

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 ILFOV PROBA TEORETICĂ Barem

Pagina 1 din 5

Subject 1	Parțial	Punctaj
1. Barem subject 1	1 ai şiai	10
a) Pentru:		4p
$R^{2} = \left(\frac{D}{2}\right)^{2} + \left(R - h\right)^{2} \Rightarrow R = \frac{h}{2} + \frac{D^{2}}{8h}$	1p	
Pentru razele marginale lentila este plan-convexă și $f = \frac{R}{n-1}$	1p	
Pentru razele centrale, sistemul este alcătuit dintr-o lentilă plan-concavă și o		
lentilă biconvexă, astfel încât: $\frac{1}{f_1} = (n_1 - 1)\frac{2}{R} - (n - 1)\frac{1}{R} \Rightarrow f_1 = \frac{R}{2n_1 - n - 1}$	1p	
Numeric: $f = 101 \text{cm}$ $f_1 \cong 168 \text{cm}$	1p	
b) Pentru: reprezentarea corectă a mersului razelor de lumină	3p	3p
$\begin{array}{c} h \\ \hline \\ h \\ \hline \\ h \\ \hline \\ h \\ \hline \\ n \\ \hline \\ f_1 \\ \end{array}$		
c) Pentru:		2 p
a detaliu		

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- **5.** Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 ILFOV PROBA TEORETICĂ Barem

Pagina 2 din 5

din asemănarea triunghiurilor:		
$\frac{f_1 - x}{f_1} = \frac{a}{d}$	(1)	0,50p
$\frac{x-f}{f} = \frac{a}{D}$	(2)	0,50p
Din (1) și (2) rezultă: $x = \frac{Df}{Df}$	$\frac{d)ff_1}{+df}$	0,50p
Numeric: $x \cong 112 \text{ cm}$		0,50p
Oficiu		1p

Subject 2	Parţial	Punctaj
2. Barem subject 2		10
A. a) Pentru: \vec{R}_1 \vec{R}_2 \vec{R}_3 \vec{R}_4 \vec{R}_4 \vec{R}_5 \vec{R}_4 \vec{R}_5 \vec{R}_5 \vec{R}_6 \vec{R}_7 \vec{R}_8 $\vec{R}_$	1p	4p
$\begin{cases} m_1 a = T - m_1 g \left(\sin \alpha + \mu \cos \alpha \right) \\ m_2 a = m_2 g - T - S \rho g y \end{cases}$	0,25p 0,25p	
$a = g \frac{m_2 - m_1(\sin\alpha + \mu\cos\alpha) - S\rho y}{m_1 + m_2}$	0,50p	
$y = 0; \ a_0 = g \frac{m_2 - m_1(\sin\alpha + \mu\cos\alpha)}{m_1 + m_2} \Rightarrow a_0 = \frac{10}{3} \text{ m/s}^2$	0,50p	
$a = 0; y_0 = \frac{m_2 - m_1(\sin\alpha + \mu\cos\alpha)}{S\rho} \Rightarrow y_0 = 0.75 \text{ m}$	0,50p	

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- **5.** Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 ILFOV PROBA TEORETICĂ Barem

Pagina 3 din 5

		.51114 5 4111 5
$a(m/s^{2})$ 4 3,33 2 A 0,5 0,75 1,0 $y(m)$	1p	
A. b) Pentru:		2p
$\frac{\Delta v^2}{2} = aria(A)$ $\frac{v_{\text{max}}^2}{2} = \frac{a_0 y_0}{2} \Rightarrow v_{\text{max}} = \sqrt{a_0 y_0}$	0,50р	
	1p	
Numeric: $v_{max} \cong 1,58 \text{ m/s}^2$	0,50p	
α		
$a = g \cos \varphi$	0,50p	
$x = \frac{d}{\cos(\alpha - \varphi)}$ $t = \sqrt{\frac{2x}{a}} \Rightarrow t = \sqrt{\frac{2d}{g\cos\varphi\cos(\alpha - \varphi)}}$	0,50р	
$t = \sqrt{\frac{2x}{a}} \Rightarrow t = \sqrt{\frac{2d}{g\cos\varphi\cos(\alpha - \varphi)}}$	0,50р	
$\cos\varphi\cos(\alpha-\varphi) = \frac{1}{2}(\cos\alpha + \cos(\alpha-2\varphi))$	0,25p	
$t = \text{minim pentru } \cos \varphi \cos(\alpha - \varphi) = \text{maxim}$	0,50p	
$cos(\alpha - 2\varphi) = 1 \Rightarrow \alpha - 2\varphi = 0 \Rightarrow \varphi = \frac{\alpha}{2}$	0,50р	
Numeric: $\varphi = 25^{\circ}$	0,25p	
Oficiu		1p

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- **5.** Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 ILFOV PROBA TEORETICĂ Barem

Pagina 4 din 5

Subject 3		Parţial	Punctaj
3. Barem subject 3			10
a) Pentru: \vec{F} \vec{N}_y \vec{N}_x	\vec{a}_{2x}	1р	4p
Pentru corpul de masă M putem scrie:			
$Ma_1 = F - F_f \cos \alpha - N \sin \alpha$	(3)	0,25p	
$F_f = \mu N$	(4)	0,25p	
Pentru corpul de masă m obținem:			
$ma_{2x} = F_{fx} + N_x \Rightarrow ma_{2x} = \mu N \cos \alpha + N \sin \alpha$	(5)	0,25p	
$ma_{2y} = N_y - F_{fy} \Rightarrow ma_{2y} = N\cos\alpha - \mu N\sin\alpha$	(6)	0,25p	
$\overrightarrow{a_{2y}}$ $\overrightarrow{a_2}$ $\overrightarrow{a_1}$ Accelerația relativă a corpului de masă m față de c	ornul de masă <i>M</i> este:		
Accelerația relativa a corputui de masa m rața de c $\vec{a}_r = \vec{a}_2 - \vec{a}_1$	orpur de masa m este.	0,25p	
$tg\alpha = \frac{a_{2y}}{a_1 - a_{2x}}$		0,25p	
Din ecuațiile de mai sus obținem:			
$ma_1 \sin \alpha = N$	(7)	0,50p	
Înlocuind în (3) rezultă:	· /		
$a_1 = \frac{F}{M + m(\mu\cos\alpha + \sin\alpha)\sin\alpha}$		0,50p	
Numeric: $a_1 = 1 \text{ m/s}^2$		0,50p	

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 ILFOV PROBA TEORETICĂ Barem

Pagina 5 din 5

b) Pentru:		2,5p
$d_x = \frac{1}{2}a_{2x}t^2$	0,50p	
$d = d_y = \frac{1}{2}a_{2y}t^2$	0,50p	
$\frac{d_x}{d} = \frac{a_{2x}}{a_{2y}}$	0,25p	
$a_{2x} = a_1 \sin \alpha (\sin \alpha + \mu \cos \alpha)$	0,25p	
$a_{2y} = a_1 \sin \alpha (\cos \alpha - \mu \sin \alpha)$	0,25p	
$d_x = d \frac{\sin \alpha + \mu \cos \alpha}{\cos \alpha - \mu \sin \alpha}$	0,50p	
Numeric: $d_x = 1.4 \text{ m}$	0,25p	
c) Pentru:		2,5p
$\mathbf{v}_{x} = a_{2x}t$	0,50p	
$\mathbf{v}_{y} = a_{2y}t$	0,50p	
$t = \sqrt{\frac{2d}{a_{2y}}}$	0,50p	
$V = t\sqrt{a_{2x}^2 + a_{2y}^2}$	0,25p	
Obţinem:		
$v = \sqrt{\frac{2Fd \sin \alpha (1 + \mu^2)}{[M + m \sin \alpha (\sin \alpha + \mu \cos \alpha)](\cos \alpha - \mu \sin \alpha)}}$	0,50р	
Numeric: $v = 1.4 \text{ m/s}$	0,25p	
Oficiu		1p

Propus de:

prof. Ioan Pop – Colegiul Național "Mihai Eminescu", Satu Mare prof. Viorel Popescu – Colegiul Național "Ion C. Brătianu", Pitești prof. Liviu Blanariu – Centrul Național de Evaluare și Examinare, București

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve cerințele în orice ordine.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.