PCT

(30) Données relatives à la priorité:

99/04888

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 7:
C08F 8/50

A1

(11) Numéro de publication internationale: WO 00/63260
(43) Date de publication internationale: 26 octobre 2000 (26.10.00)

FR

- (21) Numéro de la demande internationale: PCT/FR00/01026
- (22) Date de dépôt international: 19 avril 2000 (19.04.00)
- (71) Déposant (pour tous les Etats désignés sauf US): ATOFINA

19 avril 1999 (19.04.99)

- (71) Déposant (pour tous les États désignés sauf US): ATOFINA [FR/FR]; 4/8, cours Michelet, F-92800 Puteaux (FR).
- (72) Inventeurs; et
 (75) Inventeurs/Déposants (US seulement): BERTIN, Denis [FR/FR]; Le Gall Gremonville, F-76970 Motteville (FR). ROBERT, Patrice [FR/FR]; 7, Parc Maubuisson, F-27470 Serquigny (FR).
- (74) Mandataire: CHAILLOT, Geneviève; Cabinet Chaillot, 16/20, avenue de l'Agent Sarre, B.P. 74, F-92703 Colombes Cedex (FR).
- (81) Etats désignés: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

- (54) Title: METHOD FOR THE PRODUCTION OF A CONTROLLED RHEOLOGICAL POLYPROPYLENE RESIN
- (54) Titre: PROCEDE DE FABRICATION D'UNE RESINE DE POLYPROPYLENE A RHEOLOGIE CONTROLEE

(57) Abstract

The invention relates to a method for the production of a controlled rheological homopolymer or copolymer of propylene or a composition comprising a homopolymer or copolymer of propylene in the absence of a functional monomer. The inventive method increases the melt flow index of the resin by cutting the chains and is characterised in that at least one stable free radical is incorporated into the resin in a viscous state, whereupon a solid product is formed having an increased melt flow index. The stable free radical or radicals are more particularly chosen from nixtroxyl radicals, comprising at least one group =N-O•.

(57) Abrégé

Ce procédé de fabrication d'une résine à rhéologie contrôlée d'un homo— ou copolymère du propylène ou d'une composition comprenant un homo— ou copolymère du propoylène en l'absence de monomère fonctionnel, ledit procédé entraînant une augmentation de l'indice de fluidité de la résine par coupure de chaînes, est caractérisé par le fait que l'on incorpore à ladite résine à l'état visqueux au moins un radical libre stable, puisque l'on forme un produit solide ayant un indice de fluidité augmenté. En particulier, on choisit le ou les radicaux libres stables parmi les radicaux nitroxyle, comportant au moins un groupement =N-O•.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaīdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	ТJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

PCT/FR00/01026 WO 00/63260

PROCÉDÉ DE FABRICATION D'UNE RÉSINE DE POLYPROPYLÈNE À RHÉOLOGIE CONTRÔLÉE

La présente invention porte sur un procédé de fabrication d'une résine à rhéologie contrôlée d'un homopropylène ou d'un copolymère du propylène (copolymère à blocs ou statistique), ou d'une composition de polymères comportant un homo- ou copolymère du propylène.

A l'heure actuelle, cette technique de contrôle de la rhéologie de ces homo- et copolymères consiste en une dégradation peroxydique de ces derniers et elle est utilisée pour mettre au point des produits fluides de façon rationnelle sans se pénaliser au niveau des débits de fabrication en minimisant le nombre de poudres de base en polymérisation.

10

15

20

30

35

Ainsi, on réalise, à partir d'un même polymère ou (généralement visqueux), divers copolymère d'indices de fluidité supérieurs à celui de la base, en introduisant un peroxyde à l'extrusion en sortie du réacteur Le peroxyde se décompose polymérisation. l'extrudeuse pour créer des radicaux qui eux-mêmes vont attaquer les chaînes de polymères en les cassant. De plus, seront longues plus chaînes les préférentiellement, ce qui implique une diminution des diminution des masses moléculaires, cette masses 25 moléculaires s'accompagnant d'une de la diminution distribution des masses moléculaires $(\overline{M}w/\overline{M}n)$.

peut également faire fondre une poudre d'homopolymère ou de copolymère de propylène, ou d'une composition de polymères comprenant un tel homo- ou copolymère de propylène et y incorporer un peroxyde (reprise en vue d'une extrusion suivie par de synthèse) granulation.

L'inconvénient de ce procédé réside dans le fait que ces produits ont des propriétés mécaniques : rigidité et choc, plus faibles qu'un produit obtenu directement après polymérisation, extrusion et granulation ou qu'une poudre WO 00/63260

que l'on a à nouveau soumis à une extrusion et à une granulation.

2

PCT/FR00/01026

Des documents illustrant l'état antérieur de la technique sont WO-A-96/12753; EP-A-570 812; US-A-5 932 660; JP-A-07/138 320 ; US-A-5 530 073 ; WO-A-96/06872 ; US-A-5 705 568 ; US-A-3 862 265 ; US-A-5 945 492 ; CA-A-2 258 305 ; US-A-4 900 781 ; DE-A-1 694 563 ; US-A-4 672 088 ; et EP-A-0 853 090.

Cherchant à résoudre ce problème, la Société de façon surprenante découvert déposante a 10 incorporant, à la place des peroxydes de l'état antérieur de la technique ou en plus de ceux-ci, des radicaux libres stables dans les résines que l'on veut modifier, placées dans un état visqueux (en zone fondue d'une extrudeuse ou en milieu solvant), on obtient les résines recherchées, ayant 15 donc un plus fort indice de fluidité et de meilleures propriétés mécaniques, avec les avantages complémentaires suivants:

- l'incorporation des radicaux stables, lesquels sont toujours présents après l'extrusion, apporte une meilleure stabilité thermique aux produits obtenus, améliore la résistance de ces derniers aux UV et diminue leur tendance à dépolymériser; et
- dans le cas où l'on a également incorporé un peroxyde à la résine, cette dernière a une viscosité plus stable 25 dans le temps, car comportant un réservoir de contreradicaux réactivables par voie thermique. En effet, une résine de type polypropylène dégradée par un peroxyde peut contenir des restes de peroxyde. présence de ce peroxyde risque de modifier la viscosité 30 de la résine lorsque celle-ci est transformée (à rejouant, lors de peroxyde le transformation, son rôle de dégradation de la résine pour en diminuer la viscosité. Or, lors du stockage, le peroxyde a tendance à migrer et donc à quitter la 35 résine, et, selon la durée de stockage, la résine peut donc avoir un comportement différent et montrer une viscosité différente lors ou après transformation,

3

5

10

15

20

25

30

35

selon qu'il restait peu ou beaucoup de peroxyde. Cependant, la résine contient, après le procédé de la présente invention, un réservoir de radicaux libres stables, lesquels ont tendance à neutraliser le peroxyde dès que celui-ci se décompose, minimisant ainsi ses effets de dégradation, qu'il soit en forte ou faible concentration. Ainsi, la durée du stockage n'a plus autant d'effet sur la viscosité de la résine transformée.

La présente invention concerne un procédé de fabrication d'une résine à rhéologie contrôlée d'un homo- ou copolymère du propylène ou d'une composition comprenant un homo- ou copolymère du propylène, caractérisé par le fait que l'on incorpore à ladite résine à l'état visqueux au moins un radical libre stable dans une quantité capable d'augmenter l'indice de fluidité de ladite résine, puis que l'on forme un produit solide ayant un indice de fluidité augmenté. Cette phrase signifie que le radical libre stable n'empêche pas l'indice de fluidité de la résine d'augmenter au cours du procédé de l'invention, même si en lui-même, le radical libre stable peut parfois tendre à limiter l'ampleur de cette augmentation. Dans tous les cas, le procédé selon l'invention mène à une résine à l'indice de fluidité augmenté par rapport à la résine de départ, sous l'effet de coupures de chaînes de polymère, lesdites coupures prenant l'effet de la chaleur et/ou sous l'effet place sous amorceur Par de polymérisation. d'amorceurs polymérisation, on entend un initiateur de radicaux libres capables d'entraîner la coupure des chaînes de polymère (aucune polymérisation ne prend place au cours du procédé de l'invention).

La présente invention a donc pour objet un procédé de fabrication d'une résine à rhéologie contrôlée d'un homoou copolymère du propylène ou d'une composition comprenant un homo- ou copolymère du propylène en l'absence de monomère fonctionnel, ledit procédé entraînant une augmentation de l'indice de fluidité de la résine par coupure de chaînes, caractérisé par le fait que l'on incorpore à ladite résine

4

à l'état visqueux au moins un radical libre stable, puis que l'on forme un produit solide ayant un indice de fluidité augmenté.

On choisit notamment le ou les radicaux libres stables parmi les radicaux nitroxyde, c'est-à-dire contenant le groupement =N-O, en particulier parmi ceux des formules (Ia), (Ib) ou (Ic):

10

20

25

$$\begin{array}{c}
\mathbb{R}^{13} \\
\mathbb{R}^{14} \\
\mathbb{R}^{14}
\end{array}$$
(Ic)

dans lesquelles :

- R^1 à R^3 , R^5 à R^8 et R^{13} et R^{14} représentent chacun indépendamment :
 - (a) un atome d'hydrogène ;
 - (b) un atome d'halogène, tel que le chlore, le brome ou l'iode;
 - (c) un groupement hydrocarboné, saturé ou insaturé, linéaire, ramifié ou mono- ou polycyclique, et pouvant être substitué par au moins un halogène;
 - (d) un groupement ester $-\text{COOR}^{15}$ ou un groupement alcoxyle $-\text{OR}^{16}$, R^{15} et R^{16} représentant un groupement hydrocarboné tel que défini au point (c) ci-dessus;
 - (e) un groupement de formule -p_{R¹⁸},

5

5

10

où R¹⁷ et R¹⁸ représentent chacun indépendamment un radical alkyle linéaire, ramifié ou cyclique, perfluoroalkyle, aryle, aralkyle, alkaryle, alcoxyle, aryloxyle, aralkyloxyle, alkaryloxyle, ces radicaux pouvant comprendre de 1 à 20 atomes de carbone; ou halogène tel que chlore, brome, fluor ou iode;

- (f) une chaîne de polymère pouvant, par exemple, être une chaîne de poly(méthacrylate d'alkyle) ou de poly(acrylate d'alkyle), comme le poly(méthacrylate de méthyle), de polydiène comme le polybutadiène, de polyoléfine comme le polyéthylène ou le polybutadiène, mais étant, de préférence, une chaîne de polystyrène;
- 15 R⁴ a les significations définies aux points (a), (b), (c), (d) et (f) ci-dessus, et dans le cas où il est relié à l'atome d'azote par un atome de carbone, ce dernier peut porter au moins un groupement tel que défini au point (e) ci-dessus;
- 20 R⁹ à R¹², identiques ou différents, ont les significations définies aux points (a) à (f) ci-dessus et peuvent en outre représenter un groupement hydroxyde ou un groupement acide, tel que -COOH, -PO(OH)₂ ou -SO₂H;
- 25 R^3 et R^4 pouvant être reliés entre eux, et dans le cas où R^4 représente un reste $-CR'^1R'^2R'^3$ (R'^1 à R'^3 ayant indifféremment les significations de R^1 à R^3) R^3 pouvant être relié à R'^3 pour former un hétérocycle comportant l'atome d'azote
- de N-O°, ledit hétérocycle pouvant être saturé ou insaturé, pouvant comporter dans le cycle au moins un autre hétéroatome et/ou au moins un groupement -C-, et

pouvant également comporter un cycle accolé, saturé ou insaturé ;

deux parmi R^1 à R^3 , R^5 et R^6 , R^7 et R^8 , R^9 et R^{10} , R^{11} et R^{12} , R^6 et R^9 , R^8 et R^{11} , R^{13} et R^{14} et - dans le cas où R^4 représente un reste $-CR'^1R'^2R'^3$, R^3 et R'^3 pouvant indépendamment être reliés entre eux pour former, avec l'atome de carbone qui les porte, un cycle ou un hétérocycle saturé ou insaturé ;

u est un entier non nul, par exemple de 1 à 18.

5

15

20

A titre d'exemples des groupements hydrocarbonés tels que définis au point (c) ci-dessus, on peut citer ceux ayant de 1 à 20 atomes de carbone, comme les radicaux alkyle 10 linéaires, ramifiés ou cycliques, et les radicaux aryle tels que phényle ou naphtyle, et les radicaux comprenant au moins un cycle aromatique qui peut être substitué par exemple par un radical alkyle en C_1-C_4 , comme les radicaux aralkyle, tels que benzyle.

On peut mentionner en particulier les radicaux nitroxyde de formule (Ia) dans lesquels l'un parmi ${\bf R}^1$ à ${\bf R}^3$ présente une masse molaire supérieure à 15, de préférence supérieure à 30, en particulier comprise entre 40 et 450.

Une famille particulière des radicaux nitroxyde qui peuvent être envisagés conformément à la présente invention est celle des radicaux nitroxyde de formule (Ia) dans laquelle R^3 et R^4 (ou R^3 et $R^{'3}$) sont reliés entre eux et qui sont choisis notamment parmi :

PCT/FR00/01026 WO 00/63260

7

$$\begin{bmatrix} R^k & O & R^{\prime 1} \\ R^1 & N & R^2 \\ R^2 & O \end{bmatrix}$$

où:

5

 $\mathbf{R}^{\mathbf{a}}$ à $\mathbf{R}^{\mathbf{k}}$ et $\mathbf{R}^{\mathbf{m}}$ ont indépendamment les significations données pour R^9 à R^{12} , les R^a et R^b et R^e et R^f pouvant être identiques ou différents lorsqu'ils sont portés par des atomes de carbone différents ;

r vaut 2 ou 3 ou 4;

s est un entier non nul, en particulier de 1 à 10 ;

t vaut 0, 1 ou 2.

Par ailleurs, à titre d'exemples particuliers de 10 radicaux nitroxyde, on peut indiquer les suivants:

le 2,2,5,5 tétraméthyl-1-pyrrolidinyloxy (généralement commercialisé sous la marque PROXYL) :

10

8

le 3-carboxy-2,2,5,5-tétraméthyl-pyrrolidinyloxy
 (communément appelé 3-carboxy PROXYL);

• le 2,2,6,6-tétraméthyl-1-pipéridinyloxy (communément appelé TEMPO) :

5 CH₃ CH₃ CH₃

- le 4-hydroxy-2,2,6,6-tétraméthyl-1-pipéridinyloxy (communément appelé le 4-hydroxy-TEMPO);
- le 4-méthoxy-2,2,6,6-tétraméthyl-1-pipéridinyloxy (communément appelé le 4-méthoxy-TEMPO);
- le 4-oxo-2,2,6,6-tétraméthyl-1-pipéridinyloxy (communément appelé le 4-oxo-TEMPO) ;
- le bis-(1-oxyl-2,2,6,6-tétraméthylpipéridine-4 yl)sébacate, représenté par la formule :

$$\begin{array}{c} CH_3 \\ CH_3 \\ O \longrightarrow N \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} C \longrightarrow C \\ O \longrightarrow C \\ CH_2 \\ O \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ O \longrightarrow C \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_4 \\ CH_4 \\ CH_5 \\ CH_5$$

(commercialisé sous la marque "CXA 5415" par la Société "CIBA SPECIALTY CHEMICAL");

 le 2,2,6,6-tétraméthyl-4-hydroxypipéridine-1oxyl)monophosphonate:

5

Ç

 le N-tertiobutyl-1-diéthylphosphono-2,2-diméthyl propyl nitroxyde (DEPN):

- le N-tertiobutyl-1-dibenzylphosphono-2,2-diméthyl propyl nitroxyde;
 - le N-tertiobutyl-1-di(2,2,2-trifluoroéthyl)phosphono-2,2-diméthyl propyl nitroxyde;
 - le N-tertiobutyl-[(1-diéthylphosphono)-2-méthyl-propyl]nitroxyde;
- 10 le N-(1-méthyléthyl)-1-cyclohexyl-1-(diéthylphosphono)nitroxyde:

$$C_2H_5O$$
 P
 C_2H_5O
 C_2H_5O

• le N-(1-phénylbenzyl)-[(1-diéthylphosphono)-1-méthyl éthyl] nitroxyde :

- le N-phényl-1-diéthylphosphono-2,2-diméthyl propyl nitroxyde;
 - le N-phényl-1-diéthylphosphono-1-méthyl éthyl nitroxyde;
- le N-(1-phényl 2-méthyl propyl)-1-diéthylphosphono-1 méthyl éthyl nitroxyde;

10

le N-tertiobutyl-1-phényl-2-méthyl propyl nitroxyde :

$$CH_3 C C C CH_3 ; et$$

le N-tertiobutyl-1-(2-naphtyl)-2-méthyl propyl
 nitroxyde.

On peut également citer, à titre de radical stable non nitroxyde, le 2,4,6-tri-tert.-butyl phénoxy.

On peut incorporer à la résine à l'état visqueux de 1 ppm à 5 % en poids, en particulier de 10 ppm à 5% en poids, d'au moins un radical libre stable par rapport à ladite résine.

Par ailleurs, conformément à une caractéristique particulière de la présente invention, on incorpore à la résine à l'état visqueux au moins un amorceur de polymérisation radicalaire dans une quantité suffisante pour obtenir, après réaction, la résine avec la viscosité souhaitée. La valeur de cette viscosité est exprimée par le MFI, en g/10 min.

Les amorceurs de polymérisation radicalaire que 20 l'on peut utiliser sont tous ceux connus de l'homme du métier. On peut citer les peroxydes de diacyle, les peroxyesters, les peroxycétals, les peroxydes de dialkyle, les hydroperoxydes, les peroxydicarbonates, les composés azoïques et les peroxyphtalides.

En particulier, on peut citer, à titre d'exemples, les amorceurs de polymérisation radicalaire parmi :

. le peroxyde de benzoyle ;

10

- . le peroxyde de lauroyle ;
- . le peroxyde de décanoyle ;
- 30 . le peroxyde de 3,5,5-triméthylhexanoyle ;
 - . le peroxyde d'acétyle et de cyclohexyl sulfonyle ;

11

```
. le peroxybenzoate de tert.-butyle ;
         . le peroxyacétate de tert.-butyle ;
         . le peroxy-3,5,5-triméthylhexanoate de tert.-butyle ;
         . le peroxy-3,5,5-triméthylhexanoate de tert.-amyle ;
         . le 2,5-diméthyl-2,5-di(benzoylperoxy)hexane ;
5
         . le OO-tert.-butyl-O-isopropyl-monoperoxy carbonate ;
         . le OO-tert.-butyl-O-(2-éthylhexyl)monoperoxy
           carbonate ;
         . le OO-tert.-amyl-O-(2-éthylhexyl)monoperoxy
           carbonate;
10
         . le peroxyisobutyrate de tert.-butyle ;
         . le peroxy-2-éthylhexanoate de tert.-butyle ;
         . le peroxy-2-éthylhexanoate de tert.-amyle ;
         . le 2,5-diméthyl-2,5-di(2-éthylhexanoyl
           peroxy) hexane ;
15
         . le peroxypivalate de tert.-butyle ;
         . le peroxypivalate de tert.-amyle ;
         . le peroxynéodécanoate de tert.-butyle ;
         . le peroxyisononanoate de tert.-butyle ;
         . le peroxynéodécanoate de tert.-amyle ;
20
         . le peroxynéodécanoate d'α-cumyle ;
         . le 3-hydroxy-1,1-diméthylbutyl-peroxynéodécanoate ;
         . le peroxymaléate de tert.-butyle ;
         . le 3,3-di(tert.-butylperoxy)butyrate d'éthyle ;
         . le 3,3-di(tert.-amylperoxy)butyrate d'éthyle ;
25
         . le 4,4-di(tert.-butylperoxy) valérate de n-butyle ;
         . le 2,2-di(tert.-butylperoxy)butane ;
         . le 1,1-di(tert.-butylperoxy)cyclohexane ;
         . le 1,1-di(tert.-butylperoxy)cyclohexane ;
         . le 1,1-di(tert.-butylperoxy)3,3,5-
30
           triméthylcyclohexane;
          . le 1,1-di(tert.-amylperoxy)cyclohexane ;
         . le 2,2-bis-(4,4-ditert.-butyl peroxy cyclohexyl)
           propane);
```

12

```
. le 2,5-diméthyl-2,5-di(tert.-butylperoxy)hexyne-(3);
        . le peroxyde de di-tert.-butyle ;
        . le peroxyde de di-tert.-amyle ;
        . le peroxyde de tert.-butyle et de cumyle ;
        . le 1,3-di(tert.-butylperoxy-isopropyl)-benzène ;
5
        . le 2,5-diméthyl-2,5-di(tert.-butylperoxy)hexane ;
        . le 1,1,4,4,7,7-hexaméthylcyclo-4,7-diperoxynonane ;
         . le 3,3,6,6,9,9-hexaméthylcyclo-1,2,4,5-tétraoxa-
          nonane ;
         . l'hydroperoxyde de tert.-butyle ;
10
         . l'hydroperoxyde de tert.-amyle ;
         . l'hydroperoxyde de cumyle ;
         . le 2,5 diméthyl-2,5-di(hydroperoxy)hexane;
         . le mono hydroperoxyde de diisopropylbenzène ;
         . l'hydroperoxyde de paramenthane ;
15
         . le peroxydicarbonate de di-(2-éthylhexyle) ;
         . le peroxydicarbonate de dicyclohexyle ;
         . le 2,2'-azo-di(2-acétoxypropane);
         . le 2,2'-azobis(isobutyronitrile);
         . le 2,2'-azobis(2,4-diméthylvaléronitrile);
20
         . le 2,2'-azobis(cyclohexanenitrile);
         . le 2,2'-azobis-(2-méthylbutyronitrile) et
         . le 2,2'-azobis(2,4-diméthyl-4-méthoxyvaléronitrile);
           et
         . le 3-phényl-3-tert.-butyl-peroxyphtalide.
25
                                             les
                                                  amorceurs
                  peut incorporer
                                     le ou
              On
```

On peut incorporer le ou les amorceurs de polymérisation radicalaire dans une quantité allant jusqu'à 5 % en poids, en particulier à raison de 50 ppm à 0,5 % en poids, par rapport au poids de la résine.

Par ailleurs, on peut utiliser un rapport $SFR \cdot F_{SFR}/AMO \cdot F_{AMO}$ de 0,0001 à 2,5, en particulier de 0,005 à 2,5, avec :

13

- SFR représentant le nombre de mole de radical libre stable dans le milieu ;

- F_{SFR} représentant la fonctionnalité du radical libre stable, c'est-à-dire le nombre de sites sur la même molécule de radical libre stable présentant l'état de radical libre stable;

5

15

20

25

30

35

- AMO représentant le nombre de mole d'amorceur dans le milieu;
- F_{AMO} représentant la fonctionnalité de l'amorceur, c'est-à-dire le nombre de sites présentant l'état de radical libre que chaque molécule d'amorceur est capable de générer.

La résine de départ est notamment un homopolymère du propylène. On peut mentionner tous les homopolymères possibles du propylène : polypropylène isotactique, polypropylène atactique, polypropylène syndiotactique.

La résine de départ peut également être un copolymère du propylène, statistique ou à blocs, le ou les comonomères représentant jusqu'à 10% en poids Le ou les comonomères sont choisis notamment copolymère. parmi les alkylènes tels que l'éthylène et le butylène, les diènes, et les monomères vinylaromatiques tels que le styrène. On peut citer, à titre d'exemples, les copolymères alkylène/propylène, tels que les copolymères statistiques et à blocs éthylène/propylène, et les terpolymères tels terpolymères qu'alkylène/propylène/butylène, comme les copolymères éthylène/propylène/butylène ; les propylène/diène monomère ; et les copolymères styrènepropylène.

On peut également citer, comme résine de départ, un homopolymère du propylène ou un copolymère du propylène tel que défini ci-dessus en mélange avec au moins un autre polyéthylène, le notamment parmi le polymère choisi méthyle), poly(méthacrylate de le polystyrène, polybutadiène, un EPDM (copolymère éthylène-propylène-diène monomère), un copolymère éthylène-acrylate, un copolymère éthylène - acide acrylique, un terpolymère éthylène acrylate - anhydride maléique.

Dans un tel mélange, le ou les autres polymères 40 représentent généralement au plus 50% en poids du mélange.

14

Il est par ailleurs précisé que la résine de base ne contient pas ou peu (moins de 200 ppm) de monomère fonctionnel tel que l'anhydride maléique et d'autres monomères fonctionnels comportant les fonctions acides carboxyliques et leurs dérivés, les chlorures d'acides, les isocyanates, les oxazolines, les époxydes, les amines ou les hydroxydes, dont des exemples sont donnés dans US-A-5 705 568.

Conformément à un premier mode de réalisation du procédé selon l'invention, on introduit le ou les radicaux libres stables, et, le cas échéant, le ou les amorceurs, dans au moins une zone fondue de l'extrudeuse située à la sortie du réacteur de synthèse de l'homopolymère ou du copolymère de propylène, ou dans au moins une zone fondue de 15 l'extrudeuse utilisée en reprise de synthèse l'homopolymère ou du copolymère du propylène, ou encore dans une autre extrudeuse qui ne se trouve pas nécessairement en sortie du réacteur de polymérisation, auquel cas on alimente dans l'extrudeuse tous les produits que l'on souhaite 20 incorporer dans la formulation.

On réalise alors la mise en contact de la résine à l'état visqueux et du radical stable ou des radicaux stables, et, le cas échéant, du ou des amorceurs de polymérisation radicalaire, et, le cas échéant du ou des autres polymères, généralement à une température de 100°C à 350°C, en particulier à une température de 160°C à 250°C, et généralement pendant une durée de 10 secondes à 5 heures, de préférence pendant une durée de 10 secondes à 1 heure, et, en particulier, de 15 secondes à 1 minute.

25

30 Avantageusement, on peut introduire le radicaux libres stables et, le cas échéant, le ou les amorceurs, en solution dans un solvant, tel trichlorobenzène, la concentration du ou des radicaux libres stables étant de 1 à 100% en poids (100% correspondant à l'absence de solvant). On introduit par exemple cette solution 35 du ou des radicaux stables et, le cas échéant, du ou des amorceurs, à un débit d'injection de 0,01-5% en poids du débit total. Ce solvant, qui apporte de la précision sur le débit, est éliminé pendant l'extrusion dans les puits de dégazage.

15

On peut également incorporer le ou les radicaux libres stables et, le cas échéant le ou les amorceurs, via un mélange-maître, tel qu'un mélange sur poudre de polypropylène ou de polyéthylène.

La résine modifiée conformément au procédé de la présente invention sort de l'extrudeuse sous la forme d'un jonc, lequel est ensuite dirigé, de façon connue, vers un dispositif de granulation.

5

20

25

30

Conformément à un second mode de réalisation du procédé selon l'invention, on introduit le ou les radicaux stables et, le cas échéant, le ou les amorceurs de polymérisation, dans la résine de départ placée en milieu solvant, à une température de 80°C à 350°C. Le solvant est notamment choisi parmi les hydrocarbures aliphatiques, cycloaliphatiques et aromatiques, le cas échéant halogénés (chlorés).

La résine, le ou les radicaux libres stables et, le cas échéant, le ou les amorceurs en présence de solvant sont introduits dans un réacteur de type réacteur polymérisation, et l'ensemble est porté à la température Cette température est choisie en fonction des désirée. libres stables et composants introduits (radicaux amorceurs). Le temps de réaction est déterminé également en fonction de l'amorceur : on choisit ce temps de réaction entre 3 et 10 demi-vies de l'amorceur à la température de réaction. Après la réaction, le mélange réactionnel est purifié, par exemple par introduction de ce dernier par d'une pompe à engrenage l'intermédiaire dévolatiliseur pour éliminer le solvant. Le polymère fondu est ensuite introduit également par l'intermédiaire d'une pompe à engrenage dans une filière, suivie d'un granulateur, pour obtenir les granulés de la résine finale.

En ce qui concerne les solvants, on peut utiliser tous les solvants des polyoléfines.

Par ailleurs, d'une manière générale, un amorceur est de préférence présent pour une température inférieure à 200°C. Il peut ne pas y avoir d'amorceur au-dessus de 200°C.

16

En l'absence d'amorceur, la dégradation se fait par coupure de chaîne par un mécanisme radicalaire sous le seul effet de la chaleur (mécanisme dit de "bêta-scission".

Les Exemples suivants illustrent la présente invention, sans toutefois en limiter la portée. Dans ces Exemples:

- les pourcentages sont en poids sauf indication contraire;
- les valeurs des indices de fluidité IF (Melt Index) ont
 été mesurées à 230°C, sous 2,16 kg, conformément à la norme ISO 1133:91;
 - les valeurs des masses moléculaires moyennes en nombre (\overline{Mn}) et des masses moléculaires moyennes en poids (\overline{Mw}) ont été mesurées par GPC ;
- 15 les valeurs du module ont été mesurées sur des éprouvettes de 80 x 10 x 4, conformément à la norme ISO 178:93;
 - les essais de choc Charpy entaillé ont été réalisés à 23°C, sur des éprouvettes de 80 x 10 x 4, conformément à la norme ISO 179-1eA;
 - les essais de choc grande vitesse ou "FWI" ont été réalisés sur plaque 100 x 100 x 2 avec une vitesse de l'impacteur à 4,3 m/sec.

Par ailleurs, les abréviations suivantes ont été 25 utilisées :

I - POLYMÈRE DU PROPYLÈNE

20

30

- . HomoPP: homopolymère du propylène présentant les caractéristiques suivantes :
 - indice de fluidité (2,16 kg, 230°C) :

3 g/10 min.

- masse volumique: $0,905 \text{ g/cm}^3$
- point de fusion : 163°C
- $\overline{Mn} = 52 200$
- $\overline{MW} = 296 200$

17

- Ip (indice de polymolécularité $\overline{Mw}/\overline{Mn}$) = 5,7
- Module : 1256 MPa
- Choc Charpy entaillé : 3,1 kJ/m².
- PPcopo: copolymère à blocs propylène/éthylène, 5 présentant les caractéristiques suivantes :
 - indice de fluidité $(2,16 \text{ kg}, 230^{\circ}\text{C})$: 1 g/10 min.
 - masse volumique: 0,902 g/cm³
 - point de fusion : 163°C
 - Module en flexion : 1200 MPa
 - Choc grande vitesse : 80 kJ/m^2 .

II - RADICAL LIBRE

10

25

- . TEMPO: 2,2,6,6-tétraméthyl-1 pipéridinyloxy $(C_9H_{18}NO)$, de masse moléculaire 156,25 et de point de fusion 38°C.
 - . TEMPOL: (4-hydroxy-TEMPO) = 4-hydroxy-2,2,6,6-tétraméthyl-1-pipéridinyloxy

III - AMORCEUR

DHBP: 2,5-bis-(tert.-butylperoxy)-2,5-diméthylhexane, de formule développée :

$$\begin{pmatrix} \text{CH}_3 & & \text{CH}_3 \\ \text{CH}_3 & - & \text{C} & - & \text{O} & - & \text{C} & - & \text{CH}_2 \\ & & & & & & & \\ \text{CH}_3 & & & & \text{CH}_3 \end{pmatrix}$$

de masse moléculaire 290,4, sous forme liquide, de pureté égale à 92 %.

18

<u>EXEMPLE 1 (RÉFÉRENCE):</u> Passage en extrudeuse de l'homoPP seul

On utilise une extrudeuse LEISTRITZ n° 30-34 à deux vis corotatives, que l'on fait fonctionner dans les 5 conditions suivantes :

débit total : 12 kg/h ;

vitesse de vis : 75 tours/minute ;

profil de température :

10	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Zone 9
	200°C	180°C	200°C	210°C	220°C	220°C	210°C	200°C	180°C

Le dégazage s'effectue en zone 7.

Les granulés d'homoPP sont introduits par un doseur pondéral K-TRON T20 dans l'extrudeuse. La mise en conditions de la machine s'effectue pendant 20 minutes sans incident au débit total de 12 kg/h, et ensuite l'échantillon d'environ 10 kg est recueilli et conditionné en sac étanche.

Les caractéristiques et les propriétés mécaniques 20 de l'homoPP passé en extrudeuse sont indiquées dans le Tableau 1 ci-après.

EXEMPLE 2 (COMPARATIF): Obtention d'un homoPP dégradé par passage en extrudeuse de l'homoPP de base avec incorporation de DHBP

On procède comme à l'Exemple 1 excepté que l'on injecte dans la zone 2 de l'extrudeuse, grâce à une pompe DOSAPRO double corps, une solution de DHBP dans le trichlorobenzène, la teneur en DHBP étant ajustée pour avoir un débit d'injection de la solution de 1 % du débit total.

30 La quantité de DHBP par rapport à l'homoPP de base est indiquée dans le Tableau 1.

Les caractéristiques et les propriétés mécaniques de l'homo PP ainsi dégradé sont également indiquées dans le Tableau 1 ci-après.

19

EXEMPLES 3 et 4 (INVENTION): Obtention d'un homoPP dégradé

5

de qualité améliorée par

passage en extrudeuse de

l'homoPP de base avec

incorporation de DHBP + TEMPO

On procède comme à l'Exemple 2, excepté que l'on injecte au débit indiqué, une solution dans le trichlorobenzène de DHBP + TEMPO, les quantités de DHBP et de TEMPO par rapport à l'homoPP étant indiquées également dans le Tableau 1.

Les résultats figurent aussi dans le Tableau 1.

Ψ,	
_ '	
\Box	
K	
(L)	
I	
m	
Z	
H	

DHBP	<u> </u>		•	F	ļ,			1	Choc
réel	<u>rée</u>	molaire	penzene	(g/10min.)	Z Z	<u>×</u>	<u>a</u>	Module	Charpy
(mdd)	(mdd)	TEMPO/	(%)					(MPa)	entaillé
*		DHBP							Energie à
			٠						23°C
									(kJ/m²)
			-00	3,6	52 200	52 200 296 200	5,7	1256	3,1
0	0	0		3,9	068 09	60 890 313 000	5,1	1253	3,1
								÷	
512	0	0	96'0	34,2	44 540	44 540 174 100	3,9	1166	2,2
				·					
513	28	0,1	0,5	26,4	39 710	39 710 150 600	3,8	1165	2,7
2050	1013	-	0,78	24,5	40 900	40 900 156 200	3,8	1166	2,8

On a tenu compte du fait que le DHBP est pur à 92 %

21

On constate que l'incorporation du radical libre stable a permis d'obtenir un homoPP ayant un indice de fluidité dans la plage recherchée, avec une meilleure propriété choc tout en conservant la même rigidité.

5 <u>EXEMPLE 5 (RÉFÉRENCE):</u> <u>Passage en extrudeuse de l'homoPP</u> <u>seul</u>

On procède comme à l'Exemple 1, excepté que le profil de température de l'extrudeuse est modifié comme suit.

10	Zone								
	1	2	3	4	5	6	7	8	9
	200°C	180°C	200°C	230°C	250°C	250°C	240°C	200°C	180°C

EXEMPLE 6 (COMPARATIF): Obtention d'un homoPP dégradé par passage en extrudeuse de l'homoPP de base avec incorporation de DHBP

On procède comme à l'Exemple 5, excepté que l'on injecte dans la zone 2 de l'extrudeuse, grâce à une pompe DOSAPRO double corps, une solution de DHBP dans le trichlorobenzène, la teneur en DHBP étant ajustée pour avoir un débit d'injection de la solution de 1 % du débit total. La qualité de DHBP par rapport à l'homoPP de base est indiquée dans le Tableau 2.

Les caractéristiques et les propriétés mécaniques de l'homo PP ainsi dégradé sont également indiquées dans le Tableau 2 ci-après.

22

EXEMPLES 7 à 9 (INVENTION):

Obtention d'un homoPP dégradé

de qualité améliorée par

passage en extrudeuse de

l'homoPP de base avec

incorporation de DHBP + TEMPO

5

On procède comme à l'Exemple 6, excepté que l'on injecte, au débit indiqué, une solution dans le trichlorobenzène, de DHBP + TEMPO, les quantités de DHBP + TEMPO par rapport à l'homoPP de base étant indiquées également dans le Tableau 2.

Les résultats figurent aussi dans le Tableau 2.

rableau 2

Choc Charpy entaillé Energie à 23°C (kJ/m²)	3,1	3,2	2,4	2,3	2,2	2,2
Module (MPa)	1256	1235	1146	1183	1211	1202
<u>a</u>	5,7	5,2	3,5	3,6	3,9	3,3
ΜW	296 200	274 400	144 500	165 900	174 100	139 500
N	52 200	52 590	41 430	46 180	44 920	41 880
IF (g/10 min.)	3,6	4,3	38,9	41,1	35,4	46,1
Trichloro- benzène (%)			0,95	0,95	0,94	26'0
Rapport molaire TEMPO/ DHBP		0	0	0	0,5	-
TEMPO réel (ppm)		c	, c	27	135	1103
DHBP réel (ppm)*		c	543	202	200	2050
Exemple	HomoPP	ם מס	o (7 0	- α	5 6

on a tenu compte du fait que le DHBP est pur à 92 %.

24

On constate que l'incorporation du radical libre stable a permis d'obtenir un homoPP ayant un indice de fluidité dans la plage recherchée avec une meilleure rigidité tout en conservant la même propriété choc.

5 EXEMPLE 10 (de Référence):

Passage en extrudeuse du PPCopo seul

On procède comme à l'Exemple 1 en remplaçant l'HomoPP par le PPCopo.

Les caractéristiques et les propriétés mécaniques du 10 PPCopo passé en extrudeuse sont indiquées dans le Tableau 3 ci-après.

EXEMPLES 11 à 13 (comparatifs):

Obtention d'un PPCopo dégradé par passage en extrudeuse du PPCopo de base avec incorporation de DHBP

On procède comme à l'Exemple 2, excepté que le DHBP est alimenté par mélange-maître sur poudre PE.

Les caractéristiques et les propriétés mécaniques du 20 PPCopo ainsi dégradé sont également indiquées dans le Tableau 3.

EXEMPLES 14 à 19 :

30

Obtention d'un PPCopo dégradé de qualité améliorée par passage en extrudeuse du PPCopo de base avec incorporation de DHBP + TEMPOL

On procède comme pour les Exemples 11 à 13, excepté que l'on injecte à la fois du DHBP et du TEMPOL.

Les résultats figurent dans le Tableau 3.

Exemple	(шđđ) авно	TEMPO (ppm)	Poudre PE (%)*	Rapport molaire Tempo/ DHBP	IF (g/10 min)	Module (MPa)	Choc à grande vitesse à 23°C	Choc à grande vitesse à -20°C
10 (référence	0	0	0		Н	1200	08	70
11 (comparatif)	950	0	4	0	23	925	39	22
12 (comparatif)	1250	0	4	0	36	006	38	22
13 (comparatif)	1600	0	4	0	57	870	37	22
14	1500	445	4	0,5	27	098	42	29
15	1950	878	4	0,5	43	875	41,5	26,5
16	2250	<i>L</i> 99	4	0,5	62	875	38	26
17	2000	1186	4	1	25	890	40	25
18	3000	1780	4	, - 1	36	006	39	26,5
19	4600	2730	4	- 1	65	885	39	24

pourcentage indiqué par rapport à la base de PP

26

On constate que l'incorporation du radical libre stable a permis d'obtenir un PPCopo avec des résultats chocs supérieurs.

EXEMPLE D'ESSAI 20 :

5 <u>Tenue aux UV d'homoPP dégradés peroxydiquement en</u> <u>extrudeuse en présence de TEMPO</u>

Les irradiations ont été effectuées sur des films réalisés à la presse chauffante. Les essais de vieillissement aux UV ont été conduits par exposition en enceinte SEPAP 12-

- 10 24, selon les conditions décrites dans la NF T 54-190
 - lampes à mercure moyenne pression de puissance unitaire 400 W, dont l'enveloppe filtre les UV en-dessous de 290 nm;
 - exposition continue;

25

30

- 15 pas d'aspersion des échantillons ;
 - humidité relative non contrôlée ;
 - température mesurée et régulée sur film par une sonde de contact : 60°C ± 2°C ;
- de l'étalonnage de l'enceinte par un film PEBD faiblement
 stabilisé pour lequel l'état d'oxydation mesuré à 1715cm⁻¹
 est égal à 0,12 ± 0,02 après 100 heures d'irradiation.

L'état d'oxydation des différents échantillons est suivi par IRTF, en transmission dans la zone des carbonyles. A partir de ces spectres, le dosage du taux de carbonyles synonymes de produits de photooxydation est donc possible. Il permet d'établir la cinétique de photooxydation des différents produits. La mesure est effectuée à 1713cm⁻¹ (absorbance due aux carbonyles des fonctions acides synonymes de coupure de chaîne). La fréquence des mesures est fonction de l'état d'oxydation du contrôle précédent.

Le Tableau 4 ci-après illustre les résultats obtenus.

Tableau 4

HomoPP de 1'Ex. 2 2 2	DHBP 1 réel (ppm) 512 500 500	TEMPO R réel M (ppm) T (ppm) T 27 27 27 27 27	apport Olaire EMPO/ HBP 0 0,1			50 0,3316 0,245 0,2741	VARIATION DE LA DENSITÉ OPTIQUE À 1713CM ⁻¹ EN FONCTION DU TEMPS D'IRRADIATION TARABLE DE LA DENSITÉ OPTIQUE À 1713CM ⁻¹ EN FONCTION DU TEMPS D'IRRADIATION TARABLE DE LA DENSITÉ OPTIQUE À 1713CM ⁻¹ EN FONCTION DU TEMPS D'IRRADIATION TARABLE SOURCE (HEURES) TEMPS (HEURES) 1 34 50 66 70 74 78 8 8 95 111, 127 135 159 1 0 0,1492 0,3316 0,4685 0,6622 0,4508 arrêt	70 70 0,6622 0,7004 0,6216	TEMPS (F 74 78 74 78 0,4508 arrêt - 0,5417 arret 0,24	TEMPS (HEURES) 1 78 95 1 78 95 508 arrêt	1713CM-1 EN FONCTION PS (HEURES) 78 95 111 arrêt arrêt arrêt 0,2475 0,4326 arrêt	TIII III arrêt	CTION DU TEMP 111, 127 arrêt	135	159	183
ω	200	135	135 10,3	,	· [10,0		0 0 4 9 3	0.0653	0,107	0,155	0,1845	0,2541	0 0493 0.0653 0,107 0,155 0,1845 0,2541 0,4056
4	2050	2050 1013	1		의			0,0457		2010						×

28

REVENDICATIONS

1 - Procédé de fabrication d'une résine à rhéologie contrôlée d'un homo- ou copolymère du propylène ou d'une composition comprenant un homo- ou copolymère du propylène en l'absence de monomère fonctionnel, ledit procédé entraînant une augmentation de l'indice de fluidité de la résine par coupure de chaînes, caractérisé par le fait que l'on incorpore à ladite résine à l'état visqueux au moins un radical libre stable, puis que l'on forme un produit solide ayant un indice de fluidité augmenté.

2 - Procédé selon la revendication 1, caractérisé par le fait que l'on choisit le ou les radicaux libres stables parmi les radicaux nitroxyle, comportant au moins un groupement $=N-0^{\circ}$.

3 - Procédé selon la revendication 2, caractérisé par le fait que l'on choisit les radicaux nitroxyle parmi ceux des formules (Ia), (Ib) ou (Ic):

$$R^{2}$$
 R^{3}
 R^{4}
(Ia)

20

10

$$\begin{array}{c|c}
R^{13} & R^{14} \\
 & \parallel \\
 & N \\
 & \downarrow \\
 & O^*
\end{array}$$
(Ic)

dans lesquelles :

• R^1 à R^3 , R^5 à R^8 et R^{13} et R^{14} représentent chacun indépendamment :

29

- (a) un atome d'hydrogène;
- (b) un atome d'halogène;

5

15

(c) un groupement hydrocarboné, saturé ou insaturé, linéaire, ramifié ou mono- ou polycyclique, et pouvant être substitué par au moins un halogène;

(d) un groupement ester $-\text{COOR}^{15}$ ou un groupement alcoxyle $-\text{OR}^{16}$, R^{15} et R^{16} représentant un groupement hydrocarboné tel que défini au point (c) ci-dessus;

10 (e) un groupement de formule $\frac{1}{R^{18}}$,

où R¹⁷ et R¹⁸ représentent chacun indépendamment un radical alkyle linéaire, ramifié ou cyclique, perfluoroalkyle, aryle, aralkyle, alkaryle, alcoxyle, aryloxyle, aralkyloxyle, alkaryloxyle, ces radicaux pouvant comprendre de 1 à 20 atomes de carbone; ou halogène;

- (f) une chaîne de polymère ;
- R⁴ a les significations définies aux points (a), (b),
 (c), (d) et (f) ci-dessus, et dans le cas où il est relié à l'atome d'azote par un atome de carbone, ce dernier peut porter au moins un groupement tel que défini au point (e) ci-dessus;
- R⁹ à R¹², identiques ou différents, ont les significations définies aux points (a) à (f) ci-dessus et peuvent en outre représenter un groupement hydroxyde ou un groupement acide, tel que -COOH, -PO(OH)₂ ou -SO₃H;
 R³ et R⁴ pouvant être reliés entre eux, et dans le cas
- où R⁴ représente un reste -CR'¹R'²R'³ (R'¹ à R'³

 ayant indifféremment les significations de R¹ à

 R³) R³ pouvant être relié à R'³ pour former
 un hétérocycle comportant l'atome d'azote
- de N-0°, ledit hétérocycle pouvant être saturé ou 35 | insaturé, pouvant comporter dans le cycle au moins un

5

10

autre hétéroatome et/ou au moins un groupement -C- , et \parallel

pouvant également comporter un cycle accolé, saturé ou insaturé;

- deux parmi R^1 à R^3 , R^5 et R^6 , R^7 et R^8 , R^9 et R^{10} , R^{11} et R^{12} , R^6 et R^9 , R^8 et R^{11} , R^{13} et R^{14} et dans le cas où R^4 représente un reste -CR'1R'2R'3, R^3 et R'3 pouvant indépendamment être reliés entre eux pour former, avec l'atome de carbone qui les porte, un cycle ou un hétérocycle saturé ou insaturé;
- u est un entier non nul.

4 - Procédé selon la revendication 3, caractérisé par le fait que l'on choisit les radicaux nitroxyle de formule (Ia) dans lesquels R³ et R⁴ (ou R³ et R^{'3}) sont reliés entre eux, parmi :

$$R^1$$
 R^2
 R^2
 R^2
 R^2

31

$$\begin{array}{c|c}
R^{k} & O \\
R^{1} & N \\
R^{2} & O
\end{array}$$

où:

- R^a à R^k et R^m ont indépendamment les significations données pour R⁹ à R¹², les R^a et R^b et R^e et R^f pouvant être identiques ou différents lorsqu'ils sont portés par des atomes de carbone différents;
 - r vaut 2 ou 3 ou 4 ;
 - s est un entier non nul ; et
 - t vaut 0, 1 ou 2.
- 5 Procédé selon l'une des revendications 3 et 4, caractérisé par le fait que l'on choisit le ou les radicaux stables nitroxyde parmi :
 - le 2,2,5,5 tétraméthyl-1-pyrrolidinyloxy;
 - le 3-carboxy-2,2,5,5-tétraméthyl-pyrrolidinyloxy;
- le 2,2,6,6-tétraméthyl-1-pipéridinyloxy;
 - le 4-hydroxy-2,2,6,6-tétraméthyl-1-pipéridinyloxy;
 - le 4-méthoxy-2,2,6,6-tétraméthyl-1-pipéridinyloxy;
 - le 4-oxo-2,2,6,6-tétraméthyl-1-pipéridinyloxy;
- le bis-(1-oxyl-2,2,6,6-tétraméthylpipéridine-4 yl)sébacate;
 - le 2,2,6,6-tétraméthyl-4-hydroxypipéridine-1-oxyl)monophosphonate;

- le N-tertiobutyl-1-diéthylphosphono-2,2-diméthyl propyl nitroxyde ;
- le N-tertiobutyl-1-dibenzylphosphono-2,2-diméthyl propyl nitroxyde ;
- le N-tertiobutyl-1-di(2,2,2-trifluoroéthyl)phosphono-2,2-5 diméthyl propyl nitroxyde;
 - le N-tertiobutyl-[(1-diéthylphosphono)-2-méthylpropyl]nitroxyde ;
- le N-(1-méthyléthyl)-1-cyclohexyl-1-(diéthylphosphono)nitroxyde ; 10
 - le N-(1-phénylbenzyl)-[(1-diéthylphosphono)-1-méthyl éthyl] nitroxyde;
 - N-phényl-1-diéthylphosphono-2,2-diméthyl propyl le nitroxyde ;
- N-phényl-1-diéthylphosphono-1-méthyl éthyl 15
 - le N-(1-phényl 2-méthyl propyl)-1-diéthylphosphono-1méthyl éthyl nitroxyde;
 - le N-tertiobutyl-1-phényl-2-méthyl propyl nitroxyde ; et
- N-tertiobutyl-1-(2-naphtyl)-2-méthyl propyl 20 nitroxyde.
 - 6 Procédé selon la revendication 1, caractérisé par le fait que l'on utilise le 2,4,6-tri-tert.-butylphénoxy comme radical libre stable.
- 7 Procédé selon l'une des revendications 1 à 6, 25 caractérisé par le fait que l'on incorpore à la résine à l'état visqueux de 1 ppm à 5 % en poids d'au moins un radical libre stable par rapport à ladite résine.
- 8 Procédé selon la revendication 7, caractérisé par le fait que l'on incorpore à la résine à l'état visqueux 30 de 10 ppm à 5 % en poids d'au moins un radical libre stable par rapport à ladite résine.
- 9 Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que l'on incorpore à la résine à l'état visqueux au moins un amorceur de polymérisation 35 radicalaire dans une quantité suffisante pour obtenir, après réaction, la résine avec la viscosité souhaitée.

WO 00/63260

33

PCT/FR00/01026

10 - Procédé selon la revendication 9, caractérisé par le fait que l'on choisit le ou les amorceurs de polymérisation radicalaire parmi les peroxydes de diacyle, les peroxyesters, les peroxycétals, les peroxydes de dialkyle, les hydroperoxydes, les peroxydicarbonates, les esters azoïques et les peroxyphtalides.

11 - Procédé selon la revendication 10, caractérisé par le fait que l'on choisit le ou les amorceurs de polymérisation radicalaire parmi :

```
10
         . le peroxyde de benzoyle ;
         . le peroxyde de lauroyle ;
         . le peroxyde de décanoyle ;
         . le peroxyde de 3,5,5-triméthylhexanoyle ;
         . le peroxyde d'acétyle et de cyclohexyl sulfonyle ;
15
         . le peroxybenzoate de tert.-butyle ;
         . le peroxyacétate de tert.-butyle ;
         . le peroxy-3,5,5-triméthylhexanoate de tert.-butyle ;
         . le peroxy-3,5,5-triméthylhexanoate de tert.-amyle ;
         . le 2,5-diméthyl-2,5-di(benzoylperoxy)hexane ;
20
         . le 00-tert.-butyl-0-isopropyl-monoperoxy carbonate ;
         . le 00-tert.-butyl-0-(2-éthylhexyl)monoperoxy
           carbonate ;
         . le OO-tert.-amyl-O-(2-éthylhexyl)monoperoxy
           carbonate ;
25
         . le peroxyisobutyrate de tert.-butyle ;
         . le peroxy-2-éthylhexanoate de tert.-butyle ;
         . le peroxy-2-éthylhexanoate de tert.-amyle ;
         . le 2,5-diméthyl-2,5-di(2-éthylhexanoyl
           peroxy) hexane ;
30
         . le peroxypivalate de tert.-butyle ;
         . le peroxypivalate de tert.-amyle ;
         . le peroxynéodécanoate de tert.-butyle ;
         . le peroxyisononanoate de tert.-butyle ;
         . le peroxynéodécanoate de tert.-amyle ;
35
         . le peroxynéodécanoate d'\alpha-cumyle ;
         . le 3-hydroxy-1,1-diméthylbutyl-peroxynéodécanoate ;
```

. le peroxymaléate de tert.-butyle ;

WO 00/63260

34

PCT/FR00/01026

```
. le 3,3-di(tert:-butylperoxy)butyrate d'éthyle ;
         . le 3,3-di(tert.-amylperoxy)butyrate d'éthyle ;
         . le 4,4-di(tert.-butylperoxy) valérate de n-butyle ;
         . le 2,2-di(tert.-butylperoxy)butane ;
 5
         . le 1,1-di(tert.-butylperoxy)cyclohexane;
         . le 1,1-di(tert.-butylperoxy)cyclohexane ;
         . le 1,1-di(tert.-butylperoxy)3,3,5-
           triméthylcyclohexane;
         . le 1,1-di(tert.-amylperoxy)cyclohexane;
10
         . le 2,2-bis-(4,4-ditert.-butyl peroxy cyclohexyl)
           propane);
         . le 2,5-diméthyl-2,5-di(tert.-butylperoxy)hexyne-(3);
         . le peroxyde de di-tert.-butyle ;
         . le peroxyde de di-tert.-amyle ;
15
         . le peroxyde de tert.-butyle et de cumyle ;
         . le 1,3-di(tert.-butylperoxy-isopropyl)-benzène ;
         . le 2,5-diméthyl-2,5-di(tert.-butylperoxy)hexane ;
         . le 1,1,4,4,7,7-hexaméthylcyclo-4,7-diperoxynonane;
         . le 3,3,6,6,9,9-hexaméthylcyclo-1,2,4,5-tétraoxa-
20
           nonane ;
         . l'hydroperoxyde de tert.-butyle ;
         . l'hydroperoxyde de tert.-amyle ;
         . l'hydroperoxyde de cumyle ;
         . le 2,5 diméthyl-2,5-di(hydroperoxy)hexane;
25
         . le mono hydroperoxyde de diisopropylbenzène ;
         . l'hydroperoxyde de paramenthane ;
         . le peroxydicarbonate de di-(2-éthylhexyle) ;
         . le peroxydicarbonate de dicyclohexyle ;
         . le 2,2'-azo-di(2-acétoxypropane);
         . le 2,2'-azobis(isobutyronitrile);
30
         . le 2,2'-azobis(2,4-diméthylvaléronitrile);
         . le 2,2'-azobis(cyclohexanenitrile) ;
         . le 2,2'-azobis-(2-méthylbutyronitrile) ;
```

WO 00/63260 PCT/FR00/01026

35

- . le 2,2'-azobis(2,4-diméthyl-4-méthoxyvaléronitrile);
 et
- . le 3-phényl-3-tert.-butyl-peroxyphtalide.
- 12 Procédé selon l'une des revendications 9 à 11, 5 caractérisé par le fait que l'on incorpore le ou les amorceurs de polymérisation radicalaire dans une quantité allant jusqu'à 5 % en poids par rapport au poids de la résine.
- 13 Procédé selon la revendication 12, caractérisé par le fait que l'on incorpore le ou les amorceurs de 10 polymérisation radicalaire à raison de 50 ppm à 0,5 % en poids par rapport au poids de la résine.
 - 14 Procédé selon l'une des revendications 9 à 13, caractérisé par le fait que l'on utilise un rapport $SFR \cdot F_{SFR}/AMO \cdot F_{AMO}$ de 0,0001 à 2,5, avec :
- 15 SFR représentant le nombre de mole de radical libre stable dans le milieu,

20

- F_{SFR} représentant la fonctionnalité du radical libre stable, c'est-à-dire le nombre de sites sur la même molécule de radical libre stable présentant l'état de radical libre stable;
- AMO représentant le nombre de mole d'amorceur dans le milieu;
- F_{AMO} représentant la fonctionnalité de l'amorceur, c'està-dire le nombre de sites présentant l'état de radical libre que chaque molécule d'amorceur est capable de générer.
- 15 Procédé selon la revendication 14, caractérisé par le fait que l'on utilise un rapport SFR• $F_{\rm SFR}$ /AMO• $F_{\rm AMO}$ de 0,005 à 2,5.
- 30 16 Procédé selon l'une des revendications 1 à 15, caractérisé par le fait que l'on utilise, comme résine de départ, un homopolymère du propylène.
 - 17 Procédé selon l'une des revendications 1 à 15, caractérisé par le fait que l'on utilise, comme résine de départ, un copolymère du propylène, statistique ou à blocs, le ou les comonomères représentant jusqu'à 10% en poids dudit copolymère.

WO 00/63260

35

36

PCT/FR00/01026

18 - Procédé selon la revendication 17, caractérisé par le fait que le ou les comonomères sont choisis parmi les alkylènes, les diènes et les monomères vinylaromatiques.

19 - Procédé selon l'une des revendications 1 à 15, caractérisé par le fait que l'on utilise, comme résine de départ, un homopolymère du propylène et/ou un copolymère du propylène tel que défini à la revendication 17, en mélange avec au moins un autre polymère choisi parmi le polyéthylène, le polystyrène, le poly(méthacrylate de méthyle), le polybutadiène, un EPDM (copolymère éthylène-propylène-diène monomère), un copolymère éthylène-acrylate, un copolymère éthylène - acide acrylique, un terpolymère éthylène - acrylate - anhydride maléique.

20 - Procédé selon l'une des revendications 1 à 15, caractérisé par le fait que l'on utilise, comme résine de départ, un homopolymère du propylène et/ou un copolymère du propylène tel que défini à la revendication 17, en mélange avec au moins un autre polymère, ledit ou lesdits autres polymères représentant au plus 50% en poids du mélange.

21 - Procédé selon l'une des revendications 1 à 20, caractérisé par le fait que l'on introduit le ou les radicaux libres stables, et, le cas échéant, le ou les amorceurs, dans au moins une zone fondue de l'extrudeuse située à la sortie du réacteur de synthèse de l'homopolymère ou du copolymère de propylène, ou dans au moins une zone fondue de l'extrudeuse utilisée en reprise de synthèse de l'homopolymère ou du copolymère du propylène, ou encore dans une autre extrudeuse qui ne se trouve pas nécessairement en sortie du réacteur de polymérisation, auquel cas on alimente dans l'extrudeuse tous les produits que l'on souhaite incorporer dans la formulation.

22 - Procédé selon la revendication 21, caractérisé par le fait que l'on réalise la mise en contact de la résine à l'état visqueux et du radical stable ou des radicaux stables, et, le cas échéant, du ou des amorceurs de polymérisation radicalaire, et, le cas échéant, du ou des autres polymères, à une température de 100°C à 350°C.

23 - Procédé selon la revendication 22, caractérisé par le fait que l'on réalise la mise en contact de la résine

WO 00/63260 PCT/FR00/01026

5

10

15

20

37

à l'état visqueux et du radical stable ou des radicaux stables, et, le cas échéant, du ou des amorceurs de polymérisation radicalaire, et, le cas échéant, du ou des autres polymères, à une température de 160°C à 250°C.

- 24 Procédé selon l'une des revendications 21 à 23, caractérisé par le fait que l'on réalise la mise en contact de la résine à l'état visqueux et du radical stable ou des radicaux stables, et, le cas échéant, du ou des amorceurs de polymérisation radicalaire, et, le cas échéant, du ou des autres polymères, pendant une durée de 10 secondes à 5 heures.
- 25 Procédé selon la revendication 24, caractérisé par le fait que l'on réalise la mise en contact de la résine à l'état visqueux et du radical stable ou des radicaux stables, et, le cas échéant, du ou des amorceurs de polymérisation radicalaire, et, le cas échéant, du ou des autres polymères, pendant une durée de 10 secondes à 1 heure, en particulier de 15 secondes à 1 minute.
- 26 Procédé selon l'une des revendications 21 à 25, caractérisé par le fait que l'on introduit le ou les radicaux libres stables et, le cas échéant, le ou les amorceurs, en solution dans un solvant.
- 27 Procédé selon la revendication 26, caractérisé par le fait que l'on utilise le trichlorobenzène comme solvant.
- 28 Procédé selon la revendication 27, caractérisé par le fait que l'on introduit la solution du ou des radicaux stables et, le cas échéant, du ou des amorceurs, à un débit d'injection de 0,01-5% en poids du débit total.
- 29 Procédé selon l'une des revendications 1 à 20, 30 caractérisé par le fait que l'on introduit le ou les radicaux stables et, le cas échéant, le ou les amorceurs de polymérisation, dans la résine de départ placée en milieu solvant, à une température de 80°C à 350°C.
- 30 Procédé selon la revendication 29, caractérisé par le fait que le solvant est choisi parmi les hydrocarbures aliphatiques, cycloaliphatiques et aromatiques, le cas échéant halogénés (chlorés).

WO 00/63260 PCT/FR00/01026

- 31 Procédé selon l'une des revendications 1 à 30, caractérisé par le fait qu'un amorceur est présent pour une température inférieure à 200°C.
- 32 Procédé selon l'une des revendications 1 à 30, 5 caractérisé par le fait qu'il n'y a pas d'amorceur pour une température se situant au-dessus de 200°C.

inte ional Application No PCT/FR 00/01026

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C08F8/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $\ensuremath{\text{IPC}}\xspace 7 \ensuremath{\text{C08F}}\xspace$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

PAJ, WPI Data, EPO-Internal

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	FR 2 132 780 A (ESSO RESEARCH AND ENGINEERING COMPANY) 24 November 1972 (1972-11-24) page 1, line 19 -page 2, line 8 page 2, line 27 -page 3, line 19 page 12, line 26 -page 13, line 24 page 14, line 18 -page 15, line 32; claims 1-18	1-32
Y	EP 0 632 062 A (PCD-POLYMERE GMBH) 4 January 1995 (1995-01-04) page 2, line 45 - line 58; claims 1-8	1–32
Y	EP 0 837 080 A (ELF ATOCHEM S.A.) 22 April 1998 (1998-04-22) page 5, line 9 -page 6, line 5; claims 1-11/	1-32

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
22 August 2000	30/08/2000
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijawijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Permentier, W

Inte ional Application No PCT/FR 00/01026

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	WO 97 49737 A (CIBA SPECIALTY CHEMICALS HOLDING INC.) 31 December 1997 (1997-12-31) the whole document	1-32
A	EP 0 264 156 A (KAYAKU NOURY CORPORATION) 20 April 1988 (1988-04-20) page 3, line 47 - line 55 page 4, line 10 - line 25; claims 1-7	1
A	EP 0 853 090 A (WITCO CORPORATION) 15 July 1998 (1998-07-15) claims 1-11	1
A	DE 16 94 563 A (LENTIA GMBH CHEM. UND PHARM. ERZEUGNISSE) 5 November 1970 (1970-11-05) claims 1-7	1
Α	WO 85 01508 A (G. SCOTT) 11 April 1985 (1985-04-11) claims 1-14 	1
		*

information on patent family members

Inte 'onal Application No
PCT/FR 00/01026

Patent documentited in search rep		Publication date		atent family nember(s)	Publication date
FR 2132780	Α	24-11-1972	CA	993592 A	20-07-1976
	••		CA	1020319 A	08-11-1977
			CA	1023111 A	27-12-1977
			DE	2216718 A	19-10-1972
			GB	1393692 A	14-05-1975
			ĞB	1393693 A	14-05-1975
			ĞB	1393691 A	14-05-1975
			GB	1393694 A	14-05-1975
			IT	953632 B	10-08-1973
			ĴP	55022488 B	17-06-1980
			JP	1245148 C	25-12-1984
			JP	52024290 A	23-02-1977
			JP	55041605 B	25-10-1980
					17-02-1977
			JP	52021042 A	
			JP	59002298 B	18-01-1984
			JP	1021042 C	25-11-1980
			JP	54148095 A	19-11-1979
			JP	55008525 B	04-03-1980
			NL	7204685 A	11-10-1972
			US	3862265 A	21-01-1975
EP 632062	Α	04-01-1995	AT	403581 B	25-03-1998
			AT	109993 A	15-08-1997
			AT	159034 T	15-10-1997
			CN	1107480 A	30-08-1995
			CZ	9401377 A	15-03-199
			DE	59404251 D	13-11-1997
			ES	2110143 T	01-02-1998
			FI	942653 A	08-12-1994
			НŪ	69321 A,B	28-09-199
			JP	7138315 A	30-05-199
			NO	942087 A	08-12-1994
			RU	2141487 C	20-11-1999
			SK	65594 A	07-12-199
			US	5705568 A	06-01-1998
EP 837080	A	22-04-1998	FR	2754535 A	 17-04-1998
E1 03/000	^	LL UT 1330	CA	2216987 A	16-04-199
			CN	1182096 A	20-05-199
			JP	10130308 A	19-05-1998
				5945492 A	31-08-1999
			US 	3943492 A 	31-00-199
WO 9749737	Α	31-12-1997	CA	2258305 A	31-12-1997
			EP	0909280 A	21-04-199
EP 264156	Α	20-04-1988	JP	1827932 C	28-02-199
			JP	63101438 A	06-05-198
			AT	60609 T	15-02-199
			DE	3767825 D	07-03-199
			FI	874567 A	18-04-198
•			NO	874317 A	18-04-198
			ÜS	4900781 A	13-02-199
EP 853090	Α	15-07-1998	JP	10231321 A	02-09-199
DE 1694563	Α	05-11-1970	NONE		

information on patent family members

Into Yonel Application No PCT/FR 00/01026

WO 8501508 A DE 3485690 A 04-06-1992 EP 0189407 A 06-08-1986 GB 2147300 A 09-05-1985 JP 61500123 T 23-01-1986 US 4672088 A 09-06-1987	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
	WO 8501508 A		EP 0189407 A GB 2147300 A JP 61500123 T	06-08-1986 09-05-1985 23-01-1986

de Internationale No PCT/FR 00/01026

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 COSF8/50

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 C08F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) PAJ, WPI Data, EPO-Internal

Catégorie °	Identification des documents cités, avec, le cas échéant, l'Indication des passages pertinents	no. des revendications visées
Υ	FR 2 132 780 A (ESSO RESEARCH AND ENGINEERING COMPANY) 24 novembre 1972 (1972-11-24) page 1, ligne 19 -page 2, ligne 8 page 2, ligne 27 -page 3, ligne 19 page 12, ligne 26 -page 13, ligne 24 page 14, ligne 18 -page 15, ligne 32; revendications 1-18	1-32
Y	EP 0 632 062 A (PCD-POLYMERE GMBH) 4 janvier 1995 (1995-01-04) page 2, ligne 45 - ligne 58; revendications 1-8	1-32
Υ	EP 0 837 080 A (ELF ATOCHEM S.A.) 22 avril 1998 (1998-04-22) page 5, ligne 9 -page 6, ligne 5; revendications 1-11	1-32

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de tamilles de prevets sont indiques en annexe
	T° document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la
"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent	technique pertinent, male cité pour comprendre le principe ou la théorie constituant la base de l'invention
"E" document antérieur, mais publié à la date de dépôt international ou après cette date	X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité
"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)	inventive par rapport au document considéré isolément " document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive
"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens	lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente
P document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	pour une personne du métier &" document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
22 août 2000	30/08/2000
Nom et adresse postale de l'administration chargée de la recherche internationale	Fonctionnaire autorisé
Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Permentier, W

Der te internationale No PCT/FR 00/01026

	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'Indicationdes passages pertinents	no. des revendications visées
Catégorie °	identification des documents cites, avec, le cas echears, i indication des passages per difents	no. cos revendications viscos
Y	WO 97 49737 A (CIBA SPECIALTY CHEMICALS HOLDING INC.) 31 décembre 1997 (1997-12-31) le document en entier	1-32
A	EP 0 264 156 A (KAYAKU NOURY CORPORATION) 20 avril 1988 (1988-04-20) page 3, ligne 47 - ligne 55 page 4, ligne 10 - ligne 25; revendications 1-7	1
A	EP 0 853 090 A (WITCO CORPORATION) 15 juillet 1998 (1998-07-15) revendications 1-11	1
A	DE 16 94 563 A (LENTIA GMBH CHEM. UND PHARM. ERZEUGNISSE) 5 novembre 1970 (1970-11-05) revendications 1-7	1
Α	WO 85 01508 A (G. SCOTT) 11 avril 1985 (1985-04-11) revendications 1-14	1
	-	

Renseignements relatifs aux membres de familles de brevets

De de internationale No PCT/FR 00/01026

Document brevet cite rapport de recherci		Date de publication		mbre(s) de la lle de brevet(s)	Date de publication
FR 2132780	A	24-11-1972	CA	993592 A	20-07-1976
I K ZIJZ/UU	• •	-:/-	CA	1020319 A	08-11-1977
			CA	1023111 A	27-12-1977
			DE	2216718 A	19-10-1972
			GB	1393692 A	14-05-1975
			GB	1393693 A	14-05-1975
				1393691 A	14-05-1975
			GB		14-05-1975
			GB	1393694 A	
			IT	953632 B	10-08-1973
			JP	55022488 B	17-06-1980
			JP	1245148 C	25-12-1984
			JP	52024290 A	23-02-1977
			JP	55041605 B	25-10-1980
			JP	52021042 A	17-02-1977
			JP	59002298 B	18-01-1984
			JP	1021042 C	25-11-1980
			JP	54148095 A	19-11-1979
			JP	55008525 B	04-03-1980
			NL	7204685 A	11-10-1972
			US	3862265 A	21-01-1975
EP 632062	A	04-01-1995	AT	403581 B	25-03-1998
			AT	109993 A	15-08-1997
			AT	159034 T	15-10-1997
			CN	1107480 A	30-08-1995
			CZ	9401377 A	15-03-1995
			DĒ	59404251 D	13-11-1997
			ES	2110143 T	01-02-1998
			FÏ	942653 A	08-12-1994
			ΗÛ	69321 A,B	28-09-1995
			JP	7138315 A	30-05-1995
			NO	942087 A	08-12-1994
			RU	2141487 C	20-11-1999
			SK	65594 A	07-12-1994
			US	5705568 A	06-01-1998
EP 837080	A	22-04-1998	 FR	2754535 A	 17-04-1998
L: 03/000	• •		CA	2216987 A	16-04-1998
			CN	1182096 A	20-05-1998
			JP	10130308 A	19-05-1998
			US	5945492 A	31-08-1999
WO 9749737	Α	31-12-1997	CA	2258305 A	31-12-1997
WU 3/43/3/	М	31 1L 1331	EP	0909280 A	21-04-1999
EP 264156	Α	20-04-1988	JP	1827932 C	28-02-1994
			JP	63101438 A	06-05-1988
			ΑT	60609 T	15-02-1991
			DE	3767825 D	07-03-1991
			FI	874567 A	18-04-1988
			NO	874317 A	18-04-1988
			ÜS	4900781 A	13-02-1990
EP 853090	Α	15-07-1998	JP	10231321 A	02-09-1998
DE 1694563	Α	05-11-1970	AUCI	JN	

Der le internationale No PCT/FR 00/01026

Renseignements relatifs aux memb	ores de familles de brevet	PCT/FR 00/01026		00/01026
Document brevet cité au rapport de recherche	Date de publication	Membre(s famille de b) de la revet(s)	Date de publication
WO 8501508 A		EP 018 GB 214 JP 615	85690 A 89407 A 47300 A 00123 T 72088 A	04-06-1992 06-08-1986 09-05-1985 23-01-1986 09-06-1987