Universidade Federal de Mato Grosso do Sul

Faculdade de Computação (Facom) Curso de Engenharia de Computação

Relatório 01 - Controle e Servomecanismos

Autores:

Rafael Torres Nantes Gabriel Cosme Zanata de Morais

> Campo Grande – MS 13 de setembro de 2025

1 Item (a): Resposta ao Degrau Unitário

A planta do sistema é descrita pela seguinte Função de Transferência (FT):

$$\hat{g}(s) = \frac{\hat{\theta}(s)}{\hat{\psi}(s)} = -\frac{0,25s + 0,10875}{s^4 + 3,456s^3 + 3,45688s^2 + 0,71929s + 0,041574}$$

Passo 1: Representar a Entrada no Domínio de Laplace

A entrada aplicada é a função degrau unitário, $\psi(t)=1(t)$. Sua transformada de Laplace é:

$$\hat{\psi}(s) = \mathcal{L}\{\psi(t)\} = \mathcal{L}\{1(t)\} = \frac{1}{s}$$

Passo 2: Calcular a Saída no Domínio de Laplace $(\hat{\theta}(s))$

A saída $\hat{\theta}(s)$ é o produto da FT da planta, $\hat{g}(s)$, pela transformada da entrada, $\hat{\psi}(s)$:

$$\hat{\theta}(s) = \hat{g}(s) \cdot \hat{\psi}(s) = \left(-\frac{0,25s + 0,10875}{s^4 + 3,456s^3 + 3,45688s^2 + 0,71929s + 0,041574}\right) \cdot \left(\frac{1}{s}\right)$$

Resultando na expressão completa para a saída no domínio de Laplace:

$$\hat{\theta}(s) = -\frac{0,25s + 0,10875}{s(s^4 + 3,456s^3 + 3,45688s^2 + 0,71929s + 0,041574)}$$
(1)

Passo 3: Preparar para a Transformada Inversa de Laplace

Para encontrar a solução no domínio do tempo, $\theta(t)$, aplicamos a Transformada Inversa de Laplace em (1) através do método da **Expansão em Frações Parciais**. Primeiramente, é necessário encontrar os polos (raízes do denominador), que são:

[leftmargin=*]

- Um polo em s = 0.
- As quatro raízes da equação:

$$s^4 + 3.456s^3 + 3.45688s^2 + 0.71929s + 0.041574 = 0$$

As raízes e os resíduos (A_k) devem ser calculados com auxílio de um software computacional (Scilab, Octave, etc.), permitindo reescrever $\hat{\theta}(s)$ como:

$$\hat{\theta}(s) = \frac{A_1}{s} + \frac{A_2}{s - p_2} + \frac{A_3}{s - p_3} + \frac{A_4}{s - p_4} + \frac{A_5}{s - p_5}$$

Passo 4: Obter a Resposta no Domínio do Tempo $(\theta(t))$

A Transformada Inversa de Laplace de cada termo é $\mathcal{L}^{-1}\left\{\frac{A_k}{s-p_k}\right\}=A_ke^{p_kt}$. A solução final, $\theta(t)$, é a soma de todos os termos:

$$\theta(t) = A_1 + A_2 e^{p_2 t} + A_3 e^{p_3 t} + A_4 e^{p_4 t} + A_5 e^{p_5 t}$$

Caso existam polos complexos conjugados, seus termos correspondentes se combinarão para formar uma função senoidal amortecida, descrevendo o comportamento do sistema ao longo do tempo.

2 Item (b): Redução de Modelo por Polos Dominantes

Passo 1: Fundamentos e Viabilidade do Método

O método baseia-se na ideia de que a resposta transitória é dominada pelos polos mais próximos do eixo imaginário (polos dominantes). A redução é viável se a parte real dos outros polos for significativamente maior (5 a 10 vezes) que a parte real dos polos dominantes.

Passo 2: Encontrar os Polos da Planta Original

Os polos de $\hat{g}(s)$ são as raízes de $s^4 + 3$, $456s^3 + 3$, $45688s^2 + 0$, 71929s + 0, 041574 = 0. Utilizando um software computacional, obtemos:

[leftmargin=*]

- $p_{1,2} \approx -0.108 \pm j0.292$ (Par complexo)
- $p_3 \approx -1,24$
- $p_4 \approx -2, 0$

Passo 3: Análise de Dominância

Comparamos as partes reais dos polos: $|Re(p_{1,2})| = 0$, 108, $|Re(p_3)| = 1$, 24 e $|Re(p_4)| = 2$, 0. As razões são:

$$\left| \frac{Re(p_3)}{Re(p_{1,2})} \right| \approx 11,5 \text{ e } \left| \frac{Re(p_4)}{Re(p_{1,2})} \right| \approx 18,5$$

Como ambas as razões são maiores que 10, o par complexo é **dominante** e a redução do modelo é justificada.

Passo 4: Construir o Modelo Reduzido

O modelo reduzido $\hat{g}_r(s)$ deve manter os polos dominantes e o ganho estático do sistema original.

[leftmargin=*]

• Denominador Reduzido $(D_r(s))$:

$$D_r(s) = (s - p_1)(s - p_2) = (s + 0, 108 - j0, 292)(s + 0, 108 + j0, 292)$$
$$= (s + 0, 108)^2 + (0, 292)^2 \approx s^2 + 0, 216s + 0, 0969$$

• Ganho Estático Original ($\hat{g}(0)$):

$$\hat{g}(0) = \lim_{s \to 0} \hat{g}(s) = -\frac{0,10875}{0,041574} \approx -2,6158$$

• Numerador Reduzido (K_r) : O ganho do modelo reduzido, $\hat{g}_r(s) = K_r/D_r(s)$, deve ser o mesmo.

$$\hat{g}_r(0) = \frac{K_r}{0,0969} = -2,6158 \implies K_r \approx -0,2533$$

• Função de Transferência Reduzida:

$$\hat{g}_r(s) = \frac{-0,2533}{s^2 + 0,216s + 0,0969}$$

3 Item (c): Faixa de Ganho para Comportamento Subamortecido

Passo 1: Obter a Função de Transferência de Malha Fechada (FTMF)

Com um compensador k_p e realimentação unitária, a FTMF, $\hat{T}(s)$, é:

$$\hat{T}(s) = \frac{k_p \hat{g}_r(s)}{1 + k_p \hat{g}_r(s)} = \frac{k_p \left(\frac{-0.2533}{s^2 + 0.216s + 0.0969}\right)}{1 + k_p \left(\frac{-0.2533}{s^2 + 0.216s + 0.0969}\right)}$$

Simplificando, obtemos:

$$\hat{T}(s) = \frac{-0,2533k_p}{s^2 + 0,216s + (0,0969 - 0,2533k_p)}$$

Passo 2: Analisar o Polinômio Característico

O comportamento do sistema é ditado pelo seu polinômio característico (denominador da FTMF):

$$P(s) = s^2 + 0,216s + (0,0969 - 0,2533k_p)$$

Este polinômio tem a forma $as^2 + bs + c = 0$, com a = 1, b = 0, 216 e c = 0, 0969-0, 2533 k_p .

Passo 3: Condição para Comportamento Subamortecido

O comportamento é subamortecido se as raízes de P(s) forem complexas conjugadas, o que ocorre quando o discriminante $\Delta=b^2-4ac$ é negativo.

$$(0,216)^{2} - 4(1)(0,0969 - 0,2533k_{p}) < 0$$

$$0,046656 - 0,3876 + 1,0132k_{p} < 0$$

$$1,0132k_{p} < 0,340944$$

$$k_{p} < 0,3365$$

Passo 4: Condição de Estabilidade

Para estabilidade, todos os coeficientes do polinômio característico (a, b, c) devem ser positivos. Como a > 0 e b > 0, a única condição a ser verificada é c > 0:

$$\begin{array}{c} 0,0969-0,2533k_p>0\\ \\ 0,0969>0,2533k_p\\ \\ k_p<\frac{0,0969}{0,2533} \implies k_p<0,3825 \end{array}$$

Passo 5: Conclusão sobre a Faixa de k_p

Para um comportamento subamortecido e estável, as seguintes condições devem ser satisfeitas simultaneamente:

- 1. O ganho deve ser positivo: $k_p > 0$.
- 2. A resposta deve ser subamortecida: $k_p < 0,3365$.
- 3. O sistema deve ser estável: $k_p < 0,3825$.

A interseção dessas condições é determinada pela restrição mais forte. Portanto, a faixa de valores para k_p é:

$$0 < k_p < 0,3365$$

4 Item (d): Cálculo de k_p para Overshoot de 15%

Passo 1: Relação entre Overshoot (M_p) e Coeficiente de Amortecimento (ζ)

Para um sistema de segunda ordem, o overshoot percentual (M_p) é uma função direta do coeficiente de amortecimento (ζ) . A fórmula é:

$$M_p = e^{\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right)}$$

Para um overshoot de 15% ($M_p = 0, 15$), podemos isolar e calcular ζ :

$$\zeta = \sqrt{\frac{(\ln(M_p))^2}{\pi^2 + (\ln(M_p))^2}} = \sqrt{\frac{(\ln(0, 15))^2}{\pi^2 + (\ln(0, 15))^2}} \approx 0,517$$

Passo 2: Determinar o Ganho Proporcional k_p

Utilizamos o polinômio característico do sistema, derivado no item (c), e o comparamos com a forma padrão $s^2 + 2\zeta\omega_n s + \omega_n^2$.

$$P(s) = s^2 + 0.216s + (0.0969 - 0.2533k_p)$$

Comparando os coeficientes do termo em s:

$$2\zeta\omega_n = 0.216$$

Com $\zeta \approx 0,517$, podemos encontrar a frequência natural ω_n :

$$\omega_n = \frac{0,216}{2\zeta} = \frac{0,216}{2 \times 0,517} \approx 0,2089 \, \text{rad/s}$$

Agora, comparando o termo constante para encontrar k_p :

$$\omega_n^2 = 0,0969 - 0,2533k_p$$

$$(0,2089)^2 = 0,0969 - 0,2533k_p$$

$$0,0436 = 0,0969 - 0,2533k_p$$

$$0,2533k_p = 0,0969 - 0,0436 = 0,0533$$

$$k_p \approx 0,2104$$

Passo 3: Calcular o Tempo de Acomodação (t_s)

O tempo de acomodação depende da parte real dos polos dominantes, $\sigma=\zeta\omega_n$. A partir da comparação de coeficientes, sabemos que $\sigma=2\zeta\omega_n/2=0,216/2=0,108$.

• Para o critério de 5%:

$$t_s \approx \frac{3}{\sigma} = \frac{3}{0.108} \approx 27.8 \text{ segundos}$$

• Para o critério de 2%:

$$t_s \approx \frac{4}{\sigma} = \frac{4}{0.108} \approx 37,0 \text{ segundos}$$

5 Item (e): Análise da Redução à Terceira Ordem

Parte 1: Por que a Redução não Faria Sentido?

A redução de ordem se baseia na dominância dos polos. Para uma redução à terceira ordem, manteríamos os polos $p_{1,2} \approx -0, 108 \pm j0, 292$ e $p_3 \approx -1, 24$, descartando o polo $p_4 \approx -2, 0$. A dominância do polo mantido (p_3) sobre o descartado (p_4) é fraca, como mostra a razão de suas partes reais:

$$\left| \frac{\text{Re}(p_4)}{\text{Re}(p_3)} \right| = \frac{2,0}{1,24} \approx 1,61$$

Este valor é muito inferior à regra prática (razão > 5), indicando que o efeito dinâmico do polo descartado não é desprezível. Por isso, a redução à terceira ordem não é, a princípio, uma boa aproximação.

Parte 2: Melhor Redução de Terceira Ordem

Ainda assim, para realizar a melhor redução possível, mantemos os três polos mais lentos e o zero original, e ajustamos o ganho para manter o ganho estático.

1. **Denominador Reduzido** ($D_{r3}(s)$): É formado pelos três polos mais lentos.

$$D_{r3}(s) = (s^2 + 0.216s + 0.0969)(s + 1.24) \approx s^3 + 1.456s^2 + 0.3647s + 0.1202$$

2. Numerador Reduzido ($N_{r3}(s)$): Mantemos o zero original e ajustamos um ganho multiplicativo K para que o ganho estático do modelo reduzido seja igual ao original ($\hat{g}_{r3}(0) = \hat{g}(0) \approx -2,6158$). A forma do numerador reduzido será K vezes o numerador original:

$$N_{r3}(s) = K \cdot (-(0, 25s + 0, 10875))$$

O ganho K é calculado igualando os ganhos estáticos:

$$\frac{K \cdot (-0,10875)}{0,1202} = -2,6158 \implies K \approx 2,89$$

O numerador é, portanto, $2,89 \times (-0,25s-0,10875) \approx -0,7225s-0,3143$.

A Função de Transferência Reduzida de $3^{\underline{a}}$ ordem é:

$$\hat{g}_{r3}(s) = \frac{-0,7225s - 0,3143}{s^3 + 1,456s^2 + 0,3647s + 0,1202}$$