Hamilton for single atom in magnetic field

$$\hat{H}=rac{(ec{p}+eec{A})^2}{2m}$$
, with: $ec{B}=\mu_0ec{H}=
abla imesec{A}$ and $abla\cdotec{A}=0$

$$\hat{H} = \frac{\vec{p}^2}{2m} + \frac{e}{m}\vec{A}\vec{p} + \frac{e^2\vec{A}^2}{2m}$$

$$B = (0, 0, B_0) = const., \ \vec{A} = -\frac{1}{2}(\vec{r} \times \vec{B_0})$$

$$\hat{H} = \frac{\vec{p}^2}{2m} - \frac{e}{2m} (\vec{r} \times \vec{B_0}) \vec{p} + \frac{e^2 (\vec{r} \times \vec{B_0})^2}{8m}$$

$$\hat{H} = \frac{\vec{p}^2}{2m} + \frac{c}{2m}(\vec{r} \times \vec{p})\vec{B_0} + \frac{c^2}{8m}(x^2 + y^2)\vec{B_0}^2$$

$$\hat{H} = \frac{\vec{p}^2}{2m} + \underbrace{\frac{c}{2m}L_zB_0}_{\text{paramagnetism}} + \underbrace{\frac{e^2}{8m}(x^2 + y^2)\vec{B_0}^2}_{\text{diamagnetism}}$$

6. Magnetism

6. Magnetism

127

magnetic moment
$$\vec{m} = \frac{\partial \hat{H}}{\partial \vec{B_0}}$$

$$\vec{m} = -[\frac{e}{2m}\langle L_z \rangle + \frac{e^2B_0}{4m}\langle x^2 + y^2 \rangle], \ e < 0$$
 paramagnetism diamagnetism

Magnetization
$$\vec{M} = N \cdot \vec{m} = \chi \cdot \vec{H} = \chi \cdot \frac{\vec{B}}{\mu_0}$$

Diamagnetism arises from a change of orbital momentum by an applied external magnetic field H (<u>Lenz's law</u>).

Diamagnetic susceptibility

$$\chi_{dia} = -\frac{\mu_0 N Z e^2}{6m} \langle r^2 \rangle$$

$$\chi_{dia} \simeq -10^{-4} \ll 1$$

6.2 Paramagnetism

6. Magnetism

Energy
$$U = -\vec{m}\vec{B} = g\mu_B \cdot m_j B$$

$$\vec{m} = -g\mu_B \cdot \vec{J}, m_j = -j, \dots, j$$

 $\begin{array}{c|c}
 & m_s & \mu_z \\
\hline
 & \frac{1}{2} & -\mu \\
\hline
 & -\frac{1}{2} & \mu
\end{array}$

Bohr magneton

$$\mu_B = \frac{|e|\hbar}{2m} = 0.579 \cdot 10^{-4} \text{ eV/Tesla}$$

Spin
$$S_z = \pm 1/2$$

 $\frac{N_{1,2}}{N} = \frac{e^{\pm U/k_B T}}{e^{U/k_B T} + e^{-U/k_B T}}$

$$\vec{M} = N \cdot \vec{m}(N_1 - N_2) = N\vec{m} \operatorname{tanh}(U/k_BT) \simeq N\vec{m} \frac{U}{k_BT}$$

6.2 Paramagnetism

6. Magnetism

13

Spin: $J_z = m_j, \ m_j = -j, \ldots, j$

Magnetization: $M(B,T) = NgJ_BB_J(x)$

with Brillouin function $B_J(x)=\frac{2J+1}{2J}\coth(\frac{(2J+1)x}{2J})-\frac{1}{2J}\coth(\frac{x}{2J}), x=gJ\mu_BB/k_BT$

for $x \ll 1$:

Curie law: $\chi_{para} = \frac{C}{T}$

Hund's rules:

- 1) S is maximal
- 2) L is maximal (consistent with S)
- 3) J=|L-S| if shell is less than half filled
 J=|L+S| if shell is more than half filled
 J = S if shell is half filled

6.2 Paramagnetic ions, 4f-electrons

Trivalent 4f - ions:

6.2 Paramagnetic ions, 3d-electrons

6. Magnetism

133

Table 2 Effective magneton numbers for iron group ions

Ion	Config- uration	Basic level	$p(\text{calc}) = g[J(J+1)]^{1/2}$	$p(\text{calc}) = 2[S(S + 1)]^{1/2}$	p(exp) ^a
Ti^{3+}, V^{4+} V^{3+} Cr^{3+}, V^{2+} Mn^{3+}, Cr^{2+}	$3d^1$	$^{2}D_{3/2}$	1.55	1.73	1.8
V ³⁺	$3d^2$	${}^{3}F_{2}$	1.63	2.83	2.8
Cr^{3+}, V^{2+}	$3d^3$	${}^{4}F_{3/2}$	0.77	3.87	3.8
Mn^{3+}, Cr^{2+}	$3d^{4}$	$^{5}D_{0}$	0	4.90	4.9
Fe^{3+}, Mn^{2+}	$3d^{5}$	$^{6}S_{5/2}$	5.92	5.92	5.9
$\mathrm{Fe^{2+}}$	$3d^{6}$	5D_4	6.70	4.90	5.4
Co^{2+}	$3d^{7}$	$^4F_{9/2}$	6.63	3.87	4.8
Fe ³⁺ , Mn ²⁺ Fe ²⁺ Co ²⁺ Ni ²⁺	$3d^{8}$	${}^{3}F_{4}$	5.59	2.83	3.2
Cu ²⁺	$3d^{9}$	$^{2}D_{5/2}$	3.55	1.73	1.9

^aRepresentative values.

for d-electrons quenching of orbital moments in cubic symmetry

$$M = \mu_B(N_{\uparrow} - N_{\downarrow}) = \mu_B^2 D(E_F) B$$

$$\chi = \mu_0 \mu_B^2 D(E_F)$$

6.3. Exchange coupling

6. Magnetism

135

⇒ ordering of magnetic moments in absence of external B

 \Rightarrow <u>spontaneous magnetization</u> below the Curie temperature T_C above T_C: paramagnetic behavior

6.3. Exchange interaction

direct exchange

super exchange

indirect exchange

For free electrons: exchange hole = effective charge density seen by a single electron

$$\rho_{eff} = \frac{e \cdot n}{2} [1 - 9 \frac{(\sin k_F r - k_F r \cos k_F r)^2}{(k_F r)^6}]$$

6.4. Stoner-Wohlfarth model

6. Magnetism

Mean field theory: $M(T) = \sqrt{3}(1 - \frac{T}{T_C})^{1/2}$

6.5. Temperature dependence

6. Magnetism

139

T > T_C: paramagnetic behavior

magnetic susceptibility diverges according to Curie-Weiss law:

$$\chi(T) = \frac{C}{T - T_C}, \ T_C = \lambda C$$

As $T \to T_c$ from above, the susceptibility χ becomes proportional to $(T-T_c)^{-\gamma}$, as $T \to T_c$ from below, the magnetization M_s becomes proportional to $(T_c-T)^{\beta}$. In the mean field approximation, $\gamma=1$ and $\beta=\frac{1}{2}$.

	γ	β	T _c , in K
Fe	1.33 ± 0.015	0.34 ± 0.04	1043
Co	1.21 ± 0.04	_	1388
Ni	1.35 ± 0.02	0.42 ± 0.07	627.2
Gd	1.3 ± 0.1	_	292.5
CrO_2	1.63 ± 0.02	_	386.5
CrBr ₃	1.215 ± 0.02	0.368 ± 0.005	32.56
EuS	_	0.33 ± 0.015	16.50

As $T \to T_c$ from above, the susceptibility χ becomes proportional to $(T - T_c)^{-\gamma}$; as $T \to T_c$ from below, the magnetization M_s becomes proportional to $(T_c - T)^{\beta}$. In the mean field approximation, $\gamma = 1$ and $\beta = \frac{1}{2}$.

	γ	β	T_c , in K
MARKET HE STREET, ST.			
\mathbf{Fe}	1.33 ± 0.015	0.34 ± 0.04	1043
Co	1.21 ± 0.04		1388
Ni	1.35 ± 0.02	0.42 ± 0.07	627.2
Gd	1.3 ± 0.1	_	292.5
CrO_2	1.63 ± 0.02	_	386.5
$CrBr_3$	1.215 ± 0.02	0.368 ± 0.005	32.56
EuS	_	0.33 ± 0.015	16.50
AND CONTRACTOR OF THE PARTY OF			

spin waves

6.6. Mean field theory

6. Magnetism

3

$$B_{eff} = B_{int} + B_{ext} = \lambda \mu_0 M + B_{ext}$$

 $T > T_C$:

$$\mu_0 \cdot M = \chi_{para}(B_{int} + B_{ext}) = \frac{C}{T}(\lambda \mu_0 M + B_{ext})$$

$$\chi = \frac{M}{\mu_0 B_{ext}} = [(1 - \frac{C}{T}\lambda)]^{-1} = \frac{T}{T - C\lambda} = \frac{T}{T - T_C}$$

 $T < T_C, \text{Spin } 1/2$:

$$\vec{M} = N\vec{m} \tanh(\vec{m} \cdot (\mu_0 \lambda \vec{M} + \vec{B}_{ext})/k_B T)$$

 $\simeq N\vec{m} \tanh(\vec{m} \cdot \mu_0 \lambda \vec{M}/k_B T)$

$$\tanh(x) \simeq x - x^3/3 \qquad \Rightarrow M(T) = \sqrt{3}(1 - \frac{T}{T_C})^{1/2}$$

111

6. Magnetism

Magnetization M depends not only on external field B but also on crystal orientation

- crystalline anisotropy (L-S coupling)
- shape anisotropy (dipolar interaction, stray fields)
- interface anisotropy

6.8. Antiferromagnetic order

[111]-direction

Wave vector k (Å-1)

Excitation energy

Spin waves

Wave vector of excitation

Quantum energy of the spin wave (meV)

Substance	Paramagnetic ion lattice	Transition temperature, T_N , in K	
MnO	fee	116	
MnS	fee	160	
MnTe	hex. layer	307	
MnF_2	bc tetr	67	
FeF_2	bc tetr	79	
$FeCl_2$	hex. layer	24	
FeO	fee	198	
$CoCl_2$	hex. layer	25	

6. Magnetism

Electron wave vector

T, in K

zJ

6.9. Domains

Reduction of magnetic stray field

⇒ magnetic domains

⇒ reduction of the total energy

Domain distribution determined by microscopic and macroscopic properties (shape, anisotropy, exchange interaction)

Domain boundaries: continuous spin rotation Width of domain wall in bulk: few 100 lattice constants