Multiple Importance Sampling

Visualização e Iluminação

Luís Paulo Peixoto dos Santos

Integração de Monte Carlo: importância

O estimador de Monte Carlo é dado por

$$I \sim \langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

• Quando a função de densidade de probabilidade, p(x), segue a forma de f(x), então mais amostras são escolhidas nas regiões do domínio de integração que mais contribuem para I (isto é, $f(x_i)$ é maior)

Integração de Monte Carlo: importância

- A aplicação com sucesso da amostragem baseada em importância depende de um conjunto de factores, por exemplo:
 - 1. a capacidade de desenhar uma pdf p(x) com uma forma semelhante a f(x)
 - a capacidade de calcular a cdf(x) a partir de p(x) e a necessidade de que esta seja invertível, para que as amostras possam ser obtidas de acordo com aquela pdf
- No entanto, o integrando f(x) pode ser arbitrariamente complexo e ser composto por múltiplas funções.

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{b} f_{1}(x)f_{2}(x)f_{3}(x)dx$$

- Pode ser possível encontrar pdf's $p_i(x)$ proporcionais a cada $f_i(x)$, mas que, individualmente, não são proporcionais a f(x)
- Usar apenas uma das $p_i(x)$ pode ser pior do que usar amostragem uniforme

Integração de Monte Carlo: importância

$$L_r(p \to \omega_r) = \int_{\Omega_s} f_r(p, \omega_i \leftrightarrow \omega_r) L_i(p \leftarrow \omega_i) \cos(\vec{N}_p, \omega_i) d\omega_i$$

Integrando é um produto de vários factores.

Amostrar de acordo com a BRDF ou a fonte de luz?

Existe uma solução que funcione para todos os casos?

Mestrado em

Enga Informática

Integração de Monte Carlo: importância

$$I = \int_0^{\pi/2} \sin(x) \cos(x) dx = -\frac{\cos^2(x)}{2} \Big|_0^{\frac{\pi}{2}} = 0.5$$

Valores para N=6

ξ	Xi	f(x _i)	$p(x_i)$	$f(x_i)/p(x_i)$
0,996	1,566	0,004	0,999	0,004
0,573	1,130	0,386	0,904	0,427
0,587	1,145	0,376	0,911	0,413
0,140	0,535	0,439	0,510	0,860
0,758	1,326	0,235	0,970	0,242
0,525	1,076	0,418	0,880	0,475

$$\langle I \rangle = \frac{1}{6} \sum_{i=1}^{6} \frac{f(x_i)}{p(x_i)} = \frac{1}{6} * 2.421 = 0.404$$

$$p(x) = \sin(x)$$

$$P(x) = \int_0^x \sin x \, dx = 1 - \cos x$$

Mestrado em

Enga Informática

Integração de Monte Carlo: importância

$$I = \int_0^{\pi/2} \sin(x) \cos(x) dx = -\frac{\cos^2(x)}{2} \Big|_0^{\frac{\pi}{2}} = 0.5$$

Valores para N=6

ξ	Xi	f(x _i)	p(x _i)	$f(x_i)/p(x_i)$
0,996	1,478	0,093	0,093	0,996
0,573	0,610	0,470	0,819	0,573
0,587	0,628	0,475	0,809	0,587
0,140	0,140	0,138	0,990	0,140
0,758	0,860	0,494	0,652	0,758
0,525	0,553	0,447	0,851	0,525

$$\langle I \rangle = \frac{1}{6} \sum_{i=1}^{6} \frac{f(x_i)}{p(x_i)} = \frac{1}{6} * 3.579 = 0.596$$

$$p(x) = \cos(x)$$

$$P(x) = \int_0^x \cos x \, dx = \sin x$$

$$x_i = P^{-1}(\xi_i) = \arcsin(\xi_i)$$

Integração de Monte Carlo: Tutorial

• O problema que se descreveu (selecção de um único factor de f(x) = sin(x) * cos(x) como pdf) é o mesmo que na situação de path tracing (comprimento == 2) abaixo:

Integração de Monte Carlo

Sample over Li

Sample over BRDF

Multiple Importance Sampling (MIS)

- Obter amostras usando várias pdf's diferentes, concebidas para explorar diferentes características do integrando
- No caso do integrando ter a forma $f(x) = f_1(x)f_2(x) \cdots f_k(x)$ é possível usar várias $p_i(x)$, cada uma proporcional a uma das $f_i(x)$
- MIS fornece um modelo para combinar amostras obtidas de diferentes pdf's, usando um modelo de pesos

Multiple Importance Sampling (MIS)

- Seja n o número de diferentes pdf's, $p_i(x)$, $i=1\cdots n$
- Seja n_i o número de amostras obtidas a partir de $p_i(x)$, tal que o número total de amostras é dados por $N=\sum_{i=1}^n n_i$
- Seja $X_{i,j}$ a j-ésima amostra obtida a partir de $p_i(x)$, com $j=1\cdots n_i$
- Para cada $p_i(x)$ definem-se os pesos $w_i(x)$
- Então o estimador MIS do integral, denominado por multi-sample e proposto por Veach é dado por

$$\langle I \rangle = \sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} w_i(X_{i,j}) \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

• Falta apenas definir os pesos $w_i(x)$

MIS – pesos constantes

Uma solução aparente seria definir pesos constantes:

$$\langle I \rangle = \sum_{i=1}^{n} \frac{w_i}{n_i} \sum_{j=1}^{n_i} \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

- Estes pesos correspondem ao caso em que o estimador de Monte Carlo para cada uma das $p_i(x)$ é avaliado INDEPENDENTEMENTE das outras $p_i(x)$, sendo depois calculada uma soma pesada dos diferentes estimadores
- No entanto é facilmente demonstrável que se uma das técnicas se comporta especialmente mal (alta variância) então o estimador final terá também alta variância

$$V[\langle I \rangle] = \sum_{i=1}^{n} w_i V[\langle I_i \rangle]$$

MIS – balance heuristic

Veach prova que se os pesos forem dados por

$$w_i(x) = \frac{n_i p_i(x)}{\sum_{k=1}^n n_k p_k(x)}$$

então nenhuma outra combinação pode ser significativamente melhor

$$\langle I \rangle = \sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} w_i(X_{i,j}) \frac{f(X_{i,j})}{p_i(X_{i,j})}$$

$$\langle I \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \frac{n_i p_i(X_{i,j})}{\sum_{k=1}^{n} n_k p_k(X_{i,j})} \frac{f(X_{i,j})}{n_i p_i(X_{i,j})}$$

$$\langle I \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \frac{f(X_{i,j})}{\sum_{k=1}^{n} n_k p_k(X_{i,j})}$$

Integração de Monte Carlo: MIS

$$I = \int_0^{\pi/2} \sin(x) \cos(x) dx = 0.5$$

$$p_1(x) = \cos(x)$$

$$x_{i,1} = P^{-1}(\xi_i) = \arcsin(\xi_i)$$

$$p_2(x) = \sin(x)$$

$$x_{i,2} = P^{-1}(\xi_i) = \arccos(1 - \xi_i)$$

Valores para N=6 ($n_1 = n_2 = 3$)

	ξ	X _i	f(x _i)	$p_1(x_i)$	$p_2(x_i)$	$n1*p_1(x_i) + n2*p2(x)$	f(x _i) / (SUM nk * pk)
p_1	0,996	1,481	0,089	0,090	0,996	3,256	0,027
p_1	0,573	0,610	0,470	0,820	0,573	4,178	0,112
p_1	0,587	0,627	0,475	0,810	0,587	4,190	0,113
p ₂	0,140	0,535	0,439	0,860	0,510	4,111	0,107
p ₂	0,758	1,326	0,235	0,242	0.970	3,637	0,065
p ₂	0,525	1,076	0,418	0,475	0,880	4,065	0,103

$$\langle I \rangle = \sum_{i=1}^{6} \frac{f(x_i)}{\sum_{k=1}^{2} n_k p_k(x_i)} = 0.527$$

MIS: rendering

Sample the light source


```
Li = light->Sample_L(p, ..., &wi, &lightPdf, ...);
bsdfPdf = bsdf->Pdf(wo, wi, ...);
weight = lightPdf / (lightPdf + bsdfPdf);
f = bsdf->f(wo, wi, BSDF_ALL);
L = f * Li * weight * AbsDot(wi, n) / lightPdf;
```

Sample the BSDF

```
f = bsdf->Sample_f(wo, &wi, ..., &bsdfPdf,...);
lightPdf = light->Pdf(p, wi);
weight = bsdfPdf / (lightPdf + bsdfPdf);
Le = light->Le(p, wi);
L += f * Le * weight * AbsDot(wi, n) / bsdfPdf;
```

MIS – one sample

ullet Escolher aleatoriamente com probabilidade p_{samp} uma das distribuições p_i

$$\langle I \rangle_0 = \frac{1}{p_{samp}} \frac{p_i(x)}{\sum_{k=1}^n p_k(x)} \frac{f(x)}{p_i(x)}$$

Com N amostras por pixel

$$\langle I \rangle = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{p_{samp_j}} \frac{p_i(x_j)}{\sum_{k=1}^{n} p_k(x_j)} \frac{f(x_j)}{p_i(x_j)}$$

MIS: one sample

Randomly select the sampling strategy


```
R = rand();
if (R<prob smp light) { // do light sources
  Li = light->Sample L(p, ..., &wi, &lightPdf, ...);
 bsdfPdf = bsdf->Pdf(wo, wi, ...);
  weight = 1 /prob smp light * light df /
(lightPdf + bsdfPdf);
  f = bsdf - > f(wo, wi, BSDF ALL);
  L = f * Li * weight * AbsDot(wi, n) /landdf;
} else { // do BRDF
  f = bsdf->Sample f(wo, &wi, ..., &bsdfPdf,...);
  lightPdf = light->Pdf(p, wi);
  weight = 1 /(1.0 - prob smp light) * k
(lightPdf + bsdfPdf);
  Le = light->Le(p, wi);
  L += f * Le * weight * AbsDot(wi, n)/bs ;;
```

MIS: one sample

