

សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញ ROYAL UNIVERSITY OF PHNOM PENH

Computer E-commerce Management System

SUBJECT: DATABASE MANAGEMENT SYSTEM

PROFESSOR: MENG HANN

GROUP 6

- LEAP PHANIPHA
- YON SREYPIN
- YONG SREYOUN
- YOEURTH SAIYANN

Strong Entity Sets

ADMIN

CATEGORY

CUSTOMERS

VENDER

PAYMENTMETHOD

Weak Entity Sets

PRODUCT

DEPEND ON

CATEGORY

IMPORT

DEPEND ON

VENDER

ORDER

DEPEND ON

PAYMENTMETHOD

CUSTOMER

CART

DEPEND ON

PRODUCT

CUSTOMER

🗖 ក្នុងប្រព័ន្ធគ្រប់គ្រងកុំព្យួទ័ររ និង គេហទំព័រ យើងអាចកំណត់បាន Entities មួយចំនួនដូចជា:

💠 ចំពោះមនុស្ស:

- 1.ពត៌មានរបស់អតិថិជន(customers's Information) 2.ពត៌មានរបស់អ្នកគ្រប់គ្រងប្រព័ន្ធ(Admin's Information) 3.ពត៌មានអ្នកផ្គត់ផ្គង់(Vender's Information)

💠 ចំពោះវត្ត:

- 1.ពត៌មានរបស់កុំព្យូទ័រ(Product's Information) 2.ពត៌មានរបស់ប្រភេទកុំព្យូទ័រ(Category's Information)

ចំពោះព្រឹត្តិការណ៍:

- 1.ពត៌មាននៃការនៃការនាំចូល (Import' information) 2.ពត៌មាននៃការកម៉ូង់ទំនិញ(order's information) 3.ពត៌មាននៃការអតិថិជនដាក់ទំនិញចូលកន្ត្រក(Cart's information) 4.ពត៌មាននៃវិធីបង់ប្រាក់(Payment's Information)

REALATIONSHIP EACH TABLE

REALATIONSHIP EACH TABLE

- a. IMPORT មួយដងមាន PRODUCT មួយឬច្រើន b. PRODUCT នីមួយៗត្រូវបាន IMPORT មួយ ឬ ច្រើនដង ដូចនេះយើងត្រូវបម្លែងទៅជាទម្រង់ ONE-TO-MANY:

- a. មាន័យថា ORDER ម្តងអាចមាន PRODUCT មួយមុខ ឬ ច្រើនមុខ b. មាន័យថា PRODUCT នីមួយៗអាចត្រូវបាន ORDERមួយដង ឬ ច្រើនដង ដូចនេះយើងត្រូវបម្លែងទៅជាទម្រង់ ONE TO MANY:

ENTITY

RELATIONSHIP

DIAGRAM

ALL TABLE

NORMALISATION

Products

product_id

category_id

productName

CategoryName

price

qty

> In the given table, we can see that there are two functional dependencies:
1.product_id -> category_id

2.category_id -> category name

> The first functional dependency indicates that the category id is determined by the product id. This means that for each product, there is only one category that it belongs to. The second functional dependency indicates that the category name is determined by the category id. This means that for each category, there is only one name.

Based on these functional dependencies, we can create two separate tables: one for product and one for category.

NORMALISATION (2NF)

TABLE PRODUCT

product_id	category_id	Product_name	qty	price	description	image
1	2	ACER NITRO5	20	1999	RAM 16 GB	
2	1	Ro STRix	30	789	RAM 16 GB	
3	3	IDEA PAD 2	10	940	RAM 16 GB	
4	3	IDEA PAD 3	10	120	RAM 16 GB	
5	2	MACBOOK 16"	40	120	RAM 16 GB	

The Categories table will contain all the information related to categories, including the category_id and category_name, and image. The primary key of this table will be the category_id.

The Products table will contain all the information related to products, including the product_id, category_id, product_name, qty, description image, and price. The primary key of this table will be the product_id, and the category_id will be a foreign key referencing the Categories table.

TABLE CATEGORY

category_id	Product_name	image	
1	ASUS	<u></u>	
2	ACER		
3	LENOVO		
4	HP		
5	MAC	<u></u>	

