Your Name	: :
-----------	------------

Please circle your discussion group (2 pt)

1 Yang Yihong A410	4 Zhang Junwei A404	7 Liu Yuanzhe A424
2 Xu Yixiao A425	5 Liang Jun A408	8 Jaden Peterson Wen A421
3 Dai Ruigi A426	6 She Yuxuan A423	

- No notes, books or electronics during the exam.
- Do not open this test booklet until a proctor says start.
- For all free response questions, show work that justifies your answer.
- Raise your hand if you have a clarification question.
- Scratch paper is provided. You can ask for more if needed.
- Do not leave early: this disturbs others. If you finish your test early, check your work or just relax.
- Quit working when the test ends and hand your test booklet to proctors.
- 1. (15 points, 3 points each) Determine whether the statement is true or false. Circle the right answer.
 - (a) Every bounded and monotonic sequence is convergent. (True or False)
 - (b) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are two divergent series, $c_n = a_n \times b_n$, then $\sum_{n=1}^{\infty} c_n$ must be divergent. (True or False)
 - (c) If $f(x) = 2x x^2 + \frac{1}{3}x^3 \cdots$ converges for all x, then f'''(0) = 2 (True or False)
 - (d) Every function has power series representation at any point. (True or False)
 - (e) If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$, then $a_n = 0$. (True or False)

Question	1	2	3	4	5	6	7	8	9	Total
Points	15	10	15	10	10	12	8	6	14	100
Score										

2. (10 points) (1) If nth partial sum of a series $\sum_{n=1}^{\infty} a_n$ is $s_n = 2 - n6^{-n}$, find a_n and the value of $\sum_{n=1}^{\infty} a_n$

(2) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{2^n} + \frac{(-1)^n}{3^n}$

3. (15 points) Test the convergence of the following series. Please state out the name of the test you used.

(a)
$$\frac{1000}{1!} + \frac{1000}{2!} + \frac{1000}{3!} + \dots + \frac{1000}{n!} + \dots$$

(b)
$$\frac{1000}{1} + \frac{1000 \cdot 1001}{1 \cdot 3} + \frac{1000 \cdot 1001 \cdot 1002}{1 \cdot 3 \cdot 5} + \cdots$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

4. (10 points) (1) Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{\ln(n!)}$. Please state out the name of the test you used. $(n! = 1 \times 2 \times 3 \times ... (n-1) \times n.)$

(2) find p to make $\sum_{n=2}^{\infty} \frac{1}{n \ln^p n}$ converge

5. (10 points) Use series to approximate $\int_0^1 \sqrt{1+x^4} dx$, the error with in 0.005.

6. (12 points) Find a **power series** representation for each of the following functions. Use summation notation and give the radius of convergence as |x - a| < R. (please simplify your answer as the $\sum c_n(x - a)^n$)

(a) $\frac{x}{(1+2x)^2}$

(b) $ln(1+3x^2)$

7. (8 points) Find a **power series** representation for $f(x) = e^{-6x}$ about x = -4. Use summation notation and give the radius of convergence as |x - a| < R..

8. (6 points) Calculate the series sum:
(a)
$$\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots$$

$$(b) \sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$

9.	(14	po	int	s)	For	the	pa	ırar	ne	etric	equ	ation	x	=	$3t^2$, y	=	$2t^3$,
/	· •	- 1	7	,	,		12	/ 1	,	2									

(a) Find dy/dx and d^2y/dx^2 .

(b) Find the area enclosed by the curve and *x*- axix for $0 \le t \le 2$.

(c) Find the length of the curve, for $0 \le t \le 2$. Simplify the integral but do not need to evaluate the integral.

Function	Maclaurin Series Expansion
e^x	$\sum_{n=0}^{\infty} rac{x^n}{n!} = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + \cdots$
$\sin x$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$
$\cos x$	$\sum_{n=0}^{\infty} rac{(-1)^n x^{2n}}{(2n)!} = 1 - rac{x^2}{2!} + rac{x^4}{4!} - \cdots$
$\ln(1+x)$	$\sum_{n=1}^{\infty} rac{(-1)^{n+1} x^n}{n} = x - rac{x^2}{2} + rac{x^3}{3} - \cdots ext{(for } x < 1)$
$(1+x)^k$	$\sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + rac{k(k-1)}{2!} x^2 + \cdots ext{(for } x < 1)$