ТЕМА 1. ЕЛЕМЕНТИ ЛІНІЙНОЇ АЛГЕБРИ

1.1 Визначники і їх властивості

Означення. Визначником другого порядку називається число

$$\Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}. \tag{1.1}$$

Означення. Визначником третього порядку називається число

$$\Delta_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =
= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} -
-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$
(1.2)

Визначник n-го порядку позначають так:

$$\Delta_n = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & \dots & a_{nn} \end{vmatrix}.$$

Обчислення визначників більш ніж третього порядку зводиться до обчислення визначників третього або другого порядку.

Подамо основні властивості визначників.

Означення. Мінором M_{ij} елемента a_{ij} називається визначник (n-1) го порядку, одержаний з визначника n-го порядку викреслюванням i-го рядка та j-го стовпця.

Означення. Алгебраїчне доповнення A_{ij} елемента a_{ij} означимо рівністю $A_{ij} = (-1)^{i+j} \, M_{ij}.$

Властивість 1. Визначник дорівнює сумі добутків елементів будь якого рядка (стовпця) на їх алгебраїчні доповнення:

$$\Delta_n = \sum_{k=1}^n a_{ik} A_{ik} = \sum_{k=1}^n a_{kj} A_{kj}, (i, j = \overline{1, n}).$$
 (1.3)

Властивість 2. Визначник не зміниться, якщо його рядки замінити стовпцями, не міняючи їх порядку (транспонувати).

Властивість 3. Спільний множник елементів рядка (стовпця) виноситься за знак визначника.

Властивість 4. Якщо поміняти місцями два рядки (два стовпці) визначника, то зміниться лише його знак на протилежний.

Властивість 5. Якщо якийсь рядок (стовпець) визначника складається з нулів, то і сам визначник дорівнює нулю.

Bластивість 6. Визначник, у якого два пропорційні рядки (стовпці), дорівнює нулю.

Властивість 7. Якщо кожний елемент якогось рядка (стовпця) визначника є сумою двох доданків, то і визначник дорівнює сумі двох визначників, у кожному із яких всі елементи такі ж, як і у вихідному визначнику, за винятком елементів вказаного рядка (стовпця). В першому визначнику вказаний рядок (стовпець) складається з перших доданків, у другому з других.

Властивість 8. Визначник не зміниться, якщо до елементів будьякого рядка (стовпця) додати відповідні елементи другого рядка (стовпця), помножені на одне і те саме число.

Властивість 9. Сума добутків елементів рядка (стовпця) на алгебраїчні доповнення відповідних елементів іншого рядка (стовпця) дорівнює нулю.

Зупинимось на одному способі обчислення визначників.

У відповідності з властивістю 1 обчислення визначника n-го порядку зводиться до обчислення n визначників (n-1)-го порядку. Такий метод пониження порядку не ефективний. Використавши основні властивості визначників, обчислення Δ_n завжди можна звести до обчислення одного визначника (n-1) -го порядку, зробивши в якомусь рядку (стовпцю) Δ_n всі елементи, крім одного, рівними нулю.

Приклад. Обчислити визначник:

$$\Delta = \begin{vmatrix} 6 & -5 & 8 & 4 \\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7 \\ -4 & 8 & -8 & -3 \end{vmatrix}.$$

Розв'язання. Додамо до другого стовпця третій; додамо до третього перший, домножений на (-2); додамо до четвертого перший, домножений на (-1). Маємо:

$$\Delta = \begin{vmatrix} 6 & 3 & -4 & -2 \\ 9 & 12 & -13 & -7 \\ 7 & 8 & -11 & 0 \\ -4 & 0 & 0 & 1 \end{vmatrix}.$$

Додамо до першого стовпця четвертий, домножений на 4:

$$\Delta = \begin{vmatrix} -2 & 3 & -4 & -2 \\ -19 & 12 & -13 & -7 \\ 7 & 8 & -11 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}.$$

Розкладемо одержаний визначник по елементах четвертого рядка:

$$\Delta = 1(-1)^{4+4} \begin{vmatrix} -2 & 3 & -4 \\ -19 & 12 & -13 \\ 7 & 8 & -11 \end{vmatrix}$$

Розкладемо цей визначник по елементах третього рядка:

$$\Delta = 7(-1)^{3+1} \begin{vmatrix} 3 & -4 \\ 12 & -13 \end{vmatrix} + 8(-1)^{3+2} \begin{vmatrix} -2 & -4 \\ -19 & -13 \end{vmatrix} - 100$$

$$-11(-1)^{3+3} \begin{vmatrix} -2 & 5 \\ -19 & 12 \end{vmatrix} = 100.$$

 $Bi\partial noвi\partial b$: $\Delta = 100$.

Питання для самоперевірки

- 1. Що називається визначником 2-го порядку?
- 2. Що називається визначником 3-го порядку?
- 3. Як позначаються елементи визначника?
- 4. Сформулюйте і доведіть основні властивості визначників.
- 5. Що називається мінором елемента a_{ik} визначника n-го порядку?
- 6. Що називається алгебраїчним доповненням елемента a_{ik} визначника n-го порядку?
- 7. Виведіть формулу розкладання визначника по елементах рядка (стовпця).
 - 8. Як обчислити визначник n-го порядку?

1.2. Правило Крамера

Задана система n лінійних рівнянь з n невідомими:

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\dots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

$$(1.4)$$

Визначник

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \tag{1.5}$$

складений з коефіцієнтів при невідомих в системі (1.4), називається визначником системи (1.4).

Теорема (правило Крамера). Якщо визначник системи $\Delta \neq 0$, то система має єдиний розв'язок. Цей розв'язок обчислюється за формулами:

$$x_1 = \frac{\Delta_1}{\Delta}, \qquad x_2 = \frac{\Delta_2}{\Delta}, \quad \dots$$
, $x_n = \frac{\Delta_n}{\Delta}, \quad (1.6)$

де Δ_j ($j=\overline{1,n}$) - визначник, отриманий з визначника Δ_j заміною стовпця за номером j стовпцем вільних членів системи.

Приклад. Розв'язати систему

$$x_1 + x_2 - x_3 = 0$$

$$2x_1 - 3x_2 + 4x_3 = 17,$$

$$4x_1 - 11x_2 + 10x_3 = 43.$$

 $extit{Poзв'язання}.$ Обчислюємо визначники $\Delta; \Delta_1; \Delta_2; \Delta_3.$

$$\Delta = \begin{vmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 4 & -11 & 10 \end{vmatrix} = -30 + 16 + 22 - 12 + 44 - 20 = 20.$$

$$\Delta_{1} = \begin{vmatrix} 0 & 1 & -1 \\ 17 & -3 & 4 \\ 43 & -11 & 10 \end{vmatrix} = \begin{vmatrix} 0 & 0 & -1 \\ 17 & 1 & 4 \\ 43 & -1 & 10 \end{vmatrix} =$$

$$= (-1) \cdot (-1)^{1+3} \begin{vmatrix} 17 & 1 \\ 43 & -1 \end{vmatrix} = 60$$

$$\Delta_2 = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 17 & 4 \\ 4 & 43 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 17 & 6 \\ 4 & 43 & 14 \end{vmatrix} = 1(-1)^{1+1} \begin{vmatrix} 17 & 6 \\ 43 & 14 \end{vmatrix} = -20.$$

$$\Delta_3 = \begin{vmatrix} 1 & 1 & 0 \\ 2 & -3 & 17 \\ 4 & -11 & 43 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & -5 & 17 \\ 4 & -15 & 43 \end{vmatrix} = 1(-1)^{1+1} \begin{vmatrix} -5 & 17 \\ -15 & 43 \end{vmatrix} = 40.$$

Отже,
$$x_1 = \frac{60}{20} = 3$$
, $x_2 = \frac{-20}{20} = -1$, $x_3 = \frac{40}{20} = 2$.

 $Bідповідь: \{3; -1; 2\}$ - розв'язок системи.

Питання для самоперевірки

- 1. Які системи лінійних алгебраїчних рівнянь можна розв'язати за правилом Крамера?
- 2. Як знайти розв'язок системи лінійних алгебраїчних рівнянь за правилом Крамера?
- 3. Чи раціонально розв'язувати систему за правилом Крамера? Обгрунтуйте.
- 4. Як виявити, згідно з правилом Крамера, чи ϵ система сумісною, визначеною, невизначеною?
- 5. Коли однорідна система n лінійних алгебраїчних рівнянь з n невідомими має нетривіальний розв'язок?

1.3. п-вимірні вектори. Матриці

Oзначення. Упорядкована система n дійсних чисел

$$\overline{X}=\left\{x_1,x_2,...,x_n
ight\}$$
 називається n -вимірним вектором. Числа $x_i\,,(i=1,\overline{n})$ називаються компонентами вектора \overline{X} .

Oзначення. Прямокутна матриця розмірності m×n - це впорядкована таблиця mn чисел

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
(1.7)

Числа $a_{ij}, i=\overline{1,m}, \quad j=\overline{1,n}$ називаються *елементами* матриці. Позначають матриці буквами A, B, C,... .

Матриця розмірності $1 \times n$ називається матрицею-рядком; або вектор-рядком; матриця розмірності $m \times 1$ - матрицею стовпцем або вектор- стовпцем.

При m=n матриця називається *квадратною n*-го порядку. Елементи a_{11} , a_{22} , ... a_{2n} квадратної матриці утворюють головну діагональ, а елементи a_{1n} , $a_{2,n-1}$, ..., a_{n1} - a_{n1} - побічну.

Квадратна матриця, у якої $a_{ij} \neq 0$ лише при i=j, називається діагональною. Діагональна матриця E з елементами $a_{ii}=1$ називається одиничною.

Матриця, всі елементи якої дорівнюють нулю, називається *нульовою*.

Якщо в матриці M записати рядки стовпцями в тому ж порядку, то отримана матриця M^T називається *транспонованою* для матриці M, а саме перетворення матриці M, в M^T -*транспонуванням*.

Питання для самоперевірки

- 1. Що називається n- вимірним вектором?
- 2. Що називається матрицею?
- 3. Які матриці мають назви прямокутних, квадратних ?
- 4. Які матриці звуться діагональними, одиничними?
- 5. Яка матриця називається транспонованою для даної матриці?

1.4. Дії над *n*- вимірними векторами і матрицями

Задані:

$$\vec{a} = \{x_1; x_2; \dots; x_n\}, \vec{b} = \{y_1; y_2; \dots; y_n\}.$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}.$$

$$(1.9)$$

1. Рівність:

$$(\vec{a} = \vec{b}) \Leftrightarrow (x_i = y_i, i = \overline{1,n});$$
 (1.10)

$$(A = B) \Leftrightarrow (a_{ij} = b_{ij}, i = \overline{1, m}; j = \overline{1, n}). \tag{1.11}$$

2. Додавання:

$$\vec{a} \pm \vec{b} = \{x_1 \pm y_1; x_2 \pm y_2; ...; x_n \pm y_n\},$$
 (1.12)

$$(C = A \pm B) \Leftrightarrow (c_{ij} = a_{ij} \pm b_{ij}, i = \overline{1, m}; j = \overline{1, n})$$
 (1.13)

3. Множення на число:

$$\lambda \vec{a} = \{ \lambda x_1; \lambda x_2; ...; \lambda x_n \}; \qquad (1.14)$$

$$(D = \lambda A) \Leftrightarrow (d_{ij} = \lambda a_{ij}, i = \overline{1, m}; j = \overline{1, n}) . \tag{1.15}$$

1.5. Скалярний добуток векторів. Довжина вектора. Кут між векторами. Ортогональність

Скалярним добутком двох векторів \vec{a} і \vec{b} (1.8) називається число:

$$(\vec{a} \cdot \vec{b}) = x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n = \sum_{i=1}^{n} x_i \cdot y_i$$
 (1.16)

Довжина (або модуль) вектора $\ \overline{a}$ (1.8), позначається через $|\vec{a}|$, означається так:

$$|\vec{a}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$
 (1.17)

Кут ϕ між двома векторами \vec{a} і \vec{b} $(\vec{a} \neq 0; \vec{b} \neq 0)$ (1.8), визначається формулою:

$$\cos \varphi = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} . \tag{1.18}$$

Два вектори \vec{a} і \vec{b} (1.8) називаються *ортогональними*, якщо їх скалярний добуток дорівнює нулю, тобто

$$\sum_{i=1}^{n} x_i y_i = 0 . {(1.19)}$$

1.6. Лінійна залежність векторів. Базис. Розклад вектора по базису

Означення. Система векторів $\vec{a}_1, \vec{a}_2, ..., \vec{a}_m$ називається *лінійно* залежною, якщо є такі числа $c_1, c_2, ..., c_m$, не рівні одночасно нулю, що

$$c_1 \vec{a}_1 + c_2 \vec{a}_2 + \dots + c_m \vec{a}_m = \overline{0}. \tag{1.20}$$

Якщо співвідношення (1.20) має місце лише в тому випадку, коли всі $c_i=0, i=1, \overline{m},$ то система векторів називається лінійно незалежною.

Теорема. Система векторів $\vec{a}_1, \vec{a}_2, ..., \vec{a}_m$ лінійно залежна, тоді й лише тоді, якщо який-небудь з векторів ϵ лінійною комбінацією решти.

Будь-яка система n лінійно незалежних векторів n- вимірного простору називається базисом цього простору.

Максимальне число лінійно незалежних векторів n-вимірного простору дорівнює n.

Довільний вектор \vec{X} *п*-вимірного простору задається як лінійна комбінація векторів базису $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$:

$$\vec{X} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n$$
 (1.21)

Числа $x_1,x_2,...,x_n$ називаються координатами вектора \vec{X} в базисі $\overline{e}_1,\overline{e}_2,...,\overline{e}_n$.

Приклад. Переконатись, що вектори $\overline{e}_1=\left\{5;4;3\right\}, \overline{e}_2=\left\{3;-1;2\right\}, \overline{e}_3=\left\{-3;1;3\right\}$ утворюють базис, і знайти координати вектора $\overline{X}=\left\{12;9;10\right\}$ у цьому базисі.

нати вектора
$$X=\{12;9;10\}$$
 у цьому базисі.
$$Pose'язання.$$
Якщо визначник $\Delta=\begin{vmatrix}5&4&3\\3&-1&2\\-3&1&3\end{vmatrix}$, складений з

координат векторів $\overline{e}_1, \overline{e}_2, \overline{e}_3$, не дорівнює 0, то вектори $\overline{e}_1, \overline{e}_2, \overline{e}_3$ лінійно незалежні і, отже, утворюють базис тримірного простору. Переконуємось, що $\Delta = -31 \neq 0$. Отож, трійка - $\overline{e}_1, \overline{e}_2, \overline{e}_3$ - базис.

Нехай вектор \vec{X} в базисі $\overline{e}_1,\overline{e}_2,\overline{e}_3$ має координати $x_1,x_2,x_3,$ тобто $\vec{X}=x_1\overline{e}_1+x_2\overline{e}_2+x_3\overline{e}_3$.

Для знаходження координат x_1, x_2, x_3 маємо систему $\{12; 9; 10\} = x_1\{5; 4; 3\} + x_2\{3; -1; 2\} + x_3\{-3; 1; 3\}$ або

$$\begin{cases} 5x_1 + 3x_2 - 3x_3 = 12, \\ 4x_1 - x_2 + x_3 = 9, \\ 3x_1 + 2x_2 + x_3 = 10. \end{cases}$$

Її розв'язок $x_1 = 3$, $x_2 = 2$, $x_3 = -1$.

Відповідь.
$$\overline{X} = 3\overline{e}_1 + 2\overline{e}_2 - \overline{e}_3$$

Питання для самоперевірки

- 1. Що називається лінійною комбінацією системи векторів?
- 2. Яка система векторів називається лінійно залежною? лінійно незалежною?
- 3. Коли система векторів буде лінійно залежною? лінійно незалежною?
 - 4. Що називається базисом простору?
 - 5. Скільки векторів утворюють базис простору R^{3} ?
 - 6. Сформулюйте теорему про розклад вектора по векторах базису.

1.7 Дії над матрицями

Добутком (m×n)-матриці A і (n×r)- матриці B назвемо (m×r) - матрицю C, кожен елемент якої ε скалярним добутком відповідних вектор - рядка матриці A і вектор-стовпця матриці B.

Приклад. Знайти добуток квадратних матриць:

$$A = \begin{pmatrix} 0 & 5 & 3 \\ 2 & 4 & 1 \\ 3 & 2 & 6 \end{pmatrix} \quad i \quad B = \begin{pmatrix} 3 & 2 & 1 \\ 2 & -1 & 3 \\ 4 & 3 & 0 \end{pmatrix}.$$

Розв'язання:

$$\begin{pmatrix} 0 & 5 & 3 \\ 2 & 4 & 1 \\ 3 & 2 & 6 \end{pmatrix} \times \begin{pmatrix} 3 & 2 & 1 \\ 2 & -1 & 3 \\ 4 & 3 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 \times 3 + 5 \times 2 + 3 \times 4 & 0 \times 2 - 5 \times 1 + 3 \times 3 & 0 \times 1 + 5 \times 3 + 3 \times 0 \\ 2 \times 3 + 4 \times 2 + 1 \times 4 & 2 \times 2 - 4 \times 1 + 1 \times 3 & 2 \times 1 + 4 \times 3 + 1 \times 0 \\ 3 \times 3 + 2 \times 2 + 6 \times 4 & 3 \times 2 - 2 \times 1 + 6 \times 3 & 3 \times 1 + 2 \times 3 + 6 \times 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 22 & 4 & 15 \\ 18 & 3 & 14 \\ 37 & 22 & 9 \end{pmatrix}.$$

Приклад. Знайти добуток прямокутних матриць:

$$A = \begin{pmatrix} 3 & 4 & -2 \\ -5 & 1 & 3 \end{pmatrix} i B = \begin{pmatrix} -2 & 0 & 2 & 1 \\ 1 & 5 & -2 & 0 \\ 4 & -1 & 3 & -2 \end{pmatrix}.$$

Розв'язання.

$$\begin{pmatrix} 3 & 4 & -2 \\ -5 & 1 & 3 \end{pmatrix} \begin{pmatrix} -2 & 0 & 3 & 1 \\ 1 & 5 & -2 & 0 \\ 4 & -1 & 3 & -2 \end{pmatrix} =$$

$$\begin{pmatrix} -3 \times 2 + 4 \times 1 - 2 \times 4 & 3 \times 0 + 4 \times 5 + 2 \times 1 & 3 \times 3 - 4 \times 2 - 2 \times 3 & 3 \times 1 + 4 \times 0 + 2 \times 2 \\ 5 \times 2 + 1 \times 1 + 3 \times 4 & -5 \times 0 + 1 \times 5 - 3 \times 1 & -5 \times 3 - 1 \times 2 + 3 \times 3 & -5 \times 1 + 1 \times 0 - 3 \times 2 \end{pmatrix} =$$

$$= \begin{pmatrix} -10 & 12 & -5 & 7 \\ 23 & 2 & 8 & -11 \end{pmatrix}.$$

Зауважимо, добуток ВА не має смислу.

Дана квадратна матриця А. Якщо ϵ квадратна матриця $A^{\text{-}1}$, яка задовольня ϵ умову

$$A^{-1} \times A = A \times A^{-1} = E, \qquad (1.22)$$

то матриця А-1 називається оберненою матрицею до матриці А.

Квадратна матриця A називається виродженою, якщо визначник |A|=0 , і невиродженою, якщо визначник $|A|\neq 0$.

Для невиродженої матриці A існує єдина обернена матриця A^{-1} , яка може бути знайдена за формулою:

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix},$$
(1.23)

де A_{ij} -алгебраїчні доповнення елементів a_{ij} , i, j = 1, n.

Систему n лінійних рівнянь з n невідомими (1.4) за допомогою матриць запишемо так:

$$AX = B, (1.24)$$

Тут

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}; B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{pmatrix};$$

А- матриця системи; Х- матриця - стовпець невідомих; В-матриця - стовпець вільних членів.

Розв'язок системи при $|A| \neq 0$ знаходиться за допомогою оберненої матриці за формулою:

$$X = A^{-1} \cdot B \tag{1.25}$$

Приклад. Розв'язати систему:

$$\begin{cases} x_1 - 2x_2 + 5x_3 = -2; \\ 2x_1 - 3x_2 + 4x_3 = -8; \\ 4x_1 + x_2 - 3x_3 = -13; \end{cases}$$

Розв'язання. Запишемо систему в матричній формі: AX=B,

$$A = \begin{pmatrix} 1 & -2 & 5 \\ 2 & -3 & 4 \\ 4 & 1 & -3 \end{pmatrix}; X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}; B = \begin{pmatrix} -2 \\ -8 \\ -13 \end{pmatrix}.$$

Знайдемо обернену матрицю до матриці А. Визначник матриці А:

$$|A| = \begin{vmatrix} 1 & -2 & 5 \\ 2 & -3 & 4 \\ 4 & 1 & -3 \end{vmatrix} = 9 - 32 + 10 + 60 - 5 - 12 = 31.$$

Алгебраїчні доповнення елементів в матриці А:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} -3 & 4 \\ 1 & -3 \end{vmatrix} = 5; A_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 4 \\ 4 & -3 \end{vmatrix} = 22;$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 2 & -3 \\ 4 & 1 \end{vmatrix} = 14;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} -2 & 5 \\ 1 & -3 \end{vmatrix} = 1; A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 5 \\ 4 & -3 \end{vmatrix} = -23;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} -2 & 5 \\ 1 & -3 \end{vmatrix} = 1; A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 5 \\ 4 & -3 \end{vmatrix} = -23;$$

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -2 \\ 4 & 1 \end{vmatrix} = -9;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} -2 & 5 \\ -3 & 4 \end{vmatrix} = 7; A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix} = 6;$$
$$A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & -2 \\ 2 & -3 \end{vmatrix} = -2.$$

Запишемо обернену матрицю:

$$A^{-1} = \frac{1}{31} \begin{pmatrix} 5 & -1 & 7 \\ 22 & -23 & 6 \\ 14 & -9 & -2 \end{pmatrix}.$$

Перевірка правильності обчислення оберненої матриці:

$$A^{-1} \times A = \frac{1}{31} \begin{pmatrix} 5 & -1 & 7 \\ 22 & -23 & 6 \\ 14 & -9 & -2 \end{pmatrix} \begin{pmatrix} 1 & -2 & 5 \\ 2 & -3 & 4 \\ 4 & 1 & -3 \end{pmatrix} =$$

$$= \frac{1}{31} \begin{pmatrix} 5 \times 1 - 1 \times 2 + 7 \times 4 & -5 \times 2 + 1 \times 3 + 7 \times 1 & 5 \times 5 - 1 \times 4 - 7 \times 3 \\ 22 \times 1 - 23 \times 2 + 6 \times 4 & -22 \times 2 + 23 \times 3 + 6 \times 1 & 22 \times 5 - 23 \times 4 - 6 \times 3 \\ 14 \times 1 + 9 \times 2 - 2 \times 4 & -14 \times 2 + 9 \times 3 - 2 \times 1 & 14 \times 5 - 9 \times 4 + 2 \times 3 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Знайдемо розв'язок системи:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{31} \begin{pmatrix} 5 & -1 & 7 \\ 22 & -23 & 6 \\ 14 & -9 & -2 \end{pmatrix} \begin{pmatrix} -2 \\ -8 \\ -13 \end{pmatrix} =$$

$$= \frac{1}{31} \begin{pmatrix} -5 \times 2 + 1 \times 8 - 7 \times 13 \\ -22 \times 2 + 23 \times 8 - 6 \times 13 \\ -14 \times 2 + 9 \times 8 + 2 \times 13 \end{pmatrix} = \frac{1}{31} \begin{pmatrix} -93 \\ 62 \\ 31 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}.$$

 $Bidnoвidь: \{-3;2;1\}$ -розв'язок системи.

Питання для самоперевірки

- 1. Яка матриця називається невиродженою?
- 2. Яка матриця має назву оберненої до даної матриці?
- 3. Які матриці мають обернену? Як її знайти?
- 4. Як записати систему лінійних алгебраїчних рівнянь в матричній формі?
- 5. Як записати розв'язок системи лінійних алгебраїчних рівнянь у матричній формі?

1.8. Розв'язування і дослідження систем лінійних алгебраїчних

рівнянь методом Гаусса

Систему m-лінійних алгебраїчних рівнянь з n невідомими записуємо так:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2; \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$
(1.26)

Запишемо систему у вигляді таблиці:

Ефективним методом розв'язання і дослідження систем лінійних рівнянь ϵ метод послідовного виключення невідомих, який називають також методом Гаусса. Метод полягає в тому, що дана система перетворюється в рівносильну їй систему спеціального вигляду, яка легко досліджується і розв'язується.

Перетворення системи за методом Гаусса складається з ряду послідовних кроків, на кожному з яких здійснюється виключення одного невідомого. Для кожного такого кроку необхідно виділити ведуче невідоме x_i та i- е ведуче рівняння, або , що те саме, a_{ii} - ведучий елемент.

Алгоритм перетворення:

- 1) елементи i-го ведучого рядка ділять на ведучий елемент і одержані частки записують в i- й рядок перетвореної таблиці;
- 2) всі елементи j-го стовпця перетвореної таблиці дорівнюють нулю, крім елемента, який стоїть на місці ведучого і рівного 1;

3) всі решту елементів таблиці перераховують по схемі прямокутника:

$$a_{lk}^{'}=\frac{a_{ij}aa_{lk}-a_{lj}a_{ik}}{a_{ij}}.$$

Після r-го кроку перетворення одержуємо таблицю:

Система, записана в таблиці (1.28) , називається системою, зведеною до базисного вигляду.

При цьому можливі випадки:

- 1. r = n. Система має єдиний розв'язок.
- 2. r > n. Система має безліч розв'язків.

Її загальний розв'язок:

Невідомі $x_1, x_2, ..., x_r$, відносно яких розв'язана система, називаються базовими, а невідомі $x_{r+1}, ..., x_n$ - вільними.

Розв'язок, одержаний з загального при певних значеннях вільних невідомих, називається *частковим* розв'язком.

Частковий розв'язок, одержаний з загального при нульових значеннях вільних невідомих, називається базовим.

Невід'ємний базовий розв'язок називається *опорним* розв'язком (опорним планом системи).

3. Якщо при перетвореннях системи отримаємо рівняння, в якому всі коефіцієнти при невідомих - нулі, а вільний член не дорівнює нулю, то система розв'язку немає.

Приклад. Методом Жордана-Гаусса розв'язати систему:

$$x_1 + 2x_2 + 5x_3 + 9x_4 = 79$$

$$3x_1 + 13x_2 + 18x_3 + 30x_4 = 263$$

$$2x_1 + 4x_2 + 11x_3 + 16x_4 = 146$$

$$x_1 + 9x_2 + 9x_3 + 9x_4 = 93$$

Розв'язання.

1 030 75471151.				
x_1	x_2	x_3	x_4	
1	2	5	9	79
3	13	18	30	263
2	4	11	16	146
1	9	9	9	92
1	2	5	9	79
0	7	3	3	26
0	0	1	-2	-12
0	7	4	0	13
1	2	0	19	139
0	7	0	9	62
0	0	1	-2	-12
0	7	0	8	61
1	0	0	115/7	849/7
0	1	0	9/7	62/7
0	0	1	-2	-12
0	0	0	-1	-1
1	0	0	0	734/7
0	1	0	0	53/7
0	0	1	0	-10
0	0	0	1	1

 $Bi\partial no Bi\partial b$: $\left\{\frac{734}{7}; \frac{53}{7}; -10; 1\right\}$ - розв'язок системи.

Питання для самоперевірки

- 1. У чому полягає ідея методу Гаусса?
- 2. Сформулюйте алгоритм методу Гаусса.
- 3. Сформулюйте правило прямокутника.
- 4. На скільки може зменшитись кількість рівнянь системи після виключення однієї невідомої і чому?
 - 5. Як визначають несумісність системи у методі Гаусса?
- 6. Як визначають визначеність, невизначеність системи у методі Гаусса?
 - 7. Які невідомі називаються базовими, а які вільними?
- 8. Що таке частковий розв'язок, базовий розв'язок, опорний розв'язок?