CONSERVATION HAMILTONIAN RTS-RK

ASSYR ABDULLE* AND GIACOMO GAREGNANI†

1. Mean Hamiltonian. Consider the Hamiltonian $E: \mathbb{R}^d \to \mathbb{R}$ and the ODE

(1)
$$y' = J^{-1}\nabla Q(y), \quad y(0) = y_0.$$

Applying a symplectic Runge Kutta method identified by its numerical flow Ψ , we have that the modified equation is still Hamiltonian and there exist functions E_i , j = 2, ..., such that

(2)
$$\tilde{Q}(y) = Q(y) + hQ_2(y) + h^2Q_3(y) + \dots,$$

where h is the time step. The series in (2) does not converge, hence we consider the truncation after N terms

(3)
$$\tilde{Q}(y) = Q(y) + hQ_2(y) + \dots + h^{N-1}Q_N(y).$$

Moreover, if q is the order of convergence for Ψ , we have that $E_i \equiv 0$ for $i = 2, \ldots, q$, hence

(4)
$$\tilde{Q}(y) = Q(y) + h^q Q_{q+1}(y) + \dots + h^{N-1} Q_N(y).$$

Let us assume that E is analytic in a neighbourhood of y_0 and denoting $f = J^{-1}\nabla E$ that there exist positive constants R and M such that $||f(y)|| \leq M$ for all $y \in B_{2R}(y_0) \subset \mathbb{R}^d$. Let us moreover introduce the constants μ and κ given by

(5)
$$\mu = \sum_{i=1}^{s} |b_i|, \quad \kappa = \max_{i=1,\dots,s} \sum_{j=1}^{s} |a_{ij}|,$$

where $\{b_i\}_{i=1}^s$ and $\{a_{ij}\}_{i,j=1}^s$ are the coefficients of the Runge-Kutta method. Finally, let us introduce the constant $\eta = \max\{\kappa, \mu/(2\log 2 - 1)\}$. Denoting by $\tilde{\varphi}_{N,t}(y)$ the flow of the equation corresponding to \tilde{E} , we have that the local error satisfies [1, Theorem IX.7.6]

(6)
$$\|\Psi_h(y_0) - \tilde{\varphi}_{N,h}(y_0)\| \le h\gamma M e^{-I_0/h},$$

for all $h \le I_0/4$, where $I_0 = R/(eM\eta)$ and $\gamma = e(2 + 1.65\eta + \mu)$. [...]

LEMMA 1.1. Assume there exists a function $g: \mathbb{R}_+ \to (1, +\infty)$ such that $H_i \leq g(h)h$ almost surely. Then under the assumption ...,

(7)
$$\mathbb{E}\,\tilde{Q}(Y_n) - \tilde{Q}(y_0) = \mathcal{O}(e^{-I_0/(2g(h)h)}),$$

(8)
$$\mathbb{E} Q(Y_n) - Q(y_0) = \mathcal{O}(h^q),$$

over exponentially long time intervals $nh \leq e^{I_0/(2g(h)h)}$.

Proof. We exploit the conservation of \tilde{E} along the trajectories of its corresponding dynamical system, i.e., $\tilde{E}(\tilde{\varphi}_{N,z}(y)) = \tilde{Q}(y)$ for $y \in \mathbb{R}^d$ and z > 0 and employ a telescopic sum to obtain

(9)
$$\mathbb{E}\,\tilde{Q}(Y_{n}) - \tilde{Q}(y_{0}) = \sum_{j=1}^{n} \mathbb{E}\left(\tilde{Q}(Y_{j-1}) - \tilde{Q}(Y_{j-1})\right)$$
$$= \sum_{j=1}^{n} \mathbb{E}\left(\tilde{Q}(Y_{j-1}) - \tilde{Q}(\tilde{\varphi}_{N,H_{j-1}}(Y_{j-1}))\right)$$
$$= \sum_{j=1}^{n} \mathbb{E}\,\mathbb{E}\left(\tilde{Q}(Y_{j-1}) - \tilde{Q}\tilde{\varphi}_{N,H_{j-1}}(Y_{j-1})\right) \mid H_{j-1}\right),$$

^{*}Institute of Mathematics, École Polytechnique Fédérale de Lausanne (assyr.abdulle@epfl.ch)

[†]Institute of Mathematics, École Polytechnique Fédérale de Lausanne (giacomo.garegnani@epfl.ch)

Fig. 1: Convergence of the standard deviation, $h = \{0.2, 0.1, 0.05, 0.025, 0.0125\}$. Reference slopes correspond to $n^{1/2}h^{q+p}$.

where we applied the total expectation with respect to H_{j-1} for the last equality. Then, as E is Lipschitz with constant independent of h and under the assumptions on $\{H_i\}_{i\geq 0}$ and (6) we have

(10)
$$\mathbb{E}\,\tilde{Q}(Y_n) - \tilde{Q}(y_0) \le C \sum_{j=0}^{n-1} \mathbb{E}\left(H_j e^{-I_0/H_j}\right)$$
$$= Cn \,\mathbb{E}\left(H_0 e^{-I_0/H_0}\right),$$

where the equality is given by the assumption of the random time steps being i.i.d. Thanks to the assumption $H_0 \leq g(h)h$ a.s., we have

(11)
$$\mathbb{E}\,\tilde{Q}(Y_n) - \tilde{Q}(y_0) \le nhe^{-I_0/(g(h)h)},$$

which implies the first result. The second result derives then immediately as $Q_{q+1} + hQ_{q+2} + \ldots + h^{N-q-1}Q_N$ is uniformly bounded independently of h.

2. Distribution. Guess by numerics, Figure 1, Kepler system, two-stage Gauss (q = 4). Over exponentially long times

(12)
$$\sigma_n = \text{Var}(Q(Y_n))^{1/2} = \mathcal{O}(n^{1/2}h^{q+p}),$$

REFERENCES

[1] E. HAIRER, C. LUBICH, AND G. WANNER, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31, Springer-Verlag, Berlin, second ed., 2006.