CMO

Sheet 3 — E0230

Assignment (Due: 31 October 2021)

Instructions

- Use Python for coding
- Please name the code files for question1 and question2 as question1.py and question2.py respectively
- Prepare a report in pdf format. In this report, provide your answers to the questions and instruction to run code
- Compress your folder containing code and report to a **zip file**. (Please do not use .rar format)
- Rename .zip extension to .pdf extension and upload via Microsoft Teams Form
- Late submissions will be penalised

- 1. Conjugate Gradient. Implement the conjugate gradient algorithm to solve the system of linear equations Ax = b, where (i, j)-th entry in $A \in R^{(n \times n)}$ is $\frac{1}{i+j-1}$ and all the coordinates in $b \in R^n$ are 1. Start the algorithm from zero vector. For n = 5, 8, 12, 20 report the number of iterations required to reduce the error $||Ax b||_2$ below 10^{-6} . For n = 20, plot the error (log scale) vs iteration (10 points).
- 2. Quasi Newton. Consider the function $f(x) = \frac{1}{2}x^TQx$ where Q is given by

$$\begin{bmatrix} a+10 & 0 & 0 & 0 & 0 & 0 \\ 0 & a+8 & 0 & 0 & 0 & 0 \\ 0 & 0 & a+6 & 0 & 0 & 0 \\ 0 & 0 & 0 & a+4 & 0 & 0 \\ 0 & 0 & 0 & 0 & a+2 & 0 \\ 0 & 0 & 0 & 0 & 0 & a \end{bmatrix}$$

where a = <your SR number>% 100 (% is the remainder operator). For example if last 5 digits of your SR number is 12345, then a = 45. Starting at $x_0 = [10, 10, 10, 10, 10, 10]$, minimize the function f(x) iteratively using the following methods.

- (a) (5 points) Implement steepest descent
- (b) (5 points) Implement DFP with exact line search
- (c) (5 points) Implement DFP with backtracking line search. Backtracking is a form of inexact line search in which a step size is determined at each step which satisfies the Armio-Goldstein condition. Given constants $\alpha, \beta \in (0,1)$, at each step of the algorithm, if the current point is $x \in \mathbb{R}^d$, the direction of line search is chosen as $u = -\nabla f(x)$, and for determining the step size, an initial step size t = 1 is chosen and is repeatedly updated as $t \leftarrow \beta t$ until $f(x + tu) \leq f(x) + \alpha t \nabla f(x)^T u$ and then x is updated as $x \leftarrow x + tu$. Once the update distance $||tu||_2$ for the point x becomes less than ϵ during any epoch, the algorithm is stopped. Apply backtracking line search algorithm with $\alpha = 0.5$, $\beta = 0.5$ and $\epsilon = 10^{-7}$.

Prepare table as follows, with function value in each iteration:

Iterations	Steepest	DFP with exact	DFP with backtracking
	Descent	line search	line search
1			
2			
6			

Table 1: Function value, f(x)