Topología

1 Propiedades de conjuntos y funciones @propiedades, imagen, imagen inversa	2
1a Definición de unión disjunta @definición, unión disjunta, inclusión	5
1a1 Propiedad universal de la unión disjunta @propiedad universal, unión disjunta, unión ajena	ϵ
2 Definición de espacio topológico @definición, espacio topológico	7
2a Definición de continuidad @definición, continuidad	8
2a1 Caracterización de continuidad @caracterización, continuidad	ç
2a2 Definición de homeomorfismo @definición, homeomorfismo	10
2a2a Proyección estereográfica @homeomorfismo explícito, proyección estereográfica	11
2b Definición de función abierta y cerrada @definición, abierta, cerrada	12
2b1 Criterio para homeomorfismos @criterio, abierta, cerrada	13
2c Definición de topología de identificación @generación, definición	14
2c1 Más fina para continuidad @comparación	15
2c2 Caracterización de identificaciones @caracterización, identificación	16
2c3 Propiedades de las identificaciones @propiedades, composición, identificación	18
2c4 Criterio para identificaciones @criterio, sección	19

2c5 Criterio para identificaciones @criterio, abierta, identificación	21
2c6 Producto de identificaciones @producto, abierta, identificación	22
2c7 Identificación es casi homeomorfismo @homeomorfismo, identificación	23
2c8 Restricción de identificaciones @restricción, identificación, criterio	24
2c9 Propiedad universal de las identificaciones @propiedad universal, identificación	25
2c10 Definición de espacio cociente @cociente, topología	27
2c10a Propiedades de saturación @definición, saturación, identificación	28
2c10b Espacios cocientes T1 @espacio cociente, T1	29
2c11 Homeomorfismo inducido por una identificación	30
2c12 Caracterización de identificaciones @caracterización, compatibilidad, identificación	31
2c12a Homeomorfismo inducido por funciones compatibles @compatibilidad, homeomorfismo	33
2c13 Criterio para identificaciones @compacto, Hausdorff, identificación	34
2d Definición de suma topológica @definición, suma topológica, unión disjunta	35
2d1 Más fina para continuidad de las inclusiones @comparación, suma topológica	36
2d2 Propiedades de las inclusiones @propiedades, inclusiones, suma topológica	37

20

39

2c4a Propiedades de una sección @propiedades, sección

2d3 Caracterización de abiertos y cerrados @caracterización, abiertos, suma topológica

Propiedades de conjuntos y funciones

1

TEOREMA 1. Sean $f: X \longrightarrow Y$ una función, $A, A_1, A_2, \{A_\alpha\}_{\alpha \in I}$ subconjuntos de X y $B, B_1, B_2, \{B_\beta\}_{\beta \in J}$ subconjuntos de Y, se tiene que

propiedades, imagen, imagen inversa

(i)
$$f(X-A) \subset Y - f(A)$$
 si f es inyectiva,

(ix)
$$f(\bigcap_{\alpha\in I}A_{\alpha})\subset\bigcap_{\alpha\in I}f(A_{\alpha}),$$

(VIII) $f(\bigcup_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} f(A_{\alpha}),$

(II)
$$Y - f(A) \subset f(X - A)$$
 si f es suprayectiva,

(x)
$$\bigcap_{\alpha \in I} f(A_{\alpha}) \subset f(\bigcap_{\alpha \in I} A_{\alpha})$$
 si f es invectiva,

(III)
$$f^{-1}(Y - B) = X - f^{-1}(B)$$
,

(xi)
$$f^{-1}\left(\bigcup_{\beta\in J}B_{\alpha}\right)=\bigcup_{\alpha\in J}f^{-1}(B_{\beta}),$$

(iv)
$$f(f^{-1}(B)) \subset B$$
,

(XII)
$$f^{-1}\left(\bigcap_{\beta\in J}B_{\beta}\right)=\bigcap_{\alpha\in J}f^{-1}(B_{\beta}),$$

(v)
$$B \subset f(f^{-1}(B))$$
 si f es suprayectiva,

(XIII)
$$A_1 \subset A_2$$
 implies $f(A_1) \subset f(A_2)$,

(vi)
$$A \subset f^{-1}(f(A)),$$

(XIV)
$$B_1 \subset B_2$$
 implies $f^{-1}(B_1) \subset f^{-1}(B_2)$.

(VII)
$$f^{-1}(f(A)) \subset A$$
 si f es inyectiva,

Demostración. Pendiente.

Definición de unión disjunta

Definición 1. Dada una famillia de conjuntos $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$, se define su **unión ajena** como el conjunto

$$\coprod_{\lambda \in \Lambda} X_{\lambda} = \bigcup_{\lambda \in \Lambda} X_{\lambda} \times \{\lambda\}.$$

Dada $\mu \in \Lambda$, la **inclusión** $i_{\mu}: X_{\mu} \longrightarrow \coprod_{\lambda \in \Lambda} X_{\lambda}$ es la función definida como $i_{\mu}(x) = (x, \mu), \ \forall \ x \in X_{\mu}$.

1a

definición, unión disjunta, inclusión

Propiedad universal de la unión disjunta

Teorema 2. Dada una familia $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ de conjuntos, la unión ajena $\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ junto con las inclusiones $i_{\mu}:X_{\mu}\longrightarrow\coprod_{{\lambda}\in\Lambda}X_{\lambda}, \mu\in\Lambda$, está caracterizada por la siguiente propiedad universal

(1) Dada una familia de funciones $f_{\lambda}: X_{\lambda} \longrightarrow Y, \lambda \in \Lambda$, existe una única función $f: \coprod_{\lambda \in \Lambda} X_{\lambda} \longrightarrow Y$ tal que $f \circ i_{\lambda} = f_{\lambda}, \forall \lambda$.

1a1

propiedad universal, unión disjunta, unión ajena

Demostración. Pendiente.

Definición 2. Sea X un conjunto. Una **topología** sobre X es una familia \mathcal{T} de subconjuntos de X con las siguientes propiedades:

definición, espacio topológico

- (I) $\emptyset, X \in \mathcal{T}$.
- (II) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$.
- (III) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ y I es finito, entonces $\bigcap_{i\in I} U_i \in \mathcal{T}$.

A la pareja (X, \mathcal{T}) se le llama **espacio topológico**.

Definición de continuidad

2a

DEFINICIÓN 3. Dados espacios topológicos X y Y, una función $f: X \longrightarrow Y$ se dice **continua** en X, si U abierto en Y implica que $f^{-1}(U)$ es abierto en X.

definición, continuidad

Caracterización de continuidad

2a1

Теоrема 3. Sean X y Y espacios topológicos y sea $f: X \longrightarrow Y$ una función. Son equivalentes

caracterización, continuidad

- (I) f es continua,
- (II) U abierto en Y implica $f^{-1}(B)$ abierto en X,
- (III) $f^{-1}(B^{\circ}) \subset f^{-1}(B)^{\circ}, \forall B \subset Y$,
- (iv) $f(\overline{A}) \subset \overline{f(A)}$, $\forall A \subset X$,
- (v) F cerrado en Y implica $f^{-1}(F)$ cerrado en X.

Demostración. Pendiente.

Definición de homeomorfismo

2a2

DEFINICIÓN 4. Un **homeomorfismo** es una función $f: X \longrightarrow Y$ continua y biyectiva, cuya inversa también es continua. En este caso, se dice que los espacios X y Y son **homeomorfos**.

definición, homeomorfismo Teorema 4. La función

$$p: S^{n} - \{N\} \longrightarrow \mathbb{R}^{n}$$

$$(x_{1}, \dots, x_{n+1}) \longmapsto \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

donde N = (0, ..., 0, 1), es un homeomorfismo con las topologías usuales y su inversa está dada por

$$p^{-1}: \mathbb{R}^n \longrightarrow S^n - \{N\}$$

$$y = (y_1, \dots, y_n) \longmapsto \left(\frac{2y_1}{|y|^2 + 1}, \dots, \frac{2y_n}{|y|^2 + 1}, \frac{|y|^2 - 1}{|y|^2 + 1}\right).$$

A este homeomorfismo se le llama proyección estereográfica.

Demostración. Es rutinario verificar que $p \circ p^{-1} = \mathrm{id}_{\mathbb{R}^n}$ y que $p^{-1} \circ p = \mathrm{id}_{S^n - \{N\}}$. Además, p es continua por ser sus componentes funciones racionales en las variables x_1, \ldots, x_{n+1} tales que su denominador no se anula. De forma similar, p^{-1} es continua por ser sus funciones componentes productos de las variables y_1, \ldots, y_n , con la función $1/(|y|^2 + 1)$, la cuál es continua pues el denominador no se anula y la función norma |y| es continua. □

homeomorfismo explícito, proyección estereográfica

Definición de función abierta y cerrada

2b

Definición 5. Una función $f: X \longrightarrow Y$ se dice **abierta** si U abierto en X implica que f(U) es abierto en Y.

definición, abierta, cerrada

Definición 6. Similarmente, una función $f:X\longrightarrow Y$ se dice **cerrada** si F cerrado en X implica que f(F) es cerrado en Y.

Criterio para homeomorfismos

TEOREMA 5. Si una función $f: X \longrightarrow Y$ es biyectiva, continua y abierta o cerrada, entonces f es un homeomorfismo.

Demostración. Como f es biyectiva, existe su inversa $g: Y \longrightarrow X$ tal que $g \circ f = \mathrm{id}_X$. Sea U un abierto en X y notemos que $f^{-1}(q^{-1}(U)) = (q \circ f)^{-1}(U) = \mathrm{id}_{Y}^{-1}(U) = U$ y aplicando f a ambos lados obtenemos $q^{-1}(U) = f(U)$ por suprayectividad de f. Como f(U) es abierto por ser f una funcion abierta, entonces $g^{-1}(U)$ es abierto. Dado que U fue un abierto arbitrario, entones q es continua y en consecuencia f es un homeomorfismo. Si f es cerrada la demostración es similar.

TEOREMA 6. Si f es un homeomorfismo, entonces f es abierta y cerrada.

Demostración. Sea q la inversa de f. Si U es abierto en X, entonces $q^{-1}(U)$ es abierto en X por ser q continua, pero, de manera similar al teorema anterior, se tiene que $q^{-1}(U) = f(U)$, luego f(U) es abierto y se sigue que f es una función abierta. Similarmente se prueba que f es cerrada.

criterio, abierta. cerrada

Definición de topología de identificación

2c

Definición 7. Dados un espacio topológico X, un conjunto Y y una función $f:X\longrightarrow Y$, se puede dotar a Y con una topología, a saber, $\{U\subset Y\mid f^{-1}(U)\text{ es abierto en }X\}$. A esta topología se le llamará **topología de identificación** o **topología coinducida** en Y por X a través de f.

generación, definición

DEFINICIÓN 8. Si X y Y son espacios topológicos y $f: X \longrightarrow Y$ es una función, se dice que f es una **identificación** si la topología de Y es la topología coinducida por f.

Proposición 1. Sea X un espacio topológico $y f: X \longrightarrow Y$ una función. La topología de identificación en Y coinducida por f hace continua a f. Más aún, de entre todas las topologías que hacen continua a f, esta es la más fina.

comparación

Demostración. Sea \mathcal{T}_f la topología de identificación en Y. Si $U \in \mathcal{T}$, entonces $f^{-1}(U)$ es abierto en X, por definición. Como U fue arbitrario, entonces f debe ser continua, por definición de continuidad.

Sea \mathcal{T} una topología que hace continua a f. Si $U \in \mathcal{T}$, entonces $U \subset Y$ y $f^{-1}(U)$ es abierto en X por definición de continuidad, pero esto implica que $U \in \mathcal{T}_f$ por definición de \mathcal{T}_f . Como U fue arbitrario, entonces $\mathcal{T} \subset \mathcal{T}_f$, y a su vez como \mathcal{T} fue una topología arbitraria que hace continua a f, entonces \mathcal{T}_f debe ser la más fina entre ellas. \square

- TEOREMA 7. Si $f: X \longrightarrow Y$ es una función, son equivalentes
- (I) f es identificación.
- (II) U es abierto en Y si y sólo si $f^{-1}(U)$ es abierto en X.
- (III) F es cerrado en Y si y sólo si $f^{-1}(F)$ es cerrado en X.

Demostración. (I) \Longrightarrow (II). Si f es identificación entonces f es, en particular, continua, y por tanto U abierto en Y implica $f^{-1}(U)$ abierto en X. Supogase ahora que $f^{-1}(U)$ es abierto en X con $U \subset Y$. Entonces U es abierto en X por definición de topología de identificación. Como U fue arbitrario se tiene el resultado.

 $(II) \implies (III)$. Se tiene que

$$F$$
 es cerrado en $Y \iff X - F$ es abierto en Y
$$\iff f^{-1}(X - F) = Y - f^{-1}(F) \text{ es abierto en } X, \text{ por hipótesis}$$

$$\iff f^{-1}(F) \text{ es cerrado en } X.$$

- $(III) \implies (II)$. Es similar al punto anterior.
- (II) \Longrightarrow (I). Sea \mathcal{T} la topología de Y. Si se verifica (II), entonces la \mathcal{T} hace continua a f. Más aún, si hay otra topología \mathcal{T}' que hace continua a f, entonces $U \in \mathcal{T}$ implica que $f^{-1}(U)$ es abierto en X, y por tanto $U \in \mathcal{T}$ por

identificación. Luego, $\mathcal T$ es la topología de identificación coinducida por f, es decir, f es una identificación. \Box

hipótesis. Luego $\mathcal{T}' \subset \mathcal{T}$ y como \mathcal{T}' fue arbitraria, entonces \mathcal{T} es de hecho más fina en Y que cualquier otra que haga continua a f. Es fácil verificar que sólo existe una topología sobre Y con esta propiedad y es la topología de

propiedades, composición, identificación

- Proposición 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones. Se verifican las siguientes afirmaciones
 - (I) $id_X : X \longrightarrow X$ es identificación.
- (II) Si f y g son identificaciones, entonces $g \circ f$ es identificación.
- (III) Si f y $g \circ f$ son identificaciones, necesariamente g es identificación.

Demostración. (I) Se sigue de que U es abierto en X si y sólo si $\mathrm{id}_X(U) = U$ es abierto en X.

(II) Como f y g son identificaciones, entonces, por 2c2,

$$U$$
 es abierto en $Z \iff g^{-1}(U)$ es abierto en Y
$$\iff f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U) \text{ es abierto en } X.$$

Luego $g \circ f$ es identificación.

(III) Se tiene que

$$U$$
 es abierto en $Z \iff (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en $X \iff g^{-1}(U)$ es abierto en Y ,

luego g es identificación.

Criterio para identificaciones

2c4

TEOREMA 8. Sea $p: X \longrightarrow Y$ continua. Si existe una función continua $s: Y \longrightarrow X$ tal que $p \circ s = \mathrm{id}_Y$, entonces p es una identificación.

criterio, sección

Demostración. Si $U \subset Y$ es tal que $p^{-1}(U)$ es abierto en X, entonces $s^{-1}(p^{-1}(U)) = (p \circ s)^{-1}(U) = \mathrm{id}_Y(U) = U$ es abierto, por ser s continua. Como p es también continua por hipótesis, se tiene que U es abierto en Y si Y sólo si $p^{-1}(U)$ es abierto en Y, luego Y0 es identificación.

Definición 9. A $s: Y \longrightarrow X$ en el teorema anterior se le llama **sección** de p.

propiedades, sección

- TEOREMA 9. Si $s: Y \longrightarrow X$ es una sección de $p: X \longrightarrow Y$, entonces
 - (I) s es inyectiva,
- (II) s es un encaje, es decir, $Y \cong s(Y)$.

Demostración. (I) Si $y_1, y_2 \in Y$ son tales que $s(y_1) = s(y_2)$, entonces $p(s(y_1)) = p(s(y_2))$, pero $p \circ s = id_Y$, en consecuencia $y_1 = y_2$. Luego s es inyectiva.

(II) Sea $r: Y \longrightarrow s(Y)$ la restricción de s al contradominio s(Y). Claro que r es biyectiva, pues es suprayectiva por construcción e inyectiva por ser s inyectiva. Más aún, r es continua, pues s es continua y $s(Y) \subset X$. Sea U un abierto en Y. Como p es continua, entonces $p^{-1}(U)$ debe ser abierto en X, además

$$r^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U) \cap s(Y)) = s^{-1}(p^{-1}(U)) \cap s^{-1}(s(Y))$$

$$= (p \circ s)^{-1}(U) \cap Y, \text{ por inyectividad de } s$$

$$= id_Y^{-1}(U) \cap Y$$

$$= U \cap Y = U.$$

Tomando la imagen bajo r a ambos lados, se tiene que $p^{-1}(U) \cap s(Y) = r(U)$, por ser r suprayectiva. Se sigue que r(U) es un abierto en s(Y). Como U fue un abierto arbitrario de Y, entonces r es una función abierta. Luego, como r es biyectiva, continua y abierta, entonces r es un homeomorfismo por 2b1 y por tanto s es un encaje.

Criterio para identificaciones

Proposición 3. $Si f: X \longrightarrow Y$ es continua, suprayectiva y abierta o cerrada, entonces f es identificación.

Demostración. Si $U \subset Y$ es tal que $f^{-1}(U)$ es abierto en X, entonces $U = f(f^{-1}(U))$ debe ser abierto en Y por ser f suprayectiva y abierta. Como f también es continua, entonces f debe ser identificación por 2c2. Si f es cerrada, la demostración es similar usando nuevamente 2c2.

2c5

criterio, abierta, identificación

Producto de identificaciones

producto, abierta, identificación

2c6

Proposición 4. Si $f_1: X_1 \longrightarrow Y_1$ y $f_2: X_2 \longrightarrow Y_2$ son continuas, suprayectivas y abiertas, entonces $f: X_1 \times X_2 \longrightarrow Y_2$ $Y_1 \times Y_2$ definida como $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$ es identificación.

Demostración. Se tiene que f es continua (munkres 1975, p. 112, pendiente de agregar topología producto aquí

Proposición 5. Sea $f: X \longrightarrow Y$ una función biyectiva. Entonces f es identificación si y sólo si f es homeomorfismo.

Demostración. Supongamos que f es identificación. Si U es abierto en X, entonces $f^{-1}(f(U)) = U$ es abierto en X, luego f(U) debe de ser abierto en Y por ser f identificación. Luego f es una función abierta y como es continua y biyectiva, por 2b1 f debe ser homeomorfismo. Recíprocamente, si f es homeomorfismo, entonces f es abierta nuevamente por 2b1 y como f es continua y suprayectiva, entonces f es identificación por 2c5.

homeomorfismo, identificación TEOREMA 10. Si $f: X \longrightarrow Y$ es identificación, B es abierto o cerrado en Y y $A = f^{-1}(B)$, entonces $f|_A: A \longrightarrow B$ es identificación.

restricción, identificación, criterio

Demostración. Como f es continua, entonces $f|_A:A\longrightarrow Y$ es continua. Más aún, como $B\subseteq Y$ y $f(A)=f(f^{-1}(B))\subseteq B$, entonces $f|_A:A\longrightarrow B$ es continua. Sea $U\subseteq B$ tal que $f|_A^{-1}(U)$ es abierto en A. Como B es abierto en Y, entonces $f^{-1}(B)=A$ es abierto en X, por ser f continua y por tanto $f|_A^{-1}(U)$ es abierto en X. Pero

$$f|_A^{-1}(U) = f^{-1}(U) \cap A = f^{-1}(U) \cap f^{-1}(B) = f^{-1}(U \cap B) = f^{-1}(U),$$

por ser $U \subset B$, así que $f^{-1}(U)$ es abierto en X. Como f es identificación, esto implica que U es abierto en Y y por tanto U es también abierto en B, pues $U = U \cap B$. Como U fue arbitrario, entonces $f|_A$ es identificación. Si B es cerrado la demostración es similar.

Propiedad universal de las identificaciones

TEOREMA 11. Sea $f: X \longrightarrow Y$ una función. Entonces f es identificación si y sólo si se cumplen las siguientes condiciones:

- (I) f es continua.
- (II) Una función $g: Y \longrightarrow Z$ es continua si y sólo si $g \circ f$ es continua.

Demostración. Supóngase primero que f es identificación. Entonces f es continua y se tiene (I). Sea $g: Y \longrightarrow Z$ una función. Si g es continua, entonces $g \circ f$ es continua por ser composición de funciones continuas. Si $g \circ f$ es continua y U es un abierto en Z, se tiene que $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en X y por tanto $g^{-1}(U)$ es abierto en Y por ser f identificación. Como U fue arbitrario, entonces g es continua y hemos probado (II).

Suponga ahora que se verifican las condiciones y sean \mathcal{T} la topología en Y y \mathcal{T}_f la topología coinducida por f en Y. Defínase $f': X \longrightarrow (Y, \mathcal{T}_f)$ como f'(x) = f(x), $\forall x \in X$. Se tiene que f' es continua, pues si U es abierto en (Y, \mathcal{T}_f) ,

propiedad universal, identificación entonces $f'^{-1}(U) = f^{-1}(U)$, el cual es abierto en X, pues \mathcal{T}_f hace continua a f. Más aún, se tiene que $f' = \mathrm{id}_Y \circ f$, donde $\mathrm{id}_Y : (Y, \mathcal{T}) \longrightarrow (Y, \mathcal{T}_f)$, luego la condición (II) implica que id $_Y$ es continua, así que $\mathcal{T}_f \subset \mathcal{T}$. Además, por la condición (I), la topología \mathcal{T} hace continua a f y en consecuencia $\mathcal{T} \subset \mathcal{T}_f$. Se sigue que $\mathcal{T} = \mathcal{T}_f$, es decir, f es una identificación.

Definición de espacio cociente

2c10

DEFINICIÓN 10. Si X es un espacio topológico y \sim es una relación de equivalencia en X, se le llamará **espacio cociente** a X/\sim con la topología de identificación coinducida por la proyección canónica $p:X\longrightarrow X/\sim$. Se dirá que X/\sim tiene la **topología cociente**.

cociente, topología

Definición 11. A la proyección canónica $p:X\longrightarrow X/\sim$ vista como identificación se le llamará **aplicación** cociente.

Observación. Si $x \in X$, entonces $p^{-1}(\{[x]\}) = [x]$.

DEFINICIÓN 12. Si $p: X \longrightarrow X/\sim$ es una aplicación cociente y $A \subset X$, se define la **saturación** de A como el conjunto $p^{-1}(p(A))$, que contiene a todos los puntos de A y a todos los puntos en X equivalentes a algún punto de A. Se dice que A es **saturado** si $A = p^{-1}(p(A))$.

saturación, identificación

Proposición 6. Sea $A \subset X$ un conjunto saturado respecto a una relaión de equivalencia $\sim y$ sea p la respectiva aplicación cociente. Se tiene que

- (I) Si $A \subset X$ es abierto o cerrado, entonces $p|_A : A \longrightarrow p(A)$ es una identificación.
- (II) Si p es abierta o cerrada, entonces $p|_A:A\longrightarrow p(A)$ es una identificación.

Demostración. (I) Como A es saturado, entonces $A = p^{-1}(p(A))$ y dado que p es identificación y A es abierto, p(A)debe ser abierto en X/\sim . Y nuevamente, como $A=p^{-1}(p(A))$, entonces $p|_A:A\longrightarrow p(A)$ es una identificación por 2c8.

(II) Sea U un abierto en A. Entonces $U = V \cap A$, para algún abierto V de X. Se tiene que $p(V \cap A) = p(V) \cap p(A)$. En efecto, en general se sabe que $p(V \cap A) \subset p(V) \cap p(A)$. Si $y \in p(V) \cap p(A)$, entonces existen $v \in V$ y $a \in A$ tales que p(v) = y = p(a), luego $p(a) \in p(A)$ y por tanto $p(v) \in p(A)$, luego $v \in p^{-1}(p(A)) = A$, por ser A saturado. En consecuencia, $v \in V \cap A$ y por tanto $y = p(v) \in p(V \cap A)$. Esto prueba la afirmación. Luego, $p|_A(U) = p|_A(V \cap A) = p(V \cap A) = p(V) \cap p(A)$, donde p(V) es abierto por ser p una función abierta, así que $p|_A(U)$ es abierto en p(A). Se sigue que $p|_A$ es también una función abierta y además es continua y suprayectiva. En consecuencia, $p|_A$ es una identificación.

definición.

Espacios cocientes T1

2c10b

TEOREMA 12. Si $p: X \longrightarrow X/\sim$ es una aplicación cociente y cada elemento de X/\sim es cerrado en X, entonces X/\sim es un espacio T_1 .

espacio cociente, T1

Demostración. Sea $[x] \in X/\sim$. Por hipótesis $[x] \subset X$ es cerrado en X, pero $[x] = p^{-1}(\{[x]\})$ y como p es identificación, entonces $\{[x]\}$ debe ser cerrado en X/\sim . Se sigue que X/\sim es un espacio T_1 .

Homeomorfismo inducido por una identificación

Proposición 7. Sea $f: X \longrightarrow Y$ una identificación y suprayectiva. Si se define en X la relación de equivalencia $x_1 \sim x_2$ si y sólo si $f(x_1) = f(x_2)$, entonces X/\sim es homeomorfo a Y.

Demostración. La relación definida es una relación de equivalencia, para cualquier función f. Definase $\widetilde{f}: X/\sim \to Y$ como $\widetilde{f}([x])=f(x)$. Se tiene que f está bien definida, pues si $[x_1]=[x_2]$ entonces $x_1\sim x_2$, luego $f(x_1)=f(x_2)$ por definición de \sim , es decir, $\widetilde{f}([x_1])=\widetilde{f}([x_2])$. Nótese que $\widetilde{f}\circ p=f$, donde $p:X\to X/\sim$ es la aplicación cociente. Se tiene que

- (I) \widetilde{f} es suprayectiva, pues dado $y \in Y$, existe $x \in X$ tal que y = f(x) por suprayectividad de x, luego $[x] \in X/\sim$ es tal que $\widetilde{f}([x]) = f(x) = y$,
- (II) \widetilde{f} es inyectiva, pues si $[x_1]$, $[x_2] \in X/\sim$ son tales que $\widetilde{f}([x_1]) = \widetilde{f}([x_2])$, entonces $f(x_1) = f(x_2)$, luego $x_1 \sim x_2$ y por tanto $[x_1] = [x_2]$.

Existe pues la función inversa \widetilde{f}^{-1} . Como $f = \widetilde{f} \circ p$ es continua y p es identificación, la propiedad universal de las identificaciones implica que \widetilde{f} es continua. Además, dado que $p = \widetilde{f}^{-1} \circ f$ es continua y f es identificación, entonces \widetilde{f}^{-1} también debe ser continua. Luego \widetilde{f} es un homeomorfismo.

Caracterización de identificaciones

Definición 13. Dada una función $f: X \longrightarrow Y$, se dice que $g: X \longrightarrow Z$ es compatible con f si $f(x_1) = f(x_2)$ implica que $g(x_1) = g(x_2)$, para cada $x, x' \in X$.

TEOREMA 13. Sea $f: X \longrightarrow Y$ continua y suprayectiva. Entonces f es identificación si y sólo si para cada función continua $g: X \longrightarrow Z$ compatible con f, existe una única función continua $\overline{g}: Y \longrightarrow Z$ tal que $\overline{g} \circ f = g$.

Se dice que \overline{q} es el resultado de pasar q al cociente.

Definase $\overline{g}: Y \longrightarrow Z$ como $\overline{g}(y) = g(x)$, donde $x \in X$ es tal que y = f(x). Se tiene que \overline{g} está bien definida, pues si $y_1, y_2 \in Y$ son tales que $y_1 = y_2$, entonces existen $x_1, x_2 \in X$ tales que $y_1 = f(x_1)$ y $y_2 = f(x_2)$, luego $f(x_1) = f(x_2)$ y por tanto $g(x_1) = g(x_2)$ por la compatibilidad de g con $g(x_1) = g(x_2)$. Nótese que $g(x_1) = g(x_2)$ está bien definida, pues si $g(x_1) = g(x_2)$ por la compatibilidad de g con $g(x_1) = g(x_2)$. Nótese que $g(x_1) = g(x_2)$ está bien definida, pues si $g(x_1) = g(x_2)$ está bien definida está bien de

Si $\overline{g}': Y \longrightarrow Z$ es una función tal que $\overline{g}' \circ f = g$. Si $y_1 = y_2$, entonces existen $x_1, x_2 \in X$ tales que $y_1 = f(x_1)$ y $y_2 = f(x_2)$, luego $f(x_1) = f(x_2)$ y por tanto $g(x_1) = g(x_2)$, luego $\overline{g}'(y_1) = \overline{g}'(f(x_1)) = g(x_2) = \overline{g}(f(x_2)) = \overline{g}(y_2)$.

caracterización, compatibilidad, identificación En consecuencia, $\overline{g}' = \overline{g}$ y por lo tanto g es la única función bajo las hipótesis con esta propiedad. Además, por hipótesis g es continua y f es identificación, luego la propiedad universal de las identificaciones implica que \overline{g} debe ser continua. Más aún, si g es identificación, como f es identificación, 2c3 implica que \overline{g} también es identificación.

Supóngase ahora que se verifica la condición. Defínase en X la relación de equivalencia $x_1 \sim x_2$ si y sólo si $f(x_1) \sim f(x_2)$ y sea $p: X \longrightarrow X/\sim$ la aplicación cociente. Si $f(x_1) = f(x_2)$ entonces $x_1 \sim x_2$ y por tanto $p(x_1) = p(x_2)$, en consecuencia p es compatible con f y como también p es continua, por hipótesis debe existir una función continua $\overline{p}: Y \longrightarrow X/\sim$ tal que $p = \overline{p} \circ f$. Por otro lado, nótese que si $p(x_1) = p(x_2)$, entonces $x_1 \sim x_2$ y por tanto $f(x_1) = f(x_2)$, es decir, f es compatible con p. Como p es identificación, entonces la primera parte de la demostración implica que existe una función continua $\overline{f}: X/\sim \longrightarrow Y$ tal que $f = \overline{f} \circ p$.

Se tiene entonces que $p = \overline{p} \circ \overline{f} \circ p$ y $f = \overline{f} \circ \overline{p} \circ f$. Afirmamos que $\overline{f} \circ \overline{p} = \operatorname{id}_Y$. En efecto, si $y \in Y$, entonces existe $x \in X$ tal que y = f(x), luego $y = f(x) = \overline{f(\overline{p}(f(x)))} = \overline{f(\overline{p}(y))}$. Como y es arbitrario esto prueba la afirmación. Similarmente se prueba que $\overline{p} \circ \overline{f} = \operatorname{id}_{X/\sim}$. Se tiene pues que \overline{f} es un homeomorfismo y por tanto identificación, y dado que p también es identificación y $f = \overline{f} \circ p$, entonces f es identificación.

Homeomorfismo inducido por funciones compatibles

COROLARIO 1. Si $f: X \longrightarrow Y$, $g: X \longrightarrow Z$ son identificaciones, suprayectivas y compatibles entre sí, es decir, $f(x_1) = f(x_2)$ si y solo si $g(x_1) = g(x_2)$, $\forall x_1, x_2 \in X$, entonces Y y Z son homeomorfos.

 $\begin{array}{l} \textit{Demostraci\'on.} \ \ \text{Por 2c12, como} \ f \ \text{es identificaci\'on,} \ g \ \text{es continua} \ y \ g \ \text{es compatible con} \ f, \ \text{entonces existe una funci\'on} \\ \text{continua} \ \overline{g} : Y \longrightarrow Z \ \text{tal que} \ \overline{g} \circ f = g. \ \text{Similarmente, como} \ g \ \text{es identificaci\'on,} \ f \ \text{es continua} \ y \ f \ \text{es compatible con} \\ g, \ \text{entonces existe una funci\'on continua} \ \overline{f} : Z \longrightarrow Y \ \text{tal que} \ \overline{f} \circ g = f. \ \text{Luego} \ \overline{g} \circ \overline{f} \circ g = g \ y \ \overline{f} \circ \overline{g} \circ f = f \ y \ \text{como} \ f \\ y \ g \ \text{son suprayectivas, entonces} \ \overline{g} \circ \overline{f} = \text{id}_Z \ y \ \overline{f} \circ \overline{g} = \text{id}_Y. \ \text{Luego} \ \overline{f} \ y \ \overline{g} \ \text{son homeomorfismos.} \end{array}$

2c12a

compatibilidad, homeomorfismo Teorema 14. Si X es un espacio compacto, Y es un espacio de Hausdorff y $f: X \longrightarrow Y$ es continua y suprayectiva, entonces f es identificación.

compacto, Hausdorff, identificación

Demostración. Si $F \subset X$ es cerrado, entonces F es compacto, luego f(F) es compacto en Y por ser f continua. En consecuencia, f(F) es cerrado en Y por ser Y un espacio de Hausdorff. Luego f es una función cerrada y al ser continua y suprayectiva, 2c5 implica que f es identificación.

DEFINICIÓN 14. Dada una familia de espacios topológicos $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$, se puede generar un nuevo espacio topológico a partir de su unión ajena $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ definida en 1a. Considerénse las inclusiones $i_{\mu}:X_{\mu}\longrightarrow X, \mu\in\Lambda$ y sea \mathcal{T}_{μ} la topología coinducida en X por X_{μ} a través de i_{μ} . Se tiene que $\mathcal{S}=\bigcap_{{\lambda}\in\Lambda}\mathcal{T}_{\lambda}$ también es una topología sobre X. Esta topología se llamará **topología de la suma** en X. Al espacio X con esta topología se le llamará **suma topológica** de los espacios X_{λ} .

definición, suma topológica, unión disjunta

Más fina para continuidad de las inclusiones

Proposición 8. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea S la topología de la suma en $X=[]_{{\lambda}\in\Lambda}X_{\lambda}$. Se tiene que

- (1) S hace continuas a todas las inclusiones $i_{\lambda}: X_{\mu} \longrightarrow X$,
- (II) S es la topología más fina con esta propiedad.

Demostración. (I) Sea $\mu \in \Lambda$ arbitrario pero fijo. Si U es abierto en X, entonces $U \in \mathcal{S} = \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$, donde \mathcal{T}_{λ} es la topología coinducida en X por X_{λ} a través de i_{λ} . En particular, $U \in \mathcal{T}_{\mu}$, luego, por definición, $i_{\mu}^{-1}(U)$ es abierto en X_{μ} . Por tanto, i_{μ} es continua y como μ fue arbitrario se tiene el resultado.

(II) Supóngase que \mathcal{T} es una topología que hace continuas a todas las inclusiones. Si $U \in \mathcal{T}$, entonces $i_1^{-1}(U)$ es abierto en X_{λ} , para cada $\lambda \in \Lambda$, luego $U \in \mathcal{T}_{\lambda}$ para cada λ , por definición de \mathcal{T}_{λ} . En consecuencia, $U \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$. Como U fue arbitrario, entonces $\mathcal{T} \subset \mathcal{S}$ y se sigue que \mathcal{S} es la topología más fina que hace continua a todas las inclusiones.

comparación, suma topológica

Propiedades de las inclusiones

Proposición 9. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ su suma topológica. Si ${\mu}\in\Lambda$, se tiene que

(I)
$$Si A \subset X_{\mu}$$
, entonces $i_{\mu}^{-1}(A \times \{\mu\}) = A$,

(II) Si
$$A \subset X_{\mu}$$
, entonces $i_{\lambda}^{-1}(A \times \{\mu\}) = \emptyset$, $\forall \lambda \in \Lambda, \lambda \neq \mu$,

(III)
$$Si A \subset X_{\mu}$$
, entonces $i_{\mu}(A) = A \times \{\mu\}$,

(IV)
$$Si B \subset X$$
, entonces $i_{\mu}^{-1}(B) \times \{\mu\} = B \cap X_{\mu} \times \{\mu\}, \forall \mu \in \Lambda$,

Demostración. (I) Si $\mu \in \Lambda$ y $A \subset X_{\mu}$, entonces

$$x \in i_{\mu}^{-1}(A \times \{\mu\}) \iff i_{\mu}(x) \in A \times \{\mu\}$$

 $\iff (x, \mu) \in A \times \{\mu\}$
 $\iff x \in A.$

Esto prueba la afirmación.

(II) Si $\lambda \neq \mu$, $A \subset X_{\mu}$ y existiera $x \in i_{\lambda}^{-1}(A \times \{\mu\})$, entonces $(x, \lambda) \in A \times \{\mu\}$ y por tanto $\lambda = \mu$, contradiciendo la hipótesis.

propiedades, inclusiones, suma topológica (III) Por (I), se tiene que $i_{\mu}^{-1}(A \times \{\mu\}) = A$ y tomando la imagen bajo i_{μ} en ambos lados, al ser las inclusiones suprayectivas, se tiene que $A \times \{\mu\} = i_{\mu}(A)$.

(IV) Sea $\mu \in \Lambda$ y $B \subset X$, entonces

$$(x,\lambda) \in i_{\mu}^{-1}(B) \times \{\mu\} \iff x \in i_{\mu}^{-1}(B) \land \lambda \in \{\mu\} \land x \in X_{\mu}$$

$$\iff i_{\mu}(x) \in B \land \lambda = \mu \land x \in X_{\mu}$$

$$\iff (x,\mu) \in B \land \lambda = \mu \land (x,\lambda) \in X_{\mu} \times \{\lambda\}$$

$$\iff (x,\lambda) \in B \land \lambda = \mu \land (x,\lambda) \in X_{\mu} \times \{\mu\}$$

$$\iff (x,\lambda) \in B \cap X_{\mu} \times \{\mu\}.$$

Como μ fue arbitrario, se tiene el resultado.

caracterización, abiertos, suma topológica

Teorema 15. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ su suma topológica. Entonces

- (1) U es abierto en X si y solo si $U \cap X_{\lambda} \times \{\lambda\}$ es abierto en $X_{\lambda} \times \{\lambda\}$, $\forall \lambda \in \Lambda$,
- (II) F es cerrado en X si y solo si $F \cap X_{\lambda} \times \{\lambda\}$ es cerrado en $X_{\lambda} \times \{\lambda\}$, $\forall \lambda \in \Lambda$.

Demostración. (I) Si $U \subset X$ es abierto, por definición $U \cap X_{\lambda} \times \{\lambda\}$ es abierto en $X_{\lambda} \times \{\lambda\}$, para cada $\lambda \in \Lambda$. Supóngase que se cumple la condición. Nótese que para cada $\lambda \in \Lambda$, la inclusión $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es continua, además, $U \cap X_{\lambda} \times \{\lambda\} = i_{\lambda}^{-1}(U) \times \{\lambda\}$ y en consecuencia $i_{\lambda}^{-1}(U \cap X_{\lambda} \times \{\lambda\}) = i_{\lambda}^{-1}(i_{\lambda}^{-1}(U) \times \{\lambda\}) = i_{\lambda}^{-1}(U)$ es abierto en X_{λ} . Luego $U \in \mathcal{T}_{\lambda}$ para cada $\lambda \in \Lambda$ y por tanto $U \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$, es decir, U es abierto en X.

(II) Se tiene que

$$F \subset X$$
 es cerrado en $X \iff X - F$ es abierto en $X \iff (X - F) \cap X_{\lambda} \times \{\lambda\} = X_{\lambda} \times \{\lambda\} - F$ es abierto en $X_{\lambda} \times \{\lambda\}$, $\forall \lambda \in \Lambda \iff F$ es cerrado en $X_{\lambda} \times \{\lambda\}$, $\forall \lambda \in \Lambda$,

por el punto anterior.

COROLARIO 2. Sea $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia de espacios topológicos y sea $X=\coprod_{{\lambda}\in\Lambda}X_{\lambda}$ su suma topológica. Entonces

- (I) U es abierto en X si y sólo si $i_{\lambda}^{-1}(U)$ es abierto en X_{λ} , $\forall \lambda \in \Lambda$,
- (II) F es cerrado en X si y sólo si $i_{\lambda}^{-1}(F)$ es cerrado en X_{λ} , $\forall \lambda \in \Lambda$.

Teorema 16. Si $\{X_{\lambda}\}_{\lambda}$ es una familia de espacios topológicos $yX = \coprod_{\lambda \in \Lambda} X_{\lambda}$ es su suma topológica, entonces

- (1) $Si \mu \in \Lambda$, entonces U es abierto en X_{μ} si y solo si $U \times \{\mu\}$ es abierto en $X_{\mu} \times \{\mu\}$.
- (II) Cada subespacio $X_{\lambda} \times {\lambda}$ de X es abierto y cerrado en X,
- (III) $Si \mu \in \Lambda y : \subset X_{\mu}$, entonces U es abierto en X_{μ} si y solo si $U \times \{\mu\}$ es abierto en X,
- (IV) $i_{\lambda}: X_{\lambda} \longrightarrow X$ es una función abierta, $\forall \lambda \in \Lambda$.
- (v) $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es una función abierta, $\forall \lambda \in \Lambda$.
- (VI) $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es un homeomorfismo.

Demostración. (I) Si $\mu \in \Lambda$ y U es abierto en X_{μ} , entonces $U \subset X_{\mu}$ y por (I) se tiene que $i_{\mu}^{-1}(U \times \{\mu\}) = U$. Luego $U \times \{\mu\}$ debe ser abierto en la topología coinducida en X por X_{μ} a través de i_{μ} , es decir, $U \times \{\mu\} \in \mathcal{T}_{\mu}$. Más aún, si $\lambda \neq \mu$, por (II) se tiene que $i_{\lambda}^{-1}(U \times \{\mu\}) = \emptyset$, el cual también es abierto en X_{λ} . En consecuencia, $U \times \{\mu\} \in \mathcal{T}_{\lambda}$, para cada $\lambda \in \Lambda$. Luego $U \times \{\mu\} \in \bigcap_{\lambda \in \Lambda} \mathcal{T}_{\lambda} = \mathcal{S}$, es decir, $U \times \{\mu\}$ es abierto en X.

Supóngase ahora que $U \times \{\mu\}$ es abierto en $X_{\mu} \times \{\mu\}$. Como la inclusión $i_{\mu} : X_{\mu} \longrightarrow X$ es continua y $i_{\mu}(X_{\mu}) = X_{\mu} \times \{\mu\}$, entonces $i_{\mu} : X_{\mu} \longrightarrow X_{\mu} \times \{\mu\}$ también es continua. Como $U \subset X_{\mu}$, entonces $i_{\mu}^{-1}(U \times \{\mu\}) = U$ por (1) y se sigue que U es abierto en X_{μ} .

propiedades, abiertos, suma topológica (II) Corolario de 2d3. (III) Se sigue de (I) y (II). (IV) Se sigue de 2d2 (III) y del punto anterior. (V). Se sigue del punto anterior. (VI) Es fácil ver que $i_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda} \times \{\lambda\}$ es biyectiva. Es además continua y abierta, luego un homeomorfismo.