Øving 4

Matematikk 4K

Uke 38

11.3.

7. I denne og den påfølgende trenger vi å vite den homogene løsningen på problemet $\tilde{y}'' + \omega^2 \tilde{y} = 0$. Ved å bruke din favoritteknikk for å løse andre ordens homogene ODE'er får vi at $\tilde{y}(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t)$.

For å finne alle løsninger trenger vi bare å finne en partikuler løsning til problemet $y'' + \omega^2 y = \sin(t)$. Ved å anta at de stabile løsningen er på formen $y_n = A_n \cos(nt) + B_n \sin(nt)$, får vi differential ligningene $y_1'' + \omega^2 y_1 = \sin(t)$ og $y_n'' + \omega^2 y_n = 0$ for alle andre n. Koffisientene oppretholder dermed $A_n = 0$, $B_1 = \frac{1}{\omega^2 - 1}$ og $B_n = 0$ for $n \geq 2$. Den generelle løsningen når $\omega \neq \pm 1$, er $y(t) = \frac{1}{\omega^2 - 1} \sin(t) + C_1 \cos(\omega t) + C_2 \sin(\omega t)$.

Dermed får vi

$$\begin{array}{ll} \omega = 0.5 : & y\left(t\right) = -\frac{4}{3}\sin\left(t\right) + C_{1}\cos\left(\omega t\right) + C_{2}\sin\left(\omega t\right) \\ \omega = 0.9 : & y\left(t\right) = -\frac{180}{19}\sin\left(t\right) + C_{1}\cos\left(\omega t\right) + C_{2}\sin\left(\omega t\right) \\ \omega = 1.1 : & y\left(t\right) = \frac{100}{21}\sin\left(t\right) + C_{1}\cos\left(\omega t\right) + C_{2}\sin\left(\omega t\right) \\ \omega = 1.5 : & y\left(t\right) = \frac{100}{125}\sin\left(t\right) + C_{1}\cos\left(\omega t\right) + C_{2}\sin\left(\omega t\right) \\ \omega = 10 : & y\left(t\right) = \frac{1}{99}\sin\left(t\right) + C_{1}\cos\left(\omega t\right) + C_{2}\sin\left(\omega t\right). \end{array}$$

Bemerk at når ω er nærme 1 får vi at koffisienten foran $\sin(t)$ går mot uendelig og at den skifter fortegn før og etter 1. Videre har vi at 1^2 dette korisponderer til frekvensen av r(t). Hadde vi byttet ut $\sin(t)$ med $\sin(nt)$, hadde vi fått at $B_n = \frac{1}{\omega^2 - n^2}$ og resten var null. Dermed ville vi hatt at når ω gikk mot n ville B_n ha gått mot uendelig. Med andre ord, ved å bare ha informasjon om amplituden til den stabile løsningen når ω varierer kan vi se hva frekvensen er til den stabile løsningen.

10. Første delen av oppgaven er lik som over, og vi trenger bare å finne Fourier serien for

$$r(t) = \frac{\pi |\sin(t)|}{4} \text{ når } t \in (0, 2\pi),$$

og er 2π periodisk. Bemerk også at r(t) er jevn. Regner vi ut Fourier serien, har vi at

$$\tilde{a_0} = \frac{1}{\pi} \int_0^{\pi} \frac{\pi |\sin(t)|}{4} dt = \frac{1}{4} (\cos(0) - \cos(\pi)) = \frac{1}{2},$$

og

$$\tilde{a_n} = \frac{2}{\pi} \int_0^{\pi} \frac{\pi \sin(t)}{4} \cos(nt) dt = \frac{1}{2} \frac{n \sin(t) \sin(nt) + \cos(t) \cos(nt)}{n^2 - 1} \Big|_0^{\pi}$$

$$= \frac{(-1)^{n+1} - 1}{2(n^2 - 1)} = \begin{cases} 0 & \text{for odde verdier av } n \\ \frac{-1}{n^2 - 1} & \text{for jevne verdier av } n. \end{cases}$$

Dermed er Fourier serien $r\left(t\right)=\frac{1}{2}-\sum_{n=1}^{\infty}\frac{1}{4n^{2}-1}\cos\left(2nt\right)$.

Løser vi på samme måte som i oppgaven over får vi at $A_0 = \frac{1}{2\omega^2}$, og $A_{2n} = \frac{1}{(4n^2-1)(4n^2-\omega^2)}$, og resten av leddene er null. Dermed er den generelle løsningen

$$y(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t) + \frac{1}{2\omega^2} + \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)(4n^2 - \omega^2)} \cos(2nt).$$

14. Ved å bruke eksempel 1 på side 477 har vi at $r(t) = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} \sin((2n+1)t)$. Når n er odd har vi

$$y_n'' + cy_n' + y_n = (B_n - ncA_n - n^2B_n)\sin(nt) + (A_n + ncB_n - n^2A_n)\cos(nt) = \frac{4}{\pi}\frac{1}{n}\sin(nt),$$

for jevne verdier har vi

$$y_n'' + cy_n' + y_n = (B_n - ncA_n - n^2B_n)\sin(nt) + (A_n + ncB_n - n^2A_n)\cos(nt) = 0.$$

Dermed er $A_{2n+1} = \frac{4}{\pi((2-c^2)n^2-n^4-1)}$ og $B_{2n+1} = \frac{4(n^2-1)}{\pi n((2-c^2)n^2-n^4-1)}$ og resten er null.

Dermed er stabil tilstand løsningen

$$y(t) = \sum_{n=0}^{\infty} \frac{4}{\pi((2-c^2)n^2 - n^4 - 1)} \cos((2n+1)t) + \sum_{n=0}^{\infty} \frac{4(n^2 - 1)}{\pi n((2-c^2)n^2 - n^4 - 1)} \sin((2n+1)t).$$

Figur 1: Teikning av r(t), sammen med de delvise summene til y(t) når c=1.

11.4.(9ende utgave)

11. For å finne c_n leddene har vi at

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} dx = \frac{-1}{2\pi i n} x^2 e^{-inx} \Big|_{-\pi}^{\pi} + \frac{2}{2\pi i n} \int_{-\pi}^{\pi} x e^{-inx} dx$$

$$= \frac{-\pi}{2in} \left(e^{-in\pi} - e^{in\pi} \right) + \frac{-1}{\pi n^2} x e^{-inx} \Big|_{-\pi}^{\pi} + \frac{1}{\pi n^2} \int_{-\pi}^{\pi} e^{-inx} dx$$

$$= \frac{-1}{\pi n^2} 2\pi e^{-in\pi} = \frac{2(-1)^{n+1}}{n^2}.$$

og $c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{\pi^2}{3}$. Dermed er funksjonen $f(x) = \frac{\pi^2}{3} + \sum_{n=-\infty}^{\infty} \frac{2(-1)^{n+1}}{n^2} e^{inx}$.

12. For å gjøre serien i oppgaven over om til Fourier serien bruker vi relasjonene $a_0=c_0=\frac{\pi^2}{3},\ a_n=c_n+c_{-n}=\frac{4(-1)^{n+1}}{n^2},\ \text{og}\ b_n=-i\left(c_n-c_{-n}\right)=0.$ Dermed er $f\left(x\right)=\frac{\pi^2}{3}+\sum_{n=1}\frac{4(-1)^{n+1}}{n^2}\cos\left(nx\right)$.

11.4

3. Det trigonometriske polynomet med minst feil har koffisienter som er lik Fourier koffisientene. Siden |x| er jevn, er $b_n = 0$. Regner vi ut a_n får vi at

$$a_0 = \frac{1}{\pi} \int_0^\pi |x| dx = \frac{\pi}{2}$$

$$a_n = \frac{2}{\pi} \int_0^\pi |x| \cos(nx) dx = \frac{2}{\pi n^2} \left((-1)^n - 1 \right) = \begin{cases} 0 & \text{for jevne } n \\ \frac{4}{\pi n^2} & \text{for odde } n \end{cases}.$$

Dermed er $F(x) = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{4}{\pi(2n+1)^2} \cos((2n+1)x)$. Feilen er gitt med

$$E(f) = \int_{-\pi}^{\pi} f^2 dx - \pi \left[2a_0^2 + \sum_{n=1}^{N} a_n^2 + b_n^2 \right] = \frac{2}{3}\pi^3 - \pi \left(2\frac{\pi^2}{4} + \sum_{n=1}^{[(N+1)/2]} \frac{4^2}{\left(\pi (2n+1)^2\right)^2} \right)$$

$$= \frac{2}{3}\pi^3 - \frac{\pi^3}{2} - \sum_{n=1}^{[(N+1)/2]} \frac{16}{\pi \left((2n+1)^2 \right)^2}$$

$$= \frac{\pi^3}{6} - \sum_{n=1}^{[(N+1)/2]} \frac{16}{\pi (2n+1)^4} = \sum_{n=[(N+1)/2]+1}^{\infty} \frac{16}{\pi (2n+1)^4}$$

$$\leq \int_{[(N+1)/2]+1}^{\infty} \frac{16}{\pi (2x+1)^4} dx \leq \frac{8}{3\pi (N)^3}$$

hvor [N/2] er det første heltallet under N/2. I tilfellene N=1,2,3,4,5 har vi at feilen er gitt med $\frac{\pi^4-96}{6\pi}\approx 0.0748, \frac{\pi^4-96}{6\pi}\approx 0.0748, \frac{\pi^4-96}{6\pi}-\frac{16}{81\pi}\approx 0.0119, \frac{\pi^4-96}{6\pi}-\frac{16}{81\pi}\approx 0.0119, \frac{\pi^4-96}{6\pi}-\frac{16}{81\pi}-\frac{16}{625\pi}\approx 0.0037$, respektivt.

5. Det trigonometriske polynomet med minst feil har koffisienter som er lik Fourier koffisientene. Siden f er odd, er $a_n = 0$. Regner vi ut b_n får vi at

$$b_n = \frac{2}{\pi} \int_0^{\pi} \sin(nx) dx = \frac{2}{\pi n^2} (1 - (-1)^n) = \begin{cases} 0 & \text{for jevne } n \\ \frac{4}{\pi n} & \text{for odde } n \end{cases}$$

3

Dermed er $F(x) = \sum_{n=0}^{\infty} \frac{4}{\pi(2n+1)} \sin((2n+1)x)$. Feilen er gitt med

$$\begin{split} E\left(f\right) &= \int_{-\pi}^{\pi} f^2 dx - \pi \left[2a_0^2 + \sum_{n=1}^{N} a_n^2 + b_n^2 \right] = 2\pi - \pi \left(\sum_{n=0}^{[N/2]} \frac{4^2}{\left(\pi \left(2n+1\right)\right)^2} \right) \\ &= 2\pi - \sum_{n=0}^{[N/2]} \frac{16}{\pi \left(2n+1\right)^2} = 2\pi - \sum_{n=0}^{[N/2]} \frac{16}{\pi \left(2n+1\right)^2} \\ &= \sum_{n=[N/2]+1}^{\infty} \frac{16}{\pi \left(2n+1\right)^2} \\ &\leq \int_{[N/2]+1}^{\infty} \frac{16}{\pi \left(2x+1\right)^2} dx \leq \frac{8}{\pi N} \end{split}$$

hvor [N/2] er det første heltallet under N/2. I tilfellene N=1,2,3,4,5 har vi at feilen er gitt med $2\pi-\frac{16}{\pi}\approx 1.1902, 2\pi-\frac{16}{\pi}\approx 1.1902, 2\pi-\frac{16}{\pi}-\frac{16}{9\pi}\approx 0.6243, 2\pi-\frac{16}{\pi}-\frac{16}{9\pi}\approx 0.6243, 2\pi-\frac{16}{\pi}-\frac{16}{9\pi}-\frac{16}{25\pi}\approx 0.4206$, respektivt.

6. Vi har at i oppgave 3 er funksjonen kontinuerlig, noe som gjør at konvergensen går raskere siden vi aproksimerer funksjonen med kontinuerlige funksjoner. Grunnen er at i diskontinuerligheten må den deriverte til den partielle summen gå mot uendelig for å klare å approksimere hoppet, noe som gir støre feil før og etter diskontinuerligheten. Generelt vil funsjoner som er penere, er kontinuerlig og har flere deriverte, bli aproksimert fortere.

11.R.

13. La oss begynne med å finne a_0 :

$$a_0 = \frac{1}{2a} \int_{-a}^{a} f(x) dx = \frac{1}{2} \int_{0}^{1} x dx = \frac{1}{4}.$$

For å finne a_n regner vi ut

$$a_n = \frac{1}{a} \int_{-a}^{a} f(x) \cos(\pi nx) dx = \int_{0}^{1} x \cos(\pi nx) dx = \frac{1}{\pi^2 n^2} (\cos(\pi nx) - 1) = \begin{cases} 0 & \text{hvis } n \text{ er jevn} \\ -\frac{2}{\pi^2 n^2} & \text{hvis } n \text{ er odd} \end{cases}$$

For å finne de siste leddene regner vi ut

$$b_n = \frac{1}{a} \int_{-a}^{a} f(x) \sin(\pi n x) \, dx = \int_{0}^{1} x \sin(\pi n x) \, dx = \left. \frac{-1}{\pi n} x \cos(\pi n x) \right|_{0}^{1} = \frac{(-1)^{n+1}}{n\pi}.$$

Dermed er

$$f(x) = \frac{1}{4} + \sum_{n=0}^{\infty} \frac{-2}{\pi^2 (2n+1)^2} \cos(\pi (2n+1) x) + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\pi n} \sin(\pi n x).$$

- 14. Cosinus leddene i serien (inkludert a_0) representerer halvparten av den jeve utvidelsen til funksjonen f(x) = x når 0 < x < 1. Liknende, representerer sinus leddene den odde serien til f. Dette kan bli formalisert ved å sammenligne formlene gitt i 13. og seksjon 11.2.. Grunnen er at før null vil den jevne og odde utvidelsen kanselere og bli null, og etter null vil de to halvdelene aderes opp til f(x).
- 16. For å finne Fourier serien begynner vi med å legge merke med at f er jevn, dermed er $b_n = 0$. La oss begynne med å finne a_0 :

$$a_0 = \frac{1}{a} \int_0^a f(x) dx = \frac{1}{\pi} \int_0^{\pi} x dx = \frac{\pi}{2}.$$

For å finne a_n regner vi ut

$$a_n = \frac{2}{a} \int_0^a f\left(x\right) \cos\left(nx\right) dx = \frac{2}{\pi} \int_0^\pi x \cos\left(nx\right) dx = \frac{2}{\pi n^2} \left(\cos\left(nx\right) - 1\right) = \begin{cases} 0 & \text{hvis } n \text{ er jevn} \\ -\frac{4}{\pi n^2} & \text{hvis } n \text{ er odd} \end{cases}$$

Dermed er

$$f(x) = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{-4}{\pi (2n+1)^2} \cos ((2n+1) x).$$

18. Deriverer vi hver av leddene til funksjonen får vi at $f'(x) = \sum_{n=1}^{\infty} \frac{4}{\pi(2n+1)} \sin((2n+1)x)$, som ved å sammenligne med eksempel 1 på side 477, har vi at dette er rekken for $\frac{x}{|x|}$ når $x \neq 0$, som er det samme som vi får om vi deriverer den orginale funksjonen f.