●例題

一單擺的擺長L=2 m,擺錘質量m=2 kg。當擺繩與鉛垂線的夾角為 35° 時,其速率為 v=1.2m/s。當單擺擺到 (a) 最低點; (b) 最高點時,求擺繩的張力。

解

程式為

本題需應用動力學及機械能守恆。作用於擺錘的力如圖 8.11 所示。牛頓第二定律的向量形式為

T + mg = ma

其中a具有徑向及切線分量。切線分量的方程式, $\Sigma F_x =$

 $mg \sin \theta = ma$, 與本題無關。 由於擺錘沿半徑為L的圓形路徑運動,因此徑向分量的方

 $\sum F_y = T - mg \cos \theta = \frac{mv^2}{I}$

$$\Sigma F_{y} = T - mg \cos \theta = \frac{mv^{2}}{L}$$
 (i)

擺錘的位能由垂直位置 $L-L\cos\theta$ 決定。

要求張力,須知速率,這可用守恆律求得。

 $E = \frac{1}{2}mv^2 + mgL(1 - \cos\theta)$ (ii)

令最低點的 $U_{o}=0$, 並注意高度為 $y=L-L\cos\theta$ 。機械能為

=
$$\frac{1}{2}$$
(2 kg)(1.2 m/s)² + (2 kg)(9.8 N/kg)(2 m)(1 - 0.82) = 8.5 J

(a) 在最低點時
$$\theta$$
 = 0 ,因此,(ii) 式成為

$$E = \frac{1}{2}mv_{\text{max}}^2 + 0$$

因 E=8.5 J,故得 $v_{\text{max}}=\pm 2.9$ m/s。有了速率,就可求出在 $\theta=0$ 處的張力。 依據 (i) 式, $T-mg=mv_{\text{max}}^2$ /L,由此求得 T=19.6+8.5=28.1 N。

依據 (1) 式,
$$I - mg = mv_{\text{max}}/L$$
,
(b) 在最高點 $v = 0$;故 (ii) 式成為

 $E = 0 + mgL(1 - \cos\theta_{\text{max}})$ $E = 0 + mgL(1 - \cos\theta_{\text{max}})$

代入
$$E=8.5~\mathrm{J}$$
 即得 $\cos\theta_{\mathrm{max}}=0.783$ 。因 $v=0$,故 $T=mg$ $\cos\theta_{\mathrm{max}}=15.3~\mathrm{N}$ 。