p8130_hw3_xj2249 xj2249 2019/10/24

Problem2

a)

organ	n	mean	median	sd	IQR	min	max
breast	11	1395.9091	1166	1238.9667	969.50	24	3808
bronchus	17	211.5882	155	209.8586	173.00	20	859
colon	17	457.4118	372	427.1686	330.00	20	1843
ovary	6	884.3333	406	1098.5788	799.75	89	2970
stomach	13	286.0000	124	346.3096	350.00	25	1112

b)

Hypothesis:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$$
 vs $H_1:$ not all means are equal

Significance level: $\alpha = 0.01$

Assumptions:(1)Independence (2)equal variance (3)normality

Decision rule: Reject H_0 : if $F_{stats} > F_{4,59,1-\alpha/2} = F_{4,59,0.995} = 4.148$ Fail to reject H_0 : if $F_{stats} < F_{4,59,0.995}$

Interpretation: Since $F_{stats} = 6.433 > F_{4,59,1-\alpha/2} = F_{4,59,0.995} = 4.148$, we reject H_0 and conclude that there is a significant difference in average survival time among different cancer groups.

```
sur_aov <- aov(survival ~ organ, data = sur_df)
pander(sur_aov)</pre>
```

Table 2: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
organ	4	11535761	2883940	6.433	0.0002295
Residuals	59	26448144	448274	NA	NA

c) how to adjust 0.05 to 0.01

1) Bonferroni

```
pairwise.t.test(sur_df$survival, sur_df$organ, p.adj = 'bonferroni')
##
##
   Pairwise comparisons using t tests with pooled SD
##
## data: sur_df$survival and sur_df$organ
##
##
            breast bronchus colon
## bronchus 0.00025 -
            0.00608 1.00000
## colon
## ovary
            1.00000 0.38575 1.00000 -
## stomach 0.00153 1.00000 1.00000 0.75283
## P value adjustment method: bonferroni
```

2) Tukey

```
TukeyHSD(sur_aov,conf.level = 0.99) ## 0.99???
```

```
## Tukey multiple comparisons of means
## 99% family-wise confidence level
##
## Fit: aov(formula = survival ~ organ, data = sur_df)
##
## sorgan
## diff lwr upr p adj
## bronchus-breast -1184.32086 -2067.6073 -301.03446 0.0002385
## colon-breast -938.49733 -1821.7837 -55.21093 0.0053072
```

```
## ovary-breast
                    -511.57576 -1670.0752 646.92367 0.5630900
## stomach-breast
                   -1109.90909 -2045.0583 -174.75983 0.0013962
                                -537.1262 1028.77324 0.8208402
## colon-bronchus
                      245.82353
## ovary-bronchus
                      672.74510
                                 -411.1997 1756.68989 0.2271084
## stomach-bronchus
                      74.41176
                                -766.6111
                                           915.43467 0.9981461
                                -657.0232 1510.86636 0.6659115
## ovary-colon
                      426.92157
## stomach-colon
                     -171.41176 -1012.4347 669.61114 0.9568289
                     -598.33333 -1724.9413 528.27467 0.3772923
## stomach-ovary
```

TukeyHSD(sur_aov,conf.level = 0.99) %>% plot()

99% family-wise confidence level

Differences in mean levels of organ

3) Dunnett Test

```
glht(sur_aov, linfct = mcp(organ = "Dunnett")) %>% summary()
```

```
##
     Simultaneous Tests for General Linear Hypotheses
##
##
## Multiple Comparisons of Means: Dunnett Contrasts
##
##
## Fit: aov(formula = survival ~ organ, data = sur_df)
##
## Linear Hypotheses:
##
                          Estimate Std. Error t value Pr(>|t|)
## bronchus - breast == 0 -1184.3
                                        259.1 -4.571 < 0.001 ***
                                        259.1 -3.622 0.00224 **
## colon - breast == 0
                            -938.5
```

i) check the normality assumption

```
# first, try a hist/density plot.
hist(residuals(sur_aov))
```

Histogram of residuals(sur_aov)

check the normality (of residuals) assumption
qqnorm(residuals(sur_aov))

Normal Q-Q Plot

the QQ-plot shows, the normality assumption is questionable. Therefore, we can Kruskal Wallis test to fix the problem.

ii) KW test

Table 3: Kruskal-Wallis rank sum test: survival by organ The p-value is 0.005, at a significance level 0.01, we reject H_0 and conclude that there is a significant difference in average survival time among different cancer groups. The p-value of kw-test is 0.004798, much larger than that of the anova test(0.0002295), which shows that kw-test is harder to reject H_0 and it's more conservative and less powerful.

Test statistic	df	P value
14.95	4	0.004798 * *

Problem3