Exemplar Course 5 Automatidata project lab

August 25, 2023

1 Automatidata project

The data consulting firm Automatidata has recently hired you as the newest member of their data analytics team. Their newest client, the NYC Taxi and Limousine Commission (New York City TLC), wants the Automatidata team to build a multiple linear regression model to predict taxi fares using existing data that was collected over the course of a year. The team is getting closer to completing the project, having completed an initial plan of action, initial Python coding work, EDA, and A/B testing.

The Automatidata team has reviewed the results of the A/B testing. Now it's time to work on predicting the taxi fare amounts. You've impressed your Automatidata colleagues with your hard work and attention to detail. The data team believes that you are ready to build the regression model and update the client New York City TLC about your progress.

A notebook was structured and prepared to help you in this project. Please complete the following questions.

2 Build a multiple linear regression model

2.0.1 Task 1. Imports and loading

Import the packages that you've learned are needed for building linear regression models.

```
[1]: # Imports
    # Packages for numerics + dataframes
    import pandas as pd
    import numpy as np

# Packages for visualization
    import matplotlib.pyplot as plt
    import seaborn as sns

# Packages for date conversions for calculating trip durations
    from datetime import datetime
    from datetime import date
    from datetime import timedelta
```

```
# Packages for OLS, MLR, confusion matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import sklearn.metrics as metrics # For confusion matrix
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,r2_score,mean_squared_error
```

Note: Pandas is used to load the NYC TLC dataset. As shown in this cell, the dataset has been automatically loaded in for you. You do not need to download the .csv file, or provide more code, in order to access the dataset and proceed with this lab. Please continue with this activity by completing the following instructions.

```
[2]: df0=pd.read_csv("2017_Yellow_Taxi_Trip_Data.csv") # index_col parameter_

→ specified to avoid "Unnamed: 0" column when reading in data from csv
```

2.0.2 Task 2a. Explore data with EDA

Analyze and discover data, looking for correlations, missing data, outliers, and duplicates. Start with .shape and .info().

```
[3]: # Start with `.shape` and `.info()`

# Keep `df0` as the original dataframe and create a copy (df) where changes_
will go

# Can revert `df` to `df0` if needed down the line

df = df0.copy()

# Display the dataset's shape
print(df.shape)

# Display basic info about the dataset
df.info()
```

```
(22699, 18)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	22699 non-null	int64
1	VendorID	22699 non-null	int64
2	tpep_pickup_datetime	22699 non-null	object
3	${\tt tpep_dropoff_datetime}$	22699 non-null	object
4	passenger_count	22699 non-null	int64
5	trip_distance	22699 non-null	float64
6	RatecodeID	22699 non-null	int64

```
7
         store_and_fwd_flag
                                22699 non-null object
        PULocationID
                                22699 non-null int64
         DOLocationID
                                22699 non-null int64
     10 payment_type
                                22699 non-null int64
     11 fare amount
                                22699 non-null float64
     12 extra
                                22699 non-null float64
     13 mta tax
                                22699 non-null float64
     14 tip_amount
                                22699 non-null float64
     15 tolls amount
                                22699 non-null float64
     16 improvement_surcharge 22699 non-null float64
     17 total_amount
                                22699 non-null float64
    dtypes: float64(8), int64(7), object(3)
    memory usage: 3.1+ MB
    Check for missing data and duplicates using .isna() and .drop_duplicates().
[4]: # Check for missing data and duplicates using .isna() and .drop duplicates()
     ### YOUR CODE HERE ###
     # Check for duplicates
     print('Shape of dataframe:', df.shape)
     print('Shape of dataframe with duplicates dropped:', df.drop_duplicates().shape)
     # Check for missing values in dataframe
     print('Total count of missing values:', df.isna().sum().sum())
     # Display missing values per column in dataframe
     print('Missing values per column:')
     df.isna().sum()
    Shape of dataframe: (22699, 18)
    Shape of dataframe with duplicates dropped: (22699, 18)
    Total count of missing values: 0
    Missing values per column:
[4]: Unnamed: 0
    VendorTD
                              0
     tpep_pickup_datetime
     tpep_dropoff_datetime
                              0
    passenger_count
                              0
    trip distance
                              0
    RatecodeID
     store_and_fwd_flag
                              0
    PULocationID
    DOLocationID
```

0

0

payment_type

fare_amount

extra

Exemplar note: There are no duplicates or missing values in the data.

Use .describe().

[5]: # Display descriptive stats about the data df.describe()

[5]:		Unnamed: 0	VendorID	passenger_cou	nt trip_dista	ince \	
	count	2.269900e+04	22699.000000	22699.0000	• -		
	mean	5.675849e+07	1.556236	1.6423	1.642319 2.913		
	std	3.274493e+07	0.496838	1.2852	31 3.653	171	
	min	1.212700e+04	1.000000	0.0000	0.000	000	
	25%	2.852056e+07	1.000000	1.0000	00 0.990	000	
	50%	5.673150e+07	2.000000	1.0000	00 1.610	000	
	75%	8.537452e+07	2.000000	2.0000	00 3.060	000	
	max	1.134863e+08	2.000000	6.0000	00 33.960	000	
		RatecodeID	PULocationID	DOLocationID	payment_type	fare_amount	\
	count	22699.000000	22699.000000	22699.000000	22699.000000	22699.000000	
	mean	1.043394	162.412353	161.527997	1.336887	13.026629	
	std	0.708391	66.633373	70.139691	0.496211	13.243791	
	min	1.000000	1.000000	1.000000	1.000000	-120.000000	
	25%	1.000000	114.000000	112.000000	1.000000	6.500000	
	50%	1.000000	162.000000	162.000000	1.000000	9.500000	
	75%	1.000000	233.000000	233.000000	2.000000	14.500000	
	max	99.000000	265.000000	265.000000	4.000000	999.990000	
		extra	mta_tax	tip_amount	tolls_amount	\	
	count	22699.000000	22699.000000	22699.000000	22699.000000		
	mean	0.333275	0.497445	1.835781	0.312542		
	std	0.463097	0.039465	2.800626	1.399212		
	min	-1.000000	-0.500000	0.000000	0.000000		
	25%	0.000000	0.500000	0.000000	0.000000		
	50%	0.000000	0.500000	1.350000	0.000000		
	75%	0.500000	0.500000	2.450000	0.000000		
	max	4.500000	0.500000	200.000000	19.100000		
		improvement_s	urcharge tota	l_amount			
	count	2269	9.000000 2269	9.000000			
	mean 0.299551			6.310502			

16.097295

0.015673

std

min	-0.300000	-120.300000
25%	0.300000	8.750000
50%	0.300000	11.800000
75%	0.300000	17.800000
max	0.300000	1200.290000

Exemplar note: Some things stand out from this table of summary statistics. For instance, there are clearly some outliers in several variables, like tip_amount (\$200) and total_amount (\$1,200). Also, a number of the variables, such as mta_tax, seem to be almost constant throughout the data, which would imply that they would not be expected to be very predictive.

2.0.3 Task 2b. Convert pickup & dropoff columns to datetime

```
[6]: # Check the format of the data
     df['tpep dropoff datetime'][0]
[6]: '03/25/2017 9:09:47 AM'
[7]: # Convert datetime columns to datetime
     # Display data types of `tpep_pickup_datetime`, `tpep_dropoff_datetime`
     print('Data type of tpep_pickup_datetime:', df['tpep_pickup_datetime'].dtype)
     print('Data type of tpep_dropoff_datetime:', df['tpep_dropoff_datetime'].dtype)
     # Convert `tpep pickup datetime` to datetime format
     df['tpep_pickup_datetime'] = pd.to_datetime(df['tpep_pickup_datetime'],__

→format='%m/%d/%Y %I:%M:%S %p')
     # Convert `tpep_dropoff_datetime` to datetime format
     df['tpep_dropoff_datetime'] = pd.to_datetime(df['tpep_dropoff_datetime'],__
     →format='\%m/\%d/\%Y \%I:\\M:\\S \%p')
     # Display data types of `tpep_pickup_datetime`, `tpep_dropoff_datetime`
     print('Data type of tpep_pickup_datetime:', df['tpep_pickup_datetime'].dtype)
     print('Data type of tpep_dropoff_datetime:', df['tpep_dropoff_datetime'].dtype)
     df.head(3)
    Data type of tpep_pickup_datetime: object
    Data type of tpep_dropoff_datetime: object
    Data type of tpep_pickup_datetime: datetime64[ns]
    Data type of tpep_dropoff_datetime: datetime64[ns]
[7]:
       Unnamed: 0 VendorID tpep_pickup_datetime tpep_dropoff_datetime \
                           2 2017-03-25 08:55:43
                                                    2017-03-25 09:09:47
     0
          24870114
     1
          35634249
                           1 2017-04-11 14:53:28
                                                    2017-04-11 15:19:58
     2
         106203690
                           1 2017-12-15 07:26:56
                                                    2017-12-15 07:34:08
```

```
passenger_count trip_distance RatecodeID store_and_fwd_flag
0
                              3.34
                                             1
                              1.80
                                             1
                                                                 N
1
                 1
2
                 1
                              1.00
                                             1
                                                                 N
   PULocationID DOLocationID payment_type fare_amount
                                                            extra mta_tax \
            100
                           231
                                                                        0.5
0
                                           1
                                                      13.0
                                                              0.0
                           43
                                                                        0.5
            186
                                            1
                                                      16.0
                                                              0.0
1
2
            262
                           236
                                            1
                                                       6.5
                                                              0.0
                                                                        0.5
   tip_amount
              tolls_amount
                              improvement_surcharge
                                                      total_amount
0
         2.76
                        0.0
                                                 0.3
                                                             16.56
         4.00
                         0.0
1
                                                 0.3
                                                             20.80
2
         1.45
                        0.0
                                                 0.3
                                                              8.75
```

2.0.4 Task 2c. Create duration column

Create a new column called duration that represents the total number of minutes that each taxi ride took.

```
[8]: # Create `duration` column

df['duration'] = (df['tpep_dropoff_datetime'] - df['tpep_pickup_datetime'])/np.

→timedelta64(1,'m')
```

2.0.5 Outliers

Call df.info() to inspect the columns and decide which ones to check for outliers.

[9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	22699 non-null	int64
1	VendorID	22699 non-null	int64
2	tpep_pickup_datetime	22699 non-null	datetime64[ns]
3	tpep_dropoff_datetime	22699 non-null	datetime64[ns]
4	passenger_count	22699 non-null	int64
5	trip_distance	22699 non-null	float64
6	RatecodeID	22699 non-null	int64
7	${ t store_and_fwd_flag}$	22699 non-null	object
8	PULocationID	22699 non-null	int64
9	DOLocationID	22699 non-null	int64

```
22699 non-null
                                            int64
 10
    payment_type
 11
    fare_amount
                            22699 non-null
                                            float64
 12
                            22699 non-null
                                            float64
     extra
    mta_tax
                            22699 non-null
                                            float64
 13
 14
    tip amount
                            22699 non-null
                                            float64
    tolls amount
                            22699 non-null
                                            float64
     improvement surcharge
                            22699 non-null
                                            float64
    total amount
 17
                            22699 non-null
                                            float64
 18 duration
                            22699 non-null
                                            float64
dtypes: datetime64[ns](2), float64(9), int64(7), object(1)
memory usage: 3.3+ MB
```

Keeping in mind that many of the features will not be used to fit your model, the most important columns to check for outliers are likely to be: * trip_distance * fare_amount * duration

2.0.6 Task 2d. Box plots

Plot a box plot for each feature: trip_distance, fare_amount, duration.

```
[10]: fig, axes = plt.subplots(1, 3, figsize=(15, 2))
    fig.suptitle('Boxplots for outlier detection')
    sns.boxplot(ax=axes[0], x=df['trip_distance'])
    sns.boxplot(ax=axes[1], x=df['fare_amount'])
    sns.boxplot(ax=axes[2], x=df['duration'])
    plt.show();
```


Exemplar response: 1. All three variables contain outliers. Some are extreme, but others not so much.

- 2. It's 30 miles from the southern tip of Staten Island to the northern end of Manhattan and that's in a straight line. With this knowledge and the distribution of the values in this column, it's reasonable to leave these values alone and not alter them. However, the values for fare_amount and duration definitely seem to have problematic outliers on the higher end.
- 3. Probably not for the latter two, but for trip_distance it might be okay.

2.0.7 Task 2e. Imputations

trip_distance outliers You know from the summary statistics that there are trip distances of 0. Are these reflective of erroneous data, or are they very short trips that get rounded down?

To check, sort the column values, eliminate duplicates, and inspect the least 10 values. Are they rounded values or precise values?

```
[11]: # Are trip distances of 0 bad data or very short trips rounded down? sorted(set(df['trip_distance']))[:10]
```

```
[11]: [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
```

The distances are captured with a high degree of precision. However, it might be possible for trips to have distances of zero if a passenger summoned a taxi and then changed their mind. Besides, are there enough zero values in the data to pose a problem?

Calculate the count of rides where the trip_distance is zero.

```
[12]: sum(df['trip_distance']==0)
```

[12]: 148

Exemplar note: 148 out of ~23,000 rides is relatively insignificant. You could impute it with a value of 0.01, but it's unlikely to have much of an effect on the model. Therefore, the trip_distance column will remain untouched with regard to outliers.

fare_amount outliers

```
[13]: df['fare_amount'].describe()
```

```
[13]: count
                22699.000000
                   13.026629
      mean
      std
                   13.243791
                 -120.000000
      min
                    6.500000
      25%
      50%
                    9.500000
      75%
                   14.500000
      max
                  999.990000
```

Name: fare_amount, dtype: float64

Exemplar response:

The range of values in the fare amount column is large and the extremes don't make much sense.

- Low values: Negative values are problematic. Values of zero could be legitimate if the taxi logged a trip that was immediately canceled.
- **High values:** The maximum fare amount in this dataset is nearly \$1,000, which seems very unlikely. High values for this feature can be capped based on intuition and statistics. The interquartile range (IQR) is \$8. The standard formula of Q3 + (1.5 * IQR) yields \$26.50. That doesn't seem appropriate for the maximum fare cap. In this case, we'll use a factor of 6, which results in a cap of \$62.50.

```
Impute upper-limit values in specified columns based on their interquartile \Box
\hookrightarrow range.
   Arguments:
       column_list: A list of columns to iterate over
       igr_factor: A number representing x in the formula:
                    Q3 + (x * IQR). Used to determine maximum threshold,
                    beyond which a point is considered an outlier.
   The IQR is computed for each column in column_list and values exceeding
   the upper threshold for each column are imputed with the upper threshold \sqcup
\rightarrow value.
   111
   for col in column_list:
       # Reassign minimum to zero
       df.loc[df[col] < 0, col] = 0
       # Calculate upper threshold
       q1 = df[col].quantile(0.25)
       q3 = df[col].quantile(0.75)
       iqr = q3 - q1
       upper_threshold = q3 + (iqr_factor * iqr)
       print(col)
       print('q3:', q3)
       print('upper_threshold:', upper_threshold)
       # Reassign values > threshold to threshold
       df.loc[df[col] > upper_threshold, col] = upper_threshold
       print(df[col].describe())
       print()
```

```
[16]: outlier_imputer(['fare_amount'], 6)

fare_amount
q3: 14.5
```

upper_threshold: 62.5

```
22699.000000
count
            12.897913
mean
            10.541137
std
min
             0.000000
25%
              6.500000
50%
             9.500000
75%
            14.500000
max
             62.500000
Name: fare_amount, dtype: float64
```

duration outliers

```
[17]: df['duration'].describe()
```

```
[17]: count
                22699.000000
      mean
                   17.013777
      std
                   61.996482
                  -16.983333
      min
      25%
                    6.650000
      50%
                   11.183333
      75%
                   18.383333
                 1439.550000
      max
```

Name: duration, dtype: float64

The duration column has problematic values at both the lower and upper extremities.

- Low values: There should be no values that represent negative time. Impute all negative durations with 0.
- **High values:** Impute high values the same way you imputed the high-end outliers for fares: Q3 + (6 * IQR).

```
[18]: # Impute a 0 for any negative values
df.loc[df['duration'] < 0, 'duration'] = 0
df['duration'].min()</pre>
```

[18]: 0.0

```
[19]: # Impute the high outliers
outlier_imputer(['duration'], 6)
```

duration

q3: 18.383333333333333

upper_threshold: 88.783333333333333

count 22699.000000
mean 14.460555
std 11.947043
min 0.000000

```
25% 6.650000
50% 11.183333
75% 18.383333
max 88.783333
```

Name: duration, dtype: float64

2.0.8 Task 3a. Feature engineering

Create mean_distance column When deployed, the model will not know the duration of a trip until after the trip occurs, so you cannot train a model that uses this feature. However, you can use the statistics of trips you do know to generalize about ones you do not know.

In this step, create a column called mean_distance that captures the mean distance for each group of trips that share pickup and dropoff points.

For example, if your data were:

The results should be:

A -> B: 1.25 miles C -> D: 2 miles D -> C: 3 miles

Notice that C -> D is not the same as D -> C. All trips that share a unique pair of start and end points get grouped and averaged.

Then, a new column mean_distance will be added where the value at each row is the average for all trips with those pickup and dropoff locations:

Trip	Start	End	Distance	mean_distance
1	A	В	1	1.25
2	\mathbf{C}	D	2	2
3	A	В	1.5	1.25
4	D	\mathbf{C}	3	3

Begin by creating a helper column called pickup_dropoff, which contains the unique combination of pickup and dropoff location IDs for each row.

One way to do this is to convert the pickup and dropoff location IDs to strings and join them, separated by a space. The space is to ensure that, for example, a trip with pickup/dropoff points of 12 & 151 gets encoded differently than a trip with points 121 & 51.

So, the new column would look like this:

Τ	rip	Start	End	pickup_dropoff		
	1	A	В	'A B'		

Trip	Start	End	pickup_dropoff
2	C	D	'C D'
3	A	В	'A B'
4	D	\mathbf{C}	'D C'

```
[20]: # Create `pickup_dropoff` column

df['pickup_dropoff'] = df['PULocationID'].astype(str) + ' ' +

→df['DOLocationID'].astype(str)

df['pickup_dropoff'].head(2)
```

[20]: 0 100 231 1 186 43

Name: pickup_dropoff, dtype: object

Now, use a groupby() statement to group each row by the new pickup_dropoff column, compute the mean, and capture the values only in the trip_distance column. Assign the results to a variable named grouped.

```
[21]: grouped = df.groupby('pickup_dropoff').

→mean(numeric_only=True)[['trip_distance']]
grouped[:5]
```

grouped is an object of the DataFrame class.

1. Convert it to a dictionary using the to_dict() method. Assign the results to a variable called grouped_dict. This will result in a dictionary with a key of trip_distance whose values are another dictionary. The inner dictionary's keys are pickup/dropoff points and its values are mean distances. This is the information you want.

```
Example:
```

```
grouped_dict = {'trip_distance': {'A B': 1.25, 'C D': 2, 'D C': 3}
```

2. Reassign the grouped_dict dictionary so it contains only the inner dictionary. In other words, get rid of trip_distance as a key, so:

Example:

```
grouped_dict = {'A B': 1.25, 'C D': 2, 'D C': 3}
```

```
[22]: # 1. Convert `grouped` to a dictionary
grouped_dict = grouped.to_dict()
```

```
# 2. Reassign to only contain the inner dictionary
grouped_dict = grouped_dict['trip_distance']
```

- 1. Create a mean_distance column that is a copy of the pickup_dropoff helper column.
- 2. Use the map() method on the mean_distance series. Pass grouped_dict as its argument. Reassign the result back to the mean_distance series. When you pass a dictionary to the Series.map() method, it will replace the data in the series where that data matches the dictionary's keys. The values that get imputed are the values of the dictionary.

Example:

df['mean_distance']

mean	_distance
•	АВ'
4	CD'
4	AB'
4	D C'
6	EF'

```
grouped_dict = {'A B': 1.25, 'C D': 2, 'D C': 3}
df['mean_distance`] = df['mean_distance'].map(grouped_dict)
df['mean_distance']
```

mean_distance
1.25
2
1.25
3
NaN

When used this way, the map() Series method is very similar to replace(), however, note that map() will impute NaN for any values in the series that do not have a corresponding key in the mapping dictionary, so be careful.

```
[23]: # 1. Create a mean_distance column that is a copy of the pickup_dropoff helper_

→ column

df['mean_distance'] = df['pickup_dropoff']

# 2. Map `grouped_dict` to the `mean_distance` column

df['mean_distance'] = df['mean_distance'].map(grouped_dict)

# Confirm that it worked

df[(df['PULocationID']==100) & (df['DOLocationID']==231)][['mean_distance']]
```

```
[23]: mean_distance
0 3.521667
4909 3.521667
16636 3.521667
18134 3.521667
19761 3.521667
20581 3.521667
```

Create mean_duration column Repeat the process used to create the mean_distance column to create a mean_duration column.

```
[24]: grouped = df.groupby('pickup_dropoff').mean(numeric_only=True)[['duration']]
grouped

# Create a dictionary where keys are unique pickup_dropoffs and values are
# mean trip duration for all trips with those pickup_dropoff combos
grouped_dict = grouped.to_dict()
grouped_dict = grouped_dict['duration']

df['mean_duration'] = df['pickup_dropoff']
df['mean_duration'] = df['mean_duration'].map(grouped_dict)

# Confirm that it worked
df[(df['PULocationID']==100) & (df['DOLocationID']==231)][['mean_duration']]
```

```
[24]: mean_duration
0 22.847222
4909 22.847222
16636 22.847222
18134 22.847222
19761 22.847222
20581 22.847222
```

Create day and month columns Create two new columns, day (name of day) and month (name of month) by extracting the relevant information from the tpep_pickup_datetime column.

```
[25]: # Create 'day' col
df['day'] = df['tpep_pickup_datetime'].dt.day_name().str.lower()

# Create 'month' col
df['month'] = df['tpep_pickup_datetime'].dt.strftime('%b').str.lower()
```

Create rush_hour column Define rush hour as: * Any weekday (not Saturday or Sunday) AND * Either from 06:00–10:00 or from 16:00–20:00

Create a binary rush_hour column that contains a 1 if the ride was during rush hour and a 0 if it was not.

```
[26]: # Create 'rush_hour' col
      df['rush_hour'] = df['tpep_pickup_datetime'].dt.hour
      # If day is Saturday or Sunday, impute 0 in `rush_hour` column
      df.loc[df['day'].isin(['saturday', 'sunday']), 'rush_hour'] = 0
[27]: def rush_hourizer(hour):
          if 6 <= hour['rush_hour'] < 10:</pre>
              val = 1
          elif 16 <= hour['rush_hour'] < 20:</pre>
              val = 1
          else:
              val = 0
          return val
[28]: # Apply the `rush_hourizer()` function to the new column
      df['rush_hour'] = df.apply(rush_hourizer, axis=1)
      df.head()
[28]:
         Unnamed: 0 VendorID tpep_pickup_datetime tpep_dropoff_datetime \
           24870114
                                                      2017-03-25 09:09:47
      0
                            2 2017-03-25 08:55:43
      1
           35634249
                            1 2017-04-11 14:53:28
                                                      2017-04-11 15:19:58
      2
          106203690
                            1 2017-12-15 07:26:56
                                                      2017-12-15 07:34:08
                            2 2017-05-07 13:17:59
      3
           38942136
                                                      2017-05-07 13:48:14
      4
           30841670
                            2 2017-04-15 23:32:20
                                                      2017-04-15 23:49:03
         passenger_count trip_distance RatecodeID store_and_fwd_flag
      0
                                    3.34
                                                   1
                       6
      1
                       1
                                    1.80
                                                   1
                                                                      N
      2
                                                   1
                                                                       N
                       1
                                    1.00
                                    3.70
                                                   1
                                                                      N
      3
                       1
      4
                                    4.37
                                                   1
                                                                       N
         PULocationID DOLocationID ... tolls_amount
                                                       improvement_surcharge \
      0
                  100
                                231 ...
                                                  0.0
                                                                          0.3
                                 43 ...
      1
                  186
                                                  0.0
                                                                          0.3
      2
                                                  0.0
                                                                          0.3
                  262
                                 236 ...
      3
                  188
                                 97 ...
                                                  0.0
                                                                          0.3
      4
                                                  0.0
                                                                          0.3
                    4
                                 112 ...
         total_amount
                        duration pickup_dropoff mean_distance mean_duration \
      0
                16.56 14.066667
                                          100 231
                                                        3.521667
                                                                       22.847222
      1
                20.80 26.500000
                                           186 43
                                                        3.108889
                                                                       24.470370
      2
                 8.75
                        7.200000
                                          262 236
                                                        0.881429
                                                                       7.250000
      3
                27.69 30.250000
                                           188 97
                                                        3.700000
                                                                       30.250000
```

```
4
         17.80 16.716667
                                    4 112
                                                4.435000
                                                               14.616667
       day month rush_hour
  saturday
              mar
1
  tuesday
              apr
                          0
2
    friday
               dec
                          1
3
     sunday
              may
                          0
4 saturday
                          0
               apr
[5 rows x 25 columns]
```

2.0.9 Task 4. Scatter plot

Create a scatterplot to visualize the relationship between mean_duration and fare_amount.

The mean_duration variable correlates with the target variable. But what are the horizontal lines around fare amounts of 52 dollars and 63 dollars? What are the values and how many are there?

You know what one of the lines represents. 62 dollars and 50 cents is the maximum that was imputed for outliers, so all former outliers will now have fare amounts of \$62.50. What is the other line?

Check the value of the rides in the second horizontal line in the scatter plot.

```
[30]: df[df['fare_amount'] > 50]['fare_amount'].value_counts().head()

[30]: 52.0    514
    62.5    84
    59.0    9
    50.5    9
    57.5    8
    Name: fare_amount, dtype: int64
```

Exemplar note: There are 514 trips whose fares were \$52.

Examine the first 30 of these trips.

```
pd.set_option('display.max_columns', None)
      df[df['fare_amount']==52].head(30)
[31]:
            Unnamed: 0
                         VendorID tpep_pickup_datetime tpep_dropoff_datetime
                                    2017-03-05 19:15:30
                                                           2017-03-05 19:52:18
      11
               18600059
      110
              47959795
                                    2017-06-03 14:24:57
                                                           2017-06-03 15:31:48
      161
              95729204
                                    2017-11-11 20:16:16
                                                           2017-11-11 20:17:14
      247
             103404868
                                2
                                    2017-12-06 23:37:08
                                                           2017-12-07 00:06:19
      379
              80479432
                                2
                                    2017-09-24 23:45:45
                                                           2017-09-25 00:15:14
      388
              16226157
                                1
                                    2017-02-28 18:30:05
                                                           2017-02-28 19:09:55
                                2
                                    2017-06-05 12:51:58
                                                           2017-06-05 13:07:35
      406
              55253442
      449
                                2
                                    2017-08-03 22:47:14
                                                           2017-08-03 23:32:41
              65900029
      468
                                    2017-09-26 13:48:26
              80904240
                                                           2017-09-26 14:31:17
      520
              33706214
                                    2017-04-23 21:34:48
                                                           2017-04-23 22:46:23
      569
                                2
                                    2017-11-22 21:31:32
                                                           2017-11-22 22:00:25
              99259872
      572
              61050418
                                2
                                    2017-07-18 13:29:06
                                                           2017-07-18 13:29:19
      586
                                2
                                    2017-06-26 13:39:12
                                                           2017-06-26 14:34:54
              54444647
      692
                                2
                                    2017-11-07 22:15:00
                                                           2017-11-07 22:45:32
              94424289
      717
              103094220
                                1
                                    2017-12-06 05:19:50
                                                           2017-12-06 05:53:52
                                    2017-08-04 17:53:34
                                                           2017-08-04 18:50:56
      719
              66115834
                                2
      782
              55934137
                                    2017-06-09 09:31:25
                                                           2017-06-09 10:24:10
      816
              13731926
                                2
                                    2017-02-21 06:11:03
                                                           2017-02-21 06:59:39
      818
                                2
                                    2017-06-20 08:15:18
                                                           2017-06-20 10:24:37
              52277743
      835
                                2
                                    2017-01-10 22:29:47
                                                           2017-01-10 23:06:46
               2684305
                                2
      840
              90860814
                                    2017-10-27 21:50:00
                                                           2017-10-27 22:35:04
      861
                                    2017-12-16 06:39:59
                                                           2017-12-16 07:07:59
             106575186
                                1
      881
             110495611
                                    2017-12-30 05:25:29
                                                           2017-12-30 06:01:29
      958
                                    2017-10-15 22:39:12
                                                           2017-10-15 23:14:22
              87017503
      970
              12762608
                                    2017-02-17 20:39:42
                                                           2017-02-17 21:13:29
      984
                                    2017-08-23 18:23:26
                                                           2017-08-23 19:18:29
              71264442
                                1
      1082
              11006300
                                2
                                    2017-02-07 17:20:19
                                                           2017-02-07 17:34:41
      1097
              68882036
                                2
                                    2017-08-14 23:01:15
                                                           2017-08-14 23:03:35
      1110
                                1
                                    2017-09-06 10:46:17
                                                           2017-09-06 11:44:41
              74720333
                                    2017-06-19 06:23:13
                                                           2017-06-19 07:03:53
      1179
              51937907
                              trip_distance
                                              RatecodeID store_and_fwd_flag
            passenger_count
      11
                                       18.90
                                                        2
                                                                            N
                           2
      110
                           1
                                       18.00
                                                        2
                                                                            N
                                                        2
      161
                           1
                                        0.23
                                                                            N
      247
                                                        2
                                                                            N
                           1
                                       18.93
                           1
                                                        2
      379
                                       17.99
                                                                            N
      388
                           1
                                       18.40
                                                        2
                                                                            N
                           1
                                                        2
      406
                                        4.73
                                                                            N
                           2
                                                        2
      449
                                       18.21
                                                                            N
      468
                           1
                                       17.27
                                                        2
                                                                            N
      520
                           6
                                       18.34
                                                        2
                                                                            N
```

[31]: # Set pandas to display all columns

569		1 18	.65	2	N		
572		1 0	.00	2	N		
586		1 17	.76	2	N		
692		2 16	.97	2	N		
717		1 20	.80	2	N		
719		1 21	.60	2	N		
782		2 18	.81	2	N		
816		5 16	.94	2	N		
818		1 17	.77	2	N		
835		1 18	.57	2	N		
840			.43	2	N		
861			.80	2	N		
881			.23	2	N		
958			.80	2	N		
970			.57	2	N		
984			.70	2	N		
1082			.09	2	N		
1097			.12	2	N		
1110			.10	2	N		
1179		6 19	.77	2	N		
	DIII	DOI TD					,
4.4	PULocationID	DOLocationID		fare_amount	extra	mta_tax	\
11	236	132	1	52.0	0.0	0.5	
110	132	163	1	52.0	0.0	0.5	
161 247	132 132	132 79	2 2	52.0	0.0	0.5	
379	132	234	1	52.0 52.0	0.0	0.5 0.5	
388	132	48	2	52.0	4.5	0.5	
406	228	88	2	52.0	0.0	0.5	
449	132	48	2	52.0	0.0	0.5	
468	186	132	2	52.0	0.0	0.5	
520	132	148	1	52.0	0.0	0.5	
569	132	144	1	52.0	0.0	0.5	
572	230	161	1	52.0	0.0	0.5	
586	211	132	1	52.0	0.0	0.5	
692	132	170	1	52.0	0.0	0.5	
717	132	239	1	52.0	0.0	0.5	
719	264	264	1	52.0	4.5	0.5	
782	163	132	1	52.0	0.0	0.5	
816	132	170	1	52.0	0.0	0.5	
818	132	246	1	52.0	0.0	0.5	
835	132	48	1	52.0	0.0	0.5	
840	132	163	2	52.0	0.0	0.5	
861	75	132	1	52.0	0.0	0.5	
881	68	132	2	52.0	0.0	0.5	
958	132	261	2	52.0	0.0	0.5	
970	132	140	1	52.0	0.0	0.5	

984	13	2 23	0 1	52.0	4.5	0.5	
1082	17	0 48	8 2	52.0	4.5	0.5	
1097	26	5 26	5 2	52.0	0.0	0.5	
1110	23	9 13:	2 1	52.0	0.0	0.5	
1179	23	8 13:	2 1	52.0	0.0	0.5	
	tip_amount	tolls_amount	improvement_su	rcharge tota	l_amount \		
11	14.58	5.54		0.3	72.92		
110	0.00	0.00		0.3	52.80		
161	0.00	0.00		0.3	52.80		
247	0.00	0.00		0.3	52.80		
379	14.64	5.76		0.3	73.20		
388	0.00	5.54		0.3	62.84		
406	0.00	5.76		0.3	58.56		
449	0.00	5.76		0.3	58.56		
468	0.00	5.76		0.3	58.56		
520	5.00	0.00		0.3	57.80		
569	10.56	0.00		0.3	63.36		
572	11.71	5.76		0.3	70.27		
586	11.71	5.76		0.3	70.27		
692	11.71	5.76		0.3	70.27		
717	5.85	5.76		0.3	64.41		
719	12.60	5.76		0.3	75.66		
782	13.20	0.00		0.3	66.00		
816	2.00	5.54		0.3	60.34		
818	11.71	5.76		0.3	70.27		
835	13.20	0.00		0.3	66.00		
840	0.00	5.76		0.3	58.56		
861	6.00	5.76		0.3	64.56		
881	0.00	0.00		0.3	52.80		
958	0.00	0.00		0.3	52.80		
970	11.67	5.54		0.3	70.01		
984	42.29	0.00		0.3	99.59		
1082	0.00	5.54		0.3	62.84		
1097	0.00	0.00		0.3	52.80		
1110	15.80	0.00		0.3	68.60		
1179	17.57	5.76		0.3	76.13		
	duration p	ickup_dropoff	mean_distance	mean_duratio	n day	month	\
11	36.800000	236 132	19.211667	40.50000	0 sunday	mar	
110	66.850000	132 163	19.229000	52.94166	7 saturday	jun	
161	0.966667	132 132	2.255862	3.02183	9 saturday	_	
247	29.183333	132 79	19.431667	47.27500	0 wednesday	dec	
379	29.483333	132 234	17.654000	49.83333	•		
388	39.833333	132 48	18.761905	58.24603	•	-	
406	15.616667	228 88	4.730000	15.61666	•		
449	45.450000	132 48	18.761905	58.24603	•	Ū	
-		- · · ·					

468	42.850000	186	132	17.096	000	42.9	20000	tuesda	ıy sep
520	71.583333	132	148	17.994	286	46.3	40476	sunda	y apr
569	28.883333	132	144	18.537	500	37.0	00000	wednesda	ıy nov
572	0.216667	230	161	0.685	484	7.9	65591	tuesda	y jul
586	55.700000	211	132	16.580	000	61.6	91667	monda	ıy jun
692	30.533333	132	170	17.203	000	37.1	13333	tuesda	ıy nov
717	34.033333	132	239	20.901	250	44.8	62500	wednesda	ıy dec
719	57.366667	264	264	3.191	516	15.6	18773	frida	ıy aug
782	52.750000	163	132	17.275	833	52.3	38889	frida	ıy jun
816	48.600000	132	170	17.203	000	37.1	13333	tuesda	y feb
818	88.783333	132	246	18.515	000	66.3	16667	tuesda	ıy jun
835	36.983333	132	2 48	18.761	905	58.2	46032	tuesda	ıy jan
840	45.066667	132	163	19.229	000	52.9	41667	frida	y oct
861	28.000000	75	132	18.442	500	36.2	04167	saturda	ıy dec
881	36.000000	68	132	18.785	000	58.0	41667	saturda	ıy dec
958	35.166667	132	261	22.115	000	51.4	93750	sunda	y oct
970	33.783333	132	140	19.293	333	36.7	91667	frida	y feb
984	55.050000	132	230	18.571	200	59.5	98000	wednesda	ıy aug
1082	14.366667	170	48	1.265	789	14.1	35965	tuesda	y feb
1097	2.333333	265	265	0.753	077	3.4	11538	monda	ıy aug
1110	58.400000	239	132	19.795	000	50.5	62500	wednesda	ıy sep
1179	40.666667	238	132	19.470	000	53.8	61111	monda	ıy jun

	rush_hour
11	0
110	0
161	0
247	0
379	0
388	1
406	0
449	0
468	0
520	0
569	0
572	0
586	0
692	0
717	0
719	1
782	1
816	1
818	1
835	0
840	0
861	0
881	0

958	0
970	0
984	1
1082	1
1097	0
1110	0
1179	1

Exemplar response:

It seems that almost all of the trips in the first 30 rows where the fare amount was \$52 either begin or end at location 132, and all of them have a RatecodeID of 2.

There is no readily apparent reason why PULocation 132 should have so many fares of 52 dollars. They seem to occur on all different days, at different times, with both vendors, in all months. However, there are many toll amounts of \$5.76 and \\$5.54. This would seem to indicate that location 132 is in an area that frequently requires tolls to get to and from. It's likely this is an airport.

The data dictionary says that RatecodeID of 2 indicates trips for JFK, which is John F. Kennedy International Airport. A quick Google search for "new york city taxi flat rate \$52" indicates that in 2017 (the year that this data was collected) there was indeed a flat fare for taxi trips between JFK airport (in Queens) and Manhattan.

Because Ratecode ID is known from the data dictionary, the values for this rate code can be imputed back into the data after the model makes its predictions. This way you know that those data points will always be correct.

2.0.10 Task 5. Isolate modeling variables

Drop features that are redundant, irrelevant, or that will not be available in a deployed environment.

[32]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	22699 non-null	int64
1	VendorID	22699 non-null	int64
2	tpep_pickup_datetime	22699 non-null	datetime64[ns]
3	tpep_dropoff_datetime	22699 non-null	datetime64[ns]
4	passenger_count	22699 non-null	int64
5	trip_distance	22699 non-null	float64
6	RatecodeID	22699 non-null	int64
7	store_and_fwd_flag	22699 non-null	object
8	PULocationID	22699 non-null	int64
9	DOLocationID	22699 non-null	int64

```
22699 non-null int64
 10 payment_type
 11 fare_amount
                          22699 non-null float64
 12 extra
                          22699 non-null float64
 13 mta_tax
                          22699 non-null float64
 14 tip amount
                          22699 non-null float64
 15 tolls amount
                          22699 non-null float64
 16 improvement surcharge 22699 non-null float64
 17 total amount
                          22699 non-null float64
 18 duration
                          22699 non-null float64
                          22699 non-null object
 19 pickup_dropoff
 20 mean_distance
                          22699 non-null float64
21 mean_duration
                          22699 non-null float64
22 day
                          22699 non-null object
                          22699 non-null object
 23 month
                          22699 non-null int64
 24 rush_hour
dtypes: datetime64[ns](2), float64(11), int64(8), object(4)
memory usage: 4.3+ MB
```


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	VendorID	22699 non-null	int64
1	passenger_count	22699 non-null	int64
2	fare_amount	22699 non-null	float64
3	mean_distance	22699 non-null	float64
4	${\tt mean_duration}$	22699 non-null	float64
5	rush_hour	22699 non-null	int64

dtypes: float64(3), int64(3)

memory usage: 1.0 MB

2.0.11 Task 6. Pair plot

Create a pairplot to visualize pairwise relationships between fare_amount, mean_duration, and mean_distance.

```
[34]: # Create a pairplot to visualize pairwise relationships between variables in 
→ the data

### YOUR CODE HERE ###

sns.pairplot(df2[['fare_amount', 'mean_duration', 'mean_distance']],

plot_kws={'alpha':0.4, 'size':5},

);
```


These variables all show linear correlation with each other. Investigate this further.

2.0.12 Task 7. Identify correlations

Next, code a correlation matrix to help determine most correlated variables.

```
[35]: # Create correlation matrix containing pairwise correlation of columns, using → pearson correlation coefficient df2.corr(method='pearson')

[35]: VendorID passenger_count fare_amount mean_distance \
VendorID 1.000000 0.266463 0.001045 0.004741
```

```
passenger_count 0.266463
                                  1.000000
                                               0.014942
                                                               0.013428
fare_amount
                 0.001045
                                  0.014942
                                               1.000000
                                                               0.910185
mean_distance
                 0.004741
                                  0.013428
                                               0.910185
                                                               1.000000
mean_duration
                 0.001876
                                  0.015852
                                               0.859105
                                                               0.874864
rush_hour
                                 -0.022035
                                              -0.020075
                -0.002874
                                                              -0.039725
                 mean_duration rush_hour
                      0.001876 -0.002874
VendorID
passenger_count
                      0.015852 -0.022035
fare_amount
                      0.859105 -0.020075
mean_distance
                      0.874864 -0.039725
mean duration
                      1.000000 -0.021583
```

Visualize a correlation heatmap of the data.

-0.021583

rush_hour

1.000000

2.0.13 Task 8a. Split data into outcome variable and features

[37]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 22699 entries, 0 to 22698
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	VendorID	22699 non-null	int64
1	passenger_count	22699 non-null	int64
2	fare_amount	22699 non-null	float64
3	mean_distance	22699 non-null	float64
4	${\tt mean_duration}$	22699 non-null	float64
5	rush_hour	22699 non-null	int64

dtypes: float64(3), int64(3)

memory usage: 1.0 MB

Set your X and y variables. X represents the features and y represents the outcome (target) variable.

```
[38]: # Remove the target column from the features
X = df2.drop(columns=['fare_amount'])

# Set y variable
y = df2[['fare_amount']]

# Display first few rows
X.head()
```

[38]:	VendorID	passenger_count	mean_distance	${\tt mean_duration}$	rush_hour
0	2	6	3.521667	22.847222	0
1	1	1	3.108889	24.470370	0
2	1	1	0.881429	7.250000	1
3	2	1	3.700000	30.250000	0
4	2	1	4.435000	14.616667	0

2.0.14 Task 8b. Pre-process data

Dummy encode categorical variables

```
[39]: # Convert VendorID to string
X['VendorID'] = X['VendorID'].astype(str)

# Get dummies
X = pd.get_dummies(X, drop_first=True)
X.head()
```

```
[39]:
         passenger_count mean_distance mean_duration rush_hour
                                                                      VendorID_2
      0
                        6
                                3.521667
                                               22.847222
                                                                                1
      1
                        1
                                3.108889
                                               24.470370
                                                                   0
                                                                                0
      2
                        1
                                0.881429
                                                7.250000
                                                                   1
                                                                                0
      3
                        1
                                3.700000
                                               30.250000
                                                                   0
                                                                                1
      4
                        1
                                4.435000
                                                                   0
                                               14.616667
```

2.0.15 Split data into training and test sets

Create training and testing sets. The test set should contain 20% of the total samples. Set random_state=0.

```
[40]: # Create training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, □ → random_state=0)
```

2.0.16 Standardize the data

Use StandardScaler(), fit(), and transform() to standardize the X_train variables. Assign the results to a variable called X_train_scaled.

```
[41]: # Standardize the X variables
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
print('X_train_scaled:', X_train_scaled)

X_train_scaled: [[-0.50301524   0.8694684   0.17616665  -0.64893329   0.89286563]
[-0.50301524  -0.60011281  -0.69829589   1.54099045   0.89286563]
[ 0.27331093  -0.47829156  -0.57301906  -0.64893329  -1.11998936]
...
[-0.50301524  -0.45121122  -0.6788917   -0.64893329  -1.11998936]
[ -0.50301524  -0.58944763  -0.85743597   1.54099045  -1.11998936]
[ 1.82596329   0.83673851   1.13212101  -0.64893329   0.89286563]]
```

2.0.17 Fit the model

Instantiate your model and fit it to the training data.

```
[42]: # Fit your model to the training data
lr=LinearRegression()
lr.fit(X_train_scaled, y_train)
```

[42]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

2.0.18 Task 8c. Evaluate model

2.0.19 Train data

Evaluate your model performance by calculating the residual sum of squares and the explained variance score (R^2). Calculate the Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error.

```
[43]: # Evaluate the model performance on the training data
r_sq = lr.score(X_train_scaled, y_train)
print('Coefficient of determination:', r_sq)
y_pred_train = lr.predict(X_train_scaled)
print('R^2:', r2_score(y_train, y_pred_train))
print('MAE:', mean_absolute_error(y_train, y_pred_train))
print('MSE:', mean_squared_error(y_train, y_pred_train))
print('RMSE:',np.sqrt(mean_squared_error(y_train, y_pred_train)))
```

Coefficient of determination: 0.8398434585044773 R^2: 0.8398434585044773

MAE: 2.186666416775414 MSE: 17.88973296349268 RMSE: 4.229625629236313

2.0.20 Test data

Calculate the same metrics on the test data. Remember to scale the X_test data using the scaler that was fit to the training data. Do not refit the scaler to the testing data, just transform it. Call the results X_test_scaled.

```
[44]: # Scale the X_test data
X_test_scaled = scaler.transform(X_test)
```

```
[45]: # Evaluate the model performance on the testing data
    r_sq_test = lr.score(X_test_scaled, y_test)
    print('Coefficient of determination:', r_sq_test)
    y_pred_test = lr.predict(X_test_scaled)
    print('R^2:', r2_score(y_test, y_pred_test))
    print('MAE:', mean_absolute_error(y_test, y_pred_test))
    print('MSE:', mean_squared_error(y_test, y_pred_test))
    print('RMSE:',np.sqrt(mean_squared_error(y_test, y_pred_test)))
```

Coefficient of determination: 0.8682583641795454

R^2: 0.8682583641795454 MAE: 2.1336549840593864 MSE: 14.326454156998944 RMSE: 3.785030271609323

2.0.21 Task 9a. Results

Use the code cell below to get actual, predicted, and residual for the testing set, and store them as columns in a results dataframe.

```
[46]: actual predicted residual 5818 14.0 12.356503 1.643497 18134 28.0 16.314595 11.685405 4655 5.5 6.726789 -1.226789 7378 15.5 16.227206 -0.727206 13914 9.5 10.536408 -1.036408
```

2.0.22 Task 9b. Visualize model results

Create a scatterplot to visualize actual vs. predicted.

Visualize the distribution of the residuals using a histogram

```
[48]: # Visualize the distribution of the `residuals`
sns.histplot(results['residual'], bins=np.arange(-15,15.5,0.5))
plt.title('Distribution of the residuals')
plt.xlabel('residual value')
plt.ylabel('count');
```



```
[49]: results['residual'].mean()
```

[49]: -0.01544262152868053

Exemplar note: The distribution of the residuals is normal and has a mean of -0.015. The residuals represent the variance in the outcome variable that is not explained by the model. A normal distribution around zero is good, as it demonstrates that the models errors are evenly distributed and unbiased.

Create a scatterplot of residuals over predicted.

```
[50]: # Create a scatterplot of `residuals` over `predicted`
sns.scatterplot(x='predicted', y='residual', data=results)
plt.axhline(0, c='red')
```

```
plt.title('Scatterplot of residuals over predicted values')
plt.xlabel('predicted value')
plt.ylabel('residual value')
plt.show()
```


Exemplar note: The model's residuals are evenly distributed above and below zero, with the exception of the sloping lines from the upper-left corner to the lower-right corner, which you know are the imputed maximum of \\$62.50 and the flat rate of \\$52 for JFK airport trips.

2.0.23 Task 9c. Coefficients

Use the coef_ attribute to get the model's coefficients. The coefficients are output in the order of the features that were used to train the model.

```
[51]: # Get model coefficients
coefficients = pd.DataFrame(lr.coef_, columns=X.columns)
coefficients
```

```
[51]: passenger_count mean_distance mean_duration rush_hour VendorID_2 0 0.030825 7.133867 2.812115 0.110233 -0.054373
```

The coefficients reveal that mean_distance was the feature with the greatest weight in the model's final prediction. Be careful here! A common misinterpretation is that for every mile traveled, the

fare amount increases by a mean of \$7.13. This is incorrect. Remember, the data used to train the model was standardized with StandardScaler(). As such, the units are no longer miles. In other words, you cannot say "for every mile traveled...", as stated above. The correct interpretation of this coefficient is: controlling for other variables, for every +1 change in standard deviation, the fare amount increases by a mean of \$7.13.

Note also that because some highly correlated features were not removed, the confidence interval of this assessment is wider.

So, translate this back to miles instead of standard deviation (i.e., unscale the data).

- 1. Calculate the standard deviation of mean_distance in the X_train data.
- 2. Divide the coefficient (7.133867) by the result to yield a more intuitive interpretation.

```
[52]: # 1. Calculate SD of `mean_distance` in X_train data
print(X_train['mean_distance'].std())

# 2. Divide the model coefficient by the standard deviation
print(7.133867 / X_train['mean_distance'].std())
```

- 3.574812975256415
- 1.9955916713344426

Now you can make a more intuitive interpretation: for every 3.57 miles traveled, the fare increased by a mean of \\$7.13. Or, reduced: for every 1 mile traveled, the fare increased by a mean of \\$2.00.

2.0.24 Task 9d. Conclusion

Exemplar responses: What are the key takeaways from this notebook?

- Multiple linear regression is a powerful tool to estimate a dependent continuous variable from several independent variables.
- Exploratory data analysis is useful for selecting both numeric and categorical features for multiple linear regression.
- Fitting multiple linear regression models may require trial and error to select variables that fit an accurate model while maintaining model assumptions (or not, depending on your use case).

What results can be presented from this notebook?

• You can discuss meeting linear regression assumptions, and you can present the MAE and RMSE scores obtained from the model.

3 BONUS CONTENT

More work must be done to prepare the predictions to be used as inputs into the model for the upcoming course. This work will be broken into the following steps:

1. Get the model's predictions on the full dataset.

- 2. Impute the constant fare rate of \$52 for all trips with rate codes of 2.
- 3. Check the model's performance on the full dataset.
- 4. Save the final predictions and mean_duration and mean_distance columns for downstream use.

3.0.1 1. Predict on full dataset

```
[53]: X_scaled = scaler.transform(X)
y_preds_full = lr.predict(X_scaled)
```

3.0.2 2. Impute ratecode 2 fare

The data dictionary says that the RatecodeID column captures the following information:

- 1 =standard rate
- 2 = JFK (airport)
- 3 = Newark (airport)
- 4 = Nassau or Westchester
- 5 = Negotiated fare
- 6 = Group ride

This means that some fares don't need to be predicted. They can simply be imputed based on their rate code. Specifically, all rate codes of 2 can be imputed with \$52, as this is a flat rate for JFK airport.

The other rate codes have some variation (not shown here, but feel free to check for yourself). They are not a fixed rate, so these fares will remain untouched.

Impute 52 at all predictions where RatecodeID is 2.

```
[54]: # Create a new df containing just the RatecodeID col from the whole dataset
final_preds = df[['RatecodeID']].copy()

# Add a column containing all the predictions
final_preds['y_preds_full'] = y_preds_full

# Impute a prediction of 52 at all rows where RatecodeID == 2
final_preds.loc[final_preds['RatecodeID']==2, 'y_preds_full'] = 52

# Check that it worked
final_preds[final_preds['RatecodeID']==2].head()
```

```
[54]: RatecodeID y_preds_full
11 2 52.0
110 2 52.0
161 2 52.0
247 2 52.0
```

379 2 52.0

3.0.3 Check performance on full dataset

```
[55]: final_preds = final_preds['y_preds_full']
    print('R^2:', r2_score(y, final_preds))
    print('MAE:', mean_absolute_error(y, final_preds))
    print('MSE:', mean_squared_error(y, final_preds))
    print('RMSE:',np.sqrt(mean_squared_error(y, final_preds)))
```

R^2: 0.8910853978683975 MAE: 1.992506252269974 MSE: 12.101575504689935 RMSE: 3.4787318816905013

3.0.4 Save final predictions with mean_duration and mean_distance columns

```
[56]: # Combine means columns with predictions column
nyc_preds_means = df[['mean_duration', 'mean_distance']].copy()
nyc_preds_means['predicted_fare'] = final_preds
nyc_preds_means.head()
```

[56]:	${\tt mean_duration}$	mean_distance	<pre>predicted_fare</pre>
0	22.847222	3.521667	16.434245
1	24.470370	3.108889	16.052218
2	7.250000	0.881429	7.053706
3	30.250000	3.700000	18.731650
4	14.616667	4.435000	15.845642

Save as a csv file

4 NOTES

This notebook was designed for teaching purposes. As such, there are some things to note that differ from best practice or from how tasks are typically performed.

1. When the mean_distance and mean_duration columns were computed, the means were calculated from the entire dataset. These same columns were then used to train a model that was used to predict on a test set. A test set is supposed to represent entirely new data that the model has not seen before, but in this case, some of its predictor variables were derived using data that was in the test set. This is known as data leakage. Data leakage is when information from your training data contaminates the test data. If your model has unexpectedly high scores, there is a good chance that there was some data leakage. To avoid

data leakage in this modeling process, it would be best to compute the means using only the training set and then copy those into the test set, thus preventing values from the test set from being included in the computation of the means. This would have created some problems because it's very likely that some combinations of pickup-dropoff locations would only appear in the test data (not the train data). This means that there would be NaNs in the test data, and further steps would be required to address this. In this case, the data leakage improved the R2 score by ~ 0.03 .

- 2. Imputing the fare amount for RatecodeID 2 after training the model and then calculating model performance metrics on the post-imputed data is not best practice. It would be better to separate the rides that did not have rate codes of 2, train the model on that data specifically, and then add the RatecodeID 2 data (and its imputed rates) after. This would prevent training the model on data that you don't need a model for, and would likely result in a better final model. However, the steps were combined for simplicity.
- 3. Models that predict values to be used in another downstream model are common in data science workflows. When models are deployed, the data cleaning, imputations, splits, predictions, etc. are done using modeling pipelines. Pandas was used here to granularize and explain the concepts of certain steps, but this process would be streamlined by machine learning engineers. The ideas are the same, but the implementation would differ. Once a modeling workflow has been validated, the entire process can be automated, often with no need for pandas and no need to examine outputs at each step. This entire process would be reduced to a page of code.