

Revenue Prediction Using Clustered Spending Data

Master of Science in Mathematics in Finance Program

Alternative Data in Quantitative Finance instructed by Professor Gene Ekster

Aarushi Singh

Neil Shah

Srujitha Ambati

Table of Contents

1

Processing Data

- Alternative Data
- Datasets
- Identifying Merchants

4

Optimal Weights

- Optimal Weights
- MAPE

2

Distance Metrics

- TF-IDF
- Euclidean

5

Results

- Data Preparation
- Algorithm

3

Clustering

- KNN
- Results

6

Future Work

- Advanced Algorithms
- Cross validation
- Trading Strategies

First Step: Processing the Data

Alternative Data

Credit Card Transactions

Revenue Segments for Fiscal 2020 Q1-Q4

Segment results

(Amounts in billions, except as noted. Dollar and percentage changes may not recalculate due to rounding.)

Walm Save money. Liv		Q1 FY20	Q1 FY19	Char	ige	
Net sales			\$80.3	\$77.7	\$2.6	3.3%
Comp sales	(ex. fuel) ¹		3.4%	2.1%	130 bps	N/A
>:<	Transactions ²		1.1%	1.4%	-30 bps	N/A
>:<	Ticket ²		2.3%	0.7%	160 bps	N/A
> !<	eCommerce	^	140 bps	~100 bps	~40 bps	N/A
Operating i	ncome		\$4.1	\$3.9	\$0.2	5.5%

Walmart :	Q1 FY20	Q1 FY19	Cha	inge
Net sales	\$28.8	\$30.3	-\$1.5	-4.9%
Net sales (constant currency) ³	\$30.6	\$30.3	\$0.4	1.2%
Operating income	\$0.7	\$1.3	-\$0.5	-41.7%
Operating income (constant currency) ³	\$0.8	\$1.3	-\$0.5	-37.5%

	m's Club. gs Made Simple	Q1 FY20	Q1 FY19	Cha	nge
Net sales		\$13.8	\$13.6	\$0.2	1.5%
Comp sale	es (ex. fuel) ¹	0.3%	3.8%	-350 bps	N/A
> <	Transactions	4.7%	5.6%	-90 bps	N/A
> <	Ticket	-4.4%	-1.8%	-260 bps	N/A
*	eCommerce	~140 bps	~100 bps	~40 bps	N/A
Operating	g income	\$0.5	\$0.3	\$0.1	38.8%

Datasets

$facteus_10k_user_panel.csv$

account	date	merchant	merchant_string_example	merchant_ticker	merchant_exchange	transactions	spend	spend_min	spend_max
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00 UTC	AMAZON	AMAZON MKTPLACE PMTS AMZN.COM/BILLWAUSPUGLV	AMZN	NASDAQ	2	4.72	1.88	2.84
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00 UTC	DUNKIN DONUTS	DUNKIN #308696 Q35 IRVINGTON NJUS0EBSE	DNKN	NASDAQ	1	7.33	7.33	7.33
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00 UTC	EXXON MOBIL	EXXONMOBIL 99243909 NEWARK NJUS1JJWD	хом	NYSE	1	10.02	10.02	10.02
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00 UTC	PNC BANK	PNC BANK MAPYJCUN	PNC	NYSE	3	212.44	29.74	102.36
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00 UTC	AMAZON	AMAZON MKTPLACE PMTS AMZN.COM/BILLWAUSOA5ML	AMZN	NASDAQ	3	44.040000000000000	10.17	20.94
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00 UTC	IHOP	IHOP #2055 IRVINGTON NJUSZFZBP	DIN	NYSE	1	83.83	83.83	83.83

mapped_fiscal_quarter_data.csv

account	date	merchant	merchant_string_example	merchant_ticker	merchant_exchange	transactions	spend	spend_min	spend_max	month year	fiscal_quarter mapped_fiscal_quarter
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00+00:00	AMAZON	AMAZON MKTPLACE PMTS AMZN.COM/BILLWAUSPUGLV	AMZN	NASDAQ	2	4.72	1.88	2.84	1 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00+00:00	DUNKIN DONUTS	DUNKIN #308696 Q35 IRVINGTON NJUS0EBSE	DNKN	NASDAQ	1	7.33	7.33	7.33	1 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00+00:00	EXXON MOBIL	EXXONMOBIL 99243909 NEWARK NJUS1JJWD	XOM	NYSE	1	10.02	10.02	10.02	1 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-01-01 00:00:00+00:00	PNC BANK	PNC BANK MAPYJCUN	PNC	NYSE	3	212.44	29.74	102.36	1 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00+00:00	AMAZON	AMAZON MKTPLACE PMTS AMZN.COM/BILLWAUSOA5ML	AMZN	NASDAQ	3	44.040000000000000	10.17	20.94	2 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00+00:00	IHOP	IHOP #2055 IRVINGTON NJUSZFZBP	DIN	NYSE	1	83.83	83.83	83.83	2 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00+00:00	PNC BANK	PNC BANK MAPV1IIP	PNC	NYSE	6	811.7	19.66	406.45	2 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00+00:00	SUBWAY	SUBWAY 00561274 HILLSIDE NJUSXZHFG			1	13.75	13.75	13.75	2 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-02-01 00:00:00+00:00	WAWA	WAWA 8350 00083501 MAPLEWOOD NJUSBHZJA			1	14.96	14.96	14.96	2 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-03-01 00:00:00+00:00	AMAZON	AMAZON MKTPLACE PMTS AMZN.COM/BILLWAUSPCVGF	AMZN	NASDAQ	1	21.05	21.05	21.05	3 2018	
a04:512:000ACA1D00B403C9BD4848010BBBCB63	2018-03-01 00:00:00+00:00	PNC BANK	PNC BANK MAPPQLU2	PNC	NYSE	2	40.120000000000000	19.75	20.37	3 2018	

revenues_kpis.csv

fiscal_calander.csv

CINITAL IL	MENONANI_TICKEN	MENONANT_EXCHANGE	MENONANT_NAME	FISCAL_QUARTER	KF IIIVIIIL	KFITALUL	DISTOCHSENSES IS_FRIMARY_RF	I INCLUDE_TICKER_IN_PAREE_TOTAL	PERIOD NAME	PERIOD TYPE	PERIOD START DATE	PERIOD END DATE	company id1	company id2	PERIOD NAME STANDARDIZE
18711	ALL	NYSE	CONSOLIDATED	2012-1Q	Revenue	6630	6623.85692	1 FALSE							
18711	ALL	NYSE	CONSOLIDATED	2012-2Q	Revenue	6666	6730.87329	1 FALSE	Q1-2014	fiscal_quarter	2014-01-01	2014-03-31	005930 KS	KRX:005930	2014-1Q
18711	ALL	NYSE	CONSOLIDATED	2012-3Q	Revenue	6697	6707.32308	1 FALSE	Q1-2014	fiscal_quarter	2014-01-01	2014-03-31	005930 KS	KRX:005930	2014-1Q
18711	ALL	NYSE	CONSOLIDATED	2012-4Q	Revenue	6744	6711.58462	1 FALSE	Q1-2014	fiscal quarter	2014-01-01	2014-03-31	005930 KS	KRX:005930	2014-1Q
18711	ALL	NYSE	CONSOLIDATED	2013-1Q	Revenue	6770	6761.77778	1 FALSE							
18711	ALL	NYSE	CONSOLIDATED	2013-2Q	Revenue	6862	6819.46667	1 FALSE	Q2-2014	fiscal_quarter	2014-04-01	2014-06-30	005930 KS	KRX:005930	2014-2Q
18711	ALL	NYSE	CONSOLIDATED	2013-3Q	Revenue	6972	6907.6	1 FALSE	Q2-2014	fiscal_quarter	2014-04-01	2014-06-30	005930 KS	KRX:005930	2014-2Q
18711	ALL	NYSE	CONSOLIDATED	2013-4Q	Revenue	7014	6991	1 FALSE	Q2-2014	fiscal quarter	2014-04-01	2014-06-30	005930 KS	KRX:005930	2014-2Q
18711	ALL	NYSE	CONSOLIDATED	2014-1Q	Revenue	7064	7178.09483	1 FALSE	Q2-2014	ilocal_quarter	2014-04-01				
18711	ALL	NYSE	CONSOLIDATED	2014-2Q	Revenue	7204	7203.22727	1 FALSE	Q3-2014	fiscal_quarter	2014-07-01	2014-09-30	005930 KS	KRX:005930	2014-3Q

Identifying Merchants

```
# Set-up
import pandas as pd
import re
import numpy as np
from sklearn import metrics
import matplotlib.pyplot as plt
df = pd.read_csv('facteus_10k_user_panel.csv')
# Part a: Isolate variations of merchant strings
def identify_merchant(merchant_string):
    word = 'OTHER'
    if not isinstance(merchant_string, str):
        return word
   if re.search(r'.*MCDONALD.*', merchant string, re.IGNORECASE):
        word = 'MCDONALDS'
    elif re.search(r'.*(AM[A]?Z[0]?N|PRIME|KINDLE).*', merchant_string, re.IGNORECASE):
        word = 'AMAZON'
    elif re.search(r'.*(APPLE|ITUNES).*', merchant string, re.IGNORECASE);
        word = 'APPLE'
    return word
df['identified_merchant'] = df['merchant_string_example'].apply(identify_merchant)
```


Alternative data is usually unprocessed so the first steps to extracting results is processing it

Diagonal Cells (Correct Predictions):

- (0, 0): 166550 Six transactions were correctly classified as MCDONALDS.
- (1, 1): 115281 Five transactions were correctly classified as AMAZON.
- (2, 2): 105467 Four transactions were correctly classified as APPLE.
- (3, 3): 0 No transactions were classified as OTHER.

Identifying Merchants

```
# Sample 200 rows for manual evaluation
sample df = df.sample(200, random state=39)
# Construct a confusion matrix to evaluate error rates
true_merchants = sample_df['merchant']
predicted_merchants = sample_df['identified_merchant']
conf_matrix = metrics.confusion matrix(true merchants, predicted merchants, labels = ['MCDONALDS', 'AMAZON', 'APPLE', 'OTHER'])
cm display = metrics.ConfusionMatrixDisplay(confusion matrix = conf matrix)
# Display results
print("Confusion Matrix:\n", conf_matrix)
cm_display.plot()
plt.show()
# Part 3: Test the regular expression on the rest of the data to minimize false positives
# Calculate false positive rate
test_df = df[~df.index.isin(sample_df.index)] # Exclude sampled rows
test true merchants = test df['merchant']
test predicted merchants = test df['identified merchant']
test_conf_matrix = metrics.confusion_matrix(test_true_merchants, test_predicted_merchants, labels = ['MCDONALDS', 'AMAZON', 'APPLE', 'OTHER'])
test_cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = test_conf_matrix)
# Display results
print("Confusion Matrix:\n", test conf matrix)
test cm display.plot()
plt.show()
```

Second Step: Using Distance Metrics

TF-IDF: Merchants

TF-IDF (Term Frequency - Inverse Document Frequency) distance metric using cosine similarity:

$$\mathrm{TF\text{-}IDF}(t,d) = \mathrm{TF}(t,d) imes \mathrm{IDF}(t)$$

```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
from sklearn.cluster import KMeans
# Prepare data for clustering
# Aggregate by account and merchant to get total spend by each user at each merchant
merchant_spend = data.groupby(['account', 'merchant'])['spend'].sum().unstack(fill_value=0)

# 1. Distance Metric 1: TF-IDF on merchants
merchant_strings = data.groupby('account')['merchant_string_example'].apply(lambda x: ' '.join(map(str, x))).reset_index()
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(merchant_strings['merchant_string_example'])
tfidf_similarity = cosine_similarity(tfidf_matrix)

# 2. Distance Metric 2: Euclidean distance on spending patterns across merchants
euclidean_distance = euclidean_distances(merchant_spend)
```

$$TF(t, d) = \frac{\text{Count of } t \text{ in } d}{\text{Total terms in } d}$$

$$ext{IDF}(t) = \log \left(rac{ ext{Total number of documents}}{1 + ext{Number of documents containing } t}
ight)$$

TF-IDF: Merchants

The TF-IDF (Term Frequency - Inverse Document Frequency) distance metric using cosine similarity highlights the frequency and uniqueness of merchant-related terms, emphasizing distinct shopping preferences. It identifies users' unique loyalties to niche or less popular merchants, making it valuable for profiling shoppers with specific tastes or brand affinities.

Pros:

- Highlights unique or niche shopping patterns that may be valuable for personalized marketing.
- Insensitive to the absolute spend amount, focusing instead on shopping diversity.

Cons:

- Ignores actual spend amounts, which may be more critical in financial analyses.
- Relies on text data, which may introduce biases if merchant descriptions are not standardized.

Euclidean: Spending Patterns

Euclidean distance measures spending pattern similarities across merchants, capturing the quantitative distribution of expenditures. It reflects **spending habits** and **priorities**, clustering users with similar spending behaviors regardless of merchant differences.

Pros:

- Focuses on spending amounts, making it highly relevant for financial segmentation and risk assessment.
- Captures a more direct, numerical representation of behavior.

Cons:

- Does not account for merchant diversity or uniqueness; two users spending equally on entirely different merchants may still be considered similar.
- Sensitive to outliers, where exceptionally high spending at a few merchants can distort the distance.

Third Step: Clustering using Metrics

K-means Clustering

Definition:

K-Means is a centroid-based clustering algorithm that partitions data into "K" clusters.

Each cluster is defined by a central point (centroid), which is the mean of the points within the cluster.

Distance-Based Clustering:

For a given dataset, K-Means assigns each data point to the nearest centroid based on a distance metric (commonly Euclidean distance).

Centroids are recalculated iteratively to minimize the total intra-cluster variance.

Cluster Formation:

Clusters are formed iteratively:

- Initial centroids are randomly selected.
- Data points are assigned to the nearest centroid.
- Centroids are updated as the mean of the assigned points.
- Repeat 2 and 3 until convergence


```
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
# Prepare data for clustering
 Aggregate by account and merchant to get total spend by each user at each merchant
merchant_spend = data.groupby(['account', 'merchant'])['spend'].sum().unstack(fill_value=0)
# 1. Distance Metric 1: TF-IDF on merchants
merchant_strings = data.groupby('account')['merchant_string_example'].apply(lambda x: ' '.join(map(str, x))).reset_index()
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(merchant_strings['merchant_string_example'])
tfidf_similarity = cosine_similarity(tfidf_matrix)
# 2. Distance Metric 2: Euclidean distance on spending patterns across merchants
euclidean_distance = euclidean_distances(merchant_spend)
# 3. Clustering using KMeans on chosen metric (e.g., Euclidean distance)
kmeans = KMeans(n_clusters=15, random_state=42)
clusters = kmeans.fit_predict(euclidean_distance)
# Assign clusters to accounts and analyze top merchants per cluster
merchant_spend['cluster'] = clusters
top_merchants_per_cluster = merchant_spend.groupby('cluster').sum().apply(lambda x: x.nlargest(10).index.tolist(), axis=1)
# Count users per cluster
users_per_cluster = merchant_spend['cluster'].value_counts()
# Display the results
print("Top 10 Merchants per Cluster:")
print(top_merchants_per_cluster)
print("\nTotal Number of Users per Cluster:")
print(users_per_cluster)
# 1. Bar Chart: Number of Users per Cluster
plt.figure(figsize=(10, 6))
sns.barplot(x=users_per_cluster.index, y=users_per_cluster.values, palette='viridis')
plt.xlabel('Cluster')
plt.ylabel('Number of Users')
plt.title('Number of Users per Cluster')
plt.xticks(rotation=45)
plt.show()
# 2. PCA for Visualization in 2D Space
# Reduce the dimensions of the spending patterns for visualization
pca = PCA(n components=2)
principal_components = pca.fit_transform(euclidean_distance)
pca_df = pd.DataFrame(data=principal_components, columns=['PC1', 'PC2'])
pca_df['Cluster'] = clusters
# Scatter plot to visualize clusters
plt.figure(figsize=(10, 8))
sns.scatterplot(data=pca_df, x='PC1', y='PC2', hue='Cluster', palette='Set2', s=60, alpha=0.7)
plt.title('Clusters Visualization in 2D Space (PCA)')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper left')
```


Clustering

Clustering

Fourth Step: Finding Optimal Weights

Data Preparation

• Filter the tickers:

WALMART, MCDONALDS, AMAZON, APPLE, WENDYS, TACO BELL, BURGER KING, DOLLAR GENERAL

Normalization:

To normalize the data for each company, StandardScaler()

• Aggregate total spend:

Find the ticker/exchange for these merchants and aggregate total spend on the ticker for each fiscal quarter by cluster

• Initial weights:

Generated using random function uniformly distributed between 0 and 10

Data Preparation

```
from scipy.optimize import minimize
from sklearn.preprocessing import MinMaxScaler, StandardScaler
# Align columns (fiscal quarters) between the two datasets
common_columns = set(cluster_spend_pivot.columns[1:]).intersection(company_revenue_pivot.columns[1:])
cluster_spend_pivot = cluster_spend_pivot[['cluster'] + list(common_columns)]
company_revenue_pivot = company_revenue_pivot[['Company'] + list(common_columns)]
# Fill missing values with zeros
cluster spend pivot filled = cluster spend pivot.fillna(0)
company_revenue_pivot_filled = company_revenue_pivot.fillna(0)
# Extract numeric data
X = cluster spend pivot filled.iloc[:, 1:].values # Exclude 'cluster' column
v = company revenue pivot filled.iloc[:, 1:].values # Exclude 'Company' column
# Normalize inputs (X) and outputs (y)
input_scaler = StandardScaler() #MinMaxScaler()
output scaler = StandardScaler() #MinMaxScaler()
X_normalized = input_scaler.fit_transform(X)
y_normalized = output_scaler.fit_transform(y.T).T # Normalize each company's data
```

Algorithm

• Loss function: Mean Absolute Percentage Error (MAPE)

• **Bounds:** 1 and 15

• **Method:** L-BFGS-B

Implements a constrained regression model to map clusters (spending data) to companies (revenue data) on a per-quarter basis, using a Mean Absolute Percentage Error (MAPE) loss function. It normalizes the input (spend) and output (revenue) data, optimizes weights for the regression using the L-BFGS-B method under specific bounds, and rescales predictions back to the original scale. Finally, it evaluates the model's performance by calculating the rescaled MAPE for training data.

Result: Total MAPE = 32.16%

Algorithm

```
Define the constrained regression function
ef constrained_regression_improved(X, y):
  Perform regression quarter by quarter, mapping clusters (rows of X) to companies (rows of y),
  n clusters, n quarters = X.shape
  n companies = v.shape[0]
  optimized weights = []
  np.random.seed(42)
  for i in range(n quarters):
      # Extract the ith column for regression (single fiscal guarter)
      X col = X[:, i].reshape(-1, 1) # (15, 1)
      y_{col} = y[:, i] # (7,)
      # Define the objective function: minimize MAPE
      def mape_loss(weights, X_col, y_col):
          weights = weights.reshape(-1, n_companies) # Reshape weights to (15, 7)
          predictions = X_{col.T} @ weights # Weighted sum: (1, 15) \times (15, 7) = (1, 7)
          mape = np.mean(np.abs((y_col - predictions.flatten()) / (np.maximum(y_col, 1e-3)))) # Adjust denominator
          return mape
      # Constraints: weights must lie within 0 to 10 (wider range for normalized data)
      bounds = [(1, 15) for _ in range(n_clusters * n_companies)]
      # Initial weights
      initial weights = np.random.uniform(0, 10, size=n_clusters * n_companies)
      # Minimize MAPE
      result = minimize(
          fun=mape loss,
          x0=initial weights.
          args=(X_col, y_col),
          bounds=bounds,
          method="L-BFGS-B".
      # Reshape weights for the current guarter and append
      optimized weights.append(result.x.reshape(n clusters, n companies))
  # Return the optimized weights for all quarters
  return np.array(optimized_weights) # Shape: (n_quarters, n_clusters, n_companies)
```

Fifth Step: Interpreting the Results

Optimal Weights for Amazon Clusters

Quarter	Cluster	Company	Weight
2018-2Q	Cluster 1	AMAZON	3.65
2018-2Q	Cluster 2	AMAZON	8.17
2018-2Q	Cluster 3	AMAZON	2.63
2018-2Q	Cluster 4	AMAZON	1.45
2018-2Q	Cluster 5	AMAZON	5.65
2018-2Q	Cluster 6	AMAZON	8.46
2018-2Q	Cluster 7	AMAZON	1.03
2018-2Q	Cluster 8	AMAZON	2.7
2018-2Q	Cluster 9	AMAZON	1.08
2018-2Q	Cluster 10	AMAZON	4.23
2018-2Q	Cluster 11	AMAZON	7.37
2018-2Q	Cluster 12	AMAZON	1.01
2018-2Q	Cluster 13	AMAZON	3.83
2018-2Q	Cluster 14	AMAZON	7.61
2018-2Q	Cluster 15	AMAZON	1.92

Amazon

Company	Year-Quarter	Revenue	Prediction	MAPE (%)
AMAZON	2018-2Q	599558746.0	826355028.6	37.83
AMAZON	2018-3Q	635440960.0	635627191.8	0.03
AMAZON	2018-4Q	858348366.0	1106147582.08	28.87
AMAZON	2019-1Q	265151169.0	265151167.99	0.0
AMAZON	2019-2Q	33644446.76	33644446.79	0.0
AMAZON	2019-3Q	138649400.0	138878713.43	0.17
AMAZON	2019-4Q	153448941.5	367163486.45	139.27
AMAZON	2020-1Q	15202550.0	20889974.99	37.41
AMAZON	2020-2Q	2089875544.0	2089875549.64	0.0
AMAZON	2020-3Q	3238866785.0	5231813104.95	61.53
AMAZON	2020-4Q	7010163.76	7010163.76	0.0

Dollar General

Company	Year-Quarter	Revenue	Prediction	MAPE (%)
DOLLAR GENERAL	2018-2Q	366929752.0	372663524.52	1.56
DOLLAR GENERAL	2018-3Q	452986112.0	452986112.74	0.0
DOLLAR GENERAL	2018-4Q	531243355.0	531262467.15	0.0
DOLLAR GENERAL	2019-1Q	32753206.09	32753206.04	0.0
DOLLAR GENERAL	2019-2Q	37638630.42	19582833.19	47.97
DOLLAR GENERAL	2019-3Q	145026890.5	245566953.65	69.33
DOLLAR GENERAL	2019-4Q	13925838.0	13925837.99	0.0
DOLLAR GENERAL	2020-1Q	17885252.0	17949922.04	0.36
DOLLAR GENERAL	2020-2Q	1632735345.0	1645423972.75	0.78
DOLLAR GENERAL	2020-3Q	2167647248.46	2167647249.7	0.0
DOLLAR GENERAL	2020-4Q	6990765.42	6990765.41	0.0

2019 Quarter 1 (Q1)

Company	Year-Quarter	Revenue	Prediction	MAPE (%)
AMAZON	2019-1Q	265151169.0	265151167.99	0.0
APPLE	2019-1Q	41977746.53	25882899.23	38.34
DOLLAR GENERAL	2019-1Q	32753206.09	32753206.04	0.0
MCDONALDS	2019-1Q	34650661.82	10746209.0	68.99
TACO BELL	2019-1Q	23777686.72	23777686.74	0.0
WALMART	2019-1Q	31363389.0	31363389.42	0.0
WENDYS	2019-1Q	37493615.07	19222513.11	48.73

Sixth Step: Future Steps

Trading strategy using Data

• Spending Habits and Priorities:

This is the basis for our clusters, and therefore the revenue prediction.

Market Neutral Portfolio:

Make a portfolio that accounts for high revenue merchants. Do this by comparing our predictions with online estimates (such as Bloomberg), and then size the bet based on this difference while ensuring the end portfolio is market neutral. Ideally we can also predict the segments that have the greatest impact on the stock price.

Q&A

Any Questions, Comments, or Concerns?

