Теория Вероятностей и Статистика Дискретные случайные величины

Потанин Богдан Станиславович

старший преподаватель, научный сотрудник, кандидат экономических наук

2022-2023

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega
ightarrow R.$

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega o R$.

Пример:

• Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega o R.$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega o R$.

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

$$\bullet \ \ X(\omega) = \left\{ \right.$$

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega o R$.

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

$$lacktriangle$$
 $X(\omega) = egin{cases} 10 ext{, ecли } \omega \in \{2,4,6\} \end{cases}$

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega o R$.

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

$$lacktriangle$$
 $X(\omega)= egin{cases} 10 ext{, если }\omega\in\{2,4,6\}\ 15 ext{, если }\omega\in\{1,3\} \end{cases}$

Определение дискретных случайных величин

lacktriangle Дискретная случайная величина — это функция $X:\Omega o R$.

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает
 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

$$ullet$$
 $X(\omega)=egin{cases} 10 ext{, ecли }\omega\in\{2,4,6\}\ 15 ext{, ecли }\omega\in\{1,3\}\ 0 ext{, ecли }\omega\in\{5\} \end{cases}$

Определение дискретных случайных величин

- Дискретная случайная величина это функция $X:\Omega \to R$.
- ullet Вероятность того, что случайная величина примет значение $x \in R$, считается как:

$$P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

$$ullet$$
 $X(\omega)=egin{cases} 10 ext{, ecли }\omega\in\{2,4,6\}\ 15 ext{, ecли }\omega\in\{1,3\}\ 0 ext{, ecли }\omega\in\{5\} \end{cases}$

Определение дискретных случайных величин

- Дискретная случайная величина это функция $X:\Omega \to R$.
- ullet Вероятность того, что случайная величина примет значение $x \in R$, считается как:

$$P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} o R.$

Вид функции:

$$ullet$$
 $X(\omega)=egin{cases} 10 ext{, ecли }\omega\in\{2,4,6\}\ 15 ext{, ecли }\omega\in\{1,3\}\ 0 ext{, ecли }\omega\in\{5\} \end{cases}$

Вероятности:

• $P(X = 10) = P(\{2, 4, 6\}) = \frac{1}{2}$ – вероятность выиграть 10 долларов.

Определение дискретных случайных величин

- Дискретная случайная величина это функция $X:\Omega \to R$.
- lacktriangle Вероятность того, что случайная величина примет значение $x \in R$, считается как:

$$P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

ullet Вероятность того, что случайная величина примет значение, принадлежащее множеству $S\subset R$, составляет:

$$P(X \in S) = P(\{\omega \in \Omega : X(\omega) \in S\}) = \sum_{x \in S} P(\{\omega \in \Omega : X(\omega) = x\})$$

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\} \to R.$

Вид функции:

$$ullet$$
 $X(\omega)=egin{cases} 10 ext{, ecли }\omega\in\{2,4,6\}\ 15 ext{, ecли }\omega\in\{1,3\}\ 0 ext{, ecли }\omega\in\{5\} \end{cases}$

Вероятности:

• $P(X = 10) = P(\{2, 4, 6\}) = \frac{1}{2}$ – вероятность выиграть 10 долларов.

Определение дискретных случайных величин

- lacktriangle Дискретная случайная величина это функция $X:\Omega o R$.
- lacktriangle Вероятность того, что случайная величина примет значение $x \in R$, считается как:

$$P(X = x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

ullet Вероятность того, что случайная величина примет значение, принадлежащее множеству $S\subset R$, составляет:

$$P(X \in S) = P(\{\omega \in \Omega : X(\omega) \in S\}) = \sum_{x \in S} P(\{\omega \in \Omega : X(\omega) = x\})$$

Пример:

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего.
- Количество денег, которое вы получите по результатам броска кубика, является случайной величиной $X:\{1,2,3,4,5,6\}
 ightarrow R.$

Вид функции:

$$ullet$$
 $X(\omega)=egin{cases} 10 ext{, ecли }\omega\in\{2,4,6\}\ 15 ext{, ecли }\omega\in\{1,3\}\ 0 ext{, ecли }\omega\in\{5\} \end{cases}$

Вероятности:

- $P(X=10) = P(\{2,4,6\}) = \frac{1}{2}$ вероятность выиграть 10 долларов.
- $P(X \in \{10, 15\}) = P(X = 10) + P(X = 15) = P(\{2, 4, 6\}) + P(\{1, 3\}) = \frac{5}{6}$ вероятность выиграть 5 или 10 долларов.

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

Пример:

• Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.

$$X(\omega) = \left\{ \right.$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.

$$X(\omega) = \left\{ egin{aligned} 20 ext{, если } \omega = \{ ext{orнeнный шар}\} \end{aligned}
ight.$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.

$$X(\omega) = egin{cases} 20 ext{, если } \omega = \{ ext{огненный шар}\} \ 10 ext{, если } \omega = \{ ext{молния}\} \end{cases}$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.

$$X(\omega) = egin{cases} 20 ext{, если } \omega = \{ ext{огненный шар}\} \ 10 ext{, если } \omega = \{ ext{молния}\} \ 0 ext{, если } \omega \in \{ ext{заморозка, сосульки}\} \end{cases}$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.
- Закон распределения вероятностей.

$$X(\omega) = egin{cases} 20 ext{, если } \omega = \{ ext{огненный шар}\} \ 10 ext{, если } \omega = \{ ext{молния}\} \ 0 ext{, если } \omega \in \{ ext{заморозка, сосульки}\} \end{cases}$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.
- Закон распределения вероятностей.

$$X(\omega)=egin{cases} 20 ext{, если }\omega=\{ ext{orнehhbiй map}\}\ 10 ext{, если }\omega=\{ ext{молния}\}\ 0 ext{, если }\omega\in\{ ext{заморозка, сосульки}\} \end{cases}$$

$$P(X=x)= egin{cases} 0.5, \ ext{ecли} \ x=20 \end{cases}$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.
- Закон распределения вероятностей.

$$X(\omega) = egin{cases} 20 ext{, если } \omega = \{ ext{orнehhbiй map}\} \ 10 ext{, если } \omega = \{ ext{moлhun}\} \ 0 ext{, если } \omega \in \{ ext{заморозка, сосульки}\} \end{cases}$$

$$P(X = x) = \begin{cases} 0.5, \text{ если } x = 20\\ 0.3, \text{ если } x = 10 \end{cases}$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.
- Закон распределения вероятностей.

$$X(\omega) = egin{cases} 20 ext{, если } \omega = \{ ext{orнehhbiй map}\} \ 10 ext{, если } \omega = \{ ext{moлhun}\} \ 0 ext{, если } \omega \in \{ ext{заморозка, сосульки}\} \end{cases}$$

$$P(X = x) = \begin{cases} 0.5, \text{ если } x = 20\\ 0.3, \text{ если } x = 10\\ 0.15 + 0.05, \text{ если } x = 0 \end{cases}$$

Распределение дискретных случайных величин

• Распределение дискретной случайной величины представляет собой закон (правило), в соответствии с которым каждому значению $x \in R$ сопоставляется вероятность P(X = x).

- Вы сражаетесь с ледяным големом и можете применить против него одно из 4-х заклинаний. Если вы кинете в него огненный шар, то нанесете ему 20 очков урона. Если ударите в него молнией, то нанесете 10 очков урона. Если же попытаетесь применить к нему замораживающее заклинание или закидать его градом сосулек, то не нанесете ему никакого урона.
- Поскольку ваша волшебная палочка сломалась, то она колдует заклинания случайным образом. С вероятностью 0.5 вы используете огненный шар, с вероятностью 0.3 ударите молнией, с вероятностью 0.15 атакуете замораживающим заклинанием и с вероятностью 0.05 опрокидываете на ледяного голема град сосулек.
- ullet Вероятности: $P(\{\text{огненный шар}\}) = 0.5$, $P(\{\text{молния}\}) = 0.3$, $P(\{\text{заморозка}\}) = 0.15$, $P(\{\text{сосульки}\}) = 0.05$.
- Рассмотрим случайную величину X количество нанесенного голему урона.
- Закон распределения вероятностей.

$$X(\omega) = egin{cases} 20 ext{, если } \omega = \{ ext{огненный шар}\} \ 10 ext{, если } \omega = \{ ext{молния}\} \ 0 ext{, если } \omega \in \{ ext{заморозка, сосульки}\} \end{cases}$$

$$P(X = x) = \begin{cases} 0.5, \text{ если } x = 20\\ 0.3, \text{ если } x = 10\\ 0.15 + 0.05, \text{ если } x = 0\\ 0, \text{ если } x \notin \{0, 10, 20\} \end{cases}$$

Носитель и таблица распределения дискретной случайной величины

• Носитель дискретной случайной величины – множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Решение:

• Поскольку с ненулевой вероятностью может выпасть либо ноль, либо один, либо два орла, то $supp(X) = \{0,1,2\}.$

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Решение:

• Поскольку с ненулевой вероятностью может выпасть либо ноль, либо один, либо два орла, то $supp(X) = \{0,1,2\}.$

Функция вероятности:

• $P(X = 0) = P(\{(P, P)\}) = 0.25$

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Решение:

• Поскольку с ненулевой вероятностью может выпасть либо ноль, либо один, либо два орла, то $supp(X) = \{0,1,2\}.$

Функция вероятности:

- $P(X = 0) = P(\{(P, P)\}) = 0.25$
- $P(X = 1) = P(\{(O, P), (P, O)\}) = 0.5$

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Решение:

• Поскольку с ненулевой вероятностью может выпасть либо ноль, либо один, либо два орла, то $\sup(X)=\{0,1,2\}.$

Функция вероятности:

- $P(X = 0) = P(\{(P, P)\}) = 0.25$
- $P(X = 1) = P(\{(O, P), (P, O)\}) = 0.5$
- $P(X = 2) = P(\{(O, O)\}) = 0.25$

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Решение:

• Поскольку с ненулевой вероятностью может выпасть либо ноль, либо один, либо два орла, то $\sup(X)=\{0,1,2\}.$

Функция вероятности:

- $P(X = 0) = P(\{(P, P)\}) = 0.25$
- $P(X = 1) = P(\{(O, P), (P, O)\}) = 0.5$
- $P(X = 2) = P(\{(O, O)\}) = 0.25$
- $P(X \notin \{0,1,2\}) = 0$

Носитель и таблица распределения дискретной случайной величины

- Носитель дискретной случайной величины множество значений, которые дискретная случайная величина принимает с ненулевой вероятностью: $supp(X) = \{x \in R : P(X = x) > 0\}.$
- Распределение дискретной случайной величины часто задают в форме таблицы, в которой каждому элементу носителя случайной величины сопоставляется вероятность.

Пример:

• Вы подкидываете две обычные монетки. Количество выпавших орлов является случайной величиной. Найдите носитель это случайной величины, а также задайте ее распределение при помощи функции и при помощи таблицы. Подсказка: $\Omega = \{(O,O),(O,P),(P,O),(P,P)\}$, где O – орел, P – решка.

Решение:

• Поскольку с ненулевой вероятностью может выпасть либо ноль, либо один, либо два орла, то $\sup(X)=\{0,1,2\}.$

Функция вероятности:

•
$$P(X = 0) = P(\{(P, P)\}) = 0.25$$

•
$$P(X = 1) = P(\{(O, P), (P, O)\}) = 0.5$$

•
$$P(X = 2) = P(\{(O, O)\}) = 0.25$$

•
$$P(X \notin \{0,1,2\}) = 0$$

Таблица:

×	0	1	2
P(X=x)	0.25	0.5	0.25

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

Найдите функцию распределения числа верно решенных задач.

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$
 $P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$
 $P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$
 $P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

X	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

• Возможные значения функции распределения:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

$$P(X \le 0) = P(X = 0) = 0.2$$

$$P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$$

$$P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$$

$$P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$$

$$F_X(x) = P(X \le x) = \left\{\right.$$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

X	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

• Возможные значения функции распределения:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$
 $P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$
 $P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$

$$F_X(x) = P(X \le x) =$$
 $\left\{ egin{aligned} 0, \ \operatorname{если} \ x < 0 \end{aligned}
ight.$

Функция распределения

• **Функцией распределения** дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

ullet Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

X	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

• Возможные значения функции распределения:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$
 $P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$
 $P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$

Функция распределения:
$$F_X(x) = P(X \le x) = \begin{cases} 0, \text{ если } x < 0 \\ 0.2, \text{ если } 0 \le x < 1 \end{cases}$$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

• Возможные значения функции распределения:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$
 $P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$
 $P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$

$$F_X(x) = P(X \le x) = egin{cases} 0, \ ext{если } x < 0 \ 0.2, \ ext{если } 0 \le x < 1 \ 0.5, \ ext{если } 1 \le x < 2 \end{cases}$$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

×	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

• Возможные значения функции распределения:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

 $P(X \le 0) = P(X = 0) = 0.2$
 $P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$
 $P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$
 $P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$

Функция распределения

lacktriangle Функцией распределения дискретной случайной величины X является функция:

$$F_X(x) = P(\omega \in \Omega : X(\omega) \le x) = P(X \le x) = \sum_{t \in \text{supp}(X): t \le x} P(X = t), \forall x \in R$$

• Функция распределения не убывает и принимает значения от 0 до 1 включительно.

Пример:

• Число правильно решенных задач на контрольной является случайной величиной X, распределение которой задано следующей таблицей:

X	0	1	2	3
P(X=x)	0.2	0.3	0.4	0.1

Найдите функцию распределения числа верно решенных задач.

Решение:

• Возможные значения функции распределения:

$$P(X < 0) = P(\{\emptyset\}) = 0$$

$$P(X \le 0) = P(X = 0) = 0.2$$

$$P(X \le 1) = P(X = 0) + P(X = 1) = 0.2 + 0.3 = 0.5$$

$$P(X \le 2) = 0.2 + 0.3 + 0.4 = 0.9$$

$$P(X \le 3) = 0.2 + 0.3 + 0.4 + 0.1 = 1$$

$$F_X(x) = P(X \le x) = egin{cases} 0, \ ext{если } x < 0 \ 0.2, \ ext{если } 0 \le x < 1 \ 0.5, \ ext{если } 1 \le x < 2 \ 0.9, \ ext{если } 2 \le x < 3 \ 1, \ ext{если } x \ge 3 \end{cases}$$

Оценивание вероятностей

График функции распределения

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \text{supp}(X) : g(t) = x} P(X = t)$$

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \text{supp}(X) : g(t) = x} P(X = t)$$

Пример: про случайную величину X известно, что P(X=-5)=0.2, P(X=3)=0.3 и P(X=5)=0.5, найдите распределение случайной величины X^2 .

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \mathsf{supp}(X) : g(t) = x} P(X = t)$$

Пример: про случайную величину X известно, что P(X=-5)=0.2, P(X=3)=0.3 и P(X=5)=0.5, найдите распределение случайной величины X^2 .

•
$$g(x) = x^2, x \in \text{supp}(X)$$

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \mathsf{supp}(X) : g(t) = x} P(X = t)$$

Пример: про случайную величину X известно, что P(X=-5)=0.2, P(X=3)=0.3 и P(X=5)=0.5, найдите распределение случайной величины X^2 .

- $g(x) = x^2, x \in \text{supp}(X)$
- $supp(X) = \{-5, 3, 5\} \implies supp(X^2) = \{9, 25\}$

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \mathsf{supp}(X) : g(t) = x} P(X = t)$$

Пример: про случайную величину X известно, что P(X=-5)=0.2, P(X=3)=0.3 и P(X=5)=0.5, найдите распределение случайной величины X^2 .

- $g(x) = x^2, x \in \text{supp}(X)$
- $supp(X) = \{-5, 3, 5\} \implies supp(X^2) = \{9, 25\}$
- $P(X^2 = 9) = P(X = 3) = 0.3$

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \mathsf{supp}(X) : g(t) = x} P(X = t)$$

Пример: про случайную величину X известно, что P(X=-5)=0.2, P(X=3)=0.3 и P(X=5)=0.5, найдите распределение случайной величины X^2 .

- $g(x) = x^2, x \in \text{supp}(X)$
- $supp(X) = \{-5, 3, 5\} \implies supp(X^2) = \{9, 25\}$
- $P(X^2 = 9) = P(X = 3) = 0.3$
- $P(X^2 = 25) = P(X = -5) + P(X = 5) = 0.2 + 0.5 = 0.7$

Распределение функции от дискретной случайной величины

• Пусть имеется случайная величина X. Рассмотрим функцию $g: \text{ѕирр}(X) \to R$. Распределение случайной величины g(X) будет задаваться следующей функцией вероятности:

$$P(g(X) = x) = P(\lbrace w \in \Omega : g(X(\omega)) = x\rbrace = \sum_{t \in \text{supp}(X) : g(t) = x} P(X = t)$$

Пример: про случайную величину X известно, что P(X=-5)=0.2, P(X=3)=0.3 и P(X=5)=0.5, найдите распределение случайной величины X^2 .

- $g(x) = x^2, x \in \text{supp}(X)$
- $supp(X) = \{-5, 3, 5\} \implies supp(X^2) = \{9, 25\}$
- $P(X^2 = 9) = P(X = 3) = 0.3$
- $P(X^2 = 25) = P(X = -5) + P(X = 5) = 0.2 + 0.5 = 0.7$
- $P(X^2 \notin \{9, 25\}) = 0$

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

Пример:

• Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие А выпало нечетное число, то вероятность выиграть 15 долларов составит:

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(Y = 15|A) = P(\{1,3\} \cap \{1,3,5\}) = P(\{1,3\}) = 2$

$$P(X = 15|A) = \frac{P(\{1,3\} \cap \{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$$

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(X=15|A) = \frac{P(\{1,3\} \cap \{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$
- ullet Если наступило событие B выпало не 6 и не 1, то вероятность выиграть более 8 долларов составит:

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(X=15|A) = \frac{P(\{1,3\} \cap \{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$
- Если наступило событие B выпало не 6 и не 1, то вероятность выиграть более 8 долларов составит: $P(X>8|B)=\frac{P(((X=10)\cup(X=15))\cap B)}{P(B)}=\frac{P((\{1,3\}\cup\{2,4,6\})\cap\{2,3,4,5\})}{P(\{2,3,4,5\})}=\frac{P(2,3,4)}{P(\{2,3,4,5\})}=\frac{3}{4}$

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(X=15|A) = \frac{P(\{1,3\} \cap \{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$
- Если наступило событие B выпало не 6 и не 1, то вероятность выиграть более 8 долларов составит: $P(X>8|B) = \frac{P(((X=10)\cup(X=15))\cap B)}{P(B)} = \frac{P((\{1,3\}\cup\{2,4,6\})\cap\{2,3,4,5\})}{P(\{2,3,4,5\})} = \frac{P(2,3,4)}{P(\{2,3,4,5\})} = \frac{3}{4}$
- ullet Если наступило событие C ваш выигрыш превысил 0, то вероятность выиграть 10 долларов составит:

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(X=15|A) = \frac{P(\{1,3\}\cap\{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$
- Если наступило событие B выпало не 6 и не 1, то вероятность выиграть более 8 долларов составит: $P(X>8|B) = \frac{P(((X=10)\cup(X=15))\cap B)}{P(B)} = \frac{P((\{1,3\}\cup\{2,4,6\})\cap\{2,3,4,5\})}{P(\{2,3,4,5\})} = \frac{P(2,3,4)}{P(\{2,3,4,5\})} = \frac{3}{4}$
- Если наступило событие C ваш выигрыш превысил 0, то вероятность выиграть 10 долларов составит: $P(X=10|X>0) = \frac{P((X=10)\cap(X>0))}{P(X>0)} = \frac{P(X=10)}{P(X=10)} = \frac{3/6}{2/612/6} = \frac{3}{5}$

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(X=15|A) = \frac{P(\{1,3\} \cap \{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$
- Если наступило событие B выпало не 6 и не 1, то вероятность выиграть более 8 долларов составит: $P(X>8|B) = \frac{P(((X=10)\cup(X=15))\cap B)}{P(B)} = \frac{P((\{1,3\}\cup\{2,4,6\})\cap\{2,3,4,5\})}{P(\{2,3,4,5\})} = \frac{P(2,3,4)}{P(\{2,3,4,5\})} = \frac{3}{4}$
- Если наступило событие C ваш выигрыш превысил 0, то вероятность выиграть 10 долларов составит: $P(X=10|X>0) = \frac{P((X=10)\cap(X>0))}{P(X>0)} = \frac{P(X=10)}{P(X=10)+P(X=15)} = \frac{3/6}{3/6+2/6} = \frac{3}{5}$
- ullet Значение функции распределения случайной величины (X|A) в точке 12 равняется:

Условное распределение дискретных случайных величин

• Пусть имеются случайная величина X и событие A. Условное распределение случайной величины X при условии A, то есть случайной величины (X|A), может быть задано условной функцией вероятности:

$$P((X|A) = x) = P(X = x|A) = \frac{P((X = x) \cap A)}{P(A)}, x \in R$$

- Вы кидаете шестигранный кубик. Если выпадает четное число, то вы получаете 10 долларов. Если выпадает 1 или 3, то вам платят 15 долларов. Наконец, если выпадает 5, то вы не получаете ничего. Количество денег, которое вы получите по результатам броска кубика, является случайной величиной X.
- Если наступило событие A выпало нечетное число, то вероятность выиграть 15 долларов составит: $P(X=15|A) = \frac{P(\{1,3\}\cap\{1,3,5\})}{P(\{1,3,5\})} = \frac{P(\{1,3\})}{P(\{1,3,5\})} = \frac{2}{3}$
- Если наступило событие B выпало не 6 и не 1, то вероятность выиграть более 8 долларов составит: $P(X>8|B) = \frac{P(((X=10)\cup(X=15))\cap B)}{P(B)} = \frac{P((\{1,3\}\cup\{2,4,6\})\cap\{2,3,4,5\})}{P(\{2,3,4,5\})} = \frac{P(2,3,4)}{P(\{2,3,4,5\})} = \frac{3}{4}$
- ullet Если наступило событие C ваш выигрыш превысил 0, то вероятность выиграть 10 долларов составит: $P(X=10|X>0)=rac{P((X=10)\cap(X>0))}{P(X>0)}=rac{P(X=10)}{P(X=10)+P(X=15)}=rac{3/6}{3/6+2/6}=rac{3}{5}$
- Значение функции распределения случайной величины (X|A) в точке 12 равняется: $F_{X|A}(12) = P(X \le 12|A) = P(X=0|A) + P(X=10|A) = 1 P(X=15|A) = \frac{1}{3}$

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

Найдите:

константу с:

Задача на таблицу распределения

ullet Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

Найдите:

константу с:

$$0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$$

Задача на таблицу распределения

ullet Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

Найдите:

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- lacktriangle вероятность того, что X примет положительное значение:

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

Найдите:

константу с:

$$0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$$

lacktriangle вероятность того, что X примет положительное значение:

$$P(X > 0) = P(X = 3) + P(X = 10) + P(X = 15) = 0.05 + 0.5^{2} + 0.1 = 0.4$$

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

Найдите:

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- вероятность того, что X примет положительное значение: $P(X>0)=P(X=3)+P(X=10)+P(X=15)=0.05+0.5^2+0.1=0.4$
- ullet вероятность того, что X не меньше 9, если X принял положительное значение меньше 11:

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- ullet вероятность того, что X примет положительное значение: $P(X>0)=P(X=3)+P(X=10)+P(X=15)=0.05+0.5^2+0.1=0.4$
- ullet вероятность того, что X не меньше 9, если X принял положительное значение меньше 11: $P(X \geq 9|0 < X < 11) = rac{P(9 \leq X < 11)}{P(0 < X < 11)} = rac{P(X = 10)}{P(X = 3) + P(X = 10)} = rac{0.25}{0.05 + 0.25} = rac{5}{6}$

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- вероятность того, что X примет положительное значение: $P(X>0)=P(X=3)+P(X=10)+P(X=15)=0.05+0.5^2+0.1=0.4$
- ullet вероятность того, что X не меньше 9, если X принял положительное значение меньше 11: $P(X \geq 9|0 < X < 11) = rac{P(9 \leq X < 11)}{P(0 < X < 11)} = rac{P(X = 10)}{P(X = 3) + P(X = 10)} = rac{0.25}{0.05 + 0.25} = rac{5}{6}$
- ullet вероятность того, что (2|X-7|+1) примет значение 21:

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- вероятность того, что X примет положительное значение: $P(X>0)=P(X=3)+P(X=10)+P(X=15)=0.05+0.5^2+0.1=0.4$
- ullet вероятность того, что X не меньше 9, если X принял положительное значение меньше 11: $P(X \geq 9|0 < X < 11) = rac{P(9 \leq X < 11)}{P(0 < X < 11)} = rac{P(X = 10)}{P(X = 3) + P(X = 10)} = rac{0.25}{0.05 + 0.25} = rac{5}{6}$
- ullet вероятность того, что (2|X-7|+1) примет значение 21: $P(2|X-7|+1=21)=P\left((X=-3)\cup(X=17)\right)=P(X=-3)+P(X=17)=0.1+0=0.1$

Задача на таблицу распределения

ullet Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- вероятность того, что X примет положительное значение: $P(X>0)=P(X=3)+P(X=10)+P(X=15)=0.05+0.5^2+0.1=0.4$
- ullet вероятность того, что X не меньше 9, если X принял положительное значение меньше 11: $P(X \geq 9 | 0 < X < 11) = rac{P(9 \leq X < 11)}{P(0 < X < 11)} = rac{P(X = 10)}{P(X = 3) + P(X = 10)} = rac{0.25}{0.05 + 0.25} = rac{5}{6}$
- ullet вероятность того, что (2|X-7|+1) примет значение 21: $P(2|X-7|+1=21)=P\left((X=-3)\cup(X=17)\right)=P(X=-3)+P(X=17)=0.1+0=0.1$
- lacktriangle функцию распределения случайной величины X^2 в точке 10:

Задача на таблицу распределения

• Распределение случайной величины X задано таблицей:

×	-3	0	3	10	15
P(X=x)	0.1	С	0.05	c^2	0.1

- константу c: $0.1 + c + 0.05 + c^2 + 0.1 = 1 \implies c = 0.5$
- вероятность того, что X примет положительное значение: $P(X > 0) = P(X = 3) + P(X = 10) + P(X = 15) = 0.05 + 0.5^2 + 0.1 = 0.4$
- ullet вероятность того, что X не меньше 9, если X принял положительное значение меньше 11: $P(X \geq 9|0 < X < 11) = rac{P(9 \leq X < 11)}{P(0 < X < 11)} = rac{P(X = 10)}{P(X = 3) + P(X = 10)} = rac{0.25}{0.05 + 0.25} = rac{5}{6}$
- ullet вероятность того, что (2|X-7|+1) примет значение 21: $P(2|X-7|+1=21)=P\left((X=-3)\cup(X=17)\right)=P(X=-3)+P(X=17)=0.1+0=0.1$
- функцию распределения случайной величины X^2 в точке 10: $F_{X^2}(10) = P(X^2 \le 10) = P(X = -3) + P(X = 0) + P(X = 3) = 0.1 + 0.5 + 0.05 = 0.65$

Вероятность попадания дискретной случайной величины в интервал

• Вероятность попадания случайной величины в интервал:

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Вероятность попадания дискретной случайной величины в интервал

• Вероятность попадания случайной величины в интервал:

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Доказательство:

$$P(a < X \le b) = [P(X \le a) + P(a < X \le b)] - P(X \le a) =$$

= $P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$

Вероятность попадания дискретной случайной величины в интервал

• Вероятность попадания случайной величины в интервал:

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Доказательство:

$$P(a < X \le b) = [P(X \le a) + P(a < X \le b)] - P(X \le a) =$$

$$= P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Пример:

• Сервис по доставке еды на дом принимает заказы. Вероятность того, что фирма получит не более 8 заказов, равняется 0.8. Вероятность получить не более 5 заказов составляет 0.3. Найдите вероятность того, что фирма получит от 6 до 8 заказов включительно.

Вероятность попадания дискретной случайной величины в интервал

• Вероятность попадания случайной величины в интервал:

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Доказательство:

$$P(a < X \le b) = [P(X \le a) + P(a < X \le b)] - P(X \le a) =$$

$$= P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Пример:

• Сервис по доставке еды на дом принимает заказы. Вероятность того, что фирма получит не более 8 заказов, равняется 0.8. Вероятность получить не более 5 заказов составляет 0.3. Найдите вероятность того, что фирма получит от 6 до 8 заказов включительно.

Решение: $P(6 \le X \le 8) = P(5 < X \le 8) = F_X(8) - F_X(5) = 0.8 - 0.3 = 0.5.$

Пределы функции распределения

Справедливы следующие пределы:

$$\bullet \lim_{x\to -\infty} F_X(x)=0$$

Пределы функции распределения

Справедливы следующие пределы:

$$\bullet \lim_{x\to -\infty} F_X(x) = 0$$

$$\bullet \lim_{x\to\infty} F_X(x) = 1$$

Пределы функции распределения

Справедливы следующие пределы:

- $\bullet \lim_{x\to -\infty} F_X(x) = 0$
- $\bullet \lim_{x\to\infty} F_X(x)=1$

Пример:

• Число новых клиентов фирмы является случайной величиной y/X, где $y \in N$ отражает объем средств, вложенных в рекламную кампанию, а X – случайная величина с носителем $\mathrm{supp}(X) = \{1,2,\cdots\}$, отражающая меру общественного порицания деятельности фирмы. Найдите, к чему стремится вероятность того, что фирма привлечет не менее 100 новых клиентов, если расходы на рекламу стремятся к бесконечности.

Пределы функции распределения

Справедливы следующие пределы:

- $\bullet \lim_{x \to -\infty} F_X(x) = 0$
- $\bullet \lim_{x\to\infty} F_X(x)=1$

Пример:

• Число новых клиентов фирмы является случайной величиной y/X, где $y \in N$ отражает объем средств, вложенных в рекламную кампанию, а X – случайная величина с носителем $\mathrm{supp}(X) = \{1,2,\cdots\}$, отражающая меру общественного порицания деятельности фирмы. Найдите, к чему стремится вероятность того, что фирма привлечет не менее 100 новых клиентов, если расходы на рекламу стремятся к бесконечности.

Решение:
$$\lim_{y\to\infty} P(y/X \ge 100) = \lim_{y\to\infty} P(X \le \frac{y}{100}) = \lim_{x\to\infty} P(X \le x) = \lim_{x\to\infty} F_X(x) = 1.$$

Случайные монетки, часть 1

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших Орлов.

Случайные монетки, часть 1

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших Орлов.

• Задайте распределение числа выпавших орлов при помощи таблицы.

• Найдите функцию распределения число выпавших орлов.

Случайные монетки, часть 1

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших Орлов.

• Задайте распределение числа выпавших орлов при помощи таблицы.

• Найдите функцию распределения число выпавших орлов.

Случайные монетки, часть 1

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших Орлов.

• Задайте распределение числа выпавших орлов при помощи таблицы.

• Найдите функцию распределения число выпавших орлов.

$$F_X(x) = egin{cases} 0 ext{, если } x < 0 \ 1/8 ext{, если } 0 \leq x < 1 \ 4/8 ext{, если } 1 \leq x < 2 \ 7/8 ext{, если } 2 \leq x < 3 \ 1 ext{, если } x \geq 3 \end{cases}$$

Случайные монетки, часть 2

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

Случайные монетки, часть 2

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассмотрим событие A – выпал по крайней мере один орел. Задайте условное распределение (X|A) при помощи таблицы.

Случайные монетки, часть 2

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассмотрим событие A – выпал по крайней мере один орел. Задайте условное распределение (X|A) при помощи таблицы.

Случайные монетки, часть 2

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассмотрим событие A – выпал по крайней мере один орел. Задайте условное распределение (X|A) при помощи таблицы.

$$\begin{array}{c|cccc}
x & 0 & 1 \\
\hline
P(|X-2|=x|A) & 3/7 & 4/7
\end{array}$$

Случайные монетки, часть 2

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассмотрим событие A – выпал по крайней мере один орел. Задайте условное распределение (X|A) при помощи таблицы.

$$rac{\mathsf{x}}{\mathsf{P}(|\mathsf{X} ext{-}2|=\mathsf{x}|\mathsf{A})} \left| egin{array}{c|c} 1 & 1 & \\ 3/7 & 4/7 & \\ \hline P(|\mathsf{X} ext{-}2|=\mathsf{x}|\mathsf{A}) & 3/7 & 4/7 & \\ \hline 0, \ \mathsf{если} \ x < 0 & \\ 3/7, \ \mathsf{если} \ 0 \leq x < 1 & \\ 1, \ \mathsf{если} \ x \geq 1 & \\ \hline \end{array}$$

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассчитайте вероятность $P(X \ge 2 | X \ge 1)$.

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассчитайте вероятность $P(X \ge 2|X \ge 1)$.

$$P(X \ge 2 | X \ge 1) = \frac{P(X \ge 2 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X \ge 2)}{P(X \ge 1)} =$$

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассчитайте вероятность $P(X \ge 2|X \ge 1)$.

$$P(X \ge 2|X \ge 1) = \frac{P(X \ge 2 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X \ge 2)}{P(X \ge 1)} =$$

$$= \frac{P(X = 2) + P(X = 3)}{P(X = 1) + P(X = 2) + P(X = 3)} = \frac{3/8 + 1/8}{3/8 + 3/8 + 1/8} = \frac{4}{7}$$

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассчитайте вероятность $P(X \ge 2|X \ge 1)$.

$$P(X \ge 2|X \ge 1) = \frac{P(X \ge 2 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X \ge 2)}{P(X \ge 1)} =$$

$$= \frac{P(X = 2) + P(X = 3)}{P(X = 1) + P(X = 2) + P(X = 3)} = \frac{3/8 + 1/8}{3/8 + 3/8 + 1/8} = \frac{4}{7}$$

$$supp(X|X < 2.5) = \{0, 1, 2\} \implies supp(5(X - 1)^2 + 1|X < 2.5) = \{1, 6\}$$

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассчитайте вероятность $P(X \ge 2|X \ge 1)$.

$$P(X \ge 2 | X \ge 1) = \frac{P(X \ge 2 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X \ge 2)}{P(X \ge 1)} =$$

$$= \frac{P(X = 2) + P(X = 3)}{P(X = 1) + P(X = 2) + P(X = 3)} = \frac{3/8 + 1/8}{3/8 + 3/8 + 1/8} = \frac{4}{7}$$

$$supp(X|X < 2.5) = \{0, 1, 2\} \implies supp(5(X - 1)^2 + 1|X < 2.5) = \{1, 6\}$$

$$P(5(X - 1)^2 + 1 = 1|X < 2.5) = P(X = 1|X < 2.5) = 3/7$$

Случайные монетки, часть 3

Вы подбрасываете правильную монетку 3 раза. Рассмотрим случайную величину X – число выпавших орлов.

• Рассчитайте вероятность $P(X \ge 2|X \ge 1)$.

$$P(X \ge 2|X \ge 1) = \frac{P(X \ge 2 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X \ge 2)}{P(X \ge 1)} =$$

$$= \frac{P(X = 2) + P(X = 3)}{P(X = 1) + P(X = 2) + P(X = 3)} = \frac{3/8 + 1/8}{3/8 + 3/8 + 1/8} = \frac{4}{7}$$

$$supp(X|X < 2.5) = \{0, 1, 2\} \implies supp(5(X - 1)^2 + 1|X < 2.5) = \{1, 6\}$$
$$P(5(X - 1)^2 + 1 = 1|X < 2.5) = P(X = 1|X < 2.5) = 3/7$$

$$P(5(X-1)^2+1=6|X<2.5)=P(X=0|X<2.5)+P(X=2|X<2.5)=1/7+3/7=4/7$$

Метод первого шага

Вася и Маша поочередно подбрасывают обычный шестигранный кубик. Вася побеждает, если на его ходу на кубике выпадает 1, а Маша – если на ее ходу выпадет 2 или 3. Вася и Маши поочередно бросают кубики до тех пор, пока кто-то из них не победит. Первым кубик бросает Вася. Найдите вероятность того, что он победит в этой игре.

Метод первого шага

Вася и Маша поочередно подбрасывают обычный шестигранный кубик. Вася побеждает, если на его ходу на кубике выпадает 1, а Маша — если на ее ходу выпадет 2 или 3. Вася и Маши поочередно бросают кубики до тех пор, пока кто-то из них не победит. Первым кубик бросает Вася. Найдите вероятность того, что он победит в этой игре.

• Через V обозначим событие, в соответствии с которым побеждает Вася, а через M – побеждает Маша. Через V_1 обозначим событие, при котором при первом броске у Васи выпадает 1. Через M_{23} обозначим событие, при котором на первом броске Маши выпадает 2 или 3.

Метод первого шага

Вася и Маша поочередно подбрасывают обычный шестигранный кубик. Вася побеждает, если на его ходу на кубике выпадает 1, а Маша — если на ее ходу выпадет 2 или 3. Вася и Маши поочередно бросают кубики до тех пор, пока кто-то из них не победит. Первым кубик бросает Вася. Найдите вероятность того, что он победит в этой игре.

- Через V обозначим событие, в соответствии с которым побеждает Вася, а через M побеждает Маша. Через V_1 обозначим событие, при котором при первом броске у Васи выпадает 1. Через M_{23} обозначим событие, при котором на первом броске Маши выпадает 2 или 3.
- Используя формулу полной вероятности получаем:

$$P(V) = P(V|V_1)P(V_1) + P(V|\overline{V}_1 \cap M_{23})P(\overline{V}_1 \cap M_{23}) + P(V|\overline{V}_1 \cap \overline{M}_{23})P(\overline{V}_1 \cap \overline{M}_{23}) =$$

Метод первого шага

Вася и Маша поочередно подбрасывают обычный шестигранный кубик. Вася побеждает, если на его ходу на кубике выпадает 1, а Маша — если на ее ходу выпадет 2 или 3. Вася и Маши поочередно бросают кубики до тех пор, пока кто-то из них не победит. Первым кубик бросает Вася. Найдите вероятность того, что он победит в этой игре.

- Через V обозначим событие, в соответствии с которым побеждает Вася, а через M побеждает Маша. Через V_1 обозначим событие, при котором при первом броске у Васи выпадает 1. Через M_{23} обозначим событие, при котором на первом броске Маши выпадает 2 или 3.
- Используя формулу полной вероятности получаем:

$$\begin{split} P(V) &= P(V|V_1)P(V_1) + P(V|\overline{V}_1 \cap M_{23})P(\overline{V}_1 \cap M_{23}) + P(V|\overline{V}_1 \cap \overline{M}_{23})P(\overline{V}_1 \cap \overline{M}_{23}) = \\ &= 1 \times \frac{1}{6} + 0 \times \frac{5}{6} \times \frac{1}{3} + P(V) \times \frac{5}{6} \times \frac{2}{3} \end{split}$$

Метод первого шага

Вася и Маша поочередно подбрасывают обычный шестигранный кубик. Вася побеждает, если на его ходу на кубике выпадает 1, а Маша – если на ее ходу выпадет 2 или 3. Вася и Маши поочередно бросают кубики до тех пор, пока кто-то из них не победит. Первым кубик бросает Вася. Найдите вероятность того, что он победит в этой игре.

- Через V обозначим событие, в соответствии с которым побеждает Вася, а через M побеждает Маша. Через V_1 обозначим событие, при котором при первом броске у Васи выпадает 1. Через M_{23} обозначим событие, при котором на первом броске Маши выпадает 2 или 3.
- Используя формулу полной вероятности получаем:

$$P(V) = P(V|V_1)P(V_1) + P(V|\overline{V}_1 \cap M_{23})P(\overline{V}_1 \cap M_{23}) + P(V|\overline{V}_1 \cap \overline{M}_{23})P(\overline{V}_1 \cap \overline{M}_{23}) =$$

$$= 1 \times \frac{1}{6} + 0 \times \frac{5}{6} \times \frac{1}{3} + P(V) \times \frac{5}{6} \times \frac{2}{3}$$

ullet Решая соответствующее равенство для P(V) имеем $P(V)=rac{3}{8}$.