readme.md 11/18/2020

Instruções 👄

Para rodar este trabalho será preciso executar o arquivo runme.sh, então talvez seja necessário dar a ele permissões, para isso utilize o comando chmod +x runme.sh. Este script deve primeiro gerar todas as entradas ao rodar entradas.py, ao fim cada execução estará salva em formato csv.

Para rodar results_analytics.py primeiro utilize pip3 install pyfiglet, depois rode o script.

Ant System

Neste trabalho foi escolhido o Ant System para resolver o problema do caixeiro viajante, com os parâmetros alpha = 1 e beta = 5.

Cada entrada para este problema variou o número de iterações e a taxa de evaporação. As melhores FOs encontradas foram selecionadas e dispostas na tabela abaixo. Não houve como fazer uma comparação direta entre o desempenho do algoritmo e a solução ótima, pois nos arquivos de entrada não havia indicação da FO ótima e nem da solução.

Instância	Melhor FO Encontrada	Média	Desvio. P	Iterações	Taxa de Evaporação
lau15	291	291	0	*	*
wg22	781	792. 6	9.59	50	0.5
kn57	13150	13273.36	64.56	75	0.75
wg59	1029	1067.36	12.49	85	0.75
sgb128	21771	22429.88	315.83	75	0.95

Para a entrada lau15 todas as execuções encontraram a FO 291, que por acaso era o único arquivo que continha a solução ótima, a qual é exatamente 291.