



## **Auditory Neuroscience**

Making sense of sound

Home » Pitch

## Fundamental frequencies of Notes in Western Music

Chapter 3 of Auditory Neuroscience discusses the pitch intervals used western music in great detail. For convenience, a table of fundamental frequencies for equal-tempered scale is copied below from <a href="http://www.phy.mtu.edu/~suits/notefreqs.html">http://www.phy.mtu.edu/~suits/notefreqs.html</a>.

By convention  $A_4 = 440 \text{ Hz}$ 

Notes are separated by "semitone" intervals. There are 12 seimtones in each octave, and fundamental frequencies are logarithmically spaced, so the each note fundamental frequency is  $2^{(1/12)} = 1.0595$  times the previous frequency.

The wavelength values assume a speed of sound = 345 m/s

("Middle C" is  $C_4$ )

| Note                   | Frequency (Hz) | Wavelength (cm) |
|------------------------|----------------|-----------------|
| $C_0$                  | 16.35          | 2109.89         |
| $C^{\#}_{0}/D^{b}_{0}$ | 17.32          | 1991.47         |
| $D_0$                  | 18.35          | 1879.69         |

| $D^{\#}_{0}/E^{b}_{0}$ | 19.45  | 1770. |
|------------------------|--------|-------|
| $E_0$                  | 20.60  | 1670. |
| $F_0$                  | 21.83  | 1580. |
| $F^{\#}_{0}/G^{b}_{0}$ | 23.12  | 1490. |
| $G_0$                  | 24.50  | 1400. |
| $G^{\#}_{0}/A^{b}_{0}$ | 25.96  | 1320. |
| $A_0$                  | 27.50  | 1250. |
| $A^{\#}_{0}/B^{b}_{0}$ | 29.14  | 1180. |
| $B_0$                  | 30.87  | 1110. |
| $C_1$                  | 32.70  | 1050. |
| $C^{\#}_{1}/D^{b}_{1}$ | 34.65  | 996.  |
| $D_1$                  | 36.71  | 940.  |
| $D^{\#_{1}/E^{b}}_{1}$ | 38.89  | 887.  |
| E <sub>1</sub>         | 41.20  | 837.  |
| $F_1$                  | 43.65  | 790.  |
| $F^{\#}_{1}/G^{b}_{1}$ | 46.25  | 746.  |
| $G_1$                  | 49.00  | 704.  |
| $G^{\#}_{1}/A^{b}_{1}$ | 51.91  | 665.  |
| $A_1$                  | 55.00  | 627.  |
| $A^{\#}_{1}/B^{b}_{1}$ | 58.27  | 592.  |
| $B_1$                  | 61.74  | 559.  |
| $C_2$                  | 65.41  | 527.  |
| $C^{\#}_{2}/D^{b}_{2}$ | 69.30  | 498.  |
| D <sub>2</sub>         | 73.42  | 470.  |
| $D^{\#}_{2}/E^{b}_{2}$ | 77.78  | 444.  |
| E <sub>2</sub>         | 82.41  | 419.  |
| F <sub>2</sub>         | 87.31  | 395.  |
| $F^{\#}_{2}/G^{b}_{2}$ | 92.50  | 373.  |
| $G_2$                  | 98.00  | 352.  |
| $G^{\#}_{2}/A^{b}_{2}$ | 103.83 | 332.  |
| A <sub>2</sub>         | 110.00 | 314.  |
| $A^{\#}_{2}/B^{b}_{2}$ | 116.54 | 296.  |

| B <sub>2</sub>                                           | 123.47 | 279. |
|----------------------------------------------------------|--------|------|
| C <sub>3</sub>                                           | 130.81 | 264. |
| $C^{\#}_{3}/D^{b}_{3}$                                   | 138.59 | 249. |
| $D_3$                                                    | 146.83 | 235. |
| $D^{\#}_{3}/E^{b}_{3}$                                   | 155.56 | 222. |
| E <sub>3</sub>                                           | 164.81 | 209. |
| F <sub>3</sub>                                           | 174.61 | 198. |
| $F^{\#}_{3}/G^{b}_{3}$                                   | 185.00 | 186. |
| $G_3$                                                    | 196.00 | 176. |
| $G^{\#}_{3}/A^{b}_{3}$                                   | 207.65 | 166. |
| $A_3$                                                    | 220.00 | 157. |
| $A^{\#}_{3}/B^{b}_{3}$                                   | 233.08 | 148. |
| $B_3$                                                    | 246.94 | 140. |
| C <sub>4</sub>                                           | 261.63 | 132. |
| $C^{\#}_4/D^b_4$                                         | 277.18 | 124. |
| $D_4$                                                    | 293.66 | 117. |
| $D^{\#_{4}/E^{b}_{4}}$                                   | 311.13 | 111. |
| E <sub>4</sub>                                           | 329.63 | 105. |
| F <sub>4</sub>                                           | 349.23 | 98.8 |
| $F^{\#}_4/G^b_4$                                         | 369.99 | 93.2 |
| $G_4$                                                    | 392.00 | 88.0 |
| $G^{\#}_{4}/A^{b}_{4}$                                   | 415.30 | 83.1 |
| $A_4$                                                    | 440.00 | 78.4 |
| $A^{\#}_4/B^b_4$                                         | 466.16 | 74.0 |
| B <sub>4</sub>                                           | 493.88 | 69.9 |
| C <sub>5</sub>                                           | 523.25 | 65.9 |
| $C^{\#}_{5}/D^{b}_{5}$                                   | 554.37 | 62.2 |
| $D_5$                                                    | 587.33 | 58.7 |
| $D^{\#_{5}/E^{b}_{5}}$                                   | 622.25 | 55.4 |
| E <sub>5</sub>                                           | 659.26 | 52.3 |
| F <sub>5</sub>                                           | 698.46 | 49.4 |
| F <sup>#</sup> <sub>5</sub> /G <sup>b</sup> <sub>5</sub> | 739.99 | 46.6 |
| $G_5$                                                    | 783.99 | 44.0 |

| $G^{\#}_{5}/A^{b}_{5}$                                   | 830.61  | 41.5 |
|----------------------------------------------------------|---------|------|
| $A_5$                                                    | 880.00  | 39.2 |
| A <sup>#</sup> 5/B <sup>b</sup> 5                        | 022.22  | 37.0 |
|                                                          | 932.33  |      |
| B <sub>5</sub>                                           | 987.77  | 34.9 |
| C <sub>6</sub>                                           | 1046.50 | 33.0 |
| C <sup>#</sup> <sub>6</sub> /D <sup>b</sup> <sub>6</sub> | 1108.73 | 31.1 |
| D <sub>6</sub>                                           | 1174.66 | 29.4 |
| D <sup>#</sup> <sub>6</sub> /E <sup>b</sup> <sub>6</sub> | 1244.51 | 27.7 |
| E <sub>6</sub>                                           | 1318.51 | 26.2 |
| F <sub>6</sub>                                           | 1396.91 | 24.7 |
| $F^{\#}_{6}/G^{b}_{6}$                                   | 1479.98 | 23.3 |
| $G_6$                                                    | 1567.98 | 22.0 |
| $G^{\#}_{6}/A^{b}_{6}$                                   | 1661.22 | 20.8 |
| A <sub>6</sub>                                           | 1760.00 | 19.6 |
| $A^{\#}_{6}/B^{b}_{6}$                                   | 1864.66 | 18.5 |
| B <sub>6</sub>                                           | 1975.53 | 17.5 |
| C <sub>7</sub>                                           | 2093.00 | 16.5 |
| $C^{\#}_{7}/D^{b}_{7}$                                   | 2217.46 | 15.6 |
| D <sub>7</sub>                                           | 2349.32 | 14.7 |
| $D^{\#_{7}/E^{b}_{7}}$                                   | 2489.02 | 13.9 |
| E <sub>7</sub>                                           | 2637.02 | 13.1 |
| F <sub>7</sub>                                           | 2793.83 | 12.3 |
| F <sup>#</sup> <sub>7</sub> /G <sup>b</sup> <sub>7</sub> | 2959.96 | 11.7 |
| G <sub>7</sub>                                           | 3135.96 | 11.0 |
| $G^{\#}_{7}/A^{b}_{7}$                                   | 3322.44 | 10.4 |
| A <sub>7</sub>                                           | 3520.00 | 9.8  |
| $A^{\#}_{7}/B^{b}_{7}$                                   | 3729.31 | 9.3  |
| B <sub>7</sub>                                           | 3951.07 | 8.7  |
| C <sub>8</sub>                                           | 4186.01 | 8.2  |
| C <sup>#</sup> 8/D <sup>b</sup> 8                        | 4434.92 | 7.8  |
| D <sub>8</sub>                                           | 4698.64 | 7.3  |
| D <sup>#</sup> 8/E <sup>b</sup> 8                        | 4978.03 | 6.9  |

Single Formant Vowel with Changing Pitch Up

Context Dependence of Pitch:
Shepard Tone Hysteresis >