Part I Virtualization

A Dialogue on Virtualization

Professor: And thus we reach the first of our three pieces on operating systems: virtualization.

Student: *But what is virtualization, oh noble professor?*

Professor: *Imagine we have a peach.* **Student:** *A peach? (incredulous)*

Professor: Yes, a peach. Let us call that the **physical** peach. But we have many eaters who would like to eat this peach. What we would like to present to each eater is their own peach, so that they can be happy. We call the peach we give eaters **virtual** peaches; we somehow create many of these virtual peaches out of the one physical peach. And the important thing: in this illusion, it looks to each eater like they have a physical peach, but in reality they don't.

Student: *So you are sharing the peach, but you don't even know it?*

Professor: *Right! Exactly.*

Student: *But there's only one peach.*

Professor: Yes. And...?

Student: Well, if I was sharing a peach with somebody else, I think I would notice.

Professor: Ah yes! Good point. But that is the thing with many eaters; most of the time they are napping or doing something else, and thus, you can snatch that peach away and give it to someone else for a while. And thus we create the illusion of many virtual peaches, one peach for each person!

Student: Sounds like a bad campaign slogan. You are talking about computers, right Professor?

Professor: Ah, young grasshopper, you wish to have a more concrete example. Good idea! Let us take the most basic of resources, the CPU. Assume there is one physical CPU in a system (though now there are often two or four or more). What virtualization does is take that single CPU and make it look like many virtual CPUs to the applications running on the system. Thus, while each application

thinks it has its own CPU to use, there is really only one. And thus the OS has created a beautiful illusion: it has virtualized the CPU.

Student: Wow! That sounds like magic. Tell me more! How does that work?

Professor: In time, young student, in good time. Sounds like you are ready to begin.

Student: I am! Well, sort of. I must admit, I'm a little worried you are going to start talking about peaches again.

Professor: Don't worry too much; I don't even like peaches. And thus we begin...

The Abstraction: The Process

In this chapter, we discuss one of the most fundamental abstractions that the OS provides to users: the **process**. The definition of a process, informally, is quite simple: it is a **running program** [V+65,BH70]. The program itself is a lifeless thing: it just sits there on the disk, a bunch of instructions (and maybe some static data), waiting to spring into action. It is the operating system that takes these bytes and gets them running, transforming the program into something useful.

It turns out that one often wants to run more than one program at once; for example, consider your desktop or laptop where you might like to run a web browser, mail program, a game, a music player, and so forth. In fact, a typical system may be seemingly running tens or even hundreds of processes at the same time. Doing so makes the system easy to use, as one never need be concerned with whether a CPU is available; one simply runs programs. Hence our challenge:

THE CRUX OF THE PROBLEM:

HOW TO PROVIDE THE ILLUSION OF MANY CPUS? Although there are only a few physical CPUs available, how can the OS provide the illusion of a nearly-endless supply of said CPUs?

The OS creates this illusion by **virtualizing** the CPU. By running one process, then stopping it and running another, and so forth, the OS can promote the illusion that many virtual CPUs exist when in fact there is only one physical CPU (or a few). This basic technique, known as **time sharing** of the CPU, allows users to run as many concurrent processes as they would like; the potential cost is performance, as each will run more slowly if the CPU(s) must be shared.

To implement virtualization of the CPU, and to implement it well, the OS will need both some low-level machinery as well as some highlevel intelligence. We call the low-level machinery **mechanisms**; mechanisms are low-level methods or protocols that implement a needed piece

TIP: USE TIME SHARING (AND SPACE SHARING)

Time sharing is one of the most basic techniques used by an OS to share a resource. By allowing the resource to be used for a little while by one entity, and then a little while by another, and so forth, the resource in question (e.g., the CPU, or a network link) can be shared by many. The natural counterpart of time sharing is **space sharing**, where a resource is divided (in space) among those who wish to use it. For example, disk space is naturally a space-shared resource, as once a block is assigned to a file, it is not likely to be assigned to another file until the user deletes it.

of functionality. For example, we'll learn later how to implement a **context switch**, which gives the OS the ability to stop running one program and start running another on a given CPU; this **time-sharing** mechanism is employed by all modern OSes.

On top of these mechanisms resides some of the intelligence in the OS, in the form of **policies**. Policies are algorithms for making some kind of decision within the OS. For example, given a number of possible programs to run on a CPU, which program should the OS run? A **scheduling policy** in the OS will make this decision, likely using historical information (e.g., which program has run more over the last minute?), workload knowledge (e.g., what types of programs are run), and performance metrics (e.g., is the system optimizing for interactive performance, or throughput?) to make its decision.

4.1 The Abstraction: A Process

The abstraction provided by the OS of a running program is something we will call a **process**. As we said above, a process is simply a running program; at any instant in time, we can summarize a process by taking an inventory of the different pieces of the system it accesses or affects during the course of its execution.

To understand what constitutes a process, we thus have to understand its **machine state**: what a program can read or update when it is running. At any given time, what parts of the machine are important to the execution of this program?

One obvious component of machine state that comprises a process is its *memory*. Instructions lie in memory; the data that the running program reads and writes sits in memory as well. Thus the memory that the process can address (called its **address space**) is part of the process.

Also part of the process's machine state are *registers*; many instructions explicitly read or update registers and thus clearly they are important to the execution of the process.

Note that there are some particularly special registers that form part of this machine state. For example, the **program counter** (**PC**) (sometimes called the **instruction pointer** or **IP**) tells us which instruction of the pro-

TIP: SEPARATE POLICY AND MECHANISM

In many operating systems, a common design paradigm is to separate high-level policies from their low-level mechanisms [L+75]. You can think of the mechanism as providing the answer to a *how* question about a system; for example, *how* does an operating system perform a context switch? The policy provides the answer to a *which* question; for example, *which* process should the operating system run right now? Separating the two allows one easily to change policies without having to rethink the mechanism and is thus a form of **modularity**, a general software design principle.

gram is currently being executed; similarly a **stack pointer** and associated **frame pointer** are used to manage the stack for function parameters, local variables, and return addresses.

Finally, programs often access persistent storage devices too. Such *I/O information* might include a list of the files the process currently has open.

4.2 Process API

Though we defer discussion of a real process API until a subsequent chapter, here we first give some idea of what must be included in any interface of an operating system. These APIs, in some form, are available on any modern operating system.

- Create: An operating system must include some method to create new processes. When you type a command into the shell, or double-click on an application icon, the OS is invoked to create a new process to run the program you have indicated.
- Destroy: As there is an interface for process creation, systems also
 provide an interface to destroy processes forcefully. Of course, many
 processes will run and just exit by themselves when complete; when
 they don't, however, the user may wish to kill them, and thus an interface to halt a runaway process is quite useful.
- Wait: Sometimes it is useful to wait for a process to stop running; thus some kind of waiting interface is often provided.
- Miscellaneous Control: Other than killing or waiting for a process, there are sometimes other controls that are possible. For example, most operating systems provide some kind of method to suspend a process (stop it from running for a while) and then resume it (continue it running).
- Status: There are usually interfaces to get some status information about a process as well, such as how long it has run for, or what state it is in.

Figure 4.1: Loading: From Program To Process

4.3 Process Creation: A Little More Detail

One mystery that we should unmask a bit is how programs are transformed into processes. Specifically, how does the OS get a program up and running? How does process creation actually work?

The first thing that the OS must do to run a program is to **load** its code and any static data (e.g., initialized variables) into memory, into the address space of the process. Programs initially reside on **disk** (or, in some modern systems, **flash-based SSDs**) in some kind of **executable format**; thus, the process of loading a program and static data into memory requires the OS to read those bytes from disk and place them in memory somewhere (as shown in Figure 4.1).

In early (or simple) operating systems, the loading process is done **eagerly**, i.e., all at once before running the program; modern OSes perform the process **lazily**, i.e., by loading pieces of code or data only as they are needed during program execution. To truly understand how lazy loading of pieces of code and data works, you'll have to understand more about the machinery of **paging** and **swapping**, topics we'll cover in the future when we discuss the virtualization of memory. For now, just remember that before running anything, the OS clearly must do some work to get the important program bits from disk into memory.

Once the code and static data are loaded into memory, there are a few other things the OS needs to do before running the process. Some memory must be allocated for the program's **run-time stack** (or just **stack**). As you should likely already know, C programs use the stack for local variables, function parameters, and return addresses; the OS allocates this memory and gives it to the process. The OS will also likely initialize the stack with arguments; specifically, it will fill in the parameters to the main () function, i.e., argc and the argv array.

The OS may also allocate some memory for the program's **heap**. In C programs, the heap is used for explicitly requested dynamically-allocated data; programs request such space by calling <code>malloc()</code> and free it explicitly by calling <code>free()</code>. The heap is needed for data structures such as linked lists, hash tables, trees, and other interesting data structures. The heap will be small at first; as the program runs, and requests more memory via the <code>malloc()</code> library API, the OS may get involved and allocate more memory to the process to help satisfy such calls.

The OS will also do some other initialization tasks, particularly as related to input/output (I/O). For example, in UNIX systems, each process by default has three open **file descriptors**, for standard input, output, and error; these descriptors let programs easily read input from the terminal as well as print output to the screen. We'll learn more about I/O, file descriptors, and the like in the third part of the book on **persistence**.

By loading the code and static data into memory, by creating and initializing a stack, and by doing other work as related to I/O setup, the OS has now (finally) set the stage for program execution. It thus has one last task: to start the program running at the entry point, namely $\mathtt{main}()$. By jumping to the $\mathtt{main}()$ routine (through a specialized mechanism that we will discuss next chapter), the OS transfers control of the CPU to the newly-created process, and thus the program begins its execution.

4.4 Process States

Now that we have some idea of what a process is (though we will continue to refine this notion), and (roughly) how it is created, let us talk about the different **states** a process can be in at a given time. The notion that a process can be in one of these states arose in early computer systems [DV66,V+65]. In a simplified view, a process can be in one of three states:

- Running: In the running state, a process is running on a processor. This means it is executing instructions.
- **Ready**: In the ready state, a process is ready to run but for some reason the OS has chosen not to run it at this given moment.
- Blocked: In the blocked state, a process has performed some kind
 of operation that makes it not ready to run until some other event
 takes place. A common example: when a process initiates an I/O
 request to a disk, it becomes blocked and thus some other process
 can use the processor.

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the diagram in Figure 4.2. As you can see in the diagram, a process can be moved between the ready and running states at the discretion of the OS. Being moved from ready to running means the process has been **scheduled**; being moved from running to ready means the process has been **descheduled**. Once a process has become blocked (e.g., by initiating an I/O operation), the OS will keep it as such until some event occurs (e.g., I/O completion); at that point, the process moves to the ready state again (and potentially immediately to running again, if the OS so decides).

Let's look at an example of how two processes might transition through some of these states. First, imagine two processes running, each of which only use the CPU (they do no I/O). In this case, a trace of the state of each process might look like this (Figure 4.3).

Time	$Process_0$	$Process_1$	Notes
1	Running	Ready	
2	Running	Ready	
3	Running	Ready	
4	Running	Ready	Process ₀ now done
5	_	Running	
6	_	Running	
7	_	Running	
8	_	Running	Process ₁ now done

Figure 4.3: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for some time. At that point, the process is blocked, giving the other process a chance to run. Figure 4.4 shows a trace of this scenario.

More specifically, Process₀ initiates an I/O and becomes blocked waiting for it to complete; processes become blocked, for example, when read-

Time	$\mathbf{Process}_0$	$\mathbf{Process}_1$	Notes
1	Running	Ready	
2	Running	Ready	
3	Running	Ready	Process ₀ initiates I/O
4	Blocked	Running	Process ₀ is blocked,
5	Blocked	Running	so Process ₁ runs
6	Blocked	Running	
7	Ready	Running	I/O done
8	Ready	Running	Process ₁ now done
9	Running	-	
10	Running	-	Process ₀ now done

Figure 4.4: Tracing Process State: CPU and I/O

ing from a disk or waiting for a packet from a network. The OS recognizes Process₀ is not using the CPU and starts running Process₁. While Process₁ is running, the I/O completes, moving Process₀ back to ready. Finally, Process₁ finishes, and Process₀ runs and then is done.

Note that there are many decisions the OS must make, even in this simple example. First, the system had to decide to run Process₁ while Process₀ issued an I/O; doing so improves resource utilization by keeping the CPU busy. Second, the system decided not to switch back to Process₀ when its I/O completed; it is not clear if this is a good decision or not. What do you think? These types of decisions are made by the OS **scheduler**, a topic we will discuss a few chapters in the future.

4.5 Data Structures

The OS is a program, and like any program, it has some key data structures that track various relevant pieces of information. To track the state of each process, for example, the OS likely will keep some kind of **process list** for all processes that are ready, as well as some additional information to track which process is currently running. The OS must also track, in some way, blocked processes; when an I/O event completes, the OS should make sure to wake the correct process and ready it to run again.

Figure 4.5 shows what type of information an OS needs to track about each process in the xv6 kernel [CK+08]. Similar process structures exist in "real" operating systems such as Linux, Mac OS X, or Windows; look them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of information the OS tracks about a process. The **register context** will hold, for a stopped process, the contents of its registers. When a process is stopped, its registers will be saved to this memory location; by restoring these registers (i.e., placing their values back into the actual physical registers), the OS can resume running the process. We'll learn more about this technique known as a **context switch** in future chapters.

```
// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {
  int eip;
 int esp;
 int ebx;
 int ecx;
 int edx;
  int esi;
  int edi;
  int ebp;
};
// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
                    RUNNABLE, RUNNING, ZOMBIE };
// the information xv6 tracks about each process
// including its register context and state
struct proc {
 char *mem;
                                  // Start of process memory
  uint sz;
                                 // Size of process memory
  char *kstack;
                                  // Bottom of kernel stack
                                  // for this process
                                 // Process state
  enum proc_state state;
 int pid; // Process ID struct proc *parent; // Parent process
                           // If non-zero, sleeping on chan
// If non-zero, have been killed
  void *chan;
  int killed;
  struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the
                                  // current interrupt
};
```

Figure 4.5: The xv6 Proc Structure

You can also see from the figure that there are some other states a process can be in, beyond running, ready, and blocked. Sometimes a system will have an **initial** state that the process is in when it is being created. Also, a process could be placed in a **final** state where it has exited but has not yet been cleaned up (in UNIX-based systems, this is called the **zombie** state¹). This final state can be useful as it allows other processes (usually the **parent** that created the process) to examine the return code of the process and see if the just-finished process executed successfully (usually, programs return zero in UNIX-based systems when they have accomplished a task successfully, and non-zero otherwise). When finished, the parent will make one final call (e.g., wait()) to wait for the completion of the child, and to also indicate to the OS that it can clean up any relevant data structures that referred to the now-extinct process.

¹Yes, the zombie state. Just like real zombies, these zombies are relatively easy to kill. However, different techniques are usually recommended.

ASIDE: DATA STRUCTURE — THE PROCESS LIST

Operating systems are replete with various important **data structures** that we will discuss in these notes. The **process list** is the first such structure. It is one of the simpler ones, but certainly any OS that has the ability to run multiple programs at once will have something akin to this structure in order to keep track of all the running programs in the system. Sometimes people refer to the individual structure that stores information about a process as a **Process Control Block (PCB)**, a fancy way of talking about a C structure that contains information about each process.

4.6 Summary

We have introduced the most basic abstraction of the OS: the process. It is quite simply viewed as a running program. With this conceptual view in mind, we will now move on to the nitty-gritty: the low-level mechanisms needed to implement processes, and the higher-level policies required to schedule them in an intelligent way. By combining mechanisms and policies, we will build up our understanding of how an operating system virtualizes the CPU.

References

[BH70] "The Nucleus of a Multiprogramming System"

Per Brinch Hansen

Communications of the ACM, Volume 13, Number 4, April 1970

This paper introduces one of the first **microkernels** in operating systems history, called Nucleus. The idea of smaller, more minimal systems is a theme that rears its head repeatedly in OS history; it all began with Brinch Hansen's work described herein.

[CK+08] "The xv6 Operating System"

Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich

From: http://pdos.csail.mit.edu/6.828/2008/index.html

The coolest real and little OS in the world. Download and play with it to learn more about the details of how operating systems actually work.

[DV66] "Programming Semantics for Multiprogrammed Computations"

Jack B. Dennis and Earl C. Van Horn

Communications of the ACM, Volume 9, Number 3, March 1966

This paper defined many of the early terms and concepts around building multiprogrammed systems.

[L+75] "Policy/mechanism separation in Hydra"

R. Levin, E. Cohen, W. Corwin, F. Pollack, W. Wulf

SOSP 197

An early paper about how to structure operating systems in a research OS known as Hydra. While Hydra never became a mainstream OS, some of its ideas influenced OS designers.

[V+65] "Structure of the Multics Supervisor"

V.A. Vyssotsky, F. J. Corbato, R. M. Graham

Fall Joint Computer Conference, 1965

An early paper on Multics, which described many of the basic ideas and terms that we find in modern systems. Some of the vision behind computing as a utility are finally being realized in modern cloud systems.

Homework

ASIDE: SIMULATION HOMEWORKS

Simulation homeworks come in the form of simulators you run to make sure you understand some piece of the material. The simulators are generally python programs that enable you both to *generate* different problems (using different random seeds) as well as to have the program solve the problem for you (with the -c flag) so that you can check your answers. Running any simulator with a -h or --help flag will provide with more information as to all the options the simulator gives you.

The README provided with each simulator gives more detail as to how to run it. Each flag is described in some detail therein.

This program, process-run.py, allows you to see how process states change as programs run and either use the CPU (e.g., perform an add instruction) or do I/O (e.g., send a request to a disk and wait for it to complete). See the README for details.

Questions

- 1. Run the program with the following flags: ./process-run.py -1 5:100, 5:100. What should the CPU utilization be (e.g., the percent of time the CPU is in use?) Why do you know this? Use the -c and -p flags to see if you were right.
- 2. Now run with these flags: ./process-run.py -1 4:100,1:0. These flags specify one process with 4 instructions (all to use the CPU), and one that simply issues an I/O and waits for it to be done. How long does it take to complete both processes? Use -c and -p to find out if you were right.
- 3. Now switch the order of the processes: ./process-run.py -1 1:0, 4:100. What happens now? Does switching the order matter? Why? (As always, use -c and -p to see if you were right)
- 4. We'll now explore some of the other flags. One important flag is -S, which determines how the system reacts when a process issues an I/O. With the flag set to SWITCH_ON_END, the system will NOT switch to another process while one is doing I/O, instead waiting until the process is completely finished. What happens when you run the following two processes, one doing I/O and the other doing CPU work? (-1 1:0,4:100 -c -S SWITCH_ON_END)
- 5. Now, run the same processes, but with the switching behavior set to switch to another process whenever one is WAITING for I/O (-1 1:0, 4:100 -c -S SWITCH_ON_IO). What happens now? Use -c and -p to confirm that you are right.
- 6. One other important behavior is what to do when an I/O completes. With -I IO_RUN_LATER, when an I/O completes, the pro-

- cess that issued it is not necessarily run right away; rather, whatever was running at the time keeps running. What happens when you run this combination of processes? (./process-run.py -1 3:0,5:100,5:100,5:100 -S SWITCH_ON_IO -I IO_RUN_LATER -c -p) Are system resources being effectively utilized?
- 7. Now run the same processes, but with -I IO_RUN_IMMEDIATE set, which immediately runs the process that issued the I/O. How does this behavior differ? Why might running a process that just completed an I/O again be a good idea?
- 8. Now run with some randomly generated processes, e.g., -s 1 -1 3:50,3:50, -s 2 -1 3:50,3:50, -s 3 -1 3:50,3:50. See if you can predict how the trace will turn out. What happens when you use -I IO_RUN_IMMEDIATE vs. -I IO_RUN_LATER? What happens when you use -S SWITCH_ON_IO vs. -S SWITCH_ON_END?

Interlude: Process API

ASIDE: INTERLUDES

Interludes will cover more practical aspects of systems, including a particular focus on operating system APIs and how to use them. If you don't like practical things, you could skip these interludes. But you should like practical things, because, well, they are generally useful in real life; companies, for example, don't usually hire you for your non-practical skills.

In this interlude, we discuss process creation in UNIX systems. UNIX presents one of the most intriguing ways to create a new process with a pair of system calls: fork() and exec(). A third routine, wait(), can be used by a process wishing to wait for a process it has created to complete. We now present these interfaces in more detail, with a few simple examples to motivate us. And thus, our problem:

CRUX: HOW TO CREATE AND CONTROL PROCESSES

What interfaces should the OS present for process creation and control? How should these interfaces be designed to enable ease of use as well as utility?

5.1 The fork () System Call

The fork() system call is used to create a new process [C63]. However, be forewarned: it is certainly the strangest routine you will ever call¹. More specifically, you have a running program whose code looks like what you see in Figure 5.1; examine the code, or better yet, type it in and run it yourself!

¹Well, OK, we admit that we don't know that for sure; who knows what routines you call when no one is looking? But fork() is pretty odd, no matter how unusual your routine-calling patterns are.

```
#include <stdio.h>
1
  #include <stdlib.h>
2
   #include <unistd.h>
   main(int argc, char *argv[])
       printf("hello world (pid:%d)\n", (int) getpid());
       int rc = fork();
9
                             // fork failed; exit
       if (rc < 0) {
10
           fprintf(stderr, "fork failed\n");
12
           exit(1);
      } else if (rc == 0) { // child (new process)
13
          printf("hello, I am child (pid:%d)\n", (int) getpid());
       } else {
15
                             // parent goes down this path (main)
        printf("hello, I am parent of %d (pid:%d)\n",
16
                 rc, (int) getpid());
       return 0;
19
```

Figure 5.1: Calling fork () (p1.c)

When you run this program (called p1.c), you'll see the following:

```
prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>
```

Let us understand what happened in more detail in pl.c. When it first started running, the process prints out a hello world message; included in that message is its **process identifier**, also known as a **PID**. The process has a PID of 29146; in UNIX systems, the PID is used to name the process if one wants to do something with the process, such as (for example) stop it from running. So far, so good.

Now the interesting part begins. The process calls the fork() system call, which the OS provides as a way to create a new process. The odd part: the process that is created is an (almost) exact copy of the calling process. That means that to the OS, it now looks like there are two copies of the program p1 running, and both are about to return from the fork() system call. The newly-created process (called the child, in contrast to the creating parent) doesn't start running at main(), like you might expect (note, the "hello, world" message only got printed out once); rather, it just comes into life as if it had called fork() itself.

You might have noticed: the child isn't an *exact* copy. Specifically, although it now has its own copy of the address space (i.e., its own private memory), its own registers, its own PC, and so forth, the value it returns to the caller of **fork()** is different. Specifically, while the parent receives the PID of the newly-created child, the child receives a return code of zero. This differentiation is useful, because it is simple then to write the code that handles the two different cases (as above).

```
#include <stdio.h>
   #include <stdlib.h>
2
   #include <unistd.h>
3
    #include <sys/wait.h>
6
   main(int argc, char *argv[])
7
       printf("hello world (pid:%d)\n", (int) getpid());
9
        int rc = fork();
10
                              // fork failed; exit
11
       if (rc < 0) {
            fprintf(stderr, "fork failed\n");
12
            exit(1);
13
       } else if (rc == 0) { // child (new process)
           printf("hello, I am child (pid:%d)\n", (int) getpid());
15
        } else {
                              // parent goes down this path (main)
16
           int wc = wait (NULL);
17
            printf("hello, I am parent of %d (wc:%d) (pid:%d) \n",
18
                    rc, wc, (int) getpid());
19
21
       return 0;
22 }
```

Figure 5.2: Calling fork() And wait() (p2.c)

You might also have noticed: the output (of pl.c) is not **deterministic**. When the child process is created, there are now two active processes in the system that we care about: the parent and the child. Assuming we are running on a system with a single CPU (for simplicity), then either the child or the parent might run at that point. In our example (above), the parent did and thus printed out its message first. In other cases, the opposite might happen, as we show in this output trace:

```
prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>
```

The CPU **scheduler**, a topic we'll discuss in great detail soon, determines which process runs at a given moment in time; because the scheduler is complex, we cannot usually make strong assumptions about what it will choose to do, and hence which process will run first. This **non-determinism**, as it turns out, leads to some interesting problems, particularly in **multi-threaded programs**; hence, we'll see a lot more non-determinism when we study **concurrency** in the second part of the book.

5.2 The wait () System Call

So far, we haven't done much: just created a child that prints out a message and exits. Sometimes, as it turns out, it is quite useful for a parent to wait for a child process to finish what it has been doing. This task is accomplished with the wait() system call (or its more complete sibling waitpid()); see Figure 5.2 for details.

In this example (p2.c), the parent process calls wait() to delay its execution until the child finishes executing. When the child is done, wait() returns to the parent.

Adding a wait () call to the code above makes the output deterministic. Can you see why? Go ahead, think about it.

(waiting for you to think and done)

Now that you have thought a bit, here is the output:

```
prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>
```

With this code, we now know that the child will always print first. Why do we know that? Well, it might simply run first, as before, and thus print before the parent. However, if the parent does happen to run first, it will immediately call wait(); this system call won't return until the child has run and exited². Thus, even when the parent runs first, it politely waits for the child to finish running, then wait() returns, and then the parent prints its message.

5.3 Finally, The exec() System Call

A final and important piece of the process creation API is the <code>exec()</code> system call³. This system call is useful when you want to run a program that is different from the calling program. For example, calling <code>fork()</code> in <code>p2.c</code> is only useful if you want to keep running copies of the same program. However, often you want to run a different program; <code>exec()</code> does just that (Figure 5.3, page 5).

In this example, the child process calls <code>execvp()</code> in order to run the program <code>wc</code>, which is the word counting program. In fact, it runs <code>wc</code> on the source file <code>p3.c</code>, thus telling us how many lines, words, and bytes are found in the file:

²There are a few cases where wait () returns before the child exits; read the man page for more details, as always. And beware of any absolute and unqualified statements this book makes, such as "the child will always print first" or "UNIX is the best thing in the world, even better than ice cream."

³Actually, there are six variants of exec(): execl(), execle(), execlp(), execv(), and execvp(). Read the man pages to learn more.

```
#include <stdio.h>
1
    #include <stdlib.h>
2
    #include <unistd.h>
3
    #include <string.h>
    #include <sys/wait.h>
7
   main(int argc, char *argv[])
8
9
10
        printf("hello world (pid:%d)\n", (int) getpid());
11
        int rc = fork();
                              // fork failed; exit
        if (rc < 0) {
12
            fprintf(stderr, "fork failed\n");
13
14
            exit(1):
        } else if (rc == 0) { // child (new process)
15
           printf("hello, I am child (pid:%d)\n", (int) getpid());
16
            char *myargs[3];
17
            myargs[0] = strdup("wc"); // program: "wc" (word count)
18
            myargs[1] = strdup("p3.c"); // argument: file to count
19
           myargs[2] = NULL;
                                      // marks end of array
            execvp(myargs[0], myargs); // runs word count
21
            printf("this shouldn't print out");
22
23
        } else {
                              // parent goes down this path (main)
            int wc = wait (NULL);
24
            printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
25
                    rc, wc, (int) getpid());
26
       return 0:
28
29
    }
```

Figure 5.3: Calling fork(), wait(), And exec() (p3.c)

The fork () system call is strange; its partner in crime, <code>exec()</code>, is not so normal either. What it does: given the name of an executable (e.g., <code>wc</code>), and some arguments (e.g., <code>p3.c</code>), it **loads** code (and static data) from that executable and overwrites its current code segment (and current static data) with it; the heap and stack and other parts of the memory space of the program are re-initialized. Then the OS simply runs that program, passing in any arguments as the <code>argv</code> of that process. Thus, it does *not* create a new process; rather, it transforms the currently running program (formerly <code>p3</code>) into a different running program (<code>wc</code>). After the <code>exec()</code> in the child, it is almost as if <code>p3.c</code> never ran; a successful call to <code>exec()</code> never returns.

5.4 Why? Motivating The API

Of course, one big question you might have: why would we build such an odd interface to what should be the simple act of creating a new process? Well, as it turns out, the separation of fork() and exec() is essential in building a UNIX shell, because it lets the shell run code *after* the call to fork() but *before* the call to exec(); this code can alter the environment of the about-to-be-run program, and thus enables a variety of interesting features to be readily built.

TIP: GETTING IT RIGHT (LAMPSON'S LAW)

As Lampson states in his well-regarded "Hints for Computer Systems Design" [L83], "Get it right. Neither abstraction nor simplicity is a substitute for getting it right." Sometimes, you just have to do the right thing, and when you do, it is way better than the alternatives. There are lots of ways to design APIs for process creation; however, the combination of fork() and exec() are simple and immensely powerful. Here, the UNIX designers simply got it right. And because Lampson so often "got it right", we name the law in his honor.

The shell is just a user program⁴. It shows you a **prompt** and then waits for you to type something into it. You then type a command (i.e., the name of an executable program, plus any arguments) into it; in most cases, the shell then figures out where in the file system the executable resides, calls fork() to create a new child process to run the command, calls some variant of exec() to run the command, and then waits for the command to complete by calling wait(). When the child completes, the shell returns from wait() and prints out a prompt again, ready for your next command.

The separation of fork() and exec() allows the shell to do a whole bunch of useful things rather easily. For example:

```
prompt> wc p3.c > newfile.txt
```

In the example above, the output of the program wc is **redirected** into the output file newfile.txt (the greater-than sign is how said redirection is indicated). The way the shell accomplishes this task is quite simple: when the child is created, before calling exec(), the shell closes **standard output** and opens the file newfile.txt. By doing so, any output from the soon-to-be-running program wc are sent to the file instead of the screen.

Figure 5.4 shows a program that does exactly this. The reason this redirection works is due to an assumption about how the operating system manages file descriptors. Specifically, UNIX systems start looking for free file descriptors at zero. In this case, STDOUT_FILENO will be the first available one and thus get assigned when $\mathtt{open}()$ is called. Subsequent writes by the child process to the standard output file descriptor, for example by routines such as $\mathtt{printf}()$, will then be routed transparently to the newly-opened file instead of the screen.

Here is the output of running the p4.c program:

⁴And there are lots of shells; tcsh, bash, and zsh to name a few. You should pick one, read its man pages, and learn more about it; all UNIX experts do.

```
#include <stdio.h>
   #include <stdlib.h>
2
   #include <unistd.h>
3
   #include <string.h>
5
   #include <fcntl.h>
   #include <sys/wait.h>
   int.
8
9
   main(int argc, char *argv[])
10
11
       int rc = fork();
       if (rc < 0) {
                          // fork failed; exit
12
           fprintf(stderr, "fork failed\n");
13
           exit(1):
       } else if (rc == 0) { // child: redirect standard output to a file
15
           close(STDOUT_FILENO);
16
           open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
17
18
           // now exec "wc"...
19
           char *myargs[3];
          myargs[0] = strdup("wc"); // program: "wc" (word count)
21
           myargs[1] = strdup("p4.c"); // argument: file to count
22
           23
24
                           // parent goes down this path (main)
       } else {
25
          int wc = wait(NULL);
26
      return 0;
28
29
```

Figure 5.4: All Of The Above With Redirection (p4.c)

You'll notice (at least) two interesting tidbits about this output. First, when p4 is run, it looks as if nothing has happened; the shell just prints the command prompt and is immediately ready for your next command. However, that is not the case; the program p4 did indeed call fork() to create a new child, and then run the wc program via a call to execvp(). You don't see any output printed to the screen because it has been redirected to the file p4.output. Second, you can see that when we cat the output file, all the expected output from running wc is found. Cool, right?

UNIX pipes are implemented in a similar way, but with the pipe() system call. In this case, the output of one process is connected to an inkernel **pipe** (i.e., queue), and the input of another process is connected to that same pipe; thus, the output of one process seamlessly is used as input to the next, and long and useful chains of commands can be strung together. As a simple example, consider looking for a word in a file, and then counting how many times said word occurs; with pipes and the utilities grep and wc, it is easy — just type grep —o foo file | wc —l into the command prompt and marvel at the result.

Finally, while we just have sketched out the process API at a high level, there is a lot more detail about these calls out there to be learned and digested; we'll learn more, for example, about file descriptors when we talk about file systems in the third part of the book. For now, suffice it to say that the fork()/exec() combination is a powerful way to create and manipulate processes.

ASIDE: RTFM — READ THE MAN PAGES

Many times in this book, when referring to a particular system call or library call, we'll tell you to read the **manual pages**, or **man pages** for short. Man pages are the original form of documentation that exist on UNIX systems; realize that they were created before the thing called **the web** existed.

Spending some time reading man pages is a key step in the growth of a systems programmer; there are tons of useful tidbits hidden in those pages. Some particularly useful pages to read are the man pages for whichever shell you are using (e.g., tcsh, or bash), and certainly for any system calls your program makes (in order to see what return values and error conditions exist).

Finally, reading the man pages can save you some embarrassment. When you ask colleagues about some intricacy of fork(), they may simply reply: "RTFM." This is your colleagues' way of gently urging you to Read The Man pages. The F in RTFM just adds a little color to the phrase...

5.5 Other Parts Of The API

Beyond fork(), exec(), and wait(), there are a lot of other interfaces for interacting with processes in UNIX systems. For example, the kill() system call is used to send **signals** to a process, including directives to go to sleep, die, and other useful imperatives. In fact, the entire signals subsystem provides a rich infrastructure to deliver external events to processes, including ways to receive and process those signals.

There are many command-line tools that are useful as well. For example, using the ps command allows you to see which processes are running; read the man pages for some useful flags to pass to ps. The tool top is also quite helpful, as it displays the processes of the system and how much CPU and other resources they are eating up. Humorously, many times when you run it, top claims it is the top resource hog; perhaps it is a bit of an egomaniac. Finally, there are many different kinds of CPU meters you can use to get a quick glance understanding of the load on your system; for example, we always keep MenuMeters (from Raging Menace software) running on our Macintosh toolbars, so we can see how much CPU is being utilized at any moment in time. In general, the more information about what is going on, the better.

5.6 Summary

We have introduced some of the APIs dealing with UNIX process creation: fork(), exec(), and wait(). However, we have just skimmed the surface. For more detail, read Stevens and Rago [SR05], of course, particularly the chapters on Process Control, Process Relationships, and Signals. There is much to extract from the wisdom therein.

References

[C63] "A Multiprocessor System Design" Melvin E. Conway

AFIPS '63 Fall Joint Computer Conference

New York, USA 1963

An early paper on how to design multiprocessing systems; may be the first place the term fork () was used in the discussion of spawning new processes.

[DV66] "Programming Semantics for Multiprogrammed Computations"

Jack B. Dennis and Earl C. Van Horn

Communications of the ACM, Volume 9, Number 3, March 1966

A classic paper that outlines the basics of multiprogrammed computer systems. Undoubtedly had great influence on Project MAC, Multics, and eventually UNIX.

[L83] "Hints for Computer Systems Design"

Butler Lampson

ACM Operating Systems Review, 15:5, October 1983

Lampson's famous hints on how to design computer systems. You should read it at some point in your life, and probably at many points in your life.

[SR05] "Advanced Programming in the UNIX Environment"

W. Richard Stevens and Stephen A. Rago

Addison-Wesley, 2005

All nuances and subtleties of using UNIX APIs are found herein. Buy this book! Read it! And most importantly, live it.

ASIDE: CODING HOMEWORKS

Coding homeworks are small exercises where you write code to run on a real machine to get some experience with some of the basic APIs that modern operating systems have to offer. After all, you are (probably) a computer scientist, and therefore should like to code, right? Of course, to truly become an expert, you have to spend more than a little time hacking away at the machine; indeed, find every excuse you can to write some code and see how it works. Spend the time, and become the wise master you know you can be.

Homework (Code)

In this homework, you are to gain some familiarity with the process management APIs about which you just read. Don't worry – it's even more fun than it sounds! You'll in general be much better off if you find as much time as you can to write some code⁵, so why not start now?

Questions

- 1. Write a program that calls fork(). Before calling fork(), have the main process access a variable (e.g., x) and set its value to something (e.g., 100). What value is the variable in the child process? What happens to the variable when both the child and parent change the value of x?
- 2. Write a program that opens a file (with the open() system call) and then calls fork() to create a new process. Can both the child and parent access the file descriptor returned by open()? What happens when they are writing to the file concurrently, i.e., at the same time?
- 3. Write another program using fork(). The child process should print "hello"; the parent process should print "goodbye". You should try to ensure that the child process always prints first; can you do this *without* calling wait() in the parent?
- 4. Write a program that calls fork() and then calls some form of exec() to run the program /bin/ls. See if you can try all of the variants of exec(), including execl(), execle(), execlp(), execv(), execvp(), and execvP(). Why do you think there are so many variants of the same basic call?
- 5. Now write a program that uses wait () to wait for the child process to finish in the parent. What does wait () return? What happens if you use wait () in the child?

⁵If you don't like to code, but want to become a computer scientist, this means you need to either (a) become really good at the theory of computer science, or (b) perhaps rethink this whole "computer science" thing you've been telling everyone about.

- 6. Write a slight modification of the previous program, this time using waitpid() instead of wait(). When would waitpid() be useful?
- 7. Write a program that creates a child process, and then in the child closes standard output (STDOUT_FILENO). What happens if the child calls printf() to print some output after closing the descriptor?
- 8. Write a program that creates two children, and connects the standard output of one to the standard input of the other, using the pipe() system call.

Mechanism: Limited Direct Execution

In order to virtualize the CPU, the operating system needs to somehow share the physical CPU among many jobs running seemingly at the same time. The basic idea is simple: run one process for a little while, then run another one, and so forth. By **time sharing** the CPU in this manner, virtualization is achieved.

There are a few challenges, however, in building such virtualization machinery. The first is *performance*: how can we implement virtualization without adding excessive overhead to the system? The second is *control*: how can we run processes efficiently while retaining control over the CPU? Control is particularly important to the OS, as it is in charge of resources; without control, a process could simply run forever and take over the machine, or access information that it should not be allowed to access. Obtaining high performance while maintaining control is thus one of the central challenges in building an operating system.

THE CRUX:

HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL The OS must virtualize the CPU in an efficient manner while retaining control over the system. To do so, both hardware and operating-system support will be required. The OS will often use a judicious bit of hardware support in order to accomplish its work effectively.

6.1 Basic Technique: Limited Direct Execution

To make a program run as fast as one might expect, not surprisingly OS developers came up with a technique, which we call **limited direct execution**. The "direct execution" part of the idea is simple: just run the program directly on the CPU. Thus, when the OS wishes to start a program running, it creates a process entry for it in a process list, allocates some memory for it, loads the program code into memory (from disk), locates its entry point (i.e., the main () routine or something similar), jumps

OS	Program
Create entry for process list	
Allocate memory for program	
Load program into memory	
Set up stack with argc/argv	
Clear registers	
Execute call main()	
	Run main()
	Execute return from main
Free memory of process	
Remove from process list	

Figure 6.1: Direct Execution Protocol (Without Limits)

to it, and starts running the user's code. Figure 6.1 shows this basic direct execution protocol (without any limits, yet), using a normal call and return to jump to the program's main() and later to get back into the kernel.

Sounds simple, no? But this approach gives rise to a few problems in our quest to virtualize the CPU. The first is simple: if we just run a program, how can the OS make sure the program doesn't do anything that we don't want it to do, while still running it efficiently? The second: when we are running a process, how does the operating system stop it from running and switch to another process, thus implementing the **time sharing** we require to virtualize the CPU?

In answering these questions below, we'll get a much better sense of what is needed to virtualize the CPU. In developing these techniques, we'll also see where the "limited" part of the name arises from; without limits on running programs, the OS wouldn't be in control of anything and thus would be "just a library" — a very sad state of affairs for an aspiring operating system!

6.2 Problem #1: Restricted Operations

Direct execution has the obvious advantage of being fast; the program runs natively on the hardware CPU and thus executes as quickly as one would expect. But running on the CPU introduces a problem: what if the process wishes to perform some kind of restricted operation, such as issuing an I/O request to a disk, or gaining access to more system resources such as CPU or memory?

THE CRUX: HOW TO PERFORM RESTRICTED OPERATIONS A process must be able to perform I/O and some other restricted operations, but without giving the process complete control over the system. How can the OS and hardware work together to do so?

ASIDE: WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

You may wonder why a call to a system call, such as open () or read (), looks exactly like a typical procedure call in C; that is, if it looks just like a procedure call, how does the system know it's a system call, and do all the right stuff? The simple reason: it is a procedure call, but hidden inside that procedure call is the famous trap instruction. More specifically, when you call open () (for example), you are executing a procedure call into the C library. Therein, whether for open () or any of the other system calls provided, the library uses an agreed-upon calling convention with the kernel to put the arguments to open in well-known locations (e.g., on the stack, or in specific registers), puts the system-call number into a well-known location as well (again, onto the stack or a register), and then executes the aforementioned trap instruction. The code in the library after the trap unpacks return values and returns control to the program that issued the system call. Thus, the parts of the C library that make system calls are hand-coded in assembly, as they need to carefully follow convention in order to process arguments and return values correctly, as well as execute the hardware-specific trap instruction. And now you know why you personally don't have to write assembly code to trap into an OS; somebody has already written that assembly for you.

One approach would simply be to let any process do whatever it wants in terms of I/O and other related operations. However, doing so would prevent the construction of many kinds of systems that are desirable. For example, if we wish to build a file system that checks permissions before granting access to a file, we can't simply let any user process issue I/Os to the disk; if we did, a process could simply read or write the entire disk and thus all protections would be lost.

Thus, the approach we take is to introduce a new processor mode, known as **user mode**; code that runs in user mode is restricted in what it can do. For example, when running in user mode, a process can't issue I/O requests; doing so would result in the processor raising an exception; the OS would then likely kill the process.

In contrast to user mode is **kernel mode**, which the operating system (or kernel) runs in. In this mode, code that runs can do what it likes, including privileged operations such as issuing I/O requests and executing all types of restricted instructions.

We are still left with a challenge, however: what should a user process do when it wishes to perform some kind of privileged operation, such as reading from disk? To enable this, virtually all modern hardware provides the ability for user programs to perform a **system call**. Pioneered on ancient machines such as the Atlas [K+61,L78], system calls allow the kernel to carefully expose certain key pieces of functionality to user programs, such as accessing the file system, creating and destroying processes, communicating with other processes, and allocating more

TIP: USE PROTECTED CONTROL TRANSFER

The hardware assists the OS by providing different modes of execution. In **user mode**, applications do not have full access to hardware resources. In **kernel mode**, the OS has access to the full resources of the machine. Special instructions to **trap** into the kernel and **return-from-trap** back to user-mode programs are also provided, as well as instructions that allow the OS to tell the hardware where the **trap table** resides in memory.

memory. Most operating systems provide a few hundred calls (see the POSIX standard for details [P10]); early Unix systems exposed a more concise subset of around twenty calls.

To execute a system call, a program must execute a special **trap** instruction. This instruction simultaneously jumps into the kernel and raises the privilege level to kernel mode; once in the kernel, the system can now perform whatever privileged operations are needed (if allowed), and thus do the required work for the calling process. When finished, the OS calls a special **return-from-trap** instruction, which, as you might expect, returns into the calling user program while simultaneously reducing the privilege level back to user mode.

The hardware needs to be a bit careful when executing a trap, in that it must make sure to save enough of the caller's registers in order to be able to return correctly when the OS issues the return-from-trap instruction. On x86, for example, the processor will push the program counter, flags, and a few other registers onto a per-process **kernel stack**; the return-from-trap will pop these values off the stack and resume execution of the user-mode program (see the Intel systems manuals [I11] for details). Other hardware systems use different conventions, but the basic concepts are similar across platforms.

There is one important detail left out of this discussion: how does the trap know which code to run inside the OS? Clearly, the calling process can't specify an address to jump to (as you would when making a procedure call); doing so would allow programs to jump anywhere into the kernel which clearly is a **Very Bad Idea**¹. Thus the kernel must carefully control what code executes upon a trap.

The kernel does so by setting up a **trap table** at boot time. When the machine boots up, it does so in privileged (kernel) mode, and thus is free to configure machine hardware as need be. One of the first things the OS thus does is to tell the hardware what code to run when certain exceptional events occur. For example, what code should run when a hard-disk interrupt takes place, when a keyboard interrupt occurs, or when a program makes a system call? The OS informs the hardware of the locations of these **trap handlers**, usually with some kind of special in-

¹Imagine jumping into code to access a file, but just after a permission check; in fact, it is likely such an ability would enable a wily programmer to get the kernel to run arbitrary code sequences [S07]. In general, try to avoid Very Bad Ideas like this one.

OS @ boot (kernel mode)	Hardware	
initialize trap table	remember address of syscall handler	
OS @ run (kernel mode)	Hardware	Program (user mode)
Create entry for process list Allocate memory for program Load program into memory Setup user stack with argv Fill kernel stack with reg/PC return-from-trap		
return from trup	restore regs from kernel stack move to user mode jump to main	
)	Run main()
		Call system call trap into OS
	save regs to kernel stack move to kernel mode jump to trap handler	
Handle trap Do work of syscall	jump to trup rander	
return-from-trap	restore regs from kernel stack move to user mode jump to PC after trap	
		return from main trap (via exit())
Free memory of process Remove from process list		* * * * * * * * * * * * * * * * * * * *

Figure 6.2: Limited Direct Execution Protocol

struction. Once the hardware is informed, it remembers the location of these handlers until the machine is next rebooted, and thus the hardware knows what to do (i.e., what code to jump to) when system calls and other exceptional events take place.

To specify the exact system call, a **system-call number** is usually assigned to each system call. The user code is thus responsible for placing the desired system-call number in a register or at a specified location on the stack; the OS, when handling the system call inside the trap handler, examines this number, ensures it is valid, and, if it is, executes the corresponding code. This level of indirection serves as a form of **protection**; user code cannot specify an exact address to jump to, but rather must request a particular service via number.

One last aside: being able to execute the instruction to tell the hardware where the trap tables are is a very powerful capability. Thus, as you might have guessed, it is also a **privileged** operation. If you try to execute this instruction in user mode, the hardware won't let you, and you can probably guess what will happen (hint: adios, offending program). Point to ponder: what horrible things could you do to a system if you could install your own trap table? Could you take over the machine?

The timeline (with time increasing downward, in Figure 6.2) summarizes the protocol. We assume each process has a kernel stack where registers (including general purpose registers and the program counter) are saved to and restored from (by the hardware) when transitioning into and out of the kernel.

There are two phases in the LDE protocol. In the first (at boot time), the kernel initializes the trap table, and the CPU remembers its location for subsequent use. The kernel does so via a privileged instruction (all privileged instructions are highlighted in bold).

In the second (when running a process), the kernel sets up a few things (e.g., allocating a node on the process list, allocating memory) before using a return-from-trap instruction to start the execution of the process; this switches the CPU to user mode and begins running the process. When the process wishes to issue a system call, it traps back into the OS, which handles it and once again returns control via a return-from-trap to the process. The process then completes its work, and returns from main(); this usually will return into some stub code which will properly exit the program (say, by calling the exit() system call, which traps into the OS). At this point, the OS cleans up and we are done.

6.3 Problem #2: Switching Between Processes

The next problem with direct execution is achieving a switch between processes. Switching between processes should be simple, right? The OS should just decide to stop one process and start another. What's the big deal? But it actually is a little bit tricky: specifically, if a process is running on the CPU, this by definition means the OS is *not* running. If the OS is not running, how can it do anything at all? (hint: it can't) While this sounds almost philosophical, it is a real problem: there is clearly no way for the OS to take an action if it is not running on the CPU. Thus we arrive at the crux of the problem.

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU How can the operating system **regain control** of the CPU so that it can switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for example, early versions of the Macintosh operating system [M11], or the old Xerox Alto system [A79]) is known as the **cooperative** approach. In this style,

TIP: DEALING WITH APPLICATION MISBEHAVIOR

Operating systems often have to deal with misbehaving processes, those that either through design (maliciousness) or accident (bugs) attempt to do something that they shouldn't. In modern systems, the way the OS tries to handle such malfeasance is to simply terminate the offender. One strike and you're out! Perhaps brutal, but what else should the OS do when you try to access memory illegally or execute an illegal instruction?

the OS *trusts* the processes of the system to behave reasonably. Processes that run for too long are assumed to periodically give up the CPU so that the OS can decide to run some other task.

Thus, you might ask, how does a friendly process give up the CPU in this utopian world? Most processes, as it turns out, transfer control of the CPU to the OS quite frequently by making **system calls**, for example, to open a file and subsequently read it, or to send a message to another machine, or to create a new process. Systems like this often include an explicit **yield** system call, which does nothing except to transfer control to the OS so it can run other processes.

Applications also transfer control to the OS when they do something illegal. For example, if an application divides by zero, or tries to access memory that it shouldn't be able to access, it will generate a **trap** to the OS. The OS will then have control of the CPU again (and likely terminate the offending process).

Thus, in a cooperative scheduling system, the OS regains control of the CPU by waiting for a system call or an illegal operation of some kind to take place. You might also be thinking: isn't this passive approach less than ideal? What happens, for example, if a process (whether malicious, or just full of bugs) ends up in an infinite loop, and never makes a system call? What can the OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out the OS can't do much at all when a process refuses to make system calls (or mistakes) and thus return control to the OS. In fact, in the cooperative approach, your only recourse when a process gets stuck in an infinite loop is to resort to the age-old solution to all problems in computer systems: **reboot the machine**. Thus, we again arrive at a subproblem of our general quest to gain control of the CPU.

THE CRUX: HOW TO GAIN CONTROL WITHOUT COOPERATION How can the OS gain control of the CPU even if processes are not being cooperative? What can the OS do to ensure a rogue process does not take over the machine?

TIP: USE THE TIMER INTERRUPT TO REGAIN CONTROL The addition of a **timer interrupt** gives the OS the ability to run again on a CPU even if processes act in a non-cooperative fashion. Thus, this hardware feature is essential in helping the OS maintain control of the machine.

The answer turns out to be simple and was discovered by a number of people building computer systems many years ago: a **timer interrupt** [M+63]. A timer device can be programmed to raise an interrupt every so many milliseconds; when the interrupt is raised, the currently running process is halted, and a pre-configured **interrupt handler** in the OS runs. At this point, the OS has regained control of the CPU, and thus can do what it pleases: stop the current process, and start a different one.

As we discussed before with system calls, the OS must inform the hardware of which code to run when the timer interrupt occurs; thus, at boot time, the OS does exactly that. Second, also during the boot sequence, the OS must start the timer, which is of course a privileged operation. Once the timer has begun, the OS can thus feel safe in that control will eventually be returned to it, and thus the OS is free to run user programs. The timer can also be turned off (also a privileged operation), something we will discuss later when we understand concurrency in more detail.

Note that the hardware has some responsibility when an interrupt occurs, in particular to save enough of the state of the program that was running when the interrupt occurred such that a subsequent return-from-trap instruction will be able to resume the running program correctly. This set of actions is quite similar to the behavior of the hardware during an explicit system-call trap into the kernel, with various registers thus getting saved (e.g., onto a kernel stack) and thus easily restored by the return-from-trap instruction.

Saving and Restoring Context

Now that the OS has regained control, whether cooperatively via a system call, or more forcefully via a timer interrupt, a decision has to be made: whether to continue running the currently-running process, or switch to a different one. This decision is made by a part of the operating system known as the **scheduler**; we will discuss scheduling policies in great detail in the next few chapters.

If the decision is made to switch, the OS then executes a low-level piece of code which we refer to as a **context switch**. A context switch is conceptually simple: all the OS has to do is save a few register values for the currently-executing process (onto its kernel stack, for example) and restore a few for the soon-to-be-executing process (from its kernel stack). By doing so, the OS thus ensures that when the return-from-trap

OS @ boot (kernel mode)	Hardware	
initialize trap table start interrupt timer	remember addresses of syscall handler timer handler start timer interrupt CPU in X ms	
OS @ run (kernel mode)	Hardware	Program (user mode)
Handle the trap Call switch() routine save regs(A) to proc-struct(A) restore regs(B) from proc-struct(B)	timer interrupt save regs(A) to k-stack(A) move to kernel mode jump to trap handler	Process A
switch to k-stack(B) return-from-trap (into B)	restore regs(B) from k-stack(B) move to user mode jump to B's PC	Process B

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

instruction is finally executed, instead of returning to the process that was running, the system resumes execution of another process.

To save the context of the currently-running process, the OS will execute some low-level assembly code to save the general purpose registers, PC, as well as the kernel stack pointer of the currently-running process, and then restore said registers, PC, and switch to the kernel stack for the soon-to-be-executing process. By switching stacks, the kernel enters the call to the switch code in the context of one process (the one that was interrupted) and returns in the context of another (the soon-to-be-executing one). When the OS then finally executes a return-from-trap instruction, the soon-to-be-executing process becomes the currently-running process. And thus the context switch is complete.

A timeline of the entire process is shown in Figure 6.3. In this example, Process A is running and then is interrupted by the timer interrupt. The hardware saves its registers (onto its kernel stack) and enters the kernel (switching to kernel mode). In the timer interrupt handler, the OS decides to switch from running Process A to Process B. At that point, it calls the switch() routine, which carefully saves current register values (into the process structure of A), restores the registers of Process B (from its process structure entry), and then switches contexts, specifically by changing the

```
# void swtch(struct context **old, struct context *new);
   # Save current register context in old
   # and then load register context from new.
   .globl swtch
   swtch:
     # Save old registers
    movl 4(%esp), %eax # put old ptr into eax
    popl O(%eax) # save the old IP
movl %esp, 4(%eax) # and stack
movl %ebx, 8(%eax) # and other registers
10
     movl %ecx, 12(%eax)
12
     movl %edx, 16(%eax)
13
    movl %esi, 20(%eax)
    movl %edi, 24(%eax)
15
    movl %ebp, 28(%eax)
16
     # Load new registers
    movl 4(%esp), %eax # put new ptr into eax
    movl 28(%eax), %ebp # restore other registers
    movl 24(%eax), %edi
    movl 20(%eax), %esi
22
     movl 16(%eax), %edx
     movl 12(%eax), %ecx
24
     movl 8(%eax), %ebx
    movl 4(%eax), %esp # stack is switched here
    pushl 0(%eax)
                           # return addr put in place
     ret
                           # finally return into new ctxt
```

Figure 6.4: The xv6 Context Switch Code

stack pointer to use B's kernel stack (and not A's). Finally, the OS returnsfrom-trap, which restores B's registers and starts running it.

Note that there are two types of register saves/restores that happen during this protocol. The first is when the timer interrupt occurs; in this case, the *user registers* of the running process are implicitly saved by the *hardware*, using the kernel stack of that process. The second is when the OS decides to switch from A to B; in this case, the *kernel registers* are explicitly saved by the *software* (i.e., the OS), but this time into memory in the process structure of the process. The latter action moves the system from running as if it just trapped into the kernel from A to as if it just trapped into the kernel from B.

To give you a better sense of how such a switch is enacted, Figure 6.4 shows the context switch code for xv6. See if you can make sense of it (you'll have to know a bit of x86, as well as some xv6, to do so). The context structures old and new are found in the old and new process's process structures, respectively.

6.4 Worried About Concurrency?

Some of you, as attentive and thoughtful readers, may be now thinking: "Hmm... what happens when, during a system call, a timer interrupt

ASIDE: HOW LONG CONTEXT SWITCHES TAKE

A natural question you might have is: how long does something like a context switch take? Or even a system call? For those of you that are curious, there is a tool called **Imbench** [MS96] that measures exactly those things, as well as a few other performance measures that might be relevant.

Results have improved quite a bit over time, roughly tracking processor performance. For example, in 1996 running Linux 1.3.37 on a 200-MHz P6 CPU, system calls took roughly 4 microseconds, and a context switch roughly 6 microseconds [MS96]. Modern systems perform almost an order of magnitude better, with sub-microsecond results on systems with 2- or 3-GHz processors.

It should be noted that not all operating-system actions track CPU performance. As Ousterhout observed, many OS operations are memory intensive, and memory bandwidth has not improved as dramatically as processor speed over time [O90]. Thus, depending on your workload, buying the latest and greatest processor may not speed up your OS as much as you might hope.

occurs?" or "What happens when you're handling one interrupt and another one happens? Doesn't that get hard to handle in the kernel?" Good questions — we really have some hope for you yet!

The answer is yes, the OS does indeed need to be concerned as to what happens if, during interrupt or trap handling, another interrupt occurs. This, in fact, is the exact topic of the entire second piece of this book, on **concurrency**; we'll defer a detailed discussion until then.

To whet your appetite, we'll just sketch some basics of how the OS handles these tricky situations. One simple thing an OS might do is **disable interrupts** during interrupt processing; doing so ensures that when one interrupt is being handled, no other one will be delivered to the CPU. Of course, the OS has to be careful in doing so; disabling interrupts for too long could lead to lost interrupts, which is (in technical terms) bad.

Operating systems also have developed a number of sophisticated **locking** schemes to protect concurrent access to internal data structures. This enables multiple activities to be on-going within the kernel at the same time, particularly useful on multiprocessors. As we'll see in the next piece of this book on concurrency, though, such locking can be complicated and lead to a variety of interesting and hard-to-find bugs.

6.5 Summary

We have described some key low-level mechanisms to implement CPU virtualization, a set of techniques which we collectively refer to as **limited direct execution**. The basic idea is straightforward: just run the program you want to run on the CPU, but first make sure to set up the hardware so as to limit what the process can do without OS assistance.

TIP: REBOOT IS USEFUL

Earlier on, we noted that the only solution to infinite loops (and similar behaviors) under cooperative preemption is to **reboot** the machine. While you may scoff at this hack, researchers have shown that reboot (or in general, starting over some piece of software) can be a hugely useful tool in building robust systems [C+04].

Specifically, reboot is useful because it moves software back to a known and likely more tested state. Reboots also reclaim stale or leaked resources (e.g., memory) which may otherwise be hard to handle. Finally, reboots are easy to automate. For all of these reasons, it is not uncommon in large-scale cluster Internet services for system management software to periodically reboot sets of machines in order to reset them and thus obtain the advantages listed above.

Thus, next time you reboot, you are not just enacting some ugly hack. Rather, you are using a time-tested approach to improving the behavior of a computer system. Well done!

This general approach is taken in real life as well. For example, those of you who have children, or, at least, have heard of children, may be familiar with the concept of **baby proofing** a room: locking cabinets containing dangerous stuff and covering electrical sockets. When the room is thus readied, you can let your baby roam freely, secure in the knowledge that the most dangerous aspects of the room have been restricted.

In an analogous manner, the OS "baby proofs" the CPU, by first (during boot time) setting up the trap handlers and starting an interrupt timer, and then by only running processes in a restricted mode. By doing so, the OS can feel quite assured that processes can run efficiently, only requiring OS intervention to perform privileged operations or when they have monopolized the CPU for too long and thus need to be switched out.

We thus have the basic mechanisms for virtualizing the CPU in place. But a major question is left unanswered: which process should we run at a given time? It is this question that the scheduler must answer, and thus the next topic of our study.

References

[A79] "Alto User's Handbook"

Xerox Palo Alto Research Center, September 1979

Available: http://history-computer.com/Library/AltoUsersHandbook.pdf An amazing system, way ahead of its time. Became famous because Steve Jobs visited, took notes, and built Lisa and eventually Mac.

[C+04] "Microreboot — A Technique for Cheap Recovery"

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox

OSDI '04, San Francisco, CA, December 2004

An excellent paper pointing out how far one can go with reboot in building more robust systems.

[I11] "Intel 64 and IA-32 Architectures Software Developer's Manual"

Volume 3A and 3B: System Programming Guide

Intel Corporation, January 2011

[K+61] "One-Level Storage System"

T. Kilburn, D.B.G. Edwards, M.J. Lanigan, F.H. Sumner

IRE Transactions on Electronic Computers, April 1962

The Atlas pioneered much of what you see in modern systems. However, this paper is not the best one to read. If you were to only read one, you might try the historical perspective below [L78].

[L78] "The Manchester Mark I and Atlas: A Historical Perspective"

S. H. Lavington

Communications of the ACM, 21:1, January 1978

A history of the early development of computers and the pioneering efforts of Atlas.

[M+63] "A Time-Sharing Debugging System for a Small Computer"

J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider

AFIPS '63 (Spring), May, 1963, New York, USA

An early paper about time-sharing that refers to using a timer interrupt; the quote that discusses it: "The basic task of the channel 17 clock routine is to decide whether to remove the current user from core and if so to decide which user program to swap in as he goes out."

[MS96] "Imbench: Portable tools for performance analysis"

Larry McVoy and Carl Staelin

USENIX Annual Technical Conference, January 1996

A fun paper about how to measure a number of different things about your OS and its performance. Download Imbench and give it a try.

[M11] "Mac OS 9"

January 2011

Available: http://en.wikipedia.org/wiki/Mac_OS_9

[O90] "Why Aren't Operating Systems Getting Faster as Fast as Hardware?"

J. Ousterhout

USENIX Summer Conference, June 1990

A classic paper on the nature of operating system performance.

[P10] "The Single UNIX Specification, Version 3"

The Open Group, May 2010

Available: http://www.unix.org/version3/

This is hard and painful to read, so probably avoid it if you can.

[S07] "The Geometry of Innocent Flesh on the Bone:

Return-into-libc without Function Calls (on the x86)"

Hovav Shacham

CCS '07, October 2007

One of those awesome, mind-blowing ideas that you'll see in research from time to time. The author shows that if you can jump into code arbitrarily, you can essentially stitch together any code sequence you like (given a large code base); read the paper for the details. The technique makes it even harder to defend against malicious attacks, alas.

Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS

Measurement homeworks are small exercises where you write code to run on a real machine, in order to measure some aspect of OS or hardware performance. The idea behind such homeworks is to give you a little bit of hands-on experience with a real operating system.

In this homework, you'll measure the costs of a system call and context switch. Measuring the cost of a system call is relatively easy. For example, you could repeatedly call a simple system call (e.g., performing a 0-byte read), and time how long it takes; dividing the time by the number of iterations gives you an estimate of the cost of a system call.

One thing you'll have to take into account is the precision and accuracy of your timer. A typical timer that you can use is <code>gettimeofday()</code>; read the man page for details. What you'll see there is that <code>gettimeofday()</code> returns the time in microseconds since 1970; however, this does not mean that the timer is precise to the microsecond. Measure back-to-back calls to <code>gettimeofday()</code> to learn something about how precise the timer really is; this will tell you how many iterations of your null system-call test you'll have to run in order to get a good measurement result. If <code>gettimeofday()</code> is not precise enough for you, you might look into using the <code>rdtsc</code> instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The Imbench benchmark does so by running two processes on a single CPU, and setting up two UNIX pipes between them; a pipe is just one of many ways processes in a UNIX system can communicate with one another. The first process then issues a write to the first pipe, and waits for a read on the second; upon seeing the first process waiting for something to read from the second pipe, the OS puts the first process in the blocked state, and switches to the other process, which reads from the first pipe and then writes to the second. When the second process tries to read from the first pipe again, it blocks, and thus the back-and-forth cycle of communication continues. By measuring the cost of communicating like this repeatedly, Imbench can make a good estimate of the cost of a context switch. You can try to re-create something similar here, using pipes, or perhaps some other communication mechanism such as UNIX sockets.

One difficulty in measuring context-switch cost arises in systems with more than one CPU; what you need to do on such a system is ensure that your context-switching processes are located on the same processor. Fortunately, most operating systems have calls to bind a process to a particular processor; on Linux, for example, the sched_setaffinity() call is what you're looking for. By ensuring both processes are on the same processor, you are making sure to measure the cost of the OS stopping one process and restoring another on the same CPU.

Interlude: Process API

ASIDE: INTERLUDES

Interludes will cover more practical aspects of systems, including a particular focus on operating system APIs and how to use them. If you don't like practical things, you could skip these interludes. But you should like practical things, because, well, they are generally useful in real life; companies, for example, don't usually hire you for your non-practical skills.

In this interlude, we discuss process creation in UNIX systems. UNIX presents one of the most intriguing ways to create a new process with a pair of system calls: fork() and exec(). A third routine, wait(), can be used by a process wishing to wait for a process it has created to complete. We now present these interfaces in more detail, with a few simple examples to motivate us. And thus, our problem:

CRUX: HOW TO CREATE AND CONTROL PROCESSES

What interfaces should the OS present for process creation and control? How should these interfaces be designed to enable ease of use as well as utility?

5.1 The fork() System Call

The fork() system call is used to create a new process [C63]. However, be forewarned: it is certainly the strangest routine you will ever call¹. More specifically, you have a running program whose code looks like what you see in Figure 5.1; examine the code, or better yet, type it in and run it yourself!

¹Well, OK, we admit that we don't know that for sure; who knows what routines you call when no one is looking? But fork() is pretty odd, no matter how unusual your routine-calling patterns are.

```
#include <stdio.h>
1
  #include <stdlib.h>
2
   #include <unistd.h>
   main(int argc, char *argv[])
       printf("hello world (pid:%d)\n", (int) getpid());
       int rc = fork();
9
                             // fork failed; exit
       if (rc < 0) {
10
           fprintf(stderr, "fork failed\n");
12
           exit(1);
      } else if (rc == 0) { // child (new process)
13
          printf("hello, I am child (pid:%d)\n", (int) getpid());
       } else {
15
                             // parent goes down this path (main)
        printf("hello, I am parent of %d (pid:%d)\n",
16
                 rc, (int) getpid());
       return 0;
19
```

Figure 5.1: Calling fork() (p1.c)

When you run this program (called p1.c), you'll see the following:

```
prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>
```

Let us understand what happened in more detail in pl.c. When it first started running, the process prints out a hello world message; included in that message is its **process identifier**, also known as a **PID**. The process has a PID of 29146; in UNIX systems, the PID is used to name the process if one wants to do something with the process, such as (for example) stop it from running. So far, so good.

Now the interesting part begins. The process calls the fork() system call, which the OS provides as a way to create a new process. The odd part: the process that is created is an (almost) exact copy of the calling process. That means that to the OS, it now looks like there are two copies of the program p1 running, and both are about to return from the fork() system call. The newly-created process (called the child, in contrast to the creating parent) doesn't start running at main(), like you might expect (note, the "hello, world" message only got printed out once); rather, it just comes into life as if it had called fork() itself.

You might have noticed: the child isn't an *exact* copy. Specifically, although it now has its own copy of the address space (i.e., its own private memory), its own registers, its own PC, and so forth, the value it returns to the caller of **fork()** is different. Specifically, while the parent receives the PID of the newly-created child, the child receives a return code of zero. This differentiation is useful, because it is simple then to write the code that handles the two different cases (as above).

```
#include <stdio.h>
   #include <stdlib.h>
2
   #include <unistd.h>
3
    #include <sys/wait.h>
6
   main(int argc, char *argv[])
7
       printf("hello world (pid:%d)\n", (int) getpid());
9
        int rc = fork();
10
                              // fork failed; exit
11
       if (rc < 0) {
            fprintf(stderr, "fork failed\n");
12
            exit(1);
13
       } else if (rc == 0) { // child (new process)
           printf("hello, I am child (pid:%d)\n", (int) getpid());
15
        } else {
                              // parent goes down this path (main)
16
           int wc = wait (NULL);
17
            printf("hello, I am parent of %d (wc:%d) (pid:%d) \n",
18
                    rc, wc, (int) getpid());
19
21
       return 0;
22 }
```

Figure 5.2: Calling fork() And wait() (p2.c)

You might also have noticed: the output (of pl.c) is not **deterministic**. When the child process is created, there are now two active processes in the system that we care about: the parent and the child. Assuming we are running on a system with a single CPU (for simplicity), then either the child or the parent might run at that point. In our example (above), the parent did and thus printed out its message first. In other cases, the opposite might happen, as we show in this output trace:

```
prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>
```

The CPU **scheduler**, a topic we'll discuss in great detail soon, determines which process runs at a given moment in time; because the scheduler is complex, we cannot usually make strong assumptions about what it will choose to do, and hence which process will run first. This **non-determinism**, as it turns out, leads to some interesting problems, particularly in **multi-threaded programs**; hence, we'll see a lot more non-determinism when we study **concurrency** in the second part of the book.

5.2 The wait () System Call

So far, we haven't done much: just created a child that prints out a message and exits. Sometimes, as it turns out, it is quite useful for a parent to wait for a child process to finish what it has been doing. This task is accomplished with the wait() system call (or its more complete sibling waitpid()); see Figure 5.2 for details.

In this example (p2.c), the parent process calls wait() to delay its execution until the child finishes executing. When the child is done, wait() returns to the parent.

Adding a wait () call to the code above makes the output deterministic. Can you see why? Go ahead, think about it.

(waiting for you to think and done)

Now that you have thought a bit, here is the output:

```
prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>
```

With this code, we now know that the child will always print first. Why do we know that? Well, it might simply run first, as before, and thus print before the parent. However, if the parent does happen to run first, it will immediately call wait(); this system call won't return until the child has run and exited². Thus, even when the parent runs first, it politely waits for the child to finish running, then wait() returns, and then the parent prints its message.

5.3 Finally, The exec() System Call

A final and important piece of the process creation API is the <code>exec()</code> system call³. This system call is useful when you want to run a program that is different from the calling program. For example, calling <code>fork()</code> in <code>p2.c</code> is only useful if you want to keep running copies of the same program. However, often you want to run a different program; <code>exec()</code> does just that (Figure 5.3, page 5).

In this example, the child process calls <code>execvp()</code> in order to run the program <code>wc</code>, which is the word counting program. In fact, it runs <code>wc</code> on the source file <code>p3.c</code>, thus telling us how many lines, words, and bytes are found in the file:

 $^{^2} There are a few cases where wait () returns before the child exits; read the man page for more details, as always. And beware of any absolute and unqualified statements this book makes, such as "the child will always print first" or "UNIX is the best thing in the world, even better than ice cream."$

 $^{^3}$ Actually, there are six variants of exec(): execl(), execle(), execlp(), execv(), and execvp(). Read the man pages to learn more.

```
#include <stdio.h>
1
    #include <stdlib.h>
2
    #include <unistd.h>
3
    #include <string.h>
    #include <sys/wait.h>
7
   main(int argc, char *argv[])
8
9
10
        printf("hello world (pid:%d)\n", (int) getpid());
11
        int rc = fork();
                              // fork failed; exit
        if (rc < 0) {
12
            fprintf(stderr, "fork failed\n");
13
14
            exit(1):
        } else if (rc == 0) { // child (new process)
15
           printf("hello, I am child (pid:%d)\n", (int) getpid());
16
            char *myargs[3];
17
            myargs[0] = strdup("wc"); // program: "wc" (word count)
18
            myargs[1] = strdup("p3.c"); // argument: file to count
19
           myargs[2] = NULL;
                                      // marks end of array
            execvp(myargs[0], myargs); // runs word count
21
            printf("this shouldn't print out");
22
23
        } else {
                              // parent goes down this path (main)
            int wc = wait (NULL);
24
            printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
25
                    rc, wc, (int) getpid());
26
       return 0:
28
29
    }
```

Figure 5.3: Calling fork(), wait(), And exec() (p3.c)

The fork () system call is strange; its partner in crime, exec (), is not so normal either. What it does: given the name of an executable (e.g., wc), and some arguments (e.g., p3.c), it **loads** code (and static data) from that executable and overwrites its current code segment (and current static data) with it; the heap and stack and other parts of the memory space of the program are re-initialized. Then the OS simply runs that program, passing in any arguments as the argv of that process. Thus, it does *not* create a new process; rather, it transforms the currently running program (formerly p3) into a different running program (wc). After the exec () in the child, it is almost as if p3.c never ran; a successful call to exec () never returns.

5.4 Why? Motivating The API

Of course, one big question you might have: why would we build such an odd interface to what should be the simple act of creating a new process? Well, as it turns out, the separation of fork() and exec() is essential in building a UNIX shell, because it lets the shell run code *after* the call to fork() but *before* the call to exec(); this code can alter the environment of the about-to-be-run program, and thus enables a variety of interesting features to be readily built.

TIP: GETTING IT RIGHT (LAMPSON'S LAW)

As Lampson states in his well-regarded "Hints for Computer Systems Design" [L83], "Get it right. Neither abstraction nor simplicity is a substitute for getting it right." Sometimes, you just have to do the right thing, and when you do, it is way better than the alternatives. There are lots of ways to design APIs for process creation; however, the combination of fork() and exec() are simple and immensely powerful. Here, the UNIX designers simply got it right. And because Lampson so often "got it right", we name the law in his honor.

The shell is just a user program⁴. It shows you a **prompt** and then waits for you to type something into it. You then type a command (i.e., the name of an executable program, plus any arguments) into it; in most cases, the shell then figures out where in the file system the executable resides, calls fork() to create a new child process to run the command, calls some variant of exec() to run the command, and then waits for the command to complete by calling wait(). When the child completes, the shell returns from wait() and prints out a prompt again, ready for your next command.

The separation of fork() and exec() allows the shell to do a whole bunch of useful things rather easily. For example:

```
prompt> wc p3.c > newfile.txt
```

In the example above, the output of the program wc is redirected into the output file newfile.txt (the greater-than sign is how said redirection is indicated). The way the shell accomplishes this task is quite simple: when the child is created, before calling exec(), the shell closes standard output and opens the file newfile.txt. By doing so, any output from the soon-to-be-running program wc are sent to the file instead of the screen.

Figure 5.4 shows a program that does exactly this. The reason this redirection works is due to an assumption about how the operating system manages file descriptors. Specifically, UNIX systems start looking for free file descriptors at zero. In this case, STDOUT_FILENO will be the first available one and thus get assigned when $\mathtt{open}()$ is called. Subsequent writes by the child process to the standard output file descriptor, for example by routines such as $\mathtt{printf}()$, will then be routed transparently to the newly-opened file instead of the screen.

Here is the output of running the p4.c program:

 $^{^4}$ And there are lots of shells; tcsh, bash, and zsh to name a few. You should pick one, read its man pages, and learn more about it; all UNIX experts do.

```
#include <stdio.h>
   #include <stdlib.h>
2
   #include <unistd.h>
3
   #include <string.h>
5
   #include <fcntl.h>
   #include <sys/wait.h>
   int.
8
9
   main(int argc, char *argv[])
10
11
       int rc = fork();
       if (rc < 0) {
                          // fork failed; exit
12
           fprintf(stderr, "fork failed\n");
13
           exit(1):
       } else if (rc == 0) { // child: redirect standard output to a file
15
           close(STDOUT_FILENO);
16
           open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
17
18
           // now exec "wc"...
19
           char *myargs[3];
          myargs[0] = strdup("wc"); // program: "wc" (word count)
21
           myargs[1] = strdup("p4.c"); // argument: file to count
22
           23
24
                           // parent goes down this path (main)
       } else {
25
          int wc = wait(NULL);
26
      return 0;
28
29
```

Figure 5.4: All Of The Above With Redirection (p4.c)

You'll notice (at least) two interesting tidbits about this output. First, when p4 is run, it looks as if nothing has happened; the shell just prints the command prompt and is immediately ready for your next command. However, that is not the case; the program p4 did indeed call fork() to create a new child, and then run the wc program via a call to execvp(). You don't see any output printed to the screen because it has been redirected to the file p4.output. Second, you can see that when we cat the output file, all the expected output from running wc is found. Cool, right?

UNIX pipes are implemented in a similar way, but with the pipe() system call. In this case, the output of one process is connected to an inkernel **pipe** (i.e., queue), and the input of another process is connected to that same pipe; thus, the output of one process seamlessly is used as input to the next, and long and useful chains of commands can be strung together. As a simple example, consider looking for a word in a file, and then counting how many times said word occurs; with pipes and the utilities grep and wc, it is easy — just type grep —o foo file | wc —l into the command prompt and marvel at the result.

Finally, while we just have sketched out the process API at a high level, there is a lot more detail about these calls out there to be learned and digested; we'll learn more, for example, about file descriptors when we talk about file systems in the third part of the book. For now, suffice it to say that the fork()/exec() combination is a powerful way to create and manipulate processes.

ASIDE: RTFM — READ THE MAN PAGES

Many times in this book, when referring to a particular system call or library call, we'll tell you to read the **manual pages**, or **man pages** for short. Man pages are the original form of documentation that exist on UNIX systems; realize that they were created before the thing called **the web** existed.

Spending some time reading man pages is a key step in the growth of a systems programmer; there are tons of useful tidbits hidden in those pages. Some particularly useful pages to read are the man pages for whichever shell you are using (e.g., tcsh, or bash), and certainly for any system calls your program makes (in order to see what return values and error conditions exist).

Finally, reading the man pages can save you some embarrassment. When you ask colleagues about some intricacy of fork(), they may simply reply: "RTFM." This is your colleagues' way of gently urging you to Read The Man pages. The F in RTFM just adds a little color to the phrase...

5.5 Other Parts Of The API

Beyond fork(), exec(), and wait(), there are a lot of other interfaces for interacting with processes in UNIX systems. For example, the kill() system call is used to send **signals** to a process, including directives to go to sleep, die, and other useful imperatives. In fact, the entire signals subsystem provides a rich infrastructure to deliver external events to processes, including ways to receive and process those signals.

There are many command-line tools that are useful as well. For example, using the ps command allows you to see which processes are running; read the man pages for some useful flags to pass to ps. The tool top is also quite helpful, as it displays the processes of the system and how much CPU and other resources they are eating up. Humorously, many times when you run it, top claims it is the top resource hog; perhaps it is a bit of an egomaniac. Finally, there are many different kinds of CPU meters you can use to get a quick glance understanding of the load on your system; for example, we always keep MenuMeters (from Raging Menace software) running on our Macintosh toolbars, so we can see how much CPU is being utilized at any moment in time. In general, the more information about what is going on, the better.

5.6 Summary

We have introduced some of the APIs dealing with UNIX process creation: fork(), exec(), and wait(). However, we have just skimmed the surface. For more detail, read Stevens and Rago [SR05], of course, particularly the chapters on Process Control, Process Relationships, and Signals. There is much to extract from the wisdom therein.

References

[C63] "A Multiprocessor System Design"

Melvin E. Conway

AFIPS '63 Fall Joint Computer Conference

New York, USA 1963

An early paper on how to design multiprocessing systems; may be the first place the term fork () was used in the discussion of spawning new processes.

[DV66] "Programming Semantics for Multiprogrammed Computations"

Jack B. Dennis and Earl C. Van Horn

Communications of the ACM, Volume 9, Number 3, March 1966

A classic paper that outlines the basics of multiprogrammed computer systems. Undoubtedly had great influence on Project MAC, Multics, and eventually UNIX.

[L83] "Hints for Computer Systems Design"

Butler Lampson

ACM Operating Systems Review, 15:5, October 1983

Lampson's famous hints on how to design computer systems. You should read it at some point in your life, and probably at many points in your life.

[SR05] "Advanced Programming in the UNIX Environment"

W. Richard Stevens and Stephen A. Rago

Addison-Wesley, 2005

All nuances and subtleties of using UNIX APIs are found herein. Buy this book! Read it! And most importantly, live it.

ASIDE: CODING HOMEWORKS

Coding homeworks are small exercises where you write code to run on a real machine to get some experience with some of the basic APIs that modern operating systems have to offer. After all, you are (probably) a computer scientist, and therefore should like to code, right? Of course, to truly become an expert, you have to spend more than a little time hacking away at the machine; indeed, find every excuse you can to write some code and see how it works. Spend the time, and become the wise master you know you can be.

Homework (Code)

In this homework, you are to gain some familiarity with the process management APIs about which you just read. Don't worry – it's even more fun than it sounds! You'll in general be much better off if you find as much time as you can to write some code⁵, so why not start now?

Questions

- 1. Write a program that calls fork(). Before calling fork(), have the main process access a variable (e.g., x) and set its value to something (e.g., 100). What value is the variable in the child process? What happens to the variable when both the child and parent change the value of x?
- 2. Write a program that opens a file (with the open() system call) and then calls fork() to create a new process. Can both the child and parent access the file descriptor returned by open()? What happens when they are writing to the file concurrently, i.e., at the same time?
- 3. Write another program using fork(). The child process should print "hello"; the parent process should print "goodbye". You should try to ensure that the child process always prints first; can you do this without calling wait() in the parent?
- 4. Write a program that calls fork() and then calls some form of exec() to run the program /bin/ls. See if you can try all of the variants of exec(), including execl(), execle(), execlp(), execv(), execvp(), and execvP(). Why do you think there are so many variants of the same basic call?
- 5. Now write a program that uses wait () to wait for the child process to finish in the parent. What does wait () return? What happens if you use wait () in the child?

⁵If you don't like to code, but want to become a computer scientist, this means you need to either (a) become really good at the theory of computer science, or (b) perhaps rethink this whole "computer science" thing you've been telling everyone about.

- 6. Write a slight modification of the previous program, this time using waitpid() instead of wait(). When would waitpid() be useful?
- 7. Write a program that creates a child process, and then in the child closes standard output (STDOUT_FILENO). What happens if the child calls printf() to print some output after closing the descriptor?
- 8. Write a program that creates two children, and connects the standard output of one to the standard input of the other, using the pipe() system call.

Mechanism: Limited Direct Execution

In order to virtualize the CPU, the operating system needs to somehow share the physical CPU among many jobs running seemingly at the same time. The basic idea is simple: run one process for a little while, then run another one, and so forth. By **time sharing** the CPU in this manner, virtualization is achieved.

There are a few challenges, however, in building such virtualization machinery. The first is *performance*: how can we implement virtualization without adding excessive overhead to the system? The second is *control*: how can we run processes efficiently while retaining control over the CPU? Control is particularly important to the OS, as it is in charge of resources; without control, a process could simply run forever and take over the machine, or access information that it should not be allowed to access. Obtaining high performance while maintaining control is thus one of the central challenges in building an operating system.

THE CRUX:

HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL The OS must virtualize the CPU in an efficient manner while retaining control over the system. To do so, both hardware and operating-system support will be required. The OS will often use a judicious bit of hardware support in order to accomplish its work effectively.

6.1 Basic Technique: Limited Direct Execution

To make a program run as fast as one might expect, not surprisingly OS developers came up with a technique, which we call **limited direct execution**. The "direct execution" part of the idea is simple: just run the program directly on the CPU. Thus, when the OS wishes to start a program running, it creates a process entry for it in a process list, allocates some memory for it, loads the program code into memory (from disk), locates its entry point (i.e., the main () routine or something similar), jumps

OS	Program
Create entry for process list	
Allocate memory for program	
Load program into memory	
Set up stack with argc/argv	
Clear registers	
Execute call main()	
	Run main()
	Execute return from main
Free memory of process	
Remove from process list	

Figure 6.1: Direct Execution Protocol (Without Limits)

to it, and starts running the user's code. Figure 6.1 shows this basic direct execution protocol (without any limits, yet), using a normal call and return to jump to the program's main() and later to get back into the kernel.

Sounds simple, no? But this approach gives rise to a few problems in our quest to virtualize the CPU. The first is simple: if we just run a program, how can the OS make sure the program doesn't do anything that we don't want it to do, while still running it efficiently? The second: when we are running a process, how does the operating system stop it from running and switch to another process, thus implementing the **time sharing** we require to virtualize the CPU?

In answering these questions below, we'll get a much better sense of what is needed to virtualize the CPU. In developing these techniques, we'll also see where the "limited" part of the name arises from; without limits on running programs, the OS wouldn't be in control of anything and thus would be "just a library" — a very sad state of affairs for an aspiring operating system!

6.2 Problem #1: Restricted Operations

Direct execution has the obvious advantage of being fast; the program runs natively on the hardware CPU and thus executes as quickly as one would expect. But running on the CPU introduces a problem: what if the process wishes to perform some kind of restricted operation, such as issuing an I/O request to a disk, or gaining access to more system resources such as CPU or memory?

THE CRUX: HOW TO PERFORM RESTRICTED OPERATIONS A process must be able to perform I/O and some other restricted operations, but without giving the process complete control over the system. How can the OS and hardware work together to do so?

ASIDE: WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

You may wonder why a call to a system call, such as open () or read (), looks exactly like a typical procedure call in C; that is, if it looks just like a procedure call, how does the system know it's a system call, and do all the right stuff? The simple reason: it is a procedure call, but hidden inside that procedure call is the famous trap instruction. More specifically, when you call open () (for example), you are executing a procedure call into the C library. Therein, whether for open () or any of the other system calls provided, the library uses an agreed-upon calling convention with the kernel to put the arguments to open in well-known locations (e.g., on the stack, or in specific registers), puts the system-call number into a well-known location as well (again, onto the stack or a register), and then executes the aforementioned trap instruction. The code in the library after the trap unpacks return values and returns control to the program that issued the system call. Thus, the parts of the C library that make system calls are hand-coded in assembly, as they need to carefully follow convention in order to process arguments and return values correctly, as well as execute the hardware-specific trap instruction. And now you know why you personally don't have to write assembly code to trap into an OS; somebody has already written that assembly for you.

One approach would simply be to let any process do whatever it wants in terms of I/O and other related operations. However, doing so would prevent the construction of many kinds of systems that are desirable. For example, if we wish to build a file system that checks permissions before granting access to a file, we can't simply let any user process issue I/Os to the disk; if we did, a process could simply read or write the entire disk and thus all protections would be lost.

Thus, the approach we take is to introduce a new processor mode, known as **user mode**; code that runs in user mode is restricted in what it can do. For example, when running in user mode, a process can't issue I/O requests; doing so would result in the processor raising an exception; the OS would then likely kill the process.

In contrast to user mode is **kernel mode**, which the operating system (or kernel) runs in. In this mode, code that runs can do what it likes, including privileged operations such as issuing I/O requests and executing all types of restricted instructions.

We are still left with a challenge, however: what should a user process do when it wishes to perform some kind of privileged operation, such as reading from disk? To enable this, virtually all modern hardware provides the ability for user programs to perform a **system call**. Pioneered on ancient machines such as the Atlas [K+61,L78], system calls allow the kernel to carefully expose certain key pieces of functionality to user programs, such as accessing the file system, creating and destroying processes, communicating with other processes, and allocating more

TIP: USE PROTECTED CONTROL TRANSFER

The hardware assists the OS by providing different modes of execution. In **user mode**, applications do not have full access to hardware resources. In **kernel mode**, the OS has access to the full resources of the machine. Special instructions to **trap** into the kernel and **return-from-trap** back to user-mode programs are also provided, as well as instructions that allow the OS to tell the hardware where the **trap table** resides in memory.

memory. Most operating systems provide a few hundred calls (see the POSIX standard for details [P10]); early Unix systems exposed a more concise subset of around twenty calls.

To execute a system call, a program must execute a special **trap** instruction. This instruction simultaneously jumps into the kernel and raises the privilege level to kernel mode; once in the kernel, the system can now perform whatever privileged operations are needed (if allowed), and thus do the required work for the calling process. When finished, the OS calls a special **return-from-trap** instruction, which, as you might expect, returns into the calling user program while simultaneously reducing the privilege level back to user mode.

The hardware needs to be a bit careful when executing a trap, in that it must make sure to save enough of the caller's registers in order to be able to return correctly when the OS issues the return-from-trap instruction. On x86, for example, the processor will push the program counter, flags, and a few other registers onto a per-process **kernel stack**; the return-from-trap will pop these values off the stack and resume execution of the user-mode program (see the Intel systems manuals [I11] for details). Other hardware systems use different conventions, but the basic concepts are similar across platforms.

There is one important detail left out of this discussion: how does the trap know which code to run inside the OS? Clearly, the calling process can't specify an address to jump to (as you would when making a procedure call); doing so would allow programs to jump anywhere into the kernel which clearly is a **Very Bad Idea**¹. Thus the kernel must carefully control what code executes upon a trap.

The kernel does so by setting up a **trap table** at boot time. When the machine boots up, it does so in privileged (kernel) mode, and thus is free to configure machine hardware as need be. One of the first things the OS thus does is to tell the hardware what code to run when certain exceptional events occur. For example, what code should run when a hard-disk interrupt takes place, when a keyboard interrupt occurs, or when a program makes a system call? The OS informs the hardware of the locations of these **trap handlers**, usually with some kind of special in-

¹Imagine jumping into code to access a file, but just after a permission check; in fact, it is likely such an ability would enable a wily programmer to get the kernel to run arbitrary code sequences [S07]. In general, try to avoid Very Bad Ideas like this one.

OS @ boot (kernel mode)	Hardware	
initialize trap table	remember address of syscall handler	
OS @ run (kernel mode)	Hardware	Program (user mode)
Create entry for process list Allocate memory for program Load program into memory Setup user stack with argv Fill kernel stack with reg/PC return-from-trap		
ician non dap	restore regs from kernel stack move to user mode jump to main	
)	Run main()
		Call system call trap into OS
	save regs to kernel stack move to kernel mode jump to trap handler	
Handle trap Do work of syscall	jump to trup rander	
return-from-trap	restore regs from kernel stack move to user mode jump to PC after trap	
		return from main trap (via exit())
Free memory of process Remove from process list		uup (viii exit (/)

Figure 6.2: Limited Direct Execution Protocol

struction. Once the hardware is informed, it remembers the location of these handlers until the machine is next rebooted, and thus the hardware knows what to do (i.e., what code to jump to) when system calls and other exceptional events take place.

To specify the exact system call, a **system-call number** is usually assigned to each system call. The user code is thus responsible for placing the desired system-call number in a register or at a specified location on the stack; the OS, when handling the system call inside the trap handler, examines this number, ensures it is valid, and, if it is, executes the corresponding code. This level of indirection serves as a form of **protection**; user code cannot specify an exact address to jump to, but rather must request a particular service via number.

One last aside: being able to execute the instruction to tell the hardware where the trap tables are is a very powerful capability. Thus, as you might have guessed, it is also a **privileged** operation. If you try to execute this instruction in user mode, the hardware won't let you, and you can probably guess what will happen (hint: adios, offending program). Point to ponder: what horrible things could you do to a system if you could install your own trap table? Could you take over the machine?

The timeline (with time increasing downward, in Figure 6.2) summarizes the protocol. We assume each process has a kernel stack where registers (including general purpose registers and the program counter) are saved to and restored from (by the hardware) when transitioning into and out of the kernel.

There are two phases in the LDE protocol. In the first (at boot time), the kernel initializes the trap table, and the CPU remembers its location for subsequent use. The kernel does so via a privileged instruction (all privileged instructions are highlighted in bold).

In the second (when running a process), the kernel sets up a few things (e.g., allocating a node on the process list, allocating memory) before using a return-from-trap instruction to start the execution of the process; this switches the CPU to user mode and begins running the process. When the process wishes to issue a system call, it traps back into the OS, which handles it and once again returns control via a return-from-trap to the process. The process then completes its work, and returns from main(); this usually will return into some stub code which will properly exit the program (say, by calling the exit() system call, which traps into the OS). At this point, the OS cleans up and we are done.

6.3 Problem #2: Switching Between Processes

The next problem with direct execution is achieving a switch between processes. Switching between processes should be simple, right? The OS should just decide to stop one process and start another. What's the big deal? But it actually is a little bit tricky: specifically, if a process is running on the CPU, this by definition means the OS is *not* running. If the OS is not running, how can it do anything at all? (hint: it can't) While this sounds almost philosophical, it is a real problem: there is clearly no way for the OS to take an action if it is not running on the CPU. Thus we arrive at the crux of the problem.

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU How can the operating system **regain control** of the CPU so that it can switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for example, early versions of the Macintosh operating system [M11], or the old Xerox Alto system [A79]) is known as the **cooperative** approach. In this style,

TIP: DEALING WITH APPLICATION MISBEHAVIOR

Operating systems often have to deal with misbehaving processes, those that either through design (maliciousness) or accident (bugs) attempt to do something that they shouldn't. In modern systems, the way the OS tries to handle such malfeasance is to simply terminate the offender. One strike and you're out! Perhaps brutal, but what else should the OS do when you try to access memory illegally or execute an illegal instruction?

the OS *trusts* the processes of the system to behave reasonably. Processes that run for too long are assumed to periodically give up the CPU so that the OS can decide to run some other task.

Thus, you might ask, how does a friendly process give up the CPU in this utopian world? Most processes, as it turns out, transfer control of the CPU to the OS quite frequently by making **system calls**, for example, to open a file and subsequently read it, or to send a message to another machine, or to create a new process. Systems like this often include an explicit **yield** system call, which does nothing except to transfer control to the OS so it can run other processes.

Applications also transfer control to the OS when they do something illegal. For example, if an application divides by zero, or tries to access memory that it shouldn't be able to access, it will generate a **trap** to the OS. The OS will then have control of the CPU again (and likely terminate the offending process).

Thus, in a cooperative scheduling system, the OS regains control of the CPU by waiting for a system call or an illegal operation of some kind to take place. You might also be thinking: isn't this passive approach less than ideal? What happens, for example, if a process (whether malicious, or just full of bugs) ends up in an infinite loop, and never makes a system call? What can the OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out the OS can't do much at all when a process refuses to make system calls (or mistakes) and thus return control to the OS. In fact, in the cooperative approach, your only recourse when a process gets stuck in an infinite loop is to resort to the age-old solution to all problems in computer systems: **reboot the machine**. Thus, we again arrive at a subproblem of our general quest to gain control of the CPU.

THE CRUX: HOW TO GAIN CONTROL WITHOUT COOPERATION How can the OS gain control of the CPU even if processes are not being cooperative? What can the OS do to ensure a rogue process does not take over the machine?

TIP: USE THE TIMER INTERRUPT TO REGAIN CONTROL The addition of a **timer interrupt** gives the OS the ability to run again on a CPU even if processes act in a non-cooperative fashion. Thus, this hardware feature is essential in helping the OS maintain control of the machine.

The answer turns out to be simple and was discovered by a number of people building computer systems many years ago: a **timer interrupt** [M+63]. A timer device can be programmed to raise an interrupt every so many milliseconds; when the interrupt is raised, the currently running process is halted, and a pre-configured **interrupt handler** in the OS runs. At this point, the OS has regained control of the CPU, and thus can do what it pleases: stop the current process, and start a different one.

As we discussed before with system calls, the OS must inform the hardware of which code to run when the timer interrupt occurs; thus, at boot time, the OS does exactly that. Second, also during the boot sequence, the OS must start the timer, which is of course a privileged operation. Once the timer has begun, the OS can thus feel safe in that control will eventually be returned to it, and thus the OS is free to run user programs. The timer can also be turned off (also a privileged operation), something we will discuss later when we understand concurrency in more detail.

Note that the hardware has some responsibility when an interrupt occurs, in particular to save enough of the state of the program that was running when the interrupt occurred such that a subsequent return-from-trap instruction will be able to resume the running program correctly. This set of actions is quite similar to the behavior of the hardware during an explicit system-call trap into the kernel, with various registers thus getting saved (e.g., onto a kernel stack) and thus easily restored by the return-from-trap instruction.

Saving and Restoring Context

Now that the OS has regained control, whether cooperatively via a system call, or more forcefully via a timer interrupt, a decision has to be made: whether to continue running the currently-running process, or switch to a different one. This decision is made by a part of the operating system known as the **scheduler**; we will discuss scheduling policies in great detail in the next few chapters.

If the decision is made to switch, the OS then executes a low-level piece of code which we refer to as a **context switch**. A context switch is conceptually simple: all the OS has to do is save a few register values for the currently-executing process (onto its kernel stack, for example) and restore a few for the soon-to-be-executing process (from its kernel stack). By doing so, the OS thus ensures that when the return-from-trap

OS @ boot (kernel mode)	Hardware	
initialize trap table start interrupt timer	remember addresses of syscall handler timer handler start timer interrupt CPU in X ms	
OS @ run (kernel mode)	Hardware	Program (user mode)
Handle the trap Call switch() routine save regs(A) to proc-struct(A) restore regs(B) from proc-struct(B)	timer interrupt save regs(A) to k-stack(A) move to kernel mode jump to trap handler	Process A
switch to k-stack(B) return-from-trap (into B)	restore regs(B) from k-stack(B) move to user mode jump to B's PC	Process B

Figure 6.3: Limited Direct Execution Protocol (Timer Interrupt)

instruction is finally executed, instead of returning to the process that was running, the system resumes execution of another process.

To save the context of the currently-running process, the OS will execute some low-level assembly code to save the general purpose registers, PC, as well as the kernel stack pointer of the currently-running process, and then restore said registers, PC, and switch to the kernel stack for the soon-to-be-executing process. By switching stacks, the kernel enters the call to the switch code in the context of one process (the one that was interrupted) and returns in the context of another (the soon-to-be-executing one). When the OS then finally executes a return-from-trap instruction, the soon-to-be-executing process becomes the currently-running process. And thus the context switch is complete.

A timeline of the entire process is shown in Figure 6.3. In this example, Process A is running and then is interrupted by the timer interrupt. The hardware saves its registers (onto its kernel stack) and enters the kernel (switching to kernel mode). In the timer interrupt handler, the OS decides to switch from running Process A to Process B. At that point, it calls the switch() routine, which carefully saves current register values (into the process structure of A), restores the registers of Process B (from its process structure entry), and then switches contexts, specifically by changing the

```
# void swtch(struct context **old, struct context *new);
   # Save current register context in old
   # and then load register context from new.
   .globl swtch
   swtch:
     # Save old registers
    movl 4(%esp), %eax # put old ptr into eax
    popl O(%eax) # save the old IP
movl %esp, 4(%eax) # and stack
movl %ebx, 8(%eax) # and other registers
10
     movl %ecx, 12(%eax)
12
     movl %edx, 16(%eax)
13
    movl %esi, 20(%eax)
    movl %edi, 24(%eax)
15
    movl %ebp, 28(%eax)
16
     # Load new registers
    movl 4(%esp), %eax # put new ptr into eax
    movl 28(%eax), %ebp # restore other registers
    movl 24(%eax), %edi
    movl 20(%eax), %esi
22
     movl 16(%eax), %edx
     movl 12(%eax), %ecx
24
     movl 8(%eax), %ebx
    movl 4(%eax), %esp # stack is switched here
    pushl 0(%eax)
                           # return addr put in place
     ret
                           # finally return into new ctxt
```

Figure 6.4: The xv6 Context Switch Code

stack pointer to use B's kernel stack (and not A's). Finally, the OS returnsfrom-trap, which restores B's registers and starts running it.

Note that there are two types of register saves/restores that happen during this protocol. The first is when the timer interrupt occurs; in this case, the *user registers* of the running process are implicitly saved by the *hardware*, using the kernel stack of that process. The second is when the OS decides to switch from A to B; in this case, the *kernel registers* are explicitly saved by the *software* (i.e., the OS), but this time into memory in the process structure of the process. The latter action moves the system from running as if it just trapped into the kernel from A to as if it just trapped into the kernel from B.

To give you a better sense of how such a switch is enacted, Figure 6.4 shows the context switch code for xv6. See if you can make sense of it (you'll have to know a bit of x86, as well as some xv6, to do so). The context structures old and new are found in the old and new process's process structures, respectively.

6.4 Worried About Concurrency?

Some of you, as attentive and thoughtful readers, may be now thinking: "Hmm... what happens when, during a system call, a timer interrupt

ASIDE: HOW LONG CONTEXT SWITCHES TAKE

A natural question you might have is: how long does something like a context switch take? Or even a system call? For those of you that are curious, there is a tool called **Imbench** [MS96] that measures exactly those things, as well as a few other performance measures that might be relevant.

Results have improved quite a bit over time, roughly tracking processor performance. For example, in 1996 running Linux 1.3.37 on a 200-MHz P6 CPU, system calls took roughly 4 microseconds, and a context switch roughly 6 microseconds [MS96]. Modern systems perform almost an order of magnitude better, with sub-microsecond results on systems with 2- or 3-GHz processors.

It should be noted that not all operating-system actions track CPU performance. As Ousterhout observed, many OS operations are memory intensive, and memory bandwidth has not improved as dramatically as processor speed over time [O90]. Thus, depending on your workload, buying the latest and greatest processor may not speed up your OS as much as you might hope.

occurs?" or "What happens when you're handling one interrupt and another one happens? Doesn't that get hard to handle in the kernel?" Good questions — we really have some hope for you yet!

The answer is yes, the OS does indeed need to be concerned as to what happens if, during interrupt or trap handling, another interrupt occurs. This, in fact, is the exact topic of the entire second piece of this book, on **concurrency**; we'll defer a detailed discussion until then.

To whet your appetite, we'll just sketch some basics of how the OS handles these tricky situations. One simple thing an OS might do is **disable interrupts** during interrupt processing; doing so ensures that when one interrupt is being handled, no other one will be delivered to the CPU. Of course, the OS has to be careful in doing so; disabling interrupts for too long could lead to lost interrupts, which is (in technical terms) bad.

Operating systems also have developed a number of sophisticated **locking** schemes to protect concurrent access to internal data structures. This enables multiple activities to be on-going within the kernel at the same time, particularly useful on multiprocessors. As we'll see in the next piece of this book on concurrency, though, such locking can be complicated and lead to a variety of interesting and hard-to-find bugs.

6.5 Summary

We have described some key low-level mechanisms to implement CPU virtualization, a set of techniques which we collectively refer to as **limited direct execution**. The basic idea is straightforward: just run the program you want to run on the CPU, but first make sure to set up the hardware so as to limit what the process can do without OS assistance.

TIP: REBOOT IS USEFUL

Earlier on, we noted that the only solution to infinite loops (and similar behaviors) under cooperative preemption is to **reboot** the machine. While you may scoff at this hack, researchers have shown that reboot (or in general, starting over some piece of software) can be a hugely useful tool in building robust systems [C+04].

Specifically, reboot is useful because it moves software back to a known and likely more tested state. Reboots also reclaim stale or leaked resources (e.g., memory) which may otherwise be hard to handle. Finally, reboots are easy to automate. For all of these reasons, it is not uncommon in large-scale cluster Internet services for system management software to periodically reboot sets of machines in order to reset them and thus obtain the advantages listed above.

Thus, next time you reboot, you are not just enacting some ugly hack. Rather, you are using a time-tested approach to improving the behavior of a computer system. Well done!

This general approach is taken in real life as well. For example, those of you who have children, or, at least, have heard of children, may be familiar with the concept of **baby proofing** a room: locking cabinets containing dangerous stuff and covering electrical sockets. When the room is thus readied, you can let your baby roam freely, secure in the knowledge that the most dangerous aspects of the room have been restricted.

In an analogous manner, the OS "baby proofs" the CPU, by first (during boot time) setting up the trap handlers and starting an interrupt timer, and then by only running processes in a restricted mode. By doing so, the OS can feel quite assured that processes can run efficiently, only requiring OS intervention to perform privileged operations or when they have monopolized the CPU for too long and thus need to be switched out.

We thus have the basic mechanisms for virtualizing the CPU in place. But a major question is left unanswered: which process should we run at a given time? It is this question that the scheduler must answer, and thus the next topic of our study.

References

[A79] "Alto User's Handbook"

Xerox Palo Alto Research Center, September 1979

Available: http://history-computer.com/Library/AltoUsersHandbook.pdf An amazing system, way ahead of its time. Became famous because Steve Jobs visited, took notes, and built Lisa and eventually Mac.

[C+04] "Microreboot — A Technique for Cheap Recovery"

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, Armando Fox

OSDI '04, San Francisco, CA, December 2004

An excellent paper pointing out how far one can go with reboot in building more robust systems.

[I11] "Intel 64 and IA-32 Architectures Software Developer's Manual"

Volume 3A and 3B: System Programming Guide

Intel Corporation, January 2011

[K+61] "One-Level Storage System"

T. Kilburn, D.B.G. Edwards, M.J. Lanigan, F.H. Sumner

IRE Transactions on Electronic Computers, April 1962

The Atlas pioneered much of what you see in modern systems. However, this paper is not the best one to read. If you were to only read one, you might try the historical perspective below [L78].

[L78] "The Manchester Mark I and Atlas: A Historical Perspective"

S. H. Lavington

Communications of the ACM, 21:1, January 1978

A history of the early development of computers and the pioneering efforts of Atlas.

[M+63] "A Time-Sharing Debugging System for a Small Computer"

J. McCarthy, S. Boilen, E. Fredkin, J. C. R. Licklider

AFIPS '63 (Spring), May, 1963, New York, USA

An early paper about time-sharing that refers to using a timer interrupt; the quote that discusses it: "The basic task of the channel 17 clock routine is to decide whether to remove the current user from core and if so to decide which user program to swap in as he goes out."

[MS96] "Imbench: Portable tools for performance analysis"

Larry McVoy and Carl Staelin

USENIX Annual Technical Conference, January 1996

A fun paper about how to measure a number of different things about your OS and its performance. Download Imbench and give it a try.

[M11] "Mac OS 9"

January 2011

Available: http://en.wikipedia.org/wiki/Mac_OS_9

[O90] "Why Aren't Operating Systems Getting Faster as Fast as Hardware?"

J. Ousterhout

USENIX Summer Conference, June 1990

A classic paper on the nature of operating system performance.

[P10] "The Single UNIX Specification, Version 3"

The Open Group, May 2010

Available: http://www.unix.org/version3/

This is hard and painful to read, so probably avoid it if you can.

[S07] "The Geometry of Innocent Flesh on the Bone:

Return-into-libc without Function Calls (on the x86)"

Hovav Shacham

CCS '07, October 2007

One of those awesome, mind-blowing ideas that you'll see in research from time to time. The author shows that if you can jump into code arbitrarily, you can essentially stitch together any code sequence you like (given a large code base); read the paper for the details. The technique makes it even harder to defend against malicious attacks, alas.

Homework (Measurement)

ASIDE: MEASUREMENT HOMEWORKS

Measurement homeworks are small exercises where you write code to run on a real machine, in order to measure some aspect of OS or hardware performance. The idea behind such homeworks is to give you a little bit of hands-on experience with a real operating system.

In this homework, you'll measure the costs of a system call and context switch. Measuring the cost of a system call is relatively easy. For example, you could repeatedly call a simple system call (e.g., performing a 0-byte read), and time how long it takes; dividing the time by the number of iterations gives you an estimate of the cost of a system call.

One thing you'll have to take into account is the precision and accuracy of your timer. A typical timer that you can use is <code>gettimeofday()</code>; read the man page for details. What you'll see there is that <code>gettimeofday()</code> returns the time in microseconds since 1970; however, this does not mean that the timer is precise to the microsecond. Measure back-to-back calls to <code>gettimeofday()</code> to learn something about how precise the timer really is; this will tell you how many iterations of your null system-call test you'll have to run in order to get a good measurement result. If <code>gettimeofday()</code> is not precise enough for you, you might look into using the <code>rdtsc</code> instruction available on x86 machines.

Measuring the cost of a context switch is a little trickier. The Imbench benchmark does so by running two processes on a single CPU, and setting up two UNIX pipes between them; a pipe is just one of many ways processes in a UNIX system can communicate with one another. The first process then issues a write to the first pipe, and waits for a read on the second; upon seeing the first process waiting for something to read from the second pipe, the OS puts the first process in the blocked state, and switches to the other process, which reads from the first pipe and then writes to the second. When the second process tries to read from the first pipe again, it blocks, and thus the back-and-forth cycle of communication continues. By measuring the cost of communicating like this repeatedly, Imbench can make a good estimate of the cost of a context switch. You can try to re-create something similar here, using pipes, or perhaps some other communication mechanism such as UNIX sockets.

One difficulty in measuring context-switch cost arises in systems with more than one CPU; what you need to do on such a system is ensure that your context-switching processes are located on the same processor. Fortunately, most operating systems have calls to bind a process to a particular processor; on Linux, for example, the sched_setaffinity() call is what you're looking for. By ensuring both processes are on the same processor, you are making sure to measure the cost of the OS stopping one process and restoring another on the same CPU.

NAME I SYNOPSIS I DESCRIPTION I RETURN VALUE I ERRORS I CONFORMING TO I NOTES I BUGS I SEE ALSO I COLOPHON

Search online pages

KILL(2)

Linux Programmer's Manual

KILL(2)

NAME top

kill - send signal to a process

SYNOPSIS top

```
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);
```

Feature Test Macro Requirements for glibc (see feature test macros(7)):

```
kill(): POSIX C SOURCE
```

DESCRIPTION top

The **kill**() system call can be used to send any signal to any process group or process.

If *pid* is positive, then signal *sig* is sent to the process with the ID specified by *pid*.

If *pid* equals 0, then *sig* is sent to every process in the process group of the calling process.

If pid equals -1, then sig is sent to every process for which the calling process has permission to send signals, except for process 1 (init), but see below.

If pid is less than -1, then sig is sent to every process in the process group whose ID is -pid.

If sig is 0, then no signal is sent, but existence and permission checks are still performed; this can be used to check for the existence of a process ID or process group ID that the caller is permitted to signal.

For a process to have permission to send a signal, it must either be privileged (under Linux: have the CAP_KILL capability in the user namespace of the target process), or the real or effective user ID of the sending process must equal the real or saved set-user-ID of the target process. In the case of SIGCONT, it suffices when the sending

and receiving processes belong to the same session. (Historically, the rules were different; see NOTES.)

RETURN VALUE top

On success (at least one signal was sent), zero is returned. On error, -1 is returned, and *errno* is set appropriately.

ERRORS top

EINVAL An invalid signal was specified.

EPERM The process does not have permission to send the signal to any of the target processes.

ESRCH The process or process group does not exist. Note that an existing process might be a zombie, a process that has terminated execution, but has not yet been wait(2)ed for.

CONFORMING TO top

POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

NOTES top

The only signals that can be sent to process ID 1, the *init* process, are those for which *init* has explicitly installed signal handlers. This is done to assure the system is not brought down accidentally.

POSIX.1 requires that kill(-1,sig) send sig to all processes that the calling process may send signals to, except possibly for some implementation-defined system processes. Linux allows a process to signal itself, but on Linux the call kill(-1,sig) does not signal the calling process.

POSIX.1 requires that if a process sends a signal to itself, and the sending thread does not have the signal blocked, and no other thread has it unblocked or is waiting for it in sigwait(3), at least one unblocked signal must be delivered to the sending thread before the kill() returns.

Linux notes

Across different kernel versions, Linux has enforced different rules for the permissions required for an unprivileged process to send a signal to another process. In kernels 1.0 to 1.2.2, a signal could be sent if the effective user ID of the sender matched effective user ID of the target, or the real user ID of the sender matched the real user ID of the target. From kernel 1.2.3 until 1.3.77, a signal could be sent if the effective user ID of the sender matched either

the real or effective user ID of the target. The current rules, which conform to POSIX.1, were adopted in kernel 1.3.78.

BUGS top

In 2.6 kernels up to and including 2.6.7, there was a bug that meant that when sending signals to a process group, **kill**() failed with the error **EPERM** if the caller did not have permission to send the signal to *any* (rather than *all*) of the members of the process group. Notwithstanding this error return, the signal was still delivered to all of the processes for which the caller had permission to signal.

SEE ALSO top

```
_exit(2), killpg(2), signal(2), tkill(2), exit(3), sigqueue(3),
capabilities(7), credentials(7), signal(7)
```

COLOPHON top

This page is part of release 4.08 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.

Linux 2016-07-17 KILL(2)

2016-07-17 KILL(2)

Copyright and license for this manual page

HTML rendering created 2016-10-08 by Michael Kerrisk, author of *The Linux Programming Interface*, maintainer of the Linux *man-pages* project.

For details of in-depth **Linux/UNIX system programming training courses** that I teach, look here.

Hosting by jambit GmbH.

NAME I SYNOPSIS I DESCRIPTION I RETURN VALUE I ERRORS I CONFORMING TO I NOTES I SEE ALSO I COLOPHON

Search online pages

SIGNAL(2)

Linux Programmer's Manual

SIGNAL(2)

NAME top

signal - ANSI C signal handling

SYNOPSIS

```
#include <signal.h>
```

top

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION top

The behavior of **signal**() varies across UNIX versions, and has also varied historically across different versions of Linux. **Avoid its** use: use sigaction(2) instead. See *Portability* below.

signal() sets the disposition of the signal signum to handler, which
is either SIG_IGN, SIG_DFL, or the address of a programmer-defined
function (a "signal handler").

If the signal *signum* is delivered to the process, then one of the following happens:

- * If the disposition is set to SIG IGN, then the signal is ignored.
- * If the disposition is set to **SIG_DFL**, then the default action associated with the signal (see signal(7)) occurs.
- * If the disposition is set to a function, then first either the disposition is reset to SIG_DFL, or the signal is blocked (see Portability below), and then handler is called with argument signum. If invocation of the handler caused the signal to be blocked, then the signal is unblocked upon return from the handler.

The signals SIGKILL and SIGSTOP cannot be caught or ignored.

signal() returns the previous value of the signal handler, or SIG_ERR
on error. In the event of an error, errno is set to indicate the
cause.

ERRORS top

EINVAL signum is invalid.

CONFORMING TO top

POSIX.1-2001, POSIX.1-2008, C89, C99.

NOTES top

The effects of signal() in a multithreaded process are unspecified.

According to POSIX, the behavior of a process is undefined after it ignores a **SIGFPE**, **SIGILL**, or **SIGSEGV** signal that was not generated by kill(2) or raise(3). Integer division by zero has undefined result. On some architectures it will generate a **SIGFPE** signal. (Also dividing the most negative integer by -1 may generate **SIGFPE**.) Ignoring this signal might lead to an endless loop.

See sigaction(2) for details on what happens when SIGCHLD is set to
SIG IGN.

See signal(7) for a list of the async-signal-safe functions that can
be safely called from inside a signal handler.

The use of $sighandler_t$ is a GNU extension, exposed if <code>_GNU_SOURCE</code> is defined; glibc also defines (the BSD-derived) sig_t if <code>_BSD_SOURCE</code> (glibc 2.19 and earlier) or <code>_DEFAULT_SOURCE</code> (glibc 2.19 and later) is defined. Without use of such a type, the declaration of signal() is the somewhat harder to read:

void (*signal(int signum, void (*handler)(int))) (int);

Portability

The only portable use of **signal**() is to set a signal's disposition to **SIG_DFL** or **SIG_IGN**. The semantics when using **signal**() to establish a signal handler vary across systems (and POSIX.1 explicitly permits this variation); **do not use it for this purpose**.

POSIX.1 solved the portability mess by specifying sigaction(2), which provides explicit control of the semantics when a signal handler is invoked; use that interface instead of signal().

In the original UNIX systems, when a handler that was established using **signal**() was invoked by the delivery of a signal, the disposition of the signal would be reset to **SIG_DFL**, and the system did not block delivery of further instances of the signal. This is

equivalent to calling sigaction(2) with the following flags:

```
sa.sa flags = SA RESETHAND | SA NODEFER;
```

System V also provides these semantics for **signal**(). This was bad because the signal might be delivered again before the handler had a chance to reestablish itself. Furthermore, rapid deliveries of the same signal could result in recursive invocations of the handler.

BSD improved on this situation, but unfortunately also changed the semantics of the existing **signal**() interface while doing so. On BSD, when a signal handler is invoked, the signal disposition is not reset, and further instances of the signal are blocked from being delivered while the handler is executing. Furthermore, certain blocking system calls are automatically restarted if interrupted by a signal handler (see signal(7)). The BSD semantics are equivalent to calling sigaction(2) with the following flags:

```
sa.sa flags = SA RESTART;
```

The situation on Linux is as follows:

- * The kernel's signal() system call provides System V semantics.
- * By default, in glibc 2 and later, the **signal**() wrapper function does not invoke the kernel system call. Instead, it calls **sigaction**(2) using flags that supply BSD semantics. This default behavior is provided as long as a suitable feature test macro is defined: **_BSD_SOURCE** on glibc 2.19 and earlier or **_DEFAULT_SOURCE** in glibc 2.19 and later. (By default, these macros are defined; see feature_test_macros(7) for details.) If such a feature test macro is not defined, then **signal**() provides System V semantics.

SEE ALSO top

```
kill(1), alarm(2), kill(2), killpg(2), pause(2), sigaction(2),
signalfd(2), sigpending(2), sigprocmask(2), sigsuspend(2),
bsd_signal(3), raise(3), siginterrupt(3), sigqueue(3), sigsetops(3),
sigvec(3), sysv signal(3), signal(7)
```

COLOPHON top

This page is part of release 4.08 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.

Linux 2016-03-15 SIGNAL(2)

HTML rendering created 2016-10-08 by Michael Kerrisk, author of *The Linux Programming Interface*, maintainer of the Linux *man-pages* project.

For details of in-depth **Linux/UNIX system programming training courses** that I teach, look here.

Hosting by jambit GmbH.

