

软件分析

符号抽象

熊英飞 北京大学

抽象解释是非组合式的

- 程序设计语言的语义通常用组合的方式定义
 - $\mu(x * y + y) = \mu(x * y) + \mu(y) = \mu(x) * \mu(y) + \mu(y)$
- 抽象解释的组合会丢失精度
 - $\sigma(x x) = \sigma(x) \sigma(x)$
- 假设x为1,则
 - $\sigma(1) = \mathbb{I}$
 - 正 正 = 槑
- 但实际上执行x-x的结果恒为0

将表达式作为整体抽象

- 我们希望得到表达式整体最精确的抽象
- $\sigma(x-x)=$
- 如何得到这样的整体抽象?
 - 可能的表达式种类无限,无法一一定义

符号抽象Symbolic Abstraction

• 2004年由Tom Reps等人提出

• 利用SMT Solver的求解能力,自动找到函数的整体精确抽象

抽象域计算问题

• 给定程序和抽象域上的输入,求抽象域上最精确的输出

- 如,给定
 - x=负
 - 求x-x在抽象域上的计算结果
- 答案: 零

最小抽象

- 如何定义最精确的抽象?
- •最小抽象:
 - · 给定具体域集合S和具体化函数γ,
 - 甲为S的最小抽象当且仅当
 - $S \subseteq \gamma(\mathbb{P})$ 且
 - 对任意乙, $S \subseteq \gamma(Z) \Rightarrow \gamma(P) \subseteq \gamma(Z)$
- S的最小抽象记为 $\hat{\alpha}(S)$

逻辑与集合

- 明确逻辑和集合的关系对后续理解有帮助
- 任何逻辑表达式定义了一个集合:满足该表达式的值的集合
 - φ : x > 0
 - 定义了
 - $[\![\varphi]\!]: \{x \mid x > 0\}$
- γ可以写成从抽象值到逻辑表达式的映射
- 子集关系也就对应了逻辑蕴含关系
 - $\llbracket \varphi_1 \rrbracket \subseteq \llbracket \varphi_2 \rrbracket \Leftrightarrow \varphi_1 \to \varphi_2$

- Tom Reps等人2004年的论文提出RSY算法
 - 类似于模型检查领域的CEGAR算法
- 假设抽象域和具体域上定义了如下操作和特殊值
 - ý从抽象值到SMT表达式的映射
 - µ从程序到SMT表达式的映射
 - β从具体值到最小抽象值的映射,即以下式子成立
 - $x \in \gamma(\beta(x)) \land \forall \exists \exists (x \in \gamma(\exists)) \rightarrow (\gamma(\beta(x)) \subseteq \gamma(\exists))$
 - β 为 $\hat{\alpha}$ 的特例: $\beta(x) = \hat{\alpha}(\{x\})$
 - 甲山乙: 抽象值的并,即以下式子成立
 - $\gamma(\mathbb{P}) \subseteq \gamma(\mathbb{P} \sqcup \mathbb{Z})$
 - $\gamma(Z) \subseteq \gamma(\Box Z)$
 - \forall 丙: $(\gamma(\mathbb{P}) \subseteq \gamma(\mathbb{R}) \land \gamma(\mathbb{Z}) \subseteq \gamma(\mathbb{R})) \rightarrow (\gamma(\mathbb{P} \sqcup \mathbb{Z}) \subseteq \gamma(\mathbb{R}))$
 - 最小抽象值」使得γ(Δ) = Ø
- 注意以上操作都是计算机可表示的

- 定理:假设对具体值的任意集合都存在最小抽象。 给定具体值的集合S,该集合的最小抽象 $\hat{\alpha}(S)$ 满足
 - $\hat{\alpha}(S) = \sqcup_{x \in S} \beta(x)$
- 证明:
 - 容易证明 $S \subseteq \gamma(\sqcup \{\beta(x) \mid x \in S\})$
 - 接下来用反证法证明 \cup { $\beta(x)$ | $x \in S$ }是最小抽象
 - 假设存在另一个抽象值甲,满足 $S \subseteq \gamma(\mathbb{P})$,且 $\gamma(\mathbb{P}) \subset \gamma(\mathbb{P})$ { $\beta(x) \mid x \in S$ })
 - 那么一定存在 $x \in S$,使得¬ $(\beta(x) \subseteq \gamma(\mathbb{P}))$
 - 即 $\beta(x)$ 不是x的最小抽象,形成矛

- 抽象域计算问题:
 - 给定程序p和抽象域上的输入甲,求抽象域上最精确的输出
 - 即:寻找在输入集合γ(甲)下,p的输出集合的最小抽象

- $\hat{\alpha}(S) = \sqcup_{x \in S} \beta(x)$
- 基本原理:不断调用SMT Solver寻找在S中但不在当前结果中的元素x,然后将 $\beta(x)$ 并入当前结果

• 输入: 程序p

• 输入: p的抽象输入 甲

```
result =\bot
While(sat(\dot{\mu}(p) \land \dot{\gamma}(甲) \land \neg \dot{\gamma}(result)))
y=get-model()
result=result \sqcup \beta(y)
return result
```

示例

•程序: x-x

• 输入: x=正

•运行过程:

• result = \bot , $r = x - x \land x > 0 \land \neg (false)$ 可满足,r=0

• result=零, $r = x - x \land x > 0 \land \neg (r = 0)$ 不可满足

•程序结束,返回零

示例

- •程序: x+y
- 输入: x=正, y=负
- •运行过程:
 - result = \bot , $r = x + y \land x > 0 \land y < 0 \land \neg \text{(false)}$ 可满足,r=0
 - result=零, $r = x + y \land x > 0 \land y < 0 \land \neg(r = 0)$ 可满足,r=1
 - result=槑, $r = x + y \land x > 0 \land y < 0 \land \neg(true)$ 不可 满足
 - •程序结束,返回槑

从值的抽象到程序的抽象

- RSY算法可以解决抽象域计算问题
- 如何得到程序的整体精确抽象?
 - 方案1: 在每次需要在抽象域上根据给定输入执行程序的时候,调用RSY算法
 - 需要反复多次调用SMT求解器,开销较大
 - 方案2: 直接采用RSY算法计算程序的抽象

程序的抽象

- 一段程序是从输入到输出的函数
 - 即由输入、输出对组成的集合
- •程序的抽象的记录:可直接记录所有输入对应的输出

$$f(x)=x+5$$

子

输入	输出
Т	Τ
正	正
负	槑
零	正
槑	槑

f(x,y)=x*y

꿁

	正	负	零	槑	T
正	正				
负	负	正			
零	零	零	零		
槑	槑	槑	槑	槑	
Τ	Т	Т	Т	Т	Т

程序(函数)抽象的语义

• γ(受)为受上所有输入输出对在具体域上对应的 二元组的集合

输入	输出
Т	Т
正	正
负	槑
零	正
槑	槑

$$\gamma(\mathfrak{P}) =$$
 $\gamma(\mathfrak{L}) \times \gamma(\mathfrak{L}) \cup$
 $\gamma(\mathfrak{E}) \times \gamma(\mathfrak{E}) \cup$
 $\gamma(\mathfrak{P}) \times \gamma(\mathfrak{R}) \cup$
 $\gamma(\mathfrak{P}) \times \gamma(\mathfrak{R}) \cup$
 $\gamma(\mathfrak{P}) \times \gamma(\mathfrak{R}) \cup$
 $\gamma(\mathfrak{R}) \times \gamma(\mathfrak{R})$

定义RSY算法需要的操作

- 函数抽象合并
 - (좡1 □ 좡2)(甲) = 좡1(甲) □ 좡2(甲)
 - 即合并对应输入上的输出
- 最小函数抽象
 - ⅔_⊥(_) =⊥
- β在函数上的扩展

•
$$\beta([x,y])(\mathbb{H}) = \begin{cases} \bot, & \neg(x \in \gamma(\mathbb{H})) \\ \beta(y), & x \in \gamma(\mathbb{H}) \end{cases}$$

- γ在函数上的扩展:
 - 依次翻译输入输出对
 - [正,负],... 翻译为
 - $x > 0 \rightarrow r < 0 \land \cdots$

用RSY算法抽象程序

• 输入: 程序p

```
result = \Box_{\perp}
While(sat(\dot{\mu}(p) \land \neg \dot{\gamma}(result)))
  y=get-model()
  result=result \sqcup \beta(y)
return result
```

示例

•程序: x-x

•运行过程:

- result = \mathbb{S}_{\perp} , $r = x x \land \neg(x > 0 \rightarrow false \land \cdots)$ 可满足,[x,r]=[1, 0]
- result ={[正, 零], [负, \bot], [零, \bot], [槑, 零]}, $r = x x \land \neg(x > 0 \rightarrow r = 0 \land (true \rightarrow r = 0) ...)$ 可满足,[x,r]=[-1, 0]
- result ={[正, 零], [负, 零], [零, \bot], [槑, 零]}, $r = x x \land \neg(...)$ 可满足,[x,r]=[0, 0]
- result ={[正,零],[负,零],[零,零],[槑,零]}, $r = x x \land \neg (...)$ 不可满足

符号抽象问题

抽象域计算问题和程序抽象问题可以统一成如下符号抽象问题

- 给定逻辑公式 φ ,抽象域**虚**,寻找抽象域中关于 公式 φ 的最精确抽象甲,即满足
 - $\llbracket \varphi \rrbracket \subseteq \gamma(\mathbb{P}) \land$
 - $\forall \mathbb{Z}$: $\llbracket \varphi \rrbracket \subseteq \gamma(\mathbb{Z}) \to \gamma(\mathbb{P}) \subseteq \gamma(\mathbb{Z})$

参考资料

- Miné A. The octagon abstract domain[J]. Higher-Order and Symbolic Computation, 2006, 19(1):31-100.
- Thomas W. Reps, Aditya V. Thakur: Automating Abstract Interpretation. VMCAI 2016. 3-40
- MIT抽象解释课程: http://web.mit.edu/afs/athena.mit.edu/course/16/ 16.399/www