Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2012

Klausur-		
nummer		

Name:
Vorname:
MatrNr.:

Aufgabe	1	2	3	4	5	6	7
max. Punkte	12	13	9	9	5	9	10
tats. Punkte							

Gesamtpunktzahl:		Note:
------------------	--	-------

Aufgabe 1 (12 Punkte)

Kreuzen Sie für die folgenden Aussagen an, ob sie wahr oder falsch sind.

Hinweis: Für jede richtige Antwort gibt es einen Punkt, für jede falsche Antwort wird ein Punkt abgezogen. Wenn Sie kein Kreuz setzen, bekommen Sie weder Plus- noch Minuspunkt, für das Ankreuzen beider Möglichkeiten wird ein Punkt abgezogen. Die gesamte Aufgabe wird mit mindestens 0 Punkten bewertet.

a)	Eine Menge M ist unendlich, wenn es eine injektive eine echte Teilmenge von M gibt.	Abbildung v	M in
		wahr: □	falsch: \square
b)	Wenn eine Relation nicht symmetrisch ist, ist sie antis	symmetrisch	
		wahr: □	falsch: \square
c)	Sei R eine beliebige Relation auf einer nicht-leeren Me R ist transitiv $\Rightarrow R \circ R \subseteq R$.	enge M .	
		wahr: \square	falsch: \square
d)	Sei R eine beliebige Relation auf einer nicht-leeren Me $R \circ R \subseteq R \Rightarrow R$ ist transitiv.	enge M .	
		wahr: \square	falsch: \square
e)	Das leere Wort ϵ ist eine surjektive Abbildung: {} \rightarrow	{}.	
		wahr: \square	falsch: \square
f)	Seien L_1 und L_2 formale Sprachen. $L_1^* = L_2^* \Rightarrow L_1 =$	L_2 .	
		wahr: \square	falsch: \square
g)	$\sqrt{n} \in O(2^{\sqrt{\log_2(n)}})$		
		wahr: □	falsch: \square
h)	$\sqrt{n} \in \Theta(2^{\sqrt{\log_2(n)}})$		
		wahr: □	falsch: \square
i)	$\sqrt{n} \in \Omega(2^{\sqrt{\log_2(n)}})$		
		wahr: □	falsch: \square
j)	Gegeben seien zwei reguläre Ausdrücke $R_1 = \emptyset * \mid 0 \mid 0 \mid$ und $R_2 = (0*1)*01*)*$ Es gilt: $\langle R_1 \rangle = \langle R_2 \rangle$.	1)* (0 1):	*00(0 1)*

wahr: \square

falsch: \square

Name:

Matr.-Nr.:

k) Die Funktion $f: \mathbb{N}_+ \to \mathbb{N}_+$ gibt als Funktionswert die größte Primzahl p zurück, für die gilt: $\exists k \in \mathbb{N}_+ : n = k \cdot p$ Es gilt $f(n) \in O(\sqrt{n})$.

wahr: \square falsch: \square

l) Die aussagenlogische Formel $(A \Rightarrow \neg B) \vee ((B \wedge \neg C) \wedge (C \vee D)) \vee A$ ist äquivalent zu $A \vee \neg A$

wahr: \square falsch: \square

Aufgabe 2 (13 Punkte)

- 1. Über dem Alphabet $A=\{a\}$ sei die formale Sprache $L=\{\mathtt{a}^2,\mathtt{a}^5\}^*$ gegeben.
 - a) Geben Sie explizit an, welche Wörter nicht in L sind. [1 Punkt]
 - b) Geben Sie eine formale Definition der Äquivalenzrelation von Nerode an. [2 Punkte]
 - c) Geben Sie zu jeder Äquivalenklasse der durch L induzierten Äquivalenzrelation von Nerode \equiv_L einen Repräsentanten und einen regulären Ausdruck an. [3 Punkte]
- 2. Gegeben seien drei nicht-leere Mengen A, B, C und zwei Abbildungen $f: A \to C$ und $g: B \to C$.

Weiter sei gegeben
$$D = \{(a,b) \mid a \in A, b \in B \text{ und } f(a) = g(b)\}$$
 und $h: D \to A$, mit $h(a,b) = a$ und $k: D \to B$, mit $k(a,b) = b$.

- a) Zeigen Sie: $f \circ h = g \circ k$. [2 Punkte]
- b) Seien $A = B = C = \mathbb{Z}$, $f(n) = 2 \cdot n$ und $g(n) = n^2$. Geben Sie D an, in Abhängigkeit von nur einer Variablen. [2 Punkte]
- 3. Wie viele Äquivalenzrelationen gibt es auf einer drei-elementigen Menge? Geben Sie zu jeder Äquivalenzrelation die Äquivalenzklassen an. [3Punkte]

Name: Matr.-Nr.:

 $Weiterer\ Platz\ f\"{u}r\ Antworten\ zu\ Aufgabe\ 2:$

Aufgabe 3 (9 Punkte)

Gegeben sei folgende Funktion $f: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$:

$$f(0,0) = 0$$

$$f(x, y) = \min\{z, z \in \mathbb{N}_0 \mid \forall x' < x : z \neq f(x', y) \text{ und } \forall y' < y : z \neq f(x, y')\}$$

Hinweis: Dabei ist mit min $\{M\}$ das kleinste Element der Menge M gemeint.

a) Berechnen Sie $\forall x, y \in \mathbb{G}_5 : f(x, y)$. Verwenden Sie dazu folgende Tabelle:

[3 Punkte]

f(x,y)	y=0	y=1	y=2	y=3	y=4
x=0					
x=1					
$\overline{x=2}$					
x=3					
x=4					

b) Zeigen Sie per Induktion über n = x + y: $\forall x, y \in \mathbb{N}_0$:

[6 Punkte]

- Für $x \neq y$ ist $f(x, y) \neq 0$ und
- für x = y ist f(x, y) = 0.

Hinweis: Sie können annehmen, dass $\forall x,y \in \mathbb{N}_0: f(x,y) = f(y,x)$

Name: Matr.-Nr.:

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (9 Punkte)

1. Geben Sie zu folgenden regulären Ausdrücken R_i , $i \in \{1, 2\}$ jeweils einen endlichen Akzeptor A_i (wie in der Vorlesung definiert) an, so dass $L(A_i) = \langle R_i \rangle$.

a)
$$R_1 = (aa)*b(aaa)*$$
 [2 Punkte]

b)
$$R_2 = (a|ba)*(b|ab)+$$
 [4 Punkte]

Hinweis: Für einen beliebigen regulären Ausdruck R ist R+ die Abkürzung von RR*.

2. Geben Sie zu folgendem Mealy-Automaten $M = (Z_m, A, \{a, b\}, f_m, \{x, y\}, g_m)$ einen Moore-Automaten $N = (Z_n, A, \{a, b\}, f_n, \{x, y\}, g_n)$ an, so dass für alle $w \in \{a, b\}^+$ gilt: $g_m^{**}(A, w) = g_n^{**}(A, w)$. [3 Punkte]

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (5 Punkte)

Gegeben sei folgende formale Sprache $L = \{(\mathtt{ab})^k \mathtt{c}^m \mathtt{d}^l \mid k, m, l > 0 \text{ und } (k = m \text{ oder } k = l)\}$

- a) Geben Sie eine kontextfreie Grammatik G=(N,T,S,P) an, für die gilt: $L(G)=L \eqno(3\ Punkte)$
- b) Geben Sie alle Wörter der Länge 7 an, die in L liegen. [2 Punkte]

Name:	MatrNr.:	

 $Weiterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 5:$

Aufgabe 6 (9 Punkte)

1. Zeichnen Sie alle gerichteten nicht-isomorphen Graphen, zu denen folgende Matrix E die Wegematrix ist. [2 Punkte]

$$E: \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

2. Gegeben sei ein ungerichteter Graph G=(V,E). Weiter sei definiert: G'=(V,E'), mit $E'=\{\{u,v\} \mid u\in V, v\in V, u\neq v \text{ und } \{u,v\}\notin E\}$.

Beweisen Sie: Wenn $|V| \ge 5$ und G = (V, E) ein Baum ist, dann sind G und G' nicht isomorph. [3 Punkte]

3. Gegeben sei die Menge $M=\{2,6,7,10,14,21,30,70\}$ und die Relation $R\subseteq M\times M$ für $a,b\in M$:

 $bRa \iff a \mod b = 0$ das heißt $bRa \iff \exists k \in \mathbb{N}_0 : a = k \cdot b$

- a) Zeichnen Sie für die Relation bRa mit $a,b\in M$ das Hasse-Diagramm. [2 Punkte]
- b) Geben Sie alle minimalen, maximalen, größten und kleinsten Elemente im Hasse-Diagramm aus Teilaufgabe a) an. [2 Punkte]

Name: MatrNr.:

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (10 Punkte)

Die in dieser Aufgabe behandelten Turingmaschinen werden benutzt für Bandbeschriftungen, bei denen auf dem Band (von Blanksymbolen umgeben) ein Wort $w \in \{a, b\}^*$ steht.

Der Kopf der Turingmaschine stehe zu Beginn auf dem ersten Symbol von $w \in \{a, b\}^*$ (sofern w nicht das leere Wort ist).

- 1. Gegeben sei die folgende Turingmaschine T:
 - Zustandsmenge ist $Z = \{S, z_0, z_1, B\}$.
 - \bullet Anfangszustand ist S.
 - Bandalphabet ist $X = \{\Box, a, b, \#\}$.
 - Die Arbeitsweise ist wie folgt festgelegt:

Sei \mathcal{L} die Menge aller Wörter $w \in \{a, b\}^*$, für die gilt: T hält bei Eingabe von w im Zustand S.

- a) Geben Sie für die Eingaben baab und aba jeweils die Anfangskonfiguration, die Endkonfiguration und jede weitere Konfiguration an, die sich während der Berechnung nach einer Änderung der Bandbeschriftung ergibt.

 [3 Punkte]
- b) Geben Sie eine formale Beschreibung von \mathcal{L} an, die nicht auf T verweist. [2 Punkte]
- 2. Konstruieren Sie eine Turingmaschine, die für die Eingabe w die Funktion $f: \{a, b\}^* \to \mathbb{G}_3, f(w) = N_b(w) \mod 3$ berechnet und das Ergebnis (nur von Blanksymbolen umgeben) an beliebiger Stelle auf das Band schreibt.

Die Laufzeit der Turingmaschine soll durch O(n) beschränkt sein und die Turingmaschine soll höchstens 6 Zustände enthalten. Es ist möglich mit weniger Zuständen auszukommen. [5 Punkte]

Name:	MatrNr.:	

 $Weiterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 7:$

 $Weiterer\ Platz\ f\"{u}r\ Antworten\ zu\ Aufgabe\ 7:$

Name:	MatrNr.:	
-------	----------	--

Schmierpapier

Schmier papier

Schmierpapier