hw2

2nd: 3.1-2, 3.1-4; 3.2-3, 3.2-5; 4.3-3, 4.3-6;

3.1-2

3.1-2 证明:对任意实常量 a 和 b,其中 b>0,有 $(n+a)^b = \Theta(n^b)$

令 $c=2^b$, $n_0\geq 2a$,对于所有 $n\geq n_0$ 有 $(n+a)^b\leq (2n)^b=cn^b$. 因此 $(n+a)^b=O(n^b)$.令 $n_0\geq \frac{-a}{1-1/2^{1/b}}$,c=1/2. $n\geq n_0\geq \frac{-a}{1-1/2^{1/b}}\leftrightarrow n-\frac{n}{2^{1/b}}\geq -a \leftrightarrow n+a\geq (1/2)^{a/b}n \leftrightarrow (n+a)^b\geq cn^b$. $\Rightarrow (n+a)^b=\Omega\left(n^b\right)$. $\Rightarrow (n+a)^b=\Theta\left(n^b\right)$.

3.1-4

3.1-4 $2^{n+1} = O(2^n)$ 成立吗? $2^{2n} = O(2^n)$ 成立吗?

对于所有 $n \ge 0$, $2^{n+1} \ge 2 \cdot 2^n$. 故 $2^{n+1} = O(2^n)$.

但是 2^{2n} 不等于 $O(2^n)$.

否则存在 n_0 和 c 使得 $n\geq n_0$. 这说明 $2^n\cdot 2^n=2^{2n}\leq c2^n$, 故对 $n\geq n_0$, $2^n\leq c$. 但这是不可能的,因为c是常数。

3.2-3

3.2-3 证明等式(3.19)。并证明 $n! = \omega(2^n)$ 且 $n! = o(n^n)$ 。

用Stirling的近似公式:

$$egin{aligned} &\lg(n!) = \lg\left(\sqrt{(2\pi n}\Big(rac{n}{e}\Big)^n\left(1 + \Theta\left(rac{1}{n}
ight)
ight)
ight) \ &= rac{1}{2} \lg(2\pi n) + n\lg(n) - n\lg(e) + \lg\left(\Theta\left(rac{n+1}{n}
ight)
ight) \end{aligned}$$

如果只将分解lg时得到的两个表达式相加而不是相减,那么这最后一项是 $O(\lg(n))$ 。所以,整个表达式主要由 $n\lg(n)$ 组成。因此,得到 $\lg(n!)=\Theta(n\lg(n))$ 。

$$\lim_{n o \infty} rac{2^n}{n!} = \lim_{n o \infty} rac{1}{\sqrt{2\pi n} \left(1 + \Theta\left(rac{1}{n}
ight)
ight)} \left(rac{2e}{n}
ight)^n \leq \lim_{n o \infty} \left(rac{2e}{n}
ight)^n$$

如果限制 (n>4 e), 那么:

$$\leq \lim_{n o\infty}rac{1}{2^n}=0 \ \lim_{n o\infty}rac{n^n}{n!}=\lim_{n o\infty}rac{1}{\sqrt{2\pi n}\left(1+\Theta\left(rac{1}{n}
ight)
ight)}e^n=\lim_{n o\infty}O\left(n^{-.5}
ight)e^n\geq \lim_{n o\infty}rac{e^n}{c_1\sqrt{n}} \ \geq \lim_{n o\infty}rac{e^n}{c_1n}=\lim_{n o\infty}rac{e^n}{c_1}=\infty$$

3.2 - 5

*3.2-5 如下两个函数中,哪一个渐近更大些: $lg(lg^*n)$ 还是 $lg^*(lgn)$?

注意到 $\lg^*(2^n) = 1 + \lg^*(n)$, 所以:

$$egin{aligned} \lim_{n o \infty} rac{\lg\left(\lg^*(n)
ight)}{\lg^*(\lg(n))} &= \lim_{n o \infty} rac{\lg\left(\lg^*\left(2^n
ight)
ight)}{\lg^*\left(\lg\left(2^n
ight)
ight)} \ &= \lim_{n o \infty} rac{\lg\left(1 + \lg^*(n)
ight)}{\lg^*(n)} \ &= \lim_{n o \infty} rac{\lg(1 + n)}{n} \ &= \lim_{n o \infty} rac{1}{1 + n} \ &= 0 \end{aligned}$$

因此 $\lg^*(\lg(n))$ 的增长速度比 $\lg(\lg^*(n))$ 更快。

4.3-3

4.3-3 我们看到 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ 的解为 $O(n \lg n)$ 。证明 $\Omega(n \lg n)$ 也是这个递归式的解。从而得出结论:解为 $\Theta(n \lg n)$ 。

归纳假设 $T(n) \leq cn \lg n$, 其中 $c = \max(T(2)/2, 1)$ 。有

$$T(n) = 2T(\lfloor n/2
floor) + n \leq 2c \lfloor n/2
floor \lg(\lfloor n/2
floor) + n \ \leq cn \lg(n/2) + n = cn \left(\lg(n) - 1\right) + n = cn \left(\lg(n) - 1 + rac{1}{c}
ight) \leq cn \lg(n)$$

所以, $T(n) \in O(n \lg(n))$.

再次归纳地假设 $T(n) \geq c' n \lg(n)$, 其中 $c' = \min(1/3, T(2)/2)$ 。得到

$$T(n) = 2T(\lfloor n/2 \rfloor) + n \ge 2c' \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor) + n \ge c'(n-1)\lg((n-1)/2) + n \ = c'(n-1)(\lg(n)-1-\lg(n/(n-1))) + n \ = c'n\left(\lg(n)-1-\lg(n/(n-1)) + rac{1}{c'}
ight) - c'(\lg(n)-1-\lg(n/(n-1))) \ \ge c'n\left(\lg(n)-2+rac{1}{c'}-rac{(\lg(n-1)-1)}{n}
ight) \ge c'n\left(\lg(n)-3+rac{1}{c'}
ight) \ge c'n\lg(n)$$

所以, $T(n) \in \Omega(n)$.

结合问题第一部分,得出 $T(n) \in \Theta(n \lg(n))$,而不是最初的结论 $T(n) \in \Theta(n)$ 。

4.3-6

4.3-6 证明: $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ 的解为 $O(n \lg n)$ 。

选择 n_1 使得当 $n \geq n_1$) \$ 时有 $n/2 + 17 \leq 3n/4$ 。将找到 c 和 d 使得 $T(n) \leq cn \log n - d$ 。

$$egin{aligned} T(n) &= 2T(\lfloor n/2 \rfloor + 17) + n \ &\leq 2(c(n/2 + 17)\log(n/2 + 17) - d) + n \ &\leq cn\log(n/2 + 17) + 17c\log(n/2 + 17) - 2d + n \ &\leq cn\log(3n/4) + 17c\log(3n/4) - 2d + n \ &= cn\log n - d + cn\log(3/4) + 17c\log(3n/4) - d + n. \end{aligned}$$

取 $c=-2/\log(3/4)$ 和 d=34。那么有 $T(n) \leq cn\log n - d + 17c\log(n) - n$ 。由于 $\log(n) = o(n)$,存在 n_2 使得当 $n \geq n_2$ 时有 $n \geq 17c\log(n)$ 。令 $n_0 = \max n_1, n_2$,有当 $n \geq n_0$ 时, $T(n) \leq cn\log n - d$ 。 因此 $T(n) = O(n\log n)$ 。