Formelsammlung Mathematik

Dezember 2016

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

0	0000	0 1 2 3	0
1	0001		1
2	0010		2
3	0011		3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\begin{split} &\sin(-x) = -\sin x \\ &\cos(-x) = \cos x \\ &\sin(x+y) = \sin x \cos y + \cos x \sin y \\ &\sin(x-y) = \sin x \cos y - \cos x \sin y \\ &\cos(x+y) = \cos x \cos y - \sin x \sin y \\ &\cos(x-y) = \cos x \cos y + \sin x \sin y \\ &\mathrm{e}^{\mathrm{i}\varphi} = \cos \varphi + \mathrm{i}\sin \varphi \end{split}$$

Polarkoordinaten

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \\ \varphi &\in (-\pi, \pi] \\ \det J &= r \end{aligned}$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$\begin{split} x &= r \sin \theta \, \cos \varphi \\ y &= r \sin \theta \, \sin \varphi \\ z &= r \cos \theta \\ \varphi &\in (-\pi, \pi], \; \theta \in [0, \pi] \\ \det J &= r^2 \sin \theta \end{split}$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

1 (Grundlagen	5	3	5.2 Stetige Funktionen	14
1.1	Arithmetik	5	3		14
	1.1.1 Binomischer Lehrsatz	5	3.6 S		14
	1.1.2 Potenzgesetze	5		8	14
1.2	Komplexe Zahlen	5	3		14
	1.2.1 Rechenoperationen	5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14
	1.2.2 Betrag	5	3.7 V	ektorfelder	14
	1.2.3 Konjugation	5	3		15
1.3	Logik	5		.7.2 Richtungsableitung	15
	1.3.1 Aussagenlogik	5	3.8 V		15
	1.3.2 Prädikatenlogik	7	3		15
1.4	Mengenlehre	7			15
	1.4.1 Definitionen	7	3.9 F		15
	1.4.2 Boolesche Algebra	7	3	9.1 Fourierreihen	15
	1.4.3 Teilmengenrelation	7			
	1.4.4 Induktive Mengen	7			16
1.5	Funktionen	8			16
	1.5.1 Surjektionen	8			16
	1.5.2 Injektionen	8		•	16
	1.5.3 Bijektionen	8			16
	1.5.4 Komposition	8			16
	1.5.5 Einschränkung	8			17
	1.5.6 Bild	8			17
	1.5.7 Urbild	8			17
1.6	Mathematische Strukturen	9			18
			-		18
2 F	Funktionen	10		·)	19
2.1	Elementare Funktionen	10			19 19
	2.1.1 Exponentialfunktion	10	4	.5.2 Ebenen	ΤŞ
	2.1.2 Winkelfunktionen	10	5 Dif	ferentialgeometrie 2	20
2.2	Zahlentheoretische Funktionen	10			20
	2.2.1 Eulersche Phi-Funktion	10			20
	2.2.2 Carmichael-Funktion	11	_		20
			_		20
	Analysis	12			-\ 2(
3.1	8	12	_		20
	3.1.1 Umgebungen	12			20
	3.1.2 Konvergente Folgen	12			20
	3.1.3 Häufungspunkte	12			
	3.1.4 Cauchy-Folge	12	6 Dy	namische Systeme	22
3.2	Reihen	12			22
	3.2.1 Absolute Konvergenz	12		-	
	3.2.2 Konvergenzkriterien	12			23
	3.2.3 Cauchy-Produkt	13	7.1 K		23
3.3	Reelle Funktionen	13			23
	3.3.1 Monotone Funktionen	13			23
	3.3.2 Grenzwert einer Funktion	13	7.2 D		23
	3.3.3 Stetige Funktionen	13	7.3 F		23
3.4	Differentialrechnung	13	7	3.1 Binomische Reihe	23
	3.4.1 Differentialquotient	13	_		_
	3.4.2 Ableitungsregeln	13) 	24
	3.4.3 Tangente und Normale	13		11	24
3.5	Integralrechnung	14			24
	3.5.1 Regelfunktionen	14	8	.1.2 Gruppenaktionen	24

INHALTSVERZEICHNIS

8.2	Ringe	24	9.3	Mathematische Konstanten	25
	8.2.1 Polynome	24	9.4	Physikalische Konstanten	25
8.3	Körper	24	9.5	Einheiten	26
	·			9.5.1 Vorsätze	26
9	Anhang	25		9.5.2 SI-System	26
9.1	Griechisches Alphabet	25		9.5.3 Nicht-SI-Einheiten	26
9.2	Frakturbuchstaben	25		9.5.4 Britische Einheiten	26

1 Grundlagen

1.1 Arithmetik

1.1.1 Binomischer Lehrsatz

Sei R ein unitärer Ring. Für $a,b\in R$ mit ab=ba gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \tag{1.1}$$

und

$$(a-b)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k a^{n-k} b^k.$$
 (1.2)

Die ersten Formeln sind:

$$(a+b)^2 = a^2 + 2ab + b^2, (1.3)$$

$$(a-b)^2 = a^2 - 2ab + b^2, (1.4)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, (1.5)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3, (1.6)$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4,$$
(1.7)

$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4.$$
 (1.8)

1.1.2 Potenzgesetze

Definition. Für $a \in \mathbb{R}$, a > 0 und $x \in \mathbb{C}$:

$$a^x := \exp(\ln(a)x). \tag{1.9}$$

Für $a \in \mathbb{R}, a > 0$ und $x, y \in \mathbb{C}$ gilt:

$$a^{x+y} = a^x a^y$$
, $a^{x-y} = \frac{a^x}{a^y}$, $a^{-x} = \frac{1}{a^x}$. (1.10)

1.2 Komplexe Zahlen

1.2.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.11}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}. (1.12)$$

1.2.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|, (1.13)$$

$$z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$$

$$z\,\overline{z} = |z|^2$$
.

1.2.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \qquad (1.16)$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, \quad (1.17)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2,$$
 (1.18)

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}, \quad (1.19)$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}), \qquad (1.20)$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.21}$$

1.3 Logik

1.3.1 Aussagenlogik

1.3.1.1 Boolesche Algebra

Distributivgesetze:

$$A \lor (B \land C) = (A \lor B) \land (A \lor C), \tag{1.22}$$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C). \tag{1.23}$$

1.3.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche

nktionen.			
AB	Wert		
00	a		
01	b		
10	С		

11 d

Nr.	dcba	Fkt.	Name
0	0000	0	Kontradiktion
1	0001	$\overline{A \vee B}$	NOR
2	0010	$\overline{B \Rightarrow A}$	
3	0011	\overline{A}	
4	0100	$\overline{A \Rightarrow B}$	
5	0101	\overline{B}	
6	0110	$A \oplus B$	Kontravalenz
7	0111	$\overline{A \wedge B}$	NAND
8	1000	$A \wedge B$	Konjunktion
9	1001	$A \Leftrightarrow B$	Äquivalenz
10	1010	B	Projektion
11	1011	$A \Rightarrow B$	Implikation
12	1100	$\mid A$	Projektion
13	1101	$B \Rightarrow A$	Implikation
14	1110	$A \vee B$	Disjunktion
15	1111	1	Tautologie

1.3.1.3 Darstellung mit Negation, Konjunktion und Disjunktion

$$A \Rightarrow B \iff \overline{A} \lor B,\tag{1.24}$$

$$(A \Leftrightarrow B) \iff (\overline{A} \wedge \overline{B}) \vee (A \wedge B), \tag{1.25}$$

$$A \oplus B \iff (\overline{A} \wedge B) \vee (A \wedge \overline{B}).$$
 (1.26)

1.3.1.4 Tautologien

(1.14) Modus ponens:

$$(1.15) (A \Rightarrow B) \land A \implies B. (1.27)$$

Tabelle 1.1: Rechenoperationen

Name	Operation	Polarform	kartesische Form
Identität	z	$= r e^{i\varphi}$	= a + bi
Addition	$z_1 + z_2$		$=(a_1+a_2)+(b_1+b_2)i$
Subtraktion	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$= \frac{\ddot{a}}{a^2 + b^2} - \frac{b}{a^2 + b^2} i$
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Betrag	z	=r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b) \arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Idempotenzgesetze
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Neutralitätsgesetze
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Extremalgesetze
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Komplementärgesetze
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Kommutativgesetze
$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$	Assoziativgesetze
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$A \wedge B \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$	Absorptionsgesetze

Modus tollens:

$$(A \Rightarrow B) \wedge \overline{B} \implies \overline{A}.$$

(1.28)

(1.31)

$$(A_1 \Rightarrow A_2) \land \dots \land (A_{n-1} \Rightarrow A_n) \land (A_n \Rightarrow A_1)$$

$$\Rightarrow \forall i, j [A_i \Leftrightarrow A_j].$$
 (1.36)

Modus tollendo ponens:

$$(A \vee B) \wedge \overline{A} \implies B.$$

(1.29) Ersetzungsregel:

Für jede Funktion $P: \{0,1\} \rightarrow \{0,1\}$ gilt:

$$P(A) \wedge (A \Leftrightarrow B) \implies P(B).$$
 (1.37)

Modus ponendo tollens: $\overline{A \wedge B} \wedge A \implies \overline{B}$.

Regel zur Implikation:

Ringschluss, allgemein:

$$A \wedge B \Rightarrow C \iff A \Rightarrow (B \Rightarrow C).$$
 (1.38)

 $A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}$. Beweis durch Widerspruch:

Vollständige Fallunterscheidung:

$$(\overline{A} \Rightarrow B \wedge \overline{B}) \implies A.$$
 (1.32)

$$(A\Rightarrow C)\wedge (B\Rightarrow C)\implies (A\oplus B\Rightarrow C), \qquad (1.39)$$

$$(A \Rightarrow C) \land (B \Rightarrow C) \iff (A \lor B \Rightarrow C).$$
 (1.40)

Zerlegung einer Äquivalenz:

Vollständige Fallunterscheidung, allgemein:

$$(A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A).$$
 (1.33)

$$\forall k[A_k \Rightarrow C] \implies (\bigoplus_{k=1}^n A_k \Rightarrow C), \tag{1.41}$$

Kettenschluss:

$$\forall k[A_k \Rightarrow C] \iff (\exists k[A_k] \Rightarrow C). \tag{1.42}$$

$$(A \Rightarrow B) \land (B \Rightarrow C) \implies (A \Rightarrow C).$$
 (1.34)

Ringschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

$$\implies (A \Leftrightarrow B) \land (A \Leftrightarrow C) \land (B \Leftrightarrow C).$$
(1.35)

1.4. MENGENLEHRE 7

1.3.2 Prädikatenlogik

1.3.2.1 Rechenregeln

Verneinung (De Morgansche Regeln):

$$\overline{\forall x[P(x)]} \iff \exists x[\overline{P(x)}],$$
 (1.43)

$$\overline{\exists x[P(x)]} \iff \forall x[\overline{P(x)}].$$
 (1.44)

Verallgemeinerte Distributivgesetze:

$$P \lor \forall x [Q(x)] \iff \forall x [P \lor Q(x)],$$
 (1.45)

$$P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$$

Verallgemeinerte Idempotenzgesetze:

$$\exists x \in M [P] \iff (M \neq \{\}) \land P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 0 & \text{wenn } M = \{\}. \end{cases}$$

$$\forall x \in M [P] \iff (M = \{\}) \vee P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 1 & \text{wenn } M = \{\}. \end{cases}$$

Äquivalenzen:

$$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)], \tag{1.49}$$

$$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)], \tag{1.50}$$

$$\exists x \exists y[T(x,y)] \longleftrightarrow \exists y \exists x[T(x,y)], \tag{1.50}$$

$$\forall x[P(x) \land Q(x)] \iff \forall x[P(x)] \land \forall x[Q(x)],$$
 (1.51)

$$\exists x [P(x) \lor Q(x)] \iff \exists x [P(x)] \lor \exists x [Q(x)],$$
 (1.52)

$$\forall x[P(x) \Rightarrow Q] \iff \exists x[P(x)] \Rightarrow Q,$$

$$\forall x[P \Rightarrow Q(x)] \iff P \Rightarrow \forall x[Q(x)],$$
 (1.54)

$$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$$
 (1.55)

Implikationen:

$$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)], \tag{1.56}$$

$$\forall x [P(x)] \lor \forall x [Q(x)] \implies \forall x [P(x) \lor Q(x)], \tag{1.57}$$

$$\exists x [P(x) \land Q(x)] \implies \exists x [P(x)] \land \exists x [Q(x)], \tag{1.58}$$

$$\forall x[P(x) \Rightarrow Q(x)] \implies (\forall x[P(x)] \Rightarrow \forall x[Q(x)]), \quad (1.59)$$

$$\forall x [P(x) \Leftrightarrow Q(x)] \implies (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]).$$
 (1.60)

1.3.2.2 Endliche Mengen

Sei $M = \{x_1, \ldots, x_n\}$. Es gilt:

$$\forall x \in M [P(x)] \iff P(x_1) \land \dots \land P(x_n), \qquad (1.61)$$

$$\exists x \in M [P(x)] \iff P(x_1) \vee \ldots \vee P(x_n). \tag{1.62}$$

1.3.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
 (1.63)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \tag{1.64}$$

$$\forall x \in M \setminus N [P(x)] \iff \forall x [x \notin N \Rightarrow P(x)]. \quad (1.65)$$

1.3.2.4 Quantifizierung über Produktmengen

$$\forall (x,y) [P(x,y)] \iff \forall x \forall y [P(x,y)], \tag{1.66}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)]. \tag{1.67}$$

Analog gilt

$$\forall (x, y, z) \iff \forall x \forall y \forall z, \tag{1.68}$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z \tag{1.69}$$

usw.

1.3.2.5 Alternative Darstellung

Sei $P\colon G\to\{0,1\}$ und $M\subseteq G$. Mit P(M) ist die Bildmenge von P bezüglich M gemeint. Es gilt

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
(1.70)

und

(1.46)

(1.47)

(1.48)

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M)$$

$$\iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
(1.71)

1.3.2.6 Eindeutigkeit

Quantor für eindeutige Existenz:

$$\exists! x [P(x)] :\iff \exists x [P(x) \land \forall y [P(y) \Rightarrow x = y]] \iff \exists x [P(x)] \land \forall x \forall y [P(x) \land P(y) \Rightarrow x = y].$$
 (1.72)

1.4 Mengenlehre

1.4.1 Definitionen

Teilmengenrelation:

$$A \subseteq B :\iff \forall x [x \in A \implies x \in B].$$
 (1.73)

Gleichheit:

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.74}$$

(1.53) Vereinigungsmenge:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}.$$
 (1.75)

Schnittmenge:

$$A \cap B := \{ x \mid x \in A \land x \in B \}. \tag{1.76}$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.77}$$

Symmetrische Differenz:

$$A \triangle B := \{ x \mid x \in A \oplus x \in B \}. \tag{1.78}$$

1.4.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.79}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.80}$$

1.4.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.81}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.82)

Kontraposition:

$$A \subseteq B = \overline{B} \subseteq \overline{A}. \tag{1.83}$$

1.4.4 Induktive Mengen

Mengentheoretisches Modell der natürlichen Zahlen:

$$0 := \{\}, \quad 1 := \{0\}, \quad 2 := \{0, 1\},$$

 $3 := \{0, 1, 2\}, \quad \text{usw.}$ (1.84)

Tabelle 1.3: Boolesche Algebra

$A \cup A = A$	$A \cap A = A$
$A \cup \{\} = A$	$A \cap G = A$
$A \cup \check{G} = G$	$A \cap \{\} = \{\}$
$A \cup \overline{A} = G$	$A \cap \overline{\overline{A}} = \{\}$
'	
$A \cup B = B \cup A$	$A \cap B = B \cap A$
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$

Schnitt

G: Grundmenge

Vereinigung

Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.85}$$

Vollständige Induktion: Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 \left[A(n) \Rightarrow A(n+1) \right]$$

$$\implies \forall n \ge n_0 \left[A(n) \right].$$
 (1.86)

1.5 **Funktionen**

1.5.1 Surjektionen

Definition. Eine Funktion $f: A \to B$ heißt *surjektiv*, wenn f(A) = B ist. Damit ist gemeint, dass jedes Element der Zielmenge wenigstens einmal der Funktionswert von einem Element der Definitionsmenge ist.

Injektionen

Definition. Eine Funktion $f: A \to B$ heißt *injektiv*, wenn

$$\forall x_1, x_2 \in A[f(x_1) = f(x_2) \implies x_1 = x_2]$$
 (1.87)

gilt.

1.5.3 Bijektionen

Definition. Eine Funktion $f: A \to B$ heißt *bijektiv*, wenn sie injektiv und surjektiv ist.

Eine Funktion $f: A \to B$ ist genau dann bijektiv, wenn es ein g mit

$$g \circ f = \mathrm{id}_A \quad \text{und} \quad f \circ g = \mathrm{id}_B$$
 (1.88)

gibt. Wenn f bijektiv ist, so gibt es g genau einmal und g wird die Umkehrfunktion oder Inverse von f genannt und als f^{-1} notiert.

1.5.4 Komposition

Definition. Für zwei Funktionen $f: A \to B$ und $g: B \to B$ C ist die Komposition (g nach f) durch

$$g \circ f \colon A \to C, \quad (g \circ f)(x) := g(f(x))$$
 (1.89)

definiert.

Für die Komposition gilt das Assozativgesetz:

$$(f \circ q) \circ h = f \circ (q \circ h). \tag{1.90}$$

Die Komposition von Injektionen ist eine Injektion. Die Komposition von Surjektionen ist eine Surjektion. Die Komposition von Bijektionen ist eine Bijektion. Sind f, g Bijektionen, so gilt

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}. \tag{1.91}$$

Ist $g \circ f$ injektiv, so ist f injektiv.

Idempotenzgesetze Neutralitätsgesetze Extremalgesetze Komplementärgesetze

Kommutativgesetze Assoziativgesetze De Morgansche Regeln Absorptionsgesetze

Ist $q \circ f$ surjektiv, so ist q surjektiv.

Ist $g \circ f$ bijektiv, so ist f injektiv und g surjektiv.

Definition. Für eine Funktion $\varphi \colon A \to A$ wird

$$\varphi^0 := \mathrm{id}_A, \quad \varphi^{n+1} := \varphi^n \circ \varphi$$
 (1.92)

Iteration von φ genannt.

Definition. Für eine Funktion $\varphi \colon A \to A$ wird der Operator

$$C_{\varphi}(g) := g \circ \varphi, \quad C_{\varphi} \colon B^A \to B^A$$
 (1.93)

Kompositionsoperator genannt

Ist B^A ein Funktionenraum, so ist der Kompositionsoperator ein linearer Operator.

1.5.5 Einschränkung

Definition. Sei $f \colon A \to B$ und $M \subseteq A$. Die Funktion g(x) = f(x) mit $g \colon M \to B$ wird Einschränkung von fgenannt und mit $f|_M$ notiert.

Sei $f: A \to B$ und $M \subseteq A$. Mit der Inklusionsabbildung $i(x) := x \text{ mit } i : M \to A \text{ gilt:}$

$$f|_{M} = f \circ i. \tag{1.94}$$

Es gilt

$$g \circ (f|_M) = (g \circ f)|_M. \tag{1.95}$$

1.5.6 Bild

Definition. Ist $f: A \to B$ und $M \subseteq A$, so wird

$$f(M) := \{ f(x) \mid x \in M \} \tag{1.96}$$

das Bild von M unter f genannt.

Es gilt

$$f(M \cup N) = f(M) \cup f(N), \tag{1.97}$$

$$f(M \cap N) = f(M) \cap f(N), \tag{1.98}$$

$$f\left(\bigcup_{i\in I} M_i\right) = \bigcup_{i\in I} f(M_i), \tag{1.99}$$

$$I \neq \emptyset \implies f\left(\bigcap_{i\in I} M_i\right) = \bigcap_{i\in I} f(M_i), \tag{1.100}$$

$$I \neq \emptyset \implies f\left(\bigcap_{i \in I} M_i\right) = \bigcap_{i \in I} f(M_i),$$
 (1.100)

$$M \subseteq N \implies f(M) \subseteq f(N),$$
 (1.101)

$$f(\emptyset) = \emptyset, \tag{1.102}$$

$$(g \circ f)(M) = g(f(M)).$$
 (1.103)

1.5.7 Urbild

Definition. Ist $f: A \to B$, so wird

$$f^{-1}(M) := \{ x \in A \mid f(x) \in M \}. \tag{1.104}$$

das Urbild von M unter f genannt.

Es gilt

$$f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N), \tag{1.105}$$

$$f^{-1}(M \cap N) = f^{-1}(M) \cap f^{-1}(N), \tag{1.106}$$

$$f^{-1}\Big(\bigcup_{i\in I} M_i\Big) = \bigcup_{i\in I} f^{-1}(M_i),$$
 (1.107)

$$f^{-1}\left(\bigcup_{i\in I} M_i\right) = \bigcup_{i\in I} f^{-1}(M_i), \qquad (1.107)$$

$$I \neq \emptyset \implies f^{-1}\left(\bigcap_{i\in I} M_i\right) = \bigcap_{i\in I} f^{-1}(M_i), \qquad (1.108)$$

$$M \subseteq N \implies f^{-1}(M) \subseteq f^{-1}(N), \tag{1.109}$$

$$f^{-1}(\emptyset) = \emptyset, \tag{1.110}$$

$$f^{-1}(B) = A, (1.111)$$

$$f^{-1}(M \setminus N) = f^{-1}(M) \setminus f^{-1}(N),$$
 (1.112)

$$f^{-1}(B \setminus M) = B \setminus f^{-1}(M), \tag{1.113}$$

$$(g \circ f)^{-1}(M) = f^{-1}(g^{-1}(M)), \tag{1.114}$$

$$(f|_{M})^{-1}(N) = M \cap f^{-1}(N). \tag{1.115}$$

Mathematische Strukturen 1.6

Axiome:

- **E**: Abgeschlossenheit.
- A: Assoziativgesetz.
- **N**: Existenz des neutralen Elements.
- I: Zu jedem Element gibt es ein Inverses.
- **K**: Kommutativgesetz.
- I*: Zu jedem Element außer dem additiven neutralen Element gibt es ein Inverses.
 - **DI**: Linksdistributivgestz.
 - Dr: Rechtsdistributivgesetz.
 - **D**: Dl und Dr.
 - T: Nullteilerfreiheit
- U: Die neutralen Elemente bezüglich Addition und Multiplikation sind unterschiedlich.

Strukturen mit einer inneren Verknüpfung:

EΑ Halbgruppe **EAN** Monoid **EANI** Gruppe

EANIK | abelsche Gruppe

Strukturen mit zwei inneren Verknüpfungen:

EANIK, EA, D Ring

EANIK, EAK, D..... kommutativer Ring EANIK, EAN, D..... unitärer Ring Integritätsring EANIK, EANK, DTU EANIK, EANI*K, DTU Körper

2 Funktionen

2.1 Elementare Funktionen

2.1.1 Exponentialfunktion

Definition. $\exp \colon \mathbb{C} \to \mathbb{C} \text{ mit }$

$$\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 (2.1)

Die Einschränkung von exp auf \mathbb{R} ist injektiv und hat die Bildmenge $\{x \in \mathbb{R} \mid x > 0\}$.

Für alle $x, y \in \mathbb{C}$ gilt:

$$\exp(x+y) = \exp(x)\exp(y), \tag{2.2}$$

$$\exp(x - y) = \frac{\exp(x)}{\exp(y)},\tag{2.3}$$

$$\exp(-x) = \frac{1}{\exp(x)}. (2.4)$$

Eulersche Formel. Für alle $x \in \mathbb{C}$ gilt:

$$e^{ix} = \cos x + i\sin x. \tag{2.5}$$

2.1.2 Winkelfunktionen

Definition. *Kosinus*: $\mathbb{C} \to \mathbb{C}$,

$$\cos(x) := \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
 (2.6)

Sinus: $\mathbb{C} \to \mathbb{C}$,

$$\sin(x) := \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \quad (2.7)$$

Tangens: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\tan(x) := \frac{\sin(x)}{\cos(x)}.\tag{2.8}$$

Kotangens: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\cot(x) := \frac{\cos(x)}{\sin(x)}. (2.9)$$

Sekans: $\mathbb{C} \setminus \{k\pi + \pi/2 \mid k \in \mathbb{Z}\} \to \mathbb{C}$,

$$\sec(x) := \frac{1}{\cos(x)}.\tag{2.10}$$

Kosekans: $\mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$.

$$\csc(x) := \frac{1}{\sin(x)}.\tag{2.11}$$

Darstellung durch die Exponentialfunktion: Für alle $x \in \mathbb{C}$ gilt:

$$\cos x = \text{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2},$$
 (2.12)

$$\sin x = \operatorname{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}.$$

2.1.2.1 Symmetrie und Periodizität

Für alle $x \in \mathbb{C}$ gilt:

$$\sin(-x) = -\sin x$$
, (Punktsymmetrie) (2.14)

$$\cos(-x) = \cos x$$
, (Achsensymmetrie) (2.15)

$$\sin(x + 2\pi) = \sin x,\tag{2.16}$$

$$\cos(x + 2\pi) = \cos x,\tag{2.17}$$

$$\sin(x+\pi) = -\sin x,\tag{2.18}$$

$$\cos(x+\pi) = -\cos x,\tag{2.19}$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x = -\sin\left(x - \frac{\pi}{2}\right),\tag{2.20}$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x = -\cos\left(x - \frac{\pi}{2}\right). \tag{2.21}$$

2.1.2.2 Additionstheoreme

Für alle $x, y \in \mathbb{C}$ gilt:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y, \tag{2.22}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y, \tag{2.23}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \tag{2.24}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{2.25}$$

2.1.2.3 Trigonometrischer Pythagoras

Für alle $x \in \mathbb{C}$ gilt:

$$\sin^2 x + \cos^2 x = 1. \tag{2.26}$$

2.1.2.4 Produkte

Für alle $x, y \in \mathbb{C}$ gilt:

$$2\sin x \sin y = \cos(x - y) - \cos(x + y), \tag{2.27}$$

$$2\cos x \cos y = \cos(x - y) + \cos(x + y),$$
 (2.28)

$$2\sin x \cos y = \sin(x - y) + \sin(x + y). \tag{2.29}$$

2.1.2.5 Summen und Differenzen

Für alle $x, y \in \mathbb{C}$ gilt:

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2},\qquad(2.30)$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2},\qquad(2.31)$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2},\qquad(2.32)$$

$$\cos x - \cos y = 2\sin\frac{x+y}{2}\sin\frac{y-x}{2}.$$
 (2.33)

2.1.2.6 Winkelvielfache

Für alle $x \in \mathbb{C}$ gilt:

$$\sin(2x) = 2\sin x \cos x,\tag{2.34}$$

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{2.35}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x,\tag{2.36}$$

$$\cos(3x) = 4\cos^3 x - 3\cos x. \tag{2.37}$$

2.2 Zahlentheoretische Funktionen

2.2.1 Eulersche Phi-Funktion

Definition. Eulersche Phi-Funktion:

(2.13)
$$\varphi(n) := |\{a \in N \mid 1 \le a \le n \land ggT(a, n) = 1\}|. (2.38)$$

Für zwei teilerfremde Zahlen m, n gilt:

$$\varphi(mn) = \varphi(m)\,\varphi(n). \tag{2.39}$$

Für jede Primzahlpotenz p^k mit $k\in\mathbb{Z}$ und $k\geq 1$ gilt:

$$\varphi(p^k) = p^k - p^{k-1}. (2.40)$$

Besitzt die Zahl n die Primfaktorzerlegung

$$n = \prod_{p|n} p^{k_p},\tag{2.41}$$

so gilt:

$$\varphi(n) = \prod_{p|n} (p^{k_p} - p^{k_p - 1}) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$
(2.42)

2.2.2 Carmichael-Funktion

Definition. Carmichael-Funktion:

$$\lambda(n) := \min\{m \mid \forall a \colon \operatorname{ggT}(a, n) = 1 \\ \Longrightarrow a^m \equiv 1 \mod n\}.$$
 (2.43)

3 Analysis

3.1 Konvergenz

3.1.1 Umgebungen

Sei (X,T) ein topologischer Raum und $x \in X$.

Definition. *Umgebungsfilter*:

$$\mathfrak{U}(x) := \{ U \subseteq X \mid x \in O \land O \in T \land O \subseteq U \}. \quad (3.1)$$

Ein $U \in \mathfrak{U}(x)$ wird Umgebung von x genannt.

Definition. Eine Menge $\mathfrak{B}(x) \subseteq \mathfrak{U}(x)$ heißt *Umgebungsbasis* gdw.

$$\forall U \in \mathfrak{U}(x) \,\exists B \in \mathfrak{B}(x) \colon B \subseteq U. \tag{3.2}$$

Sei (X, d) ein metrischer Raum und $x \in X$.

Definition. ε - Umgebung:

$$U_{\varepsilon}(x) := \{ y \in X \mid d(x, y) < \varepsilon \}. \tag{3.3}$$

Punktierte ε -Umqebung:

$$\dot{U}_{\varepsilon}(x) := U_{\varepsilon}(x) \setminus \{x\}. \tag{3.4}$$

Bei

$$\mathfrak{B}(x) = \{ U_{\varepsilon}(x) \mid \varepsilon > 0 \} \tag{3.5}$$

handelt es sich um eine Umgebungsbasis.

Für einen normierten Raum ist durch d(x,y) := ||x - y|| eine Metrik gegeben. Speziell für $X = \mathbb{R}$ oder $X = \mathbb{C}$ wird fast immer d(x,y) := |x - y| verwendet.

3.1.2 Konvergente Folgen

Definition. Eine Folge $(a_n) \colon \mathbb{N} \to X$ heißt konvergent gegen g, wenn

$$\forall U \in \mathfrak{B}(g) \,\exists n_0 \,\forall n > n_0 \colon a_n \in U. \tag{3.6}$$

Man schreibt dann $\lim_{n\to\infty} a_n = g$ und bezeichnet g als Grenzwert.

Für eine Folge $(a_n): \mathbb{N} \to \mathbb{R}$ wird (3.6) zu:

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \colon \ |a_n - g| < \varepsilon. \tag{3.7}$$

Sandwichsatz: Seien (a_n) und (b_n) reelle Folgen mit $a_n \to g$ und $b_n \to g$. Gilt $a_n \le c_n \le b_n$ für fast alle n, so konvergiert (c_n) auch gegen g.

3.1.3 Häufungspunkte

Definition. Eine Punkt h heißt $H\ddot{a}ufungspunkt$ einer Folge (a_n) , wenn

$$\forall U \in \mathfrak{B}(h) \ \forall n_0 \ \exists n > n_0 \colon \ a_n \in U. \tag{3.8}$$

Besitzt eine Folge (a_n) einen Grenzwert g, so ist g auch ein Häufungspunkt von (a_n) .

3.1.4 Cauchy-Folge

Sei (X, d) ein metrischer Raum.

Definition. Eine Folge (a_n) heißt Cauchy-Folge gdw.

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n > N : \ d(a_m, a_n) < \varepsilon. \tag{3.9}$$

Ein metrischer Raum (X,d) heißt vollständig, wenn jede Cauchy-Folge von Punkten aus X einen Grenzwert g mit $g \in X$ besitzt. Ein vollständiger normierter Raum heißt Banachraum.

3.2 Reihen

Definition. Sei (a_n) eine Folge. Die Folge (s_n) von Partialsummen

$$s_n = \sum_{k=0}^{n} a_k \tag{3.10}$$

wird Reihe genannt. Der Grenzwert

$$\sum_{k=0}^{\infty} a_k := \lim_{n \to \infty} \sum_{k=0}^{n} a_k \tag{3.11}$$

wird als Summe der Reihe bezeichnet.

Jede beliebige Folge (a_n) lässt sich durch

$$b_0 := a_0, \quad b_k := a_k - a_{k-1} \tag{3.12}$$

als Reihe

$$a_n = \sum_{k=0}^{n} b_k = a_0 + \sum_{k=1}^{n} (a_k - a_{k-1})$$
(3.13)

darstellen. Die Summe auf der rechten Seite von (3.13) wird als *Teleskopsumme* bezeichnet.

3.2.1 Absolute Konvergenz

Sei X ein normierter Raum.

Definition. Eine Reihe $s_n = \sum_{k=0}^n a_k$ mit $a_k \in X$ heißt absolut konvergent, wenn

$$\sum_{k=0}^{\infty} \|a_k\| < \infty. \tag{3.14}$$

Es gilt: X ist ein Banachraum gdw. jede absolut konvergente Reihe konvergent ist.

Ist X ein Banachraum und $s_n = \sum_{k=0}^n a_k$ eine absolut konvergente Reihe mit $a_k \in X$, so gilt:

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{\infty} a_{\sigma(k)}, \quad \sigma \in \text{Sym}(\mathbb{N}_0).$$
 (3.15)

Eine konvergente Reihe, für die (3.15) gilt, heißt $unbedingt\ konvergent$.

3.2.2 Konvergenzkriterien

3.2.2.1 Quotientenkriterium

Gegeben ist eine unendliche Reihe $s_n = \sum_{k=0}^n a_k$, wobei die a_k reelle oder komplexe Zahlen sind und $a_k \neq 0$ ab einem gewissen k ist. Gilt

$$\exists q < 1 \ \exists k_0 \ \forall k > k_0 : \left| \frac{a_{k+1}}{a_k} \right| \le q, \tag{3.16}$$

so ist (s_n) absolut konvergent. S. (3.14). Gilt jedoch

$$\exists k_0 \ \forall k > k_0 \colon \left| \frac{a_{k+1}}{a_k} \right| \ge 1, \tag{3.17}$$

so ist (s_n) divergent.

Existiert der Grenzwert

$$g = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|,\tag{3.18}$$

so gilt:

$$g < 1 \implies (s_n)$$
 ist absolut konvergent, (3.19)

$$g > 1 \implies (s_n)$$
 ist divergent, (3.20)

$$g = 1 \implies \text{keine Aussage.}$$
 (3.21)

3.2.3 Cauchy-Produkt

Sei

$$A_m := \sum_{n=0}^m a_n, \quad A := \lim_{m \to \infty} A_m,$$
 (3.22)

$$B_m := \sum_{n=0}^{m} b_n, \quad B := \lim_{m \to \infty} B_m,$$
 (3.23)

$$C_m := \sum_{n=0}^{m} c_n, \quad C := \lim_{m \to \infty} C_m.$$
 (3.24)

Definition. Das Cauchy-Produkt von zwei Reihen (A_m) und (B_m) ist definiert durch

$$C_m := \sum_{n=0}^{m} c_n \quad \text{mit } c_n := \sum_{k=0}^{n} a_k b_{n-k}.$$
 (3.25)

Das Cauchy-Produkt von zwei reellen oder komplexen absolut konvergenten Reihen ist absolut konvergent und es gilt

$$C = AB. (3.26)$$

Satz von Mertens: Das Cauchy-Produkt von reellen oder komplexen konvergenten Reihen, eine davon absolut konvergent, ist konvergent und es gilt (3.26).

3.3 Reelle Funktionen

Definition. Eine Funktion $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$ heißt reelle Funktion.

3.3.1 Monotone Funktionen

Jede streng monotone reelle Funktion ist injektiv.

3.3.2 Grenzwert einer Funktion

Ist $f: I \to \mathbb{R}$ eine reelle Funktion, I eine offenes Intervall und $x_0 \in I$, so gilt:

$$g = \lim_{x \to x_0} f(x)$$

$$\iff g = \lim_{x \uparrow x_0} f(x) \land g = \lim_{x \downarrow x_0} f(x).$$
(3.27)

3.3.3 Stetige Funktionen

Sei $f: I \to \mathbb{R}$ eine reelle Funktion und I ein offenes Intervall. Die Funktion f ist stetig bei $x_0 \in I$ gdw.

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{3.28}$$

Sind f, g stetige Funktion, so ist auch $g \circ f$ stetig.

Zwischenwertsatz: Sei $f:[a,b] \to \mathbb{R}$ eine stetige Funktion und sei a < b. Bei f(a) < f(b) gilt:

$$\forall y \in [f(a), f(b)] \ \exists x \in [a, b] : y = f(x).$$
 (3.29)

Bei f(a) > f(b) gilt:

$$\forall y \in [f(b), f(a)] \ \exists x \in [a, b] : y = f(x).$$
 (3.30)

3.4 Differentialrechnung

3.4.1 Differential quotient

Definition. Sei $U \subseteq \mathbb{R}$ ein offenes Intervall und sei $f: U \to \mathbb{R}$. Die Funktion f heißt differenzierbar an der Stelle $x_0 \in U$, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.31)

existiert. Dieser Grenzwert heißt Differential quotient oder Ableitung von f an der Stelle x_0 . Notation:

$$f'(x_0), \qquad (Df)(x_0), \qquad \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}.$$
 (3.32)

3.4.2 Ableitungsregeln

Sind f,g differenzierbare Funktionen und ist a eine reelle Zahl, so gilt

$$(af)'(x) = af'(x), \tag{3.33}$$

$$(f+g)'(x) = f'(x) + g'(x), (3.34)$$

$$(f-g)'(x) = f'(x) - g'(x), (3.35)$$

$$(fg)'(x) = f'(x)g(x) + g'(x)f(x), (3.36)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}.$$
 (3.37)

3.4.2.1 Kettenregel

Ist g differenzierbar an der Stelle x_0 und f differenzierbar an der Stelle $g(x_0)$, so ist $f \circ g$ differenzierbar an der Stelle x_0 und es gilt

$$(f \circ g)'(x_0) = (f' \circ g)(x_0) g'(x_0). \tag{3.38}$$

3.4.3 Tangente und Normale

Funktionsgleichung der Tangente an den Graphen von f an der Stelle x_0 :

$$T(x) = f(x_0) + f'(x_0)(x - x_0). (3.39)$$

Funktionsgleichung der Normale an den Graphen von f an der Stelle x_0 :

$$N(x) = f(x_0) + \frac{1}{f'(x_0)}(x - x_0). \tag{3.40}$$

3.4.3.1 Taylorreihe

Sei f eine an der Stelle a unendlich oft differenzierbare reelle Funktion.

Definition. Taylorreihe von f an der Stelle a:

$$f[a](x) := (\exp((x-a)D)f)(a)$$

$$= \sum_{k=0}^{\infty} \frac{(D^k f)(a)}{k!} \cdot (x-a)^k$$

$$= f(a) + f'(a) \cdot (x-a) + \frac{f''(a)}{2} \cdot (x-a)^2 + \dots$$
(3.41)

mit
$$f^{(k)}(a) = (D^k f)(a)$$
.

Für Polynomfunktionen und für exp, sin, cos gilt

$$\forall x \colon f[a](x) = f(x). \tag{3.42}$$

3.5 Integralrechnung

3.5.1 Regelfunktionen

Ist T eine Treppenfunktion mit $T(x) := t_k$ für $x \in$ (x_k, x_{k+1}) , so gilt:

$$\int_{a}^{b} T(x) dx = \sum_{k=0}^{n-1} (x_{k+1} - x_k) t_k.$$
 (3.43)

Definition. Eine Funktion $f:[a,b]\to\mathbb{R}$ heißt Regelfunktion, wenn es eine Folge von Treppenfunktionen gibt, die gleichmäßig gegen f konvergiert.

Ist (T_n) eine gleichmäßig gegen die Regelfunktion fkonvergente Folge von Treppenfunktionen, so gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} T_n(x) dx.$$
 (3.44)

Jede stückweise stetige Funktion ist eine Regelfunktion.

Stetige Funktionen

Sei $f: [a,b] \to \mathbb{R}$ eine stetige, monoton steigende Funktion mit $f(x) \geq 0$ auf dem gesamten Definitionsbereich.

$$\underline{A}_n = \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \frac{b-a}{n} \tag{3.45}$$

$$\overline{A}_n = \sum_{k=1}^n f\left(a + k\frac{b-a}{n}\right) \frac{b-a}{n} \tag{3.46}$$

Es gilt:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \underline{A}_{n} = \lim_{n \to \infty} \overline{A}_{n}.$$
 (3.47)

3.5.3 Hauptsatz

Definition. *Integral funktion*:

$$F(x) := \int_{a}^{x} f(x) \, \mathrm{d}x. \tag{3.48}$$

3.6 Skalarfelder

Sei $x := (x_k)_{k=1}^n$ und $a := (a_k)_{k=1}^n$. Sei $f : G \to \mathbb{R}$ wobei $G \subseteq \mathbb{R}^n$ eine offene Menge ist.

Partielle Ableitungen 3.6.1

Definition. Die partiellen Ableitungen von f an der Stelle $a \in G$ sind definiert durch

$$\frac{\partial f(x)}{\partial x_k} \Big|_{x=a} := \frac{\mathrm{d}f(a_1, \dots, t, \dots, a_n)}{\mathrm{d}t} \Big|_{t=a_k}
= \lim_{h \to 0} \frac{f(a_1, \dots, a_k + h, \dots, a_n) - f(a)}{h}.$$
(3.49)

Kurzschreibweisen:

$$(D_k f)(a), \quad (\partial_k f)(a).$$
 (3.50)

3.6.2 Gradient

Sei $(e_k)_{k=1}^n$ die kanonische Basis des \mathbb{R}^n . **Definition.** *Gradient* an der Stelle a:

$$(\nabla f)(a) := \sum_{k=1}^{n} e_k(D_k f)(a) = ((D_1 f)(a), \dots, (D_n f)(a)).$$
(3.51)

Formale Schreibweise:

$$\nabla := \sum_{k=1}^{n} e_k D_k. \tag{3.52}$$

Ist $(\nabla f)(x)$ stetig bei x = a, so ist f bei a differenzierbar.

3.6.2.1 **Tangentialraum**

Ist $f: G \to \mathbb{R}$ in einer Umgebung von $x_0 \in G$ differenzierbar, so existiert bei x_0 auf eindeutige Art ein Tangentialraum, der durch

$$T(x) = f(x_0) + \langle (\nabla f)(x_0), x - x_0 \rangle \tag{3.53}$$

beschrieben wird.

Richtungsableitung 3.6.3

Definition. Richtungsableitung an der Stelle a in Rich-

$$(D_v f)(a) := \frac{\mathrm{d}}{\mathrm{d}t} f(a+tv) \Big|_{t=0}$$

$$= \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h}.$$
(3.54)

Die partiellen Ableitungen sind die Richtungsableitungen bezüglich der Standardbasis (e_k) :

$$(D_{e_k}f)(a) = (D_kf)(a).$$
 (3.55)

Ist f an der Stelle a differenzierbar, so gilt:

$$(D_v f)(a) = \langle v, (\nabla f)(a) \rangle = \sum_{k=1}^n v_k(D_k f)(a). \quad (3.56)$$

Sind f, g an der Stelle a differenzierbar, so gilt dort:

$$D_v(f+g) = D_v f + D_v g, (3.57)$$

$$\forall r \in \mathbb{R} \colon D_v(rf) = rD_v f,\tag{3.58}$$

$$D_v(fg) = gD_v f + fD_v g, (3.59)$$

$$D_{v+w}f = D_v f + D_w f. (3.60)$$

Vektorfelder

Sei $f: G \to \mathbb{R}^m$ wobei $G \subseteq \mathbb{R}^n$ eine offene Menge ist. **Definition.** Jacobi-Matrix an der Stelle a:

$$(J[f](a))_{ij} := (D_i f_i)(a). \tag{3.61}$$

Schreibweisen:

$$J[f](a) = (Df)(a) = (\nabla \otimes f)^{T}(a)$$
(3.62)

und

$$J[f](x) = \frac{\partial f(x)}{\partial x} = \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}.$$
 (3.63)

3.7.1 Tangentialraum

Ist $f: (G \subseteq \mathbb{R}^n) \to \mathbb{R}^m$ bei $x_0 \in G$ differenzierbar, so gibt es dort einen Tangentialraum, der durch

$$T(x) = f(x_0) + (Df)(x_0)(x - x_0)$$
(3.64)

beschrieben wird.

3.7.2 Richtungsableitung

Definition. Richtungsableitung von f an der Stelle a:

$$(D_v f)(a) := \frac{\mathrm{d}}{\mathrm{d}t} f(a + tv) \Big|_{t=0}.$$
 (3.65)

Ist $f\colon (G\subseteq\mathbb{R}^n)\to\mathbb{R}^m$ be
i $a\in G$ differenzierbar, so gilt:

$$(D_v f)(a) = (\langle v, \nabla \rangle f)(a) = J[f](a) v, \tag{3.66}$$

kurz $D_v = \langle v, \nabla \rangle$.

3.8 Variationsrechnung

3.8.1 Fundamentallemma

Sei I := [a, b] kompakt und sei $g \colon I \to \mathbb{R}$ stetig. Wenn

$$\int_{a}^{b} g(x)h(x) \, \mathrm{d}x = 0 \tag{3.67}$$

für jede unendlich oft differenzierbare Funktion $h\colon I\to\mathbb{R}$ mit h(a)=h(b)=0 gilt, so ist g(x)=0 für alle x.

3.8.2 Euler-Lagrange-Gleichung

Sei I := [a, b] kompakt. Sei

$$F \colon I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \tag{3.68}$$

zweimal stetig differenzierbar. Gesucht ist eine zweimal stetig differenzierbare Funktion $f: I \to \mathbb{R}$ mit fixen Randwerten f(a) = A und f(b) = B, für die

$$J(f) := \int_{a}^{b} F(x, f(x), f'(x)) dx$$
 (3.69)

einen Extremwert annimmt.

Die Euler-Lagrange-Gleichung

$$\frac{\partial F(x, y, y')}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F(x, y, y')}{\partial y'} = 0 \tag{3.70}$$

mit y = f(x) und y' = f'(x) ist eine notwendige Bedingung dafür.

3.9 Fourier-Analysis

3.9.1 Fourierreihen

3.9.1.1 Fourier-Koeffizienten

Komplexe Fourier-Koeffizienten:

$$c_k[s] = \frac{1}{T} \int_{t_0}^{t_0+T} e^{-ki\omega t} s(t) dt.$$
 (3.71)

Nach Normierung $x := \omega t$, $f(x) := s(x/\omega)$:

$$c_k[f] = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-kix} f(x) dx.$$
 (3.72)

Es gilt (λ : eine Konstante):

$$c_k[f+g] = c_k[f] + c_k[g],$$
 (3.73)

$$c_k[\lambda f] = \lambda c_k[f]. \tag{3.74}$$

Reelle Fourier-Koeffizienten:

$$a_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \cos(k\omega t) \, s(t) \, dt,$$
 (3.75)

$$b_k[s] = \frac{2}{T} \int_{t_0}^{t_0+T} \sin(k\omega t) \, s(t) \, dt.$$
 (3.76)

Nach Normierung $x := \omega t$, $f(x) := s(x/\omega)$:

$$a_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) f(x) dx,$$
 (3.77)

$$b_k[f] = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(kx) f(x) dx.$$
 (3.78)

4 Lineare Algebra

4.1 Grundbegriffe

4.1.1 Norm

Definition. Eine Abbildung $v \mapsto ||v||$ von einem \mathbb{K} -Vektorraum V in die nichtnegativen reellen Zahlen heißt Norm, wenn für alle $v, w \in V$ und $a \in \mathbb{K}$ die drei Axiome

$$||v|| = 0 \implies v = 0, \tag{4.1}$$

$$||av|| = |a| \, ||v||, \tag{4.2}$$

$$||v + w|| \le ||v|| + ||w|| \tag{4.3}$$

erfüllt sind.

Eigenschaften:

$$||v|| = 0 \iff v = 0, \tag{4.4}$$

$$||-v|| = ||v||, \tag{4.5}$$

$$||v|| \ge 0. \tag{4.6}$$

Umgekehrte Dreiecksungleichung:

$$|||v|| - ||w||| \le ||v - w||. \tag{4.7}$$

4.1.2 Skalarprodukt

4.1.2.1 Axiome

Axiome für v,waus einem reellen Vektorraum und λ ein Skalar:

$$\langle v, w \rangle = \langle w, v \rangle, \tag{4.8}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.9}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.10}$$

$$\langle v, v \rangle \ge 0, \tag{4.11}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.12}$$

Axiome für v, w aus einem komplexen Vektorraum und λ ein Skalar:

$$\langle v, w \rangle = \overline{\langle w, v \rangle},\tag{4.13}$$

$$\langle \lambda v, w \rangle = \overline{\lambda} \langle v, w \rangle, \tag{4.14}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.15}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.16}$$

$$\langle v, v \rangle \ge 0,\tag{4.17}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.18}$$

4.1.2.2 Eigenschaften

Das reelle Skalarprodukt ist eine symmetrische bilineare Abbildung.

4.1.2.3 Winkel und Längen

Definition. Der Winkel φ zwischen v und w ist definiert durch die Beziehung:

$$\langle v, w \rangle = ||v|| \, ||w|| \cos \varphi. \tag{4.19}$$

Definition. Orthogonal:

$$v \perp w :\iff \langle v, w \rangle = 0. \tag{4.20}$$

Ein Skalarprodukt $\langle v, w \rangle$ induziert die Norm

$$||v|| := \sqrt{\langle v, v \rangle}. \tag{4.21}$$

4.1.2.4 Orthonormalbasis

Sei $B = (b_k)_{k=1}^n$ eine Basis eines endlichdimensionalen Vektorraumes.

Definition. Gilt $\langle b_i, b_j \rangle = 0$ für alle i, j mit $i \neq j$, so wird B Orthogonalbasis genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthogonalsystem.

Definition. Ist B eine Orthogonalbasis und gilt zusätzlich $\langle b_k, b_k \rangle = 1$ für alle k, so wird B Orthonormalbasis (ONB) genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthonormalsystem.

Sei $v = \sum_k v_k b_k$ und $w = \sum_k w_k b_k$. Mit \sum_k ist immer $\sum_{k=1}^n$ gemeint.

Ist B eine Orthonormalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \overline{v_k} \, w_k. \tag{4.22}$$

Ist B nur eine Orthogonalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \langle b_k, b_k \rangle \overline{v_k} \, w_k \tag{4.23}$$

Allgemein gilt:

$$\langle v, w \rangle = \sum_{i,j} g_{ij} \overline{v_i} w_j \tag{4.24}$$

mit $g_{ij} = \langle b_i, b_j \rangle$. In reellen Vektorräumen ist die komplexe Konjugation wirkungslos und kann somit entfallen. Ist B eine Orthogonalbasis und $v = \sum_k v_k b_k$, so gilt:

$$v_k = \frac{\langle b_k, v \rangle}{\langle b_k, b_k \rangle}. (4.25)$$

Ist B eine Orthonormalbasis, so gilt speziell:

$$v_k = \langle b_k, v \rangle. \tag{4.26}$$

4.1.2.5 Orthogonale Projektion

Orthogonale Projektion von v auf w:

$$P[w](v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w. \tag{4.27}$$

4.1.2.6 Gram-Schmidt-Verfahren

Für linear unabhängige Vektoren v_1, \ldots, v_n wird durch

$$w_k := v_k - \sum_{i=1}^{k-1} P[w_i](v_k)$$
(4.28)

ein Orthogonalsystem w_1, \ldots, w_n berechnet.

Speziell für zwei nicht kollineare Vektoren v_1, v_2 gilt

$$w_1 = v_1, (4.29)$$

$$w_2 = v_2 - P[w_1](v_2). (4.30)$$

4.2 Matrizen

4.2.1 Quadratische Matrizen

Eine quadratiche Matrix $A=(a_{ij})$ heißt symmetrisch, falls gilt $a_{ij}=a_{ji}$ bzw. $A^T=A$.

Jede reelle symmetrische Matrix besitzt ausschließlich reelle Eigenwerte und die algebraischen Vielfachheiten stimmen mit den geometrischen Vielfachheiten überein.

Jede reelle symmetrische Matrix A ist diagonalisierbar, d. h. es gibt eine invertierbare Matrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$ gilt.

Sei V ein K-Vektorraum und $(b_k)_{k=1}^n$ eine Basis von V. Für jede symmetrische Bilinearform $f\colon V^2\to K$ ist die Darstellungsmatrix

$$A = (f(b_i, b_j)) \tag{4.31}$$

symmetrisch. Ist $A \in K^{n \times n}$ eine symmetrische Matrix, so ist

$$f(x,y) = x^T A y. (4.32)$$

eine symmetrische Bilinearform für $x, y \in K^n$. Ist $K = \mathbb{R}$ und A positiv definit, so ist (4.32) ein Skalarprodukt auf \mathbb{R}^n .

4.2.2 Determinanten

Für Matrizen $A, B \in K^{n \times n}$ und $r \in K$ gilt:

$$\det(AB) = \det(A)\det(B),\tag{4.33}$$

$$\det(A^T) = \det(A), \tag{4.34}$$

$$\det(rA) = r^n \det(A), \tag{4.35}$$

$$\det(A^{-1}) = \det(A)^{-1}. (4.36)$$

Für eine Diagonalmatrix $D = diag(d_1, \ldots, d_n)$ gilt:

$$\det(D) = \prod_{k=1}^{n} d_k. \tag{4.37}$$

Eine linke Dreiecksmatrix ist eine Matrix der Form (a_{ij}) mit $a_{ij} = 0$ für i < j. Eine rechte Dreiecksmatrix ist die Transponierte einer linken Dreiecksmatrix.

Für eine linke oder rechte Dreiecksmatrix $A = (a_{ij})$ gilt:

$$\det(A) = \prod_{k=1}^{n} a_{kk}.$$
 (4.38)

4.2.3 Eigenwerte

Eigenwertproblem: Für eine gegebene quadratische Matrix A bestimme

$$\{(\lambda, v) \mid Av = \lambda v, \ v \neq 0\}. \tag{4.39}$$

Das homogene lineare Gleichungssystem

$$Av = \lambda v \iff (A - \lambda E_n)v = 0 \tag{4.40}$$

besitzt Lösungen $v \neq 0$ gdw.

$$p(\lambda) = \det(A - \lambda E_n) = 0. \tag{4.41}$$

Bei $p(\lambda)$ handelt es sich um ein normiertes Polynom vom Grad n, das charakeristisches Polynom genannt wird.

Eigenraum:

$$\operatorname{Eig}(A,\lambda) := \{ v \mid Av = \lambda v \}. \tag{4.42}$$

Die Dimension dim $\mathrm{Eig}(A,\lambda)$ wird geometrische Vielfachheit von λ genannt.

Spektrum:

$$\sigma(A) := \{ \lambda \mid \exists v \neq 0 \colon Av = \lambda v \}. \tag{4.43}$$

4.3 Lineare Gleichungssysteme

Ein lineares Gleichungssystem mit m Gleichungen und n Unbekannten hat die Form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$(4.44)$$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n.$

Das System lässt sich durch

$$A := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \dots & a_{mn} \end{bmatrix}$$
(4.45)

und

$$x := \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b := \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$(4.46)$$

zusammenfassen.

Äquivalente Matrixform von (4.44):

$$Ax = b. (4.47)$$

Erweiterte Koeffizientenmatrix:

$$(A \mid b) := \begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_n \end{bmatrix}. \tag{4.48}$$

Lösungskriterium:

$$\exists x [Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b). \tag{4.49}$$

Eindeutige Lösung (bei n Unbekannten):

$$\exists ! x [Ax = b] \iff \operatorname{rg}(A) = \operatorname{rg}(A \mid b) = n. \tag{4.50}$$

Im Fall m = n gilt:

$$\exists! x[Ax = b] \iff A \in GL(n, K)$$

$$\iff \operatorname{rg}(A) = n \iff \det(A) \neq 0.$$
(4.51)

4.4 Multilineare Algebra

4.4.1 Äußeres Produkt

Sei V ein Vektorraum und sei $v_k \in V$ für alle k.

Sind $a = \sum_{k=1}^{n} a_k v_k$ und $b = \sum_{k=1}^{n} b_k v_k$ beliebige Linearkombinationen, so gilt

$$a \wedge b = \sum_{i,j} a_i b_j \, v_i \wedge v_j$$

$$= \sum_{1 \le i < j \le n} (a_i b_j - a_j b_i) \, v_i \wedge v_j$$

$$(4.52)$$

und

$$a \wedge b = a \otimes b - b \otimes a$$

$$= \sum_{i,j} (a_i b_j - a_j b_i) v_i \otimes v_j$$

$$= \sum_{i,j} a_i b_j (v_i \otimes v_j - v_j \otimes v_i).$$
(4.53)

4.4.1.1 Alternator

Für $a_k \in V$ ist $\mathrm{Alt}_p \colon T^p(V) \to A^p(V) \subseteq T^p(V)$ mit

$$\operatorname{Alt}_{p}(a_{1} \otimes \ldots \otimes a_{p})$$

$$:= \frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \left(a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(p)} \right). \tag{4.54}$$

Es ist $\Lambda^p(V)$ isomorph zu $A^p(V)$ und man setzt:

$$a_1 \wedge \ldots \wedge a_p = p! \operatorname{Alt}_p(a_1 \otimes \ldots \otimes a_p).$$
 (4.55)

Speziell gilt

$$Alt_2(a \otimes b) := \frac{1}{2}(a \otimes b - b \otimes a). \tag{4.56}$$

und

$$a \wedge b = 2\operatorname{Alt}_2(a \otimes b). \tag{4.57}$$

4.4.1.2 Äußere Algebra

Darstellung als Quotientenraum:

$$\Lambda^{2}(V) = T^{2}(V) / \{ v \otimes v \mid v \in V \}. \tag{4.58}$$

Dimension: Ist $\dim(V) = n$, so gilt

$$\dim(\Lambda^k(V)) = \binom{n}{k}.$$
(4.59)

4.5 Analytische Geometrie

4.5.1 Geraden

4.5.1.1 **Parameterdarstellung**

Punktrichtungsform:

$$p(t) = p_0 + t\underline{v},\tag{4.60}$$

 p_0 : Stützpunkt, \underline{v} : Richtungsvektor. Die Gerade ist dann die Menge $g = \{p(t) \mid t \in \mathbb{R}\}.$

Der Vektor \underline{v} repräsentiert außerdem die Geschwindigkeit, mit der diese Parameterdarstellung durchlaufen wird: $p'(t) = \underline{v}$.

Gerade durch zwei Punkte: Sind zwei Punkte p_1, p_2 mit $p_1 \neq p_2$ gegeben, so ist durch die beiden Punkte eine Gerade gegeben. Für diese Gerade ist

$$p(t) = p_1 + t(p_2 - p_1) (4.61)$$

eine Punktrichtungsform. Durch Umformung ergibt sich die Zweipunkteform:

$$p(t) = (1 - t)p_1 + tp_2. (4.62)$$

Bei (4.62) handelt es sich um eine Affinkombination. Gilt $t \in [0,1]$, so ist (4.62) eine Konvexkombination: eine Parameterdarstellung für die Strecke von p_1 nach p_2 .

4.5.1.2 Parameterfreie Darstellung

Hesse-Form:

$$q = \{ p \mid \langle n, p - p_0 \rangle = 0 \}, \tag{4.63}$$

 p_0 : Stützpunkt, n: Normalenvektor.

Die Hesse-Form ist nur in der Ebene möglich. Form (4.63) hat in Koordinaten die Form

$$g = \{(x,y) \mid n_x(x-x_0) + n_y(y-y_0) = 0\}$$

= \{(x,y) \left| n_xx + n_yy = n_xx_0 + n_yy_0\}. (4.64)

Hesse-Normalform: (4.63) mit |n| = 1.

Sei $v \wedge w$ das äußere Produkt.

Plückerform:

$$g = \{ p \mid (p - p_0) \land \underline{v} = 0 \}. \tag{4.65}$$

Die Größe $m = p_0 \wedge v$ heißt Moment. Beim Tupel (v:m)handelt es sich um Plückerkoordinaten für die Gerade.

In der Ebene gilt speziell:

$$g = \{(x,y) \mid (x - x_0)\Delta y = (y - y_0)\Delta x\}$$
 (4.66)

mit $\underline{v} = (\Delta x, \Delta y)$.

Sei $a := \Delta y$ und $b := -\Delta x$ und $c := ax_0 + by_0$. Aus (4.66) ergibt sich:

$$g = \{(x, y) \mid ax + by = c\}. \tag{4.67}$$

Im Raum ergibt sich ein Gleichungssystem:

$$g = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{vmatrix} (x - x_0)\Delta y = (y - y_0)\Delta x \\ (y - y_0)\Delta z = (z - z_0)\Delta y \\ (x - x_0)\Delta z = (z - z_0)\Delta x \end{vmatrix} \right\}$$
(4.68)

mit $v = (\Delta x, \Delta y, \Delta z)$.

4.5.1.3 Abstand Punkt zu Gerade

Sei $p(t) := p_0 + tv$ die Punktrichtungsform einer Geraden und sei q ein weiterer Punkt. Bei $\underline{d}(t) := p(t) - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von t.

Ansatz: Es gibt genau ein t, so dass gilt:

$$\langle \underline{d}, \underline{v} \rangle = 0. \tag{4.69}$$

Lösung:

$$t = \frac{\langle \underline{v}, q - p_0 \rangle}{\langle \underline{v}, \underline{v} \rangle}.$$
 (4.70)

4.5.2 Ebenen

4.5.2.1 **Parameterdarstellung**

Seien u, v zwei nicht kollineare Vektoren.

Punktrichtungsform:

$$p(s,t) = p_0 + s\underline{u} + t\underline{v}. \tag{4.71}$$

4.5.2.2 Parameterfreie Darstellung

Seien $\underline{v},\underline{w}$ zwei nicht kollineare Vektoren. Durch

$$E = \{ p \mid (p - p_0) \land v \land w = 0 \}. \tag{4.72}$$

wird eine Ebene beschrieben.

Hesse-Form:

$$E = \{ p \mid \langle \underline{n}, p - p_0 \rangle = 0 \}, \tag{4.73}$$

 p_0 : Stützpunkt, \underline{n} : Normalenvektor. Die Hesse-Form einer Ebene ist nur im dreidimensionalen Raum möglich. Den Normalenvektor bekommt man aus (4.71) mit $\underline{n} = \underline{u} \times \underline{v}$.

4.5.2.3 Abstand Punkt zu Ebene

Sei $p(s,t) := p_0 + s\underline{u} + t\underline{v}$ die Punktrichtungsform einer Ebene und sei q ein weiterer Punkt. Bei d(s,t) := p - qhandelt es sich um den Abstandsvektor in Abhängigkeit von (s,t).

Ansatz: Es gibt genau ein Tupel (s, t), so dass gilt:

$$\langle \underline{d}, \underline{u} \rangle = 0 \text{ und } \langle \underline{d}, \underline{v} \rangle = 0.$$
 (4.74)

Lösung: Es ergibt sich ein LGS:

$$\begin{bmatrix} \langle \underline{u}, \underline{v} \rangle & \langle \underline{v}, \underline{v} \rangle \\ \langle \underline{v}, \underline{v} \rangle & \langle \underline{u}, \underline{v} \rangle \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} \langle \underline{v}, q - p_0 \rangle \\ \langle \underline{u}, q - p_0 \rangle \end{bmatrix}. \tag{4.75}$$

Bemerkung: Die Systemmatrix g_{ij} ist der metrische Tensor für die Basis $B = (\underline{u}, \underline{v})$. Die Lösung des LGS ist:

$$s = \frac{\langle g_{12}\underline{v} - g_{12}\underline{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},$$

$$t = \frac{\langle g_{12}\underline{u} - g_{12}\underline{v}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2}.$$
(4.76)

$$t = \frac{\langle g_{12}\underline{u} - g_{12}\underline{v}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2}.$$
 (4.77)

Differentialgeometrie 5

5.1 Kurven

5.1.1 **Parameterkurven**

Definition. Sei X ein topologischer Raum und I ein reelles Intervall, auch offen oder halboffen, auch unbeschränkt. Eine stetige Funktion

$$f: I \to X$$
 (5.1)

heißt Parameterdarstellung einer Kurve, kurz Parameterkurve. Die Bildmenge f(I) heißt Kurve.

Eine Parameterdarstellung mit einem kompakten Intervall I = [a, b] heißt Weg.

Für einen Weg mit I = [a, b] heißt f(a) Anfangspunkt und f(b) Endpunkt. Ein Weg mit f(a) = f(b)heißt geschlossen. Ein Weg, dessen Einschränkung auf [a,b] injektiv ist, heißt einfach, auch doppelpunktfrei oder Jordan-Weg.

Bsp. für einen einfachen geschlossenen Weg:

$$f(t) := \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}, \quad f : [0, 2\pi] \to \mathbb{R}^2.$$
 (5.2)

Die Kurve ist der Einheitskreis.

Bsp. für einen geschlossenen Weg mit Doppelpunkt:

$$f(t) := \begin{bmatrix} 2\cos t \\ \sin(2t) \end{bmatrix}, \quad f \colon [0, 2\pi] \to \mathbb{R}^2.$$
 (5.3)

Die Kurve ist eine Achterschleife.

5.1.2 Differenzierbare Parameterkurven

Definition. Eine Parameterkurve $f:(a,b)\to\mathbb{R}^n$ heißt $\operatorname{differenzierbar},$ wenn die Ableitung f'(t) an jeder Stelle t existiert. Die Ableitung f'(t) wird Tangentialvektor an die Kurve an der Stelle t genannt.

Ein C^k -Kurve ist ein Parameterkurve, dessen k-te Ableitung eine stetige Funktion ist. Ein unendlich oft differenzierbare Parameterkurve heißt glatt.

Eine Parameterkurve heißt regulär, wenn:

$$\forall t \colon f'(t) \neq 0. \tag{5.4}$$

Koordinatensysteme 5.2

5.2.1 Polarkoordinaten

Polarkoordinaten r, φ sind gegeben durch die Abbildung

$$\begin{bmatrix} x \\ y \end{bmatrix} = f(r, \varphi) := \begin{bmatrix} r \cos \varphi \\ r \sin \varphi \end{bmatrix}$$
 (5.5)

mit r > 0 und $0 \le \varphi < 2\pi$.

Umkehrabbildung für $(x, y) \neq (0, 0)$:

$$\begin{bmatrix} r \\ \varphi \end{bmatrix} = f^{-1}(x, y) = \begin{bmatrix} r \\ s(y)\arccos\left(\frac{x}{r}\right) \end{bmatrix}$$
 (5.6)

 $mit r = \sqrt{x^2 + y^2}$

und s(y) = sgn(y) + 1 - |sgn(y)|.

Jacobi-Determinante:

$$\det J = \det((Df)(r,\varphi)) = r.$$

Darstellung des metrischen Tensors in Polarkoordinaten:

$$(g_{ij}) = J^T J = \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix}. \tag{5.8}$$

5.3 Mannigfaltigkeiten

Grundbegriffe 5.3.1

Definition. Seien U, V offene Mengen. Eine Abbildung

$$\varphi \colon (U \subseteq \mathbb{R}^n) \to (V \subseteq \mathbb{R}^m) \tag{5.9}$$

heißt regulär, wenn

$$\forall u \in U \colon \operatorname{rg}((D\varphi)(u)) = \min(m, n) \tag{5.10}$$

gilt. Mit $(D\varphi)(u)$ ist dabei die Jacobi-Matrix an der Stelle u gemeint:

$$((D\varphi)(u))_{ij} := \frac{\partial \varphi_i(u)}{\partial u_i}.$$
 (5.11)

Für $(D\varphi)(u) \colon \mathbb{R}^n \to \mathbb{R}^m$ gilt:

$$n \ge m \implies \forall u : (D\varphi)(u) \text{ ist surjektiv},$$
 (5.12)

$$n < m \implies \forall u : (D\varphi)(u) \text{ ist injektiv.}$$
 (5.13)

Definition. Sei $m, n \in \mathbb{N}, n < m$ und sei $M \subseteq \mathbb{R}^m$. Eine Abbildung φ von einer offenen Menge $U' \subseteq \mathbb{R}^n$ in eine offene Menge $U\subseteq M$ heißt Karte, wenn φ ein Homöomorphismus und $\varphi\colon U'\to\mathbb{R}^m$ eine reguläre Abbildung ist. Ist U eine offene Umgebung von $p \in M$, so heißt φ lokale Karte bezüglich p.

Definition. Sei $m, n \in \mathbb{N}, n < m$. Eine Menge $M \subseteq$ \mathbb{R}^m heißt n-dimensionale Untermannigfaltigkeit des \mathbb{R}^m , wenn es zu jedem Punkt $p \in M$ eine lokale Karte

$$\varphi \colon (U' \subseteq R^n) \to (U \subseteq M \subseteq \mathbb{R}^m) \tag{5.14}$$

gibt.

Definition. Ein Atlas für eine Mannigfaltigkeit M ist eine Menge von Karten, deren Bildmengen M überdecken.

Sei M eine glatte Mannigfaltigkeit.

Definition. Eine Abbildung $f: M \to \mathbb{R}$ ist (k mal) (stetig) differenzierbar gdw. für jede Karte $\varphi \colon U' \to (U \subseteq M)$ das Kompositum $f \circ \varphi$ (k mal) (stetig) differenzierbar ist. Es genügt der Nachweis für alle Karten aus einem Atlas.

Seien M, N zwei glatte Mannigfaltigkeiten.

Definition. Eine Abbildung $f: M \to N$ heißt glatt gdw. für alle Karten $\varphi \colon U' \to (U \subseteq M)$ und $\psi \colon V' \to (V \subseteq N)$ das Kompositum $\psi^{-1} \circ f \circ \varphi$ eine glatte Abbildung ist. Es genügt bereits der Nachweis für alle Karten aus jeweils einem Atlas für M und N.

5.3.2 Vektorfelder

5.3.2.1 **Tangentialräume**

Definition. Tangentialbündel:

$$TM := \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{p\} \times T_p M. \tag{5.15}$$

 $Kotangential b\"{u}ndel:$

$$T^*M := \bigsqcup_{p \in M} T_p^*M, \tag{5.16}$$

(5.7)

wobei T_p^*M eine andere Schreibweise für $(T_pM)^*$ ist. Natürliche Projektion:

$$\pi(p,v) := p, \quad \pi \colon TM \to M. \tag{5.17}$$

Das Tangentialbündel einer glatten Mannigfaltigkeit ist eine glatte Mannigfaltigkeit.

5.3.2.2 Christoffel-Symbole

Sei (M,g)eine pseudo-riemannsche Mannigfaltigkeit. Es gilt:

$$\Gamma_{ab}^{k} = \frac{1}{2} g^{kc} (\partial_{a} g_{bc} + \partial_{b} g_{ac} - \partial_{c} g_{ab}), \qquad (5.18)$$

$$\Gamma_{cab} = \frac{1}{2} (\partial_{a} g_{bc} + \partial_{b} g_{ac} - \partial_{c} g_{ab}), \qquad (5.19)$$

$$\Gamma_{cab} = \frac{1}{2} (\partial_a g_{bc} + \partial_b g_{ac} - \partial_c g_{ab}), \tag{5.19}$$

$$\partial_a g_{bc} = \Gamma_{bac} + \Gamma_{cab}, \tag{5.20}$$

$$\Gamma^k_{ab} = \Gamma^k_{ba}. (5.21)$$

6 Dynamische Systeme

6.1 Grundbegriffe

Definition. Ein Tupel (T, M, Φ) mit $\Phi: T \times M \to M$ heißt *dynamisches System*, wenn für alle $t_1, t_2 \in T$ und $x \in M$ gilt:

$$\Phi(0, x) = x,\tag{6.1}$$

$$\Phi(t_2, \Phi(t_1, x)) = \Phi(t_1 + t_2, x). \tag{6.2}$$

Die Menge T heißt Zeitraum. Ein System mit $T=\mathbb{N}_0$ oder $T=\mathbb{Z}$ heißt zeitdiskret, eines mit $T=\mathbb{R}_0^+$ oder $T=\mathbb{R}$ heißt zeitkontinuierlich. Ein System mit $T=\mathbb{Z}$ oder $T=\mathbb{R}$ heißt invertierbar.

Die Menge M heißt Zustandsraum, ihre Elemente werden $Zust \ddot{a}nde$ genannt.

Für ein invertierbares System handelt es sich bei Φ um eine Gruppenaktion (s. 8.1.2) der additiven Gruppe (T, +).

Die Menge

$$\Phi(T,x):=\{\Phi(t,x)\mid t\in T\} \tag{6.3}$$

heißt Orbit von x. S. a. (8.7).

7 Kombinatorik

7.1 Kombinatorische Funktionen

7.1.1 Faktorielle

7.1.1.1 Fakultät

Definition. Für $n \in \mathbb{Z}, n \geq 0$:

$$n! := \prod_{k=1}^{n} k. \tag{7.1}$$

Rekursionsgleichung:

$$(n+1)! = n! (n+1) \tag{7.2}$$

Die Gammafunktion ist eine Verallgemeinerung der Fakultät:

$$n! = \Gamma(n+1). \tag{7.3}$$

7.1.1.2 Fallende Faktorielle

Definition. Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\underline{k}} := \prod_{i=0}^{k-1} (a-j). \tag{7.4}$$

Für $a, k \in \mathbb{C}$:

$$a^{\underline{k}} := \lim_{x \to a} \frac{\Gamma(x+1)}{\Gamma(x-k+1)}.$$

Für $n \ge k$ und $k \ge 0$ gilt

$$n^{\underline{k}} = \frac{n!}{(n-k)!}.$$

7.1.1.3 Steigende Faktorielle

Definition. Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\overline{k}} := \prod_{j=0}^{k-1} (a+j).$$

Für $a, k \in \mathbb{C}$:

$$a^{\overline{k}} := \lim_{x \to a} \frac{\Gamma(x+k)}{\Gamma(x)}.$$

Für $n \ge 1$ und $n + k \ge 1$ gilt:

$$n^{\overline{k}} = \frac{(n+k-1)!}{(n-1)!}.$$

7.1.2 Binomialkoeffizienten

Definition. Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$:

$$\begin{pmatrix} a \\ k \end{pmatrix} := \begin{cases} \frac{a^{\underline{k}}}{k!} & \text{wenn } k > 0, \\ 1 & \text{wenn } k = 0, \\ 0 & \text{wenn } k < 0. \end{cases}$$
 (7.10)

Für $a, b \in \mathbb{C}$:

$$\begin{pmatrix} a \\ b \end{pmatrix} := \lim_{x \to a} \lim_{y \to b} \frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}. \tag{7.11}$$

Für $0 \le k \le n$ gilt die Symmetriebeziehung

$$\binom{n}{k} = \binom{n}{n-k} \tag{7.12}$$

und die Rekursionsgleichung

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.$$
 (7.13)

Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$ gilt:

$$\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}.$$
 (7.14)

7.2 Differenzenrechnung

Definition. Vorwärtsdifferenz:

$$(\Delta f)(x) := f(x+1) - f(x), \tag{7.15}$$

$$(\Delta_h f)(x) := f(x+h) - f(x). \tag{7.16}$$

 $R\ddot{u}ckw\ddot{a}rtsdifferenz$:

$$(\nabla_h f)(x) := f(x) - f(x - h).$$
 (7.17)

Für $n \in \mathbb{N}_0$ und $x \in \mathbb{C}$ gilt:

$$\Delta(x^{\underline{n}}) = nx^{\underline{n-1}}. (7.18)$$

Die Formel gilt auch für $n \in \mathbb{C}$, dann aber $x \in \mathbb{C} \setminus \{k \in \mathbb{Z} \mid k < 0\}$, da auf dem Streifen unter Umständen Polstellen sind.

Für $n \in \mathbb{Z}, n \geq 0$ gilt:

$$\sum_{x=a}^{b-1} x^{\underline{n}} = \frac{1}{n+1} \left[x^{\underline{n+1}} \right]_{x=a}^{x=b}.$$
 (7.19)

(7.6) Die Formel gilt auch für $a, b \ge 0$ und $n \in \mathbb{C} \setminus \{-1\}$. Für a > 0 und $x \in \mathbb{C}$ gilt:

$$\Delta(a^x) = (a-1)a^x. \tag{7.20}$$

7.3 Formale Potenzreihen

(7.7) **7.3.1** Binomische Reihe

Definition. Für $a \in \mathbb{C}$:

$$(1+X)^a := \sum_{k=0}^{\infty} {a \choose k} X^k \tag{7.21}$$

Es gilt:

$$(1+X)^{a+b} = (1+X)^a (1+X)^b (7.22)$$

(7.9) und

(7.8)

(7.5)

$$(1+X)^{ab} = ((1+X)^a)^b. (7.23)$$

8 Algebra

8.1 Gruppentheorie

8.1.1 Grundbegriffe

Definition. Sind (G,*) und (H,\bullet) zwei Gruppen, so heißt $\varphi\colon G\to H$ Gruppenhomomorphismus , wenn

$$\forall g_1, g_2 \in G \colon \varphi(g_1 * g_2) = \varphi(g_1) \bullet \varphi(g_2) \tag{8.1}$$

gilt.

Definition. Direktes Produkt:

$$G \times H := \{ (g, h) \mid g \in G, h \in H \},$$
 (8.2)

$$(g_1, h_1) * (g_2, h_2) := (g_1 * g_2, h_1 * h_2).$$
 (8.3)

Satz von Lagrange. Für Gruppen G, H gilt:

$$H \le G \implies |G| = |G/H| \cdot |H|.$$
 (8.4)

8.1.2 Gruppenaktionen

Definition. Eine Funktion $f: G \times X \to X$ heißt *Gruppenaktion*, wenn

$$\forall g_1, g_2 \in G, x \in X : f(g_1, f(g_2, x)) = f(g_1 g_2, x), \quad (8.5)$$

$$\forall x \in X \colon f(e, x) = x \tag{8.6}$$

gilt, wobei mit e das neutrale Element von G gemeint ist. Anstelle von f(g,x) wird üblicherweise kurz gx (oder g+x bei einer Gruppe (G,+)) geschrieben.

Definition. Für ein $x \in X$ wird

$$Gx := \{ gx \mid g \in G \} \tag{8.7}$$

Bahn oder Orbit genannt. Die Menge

$$G_x := \{ g \in G \mid gx = x \} \tag{8.8}$$

wird Fixgruppe oder Stabilisator genannt. Die Menge

$$X^g := \{ x \in X \mid qx = x \} \tag{8.9}$$

heißt Fixpunktmenge.

Fixgruppen sind immer Untergruppen:

$$\forall x \colon G_x \le G. \tag{8.10}$$

Bahnen sind Äquivalenzklassen, die Quotientenmenge

$$X/G := \{Gx \mid x \in X\} \tag{8.11}$$

wird Bahnenraum genannt.

Bahnformel. Ist G eine endliche Gruppe, so gilt:

$$|G| = |Gx| \cdot |G_x|. \tag{8.12}$$

Lemma von Burnside. Ist G eine endliche Gruppe, so gilt:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|. \tag{8.13}$$

8.2 Ringe

Ist R ein Ring, so gilt für alle $a \in R$:

$$(-a) a = -a^2, (-a)^2 = a^2.$$
 (8.14)

8.2.1 Polynome

Für zwei Polynome $f, g \in R[X_1, \dots, X_n]$ gilt:

$$\deg(f+g) \le \max(\deg f, \deg g),\tag{8.15}$$

$$\deg(fg) \le (\deg f)(\deg g). \tag{8.16}$$

Für zwei Polynome f, g mit $\deg f \neq \deg g$ gilt:

$$\deg(f+g) = \max(\deg f, \deg g). \tag{8.17}$$

Ist R ein Integritätsring, so gilt für $f, g \in R[X_1, \dots, X_n]$:

$$\deg(fg) = (\deg f)(\deg g). \tag{8.18}$$

Seien R,S kommutative unitäre Ringe, sei $R\subseteq S$ und sei $r\in S$. Die Funktion $\varphi_r\colon R[X]\to S$ mit

$$\varphi_r(\sum_{k=0}^n a_k X^k) := \sum_{k=0}^n a_k r^k \tag{8.19}$$

ist ein Ringhomomorphismus und wird ${\it Einsetzungshomomorphismus}$ genannt.

8.3 Körper

Definition. Sind $(K,+,\bullet)$ und $(K',+',\bullet')$ Körper, so wird $\varphi\colon K\to K'$ als Körperhomomorphismus bezeichnet, wenn

$$\varphi(a+b) = \varphi(a) +' \varphi(b), \tag{8.20}$$

$$\varphi(a \bullet b) = \varphi(a) \bullet' \varphi(b) \tag{8.21}$$

für alle $a, b \in K$ gilt und $\varphi(1) = 1$ ist.

9 Anhang

9.1 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Е О П	$ \begin{array}{c} \nu \\ \xi \\ o \\ \pi \end{array} $	Ny Xi Omikron Pi
$\begin{array}{c} E\\ Z\\ H\\ \Theta \end{array}$	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$egin{array}{c} arrho \ \sigma \ arrho \ arrho \end{array}$	Rho Sigma Tau Ypsilon
Ι Κ Λ Μ	$egin{array}{c} \iota & & \ \kappa & & \ \lambda & & \ \mu & & \end{array}$	Jota Kappa Lambda My	Φ Χ Ψ Ω	$\varphi \\ \chi \\ \psi \\ \omega$	Phi Chi Psi Omega

9.2 Frakturbuchstaben

A a B b C c D d	A a	O o	Oo
	B b	P p	Pp
	C c	Q q	Qq
	D d	R r	Rr
$\begin{array}{c} E \ e \\ F \ f \\ G \ g \\ H \ h \end{array}$	E e	S s	S 5
	F f	T t	T t
	G g	U u	U u
	H	V v	V v
I i	I i	$\begin{array}{ccc} W \ w \\ X \ x \\ Y \ y \\ Z \ z \end{array}$	Ww
J j	I j		Xr
K k	K t		Yy
L l	L l		J
М m N n	M m N n		

9.3 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3{,}14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl $e = 2{,}71828\ 18284\ 59045\ 23536\ 02874\ 71352\dots$
- 3. Euler-Mascheroni-Konstante $\gamma = 0{,}57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1+\sqrt{5})/2$ $\varphi = 1,61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4,66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2{,}50290~78750~95892~82228~39028~73218\ldots$

9.4 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum c=299792 458 m/s
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8,854~187~817~620~39\times 10^{-12}~\mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{H/m}$
- 4. Elementar ladung $e = 1,602\ 176\ 6208\ (98) \times 10^{-19}\ {\rm C}$
- 5. Gravitationskonstante $G = 6,674~08~(31)\times 10^{-11}~{\rm m}^3/({\rm kg}\,{\rm s}^2)$
- 6. Avogadro-Konstante $N_A = 6,022~140~857~(74) \times 10^{23}/\text{mol}$
- 7. Boltzmann-Konstante $k_B = 1{,}380~648~52~(79) \times 10^{-23}~{\rm J/K}$
- 8. Universelle Gaskonstante R = 8.314 4598 (48) J/(mol K)
- 9. Plancksches Wirkungsquantum $h=6{,}626$ 070 040 (81) × $10^{-34}\,\mathrm{Js}$
- 10. Reduziertes planksches Wirkungsquantum $\hbar = 1,054$ 571 800 (13) × 10^{-34} Js
- 11. Masse des Elektrons $m_e = 9{,}109~383~56~(11)\times 10^{-31}\,\mathrm{kg}$
- 12. Masse des Neutrons $m_n = 1{,}674\ 927\ 471\ (21)\times 10^{-27}\ \mathrm{kg}$
- 13. Masse des Protons $m_p = 1,672~621~898~(21) \times 10^{-27}~{\rm kg}$

26 KAPITEL 9. ANHANG

9.5 Einheiten

9.5.1 Vorsätze

Vorsatz	Faktor	Zahlwort
Exa E	10^{18}	Trillion
Peta P	10^{15}	Billiarde
Tera T	10^{12}	Billion
Giga G	10^{9}	Milliarde
Mega M	10^{6}	Million
Kilo k	10^{3}	Tausend
Hekto h	10^{2}	Hundert
Deka da	10^{1}	Zehn
Dezi d	10^{-1}	Zehntel
Zenti c	10^{-2}	Hunderstel
Milli m	10^{-3}	Tausenstel
Mikro μ	10^{-6}	Millionstel
Nano n	10^{-9}	Milliardstel
Pico p	10^{-12}	Billionstel
Femto f	10^{-15}	Billiardstel
Atto a	10^{-18}	Trillionstel

Bin	ärpi	äfixe

Vorsa	Faktor			
Yobi	Yi	2^{80}		
Zebi	Zi	2^{70}		
Exbi	Ei	2^{60}		
Pebi	Pi	2^{50}		
Tebi	Ti	2^{40}		
Gibi	$_{\mathrm{Gi}}$	2^{30}		
Mebi	Mi	2^{20}		
Kibi	Ki	2^{10}		
		ı		

9.5.2 SI-System

Newton (Kraft):

$$N = kg m/s^2. (9.1)$$

Watt (Leistung):

$$W = kg m^2/s^3 = VA.$$
 (9.2)

Joule (Energie):

$$J = kg m^2/s^2 = Nm = Ws = VAs.$$
 (9.3)

Pascal (Druck):

$$Pa = N/m^2 = 10^{-5} bar.$$
 (9.4)

Hertz (Frequenz):

$$Hz = 1/s. (9.5)$$

Coulomb (Ladung):

$$C = As. (9.6)$$

Volt (Spannung):

$$V = kg \, m^2 / (A \, s^3) \tag{9.7}$$

Tesla (magnetische Flussdichte):

$$T = N/(A m) = Vs/m^2.$$
 (9.8)

9.5.3 Nicht-SI-Einheiten

Einheit	Symbol	Umrechnung			
Zeit:					
Minute	min	$= 60 \mathrm{s}$			
Stunde	h	= 60 min = 3600 s			
Tag	d	$= 24 \mathrm{h} = 86400 \mathrm{s}$			
Jahr	a	$= 356,25 \mathrm{d}$			
Druck:					
bar	bar	$= 10^5 \mathrm{Pa}$			
$_{ m mmHg}$	mmHg	= 133,322 Pa			
Fläche:					
Ar	a	$= 100 \mathrm{m}^2$			
Hektar	ha	$= 100 \mathrm{a} = 10000 \mathrm{m}^2$			
Masse:					
Tonne	t	= 1000 kg			
Länge:					
Liter	L	$= 10^{-3} \mathrm{m}^3$			

9.5.4 Britische Einheiten

Einheit	Abk.	Umrechnung
inch	in.	= 2,54 cm
foot	ft.	$= 12 \mathrm{in.} = 30,48 \mathrm{cm}$
yard	yd.	= 3 ft. = 91,44 cm
$\overset{\circ}{\mathrm{chain}}$	ch.	$= 22 \mathrm{yd.} = 20{,}1168 \mathrm{m}$
6 1		10.1
furlong	fur.	$= 10 \mathrm{ch.} = 201{,}168 \mathrm{m}$
$_{ m mile}$	mi.	= 1760 yd. = 1609,3440 m

Stichwortverzeichnis

Ableitung, 13 absolut konvergent, 12 Additionstheoreme, 10 Alternator, 18 Aussagenlogik, 5 äußere Algebra, 18 Bahn, 24 Bahnenraum, 24 Bahnformel, 24 Banachraum, 12 Betrag	Konjugation einer komplexen Zahl, 5 konvergente Folge, 12 Konvergenzkriterium, 12 Kosekans, 10 Kosinus, 10 Kotangens, 10 Kotangentialbündel, 20 Kurve, 20 Lemma von Burnside, 24 lineares Gleichungssytem, 17
einer komplexen Zahl, 5 bijektiv, 8 Bild, 8 Binomialkoeffizient, 23 binomische Formeln, 5	Matrix, 16 natürliche Projektion, 21 Norm, 16
binomischer Lehrsatz, 5 boolesche Algebra, 5 Cauchy-Folge, 12 Cauchy-Produkt, 13 charakteristisches Polynom, 17 Christoffel-Symbole, 21	Orbit, 24 Orthogonal, 16 Orthogonalbasis, 16 Orthogonalsystem, 16 Orthonormalbasis, 16 Orthonormalsystem, 16
Cosinus, 10 Determinante, 17 Differentialquotient, 13 Differentialrechnung, 13 differenzierbar, 13 direktes Produkt, 24 dynamisches System, 22	Parameterdarstellung einer Ebene, 19 einer Geraden, 19 Partialsumme, 12 partielle Ableitung, 14 Polarkoordinaten, 20 Punktrichtungsform, 19
Ebene, 19 Eigenraum, 17 Eigenwert, 17 Einschränkung, 8 Einsetzungshomomorphimus, 24 erweiterte Koeffizientenmatrix, 17 Euler-Lagrange-Gleichung, 15	quadratische Matrix, 16 Quotientenkriterium, 12 reelle Funktion, 13 Regelfunktion, 14 Reihe, 12
Faktorielle, 23 Fakultät, 23 Fixgruppe, 24 Fourier-Koeffizient, 15 Fourierreihe, 15 Fundamentallemma, 15	Sekans, 10 Sinus, 10 Skalarprodukt, 16 Spektrum, 17 Stabilisator, 24 surjektiv, 8 Tangens, 10
geometrische Vielfachheit, 17 Gerade, 19 Grenzwert, 12 Gruppenaktion, 24	Tangentialbündel, 20 Teleskopsumme, 12 Treppenfunktion, 14
Gruppenhomomorphismus, 24 Häufungspunkt, 12 Hauptsatz der Analysis, 14	Umgebung, 12 Umgebungsfilter, 12 Umkehrfunktion, 8 unbedingt konvergent, 12 Urbild, 8
injektiv, 8 Iteration, 8 komplexe Zahl, 5	Variationsrechnung, 15 vollständig, 12
Komposition, 8 Kompositionsoperator, 8	Weg, 20 Winkelfunktion, 10

Zustand, 22 Zustandsraum, 22 Zwischenwertsatz, 13