Module 3: Heritability and Reliability Estimations in R

Fundamentals of Genomic Prediction and Data-Drive Crop Breeding

(August 4-8, 2025)

Waseem Hussain

Senior Scientist-I
International Rice Research Institute
Rice Breeding Innovations Platfrom
waseem.hussain@cgiar.org
whussain2.github.io

Mahender Anumalla

Scientist-I
International Rice Research Institute
South-Asian Hub, Hyderabad
m.anumalla@cgiar.org

Contents

Run the	del to Estimate Heritability
Herit	ity Based on Single Environment
	n the mixed model
	tract Results and Variance Components
	tract variance components
	IOVA for fixed effects
	tract the Fixed effects
	tract the Random effects
Herit	ity
	ritability Based on Varaince Components
	laibility based on Cullis et al
Herit	ity Based on MET Analysis
	mbined ANOVA
	mbined Analysis in lme4
	Summary of MET results
	Plot of model
	laibility Using Mean Difference

Load the Libraries

```
> # Load the Required Libraries
> rm(list=ls()) # Remove previous work
> library(easypackages)
> libraries("dplyr", "reshape2", "readxl", "lme4", "arm")
```

Upload the Phenotypic Data Sets

Here we will use the Rainfed Rice Breeding Trial data of IRRI which has 192 entries, 2 replications and 5 blocks and experimental design is Alpha lattice.

```
'data.frame': 1600 obs. of 11 variables:
$ Environment: chr "Env1" "Env1" "Env1" "Env1" ...
$ Plot : int 59 19 27 127 132 92 106 82 199 57 ...
$ Genotype : int 1 2 3 4 5 6 7 8 9 10 ...
$ Rep : int 1 1 1 1 1 1 1 1 1 1 ...
$ Block : int 2 1 1 4 4 3 3 3 5 2 ...
$ Row : int 2 1 1 4 4 3 3 3 5 2 ...
$ Column : int 19 19 27 7 12 12 26 2 39 17 ...
$ Line.type : chr "Entry" "Entry" "Entry" "Entry" ...
$ DTF : int 94 78 87 87 94 94 82 87 82 85 ...
```

```
$ HT
              : num 118 116 108 116 134 ...
 $ Yield
              : num 5873 5844 5777 6284 5703 ...
> # factor conversion if below are not in factors
    columns <- c ("Environment", "Genotype", "Rep", "Block",
               "Row", "Column", "Line.type")
    demo.data.filtered[, columns] <-lapply(columns, function(x) as.factor(demo.data.filtered[[x]]))</pre>
    demo.data.filtered$Yield<-as.numeric(demo.data.filtered$Yield)</pre>
    demo.data.filtered$HT<-as.numeric(demo.data.filtered$HT)</pre>
    demo.data.filtered$DTF<-as.numeric(demo.data.filtered$DTF)</pre>
> # Subset the required columns
    demo.data.filtered<-demo.data.filtered[, c("Environment", "Genotype",</pre>
                                   "Rep", "Block", "Row", "Column",
                                   "Line.type", "Yield", "HT", "DTF")]
> # First we will arrange the rows and columns for spatial analysis.
> # Now we will subset the environments and Yields for analysis
 demo.data.filtered<-data.frame(demo.data.filtered%>% group_by(Environment)%>%arrange(Row, Column))
    demo.data.filtered<-data.frame(demo.data.filtered%>% arrange(Environment)) # Arrange by environment
```

Run the Model to Estimate Heritability

- Here in this section we will use open source R package called lme4 to run the mixed-model and extract variance components
- More on this R package can be found here lme4 Tutorial 1, and lme4 Tutorial 2.

Heritability Based on Single Environment

- First let us subset the data for on environment to show how to perform the analysis for one trial or environment in lme4 R package
- We will run models which are feasible in lme4 R package.
- · We will use basic models and show how to extract the results
- Subset the data for one environment first.

```
> # Subset the environment 1
> sub.data<-subset(demo.data.filtered, Environment=="Env1")
> sub.data<-droplevels.data.frame(sub.data)</pre>
```

Run the mixed model

Model 1.lme4

• The model described below is:

```
\begin{split} y_{ijk} &= \mu + g_i + r_j + b_{jk} + \epsilon_{ijk} \\ y_{ijk} &= \text{ is the effect of } i\text{th genotype in } j\text{th replication and } k\text{th block within the } j\text{th replication} \\ \mu &= \text{overall mean} \\ g_i &= \text{random effect of the } i\text{th genotype} \\ r_j &= \text{fixed effect of the } j\text{th replication} \end{split}
```

 $b_{jk} = random effect of kth block nested within j replication$

```
\varepsilon_{ijk} = \text{residual error}
```

here we assume errors are independent and identically distributed $\epsilon \sim iidN(0,\sigma_{\epsilon}^2)$

```
> # Now apply model
> model1<-lmer(Yield~Rep+(1|Genotype)+ (1|Rep:Block), data =sub.data)</pre>
```

Extract Results and Variance Components

- Here we will summarize the results using *summary()* function.
- The first few lines of output indicate that the model was fitted by REML as well as the value of the REML criterion.
- The second piece of the summary output provides information regarding the random-effects and residual variation.
- The third piece of the summary output provides information regarding the fixed-effects and the fourth piece of summary output provides information regarding the correlation of fixed effects.

```
> # Summarise the results
   summary(model1)
Linear mixed model fit by REML ['lmerMod']
Formula: Yield ~ Rep + (1 | Genotype) + (1 | Rep:Block)
  Data: sub.data
REML criterion at convergence: 6239.3
Scaled residuals:
                 Median
    Min
           1Q
                                3Q
-1.90048 -0.59387 0.03899 0.60311 1.71001
Random effects:
                      Variance Std.Dev.
Groups
          Name
Genotype (Intercept) 431861 657.2
Rep:Block (Intercept) 28499
                               168.8
Residual
                      193255
                               439.6
Number of obs: 394, groups: Genotype, 197; Rep:Block, 10
Fixed effects:
           Estimate Std. Error t value
(Intercept) 5233.19 94.20 55.552
Rep2
              60.38
                       115.60 0.522
Correlation of Fixed Effects:
    (Intr)
Rep2 -0.614
```

Extract variance components

• Here we will extract variance components

Genotype (Intercept) 657.16

```
> Ve<- VarCorr(model1)
> Ve

Groups Name Std.Dev.
```

```
Rep:Block (Intercept) 168.82
Residual 439.61
```

ANOVA for fixed effects

- > # ANOVA
- > anova(model1)

	npar	Sum Sq	Mean Sq	F value
Rep	1	52724.26	52724.26	0.2728223

Extract the Fixed effects

- Here will show how to extract the BLUEs.
- > BLUEs<-fixef(model1)</pre>
- > BLUEs

(Intercept) Rep2 5233.1856 60.3794

Extract the Random effects

• Here will show how to extract the BLUPs.

```
> # Extract the Random effects
> BLUPs<-data.frame(Blups.yield=ranef(model1)$Genotype)
> GV<-data.frame(BLUps.GY=coef(model1)$Genotype[,1]) #Genotype values (Blups +Intercept)</pre>
```

Heritability

• Here will show how to calculate the heritability. Two approaches will be show how to estimate heritability: 1) Based on Variance components and 2) Based on Cullis et al. 2006 is also $1 - \frac{\overline{V}_{BLUP}}{2\sigma^2 g}$. Where \overline{V}_{BLUP} is mean variance difference of two genotypes based on BLUPs and $\sigma^2 g$ is variance of genotypes.

Heritability Based on Varaince Components

```
> # Extract the variance components
> Ve<- data.frame (VarCorr(model1))
> Ve
```

grp	var1	var2	vcov	sdcor
Genotype	(Intercept)	NA	431860.94	657.1613
Rep:Block	(Intercept)	NA	28498.55	168.8151
Residual	NA	NA	193254.94	439.6077

```
> # Now calculate heritability using variance components
> genotype.var=Ve[1,4]
> error.var=Ve[2,4]
> # Now heritability
> h2=genotype.var/(genotype.var+error.var)*100
> h2
```

[1] 93.8095

Relaibility based on Cullis et al.

```
> # Reliability
> std.err<-se.ranef(model1)$Genotype
> v_BLUP<- mean(std.err)
> # Heritability/Reliability
> h2<- (1-((v_BLUP)^2/(Ve[1,4]*2)))*100
> h2
```

[1] 90.55036

Heritability Based on MET Analysis

Model 2.lme4

- · Here we will analyze all the environments jointly and extract the single BLUPs for each genotype.
- We will use mixed model analysis in lme4 r package model.
- · We will treat genotypes as random and environment as fixed effect.

Combined ANOVA

anova(model.anova)

- Here ANOVA will be generated for all the factor levels.
- Replications are nested with environments and Blocks are within Replications which are nested within environment.

```
> # Linear model to get ANOVA
> demo.data.filtered$Environment<-as.factor(demo.data.filtered$Environment)
> model.anova<-lm(formula = Yield~Genotype+Environment+Genotype*Environment+Environment:Rep+ Environment+data=demo.data.filtered)
> # Get ANOVA
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	199	547177221	2749634	5.577295	0.00e+00
Environment	3	2081940510	693980170	1407.653397	0.00e+00
Genotype:Environment	588	1002589262	1705084	3.458553	0.00e+00
Environment:Rep	4	22794162	5698541	11.558788	0.00e+00
Environment:Rep:Block	32	37568681	1174021	2.381358	3.54e-05
Residuals	754	371725774	493005	NA	NA

Combined Analysis in Ime4

• The model we will use is give below:

```
\begin{split} y_{ijkl} &= \mu + g_i + e_j + (ge)_{ij} + r_{jk} + b_{jkl} + \epsilon_{ijklm} \\ \mu &= \text{overall mean} \\ g_i &= \text{random effect of the } i\text{th genotype} \\ e_j &= \text{random effect of the } j\text{th environment} \\ (ge)_{ij} &= \text{is the interaction effect of } i\text{th genotypes with the } j\text{th environment} \\ r_{jk} &= \text{fixed effect of the } k\text{th replication nested within } j\text{th environment} \\ \$b & \{jkl\} = \text{random effect of } l\text{th block nested with } j \text{ environment and } k\text{th replication} \$ \end{split}
```

 $\varepsilon_{ijkl} = {
m residual\ error}$

here we assume residuals are independent and identically distributed

- · Mixed models are powerful tools to handle assumptions of linear model Read this one
- We will extract variance components and also calculate heritability.

Summary of MET results

• In summary we will get following summarized results: 1) Description of model we used, 2) Random effects and varainces, 3) Fixed effects, 4) Correlation of fixed effects

```
summary(Model3.lme4)
Linear mixed model fit by REML ['lmerMod']
Formula: Yield ~ Rep + (1 | Genotype) + (1 | Environment) + (1 | Block)
  Data: demo.data.filtered
REML criterion at convergence: 26571.7
Scaled residuals:
   Min 1Q Median
                            3Q
                                   Max
-3.7537 -0.5702 -0.0115 0.4669 5.3187
Random effects:
Groups
                        Variance Std.Dev.
Genotype
            (Intercept)
                        205131
                                452.9
Block
            (Intercept)
                           7224
                                   85.0
Environment (Intercept) 1789049 1337.6
Residual
                        1033082 1016.4
Number of obs: 1581, groups: Genotype, 200; Block, 5; Environment, 4
Fixed effects:
           Estimate Std. Error t value
(Intercept) 4740.65 671.60 7.059
```

Rep2 -151.88 51.13 -2.971

Correlation of Fixed Effects: (Intr)

Rep2 -0.038

Plot of model

• With the plot function model we will get the residuals vs fitted values

Relaibility Using Mean Difference

- Based on Cullis et al.2006
- > # Extract the variance components
- > Ve<- data.frame (VarCorr(Model3.lme4))</pre>
- > Ve

grp	var1	var2	vcov	sdcor
Genotype	(Intercept)	NA	205131.050	452.91395
Block	(Intercept)	NA	7224.397	84.99645
Environment	(Intercept)	NA	1789048.808	1337.55329
Residual	NA	NA	1033082.471	1016.40665

- > v_BLUP<- mean(std.err)</pre>
- > # Heritability/Reliability

```
> h2<- (1-((v_BLUP)^2/(Ve[1,4]*2)))*100
> h2
```

[1] 80.29987

Additional Resources

- Here In this section we have provided additional R resources where similar analysis and mixed models can be run:
- Fitting linear mixed-effects models using lme4
- Linear Mixed-Effects Models Using R
- sommer: Solving Mixed Model Equations in R
- robustlmm
- Introduction to Linear Mixed Models
- Computing Heritability and Selection Response From Unbalanced Plant Breeding Trials
- Estimating Broad-Sense Heritability with Unbalanced Data from Agricultural Cultivar Trials