#### General

The S-100 CO<sub>2</sub> module is the world smallest sensor and can be integrated into wide range of application product from small wall-pads to building ventilation controller. Its main application area is Indoor Air Quality, HVAC, Stove, Airconditioner, Vehicle drowsiness, Gas equipment.

# Carbon Dioxide (CO2) Module

Model: S-100



#### **Features**

- Pre-calibrated
- Flexible 4 pin (power), 10 pin (I/O) connection
- The world smallest size
- Two available outputs: TTL UART, I2C
- Non-Dispersive Infrared (NDIR) technology used to measure CO<sub>2</sub> levels.
- Provides output signal proportional to CO<sub>2</sub>
- Model available to interact with other devices.
- Gold-plated sensor provides long-term calibration stability.

# S-100 Specifications

#### **General Performance**

**Operating Temperature** 

0 ~ 50°C

**Operating Humidity** 

0 ~ 95% RH (Non-condensing)

**Operating Environment** 

Residential, Commercial spaces

**Storage Temperature** 

-30°C ~70°C

#### CO<sub>2</sub> Measurement

## **Sensing Method**

NDIR (Non-dispersive Infrared)

Measurement Range

0 to 5,000 ppm

**Accuracy** 

±30ppm ±5% of measured value

Step Response Time (90%)

30 sec

**Sampling Interval** 

3 seconds

#### **Electrical Data**

**Power Input** 

 $5.0 \sim 5.5 \text{VDC}$ Ripple  $\pm 0.5 \text{mV}$ 

Current consumption

Normal : 25mA/h

Peak: 350mA(10 ms) - 3sec period

# **Output Signal**

#### **UART**

38400bps, 8bit, No parity, No stop bit TTL Level Voltage 3.0~4.5V

#### **I2C Slave**

Under 400Khz Clock TTL Level Voltage 3.0~4.5V Need to Pull up resister SDA, SCL pin

# **Pin Descriptions**



#### **UART Protocol**

| Pin No. | Description<br>+5V VCC   |  |  |  |  |
|---------|--------------------------|--|--|--|--|
| 1/2     |                          |  |  |  |  |
| 2/4     | GND                      |  |  |  |  |
| 5       | TTL RXD (MCU → S-100)    |  |  |  |  |
| 6       | TTL TXD (MCU ← S-100)    |  |  |  |  |
| 7       | I2C SCL                  |  |  |  |  |
| 8       | I2C SDA                  |  |  |  |  |
| 9       | GND                      |  |  |  |  |
| 10/11   | Deserved                 |  |  |  |  |
| 12/13   | Reserved                 |  |  |  |  |
| 14      | S-100 Reset (Low Active) |  |  |  |  |
| NOTE    | All Pin Voltage < 4.5V   |  |  |  |  |

# **Dimensions (unit:mm)**

## **Top View**



#### **Bottom View**



#### Side View



# **Pin Connections**

#### 4 Pin



## 10 Pin



#### **Recommended Contact Pin**



# **Output Description**

#### 1. UART Protocol

# ■ Setup

| Item           | Description |  |  |  |  |  |
|----------------|-------------|--|--|--|--|--|
| Baud rate      | 38,400 BPS  |  |  |  |  |  |
| Parity         | No Parity   |  |  |  |  |  |
| Number of Bits | 8 Bits      |  |  |  |  |  |
| Stop Bit       | 1 Bit       |  |  |  |  |  |

#### ■ Data Transmit

Interval: 3 second

Handshake protocol: None (Data is transmitted to outer device periodically)

## ■ Data Format

| B1 ~ B4        | 4 byte CO2 density string |  |  |
|----------------|---------------------------|--|--|
| BL Blank: 0x20 |                           |  |  |
| 'ppm'          | 'ppm' string              |  |  |
| CR             | Carriage return : 0x0D    |  |  |
| LF             | Line feed : 0x0A          |  |  |

EX) In case 1,255 ppm,

0x31 0x32 0x35 0x35 0x20 0x70 0x70 0x6D 0x0D 0x0A

# 2. I2C Communication (Only Slave Mode Operation)

Slave Address: 0x31

Slave Address Byte: Slave Address(0x31) 7 Bit + R/W 1 Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

<sup>&#</sup>x27;1255 ppm<CR><LF>'

| 0 | 1 | 1 | 0 | 0 | 0 | 1 | R/W Bit |
|---|---|---|---|---|---|---|---------|

R/W Bit : Read = 1/Write = 0

When reading the data, Slave Address Byte is 0x63 When writing the data, Slave Address Byte is: 0x62

# ■ Transmission Sequence in Master

- 1) I2C Start Condition
- 2) Write Command(Slave Address + R/W Bit(0) = 0x62) Transmission and Check Acknowledge
- 3) Write Command(ASCII 'R': 0x52) Transmission and Check Acknowledge
- 4) I2C Stop Command
- 5) I2C Start Command
- 6) Read Command(Slave Address + R/W Bit(1) = 0x63) Transmission and Check Acknowledge
- 7) Read 7 Byte Receiving Data from Module and Send Acknowledge (Delay at least 1ms for reading each byte)

| Confi         | iguratio | n | CO2  |   |      | reserved reserved |      | eserved | reserved | d reserved |
|---------------|----------|---|------|---|------|-------------------|------|---------|----------|------------|
| 1 Byte 2 Byte |          |   | 0x00 |   | 0x00 | 0x00              | 0x00 |         |          |            |
|               |          |   |      |   |      |                   |      |         |          |            |
| 0             | 0        | 0 | 0    | 1 | 0    | 0.                | 0    | Ţ       |          |            |