CdL Fisica - Meccanica - (prof. Spurio) 07/09/2021

Esercizio A

Un corpo di massa m=11.0 g può muoversi poggiando su una rotaia, priva di attrito, che si sviluppa nel piano verticale con la forma indicata in figura: un tratto orizzontale fino ad A, un quarto di cerchio di raggio r_1 dal punto A al punto B, un semicerchio di raggio r_2 dal punto B al punto C. Il corpo è inizialmente poggiato, fermo, all'estremità libera di una molla fissata all'altro estremo alla guida. La molla, di costante elastica k=1.73 N/m, è inizialmente compressa di una quantità Δx =38.0 cm. Conoscendo h = r_1 + r_2 =100 cm, si determini:

- 1) Quale è valore massimo che può assumere il raggio r₂ affinché il corpo raggiunga il punto D senza perdere contatto con la rotaia. Per il valore r₂ così trovato calcolare:
- 2) la velocità del corpo quando passa per il punto B;
- 3) il modulo della velocità nel punto E, sapendo che l'angolo formato dal segmento OE con l'orizzontale OC vale $\alpha=\pi/6$.
- 4) il modulo, direzione e verso della reazione vincolare, applicata dalla guida al corpo di massa m, nel punto E.

Esercizio B

Una cassa di massa M=32.8 kg poggia su un piano orizzontale con coefficienti di attrito statico $\mu_s=0.601$ e dinamico $\mu_d=0.424$. Si vuole spostare la cassa applicando una forza $\bf F$ attraverso una fune inestensibile e di massa trascurabile, che forma un angolo θ col piano orizzontale. Tale angolo θ può essere variato a piacere.

- 1) Disegnare il sistema e indicare in modo chiaro quali sono le forze in gioco
- 2) Si determini, in funzione dell'angolo θ , l'espressione del valore del modulo della forza F necessario per smuovere la cassa.
- 3) Si calcoli l'angolo θ_s che rende minima la forza F necessaria per smuovere la cassa, e il valore corrispondente del modulo di tale forza.
- 4) Dopo che la cassa si è messa in movimento, si calcoli il valore F_1 della forza che deve essere applicata mantenendo fisso l'angolo θ_s affinché la cassa si muova con velocità costante.

Risposte numeriche

A1) r ₂ =0.317 m	B3) θ _s =31.0° e F _s =166 N
A2) $v_B = 3.05 \text{ m/s}$	B4) F ₁ =127 N
A3) $v_E = 2.49 \text{ m/s}$	
A4) 0.162 N	