15

20

CLAIMS

What is claimed is:

5 1. A compound represented by the following structural formula:

$$R - Si - \left[O - Si - \left(X_1 - Si - X_2 - Si - R^a \right) \right]$$

$$R - Si - \left[O - Si - \left(X_1 - Si - X_2 - Si - R^a \right) \right]$$

$$R - Si - \left[O - Si - \left(X_1 - Si - X_2 - Si - R^a \right) \right]$$

$$R - Si - \left[O - Si - \left(X_1 - Si - X_2 - Si - R^a \right) \right]$$

wherein:

X₁ and X₂ are independently each an inert linking group;

each R^a is independently a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aryl group;

R is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or is represented by a structural formula selected from:

$$O \longrightarrow S \stackrel{R^a}{\longleftarrow} X_1 \longrightarrow S \stackrel{R^a}{\longleftarrow} X_2 \longrightarrow S \stackrel{R^a}{\longleftarrow} R^b \qquad \text{or} \qquad R^c \longrightarrow S \stackrel{R^a}{\longleftarrow} O$$

each R^b is independently an epoxide substituted aliphatic group; and R^c is H, an unsubstituted aliphatic group, a substituted aliphatic group, an unsubstituted aryl group, a substituted siloxane group, an unsubstituted siloxane group, a substituted polysiloxane group or an

unsubstituted polysiloxane group.

2. The compound of Claim 1 wherein the compound is represented by the following structural formula:

$$R - Si - O - Si - R^{1} - R^{2} - Si - O - Si - R^{5}$$

$$R^{1} - R^{2} - Si - O - Si - R^{5}$$

$$R^{1} - R^{4} - R^{4}$$

3

5

wherein R is represented by a structural formula selected from:

$$R^{5}$$
 R^{3} R^{2} R^{1} R^{2} R^{1} R^{2} R^{3} R^{4} R^{4} R^{4} R^{4} R^{5} R^{6} R^{1} R^{2} R^{1} R^{2} R^{1}

$$R^6 \longrightarrow S \longrightarrow O$$
 $R^1 \longrightarrow C$

wherein:

10

each group R^1 , each group R^3 and each group R^4 is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

each group R^2 is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1-[O-Y_1]_p-, -Y_1-Si(R^z)_2-Y_1-, -Y_1-Si(R^z)_2-Y_1-O-Y_1-Si(R^z)_2-Y_1-, \text{ or } -Y_1-Si(R^z)_2-Y_1-Si(R^z)_2-Y_1-;$

15

10

15

20

each group R^5 is independently, an epoxide substituted aliphatic group having 2-10 carbon atoms; and

each group R^6 is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^z - $(O-Y_1)_{m^-}$, $(R^z)_3Si$ - $(O-Si(R^z)_2)_{q^-}Y_1$ - or $(R^z)_3Si$ - $(O-Si(R^z)_2)_{q^-}O$ -;

each R^z is independently a substituted or unsubstituted C_{1-12} alkyl group, C_{1-12} cycloalkylalkyl group, aryl substituted C_{1-12} alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group;

p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

- 3. The compound of Claim 2 wherein each group R² is independently, a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, C₁₋₁₂ substituted arylalkylene, or arylene group; and each R⁶ is independently a substituted or unsubstituted C₁₋₁₂ alkylsilane, C₁₋₁₂ cycloalkylsilane, C₁₋₁₂ alkoxysilane, aryl substituted C₁₋₁₂ alkylsilane, a hydrogen, a vinyl, a substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether, (C₁₋₁₂ cycloalkyl)C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group.
- 4. The compound of Claim 3 wherein at least one R⁵ comprises a cycloalkene oxide.
- 5. The compound of Claim 3 wherein each R⁵ is represented by the following structural formula:

10

- 6. The compound of Claim 3 wherein R¹ is a methyl group; each group R² is an ethylene, hexylene, or octylene group; each group R³ is a methyl group; each group R⁴ is a methyl group; each group R⁵ is a 2-(3,4-epoxycyclohexyl) ethyl grouping, and each group R⁶ is a hydrogen or ethenyl.
- 7. The compound of Claim 1 wherein the compound is represented by the following structural formula:

$$R^{14} - Si - O - Si - R^{15} - R^{16} - Si - X - Si - R^{16} - Si - O - Si - R^{21}$$

$$R^{14} - Si - O - Si - R^{16} - Si - R^{16} - Si - O - Si - R^{21}$$

$$R^{15} - R^{16} - R^{18} - R^{18} - R^{18} - R^{20} - R^{20}$$

wherein R^{14} is represented by a structural formula selected from:

10

15

20

25

each group R^{15} , each group R^{17} , each group R^{18} , each group R^{19} , each group R^{20} and each group R^{22} is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

each group R^{16} is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1$. $-[O-Y_1]_{p^-}$, $-Y_1-Si(R^z)_2-Y_1-$, $-Y_1-Si(R^z)_2-Y_1-Si(R^z)_2-Y_1-$, or $-Y_1-Si(R^z)_2-Y_1-Si(R^z)_2-Y_1-$;

each R^{21} is independently an epoxide substituted aliphatic group having 2-10 carbon atoms;

 R^{23} is independently hydrogen, an alkenyl, a substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂-alkyl or aryl or R^z -(O-Y₁)_m-, $(R^z)_3$ Si-(O-Si($R^z)_2$)_q-Y₁- or $(R^z)_3$ Si-(O-Si($R^z)_2$)_q-O-;

each group X is independently oxygen or R¹⁶;

each R^z is independently a substituted or unsubstituted C_{1-12} alkyl group, C_{1-12} cycloalkylalkyl group, aryl substituted C_{1-12} alkyl group or aryl group;

each Y_1 is independently a $C_{1\text{-}12}$ alkylene group;

p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

8. The compound of Claim 7 wherein each group R¹⁶ is independently a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, aryl substituted C₁₋₁₂ alkylene or arylene group; R²³ is, independently, a hydrogen, a monovalent substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether

(alkyl-O-alkylene-), C_{1-12} cycloalkyl C_{1-12} alkylether, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group; and X is oxygen.

- 9. The compound of Claim 8 wherein at least one R²¹ comprises a cycloalkene oxide.
 - 10. The compound of Claim 9 wherein each is R²¹ represented by the following structural formula:

10

- 11. The compound of Claim 10 wherein: each group R¹⁵, R¹⁷, R¹⁸ R¹⁹, R²⁰ and R²² is a methyl group; each group R¹⁶ is an ethylene, hexylene, or octylene group; and R²³ is a hydrogen, hexyl, or alkylether.
- 15 12. A compound represented by the following structural formula:

wherein:

each group R⁷ is an unsubstituted aliphatic group, a substituted aliphatic

10

15

group, an unsubstituted aryl group, a substituted aryl group;

each group R^8 is R^9 , hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^z - $(O-Y_1)_m$ -, $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ - Y_1 - or $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ -O-;

each \mathbb{R}^9 is independently represented by the following structural formula:

wherein:

 X_1 and X_2 are independently an inert linking group;

each R^a is independently a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aryl group;

each R^b is an aliphatic group substituted with an epoxide; each R^z is independently a substituted or unsubstituted C_{1-12} alkyl group, C_{1-12} cycloalkylalkyl group, aryl substituted C_{1-12} alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group; m is an integer from 1 to 10; and q is an integer from 0 to 4.

13. The compound of Claim 12 wherein:

each R^7 is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

$$\begin{cases} -R^{10} - S_{i}^{11} - C_{i}^{11} \\ -S_{i}^{12} - C_{i}^{11} \\ -S_{i}^{12} - C_{i}^{13} \end{cases}$$

each R⁹ is represented by

each group R^{10} is independently a substituted or unsubstituted $C_{1\text{--}12}$

10

15

alkylene, C₁₋₁₂ cycloalkylene, C₁₋₁₂ arylalkylene, or arylene group,

$$-Y_1-[O-Y_1]_{p^-}$$
, $-Y_1-Si(R^z)_2-Y_1-$, $-Y_1-Si(R^z)_2-Y_1-O-Y_1-Si(R^z)_2-Y_1-$, or $-Y_1-Si(R^z)_2-Y_1-Si(R^z)_2-Y_1-$;

each R^z is independently a C₁₋₁₂ alkyl group;

each Y₁ is independently a C₁₋₁₂ alkylene group;

each group R^{11} and R^{12} is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl group or aryl group; and

each group R^{13} is independently an epoxide substituted aliphatic group having from 2-10 carbon atoms.

14. The compound of Claim 13 wherein:

 R^8 is substituted or unsubstituted C_{1-12} alkylsilane, C_{1-12} cycloalkylsilane, C_{1-12} alkoxysilane, arylsubstituted C_{1-12} alkyl silane or a substituted or unsubstituted 1-alkenyl group or a substituted or unsubstituted C_{1-12} *n*-alkenyl group where *n* is greater than or equal to 1;

 R^{10} is independently a C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group.

- 20 15. The compound of Claim 14 wherein at least one group R¹³ comprises a cycloalkene oxide.
 - 16. The compound of Claim 15 wherein each R¹³ is represented by the following structural formula:

17. The compound of Claim 14 wherein:

R⁷ is a methyl group,

 R^8 is ethenyl or R^9 ;

$$\begin{cases}
-R^{10} - S_{i}^{11} - O_{i}^{R^{12}} \\
-S_{i}^{10} - S_{i}^{11} - O_{i}^{R^{13}}
\end{cases}$$
each R^{9} is

each group R¹⁰ is-(CH₂)₂-, -(CH₂)₆- or -(CH₂)₈-;

each group R^{11} and R^{12} are a methyl group; and each group R^{13} is a 2-(3,4-epoxycyclohexyl) ethyl group.

10

15

20

5

A holographic recording medium comprising:

- a) at least one polyfunctional epoxide monomer or oligomer which undergoes acid initiated cationic polymerization, wherein: 1) each epoxide in the monomer or oligomer is connected by a linker group comprising a siloxane to a silicon atom; or 2) each epoxide in the monomer or oligomer is connected by a linker group to a central polysiloxane ring; and each monomer or oligomer has an epoxy equivalent weight of greater than about 300 g/mole epoxide;
- b) a binder which is capable of supporting cationic polymerization;
- c) an acid generator capable of producing an acid upon exposure to actinic radiation; and optionally

15

20

- d) a sensitizer.
- 19. The holographic recording medium of Claim 18, additionally comprising a difunctional epoxide monomer.

20. The holographic recording medium of Claim 18, additionally comprising a monofunctional epoxide monomer.

21. The holographic recording medium of Claim 18 wherein the polyfunctional epoxide monomer or oligomer is represented by the following structural formula:

wherein each R' independently comprises an aliphatic group substituted with epoxide, said aliphatic group being connected to the silicon atom by a linker comprising a siloxane group; and

R" is R' or –H, a substituted aliphatic group, an unsubstituted aliphatic group, a substituted aryl group, an unsubstituted aryl group a substituted siloxane group, an unsubstituted siloxane group, a substituted polysiloxane group or an unsubstituted polysiloxane group.

22. The holographic recording medium of Claim 21 wherein each R' comprises a group represented by the following structural formula:

wherein:

 X_1 and X_2 are independently an inert linking group;

15

20

each R^a is independently a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aryl group; and

each R^b is an aliphatic group substituted with an epoxide.

5 23. The holographic recording medium of Claim 18 wherein the polyfunctional epoxide monomer is by the following structural formula:

$$R - Si - O - Si - X_1 - Si - X_2 - Si - R^b$$

$$R^a - X_1 - Si - X_2 - Si - R^b$$

$$R^a - X_1 - Si - X_2 - Si - R^b$$

wherein:

 X_1 and X_2 are independently each an inert linking group;

each R^a is independently a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aryl group;

R is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or is represented by a structural formula selected from:

each R^b is independently an epoxide substituted aliphatic group; and R^c is H, an unsubstituted aliphatic group, a substituted aliphatic group, an unsubstituted aryl group, a substituted siloxane group,

an unsubstituted siloxane group, a substituted polysiloxane group or an unsubstituted polysiloxane group.

24. The holographic recording medium of Claim 23 wherein the polyfunctional epoxide monomer is represented by the following structural formula:

$$R - Si - O - Si - R^{1} - R^{2} - Si - O - Si - R^{5}$$

$$R^{1} - R^{2} - Si - O - Si - R^{5}$$

$$R^{1} - R^{4} - R^{4}$$

3

wherein R is represented by a structural formula selected from:

$$R^{5}$$
 R^{3} R^{2} R^{1} R^{5} R^{5} R^{4} R^{4} R^{4} R^{4} R^{5} R^{6} R^{7} R^{7} R^{7} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{2} R^{3} R^{4} R^{5}

$$\begin{array}{c|c}
R^1 \\
\hline
R^0 \\
\hline
Si \\
\hline
O
\\
R^1
\end{array}$$

10 wherein:

each group R^1 , each group R^3 and each group R^4 is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

each group R^2 is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, - $-Y_1$ - $[O-Y_1]_p$ -, $-Y_1$ - $Si(R^z)_2$ - Y_1 -, $-Y_1$ - $Si(R^z)_2$ - Y_1 -O- Y_1 - $Si(R^z)_2$ - Y_1 -, or –

10

15

20

25

 $Y_1-Si(R^z)_2-Y_1-Si(R^z)_2-Y_1-;$

each group R⁵ is independently, an epoxide substituted aliphatic group having 2-10 carbon atoms; and

each group R^6 is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^z - $(O-Y_1)_m$ -, $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ - Y_1 - or $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ -O-;

each R^z is independently a substituted or unsubstituted C₁₋₁₂ alkyl group, C₁₋₁₂ cycloalkylalkyl group, aryl substituted C₁₋₁₂ alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group;

p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

- 25. The holographic recording medium of Claim 24 wherein each group R² is independently, a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, aryl substituted C₁₋₁₂ alkylene, or arylene group each R⁶ is independently a monovalent substituted or unsubstituted C₁₋₁₂ alkylsilane, C₁₋₁₂ cycloalkylsilane, C₁₋₁₂ alkoxysilane, aryl substituted C₁₋₁₂ alkylsilane, a hydrogen, a vinyl, a monovalent substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether, (C₁₋₁₂ cycloalkyl)C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group.
 - 26. The holographic recording medium of Claim 25 wherein at least one R⁵ comprises a cycloalkene oxide.
 - 27. The holographic recording medium of Claim 26 wherein each R⁵ is represented by the following structural formula:

10

- 28. The holographic recording medium of Claim 27 wherein R¹ is a methyl group; each group R² is an ethylene, hexylene, or octylene group; each group R³ is a methyl group; each group R⁴ is a methyl group; each group R⁵ is a 2-(3,4-epoxycyclohexyl) ethyl grouping, and each group R⁶ is a hydrogen or ethenyl.
- 29. The holographic recording medium of Claim 23 wherein the polyfunctional epoxide monomer is represented by the following structural formula:

$$R^{14} - Si - O - Si - R^{15} - R^{16} - Si - X - Si - R^{16} - Si - O - Si - R^{21}$$

$$R^{15} - R^{16} - Si - X - Si - R^{16} - Si - O - Si - R^{21}$$

$$R^{15} - R^{16} - Si - R^{16} - Si - O - Si - R^{21}$$

3

wherein R^{14} is represented by a structural formula selected from:

$$O = S_{R_{15}}^{15} = R_{16}^{16} - S_{R_{18}}^{17} = X - S_{R_{18}}^{17} - R_{16}^{16} - S_{R_{20}}^{19} - R_{20}^{19}$$
or

10

15

25

each group R^{15} , each group R^{17} , each group R^{18} , each group R^{19} , each group R^{20} and each group R^{22} is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

each group R^{16} is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1$. $-[O-Y_1]_p$ -, $-Y_1$ -Si(R^z)₂- Y_1 -, $-Y_1$ -Si(R^z)₂- Y_1 -, or $-Y_1$ -Si(R^z)₂- Y_1 -Si(R^z)₂- Y_1 -Si(R^z)₂- Y_1 -;

each R^{21} is independently an epoxide substituted aliphatic group having 2-10 carbon atoms;

 R^{23} is independently hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or R^z - $(O-Y_1)_m$ -, $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ - Y_1 - or $(R^z)_3Si$ - $(O-Si(R^z)_2)_q$ -O-;

each group X is independently oxygen or R^{16} ;

each R^z is independently a substituted or unsubstituted C₁₋₁₂ alkyl group, C₁₋₁₂ cycloalkylalkyl group, aryl substituted C₁₋₁₂ alkyl group or aryl group;

each Y_1 is independently a C_{1-12} alkylene group; p is an integer from 1 to 5; m is an integer from 1 to 10; and q is an integer from 0 to 4.

20

- 30. The holographic recording medium of Claim 29 wherein each group R¹⁶ is independently a substituted or unsubstituted C₁₋₁₂ alkylene, C₁₋₁₂ cycloalkylene, C₁₋₁₂ arylalkylene or arylene group; R²³ is, independently, a hydrogen, a monovalent substituted or unsubstituted C₁₋₁₂ alkyl, C₁₋₁₂ dialkylether (alkyl-O-alkylene-), C₁₋₁₂ cycloalkyl C₁₋₁₂ alkylether, C₁₋₁₂ cycloalkyl, aryl substituted C₁₋₁₂ alkyl or aryl group; and X is oxygen.
- 31. The holographic recording medium of Claim 30 wherein wherein at least one

10

R²¹ comprises a cycloalkene oxide.

32. The holographic recording medium of Claim 31 wherein each is \mathbb{R}^{21} represented by the following structural formula:

33. The holographic recording medium of Claim 32 wherein each group R^{15} , R^{17} , R^{18} R^{19} , R^{20} and R^{22} is a methyl group; each group R^{16} is an ethylene, hexylene, or octylene group; and R^{23} is a hydrogen, hexyl, or alkylether.

34. The holographic recording medium of Claim 18 wherein the polyfunctional epoxide monomer is represented by the following structural formula:

wherein:

each group R⁷ is an unsubstituted aliphatic group, a substituted aliphatic group, an unsubstituted aryl group, a substituted aryl group;

each group R^8 is R^9 , hydrogen, an alkenyl, a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} -alkyl or aryl or

15

20

 R^z -(O-Y₁)_m-, $(R^z)_3Si$ -(O-Si($R^z)_2$)_q-Y₁- or $(R^z)_3Si$ -(O-Si($R^z)_2$)_q-O-; each R^9 is independently represented by the following structural formula:

5 wherein:

 X_1 and X_2 are independently an inert linking group;

each R^a is independently a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aryl group;

each R^b is an aliphatic group substituted with an epoxide;

each R^z is independently a substituted or unsubstituted C_{1-12} alkyl group, C_{1-12} cycloalkylalkyl group, aryl substituted C_{1-12} alkyl group or aryl group;

each Y₁ is independently a C₁₋₁₂ alkylene group; m is an integer from 1 to 10; and q is an integer from 0 to 4.

35. The holographic recording medium of Claim 34 wherein the polyfunctional epoxide monomer is represented by the following structural formula:

each R^7 is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl or aryl group;

$$\begin{cases} -R^{10} - S_{1}^{11} & R^{11} \\ -S_{1}^{10} - S_{1}^{10} & R^{13} \end{cases}$$

each R⁹ is represented by

each group R^{10} is independently a substituted or unsubstituted C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group, $-Y_1-[O-Y_1]_{p^-}, -Y_1-Si(R^z)_2-Y_1-, -Y_1-Si(R^z)_2-Y_1-O-Y_1-Si(R^z)_2-Y_1-, \text{ or }$

10

15

20

25

-Y₁-Si(R^z)₂-Y₁-Si(R^z)₂-Y₁-; each R^z is independently a C₁₋₁₂ alkyl group; each Y₁ is independently a C₁₋₁₂ alkylene group; p is an integer from 1 to 5;

each group R^{11} and R^{12} is independently a substituted or unsubstituted C_{1-12} alkyl, C_{1-12} cycloalkyl, aryl substituted C_{1-12} alkyl group or aryl group; and

each group R^{13} is independently an epoxide substituted aliphatic group having from 2-10 carbon atoms.

36. The holographic recording medium of Claim 35 wherein:

 R^8 is substituted or unsubstituted C_{1-12} alkylsilane, C_{1-12} cycloalkylsilane, C_{1-12} alkoxysilane, arylsubstituted C_{1-12} alkyl silane or a substituted or unsubstituted 1-alkenyl group or a substituted or unsubstituted C_{1-12} n-alkenyl group where n is greater than or equal to 1;

 R^{10} is independently a C_{1-12} alkylene, C_{1-12} cycloalkylene, C_{1-12} arylalkylene, or arylene group.

- 37. The holographic recording medium of Claim 36 wherein at least one group R¹³ comprises a cycloalkene oxide.
 - 38. The holographic recording medium of Claim 37 wherein each R^{13} is represented by the following structural formula:

15

20

R⁷ is a methyl group,

 R^8 is -ethenyl or R^9 :

each R⁹ is

each group R^{10} is– $(CH_2)_2$ -, - $(CH_2)_6$ - or – $(CH_2)_8$ -; each group R^{11} and R^{12} are a methyl group; and each group R^{13} is a 2-(3,4-epoxycyclohexyl) ethyl group.

10 40. The holographic recording medium of Claim 19 wherein the diffunctional epoxide monomer is represented by the following structural formula:

$$R^{24} Si(R^{25})_2 OSi(R^{26})_2 R^{24} \\$$

where each group R^{24} is a 2-(3,4-epoxycyclohexyl)ethyl grouping; each grouping R^{25} is a methyl group, and each group R^{26} is a methyl group.

- 41. The holographic recording medium of Claim 18 wherein the holographic medium comprises between about 0.25 to about 5 parts by weight of the difunctional epoxide monomer per part by weight of the polyfunctional epoxide monomer.
- 42. The holographic recording medium of Claim 18 wherein the holographic medium comprises from about 90 parts binder and 10 parts monomer or oligomer (w/w) to about 10 parts binder and 90 parts monomer or oligomer (w/w).

- 43. The holographic recording medium of Claim 18 wherein the acid generator capable of producing an acid upon exposure to actinic radiation is a diaryliodonium salt.
- A holographic recording medium of Claim 18 wherein the sensitizer is 5,12-bis(phenylethynyl)naphthacene.