Galois Theory

MATH 440

Steven Xia

April 15, 2023

Galois Theory studies symmetries among roots of polynomials.

— Professor (Spring 2023)

Contents

1	Author's Notes	1
2	Field Extensions	2
3	Normal Extensions	4
4	Seperable Extensions	4
5	Galois Correspondece	Ę
6	Solvable Extensions	6
7	Constructibility	7

1 Author's Notes

- The following are sometimes used without reference: Theorem 2.1, Theorem 4.1.
- Unless otherwise stated, assume p denotes a prime number and n denotes a natural number.

2 Field Extensions

Theorem 2.1. If $F \to K$ and $K \to L$ are finite, then [L : F] = [L : K][K : L].

Proof. Let $\{\alpha_1, \dots, \alpha_n\}$ and $\{\beta_1, \dots, \beta_m\}$ be bases for $F \to K$ and $K \to L$ respectively. We claim $S = \{\alpha_i \beta_j\}$ is an F-basis for L. It is immediate that S spans L, so we show that S is linearly independent.

Suppose some linear combination of S is zero, then factoring out by the α_i implies the coefficients of each group of α_i must be zero, but they are all linear combinations of the β_i , hence all coefficients must be zero. \square

Theorem 2.2. A field extension is finite if and only if it is algebraic and finitely generated.

Proof. Suppose $F \to K$ is a field extension. It is trivial to show that

- (i) if $F \rightarrow K$ is not algebraic, then it is not finite, and
- (ii) if $F \to K$ is not finitely generated, then it is not finite.

Suppose $F \to K$ is algebraic and finitely generated, and let $\{\alpha_1, ..., \alpha_n\}$ be a basis for $F \to K$. Break the extension down by $F \to F(\alpha_1) \to F(\alpha_1, \alpha_2) \to ... \to F(\alpha_1, ..., \alpha_n) = K$, and see that each of these intermediate extensions are finite. Theorem 2.1 asserts $F \to K$ is finite.

Corollary 2.2.1. Every composition of algebraic field extensions is algebraic.

Proof. Suppose $F \to K$ and $K \to L$ are algebraic. Let $\alpha \in L$ with $m_{\alpha,K} = x^n + c_{n-1}x^{n-1} + \cdots + c_0$, and construct $K' = F(c_0, \dots, c_{n-1})$, which is algebraic and finitely generated, hence finite. But $K' \to K'(\alpha)$ is also finite, so $F \to K'(\alpha)$ is finite, therefore α is algebraic over F.

Theorem 2.3 (Kronecker). If F is a field and $f \in F[x]$ is non-constant, then there exists a finite $F \to K$ such that f has a root in K.

Proof. Without loss of generality, we may assume f is irreducible. Define $K = F[x]/\langle f \rangle$, which is a field because $\langle f \rangle$ is maximal. See that $x + \langle f \rangle \in K$ is a root of f.

Theorem 2.4. A field F is algebraically closed if and only if every algebraic $F \to K$ has [K : F] = 1.

Proof. The "only if" is trivial, so suppose every $F \to K$ has [K : F] = 1. Let $f \in F[x]$, and Theorem 2.3 asserts there exists a finite $F \to K$ in which f has a root. But [K : F] = 1, so this root is in fact in F.

Theorem 2.5. Every field has an algebraic closure.

Proof. Suppose F is a field, and define S to be the set of monic and irreducible polynomials in F[x]. Also construct $R = F[y_f \mid f \in S]$ and $I = \langle f(y_f) \mid f \in S \rangle$.

We claim $1 \notin I$. Towards a contradiction, suppose $1 \in I$, so we can write $1 = \sum_i a_i f_i(y_{f_i})$ for $a_i \in R$ and $f_i \in S$. Repeating Theorem 2.3 for each f_i generates a field extension in which there exist α_i such that $f_i(\alpha_i) = 0$ for all i, but now we have $1 = \sum_i a_i f_i(\alpha_i) = 0$, a contradiction.

Now we know I is a proper ideal, so it is contained in some maximal ideal M. Define $F \to K = R/M$, and see that $y_i + \langle M \rangle \in K$ is a root of f_i , so we conclude that K is an algebraic closure of F.

Theorem 2.6 (Isomorphism Extension). Let F and K be fields with isomorphism $\phi: F \to K$. If $F \to E$ is algebraic, then there exists an isomorphism ψ between E and a subfield of \overline{K} satisfying $\psi|_F = \phi$.

Proof. Let S be the set of (E', σ) where E' is a field satisfying $F \subseteq E' \subseteq E$ and σ an isomorphism from E' to a subfield of \overline{K} satisfying $\sigma|_F = \phi$. Define a partial order on S by $(E_1, \sigma_1) \leq (E_2, \sigma_2)$ if and only if $E_1 \subseteq E_2$ and $\sigma_2|_{E_1} = \sigma_1$. We wish to apply Zorn's Lemma to S, so we note

- (i) that $(F, \phi) \in S$ implies S is non-empty, and
- (ii) that every chain $(E_1, \sigma_1) \le (E_2, \sigma_2) \le ...$ in S is bounded above by (E', σ) , where $E' = \bigcup_i E_i$ and σ is defined by simply using whichever σ_i is available, since they are all compatible.

Therefore, there exists a maximal element $(M, \tau) \in S$, and we want to show M = E. Towards a contradiction, suppose $M \subsetneq E$ and choose $\alpha \in E \setminus M$ with minimal polynomial $m_{\alpha,M} = x^n + c_{n-1}x^{n-1} + \dots + c_0 \in M[x]$. Define $L = \tau(M)$ and $f(x) = x^n + \tau(c_{n-1})x^{n-1} + \dots + \tau(c_0) \in L[x]$, and see that

$$M(\alpha) \to M[x]/m_{\alpha,M} \to L[x]/f(x) \to L(\beta)$$

is an isomorphism for $\beta \in \overline{L} = \overline{K}$ a root of f(x). Moreover, this extends τ , a contradiction.

Theorem 2.7. Let F be a field and fix some \overline{F} . Every algebraic closure of F is isomorphic to \overline{F} .

Proof. Suppose K is an algebraic closure of F. By Theorem 2.6, there is an isomorphism between K and a subfield E of \overline{F} . But E is algebraically closed, so $[\overline{F}:E]=1$, and therefore $E=\overline{F}$.

Theorem 2.8 (Symmetric Polynomials). *Every symmetric polynomial can be written uniquely as a polynomial in the elementary symmetric polynomials.*

Theorem 2.9 (Algebra). The set of complex numbers is algebraically closed.

3 Normal Extensions

Theorem 3.1. If $F \to K$ is algebraic, then it is equivalent to say

- (i) that K is a splitting field,
- (ii) that every $\phi: K \to \overline{F}$ fixing F induces an isomorphism on K, or
- (iii) that the minimal polynomial of every $\alpha \in K$ splits in K[x].

Proof. We first show $(i) \implies (ii)$. Suppose K is a splitting field, and that $\phi: K \to \overline{F}$ fixes F. Let $\alpha \in K$, and see that $\phi(\alpha)$ must still be a root of $m_{\alpha,F}$, so therefore $\phi(\alpha) \in K$, and $\phi(K) \subseteq K$. On the other hand, since ϕ defines an injective endomap on the roots of $m_{\alpha,F}$, of which there are finitely many, it must in fact permute these roots. In particular, this means ϕ is bijective over K, so then $\phi(K) = K$.

Now we show (ii) \implies (iii). Let $\alpha \in K$, take $\beta \in \overline{F}$ a root of $m_{\alpha,F}$, and see that $\psi : F(\alpha) \to F(\beta)$ generated by $\psi(\alpha) = \beta$ is an isomorphism. By Theorem 2.6, there exists $\phi : K \to \overline{F}$ satisfying $\phi|_{F(\alpha)} = \psi$. But this means ϕ fixes F, so it induces an automorphism on K. In particular, this means $\phi(\alpha) = \beta \in K$, so every root of $m_{\alpha,F}$ is in K, which implies $m_{\alpha,F}$ splits in K[x].

Now for (iii) \implies (i), see that K is the splitting field of the minimal polynomials of every $\alpha \in K$.

4 Seperable Extensions

Lemma 4.1. Suppose $\phi: F \to F'$ is an isomorphism with $\overline{F} = \overline{F'}$, and $F \to K$ is algebraic. Then there is a bijection between $\{\psi: K \to \overline{F} \mid \psi|_F = \iota\}$ and $\{\chi: K \to \overline{F} \mid \psi|_F = \phi\}$.

Proof. By Theorem 2.6, there is an isomorphism σ between K and a subfield K' of \overline{F} satisfying $\sigma|_F = \phi$. See that there is a bijection from $\{\psi : K \to \overline{F} \mid \psi|_F = \iota\}$ to $\{\tau : K' \to \overline{F} \mid \tau|_{F'} = \iota\}$ by applying σ to K. \square

Theorem 4.1. If $F \to K$ and $K \to L$ are finite and algebraic, then $[L:F]_s = [L:K]_s[K:F]_s$.

Proof. Define $S = \{ \phi : L \to \overline{F} \mid \phi|_F = \iota \}$ and $T = \{ \psi : K \to \overline{F} \mid \psi|_F = \iota \}$, and see that

$$[L:F]_{s} = |S| = \sum_{\psi \in T} \#\{\chi: L \to \overline{F} \mid \chi|_{K} = \psi\} = \sum_{\psi \in T} [L:K]_{s} = [K:F]_{s}[L:K]_{s}.$$

Theorem 4.2. If $F \to K$ is finite and algebraic, then $[K : F]_s \le [K : F]$.

Proof. From Theorem 2.1 and Theorem 4.1, we may assume $K = F(\alpha)$. Since every $\phi : K \to \overline{F}$ contributing to $[K : F]_s$ is completely determined by its mapping of α , the number of such embeddings is the number of distinct roots of $m_{\alpha,F}$. But this is at most the degree of $m_{\alpha,F}$, which is [K : F].

Theorem 4.3. If $F \to K$ is finite, then $F \to K$ is separable if and only if every $\alpha \in K$ is separable.

Proof. Suppose $F \to K$ is separable, let $\alpha \in K$, and Theorem 4.2 asserts that

$$[K : F]_s = [K : F(\alpha)]_s [F(\alpha) : F]_s \le [K : F(\alpha)] [F(\alpha) : F] = [K : F].$$

Separability implies $[K:F]_s = [K:F]$, so $m_{\alpha,F}$ has $[F(\alpha):F]_s = [F(\alpha):F]$ distinct roots.

Now suppose every $\alpha \in K$ is separable. By Theorem 2.2, we know $F \to K$ is algebraic and finitely generated. Since $[F(\alpha):F]_S = [F(\alpha):F]$ for every $\alpha \in K$, we can show $F \to K$ is separable by induction on the number of generators of K, using Theorem 2.1 and Theorem 4.1.

Theorem 4.4 (Primitive Element). If $F \to K$ is finite and separable, then $K = F(\alpha)$ for some $\alpha \in K$.

Proof. For now, we will only prove this for infinite fields *F*. The case for finite fields follows from the multiplicative group of every finite field being cyclic.

From Theorem 2.2, it suffices to show separable $F \to F(\alpha, \beta)$ implies that there exists a primitive element. Fix $c \in F$ and let $\gamma = \alpha + c\beta$. To show γ is primitive, it suffices to show $\beta \in F(\gamma)$. Instead, we will show that $\beta \notin F(\gamma)$ implies c must equal an expression given in terms of roots of $m_{\alpha,F}$ and $m_{\beta,F}$. Since there are only a finite number of combinations of these roots, there then must exist c for which γ is primitive.

Suppose $\beta \notin F(\gamma)$, and see that β is a root of both $m_{\beta,F}$ and $m_{\alpha,F}(\gamma - cx)$ in $F(\gamma)[x]$, so $m_{\beta,F(\gamma)}$ divides both $m_{\beta,F}$ and $m_{\alpha,F}(\gamma - cx)$. Since $\beta \notin F(\gamma)$ implies $\deg(m_{\beta,F(\gamma)}) \geq 2$, separability ensures we can choose a root β' of $m_{\beta,F(\gamma)}$ satisfying $\beta' \neq \beta$. This gives that $\alpha' = \gamma - c\beta' \in \overline{F}$ is a root of $m_{\alpha,F}$, but we can now plug in the original definition of γ to see that

$$\alpha' = \gamma - c\beta' \iff \alpha' = (\alpha + c\beta) - c\beta' \iff c = \frac{\alpha' - \alpha}{\beta - \beta'}.$$

5 Galois Correspondece

Definition 5.1. An algebraic extension $F \to K$ is *Galois* if it is normal and algebraic.

Definition 5.2. Let $F \subseteq K$ be a field extension with $H \leq \operatorname{Gal}(K/F)$. The fixed field of K under H is

$$K^H := \{ \alpha \in K \mid \forall \sigma \in H, \sigma(\alpha) = \alpha \}.$$

Theorem 5.1 (Galois Theory). If $F \subseteq K$ is finite Galois, there is a bijection between subgroups of $G = \operatorname{Gal}(K/F)$ and subfields of K containing F where $H \subseteq G \mapsto K^H$ and $L \subseteq K \mapsto \operatorname{Gal}(K/L)$.

Proof. Suppose $F \subseteq K' \subseteq K$ and $G = \operatorname{Gal}(K/K')$. We have $K' \subseteq K^G$ by definition, so we show $K^G \subseteq K'$. Let $\alpha \in K \setminus K'$, and separability ensures there exists a root β of $m_{\alpha,K'}$ satisfying $\beta \neq \alpha$. Since there exists an isomorphism $\sigma : K'(\alpha) \to K'(\beta)$ where $\sigma|_{K'} = \iota$ and $\sigma(\alpha) = \beta$, we can use Theorem 2.6 to find an isomorphism τ of K where $\tau|_{K'} = \sigma$. But this $\tau \in G$ doesn't fix α , so $\alpha \notin K^G$ and $K^G \subseteq K'$.

Now suppose $H \leq G = \operatorname{Gal}(K/F)$. It is immediate that $H \subseteq \operatorname{Gal}(K/K^H)$, so we show $|\operatorname{Gal}(K/K^H)| \leq |H|$. By Theorem 4.4, choose $\alpha \in K$ such that $F(\alpha) = K$, define $S := \operatorname{Orb}_H(\alpha)$, and also $p(x) := \prod_{\alpha \in S} (x-\alpha) \in K[x]$. We note that the coefficients of p(x) are fixed by H, so in fact $p(x) \in K^H[x]$. But now we know that m_{α,K^H} divides p, which gives $|\operatorname{Gal}(K/K^H)| = [K : K^H] = \deg(m_{\alpha,K^H}) \leq \deg(p) = |\operatorname{Orb}(H)| = |H|$. \square

Theorem 5.2. If $F \subseteq K$ is finite Galois, and $H \leq \operatorname{Gal}(K/F) = G$, then H is a normal subgroup if and only if $F \subseteq K^H$ is normal. It holds that $\operatorname{Gal}(K^H/F) \cong G/H$.

Theorem 5.3 (Base Change). If $F \subseteq K, L \subseteq \overline{F}$ are fields, then $Gal(KL/L) \cong Gal(L/K \cap L)$.

6 Solvable Extensions

Definition 6.1. A field extension $F \to K$ is *principal radical* if there exists $\alpha \in K$ and $n \in \mathbb{N}$ which satisfy $F(\alpha) = K$ and $\alpha^n \in F$.

Definition 6.2. A field extension $F \to K$ is *radical* if it is the composition of finitely many principal radical field extensions.

Definition 6.3. A field extension $F \to K$ is *solvable* if there exists a field K' which satisfies $K \subseteq K'$ and that $F \to K'$ is radical.

Lemma 6.1. If $F \to K$ is Galois with $Gal(K/F) \cong \mathbb{Z}_p$ and F has all p-th roots of unity, then $F \to K$ is a principal radical extension.

Theorem 6.1. If $F \to K$ is finite Galois and char(F) = 0, then $F \to K$ is solvable if and only if Gal(K/F) is solvable.

7 Constructibility

Theorem 7.1. Some $\alpha \in \mathbb{R}$ is constructible if and only if there exists a tower $\mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_n \subseteq \mathbb{R}$ which satisfies $\alpha \in F_n$ and $[F_i : F_{i-1}]$ for all $i \in [n]$.

Remark 7.1. The complex constructible numbers are written a+bi where a and b are constructible. We note that $a+bi \in \mathbb{C}$ is constructible if and only if a and b are constructible.

Theorem 7.2. Some $\alpha \in \mathbb{C}$ is constructible if and only if the splitting field of $m_{\alpha,\mathbb{Q}}$ has degree a power of 2.

Theorem 7.3. If α is a primitive n-th root of unity, then $\Phi_n = m_{\alpha,\mathbb{Q}} \in \mathbb{Q}$.