

Expander ℓ_0 -Decoding

Rodrigo Mendoza-Smith

Jared Tanner

Mathematical Institute, University of Oxford

1. Combinatorial Compressed Sensing

Combinatorial compressed sensing studies the problem of sampling and efficiently reconstructing a k-sparse signal $x \in \mathbb{R}^n$ from m < n linear measurements of the form $y = Ax \in \mathbb{R}^m$ where A is an expander matrix.

Expander matrices: Let $A \in \mathbb{R}^{m \times n}$ be a sparse **Prior art:** binary matrix with exactly $d \ll m$ ones per column, and let

$$\mathcal{N}_1(S) := \{i \in [m] : A_{ij} = 1 \text{ for exactly one } j \in S\}.$$

Then, A is a (k, ε, d) -expander matrix $(A \in \mathbb{E}_{k,\varepsilon,d})$ if for some $\varepsilon \in (0,1)$ we have

$$|\mathcal{N}_1(S)| > (1 - 2\varepsilon)d|S| \quad \forall \quad S \in [n]^{(\leq k)}. \tag{1}$$

- Any sparse binary matrix with exactly d ones per column is a (k, ε, d) -expander for some k, ε .
- Expander matrices have a null-space property, so recovery is possible via convex relaxation.
- Expander matrices are low complexity and have an optimal measurement rate of $\mathcal{O}(k \log(n/k))$.

Algorithm 1: Iterative greedy CCS algorithms

Data: $A \in \mathbb{R}^{m \times n}$; $y \in \mathbb{R}^m$ **Result:** $\hat{x} \in \mathbb{R}^n$ s.t. $y = A\hat{x}$ $\hat{x} \leftarrow 0, \ r \leftarrow y;$ while not converged do Compute a score s_j and an update $u_j \, \forall \, j \in [n]$; Select $S \subset [n]$ based on a rule on s_j ; $\hat{x}_j \leftarrow \hat{x}_j + u_j \text{ for } j \in S;$ k-threshold \hat{x} ; $\ \ \ \ r \leftarrow y - A\hat{x};$

Algorithm	Complexity
SMP [1]	$\mathcal{O}((nd + n\log n)\log x _1)$
SSMP [2]	$\mathcal{O}((\frac{d^3n}{m} + n)k + (n\log n)\log x _1)$
LDDSR [3]	$\mathcal{O}((\frac{d^3n}{m}+n)k)$
ER [4]	$\mathcal{O}((\frac{d^3n}{m}+n)k)$

2A. Our work

- SMP updates multiple \hat{x}_i per iteration. It is empirically fast, but unstable.
- SSMP, LDDSR, ER update a single \hat{x}_j per iteration. They are slower than SMP, but stable.
- We propose an algorithmic model that stably updates multiple entries of \hat{x} by choosing those $j \in [n]$ that would yield a decrease $||r||_0$.
- To be able to update multiple entries per iteration without compromising the region of recovery, we assume a dissociated signal model on x.

2B. SIGNAL MODEL

A signal $x \in \mathbb{R}^n$ is dissociated if

$$\sum_{j \in T_1} x_j \neq \sum_{j \in T_2} x_j \qquad \forall T_1, T_2 \subset \operatorname{supp}(x) \text{ s.t. } T_1 \neq T_2.$$

• x is dissociated almost surely if its nonzeros are drawn from a continuous distribution.

2c. $Exp-\ell_0-DE$

Algorithm 2: Serial- ℓ_0 [5]

Data: $A \in \mathbb{R}^{m \times n}$; $y \in \mathbb{R}^m$; $\alpha \in [d]$ **Result**: $\hat{x} \in \mathbb{R}^n$ s.t. $y = A\hat{x}$ $\hat{x} \leftarrow 0, \ r \leftarrow y;$ while not converged do for $j \in [n]$ do $T \in \{\omega_j \in \mathbb{R} : ||r||_0 - ||r - \omega_j a_j||_0 > \alpha\};$ for $\omega_j \in T$ do $\hat{x}_j \leftarrow \hat{x}_j + \omega_j;$ $r \leftarrow y - A\hat{x};$

Algorithm 3: Parallel- ℓ_0 [5]

Data: $A \in \mathbb{R}^{m \times n}$; $y \in \mathbb{R}^m$; $\alpha \in [d]$ **Result:** $\hat{x} \in \mathbb{R}^n$ s.t. $y = A\hat{x}$ $\hat{x} \leftarrow 0, \ r \leftarrow y;$ while not converged do $T \leftarrow \{(j, \omega_j) \in [n] \times \mathbb{R} : ||r||_0 - ||r - \omega_j a_j||_0 > \alpha\};$ for $(j, \omega_j) \in T$ do $\hat{x}_j \leftarrow \hat{x}_j + \omega_j;$ $r \leftarrow y - A\hat{x};$

Theorem 0.1. Let $A \in \mathbb{E}_{k,\varepsilon,d} \cap \mathbb{R}^{m \times n}$, and $x \in \mathbb{R}^n$ be a k-sparse dissociated signal. If $\varepsilon < 1/4$ and $\alpha = d/2$, then Algorithms 2-3 solve y = Ax in $\mathcal{O}(dn \log k)$ operations.

3A. HIGH PHASE TRANSITION

Algorithms 2-3 have substantially higher phase transitions than the rest of the CCS algorithms, and higher than ℓ_1 -regularisation for $\delta := m/n \lesssim 0.4$.

3B. High phase transition $\delta \approx 0$

For fixed $\delta \ll 1$, we observe an increasing phase transition as $n \to \infty$. Also, the time increases linearly with n.

3c. Fastest CS algorithms for dissociated signals

When implemented in parallel, Algorithm 3 is the fastest compressed sensing algorithm for dissociated x, except for regions of low $\rho := k/m$ where a parallel version of LDDSR with multiple updates per iteration is the fastest. However, the convergence of this version of LDDSR is also given by Theorem 0.1.

REFERENCES

- [1] Radu Berinde, Piotr Indyk, and Milan Ruzic. Practical near-optimal sparse recovery in the 11 norm. In Communication, Control, and Computing, 2008 46th Annual Allerton Conference on, pages 198–205. IEEE, 2008.
- [2] Radu Berinde and Piotr Indyk. Sequential sparse matching pursuit. In Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages 36–43. IEEE, 2009.
- [3] Weiyu Xu and Babak Hassibi. Efficient compressive sensing with deterministic guarantees using expander graphs. In Information Theory Workshop, 2007. ITW'07. IEEE, pages 414–419. IEEE, 2007.
- [4] Sina Jafarpour, Weiyu Xu, Babak Hassibi, and Robert Calderbank. Efficient and robust compressed sensing using high-quality expander graphs. arXiv preprint arXiv:0806.3802, 2008.
- [5] Rodrigo Mendoza-Smith and Jared Tanner. Expander ℓ_0 -decoding. 2015.