.:

*3

FIG. 2A

FIG. 2B

FIG. 5C

FIG. 6
DEAD RECKONING RE-SYNC

FIG. 7
PRECURSOR EMBODIMENT

FIG. 9

FIG. 10

FIG. 11

FIG. 15

FIG. 16

PREFERRED TRELLIS ENCODER FIG. 17

FIG. 18

	0000	111	111	
	0001	001	111	= 1 - j
	0010	001	001	= 1+ j
	0011	111	001	= -1 + j
	0100	011	111	= 3 - j
	0101	001	011	= 1 + 3 * j
	0110	101	001	= -3 + j
	0111	111	101	= -1 - 3 _* j
	1000	011	011	=+3 + 3*j
	1001	101	011	= -3 + 3 * j
	1010	101	101	= -3 - 3* j
403-	1011	011	101	= 3 - 3 * j
400	1100	111	011)	= -1+ 3 * j
	1101	101	111	= -3 - j
	<u>1110</u>	001	101	= 1 - 3 * j
	1111	011	001	= 3 + j

FIG. 19

FIG. 20A

FIG. 20B

MAPPING FOR FALL-BACK MODE - LSB'S

<u>+</u>	WHEN LSB=01	1+j3	-3+j	-1-j3	3-j
<u>+</u>	z 0	3-j	1+j3	-3+j	-1-j3
difference (2nd-1st symbol)		0	06	180	-90
NO ON	y3 y2	00	10	10	11
	1+jQ	3-j	1+j3	-3+j	-1-j3
	HASE	0	90	180	-90

1+jQ WHEN LSB=11

1+jQ WHEN LSB=10

1+j3

<u>က</u>

10

-1-j3 -3+

1+j3

-1-j3 3-j

LSB & MSB FALLBACK MODE MAPPINGS

FIG. 22

FIG. 25

FIG. 27

FIG. 29

CU RECEIVER FIG. 31

/762

CONTROL LOGIC

CPU

SYNTHESIZED LOCAL MASTER CARRIER

RÚ/CU 1350

AGC 756

299

OTHER MEDIA

CABLEOR

COAXIAL

24

CU TRANSMITTER FIG. 32

DOYSOBLU LILEDIA

FIG. 35

FIG. 36

FIG. 37
FINE TUNING TO
CENTER BARKER CODE

FIG. 45

CU RANGING AND CONTENTION RESOLUTION

FIG. 47

CONTENTION RESOLUTION - RUUSING BINARY STACK

FIG. 48

FIG. 51

FIG. 52

FROM FIG. 53A **- 1114 UPSTREAM EQUALIZATION** CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION. 1116 RU SENDS SAME TRAINING DATA TO **CU ON 8 DIFFERENT CHANNELS** SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES. - 1118 CU RECEIVER RECEIVES DATA. AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT (COEFFICIENT) ADJUSTMENTS. - 1120 TAP WEIGHT (COEFFICIENT) ADJUSTMENTS CONTINUE UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO. **~1122** AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU. **- 1124** CONVOLVES FINAL SE CIRCUIT FFE & DFE COEFFICIENTS IN CU WITH OLD PRECODE FFE/DFE FILTER COEFFICIENTS IN RU TRANSMITTER AND LOAD NEWLY CALCULATED COEFFICIENTS INTO RU TRANSMITTER PRECODE FILTER 1126 CU SETS COEFFICIENTS OF FFE 765 AND DFE 820 TO TRANSPARENCY VALUES FOR RECEPTION OF UPSTREAM FIG. 53B PAYLOAD DATA.

TO FIG. 53C

FIG. 53C

FIG. 54

SIMPLE CU SPREAD SPECTRUM RECEIVER

FIG. 55

SIMPLE RU SPREAD SPECTRUM TRANSMITTER

FIG. 56

SYNCHRONOUS TDMA SYSTEM

FIG. 57

OFFSET	1B .	ASIC	2A ASIC		
(CHIPS)	RGSRH	RGSRL	RGSRH	RGSRL	
0	0x0000	0×8000	0x0001	0x0000	
1/2	0x0000	0xC000	0x0001	0x8000	
1	0x0000	0x4000	0x0000	0x8000	
-1	0x0001	0x0000	0x0002	0x0000	

FIG. 58

TRAINING ALGORITHM

SE FUNCTION

FIG. 59

2-STEP INITIAL EQUALIZATION TRAINING FIG. 60

EQ STABILITY CHECK

PERIODIC 2-STEP TRAINING ALGORITHM

RACM CORRECTION

NOTE: THRLD_{AMP} = TBD

THRLD_{PHASE} = TBD

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63

EQ CONVERGENCE CHECK

NOTE: THRLD = 10 -5

FIG. 64

POWER ALIGNMENT FLOW CHART

NOTE: TH = 600HN = 12

FIG. 65

FIG. 66

TOTAL TURN AROUND (TTA) IN FRAMES = OFFSET FIG. 67

FIG. 68

CONTROL MESSAGE (DOWNSTREAM) AND FUNCTION (UPSTREAM) PROPAGATION IN A 3 FRAMES TTA CHANNEL

FIG. 69

FIG. 70

CHIP\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	•••	0
2	1	0	0	1	1	1	1	•••	
3	Ô	0	0	1	1	1			
4	0	0	0	1	0	0	0	•••	0
5	0	1	0	0	1				
6	0	0	1	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	•••	

FIG. 72