Gerlach, Luisa Heine, Tom Martin Kühne, Marc Sebastian Seegert, Noah-Joël

gerlaclu	599244
heinetom	597978
kuehnese	599833

596234

segertno

Abgabegruppe: AG42

Aufgabe 1

Direct Mapped Cache

0	1	2	3	4	5	6	7
		2					
		2			5		
0		2			5		
0		2			13		
0		[2]			13		
0		2			5		
0		10			5		
8		10			5		
0		10			5		
0		10		4	5		
0		10		4	[5]		
0		2		4	5		

In der Grafik sind **Hits** dick gedruckt in [] dargestellt. Bei gegebener Zugriffssequenz ergibt sich eine Trefferquote von $\frac{2}{12}\approx 16.67\%$.

Set-assoziativer Cache mit Set-Größe 4

Hierbei wird von der FIFO-Ersatzstrategie ausgegangen.

0	1	2	3	0	1	2	3
2							
2				5			
2	0			5			
2	0			5	13		
[2]	0			5	13		
2	0			[5]	13		
2	0	10		5	13		
2	0	10	8	5	13		
2	[0]	10	8	5	13		
4	0	10	8	5	13		
4	0	10	8	[5]	13		
4	2	10	8	5	13		

In der Grafik sind **Hits** dick gedruckt in [] dargestellt. Bei gegebener Zugriffssequenz

Abgabe: Blatt03 Version 04.06.2019

Abgabegruppe: AG42

ergibt sich eine Trefferquote von $\frac{4}{12} \approx 33.34\%$.

Vollassoziativer Cache mit LRU-Zugriff

0	1	2	3	4	5	6	7
2							
2	5						
2	5	0					
2	5	0	13				
[2]	5	0	13				
2	[5]	0	13				
2	5	0	13	10			
2	5	0	13	10	8		
2	5	[0]	13	10	8		
2	5	0	13	10	8	4	
2	[5]	0	13	10	8	4	
[2]	5	0	13	10	8	4	

In der Grafik sind **Hits** dick gedruckt in [] dargestellt. Bei gegebener Zugriffssequenz ergibt sich eine Trefferquote von $\frac{5}{12} \approx 41.67\%$.

Aufgabe 2

Bei einem Writeback-Cache mit einer Cachelinegröße von 32 Byte, einer Größe von 1 MByte und einem byteadressierten Hauptspeicher der Größe 4 GByte, müssen:

(a)

... bei einem 4-fach-setassoziativen Cache 16 Bit für jeden Eintrag von Steuerinformationen bereitstehen.

(b)

... 29 Bit für Einträge der Steuerinformationen in einem voll assoziativen Cache bereitgestellt werden.

(c)

... 14 Bit bereitgestellt werden, wenn ein direct mapped Cache zum Einsatz kommt.

rsion 04.06.2019 Abgabegruppe: AG42

Aufgabe 3

(a)

Adresse	Adresse binär	Seite	Offset
81	0000 0101 0001	0	81
1852	0111 0011 1100	3	316
396	0001 1000 1100	0	396
2810	1010 1111 1010	5	372
2019	0111 1110 0011	3	483
562	0010 0011 0010	1	25
3456	1101 1000 0000	6	192

(b)

Page frame	Valid Flag
10	0
01	1
	0
00	1
	0
11	1
10	1
	0

(c)

Log.Adresse	Phys. Adresse()
000 0 0101 0001	00 0 0101 0001
011 1 0011 1100	01 1 0011 1100
000 1 1000 1100	10 1 1000 1100
101 0 1111 1010	11 0 1111 1010
011 1 1110 0011	00 1 1110 0011
001 0 0011 0010	01 0 0011 0010
110 1 1000 0000	10 1 1000 0000