

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 486 Control Systems

Lecture 12: Frequency Response

Liangjing Yang
Assistant Professor, ZJU-UIUC Institute
liangjingyang@intl.zju.edu.cn

Checklist

Wk	Торіс	Ref.
1	✓ Introduction to feedback control	Ch. 1
	✓ State-space models of systems; linearization	Sections 1.1, 1.2, 2.1 2.4, 7.2, 9.2.1
2	✓ Linear systems and their dynamic response	Section 3.1, Appendix A
H Modeling	✓ Transient and steady-state dynamic response with arbitrary initial conditions	Section 3.1, Appendix A
3	✓ National Holiday Week	
4	✓ System modeling diagrams; prototype second-order system	Sections 3.1, 3.2, lab manual
í Analysis	✓ Transient response specifications	Sections 3.3, 3.14, lab manual
5	✓ Effect of zeros and extra poles; Routh- Hurwitz stability criterion	Sections 3.5, 3.6
	 ✓ Basic properties and benefits of feedback control; Introduction to Proportional- Integral-Derivative (PID) control 	Section 4.1-4.3, lab manual
6	✓ Review A	
	✓ Term Test A	
7	✓ Introduction to Root Locus design method	Ch. 5
	✓ Root Locus continued; introduction to dynamic compensation	Root Locus
8	✓ Lead and lag dynamic compensation	Ch. 5
	✓ Introduction to frequency-response design method	Sections 5.1-5.4, 6.1

			Root Locus	
Modeling	Analysis	Design		:
			Frequency Respor	nse i
		į		
		-	State-Space	į

Wk	Topic	Ref.
9	Bode plots for three types of transfer functions	Section 6.1
	Stability from frequency response; gain and phase margins	Section 6.1
10	Control design using frequency response	Ch. 6
	Control design using frequency response continued; PI and lag, PID and lead-lag	Frequency Response
11	Nyquist stability criterion	Ch. 6
	Nyquist stability criterion continued; gain and phase margins from Nyquist plots	Ch. 6
12	Review B	
	Term Test B	
13	Introduction to state-space design	Ch. 7
	Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form	Ch. 7
14	Pole placement by full state feedback	Ch. 7
	Observer design for state estimation	01 7
15	Joint observer and controller design by dynamic output feedback; separation principle	State-Space Ch. 7
	In-class review	Ch. 7
16	END OF LECTURES: Revision Week	
	Final	

"If you want to find the secrets of the universe, think in terms of energy, frequency and vibration."

— Nikola Tesla

https://thomasdevpro.com/

Lecture Overview

- Post Term Test I Review
- Introduction to Frequency Response

 Learning Goal: preparing to use frequency response as an alternative method for control systems design; learn to analyze and sketch magnitude and phase plots of transfer functions

Reading: FPE, Chapter 6 Section 6.1

Recap: System Response

$$\ddot{x} + 2\zeta \omega_n \dot{x} + \omega_n^2 x = u(t)$$

Transient response analysis

Laplace Transform (account for ICs!)

$$[s^2X(s) - sx_0 - \dot{x_0}] + 2\zeta\omega_n[sX(s) - x_0] + \omega_n^2X(s) = U(s)$$

$$s^{2}X + 2\zeta\omega_{n}sX + \omega_{n}^{2}X - (sx_{0} + \dot{x}_{0} + 2\zeta\omega_{n}x_{0}) = U$$

$$X(s) = \frac{sx_0 + \dot{x_0} + 2\zeta\omega_n x_0}{s^2 + 2\zeta\omega_n s + {\omega_n}^2} + \frac{U(s)}{s^2 + 2\zeta\omega_n s + {\omega_n}^2}$$

$$X(s) = \frac{(s + 2\zeta\omega_n)x_0 + \dot{x_0}}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{U(s)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Inverse Laplace Transform

$$x(t) = L^{-1} \left\{ \frac{(s + 2\zeta\omega_n)x_0 + \dot{x_0}}{s^2 + 2\zeta\omega_n s + \omega_n^2} \right\} + L^{-1} \left\{ \frac{U(s)}{s^2 + 2\zeta\omega_n s + \omega_n^2} \right\}$$

Recall: 2nd Order System Response

For the 2nd order equation, $\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = f(t)$

Working out the general solution yields

$$x = (2\zeta\omega_n x(0) + \dot{x}(0))h(t) + x(0)\dot{h}(t) + f(t) * h(t)$$

where
$$f(t) * h(t) = \int_0^t f(\tau)h(t-\tau)d\tau$$
,

h(t) is the **unit-impulse response**.

When f(t) = 0, x(0) = 0, and $\dot{x}(0) = 1$, h(t) is a solution

Recap: System Response (Overview)

- System response describes the behavior of a dynamic system
- Free and Forced Response
 - Total Response $x(t)=x_h(t)+x_p(t)$
 - Free Response: x_h is the solution
 - Forced Response: x_p is determined by the forcing function f
- Transient and Steady-State
 - Total Response $x(t)=x_{tr}(t)+x_{ss}(t)$
 - $x_{tr.}$ Transient State: component that decays towards zero
 - x_{ss} , Steady State: component that remains after the x_t decays towards 0

Recap: Frequency Response

 The steady-state response to a sinusoidal input is known as the frequency response

Engineering Examples

• Recall the frequency-response formula:
$$M(+) = SM(M)$$

$$M = \left[G(S) \right]$$

$$M = \left[G(S) \right]$$

Recall the frequency-response formula:

$$\sin(\omega t) \longrightarrow G(s) \longrightarrow M \sin(\omega t + \phi)$$
 where $M = M(\omega) = |G(j\omega)|$ and $\phi = \phi(\omega) = \angle G(j\omega)$

Derivation:

1.
$$u(t) = e^{st} \longmapsto u(t) = G(s)e^{st}$$

- 1. $u(t) = e^{st} \mapsto y(t) = G(s)e^{st}$ 2. Euler's formula: $\sin(\omega t) = \frac{e^{j\omega t} e^{-j\omega t}}{2i}$
- 3. By linearity,

$$\sin(\omega t) \longmapsto \frac{G(j\omega)e^{j\omega t} - G(-j\omega)e^{-j\omega t}}{2j} G(j\omega) = M(\omega)e^{j\phi(\omega)}$$

$$= \frac{M(\omega)e^{j(\omega t + \phi(\omega))} - M(\omega)e^{-j(\omega t + \phi(\omega))}}{2j}$$

$$= M(\omega)\sin(\omega t + \phi(\omega))$$

Let's apply this formula to our prototype 2nd-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$M(\omega) = |G(j\omega)| = \left| \frac{\omega_n^2}{-\omega^2 + 2j\zeta\omega_n \omega + \omega_n^2} \right|$$

$$= \left| \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + 2\zeta\frac{\omega}{\omega_n}j} \right|$$

$$= \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}}$$

$$\sin(\omega t) \longrightarrow G(s) \longrightarrow M \sin(\omega t + \phi)$$

where $M = M(\omega) = |G(j\omega)|$ and $\phi = \phi(\omega) = \angle G(j\omega)$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$M(\omega) = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}} = \frac{1}{\sqrt{1 + \left(4\zeta^2 - 2\right)\left(\frac{\omega}{\omega_n}\right)^2 + \left(\frac{\omega}{\omega_n}\right)^4}}$$

For our prototype 2nd-order system:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$M(\omega) = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}} = \frac{1}{\sqrt{1 + \left(4\zeta^2 - 2\right)\left(\frac{\omega}{\omega_n}\right)^2 + \left(\frac{\omega}{\omega_n}\right)^4}}$$

A typical freq. response magnitude plot

small $M_r \longleftrightarrow$ better damping large $\omega_{\rm BW} \longleftrightarrow$ large $\omega_n \longleftrightarrow$ smaller t_r

Info about time response also encoded in frequency response

 ω_r – resonant frequency

 M_r – resonant peak

 $\omega_{\rm BW}$ – bandwidth

We can get the following formulas using calculus:

$$\begin{cases} \omega_r = \omega_n \sqrt{1 - 2\zeta^2} \\ M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}} - 1 \end{cases} \text{ (valid for } \zeta < \frac{1}{\sqrt{2}}; \text{ for } \zeta \ge \frac{1}{\sqrt{2}}, \ \omega_r = 0) \end{cases}$$

$$\omega_{\text{BW}} = \omega_n \underbrace{\sqrt{(1 - 2\zeta^2) + \sqrt{(1 - 2\zeta^2)^2 + 1}}}_{-1 \text{ for } \zeta = 1/\sqrt{2}}$$

— so, if we know $\omega_r, M_r, \omega_{\text{BW}}$, we can determine ω_n, ζ and hence the time-domain specs (t_r, M_p, t_s)

Two-step procedure:

1. Plot the frequency response of the *open-loop* transfer function KG(s) [or, more generally, D(s)G(s)], at $s = j\omega$

2. See how to relate this open-loop frequency response to closed-loop behavior.

1+165

Frequency Response (How)

Two-step procedure:

- 1. Plot the frequency response of the open-loop transfer function KG(s) [or, more generally, D(s)G(s)], at $s = j\omega$
- See how to relate this open-loop frequency response to closed-loop behavior.

ZJU-UIUC INSTITUTE

We will work with two types of plots for $KG(j\omega)$:

- 1. Bode plots: magnitude $|KG(j\omega)|$ and phase $\angle KG(j\omega)$ vs. frequency ω
- 2. Nyquist plots: $\operatorname{Im}(KG(j\omega))$ vs. $\operatorname{Re}(K(j\omega))$ [Cartesian plot in s-plane] as ω ranges from $-\infty$ to $+\infty$

	magnitude	phase
horizontal scale	log	log
vertical scale	log	linear

Advantage of the scale convention: we will learn to do Bode plots by starting from simple factors and then building up to general transfer functions by considering products of these simple factors.

Subject (Streethyl) chronity of films at Union Chromapy Indiana 新江大学所述の大学の巴特吉県区東台学院 エステクトの選の大学の巴特吉県区東台学院

Note on the Scale

Horizontal (ω) axis:

we will use logarithmic scale (base 10) in order to display a wide range of frequencies.

Note: we will still mark the values of ω , not $\log_{10} \omega$, on the axis, but the scale will be logarithmic:

Vertical axis on magnitude plots:

we will also use logarithmic scale, just like the frequency axis.

Reason:

$$|(M_1e^{j\phi_1})(M_2e^{j\phi_2})| = M_1 \cdot M_2$$

 $\log(M_1M_2) = \log M_1 + \log M_2$

— this means that we can simply add the graphs of $\log M_1(\omega)$ and $\log M_2(\omega)$ to obtain the graph of $\log (M_1(\omega)M_2(\omega))$, and graphical addition is easy.

Decibel scale:

$$(M)_{\mathrm{dB}} = 20 \log_{10} M$$
 (one decade = $20 \,\mathrm{dB}$)

Vertical axis on phase plots:

we will plot the phase on the usual (linear) scale.

Reason:

$$\angle \left((M_1 e^{j\phi_1})(M_2 e^{j\phi_2}) \right) = \angle \left(M_1 M_2 e^{j(\phi_1 + \phi_2)} \right)$$

= $\phi_1 + \phi_2$

— this means that we can simply *add* the phase plots for two transfer functions to obtain the phase plot for their product.

Note on the Scale

Horizontal (ω) axis:

we will use *logarithmic scale* (base 10) in order to display a wide range of frequencies.

Note: we will still mark the values of ω , not $\log_{10} \omega$, on the axis, but the scale will be logarithmic:

Equal intervals on log scale correspond to decades in frequency.

Note on the Scale

Vertical axis on magnitude plots:

we will also use logarithmic scale, just like the frequency axis.

Reason:

$$|(M_1 e^{j\phi_1})(M_2 e^{j\phi_2})| = M_1 \cdot M_2$$
$$\log(M_1 M_2) \neq \log M + \log M_2$$

— this means that we can simply add the graphs of $\log M_1(\omega)$ and $\log M_2(\omega)$ to obtain the graph of $\log (M_1(\omega)M_2(\omega))$, and graphical addition is easy.

Decibel scale:

$$(M)_{\mathrm{dB}} = 20 \log_{10} M$$
 (one decade = $20 \,\mathrm{dB}$)

Vertical axis on phase plots:

we will plot the phase on the usual (linear) scale.

Reason:

$$\angle \left((M_1 e^{j\phi_1})(M_2 e^{j\phi_2}) \right) = \angle \left(M_1 M_2 e^{j(\phi_1 + \phi_2)} \right)$$
$$= \phi_1 + \phi_2$$

— this means that we can simply *add* the phase plots for two transfer functions to obtain the phase plot for their product.

Scale Convention for Bode Plots

	magnitude	phase
horizontal scale	log	\log
vertical scale	log	linear

Advantage of the scale convention: we will learn to do Bode plots by starting from simple factors and then building up to general transfer functions by considering products of these simple factors.

Bode Form of the Transfer Function

Bode form of KG(s) is a factored form with the constant term in each factor equal to 1, i.e., lump all DC gains into one number in the front.

Example:

$$KG(s) = K \frac{s+3}{s(s^2+2s+4)}$$
rewrite as
$$\frac{3K\left(\frac{s}{3}+1\right)}{4s\left(\left(\frac{s}{2}\right)^2 + \frac{s}{2}+1\right)} \Big|_{s=j\omega}$$

$$= \frac{3K}{4} \frac{\frac{j\omega}{3}+1}{j\omega\left(\left(\frac{j\omega}{2}\right)^2 + \frac{j\omega}{2}+1\right)}$$

Transfer functions in Bode form will have three types of factors:

- 1. $K_0(j\omega)^n$, where n is a positive or negative integer
- 2. $(j\omega\tau + 1)^{\pm 1}$

3.
$$\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{\pm 1}$$

In our example above,

$$KG(j\omega) = \frac{3K}{4} \frac{\frac{j\omega}{3} + 1}{j\omega \left[\left(\frac{j\omega}{2} \right)^2 + \frac{j\omega}{2} + 1 \right]}$$
$$= \underbrace{\frac{3K}{4} (j\omega)^{-1}}_{\text{Type 1}} \cdot \underbrace{\left(\frac{j\omega}{3} + 1 \right)}_{\text{Type 2}} \cdot \underbrace{\left[\left(\frac{j\omega}{2} \right)^2 + \frac{j\omega}{2} + 1 \right]^{-1}}_{\text{Type 3}}$$

— as a function of $\log \omega$, this is a link of slope n passing through the value $\log |K_0|$ at $\omega = 1$

Phase: $\angle K_0(j\omega)^n = \angle (j\omega)^n = n\angle j\omega = n \cdot 90^\circ$ — this is a constant, independent of ω .

Recap: Type 1: $K_{\mathcal{O}}(j\omega)^{n}$

Magnitude: $\log M = \log |K_0(j\omega)^n| = \log |K_0| + n \log \omega$

— as a function of $\log \omega$, this is a *line* of slope n passing through the value $\log |K_0|$ at $\omega = 1$

In our example, we had $K_0(j\omega)^{-1}$:

— this is called a low-frequency asymptote (will see why later)

Phase: $\angle K_0(j\omega)^n = \angle (j\omega)^n = n\angle j\omega = n \cdot 90^\circ$ — this is a constant, independent of ω .

In our example, we had $K_0(j\omega)^{-1}$:

— here, the phase is -90° for all ω .

 $<_{6}((\omega)^{n}$

This is the case of a stable real zero.

To study $|j\omega\tau + 1|$ and $\angle(j\omega\tau + 1)$ as a function of ω , we will look at the *Nyquist* plot:

For
$$\omega \tau \ll 1$$
, $j\omega \tau + 1 \approx 1$
 $\omega \tau \gg 1$, $j\omega \tau + 1 \approx j\omega \tau$
(like Type 1 with $K_0 = \tau, n = 1$)

Transition:

$$\omega \tau = 1 \iff \omega = 1/\tau$$

— this is the breakpoint

Magnitude plot:

For a stable real zero, the magnitude slope "steps up by 1" at the break-point.

Recap: Type 2: $j\omega\tau + 1$

Phase:

- ▶ For small ω (below break-point), $\phi \approx 0^{\circ}$
- For large ω (above break-point),

$$\phi \approx \angle (j\omega\tau)$$
$$= 90^{\circ}$$

• At break-point ($\omega \tau = 1$),

$$\phi = \angle(j+1)$$
$$= 45^{\circ}$$

Phase plot:

For a stable real zero, the phase "steps up by 90°" as we go past the break-point.

Recap: Type 2: $(j\omega \tau + 1)^{-1}$

This is a stable real pole.

Magnitude:

$$\log \left| \frac{1}{j\omega\tau + 1} \right| = -\log|j\omega\tau + 1|$$

Phase:

$$\angle \frac{1}{j\omega\tau + 1} = -\angle (j\omega\tau + 1)$$

So the magnitude and phase plots for a stable real pole are the reflections of the corresponding plots for the stable real zero w.r.t. the horizontal axis:

- ▶ step down by 1 in magnitude slope
- ▶ step down by 90° in phase

Example Type 1 and 2 Factors

$$KG(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$$

Convert to Bode form:

$$KG(j\omega) = \frac{2000 \cdot 0.5 \cdot \left(\frac{j\omega}{0.5} + 1\right)}{\frac{10 \cdot 50 \cdot j\omega}{\left(\frac{j\omega}{10} + 1\right) \left(\frac{j\omega}{50} + 1\right)}}$$

$$= \frac{2}{j\omega} \underbrace{\left(\frac{j\omega}{0.5} + 1\right)}_{\left(\frac{j\omega}{10} + 1\right) \left(\frac{j\omega}{50} + 1\right)}_{\left(\frac{j\omega}{50} + 1\right)}$$

Transfer function in Bode form:

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Type 1 term:

- ▶ $K_0 = 2, n = -1$ it contributes a line of slope -1 passing through the point $(\omega = 1, M = 2)$.
- ▶ This is a low-frequency asymptote: for small ω , it gives very large values of M, while other terms for small ω are close to M = 1 (since $\log 1 = 0$).

Now we mark the break-points, from Type 2 terms:

- $\omega = 0.5$ stable zero \Rightarrow slope steps up by 1
- $\omega = 10$ stable pole \Rightarrow slope steps down by 1
- $\omega = 50$ stable pole \Rightarrow slope steps down by 1

Magnitude

Bode Form (Magnitude)

Transfer function in Bode form:

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Type 1 term:

- ▶ $K_0 = 2, n = -1$ it contributes a line of slope -1 passing through the point $(\omega = 1, M = 2)$.
- ▶ This is a low-frequency asymptote: for small ω , it gives very large values of M, while other terms for small ω are close to M = 1 (since log 1 = 0).

Now we mark the break-points, from Type 2 terms:

- $\omega = 0.5$ stable zero \Rightarrow slope steps up by 1
- $\omega = 10$ stable pole \Rightarrow slope steps down by 1
- $\omega = 50$ stable pole \Rightarrow slope steps down by 1

Bode Plot (Magnitude)

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Magnitude

Bode Form (Magnitude)

Transfer function in Bode form:

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Type 1 term:

- ▶ $K_0 = 2, n = -1$ it contributes a line of slope -1 passing through the point $(\omega = 1, M = 2)$.
- ▶ This is a low-frequency asymptote: for small ω , it gives very large values of M, while other terms for small ω are close to M = 1 (since log 1 = 0).

Now we mark the break-points, from Type 2 terms:

- $\omega = 0.5$ stable zero \Rightarrow slope steps up by 1
- $\omega = 10$ stable pole \Rightarrow slope steps down by 1
- $\omega = 50$ stable pole \Rightarrow slope steps down by 1

Bode Plot (Magnitude)

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Phase

Bode Form (Phase)

Transfer function in Bode form:

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Type 1 term:

▶ n = -1 — phase starts at -90°

Type 2 terms:

- ▶ $\omega = 0.5$ stable zero \Rightarrow phase up by 90° (by 45° at $\omega = 0.5$)
- ▶ $\omega = 10$ stable pole \Rightarrow phase down by 90° (by 45° at $\omega = 10$)
- ▶ $\omega = 50$ stable pole \Rightarrow phase down by 90° (by 45° at $\omega = 50$)

Bode Plot (Phase)

$$KG(j\omega) = \frac{2}{j\omega} \cdot \left(\frac{j\omega}{0.5} + 1\right) \cdot \frac{1}{\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{50} + 1\right)}$$

Recap: Bode Form of the Transfer Function

Bode form of KG(s) is a factored form with the constant term in each factor equal to 1, i.e., lump all DC gains into one number in the front.

Example:

$$KG(s) = K \frac{s+3}{s(s^2+2s+4)}$$
rewrite as
$$\frac{3K\left(\frac{s}{3}+1\right)}{4s\left(\left(\frac{s}{2}\right)^2 + \frac{s}{2}+1\right)} \bigg|_{s=j\omega}$$

$$= \frac{3K}{4} \frac{\frac{j\omega}{3}+1}{j\omega\left(\left(\frac{j\omega}{2}\right)^2 + \frac{j\omega}{2}+1\right)}$$

Transfer functions in Bode form will have three types of factors:

- 1. $K_0(j\omega)^n$, where n is a positive or negative integer
- 2. $(j\omega\tau + 1)^{\pm 1}$

3.
$$\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{\pm 1}$$

In our example above,

$$KG(j\omega) = \frac{3K}{4} \frac{\frac{j\omega}{3} + 1}{j\omega \left[\left(\frac{j\omega}{2} \right)^2 + \frac{j\omega}{2} + 1 \right]}$$
$$= \underbrace{\frac{3K}{4} (j\omega)^{-1}}_{\text{Type 1}} \cdot \underbrace{\left(\frac{j\omega}{3} + 1 \right)}_{\text{Type 2}} \cdot \underbrace{\left[\left(\frac{j\omega}{2} \right)^2 + \frac{j\omega}{2} + 1 \right]^{-1}}_{\text{Type 3}}$$

Type 3:
$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1$$

Stable complex zero — more difficult than Types 1 & 2.

First step — let's rewrite in Cartesian form:

$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 = \left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right) + 2\zeta \frac{\omega}{\omega_n} j$$

And here is the Nyquist plot, for $0 < \omega < \infty$:

What happens as $\omega \to \infty$?

- ▶ real part $\approx -(\omega/\omega_n)^2 \to -\infty$, quadratic in ω
- imaginary part = $2\zeta(\omega/\omega_n) \to \infty$, linear in ω

Magnitude:

- for $\omega \ll \omega_n$, $M \approx 1$ (horizontal line)
- ▶ for $\omega \gg \omega_n$, $M \approx \left(\frac{\omega}{\omega_n}\right)^2 \Rightarrow \log M \approx 2\log \omega 2\log \omega_n$ The asymptote is a line of slope 2 passing through the point $(\omega = \omega_n, M = 1)$

For a stable complex zero, the magnitude slope steps up by 2 as we go through the breakpoint.

Type 3:
$$\left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1\right]^{-1}$$

This is a stable complex pole.

Magnitude:

$$\log M = \log \left| \frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1} \right| = -\log \left| \left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right|$$

Phase:

$$\phi = \angle \frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1} = -\angle \left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1\right]$$

Type 3: Magnitude

Complex Pole Case

How does the magnitude plot look? Depends on the value of ζ :

The magnitude hits its peak value (for $\zeta < 1/\sqrt{2} \approx 0.707$) occurs when $\omega = \omega_r$, where

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} < \omega_n$$

For small enough ζ (below $1/\sqrt{2}$), the magnitude of

$$\frac{1}{\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta\frac{j\omega}{\omega_n} + 1}$$

has a resonant peak at the resonant frequency

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}.$$

Likewise, the magnitude of

$$\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1$$

has a resonant dip at ω_r .

Type 3: Magnitude

Stable real zero
$$\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]$$

For a stable real zero, the magnitude slope "steps up by 2" at the break-point.

Stable real pole
$$\left[\left(\frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{-1}$$

For a stable real pole, the magnitude slope "steps down by 2" at the break-point.

Type 3: Phase

Phase:

- for $\omega \ll \omega_n$, $\phi \approx 0^{\circ}$ (real and positive)
- for $\omega = \omega_n$, $\phi = 90^\circ$ (Re = 0, Im > 0)
- for $\omega \gg \omega_n$, $\phi \approx 180^\circ$ (Re $\sim -\omega^2$, Im $\sim \omega$)

For a stable complex zero, the phase steps up by 180° as we go through the breakpoint; as $\zeta \to 0$, the transition through the break-point gets sharper, almost step-like.

For a pole, the phase is multiplied by -1.

(stable complex zero — phase steps up by 180°)

(stable complex pole — phase steps down by 180°)

Example 2 Magnitude

$$KG(s) = \frac{0.01 \left(s^2 + 0.01s + 1\right)}{s^2 \left(\frac{s^2}{4} + 0.02\frac{s}{2} + 1\right)}$$
 — already in Bode form

What can we tell about magnitude?

- ▶ low-frequency term $\frac{0.01}{(j\omega)^2}$ with $K_0 = 0.01$, n = -2— asymptote has slope = -2, passes through $(\omega = 1, M = 0.01)$
- ▶ complex zero with break-point at $\omega_n = 1$ and $\zeta = 0.005$ slope up by 2; large resonant dip
- complex pole with break-point at $\omega_n = 2$ and $\zeta = 0.01$ slope down by 2; large resonant peak

Example 2 Phase

$$KG(s) = \frac{0.01 \left(s^2 + 0.01 s + 1\right)}{s^2 \left(\frac{s^2}{4} + 0.02 \frac{s}{2} + 1\right)} \qquad -\text{ already in Bode form}$$

What can we tell about phase?

- ▶ low-frequency term $\frac{0.01}{(j\omega)^2}$ with $K_0 = 0.01$, n = -2— phase starts at $n \times 90^\circ = -180^\circ$
- complex zero with break-point at $\omega_n = 1$ phase up by 180°
- complex pole with break-point at $\omega_n = 2$ phase down by 180°
- since ζ is small for both pole and zero, the transitions are very sharp

Unstable Zeros/Poles

So far, we've only looked at transfer functions with stable poles and zeros (except perhaps at the origin). What about RHP?

Example: consider two transfer functions,

$$G_1(s) = \frac{s+1}{s+5}$$
 and $G_2(s) = \frac{s-1}{s+5}$

Note:

- ▶ G_1 has stable poles and zeros; G_2 has a RHP zero.
- ▶ Magnitude plots of G_1 and G_2 are the same —

$$|G_1(j\omega)| = \left| \frac{j\omega + 1}{j\omega + 5} \right| = \sqrt{\frac{\omega^2 + 1}{\omega^2 + 5}}$$
$$|G_2(j\omega)| = \left| \frac{j\omega - 1}{j\omega + 5} \right| = \sqrt{\frac{\omega^2 + 1}{\omega^2 + 5}}$$

▶ All the difference is in the phase plots!

Phase Plot for G₁

$$G_1(j\omega) = \frac{j\omega + 1}{j\omega + 5} = \frac{1}{5} \frac{j\omega + 1}{\frac{j\omega}{5} + 1}$$

- ▶ Low-frequency term: $\frac{1}{5}(j\omega)^0$ n=0, so phase starts at
- ▶ Break-points at $\omega_n = 1$ (phase goes up by 90°) and at $\omega_n = 5$ (phase goes down by 90°)

Phase Plot for G₂

$$G_2(j\omega) = \frac{j\omega - 1}{j\omega + 5} = \frac{1}{5} \frac{j\omega - 1}{\frac{j\omega}{5} + 1}$$

Let's do a Nyqiust plot for $j\omega - 1$:

New type of behavior —

- $\omega \approx 0$: $\phi \approx 180^{\circ}$ (real and negative)
- $\omega \gg 1 : \quad \phi \approx 90^{\circ} \text{ (Re} = -1, \\ \text{Im} = \omega \gg 1)$
- $\sim \omega \approx 1$: $\phi \approx 135^{\circ}$

For a RHP zero, the phase starts out at 180° and goes down by 90° through the break-point (135° at break-point).

For a RHP zero, the phase plot is similar to what we had for a LHP pole: goes down by 90° ... However, it starts at 180° , and not at 0° .

Minimum - & Nonminimum - Phase Zeros

Minimum-Phase and Nonminimum-Phase Zeros

Among all transfer functions with the same magnitude plot, the one with only LHP zeros has the minimal net phase change as ω goes from 0 to ∞ — hence the term minimum-phase for LHP zeros.