MAE3145: Midterm Exam (Practice)

October 26, 2016

Last Name First Name Student ID

Prob. 1	Prob. 2	Prob. 3	Total
(3)	(16)	(15)	(34)

Problem 1 (3pt) Mark whether each statement written in italic font is True or False.

(a) The orbital speed of the Mars around the Sun is greater than that of the Earth. [True, False]

Problem 2 (16pt) (Properties of orbit in 2D) A rocket is fired at the point B on the surface of the Earth. The velocity and the flight path angle of the rocket is given by

$$v = 5 \,\mathrm{km/s}, \quad \gamma = 30^{\circ}.$$

We wish to determine where the rocket would hit on the surface of the Earth. The radius of the Earth and the gravitational parameter are given by

$$R_E = 6378 \,\mathrm{km}, \quad \mu = 398,600 \,\mathrm{km}^3/\mathrm{s}^2.$$

Throughout this question, ignore the atmospheric drag or the rotation of the Earth.

(a) Show that $\mathcal{E} = -49.9961 \text{km}^2/\text{s}^2$, and $h = 2.7618 \times 10^4 \text{ km}^2/\text{s}$.

(b)	Show that the eccentricity of the rocket is given by $e=0.7211$.
(c)	Find the true anomaly θ_B of the rocket, when it is fired.
(d)	Find the true anomaly θ_H of the rocket, when it hits the surface of the Earth.
	Based on the above results, (i) mark the periapsis P , (ii) mark the point H on the surface of the Earth that the rocket hits, and (iii) sketch the trajectory of the rocket between B and H at the diagram of the previous page.

Problem 3 (15pt) (Geometry of orbit in 3D) The orbital elements for a spacecraft orbiting around the Earth are given as follows:

$$(e = 0.6, \quad \theta = 270^{\circ}, \quad i = 90^{\circ}, \quad \Omega = 45^{\circ}, \quad \omega = 180^{\circ}).$$

The following figure illustrates the geocentric equatorial frame and the Earth equatorial plane.

Sketch the orbit of this spacecraft according to the following steps.

- (a) Draw the node vector \vec{N} , and specify the angle between \vec{N} and \vec{X} .
- (b) Draw the direction of the angular momentum vector \vec{h} . Specify the angle between the orbital plane and the equatorial plane.
- (c) Draw the eccentricity vector \vec{e} , and specify the angle between \vec{N} and \vec{e} .
- (d) Sketch the orbit. Mark the periapsis by P.
- (e) Mark the location of the spacecraft on the orbit by S.