Advance Q-Learning

CMPT 729 G100

Jason Peng

- Non-IID Samples
- Nonstationary Targets
- Overestimation
- Model Architecture

- Non-IID Samples → Experience Replay
- Nonstationary Targets
- Overestimation
- Model Architecture

- Non-IID Samples → Experience Replay
- Nonstationary Targets → Target Networks
- Overestimation
- Model Architecture

- Non-IID Samples → Experience Replay
- Nonstationary Targets → Target Networks
- Overestimation → Pessimistic Estimates
- Model Architecture

Q-Learning

ALGORITHM: Q-Learning

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize dataset
- 3: **for** iteration k = 0, ..., n 1 **do**
- 4: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 5: Add transitions to dataset $\mathcal{D} = \mathcal{D} \cup \{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$

What data to store?

- 6: Calculate target values for each sample i: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q^k(\mathbf{s}'_i, \mathbf{a}')$
- 7: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 8: end for
- 9: return Q^n

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[\underbrace{(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2}_{Q} \right]$$
$$y_i = r_i + \gamma \underset{\mathbf{a}'}{\operatorname{max}} Q^k(\mathbf{s}', \mathbf{a}')$$

Data from adjacent timesteps are highly correlated

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

Update with supervised learning
Assume data is IID

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

- Small correlated dataset leads to oscillations and may not converge
- Solution: store a large dataset to reduce correlation

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

- Small correlated dataset leads to oscillations and may not converge
- Solution: store a large dataset to reduce correlation

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

- Small correlated dataset leads to oscillations and may not converge
- Solution: store a large dataset to reduce correlation

$$Q^{k+1} = \underset{O}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

- Small correlated dataset leads to oscillations and may not converge
- Solution: store a large dataset to reduce correlation

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$$

- Small correlated dataset leads to oscillations and may not converge
- Solution: store a large dataset to reduce correlation

Experience Replay

- Store data in a large "replay buffer" (FIFO queue)
- Sample random minibatches of transitions to fit Q-function

- Non-IID Samples → Experience Replay
- Nonstationary Targets → Target Networks
- Overestimation → Pessimistic Estimates
- Model Architecture

Moving Target

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[\underbrace{(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2}_{Q} \right]$$
$$y_i = r_i + \gamma \underset{\mathbf{a}'}{\max} \underline{Q^k}(\mathbf{s}', \mathbf{a}')$$

- Target values change every iteration
- Can lead to unstable learning dynamics

Target Network

Target Network

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}'_i) \sim \mathcal{D}} \left[\underbrace{(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2}_{\mathbf{q}} \right]$$
$$y_i = r_i + \gamma \max_{\mathbf{a}'} \underline{Q'}(\mathbf{s}', \mathbf{a}')$$

- Target network is a delayed copy of the Q-function
- ullet Every m iterations, copy parameters from Q-function to target network
- Works well in practice to stabilize Q-learning

Deep Q-Network (DQN)

Experience Replay + Target Network

Target Network

$$Q^{k+1} = \underset{Q}{\operatorname{arg min}} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[\underbrace{(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2}_{Q} \right]$$
$$y_i = r_i + \gamma \underset{\mathbf{a}'}{\max} \underbrace{Q'(\mathbf{s}', \mathbf{a}')}$$

- ullet Every m iterations, copy parameters from Q-function to target network
- ✓ Works well in practice to stabilize Q-learning
- \bigstar Abrupt changes to target values every m iterations
- X Can cause some unstable learning dynamics

Polyak Averaging

- Initialize target network with the same parameters a Q-function
- Every iteration, update target network:

Polyak Averaging

- Initialize target network with the same parameters a Q-function
- Every iteration, update target network:

Smoother changes to target values

Target Network

$$Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i') \sim \mathcal{D}} \left[\underbrace{(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2}_{\mathbf{y}_i = r_i + \gamma \max_{\mathbf{a}'} \underline{Q'}(\mathbf{s}', \mathbf{a}')}_{\mathbf{Slowly moving target network}} \right]$$

- Works very well in practice
- Nearly every modern Q-learning algorithms uses some kind of target network

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample i: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow$ initialize Q-function
- 2: $Q' \leftarrow \text{initialize target network with parameters from } Q^0$
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{r}_i, \mathbf{s}'_i) \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: **for** iteration k = 0, ..., n 1 **do**
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1 \alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: **for** iteration k = 0, ..., n 1 **do**
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1 \alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample i: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{r}_i, \mathbf{s}'_i) \sim \mathcal{D}} \left[(y_i - Q(\mathbf{s}_i, \mathbf{a}_i))^2 \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample i: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1-\alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1 \alpha)\theta^{Q'}$
- 10: end for
- 11: return Q^n

ALGORITHM: DQN

- 1: $Q^0 \leftarrow \text{initialize Q-function}$
- 2: $Q' \leftarrow$ initialize target network with parameters from Q^0
- 3: $\mathcal{D} \leftarrow \{\emptyset\}$ initialize empty replay buffer
- 4: for iteration k = 0, ..., n 1 do
- 5: Sample trajectory τ according to $Q^k(\mathbf{s}, \mathbf{a})$
- 6: Store transitions $\{(\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i')\}$ in replay buffer \mathcal{D}
- 7: Calculate target values for each sample *i*: $y_i = r_i + \gamma \max_{\mathbf{a}'} Q'(\mathbf{s}'_i, \mathbf{a}')$
- 8: Update Q-function: $Q^{k+1} = \arg\min_{Q} \mathbb{E}_{(\mathbf{s}_{i}, \mathbf{a}_{i}, \mathbf{r}_{i}, \mathbf{s}'_{i}) \sim \mathcal{D}} \left[(y_{i} - Q(\mathbf{s}_{i}, \mathbf{a}_{i}))^{2} \right]$
- 9: Update target network: $\theta^{Q'} \leftarrow \alpha \theta^{Q^{k+1}} + (1 \alpha)\theta^{Q'}$

10: end for

11: return Q^n

Overview

- Non-IID Samples → Experience Replay
- Nonstationary Targets → Target Networks
- Overestimation → Pessimistic Estimates
- Model Architecture

How Accurate is the Q-Function?

How Accurate is the Q-Function?

Human-Level Control Through Deep Reinforcement Learning [Mnih et al. 2015]

How Accurate is the Q-Function?

Deep Reinforcement Learning with Double Q-learning [van Hasselt et al. 2016]

$$y_i = r_i + \gamma \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'})$$

Bias towards positive errors

$$y_i = r_i + \gamma \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'})$$

$$\mathbb{E} \left[\max (X_1, X_2) \right] > 0$$

$$p(X_1 > 0) = p(X_2 > 0) = 0.5$$

$$p(\max (X_1, X_2) > 0)$$

$$= p(X_1 > 0 \text{ or } X_2 > 0) = 0.75$$

$$y_i = r_i + \gamma \max_{\mathbf{a'}} \frac{Q^k(\mathbf{s'}, \mathbf{a'})}{\mathbf{Tends to be noisy}}$$

$$\mathbb{E} \left[\max (X_1, X_2) \right] > 0$$

$$p(X_1 > 0) = p(X_2 > 0) = 0.5$$

$$p(\max (X_1, X_2) > 0)$$

$$= p(X_1 > 0 \text{ or } X_2 > 0) = 0.75$$

$$y_i = r_i + \gamma \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'})$$

More likely to overestimate next value

$$\mathbb{E} \left[\max (X_1, X_2) \right] > 0$$

$$p(X_1 > 0) = p(X_2 > 0) = 0.5$$

$$p(\max (X_1, X_2) > 0)$$

$$= p(X_1 > 0 \text{ or } X_2 > 0) = 0.75$$

$$y_i = r_i + \gamma \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'})$$

Bootstrapping can propagate overestimation errors

$$y_i = r_i + \gamma \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'})$$

Bootstrapping can propagate overestimation errors

$$y_i = r_i + \gamma \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'})$$

Bootstrapping can propagate overestimation errors

Target network can slow propagation of errors

$$y_i = r_i + \gamma \max_{\mathbf{a'}} \ Q^k(\mathbf{s'}, \mathbf{a'})$$

$$y_i = r_i + \gamma \ Q^k\left(\mathbf{s'}, \arg\max_{\mathbf{a'}} \ Q^k(\mathbf{s'}, \mathbf{a'})\right)$$
action evaluation action selection

$$y_i = r_i + \gamma Q^k \left(\mathbf{s'}, \operatorname{arg\ max}_{\mathbf{a'}} Q^k (\mathbf{s'}, \mathbf{a'}) \right)$$
 action evaluation action selection

$$y_i = r_i + \gamma Q_B^k \left(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_A^k (\mathbf{s'}, \mathbf{a'}) \right)$$
 action evaluation action selection

$$y_i = r_i + \gamma Q_B^k \left(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_A^k (\mathbf{s'}, \mathbf{a'}) \right)$$

$$y_i = r_i + \gamma Q_B^k \left(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_A^k (\mathbf{s'}, \mathbf{a'}) \right)$$

$$y_i = r_i + \gamma Q_B^k \left(\mathbf{s'}, \operatorname{arg\ max}_{\mathbf{a'}} Q_A^k (\mathbf{s'}, \mathbf{a'}) \right)$$

Decouple selection from evaluation by using different Q-functions

$$y_i = r_i + \gamma Q_B^k \left(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_A^k (\mathbf{s'}, \mathbf{a'}) \right)$$

action evaluation

use this value

Implementation

Option 1: Train two separate Q-functions

$$y_i = r_i + \gamma Q_B^k \left(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q_A^k (\mathbf{s'}, \mathbf{a'}) \right)$$

Option 2: Use target network

$$y_i = r_i + \gamma Q' \left(\mathbf{s'}, \arg \max_{\mathbf{a'}} Q^k(\mathbf{s'}, \mathbf{a'}) \right)$$
 target network main Q-network

Deep Reinforcement Learning with Double Q-learning [van Hasselt et al. 2016]

Deep Reinforcement Learning with Double Q-learning [van Hasselt et al. 2016]

Pessimistic Estimate

- Source of overestimation is model error
- Can we estimate model uncertainty for Q-function?

Pessimistic Estimate

- Source of overestimation is model error
- Can we estimate model uncertainty for Q-function?

Error:
$$[-\epsilon, \epsilon]$$

$$y_i = r_i + \gamma \left(\max_{\mathbf{a}'} \ Q^k(\mathbf{s}', \mathbf{a}') - \epsilon \right)$$
lower bound

Pessimistic Estimate

- Source of overestimation is model error
- Can we estimate model uncertainty for Q-function?

Error:
$$[-\epsilon, \epsilon]$$

$$y_i = r_i + \gamma \left(\max_{\mathbf{a}'} \ Q^k(\mathbf{s}', \mathbf{a}') - \epsilon \right)$$
 lower bound

Ensemble

• Estimate model uncertainty with an ensemble $\{Q_1,Q_2,...\}$

$$y_i = r_i + \gamma \max_{\mathbf{a'}} \min_{j} Q_j(\mathbf{s'}, \mathbf{a'})$$

pessimistic value estimate

Compute minimum over a random subset of the ensemble

$$\mathcal{M} \subseteq \{Q_1, Q_2, \ldots\}$$

$$y_i = r_i + \gamma \max_{\mathbf{a'}} \min_{j \in \mathcal{M}} Q_j(\mathbf{s'}, \mathbf{a'})$$

in practice, randomly sampling 2 Q-functions work well

(a) Performance, Ant

(b) Performance, Humanoid

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model [Chen et al. 2021]

(a) Performance, Ant

(b) Performance, Humanoid

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model [Chen et al. 2021]

Compute minimum over a random subset of the ensemble

$$\mathcal{M} \subseteq \{Q_1, Q_2, \ldots\}$$

$$y_i = r_i + \gamma \max_{\mathbf{a}'} \min_{j \in \mathcal{M}} Q_j(\mathbf{s}', \mathbf{a}')$$

in practice, randomly sampling 2 Q-functions work well

Drawback:

Need to train multiple Q-functions

DroQ

• Instead of training an ensemble, emulate an ensemble using Dropout

Dropout Q-Functions for Doubly Efficient Reinforcement Learning [Hiraoka et al. 2022]

DroQ

A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning [Smith et al. 2022]

Overview

- Non-IID Samples → Experience Replay
- Nonstationary Targets → Target Networks
- Overestimation → Pessimistic Estimates
- Model Architecture

• Q-values at a particular state often do not vary that much

- Q-values at a particular state often do not vary that much
- Only the *relative* values are needed to select actions

$$A^{\pi}(\mathbf{s}, \mathbf{a}) = Q^{\pi}(\mathbf{s}, \mathbf{a}) - V^{\pi}(\mathbf{s})$$

Action-independent value function

Action-dependent advantage function

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = \underline{V^{\pi}(\mathbf{s})} + \underline{A^{\pi}(\mathbf{s}, \mathbf{a})}$$

Dueling Network Architectures for Deep Reinforcement Learning [Wang et al. 2016]

Dueling Network Architectures for Deep Reinforcement Learning [Wang et al. 2016]

Lots of Tricks

- Prioritized Replay
- Multi-Step Returns
- Distributional RL
- Noisy Nets
- Etc...

Note: techniques for improving Q-Learning can also be applied to other algorithms (e.g. DDPG, SAC, TD3, MPO, etc.)

Rainbow: Combining Improvements in Deep Reinforcement Learning [Hessel et al. 2018]

Summary

- Experience Replay
- Target Networks
- Overestimation
- Model Architecture