Static PID-5 and ESI

Corrado Caudek

Le misure "basali" corrispondenti al questionario ESI.

```
# Read and process 'esi_bf' data
esi_bf <- rio::import(</pre>
 here::here(
    "data",
    "processed",
    "esi_bf.csv"
) |>
  dplyr::distinct(user id, .keep all = TRUE) |> # Keep only distinct user id
  dplyr::select(user_id, esi_bf) # Select relevant columns
# Read and process 'pid5' data
pid5 <- rio::import(</pre>
 here::here(
    "data",
    "processed",
    "pid5.csv"
  )
) |>
  dplyr::distinct(user_id, .keep_all = TRUE) |> # Keep only distinct user id
  dplyr::select(user_id, starts_with("domain_")) # Select domain variables
# Merge 'esi_bf' and 'pid5' data by user_id
df <- left_join(esi_bf, pid5, by = "user_id")</pre>
# Define list of user IDs with careless responding
user_id_with_careless_responding <- c(</pre>
  "ma_se_2005_11_14_490",
  "reve20041021036",
  "di_ma_2005_10_20_756",
  "pa_sc_2005_09_10_468",
  "il_re_2006_01_18_645",
  "so_ma_2003_10_13_804",
  "lo_ca_2005_05_07_05_437",
  "va_ma_2005_05_31_567",
  "no_un_2005_06_29_880",
  "an_bo_1988_08_24_166",
  "st_ma_2004_04_21_426",
  "an_st_2005_10_16_052",
  "vi_de_2002_12_30_067",
  "gi_ru_2005_03_08_033",
```

```
"al_mi_2005_03_05_844",
  "la_ma_2006_01_31_787",
  "gi_lo_2004_06_27_237",
  "ch bi 2001 01 28 407",
  "al_pe_2001_04_20_079",
  "le_de_2003_09_05_067",
  "fe_gr_2002_02_19_434",
  "ma_ba_2002_09_09_052",
  "ca_gi_2003_09_16_737",
  "an_to_2003_08_06_114",
  "al_se_2003_07_28_277",
  "ja_tr_2002_10_06_487",
  "el_ci_2002_02_15_057",
  "se_ti_2000_03_04_975",
  "co_ga_2003_10_29_614",
  "al ba 2003 18 07 905",
  "bi_ro_2003_09_07_934",
  "an_va_2004_04_08_527",
  "ev_cr_2003_01_27_573"
# Filter out users with careless responses
df1 <- df[!(df$user_id %in% user_id_with_careless_responding), ]</pre>
# Read EMA data and rename 'subj_code' to 'user_id'
ema_raw <- readRDS(</pre>
  here::here(
    "data",
    "raw",
    "ema",
    "ema data scoring.RDS"
  )
) |>
  dplyr::rename(
   user_id = subj_code
  )
# Merge EMA data with filtered main data
df2 <- left_join(df1, ema_raw, by = "user_id")</pre>
# Verify number of unique users
length(unique(df2$user_id))
[1] 429
```

Compliance

Escludiamo i soggetti che hanno risposto a meno di 10 notifiche.

```
# Conta quante risposte EMA ha fornito ciascun soggetto
user_counts <- df2 %>%
  group_by(user_id) %>%
  summarise(n_responses = n()) %>%
```

```
ungroup()
# Tieni solo i soggetti con almeno 10 risposte
valid_users <- user_counts %>%
 filter(n_responses >= 10) %>%
 pull(user_id)
# Filtra il dataframe originale
df2 <- df2 %>%
  dplyr::filter(user_id %in% valid_users)
length(unique(df2$user_id))
[1] 379
Generate negative instant mood
# Costruisce una misura media dell'affetto negativo momentaneo
# Seleziona solo le colonne rilevanti (per velocità)
items <- c("sad", "angry", "happy", "satisfied")</pre>
# Imputa i missing (1 solo imputazione, dato che i NA sono pochi)
imputed \leftarrow mice(df2[, items], m = 1, maxit = 10, seed = 123)
 iter imp variable
     1 sad angry happy satisfied
 2
     1 sad angry happy satisfied
    1 sad angry happy satisfied
 3
 4
    1 sad angry happy satisfied
    1 sad angry happy satisfied
     1 sad angry happy satisfied
 7
     1 sad angry happy satisfied
     1 sad angry happy satisfied
 8
     1 sad angry happy satisfied
      1 sad angry happy satisfied
# Estrai il dataset imputato e sostituisci le colonne originali
df2_imputed <- complete(imputed)</pre>
df2[, items] <- df2_imputed[, items]</pre>
df2 <- df2 %>%
 mutate(
   happy_reversed = 100 - happy, # Scala 0-100
   satisfied_reversed = 100 - satisfied,
   neg_aff_ema = rowMeans(
     cbind(sad, angry, happy_reversed, satisfied_reversed),
     na.rm = TRUE
  )
df3 <- df2 %>%
 dplyr::select(
```

```
user_id,
    esi_bf,
   neg aff ema,
   starts_with("domain_"),
   pid5_negative_affectivity, pid5_detachment, pid5_antagonism,
   pid5_disinhibition, pid5_psychoticism
 )
df4 <- df3[!is.na(df3$domain negative affect), ]</pre>
length(unique(df4$user_id))
[1] 350
# Imputa i missing (1 solo imputazione, dato che i NA sono pochi)
imputed \leftarrow mice(df4, m = 1, maxit = 10, seed = 123)
 iter imp variable
      1 pid5_negative_affectivity pid5_detachment
                                                    pid5_antagonism pid5_disinhibition p
 2
      1 pid5_negative_affectivity pid5_detachment
                                                    pid5_antagonism pid5_disinhibition p
 3
     1 pid5_negative_affectivity pid5_detachment pid5_antagonism pid5_disinhibition p
     1 pid5_negative_affectivity pid5_detachment
 4
                                                    pid5_antagonism pid5_disinhibition
     1 pid5_negative_affectivity pid5_detachment pid5_antagonism pid5_disinhibition p
 5
 6
      1 pid5_negative_affectivity pid5_detachment
                                                    pid5_antagonism pid5_disinhibition
 7
     1 pid5_negative_affectivity pid5_detachment pid5_antagonism pid5_disinhibition p
 8
      1 pid5_negative_affectivity pid5_detachment pid5_antagonism pid5_disinhibition p
  9
      1 pid5_negative_affectivity pid5_detachment pid5_antagonism pid5_disinhibition p
      1 pid5_negative_affectivity pid5_detachment pid5_antagonism pid5_disinhibition
Warning: Number of logged events: 1
# Estrai il dataset imputato e sostituisci le colonne originali
df5 <- complete(imputed)</pre>
df5_scaled <- df5 %>%
 dplyr::mutate(
    # Applica la standardizzazione (scale) a tutte le colonne selezionate
    # tranne user id. as.vector() è usato per assicurare che l'output sia un vettore.
    dplyr::across(
      c (
        esi_bf,
        neg_aff_ema,
        domain_negative_affect,
        domain_detachment,
        domain_antagonism,
        domain_disinhibition,
        domain_psychoticism,
        pid5_negative_affectivity,
        pid5_detachment,
        pid5_antagonism,
       pid5 disinhibition,
       pid5_psychoticism
     ),
      ~ as.vector(scale(.))
```

p:

p:

)

Nel caso presente:

esi_bf è costante entro ogni user_id. Le variabili come neg_aff_ema e le pid5_ sono tempovarianti. La variabile esi_bf è costante nel tempo per ciascun soggetto, quindi non è possibile usare dati a livello momentaneo (EMA) per predire variazione intra-soggettiva che non esiste nell'outcome.

Il modo corretto di affrontare la domanda di ricerca, preservando la validità statistica del confronto, è:

- Aggregare le variabili EMA (come neg_aff_ema, pid5_negative_affectivity, ecc.) a livello del soggetto.
- Usare media per il confronto.

Costruiamo dunque due modelli alternativi a livello soggetto:

- model_base_subject: senza interazioni,
- model_alt_subject: con le interazioni (tra tratti stabili e tratti EMA aggregati).

```
df subject <- df5 scaled %>%
  group_by(user_id) %>%
  summarise(
    esi_bf = first(esi_bf),
    neg_aff_ema_m = mean(neg_aff_ema, na.rm = TRUE),
    pid5_neg_aff_m = mean(pid5_negative_affectivity, na.rm = TRUE),
    pid5_detach_m = mean(pid5_detachment, na.rm = TRUE),
    pid5_antag_m = mean(pid5_antagonism, na.rm = TRUE),
    pid5_disin_m = mean(pid5_disinhibition, na.rm = TRUE),
    pid5_psych_m = mean(pid5_psychoticism, na.rm = TRUE),
    domain_negative_affect = first(domain_negative_affect),
    domain_detachment = first(domain_detachment),
    domain antagonism = first(domain antagonism),
    domain_disinhibition = first(domain_disinhibition),
    domain_psychoticism = first(domain_psychoticism)
  )
model_base <- brm(</pre>
  esi bf \sim 1 +
    domain_negative_affect + domain_detachment +
    domain_antagonism + domain_disinhibition + domain_psychoticism,
  data = df_subject,
  family = asym_laplace(),
  prior = c(
    prior(normal(0, 1), class = "Intercept"),
   prior(normal(0, 1), class = "b"),
   prior(exponential(1), class = "sigma")
  ),
  chains = 4,
  cores = 4,
  iter = 2000,
  seed = 123,
  backend = "cmdstanr",
  # algorithm = "meanfield",
```

```
save_pars = save_pars(all = TRUE)
)

# Posterior predictive check for the baseline model
pp_check(model_base)
```

Using 10 posterior draws for ppc type 'dens_overlay' by default.

print(model_base)

Family: asym_laplace

Links: mu = identity; sigma = identity; quantile = identity

Formula: esi_bf ~ 1 + domain_negative_affect + domain_detachment + domain_antagonism +

Data: df_subject (Number of observations: 350)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:

<u> </u>						
	${\tt Estimate}$	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS
Intercept	-0.34	0.09	-0.52	-0.17	1.00	1798
domain_negative_affect	-0.13	0.06	-0.23	-0.02	1.00	2165
domain_detachment	-0.10	0.05	-0.21	0.00	1.00	2476
domain_antagonism	0.07	0.05	-0.03	0.18	1.00	2863
domain_disinhibition	0.25	0.06	0.13	0.37	1.00	2377
domain_psychoticism	0.17	0.07	0.04	0.31	1.00	2271
	Tail_ESS					
Intercept	1618					
domain_negative_affect	2484					
domain_detachment	2921					
domain_antagonism	2694					
domain_disinhibition	2612					
domain_psychoticism	2084					

Further Distributional Parameters:

```
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 0.33 0.02 0.29 0.37 1.00 2285 2487 quantile 0.38 0.04 0.31 0.45 1.00 1745 1809
```

Draws were sampled using sample(hmc). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

```
model alt <- brm(</pre>
  esi_bf \sim 1 +
    domain_negative_affect * pid5_neg_aff_m +
    domain_detachment * pid5_detach_m +
    domain_antagonism * pid5_antag_m +
    domain_disinhibition * pid5_disin_m +
    domain_psychoticism * pid5_psych_m,
  data = df_subject,
  family = asym_laplace(),
  prior = c(
    prior(normal(0, 1), class = "Intercept"),
    prior(normal(0, 1), class = "b"),
   prior(exponential(1), class = "sigma")
  ),
  chains = 4,
  cores = 4,
  iter = 2000,
  seed = 123,
  backend = "cmdstanr",
  # algorithm = "meanfield",
  save_pars = save_pars(all = TRUE)
pp_check(model_alt)
```

Using 10 posterior draws for ppc type 'dens_overlay' by default.

print(model_alt)

Family: asym_laplace

Links: mu = identity; sigma = identity; quantile = identity

 $Formula: \ esi_bf \ \texttt{~1 + domain_negative_affect * pid5_neg_aff_m + domain_detachment * pid5_detachment * pid5_detach$

Data: df_subject (Number of observations: 350)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	1-95% CI	u-95% CI Rhat
Intercept	-0.48	0.13	-0.73	-0.24 1.00
domain_negative_affect	-0.05	0.07	-0.19	0.08 1.00
pid5_neg_aff_m	-0.11	0.09	-0.28	0.06 1.00
domain_detachment	-0.12	0.05	-0.23	-0.01 1.00
pid5_detach_m	0.14	0.08	-0.03	0.30 1.00
domain_antagonism	0.04	0.06	-0.07	0.16 1.00
pid5_antag_m	-0.01	0.09	-0.20	0.17 1.00
domain_disinhibition	0.22	0.07	0.09	0.35 1.00
pid5_disin_m	-0.03	0.10	-0.23	0.17 1.00
domain_psychoticism	0.18	0.07	0.04	0.31 1.00
pid5_psych_m	-0.04	0.13	-0.28	0.21 1.00
domain_negative_affect:pid5_neg_aff_m	0.02	0.07	-0.12	0.14 1.00
domain_detachment:pid5_detach_m	-0.07	0.05	-0.16	0.04 1.00
domain_antagonism:pid5_antag_m	0.17	0.08	0.03	0.32 1.00
domain_disinhibition:pid5_disin_m	-0.00	0.08	-0.16	0.16 1.00
domain_psychoticism:pid5_psych_m	-0.07	0.07	-0.21	0.07 1.00
	Bulk_ESS	Tail_ESS		
Intercept	1184	1863		
domain_negative_affect	2016	2433		
pid5_neg_aff_m	2132	2583		
domain_detachment	2579	2527		

2863	2189
2521	2748
1892	2301
2601	2486
2592	2305
3039	2978
1849	2813
2811	2499
2979	2433
2785	2518
2249	2662
1911	2829
	2521 1892 2601 2592 3039 1849 2811 2979 2785 2249

Further Distributional Parameters:

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	0.31	0.03	0.25	0.36	1.00	1339	1753
quantile	0.33	0.05	0.24	0.42	1.00	1097	1537

Draws were sampled using sample(hmc). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

```
loo0 <- loo(model_base, save_psis = TRUE)</pre>
loo1 <- loo(model_alt, save_psis = TRUE)</pre>
loo_compare(loo0, loo1)
           elpd_diff se_diff
model_base 0.0
                       0.0
model_alt -7.7
                       4.6
bayes_R2(model_base)
    Estimate Est.Error
                               Q2.5
                                         Q97.5
R2 0.1189947 0.03102776 0.05999484 0.1809222
bayes_R2(model_alt)
    Estimate Est.Error
                               Q2.5
                                         Q97.5
R2 0.1471981 0.03022991 0.08722664 0.2049597
```

Discussione dei risultati

Obiettivo dell'analisi

L'obiettivo di questa analisi era verificare se le dimensioni di personalità patologica misurate tramite il PID-5 (in particolare, le cinque dimensioni di dominio) siano in grado di predire i punteggi individuali al composito ESI_BF, che rappresenta un indice di funzionamento adattivo o disfunzionale clinicamente rilevante. Poiché esi_bf è una misura stabile a livello individuale, sono stati esclusi dal modello tutti i predittori momentanei, concentrandosi esclusivamente su tratti stabili e su eventuali interazioni tra dimensioni stabili e variabili EMA aggregate a livello soggetto.

Modello base

Nel modello base, sono state considerate come predittori solo le cinque dimensioni del PID-5:

- Negative Affect
- Detachment
- Antagonism
- Disinhibition
- Psychoticism

I risultati indicano che:

- Negative Affect (β = -0.13, CI95% = [-0.23, -0.02]) e Detachment (β = -0.10, CI95% = [-0.21, 0.00]) sono negativamente associati al punteggio ESI_BF. Ciò suggerisce che soggetti con maggiore affettività negativa o tendenza all'isolamento riferiscono livelli inferiori di funzionamento adattivo.
- Disinhibition ($\beta = 0.25$, CI95% = [0.13, 0.37]) e Psychoticism ($\beta = 0.17$, CI95% = [0.04, 0.31]) mostrano invece una relazione positiva con ESI_BF. Questo risultato può apparire controintuitivo, ma potrebbe indicare che in alcuni contesti la disinibizione e tratti eccentrici siano collegati a strategie più attive di risposta o a bias di autovalutazione più positivi.

Il coefficiente di determinazione bayesiano (Bayes \mathbb{R}^2) è pari a 0.12, indicando che il modello spiega circa il 12% della varianza interindividuale del punteggio ESI BF.

Modello alternativo

Il modello alternativo ha aggiunto, per ciascun dominio del PID-5, un'interazione con la controparte EMA aggregata (ad esempio: domain_antagonism × pid5_antag_m), allo scopo di esplorare se l'effetto dei tratti stabili cambia in funzione delle fluttuazioni medie momentanee rilevate tramite EMA.

L'unico effetto chiaramente interpretabile nel modello alternativo è l'interazione:

• Domain Antagonism \times EMA Antagonism ($\beta = 0.17, \text{CI95\%} = [0.03, 0.32]$)

Questo risultato suggerisce che per i soggetti con livelli elevati sia di antagonismo stabile sia di antagonismo momentaneo, il punteggio ESI_BF tende ad aumentare. Potrebbe trattarsi di un sottogruppo di individui che, pur presentando tratti interpersonali problematici, mantengono una percezione soggettiva di sé come funzionanti (o resilienti), oppure di un artefatto dovuto a risposte difensive o sovracompensatorie.

Gli altri effetti principali e interazioni **non mostrano associazioni robuste**, con intervalli di credibilità che comprendono lo zero.

Il Bayes \mathbb{R}^2 del modello alternativo è pari a $\mathbf{0.15}$, un incremento modesto rispetto al modello base.

Confronto tra i modelli

Per confrontare i due modelli è stato utilizzato il criterio **LOO** (Leave-One-Out cross-validation), che stima la capacità predittiva fuori campione. I risultati sono:

Modello	elpd_diff	se_diff
Modello base	0.0	0.0

Modello	elpd_diff	se_diff
Modello alternativo	-7.7	4.6

L'aggiunta delle interazioni con le medie EMA non ha migliorato le prestazioni predittive: anzi, il modello alternativo presenta un ELPD inferiore, con un'incertezza che non permette di concludere con sicurezza che sia peggiore, ma suggerisce **nessun vantaggio sostanziale** rispetto al modello più parsimonioso.

Conclusioni

In sintesi:

- Le dimensioni stabili del PID-5 spiegano una quota moderata della varianza nei punteggi ESI BF.
- L'inclusione delle **interazioni con le misure EMA aggregate** non fornisce un guadagno informativo significativo e comporta un aumento della complessità del modello.
- Il modello base risulta preferibile: è più semplice, offre interpretazioni più robuste e ha prestazioni predittive comparabili (o superiori) rispetto al modello esteso.

Questi risultati indicano che, per l'esito considerato, le caratteristiche stabili della personalità sono i predittori più rilevanti, e le fluttuazioni momentanee aggregate non sembrano aggiungere informazioni predittive rilevanti a livello interindividuale.