1 Combinatorics

	With Replacement	Without Replacement		
Permutations (Ordered)	$P_r(n,k) = n^k$	$P(n,k) = \frac{n!}{(n-k)!}$		
Combinations (Unordered)	$C_r(n,k) = {n+k-1 \choose k} = \frac{(n+k-1)!}{k!(n-1)!}$	$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$		

2 Distributions

Distribution	Moments	Bernoulli	Binomial	Geometric	Poisson	Exponential	Uniform	Normal
PDF		$p^x(1-p)^{1-x}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$(1-p)^{x-1}p$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\frac{1}{\lambda} e^{\frac{-x}{\lambda}}$	$\frac{1}{b-a}$	$\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
E[X]	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	p	np	$\frac{1}{p}$	λ	λ	$\frac{a+b}{2}$	μ
Var[X]	$E[X^2] = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$	p(1-p)	np(1-p)	$\frac{1-p}{p^2}$	λ	λ^2	$\frac{(b-a)^2}{12}$	σ^2

3 Percentiles; $Q \sim Normal(\mu_Q = 80, \sigma_Q^2 = 9)$; percentile = 97.5

$$P(Q \le q_0.975) = 0.975 \tag{1}$$

$$P(Z \le \frac{q_0.975 - 80}{3}) = 0.975 \tag{2}$$

$$\frac{q_0.975 - 80}{3} = 1.96\tag{3}$$

$$q_0.975 \approx 85.88$$
 (4)

So x_Q does not fall within percentile if $x_Q < q_0.975\,$

4 Hypothesis Testing

H_0	H_A	Conditions	Test Statistic	Rejection Region	Degrees of freedom
$\mu_1 = \mu_2$	$\mu_1 < \mu_2$ $\mu_1 > \mu_2$	Known σ	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{\sigma_1^2} + \frac{\sigma_2^2}{\sigma_2^2}}}$	$Z < -z_{\alpha}$ $Z > z_{\alpha}$	
	$\mu_1 \neq \mu_2$		V 11 112	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $	
	$\mu_1 < \mu_2$	Unknown but equal σ		$t < -t_{df,\alpha}$	
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ $s_{p}^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}$	$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$	$t > t_{df,\alpha}$	$df = n_1 + n_2 - 2$
	$\mu_1 \neq \mu_2$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$		$ t > t_{d\!f,\alpha/2} $	
	$\pi_1 < \pi_2$		(2. 2. (2. 2.)	$Z < -z_{\alpha}$	
$\pi_1 = \pi_2$	$\pi_1 > \pi_2$	Z-test for proportions	$Z = \frac{(\pi_1 - \pi_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}}$	$Z>z_{lpha}$	
	$\pi_1 \neq \pi_2$		γ1	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $	
$\beta_1 = 0$	$\beta_1 \neq 0$	Test for linear relationship	$t = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{s^2}{S_{xx}}}}$	$t> \mathbf{t}_{df,\alpha/2} $	df = n - 2

5 Linear Regression Formulas

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{5}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \tag{6}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{7}$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
(8)

$$SS_{RESID} = \sum_{i=1}^{n} (y_i - \hat{y}) \tag{9}$$

$$RegressionVariance: s^2 = \frac{SS_{RESID}}{n-2} \tag{10}$$