SfePy Documentation

March 21, 2008

Contents

1	\mathbf{List}	of all terms	3
2	Teri	ms in termsMass	4
	2.1	dw_mass	4
	2.2	dw_mass_scalar	4
	2.3	dw_mass_scalar_fine_coarse	4
	2.4	dw_mass_scalar_r	4
	2.5	$dw_mass_vector \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	5
3	Teri	ms in termsBasic	5
	3.1	d_surface_dot	5
	3.2	d_surface_integrate	5
	3.3	d_volume	5
	3.4	$d_volume_dot \ \dots $	5
	3.5	d_volume_integrate	6
	3.6	d_volume_wdot	6
	3.7	di_volume_integrate_mat	6
	3.8	dw_volume_integrate	6
	3.9	dw_volume_wdot	7
	3.10	$dw_volume_wdot_r $	7
4	Teri	ms in termsLaplace	7
	4.1	dw_laplace	7
5	Teri	ms in termsNavierStokes	7
	5.1	d_div	7
	5.2	$\mathrm{d}q_{-}\mathrm{grad} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
	5.3	dq_lin_convect	8
	5.4	$dw_convect \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
	5.5	$\mathrm{d} w_{-}\mathrm{div} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	8
	5.6	$dw_div_grad \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	8
	5.7	dw_div_r	9
	5.8	$dw_grad \ \dots $	9

	5.9	$dw_gradDt \dots \dots \dots \dots \dots$	9
	5.10	dw_lin_convect	9
			10
	5.12	dw_st_pspg_c	10
	5.13	dw_st_pspg_p	10
			10
			11
6	Teri		1
	6.1	dw_point_lspring	11
7	Teri		1
	7.1	dw_volume_lvf	11
8	Teri		1
	8.1	dw_surface_ltr	11
9	Teri		L 2
	9.1		12
	9.2	dw_sdcc	12
10	Teri		f 2
	10.1	dw_mass_scalar_variable	12
11			12
	11.1	J	12
			12
	11.3	grad_scalar	13
	11.4	mat_in_qp	13
		11	13
	11.6	11	13
	117	volume	13

1 List of all terms

J J:	∫ ≅ ∇ au
d_div	$\int_{\Omega} \bar{p} \ \nabla \cdot \underline{w}$
d_surface_dot	$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$
d_surface_integrate	$\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$
d_volume	$\int_{\Omega} 1$
d_volume_dot	$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$
$d_{volume_{integrate}}$	$\int_{\Omega} y$
d_volume_wdot	$\int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$
de_sdcc_strain	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w})$
$di_volume_integrate_mat$	$\int_{\Omega} m$
dq_{-grad}	$(\nabla p) _{qp}$
dq_lin_convect	$((\underline{b}\cdot\nabla)\underline{u}) _{qp}$
$dw_convect$	$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$
dw_div	$\int_{\Omega} q \ \nabla \cdot \underline{u}$
dw_div_grad	$\int_{\Omega} \nu \nabla \underline{v} : \nabla \underline{u}$
dw_div_r	$\int_{\Omega} q \ \nabla \cdot \underline{w}$
dw_grad	$\int_{\Omega} p \ abla \cdot \underline{v}$
dw_gradDt	$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$
dw_laplace	$c \int_{\Omega} \nabla s : \nabla r$
$dw_{lin_convect}$	$\int_{\Omega} ((\underline{b} \cdot \nabla) \underline{u}) \cdot \underline{v}$
dw_mass	$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$
dw_mass_scalar	$\int_{\Omega} qp$
$dw_mass_scalar_fine_coarse$	$\int_{\Omega}q_{h}p_{H}$
dw_mass_scalar_r	$\int_{\Omega} qr$
dw_mass_scalar_variable	$\int_{\Omega} cqp$
dw_mass_vector	$\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$
dw_point_lspring	\underline{f}^{i} =
	$ \frac{f^{i}}{-k\underline{u}^{i}} \forall \text{ FE node } i \text{ in region} \\ \int_{\Omega} D_{ijkl} e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{with} $
dw_sdcc	$ \int_{\Omega} D_{ijkl} = e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with} D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \delta_{ij}\delta_{kl} $
$dw_st_grad_div$	$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$
$dw_st_pspg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$
dw_st_pspg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$
$dw_st_supg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$
dw_st_supg_p	$\underline{\mathfrak{Z}}_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla)\underline{v})$
dw_surface_ltr	$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}, \text{ where, depending on dimension of 'material' argument,}$ $\underline{\underline{\sigma}} \cdot \underline{n} \text{ is } \bar{p} \underline{\underline{I}} \cdot \underline{n} \text{ for given scalar pres-}$
	sure, \underline{f} for traction vector, and itself for a stress tensor
$dw_volume_integrate$	$\int_{\Omega} q$
dw_volume_lvf	$\int_{\Omega} \underline{v} \cdot \underline{f}$
dw_volume_wdot	$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$
$dw_volume_wdot_r$	$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$

2 Terms in termsMass

2.1 dw_mass

Class: MassTerm

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

Arguments:

material.rho	ρ
ts.dt	Δt
parameter	\underline{u}_0

Syntax: dw_mass.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

2.2 dw_mass_scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

 $\int_{\Omega} qp$

 $Syntax: \ \, \texttt{dw_mass_scalar.<i>.<r>}(\ \, \texttt{<virtual>},\ \, \texttt{<state>}\ \,)$

2.3 dw_mass_scalar_fine_coarse

Class: MassScalarFineCoarseTerm

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H belong to the coarse grid, test field q_h to the fine grid.

Definition:

 $\int_{\Omega} q_h p_H$

Syntax: dw_mass_scalar_fine_coarse.<i>.<r>(<virtual>, <state>, <iemaps>, <pbase>)

2.4 dw_mass_scalar_r

Class: MassScalarRTerm

Description: Scalar field mass rezidual — r is assumed to be known.

Definition:

 $\int_{\Omega} qr$

Syntax: dw_mass_scalar_r.<i>.<r>(<virtual>, <parameter>)

$2.5 dw_mass_vector$

Class: MassVectorTerm

Description: Vector field mass matrix/rezidual.

Definition:

$$\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$$

Syntax: dw_mass_vector.<i>.<r>(<material>, <virtual>, <state>)

3 Terms in termsBasic

3.1 d_surface_dot

 ${\bf Class:}\ {\bf DotProductSurfaceTerm}$

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$$

3.2 d_surface_integrate

Class: IntegrateSurfaceTerm

Definition:

$$\int_{\Gamma} y$$
, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$

Syntax: d_surface_integrate.<i>.<r>(cparameter>)

3.3 d_volume

Class: VolumeTerm

Description: Volume of a domain. Uses approximation of the parameter vari-

able.

Definition:

$$\int_{\Omega} 1$$

Syntax: d_volume.<i>.<r>(cparameter>)

3.4 d_volume_dot

 ${\bf Class:}\ {\bf DotProductVolumeTerm}$

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$$

Syntax: d_volume_dot.<i>.<r>(<parameter_1>, <parameter_2>)

3.5 d_volume_integrate

Class: IntegrateVolumeTerm

Definition:

$$\int_{\Omega} y$$

 $Syntax: \ \, \texttt{d_volume_integrate.<i>.<r>}(\ \, \texttt{<parameter>} \ \,)$

3.6 d_volume_wdot

 ${\bf Class:}\ {\bf WDotProductVolumeTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product for both scalar and vector

fields.

Definition:

$$\int_{\Omega} y p r, \int_{\Omega} y \underline{u} \cdot \underline{w}$$

Arguments:

4		
	material	weight function y
1	material	weight function g

Syntax: d_volume_wdot.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

3.7 di_volume_integrate_mat

 ${\bf Class:}\ {\bf IntegrateVolumeMatTerm}$

Description: Integrate material parameter m over a domain. Uses approxi-

mation of y variable.

Definition:

$$\int_{\Omega} m$$

Arguments:

material	m (can have up to two dimensions)
parameter	y
shape	shape of material parameter
mode	'const' or 'vertex' or 'ele-
	ment_avg'

Syntax: di_volume_integrate_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

3.8 dw_volume_integrate

Class: IntegrateVolumeOperatorTerm

Definition:

$$\int_{\Omega} q$$

Syntax: dw_volume_integrate.<i>.<r>(<virtual>)

$3.9 \quad dw_volume_wdot$

 ${\bf Class: \ WDotProductVolumeOperatorTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vec-

tor (not implemented!) fields.

Definition:

$$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$$

Arguments:

material	weight function y
----------	---------------------

Syntax: dw_volume_wdot.<i>.<r>(<material>, <virtual>, <state>)

$3.10 \quad dw_volume_wdot_r$

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorRTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not implemented!) fields (to use on a right-hand side).

Definition:

$$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$$

Arguments:

Syntax: dw_volume_wdot_r.<i>.<r>(<material>, <virtual>, <parameter>)

4 Terms in termsLaplace

4.1 dw_laplace

Class: LaplaceTerm

Description: Laplace term (constant parameter).

Definition:

$$c \int_{\Omega} \nabla s : \nabla r$$

 $Syntax: \ \, dw_laplace. <i>.<r>(<material>, <virtual>, <state>)$

5 Terms in termsNavierStokes

$5.1 d_{-}div$

Class: DivIntegratedTerm

Description: Integrated divergence term (weak form).

Definition:

$$\int_{\Omega} \bar{p} \, \nabla \cdot \underline{w}$$

 $Syntax: d_div.<i>.<r>(<parameter_1>, <parameter_2>)$

5.2 dq_grad

 ${\bf Class:} \ {\bf GradQTerm}$

Description: Gradient term (weak form) in quadrature points.

Definition:

$$(\nabla p)|_{qp}$$

Syntax: dq_grad.<i>.<r>(<state>)

5.3 dq_lin_convect

 ${\bf Class:}\ {\bf Linear Convect Q Term}$

Description: Linearized convective term evaluated in quadrature points.

Definition:

$$((\underline{b} \cdot \nabla)\underline{u})|_{qp}$$

 $Syntax: dq_lin_convect. <i>.<r>(<parameter>, <state>)$

5.4 dw_convect

Class: ConvectTerm

Description: Nonlinear convective term.

Definition:

$$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_convect.<i>.<r>(<virtual>, <state>)

$5.5 ext{ dw_div}$

Class: DivTerm

Description: Divergence term (weak form).

Definition:

$$\int_{\Omega} q \nabla \cdot \underline{u}$$

Syntax: dw_div.<i>.<r>(<virtual>, <state>)

5.6 dw_div_grad

Class: DivGradTerm

Description: Diffusion term.

Definition:

$$\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$$

Syntax: dw_div_grad.<i>.<r>(<material>, <virtual>, <state>)

$5.7 dw_div_r$

Class: DivRTerm

Description: Divergence term (weak form) with a known field (to use on a

right-hand side). **Definition**:

$$\int_{\Omega} q \nabla \cdot \underline{w}$$

Syntax: dw_div_r.<i>.<r>(<virtual>, <parameter>)

$5.8 dw_grad$

Class: GradTerm

Description: Gradient term (weak form).

Definition:

$$\int_{\Omega} p \, \nabla \cdot \underline{v}$$

Syntax: dw_grad.<i>.<r>(<virtual>, <state>)

$5.9 dw_gradDt$

Class: GradDtTerm

Description: Gradient term (weak form) with time-discretized \dot{p} .

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$$

Arguments:

ts.dt	Δt
parameter	p_0

 $Syntax: dw_gradDt.<i>.<r>(<ts>, <virtual>, <state>, <parameter>)$

5.10 dw_lin_convect

 ${\bf Class:}\ {\bf Linear Convect Term}$

Description: Linearized convective term.

Definition:

$$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_lin_convect.<i>.<r>(<virtual>, <parameter>, <state>)

5.11 dw_st_grad_div

 ${\bf Class:} \ {\bf Grad Div Stabilization Term}$

Description: Grad-div stabilization term (γ is a global stabilization parame-

ter).

Definition:

$$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$$

Syntax: dw_st_grad_div.<i>.<r>(<material>, <virtual>, <state>)

5.12 dw_st_pspg_c

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabiliza-

tion parameter). **Definition**:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

Syntax: dw_st_pspg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

5.13 dw_st_pspg_p

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization

parameter), cf. Laplace term.

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<i>.<r>(<material>, <virtual>, <state>)

5.14 dw_st_supg_c

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabiliza-

tion parameter).

Definition:

$$\sum\nolimits_{K\in\mathcal{T}_h}\int_{T_K}\delta_K\ ((\underline{b}\cdot\nabla)\underline{u})\cdot((\underline{b}\cdot\nabla)\underline{v})$$

 $Syntax: \ \, dw_st_supg_c. <i>.<r>(<material>, <virtual>, <parameter>, <state>)$

$5.15 \quad dw_st_supg_p$

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization

parameter). **Definition**:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$$

Syntax: dw_st_supg_p.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

6 Terms in termsPoint

6.1 dw_point_lspring

 ${\bf Class:}\ {\bf Linear Point Spring Term}$

Description: Linear springs constraining movement of FE nodes in a reagion;

use as a relaxed Dirichlet boundary conditions.

Definition:

$$f^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

Syntax: dw_point_lspring.<i>.<r>(<material>, <virtual>, <state>)

7 Terms in termsVolume

7.1 dw_volume_lvf

Class: LinearVolumeForceTerm

Description: Linear volume forces (weak form).

Definition:

$$\int_{\Omega} \underline{v} \cdot f$$

Syntax: dw_volume_lvf.<i>.<r>(<material>, <virtual>)

8 Terms in termsSurface

8.1 dw_surface_ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form).

Definition:

 $\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$, where, depending on dimension of 'material' argument, $\underline{\underline{\sigma}} \cdot \underline{n}$ is $\bar{p}\underline{\underline{I}} \cdot \underline{n}$ for given scalar pressure, f for traction vector, and itself for a stress tensor

 $Syntax: \ {\tt dw_surface_ltr. < i>. < r>} (\ {\tt <material>},\ {\tt < virtual>}\)$

9 Terms in termsLinElasticity

9.1 de_sdcc_strain

 ${\bf Class:}\ {\bf SDCCStrainTerm}$

Description: Cauchy strain tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{\mathcal{T}_K} \underline{\underline{e}}(\underline{w})$$

Syntax: de_sdcc_strain.<i>.<r>(

9.2 dw_sdcc

Class: SDCCTerm

Description: Homogeneous isotropic linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$$

Syntax: dw_sdcc.<i>.<r>(<material>, <virtual>, <state>)

10 Terms in termsSpecial

10.1 dw_mass_scalar_variable

 ${\bf Class:}\ {\bf MassScalarVariableTerm}$

Description: Scalar field mass matrix/rezidual with coefficient c defined in

nodes.

Definition:

$$\int_{\Omega} cqp$$

 $Syntax: \ dw_{mass_scalar_variable. <i>.<r>(<material>, <virtual>, <state>)$

11 Term caches in cachesBasic

11.1 cauchy_strain

Class: CauchyStrainDataCache

```
cache = term.getCache( 'cauchy_strain', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

11.2 div_vector

Class: DivVectorDataCache

```
cache = term.getCache( 'div_vector', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

11.3 grad_scalar

```
Class: GradScalarDataCache
cache = term.getCache( 'grad_scalar', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

11.4 mat_in_qp

```
Class: MatInQPDataCache
cache = term.getCache( 'mat_in_qp', <index> )
data = cache( <data name>, <ig>, <ih>, mat, ap, assumedShapes, modeIn )
```

11.5 state_in_surface_qp

```
Class: StateInSurfaceQPDataCache
cache = term.getCache( 'state_in_surface_qp', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

11.6 state_in_volume_qp

```
Class: StateInVolumeQPDataCache
cache = term.getCache( 'state_in_volume_qp', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

11.7 volume

```
Class: VolumeDataCache
cache = term.getCache( 'volume', <index> )
data = cache( <data name>, <ig>>, <ih>>, region, field )
```