P	a	rt	Α	(25	Mar	ks)
				-		-

Assignment Project Exam Help
(3 Marks) Name two methods to Silvano Mycoogran Coverage of a test suite, and
explain how they differ. Add WeChat powcoder

	(larks) Is the type of $getChar$ getChar below a pure function? Why or why not? $getChar :: IO Char$
	getChar::IO Char
(3 M	(arks) What is a <i>functional correctness</i> specification?
(3 M	larks) Under what circumstances is performance important for an abstract model?
(3 M	larks) What is the relevance of termination for the Curry-Howard correspondence
`	larks) Imagine you are working on some price tracking software for some company ks. You have already got a list of stocks to track pre-defined. Assignment Project Exam Help data Stock = GOOG MSFT APPL stattps://pooveroider.compl
	data Stock = GOOG MSFT APPL Add WeChat powcoder stocks = [GOOG, MSFT, APPL]
	r software is required to produce regular reports of the stock prices of these panies. Your co-worker proposes modelling reports simply as a list of prices:
	$\mathbf{type}\ Report = [Price]$
	type Report = [Price]
•	ere each price in the list is the stock price of the company in the corresponding

Part B (25 Marks)

The following questions pertain to the given Haskell code:

$$foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

$$foldr f z (x : xs) = f x (foldr f z xs) -- (1)$$

$$foldr f z [] = z -- (2)$$

$$foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

$$foldr f z (x : xs) = f x (foldr f z xs) -- (1)$$

$$foldr f z [] = z -- (2)$$

1. (3 Marks) State the type, if one exists, of the expression foldr (:) ([] :: [Bool]) foldr (:) ([]:: [Bool]).

2. (4 Marks) Show the evaluation of foldr (:) [] [1, 2] foldr (:) [] [1, 2] via equational reasoning.

3. (2 Marks) In your own words, describe what the function foldr (:) [] foldr (:) [] does.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

4. (12 Marks) We shall prove by induction on lists that, for all lists xsxs and ysys:

$$foldr(:) xs ys = ys ++ xs$$

foldr(:) xs ys = ys ++ xs

i. (3 Marks) First show this for the base case where ys = []ys = [] using equational reasoning. You may assume the left identity property for +++++, that is, for all ls1s:

$$ls = [] ++ ls$$

 $ls = [] ++ ls$

ii. (9 Marks) Next, we have the case where ys = (k : ks)ys = (k : ks) for some item kk and list ksks.

a. (3 Marks) What is the *inductive hypothesis* about *ks*ks?

Part C (25 Marks)

Assignment Project Exam Help A sparse vector is a vector where a lot of the values in the vector are zero. We represent a sparse vector as a list of position-value pairs, as well as an Int Int to represent the overall length of the vector:

data SVec = SV Int [(Int, Float)]

We can convert a sparse vector back into a dense representation with this *expand* expand function:

```
expand :: SVec \rightarrow [Float]

expand (SV \ n \ vs) = map \ check \ [0..n-1]

where

check \ x = \mathbf{case} \ lookup \ x \ vs \ \mathbf{of}
Nothing \rightarrow 0
Just \ v \rightarrow v
expand :: SVec \rightarrow [Float]
expand (SV \ n \ vs) = map \ check \ [0..n-1]
where

check \ x = \mathbf{case} \ lookup \ x \ vs \ \mathbf{of}
Nothing \rightarrow 0
Just \ v \rightarrow v
```

For example, the SVecSVec value SV 5 [(0, 2.1), (4, 10.2)]SV 5 [(0, 2.1), (4, 10.2)] is

•	(6 Marks) Which two <i>data invariants</i> must be maintained to ensure validity of an <i>SVec</i> SVec value? Describe the invariants in informal English.				
ii.	(4 Marks) Give two examples of $SVec$ SVec values which violate these invariants				
iii.	(6 Marks) Define a Haskell function $well formed :: SVec \rightarrow Bool$ well formed :: $SVec \rightarrow Bool$ well formed :: $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ in $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ the input $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$ in $SVec \rightarrow Bool$ which returns $SVec \rightarrow Bool$				
	https://powcoder.com Add WeChat powcoder				
9 M	Tarks) Here is a function to multiply a $SVec$ SVec vector by a scalar:				
	$vsm :: SVec \rightarrow Float \rightarrow SVec$ $vsm (SV \ n \ vs) \ s = SV \ n \ (map \ (\lambda(p, v) \rightarrow (p, v * s)) \ vs)$				
	vsm:: SVec \rightarrow Float \rightarrow SVec vsm (SV n vs) $s =$ SV n (map $(\lambda(p, v) \rightarrow (p, v * s))$ vs)				
i.	(3 Marks) Define a function <i>vsmA</i> vsmA that performs the same operation, but fedense vectors (i.e. lists of FloatFloat).				

from the abstract model.

Part D (25 Marks)

1. (10 Marks) Imagine you are working for a company that maintains this library for a database of personal records, about their customers, their staff, and their suppliers.

```
newtype Person = ...

name :: Person → String

salary :: Person → Maybe String

fire :: Person → IO ()

company :: Person → Maybe String

newtype Person = ...

name :: Person → String

Assignment Project Exam Help

https://powcoder.com

company :: Person → IO ()

https://powcoder.com

company :: Person → Maybe String
```

The *salary*salary function retains Working Nothing West person who is not a member of company staff. The *fire* fire function will also perform no-op unless the given person is a member of company staff. The *company*company function will return Nothing Nothing unless the given person is a supplier.

Rewrite the above type signatures to enforce the distinction between the different types of person statically, within Haskell's type system. The function *name* name must work with all kinds of people as input.

Hint: Attach *phantom* type parameters to the *Person* Person type.

2. (15 Marks) Consider the following two types in Haskell:

data List a where

Nil :: List a

Cons :: $a \rightarrow List \ a \rightarrow List \ a$

data Nat = Z | S Nat

data Vec (n :: Nat) a where

VNil :: Vec Z a

VCons :: $a \rightarrow Vec \ n \ a \rightarrow Vec \ (S \ n) \ a$

data List a where

Nil :: List a

Cons :: $a \rightarrow \text{List } a \rightarrow \text{List } a$

 $data Nat = Z \mid S Nat$

data Vec (n:: Nat) a where

VNil :: Vec Z a

VCons :: $a \rightarrow \text{Vec } n \ a \rightarrow \text{Vec } (S \ n) \ a$

What is the difference between these types? In which circumstances would VecVec be the better choice, and in which ListList?

i. (5 Marks) Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

ii. (5 Marks) Here is a simple list function:

$$zip :: List \ a \to List \ b \to List \ (a, b)$$
 $zip \quad Nil \qquad ys \qquad = \quad Nil$
 $zip \quad xs \qquad Nil \qquad = \quad Nil$
 $zip \quad (Cons \ x \ xs) \quad (Cons \ y \ ys) \qquad = \quad Cons \ (x, y) \ (zip \ xs \ ys)$
 $zip :: List \ a \to List \ b \to List \ (a, b)$
 $zip \quad Nil \qquad ys \qquad = \quad Nil$
 $zip \quad xs \qquad Nil \qquad = \quad Nil$
 $zip \quad xs \qquad Nil \qquad = \quad Nil$
 $zip \quad (Cons \ x \ xs) \quad (Cons \ y \ ys) \qquad = \quad Cons \ (x, y) \ (zip \ xs \ ys)$

Define a new version of zipzip which operates on VecVec instead of ListList wherever possible. You can constrain the lengths of the input.

iii. (5 Marks) Here is another list function:

```
filter :: (a \rightarrow \mathsf{Bool}) \rightarrow List \ a \rightarrow List \ a

filter p Nil = Nil

filter p (Cons x xs)

| p x = \mathsf{Cons} \ x \ (filter \ p \ xs)

| otherwise = filter \ p \ xs

filter :: (a \rightarrow \mathsf{Bool}) \rightarrow \mathsf{List} \ a \rightarrow \mathsf{List} \ a

filter p Nil = Nil

filter p (Cons x xs)

| p x = \mathsf{Cons} \ x \ (filter \ p \ xs)

| p x = \mathsf{Cons} \ x \ (filter \ p \ xs)

| otherwise = \mathsf{filter} \ p \ xs
```

Define a new version of *filter* filter which operates on *Vec*Vec instead of *List*List wherever possible signment Project Exam Help

https://powcoder.com
Add WeChat powcoder

Part E (25 Marks)

1. (10 Marks) An applicative functor is called *commutative* iff the order in which actions are sequenced does not matter. In addition to the normal applicative laws, a *commutative* applicative functor satisfies:

$$f \langle \$ \rangle u \langle * \rangle v = flip f \langle \$ \rangle v \langle * \rangle u$$
$$f \langle \$ \rangle u \langle * \rangle v = flip f \langle \$ \rangle v \langle * \rangle u$$

i. (2 Marks) Is the Maybe Applicative instance *commutative*? Explain your answer.

	(3 Marks) We have seen two different Applicative Applicative instances for lists Which of these instances, if any, are <i>commutative</i> ? Explain your answer.
1	(5 Marks) A <i>commutative</i> monad is the same as a commutative applicative, only specialised to monads. Express the commutativity laws above in terms of monads using either dodo notation or the raw pure/bind functions.
types	larks) Translate the following logical formulae into types, and provide Haskell that correspond to proofs of these formulae, if one exists. If not, explain why not (2 Marks) $(A \lor B) \rightarrow (B \lor A)(A \lor B) \rightarrow (B \lor A)$ Assignment Project Exam Help
	https://powcoder.com
ii.	$(2 \text{ Marks}) (A \lor A) \rightarrow A(A \lor A) \rightarrow A$
	(3 Marks) $(A \land (B \lor C)) \rightarrow ((A \land B) \lor (A \land C))$ $(A \land (B \lor C)) \rightarrow ((A \land B) \lor (A \land C))$
iv.	(3 Marks) $\neg ((A \rightarrow \bot) \lor A) \neg ((A \rightarrow \bot) \lor A)$

3. (5 Marks) Here is a Haskell data type:

2.

data X	=	First () A			
		Second () Void			
		Third (Either B ())			
$\mathbf{data}X$	=	First () A			
		Second () Void			
		Third (Either B ())			
Using known type isomorphisms, simplify this type as much as possible.					

END OF SAMPLE EXAM

(don't forget to save!)

Time Remaining 2h 9m 33s

Save

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder