POLITECHNIKA WROCŁAWSKA WYDZIAŁ MECHANICZNY

KIERUNEK: ROBOTYKA I AUTOMATYZACJA PROCESÓW

PROJEKTOWANIE UKŁADÓW ELEKTROHYDRAULICZNYCH I ELEKTROPNEUMATYCZNYCH

Prasa hydrauliczna do zgniatania puszek aluminiowych po napojach chłodzących, butelek plastikowych oraz opakowań kartonowych po sokach

AUTOR/AUTORZY: Anna Brzezińska,233965

PROWADZĄCY: mgr inż. Mateusz Rydlewski

Spis treści

1.	K	Cró1	tko o prasie hydraulicznej	3
	1.1	Co	to jest prasa hydrauliczna?	3
	1.2	Za	sada działania prasy hydraulicznej	3
	1.3	Kl	asyfikacja prasy hydraulicznej	4
	1.3	3.1	Ze względu na technologiczne przeznaczenie	4
	1.3	3.2	Ze względu na kierunek działania suwaka	4
	1.4	Na	pęd prasy hydraulicznej	5
	1.5	Na	pęd pompowy bezakumulatorowy	5
	1.7	Za	lety prasy hydraulicznej	7
	1.8	Za	łożenia projektowe prasy hydraulicznej	8
	1.9	Ar	naliza rozwiązań technicznych	8
	1.9	9.1	Tablice morfologiczne	8
	1.9	9.2	Metoda decyzji wymuszonych	15
2.	S	sche	emat projektowanej prasy hydraulicznej	18
3.	Ι	Oob	ór elementów projektowanego schematu hydraulicznego	18
	3.1		obór pompy	
	3.2	Ob	oliczenia powierzchni i średnicy tłoka	19
	3.2	2.1	Obliczenia prędkości suwu tłoka	20
	3.2	2.2	Obliczenia mocy użytecznej pompy	20
	3.3	Po	dział przewodów w układzie projektowanej prasie hydraulicznej	20
	3.3	3.1	Przewody ssawne	21
	3.3	3.2	Przewody spływowe	21
	3.3	3.3	Przewody ciśnieniowe	21
	3.3	3.4	Dobór zaworów	21
	3.4	Do	obór pozostałych elementów	22
	3.5	Do	obór silnika elektrycznego	24
4.	S	stra	ty ciśnienia w projektowanej prasie hydraulicznej	25
	4.1		dział przewodów w układzie projektowanej prasie hydraulicznej	
	4.2	str	aty ciśnienia w przewodach hydraulicznych	26
	4.2	2.1	Przewody ssawne	27
	4.2	2.2	Przewody ciśnieniowe	28
	4.2	2.3	Przewody spływowe	
	4.2	2.4	Łączna suma strat ciśnienia we wszystkich przewodach	33
	4.3	Str	aty miejscowe	34
	4.3	3.1	Tróinik	34

	4.3.2	Kolanko	. 36
	4.3.3	Zwężenie	. 37
	4.3.4	Łączna suma strat ciśnienia miejscowe w układzie hydraulicznym	. 38
	4.4 Ca	łkowite straty układu hydraulicznego	. 39
5.	Wyz	znaczanie punktu pracy	41
6.	Pod	sumowanie	42
7.	Źróc	dła	42

1. KRÓTKO O PRASIE HYDRAULICZNEJ

1.1 CO TO JEST PRASA HYDRAULICZNA?

Prasa hydrauliczna to urządzenie wielokrotnie zwiększające siłę nacisku poprzez wykorzystanie zjawiska stałości ciśnienia w zamkniętym układzie hydraulicznym – innymi słowy wykorzystuje ono siłę cieczy hydraulicznej w celu wytworzenia siły nacisku. Praca tego systemu opiera się na działaniu Prawa Pascala i znajduje zastosowanie w codziennym życiu. Układy hamulcowe w samochodach, windy, podnośniki samochodowe, a także plastyczna obróbka metali to niektóre z zastosowań prasy hydraulicznej [1].

1.2 ZASADA DZIAŁANIA PRASY HYDRAULICZNEJ

Prasa hydrauliczna jest maszyna technologiczna o działaniu statycznym, w której do napędu układów roboczych, wykorzystuje się ciecz dostarczaną pod wysokim ciśnieniem. Łańcuch energetyczny pras z napędem hydraulicznym składa się z urządzeń zamieniających energię mechaniczną w energię ciśnienia cieczy roboczej (pompa hydrauliczna), a ta z kolei w cylindrze prasy, zostaje przekształcona w pracę mechaniczna. Najogólniej prasa hydrauliczna będzie składała się z dwóch naczyń połączonych i wypełnionych cieczą, w których znajdują się tłoki lub nurniki. Jeżeli do nurnika 1 zostanie przyłożona siła F_1 , to pod nim wytworzy się ciśnienie p, równe iloczynowi przyłożonej siły i pola powierzchni nurnika S_1 . Według prawa Pascala ciśnienie rozchodzi się w cieczy równomiernie i działając na podstawę nurnika 2 o powierzchni S_2 , powoduje powstanie siły F_2 , która działa na obrabiany element 3. Siły pochodzące od ciśnienia hydrostatycznego działającego na ścianki boczne nurników i cylindrów równoważą się nie dając siły wypadkowej. W rezultacie działając nawet stosunkowo niewielką siłą F_1 na nurnik o małej średnicy, możliwe jest uzyskanie znacznych nacisków F_2 wywieranych przez nurnik o większej średnicy. W prasach hydraulicznych powszechnie stosowanych do realizacji procesów technologicznych, ciecz pod wysokim ciśnieniem uzyskuje się w specjalnych urządzeniach – zasilaczach hydraulicznych, która następnie doprowadzona jest do cylindrów roboczych maszyny.

W oparciu o prawo Pascala można zapisać warunek na wartość siły nacisku prasy hydraulicznej (napędzanej ręcznie):

$$F_2 = F_1 \frac{S_2}{S_1} \tag{1.1}$$

Gdzie: F_2 - siła nacisku suwaka prasy(nurnika roboczego), F_1 - siła nacisku na nurnika napędowy, S_1 - średnica nurnika napędowego, S_2 - średnica nurnika roboczego.

Rysunek 1.1.Ogólna zasada działania prasy hydraulicznej:1 - nurnik napędowy, 2 – nurnik roboczy, 3 – prasowany element [1]

Głównym parametrem prasy hydraulicznej jest nacisk nominalny F_n wyrażający iloczyn ciśnienia nominalnego panującego w cylindrze roboczym oraz powierzchni poprzecznego przekroju tłoka, na które działa ciśnienie cieczy.

1.3 KLASYFIKACJA PRASY HYDRAULICZNEJ

1.3.1 Ze względu na technologiczne przeznaczenie

W zależności od przeznaczenia technologicznego, prasy hydrauliczne różnią się między sobą konstrukcją zasadniczych zespołów, ich położeniem, ilością oraz wartością podstawowych parametrów. W zależności od przeznaczenia technologicznego prasy hydrauliczne można podzielić na maszyny do obróbki plastycznej metali oraz do prasowania materiałów niemetalowych.

W związku z faktem , iż tematem realizowanego projektu jest prasa hydrauliczna stosowana do prasowania puszek aluminiowych, poniżej została przedstawiona klasyfikacja pras hydraulicznych stosowanych do obróbki plastycznej metali.

Rysunek 1.2.Podział pras hydraulicznych ze względu na przeznaczenie. [1]

Technologiczne przeznaczenie maszyny określa jej konstrukcję, rodzaj korpusu (prasa kolumnowa, ramowa, dwustojakowa, wysięgowa), typ, wykonanie oraz ilość cylindrów hydraulicznych (nurnikowe, tłokowe, nurnikowo – różnicowe).

1.3.2 Ze względu na kierunek działania suwaka

Innym kryterium klasyfikacji pras hydraulicznych jest kierunek działania suwaka (kierunek ruchu roboczego suwaka). Wyróżnia się tutaj prasy z napędem hydraulicznym:

a) Pionowe

Prasy hydrauliczne w układzie pionowym można z kolei sklasyfikować w zależności od położenia cylindra głównego (roboczego) na dolno cylindrowe oraz górno cylindrowe.

Prasy hydrauliczne dolno cylindrowe posiadają cylinder główny umieszczony pod płytą stołu. Doprowadzenie cieczy pod wysokim ciśnieniem do cylindra powoduje ruch roboczy nurnika lub tłoka wraz ze stołem do góry, natomiast płyta górna pozostaje nieruchoma. W prasach tego typu powrót nurnika następuje w wyniku działania masy nurnika, stołu oraz narzędzi. Zdarzają się jednak przypadki, że opory ruchów są tak duże, że ciężar własny nie wystarcza do realizacji ruchu powrotnego. W takich przypadkach stosuje się dodatkowe cylindry powrotne, najczęściej nurnikowe, które osadzone są w korpusie maszyny i połączone ze stołem prosu, wymuszając ruch powrotny nurnika roboczego.

Prasy hydrauliczne górno cylindrowe to maszyny, w których cylinder główny znajduje się w górnej części maszyny i napędza suwak prasy, natomiast stół pozostaje nieruchomy. W prasach hydraulicznych tego typu istnieje konieczność stosowania dodatkowych urządzeń umożliwiających powrót nurnika albo tłoka wraz z suwakiem. Najprostszym rozwiązaniem jest

zastosowanie przeciwciężarów lub sprężyn na których podwieszany jest suwak. Takie rozwiązanie zmniejsza jednak efektywną siłę nacisku prasy o ciężar obciążników lub siłę naciągu sprężyn. Takie rozwiązania były stosowane w prasach starszej generacji charakteryzujących się niewielka siłą nacisku i prostą konstrukcją. Obecnie do realizacji ruchu powrotnego nurnika stosuje się układy cylindrów powrotnych.

b) poziome

Prasy hydrauliczne w układzie poziomym można podzielić w zależności od wzajemnego położenia osi cylindrów głównych na: jednokierunkowe jednostronne, dwukierunkowe dwustronne (przeciwbieżne), wielokierunkowe. Każda z pras może posiadać różna ilość cylindrów głównych oraz różną budowę korpusu. Można wyróżnić tutaj prasy jednocylindrowe, dwucylindrowe oraz wielocylindrowe. Natomiast w zależności od konstrukcji korpusu rozróżnia się prasy: dwukolumnowe, trójkolumnowe, czterokolumnowe, ramowe oraz wysięgowe.

c) złożone (pionowe i poziome lub skośne).

Prasy o złożonym ruchu suwaka można podzielić w zależności od wzajemnego położenia osi cylindrów głównych na prasy: z cylindrami pionowymi i poziomymi oraz z cylindrami pionowym, poziomym i skośnym. Również i w tej grupie każda z wymienionych pras może posiadać różną liczbę cylindrów głównych oraz różnorodną budowę korpusu [1].

1.4 NAPĘD PRASY HYDRAULICZNEJ

W prasach hydraulicznych w celu przesuwu nurników i tłoków należy doprowadzić do ich cylindrów czynnik roboczy pod odpowiednim ciśnieniem. W zależności od rodzaju doprowadzanego czynnika, jego ciśnienia i prędkości napęd prasy hydraulicznej będzie miał różną budowę. Ogólnie przez napęd hydrauliczny rozumie się łańcuch energetyczny, który składa się z urządzeń do zamiany wejściowej energii mechanicznej silnika elektrycznego lub spalinowego i pompy hydraulicznej na wyjściową energie ciśnienia cieczy roboczej, która następnie zostaje przekształcona w cylindrach prasy hydraulicznej na pracę mechaniczną. Z uwagi na rodzaj stosowanego czynnika roboczego, którym jest płyn wykorzystuje się tutaj prawa hydromechaniki. Masa płynącej cieczy podlega zasadzie zachowania energii, którą w hydromechanice opisuje równanie Bernoulliego:

$$y \cdot \frac{v_1^2}{2g} + p_1 + z_1 = y \cdot \frac{v_2^2}{2g} + p_2 + z_2 = const$$
 (1.2)

1.5 NAPĘD POMPOWY BEZAKUMULATOROWY

W napędzie pompowym bezakumulatorowym zasilanie cylindrów prasy cieczą roboczą odbywa się bezpośrednio z pompy hydraulicznej. Cechą charakterystyczna takiego rozwiązania jest fakt, że ciśnienie cieczy potrzebne do wykonania pracy przez prasę wytwarzane jest w pompie dopiero w czasie pracy, dostosowując się w każdym przypadku do wielkości oporów na jakie napotyka suwak prasy. Przy takim napędzie przyjmuje się że w dowolnej chwili ruchu roboczego prasy, moc silnika napędowego jest równa mocy pompy hydraulicznej, która w przybliżeniu będzie równa mocy cylindra roboczego.

Rysunek 1.3.Schemat napędowy prasy pompowo bezakumulatorowej:2-suwak,2-zawór zalewowy,3-tłoczek,4-zbiornik zalewowy,5-zawór automatycznego rozładowania,6-zawór,7-tłoczek,8-zawor zwrotny,9-pompa,10-zawór bezpieczeństwa,11-rozdzielacz,12 do 16 zawory rozdzielające [1]

W napędach pompowo akumulatorowych, silnik elektryczny 1 napędza pompę 2, dodatkowo miedzy pompą a cylindrem roboczym 3 umieszczono zasobnik energii ciśnienia – akumulator hydrauliczny 4. Ciecz wysokiego ciśnienia jest gromadzona w akumulatorze w czasie przerwy w pracy oraz w chwili, gdy zapotrzebowanie cylindrów prasy jest mniejsze od wydajności pompy. Najczęściej zasilanie prasy odbywa się jednocześnie z pompy i akumulatora, przy czym pobór cieczy z akumulatora znacznie przewyższa wydajność pompy.

Rysunek 1.4.Schemat napędu prasy hydraulicznej pompowo akumulatorowej:1-silnik,2-pompa,3-cylinder hydrauliczny,4-akumulator,5-zawór automatycznego rozładowania [1]

Między pompą 2 i akumulatorem 4 umieszczony jest zawór automatycznego rozładowania 5, który po napełnieniu akumulatora i uzyskaniu w nim żądanego ciśnienia, przełącza pompę na bieg jałowy. Po obniżeniu się poziomu cieczy w akumulatorze, a więc i spadku ciśnienia, pompa ponownie podaje ciecz do akumulatora. W czasie pracy silnik i pompa są obciążone w przybliżeniu stałą mocą. Moc cylindra hydraulicznego prasy w czasie ruchu roboczego jest znacznie większa od mocy silnika i pompy, wtedy akumulator pokrywa

szczytowe pobory mocy. Indywidualny napęd pompowo akumulatorowy stosowany do napędu jednej prasy umiejscawia się możliwie blisko lub bezpośrednio na maszynie. Do napędu grupy pras stosuje się stacje pomp akumulatorów, która najczęściej zlokalizowana jest w oddzielnym pomieszczeniu.

1.6 PRASY HYDRAULICZNE Z NAPĘDEM MULTIPLIKATOROWYM

W prasach hydraulicznych z napędem multiplikatorowym źródłem wysokiego ciśnienia jest specjalne urządzenie – multiplikator, który zwiększa ciśnienie cieczy w stosunku do wielkości ciśnienia cieczy podawanej pompą, najczęściej z udziałem akumulatora hydraulicznego[1].

Rysunek 1.5.Napęd prasy hydraulicznej multiplikatorem korbowym: 1 do 3-zawory,4-multiplikator mechaniczny,6-akumulator,7-pompa,8 i 9-sprzęgło,10-silnik,11-rozdzielacz [1]

Podczas ruchu jałowego suwaka (dobiegu), cylinder roboczy jest połączony akumulatorem – położenie cylindra głównego powodując ruch jałowy suwaka. Przy ruchu powrotnym rozdzielacz ustawiony jest w położeniu P, otwarty zawór 2, następuje odpływ cieczy z cylindra głównego do zbiornika zasilającego w wyniku działania nurników powrotnych poruszających się w cylindrach, które są stale połączone z akumulatorem. Podczas ruchu roboczego – położenie S następuje włączenie sprzęgła 8 i przekazanie napędu na wał korbowy multiplikatora. Multiplikator 4 zasila cylinder główny cieczą o wysokim ciśnieniu. Zawór zwrotny 3 umożliwia przepływ cieczy wysokiego ciśnienia z cylindra głównego do akumulatora 6. Pompa 7 zasila akumulator, przełączenie pompy na bieg jałowy realizowane jest za pomocą włącznika ciśnieniowego zainstalowanego przy pompie, który pełni funkcję zaworu automatycznego rozładowania[1].

1.7 ZALETY PRASY HYDRAULICZNEJ

Powszechną tendencją obserwowaną w budowie pras stosowanych w obróbce plastycznej jest coraz szersze wykorzystanie układów hydraulicznych do napędu suwaków. Wynika to z szeregu zalet jakimi charakteryzują się układy hydrauliczne w porównaniu z napędami mechanicznymi. Prasy hydrauliczne wśród maszyn do obróbki plastycznej charakteryzują się największymi wartościami nacisków jakie mogą wywierać ich suwaki robocze (nawet ponad 1000 MN). Do głównych zalet pras hydraulicznych można zaliczyć między innymi:

- > znacznie prostszą konstrukcję maszyny,
- > możliwość łatwej regulacji skoku i położenia suwaka,
- niezawodność działania.

- > łatwość automatyzacji,
- możliwość płynnego kompensowania odkształceń sprężystych korpusu i narzędzi,
- mniejszy koszt wykonania,
- większa dokładność wykonywanych operacji,
- większe bezpieczeństwo pracy związane z możliwością zatrzymania suwaka w dowolnym położeniu,
- iniewrażliwość na zakleszczenie suwaka prasy,
- możliwość uzyskania bardzo dużych nacisków przy niewielkich wymiarach gabarytowych,
- > możliwość uzyskania dużych skoków suwaka,
- > stały nacisk pracy w całym zakresie skoku suwaka.

1.8 ZAŁOŻENIA PROJEKTOWE PRASY HYDRAULICZNEJ

Projektowana prasa hydrauliczna ma być wykorzystywana do zgniatania puszek aluminiowych po napojach chłodzących, butelek plastikowych oraz opakowań kartonowych po sokach w np. sklepach, restauracjach, barach, czy na campingach. Jej zadaniem jest ułatwienie procesu segregacji śmieci oraz pomoc w utrzymaniu czystości.

Dane techniczne:

- siła 10 000 N
- zasilanie 220 V lub 380 V
- objętość wejściowa 1 m3

Wstępne założenia konstrukcyjne:

• prasa hydrauliczna górnocylindrowa - w celu zwiększenia szybkobieżności

1.9 ANALIZA ROZWIĄZAŃ TECHNICZNYCH

1.9.1 Tablice morfologiczne

Tabela 1.1.Tablica morfologiczna

	Fubkcja układu/Realizacja	Stan 1	Stan 2	Stan 3	Stan 4	Stan 5
A	Regulacja prędkości	pompa o zmiennej wydajności	zawór dławiący zainstalowany na linii równoległej	rozdzielacz z tłoczkiem dławiącym	regulator przepływu na linii równoległej	rozdzielacz proporcjonalny
В	Charakter pracy pompy	ciągły	przerywany			
С	Blokowanie układu	zawór dławiący	zamki hydrauliczne	podpory mechanicznie		
D	Rewersja ruchu	sprężyna	odciążnik	układ cylindrów powrotnych	grawitacja	rozdzielacz
Е	charakterystyka napędu prasy hydraulicznej	pompowy bez akumulatorowy	pompowy akumulatorowy	multiplikatorowy		

W poniższej tabeli przedstawiono rozwiązania mające na celu regulacje prędkości czynnika roboczego oraz odciążenia układu. Niektóre rozwiązania nie zostały wybrane do dalszej analizę ze względu na fakt iż:

- Grawitacja- nie ma zastosowania w układa górnocylindrowych, jedynie w dolnocylindrowych.
- Rozdzielacz- wymaga odpowiedniej regulacji grzybków, którą można wykonać po uprzednim pomiarze odpowiednich wartości ciśnienia. Pamiętając iż w dalszych częściach projektowania istnieje duże prawdopodobieństwo wyboru tego rozwiązania by umożliwić prawidłowe działania innych elementów np. nurników różnicowych. Element ten ma bowiem wiele zastosowań pośrednich, jak i bezpośrednich.
- Rozdzielacz proporcjonalny, zawór dławiący zainstalowany na linii równoległej-oba proste w montażu jednak nie zapewniają możliwości regulacji prędkości w takim stopniu, jak pompa o zmiennej wydajności.
- Regulator przepływu na linii równoległej- oprócz faktu iż do ustawienia odpowiedniego przepływu należy wykonać odpowiednie pomiary ciśnienia, to należy zauważyć iż element ten reguluje strumień cieczy upuszczanej do zbiornika, a strumień cieczy płynącej do odbiornika zależy nie tylko strumienia upuszczanego, ale także od strumienia płynącego od pompy

Pompa o zmiennej wydajności pozwala ustawić odpowiednie parametry ciśnienia, a co za tym idzie prędkości z jaka będzie płynąć czynnik roboczy, co przekłada się bezpośrednio na siłę i prędkość nacisku tłoka. To rozwiązanie pozwala na dokładne ustalenie parametrów bez wykonywania pośrednich pomiarów ciśnienia i późniejszego dostosowywania układu.

Zarówno sprężyny jak i przeciw ciężary(odciążniki) są elementami, które najłatwiej dołączyć do układu, ich wada jest zmniejszenie siły nacisku prasy o wartość ciężkości lub siłę naciągu sprężyny jednak biorąc pod uwagę iż siła nacisku potrzebna do zgniecenia puszki, kartonu jest niewielka są tanim i prostym konstrukcyjnie rozwiązaniem o dużej niezawodności.

Układ cylindrów powrotnych jest najczęściej stosowanym rozwiazanie ze względu na fakt iż nie ma wpływu na siłę nacisku tłoka. Pozwala on na zastosowanie na przykład nurników różnicowych do umożliwienia ruchu tłoka. Do powrotnego zastosowania tego rozwiązania potrzeba jednak uwzględnić w całym układzie jeszcze inne elementy np. rozdzielacz który jest odpowiedzialny za ruch roboczy, jałowy, powrotny oraz spoczynek tłoka. Biorąc jednak pod uwage fakt iż potrzebne elementy będą miały zastosowanie wielofunkcyjne, a także wprowadzenie ich do układu w późniejszych fazach może okazać się niezbędne jest to bardzo dobre rozwiazanie

Tabela 12.Macierz wyboru 1

	MACIERZ WSTĘPNA KEWERSJA RUCHU/REGULACJA PRĘDKOŚCI						
Rozwiązania	pompa o zmiennej wydajno o	zawór dławiący zainstalowany na lini równoległej	rozizielacz z tłoczkiem dławiącym	regulator przepływu an lini równoległej	rozdzielacz proporcjonalny		
"	sprężyna	spr _z zyna	sprężyna	sprężyna	sprężyna		
sprężyna	pompa o zmiennej wydajności	zawór dławiący zainstalowany na lini równoległej	rozdzielacz z tłoczkiem dławiącym	regulator przepływu an lini równoległej	rozdzielacz proporcjonalny		
	odciążnik	odciążnik	odciążnik	odciążnik	odciążnik		
odciążnik	odciążnik pompa o zmiennej zawór dław zainstalowany wydajności równoleg		rozdzielacz z tłoczkiem dławiącym	regulator przepływu na lini równoległej	rozdzielacz proporcjonalny		
	rozdzielacz	rozdzielacz	rozdzielacz	rozdzielacz	rozdzielacz		
rozdzielacz	pompa o zmiennej wydajności	zawór dławiący zainstalowany na lini równoległej	rozdzielacz z tłoczkiem dławiącym	regulator przepływu na lini równoległej	rozdzieł cz propo cjonalny		
	grawitacja	grawitacja	grawitacja	grawitacja	grawitacja		
grawitacja	pompa o zmiennej wydajności	zawór dławiący zainstalowany na lini równoległej	rozdzielacz z tłoczkiem dławiącym	regulator przeph wu na lini równoległej	rozdzielacz proporcjonalny		
	układ cylindrów powrotnych	układ cylindrów powrotnych	układ cylindrów powrotnych	ukł d cylindrów powrotnych	układ cylindrów powrotnych		
układ cylindrów powrotnych	pompa o zmiennej wydajności	zawór dławiący zainstalowany na lini równoległej	rozdzielacz z tłoczkiem dławiącym	regulator przepływu na lini równoległej	rozdzielacz proporcjonalny		

Rozdzielacz tłoczkiem dławiacym umożliwia stosunkowo łatwa regulacje predkości przepływu czynnika roboczego , za jego wyborem przemawia przede wszystkim prostota montażu oraz niski koszt porównaniu z pompa zmiennej wydajności. Jego jedyną wada jest proces regulacji, który pomiarów wymaga ciśnienia lub odbywający się za pomoca prób błędów.

Tabela 1.3.Macierz wyboru 2

CHARAKTERYSTYKA PRACY POMPY/REGULACJA						
PR	ĘDKOŚCI/REWERSJA R	UCHU				
Rozwiązania	Ciągła	Przerywowa				
sprężyna	sprężyna	zawór bezpieczeństwa				
pompa o zmiennej wydajności	pompa o zmiennej wydajności	pompa o zmiennej wydajności				
wydajnosci	Ciągła	Przerywowa				
odciążnik	odciążnik	odciążnik				
pompa o zmiennej	pompa o zmiennej wydajności	pompa o zmiennej wyda <u>jności</u>				
wydajności	Ciągła 🗲	Przerywowa				
układ cylindrów	układ cylindrów	układ cylindrów				
powrotnych	powrotnych	powrotnych				
pompa o zmiennej	pompa o zmiennej	pompa o zmiennej				
wydajności	wydajności	Wydajności				
wydajnosci	Ciagla 🗸	Przerywowa				
układ cylindrów	układ cylindrów	układ cylindrów				
powrotnych	powrotnych	powrotnych				
rozdzielacz z	rozdzielacz z tłoczkiem	rozdzielacz z tłoczkiem				
tłoczkiem	dławiącym	dławiącym				
dławiącym	Ciągła	Przerywowa				

Pompa przerywana charakteryzuje się tym iż w większości przypadków pracuje nieprzerwanie przez okresy krótsze niż godzina. Wykorzystanie tego rodzaju pompy w zakładach gdzie ilość nagromadzonych śmieci nie pozwalałaby na sprasowanie ich w tym czasie oznaczałaby przedewszytkim strate czasu i dezorganizacje pracy

Ciągła praca pompy zapewnia przede wszystkim lepszą wydajność pracy prasy hydraulicznej. W związku z faktem iż docelowo prasa ma być używana w sklepach, czy na campingach, zakładamy iż po uzbieraniu pewnej ilości "śmieci" dopiero zostaje ona uruchomiona, w innym wypadku prąd zużywany do każdorazowego uruchomienia spowodowałby iż bardziej opłacalne stałoby się ręczne zgniatanie/prasowanie śmieci.

Tabela 1.4. Macierz wyboru 3

CHARAKT	CHARAKTERYSTYKA PRACY POMPY/REGULACJA PRĘDKOŚCI/REWERSJA RUCHU/BLOKOWANIE UKŁADU						
Rozwiazania	zawór dławiący	zamki hydrauliczne	podpory mechanicznie				
sprężyna	sprężyna	sprężyna	sprężyna				
ciągły	ciągły	ciągły	ciągły				
	pompa o zmiennej	pompa o zmiennej	pompa o zmiennej				
pompa o zmiennej	wydajności	wydajności	wydajności				
wydajności	zawór dławiący	zamki hydrauliczn	pedpory mechanicznie				
odciążnik	odciążnik	odciążnik	odciążnik				
ciągły	ciągły	ciągły	riągły				
	pompa o zmiennej	pompa o zmiennej	pompa o zmiennej				
pompa o zmiennej	wydajności	wydajności	wydajności				
wydajności	zawór dławiący	zamki hydrauliczne	podpory mechanicznie				
układ cylindrów	układ cylindrów	układ cylindrów	układ cylindrów				
powrotnych	powrotnych	powrotnych	powrotnych				
ciągły	ciągły	ciągły	ciągły				
	pompa o zmiennej	pompa o zmiennej	pompa o zmiennej				
pompa o zmiennej	wydajności	wydajności	wydajności				
wydajności	zawór dławiący	zamki hydrauliczne	podpory mechanicznie				
układ cylindrów	układ cylindrów	układ cylindrów	układ cylindrów				
powrotnych	powrotnych	powrotnych	powrotnych				
ciągły	ciągły	ciągły	ciągły				
rozdzielacz z tłoczkiem	rozdzielacz z tłoczkiem dławiącym	rozdzielacz z tłoczkiem dławiącym	tłoczkiem dławiącym				
dławiącym	zawór dławiący	zamki hydrauliczne	podpory mechanicznie				

Pod względem konstrukcyjnym podpory mechaniczne wydają się być najprostszym rozwiązaniem, wystarczyłoby zamontować wzmocnienia stołu na którym znajduje się prasowany przedmiot. Wadą tego rozwiązania jest fakt iż wraz ze wzrostem siły nacisku tłoka podpory będą miały coraz bardziej "solidną" konstrukcję, mogą one również po pewnym czasie ulec odkształceniu(tak jak i stół). Biorąc jednak pod uwagę ,że projektowana prasa nie będzie pracowała 24/dobę tak jak prasy stosowane w różnego rodzaju zakładach oraz fakt iż jej siła w porównaniu do innych pras tego typu jest stosunkowo mała 10 kN, gdzie zazwyczaj inne stosowane prasy mają znacznie większe naciski (np. około 65 kN), jest to opłacalne i dobre rozwiązanie.

Pozostałe dwa rozwiązania , szczególnie zamek hydrauliczny są niezawodne i nie wymagają wymiany po pewnym czasie użytkowania. Wada tych rozwiązań jest fakt, iż gdyby jednak uległy one uszkodzeniu ich wymiana jest znacznie bardziej pracochłonna. Biorąc pod uwagę, że w układzie prasy hydraulicznej mogą już znajdować się elementy, które dodatkowa są w stanie pełnić rolę blokowania ich montaż może okazać się nieopłacalny.

Tabela 1.5. Macierz 4

HARAKTERYSTYKA PRACY POMPY/REGULACJA PRĘDKOŚCI/REWERSJA RUCHU/BLOKOWANIE UKŁADU/CHARAKTERYSTYKA NAPĘDU PRASY HYDRAULIICZNEJ

		HYDKAUI	IICZNEJ				
	Rozwiązania	pompowy bezakumulatorowy	pompowy akumulatorowy	multiplikatorowy			
	sprężyna	sprężyna	sprężyna	sprężyna			
	ciągły	ciągły	ciągły	ciągły			
1—	podpory mechanicznie	podpory mechanicznie	podpory mechanicznie	podpory mechanicznie			
		pompa o zmiennej	pompa o zmiennej	pompa o zmiennej			
	pompa o zmiennej	wydajności	wydajności	wydajności			
	wydajności	pompowy bezakumulatorowa	pompowy akumulatorowy	multiplikatorowy			
	odciążnik	odciążnik	odciążnik	odciążnik			
	ciągły	ciągły	ciągły	ciągły			
•	podpory mechanicznie	podpory mechanicznie	podpory mechanicznic	podpory mechanicznie			
7 –		pompa o zmiennej	pompa o zmiennej	pompa o zmiennej			
_	pompa o zmiennej	wydajności	wydajności	wydajności			
	wydajności	pompowy bezakumulatorowy	pompowy akumulatorowy	multiplikatorowy			
	układ cylindrów	układ cylindrów	układ cylindrów	układ cylindrów			
_	powrotnych	powrotnych	powrotnych	powrotnych			
3 –	ciągły	ciągły	ciągły	ciągły			
J	podpory mechanicznie	podpoty mechanicznie	podpory mechanicznie	podpory mechanicznie			
		pompa o zmiennej	pompa o zmiennej	pompa o zmiennej			
	pompa o zmiennej	wydajności	wydajności	wydajności			
	wydajności	pompowy	pompowy	multiplikatorowy			
		bezakumulatorowy	akumulatorowy	•			
	układ cylindrów	układ cylindrów	układ cylindrów	układ cylindrów			
	powrotnych	powrotnych	powrotnych	powrotnych			
	ciągły	ciągły	ciągły	ciągły			
	podpory mechanicznie	podpory mechanicznie	podpory mechanicznie	podpory mechanicznie			
	rozdzielacz z tłoczkiem	rozdzielacz z tłoczkiem dławiącym	rozdzielacz z tłoczkiem dławiącym	rozdzielacz z tłoczkiem dławiącym			
	dławiącym	pompowy bezakumulatorowy	pompowy akumulatorowy	multiplikatorowy			

Zdecydowano się na wybór poszczególnych wariantów ponieważ:

- Wariant 1 Wadą tego rozwiązania jest stosunkowa mała prędkość suwaka prasy oraz konieczność zastosowania silników o dużych mocach do napędu pompy, jednak dzięki zastosowaniu pompy o zmiennej wydajności można osiągnąć znacznie lepsze rezultaty, koszt takiego układu jest niewielki.
- Wariant 2,3 takie rozwiązanie dzięki zastosowaniu akumulatora hydraulicznego w którym ciecz wysokiego ciśnienia jest gromadzona w czasie przerwy w pracy oraz w chwili, gdy zapotrzebowanie cylindrów prasy jest mniejsze od wydajności pompy. Najczęściej zasilanie prasy odbywa się jednocześnie z pompy i akumulatora, przy czym pobór cieczy z akumulatora znacznie przewyższa wydajność pompy. Rozwiązanie zastosowane w tym wariancie poprawia wydajność prasy oraz nie wpływa negatywnie na jej prędkość pracy.
- Napęd multiplikatorowy- jest to rozwiązanie bardziej kosztowne, oprócz multiplikatora zachodzi potrzeba dołączenia do układu również akumulatora hydraulicznego. Biorąc pod uwagę, że projektowana prasa nie potrzebuje osiągać ani znacznej siły nacisku, ani wysokiej prędkości działania, a wykorzystanie tego rozwiązania dodatkowo komplikuje budowę układu, nie zostało ono wybrane.

1.9.2 Metoda decyzji wymuszonych

Tabela 1.6. Ważenie kryteriów oceny

L.p	Kryterium oceny					Dec	yzje					Suma decyzji pozytywnych	Wskaźnik wagi
		1	2	3	4	5	6	7	8	9	10	P	gi=P/10
1	Koszt układu	0	0	1	1							2	0,2
2	Łatwość obsługi	1				0	1	1				3	0,3
3	Parametry niezawodnościowe		1			1			1	1		4	0,4
4	Gabaryty			0			0		0		1	1	0,1
5	Ciężar				0			0		0	0	0	0

Tabela 1.7. Ważenie wariantów rozwiązań w obrębie kryteriów

	Kryterium	D	ecyz	je	Suma daayaii	Oceny		
L.p	oceny/Wariant	1	2	3	Suma decyzji pozytywnych	Oceny wariantów		
	rozwiązania	1 2 3				wariantow		
]	Kosz	t ukł	adu			
1	Wariant 1	1	1		2	0,66		
1	Wariant 2	0		1	1	0,33		
	Wariant 3		0	0	0	0		
		Ła	atwo	ść ot	sługi			
2	Wariant 1	0	0		0	0		
2	Wariant 2	1		0	1	0,33		
	Wariant 3		1	1	2	0,66		
	Parametry niezawodnościowe							
3	Wariant 1	0	0		0	0		
3	Wariant 2	1		0	2	0,33		
	Wariant 3		1	1	1	0,66		
			Ga	bary	ty			
4	Wariant 1	1	1		2	0,66		
4	Wariant 2	0		0	0	0		
	Wariant 3		0	1	1	0,33		
			С	iężaı				
_	Wariant 1	1	1		2	0,66		
5	Wariant 2	0		0	0	0		
	Wariant 3		0	1	1	0,33		

Tabela 1.8. Wybór najlepszego rozwiązania

	Kryterium oceny/Wariant oc	eny	Wa	Wariant 1		riant 2	Wariant 3		
L.p	Nazwa kryterium	Waga kryterium	Wartość kryterium	Użyteczność	Wartość kryterium	Użyteczność	Wartość kryterium	Użyteczność	
1	Koszt układu	0,2	0,66	0,132	0,33	0,066	0	0	
2	Łatwość obsługi	0,3	0	0	0,33	0,099	0,66	0,198	
3	Parametry niezawodnościowe	0,4	0	0	0,33	0,132	0,66	0,264	
4	Gabaryty	0,1	0,66	0,066	0	0	0,33	0,033	
5	Ciężar	0	0,66	0	0	0	0,33	0	
6	6 Użyteczność wariantu			0,198		,297	0,495		

NAJLEPSZE ROZWIĄZANIE!!!

2. SCHEMAT PROJEKTOWANEJ PRASY HYDRAULICZNEJ

Rysunek 2.1. Schemat prasy hydraulicznej

3. DOBÓR ELEMENTÓW PROJEKTOWANEGO SCHEMATU HYDRAULICZNEGO

3.1 DOBÓR POMPY

Dobieramy pompę o stałej wydajności. Ze względu na stosunkowo niską wartość założonej siły, ciśnienie maksymalne wybranej pompy jest jednym z niższych w porównaniu z innymi pompami tego typu. Zdecydowano się na wysokociśnieniową wyporową pompę zębatą model PZ2-K-251.

	Dan	ne techniczne	pomp PZ2					
	Geom. obj.	*Wydajność	*Moc napędowa		nie na yj.	Prędkość obrotowa		
Symbol pompy	TODUCZA	nominama	max.	nom. max.		min.	nom.	max.
	cm³/obr	l/min	kW	M	Pa		obr/min	1
PZ2-K-6,3x; PZ2-A-6,3x	5	6,3	2,5				1500	
PZ2-K-10x; PZ2-A-10x PZ2-KS-10x	7,5	10	3,3	16	20	750	1450	3000
PZ2-K-10/Dx	8	10	3,6	16	20	750		3000
PZ2-K-16x; PZ2-A-16x	A Comment	2024	7505000	Torque T	1986	1	1500	
PZ2-K-16/Dx	11,8	16	5,3	16	20			
PZ2-K-25x; PZ2-A-25x	9						1	
PZ2-KZ-25x; PZ2-AZ-25x	18,5	25	8,2	16	20	750	1500	3000
PZ2-K-25/Dx								
PZ2-K-40x; PZ2-A-40x	7							
PZ2-KZ-40x; PZ2-AZ-40x	29,5	40	13,1	16	20	500	1500	2500
PZ2-K-40/Dx	5							
PZ2-K-63x; PZ2-A-63x	47,0	63	20,6	16	20			
PZ2-19-KS	19	43,0	13,6	16	20	650	2391	2500
PZ2-26,5-KSA	26,5	55,0	21,0	16	20	650	2391	2500
PZ2-AS-20L	14,5	20,0	6,4	12,5	16	750	1500	3000
NSz-10×	10,0	21,0	7,0	16	20	750	2400	3000
NSz-32A-3×	31,5	56,8	18,5	16	20	960	1920	2400
NSz-50x	47,0	63,0	21,0	16	20	500	1500	2100
46.546.310B 46.546.310D	25,0	35,0	8,8	12	15	600	1500	2800
ZCT-16L	12,0	20,5	4,2	10	12	600	1920	2500

Rysunek 3.1. Pompa hydrauliczna [2]

Rysunek 3.2. Charakterystyka pompy [2]

Dane technologiczne odczytane z katalogu wybranej pompy:

 Parametr
 Wartość

 P
 16 MPa

 Q
 25 l/min

 n
 3000 obr/min

 Nnapędowa
 8,2 kW

Tabela 3.1.Prametry pompy

Do dalszych obliczeń potrzebna jest znajomość powierzchni tłoka A:

3.2 OBLICZENIA POWIERZCHNI I ŚREDNICY TŁOKA

Na podstawie poniższych wzorów jesteśmy wstanie obliczyć powierzchnie tłoka A oraz jego średnicę:

$$F = P \cdot A \tag{3.1}$$

$$F = m \cdot g \tag{3.2}$$

$$d = \sqrt{\frac{4 \cdot A}{\pi}} \tag{3.3}$$

Przy założeniu, że straty są na poziomie około 15% otrzymujemy:

$$F = P \cdot A \to A = \frac{F}{P} = \frac{10\,000}{0.85 \cdot 16000000} = 0.000735\,m^2$$
 (3.4)

$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0,000735}{\pi}} = 0,0306m = 30,6mm \approx 30mm$$
 (3.5)

3.2.1 Obliczenia prędkości suwu tłoka

$$Q = A \cdot V \to V = \frac{Q}{A} = \frac{25 \cdot \frac{0.001}{60}}{0.000735} = 0.57 m/s$$
 (3.6)

3.2.2 Obliczenia mocy użytecznej pompy

$$Nu = g\delta HukładuQrzeczywista = 5,56KW$$
 (3.7)

$$Q_{rzeczywista} = 0.85Q = 25 \cdot 0.85 = 21.25 \ l/min$$
 (3.8)

$$H_u = 1.6m$$
 (3.9)

$$\delta = 1000 kg/m^3 \tag{3.10}$$

3.3 PODZIAŁ PRZEWODÓW W UKŁADZIE PROJEKTOWANEJ PRASIE HYDRAULICZNEJ

W czasie realizacji projektu stwierdzono, że dla docelowych odbiorców wydajność i szybkość działania są mniej istotne niż cena i nieskomplikowana konstrukcja, dlatego uproszczono schemat hydrauliczny projektowanej prasy, by zaoszczędzić na niektórych elementach.

Na poniższym schemacie zaznaczono rodzaje przewodów

Rysunek 3.3. Schemat układu hydraulicznego

Tabela 3.2. Tabela przewodów

Rodzaj przewodu	nr	Długość[cm]
	s1	10
Ssawny	s2	10
	s3	25
	c1	25
	c2	30
Ciánianiavy	c3	15
Ciśnieniowy	c4	30
	c5	20
	сб	30
Cl-	sp1	50
Spływowy	sp2	90

3.3.1 Przewody ssawne

Zakładamy ,że prędkość przepływu w tego rodzaju przewodach jest równa 1m/s

Następnie obliczamy średnice przewodów ssawnych na podstawie poniższego wzoru:

$$Q = A \cdot V \to V = \frac{Q}{A} = \frac{25 \cdot \frac{0,001}{60}}{1} = 0,000417m^2$$
 (3.11)

$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0,000417}{\pi}} = 0,02303m = 23,03mm$$
 (3.12)

3.3.2 Przewody spływowe

Zakładamy ,że prędkość przepływu w tego rodzaju przewodach jest równa 3m/s Następnie obliczamy średnice przewodów spływowych na podstawie poniższego wzoru:

$$Q = A \cdot V \to V = \frac{Q}{A} = \frac{25 \cdot \frac{0,001}{60}}{3} = 0,000139m^2$$
 (3.13)

$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0,000139}{\pi}} = 0,0133m = 13,3mm \tag{3.14}$$

3.3.3 Przewody ciśnieniowe

Zakładamy ,że prędkość przepływu w tego rodzaju przewodach jest równa 5m/s Następnie obliczamy średnice przewodów ciśnieniowych na podstawie poniższego wzoru:

$$Q = A \cdot V \to V = \frac{Q}{A} = \frac{25 \cdot \frac{0,001}{60}}{5} = 0,000083m^2$$
 (3.15)

$$d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0,000083}{\pi}} = 0,0103m = 10,03mm$$
 (3.16)

3.3.4 Dobór zaworów

• Rozdzielacz gniazdowy UREZ6 (są dostępne w wersji 3 i 4-drogowych)

Rysunek 3.4. Rozdzielacz [3]

Zdecydowano się na rozdzielacz grzybkowy ze względu na wygodę w jego stosowania, łatwość uzyskania szczelności między grzybkiem zaworu, a jego gniazdem oraz ich wzajemne docieranie się podczas pracy.

3.4 DOBÓR POZOSTAŁYCH ELEMENTÓW

• Siłownik- Wybrano siłownik tłokowy dwustronnego działania UCJ3-MW-20, o średnicy tłoka 32mm.

Rysunek 3.5. Siłownik [4]

Rysunek 3.6.Rys.tech. siłownika [4]

AL		25	32	40	50	63	80	100	125	140	160
MM		18	22	22	28	36	45	56	70	80	90
A		14	16	18	20	22	30	36	45	50	56
AF		16	22	22	30	36	45	50	63	75	85
D		35	42	50	65	76	95	120	150	170	195
EE	M	M14x1,5	M14X1,5	M16x1,5	M16x1,5	M22x1,5	M27x2	M33x2	M33x2	M33x2	M33x2
EE	G	G 1/4"	G 1/4"	G 3/8"	G 3/8"	G 1/2"	G 3/4"	G 1"	G 1"	G 1"	G 1"
UC		80	105	110	130	160	210	240	280	288	340
KK		M12x1,5	M16x1,5	M16x1,5	M22x1,5	M27x2	M33x2	M42x2	M48x2	M56x2	M64x2
WA				60	70	88	108	142	168	183	230
NF.		10	12	14	16	18	19	25	30	30	35
MR		7	9	9	11	13,5	17	22	22	26	26
PP		66	85	90	106	130	175	200	230	240	280
PJ		51,5	60	64	73	85	105	124	138	155	154
WH		14	14	12	18	20	31	30	32	20	50
XO		122	132	138	152	180	210	247	271	316	321
UA		50	60	65	85	100	135	150	180	185	240
VA.		2	2	3	3	3	3	4	4	5	5
WC		14	14	12	18	20	31	30	32	20	50
WW		12	12	4	9	7	8	8	23	6	10
M		31	35	36	42	50	62	75	88	98	110
PL		13	13	16	17	21	20	27	28	35	32

WK 583 217 03.2018 -2 - Typ UCJ3/ UCJ4

Rysunek 3.7. Parametry siłownika [4]

• Sito/filtr WS1-25SM (magnetyczny wkład, siatkowy, przepustowość nominalna

Na podstawie dokumentacji wybranego powyżej siłownika minimalna filtracja powinna być nie mniejsza niż 16µm. Wybrano filtr ssawny, który zabezpieczy pompę hydrauliczną przed zassaniem dużych zabrudzeń, które mogą natychmiastowo uszkodzić urządzenie. Specjalna konstrukcja filtrów oraz bardzo wytrzymałe materiały sprawiają, że zachowują one swoje funkcje nawet przy ciśnieniu 25 MPa. Ich głównym zadaniem jest oczyszczanie medium z cząstek stałych, które mogłyby doprowadzić do uszkodzenia pompy

Rysunek 3.8. Filtr [5]

Zawór bezpieczeństwa- MCD3-SAT/51N, CETOP03

Rysunek 3.9. Zawór bezpieczeństwa [6]

Rysunek 3.10. Charakterystyka zaworu bezpieczeństwa [6]

Maximum operating pressure	bar	350	
Minimum controlled pressure	see &	op diagram	
Maximum flow rate in controlled lines Maximum flow rate in the free lines	l/min	50 75	
Ambient temperature range	°C	-20 / +50	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 + 400	
Fluid contamination degree	According to ISO 4406:1999 class 20/18/15		
Recommended viscosity	cSt	25	
Mass: MCD-SP / MCD-SAT / MCD-SBT / MCD-SB MCD-DT / MCD-D	kg	1,4 2,0	

Rysunek 3.11. Dane techniczne zaworu bezpieczeństwa [6]

3.5 DOBÓR SILNIKA ELEKTRYCZNEGO

Moment obrotowy:

$$M = \frac{9550 \cdot P}{n} = \frac{9550 \cdot 8,2}{3000} = 23,1 \, Nm \tag{3.17}$$

$$N = Q \cdot P/50 = 5,66kW \tag{3.18}$$

Prędkość obrotowa:

$$n = \frac{3000 \cdot M}{N \cdot \pi} = 1558 \ obr/min \tag{3.19}$$

Zatem silnik powinien mieć moc nie mniejszą niż 5,7kW i prędkość obrotową około 1560 obr/min.

Wybrano silnik elektryczny 2SIE 132S4 o mocy 7,5 kW i n= 1490 obr/min

Rysunek 3.12. Silnik elektryczny [7]

4. STRATY CIŚNIENIA W PROJEKTOWANEJ PRASIE HYDRAULICZNEJ

4.1 PODZIAŁ PRZEWODÓW W UKŁADZIE PROJEKTOWANEJ PRASIE HYDRAULICZNEJ

Na podstawie poniższego schematu oraz obliczonych parametrów danej prasy hydraulicznej wykonanych we wcześniejszych etapach projektowania dokonano powtórnej analizy układu hydraulicznego z uwzględnieniem strat ciśnienia w poszczególnych jej elementach.

Rysunek 4.1. Schemat hydrauliczny projektowanej prasy hydraulicznej

Poniżej opisano rodzaj i długość oraz średnicę przewodów zastosowanych w projekcie prasy hydraulicznej.

Tabela 4.1.Parametry przewodów w układzie hydraulicznym

Rodzaj przewodu	nr	Długość[cm]	Średnica [mm]	
	s1	10		
Ssawny	s2	10	23	
	s3	25		
	c1	25		
	c2	30		
Ciśnieniowy	c3	15	10,3	
Cisillelllowy	c4	30	10,3	
	c5	20		
	с6	30		
Sphanona	sp1	50	12.2	
Spływowy	sp2	90	13,3	

4.2 STRATY CIŚNIENIA W PRZEWODACH HYDRAULICZNYCH

Poniżej przedstawiono równanie opisujące straty ciśnienia w różnego rodzaju przewodach.:

$$\Delta p_{\lambda} = \frac{1}{2} * \lambda * \frac{L}{D} * \rho * \frac{Q^2}{A^2}$$

$$\tag{4.1}$$

Gdzie:

λ- Współczynnik oporu liniowego

L – długość przewodu hydraulicznego [m]

D − średnica przewodu hydraulicznego [m]

 ρ - gęstość oleju roboczego [kg/ m³]

A - pole przekroju przewodu hydraulicznego [m²]

Q- wydajność pompy [m³/s]

Do poniższych obliczeń użyto następujących parametrów:

Tabela 4.2. Wartości parametrów potrzebnych do obliczeń

Parametr	Wartość
λ	0,025
Q	0-10 [dm ³ /min]
ρ	$800 [kg/m^3]$

4.2.1 Przewody ssawne

Tabela 4.3. Straty na przewodzie ssawnym s1

	s1										
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	ρ [kg/m ³]	Δp_{λ} [Pa]					
0,0						0,00					
0,5						0,02					
1,0						0,07					
1,5						0,16					
2,0						0,28					
2,5						0,44					
3,0						0,63					
3,5							0,86				
4,0			0,00042	0,025	800	1,12					
4,5						1,42					
5,0	0,1	0,023				1,75					
5,5						2,12					
6,0						2,52					
6,5						2,96					
7,0						3,43					
7,5						3,94					
8,0						4,48					
8,5						5,05					
9,0						5,67					
9,5						6,31					
10,0						7,00					

Tabela 4.4. Straty na przewodzie ssawnym s3

	s3										
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	ρ [kg/m ³]	Δp_{λ} [Pa]					
0,0						0,00					
0,5						0,04					
1,0						0,17					
1,5						0,39					
2,0						0,70					
2,5	0,25	0,023	0,00042	0,025	800	1,09					
3,0						1,57					
3,5						2,14					
4,0						2,80					
4,5						3,54					
5,0						4,37					

5,5			5,29
6,0			6,30
6,5			7,39
7,0			8,57
7,5			9,84
8,0			11,19
8,5			12,64
9,0			14,17
9,5			15,79
10,0			17,49

Wartość strat ciśnienia w przewodzie ssawnym s2 będzie taka sam jak w przewodzie s1 ze względu na fakt ,że oba przewody maja taką samą długość.

4.2.2 Przewody ciśnieniowe

Tabela 4.5. Straty na przewodzie ciśnieniowym c1

			c1			
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	ρ [kg/m ³]	Δp_{λ} [Pa]
0,0						0,00
0,5						2,43
1,0						9,71
1,5						21,85
2,0						38,84
2,5						60,69
3,0						87,40
3,5						118,96
4,0					155,38	
4,5						196,65
5,0	0,25	0,0103	0,0000833	0,025	800	242,78
5,5						293,76
6,0						349,60
6,5						410,30
7,0						475,85
7,5						546,25
8,0						621,51
8,5						701,63
9,0						786,60
9,5						876,43
10,0						971,12

Tabela 4.6.Straty na przewodzie ciśnieniowym c2

			c2				
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	$\rho[\text{kg/m}^3]$	Δp_{λ} [Pa]	
0,0						0,00	
0,5						2,91	
1,0						11,65	
1,5						26,22	
2,0						46,61	
2,5						72,83	
3,0						104,88	
3,5						142,75	
4,0					186,45		
4,5						235,98	
5,0	0,3	0,3 0,0103	0,0103 0,0000833 0,025 800	0,0103	0,025	800	291,34
5,5						352,52	
6,0						419,52	
6,5						492,36	
7,0						571,02	
7,5						655,50	
8,0						745,82	
8,5						841,96	
9,0						943,93	
9,5						1051,72	
10,0						1165,34	

Tabela 4.7.Straty na przewodzie ciśnieniowym c3

	c3										
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	ρ [kg/m ³]	Δp_{λ} [Pa]					
0,0						0,00					
0,5						1,46					
1,0						5,83					
1,5						13,11					
2,0						23,31					
2,5	0.15	0.0102	0,0000833	0.025	800	36,42					
3,0	0,15	0,0103	0,0000833	0,025	800	52,44					
3,5						71,38					
4,0						93,23					
4,5						117,99					
5,0						145,67					
5,5						176,26					

6,0			209,76
6,5			246,18
7,0			285,51
7,5			327,75
8,0			372,91
8,5			420,98
9,0			471,96
9,5			525,86
10,0			582,67

Tabela 4.8.Straty na przewodzie ciśnieniowym c5

			c5			
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	$\rho[\text{kg/m}^3]$	Δp_{λ} [Pa]
0,0						0,00
0,5						1,94
1,0						7,77
1,5						17,48
2,0						31,08
2,5						48,56
3,0						69,92
3,5						95,17
4,0						124,30
4,5						157,32
5,0	0,2	0,0103	0,0000833	0,025	800	194,22
5,5						235,01
6,0						279,68
6,5						328,24
7,0						380,68
7,5						437,00
8,0						497,21
8,5						561,31
9,0						629,28
9,5						701,15
10,0						776,89

Wartość strat ciśnienia w przewodzie ssawnym c4 i c6 będzie taka sam jak w przewodzie c2 ze względu na fakt ,że oba przewody maja taką samą długość.

4.2.3 Przewody spływowe

Tabela 4.9.Straty na przewodzie spływowym sp1

	sp1										
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	$\rho[\text{kg/m}^3]$	Δp_{λ} [Pa]					
0,0						0,00					
0,5						1,35					
1,0						5,41					
1,5						12,17					
2,0						21,64					
2,5						33,82					
3,0						48,69					
3,5						66,28					
4,0						86,57					
4,5						109,56					
5,0	0,5	0,0133	0,00014	0,025	800	135,26					
5,5						163,66					
6,0						194,77					
6,5						228,59					
7,0						265,11					
7,5						304,34					
8,0						346,27					
8,5						390,90					
9,0						438,24					
9,5						488,29					
10,0						541,04					

Tabela 4.10.Straty na przewodzie spływowym sp2

	sp2										
Q[dm ³ /min]	L[m]	D[m]	$A[m^2]$	λ	$\rho[\text{kg/m}^3]$	Δp_{λ} [Pa]					
0,0						0,00					
0,5						2,43					
1,0						9,74					
1,5						21,91					
2,0	0,9	0,0133	0,00014	0.025	800	38,95					
2,5	0,9	0,0133	0,00014	0,025	800	60,87					
3,0						87,65					
3,5						119,30					
4,0						155,82					
4,5						197,21					

5,0			243,47
5,5			294,60
6,0			350,59
6,5			411,46
7,0	_		477,20
7,5			547,80
8,0			623,28
8,5			703,62
9,0	_		788,84
9,5			878,92
10,0			973,87

4.2.4 Łączna suma strat ciśnienia we wszystkich przewodach

Tabela 4.11. Całkowite straty ciśnienia w przewodach

	SUMA STRAT CIŚNIENIA W PRZEWODACH											
Q	s1	s2	s3	c1	c2	с3	c4	c5	сб	sp1	sp2	SUMA[Pa]
0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,5	0,02	0,02	0,04	2,43	2,91	1,46	2,91	1,94	2,91	1,35	2,43	23,82
1,0	0,07	0,07	0,17	9,71	11,65	5,83	11,65	7,77	11,65	5,41	9,74	95,27
1,5	0,16	0,16	0,39	21,85	26,22	13,11	26,22	17,48	26,22	12,17	21,91	214,36
2,0	0,28	0,28	0,70	38,84	46,61	23,31	46,61	31,08	46,61	21,64	38,95	381,08
2,5	0,44	0,44	1,09	60,69	72,83	36,42	72,83	48,56	72,83	33,82	60,87	595,44
3,0	0,63	0,63	1,57	87,40	104,88	52,44	104,88	69,92	104,88	48,69	87,65	857,43
3,5	0,86	0,86	2,14	118,96	142,75	71,38	142,75	95,17	142,75	66,28	119,30	1167,06
4,0	1,12	1,12	2,80	155,38	186,45	93,23	186,45	124,30	186,45	86,57	155,82	1524,33
4,5	1,42	1,42	3,54	196,65	235,98	117,99	235,98	157,32	235,98	109,56	197,21	1929,23
5,0	1,75	1,75	4,37	242,78	291,34	145,67	291,34	194,22	291,34	135,26	243,47	2381,76
5,5	2,12	2,12	5,29	293,76	352,52	176,26	352,52	235,01	352,52	163,66	294,60	2881,93
6,0	2,52	2,52	6,30	349,60	419,52	209,76	419,52	279,68	419,52	194,77	350,59	3429,74
6,5	2,96	2,96	7,39	410,30	492,36	246,18	492,36	328,24	492,36	228,59	411,46	4025,18
7,0	3,43	3,43	8,57	475,85	571,02	285,51	571,02	380,68	571,02	265,11	477,20	4668,25
7,5	3,94	3,94	9,84	546,25	655,50	327,75	655,50	437,00	655,50	304,34	547,80	5358,96
8,0	4,48	4,48	11,19	621,51	745,82	372,91	745,82	497,21	745,82	346,27	623,28	6097,31
8,5	5,05	5,05	12,64	701,63	841,96	420,98	841,96	561,31	841,96	390,90	703,62	6883,29
9,0	5,67	5,67	14,17	786,60	943,93	471,96	943,93	629,28	943,93	438,24	788,84	7716,91
9,5	6,31	6,31	15,79	876,43	1051,72	525,86	1051,72	701,15	1051,72	488,29	878,92	8598,16
10,0	7,00	7,00	17,49	971,12	1165,34	582,67	1165,34	776,89	1165,34	541,04	973,87	9527,05

4.3 STRATY MIEJSCOWE

Poniżej przedstawiono równanie opisujące straty ciśnienia w różnego rodzaju przewodach.:

$$\Delta p_{\xi} = \frac{1}{2} * \xi * \rho * V^2 \mid (V^2 = \frac{Q^2}{A^2})$$
 (4.2)

Gdzie:

 ξ - Współczynnik oporu miejscowego

 ρ - gęstość oleju roboczego [kg/ m³]

A - pole przekroju przewodu hydraulicznego [m²]

Q- wydajność pompy [m³/s]

Do poniższych obliczeń użyto następujących parametrów:

Tabela 4.12. Wartości parametrów potrzebnych do obliczeń

	Parametr	Wartość	
	trójnik	1,25	
ξ	zwężenie	0,42	
	kolanko	1,12	
	Q	0-10 [dm ³ /min]	
	ρ		

4.3.1 Trójnik

Tabela 4.13. Straty ciśnienia na trójniku c

	TRÓJNIK C									
Q[dm ³ /min]	D[m]	$A[m^2]$	ξ	$\rho [kg/m^3]$	$\Delta p_{\xi}[\mathrm{Pa}]$					
0,0					0,00					
0,5					5,00					
1,0					20,01					
1,5					45,01					
2,0					80,02					
2,5					125,03					
3,0	0,0103	0,000083	1,25	800	180,05					
3,5					245,06					
4,0					320,08					
4,5					405,10					
5,0					500,13					
5,5					605,15					
6,0					720,18					

6,5			845,21
7,0			980,25
7,5			1125,28
8,0			1280,32
8,5			1445,36
9,0			1620,41
9,5			1805,45
10,0			2000,50

Tabela 4.14.Straty ciśnienia na trójniku s

TRÓJNIK S									
Q[dm ³ /min]	D[m]	$A[m^2]$	ξ	$\rho [\text{kg/m}^3]$	$\Delta p_{\xi}[\mathrm{Pa}]$				
0,0					0,00				
0,5					0,20				
1,0					0,80				
1,5					1,81				
2,0					3,22				
2,5					5,03				
3,0					7,24				
3,5					9,86				
4,0					12,87				
4,5					16,29				
5,0	0,023	0,00042	1,25	800	20,11				
5,5					24,34				
6,0					28,97				
6,5					33,99				
7,0					39,43				
7,5					45,26				
8,0					51,49				
8,5					58,13				
9,0					65,17				
9,5					72,61				
10,0					80,46				

4.3.2 Kolanko

Tabela 4.15.Straty ciśnienia na kolanku c

	KOLANKO C										
Q[dm ³ /min]	D[m]	A[m ²]	ξ	$\rho [kg/m^3]$	$\Delta p_{\xi}[\mathrm{Pa}]$						
0,0					0,00						
0,5					4,48						
1,0					17,92						
1,5					40,33						
2,0					71,70						
2,5					112,03						
3,0					161,32						
3,5					219,58						
4,0					286,79						
4,5					362,97						
5,0	0,0103	8,33229E-05	1,12	800	448,11						
5,5					542,22						
6,0					645,28						
6,5					757,31						
7,0					878,30						
7,5					1008,25						
8,0					1147,17						
8,5					1295,04						
9,0					1451,88						
9,5					1617,69						
10,0					1792,45						

Tabela 4.16.Straty ciśnienia na kolanku sp

KOLANKO SP									
Q[dm ³ /min]	D[m]	A[m ²]	ξ	$\rho [\text{kg/m}^3]$	$\Delta p_{\xi}[Pa]$				
0,0					0,00				
0,5					1,61				
1,0					6,45				
1,5					14,51				
2,0	0,0133	0,00014	1,12	800	25,79				
2,5					40,30				
3,0					58,03				
3,5					78,98				
4,0					103,16				

4,5
5,0
5,5
6,0
6,5
7,0
7,5
8,0
8,5
9,0
9,5
10,0

4.3.3 Zwężenie

Tabela 4.17.Straty ciśnienia na zwężeniu

ZWEŻENIE									
Q[dm ³ /min]	D[m]	$A[m^2]$	ξ	$\rho [kg/m^3]$	$\Delta p_{\xi}[Pa]$				
0,0						0,00			
0,5					0,60				
1,0					2,42				
1,5					5,44				
2,0					9,67				
2,5					15,11				
3,0					21,76				
3,5					29,62				
4,0					38,68				
4,5					48,96				
5,0	0,0133	0,00014	0,42	800	60,45				
5,5					73,14				
6,0					87,04				
6,5					102,15				
7,0					118,47				
7,5					136,00				
8,0					154,74				
8,5					174,69				
9,0					195,84				
9,5					218,21				
10,0					241,78				

4.3.4 Łączna suma strat ciśnienia miejscowe w układzie hydraulicznym

Tabela 4.18.Całkowite straty miejscowe w układzie hydraulicznym

STRATY MIEJSCOWE									
Q[dm ³ /min]	TRÓJNIK C	TRÓJNIK S	KOLANKO C	KOLANKO SP	ZWEŻENIE	SUMA [Pa]			
0,0	0,00	0,00	0,00	0,00	0,00	0,00			
0,5	18,43	0,20	4,48	1,61	0,60	65,31			
1,0	73,73	0,80	17,92	6,45	2,42	261,24			
1,5	165,89	1,81	40,33	14,51	5,44	587,78			
2,0	294,92	3,22	71,70	25,79	9,67	1044,95			
2,5	460,82	5,03	112,03	40,30	15,11	1632,73			
3,0	663,58	7,24	161,32	58,03	21,76	2351,13			
3,5	903,20	9,86	219,58	78,98	29,62	3200,15			
4,0	1179,70	12,87	286,79	103,16	38,68	4179,78			
4,5	1493,05	16,29	362,97	130,56	48,96	5290,04			
5,0	1843,27	20,11	448,11	161,19	60,45	6530,91			
5,5	2230,36	24,34	542,22	195,04	73,14	7902,40			
6,0	2654,32	28,97	645,28	232,11	87,04	9404,51			
6,5	3115,13	33,99	757,31	272,41	102,15	11037,24			
7,0	3612,82	39,43	878,30	315,93	118,47	12800,58			
7,5	4147,37	45,26	1008,25	362,67	136,00	14694,55			
8,0	4718,78	51,49	1147,17	412,64	154,74	16719,13			
8,5	5327,06	58,13	1295,04	465,83	174,69	18874,33			
9,0	5972,21	65,17	1451,88	522,24	195,84	21160,15			
9,5	6654,22	72,61	1617,69	581,88	218,21	23576,58			
10,0	7373,10	80,46	1792,45	644,75	241,78	26123,64			

4.4 CAŁKOWITE STRATY UKŁADU HYDRAULICZNEGO

Poniżej przedstawiono równanie opisujące całkowite straty ciśnienia w układzie hydraulicznym:

$$\Delta p = \Delta p_r + \Delta p_{zz} + \Delta p_p + \Delta p_f + \Delta p_\lambda + \Delta p_\xi \tag{4.3}$$

Gdzie:

 Δp_r - straty na rozdzielaczu [Pa]

 Δp_{zz} - straty na zaworze zwrotnym [Pa]

 Δp_p - straty na zaworze przelewowym [Pa]

 Δp_f - straty na filtrze [Pa]

 Δp_{λ} - straty liniowe w przewodach [Pa]

 Δp_{ξ} - straty miejscowe [Pa]

Odczytano wartości strat ciśnienia z poniższych charakterystyk zaworów oraz filtra.

Rysunek 4.2. Zawór zwrotny- straty ciśnienia

Rysunek 4.3.Rozdzielacz - straty ciśnienia[3]

Rysunek 4.4. Zawór przelewowy - straty ciśnienia [6]

Tabela 4.19. Całkowite straty układu

Q[dm ³ /min]	Δp_{λ}	Δp_{ξ}	Δp_p	Δp_f	Δp_{zz}	Δp_r	SUMA[Pa]
0,0	0,00	0,00	200000	1000000	0	0	1200000,00
0,5	23,82	65,31	200000	1000000	1500	25000	1226589,13
1,0	95,27	261,24	200000	1000000	3000	50000	1253356,51
1,5	214,36	587,78	200000	1000000	4500	75000	1280302,14
2,0	381,08	1044,95	200000	1000000	6000	100000	1307426,03
2,5	595,44	1632,73	200000	1000000	7500	125000	1334728,17
3,0	857,43	2351,13	200000	1000000	9000	150000	1362208,56
3,5	1167,06	3200,15	200000	1000000	10500	175000	1389867,21
4,0	1524,33	4179,78	200000	1000000	12000	200000	1417704,11
4,5	1929,23	5290,04	200000	1000000	13500	225000	1445719,26
5,0	2381,76	6530,91	200000	1000000	15000	250000	1473912,67
5,5	2881,93	7902,40	200000	1000000	16500	273000	1500284,33
6,0	3429,74	9404,51	200000	1000000	18000	296000	1526834,25
6,5	4025,18	11037,24	200000	1000000	19500	319000	1553562,41
7,0	4668,25	12800,58	200000	1000000	21000	342000	1580468,84
7,5	5358,96	14694,55	200000	1000000	22500	365000	1607553,51
8,0	6097,31	16719,13	200000	1000000	24000	388000	1634816,44
8,5	6883,29	18874,33	200000	1000000	25500	411000	1662257,62
9,0	7716,91	21160,15	200000	1000000	27000	434000	1689877,05
9,5	8598,16	23576,58	200000	1000000	28500	457000	1717674,74
10,0	9527,05	26123,64	200000	1000000	30000	480000	1745650,69

Straty ciśnienia zostały obliczone dla sytuacji w której straty są największe oraz każdy z elementów układu został użyty chociaż jednokrotnie.

5. WYZNACZANIE PUNKTU PRACY

Rysunek 5.1. Schemat układy wraz z zaznaczonymi elementami

Rysunek 5.2. Wykres wyznaczający punkt pracy układu

Równanie dla strat miejscowych, liniowych, na siłowniku:

$$P = 3565, 1 \cdot Q + 2 \cdot 10^7 \tag{5.1}$$

Równanie charakterystyki zaworu bezpieczeństwa:

$$P = 300000 \cdot Q + 2 \cdot 10^7 \tag{5.2}$$

Równanie charakterystyki pompy:

$$P = -10^8 \cdot Q + 8 \cdot 10^8 \tag{5.3}$$

6. Podsumowanie

Największą trudnością którą napotkano w trakcie pracy nad danym projektem było sporządzenie schematu hydraulicznego oraz dobór odpowiednich elementów, trudności te były głównie spowodowane brakiem doświadczenia w projektach tego typu. Cena wielu elementów schematu była znacznie droższa niż początkowo zakładano, było to spowodowane przede wszystkim faktem, iż w początkowej fazie projektowania nie były jeszcze ściśle określone parametry niezbędnych elementów. W trakcie projektowania zdano sobie również sprawę ,że schemat układu hydraulicznego dla projektowanej prasy hydraulicznej jest zbyt skomplikowany biorąc pod uwagę jego przeznaczenie oraz zakładany czas pracy. Uwzględniając wszystkie powyższe argumenty zdecydowano się uprościć schemat hydrauliczny projektowanej maszyny.

W dalszych etapach projektu nie napotkano problemów, które zmusiłby do ponownej analizy schematu projektowanej prasy lub wymiany któregokolwiek z założonych elementów. Wszystkie wartości zarówno start ciśnienia , jak i innych parametrów otrzymanych w trakcie obliczeń wydają się być wiarygodne, co pozwala stwierdzić, że projekt prasy hydraulicznej został zrobiony w sposób poprawny.

7. ŹRÓDŁA

- 1. Maszyny i urządzenia do obróbki plastycznej "Janusz Tomczak Jarosław Bartnicki
- 2. http://www.hydrotor.pl/pz2-kz-25/
- 3. https://www.ponar-wadowice.pl/products/rozdzielacze#rozdzielacze-gniazdowe
- 4. https://www.ponar-wadowice.pl/!uploads/attachments_prod/ucj3_4_pl.pdf
- 5. http://www.megahydral.pl/filtry-WS.php
- 6. https://www.hydroma.pl/files/product/9/13/20642/data/093-10398.pdf
- 7. https://www.hydroma.pl/files/product/11/42/27080/data/077-SEI(K,L).pdf