de génération de candidats
 - $-L_3 = \{ abc, abd, acd, ace, bcd \}$
 - Auto-jointure : $L_3 \times L_3$
 - abcd, de abc et abd
 - acde, de acd et ace
 - Élagage :
 - acde est supprimé, car ade n'est pas dans L_3
 - $C_4 = \{ abcd \}$

Calcul du support des candidats

- Pourquoi ce calcul est-il problématique ?
 - Le nombre total des candidats peut être très important
 - Une transaction peut contenir beaucoup de candidats
- Méthode :
 - Le itemsets candidats sont stockés dans une structure de données appelée arbre de hachage
 - Les feuilles de l'arbre de hachage contiennent une liste d'itemsets avec leur nombre d'occurrences
 - Les nœuds internes contiennent une table de hachage
 - La fonction Subset trouve tous les candidats contenus dans une transaction

Goulet d'étranglement de la fouille de patrons fréquents

- Des passes multiples coûtent cher
- La fouille de patrons longs requiert plusieurs passes et génère plein de candidats
 - Pour trouver un itemset $i_1i_2...i_{100}$
 - Nombre de passes : 100
 - Nombre de Candidats: $2^{100}-1 = 1.27*10^{30}!$
- Goulet d'étranglement : génération et test
- Peut-on éviter la génération de candidats ?

Fouille de patrons fréquents sans génération de candidats

- Faire pousser les patrons longs à partir des courts grâce aux articles localement fréquents
 - « abc » est un patron fréquent
 - Extraire transactions contenant abc: BD|abc
 - « d » est un article fréquent dans DB|abc →
 - « abcd » est aussi un patron fréquent

FP-Tree

- On évite l'explosion combinatoire des candidats grâce à :
 - Une structure de donnée arborescente compacte
 - On évite les passes répétées sur la BD
 - Test restreint
 - Apriori : génération et test restreints
 - On utilise une recherche du genre « diviser pour mieux régner »
 - Apriori : construction du bas vers le haut

Algorithme FP-tree

<u>ID</u>	Articles achetés
100	{f, a, c, d, g, i, m, p}
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	${a, f, c, e, \bar{l}, p, m, n}$

- Faire une passe, trouver les articles fréquents (patrons de taille 1)
- 2. Trier les articles fréquents en ordre descendant, F-list
- 3. Faire autre passe, construire le FP-tree

F-list=f-c-a-b-m-p

Avantages de la structure FP-tree

Complétude

- Préserve toute l'information pour la fouille de patrons fréquents
- Ne coupe jamais un patron long d'aucune transaction

Compacité

- Réduit l'information non pertinente—plus de patrons non fréquents
- Articles triés par fréquence descendante : plus ils apparaissent fréquemment, plus ils ont de chances d'être partagés
- Jamais plus grand que la BD originale (sans compter les liens entre les nœuds et le champ comptage)
- Pour certaines BD de benchmark, le taux de compression dépasse le 100

Partition des patrons et BD

- On peut partitionner les patrons fréquents en sous-ensembles suivant la F-list
 - F-list = f-c-a-b-m-p
 - Patrons qui contiennent p
 - Patrons qui contiennent m mais pas p
 - **–** ...
 - Patrons avec c mais ni a, ni b, m, p
 - Patron f
- Partition complète et non redondante

Trouver les patrons contenant p dans la BD pconditionnelle

- On cherche un article p dans la header table du FP-tree
- On parcourt le FP-tree suivant le lien de chaque article fréquent p
- On accumule tous les chemins-préfixes transformés pour l'article p pour créer la BD des patrons contenant p

Des BD conditionnelles de patrons aux FP-trees conditionnels

- Pour chaque BD de patrons
 - Accumuler les comptages de chaque article dans la BD
 - Construire le FP-tree des articles fréquents de la BD de patrons

Fouille de patrons fréquents avec FP-Trees

- Idée : « culture » de patrons fréquents
 - On fait pousser les patrons fréquents en partitionnant récursivement les patrons et la BD
- Méthode
 - Pour chaque article fréquent, on construit sa BD conditionnelle de patrons, puis son FP-tree conditionnel
 - On répète cette procédure sur chaque FP-tree conditionnel nouvellement créé
 - Jusqu'à ce que le FP-tree résultant ne soit vide, ou qu'il ne contienne qu'un chemin—ce chemin va générer toutes les combinaisons de ses sous-chemins, qui sont toutes des patrons fréquents

FP-Growth vs. Apriori: Passage à l'échelle par rapport au seuil de support

Pourquoi FP-Growth gagne-t-il?

- Diviser pour mieux régner :
 - Il décompose la tâche de fouille et la BD suivant les patrons fréquents obtenus jusque là
 - Cela conduit à une recherche ciblée de BD plus petites
- Autres facteurs
 - Pas de génération de candidats, pas de test
 - Compression de la BD : structure FP-tree
 - Pas de passes répétées de toute la BD
 - Opérations basiques—contage des articles localement fréquents et construction de sous-FP-trees—pas de requête pour chercher des patrons

Fouille de patrons fréquents fermés : CLOSET

Flist: liste de tous les articles fréquents triés par support croissant

	 Flist: d-a-f-e-c 	Min sup=2		
•	On divise l'espace de recherche	TID	Articles	
	- Patrons contenant d	10	a, c, d, e, f	
	- Patrons contenant d, mais pas a, etc.		a, b, e	
	r atrons contenant a, mais pas a, etc.	30	c, e, f	
•	On trouve les patrons fréq. fermés récursivement	40	a, c, d, f	
		. 50	c. e. f	

- Chaque transaction contenant d contient cfa aussi 30
 - → cfad est un patron fréquent fermé

Mesures d'intérêt : Corrélations (Lift)

- Jouer football ⇒ manger céréales [40%, 66.7%] est fourvoyant
 - Le % général des étudiants qui mangent des céréales est 75% > 66.7%.
- Jouer football ⇒ ne pas manger céréales [20%, 33.3%] est plus précis, bien qu'avec un moindre support et une moindre confiance
- Mesure d'événements dépendants/corrélés : lift

			Football	Pas de football	Total
1: f1(A D)	$P(A \cup B)$	Céréales	2000	1750	3750
tijt(A,D) =	$= \frac{P(A \cup B)}{P(A)P(B)}$	Pas de céréales	1000	250	1250
		Total	3000	2000	5000
lift(F,C) =	$\frac{2000/5000}{3000/5000 \cdot 3750/50}$	$\frac{1}{000} = 0.89$			
$lift(F, \neg C) = \frac{1}{2}$	$\frac{1000/5000}{3000/5000 \cdot 1250/50}$	$\frac{1}{1000} = 1.33$			

Quelles mesures utiliser?

- lift et χ² ne sont pas de bonnes mesures de corrélation pour de grandes BD de transactions
- all-conf ou coherence pourraient marcher mieux
- all-conf et coherence ont toutes les deux la propriété de fermeture descendante
- On peut en dériver des algorithmes de fouille performants

	symbol	measure	range	formula
	ϕ	ϕ -coefficient	-11	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
	0	Yule's Q	-1 1	$P(A,B)P(\overline{A},\overline{B}) - P(A,\overline{B})P(\overline{A},B)$
	Q	rules Q	-11	$P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)$
	Y	Yule's Y	-11	$\frac{\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}}$
	7	G 1 ,	1 1	$ \sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)} P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B}) $
	k	Cohen's	-11	$\frac{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$
	PS	Piatetsky-Shapiro's	$-0.25 \dots 0.25$	P(A,B) - P(A)P(B)
	F	Certainty factor	-11	$\max(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)})$
	AV	added value	-0.51	$\max(P(B A) - P(B), P(A B) - P(A))$
	K	Klosgen's Q	-0.330.38	$\frac{\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))}{\sum_{j} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
	g	Goodman-kruskal's	$0 \dots 1$	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
				$\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i}, B_{j})}$
	M	Mutual Information	$0 \dots 1$	$\frac{\Sigma_{i}\Sigma_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{J})}}{\min(-\Sigma_{i}P(A_{i})\log P(A_{i})\log P(A_{i}),-\Sigma_{i}P(B_{i})\log P(B_{i})\log P(B_{i}))}$
	J	J-Measure	$0 \dots 1$	$\max(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}))$
				$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$
	G	Gini index	$0 \dots 1$	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$
				$P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B}[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2] - P(A)^2 - P(\overline{A})^2)$
	s	support	$0 \dots 1$	P(A,B)
S	c	confidence	$0 \dots 1$	max(P(B A), P(A B))
	L	Laplace	$0 \dots 1$	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
	IS	Cosine	$0 \dots 1$	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	γ	coherence(Jaccard)	$0 \dots 1$	$\frac{\stackrel{\mathbf{v}}{P(A,B)}}{P(A)+P(B)-P(A,B)}$
	α	all_confidence	$0 \dots 1$	$\frac{P(A,B)}{\max(P(A),P(B))}$
	0	odds ratio	$0\ldots\infty$	$rac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$
	V	Conviction	$0.5 \ldots \infty$	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
	λ	lift	$0\ldots\infty$	$\frac{P(A,B)}{P(A)P(B)}$
	S	Collective strength	$0\ldots\infty$	$\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$ $\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E}$
	χ^2	χ^2	$0\ldots\infty$	$\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E_{i}}$

Analyse Formelle de Concepts

- Étude des concepts lorsqu'ils sont décrits formellement
- Introduite par Rudolf Wille en 1982 en tant qu'application de la théorie des treillis (voir treillis de Galois)
- Elle dispose également d'une solide base philosophique
- Un concept peut être défini par :
 - son intension : ensemble des attributs partagés par les instances du concept
 - son extension : ensemble des instance du concept (c-à-d les objets qui appartiennent au concept)

Treilli

Par User:ed_g2s — Travail personnel, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=318292

Treillis de Galois

Par Idéalités — Travail personnel, CC BY-SA 4.0 https://commons.wikimedia.org/w/index.php?curid=74651384

Exemple

nombre	composé	pair	impair	premier	carré
1			x		X
2		x		x	
3			х	x	
4	x	x			X
5			х	x	
6	x	x			
7			х	х	
8	x	x			
9	x		x		x
10	x	X			

Exemple

