

Centro Universitário de Viçosa – UNIVIÇOSA

Instituto de Ciências Exatas Engenharia de Computação ADS 201 – Sistemas Operacionais e IoT

Internet das Coisas

Prof. Vinicius Martins Almeida vinicius martins@univicosa.com.br

Introdução

Introdução

Talked Year

2011

2009

2011

1939

Introdução

Qual a diferença entre a internet comum e a internet das coisas?

Definições de Internet das Coisas

- ❖Os objetos têm personalidades e identidades virtuais, onde são incorporados com interfaces inteligentes que permitem que eles se comuniquem e se conectem com contextos de usuários e ambientes sociais (Aleksandrovics et al., 2016).
- Coisas interconectadas que têm papéis ativos no que poderia ser chamada de internet do futuro (Internet of Things in 2020 Roadmap for the Future, 2008).
- ❖ Esta expressão consiste em duas palavras: Internet que é definida como a rede mundial de um enorme número de redes dependendo dos padrões de protocolos de comunicação, enquanto a palavra Coisas se refere a todos os objetos que estão conectados a essa rede com base nos mesmos padrões. (Internet of Things in 2020 Roadmap for the Future, 2008)

Definições de Internet das Coisas

❖O ambiente da rede IoT é composto por e entidades virtuais, onde essas entidades se transformam em coisas virtuais dentro de um mundo cibernético. Essas coisas são incorporadas com diferentes habilidades como sensoriamento, análise e processamento e autogestão com base em protocolos de comunicação interoperáveis e critérios específicos, essas coisas inteligentes devem ter identidades e personalidades virtuais únicas (Steven, 2016).

A noção de IoT é qualquer coisa que possa ser acessada de qualquer lugar a qualquer momento por qualquer pessoa para qualquer serviço através de qualquer rede. Assim, a IoT pode ser chamada de 6Anys.

Blocos Funcionais da IoT

- ❖ Dispositivos Dispositivos inteligentes são os principais agentes da IoT, são capazes de sentir, controlar, atuar em atividades e trocar dados com aplicações e servidores inteligentes. Os equipamentos (*smart phones*, *wearable sensors*, automóveis, por exemplo) devem ser preparados para serem conectados entre si.
- ❖ Gerenciamento O principal fator que distingui a loT dos outros é que ela pode ser comandada por meio de botões ou switches e são remotamente gerenciados com ou sem intervenção humana. Posteriormente, podem trocar informações entre e para tomar decisões.
- ❖ Segurança O sistema loT tenta mitigar esses ataques por meio da implementação de muitas funções de segurança, como privacidade, autorização, autenticação, segurança de dados, integridade de conteúdo e integridade de mensagens. Ex.: Patinete Xaomi

Definições de Internet das Coisas

- ❖Aplicação Permite ao usuário analisar e visualizar os status dos sistemas lot em qualquer lugar à qualquer momento.
- Exemplo da geladeira
- Exemplo do Ar condicionado
- Exemplo IoT na Medicina
- ❖ Sistema de irrigação

Componentes Básicos dos Dispositivos IoT

- ❖Identificação Os sistemas IoT devem possuir um código como código universal do produto, MAC (media access control) ID, IPv6ID
- Meta identificação Informação sobre o modelo, hardware, número serial e data de manufatura.
- Controle de Segurança Se assemelha a lista de amigos do facebook, só quem pode acessar são usuários cadastrados.
- ❖Service Discovery Permite que o dispositivo IoT possa armazenar informações de todos os dispositivos presentes na rede em um diretório específico.
- ❖ Gerenciamento de relacionamento Permite ao dispositivo IoT: começar, atualizar e terminar relações entre ele mesmo e entre outros dispositivos.
- ❖ Serviço de composição Permite a interação entre objetos *smart* e tem a finalidade de fornecer o melhor serviço de integração.

❖ Baseado no fato de que a IoT conecta milhões de dispositivos, desafios como QoS, privacidade e segurança são inerentes. Logo, esta tecnologia deve se atentar a estes problemas. São listados alguns:

□ Distributivo	- O	s dados	s podem	ser	coletados	de	várias	fontes	e,	conse	quent	emente
podem ser p	roce	essados	por meio	de	entidades i	nteli	igentes	distinta	s e	m um	proce	dimento
distribuído.												

- □Interoperabilidade Dispositivos IoT que pertencem a diferentes vendedores têm que se comunicar entre si para atender os objetivos.
- □ Escalabilidade Bilhões de objetos estarão na rede ao mesmo tempo, então os ambientes devem ser capazes de rodar aplicações que possuem uma grande quantidade de dados. Redes LoRa e Sigfox
- ☐ Escassez de recursos Computação e energia são considerados escassos.
- □Segurança Usuários se sentem imponentes e expostos.

❖ Para resolver estes problemas, foi proposta a seguinte arquitetura:

Arquitetura de Pilha da IoT

❖Cloud computing — Computação nas Nuvens - A computação em nuvem permite o compartilhamento de recursos para reduzir o custo de execução e aumentar a disponibilidade do serviço. Existem quatro tipos diferentes de modelos de computação em nuvem: público, privado, híbrido e comunitário. Os parâmetros de Qualidade de Serviço (QoS), como confiabilidade, segurança e eficiência energética, são importantes para fornecer um serviço de nuvem

eficiente

❖FOG Computing – "Computação na névoa" – estende a nuvem para se aproximar dos dispositivos que trabalham com dados. Os Fog nodes (nós de processamento e armazenamento) são instalados em qualquer lugar.

- Atua na redução da latência da rede;
- Redução da largura de banda da rede;
- Problemas de segurança
- Confiabilidade
- Envio de dados mais adequados

Computação em Névoa

- Em névoa informações detectadas devem ser processadas na borda da área de rede próxima aos dispositivos inteligentes, em vez de processá-las por servidores remotos de computação em nuvem.
- Por que usar computação em névoa? Os nós de computação em névoa atuam como uma ponte entre objetos inteligentes, serviços de armazenamento e servidores de computação em nuvem de grande escala, tem a capacidade de fornecer aos usuários finais serviços de desempenho com menor atraso.

Computação em Névoa

Camada de segurança

Camada de armazenamento temporário

Camada de pré processamento

Camada de monitoramento

Computação em Névoa

• Papel da *cloud computing* e da *fog computing*

Arquitetura da Computação em Nuvem

Referências

- Conheça a tecnologia LoRa ® e o protocolo LoRaWAN™ Embarcados
- <u>(1) Computação em Névoa: contextualização, benefícios e desafios YouTube</u>
- KASSAB, Wafa'a; DARABKH, Khalid A. A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations. **Journal of Network and Computer Applications**, v. 163, p. 102663, 2020.
- GILL, Sukhpal Singh et al. Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet of Things, v. 8, p. 100118, 2019.