刚体的定轴转动(一)

<u> </u>	选择题

1. 下列说法正确的是()

(A) 刚体做匀速转动时,各个点的速度相等;
(B) 刚体做匀速转动时,各个点的加速度为零;
(C) 刚体做平动时,刚体上各个点只能做直线运动;
(D) 刚体做定轴转动时,刚体上各个点相对于转轴的角速度都相同。
N/HB
2. 多选题:以下关于刚体的描述,正确的是()
(A) 刚体是任意两点之间的距离永远保持不变的物体。
(B) 理想情况下,刚体在外力的作用下会发生形变
(C) 刚体在现实中可存在
(D) 刚体可视为无限多个彼此间距离保持不变的质元组成的质点系
3. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J_0 ,角速度为
ω_0 。然后她将两臂收回,使转动惯量减少为 $rac{1}{3}J_0$ 。这时她转动的角速度变为()
(A) $\frac{1}{3}\omega_0$ (B) $\frac{1}{\sqrt{3}}\omega_0$ (C) $\sqrt{3}\omega_0$ (D) $3\omega_0$
4. 多选题: 刚体做定轴转动时,刚体的合外力矩与哪些因素有关()
(A) 转轴的位置
(B) 力的方向
(C) 力的大小
(D) 力的作用点
5. 质量为 m ,长为 l 的细棒绕垂直于棒的转轴转动,当转轴从棒的一端移动到另一端时,
转动惯量的变化为 () (B) 先减小后增大
(A) 元增入后域小 (B) 元城小后增入 (C) 一直增大 (D)一直减小 (E) 保持不变
二、填空题
1. 刚体平动的特征是刚体内所有质元具有相同的、、和。刚体转动
的特征是刚体内所有质元具有相同的、、和。

3. 如图所示,质量为 m_1 和 m_2 的均匀细棒长度均为 l/2,在两棒对接处嵌入一质量为 m,不计体积的小球,对过 A 垂直于细棒转轴而言,若 $J_A = \frac{1}{12} m_1 l^2 + \frac{7}{12} m_2 l^2 + \frac{1}{4} m l^2$,则对于过 B 垂直于细棒转轴的转动惯量 $J_B = \underline{\hspace{1cm}}$ 。

- 5. 一力矩 M 作用于飞轮上,飞轮的角加速度为 α_1 ,如撤去这一力矩,飞轮的角加速度为 $-\alpha_2$,则该飞轮的转动惯量为____。

三、计算题

1. 将一根质量均匀分布的铜导线折成均匀的三段并弯成一个正三角形,放在 Oxy 平面内,若铜丝的长度为 l,质量为 m,求铜导线对 Ox 轴,Oy 轴和 Oz 轴的转动惯量。

2. 如图所示,质量分别为 m_1 、 m_2 和 m_3 的物体绕在均质定滑轮上, $m_1=2m_2=2m_3$,定滑轮质量 $M=2m_1$,半径为R,转动惯量 $J=\frac{1}{2}MR^2$,绳子与滑轮间无相对滑动,系统处于静止状态。现将连接 m_2 和 m_3 之间的绳子剪去,求:(1) m_1 和 m_2 的加速度。(2)当t=1s时, m_1 下落的距离。(3) m_1 和 m_2 之间绳子的张力T。

