Graphs

Undirected Graphs

Undirected graph. G = (V, E)

- $\mathbf{V} = \text{nodes}.$
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Directed Graphs

Directed graph. G = (V, E)

Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

9-11 Terrorist Network

Social network graph.

Node: people.

 Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

World Wide Web

Web graph.

• Node: web page.

• Edge: hyperlink from one page to another.

Political blogosphere graph

Node = political blog; edge = link. (Red nodes = conservative blogs; blue nodes = liberal blogs. Orange links: liberal -> conservative; purple conservative -> liberal)

The Political Blogosphere and the 2004 U.S. Election.

Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prev to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Road network

Node = intersection; edge = one-way street.

Knowledge Graph

Some Graph Applications

graph	node	edge		
communication	telephone, computer	fiber optic cable		
circuit	gate, register, processor	wire		
financial	stock, currency	transactions		
transportation	street intersection, airport	highway, airway route		
internet	class C network	connection		
game	board position	legal move		
social relationship	person, actor	friendship, movie cast		
neural network	neuron	synapse		
protein network	protein	protein-protein interaction		
molecule	atom	bond		

Some Graph Applications

graph	node	edge		
transportation	street intersection	one-way street		
web	web page	hyperlink		
food web	species	predator-prey relationship		
scheduling	task	precedence constraint		
financial	bank	transaction		
cell phone	person	placed call		
infectious disease	person	infection		
game	board position	legal move		
citation	journal article	citation		
object graph	object	pointer		
inheritance hierarchy	class	inherits from		
control flow	code block	jump		

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	1	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

Two representations of each edge.

degree = number of neighbors of u

- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

the same tree, rooted at 1

Example: Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

Example: GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

Connectivity

s-t connectivity problem. Given two nodes and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Social network: Friendster, Facebook, etc.
- Maze traversal.
- Erdős/Kevin Bacon number.
- Fewest number of hops in a communication network.

Breadth-First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- $L_0 = \{ s \}.$
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 and L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth-First Search: Example

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

(b)

(a)

Pseudocode of BFS

```
BFS(s):
  Set Discovered[s] = true and Discovered[v] = false for all other v
  Initialize L[0] to consist of the single element s
  Set the layer counter i=0
  Set the current BFS tree T = \emptyset
  While L[i] is not empty
    Initialize an empty list L[i+1]
    For each node u \in L[i]
      Consider each edge (u, v) incident to u
      If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u, v) to the tree T
        Add v to the list L[i+1]
      Endif
    Endfor
    Increment the layer counter i by one
  Endwhile
```

Breadth-First Search: Analysis

Theorem. The implementation of BFS runs in O(m + n) time (i.e., linear in the input size) if the graph is given by its adjacency list representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs \leq n times
 - when we consider node u, there are \leq n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u, v)
 - total time processing edges is is $\sum_{u \in V} deg(u) = 2m$
 - O(n) for setting up lists L[i] and Discovered[n]

Depth-First Search

DFS intuition. Explore an unexplored path from s as deep as possible until reach a node with all its neighbor explored; then backtrack to the most recently discovered node that has an unexplored neighbor and resume DFS from there.

DFS algorithm.

 Most easily described in recursive form: we can call DFS from any starting point while maintaining global knowledge of explored nodes

```
DFS(u):
    Mark u as "Explored" and add u to R
    For each edge (u, v) incident to u
        If v is not marked "Explored" then
            Recursively invoke DFS(v)
        Endif
Endfor
```

Pseudocode of DFS by Using Stack

```
DFS(s):
    Initialize S to be a stack with one element s
While S is not empty
    Take a node u from S
    If Explored[u] = false then
        Set Explored[u] = true
        For each edge (u, v) incident to u
            Add v to the stack S
        Endfor
    Endif
Endwhile
```

Note that.

- The adjacent nodes of a node can be processed in any order above (each adjacency list of a node is processed in reverse order with the graph given by its adjacency list representation).
- A node n may be pushed onto the stack multiple times yet only the last copy of n will be explored.
- Using an extra array Parent[n] to record the DFS tree.

Depth-First Search: Example

In contrast to a BFS tree,

- a DFS tree is narrow and deep
- non-tree edges can only connect ancestors to descendants (note that it's for undirected graphs)

Depth-First Search: Analysis

Theorem. The implementation of DFS runs in O(m + n) time (i.e., linear in the input size) if the graph is given by its adjacency list representation.

Pf.

- The main step is to add/delete nodes to/from the stack: O(1) time
- Amounts to counting the number of nodes added to the stack
- When we consider node u, there are deg(u) adjacent nodes of u
- The total number of nodes added to the stack is $\Sigma_{u \in V} deg(u) = 2m$
- O(n) for setting up Explored[n] and etc.

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Flood Fill

Flood fill. Given lime green (石灰绿) pixel in an image, change color of entire blob of neighboring lime pixels to blue.

Node: pixel.

Edge: two neighboring lime pixels.

■ Blob: connected component of lime pixels. recolor lime green blob to blue

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

Node: pixel.

Edge: two neighboring lime pixels.

■ Blob: connected component of lime pixels. recolor lime green blob to blue

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u, v) where $u \in R$ and $v \notin R$ Add v to REndwhile

it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

not bipartite (not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, it implies all edges join nodes on adjacent layers.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y,
 then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. ■

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

bipartite (2-colorable)

not bipartite (not 2-colorable)

Directed Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS and DFS extend naturally to directed graphs.

Web crawler. Start from web pages. Find all web pages linked from s, either directly or indirectly.

Adjacency list representation. Each node has two lists with one for outgoing edges and one for incoming edges.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

 $Pf. \Rightarrow Follows from definition.$

Pf. ← Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.

ok if paths overlap

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf.

- Pick any node s.
- **Run BFS from s in G.** reverse orientation of every edge in G
- Run BFS from s in Grev.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

strongly connected

not strongly connected

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

a DAG

a topological ordering

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j .

Applications.

- Course prerequisite graph: course v_i must be taken before v_j .
- Compilation: module v_i must be compiled before v_j .
- Pipeline of computing jobs: output of job v_i needed to determine input of job v_j .

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1 , ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i ; thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and $v_1, ..., v_n$ is a topological order, we must have j < i, a contradiction. the directed cycle C

the supposed topological order: $v_1, ..., v_n$

Lemma. If G has a topological order, then G is a DAG.

- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?
- Q. If so, is it unique?

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. ■

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- $G \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \{v\}$ in topological order. This is valid since v has no incoming edges. ■

To compute a topological ordering of G: Find a node v with no incoming edges and order it first Delete v from G Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological order:

Topological order: v₁

Topological order: v_1, v_2

Topological order: v_1, v_2, v_3

Topological order: v_1 , v_2 , v_3 , v_4

Topological order: v_1, v_2, v_3, v_4, v_5

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .

Topological Sorting Algorithm: Analysis

Theorem. The algorithm can find a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single pass of scanning through graph.
- Update: to delete v
 - remove v from S
 - decrement count[w] for all edges from v to w, and add w to S if count[w] hits 0
 - this is O(1) per edge •

Homework

Exercises 2, 6, 9 in Chapter 3 "Graphs" by Jon Kleinberg and Eva Tardos. Addison-Wesley, 2005.