nuous on $[-\pi, \pi]$, let jump discontinuities. for

.

ourier coefficients of

ists, f'(x) will be the

uppose that f is twice t problem is

 $\cos\frac{n\pi ct}{l}$

le means we are asgure 10.7-2.)

 $\sin(n\pi x/l)$ converges by that

+ ct)].

For this, note that

$$2 \sin \frac{n\pi x}{l} \cos \frac{n\pi ct}{l} = \sin \frac{n\pi (x - ct)}{l} + \sin \frac{n\pi (x + ct)}{l},$$

so that

$$\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \cos \frac{n\pi ct}{l} = \frac{1}{2} \sum_{n=1}^{\infty} b_n \sin \frac{n\pi (x-ct)}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi (x+ct)}{l}$$
$$= \frac{1}{2} [f(x-ct) + f(x+ct)].$$

Now we verify that

$$y(x,t) = \frac{1}{2} [f(x - ct) + f(x + ct)]$$

satisfies all the conditions. First,

$$\frac{\partial^2 y}{\partial t^2} = \frac{1}{2}c^2[f''(x-ct+f''(x+ct))] = c^2\frac{\partial^2 y}{\partial x^2}$$

Second, at t = 0, y(x, 0) = f(x) and

$$\frac{\partial y}{\partial t}(x,0) = \frac{1}{2}c[-f'(x) + f'(x) + f'(x)] = 0.$$

Third, $y(0, t) = \frac{1}{2}[f(-ct) + f(ct)] = 0$, because f is odd (when extended); and

$$y(l,t) = \frac{1}{2}[f(l-ct) + f(l+ct)] = 0,$$

because f(l-ct) = -f(ct-l) = -f(ct+l), since f(x) = f(x+2l) by periodicity.

10.7.2 Theorem If f is square integrable, then, for each t > 0,

$$T(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 t/l^2} \cos \frac{n \pi x}{l}$$

converges uniformly, is differentiable, and satisfies the heat equation and boundary conditions. At t = 0, it equals f in the sense of convergence in the mean, and pointwise if f is of class C^1 . As usual,

$$a_n = \frac{2}{l} \int_0^1 f(x) \cos \frac{n\pi x}{l} dx.$$

Proof To show that T(x,t) satisfies the heat equation, what we must do is justify term-by-term differentiation in both x and t. For this we use Theorem 5.4.3. What we must show is that the series of derivatives

$$-\sum_{n=1}^{\infty} \frac{a_n \pi^2 n^2}{l^2} e^{-n^2 \pi^2 l/l^2} \cos \frac{n \pi x}{l}$$

(which represents both $\partial T/\partial t$ and $\partial^2 T/\partial x^2$) converges uniformly in t and in x, which we do by the Weierstrass M test. Since $|a_n|$ is bounded $(a_n \to 0$, in fact), we can omit the terms $a_n \pi^2/l^2$. Now in x, let $M_n = n^2 e^{-n^2 \pi^2 l/l^2}$. By the ratio

Uniformly in t means uniformly for all $t \ge \varepsilon$, where $\varepsilon > 0$ is arbitrary but fixed. In this case we let $M_n = n^2 e^{-n^2 \pi^2 \varepsilon/l^2}$ and note that $\sum M_n$ converges. (We cannot allow t = 0.) The rest of the theorem is obvious.

10.7.3 Theorem In Theorem 10.7.2,

$$\lim_{t \to 0, t > 0} T(x, t) = f(x)$$

in the sense of convergence in mean, and, converges uniformly (and pointwise) if f is continuous, with f' sectionally continuous. More generally, for any f, if the Fourier series of f converges at x to f(x), then $T(x,t) \to f(x)$ as $t \to 0$.

Proof For the first part, it will suffice to show the following.

Lemma 14 For each t > 0, suppose $f_t \in V$, an inner product space, and $\varphi_0, \varphi_1, \ldots$ is a complete orthonormal basis. Let

$$f_i = \sum_{n=1}^{\infty} c_n(t)\varphi_n, \quad f = \sum_{n=1}^{\infty} c_n\varphi_n.$$

If

$$\lim_{t\to 0} \sum_{n=1}^{\infty} |c_n(t) - c_n|^2 = 0,$$

then $f_i \to f$ (in mean).

Proof The result follows from Parseval's relation $||f_t - f||^2 = \sum_{n=1}^{\infty} |c_n(t) - c_n|^2$.

Theorem Proof.

In the case (

To do this, it is e is continuous in that the series c The form we nee

Lemma 15 L ed, decreasing $(r, \sum_{n=1}^{\infty} c_n \varphi_n(t))$ con $\lim_{t\to 0} g(t)$.

See Theorem decreasing case b $\varphi_n(t) = (1 - e^{-n^2})$ the lemma and the Now suppose $\sum_{n=1}^{\infty} |a_n| < \infty$. T

By an argument li and so we can let Indeed, note that $\sum_{n=1}^{\infty} |a_n| (1 - e^{-n^2})$ Finally, suppose wish to show that

Here we cannot ma for $\sum a_n \cos(n\pi x/l)$ $c_n = a_n \cos(n\pi x/l)$ are decreasing and

From this proof

ast do is Theorem

and in x,), in fact), the ratio

itrary but erges. (We

pointwise) or any f, if $t \rightarrow 0$.

space, and

 $_{=1}^{\circ}|c_{n}(t)-c_{n}|^{2}.$

In the case of Theorem 10.7.3, we must show that

$$\lim_{t\to 0}\sum_{n=1}^{\infty}|a_n|^2(1-e^{-n^2\pi^2t/l^2})^2=0.$$

To do this, it is enough to show that the function $g(t) = \sum_{n=1}^{\infty} |a_n|^2 (1 - e^{-n^2 \pi^2 t/t^2})^2$ is continuous in t, since g(0) = 0. To show that g(t) is continuous, we shall show that the series converges uniformly in t. To do this, Abel's test will be used. The form we need is the following:

Lemma 15 Let $\sum_{n=1}^{\infty} c_n$ be a convergent series and $\varphi_n(t)$ a uniformly bounded, decreasing (respectively, increasing) sequence defined for $t \ge 0$. Then g(t) = $\sum_{n=1}^{\infty} c_n \varphi_n(t) \text{ converges uniformly in } t. \text{ In particular, } g \text{ is continuous and } g(0) =$ $\lim_{t\to 0} g(t)$.

See Theorem 5.9.1 for the proof. One deduces the increasing case from the decreasing case by considering -g(t), instead of g(t). In our case $c_n = |a_n|^2$ and $\varphi_n(t) = (1 - e^{-n^2\pi^2t/l^2})^2$. Now $\varphi_n \le \varphi_m$ if $n \le m$, and $|\varphi_n(t)| \le 1$. Thus, from the lemma and the fact that $\sum c_n$ converges, we have our result.

Now suppose f' is sectionally continuous. From the proof of Theorem 10.6.1, $\sum_{n=1}^{\infty} |a_n| < \infty$. Thus, for a given x,

$$|f(x) - T(x,t)| \le \sum_{n=1}^{\infty} |a_n| (1 - e^{-n^2 \pi^2 t/l^2}).$$

By an argument like the preceding, the series on the right converges uniformly, and so we can let $t \to 0$ in each term to conclude that $T(x, t) \to f(x)$ as $t \to 0$. Indeed, note that the convergence is uniform in x because we have the bound $\sum_{n=1}^{\infty} |a_n| (1 - e^{-n^2 \pi^2 t/l^2})$, which approaches 0 as $t \to 0$ and is independent of x. Finally, suppose $\sum_{n=1}^{\infty} a_n \cos(n\pi x/l)$ converges for some fixed x. Then we

wish to show that (for this x fixed)

$$\lim_{t\to 0} g(t) = \lim_{t\to 0} \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 t/l} \cos \frac{n\pi x}{l} = 0.$$

Here we cannot make the same estimate, because the factor $\cos(n\pi x/l)$ is needed for $\sum a_n \cos(n\pi x/l)$ to converge. However, Lemma 15 can be applied with $c_n = a_n \cos(n\pi x/l)$ and $\varphi_n(t) = e^{-n^2\pi^2t/l^2}$ to yield the conclusion, since the φ_n are decreasing and are bounded by 1.

From this proof we also conclude that

$$\lim_{t\to t_0} T(x,t) = T(x,t_0);$$

that is, T is continuous in t, in each of the three cases of Theorem 10.7.3. Indeed, we already know that for t > 0, T(x, t) is differentiable and hence continuous. However, T(x, t) may not be differentiable at t = 0, but the proof just given does show that we have continuity at t = 0.

These methods using Abel's and Dirichlet's tests are important for establishing convergence in other problems (such as Laplace's equation), as we shall see in the next proof.

10.7.4 Theorem

i. Given g_1 , let $\varphi(x, y)$ be defined by

$$\varphi(x,y) = \sum_{n=1}^{\infty} b_n \sinh \frac{n\pi(b-y)}{a} \frac{\sin(n\pi x/a)}{\sinh(n\pi b/a)},$$
 (12)

Suppose g_1 is of class C^2 and $g_1(0) = g_1(a) = 0$. Then φ converges uniformly, and is the solution to the Dirichlet problem with $f_1 = f_2 = g_2 = 0$, and is continuous on the whole square, and $\nabla^2 \phi = 0$ on the interior.

- ii. If each of f_1, f_2, g_1, g_2 is of class C^2 and vanishes at the corners of the rectangle, then the solution $\varphi(x, y)$ is the sum of four series like Equation (12), $\nabla^2 \varphi = 0$ on the interior, and ∇ is continuous on the whole rectangle and assumes the given boundary values. Furthermore, φ is C^{∞} on the interior.
- iii. If f_1, f_2, g_1, g_2 are only square integrable, then the series for φ converges on the interior, $\nabla^2 \varphi = 0$, and φ is C^{∞} . Also, φ takes on the boundary values in the sense of convergence in mean. This means, for example, that $\lim_{y\to 0} \varphi(x,y) = \varphi(x,0) = g_1(x)$ with convergence in mean.

Proof For simplicity, let us take the case $a = b = \pi$, the general case being obtained by a change of coordinates. To prove parts **i** and **ii** of the theorem, we show that $\varphi(x, y)$ converges uniformly in x and y and that we can differentiate twice, term by term, on the interior. In view of the preceding remarks, this suffices to prove the theorem. Part **ii** is a consequence of **i** and linearity; the boundary values are assumed because g_1 is represented by its Fourier series.

By Theorems 10.6.1 and 10.6.2,

$$g_1(x) = \sum_{n=1}^{\infty} b_n \sin nx, \quad g'_1(x) = \sum_{n=1}^{\infty} nb_n \cos nx,$$

Theorem

and these $g_1(0) = g$

To sh Theorem series for with n an decreasin φ_1 is bot

To sh
y))/ sinh;
t increase
following

Lemma $sinh(\alpha t)/$

Proof

LOOL

using the is ≥ 0 , w

Now $\rho(0)$ increasing

This $\varphi(x,y)$ co

tive is its
It is i
stay away