Problema de Transbordo

Iago Silva - 2022035881 Vitor Moreira - 2022036012

1 Problema

O problema de transbordo é uma extensão do problema de transporte, que visa determinar a maneira mais eficiente de distribuir produtos de um conjunto de fornecedores para um conjunto de consumidores. No contexto de um sistema logístico com fábricas, centros de distribuição (CD) e lojas, ele pode ser descrito da seguinte forma:

- 1. Fábricas: São os pontos de origem dos produtos, onde os bens são fabricados. Cada fábrica tem uma capacidade de produção limitada, representando a quantidade máxima de produtos que podem ser enviados a partir dela.
- 2. Centros de Distribuição: Funcionam como intermediários entre as fábricas e as lojas. Eles recebem produtos das fábricas e, em seguida, redistribuem esses produtos para as lojas. Os centros de distribuição não produzem nem consomem produtos, apenas os armazenam temporariamente e os encaminham.
- 3. Lojas: São os pontos de destino dos produtos, onde os bens são vendidos aos consumidores finais. Cada loja tem uma demanda específica, representando a quantidade de produtos que ela precisa receber para atender seus clientes.

O objetivo do problema de transbordo é minimizar o custo total de transporte dos produtos das fábricas para as lojas. Isso envolve determinar:

- 1. Quantidade de produtos a serem enviados de cada fábrica para cada centro de distribuição.
- Quantidade de produtos a serem enviados de cada centro de distribuição para cada loja.

A solução deve respeitar as capacidades das fábricas, as demandas das lojas e a capacidade de processamento dos centros de distribuição, além de minimizar os custos de transporte associados a cada rota de envio.

2 Análise da função objetivo e de cada uma das restrições do modelo

$$\min Z = \sum_{i \in M} \sum_{k \in T} c_{ik} x_{ik} + \sum_{k \in T} \sum_{j \in N} c_{kj} y_{kj}$$

A meta aqui é realizar o transporte das mercadorias das fábricas M para as lojas N com o menor custo possível, com os centros de distribuição T como intermediários. Com isso, o objetivo da fórmula acima é diminuir o custo do transporte das mercadorias, tanto das fábricas para os transbordos quanto dos transbordos para as lojas. Assim, inicialmente ela procura calcular o custo c_{ik} de uma fábrica i enviar uma quantidade x_{ik} de mercadorias para um transbordo k, sendo isso feito dentro de duas iterações/somatórios, com o intuito de escolher uma fabrica i com menor custo de transporte para um transbordo k, levando em conta a quantidade de carga. Por conseguinte, um processo extremamente semelhante é feito entre os transbordos e as lojas, que corresponde à segunda parte da fórmula. Nessa perspectiva, é observado qual transbordo k com custo k0 e quantidade de mercadoria k1 tem menor custo de transporte para enviar para uma loja k2. Vale ressaltar que o custo e a carga variam de uma mesma fábrica para diferentes transbordos e o mesmo vale para os transbordos em relação às lojas. Além disso, percebe-se que a quantidade enviada interfere no resultado do calculo das duas partes das fórmulas, já que o limite de oferta das fábricas e a necessidade de demanda das lojas são importantes fatores nesse problema.

$$\sum_{k \in T} x_{ik} \le a_i \quad \forall i \in M$$

Essa retrição serve para colocar um limitante na quantiade total de mercadorias $\sum_{k \in T} x_{ik}$ que uma fábrica i pode enviar para transbordos T, sendo esse limitante o seu limite de mercadorias ofertadas a_i .

$$\sum_{k \in T} y_{kj} \ge d_j$$

Essa restrição possui como objetivo garantir que a quantidade total recebida $\sum_{k \in T} y_{kj}$ por uma loja j de transbordos contidos em T será maior ou igual a demanda d_j dessa loja.

$$\sum_{i \in M} x_{ik} \le b_k$$

Aqui segue uma ideia parecida com às restrições anteriores, já que a missão é limitar a quantidade total de mercadoria $\sum_{i \in M}$ recebida por um transbordo k ao seu limite de capacidade b_k .

$$\sum_{i \in M} x_{ik} = \sum_{j \in N} y_{kj}$$

Basicamente, essa restrição possui como intuito assegurar que a quantidade total de mercadoria $\sum_{i \in M} x_{ik}$ recebida pelo transbordo k seja igual a quantidade total de mercadoria $\sum_{j \in N} y_{kj}$ enviada pelo transbordo k.

$$x_{ik} \ge 0 \quad \forall i \in M, k \in T$$

 $y_{kj} \ge 0 \quad \forall k \in T, j \in N$

Por fim, essas duas restrições servem para garantir que tanto a quantidade enviada de uma fábrica i para um transbordo k quanto a quantidade enviada de um transbordo k para uma loja j seja maior ou igual a zero.

3 Discussão dos resultados

3.1 Instância 01

- 1. Tamanho da instância 3 Fábricas, 7 Lojas e 2 Centros de Distribuição
- 2. Instância

	CI	Os	
Fábricas	1	2	Oferta
1	5	7	29
2	3	5	30
3	4	6	32
Capacidade	50	53	

Tabela 1: Capacidade das fábricas e CDs e custo unitário de transporte entre eles.

	Lojas						
CDs	1	2	3	4	5	6	7
1	4	2	3	9	5	7	3
2	9	7	2	4	5	4	6
Demanda	13	17	10	8	13	15	12

Tabela 2: Demanda das lojas e custo unitário de transporte dos CDs para as lojas

3. Resultados

O problema de transbordo foi resolvido com sucesso, alcançando um status de otimização ótimo. O custo total mínimo encontrado para o transporte de mercadorias foi de 723.0. Abaixo está a distribuição das quantidades transportadas entre as fábricas, centros de distribuição (CDs) e lojas.

- Origem para Destino: Quantidade
 - 0 (Fábrica) para 1 (CD): 26
 - 1 (Fábrica) para 0 (CD): 30
 - 2 (Fábrica) para 0 (CD): 20
 - 2 (Fábrica) para 1 (CD): 12

- 0 (CD) para 0 (Loja): 13
- 0 (CD) para 1 (Loja): 17
- 0 (CD) para 4 (Loja): 8
- 0 (CD) para 6 (Loja): 12
- 1 (CD) para 2 (Loja): 10
- 1 (CD) para 3 (Loja): 8
- 1 (CD) para 4 (Loja): 5
- 1 (CD) para 5 (Loja): 15

Figura 1: Gráfico ilustrando o resultado.

Referências

Henriques, G. (2017). Aula 11: Transporte e Transbordo. Recuperado de http://www.decom.ufop.br/gustavo/bcc342/Aula_11_Transporte.pdf