Ph.D. Thesis

Indirect study of electroweakly interacting particles at 100 TeV hadron colliders

So Chigusa

Department of Physics

December 2019

Abstract

(* To be written *)

Acknowledgments

(♣ To be written ♣)

Contents

1	Introduction	1
2	Weakly interacting massive particle	1
	2.1 WIMPs as a dark matter candidate	1

Section 1

Introduction

(♣ Definition of "SM" ♣) (♣ Definition of "WIMP" ♣)

Section 2

Weakly interacting massive particle

2.1 WIMPs as a dark matter candidate

One of the most important evidences of the beyond SM is the existence of dark matter (DM) [1]. DM is an unknown object that occupies a non-negligible ratio of the total energy of our Universe, but has not yet been directly observed because of its weak interaction with the SM particles. In spite of its invisibility, the existence of DM is confirmed by several astrophysical observations such as the mass measurement using the gravitational lensing effect caused by galaxies and clusters [2, 3], the flatness of galactic rotation curves further the optical radius [4, 5], the measurement of the power spectrum of the cosmic microwave background (CMB), and so on. In particular, the observation of CMB allows us to determine various cosmological parameters [6,7] including the density of the non-relativistic matter and baryon, which is currently determined as [8]

$$\Omega_m h^2 = 0.1430 \pm 0.0011, \tag{2.1}$$

$$\Omega_b h^2 = 0.02237 \pm 0.00015, \tag{2.2}$$

where $h \sim \mathcal{O}(1)$ is the Hubble constant in units of $100 \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$. The difference between $\Omega_m h^2$ and $\Omega_b h^2$ implies the existence of DM and its abundance $\Omega_c h^2 \simeq 0.12$.

the At worst DM interacts with the SM particles through the gravity, which is considerably weaker than all the other known interactions. (♣ Mention to Ema paper?? ♣)

References

- [1] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6 (1933) 110.
- [2] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophysical Journal 86 (1937) 217.
- [3] V. Trimble, Existence and Nature of Dark Matter in the Universe, Ann. Rev. Astron. Astrophys. 25 (1987) 425–472. doi:10.1146/annurev.aa.25.090187.002233.
- [4] H. W. Babcock, The rotation of the Andromeda Nebula, Lick Observatory Bulletin 19 (1939) 41–51. doi:10.5479/ADS/bib/1939LicOB.19.41B.
- [5] K. G. Begeman, A. H. Broeils, R. H. Sanders, Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics, Mon. Not. Roy. Astron. Soc. 249 (1991) 523.
- [6] G. Jungman, M. Kamionkowski, A. Kosowsky, D. N. Spergel, Weighing the universe with the cosmic microwave background, Phys. Rev. Lett. 76 (1996) 1007–1010. arXiv: astro-ph/9507080, doi:10.1103/PhysRevLett.76.1007.
- [7] G. Jungman, M. Kamionkowski, A. Kosowsky, D. N. Spergel, Cosmological parameter determination with microwave background maps, Phys. Rev. D54 (1996) 1332–1344. arXiv:astro-ph/9512139, doi:10.1103/PhysRevD.54.1332.
- [8] N. Aghanim, et al., Planck 2018 results. VI. Cosmological parametersarXiv:1807.06209.