

Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación

 \mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 36 puntos \mathcal{II} \mathcal{S} emestre 2015

III Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes apelaciones sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea \mathcal{V} un espacio vectorial real y sean $u_1, u_2, u_3 \in \mathcal{V}$. Considere el conjunto \mathcal{W} definido por $\mathcal{W} = \left\{ v \in \mathcal{V} \middle/ v \text{ es una combinación lineal de } u_1, u_2, u_3 \right\}$. Demuestre que \mathcal{W} es un subespacio de \mathcal{V} .
- 2. Sea $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ una transformación lineal. Demuestre que $Nucl(\mathcal{T})$ es subespacio de \mathcal{V} . (4 pts)
- 3. Sea \mathcal{V} un espacio vectorial y sea $\{u, v, w\}$ una base de \mathcal{V} . Pruebe que $\{x, y, z\}$ es también una de proposition de proposition
 - 4. Sea $\mathcal{W} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a + b = 0, c + d = 0 \right\}$.

 Si se sabe que \mathcal{W} es subespacio de $\mathcal{M}_2(\mathbb{R})$, determine $\dim(\mathcal{W})$. (4 pts)
 - 5. Sea $\mathcal{T}: \mathcal{M}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ tal que $\mathcal{T}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 2ax^2 + (b-a)x + c + d$.
 - (a) Verifique que \mathcal{T} es transformación lineal. (3 pts)
 - (b) Halle $Nucl(\mathcal{T})$.
 - (c) Determine el rango de \mathcal{T} .
 - 6. Considere la transformación lineal $\mathcal{T}: \mathcal{V} \to \mathcal{W}$. Si $Nucl(\mathcal{T}) = \{0\}$ y el conjunto de vectores $\{v_1, v_2, v_3, \dots, v_n\}$ es linealmente independiente, demuestre que el conjunto de vectores $\{\mathcal{T}(v_1), \mathcal{T}(v_2), \mathcal{T}(v_3), \dots, \mathcal{T}(v_n)\}$ también es linealmente independiente. (4 pts)
 - 7. Considere el conjunto $\mathcal{B} = \left\{2x, x-3, 2-x^2+x\right\}$.
 - (a) Verifique que \mathcal{B} es una base de $\mathcal{P}_2(\mathbb{R})$.
 - (b) Si se sabe que $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ es una transformación lineal, con $\mathcal{T}(2x) = (0, 2, 1)$, $\mathcal{T}(x-3) = (0, -4, -2)$ y $\mathcal{T}(2-x^2+x) = (0, -2, 2)$, determine $\mathcal{T}(a+bx+cx^2)$, siendo $a+bx+cx^2 \in \mathcal{P}_2(\mathbb{R})$. (5 pts)

.