Линал++.

Вектора из \mathbb{R}^n будем обозначать жирными буквами, а значения отдельных чисел в векторе – той же буквой, только нежирной и с индексом. Например x_i – это i-тое число в векторе \mathbf{x} . Жирные задачи важны для понимания дальнейшего материала, а не жирные просто к слову пришлись.

Определение 1. Скалярное произведение на \mathbb{R}^n это любая функция $\langle \cdot, \cdot \rangle$ от двух векторов такая что:

- $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (симметричность)
- $\langle \mathbf{x}_1 + \mathbf{x}_2, \mathbf{y} \rangle = \langle \mathbf{x}_1, \mathbf{y} \rangle + \langle \mathbf{x}_2, \mathbf{y} \rangle \ u \ \langle c \cdot \mathbf{x}, \underline{\mathbf{y}} \rangle = c \cdot \langle \mathbf{x}, \mathbf{y} \rangle \ ($ билинейность)
- ullet $\langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0$ при этом $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = \overrightarrow{\mathbf{0}}$ (положительная определенность)

Задача 1. Проверьте, что операция $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \cdot y_i$ является скалярным произведением. Ее называют *стандартным скалярным произведением*.

Задача 2. Проверьте, что скалярное произведение векторов на плоскости из геометрии (произведение длин на косинус) является скалярным произведением в смысле определения 1.

Задача 3. С легкостью выведите теорему косинусов из предыдущей задачи.

Задача 4. Пусть $\langle \cdot, \cdot \rangle$ – скалярное произведение на плоскости. **a)** Докажите, что существует система координат, относительно которой $\langle \cdot, \cdot \rangle$ является <u>стандартным</u> скалярным произведением. б) Докажите то же самое для \mathbb{R}^n .

 $Onpedenehue\ 2.\$ Функция $l:\mathbb{R}^n \to \mathbb{R}$ называется **линейной**, если:

- $\forall \mathbf{x} \in \mathbb{R}^n, c \in \mathbb{R} : l(c \cdot \mathbf{x}) = c \cdot l(\mathbf{x})$
- $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n : l(\mathbf{x} + \mathbf{y}) = l(\mathbf{x}) + l(\mathbf{y})$

Задача 5. Докажите, что линейность функции l равносильна следующему:

$$\exists \mathbf{v} \in \mathbb{R}^n : l(\mathbf{x}) = \langle \mathbf{x}, \mathbf{v} \rangle.$$

Определение 3. Норма (она же длина) вектора $\mathbf{x} \in \mathbb{R}^n$ это $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, (где $\langle \cdot, \cdot \rangle$ – выбранное нами скалярное произведение)

Задача 6 (неравенство Коши-Буняковского-Шварца). Докажите что :

$$\langle \mathbf{x}, \mathbf{y} \rangle \leqslant \|\mathbf{x}\| \cdot \|\mathbf{y}\|$$

а) для $\mathbb{R}^2 \Rightarrow \mathbf{6}$) для \mathbb{R}^n в) для любых бесконечномерных пространств над \mathbb{R} .

Задача 7. Проверьте свойства нормы:

- а) $\|\mathbf{x}\| \geqslant 0$, при этом $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \overrightarrow{\mathbf{0}}$.
- **6)** $||c \cdot \mathbf{x}|| = |c| \cdot ||\mathbf{x}||$.
- в) (многомерное неравенство треугольника) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (используйте КБШ).

Задача 8 (многомерная теорема Пифагора). а) Пусть вектора \mathbf{x} и \mathbf{y} ортогональны, то есть $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Убедитесь что $\|\mathbf{x} + \mathbf{y}\| = \sqrt{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2}$.

б) Пусть есть много попарно ортогональных векторов $x_1, x_2, \dots x_k$. Докажите что:

$$\|\mathbf{x}_1 + \mathbf{x}_1 + \ldots + \mathbf{x}_k\| = \sqrt{\|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \ldots + \|\mathbf{x}_k\|^2}.$$

Задача 9. Решите задачи 5 и 8 отсюда. Кстати в этой pdf-ке есть другое доказательство КБШ, но неконцептуальное.

 $Onpedenehue 4. \ Kosapuauus \ deyx случайных величин <math>X \ u \ Y \ {\it это}$

$$Cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

Определение 5. Дисперсия случайной величины X это $\mathbb{D}(X) = Cov(X, X)$.

Определение 6. Корреляция двух случайных величин X и Y это

$$corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{\mathbb{D}X \cdot \mathbb{D}Y}}.$$

Задача 10. Докажите, что корреляция может принимать значения только в отрезке [-1,1]. Т. е. для любых X и Y верно: $-1 \leqslant corr(X,Y) \leqslant 1$.