

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική ΙΙ: Ευφυή Ρομποτικά Συστήματα" (8° εξάμηνο, Ακαδ. Έτος: 2020-21)

Διδάσκων: Κων/νος Τζαφέστας

1η Σειρά Αναλυτικών Ασκήσεων

Άσκηση 1.1

Κινηματικός Έλεγχος Ρομποτικού Συστήματος με Πλεονάζοντες Βαθμούς Ελευθερίας (Kinematic Control of a Redundant Robotic System)

Εστω το σύστημα κινούμενου ρομποτικού χειριστή (τροχοφόρο όχημα με ενσωματωμένο 1R-1P επίπεδο βραχίονα), με συνολικά 3 β .ε. στο επίπεδο, και κινούμενου εμποδίου (τροχοφόρο όχημα), όπως εικονίζεται στο Σχήμα 1 (το ύψος h, που ορίζει την απόσταση της 1^{n_s} περιστροφικής άρθρωσης q_2 του βραχίονα από το έδαφος κύλησης του τροχοφόρου, θεωρείται γνωστό και σταθερό).

α) Να περιγραφεί αναλυτικά η εφαρμογή μιας μεθοδολογίας διάσπασης υποεργασιών (για ρομποτικά συστήματα πλεοναζόντων βαθμών ελευθερίας) στον κινηματικό έλεγχο του δεδομένου συστήματος κινούμενου ρομποτικού χειριστή, με χρήση κατάλληλης συνάρτησης κριτηρίου, εαν ως στόχοι της ρομποτικής εργασίας ορίζονται ιεραρχικά οι ακόλουθοι:

 1^{ov} Η διατήρηση του τελικού άκρου $p_{\rm E}$ του βραχίονα επί δεδομένης ευθείας ($x=x_{\rm d}=$ σταθ.) στο επίπεδο.

 2^{ov} Η διατήρηση απόστασης ασφαλείας r_0 μεταξύ του κινούμενου ρομποτικού οχήματος και του κινούμενου εμποδίου. Θεωρούμε ότι η τρέχουσα απόσταση r (βλ. Σχήμα 1) μετράται μέσω κατάλληλου αισθητήρα (αποστασιόμετρο, rangefinder, ενσωματωμένο επί του ρομποτικού οχήματος) και είναι συνεχώς γνωστή.

β) Έστω: h=1, r_0 =6, και x_d =15. Θεωρώντας ότι τη χρονική στιγμή t ισχύει: $q_1(t)=x_d$ =15, $q_2(t)=\pi/2$, $q_3(t)$ =5, και r(t)= $(r_0$ -2)=4.

Να υπολογισθούν τα σήματα αναφοράς για τις στιγμιαίες ταχύτητες $\dot{q}(t) = \left[\dot{q}_1(t), \dot{q}_2(t), \dot{q}_3(t)\right]^T$ που παράγει ο κινηματικός ελεγκτής του ερωτήματος (α), κατά την τρέχουσα χρονική στιγμή t.

Σχήμα 1: Σύστημα κινούμενου ρομποτικού χειριστή (3 β .ε. στο επίπεδο) και κινούμενου εμποδίου

Άσκηση 1.2

Δεδομένα:

Έστω ρομποτικός μηχανισμός δύο βαθμών ελευθερίας (q_1,q_2) , ο οποίος εικονίζεται στο Σχήμα 1, του οποίου το δυναμικό μοντέλο (θεωρώντας αβαρή τον 1° σύνδεσμο και l_1 =0) περιγράφεται από τις ακόλουθες εξισώσεις:

$$\tau_1 = (mq_2^2) \cdot \ddot{q}_1 + (2mq_2) \cdot \dot{q}_1 \cdot \dot{q}_2 \qquad (1\alpha)$$

$$\tau_2 = m \cdot \ddot{q}_2 - (mq_2) \cdot \dot{q}_1^2 \tag{1\beta}$$

όπου m σταθερή αδρανειακή παράμετρος (μάζα κινούμενου συνδέσμου, υποθετικά συγκεντρωμένη στο άκρο του 2^{ov} συνδέσμου).

Σχήμα 1: Ρομποτικός βραχίονας 2 βαθμών ελευθερίας (1R-1P)

Άσκηση 1.2-(α)

Προσαρμοστικός έλεγχος ρομποτικού χειριστή (adaptive robot manipulator control)

Να γραφούν αναλυτικά οι εξισώσεις ενός προσαρμοστικού νόμου ελέγχου τροχιάς βάσει της μεθοδολογίας υπολογιζόμενης ροπής (computed-torque).

Άσκηση 1.2-(β)

Έλεγχος Εμπέδησης (impedance control)

Έστω εξωτερική δύναμη $f_e=[f_{ex}f_{ey}]^T$ ασκούμενη στο άκρο του εργαλείου (η οποία μετράται με κατάλληλο αισθητήρα δύναμης τοποθετημένο στον τελευταίο σύνδεσμο). Να γραφούν αναλυτικά οι εξισώσεις ενός νόμου ελέγχου ενεργούς μηχανικής εμπέδησης (active impedance control) βάσει της μεθοδολογίας υπολογιζόμενης ροπής (υποθέτοντας γνωστή την αδρανειακή παράμετρο m του δυναμικού μοντέλου, στις σχέσεις 1α και 1β), θεωρώντας επιθυμητή μηχανική εμπέδηση στον Καρτεσιανό χώρο εργασίας οριζόμενη από τα διαγώνια μητρώα: αδρανείας \mathbf{M}_d =diag[m_x , m_y], απόσβεσης \mathbf{B}_d =diag[b_x , b_y] και ακαμψίας \mathbf{K}_d =diag[k_x , k_y].

Άσκηση 1.3

Επιδέζια Ρομποτική Λαβή (μητρώο λαβής, στατική ανάλυση, Ιακωβιανή χεριού) Dexterous Robot Grasping (grasp matrix, force-closure, hand Jacobian)

Εστω η ρομποτική λαβή ενός ορθογώνιου παραλληλεπίπεδου αντικειμένου που εικονίζεται στο ακόλουθο Σχήμα 1. Υποθέτουμε ότι οι επαφές C_1 και C_2 είναι επαφές σημείου χωρίς τριβή, ενώ η C_3 είναι επαφή σημείου με τριβή (με συντελεστή τριβής Coulomb ίσο με μ). Οι αποστάσεις r και h των επαφών ως προς το αδρανειακό πλαίσιο αναφοράς $O-x_0y_0z_0$ του αντικειμένου θεωρούνται γνωστές. Το πλάτος d θεωρείται επίσης γνωστό.

(α) Εφαρμόζοντας τις γενικές σχέσεις μετασχηματισμού δυνάμεων/ροπών επαφής, να γραφεί η μήτρα ρομποτικής λαβής (grasp matrix) G, με πλαίσια αναφοράς στις επαφές της επιλογής σας, και να εκφρασθεί ο κώνος τριβής. Να εκφρασθεί ακολούθως η μήτρα λαβής ελαττωμένη στο επίπεδο του Σχήματος.

Για τα επόμενα ερωτήματα, θεωρούμε το πρόβλημα της ρομποτικής λαβής στο επίπεδο του Σχήματος.

- (β) Θεωρώντας την απόσταση r σταθερή (και γνωστή) και εφαρμόζοντας τη συνθήκη κυρτότητας (με συντελεστή τριβής μ =1), να προσδιορισθεί αναγκαία σχέση που πρέπει να ικανοποιεί το διάστημα h ($h \in \mathbb{R}$) ώστε η ρομποτική αυτή λαβή να είναι «κλειστή ως προς δύναμη» (force-closure) στο επίπεδο του Σχήματος.
- (γ) Να προσδιορισθεί η συνολική Ιακωβιανή J_{hand} του ρομποτικού χεριού, για δεδομένη κινηματική διάταξη $[q_1, ..., q_6]$ των ρομποτικών δαχτύλων και δεδομένη διάταξη λαβής με ευθυγραμμισμένα πλαίσια αναφοράς, όπως εικονίζεται στο Σχήμα.

Σχήμα 1: Ρομποτική λαβή με τρία ρομποτικά δάκτυλα έξι (πρισματικών) βαθμών ελευθερίας.

Ρομποτική ΙΙ (2020-21): 1η Σειρά Αναλυτικών Ασκήσεων