IE 411: Introduction to Nonlinear Optimization

Fall 2022 - Homework Assignment 5

Due: December 20 2022

Question 1. Consider the optimization problem:

minimize
$$x_1 - 4x_2 + x_3$$

subject to $x_1 + 2x_2 + 2x_3 = -2$
 $x_1^2 + x_2^2 + x_3^2 \le 1$.

- a) Given a KKT point of this problem, must it be an optimal solution? Explain/show your reasoning.
- b) Solve the problem using KKT conditions.

Question 2. Consider the optimization problem:

minimize
$$x_1^2 - x_2^2 - x_3^2$$

subject to $x_1^4 + x_2^4 + x_3^4 \le 1$.

- a) Is this a convex programming problem? Explain/show your reasoning.
- b) Find all the KKT points of the problem.
- c) Find the optimal solution of the problem.

Question 3. Use KKT conditions to solve the following problem. Explain/show your reasoning in detail.

minimize
$$x_1^4 - x_2^2$$

subject to $x_1^2 + x_2^2 \le 1$
 $2x_2 + 1 \le 0$.

Question 4. Consider the optimization problem:

minimize
$$(x_1 - 3)^2 + (x_2 - 2)^2$$

subject to $x_1 + x_2 = 1$
 $x_1, x_2 \ge 0$.

- a) Solve the problem using KKT conditions. Explain each step clearly.
- b) Derive the Lagrange dual problem. What can you say about strong duality without solnving the dual problem.
- c) Solve the dual problem.

Question 5. Consider the optimization problem:

minimize
$$x_1^2 + 2x_2^2 + 2x_1x_2 + x_1 - x_2 - x_3$$

subject to $x_1 + x_2 + x_3 \le 1$
 $x_3 \le 3$.

- a) Is the problem convex?
- b) Find an optimal solution to this problem. Explain each step clearly.
- c) Derive the Lagrange dual problem. What can you say about strong duality without solnving the dual problem.
- d) Solve the dual problem.