Digital transformation, toekomst?

Ricardo van Velzen: Dell EMC

Digital transformation

Context bij Data (sensor gestuurd)

Big Data analytics

CLOUD

SECURITY | MANAGEABILITY | ANALYTICS

Context bij Data (sensor gestuurd)

Machine learning: Waarom...

	Brain	Computer
Processing Elements	10 ¹⁰ neurons	10 ⁸ transistors
Element Size	10 ⁻⁶ m	10 ⁻⁶ m
Energy Use	30 W	30 W (CPU)
Processing Speed	10 ² Hz	10 ¹² Hz
Style Of Computation	Parallel, Distributed	Serial, Centralized
Energetic Efficiency	10 ⁻¹⁶ joules/opn/sec	10 ⁻⁶ joules/opn/sec
Fault Tolerant	Yes	No
Learns	Yes	A little

Machine learning: Hoe... Neural Networks

Machine learning: Hoe... Neural Networks

Machine learning: Hoe... Neural Networks Hidden layer Input layer **Output layer**

Machine learning: Hoe... Neural Networks

Dell EMC voorbeeld DNA Sequences...

Deep Learning voor DNA Sequences (nVidia):

Het probleem: Hoe verander je een DNA Sequence...

caggcctaacacatgcaagtcgaacggtaanagattgatagct
tgctatcaatgctgacgancggcggacgggtgagtaatgcctg
ggaatataccctgatgtgggggataactattggaaacgatagc
taataccgcataatctcttcggagcaaagagggggaccttcgg
gcctctcggtcaggattagcccaggtgggattagctagttgg
tggggtaatggctcaccaaggcgacgatccctagctggtctga
gaggatgatcagccacactggaactgagacacggtccagactc
ctacgggaggcagcagtggggaatattgcacaatgggggaaac
cctgatgcagccatgccgcgtgtatgaagaaggccttcgggtt
gtaaagtactttcagttgtgaggaaggcgttggagttaatagc
tttagcgtttgacgttagcaacagaagaagcaccggctaactc
cgtgccagcagccgcggtaatacggagggtgcga...

...in een Image?

Dell EMC Voorbeeld DNA Sequences...

The Recipe

(DIGITS = NVIDIA Deep Learning GPU Training System)

1 – DNA Encoding

Pick-up a dataset of 100K/500K

DNA sequences

Encode it as an image dataset

2 – Feed data to DIGITS

GUI to easily follow training and generalization

generalization performance

3 – Enjoy Parallel GPUs

4 – Model Selection

Run multiple networks and configurations in parallel

Unbalanced classes make problem sensitive to initialization

5 - Predict

95-99% accuracy on the 100K data

99-100% accuracy on the 500K data

Self-driving Cars status

Level 0: 2CV

Level 1: Cruise control achtige technologie

Level 2: Adaptive cruise control, drive assist

Level 3: Self driving cars waarbij iemand aan het stuur zit

Level 4: Fully automated self driving

Level 5: Fully automated onder alle omstandigheden

Quote van KPMG study:

" The car becomes safer and safer, as it moves towards fully autonomous driving

Another Example for Deep learning

Kunst en Cultuur DULLEMC

- Komt er een moment dat computers <u>te</u> intelligent worden? Wat zijn de juridische rechten?
- Wie is verantwoordelijk bij een botsing met een self driving auto?
 - Kunnen we het gedrag van een Al gestuurde computer voorspellen?
- DNA Sequence analyse kan mogelijk wel kanker oplossen
- Self driving cars zijn wel veiliger is voorspelt
- En kunnen we grote vraagstukken, zoals milieu, armoede etc met Al oplossen?

