Examen "Introduction à la vérification"

Master 1 Informatique, 2018 2019 Jeudi 2 mai 2019, 14:30-17:30

Rédigez les 2 parties sur des copies séparées.

Documents autorisés : notes de cours et TD.

Partie 1

Exercice 1 Considérons un ascenseur pour un bâtiment à 2 étages + RdC, pour lequel chaque étage possède une porte d'ascenseur, un voyant indiquant si l'ascenseur a été appelé de l'étage respectif, plus un bouton d'appel.

Proposer un nombre minimal de propositions atomiques et des formules CTL permettant de spécifier les propriétés suivantes :

- 1. L'ascenseur se met en marche seulement lorsqu'il y a eu un appel.
- 2. A n'importe quel instant, il est possible de ramener l'ascenseur au RdC.
- 3. Le voyant indique correctement les appels : chaque fois que l'ascenseur est appelé à l'étage i, cette requête reste active jusqu'à ce que l'ascenseur arrive à l'étage i.
- 4. S'il bouge, l'ascenseur ne s'arrête qu'aux étages où il a été appelé.

Exercice 2 On considère la formule CTL suivante :

$$\Phi = \mathbf{AX}(\mathbf{A}(\neg a \mathbf{U} b) \wedge \mathbf{AF} \mathbf{EX}(\neg a \wedge \neg b))$$

- 1. Mettez Φ en forme normale existentielle.
- 2. Calculez $Sat(\Psi)$ en suivant l'algorithme vu en cours sur le système de transitions suivant.

Exercice 3 Avec cet exercice on peut montrer que la formule LTL F G a n'est pas exprimable en CTL.

On définit les systèmes de transitions TS_n et TS'_n $(n \ge 0)$ suivants, par induction (voir figure ce-dessous):

- 1. Déterminez lequel ST parmi TS_n et TS'_n satisfait la formule FGa, en justifiant votre réponse.
- 2. Est-ce que TS_n et TS_n' sont bisimilaires? Justifiez votre reponse. Si non, indiquez une formule CTL qui les distingue.
- 3. Supposez que Φ est une formule CTL utilisant seulement les operateurs temporels EX, AX (en dehors des combinateurs booléens). Montrez par induction que Φ ne peut pas distinguer TS_n et TS'_n si le nombre d'opérateurs de Φ est au plus r.

Indication: vous allez montrer que $s_n \equiv_n s'_n$, $t_n \equiv_n t'_n$, $s_n \equiv_{n-1} s'_{n-1}$, $t_n \equiv_{n-1} t'_{n-1}$, où $s \equiv_k t$ signifie que les états s,t satisfont les mêmes formules ayant au plus k opérateurs.

4. Supposons qu'on a montré que TS_n et TS'_n satisfont les mêmes formules CTL de longueur au plus n. Déduisez que la formule $\mathbb{F} G a$ n'est pas exprimable en CTL.

Exercice 4 Dans cet exercice on cherche un algorithme pour calculer directement $Sat(\mathbf{AF} \phi)$, étant donné $U = Sat(\phi)$ pour un système de transitions fini avec ensemble d'états S.

- 1. Soit $T \subseteq S$ un ensemble d'états qui satisfait les deux propriétés suivantes :
 - (P1) $U \subseteq T$, et
 - (P2) Si $s \in S$ est tel que post $(s) \subseteq T$, alors $s \in T$.

Montrez que $Sat(AF \phi) \subseteq T$.

Indication : vous pouvez procéder par récurrence selon la profondeur minimale d'un arbre qui témoigne que s satisfait $\mathbf{AF} \phi$.

- 2. Déduisez de la question précedente que $Sat(\mathbf{AF}\phi)$ est le plus petit sous-ensemble $T\subseteq S$ qui satisfait les deux propriétés (P1) et (P2).
- 3. Proposez un algorithme direct qui calcule $Sat(\mathbf{AF}\phi)$ à partir de $U = Sat(\phi)$. Quelle est la complexité de votre algorithme?

Examen "Introduction à la vérification", partie 2

Master 1 Informatique, 2018–2019

Jeudi 2 mai 2019 — 14h30-17h30

Exercice 1 Soit φ la formule LTL suivante sur l'alphabet $\Sigma = \{a, b, c\}$:

$$G(a \Rightarrow Xb) \wedge FG(a \vee b)$$

- 1. Donner une expression ω -rationnelle équivalente à φ . On rappelle qu'une telle expression permet d'utiliser, en plus de l'étoile, de la concaténation et de l'union, la répétition infinie : si L est un langage de mots finis, $L^{\omega} = \{u_0u_1u_2\cdots \mid u_i \in L\}$.
- 2. Construire un automate de Büchi équivalent à φ . Remarque. Il est déconseillé d'utiliser directement l'algorithme vu en cours, il produit trop d'états.
- 3. Donnez une formule de la logique du premier ordre FO(<) équivalente à φ .

Exercice 2 On fixe un ensemble AP de propositions atomiques et on note $\Sigma = 2^{\text{AP}}$. L'opérateur *Release* est dual de l'opérateur *Until*:

$$\alpha R \beta = \neg (\neg \alpha U \neg \beta).$$

1. Montrer que $\alpha R \beta = G\beta \vee (\beta U (\alpha \wedge \beta))$.

On définit la classe des E-formules par la syntaxe suivante :

$$\varphi ::= \mathsf{F} \alpha \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \mathsf{X} \varphi \mid \alpha \mathsf{U} \varphi \mid \varphi \mathsf{R} \varphi$$

où α est une formule arbitraire de LTL.

2. Montrer que pour toute E-formule φ , pour tout mot infini $w \in \Sigma^{\omega}$, pour tous entiers i, j tels que $0 \le i \le j$:

$$w, j \models \varphi \Longrightarrow w, i \models \varphi$$

On pourra raisonner par récurrence sur la longueur de la construction de φ par la grammaire. On définit la classe des A-formules par la syntaxe suivante :

$$\psi = G\varphi \mid \neg \psi \mid \psi \lor \psi \mid X\psi \mid \alpha \cup \psi$$

où φ est une E-formule arbitraire et α une formule arbitraire de LTL.

3. Soit ψ une A-formule, $w \in \Sigma^{\omega}$, et i, j deux entiers. A-t-on l'équivalence suivante?

$$w, j \models \varphi \iff w, i \models \varphi$$

4. Soit ψ une A-formule et α une formule de LTL. Les formules ψ , $X\psi$ et $\alpha \cup \psi$ sont-elles équivalentes?

Exercice 3 Pour un automate probabiliste fini \mathcal{A} sur un alphabet A, on note $[\![\mathcal{A}]\!]$ sa sémantique. Autrement dit, pour tout mot $w \in A^*$, la probabilité que w soit accepté par \mathcal{A} est $[\![\mathcal{A}]\!](w)$. Pour $\alpha \in [0,1]$, on note $L_{>\alpha}(\mathcal{A})$ l'ensemble des mots de A^* acceptés avec probabilité strictement supérieure à α .

1. (Question de cours) Que peut-on dire du problème suivant :

Donnée Un automate probabiliste A et un rationnel α de l'intervalle [0,1].

Question A-t-on $L_{>\alpha} \neq \emptyset$?

On dit qu'un réel α est un point de coupure isolé s'il existe $\delta>0$ tel que pour tout mot $w\in A^*$

$$| [A](w) - \alpha | > \delta.$$

Autrement dit, aucun mot n'a une probabilité d'acceptation dans l'intervalle $[\alpha - \delta, \alpha + \delta]$. On veut montrer que le problème suivant est indécidable :

Donnée Un automate probabiliste A et un rationnel α de l'intervalle [0,1].

Question α est-il un point de coupure isolé pour \mathcal{A} ?

Pour cela, on propose une réduction à partir d'une variante du problème de correspondance de Post, déjà connue indécidable. Étant donné deux mots u, v, on note $u \wedge v$ le plus long suffixe commun à u et v Par exemple, $abaaac \wedge abadaac = aac$.

Le problème suivant est connu indécidable :

Donnée Deux morphismes $f_i: A^* \to \{0,1\}^*$ (i=1,2) tels que $f_i(A) \subseteq 1\{0,1\}^*$.

Question L'ensemble de mots $\{f_1(w) \land f_2(w) \mid w \in \Sigma^*\}$ est-il fini ?

On rappelle la notation du cours pour passer d'un morphisme à une fonction calculée par un automate probabiliste : on définit $\bar{\varepsilon} = 0$ et, pour $w = a_1 \cdots a_n \in \{0, 1\}^+$,

$$\overline{w} = \frac{a_n}{2^1} + \frac{a_{n-1}}{2^2} + \dots + \frac{a_1}{2^n}.$$

Enfin, pour i = 1, 2 et $w \in A^*$, on pose $\phi_i(w) = \overline{f_i(w)}$.

- 2. Montrer l'équivalence $(a) \iff (b)$ des deux points suivants :
 - (a) Il existe $\delta > 0$ tel que, pour tout $w \in A^+$, $|\phi_1(w) \phi_2(w)| \ge \delta$.
 - (b) L'ensemble $\{f_1(w) \land f_2(w) \mid w \in \Sigma^*\}$ est fini.
- 3. En vous inspirant d'une construction du cours, décrire un automate probabiliste \mathcal{A} construit à partir de deux morphismes f_1 , f_2 tel que 1/2 est point de coupure isolé dans \mathcal{A} si et seulement si l'ensemble de mots $\{f_1(w) \land f_2(w) \mid w \in \Sigma^*\}$ est fini.
- 4. Que peut-on conclure de la question précédente?

Exercice 4 On considère l'automate temporisé suivant :

Les gardes sont indiquées entre crochets [], et les resets entre accollades {}.

- 1. La configuration $(q_3, x = 1, y = 2)$ est-elle accessible? Si oui, donner un mot temporisé parvenant à cette configuration, et sinon, justifier. Même question pour la configuration $(q_3, x = 3, y = 2)$.
- 2. Calculer les régions de cet automate.
- 3. Calculer l'automate des régions et vérifier les réponses données à la question 1.