1.

Since a function has an inverse if and only if that function is bijective. We have that a G-equivariant function $f:X\to Y$ is bijective if and only if it is an isomorphism.

2.

 $1 \in G$, therefore $\forall g \in G$ and $\forall g_O \cdot x \in \mathrm{Orb}_G(x)$:

$$1 \cdot (g \cdot (g_O \cdot x)) = g \cdot (1 \cdot (g_O \cdot x))$$

Hence, there exists an action of G on $\mathrm{Orb}_G(x)$ such that the inclusion $\mathrm{Orb}_G(x) \hookrightarrow X$ is G-equivariant.

Since the inclusion maps $g_O \cdot x \to g_O \cdot x$ the action is unique.

3.

Let the map be f

$$g \cdot f(g \cdot \operatorname{Stab}_G(x)) = g \cdot g \cdot x = (g \cdot g) \cdot x = f(g \cdot g \cdot \operatorname{Stab}_G(x))$$

4.

$$1 \in G, g_1 \cdot H = H \in G/H \text{ and } Orb_G(g_1 \cdot H) = \{g_2 \cdot H | g_2 \in G\} = G/H.$$

5.

Since the action of G on X is transitive, $\exists x_0 \in X : X = \text{Orb}_G(x_0)$. We can define the isomorphisms as follow:

$$f: X \to G/H$$
, $x \to g \cdot H$ where $g \cdot x_0 = x$
 $h: G/H \to X$, $g \cdot H \to x$ where $g \cdot x_0 = x$

We have that $\forall g \in G, \forall x \in X$:

$$f(g \cdot x) = g_1 \cdot H$$
 where $g_1 \cdot x_0 = g \cdot x$
 $g \cdot f(x) = g \cdot g_2 \cdot H$ where $g_2 \cdot x_0 = x$

Hence $g \cdot g_2 \cdot x_0 = g \cdot x = g_1 \cdot x_0$ which means that $g \cdot g_2 = g_1$, therefore

$$q \cdot f(x) = q_1 \cdot H = f(q \cdot x)$$

We have that $\forall g \in G, \forall g^* \cdot H \in G/H$:

$$h(g \cdot g^* \cdot H) = x_1$$
 where $g \cdot g^* \cdot x_0 = x_1$

$$g \cdot h(g^* \cdot H) = g \cdot x_2$$
 where $g^* \cdot x_0 = x_2$

Hence $g \cdot x_2 = g \cdot g^* \cdot x_0 = x_1$ which means that

$$h(g \cdot g^* \cdot H) = g \cdot h(g^* \cdot H)$$

It is also obvious that $f \circ h = 1_{G/H}$ and $h \circ f = 1_X$

Let the inclusion be f $1 \in G$, let 1 act on the disjoint union, therefore $\forall i$, let $x_i \in X_i$, then

$$f(g \cdot x_i) = g \cdot x_i = g \cdot f(x_i)$$

Hence, there is an action of G on the disjoint union such that the inclusion are G-equivariant for all i Since the inclusion maps $x_i \to x_i$, the action is unique.

7.

We know that the action of G on G/H_i is transitive and therefore, there is a G-equivariant isomorphism between X and G/H_i . And since the action is unique, we know that the function maps X to the disjoint union is G-equivariant and isomorphism.

1.

 A_i is a distinct orbits of H acting on X. Hence, $\exists h_i \in H: h_i \cdot X = A_i$. Hence, as H is a normal subgroup, $\exists j: \forall g \in G: g \cdot h_i \cdot X = h_j \cdot g \cdot X = A_j$ $1 \in G$, therefore $\forall i: 1 \cdot A_i = A_i$.

 $\forall g, h \in G, \forall i: (g \cdot h) \cdot A_i = \{g \cdot h \cdot a_i | a_i \in A_i\} = g \cdot (h \cdot A_i) \text{ Since } 1 \in H, H \in \{A_1, A_2, \dots, A_r\}.$ Therefore, $Orb_G(H) = \{A_1, A_2, \dots, A_r\}$ which means that the action is transitive. Since A_1, A_2, \dots, A_r are distinct orbits and each $A_i = h_i \cdot H$ for some h_i , they have the same size.

2.

Since H and $Stab_G(x)$ are subgroups of G.

$$\#(H \cdot \operatorname{Stab}_G(x)) = \frac{\#H \cdot \#\operatorname{Stab}_G(x)}{\#(H \cap \operatorname{Stab}_G(x))}$$

Therefore,

$$\#A_1 = \frac{\#(A_1 \cdot \operatorname{Stab}_G(a))}{\#\operatorname{Stab}_G(a)} = \frac{\#H}{\#(H \cap \operatorname{Stab}_G(x))} = [H:H \cap \operatorname{Stab}_G(a)]$$

We also have

$$\#(\operatorname{Stab}_G(a) \cdot H) = \frac{\#\operatorname{Stab}_G(a) \cdot \#H}{\#(\operatorname{Stab}_G(a) \cap H)}$$

Hence,

$$\frac{\#G}{\#\mathrm{Stab}_G(a)\cdot H} = \frac{\#G\cdot \#(\mathrm{Stab}_G(a)\cap H)}{\#\mathrm{Stab}_G(a)\cdot \#H} = \frac{\#G\cdot \#\mathrm{Stab}_G(a)}{\#\mathrm{Stab}_G(a)\cdot \#H} = \frac{\#G}{\#H} = r$$

1.

Since N is a normal subgroup of order 2, it includes the identity element and a non-identity element n which inverse is itself. Then $\forall g \in G$ we have that $g \cdot n \cdot g^{-1} \in \{a, 1\}$.

If
$$g \cdot n \cdot g^{-1} = n$$
, then $g \cdot n \cdot g^{-1} \cdot g = g \cdot n = n \cdot g$.

If $g \cdot n \cdot g^{-1} = 1$, then gn = g which means that n = 1 which is a contradiction.

2.

Let the group be G, then as G has order 6, one of its element must have order 2.

Therefore, that element and 1 forms a subgroup H in G. Same argument, there is an element with order 3 and hence create a subgroup K with order 3. We know that there is a map $\rho: G \to S_2$ with $\rho(K) = 1$, also [G:K] = 2 hence K is normal.

Hence, if H is normal then HK = G is abelian which is a contradiction.

3.

Since we know that there exists $x, y \in G$ has order 2,3 respectively.

If G is abelian then xy = yx G is cyclic.

If G is not abelian then

If $yx = y^m$ for some m then $x = y^{m-1}$ which is a contradiction as then x, y commutes.

If yx = y then b = 1 which is a contradiction. If $ba = ab^2$ then this gropu is isoromorphic to S_3

1.

Let the group be G. Since $\{1\}$ is a conjugacy class, let S_a be the other. Since the conjugacy class of G partition G. $\#G = 1 + \#S_a$ also $\#S_a$ divides $\#S_a + 1$. Therefore $\#S_a = 1$ and #G = 2 which means that G has the identity element and another element whose inverse is itself.

2.

Let $x \leq y$ be the sizes of the two conjugacy classes that is not $\{1\}$. Then #G=1+x+y. Then since both x and y divide #G, x divides 1+y and ydivides 1+x, x=y=1 or y=1+x If y=1+x then since x divides $1+y=2+x, x\in\{1,2\}, (x,y)\in\{(1,1),(1,2), or(2,3)\}$. If (x,y)=(1,1) then #G=3 and hence $G=Z_3$. If (x,y)=(1,2) then #G=4 and since there are only up-to-isomorphism two abelian groups with order four, G has four conjugacy classes which leads to a contradiction. If (x,y)=(2,3) then #G=6, there is up-to-isomorphism only one nonabelian group of order G, which is G

1.

We have that $Z(G) \leq C(g_i)$, therefore $[G:C(g_i)] \leq [G:Z(G)] = n$

2.

Since $\#G = \sum_{i=1}^r [G:C_G(g_i)]$ we have that $[G:C_G(g_i)] = [G:Z(G)] = n$ and therefore each conjugacy class has 1 element, which means that the group is abelian.

1.

$$\forall g^* \in G : \varphi_{g^*} : G \to G, \quad g \to g^* \cdot g \cdot g^{*-1}$$

is an automorphism and hence if $\varphi_{g^*}(H) = H$ then H is normal.

2.

Consider the additive group $\mathbb Q.$ Then $\mathbb Z$ is a normal subgroup. However, the automorphism

$$\varphi: \mathbb{Q} \to \mathbb{Q}, \quad x \to x/2$$

does not map \mathbb{Z} to \mathbb{Z} .

3.

Since for all automorphism $\varphi: \#(\varphi(H)) = \#H$ which means that $\varphi(H) = H$ as H is the only subgroup with order n, which means that H is characteristic then normal.

4.

Since H is the unique subgroup of G of index n, we have that H is the unique subgroup of G of order n which means that H is characteristic and normal as proven above.