

IMAGE COMPRESSION BASED ON NON-PARAMETRIC SAMPLING IN NOISY ENVIRONMENTS

Kishan Narotam Nitesh Nana

Supervisor: Professor Fambirai Takawira

Why?

- Research-based
- Potential new method for image compression
- DCT \rightarrow JPEG
- DWT \rightarrow JPEG-2000

- Objectives and Specifications
- System Overview
- System Implementation
- Results & Analysis
- Future Work
- Conclusion

Objectives and Specification

- Create a robust image compression scheme
 - Create holes in the image
 - Encode the image
 - Introduce random errors
 - Filling the holes
- Time frame: 6 weeks
- Budget: R1 200

System Implementation (Initial Steps)

- Reading an image:
 - Height
 - Width
 - Colour map
- 8-bit unsigned integers
- Converting to grayscale:
 - Height
 - Width
- Create the domain pool

System Implementation (Creating the holes)

1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8
2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8
3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8
4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8
5,1	5,2	5,3	5,4	5,5	5,6	5,7	5,8
6,1	6,2	6,3	6,4	6,5	6,6	6,7	6,8
7,1	7,2	7,3	7,4	7,5	7,6	7,7	7,8
8,1	8,2	8,3	8,4	8,5	8,6	8,7	8,8

Chebyshev Distance = 1

Chebyshev Distance = 10

Chebyshev Distance = 6

System Implementation (Encoding)

• Run Length Encoding

$$10 \rightarrow 0000 \ 1010$$

 $10 \rightarrow 1010$

System Implementation (Error Introduction)

- Bit flip
- $62 \rightarrow 11 \ 1110$
- Fourth bit to be flipped
- 11 $1010 \rightarrow 58$

- Ones Compliment
- $62 \rightarrow 11\ 1110$
- Ones compliment
- $00\ 0001 \rightarrow 1$

System Implementation (Filling the Holes)

- Current literature → pattern matching
- Created method → averaging method

Results & Analysis

Pattern

Landscape

High Contrast

Images used for Testing

Landscape

Results (Average Compression Ratio)

- Tests:
 - functionality of *Holes*-only
- Average image size:
 - 1200x800 pixels
- Chance of errors being introduced:
 - 0% (No errors)

Step-by-Step Process on a Landscape Image

Results (Average Compression Ratio)

Results (Same Image at Different Resolutions)

- Tests:
 - effect of *Holes*-only algorithm on the compression ratio
- Average image size:
 - 2000x1100 pixels
 - Decreasing in size
- Chance of error being introduced:
 - 10%
 - Bit flip

Results (Same Image at Different Resolutions)

- Tests:
 - effect of increasing error probability on different image types
- Average image size:
 - 1200x800 pixels
- Chance of error being introduced:
 - Increasing from 0% to 100%
 - Bit flip and Ones compliment introduction

Results (MSE)

Results (PSNR)

Results (Comparison with DCT & DWT)

- Tests:
 - How does the holes only algorithm perform against DCT and DWT technique
- Image size:
 - Known images
- Chance of error being introduced:
 - 10%
 - Bit flip introduction

Results (Comparison with DCT & DWT)

Averaged Results with 10% Error							
Method	Compression ratio	PSNR	MSE				
Holes	1,15	33,20	31,71				
DCT	1,09	53,02	225,81				
DWT	2,57	25,22	244,60				

Peppers: Original

Peppers: Holes

Peppers: DCT

Peppers: DWT

Future Work

- Serial programming used → long processing time
- Parallel programming
- Run Length Encoding → drawbacks
- Better encoding scheme
- Distance value of $6 \rightarrow$ hard coded values
- Neural networks (GAN)
 - Lower resolution → higher resolution

- All objectives met within project specifications
- Created algorithm:
 - Functional image compression scheme
 - Maintains image quality
- All images from *Unsplash.com*

THANK YOU!

Kishan Narotam Nitesh Nana

Supervisor: Professor Fambirai Takawira