ESTUDO DA EFICÁCIA DE MODELOS DE ESTIMATIVA DE IRRADIAÇÃO SOLAR NA REGIÃO DO CENTRO DE SÃO PAULO

Virgilio Santinho Tagliavini RA: 201025558

Sumário

- **02** м
 - Modelos numéricos

Dados utilizados

4 Programa

05 Resultados

06 Conclusão

A irradiação solar na superfície da Terra, a energia solar que atinge a superfície terrestre, é um fator importante em diversos cenários como a produção de energia solar, a evaporação de água e a sobrevivência de organismos autótrofos fotossintetizantes.

Assim, a irradiação solar em determinada região é uma informação importante em diversas aplicações porém ela não está sempre disponível por duas razões. A primeira é que apenas algumas estações meteorológicas registram a irradiação solar. E a segunda é que para muitas aplicações não se deseja apenas informações atuais e históricas da irradiação de uma região mas também deseja-se prever valores futuros.

A irradiação solar em determinada região da superfície terrestre depende de dois fatores, a irradiação solar no topo da atmosfera que varia mas para a maioria das aplicações pode ser considerada uma constante de 1367,6 W/m², e as condições atmosféricas da região que determinam a dissipação da irradiação solar pela atmosfera através de fenômenos de reflexão, difração e absorção.

Como a irradiação solar no topo da atmosfera pode ser considerada constante para a maioria das aplicações, estimativas da irradiação solar na superfície terrestre se focam na dissipação da energia solar pela atmosfera utilizando variáveis atmosféricas como a umidade, temperatura e a cobertura da região nuvens.

Mas não é viável aplicar qualquer modelo numérico a qualquer região terrestre. Um modelo realista é muito custoso computacionalmente e na quantidade de entradas para ser útil para a maioria das aplicações, todos os modelos são simplificações dos fenômenos físicos da dissipação da irradiação solar modelados a partir de dados históricos. Assim, um modelo é eficaz para a região dos dados que o modelaram mas pode não ser eficaz para outras regiões.

Diagrama da dissipação da irradiação solar pela atmosfera

Os modelos numéricos para estimar a irradiação solar incidente podem ser divididos em três tipos:

- Modelos de insolação: Utilizam apenas a irradiação incidente no topo da atmosfera e abstraem os efeitos ópticos que ocorrem na atmosfera.
- Modelos de nebulosidade: Estimam a dissipação da irradiação solar pela atmosfera utilizando a cobertura de nuvens na região.
- Modelos de temperatura e umidade: Utilizam variáveis atmosféricas como temperatura, umidade, pressão, etc. para estimar a dissipação da irradiação solar pela atmosfera.

Os modelos estudados neste trabalho pertencem ao terceiro grupo, escolhido porque utilizam variáveis comumente registradas por estações meteorológicas.

Neste trabalho foram estudados três modelos de temperatura e umidade, esses modelos utilizam as variáveis mais registradas por estações meteorológicas então podem ser aplicados em grande parte da superfície terrestre.

A irradiação na superfície R_s pode ser descrita como

$$R_{s} = R_{a} * T_{a}$$

Onde R_a é a irradiação no topo da atmosfera e T_a é a transmissividade da atmosfera. Assim, modelos numéricos de estimativa da irradiação solar incidente estimam T_a com base em variáveis atmosféricas.

Os modelos avaliados neste trabalho foram escolhidos porque possuem funções de caracteres diferentes.

Modelo de Weiss e Hays

O modelo de Weiss e Hays foi criado a partir do modelo de Bristow e Campbell com o objetivo de aumentar sua precisão mas manter sua simplicidade. Este modelo calcula a transmissividade atmosférica a partir da amplitude térmica diária e a irradiação solar do dia. O modelo é definido como:

$$T_a = 0.75[1 - exp((-b*\Delta T^2)/R_a)]$$

$$\Delta T = T_{i \text{ max}} - (T_{i \text{ min}} - T_{i-1 \text{ min}})/2$$

b =
$$0.128 + (0.9*mean(\Delta T) - 4.528)^{-1}$$

Modelo de Hargreaves e Samani

Hargreaves e Samani criaram este modelo para auxiliar no cálculo da evapotranspiração assim ele é simples mas utiliza também o caráter climático da região na estimativa da transmissividade atmosférica através do coeficiente de calibração C_{\circ} .

$$T_a = Ca * (T_{i max} - T_{i min})^{0.5}$$

Modelo de Thornton e Running

O modelo desenvolvido por Thornton e Running é derivado do modelo de Bristow e Campbell mas não tenta preservar a sua simplicidade. Ele estima a dissipação da irradiação solar através da amplitude térmica diária e a transmissividade direta e indireta da atmosfera.

$$T_a = (B_d + B_i) * (1 - 0.9 * exp(-B + (T_{i max} - T_{i min})^{1.5}))$$

$$b = 0.031 + 0.201 * exp(-0.185 * mean(\Delta T))$$

03 Dados utilizados

Para avaliar o desempenho dos modelos estudados neste trabalho foram utilizados dados meteorológicos registrados de sete cidades do estado de São Paulo disponibilizados pelo Instituto Nacional de Meteorologia (INMET), as cidades estudadas foram: Avaré, Barra Bonita, Bauru, Ibitinga, Lins, Piracicaba e São Carlos.

Para este trabalho foram requisitados todos os dados registrados em cada cidade até 31/12/2022 pelas estações meteorológicas automáticas do INMET.

Porém, os dados registrados pelas estações apresentam lacunas em seus registros então é necessário que o programa desenvolvido as preencha com dados válidos para permitir a utilização de todos os registros disponíveis.

Dados utilizados

Cidade	Data de início	Latitude (rad)	Longitude (rad)	Altitude (m)
Avaré	21/09/2006	-23.101666	-48.941111	776.36
Barra Bonita	23/04/2008	-22.471111	-48.557500	533.68
Bauru	29/08/2001	-22.358052	-49.028877	636.17
Ibitinga	08/11/2007	-21.855555	-48.799722	496.75
Lins	19/09/2006	-21.666111	-49.734722	460.65
Piracicaba	25/09/2006	-22.703055	-47.623333	566.46
São Carlos	03/09/2006	-21.980353	-47.883927	859.29

Para avaliar os modelos numéricos estudados neste trabalho foi criado um programa com função de executar os modelos e avaliar seus resultados através de medidas estatísticas e estocásticas. Porém, também é necessário tratar os dados disponibilizados pelo INMET antes de os utilizar como entrada dos modelos. Assim o programa foi dividido em três módulos de diferentes funções

03.1 Pré-Processador

Este módulo tem duas funções:

- Converter os dados registrados horários pelo INMET em dados diários.
- Preencher lacunas nos dados registrados com valores apropriados.

03.2 Estimador

A função deste módulo é executar os modelos estudados neste trabalho com os dados formatados pelo Pré-Processador e registrar seus resultados, juntamente com os dados reais de irradiação solar, para análise posterior.

Porém, o INMET não disponibiliza dados da irradiação solar no topo da atmosfera então é necessário a estimar para executar os modelos. O Estimador calcula a irradiação solar no topo da atmosfera utilizando as relações descritas por Allen, com base no dia do ano e na latitude da estação meteorológica que registrou os dados.

03.3 Avaliador

Este módulo tem apenas uma função, aplicar medidas estatísticas e estocasticas sobre os valores reais de irradiação solar e os valores estimados pelo modelos numéricos. Para avaliação do desempenho dos modelos foram escolhidas cinco medidas.

03.3.1 Média

Idealmente, a média dos valores estimados seria igual a média dos valores reais já que uma discrepância entre elas indica que o modelo estima valores maiores ou menores que os reais, sendo impreciso.

03.3.2 Desvio padrão

O desvio padrão de um conjunto é a medida de quão distantes da média os elementos desse conjunto estão então ele indica a amplitude de uma função. Assim como a média, o desvio padrão não pode ser utilizado por si só para comparar funções mas pode ser utilizado em conjunto com outras medidas em análise aprofundadas.

03.3.3 Erro médio quadrático

O erro médio quadrático mede a distância média entre os elementos correspondentes de dois conjuntos de dados ordenados então ele pode ser utilizado para medir o erro absoluto entre os valores reais e estimados.

13.3.4 Índice de concordância de Willmott

O índice de concordância de Willmott avalia a concordância entre os valores reais e os valores estimados por um modelo. Ele está contido em [0, 1] onde 1 indica que o modelo se ajusta perfeitamente aos valores reais e 0, que o modelo discorda totalmente dos valores reais.

03.3.5 Coeficiente de determinação

O coeficiente de determinação também mede a concordância entre os valores reais e os estimados mas também avalia a dispersão deles. Ele está contido em [0, 1] com 1 indicando que o modelo explica todas as variações nos dados reais.

Diagrama do programa desenvolvido

Os resultados iniciais mostram que o modelo mais eficaz para todas as cidades estudadas é o modelo de Hargreaves e Samani porque ele apresentou médias e desvios padrões próximos dos reais, e os maiores índices de concordância de Willmott e coeficientes de determinação para todas as cidades.

O modelo de Thornton e Running se mostrou mais eficaz que o modelo de Weiss e Hays em 5 das cidades estudadas por ter maiores índices de concordância de Willmott e coeficientes de determinação, as cidades onde o modelo de Weiss e Hays o superou foram Barra Bonita e Bauru.

Contudo, para todas as cidades estudadas o modelo de Weiss e Hays estimou valores menores que os reais enquanto o modelo de Thornton e Running, valores maiores.

05

Cidade	Irradiação	Média	σ	EMQ	d	R^2
Avaré	Real	18.015	5.867			
Avaré	Weiss e Hays	11.670	6.044	74.452	0.556	0.268
Avaré	Hargreaves e Samani	16.365	5.479	30.431	0.715	0.326
Avaré	Thornton e Running	21.281	7.812	57.202	0.661	0.284
Barra Bonita	Real	15.635	6.585			
Barra Bonita	Weiss e Hays	14.448	5.472	40.404	0.663	0.226
Barra Bonita	Hargreaves e Samani	18.177	4.889	34.830	0.722	0.364
Barra Bonita	Thornton e Running	22.504	6.349	80.824	0.622	0.358

Cidade	Irradiação	Média	σ	EMQ	d	R^2
Bauru	Real	16.119	5.752			
Bauru	Weiss e Hays	13.144	6.451	41.967	0.678	0.314
Bauru	Hargreaves e Samani	17.100	5.729	24.626	0.783	0.410
Bauru	Thornton e Running	21.461	7.994	71.761	0.642	0.341
Ibitinga	Real	19.342	6.103			
Ibitinga	Weiss e Hays	15.577	5.977	42.927	0.699	0.367
Ibitinga	Hargreaves e Samani	18.879	4.973	16.868	0.845	0.557
Ibitinga	Thornton e Running	22.547	6.765	33.933	0.791	0.516

Cidade	Irradiação	Média	σ	EMQ	d	R^2
Lins	Real	18.759	5.872			
Lins	Weiss e Hays	14.399	5.702	44.122	0.685	0.391
Lins	Hargreaves e Samani	18.127	4.863	16.852	0.835	0.532
Lins	Thornton e Running	22.409	6.764	38.486	0.760	0.480
Piracicaba	Real	18.540	5.770			
Piracicaba	Weiss e Hays	13.330	6.626	63.471	0.595	0.285
Piracicaba	Hargreaves e Samani	17.253	5.613	27.190	0.747	0.367
Piracicaba	Thornton e Running	21.230	8.055	53.756	0.683	0.308

05

Cidade	Irradiação	Média	σ	EMQ	d	R^2
São Carlos	Real	17.744	5.544			
São Carlos	Weiss e Hays	12.509	5.758	53.403	0.627	0.352
São Carlos	Hargreaves e Samani	16.876	5.001	20.630	0.781	0.418
São Carlos	Thornton e Running	21.783	7.367	51.842	0.687	0.366

Modelo de Weiss e Hays para a cidade de Avaré

Modelo de Hargreaves e Samani para a cidade de Avaré

Modelo de Thornton e Running para a cidade de Avaré

Modelo de Weiss e Hays para a cidade de Bauru

Modelo de Hargreaves e Samani para a cidade de Bauru

Modelo de Thornton e Running para a cidade de Bauru

Analisando os resultados dos modelos percebe-se que eles são adequados para estimar a irradiação solar incidente, isto é, seus resultados são semelhantes aos valores reais registrados pelo INMET porém deslocados no eixo das ordenadas. Modelos numéricos podem ser ajustados para se adequar aos dados reais, assim é possível corrigir o deslocamento no eixo das ordenadas adicionando um coeficiente de ajuste aos modelos.

Neste trabalho o coeficiente de ajuste escolhido foi a diferença entre as médias reais e a média de cada modelo, isto é dessa forma os resultados dos modelos serão deslocados de forma a se alinhar com os dados reais.

Cidade	Irradiação	Ajuste	σ	EMQ	d	R^2
Avaré	Weiss e Hays	6.344	6.044	34.200	0.703	0.268
Avaré	Hargreaves e Samani	1.649	5.479	27.710	0.737	0.326
Avaré	Thornton e Running	-3.266	7.808	46.480	0.692	0.284
Barra Bonita	Weiss e Hays	1.187	5.472	38.995	0.673	0.226
Barra Bonita	Hargreaves e Samani	-2.542	4.889	28.367	0.750	0.364
Barra Bonita	Thornton e Running	-6.869	6.281	32.883	0.770	0.364

Cidade	Irradiação	Ajuste	σ	EMQ	d	R^2
Bauru	Weiss e Hays	2.975	6.451	33.114	0.729	0.314
Bauru	Hargreaves e Samani	-0.980	5.729	23.664	0.787	0.410
Bauru	Thornton e Running	-5.342	7.813	40.406	0.736	0.357
Ibitinga	Weiss e Hays	3.764	5.977	28.752	0.767	0.367
Ibitinga	Hargreaves e Samani	0.463	4.973	16.653	0.847	0.557
Ibitinga	Thornton e Running	-3.205	6.764	23.657	0.838	0.516

Cidade	Irradiação	Ajuste	σ	EMQ	d	R^2
Lins	Weiss e Hays	4.359	5.702	25.114	0.780	0.391
Lins	Hargreaves e Samani	0.631	4.863	16.453	0.839	0.532
Lins	Thornton e Running	-3.650	6.763	25.1584	0.820	0.480
Piracicaba	Weiss e Hays	5.209	6.626	36.330	0.709	0.285
Piracicaba	Hargreaves e Samani	1.286	5.613	25.533	0.761	0.367
Piracicaba	Thornton e Running	-2.690	8.055	46.519	0.702	0.308

Cidade	Irradiação	Ajuste	σ	EMQ	d	R^2
Bauru	Weiss e Hays	5.234	5.758	25.998	0.756	0.352
Bauru	Hargreaves e Samani	0.868	5.001	19.877	0.789	0.418
Bauru	Thornton e Running	-4.038	7.345	35.207	0.748	0.369

Modelo de Weiss e Hays ajustado para a cidade de Avaré

Modelo de Hargreaves e Samani ajustado para a cidade de Avaré

Modelo de Thornton e Running ajustado para a cidade de Avaré

Modelo de Weiss e Hays ajustado para a cidade de Bauru

Modelo de Hargreaves e Samani ajustado para a cidade de Bauru

Modelo de Thornton e Running ajustado para a cidade de Bauru

Comparando os resultados dos modelos inalterados e ajustados nota-se que o ajuste aumentou a precisão de todos os modelos, isto é que os valores do índice de concordância de Willmott e o coeficiente de determinação aumentaram enquanto o erro médio quadrático diminui. Mas isso ocorreu desigualmente entre os modelos com o modelo de Weiss e Hays apresentando melhoria mais significativa que o modelo de Hargreaves e Samani.

Nos resultados ajustados o modelo de Hargreaves e Samani continua sendo o mais preciso para todas as cidades, com exceção da cidade de Barra Bonita onde o modelo de Thornton e Running apresentou melhor desempenho.

06 Conclusão

A estimativa da irradiação solar incidente é necessária para diversas aplicações pois a cobertura das estações meteorológicas que medem a irradiação solar é menor do que a das estações que medem apenas variáveis atmosféricas e também porque oferece a capacidade de prever futuros valores da irradiação solar.

Assim técnicas efetivas de estimar a irradiação solar se fazem necessárias e os modelos numéricos se destacam pela sua simplicidade e facilidade de uso.

Porém, modelos numéricos não são efetivos em toda a superfície terrestre e devem ser avaliados para cada região justificando assim a avaliação da efetividade de modelos numéricos para estimativa da irradiação solar incidente na região do centro do estado de São Paulo.

06 Conclusão

Isto foi feito utilizando dados meteorológicos históricos de sete cidades do estado de São Paulo disponibilizados pelo INMET, que foram utilizados na execução de três modelos numéricos: o modelo de Weiss e Hays, o modelo Hargreaves e Samani, e o modelo Thornton e Running. Inicialmente, apenas o modelo de Hargreaves e Samani apresentou bom desempenho enquanto so modelos de Weiss e Hays, e Thornton e Running apresentaram desempenhos piores. Porém, uma análise mais aprofundada indicou que todos os modelos geraram resultados adequados, apenas deslocados dos valores reais no eixo das ordenadas. Para melhorar o desempenho dos modelos foi adicionado a cada modelo um coeficiente de ajuste relativo a cada cidade estudada e com a adição desses coeficientes todos os modelos tiveram suas precisões melhoradas, suas estimativas se aproximaram dos valores reais de irradiação solar.

06 Conclusão

As medidas de avaliação utilizadas indicaram que todos os modelos ajustados tiveram bom desempenho, com altos valores do índice de concordância de Willmott e do coeficiente de determinação indicando boa concordância entre os valores reais e estimados, e que o modelo de Hargreaves e Samani tem a maior precisão para todas as cidades com exceção de Barra Bonita, onde o modelo de Thornton e Running o supera.

Assim, concluiu-se que os modelos numéricos estudados neste trabalho são uma forma apropriada de estimar a irradiação solar incidente na região central do estado de São Paulo contanto que sejam adequadamente ajustados para o local onde se deseja os utilizar.

Thanks!

Do you have any questions?

youremail@freepik.com +91 620 421 838 yourwebsite.com

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**

