Un problema di ottimizzazione

Dinamica delle popolazioni. Una colonia di 250 esemplari di batteri viene posta in un ambiente isolato e si riproduce seguendo il modello di Verhulst

$$b(t) = \frac{2500}{1 + 9e^{-t/3}}, \quad t > 0,$$

dove t rappresenta il tempo (espresso in giorni) trascorso a partire dal tempo t=0 di inizio della coltura. Si vuole determinare dopo quanti giorni il tasso di crescita della popolazione di batteri raggiunge il valore massimo.

Modello di Verhulst: la numerosità della popolazione cresce tendendo asintoticamente ad un certo valore detto *capacità portante*, maggiore è la numerosità e minore è la velocità di crescita della numerosità stessa a causa di competizioni interne per spazio e nutrimento. Qui la capacità portante è $\lim_{t\to\infty}b(t)=2500$.

Tasso di crescita=variazione istantanea, cioè b'(t).

Svolgimento

Dobbiamo trovare il punto di massimo del tasso di crescita, cioè il punto di massimo di b'(t). Dal grafico vediamo che il punto di massimo di b'(t) è l'unico punto stazionario di b'(t), ovvero tale che (b')'=0. Quindi poniamo

$$f(t) = b''(t)$$

e calcoliamo l'unica radice di f(t) = 0.

Per calcolare velocemente b''(t):

```
syms t % t variabile simbolica
b=2500/(1+9*exp(-t/3)); % b e' una funzione simbolica
b2=diff(b,2); % calcolo b'' simbolicamente
f=matlabFunction(b2); % trasformo b2 in function hand
```

Rappresentare graficamente f, localizzare la radice,

Le istruzioni

```
x0=5; x1=9;
tol=1e-8; kmax=20;
[z.res.k]=secanti(f.
```

[z, res, k] = secanti(f, x0, x1, tol, kmax)

producono

Il massimo tasso di crescita si ha dopo 6.59 giorni dall'inizio della

Esercizio:

Calcolare il punto di minimo della funzione $h(x)=(x-5)^2-3\sin(x-5)$ con $x\in[0,10]$ utilizzando il metodo di Newton, prendendo prima $x^{(0)}=0$ e poi $x^{(0)}=1$. Confrontare il numero di iterazioni necessarie per arrivare a convergenza avendo preso la stessa tolleranza per il test d'arresto e capire perché il numero di iterazioni richieste dal metodo di Newton è così diverso nei due casi.