Reducing Memory Access Latencies using Data Compression in Sparse, Iterative Linear Solvers All-College Thesis Defense

Neil Lindquist

April 16th, 2019

Motivation

- Solving sparse linear systems used in many computations
- Billions of variables or more
- Spend most of the time fetching data from memory

• Solving $\mathbf{A}\vec{x} = \vec{b}$

- Solving $\mathbf{A}\vec{x} = \vec{b}$
- Minimizing $f(\vec{x}) = \frac{1}{2}\vec{x}^T \mathbf{A}\vec{x} \vec{b} \cdot \vec{x}$

- Solving $\mathbf{A}\vec{x} = \vec{b}$
- Minimizing $f(\vec{x}) = \frac{1}{2}\vec{x}^T \mathbf{A} \vec{x} \vec{b} \cdot \vec{x}$
- If **A** is symmetric, then $\nabla f(\vec{x}) = \mathbf{A}\vec{x} \vec{b}$

- Solving $\mathbf{A}\vec{x} = \vec{b}$
- Minimizing $f(\vec{x}) = \frac{1}{2}\vec{x}^T \mathbf{A}\vec{x} \vec{b} \cdot \vec{x}$
- If **A** is symmetric, then $\nabla f(\vec{x}) = \mathbf{A}\vec{x} \vec{b}$
- $-\nabla f(\vec{x})$ is in direction of maximal decrease

- Approximating the steady state heat equation in 3 dimensions
 - Discretized with a 27-point stencil

- Approximating the steady state heat equation in 3 dimensions
 - Discretized with a 27-point stencil
- Preconditioned Conjugate Gradient was used
 - 3-level multigrid preconditioner with Symmetric Gauss-Seidel smoother

- Approximating the steady state heat equation in 3 dimensions
 - Discretized with a 27-point stencil
- Preconditioned Conjugate Gradient was used
 - 3-level multigrid preconditioner with Symmetric Gauss-Seidel smoother
- Matrix store in CSR format
 - Stores the column index and value for each nonzero entry

- Approximating the steady state heat equation in 3 dimensions
 - Discretized with a 27-point stencil
- Preconditioned Conjugate Gradient was used
 - 3-level multigrid preconditioner with Symmetric Gauss-Seidel smoother
- Matrix store in CSR format
 - Stores the column index and value for each nonzero entry
- 3 compressible data structures
 - Vector Values
 - Matrix Indices
 - Matrix Values

Main Data Access Pattern

```
for row in rows do
for nonzero entry in row do
LOAD entry's value
LOAD entry's column index
LOAD vector value for column index
end for
WRITE vector value for row
end for
```

Main Data Access Pattern

```
for row in rows do
for nonzero entry in row do
LOAD entry's value
LOAD entry's column index
LOAD vector value for column index
end for
WRITE vector value for row
end for
```

- need random vector reads
- need vector writes
- need both forward and backward iteration of matrix rows

Compression Methods

- Mixed Floating Point Precision
- SZ Compression
- Elias Gamma and Delta Codings
- ZFP Compression
- Huffman Coding
- Op Code Compression

Compression Methods

- Mixed Floating Point Precision
- SZ Compression
- Elias Gamma and Delta Codings
- ZFP Compression
- Huffman Coding
- Op Code Compression

Mixed Floating Point Precision

- Single Precision takes half the storage space
- But drops from 15-17 significant digits to 6-9 digits
- Certain vectors can be lower precision without slowing convergence
 - $\vec{b}, \vec{x}, \mathbf{A}\vec{d}$

Squeeze "SZ" Compression

- Tries to predict each value from the previous few
- Enforces a minimum accuracy

Squeeze "SZ" Compression

- Tries to predict each value from the previous few
- Enforces a minimum accuracy
- Available prediction functions are chosen based on the type of data

Squeeze "SZ" Compression

- Tries to predict each value from the previous few
- Enforces a minimum accuracy
- Available prediction functions are chosen based on the type of data
- Compression rate is highly dependent on local patterns in the data

Elias Gamma Coding

- Positive integers
- For each value, stores the number of bits needed then the data
 - Very effective for small integers
 - Storing the difference from the previous index reduces the size of values

Elias Gamma Coding

- Positive integers
- For each value, stores the number of bits needed then the data
 - Very effective for small integers
 - Storing the difference from the previous index reduces the size of values
- Elias Delta Coding is similar, but uses Gamma coding for the length

Elias Gamma Coding

- Positive integers
- For each value, stores the number of bits needed then the data
 - Very effective for small integers
 - Storing the difference from the previous index reduces the size of values
- Elias Delta Coding is similar, but uses Gamma coding for the length
- Compression rate is only dependent on the magnitude of the values

Timing Results

- 60 processes with 96³ rows each
 - 53,084,160 total rows
- A 20-core, 2.2GHz, Intel Broadwell head node
- Plus five 8-core, 1.7GHz Intel Broadwell nodes
- MPI communication

Matrix Index Compression

Matrix Value and Index Compression

Vector and Matrix Compression

Conclusion

- Iterative linear solvers are memory access bound
- Compressing key data structures provided an 84% increase in performance