<regression analysis="" ex<="" final="" th=""><th>am 2015> Hakbun</th><th>):</th><th></th></regression>	am 2015> Hakbun):			
(total points: 100)	Name in Korear	า :			
(괄호 안에 답만 적으시오. 과정생략. 괄호 밖의 내용은 인정하지 않음) [1] The following output is the summary of p-values from the regressions of FuelCon on Pop, Area, or Gastax variables.					
	рор	area	gastax		
model fuelcon = pop area gastax ;	0.0296	0.0543	0.1353		
model fuelcon = pop area;	0.0380	0.8240			
model fuelcon = pop gastax;	0.0986		0.0560		
model fuelcon = area gastax;		0.7478	0.0727		
model fuelcon = pop ;	0.0359				
model fuelcon = area ;		0.8087			
model fuelcon = gastax ;			0.0718		
1-1 Using "forward selection will (Pop Gastax Area) 1-2 Using "backward elimination (Pop) 1-3 Using "Stepwise Regression variables (5pts): (Gastax) 1-4 When you try the following proc reg; model fuelcon = gastax run; (Pop Gastax Area)	on with SLS= 0.08", won with SLE= 0.06 an SAS code, write you	vrite your selected vand SLS = 0.08", write	riables : (5pts) your selected (5pts) :		
[2] The statistic, C(p), is called	as(a)'s C	Cp, and it is recomme	ended that		
regressions with(b) Cp	values and those wit	h values near(c)_	where K is the		
number of independent variable	es in the regression.	(10pts)			

(a) = (Mallow)

(c) = (K+1)

(b) = (large, small)

[3] The following results are from "all possible regression" technique. Answer the questions. (20 pts)

	R^2	$Adj. R^2$	Ср	\sqrt{MSE}
Model 1: x1, x2	85.5%	84.2%	1.61	90.75
Model 2: x1, x2, x3	85.7%	83.6%	3.33	92.26
Model 3: x1, x2, x4	85.8%	83.8%	3.11	91.75

- 3-1 Based on \mathbb{R}^2 , we could choose Model 3 as the best model. (True , False)
- 3-2 Based on $Adj. R^2$, Model 1 is the best. (True , False)
- 3-3 The chosen model based on $Adj.\,R^2$ is always same to that of \sqrt{MSE} (True , False)
- 3-4 Considering the given information, the best model is

(Model 1, Model 2, Model 3)

[4] The Furniture monthly sales (Y) are regressed on the time (Jan. 1992 - Dec. 2002: starting 1 through 130). "LagY" is the variable representing the previous month sales amount (Lagged dependent variable). JAN is the indicator variable having 1 for January and 0 for other months. We used 11 indicator variables for 12 months.

$$\hat{y} = 1552 + 8\,Time + 0.5\,LagY - 645\,JAN - 404\,FEB - 80\,MAR - 450\,APL - 180\,MAY \\ -300\,JUN - 280\,JUL - 180\,AUG - 350\,SEP - 240\,OCT + 10\,NOV$$

4-1 To test if there is seasonal variation (seasonal effect), we need to calculate F-ratio which has ____(a)___ and ___(b)___ degrees of freedom. (5pts)

- (a) = (11)
- (b) = (115)

4-2 According to the above regression line, the highest season for the furniture sales is November. (5pts) (True , False)

4-3 Suppose the sale amount on Dec. 2002 is 4500. Then, predict the sales amount on Jan. 2003. (5pts) (4205)

4-4 The reason to use Lagged dependent variable (LagY) in the regression equation is to eliminate the autocorrelation between dependent variable. (5pts) (True , False)

[5] Consider the regression model : $y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \epsilon_t$

y_t	10	20	25	30
t	1	2	3	4

Construct the matrix and vectors to make

$$y = X\beta + \epsilon$$

5-1 where (5pts)

$$X = \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} \qquad X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

5-2 With X and y, complete the following least square estimator formula: (5pts)

$$\hat{\boldsymbol{\beta}} = ($$
) \boldsymbol{y} $\hat{\boldsymbol{\beta}} = ((X^T X)^{-1} X^T) \boldsymbol{y}$

- [6] Fill the blanks:
- 6-1 One caution should be observed in using high-order polynomial regression models. Correlations between powers of a variable can result in m___(a)_____ problems. To reduce the possibility of computational difficulties, the use of explanatory variables that has been c____(b)____ is recommended. (10 pts)
- (a) multicollinearity
- (b) centered
- 6-2 Although $\,R^2\,$ has a nice interpretation, there is a drawback to its use in multiple regression. As more explanatory variables are added to the regression model, the value of $\,R^2\,$ will never d___(a)_____, even if the additional variables are explaining ____(b)____ proportion of the variation in y. (10 pts)
- (a) = decrease
- (b) = (an insignificant, a significant)