

NLA Oefenzitting 1: QR-factorisatie en Kleinste Kwadraten

Nico Vervliet
Nico.Vervliet@esat.kuleuven.be

6 maart 2018

KU LEUVEN

Overzicht

- **Projecties**
- QR-factorisatie
- Householdertransformatie
- Givenstransformatie
- Snelle Givenstransformatie
- Kleinste kwadratenproblemen

Definities

- ▶ Projectie $P^2 = P$
 - Px is de projectie van x in de kolomruimte van P
- ▶ Complementaire projectie I − P
 - (I P)x is de projectie van x in de nulruimte van P
- ▶ Orthogonale projectie $P = P^T$
- ▶ Orthogonale matrix $Q^TQ = I$
- Projectie op range (\hat{Q}) : $P = \hat{Q}\hat{Q}^T$
- ▶ Rang 1 orthogonale projectie $P = qq^T$

QR-factorisatie

- ▶ Definitie A = QR, Q orthogonaal, R bovendriehoeks
- Bestaat en is 'enig' (op teken na)
- Triangulaire orthogonalisatie
 - Klassieke Gram-Schmidt
 - Gewijzigde Gram-Schmidt (2mn²)
- Orthogonale triangularisatie
 - ▶ Householder QR $(2mn^2 2/3n^3)$
 - Givens QR $(3mn^2 n^3)$

 Doel: nullen introduceren in kolom via orthogonale transformatie

► Householder reflectoren

$$F = I - 2 \frac{vv^T}{v^T v}$$
 $v = x \pm ||x||_2 e_1$ $Fx = \mp ||x||_2 e_1$

Voorbeeld

▶ Voorbeeld:

$$\begin{bmatrix}
\times & \times & \times \\
0 & \times & \times
\end{bmatrix}
\xrightarrow{F}
\begin{bmatrix}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & \times \\
0 & 0 & \times
\end{bmatrix}$$

▶ Toepassen: nooit matrix F vormen

$$FA = A - vw^T$$
, $w = \beta A^T v$, $\beta = 2/(v^T v)$

• Rekenkost: $2mn^2 - \frac{2}{3}n^3$

Eigenschappen reflectoren

► Eigenschappen:

$$Fv = v - 2v \frac{v^T v}{v^T v} = v - 2v = -v$$

$$Fy = y - 2v \frac{v^T y}{v^T y} = y \qquad \forall y : v^T y = 0$$

►
$$F = F^T$$
, $F^{-1} = F^T$

▶
$$\lambda_1 = -1$$
, $\lambda_i = 1$, $i \neq 1$

$$\blacktriangleright$$
 det $F = \prod \lambda_i = -1$

$$ightharpoonup \sigma_i = 1$$

▶ Doel: selectief nul introduceren via rotatie

Wiskundig:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$$

- Let op: θ is positief in tegenwijzerzin
- ▶ Rekenkost : $3mn^2 n^3$
- ► Selectiever, maar duurder dan Householder (factor 3/2)

▶ Voorstelling : $c = cos(\theta)$, $s = sin(\theta)$

▶ Toepassen: $G_1^\mathsf{T} \cdots G_1^\mathsf{T} A = R$

Voorbeeld

Voorbeeld

$$\begin{bmatrix} 1 & & & & \\ & c & & s \\ & & 1 & \\ & -s & & c & \\ & & & 1 \end{bmatrix}^\mathsf{T} \begin{bmatrix} \times & \times & \times \\ 0 & 0 & \times \end{bmatrix} = \begin{bmatrix} \times & \times & \times \\ \mathbf{0} & \times & \times \\ 0 & \times & \times \\ \mathbf{0} & \mathbf{0} & \times \\ 0 & 0 & \times \end{bmatrix}$$

- ► Rekenkost : $3mn^2 n^3$
- ► Selectiever, maar duurder dan Householder (factor 3/2)

Variant op Givenstransformatie:

$$A = (MD^{-1/2})(D^{-1/2}T)$$

- met volgende eigenschappen
 - $Q = MD^{-1/2}$
 - $M^TM = D = diag(d_i), d_i > 0$
 - $Q^TQ = (MD^{-1/2})^T MD^{-1/2} = I$
 - $R = D^{-1/2}T$
 - T is bovendriehoeks
- ▶ Herhalen: stel $M = N_1 N_2 \cdots N_k$
 - \blacktriangleright kies N_1 zodat $N_1^T N_1 = D_1$ diagonaal
 - kies N_2 zodat $N_2^T D_1 N_2 = D_2$ diagonaal
 - kies N_k zodat $N_k^T D_{k-1} N_k = D_k$ diagonaal
 - \blacktriangleright dan $M^TM = D_k$
 - bovendien nullen introduceren met N_i

Snelle Givenstransformatie: Type 1

Type 1:
$$M_1=\left[\begin{array}{cc} eta_1 & 1 \\ 1 & lpha_1 \end{array}\right]$$

- gegeven $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$, $D = diag(d_1, d_2)$
- lacktriangle als $x_2
 eq 0$ neem $lpha_1 = -x_1/x_2$ en $eta_1 = -lpha_1 d_2/d_1$

$$M_1^T x = \begin{bmatrix} x_2(1+\gamma_1) \\ 0 \end{bmatrix}$$

$$M_1^T D M_1 = \begin{bmatrix} d_2(1+\gamma_1) & 0 \\ 0 & d_1(1+\gamma_1) \end{bmatrix} =: D_1$$

• met $\gamma_1 = -\alpha_1 \beta_1 = (d_2/d_1)(x_1/x_2)^2$

Snelle Givenstransformatie: Type 2

Type 2:
$$M_2 = \begin{bmatrix} 1 & \alpha_2 \\ \beta_2 & 1 \end{bmatrix}$$

- gegeven $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$, $D = diag(d_1, d_2)$
- lacktriangle als $x_1
 eq 0$ neem $lpha_2 = -x_2/x_1$ en $eta_2 = -lpha_2 d_1/d_2$

$$M_2^T x = \begin{bmatrix} x_1(1+\gamma_2) \\ 0 \end{bmatrix}$$

$$M_2^T D M_2 = \begin{bmatrix} d_1(1+\gamma_2) & 0 \\ 0 & d_2(1+\gamma_2) \end{bmatrix} =: D_2$$

• met $\gamma_2 = -\alpha_2 \beta_2 = (d_1/d_2)(x_2/x_1)^2$

Voorbeeld

▶ Voorbeeld: $M(i,j)^T T_k = T_{k+1}$

$$\begin{bmatrix} 1 & & & & \\ & \beta_1 & & 1 \\ & & 1 & \\ & & 1 & \\ & & & 1 \end{bmatrix}^\mathsf{T} \begin{bmatrix} \times & \times & \times \\ 0 & 0 & \times \end{bmatrix} = \begin{bmatrix} \times & \times & \times \\ \mathbf{0} & \times & \times \\ 0 & \times & \times \\ \mathbf{0} & \mathbf{0} & \times \\ \mathbf{0} & \mathbf{0} & \times \end{bmatrix}$$

- ► Rekenkost : $2mn^2 \frac{2}{3}n^3$
- ► Selectief en even duur als Householder
- ▶ Interessant voor ijle matrices

Groeifactoren

- Groeifactoren $1 + \gamma_i$
- $ightharpoonup \gamma_1 \gamma_2 = 1$
- ▶ Kies type zodat $1 + \gamma_i \le 2$
- Groeifactor beperken tot 2
- Rekening houden met overflow

Kleinste kwadratenproblemen

▶ Definitie: $x \text{ zodat } ||b - Ax||_2 \text{ minimaal } (m > n)$

Kleinste kwadratenproblemen

▶ Definitie: $x \text{ zodat } ||b - Ax||_2 \text{ minimaal } (m > n)$

Normaalvergelijkingen : $n \times n$ stelsel oplossen met Cholesky

$$A^T A x = A^T b$$

Kleinste kwadratenproblemen

▶ Definitie: $x \text{ zodat } ||b - Ax||_2 \text{ minimaal } (m > n)$

▶ Normaalvergelijkingen : $n \times n$ stelsel oplossen met Cholesky

$$A^T A x = A^T b$$

• QR : $A = \hat{Q}\hat{R}$, driehoekig stelsel oplossen

$$\hat{R}x = \hat{Q}^T b$$

► SWO : $A = \hat{U}\hat{\Sigma}V^T$, diagonaal stelsel oplossen

$$\hat{\Sigma}w = \hat{U}^T b, \qquad x = Vw$$

Snelle Givens kleinste kwadraten

► Grote delen worden nul:

$$M^T A = \begin{bmatrix} T_1 \\ 0 \end{bmatrix}, \qquad M^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \quad \begin{cases} n \\ m-n \end{cases}$$

► Invullen in KKB:

$$||Ax - b||_{2} = ||Q^{T}(Ax - b)||_{2}$$

$$= ||D^{-1/2}M^{T}(Ax - b)||_{2}$$

$$= ||D^{-1/2}\left(\begin{bmatrix} T_{1} \\ 0 \end{bmatrix}x - \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}\right)||_{2}$$

Wat overblijft:

$$T_1x=c_1 \rightarrow x_{KK}$$