Module-LWE vs. Ring-LWE?

Amit Deo

Royal Holloway, University of London

15 January, 2018

Main Aim of the Talk

- 1. Discuss popular variants of the LWE problem
- 2. Present a collection of reductions between the variants
- 3. Explicitly state parameter expansions in the reductions

Outline

- 1. Definitions
- 2. Motivation for Ring/Module-LWE
- 3. Normal Form Secrets
- 4. "BLPRS13" Style Reductions
- 5. "Structure-Building" Reduction

Section 1

Definitions

Notation

Vectors $\mathbf{x} \in \mathbb{Z}_q^n$:

- ▶ Entries integers modulo q, i.e. \mathbb{Z}_q
- ▶ Dimension n, i.e. $\mathbf{x} = (x_0, \dots, x_{n-1})$

Ring elements $r \in R_q = \mathbb{Z}_q[X]/(X^n + 1)$:

- Coefficients integers modulo q
- ▶ Degree at most n-1 i.e.

$$r=r_0+r_1\cdot X+\cdots+r_{n-1}\cdot X^{n-1}\in\mathbb{Z}_q[X]/(X^n+1)$$

▶ Coefficient Embedding $r = (r_0, ..., r_{n-1}) \in \mathbb{Z}_q^n$

Notation

Module elements $\mathbf{m} \in R_q^d$:

- ▶ A *d*-tuple of ring elements $\mathbf{m} = (m_0, \dots, m_{d-1})$
- ▶ Multiplication: $\mathbf{m} \cdot \mathbf{n} := m_0 n_0 + \cdots + m_{d-1} \cdot n_{d-1}$

Terminology:

- ▶ q is a "modulus"
- n is a "(ring) dimension"
- d is a "module rank"
- m is the number of samples

Notation: Distributions

▶ *U*(*X*) - uniform distribution over set *X*

Notation: Distributions

- ► U(X) uniform distribution over set X
- χ_{σ} discrete gaussian over the integers, s.d. σ
- $ightharpoonup D_{\Lambda,\sigma}$ discrete gaussian over lattice Λ, s.d. σ
- ▶ $D_{\Lambda,\mathbf{r}}$ discrete ellipsoidal gaussian with s.d.'s $r_i \in \mathbb{R}$

Notation: Distributions

- ightharpoonup U(X) uniform distribution over set X
- χ_{σ} discrete gaussian over the integers, s.d. σ
- ▶ $D_{Λ,σ}$ discrete gaussian over lattice Λ, s.d. σ
- ▶ $D_{\Lambda,\mathbf{r}}$ discrete ellipsoidal gaussian with s.d.'s $r_i \in \mathbb{R}$
- ▶ D_{σ} continuous gaussian over \mathbb{R}
- ▶ $D_{\mathbf{r}}$ continuous ellipsoidal gaussian over \mathbb{R}^n with s.d.'s r_i

Generic LWE Problem Framework

Given some uniform random a, $b = a \cdot s + e$:

- (search LWE) decode the noisy product b i.e. recover s from b for "small" e
- ▶ (decision LWE) distinguish b from uniform random

Generic LWE Problem Framework

Given some uniform random a, $b = a \cdot s + e$:

- (search LWE) decode the noisy product b i.e. recover s from b for "small" e
- ▶ (decision LWE) distinguish b from uniform random

Plain LWE sample: $\mathbf{a} \leftarrow \mathbb{Z}_q^n$; $\mathbf{s} \leftarrow U$ or χ_{σ}^n , $\mathbf{e} \leftarrow \chi_{\sigma}$; $\mathbf{b} \in \mathbb{Z}_q$

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_m \end{bmatrix}, \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \cdot \begin{bmatrix} s \\ t \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \dots \\ e_m \end{bmatrix}$$

Distributions and Parameters

- Uniform a
- Error distribution: discrete gaussian $e \leftarrow \chi_{\sigma}$
- ▶ Secret distribution: uniform s or $s \leftarrow \chi_{\sigma}^{n}$

Plain LWE sample: $\mathbf{a} \leftarrow \mathbb{Z}_q^n$; $\mathbf{s} \leftarrow \chi_{\sigma}^n$, $\mathbf{e} \leftarrow \chi_{\sigma}$; $\mathbf{b} \in \mathbb{Z}_q$

Distributions and Parameters

- Uniform a
- Error distribution: discrete gaussian $\mathbf{e} \leftarrow \chi_{\sigma}$
- ▶ Secret distribution: uniform ${\color{red} s}$ or ${\color{red} s} \leftarrow \chi^n_\sigma$

Plain LWE sample:
$$\mathbf{a} \leftarrow \mathbb{Z}_q^n$$
; $\mathbf{s} \leftarrow \chi_{\sigma}^n$, $\mathbf{e} \leftarrow \chi_{\sigma}$; $\mathbf{b} \in \mathbb{Z}_q$

- ightharpoonup Absolute error σ
- Error rate $\alpha := \sigma/q$

Practical Ring-LWE

Let $R_q = \mathbb{Z}_q[X]/(X^n + 1)$. Given some uniform random $a \in R_q$,

- ▶ (search) recover $s \in R_q$ from $b = a \cdot s + e$ for "small" $e \in R_q$
- **(decision)** decide whether $b = a \cdot s + e$ or b is random

Practical Ring-LWE

Let $R_q = \mathbb{Z}_q[X]/(X^n + 1)$. Given some uniform random $a \in R_q$,

- ▶ (search) recover $s \in R_q$ from $b = a \cdot s + e$ for "small" $e \in R_q$
- **(decision)** decide whether $b = a \cdot s + e$ or b is random

Almost Proper Ring-LWE

Given some uniform random $a \in R_q$,

- ▶ (search) recover $s \in (R_q)^d$ from $b = \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + e \mod 1$ for "small" $e \in R_q$
- ▶ (decision) decide whether $b = \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + e \mod 1$ or b is random

Notes:

- ▶ The error distribution is now **continuous**
- ▶ The discrete Gaussian distribution χ_{σ} becomes continuous Gaussian D_{α} where $\alpha := \sigma/q$
- Ignoring canonical embedding and dual ring

Practical Module-LWE

Given some uniform random $a \in (R_q)^d$,

- ▶ (search) recover $s \in (R_q)^d$ from $b = a \cdot s + e$ for "small" $e \in R_q$
- ▶ (decision) decide whether $b = a \cdot s + e$ or b is random

Practical Module-LWE

Given some uniform random $a \in (R_q)^d$,

- ▶ (search) recover $s \in (R_q)^d$ from $b = a \cdot s + e$ for "small" $e \in R_q$
- ▶ (decision) decide whether $b = a \cdot s + e$ or b is random

Error distribution: $\mathbf{s} \leftarrow \chi_{\sigma}^{nd}, \mathbf{e} \leftarrow \chi_{\sigma}^{n}$

Almost Proper Module-LWE

Given some uniform random $a \in (R_q)^d$,

- ▶ (search) recover $s \in (R_q)^d$ from $b = \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + e \mod 1$ for "small" $e \in R_q$
- ▶ (decision) decide whether $b = \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + e \mod 1$ or b is random

Notes:

- ► The error distribution is now **continuous**
- ▶ The discrete Gaussian distribution χ_{σ} becomes continuous Gaussian D_{α} where $\alpha := \sigma/q$
- ▶ Once again, we ignore canonical embedding and dual ring

Other Variants

- Learning with Rounding (LWR)
- Compact-LWE
- ► Binary-LWE
- And many more

Section 2

Motivation for Ring-LWE/Module-LWE

Efficiency vs. Security

- Representing n LWE samples:
 - ► *O*(*n*) integers (Ring-LWE)
 - ► *O*(*nd*) integers (Module-LWE)
 - $O(n^2)$ integers (LWE)

Efficiency vs. Security

- Representing n LWE samples:
 - ► *O*(*n*) integers (Ring-LWE)
 - ► *O*(*nd*) integers (Module-LWE)
 - $ightharpoonup O(n^2)$ integers (LWE)
- Lattice hardness:
 - ► Ideal lattices SIVP (Ring-LWE)
 - Module lattices SIVP (Module-LWE)
 - General lattices SIVP (LWE)

Flexibility of Module-LWE

- ▶ $R = \mathbb{Z}_q[X]/(X^n + 1)$ for power-of-two n
- ► Effective Ring-LWE dimensions: 256, 512, 1024, 2048, . . .
- ▶ Effective Module-LWE dimensions: $256 \cdot d, d = 1, 2, ...$

Note:

The cost of multiplying using Module-LWE is larger than the cost of multiplying for Ring-LWE of the same effective dimension.

Section 3

Transforming Secret Distributions

Normal Form LWE

Lemma

Let q be prime. Given m > n uniform secret LWE samples $(A,b) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^m$, we can produce m-n normal form LWE samples $(A',b') \in \mathbb{Z}_q^{n \times (m-n)} \times \mathbb{Z}_q^{(m-n)}$ (with significant probability 1-O(1/q)).

Normal Form LWE

Lemma

Let q be prime. Given m > n uniform secret LWE samples $(A,b) \in \mathbb{Z}_q^{n \times m} \times \mathbb{Z}_q^m$, we can produce m-n normal form LWE samples $(A',b') \in \mathbb{Z}_q^{n \times (m-n)} \times \mathbb{Z}_q^{(m-n)}$ (with significant probability 1-O(1/q)).

Proof.

- 1. Write $A = [A_1|A_2]$ where $A_1 \in \mathbb{Z}_q^{n \times n}$ is invertible.
- 2. $b = [b_1|b_2]^T := [A_1|A_2]^T s + [e_1|e_2]^T$
- 3. Set $A' := -A_1^{-1}A_2$, $b' := A'^Tb_1 + b_2 = A'e_1 + e_2$.

Non-Uniform Secret --- Uniform Secret

Lemma

Given a LWE sample (a, b) with non-uniform secret s, we can obtain a LWE sample (a, \tilde{b}) with a uniform secret \tilde{s} .

Proof.

- 1. Sample $s' \leftarrow U$.
- 2. Output LWE sample

$$\left(a,\tilde{b}:=b+a\cdot s'=a\cdot (s'+s)+e\right)=(a,a\cdot (s'+s)+e).$$

Section 4

BLPRS13 Style Reductions

Modulus-Dimension Switching LWE Reduction ¹

Lemma

There exists a reduction from $\mathsf{LWE}_{m,n,q,D_{\alpha}} \longrightarrow \mathsf{LWE}_{m,n'=n/k,q'=q^k,D_{\beta}}$ where $\beta = \mathcal{O}(\alpha \sqrt{n})$.

"We can reduce the dimension at the cost of increasing the modulus while changing the error rate by a \sqrt{n} factor without decreasing hardness."

Reduction Intuition

Goal

Find a reduction (i.e. transformation \mathcal{F}) such that the original LWE distribution almost maps to the target LWE distribution where the effect that \mathcal{F} has on the secret is reversible.

$$\begin{split} \mathcal{F}(\mathsf{LWE}) \sim_{\mathsf{indist.}} \mathsf{LWE}' \\ \mathbf{a} \in \mathbb{Z}_q^n & \xrightarrow{\mathcal{F}} & \mathbf{a}' \in \mathbb{Z}_{q^k}^{n/k} \\ \mathbf{s} \in \mathbb{Z}_q^n & \xrightarrow{\mathcal{F}} & \mathbf{s}' \in \mathbb{Z}_{q^k}^{n/k} \\ b = \left(\frac{1}{q}\mathbf{a} \cdot \mathbf{s} + e\right) \ \mathsf{mod} \ 1 & \xrightarrow{\mathcal{F}} & b' = \left(\frac{1}{q^k}\mathbf{a}' \cdot \mathbf{s}' + e'\right) \ \mathsf{mod} \ 1 \end{split}$$

Reduction Intuition n = 3, n/k = 1

$$a' = a_0 + qa_1 + q^2a_2$$

 $s' = s_2 + qs_1 + q^2s_0$

Reduction Intuition n = 3, n/k = 1

$$a' = a_0 + qa_1 + q^2a_2$$

 $s' = s_2 + qs_1 + q^2s_0$

$$\implies \frac{1}{q^3} a' \cdot s' \equiv 0 + \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + \frac{1}{q^2} (a_0 \cdot s_1 + a_1 \cdot s_2) + \dots \mod 1$$
$$\approx \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \mod 1$$

Reduction Intuition n = 3, n/k = 1

$$a' = a_0 + qa_1 + q^2a_2$$

 $s' = s_2 + qs_1 + q^2s_0$

$$\implies \frac{1}{q^3} a' \cdot s' \equiv 0 + \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + \frac{1}{q^2} (a_0 \cdot s_1 + a_1 \cdot s_2) + \dots \mod 1$$
$$\approx \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \mod 1$$

Therefore take b' = b

A Closer Look at the Error Distribution

Want to analyse the distribution of:

$$b' - \frac{1}{q^n}a' \cdot s' = e - \sum_{i>j} q^{j-i-1}a_j s_i$$

Problem:

 $ightharpoonup q^{j-i-1}a_js_i$ are *not* continuous gaussians ightharpoonup

INTERLUDE: Fixing a "Bad" Error Distribution - Discrete Version

Aim

Given bad non-Gaussian distribution \hat{e} , make it look like a discrete Gaussian.

How?

Drown by adding a wide discrete Gaussian i.e. consider $\hat{e} + \chi_{\sigma}$

Fixing a "Bad" Error Distribution - Discrete Version

Drowning ($\sigma = 3$)

Drowning ($\sigma = 10$)

Drowning ($\sigma = 10$)

Drowning ($\sigma = 20$)

Drowning ($\sigma = 20$)

Drowning Lemma

Lemma

- ² Assuming $(1/r^2 + (||\mathbf{z}||/\alpha)^2)^{-1/2} > \eta_{\epsilon}(\Lambda)$, the arising distributions of the following are within statistical distance 4ϵ :
 - 1. Sample $\mathbf{v} \leftarrow D_{\Lambda+\mathbf{u},r}, e \leftarrow D_{\alpha}$, output $\langle \mathbf{z}, \mathbf{v} \rangle + e$.
 - 2. Let $\beta = \sqrt{(r||\mathbf{z}||)^2 + \alpha^2}$, output $e' \leftarrow D_{\beta}$.

²O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005

Drowning Lemma

Lemma

- ² Assuming $(1/r^2 + (||\mathbf{z}||/\alpha)^2)^{-1/2} > \eta_{\epsilon}(\Lambda)$, the arising distributions of the following are within statistical distance 4ϵ :
 - 1. Sample $\mathbf{v} \leftarrow D_{\Lambda+\mathbf{u},r}, e \leftarrow D_{\alpha}$, output $\langle \mathbf{z}, \mathbf{v} \rangle + e$.
 - 2. Let $\beta = \sqrt{(r||\mathbf{z}||)^2 + \alpha^2}$, output $\mathbf{e}' \leftarrow D_{\beta}$.

Notes:

- ▶ Fix r, \mathbf{z} , $\Lambda \to \text{minimum drowning parameter } \alpha(\epsilon)$.

²O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005

"General" Reduction from BLPRS13 (n' = n/k)

Define:

- ▶ $\mathbf{G} := \mathbf{I}_{n'} \otimes \mathbf{g}$ where $\mathbf{g} := (1, q, \dots, q^{k-1})^T$ and
- $\wedge \Lambda := a^{-k} \mathbf{G}^T \mathbb{Z}^{n'} + \mathbb{Z}^n$
- ▶ Let $(\mathbf{a}, b = \frac{1}{a}\mathbf{a} \cdot \mathbf{s} + e) \in \mathbb{Z}_a^n \times \mathbb{T}$ be LWE sample.

"General" Reduction from BLPRS13 (n' = n/k)

Define:

- ▶ $\mathbf{G} := \mathbf{I}_{n'} \otimes \mathbf{g}$ where $\mathbf{g} := (1, q, \dots, q^{k-1})^T$ and
- $\wedge \Lambda := q^{-k} \mathbf{G}^T \mathbb{Z}^{n'} + \mathbb{Z}^n$
- ▶ Let $(\mathbf{a}, b = \frac{1}{a}\mathbf{a} \cdot \mathbf{s} + e) \in \mathbb{Z}_a^n \times \mathbb{T}$ be LWE sample.

Reduction:

- 1. Sample $\mathbf{f} \leftarrow D_{\Lambda \mathbf{a}, r}$ where $|r| \geq ||\tilde{\mathbf{B}}|| \cdot \sqrt{\ln(2n(1+1/\epsilon))/\pi} \geq \eta_{\epsilon}(\Lambda), 3$ and choose \mathbf{a}' as a uniform random solution to $\mathbf{G}^T \mathbf{a}' = \mathbf{a} + \mathbf{f} \mod \mathbb{Z}^n$.
- 2. Sample $e' \leftarrow D_{rB}$ where $B \ge ||\mathbf{s}||$ and output b' = b + e'.
- 3. Output (\mathbf{a}', b') .

Correctness of the Reduction

Proof.

- ▶ \mathbf{a}' is uniform: $\mathbf{a} + \mathbf{f} \in \Lambda/\mathbb{Z}^n$ is uniform random for $r \geq \eta_{\epsilon}(\Lambda)$ and $\mathbf{G}^T \mathbf{a}' = \mathbf{v} \mod \mathbb{Z}^n$ has the same number of solutions for every \mathbf{v} .
- Error distribution: Let $\mathbf{s}' := \mathbf{G}^T \mathbf{s}$. Then

$$b' - rac{1}{q^k} \mathbf{a}' \cdot \mathbf{s}' = \langle -\mathbf{f}, \mathbf{s}
angle + e' + e \mod 1$$

is statistically close to a Gaussian by the drowning lemma if r is big enough.

Recap of Result (Modulus-Dimension Switching)

Lemma

There exists a reduction from

$$\mathsf{LWE}_{m,n,q,D_\alpha} \longrightarrow \mathsf{LWE}_{m,n'=n/k,q'=q^k,D_\beta} \text{ where } \beta = \mathcal{O}(\alpha \sqrt{n}).$$

$Module-LWE \longrightarrow Ring-LWE$

Idea

Treat module elements as vectors of ring elements and apply BLPRS13 ($R^d \leftrightarrow \mathbb{Z}^n, R \leftrightarrow \mathbb{Z}$).

Reducing (Search) Module-LWE to Ring-LWE

Goal

Find a reduction (i.e. transformation \mathcal{F}) such that the MLWE distribution almost maps to a RLWE distribution where the effect that \mathcal{F} has on the secret is reversible.

$$\begin{split} \mathbf{a} &\in R_q^d \quad \stackrel{\mathcal{F}}{\longrightarrow} \quad a' \in R_{q^d} \\ \mathbf{s} &\in R_q^d \quad \stackrel{\mathcal{F}}{\longrightarrow} \quad s' \in R_{q^d} \\ b &= \left(\frac{1}{q}\mathbf{a} \cdot \mathbf{s} + e\right) \bmod 1 \quad \stackrel{\mathcal{F}}{\longrightarrow} \quad b' = \left(\frac{1}{q^d}a' \cdot s' + e'\right) \bmod 1 \end{split}$$

Reduction Intuition d = 3

$$a' = a_0(X) + qa_1(X) + q^2a_2(X)$$

 $s' = s_2(X) + qs_1(X) + q^2s_0(X)$

Reduction Intuition d = 3

$$a' = a_0(X) + qa_1(X) + q^2a_2(X)$$

 $s' = s_2(X) + qs_1(X) + q^2s_0(X)$

$$\implies rac{1}{q^3} a' \cdot s' \equiv 0 + rac{1}{q} \mathbf{a} \cdot \mathbf{s} + rac{1}{q^2} (a_0 \cdot s_1 + a_1 \cdot s_2) + \dots \mod 1$$
 $pprox rac{1}{q} \mathbf{a} \cdot \mathbf{s} \mod 1$

Reduction Intuition d = 3

$$a' = a_0(X) + qa_1(X) + q^2a_2(X)$$

 $s' = s_2(X) + qs_1(X) + q^2s_0(X)$

$$\implies \frac{1}{q^3} \mathbf{a}' \cdot \mathbf{s}' \equiv 0 + \frac{1}{q} \mathbf{a} \cdot \mathbf{s} + \frac{1}{q^2} (a_0 \cdot s_1 + a_1 \cdot s_2) + \dots \mod 1$$
$$\approxeq \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \mod 1$$

Therefore take b' = b

A Closer Look at the Error Distribution

Want to analyse the distribution of:

$$b' - \frac{1}{q^d}a' \cdot s' = e - \sum_{i>j} q^{j-i-1}a_j s_i$$

- ▶ e is a continuous, narrow Gaussian ✓
- The sum is kind of small

A Closer Look at the Error Distribution

Want to analyse the distribution of:

$$\tilde{b} - \frac{1}{q^d} \tilde{a} \cdot \tilde{s} = e - \sum_{i>j} q^{j-i-1} a_j s_i$$

Problems:

- 1. $q^{j-i-1}a_is_i$ are not continuous gaussians X
- 2. Coefficients are *not* independent (partial solution: canonical embedding)

INTERLUDE: Rényi Divergence

Definition

(Rényi Divergence) For any distributions P and Q such that $\operatorname{Supp}(P)\subseteq\operatorname{Supp}(Q)$, the Rényi divergence of P and Q of order $a\in[1,\infty]$ is given by

$$R_{a}\left(P||Q\right) = \begin{cases} \exp\left(\sum_{x \in \mathsf{Supp}(P)} P(x) \log \frac{P(x)}{Q(x)}\right) & \text{ for } a = 1, \\ \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{\frac{1}{a-1}} & \text{ for } a \in (1, \infty), \\ \max_{x \in \mathsf{Supp}(P)} \frac{P(x)}{Q(x)} & \text{ for } a = \infty. \end{cases}$$

Properties of Rényi Divergence

Let P and Q be distributions such that $Supp(P) \subseteq Supp(Q)$. Then we have:

Probability Preservation:

$$\Pr(\mathsf{Success}_Q) \ge \Pr(\mathsf{Success}_P)^{\frac{a}{a-1}}/R_a(P||Q) \text{ if } a \in (1,\infty)$$

Properties of Rényi Divergence

Let P and Q be distributions such that $Supp(P) \subseteq Supp(Q)$. Then we have:

Probability Preservation:

$$\Pr(\mathsf{Success}_Q) \ge \Pr(\mathsf{Success}_P)^{\frac{a}{a-1}}/R_a(P||Q) \text{ if } a \in (1,\infty)$$

Weak Triangle Inequality: For intermediate distribution P_1 ,

$$R_a(P||Q) \le R_\infty(P||P_1)^{\frac{a}{a-1}} \cdot R_a(P_1||Q)$$
 if $a \in (1, +\infty)$.

Drowning Lemma over *n*-dimensions

Lemma (Drowning ellipsoidal discrete Gaussians ⁴)

Assume that $\min_i \frac{r_i \sigma}{\sqrt{r_i^2 + \sigma^2}} \ge \eta_{\epsilon}(\Lambda)$ for some $\epsilon \in (0, 1/2)$. Consider the continuous distributions:

- ▶ Y obtained by sampling from $D_{\Lambda+\mathbf{u},\mathbf{r}}$ and then adding a vector from D_{σ}
- $D_{\mathbf{t}}$ where $t_i = \sqrt{r_i^2 + \sigma^2}$

Then we have $\Delta(Y, D_t) \leq 4\epsilon$ and $R_{\infty}(D_t||Y) \leq \frac{1+\epsilon}{1-\epsilon}$.

⁴A. Langlois, D. Stéhle. Worst-case to average-case reductions for module

Drowning Lemma over *n*-dimensions

Lemma (Drowning ellipsoidal discrete Gaussians ⁴)

Assume that $\min_i \frac{r_i \sigma}{\sqrt{r_i^2 + \sigma^2}} \ge \eta_{\epsilon}(\Lambda)$ for some $\epsilon \in (0, 1/2)$. Consider the continuous distributions:

- ▶ Y obtained by sampling from $D_{\Lambda+\mathbf{u},\mathbf{r}}$ and then adding a vector from D_{σ}
- $D_{\mathbf{t}}$ where $t_i = \sqrt{r_i^2 + \sigma^2}$

Then we have $\Delta(Y, D_t) \leq 4\epsilon$ and $R_{\infty}(D_t||Y) \leq \frac{1+\epsilon}{1-\epsilon}$.

Notes:

- ▶ Fix \mathbf{r} , $\Lambda \rightarrow$ minimum drowning parameter $\sigma(\epsilon)$.

lattices. DCC15

⁴A. Langlois, D. Stéhle. Worst-case to average-case reductions for module

"General" Reduction $MLWE_d \rightarrow MLWE_{d'}$ (d' = d/k)

Define:

- ▶ $\mathbf{G} := \mathbf{I}_{d'} \otimes \mathbf{g} \otimes \mathbf{I}_n$ where $\mathbf{g} := (1, q, \dots, q^{k-1})^T$ and
- \wedge $\Lambda := q^{-k} \mathbf{G}^T \mathbb{Z}^{nd'} + \mathbb{Z}^{nd}$
- ▶ Let $(\mathbf{a}, b = \frac{1}{a}\mathbf{a} \cdot \mathbf{s} + e) \in \mathbb{Z}_a^{nd} \times \mathbb{T}^n$ be the MLWE sample.

"General" Reduction $\mathsf{MLWE}_d o \mathsf{MLWE}_{d'} \ (d' = d/k)$

Define:

- ▶ $\mathbf{G} := \mathbf{I}_{d'} \otimes \mathbf{g} \otimes \mathbf{I}_n$ where $\mathbf{g} := (1, q, \dots, q^{k-1})^T$ and
- \wedge $\Lambda := q^{-k} \mathbf{G}^T \mathbb{Z}^{nd'} + \mathbb{Z}^{nd}$
- ▶ Let $(\mathbf{a}, b = \frac{1}{a}\mathbf{a} \cdot \mathbf{s} + e) \in \mathbb{Z}_q^{nd} \times \mathbb{T}^n$ be the MLWE sample.

Reduction:

- 1. Sample $\mathbf{f} \leftarrow D_{\Lambda-\mathbf{a},r}$ where $r \geq ||\tilde{\mathbf{B}}|| \cdot \sqrt{\ln(2n(1+1/\epsilon))/\pi} \geq \eta_{\epsilon}(\Lambda)$, ⁵ and choose \mathbf{a}' as a uniform random solution to $\mathbf{G}^T \mathbf{a}' = \mathbf{a} + \mathbf{f} \mod \mathbb{Z}^{nd}$.
- 2. Sample $\mathbf{e}'_i \leftarrow (D_{rB})^n, i = 1 \dots d$ where $B \ge ||\mathbf{s}||$ and output $b' = b + \sum \mathbf{e}'_i$.
- 3. Output (a', b').

Correctness of the Reduction (Overview)

▶ \mathbf{a}' is uniform: $\mathbf{v} = \mathbf{a} + \mathbf{f} \in \Lambda/\mathbb{Z}^{nd}$ is uniform random for $r \geq \eta_{\epsilon}(\Lambda)$ and $\mathbf{G}^T \mathbf{a}' = \mathbf{v} \mod \mathbb{Z}^{nd}$ has the same number of solutions for every \mathbf{v}

Correctness of the Reduction (Overview)

Error distribution: Let $s' := G^T s$. Then

$$b' - rac{1}{q^k}\mathbf{a}'\cdot\mathbf{s}' = \sum_{i=1}^d \mathbf{S}_i\cdot(-\mathbf{f}_i) + \mathbf{e}_i' + \mathbf{e} mod 1$$

Correctness of the Reduction (Overview)

Error distribution: Let $\mathbf{s}' := \mathbf{G}^T \mathbf{s}$. Then

$$b' - rac{1}{q^k} \mathbf{a}' \cdot \mathbf{s}' = \sum_{i=1}^d \mathbf{S}_i \cdot (-\mathbf{f}_i) + \mathbf{e}_i' + \mathbf{e} mod 1$$

- ▶ S_i is the matrix version of $s_i \in R$
- $\triangleright \mathbf{S}_i \cdot (\mathbf{f}_i) \leftarrow D_{\frac{1}{q}} \mathbf{S}_i \mathbb{Z}^n + \mathbf{S}_i \mathbf{v}_i, r' \mathbf{S}_i^T$

Apply drowning lemma d times.

Recap of Result

Lemma

There exists a reduction from $\mathsf{MLWE}_{m,d,q,D_{\alpha}} \longrightarrow \mathsf{MLWE}_{m,d'=d/k,q'=q^k,D_{\leq\beta}} \text{ where } \\ \beta = \mathcal{O}(\alpha n^2 \sqrt{d}) \text{ preserving non-negligible success probability.}$

Recap of Result

Lemma

There exists a reduction from $\mathsf{MLWE}_{m,d,q,D_{\alpha}} \longrightarrow \mathsf{MLWE}_{m,d'=d/k,q'=q^k,D_{\leq\beta}} \text{ where } \\ \beta = \mathcal{O}(\alpha n^2 \sqrt{d}) \text{ preserving non-negligible success probability.}$

Or for perfectly spherical gaussian errors:

Lemma

There exists a reduction from

$$\mathsf{MLWE}_{m,d,q,D_{lpha}} \longrightarrow \mathsf{LWE}_{m,d'=d/k,q'=q^k,D_{eta}} \ \ \textit{where} \ \ \beta = \mathcal{O}(\alpha n^{9/4} \sqrt{d}).$$

Ring-LWE $(n, q) \rightarrow \text{Ring-LWE } (n/2, q^2)$

Lemma

There is a reduction $RLWE_{m,n,q,\alpha} \longrightarrow RLWE_{m,n/2,q^2,\beta}$ where $\beta = \mathcal{O}(n^{9/4} \cdot \alpha)$.

Ring-LWE $(n, q) \rightarrow \text{Ring-LWE } (n/2, q^2)$

Lemma

There is a reduction $RLWE_{m,n,q,\alpha} \longrightarrow RLWE_{m,n/2,q^2,\beta}$ where $\beta = \mathcal{O}(n^{9/4} \cdot \alpha)$.

Remark.

Can go from n to 2 dimensions by incurring an extra factor of n.

Section 5

Structure Building Reductions

Many LWE Samples → One Ring-LWE Sample

Aim to show:6

$$\mathsf{LWE}_{m=n,d,q,D_{\alpha}} \quad \longrightarrow \quad \mathsf{RLWE}_{m=1,n,q^d,D_{\alpha\sqrt{d}}} \tag{1}$$

 $^{^6}d$ is the LWE dimension, n is the ring dimension 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 4 2 4 2 4 4 2 4

Many LWE Samples → One Ring-LWE Sample

Aim to show:6

$$\mathsf{LWE}_{m=n,d,q,D_{\alpha}} \quad \longrightarrow \quad \mathsf{RLWE}_{m=1,n,q^d,D_{\alpha\sqrt{d}}} \tag{1}$$

Main Idea:

- ► Apply the BLPRS13 reduction (modulus-dimension trade-off) to obtain 1-dimensional LWE samples
- ▶ Build Ring-LWE samples from these

Step 1: Apply BLPRS13 Reduction

 $\mathsf{Apply}\;\mathsf{BLPRS13}\;\mathsf{reduction}\colon \mathsf{LWE}_{m=n,d,q,D_\alpha}\longrightarrow \mathsf{LWE}_{m=n,1,q^d,D_{\alpha\sqrt{d}}}$

Step 1: Apply BLPRS13 Reduction

Apply BLPRS13 reduction: LWE_{$m=n,d,q,D_{\alpha}$} \longrightarrow LWE_{$m=n,1,q^d,D_{\alpha\sqrt{d}}$}

Denote the 1-dimensional samples as

$$\left(a_i,b_i=rac{1}{q^d}\cdot a_i rac{s_0}{0}+e_i
ight)\in \mathbb{Z}_{q^d} imes \mathbb{T} ext{ for } i=0,\ldots,n-1$$

Step 2: Build the Ring Structure

- (a) Define Ring-LWE secret $s:=s_0\in R_q$
- (b) Define uniform ring element $a':=a_0+\cdots+a_{n-1}\cdot X^{n-1}\in R_q$
- (c) Set $b' = \sum_{i=0}^{n-1} b_i \cdot X^i \in R_q$

Correctness of the Reduction

- ▶ Ring-LWE secret *s* distribution "irrelevant"
- ▶ Ring element *a* is uniformly distributed
- $lackbox{b}' rac{1}{q^d} a \cdot s = \sum_{i=0}^{n-1} e_i \cdot X^i$ distributed as $D_{\alpha \sqrt{d}}$

Lemma

The ability to solve Ring-LWE in modulus q^d and ring dimension n imples the ability to solve LWE given n sample in dimension d and modulus q.

Conclusions: Module-LWE vs. Ring-LWE

- ▶ There are numerous reductions between the LWE variants
- We can retain:
 - 1. "LWE hardness" even in dimension 1
 - 2. "Module-LWE hardness" using Ring-LWE
 - 3. "Ring-LWE hardness" when decreasing dimension
 - 4. "LWE hardness" using Ring-LWE
- However, note that we need an modulus that is exponential in the module rank or (ring) dimension as well as an expansion in the error rate

Thank You!

Martin R. Albrecht and Amit Deo.

Large modulus ring-lwe >= module-lwe.

Cryptology ePrint Archive, Report 2017/612, 2017.

http://eprint.iacr.org/2017/612.

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

Classical hardness of learning with errors.

In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 575–584. ACM, 2013.