动力系统的分支理论笔记

陆征一 _{授课}

Yummy

编辑

目录

第一章	动力系统的基本概念	1
1.1	动力系统简介	1
1.2	解的 (局部) 存在, 唯一性	5
1.3	解的延拓	7
1.4	解对初值及参数的连续依赖性	10
1.5	R" 上动力系统, 连续流, 离散流	12
	1.5.1 基本性质	12
	1.5.2 流(连续, 离散)	16
1.6	奇点, 闭轨线, 导算子	18
第二章	平面系统的奇点	25
2.1	奇点, 稳定性	25
	2.1.1 线性系统的奇点	25
2.2	非线性奇点	30
2.3	稳定性	31
	2.3.1 Lyapunov (Liapunov) 稳定性定理	32
2.4	中心焦点判定	37
2.5	无穷远奇点 (多项式)	43
2.6	奇点的指标	49
第三章	平面系统的极限环	55
3.1	极限环的不存在性	57
3.2	极限环的存在性	60
第四章	极限集,全局结构,结构稳定性与分支	67
4.1	极限集	67
4.2	Lyapunov 稳定性定理	72
4.3	LaSalle 原理	73

ii	Į.]录
4.4 图	论稳定性	75
第五章 平	面系统分支	77
5.1 Ho	pf 分支	77
5.2 广	义 Hopf	79
5.3 Ly	apunov 方法再思考	80
第五章 平 5.1 Ho 5.2 广	面 系统分支 ppf 分支	77 77 79

第一章 动力系统的基本概念

动力系统简介 1.1

本课程使用教材为: 罗定军, 张祥, 董梅芳. 动力系统的定性与分支理论[M]. 北 京: 科学出版社, 2001.

几种典型的动力系统:

$$\dot{x} = ax$$
, 指数模型, $\dot{x} = ax - bx^2$, $\dot{x} = ax(1-x)$, Logistic 模型.

一般的,对于系统 $\dot{x} = f(x)$,可将 f(x) 通过 Taylor 展开为,

$$f(x) = f(0) + a_1 x + a_2 x^2 + \cdots$$

一般地取 f(0) = 0. 取一次项系数 a_1 不为 0, 其余项系数均为 0 时, 则为指数模型. 若一次项系数 $a_1 \neq 0$, 二次项系数 $a_2 < 0$, 其余项系数均为 0, 则为 Logistic 模型.

例 1.1

$$\dot{x} = x(1-x). \tag{1.1}$$

 $\forall x(0) > 0 \Rightarrow x(t) \to 1$, 如图1.1. $x(t) \equiv 1$, $x(t) \equiv 0$ 是方程 1.1 的平衡解(点). $x(t) \equiv 1$

图 1.1: 例 1.1.

是全局吸引的(稳定的), 而 $x(t) \equiv 0$ 是排斥的(不稳定的).

定义 1.1 平衡解: 使 f(x) = 0 的实解.

对于系统 $\dot{x} = x(1-x), x(0) = x_0$, 解出 $x(t) = -\frac{C}{-C + (C-1)e^{-t}}$, 令 $t \to \infty$, 可发现 $x(t) \to 1$, 这就是定性性质.

上面的方程可求解, 若方程不能求出解析解, 怎样得到定性性质?

例 **1.2** $\dot{x} = x(1-x)(2-x)(3-x)(4-x)$

图 1.2: 例 1.2.

Lotka 美国生态学家

1921 化学反应

Volterra 意大利科学家,在ICM上作过4次1小时报告

1923 鱼类竞争

$$\begin{cases} \dot{x} = x(1 - y) \\ \dot{y} = y(1 - x) \end{cases}$$
 Lotka-Voterra 系统 (1.2)

Kolmogorov 系统, 1936年

$$\frac{\dot{x}(t)}{x(t)} = f(x(t)),$$

单位变化率 = 密度函数,
$$\dot{x} = xf(x).$$

对于 n 种群有: $\frac{\dot{x}_i(t)}{x_i(t)} = f_i(x_1(t), x_2(t), \dots, x_n(t))$.

Kolmogorov 系统: $\dot{x}_i = x_i f(x_1, \ldots, x_n)$, $(i = 1, \ldots, n)$.

对于 Lotka-Volterra (n = 2) 系统

$$\begin{cases} \dot{x}_1 = x_1(r_1 + a_{11}x_1 + a_{12}x_2), \\ \dot{x}_2 = x_2(r_2 + a_{21} + x_1 + a_{22}x_2). \end{cases}$$
 (1.3)

方程 1.3 一般是不可解的.

本课程主要介绍:

1.1 动力系统简介

3

- 局部分析 (平衡点指标,分支);
- 无穷远分析 (Poincáre 变换);
- 全局稳定 (Lyapunov-LaSalle);
- 中心焦点分析;
- 规范型.

例 1.3

$$\begin{cases} \dot{x} = x(1 - y), \\ \dot{y} = y(x - 1). \end{cases}$$
 (1.4)

其解为

$$(x - \ln x) + (y - \ln y) = c > 2 \tag{1.5}$$

图像为

图 1.3: 例 1.3.

例 1.4 1980 年,

$$\begin{cases} \dot{x}_1 = x_1(2 - x_1 - 5x_2) \\ \dot{x}_2 = x_2(-1 + x_1 + x_2) \end{cases}$$
 (1.6)

见图 1.4.

系统 $\dot{x} = \text{diag}(x)(r + Ax), n$ 种群, 无公式解.

$$\begin{cases} \dot{x} = P_2(x, y), \\ \dot{x} = Q_2(x, y). \end{cases}$$

$$(1.7)$$

此为二次系统,二维系统,一阶系统.其解不完全已知, H(2) =?

图 1.4: 例 1.4.

- 自治系统 $\frac{\mathrm{d}x}{\mathrm{d}t} \equiv \dot{x} = f(x), x = (x_1, \dots, x_n);$
- 非自治系统 $\dot{x} = f(t, x)$.

令

$$x_{n+1} = t \Rightarrow \begin{cases} \dot{x} = f(x_{n+1}, x) \\ \dot{x}_{n+1} = 1 \end{cases}$$

n 维非自治系统通过变换可转为n+1 维自治系统. 其动力学行为, 定性性质,

二维自治系统

$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2) \\ \dot{x}_2 = f_2(x_1, x_2) \end{cases}$$
 (1.8)

有唯一解的条件是?

- 二维自治系统有这样的性质: 其解 $(x_1(t), x_2(t))$ 为平面上一不自交 (相交) 曲线.
- 二维非自治系统,三维自治系统会出现混沌现象.

对于n维非自治系统

$$\dot{x}_i = f_i(t, x_1, \dots, x_n), (i = 1, \dots, n),$$
 (1.9)

和初值条件

$$x_i(t_0) \equiv x_i^0, \tag{1.10}$$

方程 1.9 在 (a,b) 的解

$$x = \Phi(\Phi_1(t), \dots, \Phi_n(t)) = (x_1, \dots, x_n)$$
 (1.11)

连续可微且

$$\Phi_i(t) = f_i(t, \Phi_1(t), \dots, \Phi_n(t)), \ \Phi(t_0) = x^0.$$
 (1.12)

例 1.5 系统

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = -x_1.$$

其解为

$$x_1 = c \sin t$$
, $x_2 = c \cos t$.

等价于

$$r^2 = x_1^2 + x_2^2$$
, $\dot{r} = 0$, $r = r(t)$.

 $x_1^2 + x_2^2 = c > 0$. (0,0) 是中心型奇点: 围绕它的是周期解. 周期解的周期相同,则称为等时中心.

例 1.6 系统

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = -x_1,$$

在初值

$$x^0 = (2, 2), \ t^0 = \frac{\pi}{4},$$

的解为 $x_1(t) = 2\sqrt{2}\sin t$, $x_2(t) = 2\sqrt{2}\cos t$.

1.2 解的 (局部) 存在, 唯一性

基础知识回顾:

- 向量的和、差、数乘;
- 内积 $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i;$
- 范数 $||x|| = \sum_{i=1}^{n} |x_i|$ 或 $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2};$
- 性质 $| < x, y > | \le ||x|| \cdot ||y||, ||x + y|| \le ||x|| + ||y||;$
- 向量函数的导数、积分 ⇔ 分量的导数、积分;

$$\left\| \int_{t_0}^t f(s) \, \mathrm{d}s \right\| \le \left| \int_{t_0}^t \|f(s)\| \, \mathrm{d}s \right|. \tag{1.13}$$

- 1. 几乎所有的非线性方程不可解;
- 2. 定性,稳定性,分析为主要手段;
- 3. 解题存在唯一性(数值计算).

方程(系统):

$$\dot{x} = f(t, x), \ x(t_0) = x^0.$$
 (1.14)

定理 1.1

- 1. $f(t, x) \in C^0(G)$, $G : |t t_0| \le a$, $||x x_0|| \le b$;
- 2. f 关于 x, Lipschitz 连续, $\exists L > 0$, s.t. $||f(t, x) f(t, y)|| \le L||x y||$.
- 3. $i \in M = \max_{G} ||f(t, x)||, h = \min\left(a, \frac{b}{M}\right), |t t_0| < h.$

证明: 简要概述证明的五个步骤.

1. 证明方程 1.14 与积分方程 1.15 等价.

$$x = x^{0} + \int_{t_{0}}^{t} f(s, x(s)) ds.$$
 (1.15)

2. 逐次逼近. 在 $|t - t_0| \le h$ 上定义 $\{\Phi_k(t)\}, k = 2, 3, ...,$

$$\Phi_{0}(t) = x^{0},$$

$$\Phi_{1}(t) = x^{0} + \int_{t_{0}}^{t} f(s, \Phi_{0}(s)) ds,$$

$$\cdots,$$

$$\Phi_{k}(t) = x^{0} + \int_{t_{0}}^{t} f(s, \Phi_{k-1}(s)) ds.$$

- 3. 证明 $\Phi_k(t)$ 在 $|t-t_0| \le h$ 上一致收敛.
- 4. $x = \Phi(t) = \lim_{k \to \infty} \Phi_k(t)$ 为方程 1.15 的解.
- 5. 唯一性. 证毕.

图 1.5: 定理 1.1.

1.3 解的延拓 7

- 1. f(t,x) 连续 \Rightarrow 存在性 (欧拉法).
- 2. Lipschitz 连续 ⇒ 唯一性.

例 1.7

$$\dot{x} = 2\sqrt{x}, \ x(0) = 0.$$

该函数连续,但不Lipschitz连续.

$$x_1 \equiv 0, \ x_2 \equiv \begin{cases} (t-c)^2, & x > c \\ 0, & 0 \le x \le c \end{cases}.$$

注 1.2 偏导数连续 ⇒ Lipschitz 连续.

1.3 解的延拓

 $M = \max \|f(t,x)\|, h = \min(a, \frac{b}{M})$ 如定理 1.1 中所定义. G 变大后, 可能导致 h 变小. 即 f 的定义域变大 \Rightarrow $\Phi(t)$ 的存在区间减小. 由存在唯一性定理, 在公共区间 $2h_2$

图 1.6: $G_1 < G_2 \Rightarrow h_1 \ge h_2$.

上, Φ_1 与 Φ_2 重合. 如图 1.6.

解能延拓的最大区间 \Leftrightarrow 解存在区间的并, 且称这样的解为饱和解, 最大存在区间为开的 (α,β) .

$$\dot{x} = f(t, x), \ x(t_0) = x_0.$$
 (1.16)

1. 由定理 1.1, 存在 h, 使得在 $|t - t_0| \le h$ 上, 存在唯一的解 $x = \Phi_1(t)$.

图 1.7: 方程 (1.16).

2. 记 $t_1 = t_0 + h$, $x_1 = \Phi_1(t_1) = \Phi_1(t_0 + h)$, 考虑初值问题

$$\dot{x} = f(t_1, x), \ x(t_1) = x_1$$
 (1.16')

又由定理 1.1 存在 h_1 , 使得在 $|t-t_1| \le h_1$ 上, 方程 1.16' 存在唯一解 $x = \Phi_2(t)$.

3. 分段表示

$$\Phi^*(t) = \begin{cases} \Phi_1(t), \ t \in [t_0 - h, t_0 + h] \\ \Phi_2(t), \ t \in [t_0 + h, t_1 + h_1] \end{cases}$$
(1.17)

是方程 1.16 在 $t \in [t_0 - h, t_1 + h_1]$ 上的唯一解.

定理 **1.2** f(t,x) 在 G 上连续, 关于 x, Lipschitz 连续 \Rightarrow 方程 1.16 的解可以延拓到 G 的边界.

证明:

1. 设最大存在区间为 (α,β) , β 有限. $x = \Phi(t_0)$, $(t_0 < \beta)$ 位于闭区域 $G' \subset G$.

图 1.8: 定理 1.2.

2. 存在 M, 使得 $||f(t,\Phi(t))|| \le M$ (于 G'), 所以 $\forall t_1, t_2 \in (t_0,\beta)$,

$$\|\Phi(t_1) - \Phi(t_2)\| = \left\| \int_{t_0}^{t_1} f(s, \Phi_1(s)) \, \mathrm{d}s - \int_{t_0}^{t_2} f(s, \Phi_1(s)) \, \mathrm{d}s \right\|$$

1.3 解的延拓 9

$$= \left\| \int_{t_2}^{t_1} f(s, \Phi_1(s)) \, \mathrm{d}s \right\|$$

$$\le \left| \int_{t_2}^{t_1} \| f(s, \Phi_1(s)) \| \right| \, \mathrm{d}s$$

$$\le M|t_1 - t_2|.$$

这说明函数 $\Phi(t)$ 是一致连续的.

 \Rightarrow $\Phi(\beta - 0)$ 存在且 $(\beta, \Phi(\beta - 0)) \in G'$

⇒ 仍可延拓, 矛盾!

证毕.

解的整体存在性

推论 **1.3** $f(t,x) \in C^0(\mathbb{R}^{n+1})$ 关于 x, Lipschitz 连续, 方程 1.16 的解有界 \Rightarrow 解存在于 $(-\infty, +\infty)$.

理由: \mathbb{R}^{n+1} (= G) 边界为: $x \to \pm \infty$ or $t \to \pm \infty$.

图 1.9: 推论 1.3.

推论 1.4 自治系统

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}), \ \mathbf{x}(t_0) = \mathbf{x}^0$$
 (1.18)

f ∈ $C^0(\mathbb{R}^n)$, **f** 是 Lipschitz 连续的, 解有界 ⇒ 解的存在区间为 $(-\infty, +\infty)$.

推论 **1.5** $\mathbf{f}(\mathbf{x}) \in C^0(\mathbb{R}^n)$, 有界 (+ Lipschitz 连续, 书上没有该条件) \Rightarrow 方程 1.18 解存在区间为 $(-\infty, +\infty)$.

f(x) 连续, 有界但不 Lipschitz 连续的例子:

例 1.8

$$f(x) = \begin{cases} \sin \sqrt{x}, & x \ge 0 \\ 0, & x \le 0 \end{cases}$$
 (1.19)

证明: 反设 f(x) 局部 Lipschitz, 在原点的闭区间有一致的 Lipschitz 常数 L.

$$\Rightarrow |\sin \sqrt{x_1} - \sin \sqrt{x_2}| = \left| \frac{1}{2\sqrt{\xi}} \cos \sqrt{\xi} \right| \cdot |x_1 - x_2|$$

$$\leq L|x_1 - x_2|$$

$$\Rightarrow \cos \sqrt{\xi} \leq 2L\sqrt{\xi}$$

$$\therefore x_1, x_2 \to 0, \ \xi \to 0$$

$$\Rightarrow 1 \leq 0,$$

矛盾! 证毕.

例 1.9 Cauchy 问题, $x \in (-\infty, +\infty)$,

$$\dot{x} = 1 + x^2, \ x(0) = 0$$
 (1.20)

最大存在区间是?

M:
$$x = \tan t, t \in (-\frac{\pi}{2}, \frac{\pi}{2}).$$

例 1.10 $\dot{x} = \sqrt{1 + x^2}$, x(0) = 0, 存在区间是?

M:
$$x = \frac{1}{2}(e^t - e^{-t}), t \in (-\infty, +\infty).$$

可研究问题: $\dot{x} = f(x) = \frac{P(x)}{Q(x)}, P(x), Q(x)$ 是多项式, 求解整体存在的充要条件.

1.4 解对初值及参数的连续依赖性

Logistic 方程 $\dot{x} = x(r - x)$, $x(t_0) = t_0$, $x = x(t, t_0, x_0, r)$.

定理 1.6

1. 初值问题

$$\dot{x} = f(t, x, \mu), \ x(t_0) = x^0.$$
 (1.21)

2. $f(t, x, \mu)$ 的定义域为

$$G: |t - t_0| \le a, ||x - x_0|| \le b, ||\mu - \mu_0|| \le c.$$
 (1.22)

3. 连续, 局部 Lipschitz.

则 $x = \Phi(t, u)$ 局部存在且关于 μ 连续. (即参数连续.)

证明: 思路如下:

$$\dot{x} = f(t, x, \mu), \ x(t_0) = x^0 \Leftrightarrow \Phi(t, \mu) = x_0 + \int_{t_0}^t f(s, \Phi(s, \mu), \mu) \, \mathrm{d}s.$$

定义

$$\Phi_0(t) = x_0,$$

$$\Phi_1(t,\mu) = x_0 + \int_{t_0}^t f(s, \Phi_0(s), \mu) \, \mathrm{d}s,$$

$$\Phi_2(t,\mu) = x_0 + \int_{t_0}^t f(s, \Phi_1(s, \mu), \mu) \, \mathrm{d}s,$$
:

 $\{\Phi_n(t,\mu)\}$ —致收敛, $|t-t_0| \le h$, $||\mu-\mu_0|| \le c$.

$$\Phi(t,\mu) = x_0 + \int_{t_0}^t f(s,\Phi(s,\mu),\mu) \, \mathrm{d}s \Rightarrow \Phi(t,\mu)$$

为 t,μ 的连续函数. 证毕.

定理 1.7

1. 初值问题

$$\dot{x} = f(t, x), \ x(t_0) = \eta.$$
 (1.23)

- 2. 区域 $G: |t-t_0| \le a, ||x-x_0|| \le b.$
- 3. $\exists \eta : ||\eta x_0|| \leq \frac{b}{2}$.
- ⇒ 存在唯一的 $x = \Phi(t, \eta)$ 关于 t, η 连续.

证明:

方法I. 证明思路:

(a) 变换
$$x = z + y$$
,
$$\dot{z} = f(t, z + \eta) \tag{1.24}$$

将对初值的连续依赖问题转化为对参数的连续依赖.

(b) $\forall z_1, z_2$

$$||f(t, z_1 + \eta) - f(t, z_2 + \eta)|| \le L||(z_1 + \eta) - (z_2 + \eta)||$$

$$= L||z_1 - z_2||$$

(c) 由 1.6, 方程 1.24 的解 $z = \Psi(t, \eta)$ 关于 (t, η) 连续.

 \Rightarrow 存在唯一的 $x = z + \eta = \Psi(t, \eta) + \eta$, 且满足连续依赖性.

方法II. 证明思路:

$$\dot{x}_{1} = f(t, x_{1}), \ x_{1}(t_{0}) = \eta_{1}
\dot{x}_{2} = f(t, x_{2}), \ x_{2}(t_{0}) = \eta_{2}
\Rightarrow x_{1}(t) - x_{1}(t_{0}) = \int_{t_{0}}^{t} f(s, x_{1}(s)) \, ds
x_{2}(t) - x_{2}(t_{0}) = \int_{t_{0}}^{t} f(s, x_{2}(s)) \, ds
\Rightarrow ||x_{1}(t, t_{0}, \eta_{1}) - x_{2}(t, t_{0}, \eta_{2})||
\leq ||\eta_{1} - \eta_{2}|| + \left\| \int_{t_{0}}^{t} \left[f(s, x_{1}(s)) - f(s, x_{2}(s)) \right] \, ds \right\|
\leq ||\eta_{1} - \eta_{2}|| + L \int_{t_{0}}^{t} ||x_{1}(s) - x_{2}(s)|| \, ds
\leq ||\eta_{1} - \eta_{2}|| e^{L(t - t_{0})}. \quad 1$$

1.5 \mathbb{R}^n 上动力系统, 连续流, 离散流

1.5.1 基本性质

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1, \end{cases} t = t_0, \ x = (x_1^0, x_2^0),$$

其通解为

$$\begin{cases} x_1 = c_1 \cos t + c_2 \sin t, \\ x_2 = c_1 \sin t + c_2 \cos t. \end{cases}$$
 (通解)

Cauchy 问题解

$$x_1 = x_1^0 \cos(t - t_0) + x_0^2 \sin(t - t_0) = x_1(t; t_0, x^0),$$

$$x_2 = -x_1^0 \sin(t - t_0) + x_2^0 \cos(t - t_0) = x_2(t; t_0, x^0),$$

$$\Rightarrow x(t;t_0,x^0)$$

¹Grownwell-Bellman 不等式: $f(t) \le f_0 + L \int_{t_0}^t |f(s)| \, \mathrm{d}s \Rightarrow |f(t)| \le f e^{L(t-t_0)}$.

例 1.11

1.

$$(x_1^0, x_2^0) = (1, 0),$$

$$\begin{cases} x_1 = \cos(t - t_0), \\ x_2 = -\sin(t - t_0). \end{cases}$$

图 1.10: 例 1.11 (1).

2.

$$(x_1^0, x_2^0) = (0, 2),$$

$$\begin{cases} x_1 = 2\sin(t - t_0), \\ x_2 = 2\cos(t - t_0). \end{cases}$$

图 1.11: 例 1.11 (2).

例 1.11 的解, 如果画在三维空间中, 图形应该如图 1.12.

图 1.12: 在三维空间解的形态

自治系统

$$\dot{x} = f(x), \ x(t_0) = x^0$$
 (1.25)

的解 $x = \Phi(t; t_0, x^0)$ 的最大存在区间 $J(x^0) = (\alpha, \beta), t = t_0, x = x_0 \Leftrightarrow x^0 = \Phi(t_0; t_0, x^0).$ f(x) 称为向量场, \mathbb{R}^n 称为相空间.

性质 1.8 (关于 t 平移不变性)

- 1. $\forall \tau, x = \Phi(t + \tau; t_0, x_0)$ 为方程 (1.25) 的解.
- 2. $x = \Phi(t t_0; 0, x_0)$ 满足 $x(t_0) = x^0$, $\Phi(t; t_0, x^0) = \Phi(t t_0; 0, x^0)$.

性质 1.9 (解唯一性) 相空间过 x^0 的轨线由 x^0 唯一决定. (不同于存在唯一性.)

证明: 设方程 (1.25) 有两条轨线, $\Phi_1(t;t_1,x_1)$ 与 $\Phi_2(t;t_2,x_2)$ 过 x^0 : $\exists T_1,T_2$ 使得:

由性质 $1.8 \Phi_1(t + T_1 - T_2; t_1, x_1)$ 与 $\Phi(t; t_2, x_2)$ 均为解, 且满足 $x(T_2) = x^0$, 由解的存在 唯一性有 $\Phi_1(t; t_1, x_1)$, $\Phi_2(t; t_2, x_2)$ 为相同轨线 (相空间).

图 1.13: 性质 1.9 的证明.

15

性质 1.10 (对 t 的可加性)

$$\Phi(t_1 + t_2; 0, x^0) = \Phi(t_2; 0, \Phi(t_1; 0, x^0)).$$

证明:

- 1. $\Phi(t+t_1;0,x^0)$ 与 $\Phi(t;0,\Phi(t_1;0,x^0))$ 均为解;
- 2. 令 t = 0, 两者均变为 $\Phi(t_1; 0, x^0)$;
- $3. \diamondsuit t = t_2.$ 证毕.

图 1.14: 性质 1.10 的证明.

注1.3 非自治不成立!

注 1.4 相空间 \mathbb{R}^n 中轨道, 完全由初始条件 x^0 决定, 与 t_0 无关:

∴ Φ(t; t₀, x⁰) 可以写成 Φ(t, x⁰);

进一步 可写成 $\Phi(t,x)$ ($\Phi(0,x)=x$, 称为演化、进化、发展方程);

再一步 $\Phi_t(x)$;

更一步 Φ_t : $x \mapsto \Phi_t(x)$, $x \in G$, $t \in \mathbb{R}$.

例 1.12

$$x_1(t) = x_1 \cos t + x_2 \sin t,$$

 $x_2(t) = -x_1 \sin t + x_2 \cos t.$

解:

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\boxed{\Phi_t(x)} \qquad \boxed{\Phi_t} \qquad \boxed{x}$$

性质 **1.11** (恒同性) $\Phi_0(x) \equiv x$

证明:
$$\Phi_0(x) = \Phi_t(x)|_{t=0} = \Phi(t, x)|_{t=0} = \Phi(0, x) = x.$$
 证毕.

性质 **1.12** (可加性) $\Phi_{t_1+t_2}(x) = \Phi_{t_1}(\Phi_{t_2}(x))$.

证明:

性质 **1.13** (可交换) $\Phi_{t_1+t_2} = \Phi_{t_1} \circ \Phi_{t_2}$.

性质 **1.14** (可逆) $\Phi_t \circ \Phi_{-t} = \Phi_0$.

定义 1.2 称 $\{\Phi_t \mid t \in \mathbb{R}\}$ 为单参数连续变换群, 如果满足: (i) 恒同; (ii) 可加; (iii) 可交换.

1.5.2 流 (连续, 离散)

微分方程组

$$\dot{x} = f(x), \ x \in G, \tag{1.26}$$

与其定义的单参数交换群 $\{\Phi_t \mid t \in \mathbb{R}\}$, 称之为 G 上的动力系统 (连续, 流). 连续 (可微) 映射

$$\Phi_t: G \to G$$
,

满足恒同性、可加性、可交换,则称之为 G 上的拓扑 (可微) 动力系统.

17

离散动力系统

例 1.13 $t \in \mathbb{Z}$

$$\dots, \Phi_{-2}, \Phi_{-1}, \Phi_0, \Phi_1, \Phi_2, \dots,$$

 $\{\Phi_n(x) \mid x \in G\}, n = 0, \pm 1, \dots$

一般 (g 同胚: g, g⁻¹ 连续)

$$g: x \mapsto g(x), G \to G,$$

作叠代:

$$x$$
, $g(x)$, $g(g(x))$, ...
 x , $g(x)$, $g^{2}(x)$, $g^{3}(x)$, ...
 x , $g^{-1}(x)$, $g^{-2}(x)$, $g^{-3}(x)$, ...
..., $g^{-2}(x)$, $g^{-1}(x)$, $g^{0}(x)$, $g(x)$, $g^{2}(x)$, ...

(过 $x \in G$, 由 g 导出的轨道)

例 1.14

$$g(x,y) = \left(\frac{x}{2}, \frac{y}{2}\right).$$

解: 表示 (映射): $(x', y') = g(x, y) = \left(\frac{x}{2}, \frac{y}{2}\right)$ $\Rightarrow x' = \frac{x}{2}, \ y' = \frac{y}{2}.$ 表示 (数列): $x_{n+1} = \frac{x_n}{2}, \ y_{n+1} = \frac{y_n}{2}.$

图 1.15: 例 1.14 的轨线.

例 1.15

$$g(x) = \lambda x(1-x), G = [0,1].$$

图 1.16: 例 1.15, λ 不同时, 可能的轨线.

解: 表示 (映射): $x' = g(x) = \lambda x(1-x)$ Logistic 虫口模型. 表示 (数列): $x_{n+1} = \lambda x_n(1-x_n)$.

例 **1.16** Henon 映射 (1976), $g(x, y) = (A + By - x^2, x)$.

$$\begin{cases} x' = A + By - x^2, \\ y' = x. \end{cases}$$

一般形式 $x_{n+1} = g(x_n)$.

1.6 奇点, 闭轨线, 导算子

定义 1.3

- 1. 微分方程 $\dot{x} = f(x), x$ 是奇点、平衡点 ⇔ 使 f(x) = 0 的实零点.
- 2. 迭代 x' = g(x), x 是不动点、平衡点 $\Leftrightarrow g(x) = x$.

例 1.17

- 1. $\dot{x} = rx(1-x)$, 平衡点: 0, 1.
- 2. $x_{n+1} = rx_n(1 x_n), n \le 4$ 保证 $[0, 1] \mapsto [0, 1].$
- 3. $x_{n+1} = x_n \exp[r(1 x_n)]$ 这个保证了正性.

注 1.5

1. 正性: 初始 > 0, 结果 > 0.

 $\dot{x} = xr(1-x)$, 对于任意 δ , 在区间 $(0,\delta)$ 上有,

$$\int_0^\delta \frac{\dot{x}}{x} = \ln \frac{x(\delta)}{x(0)} = \int_0^\delta (r(1-x)) = rx - \frac{r}{2}x^2 \Big|_0^\delta,$$

$$x(\delta) = x(0) e^{r\delta - \frac{r}{2}\delta^2}.$$

2.

$$\frac{x(t+\Delta t)-x(t)}{\Delta t}=\frac{x(t)\exp(\Delta t[r(1-x(t))]-1)}{\Delta t},$$

- $\Delta t \rightarrow 0$, $\dot{x}(t) = x(t)r(1 x(t))$.

Lotka-Volterra 系统

$$\dot{x}_1 = x_1(r_1 + a_{11}x_1 + a_{12}x_2),$$

$$\dot{x}_2 = x_2(r_2 + a_{21}x_1 + a_{22}x_2).$$

- $a_{11} < 0, a_{22} < 0$, 种群密度是制约的, 也即种内 (Intra) 竞争;
- r_i 表示增长率.

种间 (Inter) 关系:

- (i) $a_{12} > 0$, $a_{12} > 0$, 合作互惠;
- (ii) $a_{12} < 0$, $a_{21} < 0$, 竞争;
- (iii) $a_{12} \cdot a_{21} < 0$, 捕食;
- (iv) -, 0, 偏害共生;
- (v) +, 0, 偏利共生.

定义 1.4

- 1. 周期解 = 解 + 周期函数.
- 2. 周期点 $x_{n+1} = g(x_n), x N$ 周期点
 - (a) $g^{k}(x) \neq x, k < N$;
 - (b) $g^{N}(x) = x$.

例 1.18 求 $x_{n+1} = rx_n(1-x_n)$ 存在 2 周期点的充要条件.

对于系统

$$\dot{x} = f(x). \tag{1.27}$$

令 f(x) 在 $x = x^* (x^* 是平衡点) 处展开$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

图 1.17: r < 2 时, 轨线情形

图 1.18: r < 3 时, 轨线情形

图 1.19: 二周期解轨线情形, $g^2(x_1) = x_1$, $g^2(x_2) = x_2$

图 1.20: 三周期解轨线情形

取一次近似:

$$f(x) \doteq a_0 + a_1 x,$$

则得到线性近似系统,

$$\dot{x} = D f(x_0)(x - x_0),$$
 (1.28)

其中

$$D f(x_0) = \begin{pmatrix} f_1 x_1 & \cdots & f_1 x_n \\ \vdots & \ddots & \vdots \\ f_n x_1 & \cdots & f_n x_n \end{pmatrix} \Big|_{x = x_0}.$$

结论: 若 $D f(x_0)$ 为双曲的 (特征值的实部 \neq 0) 则方程 (1.28) 决定方程 (1.27) (局部) 性态, 即局部同胚.

图 1.21: 线性系统为双曲的,则原系统局部与其同胚.

例 1.19 对于系统

$$\dot{x}_1 = x_1(r_1 + a_{11}x_1 + a_{12}x_2) = f_1(x_1, x_2),
\dot{x}_2 = x_2(r_2 + a_{21}x_1 + a_{22}x_2) = f_2(x_1, x_2).$$
(1.29)

假设 (1.29) 有唯一正平衡点 $x^* = (x_1^*, x_2^*)$, 将 (1.29) 在 x^* 处线性化: 即, 将 $f(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ Taylor 展开取一次 (线性) 部分.

离散系统的图表示

例 1.20 系统

$$g(x) = x^3, x' = g(x) = x^3,$$

不动点为: -1,0,1.0稳定,吸引.

例 1.21

$$g(x) = 2x - x^2$$
, $x' = g(x) = 2x - x^2$.

0 是排斥的, 1 是吸引的. x = 1 取到最大值.

图 1.22: 例 1.20.

图 1.23: 例 1.21.

稳定性

渐进稳定 ⇔ 邻域中的解趋于 x*.

定义 1.5

- 1. x^* 稳定: 初值在小区域, 轨道跑不出大区域. 见图 1.24. $\forall U, \exists V, \text{ s.t. } \forall n, g^n(V) \subset U.$
- 2. x^* 吸引 (局部). 见图 1.25. $\exists V \text{ s.t. } x \in V \Rightarrow \lim_{n \to \infty} g^n(x) = x^*.$
- 3. 渐进稳定 = 稳定 + 吸引.
- 4. 不稳定 ⇔ 不是稳定的.

定理 1.15 (一维情况)

$$\dot{x} = g(x), (g \in C^1), |g'(x^*)| < 1,$$

 $\Rightarrow \exists V, \, \forall x \in V, \, \lim_{n \to \infty} g^n(x) = x^*.$

图 1.24: $\forall x \in V \Rightarrow g^n(x) \in U$

图 1.25: $\forall x \in V \Rightarrow \lim_{n \to \infty} g^n(x) = x^*$.

证明: $: g \in C^1$, $|g'(x^*)| < 1$, 令 $V = (x^* - \epsilon, x^* + \epsilon)$, $\Rightarrow \exists A < 1$, 使得 |g'(x)| < A < 1, $(x \in V)$. 中值定理

$$|g(x) - x^*| = |g(x) - g(x^*)|,$$

$$= |g'(\delta)(x - x^*)|, \ (\delta \in V),$$

$$\leq A|x - x^*|,$$

$$< |x - x^*| < \epsilon.$$

$$\Rightarrow |g^n(x) - x^*| \le A^n |x - x^*| \to 0.$$

$$\therefore \lim_{n \to \infty} g^n(x) = x^*.$$

证毕.

推论 1.16

 $|g'(x^*)| > 1 \Rightarrow \exists V = N(x^*), \ \forall x \in V \setminus \{x^*\}, \ \exists n, \ \text{s.t. } g^n(x) \notin V.$

例 1.22 寻找

$$x' = rx(1 - x),$$

$$x' = x e^{r(1-x)},$$

的稳定条件(局部稳定).

例 1.23 g(x) = rx(1-x), r = 3.84. 周期三存在!

图 1.26: 例 1.23.

1975 年, Li-Yorke, 3 周期 ⇒ Chaos (混沌), Periole 3 impleis chaos. 1964 年, Shakovskii, 乌克兰,

$$3 < 5 < 7 < 9 < \cdots$$
 $2 \cdot 3 < 2 \cdot 5 < 2 \cdot 7 < 2 \cdot 9 < \cdots$
 \cdots
 $2^{n} \cdot 3 < 2^{n} \cdot 5 < 2^{n} \cdot 7 < 2^{n} \cdot 9 < \cdots$
 \cdots
 $2^{n} < \cdots < 2^{100} < \cdots < 16 < 8 < 4 < 2 < 1$

m 周期 $\Rightarrow n$ 周期, 若 m < n.

第二章 平面系统的奇点

二维系统

$$\dot{x} = P(x, y), \ \dot{y} = Q(x, y),$$
 (2.1)

 $P, Q \in G$ 内满足 (i) 连续; (ii) Lipschitz 连续. 解 (x(t), y(t)) 为平面上一曲线, 平衡点 (x^*, y^*) $\xrightarrow{\text{$\mathbb{P}^8$}}$ 原点.

Jacobi矩阵

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = J(P, Q)|_{(x^*, y^*)}.$$

线性系统

$$\dot{x} = ax + by, \ \dot{y} = cx + dy. \tag{2.2}$$

- 1. 非线性方程 → 线性方程 ⇒ 共性 (简化).
- 2. 线性方程 ^{部分描述}→ 非线性方程现象.

如果平衡点是双曲的,方程组(2.2)可描述对应非线性方程平衡点局部情况.

- 1. |A| ≠ 0, 初等奇点 (平衡点).
- 2. |A| = 0, 高阶奇点.

例 2.1 对于 Lotka-Volterra 系统

$$\dot{x}_1 = x_1(r_1 + a_{11}x_1 + a_{12}x_2),$$

$$\dot{x}_2 = x_2(r_2 + a_{21}x_1 + a_{22}x_2),$$

设平衡点 (0,0) 或正平衡点 (x*, y*), 分别找出对应的线性系统.

2.1 奇点, 稳定性

2.1.1 线性系统的奇点

$$\dot{X} = AX, \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ |A| \neq 0.$$
 (2.3)

26

性质 2.1 A 相似¹于如下之一:

$$1. \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix};$$

2.
$$\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$$
, 与 $\lambda = \mu$ 时的矩阵 1 对应的 Jordan 标准型不同;

3.
$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$
.

矩阵 1 的特征值为 λ , μ . 矩阵 2 的特征值为 λ (重根).矩阵 3 的特征值为 $\alpha \pm i\beta$.

$$\dot{y} = By, \ y = (y_1, y_2).$$
 (2.4)

I.
$$B = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
.

$$\dot{y}_1 = \lambda y_1,$$

$$\dot{y}_2 = \mu y_2.$$

初值为 (c_1, c_2) ,解为 $y_1 = c_1 e^{\lambda t}$, $y_2 = c_2 e^{\mu t}$.

I-1 鞍点: λ, μ 异号. $\lambda > 0, \mu < 0$,广义双曲线 $y_1^{\mu l} y_2^{\lambda} = c_1^{|\mu l} c_2^{\lambda}$.

图 2.1: 鞍点.

I-2 结点: $\lambda \cdot \mu > 0$.

•
$$\lambda = \mu$$
.

2.1 奇点, 稳定性 27

图 2.2: $\lambda = \mu$.

图 2.3: $\lambda \neq \mu$.

• $\lambda \neq \mu$. $\lambda > 0$, $\mu > 0$, 不稳定结点 (源), $\lambda < 0$, $\mu < 0$, 稳定结点 (渊).

II.
$$B = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$$
, $\lambda < 0$. $y_1 = c_1 e^{\lambda t}$, $y_2 = (c_1 t + c_2) e^{\lambda t}$.

(a)
$$(c_1, c_2) = (0, 1), (0, -1).$$

图 2.4: 情形 II (a).

(b)
$$(c_1, c_2) = (1, 0), (-1, 0).$$

III.
$$B = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$
. 变换 $x = r \cos \theta$, $y = r \sin \theta \Rightarrow r = c_1 e^{\alpha t}$, $\theta = \beta t + c_2$.

III-1 焦点 (不稳定): $\alpha > 0, \beta > 0$.

 $^{^{1}}$ 相似: X = TY, $\dot{X} = AX$, Y = BY

图 2.5: 情形 II (b).

图 2.6: 不稳定焦点

III-2 焦点 (稳定): $\alpha < 0, \beta < 0$. 其它两种类似!

图 2.7: 稳定焦点

III-3 中心: $\alpha = 0$, $r = c_1$, $\theta = \beta t + c_2$. (特别)

图 2.8: 中心型奇点

总结:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $|A| \neq 0$, 特征值 λ_1 , λ_2 :

i Re λ_1 , Re $\lambda_2 < 0$, 稳定的焦点或结点; Re λ_1 , Re $\lambda_2 > 0$, 不稳定的焦点或结点.

2.1 奇点, 稳定性 29

ii $\operatorname{Re} \lambda_1 \cdot \operatorname{Re} \lambda_2 < 0$, 鞍点. 此时, $\operatorname{Re} \lambda_i = \lambda_i$.

iii $\operatorname{Re} \lambda_1 = \operatorname{Re} \lambda_2 = 0$, 中心.

奇点类型 i 和 ii 称为双曲型, iii 称为非双曲的. |A|=0, 奇点 = 奇线, 奇点的连续统.

一般线性常微分方程解为:

$$c_1 e^{\operatorname{Re} \lambda_1 t} P(\cos t, \sin t) Q(t) + c_2 e^{\operatorname{Re} \lambda_2 t} \Delta$$
 (2.5)

奇点类型 i.

图 2.9: 类型 i.

奇点类型 ii.

图 2.10: 鞍点

奇点类型 iii.

图 2.11: 中心

例 2.2 给出 Lotka-Volterra 系统 (例 2.1) 正平衡点 (x_1^*, x_2^*) 处线性系统稳定、不稳定、鞍点、中心的条件.

2.2 非线性奇点

定义 2.1 奇点某领域没有其他奇点 ⇒ 孤立奇点.

二维非线性系统

$$\dot{x} = ax + by + \Phi(x, y),$$

$$\dot{y} = cx + dy + \Psi(x, y).$$
(2.6)

其对应线性系统为

$$\dot{x} = ax + by,$$

$$\dot{y} = cx + dy.$$
(2.7)

在条件 $\Phi(0,0) = \Psi(0,0) = 0$ 下, (0,0) 是方程组 (2.6) 和 (2.7) 的奇点.

定义 **2.2** (二维)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的特征值是 λ_1, λ_2 ,

- 1. Re $\lambda_i \neq 0$ ⇒ 双曲奇点, 如: 焦点、鞍点、结点;
- 2. Re $\lambda_i = 0 \Rightarrow$ 非双曲奇点, 如: 中心.

一般
$$\dot{x} = f(x), A = D f(0), x = Ax$$
.

定义 2.3 (n 维) λ_i 为A 的特征值 (i = 1, ..., n),

- 1. $\forall \operatorname{Re} \lambda_i \neq 0 \Rightarrow$ 双曲奇点;
- 2. $\exists \operatorname{Re} \lambda_i = 0 \Rightarrow 非双曲奇点.$

特别的.

- 1. $\forall \operatorname{Re} \lambda_i > 0 \Leftrightarrow 0 为源;$
- 2. $\forall \operatorname{Re} \lambda_i < 0 \Leftrightarrow 0 为渊$.

定理 2.2 (Hartmon) 双曲奇点邻域中线性与非线性系统同胚 (连续可逆一一映射). (定性性质相同)

注 2.1 对于 $\dot{x} = f(x)$, 其线性系统为 $\dot{x} = Ax$, 原点为线性系统中心, 但对于非线性系统, 原点可为焦点 (稳定或不稳定) 或中心.

2.3 稳定性 31

图 2.12: 双曲奇点线性系统与非线性系统同胚.

图 2.13: 原点线性系统为中心, 原系统原点不一定为中心.

图 2.14: 局部稳定.

2.3 稳定性

定义 2.4

- 1. $\forall U \ni x^*, \exists V \subset U, x^* \in V$ 使得当 $x^0 \in V \Rightarrow x(t) \in U$. $\Rightarrow x^* (局部) 稳定, 否则称为不稳定. 特别的, 当 <math>U = V$ 时, $\forall U, \forall x^0 \in U \Rightarrow x(t) \in U$.
- 2. $\exists W \Rightarrow x^*, \forall x^0 \in \overline{W}, \lim_{t \to \infty} x(t) = x^*.$ $\Rightarrow x^* (局部) 吸引.$
- 3. 稳定 ⊕吸引 ⇒ 渐进稳定.

问题: 稳定是否蕴含吸引? 定义1 ⇒ 2, 因为中心是稳定的但不是吸引的.

图 2.15: 是吸引的, 但不是稳定的奇点. 苏联二十世纪五十年代.

定义2 ⇒ 1, 如图 对于二维非线性系统

现假设其系数矩阵 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的特征值为 $\operatorname{Re} \lambda_i \neq 0$.

定理 **2.3** $|A| \neq 0$,

- 1. Re $\lambda_{1,2}$ < 0 ⇒ 方程组 (2.6) 在原点渐近稳定;
- 2. $\exists \operatorname{Re} \lambda_i > 0 \Rightarrow 方程组 (2.6)$ 在原点是不稳定的.

对于一般的平面系统

$$\dot{x} = P(x, y),
\dot{y} = Q(x, y).$$
(2.8)

有 Lyapunov 稳定性理论. (1885 年, 博士论文, 用辅助函数 \Rightarrow 稳定性, LaSalle 在 1960 年将 Lyapunov 定理推广, 即 LaSalle 不变性原理.)

本节的三大内容:

- 1. Lyapunov (局部稳定性理论);
- 2. 平面系统(双曲型)稳定性判断;
- 3. 中心焦点型奇点判定(编程).

2.3.1 Lyapunov (Liapunov) 稳定性定理

定义 2.5 V(x) (V(0) = 0) 在原点邻域 ($N = N(0) \setminus \{0\}$):

2.3 稳定性 33

- (i) 正定: $V(x) > 0, x \in N$;
- (ii) 负定: $V(x) < 0, x \in N$;
- (iii) 半正定: $V(x) \ge 0, x \in N$;
- (iv) 半负定: $V(x) \le 0, x \in N$.

定理 2.4 (Lyapunov, 教材引理2.5) 若方程 (2.8) 存在函数 V(x, y), 使得

$$V(0,0)=0,$$

且:

- (i) V(x,y) 在 (0,0) 邻域正定;
- (ii) $\dot{V}(x,y)$ 在 (0,0) 邻域负定,

则(0,0)点是渐进稳定的.

解释:

(i) V(x,y) 正定, 见图 2.16.

图 2.16: V(x,y) 正定示意图.

V(x,y) = c, c 充分小时, 截面图形是闭曲线, 如图 2.17.

图 2.17: 截面示意图.

(ii) $\dot{V}(x,y)$ 负定的定义及意义.

设 (x(t), y(t)) 为解, 带入 V(x, y) 有,

$$\begin{split} \dot{V}(x,y) &= \frac{\mathrm{d}(V(x(t),y(t)))}{\mathrm{d}t} \\ &= V_x \cdot \dot{x} + V_y \cdot \dot{y} \\ &= V_x \cdot P(x,y) + V_y \cdot Q(x,y) < 0, \end{split}$$

⇒ V(x(t), y(t)) 关于 t 严格单调递减,

$$\Rightarrow V(x(0), y(0)) = c_1, V(x(t), y(t)) = c_2, t > 0,$$

$$\Rightarrow c_2 < c_1$$
.

联合条件 (i) 与 (ii), 得示意图 2.18.

图 2.18: Lyapunov 定理示意图.

证明:

1) 稳定性.

设V在N中正定,

(a) 在N中任取 ε 球

$$B_{\varepsilon} = \{(x, y) \mid x^2 + y^2 \le \varepsilon^2\}.$$

- (b) $\diamondsuit m = \min_{x^2 + y^2 = \varepsilon^2} V(x, y) > 0.$
- (c) 对 l < m, 存在 $\delta > 0$, 当 $x^2 + y^2 < \delta$ 时,

$$V(x, y) < l (:: V(0, 0) = 0).$$

如图 2.19.

(d) :: 在 $N + \dot{V}(x, y) < 0$,

$$\Rightarrow \stackrel{\text{\tiny ω}}{=} x_0^2 + y_0^2 < \delta^2$$
,

$$\Rightarrow V(x(t), y(t)) < V(x_0, y_0) < l < m,$$

$$\Rightarrow x^2(t) + y^2(t) < \varepsilon^2$$
.稳定!

2.3 稳定性 35

图 2.19: *l* < *m*.

2) 吸引性.

 $\forall M > 0$ 由稳定性, 存在 $\delta > 0$, 当 $x_0^2 + y_0^2 < \delta^2$ 时,

$$||(x(t), y(t))|| \le M.$$
 (2.9)

反设, $t \to +\infty$, $V(x(t), y(t)) \to c > 0$, 单调递减有极限, 不趋于零,

$$\Rightarrow \exists m > 0, \ \exists t > t_0, \ \|(x(t), y(t))\| \ge m. \tag{2.10}$$

记 h(<0) 为 $\dot{V}(x,y)$ 在 (2.9) \oplus (2.10) 区域中的最大值, 当 $t>t_0$ 时:

$$V(x(t), y(t)) - V(x_0, y_0) = \int_{t_0}^t \frac{dV}{dt} dt \le h(t - t_0).$$

 $t \to \infty$ 时, 由上式得常数 ≤ -∞, 矛盾!

注 2.2 1885 年, Lyapunov → 1960 年, LaSalle. ²

注 2.3 1950 年, V 无穷大 ⇒ 全局(整体) 稳定: 局部稳定 ⊕ 全局吸引.

1. V正定; 2. V负定; 3. V无穷大.

$$V(\xi), \ \xi \in G, \ \xi \to \partial G, \ V \to +\infty.$$

即对 $\forall c, V(x, y) = c$ 的截面都是闭曲线.

注 2.4 V 函数在特殊情况下可构造出来.

LaSalle J P. 动力系统的稳定性[M]. 成都: 四川科学技术出版社, 2002.

Hofbauer J, Sigmund K. 进化对策与种群动力学[M]. 成都: 四川科学技术出版社, 2002.

²参考书:

图 2.20: 注 2.3.

注 2.5 $\dot{x} = y, \dot{y} = -x - y,$ 特征根为 $\frac{-1 \pm \sqrt{3}i}{2}$.

1. 线性分析 ⇒ 结点稳定性;

2.

$$V_1 = x^2 + y^2$$
, $\dot{V}_1 = -2y^2$,
 $V_2 = 3x^2 + 2xy + 2y^2$, $\dot{V}_2 = -2(x^2 + y^2)$.

注 **2.6** $\dot{x} = y, \dot{y} = -x$, 取 $V = x^2 + y^2, \dot{V} = 0, V = c$ 称为不变曲线 $L: (x_0, y_0) \in L \Rightarrow (x(t), y(t)) \in L, \forall t$.

定理 2.5 (教材定理 2.4) 双曲奇点的稳定性由其线性系统确定.

证明:

1) λ, μ 是实根

$$\dot{u} = \lambda u + f_1(u, v),$$

 $\dot{v} = \mu v + f_2(u, v).$ (2.11)

取 $V = u^2 + v^2$ (正定) $\Rightarrow \dot{V} = 2\lambda u^2 + 2\mu v^2 + o(u^2 + v^2)$.

- a) $\lambda, \mu < 0 \Rightarrow \dot{V}$ 负定 \Rightarrow 渐近稳定.
- b) $\lambda, \mu > 0 \Rightarrow \dot{V}$ 正定 \Rightarrow 不稳定.
- c) $V = \lambda u^2 + \mu v^2 (\lambda \cdot \mu < 0, 不定的),$ $\dot{V} = 2\lambda^2 u^2 + 3\mu^2 v^2 + o(u^2 + v^2)$ (正定), \Rightarrow 不稳定.
- 2) 线性系统有重根.

$$D = ad - bc > 0, T = a + d \neq 0, T^2 - 4D = 0, \lambda = \frac{T}{2}$$
 (二重根).

$$V = D(x^2 + y^2) + (ay - cx)^2 + (by - dx)^2 > 0,$$

2.4 中心焦点判定

37

$$\dot{V} = 2(a+d)(ad-bc)(x^2+y^2) + o(x^2+y^2)$$
$$= 2 \cdot T \cdot D(x^2+y^2) + o(x^2+y^2) \le 0 \ (T \ge 0).$$

3) $\alpha \pm i\beta$.

$$\dot{u} = \alpha u - \beta v + \text{h.o.t,}$$

$$\dot{v} = \beta u + \alpha v + \text{h.o.t.}$$

令
$$V = u^2 + v^2$$
, $\dot{V} = 2\alpha(u^2 + v^2) + o\left((u^2 + v^2)^{\frac{3}{2}}\right)$,
 $\Rightarrow \alpha < 0$, 稳定; $\alpha > 0$, 不稳定. 证毕.

注 2.7 非双曲情况: $\alpha = 0$ (线性部分为中心), $\dot{V} = o\left((u^2 + v^2)^{\frac{3}{2}}\right)$. 其稳定性如何?

2.4 中心焦点判定

线性系统

$$\dot{x} = -y, \ \dot{y} = x,$$

的平衡点为中心,那么此时对应的非线性系统:

$$\dot{x} = -y + P(x, y), \ \dot{y} = x + Q(x, y),$$

其稳定性如何?

例 2.3

$$\dot{x} = -y - y(x^2 + y^2),$$

 $\dot{y} = x + x(x^2 + y^2).$

解: $V = x^2 + y^2$, $\dot{V} = 0 \Rightarrow V = c$, 中心 \rightarrow 中心.

例 2.4

$$\dot{x} = y + ax(x^2 + y^2),$$

 $\dot{y} = -x + ay(x^2 + y^2).$

解: $V = x^2 + y^2$, $\dot{V} = a(x^2 + y^2)^2$, 中心 \rightarrow 焦点. (a < 0 稳定, a > 0 不稳定.)

例 2.5

$$\dot{x} = y + x(1 - x^2 - y^2),$$

$$\dot{y} = -x + y(1 - x^2 - y^2).$$

图 2.21: 极限环.

解: $V = x^2 + y^2$, $\dot{V} = V(1 - V)$.

极限环 (limit cycle): 周期解邻域内无其它周期解, 也称为孤立周期解.

例 2.6

$$\dot{x} = -y - axy - y^2,$$

$$\dot{y} = x + ax^2.$$

解:

1.

$$V_1 = x^2 + y^2,$$

$$\dot{V}_1 = -2xy^2.$$

2.

$$V_2 = V_1 + \left(\frac{2}{3}y^3\right),$$
$$\dot{V}_2 = 2ax^2y^2.$$

3.

$$V_3 = V_2 + \left(x^4 + \frac{1}{4}ax^3y + 2x^2y^2 - \frac{1}{4}axy^3 + y^4\right),$$

$$\dot{V}_3 = \frac{1}{2}a(x^2 + y^2)^2 + \text{h.o.t.}$$

问题:

1. 如何寻找 V 函数?

2.4 中心焦点判定

39

- 2. 有没有一般的方法?
- 3. 能否用 Maple 做成算法程序?

启示: Taylor 展开, 可用来判断极大极小值:

$$f(x) - f(0) = f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + \cdots$$

算法化论证(求解)

$$\dot{x} = -y - axy - y^2 = P(x, y),$$

$$\dot{y} = x + ax = Q(x, y).$$

解: (形式幂级数法) $V_1 = x^2 + y^2$, 此函数无效.

令

$$V_{2} = V_{1} + (Ax^{3} + Bx^{2}y + Cxy^{2} + Dy^{3})$$

$$\dot{V}_{2} = V_{2x} \cdot \dot{x} + V_{2y} \cdot \dot{y}$$

$$= V_{2x} \cdot P(x, y) + V_{2y} \cdot Q(x, y)$$

$$= (2x + 3Ax^{2} + 2Bxy + Cy^{2})(-y - axy - y^{2})$$

$$+ (2y + Bx^{2} + 2Cxy + 3Dy^{2})(x + ax^{2}).$$

要求三次同类项全为 0. (此时, 三次项为最低项. V 的最低次项不为"奇".) 即

$$Bx^{3} + (2C - 3A)x^{2}y + (3D - 2B - 2)xy^{2} - Cy^{3} \equiv 0,$$

 $\Rightarrow B = A = C = 0, D = \frac{3}{2},$
 $\Rightarrow V_{2} = V_{1} + \frac{2}{3}y^{3},$
 $\Rightarrow \dot{V}_{2} = 2ax^{2}y^{2}.$

令

$$V_{3} = V_{2} + (Ax^{4} + Bx^{3}y + Cx^{2}y^{2} + Dxy^{3} + Ey^{4}),$$

$$\dot{V}_{3} = V_{3x} \cdot P(x, y) + V_{3y} \cdot Q(x, y) \stackrel{\triangle}{=} L_{1}(x^{2} + y^{2})^{2} + o(r^{2}))^{3}$$

$$= (2x + 4Ax^{3} + 3Bx^{2}y + 2Cxy^{2} + Dy^{3})(-y - axy - y^{2})$$

$$+ (2y + 2y^{2} + Bx^{3} + 2Cx^{2}y + 3Dxy^{2} + 4Ey^{3})(x + ax^{2}).$$

比较四次项:(此时二次项,三次项均为0)

$$x^{4} : B = L,$$

$$x^{3}y : -4A + 2C = 0,$$

$$x^{2}y^{2} : 2a - 3B + 3D = 2C,$$

$$xy^{3} : -2C + 4E = 0,$$

$$y^{4} : -D = L,$$

$$\Rightarrow C = 2, A = 1, E = 1, L = \frac{a}{4}, b = -\frac{a}{4}, B = \frac{a}{4},$$

$$\Rightarrow V_{3} = (x^{2} + y^{2}) + \left(\frac{2}{3}y^{2}\right) + \left(x^{4} + \frac{a}{4}x^{3}y + 2x^{2}y^{2} - \frac{a}{4}xy^{3} + y^{4}\right),$$

$$\dot{V}_{3} = \frac{a}{4}(x^{2} + y^{2})^{2} + o(r^{2}).$$

中心焦点—极坐标

① 系统 (有线性中心)

$$\dot{x} = -y + U(x, y),$$

$$\dot{y} = x + V(x, y).$$

② 极坐标,

$$x = r\cos\theta, \ y = r\sin\theta,$$
$$\frac{dr}{dt} = rR(r, \theta), \ \frac{d\theta}{dt} = 1 + Q(r, \theta).$$

3

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{rR(r,\theta)}{1 + Q(r,\theta)} = R_2(\theta)r^2 + R_3(\theta)r^3 + \cdots$$
 (2.12)

 $R_i(\theta)$ 是 cos θ 与 sin θ 的函数, 以 2 π 为周期.

- ④ 解的图形.
- ⑤ Poincaré 映射.

$$P: c \to P(c) = r(\theta, c)|_{\theta=2\pi} = r(2\pi, c),$$

i)
$$P(0) = 0$$
.

ii)
$$P(c) = c (c 为 P 的不动点) \Rightarrow r(\theta, c) 为闭轨.$$

2.4 中心焦点判定 41

图 2.22: 解的图形示意图.

图 2.23: Poincaré 映射示意图.

⑥ 后继函数

$$F(c) = P(c) - c.$$

F(c) 有非 0 零点 ⇒ 闭轨.

问题: 如何确定 $r(\theta, c)$?

⑦ 幂级数法,将 $r(\theta,c)$ 展为 c 的级数:

$$r(\theta, c) = r_1(\theta)c + r_2(\theta)c^2 + \cdots$$
 (2.13)

将 (2.13) 代入方程 (2.12), 求 $r_i(\theta)$.

注 **2.8**
$$r(0,c) = c \Rightarrow r_1(\theta) = 1, r_i(0) = 0, i = 2,3,...$$

注 **2.9** $\forall i, r_i(\theta) = r_i(2\pi + \theta) \Rightarrow r(\theta, c)$ 闭轨, 即 $r(2\pi, c) = c$.

例 2.7

$$\dot{x} = -y - axy - y^2,$$

$$\dot{y} = x + ax^2.$$

³此处也可以令为 Lx^4 , Ly^4 , 称 L_1 为一阶焦点量, 以后称 $L_2(x^2+y^2)^3$, $L_3(x^2+y^2)^4$, ... 中的 L_2 为二阶焦点量, L_3 为三阶焦点量, ...; $r=x^2+y^2$.

$$\mathbf{PF}: \ \diamondsuit \ x = r\cos\theta, \ y = r\sin\theta,$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -r^2\cos\theta\sin^2\theta,$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 + r(a\cos\theta + \sin^3\theta) > 0,$$

$$\stackrel{\grave{=}}{=} 1 + r\Phi(\theta),$$

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{-r^2\cos\theta\sin^2\theta}{1 + r\Phi(\theta)}$$

$$= -r^2\cos\theta\sin^2\theta \left(1 - \Phi(\theta)r + (\Phi(\theta)r)^2 - (\Phi(\theta)r)^3 + \cdots\right)$$

$$= r^2(-\cos\theta\sin^2\theta) + r^3(\Phi(\theta)\cos\theta\sin^2\theta) + \cdots$$

比较 c 的同次项有:

$$r'_{1}(\theta) = 0,$$

$$r'_{2}(\theta) = -r_{1}^{2}(\theta)\cos\theta\sin^{2}\theta,$$

$$r'_{3}(\theta) = r_{1}(\theta)\cos\theta\sin^{2}\theta\left(r_{1}^{2}(\theta)\Phi(\theta) - 2r_{2}(\theta)\right),$$
...,

可逐次求解.

代入初始条件:
$$r_1(0) = 1$$
, $r_i(0) = 0$, $\forall i = 2, 3, \dots$ 有:

i)
$$r_1(\theta) = 1$$
;

ii)
$$r'_2(\theta) = -\cos\theta \sin^2\theta$$
,

$$\Rightarrow r_2(\theta) = -\frac{1}{3}\sin^3\theta$$
;

iii)
$$r_3'(\theta) = \frac{1}{3}\cos\theta\sin^2\theta\left(2\sin^3\theta + 3\Phi(\theta)\right),$$

$$\Rightarrow r_3(\theta) = \frac{a}{8}\theta + \frac{a}{8}\sin\theta\cos\theta\left(2\sin^2\theta - 1\right) + \frac{5}{18}\sin^6\theta.$$

$$\Rightarrow r(\theta, c) = c - \frac{1}{3}\sin^3\theta c^2 + \left(\frac{a}{8}\theta + \frac{a}{8}\sin\theta\cos\theta\left(2\sin^2\theta - 1\right) + \frac{5}{18}\sin^6\theta\right)c^3 + \cdots,$$

$$F(c) = P(c) - c = r(2\pi, c) - c$$

$$= \frac{a\pi}{4}c^3 + r_4(\theta)c^4 + \cdots$$

综上有,

2.5 无穷远奇点(多项式)

43

- a < 0 ⇒ 原点稳定;
- *a* > 0 ⇒ 原点不稳定.

其中 $L_1 = \frac{\alpha\pi}{4}$ 称为一阶焦点量.

例 2.8 例 2.7 中 $a = 0 \stackrel{?}{\Rightarrow} \forall i \geq 4, r_i(\theta) = r_i(2\pi + \theta).$

解: 事实上, a = 0, $3r^2 + 2r^3 \cos \theta = c$, $\Rightarrow 2y^3 + 3(x^2 + y^2) = c$.

c 充分小时 \Rightarrow 闭轨. 综上, a 的不同取值系统的解的图像如图 2.24.

图 2.24: 例 2.7 及例 2.8.

2.5 无穷远奇点(多项式)

对于平面系统

$$\dot{x} = P(x, y), \ \dot{y} = Q(x, y), \ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0,$$

Poincaré-Lyapunov 算法化解决了有限平面上奇点及其邻近轨线的性态问题.

现在的问题是: 在无穷远处 ($\partial \mathbb{R}^2$), 解的性态如何?

作单位球面(投影),根据图 2.25 建立坐标系.

由图 2.25 得: O, M, M₁ 共线, 即 (0,0,0), (x, y, 1), (X, Y, Z) 共线. 有

$$\Rightarrow \frac{X}{x} = \frac{Y}{y} = \frac{Z}{1}.$$

即将无穷远点映到了赤道上.

注 2.10

i)
$$X^2 + Y^2 + Z^2 = 1$$
.

图 2.25: Poincaré 变换.

ii) 赤道 (X, Y, 0) 对应 (x, y) 平面无穷远点.

iii)

$$X = \frac{x}{\sqrt{1 + x^2 + y^2}},$$

$$Y = \frac{y}{\sqrt{1 + x^2 + y^2}},$$

$$Z = \frac{1}{\sqrt{1 + x^2 + y^2}},$$

而对应的 X, Y 的方向是? 令 $x = r \cos \theta, y = r \sin \theta$ 有:

$$X = \frac{r}{\sqrt{1+r^2}} \cos \theta, \ Y = \frac{r}{\sqrt{1+r^2}} \sin \theta, \ Z = \frac{1}{\sqrt{1+r^2}},$$
$$X \to \cos \theta, \ Y \to \sin \theta, \ Z \to 0, \ \ \, \exists \ r \to \infty.$$

注 2.11

- i) 无穷远点: 常点, 奇点.
- ii) X, Y 平面上沿 $(\cos \theta, \sin \theta)$ 的无穷远点对应赤道 (单位球) 上点 $(\cos \theta, \sin \theta, 0)$.

接下来建立 β 平面, MO与 β 面交于 M_2 , $M(\alpha$ 面), $M_2(\beta$ 面), O 共线.

$$\frac{x}{1} = \frac{y}{u} = \frac{1}{z}.$$

45

这建立了 (x,y) 与 (u,z) 的一个关系 (除 y 轴外). 此即 Poincaré 变换:

$$x = \frac{1}{z}, \ y = \frac{u}{z} \ (z \neq 0), \ \ \vec{\boxtimes} \ u = \frac{y}{x}, \ z = \frac{1}{x}.$$

由方程 (2.1) 有,

$$\frac{\mathrm{d}u}{\mathrm{d}t} = zQ\left(\frac{1}{z}, \frac{u}{z}\right) - uzP\left(\frac{1}{z}, \frac{u}{z}\right),$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = -z^2P\left(\frac{1}{z}, \frac{u}{z}\right).$$
(2.14)

注 2.12

- i) 方程 $(2.1) \in \alpha \Leftrightarrow (2.14) \in \beta (z \neq 0)$.
- ii) z=0 对应 α 平面上的无穷远点. (将 α 上无穷远点映成 β 上有限远点.)

整理 (2.14) 得:

$$\frac{du}{dt} = \frac{P^*(u,z)}{z^m}, \ \frac{dz}{dt} = \frac{Q^*(u,z)}{z^m}.$$
 (2.15)

其中 P^* , Q^* 是互质多项式, m 是正整数.

由积分因子理论有:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \mu(u, z)P^*(u, z), \ \frac{\mathrm{d}z}{\mathrm{d}t} = \mu(u, z)Q^*(u, z),$$

与

$$\frac{\mathrm{d}z}{\mathrm{d}t} = P^*(u, z), \ \frac{\mathrm{d}z}{\mathrm{d}t} = Q^*(u, z),$$

两者解是一样的 (方向除外, $\mu(u,z) \neq 0$).

作变换 (去分母): $z^m d\tau = dt$, 得到:

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = P^*(u, z),$$

$$\frac{\mathrm{d}z}{\mathrm{d}\tau} = Q^*(u, z).$$
(2.16)

这个变换使得 α 平面上的有限远奇点变为了 β 面上的有限远奇点, 无穷远奇点变为了 β 面上 z=0 的有限远奇点.

注 2.13

- 1. $z \neq 0$, m 为偶数或奇数, z > 0, ⇒ (2.15), (2.16) 轨线同向.
- 2. m 为奇数, z < 0.
 - ⇒ (2.15), (2.16) 轨线反向.

3. 无穷远奇点满足:

$$P^*(u^*, 0) = Q^*(u^*, 0) = 0 \left(x = \frac{1}{z}, \ y = \frac{u}{z} \right),$$

 $\Rightarrow y = u^*x, x \to \pm \infty, z \to 0.$

(u*,0) 对应方程 (2.1) 一对无穷远奇点.

Y 轴的 Poincaré 变换:

得到

$$\frac{\mathrm{d}v}{\mathrm{d}\tau} = \bar{P}(v, z), \ \frac{\mathrm{d}z}{\mathrm{d}\tau} = \bar{Q}(v, z).$$

将赤道与下半球面垂直下投得到:

1

$$x = \frac{1}{z}, \qquad u = \frac{y}{x}$$

$$y = \frac{u}{z}, \qquad z = \frac{1}{x}$$

图 2.26: 原系统 → uz 平面.

- (a) u>0, z>0 (图中阴影部分) $\Leftrightarrow x>0, y>0$.
- (b) $u > 0, z < 0 \Leftrightarrow x < 0, y < 0$.

$$x = \frac{v}{z}, \ y = \frac{1}{z}.$$

47

图 2.27: 原系统 → vz 平面.

例 2.9 奇点分析举例:

$$\dot{x} = x(3 - x - 5y) = f,
\dot{y} = y(-1 + x + y) = g.$$
(2.17)

解: ① 有限奇点: $O(0,0), A(3,0), B(0,1), E\left(\frac{1}{2}, \frac{1}{2}\right)$.

Jacobian

$$\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} = \begin{pmatrix} 3 - 2x - 5y & -5x \\ y & -1 + x + 2y \end{pmatrix}.$$

O 的 Jacobian 为 $\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$, 鞍点.

A 的 Jacobian 为 $\begin{pmatrix} -3 & -15 \\ 0 & 2 \end{pmatrix}$, 鞍点.

B 的 Jacobian 为 $\begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$, 鞍点.

E 的 Jacobian 为 $\begin{pmatrix} -\frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, 可能为中心. 再考虑 $V = xy^3 \left(\frac{1}{3}x + y - 1 \right)^2$, $\dot{V}|_{(2.17)} = 0 \Rightarrow E$ 为中心.

$$A (y = 0), \dot{x} = x(3 - x),$$

$$B(x = 0), \dot{y} = y(y - 1),$$

$$O(x = 0), \dot{y} = y(y - 1) = -y + y^2.$$

② 无穷远奇点:

图 2.28: 有限奇点相图.

(a) 作 Poincaré 变换 (非 y 轴上).

$$x = \frac{1}{z}, \ y = \frac{u}{z} \ (z \neq 0), (2.17) \quad \Rightarrow \begin{array}{c} \dot{z} = -3z + 1 + 5u, \\ z\dot{u} = u(-z + 1 + u) + u(-3z + 1 + 5u). \end{array}$$

 $dt = z d\tau 有.$

$$\dot{z} = z(1 - 3z + 5u),$$

 $\dot{u} = u(2 - 4z + 6u).$

当 z = 0 时, u 轴上对应的不在 y 轴上的无穷远点 C(0,0), $D\left(-\frac{1}{3},0\right)$. Jacobian 分别为

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} -2 & \frac{4}{3} \\ 0 & -\frac{2}{3} \end{pmatrix}$$

不稳定结点, 稳定结点,

(b) $x = \frac{v}{z}, y = \frac{1}{z}$ (y 轴). \Rightarrow d $t = z\tau$ \uparrow \uparrow ,

$$\dot{z} = z(-1 + z - v),$$

 $\dot{v} = v(-6 + 4z - 2v).$

O(0,0) 的 Jacobian 为 $\begin{pmatrix} -1 & 0 \\ 0 & -6 \end{pmatrix}$, 稳定结点.

例 2.10 Lotka-Volterra 系统, 1925 年,

$$\dot{x}_1 = x_1(r_1 + a_{11}x_1 + a_{12}x_2),$$

$$\dot{x}_2 = x_2(r_2 + a_{21}x_1 + a_{22}x_2).$$

2.6 奇点的指标 49

图 2.29: 无穷远点相图.

条件: $\exists x^* = (x_1^*, x_2^*) > 0$, $a_{11} < 0$, $a_{22} < 0$, x^* 局部渐近稳定. 用 Lyapunov 函数

$$V(x) = c_1(x_1 - x_1^* \ln x_1) + c_2(x_2 - x_2^* \ln x_2),$$

证明: x* 是全局渐近稳定的 (G. A. S). 4

1983年, Grossberger 用上面的思想构造 Neural Network.

1986年, Prey-Predator System — Do we live in a Volterra world?

2000年, Korobeinikov 用 V(x) 解决了 70-90 年代产生的一大批如 HIV、癌症、传染病等模型.

2.6 奇点的指标

连续向量场:

$$\dot{x} = P(x, y), \ \dot{y} = Q(x, y),$$

 $(P(x, y), Q(x, y)), \ (x, y) \in \mathbb{R}^2.$ (2.18)

记 N 为 \mathbb{R}^2 上的光滑闭曲线, 且不含方程 (2.18) 的奇点.

定义 2.6 动点 (x,y) 沿着 N 逆时针转动一周, 向量场转了整数圈 j (角度为 $2\pi j$), j 为 方程 (2.18) 沿着 N 的旋转度.

闭曲线 N 为闭轨 (周期解) \Rightarrow (P, Q) 沿 N 的旋转度 j = 1. 如图 2.32. 可将系统

$$\dot{x} = P(x, y), \ \dot{y} = Q(x, y),$$

写为如下形式

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Q(x,y)}{P(x,y)}.$$

⁴1. V 正定; 2. V 负定; 3. V 无穷.⇒ G. A. S..

图 2.30: 常点, j = 0.

图 2.31: 结点, j = 1.

图 2.32: 闭轨, j = 1.

令 θ 为向量场与x轴的夹角,即,

$$\tan \theta = \frac{dy}{dx} = \frac{Q(x, y)}{P(x, y)},$$
$$\theta = \arctan \frac{Q(x, y)}{P(x, y)}.$$

方程 (2.18) 沿着 N 旋转度为 j,

$$j = \frac{1}{2\pi} \oint_{N} d\theta = \frac{1}{2\pi} \oint_{N} d \arctan \frac{Q}{P}$$
$$= \frac{1}{2\pi} \oint_{N} \frac{P dQ - Q dP}{P^{2} + Q^{2}}.$$

2.6 奇点的指标 51

图 2.33: 鞍点, *j* = −1.

定理 2.6 闭曲线 N 所围区域无奇点,则 j=0.

证明:

$$j = \frac{1}{2\pi} \oint_{N} \frac{P \, dQ - Q \, dP}{P^{2} + Q^{2}} = 0.$$

- 1. 单连通;
- 2. 全微分. 证毕.

定理 2.7 (Hopf) 方程 (2.18) 沿闭轨线旋转度为 1.

推论 2.8 闭轨线内必有奇点.

推论 2.9 闭曲线 N_1, N_2 所围成的环形区域无奇点 $\Rightarrow N_1, N_2$ 旋转度相等.

图 2.34: 推论 2.9.

证明:由

$$\bar{N} = \overrightarrow{AB} + N_1 + \overrightarrow{BA} + N_2$$

可得

$$\oint_{\bar{N}} \frac{P \, \mathrm{d}Q - Q \, \mathrm{d}P}{P^2 + Q^2} = 0.$$

而

$$\oint_{\bar{N}} = \oint_{N_1} + \int_{B}^{A} - \oint_{N_2} + \int_{A}^{B} = 0.$$

所以有, $j_{N_1} = j_{N_2}$.

证毕.

定义 2.7 闭曲线 N 仅含方程 (2.18) 的一个奇点 (x_0, y_0) , 则 (x_0, y_0) 的指标 = j_N .

定理 2.10 鞍点: j = -1, 非鞍点 (Anti-Saddle): j = 1.

证明: 设方程 (2.18) 的奇点为 (0,0).

$$\dot{x} = ax + by + f(x, y) = P,$$

$$\dot{y} = cx + dy + g(x, y) = Q,$$

$$(ad - bc \neq 0).$$

在 N_{δ} ((0,0) 的 δ 邻域) 内有,

$$j_{\delta} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{P \, \mathrm{d}Q - Q \, \mathrm{d}P}{P^{2} + Q^{2}}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(ax + by + f(x, y)) \left(\frac{\partial Q}{\partial x} \, \mathrm{d}x + \frac{\partial Q}{\partial y} \, \mathrm{d}y\right)}{(ax + by + f(x, y))^{2} + (cx + dy + g(x, y))^{2}}$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(cx + dy + g(x, y)) \left(\frac{\partial P}{\partial x} \, \mathrm{d}x + \frac{\partial P}{\partial y} \, \mathrm{d}y\right)}{(ax + by + f(x, y))^{2} + (cx + dy + g(x, y))^{2}}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(ax + by + f(x, y)) \left(\left(c + \frac{\partial g(x, y)}{\partial x}\right) \, \mathrm{d}x + \left(d + \frac{\partial g(x, y)}{\partial y}\right) \, \mathrm{d}y\right)}{(ax + by + f(x, y))^{2} + (cx + dy + g(x, y))^{2}}$$

$$- \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(cx + dy + g(x, y)) \left(\left(a + \frac{\partial f(x, y)}{\partial x}\right) \, \mathrm{d}x + \left(b + \frac{\partial f(x, y)}{\partial y}\right) \, \mathrm{d}y\right)}{(ax + by + f(x, y))^{2} + (cx + dy + g(x, y))^{2}}.$$

$$\begin{split} j_{\delta} &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\delta^{2}(a\cos\theta + b\sin\theta)(d\cos\theta - c\sin\theta) \,\mathrm{d}\theta}{\delta^{2}(a\cos\theta + b\sin\theta + \delta f(\delta,\theta))^{2} + \delta^{2}(c\cos\theta + d\sin\theta + \delta g(\delta,\theta))^{2}} \\ &- \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\delta^{2}(c\cos\theta + d\sin\theta)(b\cos\theta - a\sin\theta) \,\mathrm{d}\theta - \delta^{3}F(\delta,\theta) \,\mathrm{d}\theta}{\delta^{2}(a\cos\theta + b\sin\theta + \delta f(\delta,\theta))^{2} + \delta^{2}(c\cos\theta + d\sin\theta + \delta g(\delta,\theta))^{2}} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\delta^{2}(ad - bc) \,\mathrm{d}\theta + \delta^{3}F(\delta,\theta) \,\mathrm{d}\theta}{\delta^{2}((a\cos\theta + b\sin\theta)^{2} + (c\cos\theta + d\sin\theta)^{2}) + \delta^{3}G(\delta,\theta)} \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(ad - bc) \,\mathrm{d}\theta + \Delta_{1}}{A^{2}(\theta) + B^{2}(\theta) + \Delta_{2}} \\ j_{0} &= \lim_{\delta \to 0} j_{\delta} = \frac{ad - bc}{2\pi} \int_{0}^{2\pi} \frac{\mathrm{d}\theta}{A^{2}(\theta) + B^{2}(\theta)}. \end{split}$$

而

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{\mathrm{d}\theta}{A^2(\theta) + B^2(\theta)} = \frac{1}{|ad - bc|}.$$
 $\mathbb{E}^{\frac{1}{2}}$.

2.6 奇点的指标 53

注 2.14

鞍点:
$$ad - bc < 0$$
, $j_0 = \operatorname{sgn}\left(\det \begin{vmatrix} a & b \\ c & d \end{vmatrix}\right) = -1$.

非鞍点: ad - bc > 0, $j_0 = 1$.

奇点指标 = $\operatorname{sgn} \det D(P, Q)(0)$. (行列式符号,高维奇点也是如此定义.)

推论 2.11 闭轨内奇点唯一⇒非鞍点.

定理 2.12 闭曲线 N 上无奇点, N 内奇点有限, 则 $j_N = \sum$ 奇点指标.

图 2.35: 定理 2.12.

证明:令

$$\bar{N} = N + A_1 B_1 + N_1 + B_1 A_1 + A_2 B_2 + N_2 + B_2 A_2 + A_3 B_3 + N_3 + B_3 A_3,$$

那么有,

$$\oint_{\bar{N}} = 0 \Leftrightarrow \oint_{N} = \oint_{N_{1}} + \oint_{N_{2}} + \oint_{N_{3}},$$

$$j_{N} = \sum 奇 点.$$
 证毕.

推论 2.13 闭轨线内仅有简单奇点,则个数为奇数且 N(鞍点)+1=N(非鞍点).

高阶奇点举例

例 2.11 系统

$$\dot{x} = x^2 - y^2,$$

$$\dot{y} = y,$$

有非初等奇点为(0,0).

解: $<math>\lambda_1 = 0, \lambda_2 = 1, \text{Lyapunov}$ 奇点, O—鞍、结点. 作扰动系统

$$\dot{x} = x^2 - y - \varepsilon$$

$$\dot{y} = y$$

有:

鞍点 $A = (-\sqrt{\varepsilon}, 0), j_A = -1.$

结点 $B = (\sqrt{\varepsilon}, 0), j_B = 1.$

 \forall 闭曲线 N 包含 $A, B \Rightarrow j_N = 1 + (-1) = 0$. $A \rightarrow B \rightarrow O, j_0 = j_N = 0$.

例 2.12 考虑扰动

$$\dot{x} = x^2 - y,$$

 $\dot{y} = y - \varepsilon \ (\varepsilon > 0),$

例 2.13

$$\dot{x}_1 = x_1(r_1 + a_{11}x_1 + a_{12}x_2),$$

$$\dot{x}_2 = x_2(r_2 + a_{21}x_1 + a_{22}x_2).$$

给出具体 r_i , a_{ij} (i = 1, 2) 使得

- 1. $a_{11} < 0$, $a_{22} > 0$,
- 2. \exists G. A. S., $x^* = (x_1^*, x_2^*)$.

提示: 用 Poincaré 变换 ⊕ Lyapunov.

S. B. Hsu, The Application of the Poincaré-Transform to the Lotka-Volterra Model, J. Math. Biology 6, 67-73 (1978).

第三章 平面系统的极限环

例 3.1

$$\dot{x} = -y,$$

$$\dot{y} = x.$$

中心、一族周期解(非极限环).

例 3.2

$$\dot{x} = -y + \mu x(x^2 + y^2 - 1),$$

$$\dot{y} = x + \mu y(x^2 + y^2 - 1).$$
(3.1)

解:作极坐标变换: $x = r\cos\theta$, $y = r\sin\theta$ 代入方程 (3.1) 得到

$$\dot{r} = \mu r(r^2 - 1),$$

$$\dot{\theta} = 1.$$
(3.2)

解得 $\theta = t + \theta_0$ (逆时针),

Case 1. $\mu > 0$.

奇点:
$$r = 0$$
, $r = 1$.
 $r > 1 \Rightarrow \dot{r} > 0 \Rightarrow r \checkmark +\infty$.
 $r < 1 \Rightarrow \dot{r} < 0 \Rightarrow r \curvearrowright 0$.

r = 0, 原点; r = 1, 闭轨.

Case 2. $\mu < 0$.

一般

$$\dot{x} = P(x, y),$$

$$\dot{y} = Q(x, y).$$
(3.3)

定义3.1 方程(3.3)的孤立闭轨为极限环.

图 3.1: 例 3.2.

定义 3.2 孤立闭轨: 存在极限环的 (环形) 邻域, 其中无闭轨.

系统

$$\dot{x} = P_n(x, y),$$

$$\dot{y} = Q_n(x, y).$$
(3.4)

其中, P_n , Q_n 为变量 x, y 的 n 次多项式. 1900 年, Hilbert 在国际数学家大会上作 45 分钟报告, 提出了 23 个问题, 其中有关于 H(n): $\sup\{n$ 次系统极限环的个数} 的问题:

- 1. H(n) = ?
- 2. 位置如何?

李继彬, 在 n=3 时得到了极限环位置类似如下:

图 3.2: 李继彬的极限环.

1923年, Dulac 证明了 *H*(*n*)有限 (后发现有错误).

1945 年, Bautin 证明了 $H(2) \ge 3$.

1950-52年, P-L 证明了 H(2) ≤ 3 (错误的).

1979–1980年, 陈兰荪, 王明淑, 史松龄证明了 $H(2) \ge 4$.

1983 年, 《光明日报》, Hilbert 16 问题重大突破中, $H(2) \le 4$, 结果论证细节问题较多.

1985 年, 俄罗斯, $H(2) \ge 5$, 结果陈兰荪老师觉得可能有错.

2002 年, 瑞典 4 年级本科毕业生 (女), 证明 $H(2) \le 4$, 发表于 Nonl. Anal., 2002 In Press, 结果证明有误.

2008 年, JMAA., H(2) = 4. 2006 年, $H(3) \ge 12$, 现在 $H(3) \ge 13$.

3.1 极限环的不存在性

定理 3.1 (Bendixson 判定) 方程 (3.3) 发散量 $P_x + Q_y$ 在 G 中常号且在任何子域不恒为零 \Rightarrow 方程 (3.3) 无闭轨.

证明: (反正) 假设 (3.3) 在 G 中有闭轨 L (内部为 S, 只证一般情况),

$$0 \le \iint\limits_{S} (P_x + Q_y) \, \mathrm{d}x \, \mathrm{d}y = \int\limits_{L} P \, \mathrm{d}y - Q \, \mathrm{d}x = 0.$$

矛盾! 证毕.

例 3.3

$$\dot{x} = 2xy + x^3,$$

 $\dot{y} = -x^2 + y - y^2 + y^3.$

解: 由 Bendixson 定理 (定理 3.1),

$$\Rightarrow P_x + Q_y = 2y + 3x^2 + 1 - 2y + 3y^2$$
$$= 1 + 3(x^2 + y^2) > 0,$$

则无闭轨.

例 3.4

$$\dot{x} = y$$
,
 $\dot{y} = -ax - by + cx^2 \ (b \neq 0, \exists LC?)$

解: $P_x + Q_y = -b \neq 0 \Rightarrow$ 无闭轨. (Bendixson 定理.) b = 0 时, 有首次积分, 也无极限环. 为什么? 定理 3.5.

推论 3.2 方程 (3.3) 的周期轨 L 内部 $S \Rightarrow \iint_S (P_x + Q_y) dx dy = 0$.

问题: 若 $P_x + Q_y$ 不定?

定理 3.3 (Dulac) G 单连通, $P, Q \in C^1$, $\exists B \in C^1$, 若有 $(BP)_x + (BQ)_y$ 常号 $(\neq 0)$, \forall 区域不恒为零 \Rightarrow 无闭轨.

例 3.5

$$\dot{x} = y,$$

 $\dot{y} = -ax - by + cx^2 + dy^2 \ (b \neq 0),$

解: $P_x + Q_y = -b + 2by$ (无效的). 取 Dulac 函数 $B = e^{2dx}$, $(BP)_x + (BQ)_y = -be^{-2dx} \neq 0$.

例 3.6

$$\dot{x} = -y + mxy + ny^2,$$

 $\dot{y} = x(1 + ax),$ (3.5)

解: $\dot{x}|_{x=\frac{1}{m}}=ny^2~(n>0)\Rightarrow x=\frac{1}{m}$ 是方程 (3.5) 的无切直线.

图 3.3: 例 3.6.

- ⇔ 轨线从一边穿到另一边.
- ⇒ 闭轨线位于 $x = \frac{1}{m}$ 的某一侧.

$$(BP)_x + (BQ)_y = \frac{mny^2}{(1-mx)^2}$$
, 正定或负定 (除 $y = 0$),

⇒ 无闭轨.

推论 3.4 若 E(x,y), F(x,y) 使得 $\Delta = (EP)_x + (EQ)_y + E(PF_x + QF_y) \ge 0$ 且子域 $\neq 0 \Rightarrow$ 方程 (3.3) 无闭轨.

例 3.7 证明

$$m\ddot{x} + b\dot{x} - \beta(\dot{x})^2 + \alpha x - \alpha x^2 = 0$$

无周期解. $(b \neq 0, 考虑 b = 0.)$

59

证毕.

解: 令 $y = \dot{x}$ 得到

$$\dot{x} = y,$$

$$\dot{y} = -\frac{\alpha}{m}x - \frac{b}{m}y + \frac{\alpha}{m}x^2 + \frac{\beta}{m}y^2.$$

$$\diamondsuit E=1, F=\tfrac{2\beta}{m}x\Rightarrow \Delta=-\tfrac{b}{m}.$$

定理 3.5 $P_x + Q_y = 0 \Rightarrow P dy - Q dx = 0$ 为全微分方程, (3.3) 无极限环.

证明: 全微分方程 $\Rightarrow \exists \Phi(x,y) = c$ 为通积分.

设 $\exists c^*, \exists \Phi(x, y) = c^*$ 为闭轨 $L^*, 则 c \neq c^*$.

 $L: \Phi(x,y) = c$ (轨线) 满足 $t \to \pm \infty$, $L \to L^*$.

$$t \to +\infty$$
, $(x(t), y(t)) \to (x^*(t), y^*(t))$ 与 $\Phi(x, y)$ 连续矛盾!

 $\label{eq:definition} \mbox{lim} \ \mbox{d}(\Phi(x(t),y(t)),\Phi(x^*(t),y^*(t))) = 0,$

但 $\Phi(x(t), y(t)) = c \neq \Phi(x^*(t), y^*(t)) = c^*.$

极限环 ⇔ 孤立闭轨,

⇔ 闭轨 且为 $(\alpha \to w)$ 极限,

$$\Leftrightarrow t \to \pm \infty, (x(t), y(t)) \to (x^*(t), y^*(t)).$$

例 3.8 (Lotka-Volterra 系统)

$$\dot{x}_1 = x_1(r_1 - a_{11}x_1 - a_{12}x_2) = P,$$

 $\dot{x}_2 = x_2(r_2 - a_{21}x_1 - a_{22}x_2) = Q, (1934 \, \text{\normalfont\AA}, \text{Bautin})$

不存在极限环.

解: 1. 系统有三个奇点:

$$O = (0,0), A = \left(0, \frac{r_2}{a_{22}}\right), B = \left(\frac{r_1}{a_{11}}, 0\right).$$

因为 x = 0, y = 0 为轨线 \Rightarrow 奇点外无周期解.

- 2. $\Delta = a_{11}a_{22} a_{12}a_{21} = 0$ 无闭轨.
- 3. $\Delta = a_{11}a_{22} a_{12}a_{21} \neq 0$ 奇点 $M(x_1^*, x_2^*)$.

取 Dulac 函数

$$B(x_1, x_2) = x_1^{\alpha-1} x_2^{\beta-1}, \ \alpha, \beta$$
 待定.

可以得到

$$D = (BP)_x + (BQ)_y$$

$$= B[-(a_{11}\alpha + a_{21}\beta + a_{11})x_1 - (a_{12}\alpha + a_{22}\beta + a_{22})x_2 - (\alpha r_1 + \beta r_2)].$$

- (a) $D \neq 0$, 无闭轨.
- (b) D = 0, 全微分方程 ⇒ 无极限环.

1983年, Bozme 证明. 1990年, 推广到 3维 Lotka-Volterra 系统.

3.2 极限环的存在性

定理 3.6 R 是一个环域,

- 1. 无奇点:
- 2. 向量场进(出).
- ⇒ 存在稳定 (不稳定) 的极限环.

图 3.4: 定理 3.6.

定理 3.7 D 是一个单连通区域, 包含不稳定奇点 (焦、结), 且轨线由外向内 \Rightarrow 存在稳定的极限环.

例 3.9

$$\dot{x} = -y - x(x^2 + y^2 - 1),$$

$$\dot{y} = x - y(x^2 + y^2 - 1).$$

3.2 极限环的存在性

61

图 3.5: 定理 3.7.

解: 令
$$V(x, y) = x^2 + y^2$$
,
 $\Rightarrow \dot{V}(x, y) = (x^2 + y^2)(1 - x^2 - y^2)$.
 $r_1 > 1 \Rightarrow \dot{V}|_{V=r_1^2} < 0$.
 $r_2 < 1 \Rightarrow \dot{V}|_{V=r_2^2} > 0$.

图 3.6: 例 3.9.

由定理 3.6 得存在一个极限环.

问题: 对于一般的 n?

$$\dot{x} = -y - x(x^2 + y^2 - 1)^n,$$

$$\dot{y} = x - y(x^2 + y^2 - 1)^n.$$

例 3.10 Van der Pol 方程

$$\dot{x} = y = P,$$

 $\dot{y} = -x + \mu(1 - x^2)y = Q.$ (3.6)

证明 (µ > 0) 存在 (唯一) 稳定的极限环.

证明:系统有唯一奇点 O(0,0),且不稳定.下面做外境界线 L.

水平等倾线 $Q(x,y) = -x + \mu(1-x^2)y = 0$, 得到三条分支曲线 L_1 , L_2 , L_3 , 渐近线为 x = -1, x = 1, y = 0.

(1) 在 y 轴上取一点 $A(0, y_0)$, 考虑方程

$$\dot{x} = y,$$

 $\dot{y} = \mu(1 - x^2)y.$ (3.7)

方程 (3.7) 可积, 得到 $y = \mu x = \frac{1}{3}\mu x^3 + y_0$, 与 x = 1 交于 $B(1, y_1)$, 其中 $y_1 = \frac{2}{3}\mu + y_0 > y_0$, 则在 \widehat{AB} 上的斜率 $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$ 满足

$$\frac{dy}{dx}\Big|_{3.6} = \frac{-x + \mu(1 - x^2)y}{y} < \frac{\mu(1 - x^2)y}{y} = \frac{dy}{dx}\Big|_{3.7}.$$

(2) 过 B 作圆弧

$$\dot{x} = y,
\dot{y} = -x.$$
(3.8)

交x轴于C点,则在 \widehat{BC} 上,

$$\left. \frac{dy}{dx} \right|_{3.6} < \left. \frac{dy}{dx} \right|_{3.8}$$

- (3) 过 C 作 CD ($\perp x$ 轴) 交 L_2 于 D, 由于 $\dot{x} = y < 0$, 向量场由右向左穿过 CD.
- (4) 在 L_2 上位于 D 下方取 E, 在 \widehat{DE} 上 $\hat{y} = 0$, $\hat{x} < 0$, 向量场由右向左穿过 \widehat{DE} .

(5)

$$\dot{x} = y,
\dot{y} = -x + \mu y.$$
(3.9)

由对称性与定理 3.7, 存在稳定的极限环.

50年代,苏联研究了方程

$$\dot{y} = -\chi + x^2 + xy + y^2,$$

 $\dot{x} = -\chi + x^2 + xy + y^2, \quad \dot{x} = 2 \text{ and } 3 \text{ an$

80年代,国内研究种群动力系统的人考虑方程

$$\dot{x} = P_n,$$

$$\dot{y} = Q_m, \ n, m = 3, 4.$$

其中 P_n , Q_m 为缺项的多项式, 得到了比较完整的结果.

$$\dot{x} =$$
分式, $\dot{y} =$ 分式,

也得到了比较好的结果,使用的方法都是境界线法.

图 3.7: 例 3.10.

定理 3.8 Liénard 方程

$$\dot{x} = -\varphi(y) - F(x),$$

$$\dot{y} = g(x).$$
(3.10)

其中 $F(x) = \int_0^x f(x)dx$,

- (a) $\varphi(0) = 0, \varphi'(y) > 0;$
- (b) xg(x) > 0, $G(\pm \infty) = \pm \infty$, $G(x) = \int_0^x g(x) dx$;
- (c) f(0) < 0, f(x)/g(x) 在 $(-\infty, 0)$, $(0, +\infty)$ 不降, $0 < |x| \le 1$, $f(x)/g(x) \ne 常数.$

则极限环唯一(至多一个, 存在就是稳定的).

例 3.11 Van der Pol 方程

$$\ddot{x} + \mu(x^2 - 1)\dot{x} + x = 0 \ (\mu > 0),$$

解:
$$\diamondsuit$$
 $\dot{y} = -\dot{x} - \mu \left(\frac{x^3}{3} - x \right) \Rightarrow$

$$\dot{x} = -y - \mu \left(\frac{x^3}{3} - x \right),$$

$$\dot{y} = x.$$

$$\Rightarrow f(x) = \mu(x^2 - 1), g(x) = x, \varphi(y) = y.$$

(a)
$$\varphi(0) = 0$$
, $\varphi'(y) = 1 > 0$;

- (b) $xg(x) = x^2$;
- (c) f(0) < 0, $(f(x)/g(x))' = 1 + 1/x^2 > 0$.
- ⇒极限环唯一性得证.

例 3.12 Holling II 功能性反应

$$\dot{x} = x(a_1 + a_2x + a_3x^2 - y) = P, \ (a_1 > 0, a_3 < 0),$$

 $\dot{y} = y(x - 1) = Q.$

解: 1. 奇点分析: (O(0,0)), $R_1(x_1,0)$, $R^+(1,a_1+a_2+a_3)$, 设 $a_1+a_2+a_3>0$. O-鞍点, R_1 -鞍点.

- (a) $a_2 + 2a_3 > 0$, R^+ -不稳定非鞍点,
- (b) $a_2 + 2a_3 < 0$, R^+ -稳定非鞍点.
- 2. (1b) 无环性, 取 Dulac 函数 $B(x, y) = x^{\alpha-1}y^{\beta-1}$,

$$\Rightarrow D = (BP)_x + (BQ)_y$$

$$= B[\alpha a_1 + (\alpha + 1)a_2x + (\alpha + 2)a_3x^2 - \alpha y - \beta + \beta x]$$

$$(\mathbb{R} \alpha = 0) = \beta[2a_3x^2 + (a_2 + \beta)x - \beta]$$

$$\Delta_1 = (a_2 + \beta)^2 + 8a_3\beta$$

$$= \beta^2 + 2(a_2 + 4a_3)\beta + a_2^2 \stackrel{\text{|| ||}}{\leq} 0$$

$$\Delta_2 = 4(a_2 + 4a_3)^2 - 4a_2^2$$

$$= 32a_3(a_2 + 2a_3) \geq 0,$$

- ⇒ 无周期解.
- 3. 极限环的存在性.
 - (1a) 的条件为: $a_1 > 0$, $a_3 < 0$, $a_2 + 2a_3 > 0$, $a_1 + a_2 + a_3 > 0$.

 $R^+(1, a_1 + a_2 + a_3)$ 为不稳定焦点或结点.

构造环域 $x = 0, y = 0, x = x_1$ (x 足够大即可, 此处取 R_1 的横坐标 x_1).

$$l: x + y - k = 0 (k 待定).$$

$$\dot{l}|_{l=0} = x[a_1 + a_2x + a_3x^2] + x - k < 0.$$
(∵ $0 \le x \le x_1, k$ 充分大.)

⇒存在极限环.

图 3.8: 例 3.12.

4. 令
$$\bar{x} = x - 1$$
, $\bar{y} = y - y_0(a_1 + a_2 + a_3)$, 仍记为 x, y .

$$\dot{x} = -y + (a_2 + 2a_3)x - xy + (a_2 + 3a_3)x^2 + a_3x^3,$$

$$\dot{y} = xy + xy_0.$$

再作变换 (目的是去掉 xy): 令 $x=e^u-1,y=y_0\left(e^{\left(\frac{y}{y_0}\right)}-1\right)$ 得到

$$\dot{u} = -\varphi(v) - F(u),$$

$$\dot{v} = g(u).$$
(3.11)

其中

$$g(u) = y_0(e^u - 1),$$

$$F(u) = a_2 + a_3 - a_2 e^u - a_3 e^{2u},$$

$$\varphi(v) = y_0 \left(e^{v/y_0} - 1 \right),$$

$$f(u) = F'(u) = -a_2 e^u - 2a_3 e^{2u}.$$

- (a) $\varphi(0) = 0, \varphi'(v) > 0;$
- (b) $ug(u) > 0 (u \neq 0)$,

$$G(u) = \int_0^u g(u) du = y_0 e^u - u \to +\infty.$$

(c) $f(0) = -(a_2 + 2a_3) < 0$,

$$\left(\frac{f(u)}{g(u)}\right)' = \frac{e^u}{(g(u))^2}(a_2 + 2a_3 - 2a_3(e^u - 1)^2) > 0.$$

:: 存在唯一的极限环.

Liénard 系统

- 1. 极限环唯一性,
- 2. $\dot{x} = y F(x), \dot{y} = -x, \partial(F(x)) = n + 1.$

1977 年, Lins et al, Lect. Note in Math., 证明了 *n* = 2 时, 极限环的唯一性.

猜想: $\partial(F) = n + 1$, $LC = \lfloor \frac{n}{2} \rfloor$ 个.

一般化,

$$\dot{x} = y - F(x), \ \dot{y} = -g(x)$$

 $\partial(F) = n + 1, \ \partial(g) = m$

H(n,m) = ?

$$H(1,2) = H(2,1) = H(1,3) = H(3,1) = 1.$$

 $\hat{H}(m,n)$: 小扰动极限环的个数, Chrislophe (1999), M. A. Han (韩茂安 Maoan Han) 得到:

$$\hat{H}(n,1) = \lfloor \frac{n}{2} \rfloor, \ \hat{H}(n,2) = \lfloor \frac{2n+1}{3} \rfloor,$$

$$\hat{H}(5,5) = 6, \ \hat{H}(4,9) = 9, \ \hat{H}(6,4) = 7,$$

$$\hat{H}(n,3) = 2 \lfloor \frac{3(n+2)}{8} \rfloor \ (1 \le n \le 50).$$

2002–2004 年, He, Lu, Luo: $\hat{H}(6,5) = 8$, $\hat{H}(7,5) = 9$.

2006年, Lin: $\hat{H}(8,5) = 10.2012$ 年, JMAA 得到同样结论.

He:

$$n+1-\lceil\frac{n+2}{4}\rceil \leq \hat{H}(n,3) \leq n+2-\lceil\frac{n+2}{4}\rceil.$$

第四章 极限集,全局结构,结构稳定性 与分支

4.1 极限集

n 维系统:

$$\dot{x} = f(x), \ x, \ f \in \mathbb{R}^n. \tag{4.1}$$

存在(整体)唯一性(第一章,有界 ⇒整体存在性).

 $\Rightarrow \forall x_0 \in \mathbb{R}^n, \ \exists \Phi_t(x_0), t \in (-\infty, +\infty).$

本章主题: 轨线及性态.

特例:

- 1. 奇点,
- 2. 闭轨.

问题: 一般轨线 $(t \to \pm \infty)$ 如何?

定义 **4.1** 对轨线 $\Phi_t(x)$, $\exists \bar{x}$ 以及 $t_n \to \pm \infty$ 使得 $\lim_{n \to \infty} \Phi_{t_n}(x) = \bar{x}$. $\Leftrightarrow \bar{x} \to \Phi_t(x)$ 的 $\omega(\alpha)$ 极限点.

 x^* 是奇点, $\Phi_t(x^*) = x^*$, $\forall t_n \to \pm \infty \Rightarrow \Phi_{t_n}(x^*) = x^*$. $\therefore x^*$ 为 $\Phi_t(x^*)$ 的 ω 极限点. $\bar{x} \in \{x \mid \Phi_t(x) = \Phi_{t+T}(x)\}$ (闭轨), \bar{x} 为 Φ_t 的 ω 极限点.

$$\lim_{n\to\infty} \Phi_{t_n=nT+t_0}(x) = \Phi_{nT+t_0}(x) = \Phi_{t_0}(x) = \bar{x}.$$

 $Ω(x) = {ω 极限点}-ω 极限集.$

例 4.1

- 1. $x_0 \, \hat{\uparrow} \, \underline{\wedge} : \Omega(x_0) = A(x_0) = \{x_0\}.$
- 2. 闭轨: $\{\Phi_t(x_0)\} = A(x_0) = \Omega(x_0)$.

图 4.1: $\Phi_t(x) = x^*, t \to +\infty$.

3. L(T) 稳定极限环: L 为邻近轨线的 $\omega(\alpha)$ 极限集.

例 4.2

$$\dot{x} = y + y(1 - x^2) \left[y^2 - x^2 \left(1 - \frac{x^2}{2} \right) \right],$$

$$\dot{y} = x(1 - x^2) - y \left[y^2 - x^2 \left(1 - \frac{x^2}{2} \right) \right].$$
(4.2)

解: 奇点(0,0),(1,0),(-1,0).

解曲线 (不变曲线) $C: y^2 - x^2 \left(1 - \frac{x^2}{2}\right) = 0$ 为外轨线的 ω 极限集. (验证 $\dot{C}|_{C=0} = 0$.)

图 4.2: 例 4.2.

例 4.3 系统

$$\dot{x} = 1, \ \dot{y} = \alpha. \tag{4.3}$$

视 (4.3) 为环面上的系统. 平面上, 直线 $y = \alpha x + c$, 限制到单位正方形内. $S = \{(x,y) \mid x \in [0,1], y \in [0,1]\}$. $(x_1,y_1) \sim (x_2,y_2) \Leftrightarrow x_1 - x_2, y_1 - y_2$ 是整数.

解:

1. 当 $\alpha = \frac{4}{3}$, $c = 0 \Rightarrow y = \frac{4}{3}x$. x 方向 3 圈, y 方向 4圈.

4.1 极限集 69

图 4.3: 例 4.3.

2. $\alpha = \frac{p}{q}$ (有理数) \Rightarrow 闭轨 (环面上).

3. α 是无理数:

- (a) $y = \alpha x, x$ 是整数 $\Rightarrow y$ 非整数. \Rightarrow 轨线非闭 (从(0,0)出发).
- (b) 轨线在 T^2 上处处稠密. ($\forall (x,y)$ 的任意邻域, $t \to \infty$, 轨线无限次进入.) :. 每一点为任意轨线的 ω , α 极限点.
- (c) α 无理数 \Rightarrow (4.3) 为 T^2 上无理流, 遍历现象.

图 4.4: 例 4.3 轨线示意.

定义 4.2 (游荡点, 集) $\Phi_t(x)$ 连续流, $P \in \mathbb{R}^n$, 对 $\forall T > 0$ 及 U(P) (邻域) $\exists t > T$, 使得 $U \cap \Phi_t(U) \neq \emptyset$.

⇒ P 为 Φ 的非游荡点. $\Omega(P)$ -非游荡点集. (T 取大, U(P) 取小.)

例 **4.4** 奇点 $P(\Phi_t(P) = P)$: $U(P) \cap \Phi_t(U(P)) = \{P\}$.

闭轨: $\Phi_t(P) = \Phi_{t+T}(P), \{P\} \cap \{\Phi_{nT}(P)\} = \{P\} \neq \emptyset.$

问题: 环面上, $\Phi(4.3)$, $\alpha =$ 无理, $\alpha =$ 有理时, 游荡点、非游荡点为什么?

定义 **4.3** (不变集, invariant set) $K \subset \mathbb{R}^n$,

- 1. $\Phi_t(K)$ ⊂ K ⇒ K 为 Φ_t 正向 (t > 0) 不变集, 负向 (t < 0) 不变集.
- 2. 正负均不变 ⇔ 不变集.
- 3. K 不变集: $\forall x \in K, \forall t \Rightarrow \Phi_t(x) \in K$.

例 4.5 $\dot{x} = x(1-x)$, K = [a,b], 0 < a < 1 < b (任意 a,b), K 是正不变集.

图 4.5: 例 4.5.

例 4.6

$$\dot{x} = x(r_1 + a_{11}x + a_{12}y),$$

 $\dot{y} = y(r_2 + a_{21}x + a_{22}y).$

 \mathbb{R}^2_+ (正负) 不变性?

解:

- 1. x = 0, y = 0 是轨线.
- 2. $\int_0^T \frac{\dot{x}}{x} = \int_0^T \Delta$ 去说明.

定理 4.1 不变集由整条轨线构成.

例 **4.7** Lotka-Volterra 系统: $\{\Phi_t(x) \mid x \in \mathbb{R}_+^2\} \subset \mathbb{R}_+^2$. $\bigcup \{\Phi_t(x) \mid x \in \mathbb{R}_+^2\} \supset \bigcup \{x\} = \mathbb{R}_+^2.$

$$\therefore \mathbb{R}^2_+ = \bigcup \{ \Phi_t(x) \mid x \in \mathbb{R}^2_+ \}.$$

证明: 反证, 定理 4.1.

设K含非整轨线,则 $\exists x_0 \in K$, $\exists t_1$,使得 $\Phi_{t_1}(x_0) \notin K$,矛盾!

证毕.

4.1 极限集 71

极限集的性质

定理 4.2 极限集是不变的. (整轨线构成.)

证明: $\bar{x} \in \Omega(x_0)$ (目的 $\Phi_t(\bar{x}) \in \Omega(x_0)$). $\Rightarrow \exists t_n \to +\infty$ 使得 $\Phi_{t_n}(x_0) \to \bar{x}$ (定义). 由 Φ_t 连续性: $\Phi_t(\Phi_{t_n}(x_0)) \to \Phi_t(\bar{x})(n \to \infty)$. 故 $t + t_n \to \infty$: $\Phi_{t+t_n}(x_0) \to \Phi_t(\bar{x})$,

$$\Rightarrow \Phi_t(\bar{x}) \in \Omega(x_0).$$

例 4.8

1.
$$\Omega(x_0) = \emptyset \Rightarrow |\Phi_t(x_0)| \to \infty$$
.

2.
$$\Omega(x_0) = \{\bar{x}\} \Leftrightarrow \lim_{t \to +\infty} \Phi_t(x_0) = \bar{x}.$$

定理 **4.3** 设 $\Phi_t(x_0) \subset$ 有界闭集 $K \subset \mathbb{R}^n$ (t > 0),

⇒ $\Omega(x_0)$ 非空, 连通, 闭集.

图 4.6: 定理 4.3.

平面系统的 Poincaré-Bendixson 定理 (1988 年, Hisch, 1975 年, Smale, 研究三维系统.)

$$\dot{x} = P(x, y),$$

$$\dot{y} = Q(x, y).$$
(4.4)

证毕.

定理 **4.4** (Poincaré - Bendixson) $\Phi_t(P)$ 正 (负) 半轨保持在不含奇点的有界区域内 $\Rightarrow \Omega(P)(A(P))$ 为闭轨.

推论 4.5 K 正不变集 \Rightarrow (4.4) 有轨线进入 K. \Rightarrow K 有奇点或闭轨.

推论 4.6 (环域定理) 环域不含奇点, 在边界轨线同进或同出. ⇒ 存在极限环.

推论 4.7 相邻极限环之间无奇点. ⇒ 极限环稳定性相反.

4.2 Lyapunov 稳定性定理

定理 4.8 (Lyapunov)

$$\dot{x} = f(x), \ x \in \mathbb{R}^n. \tag{4.5}$$

x = 0 是系统唯一奇点, 若存在 V = V(x), 使得:

- 1. $V(x) \ge 0$, 等号成立当且仅当 V(0) = 0 (正定);
- 2. $\lim_{x \to \partial \mathbb{R}^n} V(x) = \infty$ (无穷大性质);
- 3. $\dot{V}(x) \leq 0$, 等号成立当且仅当 $\dot{V}(x) = 0$ (负定).

则 x = 0 全局稳定 (Global Asymptotic Stability).

Lotka-Volterra

$$\dot{x} = \text{diag}(x)A(x - x^*),$$

$$\dot{x}_i = x_i(r_i + \sum_{i=1}^n a_{ij}x_j) \ i = 1, 2, \dots, n.$$

假设存在唯一的 $x^* = (x_1^*, ..., x_n^*)$, 则有

$$\dot{x}_i = x_i \sum_{i=1}^n a_{ij} (x_j - x_j^*).$$

如果只在第一卦限讨论, Lyapunov 定理条件 2, 可变为:

$$\lim_{x\to\partial\mathbb{R}^n_+}V(x)=\infty.$$

 $(x \to \partial \mathbb{R}^n_+, \, \mathbb{P} \, x_i \to 0, \, \vec{\boxtimes} \, \sum x_i^2 \to \infty.)$

注 4.1 作变换 $\frac{x_i}{x_i^*} = e^{y_i}$, 可将正平衡点移到原点, $\mathbb{R}^n_+ \to \mathbb{R}^n$.

Volterva's Lyapunov 函数.

$$V(x) = \sum_{i=1}^{n} c_i (x_i - x_i^* - x_i^* \ln \frac{x_i}{x_i^*}),$$

$$\dot{V}(x) = \frac{1}{2} (x - x^*) (CA + A^T C) (x - x^*)^T.$$

计算过程如下:

$$\dot{V}(x) = \sum_{i} c_i (\dot{x}_i - \frac{\dot{x}_i}{x_i} x_i^*)$$

$$= \sum_{i} c_i \frac{\dot{x}_i}{x_i} (x_i - x_i^*).$$

73

代入

$$\frac{\dot{x}_i}{x_i} = \sum_{j=1}^n a_{ij}(x_j - x_j^*),$$

得到

$$\dot{V}(x) = \sum_{i,j} c_i a_{ij} (x_i - x_i^*) (x_j - x_j^*)$$

$$= \frac{1}{2} (x_i - x_i^*) (CA + A^T C) (x_j - x_j^*)^T.$$

1977 年, Goh 得到此证明, 其中 $C = \text{diag}(c_1, \ldots, c_n)$.

定理 **4.9** x^* 是 G. A. S., 如果 $CA + A^TC$ 是负定的.

例 4.9

$$\dot{x}_1 = x_1(r_1 - a_{11}x_1 - a_{12}x_2),$$

$$\dot{x}_2 = x_2(r_2 + a_{21}x_1 - a_{22}x_2).$$

假设存在唯一正平衡点 $x^* = (x_1^*, x_2^*) > 0$, $a_{ij} > 0$, 求证: x^* 全局稳定.

证明:

$$\dot{x}_1 = x_1[-a_{11}(x_1 - x_1^*) - a_{12}(x_2 - x_2^*)],$$

$$\dot{x}_2 = x_2[a_{21}(x_1 - x_1^*) - a_{22}(x_2 - x_2^*)].$$

取 $V(x) = c_1(x_1 - x_1^* \ln x_1) + c_2(x_2 - x_2^* \ln x_2)$,则有,

$$\dot{V}(x) = c_1 \frac{\dot{x}_1}{x_1} (x_1 - x_1^*) + c_2 \frac{\dot{x}_2}{x_2} (x_2 - x_2^*)
= -c_1 a_{11} (x_1 - x_1^*)^2 + (-c_1 a_{12} + c_2 a_{21}) (x_1 - x_1^*) (x_2 - x_2^*) - c_2 a_{22} (x_2 - x_2^*)^2.$$

$$CA + A^TC = \begin{pmatrix} -a_{11}c_1 & \frac{-a_{12}c_1 + c_2a_{21}}{2} \\ \frac{-a_{12}c_1 + c_2a_{21}}{2} & -a_{21}c_2 \end{pmatrix}.$$

取 $c_1 = a_{21}$, $c_2 = a_{12}$, 则 $\dot{V}(x) \leq 0$, 负定.

特殊的, 取
$$a_{22}=0$$
 时, $\dot{V}(x)=-c_1a_{11}(x_1-x_1^*)^2\leq 0$, 半负定. 证毕.

4.3 LaSalle 原理

考虑

$$\dot{x} = f(x), \ x \in \mathbb{R}^n. \tag{4.6}$$

定理 **4.10** (LaSalle 原理) 若 (4.6) 的解有界, 且存在 V = V(x) 使 $\dot{V}(x) \leq 0$ (半负定), 记 $E = \{x \in \mathbb{R}^n \mid \dot{V}(x) = 0\}$, 则 $\Omega(x) \subset M$ ($\subset E$ 的最大不变集). M 称之为 LaSalle 不变集.

(例 4.9中, $a_{22} = 0$ 时, $E = \{x \mid x_1 = x_1^*\}$ 并不是不变集, Lyapunov 定理中 $\Omega(x) \subset E = \{x^*\}$, $\therefore x^*$ 全局稳定.)

证明: (Hofbauer, Sigmund)

- - (2) 又 $\dot{V}(x) \le 0 \Rightarrow \dot{V}(y) \le 0$; 又设 $\dot{V}(y) \ne 0$, $\dot{V}(y) < 0$.
 - (3) V 沿轨道不增 $t > 0 \Rightarrow V(\Phi_t(y)) < V(y)$.
 - (4) $V(\Phi_t(x))$ 单调递减, $V(\Phi_{t}(x)) \rightarrow V(y) \Rightarrow V(\Phi_t(x)) \geq V(y)$, $\forall t$.
 - (5) $\Phi_{t}(x) \to y \Rightarrow \Phi_{t+t}(x) \to \Phi_{t}(y) \Rightarrow V(\Phi_{t+t}(x)) \to V(\Phi_{t}(y)).$
 - (6) 由(3)与(5)得: $V(\Phi_{t+t_t(x)}) < V(y)$.

由(4)与(6)得矛盾!

• LaSalle 证明

 $\dot{V}(x) \leq 0 \Rightarrow V(\Phi_t(x))$ 单调递减, 又 $\Phi_t(x)$ 有界 $\Rightarrow V(\Phi_t(x)) \rightarrow c \ (t \rightarrow \infty)$. 即 $\lim_{t \to \infty} V(\Phi_t(x)) = c$. 那么对 $\forall y \in \Omega(x) \Rightarrow V(y) = c$,

$$\Rightarrow V(\Phi_t(y)) = c$$
,

$$\Rightarrow \dot{V} = 0. \{y \mid V(y) = c\}$$
 为不变集. 证毕.

例 4.10 例 4.9 中, $a_{22} = 0$ 时, $E = \{x \mid x_1 = x_1^*\}$, $\underline{\Omega(x)} \subset M \subset \underline{E}$.

解: 设 $\bar{x}(t) = (\bar{x}_1(t), \bar{x}_2(t)) \in \Omega(x)$, 有

$$\begin{cases} \bar{x}_{1t} = \bar{x}_1[-a_{11}(\bar{x}_1 - x_1^*) - a_{12}(\bar{x}_2 - x_2^*)], \\ \bar{x}_{2t} = \bar{x}_2[a_{21}(\bar{x}_1 - x_1^*)]. \end{cases}$$

将 $\bar{x}_1 = x_1^*$ 代入上式,

$$\Rightarrow \bar{x}_2 = x_2^*$$

$$\Rightarrow \bar{x} = (x_1^*, x_2^*),$$

$$\Rightarrow \Omega(x) = \{x^*\}.$$

4.4 图论稳定性 75

例 4.11

$$\dot{x}_1 = x_1[-a_{11}(x_1 - 1) + a_{12}(x_2 - 1)],\tag{4.7}$$

$$\dot{x}_2 = x_2[a_{21}(x_1 - 1) - a_{22}(x_2 - 1) + a_{23}(x_3 - 1)],\tag{4.8}$$

$$\dot{x}_3 = x_3[a_{32}(x_2 - 1) - a_{33}(x_3 - 1)]. \tag{4.9}$$

(1) $a_{ii} > 0$, $a_{ij}a_{ji} < 0$, $x^* = (1, 1, 1)$ 全局稳定.

(2)
$$a_{11} > 0$$
, $a_{22} = 0$, $a_{33} = 0$, 全局稳定.

解:

$$V = \sum c_i(x_i - x_i^* \ln x_i),$$

 $\dot{V} = -a_{11}c_1(x_1 - x_1^*)^2 + [交叉项 (适当选取 c_1, c_2, c_3 使其为 $0)] \le 0.$$

$$\Omega(x) \subset M \subset E = \{x \mid x_1 = 1\},$$
 任取 $\bar{x}(t) = (\bar{x}_1(t), \bar{x}_2(t), \bar{x}_3(t)) \in \Omega(x),$
 $\Rightarrow \bar{x}(t) = 1$ 代入 $(4.8) \Rightarrow \bar{x}_2 = 1$, 代入 $(4.9) \Rightarrow \bar{x}_3 = 1$, 由 $(4.7) \Rightarrow \bar{x}(t) = x^*.$
 $\Rightarrow \Omega(x) = \{x^*\}.$

4.4 图论稳定性

Samulson 经济学家.

 $a_{11} < 0$,用"•"表示; $a_{22} = 0$,用"○"表示.

$$a_{12} \neq 0, \stackrel{1}{\bullet} \stackrel{2}{\longrightarrow} 0.$$

$$a_{21} \neq 0, \quad \stackrel{1}{\bullet} \stackrel{2}{\longleftarrow} \stackrel{\circ}{\circ} .$$

$$a_{12} \neq 0, a_{21} \neq 0, \stackrel{1}{\bullet} \stackrel{2}{\longrightarrow} 0.$$

在三种群系统中, 不考虑可约系统 (图不连通):

那么则只考虑两种不可约情况:

总结:

练习:

问题:

此问题分别于1979、1981年证明成立.

一般的, 图是一棵树 (无圈):

Color Test 可以通过的条件是:

- (1) ○不孤立;
- (2) ●连接一个白点, 再连一个白点.

不能通过 Color Test, 则全局稳定.

第五章 平面系统分支

5.1 Hopf 分支

$$\dot{x} = \lambda x - y - axy - y^{2} = P(x, y),
\dot{y} = \lambda y + x + ax^{2} = Q(x, y).$$
(5.1)

其中 ____表示非线性项.

对于系统 (5.1), 当 λ < 0 时, 系统奇点稳定 (焦点), 当 λ > 0 时, 系统奇点不稳定 (焦点), 以上为系统为中心焦点型.

 $\lambda=0$ 时, 特征值实部为 0, 此时, 考虑 V 函数: $V=(x^2+y^2)+(x,y,3)+(x,y,4)+\cdots$, (x,y,3) 有 4 系数, (x,y,4) 有 5 系数. 若 $\dot{V}=L(1)(x^2+y^2)^2$, 可通过判断 L(1) 与 0 的大小确定奇点稳定性. 若 L(1)=0, 则考虑 $V=(x^2+y^2)+(x,y,3)+(x,y,4)+(x,y,5)+\cdots$ 得到 $\dot{V}=L(2)(x^2+y^2)^3$.

系统 (5.1) 中 $L(1) = \frac{a}{4}$, 若 a < 0, 则奇点为一阶稳定细焦点, 若 a > 0, 则奇点为一阶不稳定细焦点.

例 5.1

$$\dot{x} = -y - x(x^2 + y^2 - \lambda),
\dot{y} = x - y(x^2 + y^2 - \lambda).$$
(5.2)

解:特征值为: $\bar{\lambda} = \lambda \pm i$.

- (1) $\lambda \neq 0 \Rightarrow$ 粗焦点, $\lambda > 0$ 不稳定. $\lambda < 0$ 稳定.
- (2) $\lambda = 0 \Rightarrow$ 细焦点 (weak, fine).

 $V = x^2 + y^2 \Rightarrow \dot{V} = -2(x^2 + y^2)^2 < 0 \Rightarrow$ 全局稳定细焦点.

结论: $\frac{\lambda > 0}{\lambda \le 0}$ 不稳定.

(3) $\lambda > 0$, $i \exists C = x^2 + y^2 - \lambda$.

$$\dot{C}|_{c=0} = 2(x^2 + y^2)(\lambda - x^2 - y^2) = 2(x^2 + y^2) \cdot C|_{c=0} = 0$$

结论: 存在一个周期解 (极限环, 对固定的 λ 周期解孤立).

现象:

- 1. λ = 0, 稳定;
- 2. $\lambda > 0$, 不稳定; $(\lambda < 0$, 稳定).
- ⇒ Hopf 极限环 (一阶细焦点分支).

Hopf 分支 ($\lambda = 0$, a(0) = 0, b(0) > 0).

$$\dot{x} = a(\lambda)x - b(\lambda)y + P_2(x, y, \lambda),$$

$$\dot{y} = b(\lambda)x + a(\lambda)y + Q_2(x, y, \lambda).$$
(5.3)

O(0,0) 为中心型奇点, P_2 , Q_2 是二次以上的多项式.

定理 5.1

- 1. $\lambda = 0$, O(0,0) 稳定 (一阶细焦点);
- 2. $\lambda \neq 0$, $|\lambda|$ 充分小时 ⇒ 不稳定.

则存在唯一的极限环.

证明: (1) 极坐标 (转动方向).

$$\dot{\rho} = a(\lambda)\rho + o(高阶项),$$
 $\dot{\theta} = b(\lambda) + o(高阶项).$

由 b(0) > 0 得轨线是逆时针的.

- (2) $\lambda = 0$, 奇点稳定.
- (3) $\lambda \neq 0$, $|\lambda|$ 充分小,
 - (a) 连续依赖性;
 - (b) 不稳定;
 - (c) 如图 5.1, 蓝线构成了环域.
 - ⇒ (B-P), 存在极限环.

证毕.

5.2 广义 HOPF 79

图 5.1: 定理 5.1.

例 5.2

$$\dot{x} = \lambda x - y - axy - y^2,$$

$$\dot{y} = x + \lambda y + ax^2.$$

解:

(1) $\lambda = 0$, 一阶焦点量 $L_1 = \frac{a}{4}$.

$$V = (x^2 + y^2) + (3) + (4),$$

$$\dot{V} = \frac{a}{4}(x^2 + y^2)^2 + o(V^2).$$

- (2) $\bar{\lambda} = \lambda \pm i$.
 - (i) 当 $\lambda = 0$, a < 0 稳定; $\lambda > 0$, 不稳定. 由定理 5.1 得到存在极限环.
 - (ii) $\lambda = 0, a > 0$, 不稳定; $\lambda < 0$, 稳定. 由定理 5.1 得到存在极限环.

定理 5.2 (一阶 Hopf 定理) $\lambda = L(0)$ 与 L(1) 反号 ⇒ ∃ 极限环. (有误)

5.2 广义 Hopf

考虑二次系统:

$$\dot{x} = \lambda x - y + lx^2 + mxy,$$

$$\dot{y} = x + x^2.$$
(5.4)

O(0,0) 奇点, $\lambda = 0$,

1. O 为细焦点. $(V = V(x, y) \Rightarrow \dot{V} = L(1)(x^2 + y^2)^2 + \cdots), L(1) = l(m-2).$

2.

$$l = 0 \; (\ \, \psi \, \dot{\psi}) \; \begin{cases} m \neq -1, & B(x,y) = x^{\alpha} y^{\alpha}, \; \alpha = -\frac{m+2}{m-1}, \\ m = -1, & \dot{x} = -y(1+x), \; \dot{y} = x(1+x). \end{cases}$$

- 3. l > 0, $\frac{m > 2}{m < 2}$ 不稳定 —阶细焦点.
- 4. $l > 0, m = 2 \Rightarrow L(1) = 0. \Leftrightarrow V = V(x, y),$ $\Rightarrow \dot{V} = L(2)(x^2 + y^2)^3, L(2) = -12l.$

$$L(0) = \lambda$$
, $L(1) = l(m-2)$, $L(2) = -12l$,
$$(L(0) = 0 \Leftrightarrow \lambda = 0) \quad (L(0) = L(1) = 0 \Leftrightarrow \lambda = 0, \ m = 2)$$
$$\dot{V} = l(m-2)(x^2 + y^2)^2 + (-12l)(x^2 + y^2)^3 \ (m = 2 \text{ ft}).$$

广义 Hopf:

- 1. $\lambda = 0, m = 2$. $L(2) = -12l < 0 \Rightarrow O$ 是稳定的.
- 2. $\lambda = 0, m > 2, m 2 ≪ 1 ⇒ 0$ 是不稳定的 ⇒ 存在极限环 ($L(1) \cdot L(2) < 0$).
- 3. 取 $|\lambda|$ 充分小, 且 $\lambda < 0 \Rightarrow$ 存在极限环 $(L(1) \cdot L(2) < 0)$.

图 5.2: 广义 Hopf.

5.3 Lyapunov 方法再思考 (中心, 焦点, 小扰动极限环)

$$\dot{x} = -y + \sum P_n(x, y),$$

$$\dot{y} = x + \sum Q_n(x, y).$$
(5.5)

81

Lyapunov 函数:

$$V(x,y) = x^2 + y^2 + \sum_{n} v_n(x,y).$$
 (5.6)

焦点量的三种算法:

- 1. 三角函数,
- 2. 形式级数,
- 3. 迭代公式.

沿 (5.5) V 导数 $\dot{V}(x,y) = \sum_{n=1}^{\infty} L(n)(x^2 + y^2)^{n+1}$, L(n)-n 阶焦点量, (5.5)系数的多项式.

定理 5.3 $\forall L(n) = 0 \Rightarrow O(0,0)$ 是中心.

定理 5.4 (Hilbert 基原理) \forall 多项式理想 \Rightarrow 3 有限生成基. $(f_{\alpha} = \sum_{i=1}^{n} P_{i} f_{i}$.)

对于 $L(1), \ldots, L(n), \ldots, \exists N > 0$ 使得, $L(1) = \cdots = L(N) = 0 \Rightarrow \forall n, L(n) = 0$. $L(1), L(2), L(3), \ldots$,

- 1) 用于判定稳定性,
- 2) 小扰动极限环,选择参数使得,

(a)
$$L(1) = \lambda = 0 \Rightarrow L(2) \cdot L(3) < 0$$
.

(b)
$$\lambda = 0 \Rightarrow L(1) \cdot L(2) < 0$$
.

(c)
$$\lambda \cdot L(1) < 0$$
.

33个极限环.

$$\dot{x} = P_n(x, y),$$

$$\dot{y} = Q_n(x, y).$$

 $\hat{H}(n) = \max\{\text{小扰动极限环个数}\},$ 现有结论: $\hat{H}(2) = 3, \hat{H}(3) \ge 13.$