OPTIMIERUNG RELATIONALER ABFRAGEN

Dr. Sándor Gajdos

Dez. 2016.

BME-TMIT

INHALT

- Heuristische, regelbasierte Optimierung
- Kostenbasierte Optimierung
 - Kostenschätzung mit Hilfe von Kataloge
 - Durchblick der Operationen
 - Bewertung der Ausdücke
 - Die Selektion des optimalen Ausführungsplanes
- Manuelle vs. automatische Optimierung

ÜBERSICHTSDIAGRAMM

I. HEURISTISCHE, REGELBASIERTE OPTIMIERUNG

- Relationenalgebraischer Baum basierte Optimierung
- Abfragebaum, Beispiel dazu:

```
EMPLOYEE (EMPLOYEE ID, LAST_NAME, FIRST_NAME, BIRTH_DATE, ...)
PROJECT (PROJECT ID, PNAME, ...)
WORKS_ON (PROJECT_ID, employee_ID)

select last_name
  from employee, works_on, project
  where employee.birth_date > '1957.12.31'
  and works_on.project_id = project.project_id
  and works_on.employee_id = employee.employee_id
  and project.pname = 'Aquarius'
```

RELATIONENALGEBRAISCHER AUSDRUCK – EINE MÖGLICHKEIT

DER ZIEL: DIE SCHNELLSTE FORM ZU BESTIMMEN

employee

Ausgangspunkt: die kanonische Form (Cartesisches Produkt, Selektion, Projektion) π_{LAST_NAME}

σ_{PNAME} = "Aquarius" ∧ PROJECT_ID = PROJECT_PROJECT_ID ∧ EMPLOYEE_ID = EMPLOYEE_EMPLOYEE_ID ∧ BIRTH_DATE > "1957.12.31"

×

PROJECT

WORKS_ON

ZWEITER SCHRITT: SENKEN DIE SELEKTIONEN

DRITTER SCHRITT: UMORDNEN DIE BLÄTTER

VIERTER SCHRITT: VERBUND EINFÜHREN

FÜNFTER SCHRITT: SENKEN DIE PROJEKTIONEN

WANN SIND ZWEI BÄUME ÄQUIVALENT?

RELATIONENALGEBRAISCHE TRANSFORMATIONEN I.

$$\sigma_{c_1 \wedge c_2 \wedge \dots \wedge c_n}(r) \equiv \sigma_{c_1} (\sigma_{c_2} (\dots (\sigma_{c_n}(r)) \dots))$$

$$\sigma_{c_1}(\sigma_{c_2}(r)) \equiv \sigma_{c_2}(\sigma_{c_1}(r))$$

$$\bullet \pi_{A_1,A_2,\dots,A_n}(\sigma_c(r)) \equiv \sigma_c(\pi_{A_1,A_2,\dots,A_n}(r))$$

WANN SIND ZWEI BÄUME ÄQUIVALENT?

RELATIONENALGEBRAISCHE TRANSFORMATIONEN II.

$$r \bowtie_{c} s \equiv s \bowtie_{c} r$$

•
$$\sigma_c(r \bowtie s) \equiv (\sigma_c(r)) \bowtie s$$

$$\begin{array}{l} \bullet \; \pi_L(r \bowtie_{c} s) \equiv \\ \pi_L\left(\left(\pi_{A_1,\ldots,A_n,A_{n+1},\ldots,A_{n+k}}(r)\right) \bowtie_{c} \left(\pi_{B_1,\ldots,B_m,B_{m+1},\ldots,B_{m+p}}\left(s\right)\right)\right) \end{array}$$

Die Mengenoperationen (Union, Durchschnitt) sind kommutativ.

Der Verbund, Cartesisches Produkt, Union und Durchschnitt sind assoziativ:

$$(r\theta s)\theta t \equiv r\theta(s\theta t)$$

WANN SIND ZWEI BÄUME ÄQUIVALENT?

RELATIONENALGEBRAISCHE TRANSFORMATIONEN III.

•
$$\sigma_C(r \theta s) \equiv (\sigma_C(r)) \theta (\sigma_C(s))$$

Weitere Regel:

•
$$c \equiv \neg(c_1 \land c_2) \equiv (\neg c_1) \lor (\neg c_2)$$

•
$$c \equiv \neg(c_1 \lor c_2) \equiv (\neg c_1) \land (\neg c_2)$$

ZUSAMMENFASSENDE REGEL

- Die konjunktive Selektionsbedingungen müssen in eine Reihe von Selektionsbedingungen umgewandelt werden.
- Die Selektionen müssen mit anderen Operationen vertauscht werden.
- Die Blätter des Baumes müssen umgeordnet werden.
- Die Cartesische Produkte und die darüber stehende Selektionen müssen in einen Verbund zusammengezogen werden.
- Die Projektionen müssen mit den anderen Operationen vertauschen.

II. KOSTENBASIERTE OPTIMIERUNG

- 1. Syntaxanalyse, Überstzung
- 2. Kostenoptimierung
- 3. Auswertung

II. KOSTENBASIERTE OPTIMIERUNG

- Kostenschätzung mit Hilfe von Kataloge
 - Kataloginformationen über Relationen
 - Kataloginformationen über Indexe
 - Die Kosten der Abfrage
- Lösung für die Aktualisierung der Katalogdaten

KATALOGINFORMATIONEN ÜBER RELATIONEN

- n_r : die Nummer der Sätze in der Relation r
- b_r : die Nummer der **B**löcke in der Relation c
- s_r : Satzlänge in Relation r (**s**ize) in Bytes
- f_r : Die Nummer der Sätze in einem Block für Relation r (blocking factor)

KATALOGINFORMATIONEN ÜBER RELATIONEN

- V(A, r): wieviel verschiedene Werte (Values) hat das Attribut \boldsymbol{A} in Relation \boldsymbol{r} (Kardinalität).
 - $V(A, r) = |\pi_A(r)|$
 - Falls A ein Schlüssel ist, dann $V(A,r) = n_r$
- SC(A, r): (Selection Cardinality) die durchschnittliche Nummer der Sätze, die eine Selektionbedingung befriedigen.
 - Falls A ein Schlüssel ist, dann SC(A, r) = 1
 - In der Regel: $SC(A, r) = \frac{n_r}{V(A, r)}$
- Wenn die Sätze der Relation zusammen gespeichert sind, dann:

$$b_r = \left[\frac{n_r}{f_r}\right]$$

KATALOGINFORMATIONEN ÜBER INDEXE

- f_i: die durchschnittliche Nummer der Zeiger einer Knote bei baumformigen Indexe, z.B. bei B*-Bäume
- *HT*_i: die Nummer der Ebenen (**H**eight of **T**ree)
 - $HT_i = [\log_{f_i} V(A, r)]$ (B*-Baum)
 - $HT_i = 1$ (Hash)
- LB_i: die Nummer der Blöcke auf dem niedrigsten Ebene (Blätterebene) (Lowest level index Blocks)

DIE SCHÄTZUNG DER KOSTEN

Die Kostenschätzung kann basieren auf:

- Ressourcen, die verlangt oder benutzt werden?
- Ansprechzeit?
- Kommunikationszeit?

Definition:

 Die Nummer der Blocklese- oder schreibeoperationen zu Hintergrundspeicher, ohne die Kosten das Ergebnisauschreiben

Weitere Vereinfachungen.

DIE KOSTEN DER EINZELNEN OPERATIONEN

- Selection
 - Verschiedene Algorithmen (Basis-, indexierte-, vergleichungsbasierte)
 - Komplexe Selektion
- Verbund
 - Typen
 - Verbund Größeschätzung
 - Verbundalgorithmen
 - Komplexer Verbund
- Sonstige
 - Filtrierung der Wiederholunge
 - Union, Durchschnitt, Differenz

BASISALGORITHMEN FÜR SELEKTION (=)

A1: Lineares Suchen

Kosten:

$$E_{A1} = b_r$$

A2: Binäres Suchen

- Bedingung:
 - Die Blöcke sind nach Attribut A geordnet
 - Die Selektionbedingung ist die Gleichheit mit Attribut A
- Kosten:

$$E_{A2} = \lceil \log_2(b_r + 1) \rceil + \left| \frac{SC(A, r)}{f_r} \right| - 1$$

INDEXIERTE ALGORITHMEN FÜR SELEKTION

A3: Mit Hilfe von Primärindexe, Gleichheitsbedingung wird auf Schlüsselwert definiert

•
$$E_{A3} = HT_i + 1$$

A4: Mit Hilfe von Primärindexe, Gleichheitsbedingung wird auf Nicht-Schlüsselwert definiert (Primärindex wird auf Nicht-Schlüsselattribut gebaut)

$$\bullet E_{A4} = HT_i + \left\lceil \frac{SC(A,r)}{f_r} \right\rceil$$

A5: Mit Hilfe von Sekundärindexe.

$$\bullet E_{A5} = HT_i + SC(A, r)$$

• $E_{A5} = HT_i + 1$, Falls A ein Schlüssel ist.

VERGLEICHUNGSBASIERTE SELEKTION- $\sigma_{A \leq \nu}(R)$

Die Schätzung der Nummer der Ergebnissätze:

• Falls v unbekannt ist: $\frac{n_r}{2}$

• Falls *v* bekannt ist, angenommen eine gleichmäßige Verteilung:

$$n_{\text{durchschnittlich}} = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

VERGLEICHUNGSBASIERTE SELEKTION- $\sigma_{A < v}(R)$

A6: Mit Hilfe von Primärindexe.

Falls v unbekannt ist:

$$E_{A6} = HT_i + \frac{b_r}{2}$$

• Falls v bekannt ist :

$$E_{A6} = HT_i + \left[\frac{c}{f_r}\right],$$

wobei c bezeichnet die Nummer der Sätze, wofür $A \leq v$

A7: Mit Hilfe von Sekundärindexe

$$E_{A7} = HT_i + \frac{LB_i}{2} + \frac{n_r}{2}$$

VERBUNDOPERATIONEN

Definition:

$$r_1 \bowtie_{\theta} r_2 = \sigma_{\theta}(r_1 \times r_2)$$

Verbundtypen:

Natürlicher Verbund (natural join)

$$r_1 \bowtie r_2 = \pi_{A \cup B}(\sigma_{R1,X=R2,X}(r_1 \times r_2))$$

- Äußerer Verbund (outer join)
 - Äußerer linker Verbund: $r_1 * (+)r_2$
 - Äußerer rechter Verbund: $r_1(+) * r_2$
 - Voller äußerer Verbund: $r_1(+) * (+)r_2$
- Theta Verbund:

$$r_1 \bowtie_{\theta} r_2 = \sigma_{\theta}(r_1 \times r_2)$$

VERBUND DURCH VERSCHACHTELTEN SCHLEIFEN

Zwei Relationen werden gegeben, r und s:

FOR jede $t_r \in r$ Sätze DO BEGIN

FOR jede $t_s \in s$ Sätze DO BEGIN

 (t_r, t_s) muss getestet werden ob sie die θ Verknüpfungsbedingung erfüllen

IF ja, THEN der Satz t_r . t_s muss Teil des Ergebnisses werden

END

END

- "worst case" Kosten: $n_r \cdot b_s + b_r$
- Fall mindestens einer der Relationen kann vollstandig in den Hauptspeicher gebracht werden, dann die Kosten sind: $b_r + b_s$

VERBUND DURCH BLOCK-VERSCHACHTELTEN SCHLEIFEN

```
FOR jede b_r \in r Blöcke DO BEGIN
```

FOR jede $b_s \in s$ Blöcke DO BEGIN

FOR jede $t_r \in b_r$ Sätze DO BEGIN

FOR jede $t_s \in b_s$ Sätze DO BEGIN

 (t_r,t_s) muss getestet werden ob sie die hetaVerknüpfungsbedingung erfüllen

END

END

END

END

- "worst-case" Kosten: $b_r \cdot b_s + b_r$
- Mit viel Haptspeicherplatz: $b_r + b_s$

INDEXIERTER VERBUND DURCH VERSCHACHTELTEN SCHLEIFEN

Es gibt einen Index für eine der Relationen (s)

Die indexierte Relation wird in die innere Schleife des ersten Algorithmes gelegt:

⇒ Das Suchen kann mit dem gegebenen Index auf niedrigem Kostenniveau durchgeführt werden.

Kosten:

$$b_r + n_r \cdot c$$
,

wo c ist die Kosten der Selektion bei Relation s.

WEITERE VERBUND-ALGORITHMEN

sorted merge join

 Die Relationen müssen zuerst nach bestimmten Attributen (gegeben in der Verbundbedingung) ordnen, dann die Relationen können einfach zusammengelegt werden.

hash join

 Die Sätze einer der Relationen werden durch eine Hash-Tabelle erreicht, solange wir suchen die anpassende Sätze zu den Sätzen der anderen Relation

sonstige

z.B. mit bitmap Indexe (bitmap join)

WEITERE OPERATIONEN

- Filtrierung der wiederholende Sätze (Ordnen, dann Löschen)
- Projektion (Projektion, dann Filtrierung der wiederholende Sätze)
- *Union* (beide Relationen müssen ordnen, dann die Duplikaten können beim Zusammenlegung gelöscht werden.)
- Durchschnitt (beide Relationen müssen ordnen, dann beim Zusammenlegung werden nur die Sätze bewahrt, die in beiden Relationen vorhanden waren)
- *Differenz* (beide Relationen müssen ordnen, dann beim Zusammenlegung werden nur die Sätze bewahrt die zur ersten Relation gehören)
- Aggregierung z.B.

 $_{\text{Markename}} G_{\text{sum}(Saldo)}$ (Rechnung)

Die Relation Rechnung muss nach Markename ordnen, Dann Saldo kann on-thefly gebildet weden.

MÖGLICHKEITEN DIE AUSDRÜCKE ZU BEWERTEN

Materialisierung

 Nur eine der Operationen des zusammengesetzten Ausdruckes wird gleichzeitig nach einem bestimmten Reihenfolge bewertet, und das Ergebnis wird auf Platte gespeichert.

Pipelining

- Mehrere Operationen des zusammengesetzten Ausdruckes können gleichzeitig bewertet werden
- Die folgende Operation bekommt sofort das Ergebnis der vorigen Operation

MATERIALISIERUNG

Kanonische Form:

$$\pi_{customer_name}(\sigma_{balance < 2500}(account) \bowtie customer)$$

Baum der Operationen:

- Gesamtkosten: die Kosten der durchgeführten Operationen + die Kosten der Teilergebnis-abspeicherungen
- Vorteil: einfache Implementierung
- Nachteil: viele Hintergrund-operationen

PIPELINING

- Simultane Bewertung der Teiloperationen
- Die Teile stellen Teilergebnisse für die Teile hinter ihnen aus der Ergebnisse des Teiles vor ihnen her
- Die ganze Relation muß in voraus nicht hergestellt werden.

Vorteile:

- Die Teilergebnisse müssen provisorisch nicht gespeichert werden
- Niedrige Speicherplatzbedarf

Nachteil:

Nur gewisse Algorithmen können verwendet werden

DIE SELEKTION DES OPTIMALEN AUSFÜHRUNGSPLANES

- Welche Operationen
- In welchen Reihenfolge
- Mit welchem Algorithmus
- Nach welchem Arbeitsablauf

Ein bestimmter Ausführungsplan

KOSTENBASIERTE OPTIMIERUNG

Gierige und gleichzeitig schlechte Strategie:

- Alle äquivalente Ausdrücke bestimmen
- Alle diese Ausdrücke bewerten
- Den Ausdruck von niedrigstem Kosten wählen

z.B.: $r_1 \bowtie r_2 \bowtie r_3 \rightarrow$ hat 12 äquivalente Ausdrücke

Im Allgemeinen: n Relationen zu verbinden gibt es $\frac{(2(n-1))!}{(n-1)!}$ äquivalente Möglichkeiten.

Es wäre eine zu große Last für das System.

Die Lösung: heuristische kostenbasierte Optimierung

AUTOMATISCHE VS. MANUELLE OPTIMIERUNG

Vorteile der automatischen Optimierung:

- Mehrere Kentnisse/Informationen über gespeicherte Daten.
- Schnellere numerische Bewertungsmögichkeit
- Systematische Bewertung
- Der Algorithmus enthält die Erfahrungen von mehreren Spezialisten.
- Die Bewertung kann vor jedem Programmablauf durchgeführt werden, mit Hilfe der neuesten Informationen/Bedingungen.

Vorteile der manuellen (menschlichen) Optimierung:

- Sogar semantische Kenntnisse können verwendet werden.
- Es gibt eine größere Freiheit die Methoden, Werkzeuge zu wählen.
- Unerwartende Situationen können besser behandelt werden.