

Система прогнозирования событий с использованием RAG

Олизько Степан Сергеевич

Студент группы 22.Б15-пу

Антон Юрьевич Першин

Научный руководитель

Актуальность исследования

Растущая потребность в автоматизации аналитики и прогнозирования

Необходимость интеграции внешних источников данных

Ограничения традиционных языковых моделей:

- Статичность знаний
- Отсутствие актуальной информации
- Склонность к галлюцинациям

Цель и задачи исследования

Цель:

Разработать систему прогнозирования событий на основе RAG, способную обрабатывать текстовые запросы и генерировать обоснованные прогнозы

Задачи:

- 1. Проанализировать существующие RAG-подходы
- 2. Реализовать механизм поиска релевантной информации
- 3. Спроектировать модульную архитектуру системы
- 4. Интегрировать языковую модель для генерации прогнозов
- 5. Провести тестирование и оценку эффективности

Retrieval-Augmented Generation

RAG = Retrieval + Generation

Преимущества RAG

Ретривер $p\eta(z|x)$

— поиск релевантных документов

Генератор $p\theta(yi|x,z,y1:i-1)$

— создание ответа на основе найденной информации

Динамическое обновление знаний

Фактологическая точность

Прозрачность источников

Архитектура системы

Формирование базы знаний

- API The Guardian
- Датасет PROPHET

Векторизация и индексирование

- Плотная векторизация (SBERT)
- Разреженная векторизация (TF-IDF)

Поиск и ранжирование

Генерация ответа

PlainLLM Базовый подход

Языковая модель отвечает только на основе внутренних знаний

Без использования внешних источников

Служит базелайном для сравнения

NaiveRAG Классический RAG

Векторизация запроса
Формирование базы знаний
Поиск похожих фрагментов
Генерация прогноза
с контекстом

HybridRAG + Cross-Encoder

Гибридный поиск (плотный + разреженный)

Cross-Encoder переранжирование

Повышенное качество отбора документов

HybridRAG + Cross-Encoder

Гибридный поиск (плотный + разреженный)

Cross-Encoder переранжирование

Повышенное качество отбора документов

Реализация системы

Фреймворки:

- LangChain
- Groq

Векторизация:

- Sentence-Transformers
- FAISS

Данные:

- The Guardian API
- PROPHET Dataset

Модели:

- Llama-3.1-8b-instant (генерация)
- all-MiniLM-L6-v2 (векторизация)
- ms-marco-MiniLM-L-6-v2 (переранжирование)

Экспериментальная база

Источники данных:

Metaculus

— научно-ориентированная платформа прогнозирования

Manifold Markets

— децентрализованная платформа предсказательных рынков

Структура датасета:

- 1. Бинарные вопросы о будущих событиях
- 2. Фактические исходы событий
- 3. Коллективные предсказания экспертов
- 4. Релевантные новостные статьи (отобранные по CIL)

Результаты

Предсказание вероятностей (MSE)

Ключевые результаты:

HybridRAG_lc: **0.097**

PlainLLM: **0.1075**

NaiveRAG: **0.116-0.129**

Улучшение на 9.8% относительно

базовой LLM

Comparison of MSE across Models and Weights

Бинарная классификация (ROC-AUC)

Ключевые результаты:

HybridRAG_lc: **0.66-0.71**

PlainLLM: **0.49**

Community: **0.82-0.87**

Значительное улучшение над базелайном

Comparison of ROC_AUC across Models and Weights

Бинарная классификация (Precision)

Ключевые результаты:

Умеренный Precision **0.55-0.58**

Склонность к переоценке рисков

Comparison of Precision across Models and Weights

Бинарная классификация (Recall)

Ключевые результаты:

Высокий Recall **0.70-0.71** ≈ уровень экспертов

Comparison of Recall across Models and Weights

Бинарная классификация (F1)

Comparison of of F1 across Models and Weights

Анализ

Ключевые выводы эксперимента

Основные закономерности:

RAG превосходит базовую LLM
— улучшение всех метрик
Локальный корпус эффективнее
Гибридная архитектура лучшая
— комбинирование стратегий поиска

Паттерн производительности:

Высокий Recall ≈ экспертов

Низкий Precision → переоценка событий

Разрыв с коллективными прогнозами

Ограничения и перспективы

Выявленные ограничения:

Переоценка рисков (ложноположительные прогнозы) Зависимость от качества источников Отставание от экспертного сообщества

Направления развития:

Калибровка вероятностных оценок Мультиагентные подходы Улучшение синтеза информации Адаптивное обновление базы знаний

Заключение

Достижения:

Разработана модульная RAG-система

Улучшение MSE на **9.8%**, ROC-AUC **c 0.49 до 0.66**

Подтверждена эффективность курации данных

Практическая значимость:

Инструмент поддержки принятия решений

Быстрая обработка текстовой информации

Адаптируемость к различным областям

