Komplexität und Algorithmen

Prof. Dr. Michael Eichberg Dozent:

Kontakt: michael.eichberg@dhbw-mannheim.de, Raum 149B

Version: 1.0

Die Folien sind teilweise inspiriert von oder basierend auf Lehrmaterial von Quelle:

Prof. Dr. Ritterbusch, Prof. Dr. Baumgart oder Prof. Dr. Albers.

Folien: https://delors.github.io/theo-algo-komplexitaet/folien.de.rst.html

https://delors.github.io/theo-algo-komplexitaet/folien.de.rst.html.pdf

Fehler melden:

https://github.com/Delors/delors.github.io/issues

1. EINFÜHRUNG LANDAU'SCHE O-NOTATION

Berechnungskomplexität

Analyse des Aufwands zur Berechnung von Ergebnissen ist wichtig ...

- im Design,
- in der Auswahl
- und der Verwendung von Algorithmen.

Für relevante Algorithmen und Eingangsdaten können Vorhersagen getroffen werden:

- Um Zusammenhänge sind zwischen Eingangsdaten und Aufwand zu finden.
- Aufwand kann Rechenzeit, Speicherbedarf oder auch Komponentennutzung sein.

Der Rechenaufwand ist häufig zentral und wird hier betrachtet, die Verfahren sind aber auch für weitere Ressourcen anwendbar.

Die Vorhersagen erfolgen über asymptotische Schätzungen

- mit Hilfe der Infinitesimalrechnung,
- durch Kategorisierung im Sinne des Wachstumsverhaltens,
- damit ist oft keine exakte Vorhersage möglich.

Unterschiedliche Systeme sind unterschiedlich schnell, relativ dazu wird es interessant.

Im Folgenden geht es um:

- die Beschreibung des asymptotischen Wachstumsverhaltens
- die Analyse von iterativen Algorithmen
- die Analyse von rekursiv teilenden Algorithmen

Die Infinitesimalrechnung bezeichnet die Differenzial- und Integralrechnung. Es wird mit unendlich kleinen Größen gerechnet.

3

Exkursion: Dynamische Programmierung

1

Der folgende Abschnitt behandelt die dynamische Programmierung, um ein Problem effizient zu lösen. Er zeigt gleichzeitig wie die Wahl des Algorithmus und der Implementierung die Laufzeit dramatisch beeinflussen kann.

Übung

Berechnung der Fibonacci-Zahlen

Implementieren Sie eine **rekursive Funktion**, die die n-te Fibonacci-Zahl berechnet!

Hinweis

Die Fibonacci-Zahlen sind definiert durch die Rekursionsformel F(n)=F(n-1)+F(n-2) mit den Anfangswerten F(0)=0 und F(1)=1.

Bis zu welchem n können Sie die Fibonacci-Zahlen in vernünftiger Zeit berechnen (d. h. < 10 Sekunden)?

Berechnung der Fibonacci-Zahlen

Implementieren Sie eine **rekursive Funktion**, die die n-te Fibonacci-Zahl berechnet!

Hinweis

Die Fibonacci-Zahlen sind definiert durch die Rekursionsformel F(n)=F(n-1)+F(n-2) mit den Anfangswerten F(0)=0 und F(1)=1.

Bis zu welchem n können Sie die Fibonacci-Zahlen in vernünftiger Zeit berechnen (d. h. < 10 Sekunden)?

Technik der dynamischen Programmierung

Rekursiver Ansatz:

Lösen eines Problems durch Lösen mehrerer kleinerer Teilprobleme, aus denen sich die Lösung für das Ausgangsproblem zusammensetzt.

Phänomen:

Mehrfachberechnungen von Lösungen

Methode: Speichern einmal berechneter Lösungen (in einer Tabelle) für spätere

Zugriffe.

Beispiel: Berechnung der Fibonacci-Zahlen (rekursiv)

Definition

$$F(0) = 0$$

$$F(1) = 1$$
.

$$F(n) = F(n-1) + F(n-2)$$

F(n) als stehende Formel:

$$F(n) = \left[rac{1}{\sqrt{5}}(1.618\ldots)^n
ight]$$

Warnung

Die Berechnung der Fibonacci-Zahlen mit Hilfe einer naiven rekursiven Funktion ist sehr ineffizient.

Aufrufbaum

7

Vorgehen beim dynamischen Programmieren

- 1. Rekursive Beschreibung des Problems P
- 2. Bestimmung einer Menge T, die alle Teilprobleme von P enthält, auf die bei der Lösung von P auch in tieferen Rekursionsstufen zurückgegriffen wird.
- 3. Bestimmung einer Reihenfolge T_0, \ldots, T_k der Probleme in T, so dass bei der Lösung von T_i nur auf Probleme T_j mit j < i zurückgegriffen wird.
- 4. Sukzessive Berechnung und Speicherung von Lösungen für T_0,\ldots,T_k .

Beispiel: Berechnung der Fibonacci-Zahlen mit dynamischer Programmierung

- 1. Rekursive Definition der Fibonacci-Zahlen nach gegebener Gleichung.
- 2. $T = f(0), \ldots, f(n-1)$
- 3. $T_i = f(i), i = 0, \dots, n-1$
- 4. Berechnung von fib(i) benötigt von den früheren Problemen nur die zwei letzten Teillösungen fib(i-1) und fib(i-2) für $i \geq 2$.

Lösung mit linearer Laufzeit und konstantem Speicherbedarf

```
1 procedure <u>fib</u> (<u>n</u> : <u>integer</u>) : <u>integer</u>
               f n m2 := 0; f n m1 := 1
2
3
               for k := 2 to n do
                        \underline{f} \underline{n} := \underline{f} \underline{n} \underline{m1} + \underline{f} \underline{n} \underline{m2}
4
                        \underline{f} \underline{n} \underline{m2} := \underline{f} \underline{n} \underline{m1}
5
                        \underline{f} \underline{n} \underline{m1} := \underline{f} \underline{n}
6
7
               if n \le 1 then return n
               else
                                                  <u>return</u> <u>f</u>n
8
```

Lösung mit Memoisierung (■ Memoization)

Berechne jeden Wert genau einmal, speichere ihn in einem Array F[0...n]:

```
1 procedure <u>fib</u> (<u>n</u> : <u>integer</u>) : <u>integer</u>
 2
         F[0] := 0; F[1] := 1;
 3
         for i := 2 to n do
               F[i] := ∞ // Initialisierung
 4
         return lookupfib(n)
 5
 6
 7 procedure <u>lookupfib</u> (<u>n</u> : <u>integer</u>) : <u>integer</u>
         \underline{if} F[\underline{n}] = \infty \underline{then}
 9
               F[n] := lookupfib(n-1) + lookupfib(n-2)
         return F[n]
10
```

Ĉ

3

1

Übung

Fibonacci-Zahl effizient berechnen

Implementieren Sie den Pseudocode der ersten Lösung zur Berechnung der Fibonacci-Zahlen.

Bis zur welcher Fibonacci-Zahl können Sie die Berechnung nun durchführen?

Fibonacci-Zahl effizient berechnen

Implementieren Sie den Pseudocode der ersten Lösung zur Berechnung der Fibonacci-Zahlen.

Bis zur welcher Fibonacci-Zahl können Sie die Berechnung nun durchführen?

Laufzeiten von Algorithmen

Folgen

Im Allgemeinen werden Laufzeiten oder Aufwände in Abhängigkeit von einer Eingangsgröße als Folge beschrieben:

Definition

Eine Folge (a_n) ist eine Abbildung, die jedem $n\in\mathbb{N}$ ein a_n zuweist.

Folgenglieder

Beispiel:
$$(a_n)$$
 : $a_1=2, a_2=3, a_3=7, a_4=11, \ldots$

■ Rekursive Definition

Beispiel:
$$(c_n)$$
 : $c_1=1, c_2=1, c_{n+2}=c_n+c_{n+1}$ $f\ddot{\textit{u}}r$ $n\in (N)$

■ Explizite Definition

Beispiel:
$$(b_n)$$
 : $b_n=n^2$ für $n\in \mathbb{N}$

Eine rekursive Definition ist eine Definition, die sich auf sich selbst bezieht. Häufiger schwieriger zu analysieren. Die explizite Definition ist eine direkte Zuweisung und meist die beste Wahl.

12

Folgen und Laufzeiten

- Die explizite Definition von Laufzeiten ist zur Auswertung vorzuziehen.
- Die rekursive Definition tritt oft bei rekursiven Verfahren auf, und sollte dann in eine explizite Definition umgerechnet werden.

Berechnung der Anzahl der Schritte zum Lösen der Türme von Hanoi.

Türme von Hanoi mit 3 Scheiben

Die Türme von Hanoi (ChatGPT)

Die Türme von Hanoi sind ein klassisches mathematisches Puzzle. Es besteht aus drei Stäben und einer bestimmten Anzahl von unterschiedlich großen Scheiben, die anfangs alle in absteigender Reihenfolge auf einem Stab gestapelt sind – der größte unten und der kleinste oben.

Das Ziel des Spiels ist es, alle Scheiben auf einen anderen Stab zu bewegen, wobei folgende Regeln gelten:

- Es darf immer nur eine Scheibe auf einmal bewegt werden.
- Eine größere Scheibe darf nie auf einer kleineren liegen.
- Alle Scheiben müssen auf den dritten Stab bewegt werden, indem sie über den mittleren Stab verschoben werden.

13

Laufzeit der Lösung der Türme von Hanoi

Für die Lösung sind für jeden Ring n die folgenden a_n Schritte erforderlich:

- 1. Alle n-1 kleineren Ringe über Ring n müssen mit a_{n-1} Schritten auf den Hilfsstab.
- 2. Der Ring *n* kommt auf den Zielstab mit einem Schritt.
- 3. Alle n-1 Ringe vom Hilfsstab müssen mit a_{n-1} Schritten auf den Zielstab.

Bei nur einem Ring ist $a_1=1$ und sonst $a_n=a_{n-1}+1+a_{n-1}=2a_{n-1}+1$. Also: $a_1=1,\,a_2=2\cdot 1+1=3,\,a_3=2\cdot 3+1=7,\,a_4=2\cdot 7+1=15,\,...$ Damit liegt nahe, dass der Aufwand (1,3,7,15,...) dem Zusammenhang $a_n=2^n-1$ entspricht.

Beweis durch vollständige Induktion

- \blacksquare Induktionsanfang n=1: $a_1=2^n-1=2^1-1=1$
- Induktionsvoraussetzung: $a_{n-1}=2^{n-1}-1$ und $a_n=2a_{n-1}+1$
- Induktionsschritt $(n-1 \rightarrow n)$:

$$a_n = 2 \cdot (2^{n-1} - 1) + 1$$

$$= 2^n - 2 + 1$$

$$= 2^n - 1$$

Damit ist die Vermutung bestätigt.

Eigenschaften von Folgen - Konvergenz

Definition

■ Eine Folge (a_n) ist konvergent zum Grenzwert a, wenn es zu jeder Zahl $\varepsilon>0$ ein $N\in\mathbb{N}$ gibt, so dass $|a_n-a|<\varepsilon$ für alle n>N gilt.

Dies wird dann:

$$a_n \xrightarrow{n o \infty} a, a_n o a ext{ oder } \lim_{n o \infty} a_n = a$$

geschrieben.

■ Eine Folge ist divergent, wenn es keinen Grenzwert gibt.

Eigenschaften von Folgen - Beispiel für Konvergenz

Betrachten wir die Folge (a_n) mit $a_n=rac{(-1)^n}{n}+2$, $n\in\mathbb{N}$:

Entwicklung der Folge:

$$a_1 = -1 + 2 = 1, a_2 = 0.5 + 2 = 2.5, a_3 = -0.33... + 2 \approx 1.67, a_4 = 0.25 + 2 = 2.25,...$$

Die Folge konvergiert zu 2, da für ein gegebenes arepsilon>0 ein N existiert so dass $|a_n-a|<arepsilon$:

$$|a_n - a| = |rac{(-1)^n}{n} + 2 - 2| = |rac{(-1)^n}{n}| = rac{1}{n} < arepsilon$$

wenn $n>rac{1}{arepsilon}$ ist.

D. h.
$$a_n o 2$$
 oder $lim_{n o\infty}a_n=2$

Konvergenz von Folgen - Rechenregeln

Satz

Die beiden Folgen (a_n) und (b_n) seien konvergent $a_n\to a$, $b_n\to b$ und $\lambda\in\mathbb C$, sowie $p,q\in\mathbb N$. Dann gilt:

$$egin{array}{ll} lim_{n o\infty}\lambda a_n &=\lambda a \ lim_{n o\infty}(a_n\pm b_n) &=a\pm b \ lim_{n o\infty}(a_n\cdot b_n) &=a\cdot b \ lim_{n o\infty}rac{a_n}{b_n} &=rac{a}{b}, ext{ für } b
eq 0, b_n
eq 0 \ lim_{n o\infty}a_n^{p/q} &=a^{p/q}, ext{wenn } a^{p/q} ext{ existiert} \end{array}$$

Konvergenz von Folgen - wichtige Grenzwerte

$$egin{array}{ll} \lim_{n o\infty}q^n &=0 & ext{wenn } |q|<1 \ \lim_{n o\infty}q^n &=\infty & ext{wenn } q>1 \ \lim_{n o\infty}rac{q^n}{n!} &=0 & ext{für } q\in\mathbb{C} \ \lim_{n o\infty}\sqrt[n]{a} &=1 & ext{wenn } a>0 \ \lim_{n o\infty}\sqrt[n]{n} &=1 \ \lim_{n o\infty}\sqrt[n]{n!} &=\infty \end{array}$$

Konvergenz von Folgen - Beispiel

Die Folge $a_n=rac{n^2+1}{n^3}$ konvergiert gegen 0, da:

$$\lim_{n o \infty} rac{n^2 + 1}{n^3} = \lim_{n o \infty} rac{n^3 (1/n + 1/n^3)}{n^3} = \lim_{n o \infty} rac{(1/n + 1/n^3)}{1} = 0$$

Die Folge konvergiert gegen 0, da der Zähler gegen 0 strebt ($\lim_{n\to\infty}(1/n)=0$ und $\lim_{n\to\infty}(1/n^3)=0$) und der Nenner konstant ist.

19

Die allgemeine Vorgehensweise ist es, die größte Potenz im Zähler und Nenner zu finden und dann diese auszuklammern. Im zweiten Schritt kürzen wir dann. In diesem Fall ist es n^3 .

D. h. das Ziel ist es den Ausdruck so umzuformen, dass der Grenzwert direkt abgelesen werden kann. Dies ist inbesondere dann der Fall, wenn n nur noch im Nenner oder Zähler steht.

Analyse des asymptotischen Verhaltens

Wir möchten $f(x)=rac{\ln(x)}{x^{2/3}}$ für $x o\infty$ untersuchen.

Beobachtung

- 1. Der Zähler, $\ln(x)$, wächst gegen unendlich, aber sehr langsam im Vergleich zur Potenzfunktionen.
- 2. Der Nenner, $x^{2/3}$, wächst viel schneller als $\ln(x)$ für große x.

Es liegt somit ein unbestimmter Ausdruck vom Typ $\frac{\infty}{\infty}$ vor. Wir verwenden nun die Regel von L'Hôpital.

$$\lim_{x o\infty}rac{\ln(x)}{x^{2/3}}=\lim_{x o\infty}rac{rac{d}{dx}(\ln(x))}{rac{d}{dx}(x^{2/3})}=\lim_{x o\infty}rac{rac{1}{x}}{rac{2}{3}x^{-1/3}}$$

Das vereinfacht sich zu:

$$=\lim_{x o\infty}rac{1}{x}\cdotrac{3}{2}x^{1/3}=\lim_{x o\infty}rac{3}{2}\cdotrac{1}{x^{2/3}}=0$$

Die **Regel von L'Hôpital** ermöglicht es Grenzwerte von Ausdrücken des Typs $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ zu berechnen. In diesem Fall nehmen wir die Ableitungen des Zählers und des Nenners.

Die Regel besagt:

Falls $\lim_{x\to a} \frac{f(x)}{g(x)}$ den unbestimmten Ausdruck $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ergibt, dann gilt:

$$\lim_{x o a}rac{f(x)}{g(x)}=\lim_{x o a}rac{f'(x)}{g'(x)},$$

sofern der Grenzwert auf der rechten Seite existiert oder unendlich ist.

20

Übung - Konvergenz von einfachen Folgen

Erste Folge - zum Aufwärmen

Zeigen Sie, dass die Folge $a_n=\frac{n^2}{n^2+1}$ konvergiert und bestimmen Sie den Grenzwert.

Zweite Folge

Bestimmen Sie den Grenzwert der Folge, wenn er denn existiert: $b_n = \frac{1-n+n^2}{n(n+1)}$.

Erste Folge - zum Aufwärmen

Zeigen Sie, dass die Folge $a_n=rac{n^2}{n^2+1}$ konvergiert und bestimmen Sie den Grenzwert.

Zweite Folge

Bestimmen Sie den Grenzwert der Folge, wenn er denn existiert: $b_n = rac{1-n+n^2}{n(n+1)}$.

Übung - Konvergenz von Folgen

Hinweis

Die Binomischen Formeln sind ggf. hilfreich.

Folge mit Wurzel

Bestimmen Sie den Grenzwert $\lim_{n \to \infty} \sqrt{n^2 + n} - n$.

Hier könnte die dritte Binomische Formel ($(a-b)(a+b)=a^2-b^2$) hilfreich sein.

Folge mit mehreren Termen

Berechnen Sie den Grenzwert Folge $b_n=rac{n^2-1}{n+3}-rac{n^2+1}{n-1}$ falls er existiert.

Zwei Wurzeln

Bestimmen Sie den Grenzwert $\lim_{n o \infty} \sqrt{n^2 + 1} - \sqrt{n^2 + 4n}$.

22

Um eine Potenz aus einer Wurzel zu bekommen, hilft ggf. das Wurzelgesetz $\sqrt{a}\cdot\sqrt{b}=\sqrt{a\cdot b}$.

Beispiel:
$$\sqrt{x^4+x^2}=\sqrt{x^4(1+1/x^2)}=\sqrt{x^4}\cdot\sqrt{(1+1/x^2)}=x^2\cdot\sqrt{(1+1/x^2)}$$
.

Folge mit Wurzel

Bestimmen Sie den Grenzwert $\lim_{n o \infty} \sqrt{n^2 + n} - n$.

Hier könnte die dritte Binomische Formel ($(a-b)(a+b)=a^2-b^2$) hilfreich sein.

Folge mit mehreren Termen

Berechnen Sie den Grenzwert Folge $b_n=rac{n^2-1}{n+3}-rac{n^2+1}{n-1}$ falls er existiert.

Zwei Wurzeln

Bestimmen Sie den Grenzwert $\lim_{n o \infty} \sqrt{n^2 + 1} - \sqrt{n^2 + 4n}$.

Landau-Notation

Asymptotische Abschätzung

Definition

Landau-Notation

Folgenden Mengen von Funktionen können asymptotisch von g(n) ...

- lacksquare nach oben abgeschätzt werden, $\mathcal{O}(g):=\{f:\mathbb{N} o\mathbb{R}_{\geq 0}|\lim_{x o\infty}rac{f(n)}{g(n)}<\infty\}$
- lacksquare nach unten abgeschätzt werden, $\Omega(g):=\{f:\mathbb{N} o\mathbb{R}_{\geq 0}|\lim_{x o\infty}rac{f(n)}{g(n)}>0\}$
- in gleicher Ordnung abgeschätzt werden,

$$\Theta(g) := \{f: \mathbb{N} o \mathbb{R}_{\geq 0} | \lim_{x o \infty} rac{f(n)}{g(n)} = C \in \mathbb{R}_{> 0} \}$$

Es gilt der folgende Zusammenhang für die Mengen $\mathcal{O}(g)$ [1], $\Omega(g)$ und $\Theta(g)$:

$$\Theta(g) = \mathcal{O}(g) \cap \Omega(g)$$

[1] Im Folgenden verwenden wir einfach O statt O.

24

Wenn eine Funktion f in der Menge O(g) (d. h. $f \in O(g)$) ist, dann wächst die Funktion g schneller als die Funktion f. Typischerweise ist der Grenzwert von f(n)/g(n) für $n \to \infty$ in diesem Falle 0.

Die Verwendung der O-Notation zur Beschreibung der Komplexität von Algorithmen wurde von Donald E. Knuth eingeführt.

Alternative Schreibweisen

Insbesondere für die obere Abschätzung O(g) gibt es eine alternative Schreibweise:

$$f(n) \in O(g(n)) \Leftrightarrow \exists c_0, n_0 orall n : n > n_0 \Rightarrow f(n) \leq c_0 \cdot g(n)$$

D. h. ab einem Wert n_0 liegt die Komplexität der Funktion f unter der c_0 -fachen Komplexität der Funktion g.

Beispiel:
$$f(n) = 4n + 7 \in O(n)$$

$$4n+7 \leq c_0 \cdot n \Leftrightarrow n \cdot (4-c_0) \leq -7$$

Wähle:
$$c_0 = 5$$
 und $n_0 = 7$ sowie $g(n) = n$.

Verstehen von Aufwandsklassen

Häufige Vergleichsfunktionen sind zum Beispiel Monome wie n^k für $k\in\mathbb{N}_0.$

26

Achtung bei asymptotischen Abschätzungen

Asymptotische Laufzeitabschätzungen können zu Missverständnissen führen:

- 1. Asymptotische Abschätzungen werden nur für steigende Problemgrößen genauer, für kleine Problemstellungen liegt oft eine ganz andere Situation vor.
- 2. Asymptotisch nach oben abschätzende Aussagen mit O(g)-Notation können die tatsächliche Laufzeit beliebig hoch überschätzen, auch wenn möglichst scharfe Abschätzungen erwünscht sein sollten, gibt es diese teilweise nicht in beliebiger Genauigkeit, oder sind nicht praktikabel.
- 3. Nur Abschätzungen von gleicher Ordnung $\Theta(g)$ können direkt verglichen werden, oder wenn zusätzlich zu O(g) auch $\Omega(h)$ Abschätzungen vorliegen.

Übung

Gegenseitige asymptotische Abschätzung I

Bestimmen Sie welche Funktionen sich gegenseitig asymptotisch abschätzen:

$$f_1(x) = \sqrt[3]{x}, \; f_2(x) = e^{-1 + \ln x}, f_3(x) = rac{x}{\ln(x) + 1}$$

D. h. berechnen Sie:

$$\lim_{x o\infty}rac{f_1(x)}{f_2(x)}, \lim_{x o\infty}rac{f_2(x)}{f_3(x)}, ext{ und ggf. } \lim_{x o\infty}rac{f_1(x)}{f_3(x)}$$

28

Denken Sie daran, dass die erste Ableitung von f(x)=ln(x) die Funktion $f'(x)=rac{1}{x}$ ist.

Gegenseitige asymptotische Abschätzung I

Bestimmen Sie welche Funktionen sich gegenseitig asymptotisch abschätzen:

$$f_1(x) = \sqrt[3]{x}, \; f_2(x) = e^{-1 + \ln x}, f_3(x) = rac{x}{\ln(x) + 1}.$$

D. h. berechnen Sie:

$$\lim_{x o\infty}rac{f_1(x)}{f_2(x)}, \lim_{x o\infty}rac{f_2(x)}{f_3(x)}, ext{ und ggf. } \lim_{x o\infty}rac{f_1(x)}{f_3(x)}$$

Übung - Asymptotische Abschätzungen

Gegenseitige asymptotische Abschätzung II

Vergleichen Sie: $f_1(x)=e^{2ln(x)+1}$ und $f_2(x)=rac{x^3+1}{x}$.

Gegenseitige asymptotische Abschätzung III

Vergleichen Sie: $f_1(x)=2^{1+2x}$ und $f_2(x)=4^x+2^x$.

Gegenseitige asymptotische Abschätzung II

Vergleichen Sie: $f_1(x)=e^{2ln(x)+1}$ und $f_2(x)=rac{x^3+1}{x}$.

Gegenseitige asymptotische Abschätzung III

Vergleichen Sie: $f_1(x)=2^{1+2x}$ und $f_2(x)=4^x+2^x$.

2. ALGORITHMISCHE KOMPLEXITÄT

Algorithmen

Algorithmen sind Verfahren, die gegebene Ausprägungen von Problemen in endlich vielen Schritten lösen können.

Dabei muss jeder Schritt

- ausführbar und
- reproduzierbar sein.

Es gibt aber oft viele Methoden die Probleme zu lösen:

- Daher ist es wichtig, Eigenschaften von Algorithmen zu analysieren!
- Insbesondere z.B.
- Zeitaufwand und
- Speicherbedarf
- in Abhängigkeit von der Problemgröße.

Problemumfang (Problemgröße) n

Konkrete Beispiele für Problemgrößen:

- \blacksquare Konkreter Wert von n: f(n)
- lacksquare Stellenanzahl des Eingabewertes (der Eingabewerte) $o f(z_1z_2\dots z_n)(z_i\in 0,\dots,9)$
- \blacksquare Anzahl der Eingabewerte: $f(x_1, x_2, \dots, x_n)$

31

Aufwand - Übersicht

Algorithmen - Zeitaufwand

Tatsächlicher Zeitaufwand hängt vom ausführenden Rechnersystem ab.

- Beeindruckende Entwicklung der Rechentechnik.
- Größere Probleme können gelöst werden.
- Langsamere Algorithmen bleiben langsamer auch auf schnellen Systemen.

Eine möglichst sinnvolle Annahme eines Rechnersystems gesucht:

- Von-Neumann System
- mit einer Recheneinheit
- genaue Geschwindigkeit nicht relevant.

Bemerkung

Wir unterscheiden:

- Komplexität eines Algorithmus
 Asymptotischer Aufwand (n → ∞) der Implementierung des Algorithmus.
- Komplexität eines Problems
 Minimale Komplexität eines Algorithmus zur Lösung des Problems Algorithmus.

33

Die Komplexität eines Problems zu bestimmen ist oft ausgesprochen schwierig, da man hierfür den besten Algorithmus kennen muss. Es stellt sich dann weiterhin die Frage wie man beweist, dass der beste Algorithmus vorliegt.

Bei vielen Komplexitätsanalysen steht die Zeitkomplexität im Vordergrund.

Die Zeitkomplexität misst nicht konkrete Ausführungszeiten (z. B. 1456 ms), da die Ausführungszeit von sehr vielen Randbedingungen abhängig ist, die direkt nichts mit dem Algorithmus zu tun haben, z. B.:

- Prozessortyp und Taktfrequenz
- Größe des Hauptspeichers
- Zugriffszeiten der Peripheriegeräte
- Betriebssystem → wird z. B. ein virtueller Speicher unterstützt
- Compiler- oder Interpreter-Version
- Systemlast zum Zeitpunkt der Ausführung

Wichtige Komplexitätsklassen

Klasse	Eigenschaft						
O(1)	Die Rechenzeit ist unabhängig von der Problemgröße						
$O(\log n)$	Die Rechenzeit wächst logarithmisch (zur Basis 2) mit der						
	Problemgröße						
O(n)	Die Rechenzeit wächst linear mit der Problemgröße						
$O(n \cdot \log n)$	Die Rechenzeit wächst linear logarithmisch mit der Problemgröße						
$O(n^2)$	Die Rechenzeit wächst quadratisch mit der Problemgröße						
$O(n^3)$	Die Rechenzeit wächst kubisch mit der Problemgröße						
$O(2^n)$	Die Rechenzeit wächst exponentiell (zur Basis 2) mit der						
0(2)	Problemgröße						
O(n!)	Die Rechenzeit wächst entsprechend der Fakultätsfunktion mit der						
	Problemgröße						

Komplexität und bekannte Algorithmen/Probleme

O(1)

- Liegt typischerweise dann vor, wenn das Programm nur einmal linear durchlaufen wird.
- \blacksquare Es liegt keine Abhängigkeit von der Problemgröße vor, d. h. beispielsweise keine Schleifen in Abhängigkeit von n.
- Beispiel:

Die Position eines Datensatzes auf einem Datenträger kann mit konstanten Aufwand berechnet werden.

$O(\log n)$

Beispiel:

Binäre Suche; d. h. in einem sortierten Array mit n Zahlen eine Zahl suchen.

O(n)

Beispiel:

Invertieren eines Bildes oder sequentielle Suche in einem unsortierten Array.

$O(n \cdot \log n)$

Beispiel:

Bessere Sortierverfahren wie z. B. Quicksort.

$O(n^2)$

- Häufig bei zwei ineinander geschachtelten Schleifen.
- Beispiel:

Einfache Sortierverfahren wie z. B. Bubble-Sort oder die Matrixaddition.

$O(n^3)$

- Häufig bei drei ineinander geschachtelten Schleifen.
- Beispiel:

Die Matrixmultiplikation.

M(m,t) ist eine Matrix mit m Zeilen und t Spalten.

$$C(m,t) = A(m,n) \cdot B(n,t)$$
 mit

$$c_{i,j} = \sum_{k=1}^n a_{i,k} \cdot b_{k,j} \qquad i = 1, \dots, m \qquad j = 1, \dots, t$$

$O(2^n)$

- Typischerweise der Fall, wenn für eine Menge mit n Elementen alle Teilmengen berechnet und verarbeitet werden müssen.
- Beispiel:

Rucksackproblem (■ Knapsack Problem)

Ein Rucksack besitzt eine maximale Tragfähigkeit und n Gegenstände unterschiedlichen Gewichts liegen vor, deren Gesamtgewicht über der Tragfähigkeit des Rucksacks liegt. Ziel ist es jetzt eine Teilmenge von Gegenständen zu finden, so dass der Rucksack optimal gefüllt wird.

O(n!)

- Typischerweise der Fall, wenn für eine Menge von n Elementen alle Permutationen dieser Elemente zu berechnen und zu verarbeiten sind.
- Beispiel:

Problem des Handlungsreisenden (Traveling Salesman Problem (TSP))

Gegeben sind n Städte, die alle durch Straßen direkt miteinander verbunden sind und für jede Direktverbindung ist deren Länge bekannt.

Gesucht ist die kürzeste Rundreise, bei der jede Stadt genau einmal besucht wird

35

Approximation von Laufzeiten

Sei die Problemgröße n=128:

Klasse	Laufzeit
$O(\log_2 n)$	1,75ns
O(n)	32ns
$O(n \cdot \log_2 n)$	224ns
$O(n^2)$	$4,096\mu s$
$O(n^3)$	$524,288\mu s$
$O(2^n)$	$2,70 \cdot 10^{21} a$
$O(3^n)$	$9,35 \cdot 10^{43} a$
O(n!)	$3,06\cdot 10^{198}a$

Dies zeigt, dass Algorithmen mit einer Komplexität von $O(n^3)$ oder höher für große bzw. nicht-triviale Problemgrößen nicht praktikabel sind.

Iterative Algorithmen

Elementare Kosten als Approximation

Elementare	Anzahl der Rechenschritte						
Operation	Alizani der Rechenschritte						
elementare							
Arithmetik: + ,- , * , /,	1						
etc.							
elementare logische							
Operationen: &&, ,	1						
!, etc.							
Ein- und Ausgabe	1						
Wertzuweisung	1						
return, break,	1						
continue							
Kontrollstrukturen	Anzahl der Rechenschritte						
Methodenaufruf	1 + Komplexität der Methode						
Falluntaraahaiduss	Komplexität des logischen Ausdrucks + Maximum der Komplexität						
Fallunterscheidung	der Rechenschritte der Zweige						

Beispiel Primzahltest: Analyse mit elementaren Kosten

```
def ist_primzahl(n):
   prim = True
                              # Wertzuweisung:
   i = 2
                               # Wertzuweisung:
   if n < 2:
                              # Vergleich:
                                                          1
       prim = False
                              # Wertzuweisung:
   else:
                              # Durchläufe:
       while prim and i < n: # Vergleiche, und:</pre>
                                                              3
           if n % i == 0: # modulo, Vergleich:
               prim = False
                             #
                                     Wertzuweisung:
           i += 1
                              #
                                 Inkrement:
                                                          3
                               # letzte Bedingungsprüfung
    return prim
                               # Befehl:
```

Im schlechtesten Fall, d. h. es gilt i=n nach der while-Schleife, werden $7+(n-2)\cdot 7=7\cdot n-7$ Rechenschritte benötigt. Die Anzahl der Rechenschritte hängt somit linear vom Eingabewert n ab.

Beachte, dass in keinem Falle alle Instruktionen ausgeführt werden.

Hinweis

Dies kein effizienter Algorithmus zum Feststellen ob eine Zahl Primzahl ist.

39

Beispiel Insertion-Sort: Analyse mit abstrahierten Kosten

Insertion-Sort

Vergleichbar zum Ziehen von Karten: die neue Karte wird an der richtigen Stelle eingeschoben.

i		s	orti	iert		key		un	oz	tie	rt (Au	sga	ลทดู	gss	itua	atic	r
0							5	3	1	4	2							
1					5	3	1	4	2									
2				3	5	1	4	2										
3			1	3	5	4	2											
4		1	3	4	5	2												
	1	2	3	4	5													

```
def insertion_sort(A):
    for i in range(1, len(A)):
        key = A[i]
        j = i - 1
        while j >= 0 and A[j] > key:
              A[j + 1] = A[j]
              j = j - 1
              A[j + 1] = key
```

Beispiel Insertion-Sort: Detailanalyse

Algorithmus: Insertion-Sort(A, n) [Pseudocode] Zeit Anzahl

1:	for $i = 2n$ do	c1	n
2:	key = A[i]	c2	n-1
3:	j= i-1	с3	n-1
4:	while $j > 0$ and $A[j] > key do$	с4	$\sum_{i=2}^n t_i$
5:	A[j + 1] = A[j]	c5	$\sum_{i=2}^n (t_i-1)$
6:	j= j - 1	с6	$\sum_{i=2}^n (t_i-1)$
7:	A[j + 1] = key	с7	n-1

- $ullet c_x$ sind die konstanten Kosten für die jeweilige Operation. Wir abstrahieren diese als $c=max(c_1,\ldots c_7)$.
- $lacktriangledown t_i$ ist die Anzahl der Schritte, die für das Einsortieren der n-ten Karte benötigt wird. Dies hängt davon ab, wie die Liste vorliegt.

Abschätzung der Laufzeit T(n) nach oben:

$$T(n) \leq c \cdot \left(n+3 \cdot (n-1) + \sum_{i=2}^n t_i + 2 \cdot \sum_{i=2}^n (t_i-1)
ight)$$

$$egin{aligned} &= c \cdot \left(4n-3+3 \cdot \sum_{i=2}^n t_i - 2 \cdot n - 1
ight) \ &= c \cdot \left(2n-1+3 \cdot \sum_{i=2}^n t_i
ight) \end{aligned}$$

Jetzt können drei Fälle unterschieden werden:

- lacksquare die Liste ist bereits sortiert, d. h. $t_i=1$
- \blacksquare die Liste ist umgekehrt sortiert, d. h. $t_i=i$
- lacksquare die Liste ist zufällig sortiert, d. h. $t_i=rac{i+1}{2}$

Im schlimmsten Fall, d. h. die Liste ist umgekehrt sortiert, ergibt sich:

$$T(n) \leq c \cdot \left(2n-1+3 \cdot \sum_{i=2}^n i
ight)$$

nach Anwendung der Summenformel:

$$=c\cdot\left(rac{3}{2}n^2+rac{7}{2}n-4
ight)$$

Im besten Fall, d. h. die Liste ist bereits sortiert, ergibt sich:

$$egin{split} T(n) & \leq c \cdot \left(2n-1+3 \cdot \sum_{i=2}^n 1
ight) \ & = c \cdot (5n-4) \end{split}$$

41

Beispiel Insertion-Sort: Ergebnisse

In Hinblick auf den Zeitaufwand gilt:

$$egin{aligned} T_{worst}(n) &\in \Theta(n^2) \ &T_{average}(n) &\in \Theta(n^2) \ &T_{best}(n) &\in \Theta(n) \end{aligned}$$

Der Insertion-Sort-Algorithmus hat eine quadratische Komplexität, d. h. die Laufzeit wächst quadratisch mit der Problemgröße. Er hat die Komplexität $O(n^2)$.

Übung

Bestimmung der asymptotischen Laufzeit eines Algorithmus

Die Funktion p(n) hat die Laufzeit $T_p(n)=c_p\cdot n^2$ und q(n) die Laufzeit $T_q(n)=c_q\cdot \log(n)$.

Bestimmen Sie die asymptotische Laufzeit des Algorithmus in Abhängigkeit von n durch zeilenweise Analyse.

Bestimmung der asymptotischen Laufzeit eines Algorithmus

Die Funktion p(n) hat die Laufzeit $T_p(n) = c_p \cdot n^2$ und q(n) die Laufzeit $T_q(n) = c_q \cdot \log(n)$.

```
1 Algorithmus COMPUTE(n)
2 p(n);
3 for j = 1...n do
4    for k = 1...j do
5         g(n);
6    end
7 end
```

Bestimmen Sie die asymptotische Laufzeit des Algorithmus in Abhängigkeit von n durch zeilenweise Analyse.

Übung

"Naive" Power Funktion

Bestimmen Sie die algorithmische asymptotische Komplexität des folgenden Algorithmus durch Analyse jeder einzelnen Zeile. Jede Zeile kann für sich mit konstantem Zeitaufwand abgeschätzt werden. Bestimmen Sie die Laufzeitkomplexität für den schlimmstmöglichen Fall in Abhängigkeit von k für eine nicht-negative Ganzzahl n mit k Bits.

(Beispiel: die Zahl $n=7_d$ benötigt drei Bits $n=111_b$, die Zahl 4d benötigt zwar auch drei Bits 100_b aber dennoch weniger Rechenschritte.).

```
1 Algorithmus Power(x,n)
2     r = 1
3     for i = 1...n do
4     r = r * x
5     return r
```

"Naive" Power Funktion

Bestimmen Sie die algorithmische asymptotische Komplexität des folgenden Algorithmus durch Analyse jeder einzelnen Zeile. Jede Zeile kann für sich mit konstantem Zeitaufwand abgeschätzt werden. Bestimmen Sie die Laufzeitkomplexität für den schlimmstmöglichen Fall in Abhängigkeit von k für eine nicht-negative Ganzzahl n mit k Bits.

(Beispiel: die Zahl $n=7_d$ benötigt drei Bits $n=111_b$, die Zahl 4d benötigt zwar auch drei Bits 100_b aber dennoch weniger Rechenschritte.).

Übung

Effizientere Power Funktion

Bestimmen Sie die algorithmische asymptotische Komplexität des folgenden Algorithmus durch Analyse jeder einzelnen Zeile. Jede Zeile kann für sich mit konstantem Zeitaufwand abgeschätzt werden. Bestimmen Sie die Laufzeitkomplexität mit Indikator t_i für gesetzte Bits in n für den schlimmstmöglichen Fall in Abhängigkeit von k für eine nicht-negative Ganzzahl n mit k Bits.

(D. h. $t_i=1$, wenn der i-te Bit von n gesetzt ist, sonst ist $t_i=0$; sei $n=5_d=101_b$ dann ist $t_1=1,t_2=0,t_3=1$).

```
1 Algorithmus BinPower(x,n)
  2
                   \underline{\mathbf{r}} = 1
  3
                    while n > 0 do
                                \underline{if} \quad mod \quad 2== 1 \quad \underline{then}
  4
  5
                                           \underline{\mathbf{r}} = \underline{\mathbf{r}} * \underline{\mathbf{x}}
  6
                                          \underline{\mathbf{n}} = (\underline{\mathbf{n}} - 1)/2
  7
                                <u>else</u>
  8
                                          \underline{\mathbf{n}} = \underline{\mathbf{n}}/2
  9
                                \underline{x} = \underline{x} * \underline{x}
10
                    <u>return</u> <u>r</u>
```

45

Effizientere Power Funktion

Bestimmen Sie die algorithmische asymptotische Komplexität des folgenden Algorithmus durch Analyse jeder einzelnen Zeile. Jede Zeile kann für sich mit konstantem Zeitaufwand abgeschätzt werden. Bestimmen Sie die Laufzeitkomplexität mit Indikator t_i für gesetzte Bits in n für den schlimmstmöglichen Fall in Abhängigkeit von k für eine nicht-negative Ganzzahl n mit k Bits.

(D. h. $t_i=1$, wenn der i-te Bit von n gesetzt ist, sonst ist $t_i=0$; sei $n=5_d=101_b$ dann ist $t_1=1,t_2=0,t_3=1$).

```
1 Algorithmus BinPower(x,n)
2     r = 1
3     while n > 0 do
4     if n mod 2== 1 then
5         r = r * x
6         n = (n-1)/2
7     else
8         n = n/2
9         x = x *x
10     return r
```


Rekursiv teilende Algorithmen

Standardvorgehensweise bei der Analyse

Standardverfahren zur Analyse rekursiver Algorithmen:

- 1. Anwendung der Verfahren zur Analyse iterativer Algorithmen um die Rekurrenzgleichung zu bestimmen.
- 2. Eine Anzahl von Werten ausrechnen und auf sinnvollen Zusammenhang schließen.
- 3. Beweis des Zusammenhangs mit vollständiger Induktion.

Achtung!

Das Finden eines sinnvollen Zusammenhangs und der Beweis ist nicht immer einfach.

47

Dieses Verfahren haben wir bei den Türmen von Hanoi angewandt.

Beobachtung bzgl. rekursiv teilender Algorithmen

Teilende Verfahren, bzw. Divide-and-Conquer-Algorithmen, sind typischerweise sehr effizient.

Wird beispielsweise das Problem immer halbiert, ist also $a_{2n}=a_n+1$ und ist

 $a_1 = 1$, dann würde für die Folgenglieder gelten

$$a_1 = 1, a_2 = 2, a_4 = 3, a_8 = 4, a_{16} = 5, \dots$$

Verallgemeinert: $a_n = \log_2(n) + 1$.

Herleitung:

$$a_1 = \log_2(1) + 1 = 0 + 1 \ a_{2n} = a_n + 1 = \log_2(n) + 1 + 1 = \log_2(n) + \log_2(2) + 1 = \log_2(2n) + 1$$

Ein Beispiel ist binäre Suche nach einem Namen im Telefonbuch oder nach einer zu erratenden Zahl.

Bei der Herleitung wurde (wieder) vollständige Induktion angewandt und die Logarithmusgesetze genutzt: $\log(a) + \log(b) = \log(a \cdot b)$ sowie $\log_b b = 1$.

Rekurrenz-Gleichung für rekursiv teilende Algorithmen

- In vielen Fällen geben rekursiv teilende Algorithmen Grund zur Hoffnung, dass die Laufzeit einen relevanten logarithmischen Anteil hat.
- Häufig können die Rekurrenz-Gleichungen rekursiv teilender Algorithmen in folgende Form gebracht werden:

Sei:

- a: die Anzahl der rekursiven Aufrufe,
- $\frac{n}{b}$: die Größe jedes rekursiven Unterproblems wobei b die Anzahl der Teile ist in die das Problem geteilt wird,
- $\blacksquare f(n)$: der Aufwand während der Ausführung.

$$T(n) = a \cdot T\left(rac{n}{b}
ight) + f(n)$$

In diesem Fall können drei Fälle unterschieden identifiziert werden:

- 1. Ist der Aufwand f(n) vernachlässigbar gegenüber dem Aufwand der weiteren Aufrufe, so ist ein rein durch die Rekursion bestimmtes Verhalten zu erwarten.
- 2. Entspricht der Aufwand f(n) genau dem Aufwand der weiteren Aufrufe, so vervielfältigt sich der Aufwand gegenüber dem 1. Fall, bleibt aber in der gleichen Größenordnung.
- 3. Ist der Aufwand f(n) größer als der Aufwand der verbleibenden Aufrufe, so wird der Aufwand asymptotisch von f(n) dominiert.

10

Beispiel für den 1. Fall

Bei a=1 und b=2 — wie bei der binären Suche — ist somit logarithmisches Verhalten zu erwarten. Wird hingegen ein b=2 halbiertes Feld a=4 viermal aufgerufen, so ist ein quadratisches Verhalten zu erwarten.

Lösen von Rekurrenzgleichungen mit dem Master-Theorem

- Das Master-Theorem ist ein Werkzeug zur Analyse der Zeitkomplexität von rekursiven Algorithmen, die mit Hilfe von Rekurrenzgleichungen der Form $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$ beschrieben werden können.
- Anwendungsgebiet sind insbesondere Teile-und-Herrsche Algorithmen.
- Das Master-Theorem hat drei Fälle, die auf dem Vergleich zwischen f(n) und $n^{\log_b a}$ basieren und die asymptotische Komplexität von T(n) bestimmen. Wobei $n^{\log_b a}$ die Laufzeit für die Rekursion selbst beschreibt:

Seien a>0 und b>1 Konstanten und $f:\mathbb{N}\to\mathbb{N}$:

- 1. Wenn $f(n) \in O(n^{\log_b a \epsilon})$ für ein $\epsilon > 0$ gilt d. h. wenn f(n) langsamer wächst als $n^{\log_b a}$ dann dominiert die Rekursion, und es gilt: $T(n) \in \Theta(n^{\log_b a})$.
- 2. Wenn $f(n) \in \Theta(n^{\log_b a} \cdot (\log n)^k)$ für ein $k \geq 0$ gilt d. h. wenn f(n) und $n^{\log_b a} \cdot (\log n)^k$ gleich schnell wachsen dann tragen beide Teile zur Gesamtkomplexität bei, und es gilt: $T(n) \in \Theta(n^{\log_b a} \cdot (\log n)^{k+1})$.
- 3. Wenn $f(n)\in\Omega(n^{\log_b a+\epsilon})$ für ein $\epsilon>0$ gilt und weiterhin gilt $af(n/b)\leq cf(n)$ für eine Konstante c<1 und ein hinreichend großes n d. h. wenn also f(n) schneller wächst als $n^{\log_b a}$ dann dominiert f(n) die Komplexität, und es gilt: $T(n)\in\Theta(f(n))$.

Viele Sortieralgorithmen sind zum Beispiel Teile-und-Herrsche Algorithmen.

Hinweis

Nicht immer kann das Master-Theorem angewandt werden, da es nur für spezielle Rekurrenzgleichungen gilt.

Im Mastertheorem erfolgt der Vergleich ggf. mit $n^{(\log_b a)\pm\epsilon}$ und nicht mit $n^{\log_b(a\pm\epsilon)}$.

50

Anwendung des Master-Theorems: 1. Beispiel

Gegeben sei:

$$T(n) = 2T(n/2) + n\log_2 n$$

Somit gilt:

$$a=2$$
 , $b=2$ und $n^{\log_2 2}=n$

Analyse: Es liegt Fall 2 vor, da $f(n) = n \cdot (\log_2 n)^{k=1} \in \Theta(n^{\log_b a} \cdot (\log n))$.

Ergebnis: Die Laufzeit beträgt somit $T(n) = \Theta(n \cdot (\log_2 n)^2)$.

51

Der Wechsel der Basis des Logarithmus ist möglich, da sich die Basis nur um einen konstanten Faktor unterscheidet:

$$\log_a \mathbf{x} = \frac{1}{\log_b a} \cdot \log_b \mathbf{x}$$

Anwendung des Master-Theorems: 2. Beispiel

Gegeben sei:

$$T(n) = 9T(n/3) + 2n$$

Somit gilt:

$$a=9$$
 , $b=3$ und $n^{\log_3 9}=n^2$

Analyse: Es liegt Fall 1 vor, da $f(n) = 2n \in O(n^{\log_3 9 - \epsilon})$.

Ergebnis: Die Laufzeit beträgt somit $T(n) = \Theta(n^2)$.

Anwendung des Master-Theorems: 3. Beispiel

Gegeben sei:

$$T(n) = 2T(n/3) + n$$

Somit gilt:

$$a=2$$
, $b=3$ und $n^{\log_3 2}$, $log_3 2 pprox 0,63 < 1$

Analyse: Es liegt Fall 3 vor, da $f(n)=2n\in\Omega(n^{\log_3 2+\epsilon})$ und $af(n/b)=2n/3\leq c\cdot n$ für $1>c\geq 2/3$.

Ergebnis: Die Laufzeit beträgt somit $T(n) = \Theta(n)$.

Das Master-Theorem hilft also, die asymptotische Komplexität von Algorithmen schnell zu bestimmen, ohne dass eine detaillierte Analyse der Rekurrenz erforderlich ist.

Übung

f(n) ist konstant

Gegeben sei:
$$T(n) = 2T(n/4) + 1$$

■ Bestimmen Sie die Laufzeit des Algorithmus mit Hilfe des Master-Theorems.

f(n) ist die Quadratwurzel

Gegeben sei:
$$T(n)=3T(n/9)+\sqrt{n}$$

■ Bestimmen Sie die Laufzeit des Algorithmus mit Hilfe des Master-Theorems.

a=1 und f(n) sind konstant

Gegeben sei:
$$T(n) = T(n/2) + 1$$

f(n) ist konstant

Gegeben sei: T(n)=2T(n/4)+1

f(n) ist die Quadratwurzel

Gegeben sei: $T(n)=3T(n/9)+\sqrt{n}$

a=1 und f(n) sind konstant

Gegeben sei: T(n) = T(n/2) + 1

Übung

Anwendung des Master-Theorems auf Mergesort

Der Mergesort-Algorithmus ist ein rekursiver Algorithmus, der ein Array in zwei Hälften teilt, die Hälften sortiert – wenn sie nicht trivial sind – und dann die sortierten Hälften zusammenführt. Das Zusammenführen der Hälften hat einen Aufwand von n und das Teilen des Arrays hat einen konstanten Aufwand.

- Bestimmen Sie die Rekurrenzgleichung für den Mergesort-Algorithmus.
- Bestimmen Sie die Laufzeit des Mergesort-Algorithmus mit Hilfe des Master-Theorems.

Anwendung des Master-Theorems auf Mergesort

Der Mergesort-Algorithmus ist ein rekursiver Algorithmus, der ein Array in zwei Hälften teilt, die Hälften sortiert – wenn sie nicht trivial sind – und dann die sortierten Hälften zusammenführt. Das Zusammenführen der Hälften hat einen Aufwand von n und das Teilen des Arrays hat einen konstanten Aufwand.

- Bestimmen Sie die Rekurrenzgleichung für den Mergesort-Algorithmus.
- Bestimmen Sie die Laufzeit des Mergesort-Algorithmus mit Hilfe des Master-Theorems.