Seminar

朱顺尧

2025.8.8

Setting

Domain Adaptation: address distribution shifts across datasets/scenarios

Preserving Clusters in Prompt Learning for Unsupervised Domain Adaptation

Tung-Long Vuong¹, Hoang Phan², Vy Vo¹, Anh Bui¹, Thanh-Toan Do¹, Trung Le¹, Dinh Phung¹

¹Monash University, ²New York University

{Tung-Long.Vuong, v.vo, tuananh.bui, toan.do, trunglm, dinh.phung}@monash.edu hvp2011@nyu.edu

CVPR2025

Base Method

CLIP

Prompt Learning

A photo of a
$$[CLASS_k]$$

$$egin{aligned} P_{sh}^k &= [m{v}_1^k | m{v}_2^k | \cdots | m{v}_{M_1}^k] & p_k &= [m{P}_{sh}^k] [m{P}_{S_i}] [ext{CLASS}_k] \ P_{S_i} &= [m{u}_1^{S_i} | m{u}_2^{S_i} | \cdots | m{u}_{M_2}^{S_i}] & p_k &= [m{P}_{sh}^k] [m{P}_T] [ext{CLASS}_k] \ P_T &= [m{u}_1^T | m{u}_2^T | \cdots | m{u}_{M_2}^T] & p_k &= [m{P}_{sh}^k] [m{P}_T] [ext{CLASS}_k] \end{aligned}$$

Motivation

Setting Inference		Ar	Cl	Pr	Rw	
7	Training on source	data on	ly			
Zero-shot from	CLIP [34]	71.2	50.4	81.4	82.6	
Source-combined	Source prompt	72.2	55.9	82.6	83.3	
	Average prompt	74.3	57.4	84.5	84.7	
	Ar prompt	-	56.0	80.0	82.1	
Multi-source	Cl prompt	70.4	-	81.1	80.4	
	Pr prompt	70.2	55.0	-	84.1	
	Wr prompt	73.9	55.5	84.5	-	
Supervi	sed training on tar	get don	nain onl	у		$m{P}_T][ext{CLASS}$
	Target prompt	99.6	91.6	99.3	98.6	
Trainining	both source-target	domain	s as Eq	. (3)		
	Target prompt	47.6	29.0	53.5	63.5	

74.3 57.2 84.3 84.8

$$\mathcal{L}_{total}(oldsymbol{P}) = \sum_{i=1}^{N} \mathcal{L}_{S_i}(oldsymbol{P}_{sh}, oldsymbol{P}_{S_i}) + \mathcal{L}_{T}(oldsymbol{P}_{sh}, oldsymbol{P}_{T})$$

Source prompt

- 1. Source prompt includes domain-invariant embedding;
- 2. The transferability varies based on their similarity;
- 3. The visual embeddings for each class tend to form a single cluster in the embedding space;
- 4. Due to false pseudo-labels, the trained text embedding acts as a prototype or centroid may fail to represent the entire cluster.

Prompt Learning with Source Domains

$$\mathcal{L}_{S_i}(\boldsymbol{P}_{sh}, \boldsymbol{P}_{S_i}) = \text{CE}(\boldsymbol{P}_{sh}, \boldsymbol{P}_{S_i}; \boldsymbol{X}_{S_i}, Y_{S_i})$$

$$= -\frac{1}{N_{S_i}} \sum_{j=1}^{N_{S_i}} \log P(y = y_j | \boldsymbol{x}_j, \boldsymbol{P}_{sh}, \boldsymbol{P}_{S_i})$$

$$\mathcal{L}_{S} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{S_i}$$

Prompt Learning with Target Domain

- 1. Source prompt includes domain-invariant embedding;
- 2. The transferability varies based on their similarity

$$\hat{y}[k] = \frac{\exp\left(\langle \boldsymbol{z}, \boldsymbol{\tau}_{ave}^{k}((x))\rangle/\gamma\right)}{\sum_{k'=1}^{K} \exp\left(\langle \boldsymbol{z}, \boldsymbol{\tau}_{ave}^{k}((x))\rangle/\gamma\right)}$$

$$\boldsymbol{\tau}_{ave}^{k}(x) = \frac{1}{2}\boldsymbol{\tau}_{base}^{k} + \frac{w_{k,i}(x)}{2}\sum_{i=1}^{N}\boldsymbol{\tau}_{S_{i}}^{k}$$

$$w_{i,k}(z) = \frac{\exp\left(\left\|z_{pre} - c_{k}^{i}\right\|_{2}\right)}{\sum_{i'=1}^{N} \exp\left(\left\|z - c_{k'}^{i'}\right\|_{2}\right)}$$

$$c_{k}^{i} = \frac{1}{\sum_{j=1}^{N_{S_{i}}} \mathbb{I}_{(y_{j}^{i}=k)}} \sum_{j=1}^{N_{S_{i}}} \mathbb{I}_{(y_{j}^{i}=k)} \boldsymbol{z}_{j}^{pre,i}.$$

$$\mathcal{L}_{T}(\boldsymbol{P}_{sh}, \boldsymbol{P}_{T}) = \operatorname{CE}_{\tau}(\boldsymbol{P}_{sh}, \boldsymbol{P}_{T}; \boldsymbol{X}_{T}, Y_{T})$$

$$= -\frac{1}{N_{T}} \sum_{j=1}^{N_{T}} \sum_{k=1}^{K} \hat{y}_{j}[k] \log P(y = k|\boldsymbol{x}_{j}, \boldsymbol{P}_{sh}, \boldsymbol{P}_{T})$$

Clustering Refined by Optimal Transport

- 3. The visual embeddings for each class tend to form a single cluster in the embedding space;
- 4. Due to false pseudo-labels, the trained text embedding acts as a prototype or centroid may fail to represent the entire cluster.

$$\mathcal{L}_{\mathcal{W}} = \mathcal{W}_{d_z} \left(\mathbb{P}_{ au,\pi}, \mathbb{P}^T
ight) \quad egin{aligned} \mathbb{P}^T = rac{1}{N_T} \sum_{j=1}^{N_T} \delta_{oldsymbol{z}_j} \ \mathbb{P}_{ au,\pi} = \sum_{k=1}^K \pi_k \delta_{oldsymbol{ au}_T^k} \end{aligned}$$

$$\min_{\mathcal{T},\pi} \min_{\sigma \in \Sigma_{\pi}} \mathbb{E}_{z \sim \mathbb{P}^{T}} \left[d_{z} \left(z, au_{T}^{\sigma(z)}
ight)
ight]$$

$$\mathcal{L}_{total}(\mathbf{P}) := \mathcal{L}_S + \lambda_T \mathcal{L}_T + \lambda_W \mathcal{L}_W$$

Results

	ImageCLEF			Office-Home					
	→ C	\rightarrow I	\rightarrow P	Avg	→ Ar	→ Cl	\rightarrow Pr	\rightarrow Rw	Avg
Zero-Shot									
CLIP [34]	87.9	88.2	78.7	88.1	71.2	50.4	81.4	82.6	71.4
Source Combined									
DAN [10]	93.3	92.2	77.6	87.7	68.5	59.4	79.0	82.5	72.4
DANN [11]	93.7	91.8	77.9	87.8	68.4	59.1	79.5	82.7	72.4
D-CORAL [40]	93.6	91.7	77.1	87.5	68.1	58.6	79.5	82.7	72.2
DAPL [12]	96.0	89.2	76.0	87.1	72.8	51.9	82.6	83.7	72.8
Simple Prompt [4]	93.6	90.6	80.9	88.4	70.7	52.9	82.9	83.9	72.4
PGA [32]	94.2	92.1	78.5	88.2	74.1	53.9	84.4	85.6	74.5
CRPL (Ours)	94.8	94.5	81.7	90.3	76.6	60.4	86.5	86.8	77.6
Multi-Source									
DCTN [51]	95.7	90.3	75.0	87.0	N.A.	N.A.	N.A.	N.A.	N.A
MDDA [57]	N.A.	N.A.	N.A.	N.A.	66.7	62.3	79.5	79.6	71.0
SIMplDA [45]	93.3	91.0	77.5	87.3	70.8	56.3	80.2	81.5	72.2
MFSAN [58]	95.4	93.6	79.1	89.4	72.1	62.0	80.3	81.8	74.1
MPA [4]	97.2	96.2	80.4	91.3	74.8	54.9	86.2	85.7	75.4
MPGA [32]	93.8	95.7	82.8	90.8	74.8	56.0	85.2	86.0	75.5
M-CRPL (Ours)	96.2	96.0	82.3	91.5	76.8	63.5	87.6	87.5	78.9

·	DomainNet								
	→ Clp	\rightarrow Inf	→ Pnt	→ Qdr	→ Rel	→ Skt	Avg		
Zero-Shot									
CLIP [34]	61.3	42.0	56.1	10.3	79.3	54.1	50.5		
Source Combined									
DANN [11]	45.5	13.1	37.0	13.2	48.9	31.8	32.6		
MCD [37]	54.3	22.1	45.7	7.6	58.4	43.5	38.5		
DAPL [12]	62.4	43.8	59.3	10.6	81.5	54.6	52.0		
Simple Prompt [4]	63.1	41.2	57.7	10.0	75.8	55.8	50.6		
PGA [32]	65.4	49.0	60.4	11.1	81.8	60.6	55.4		
CRPL (Ours)	65.6	50.8	66.7	10.6	80.0	61.1	55.8		
Multi-Source									
$M^{3}SDA-\beta$ [29]	58.6	26.0	52.3	6.3	62.7	49.5	42.6		
SImpAl101 [45]	66.4	26.5	56.6	18.9	68.0	55.5	48.6		
LtC-MSDA [49]	63.1	28.7	56.1	16.3	66.1	53.8	47.4		
T-SVDNet [22]	66.1	25.0	54.3	16.5	65.4	54.6	47.0		
PFSA [8]	64.5	29.2	57.6	17.2	67.2	55.1	48.5		
PTMDA [35]	66.0	28.5	58.4	13.0	63.0	54.1	47.2		
MPA [4]	65.2	47.3	62.0	10.2	82.0	57.9	54.1		
MPGA [32]	67.2	47.8	63.1	11.6	81.7	61.0	55.4		
M-CRPL (Ours)	67.6	51.4	67.0	11.1	79.3	60.6	56.2		

Method	$Ar{ ightarrow}Cl$	$Ar{ ightarrow}Pr$	$Ar{\rightarrow}Rw$	$Cl \rightarrow Ar$	$Cl \rightarrow Pr$	$Cl \rightarrow Rw$	$Pr{ ightarrow}Ar$	$Pr \rightarrow Cl$	$Pr{\rightarrow}Rw$	$Rw{\rightarrow}Ar$	$Rw{\rightarrow}Cl$	$Rw{\rightarrow} Pr$	Avg
ResNet-50[16]	34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
DANN [10]	45.6	59.3	70.1	47.0	58.5	60.9	46.1	43.7	68.5	63.2	51.8	76.8	57.6
JAN [25]	45.9	61.2	68.9	50.4	59.7	61.0	45.8	43.4	70.3	63.9	52.4	76.8	58.3
CDAN+E [27]	50.7	70.6	76.0	57.6	70.0	70.0	57.4	50.9	77.3	70.9	56.7	81.6	65.8
BSP+CDAN [5]	52.0	68.6	76.1	58.0	70.3	70.2	58.6	50.2	77.6	72.2	59.3	81.9	66.3
SymNets [54]	47.7	72.9	78.5	64.2	71.3	74.2	63.6	47.6	79.4	73.8	50.8	82.6	67.2
ETD [21]	51.3	71.9	85.7	57.6	69.2	73.7	57.8	51.2	79.3	70.2	57.5	82.1	67.3
BNM [6]	52.3	73.9	80.0	63.3	72.9	74.9	61.7	49.5	79.7	70.5	53.6	82.2	67.9
GSDA [17]	61.3	76.1	79.4	65.4	73.3	74.3	65.0	53.2	80.0	72.2	60.6	83.1	70.3
GVB-GD [7]	57.0	74.7	79.8	64.6	74.1	74.6	65.2	55.1	81.0	74.6	59.7	84.3	70.4
RSDA-MSTN [15]	53.2	77.7	81.3	66.4	74.0	76.5	67.9	53.0	82.0	75.8	57.8	85.4	70.9
SPL [50]	54.5	77.8	81.9	65.1	78.0	81.1	66.0	53.1	82.8	69.9	55.3	86.0	71.0
SRDC [41]	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	71.3
DisClusterDA [42]	58.8	77.0	80.8	67.0	74.6	77.1	65.9	56.3	81.4	74.2	60.5	83.6	71.4
CLIP [34]	51.6	81.9	82.6	71.9	81.9	82.6	71.9	51.6	82.6	71.9	51.6	81.9	72.0
DAPL [12]	52.7	82.2	84.1	73.9	82.0	83.8	73.6	54.6	84.0	73.3	53.4	82.5	73.3
PGA [32]	53.7	83.9	85.0	73.2	83.9	84.6	73.2	53.8	84.1	73.5	53.1	85.3	73.9
CRPL (Ours)	54.7	84.1	84.6	74.3	83.2	83.7	73.7	53.4	84.6	74.5	55.5	85.5	74.4

Ablation

	Inference Prompt	Ar	Cl	Pr	Rw
	$ au_T$	47.6	29.0	53.5	63.5
CPL	$ au_S$	74.3	57.2	84.3	84.8
	$ au_{avg}$	61.2	40.3	73.3	77.8
	$ au_T$	75.8	62.9	86.6	87.2
SPL	$ au_S$	73.3	57.4	83.4	84.7
	$ au_{avg}$	75.8	58.1	83.6	85.3
CPL only	$ au_T$	47.6	29.0	53.5	63.5
CPL with $\mathcal{L}_{\mathcal{W}}$	$ au_T$	7.9	4.7	80.4	82.3
SPL only	$ au_T$	75.8	62.9	86.6	87.2
SPL with $\mathcal{L}_{\mathcal{W}}$	$ au_T$	76.8	63.5	87.5	87.6

CPL: CLIP zero-shot

SPL: enhanced pseudo-labels derived from the source domains

LW strongly depends on the initial predictions

Distance	Ar	Cl	Pr	Rw	Average
Average	76.0	62.6	87.0	87.5	78.3
cosine	76.6	56.2	88.2	86.7	76.9
L2	76.8	63.5	87.5	87.6	78.9

Proxy Denoising for Source-Free Domain Adaptation

Song Tang^{1,2}, Wenxin Su¹, Mao Ye*³, Jianwei Zhang², and Xiatian Zhu*⁴

¹University of Shanghai for Science and Technology ²Universität Hamburg ³University of Electronic Science and Technology of China ⁴University of Surrey

tangs@usst.edu.cn, {suwenxin43, cvlab.uestc}@gmail.com, xiatian.zhu@surrey.ac.uk

ICLR2025

Motivation

Considering the ViL model/space as a noisy proxy of the latent domain-invariant space, with a need to be denoised.

Exploit the dynamics of domain adaptation process.

Proxy Confidence Theory

$$\delta_t \propto \eta_t$$

Case1:
$$oldsymbol{d}_I^0pprox oldsymbol{d}_V^0\gg oldsymbol{e}_{VI}$$

Case2:
$$oldsymbol{d}_I^t = oldsymbol{d}_V^t + oldsymbol{e}_{VI}$$

$$\eta_t = \frac{\boldsymbol{d}_I^t}{\boldsymbol{d}_V^t} = \frac{\boldsymbol{d}_V^t + \boldsymbol{e}_{VI}}{\boldsymbol{d}_V^t} = \left(1 + \frac{\boldsymbol{e}_{VI}}{\boldsymbol{d}_V^t}\right)$$

$$\eta_t = \frac{|\boldsymbol{d}_{\mathcal{I}}^t|}{|\boldsymbol{d}_{\mathcal{V}}^t|} = \frac{|\boldsymbol{d}_{\mathcal{V}}^t + \boldsymbol{e}_{\mathcal{V}\mathcal{I}}|}{|\boldsymbol{d}_{\mathcal{V}}^t|} \le \frac{|\boldsymbol{d}_{\mathcal{V}}^t| + |\boldsymbol{e}_{\mathcal{V}\mathcal{I}}|}{|\boldsymbol{d}_{\mathcal{V}}^t|} = 1 + \frac{|\boldsymbol{e}_{\mathcal{V}\mathcal{I}}|}{|\boldsymbol{d}_{\mathcal{V}}^t|}$$

the impact of errors gradually increases

Proxy Confidence Theory

$$\mathcal{N}\left(\theta_{v}\left(x_{i}\right),\delta_{t}\right)\Longrightarrow P\left(G_{P\left(V\right)}=True,t\right)P\left(V\right)$$
 =proxy confidence * probability distribution

$$P\left(G_{P(V)} = True, t\right) \propto \frac{P(T_t)}{P(S)}$$

The effect of ViL model's prediction error is approximately reflected by the discrepancy between the source domain and the current in-training model

Proxy Confidence Theory

Proof

$$\begin{split} P\left(G_{P(V)} = True, t\right) &\propto \frac{Distance(D_{T_t}, D_I)}{Distance(D_S, D_I)} = \frac{d_I^t}{d_S}, \\ \frac{d_I^t}{d_S} &= \frac{KL\left(P(T_t)||P(I)\right)}{KL\left(P(S)||P(I)\right)} = \frac{\int_{T_t} P(T_t) \log \frac{P(T_t)}{P(I)} dT_t}{\int_S P(S) \log \frac{P(S)}{P(I)} dS} \\ &= \frac{-\int_{T_t} P(T_t) \log P(T_t) dT_t + \int_{T_t} P(T_t) \log P(I) dT_t}{-\int_S P(S) \log P(S) dS + \int_S P(S) \log P(I) dS} \\ &= \frac{H(T_t) + \log P(I)}{H(S) + \log P(I)} \\ &= \frac{H(T_t)}{H(S)}, \end{split}$$

$$\frac{H(T_t) + \log P(I)}{H(S) + \log P(I)} = \frac{H(T_t)}{H(S)} \propto \frac{P(T_t)}{P(S)}$$

Denoising mechanism

Theoretical results

$$P\left(G_{P(\mathcal{V})} = True, t\right) \propto \frac{P(\mathcal{T}^t)}{P(\mathcal{S})}$$
 in-training model (3)

Insight: The effect of proxy errors on domain adaptation can be approximately estimated by contrasting the distributions of the source model and the current in-training model

The corrected ViL prediction

11/18

Distribution estimated by the current

Proxy denoising

$$\log \left[P\left(G_{P(V)} = True, t \right) P\left(V \right) \right] \propto \log \left(\frac{P(T_t)}{P(S)} P(V) \right)$$
$$= \log P(V) - \left[\log P(S) - \log P(T_t) \right].$$

$$egin{cases} oldsymbol{p_i'} = \phi\left(oldsymbol{l_i'}
ight), \; oldsymbol{l_i'} = heta_v\left(oldsymbol{x_i}, oldsymbol{v}
ight) - \omega \Delta_t, \ \Delta_t = heta_s\left(oldsymbol{x_i}
ight) - heta_t\left(oldsymbol{x_i}
ight), \end{cases}$$

$$\boldsymbol{p}_{i}^{\prime} = \operatorname{softmax}\left(\theta_{v}\left(\boldsymbol{x}_{i}, \boldsymbol{v}\right) - \omega\left[\theta_{s}\left(\boldsymbol{x}_{i}\right) - \theta_{t}\left(\boldsymbol{x}_{i}\right)\right]\right)$$

Mutual knowledge distilling

Results&Ablation

Method	Office-31	Office-Home	VisDA	DomainNet-126
CLIP-R [33]	71.4	72.1	83.7	72.7
ProDe-R	90.0	82.9	89.9	81.5
CLIP-V [33]	79.8	76.1	82.9	76.3
ProDe-V	92.6	86.2	91.6	85.0

#	L_{Syn}	$L_{ m Ref}$	Office-31	Office-Home	VisDA	Avg.
1	X	×	78.6	59.2	49.2	62.3
2	✓	×	91.8	78.8	90.2	86.9
3	X	✓	86.5	83.2	90.7	86.8
4	✓	✓	92.6	86.2	91.6	90.1
5	ProDe-V	w/o pd	90.5	83.9	89.9	88.1
6	ProDe-V	w/o source	91.2	84.6	90.2	88.7
7	ProDe-V	w/o target	80.1	83.5	90.8	84.8
8	ProDe-V	w proba	86.8	83.3	91.3	87.1