Modal Propositional Logic Metatheory Rough Notes v1

Propositional Logic

Proof of Soundness

- Lemma (PL-Validity of PL-Axioms)
 - Proof ($\models_{PL} PL1$)
 - Consider some arbitrary PL-interpretation \mathcal{I} and some arbitrary PL-wffs ϕ, ψ .
 - Suppose for reductio that

• (1)
$$V_{\mathcal{I}}(\phi \rightarrow (\psi \rightarrow \phi)) = 0$$
.

- From (1), by definition of PL-valuation, → clause (by →),
 - (2) $V_{\mathcal{I}}(\phi) = 1$,
 - (3) $V_{\mathcal{I}}(\psi \to \phi) = 0$.
- From (3), by \rightarrow ,
 - (4) $V_{\mathcal{I}}(\phi) = 0$.
- From (2), (4), by reductio,

• (5)
$$V_{\mathcal{I}}(\phi \to (\psi \to \phi)) = 1$$
.

- From (5), by generalisation,
 - (6) for all PL-interpretations \mathcal{I} , PL-wffs $\phi, \psi, V_{\mathcal{I}}(\phi \to (\psi \to \phi)) = 1$.
- From (6), by definition of PL-validity,
 - (7) for all PL-wffs $\phi, \psi, \vDash_{PL} \phi \rightarrow (\psi \rightarrow \phi)$.
- From (7), by definition of a PL-instance of PL1,
 - (8) every PL-instance of PL1 is PL-valid.
- Proof ($\models_{PL} PL2$)
 - Consider some arbitrary PL-interpretation ${\mathcal I}$ and some arbitrary PL-wffs $\phi, \psi, \chi.$
 - Suppose for reductio that

• (1)
$$V_{\mathcal{I}}((\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))) = 0.$$

- From (1), by \rightarrow ,
 - (2) $V_{\mathcal{I}}(\phi \rightarrow (\psi \rightarrow \chi)) = 1$,
 - (3) $V_{\mathcal{I}}((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) = 0.$
- From (3), by \rightarrow ,
 - (4) $V_{\mathcal{I}}(\phi \to \psi) = 1$,
 - (5) $V_{\mathcal{I}}(\phi \to \chi) = 0$.
- From (5), by →,
 - (6) $V_{\mathcal{I}}(\phi) = 1$,
 - (7) $V_{\mathcal{I}}(\chi) = 0$.
- From (4), (6), by →,
 - (8) $V_{\mathcal{I}}(\psi) = 1$.
- From (7), (8), by →,
 - (9) $V_{\mathcal{I}}(\psi \to \chi) = 0$.
- From (6), (9), by \rightarrow ,
 - (10) $V_{\mathcal{I}}(\phi \to (\psi \to \chi)) = 0.$
- From (2), (10), by reductio,

• (11)
$$V_{\mathcal{I}}((\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))) = 1.$$

- From (11), by generalisation,
 - (12) for all PL-interpretations \mathcal{I} , PL-wffs $\phi, \psi, \chi, V_{\mathcal{I}}((\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))) = 1$.
- From (12), by definition of PL-validity,
 - (13) for all PL-wffs $\phi, \psi, \chi, \vDash_{PL} (\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi)).$
- From (13), by definition of a PL-instance of PL2,
 - (14) every PL-instance of PL2 is PL-valid.

- Proof ($\models_{PL} PL3$)
 - Consider some arbitrary PL-interpretation $\mathcal I$ and some arbitrary PL-wffs ϕ,ψ .
 - Suppose for reductio that

• (1)
$$V_{\mathcal{I}}((\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)) = 0.$$

- From (1), by \rightarrow ,
 - (2) $V_{\mathcal{I}}(\neg \psi \to \neg \phi) = 1$,
 - (3) $V_{\mathcal{I}}((\neg \psi \rightarrow \phi) \rightarrow \psi) = 0$,
- From (3), by \rightarrow ,
 - (4) $V_{\mathcal{I}}(\neg\psi o\phi)=1$,
 - (5) $V_{\mathcal{I}}(\psi) = 0$.
- From (5), by ¬ clause,
 - (6) $V_{\mathcal{I}}(\neg \psi) = 1$.
- From (2), (6), by →,
 - (7) $V_{\mathcal{I}}(\neg \phi) = 1$.
- From (4), (6), by →,
 - (8) $V_{\mathcal{I}}(\phi) = 1$.
- From (7), by ¬ clause,
 - (9) $V_{\mathcal{I}}(\phi) = 0$.
- From (8), (9), by reductio,

• (10)
$$V_{\mathcal{I}}((\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)) = 1.$$

- From (10), by generalisation,
 - (11) for all PL-interpretations \mathcal{I} , PL-wffs $\phi, \psi, V_{\mathcal{I}}((\neg \psi \to \neg \phi) \to ((\neg \psi \to \phi) \to \psi)) = 1$.
- From (11), by definition of PL-validity,
 - (12) for all PL-wffs $\phi, \psi, \vDash_{PL} (\neg \psi \rightarrow \neg \phi) \rightarrow ((\neg \psi \rightarrow \phi) \rightarrow \psi)$.
- From (12), by definition of a PL-instance of PL3,
 - every PL-instance of PL3 is PL-valid.
- Lemma (PL-Rules Preserve PL-Validity)
 - Proof (MP Preserves PL-Validity)
 - Suppose that
 - (1) $\vDash_{PL} \phi$,
 - (2) $\vDash_{PL} \phi \rightarrow \psi$.
 - From (1), by definition of PL-validity,
 - (3) for all PL-interpretations \mathcal{I} , $V_{\mathcal{I}}(\phi) = 1$.
 - From (2), by definition of PL-validity,
 - (4) for all PL-interpretations \mathcal{I} , $V_{\mathcal{I}}(\phi \to \psi) = 1$.
 - Consider some arbitrary PL-interpretation *I*.
 - From (3),
 - (5) $V_{\mathcal{I}}(\phi) = 1$.
 - From (4),
 - (6) $V_{\mathcal{I}}(\phi \to \psi) = 1$
 - From (5), (6), by →,
 - (7) $V_{\mathcal{I}}(\psi) = 1$.
 - From (7), by generalisation,
 - (8) for all PL-interpretations \mathcal{I} , $V_{\mathcal{I}}(\psi) = 1$.
 - From (8), by definition of PL-validity,
 - (9) $\vDash_{PL} \psi$.
 - From the above, by conditional proof,
 - (10) if (1), (2), then (9), i.e. MP preserves PL-validity.
- Base Case
 - Suppose that there is an axiomatic proof (from \emptyset) in PL of arbitrary PL-wff ϕ which is a sequence of n=1 PL-wffs. Then, by definition of an axiomatic proof in PL, this proof is the sequence ϕ and ϕ is a PL-axiom. Then, by the PL-validity of PL-axioms, $\models_{PL} \phi$. From the above, by conditional proof, if there is an axiomatic proof in PL of arbitrary PL-wff ϕ which is a sequence of n=1 PL-wffs, then $\models_{PL} \phi$.

- · Induction Hypothesis
 - Given n, suppose that for all m < n, if there is an axiomatic proof in PL of arbitrary PL-wff ϕ which is a sequence of m PL-wffs, then $\vDash_{PL} \phi$.
- Induction Step
 - Suppose that there is an axiomatic proof in PL of arbitrary PL-wff ϕ which is a sequence of n PL-wffs. Then, by definition of an axiomatic proof in PL, either ϕ is a PL-axiom, or ϕ follows from earlier wffs ψ , χ by a PL-rule.
 - Suppose that ϕ is a PL-axiom, then by the PL-validity of PL-axioms, $\models_{PL} \phi$.
 - Suppose that ϕ follows from earlier wffs ψ, χ by a PL-rule, then by the lemma that PL-rules preserve PL-validity, if $\models_{PL} \psi$ and $\models_{PL} \chi$, then $\models_{PL} \phi$. By definition of an axiomatic proof in PL, there is an axiomatic proof in PL of ψ which is a sequence of m < n PL-wffs, namely the sequence obtained by eliminating all PL-wffs after ψ in the proof of ϕ . Then, by the Induction Hypothesis, $\models_{PL} \psi$. By an analogous argument, $\models_{PL} \chi$. Then $\models_{PL} \phi$.
 - By cases, if there is an axiomatic proof in PL of arbitrary PL-wff ϕ which is a sequence of n PL-wffs, $\vDash_{PL} \phi$.
 - By strong induction over the length of the axiomatic proof of ϕ , if there is an axiomatic proof of ϕ , then $\vDash_{PL} \phi$.

Proof of Cut

- [See Sider, 2010 Logic for Philosophy, pp. 73-74]
- The rough idea of the (informal) proof is that the required (axiomatic) proof can be constructed by concatenating the given (axiomatic) proofs.

Proof of Deduction Theorem

• (See Sider, 2010 - Logic for Philosophy, pp. 74-76.)

Modal Propositional Logic

Proof of Soundness

• The proof of soundness in MPL can be adapted from the proof of soundness in PL.

Mathematical Methods

- Method (Conditional Proof)
 - Suppose *A*. Then *B*. By conditional proof, if *A* then *B*.
- Method (Biconditional Proof)
 - Suppose A. Then B. Suppose B. Then A. By biconditional proof, A iff B.
- Method (Proof by Cases)
 - Suppose A. Then C. Suppose B. Then C. By cases, if A or B then C.
- Method (Proof by Reductio)
 - Suppose *A*. Then *B* and not *B*. By reductio, not *A*.
- · Method (Proof by Generalisation)
 - Consider arbitrary X, x. x has P. By generalisation, all X have P.