

BEST AVAILABLE COPY

20

Claims

1. Method for optimizing measurement and control of the flatness of a strip of rolled material, where a first mapping is made of the strip after passing through a mill

5 stand,

characterized by,

- that a second mapping is made between measurement and control.

10 2. Method according to claim 1,

characterized by,

- that a second mapping is done by associating to relevant flatness fault types a reference strip model and an actuator space conversion matrix.

15

3. Method according to any of the preceding claims,

characterized by,

- visualizing of the strip,

- determining the relevant flatness fault type by comparing the visualization to one or more reference strip models,

- choosing an associated and relevant actuator space conversion matrix,

- morphing the visual picture with the measured information.

25 4. Method according to any of the preceding claims,

characterized by,

- that an enhanced mapping is made between measurement and control by an actuator correction algorithm using morphed information.

30

5. Method according to any of the preceding claims,

characterized by,

BEST AVAILABLE COPY

21

- creating a set of reference strip models for known flatness fault types,
 - creating a set of space conversion matrices, which are known to correct the known flatness fault types by
 - 5 optimizing the flatness control,
 - mapping each reference strip model to its corresponding vector space conversion matrix according to the flatness fault type.
- 10 6. Method according to any of the preceding claims,
characterized by,
- selecting a reference strip model by comparing available reference strip models with the actual strip.
- 15 7. Method according to any of the preceding claims,
characterized by,
- enhancing the measured data by interpolating the reference model with measured flatness data, i.e. by using morphing.
- 20 8. Method according to any of the preceding claims,
characterized by,
- optimizing the control with the space conversion matrix.
9. Method according to any of the preceding claims,
- 25 **characterized by**,
- converting actual strip to the visualization format used for reference strip models.
10. Method according to any of the preceding claims,
- 30 **characterized by**,
- having visual access to the strip by an operator.

BEST AVAILABLE COPY

11. Method according to any of the preceding claims,
characterized by,

- comparing reference strip models with actual strip visualization format.

5

12. Method according to any of the preceding claims,
characterized by,

- manually tuning the automatic comparison.

10 13. Method according to any of the preceding claims,

characterized by,

- synchronizing measured data with video samples and with the currently performed optimization algorithm.

15 14. Method according to any of the preceding claims,

characterized by,

- using a morphing technique.

20 15. Method according to any of the preceding claims,
characterized by,

- adding the result of the mapping by morphing to the measured information from a reference model.

25 16. Device for optimizing measurement and control of the flatness of a strip of rolled material,

characterized by,

- means for accomplishing a mapping by associating to relevant flatness fault types a reference strip model and an actuator space conversion matrix.

30

17. Device according to claim 16,
characterized by,

BEST AVAILABLE COPY

23

- having means for making the mapping between measurement and control.

18. Device according to claim 16 or 17,

5 **characterized by,**

- having means for making the mapping between measurement and control by an actuator correction algorithm.

19. Device according to any of the claims 16-18,

10 **characterized by,**

- means for creating a set of reference strip models for known flatness fault types,

- means for creating a set of space conversion matrices, which are known to correct the known flatness fault types by

15 optimizing the flatness control,

- means for mapping each reference strip model to its corresponding vector space conversion matrix according to the flatness fault type.

20 20. A computer program comprising computer program code means for carrying out the steps of a method according to claim 1-15.

21. A computer readable medium comprising at least part of a
25 computer program according to claim 19.

22. A computer program, according to claim 19, that is, at least partially, provided through a network, such as e.g. internet.