Catatan Kuliah Minggu 3: PDB Linear dan Faktor Integrasi

Mata Kuliah: Persamaan Diferensial untuk Teknik Elektro
Dosen: [Nama Dosen Anda]

July 3, 2025

1 PDB Linear Orde Pertama

Di minggu sebelumnya, kita telah berhasil memodelkan rangkaian RC dan mendapatkan persamaan:

$$RC\frac{dv_c}{dt} + v_c = V_s(t)$$

Persamaan ini termasuk dalam kelas persamaan diferensial yang sangat penting dan umum, yaitu PDB Linear Orde Pertama.

1.1 Bentuk Standar

Setiap PDB linear orde pertama dapat ditulis dalam bentuk standar berikut:

$$\frac{dy}{dt} + P(t)y = Q(t)$$

- P(t) adalah fungsi koefisien dari suku y.
- Q(t) adalah fungsi non-homogen atau fungsi pemaksa (forcing function).

1.2 Mengubah Model RC ke Bentuk Standar

Untuk menerapkan metode solusi umum, kita harus terlebih dahulu mengubah persamaan rangkaian RC kita ke bentuk standar. Kita bagi seluruh persamaan dengan RC:

$$\frac{dv_c}{dt} + \frac{1}{RC}v_c = \frac{V_s(t)}{RC}$$

Dengan membandingkannya dengan bentuk standar, kita dapat mengidentifikasi:

- $y = v_c(t)$
- $P(t) = \frac{1}{RC}$ (dalam kasus ini, sebuah konstanta)
- $Q(t) = \frac{V_s(t)}{RC}$

Sekarang persamaan kita siap untuk diselesaikan.

2 Metode Solusi: Faktor Integrasi

Metode persamaan terpisah tidak dapat digunakan untuk menyelesaikan PDB linear secara umum. Oleh karena itu, kita memerlukan teknik yang lebih kuat: **metode faktor integrasi**.

2.1 Ide Utama

Idenya adalah mencari sebuah fungsi khusus, yang kita sebut **faktor integrasi** $\mu(t)$, yang jika dikalikan ke kedua sisi PDB, secara ajaib akan mengubah sisi kiri persamaan menjadi turunan dari sebuah produk.

Sisi Kiri:
$$\mu(t) \frac{dy}{dt} + \mu(t)P(t)y \xrightarrow{\text{ingin menjadi}} \frac{d}{dt} [\mu(t)y]$$

Jika kita menggunakan aturan produk pada $\frac{d}{dt}[\mu(t)y]$, kita mendapatkan $\mu(t)\frac{dy}{dt}+\frac{d\mu}{dt}y$. Dengan membandingkan kedua ekspresi, kita menemukan bahwa kita memerlukan $\frac{d\mu}{dt}=\mu(t)P(t)$. Ini adalah PD terpisah untuk $\mu(t)$, yang solusinya adalah:

$$\mu(t) = e^{\int P(t)dt}$$

2.2 Prosedur Solusi Langkah-demi-Langkah

Untuk menyelesaikan PDB linear orde pertama y' + P(t)y = Q(t):

- 1. **Pastikan dalam Bentuk Standar:** Tulis ulang PDB ke dalam bentuk standar dan identifikasi P(t) dan Q(t).
- 2. **Hitung Faktor Integrasi:** Hitung $\mu(t) = e^{\int P(t)dt}$. Kita tidak memerlukan konstanta integrasi pada langkah ini.
- 3. Kalikan PDB dengan $\mu(t)$: Kalikan seluruh persamaan di Langkah 1 dengan $\mu(t)$. Sisi kiri secara otomatis akan menjadi $\frac{d}{dt}[\mu(t)y]$.

$$\frac{d}{dt}[\mu(t)y] = \mu(t)Q(t)$$

4. Integralkan Kedua Sisi: Integralkan kedua sisi terhadap t.

$$\int \frac{d}{dt} [\mu(t)y] dt = \int \mu(t)Q(t) dt$$

$$\mu(t)y = \int \mu(t)Q(t) dt + C$$

5. Selesaikan untuk y: Bagi kedua sisi dengan $\mu(t)$ untuk mendapatkan solusi umum.

$$y(t) = \frac{1}{\mu(t)} \left[\int \mu(t)Q(t) dt + C \right]$$

3 Contoh Aplikasi: Menyelesaikan Masalah Rangkaian RC

Mari kita terapkan prosedur ini untuk menemukan tegangan kapasitor $v_c(t)$ dalam skenario PBL kita, dengan asumsi sumber tegangan DC konstan, $V_s(t) = V_s$.

PDB dalam bentuk standar: $\frac{dv_c}{dt} + \frac{1}{RC}v_c = \frac{V_s}{RC}$.

- 1. Identifikasi: $P(t) = \frac{1}{RC}$ dan $Q(t) = \frac{V_s}{RC}$.
- 2. Faktor Integrasi:

$$\mu(t) = e^{\int \frac{1}{RC}dt} = e^{t/RC}$$

3. Kalikan dan Integralkan:

$$\begin{split} \frac{d}{dt}[e^{t/RC}v_c] &= e^{t/RC}\left(\frac{V_s}{RC}\right) \\ e^{t/RC}v_c &= \int \frac{V_s}{RC}e^{t/RC}\,dt \\ e^{t/RC}v_c &= \frac{V_s}{RC}(RCe^{t/RC}) + C = V_se^{t/RC} + C \end{split}$$

4. Selesaikan untuk $v_c(t)$: Bagi kedua sisi dengan $e^{t/RC}$.

$$v_c(t) = V_s + Ce^{-t/RC}$$

Ini adalah solusi umum untuk tegangan pada kapasitor.

3.1 Menemukan Solusi Khusus dengan Kondisi Awal

Misalkan kapasitor pada awalnya kosong, sehingga kondisi awalnya adalah $v_c(0) = 0$.

$$0 = V_s + Ce^{-0/RC} \implies 0 = V_s + C \implies C = -V_s$$

Dengan mensubstitusikan kembali nilai C, solusi khususnya adalah:

$$v_c(t) = V_s - V_s e^{-t/RC} = V_s (1 - e^{-t/RC})$$

Persamaan ini secara akurat mendeskripsikan bagaimana tegangan kapasitor meningkat dari 0 menuju nilai akhirnya V_s .

Rangkuman Minggu 3

Pada minggu ini, kita telah:

- Mempelajari cara mengidentifikasi dan menulis PDB linear orde pertama dalam **ben- tuk standar**.
- Menguasai **metode faktor integrasi** sebagai teknik yang kuat untuk menyelesaikan jenis PDB ini.
- Menerapkan metode tersebut untuk menemukan solusi analitis dari masalah rekayasa praktis (pengisian rangkaian RC).

Langkah Selanjutnya:

Di minggu keempat, kita akan menganalisis solusi yang telah kita temukan lebih dalam, membahas konsep-konsep penting seperti respons transien, respons keadaan tunak, dan makna fisik dari konstanta waktu.