Cryptography - Handin 6

Peter Burgaard - 201209175

October 13, 2016

1 STINSON 5.10

Prove that:

$$x \in \mathbb{Z}_n^* \Longrightarrow d(e(x)) = x$$

We know that $e(x) = x^b \mod n$, and $d(y) = y^a \mod n$, from the exercise description. We know from Stinson, chapter 5, n = pq, where p and q are primes where $p \neq q$, and that $ab \equiv 1 \mod (p-1)(q-1)$. The exercise also mentions as a hint that $x_1 \equiv x_2 \mod p \cdot q \iff x_1 \equiv x_2 \mod p$ and $x_1 \equiv x_2 \mod q$ which follows from Stonson, Theorem 5.3.

Our goal is to show

$$d(y) = d(e(x)) \equiv (x^b)^a \equiv x \mod n$$

Proof. We will approach this by first deciding on a divider of x. Let assume q is the divider. By Stinson 5.3

$$(x^b)^a \equiv x^{t\phi(n)+1} \mod n \equiv x^{t(p-1)(q-1)+1} \equiv x \cdot (x^{(p-1)})^{t(q-1)}$$

for some integer $t \ge 1$. Since p pr. assumtion is a prime and $x \in \mathbb{Z}_n^*$, we can derive from Fermat little theorem¹:

$$x \cdot (x^{(p-1)})^{t(q-1)} \equiv x \cdot 1^{t(q-1)} \mod p \Longrightarrow (x^b)^a \equiv x \mod p$$

¹Suppose *p* is a prime and $a \in \mathbb{Z}$ where $p \nmid a$, then $a^{p-1} \equiv 1 \mod p$

The same proof can be done for p as a divider, and by the clue in the exercise we get

$$(x^b)^a \equiv x \mod p \cdot q \iff \begin{cases} (x^b)^a \equiv x \mod p \\ (x^b)^a \equiv x \mod q \end{cases}$$

And since $p \cdot q = n$, then we are done.

2 Stinson 5.10 - Continued

Prove:

$$x \in \mathbb{Z}_n \implies d(e(x)) = x$$