# CIE 327 - Probability and Stochastic Processes

SalahDin A. Rezk

Zewail City of Science and Technology

s-salahdin.rezk@zewailcity.edu.eg

Student's notes for the Communication and Information Engineering Probability Course by Prof. Samy Soliman at Zewail City of Science and Technology in the Fall 24/25 semester. The notes are based on the lectures and the textbook *Probability, Random Variables, and Stochastic Processes* by Athanasios Papoulis and S. Unnikrishna Pillai. Other references include *Probability and Statistics for Engineers and Scientists* by Ronald E. Walpole and Raymond H. Myers; and *Modern Digital and Analog Communication Systems* by B. P. Lathi.and Zhi Ding. The notes cover the basics of probability theory, random variables, and stochastic processes.

# ${\bf Contents}$

| Probability Theory                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ntroduction  1 Some Properties of Events 2 Axioms of Probability 3 More Rules                                                                                                                                                                                             | 1<br>1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Counting Techniques  1 Multiplication Rule 2 Combinatorics 3 Binomial Theorem                                                                                                                                                                                             | 3<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Conditional Probability                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Random Variables                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Discrete Random Variables  1 Introduction 2 Probability Mass Function (PMF) 3 Cumulative Distribution Function (CDF) 4 Expected Value (Mean) 5 Variance 6 Expected Value of a Function                                                                                    | 8<br>8<br>8<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stochastic Processes                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| t of Figures                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Example of Unions and Intersections on events $A$ and $B$ .<br>Venn Diagram for Sample Space $S$<br>Venn Diagram for some proprieties.<br>Conditional Probability in a Venn Diagram.<br>Total Probability in a Venn Diagram.<br>Tree Diagram for Conditional Probability. | 1<br>1<br>3<br>6<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                           | troduction  1 Some Properties of Events  2 Axioms of Probability  3 More Rules  counting Techniques  1 Multiplication Rule  2 Combinatorics  3 Binomial Theorem  conditional Probability  Random Variables  biscrete Random Variables  1 Introduction  2 Probability Mass Function (PMF)  3 Cumulative Distribution Function (CDF)  4 Expected Value (Mean)  5 Variance  6 Expected Value of a Function  Stochastic Processes  t of Figures  Example of Unions and Intersections on events A and B.  Venn Diagram for Sample Space S  Venn Diagram for some proprieties.  Conditional Probability in a Venn Diagram.  Total Probability in a Venn Diagram.  Total Probability in a Venn Diagram. |

# List of Theorems

| 1  | Definition (Random Experiment)           | 1  |
|----|------------------------------------------|----|
| 2  | Definition (Sample Space)                | 1  |
| 1  | Example (Heads or Tails)                 | 1  |
| 2  | Example (Rolling a Die)                  | 1  |
| 3  | Example (Point on a Circle)              | 1  |
| 1  | Remark                                   | 1  |
| 3  | Definition (Event)                       | 1  |
| 4  | Definition (Complement)                  | 1  |
| 5  | Definition (Union)                       | 1  |
| 6  | Definition (Intersection)                | 1  |
| 7  | Definition (Mutually Exclusive/Disjoint) | 1  |
| 8  | Definition (Venn Diagram)                | 1  |
| 1  | Proof (Equation 1.7)                     | 2  |
| 2  | Proof (Equation 1.8)                     | 2  |
| 3  | Proof (Equation 1.9)                     | 2  |
| 9  | Definition (Multiplication Rule)         | 3  |
| 4  | Example (License Plates)                 | 3  |
| 10 | Definition (Factorial)                   | 4  |
| 2  | Remark                                   | 4  |
| 5  | Example (Arranging Professors)           | 4  |
| 11 | Definition (Permutation)                 | 4  |
| 4  | Proof (Proof of Permutation Formula)     | 4  |
| 3  | Remark                                   | 4  |
| 6  | Example (Seating 5 People)               | 4  |
| 12 | Definition (Combination)                 | 5  |
| 5  | Proof (Combination Formula)              | 5  |
| 4  | Remark                                   | 5  |
| 7  | Example                                  | 5  |
| 13 | Definition (Binomial Theorem)            | 5  |
| 8  | Example                                  | 5  |
| 14 | Definition (Conditional Probability)     | 6  |
| 15 | Definition (Independence of Events)      | 6  |
| 1  | Theorem (General Multiplicative Rule)    | 6  |
| 6  | Proof (General Multiplicative Rule)      | 6  |
| 2  | Theorem (Total Probability)              | 7  |
| 7  | Proof (Bayes' Rule)                      | 8  |
| 9  | Example (Coin Toss)                      | 8  |
| 10 | Example (Switchboard Calls)              | 8  |
| 11 | Example (Defective Computers)            | S  |
| 12 | Example (Coin Toss Until a Tail)         | 9  |
| 13 | Example (Expected Number of Chemists)    | 9  |
| 14 | Example (Revenue Comparison)             | 9  |
| 15 | Example (Linear Transformation)          | 10 |



# Probability Theory

П

AUB

**PART** 

Section 1

# Introduction

Probability applications are everywhere, from weather forecasting to aerospace engineering. It is a mathematical tool to model uncertainty.

**Definition 1** (Random Experiment) An experiment with an uncertain outcome.

Definition 2 (Sample Space) The set of all possible outcomes.

Example | (Heads or Tails) The sample space is  $\{H, T\}$ .

Example | (Rolling a Die) The sample space is  $\{1, 2, 3, 4, 5, 6\}$ .

Example | (Point on a Circle) The sample space is  $S = \{(x,y) \mid x^2 + y^2 \le 5\}$ .

Remark The number of elements in a sample space may be finite, infinite, countable, or uncountable.





**Definition 5** (Union) An event that is in A or B, denoted by  $A \cup B$ .

**Definition 6** (Intersection) An event common to both A and B, denoted by  $A \cap B$ .

**Definition 7** (Mutually Exclusive/Disjoint) Two events are mutually exclusive/disjoint if they have no common outcomes, i.e.,  $A \cap B = \emptyset$ .

**Definition 8** (Venn Diagram) A diagram that shows the relationships between events. See Figures.



Figure 1. Example of Unions and Intersections on events A

and B.

**Figure 2**. Venn Diagram for Sample Space S

Subsection 1.1

# Some Properties of Events



$$(A')' = A \tag{1.6}$$

$$(A \cup B)' = A' \cap B' \tag{1.7}$$

$$(A \cap B)' = A' \cup B'. \tag{1.8}$$

PROOF | (Equation 1.7)

$$\begin{aligned} x \in (A \cup B)' &\iff x \notin A \cup B \\ &\iff x \notin A \text{ and } x \notin B \\ &\iff x \in A' \text{ and } x \in B' \\ &\iff x \in A' \cap B'. \end{aligned}$$

Check the Venn Diagram in Figure 3 for a visual representation of these properties.

PROOF | (Equation 1.8)

$$x \in (A \cap B)' \iff x \notin A \cap B$$
  
 $\iff x \notin A \text{ or } x \notin B$   
 $\iff x \in A' \text{ or } x \in B'$   
 $\iff x \in A' \cup B'.$ 

Subsection 1.2

## **Axioms of Probability**

- $P(A) \in [0,1]$  for all events A.
- P(S) = 1.
- If  $A_1, A_2, \ldots$  are mutually exclusive, then  $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ .

Subsection 1.3

#### More Rules

$$P(A') = 1 - P(A) \tag{1.9}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
(1.10)

$$P(\varnothing) = 0 \tag{1.11}$$

PROOF | (Equation 1.9)

$$P(A \cup A') = P(S) = 1$$

Since A and A' are mutually exclusive (Definition 7),

$$P(A) + P(A') = 1$$
  
 $P(A') = 1 - P(A).$ 



 ${\bf Figure~3.~Venn~Diagram~for~some~proprieties}.$ 

Section 2

# Counting Techniques

They are used to determine the number of outcomes in a sample space. Helpful for calculating probabilities and will still be useful in later chapters.

Subsection 2.1

# Multiplication Rule

#### Definition 9

(Multiplication Rule) If an experiment consists of  $n_1$  stages, where the first stage can result in  $n_1$  outcomes, the second stage in  $n_2$  outcomes, and so on, the total number of outcomes is  $n_1 \times n_2 \times \cdots \times n_k = \prod_{i=1}^k n_i$ .

Example | (License Plates) A license plate consists of 3 letters followed by 3 digits. Total number of plates is  $26^3 \times 10^3$ .

#### **Definition 10**

(Factorial) The product of all positive integers up to n.

$$n! = n \times (n-1) \times \cdots \times 1.$$

Remark

- 0! = 1.
- $n! = n \times (n-1)!$ .

Factorials are used to calculate permutations and combinations, representing the number of ways to arrange a set of objects.

Example

(Arranging Professors) Nine professors are to give talks at a conference, grouped by nationality (3 French, 2 American, 4 Egyptian). In how many ways can their talks be scheduled so that professors of the same nationality follow each other?

Arrange French: 3!

Arrange American: 2!

Arrange Egyptian: 4!

Arrange Nationalities: 3!

Total:  $3! \times (3! \times 2! \times 4!) = 1728$ .

Subsection 2.2

#### Combinatorics

#### **Definition 11**

(Permutation) An arrangement of n objects in a specific order.

$$P(n,r) = \frac{n!}{(n-r)!}.$$

Proof

(Proof of Permutation Formula) To arrange r items from n distinct items:

- n options for the first position.
- n-1 for the second.
- Continue until n r + 1 options for the r-th position.

Thus,

$$P(n,r) = n \times (n-1) \times \cdots \times (n-r+1)$$
$$= \frac{n!}{(n-r)!}.$$

Remark

- If r = n, then P(n, n) = n!.
- If r = 0, then P(n, 0) = 1.

Example

(Seating 5 People) How many ways can 5 people be seated in a row?

$$P(5,5) = \frac{5!}{(5-5)!} = 5!.$$

Thus, there are 5! = 120 ways.

#### **Definition 12**

(Combination) An arrangement of r objects from n objects without considering the order.

$$C(n,r) = \frac{n!}{r! \times (n-r)!}.$$

Proof

(Combination Formula) Number of ways to choose r items from n distinct items without considering the order. First find the number of ways to arrange r items from n distinct items, then divide by the number of ways to arrange the r items. Therefore, the total

$$C(n,r) = \frac{P(n,r)}{P(r,r)}$$

$$= \frac{n!}{r! \times (n-r)!} \times \frac{r!}{r!}$$

$$= \frac{n!}{r! \times (n-r)!}..$$

Remark

- C(n,r) = C(n,n-r).
- C(n,0) = 1.
- C(n,1) = n.
- C(n,n) = 1.

Example

An 8-bit codeword is selected at random. What is the probability that it contains at least 3 zero bits?

$$T = \sum_{i=3}^{8} {8 \choose i}$$

$$= 2^{8} - \sum_{i=0}^{3} {8 \choose i}$$

$$= 163$$

$$P = \frac{163}{2^{8}} = 0.6367$$

Subsection 2.3

## **Binomial Theorem**

#### **Definition 13**

(Binomial Theorem)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Example | Expand  $(x+y)^3$ .

$$(x+y)^3 = {3 \choose 0} x^3 y^0 + {3 \choose 1} x^2 y^1 + {3 \choose 2} x^1 y^2 + {3 \choose 3} x^0 y^3$$
  
=  $x^3 + 3x^2 y + 3xy^2 + y^3$ .

# Conditional Probability

**Definition 14** 

(Conditional Probability) The probability of an event B occurring given that A has occurred. It is denoted as P(B|A).

$$P(B|A) = \frac{P(A \cap B)}{P(A)}; \quad P(A) > 0.$$
 (3.1)

similarly,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}; \quad P(B) > 0.$$

In a Venn Diagram, conditional probability is equivalent to changing the sample space to B and calculating the probability of A in this new space. For example, in Figure 4,  $P(A|B) = \frac{P(A \cap B)}{P(B)}$ . Imagine wrapping the space around B and considering only the outcomes in this new space.

 $A \cap B$ 

A

B

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ 

Figure 4. Conditional Proba-

bility in a Venn Diagram.

**Definition 15** 

(Independence of Events) Two events A and B are independent if:

$$P(B|A) = P(B)$$
 or  $P(A|B) = P(A)$ .

Equivalently:

$$P(A \cap B) = P(A)P(B).$$

Independence is not the same as disjointness. Disjoint events are dependent, but independent events are not disjoint. Not related to mutual exclusivity.

Theorem 1

(General Multiplicative Rule) For events  $A_1, A_2, \ldots, A_k$ :

$$P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_k|A_1 \cap \dots \cap A_{k-1}).$$

(3.2)

$$P(\bigcap_{i=1}^{k} A_i) = \prod_{i=1}^{k} P(A_i | \bigcap_{j=1}^{i-1} A_j).$$
(3.3)

If the events are independent:

$$P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k).$$
 (3.4)

Proof

(General Multiplicative Rule) To prove the formula for  $P(A_1 \cap A_2 \cap \cdots \cap A_k)$ , we proceed by using the definition of conditional probability iteratively.

$$P(A_1 \cap B_1) = P(B_1)P(A_1|B_1)$$

Let  $B_1 = A_2 \cap B_2$ ,

$$P(A_1 \cap A_2 \cap B_2) = P(A_2 \cap B_2)P(A_1|A_2 \cap B_2)$$

$$= P(B_2)P(A_2|B_2)P(A_1|A_2 \cap B_2)$$

Since intersection is associative, we can reorder the terms.

$$P(B_2 \cap A_2 \cap A_1) = P(B_2)P(A_2|B_2)P(A_1|A_2 \cap B_2)$$

Change of variables,

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$$

Repeat k-times,

$$P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_k|A_1 \cap \dots \cap A_{k-1}).$$

Theorem 2

(Total Probability) If events  $B_1, B_2, \ldots, B_k$  partition the sample space S:

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = \sum_{i=1}^{k} P(B_i) P(A|B_i).$$
 (3.5)

Total probability is a way to calculate the probability of an event A by considering all possible ways it can occur. In Figure 5, the probability of A is the sum of the probabilities of A given each event  $B_i$  times the probability of  $B_i$ . We usually trace the path of A through the events  $B_i$  to calculate the conditional probability using a tree diagram (Figure 6) to reach the total probability.



**Figure 5**. Total Probability in a Venn Diagram.



Figure 6. Tree Diagram for Conditional Probability.

Theorem 3

(Bayes' Rule) If events  $B_1, B_2, \ldots, B_k$  partition the sample space S:

$$P(B_r|A) = \frac{P(A|B_r)P(B_r)}{\sum_{i=1}^k P(A|B_i)P(B_i)}.$$
 (3.6)

Proof

(Bayes' Rule)

By the definition of conditional probability 14,

$$P(B_r|A) = \frac{P(A \cap B_r)}{P(A)}$$

By the multiplication rule 1,

$$= \frac{P(A|B_r)P(B_r)}{\sum_{i=1}^k P(A|B_i)P(B_i)}.$$

Random Variables

Section 4

## Discrete Random Variables

Subsection 4.1

## Introduction

A discrete random variable (RV) is a type of variable that can take on a finite or countably infinite set of values. It provides a numerical summary of outcomes from a random experiment.

Example

(Coin Toss) Consider tossing a coin twice. Define the random variable X as the number of heads observed. The range of X is  $\{0,1,2\}$ .

Example

(Switchboard Calls) Let X denote the inter-arrival time between calls and Y the number of calls received in a day at a switchboard. The range of X is the set of non-negative real numbers, while the range of Y is the set of non-negative integers.

Subsection 4.2

# Probability Mass Function (PMF)

The probability mass function (PMF) of a discrete RV X describes the probability of each possible value:

$$f(x) = P(X = x),$$

subject to the following properties:

- 1.  $f(x) \ge 0$  for all x.
- 2.  $\sum_{x} f(x) = 1$ .

PART

 $\Pi$ 

Example

(Defective Computers) A shipment of 8 microcomputers includes 3 defective units. If a random selection of 2 computers is made, determine the probability distribution of the number of defective computers selected.

Subsection 4.3

# Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) of a discrete RV X is given by:

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i),$$

with the following properties:

- 1. F(x) is non-decreasing.
- 2.  $F(x) \in [0,1]$  for all x.

Example

(Coin Toss Until a Tail) A coin is tossed until a tail appears or three attempts are made. Determine the PMF and CDF for the number of tosses required, and sketch their graphs.

Subsection 4.4

# Expected Value (Mean)

The expected value or mean of a discrete RV X is defined as:

$$\mu = E[X] = \sum_{x} x f(x).$$

Example

(Expected Number of Chemists) A committee of size 2 is randomly selected from a group of 4 chemists and 3 biologists. Compute the expected number of chemists on the committee.

Subsection 4.5

#### Variance

The variance of a discrete RV X measures its spread around the mean:

$$\sigma^2 = \operatorname{Var}(X) = E[(X - \mu)^2].$$

Example

(Revenue Comparison) Two product designs are compared based on revenue:

- Design A has a fixed revenue of \$3 million.
- Design B has a 30% chance of yielding \$7 million and a 70% chance of yielding \$2 million

Calculate the mean and standard deviation for each design.

Subsection 4.6

# **Expected Value of a Function**

For a function g(X) of a discrete RV X, the expected value is:

$$E[g(X)] = \sum_{x} g(x)f(x).$$

 $\textit{Example} \hspace{0.2cm} \bigm| \hspace{0.1cm} \text{(Linear Transformation)} \hspace{0.2cm} \text{Find} \hspace{0.2cm} E[aX+b] \hspace{0.2cm} \text{for constants} \hspace{0.2cm} a \hspace{0.2cm} \text{and} \hspace{0.2cm} b.$ 

# $Stochastic\ Processes$

PART III