Sequences

Emil Kerimov

January 19, 2019

1 Arithmetic Sequence

Definition 1.1 Given a starting value of a_0 and a constant difference value of d the arithmetic sequence is defined as follows.

$$a_n = a_0 + n \cdot d$$

1.1 Sum of Arithmetic sequence

Theorem 1.1

$$\sum_{k=0}^{n} a_k = \frac{(n+1)}{2} (2a_0 + n \cdot d) \tag{1}$$

Proof

Define S_n such that:

$$S_n = \sum_{k=0}^n a_k$$

Note that

$$2S_n = \sum_{k=0}^{n} a_k + \sum_{k=0}^{n} a_{n-k} = \sum_{k=0}^{n} \left(a_k + a_{n-k} \right)$$

Using the definition we see $a_k + a_{n-k} = (a_0 + k \cdot d) + (a_0 + (n-k) \cdot d) = 2a_0 + n \cdot d$ which does not depend on k

$$2S_n = \sum_{k=0}^n \left(2a_0 + n \cdot d \right) = (n+1) \left(2a_0 + n \cdot d \right)$$
$$S_n = \frac{(n+1)}{2} (2a_0 + n \cdot d)$$

1.2 Example: Sum of Natural Numbers

Prove that

$$\sum_{i=0}^{n} i = 0 + 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof: Set $a_0 = 0$ and d = 1

$$\sum_{i=0}^{n} i = \frac{(n+1)}{2}(n)$$