

#### CJ AI

Disciplina: SCC0230 – Inteligência

**Artificial** 

Professora: Solange Oliveira Rezende

Estagiário PAE: Vitor Rodrigues Tonon







## MOTIVAÇÃO

Inspirado na série
Python plays Grand
Theft Auto V do
Youtuber Sentdex



GitHub



## IDENTIFICAÇÃO DO PROBLEMA





#### IDENTIFICAÇÃO DO PROBLEMA

- Simular um motorista no ambiente do jogo
- Dado a situação do ambiente, o agente deve **escolher** a direção (esquerda, frente, direita)
- Problema de classificação





# PRÉ-PROCESSAMENTO







A base de dados utilizada é uma **mistura** de dados coletados pelos integrantes do grupo no GTA San Andreas, consiste de frames do jogo com o rótulo da ação.



## EXEMPLO DE DADO

Cada dado consiste de um **frame** e a sua respectiva **ação**.



#### PRÉ-PROCESSAMENTO

Conversão de RGB para Escala de Cinza

Durante a coleta os dados de imagens são redimensionados e convertidos para cinza para diminuir a dimensão da imagem consequentemente diminuindo o tamanho do dado.

Antes: RGB: 800x600x3

Depois: GRAYSC.: 160x120

Balanceamento dos Dados

Após analisar os dados coletados nota-se que ir para frente é muito dominante em relação às outras direções assim o dado utilizado para treinamento possui distribuição igual das direções.





# EXTRAÇÃO DE PADRÕES



#### EXTRAÇÃO DE PADRÕES COM DEEP LEARNING

Aprendizado

#### Redes Neurais Convolucionais

foram utilizadas nos dados pré-processados de modo a aprender e extrair padrões generalizadas que nós humanos temos dificuldades de extrair. Modelo

#### AlexNet foi a arquitetura de

CNN escolhida por ser simples e eficiente. Foi o primeiro modelo usando técnicas de Deep Learning que ganhou o desafio da ImageNet batendo todo os outros algoritmos

estatísticos.

#### Ferramentas

Como linguagem foi utilizado Python e as principais bibliotecas/frameworks utilizadas foram TFLearn, que é uma API em cima do TensorFlow e para processamento de imagem o OpenCV.





#### 4.

### PÓS-PROCESSAMENTO



#### PÓS-PROCESSAMENTO

Coletamos mais dados sobre curvas.

Os primeiros agentes **não sabiam muito bem fazer curvas**, pois havia pouca quantidade de dados com as direções esquerda e direita. Mudança na lógica de tomada de decisão.

Fizemos algumas mudanças na lógica de tomada de decisão e o agente começou a dirigir melhor. Exemplo disso foi que, se ele andasse várias vezes seguidas para frente, decidimos "mandar" ele parar um pouco para diminuir a velocidade, pois o tempo de reação dele não é tão bom.





Dados do último treino.



# +- 50 MIL Totais

Quantidade de dados

+- 13 horas Quantidade de horas treinadas

98%
Taxa de Acerto
No Treinamento
No Teste

#### REDE UTILIZADA ALEXNET MODIFICADA







#### PROCESSO DE UTILIZAÇÃO

Capturar e pré-processar imagem do jogo Fornecer a imagem para o modelo treinado

Utilizar os valores de predição das classes para a lógica de tomada de decisão





## **OBRIGADO!**

#### Alguma pergunta?

Integrantes:

Antonio Moreira

Leonardo Meireles

Luca Porto

Vitor Brisola

NºUSP: 9779242

NºUSP: 4182085

NºUSP: 9778943

NºUSP: 9791292

