CS188 Midterm Cheat Sheet

simonxie2004.github.io

Lec1: Introduction

Lec2: Uninformed Search

- Reflex Agents V.S. Planning Agents:

 1. Reflex Agents: Consider how the world IS
- 1. Reflex Agents: Consider how the world IS
 2. Planning Agents: Consider how the world WOULD BE
 2. Properties of Agents
 1. Completeness: Guaranteed to find a solution if one exists.
 2. Optimality: Guaranteed to find the least cost path.
 3. Definition of Search Problem:

- 'State Space', 'Successor Function', 'Start State' & 'Goal Test'
 4. Definition of State Space: World State & Search State
- 5. State Space Graph: Nodes = states, Arcs = successors (action results)
- 1. Main Idea: Expand out potential nodes: Maintain a fringe of partial plans under consideration: Expand less nodes

- under consideration; Expand less nodes.

 2. Key notions: Expansion Styapasion Strategy, Fringe

 3. Common tree search patterns
 (Suppose b = branching factor, m = tree depth.)
 Nodes in search tree? \(\frac{1}{2}\triangle^{\psi} = O(\theta^{\psi})\)
 (For BFS, suppose s = depth of shallowest solution)
 (For Uniform Cost Search, suppose solution costs C*, min(arc_cost) = eps

 4. Special Idea: Iterative Deepening
 Run DFS(depth_limit=1,) DFS(depth_limit=2), ...

 5. Example Problem: Pancake flipping; Cost: Number of pancakes flipped

 7 Grans Sazerly
- 7. Graph Search
 1. Idea: never expand a state twice
- 2. Method: record set of expanded states where elements = (state, cost). If a node popped from queue is NOT visited, visit it. If a node popped from queue is visited, check its cost. If the cost if lower, expand it. Else skip it.

	Strategy	Fringe	Time	Memory	Completeness	Optimality
DFS	Expand deepest node first	LIFO Stack	$O(b^m)$	O(bm)	True (if no cycles)	False
BFS	Expand shallowest node first	FIFO Queue	$O(b^s)$	$O(b^s)$	True	True (if cost=1)
ucs	Expand cheapest node first	Priority Queue (p=cumulative cost)	$O(C^*/\epsilon)$	$O(b^{C^*/\epsilon})$	True	True

Lec3: Informed Search

- 1. Definition of heuristic:
- Function that estimates how close a state is to a goal; Problem specific!
- Example heuristics: (Relaxed-problem heuristic)
 Renacke flipping: heuristic = the number of largest pancake that is still
- Dot-Eating Pacman: heuristic = the sum of all weights in a MST (of dots
- & current coordinate)
 5. Classic 8 Puzzle: heuristic = number of tiles misplaced
- 5. Classic 8 Puzzle: heuristic = number of tiles misplaced
 6. Easy 8 Puzzle (allow tile to be piled intermediately): heuristic = total
 Manhattan distance
 8. Remark: Can't use actual cost as heuristic, since have to solve that first!
 1. Greedy Search: expand closest node (to goal);
 Orders by forward cost h(n); suboptimal
 2. UCS: expand closest node (to start state);
- Orders by backward cost g(n); suboptimal 3. A* Search: orders by sum f(n) = g(n) + h(n)
- 5. A* Search
 - When to stop: Only if we dequeue a goal

 - 1. When to stop: Only if we dequeue a goal 2. Admissible (optimistic) heuristic: $\forall n, 0 \leq h(n) \leq h'(n)$. A* Tree Search is optimal if heuristic is admissible. Proof: Suppose A is optimal, B is suboptimal. B is on fringe. Claim: n will be expanded first. Because f(n) = g(n) + h(n) < f(A) < f(B) 3. Consistent heuristic: $\forall A, B, h(A) h(B) \leq cost(A, B)$ 4. Graph Search is optimal if heuristic is consistent. Semi-Lattice of Heuristics 1.Dominance: define $h_n \geq h_n \in H(h(n)) \geq h_n(n)$ 2. Heuristics form semi-lattice because: $\forall h(n) = max(h_n(n), h_h(n)) \in H$ 3. Bottom of lattice is zero-heuristic. Top of lattice is exact-heuristic

function Tree-Search(problem, fringe) return a solution, or failure fringe \leftarrow Insert(Make-Node(INITIAL-STATE[problem]), fringe) loop do if fringe is empty then return failure $\begin{aligned} & node \leftarrow \texttt{REMOVE-FRONT}(fringe) \\ & \text{if GOAL-TEST}(problem, \texttt{STATE}[node]) \text{ then return } node \\ & \text{for } child-node \text{ in EXPAND}(\texttt{STATE}[node], problem) \text{ do} \\ & fringe \leftarrow \texttt{INSERT}(child-node, fringe) \end{aligned}$ end end

function A**GRAPH-SEARCH(problem, frontier) return a solution or failure reached — an empty diet mapping nodes to the cost to each one frontier— INSERT(MAKE-NODE(INTIAL-STATE] problem]),0), frontier) while not IS-SEPTY(frontier) of one doe, node, node, CostToNode — POP(frontier)

if problem-IS-GOAL(node-STATE) then return node end if

if node-STATE is not in reached or reached[node-STATE] > node.CostToNode then reached[node-STATE] = node.CostToNode then reached[node-STATE] = node.CostToNode), frontier in the problem in t end

Lec4-5: CSP Problems

- Definition of CSP Problems: (A special subset of search problems)
 State: Varibles (Xi), with values from domain D
 Goal Test: set of constraints specifying allowable combinations of values
 Example of CSP Problems:
- Example of CSP Problems. L. N-Queens $\forall i,j,k,(X_{ij},X_{jk}) \neq (1,1),\cdots$ and $\sum_{i,j}X_{ij}=N$ Formulation 1: Variables: Xij, Domains: $\{0,1\}$, Constraints: 1. N-Queens
- Formulation 2: Variables Qk, Domains: {1, ..., N}, Constraints:
- $\forall (i, j), \text{non-threatening}(Q_i, Q_i)$ 2. Cryptarithmetic Constraint Graph:
 Circle nodes = Variables; Rectangular nodes = Constraints.

- 1. Circle nodes = Variables, Rectangular nodes = Constraints.
 2. If there is a relation between some variables,
 They are connected to a constraint node.
 4. Simple Backtracking Search
 1. One variable at a time
 2. Check constraints as you go. (Only consider constraints not conflicting to
- previous assignments)
 5. Simple Backtracking Algorithm = DFS + variable-ordering + fail-on-violation

- $\begin{array}{ll} \textbf{function Backtracking-Search}(csp) \ \textbf{returns solution/failure} \\ \textbf{return Recursive-Backtracking}(\{ \ \}, csp) \end{array}$
- function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment
 - var ← Select-Unassigned-Variable(Variables[csp], assignment, csp) var — SELEX I CONSASSINSED VARIABLELY RAINDES[vsp], assignation, esp for each value in ORDER-DOMAIN-VALUES[var, assignament, esp) do if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result — RECURSIVE-BACKITACKING(assignment, csp)
 - if result ≠ failure then return result
 - emove $\{var = value\}$ from assignment
- 6. Filtering & Arc Consistency
 1. Definition: Arc X->Y is consistent if $\forall x \in X, \exists y \in Y$ that could be assigned. (Basically X is enforcing constraints on Y)
 2. Filtering: Forward Checking: Enforcing consistency of arcs pointing to each
- new assignment
 3. Filtering: Constraint Propagation: If X loses a Value, neighbors of X need to be rechecked
- 4. Usage: run arc consistency as a preprocessor or after each assignment
- 5. Algorithm with Runtime O(n^2d^3)
- function AC-3(csp) returns the CSP, possibly with reduced domains inputs: esp, a binary CSP with variables $\{X_1,\ X_2,\ \dots,\ X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in esp
- while queue is not empty do
- $(X_i, X_j) \leftarrow \text{Remove-First}(queue)$ if Remove-Inconsistent-Values (X_i, X_j) then
 - for each X_k in Neighbors $[X_i]$ do add (X_k, X_i) to queue
- function Remove-Inconsistent-Values (X_i, X_j) returns true iff succeeds
- moved \leftarrow Jaise or each x in DOMAIN[X_i] do if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from DOMAIN[X_i]; $removed \leftarrow true$
- 7. Advanced Definition: K-Consistency
- 1. K-Consistency: For each k nodes 1. K-Consistency: For each k nodes, Any consistent assignment to k-Inodes can be extended to kth node.
 2. Strong K-Consistency: also k-1, k-2, ..., 1-Consistent;
 Can be solved immediately without searching / backtracking
 3. Problems of Arc-Consistency: only considers 2-consistency
 4. Example of being NOT 3-consistent:

- A. Advanced Arc-Consistency: Ordering

 1. Variable Ordering: MRV (Minimum Remaining Value):
 Choose the variable with fewest legal left values in domain

 2. Value Ordering: LCV (Least Constraining Value):
 Choose the value that rules out fewest values in remaining variables.
 (May require re-running filtering.)
- 9. Advanced Arc-Consistency: Observing Problem Structure 1. Suppose graph of n variables can be broken into subproblems with o
 - variables: Can solve in O(n/c * d^c)
- 2. Suppose graph is a tree: Can solve in O(nd^2). Method as follows
- Remove backward: For i = n: 2, apply RemoveInconsistent(Parent(Xi),Xi)

- 10. Advanced Arc-Consistency: Improving Problem Structure 1. Idea: Initiate a variable and prune its neighbors' domains
- 2. Method: instantiate a set of vars
- such that remaining constraint graph is a tree (cutset conditioning) 3. Runtime: $O(d^c * (n-c)d^2)$ to solve CSP.

- 11. Iterative Methods:
- 1. Local Search
 1. Algorithm: While not solved, randomly select any conflicted variable.
 Assign value by min-conflicts heuristic.
 2. Performance: can solve n-queens in almost constant time for arbitrary n with high probability, except a few of them.
 2. Hill Climbing function HILL-CLIMBING(problem) returns a state
- current ← make-node(problem.initial-state)
- neighbor ← a highest-valued successor of current if neighbor.value ≤ current.value then return current.state
- ent ← neighbor
- 3. Hill Climbing
- Remark: Stationary distribution: p(x) propto e^(E(x)/kT)
- function SIMULATED-ANNEALING (problem, schedule) returns a solution state inputs: problem, a problem
 schedule, a mapping from time to "temperature" local variables: current, a node
 - next, a node $T_{\rm r}$ a "temperature" controlling prob. of downward steps
 - $rrent \leftarrow Make-Node(Initial-State[problem])$
 - for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ if T = 0 then return current

 - $\begin{array}{l} next \leftarrow \text{a random}|\text{y selected successor of } current \\ \Delta E \leftarrow \text{Value}[next] \text{Value}[current] \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta \cdot E/T} \end{array}$

4. Genetic Algorithms

Lec6: Game Trees (MiniMax)

- 1. Zero-Sum Games V.S. General Games: Opposite utilities v.s. Independent utilities 1. Examples of Zero-Sum Games: Tic-tac-toe, chess, checkers, ... 2. Value of State: Best achievable nutrome (utility) from that state. 1. For MAX players $\max_{x \in \text{Children}(s)} V(s')$

- For MIN players, min..
- 3. Search Strategy: Minimax

- . Minimax properties:
 1. Optimal against perfect player. Sub-optimal otherwise.
 2. Time: O(b-m), Space: O(bm)
 Alpha-Beta Pruning Gr. MAX's best option on path to code.
- 1. Algorithm:

f min-value(state, α, β): initialize v = +∞ for each successor of state: v = min(v, value(success if v ≤ α return v β = min(β, v) return v cessor, α , β))

2. Properties:

—

- L. Meaning of Alpha: maximum reward for MAX players, best option so far for
- MAX player
 Meaning of Beta: minimum loss for MIN players, best option so far for MIN
 - 3. Have no effect on root value; intermediate values might be wrong.

 4. With perfect ordering, time complexity drops to O(b^(m/2))
- 6. Depth-Limited Minimax: replace terminal utilities with an evaluation function for
- non-terminate positions 1. Evaluation Functions: weighted sum of features observed
- 7. Iterative Deepening: run minimax with depth_limit = 1, 2, 3, ... until timeout

Lec7: Game Trees (Expectimax, Utilities)

1. Expetimax Algorithm:

value(state): if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state) initialize v = -∞ for each successor of state: v = max(v, value(success return v

Adversarial Ghost Random Ghost Won 5/5 Won 5/5 Pacman Avg. Score: 483 Avg. Score: 493 Won 1/5

Avg. Score: -303

Avg. Score: 503

3. Axioms of Rationality

Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p,A; \ 1-p,C] \sim B$ Substitutability $A \sim B \Rightarrow [p,A; \ 1-p,C] \sim [p,B; 1-p,C]$ Monotonicity $A \succ B \Rightarrow$

4. MEU Principle

Given any preferences satisfying these constraints, there exists a real valued function U s.t.:

Expectimax

 $U(A) \geq U(B) \; \Leftrightarrow \; A \succeq B$ $U([p_1,S_1;\ \dots\ ;\ p_n,S_n])=\sum_i p_i U(S_i)$

- 5. Risk-adverse v.s. Risk-prone
- 1. Def. L = [p, X, 1-p, Y] 2. If U(L) < U(EMV(L)), risk-adverse
- Where U(L) = pU(X) + (1-p)U(Y), U(EMV(L)) = U(pX + (1-p)Y)i.e. if U is concave, like y=log2x, then risk-adverse
- i.e. if U is concave, like y=logzx, then risk-book

 3. Otherwise, risk-prone.
 i.e. if U is convex, like y=x^2, then risk-prone.

Lec8-9: Markov Decision Process

- 1. MDP World: Noisy movement, maze-like problem, receives rewards . "Markov": Successor only depends on current state (not the history)
- 2. MDP Vortice Definition:

 1. States, Actions

 2. Transition Function T(s, a, s') or Pr(s' | s, a), Reward Function R(s, a, s')

 3. Start State, (Probably) Terminal State

 3. MDP Target: optimal policy pi*: S -> A

7. Scaling up RL: Approximate Q Learning 1. State space too large & sparse? Use linear functions to approximately learn Q(s,a) or V(s) 2. Definition: $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots$ 3. Q-learning with linear Q-fuctions: Q-learning with linear Q-ractions. Transition := (s, a, r, s') Difference := $[r + \gamma \max_{a'} Q(s', a')] - Q(s, a)$