

OpenTURNS and HPC within SALOME platform

O. Mircescu

HPC and Uncertainty Treatment
Examples with OpenTURNS
EDF – PhiMeca – IMACS -Airbus Group – CEA

Prace Advanced Training Center May 18th 2018

OUTLINE

- **Presentation of Salome**
- OpenTURNS graphical user interface
- Step by step example
- OpenTURNS graphical user interface distribution and future evolutions
- **5**. **Examples of OpenTURNS studies with HPC**

Presentation of Salome (1/8)

- What's Salome ?
 - Modular simulation platform
 - An open framework to build domain specific solutions
- Who is developing Salome ?
 - EDF, CEA and OpenCascade partnership

Presentation of Salome (2/8)

- A middleware providing generic tools for numerical simulations
 - Geometry modelling, meshing, field handling and visualization
 - Data Exchange Model for interoperability between solvers and tools
 - Computation scheduling (YACS)

SALOME Platform

Presentation of Salome (3/8)

- An open framework to build domain specific solutions
 - Each module provides :
 - A textual interface for scripting based on Python
 - A graphical interface for interactive usages (C++, Qt, PyQt)
 - A programming interface to build custom applications (API C++ and Python)

Presentation of Salome (4/8)

- Presentation of YACS (1/6)
 - Distribution of computations on multiple resources
 - Parallelism and parametric computation
 - Chaining computation nodes
 - GUI and APIs for Python and C++

Presentation of Salome (5/8)

- Presentation of YACS (2/6)
 - Computation nodes have input and output ports
 - Ports are typed variables (integer, double, string, collections, pyobj or user defined types)
 - Computation nodes have placement constraints
 - Python node: run a python script
 - Salome node: run a function of a Salome component
 - YACSGEN tool for developing your own SALOME component (C++, python, FORTRAN)
 - Parallel "ForEachLoop"

Presentation of Salome (6/8)

- Presentation of JOBMANAGER (2/6)
 - Create, launch and monitor jobs on computer clusters
 - Single interface for several batch managers (Slurm, PBS, COORM, OAR, SGE, LSF)
 - GUI and APIs for Python and C++
 - Jobs can run scripts or YACS schemas

Presentation of Salome (7/8)

Salome resources

- Salome has to be installed on every machine you want to use
- ¬ You have to declare each installation in your local catalog of resources

Presentation of Salome (8/8)

- Parametric layer
 - Simplified interface for parametric studies
 - □ Uses YACS and JOBMANAGER

OpenTURNS Graphical User Interface (1/5)

Goal of OpenTURNS GUI

 Guide user in a homogeneous environment through the roadmap defined by the global methodology of treatment of uncertainties (physical model evaluation and display of result to

take decisions...)

OpenTURNS Graphical User Interface (2/5)

OpenTURNS GUI is more than a simple GUI!

- OpenTURNS GUI is based on a high level object model (Main study, Deterministic study, Probabilistic study, ...)
- OpenTURNS GUI includes a layer over OpenTURNS tools.
- OpenTURNS GUI has been designed to mix beginners and advanced users

How can you use it ?

- Standalone binary called otgui
- □ In a dedicated salome module
- Can be used in customized salome module

OpenTURNS Graphical User Interface (3/5)

- Two complementary ways to pilot OpenTURNS GUI: Python and widgets
- The design of OpenTURNS GUI allows a strong relationship between Python scripting and graphical interface (Model/View paradigm).
 - Actions you perform on gui can be mapped into a Python representation.
 - Load python script and dump python script.
 - Start session with graphical interface then continue with script then...

OpenTURNS GUI offers software bricks usable outside a dedicated tool

OpenTURNS Graphical User Interface (4/5)

- OpenTURNS GUI is an excellent target for High Performance Computing (HPC)
 - A large number of independent computations
- The usage of distributed resources is very dependent on the context:
 - Use of a cluster (homogeneous, centralized) / a grid (heterogeneous, decentralized)?
 - Communication protocol with the cluster?
 - Which batch / grid manager?
 - Can we install software on the cluster?
 - Global / local (by node) file system?
 - Execution of OpenTURNS script on the client workstation / on the cluster?
 - □ Which middleware for the distribution on the cluster?
 - Size of input and output files of the solver code?

OpenTURNS GUI uses Salome

OpenTURNS Graphical User Interface (5/5)

- SALOME software bricks used OpenTURNS GUI
 - п YACS & JOBMANAGER
 - GUI Python console widget
 - PARAVIS widgets

Step by step example (1/6)

Goal

Compute an OpenTURNS study of a python function using a computer cluster

Prerequisite

- Create the python function of a unitary case
- Input parameters must be only float variables
- Return statement must contain only float variables
- Run and test the function outside Salome

Heat exchange computation with SYRTHES

h1 T1 Face S1

h2 T2 Face S2

Heat exchange coefficient: h1, h2

Conductivity: lamb

Density: rho

Heat capacity: cp

```
def exec(h1, h2, rho, cp, lamb):
```

etude=Etude() etude.init(h1, h2, rho, cp, lamb)

#Run the calculation etude.launch calc()

#Temperature at the probe temp = etude.extract probe(2,2)

#Balance at 2 balance = etude.extract_balance(2, 2)

return temp, balance

Step by step example (2/6)

Installation steps

- Install Salome on your personal computer
- □ Install Salome on the remote cluster
- Make sure you can connect to cluster without typing the password (ssh-copy-id)
- Declare the cluster installation in your local resource catalog (JOBMANAGER module)

Step by step example (3/6)

Step by step example (4/6)

- OpenTURNS study steps
 - Choose the laws of the input parameters

Step by step example (5/6)

- OpenTURNS study steps
 - Launch the computation on the remote cluster

Step by step example (6/6)

- OpenTURNS study steps
 - Result analysis
 - Box plots, Cobweb plot, Plot matrix, Scatter plots

OpenTURNS Graphical User Interface - Distribution and future evolutions (1/2)

- Distribution of SALOME + OpenTURNS platform
 - LGPL license for the whole platform (SALOME + OpenTURNS + OPENTURNS GUI)
 - Download SALOME platform with OpenTURNS here:
 - http://www.salome-platform.org/contributions/copy_of_combs

OpenTURNS Graphical User Interface - Distribution and future evolutions (2/2)

Improvements to come

- Launch, leave and reconnect to a job
- Avoid multiple job submissions for one OpenTURNS study
- Management of a partially executed study
- Management of failed computations

Examples of OpenTURNS studies with HPC (1/3)

Probes in an alternator

- Optimization of the position of probes in an alternator to maximize the signal fidelity
- □ Solver: CARMEL
- □ Elementary calculation: Mesh with ~200000 cells. 92 hours

□ OpenTURNS study: 115 elementary calculations → about 10000 CPU hours

> Function G in Code_CARMEL

Desquiens 2016

Bande de roulement

Examples of OpenTURNS studies with HPC (2/3)

Offshore wind turbine

- Study of lifetime of offshore wind turbine sustaining extreme scenarios in terms of strain.
- □ Solver: FAST
- □ Elementary calculation: No mesh. ~10 minutes.

Bousseau 2016

□ OpenTURNS study: 10000 elementary calculations → about 17000

CPU hours

Examples of OpenTURNS studies with HPC (3/3)

Evaluation of the environment impact of the flood of a river

□ Solver: TELEMAC/MASCARET

 Elementary calculation: Mesh with ~100000 cells. Convergence reached in about ~1-10 hours

Questions?

