Bijections complexes sur le disque unité

On se propose de résoudre un exercice de la plaquette de TD pour ensuite découvrir (succinctement) le **groupe de Möbius** ainsi que quelques résultats connexes.

Problème 1. *Soit* $c \in \mathbb{C}$ *avec* |c| < 1 *et soit* $z \in \mathbb{C}$.

- 1. Montrer que $|z+c| \le |1+\overline{c}z|$ si et seulement si $|z| \le 1$. Quand a-t-on égalité?
- 2. Soient $D = \{z \in \mathbb{C}, |z| \le 1\}$ le disque unité et $C = \{z \in \mathbb{C}, |z| = 1\}$ le cercle unité. Montrer que l'application $f : D \to D$ qui a z fait correspondre $\frac{z+c}{1+\overline{c}z}$ est bien définie et que c'est une bijection vérifiant f(C) = C.

Question 1:

Calculons le carré des deux quantités suivantes $|z+c|et|1+\overline{c}z|$:

$$|z+c|^2 = (z+c)\overline{(z+c)}$$

$$= (z+c)(\overline{z}+\overline{c})$$

$$= z\overline{z} + z\overline{c} + c\overline{z} + c\overline{c}$$

$$= |z|^2 + z\overline{c} + c\overline{z} + |c|^2.$$

$$|1 + \overline{c}z|^2 = (1 + \overline{c}z)\overline{(1 + \overline{c}z)}$$

$$= (1 + \overline{c}z)(1 + c\overline{z})$$

$$= 1 + c\overline{z} + \overline{c}z + \overline{c}zc\overline{z}$$

$$= 1 + c\overline{z} + \overline{c}z + |c|^2|z|^2.$$

Soustrayons les résultats obtenus :

$$|1 + \overline{c}z|^2 - |z + c|^2 = 1 + |c|^2 |z|^2 - |z|^2 - |c|^2$$

= $(|z|^2 - 1)(|c|^2 - 1)$.

Par hypothèse, l'on a |c| < 1. On en déduit que $|c|^2 - 1$ est négatif. Ainsi, pour que la différence $|1 + \overline{c}z|^2 - |z + c|^2$ soit positive ou nulle, il est nécessaire et suffisant que $|z|^2 - 1$ soit également négatif ou nul, ce qui est équivalent à avoir $|z| \le 1$, comme désiré.

Il reste néanmoins à conclure en la forme voulue : l'on a démontré l'équivalence suivante :

$$|1 + \overline{c}z|^2 - |z + c|^2 \ge 0 \Longleftrightarrow |z| \le 1.$$

Une ultime manipulation achève la démonstration :

$$|1 + \overline{c}z|^2 - |z + c|^2 \ge 0 \iff |1 + \overline{c}z|^2 \ge |z + c|^2.$$

En raison de la valeur absolue, prendre la racine des deux côtés de l'inéquation ne brise pas la chaîne d'équivalences.

L'on remarque enfin que l'inégalité devient une égalité dès lors que c est nul et que z est un point quelconque du cercle unité.

Question 2:

Montrons tout d'abord que l'application $f: D \rightarrow D$ est bien définie.

Pour ce faire, l'on doit montrer que le dénominateur ne s'annule jamais. Montrons donc que : $1 + \overline{c}z \neq 0$. C'est strictement équivalent à montrer que : $\overline{c}z \neq -1$. Raisonnons sur le module de $\overline{c}z$ (étant différent de 1). Par hypothèse, l'on a |c| < 1 et $|z| \leq 1$ car z est un point de D. Ainsi, $|c||z| = |\overline{c}||z| < 1$, donc, a fortiori différent de 1. On en déduit donc que l'application est bien définie.

Pour montrer que l'application f est une bijection de D dans D, on doit montrer que f est injective et surjective.

Montrons tout d'abord l'injectivité de f. Pour ce faire, prenons z et z' deux éléments de D, et, supposons que f(z)=f(z'). Ainsi, $\frac{z+c}{1+\overline{c}z}=\frac{z'+c}{1+\overline{c}z'}$. Simplifions l'équation : $(z+c)(1+\overline{c}z')=(z'+c)(1+\overline{c}z)$. L'on a :

$$(z+c)(1+\overline{c}z') = z + z\overline{c}z' + c + |c|^2z'.$$

$$(z'+c)(1+\overline{c}z) = z' + z'\overline{c}z + c + |c|^2z.$$

On réinjecte alors pour obtenir, après simplification : $z + |c|^2 z' = z' + |c|^2 z$. On obtient donc : $z' - z = |c|^2 (z' - z)$. Raisonnons par l'absurde et supposons que z' est différent de z. On divise des deux côtés de l'équation par z' - z. Il en résulte que $|c|^2 = 1$, ce qui est impossible. Donc z = z'. L'application f est ainsi injective.

Montrons enfin que f est une application surjective. Pour ce faire, prenons un point Z du disque unité, on veut montrer qu'il existe toujours un point z du disque unité tel que f(z)=Z. On a cherche donc à montrer qu'il existe toujours z tel que : $\frac{z+c}{1+\overline{c}z}=Z$. Il suffit alors d'isoler z. On obtient donc : $z=\frac{Z-c}{1-\overline{c}Z}$. (Il convient de ne pas oublier de vérifier que $1-\overline{c}Z$ ne s'annule jamais.)

On a donc démontré que l'application $f:D\to D$ est une bijection. Il ne reste alors plus qu'à établir que f(C)=C. On a :

$$f(C) = \left\{ \frac{z+c}{1+\overline{c}z} \middle| z \in \mathbb{C} \right\}$$
$$= \left\{ \frac{e^{i\theta}+c}{1+\overline{c}e^{i\theta}} \middle| \theta \in [0,2\pi[\right\}.$$

Calculons le module d'un élément quelconque de f(C):

$$\begin{split} \left| \frac{e^{i\theta} + c}{1 + \overline{c}e^{i\theta}} \right|^2 &= \left(\frac{e^{i\theta} + c}{1 + \overline{c}e^{i\theta}} \right) \overline{\left(\frac{e^{i\theta} + c}{1 + \overline{c}e^{i\theta}} \right)} \\ &= \left(\frac{e^{i\theta} + c}{1 + \overline{c}e^{i\theta}} \right) \left(\frac{e^{-i\theta} + \overline{c}}{1 + ce^{-i\theta}} \right) \\ &= \frac{1 + e^{i\theta} \overline{c} + ce^{-i\theta} + c\overline{c}}{1 + ce^{-i\theta} + e^{i\theta} \overline{c} + c\overline{c}} \\ &= 1. \end{split}$$

De ce fait, le module d'un élément que lconque de f(C) est 1. Ceci permet de conclure que f(C) = C.

On peut désormais être tenté de "tracer" une telle application (on utilise un module python spécialement adapté (cplot)). Voyons ce que nous obtenons pour différentes valeurs de c:

On discerne une forme de *dynamique* (complexe). Laissons de côté cet aspect pour nous intéresser à des questions plus "structurelles". À cet effet, nous allons petit à

petit introduire de nouvelles notions (on restera en surface). Voici les problèmes face auxquels nous allons être confrontés :

Problème 2. Classifier les automorphismes du disque unité D.

De manière plus détaillée, l'on va faire une étude *systématique* des transformations de Möbius puis s'intéresser à certaines classes de transformations (dont les facteurs de Blaschke, la transformation de Koebe). L'on va introduire des manières d'étudier ces différents objets : utilisation des groupes, concepts de géométrie (euclidienne, complexe, hyperbolique), un tout petit peu d'analyse complexe.

Problème 3.

Nous sommes loin de pouvoir comprendre des théorèmes d'uniformisation comme celui de Koebe et Poincaré (1907).

Théorème 1. Toute surface de Riemann simplement connexe est biholomorphe à la sphère de Riemann, au plan complexe, ou au disque unité.

Néanmoins, rien ne nous empêche d'essayer de nous introduire à quelque peu de technicité.