EE981 Network Switching and Routing

Kashif Sharif

Internet Protocol v6

- Dotted Decimal Notation
 221.14.65.11.105.45.170.34.12.234.18.0.14.0.115.255
- Hexadecimal Notation

FDEC BA98 7654 3210 ADBF BBFF 2922 FFFF

IP v6 CIDR Notation FDEC :: BBFF : 0 : FFFF/60 • IPv6 is hierarchal

IPv6: Types of Addresses

- Unicast Address
- Anycast Address
- Multicast Address
 - Broadcast is a special case of multicast

IPv6 Address Space Allocation				
	Block Prefix	CIDR	Block Assignment	Fraction
1	0000 0000	0000::/8	Reserved (IPv4 compatible)	1/256
	0000 0001	0100::/8	Reserved	1/256
	0000 001	0200::/7	Reserved	1/128
	0000 01	0400::/6	Reserved	1/64
	0000 1	0800::/5	Reserved	1/32
	0001	1000::/4	Reserved	1/16
2	001	2000::/3	Global unicast	1/8
3	010	4000::/3	Reserved	1/8
4	011	6000::/3	Reserved	1/8
5	100	8000::/3	Reserved	1/8
6	101	A000::/3	Reserved	1/8
7	110	C000::/3	Reserved	1/8
8	1110	E000::/4	Reserved	1/16
	1111 0	F000::/5	Reserved	1/32
	1111 10	F800::/6	Reserved	1/64
	1111 110	FC00::/7	Unique local unicast	1/128
	1111 1110 0	FE00::/9	Reserved	1/512
	1111 1110 10	FE80::/10	Link local addresses	1/1024
	1111 1110 11	FEC0::/10	Reserved	1/1024
	1111 1111	FF00::/8	Multicast addresses	1/256

IPv4 Compatible Addresses

• Prefix: 0000000

• 2120 address available

• 0000::/8

• Unspecified Address

• All Zeros ::/128

• Used in bootstrapping, when own IP is not known.

8 bits	120 bits	
00000000	All 0s	
Prefix	Suffix	

9

IPv4 Compatible Addresses

- Loopback Addresses
 - ::1/128

Embedded IPv4 Addresses

- Compatible Address
 - IPv6 to IPv6 communication, but intermediate region is IPv4 compliant
 - CIDR Notation ::/96

- Mapped Address
 - IPv6 sending to IPv4 machine
 - e.g. 0::FFFF:2.13.17.14

00000000	0000000 All 0s		All 1s IPv4 add	
80 bits		Ţ	16 bits	32 bits
1		T	1	1

Unique Local Unicast Block

- Site Level (Unique Local Address)
 - Block Identifier 11111110
 - FC00::/8
 - FD00::/8
 - Random bits decrease the chance of duplication
 - This block is not routed into the internet

0 or 1
40 bits 16 bits 64 bits

1111110 Random number Subnet ID Interface ID

 $\Pi = 48 \text{ DIIS}$

• 0 or 1: Locally assigned or by some authority

Link Local Unicast Block

- Link Level Block
 - Every interface has 1 for management purposes
 - Not routable
 - Block Identifier: 1111111010 FE80::/10
 - Next 54 bits are All Zeros

Multicast Block

- 1 address for a group of machines
- IP packet is replicated to reach all
- Block Identifier: 11111111

FF00:/8

Global Unicast Address

- Block Identifier: 001 2000::/3
- 2¹²⁵ available addresses

Three levels of hierarchy

Global routing prefix		Subnet identifier	Interface identifier	
I		Block Assignment	Length	
	Global routing prefix (n)		48 bits	
	Subnet identifier $(128 - n - m)$		16 bits	
Interface identifier (m)		64 bits		

Global Unicast Address

- Interface Identifier
 - 2⁶⁴ possibilities
 - May also contain MAC mapping

IP v6 Autoconfiguration

- In addition to DHCP IP assignment, host can assign an IP to itself
 - Create a Link Local Address: 1111111010 followed by 54 zeros, followed by 64 bit Interface Identifier
 - Test uniqueness: Neighbor Solicitation Message
 - ICMP v6
 - Neighbors advertise themselves in response
 - If uniqueness passes, build Global Unicast Address
 - Router Solicitation Message
 - Obtain unicast prefix and subnet prefix
 - If any of the above fails, wait for other means of allocation

IP v6 Datagram

• Version: 6

• Traffic Class: Same as ToS in IPv4

Flow Label: Identifies different data flows

- Payload Length: Payload only. Base header not included
- Next Header: Transport layer protocol in use or the optional headers

Code	Next Header	Code	Next Header]
0	Hop-by-hop option	44	Fragmentation	1
2	ICMP	50	Encrypted security payload	1
6	TCP	51	Authentication	1
17	UDP	59	Null (No next header)	1
43	Source routing	60	Destination option	1

IP v6 Datagram

• Hop Limit: TTL Field

• Source Address: Address of originator

• Destination Address:

• Final destination, or

 If source routing is used, then address of next router

Flow Label

- IP was designed to be connectionless
 - Technologies like MPLS encapsulate IP into a Flow header and use flow labels for forwarding
- Flow:
 - A sequence of packets that share same characteristics: same path, same resources, same level of security, etc.
 - Identified by a flow ID
- Flow tables are used rather than routing
- Beneficial when recourse allocation is done prior to data forwarding

21

Flow Label

- Flow label rules in IPv6
 - Flow labels are assigned by source
 - Field is set to 0, if flows are not supported
 - If routers don't support it, they ignore the label
 - All packets with same flow label, have same source, same destination, same priority, and same options.

Extensions: Hop-by-Hop Option

- Used when special information has to be passed to each router in the path
- Also used, when payload size is more than 65535 bytes
- Options:
 - Pad1
 - PadN
 - Jumbo payload

25

Extensions: Hop-by-Hop Option Next header Header length options Code Data Length (Variable length) 8 bits 8 bits C: Change in option value Action Type 0 Does not change in transit 1 May be changed in transit Action: if the option not recognized Type 00 Skip this option 01 Discard datagram, no more action 00000 Pad1 10 Discard datagram and send ICMP message 00001 PadN 11 Discard datagram send ICMP message if not multicast 00010 Jumbo payload 26

Extensions: Hop-by-Hop Option

- Pad1
 - 1 byte option (Option Code Field ONLY)
 - For Alignment with 32-bit words using 1 byte only. e.g. Jumbo payload
 - Action is 00; Change bit is 0; Type is 00000

Extensions: Hop-by-Hop Option

- PadN
 - Used when 2 or more bytes are needed for padding
 - Action is 00; Change bit is 0; Type is 00001

Extensions: Hop-by-Hop Option

- Jumbo Payload
 - If length of payload in IP datagram is beyond 65535, Jumbo Payload option can be used to define it
 - Jumbo payload option starts at 4n+2 byte

Code Length
11000010 00000100

Length of jumbo payload
4 bytes

29

Extensions: Destination

- When source needs to pass information to final destination ONLY
- Similar to Hop-by-Hop Extension
- Only Pad1 and PadN defined for it

Extensions: Source Routing

- Type: Type of routing
 - 0: Similar to Loose source
- Addresses Left: Number of hops still needed to reach destination

31

Extensions: Source Routing Destination Address in IP base header contains next hop address, if this extension is used Source: A Source: A Source: A Source: A Destination: R1 Destination: R2 Destination: R3 Destination: B Left: 3 Left: 2 Left: 1 Left: 0 R2 R1 R1 R1 R3 R3 R2 R2 R3 R1 R2 R3 Network Network Network Network

Extensions: Fragmentation

- Only source is allowed to fragment
- Path MTU Discovery Technique is used to determine the smallest MTU along the path
 - If not used, then datagram is fragmented into 1280 bytes or smaller

Extensions: Authentication

- Extension Header
 - · Validates the message sender
 - · Ensures integrity of data

Extensions: Encrypted Security Payload

- Guards against eves dropping
- Ensures confidentiality

Security parameter index

Encrypted data

35

Recommended Extension Order

Extension Header	Description	
IPv6 Hop-by-Hop Option	All path nodes options	
Destination Options for IPv6	Destination node-only options	
Routing Header for IPv6	To specify a route (ex : mobile IPv6)	
Fragment Header for IPv6	Parameters for datagrams fragmentation	
Authentication Header	AH (IPSEC)	
Encapsulating Security Payload	ESP (IPSEC)	
Destination Options for IPv6	Destination node-only options	
Mobility Extension Header for IPv6	Mobile IPv6 Parameters	

IPv4 vs IPv6

- No-op & End-of-option
- Record Route
- Time stamp
- Source Route Option
- Frag. Field
- No Authentication
- No Encryption

- Pad1 & PadN
- No route recording
- No Time stamping
- Source Route Extension
- Frag. Extension
- Authentication Extension
- ESP Extension

