SpaceX Falcon 9 Hani Ahmed 28/12/2022

Executive summary

- if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch. In this project, we will collect and make sure the data is in the correct format from an API. The following is an example of a successful and launch
- We will EDA the data and build the best model to answer our questions

Introduction

• we will predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Required data collection and wrangling methodology

Our Objectives

In this stage, we will make a get request to the SpaceX API. we will also do

- Request to the SpaceX API
- Clean the requested data

[24]:		FlightNumber	PayloadMass	Flights	Block	ReusedCount	Longitude	Latitude
	count	94.000000	88.000000	94.000000	90.000000	94.000000	94.000000	94.000000
	mean	54.202128	5919.165341	1.755319	3.500000	3.053191	-75.553302	28.581782
	std	30.589048	4909.689575	1.197544	1.595288	4.153938	53.391880	4.639981
	min	1.000000	20.000000	1.000000	1.000000	0.000000	-120.610829	9.047721
	25%	28.250000	2406.250000	1.000000	2.000000	0.000000	-80.603956	28.561857
	50%	52.500000	4414.000000	1.000000	4.000000	1.000000	-80.577366	28.561857
	75%	81.500000	9543.750000	2.000000	5.000000	4.000000	-80.577366	28.608058
	max	106.000000	15600.000000	6.000000	5.000000	13.000000	167.743129	34.632093

Data Wrangling We can see below that some of the rows are missing values in our dataset. [64]: data_falcon9.isnull().sum() [64]: FlightNumber Date BoosterVersion PayloadMass Orbit LaunchSite Outcome Flights GridFins Reused Legs LandingPad Block ReusedCount Serial Longitude Latitude 0 dtype: int64

some basic data wrangling and formating.

EDA and interactive visual analytics methodology

- Our Objectives
- Perform exploratory Data Analysis and Feature Engineering using Pandas and Matplotlib
- Exploratory Data Analysis
- Preparing Data Feature Engineering

predictive analysis methodology

- Objectives
- Perform exploratory Data Analysis and determine Training Labels
- create a column for the class
- Standardize the data
- Split into training data and test data
- -Find best Hyperparameter for SVM, Classification Trees and Logistic Regression
- Find the method performs best using test data

EDA with visualization results

]:	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
0	1	2010-06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
1	2	2012-05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
2	3	2013-03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
3	4	2013-09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34,632093	0
4	5	2013-12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

[24]:		FlightNumber	PayloadMass	Flights	Block	ReusedCount	Longitude	Latitude
	count	94.000000	88.000000	94.000000	90.000000	94.000000	94.000000	94.000000
	mean	54.202128	5919.165341	1.755319	3.500000	3.053191	-75.553302	28.581782
	std	30.589048	4909.689575	1.197544	1.595288	4.153938	53.391880	4.639981
	min	1.000000	20.000000	1.000000	1.000000	0.000000	-120.610829	9.047721
	25%	28.250000	2406.250000	1.000000	2.000000	0.000000	-80.603956	28.561857
	50%	52.500000	4414.000000	1.000000	4.000000	1.000000	-80.577366	28.561857
	75%	81.500000	9543.750000	2.000000	5.000000	4.000000	-80.577366	28.608058
	max	106.000000	15600.000000	6.000000	5.000000	13.000000	167.743129	34.632093

EDA with SQL results

d	ata[data.Launch_Site.str.startswith('CCA')].head()												
ŧ	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome			
0	04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute			
1	08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute			
2	22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp			
3	08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attemp			
4	01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attemp			

```
Display the total payload mass carried by boosters launched by NASA (CRS)

[18]: data[data.Customer=='NASA (CRS)']['PAYLOAD_MASS__KG_'].sum()

[18]: 45596
```

the predictive analysis result

- Objectives
- Perform exploratory Data Analysis and determine Training Labels
- create a column for the class
- Standardize the data
- Split into training data and test data
- -Find best Hyperparameter for SVM, Classification Trees and Logistic Regression
- Find the method performs best using test data

the Conclusion

```
[87]: best_model = [score_lr, score_svm, score_tree, knn_score]
print(np.sort(best_model))
```

[0.77777778 0.88888889 0.94444444 0.94444444]