WHAT IS CLAIMED IS:

ı	1.\ A1	illethod of forming a multiple-thekness oxide layer on a sincer.
2	substrate, the method con	nprising:
3	a) \ for	ming a sacrificial oxide layer on the silicon substrate;
4	b) \ pai	tterning an implant mask layer on the silicon substrate to expose
5	a selected first portion of	the silicon substrate;
6	c) lm	planting oxygen into the selected first portion of the silicon
7	substrate through the sac	rificial oxide layer;
8	d) str	pping the implant mask layer from the silicon substrate;
9	e) str	ipping the sacrificial oxide layer; and
10	f) gre	owing an oxide layer on the silicon substrate, the oxide layer
11	having an oxygen-implar	nted vide region and a non-implanted oxide region.
1	2. Tł	ne method of claim 1 wherein the non-implanted oxide region is
2	less than about 30 Å thic	k. \
	A	
1	I	ne method of claim 1 wherein the oxygen is implanted in step (c)
2	to a concentration of les	than about 10°7cm.
1	4. Ti	ne method of claim 1 wherein the oxygen is implanted in step (c)
2	to a concentration of bet	ween about 5E 5-1E16/cm ² .
		1 1 5 5 and a supplied thickness swide layer on a silicon
1		method of forming a multiple-thickness oxide layer on a silicon
2	substrate, the method co	\
3	, -	rowing a gate oxide layer on a silicon substrate;
4	·	orming a polysilicon layer on the gate oxide layer;
5	-	atterning an implant mask layer on the polysilicon layer;
6	d) in	nplanting oxygen through the polysilicon layer;
7	e) st	ripping the implant mask layer from the substrate; and
8	f) an	nnealing the substrate to form a thicker gate oxide region of the
9	gate oxide layer, the thic	cker gate oxide region being oxygen-implanted oxide.
1	6. T	the method of claim 5 wherein the gate oxide layer is less than
2	about 30 Å thick immed	liately after sten (a).

1	7. A method of forming a multiple-thickness oxide layer on a silicon
2	substrate, the method comprising:
3	a) forming a sacrificial oxide layer on the silicon substrate;
4	b) patterning an implant mask layer on the silicon substrate to expose
5	a selected first portion of the silicon substrate;
6	c) implanting oxygen into the selected first portion of the silicon
7	substrate through the sacrificial oxide layer;
8	d) stripping the implant mask layer from the silicon substrate;
9	e) stripping the sacrificial oxide layer; and
10	f) growing an oxide layer on the silicon substrate, the oxide layer
11	being thicker in the oxygen-implanted oxide region in the selected first portion.
1	8. The method of claim 7 wherein the oxide thickness varies from
2	about 30 Å to about 50 Å.
1	9. The method of claim 7 wherein step c) includes implanting oxyger
2	into a second portion of the silicon substate under the implant mask layer, the oxygen
3	concentration in the second portion being less than the oxygen concentration in the first
4	portion, and the oxide layer over the first portion being thicker than the oxide layer over
5	the second portion.
1	10. The method of claim 9 wherein the oxide thickness varies from
2	about 30 Å to about 50 Å.
1	11. The method of claim 10 wherein the oxygen is implanted in the
2	first portion to a concentration of about 1×10^{16} atoms cm ⁻² and the oxygen is implanted
3	in the second portion to a concentration of about 5×10^{15} atoms cm ⁻² .
1	12. The method of claim 11 wherein the oxide thickness is about 50 Å
2	over the first portion, about 40 Å over the second portion, and about 30 Å where oxygen
3	is not implanted.
1	13. A method of forming a multiple-thickness oxide layer on a silicon
2	substrate, the method comprising:

	3	a) forming a high dielectric contrast dielectric layer on a silicon
	4	substrate;
	5	b) forming a polysilicon layer on the dielectric layer;
	6	c) \setminus patterning an implant mask layer on the polysilicon layer;
	7	d) $\sqrt{\text{implanting oxygen through the polysilicon layer;}}$
	8	e) stripping the implant mask layer from the substrate; and
	9	annealing the substrate to form an interfacial oxide layer under the
	10	dielectric layer.
	1	14. The method of claim 13 wherein the dielectric layer is selected
	2	from the group consisting of silicon nitride, zirconium oxide, and hafnium silicate.
	1	15. The method of claim 13 wherein the interfacial oxide layer is less
	2	than 2 nm in thickness.
		Sub l
7.] 22.	1	A semiconductor device having a gate oxide of multiple thickness,
	2	the semiconductor device comprising:
	3	a first gate oxide region having a first thickness, and
	4	a second gate oxide region having a second thickness, the second gate
	5	oxide region being oxygen-implanted oxide, the second thickness being greater than the
	6	first thickness.
	1	17. The semiconductor device of claim 16 wherein the first thickness is
de	2	less than about 30 Å.
B	1	10 The decision of claim 16 wherein the first thickness is
	/	18. The semiconductor device of claim 16 wherein the first thickness is
	2	less than the second thickness by less than about 20 Å.
	1	19. The semiconductor device of claim 16 wherein the first gate oxide
	2	region is non-implanted oxide.
	1	20. The semiconductor device of claim 16, wherein the first gate oxide
	2	is oxygen implanted oxide, the implanted oxygen concentration being less than the
	3	implanted oxygen concentration of the second gate oxide region.