

Linear Circuits

BONNIE FERRI, PROFESSOR AND ASSOCIATE CHAIR School of Electrical and Computer Engineering

Module 2

Lesson 2: Kirchhoff's Current Law

Georgia Tech

Kirchhoff's Current Law

Builds Upon:

• Ohm's Law (V=iR)

Nodes

Kirchhoff's Current Law (KCL)

Sum of the currents leaving a node = sum of current entering the node

$$\sum i_{leaving} = \sum i_{entering}$$

Kirchhoff's Current Law (KCL)

Sum of the currents leaving a node = sum of current entering the node

$$\sum i_{leaving} = \sum i_{entering}$$

$$i_1 + i_3 = i_2$$
 $i_1 + i_3 - i_2 = 0$
 i_3

Georgia Tech

Kirchhoff's Current Law (KCL)

Sum of the currents leaving a node = zero

$$\textstyle \sum i_{leaving} = 0$$

$$i_1 + i_2 + i_4 = 0$$
 i_1
 i_3

Sum of the currents entering a node = zero

$$\sum i_{entering} = 0$$

$$i_2 + i_5 + i_6 = 0$$
 i_5 i_5

Key Concepts

• Series components have the same current

Solve problems by combining KVL and KCL