ESTADÍSTICA MULTIVARIANTE

UGR, GRADO EN MATEMÁTICAS Curso Académico 2023-2024

José Miguel Angulo Ibáñez (jmangulo@ugr.es)

Departamento de Estadística e Investigación Operativa Universidad de Granada

► TEMA 1. Distribución Normal Multivariante

Formas cuadráticas basadas en vectores aleatorios con DNM

Motivación

• Sea $\mathbf{X} = (X_1, \dots, X_p)'$ un vector aleatorio y sea A una matriz (cte.) $(p \times p)$ -dimensional. Se considera la variable aleatoria dada por la forma cuadrática

X'AX

Se plantea, en general, el problema de estudiar la distribución de $\mathbf{X}'A\mathbf{X}$ a partir del conocimiento de la distribución de \mathbf{X}

(Como extensión, si \mathbf{X} se reemplaza por una matriz aleatoria de dimensión $p \times q$, la forma cuadrática resultante constituirá una matriz aleatoria de dimensión $q \times q$)

• En particular, se considera el caso en que $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, que conduce a la distribución χ^2 no centrada

La distribución χ^2 no centrada y, definida a partir de ésta, la distribución F no centrada, son fundamentales, como distribuciones de diversos estadísticos de interés, en relación con la inferencia basada en la DNM

DISTRIBUCIÓN χ^2 CENTRADA

• Recordemos que la distribución χ^2 centrada con n grados de libertad se define como la distribución de la suma de cuadrados de n variables aleatorias independientes con distribución normal estándar:

$$\mathbf{Z} = (Z_1, \dots, Z_n)' \sim N_n(\mathbf{0}, I_n) \longrightarrow Y = \mathbf{Z}'\mathbf{Z} = \sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

Función de densidad: $f_Y(y) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}y^{\frac{n}{2}-1}e^{-\frac{y}{2}}, \quad y > 0$

Función de distribución: $F_Y(y) = \frac{\gamma\left(\frac{n}{2}, \frac{y}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}, \quad y > 0$

Se definen, $\forall z \in \mathbb{C}, \ \Re(z) > 0$,

- Función gamma: $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$
- Funciones gamma incompletas: para v > 0,

$$\Gamma(z, v) = \int_{v}^{\infty} t^{z-1} e^{-t} dt, \qquad \gamma(z, v) = \int_{0}^{v} t^{z-1} e^{-t} dt$$

DISTRIBUCIÓN χ^2 CENTRADA

• Recordemos que la distribución χ^2 centrada con n grados de libertad se define como la distribución de la suma de cuadrados de n variables aleatorias independientes con distribución normal estándar:

$$\mathbf{Z} = (Z_1, \dots, Z_n)' \sim N_n(\mathbf{0}, I_n) \longrightarrow Y = \mathbf{Z}'\mathbf{Z} = \sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

Función de densidad: $f_Y(y) = \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)}y^{\frac{n}{2}-1}e^{-\frac{y}{2}}, \quad y>0$

Función de distribución: $F_Y(y) = \frac{\gamma\left(\frac{n}{2}, \frac{y}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}, \quad y > 0$

Función característica: $\phi_Y(t)=(1-2it)^{-\frac{n}{2}}, \quad \forall t \in \mathbb{R},$

de donde se obtienen, en particular, los momentos

$$E[Y] = n$$
$$Var(Y) = 2n$$

DISTRIBUCIÓN χ^2 NO CENTRADA

• DEFINICIÓN (RESULTADO): Sea $\mathbf{X} = (X_1, \dots, X_n)' \sim N_n(\boldsymbol{\mu}, I_n)$. Entonces, la variable aleatoria $Y = \mathbf{X}'\mathbf{X}$ tiene función de densidad

$$f_Y(y) = e^{-\frac{\delta}{2}} \,_0F_1\left(;\frac{1}{2}n;\frac{1}{4}\delta y\right) \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} e^{-\frac{y}{2}} y^{\frac{n}{2}-1}, \quad \mathsf{para} \ y > 0,$$

siendo $\delta = \mu'\mu$. Se dice que la variable Y tiene distribución χ^2 no centrada con n grados de libertad y parámetro de no centralidad δ , denotándose $\chi^2_n(\delta)$

(En la expresión anterior, ${}_0F_1$ representa la 'función hipergeométrica generalizada' de órdenes 0 y 1, también llamada *función hipergeométrica confluente límite*)

DISTRIBUCIÓN χ^2 NO CENTRADA

• DEFINICIÓN (RESULTADO): Sea $\mathbf{X} = (X_1, \dots, X_n)' \sim N_n(\boldsymbol{\mu}, I_n)$. Entonces, la variable aleatoria $Y = \mathbf{X}'\mathbf{X}$ tiene función de densidad

$$f_Y(y) = e^{-\frac{\delta}{2}} \, _0F_1\left(; \frac{1}{2}n; \frac{1}{4}\delta y\right) \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} e^{-\frac{y}{2}} y^{\frac{n}{2}-1}, \quad \text{para } y>0,$$

siendo $\delta=\mu'\mu$. Se dice que la variable Y tiene distribución χ^2 no centrada con n grados de libertad y parámetro de no centralidad δ , denotándose $\chi^2_n(\delta)$

(Cuando $\mu = \mathbf{0}$, se tiene la distribución χ_n^2 centrada)

Función característica: $\phi_Y(t)=(1-2it)^{-\frac{n}{2}}e^{\frac{it\delta}{1-2it}}, \quad \forall t \in \mathbb{R},$ de donde se obtienen, en particular, los momentos

$$E[Y] = n + \delta$$
 $Var(Y) = 2n + 4\delta$ (\square Probar)

DISTRIBUCIÓN χ^2 NO CENTRADA (cont.)

• Un RESULTADO de interés:

Si Y_1 y Y_2 son variables aleatorias independientes con

$$Y_1 \sim \chi_{n_1}^2(\delta_1), \qquad Y_2 \sim \chi_{n_2}^2(\delta_2),$$

entonces se tiene que

$$Y_1 + Y_2 \sim \chi^2_{n_1+n_2}(\delta_1 + \delta_2)$$
 (\square Probar)

DISTRIBUCIÓN F CENTRADA

• Recordemos que la *distribución F centrada* con (n_1, n_2) grados de libertad se define como la distribución del cociente

$$F = \frac{\frac{Y_1}{n_1}}{\frac{Y_2}{n_2}},$$

con $Y_1 \sim \chi_{n_1}^2$ e $Y_2 \sim \chi_{n_2}^2$ (ambas centradas), <u>independientes</u>. Se denota F_{n_1,n_2} .

Puede verse como la distribución del cociente

$$\begin{split} \frac{1}{n_1} \mathbf{Z}'_{(1)} \mathbf{Z}_{(1)} &= \frac{1}{n_1} \sum_{k=1}^{n_1} Z_{1k}^2, \\ \frac{1}{n_2} \mathbf{Z}'_{(2)} \mathbf{Z}_{(2)} &= \frac{1}{n_1} \sum_{l=1}^{n_2} Z_{2k}^2, \\ \mathbf{Z}_{(2)} &= (Z_{11}, \dots, Z_{1n_1})' \sim N_{n_1}(\mathbf{0}, I_{n_1}) \\ \mathbf{Z}_{(2)} &= (Z_{21}, \dots, Z_{2n_1})' \sim N_{n_2}(\mathbf{0}, I_{n_2}) \\ \mathbf{Z}_{(1)} \text{ y } \mathbf{Z}_{(2)} \text{ independientes;} \\ &= \mathbf{quivalentemente,} \\ \mathbf{Z} &= \begin{pmatrix} \mathbf{Z}_{(1)} \\ \mathbf{Z}_{(2)} \end{pmatrix} \sim N_{n_1 + n_2}(\mathbf{0}, I_{n_1 + n_2}) \end{split}$$

DISTRIBUCIÓN F CENTRADA (cont.)

Función de densidad: con $n_1, n_2 \in \mathbb{N} - \{0\}$,

$$g_F(f) = \frac{1}{fB(\frac{n_1}{2}, \frac{n_2}{2})} \left(\frac{n_1 f}{n_1 f + n_2}\right)^{\frac{n_1}{2}} \left(1 - \frac{n_1 f}{n_1 f + n_2}\right)^{\frac{n_2}{2}}, \quad f \ge 0$$

Función de distribución: $G_F(f)=I_{\frac{n_1f}{n_1f+n_2}}\left(\frac{n_1}{2},\frac{n_2}{2}\right),\quad f\geq 0$

Se definen, $\forall a, b \in \mathbb{C}$, con $\Re(a), \Re(b) > 0$,

- Función beta: $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 t^{a-1} (1-t)^{b-1} dt$
- Función beta incompleta: para $x \in [0, 1]$, $B(x; a, b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$ (para x = 1 se tiene la función beta completa)
- Función beta incompleta regularizada: $I_x(a,b) = \frac{B(x;a,b)}{B(a,b)}$

DISTRIBUCIÓN F CENTRADA (cont.)

Función de densidad: con $n_1, n_2 \in \mathbb{N} - \{0\}$,

$$g_F(f) = \frac{1}{fB(\frac{n_1}{2}, \frac{n_2}{2})} \left(\frac{n_1 f}{n_1 f + n_2}\right)^{\frac{n_1}{2}} \left(1 - \frac{n_1 f}{n_1 f + n_2}\right)^{\frac{n_2}{2}},$$

Función de distribución: $G_F(f) = I_{\frac{n_1 f}{n_1 f + n_2}} \left(\frac{n_1}{2}, \frac{n_2}{2} \right) \quad f \ge 0$

Función característica (versión corregida de Phillips (1982)):

$$\phi_F(t) = \frac{\Gamma\left(\frac{n_1+n_2}{2}\right)}{\Gamma\left(\frac{n_2}{2}\right)} U\left(\frac{n_1}{2}, 1 - \frac{n_2}{2}; -\frac{n_2}{n_1} it\right)$$

(En la expresión anterior, $\it U$ representa la función hipergeométrica confluente de segunda especie,

$$U(a,b;z) = \frac{\Gamma(1-b)}{\Gamma(a+1-b)} {}_{1}F_{1}(a;b;z) + \frac{\Gamma(b-1)}{\Gamma(a)} z^{1-b} {}_{1}F_{1}(a+1-b;2-b;z),$$

con $_1F_1$ la 'función hipergeométrica generalizada' de órdenes 1 y 1, también llamada *función de Kumar de primera especie*)

DISTRIBUCIÓN F CENTRADA (cont.)

Función de densidad: con $n_1, n_2 \in \mathbb{N} - \{0\}$,

$$g_F(f) = \frac{1}{fB(\frac{n_1}{2}, \frac{n_2}{2})} \left(\frac{n_1 f}{n_1 f + n_2} \right)^{\frac{n_1}{2}} \left(1 - \frac{n_1 f}{n_1 f + n_2} \right)^{\frac{n_2}{2}},$$

Función de distribución: $G_F(f) = I_{\frac{n_1 f}{n_1 f + n_2}} \left(\frac{n_1}{2}, \frac{n_2}{2} \right) \quad f \geq 0$

Función característica (versión corregida de Phillips (1982)):

$$\phi_F(t) = \frac{\Gamma\left(\frac{n_1+n_2}{2}\right)}{\Gamma\left(\frac{n_2}{2}\right)} U\left(\frac{n_1}{2}, 1 - \frac{n_2}{2}; -\frac{n_2}{n_1}it\right)$$

Se obtienen, en particular, los momentos

$$E[F] = \frac{n_2}{n_2 - 2}, \quad \text{para } n_2 > 2 \quad (= \infty \quad \text{si } n_2 \in (0, 2])$$

$$\text{Var}(F) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}, \quad \text{para } n_2 > 4 \quad (= \infty \quad \text{si } n_2 \in (2, 4])$$

DISTRIBUCIÓN F NO CENTRADA

• DEFINICIÓN (RESULTADO): Sean $Y_1 \sim \chi^2_{n_1}(\delta)$ e $Y_2 \sim \chi^2_{n_2}$, independientes. Entonces, la variable aleatoria

$$F = \frac{\frac{Y_1}{n_1}}{\frac{Y_2}{n_2}}$$

tiene función de densidad

$$\begin{split} g_F(f) = & e^{-\frac{\delta}{2}} \, {}_1F_1\left(\frac{1}{2}(n_1+n_2); \frac{1}{2}n_1; \frac{-\frac{1}{2}\frac{n_1}{n_2}\delta f}{1+\frac{n_1}{n_2}f}\right) \\ & \times \, \frac{\Gamma\left(\frac{1}{2}(n_1+n_2)\right)}{\Gamma\left(\frac{1}{2}n_1\right)\Gamma\left(\frac{1}{2}n_2\right)} \frac{f^{\frac{n_1}{2}-1}\left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}}}{\left(1+\frac{n_1}{n_2}f\right)\frac{(n_1+n_2)}{2}}, \quad \mathsf{para}\, f > 0 \end{split}$$

Se dice que F tiene distribución F no centrada con n_1 y n_2 grados de libertad y parámetro de no centralidad δ , denotándose $F_{n_1,n_2}(\delta)$.

DISTRIBUCIÓN F NO CENTRADA (cont.)

Función característica (versión corregida de Phillips (1982)):

$$\phi_F(t) = \frac{e^{-\frac{1}{2}\delta}}{\Gamma(\frac{1}{2}n_2)} \sum_{j=0}^{\infty} \frac{\left(\frac{\delta}{2}\right)^j}{j!} \Gamma\left(\frac{1}{2}n_1 + \frac{1}{2}n_2 + j\right) U\left(\frac{n_1}{2} + j, 1 - \frac{n_2}{2}; -\frac{n_1}{n_2}it\right)$$

Se obtienen, en particular, los momentos

$$\begin{split} E[F] &= \frac{n_2(n_1+\delta)}{n_1(n_2-2)}, \quad \text{para } n_2 > 2 \quad (=\infty \quad \text{si } n_2 \in (0,2]) \\ \text{Var}(F) &= 2 \left(\frac{n_2}{n_1}\right)^2 \frac{(n_1+\delta)^2 + (n_1+2\delta)(n_2-2)}{(n_2-2)^2(n_2-4)}, \quad \text{para } n_2 > 4 \\ &\quad (=\infty \quad \text{si } n_2 \in (2,4]) \end{split}$$

Formas cuadráticas X'AX, con X $\sim N_p(\mu, \Sigma)$ ($\Sigma > 0$)

A continuación veremos algunos resultados relativos a la distribución de formas cuadráticas del tipo

$$X'AX$$
,

con $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ ($\Sigma > 0$) y A una matrix (cte.) $(p \times p)$ -dimensional simétrica.

 De forma preliminar, se puede hacer un estudio directo de los momentos de primer y segundo orden:

Sea $X \sim N_p(\mu, \Sigma)$ $(\Sigma > 0)$ y A una matrix (cte.) $(p \times p)$ -dimensional simétrica. Entonces,

(a)
$$E[\mathbf{X}'A\mathbf{X}] = \operatorname{tr}(A\Sigma) + \boldsymbol{\mu}'A\boldsymbol{\mu}$$

(b)
$$Var(\mathbf{X}'A\mathbf{X}) = 2tr((A\Sigma)^2) + 4\mu'A\Sigma A\mu$$

(OBSERVACIÓN: El resultado (a) no requiere la hipótesis de normalidad, solo la existencia de la esperanza)

(□ Probar (a))

Formas cuadráticas X'AX, con X $\sim N_p(\mu, \Sigma)$ ($\Sigma > 0$) (cont.)

RESULTADO 1:

Sea $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ ($\Sigma > 0$). Entonces,

- 1. $(\mathbf{X} \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{X} \boldsymbol{\mu}) \sim \chi_p^2$
- **2.** $\mathbf{X}'\Sigma^{-1}\mathbf{X} \sim \chi_p^2(\delta)$, con $\delta = \boldsymbol{\mu}'\Sigma^{-1}\boldsymbol{\mu}$

(□ Probar)

RESULTADO 2:

Sea $\mathbf{X} \sim N_p(\boldsymbol{\mu}, I_p)$ y sea B una matriz (cte.) $(p \times p)$ -dimensional simétrica. Entonces, $\mathbf{X}'B\mathbf{X}$ tiene una distribución χ^2 no centrada si y solo si B es idempotente ($i.\ e.\ B^2 = B$), en cuyo caso los grados de libertad y el parámetro de no centralidad son, respectivamente, $k = \operatorname{rango}(B) = \operatorname{tr}(B)$ y $\delta = \mu'B\mu$.

(□ Probar)

Formas cuadráticas X'AX, con X $\sim N_p(\mu, \Sigma)$ ($\Sigma > 0$) (cont.)

RESULTADO 3:

Sea $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ ($\boldsymbol{\Sigma} > 0$). Supongamos el particionamiento

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_{(1)} \\ \mathbf{X}_{(2)} \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_{(1)} \\ \boldsymbol{\mu}_{(2)} \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{(11)} & \boldsymbol{\Sigma}_{(12)} \\ \boldsymbol{\Sigma}_{(21)} & \boldsymbol{\Sigma}_{(22)} \end{pmatrix},$$

con $\mathbf{X}_{(1)}$ y $\boldsymbol{\mu}_{(1)}$ subvectores q-dimensionales y $\Sigma_{(11)}$ submatriz $(q \times q)$ -dimensional. Entonces,

$$Q := (\mathbf{X} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{X} - \boldsymbol{\mu}) - (\mathbf{X}_{(1)} - \boldsymbol{\mu}_{(1)})' \Sigma_{(11)}^{-1} (\mathbf{X}_{(1)} - \boldsymbol{\mu}_{(1)}) \sim \chi_{p-q}^2$$

 $(\square Probar)$

RESULTADO 4:

Sea $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ ($\Sigma > 0$) y sea B una matriz (cte.) $(p \times p)$ -dimensional simétrica. Entonces, $\mathbf{X}'B\mathbf{X}$ tiene una distribución $\chi_k^2(\delta)$, con $k = \operatorname{rango}(B)$ y $\delta = \boldsymbol{\mu}'B\boldsymbol{\mu}$, si y solo si $B\Sigma$ es idempotente (i.e. $(B\Sigma)^2 = B\Sigma$; equivalentemente, en este caso, $B\Sigma B = B$).

(□ Probar)

APÉNDICE: Funciones hipergeométricas generalizadas

ullet DEFINICIÓN: Se denomina función hipergeométrica generalizada de órdenes p y q a

$$_{p}F_{q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};z):=\sum_{k=0}^{\infty}\frac{(a_{1})_{k}\cdots(a_{p})_{k}}{(b_{1})_{k}\cdots(b_{p})_{k}}\frac{z^{k}}{k!},$$

donde $(a)_k = a(a+1)\cdots(a+k-1)$, siendo $a_1,\ldots,a_p,b_1,\ldots,b_q$ parámetros (posiblemente complejos) y $z\in\mathbb{C}$ el argumento de la función.

- Algunas OBSERVACIONES:
 - Ningún parámetro b_j puede ser 0 o un entero negativo (en este caso, uno de los denominadores de la serie sería 0 a partir de un cierto k)
 - Si algún parámetro en el numerador es 0 o un entero negativo, los términos de la serie se anulan a partir de un cierto k y queda un polinomio en z

APÉNDICE: Funciones hipergeométricas generalizadas (cont.)

- Algunas OBSERVACIONES (cont.):
 - La serie
 - converge para todo z finito si $p \le q$
 - converge para |z| < 1 y diverge para |z| > 1 si p = q + 1
 - diverge para todo $z \neq 0$ si p > q + 1
 - El término 'generalizada' se refiere a que pFq es una generalización de la función hipergeométrica clásica (o gaussiana), 2F1.
 - 1F1 se denomina función hipergeométrica confluente
 - ₀F₁, definida como

$$_{0}F_{1}(;b;z):=\lim_{a\to\infty}{}_{1}F_{1}\left(a;b;\frac{z}{a}\right),$$

se denomina función hipergeométrica confluente límite

