Summary of TTK4215: System Identification and Adaptive Control

Morten Fyhn Amundsen

December 9, 2015

Contents

l	Tod		
2	Preliminaries		
	2.1	Norms	
	2.2	Models for dynamic systems	
	2.3	Transfer function properties	
	2.4	(Strictly) positive real transfer functions	
3	Para	ametric models	
	3.1	Linear	
	3.2	Bilinear	
4	Para	ameter estimation	
	4.1	SPR Lyapunov method	
	4.2	Gradient method	
		4.2.1 Instantaneous cost	
		4.2.2 Integral cost	
	4.3	With projection	
	4.4	Least squares	
		4.4.1 Pure least squares	
		4.4.2 With covariance resetting	
		4.4.3 With forgetting	
;	Mod	del reference adaptive control (MRAC)	
,	Ada	aptive pole placement control (APPC)	
	6.1	Indirect APPC	

- Canoncal forms
- PR and SPR
- Unbounded input (necessary shit for proofs or whatever)

- List of abbreviations (SPR strict pos. real)
- Lemma 3.5.2 3.5.4
- PE (p177)

2 Preliminaries

2.1 Norms

General p-norm

$$||x||_p = \left(\int_0^\infty |x(\tau)|^p \,\mathrm{d}t\right)^{1/p} \tag{1}$$

 \mathcal{L}_{∞} -norm

$$||x||_{\infty} = \sup_{t \ge 0} |x(t)| \tag{2}$$

and we say $x \in \mathcal{L}_{\infty}$ when $||x||_{\infty}$ exists.

2.2 Models for dynamic systems

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \tag{3}$$

$$\mathbf{y} = \mathbf{C}^{\mathrm{T}}\mathbf{x} \tag{4}$$

Controllability

$$\boldsymbol{P}_{c} \triangleq \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{A}\boldsymbol{B} \\ \vdots \\ \boldsymbol{A}^{n-1}\boldsymbol{B} \end{bmatrix}$$
 (5)

If P_c is nonsingular, the system is controllable, and can be transformed to the controllability canonical form by

$$\mathbf{x}_c = \mathbf{P}_c^{-1} \mathbf{x} \tag{6}$$

Properness A transfer function $G(s) = \frac{N(s)}{D(s)}$ is

- proper if $deg(N) \leq deg(D)$,
- biproper if deg(N) = deg(D),
- stricty proper if $\deg(N) < \deg(D)$.

2.3 Transfer function properties

Consider the polynomial

$$X(s) = \alpha_n s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0 \tag{7}$$

and the transfer function

$$G(s) = \frac{Z(s)}{R(s)}. (8)$$

Monic: X(s) is monic iff $\alpha_n = 1$.

Hurwitz: X(s) is *Hurwitz* if all roots of X(s) = 0 are in the left half plane.

Minimum phase: A system defined by the t.f. G(s) is minimum phase iff Z(s) is Hurwitz.

Stability: A system defined by the t.f. G(s) is *stable* if R(s) is Hurwitz.

Coprime: Two polynomials are *coprime* if they have no common factors other than a constant.

2.4 (Strictly) positive real transfer functions

KYP Lemma Given a square matrix A with eigenvalues $\Re(\lambda) \leq 0$, a vector B such that (A, B) controllable, a vector C, and scalar $d \geq 0$, then the t.f.

$$G(s) = d + C^{T}(sI - A)^{-1}B$$
(9)

is PR iff \exists a symmetric pos. def. matrix P and a vector q such that

$$A^{\mathrm{T}}P + PA = -qq^{\mathrm{T}} \tag{10}$$

$$PB - C = \pm \sqrt{2d} \cdot q. \tag{11}$$

LKY Lemma Given a stable matrix A, a vector B such that (A, B) controllable, a vector C and a scalar $d \ge 0$, then the t.f.

$$G(s) = d + C^{\mathrm{T}}(sI - A)^{-1}B$$
(12)

is SPR iff for any pos. def. matrix L, \exists a symmetric pos. def. matrix P, a scalar $\nu>0$ and a vector q such that

$$A^{\mathrm{T}}P + PA = -qq^{\mathrm{T}} - \nu L \tag{13}$$

$$PB - C = \pm q\sqrt{2d}. (14)$$

MKY Lemma Given a stable matrix A, vectors B, C, and a scalar $d \ge 0$, we have: If

$$G(s) = d + C^{\mathrm{T}}(sI - A)^{-1}B \tag{15}$$

is SPR, then for any $L=L^{ \mathrm{\scriptscriptstyle T} }>0, \exists$ a scalar $\nu>0,$ a vector q and a $P=P^{ \mathrm{\scriptscriptstyle T} }>0$ such that

$$A^{\mathrm{T}}P + PA = -qq^{\mathrm{T}} - \nu L \tag{16}$$

$$PB - C = \pm q\sqrt{2d}. (17)$$

3 Parametric models

3.1 Linear

$$z = \theta^{*^{\mathrm{T}}} \phi \tag{18}$$

$$y = \theta_{\lambda}^{*^{\mathrm{T}}} \phi \tag{19}$$

3.2 Bilinear

$$y = k_0 (\theta^{*^{\mathrm{T}}} \phi + z_0) \tag{20}$$

4 Parameter estimation

4.1 SPR Lyapunov method

Based on choosing an adaptive law so that a *Lyapunov-like* function guarantees $\tilde{\theta} \to 0$. The parametric model $z = W(s)\theta^{*^{\mathrm{T}}}\psi$ is rewritten $z = W(s)L(s)\theta^{*^{\mathrm{T}}}\phi$, with L(s) a proper stable t.f., and W(s)L(s) a proper SPR t.f.

$$z = W(s)L(s)\theta^{*^{\mathrm{T}}}\phi \tag{21}$$

$$\hat{z} = W(s)L(s)\theta^{\mathrm{T}}\phi \tag{22}$$

$$\epsilon = z - \hat{z} - W(s)L(s)\epsilon n_s^2 \tag{23}$$

$$\dot{\theta} = \Gamma \epsilon \phi \tag{24}$$

4.2 Gradient method

$$z = \theta^{*^{\mathrm{T}}} \phi \tag{25}$$

$$\hat{z} = \theta^{\mathrm{T}} \phi \tag{26}$$

$$\epsilon = \frac{z - \hat{z}}{m^2} \tag{27}$$

4.2.1 Instantaneous cost

$$\dot{\theta} = \Gamma \epsilon \phi \tag{28}$$

4.2.2 Integral cost

$$\dot{\theta} = -\Gamma(R\theta + Q) \tag{29}$$

$$\dot{R} = -\beta R + \frac{\phi \phi^{\mathrm{T}}}{m^2} \tag{30}$$

$$\dot{Q} = -\beta Q - \frac{z\phi}{m^2} \tag{31}$$

4.3 With projection

$$\dot{\theta} = \begin{cases} \Gamma \epsilon \phi & \text{if } \theta \in \mathcal{S}^0 \\ \Gamma \epsilon \phi - \Gamma \frac{\nabla g \nabla g^{\mathrm{T}}}{\nabla g^{\mathrm{T}} \Gamma \nabla g} \Gamma \epsilon \phi & \text{otherwise} \end{cases}$$
(32)

4.4 Least squares

$$z = \theta^{*^{\mathrm{T}}} \phi \tag{33}$$

$$\hat{z} = \theta^{\mathrm{T}} \phi \tag{34}$$

$$\epsilon = \frac{z - \hat{z}}{m^2} \tag{35}$$

4.4.1 Pure least squares

$$\dot{\theta} = P\epsilon\phi \tag{36}$$

$$\dot{P} = -P \frac{\phi \phi^{\mathrm{T}}}{m^2} P \tag{37}$$

4.4.2 With covariance resetting

$$\dot{\theta} = P\epsilon\phi \tag{38}$$

$$\dot{\theta} = P\epsilon\phi \tag{38}$$

$$\dot{P} = -P\frac{\phi\phi^{\mathrm{T}}}{m^2}P, \quad P(t_r^+) = P_0 = \rho_0 I \tag{39}$$

4.4.3 With forgetting

$$\dot{\theta} = P\epsilon\phi \tag{40}$$

$$\dot{P} = \begin{cases} \beta P - P \frac{\phi \phi^{\mathrm{T}}}{m^2} P & \text{if } ||P(t)|| \le R_0\\ 0 & \text{otherwise} \end{cases}$$
(41)

Model reference adaptive control (MRAC) 5

MRAC requires a plant and a reference model. A controller is made so that the controller and plant together behave similar to the reference model. An adaptive algorithm estimates the controller parameters θ . There are two main categories:

- *Direct*, where θ is equal to the controller gains.
- *Indirect*, where the controller gains are a function of θ .

Huge drawback: Requires plant of minimum phase.

Adaptive pole placement control (APPC)

Indirect APPC

Objective: Choose u_p so that the closed-loop poles are the roots of $A^*(s) = 0$.