50

5

20

 $\begin{bmatrix} y = 0.771x + 3.938 \\ R^2 = 0.879 \end{bmatrix}$

Title: TURBIDIMETRIC IMMUNOASSAY FOR LIPOPROTEIN(a) AND REAGENT THEREFORE Inventor(s): Tadashi YAMAZAKI et al. DOCKET NO.: 081356-0249

80 150 5 $\begin{cases} y = 0.855x + 2.190 \\ R^2 = 0.978 \end{cases}$ 20 9 8 9 4 32 5 $\begin{bmatrix} y = 0.877x + 1.783 \\ R^2 = 0.995 \end{bmatrix}$ 20 120 8 9 150 흔 $\begin{bmatrix} y = 0.925x + 1.023 \\ R^2 = 0.991 \end{bmatrix}$ 20 12.3 25.1 25.1 63.4 12.5 12.5 24.1 55.7 84.9 61.0 4.0 7.7 7.7 18.9 30.3 36.9 16.7 16.7 11.3 23.3 120 9 8 8 6

Type S1

Pheno-Type B Type S3

Type S4

Title: TURBIDIMETRIC IMMUNOASSAY FOR LIPOPROTEIN(a) AND REAGENT THEREFORE Inventor(s): Tadashi YAMAZAKI et al. DOCKET NO.: 081356-0249

Fig. 2

_											-					. .			-													
0 3mo/ml	Type B Type S1	7.9	15.3	40.1	46.9	00	21.0	52.9	80.4	96	23.1	41.3	66.7	5.9	8.3	23.9	38 1				52.6	120 F	1001	Ca	``,	1	40 - XX O DType S3	: ` ∮	€¢ , §		0 20 40 60 80 100 120	Control
0.4ma/mL	Type B Type S1Type S3Type S4 Type S5 Type B Type S1Type S3Type S4Type S5	9.0	19.3	51.9	62.4	11.1	23.1	55.2	83.7	10.5	23.3	39.8	63.9	4.9	8.1	21.6	34.3	4.0	0 &	7.71	45.0	120 _F	100	- O8	```,	60 - G C C C C C C C C C C C C C C C C C C		× ,	<u>'</u>		0 20 40 60 80 100 120	Control
0.5mg/mL	Type B Type S1Type S3Type S4 Type S5	10.8	22.4	58.1	70.0	12.1	23.7	54.6	83.2	11.2	23.4	37.9	62.0	4.3	8.2	20.1	32.0	3.6	9.2	17.1	40.2	120 F	100 -	- 08			40 - ZAÓ A Type S3		O Type S5	30 40 60	0 20 40 60 80 100 120	Control
	스		ļ	-	79.6	12.5	24.1	55.7	84.9	11.3	23.3	37.3	61.0	4.0	7.7	18.9	30.3	3.6	9.4	16.7	39.1	120 [100				40 - XO AType S3		O Type S5	0 20 40 60 80 100 120	7 +0 00 00 100	O. I.O.
Contor		11.3	22.5	62.7	81.8		24.2	55.1	ı		21.4	41.3	ျ		7.8	21.3	33.4	3.3	9.5	18.7	45.0				•		•		_			
	Pheno-	Type B				Type S1				Type S3				Type S4				Type S5			_ 											

Title: TURBIDIMETRIC IMMUNOASSAY FOR LIPOPROTEIN(a) ÄND REAGENT THEREFORE Inventor(s): Tadashi YAMAZAKI et al. DOCKET NO.: 081356-0249

Fig. 3

_							_													-	
Arg. 17%	44.0	22.3	62.5	82.1	12.1	24.2	54.8	96	11.4	213	40.5	67.3	3.7	7.8	20.7	33.1	3.6	9.3	18.1	44.3	120 100 80 60 40 20 0 20 40 60 80 100 120 Control
Arg. 15%	12.4	24.2	66.8	86.5	13	24.4	56	95.3	11.6	21.4	41.2		4.4	8.5	20.4	32.8	4.3	9.6	18.1	44.4	120 100 R ² = 0.998 60 40 20 0 20 40 60 80 100 120 Control
Arg. 10%	14.8						1 54.8		5 11.7		3 39.3	9 64.7			3 20.2	4 31.8				0 44.7	120
Contorl	11.3	22.5	62.7			24.2	55.1			21.4	41.3			7.8	21.3			9.2	18.7	45.0	
Dheno.	Type B				Type S1				Type S3				Type S4				Type S5				

Fig. 4

	Tyne Cf	200																3.6	93	18.1	44.3	١.		8	pe S1	pe S3	XType S4	3	120
Arc 170/	Type B Type S1 Type S3 Type S4 Ty	the edge of the edge	22.3	62.2	82.1	12.1	24.2	54.8	0.50	11.4	213	40.5	67.3	3.7	7.8	20.7	33.1					120 _F	100	`.		ت .ولا	× × S	A STATE OF THE STA	0 20 40 60 80 100
Ara 15%	Type S4 Type S5		24.2		86.5	13.0	24.4	56.0	95.3	11.6	21.4	41.2	67.0	4.4	8.5	20.4	32.8	6:4	9:0	18.1	44.4	120 F	100	Ø.	, \ \		20 - X X X X X X X X X X X X X X X X X X		0 20 40 60 80 100 120
Arg. 10%	Type B Type S1 Type S3 Type S4 Type S5	14.8		75.1	102.3	12.9	24.6			11.7	21.5		64.7	4.1			31.8	4.4	11.1		44.7	120 J	100 -	`.			20 - 20 - 20 O Type S5	J	0 20 40 60 80 100 120
Contorl		11.3	22.5	62.7	81.8	12.1	24.2	55.1	94.7	11.6	21.4	41.3	6.99	3.6	7.8	21.3	33.4	3.3	9.5	18.7	45.0								
	Pheno-	Type B				Type S1				Type S3				Type S4				Type S5											