Алгебра 5

Igor Engel

1 Оценивание

$$A_{\Pi\Gamma} + ДM = 0.5A_{\Pi\Gamma} + 0.5ДM.$$

- 1. Письменный экзамен за модуль
- 2. Оценка за ДЗ
- 3. Aлг = 0.3Д3 + 0.79кз
- 4. Экз ≥ 4
- 5. КР оценка в семестр

2 Гомоморфизмы

Лемма 2.0.1. Если |G| = 2, то G изоморфна $\mathbb{Z}/2$.

Единственная группа из двух элементов: е

Определение 2.1. Если G - группа, то $\operatorname{Aut} G = \{f: G \mapsto G \mid f$ - изоморфизм $\}$

Лемма 2.1.1. $\langle \operatorname{Aut} G, \circ \rangle$ - группа

Доказательство. Докажем замкнутость относительно ∘. Остальные свойства тривиальны.

$$(f\circ g)(a\cdot b)=f(g(a\cdot b))=f(g(a)\cdot g(b))=f(g(a))\cdot f(g(b))\in \operatorname{Aut} G.$$

 $\mathbf{\Pi}$ ример 2.1. Найдём $\mathrm{Aut}\,\mathbb{Z}$:

$$f(0) = 0.$$

$$f(1) = a.$$

$$f(2) = f(1+1) = a + a = 2a.$$

 $f(n) = na, n \in \mathbb{Z}.$

Изоморфизм при $a=\pm 1$. Aut $\mathbb{Z} \sim \{\pm 1\} \sim \mathbb{Z}/2$.

 Π ример 2.2. Найдём $\operatorname{Aut} \mathbb{Z}/n$

$$f(0) = 0.$$

$$f(1) = a.$$

$$f(n) = na.$$

При (a, n) = 1 - изоморфизм.

Aut
$$\mathbb{Z}/n \sim (\mathbb{Z}/n)^*$$
.

3 Подгруппы порождённые подмножеством

Определение 3.1. Если G - группа, $X \subset G$. $H = \langle X \rangle$ - наименьшая по включению подгруппа G, такая, что $X \subset H$.

Лемма 3.1.1. Если $\forall \alpha \quad H_{\alpha} \subset G, H_{\alpha}$ - подгруппа G, то

$$H = \bigcap_{\alpha} H_{\alpha}.$$

Тоже подгруппа.

Лемма 3.1.2.

$$\langle X \rangle = \bigcap_{X \subset H \subset G} H.$$

 Γ де H - подгруппа.

Лемма 3.1.3.

$$\langle X \rangle = \{ x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n} \mid x_i \in X, \varepsilon \in \{\pm 1\} \}.$$

Определение 3.2. $g \in G$

 $\langle g \rangle$ - циклическая подгруппа порождённая g.

Определение 3.3.

$$|\langle g \rangle| = \operatorname{ord} g.$$

Лемма 3.3.1.

$$\forall g \in G \quad \exists ! f : \mathbb{Z} \mapsto G, \ f$$
 - гомоморфизм $f(1) = g$.

Лемма 3.3.2. Пусть $g \in G$ и ord g = n.

$$\begin{cases} g^n = e \\ \forall n' < n \quad g^{n'} \neq e \end{cases}$$

Теорема 3.1. $g \in G$, то

- 1. ord $g \in \mathbb{N} \implies \langle g \rangle \sim \mathbb{Z}/n$
- 2. ord $g = \infty \implies \langle g \rangle \sim \mathbb{Z}$