KONDANSATÖRLER

- ☐ Kondansatörler elektrik enerjisini depolamak amacıyla kullanılan devre elemanlarıdır.
- □Çok yaygın kullanım alanlarına birkaç örnek verecek olursak;
- I.Zamanlama Devreleri
- II. Elektronik filtreleme
- III.AC Güç faktörü düzenleme
- ☐ Hem AC hem de DC devrelerde kullanılırlar.

KONDANSATÖRLER

- □Karşılıklı duran ve aralarında fiziksel bir temas olmayan iki ayrı plaka ve plakalara bağlı iki ayrı iletken telden oluşurlar.
- ☐ Her bir plakaya elektrot denir.
- □Elektrostatik yüklenme esasına göre şarj olur
- ☐ Kondansatörün yük depolayabilmesi ile ilgili büyüklüğe kapasite, kapasitans veya sığa denir C harfiyle temsil edilir.

Kapasiteyi Belirleyen Faktörler

- □Kondansatörün kapasitesi aşağıdaki üç etkene bağlıdır.
- I.Plaka Alanı ile doğru orantılıdır.
- II.Plakaları birbirinden ayıran 'd' uzaklığı ile ters orantılıdır.
- III.Plakalar arasına bir madde yerleştirildiğinde, onun özellikleri kapasiteyi etkiler.

Kondansatör ve Dielektrik

- Kondansatörde kullanılan farklı yalıtkan maddelerin her biri için 'Yalıtkanlık kalitesini' gösteren bir değer belirlenmiştir.
- Bu değere 'dielektrik sabiti' denir.
- Bir kondansatörde dielektrik malzemenin değişmesi kapasiteyi de değiştirir.

Dielektrik Sabiti

Maddenin Adi	Dielektrik Sabitesi	Delinme voltaji
Hava	1	20
Bakalit	5	700
Sellüloz	7	300 -1000
Cam	4-7	400
Mika	2-7	250 - 1500
Kagit	2	1250
Polistren	2,5	500 -2500
Porselen	6-8	40 - 100
Lastik	3	450
Statit	4	200

1 mF değerinde bir kondansatörün dielektrik malzemesinin 'hava' olduğunu farz edelim.

Dielektrik malzeme olarak hava yerine 'kuru kağıt' kullanmak kapasiteyi 3,5 mF'a çıkarır.

Not: delinme voltaji 0.025 mm için verilmistir.

Kondansatör Şarjı

Elektronlar bir plakadan kopartılıp diğer plakaya depolanır.

Kondansatör Şarjı

Kondansatör üzerindeki voltaj, kaynak voltajına eşit oluncaya kadar akım akar.

Kondansatör Şarjı

Voltaj kaynağı devreden ayrıldığında dahi kondansatör şarjlı kalır.

Kondansatörde "Sızıntı"

- •Sızıntı, yalıtkan maddenin içinden geçen akımdır.
- Yalıtkan direnci ve plakalar üzerindeki şarjla orantılıdır.

Kondansatörün Kullanım Alanları – Fotograf Makinası Flaşı

- Flaş, bir kondansatör kullanır
 - Fotograf çekmek için butona basıldığında kondansatör birikmiş enerjisini flaş üzerinden aniden boşaltır.

 Deşarj esnasında fotografı çekilen nesne daha net olarak aydınlatılmış olur.

Kondansatörün Kullanım Alanları – Bilgisayarlar

- Bilgisayarlarda kondansatör kullanımı birçok farklı şekilde bulunmaktadır
- Bazı klavyelerde tuşların altında birer değişken kondansatör vardır
 - Tuşa basıldığında kondansatör plakaları arası mesafe azalmış olur.
 - Değişen kapasite değeri tuşa basıldığının algılanmasını sağlar.

Kapasite Birimi

- Kapasite temel birimi "Farad" olup ismini bilim adamı Michael Faraday'dan almıştır.
- "F" harfi ile sembolize edilir.
- Farad çok yüksek değerli bir kapasite birimidir.
- Pratikte mikrofarad (μF), nanofarad (nF) ve pikofarad (pF) kullanılır.

• 1F = 1,000,000
$$\mu$$
F 1 μ F = 10⁻⁶ F

•
$$1\mu F = 1000 nF$$
 $1 nF = 10^{-3} \mu F$

•
$$1nF = 1000pF$$
 $1 pF = 10^{-3} n F$

Pico Farads (pF)	Nano Farads (nF)	Micro Farads (μF)	
1	0.001	0.00001	
10	0.01	0.00001	
100	0.1	0.0001	
1000	1	0.001	
10000	10	0.01	
100000	100	0.1	
1000000	1000	1	
10000000	10000	10	
100000000	100000	100	

Birim Dönüşüm Örnekleri

- Örnek: $0.1\mu F =$? nF eder.
- μ (mikro) ve n(nano) kat sayıları arasındaki oran $10^3(1000)$ 'tür. Mikro kat sayısı nano kat sayısının 1000 katı olduğu için sonuç: 0.1μ F x 1000 = 100nF yapar.
- Örnek: 1200pF = µF eder.
- p(piko) ve mikro kat sayıları arasındaki fark 1 milyondur. Piko kat sayısı mikro kat sayısından küçük olduğu için sonuç: 1200/1000.000 = 0,0012μF yapar.

Ödevler

•
$$47\mu F = \dots ?nF$$

•
$$1,2nF =?pF$$

•
$$10000pF =?\mu F$$

Kondansatör Çeşitleri

Sabit Kondansatörler

- ☐ Kapasitesi değişmeyen kondansatörlerdir.
- □Kutuplu ya da kutupsuz olarak ayrılabilirler.
- □ Kutuplu kondansatörlerde artı (+) eksi(-) kutupların devreye doğru bağlanması gerekir. Aksi durumda levhalarda aşırı ısınma meydana gelir ve kondansatör delinebilir.

1-Film Kondansatörler

□Bu kondansatörlerde dielektrik malzeme olarak plastik bir malzeme olan polistren film, polyester film gibi malzemeler ya da metal kaplı polyester film kullanılır.

Sembolü

negative charge connection

a- Polyester Film Kondansatörler

- ☐ Hata payları yüksektir. Hata payları +%5 +%10 arasıdır.
- ☐Ucuz ve kullanışlıdırlar.
- \Box 1nF 0,47 μ F arası kapasitelerde bulunabilir.

b-Polistren Film Kondansatörler

- □Bobin gibi bir yapıda üretildiklerinden yüksek frekans devreleri için kullanımları uygun değildir.
- □ Frekansı birkaç yüz KHz'i geçmeyen filtre ve zamanlama devrelerinde kullanımları uygundur.

c-Metal Kaplı Film Kondansatörler

- □ Bir çeşit polyester film kondansatördür. 1nF 2,2µf arası kapasitelerde bulunabilir.
- ☐ Film kondansatörlerin kutupları yoktur. Yaygın olarak filtre devrelerinde kullanılırlar.

2-Seramik Kondansatörler

- □ Dielektrik maddesi olarak seramik kullanılmıştır.
- □ Uygulamada mercimek kondansatör olarak da adlandırılır.
- ☐ Kapasiteleri düşüktür.
- ☐ Hata payları çok yüksektir. Hata payları +%20 dolayındadır.
- □Kapasiteleri sıcaklık ve nemden etkilenir.
- □ Enerji kayıpları az olduğundan çoğunlukla yüksek frekanslı devrelerde kullanılırlar.

3 - Mika Kondansatörler

- □Dielektrik maddesi olarak yalıtkanlığı çok yüksek olan mika kullanılmıştır.
- □Çok yaygın kullanım alanı vardır.
- \Box Kapasiteleri 1pF 0,1 μ F arasıdır. Çalışma gerilimleri 100 V-2500 V arasıdır.

THata navlari +%7-+%70 arasıdır

4 - Elektrolitik Kondansatörler

- ☐ Yalıtım görevi gören ve asit borik eriğine emdirilmiş ince bir oksidasyon zarı kullanılır.
- □İletken olarak alüminyum ya da tantalyum levhalar kullanılır.
- ☐ Yalıtkan malzemesi çok ince olduğundan çok yüksek kapasitelere ulaşmak mümkündür.
- □Kutupsuz ya da kutuplu olarak üretilirler.
- □Bu kondansatörlerin kapasite değerleri 1μF'dan 40000μF'a kadar değişmektedir.
- □Çalışma voltajları 3V-450V arası değişmektedir.

5 - SMD Kondansatörler

- □Çok katmanlı elektronik devre kartlarına yüzey temaslı olarak monte edilmeye uygun yapıda üretilmiş kondansatörlerdir.
- ☐ Boyutları diğer kondansatörlere göre çok daha küçüktür.
- □Ancak mercimek ve mika kondansatörlerle erişilen sığa değerlerine sahip olarak üretilirler.

Ayarlı Kondansatörler

- ☐ Kapasite değerleri değiştirilebilen kondansatörlerdir.
- □500 pf ve altı değerlerde çok küçük kapasitelere sahiptirler.
- ☐ Kapasiteleri küçük olduğundan zamanlama devrelerinde sabit kondansatör ve ayarlı direnç ikilisi kullanılır . Zaman ayarı dirençle yapılır.
- ☐Genellikle radyo devrelerinde kullanılırlar.
- ☐ Yaygın olarak kullanılan iki türü vardır.

1 - Varyabl Kodansatörler

□Radyo alıcılarında anten katının frekansını değiştirmek amacıyla ya da sinyal üreteçlerinde istenen frekansı elde etmek amacıyla kullanılırlar.

1 - Trimer Kodansatörler

- □100 pf'dan daha küçük değerlerde bulunurlar.
- □Sıfıra düşürülmeleri imkansız olduğu için minimum ve maksimum değerleri ile anılırlar. 2-10pf gibi...

frekansa göre sığa ayarı ve ardından cihazın kutulama montajı yapılır.

Rakamlarla Kondansatör Değerlerinin Okunması

Teknik-1

□Eğer yazılı değerin içinde birim kullanılmışsa birimin yazılı olduğu yerde virgül olduğu varsayılır.

■2n2 kodu ve 50 değeri olan kondansatörün sığası = 2,2nF ve çalışma gerilimi=50V'tur.

■p68 kodu ve 100 değeri olan kondansatörün sığası 0.68pF ve çalışma gerilimi 100V'tur.

Teknik-2

- ☐Sayılarla kodlama diyebileceğimiz bu teknikte
- ■Direnç renk kodlarındaki gibi İlk iki numara, sayı olarak birleştirilir. 3. numara, çarpan sayısıdır. 10'un üssü olarak kullanılır.
- ■Birim pf'dır.
- Harfler, tablodaki gibi, toleransı belirler.
- ■104 → 100000pF = 100nF (104pF değil)
- ■472J \rightarrow 4700pF = 4.7nF (J \rightarrow 5% tolerans).

Code	Tolerance	Code	Tolerance
Α	± 0.05 pF	K	± 10 %
В	± 0.1 pF	L	± 15 %
С	± 0.25 pF	M	± 20 %
D	± 0.5 pF	N	± 30 %
Е	± 0.5 %	Р	-0 to 100 %
F	± 1 %	S	-20 to 50 %
G	± 2 %	W	-0 to 200 %
Н	± 3 %	X	-20 to 40 %
J	± 5 %	Z	-20 to 80 %

Teknik-3

□kondansatör değeri ondalık yazılmış ve herhangi bir birim belirtilmemişse birim mikrofarad'dır (µf).

■Örneğin 0.1 \rightarrow 0.1µF = 100 nf anlamına gelir.

■0,22 \rightarrow 0.22 μ F = 220 nf anlamına gelir.

Kondansatör Renk Kodları

Color	Digit 1	Digit 2	Multiplier	Tolerance	Tolerance *	Voltage
Black	0	0	1	± 20 %	± 2.0 pF	100
Brown	1	1	10	±1%	± 0.1 pF	200
Red	2	2	100	± 2 %	± 0.25 pF	300
Orange	3	3	1000	±3%		400
Yellow	4	4	10000	±4%	(- 2	500
Green	5	5	100000	±5%	± 0.5 pF	600
Blue	6	6	Not used	1943		700
Violet	7	7	Not used		(4)	800
Grey	8	8	0.01	+80%,-20%	(4)	900

- Okunması direnç renk kodları gibidir.
- ☐ Birim pikofarad'dır.

Digit 1	Orange	3
Digit 2	Yellow	4
Multiplier	White	0.1
Tolerance	Red	± 0.25 pF

 $C = 34 \times 0.1 \pm 0.25 \text{ pF} = 3.4 \pm 0.25 \text{ pF}$

Avometreyle Sağlamlık Kontrolünün Yapılması

 \square Analog ölçü cihazının komütatör anahtarı X1 kademesine alınır. Dijital ölçü cihazının komütatör anahtarı direnç ölçme kademesine (Ω) alınır.

☐Testi yapılacak kondansatör ayaklarıyla avometrenin probları paralel Şekilde birbirine değdirilir.

 \square Resimde görüldüğü gibi, ilk anda, analog avometrede ibrenin soldan sağa doğru (0 Ω yönünde) sapması, dijital avometredeyse düşük değerde

bir direnç gözükmesi gerekir

Avometreyle Sağlamlık Kontrolünün Yapılması

- □Bir süre sonra analog avometrede ibrenin yeniden sol başa gelmesi yani sonsuz direnç göstermesi ya da dijital avometrede çok yüksek direnç değeri gözükmesi gerekir.
- □Eğer direnç değeri dijital avometrenin direnç aralığının dışına çıkarsa bildiğiniz gibi ekranda okunabilir bir direnç değeri gözükmez.

Kondansatör Bağlantıları

Paralel Bağlantı

$$C_T = C_1 + C_2 + \dots + C_n$$

$$U = U_1 = U_2 = ... = U_n$$

$$C_T = C_1 + C_2 + C_3$$

Paralel Bağlı Kondansatörler

 Plaka alanının artmasıyla benzer etkiye sahiptir, toplam kapasite en yüksek değerde olur.

$$C_T = C_1 + C_2 + C_3$$
 $C_T = 20 + 30 + 60$
 $C_T = 110 \mu F$

Kondansatör Bağlantıları

Seri Bağlantı

$$\frac{1}{C_{1}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$$

$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$$

$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}$$

Seri Bağlı Kondansatörler

• Plakalar arası mesafenin artmasıyla aynı etkiye sahiptir, toplam kapasite azalır.

$$C_{T} = \frac{1}{\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}}$$

Karışık Bağlantı

Örnek : Aşağıdaki devrede A-B noktaları arasındaki toplam kapasiteyi hesaplayınız.

$$C_{es1} = C_1 + C_2 = 60 + 40 = 100 \mu F$$
 $\frac{1}{C_T} = \frac{1}{C_{es1}} + \frac{1}{C_3} = \frac{1}{100} + \frac{1}{16}$

$$\frac{1}{C_{T}} = \frac{29}{400} \qquad C_{T} = 13,79$$

Seri ve paralel Kondansatörler

□ Kondansatör Ağları

Örnek 1 : Gösterilen kondansatör kombinasyonu için a ∨e b noktaları arasındaki eşdeğer sığayı bulalım.Bütün sığalar mikrofarattır.

Seri ve paralel Kondansatörler

□ Kondansatör ağları

