TD 18 : Énergie échangée par un système au cours d'une transformation

1 Recherche d'un état final

Une enceinte indéformable aux parois calorifugées est séparée en deux compartiments par une cloison étanche de surface S, mobile, diathermane et reliée à un ressort de constante de raideur k. Les deux compartiments contiennent chacun un gaz parfait. Dans l'état initial, le gaz du compartiment 1 est dans l'état (T_0, P_0, V_0, n) , le gaz du compartiment 2 dans l'état $(T_0, 2P_0, V_0, 2n)$, une cale bloque la cloison mobile et le ressort est au repos. On enlève la cale et on laisse le système atteindre un état d'équilibre.

- 1. Décrire l'évolution du système.
- 2. Écrire cinq relations faisant intervenir certaines des six variables d'état : V_1 , V_2 (volumes finaux des deux compartiments), P_1 , P_2 (pressions finales dans les deux compartiments), T_1 , T_2 (températures finales dans les deux compartiments).

2 Étude d'un compresseur

Le problème étudie le compresseur d'un moteur à air comprimé (celui d'un marteau-piqueur, par exemple). L'air est assimilé à un gaz parfait de masse molaire $M=29\,\mathrm{g\cdot mol^{-1}}$, de capacité thermique massique à pression constante $c_p=1,00\,\mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ et de rapport des capacités thermiques à pression et à volume constants $\gamma=1,4$. La constante des gaz parfaits est $R=8,314\,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$.

L'air est aspiré dans les conditions atmosphériques, sous la pression $P_0 = 1$ bar et à la température $T_0 = 290$ K, jusqu'au volume V_m , puis comprimé jusqu'à la pression P_1 , où il occupe le volume V_1 , et refoulé à la température T_1 dans un milieu où la pression est $P_1 = 6$ bar. Bien que le mécanisme réel d'un compresseur soit différent, on suppose que celui-ci fonctionne comme une pompe à piston, qui se compose d'un cylindre, d'un piston coulissant entraîné par un moteur et de deux soupapes.

— La soupape d'entrée Σ_1 est ouverte si la pression P dans le corps de pompe est inférieure ou égale à la pression atmosphérique P_0 .

- La soupape de sortie Σ_2 est ouverte si P est supérieure à P_1 .
- Le volume V du corps de pompe est compris entre 0 et V_m .
- À chaque cycle (chaque aller et retour du piston), la pompe aspire et refoule une mole d'air.
- 1.a. Tracer sur un diagramme de Watt (P en ordonnée, V en abscisse) l'allure de la courbe représentant un aller et un retour du piston. Indiquer le sens de parcours par une flèche.
- 1.b. Montrer que le travail de l'air situé à droite du piston est nul sur un aller-retour.
- 1.c. Montrer que le travail fourni par le moteur qui actionne le piston est égal à l'aire d'une surface sur le diagramme. On supposera que le mouvement est assez lent pour que l'évolution soit mécaniquement réversible.
- 2. Pendant la phase de compression, l'air suit une loi polytropique $PV^k = cste$; il sort du compresseur à la température $T_1 = 391\,\mathrm{K}$. Trouver la valeur de k.
- **3.** Exprimer le travail mécanique W_{moteur} fourni par le moteur pendant un aller-retour en fonction de R, n, k, T_1 et T_0 .
- 4. Le débit massique de l'air dans le compresseur est $D_m=0.013\,\mathrm{kg\cdot s^{-1}}$. Calculer la puissance P_{moteur} fournie par le moteur.

3 Quelques questions de cours

- 1. Définir un système thermodynamique, et en particulier la notion de surface de contrôle.
- 2. Donner la différence entre une transformation finie et une transformation infinitésimale.
- 3. Donner la différence entre une transformation isotherme et une transformation monotherme.
- 4. Donner la différence entre une transformation isobare et une transformation monobare.
- 5. Donner quelques sources d'irréversibilité.
- **6.** Donner la différence entre une transformation quasi-statique, quasi-statique mécaniquement réversible et réversible.
- 7. Donner les caractéristiques des différentes parois qu'on trouve dans les exercices.
- 8. Indiquer le modèle à choisir du point de vue des transferts thermiques en fonction des caractéristiques des parois du système.