1 Базис векторного пространства. Четыре эквивалентных переформулировки определения базиса.

Опр

Пусть V - векторное пространство над полем K, тогда:

- 1. $\{v_\alpha\}_{\alpha\in A}$ линейно независима, если $\sum_{\text{почти все }c_\alpha=0}c_\alpha v_\alpha=0\Rightarrow$ все $c_\alpha=0$
- 2. $\{v_{\alpha}\}$ -семейство образующих V, если любой $v\in V$ есть линейная комбинация $\{v_{\alpha}\}$, если любой $v\in V$ есть $\sum_{\text{почти все }c_{\alpha}=0} c_{\alpha}v_{\alpha}$

Опр

Базис - лин. незав. сем-во образующих $(\overline{0} \not\in$ базису)

Опр

Линейно независимое семейство векторов называется максимальным (по включению), если при добавлении ∀ вектора новое семейство ЛЗ

Опр

Сем-во образующих называется минимальным по включению, если при выбрасывании \forall вектора сем-во не является семейством образующих

Теорема (Равносильные утверждения)

V - в.п. над К, $\{v_\alpha\}_{\alpha\in A},$ следующие условия равносильны:

- 1. $\{v_{\alpha}\}$ базис V над K
- 2. $\{v_{\alpha}\}$ max ЛН семейство
- 3. $\{v_{\alpha}\}$ min семейство образующих
- 4. $\forall v \in V$ единственным образом представим в виде лин. комбинации векторов из $\{v_{\alpha}\}$

Док-во

$$\begin{array}{l} (1\Rightarrow 2): \\ \text{Базис} \Rightarrow \text{ЛН.} \\ \text{Добавим} \ v \in V \ \text{к} \ \{v_\alpha\}: \ v = \sum\limits_{\text{Почти все } c_\alpha = 0} c_\alpha v_\alpha \ , \\ \text{но тогда} \ -v + \sum\limits_{\text{Почти все } c_\alpha = 0} \Rightarrow \text{новое семейство } \text{ЛЗ} \Rightarrow \{v_\alpha\} \text{ - } \text{ЛЗ} \\ (2\Rightarrow 1): \end{array}$$

 $(1 \Rightarrow 3)$:

 $\{v_{\alpha}\}$ - базис \Rightarrow семейство образующих. Пусть $v \in \{v_{\alpha}\}$.

Если бы $\{v_{\alpha}\}$ без v было бы семейством образующих,

то
$$v=\sum_{\text{п.в.}} c_\alpha v_\alpha$$
 , но тогда $0=-v+\sum_{\text{п.в.}} c_\alpha v_\alpha$, но тогда $0=-v+\sum_{\text{п.в.}} c_\alpha v_\alpha$

 $(3 \Rightarrow 1)$:

 $\{v_{\alpha}\}$ - min семейство образующих, нужно проверить что ЛН.

Пусть ЛЗ, тогда $\sum_{\substack{\text{п.в. } c_{\alpha} = 0 \\ \alpha_{0} = \infty}} c_{\alpha} v_{\alpha} = 0 \Rightarrow c_{\alpha_{0}} \neq 0.$ Но тогда $v_{\alpha_{0}} = \sum_{\substack{\text{п.в. } c_{\alpha} = 0 \\ \text{п.в. } c_{\alpha} = 0}} (c_{\alpha_{0}}^{-1} c_{\alpha}) v_{\alpha}$, противоречение с min сем-ом обр.

 $(4 \Rightarrow 1)$:

4 формально сильнее

 $(1 \Rightarrow 4)$:

$$v = \sum_{\text{п.в.}} c_{\alpha} v_{\alpha} = \sum_{\text{п.в.}} c'_{\alpha} v_{\alpha} \Rightarrow 0 = \sum_{\text{п.в.}} c_{\alpha} v_{\alpha}$$

В силу единственности разложения нуля получаем $c_{\alpha} = c'_{\alpha} \ \forall \alpha$

2 Конечномерные пространства. Всякое линейно независимое семейство конечномерного пространства можно дополнить до базиса. Существование базиса конечномерного пространства.

Опр

V - в.п. над полем K, V называется конечномерным, если в V есть конечное сем-во образующих.

Пример

 $\mathbb C$ - $\mathrm B\Pi$ не являющееся конечномерным.

$$V = \{(c_1, c_2, ...), \text{ He BCE } c_i = 0\}$$

Сложение, умножение на скаляр - некоординатно.

V - ВП над С, пусть
$$v_1,...,v_k\in V,\,v_i=(c_{i_1},c_{i_2},...),$$
 почти все $c_{i_j}=0$ $\exists N:\forall j>N,\,\forall i\,\,c_{i_j}=0$

Теорема

Всякое линейно независимое сем-во конечномерного пространства можно дополнить до базиса.

Док-во

1) $\{v_{\alpha}\}$ - ЛН \Rightarrow либо порождает V, либо можно дополнить с сохранением условия ЛН.

То есть линейная оболочка $\{\sum c_{\alpha}v_{\alpha}\}$ либо равна $\forall v\in V$, тогда $\{v_{\alpha}\}$ - семейство образующих V, либо неравна, тогда v и $\{v_{\alpha}\}$ ЛН и можно им дополнить

2) V - конечномерно, пусть $u_1,u_2,...,u_m$ - конечное семейство образующих V, тогда если $v_1,v_2,...,v_n$ - его ЛК и m > n, то $\{u_\alpha\}$ - ЛЗ \Rightarrow всякое ЛН семейство из V содержит $\leqslant m$ векторов. Значит добавление векторов оборвётся.

Следствие

Во всяком конечномерном в.п. есть базис.

Док-во

Пустое сем-во ЛН Дополним до базиса

3 Всякое семейство образующих конечномерного пространства содержит базис. Существование базиса конечномерного пространства.

Теорема

V - конечномерное в.п. над K Всякое конечномерное сем-во образующих содержит базис.

Док-во

Пусть $v_1, v_2, ..., v_k$ - семейство образующих V. Если оно ЛН, то базис.

Если ЛЗ, то $\exists i \colon v_i$ - линейная комбинация остальных

 $\Rightarrow \{v_1,...,v_{i-1},v_{i+1},...,v_k\}$ - семейство образующих, а т.к. семейство конечно, то процесс выкидывания "оборвётся" и на каком-то шаге получится ЛН зависимое семейство, то есть базис.

Теорема

Во всяком конечномерном в.п. есть базис

Док-во

Возьмём конечное семейство образующих, по теореме оно содержит базис.

4 Подпространства векторного пространства. Подпространство конечномерного пространства конечномерно.

Опр

V - в.п над полем K, $U \neq \emptyset$ - подпр-во V (записывается $U \subseteq V$), если U - само явл. в.п. над K

Предположение (1)

$$\varnothing \neq U \subseteq V \quad U$$
 - подпр-во $V \Leftrightarrow$

- 1. $\forall u_1, u_2 \in U : u_1 + u_2 \in U$
- 2. $\forall u \in U, \ \forall a \in K \quad au \in K$

Док-во

 (\Rightarrow)

По определению ВП.

 (\Leftarrow)

Операции сложения и умножения на скаляр определены на U. Осталось проверить аксиомы ВП:

- 1. $\forall x, y \in U \ x + y = y + x$ по опр. сложения
- 2. $\forall x,y,z\in U\ (x+y)+z=z+(y+z),$ аналогично
- 3. Т.к. $U \neq \emptyset$, то $\exists u \in U$. $0_V = u + (-1)u$. По условию теоремы следует, что $0 \in U$, так как u, (-1)u, $u + (-1)u \in U$. $\forall u \in U$: 0 + u = u, u + 0 = u

4.
$$\forall u \in U \ \exists -u = (-1)u, \ u - u = 0$$

Остальные 4 аналогично.

Предположение (2)

V - конечномерное в.п над К

$$U \subseteq V \Rightarrow U$$
 - конечномерное

Док-во

{} - пустое семейство.

Будем добавлять к нему вектора из U с сохранением ЛН, пока не получим семейство образующих. Причем в V есть конечное семейство ЛН образующих.

Значит так как векторов в семействе U не может быть больше, чем в семействе V, то там тоже их конечное количество.

5 Теорема о мощности базиса конечномерного пространства. Размерность пространства.

Теорема

V - конечномерное пространство

$$\{v_1,...,v_n\},\{u_1,...,u_m\}$$
 - базисы V над K
$$\Rightarrow n=m$$

Док-во

$$u_1,...,u_m$$
 - лин.комб $v_1,...,v_n$ \Rightarrow по т. о линейной зависимости лин. комбинаций $m\leqslant n$ и аналогично $m\geqslant n\Rightarrow m=n$

Опр

Размерноесть конечномерного пространства - размерность векторов в его базисе.

Обозначаем как $\dim_K V = \dim V$

Если пространство не конечно, то пишем $\dim V = \infty$

6 Координаты вектора в данном базисе. Матрица перехода от одного базиса к другомую. Преобразование координат при замене базиса. Матрица преобразования координат.

Теорема

Пусть V - ВП над K,
$$n = dim_K V < \infty, v_1, ..., v_n$$
 - базис V над K. Тогда если $v \in V$, то \exists ! набор $\alpha_1, ..., \alpha_n \in K : v = \alpha_1 v_1 + ... + \alpha_n v_n$

Опр

$$\alpha_1,...,\alpha_n$$
 будем называть координатами v в базисе $\{v_1,...,v_n\}$ и записывать как $\begin{pmatrix} \alpha_1 \\ ... \\ \alpha_n \end{pmatrix}$, причем $v=\begin{pmatrix} \alpha_1 & ... & \alpha_n \end{pmatrix} \begin{pmatrix} v_1 \\ ... \\ v_n \end{pmatrix}$

Док-во

Пусть
$$v_1, ..., v_n$$
 - базис V
$$v_1', ..., v_n' - другой базис V$$

$$v_i' = c_{1i}v_1 + ... + c_{ni}v_n$$

$$c = \begin{pmatrix} c_{11} & c_{21} & ... & c_{n1} \\ c_{12} & \ddots & & \\ c_{1n} & & c_{nn} \end{pmatrix}$$
 - матрица перехода от базиса
$$\begin{pmatrix} v_1, ..., v_n \end{pmatrix}$$
 к базису $\begin{pmatrix} v_1', ..., v_n' \end{pmatrix}$
$$\begin{pmatrix} v_1' \\ \vdots \\ v_n' \end{pmatrix} = C \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \qquad \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = B \begin{pmatrix} v_1' \\ \vdots \\ v_n' \end{pmatrix}$$

$$v_i = b_{1i}v_1' + ...b_{ni}v_n'$$

$$B = \begin{pmatrix} b_{11} & b_{n1} \\ b_{12} & & \\ b_{1n} & b_{nn} \end{pmatrix}$$
 - матрица перехода от базиса $(v_1', ..., v_n')$ к базису $(v_1, ..., v_n)$ с базису $(v_1, ..., v_n)$ $v = a_1v_1 + ... + a_nv_n$
$$v = a_1'v_1' + ... + a_n'v_n'$$
 C - матрица перехода от $(v_1, ..., v_n)$ к $(v_1', ..., v_n')$

$$C^T = \begin{pmatrix} c_{11} & c_{1i} & & c_{1n} \\ & \ddots & & \\ c_{n1} & & \ddots & c_{nn} \end{pmatrix} = D$$
 - матрица преобразования координат

Теорема (в указанных выше обозначениях)

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = D \begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix}$$

Док-во

$$v = (a'_1, ..., a'_n) \begin{pmatrix} v'_1 \\ \vdots \\ v'_n \end{pmatrix} = (a'_1, ..., a'_n) \cdot C \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$v = (a_1, ..., a_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

В силу единственности разложения по базису

$$(a_1, ..., a_n) = (a'_1, ..., a'_n) \cdot C$$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = C^T \begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix}$$

7 Сумма и пересечение подпространств. Теорема о размерностях суммы и пересечения.

Опр

V - ВП над К,
$$U_1,...,U_m\subseteq V$$
 Пересечение: $\bigcap_{i=1}^n U_i=\{v\in V|v\in U_1,...,v\in U_n\}$ Сумма: $U_1+...+U_n=\{v\in V|\exists u_1\in U_1,...,u_n\in U_n:v=u_1+...u_n\}$

Теорема

1. Сумма $U_1 + ... + U_m$ является подпространством

$$\begin{array}{l} 0 = 0 + \ldots + 0 \in U_1 + \ldots + U_m \Rightarrow \text{ сумма } \neq \varnothing \\ \\ \forall u, v \in U_1 + \ldots + U_m : \\ \\ u = u_1 + u_2 + \ldots + u_m \\ \\ v = v_1 + v_2 + \ldots + v_m \\ \\ u + v = (u_1 + v_1) + (u_2 + v_2) + \ldots + (u_m + v_m) \in U_1 + \ldots + U_m \\ \\ \in U_1 & \in U_2 \end{array}$$

умножение на скаляр аналогично

2. Пересечение является подпространством

$$\bigcap_{i=1}^{n} U_{i} \ni u, v \quad a \in K$$

$$u + v \in U_{i} \qquad u + v \in \bigcap_{i=1}^{n} U_{i}$$

$$\forall i \quad u, v \in U_{i} \qquad au \in \bigcup_{i=1}^{n} U_{i}$$

не пусто, т.к.:

$$0_V \in \bigcap_{i=1}^n U_i \Rightarrow \bigcap_{i=1}^n U_i \subseteq V$$

$$\bigcap_{i=1}^n U_i \subseteq U_1 \subseteq U_1 + U_2 \supseteq U_2 \supset \bigcap_{i=1}^n U_i$$

Теорема

$$U_1, U_2 \subseteq V \quad U_1, U_2$$
 - конечномерные

Тогда
$$U_1 \cap U_2$$
 и $U_1 + U_2$ - конечномерны

и
$$\dim(U_1 \cap U_2) + \dim(U_1 + U_2) = \dim(U_1) + \dim(U_2)$$

Док-во

$$U_1 \cap U_2 \subseteq U_1$$
, U_1 - конечномерно

$$\Rightarrow U_1 \cap U_2$$
 - конечномерно

$$w_1,...,w_r$$
 - базис $U_1 \cap U_2$, ЛНЗ сем-во в U_1

Дополним до базиса U_1 :

$$w_1,...,w_r,u_1,...,u_s$$
 - базис U_1

Аналогично $w_1, ..., w_r$ дополним до базиса U_2 :

$$w_1, ..., w_r, v_1, ..., v_t$$
 - базис U_2

Проверим, что $w_1, ..., w_r, u_1, ..., u_s, v_1, ..., v_t$ - базис $U_1 + U_2$:

1. Семейство образующих

$$z\in U_1+U_2 \quad z=z_1+z_2 \qquad z_1\in U_1\ z_2\in U_2$$

$$z_1=a_1w_1+...+a_rw_r+b_1u_1+...+b_su_s$$

$$z_2=c_1w_1+...+c_rw_r+d_1v_1+...+d_tv_t$$

$$z=(a_1+c_1)w_1+...+(a_r+c_r)w_r+b_1u_1+...+b_su_s+d_1v_1+...+d_tv_t$$

$$\Rightarrow w_1,...,w_r,u_1,...,u_s,v_1,...,v_t\text{ - сем-во образующих}$$

2. ЛНЗ

$$(*)0 = a_1 w_1 + \dots + a_r w_r + b_1 u_1 + \dots + b_s u_s + c_1 v_1 + \dots + c_t v_t$$

$$z = \underbrace{a_1 w_1 + \dots + a_2 w_2 + b_1 u_1 + \dots + b_s u_s}_{\in U_1} = \underbrace{-c_1 v_1 - \dots - c_t v_t}_{\in U_2}$$

$$z \in U_1 \cap U_2 \Rightarrow z = d_1 w_1 + \dots + d_r w_r =$$

$$= d_1 w_1 + \dots + d_2 w_2 + 0 \cdot u_1 + 0 \cdot u_2 + \dots + 0 \cdot U_s$$

В силу единственности разложения по базису U_1

$$b_1 = b_2 = \dots = b_s = 0$$

Из
$$(*)$$
 \Rightarrow $a_1w_1 + ... + a_2w_r + c_1v_1 + ... + c_tv_t = 0$ т.к. $w_1, ..., w_r, v_1, ..., v_t$ - базис U_2 , то $a_1 = ... = a_r = c_1 = ... = c_t = 0$ \Rightarrow $w_1, ..., w_r, u_1, ..., u_s, v_1, ..., v_t$ - ЛНЗ

Знаем,

$$\dim(U_1) = r + s$$

$$\dim(U_2) = r + t$$

$$\dim(U_1 \cap U_2) = r$$

$$\dim(U_1 + U_2) = r + t + s$$

Значит,

$$\dim(U_1 \cap U_2) + \dim(U_1 + U_2) = \dim(U_1) + \dim(U_2)$$

8 Прямая сумма подпространств. Эквивалентные переформулировки понятия прямой суммый подпротранств.

$$V$$
 - в.п. над K , $U_1, ..., U_m \subseteq V$

Опр

 $U_1 + ... + U_m$ назыв. прямой суммой, если любой $z \in U_1 + ... + U_m$ едиственным образом представим в виде суммы:

$$z = u_1 + u_2 + \dots + u_m$$
 $u_i \in U_i$ $i = 1, \dots, m$

Обозначение: $U_1 \bigoplus U_2 \bigoplus ... \bigoplus U_m$

Замечание

Сумма
$$U_1+\ldots+U_m$$
 - прямая \Leftrightarrow
$$\Leftrightarrow 0=u_1+\ldots+u_m \quad u_i\in U_i \ \Rightarrow \ u_1=\ldots=u_m=0$$

Док-во

 (\Rightarrow)

очевидно

$$(\Leftarrow) \\ z \in U_1 + \dots + U_m \\ z = u_1 + \dots + u_m = v_1 + \dots + v_m \\ 0 = z - z = (u_1 - v_1) + \dots + (u_m - v_m) \\ \in U_1 \\ \forall i \quad u_i - v_i = 0 \text{ T.e. } u_i = v_i$$

Предположение (1)

Сумма
$$U_1 + U_2$$
 - прямая $\Leftrightarrow U_1 \cap U_2 = \{0\}$

Предположение (2)

Сумма
$$U_1+U_2$$
 - прямая \Leftrightarrow \Leftrightarrow объединение базисов U_1 и U_2 - есть базис U_1+U_2

Предположение (3)

$$U_1 + ... + U_m$$
 - прямая \Leftrightarrow $\Leftrightarrow \forall i = 1, ..., m$ $U_i \cap (U_i + ... + U_{i-1} + U_{i+1} + ... + U_m) = \{0\}$

Предположение (4)

Сумма
$$U_1+...+U_m$$
 - прямая \Leftrightarrow \Leftrightarrow объединение базисов U_i $i=1,...,m$ - базис $U_1+...+U_m$

9 Построение кольца многочленов.

Опр

R - комм. кольцо с 1

$$R[x]:=\{(a_0,a_1,a_2...):a_i\in R\quad i=0,...$$
 п.в. $a_i=0\}$ $(a_0,a_1,...),\ (b_0,b_1,...)\in R[x]$

Сложение:

$$(a_0, a_1, ...) + (b_0, b_1, ...) = (a_0 + b_0, a_1 + b_1, ...)$$

Замечание:

$$\forall n > N$$
 $a_i = 0$
 $\forall m > M$ $b_i = 0$ $\Rightarrow \forall i > \max(N, M)$ $a_i + b_i = 0$

Умножение:

$$(a_0, a_1, ...) \cdot (b_0, b_1, ...) = (c_0, c_1, ...)$$

$$c_n = \sum_{i=0}^n a_i b_{n-i} = a_0 b_n + a_1 b_{n-1} + ... + a_n b_0$$

Замечание:

$$\forall n > N \quad a_n = 0$$

$$\forall m > M \quad b_m = 0$$

$$\forall k > N + M \quad c_k = \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^N a_i b_{k-i} + \sum_{i=N+1}^k a_i b_{k-i} = 0$$

$$i \le N \quad k - i \ge k - N > N + M - N = M$$

Теорема

$$(R[x],+,\cdot)$$
 — комм. кольцо с 1

Док-во (ассоциативность умножения)

$$A = (a_0, a_1, ...),$$
 $B = (b_0, b_1, ...),$ $C = (c_0, c_1, ...)$ $(AB)C \stackrel{?}{=} A(BC)$ Пусть $AB = D,$ $BC = E,$ $(AB)C = F,$ $A(BC) = G$

$$f_n = \sum_{i=0}^n d_i c_{n-i} = \sum_{i=0}^n (\sum_{j=0}^i a_j b_{i-j}) c_{n-i} =$$

$$= \sum_{i=0}^n \sum_{j=0}^i a_j b_{i-j} c_{n-i} = \sum_{j=0}^n a_j (\sum_{i=j}^n b_{i-j} c_{n-i}) \underset{k=i-j}{=}$$
напр. движения индекса изменилось
$$= \sum_{j=0}^n a_j (\sum_{k=0}^{n-j} b_k c_{n-j-k}) = \sum_{j=0}^n a_j e_{n-j} = g_n$$

Упр

Остальное д-ть самостоятельно

Опр

Введем 0 и 1:

$$0 = (0, 0, \ldots)$$

$$1 = (1, 0, ...)$$

Нетрудно проверить, что они уд-ют необходимым свойствам

$$R[x]\supset\{(a,0,\ldots);\ a\in R\}$$
 - подкольцо изоморфное R $(a,0,\ldots)+(b,0,\ldots)=(a+b,0,\ldots)$ $(a,0,\ldots)\cdot(b,0,\ldots)=(ab,0,\ldots)$ $(a,0,\ldots)=a$ (обозначение) $x=(0,1,0,\ldots)$ $x^i=(0,\ldots,0,\frac{1}{i},0,\ldots)$ $(a_0,a_1,\ldots,a_n,0,\ldots)=(a_0,0,\ldots)+(0,a_1,0,\ldots)+\ldots+(0,\ldots,a_n,0,\ldots)=a_0\cdot 1+a_1(0,1,\ldots)+\ldots+a_n(0,\ldots,1,\ldots)=a_0+a_1x+a_2x^2+\ldots+a_nx^n=\sum_{i=0}^n a_ix^i$

10 Степень многочлена. Свойства степени. Область целостности. Кольцо многочленов над областью целостности есть область целостности.

Опр

$$f = a_0 + a_1 x + \dots + a_n x^n \in R[x]$$

Наибольшее m, т.ч. $a_m \neq 0$ называется степенью f (deg f-degree) deg $0=-\infty$

Опр

Ком. кольцо R с 1 назыв. областью целостности (или кольцом без делителей 0)

Если
$$\forall a, b \in R \quad (ab = 0 \Rightarrow a = 0$$
или $b = 0)$

$$\forall a, b \in R (a \neq 0 \quad b \neq 0 \Rightarrow ab \neq 0)$$

Примеры

- 1. ℤ о.ц.
- 2. Любое поле о.ц
- 3. $\mathbb{Z}_{/m}\mathbb{Z}$ не всегда о.ц. [a][b] = [m] = [0]

Теорема (Свойства степени)

1.
$$\deg(f+g) \leqslant \max(\deg f, \deg g)$$

Если
$$\deg f \neq g$$
, то $\deg(f, g) = \max(\deg f, \deg g)$

2.
$$\deg(fg) \leqslant \deg f + \deg g$$

Если
$$R$$
 – о.ц, то $\deg(fg) = \deg f + \deg g$

Док-во

1)
$$N = \deg f$$
 $M = \deg g$

$$f = \sum_{i=0}^{N} a_i x^i \qquad g = \sum_{i=0}^{M} b_i x^i$$

$$\forall n > \max(N, M) \quad a_n + b_n = 0 \Rightarrow \deg(f + g) \leqslant \max(N, M)$$

Равенства в общ. случае нет

Если
$$N=M$$
 $a_N=-b_N \Rightarrow a_N+b_N=0$
Если $N \neq M$ $\supset N < M$
 $a_M+b_M=0+b_M=b_M \neq 0$
2) $fg=\sum_{i=0}c_ix^i$ $c_i=0$ для всех $i>N+M$
 $\deg(fg)\leqslant N+M=\deg f+\deg g$
 $c_{N+M}=a_Nb_M$ в общем случае:
Если R не о.ц, $a_N\neq 0$ $b_M\neq 0$ то $a_N\cdot b_M$ м.б. $=0$
Если R - о.ц, то $a_N\neq 0$ $b_M\neq 0 \Rightarrow c_{N+M}\neq 0$
 $\Rightarrow \deg fg=\deg f+\deg g$

Следствие

Если R - о.ц, то R[x] — о.ц

Док-во

$$f,g\in R[x]\quad f\neq 0\quad g\neq 0$$

$$\deg f\geqslant 0\quad \deg g\geqslant 0$$

$$\deg(fg)=\deg f+\deg g\geqslant 0$$

$$\Rightarrow \text{в fg есть хотя бы один ненулевой коэф.}$$

$$\Rightarrow fg\neq 0$$

Замечание

Если K - поле
$$K[x]$$
 - о.ц

Замечание

$$R o R[x_1]$$
 с помощью индукции сделаем вывод $R[x_1,x_2]=(R[x_1])[x_2]$ $R[x_1,...,x_n]=(R[x_1,...,x_{n-1}])[x_n]$ $\Rightarrow R$ - о.ц $\Rightarrow R[x_1,...,x_n]$ - о.ц

11 Теорема о делении с остатком в кольце многочленов.

Теорема

$$R$$
 - комм. к. с ед., $f,g\in R[x],$
$$g=a_0+a_1x+...+a_nx^n, a_n\in R^* \mbox{ обр. элем}.$$

Тогда $\exists !$ мн-ны q и r такие, что:

$$f = q \cdot g + r$$
, $\deg r < \deg g$

Док-во

(Существование):

Индукция по $m=\deg f$

База. $\deg f < \deg g$

$$h := 0, \quad r := f$$

$$f = g \cdot 0 + f$$

Инд. переход. Пусть $m\geqslant n$ и утверждение доказано для всех многочленов меньшей степени < m

$$f = b_0 + b_1 x + \dots + b_m x^m$$

$$f_1 := f - a_n^{-1} b_m x^{m-n} g = b_m x^m + \dots - (a_n^{-1} b_m a_n x^m + \dots) \Rightarrow \deg f_1 < m$$

$$f_1 = g h_1 + r_1, \quad \text{по инд.п. } \deg r_1 < \deg g$$

$$f = f_1 - a_n^{-1} b_m x^{m-n} g = (\underbrace{h_1 + a_1^{-1} b_m x^{m-n}}_{=h}) g + \underbrace{r_1}_{=r}$$

$$\deg r = \deg r_1 < g$$

(Единственность):

$$\begin{split} f &= gh + r = g\widetilde{h} + \widetilde{r}, \quad \deg r < \deg g, \ \deg \widetilde{r} < \deg g \\ g(\widetilde{h} - h) &= r - \widetilde{r} \quad \deg(r - \widetilde{r}) < \deg g \end{split}$$

Если $\widetilde{h} - h \neq 0$, то положим $d = deg(\widetilde{h} - h)$

$$\widetilde{h} - h = c_d x^d + \dots$$

$$g(\widetilde{h} - h) = a_n c_d x^{n+d} + \dots$$

(Если
$$a_n c_d = 0 \Rightarrow c_d = a_n^{-1} a_n c_d = a_n^{-1} 0 = 0$$
, противоречние) $\deg(r - \widetilde{r}) = \deg q(\widetilde{h} - h) \geqslant q$, но $\deg(r - \widetilde{r}) < \deg q$

Пример

В кольце
$$\mathbb{Z}[x]$$

$$x^{2} + 1$$
 нельзя поделить на $2x + 1$

12 Корни многочлена. Теорема Безу.

Опр

R - ком. кольцо с 1

$$f \in R[x]$$
 $f = a_0 + a_1 x + \dots + a_n x^n$

Для данного мн-на определим отображение из R в R:

$$c \to a_0 + a_1c + \dots + a_nc^n = f(c)$$

Замечание

Разные мн-ны могут задавать одно и то же отображение

$$\mathbb{Z}_{/2}\mathbb{Z} \quad f = 0 \quad 0 \to 0 \quad 1 \to 0$$
$$f = x^2 + x \quad 0 \to 0 \quad 1 \to 0$$
$$(f+g)(c) = f(c) + g(c)$$
$$(f \cdot g)(c) = f(c) \cdot g(c)$$

Опр

$$f \in R[x]$$
 с - корень f, если $f(c) = 0$

Теорема (Безу)

$$f \in R[x]$$
 $c \in R$, тогда:
$$\exists q \in R[x] \quad f = (x-c)q + f(c)$$

Док-во

$$g=x-c,$$
 по т. о делении с остатком:
$$\exists q,r\in R[x]: f=(x-c)q+r$$

$$\deg r<\deg g=1$$

$$\deg r\leqslant 0\Rightarrow r\in\mathbb{R}$$

$$f(c)=(c-c)\cdot q(c)+r=r\ \Rightarrow\ f=(x-c)q+f(c)$$

Следствие

с - корень
$$f \Leftrightarrow (x - c) \mid f$$

Док-во

$$(\Rightarrow):$$

$$f(x) = (x - c)q(x) + f(c) = (x - c)q(x) \Rightarrow (x - c) \mid f$$

$$(\Leftarrow):$$

$$f(x) = (x - c)q(x) \Rightarrow f(c) = (c - c)q(c) = 0$$

13 Кратные корни многочлена. Теорема о числе корней многочлена над полем.

Опр

$$K$$
 - поле $f \in K[x]$
Тогда a - корень f кратности k , если $(x-a)^k \mid f$ и $(x-a)^{k+1} \nmid f$
(т.е. $f(x) = (x-a)^k \cdot g(x)$ $(x-a) \nmid g$ $(\Leftrightarrow g(a) \neq 0)$)

Замечание

а - корень
$$f_1$$
 кратности k_1 , а - корень f_2 кратности k_2 \Rightarrow а - корень $f_1 \cdot f_2$ кратности $k_1 + k_2$

Док-во

$$f_1(x)=(x-a)^{k_1}g_1(x)\quad g_1(a)\neq 0\ f_2(x)=(x-a)^{k_2}g_2(x)\quad g_2(a)\neq 0$$

$$\Rightarrow f_1(x)f_2(x)=(x-a)^{k_1+k_2}g_1(x)g_2(x)$$
 (поле K - о.ц.)

Лемма

$$f,g,h\in K[x],\quad b\in K\quad b$$
 - не корень h
$$f(x)=h(x)g(x)$$
 b - корень f $\Rightarrow b$ - корень g той же кратности

Док-во

1) b - корень f кр. $l\geqslant 1\Rightarrow$ b - корень g кратности $\geqslant l$ Индукция по l. Б.И.:

$$l = 1$$
 $f(b) = 0$ $h(b)g(b) = 0 \Rightarrow g(b) = 0$

b - корень g \Rightarrow корень g кр. $\geqslant 1$

Инд. переход $(l \rightarrow l + 1)$

b - корень f кр.
$$l + 1 \Leftrightarrow f(x) = (x - b)^{l+1} f_1(x)$$

По предп. b - корень g $g(x) = (x - b)g_1(x)$

$$(x-b)^{l+1}f_1(x) = (x-b)g_1(x)h_1(x) \quad (=f(x))$$

В обл. целостности можем сократить на ненулевой множитель

$$(x-b)^l f_1(x) = g_1(x)h(x)$$

По инд. предп. b - корень кратности $\geqslant l$

 \Rightarrow b - корень g кр. $\geqslant l+1$ (при перемножении кр-ти складываются)

2)
$$f(x) = h(x)g(x)$$
 и b - корень g кр-ти k $(x-b)^k \mid g(x) \Rightarrow (x-b)^k \mid f(x)$

b - корень кр-ти не больше кр-ти корня f

Теорема

$$K$$
 - поле, $f \in K[x]$ $f \neq 0$

 \Rightarrow число корней с учетом их кратности не превосходит $\deg f$

Док-во

Индукция по $\deg f$

Б.И.:

 $\deg f = 0$ корней нет

Инд. переход:

а - корень f кр. k
$$\Rightarrow f(x) = (x - a)^k g(x)$$

Пусть
$$b \neq a \Rightarrow b$$
 - корень $f \Leftrightarrow$

$$\Leftrightarrow$$
b - корень
g, причем кратности совпадают (по лемме, т.к. $(x-b)^k \neq 0$

По инд. предп. число корней g с учетом кратности $\leq \deg g$ (а это в точности все корни f, отличные от а)

Сумм. кр. корней f=k+ сумм. кр. корней $\mathbf{g}\leqslant k+\deg g=\deg f$

<u>Замечание</u>

Теор. не верна для $f \in R[x]$ (в случае произвольного комм. кольца R)

$$R = \mathbb{Z}_{/8}\mathbb{Z}$$

$$x^2 = [1] \in R[x]$$

корни 1, 3, 5, 7 $\deg f = 2$

Следствие

Если
$$f(a_1) = ... = f(a_n) = 0$$
 для попарно различных $a_1, ..., a_n$ И $n > \deg f$, тогда $f = 0$

14 Функциональное и формальное равенство многочленов.

Следствие (пред. теореме)

$$f,g\in K[x] \quad |K|>\max(\deg f,\deg g),$$
 если f и g совп. функционально, то f = g

Док-во

Функ. рав-во:
$$\forall a \in K \quad f(a) = g(a) \Rightarrow (f-g)(a) = 0$$
 $\deg(f-g) \leqslant \max(\deg f, \deg g) < |k|$ по пред. сл. $f-g=0 \Rightarrow f=g$

Замечание

Для беск. полей из функ. равенства мн-ов следует формальное

15 Характеристика поля.

Опр

K - поле $1 \in K$

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n}$$

Если $n\cdot 1\neq 0$ для всех $n\geqslant 1,$ то говорят, что поле K имеет x-ку 0 $\operatorname{char} K=0$

Если $\exists n\geqslant 1:\ n\!\cdot\! 1=0,$ то наименьшее такое положительное n называют x-кой K

Примеры

- 1. $\operatorname{char} \mathbb{Q} = 0$, $\operatorname{char} \mathbb{R} = 0$, $\operatorname{char} \mathbb{C} = 0$
- 2. р простое $\operatorname{char}(\mathbb{Z}_{/p}\mathbb{Z}) = p$

Теорема

Характеристика поля либо 0, либо простое число

Док-во

- 1) He $\exists n \geqslant 1 \quad n \cdot 1 = 0 \quad \Rightarrow \quad \operatorname{char} K = 0$
- 2) $\exists n: n\cdot 1=0$ возьмем наим. n и покажем, что n простое

противоречие с $\min n$

- $\Rightarrow n$ не сост.; $1 \neq 0 \Rightarrow n \neq 1$
- $\Rightarrow n$ простое

16 Производная многочлена. Свойства производной. Многочлены с нулевой производной.

Опр

K - поле,
$$f(x) \in K[x],$$
 $f(x) = \sum_{k=0}^n a_k x^k$ Тогда $f'(x) := \sum_{k=1}^n (ka_k) x^{k-1}$ $k \cdot a_k = \underbrace{a_k \cdot \ldots \cdot a_k}_k$

Теорема (Свойства)

1.
$$(f+g)' = f' + g'$$

$$f = \sum_{k=0}^{n} a_k x^k$$
, $g = \sum_{k=0}^{n} b_k x^k$, $f + g = \sum_{k=0}^{n} (a_k + b_k) x^k$

Действительно, $k(a_k + b_k) = ka_k + kb_k$

2.
$$c \in K$$
 $(c \cdot f)' = cf'$
$$k(ca_k) = c(ka_k)$$

3.
$$(f \cdot g)' = f'g + g'f$$
 Док-во без $(\sum)'$:

(a)
$$f = x^n$$
 $g = x^m$
$$(x^{n+m})' = (n+m)x^{n+m-1}$$

$$(x^n)'x^m + x^n(x^m)' = nx^{n-1} \cdot x^m + mx^n \cdot x^{m-1} = (n+m)x^{n+m-1}$$

(b)
$$f = x^n$$
 $g = \sum_{k=0}^m a_k x^k$

$$(f \cdot g)' = (\sum_{k=0}^m a_k x^n x^k)' = \sum_{k=0}^m a_k (x^n \cdot x^k)' =$$

$$= \sum_{k=0}^m a_k ((x^n)' \cdot x^k + x^n (kx^{k-1})) =$$

$$(x^n)' \sum_{k=0}^m a_k x^k + x^n (\sum_{k=0}^n ka_k x^k) = f'g + fg'$$

(c) f,g - произвольные

$$f = \sum_{k=0}^{n} b_k x^k$$

$$(fg)' = \sum_{k=0}^{n} b_k (x^k g)' = (\sum_{k=0}^{n} b_k \cdot kx^{k-1} \cdot g) + (\sum_{k=0}^{n} b_k x^k \cdot g') =$$

$$= f'g + fg'$$

4. Ф-ла Лейбница

$$(f \cdot g)^{(k)} = \sum_{i=0}^{k} C_k^i f^{(i)} g^{(k-i)}$$

5. Если char $K=0 \Rightarrow f'=0 \Leftrightarrow f \in K$ Если char K=p>0, то $f'=0 \Leftrightarrow f \in K[x^p]$ (т.е $f=a_0+a_px^p+\ldots+a_{kp}x^{kp})$

^{*}тут когда-нибудь будет док-во*

17 Теорема о кратности

Теорема

$$K$$
 - поле $charK = 0$

$$f \in K[x]$$
 а - корень f кр. $l \geqslant 1$

Тогда а - корень f' кратности l-1

Замечание

Если char $\mathbf{K}=p>0,$ то теор. не верна

$$\mathbb{Z}_{/p}\mathbb{Z}$$
 $f=x^{2p+1}$ О - корень кр. р
$$f'=(2p+1)x^{2p}+px^{p-1}=x^{2p}$$
 О - корень кр. 2p

Док-во (теоремы)

$$f(x) = (x-a)^l \cdot g(x) \quad g(a) \neq 0$$

$$f' = l(x-a)^{l-1} \cdot g(x) + (x-a)^l \cdot g'(x) = (x-a)^{l-1} (lg(x) + (x-a)g'(x))$$
 a - корень f' кр $\geqslant l-1$
$$lg(a) + (a-a)g'(a) = l \cdot g(a) \neq 0$$
 a - корень f' кр $l-1$

18 Интерполяционная задача. Существование и единственность решения.

Опр (интерполяционная задача)

К - поле. $a_1,...,a_n$ - попарно различны, $y_1,...,y_n\in K$ Найти мн-н f, такой, что $f(a_i)=y_i$, где i=1..n

Теорема

Для интерпол. задачи

 \exists ! решение f степени < n

Док-во

1) Единственность

$$f, h$$
 - решают одну и интер. задачу

$$\deg f, \ \deg h < n$$

$$\forall i = 1, ..., n \quad f(a_i) = h(a_i) = y_i \implies f(a_i) - h(a_i) = 0$$

$$f - h$$
 имеет $\geqslant n$ корней, а степ. $< n$

$$f - h = 0 \Rightarrow f = h$$

(теорема о числе корней мн-на)

2) Существование

$$f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$$

$$c_0 + c_1 a_i + \dots + c_{n-1} a_i^{n-1} = y_i$$

$$\begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ \vdots & & & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$A \begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\det A = \prod_{j>i} (a_j - a_i) \neq 0$$
 определитель Вандермонда

$$A$$
 - обр.

$$\begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

19 Интерполяционный метод Ньютона.

Напоминание

Опр (метод Ньютона)

Пусть f_{i-1} - интерпол. мн-н степени $\leqslant i-1$

и решающий интерпол. задачу для первых і точек

$$f_0(x) = y_1$$
, где $f_0(a_1) = y_1$ - так можно задать начальный

$$\square$$
 построли f_{i-1} . Ищем f_i :

$$(f_i - f_{i-1})(a_j) = 0$$
 $j = 1, ..., i$ - так должно быть

$$\Rightarrow f_i(x) = f_{i-1}(x) + c_i \cdot (x - a_1)...(x - a_i)$$

 $\deg f_i \leqslant i$, найдем с:

$$y_{i+1} = f_i(a_{i+1}) = f_{i-1}(a_{i+1}) + c_i(a_{i+1} - a_i)...(a_{i+1} - a_i)$$

$$\Rightarrow c_i = \frac{y_{i+1} - f_{i-1}(a_{i+1})}{(a_{i+1} - a_1)...(a_{i+1} - a_i)}$$

20 Интерполяционный метод Лагранжа.

Опр

Хотим построить функцию, такую что:

Построим $M_i(x)$, который во всех точках кроме a_i равен 0:

$$M_j(x) := a_j(x - a_1)...(x - a_{j-1})(x - a_{j+1})...(x - a_n)$$

 $L_j(a_j) = 1$ - так должно быть

$$L_j(x) := \frac{(x - a_1) \cdot \dots \cdot (x - a_{j-1})(x - a_{j+1}) \cdot \dots \cdot (x - a_n)}{(a_j - a_1) \cdot \dots \cdot (a_j - a_{j-1})(a_j - a_{j+1}) \cdot \dots \cdot (a_j - a_n)}$$

 $L_i(x)$ - интерп. мн-н Лагранжа (подходит)

$$L_j(a) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \qquad \deg L_j(x) = n - 1$$

Теперь хотим решить интерполяционную задачу:

$$\begin{array}{c|ccc} x & a_1 & a_n \\ \hline f(x) & y_1 & y_n \end{array}$$

$$f(x) = \sum_{j=1}^{n} y_j L_j(x)$$
 $f(a_i) = \sum_{j=1}^{n} y_j L_j(a_j) = y_i L_i(a_i) = y_i$

Мн-н Лагранжа исп. в алгоритмах быстрого умножения $\forall \mathcal{E}>0\quad \exists$ алг. умн., который для n-разрядных чисел требует $O(n^{1+\mathcal{E}})$ поразрядных операций

21 Делимость и ассоциированность в кольце многочленов над полем.

Опр

$$K$$
 - поле, $K[x]$
$$f,g\in K[x] \mbox{ ассоциирован, если}$$

$$f\mid g$$
 и $g\mid f$
$$f\sim g$$
 : f и g ассоц.
$$0\sim 0$$

0 с другими не ассоц.

$$f\neq 0\quad g\neq 0\quad f\mid g\quad g\mid f$$

$$\deg f\leqslant \deg g\quad \deg g\leqslant \deg f$$

$$\Rightarrow \deg f=\deg g$$

$$f=c\cdot g\quad c\in K^*=K\setminus\{0\}$$

$$0=1\cdot 0$$
 Если $f=c\cdot q,c\in K^*\quad q=c^{-1}f\Rightarrow q\mid f,\quad f\mid q$

Следствие

$$f \sim g \Leftrightarrow \exists c \in K^* \quad f = cg$$

Если $f \neq 0$, то в классе ассоц. с f мн-нов всегда можно выбрать мн-ен со старшим коэф 1.

Мн-ен со старшим коэф. 1 назыв. унитарным, приведенным

Замечание

$$f \mid g \quad f \sim f_1 \quad g \sim g_1$$

$$\Rightarrow f_1 \mid g_1$$

$$g = f \cdot h$$

$$cg = f(ch)$$

$$g = (cf)(c^{-1}h)$$

22 Наибольший общий делитель в кольце многочленов над полем.

Существование и линейное представление.

Опр

$$K$$
 - поле, $K[x]$ $f_1, ..., f_n \in K[x]$ g - НОД $f_1, ..., f_n$, если $g \mid f_1, ..., g \mid f_n$ и $\forall h \quad (h \mid f_1, ..., h \mid f_n) \Rightarrow h \mid g$

Замечание

НОД опред. не однозначно, а с точностью до ассоц.

$$HOД(0,...,0) = 0$$

Если хотя бы один $f_1...f_n \neq 0$, то в классе ассоц. с НОД можно выбрать приведенный

Теорема

$$\forall f_1, ..., f_n \in K[x]$$

Существует $g = \text{HOД}(f_1,...,f_n)$ и он допускает лин. предствление $g = f_1h_1 + ... + f_nh_n$ для нек. $h_1...h_n \in K[x]$

Док-во

1)
$$f_1 = f_2 = \dots = f_n = 0$$
 HOД $(0, \dots, 0) = 0$

Положим $h_1 = ... = h_n = 1$

2)
$$\exists i \quad f_i \neq 0$$

$$I = \{f_1 h_1 + ... + f_n h_n : h_1 ... h_n \in K[x]\}$$

$$I \neq \{0\} \qquad 0 \neq f_i \in I$$

g - мн-ен наим. степени в $I\setminus\{0\}$ Утверждается, что $g-\mathrm{HOД}(f_1,...,f_n)$

$$f_j = g \cdot u_j + r_j$$
 $r_j = 0$ или $r_j = -g \cdot u_j + f_i = \deg r_j < \deg g$ $= -h_1 u_j f_1 - h_2 u_j f_2 + (-h_j u_j + 1) f_i - \dots$ $g = h_1 f_1 + \dots + h_n f_n$ $r_j \in I$

Т.к.

$$\deg r_j < \deg g$$
 а степень g наим в $I\setminus\{0\}$ то $r_j=0$
$$f_j=gu_j\quad g\mid f_j\quad j=1,...,n$$

$$h\mid f_i,...,h\mid f_n$$

$$g=f_1h_1+...+f_nh_n\mathrel{\dot{:}} h\Rightarrow h\mid g$$

23 Взаимно простые многочлены. Свойства взаимно простых многочленов. Если многочлен делит произведение двух многочленов и взаимно прост с первым сомножителем, то он делит второй сомножитель.

Опр

$$f_1,...,f_n\in K[x]$$
 назыв. взаимно простыми, если НОД $(f_1,...,f_n)\sim 1$

Теорема (Свойства)

1. Если $g \sim \text{HOД}(f_1, ..., f_n)$ (не все $f_i = 0$)

то
$$\frac{f_1}{g},...,\frac{f_n}{g}$$
 - взаимно просты

2. $f_1, ... f_n$ - вз. просты $\Leftrightarrow 1$ допускает лин. представление

$$1 = h_1 f_1 + \dots + h_n f_n$$
 $h_i, \dots, h_n \in K[x]$

Док-во

См. док-ва для \mathbb{Z} (Спасибо, Всемирнов)

Теорема

$$f \mid gh$$
 и f и g - вз. просты $\Rightarrow f \mid h$

Док-во

$$\exists u, v \in K[x]$$

$$fu + gv = 1$$

$$fuh + ghv = h \implies h \vdots f$$

24 Неприводимые многочлены. Теорме о разложении многочлена в произведение неприводимых (существование).

Опр

$$K[x] = \{0\} \cup K^* \cup \{$$
мн-ны ст $\geqslant 1\}$ $f \in K[x] \setminus K$ назыв сост, если (или приводимым) $f = gh$ $1 \leqslant \deg g, \deg h < \deg f$ в противном случае f - назыв. неприводимым f - неприводим, если ($f = gh \Rightarrow \deg h = 0$ или $\deg g = 0$)

Опр

f - неприв. \Leftrightarrow все делители f - это константы и мн-ны $\sim f$

Примеры

x-a неприводим при любом a x^2+1 неприводим в $\mathbb{R}[x]$ x^2+1 в $\mathbb{C}[x]$ приводим $x^2+1=(x+i)(x-i)$ В $\mathbb{R}[x]$ $(x^2+1)(x^2+2)$ - приводим, но корней нет Если gf $\deg f\geqslant 2$ есть корень в K, то f - приводим в K[x] f=(x-a)q (по т. Безу)

Обратное неверно. Но для мн-нов степени 2 и 3 неприводимость в K[x] равносильна отсутствию корней в K

Теорема

$$f \in K[x]$$
 f - неприводим $f \mid g_1 \cdot \ldots \cdot g_n \Rightarrow \exists i : f \mid g_i$

Теорема (Основная теорема арифметики в кольце многочленов.)

Всякий ненулевой $f \in K[x]$ может быть представлен в виде

$$c \cdot \prod_{i=1}^{n} g_i$$

 $c \in K^*$, а все g_i - приведенные неприводимые мн-ны. Причем такое произведение ед. с точностью до порядка сомножителей.

Замечание

Для
$$f = c \in K^*$$
 $n = 0$

Лемма (1)

Всякий $f \deg f \geqslant 1$ делится хотя бы на один неприводимый.

Док-во

f - непр - все доказано Если приводим, то $f = f_1 \cdot g_1$ $1 \leqslant \deg f_1 < \deg f$

Если f_1 неприв, то делитель найден

Если приводим $f_1 = f_2 g_2$ $q \leqslant \deg f_2 \leqslant \deg f_1$

 $\deg f > \deg f_1 > \dots$ процесс оборвется

⇒ Найдем неприв. делитель f

Док-во (Существование)

Инд. по $\deg f$

1) $\deg f=0$ $f=c\in K^*$ $f=c\cdot (\prod_{i=1}^0 g_i)$ инд. преход $\deg f>0$ по лемме \exists неприв. $g_1 \quad g_1 \mid f$ не умоляя общности g_1 - приведенный (с коэф. 1)

$$f = g_1 f_1 \quad \deg f_1 < \deg f - \deg g_1 < \deg f$$

По инд. предп.

$$f_1 = c \prod_{i=2}^n g_i \quad g_i$$
 - прив. неприв.

$$f = f_1 g_1 = c \prod_{i=1}^n g_i$$

25 Теорема о разложении многочлена в произведение неприводимых (единственность).

Док-во

(*)
$$f = c \prod_{i=1}^{n} g_i = \widetilde{c} \prod_{i=1}^{m} \widetilde{g}_i$$

 $\Rightarrow n=m$ $c=\widetilde{c}$ иначе перенумеруем сомнож. $g_i=\widetilde{g}_i$

Не умоляя общ. $n \leqslant m$

Инд. по n

$$n = 0$$
 $c = \widetilde{c} \prod_{i=1}^{n} \widetilde{g}_i$

$$\Rightarrow m = 0 \quad \tilde{c} = c$$

Инд. переход

$$g_n \mid \widetilde{c} \prod_{i=1}^m \widetilde{g}_i \Rightarrow \exists i \quad g_n \mid \widetilde{g}_i$$

$$\widetilde{c} \neq 0$$

Не умоляя общности i=m (иначе перенумеруем)

$$g_n \mid \widetilde{g_m} \Rightarrow g_n = \widetilde{g_m}$$

B(*) сократим на g_n

$$c\prod_{i=1}^{n-1}g_i = \widetilde{c}\prod_{i=1}^{m-1}\widetilde{g}_i \quad n-1 \leqslant m-1$$

По инд. предп. $n-1=m-1 \quad (\Rightarrow n=m)$

 $c = \widetilde{c}$ (после перенумерования)

$$g_i = \widetilde{g}_i \quad i = 1, ..., n - 1$$

$$g_n = \widetilde{g_n}$$

26 Алгебраически замкнутые поля. Эквивалентные переформулировки.

Алегбраическая замкнутость поля комплексных чисел.(б.д.)

Теорема

 $\sqsupset K$ - поле, рассмотрим K[x]

Следующие условия равносильны

- 1. Все неприводимые в K[x] это в точности линейные мн-ны
- 2. Всякий мн-н $f \in K[x], \deg f > 0$ расскладывается в произведение лин. множителей
- 3. Всякий $f \in K[x], \deg f > 0$ делится на линейный
- 4. Всякий $f \in K[x], \deg > 0$ имеет в K хотя бы 1 корень
- 5. Всякий $f \in K[x], \deg f > 0$ имеет в K в точности $n = \deg f$ корней с учетом кратности

Опр

Если для K — K[x] выполнено любое из равносильных усл., то K назыв. алгебр. замкн.

Примеры

 \mathbb{R}, \mathbb{Q} не алг. замкнуты Любое конечное поле не алг. замкнуто

$$|F| = q \quad \deg f = n > q$$

Теорема (б.д.)

С - алг. замк.

Следствие

$$f \in \mathbb{C}[x] \quad \deg f > 0$$

$$f = c \prod_{i=1}^{k} (x - a_i)^{d_i} \qquad a_i, c \in \mathbb{C}$$

27 Неприводимые многочлены над полем вещественных чисел. Теорема о разложении многочлена с вещественными коэффициентами в произведение неприводимых над \mathbb{R} .

Опр

Неприводимы:

$$x-c, \quad c\in \mathbb{R}$$

$$x^2+ax+b \quad a^2-4b<0 \quad a,b\in \mathbb{R} \mbox{ (нет корней)}$$

Теорема

Всякий неприв. в R[x] ассоциирован с лин. или квадратичным с отр. дискр.

Следствие

$$f \in \mathbb{R}[x]$$
 $f \neq 0$
$$f = c \prod_{i=1}^{m} (x - c_i)^{d_i} \prod_{i=1}^{k} (x^2 + a_j x + b_j)^{l_j} \quad a_j^2 - 4b_j < 0$$

Лемма

$$f\in\mathbb{R}[x]\subseteq\mathbb{C}[x]$$
 Если $z\in\mathbb{C}$ - корень f , то \overline{z} - корень f

Док-во

$$f = a_0 + a_1 x + \dots + a_n x^n$$

$$a_0 + a_1 z + \dots + a_n z^n = 0$$

$$\overline{a_0 + a_1 z + \dots + a_n z^n} = \overline{0} = 0 \text{ (сопряжение)}$$

$$\overline{a_0} + \overline{a_1 z} + \dots + \overline{a_n} (\overline{z})^n$$

$$a_0 + a_1 \overline{z} + \dots + a_n (\overline{z})^m = f(\overline{z})$$

28 Поле частных области целостности. Поле частных кольца многочленов

(поле рациональных функций).

Опр

R - комм. кольцо с 1, о.ц.

Хотим построить поле K, содержащее подкольцо изоморфное R, состоящее из "дробей"

$$X = R \times (R \setminus \{0\}) = \{(a, b) : a \in R, b \in R, b \neq 0\}$$

На X введем отношение эквив.

$$(a,b) \sim (c,d)$$
 если $ad = bc$

 \sim - отношение эквив.

$$(a,b) \sim (a,b)$$

$$(a,b) \sim (c,d) \Rightarrow (c,d) \sim (a,b)$$

$$(a,b) \sim (c,d) (c,d) \sim (e,f) \Rightarrow (a,b) \sim (e,f)$$

$$\frac{a}{b} = [(a,b)]$$
 - класс эквив.

 $K=X_{/\sim}$ На K введем структуру поля

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad b \neq 0 \quad d \neq 0 \Rightarrow bd \neq 0 \quad (ac, bd) \in X$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad (ad + bc, bd) \in X$$

Корректность опредения (независимость от выбора представителя в классе)

$$\begin{split} \frac{a}{b} &= \frac{a_1}{b_1} \qquad \frac{c}{d} = \frac{c_1}{d_1} \qquad ab_1 = ba_1 \\ &cd_1 = dc_1 \\ (ac, bd) \sim (a_1c_1, b_1d_1) \qquad acb_1d_1 = bda_1c_1 \\ (ad + bc, bd) \sim (a_1d_1 + b_1c_1, b_1d_1) \\ &adb_1d_1 + bcb_1d_1 = bda_1d_1 + bdb_1c_1 \\ &+ ab_1 = ba_1 \quad | \cdot dd_1 \\ &+ cd_1 = dc_1 \quad | \cdot bb_1 \end{split}$$

Теорема

 $K, +, \cdot$ - поле

Опр

Поле K назыв. полем частных кольца R

Примеры

 $\mathbb Q$ - поле частных $\mathbb Z$

K[x] - о.ц

Поле частных K[x] обознач. K(x) и назыв. полем рац. дробей или полем рац. функций

Рац. функ. не есть функции в смысле отобр.

29 Простейшие дроби. Разложение рациональной функции в сумму многочлена и простейших дробей. (существование).

Опр

$$K(x)$$
 K - поле
$$0 \neq \frac{f}{g} \in K(x) \qquad f,g \in K[x]$$

$$\frac{f}{g}$$
 - правильная, если $\deg f < \deg g$

$\underline{\text{Лемма}}$ (1)

$$rac{f}{g}; \quad rac{f_1}{g_1}$$
 - прав. дроби $\Rightarrow rac{f}{g} \cdot rac{f_1}{g_1}; \quad rac{f}{g} + rac{f_1}{g_1}$ - прав. дроби

Док-во

$$\deg(f \cdot f_1) = \deg f + \deg f_1 < \deg g + \deg g_1 = \deg(g \cdot g_1)$$

$$\frac{f}{g} + \frac{f_1}{g_1} = \frac{fg_1 + gf_1}{gg_1}$$

$$\deg(fg_1 + gf_1) \leq \max\{\deg(fg_1), \deg(gf_1)\} < \deg(gg_1)$$

$$\deg(fg_1) = \deg f + \deg g_1 < \deg g + \deg g_1 = \deg(gg_1)$$

$$\deg(gf_1) = \deg g + \deg f_1 < \deg g + \deg g_1 = \deg(gg_1)$$

Опр

Правильная дробь $\frac{f}{g}$ называется примарной, если $g=q^a,\quad q$ - неприв. многочлен

$$\frac{f}{q} = \frac{f}{q^a} \qquad \deg f < a \deg q$$

Опр

Дробь назыв. простейшей, если она имеет вид

$$rac{f}{q^a}$$
 q - неприв $a\geqslant 1$ $\deg f<\deg q$

Теорема

$$\frac{f}{g} \in K(x)$$
 тогда $\frac{f}{g}$

единственным образом (с точностью до порядка слагаемых) представима в виде суммы многочлена и простейших дробей

$\underline{\text{Лемма}}$ (2)

$$\frac{f}{g} \in K(x)$$
 Тогда $\frac{f}{g} = h + \frac{f_1}{g}$, $h \in K(x)$, $\frac{f_1}{g}$ - прав дробь

Док-во

Делим с остатком: $f = gh + f_1$, $\deg f_1 < \deg g$

$$rac{f}{g} = h + rac{f_1}{g} - rac{f_1}{g}$$
 - прав. дробь

$\underline{\text{Лемма}}$ (3)

$$\frac{f}{g}$$
 - прав. дробь, $g = g_1 \cdot g_2$, НОД $(g_1, g_2) = 1$

Тогда
$$\frac{f}{g}=\frac{f_1}{g_1}+\frac{f_2}{g_2}, \qquad \frac{f_1}{g_1},\frac{f_2}{g_2}$$
 - прав. дроби

Док-во

По теореме о линейном представлении НОД в K[x]

$$\exists u_1, u_2 \in K[x]$$

$$g_1u_2 + g_2u_1 = 1 \mid \cdot f$$

$$g_1(u_2f) + g_2(u_1f) = f$$

$$g_2(u_1f) = f - g_1(u_2f)$$

$$u_1f = g_1h_1 + f_1 \text{ (делим с остатком)}$$

$$f = g_1(u_2f) + g_2(u_1f) = g_1(u_2f) + g_2(g_1h_1 + f_1) = g_1\underbrace{(u_2f + g_2h_1)}_{=f_2} + g_2f_1 =$$

$$= g_1f_2 + g_2f_1 - \text{надо убедиться, что правильное}$$

$$g_1f_2 = f - g_2f_1$$

$$\deg g_1 + \deg f_2 \leqslant \max\{\deg f; \deg g_2 + \deg f_1\} < \deg g_1 + \deg g_2$$

$$\deg f_2 < \deg g_2$$

$$\underbrace{\frac{f}{g} = \frac{f_2}{g_2} + \frac{f_1}{g_1}}_{g_1}$$

30 Разложение рациональной функции в сумму многочлена и простейших

дробей. (единственность).

Док-во

Не умоляя общности можно считать, что в обоих разложениях одни и те же неприводимые

$$\frac{f}{g} = h + \sum_{i=1}^{k} \sum_{j=1}^{a_i} \frac{f_{ij}}{q_i^j}, \deg f_{ij} < \deg q_i = \widetilde{h} + \sum_{i=1}^{k} \sum_{j=1}^{a_i} \frac{\widetilde{f_{ij}}}{q_i^j}, \deg \widetilde{f_{ij}} < \deg q_i$$

Не умоляя общности a_i одни и те же в обеих суммах.

$$h - \widetilde{h} \qquad \sum_{i=1}^{h} \sum_{j=1}^{a_i} \frac{f_{ij} - \widetilde{f_{ij}}}{q_i^j} = 0 \quad (*)$$

Положим не все
$$f_{ij}-\widetilde{f_{ij}}=0 \ \Rightarrow \ \exists i,j \ : \ f_{ij}-\widetilde{f_{ij}} \neq 0$$

Для такого i выберем наибольшее j из возможных. В (*) наиб. степени q_i в дроби с ненулевым числителем равна q_i^j Домножим (*) на общее кратное знаменателей $\mathrm{HOK} = q_i^j \cdot ()$ - произв. ост q в каких-то степенях

$$q_i(...) + q_i(...) + (f_{ij} - \widetilde{f_{ij}} = 0 \Rightarrow$$

$$\deg(f_{ij} - \widetilde{f_{ij}}) \leqslant \max(\deg f_{ij}, \deg \widetilde{f_{ij}}) < \deg q_i$$

$$f_{ij} - \widetilde{f_{ij}} = 0?! \Rightarrow \text{B} (*) \text{Bce } f_{ij} = \widetilde{f_{ij}}, \quad h = \widetilde{h}$$

31 Факториальные кольца. Содержание многочлена над факториальным

кольцом. Содержание произведения многочленов.

Опр

$$a \notin \{0\} \cup R^*$$

назыв неприводимым, если

$$a=bc\Rightarrow b\in R^*$$
 и $c\sim a$

или
$$c \in R^*$$
 и $b \sim a$

(все делители а есть либо обр. элем R либо ассоц. с а)

Опр

О.ц. R называется факториальным кольцом, если в нем справедлива тма об однозначном разложении на множ., а именно, всякий ненулевой необр. элемен R есть произведение неприводимых элементов, причем это разложение ед. с точностью до порядка сомножителей и ассоциированности

$$a=p_1\cdot\ldots\cdot p_n=q_1\cdot\ldots\cdot q_m$$
 q_i,p_i - неприв $\Rightarrow n=m$ и \exists биекция σ на $\{1,\ldots,n\}$ $p_i=q_{\sigma(i)}$ $\mathbb{Z},K[x]$ - факт. кольца

В факториальных кольцах можно определить НОД

$$a=\mathcal{E}_1\prod_{i=1}^kq_i^{k_i}$$
 $b=p_1\prod_{i=1}^nq_i^{l1}$ $\mathcal{E}_1,p_1\in R^*$ q_i - попарно ассоц. неприв $\mathrm{HOД}(a,b)=\prod_{i=1}^nq_i^{\min(k_i,l_i)}$ $ab=\mathcal{E}_1p_1\prod_{i=1}^nq_i^{(k_i+l_i)}$

Опр

Содержание многочлена f

$$cont(f) = HOД(a_1, a_2, ..., a_n)$$

Опр

$$f \in R[x]$$
 называется примитивным, если $\mathrm{cont}(f) \sim 1$

В факториальном кольце \forall многочлен $f \in R[x]$ можно записать как $f(x) = \mathrm{cont}(f) \cdot f_1$ - примитивный

Лемма (Гаусса)

$$\operatorname{cont}(f) = \operatorname{cont}(f) \cdot \operatorname{cont}(g)$$

32 Теорема Гаусса о факториальности кольца многочленов над факториальным кольцом. Факториальность колец $K[x_1,...,x_n],\mathbb{Z}[x_1,...,x_n]$

Теорема

R - факториальное кольцо $\Rightarrow R[x]$ - факториальное

Лемма (Гаусса)

$$f,g \in R[x]$$
 f,g - примитивны $\Rightarrow f \cdot g$ - примитивный

Следствие

$$\mathbb{Z}[x_1,...,x_n],K[x_1,...,x_n]$$
 - факториальны

33 Неприводимость над \mathbb{Q} и над \mathbb{Z} . Методы доказательства неприводимости многочленов с целыми коэффициентами (редукция по одному или нескольким простым модулям).

$$f \in \mathbb{Q}[x]$$

Хотим доказать, что f неприв над $\mathbb Q$

Не умоляя общности $f \in \mathbb{Z}[x]$ (можно домножить на знаменатель) $\mathrm{cont}(f)=1$ коэфф. в совокупности вз. просты

Идея:

$$f = a_0 + \dots + a_n x^n$$

 p - простое $p \nmid a_n$

$$\mathbb{Z}[x] \to \mathbb{Z}_{/p}\mathbb{Z}[x]$$

каждый коэфф. заменяем на соотв. вычет

$$f \to \overline{f} = [a_0] + \dots + [a_n] \cdot x^n$$

Если $p \nmid a_n \quad \deg(\overline{f}) = \deg f$

Если f приводим над \mathbb{Q} , то по т. Гаусса

$$f = gh \quad g, h \in \mathbb{Z}[x]$$

 $\deg g, \deg h < \deg f$

$$\overline{f} = \overline{g} \cdot \overline{h}$$

Если p не делит страш. коэфф f, то $p \nmid$ страш. коэфф. g и h

$$\deg \overline{g} = \deg g$$
 и $\deg \overline{h} = \deg h$

Тогда приводимость f влечет приводимость \overline{f}

Предположение

Если
$$p \nmid a_n$$
 $f = a_0 + ... + a_n x^n$ cont $f = 1$ и \overline{f} - неприводим над $\mathbb{Z}_{/p}\mathbb{Z}$, то f неприводим над $\mathbb{Z}(\Rightarrow$ и над $\mathbb{Q})$

34 Критерий неприводимости Эйзенштейна.

Теорема

$$f\in\mathbb{Z}[x]$$
 $f=a_0+a_1x+...+a_nx^n$ $\mathrm{cont}(f)=1$ p - простое Ec ли $*p\nmid a_n$ $*p\mid a_i$ $i=0,...,n-1,$ то f неприводим над $\mathbb{Z}(\Rightarrow$ и над $\mathbb{Q})$ $*p^2\nmid a_0$

Док-во

35 Рациональные корни многочлена с целыми коэффициентами.

36 Верхняя оценка модуля корня многочлена с комплексными коэффициентами.

37 Симметрические функции. Коэффициенты многочлена из ${\rm C}[{\rm x}]$ как симметрические функции корней.

38 Алгоритм разложения на неприводимые множители многочлена с целыми коэффициентами.

39 Линейные отображения векторных пространств. Линейное отображение

полностью задается своими значениями на базисных векторах.

Опр

$$K$$
 - поле V - в.п. над К
$$f:U\to V \qquad f$$
 - линейное, если $\forall u_1,u_2\in U \quad \forall \alpha_1,\alpha_2\in K$

1.

$$f(\alpha u_1 + \alpha u_2) = \alpha_1 f(u_1) + \alpha_2 f(u_2)$$

2. (a)

$$\forall u_1, u_2 \in U$$
 $f(u_1 + u_2) = f(u_1) + f(u_2)$

(b)

$$\forall u \in U \quad \forall \alpha \in K \quad f(\alpha u) = \alpha f(u)$$

лин. отобр = гомеоморфизм вект пр-в

Теорема (св-ва)

$$f$$
 - лин. отобр.

$$f(0_u) = 0_v$$

$$f(-u) = -f(u)$$

Пример

$$K[x] \to K[x]$$

$$f \to f'$$

$\mathbf{y}_{\mathbf{TB}}$

$$U$$
 - в.п $\{u_i\}_{i\in I}$ - базис U

Достаточно задать лин. отобр. на базисных векторах

$$f$$
 - лин. отобр $f:U o V$ $u\in U$ $u=\sum lpha_i u_i$ $f(u)=f(\sum lpha_i u_i)=f(\sum_{lpha_i
eq 0}lpha_i u_i)=\sum_{lpha_i
eq 0}lpha_i f(u_i)$

40 Сумма линейных отображений, умножение на скаляр. Пространство линейных отображений.

y_{TB}

пусть задано отобр.
$$h:\{u_i\}_{i\in I}\to V$$
 базис

$$\exists$$
 единств. лин. отобр. $f: U \to V$, такое что $\forall i \in I \quad f(u_i) = h(u_i)$

Опр

$$U,V$$
 - в.п. над K
$$L(U,V)$$
 - мн-во всех линейных отобр. из U в V + : $L(U,V)+L(U,V)\to L(U,V)$ * : $K\times L(U,V)\to L(U,V)$

Теорема

$$L(U,V)$$
 - век. пр-во над K

41 Матрица линейного отображения для данных базисов. Матрица суммы отображений. Изоморфизм пространства линейных отображений и пространства матриц.

$$\dim U = m < \infty \qquad \dim V = n < \infty$$

$$u_1, ..., u_m - \text{базис } U; \quad v_1, ..., v_n - \text{базис } V$$

$$f: U \to V - \text{лин. отобр.}$$

$$f(u_j) = \sum_{i=1}^n a_{ij} v_i$$

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{1j} \\ a_{21} & \ddots \\ & a_{nj} & a_{nm} \end{pmatrix}$$

$$a_{1j} - \text{коэфф разложения } f(u_j) \text{ по базису } \{v_1, ..., v_n\}$$

$$A - \text{матрица лин. отобр в базисах } \{u_1, ..., u_m\}, \{v_1, ..., v_n\}$$

$$A = [f]\{u_j\}$$

$$\{v_j\}$$

$$\{v_j\}$$

$$f(u) = c_1 f(u_1) + ... + c_m f(u_m) = \sum_{j=1}^m c_j f(u_j) =$$

$$= \sum_{j=1}^m c_j \sum_{i=1}^n a_{ij} v_i = \sum_{i=1}^n (\sum_{j=1}^m c_j a_{ij}) v_i$$

$$\text{где } u = c_1 u_1 + ... + c_m u_m$$

$$\begin{pmatrix} c_1 \\ ... \\ c_m \end{pmatrix} = [u]_{\{u_i\}} \qquad [v]_{\{v_i\}} = A \cdot [u]_{\{u_i\}}$$

$$[f + g]_{\{u_j\}} = [f]_{\{u_j\}} + [g]_{\{u_j\}}$$

Опр

U,V назыв. изоморфными, если $\exists f:U o V$ 1)f - лин. 2)f - биекция

42 Композиция линейных отображений. Матрица композиции.

Опр

Предположение

$$u_1,...,u_m$$
 $v_1,...,v_n$ $w_1,...,w_k$ - базисы
$$[gf]_{\substack{\{u_i\} \\ \{w_k\}}} = [g]_{\substack{\{v_j\} \\ \{w_k\}}} [f]_{\substack{\{u_i\} \\ \{v_j\}}}$$

Док-во

$$i$$
 - ый столбец $[gf]$ - это коорд. $(gf)(u_i)$ в базисе $\{w_1,...,w_k\}$ $f(u_i)$ - коорд. этого вектора в базисе $v_1,...,v_n$ - это i - ый столбец матрицы $[f]$ $[gf(u_i)]_{\{w\}}$ - это i - ый столбец $[gf]$ $[gf(u_i)]_{\{w\}} = [g] - i$ - ый столбец матр. $[f] = [g][f(u_i)]_{\{v_j\}}$ т.о. $[gf] = [g][f]$

43 Преобразование матрицы линейного отображения при замене базисов.

Опр

$$f:U o V$$
 - лин $u_1,...,u_m$ - базисы U $v_1,...,v_n$ - базисы V $v_1',...,v_n'$ - V -

C - матрица замены координат при переходе от $\{u_i\}$ к $\{u_i'\}$ D - матрица замены координат при переходе от $\{v_j\}$ к $\{v_j'\}$ i - ый столбец C - это коорд. u_i' в базисе $u_1,...,u_m$ i - ый столбец D - это коорд. v_j' в базисе $v_1,...,v_k$

$$[u]_{\{u_i\}} = C[u]_{\{u_i'\}},$$
 аналогично для D

Теорема

$$A' = D^{-1}AC$$

44 Ядро и образ линейного отображения, их свойства. Критерий инъективности и сюръективности линейного отображения в терминах ядра и образа.

Опр

$$f:U o V$$
 f - лин.
$$f(U)=\{v\in V\mid \exists u\in U:v=f(u)\}=Imf \ (\text{образ f})$$
 $f^{-1}(\{0_v\})=\{u\in U:f(u)=0_v\}=\ker f \ (\text{ядро f})$

Предположение

$$Im f \subseteq V; \quad \ker f \subseteq U$$

Предположение

- а) лин. отобр. $f:U\to V$ сюръективно $\Leftrightarrow Imf=V$
- б) инъективно $\Leftrightarrow \ker f = \{0_u\}$

45 Выбор базисов, для которых матрица линейного отображения имеет почти единичный вид. Следствие для матриц. Теорема о размерности ядра и образа.

Теорема

U,V - конечномерные; $f:U\to V$ - лин. Тогда \exists базисы пр-в U и V, в которых матрица f - почти единичная

$$\begin{bmatrix} [f]_{\{u_i\}} \\ {\{v_j\}} \end{bmatrix} = \begin{pmatrix} E_2 & 0 \\ 0 & 0 \end{pmatrix}$$

Следствие (1)

 $A \in M(n,m,K)$ Тогда \exists обрат. матрицы $C \in M(m,n,K)$ и

$$D \in M(n, m, K)$$
, такие, что $D^{-1}AC = \begin{pmatrix} E_2 & 0 \\ 0 & 0 \end{pmatrix}$

Следствие (2)

 $\dim U < \infty; \quad V$ - произв.

$$f: U \to V$$

Тогда $\dim U = \dim \ker f + \dim Imf$

46 Критерий изоморфности конечномерных пространств

Опр

$$U,V$$
изоморфны, есди \exists биект.
лин. отображение (изоморфизм) $f:U\to V$
$$U\cong V$$

Теорема

$$U,V$$
 - конечномерные в.п. над K
$$U\cong V \Leftrightarrow \dim U = \dim V$$

Док-во

$$\Rightarrow f:U \to V, \quad f$$
 - биекция, лин.
$$f$$
 - инъект. $\Rightarrow \ker f = \{0\}$
$$f$$
 - сюрьект. $\Rightarrow Imf = V$
$$\dim V = \dim Imf = \dim U - \dim \ker f = \dim U - 0 = \dim U$$

$$\Leftarrow \dim U = \dim V = n$$

$$u_1, ..., u_n$$
 - базис U
$$v_1, ..., v_n$$
 - базис V Любой $u \in U$ единственным образом раскладывается в сумму
$$u = \alpha_1 u_1 + ... \alpha_n u_n \quad \alpha_i \in K$$

$$f(u) = \alpha_1 v_1 + ... + \alpha_n v_n$$

$$\widetilde{u} = \widetilde{\alpha_1} u_1 + ... + \widetilde{\alpha_n} u_n$$

$$u + \widetilde{u} = (\alpha_1 + \widetilde{\alpha}) u_1 + ... + (\alpha_n + \widetilde{\alpha_n}) u_n$$

$$f(\widetilde{u}) = \widetilde{\alpha_1} v_1 + ... + \widetilde{\alpha_n} v_n$$

$$f(u + \widetilde{u}) = (\alpha_1 + \widetilde{\alpha_1}) v_1 + ... + (\alpha_n + \widetilde{\alpha_n}) v_n$$

$$f(u + \widetilde{u}) = f(u) + f(\widetilde{u})$$
 Аналогично $f(\alpha u) = \alpha f(u)$ Значит f - лин. отобр т.к. $v_1, ..., v_2$ - сем-во образующих $\Rightarrow f$ - сюрьект. $v \in V$ $v = \alpha_1 v_1 + ... + \alpha_n v_n$

$$u=\alpha_1u_1+...+\alpha_nu_n$$
 $f(u)=v$ т.к. $v_1,...,v_n$ - ЛНЗ, то f - инъект. достаточно проверить, что $\ker f=\{0\}$ $u=\alpha_1u_1+...+\alpha_nu_n$ $0=f(u)=\alpha_1v_1+...+\alpha_nv_n\Rightarrow\alpha_1,...,\alpha_n=0, u=0\Rightarrow\ker f=\{0\}$ $\Rightarrow f$ - изоморфизм

47 Двойственное пространство. Двойственный базис. Изоморфность конечномерного пространства и его двойственного. Пример пространства не изоморфного своему двойственному.

Опр

$$V$$
 - в.п. над K
$$V^* = L(V,K)$$
 - двойственное пр-во к V (пр-во линейных отображений из V в K) элементы V^* - лин. функционалы V (лин. отобр)

Пример

$$V_{\mathbb{R}} = C([0;1] \to \mathbb{R})$$
$$f \to \int_0^1 f(x) dx$$
$$a \in [0;1] \quad f \to f(a)$$

Опр

$$e_1, ..., e_n$$
 - базис V

 $c_1,...,c_n$ - двойственнй базис V, если

$$f(e_i, c_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Теорема

$$\dim V = n < \infty \Rightarrow V^* \cong V$$

Док-во

$$v_1,...,v_n$$
 - базис V

48 Каноническое отождествление конечномерного пространства со вторым двойственным.

49 Линейные операторы. Кольцо линейных операторов. Изоморфность кольца линейных операторов и кольца матриц.

$$V$$
 - в.п. над K $L(v,v)$ эл-ты этого пр-ва назыв. линейными операторами на V $End(V)=L(V,V)$ На $End(V)$ определена композиция (умножение операторов) $\Box \dim V=n$ зафиксируем базис $v_1,...,v_n$ пр-ва V $End(V)\to M_n(K)$ изморфизм в.п. $f\to [f]_{\{v_i\}}$ - матрица оператора в базисе

Теорема

$$(End(V),\cdot,+)$$
 - кольцо

50 Многочлены от оператора. Коммутирование многочленов от одного оператора.

Опр

$$V$$
 - в.п. над K $\varphi \in End(V)$ $h=a_0+a_1t+....a_mt^m \in K[t]$ $h(\varphi)=a_0id+a_1\varphi+...+a_m\varphi^m \in End(V)$ Умножение = композиция операторов $A \in M_n(K)$ $h(A)=a_0E+a_1A+...+a_mA^m$ - мн-н от матрицы $(hg)(\varphi)=h(\varphi)\cdot g(\varphi)$

51 Характеристический многочлен матрицы и оператора. Независимость характеристического многочлена оператора от выбора базиса.

Опр

$$A \in M_n(K)$$

Характеристический многочлен А

$$\det(A - tE) = \mathcal{X}_A(t)$$

$$\begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & & & & \\ \vdots & & \ddots & & & \\ a_{n1} & & a_{nn} - t \end{vmatrix} = (-1)^n t^n + (-1)^{n-1} (a_{11} + \dots + a_{nn}) t^{n-1} + \dots + \det A$$

$$V$$
 - в.п. $\dim V=n<\infty$ $v_1,...,v_n$ - базис V $f\in {
m End}\;(V)$ $A=[f]_{\{v_i\}}$ - матрица оператора в базисе $v_1,...,v_n$ $\mathcal{X}_f(t)=\mathcal{X}_A(t)$

<u>Лемма</u>

Характеристический многочлен f не зависит от выбора базиса в V

Док-во

$$v_1,...,v_n$$
 - базисы V — Матрица преобр. координат при переходе от $\{v_i\}\{v_i'\}$ $A = [f]_{\{v_i\}}$ $A' = [f]_{\{v_i'\}}$ $A' = C'AC$ (A и A' сократимы при помощи C) $?\mathcal{X}_{A'}(t) = \mathcal{X}_{A}(t)$ $\mathcal{X}_{A'}(t) = \det(C^{-1}AC - tE) = \det(C^{-1}AC - C^{-1}(tE)C) = \det(C^{-1}(A - tE)C) = \det(A - tE) - \det(C) = \det(A - tE) = \mathcal{X}_{A}(t)$

52 Собственные числа и собственные векторы оператора и матрицы.

Собственные числа как корни характеристического многочлена

Опр

$$f \in \operatorname{End}(V) \quad \lambda \in K$$

$$\lambda$$
 - собственное число f , если $\exists v \neq 0; \quad v \in V : f(v) = \lambda \cdot v$
Если λ - собс. число $f \quad v \in V \quad f(v) = \lambda v$, то v - собс вектор

Опр

$$\lambda$$
 - с.ч. $f \Rightarrow V_{\lambda} = \{v : f(v) = \lambda v\}$

Поэтому удобно 0 считать с.в.

Опр

$$A \in M_n(K)$$

$$\lambda$$
 - с.ч A , если $\exists v
eq egin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in K^n : A_n = \lambda_n$

Теорема

$$A \in M_n(K)$$

$$\lambda \in K$$
 - с.ч. $A \Leftrightarrow \lambda$ - корень $\mathcal{X}_A(t)$

Док-во

$$\exists v \neq 0 \quad Av = \lambda v$$

$$(A - \lambda E) v = 0$$

Рассмотрим коэф. столбца V как неизвестные

$$\lambda$$
 - с.ч. $A \Leftrightarrow (A - \lambda E)v = 0$ - имеет нетривиальный ранг

$$\Leftrightarrow \det(A - \lambda E) = 0 \Leftrightarrow \mathcal{X}_A(\lambda) = 0 \Leftrightarrow \lambda$$
 - корень $\mathcal{X}_A(t)$

Следствие

$$\dim V=n<\infty \quad f\in \mathrm{End}(V)$$
 $\lambda\in K$ - с.ч. $f\Leftrightarrow \lambda$ - корень $\mathcal{X}_f(t)$

Док-во

Фиксируем базис $v_1, ..., v_n$

$$f o [f]=A$$
 $v o egin{pmatrix} a_1\ dots\ a_n \end{pmatrix}=[v]$ $\Leftrightarrow v$ - с.в. f , отвеч. λ $egin{pmatrix} a_1\ dots\ a_n \end{pmatrix}$ - с.в. A , отвеч. A

53 Теорема Гамильтона-Кэли.

Теорема

$$A \in M_n(K)$$
 $\mathcal{X}_A(A) = O_{M_n(K)}$

54 Диагонализируемые операторы. Критерий диагонализируемости.

Примеры недиагонализируемых операторов

Опр

$$V$$
 - в.п. над K $\dim V = n < \infty$
$$\varphi \in \operatorname{End}(V)$$

arphi - диагонализируем, если \exists базис V, в котором матрица arphi - диагональна

Теорема

$$V$$
 - в.п.
$$\dim V = n < \infty$$

$$\varphi \in \operatorname{End}(V)$$

 φ - диагонализируем $\Leftrightarrow \exists$ базис V, состоящий из собс. векторов φ

Док-во

$$\Rightarrow v_1, \dots, v_n \text{ - базис}$$

$$[\varphi]_{\{v_i\}} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

$$\varphi(v_i) = \lambda_i v_i \quad v_i \neq 0 \Rightarrow v_i \text{ - с.в.}$$

$$\Leftarrow v_1, \dots, v_m \text{ - базис из с. в. } \varphi$$

$$\varphi(v_i) = \lambda_i v_i \quad \lambda \in K$$

$$\varphi(v_i) = 0 \cdot v_1 + \dots + 0 \cdot v_{i-1} + \lambda_i v_i + 0 \cdot v_{i+1} + \dots$$

$$[\varphi]_{\{v_i\}} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$$

Пример

$$V=\mathbb{C}^2$$
 $arphi(x)=A\cdot x$ $A=egin{pmatrix} 0&1\0&0 \end{pmatrix}$ $\mathcal{X}_{arphi}(t)=\mathcal{X}_A(t)=t^2$ с.ч $\lambda=0$ $Ax=0$

 $\operatorname{rk} A = 1$ 2 перем \Rightarrow пр-во решений одномерно

- \Rightarrow все с.в. лежат в одномерном пр-ве \Rightarrow непорожд \mathbb{C}^2
- ⇒ не диагонализ.

Пример

$$V=K[x]_n=\{f\in K[x];\ \deg f\leqslant n\}$$
 char $K=0$
$$\varphi=\frac{\partial}{\partial x} \qquad \varphi(f)=f'$$
 с.ч. $\lambda=0$ с.в. пр. : константы
$$\dim V=n+1 \quad (n\geqslant 1\Rightarrow \varphi$$
 - не диагонализ)

55 Инвариантные подпространства. Матрице линейного оператора, действующего на пространстве, разложенном в прямую сумму инвариантных подпространств.

56 Инвариантность ядра и образа многочлена от оператора.

57 Теорема о разложении ${\rm Ker}(fg)(\phi)$ в прямую сумму инвариантных подпространств и следствия из неё.

58 Жорданова форма оператора. Жорданов базис. Формулировка теоремы о жордановой форме оператора. Сведение к случаю оператора с единственным собственным числом.

Опр

$$\lambda \in K$$

$$\mathfrak{J}(\lambda) = \begin{pmatrix} \lambda & & 0 \\ 1 & \ddots & \\ & \ddots & \ddots \\ 0 & & 1 & \lambda \end{pmatrix}$$
 - жордан. клетка размера n отвечающей λ

A - жорд. матрица, если A - блочно диаг, а диг. блоки - жорд. клетки

$$\mathfrak{J}_{1} = (\lambda)$$

$$\mathfrak{J}_{2} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

$$A = \begin{pmatrix} \mathfrak{J}_{m1}(\lambda_{1}) & & 0 \\ & \mathfrak{J}_{m2}(\lambda_{2}) & & \\ & & \ddots & \\ 0 & & & \mathfrak{J}_{mk}(\lambda_{k}) \end{pmatrix}$$

Теорема (1)

$$K$$
 - алг. замк. V , $\dim V = n < \infty$ $\varphi \in \operatorname{End}(V)$

Тогда \exists базис пр-ва V, в котором матрица φ является жордановой матрицей. Причем клетки опред. однозначно с точностью до перестановки диаг. блоков

59 Относительная линейная независимость. Относительные базисы. Корневые пространства. Лемма о спуске для корневых подпространств.

60 Построение жорданова базиса и жордановой формы для оператора с единственным собственным числом.

61 Единственность жордановой формы оператора.