Вештачка интелигенција

Домашна задача 2

Стефан Милев | 206055

1. Баесови мрежи

Α.

Случајни променливи:

- І интелигенција
 - о 1 интелигентен ученик, 0 неинтелигентен ученик
- Т трудољубивост
 - 1 трудољубив ученик, 0 нетрудољубив ученик
- S снаодливост
 - 1 снаодлив ученик, 0 неснаодлив ученик
- R разбирање
 - о 1 ученикот го разбира материјалот, 0 ученикот не го разбира материјалот
- Р поени
 - о 1 ученикот освојува високи поени, 0 ученикот не освојува високи поени

B.

Потребни се 2⁵ посебни веројатности, затоа што има 5 различни случајни променливи, додека секоја има 2 можни вредности. Доколку се искористи правилото за веројатност на обратен настан, може да намали бројот на вкупно 2⁴ посебни веројатности.

1 1 0	P(I) 0.7 0.3		
Т	P(T)		
1	0.6		
0	0.4		
I I	S	P(S I)	
1	1	8.0	
1	0	0.2	
0	1	0.5	
0	0	0.5	
l I	Т	R	P(R I, T)
1	1	1	0.9
1	1	0	0.1
1	0	1	0.2
1	0	0	8.0
0	1	1	0.4
0	1	0	0.6
0	0	1	0.5
0	0	0	0.5
S	R	Р	P(P S, R)
1	1	1	0.9
1	1	0	0.1
1	0	1	0.3
1	0	0	0.7
0	1	1	0.3
0	1	0	0.7
0	0	1	0.1
0	0	0	0.9

Табела 1:

1	Т	S	R	Р	P(I)	P(T)	P(S I)	P(R T, I)	P(P R, S)	P(I, T, S, R, P)
1	1	1	1	1	0.7	0.6	0.8	0.9	0.9	0.27216
1	1	1	1	0	0.7	0.6	0.8	0.9	0.1	0.03024
1	1	1	0	1	0.7	0.6	0.8	0.1	0.3	0.01008
1	1	1	0	0	0.7	0.6	0.8	0.1	0.7	0.02352
1	1	0	1	1	0.7	0.6	0.2	0.9	0.3	0.02268
1	1	0	1	0	0.7	0.6	0.2	0.9	0.7	0.05292
1	1	0	0	1	0.7	0.6	0.2	0.1	0.1	0.00084
1	1	0	0	0	0.7	0.6	0.2	0.1	0.9	0.00756
1	0	1	1	1	0.7	0.4	0.8	0.2	0.9	0.04032
1	0	1	1	0	0.7	0.4	0.8	0.2	0.1	0.00448
1	0	1	0	1	0.7	0.4	0.8	0.8	0.3	0.05376
1	0	1	0	0	0.7	0.4	0.8	0.8	0.7	0.12544
1	0	0	1	1	0.7	0.4	0.2	0.2	0.3	0.00336
1	0	0	1	0	0.7	0.4	0.2	0.2	0.7	0.00784
1	0	0	0	1	0.7	0.4	0.2	0.8	0.1	0.00448
1	0	0	0	0	0.7	0.4	0.2	0.8	0.9	0.04032
0	1	1	1	1	0.3	0.6	0.5	0.4	0.9	0.0324
0	1	1	1	0	0.3	0.6	0.5	0.4	0.1	0.0036
0	1	1	0	1	0.3	0.6	0.5	0.6	0.3	0.0162
0	1	1	0	0	0.3	0.6	0.5	0.6	0.7	0.0378
0	1	0	1	1	0.3	0.6	0.5	0.4	0.3	0.0108
0	1	0	1	0	0.3	0.6	0.5	0.4	0.7	0.0252
0	1	0	0	1	0.3	0.6	0.5	0.6	0.1	0.0054
0	1	0	0	0	0.3	0.6	0.5	0.6	0.9	0.0486
0	0	1	1	1	0.3	0.4	0.5	0.5	0.9	0.027
0	0	1	1	0	0.3	0.4	0.5	0.5	0.1	0.003
0	0	1	0	1	0.3	0.4	0.5	0.5	0.3	0.009
0	0	1	0	0	0.3	0.4	0.5	0.5	0.7	0.021
0	0	0	1	1	0.3	0.4	0.5	0.5	0.3	0.009
0	0	0	1	0	0.3	0.4	0.5	0.5	0.7	0.021
0	0	0	0	1	0.3	0.4	0.5	0.5	0.1	0.003
0	0	0	0	0	0.3	0.4	0.5	0.5	0.9	0.027

 \Box . P(I, T, S, R, P) = P(I) * P(T | I) * P(S | T, I) * P(R | S, T, I) * P(P | R, S, T, I) = P(I) * P(T) * P(S | I) * P(R | T, I) * P(P | R, S)

Ć.

Условни независности:

- R ⊥ S | P (common cause)
- I ⊥ T | R (common cause)
- P ⊥ T | R (causal chain)
- P II I | S (causal chain)

Апсолутни независности:

- нема (нема ни еден common effect)

E.

$$P(R = 1 | P = 1) = ?$$

$$P(R = 1 | P = 1) = P(R = 1, P = 1) / P(P = 1) = 0.41772 / 0.52048 = 0.8025668614$$

Веројатноста P(R = 1, P = 1) е добиена така што во табела 1 се сумирани веројатностите во сите редови за кои важи R = 1 и P = 1.

Веројатноста P(P = 1) е добиена така што во табела 1 се сумирани веројатностите во сите редови за кои важи P = 1.

Ж.

$$P(R = 1) = ?$$

Се сумираат веројатностите во сите редови за кои важи R = 1 во табела 1. Сумата изнесува 0.566.

2. Машинско учење

Наивен Баесов класификатор

Α.

Параметри:

- А Работа
 - 1 хонорарен, 0 редовен
- В Патничко
 - 1 да, 0 не
- С-Пол
 - 1 женски, 0 машки
- Y Понуда за животно осигурување
 - 1 да, 0 не

Y	PML(Y)		PLAP, 2(Y)		
1	5	10	7	14	
0	5	10	7	14	

А	Y	PML(A Y)		PLAP, 2(A Y)	
1	1	1	5	3	9
1	0	3	5	5	9
0	1	4	5	6	9
0	0	2	5	4	9
В	Y	PML(B Y)		PLAP, 2(B Y)	
1	1	4	5	6	9
1	0	1	5	3	9
0	1	1	5	3	9
0	0	4	5	6	9
С	Y	PML(C Y)		PLAP, 2(C Y)	
1	1	3	5	5	9
1	0	2	5	4	9
0	1	2	5	4	9
0	0	3	5	5	9

Б.

Примерок: A = 1, B = 1, C = 1

$$P(A = 1, B = 1, C = 1, Y = 0) = P(A = 1 | Y = 0) * P(B = 1 | Y = 0) * P(C = 1 | Y = 0) * P(Y = 0) = 5 / 9 * 3 / 9 * 4 / 9 * 7 / 14 = 0.0411$$

$$P(A = 1, B = 1, C = 1, Y = 1) = P(A = 1 | Y = 1) * P(B = 1 | Y = 1) * P(C = 1 | Y = 1) * P(Y = 1) = 3 / 9 * 6 / 9 * 5 / 9 * 7 / 14 = 0.0617$$

Примерокот ќе биде класифициран како Y = 1, што значи дека ќе добие понуда за животно осигурување.

B.

```
Примерок: B = 1, C = 0, Y = 1
```

```
P(B = 1, C = 0, Y = 1) = P(A = 0, B = 1, C = 0, Y = 1) + P(A = 1, B = 1, C = 0, Y = 1) = P(A = 0 | Y = 1) * P(B = 1 | Y = 1) * P(C = 0 | Y = 1) * P(Y = 1) + P(A = 1 | Y = 1) * P(B = 1 | Y = 1) * P(C = 0 | Y = 1) * P(Y = 1) = 6 / 9 * 6 / 9 * 4 / 9 * 7 / 14 + 3 / 9 * 6 / 9 * 4 / 9 * 7 / 14 = 0.148148148
```

Веројатноста примерокот да добие понуда за животно осигурување е 0.148.

Перцептрон

Α.

Позитивната класа е добивање понуда за животно осигурување, додека негативната класа е недобивање понуда за животно осигурување.

Нека е доделена позитивната класа доколку w * $f(x) \ge 0$, а негативна класа во обратниот случај.

Почетни тежини: w = [1, -1, 1, -1]. Тежините се однесуваат на: bias, работа, патничко, пол. Вредностите на параметрите се истите како и кај НБ класификаторот.

Доколку сите тежини на перцептронот се еднакви на 0, тогаш w * f(x) ќе биде еднакво на 0 секогаш, така што за секој примерок ќе биде предвидена позитивна класа.

Зададените вредности на тежините на перцептронот укажуваат дека параметрите работа и пол се одразуваат песимистички кон оценката, додека параметарот патничко осигурување се однесува оптимистички. Віаѕ параметарот укажува дека позитивните оцени се фаворизирани.

Б.

Примерок 1: f(x) = [1, 1, 0, 1] w = [1, -1, 1, -1] $y^* = -1$ w * f(x) = 1 * 1 + 1 * -1 + 0 * 1 + 1 * -1 = -1 y = -1

Предвидената класа е точна и не се менуваат тежините.

```
Примерок 2: f(x) = [1, 1, 0, 0] w = [1, -1, 1, -1] y^* = -1 w * f(x) = 1 * 1 + 1 * -1 + 0 * 1 + 0 * -1 = 0 y = 1
```

Предвидената класа е неточна и се менуваат тежините.

$$w = w + y^* * f = w - f = [1, -1, 1, -1] - [1, 1, 0, 0] = [0, -2, 1, -1]$$

```
Примерок 3: f(x) = [1, 1, 0, 0] w = [0, -2, 1, -1] y^* = -1 w * f(x) = 1 * 0 + 1 * -2 + 0 * 1 + 0 * -1 = -2 y = -1
```

Предвидената класа е точна и не се менуваат тежините.

Примерок 4: f(x) = [1, 1, 0, 1] w = [0, -2, 1, -1] $y^* = 1$ w * f(x) = 1 * 0 + 1 * -2 + 0 * 1 + 1 * -1 = -3 y = -1

Предвидената класа е неточна и се менуваат тежините.

$$w = w + y^* * f = w + f = [0, -2, 1, -1] + [1, 1, 0, 1] = [1, -1, 1, 0]$$

Примерок 5:

y = 1

$$f(x) = [1, 0, 1, 1]$$

 $w = [1, -1, 1, 0]$
 $y^* = 1$
 $w * f(x) = 1 * 1 + 0 * -1 + 1 * 1 + 1 * 0 = 2$
 $y = 1$

Предвидената класа е точна и не се менуваат тежините.

Примерок 6: f(x) = [1, 0, 0, 0] w = [1, -1, 1, 0] y = -1 w * f(x) = 1 * 1 + 0 * -1 + 0 * 1 + 0 * 0 = 1

Предвидената класа е неточна и се менуваат тежините.

$$w = w + y^* * f = w - f = [1, -1, 1, 0] - [1, 0, 0, 0] = [0, -1, 1, 0]$$

```
Примерок 7: f(x) = [1, 0, 1, 1] w = [0, -1, 1, 0] y^* = 1 w * f(x) = 1 * 0 + 0 * -1 + 1 * 1 + 1 * 0 = 1 y = 1
```

Предвидената класа е точна и не се менуваат тежините.

```
Примерок 8: f(x) = [1, 0, 1, 0] w = [0, -1, 1, 0] y^* = 1 w * f(x) = 1 * 0 + 0 * -1 + 1 * 1 + 0 * 0 = 1 y = 1
```

Предвидената класа е точна и не се менуваат тежините.

```
Примерок 9: f(x) = [1, 0, 1, 0] w = [0, -1, 1, 0] y^* = 1 w * f(x) = 1 * 0 + 0 * -1 + 1 * 1 + 0 * 0 = 1 y = 1
```

Предвидената класа е точна и не се менуваат тежините.

```
Примерок 10: f(x) = [1, 0, 1, 1] w = [0, -1, 1, 0] y^* = -1 w * f(x) = 1 * 0 + 0 * -1 + 1 * 1 + 1 * 0 = 1 y = 1
```

Предвидената класа е неточна и се менуваат тежините.

$$w = w + y^* * f = w - f = [0, -1, 1, 0] - [1, 0, 1, 1] = [-1, -1, 0, -1]$$

В.

Алгоритамот за учење на перцептронот нема да конвергира, затоа што има примероци со исти карактеристики, но со различни класи, поради што не постои рамнина кои ги разделува точките со позитивни и негативни класи во просторот.

Дрво на одлучување

Α.

Вкупно примероци: 10 S = [HE: 5, ДА: 5] H = 1

Карактеристика: работа

Вредности:

- хонорарен:
 - број: 4
 - распределба: [да: 1, не: 3]
 - H = -(1/4 * LOG(1/4, 2) + 3/4 * LOG(3/4, 2)) = 0.8112781245
- редовен:
 - број: 6
 - распределба: [да: 4, не: 2]
 - H = -(4/6 * LOG(4/6, 2) + 2/6 * LOG(2/6, 2)) = 0.9182958341

Gain(S, pa6ota) = 1 - 4/10 * 0.8112781245 - 6/10 * 0.9182958341 = 0.12451124974

Карактеристика: патничко

Вредности:

- да:
 - број: 5
 - распределба: [да: 4, не: 1]
 - H = -(4/5 * LOG(4/5, 2) + 1/5 * LOG(1/5, 2)) = 0.7219280949
- не:
 - број: 5
 - распределба: [да: 1, не: 4]
 - H = -(4/5 * LOG(4/5, 2) + 1/5 * LOG(1/5, 2)) = 0.7219280949

Gain(S, патничко) = 1 - 5/10 * 0.7219280949 - 5/10 * 0.7219280949 = 0.2780719051

Карактеристика: пол

Вредности:

- женски:
 - број: 5
 - распределба: [да: 3, не: 2]
 - H = -(3/5 * LOG(3/5, 2) + 2/5 * LOG(2/5, 2)) = 0.9709505945
- машки:
 - број: 5
 - распределба: [да: 2, не: 3]
 - H = -(2/5 * LOG(2/5, 2) + 3/5 * LOG(3/5, 2)) = 0.9709505945

Gain(S, $\pi \circ \pi$) = 1 - 5/10 * 0.9709505945 - 5/10 * 0.9709505945 = 0.0290494055

Се избира карактеристиката патничко за поделба на коренот на дрвото, затоа што таа карактеристика доби најголема вредност според Gain функцијата.

