第一章 统计初步

1.1 求统计量的抽样分布

Reamrk

样本均值与方差

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} nX_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $Ear{X}=\mu, Dar{X}=rac{\sigma^2}{n}, ES^2=\sigma^2$ 来自同一总体的样本均值与方差是独立的

有偏估计量 $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ 其 $ES_n^2 = \frac{n-1}{n} \sigma^2$

统计的三大分布

 χ^2 分布的定义

设随机变量 X_1, X_2, \ldots, X_n 相互独立, 均服从 N(0,1) 称 $\chi^2 = X_1^2 + X_2^2 + \ldots + X_n^2$ 服从自由度为 n 的 χ^2 分布, 记 $\chi^2 \sim \chi^2(n)$, 特别的若 $X \sim N(0,1)$, 则 $\chi^2 \sim \chi^2(1)$

 χ^2 分布的性质

- (1) 参数可加性 设 χ_1^2 与 χ_2^2 相互独立, 且 $\chi_1^2 \sim \chi^2(n), \chi_2^2 \sim \chi^2(m)$ 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n+m)$
- (2) 设 $\chi^2 \sim \chi^2(n)$ 则 $E\chi^2 = n, D\chi^2 = 2n$

F 分布的定义

设随机变量 X 和 Y 相互独立, 且 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2),$ 称 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 n_1, n_2 的 F 分布, 记作 $F \sim F(n_1, n_2)$

F 分布的性质

- (1) 设 $F \sim F(n_1, n_2)$, 则 $\frac{1}{F} \sim F(n_2, n_1)$
- (2) $F_{1-\alpha}(n_2, n_1) = \frac{1}{F_{\alpha}(n_1, n_2)}$

t 分布的定义 设随机变量 X 和 Y 相互独立, $X\sim N(0,1),Y\sim \chi^2(n)$, 则称 $T=\frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布, 记作 $T\sim t(n)$

t 分布的性质

- (1) 设 $T \sim t(n)$, 则 $T^2 \sim F(1,n), \frac{1}{T^2} \sim F(n,1)$
- (2) $t_{1-\alpha}(n) = -t_{\alpha}(n)$

Reamrk

单正态总体与双正态总体

单正态总体

设 X_1, X_2, \ldots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \bar{X} 与 S^2 分别为样本均值与样本方差,则

- (1) $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, $\mathbb{P}[\bar{X}] \sim N(\mu, \sigma^2/n)$
- (2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 即 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2 \sim \chi^2(n-1)$, 且 \bar{X} 与 S^2 相互独立
- (3) $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$

双正态总体

设总体 $X \sim N(\mu_1, \sigma_1^2)$,总体 $Y \sim N(\mu_2, \sigma_2^2)$, $X_1, X_2, \cdots, X_{n_1}$ 与 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别为来自总体 X 与 Y 的简单随机样本且相互独立,样本均值分别为 \bar{X} , \bar{Y} ,样本方差分别为 S_1^2, S_2^2 ,则

- (4) $\frac{\bar{X}-\bar{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1);$
- (5) $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$;
- 1. (2013, 数一) 设随机变量 $X \sim t(n), Y \sim F(1,n)$ 。 给定 $\alpha(0 < \alpha < 0.5)$,常数 c 满足 $P\{X > c\} = \alpha$,则 $P\{Y > c^2\} =$

$$(A) \alpha \quad (B) 1 - \alpha \quad (C) 2\alpha \quad (D) 1 - 2\alpha$$

Solution

这道题考察的是 t 分布的对称性, 由题有

$$Y = \frac{\chi^2(1)}{\chi^2(n)}$$
 $X = \frac{N(0,1)}{\sqrt{\chi^2(n)/n}}$

则有 $X^2 = Y$, 所求概率就变成 $P\{X^2 > c^2\}$ 由 t 分布的对称性有 $P\{X^2 > c^2\} = 2\alpha$

总结

正态分布与t分布具有相似的概率密度图像,F分布与 χ^2 分布也有类似的图像.

2. 设 X_1, X_2, \dots, X_9 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + X_2 + \dots + X_6), Y_2 = \frac{1}{3}(X_7 + X_8 + X_9), S^2 = \frac{1}{2}\sum_{i=7}^9 (X_i - Y_2)^2$, 求 $\frac{\sqrt{2}(Y_1 - Y_2)}{S}$ 的分布.

Solution

这种题就是一步一步反推,注意凑题目要求的结果即可

$$Y_1=rac{1}{6}\sum_{i=1}^6 X_i \sim N(\mu,rac{\sigma^2}{6})$$
 同理 $Y_2 \sim N(\mu,rac{\sigma^2}{3})$

由 Y_1, Y_2 独立, 知道 $Y_1 - Y_2 \sim N(0, \frac{\sigma^2}{2}) \implies \frac{Y_1 - Y_2}{\sigma/\sqrt{2}} \sim N(0, 1)$

又有 $\frac{2s^2}{\sigma^2} \sim \chi^2(2)$, 故

$$\frac{Y_1 - Y_2}{\sqrt{\sigma^2/2}\sqrt{\frac{2s^2}{\sigma^2}/2}} = \frac{\sqrt{2}(Y_1 - Y_2)}{s} \sim t(2)$$

1.2 求统计量的数字特征

3. 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,则

$$E\left[\sum_{i=1}^{n} X_i \cdot \sum_{j=1}^{n} \left(nX_j - \sum_{k=1}^{n} X_k\right)^2\right] =$$

Solution

这道题就是个凑系数化简, 过程省去 原式 = $n^3(n-1)\mu\sigma^2$

- 4. 设 X_1, X_2, \cdots, X_9 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 $\frac{9\bar{X}^2}{S^2}$ 的分布
 - (2) $Rightharpoonup E[(\bar{X}^2S^2)^2];$

Solution

- (1) 和例题 3 一致, 过程省去 $\frac{9\bar{X}^2}{S^2} \sim F(1,8)$
- (2) 对于这种高幂次的一般都需要考虑用 χ^2 的结论

$$\begin{split} E\left[(\bar{X}^2S^2)^2\right] &= E\bar{X}^4 \cdot ES^4 \\ &= \left[D\bar{X}^2 + (E\bar{X}^2)^2\right] \left[DS^2 + (ES^2)^2\right] \\ &= \frac{5}{107}\sigma^8 \end{split}$$

又
$$\frac{9\bar{X}^2}{\sigma^2}\sim \chi^2(1)$$
 \Longrightarrow $D\bar{X}^2=\frac{2\sigma^4}{81}$ 同理有 $DS^2=\frac{\sigma^4}{4}$