Optimization and Computational Linear Algebra for Data Science Lecture 3: Rank

Léo MIOLANE · leo.miolane@gmail.com

May 13, 2019

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Rank of a matrix

Definition 1.1

We define the rank of a family x_1, \ldots, x_k of vectors of \mathbb{R}^n as the dimension of its span:

$$\operatorname{rank}(x_1,\ldots,x_k) \stackrel{\text{def}}{=} \dim(\operatorname{Span}(x_1,\ldots,x_k)).$$

If the vectors $x_1, \ldots x_k$ are linearly independent then $\operatorname{rank}(x_1, \ldots x_k) = k$. Indeed, in that case (x_1, \ldots, x_k) forms a base of $\operatorname{Span}(x_1, \ldots, x_k)$ so $\dim(\operatorname{Span}(x_1, \ldots, x_k)) = k$.

Proposition 1.1

Let $x_1, \ldots, x_k \in \mathbb{R}^n$ and write $r = \operatorname{rank}(x_1, \ldots, x_r)$. Then there exists $i_1, \ldots, i_r \in \{1 \ldots k\}$ such that $(x_{i_1}, \ldots, x_{i_r})$ forms a basis of $\operatorname{Span}(x_1, \ldots, x_k)$.

Definition 1.2 (Rank)

The rank of a matrix $M \in \mathbb{R}^{n \times m}$ is defined as the dimension of the image of M:

$$rank(M) = dim(Im(M)).$$

Let c_1, \ldots, c_m be the columns of M, then

Proposition 1.2

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ and $M: \mathbb{R}^n \to \mathbb{R}^k$, two linear applications. Then the following holds

- (i) $rank(L) \leq min(n, m)$.
- (ii) $\operatorname{rank}(ML) \leq \min(\operatorname{rank}(L), \operatorname{rank}(M)).$

Theorem 1.1 (Rank-nullity theorem)

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

$$rank(L) + \dim(Im(L)) = m.$$

