

BATCH NAME: MIP-DA-07
PROJECT ON
CORONA VIRUS ANALYSIS

AGENDA

Overview

Dataset

Problem statement query with output

Conclusion

THE CORONA VIRUS PANDEMIC HAS HAD A SIGNIFICANT IMPACT ON PUBLIC HEALTH AND HAS CREATED AN URGENT NEED FOR DATA-DRIVEN INSIGHTS TO UNDERSTAND THE SPREAD OF THE VIRUS. AS A DATA ANALYST, YOU HAVE BEEN TASKED WITH ANALYZING A CORONA VIRUS DATASET TO DERIVE MEANINGFUL INSIGHTS AND PRESENT YOUR FINDINGS.

DESCRIPTION OF EACH COLUMN IN DATASET:

PROVINCE: GEOGRAPHIC SUBDIVISION WITHIN A

COUNTRY/REGION.

COUNTRY/REGION: GEOGRAPHIC ENTITY WHERE DATA IS

RECORDED.

LATITUDE: NORTH-SOUTH POSITION ON EARTH'S

SURFACE.

LONGITUDE: EAST-WEST POSITION ON EARTH'S SURFACE.

DATE: RECORDED DATE OF CORONA VIRUS DATA.

CONFIRMED: NUMBER OF DIAGNOSED CORONA VIRUS

CASES.

DEATHS: NUMBER OF CORONA VIRUS RELATED DEATHS.

RECOVERED: NUMBER OF RECOVERED CORONA VIRUS

CASES.

DATA-DRIVEN INSIGHTS

Critical Need for Data

Data-driven insights are crucial to accurately assess the spread and impact of the virus.

Real-time Analysis

Real-time data analysis aids in understanding transmission patterns and predicting trends.

Policy Decision Support

Data insights guide policymakers in implementing effective mitigation strategies.

ANALYZING COVID-19 DATASET

Healthcare Resource Allocation

Insights help in allocating resources to areas with the highest impact and need.

Epidemiological Trends

Analyzing the dataset unveils geographical and demographic patterns of the virus.

Risk Factor Identification

Identifying high-risk groups and factors contributing to virus transmission.

Q1. Write a code to check NULL values

output

4 • SELECT *

5 FROM CoronaVirus

WHERE Province IS NOT NULL;

Province is not null

	Province	Country/Region	Latitude	Longitude	Date	Confirmed	Deaths	Recovered
	Afghanistan	Afghanistan	33.93911	67.709953	22-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	23-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	24-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	25-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	26-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	27-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	28-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	29-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	30-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	31-01-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	01-02-2020	0	0	0
	Afghanistan	Afghanistan	33.93911	67.709953	02-02-2020	0	0	0
Cor	Afnhanistan ronaVirus 4	Afnhanistan CoronaVirus 5 x	23 Q3Q11	67 709953	03-02-2020	n	0	n

If NULL values are present, update them with zeros for all columns.

0 Row Effecte

check total number of rows

Check what is start_date and end date

Number of month present in dataset 5

Find monthly average for confirmed, deaths, recovered

```
13 •
        SELECT
             MONTH(date) AS month,
14
             YEAR(date) AS year,
15
             AVG(confirmed) AS avg_confirmed,
16
                                                                    Filter Rows:
                                                       Result Grid
             AVG(deaths) AS avg deaths,
17
             AVG(recovered) AS avg_recovered
18
                                                          month
                                                                      avg_confirmed
                                                                                 avg_deaths
                                                                                           avg_recovered
                                                                year
19
        FROM
                                                                NUL
20
             CoronaVirus
                                                                     2156,8283
                                                                                 46,5376
                                                                                           1442,7264
21
        GROUP BY
22
             YEAR(date),
             MONTH(date);
23
24
```

Find most frequent value for confirmed, deaths, recovered each month

```
SELECT
1 •
          YEAR(date) AS year,
          MONTH(date) AS month,
          (SELECT confirmed FROM CoronaVirus WHERE date = '2020-04-02' GROUP BY confirmed ORDER BY COUNT(*) DESC LIMIT 1) AS most_frequent_confirmed
          (SELECT deaths FROM CoronaVirus WHERE date = '2020-04-02' GROUP BY deaths ORDER BY COUNT(*) DESC LIMIT 1) AS most frequent deaths,
          (SELECT recovered FROM CoronaVirus WHERE date = '2020-04-02' GROUP BY recovered ORDER BY COUNT(*) DESC LIMIT 1) AS most frequent recovered
      FROM
         CoronaVirus
      WHERE
         date = '2020-04-02';
```

Find minimum values for confirmed, deaths, recovered per year

```
SELECT
           YEAR(2024-04-02) AS year,
3
           MIN(confirmed) AS min confirmed,
           MIN(deaths) AS min_deaths,
           MIN(recovered) AS min_recovered
5
       FROM
           CoronaVirus
8
       GROUP BY
           YEAR(2024-04-02);
10
```

0 confirmed, deaths, recovered

Find maximum values of confirmed, deaths, recovered per year

```
SELECT
2
           YEAR(2024-04-12) AS year,
3
           MAX(confirmed) A5 max confirmed,
4
           MAX(deaths) AS max_deaths,
5
           MAX(recovered) AS max_recovered
6
       FROM
7
           CoronaVirus
8
       GROUP BY
           YEAR(2024-04-12);
10
```


max_deaths	max_recovered
7374	1123456

The total number of case of confirmed, deaths, recovered each month

```
SELECT
                                                                      total_confirmed
                                                             month
                                                     year
           YEAR(Date) AS year,
                                                            NULL
                                                    HULL
 3
           MONTH(Date) AS month,
                                                                      169065144
4
           SUM(confirmed) AS total confirmed,
 5
           SUM(deaths) AS total_deaths,
           SUM(recovered) AS total recovered
 6
                                                                     total_recovered
                                                     total_deaths
       FROM
                                                     3647894
                                                                    113089548
          CoronaVirus
 8
9
       GROUP BY
10
           YEAR(Date), MONTH(Date);
11
```

Check how corona virus spread out with respect to confirmed case

(Eg.: total confirmed cases, their average, variance & STDEV)

```
-- Total confirmed cases

SELECT

SUM(confirmed) AS total_confirmed_cases

FROM

CoronaVirus;
```

total_confirmed_cases 169065144

```
-- Average confirmed cases
```

SELECT

AVG(confirmed) AS average_confirmed_cases

FROM

CoronaVirus;

average_confirmed_cases

2156.8283

-- Variance of confirmed cases

SELECT

VARIANCE(confirmed) AS variance_confirmed_cases

FROM

CoronaVirus;

variance_confirmed_cases

157288925.07796532

-- Standard deviation of confirmed cases

SELECT

STDDEV_POP(confirmed) A5 std_dev_confirmed_cases

FROM

CoronaVirus;

std_dev_confirmed_cases

12541.488152446875

Check how corona virus spread out with respect to death case per month -- (Eg.: total confirmed cases, their average, variance & STDEV)


```
-- Average death cases per month
SELECT
   YEAR(Date) AS year,
   MONTH(Date) AS month,
    AVG(deaths) AS average_death_cases
FROM
  CoronaVirus
                                          average_death_cases
GROUP BY
   YEAR(Date), MONTH(Date);
                                          46.5376
```

```
-- Variance of death cases per month
SELECT
   YEAR(Date) AS year,
   MONTH(Date) AS month,
   VARIANCE(deaths) AS variance_death_cases
FROM
    CoronaVirus
GROUP BY
   YEAR(Date), MONTH(Date);
```

variance_death_cases 45892.01885355753

```
-- Standard deviation of death cases per month
 SELECT
     YEAR(Date) AS year,
     MONTH(Date) AS month,
     STDDEV POP(deaths) AS std dev death cases
 FROM
     CoronaVirus
GROUP BY
     YEAR(Date), MONTH(Date);
                                          214.22422564583476
```

std_dev_death_cases

Check how corona virus spread out with respect to recovered case -- (Eg.: total confirmed cases, their average, variance & STDEV)

```
-- Total recovered cases

SELECT

SUM(recovered) AS total_recovered_cases

FROM

total_recovered_cases

113089548
```

-- Average recovered cases

SELECT

AVG(recovered) A5 average_recovered_cases

FROM

CoronaVirus;

average_recovered_cases

1442,7264

-- Variance of recovered cases

SELECT

VARIANCE(recovered) AS variance_recovered_cases

FROM

CoronaVirus;

-- Standard deviation of recovered cases

SELECT

STDDEV_POP(recovered) AS std_dev_recovered_cases

FROM

CoronaVirus;

std_dev_recovered_cases 10345.507395110999

Find Country having highest number of the Confirmed case

Find Country having lowest number of the death case

Find top 5 countries having highest recovered case

Conclusion

The SQL analysis of the corona dataset provides insights into the pandemic's spread, including trends over time, monthly averages, and country-specific metrics. It reveals patterns of infection, recovery, and mortality, aiding in understanding and managing the crisis efficiently.

