Sistemas Electrónicos

Capítulo 2: Noções de Sistemas e Sinais

Sistemas Electrónicos - 2020/2021

Sumário

- Sistema;
- Sinais: definição e classificação;
- Sinais nos domínios do tempo e da frequência;
- Resposta em frequência diagramas de Bode;
- Resposta ao degrau.

Sistema

Entidade que produz um conjunto de *sinais de saída* como resposta a um conjunto de *sinais entradas*.

E. Martins, DETI Universidade de Aveiro

2-3

Sistemas Electrónicos - 2020/2021

Sinal

É uma função do tempo que traduz informação sobre um ou mais fenómenos.

- Os sinais apresentam-se, em geral, em função do tempo:
 - > Velocidade dum veículo;
 - > Temperatura ambiente;
 - > Ritmo cardíaco;
 - > Tensão eléctrica da rede de distribuição;
 - > Som de um tema musical;
 - **>** ...

Aqui estamos particularmente interessados em sinais que podem ser representados por tensões ou correntes eléctricas.

Classificação de sinais

Contínuo no tempo e na amplitude:

Definido só em *instantes discretos*mas continuo na amplitude: ainda é
um sinal analógico

Definido em instantes discretos e com valores discretos de amplitude:

sinal digital

E. Martins, DETI Universidade de Aveiro

2-5

Sistemas Electrónicos - 2020/2021

Classificação de sinais

Uma função x(t) é periódica, com período T, se

$$x(t) = x(t+T)$$
 para qualquer t

Sinais nos domínios do tempo e da frequência

$$v(t) = V_{\rm m} \cos(\omega t + \boldsymbol{\Phi})$$

V_m - amplitude máxima (de pico)

T - periodo (s)

f - frequência (Hz) = 1/T

ω - frequência angular (rad/s)

φ - ângulo de fase (rad ou °)

 ${f V}_{
m pp}$ - amplitude pico a pico

A sinusóide é o sinal mais importante no estudo de circuitos electrónicos.

Porquê?

E. Martins, DETI Universidade de Aveiro

2-7

Sistemas Electrónicos - 2020/2021

Sinais nos domínios do tempo e da frequência

... porque segundo a série/transformada de Fourier, qualquer sinal pode ser descrito como uma soma de sinusoides de diferentes amplitudes e frequências.

sendo $\omega_0 = \frac{2\pi}{T}$ a frequência fundamental

Sistemas Electrónicos – 2020/2021

Exemplo: Onda quadrada

Exemplo: sinal aperiódico

Sistemas Electrónicos - 2020/2021

Resposta em frequência

Resposta em frequência

- Caracteriza a forma como um sistema responde a sinusóides de diferentes frequências;
- È uma característica importante exactamente porque... qualquer sinal pode ser expresso como uma soma de sinusóides.

E. Martins, DETI Universidade de Aveiro

2-13

Sistemas Electrónicos - 2020/2021

Resposta em frequência

A resposta em frequência do amplificador é expressa pela sua função de transferência:

$$\mathbf{H}(\omega) = \frac{\mathbf{V_0}(\omega)}{\mathbf{V_i}(\omega)}$$

que inclui a resposta de amplitude, $|H(\omega)|$ e a resposta de fase, $\angle H(\omega)$

Resposta em frequência

- ➤ A resposta em amplitude traduz a gama de frequências que o sistema amplifica e a gama que tende a atenuar;
- ➤ O amplificador funciona como um *filtro* com uma dada *largura de banda*;

ω₁ e ω₂ são definidas como frequências de corte: para os quais o ganho é

$$\frac{H_{\rm max}}{\sqrt{2}}$$

E. Martins, DETI Universidade de Aveiro

2-15

Sistemas Electrónicos - 2020/2021

Resposta em frequência: RC passa-baixo

O circuito RC é o exemplo mais simples de filtro que vimos.

$$C = \frac{1}{V_0} \qquad |\mathbf{H}(\omega)| = \frac{V_0(\omega)}{V_i(\omega)} = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}} \qquad \omega_0 = \frac{1}{RC}$$

Mas esta resposta
de amplitude costuma
representar-se numa
medida logarítmica:
em decibeis (dB):

$$20\log|\mathbf{H}(\omega)| (dB)$$

deciBel (dB)

- O deciBel corresponde a 1/10 da unidade base: o bel;
- Esta unidade surgiu no contexto dos primeiros sistemas de telefones para quantificar a perda de potência de um sinal numa ligação, definindo-se como:

$$\log \frac{P_{out}}{P_{in}}$$
 (bel) ou $10\log \frac{P_{out}}{P_{in}}$ (decibel)

- Porquê uma unidade baseada na função logaritmo?
- Porque a percepção de intensidade do ouvido humano é logarítmica: e.g. se a intensidade sonora aumentar *10X* a sensação é de apenas uma *duplicação* da intensidade!
- Tratando-se de relações entre tensões, o decibel é definido como

$$20\log \frac{V_{out}}{V_{in}}$$
 (decibel)

E. Martins, DETI Universidade de Aveiro

2-17

Sistemas Electrónicos - 2020/2021

Resposta em frequência do RC passa-baixo

$$20\log|\mathbf{H}(\omega)| = 20\log\frac{1}{\sqrt{1+(\omega/\omega_0)^2}}$$

- Para frequências muito baixas: $|\mathbf{H}(0)| \approx 1$ ou 0dB
- Para $\omega = \omega_0$: $|\mathbf{H}(\omega_0)| = 1/\sqrt{2}$ ou $20\log(0.707) = -3$ dB
- Para frequências elevadas: $|\mathbf{H}(\omega)| \approx \frac{\omega_0}{\omega}$
 - ➤ Portanto, se ω duplicar, $|H(\omega)|$ diminui para 1/2. Como 20log(0.5) = -6, então a amplitude cai 6dB;
 - > Se ω aumentar de um factor de 10, $|H(\omega)|$ diminui para 1/10. Como 20log(0.1) = -20, então a amplitude cai 20dB.

Resposta do RC passa-baixo: diagrama de Bode

• Com estes dados podemos obter um traçado assimptótico da resposta do filtro: o chamado Diagrama de Bode.

E. Martins, DETI Universidade de Aveiro

2-19

Sistemas Electrónicos - 2020/2021

Resposta do RC passa-baixo: diagrama de Bode

• Para a *resposta de fase* também é possível obter um diagrama de Bode.

$$\angle \mathbf{H}(\omega) = -arctg(\omega RC) = -arctg(\omega/\omega_0)$$

• Para frequências muito baixas, e.g. $\omega < 0.1\omega_0$: $\angle H(0) \approx 0^\circ$

−90°

- Para frequências muito elevadas, e.g. $\omega > 10\omega_0$: $\angle H(\infty) \approx -90^\circ$
- Para $\omega = \omega_0$: $\angle \mathbf{H}(\omega)$ $\angle \mathbf{H}(\omega)$ Assimptotas do $\frac{\mathrm{diagrama\ de\ Bode}}{\mathrm{declive}}$ $\frac{-45^{\circ}}{\mathrm{decada}}$

E. Martins, DETI Universidade de Ave

Resposta do RC passa-alto: diagrama de Bode

$$|\mathbf{H}(\omega)| = \frac{1}{\sqrt{1 + (\omega_o/\omega)^2}}$$

$$\omega_0 = \frac{1}{RC}$$

• Para a resposta em amplitude o *Diagrama de Bode* é

E. Martins, DETI Universidade de Aveiro

2-21

Sistemas Electrónicos - 2020/2021

Resposta do RC passa-alto: diagrama de Bode

$$\angle \mathbf{H}(\omega) = arctg(\omega_o/\omega)$$
 $\omega_0 = \frac{1}{RC}$

$$\omega_0 = \frac{1}{RC}$$

Para a resposta de fase o *Diagrama de Bode* é

Sistemas Electrónicos - 2020/2021

Resposta ao degrau

Resposta ao degrau

- Traduz a forma com o sistema reage quando lhe é aplicado na entrada um *sinal em degrau*: variação abrupta entre dois valores;
- Na prática o que faz é aplicar, não um degrau, mas um impulso ou uma onda quadrada;
- A resposta ao degrau permite inferir sobre a resposta em frequência.

Sistema tem o comportamento dum RC passa-baixo

- A velocidade com que o circuito responde ao degrau é quantificada pelo *tempo de subida*, *t_r*;
- t_r tempo que $v_0(t)$ leva para subir de 10% de V_P até 90%;
- t_f tempo de descida define-se de forma identica (90 a 10%).

E. Martins, DETI Universidade de Aveiro

2-25

Sistemas Electrónicos - 2020/2021

Sistema tem o comportamento dum RC passa-baixo

• Sabendo que a carga do condensador varia segundo...

...é fácil mostrar que

$$t_r \approx 2.2\tau$$

Ora, como
$$\tau = RC = 1/\omega_0$$

então
$$t_r = \frac{2.2}{\omega_0}$$

• Portanto a resposta ao degrau é tão mais rápida quanto maior for ω_0 .

Sistema tem o comportamento dum RC passa-baixo

• Notar que esta é a resposta que obtemos, se:

$$T >> \tau$$

• Se tal não acontecer $v_0(t)$

fica...

E. Martins, DETI Universidade de Aveiro

2-27

Sistemas Electrónicos - 2020/2021

Sistema tem o comportamento dum RC passa-alto

• Como responde bem às altas frequências, o circuito reproduz fielmente as transições rápidas do sinal $(t_r = 0)$;

- ... mas como responde mal às frequências baixas (incluindo DC), não reproduz bem as partes planas do sinal;
- Vejamos primeiro porque razão $v_0(t)$ tem esta forma.

Sistema tem o comportamento dum RC passa-alto

Para se perceber a forma de v₀(t), reparemos, primeiro, que o circuito é também um RC série, logo v_C(t) deve ser igual à tensão de saída do RC passa-baixo.

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Sistema tem o comportamento dum RC passa-alto

- A corrente no circuito, *i(t)*, deverá ter a forma...
- Em t = 0, como o condensador está descarregado $i(t = 0^+) = \frac{V_P}{R}$
- Em $t = T^+$, $v_i(t = T^+) = \theta V$ e $v_C(t = T^+) = V_P$ pelo que $i(t = T^+) = -\frac{V_P}{R}$

2-29

Sistema tem o comportamento dum RC passa-alto

• Mas note-se que esta é a resposta se $T >> \tau$

Se T for mais baixo, obtemos

E. Martins, DETI Universidade de Aveiro

2-31

Sistemas Electrónicos - 2020/2021

Sistema tem o comportamento dum RC passa-alto

• O decaimento de $v_0(t)$ é praticamente linear. O declive é:

$$\frac{d}{dt}v_0(t)\Big|_{t=0} = -\frac{V_P}{\tau}e^{-t/\tau}\Big|_{t=0} = -\frac{V_P}{\tau}$$

• Portanto, o valor de ΔV é dado por $\Delta V = \frac{V_P}{\tau} T$

Sistema tem o comportamento dum RC passa-alto

• Quando expresso em percentagem o valor de ΔV recebe o nome de *Tilt*:

$$Tilt = \frac{\Delta V}{V_P} x 100\% = \frac{T}{\tau} x 100\% = (T\omega_0) x 100\%$$

- Quanto menor for ω_{θ} , (para um dado T) menor será o *Tilt*;
- Ou seja, o impulso de saída será tão mais parecido com o de entrada, quanto melhor for a resposta do passa-alto nas baixas frequências.

E. Martins, DETI Universidade de Aveiro

2-33

Sistemas Electrónicos - 2020/2021

Resposta ao degrau - conclusão

- Na resposta a um impulso quadrado
 - \triangleright O tempo de subida dá uma ideia da resposta do sistema às altas frequências quanto menor for t_r , melhor é a resposta;
 - O Tilt dá uma ideia da resposta do sistema às baixas frequências
 quanto menor for o Tilt, melhor é a resposta.

