NMB -Oefenzitting 3

NMB - Oefenzitting 3: Eigenwaardenproblemen

Hendrik Speleers

Overzicht

NMB -Oefenzitting 3

> Hendrik Speleers

/eetjes

Ontbindinge

Methodes

Machten
Invers
Rayleigh

Weetjes

- 2 Ontbindingen
- Methodes
 - Methode van de machten
 - Inverse iteratie
 - Rayleigh quotiënt iteratie
 - QR
 - Andere

Weetjes

NMB -Oefenzitting 3

Hendri Speleer

Weetjes

Ontbindinge

Methodes Machten Invers Rayleigh QR Andere

- $Ax = \lambda x$
 - x eigenvector (ev)
 - λ eigenwaarde (ew)
- Geometrische meervoudigheid : dimensie eigenruimte ew (aantal ev horende bij ew)
- Algebraïsche meervoudigheid : meervoudigheid als wortel van de karakteristieke veelterm
- gm \leq am (gm < am \Rightarrow defectieve matrix)
- Gelijkvormigheidstransformatie : $A \rightarrow X^{-1}AX$

Weetjes

NMB -Oefenzitting 3

Hendrik Speleers

Weetjes

Ontbindinge

Methodes
Machten
Invers
Rayleigh
QR
Andere

• Hermitisch : $A^* = A$ (symmetrisch : $A^T = A$) reële ew, orthogonale ev

$$Ax = \lambda x \Rightarrow x^* Ax = \lambda x^* x$$
$$x^* A^* = \lambda^* x^* \Rightarrow x^* Ax = \lambda^* x^* x$$
$$\lambda^* = \lambda \Rightarrow \lambda \in \mathbb{R}$$

- SPD matrix : $\lambda = \frac{x^T A x}{x^T x} > 0$
- Unitair : $A^*A = I$ (orthogonaal : $A^TA = I$) alle ew modulus 1

$$||Ax||_2^2 = x^*A^*Ax = x^*\lambda^*\lambda x = x^*x$$
$$\lambda^*\lambda = 1 \Leftrightarrow |\lambda| = 1$$

Ontbindingen

NMB -Oefenzitting 3

> Hendrik Speleer

Veeties

Ontbindingen

Methodes

Machten
Invers
Rayleigh
QR
Andere

Ontbindingen die eigenwaarden onthullen :

Structuur	Ontbinding	Voorwaarden
Diagonalisatie	$A = V \Lambda V^{-1}$	A is niet defectief
Unitaire diag.	$A = Q\Lambda Q^*$	A is normaal
		$(A^*A=AA^*)$
Schur factorisatie	$A = QTQ^*$	-
(Unitaire triangul.)		

A hermitisch \rightarrow unitaire diagonalisatie

Methodes

NMB -Oefenzitting 3

> Hendrik Speleer

vveetjes

Ontbindinge

Methodes Machten Invers

Invers Rayleigh QR Andere

- Steeds iteratief
 - cfr. nulpunten veelterm $(m \ge 5)$
- Twee fasen aanpak:
 - Reductie naar Hessenberg/tridiagonale vorm
 - Iteratief proces op gestructureerde matrix

Methodes

NMB -Oefenzitting 3

Hendril Speleer

VVeetjes

Ontbindinger

Methodes
Machten
Invers
Rayleigh
QR
Andere

• Methode van de machten (lineair)

$$w \leftarrow Av$$
; $v \leftarrow \frac{w}{\|w\|}$; $\lambda = v^*Av$

- enkel de eigenvector bij de grootste eigenwaarde
- Inverse iteratie (lineair)

$$(A - \mu I)w = v \rightarrow w ; v \leftarrow \frac{w}{\|w\|}; \lambda = v^*Av$$

- ullet keuze μ bepaalt gevonden eigenwaarden
- Rayleigh quotiënt iteratie (kwadratisch, kubisch) $(A \lambda I)w = v \rightarrow w$; $v \leftarrow \frac{w}{\|w\|}$; $\lambda = v^*Av$
 - EV via inverse iteratie
 - EW via Rayleigh quotiënt
 - Voordeel : snelle convergentie
 - Nadeel : telkens stelsel oplossen

Methodes

NMB -Oefenzitting 3

> Hendrik Speleer

vveetjes

Ontbindinge

Methodes
Machten
Invers
Rayleigh
QR
Andere

QR

- Hessenberg, tridiagonaal
- Zonder shift (lineair) $QR = A \rightarrow (Q, R)$; $A \leftarrow RQ$
- Met shift (kwadratisch, kubisch) $QR = A - \mu I \rightarrow (Q, R)$; $A \leftarrow RQ + \mu I$
- Keuze shift
 - Rayleigh-quotiënt shift $(a_{m,m})$
 - Wilkinson shift
- Andere: Jacobi, bisectie, verdeel en heers, Arnoldi, Lanczos