

АНАЛИЗ ДАННЫХ В МЕДИЦИНСКИХ ЗАДАЧАХ

Выполнил: Гершов М.Д.

Руководитель: Кушнеров А.В.

ИИ в медицине Диагностика заболеваний Прецизионная медицина ■ Распознавание изображений - Открытие и разработка лекарств Другое

ВВЕДЕНИЕ В ПРОБЛЕМУ

Машинное обучение в медицинской сфере будет призвано решить сразу несколько основных проблем:

- Недостаток квалифицированного медицинского персонала
- Стоимость и доступность качественной диагностики
- Раннее выявление особо опасных заболеваний для повышения шансов на выздоровление

ЦЕЛЬ

Качественный **анализ** медицинских **данных** для **обучения моделей МО** и применение полученных результатов для прогнозирования наличия ССЗ.

ЗАДАЧИ

- Подбор, анализ и предварительная обработка данных для обучения модели.
- Изучение классических методов МО для решения задачи классификации.

- **3** Обучение нескольких видов моделей, оптимизация и оценка качества.
- **С**равнительный анализ обученных моделей.

НАБОР ДАННЫХ

	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thalch	exang	oldpeak	slope	ca	thal	num
0	63	Male	Cleveland	typical angina	145.0	233.0	1	lv hypertrophy	150.0	0.0	2.3	downsloping	0.0	fixed defect	0
1	67	Male	Cleveland	asymptomatic	160.0	286.0	0	lv hypertrophy	108.0	1.0	1.5	flat	3.0	normal	2
2	67	Male	Cleveland	asymptomatic	120.0	229.0	0	lv hypertrophy	129.0	1.0	2.6	flat	2.0	reversable defect	1
3	37	Male	Cleveland	non-anginal	130.0	250.0	0	normal	187.0	0.0	3.5	downsloping	0.0	normal	0
4	41	Female	Cleveland	atypical angina	130.0	204.0	0	lv hypertrophy	172.0	0.0	1.4	upsloping	0.0	normal	0

Краткое описание основных признаков:

- ср тип боли в груди
- trestbps кровяное давление в состоянии покоя в мм. рт. ст. при поступлении в больницу
- **fbs** уровень сахара в крови натощак > 120 мг/дл

- restecg результаты электрокардиографии в состоянии покоя
- **thalch** достигнутая максимальная частота сердечных сокращений
- slope наклон пикового сегмента ST
- **num** целевая переменная

ОБРАБОТКА И АНАЛИЗ ДАННЫХ

Основные этапы обработки данных:

- Приведение булевских значений к числовому типу
- Обработка выбросов
- Работа с пропущенными значениями
- Кодирование категориальных признаков
- Приведение целевой переменной к бинарному типу

После проведения обработки набора данных количество признаков сократилось до 12, а число записей – до 888.

МОДЕЛИ МО: РЕШАЮЩЕЕ ДЕРЕВО

Моделей классификатора Recall-точность дерева для 7 главных компонент

0,84 Площадь под *ROC-кривой* лучшей модели

МОДЕЛИ МО: СЛУЧАЙНЫЙ ЛЕС

Моделей классификатора

Площадь под *ROC-кривой* лучшей модели

Важные преимущества использования моделей, основанных на **бэггинге**:

- уменьшение дисперсии прогноза модели
- улучшение производительности и надёжности
- обработка сложных и нелинейных взаимосвязей в данных

МОДЕЛИ МО: ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

	precision	recall	f1-score	support
Здоровый	0.84	0.79	0.81	125
Больной	0.83	0.87	0.85	142
accuracy			0.83	267
macro avg	0.83	0.83	0.83	267
weighted avg	0.83	0.83	0.83	267

Моделей площадь под *ROC-кривой* классификатора лучшей модели

РЕЗУЛЬТАТЫ

Что было сделано?

- Полноценное погружение в область анализа данных и МО
- Изучение основных методов предварительной обработки данных
- Исследование базовых способов выявления взаимосвязей в данных
- Изучение нескольких техник кодирования, метода главных компонент
- Обучение наиболее популярных моделей МО: дерево решений, случайный лес, логистическая регрессия
- Поиск и подбор гиперпараметров
- Ознакомление с метриками оценки качества моделей

Что было получено в цифрах?

20 Обученных моделей

87%

Recall-точность лучшей модели

0,89

Площадь под *ROC-* кривой лучшей модели