Modelación, Simulación y Control de Fenómenos Complejos

El Farol

100 personas deciden ir o no al bar de manera independiente y sin comunicación. El espacio es limitado y el bar solo es agradable cuando menos del 60% de las 100 personas llegan a él.

Teoría de juegos para "El Farol" (adaptado)

- Supongamos 2 jugadores
- Cada jugador tiene 2
 "estrategias" posibles: ir o
 no ir al bar El Farol
- Cada jugador tiene la misma función de pagos: 1 si va y el otro jugador no va; -1 si va y el otro jugador también va; 0 si no va.

Bounded rationality

Particular hypotheses or predictors: predict next week's number to be:

- the same as last week's
- a mirror image around 50 of last week's
- 67
- a (rounded) average of the last four weeks
- the same as 2 weeks ago (2period cycle detector)
- etc. ...

Heurística: WinStay-LoseShift

Explicación basada en modelos

Modelo Rescorla Wagner

Aprendizaje por refuerzo:

Atractivo_{t+1} = Atractivo_t + α (r_t - Atractivo_t)

Donde

 r_t es la recompensa en la ronda t α es la intensidad del aprendizaje Q_0 el atractivo inicial de ir al bar

Literatura

The El Farol Problem Arthur (1994)

Ten simple rules for computational modelling of behavioral data
Wilson & Collins (2019)

Farrell & Lewandowsky (2018)