Data Validation

개요

1 "nose"
2 "left_eye"
3 "right_eye"
4 "left_ear "
5 "right_ear"
6 "left_shoulder"
7 "right_shoulder"
8 "left_elbow"
9 "right_elbow"
10 "left_wrist"
11 right_wrist"
12 "left_hip"
13 "right_hip"
14 "left_knee"
15 "right_knee"
16 "left_ankle"
17 "right_ankle"

Red : center Green : Left Blue : Right 문제점

사람이 직접 Labeling한 데이터이기 때문에 좌우가 바뀌어 Labeling 된 데이터들이 존재한다

이미지 전체에 대해 Labeling이 반대로 적용된 경우

신체 일부분에 대해 Labeling이 반대로 적용된 경우

개발 주제

좌우가 잘못 입력된 Labeling 데이터를 올바르게 변환하는 툴 개발

Tool 개발

Python을 이용한 Labeling 변환 툴 개발

Right - Next Picture

Left - Previous Picture

Space Bar - Swap All Labelings

1~8 - Swap each part

데이터 검수

Train + Validation + Test Dataset = 약 120,000 → 후면 사진 위주로 확인

데이터 검수

각 부위에 대하여 좌측의 X 좌표가 우측의 X 좌표보다 큰 부위가 존재하는 사진들만 검출하여 확인

좌표 정보와 랜덤 샘플링을 이용해 확인

Classification

print('accuracy for hat : %d %%' %(accuracy[0] / 10 * 100))
print('accuracy for outer : %d %%' %(accuracy[1] / 20 * 100))
print('accuracy for top : %d %%' %(accuracy[2] / 20 * 100))
print('accuracy for bottom : %d %%' %(accuracy[3] / 20 * 100))
print('accuracy for shoes : %d %%' %(accuracy[4] / 10 * 100))

accuracy for hat: 10 % accuracy for outer: 70 % accuracy for top: 80 % accuracy for bottom: 70 % accuracy for shoes: 0 %

NIKE

