# Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ



| Группа Р3115                | К работе допущен |
|-----------------------------|------------------|
| Студент Конаныхина А.А.     | Работа выполнена |
| Преподаватель Боярский К.К. | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №3.05

«Температурная зависимость электрического сопротивления металла и полупроводника»

# Цель работы:

Получить зависимость электрического сопротивления металлического и полупроводникового образцов. Вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

### Схема установки:



- 1. Вольтметр
- 2. Амперметр
- 3. Дополнительный резистор номиналом  $R_{\rm orp} = 680~{
  m Om}$
- 4. Полупроводниковый/металлический резистор
- 5. Генератор напряжения

# Измерительные приборы:

| Nº  | Наименование          | Используемый диапазон   | Погрешность |
|-----|-----------------------|-------------------------|-------------|
| п/п |                       |                         | прибора     |
| 1   | Вольтметр             | От 0 В до 2 В           | 0,001 B     |
| 2   | Амперметр             | От 1000 мкА до 1500 мкА | 1 мкА       |
| 3   | Регулятор температуры | От 290 К до 392 К       | 1 K         |

#### Исходные данные:

Постоянная Больцмана (физическая константа):

$$k = 1,380649 \cdot 10^{-23}$$
 Дж/К  $= 8,61733 \cdot 10^{-5}$  эВ/К

#### Результаты прямых измерений:

После получения экспериментальных значений для обоих образцов необходимо найти сопротивление, для это применим формулу:

$$R = \frac{U}{I}$$

Тогда получим следующие значения, для 1 образца (полупроводника): см. Таблица 1.

Для второго образца (проводника): см. Таблица 2.

## Расчет результатов косвенных измерений:

Для 1 образца необходимо найти ширину запретной зоны, для этого найдем её для пар значений 1-7, 2-8...6-12. Сделаем это по формуле:

$$E_{g_{ij}} = 2k \frac{T_i * T_j}{T_j - T_i} \ln \left(\frac{R_i}{R_j}\right)$$

Найдем среднее по формуле:

$$x_{\rm cp} = \frac{\sum_{i=1}^6 x_i}{6}$$

| Интервалы | $\mathrm{E}_g$ , Дж | $\mathrm{E}_{g}$ , эВ |
|-----------|---------------------|-----------------------|
| 1-7       | $1,0007 * 10^{-19}$ | 0,6246                |
| 2-8       | $1,1484*10^{-19}$   | 0,7168                |
| 3-9       | $1,1754 * 10^{-19}$ | 0,7336                |
| 4-10      | $1,1589 * 10^{-19}$ | 0,7233                |
| 5-11      | $1,1652 * 10^{-19}$ | 0,7272                |
| 6-12      | $1,1706 * 10^{-19}$ | 0,7306                |

Тогда средние значения:

$${
m E}_{g_{
m cp}}=1$$
,14  $*$  10 $^{-19}$  Дж

$$E_{g_{cp}} = 0.7094 \text{ 3B}$$

Для второго эксперимента таким же способом найдём значение  $\alpha$  — температурного коэффициента сопротивления. Найдём его по формуле:

$$\alpha_{ij} = \frac{R_i - R_j}{R_j t_i - R_i t_j}$$

| Интервалы | α       |
|-----------|---------|
| 1-7       | 0,00397 |
| 2-8       | 0,00387 |
| 3-9       | 0,00386 |
| 4-10      | 0,00381 |
| 5-11      | 0,00385 |
| 6-12      | 0,00387 |

Тогда  $a_{\rm cp} = 0.00387$ 

#### Расчет погрешностей:

Так как мы работает с набором значений, то погрешность будем оценивать как для многократно повторяющихся измерений. Найдем СКО по формуле:

$$S = \sqrt{\frac{\sum_{i=1}^{6} (x_i - x_{cp})^2}{6 * 5}}$$

Умножим на коэффициент Стьюдента, который для 6 измерений равен 2,57. Получим:

$$\Delta E_a = 0.04401 \text{ } \text{3B}$$

$$\Delta E_g = 7,0515 * 10^{-21}$$
Дж

$$\Delta \alpha = 0.5343 * 10^{-4} (1/K)$$

# Графики:

По результатам первого эксперимента построим график:



Данный график имеет линейную зависимость. Большие отклонения происходили из-за быстрого охлаждения полупроводника за время, за которое необходимо было внести в таблицу экспериментальные данные.

Также построим график зависимостей для второго эксперимента:



Данный график также имеет линейную зависимость, что подтверждает теорию.

#### Результаты:

В ходе выполнения лабораторной работы были получены следующие значения:

Значение температурного коэффициента сопротивления (для металла):

$$\alpha = (38.7 \pm 0.5) * 10^{-4} (1/K)$$

По данным разных таблиц в данный диапазон входит несколько металлов: медь, серебро, платина. С большей вероятностью данный металл – медь.

Ширина запрещённой зоны для полупроводника:

$$E_a = (7,1 \pm 0,4) * 10^{-1} \ni B$$

$$E_q = (11,3 \pm 0,7) * 10^{-20} Дж$$

Данному диапазону соответствует один полупроводник: германий.

#### Вывод:

В ходе эксперимента была подтверждена теория о том, что сопротивление прямо пропорционально температуре, для полупроводников данная зависимость - логарифмическая (подтверждается тем, что полученные графики имеют линейный вид).