Sequence models & Attention mechanism

LATEST SUBMISSION GRADE

100%

4.	Suppose you are building a speech recognition system, which uses an RNN model to map from audio
	clip x to a text transcript y . Your algorithm uses beam search to try to find the value of y that
	maximizes $P(y \mid x)$.

1 / 1 poin

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- No, because P(y* | x) ≤ P(ŷ | x) indicates the error should be attributed to the RNN rather than to the search algorithm.
 No, because P(y* | x) ≤ P(ŷ | x) indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

Correct

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x).$ This suggest you should focus your attention on improving the search algorithm.

True.

False.

✓ Correct

1 / 1 point

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{\mathcal{X}}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

✓ Correct

- We expect $\alpha^{< t, t'}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $\sum_{t} \alpha^{\langle t,t'\rangle} = 1$ (Note the summation is over t.)
- $\sum_{t'} \alpha^{\langle t,t' \rangle} = 1$ (Note the summation is over t'.)

✓ Correct

7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we

True

○ False

✓ Correct

haven't computed $s^{< t>}$ yet.

1 / 1 point

8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:	1 / 1 point
	\bigcirc The input sequence length T_x is large.	
	$igcup$ The input sequence length T_x is small.	
	✓ Correct	
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1/1 point
	_c_oo_o_kkb_ooooo_oo_kkk	
	Cokbok	
	cookbook	
	ook book	
	oookkbooooookkk	
	✓ Correct	
10.	In trigger word detection, $x^{< t>}$ is:	1/1 point
	lacksquare Features of the audio (such as spectrogram features) at time $t.$	
	igcup The t -th input word, represented as either a one-hot vector or a word embedding.	
	igcup Whether the trigger word is being said at time $t.$	
	igcup Whether someone has just finished saying the trigger word at time $t.$	
	✓ Correct	