LECTURE NOTES FOR MTH 371, WINTER 2022 "LARGE SCALE DATA ALGORITHMS"

PANAYOT S. VASSILEVSKI

1. Homework # 5: Due March 9

Problem 1.1 (Preconditioned conjugate gradient (PCG) method).

- (i) Implement the PCG algorithm (see below) which takes as input a n × n s.p.d. matrix A (or a function that computes its actions), a preconditioner B that is either given as a s.p.d. matrix, or as a function that takes as input **r** and returns \$\overline{\mathbf{r}} = B^{-1} \mathbf{r}\$ which is the solution of \$B\overline{\mathbf{r}} = \mathbf{r}\$. Examples for B are the \(\ell_1\)-smoother, the symmetric Gauss-Seidel, and a two-level algorithm. The complete set of input parameters for the PCG algorithm are given in the algorithm below.
- (ii) Run the PCG algorithm for three preconditioners: (i) B being the diagonal of A, (ii) B being the symmetric Gauss-Seidel algorithm, (iii) B being defined by a symmetrized two-level algorithm (see below).

Algorithm 1.1 (Preconditioned Conjugate Gradient (PCG) Method).

Given an s.p.d. matrix A (via its actions), r.h.s. **b**, initial iterate **x** (zero or a random vector), tolerance ϵ (= 10⁻⁶) and a maximal number of iterations, max_iter (= 1000). For a given s.p.d. preconditioner B, which computes $B^{-1}\mathbf{r}$ for any given vector \mathbf{r} , we perform:

- Initiate: compute initial residual $\mathbf{r} = \mathbf{b} A\mathbf{x}$, the preconditioneed residual $\overline{\mathbf{r}} = B^{-1}\mathbf{r}$, the squared norm $\delta_0 = \mathbf{r}^T B^{-1}\mathbf{r} = \|\mathbf{r}\|_{B^{-1}}^2 = \mathbf{r}^T \overline{\mathbf{r}}$, $\delta = \delta_0$, and let $\mathbf{p} = \overline{\mathbf{r}}$ be the initial search vector.
- Loop: for $iter = 1, 2, ..., max_iter compute$
 - $-\mathbf{g} = A\mathbf{p}.$ $-\alpha = \frac{\mathbf{r}^T B^{-1} \mathbf{r}}{\mathbf{p}^T A \mathbf{p}} = \frac{\delta}{\mathbf{p}^T \mathbf{g}}.$
 - Update iterate $\mathbf{x} := \mathbf{x} + \alpha \mathbf{p}$.
 - Update residual $\mathbf{r} = \mathbf{r} \alpha A \mathbf{p} = \mathbf{r} \alpha \mathbf{g}$.
 - New preconditioned residual: $\bar{\mathbf{r}} = B^{-1}\mathbf{r}$.
 - Let $\delta_{old} = \delta$.
 - Compute $\delta = \mathbf{r}^T B^{-1} \mathbf{r} = \mathbf{r}^T \overline{\mathbf{r}}$.
 - Check for convergence: If $(\delta < \epsilon^2 \delta_0)$ exit due to achieved convergence tolerance.
 - Compute next search direction:
 - * Compute $\beta = \frac{\mathbf{r}^T B^{-1} \mathbf{r}}{\mathbf{r}_{old}^T B^{-1} \mathbf{r}_{old}} = \frac{\delta}{\delta_{old}}$
 - * Next search direction is: $\mathbf{p} = \overline{\mathbf{r}} + \beta \mathbf{p}$.
- End of Loop on iter.

Algorithm 1.2 (Symmetric two-level algorithm).

Let A be a $n \times n$ s.p.d. matrix. Given a convergent method based on a matrix M (either ℓ_1 -smoother or the forward Gauss-Seidel) and consider M^T as well (it will be either the ℓ_1 -smoother, i.e., $M^T = M$, or the backward Gauss-Seidel, if M is the forward Gauss-Seidel). We also need the matrix P corresponding to a set of aggregates, i.e., the relation "vertex_aggregate" constructed for the sparsity graph of the sparse matrix A for example by the Luby's algorithm. We also need the coarse matrix $A_c = P^TAP$. The two-level algorithm requires function that solves equations with A_c (use the LDL^T or LU factorization of the s.p.d. matrix A_c).

The symmetric two-level algorithm takes as input a vector \mathbf{r} and provides on output $\bar{\mathbf{r}} = B^{-1}\mathbf{r}$, which is defined by the following steps;

- Solve for \mathbf{y} , $M\mathbf{y} = \mathbf{r}$.
- Compute coarse r.h.s. $\mathbf{r}_c = P^T(\mathbf{r} A\mathbf{y})$.
- Solve the coarse problem for \mathbf{y}_c , $A_c\mathbf{y}_c = \mathbf{r}_c$ (use LDL^T or LU facorization of A_c).
- $Update \mathbf{y} = \mathbf{y} + P\mathbf{y}_c$.
- Solve for correction \mathbf{z} , $M^T \mathbf{z} = \mathbf{r} A\mathbf{y}$.
- $Update \mathbf{y} := \mathbf{y} + \mathbf{z}$.
- $\overline{\mathbf{r}} = \mathbf{y}$.

The above mapping B^{-1} : $\mathbf{r} \mapsto \overline{\mathbf{r}}$ is referred to as the two-level preconditioner, and B is sometimes denoted B_{TL} .

Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR 97201

Email address: panayot@pdx.edu