Weisfeiler and Lehman Go Cellular: CW Networks

NeurlPS 2021

<u>Cristian Bodnar^{1,*}</u> <u>Fabrizio Frasca^{2,3,*}</u> Nina Otter⁷ Yu Guang Wang^{4,5,6} Pietro Liò¹ Guido Montúfar^{4,7} Michael Bronstein^{2,3}

Motivation: Limitations of GNNs

$$au \leq \sigma \Leftrightarrow \;\;$$
 Cell ${\mathcal T}$ is on the boundary of cell ${\mathcal O}$

Cellular Weisfeiler-Lehman

Cellular Weisfeiler-Lehman

Theorem 7. CWL without coboundary and lower-adjacencies has the same expressive power in distinguishing non-isomorphic cell complexes as CWL with the complete set of adjacencies.

Cellular Lifting Maps

Theorem 13. Let f be a skeleton-preserving lifting map. Then CWL(f) (i.e. CWL using lifting f) is at least as powerful as WL in distinguishing non-isomorphic graphs.

Cellular Lifting Maps

Definition 14. Let k-CL, k-IC, k-C be the lifting maps attaching cells to all the cliques, induced cycles and simple cycles, respectively, of size at most k.

Corollary 15. For all $k \geq 3$, CWL(k-CL), CWL(k-IC) and CWL(k-C) are strictly more powerful than WL.

Theorem 16. There exists a pair of graphs indistinguishable by 3-WL but distinguishable by CWL(k-CL) with $k \ge 4$, CWL(k-IC) with $k \ge 4$ and CWL(k-C) with $k \ge 8$.

Molecules as Cell Complexes

Graph representations of molecules date back to the nineteenth century [1]. However, it is not necessarily the best representation. We propose modelling **molecules as cell complexes**.

CWNs and Molecular Message Passing

$$\begin{split} m_{\mathcal{B}}^{t+1}(\sigma) &= \mathrm{AGG}_{\tau \in \mathcal{B}(\sigma)} \Big(M_{\mathcal{B}} \big(h_{\sigma}^t, h_{\tau}^t \big) \Big) \\ m_{\uparrow}^{t+1}(\sigma) &= \mathrm{AGG}_{\tau \in \mathcal{N}_{\uparrow}(\sigma), \delta \in \mathcal{C}(\sigma, \tau)} \Big(M_{\uparrow} \big(h_{\sigma}^t, h_{\tau}^t, h_{\delta}^t \big) \Big) \end{split}$$

$$h_{\sigma}^{t+1} = U\left(h_{\sigma}^{t}, m_{\mathcal{B}}^{t}(\sigma), m_{\uparrow}^{t+1}(\sigma)\right)$$

$$h_X = \text{READOUT}(\{\!\{h_\sigma^L\}\!\}_{dim(\sigma)=0}, \{\!\{h_\sigma^L\}\!\}_{dim(\sigma)=1}, \{\!\{h_\sigma^L\}\!\}_{dim(\sigma)=2})$$

Practical Benefits of CWNs

Easily capture long-range interactions

Computational Complexity

(Lifting)

		inical ticha				
Dataset \downarrow / Processes \rightarrow	Seq.	2	4	8	16	32
ZINC (12k) Mol-HIV (41k) ZINC-FULL (250k)	320.27 ± 0.54 1178.98 ± 3.90 6805.35 ± 16.50	$\begin{array}{c} 169.95 \pm 0.32 \\ 635.58 \pm 0.83 \\ 3549.16 \pm 7.73 \end{array}$	84.90 ± 0.21 319.01 ± 0.40 1782.41 ± 3.84	43.38 ± 0.07 164.26 ± 0.52 918.38 ± 3.46	23.17 ± 0.68 86.92 ± 0.77 492.77 ± 6.13	18.59 ± 0.68 60.62 ± 2.05 383.92 ± 3.30
1						

linear trend

Synthetic Experiments: Expressive Power

Strongly Regular

Circular Skip Links

Method	Mean	Min	Max
MP-GNNs	10.000 ± 0.000	10.000	10.000
RingGNN	10.000 ± 0.000	10.000	10.000
3WLGNN	97.800 ± 10.916	30.000	100.000
CIN (Ours)	100.000±0.000	100.000	100.000

Synthetic Experiments: RingTransfer

Real-world Experiments: TUDatasets

Dataset	MUTAG	PTC	PROTEINS	NCI1	NCI109	IMDB-B	IMDB-M	RDT-B
RWK [28]	79.2±2.1	55.9±0.3	59.6±0.1	>3 days	N/A	N/A	N/A	N/A
GK (k = 3) [62]	81.4 ± 1.7	55.7 ± 0.5	71.4 ± 0.31	62.5 ± 0.3	62.4 ± 0.3	N/A	N/A	N/A
PK [56]	76.0 ± 2.7	59.5 ± 2.4	73.7 ± 0.7	82.5 ± 0.5	N/A	N/A	N/A	N/A
WL kernel [63]	90.4 ± 5.7	59.9 ± 4.3	75.0 ± 3.1	86.0 ±1.8	N/A	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1
DCNN [3]	N/A	N/A	61.3±1.6	56.6±1.0	N/A	49.1±1.4	33.5±1.4	N/A
DGCNN [74]	85.8 ± 1.8	58.6 ± 2.5	75.5 ± 0.9	74.4 ± 0.5	N/A	70.0 ± 0.9	47.8 ± 0.9	N/A
IGN [50]	83.9 ± 13.0	58.5 ± 6.9	76.6 ±5.5	74.3 ± 2.7	72.8 \pm 1.5	72.0 ± 5.5	48.7 ± 3.4	N/A
GIN [72]	89.4 ± 5.6	64.6 ± 7.0	76.2 ± 2.8	82.7 ± 1.7	N/A	75.1 ± 5.1	52.3 ± 2.8	92.4 ± 2.5
PPGNs [51]	90.6 ±8.7	66.2 ± 6.6	77.2 ±4.7	83.2 ± 1.1	82.2 ±1.4	73.0 ± 5.8	50.5 ± 3.6	N/A
Natural GN [20]	89.4 ± 1.6	66.8 \pm 1.7	71.7 ± 1.0	82.4 ± 1.3	N/A	$73.5{\pm}2.0$	51.3 ± 1.5	N/A
GSN [9]	92.2 \pm 7.5	68.2 ± 7.2	76.6 \pm 5.0	83.5 ± 2.0	N/A	77.8 \pm 3.3	54.3 ± 3.3	N/A
SIN [7]	N/A	N/A	76.4 ± 3.3	82.7 ± 2.1	N/A	75.6 \pm 3.2	52.4 \pm 2.9	92.2 ± 1.0
CIN (Ours)	92.7 \pm 6.1	68.2 ± 5.6	77.0 \pm 4.3	83.6 \pm 1.4	84.0 ± 1.6	75.6 \pm 3.7	52.7 \pm 3.1	92.4 ± 2.1

Real-world Experiments: ZINC + MolHIV

Table 3: ZINC (MAE), ZINC-FULL (MAE) and Mol-HIV (ROC-AUC).

Method	ZII	NC ↓	ZINC-FULL↓	MOLHIV ↑
Method	No Edge Feat.	With Edge Feat.	All methods	All methods
GCN [45]	0.469 ± 0.002	N/A	N/A	76.06 ± 0.97
GAT [67]	0.463 ± 0.002	N/A	N/A	N/A
GatedGCN [10]	0.422 ± 0.006	0.363 ± 0.009	N/A	N/A
GIN [72]	0.408 ± 0.008	0.252 ± 0.014	0.088 ± 0.002	77.07 ± 1.49
PNA [19]	0.320 ± 0.032	0.188 ± 0.004	N/A	79.05 ± 1.32
DGN [5]	0.219 ± 0.010	0.168 ± 0.003	N/A	79.70 ± 0.97
HIMP [26]	N/A	0.151 ± 0.006	0.036 ± 0.002	78.80 ± 0.82
GSN [9]	0.139 ± 0.007	0.108 ± 0.018	N/A	77.99 ± 1.00
CIN-small (Ours)	0.139 ± 0.008	0.094 ± 0.004	0.044 ± 0.003	80.55 ± 1.04
CIN (Ours)	0.115 ± 0.003	0.079 ± 0.006	0.022 ± 0.002	80.94 ± 0.57

Real-world Experiments: ZINC (ablation study)

•	Method	MAE	"Standard"
	GatedGCN [10] GIN [72] PNA [19] DGN [5] HIMP [26]	0.363 ± 0.009 0.252 ± 0.014 0.188 ± 0.004 0.168 ± 0.003 0.151 ± 0.006	Updates edgesCaptures ringsImportance of updating edges
	GSN [9] GIN-E Custom CIN No-Rings small CIN No-Rings CIN-small CIN	0.108±0.018 0.196±0.007 0.174±0.006 0.159±0.007 0.094±0.004 0.079 ± 0.006	Importance of capturing rings

Thanks!

Cristian Bodnar

Twitter: @CristianBodnar

Email: cb2015@cam.ac.uk

Fabrizio Frasca

Twitter: @ffabffrasca

Email: ffrasca@twitter.com

