

We will look at:

- Protection
- goals, principles, domain of access, access matrix, access control
- Security
- program threads, system and network threads, user authentication, implementing security defenses, firewalling

2

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

5.1. PROTECTION

- · Goals of Protection
- · Principles of Protection
- · Domain of Protection
- · Access Matrix
- · Access Control

3

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.1.1 Goals of Protection

- OS contains many *objects* (hardware or software) which need to be protected
- each object
 - · has a unique name
 - · can be accessed through a well-defined set of operations
- protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so
- need a way to
 - prohibit processes from accessing objects that they are not allowed to access $% \left(1\right) =\left(1\right) \left(1\right) \left$
 - · restrict processes to a set of legal operations

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.1.2 Principles of Protection

- $\bullet \ \ Guiding \ principle \ for \ protection-principle \ of \ least \ privilege$
 - dictates that programs, users and systems should be given just enough privileges to perform their tasks
 - helps produce a more secure computing environment

5

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

5.1.3 Domain Structure

- Protection domain
- specifies resources that the process may access
- collection of access rights usually corresponding to a single user
- Access-right = <object-name, rights-set>
- each pair specifies an object and a set of operations that can be performed on it
- where rights-set is a subset of all valid operations that can be performed on the object
- association between process and domain may be
- ${\bf static}$ set of resources are fixed through the lifetime of the process
- dynamic resources change, therefore a process can switch from one domain to another

- e.g. UNIX
- system consists of two domains: user and supervisor
 - Domain = user-id; each file has a user id
 - Domain switch accomplished via file system
 - each file has associated with it a domain bit (setuid bit) and a user-id
 - when file is executed and *setuid* = on, then *user-id* is set to owner of the file being executed
 - if setuid is off, then the user-id does not change

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

5.1.4 Access Matrix

- view protection as a matrix (access matrix)
- rows represent domains
- columns represent objects
- $\mathit{Acces}(i,j)$ is the set of operations that a process executing in Domain_i can invoke on Object_i

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

• Use of Access matrix

- if a process in Domain D_i tries to do "op" on object O_j , then "op" must be in the access matrix
- can be expanded to dynamic protection
- operations to add or delete access rights
- special access rights:
 - owner of O_i, controls rights of that object
 - copy op from O; to O; denoted by *
 - control D_i can modify D_i access rights
 - transfer switch from domain D, to D,

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

Example

Assume there are 4 objects: F1, F2, F3 and Printer, and four domains D1 to D4

- A user in D1 is allowed to read files F1 and F3 $\,$
- F2 can be read in D3
- A user can execute F3 in D3
- A process in D4 can read/write both F1 and F3 $\,$
- The printer can only be used by a process executing in Domain $\ensuremath{\mathsf{D}} 2$

Draw an access matrix

Now, assume that

- A process executing in D1 can transfer to D3 $\,$
- A process in D2 can transfer to D3 or D4
- A process in D4 can switch to D1
- A process in D2 can read F2, and is allowed to copy this operation
- A process in D1 is allowed to copy the read operation on F3 $\,$
- Also assume that D1 is the owner of F1 and D2 is the owner of F2 and F3
- A process executing in D2 is allowed to modify the access rights in D4 $\,$

Modified Access Matrix of Figure B object laser F_1 F_2 F_3 D_1 D_2 D_3 D_4 printe domain D_1 switch read read switch D_2 print switch contro D_3 read execute write write switch Control : A process in D2 can modify access rights for a process in D4 $\,$ CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

- access matrix can be very large, but sparse
- storing the whole thing is rarely done
- two practical methods:

• Each column = Access-control list for one object

• defines who can perform what operation on the object
e.g. Object 1: Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

:

• Each row = Capability List

• for each domain, what operations allowed on what objects
e.g. Domain 1: Object 1 - Read
Object 4 - Read, Write, Execute
Object 5 - Read, Write, Delete, Copy

CSI354 Operating Systems 2012
Chapter's Protection and Security

Example

Given the following information, draw an access matrix

- There are three files named F1, F2 and F3, a printer, and four domains D1 to D4 $\,$
- A process in D1 can read and write file F1 and can switch to domain D3. Domain D1 is also the owner of F1
- A process in D2 can read F2, access the printer, and switch to D3 or D4. It can also modify domain D4
- · A process in D3 can read F2 and execute F3
- In D4, a process can read/write F1 and F3 and can switch to D1. The process is also allowed to copy the right to read F3
- Give the access control lists for each object and capability lists for each domain in the matrix

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.2 SECURITY

- · Security Problem
- · System Threats
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks
- · Overview of cryptography

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

5.2.1 Security Problem

- security must consider external environment of the system, and protect the system resources
- intruders (crackers) attempt to breach security
- threat is potential security violation
- attack is attempt to breach security
 accidental or malicious
- easier to protect against accidental than malicious misuse
- some security goals
 - data confidentiality secret data remains secret
 - data integrity no tampering of data
 - $\bullet \;\; system \; availability-system \; always \; usable$
 - ullet privacy protect misuse of user info

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.2.2 Security Violations

- categories
 - breach of confidentiality
 unauthorized reading of secret data
 - breach of integrity
 unauthorized modification of data
 - breach of availability
 destruction of data
 - theft of service
 unauthorized use of resources
 - denial of service
 preventing legitimate usage of system

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

- methods
- masquerading (breach authentication)
- pretending to be someone else in order to gain access
- replay attack
- $\mbox{message}$ modification to repeat valid data transmission
- ullet (wo)man-in-the-middle attack
- attacker sits in data flow communication masquerading as sender or receiver
- session hijacking
- intercepting communication

5.2.3 Security Measure Levels

- security must occur at four levels to be effective:
- Physical site physically secured against intruders
- **Human** only legitimate users access the system
 - avoid social engineering, phishing, dumpster diving
- Operating System system protects itself against malicious processes, queries
- ${\bf Network}$ protect data travelling over the network from being intercepted
- > security is as good as the weakest chain
- all the above aspects need to be addressed for security to be maintained

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.2.4 User Authentication

- major security problem
- establish the identity of user/machine by
 - something you know (password, secret)
 - · something you have (credit card, smart card)
- something you are (retinal scan, fingerprint)
- in the case of an OS this is done during login
- two factor authentication use two forms of user verification
- multifactor use multiple forms

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

· Passwords

- most widely used form of authentication
- secret known only to the subject
- can be generated by the system or selected by the user
- usually only one required
- simplest OS implementation keeps (login, password) pair
- easy to understand and use
- authenticates user on login by checking the password
- require user to change their passwords regularly
 - the extreme is the one time password
- variation is the challenge-response scheme
- they could be guessed, exposed accidentally, sniffed, or shoulder surfed

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

· Physical identification

- check to see if the user has some item
 - · usually plastic card with magnetic strip
 - inserted into the reader
 - can be combined with password (two factor id)
- physical characteristics
 - finger print, voice print, finger length, signature analysis

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.2.5. System Threats

Viruses

- $\hbox{-}\ code\ fragment\ embedded\ in\ legitimate\ program$
- very specific to CPU architecture, operating system, applications
- usually borne via email or as a macro
- virus dropper inserts virus onto the system
- reproduces itself
- but require human intervention to spread
- can be used to cause denial of service

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

- many categories of viruses, literally many thousands of viruses
 - program file
 - boot sector
 - macro
- source code
- polymorphic
- encrypted
- $\bullet \ \ stealth$
- tunnelingmultipartite
- armored

• Worms

- similar to a virus
- use spawn mechanism to replicate without a helper
- standalone program
- use networks to transmit copies of itself to other computers
- not necessarily destructive

e.g Internet worm (1988)

- exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
- Grappling hook program uploaded main worm program

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

· Port scanning

- not really an attack
- automated attempt to connect to a range of ports on one or a range of IP addresses

• Denial of Service

- overload the targeted computer preventing it from doing any useful work
- distributed denial-of-service (DDOS) come from multiple sites at once

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

· Trojan horse

- malicious program disguised as an innocent one
- could modify/delete user's file, send important info to cracker, etc
- cracker hides it as a new game, e-card, windows update site, etc.
- when run, Trojan Horse executes with user's privileges
- examples:
 - · hide program in path directory as a common typo: la for ls
 - malicious user puts malicious ls in directory, and attracts superuser
 - > malicious ls could make user the superuser

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

Login spoofing

- specialized case of Trojan Horse
- attacker displays a custom screen that user thinks belongs to the system
 - >user responds by typing in user name and password

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

· Login bombs

- piece of code, in the OS or app
- dormant until a certain time has elapsed or event has occurred \succ e.g. missing employee record from payroll
- could act as a Trojan Horse/virus once triggered
- also called slag code or time bomb

• Trap doors

- code in system inserted by programmer to bypass normal check
- $\hbox{--} Ken\,Thompson\,\hbox{``Reflections on Trusting Trust''}$
 - · hole in UNIX system utility; enforced by C compiler

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

· Accidental Data Loss

- acts of God
- hardware or software errors
- human errors

5.2.6. Implementing Security Defenses

- Defense in Depth Theory
- most common security theory
- multiple layers of security are better than fewer layers
- first step is to create a security policy which describes what is being secured
- then a vulnerability assessment is used to compare real state of system to security policy, therefore initiating appropriate responses

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

- intrusion detection then endeavors to detect attempted or successful intrusions
- · signature-based detection spots known bad patterns
- check for specific behavior that are known to indicate attacks
- · anomaly detection spots differences from normal behavior
- can help detect previously unknown methods of behavior
- ${\bf false\text{-}positives}$ and ${\bf false\text{-}negatives}$ a problem
- false alarms and missed intrusions
- virus protection using antivirus programs
- auditing, accounting, and logging of all or specific system or network activities

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.2.7 Firewalling

- a network firewall is placed between trusted and untrusted hosts
 - firewall limits network access between these two security domains
 - blocks unauthorized access, only permitting authorized communication $\,$
 - · also limits connectivity based on the source/destination address
 - · monitors and log all connections
 - · can be hardware, software, or both
- mechanisms used include
 - · packet filtering
 - proxy server to hide network addresses and intercept all messages entering and leaving the system

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

- main problem is that they can be tunneled or spoofed
 - tunneling
 - an attack travels within allowed protocols or connections
 - allows disallowed protocol to travel within allowed protocol (i.e. telnet inside of HTTP)
 - spoofing
 - an unauthorized host pretends to be authorized by meeting some authorization criteria $\,$
 - firewall rules typically based on host name or IP address which can be spoofed

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

- personal firewall is software layer on given host
- can monitor/limit traffic to and from a particular host
- either included within the OS or added as an application
- · application proxy firewall
 - applies security mechanism to specific application
 - understands application protocols and can control them (e.g. SMTP)
- system-call firewall
 - monitors all important system calls and apply rules to them (i.e. this program can execute that system call)

5.2.8. Design Principles

- identified by Saltzer and Schroeder (1975), used as a guide to design secure systems
- · system design should be public
- · default should be no access
- · check for current authority
- · give each process the least privilege possible
- protection mechanism should be simple, uniform, and built into the lowest layers of the system
- · scheme chosen must be psychologically acceptable

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

5.2.9. Overview of Cryptography

- encrypt data so it only makes sense to authorized users
 - needed when communicating over untrusted medium to protect data from theft
 - · data is written in secret code
 - also used for user authentication
- input data is a message or file called *plaintext*
- encrypted data is called *ciphertext*
- sender
 - encrypts plain text using an encryption key and an algorithm to create ciphertext $% \left(1\right) =\left(1\right) \left(1$
 - then send the message over the network

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

i. Secret-key cryptography

- also called symmetric cryptography
 - · encryption algorithm is publicly known
 - E(message, key) = ciphertext
 - D(ciphertext, key) = message
- uses a single key for both encryption and decryption
- ➤ key must be known to only sender and receiver
- extremely fast
- suitable for large streams of data
- presumes the two parties have agreed on a key
- biggest challenge is how to distribute the key
- there is also the problem of key management

CSI354 Operating Systems 2012 Chapter 5 Protection and Security

- another problem is if the two parties wanting to communicate do not trust each other, therefore reluctant to exchange keys
- several solutions
 - an older method is using a third trusted party (TTP) can be used to generate a key and send it to both
- or the parties can use public key encryption, which allows the two parties to each generate a pair of keys and send exchange them over an unsecure network

CSI354 Operating Systems 2012 Chapter 5 Protection and Securit

ii. Public -key cryptography

- Diffie and Hellman, 1976
- also called asymmetric cryptography
- all users get a public key and a private key
 - public key is made available to everyone
 - private key is not known to anyone else, just owner
- uses public key for encryption
- private key used for decryption
- private key linked mathematically to public key
 - difficult to derive by making it computationally infeasible $\,$

- cons: slower, useful for transmitting very small amounts of data
- pros:
- more security as there are more range of public key values
- convenient as public key is easy to distribute as it does not have to be secured $% \left(1\right) =\left(1\right) \left(1\right$
- $\bullet\,$ used to create digital signatures

