

Regression

Python Programming Lab

05506231 Statistics and Probability

Asst. Prof. Dr. Anantaporn Hanskunatai

- Simple linear regression
- Case study on linear regression
- Polynomial regression
- Case study on polynomial regression

• Find linear regression of the following data (n = 5) (from slide #7)

$$\hat{Y}_i = a + b x_i = -728 + 15x_i$$

• Predict y-value (at
$$x = 51.5$$
) = -728 + 15(51.5) = 44.5


```
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression

x = np.array([50, 51, 52, 53, 54]).reshape(-1,1)
y = np.array([20, 40, 50, 70, 80]).reshape(-1,1)

80
54
```

```
model=LinearRegression()
model.fit(x,y)
```

```
print('intercept:', model.intercept_)
print('slope:', model.coef_)
```

```
intercept: [-728.] slope: [[15.]]
```

```
\hat{Y} = -728 + 15x
```

Predict new input x

```
y_predict=model.predict([[51.5]])
y_predict
```

```
□ array([[44.5]])
```


advertising.csv

	Α	В	С	D	Е
1		TV	Radio	Newspaper	Sales
2	1	230.1	37.8	69.2	22.1
3	2	44.5	39.3	45.1	10.4
4	3	17.2	45.9	69.3	9.3
5	4	151.5	41.3	58.5	18.5
6	5	180.8	10.8	58.4	12.9
7	6	8.7	48.9	75	7.2
8	7	57.5	32.8	23.5	11.8
9	8	120.2	19.6	11.6	13.2
10	9	8.6	2.1	1	4.8
11	10	199.8	2.6	21.2	10.6
12	11	66.1	5.8	24.2	8.6
13	12	214.7	24	4	17.4
14	13	23.8	35.1	65.9	9.2
15	14	97.5	7.6	7.2	9.7
16	15	204.1	32.9	46	19
17	16	195.4	47.7	52.9	22.4

- 5 columns and 200 rows
- TV Radio and Newspaper columns represent the budget for advertising in these channels
- Sales column represents sales data

 Use simple linear regression to predict the sales based on the amount which is company spend for TV advertising

```
import pandas as pd
from sklearn.linear_model import LinearRegression

from google.colab import files
uploaded = files.upload()

df= pd.read_csv( 'advertising.csv' )
```

Data transformation

```
x_TV=df.TV.values.reshape(-1,1)
y=df.Sales.values.reshape(-1,1)
```


Create simple linear regression model

```
model=LinearRegression()
model.fit(x_TV,y)
```

View the model

```
model.intercept_, model.coef_
```

Prediction

```
newX=[[300],[500],[1000]]
y_predict=model.predict(newX)
```


Model Evaluation

- Coefficient of determination (R²)
 - R² = 1 means modeled values exactly match the observed values

$$R^2 = 1 - rac{RSS}{TSS}$$

 R^2 = coefficient of determination

RSS = sum of squares of residuals

TSS = total sum of squares

$$RSS = \sum_{i=1}^n (y_i - f(x_i))^2$$

RSS = residual sum of squares

 y_i = $\frac{i^{h}}{predicted}$ in the variable to be

 $f(x_i)$ = predicted value of y_i

n = upper limit of summation

$$ext{TSS} = \sum_{i=1}^n (y_i - ar{y})^2$$

TSS = total sum of squares

n = number of observations

 y_i = value in a sample

y = mean value of a sample

model.score(x_TV,y)

□→ 0.611875050850071

Model Evaluation

- Mean Absolute Error (MAE)
- Mean Square Error (MSE)

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n} \quad ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

MAE = mean absolute error

= prediction

= true value

= total number of data points n

MSE = mean squared error

= number of data points

= observed values

= predicted values

```
from sklearn.metrics import mean squared error, mean absolute error
y predict1=model.predict(x TV)
print('MAE =', mean absolute error(y, y predict1))
print('MSE =', mean squared error(y,y predict1))
```

```
MAE = 2.549806038927486
   = 10.512652915656757
```


- Use multiple linear regression to predict the sales based on the amount which is company spend for each channels
- Data visualization

```
import seaborn as sns
sns.pairplot(df, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', height=4)
```


- Forward Selection
 - Step 1

```
x_Radio=df.Radio.values.reshape(-1,1)
x_News=df.Newspaper.values.reshape(-1,1)

model.fit(x_Radio,y)
print(model.score(x_Radio,y))

model.fit(x_News,y)
print(model.score(x_News,y))
```

Input	R2
TV	0.611875
Radio	0.332032
Newspaper	0.052120

- Forward Selection
 - Step 2

```
x_TVRadio=df[['TV','Radio']]
x_TVNews=df[['TV','Newspaper']]

model.fit(x_TVRadio,y)
print(model.score(x_TVRadio,y))

model.fit(x_TVNews,y)
print(model.score(x_TVNews,y))
```

Step 3

```
X3=df[['TV','Radio','Newspaper']]
model.fit(X3,y)
print(model.score(X3,y))
```

Input	R2
TV	0.611875
Radio	0.332032
Newspaper	0.052120
TV, Radio	0.897194
TV, Newspaper	0.6458355
TV, Radio, Newspaper	0.8972106

Multiple linear regression

```
print (model.coef_)
print (model.intercept_)
```

```
[ 0.04576465 0.18853002 -0.00103749]]
[2.93888937]
```

```
\hat{Y} = 2.9389 + (0.0458 * TV) + (0.1885 * Radio) + (-0.001 * Newspaper)
```


Prediction

No.	TV	Radio	Newspaper	Sales	Sales
Case 1	300	0	0	?	16.67
Case 2	0	300	0	?	59.50
Case 3	0	0	300	?	2.63
Case 4	100	200	200	?	45.01
Case 5	100	200	0	?	45.22

x_input=[[300,0,0],[0,300,0],[0,0,300],[100,200,200],[100,200,0]]
model.predict(x_input)

rray([16.66828301, 59.49789444, 2.62764146, 45.01385869, 45.2213573])

• Find Polynomial Regression of the following data (from slide #10)

У	X
1	0 1
17 2 9	2 -1
9	-2

$$Y = a + bx + cx^2 = 1 + 2x + 3x^2$$

slope: [[0. 2. 3.]]


```
import numpy as np
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
x = np.array([0, 1, 2, -1, -2]).reshape(-1, 1)
y = np.array([1, 6, 17, 2, 9]).reshape(-1,1)
poly features=PolynomialFeatures(degree=2)
x poly=poly features.fit transform(x)
model=LinearRegression()
model.fit(x poly,y)
print('intercept:', model.intercept )
print('slope:', model.coef)
    intercept: [1.]
                              \hat{Y} = 1 + 2x + 3x^2
```

У	X
1	0
6	1
17	2
2 9	-1
9	-2

S

• salary.csv

	Α	В	С
1	Position	Level	Salary
2	Business Analyst	1	45,000.00
3	Junior Consultant	2	50,000.00
4	Senior Consultant	3	60,000.00
5	Manager	4	80,000.00
6	Country Manager	5	110,000.00
7	Region Manager	6	150,000.00
8	Partner	7	200,000.00
9	Senior Partner	8	300,000.00
10	C-level	9	500,000.00
11	CEO	10	1,000,000.00


```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from google.colab import files
uploaded = files.upload()
df= pd.read csv('salary.csv')
x = df.iloc[:,1:2].values
y = df.iloc[:,2].values
```

0	df			
₽		Position	Level	Salary
	0	Business Analyst	1	45000
	1	Junior Consultant	2	50000
	2	Senior Consultant	3	60000
	3	Manager	4	80000
	4	Country Manager	5	110000
	5	Region Manager	6	150000
	6	Partner	7	200000
	7	Senior Partner	8	300000
	8	C-level	9	500000
	9	CEO	10	1000000

Data visualization

```
plt.scatter(x,y, color='red')
plt.ticklabel_format(style='plain')
plt.title('Salary vs Level')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
```



```
degree=['Degree1', 'Degree2', 'Degree3', 'Degree4']
Predict=pd.DataFrame(index=degree).T
Rscore = []
for k in range (1, 5):
 poly features=PolynomialFeatures(degree=k)
 x poly=poly features.fit transform(x)
 model=LinearRegression()
 model.fit(x poly,y)
 p1=model.predict(x poly)
 if(k==1):
    Predict.Degree1=p1
  elif(k==2):
    Predict.Degree2=p1
  elif(k==3):
    Predict.Degree3=p1
  else:
  Predict.Degree4=p1
  Rscore.append(model.score(x poly,y))
```


0	Pre	edict			
C →		Degree1	Degree2	Degree3	Degree4
	0	-114454.545455	118727.272727	14902.097902	53356.643357
	1	-33575.757576	44151.515152	78759.906760	31759.906760
	2	47303.030303	8439.393939	94960.372960	58642.191142
	3	128181.818182	11590.909091	88223.776224	94632.867133
	4	209060.606061	53606.060606	83270.396270	121724.941725
	5	289939.393939	134484.848485	104820.512821	143275.058275
	6	370818.181818	254227.272727	177594.405594	184003.496504
	7	451696.969697	412833.333333	326312.354312	289994.172494
	8	532575.757576	610303.030303	575694.638695	528694.638695
	9	613454.545455	846636.363636	950461.538462	988916.083916

Visualization of model prediction

```
plt.figure(figsize=(10,6))
plt.ticklabel_format(style='plain')
plt.scatter(x,y,color='b')
plt.plot(x,Predict.Degree1,linewidth='3',color='g',linestyle='dotted',label='linear(degree 1)')
plt.plot(x,Predict.Degree2,linewidth='3',color='r',linestyle='dotted',label='degree 2')
plt.plot(x,Predict.Degree3,linewidth='3',color='yellow', linestyle='solid',label='degree 3')
plt.plot(x,Predict.Degree4,linewidth='3',color='black',linestyle='dashed',label='degree 4')
plt.legend(loc = 'best')
plt.title('Salary vs Level')
plt.xlabel('Level')
plt.ylabel('Salary')
plt.show()
```


Model

```
print(model.intercept_, model.coef_)

print(model.intercept_, model.coef_)

184166.66666719693 [ 0. -211002.33100292 94765.44289063 -15463.28671331 890.15151515]
```

Prediction

```
x_poly = PolynomialFeatures(degree=4)
model.predict(x_poly.fit_transform([[6.5]]))
```

```
□→ array([158862.45265155])
```

