ЛЕКЦИЯ 4 НОРМИРОВАНИЕ И РЕГЛАМЕНТАЦИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

Токсичные

Ионизирующие излучения

АТМОСФЕРА

Атмосфера — газовая оболочка Земли массой около 5,9 ${}_{*}10^{15}$ т

Слои атмосферы	Высота над уровнем моря, км	Температура, ⁰ С
Тропосфера	от 0 до 10(18)	от (+40) до (-50)
Стратосфера	10(18) - 50 (55)	от (-50) до (+5 - 10)
Мезосфера	50 (55) - 90	понижается до (-90)
Термосфера	90 – 800 (1000)	повышается до (+ 1500)

Источники загрязнения атмосферы

Загрязнение атмосферы

РАСПОРЯЖЕНИЕ ПРАВИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ от 08 июля 2015 года № 1316-р «Об утверждении перечня загрязняющих веществ, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды»

Для атмосферного воздуха в Перечень включены 254 загрязняющих вещества, из них 160 веществ, технических смесей и взвешенных веществ и 94 радиоактивных изотопа в элементной форме и виде соединений.

В Перечень включены:

- азота диоксид
- азота оксид
- **бензапирен**
- эола твердого топлива
- зола ТЭС мазутная (в пересчета на ванадий)
- серы диоксид
- углерода оксид

Нормирование примесей в атмосферном воздухе

ПДК атмосферного воздуха [мг/м³]— это такая концентрация загрязнителя в атмосферном воздухе, которая не оказывает на человека прямого или косвенного вредного и неприятного действия, не вызывает патологических изменений или заболеваний.

Среднесуточная ПДК – ПДК, которая устанавливается с целью предупреждения общетоксического, канцерогенного и мутагенного влияния вещества на организм человека.

Максимально разовая ПДК – ПДК, которая устанавливается для предупреждения рефлекторных реакций у человека (ощущение запаха, изменение биоэлектрической активности головного мозга, световой чувствительности глаз и др.) при кратковременном воздействии атмосферных загрязнений (до 20 мин).

Санитарно-защитная зона (СЗЗ) — территории определенной протяженности и ширины, располагающиеся между предприятиями и источниками загрязнения и границами зон жилой застройки. Протяженность СЗЗ устанавливается таким образом, чтобы содержание вредных примесей в атмосферном воздухе снижалось путем рассеивания до безопасных уровней на границе СЗЗ.

Минимальные протяженности СЗЗ для предприятий:

I класс -1000 м,

II класс – 500 м,

III класс - 300 м,

IV класс – 100 м,

V класс – 50 м.

При одновременном присутствии в атмосферном воздухе нескольких вредных веществ, обладающих однонаправленным действием (суммацией), их безразмерная суммарная концентрация должна удовлетворять условию:

$$\frac{C_1}{\Pi Д K_1} + \dots + \frac{C_n}{\Pi Д K_n} \le 1$$

где C_I , C_n — фактические концентрации вредных веществ в воздухе в одной и той же точке, мг/м³;

 $\Pi \not \Pi K_1$, $\Pi \not \Pi K_n$ — максимально-разовые предельно допустимые концентрации вредных веществ в воздухе атмосферы, мг/м³.

Нормирование допустимого воздействия на окружающую среду

Нормативы допустимых выбросов - нормативы выбросов загрязняющих веществ в атмосферный воздух, допустимые для выброса в атмосферный воздух стационарными источниками.

Нормативы допустимых выбросов определяются для каждого предприятия в отношении загрязняющих веществ, включенных в перечень загрязняющих веществ, установленный Правительством Российской Федерации, расчетным путем, исходя из условия, что выбросы вредных веществ от данного источника и совокупности источников населенного пункта не создадут концентрацию, превышающую ПДК для населения, растительного и животного мира.

При установлении предельно допустимых выбросов (ПДВ) для какого-либо источника загрязнений необходимо учитывать фоновую концентрацию от остальных источников загрязнения, действующих в данной местности. ПДВ измеряется в г/с.

<u>Расчет допустимых выбросов осуществляется только для предприятий I и II категории.</u>

Предельно допустимые выбросы загрязняющих веществ промышленными предприятиями в атмосферу регламентируются:

Приказом Минприроды РФ от 06.06.2017 № 273 «Об утверждении методов расчетов рассеивания выбросов вредных (загрязняющих) веществ в атмосферном воздухе»

Расчет рассеивания выбросов загрязняющих веществ в атмосферном воздухе

Максимальное значение приземной концентрации для горячих точечных источников рассчитывается по следующей формуле:

$$C_m = \frac{AMFmn}{H^2 \sqrt[3]{V_1} \Delta T}$$

где H – высота трубы, м;

M – расход выбрасываемого в атмосферу вещества (мощность выбросов), г/с;

∆Т – разность температур выбрасываемых газов и атмосферного воздуха;

A — коэффициент, учитывающий рассеивающие свойства атмосферы, которые определяются климатической зоной;

F — коэффициент, учитывающий скорость оседания вредных веществ в атмосфере (F=1 для газообразных веществ, F=1.5 для оксидов, F=3 для пыли);

m, n — коэффициенты, учитывающие условия выхода газовоздушной среды из устья источника выброса;

 V_1 — расход газовоздушной смеси, определяемой по формуле, м 3 /с

Если вместо значения C_m подставить ПДК конкретного вещества, то можно получить предельное значение мощности выбросов М данного вещества, т.е. предельно допустимый выброс.

Нормирование допустимого воздействия на окружающую среду на основании технологических нормативов

Технологические нормативы - нормативы выбросов, сбросов загрязняющих веществ, нормативы допустимых физических воздействий, которые устанавливаются с применением технологических показателей.

Технологические показатели - показатели концентрации загрязняющих веществ, объема и (или) массы выбросов, сбросов загрязняющих веществ, образования отходов производства и потребления, потребления воды и использования энергетических ресурсов в расчете на единицу времени или единицу производимой продукции (товара), выполняемой работы, оказываемой услуги

Технологические нормативы разрабатываются юридическими лицами и индивидуальными предпринимателями, осуществляющими хозяйственную и (или) иную деятельность **на объектах I категории**.

Технологические нормативы устанавливаются на основе технологических показателей комплексным экологическим разрешением.

Технологические показатели (ИТС НДТ 38-2017)

Тепловая	Паропроизво-	Массовая	Массовая	Массовая	
мощность	дительность	концентрация тв.	концентрация SO_x в	концентрация NO _x в	
водогрейных	паровых котлов,	1	дымовых газах	дымовых газах	
котлов, МВт	т/час	газах			
Котелы	———— лые установки, вве	еденные по проектам,	утвержденным по 3	1.12.1981 г.	
от 50 до 100	от 70 до 140	1200	4000	1200	
более 100 до 300	более 140 до 420	1200	4000/58001	1600/20001	
более 300	более 420	1200/20001	4000/58001	1600/20001	
Котельные у	Котельные установки, спроектированные после 01.01.1982 и введенные по 31.12.2000 г.				
от 50 до 100	от 70 до 140	1000	3000	1000	
более 100 до 300	более 140 до 420	900	3000/58002	1400/16503	
более 300	более 420	900	3000/58002	1400/16503	
Котельные установки, введенные с 1 января 2001 г.					
от 50 до 100	от 70 до 140	250	1400	640	
более 100 до 300	более 140 до 420	250	1400	640	
более 300	более 420	200	1200	570	

ГИДРОСФЕРА

Гидросфера — водная оболочка Земли, располагающаяся между атмосферой и литосферой и представляющая собой совокупность океанов, морей, озер, рек, прудов, болот, подземных вод, ледников и водяного пара атмосферы.

Водопользование — вода используется для выполнения определенных функций без извлечения из водоемов (рек, озер и др.).

Водопотребление — вода изымается из водных объектов, причем часть ее теряется безвозвратно (испаряется и т.д.).

Экологически важные свойства воды:

- 1. Вода может находиться в трех агрегатных состояниях.
- 2. Вода обладает чрезвычайно высокой растворяющей способностью.
- 3. При замерзании объем воды увеличивается, при плавлении льда уменьшается.
- 4. При 4⁰ С у воды наблюдается максимальная плотность.

Экологически важные свойства воды

- **5.** Высокая скрытая теплота плавления льда (336 Дж/г) обеспечивает постепенное замерзание рек, озер, морей, а также таяние снега, льда.
- б. Вода обладает наивысшей (среди твердых и жидких тел) удельной теплоемкостью и высокой для жидких тел теплопроводностью.
- 7. Высокая диэлектрическая проницаемость воды обеспечивает интенсивную диссоциацию солей, кислот, щелочей и оснований на ионы.
- 8. Вода испаряется при любой температуре.
- 9. Высокое поверхностное натяжение позволяет осуществляться процессам передвижения воды и ее растворов.
- 10. Вода полностью прозрачна для видимой части солнечного спектра.
- 11. Вода несжимаема.
- **12. Вода источник газообразного кислорода**, выделяемого в процессе фотосинтеза.

Основные источники загрязнения гидросферы

Химическое загрязнение — изменение естественных химических свойств воды за счёт увеличения содержания в ней вредных примесей, как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, пестициды). Источники: промышленность, с/х, коммунальное хозяйство.

Физическое загрязнение — изменение физических параметров водной среды (тепловые, механические, радиоактивные).

Источники: ТЭС, АЭС, сточные бытовые и пром. воды, отходы.

Биологическое загрязнение — изменение свойств водной среды в результате увеличения количества несвойственных ей видов микроорганизмов, растений, животных, привнесенных извне. <u>Источники:</u> быт (кухни, туалеты, больницы) и промышленность.

Загрязняющие вещества (нерастворимые, коллоидные и растворённые примеси):

- 1) минеральные: частицы песка, руды, шлака, минеральных солей, растворы кислот, щелочей и др.;
- 2) органические: остатки растений, растительного масла, остатки тканей животных и т.п.;
- 3) бактериальные и биологические загрязнения обычно присутствуют в бытовых стоках и сточных водах некоторых предприятий (например, микробиологической промышленности).

Оценка качества водной среды

Степень предельно допустимого загрязнения воды в водном объекте, зависящая от его физических особенностей и способности к нейтрализации примесей называется предельно допустимой нагрузкой (ПДН).

Допустимая нагрузка на водоем определяется, как разность между установленной нормативной нагрузкой $C_{\scriptscriptstyle H}$, т.е. возможностью сброса, и уже существующей, т.е. фактической нагрузкой $C_{\scriptscriptstyle \phi}$: $C_{\scriptscriptstyle \partial on} = C_{\scriptscriptstyle H}$ - $C_{\scriptscriptstyle \phi}$

<u>Основным нормативным требованием к качеству воды является соблюдение</u> <u>установленных предельно допустимых концентраций.</u>

Предельно допустимая концентрация вредного вещества в воде водоемов — это максимальная концентрация, которая не оказывает влияния на состояние здоровья населения и последующих поколений при ее воздействии на организм человека в течении всей жизни и не ухудшает гигиенические условия водопользования населения. Состав и свойства воды в водных объектах должны соответствовать нормативам в радиусе 500 м от места сброса.

ПДК разных веществ различаются **лимитирующим показателем вредности (ЛПВ).** При этом выделяют:

- органолептический способность вещества к образованию пленок и пены на поверхности водоема; изменение цвета воды, появление посторонних привкусов и запахов.
- общесанитарный влияние веществ на общий санитарный режим водоема, выражаемый в изменении таких интегральных показателей, как рН, БПК, содержание кислорода, нарушение самоочищения воды, эвтрофирование и т.д.;
- санитарно-токсикологический одновременное действие вещества на организмы и санитарные показатели водоема.

Лимитирующий показатель вредности не имеет количественной характеристики, но отражает приоритетность требований к качеству воды.

При наличии нескольких веществ, относящихся к одной группе лимитирующего показателя вредности, должно выполняться условие:

$$\sum_{i=1}^{m} \frac{C_i}{\Pi \coprod K} \le 1$$

m - общее количество веществ данной группы ЛПВ, находящихся в воде исследуемого водного объекта.

ОБОБЩЕННЫЕ ПОКАЗАТЕЛИ КАЧЕСТВА ВОДЫ (САНПИН 1.2.3685–21) **Качество воды** - характеристика состава и свойств воды, определяющая пригодность ее для конкретных видов водопользования.

- > Физические: температура, плотность, мутность, цветность
- **Органолептические показатели:** привкус, цветность, окраска, прозрачность, взвешенные вещества, плавающие примеси

Химические:
общая минерализация (сухой остаток); в
водородный показатель (рН);
биологическое потребление кислорода (БПК) – количество кислорода, необходимое
для окисления бактериями и простейшими всей органики в 1 л загрязненной воды
химическое потребление кислорода (ХПК) - количество кислорода, расходуемого на
окисление содержащихся в воде органических и неорганических веществ сильными
окислителями

- □ содержание основных ионов, биогенных веществ, нефтепродуктов, фенолов, пестицидов, тяжелых металлов, ПАВ
- **Бактериологические** (микробное число число содержащихся в 1 мл воды микроорганизмов (не более 100), коли-индекс (не более 3 бактерий группы Е в 1 л воды), коли-титр обратный показатель коли-индекса, количество воды, в которой находится 1 E.coli (более 300 мл))

ОЦЕНОЧНЫЕ ПОКАЗАТЕЛИ КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД С ЭКОЛОГИЧЕСКИХ ПОЗИЦИЙ

Показатели	Класс качества вод				
	Ι	II	III	IV	V
Значение рН, ед. рН	6,5-8,0	6,5-8,5	6,5-8,5	6,0-8,5	6,0-9,0
Минерализация (сухой остаток), $M\Gamma/дM^3$	<300	500	800	1000	1200
Взвешенные вещества природного происхождения, мг/дм ³	<20	20–30	31–50	51–100	101–200
Железо общее, мг/дм ³	<0,5	0,5–1	0,5-1	0,5-5	5,1-10
Марганец общий, мг/дм ³	<0,05	0,05-0,1	0,2-0,3	0,4-0,8	0,9-1,5
Аммоний (N), $M\Gamma/дM^3 < 2 >$	<0,1	0,1-0,2	0,3-0,5	0,6-2,0	3,0-5,0
Нитриты (N), мг/дм ³ <2>	<0,002	0,002-0,005	0,006-0,02	0,03-0,05	0,05-0,1
Нитраты (N), $M\Gamma/дM^3 < 2 >$	<1	1–3	4–5	6-10	11-20
Фосфаты (P) мг/дм 3 <2>	<0,025	0,025-0,2	0,3-0,5	0,6-1,0	1,1-2,0
Общий фосфор (P), $M\Gamma/дM^3 < 2 >$	<0,05	0,05-0,4	0,5-1,0	1,1-2,0	2,1-3,0
Химическое потребление кислорода (ХПК), мг/дм ³	<15	15–25	26–50	51–70	71–100
Биохимическое потребление кислорода (БПК $_5$), мг/дм 3	<2	2–4	5-8	9–15	16–25
Органический углерод, мг/дм ³ < 2>	<3	3–5	6–8	9–12	13-20
Азот общий, $M\Gamma/дM^3 < 2 >$	<1,5	1,5-4,0	4,1-7,5	7,6–17	17,1–35

ОЦЕНКА КАЧЕСТВА ВОДЫ С САНИТАРНО-ГИГИЕНИЧЕСКИХ ПОЗИЦИЙ

Физико-химические	Биологические	Органолептические
Химические вещества	Число бактерий	Запах
Мутность	Число микроорганизмов	Вкус
Сухой остаток	Яйца гельминтов	Цвет
Жёсткость		Прозрачность
	Биологическая	
	потребность в кислороде	
Температура		Плавающие примеси
Растворённый кислород		
Химическая потребность		
в кислороде		

НОРМИРОВАНИЕ ДОПУТИМОГО ВОЗДЕЙСТВИЯ НА ВОДНЫЕ ОБЪЕКТЫ

Нормативы допустимых сбросов - нормативы сбросов загрязняющих веществ в составе сточных вод в водные объекты, которые определяются как объем или масса химических веществ либо смеси химических веществ, микроорганизмов, иных веществ, как показатели активности радиоактивных веществ, допустимые для сброса в водные объекты стационарными источниками.

Нормативом на поступление загрязняющих веществ в водную среду для предприятий I и II категории является предельно допустимый сброс (ПДС).

ПДС (г/с) — масса вещества в сточных водах, максимально допустимая к отведению в единицу времени, при которой в створе реки в 500 м от места сброса будет выполняться условие: $C <= \Pi \not \square K$.

При наличии установленных технологических показателей для отрасли предприятия I категории также обязаны рассчитывать и контролировать технологические нормативы сбросов загрязняющих веществ.

НОРМИРОВАНИЕ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В ПОЧВЕ

Нормирование загрязняющих веществ в почве имеет три направления:

- нормируется содержание ядохимикатов в пахотном слое почвы сельскохозяйственных угодий;
- нормируется накопление токсичных веществ на территории предприятия;
- нормируется загрязненность почвы в жилых районах, преимущественно в местах хранения бытовых отходов.

Для установления ПДК_п загрязняющих веществ используют данные о фоновых концентрациях исследуемых веществ, их физико-химических свойствах, параметрах стойкости, токсичности. При этом экспериментально устанавливают:

- ПДК в продуктах питания (пищевых и кормовых растениях);
- допустимую концентрацию летучих веществ, при которой поступление вещества в воздух не превысит ПДК_{ав};
- допустимую концентрацию, при которой поступление вещества в грунтовые воды не превысит ПДК для водных объектов;
- допустимую концентрацию, не влияющую на микроорганизмы и процессы самоочищения почвы.

Санитарное состояние почвы оценивается по ряду гигиенических

показателей, в том числе по:

-санитарному числу - отношению содержания белкового азота к общему органическому;

- -наличию кишечной палочки (колититр),
- наличию личинок мух,
- наличию яиц гельминтов.

По комплексу этих показателей почва оценивается как чистая или загрязненная.