Advanced Analysis of Algorithms

Department of Computer Science Swat College of Science & Technology

CS Course : Advanced Analysis of Algorithms Course Instructor : Muzammil Khan

Chapter 8

Sorting Algorithms (Advanced Sorting Algorithms II)

Heap Sort

- Combines the better attributes of merge sort and insertion sort
 - Like merge sort but unlike insertion sort
 - \square The running time is $O(n \lg n)$
 - Like insertion sort but unlike merge sort
 □ Sorts in place
- \square Heap sort is always $O(n \log n)$
 - Quick sort is usually O(n log n) but in the worst case slows to O(n²)
 - Quick sort is generally faster, but Heap sort has the guaranteed O(n log n) time
 - \square Can be used in *time-critical* applications

Advanced Analysis of Algorithms

Heap

- ☐ Introduces an algorithm design technique
 - Create data structure (heap) to manage information during the execution of an algorithm
- \square The *heap* has other applications beside sorting
 - Priority Queues (may discuss later)
- ☐ Array viewed as a nearly complete binary tree
 - Physically linear array
 - Logically binary tree
 - ☐ Complete filled on all levels(except lowest one) left to right
 - length[A] number of elements in array A
 - heap-size[A] number of elements in heap stored in A

Advanced Analysis of Algorithms

Heap Construction

Heap Properties (Max & Min Heaps)

□ Max-Heap

- For every node excluding the root, value is at most that of its parent
- ☐ A[parent[i]] ≥ A[i]
 Largest element is stored at the root
 - ☐ In any subtree, no values are larger than the value stored at subtree root

☐ Min-Heap

- For every node excluding the root, value is at least that of its parent
- \square $A[parent[i]] \le A[i]$
- Smallest element is stored at the root
 - In any subtree, no values are smaller than the value stored at subtree root

Max-Heap & Min-Heap

Height Theorem

- □ Theorem: The height of a heap with n nodes is $\lfloor lg(n) \rfloor$
- \square Proof: Let h be the height of a heap as shown

- 20 nodes at level 0, 21 nodes at level 1, and so on...
- ☐ In case (a)
 - $2^0 + 2^1 + 2^2 + \dots + 2^h = 2^{h+1} 1$
- ☐ In case (b)
 - $2^0 + 2^1 + 2^2 + \ldots + 2^{h-l} + l = 2^h$

Height Theorem (Cont...)

- \square Since n is number of node in the heap, so
 - **n** can be equal to Maximum, Minimum or Lie in between
 - $\blacksquare \quad \text{Therefore} \quad 2^h \leq n \leq 2^{h+1} 1 \quad \text{Or.} \quad 2^h \leq n < 2^{h+1}$
 - Taking log to the base 2, implies that;
 - Using property of the floor function
 - \Box $\lfloor lg(n) \rfloor$
- ☐ Concludes
 - Minimum number of elements in heap of height h is 2h
 - Maximum number of elements in heap of height h is 2^{h+1}
 - An n-element heap has height $\lfloor lg(n) \rfloor$

Advanced Analysis of Algorithms

Heap's - Basic Operations

- ☐ The basic operations on heap data structure, *implemented as an array*, are;
 - Parent(i)
 - lacktriangledown Returns index of the parent of the node identify by index i
 - Left(i)
 - Returns index of the left child of the node identify by index i
 - Right(i)
 - Returns index of the right child of the node identify by index i
 - Build-heap(A)
 - ☐ Convert an unsorted array A into a heap
 - Heapify(A, i)
 - Restores *heap order property* by adjusting the key stored in a node with index *i*Advanced Analysis of Algorithms

Heap's - Basic Operations (Cont...)

 Parent Procedure
 PARENT(i)

 1
 $k \leftarrow \bot i/2 \rfloor$

 2
 return k

 □
 Left Child
 LEFT(i)

 Procedure
 $1 \leftarrow 2i$ $2 \leftarrow teturn k$

 □
 Right Child
 RIGHT(i)

 Procedure
 $1 \leftarrow 2i + 1$ $2 \leftarrow teturn k$

 All procedures require fixed amount of time to do computations on array, thus running time is constant i.e. θ(1)

Advanced Analysis of Algorithms

Maintaining the Heap Property

- ☐ Max-Heapify is a sub-routine for manipulating max-heaps
- Max-Heapify function
 - Fix a node A[i] that violates the max-heap property
 That is; a node that is smaller than its children
- ☐ When *Max-Heapify* is called
 - It is assumed that trees rooted at Left[i] and Right[i] are max-heaps

☐ Max-Heapify lets the value at the node A[i] "float" down in the max-heap

Maintaining the Heap Property (Cont...)

- ☐ Let Consider the following *heap tree*,
 - But, does not maintain heap property

Advanced Analysis of Algorithms

Maintaining the Heap Property (Cont...)

- ☐ The key "1" at the root violates the heap order property
 - It is smaller than both the keys, 87 and 74, at child nodes
 - In order to fix up the heap, the key 1 is exchanged with the larger of the keys, i.e. 87

Maintaining the Heap Property (Cont...)

- ☐ The key "1" at the new position violates the heap order property
 - It is smaller than both the keys, 79 and 75, at child nodes
 - In order to fix up the heap, the key 1 is exchanged with the larger of the keys, i.e. 79

Maintaining the Heap Property (Cont...)

Heap in Sorting

- ☐ Use max-heaps for sorting (Max-heap array is unsorted)
- Steps in sorting
 - Convert the given array of size n to a max-heap (BuildMaxHeap)
 - Swap the first and last elements of the array
 - ☐ Now, the largest element is in the last position, where it belongs
 - \square That leaves n-1 elements to be placed in their appropriate locations
 - \square However, the array of first n-1 elements is no longer a maxheap
 - ☐ Float the element at the root down one of its subtrees so that the array remains a max-heap (MaxHeapify)
 - Repeat step 2 until the array is sorted

Advanced Analysis of Algorithms

Heap Sort Procedure

- ☐ Sort by
 - Maintaining the unsorted elements as a max-heap
- \square Start by building a max-heap on all elements in A
 - Maximum element is in the root, A[1]
- ☐ Move the maximum element to its correct final position
 - Exchange A[1] with A[n]
- \square Discard A[n] it is now sorted
- Decrement heap-size[A]
- \square Restore the max-heap property on A[1..n-1]
- Call MaxHeapify(A, 1)
- ☐ Repeat until heap-size[A] is reduced to 2

Heap Sort Pseudocode

HeapSort(A)

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- **do** exchange $A[1] \leftrightarrow A[i]$
- 4. heap- $size[A] \leftarrow heap$ -size[A] - 1
- 5. MaxHeapify(A, 1)

Advanced Analysis of Algorithms

Build-Max-Heap(A) Pseudocode

BuildMaxHeap(A)

- 1. heap- $size[A] \leftarrow length[A]$
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- **do** MaxHeapify(A, i)
- ☐ Max-heapify can be used in a bottom-up manner to convert an array into a max-heap

Advanced Analysis of Algorithms

MaxHeapify(A, i) Pseudocode

MaxHeapify(A, i)

- l ← left(i) ► l stores the index of left child of parent identify by index i
- r ← right(i) ▶ r stores the index of left child of parent identify by index i
- 3. if $l \le heap\text{-}size[A]$ and $A[l] > A[i] \triangleright$ check if key at left child is larger than parent node
- then largest ← l ▶ if yes, key at left is saved in variable largest
- 5. else $largest \leftarrow i \triangleright else$, key at right is saved in variable largest
- 6. if $r \le heap$ -size[A] and $A[r] > A[largest] \triangleright larger$ of the keys at left and right is chosen
- 7. then $largest \leftarrow r$
- 8. **if** largest≠ i
- 9. then exchange $A[i] \leftrightarrow A[largest] \triangleright$ elements pointed by largest and i are exchanged
- 10. MaxHeapify(A, largest) ► MaxHeapify procedure called recursively to the key at

11. Return A ▶ Heap is fixed up

Advanced Analysis of Algorithms

Analysis of HeapSort Algorithm

- \square Build-Max-Heap takes O(n) and each of the n-1 calls to MaxHeapify takes time O(lg n)
- □ That is
 - MaxHeapify O(lgn)
 - BuildMaxHeap O(n)
- \square Therefore HeapSort $T(n) = O(n \lg n)$

Advanced Analysis of Algorithms

Analysis of Heap Building (O(n))

Depth	Number of nodes	Number of comparisons
0	20	2(d-1)
1	2^{I}	2(d-2)
2	2^{2}	2(d-3)
k	2^k	2(d-k-1)
d-1	261	0 (Except first node)

Advanced Analysis of Algorithms

Analysis of Heap Building (Cont...)

•
$$T_{build} = 2 \sum_{k=0}^{d-1} 2^k (d - k - 1) + 2$$
 , where $d = lg(n)$

$$= 2(d-1)\sum_{k=0}^{d-1} 2^{k} - 2\sum_{k=0}^{d-1} k \cdot 2^{k} + 2$$

$$\sum_{k=0}^{d-1} 2^{k} = 2^{d} - 1$$
 (sum of geo

$$\sum_{k=0}^{d-1} 2^k = 2^d - 1$$
 (sum of geometric series)
$$\sum_{k=0}^{d-1} k 2^k = (d-2)2^d + 2$$
 (sum of arithmetic-geometric series)

• $T_{build} = 2(2^d - 1) = 2(2^{\lg n} - 1) = 2(n-1) = \theta(n)$

The heap build procedure runs in $\theta(n)$ time

Comparison of Sorting Algorithms

Algorithm	Worst Case	Average Case
Insertion Sort	$O(n^2)$	$O(n^2)$
Merge Sort	O(n lg n)	O(n lg n)
Quick Sort	$O(n^2)$	O(n lg n)
Heap Sort	O(n lg n)	O(n lg n)

☐ The sorted order determined by these algorithms is based only on a comparison between input elements

Advanced Analysis of Algorithms

Priority Queue

- ☐ Popular & important application of heaps
- ☐ Max and min priority queues
- \square Maintains a *dynamic* set S of elements
- ☐ Each set element has a key an associated value
- ☐ Goal is
 - To support insertion and extraction efficiently
- Applications
 - Ready list of processes in operating systems by their priorities – the list is highly dynamic
 - In event-driven simulators to maintain the list of events to be simulated in order of their time of occurrence

Advanced Analysis of Algorithms

Priority Queue (Cont...)

- ☐ Is a data collection of
 - Items and associated priority, called Keys
- Example

- Characters "A" & "X" will be retrieved first, because of high priority
- ☐ A Priority Queue is
 - Naturally implemented as *heap*
 - In which keys are the queue priorities

Advanced Analysis of Algorithms

Priority Queue (Cont...)

Basic Operations on Priority Queue

- ☐ Operations on a max-priority queue
 - Insert(S, x) inserts the element x into the set S
 - \square $S \leftarrow S \cup \{x\}$
 - Maximum(S) returns the element of S with the largest key
 - Extract-Max(S) removes and returns the element of S with the largest key
 - Increase-Key(S, x, k) increases the value of element x's key to the new value k
- Min-priority queue supports Insert, Minimum, Extract-Min, and Decrease-Key
- ☐ Heap gives a good compromise between fast insertion but slow extraction and vice versa

Advanced Analysis of Algorithms

Priority Queue Insertion Procedure

- ☐ The insertion algorithm adds an element to a priority queue
- It proceeds as follows
- ☐ Step # 1
- Insert the new element at the last position in the heap
- ☐ Step # 2
 - Increase the heap size by one
- ☐ Step # 3
 - Use HEAPFY operation to fix the new element
 - ☐ Means; maintain heap property

Priority Queue Insertion

Priority Queue Insertion Algorithm

Advanced Analysis of Algorithms

Priority Queue Increase-Key Algorithm

Heap-Increase-Key(A,i,key) If key < A[i]then error "new key is smaller than the current key" $A[i] \leftarrow key$ 4 while i > 1 and A[Parent[i]] < A[i]5 **do** exchange $A[i] \leftrightarrow A[Parent[i]]$ 6 $i \leftarrow \text{Parent}[i]$

Advanced Analysis of Algorithm

Priority Queue Extraction Procedure

- ☐ The *extraction algorithm* removes an element with highest priority
- It proceeds as follows
- □ Step # 1
 - Remove element at the root
- □ Step # 2
 - Move element in last position to the root
- □ Step # 3 ■ Decrease the heap size by one
- □ Step # 4
 - Use HEAPFY operation to fix the new element at the root

Priority Queue Extraction

- ☐ An element with highest priority is extracted from the queue
 - The last element in the heap is moved to the root
 - The resulting tree is converted into heap by fixing up procedure. The procedure is illustrated in figures (a)-(e)

Advanced Analysis of Algorithms

Priority Queue Extraction (Cont...)

Priority Queue Extraction Algorithm

$\frac{\textit{Heap-Extract-Max}(A)}{1. \text{ if } \textit{heap-size}[A] < 1}$

- 1. In neap-stze[A] < 1
 2. then error "heap underflow"
 3. max ← A[1]
 4. A[1] ← A[heap-size[A]]
 5. heap-size[A] ← heap-size[A] 1
 6. MaxHeapify(A, 1)
- 7. return max

\square Running time is $O(\lg n)$

☐ Dominated by the running time of MaxHeapify

Advanced Analysis of Algorithms

End of Chapter

 $\ \square$ Your may have quiz next week