Assignment 9

15-04-2019

- (1) Given $a, b \in \mathbb{Z}, a \neq 0$, consider the set $R = \{c \in \mathbb{Z} | \exists q \in \mathbb{Z} (c = b aq) \}$. Show that $R \cap \mathbb{N} \neq \emptyset$. What can you say about the least element of $R \cap \mathbb{N}$?
- (2) Given $a, b \in \mathbb{Z} \setminus \{0\}$, find (a) gcd(a, 0) (b) gcd(a, 1) (c) gcd(a, a). If a|b, what is gcd(a, b)? Show that gcd(a, b - a) = gcd(a, b), gcd(a, a + b) = gcd(a, b), and gcd(|a|, |b|) = gcd(a, b).
- (3) Show that the set of primes in \mathbb{N} is not finite.
- (4) Consider the following relations on \mathcal{A} , identify whether it is reflexive, symmetric, transitive, or anti-symmetric.
 - (a) $\mathcal{A} = \mathbb{R}$, and for $a, b \in \mathcal{A}$, a is related to b if $a \leq b$.
 - (b) $\mathcal{A} = \mathbb{R}^2$, and for $a = (a_1, a_2), b = (b_1, b_2) \in \mathcal{A}$, a is related to b if $a_1 \leq b_1$ and $a_2 \leq b_2$. What happens if 'and' is replaced by 'or'?
 - (c) \mathcal{A} is the set of subsets of a set X, and for $A, B \in \mathcal{A}$, A is related to B if $A \subset B$.
 - (d) \mathcal{A} is the set of human beings, and for $a, b \in \mathcal{A}$, a is related to b if a is a mother/brother/sibling of b.
 - (e) \mathcal{A} is the set of students at IITB in your batch, and for $a, b \in \mathcal{A}$, a is related to b if a is in the same hostel as b.
 - (f) $A = \mathbb{Z}$, and for $a, b \in A$, a is related to b if 12|(b-a).
 - (g) $\mathcal{A} = \mathbb{R}^2$, and for $a, b \in \mathcal{A}$, a is related to b if a has the same y-coordinate as b.
 - (h) $\mathcal{A} = \mathbb{R}$, and for $a, b \in \mathcal{A}$, a is related to b if b a is an integer.

In each example, pick two unrelated points in A, and identify all points related to each.

- (5) Show that every convergent sequence of real numbers is a Cauchy sequence.
- (6) Show that every Cauchy sequence of real numbers is bounded.
- (a) Show that the series $\sum_{k=1}^{n} \frac{1}{k}$ is a divergent series.
 - (b) More generally, for $p \in \mathbb{Z}$, show that $\sum_{k=1}^{n} \frac{1}{k^p}$ converges if and only if $p \ge 1$.
- (8) Show that if $\sum_{n=0}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

The converse need not be true, i.e., if $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ need not converge. Give an example of this phenomenon.

- (9) Write a_n in terms of n for the following sequences:

 - 1. $\{3,7,11,15,19,\cdots\}$. 3. $\{x^{3/2},x^{9/4},x^{15/8},x^{21/16},x^{27/32},\cdots\}$.
- 2. $\{2, 3, 4/2, 5/6, 6/24, 7/120, \cdots\}$. 4. $\{1, 3, 15, 105, 945, \cdots\}$.

(10) Find the limits of the following sequences if they exist:

1.
$$a_n = \frac{\sin^2(n\pi/6)}{2^n}$$

2.
$$a_n = \frac{\ln(3 + 2e^{n^2})}{n^2 + 1}$$
.

3.
$$a_n = n^p, p \in \mathbb{R}$$
.

4.
$$a_n = \frac{n!}{n^n}$$
.

$$5. \ a_n = \frac{\ln(n)}{n}.$$

6.
$$a_n = \ln(n+1) - \ln(n)$$
.

7.
$$a_n = \frac{(-5)^n}{n!}$$
.

8.
$$a_n = \frac{1 + 2n + 4n^3}{2 + 3n^2}$$
.

(11) Find the limit of the series, i.e., find $\sum_{n=1}^{\infty} a_n$ where

(1)
$$a_n = \frac{1}{2^n}$$
. (2) $a_n = \frac{1}{n(n+1)}$. (3) $a_n = \frac{1}{n(\ln n)^p}$ if $p > 1$.

(12) Do the following series $\sum_{n=1}^{\infty} a_n$ converge or diverge?

(1)
$$a_n = \sin(n\pi/2)$$
. (2) $a_n = \frac{\ln(n)}{n}$. (3) $a_n = \frac{10^n}{(n+1)4^{2n+1}}$.