Quiz 3 Solution

Problem 1: Apply the Euclidean algorithm in order to compute gcd (70, 18)

	76	18
76		G
18	0	
16	1	- 3
2		4
0		

 \rightarrow gcd (70, 18) = 2 = (-1).70 + 4.18

Problem 2: Let n be a natural number. Given n consecutive integers a, a+1, a+2, ..., a+n-1, show that one of them is divisible by n

Proof:

Let n E IN and a E Z. We consider 2 cases: Case 1: a is divisible by n then it is the case that of the n consecutive integers a, a+1, a+2,..., a+n-1, one of them is divisible by n

Case 2: a is not divisible by n then a must be of the form nk - i for $k \in \mathbb{Z}$, $i \in \{1, 2, ..., n-1\}$. Then a + i = (nk - i) + i = nk, which is divisible by n. But since $i \in \{1, 2, ..., n-1\}$, a + i must be one of the n consecutive integers a, a + 1, a + 2, ..., a + n - 1 thus we have shown that the claim holds for this case Since the claim holds in both cases, the claim holds.