Prénom: Classe: Nom:

L'usage de la calculatrice est interdit.

Le sujet est à rendre avec la copie

PREMIÈRE PARTIE

EXERCICE N°1 Automatismes

(6 points)

Pour ce premier exercice, aucune justification n'est demandée et une seule réponse est possible par question. Pour chaque question, reportez son numéro sur votre copie et indiquez votre réponse.

1) Le double de l'inverse du carré de 7 est égal à :

1.a)
$$\frac{49}{2}$$

1.b)
$$\frac{2}{40}$$

1.c)
$$\frac{1}{9}$$

1.d) 98

1.a) $\frac{49}{2}$ 1.b) $\frac{2}{49}$ 1.c) $\frac{1}{98}$ 2) On considère la relation $F = \frac{a+b}{cd}$.

Lorsque $a = \frac{1}{2}$, b = 3, c = 4 et $d = -\frac{1}{4}$, la valeur de F est :

2.a)
$$\frac{5}{4}$$

2.b)
$$\frac{7}{2}$$

2.c)
$$-\frac{7}{2}$$

2.a) $\frac{5}{4}$ 2.b) $\frac{7}{2}$ 2.c) $-\frac{7}{2}$ 2.d) $-\frac{5}{2}$ 3) Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que $u_2=-3$ et $u_5=-18$. Alors, pour tout entier nature n, on a:

3.a)
$$u_n = 2 - 5n$$

3.b)
$$u_n = 7 - 5n$$

3.c)
$$u_n = 5n - 13$$

3.d)
$$u_n = -3n-3$$

4) La suite u est géométrique, de raison 3 et de premier terme $u_1 = 7$. Alors, pour tout entier nature n, on a:

4.a)
$$u_n = 7 + 3(n-1)$$

4.b)
$$u_n = 7 \times 3^{n-1}$$

4.c)
$$u_n = 7 + 3^{n-1}$$

4.d)
$$u_n = 3 \times 7^{n-1}$$

5) Un récipient contenant initialement un litre d'eau est laissé au soleil. Toutes les heures le volume d'eau diminue de 15 %. On appelle un le volume d'eau restant dans le récipient la n^{ième} heure. On a alors:

5.a)
$$u_{n+1} = 0.85 u_n$$

5.b)
$$u_n = 0.15^n$$

5.c)
$$u_{n+1} = u_n - 0.15$$

5.d)
$$u_n = 1 - 0.15 n$$

6) Que va afficher ce script en langage Python?

6.a) 33 6.b) 17

6.c)

19 **6.d**)

7) La somme $S = 1+7+^2+7^3+...+7^{20}$ vaut :

7.a)
$$\frac{1-7^{20}}{6}$$

7.b)
$$\frac{7^{20}-1}{6}$$

7.c)
$$\frac{7^{21}-1}{6}$$

7.d)
$$\frac{1-7^{21}}{6}$$

8) On a représenté ci-contre une parabole P.

Une seule des quatre fonctions ci-dessous est susceptible d'être représentée par la parabole P.

Laquelle?

8.b)
$$x \mapsto -x^2 - 20$$

8.c)
$$x \mapsto -x^2 + 20$$

8.d)
$$x \mapsto -x^2 + 20x$$

9) Le prix d'un article est multiplié par 0,975.

Cela signifie que le prix de cet article a connu :

9.b) une augmentation de 97,5 %

une augmentation de 0,975 % 9.d)

10) On considère trois fonctions définies sur \mathbb{R}

$$f_1: x \mapsto x^2 - (1-x)^2$$

$$f_1: x \mapsto x^2 - (1-x)^2$$
 $f_2: x \mapsto \frac{x}{2} - \left(1 + \frac{1}{\sqrt{2}}\right)$

$$f_3: x \mapsto \frac{5 - \frac{2}{3}x}{0.7}$$

Parmi ces trois fonctions, celles qui sont des fonctions affines sont :

10.b) **Toutes**

10.c) Uniquement la fonction
$$f_1$$

Uniquement les fonctions f_2 et f_3 10.d)

11) Le prix d'un article est noté P. Ce prix augmente de 10 % puis baisse de 10 %. A l'issue de ces deux variations, le nouveau prix est noté P_1 . On peut affirmer que :

11.a)
$$P_1 = P$$

11.b)
$$P_1 > P$$

11.c)
$$P_1 < P$$

11.d) Cela dépend

12) La quantité $2x^2 - 4x - 6$ est égale pour tout $x \in \mathbb{R}$ à :

12.a)
$$2(x-1)(x-3)$$

12.b)
$$(x+1)(2x-6)$$

12.c)
$$(2x-3)(x-2)$$

12.d)
$$(2x+2)(x+3)$$

DEUXIÈME PARTIE

EXERCICE N°2 Suite arithmétique, suite géométrique

(4 points)

À l'issue d'une étude conduite pendant plusieurs années, on modélise l'évolution du prix du m² d'un appartement neuf dans une ville française de la manière suivante : À partir d'un prix de 4 200 € le m² en 2025, on applique chaque année une augmentation annuelle de 3 %.

- 1) Calculer, selon ce modèle, le prix du m² d'un appartement neuf dans cette ville en 2026 et en 2027.
- 2) On considère la suite de terme général u_n qui permet d'estimer, avec ce modèle, le prix en euro du m^2 d'un appartement neuf l'année 2025+n. On a donc $u_0 = 4200$.
- Quelle est la nature de la suite u? 2.a) On se justifiera et on précisera les éléments caractéristiques de la suite u.
- Aide au calcul $3 \times 4326 = 12978$ 432600 - 12978 = 445578 $4200 \times 0.97^4 \approx 3718$ $4200 \times 0.97^5 \approx 3607$ $4200 \times 0.97^6 \approx 3498$ $4200 \times 1.03^4 \approx 4727$ $4200 \times 1.03^5 \approx 4869$ $4200 \times 1.03^6 \approx 5015$
- 2.b) En déduire l'expression du terme u_n en fonction de n, pour tout entier naturel n.
- 3) Selon ce modèle, pourra-t-on acheter en 2030, un appartement de 40 m² si l'on dispose d'une somme de 200 000 €?

Soit u la suite définie par :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N} \end{cases}$$

avec f la fonction définie sur l'intervalle $[0; +\infty[$ dont la courbe représentative (C) est représentée ci-dessous.

- 1) Construire sur l'axe des abscisses de la figure ci-dessous les termes u_1 , u_2 et u_3 de la suite u en utilisant la droite d'équation y = x et la courbe (C) et en laissant apparaître les traits de construction.
- 2) Conjecturer le sens de variation de u.
- 3) Conjecturer, si elle existe, la limite de u.

EXERCICE N°4 Suite arithmético-géométrique

(4 points)

Soit la suite u définie sur \mathbb{N} par : $u_0=7$ et $\forall n \in \mathbb{N}$, $u_{n+1}=0.5u_n+3$. Pour tout $n \in \mathbb{N}$, on pose $v_n=u_n-6$.

1) Montrer que v est une suite géométrique de raison 0,5 dont on précisera le premier terme.

(Indication: On commencera par exprimer v_{n+1} en fonction de u_{n+1} , on pourra alors remplacer u_{n+1} par...)

- 2) Exprimer v_n puis u_n en fonction de n.
- 3) On note $S = v_0 + v_1 + ... + v_{100}$. Déterminer la valeur exacte de S.
- 4) En déduire une valeur exacte de la somme $S' = u_0 + u_1 + ... + u_{100}$.

Le 1er janvier 2025, une grande entreprise compte 1500 employés. Une étude montre que lors de chaque année à venir, 10 % de l'effectif de l'entreprise au 1er janvier partira à la retraite au cours de l'année. Pour ajuster ses effectifs à ses besoins, l'entreprise embauche 100 jeunes dans l'année.

Aide au calcul $\frac{145}{150} = \frac{29}{30}$ $\frac{1405}{1450} = \frac{281}{290}$

Pour tout entier nature n, on appelle U_n le nombre d'employés de l'entreprise le 1er janvier de l'année 2025+n.

- 1) Déterminer les trois premiers termes de la suite $\,U\,$. Cette suite est-elle géométrique ? Arithmétique ? Justifier votre réponse.
- 2) Pour tout entier naturel n, on admet la relation de récurrence $U_{n+1}=0.9\,U_n+100$. Pour tout entier naturel n, on pose $V_n=U_n-1000$. Démontrer alors que la suite V est géométrique.
- 3) Pour tout entier nature n, donner l'expression de V_n en fonction de n.
- 4) En déduire l'expression de U_n en fonction de n.
- 5) Démontrer que pour tout entier naturel n, on a : $U_{n+1} U_n = -50 \times 0.9^n$
- 6) En déduire alors le sens de variation de la suite U.
- 7) Au 1er janvier 2025, l'entreprise compte un sureffectif de 300 employés. Le tableau ci-contre, extrait d'une feuille automatisée de calcul, a été obtenu par recopie vers le bas après avoir saisie la formule =0,9*B2+100 dans la cellule B3.

À partir de quelle année, le contexte restant le même, l'entreprise ne sera-t-telle plus en sureffectif?

	А	В
1	n	Un
2	0	1
3	1	S44 5
4	2	2
5	3	1364,5
6	4	1328,05
7	5	1295,245
8	6	1265,7205
9	7	1239,14845
10	8	1215,233605
11	9	1193,710245
12	10	1174,33922
13	11	1156,905298
14	12	1141,214768
15	13	1127,093291
16	14	1114,383962
17	15	1102,945566
18	16	1092,651009
19	17	1083,385908
20	18	1075,047318
21	19	1067,542586
22	20	1060,788327
23	21	1054,709495
24	22	1049,238545
25	23	1044,314691
26	24	1039,883222
27	25	1035,894899
28	26	1032,305409
29	27	1029,074869
30	28	1026,167382
31	29	1023,550643
32	30	1021,195579
33	31	1019,076021
34	32	1017,168419
35	33	1015,451577
20		

EXERCICE N°6 (Bonus: 1,5 points)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}$, $u_n=\frac{3^n+1}{3^n-1}$

- 1) Démontrer que la suite u est strictement décroissante.
- 2) Démontrer que pour tout entier naturel n, $u_n 1 = \frac{2}{3^n 1}$.
- 3) La suite u converge-t-elle vers une valeur et si oui laquelle? (On ne demande qu'une conjecture)