Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval

Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu

Xiaofan Yan

Outline

- Abstract
- Introduction
- Related Work
- Entity-Duet Neural Ranking Model
- Integration with Kernel based Neural Ranking Models
- Experimental Methodology
- Evaluation Results
- Conclusion

Abstract

 EDRM -- Entity-Duet Neural Ranking Model, introduces knowledge graph to neural search systems

Introduction

Traditional IR

- entity-oriented search
 - utilizes knowledge graphs to improve search engines
 - Incorporate human knowledge from entities and knowledge semantics
 - Feature-based search system
- Neural information Retrieval
 - Leverages distributed representations and neural network
 - Sophisticated ranking models from large-scale training data

Steps

- Distributed representation: entity/ description/ type embedding
- Word-entity duet: match documents to queries
- Feature: no manual but interaction-based neural models

Related work

- NRM(Neural Ranking Model)
 - Representation-based NRM
 - learn good representations and match them in the learned representation space of query and documents
 - Interaction-based NRM
 - learn word-level interaction patterns from query-document pairs
- Knowledge graph for search system
 - Use KG as pseudo relevance feedback cropus
 - Use KG to build the additional connections

Entity-Duet Neural Ranking Model

- Interaction-based Ranking Model
 - Build translation matrix between q and d, for describe similarities
 - Calculate final ranking score for extract feature on translation matrix
 - first map each word t in q and d to an L-dimensional embedding vector v_t with an embedding layer
 - Then constructs the interaction matrix M, each element in M, compares the i^{th} word in q and the j^{th} word in d using the **cosine similarity** of word embedding:

$$M^{ij} = \cos(\vec{v}_{t_i^q}, \vec{v}_{t_j^d}).$$

Entity-Duet Neural Ranking Model

- Semantic Entity Representation
 - KG embedding -- to generate semantic representation
 - Entity embedding: an L^d embedding layer to get entity embedding
 - Description embedding: CNN
 - Type embedding: use an attention mechanism (attention score/ bag-of-words parameter matrix) to combine entity types to type embedding
 - Combination: an linear layer
 - Neural Entity-Duet Framework
 - It utilizes the duet representation of **bag-of-words** and **bag-of-entities** to match q-d with handcrafted features.
 - interaction matrix *M*: calculates **cosine similarity** between query-document terms
 - Final ranking feature/ final interaction Matrix: concatenation of Ms

Architecture of EDRM

Architecture of EDRM

Integration with Kernel based Neural Ranking Models

Kernel based Neural Ranking Model (K-NRM) [Xiong et al., 2017]

Convolutional Kernel-based Neural Ranking Model (Conv-KNRM) [Dai et al., 2018]

Experimental Methodology

- Dataset: Sougou
 - Click models: model users behaviors to infer relevance signals (labels)
 - DCTR: CTR
 - TACM: both click and dwell time

Evaluation Metrics

Testing data	Evaluation metrics			
Testing-SAME	NDCG@1	uses DCTR labels		
Testing-DIFF	NDCG@10	evaluates models performance based on TACM inferred relevance labels.		
Testing-RAW	MRR	evaluates ranking models through user clicks		
Statistic significances are tested by permutation test with P< 0.05.				

Knowledge graph: CN-DBpedia

Experimental Methodology

- Baselines
 - Feature-based ranking models
 - RankSVM (Joachims, 2002)
 - coordinate ascent (Coor-Accent) (Metzler and Croft, 2006)
 - Neural ranking models
 - CDSSM (Shen et al., 2014) -- representation based
 - MatchPyramid (MP) (Pang et al., 2016) -- interaction based
 - DRMM (Grauman and Darrell, 2005) -- interaction based
 - K-NRM (Xiongetal.,2017b)
 - Conv-KNRM (Daietal., 2018)
- Implementation Details

Ranking Accuracy

Table 1: Ranking accuracy of EDRM-KNRM, EDRM-CKNRM and baseline methods. Relative performances compared with K-NRM are in percentages. †, ‡, §, ¶, * indicate statistically significant improvements over DRMM[†], CDSSM[‡], MP[§], K-NRM[¶] and Conv-KNRM* respectively.

	Testing-SAME				Testing	Testing-RAW				
Method	NDC	G@1	NDCG@10		NDCG@1		NDCG@10		MRR	
BM25	0.1422	-46.24%	0.2868	-31.67%	0.1631	-45.63%	0.3254	-23.04%	0.2280	-33.86%
RankSVM	0.1457	-44.91%	0.3087	-26.45%	0.1700	-43.33%	0.3519	-16.77%	0.2241	-34.99%
Coor-Ascent	0.1594	-39.74%	0.3547	-15.49%	0.2089	-30.37%	0.3775	-10.71%	0.2415	-29.94%
DRMM	0.1367	-48.34%	0.3134	-25.34%	0.2126^{\ddagger}	-29.14%	0.3592^{\S}	-15.05%	0.2335	-32.26%
CDSSM	0.1441	-45.53%	0.3329	-20.69%	0.1834	-38.86%	0.3534	-16.41%	0.2310	-33.00%
MP	$0.2184^{\dagger\ddagger}$	-17.44%	$0.3792^{\dagger\ddagger}$	-9.67%	0.1969	-34.37%	0.3450	-18.40%	0.2404	-30.27%
K-NRM	0.2645	_	0.4197	_	0.3000	_	0.4228	_	0.3447	_
Conv-KNRM	0.3357 ^{†‡§¶}		0.4810 ^{†‡} 8¶		0.3384 ^{†‡§¶}	+12.81%	$0.4318^{\ddagger\$}$	+2.14%	$0.3582^{\dagger \ddagger \S}$	+3.91%
EDRM-KNRM	0.3096 118		0.4547		0.3327 1134	+10.92%	0.4341^{118}		0.3616 1184	+4.90%
EDRM-CKNRM	0.3397 ^{†‡§¶}	+28.42%	0.4821 ^{†‡§¶}	+14.86%	0.3708 ^{†‡§¶} *	+23.60%	0.4513 ^{†‡§¶} *	+6.74%	0.3892†‡§¶*	+12.90%

Kernel? Match kernel?

Contributions of Matching Kernels

 Studes the contribution of knowledge graph semantics by investigating the weights learned on the different types of matching kernels.

Figure 4: Individual kernel weight for EDRM-CKNRM. X-axis and y-axis denote document and query respectively.

Figure 3: Ranking contribution for EDRM. Three scenarios are presented: Exact VS. Soft compares the weights of exact match kernel and others; Solo Word VS. Others shows the proportion of only text based matches; In-space VS. Cross-space compares in-space matches and cross-space matches.

Ablation Study

- Studies which part of the knowledge graph semantics leads to the effectiveness and generalization ability of EDRM.
- Description embedding show the greatest improvement.

Table 2: Ranking accuracy of adding diverse semantics based on K-NRM and Conv-KNRM. Relative performances compared are in percentages. \dagger , \ddagger , \S , \P , *, ** indicate statistically significant improvements over K-NRM \dagger (or Conv-KNRM \dagger), +Embed \dagger , +Type \S , +Description \P , +Embed+Type * and +Embed+Description ** respectively.

	Testing-SAME			Testing-DIFF				Testing-RAW		
Method	NDC	G@1	NDCG@10		NDCG@1		NDCG@10		MRR	
K-NRM	0.2645	_	0.4197	_	0.3000	_	0.4228	_	0.3447	-
+Embed	0.2743	+3.68%	0.4296	+2.35%	0.3134	+4.48%	0.4306	+1.86%	0.3641^{\dagger}	+5.62%
+Type	0.2709	+2.41%	0.4395^{\dagger}	+4.71%	0.3126	+4.20%	0.4373^{\dagger}	+3.43%	0.3531	+2.43%
+Description	0.2827	+6.86%	0.4364^{\dagger}	+3.97%	0.3181	+6.04%	0.4306	+1.86%	0.3691 ^{†§*}	+7.06%
+Embed+Type	0.2924^{\dagger}	+10.52%	$0.4533^{\dagger $9}$	+8.00%	0.3034	+1.13%	0.4297	+1.65%	0.3544	+2.79%
+Embed+Description	0.2891	+9.29%	$0.4443^{\dagger \ddagger}$	+5.85%	0.3197	+6.57%	0.4304	+1.80%	0.3564	+3.38%
Full Model	0.3096†‡§	+17.04%	0.4547 ^{†‡§¶}	+8.32%	0.3327†*	+10.92%	0.4341^{\dagger}	+2.68%	0.3616^{\dagger}	+4.90%
Conv-KNRM	0.3357	_	0.4810	_	0.3384	_	0.4318	_	0.3582	-
+Embed	0.3382	+0.74%	0.4831	+0.44%	0.3450	+1.94%	0.4413	+2.20%	0.3758^{\dagger}	+4.91%
+Type	0.3370	+0.38%	0.4762	-0.99%	0.3422	+1.12%	0.4423^{\dagger}	+2.42%	0.3798^{\dagger}	+6.02%
+Description	0.3396	+1.15%	0.4807	-0.05%	0.3533	+4.41%	0.4468^{\dagger}	+3.47%	0.3819^{\dagger}	+6.61%
+Embed+Type	0.3420	+1.88%	0.4828	+0.39%	0.3546	+4.79%	0.4491^{\dagger}	+4.00%	0.3805^{\dagger}	+6.22%
+Embed+Description	0.3382	+0.73%	0.4805	-0.09%	0.3608	+6.60%	0.4494^{\dagger}	+4.08%	0.3868^{\dagger}	+7.99%
Full Model	0.3397	+1.19%	0.4821	+0.24%	0.3708†‡§	+9.57%	0.4513†‡	+4.51%	$0.3892^{\dagger\ddagger}$	+8.65%

- Performance on Different Scenarios
- analyzes the influence of knowledge graphs in two different scenarios: multiple difficulty degrees and multiple length degrees. (搜索的难度和句子长度)

Figure 5: Performance VS. Query Difficulty. The x-axises mark three query difficulty levels. The y-axises are the Win/Tie/Loss (left) and MRR (right) in the corresponding group.

Figure 6: Performance VS. Query Length. The x-axises mark three query length levels, and y-axises are the Win/Tie/Loss (left) and MRR (right) in the corresponding group.

• EDRM is more observed on harder or shorter queries

- Case Study
 - Knowledge graph semantics could help the document ranking
 - 1) entity descriptions explain the meaning of entities and connect them through the word space
 - 2) entity types establish underlying relevance patterns between query and documents.

Table 3: Examples of entity semantics connecting query and title. All the examples are correctly ranked by EDRM-CKNRM. Table 3a shows query-document pairs. Table 3b lists the related entity semantics that include useful information to match the query-document pair. The examples and related semantics are picked by manually examining the ranking changes between different variances of EDRM-CKNRM.

(a) Query and document examples. Entities are emphasized.

Query	Document
Meituxiuxiu web version	Meituxiuxiu web version: An online picture processing tools
Home page of Meilishuo	Home page of Meilishuo - Only the correct popular fashion
Master Lu	Master Lu official website: System optimization, hardware test, phone evaluation
Crayon Shin-chan: The movie	Crayon Shin-chan: The movie online - Anime
GINTAMA	GINTAMA: The movie online - Anime - Full HD online watch

(b) Semantics of related entities. The first two rows and last two rows show entity descriptions and entity types respectively.

Entity	Content				
Meituxiuxiu web version	Description: Meituxiuxiu is the most popular Chinese image processing software				
	launched by the Meitu company				
Meilishuo	Description: Meilishuo, the largest women's fashion e-commerce platform,				
	dedicates to provide the most popular fashion shopping experience				
Crayon Shin-chan, GINTAMA	Type: Anime; Cartoon characters; Comic				
Master Lu, System Optimization	Type: Hardware test; Software; System tool				

- Contributions of Matching Kernels
 - Using user clicks from search logs, the whole model the integration of knowledge graph semantics and the neural ranking networks — is trained end-to-end.
 - Leads to a data-driven combination of entity-oriented search and neural information retrieval.
 - Semantics of Knowledge graph -- generalization