

Universidad Politécnica de Guanajuato Departamento de Ingeniería Robótica Mecánica de cuerpo rígido ESP6

Instrucciones: Resuelve cada una de las actividades descritas, utiliza un procedimiento claro y conciso. Los ejercicios puedes llevarlos a revisión de forma presencial, recibir una retroalimentación y hacer las correcciones que sean necesarias; o bien, puedes subirlos directamente en Classroom sin revisión presencial, la diferencia es que no recibirías retroalimentación y sólo se te asignaría la calificación que obtengas sin posibilidad de corrección. Sube los ejercicios en un solo archivo PDF que deberás nombrar como NNN_ESP6.pdf, donde NNN son las iniciales de tu nombre más apellidos. Asegúrate que el archivo que subas sea nítido y legible.

1. En la figura se observa una barra que rota alrededor de un eje fijo, se sabe que en la posición mostrada las magnitudes de la velocidad y aceleración del punto A son $v_A=3\ m/s$ y $a_A=28\ m/s^2$, determina a_B y a_B .

2. La cuerda que se enrolla alrededor de una rueda de tambor levanta la cubeta. Si el desplazamiento angular de la rueda es $\theta=(0.5t^3+15t)$ rad, donde t está en segundos, determine la velocidad y aceleración de la cubeta cuando t=3 s.

^{*} Cada ejercicio vale un 1/3 de la calificación total de esta tarea.

Universidad Politécnica de Guanajuato Departamento de Ingeniería Robótica Mecánica de cuerpo rígido ESP6

3. La placa rectangular mostrada en la figura está rotando a velocidad angular constante de 600 rpm en sentido antihorario. Para el instante mostrado, calcule la velocidad y aceleración de los puntos P, Q y M. Considere que $\overline{PM}=200$ mm y $\overline{QM}=100$ mm.

^{*} Cada ejercicio vale un 1/3 de la calificación total de esta tarea.