GEOMETRIE ANALITICĂ

Mihai-Sorin Stupariu

Sem. al II-lea, 2007-2008

Cuprins

1	mente de algebră liniară	3					
	1.1	Spații vectoriale. Definiție. Exemple	3				
	1.2	Combinații liniare. Baze și repere	3				
	1.3	Subspaţii vectoriale	7				
	1.4	Aplicații liniare	9				
	1.5	Spații vectoriale euclidiene	11				
	1.6	Aplicații ortogonale	14				
2	Geometrie afină 16						
	2.1	Combinații afine. Afin (in)dependență	16				
	2.2	Repere carteziene	17				
	2.3	Varietăți liniare	17				
		2.3.1 Definiție. Ecuațiile varietăților liniare	17				
		2.3.2 Fascicole de hiperplane	20				
		2.3.3 Poziții relative ale varietăților liniare. Paralelism afin	21				
		2.3.4 Suma a două varietăți liniare	23				
	2.4	Mulţimi convexe	24				
	2.5	Raport	25				
	2.6	Aplicații afine	26				
		2.6.1 Translaţii	26				
		2.6.2 Omotetii	27				
		2.6.3 Proiecţii	27				
		2.6.4 Simetrii	27				
	2.7	Exerciţii	28				
3	Geometrie euclidiană 31						
	3.1	Distanțe și unghiuri în spațiul \mathbf{R}^n	31				
	3.2	Repere carteziene ortonormate	32				
	3.3	Perpendicularitatea varietăților liniare	32				
	3.4	Izometrii	33				
	3.5	Proiecții centrale	34				
	3.6	Exerciţii	38				
4	Con	iice	39				

A Proiecte	41
Bibliografie	44

Capitolul 1

Elemente de algebră liniară

1.1 Spații vectoriale. Definiție. Exemple

Definiția 1.1 Fie $(K,+,\cdot)$ un corp comutativ. Un K-spațiu vectorial (spațiu vectorial peste corpul K) este un triplet $(V,+,\cdot)$ format dintr-o mulțime nevidă V și două legi de compoziție $+: V \times V \to V, \cdot: K \times V \to V$ astfel încât sunt verificate axiomele spațiului vectorial:

- (i) (V, +) este grup abelian,
- (ii) $1 \cdot v = v$, pentru orice $v \in V$,
- (iii) $(ab) \cdot v = a \cdot (b \cdot v)$, pentru orice $a, b \in K, v \in V$,
- (iv) $a \cdot (v + w) = a \cdot v + a \cdot w$, pentru orice $a \in K, v, w \in V$,
- (v) $(a+b) \cdot v = a \cdot v + b \cdot v$, pentru orice $a, b \in K, v \in V$.

Terminologie. Elementele lui V se numesc **vectori**, iar elementele lui K se numesc **scalari**.

Exemplul 1.2 Fie V_2 (respectiv V_3) mulţimea vectorilor liberi din planul geometric (respectiv din spaţiu). În raport cu operaţiile de adunare a vectorilor, respectiv de înmulţire cu scalari reali, aceste mulţimi au structuri naturale de \mathbb{R} -spaţii vectoriale.

Exemplul 1.3 Mulţimea $K^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in K\}$ are o structură naturală de K-spaţiu vectorial, cu operaţiile date de

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n),$$

$$a \cdot (x_1, \dots, x_n) := (ax_1, \dots, ax_n)$$

$$(a \in K \text{ si } (x_1, \dots, x_n), (y_1, \dots, y_n) \in K^n).$$

Cazuri particulare importante sunt \mathbb{R} -spațiile vectoriale \mathbb{R}^2 și \mathbb{R}^3 .

Exercițiul 1.4 Verificați axiomele spațiului vectorial pentru spațiul vectorial din exemplul 1.3.

1.2 Combinații liniare. Baze și repere

Fie V un K-spaţiu vectorial.

Definiția 1.5 Fie $S = \{v_1, \dots, v_q\} \subset V$ un sistem de vectori.

- (i) O **combinație liniară** a vectorilor v_1, \ldots, v_q este un vector de forma $\alpha_1 v_1 + \ldots + \alpha_q v_q$, unde $\alpha_1, \ldots, \alpha_q \in K$ sunt scalari.
- (ii) Mulţimea tuturor combinaţiilor liniare ale vectorilor din sistemul S se numeşte **acoperire liniară** a lui S şi se notează L(S).

Observația 1.6 Dacă $S = \{v_1, \dots, v_q\}$ este un sistem de vectori, atunci avem

$$L(S) = \{\alpha_1 v_1 + \ldots + \alpha_q v_q \mid \alpha_1, \ldots, \alpha_q \in K\}.$$

Exemplul 1.7 Considerăm \mathbb{R} -spațiul vectorial \mathbb{R}^3 .

(i) Fie vectorii $v_1=(1,2,3),\ v_2=(-1,2,-1),\ v_3=(0,-1,2)$ și scalarii $\alpha_1=1,\alpha_2=-2,\alpha_3=3.$ Combinația liniară a vectorilor v_1,v_2,v_3 cu scalarii indicați este vectorul

$$v = \sum_{i=1}^{3} \alpha_i v_i = 1 \cdot (1, 2, 3) + (-2) \cdot (-1, 2, -1) + 3 \cdot (0, -1, 2) =$$

$$= (1,2,3) + (2,-4,2) + (0,-3,6) = (3,5,11).$$

(ii) Stabilim în continuare dacă v=(-1,4,8) este o combinație liniară a vectorilor $v_1=(-2,0,-1),\ v_2=(2,2,6),\ v_3=(-1,2,3).$ Aceasta este echivalent cu existența unor scalari $\alpha_1,\alpha_2,\alpha_3$ astfel ca $v=\sum_{i=1}^3\alpha_iv_i$, cu alte cuvinte

$$(-1,4,8) = \alpha_1 \cdot (-2,0,-1) + \alpha_2 \cdot (2,2,6) + \alpha_3 \cdot (-1,2,3).$$

Această egalitate din \mathbb{R}^3 este echivalentă cu sistemul de ecuații

$$\begin{cases}
-1 = -2\alpha_1 + 2\alpha_2 - \alpha_3 \\
4 = 2\alpha_2 + 2\alpha_3 \\
8 = -\alpha_1 + 6\alpha_2 + 3\alpha_3
\end{cases},$$

care admite soluția (unică!) $\alpha_1 = \alpha_2 = \alpha_3 = 1$, deci $v = v_1 + v_2 + v_3$.

- (iii) Vectorul (-1,1,2) nu este o combinație liniară a vectorilor (1,0,0) și (0,3,0) (de ce?).
 - (iv) Pentru $S = \{(1, 2, 0), (2, 1, -1)\}$ avem

$$L(S) = \{ (\alpha_1 + 2\alpha_2, 2\alpha_1 + \alpha_2, -\alpha_2) \mid \alpha_1, \alpha_2 \in \mathbb{R} \}.$$

Definiția 1.8 (i) Un sistem de vectori $S = \{v_1, \dots, v_q\} \subset V$ se numește **sistem** de generatori dacă L(S) = V.

(ii) Un spațiu vectorial se numește **finit generat** dacă admite un sistem finit de generatori.

Exemplul 1.9 Spaţiul K^n este finit generat, admiţând sistemul de generatori $\{e_1, \ldots, e_n\}$, unde

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1).$$

Exemplul 1.10 În \mathbb{R}^3 sistemele de vectori

$$S_1 = \{(1,0,2), (0,1,0), (2,0,1)\}, S_2 = \{(1,0,1), (2,1,0), (3,1,2), (1,1,1)\}$$

sunt sisteme de generatori. În schimb, sistemele de vectori

$$S_3 = \{(1,2,3), (2,-1,-3)\}, S_4 = \{(1,0,1), (2,1,0), (3,1,1)\}$$

nu sunt sisteme de generatori.

Definiția 1.11 (i) Un sistem de vectori $S = \{v_1, \ldots, v_q\} \subset V$ se numește **liniar dependent** dacă există scalari $\alpha_1, \ldots, \alpha_q \in K$, <u>nu toți nuli</u>, astfel încât $\alpha_1 v_1 + \ldots + \alpha_q v_q = 0$.

(ii) Un sistem de vectori $S=\{v_1,\ldots,v_q\}\subset V$ se numește liniar independent dacă este îndeplinită condiția: $\alpha_1v_1+\ldots+\alpha_qv_q=0$ dacă și numai dacă $\alpha_1=\ldots=\alpha_q=0$.

Exemplul 1.12 Sistemul $S = \{e_1, \dots, e_n\}$ este un sistem liniar independent în K^n

Exemplul 1.13 În \mathbb{R}^3 sistemele de vectori

$$S_1 = \{(1,0,2), (0,1,0), (2,0,1)\}, S_2 = \{(1,0,1), (2,1,0), (3,1,2)\}$$

sunt liniar independente, iar sistemul $S_3 = \{(1,0,1), (2,1,0), (3,1,1)\}$ este liniar dependent.

Definiția 1.14 (i) Un sistem de vectori $S = \{v_1, \dots, v_q\} \subset V$ se numește bază a lui V dacă este un sistem de generatori liniar independent.

(ii) O bază ordonată a unui spațiu vectorial se numește reper.

Exemplul 1.15 Sistemul de vectori $\{e_1, \ldots, e_n\}$ formează o bază a lui K^n , numită baza canonică, iar reperul (e_1, \ldots, e_n) se numește reper canonic.

Exemplul 1.16 (i) Sistemele de vectori

$$S_1 = \{(1,0,2), (0,1,0), (2,0,1)\}, S_2 = \{(1,0,1), (2,1,0), (3,1,2)\}$$

formează baze ale lui \mathbb{R}^3 .

(ii) Unei baze $\{b_1, b_2\}$ a lui \mathbb{R}^2 îi putem asocia două repere distincte: (b_1, b_2) şi (b_2, b_1) .

Teorema 1.17 Fie V un K-spaţiu vectorial finit generat. Atunci V admite (cel puţin) o bază finită. Mai mult, orice două baze ale lui V au acelaşi cardinal.

Definiția 1.18 Dimensiunea unui K-spațiu vectorial finit generat V este cardinalul unei baze (deci al oricărei baze) și este notată cu $\dim_K V$.

Exemplul 1.19 Conform celor arătate anterior, avem $\dim_K K^n = n$.

Observația 1.20 Fie $\mathcal{R} = (b_1, \dots, b_n)$ un reper al K-spațiului vectorial V. Pentru orice vector $x \in V$ există și sunt unici scalarii $x_1, \dots, x_n \in K$ astfel ca $x = x_1b_1 + \dots + x_nb_n$.

Exemplul 1.21 Componentele vectorului $(2, -3) \in \mathbb{R}^2$ în reperul canonic (e_1, e_2) sunt (2, -3), iar componentele acestui vector în reperul (e_2, e_1) sunt (-3, 2).

Definiția 1.22 Cu notațiile din observația 1.20, sistemul de scalari (x_1, \ldots, x_n) reprezintă **componentele vectorului** x în reperul \mathcal{R} .

Observația 1.23 Fie $\mathcal{R}=(b_1,\ldots,b_n)$ și $\mathcal{R}'=(b'_1,\ldots,b'_n)$ două repere ale unui K-spațiu vectorial n-dimensional V. Cum sistemul de vectori b_1,\ldots,b_n formează o bază a lui V, există și sunt unici scalarii $(\alpha_{ji})_{j,i=1,\ldots,n}$ astfel ca

$$b_i' = \sum_{j=1}^n \alpha_{ji} b_j, \quad \forall i = 1, \dots, n.$$

Definiția 1.24 Cu notațiile din observația 1.23, matricea $(\alpha_{ji})_{j,i=1,...,n}$ se numește matrice de trecere de la reperul \mathcal{R} la reperul \mathcal{R}' și este notată cu $\mathcal{M}_{\mathcal{R}\mathcal{R}'}$

Exemplul 1.25 În \mathbb{R}^2 considerăm reperul canonic $\mathcal{R}_0 = (e_1, e_2)$ și reperul $\mathcal{R} = (b_1, b_2)$ format din vectorii $b_1 = (1, 3), b_2 = (2, 5)$. Cum

$$b_1 = 1 \cdot e_1 + 3 \cdot e_2$$

 $b_2 = 2 \cdot e_1 + 5 \cdot e_2$

deducem că avem

$$\mathcal{M}_{\mathcal{R}_0\mathcal{R}} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 5 \end{array} \right).$$

Pe de altă parte, din egalitățile

$$e_1 = -5b_1 + 3b_2$$

$$e_2 = 2b_1 - b_2,$$

rezultă că

$$\mathcal{M}_{\mathcal{R}\mathcal{R}_0} = \left(\begin{array}{cc} -5 & 2 \\ 3 & -1 \end{array} \right).$$

Observația 1.26 Fie $\mathcal{R} = (b_1, \dots, b_n)$ și $\mathcal{R}' = (b'_1, \dots, b'_n)$ două repere ale unui K-spațiu vectorial n-dimensional V.

- (i) Matricea $\mathcal{M}_{\mathcal{R}\mathcal{R}'}$ este inversabilă și are loc egalitatea $\mathcal{M}_{\mathcal{R}\mathcal{R}'}^{-1} = \mathcal{M}_{\mathcal{R}'\mathcal{R}}$.
- (ii) Fie x un vector care în reperul \mathcal{R} are coordonatele (x_1, \ldots, x_n) , iar în reperul \mathcal{R}' are coordonatele (x'_1, \ldots, x'_n) . Atunci, cu notațiile din observația 1.23, avem

$$x_i = \sum_{j=1}^n \alpha_{ij} x_j', \qquad \forall i = 1, \dots, n.$$

$$(1.1)$$

Notând cu $(x)_{\mathcal{R}} = (x_1, \dots, x_n)^t$, respectiv cu $(x)_{\mathcal{R}'} = (x'_1, \dots, x'_n)$ matricele <u>coloană</u> ale coordonatelor lui x în cele două repere, putem scrie relațiile (1.1) sub forma matriceală $(x)_{\mathcal{R}} = \mathcal{M}_{\mathcal{R}\mathcal{R}'}(x)_{\mathcal{R}'}$.

Definiția 1.27 Fie \mathcal{R} și \mathcal{R}' două repere ale unui \mathbb{R} -spațiu vectorial V. Dacă det $\mathcal{M}_{\mathcal{R}\mathcal{R}'} > 0$, cele două repere sunt **orientate la fel**, iar dacă det $\mathcal{M}_{\mathcal{R}\mathcal{R}'} < 0$, cele două repere sunt **orientate opus**.

Exemplul 1.28 Reperele \mathcal{R}_0 şi \mathcal{R} din exemplul 1.25 sunt orientate opus.

Definiția 1.29 Fie \mathcal{R} un reper al \mathbb{R} -spațiului vectorial \mathbb{R}^n și \mathcal{R}_0 reperul canonic al acestui spațiu vectorial. Reperul \mathcal{R} se numește **reper drept** (respectiv **reper strâmb**) dacă det $\mathcal{M}_{\mathcal{R}_0\mathcal{R}} > 0$ (respectiv det $\mathcal{M}_{\mathcal{R}_0\mathcal{R}} < 0$).

Definiția 1.30 Fie $S = \{v_1, \dots, v_q\} \subset K^n$ un sistem de vectori din spațiul vectorial K^n . Matricea asociată sistemului de vectori S este acea matrice $A_S \in \mathcal{M}_{n,q}(K)$ care are pe <u>coloana</u> i componentele vectorului v_i $(i = 1, \dots, q)$.

Exemplul 1.31 Pentru $S = \{(1, -2, 3), (1, 0, 1), (0, -1, 4), (2, 6, -5)\}$ avem

$$A_S = \left(\begin{array}{rrrr} 1 & 1 & 0 & 2 \\ -2 & 0 & -1 & 6 \\ 3 & 1 & 4 & -5 \end{array} \right).$$

Propoziția 1.32 (Criteriu de verificare a liniar independenței sau a faptului că un sistem de vectori formează sistem de generatori). Fie $S = \{v_1, \ldots, v_q\} \subset K^n$ un sistem de vectori și $A_S \in \mathcal{M}_{n,q}(K)$ matricea asociată lui S. Atunci:

- (i) S este liniar independent dacă și numai dacă rang $A_S = q$.
- (ii) S este sistem de generatori dacă și numai dacă rang $A_S = n$.
- (iii) S este bază dacă și numai dacă $q = n = \operatorname{rang} A_S$.

Exemplul 1.33 Pentru sistemul S din exemplul 1.31 avem rang $A_S = 3$, deci S este un sistem de generatori care nu este liniar independent.

Exercițiul 1.34 Fie $S = \{(1, 2, 1), (2, 4, 2), (1, 0, 1)\} \subset \mathbb{R}^3$. Stabiliți dacă următorii vectori sunt elemente ale lui L(S): (0, 1, 0), (3, 6, 3), (4, 5, 4), (0, 0, 0).

Exercitiul 1.35 Studiati liniar independenta sistemelor de vectori

$$S_1 = \{(1,1,0), (0,1,1), (1,0,1)\}, S_2 = \{(1,3,-1), (2,6,-2)\}.$$

Exercițiul 1.36 Stabiliți dacă sistemele de mai jos sunt sisteme de generatori pentru \mathbb{R}^3 :

$$S_1 = \{(1,1,0), (0,1,1), (1,0,1)\}, S_2 = \{(1,3,-1), (2,0,-1), (0,-6,2)\}.$$

Exercițiul 1.37 Stabiliți pentru ce valori ale parametrului α mulțimile de mai jos formează baze ale \mathbb{R} -spațiului vectorial \mathbb{R}^3 :

$$S_1 = \{(-1,3,2), (2,\alpha,3), (2,0,1)\}, S_2 = \{(2,-1,\alpha), (1,0,\alpha), (-1,2,3)\}.$$

1.3 Subspaţii vectoriale

Fie V un K-spațiu vectorial.

Definiția 1.38 O submulțime nevidă $\emptyset \neq W \subset V$ se numește subspațiu vectorial dacă pentru orice $\alpha \in K, v, w \in W$ avem $v + w \in W, \alpha v \in W$.

Definiția 1.39 Un subspațiu vectorial de dimensiune 1 se numește **dreaptă** vectorială, iar un subspațiu vectorial de dimensiune 2 se numește **plan vectorial**.

Exemplul 1.40

- (i) Mulţimea $W=\{(\alpha,\beta,\alpha+\beta)\,|\,\alpha,\beta\in\mathbb{R}\}=L(\{(1,0,1),(0,1,1)\})$ este un plan vectorial în \mathbb{R}^3 .
- (ii) Mulţimea $W=\{(x_1,x_2,x_3)\in\mathbb{R}^3\,|\,x_1-x_2+x_3=0\}$ este un plan vectorial în \mathbb{R}^3 .
 - (iii) Orice spațiu vectorial V admite subspațiile triviale $\{0_V\}$ și V.

Observația 1.41 (Reprezentări parametrice și implicite ale subspațiilor lui \mathbb{R}^n) Această observație generalizează (i) și (ii) din exemplul 1.40.

• Fie $S=\{v_1,\ldots,v_q\}\subset K^n$ o submulțime liniar independentă. Atunci $L(S)=\{\alpha_1v_1+\ldots+\alpha_qv_q\,|\,\alpha_1,\ldots,\alpha_q\in K\}$ este subspațiu vectorial al lui K^n ; S este o bază a lui L(S) și, în particular, $\dim_K L(S)=q$. Spunem că am dat o **reprezentare parametrică a lui** L(S). Concret, dacă avem $S=\{(1,2,-1),(0,1,3)\}\subset\mathbb{R}^3$, o reprezentare parametrică lui L(S) este

$$L(S) = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid \begin{cases} x_1 = \alpha \\ x_2 = 2\alpha + \beta \\ x_3 = -\alpha + 3\beta \end{cases}, \ \alpha, \beta \in \mathbb{R} \}.$$

• Fie $A \in \mathcal{M}_{m,n}(K)$ o matrice cu coeficienți în K. Atunci mulțimea $W = \{X \mid AX = 0\}$ a soluțiilor sistemului liniar omogen AX = 0 formează un subspațiu vectorial al lui K^n cu $\dim_K W = n - \operatorname{rang} A$ (cu $X \in \mathcal{M}_{n,1}(K)$ am notat vectorul coloană $X = (x_1, \dots, x_n)^t$ al necunoscutelor sistemului). Spunem că W a fost descris printr-o **reprezentare implicită**. Concret, dacă $A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 3 & -1 \end{pmatrix}$, atunci subspațiul soluțiilor sistemului liniar omogen asociat este

 $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid \begin{cases} x_1 - 2x_2 &= 0\\ 2x_1 + 3x_2 - x_3 &= 0 \end{cases} \}.$

- ullet Pentru orice susbspațiu vectorial al lui K^n putem găsi atât reprezentări parametrice, cât și implicite. În general, acestea nu sunt unice.
- Trecerea de la o reprezentare parametrică la o reprezentare implicită se face eliminând parametrii. Concret, subspațiul L(S) descris mai sus are reprezentarea implicită $L(S) = \{x \in \mathbb{R}^3 \mid 7x_1 3x_2 + x_3 = 0\}$.
- Trecerea de la o reprezentare implicită la una parametrică se face rezolvând sistemul de ecuații liniar omogen care dă reprezentarea implicită; necunoscutele secundare vor deveni parametri. De exemplu, subspațiul W descris mai sus admite reprezentarea parametrică $W = \{(2\alpha, \alpha, 7\alpha) \mid \alpha \in \mathbb{R}\}.$

Observația 1.42 (i) Intersecția a două subspații vectoriale este un subspațiu vectorial.

(ii) Reuniunea a două subspații vectoriale nu este, în general, subspațiu vectorial. Mai precis, $W_1 \cup W_2$ este subspațiu vectorial dacă și numai dacă $W_1 \subset W_2$ sau $W_2 \subset W_1$.

Definiția 1.43 Suma a două subspații vectoriale W_1, W_2 , notată W_1+W_2 , este subspațiul generat de reuniunea $W_1 \cup W_2$, i.e. $W_1 + W_2 := L(W_1 \cup W_2)$.

Lema 1.44
$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}.$$

Observația 1.45 Fie W_1,W_2 subspații ale lui V_K cu $\dim_K(W_1\cap W_2)=p,$ $\dim_K W_1=q,$ $\dim_K W_2=r.$ Dacă $\{e_1,\ldots,e_p\}$ este o bază a lui $W_1\cap W_2$ și dacă $\{e_1,\ldots,e_p,f_{p+1},\ldots,f_q\}$, respectiv $\{e_1,\ldots,e_p,h_{p+1},\ldots,h_r\}$ sunt baze ale lui W_1 , respectiv W_2 , atunci $\{e_1,\ldots,e_p,f_{p+1},\ldots,f_q,h_{p+1},\ldots,h_r\}$ este o bază a lui W_1+W_2 . În particular are loc enunțul cunoscut ca **teorema dimensiunii a lui Grassmann**

$$\dim_K(W_1 + W_2) + \dim_K(W_1 \cap W_2) = \dim_K W_1 + \dim_K W_2.$$

Exemplul 1.46 În \mathbb{R}^4 considerăm subspațiile vectoriale

$$W_1 = \{ x \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 - x_4 = 0, \ 2x_1 - x_3 - x_4 = 0 \},\$$

$$W_2 = \{x \in \mathbb{R}^4 \mid x_1 + x_2 - x_3 - x_4 = 0, \ x_1 + x_2 - 2x_4 = 0\}.$$

Intersecția lor este dată de

$$W_1 \cap W_2 = \{ x \in \mathbb{R}^4 \mid \begin{cases} x_1 - x_2 + x_3 - x_4 = 0 \\ 2x_1 - x_3 - x_4 = 0 \\ x_1 + x_2 - x_3 - x_4 = 0 \end{cases} \} = \{ (\alpha, \alpha, \alpha, \alpha) \mid \alpha \in \mathbb{R} \}$$

$$x_1 + x_2 - 2x_4 = 0$$

iar suma lor este

$$W_1 + W_2 = \{(\alpha + \beta + \gamma, \alpha - \beta - \gamma, \alpha, \alpha + 2\beta) \mid \alpha, \beta, \gamma \in \mathbb{R}\} = \{x \mid x_1 + x_2 - 2x_3 = 0\}.$$

Definiția 1.47 Fie W un subspațiu vectorial al lui V. Un subspațiu vectorial W' al lui V se numește complement al lui W dacă $W \cap W' = \{0_V\}$ și $W + W' = \{0_V\}$ V. În acest caz scriem $V = W \oplus W'$.

Exemplul 1.48 Fie $W=\{x\in\mathbb{R}^2\,|\,x_1+x_2=0\}$. Atunci atât subspațiul $W'=\{x\in\mathbb{R}^2\,|\,x_1-x_2=0\}$, cât și $W''=\{x\in\mathbb{R}^2\,|\,x_1+2x_2=0\}$ reprezintă complemente ale lui W.

Exercițiul 1.49 Scrieți ecuații parametrice și implicite și precizați dimensiunea subspațiului vectorial L(S) dacă:

- a) $S = \{(1, 2, -1)\} \subset \mathbb{R}^3$;
- b) $S = \{(2,0,1), (-1,2,0)\} \subset \mathbb{R}^3;$
- c) $S = \{(1, 2, -2), (2, 4, -4)\} \subset \mathbb{R}^3$.

Exercitiul 1.50 Indicati baze si precizati dimensiunea pentru fiecare din următoarele subspatii:

- a) $W_1 = \{x \in \mathbb{R}^3 \mid 2x_1 x_3 = 0, x_2 = 0\};$ b) $W_2 = \{x \in \mathbb{R}^3 \mid x_1 + 2x_2 3x_3 = 0\};$ c) $W_3 = \{x \in \mathbb{R}^4 \mid 2x_2 x_3 x_4 = 0\}.$

Exercițiul 1.51 Determinați dimensiunea sumei și a intersecției subspațiilor $L(S_1)$ şi $L(S_2)$ pentru mulţimile:

- a) $S_1 = \{(1,2,3)\}, S_2 = \{(2,1,1), (-1,1,2)\} \text{ din } \mathbb{R}^3;$
- b) $S_1 = \{(1, 1, 1, 0), (1, 0, 0, 1), \}, S_2 = \{(1, 0, 0, 0), (1, 2, 2, -1)\} \text{ din } \mathbb{R}^4.$

Exercițiul 1.52 Descrieți (folosind eventual atât reprezentări parametrice cât și implicite) suma și intersecția subspațiilor W_1 și W_2 de mai jos și precizați dimensiunea subspațiilor determinate:

- a) $W_1 = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}, W_2 = \{x \in \mathbb{R}^3 \mid x_1 + 3x_3 = 0\};$
- b) $W_1 = \{(2t, t, t) \mid t \in \mathbb{R}\}, W_2 = \{(3s, -s, -s) \mid s \in \mathbb{R}\};$
- c) $W_1 = \{(2s + 2t, s, s t, 3s t) \mid s, t \in \mathbb{R}\},\$ $W_2 = \{ x \in \mathbb{R}^4 \mid x_1 + x_2 - x_4 = 0 \}.$

Exercitiul 1.53 În \mathbb{R}^3 considerăm subspatiile

$$W_1 = \{x \mid x_1 + x_2 = 0, x_1 - x_2 - x_3 = 0\}, W_2 = \{x \mid x_1 + x_2 + x_3 = 0\}.$$

Arătați că $\mathbb{R}^3 = W_1 \oplus W_2$ și scrieți vectorul (1,1,1) ca suma dintre un vector $\dim W_1$ și unul $\dim W_2$.

Exercițiul 1.54 Construiți un complement al subspațiului vectorial $W_1 = \{ x \in \mathbb{R}^3 \, | \, x_1 - x_2 + x_3 = 0 \}.$

Aplicații liniare 1.4

Definiția 1.55 Fie V și V' două K-spații vectoriale. O funcție $f:V\to V'$ se numește aplicație liniară dacă $f(v+w) = f(v) + f(w), f(\alpha v) = \alpha f(v)$, pentru orice $\alpha \in K$ și $v, w \in V$.

Exemplul 1.56 (i) Aplicația identică și funcția nulă sunt aplicații liniare. În general, omotetia de raport $\alpha \in K$ definită prin $L_{\alpha}: V \to V, L_{\alpha}(v) = \alpha v$ este o aplicație liniară.

(ii) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x_1, x_2, x_3) = (2x_1 - x_3, 3x_1 + x_2 + 2x_3)$ este aplicatie liniară.

Observația 1.57 În general, orice aplicație liniară $f: K^n \to K^m$ este de forma f(X) = AX, unde $A \in \mathcal{M}_{m,n}(K)$ este o matrice și $X = (x_1, \dots, x_n)^t$. Concret, aplicația liniară din exemplul 1.56 (ii) corespunde matricei

$$A = \left(\begin{array}{ccc} 2 & 0 & -1 \\ 3 & 1 & 2 \end{array}\right).$$

Lema 1.58 Fie W_1, W_2 subspații vectoriale ale lui V, astfel ca $V = W_1 \oplus W_2$. Pentru orice $v \in V$ există și sunt unice elementele $w_1 \in W_1, w_2 \in W_2$ astfel ca $v = w_1 + w_2$.

Definiția 1.59 Cu notațiile din lema 1.58, aplicația $p:V\to V$, definită prin $p(v)=w_1$ se numește **proiecție pe** W_1 **de-a lungul lui** W_2 . Aplicația $s:V\to V$ dată de $s:=2p-\mathrm{id}_V$ se numește **simetrie** asociată lui p, de **axă** W_1 și **direcție** W_2 .

Exemplul 1.60 Considerăm spațiul vectorial $V = \mathbb{R}^2$ și subspațiile vectoriale $W_1 = \{x \mid x_1 - x_2 = 0\}, \ W_2 = \{x \mid x_1 + x_2 = 0\}.$ Proiecția pe W_1 de-a lungul lui W_2 este dată de $p(x_1, x_2) = \left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}\right)$, iar simetria asociată este $s(x_1, x_2) = (x_2, x_1)$.

Definiția 1.61 Fie $f: V \to V'$ o aplicație liniară. **Nucleul**, respectiv **imaginea** lui f sunt definite prin

$$\operatorname{Ker} f := \{ v \in V \mid f(v) = 0_{V'} \}, \quad \operatorname{Im} f := \{ f(v) \mid v \in V \}.$$

Propoziția 1.62 Fie $f:V\to V'$ o aplicație liniară.

- (i) Nucleul și imaginea lui f sunt subspații vectoriale.
- (ii) Fie $\{b_1,\ldots,b_n\}$ o bază a lui V ($\dim_K V=n$), astfel ca $\{b_1,\ldots,b_q\}$ să fie o bază a lui Ker f. Atunci $\{f(b_{q+1}),\ldots,f(b_n)\}$ formează o bază a lui Im f. În particular, are loc egalitatea $\dim_K \operatorname{Ker} f + \dim_K \operatorname{Im} f = \dim_K V$.

Exemplul 1.63 Pentru aplicația liniară din exemplul 1.56 (ii) avem

$$\operatorname{Ker} f = \{ x \in \mathbb{R}^3 \mid 2x_1 - x_3 = 0, \, 3x_1 + x_2 + 2x_3 = 0 \}; \, \operatorname{Im} f = \mathbb{R}^2.$$

Exercițiul 1.64 Descrieți Ker f, Im f scriind (dacă este cazul) ecuații parametrice și implicite pentru aceste subspații și indicând baze ale lor pentru aplicațiile liniare:

- a) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_2 + x_3, 2x_1)$;
- b) $f: \mathbb{R}^4 \to \mathbb{R}^4$, $f(x_1, x_2, x_3, x_4) = (x_1 x_4, x_2 x_4, x_3 x_4)$.

Exercițiul 1.65 Fie $W = \{x \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0\}$ și $f : \mathbb{R}^4 \to \mathbb{R}^3$, $f(x_1, x_2, x_3, x_4) = (x_1 - x_2, x_2 - x_3, x_3 - x_1)$.

- a) Să se determine dimensiunea subspațiilor vectoriale Ker $f \cap W$, Ker f + W, indicând și baze ale acestora.
 - b) Să se descrie subspațiul vectorial f(W) implicit și parametric.

Exercițiul 1.66 Fie $W_1 = \{x \in \mathbb{R}^4 \mid x_1 + x_2 = 0, x_3 + x_4 = 0\}$ și $W_2 = \{x \in \mathbb{R}^4 \mid x_1 - x_2 = 0, x_3 - x_4 = 0\}.$

- a) Să se arate că $\mathbb{R}^4 = W_1 \oplus W_2$.
- b) Notăm cu p_1 , respectiv p_2 , proiecția pe W_1 de-a lungul lui W_2 , respectiv proiecția pe W_2 de-a lungul lui W_1 și cu s_1, s_2 simetriile asociate. Să se descrie explicit aplicațiile p_1, p_2, s_1, s_2 .

1.5 Spații vectoriale euclidiene

Definiția 1.67 (i) Fie E un spațiu vectorial real. Un **produs scalar** pe E este o aplicație $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ cu proprietățile:

- (a) $\langle av + bw, u \rangle = a \langle v, u \rangle + b \langle w, u \rangle, \forall a, b \in \mathbb{R}, u, v, w \in E;$
- (b) $\langle v, w \rangle = \langle w, v \rangle, \forall v, w \in E;$
- (c) $\langle v, v \rangle \geq 0$, cu egalitate dacă și numai dacă $v = 0_E$.
- (ii) Norma unui vector v este definită prin $||v|| := \sqrt{\langle v, v \rangle}$ iar versorul unui vector nenul $v \neq 0$ este vectorul $\frac{v}{||v||}$.
- (iii) Un **spaţiu vectorial euclidian** este o pereche $(E, \langle \cdot, \cdot \rangle)$ formată dintrun spaţiu vectorial real E şi un produs scalar $\langle \cdot, \cdot \rangle$ pe E.

Exemplul 1.68 Pe \mathbb{R}^n avem produsul scalar canonic definit prin

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n, \ \forall x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n.$$

Perechea $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ o vom numi **spaţiu euclidian standard**. Pentru simplificarea notaţiilor, în cele ce urmează vom omite scrierea produsului scalar, vorbind de spaţiul vectorial euclidian (standard) \mathbb{R}^n , subînţelegând că este înzestrat cu produsul scalar canonic.

Concret, produsul scalar canonic dintre vectorii (1,-1,3) şi (2,0,-1) din \mathbb{R}^3 este -1; norma vectorului (1,1,-1) este $\sqrt{3}$, iar versorul său este vectorul $(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}})$.

În continuarea acestei secțiuni $(E,\langle\cdot,\cdot\rangle)$ este un spațiu vectorial euclidian.

Teorema 1.69 (Inegalitatea Cauchy-Buniakowski-Schwarz)

Pentru orice $v, w \in E$ are loc inegalitatea

$$|\langle v, w \rangle| \le ||v|| \, ||w||,$$

cu egalitate dacă și numai dacă v și w sunt liniar dependenți.

Definiția 1.70 (i) Fie $v, w \in E$ doi vectori nenuli. **Unghiul dintre** v și w, notat $\widehat{(v, w)}$, este unicul număr real $\theta \in [0, \pi]$ cu proprietatea

$$\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|}.$$

(ii) Vectorii $v, w \in E$ se numesc **ortogonali** (**perpendiculari**) dacă $\langle v, w \rangle = 0$. În acest caz scriem $v \perp w$ și avem $\widehat{(v, w)} = \frac{\pi}{2}$.

Exemplul 1.71 În spațiul vectorial euclidian standard \mathbb{R}^3 considerăm vectorii u=(-1,2,-2), v=(0,1,1) și w=(-1,1,0). Atunci $u\perp v$ și $\widehat{(u,w)}=\frac{\pi}{4}$.

Definiția 1.72 (i) O bază $\{b_1, \ldots, b_n\}$ a unui spațiu vectorial euclidian se numește **ortogonală** dacă $\langle b_i, b_j \rangle = 0$ pentru orice $i \neq j$ și se numește **ortogonată** dacă $\langle b_i, b_j \rangle = \delta_{ij}$ pentru orice $i, j = 1, \ldots, n$.

(ii) Un reper (b_1, \ldots, b_n) se numește **ortonormat** dacă baza $\{b_1, \ldots, b_n\}$ este ortonormată.

Observația 1.73 Fie \mathcal{R} un reper al lui \mathbb{R}^n , \mathcal{R}_0 reperul canonic al acestui spațiu și $\mathcal{M}_{\mathcal{R}_0\mathcal{R}}$ matricea de trecere de la reperul canonic la \mathcal{R} . Reperul \mathcal{R} este ortonormat dacă și numai dacă matricea $\mathcal{M}_{\mathcal{R}_0\mathcal{R}}$ este ortogonală.

11

Exemplul 1.74 (i) Baza și reperul canonice ale lui \mathbb{R}^n sunt ortonormate.

- (ii) Vectorii (1,1), (-1,1) formează o bază ortogonală a lui \mathbb{R}^2 care nu este ortonormată.
- (iii) Vectorii $b_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), b_2 = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ formează o bază ortonormată a lui \mathbb{R}^2 . Reperul (b_1, b_2) este un reper ortonormat drept, iar reperul (b_2, b_1) este un reper ortonormat strâmb.

Definiția 1.75 Produsul mixt $x \wedge y \wedge z$ al vectorilor $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3), z = (z_1, z_2, z_3)$ din \mathbb{R}^3 este, prin definiție, numărul real

$$x \wedge y \wedge z := \left| \begin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right|.$$

Lema 1.76 Fie $x,y\in\mathbb{R}^3$ doi vectori. Există și este unic un vector w cu proprietatea că

$$\langle w, z \rangle = x \wedge y \wedge z, \qquad \forall z \in \mathbb{R}^3.$$

Definiția 1.77 Vectorul w din lema 1.76 se numește **produs vectorial** al lui x și y și este notat cu $x \times y$.

Exemplul 1.78 Vectorii reperului canonic (e_1, e_2, e_3) verifică relațiile

$$e_1 \times e_2 = e_3$$

 $e_2 \times e_3 = e_1$
 $e_3 \times e_1 = e_2$. (1.2)

Observația 1.79 Coordonatele lui $x \times y$ în reperul canonic sunt date de formula

$$x \times y = \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} e_1 - \begin{vmatrix} x_1 & y_1 \\ x_3 & y_3 \end{vmatrix} e_2 + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} e_3.$$

Cu alte cuvinte, produsul vectorial poate fi obținut din dezvoltarea unui determinant <u>formal</u>:

$$x \times y = \left| \begin{array}{ccc} x_1 & y_1 & e_1 \\ x_2 & y_2 & e_2 \\ x_3 & y_3 & e_3 \end{array} \right|.$$

Trebuie observat că ultima coloană a determinantului de mai sus are ca elemente vectori, în timp ce primele două sunt coloane de numere.

Exemplul 1.80 Produsul vectorial $x \times y$ al vectorilor x = (1,2,3) şi y = (-1,2,0) este

$$x \times y = \begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix} e_1 - \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} e_2 + \begin{vmatrix} 1 & -1 \\ 2 & 2 \end{vmatrix} e_3 = -6e_1 - 3e_2 + 4e_3 = (-6, -3, 4).$$

Observația 1.81 (i) Produsul vectorial nu este asociativ, dar verifică **identitatea lui Jacobi** $x \times (y \times z) + y \times (z \times x) + z \times (x \times y) = 0$, oricare ar fi $x, y, z \in \mathbb{R}^3$.

- (ii) Produsul vectorial este anticomutativ: $x \times y = -y \times x$, oricare ar fi $x,y \in \mathbb{R}^3$.
 - (iii) $x \times y = 0$ dacă și numai dacă x și y sunt liniar dependenți.
- (iv) $\langle x \times y, x \rangle = 0$, $\langle x \times y, y \rangle = 0$. În particular, dacă x şi y sunt liniar independenți, vectorul $x \times y$ este nenul şi este perpendicular pe planul determinat

de x și y. În consecință, $\mathcal{R} = (x, y, x \times y)$ este un reper al lui \mathbb{R}^3 . Mai mult, acest reper este la fel orientat cu reperul canonic \mathcal{R}_0 , deoarece

$$\det \mathcal{M}_{\mathcal{R}_0 \mathcal{R}} = \det(x, y, x \times y) = x \wedge y \wedge (x \times y) = \langle x \times y, x \times y \rangle = \|x \times y\|^2 > 0.$$

(v) Un reper ortonormat $\mathcal{R} = (b_1, b_2, b_3)$ este un reper drept dacă și numai dacă are loc una din egalitățile

$$b_1 \times b_2 = b_3$$

 $b_2 \times b_3 = b_1$
 $b_3 \times b_1 = b_2$.

Comparând aceste relații cu cele din formulele (1.2), deducem că un reper ortonormat \mathcal{R} este drept dacă se comportă la fel ca reperul canonic față de produsele vectoriale ale vectorilor din \mathcal{R} .

Definiția 1.82 Subspațiile $W_1, W_2 \subset E$ se numesc **ortogonale** (perpendiculare) dacă oricare ar fi $w_1 \in W_1, w_2 \in W_2$ avem $w_1 \perp w_2$.

Definiția 1.83 Fie $W \subset E$ un subspațiu vectorial. Complementul ortogonal al lui W este definit prin

$$W^{\perp} := \{ x \in E \mid x \perp w, \ \forall w \in W \}.$$

Propoziția 1.84 (i) Complementul ortogonal al unui subspațiu W este, la rândul său, subspațiu vectorial al lui E.

(ii) Fie $\{b_1,\ldots,b_q\}$ o bază a lui W. Atunci $x\in W^\perp$ dacă și numai dacă $\langle x,b_1\rangle=\ldots=\langle x,b_q\rangle=0$. Aceste egalități ne dau o reprezentare implicită a lui W^\perp .

Propoziția 1.85 Complementul ortogonal al subspațiului $W \subset E$ verifică proprietățile

$$W^{\perp} \perp W$$
. $E \equiv W \oplus W^{\perp}$.

Mai mult, W^{\perp} este unicul subspațiu care verifică simultan aceste două condiții și orice subspațiu ortogonal pe W este inclus în W^{\perp} .

Exemplul 1.86 Considerăm $W=\{x\in\mathbb{R}^3\,|\,2x_1-x_2=0,\ x_1+x_2+x_3=0\}.$ Atunci (1,2,-3) este o bază a lui W și $W^\perp=\{x\in\mathbb{R}^3\,|\,x_1+2x_2-3x_3=0\}.$ Subspațiul $W'=\{(3\alpha,0,\alpha)\,|\,\alpha\in\mathbb{R}\}$ este, la rândul său, ortogonal pe W, dar, cum $W+W'\neq\mathbb{R}^3$, nu este complement al lui W. Pe de altă parte, subspațiul $W''=\{x\in\mathbb{R}^3\,|\,x_1+x_2+x_3=0\}$ este un complement al lui W, dar nu este perpendicular pe acesta.

Exercițiul 1.87 Pentru fiecare din submulțimile S ale spațiului vectorial euclidian standard \mathbb{R}^3 indicate mai jos construiți subspațiul $L(S)^{\perp}$:

- a) $S = \{(1, 2, 3)\};$
- b) $S = \{(1, -1, 0), (2, 2, 1)\}.$

Exercițiul 1.88 Determinați complementul ortogonal și indicați o bază a acestuia pentru fiecare din următoarele subspații:

- a) $W_1 = \{x \in \mathbb{R}^3 \mid x_1 + 3x_2 + 4x_3 = 0\};$
- b) $W_2 = \{x \in \mathbb{R}^3 \mid x_1 + x_2 = 0, x_2 + x_3 = 0\}.$

1.6 Aplicații ortogonale

Definiția 1.89 (i) Fie $(E_1, \langle \cdot, \cdot \rangle_1)$, $(E_2, \langle \cdot, \cdot \rangle_2)$ două spații vectoriale euclidiene. O aplicație liniară $f: E_1 \to E_2$ se numește **aplicație ortogonală** dacă pentru orice $v, w \in E_1$ are loc egalitatea $\langle f(v), f(w) \rangle_2 = \langle v, w \rangle_1$.

(ii) Când cele două spații vectoriale euclidiene coincid, vorbim de o **transformare ortogonal**ă.

Observația 1.90 O aplicație ortogonală păstrează normele și unghiurile.

Lema 1.91 Considerăm spațiul vectorial euclidian standard \mathbb{R}^n . Fie $A \in \mathcal{M}_n(\mathbb{R})$ o matrice pătratică de ordinul n și $f: \mathbb{R}^n \to \mathbb{R}^n$, f(X) = AX aplicația liniară asociată. Atunci f este o aplicație ortogonală dacă și numai dacă A este o matrice ortogonală, i.e. $A^tA = \mathbb{I}_n$, unde A^t este transpusa lui A și \mathbb{I}_n este matricea identică de ordinul n.

Observația 1.92 Dacă A este matrice ortogonală, atunci det $A \in \{\pm 1\}$.

Exemplul 1.93 Aplicațiile liniare

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x_1, x_2) = (\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2, -\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2),$$
$$g: \mathbb{R}^3 \to \mathbb{R}^3, \ g(x) = (\frac{2}{3}x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3, -\frac{1}{3}x_1 + \frac{2}{3}x_2 + \frac{2}{3}x_3, \frac{2}{3}x_1 - \frac{1}{3}x_2 + \frac{2}{3}x_3)$$

sunt aplicații ortogonale corespunzătoare respectiv matricelor

$$A = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Teorema 1.94 (Clasificarea transformărilor ortogonale plane). Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(X) = AX$ o transformare ortogonală a spațiului vectorial euclidian standard \mathbb{R}^2 corespunzătoare matricei A.

(i) Dacă det A=1, atunci există $\theta \in [0,2\pi)$ astfel ca

$$A = \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right).$$

(ii) Dacă det A=-1, atunci există $\theta \in [0,2\pi)$ astfel ca

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Observația 1.95 O transformare ortogonală de tipul (i) din teorema 1.94 este o **rotație** de unghi θ . O transformare ortogonală de tipul (ii) este o simetrie cu axa determinată de vectorul $(\cos \frac{\theta}{2}, \sin \frac{\theta}{2})$ și direcția determinată de vectorul $(-\sin \frac{\theta}{2}, \cos \frac{\theta}{2})$.

Teorema 1.96 (Clasificarea transformărilor ortogonale în spaţiu). Fie $f: \mathbb{R}^3 \to \mathbb{R}^3$ o transformare ortogonală a spaţiului vectorial euclidian standard \mathbb{R}^3 corespunzătoare matricei A.

14

(i) Dacă det A=1, atunci există o bază ortonormată $\{b_1,b_2,b_3\}$ a lui \mathbb{R}^3 și $\theta \in [0,2\pi)$ astfel ca

$$f(b_1) = b_1, f(b_2) = (\cos \theta)b_2 + (\sin \theta)b_3, f(b_3) = (-\sin \theta)b_2 + (\cos \theta)b_3.$$

(ii) Dacă det A = -1, atunci există o bază ortonormată $\{b_1, b_2, b_3\}$ a lui \mathbb{R}^3 şi $\theta \in [0, 2\pi)$ astfel ca

$$f(b_1) = -b_1, f(b_2) = (\cos \theta)b_2 + (\sin \theta)b_3, f(b_3) = (-\sin \theta)b_2 + (\cos \theta)b_3.$$

Observația 1.97 O transformare de tipul (i) din teorema 1.96 reprezintă o rotație de unghi θ în planul $L(\{b_2, b_3\})$ în jurul axei $L(\{b_1\})$. O transformare de tipul (ii) reprezintă compunerea dintre o rotație de unghi θ în planul $L(\{b_2, b_3\})$ în jurul axei $L(\{b_1\})$ şi o simetrie de axă $L(\{b_2, b_3\})$ şi direcţie $L(\{b_1\})$.

- **Exercițiul 1.98** În \mathbb{R}^2 considerăm vectorul $b_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$. a) Construiți un vector b_2 astfel ca $\{b_1, b_2\}$ să fie o bază ortonormată. Este soluția unică?
- b) Scrieți explicit simetria de axă $L(\{b_1\})$ și direcție $L(\{b_2\})$ și verificați că este o transformare ortogonală.

- **Exercițiul 1.99** În \mathbb{R}^3 considerăm vectorul $b_1=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$. a) Determinați subspațiul $L(\{b_1\})^{\perp}$ și construiți o bază ortonormată $\{b_2,b_3\}$ a acestuia.
- b) Scrieți explicit rotația de unghi $\frac{\pi}{2}$ facută în planu
l $L(\{b_2,b_3\})$ în jurul axei $L(\{b_1\})$ și verificați că este o transformare ortogonală.

Capitolul 2

Geometrie afină

2.1Combinații afine. Afin (in)dependență

Definiția 2.1 Fie P_1, \ldots, P_q puncte din K^n . O combinație de forma $\alpha_1 P_1$ + $\ldots + \alpha_q P_q$, unde $\alpha_1 + \ldots + \alpha_q = 1$ se numeşte **combinație afină** a punctelor P_1, \ldots, P_q cu ponderile $\alpha_1, \ldots, \alpha_q$. Punctul $P := \alpha_1 P_1 + \ldots + \alpha_q P_q$ se numeşte centru de greutate al punctelor P_1, \ldots, P_q cu ponderile $\alpha_1, \ldots, \alpha_q$.

Exemplul 2.2 (i) Dacă A şi B sunt două puncte din \mathbb{R}^n , atunci punctul M = $\frac{1}{2}A + \frac{1}{2}B$ este o combinație afină a punctelor A și B. Concret, dacă A =(1,2,-1), B=(3,0,-3), avem M=(2,1,-2).

(ii) Punctul G = (0,0,0) este o combinație afină a punctelor A = (1,0,0), $B = (-2, -2, 1), C = (1, 2, -1) \text{ din } \mathbb{R}^3 \text{ cu ponderile } \frac{1}{3}, \frac{1}{3}, \frac{1}{3}.$

Definiția 2.3 Fie $M = \{P_1, \dots, P_q\} \subset K^n$ o mulțime de puncte din K^n . Mulțimea tuturor combinațiilor afine ale punctelor P_1,\dots,P_q se numește aco**perire afină** a mulțimii M și se notează Af(M). Avem

$$Af(M) = \{\alpha_1 P_1 + \ldots + \alpha_q P_q \mid \alpha_1, \ldots, \alpha_q \in K, \alpha_1 + \ldots + \alpha_q = 1\}.$$

Exemplul 2.4 Pentru mulțimea $M = \{(1,0,1),(2,1,-3)\} \subset \mathbb{R}^3$ avem $Af(M) = \{(\alpha + 2\beta, \beta, \alpha - 3\beta) \mid \alpha, \beta \in \mathbb{R}, \alpha + \beta = 1\}.$

Definiția 2.5 Fie $A, B \in K^n$ două puncte. Vectorul determinat de A și B(notat cu \overrightarrow{AB}) este, prin definitie, $\overrightarrow{AB} := B - A \in K^n$.

ATENŢIE! Atunci când lucrăm cu K^n mulţimea vectorilor coincide cu mulțimea punctelor. În funcție de context, trebuie facută distincția între vector și punct.

Exemplul 2.6 (i) Pentru orice punct A avem $\overrightarrow{AA} = 0$.

(ii) Pentru
$$A = (3, 4, -5), B = (6, 2, 1) \in \mathbb{R}^3$$
, avem $\overrightarrow{AB} = (3, -2, 6)$.

Definiția 2.7 Un sistem de puncte $\{P_0, P_1, \dots, P_q\}$ din K^n se numește **afin in**dependent (respectiv afin dependent) dacă și numai dacă sistemul de vectori $\{\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_q}\}$ este liniar independent (respectiv liniar dependent).

Exemplul 2.8 (i) Două puncte sunt afin independente dacă și numai dacă ele sunt distincte.

- (ii) Punctele $A, B, \frac{1}{2}A + \frac{1}{2}B$ sunt a fin dependente. (iii) Punctele (1,2,3), (2,1,1), (1,0,1) din \mathbb{R}^3 sunt a fin independente.

2.2 Repere carteziene

Definiția 2.9 Un reper cartezian $(O; \mathcal{R} = (b_1, \ldots, b_n))$ al spațiului K^n este format dintr-un punct O, numit originea reperului și un reper $\mathcal{R} = (b_1, \ldots, b_n)$ al K-spațiului vectorial K^n .

Exemplul 2.10 (i) **Reperul cartezian canonic** al lui K^n are originea în punctul $(0, \ldots, 0)$, iar reperul corespunzător al lui K^n este cel canonic $\mathcal{R}_0 = (e_1, \ldots, e_n)$.

(ii) În \mathbb{R}^2 considerăm punctul A = (-2, 2) şi vectorii $b_1 = (1, 3)$ şi $b_2 = (2, 5)$. Sistemul $(A; (b_1, b_2))$ este un reper cartezian al lui \mathbb{R}^2 .

Observația 2.11 Fie $(O; \mathcal{R} = (b_1, \dots, b_n))$ un reper cartezian al lui K^n și $P \in K^n$ un punct. Cum (b_1, \dots, b_n) este un reper al K-spațiului vectorial K^n , există și sunt unici scalarii x_1, \dots, x_n astfel ca

$$\overrightarrow{OP} = x_1b_1 + \ldots + x_nb_n$$

(acești scalari reprezintă componentele vectorului \overrightarrow{OP} în reperul \mathcal{R}).

Definiția 2.12 Cu notațiile din observația 2.11, sistemul $(x_1, \ldots, x_n) \in K^n$ reprezintă **coordonatele punctului** P în reperul cartezian dat.

Exemplul 2.13 (i) Coordonatele unui punct $P = (x_1, \ldots, x_n) \dim K^n$ în raport cu reperul cartezian canonic sunt (x_1, \ldots, x_n) .

(ii) În \mathbb{R}^2 considerăm reperul $(A; (b_1, b_2))$, unde A = (-2, 2), $b_1 = (1, 3)$, $b_2 = (2, 5)$ și determinăm coordonatele punctului P = (3, 1) în acest reper.

Vectorul \overrightarrow{AP} este egal cu $\overrightarrow{AP} = P - A = (5, -1)$. Componentele sale în reperul (b_1, b_2) sunt acei scalari α, β pentru care $(5, -1) = \alpha b_1 + \beta b_2$. Suntem conduși la sistemul de ecuații liniare

$$\begin{cases} \alpha + 2\beta = 5 \\ 3\alpha + 5\beta = -1, \end{cases}$$

care admite soluția $\alpha=-27, \beta=16,$ deci coordonatele lui P în reperul cartezian dat sunt (-27,16).

Definiția 2.14 Fie $(O; (b_1, \ldots, b_n))$ un reper cartezian al lui \mathbb{R}^n . Sistemul de axe Ox_1, \ldots, Ox_n asociat este definit prin

$$Ox_i = \{ P \in \mathbb{R}^n \mid \overrightarrow{OP} = \lambda b_i, \lambda \ge 0 \}, \quad \forall i = 1, \dots, n.$$

2.3 Varietăți liniare

2.3.1 Definiție. Ecuațiile varietăților liniare

În cele ce urmează K va fi un corp de caracteristică diferită de 2.

Definiția 2.15 O submulțime $L \subset K^n$ a lui K^n se numește **varietate liniară** dacă pentru orice două puncte $A, B \in L$ avem $Af(\{A, B\}) \subset L$ (i.e. oricare ar fi $A, B \in L$ și $\alpha, \beta \in K$ cu $\alpha + \beta = 1$ avem $\alpha A + \beta B \in L$).

Exemplul 2.16 (i) Multimea vidă și K^n sunt varietăți liniare.

- (ii) Mulțimile formate dintr-un singur punct sunt varietăți liniare.
- (iii) Dacă $A \subset K^n$ este o mulțime finită de puncte, acoperirea sa afină este o varietate liniară.
- (iv) Mulţimea $L = \{x \in \mathbb{R}^3 \, | \, x_1 + x_2 x_3 = 3, \, x_1 + 2x_2 2x_3 = 1 \}$ este varietate liniară.

(v) Mulţimea
$$L = \{x \in \mathbb{R}^3 \mid \begin{cases} x_1 = 1 + s - t \\ x_2 = -2 + t \\ x_3 = 3 + 2s + 2t \end{cases}$$
 este varietate

liniară.

Teorema 2.17 O submulțime a lui K^n este varietate liniară dacă și numai dacă ea coincide cu acoperirea sa afină.

Teorema 2.18 (Descrierea varietăților liniare nevide cu ajutorul subspațiilor vectoriale)

- (i) Fie $P \in K^n$ un punct și $W \subset K^n$ un subspațiu vectorial. Atunci mulțimea $P + W = \{P + w \mid w \in W\}$ este varietate liniară în K^n .
- (ii) Fie L o varietate liniară nevidă în K^n . Atunci există un unic subspațiu W al lui K^n , numit **subspațiul director al lui** L, astfel ca pentru orice $P_0 \in L$ să avem $L = P_0 + W$. Mai mult, oricare ar fi $P_0 \in L$ are loc egalitatea $W = \{\overrightarrow{P_0P} \mid P \in L\}$.

Corolarul 2.19 Fie $P \in K^n$ un punct fixat şi $W \subset K^n$ un subspațiu vectorial al lui K^n . Atunci există o unică varietate liniară care să treacă prin P şi să aibă subspațiul director W.

Definiția 2.20 (i) **Dimensiunea unei varietăți liniare** L este dimensiunea subspațiului său director și este notată cu $\dim_K L$.

(ii) O varietate liniară de dimensiune 1 se numește **dreaptă**. O varietate liniară de dimensiune 2 se numește **plan**. O varietate liniară de dimensiune n-1 din K^n se numește **hiperplan**.

Exemplul 2.21 (i) Dacă $P \in K^n$ este un punct, atunci varietatea liniară $L = \{P\}$ are subspațiul director nul $\{0_{K^n}\}$ și are dimensiunea 0. Varietatea liniară K^n are dimensiunea n.

- (ii) Varietatea liniară descrisă în exemplul 2.16 (iv) este o dreaptă cu subspațiul director $W = \{x \in \mathbb{R}^3 \mid x_1 + x_2 x_3 = 0, x_1 + 2x_2 2x_3 = 0\}.$
- (iii) Varietatea liniară L din exemplul 2.16 (v) este un plan cu subspațiul director $W = \{(s-t, t, 2s+2t) \mid s, t \in \mathbb{R}\}.$

Observaţia 2.22 (Ecuaţii parametrice şi implicite pentru varietăţi liniare)

Această observație generalizează (iv) și (v) din exemplul 2.16.

• Fie $A \in \mathcal{M}_{m,n}(K)$ şi $B \in \mathcal{M}_{m,1}(K)$ matrice cu coeficienți în K. Atunci mulțimea $L = \{X \mid AX = B\}$ a soluțiilor sistemului liniar AX = B formează o varietate liniară a lui K^n . Dacă L este nevidă (i.e. dacă sistemul AX = B este compatibil), atunci subspațiul său director W este dat de mulțimea soluțiilor sistemului liniar omogen asociat $W = \{X \mid AX = 0\}$. Ca și în cazul subspațiilor vectoriale, spunem că varietatea liniară L a fost descrisă printr-o **reprezentare implicită**. Concret, varietatea liniară descrisă în exemplul 2.16 (iv) corespunde

matricelor
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \end{pmatrix}$$
 și $B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

• Fie $S = \{v_1, \dots, v_q\} \subset K^n$ o submulţime liniar independentă şi fie $P \in K^n$ un punct fixat. Atunci

$$L = P + L(S) = \{P + \alpha_1 v_1 + \ldots + \alpha_q v_q \mid \alpha_1, \ldots, \alpha_q \in K\}$$

este o varietate liniară în K^n cu subspațiu director L(S). Spunem că am dat o **reprezentare parametrică a lui** L. Concret, varietatea liniară din exemplul 2.16 (v) corespunde punctului P = (1, -2, 3) și vectorilor $v_1 = (1, 0, 2), v_2 = (-1, 1, 2)$.

- \bullet Pentru orice varietate liniară putem găsi atât reprezentări parametrice, cât și implicite. În general, acestea nu sunt unice.
- Trecerea de la o reprezentare parametrică la o reprezentare implicită se face eliminând parametrii. Concret, varietatea L din exemplul 2.16 (v) are reprezentarea implicită $L = \{x \in \mathbb{R}^3 \mid 2x_1 + 4x_2 x_3 = -9\}.$
- Trecerea de la o reprezentare implicită la una parametrică se face rezolvând sistemul de ecuații care dă reprezentarea implicită; necunoscutele secundare vor deveni parametri. De exemplu, varietatea liniară L din exemplul 2.16 (iv) admite reprezentarea parametrică $W = \{(5, t, 2+t) | t \in \mathbb{R}\}$.

Propoziția 2.23 Fie $M = \{P_0, P_1, \dots, P_q\}$ un sistem de puncte afin independente din K^n . Atunci Af(M) este varietatea liniară care trece prin P_0 și are subspațiul director $L(\{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_q}\})$.

Observatia 2.24

- I. Ecuații ale dreptelor
- Ecuațiile dreptei când se dau un punct și direcția sa

Fie $A = (a_1, \ldots, a_n) \in K^n$ un punct şi $v = (v_1, \ldots, v_n)$ un vector nenul. Dreapta d determinată de A şi având subspațiul director $L(\{v\})$ are ecuațiile parametrice

$$\begin{cases} x_1 = a_1 + tv_1 \\ \dots \\ x_n = a_n + tv_n \end{cases}, t \in K$$

și ecuațiile implicite

$$\frac{x_1 - a_1}{v_1} = \frac{x_2 - a_2}{v_2} = \dots = \frac{x_n - a_n}{v_n}$$

(prin convenție, dacă pentru un indice j avem $v_j = 0$, atunci $x_j - a_j = 0$). Vectorul v se numește **vector director** al dreptei d; pentru orice scalar λ nenul λv este, la rândul său, un vector director al lui d.

• Ecuațiile dreptei determinate de două puncte distincte

Fie $A=(a_1,\ldots,a_n), B=(b_1,\ldots,b_n)$ două puncte distincte (deci afin independente) din K^n . Conform propoziției 2.23 punctele A și B determină o varietate liniară având subspațiul director generat de vectorul \overrightarrow{AB} , deci o dreaptă, notată AB. Cum \overrightarrow{AB} este un vector director al lui AB, ecuațiile parametrice ale acestei drepte sunt

$$\begin{cases} x_1 = a_1 + t(b_1 - a_1) = (1 - t)a_1 + tb_1 \\ \dots \\ x_n = a_n + t(b_n - a_n) = (1 - t)a_n + tb_n \end{cases}, t \in K,$$

iar ecuațiile implicite se scriu sub forma

$$\frac{x_1 - a_1}{b_1 - a_1} = \frac{x_2 - a_2}{b_2 - a_2} = \dots = \frac{x_n - a_n}{b_n - a_n}.$$

Observăm că un punct C este situat pe dreapta AB dacă și numai dacă există $t \in K$ astfel ca C = (1 - t)A + tB, deci dacă și numai dacă vectorii \overrightarrow{AB} și \overrightarrow{AC} sunt liniar dependenți (vezi și secțiunea 2.5).

II. Ecuații ale planelor

• Ecuațiile planului când se dau un punct și subspațiul său director Fie $A=(a_1,\ldots,a_n)\in K^n$ un punct și $v=(v_1,\ldots,v_n), w=(w_1,\ldots,w_n)\in K^n$ doi vectori liniar independenți. Planul π determinat de A și având subspațiul director $L(\{v,w\})$ are ecuațiile parametrice

$$\begin{cases} x_1 = a_1 + tv_1 + sw_1 \\ \dots \\ x_n = a_n + tv_n + sw_n \end{cases}, t, s \in K.$$

• Ecuațiile planului determinat de trei puncte necoliniare

Fie $A = (a_1, \ldots, a_n), B = (b_1, \ldots, b_n), C = (c_1, \ldots, c_n)$ trei puncte necoliniare. Acest fapt este echivalent cu faptul că vectorii $\overrightarrow{AB}, \overrightarrow{AC}$ sunt liniar independenți, deci, conform propoziției 2.23 punctele A, B și C determină o varietate liniară având subspațiul director generat de vectorii $\overrightarrow{AB}, \overrightarrow{AC}$, adică un plan, notat (ABC) și care are ecuațiile parametrice

$$\begin{cases} x_1 = a_1 + t(b_1 - a_1) + s(c_1 - a_1) = (1 - t - s)a_1 + tb_1 + sc_1 \\ \dots \\ x_n = a_n + t(b_n - a_n) + s(c_n - a_n) = (1 - t - s)a_n + tb_n + sc_n \end{cases}, t, s \in K.$$

III. Ecuații ale hiperplanelor

• Ecuatia implicită a hiperplanului

Fie $A=(a_1,\ldots,a_n)\in K^n$ un punct şi v_1,\ldots,v_{n-1} vectori liniar independenți din K^n . Hiperplanul H care trece prin A şi are subspațiul director egal cu $L(\{v_1,\ldots,v_{n-1}\})$ are ecuațiile parametrice

$$\begin{cases} x_1 = a_1 + t_1 v_{11} + t_2 v_{21} + \dots + t_{n-1} v_{n-11} \\ \dots \\ x_n = a_n + t_1 v_{1n} + t_2 v_{2n} + \dots + t_{n-1} v_{n-1n} \end{cases}, t_1, \dots, t_{n-1} \in K.$$

Hiperplanul H are o singură ecuație implicită, care se obține privind ecuațiile de mai sus ca pe un sistem liniar cu necunoscutele t_1, \ldots, t_{n-1} . Acest sistem este compatibil dacă și numai dacă rangul matricei asociate este egal cu rangul matricei extinse, deci dacă și numai dacă determinantul matricei extinse este 0, i.e.

$$\begin{vmatrix} x_1 - a_1 & v_{11} & \dots & v_{n-11} \\ \dots & \dots & \dots & \dots \\ x_n - a_n & v_{1n} & \dots & v_{n-1n} \end{vmatrix} = 0.$$

2.3.2 Fascicole de hiperplane

Definiția 2.25 Fie L o varietate liniară de dimensiune n-2 din K^n . Mulțimea tuturor hiperplanelor care conțin varietatea L se numește fascicol de hiperplane de axă (suport) L.

Observația 2.26 (i) Dacă varietatea L are ecuațiile implicite

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n + \alpha_0 = 0, \quad \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \beta_0 = 0,$$

atunci un hiperplan din L are o ecuație implicită de forma

$$\lambda(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n + a_0) + \mu(\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \beta_0) = 0,$$
cu $\lambda, \mu \in K$.

(ii) Pentru n=2 vorbim de un fascicol de drepte, iar pentru n=3 de un fascicol de plane.

2.3.3 Poziții relative ale varietăților liniare. Paralelism afin

Propoziția 2.27 Fie L_1 și L_2 varietăți liniare în K^n având subspațiile directoare W_1 , respectiv W_2 . Atunci $L_1 \cap L_2$ este varietate liniară. Dacă $L_1 \cap L_2$ este nevidă, atunci subspațiul său director este $W_1 \cap W_2$.

Exemplul 2.28 Fie varietățile $L_1 = \{x \in \mathbb{R}^3 \mid x_1 - x_2 = 3, x_1 - x_3 = 2\},$ $L'_1 = \{x \in \mathbb{R}^3 \mid x_1 - x_2 = 1, x_1 - x_3 = 2\}$ și $L_2 = \{x \in \mathbb{R}^3 \mid 2x_1 - x_2 - x_3 = 5\}.$ Atunci $L_1 \cap L_2 = L_1$ și $L'_1 \cap L_2 = L_1 \cap L'_1 = \emptyset.$

Definiția 2.29 Fie L_1, L_2 varietăți liniare având subspațiile directoare W_1 respectiv W_2 . Spunem că L_1 este **paralelă** cu L_2 și scriem $L_1 || L_2$ dacă $W_1 \subseteq W_2$ sau $W_2 \subseteq W_1$.

Exemplul 2.30 Varietățile liniare L_1, L'_1, L_2 din exemplul 2.28 sunt paralele două câte două.

Observația 2.31 (i) În planul K^2 condiția de paralelism a dreptelor se reduce la paralelismul definit prin coincidență sau neintersecție.

(ii) În spațiul K^3 condiția de paralelism a planelor se reduce la paralelismul definit prin coincidență sau neintersecție, iar condiția de paralelism dintre o dreaptă și un plan se reduce la incluziune sau neintersecție.

Propoziția 2.32 (Postulatul lui Euclid) Fie $P \in K^n$ un punct și $L \subset K^n$ o varietate liniară. Atunci există o unică varietate liniară care conține punctul P, este paralelă cu L și are dimensiunea egală cu cea a lui L.

Exemplul 2.33 În \mathbb{R}^3 considerăm punctul P=(2,-1,4) și varietatea liniară $L=\{x\in\mathbb{R}^3\,|\,x_1-2x_2-2x_3=2\}$. Atunci varietatea liniară L', unde $L'=\{x\in\mathbb{R}^3\,|\,x_1-2x_2-2x_3=-4\}$ conține punctul P, este paralelă cu L și are aceeași dimensiune cu aceasta. În schimb, varietatea liniară $L''=\{x\in\mathbb{R}^3\,|\,x_1-2x_2-2x_3=-4,\,x_1+x_2+x_3=5\}$ conține punctul P și este paralelă cu L, dar nu are aceeași dimensiune cu ea.

Observația 2.34 (Poziția relativă a două varietăți liniare paralele) Fie L_1 și L_2 două varietăți liniare paralele. Atunci $L_1 \cap L_2 = \emptyset$ sau $L_1 \subseteq L_2$ sau $L_2 \subseteq L_3$

Exemplul 2.35 În \mathbb{R}^3 dreptele L_1 și L_2 , cu $L_1 = \{x \in \mathbb{R}^3 \, | \, x_1 = 1, x_2 = 2\}$ și $L_2 = \{x \in \mathbb{R}^3 \, | \, x_1 = 2, x_1 + x_2 + x_3 = 3\}$ au intersecția vidă, dar nu sunt paralele.

Observația 2.36

• Poziția relativă a două drepte din K^n descrise parametric Fie d și d' două drepte având ecuațiile parametrice

$$d: \begin{cases} x_1 = a_1 + tv_1 \\ \dots \\ x_n = a_n + tv_n \end{cases} \quad t \in K; \quad d': \begin{cases} x_1 = a'_1 + t'v'_1 \\ \dots \\ x_n = a'_n + t'v'_n \end{cases} \quad t' \in K.$$

Considerăm matricele

$$A = \begin{pmatrix} v_1 & v_1' \\ \vdots & \vdots \\ v_n & v_n' \end{pmatrix}, \qquad \bar{A} = \begin{pmatrix} v_1 & v_1' & a_1' - a_1 \\ \vdots & \vdots & \vdots \\ v_n & v_n' & a_n' - a_n \end{pmatrix}.$$

Atunci:

- (i) d și d' se intersectează dacă și numai dacă rang $A = \operatorname{rang} \bar{A}$;
- (ii) d şi d' sunt paralele dacă şi numai dacă rang A=1.

Aşadar: dacă rang $A=\operatorname{rang} \bar{A}=1$ cele două drepte coincid, dacă rang $A=1,\operatorname{rang} \bar{A}=2$ cele două drepte sunt paralele dar distincte, dacă rang $A=\operatorname{rang} \bar{A}=2$ cele două drepte se intersectează într-un singur punct, iar dacă rang $A=2,\operatorname{rang} \bar{A}=3$, cele două drepte sunt neconcurente și neparalele (necoplanare).

Concret, dreptele

$$d: \begin{cases} x_1 = 1 + 3t \\ x_2 = -1 - 3t \\ x_3 = 2t \end{cases} \quad t \in \mathbb{R} \qquad d': \begin{cases} x_1 = 2 + 2t' \\ x_2 = 2 \\ x_3 = t' \end{cases} \quad t' \in K$$

sunt concurente în punctul (-2,2,-2), corespunzător valorilor parametrilor t=-1,t'=-2.

• Poziția relativă a două hiperplane din K^n descrise implicit Fie H și H' două hiperplane de ecuații implicite $\alpha_1 x_1 + \ldots + \alpha_n x_n = \alpha_0$, respectiv $\alpha'_1 x_1 + \ldots + \alpha'_n x_n = \alpha'_0$. Considerând matricele

$$A = \begin{pmatrix} \alpha_1 & \dots & \alpha_n \\ \alpha'_1 & \dots & \alpha'_n \end{pmatrix}, \quad \bar{A} = \begin{pmatrix} \alpha_1 & \dots & \alpha_n & \alpha_0 \\ \alpha'_1 & \dots & \alpha'_n & \alpha'_0 \end{pmatrix},$$

avem că:

- (i) H şi H' se intersectează dacă şi numai dacă rang $A = \operatorname{rang} \bar{A}$,
- (ii) H și H' sunt paralele dacă și numai dacă rang A=1.

Așadar: dacă rang $A=\operatorname{rang} \bar{A}=1$ cele două hiperplane coincid, dacă rang A=1, rang $\bar{A}=2$, cele două hiperplane sunt paralele dar distincte, iar dacă rang $A=\operatorname{rang} \bar{A}=2$, cele două hiperplane au ca intersecție o varietate liniară de dimensiune n-2.

Concret, considerăm în \mathbb{R}^3 planele π, π', π'' de ecuații $2x_1 - 3x_2 + x_3 = 1$, $2x_1 - 3x_2 + x_3 = 3$, respectiv $-x_1 + x_2 + 4x_3 = 5$. Atunci π este paralel cu π' , dar distinct de acesta, iar π și π'' sunt concurente, intersecția lor fiind o dreaptă.

• Poziția relativă a două drepte din K^3 descrise implicit Fie d și d' două drepte din K^3 date de ecuațiile implicite:

$$d: \left\{ \begin{array}{l} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \alpha_0 \\ \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0 \end{array} \right. \quad d: \left\{ \begin{array}{l} \alpha_1' x_1 + \alpha_2' x_2 + \alpha_3' x_3 = \alpha_0' \\ \beta_1' x_1 + \beta_2' x_2 + \beta_3' x_3 = \beta_0' \end{array} \right. .$$

22

Formăm matricele

$$A = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \alpha'_1 & \alpha'_2 & \alpha'_3 \\ \beta'_1 & \beta'_2 & \beta'_3 \end{pmatrix}, \qquad \bar{A} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_0 \\ \beta_1 & \beta_2 & \beta_3 & \beta_0 \\ \alpha'_1 & \alpha'_2 & \alpha'_3 & \alpha'_0 \\ \beta'_1 & \beta'_2 & \beta'_3 & \beta'_0 \end{pmatrix}.$$

Cu aceste notatii obtinem următoarea caracterizare:

- (i) $d ext{ si } d'$ au intersecția nevidă dacă şi numai dacă rang $A = \operatorname{rang} \bar{A}$,
- (ii) d și d' sunt paralele dacă și numai dacă rang A=2.

În concluzie, dacă rang $A=\operatorname{rang} \bar{A}=2$, cele două drepte coincid, dacă rang A=2, rang $\bar{A}=3$, cele două drepte sunt paralele dar distincte, dacă rang $A=\operatorname{rang} \bar{A}=3$, cele două drepte sunt concurente într-un singur punct, iar dacă rang A=3, rang $\bar{A}=4$, cele două drepte sunt necoplanare.

De exemplu, dreptele de ecuații $2x_1 - x_2 - 3x_3 = 2$, $3x_1 - 2x_2 + x_3 = 1$, respectiv $x_1 - x_2 + 4x_3 = -1$, $x_1 - x_2 = 2$ sunt concurente în punctul $\left(-\frac{9}{4}, -\frac{17}{4}, -\frac{3}{4}\right)$.

\bullet Poziția relativă dintre o dreaptă descrisă parametric și un hiperplan descris implicit

În K^n considerăm dreapta d având ecuațiile parametrice

$$d: \begin{cases} x_1 = a_1 + tv_1 \\ \dots \\ x_n = a_n + tv_n \end{cases} \quad t \in K$$

şi hiperplanul H de ecuație $\alpha_1 x_1 + \ldots + \alpha_n x_n = \alpha_0$. Atunci d și H sunt paralele dacă și numai dacă $\alpha_1 v_1 + \ldots + \alpha_n v_n = 0$. Condiția ca d și H să aibă intersecția nevidă este ca

$$\operatorname{rang}(\alpha_1 v_1 + \ldots + \alpha_n v_n) = \operatorname{rang}(\alpha_1 v_1 + \ldots + \alpha_n v_n, \alpha_0 - \alpha_1 a_1 - \ldots - \alpha_n a_n).$$

De exemplu, dreapta $\{(2-2t,3-4t,3t)\,|\,t\in\mathbb{R}\}$ este paralelă cu planul de ecuație $2x_1-x_2=3$, dar nu e inclusă în acesta.

2.3.4 Suma a două varietăți liniare

Definiția 2.37 Suma varietăților liniare L_1 și L_2 din K^n , notată $L_1 + L_2$, este acoperirea afină a reuniunii lor: $L_1 + L_2 := Af(L_1 \cup L_2)$.

Propoziția 2.38 (Spațiul director al sumei) Fie L_1 și L_2 două varietăți liniare având subspațiile directoare W_1 , respectiv W_2 . Subspațiul director al sumei $L_1 + L_2$ este egal cu:

- $W_1 + W_2$, dacă $L_1 \cap L_2 \neq \emptyset$,
- $W_1 + W_2 + L(\{O_1O_2\})$, dacă $L_1 \cap L_2 = \emptyset$, unde $O_1 \in L_1, O_2 \in L_2$ sunt arbitrare.

Corolarul 2.39 (Teorema dimensiunii pentru varietăți liniare) Fie L_1, L_2 varietăți liniare în K^n cu subspațiile directoare W_1 , respectiv W_2 . Atunci are loc egalitatea

$$\dim_K(L_1 + L_2) = \begin{cases} \dim_K L_1 + \dim_K L_2 - \dim_K(L_1 \cap L_2), & L_1 \cap L_2 \neq \emptyset \\ \dim_K L_1 + \dim_K L_2 - \dim_K(W_1 \cap W_2) + 1, & L_1 \cap L_2 = \emptyset. \end{cases}$$

Exemplul 2.40 Considerăm punctul P=(2,-1,0) și dreapta d având reprezentarea parametrică $\{(1-2t,2+3t,4-t)\,|\,t\in\mathbb{R}\}$. Atunci P nu aparține lui d, deci intersecția varietăților liniare $\{P\}$ și d este mulțimea vidă. Suma

P+d este un plan, având subspaţiul director generat de vectorii (-2,3,-1) şi $\overrightarrow{PA}=(-1,3,4)$, unde $A=(1,2,4)\in d$. Planul P+d admite reprezentarea parametrică $\{(1-2t-s,2+3t+3s,4-t+4s)\,|\,s,t\in\mathbb{R}\}$ şi reprezentarea implicită $15x_1+9x_2-3x_3=21$.

Exemplul 2.41 În \mathbb{R}^3 considerăm dreptele d_1 , d_2 și d_3 având reprezentările parametrice $\{(1+2t,3-t,1+t) \mid t \in \mathbb{R}\}$, $\{(2+2s,-s,2+s) \mid s \in \mathbb{R}\}$, respectiv $\{(1+u,2+u,2u) \mid u \in \mathbb{R}\}$. Atunci d_1 și d_2 sunt paralele și distincte și suma lor este planul de ecuație $2x_1-x_2-5x_3=-6$, iar d_1 și d_3 sunt concurente în punctul $(\frac{5}{3},\frac{8}{3},\frac{4}{3})$ și suma lor este planul de ecuație $x_1+x_2-x_3=3$.

2.4 Mulţimi convexe

În această secțiune spațiile considerate sunt de forma \mathbb{R}^n (corpul scalarilor este corpul numerelor reale).

Definiția 2.42 Fie $A, B \in \mathbb{R}^n$ puncte (nu neapărat distincte). **Segmentul** închis [AB], respectiv segmentul deschis (AB) sunt definite astfel:

$$[AB] := {\lambda A + (1 - \lambda)B \mid \lambda \in [0, 1]}, (AB) := {\lambda A + (1 - \lambda)B \mid \lambda \in (0, 1)}.$$

Dacă $C \in [AB]$ spunem că C se găsește între A și B sau că C separă punctele A și B. Dacă $C \in (AB)$ spunem că C se găsește strict între A și B.

Definiția 2.43 O mulțime $M \subset \mathbb{R}^n$ se numește **mulțime convexă** dacă pentru orice $A, B \in M$ avem $[AB] \subset M$.

Exemplul 2.44 (i) Spațiul \mathbb{R}^n este o mulțime convexă.

- (ii) Mulţimea vidă şi mulţimile formate dintr-un singur punct sunt mulţimi convexe.
 - (iii) Orice varietate liniară este o mulțime convexă.
- (iv) Mulţimea $S=\{x\in\mathbb{R}^3\,|\,2x_1+x_2-3x_3-4\geq 0\}$ este o mulţime convexă. În general, dacă H este un hiperplan din \mathbb{R}^n dat prin ecuaţia implicită h(x)=0, mulţimile $\{x\in\mathbb{R}^n\,|\,h(x)\leq 0\}$, $\{x\in\mathbb{R}^n\,|\,h(x)\geq 0\}$, precum şi mulţimile $\{x\in\mathbb{R}^n\,|\,h(x)<0\}$ şi $\{x\in\mathbb{R}^n\,|\,h(x)>0\}$ sunt mulţimi convexe (numite semispaţii închise, respectiv deschise determinate de H).

Definiția 2.45 Două puncte distincte A şi B sunt **separate** (**strict**) de către un hiperplan H dacă dreapta AB intersectează hiperplanul H într-un punct situat (strict) între A şi B. Punctele A şi B sunt situate **de aceeași parte** a lui H dacă nu sunt separate de către H.

Propoziția 2.46 Fie H un hiperplan de ecuație implicită h(x) = 0. Două puncte distincte A și B sunt separate strict de către H dacă și numai dacă $h(A) \cdot h(B) < 0$.

Exemplul 2.47 În \mathbb{R}^2 considerăm dreapta d de ecuație implicită h(x) = 0, unde $h(x) = x_1 + 2x_2 - 1$ și punctele A = (1,3), B = (2,-1). Avem h(A) = h(1,3) = 6, h(B) = h(2,-1) = -1, deci A și B sunt separate de către d.

Observația 2.48 (i) Intersecția $\cap_{\alpha \in A} M_{\alpha}$ a unei familii de mulțimi convexe $\{M_{\alpha}\}_{\alpha \in A}$ este o mulțime convexă.

(ii) Fie $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ o aplicație afină. Dacă $X \subset \mathbb{R}^n$, respectiv $Y \subset \mathbb{R}^m$ sunt mulțimi convexe, atunci și $\varphi(X) \subset \mathbb{R}^m$, respectiv $\varphi^{-1}(Y) \subset \mathbb{R}^n$ sunt mulțimi convexe.

Definiția 2.49 Închiderea (înfășurătoarea/acoperirea) convexă a unei mulțimi $M \subset \mathbb{R}^n$ este intersecția tuturor mulțimilor convexe care conțin mulțimea M:

$$\operatorname{conv} M := \bigcap_{X \supset M, X_{\operatorname{convex}\check{\mathbf{a}}}} X.$$

Propoziția 2.50 Fie $M \subset \mathbb{R}^n$ o mulțime. Atunci

$$\operatorname{conv} M = \{ \sum_{i=1}^{q} \lambda_i A_i \mid A_1, \dots, A_q \in M, \, \lambda_1, \dots, \lambda_q > 0, \lambda_1 + \dots + \lambda_q = 1, \, q \in \mathbb{N} \}.$$

Definiția 2.51 (i) O intersecție finită de semispații din \mathbb{R}^n se numește **tronson** sau **poliedru convex**

- (ii) Înfășurătoarea convexă a unei mulțimi finite de puncte din \mathbb{R}^n se numește **politop**.
- (iii) Înfășurătoarea convexă a unei mulțimi formate din n+1 puncte afin independente din \mathbb{R}^n se numește **simplex** n-dimensional.

2.5 Raport

Lema 2.52 Fie A și B două puncte distincte în K^n . Pentru orice punct $P \in AB$, $P \neq B$ există un unic scalar $r \in K \setminus \{-1\}$ astfel ca $\overrightarrow{AP} = r \overrightarrow{PB}$. Reciproc, fiecărui scalar $r \in K \setminus \{-1\}$, îi corespunde un unic punct $P \in AB$.

Definiția 2.53 Scalarul r definit în lema 2.52 se numește **raportul** punctelor A, B, P (sau **raportul** în care punctul P împarte segmentul [AB]) și este notat cu r(A, P, B).

Observația 2.54 În calcularea raportului, <u>ordinea</u> punctelor este esențială. Modul în care este definit această noțiune (mai precis ordinea în care sunt considerate punctele) diferă de la autor la autor.

Propoziția 2.55 Fie A, B, P trei puncte coliniare, cu $P \neq B$. Atunci:

- (i) $P = \frac{1}{r+1}A + \frac{r}{r+1}B$, unde r = r(A, P, B);
- (ii) $P=(1-\alpha)A+\alpha B$ dacă și numai dacă $r(A,P,B)=\frac{\alpha}{1-\alpha};$
- (ii) $P=\frac{\alpha}{\alpha+\beta}A+\frac{\beta}{\alpha+\beta}B$ dacă și numai dacă $r(A,P,B)=\frac{\beta}{\alpha}.$

Observația 2.56 Fie $P \in AB \setminus \{A, B\}$. Atunci:

- (i) r(A, P, B) > 0 dacă și numai dacă $P \in (AB)$;
- (ii) $r(B, P, A) = \frac{1}{r(A, P, B)}$.

Exemplul 2.57 (i) În \mathbb{R}^3 considerăm punctele A = (1,2,3), B = (2,1,-1), C = (0,3,7). Atunci punctele A,B,C sunt coliniare și avem $r(A,C,B) = -\frac{1}{2}, r(B,C,A) = -2, r(C,A,B) = 1, r(C,B,A) = -2.$

(ii) Fie A,B două puncte din \mathbb{R}^n și $M=\frac{1}{2}A+\frac{1}{2}B.$ Atunci r(A,M,B)=1, $r(M,A,B)=-\frac{1}{2}.$

2.6 Aplicații afine

Definiția 2.58 Fie L_1, L_2 varietăți liniare în K^n , respectiv K^m . O funcție $\varphi: L_1 \to L_2$ se numește **aplicație afină (morfism afin)** dacă pentru orice $\alpha, \beta \in K$ cu $\alpha + \beta = 1$ și pentru orice $A, B \in L_1$ are loc egalitatea $\varphi(\alpha A + \beta B) = \alpha \varphi(A) + \beta \varphi(B)$. În cazul când $L_1 = L_2, \varphi$ se numește **endomorfism afin**.

Exemplul 2.59 (i) Funcţia $\varphi : \mathbb{R}^3 \to \mathbb{R}^2$ definită prin formula $\varphi(x_1, x_2, x_3) = (x_1 - x_2 - x_3 + 2, 3x_2 + 5x_3 - 4)$ este o aplicație afină.

(ii) Fie $\varphi: L_1 \to L_2$ aplicație afină și $L'_1 \subset L_1$ o varietate liniară. Atunci restricția lui φ la L'_1 este, la rândul său, o aplicație afină.

Teorema 2.60 (Caracterizarea aplicațiilor afine cu ajutorul urmei) Fie L_1 și L_2 varietăți liniare având subspațiile directoare W_1 , respectiv W_2 și $\varphi: L_1 \to L_2$ o funcție. Următoarele afirmații sunt echivalente:

- (i) φ este aplicație afină.
- (ii) Există un punct $O \in L_1$ cu proprietatea că aplicația $f: W_1 \to W_2$, $f(\overrightarrow{OA}) := \overrightarrow{\varphi(O)\varphi(A)}$, numită **urma** lui φ , este o aplicație liniară.

Observația 2.61 Cu notațiile din teorema 2.60 avem $f(\overrightarrow{PA}) = \varphi(P)\varphi(A)$, oricare ar fi $P \in L_1$.

Observaţia 2.62 (i) O aplicație afină este injectivă (surjectivă) dacă și numai dacă urma sa este injectivă (surjectivă).

(ii) Compunerea a două aplicații afine este o aplicație afină, iar urma compunerii este compunerea urmelor.

Observația 2.63 O aplicație afină φ este complet determinată de urma sa și de o pereche de puncte corespondente $(O, \varphi(O))$.

Propoziția 2.64 Fie $\varphi: K^n \to K^m$ o aplicație afină cu urma $f: K^n \to K^m$ corespunzătoare matricei $A \in \mathcal{M}_{m,n}(K)$ (vezi observația 1.57). Atunci $\varphi(X) = A \cdot X + B$, unde $B = \varphi(0) \in \mathcal{M}_{m,1}(K)$.

Exemplul 2.65 Aplicația afină din exemplul 2.59 (i) corespunde matricelor $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 3 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 \\ -4 \end{pmatrix}.$

Observația 2.66 Aplicațiile afine au următoarele proprietăți:

- transformă varietățile liniare în varietăți liniare; mai mult, subspațiul director al imaginii este imaginea prin aplicația urmă a subspațiului director al varietății liniare transformate;
 - transformă varietăți liniare paralele în varietăți liniare paralele;
 - păstrează raportul a trei puncte coliniare.

2.6.1 Translații

Definiția 2.67 O translație este un endomorfism afin al lui K^n a cărui urmă este identitatea lui K^n .

Observația 2.68 (i) O aplicație $\tau: K^n \to K^n$ este translație dacă și numai dacă există $v \in K^n$ astfel ca $\tau(P) = P + v$ pentru orice $P \in K^n$. Vectorul v se numește **vectorul translației** și pentru orice $P \in K^n$ are loc egalitatea $v = P\tau(P)$.

- (ii) O translație diferită de translația de vector nul (i.e. diferită de aplicația identică) nu admite puncte fixe.
- (iii) Mulțimea translațiilor lui K^n formează un grup (în raport cu compunerea funcțiilor) izomorf cu K^n .

2.6.2 Omotetii

Definiția 2.69 Fie $O \in K^n$ un punct și $\lambda \in K^n \setminus \{0\}$ un scalar nenul. Se numește **omotetie de centru** O și **putere (raport)** λ endomorfismul afin al lui K^n , notat cu H_O^{λ} , cu proprietatea că $H_O^{\lambda}(O) = O$ și $\overrightarrow{OH_O^{\lambda}(P)} = \lambda \overrightarrow{OP}$ pentru orice $P \in K^n$.

Observația 2.70 (i) Avem $H_O^{\lambda}(P) = \lambda P + (1 - \lambda)O$, pentru orice $P \in K^n$.

- (ii) O omotetie de putere diferită de 1 și de centru O admite un unic punct fix, și anume O.
- (iii) Mulțimea omotetiilor de centru fixat formează un grup (în raport cu compunerea funcțiilor) izomorf cu K^* .
- (iv) În general, fie $H_{O_1}^{\lambda_1}, H_{O_2}^{\lambda_2}$ două omotetii. Atunci compunerea $H_{O_2}^{\lambda_2} \circ H_{O_1}^{\lambda_1}$ este egală cu:
 - omotetia $H_O^{\lambda_1\lambda_2}$, unde $O = \frac{\lambda_2(1-\lambda_1)}{1-\lambda_1\lambda_2}O_1 + \frac{1-\lambda_2}{1-\lambda_1\lambda_2}O_2$, pentru $\lambda_1\lambda_2 \neq 1$;
 - translația de vector $(1 \lambda_2)$ $\overrightarrow{O_1O_2}$, pentru $\lambda_1\lambda_2 = 1$.

2.6.3 Proiecții

Definiția 2.71 O **proiecție afină** este un endomorfism afin π având (cel puțin) un punct fix și a cărui urmă este o proiecție vectorială p. Nucleul W al urmei p se numește **direcția proiecției afine** π . Se spune că π **este proiecție pe** Im π **paralelă cu** W.

Observația 2.72 (i) Un endomorfism π este proiecție afină dacă și numai dacă $\pi^2 = \pi$.

(ii) Un endomorfism π al lui K^n este proiecție dacă și numai dacă există un subspațiu vectorial W și o varietate liniară L în K^n cu subspațiu director complementar lui W astfel încât pentru orice punct P, $\pi(P)$ este intersecția dintre L și varietatea liniară de subspațiu director W care trece prin P. În particular, punctele imaginii $\operatorname{Im} \pi$ sunt puncte fixe pentru π .

Exemplul 2.73 Aplicația afină

$$\pi: \mathbb{R}^3 \to \mathbb{R}^3, \quad \pi(x_1, x_2, x_3) = (-x_1 - x_2 - x_3 + 3, 2x_1 + 2x_2 + x_3 - 3, x_3)$$

este o proiecție pe planul de ecuație $2x_1 + x_2 + x_3 - 3 = 0$ cu direcția dată de vectorul (1, -1, 0).

2.6.4 Simetrii

Definiția 2.74 O **simetrie afină** este un endomorfism afin având (cel puțin) un punct fix și a cărui urmă este o simetrie vectorială.

Observația 2.75 (i) Un endomorfism afin σ al lui K^n este simetrie dacă și numai dacă $\sigma^2 = \mathrm{id}_{K^n}$.

(ii) Dacă σ este o simetrie a lui K^n , atunci $\frac{1}{2} \mathrm{id}_{K^n} + \frac{1}{2} \sigma$ este o proiecție. Reciproc, dacă π este o proiecție a lui K^n , atunci $2\pi - \mathrm{id}_{K^n}$ este o simetrie. În consecință, pentru o simetrie putem vorbi de **direcția** simetriei, care este

direcția proiecției asociate, și de **axa** simetriei, care este imaginea proiecției asociate și care coincide cu mulțimea punctelor fixe ale simetriei.

(iii) Un endomorfism afin σ al lui K^n este o simetrie dacă și numai dacă există un subspațiu vectorial W al lui K^n și o varietate liniară L având direcția un complement al lui L astfel încât pentru orice $P \in K^n$ să avem $P\sigma(P) \in W$ și $\frac{1}{2}P + \frac{1}{2}\sigma(P) \in L$.

Exemplul 2.76 În \mathbb{R}^3 considerăm varietatea L de ecuație $x_1 + x_2 + x_3 - 3 = 0$ și vectorul (1,0,1). Simetria de axă L și direcție (1,0,1) este aplicația $\sigma : \mathbb{R}^3 \to \mathbb{R}^3$, $\sigma(x_1,x_2,x_3) = (-x_2 - x_3 + 3, x_2, -x_1 - x_2 + 3)$.

2.7 Exerciţii

Exercițiul 2.77 În planul afin \mathbb{R}^2 considerăm punctele A = (1,2), B = (1,0), C = (2,1) și D = (1,1). Arătați că orice punct P din plan este combinație afină (cu ponderi convenabil alese) a punctelor A, B, C. Rămâne afirmația valabilă pentru sistemul de puncte A, B, D?

Exercițiul 2.78 Studiați independența afină a sistemelor de puncte de mai jos. Scrieți apoi ecuații parametrice și implicite pentru acoperirea lor afină și precizați dimensiunea acesteia.

a)
$$A = (1, 1, 2), B = (1, 3, 1), C = (2, -2, 0) \dim \mathbb{R}^3$$
,
b) $M = (1, 1, 1, 1), N = (2, 1, 3, 0), P = (1, 2, 3, 4), Q = (2, 2, 5, 3) \dim \mathbb{R}^4$.

Exercițiul 2.79 Scrieți ecuații parametrice, indicați subspațiul director și precizați dimensiunea varietăților liniare:

a)
$$L_1 = \{x \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 2, x_1 + x_2 + 2x_3 = 1\};$$

b) $L_2 = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 4\}.$

Exercițiul 2.80 Scrieți ecuații implicite, indicați subspațiul director și precizați dimensiunea varietăților liniare:

a)
$$L_1 = \{x \in \mathbb{R}^3 \mid x = (s - t + 1, s - t + 2, s - 3), s, t \in \mathbb{R}\};$$

b)
$$L_2 = \{x \in \mathbb{R}^3 \mid x = (s+1, s-2, s-3), s \in \mathbb{R}\}.$$

Exercițiul 2.81 Scrieți ecuații parametrice și implicite pentru dreapta care trece prin punctul P = (2,0,4) și are direcția dată de vectorul v = (1,0,-1). Aceeași cerință pentru dreapta determinată de punctele A = (1,-1,2) și B = (3,1,-4).

Exercițiul 2.82 Scrieți ecuații parametrice și implicite pentru planul care trece prin punctul P=(2,0,4) și are subspațiul director generat de vectorii v=(1,0,-1) și w=(1,1,-1).

Exercițiul 2.83 În \mathbb{R}^3 considerăm punctele $A=(0,1,-1),\ B=(1,2,-2)$ și C=(3,1,2). Arătați că A,B,C sunt necoliniare și scrieți ecuații parametrice și implicite pentru planul determinat de ele.

Exercițiul 2.84 Scrieți ecuația implicită a hiperplanului determinat de n puncte afin independente din K^n . Particularizați apoi pentru n=2 și n=3 pentru a obține ecuația dreptei determinată de două puncte distincte din K^2 , respectiv ecuația planului determinat de trei puncte necoliniare din K^3 sub formă de determinant. Concret, arătați că punctele indicate mai jos sunt afin independente și găsiți ecuațiile hiperplanelor determinate de acestea:

- a) $A = (1, 2), B = (3, 4) \dim \mathbb{R}^2$;
- b) $C = (1, 3, 2), D = (1, 0, 2), E = (2, 1, -2) \dim \mathbb{R}^3$;
- c) F = (0, -1, 0, 2), G = (1, 1, -1, 0), H = (1, -1, 2, -1), I = (2, -3, 2, 0) din \mathbb{R}^4 .

Exercițiul 2.85 În \mathbb{R}^3 considerăm dreapta d având reprezentarea parametrică $d = \{(2-2t, 1+t, 3-t) \mid t \in \mathbb{R}\}$. Construiți trei drepte d_1, d_2, d_3 astfel ca d_1 să fie paralelă cu d dar distinctă de aceasta, d_2 să fie concurentă cu d într-un singur punct, iar d_3 și d să fie necoplanare. Scrieți apoi ecuații parametrice și implicite pentru sumele $d+d_1, d+d_2$. Ce se poate spune despre varietatea liniară $d+d_3$?

Exercițiul 2.86 Exprimați poziția relativă a două plane descrise parametric cu ajutorul unor condiții de rang (vezi observația 2.36). Concret, stabiliți poziția relativă a planelor $\pi = \{(2-s-t, 3-s+t, 3s-2t) \mid s,t \in \mathbb{R}\}, \pi' = \{(1-2s, 2+2t, 3+s-5t) \mid s,t \in \mathbb{R}\}$ din \mathbb{R}^3 .

Exercițiul 2.87 Exprimați poziția relativă a dintre o dreaptă și un plan descrise parametric cu ajutorul unor condiții de rang (vezi observația 2.36). Concret, stabiliți poziția relativă a dreptei $d = \{(2-t, 3+4t, 3+3t) | t \in \mathbb{R}\}$ față de planul $\pi = \{(1-s-t, 2+s-2t, 3+s-t) | s, t \in \mathbb{R}\}.$

Exercițiul 2.88 Considerăm dreapta d având reprezentarea implicită $2x_1 - x_2 - x_3 = 3$, $x_2 + 3x_3 = 1$. Construiți trei drepte d_1, d_2, d_3 astfel ca d_1 să fie paralelă cu d dar diferită de aceasta, d_2 să fie concurentă cu d într-un singur punct și d_3 să fie necoplanară cu d. Scrieți apoi ecuații parametrice și implicite pentru sumele $d + d_1, d + d_2$. Cu cine este egală varietatea liniară $d + d_3$?

Exercițiul 2.89 Considerăm planul π având reprezentarea implicită $x_1+x_2+x_3=3$. Construiți trei drepte d_1,d_2,d_3 astfel ca d_1 să fie inclusă în π , d_2 să fie paralelă cu π și neinclusă în acesta, iar d_3 să se intersecteze cu π într-un singur punct. Cine sunt varietățile liniare $\pi+d_1,\pi+d_2,\pi+d_3$?

Exercițiul 2.90 (i) Construiți trei plane în \mathbb{R}^3 care să fie concurente în punctul (1, -1, 2).

(ii) Construiți trei plane în \mathbb{R}^3 care să se intersecteze două câte două astfel ca dreptele de intersecție să fie paralele.

Exercițiul 2.91 În \mathbb{R}^4 considerăm dreptele

$$d: \begin{cases} x_1 = 1 - 2t \\ x_2 = 2 - 3t \\ x_3 = 1 + t \\ x_4 = 2 \end{cases} \quad t \in \mathbb{R}; \qquad d': \begin{cases} x_1 = 2 + s \\ x_2 = 1 - 3s \\ x_3 = -2 - s \\ x_4 = 1 + s \end{cases} \quad s \in \mathbb{R}.$$

Stabiliți care este poziția relativă a celor două drepte și apoi descrieți (folosind, dacă este cazul, atât reprezentări parametrice cât și implicite) intersecția și suma lor.

Exercițiul 2.92 În \mathbb{R}^3 considerăm planele de ecuații $x_1+x_2-x_3-1=0$, $2x_1+x_2+x_3-1=0$, respectiv $\lambda x_1+x_2-3x_3+\mu=0$. Determinați λ și μ astfel ca cele trei plane să aparțină aceluiași fascicol.

Exercițiul 2.93 În \mathbb{R}^3 considerăm punctele $A = (-1, 2, 2), B = (1, -1, 0), C = (\lambda + 1, -4, -2)$. Determinați λ astfel ca punctele A, B și C să fie coliniare și în acest caz calculați rapoartele r(A, B, C), r(C, A, B) și r(C, B, A).

Exercițiul 2.94 Scrieți explicit proiecția pe varietatea liniară L cu direcția dată de subspațiul W, precum și simetria asociată, dacă:

- a) $L = \{x \in \mathbb{R}^3 \mid 3x_1 x_2 x_3 1 = 0\}, W = L(\{(1, 1, 1)\};$ b) $L = \{x \in \mathbb{R}^4 \mid x_1 x_2 = 3, x_3 x_4 = 2\}, W = L(\{(1, 0, 1, 2), (1, 1, 2, 0)\}).$

Exercițiul 2.95 Fie punctele A=(2,1), B=(1,2), C=(2,-1) din \mathbb{R}^2 . Arătați că aceste puncte nu sunt coliniare și stabiliți poziția relativă a punctului D = (3,1) față de triunghiul ABC.

Capitolul 3

Geometrie euclidiană

3.1 Distanțe și unghiuri în spațiul \mathbb{R}^n

În cele ce urmează vom considera spațiul \mathbb{R}^n înzestrat cu produsul scalar standard $\langle x,y\rangle = x_1y_1 + \ldots + x_ny_n$; norma unui vector x este $||x|| = \sqrt{\langle x,x\rangle}$. Definiții și rezultate analoage au loc pentru orice produs scalar pe \mathbb{R}^n ; modificări trebuie făcute doar în formulele în care apare explicit expresia produsului scalar cu care lucrăm.

Definiția 3.1 (i) Fie $A, B \in \mathbb{R}^n$ două puncte. **Distanța** dintre A și B este $d(A, B) := \|\overrightarrow{AB}\|$.

(ii) Fie $d,g\subset\mathbb{R}^n$ două drepte cu vectori directori v, respectiv w. Unghiul dreptelor d și g este unicul număr real $\theta\in[0,\frac{\pi}{2}]$ pentru care este verificată relația

$$\cos \theta = \frac{|\langle v, w \rangle|}{\|v\| \cdot \|w\|}.$$

Observația 3.2 (Inegalitatea triunghiului) Fie $A,B,C\in\mathbb{R}^n$ trei puncte. Are loc inegalitatea triunghiului

$$d(A,B) \le d(A,C) + d(C,B)$$

cu egalitate dacă și numai dacă C este între A și B.

Observația 3.3 Dacă $A = (x_1, \ldots, x_n), B = (y_1, \ldots, y_n),$ atunci avem

$$d(A, B) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}.$$

Definiția 3.4 Fie d o dreaptă de vector director $v = (v_1, \ldots, v_n)$. Cosinusurile unghiurilor făcute de dreaptă cu axele de coordonate

$$\cos \theta_i = \frac{|\langle v, e_i \rangle|}{\|v\| \cdot \|e_i\|} = \frac{v_i}{\sqrt{\sum_{j=1}^n v_j^2}}$$

se numesc **cosinusuri directoare** ale dreptei d.

3.2 Repere carteziene ortonormate

Definiția 3.5 Fie $\mathcal{R} = (O; \mathcal{B})$ un reper cartezian. Dacă reperul \mathcal{B} este un reper ortonormat al spațiului vectorial euclidian \mathbb{R}^n , \mathcal{R} este un reper cartezian ortonormat. Dacă \mathcal{B} este un reper ortonormat drept (strâmb) al spațiului vectorial euclidian \mathbb{R}^n , atunci \mathcal{R} se numește reper cartezian ortonormat drept (strâmb).

Fig. 1. Sisteme de axe în \mathbb{R}^2 asociate unui reper ortonormat drept, respectiv unui reper ortonormat strâmb.

3.3 Perpendicularitatea varietăților liniare

Definiția 3.6 Fie L_1 și L_2 două varietăți liniare având subspațiile directoare W_1 , respectiv W_2 .

- (i) Varietățile L_1 și L_2 se numesc **perpendiculare** dacă $W_1 \perp W_2$.
- (ii) Varietățile L_1 și L_2 se numesc **normale** dacă $W_1^{\perp} = W_2$.

Observația 3.7 Dacă varietățile L_1 și L_2 din \mathbb{R}^n sunt normale, atunci are loc relația dim L_1 + dim L_2 = n și intersecția dintre L_1 și L_2 este exact un punct.

Exemplul 3.8 În \mathbb{R}^3 considerăm dreptele $d_1 = \{1 - 2t, 2 + 3t, 1 - t) | t \in \mathbb{R} \}$, $d_2 = \{2 - s, s, 1 + 5s) | s \in \mathbb{R} \}$ și planul π având ecuația implicită $-2x_1 + 3x_2 - x_3 + 11 = 0$. Dreptele d_1 și d_2 sunt perpendiculare, fără a fi varietăți liniare normale, în schimb dreapta d și planul π sunt varietăți liniare normale, având punctul de intersecție (3, -1, 2).

Observația 3.9 (Condiții de perpendicularitate) Această observație generalizează exemplul 3.8.

 \bullet Condiția de perpendicularitate dintre două drepte descrise parametric

Fie d și d' două drepte având ecuațiile parametrice

$$d: \begin{cases} x_1 = a_1 + tv_1 \\ \dots \\ x_n = a_n + tv_n \end{cases} \quad t \in \mathbb{R}; \quad d': \begin{cases} x_1 = a'_1 + t'v'_1 \\ \dots \\ x_n = a'_n + t'v'_n \end{cases} \quad t' \in \mathbb{R}.$$

Dreptele d și d' sunt perpendiculare dacă și numai dacă $v_1v_1' + \ldots + v_nv_n' = 0$.

• Condiția de perpendicularitate dintre o dreaptă descrisă parametric și un hiperplan descris implicit

Fie d o dreaptă de ecuații parametrice

$$d: \begin{cases} x_1 = a_1 + tv_1 \\ \dots \\ x_n = a_n + tv_n \end{cases} \quad t \in \mathbb{R}$$

și H un hiperplan de ecuație implicită $\alpha_1 x_1 + \ldots + \alpha_n x_n + \alpha_0 = 0$. Dreapta d și hiperplanul H sunt normale dacă și numai dacă

$$\operatorname{rang}\left(\begin{array}{cccc} v_1 & v_2 & \dots & v_n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{array}\right) = 1,$$

deci dacă și numai dacă vectorul $(\alpha_1, \dots, \alpha_n)$ este vector director pentru dreapta d

Propoziția 3.10 Fie $A \in \mathbb{R}^n$ un punct și $L \subset \mathbb{R}^n$ o varietate liniară. Există o unică varietate L' care trece prin P și este normală la L.

Lema 3.11 Fie $A \in \mathbb{R}^n$ un punct şi $H \subset \mathbb{R}^n$ un hiperplan. Fie B punctul în care normala la H prin A intersectează pe H (B este piciorul perpendicularei dusă din A pe H). Atunci

$$d(A, B) = \min\{d(A, C) \mid C \in H\}.$$

Definiția 3.12 Cu notațiile din lema 3.11, d(A, B) se numește **distanța** de la punctul A la hiperplanul H și se notează cu d(A, H).

Observația 3.13 Dacă $A = (a_1, \ldots, a_n)$ și hiperplanul H are ecuația implicită $\alpha_1 x_1 + \ldots + \alpha_n x_n + \alpha_0 = 0$, atunci

$$d(A, H) = \frac{|\alpha_1 a_1 + \ldots + \alpha_n a_n + \alpha_0|}{\sqrt{\alpha_1^2 + \ldots + \alpha_n^2}}.$$

Exemplul 3.14 În \mathbb{R}^4 considerăm punctul A=(1,2,2-1) și hiperplanul H de ecuație $x_1+x_2-x_3-x_4-6=0$. Dreapta d care trece prin A și este normală pe H are reprezentarea parametrică $d=\{(1+t,2+t,2-t,-1-t)\,|\,t\in\mathbb{R}\}$. Punctul de intersecție dintre d și H este B=(2,3,1,-2), iar distanța de la A la H este d(A,B)=2.

3.4 Izometrii

Definiția 3.15 O izometrie este o aplicație $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ cu proprietatea că $d(A,B) = d(\varphi(A),\varphi(B))$ pentru orice $A,B \in \mathbb{R}^n$.

Exemplul 3.16 (i) Translațiile sunt izometrii.

- (ii) Simetriile care au axa perpendiculară pe direcție sunt izometrii.
- (iii) Aplicația $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, $\varphi(x_1, x_2) = (\frac{\sqrt{2}}{2}x_1 \frac{\sqrt{2}}{2}x_2 3, \frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2 + 4)$ este o izometrie a planului euclidian \mathbb{R}^2 .

Teorema 3.17 O aplicație $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ este izometrie dacă și numai dacă φ este aplicație afină cu urma ortogonală (**urma** lui φ este acea aplicație $f: \mathbb{R}^n \to \mathbb{R}^m$ cu proprietatea că $f(\overrightarrow{OP}) = \overrightarrow{\varphi(O)\varphi(P)}$ pentru orice două puncte O și P).

Corolarul 3.18 O izometrie a lui \mathbb{R}^n este o aplicație de forma $\varphi: \mathbb{R}^n \to \mathbb{R}^n$, $\varphi(X) = A \cdot X + B$, cu A matrice ortogonală.

Observația 3.19 (i) O izometrie este o aplicație injectivă (rezultă că, în general, proiecțiile nu sunt izometrii).

(ii) O izometrie aplică varietăți liniare în varietăți liniare de aceeași dimensiune.

- (iii) O izometrie păstrează relația "a fi între".
- (iv) Compunerea a două izometrii este o izometrie.
- (\mathbf{v}) Dacă o izometrie este aplicație inversabilă, atunci inversa ei este tot o izometrie.
- (vi) Pentru fiecare punct $O \in \mathbb{R}^n$, o izometrie a lui \mathbb{R}^n se descompune în mod unic ca produsul dintre o izometrie cu punct fix O și o translație.

3.5 Proiecții centrale

Definiția 3.20 Fie $E \in \mathbb{R}^3$ un punct, $\pi \subset \mathbb{R}^3$ un plan, astfel ca E să nu aparțină lui π și fie π' planul paralel cu π care trece prin E. **Proiecția centrală** (**proiecția perspectivă**) de centru E și plan π este acea aplicație $p: \mathbb{R}^3 \setminus \pi' \to \pi$ care îi asociază unui punct P din spațiu (și care nu îi aparține lui π') intersecția dreptei EP cu planul π .

Observația 3.21 O proiecție centrală <u>nu</u> este o izometrie și <u>nu</u> este o aplicație afină. De asemenea, o proiecție centrală <u>nu</u> este dată de restricția unei aplicații afine la $\mathbb{R}^3 \setminus \pi'$.

Observația 3.22 (Construirea unei proiecții centrale) Presupunem că sunt date observatorul $E(x_1^E, x_2^E, x_3^E)$ precum și sistemul de puncte

$$\mathcal{P} = \{ P_i(x_1^{P_i}, x_2^{P_i}, x_3^{P_i}) \mid i = 1, \dots, N \},\,$$

raportate la reperul cartezian ortonormat drept $(O; \mathcal{B} = (b_1, b_2, b_3))$ având sistemul de axe asociat $Ox_1x_2x_3$. Planul de proiecție va fi ales perpendicular pe dreapta OE.

Pasul 1. Alegerea unei origini convenabile a reperului

În cazul în care originea reperului, O, nu se află în interiorul paralelipipedului minim care conține sistemul de puncte \mathcal{P} , se consideră centrul geometric C al acestui paralelipiped. Coordonatele (x_1^C, x_2^C, x_3^C) ale lui C sunt definite prin formulele

$$x_j^C = \frac{x_j^{\min} + x_j^{\max}}{2}, \quad j = 1, 2, 3,$$

unde $x_j^{\min} = \min_i(x_j^{P_i}), \ x_j^{\max} = \max_i(x_j^{P_i}), \ j=1,2,3$. Apoi se efectuează schimbarea originii reperului din O în C prin efectuarea unei translații de vector \overrightarrow{OC} , deci modificarea coordonatelor după formula $x_j \mapsto x_j - x_j^C \ (i=1,2,3)$. În continuare, C va fi redenumit O, deci coordonatele vor fi considerate în raport cu reperul $(O;\mathcal{B})$.

Pasul 2. Construirea reperului de observare. Exprimarea coordonatelor punctelor în noul reper

Scopul celui de-al doilea pas este de a construi un nou reper, numit reper de observare, având originea în punctul E și axele convenabil alese și de a determina coordonatele punctelor în noul reper. Ideea fundamentală este ca una din axe (spre exemplu cea de-a treia) să aibă ca suport dreapta EO: scopul acestei alegeri va deveni clar mai târziu, în Pasul 3. De asemenea, pentru ca reperul de observare să fie ortonormat, celelalte două axe vor trebui alese într-un mod cât mai convenabil în planul perpendicular pe EO care trece prin E, deci în planul tangent la sfera de centru O și rază $\|OE\|$ în punctul O.

Pentru aceasta, considerăm coordonatele sferice (ρ, φ, θ) ale lui E în raport cu punctul O, unde

• $\rho \in (0, \infty)$ reprezintă distanța de la punctul O la observatorul E;

- $\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ reprezintă **latitudinea** punctului E, cu alte cuvinte, unghiul (orientat) dintre dreapta OE și planul Ox_1x_2 ;
- $\theta \in [0, 2\pi)$ reprezintă **longitudinea** lui E, adică măsura unghiului dintre planele Ox_1x_3 și OEx_3 .

Relația dintre coordonatele carteziene (x_1^E, x_2^E, x_3^E) și cele sferice (ρ, φ, θ) ale lui E este dată de formulele

$$\begin{cases} x_1^E = \rho \cos \varphi \cos \theta \\ x_2^E = \rho \cos \varphi \sin \theta \\ x_3^E = \rho \sin \varphi. \end{cases}$$

Aceste relații permit exprimarea coordonatelor sferice în funcție de cele carteziene: de exemplu, $\rho = \sqrt{\sum_i (x_i^E)^2}$. Alternativ, ca date de intrare, pot fi introduse coordonatele sferice ale lui E în loc de coordonatele carteziene.

În acest moment poate fi construit reperul de observare $(E; \mathcal{U} = (u_1, u_2, u_3))$: originea sa este punctul E, vectorii u_1 , respectiv u_2 , sunt versorii vectorilor tangenți la cercul paralel, respectiv la meridianul prin E de pe sfera de centru O și rază ρ , în timp ce vectorul u_3 este versorul lui \overrightarrow{EO} . Determinăm în continuare relațiile dintre vectorii reperului \mathcal{B} și cei ai reperului \mathcal{U} . Cercul paralel și cercul meridian prin E de pe sfera menționată sunt curbele parametrizate (în raport cu reperul $Ox_1x_2x_3$)

$$c_p(t) = (\rho \cos \varphi \cos t, \rho \cos \varphi \sin t, \rho \sin \varphi),$$

$$c_m(t) = (\rho \cos t \cos \theta, \rho \cos t \sin \theta, \rho \sin t),$$

iar vectorii tangenți la aceste două curbe în punctul $c(\theta) = E$ sunt

$$\begin{split} c_p'(\theta) &= (-\rho\cos\varphi\sin\theta, \rho\cos\varphi\cos\theta, 0),\\ c_m'(\varphi) &= (-\rho\sin\varphi\cos\theta, -\rho\sin\varphi\sin\theta, \rho\cos\varphi). \end{split}$$

Vectorul \overrightarrow{OE} are, în reperul \mathcal{B} , componentele $(\rho \cos \varphi \cos \theta, \rho \cos \varphi \sin \theta, \rho \sin \varphi)$. Aceste considerații arată că, în reperul \mathcal{B} , vectorii u_1, u_2, u_3 au componentele:

$$u_1 = (-\sin\theta, \cos\theta, 0)$$

$$u_2 = (-\sin\varphi\cos\theta, -\sin\varphi\sin\theta, \cos\varphi)$$

$$u_3 = (-\cos\varphi\cos\theta, -\cos\varphi\sin\theta, -\sin\varphi),$$

cu alte cuvinte,

$$\begin{aligned} u_1 &= -\sin\theta \, b_1 + \cos\theta \, b_2 \\ u_2 &= -\sin\varphi \cos\theta \, b_1 - \sin\varphi \sin\theta \, b_2 + \cos\varphi \, b_3 \\ u_3 &= -\cos\varphi \cos\theta \, b_1 - \cos\varphi \sin\theta \, b_2 - \sin\varphi \, b_3, \end{aligned}$$

deci matricea de trecere de la reperul \mathcal{B} la reperul \mathcal{U} este

$$\mathcal{M}_{\mathcal{B}\mathcal{U}} = \begin{pmatrix} -\sin\theta & -\sin\varphi\cos\theta & -\cos\varphi\cos\theta \\ \cos\theta & -\sin\varphi\sin\theta & -\cos\varphi\sin\theta \\ 0 & \cos\varphi & -\sin\varphi \end{pmatrix}.$$

Se observă că $\mathcal{M}_{\mathcal{B}\mathcal{U}}$ este o matrice ortogonală cu determinantul egal cu -1, ceea ce arată că reperul \mathcal{U} este un reper ortonormat strâmb. Relația dintre componentele unui vector v în cele două repere \mathcal{B} , respectiv \mathcal{U} , se obține din șirul de egalități

$$(v)_{\mathcal{U}} = \mathcal{M}_{\mathcal{U}\mathcal{B}} \cdot (v)_{\mathcal{B}} = \mathcal{M}_{\mathcal{B}\mathcal{U}}^{-1} \cdot (v)_{\mathcal{B}} = \mathcal{M}_{\mathcal{B}\mathcal{U}}^{t} \cdot (v)_{\mathcal{B}}.$$
(3.1)

Fie acum P un punct arbitrar din spaţiu, având coordonatele (x_1, x_2, x_3) în reperul $(O; \mathcal{B})$, respectiv (y_1, y_2, y_3) în reperul $(E; \mathcal{U})$. Relaţia dintre ele o obţinem în două etape:

-în prima etapă schimbăm doar originea reperului, determinând coordonatele lui Pîn reperul $(E;\mathcal{B})$:

$$x_i' = x_i - x_i^E, i = 1, 2, 3;$$
 (3.2)

— în cea de-a doua etapă determinăm coordonatele (y_1,y_2,y_3) ale lui P în reperul $(E;\mathcal{U})$ prin relația

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \mathcal{M}_{\mathcal{B}\mathcal{U}}^t \cdot \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix}. \tag{3.3}$$

Această formulă se bazează pe egalitățile (3.1) și pe faptul că, prin definiție, coordonatele lui P în reperul $(E;\mathcal{U})$ (respectiv $(E;\mathcal{B})$) sunt componentele vectorului \overrightarrow{EP} în reperul \mathcal{U} (respectiv \mathcal{B}).

Relația (3.3) permite determinarea coordonatelor punctelor din sistemul $\mathcal P$ în reperul de observare.

Pasul 3. Realizarea proiecției pe planul π

Planul π pe care se realizează proiecția este considerat perpendicular pe dreapta OE, astfel ca O și E să fie de o parte și de alta a sa. Această alegere a lui π este în concordanță cu faptul că observatorul E "privește" în direcția lui O, care este situat în interiorul paralelipipedului minim determinat de sistemul de puncte \mathcal{P} , deci observatorul "vizualizează" sistemul de puncte \mathcal{P} . Notăm cu d distanța de la punctul E la planul π . În reperul cartezian $(E;\mathcal{U})$, planul π , fiind perpendicular pe axa Ey_3 , are ecuația $y_3 = d$, iar planul π' care trece prin E și este paralel cu π are ecuația $y_3 = 0$.

Fie $P \in \mathbb{R}^3 \setminus \pi'$ un punct care, în reperul $(E; \mathcal{U})$, are coordonatele (y_1, y_2, y_3) . Proiecția centrală a lui P este punctul P' aflat la intersecția dreptei PE cu planul π . Coordonatele sale sunt

$$\left(\frac{y_1}{y_3}d, \frac{y_2}{y_3}d, d\right). \tag{3.4}$$

În final, introducem în planul π sistemul de coordonate $E'y_1'y_2'$. Acesta este obținut proiectând pe planul π , de-a lungul dreptei OE (deci ortogonal), reperul $Ey_1y_2y_3$. În acest reper, coordonatele lui P' sunt

$$\left(\frac{y_1}{y_3}d, \frac{y_2}{y_3}d\right). \tag{3.5}$$

Fig. 2. Sistemele de coordonate $Ox_1x_2x_3$, $Ey_1y_2y_3$ şi $E'y_1'y_2'$. Punctul P' este proiecţia centrală a punctului P pe planul π .

Exemplul 3.23 Considerăm un sistem de 8 puncte care în reperul ortonormat inițial $Ox_1x_2x_3$ au coordonatele

$$P_1(1,1,1), P_2(-1,1,1), P_3(-1,-1,1), P_4(1,-1,1),$$

 $P_5(1,1,-1), P_6(-1,1,-1), P_7(-1,-1,-1), P_8(1,-1,-1)$

şi care reprezintă vârfurile unui cub având centrul în punctul O şi feţele paralele cu planele de coordonate. Considerăm că observatorul E are în acest reper coordonatele sferice $\rho=5, \varphi=0, \theta=\frac{\pi}{2},$ ceea ce înseamnă că E are coordonatele carteziene $x_1^E=0, x_2^E=5, x_3^E=0;$ în particular punctul E este situat pe axa Ox_2 . De asemenea, vom lua d=3, cu alte cuvinte π este planul de ecuație $x_2=2$ (este perpendicular pe dreapta OE şi este situat între O şi E, la distanţa de 3 unități de observatorul E). Cum în acest caz centrul paralelipipedului minim coincide cu originea sistemului de coordonate, nu mai este necesar să efectuăm translaţia de la pasul 1 şi trecem direct la pasul 2. Folosind notaţiile de mai înainte, avem

$$\mathcal{M}_{\mathcal{B}\mathcal{U}} = \left(egin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}
ight), \quad \mathcal{M}_{\mathcal{B}\mathcal{U}}^t = \left(egin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}
ight).$$

Coordonatele celor opt puncte în reperul $(E; \mathcal{B})$, bazate pe formulele (3.2), sunt respectiv:

$$P_1(1, -4, 1), P_2(-1, -4, 1), P_3(-1, -6, 1), P_4(1, -6, 1),$$

 $P_5(1, -4, -1), P_6(-1, -4, -1), P_7(-1, -6, -1), P_8(1, -6, -1),$

iar coordonatele în reperul $(E;\mathcal{U})$, date de formulele (3.3), sunt

$$P_1(-1,1,4), P_2(1,1,4), P_3(1,1,6), P_4(-1,1,6),$$

$$P_5(-1,-1,4), P_6(1,-1,4), P_7(1,-1,6), P_8(-1,-1,6).$$

În continuare, utilizând relațiile (3.4) și (3.5), se obțin coordonatele punctelor de proiecție în sistemul de coordonate $E'y'_1y'_2$ din planul π

$$P_1'\left(-\frac{3}{4},\frac{3}{4}\right),\ P_2'\left(\frac{3}{4},\frac{3}{4}\right),\ P_3'\left(\frac{1}{2},\frac{1}{2}\right),\ P_4'\left(-\frac{1}{2},\frac{1}{2}\right),$$

$$P_5'\left(-\frac{3}{4},-\frac{3}{4}\right),\ P_6'\left(\frac{3}{4},-\frac{3}{4}\right),\ P_7'\left(\frac{1}{2},-\frac{1}{2}\right),\ P_8'\left(-\frac{1}{2},-\frac{1}{2}\right).$$

Cum planul de proiecție a fost ales paralel cu fețele $P_1P_2P_6P_5$, respectiv $P_4P_3P_7P_8$, ne așteptăm ca proiecțiile acestor fețe să fie tot pătrate (acest fapt nu rămâne valabil pentru o configurație arbitrară!). Într-adevăr, punctele P_1', P_2', P_6', P_5' , (reprezentând proiecțiile punctelor situate pe fața mai apropiată de observator) determină un pătrat cu latura de $\frac{3}{2}$ în planul π , în vreme ce P_4', P_3', P_7', P_8' determină un pătrat cu latura 1 în acest plan.

3.6 Exerciții

Exercițiul 3.24 Cum poate fi definit unghiul dintre o dreaptă și un plan din \mathbb{R}^3 ? Care este condiția de perpendicularitate dintre două plane descrise implicit?

Exercițiul 3.25 Determinați o dreaptă care trece prin punctul P = (2, 1, 1) și face cu axa Ox_1 un unghi de $\frac{\pi}{4}$. Este soluția unică?

Exercițiul 3.26 În \mathbb{R}^3 considerăm punctul A=(1,3,2), dreapta d având reprezentarea parametrică $d=\{(1-t,2+t,-1-t)\,|\,t\in\mathbb{R}\}$ și planul H determinat de d și de punctul P=(1,1,1). Scrieți ecuațiile varietăților care trec prin A și sunt normale la d, respectiv la H.

Exercițiul 3.27 Determinați distanța de la A = (1, -1, 0) la planul determinat de punctele P = (1, 1, 1), Q = (1, 2, 0), R = (0, 2, 1).

Exercițiul 3.28 În \mathbb{R}^3 considerăm dreptele $d = \{(1+s, 2-2s, 1+s) \mid s \in \mathbb{R}\}$, $g = \{(1-2t, t, 3+t) \mid t \in \mathbb{R}\}$. Arătați că dreptele d și g sunt necoplanare și scrieți ecuațiile perpendicularei lor comune.

Exercițiul 3.29 Fie P = (-1, 0, 1) și H planul de ecuație $x_1 + x_2 + x_3 - 1 = 0$.

- a) Determinați ecuațiile dreaptei d care trece prin P normală la H.
- b) Scrieți explicit ecuațiile proiecției făcute pe H paralel cu d și ale simetriei asociate.

Exercițiul 3.30 Determinați punctele B și C din planul euclidian \mathbb{R}^2 astfel ca ABC să fie un triunghi echilateral cu centrul de greutate O=(0,0), unde $A=(0,\sqrt{3})$ și determinați toate izometriile planului care lasă triunghiul ABC invariant.

Exercițiul 3.31 În planul \mathbb{R}^2 considerăm punctele A=(1,0), B=(0,1), C=(-1,0), D=(0,-1). Arătați că ABCD este un pătrat și determinați izometriile planului care lasă acest pătrat invariant.

Capitolul 4

Conice

Definiția 4.1 O conică (în \mathbb{R}^2) este o mulțime de puncte ale căror coordonate (x_1, x_2) verifică o ecuație de forma

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 + 2a_{13}x_1 + 2a_{23}x_2 + a_{33} = 0, (4.1)$$

unde $(a_{ij})_{i,j}$ sunt coeficienți reali astfel ca $(a_{11}, a_{12}, a_{22}) \neq (0, 0, 0)$.

Definiția 4.2 Pentru conica descrisă de ecuația (4.1) vom nota

$$a = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, \qquad A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}.$$

Matricea a se numește matricea conicei, iar matricea A se numește matricea extinsă a conicei. Vom folosi, de asemenea, următoarele notații:

$$\delta := \det a, \quad \Delta := \det A, \quad r := \operatorname{rang} a, \quad R := \operatorname{rang} A.$$

Exemplul 4.3 (i)
$$\frac{x_1^2}{9} + \frac{x_2^2}{25} - 1 = 0$$
. Avem $\delta = \frac{1}{225}$, $\Delta = -\frac{1}{225}$, $r = 2$, $R = 3$. (ii) $2x_1^2 + 8x_1x_2 + 10x_2^2 - 2x_1 + 2x_2 - 5 = 0$. Avem $\delta = 12$, $\Delta = -\frac{1}{225}$

(ii)
$$2x_1^2 + 8x_1x_2 + 10x_2^2 - 2x_1 + 2x_2 - 5 = 0$$
. Avem $\delta = 12$, $\Delta = -140$, $r = 2$, $R = 3$.

(iii)
$$x_1^2 - 2x_1x_2 - x_2^2 + 4x_1 - 4 = 0$$
. Avem $\delta = -2$, $\Delta = 12$, $r = 2$, $R = 3$.

(iv)
$$x_2^2 - 6x_1 = 0$$
. Avem $\delta = 0$, $\Delta = -9$, $r = 1$, $R = 3$.

(v)
$$x_1^2 + 2x_1x_2 + x_2^2 - 4 = 0$$
. Avem $\delta = 0$, $\Delta = 0$, $r = 1$, $R = 2$.

Definiția 4.4 Un punct $P_0 \in \mathbb{R}^2$ se numește **centru** al unei conice dacă simetria de centru P_0 invariază conica, i.e. dacă pentru orice punct P al conicei rezultă că $2P_0 - P$ (simetricul lui P față de P_0) este, la rândul său, un punct al

Propoziția 4.5 Un punct $P_O = (x_{10}, x_{20})$ este centru al conicei dacă și numai dacă perechea (x_{10}, x_{20}) este soluție a sistemului

$$\begin{cases} a_{11}x_{10} + a_{12}x_{20} + a_{13} = 0 \\ a_{21}x_{10} + a_{22}x_{20} + a_{23} = 0. \end{cases}$$

Corolarul 4.6 (i) Mulțimea centrelor unei conice formează o varietate liniară (mulţimea vidă, un punct sau o dreaptă).

(ii) O conică are centru unic dacă și numai dacă $\delta \neq 0$.

Definiția 4.7 O conică se numește **nedegenerată** dacă $\Delta \neq 0$. În cazul în care $\Delta = 0$, conica se numește **degenerată**.

Propoziția 4.8 (Clasificarea afină a conicelor)

- (i) Numerele δ,Δ,r și R asociate unei ecuații de forma (4.1) nu se modifică în urma unei schimbări afine de coordonate.
- (ii) Printr-o schimbare de coordonate convenabil aleasă și înmulțind, eventual, ecuația obținută cu o constantă, orice ecuație de forma (4.1) poate fi adusă la una din formele de mai jos:

R	r	Forma canonică afină a conicei	Denumire
3	2	$x_1^2 + x_2^2 - 1 = 0$	Elipsă
		$x_1^2 - x_2^2 - 1 = 0$	Hiperbolă
		$-x_1^2 - x_2^2 - 1 = 0$	Elipsă vidă
3	1	$x_1^2 - 2x_2 = 0$	Parabolă
2	2	$x_1^2 + x_2^2 = 0$	Punct dublu
		$x_1^2 - x_2^2 = 0$	Pereche de drepte secante
2	1	$x_1^2 - 1 = 0$	Pereche de drepte paralele
		$-x_1^2 - 1 = 0$	Pereche de drepte vidă
1	1	$x_1^2 = 0$	Dreaptă dublă

Anexa A

Proiecte

1. (Baze)

Input: $n \in \mathbb{N}$ (n = 2, 3), vectori $v_1, \ldots, v_n, w \in \mathbb{R}^n$.

Output: -Stabilește dacă $\{v_1, \ldots, v_n\}$ este o bază lui \mathbb{R}^n și în caz afirmativ scrie vectorul w ca o combinație liniară a vectorilor v_1, \ldots, v_n .

-Pentru n=2 reprezentare grafică.

2. (Repere în \mathbb{R}^2)

Input: vectori $b_1, b_2, v_1, v_2, w \in \mathbb{R}^2$.

Output: -Stabileşte dacă $\{b_1,b_2\}$, respectiv $\{v_1,v_2\}$ sunt baze ale lui \mathbb{R}^2 . În caz afirmativ, precizează dacă reperele (b_1,b_2) şi (v_1,v_2) sunt la fel orientate sau nu şi scrie componentele vectorului w în cele două repere.

-Reprezentare grafică.

3. (Subspaţii vectoriale)

Input: $n \in \mathbb{N}$ (n = 2; 3), un subspațiu vectorial W al lui \mathbb{R}^n dat sub formă parametrică.

Output: -Scrie ecuații implicite pentru W.

-Pentru n=2 reprezentare grafică.

4. (Sumă directă)

Input: Subspații vectoriale W_1, W_2 ale lui \mathbb{R}^2 (unul parametric, celălalt implicit), un vector $w \in \mathbb{R}^2$.

Output: -Stabileşte dacă $\mathbb{R}^2 = W_1 \oplus W_2$ şi în caz afirmativ scrie vectorul w ca suma dintre un vector din W_1 şi unul din W_2 .

-Reprezentare grafică.

5. (Aplicații liniare)

Input: $n \in \mathbb{N}$ (n = 2; 3), o aplicație liniară $f : \mathbb{R}^n \to \mathbb{R}^n$, vectori $v_1, v_2 \in \mathbb{R}^n$.

Output: -Calculează $\dim_{\mathbb{R}} \operatorname{Ker} f$, $\dim_{\mathbb{R}} \operatorname{Im} f$ şi vectorii $f(v_1), f(v_2)$, precizând dacă sunt liniar independenți sau nu.

-Pentru n=2 reprezentare grafică.

6. (Proiecții)

Input: Subspații vectoriale W_1, W_2 ale lui \mathbb{R}^2 .

Output: -Stabileşte dacă $\mathbb{R}^2 = W_1 \oplus W_2$ şi în caz afirmativ determină proiecția pe W_1 de-a lungul lui W_2 .

-Reprezentare grafică.

7. (Drepte distincte determinate de q puncte)

Input: $n, q \in \mathbb{N}$ (n = 2; 3), puncte $P_1, \ldots, P_q \in \mathbb{R}^n$.

Output: -Stabilește câte drepte distincte formează aceste puncte.

-Pentru n=2 scrie ecuațiile acestor drepte și realizează o reprezentare grafică.

8. (Reper cartezian)

Input: $n \ (n=2;3)$, puncte $O, P \in \mathbb{R}^n$, vectori $b_1, b_2, \ldots, b_n \in \mathbb{R}^n$.

Output: Stabilește dacă b_1, \ldots, b_n sunt liniar independenți și în caz afirmativ determină cooordonatele punctului P în reperul cartezian $(O; (b_1, \ldots, b_n))$.
-Pentru n=2 reprezentare grafică.

9. (Varietăți liniare)

Input: $n \in \mathbb{N}$ (n = 2; 3), o varietate liniară L din \mathbb{R}^n descrisă prin ecuații implicite.

Output: -Scrie ecuații parametrice pentru L.

-Pentru n=2 reprezentare grafică.

10. (Suma unor varietăți liniare)

Input: $n \in \mathbb{N}$ (n = 2; 3), varietăți liniare L_1, L_2 ale lui \mathbb{R}^n .

Output: -Calculează dimensiunile varietăților liniare $L_1, L_2, L_1 \cap L_2, L_1 + L_2$ și precizează dacă $\mathbb{R}^n = L_1 + L_2$.

-Pentru n=2 reprezentare grafică.

11. (Poziție relativă a unor drepte)

Input: $n \in \mathbb{N}$ (n = 2, 3), două drepte din \mathbb{R}^n .

Output: -Stabilește poziția relativă a celor două drepte. În cazul în care se intersectează determină punctul de intersecție.

-Pentru n=2 reprezentare grafică.

12. (Poziția relativă a unei drepte față de un triunghi)

Input: O dreaptă și vârfurile unui triunghi din \mathbb{R}^2 .

Output: -Precizează poziția relativă a dreptei față de triunghi.

-Reprezentare grafică.

13. (Poziția relativă a două triunghiuri)

Input: Vârfurile a două triunghiuri din \mathbb{R}^2 .

Output: -Precizează dacă interioarele celor două triunghiuri au intersecția nevidă, în caz afirmativ specificând dacă unul dintre ele este inclus în interiorul celuilalt.

-Reprezentare grafică.

14. (Acoperire convexă și poligon)

Input: Patru puncte din planul \mathbb{R}^2 .

Output: Desenează frontiera acoperirii convexe a celor patru puncte precum și poligonul (poligoanele, dacă este cazul) determinat(e) de acestea.

15. (Paralelipiped minim / Minmax box)

Input: $n, q \in \mathbb{N}$ (n = 2; 3), o mulţime de puncte $\mathcal{P} = \{P_1, \dots, P_q\}$ din \mathbb{R}^n ; un punct $Q \in \mathbb{R}^n$.

Output: -Coordonatele vârfurilor paralelipipedului minim determinat de sistemul de puncte \mathcal{P} .

-Decide dacă Q este situat în interiorul, pe frontiera sau în exteriorul acestui paralelipiped minim.

-Pentru n=2 reprezentare grafică.

16. (Ordinea a patru puncte coliniare)

Input: $n \ (n=2;3)$, patru puncte din \mathbb{R}^n .

Output: -Stabilește dacă cele patru puncte sunt coliniare. În caz afirmativ indică ordinea lor pe dreapta pe care sunt situate.

-Pentru n=2 reprezentare grafică.

17. (Imaginea unei drepte printr-o aplicație afină)

Input: O aplicație afină f a lui \mathbb{R}^2 , o dreaptă d din \mathbb{R}^2 .

Output: Determină imaginea lui d prin f și reprezintă grafic, atât pe d cât și pe f(d).

18. (Transformări afine)

Input: Cinci puncte O, A, B, A', B' din \mathbb{R}^2 .

Output: -Stabilește dacă există o transformare afină f astfel ca $f(\Delta OAB) = \Delta OA'B'$. În caz afirmativ, scrie explicit aplicația f.

-Reprezentare grafică.

19. (Proiecţia unor puncte)

Input: Un plan π , o dreaptă d, trei puncte A, B, C din \mathbb{R}^3 .

Output: Calculează p(A), p(B), p(C), unde p este proiecția făcută pe π paralel cu d și reprezintă grafic aceste trei puncte (în planul π).

20. (Proiecţia unor drepte)

Input: Un plan π , trei drepte d, d_1 , d_2 din \mathbb{R}^3 .

Output: Stabilește natura și poziția relativă a varietăților liniare $p(d_1)$ și $p(d_2)$, unde p este proiecția făcută pe π paralel cu d și le reprezintă grafic (în planul π).

21. (Simetrii)

Input: Două drepte d_1, d_2 și trei puncte A, B, C din planul \mathbb{R}^2 .

Output: -Determină punctele s(A), s(B), s(C), unde s este simetria de axă d_1 și direcție d_2 .

-Reprezentare grafică.

Bibliografie

- [1] N. Abramescu, Geometrie analitică, Editura Universității București, 1944.
- [2] L. Bădescu, Lecții de Geometrie, Editura Universității București, 2000.
- [3] M. Craioveanu și I. D. Albu, Geometrie afină și euclidiană, Editura Facla, Timișoara, 1982.
- [4] V. Cruceanu, Elemente de algebră liniară și geometrie, Editura Didactică și Pedagogică, București, 1973.
- [5] Gh. Galbură şi F. Radó, Geometrie, Editura Didactică şi Pedagogică, Bucureşti, 1979.
- [6] R. Miron, Geometrie analitică, Editura Didactică şi Pedagogică, Bucureşti, 1976.
- [7] L. Ornea și A. Turtoi, *O introducere în geometrie*, Editura Theta, București, 2000.
- [8] E. Petrişor, Modelare geometrică algoritmică, Ed. Tehnică, Bucureşti, 2001.
- [9] I. P. Popescu, Geometrie afină și euclidiană, Editura Facla, Timișoara, 1984
- [10] I. D. Teodorescu, Geometrie analitică şi elemente de algebră liniară, Culegere de probleme, Editura Didactică şi Pedagogică, Bucureşti, 1971.
- [11] A. Turtoi şi D.M. Petroşanu, Elemente de geometrie, Editura Fair Partners, Bucureşti, 2006.
- [12] C. Udrişte, Probleme de algebră liniară, geometrie analitică și diferențială, Editura Didactică și Pedagogică, București, 1973.
- [13] Gh. Vrănceanu, Geometrie analitică, proiectivă și diferențială, Editura Didactică și Pedagogică, București, 1974.