Control Systems

G V V Sharma*

1

1

1

1

1

3

CONTENTS

1	Feedback	k Voltage	Amplifier:	Series-
Shunt				
2 Series		k Current	Amplifier:	Shunt-
		Ideal Case		
	2.2	Practical C	ase	
3	Feedback	k Current	Amplifier: E	Example

4 Feedback Transconductance Amplifier: Series-Series

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/feedback/codes

- 1 FEEDBACK VOLTAGE AMPLIFIER: SERIES-SHUNT
- 2 FEEDBACK CURRENT AMPLIFIER: SHUNT-SERIES
- 2.1 Ideal Case
- 2.2 Practical Case
 - 3 FEEDBACK CURRENT AMPLIFIER: EXAMPLE
- 3.1. The feedback current amplifier in Fig. 3.2.1 utilizes an op amp with an input differential resistance R_{id} , an open-loop gain μ , and an output resistance r_o . The output current I_o that is delivered to the load resistance R_L is sensed by the feedback network composed of the two resistances R_M and R_F and a fraction I_f , is fed back to the amplifier input node. Find expressions for $G = \frac{I_o}{I_i}$, $H = \frac{I_f}{I_o}$ and $T = \frac{I_o}{I_s}$,

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

assuming that the feedback causes the voltage at the input node to be near ground. If the loop gain is large, what does the closed-loop current gain become? State precisely the condition under which this is obtained. For $\mu=10^4$ V/V, $R_{id}=1$ M Ω , $r_o=100$ Ω , $R_L=10$ k Ω , $R_M=100$ Ω , and $R_F=10$ k Ω , find G, H, and T.

Solution: Follow the below sub-questions for solution.

3.2. Fig. 3.2.1 shows a feedback current amplifier. Draw the equivalent control system.

Solution: See fig 3.2.2

Fig. 3.2.1

3.3. Refer table 3.3 for the parameters and draw the small signal equivalent model of the fig 3.2.1

Solution: See fig 3.3

3.4. Given G (open-loop gain), H (feedback gain)

Fig. 3.2.2

Component	Description	
R_{id}	Input Resistance of Op Amp	
R_{out}	Output Resistance of Op Amp	
I_s	Input Current	
I_o	Output Current	
R_M, R_F	Feedback Resistances	
R_L	Load Resistance	

TABLE 3.3

and T (closed-loop gain) as

$$G = \frac{I_o}{I_i} \tag{3.4.1}$$

$$H = \frac{I_f}{I_o} \tag{3.4.2}$$

$$T = \frac{I_o}{I_f} \tag{3.4.3}$$

Find G and H as a function of the resistances. **Solution:** Refer fig. 3.3,

We get,

$$I_o = \mu I_i \tag{3.4.4}$$

$$\implies G = \frac{I_o}{I_i} = \mu \tag{3.4.5}$$

And,

$$I_i = I_s - I_f$$
 (3.4.6)

Using eq. 3.4.5, we get,

$$I_o = \mu \left(I_s - I_f \right) \tag{3.4.7}$$

Assuming virtual ground at V_1 , we get,

$$V_o = -I_f R_F \tag{3.4.8}$$

Therefore,

$$I_1 = -\frac{V_o}{R_M} {(3.4.9)}$$

$$\implies I_1 = I_f \frac{R_F}{R_M} \tag{3.4.10}$$

The output current is also expressed as,

$$I_o = I_f + I_1 \tag{3.4.11}$$

$$\implies \frac{I_o}{1 + \frac{R_F}{R_M}} = I_f \tag{3.4.12}$$

Now substituting I_f in eq. 3.4.7 we get,

$$I_o = \mu \left(I_s - \frac{I_o}{1 + \frac{R_F}{R_M}} \right)$$
 (3.4.13)

$$\implies T = \frac{I_o}{I_s} = \frac{\mu}{1 + \frac{\mu}{R_F}}$$

$$1 + \frac{R_F}{R_{TF}}$$
(3.4.15)

Therefore,

$$\implies H = \frac{I_f}{I_o} = \frac{1}{1 + \frac{R_F}{R_M}}$$
 (3.4.16)

3.5. What will be closed-loop gain(T) if $\mu \to \infty$ Solution: From eq. 3.4.15 we get,

$$T = \frac{\mu}{1 + \frac{\mu}{1 + \frac{R_F}{R_M}}}$$
 (3.5.1)

$$T = \frac{1}{\frac{1}{\mu} + \frac{1}{1 + \frac{R_F}{R_M}}}$$
(3.5.2)

Applying the limit, we get,

$$\implies T = 1 + \frac{R_F}{R_M} \tag{3.5.3}$$

3.6. Refer table 3.6 and find G, H and T

Component	Value
μ	104
R_{id}	1 <i>M</i> Ω
r_o	100 Ω
R_L	10 kΩ
R_M	100 Ω
R_F	10 kΩ

TABLE 3.6

Solution: Using eqs. 3.4.5, 3.4.16 and 3.4.15 We get,

$$G = \mu = 10^4 \tag{3.6.1}$$

$$H = \frac{1}{1 + \frac{R_F}{R_M}} = 9.9 \times 10^{-3}$$
 (3.6.2)

$$T = \frac{\mu}{1 + \frac{\mu}{1 + \frac{R_F}{R_M}}} = 100 \tag{3.6.3}$$

3.7. Tabulate your results.

Solution: Refer table 3.7,

4 FEEDBACK TRANSCONDUCTANCE AMPLIFIER: SERIES-SERIES

Gain	Value
G	10^{4}
Н	9.9×10^{-3}
T	100

TABLE 3.7