Lecture 14: August 1, 2022 - Z-score, t-test, and Anova

Hypothesis tests

 X^2 (from Friday) and t-test (today) are simple enough to work out with a calculator, so a small data version of one or the other or both is likely to be on the final

- Friday
- + \$X^2\$ (Chi-squared) test
- + For categorical variables
- + aka as cross-tabs because of the format
- + worked through a \$X^2\$ test problem together
- + This is on Problem Set 5 and final
- Today
- + Concepts of Z-score, t-test, and ANOVA
- + Where each one is appropriate
- + Brief discussion of the formulas for all three
- + We will work through a paired sample t-test together as our second example of hypothes:
- + Paired t-test is on Problem Set 5 and final

Hypothesis test uses

- z-score: continuous, normally distributed variables
- ANOVA (Analysis of Variance)
- Lots of others!

Hypothesis test uses

- - + X^2 test of goodness of fit tells whether the sample data is representative of the
 - + X^2 test of indendependence (we dit this) tells us if two categorical variables are

- t-test: compares the means of two groups
 - + pairwise comparison
 - + one sample: comparing one group against a standard value
 - + two-sample or independent t-test: compares two groups from different populations
 - + paired t-test: compares a single group as in before and after comparison
 - + Two tailed test: tells if they are different, either greater or less
 - + One tailed test: tells if one group is specifically greater or less, bot not either
 - + *degrees of freedom* is *n 1*
 - + When t-test degrees of freedom \$>\$ 30, it converges on the z-score

- z-score: continuous, normally distributed variables
 - + Continuous variables
 - + normal distribution
 - + known population standard deviation
 - + "known" ~ accepted estimate
 - + Central Limit Theorem can get us to normal
 - + Use if: if the population standard deviation is known and sample size > 30

- ANOVA (Analysis of Variance)
 - + tests difference of means between 3 or more indendepnt groups $% \left(1\right) =\left(1\right) \left(1\right) \left($
 - + This is often used to test removing variables one at a time from a multi-variable mode.
 - + Uses the *F-test*
 - + The same F-test in regression results model fit

Deeper look at t-tests