Tema 2. Sistemas digitales

Ejercicios

1 Sistemas combinacionales

Calcula la tabla de verdad del siguiente circuito.

¿Qué operación lógica básica se realiza entre las entradas A y B?

2 Sistemas combinacionales

Calcula la tabla de verdad del siguiente circuito.

¿Qué operación lógica básica se realiza entre las entradas A y B?

3 Sistemas combinacionales

Calcula la tabla de verdad del siguiente circuito.

¿Qué operación lógica básica se realiza entre las entradas A y B?

4 Sistemas combinacionales

Dado el circuito mostrado en la siguiente figura:

¿Qué valor se obtendrá en la salida S? Responder en decimal.

5 Sistemas combinacionales

Diseña un circuito que dados dos números naturales de 1 bit A y B ponga la salida a uno cuando A sea mayor que B. Puede haber múltiples soluciones válidas.

6 Sistemas combinacionales

Diseña un circuito que ponga la salida a uno cuando el número de tres bits que recibe como entrada sea mayor que 5. Puede haber múltiples soluciones válidas.

7 Sistemas combinacionales

Diseña un circuito que ponga la salida a uno cuando el número de tres bits que recibe como entrada sea par (el cero se considera par). Puede haber múltiples soluciones válidas.

8 ALU

A una ALU de 4 bits análoga a la vista en clase se le pide realizar varias operaciones sobre los operandos naturales A=4 y B=12. Indicar el resultado en binario de las operaciones y el de los bits de estado. Nota: el valor de los bits de *carry* y *overflow* debe ignorarse en las operaciones no aritméticas y puede indicarse con un guion.

SUMA→ Resultado =	ZCOS =
RESTA→ Resultado =	ZCOS =
AND→ Resultado =	ZCOS =
OR→ Resultado =	ZCOS =
XOR→ Resultado =	ZCOS =

9 ALU

Una ALU de 6 bits análoga a la vista en clase tiene todas sus entradas a 1 a excepción de las entradas a₄, a₃, a₂, a₁ y a₀. Indica el resultado de la ALU en decimal, interpretado como natural e interpretado como entero, así como el valor de los bits de estado.

10 ALU

Una ALU de 4 bits similar a la vista en clase realiza una operación aritmético-lógica tras la que los bits del registro de estado quedan con los siguientes valores: ZCOS = 1110. Se sabe que todas las señales de entrada están a 0 a excepción de a₃, b₃, OP₀ y OP₁, de las que se desconoce su valor. Teniendo en cuenta la información proporcionada, ¿cuál será el valor de las señales a₃, b₃ y OP₁?

1	1	ΔI	l	J

Se desea construir una ALU que sea capaz de operar con números enteros expresados en complemento a 2 en el rango [-1024, 1023], ¿cuántos sumadores elementales son necesarios para construir esta ALU?

12 Sistemas secuenciales

Dibujar el cronograma correspondiente a la salida del siguiente circuito. Suponer que en el instante inicial la salida del biestable es cero.

13 Sistemas secuenciales

Dibujar el cronograma correspondiente a la salida del siguiente circuito. Suponer que en el instante inicial la salida de los biestables es cero.

14 Sistemas secuenciales

En el siguiente cronograma, indicar el valor de cada señal a lo largo del tiempo para transferir el contenido del registro A al registro B, y posteriormente, la transferencia del registro C al A. Sólo se pueden activar o desactivar las señales en los instantes indicados con línea discontinua. La transferencia se realiza través de un único bus compartido.

