Введение

Векторные представления слов

Математические методы анализа текстов осень 2020

Попов Артём Сергеевич

9 сентября 2020

Этапы решения NLP-задачи

- 1. Выбор метрики качества
- 2. Сбор обучающих и тестовых данных
- 3. Предобработка данных
- 4. Формирование признакового описания текста
- 5. Выбор подхода и класса моделей
- 6. Обучение моделей и настройка решения

Простейшее признаковое описание текста — мешок слов (bag of words):

- $ightharpoonup v_d = \{n_{wd}\}_{w \in W}$ признаковое представление документа d
- ightharpoonup W множество уникальных слов коллекции (словарь)
- $ightharpoonup n_{wd}$ сколько раз слово w встречается в документе d

Введение

00000

Агрегация представлений слов для представлений документа

- 1. Каждому слову $w \in W$ сопоставим вектор $v_w \in \mathbb{R}^m$ представление слова (word embedding), m размерность пространства
- 2. Представление документа будем вычислять как агрегирующую функцию от векторов слов документа (например, среднее или сумма)

Модель мешка слов (другой взгляд):

1. Каждому слову $w \in W$ соответствует one-hot вектор:

$$v_w = [0, \dots, 0, \underbrace{1}_w, 0, \dots, 0] \in \mathbb{R}^{|W|}$$

2. Представление документа $d = \{w_1, \dots, w_n\}$ вычисляется через сумму:

$$v_d = \sum_{w \in W} n_{wd} v_w = \sum_{w \in d} v_w$$

Свойства one-hot представлений слов

- + Очень легко и быстро построить
- Неплохое качество решения задач на длинных текстах
- Разреженность

Введение

00000

- Большая размерность
- Ортогональность всех представлений слов
- Нет механизма обработки незнакомых слов (out of vocabulary, OOV) на тесте

Проблемы возникают на коротких предложениях...

Мы твёрдо верим **в то**, **что** оправдаем ожидания поклонников оригинальной трилогии StarWars.

Мы абсолютно уверены, **что не** разочаруем фанатов классических «Звёздных войн».

Мы пришли **к** выводу, **что** Луна, вероятно, вертится вокруг Земли.

После удаления стоп-слов:

Введение

00000

$$\rho(d_1, d_2) = \rho(d_1, d_3)$$
 (евклидово, косинусное)

А ещё есть задачи, где объект — слово (поиск синонимов).

Введение

00000

Задача построения представлений слов

Дано:
$$D = \{w_1, w_2, \dots, w_N\}$$
 — текстовая коллекция D — конкатенация всех документов $w_i \in W$ — слово, W — словарь коллекции

Найти: векторное представление $v_w \in \mathbb{R}^m$ для каждого слова w

Какие представления считать хорошими?

- ▶ Близким по смыслу словам соответствуют близкие по расстоянию вектора.
- ▶ Небольшая размерность $m \ll |W|$.
- ightharpoonup Интерпретируемые арифметические операции в пространстве \mathbb{R}^m .
- ▶ Качество решения конечной задачи.

OOV развитие

Игра «угадай слово»

•00000

рампетка

▶ корец

▶ рында

Игра «угадай слово»

рампетка

Мы вышли на свою охоту за бабочками, каждый с двумя рампетками.

▶ корец

Петришка бурлыкнул бутылью об лавку и вновь припал к корцу с квасом.

рында

В рынду бьют каждые полчаса для обозначения времени и для подачи сигналов при тумане.

Игра «угадай слово»

Введение

Count-based

000000

▶ рампетка — сачок для ловли бабочек.

Мы вышли на свою охоту за бабочками, каждый с двумя рампетками.

OOV развитие

▶ корец — ковш для черпанья воды, кваса.

Петришка бурлыкнул бутылью об лавку и вновь припал к корцу с квасом.

▶ рында — судовой колокол.

В рынду бьют каждые полчаса для обозначения времени и для подачи сигналов при тумане.

Гипотеза дистрибутивности

Формулировка 1^1 : слова, совстречающиеся с одними и теми же словами, имеют схожее значение.

слово совстречаются \Leftrightarrow встречаются в окне k:

Формулировка 2^2: слово характеризуется словами, с которыми оно совстречается.

¹Harris (1954). Distributional structure

²Firth (1957). A synopsis of linguistic theory

Матрица совстречаемостей слов (Co-occurrence matrix)

Составим по коллекции матрицу $X \in \mathbb{R}^{|W| \times |W|}, \quad X_{wc} = f(w, c, D)$

Примеры:

Введение

- lacktriangle $X_{wc} = n_{wc}$ количество совстречаний слов w и c
- $ightharpoonup X_{wc} = PMI(w,c)$ pointwise mutual information

$$PMI(w, c) = \log \frac{p(w, c)}{p(w)p(c)} = \log \frac{n_{wc}}{n_c n_w} + Const$$

 n_w — число появлений слова w в коллекции

$$ightharpoonup X_{wc} = PPMI(w, c) = max(0, PMI(w, c))$$

 X_w — представление $\in \mathbb{R}^{|W|}$, решающее проблему ортогональности.

Как получить представление $\in \mathbb{R}^m$, $m \ll |W|$?

Матрица совстречаемостей слов (Co-occurrence matrix)

Составим по коллекции матрицу $X \in \mathbb{R}^{|W| \times |W|}, \quad X_{wc} = f(w, c, D)$

Примеры:

- lacktriangle $X_{wc} = n_{wc}$ количество совстречаний слов w и c
- $ightharpoonup X_{wc} = PMI(w,c)$ pointwise mutual information

$$PMI(w,c) = \log \frac{p(w,c)}{p(w)p(c)} = \log \frac{n_{wc}}{n_c n_w} + Const$$

 n_w — число появлений слова w в коллекции

 X_w — представление $\in \mathbb{R}^{|W|}$, решающее проблему ортогональности.

Как получить представление $\in \mathbb{R}^m$, $m \ll |W|$? Воспользоваться методами уменьшения размерности.

SVD для построения представлений

Хотим построить матричное разложение X:

$$X = IJV^T$$

Введение

Используем SVD разложение:

$$X = \hat{U}_d \Sigma_d \hat{V}_d^T, \qquad U = \hat{U}_d \sqrt{\Sigma_d}, \qquad V = \hat{V}_d \sqrt{\Sigma_d}.$$

Представления слов — строки матриц U или V.

 $\mathsf{B}^{\ 1}$ показано, что такой метод при определённых условиях показывает хорошее качество на стандартных бенчмарках.

¹Levy et al (ACL 2015), Improving Distributional Similarity with Lessons Learned from Word Embeddings.

Введение

Glove — ещё одно матричное разложение.

Count-based

000000

Методом Adagrad обучается функционал:

$$\mathcal{L} = \sum_{w \in W} \sum_{c \in W} F(n_{wc}) (\langle u_w, v_c \rangle + b_w + \hat{b}_c - \log n_{wc})^2 \longrightarrow \min_{U, V, b, \hat{b}}$$

Боремся с шумовыми редкими словами с помощью F:

$$F(n_{wc}) = egin{cases} \left(rac{n_{wc}}{n_{max}}
ight)^{3/4}, n_{wc} < n_{max} \ 1, \end{cases}$$
 иначе

OOV развитие

Популярен, но на практике обычно хуже word2vec...

Резюме по count-based подходам

Введение

- + Неплохое качество в некоторых задачах (но нужно уметь настраивать)
- + Маленькая размерность
- + Близким словам соответствуют близкие вектора
- Нет хорошего механизма обработки новых слов на тесте
- Основной минус: необходимо собирать огромную (но разреженную!)
 матрицу совстречаемостей для обучения

Мотивация prediction-based подхода

Введение

Хотим обновлять параметры модели «на ходу», не составляя матрицу совстречаемостей.

Идея: обучаем модель «воспроизводить» локально гипотезу Фёрса:

- ▶ Модель CBOW по словам контекста необходимо предсказать центральное слово
- ▶ Модель Skip-gram по центральному слову, необходимо предсказать каждое из слов контекста

Обратите внимание! Идея очень схожа с языковой моделью, но контекст — не только слова перед словом.

OOV развитие

Введение

Обозначения для softmax:

 \blacktriangleright Если f(w) — скалярная функция, то:

$$\operatorname{softmax}_{w \in W} f(w) = \frac{\exp(f(w))}{\sum_{w' \in W} \exp(f(w'))}$$

Везде далее мы будем учить две матрицы представлений:

- $ightharpoonup v_w \in \mathbb{R}^m$ из матрицы V
- $ightharpoonup u_w \in \mathbb{R}^m$ из матрицы U

Почему две матрицы:

- ▶ Не накладываем дополнительного ограничения (симметричность) на входные данные
- Проще считать градиенты быстрее обучаемся

Модель CBOW

Функционал обучения — предсказываем центральное слово по контексту:

OOV развитие

$$\sum_{i=1}^N \log p(w_i|C(i)) o \max_{V,U} \ C(i) = \{w_{i-k},\dots,w_{i-1},w_{i+1},\dots,w_{i+k}\}$$
 — локальный контекст w_i

1 этап — вычисление среднего входных векторов:

$$v^{-i} = \frac{1}{2k} \sum_{w \in C(i)} v_w = \frac{1}{2k} \sum_{\substack{j=-k, \ i \neq 0}}^k v_{w_{i+j}}$$

2 этап — применение линейного слоя с softmax активацией:

$$p(w|(w_i)) = \underset{w \in W}{\operatorname{softmax}} Uv^{-i} = \underset{w \in W}{\operatorname{softmax}} \langle u_w, v^{-i} \rangle$$

Модель Skip-gram

Введение

Функционал обучения — предсказываем слова контекста по центральному:

OOV развитие

$$\sum_{i=1}^{N} \sum_{w \in C(i)} \log p(w|w_i) = \sum_{i=1}^{N} \sum_{\substack{j=-k \\ j \neq 0}}^{k} \log p(w_{i+j}|w_i) \to \max_{V,U}$$

$$p(w|w_i) = \underset{w \in W}{\operatorname{softmax}} Uv_{w_i} = \underset{w \in W}{\operatorname{softmax}} \langle u_w, v_{w_i} \rangle$$

- ► CBOW и Skip-gram обучаются с помощью SGD.
- ► Skig-gram лучше моделирует редкие слова коллекции.

Какая сложность итерации обучения CBOW и Skip-gram?

Модель Skip-gram

Введение

Функционал обучения — предсказываем слова контекста по центральному:

OOV развитие

$$\sum_{i=1}^{N} \sum_{w \in C(i)} \log p(w|w_i) = \sum_{i=1}^{N} \sum_{\substack{j=-k \\ j \neq 0}}^{k} \log p(w_{i+j}|w_i) \to \max_{V,U}$$

$$p(w|w_i) = \underset{w \in W}{\operatorname{softmax}} Uv_{w_i} = \underset{w \in W}{\operatorname{softmax}} \langle u_w, v_{w_i} \rangle$$

- ► CBOW и Skip-gram обучаются с помощью SGD.
- ► Skig-gram лучше моделирует редкие слова коллекции.

Какая сложность итерации обучения CBOW и Skip-gram? O(|W|)

Модели CBOW и Skip-gram

Введение

OOV развитие

Сложность одной итерации skip-gram

Пусть w_i это s-ое слово словаря, $w_{i+1} - t$ -ое.

Посчитаем градиенты по u_t и u_k , $k \neq t$ и $k \neq t$:

$$\begin{split} L_{ts} &= \log p(t|s) = \log \underset{w \in W}{\operatorname{softmax}} \langle u_w, v_s \rangle \mid_{w=t} \\ \frac{dL_{ts}}{du_t} &= \frac{d \log \underset{t \in W}{\operatorname{softmax}} \langle u_t, v_s \rangle}{du_t} = \\ &= v_s - \frac{d \log \sum_{w \in W} \exp(\langle u_w, v_s \rangle)}{du_t} = v_s (1 - \underset{w \in W}{\operatorname{softmax}} \langle u_w, v_s \rangle) \mid_{w=t} \\ \frac{dL_{ts}}{du_k} &= \frac{d \log \underset{t \in W}{\operatorname{softmax}} \langle u_t, v_s \rangle}{du_k} = -v_s \underset{w \in W}{\operatorname{softmax}} \langle u_w, v_s \rangle \mid_{w=k} \end{split}$$

OOV развитие

Способы ускорения модели

- 1. Замена softmax на другую функцию, задающую распределение:
 - ► Hierarchical softmax¹
 - ► Differentiated softmax
 - ▶ ..
- 2. Замена функционала модели на более простой:
 - ► Noise contrastive estimation
 - ► Negative sampling¹
 - ► Importance sampling
 - ► Self-normalization
 - ► Infrequent Normalization
 - ▶ ...

¹Mikolov (NIPS 2013), Distributed representations of words and phrases and their compositionality

²Ruder; On word embeddings - Part 2: Approximating the Softmax; http://ruder.io/word-embeddings-softmax/

Hierarchical softmax. Структура дерева.

Идея: заменить softmax на другую функцию, оптимизация которой будет иметь сложность O(log|W|).

Предварительный этап:

Введение

- ▶ Перед обучением модели по множеству пар слов и их частот строится бинарное дерево Хаффмана.
- Каждой вершине дерева соответствует обучаемое представление.
- Листья дерева соответствуют словам. Представления в листах искомые представления для слов.
- Представления внутренних вершин дерева используются для вычисления вероятности p(right|w,n) — вероятность, что слово wлежит в правом поддереве вершины n.

$$p(right|n, w) = \sigma(\langle u_n, v_w \rangle) = 1 - p(left|n, w)$$

OOV развитие

Hierarchical softmax. Обучение модели.

Пусть $n(w) = [n_1(w), n_2(w), \ldots]$ задаёт путь от корня до слова w и пусть:

$$p(w|w_i) = p(n(w)|w_i) = \prod_{j=1}^{|n(w)|-1} p(\underbrace{n_j(w) o n_{j+1}(w)}_{\text{right or left}}|n_j, w_i)$$

Пример на картинке:

Введение

$$p(w_2|w_x) = p(left|w_x, 1)p(left|w_x, 2)p(right|w_x, 3)$$

Введение

Negative sampling (сэмплирование негативных примеров)

Исходный метод: вероятность встретить w в контексте c в коллекции |W| вероятностных распределений, каждое с |W| исходами

Negative sampling: вероятность встретить пару (w, c) в коллекции $|W| \times |W|$ вероятностных распределений, каждое с 2 исходами

$$p(1|c,w) = \sigma(\langle v_c, u_w \rangle) = 1 - p(0|c,w)$$

В чём проблема следующей модели?

$$\sum_{i=1}^{N} \sum_{w \in C(i)} \log p(1|w, w_i) \to \max_{V, U}$$

Введение

Negative sampling (сэмплирование негативных примеров)

Исходный метод: вероятность встретить w в контексте c в коллекции |W| вероятностных распределений, каждое с |W| исходами

Negative sampling: вероятность встретить пару (w, c) в коллекции $|W| \times |W|$ вероятностных распределений, каждое с 2 исходами

$$p(1|c, w) = \sigma(\langle v_c, u_w \rangle) = 1 - p(0|c, w)$$

В чём проблема следующей модели?

$$\sum_{i=1}^{N} \sum_{w \in C(i)} \log p(1|w, w_i) \to \max_{V, U}$$

Переобучение. Только один класс в модели.

Negative sampling (сэмплирование негативных примеров)

Чтобы не переобучаться, будем на каждой итерации сэмплировать n случайных негативных примеров:

$$\sum_{i=1}^{N} \big(\sum_{w \in C(i)} \log p(1|w_{i+j}, w_i) + \sum_{w_k' \sim p(w)^{3/4}} \log p(0|w_i, w_k') \big) \to \max_{V,U}$$

Часто функционал записывают так:

Введение

$$\sum_{i=1}^{N} \big(\sum_{w \in C(i)} \log p(1|w_{i+j}, w_i) + K\mathbb{E}_{w \sim p(w)^{3/4}} \log p(0|w_i, w) \big) \rightarrow \max_{V,U}$$

Важно. Приём популярен не только при обучении skip-gram, но и в любой ситуации, когда у вас в выборке только позитивные пары.

OOV развитие

Дополнительно

Трюки для модели:

- ▶ Subsampling случайное удаление частых слов С вероятностью $1 t/n_w$ удаляем слово из обучения t выбранные порог, n_w частота слова
- Dynamic window случайный выбор размера контекста на каждой итерации
- ► Комбинация итоговых векторов использовать в качестве представления $\alpha v_w + (1-\alpha)u_w$

Общепопулярные практические рекомендации:

- ▶ Размер представлений от 100 до 400
- ► Если документы специфичные, лучше учить модель на этом специфичном домене

OOV развитие

Резюме по word2vec

Введение

- + Хорошее качество в самых разных прикладных задачах.
- Маленькая размерность.
- + Близким словам соответствуют близкие вектора.
- Плохой механизм обработки новых слов на тесте.
- ∓ Требуют большего корпуса чем count-based модели.

OOV слова

Проблема OOV слов (Out of vocabulary): отсутствие векторов для слов, которых не было в коллекции.

Простые способы решения проблемы (word2vec и count-based):

- ▶ использование специального UNK токена для всех редких и новых слов
- восстановление нового слова по его контексту

Продвинутые способы решения проблемы

- исходная модель должна работать не со словами, а с символами или символьными n-граммами
- ▶ обучению по обученным векторам функции, восстанавливающей вектор по символами или символьным n-граммам.

Модель представлений FastText

 $\mathsf{FastText}^1$ — построение представлений слов как суммы представлений для буквенных n -грамм слова.

В Skip-gram меняется только подсчёт вектора u_w :

$$u_w = \sum_{g \in G(w)} u_g, \quad G(w)$$
 — n-граммы слова w

 Π ример: $G(where) = _wh + whe + her + ere + re_$

¹Bojanowski et al (ACL 2017); Enriching Word Vectors with Subword Information; 2016

Методы генерализации обученных представлений

- lacktriangle Исходные данные матрица представлений V для слов из W
- $ightharpoonup f_{\theta}(w)$ строит представление для w по символьной информации, например:

$$f_{\theta}(w) = \sum_{g \in G(w)} \theta_g$$

$$f_{ heta}(w) = LSTM_{ heta}(S(w)), \; S(w)$$
 — символы w

 \triangleright Обучение f_{θ} :

Введение

$$\sum_{w \in W} \|f_{\theta}(w) - v_w\|^2 \to \min_{\theta}$$

¹Pinter et al (EMNLP 2016): Mimicking Word Embeddings using Subword RNNs

²Zhao et al (EMNLP 2018); Generalizing Word Embeddings using Bag of Subwords

Введение

Какие представления считать хорошими?

- 1. Близким по смыслу словам соответствуют близкие по расстоянию вектора.
- 2. Небольшая размерность.
- 3. Интерпретируемые арифметические операции в пространстве \mathbb{R}^m .
- 4. Качество решения конечной задачи.

Эксперимент

Рассмотрим модели, обученные по двум датасетам:¹

- ▶ Статьи Википедии + Национальный корпус русского языка
- ► Статьи сайта Lurkmore (3.5K статей)

Для Википедии используем модель с сайта $RusVectores^2$.

Для Lurkmore обучим модель с нуля с помощью пакета Gensim.

 $^{^{-1}}$ идея позаимствована из лекции Мурата Апишева для курса «Анализ Неструктурированных данных» ФКН ВШЭ

²ruwikiruscorpora-func upos skipgram 300 5 2019

Детали предобработки

Введение

Коллекция Луркморье:

- Все символы кроме букв были удалены
- ▶ Все слова лемматизированы (рутогрһу2)
- ▶ Один документ один абзац (важно при учёте контекста)
- ▶ Абзацы меньше двух слов были удалены

Коллекция Википедии:

- ▶ Все слова лемматизированы (UDPipe)
- ▶ Каждое слово преобразовано в слово {часть речи}

Введение

Детали обучения на коллекции Луркморье

```
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
data_loader = LineSentence("lurkmore_all.txt")
model_lurk = Word2Vec(
    data_loader, # данные
    size=100, # размер представлений
    sg=0, hs=0, # mun asropumma
    window=5, # pasmep oкнa
    min_count=5, # минимальная частота
    workers=4, iter=20,
```

Введение

Детали загрузки модели по Википедии

```
from gensim.models import KeyedVectors

model_wiki = KeyedVectors.load_word2vec_format(
    # nymь κ δυμαρμυκу μοθελυ
    "nkrl_w2v/model.bin",
    binary=True,
)
```

Операции с векторами в gensim

Введение

Получить вектор из модели:

```
word_embedding = model_lurk.wv['BekTop']
word_embedding.shape
# (100, )
```

Поиск похожих слов к арифметической комбинации:

```
similar_token_info = model_lurk.most_similar(
    positive=['мужчина', 'король'],
    negative=['женщина'],
    topn=10
)
```

Похожие слова 1

Введение

Википедия

most similar(россия PROPN)

страна 0.695 европа 0.679 российский 0.604 франция 0.582 германия 0.574

most similar(полковник NOUN)

подполковник 0.904 майор 0.875 генерал 0.805 генерал-майор 0.799 ротмистр 0.770

Луркморье

most similar(россия)

cccp 0.759 cuia 0.754 германия 0.741 рашка 0.730 грузия 0.719

most similar(полковник)

генерал 0.648 подполковник 0.647 майор 0.599 генералмайор 0.573 адмирал 0.557

¹при выводе для википедии pos-теги удалялись при отсутствии повторений

Похожие слова

Введение

```
Википедия
```

most similar(тролль NOUN)

гном 0.661 троллый 0.656 эльф 0.627 тролли 0.609

гоблин 0.589

most similar(музыка NOUN)

мелодия 0.702

джаз 0.669

пение 0.649

песня 0.642

танец 0.630

Луркморье

most similar(тролль)

OOV развитие

троллинг 0.668 лурко** 0.538 провокатор 0.530 фрик 0.517 быдло 0.516

most similar(музыка)

мелодия 0.668

рэп 0.647

попёс 0.642

песнь 0.641

ЗВУК 0.630

Похожие слова

```
Википедия
most similar(мгу PROPN)
мгу 0.843
лгу 0.773
м::в::ломоносов 0.728
мпгу 0.701
спбгу 0.697
most similar(физтех PROPN)
физтех NOUN 0.701
мфти 0.694
мифи 0.632
физтех DET 0.580
мирэа 0.578
```

```
Луркморье
most similar(мгу)
университет 0.755
BV3 0.665
пту 0.656
мгимо 0.646
аспирант 0.640
most similar(физтех)
мехмат 0.537
мифь 0.524
мгимо 0.518
MГУ 0.502
филфак 0.496
```

Арифметические операции в пространстве

яндекс - россия + сша:

Википедия

Введение

гугл 0.518 vahoo 0.467

пентагон 0.464 symantec 0.443

яндексяча 0.441

король 0.623

король - мужчина + женщина:

королева NOUN 0.754 королева ADV 0.672 принц 0.627 королева ADJ 0.625

Луркморье

гугл 0.593

google 0.508

гуголь 0.504 rm 0.502

кэш 0.497

император 0.583

королевский 0.555

фараон 0.548

халиф 0.523

герцог 0.523

Instrinic задачи для оценивания

Задача близости:

Данные: Список троек: w_1, w_2 — слова, x — близость между ними

Модель: Измеряем близости между w_1 и w_2 , например $\cos(u_{w_1},u_{w_2})$

Мера: Корреляция Спирмена между двумя списками близостей

Задача аналогий:

Данные: Список четвёрок слов w_1, w_2, w_3, w_4

 w_1 относится к w_2 так же, как w_3 к w_4

Модель: Находим самое близкое слово к $u_{w_3} - u_{w_1} + u_{w_2}$

Мера: Доля правильно найденных слов

¹Rogers et. al. (*SEM 2017), The (Too Many) Problems of Analogical Reasoning with Word Vectors

²T. Linzen (2016), Issues in evaluating semantic spaces using word analogies

³Levy et. al. Improving distributional similarity with lessons learned from word embeddings, 2015

Введение

- 1. Решать задачи поиска близких слов, синонимов и т.п.
- 2. Получить представление документа/предложения, которое можно использовать для решения задачи машинного обучения
- 3. Использовать представление слова в качестве фиксированного представления в сложной архитектуре (например, рекуррентной сети)
- 4. Использовать для инициализации представлений в сложной архитектуре

Измерение качества моделей по конечной задаче всегда лучше чем измерение по instrinic задачам!

Агрегация векторов для представления документа

▶ Сумма векторов

Введение

- ▶ Среднее векторов
- ► Взвешенная сумма (tf-idf или idf веса)
- ► Координатный max-pool
- ► Координатный hierarchical-pool усреднение соседних по окну слов, а затем max-pool

Очень хороший бейзлайн в любой задаче!

Полезные ссылки

- ► Gensim пакет, позволяющий легко работать с различными моделями эмбеддингов
- ► fasttext библиотека fasttext для обучения эмбеддингов fasttext с нуля
- ► Wikipedia2Vec эмбеддинги для разных языков
- ► RusVectores сайт с эмебеддингами на русском языке
- StarSpace ещё одна модель эмбеддингов, позволяющая учить их под конечную задачу
- ► Word Mover's Distance необычный и эффективный способ вычисления расстояний между предложениями с помощью эмбеддингов слов

Skip-gram как count-based метод

Skip-gram можно записать как count-based метод:

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{\substack{j=-k \ j\neq 0}}^{k} \log p(w_{i+j}|w_i) = \sum_{w\in W} \sum_{c\in W} n_{wc} \log p(c|w) =$$

$$= \sum_{w\in W} n_w \sum_{c\in W} \frac{n_{wc}}{n_w} \log p(c|w) \to \max_{U,V} \quad (1)$$

Добавление константы не меняет задачи оптимизации:

$$(1) \Leftrightarrow \sum_{w \in W} n_w \sum_{c \in W} \frac{n_{wc}}{n_w} \left(\log p(c|w) - \log \frac{n_{wc}}{n_w} \right) =$$

$$= -\sum_{w \in W} n_w \sum_{c \in W} \hat{p}(c|w) \log \frac{\hat{p}(c|w)}{p(c|w)} \to \max_{U,V} \quad (2)$$

KL-дивергенция и её свойства

Мера расстояния между распределениями

$$P = \{p_i\}_{i=1}^s$$
 u $Q = \{q_i\}_{i=1}^s$.

$$\mathit{KL}(P||Q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}$$

- 1. $KL(P||Q) \ge 0$
- 2. $KL(P||Q) = 0 \Leftrightarrow P = Q$
- 3. $\mathit{KL}(P\|Q)$ мера вложенности P в Q

Skip-gram как count-based метод

В модели skip-gram строится матричное разложение матрицы $X_{wc} = \hat{p}(w|c)$:

$$(2) - \sum_{w \in W} n_w KL(\hat{p}(c|w)||p(c|w)) \to \max_{U,V} \Leftrightarrow \\ \Leftrightarrow \sum_{w \in W} n_w KL(\hat{p}(c|w)||p(c|w)) \to \min_{U,V}$$

Обратите внимание! Skip-gram схожа с тематической моделью PLSA, обученной по документам, составленным по совстречаемостям слов 1 .

¹Potapenko et al (2017). Interpretable probabilistic embeddings: bridging the gap between topic models and neural networks

Интерпретация skip-gram negative sampling

Утверждение (Леви) 1

Пусть для любых $w,c\in W$ результат $\langle v_w,u_c\rangle$ не зависит от других пар слов. Тогда, в точке максимума SGNS для любых $w,c\in W$ будет выполнено:

$$\langle v_w, u_c \rangle = PMI(w, c) - \log K$$

На практике эффект наблюдается при больших размерах представлений.²

¹O. Levy et al (NIPS 2014), Neural Word Embedding as Implicit Matrix Factorization

²O. Melamud et al (ACL 2017), Information-Theory Interpretation of the Skip-Gram Negative-Sampling Objective Function