

教师姓名	沈炜炜	学生姓名		首课时间		本课时间	
学习科目	数学	上课年级	高一	教材版本 人教 A		A版	
课题名称	向量基本概念与线性运算						
重点难点	向量共线定理》	及 其运用					

一、向量的基本相关概念

有向线段 带有方向的线段. 用 \overrightarrow{AB} 表示; 线段 AB 的长度也叫做有向线段 \overrightarrow{AB} 的长度,记作 $|\overrightarrow{AB}|$. 有向线段包含三要素:起点、方向、长度

向量 既有大小,又有方向的量,用 \vec{a} , \vec{AB} , \vec{a} 表示;向量的大小即向量的长度或向量的模,用 $|\vec{a}|$ 表示.

- 不同于有向线段, 平面向量是自由向量(无源向量);
- 只有大小,没有方向的量称为数量; (物理学中通常称数量为标量,并把向量称为矢量)

零向量 长度为零的向量,其方向是任意的,记作 $\overrightarrow{0}$ 或 0;

相等向量 长度相等且方向相同的向量;

两个向量只能相等或者不相等,不能比较大小.

相反向量 长度相等且方向相反的向量

规定: 0的相反向量为 0

单位向量 长度等于一个单位长度的向量;

与向量 a 方向相同的向量通常记为 $\hat{a} (= \frac{a}{|a|}) (- 般手写为 \hat{a}$ 即可).

平行向量(共线向量) 方向相同或相反的非零向量叫做平行向量或共线向量; 规定零向量与任一向 量平行共线. 向量 a、b 平行记作 $a \parallel b$.

向量平行不具有传递性

台江校区: 83310089 鼓楼校区: 87500166 金山校区: 87521588 爱琴海校区: 87509388

向量的夹角 已知两个非零向量 a 和 b,如图,做 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$,则 $\angle AOB = \theta$ 叫做向量 a 和 b 的夹角. 记作 $\langle a, b \rangle$ 或 $\langle b, a \rangle$.

- 向量夹角的取值范围: [0,π];
- 当 $\theta = 0^{\circ}$ 时,向量a,b共线且同向;
- 当 $\theta = 90^{\circ}$ 时,向量a, b相互垂直,记作 $a \perp b$;
- 当 $\theta = 180^{\circ}$ 时,向量 a, b 共线且反向.

基础测试

1.1 判断下列结论是否正确(请在括号中打"~	" 武	" X ")	
-------------------------	-----	---------------	--

- (1) 向量与有向线段是一样的,因此可以用有向线段来表示向量.()
- (2)|a| 与 |b| 是否相等与 a,b 的方向无关. ()
- (3) 若 a // b,b // c, 则 a // c.()
- (4) 若向量 \overrightarrow{AB} 与向量 \overrightarrow{CD} 是共线向量,则 A,B,C,D 四点在一条直线上. ()
- (5) 若向量 \overrightarrow{AB} 与向量 \overrightarrow{CD} 平行,则直线 \overrightarrow{AB} 与 \overrightarrow{CD} 平行.()
- (6) 若向量 a 与任一向量 b 平行,则 a = 0. ()
- (7) 若两个向量共线,则其方向必定相同或相反.()
- **1.2** 有下列命题: ①两个相等向量,它们的起点相同,终点也相同;②若 |a| = |b|,则 a = b;③若 $|\overrightarrow{AB}| = |\overrightarrow{CD}|$,则四边形 ABCD 是平行四边形;④若 m = n,n = k,则 m = k;③位移、速率、重力 加速度都是向量;⑥共线的向量,若起点不同,则终点一定不同. 其中,错误的个数是....(
- A. 2

B. 3

C. 4

D. 5

- 1.4 在平面内,若将所有单位向量的起点平移到同一点,则它们的终点构成的图形为

二、向量的线性运算

向量的线性运算包括向量的加、减、数乘运算.

§1. 加法

定义 两个向量和的运算;

法则 平行四边形法则或三角形法则

对于零向量与任一向量a,规定

$$a + 0 = 0 + a = a$$

由三角形法则,可得向量不等式(有时称作"三角形不等式"):

$$\Big| |a| - |b| \Big| \leqslant |a + b| \leqslant |a| + |b|$$

若a和b为非零向量,则: 当a与b反向时,左边等式成立; 当a与b同向时,右边等式成立;

运算律 • 交换律: a + b = b + a

• 结合律: (a+b)+c=a+(b+c)

§2. 减法

定义 减去一个向量相当于加上这个向量的相反向量,即

$$a - b = a + (-b)$$

运算法则 三角形法则、平行四边形法则.

爱琴海校区: 87509388

对于任意一点 P, $\overrightarrow{AB} = \overrightarrow{PB} - \overrightarrow{PA}$,

鼓楼校区: 87500166

§3. 数乘

定义 求实数 λ 与向量 a 的积是一个向量,记作 λa ,长度与方向由以下法则规定:

法则 1) $|\lambda a| = |\lambda| |a|$;

- 2) 当 $\lambda > 0$ 时, λa 的方向与 a 的方向相同;
 - 当 λ < 0 时, λa 的方向与 a 的方向相反;

运算律 设 $\lambda, \mu \in \mathbb{R}$, 则:

- $\lambda(\mu a) = (\lambda \mu)a$;
- $(\lambda + \mu)a = \lambda a + \mu a$;
- $\lambda(a+b) = \lambda a + \lambda b$.

对于任意向量 a, b 以及任意实数 λ , μ_1 , μ_2 , 恒有:

$$\lambda(\mu_1 \mathbf{a} \pm \mu_2 \mathbf{b}) = \lambda \mu_1 \mathbf{a} \pm \lambda \mu_2 \mathbf{b}$$

定理 (向量共线定理). 向量 $a(a \neq 0)$ 与向量 b 共线, 当且仅当存在唯一的实数 λ , 使得 $b = \lambda a$.

证明三点共线的方法: ① $\overrightarrow{AB} = \lambda \overrightarrow{AC}$, 则 A, B, C 三点共线; ② $\overrightarrow{OA} = \lambda \overrightarrow{OB} + \mu \overrightarrow{OC}$, 若 $\lambda + \mu = 1$, 则 A, B, C 三点共线.

基础测试

- - \overrightarrow{A} . \overrightarrow{AD}
- B. \overrightarrow{DC}
- $C. \overrightarrow{DB}$
- \overrightarrow{D} . \overrightarrow{AB}

- **2.2** 判断下列结论是否正确(请在括号中打"√"或"**メ**")
 - (1) 若向量 b 与向量 a 共线,则存在唯一的实数 λ ,使得 $b = \lambda a$.()
 - (2) 若 $\boldsymbol{b} = \lambda \boldsymbol{a}$,则 \boldsymbol{a} 与 \boldsymbol{b} 共线.()
- (3) 若 $\lambda a = 0$, 则 a = 0.()
- **2.3** 如图所示,在五边形 ABCDE 中,若四边形 ACDE 是平行四边形,且 $\overrightarrow{AB} = a$, $\overrightarrow{AC} = b$, $\overrightarrow{AE} = c$, 试用向量 a, b, c 表示向量 \overrightarrow{BD} , \overrightarrow{BC} , \overrightarrow{BE} , \overrightarrow{CD} 及 \overrightarrow{CE} .

- **2.4** 1) $3(6a+b)-9(a+\frac{1}{3}b)=$ ____;
 - 2) 若 $2(y \frac{1}{3}a) \frac{1}{2}(c + b 3y) + b = 0$ 其中 a, b, c 为已知向量,则未知向量 y =______
 - 3) 若 a = b + c, 化简 $3(a + 2b) 2(3b + c) 2(a + b) = _____.$
- **2.5** 已知向量 a、b, 且 $\overrightarrow{AB} = a + 2b$, $\overrightarrow{BC} = -5a + 6b$, $\overrightarrow{CD} = 7a 2b$, 则一定共线的三点是...(
- A.A.B.D
- B, A, B, C
- C.B.C.D
- D.A.C.D
- A. 一定共线

- B. 一定不共线
- C. 当且仅当 e_1 与 e_2 共线时共线
- D. 当且仅当 $e_1 = e_2$ 时共线

三、习题

- **3.1** 一辆汽车从 A 点出发向西行驶了 100 km 到达 B 点,然后又改变方向向西偏北 50° 走了 200 km 到达 C 点,最后又改变方向,向东行驶了 100 km 到达 D 点.
- (1) 作出向量 \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} ;
- (2) 求 $|\overrightarrow{AD}|$.

A.
$$c = \frac{3}{2}b - \frac{1}{2}a$$
 B. $c = \frac{3}{2}a - \frac{1}{2}b$ C. $c = -a + 2b$ D. $c = a + 2b$

- **3.4** 设向量 a, b 不共线,向量 $\lambda a + b$ 与 a + 2b 共线,则实数 $\lambda = _____$.
- **3.5** 如图,在 $\triangle ABC$ 中,D,E 为边 AB 的两个三等分点, $\overrightarrow{CA}=3a$, $\overrightarrow{CB}=2b$,求 \overrightarrow{CD} , \overrightarrow{CE} (用 a,b 表示).

鼓楼校区: 87500166 台江校区: 83310089 金山校区: 87521588 爱琴海校区: 87509388

3.6 设 a, b 是不共线的两个非零向量.

- (1) 若 $\overrightarrow{OA} = 2a b$, $\overrightarrow{OB} = 3a + b$, $\overrightarrow{OC} = a 3b$, 求证: A, B, C 三点共线;
- (2) 若 8a + kb 与 ka + b 共线,求实数 k 的值;
- (3) 若 $\overrightarrow{OM} = ma$, $\overrightarrow{ON} = nb$, $\overrightarrow{OP} = \alpha a + \beta b$, 其中 m, n, α , β 均为实数,且 m, $n \neq 0$,若 M, P, N 三点共线,求证: $\frac{\alpha}{m} + \frac{\beta}{n} = 1$

3.7 设点 G 为 $\triangle ABC$ 重心,D,E,F 分别为各边中点. 试用向量证明: $AG = \frac{2}{3}AD$.

四、课后作业

•				
4.1 判断下列结论是否	正确 (请在括号中打"√'	,或" メ ")		
(1) 向量就是有向线段	z. ()			
(2) 如果 $ \overrightarrow{AB} > \overrightarrow{CD} $,	那么 $\overrightarrow{AB} > \overrightarrow{CD}$. ()			
(3) 力、速度和质量都	是向量.()			
(4) 若 a , b 都是单位	向量,则 $a = b$. ()			
(5) 若 $a = b$,且 a 与	b 的起点相同,则终点也	2相同. ()		
(6) 零向量的大小为 0	,没有方向. ()			
4.2 给出下列命题: ①	两个具有公共终点的向量	1,一定是共线向量;②两	个向量不能比较大小,但	旦它
们的模能比较大小;	$\Im \lambda a = 0(\lambda \mathrm{为实数}), \mathrm{M} \lambda$	必为零; ④λ, μ 为实数,	若 $\lambda a = \mu b$,则 $a 与 b$ ‡	共线.
其中正确的命题的个数	数为		()
A. 1	B. 2	C. 3	D. 4	
4.3 (2018 · 安徽淮北第	第一中学最后一卷)设 a ,	b 都是非零向量,下列四	个条件,使 $\frac{a}{ a } = \frac{b}{ b }$ 成立	立当
			11 1-1)
A. $a = b$	B. $a = 2b$	C. $a \# b$ 且 $ a = b $	D. a // b 且方向相同	
4.4 已知四边形 <i>ABCD</i>	是菱形,则下列等式中原	成立的是	()
A. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}$	B. $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$	$C. \overrightarrow{AC} + \overrightarrow{BA} = \overrightarrow{AD}$	$D. \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{DC}$	
4.5 已知 <i>AM</i> 是 △ <i>ABC</i>	的边 BC 上的中线,若 A	$\overrightarrow{AB} = a$, $\overrightarrow{AC} = b$, $\bigcirc \overrightarrow{AM}$	等于()
A. $\frac{1}{2}(a-b)$	B. $-\frac{1}{2}(a-b)$	C. $\frac{1}{2}(a+b)$	D. $-\frac{1}{2}(a+b)$	
4.6 已知向量 <i>a</i> 、 <i>b</i> 不	此线, $c = ka + b(k \in \mathbb{R})$,	$d = a - b$ 。如果 $c \parallel d$,	那么()
A. k = 1 且 c 与 d 同能	1]	B. $k = 1$ 且 c 与 d 反向		
C. k = -1 且 $c 与 d$ 同向		D. $k = -1$ 且 c 与 d 反	问	
4.7 化简:				
	$\overrightarrow{DB} + \overrightarrow{CD} + \overrightarrow{BC};$			
	$\overrightarrow{B} + \overrightarrow{FA}$; $\qquad \textcircled{4} (\overrightarrow{AC} + \overrightarrow{BC})$	$\overrightarrow{O} + \overrightarrow{OA}) - (\overrightarrow{DC} - \overrightarrow{DO} - \overrightarrow{OB})$);	

4.8 一架飞机从 A 地按北偏东 35° 的方向飞行 800 km 到达 B 地接到受伤人员,然后又从 B 地按南偏东 55° 的方向飞行 600 km 送往 C 地医院,求这架飞机飞行的路程及两次位移的和.

4.9 设点 G 为 $\triangle ABC$ 重心, D, E, F 分别为各边中点.

(1) 试用向量证明: 三角形三条中线共点; (2) 求 $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$.

4.10 已知 $\overrightarrow{OA} = \lambda \overrightarrow{OB} + \mu \overrightarrow{OC}(\lambda, \mu \in \mathbb{R})$,若 $\lambda + \mu = 1$,求证:点 A,B,C 三点共线.

4.11【定比分点坐标公式】如图,设 P 为 $\triangle ABO$ 边 AB 上一点. 设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$

(1)
$$\overrightarrow{R}$$
 \overrightarrow{i} : $\overrightarrow{OP} = \frac{|\overrightarrow{PB}|}{|b-a|}a + \frac{|\overrightarrow{PA}|}{|b-a|}b;$

(2) 设
$$\overrightarrow{AP} = \lambda \overrightarrow{PB}$$
, 求证: $\overrightarrow{OP} = \frac{a + \lambda b}{1 + \lambda}$

鼓楼校区: 87500166 台江校区: 83310089 金山校区: 87521588 爱琴海校区: 87509388

五、部分参考答案

- 1.1 (2)(5) 正确
- **2.1** B
- 2.3 $\overrightarrow{BD} = -a + c + b$; $\overrightarrow{BC} = b a$; $\overrightarrow{BE} = a a$; $\overrightarrow{CD} = c$; $\overrightarrow{CE} = c b$.
- **2.4** (1)9a; (2) $\frac{4}{21}a \frac{1}{7}b + \frac{1}{7}c$; -a.
- **2.5** A
- **2.6** C
- **3.2** $x = \frac{1}{2}$; $y = -\frac{1}{6}$
- **3.3** A
- 3.4 $\frac{1}{2}$
- 3.5 $\overrightarrow{CD} = 2a + \frac{2}{3}b$; $\overrightarrow{CE} = a + \frac{4}{3}b$
- **3.6** (1): $\overrightarrow{AB} = a + 2b$, $\overrightarrow{CB} = 2a + 4b$; $\overrightarrow{CB} = 2\overrightarrow{AB}$; (2) $k = 2\sqrt{2}$;
- 4.1 (5) 正确, 其余皆误.
- **4.2** A
- **4.3** D
- **4.4** C
- **4.5** C
- **4.6** D
- **4.7** $()\overrightarrow{AC}; (20; (30; 40))$
- 4.8 路程 1400km, 位移 1000km.