Statistical Techniques for Biological and Environmental Sciences

Brad Duthie

2022-07-12

Contents

Pr	efac	e	11
	0.1	What is statistics?	11
	0.2	Why this module is important	11
	0.3	Teaching overview	11
	0.4	Assessment overview	11
	0.5	Jamovi statistical software	12
	0.6	Textbooks	12
	0.7	Canvas	12
	0.8	$ Timetable \ \dots $	12
Ι	Ba	ckground mathematics and data organisation	13
I 1		ckground mathematics and data organisation	13 17
	Bac	kground mathematics	17
	1.1 1.2	kground mathematics Numbers and operations	17 17
1	1.1 1.2	kground mathematics Numbers and operations	17 17 17
1	Bac 1.1 1.2 Dat	kground mathematics Numbers and operations	17 17 17
1	Bac 1.1 1.2 Dat 2.1 2.2	kground mathematics Numbers and operations	17 17 17 19
1 2	Bac 1.1 1.2 Dat 2.1 2.2	Reground mathematics Numbers and operations	17 17 17 19 19

4	COMPENIE
4	CONTENTS

	3.3	Exercise Organising data 2	21
	3.4	Exercise Organising data 3 \dots	21
	3.5	Summary of exercises and why they are useful	22
II	St	atistical concepts	23
4	\mathbf{Rec}	ap of some statistical concepts	27
5	Wh	y study statistics?	29
6	Pop	ulations and samples	31
7	Тур	es of variables	33
8	Uni	ts, precision, and accuracy	35
9	Unc	ertainty propogation	37
10	Pra	ctical. Introduction to Jamovi	39
	10.1	Exercise for summary statistics $\dots \dots \dots \dots \dots$.	39
	10.2	Exercise to compute variable \dots	39
	10.3	Exercise on transforming variables	39
II	I S	ummary statistics	41
11	Dec	imal places and significant figures	45
12	The	mean	47
13	The	mode	49
14	The	median and quantiles	51
15	Mea	an, mode, median, and resistance	53

CONTENTS 5	

16 Plots	55
16.1 General principles	55
16.2 Histograms	55
16.3 Box-whisker plots	55
17 Practical. Real data with Jamovi	57
17.1 Some biological example	57
17.2 Some environmental example	57
17.3 Summary of exercises and why they are useful	57
IV Probability models and the Central Limit Theorem	59
18 Introduction to probability models	63
18.1 A practical example	63
18.2 Probability distributions	63
19 The Central Limit Theorem (CLT)	65
19.1 Examples of the CLT in action \dots	65
19.2 The standard normal distribution	65
19.3 What are z-scores?	65
20 Practical. Probability and simulation	67
20.1 Calculating probability exercise 1	67
20.2 Calculating probability exercise 2	67
20.3 Calculating probability from normal distribution $\dots \dots$	67
20.4 Normal distribution and sample size	67
20.5 Simulating the central limit theorem	68
V Statistical inference	69
21 Sample statistics and population parameters	73
22 Standard Normal Distribution	7 5

6 CONTENTS	
------------	--

23 Confidence intervals		77
24 The t-interval		79
25 Practical. z- and t- intervals	5	81
25.1 Example constructing conf	idence intervals	81
25.2 Confidence interval for diff	Ferent levels (t- and z-) \dots	81
25.3 Proportion confidence inter	rvals	81
25.4 Another confidence interva	ıl example?	81
VI Review of parts I-V		83
VII Hypothesis testing		87
26 What is hypothesis testing?		91
27 Making and using hypothes	es and types of tests	93
28 An example of hypothesis to	esting	95
29 Hypothesis testing and conf	idence intervals	97
30 Student t-distribution and o	one sample t-test	99
31 Another example of a one s	ample t-test	101
32 Independent t-test		103
33 Paired sample t-test		105
34 Violations of assumptions		107
35 Non-parametric tests, and v	what these are.	109

CONTENTS	7
----------	---

36 <i>I</i>	Practical. Hypothesis testing and t-tests	111
3	6.1 Exercise on a simple one sample t-test	111
3	6.2 Exercise on an independent sample t-test	111
3	6.3 Exercise involving multiple comparisons	111
3	6.4 Exercise with non-parametric	111
3	6.5 Another exercise with non-parametric	111
VII	I Analysis of Variance (ANOVA)	113
37 V	Vhat is ANOVA?	117
38 (One-way ANOVA	119
39 T	wo-way ANOVA	121
40 F	Truskall-Wallis H test	123
	Practical. ANOVA and associated tests	125
	1.1 ANOVA Exercise 1	
4	1.2 ANOVA Exercise 2	125
4	1.3 ANOVA Exercise 3	125
4	1.4 ANOVA Exercise 4	125
IX	Counts and Correlation	127
42 F	requency and count data	131
43 (Chi-squared goodness of fit	133
44 (Chi-squared test of association	135
45 (Correlation key concepts	137
46 (Correlation mathematics	139

8	CONTENTS

47	Correlation hypothesis testing	141
48	Practical. Analysis of count data, correlation, and regression	143
	48.1 Chi-Square Exercise 1	143
	48.2 Chi-Square association Exercise 2	143
	48.3 Correlation Exercise 3	143
	48.4 Correlation Exercise 4	143
\mathbf{X}	Linear Regression	145
49	Regression key concepts	149
50	Regression validity	151
51	Introduction to multiple regression	153
52	Model selection (maybe remove this?)	155
53	Practical. Using regression	157
	53.1 Regression Exercise $1 \dots \dots \dots \dots \dots \dots$	157
	53.2 Regression Exercise $2 \dots \dots \dots \dots \dots \dots \dots \dots$	157
	53.3 Regression Exercise $3 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	157
	53.4 Regression Exercise 4	157
X	I Randomisation approaches	159
54	Introduction to randomisation	163
55	Assumptions of randomisation	165
56	Bootstrapping	167
57	Monte Carlo	169

58 Practical. Using R	171
58.1 R Exercise 1	171
58.2 R Exercise 2	171
58.3 R Exercise 3	171
XII Statistical Reporting	173
59 Reporting statistics	177
60 More introduction to R	179
61 More getting started with R	181
62 Practical. Using R	183
62.1 R Exercise 1	183
62.2 R Exercise 2	183
62.3 R Exercise 3	183
XIII Review of parts (VII-XII)	185
A Statistical tables	189

10 CONTENTS

Preface

Welcome to the module. This workbook will be used throughout the semester and contain all of the information that you need for the statistical techniques (SCIU4T4) module.

0.1 What is statistics?

An explanation of the material, and what will be taught.

0.2 Why this module is important

Some discussion of module importance

0.3 Teaching overview

Here is how you will be taught, with online lectures, reading assignments, and face-to-face practicals.

0.4 Assessment overview

You will have one formative test and two summatitive tests. You will also have one mock exam and one exam exam.

0.4.1 Test 1F

Information about Test 1F

12 CONTENTS

0.4.2 Test 1S

Information about Test 1S

0.4.3 Test 2S

Information about Test 1S

0.4.4 Mock Exam

Information about the mock exam

0.4.5 Exam

Information about the exam

0.5 Jamovi statistical software

Introduction to Jamovi, and why we are using it instead of other software.

0.6 Textbooks

Introduction to the primary textbook Learning statistics with jamovi, and a mention of other sources.

0.7 Canvas

How we will use Canvas, and how this book relates to it (Learning and Teaching content, where lectures, assessments, and discussions can be found).

0.8 Timetable

Part I

Background mathematics and data organisation

In week 1, we will focus on a refresher of some necessary background mathematics for this module. We will then turn to the topic of how to organise data sets. We will then practice organising datasets and saving them in a usable format.

Week: 1 Dates: Suggested Readings: Textbook intro, Hadley's paper Assessments: Practice quiz Practical: Quick summary of topics covered

Background mathematics

Some of this will be review, but it is important. Suggested reading for this (some mathematics text).

1.1 Numbers and operations

A very broad reminder of mathematics, which you will need for this module

1.2 Order of operations

This is easy to forget

Data organisation

It is important to organise data properly so that statistical analysis can be done. Here I explain the tidy approach to data. Suggested reading Hadley Wickam's paper.

- 2.1 Tidy data
- 2.2 Data files

Practical: Preparing real datasets

In this practical, we will use a spreadsheet to organise datastes.

3.1 LibreOffice Calc

LibreOffice Calc is a free and open source spreadsheet program. The instructions for this section will be identical to the more popular commercial Microsoft Excel.

3.2 Exercise Organising data 1

Walks through Exercise 1.3.2

3.3 Exercise Organising data 2

Walks through Exercise 1.3.3

3.4 Exercise Organising data 3

Walks through Exercise 1.3.4, saving all of these as CSV files

3.5 Summary of exercises and why they are useful.

Part II Statistical concepts

Overview of what this week will include.

Week: 2 Dates: Suggested Readings: Textbook intro to Jamovi Assessments: Practice quiz

Recap of some statistical concepts

Some introduction

Why study statistics?

General discussion

Populations and samples

Explanation of the mode

Types of variables

Categorical, ordinal, continuous, etc.

Units, precision, and accuracy

Resistance in statistics

Uncertainty propogation

Some simple equations

Practical. Introduction to Jamovi

Some introductory text to Jamovi. Particular attention, and maybe an example, on different data types and how to find them in Jamovi.

- 10.1 Exercise for summary statistics
- 10.2 Exercise to compute variable
- 10.3 Exercise on transforming variables

Part III Summary statistics

Overview of what this week will include.

Week: 3 Dates: Suggested Readings: Textbook intro to Jamovi Assessments: Practice quiz

Decimal places and significant figures

It is important to know how to write a number you have calculated to the appropriate number of digits, typically either defined as a number of decimal places or as a number of 'significant figures'. This is especially important in any module (for example, this one) where you are required to put numeric answers into a test or exam, as the computer will only recognise the answer as being correct if it is expressed in the way stated in the question. If you are unfamiliar with how to work out the right number of decimal places or significant figures, then these guides should be useful, although there are many other web-sources that would explain the concepts too.

The mean

Explanation of the mean

The mode

Explanation of the mode

The median and quantiles

Notes on the median and quantiles

Mean, mode, median, and resistance

Resistance in statistics

Plots

Graphics are critical for visualising data, which is always important

16.1 General principles

Some points about plots

16.2 Histograms

Histograms are special, and introduce the concept of a distribution.

16.3 Box-whisker plots

Practical. Real data with Jamovi

Using some real datasets in Jamovi

17.1 Some biological example

Remember to first put it in a tidy format. Get summary statistics here too.

17.2 Some environmental example

Transform and compute a new variable, plotting in Jamovi.

17.3 Summary of exercises and why they are useful.

Useful for scientific publications, reading, and dissertation work.

Part IV

Probability models and the Central Limit Theorem

General overview of what will be the focus of this week.

Week: 4 Dates: Suggested Readings: Textbook intro to probability Assess-

ments: Practice quiz Practical:

Introduction to probability models

Some background

18.1 A practical example

How to think about probability

18.2 Probability distributions

Some more useful examples

18.2.1 Binomial distribution

Explanation, fairly straightforward

18.2.2 Poisson distribution

Another example

18.2.3 Normal distribution

Why this is so important

The Central Limit Theorem (CLT)

General overview

- 19.1 Examples of the CLT in action
- 19.2 The standard normal distribution
- 19.3 What are z-scores?

Practical. Probability and simulation

Some of these examples will be similar to what will be on the assessment

20.1 Calculating probability exercise 1

Example exercise 1 with some simple probability calculations

20.2 Calculating probability exercise 2

Example exercise 2 with some simple probability calculations

20.3 Calculating probability from normal distribution

Example exercise for getting a the probability of some value sampled above, below, or between some threshold in Jamovi.

20.4 Normal distribution and sample size

Showing how we get closer to the normal distribution as sample size increases in Jamovi.

20.5 Simulating the central limit theorem

Doing the example from a uniform distribution in Jamovi.

Part V Statistical inference

General overview of what will be the focus of this week.

Week: 5 Dates: Suggested Readings: Textbook intro to probability Assess-

ments: Practice quiz Practical:

Sample statistics and population parameters

An explanation of this

74CHAPTER 21. SAMPLE STATISTICS AND POPULATION PARAMETERS

Standard Normal Distribution

What this means, and why it is important.

Confidence intervals

How these are calculated, and how to interpret them

The t-interval

What this is and how it relates to the normal distribution, and why it is important.

Practical. z- and t-intervals

- 25.1 Example constructing confidence intervals
- 25.2 Confidence interval for different levels (t-and z-)
- 25.3 Proportion confidence intervals
- 25.4 Another confidence interval example?

Part VI Review of parts I-V

This is a special chapter for week 6, which is a reading week, and it will function as a very brief pause for review. It will also ensure that the numbers of chapters will correspond to weeks.

$\begin{array}{c} {\rm Part\ VII} \\ {\rm Hypothesis\ testing} \end{array}$

General overview of what will be the focus of this week.

Week: 7 Dates: Suggested Readings: Textbook Assessments: Practice quiz Practical:

What is hypothesis testing?

An explanation of this, and that we are starting to get into some of the more interesting bits of inferential statistics.

Making and using hypotheses and types of tests

What this means, and why it is important.

94CHAPTER~27.~~MAKING~AND~USING~HYPOTHESES~AND~TYPES~OF~TESTS

An example of hypothesis testing

Errors

Hypothesis testing and confidence intervals

Relationship between these two.

$98 CHAPTER\ 29.\ \ HYPOTHESIS\ TESTING\ AND\ CONFIDENCE\ INTERVALS$

Student t-distribution and one sample t-test

What this is and how to do it in Jamovi.

$100 CHAPTER\ 30.\ STUDENT\ T-DISTRIBUTION\ AND\ ONE\ SAMPLE\ T-TEST$

Another example of a one sample t-test

From the lectures

Independent t-test

What this is and how to use it in Jamovi.

Paired sample t-test

Another explanation, example, and how to do it in Jamovi.

Violations of assumptions

What to do in this case

Non-parametric tests, and what these are.

Explanation of how to do them in Jamovi.

110CHAPTER 35. NON-PARAMETRIC TESTS, AND WHAT THESE ARE.

Practical. Hypothesis testing and t-tests

- 36.1 Exercise on a simple one sample t-test
- 36.2 Exercise on an independent sample t-test
- 36.3 Exercise involving multiple comparisons
- 36.4 Exercise with non-parametric
- 36.5 Another exercise with non-parametric

112 CHAPTER 36. PRACTICAL. HYPOTHESIS TESTING AND T-TESTS

Part VIII

Analysis of Variance (ANOVA)

General overview of what will be the focus of this week.

Week: 8 Dates: Suggested Readings: Textbook Assessments: Practice quiz Practical:

What is ANOVA?

General explanation

One-way ANOVA

Explain what this is.

Two-way ANOVA

More explanation

Kruskall-Wallis H test

 ${\bf Non\text{-}parametric\ explanation}$

Practical. ANOVA and associated tests

- 41.1 ANOVA Exercise 1
- 41.2 ANOVA Exercise 2
- 41.3 ANOVA Exercise 3
- 41.4 ANOVA Exercise 4

Part IX Counts and Correlation

General overview of what will be the focus of this week.

Week: 9 Dates: Suggested Readings: Textbook Assessments: Practice quiz Practical:

Frequency and count data

 $General\ explanation$

Chi-squared goodness of fit

Explain what this is.

Chi-squared test of association

More explanation

Correlation key concepts

Correlation mathematics

Correlation hypothesis testing

Practical. Analysis of count data, correlation, and regression

- 48.1 Chi-Square Exercise 1
- 48.2 Chi-Square association Exercise 2
- 48.3 Correlation Exercise 3
- 48.4 Correlation Exercise 4

144CHAPTER 48. PRACTICAL. ANALYSIS OF COUNT DATA, CORRELATION, AND REGRESSION

$\begin{array}{c} {\rm Part} \ {\rm X} \\ \\ {\rm Linear} \ {\rm Regression} \end{array}$

General overview of what will be the focus of this week.

Week: 10 Dates: Suggested Readings: Textbook Assessments: Practice quiz Practical:

Regression key concepts

Regression validity

Introduction to multiple regression

General explanation

Model selection (maybe remove this?)

Seriously consider moving the regression into this week. and ease the amount of material in previous weeks.

Practical. Using regression

- 53.1 Regression Exercise 1
- 53.2 Regression Exercise 2
- 53.3 Regression Exercise 3
- 53.4 Regression Exercise 4

Part XI Randomisation approaches

The aim of this lecture is to introduce the randomisation approach to statistical hypothesis testing. We will first introduce the general idea of what randomisation is and how it relates to the hypothesis testing that we have been doing since week five. We will then consider an instructive example in which a randomisation approach is used in place of a traditional t-test to test whether or not the mean values of two different groups are identical. We will then compare the assumptions underlying randomisation and how they differ slightly from the assumptions of traditional hypothesis testing. We will then look at how randomisation can be used to build confidence intervals and test hypotheses that would difficult to test with other approaches. In learning about randomisation approaches, we will also review some key concepts from earlier in the module. The aim is not to understand all of the nuances of randomisation, but to understand, conceptually, what is going on in the methods described below.

Week: 11 Dates: Suggested Readings: Textbook Assessments: Practice quiz Practical: R starts creeping in now?

Introduction to randomisation

General explanation

Assumptions of randomisation

How these differ

Bootstrapping

What this is and why we use it.

Monte Carlo

Practical. Using R

- 58.1 R Exercise 1
- 58.2 R Exercise 2
- 58.3 R Exercise 3

Part XII Statistical Reporting

Week: 12 Dates: Suggested Readings: Textbook Assessments: Practice quiz Practical: R starts creeping in now?

Reporting statistics

General explanation

More introduction to R

How these differ

More getting started with R

Just more to do.

Practical. Using R

- 62.1 R Exercise 1
- 62.2 R Exercise 2
- 62.3 R Exercise 3

Part XIII Review of parts (VII-XII)

This chapter will be specifically to prepare for exam.

Appendix A

Statistical tables