High Frequency BJT Model

Gain of 10 Amplifier – Non-ideal Transistor

Gain starts dropping at about 1MHz.

Why!

Because of internal transistor capacitances that we have ignored in our models.

Sketch of Typical Voltage Gain Response for a CE Amplifier

High Frequency Small-signal Model

Two capacitors and a resistor added.

A base to emitter capacitor, C_{π}

A base to collector capacitor, C_{μ}

A resistor, r_{x} , representing the base

terminal resistance $(r_{x} << r_{\pi})$

$$C_{\mu} = \frac{V_{\mu 0}}{(1 + \frac{V_{CB}}{V_{0c}})^{m}}$$

$$C_{\pi} = C_{de} \frac{+C_{je0}}{(1 - \frac{V_{BE}}{V_{0e}})^{m}} \approx C_{de} + 2C_{je0}$$

$$C_{de} = \tau_{F} g_{n}$$

 τ_{r} = forward-base transit time

High Frequency Small-signal Model

The internal capacitors on the transistor have a strong effect on circuit high frequency performance! They attenuate base signals, decreasing v_{be} since their <u>reactance approaches zero</u> (short circuit) as frequency increases.

As we will see later C_{μ} is the principal cause of this gain loss at high frequencies. At the base C_{μ} looks like a capacitor of value k C_{μ} connected between base and emitter, where k > 1 and may be >> 1.

This phenomenon is called the *Miller Effect*.

Frequency-dependent "beta" h_{fe}

The relationship $i_c = \beta i_b$ does not apply at high frequencies $f > f_H!$ Using the relationship $-i_c = f(V_\pi)$ — find the new relationship between i_b and i_c . For i_b (using *phasor notation* $(I_x \& V_x)$ *for frequency domain analysis*):

@ node B': $I_b = \left(\frac{1}{r_{\pi}} + sC_{\pi} + sC_{\mu}\right)V_{\pi}$ where $r_x \approx 0$ (ignore r_x)

NOTE: $s = \sigma + j\omega$, in sinusoidal steady-state $s = j\omega$.

Frequency-dependent h_{fe} or "beta"

$$I_b = \left(\frac{1}{r_{\pi}} + s C_{\pi} + s C_{\mu}\right) V_{\pi}$$
 @ node C: $I_c = (g_m - s C_{\mu}) V_{\pi}$ (ignore r_o)

Leads to a new relationship between the I_{b} and I_{c} :

$$h_{fe} = \frac{I_c}{I_b} = \frac{g_m - sC_{\mu}}{\frac{1}{r_{\pi}} + sC_{\pi} + sC_{\mu}}$$

Frequency Response of h_{fe}

$$h_{fe} = \frac{g_m - s C_{\mu}}{\frac{1}{r_{\pi}} + s C_{\pi} + s C_{\mu}}$$

multiply N&D by r_{π} and set $s = j\omega$

$$h_{fe} = \frac{(g_m - j \omega C_{\mu}) r_{\pi}}{1 + j \omega (C_{\pi} + C_{\mu}) r_{\pi}}$$

factor N to isolate g_m

$$h_{fe} = \frac{(1 - j\omega \frac{C_{\mu}}{g_{m}})g_{m}r_{\pi}}{1 + j\omega(C_{\pi} + C_{\mu})r_{\pi}}$$

$$g_m = \frac{I_C}{V_T} \qquad r_\pi = \beta \frac{V_T}{I_C}$$

For small
$$\omega = \omega_{low}$$
: $\omega_{low} \frac{C_{\mu}}{g_m} \ll 1 < \frac{1}{10}$

and:
$$\omega_{low}(C_{\pi} + C_{\mu})r_{\pi} \ll 1 < \frac{1}{10}$$

Note:
$$\omega_{low}(C_{\pi}+C_{\mu})r_{\pi}=\omega_{low}(C_{\pi}+C_{\mu})\frac{\beta}{g_{m}}\gg\omega_{low}\frac{C_{\mu}}{g_{m}}$$

We have:
$$h_{fe} = g_m r_{\pi} = \beta$$

Frequency Response of h_{fe} cont.

$$h_{fe} = \frac{(1 - j \omega \frac{C_{\mu}}{g_{m}})g_{m}r_{\pi}}{1 + j \omega(C_{\pi} + C_{\mu})r_{\pi}} = \frac{\left(1 - j \frac{\omega}{\omega_{z}}\right)}{\left(1 + j \frac{\omega}{\omega_{\beta}}\right)}g_{m}r_{\pi} = \frac{\left(1 - j \frac{f}{f_{z}}\right)}{\left(1 + j \frac{f}{f_{\beta}}\right)}\beta$$

$$(C_{\pi} + C_{\mu})r_{\pi} = (C_{\pi} + C_{\mu})\frac{\beta}{g_{m}} \gg \frac{C_{\mu}}{g_{m}} \Rightarrow f_{z} \gg f_{\beta}$$

Hence, the lower break frequency or -3dB frequency is f_{β}

$$f_{\beta} = \frac{1}{2\pi (C_{\pi} + C_{\mu}) r_{\pi}} = \frac{g_{m}}{2\pi (C_{\pi} + C_{\mu}) \beta} \text{ the upper: } f_{z} = \frac{1}{2\pi C_{\mu} / g_{m}} = \frac{g_{m}}{2\pi C_{\mu}}$$
where $f_{z} > 10 f_{\beta}$

Frequency Response of h_{fe} cont.

Using Bode plot concepts, for the range where: $f < f_{\beta}$

$$h_{fe} = g_m r_{\pi} = \beta$$

For the range where: $f_{\beta} < f < f_z$ s.t. $|1 - jf/f_z| \approx 1$

We consider the frequency-dependent numerator term to be 1 and focus on the response of the denominator:

$$h_{fe} = \frac{g_m r_{\pi}}{\left(1 + j \frac{f}{f_{\beta}}\right)} = \frac{\beta}{\left(1 + j \frac{f}{f_{\beta}}\right)}$$

Frequency Response of h_{fo} cont.

Neglecting numerator term:

$$h_{fe} = \frac{g_m r_{\pi}}{\left(1 + j \frac{f}{f_{\beta}}\right)} = \frac{\beta}{\left(1 + j \frac{f}{f_{\beta}}\right)}$$

And for
$$f/f_{\beta} >> 1$$
 (but $< f/f_z$): $\left|h_{fe}\right| \approx \frac{\beta}{\left(\frac{f}{f_{\beta}}\right)} = \beta \frac{f_{\beta}}{f}$

Unity gain bandwidth:
$$|h_{fe}| = 1 \Rightarrow \beta \frac{f_{\beta}}{f} |_{f=f_T} = 1 \Rightarrow f_T = \beta f_{\beta}$$

$$f_T = \frac{\omega_T}{2\pi} = \beta f_\beta$$

 $f_T = \frac{\omega_T}{2\pi} = \beta f_\beta$ BJT unity-gain frequency or GBP

Frequency Response of h_{fe} cont.

$$\beta = 100 \quad r_{\pi} = 2500 \,\Omega \quad C_{\pi} = 12 \, pF \quad C_{\mu} = 2 \, pF \quad g_{m} = 40 \cdot 10^{-3} \, S$$

$$\omega_{\beta} = \frac{1}{\left(C_{\pi} + C_{\mu}\right) r_{\pi}} = \frac{10^{12} \cdot 10^{-3}}{(12 + 2) \cdot 2.5} = 28.57 \cdot 10^{6} \, rps$$

$$f_{\beta} = \frac{\omega_{\beta}}{2\pi} = \frac{28.57}{6.28} \cdot 10^{6} \, Hz = 4.55 \, MHz \qquad f_{T} = \beta \, f_{\beta} = 455 \, MHz$$

$$\omega_{z} = \frac{g_{m}}{C_{\mu}} = \frac{40 \cdot 10^{-3} \cdot 10^{12}}{2} \, Hz = 20 \cdot 10^{9} \, rps$$

 $f_z = \frac{\omega_z}{2\pi} = 3.18 \cdot 10^9 \, Hz = 3180 \, MHz$

Scilab f_T Plot

```
//fT Bode Plot
Beta=100;
KdB= 20*log10(Beta);
fz=3180;
fp=4.55;
f= 1:1:10000;
term1=KdB*sign(f); //Constant array of len(f)
term2=max(0,20*log10(f/fz)); //Zero for f < fz;
term3=min(0,-20*log10(f/fp)); //Zero for f < fp;
BodePlot=term1+term2+term3;
plot(f,BodePlot);
```

h_{fe} Bode Plot

Multisim Simulation

Insert 1 ohm resistors – we want to measure a current ratio.

$$h_{fe} = \frac{I_c}{I_b} = \frac{g_m - s C_{\mu}}{\frac{1}{r_{\pi}} + s (C_{\pi} + C_{\mu})}$$

Simulation Results

Low frequency $|h_{fe}|$

Unity Gain frequency about 440 MHz

Theory:

$$f_T = \beta f_\beta = 455 MHz$$

