CS 332, M02.3: Finite State Machines, Practice Problems

- 1. Use this to practice making FSM's. Given $\Sigma = \{a, b\}$, create the machine M for:
 - (a) $L_1 = a^*$
 - (b) $L_2 = (aba)^*$
 - (c) $L_3 = (bb)^*$
 - (d) $L_4 = (bb)*aa(bb)*$
 - (e) $L_5 = aaaaa^*b^*bb$
 - (f) $L_6 = a^* + b^*$
 - (g) $L_7 = a^*b^* + b^*a^*$
 - (h) $L_8 = a^+ b^+ a^+$
 - (i) $L_9 = a(a+b)^*a$
 - (j) $L_{10} = (a+b)^+bbb$
 - (k) $L_{11} = a(a+b)^*a(a+b)^*a$
 - (1) $L_{12} = (a+b)^*aa + (a+b)^*bb$
- 2. Let L be the language of strings containing only pairs of a's or b's for alphabet $\Sigma = \{a, b\}$. For example, aabbaabbaa, bbbbb, aaaabb and bbbaa are all in L, while aba, and bbbaa are not in L. L does not include zero length strings, so at least one aa or bb pair must be present. The regular expression for $L = (aa \text{ OR } bb)^+$, which is more correctly written as $L = (aa + bb)^+$.
 - (a) (10) Draw the machine, M, that corresponds to L.
 - (b) (10) Define the machine M in terms of S, Σ , q_0 , δ , and F.