OPENCLASSROOMS - DATA SCIENTIST

P8: DÉPLOYEZ UN MODÈLE DANS LE CLOUD

ROMAIN VAILLANT - MAI 2022

P8: Déployez un modèle dans le cloud

SOMMAIRE

- 1. Problématique
- 2. Jeu de données
- 3. Cloud et environnement Big Data
- 4. Chaîne de traitement
- 5. Conclusion et recommandations

1.Problématique

APPLICATION MOBILE

Start-up. Développement d'une **application** de **reconnaissance instantanée** de fruits & légumes.

DONNEES

Le **jeu de données** est constitué des **images** de fruits et leurs **labels** associés.

DEVELOPPEMENT INITIAL

Une première chaîne de traitement des données incluant le preprocessing et une étape de réduction de dimension.

PASSAGE A L'ECHELLE

Le volume de données va augmenter. Besoin d'une utilisation du cloud pour profiter d'une architecture Big Data.

2. Jeu de données

131 fruits et légumes 90380 images (360°)

100x100 RGB .jpg

(échantillons de 10 images, 3 fruits)

apple (apple-pink-lady)

avocado

pineapple

3.Cloud et environnement Big Data

CLOUD
AMAZON WEB
SERVICES (AWS)

ARCHITECTURE BIG DATA
APACHE-SPARK
PYSPARK

CLOUDAMAZON WEB SERVICES

CLOUDAMAZON WEB SERVICES

Type de services

UTILISATEUR IAM

Création de la clé privée de l'utilisateur pour la connexion SSH au serveur EC2

SERVEUR EC2 (IAAS)

Serveur de développement:
Ubuntu (AMI)
Anaconda
Pyspark

Via connexion SSH

BUCKET S3

Stockage des images

BIG DATA

- Terme apparu en 1997 dans un article sur la visualisation des données dans le cadre de la 8 ème conférence IEEE (Institute of Electrical and Electronics Engineers)
- -Taille des données > RAM disponible
- Progrès des capacités des systèmes de stockage

Les 3 V du Big Data

Architecture Hadoop

PYSPARK

PySpark permet à python de s'interfacer dynamiquement avec des objets JVM à travers la librairie Py4j

PYSPARK APIs

APIS

Features

4. Chaîne de traitement

CHARGEMENT DES DONNEES

Boto resource()

PRE-PROCESSING

Keras
preprocess_input()

VECTORISATION
PAR TRANSFER
LEARNING

Keras
ResNet50()

RÉDUCTION DE DIMENSION

Pyspark
Pipeline:
StandardScaler()
PCA()

TRANSFER LEARNING

RESNET50

Suppression des couches fully connected et softmax

REDUCTION DE DIMENSION (PCA)

Vecteurs creux:
[0.0, 0.0, 0.0, **0.66**, 0.0, 0.0, **0.27**, ...]

Méthode du coude : Composantes **k=7**

Ebouli des valeurs propres

PUISSANCE DU BIG DATA

Parallélisation (Pyspark)

UTILITE DU CLOUD

AWS IAM, EC2, EC2

PRETRAITEMENT

Transfert Learning - Extraction des features Réduction de dimension (PCA)

PASSAGE A LECHELLE

Première étude faisabilité

Besoin machine + puissante (4 Go / 2 coeurs) ?

Modification des paramètres de configuration

Merci de votre écoute

Séance de questions