

Metode Holt Winter

PERTEMUAN 10

PROGRAM STUDI SISTEM INFORMASI JURUSAN TEKNIK INFORMATIKA UNIVERSITAS TRUNOJOYO MADURA 2024

TUJUAN

- Tujuan Instruksional Umum (TIU)
 Mahasiswa mampu memahami dan mengimplementasikan peramalan bisnis.
- □ Tujuan Instruksional Khusus (TIK)
 Mahasiswa mampu menemukenali, menguraikan dan menerapkan berbagai model holt winter yang dapat digunakan untuk model peramalan bisnis

TOPIK BAHASAN

Holt Winter

- Merupakan metode dengan pemulusan eksponensial
- Dapat mengatasi faktor tren dan musiman yang muncul secara sekaligus pada data deret waktu.
- Didasarkan atas tiga unsur yaitu unsur data asli, tren dan musiman dengan memberikan tiga pembobotan berturutturut dalam prediksinya, yaitu α, β,dan γ.

- Koefisien α, β, dan γ terletak diantara 0 dan 1.
- α, β, dan γ ditentukan secara subjektif atau dengan meminimalkan nilai kesalahan dari peramalan.

- Metode Holt-Winter dibagi menjadi dua model, yaitu; model aditif dan multiplikatif.
- Model aditif dilakukan jika plot data asli menunjukkan fluktuasi musiman yang relatif stabil (konstan)
- Model multiplikatif digunakan jika plot data asli menunjukkan fluktuasi musiman yang bervariasi.

- At =nilai pemulusan peramalan untuk periode t
- Yt= nilai aktual pada periode ke-t
- Tt = nilai pemulusan trend
- St= komponen musiman pada periode t
- Ft+m =ramalan untuk m periode ke depan dari t
- m= jumlah periode yang akan ditamalkan ke depan
- L= panjang musiman

 α = rata-rata dari eksponensial constant

 β = nilai trend dari eksponensial constant

γ = nilai musiman dari eksponensial constant

Rumus

$$A_{t} = \alpha(y_{t} - S_{t-L}) + (1 - \alpha)(A_{t-1} + T_{t-1})$$

$$T_{t} = \beta(A_{t} - A_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma(y_{t} - A_{t}) + (1 - \gamma)S_{t-L}$$

$$F_{t+m} = A_{t} + T_{t}m + S_{t-L+m}$$
Initialization
$$A_{L} = \frac{1}{L}(y_{1} + y_{2} + \dots + y_{L})$$

$$T_{L} = \frac{1}{L}(\frac{y_{L+1} - y_{1}}{L} + \frac{y_{L+2} - y_{2}}{L} + \dots + \frac{y_{L+L} - y_{L}}{L})$$

 $S_1 = y_1 - A_L$ $S_2 = y_2 - A_L$... $S_L = y_L - A_L$

Proses Inisialisasi

- Untuk memulai perhitungan dibutuhkan proses inisialisasi nilai awal
- Parameter awal yang perlu dicari adalah A, T, S
- □ A untuk nilai pemulusan
- □ T untuk nilai Trend, dan
- □ S untuk nilai musiman

$$A_{t} = \alpha(y_{t} - S_{t-L}) + (1 - \alpha)(A_{t-1} + T_{t-1})$$

$$T_{t} = \beta(A_{t} - A_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma(y_{t} - A_{t}) + (1 - \gamma)S_{t-L}$$

$$F_{t+m} = A_{t} + T_{t}m + S_{t-L+m}$$
Initialization
$$A_{L} = \frac{1}{L}(y_{1} + y_{2} + \dots + y_{L})$$

$$T_{L} = \frac{1}{L}(\frac{y_{L+1} - y_{1}}{L} + \frac{y_{L+2} - y_{2}}{L} + \dots + \frac{y_{L+L} - y_{L}}{L})$$

$$S_{1} = y_{1} - A_{L} \quad S_{2} = y_{2} - A_{L} \quad \dots \quad S_{L} = y_{L} - A_{L}$$

Praktik

Year	Quarter	Employment		
1985	1	416		
	2	446,8		
	3	461,9		
F 100	4	465,7		
1986	1	445,9		
0.11 (0.00) (0.00)	2	471,3		
	3	486,6		
1.77/1919	4	484,2		
1987	1	449,2		
	2	483,2		
	3	489,6		
DE00001	4	484,3		
1988	1	476,5		
11/10/00/00	2	507		
	3	516,3		
	4	510,8		

- a) Hitung nilai forecasting untuk Tahun 1989 Quarter 1,2,3,dan 4!
- b) Hitung nilai MSE dan MAPE dari hasil forecasting tersebut?

Jawaban

Vaar	Ouarter	Employment	Daviad	$Y_{r+r} - Y_{r}$	At	Tt	Ct	Carnest	Alaba 0.01
Year	Quarter	0.00	100	2.00		п	St	Forecast	Alpha 0,01
1985	1	416		29,9	-		-31,6		Beta 0,02
	2	446,8	2	24,5			-0,8		Gamma 0,05
	3	461,9	3	24,7			14,3		
	4	465,7	4	18,5	447,6	6,1	18,1		
1986	1	445,9	5		453,938	6,105	-30,422	422,1	
	2	471,3	6		460,163	6,107	-0,203	459,243	Employment
	3	486,6	7		466,331	6,108	14,598	480,571	$A_{-} = \alpha(v_{-} - S_{}) + (1 - \alpha)(A_{} + T_{})$
	4	484,2	8		472,376	6,107	17,786	490,539	11 - a O t St-L) 1 (1 a)(11t-1 1 1t-1)
1987	1	449,2	9		478,494	6,107	-30,366	448,061	$A_t = \alpha(y_t - S_{t-L}) + (1 - \alpha)(A_{t-1} + T_{t-1})$ $T_t = \beta(A_t - A_{t-1}) + (1 - \beta)T_{t-1}$
	2	483,2	10		484,590	6,107	-0,262		$S_t = \gamma(y_t - A_t) + (1 - \gamma)S_{t-L}$
	3	489,6	11		490,540	6,104	V S C S C S C S C S C S C S C S C S C S	505,295	F
	4	484,3	12		496,342	6,098		514,430	$F_{t+m} = A_t + T_t m + S_{t-L+m}$
1988	1	476,5	13		502,485	6,099	-30,146		Initialization
	2	507	14		508,570	6,099	-0,328	508,321	1
	3	516,3	15		514,547	6,096	V 474 - 53-100-1	528,490	$A_L = \frac{1}{L}(y_1 + y_2 + \dots + y_L)$
	4	510,8	16		520,382	6,091	15,001		$T_{L} = \frac{1}{L} \left(\frac{y_{L+1} - y_{1}}{L} + \frac{y_{L+2} - y_{2}}{L} + \dots + \frac{y_{L+L} - y_{L}}{L} \right)$
1989	1							496,326	L L L L L L
	2		7	7				532,236	$S_1 = y_1 - A_L S_2 = y_2 - A_L \cdots S_L = y_L - A_L$
	3							551,872	
	4							559,746	