

Introduction to Data Science

done by Olesia Ved Paris Dauphine University, INSA Lyon School of Engineering

What is the DATA?

In the digital world:

Data is electronic information stored, processed, and transmitted in various formats.

Examples include website content, social media posts, photos, videos etc

1 film: 2GB

How much data the average person stores?

600 photos: 1 GB

The average person stores : 500GB

The average person stores : 500GB

Seems not so much

But Alpha Go (Al that plays Go) has been trained only with 44GB

All US academic research libraries a 2 petabytes

It is like 4000 persons' personal storage

Google (Google Doc, Google Search, Youtube etc) is around (very approximately) **10,000 Petabytes**

It is like 5000 US academic research libraries in the world

it is estimated that the digital universe was approximately **44 zettabytes** in 2020

or **4400 of Googles**

Or 10^11 of personal cloud storage's

Question for you:

If in 2020 we had 44 zettabytes of data

How much data was back in 2013?

5 zettabytes in 2013!!!!!

Rapid Data Growth

Your personal Data is a big active

- Ads online
- Stories
 placement in
 Instagram

Multidisciplinary field?

Artificial Intelligence

Artificial Intelligence

Algorithms performing human-like decision making

Al & Machine Learning

Al & Machine Learning

- Rule-based chatbots
- Visa type requirements on governmental web-site

etc

Machine Learning

 Algorithms able to learn and adapt without following explicit instructions

ML & Deep Learning

Algorithms based on statistical knowledge:

- Clustering
- Regressions

Further reading:

Here we are missing notions of 2 types that are less present in the market but very important:

- Semi-supervised
- Reinforcement Learning (e.g. used to teach robots to walk)

Machine Learning

Supervised vs Unsupervised

Supervised vs Unsupervised

Supervised Learning

The goal -> to predict **which category** a new input data point belongs to, based on labeled examples from a training set

The goal -> to predict **which category** a new input data point belongs to, based on labeled examples from a training set

Step1: have a limited number of know categories. Example: dog breed

The goal -> to predict **which category** a new input data point belongs to, based on labeled examples from a training set

Step2: have an information about characteristics on which the category depends

- 1) Dog size
- 2) Fur length (Animal's hair)

The goal -> to predict **which category** a new input data point belongs to, based on labeled examples from a training set

Step3: Training Dataset

size	fur	class
medium	long	Poodle
big	long	Poodle
small	short	Chihuahua
big	short	Dalmatian

Now you have a classification task!

2 most common algorithms

Decision Tree

K nearest neighbours

Decision Tree

Elements of a decision tree

It splits data based on features to create decision rules and reaches conclusions at leaf nodes.

Decision node:

"Is dog big?" "Does it have short fur?"

It's like a diagram where each branch represents a decision based on a feature, leading to a final outcome.

Leaf=final outcome=one of dog breeds

Decision Tree: The criterion to split data

The difference of entropies:

Entropy

Entropy is an information theory metric that measures the impurity or uncertainty in a group of observations. It determines how a decision tree chooses to split data. The image below gives a better description of the purity of a set.

Basically, the more the majority class is present the less is entropy

Less Impure

$$E = -\sum_{i=1}^N p_i log_2 p_i$$

Where pi is the probability of randomly selecting an example in class i

Decision Tree: Dog example

What would be the first split that reduces the entropy the most?

size	fur	class
medium	long	Poodle
big	long	Poodle
small	short	Chihuahua
big	short	Dalmatian

Decision Tree: Dog example

size	fur	class
medium	long	Poodle
big	long	Poodle
small	short	Chihuahua
big	short	Dalmatian

Decision Tree: Dog example

Your tree is ready!
It has been deployed and now your algorithm needs to classify a new data point:

Classify this point: size: medium fur: medium

What would be the result?

K nearest neighbours

KNN is a simple algorithm that relies on the "wisdom of the crowd" principle

The class of a new data point is determined by **the majority** of its nearest neighbors.

The number of neighbors is determined by the parameter K

K nearest neighbours

One thing to keep in mind with KNN is that **the choice of K** can affect the algorithm's performance!

Why k should always be odd (2n+1)?

K nearest neighbours

What is the problem with our dataset that stops us from using KNN?

size	fur	class
medium	long	Poodle
big	long	Poodle
small	short	Chihuahua
big	short	Dalmatian

K nearest neighbours

Discreet values -> Continuous values

Size cm	Fur cm	class
100	5,5	Poodle
80	4	Poodle
20	0,09	Chihuahua
105	0,1	Dalmatian

What is the class of point K if red= Chihuahua, green=Dalmatian and blue = Poodle?

Performance measure: Classification Task

$$\label{eq:accuracy} Accuracy = \frac{Number \ of \ correct \ predictions}{Total \ number \ of \ predictions}$$

Supervised Learning

Regression

Regression is a type of machine-learning algorithm used for predicting continuous numerical values

Example:

Prediction of salary based on years of experience in the job

The most common type: Linear Regression

Linear regression = We are trying to find the best line for a dataset

How to choose the right one?

Linear Regression

- Initialization:
 Computing a random line y(x)=a*x+b
- Now we have an equation the error=> we can minimize it

3) Compute **a** and **b** to minimize the error

The sum of squared errors is defined as:

$$S(a,b) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Example of Linear Regression

Fund Returns Predictions

Stock Market prices

Nothing linear here !!!

Stock Market prices

Linear function

Well, actually

- Time is only one of the possible variables (and most of the time the least important)
- By increasing the number of variables (dimensions) we can achieve Linearity
- In case of Stock price, we can choose variables like: Company's profit, Company's dividends, the economical situation in the country etc

Performance measure: Linear regression

Linear Regression

The most important assumption: all features (coordinates) should be linearly correlated to the outcome!!!

ML & Deep Learning

Algorithms based on statistical knowledge:

- Clustering
- Regressions

 Technique that teaches computers to do what comes naturally to humans: learn by example.

This is a neuron or a human brain cell

The Data Scientists have been inspired by neurons and created Neural networks

They function like neurons assembled together

And when you assemble A LOT of neurons, it is called **Deep Learning**

Imagine you have a dataset

Х	Y	
а	b	
С	d	
etc		

You want to predict Y given X

1. Initiation: Randomized weights

- 1. Initiation: Randomized weights
- 2. You pass all links between neurons multiplying X by weights and summing up in the end. You get Y1!

- 1. Initiation: Randomized weights
- You pass through all links between neurons multiplying X by weights and summing up in the end. You get Y1!
- 3. Compute error Y-Y1 and compute the influence of each weight on the error
- 4. Adjust each weight a little bit

Congrats! Now you are almost a Data Scientist

Thank you for your attention

