

Modul Betriebssysteme (bsys-iC)

Lektion 13: Zusammenfassung, Ausblick, neue Entwicklungen

Inhalt des Moduls – Teil 1

Lektion 1, 24.9.	Einführung, Geschichte der Betriebssysteme, Abgrenzungen
Lektion 2, 1.10.	Aufbau und Blockstruktur eines Betriebssystems
Lektion 3, 8.10.	Benutzerschnittstelle (Shell), Administration, Pflege
Lektion 4, 15.10	Dateisystem, Datensicherung und Ein-/Ausgabesystem
Lektion 5, 22.10.	Prozess-Steuersystem und Systemüberwachung
Lektion 6, 29.10	Repetition und 1. Assessment

Inhalt des Moduls – Teil 2

Lektion 7, 5.11.	Netzwerke & Informationssicherheit im Betriebssystem
Lektion 8, 12.11	Speicher-Management und Ressourcenverwaltung/- zuteilung
Lektion 9, 19.11.	Virtualisierungstechnologien und Systemkern- Konfiguration / Tuning
Lektion 10, 3.12.	System-Start/Stop, Boot Manager, Hardw. Abstraction Layer
Lektion 11, 17.12.	Synchronisation, Nebenläufigkeit und verteilte Systeme
Lektion 12, 7.1.	Repetition und 2. Assessment
Lektion 13, 14.1.	Zusammenfassung, Ausblick, neue Entwicklungen

Resultate des 2. Assessments (15 min)

Kurze Wiederholung der Aufgaben

Typische Lösungen / Lösungselemente

Gesamtauswertung der Ergebnisse

Bekanntgabe der einzelnen Resultate

Ergebnisvergleich der beiden Assessments

Die Zukunft der Betriebssysteme

The OS Faces a Brave New World

David Geer

he operating system has always been the heart and soul of servers and personal computers. It manages activities such as computer-resource sharing, application hosting, hardware operation, and hardware-software interfacing

The OS controls and initiates application execution and provides services such as DO operations, a file system, and communications among processes.

In addition, the OS provides abstractions of the underlying hardware, which can help developers Cloud computing features applications that run on servers spread across the Internet. Cloud providers push these applications to users' browsers. Users of cloud-based software thus don't need an OS to do more than run the browser.

Developers are increasingly using frameworks that enable the faster building of applications that work with multiple OSs, again making the use of a specific operating systemless important.

The just enough Operating System (JeOS, pronounced "juice") movement focuses on packaging an application cate and share memory, disk space, peripherals, and other resources among multiple applications and users, according to Tanenbaum. Applications use predefined system calls to access OS services, he said

OSs manage hardware via the kernel. For example, the kernel controls disk reads and writes, as well as memory and I/O-device access.

Operating systems interface between hardware and software by providing applications with simpler, more abstract versions of the underlying hardware to interact with, such as files that represent hard disk space.

Lesestoff

Wünsche eines Systemadministrators

Systemadministratoren brauchen "Soft Skills"

Weiterführende Module der Vertiefung ICT System Mgmt

Resultate der Studierendenumfrage

Resultat

Bewertung der Lehrveranstaltung

- Was war gut?
- Was war schlecht?
- Gab es überraschende Erkenntnisse?
- Was können wir besser machen?
- http://www.myprof.ch/HannesLubich