EE240B HW 1

Vighnesh Iyer

February 7, 2019

1 HW1

- 1. For a transistor in strong inversion, the current is dominated by drift rather than diffusion. The channel profile is nevertheless non-uniform which means there is a drift current even in strong inversion. Assuming the square law model (which ignores drift) is a good estimate of the channel charge profile, calculate the diffusion current and compare it to the drift current.
- 2. For your technology DK, what is the compact model used? Which version number? Does the model use binning? If so, by which parameters?
 - I'm using GPDK 45nm. The compact model is BSIM v4 based. Binning is done using the l_{min} , l_{max} , w_{min} , w_{max} parameters present in each model. There are 30 different bins for NMOS transistors. Binning changes V_{th} -related parameters (like vth0, lvth0, wvth0, pvth0), mobility-related parameters (like u0, lu0, wu0, pu0), subthreshold-related parameters (like voff, lvoff, wvoff, pvoff), and output resistance-related parameters (like pdiblc2, lpdiblc2).
- 3. Besides W and L, what are the supported instance parameters for your model? Why are detailed layout dependent parameters (such as distance to well edge) used in some models?
 - finger width (W)
 - number of fingers (W)
 - folding threshold (finger width at which to apply device folding in layout)
 - S/D metal width (width of metal used to short source and drain)
 - some other ones I don't think matter

The layout dependent parameters are auto-derived from the basic instance parameters (I guess for the PDK-reference layout of this transistor). These layout dependent parameters can be overridden as instance parameters. These detailed layout parameters can be used to estimate device parasitics at schematic-design time.

4. Set up a schematic (don't rely on the simulator to output small-signal parameters) and plot the intrinsic gain (a_{v0}) of the minimum sized transistor versus V_{gs} . Make sure you hold V_{DS} constant (use an ideal op-amp - VCVS) to setup the simulation. Plot the intrinsic gain versus I_{ds} and V^* . What is your conclusion? Do you expect a strong bias current dependence? Explain.

I'm holding V_{DS} at mid rail = $\frac{1.1}{2}$ and sweeping I_{ds} . I'm using a SVT transistor with minimum size $(L_{min} = 45n, W_{min} = 120n)$. Here are the plots:

• a_{v0} has an inverse relationship to drain current I_{ds} (logarathmic) and V_{gs} (linear)

EE240B HW 1 2

- This is expected because the r_o of the device decreases more rapidly than the g_m increases.

- a_{v0} is mostly flat versus V^* , and this is one reason for using the V^* design methodology to choose the transistor's operating point.
- 5. Now re-plot the instinsic gain a_{v0} for a few non-minimum length devices. Try $2L_{min}$, $3L_{min}$, and L_{max} . Does the gain depend on W? Explain why you should avoid using a very small W. L_{max} is the longest channel length supported by the DK

In this process $L_{max} = 10 \mu m$

- The intrinsic gain generally doesn't depend on W since r_o and g_m both scale linearly with the transistor width.
- A very small W however has a proportionally larger C_{dd} and C_{gg} than a wider transistor, which can lead to significant schematic/layout mismatches post-layout and extraction.