Image Splicing Detection and Localisation using Digital Forensics

Under the guidance of Dr. Ruchira Naskar

Kunal Ojha 510817016 Anindya Kundu 510817020 Diksha 510817041 Rishabh Chandani 510817060

Overview

- Introduction
- Problem Statement
- Approach
- Implementation
- Experimental Results
- Conclusion
- References

Splicing

Authentic

Spliced

- Image Splicing
 - forgery technique digital image editing tools separate image sources
- Copy-Move
- Localisation

Need for Detecting Splicing and Localising Splices

- News Reports
- Photography Contest
- Key proof in academic papers
- Forensic Investigation
- Social-Media Tampering

Problem Statement

"Given a spliced image, localize the spliced region"

Approach

Superpixel Segmentation	Simple Linear Iterative Clustering (SLIC)
Noise Estimation (σ) of each Superpixel	Principal Component Analysis (PCA) Robust wavelet-based approach
Binary Clustering of Noise Estimates	k-means++ clustering
Splicing Localisation	Cluster superpixels using noise clusters

Superpixel Segmentation

parameter k — approximate number of superpixels

Superpixel Segmentation

Noise Estimation (σ)

 $\sigma = 0.6639337$

 $\sigma = 2.7077480$

 σ = 20.2096597

Noise Estimation (σ)

Noise Clusters

Live Demo

Results

	Actual Positive	Actual Negative
Predicted Positive	48047	11324
Predicted Negative	2731	553978

Precision	0.809267150629095
Recall	0.946216865571704
F ₁ -score	0.872400112574785

	Actual Positive	Actual Negative
Predicted Positive	13532	32449
Predicted Negative	2406	213757

Precision	0.294295469867989
Recall	0.849040030116702
F ₁ -score	0.437087162260372

	Actual Positive	Actual Negative
Predicted Positive	80170	0
Predicted Negative	4135	151362

Precision	1.0
Recall	0.950951900836249
F ₁ -score	0.974859401124791

	Actual Positive	Actual Negative
Predicted Positive	26008	63609
Predicted Negative	2102	170425

Precision	0.290212794447482
Recall	0.925222340803984
F ₁ -score	0.441835772592523

	Actual Positive	Actual Negative
Predicted Positive	52434	675
Predicted Negative	7592	405731

Precision	0.987290289781393
Recall	0.873521474027921
F ₁ -score	0.926928006364078

	Actual Positive	Actual Negative
Predicted Positive	4939	3134
Predicted Negative	4727	236800

Precision	0.611792394401090
Recall	0.510966273536106
F ₁ -score	0.556852133716669

Conclusion

Sources	Two or more photographic sources Copy-move not handled
Noise quality	Small σ in each cluster Distinguishably different σ between clusters
k value	Superpixel sizes — good approximation of artifacts
Precision	Smaller superpixel sizes
Localisation	Regions are clustered based on noise Marking cluster as spliced region is heuristical

References

- 1) Siqian Li, Weimin Wei, Xiuru Hua, Xueling Chu. "Image Splicing Localization Using Superpixel Segmentation and Noise Level Estimation." In 2019 12th International Congress on Image and Signal Processing,
- 2) R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk. "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods." In IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov 2012.
- 3) D. F. Donoho, I. M. Johnstone. "Ideal spatial adaptation by wavelet shrinkage." In Biometrika, Volume 81, Issue 3, September 1994.