Internationaler Waffenhandel

Die Anwendung neuer Verfahren der statistischen Netzwerkanalyse

Projektpartner: Paul Thurner **Betreuer**: Goeran Kauermann

Referent: Felix Loewe

Ludwig-Maximilians-Universität München Institut für Statistik

10. August 2015

- Einleitung
- 2 Einführung in die Graphentheorie
- 3 Datensituation
- Deskriptive Analyse
 - Netzwerkmaßzahlen
 - Degree-Sequenz
 - Zentrale Akteure
 - Visualisierungen
- Inferentielle Analyse
 - ERGM Exponential Random Graph Model
 - Simulation von Zufallsgraphen
 - Schätzung der Modellparameter
 - Anwendung des ERGM
 - Vergleich mit Großwaffenhandel
- 6 Fazit

1 Einleitung

Was ist ein Netzwerk?

Netzwerk besteht aus Akteuren und ihren Verbindungen

Anwendungsgebiete:

• Biologie: DNA

• Soziologie: Freundesnetzwerk, Kollegenkreis

• Politik: internationale Beziehungen

Informatik: Internet, Facebook, LAN

2 Einführung in die Graphentheorie

Einführung in die Graphentheorie

Notation:

- \bullet G = (V, E) ... ein *Graph*
- $V = \{1, ..., N_V\}$... Menge der *Knoten*
- $E = \{(i,j)|i,j \in V, i \neq j\}$... Menge der Kanten
- $A \in N_V \times N_V$... eine Nachbarschaftsmatrix

$$a_{ij} = egin{cases} 1 \;,\; ij \in E \ 0 \;,\; ij
otin E \end{cases}$$

Begriffe:

- gerichteter vs. ungerichteter Graph
- (In-/Out-) Degree
- Dichte: $den(G) = \frac{|E_G|}{N_V(N_V 1)/2}$

3 Datensituation

Datensituation

NISAT-Datenbank (Norwegian Initiative on Small Arms Transfers) von PRIO (Peace Research Institute Oslo)

Kantenliste mit zusätzlichen Variablen:

- Correlates of War Code
- monetärer Wert in US\$
- Waffentyp
- Datenquelle
- Jahr

Dimensionen:

- 239 Länder
- 20 Jahre
- 109522 Waffentransaktionen

4 Deskriptive Analyse

Netzwerkmaßzahlen

Abbildung: Netzwerkmaßzahlen des Kleinwaffenhandels 1992-2011

Degree-Sequenz

Abbildung: In-/ Out- Degree der Länder 1992-2011

Zentrale Akteure I

Platz	Land	Exportvol. [Mrd.]
1	USA	9.2
2	Italy	7.9
3	Germany	4.6
4	Brazil	3.7
5	Austria	2.7
6	United Kingdom	2
7	Belgium	1.8
8	Switzerland	1.5
9	Russia	1.4
10	Czech Republic	1.4

Platz	Land	Importvol. [Mrd.]
1	USA	16
2	Germany	2.3
3	France	2.3
4	Canada	1.9
5	United Kingdom	1.8
6	Saudi Arabia	1.7
7	Belgium	1.2
8	Spain	1.2
9	Australia	1.2
10	Turkey	1

Tabelle: Summierte Handelswerte der Top-Exporteure und Top-Importeure des Netzwerkes von 1992 bis 2011

Zentrale Akteure II

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Exporteure von 1992 bis 2011

Zentrale Akteure III

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Importeure von 1992 bis 2011

Zentrale Akteure IV

Platz	Land	Exportvol. / BIP pro Kopf	Platz	Land	Importvol. / BIP pro kopf
1	China	114735	1	Tanzania	54562
2	Brazil	53225	2	Thailand	49636
3	Italy	48862	3	India	32416
4	Spain	40822	4	Pakistan	30290
5	Germany	38039	5	South Korea	27208
6	Turkey	36174	6	China	25402
7	South Korea	29131	7	Indonesia	24268
8	United States	26539	8	Kenya	22907
9	India	24615	9	Malaysia	22330
10	Austria	23149	10	Bukina Faso	22183

Tabelle: Summierte Handelswerte der Top-Exporteure und Top-Importeure relativ zum BIP pro Kopf des Netzwerkes von 1992 bis 2011

Zentrale Akteure V

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Exporteure von 1992 bis 2011

Zentrale Akteure VI

Abbildung: Zeitreihen der jährlichen Handelswerte der Top-Importeure von 1992 bis 2011

Visualisierungen

Abbildung: Handelsströme zwischen den Kontinenten von 1992-2011

5 Inferientielle Analyse

ERGM - Exponential Random Graph Model

$$P_{\theta,\mathcal{X}}(X=x) = \frac{exp\left\{\theta^{T}g(x)\right\}}{\kappa(\theta,\mathcal{X})}$$
(1)

mit

- $x \in \mathcal{X}$
- $oldsymbol{ heta} heta \in \Omega \subset \mathbb{R}^q \ ... \ \mathsf{Vektor} \ \mathsf{der} \ \mathsf{Modellparameter}$
- g(x) ... q-Vektor aus Statistiken basierend auf der Nachbarschaftsmatrix X

• Problem: $\kappa(\theta, \mathcal{X}) = \sum_{x \in \mathcal{X}} exp\{\theta^T g(x)\}$

Simulation von Zufallsgraphen

Simulation einer Sequenz von Graphen aus Zielverteilung $P_{\theta}(x)$ via Makrov Chain Monte Carlo Algorithmus:

- Beliebiges Netzwerk mit fester Knotenzahl N als Startpunkt.
- ② Aus dem aktuellen Graphen $x^{(m-1)}$ wird ein zufälliges Knotenpaar i, j $(i, j \in 1, ..., N)$ ausgewählt.
- Vorgeschlagener Graph: $x^* = x^{(m-1)}$ bis auf $x_{ij}^{(m-1)} = 1 x_{ij}^{(m-1)}$.
- **3** Akzeptanz mit der Wahrscheinlichkeit $min\{1, \frac{P_{\theta}(x^*)}{P_{\theta}(x^{(m-1)})}\}.$
- **5** Bei Akzeptanz $x^{(m)} = x^*$ und $x^{(m)} = x^{(m-1)}$ sonst.
- 1 Iteration der Schritte 2 5.
 - unabhängig von Startpunkt bei ausreichendem Burn In
 - unabhängige Ziehungen aus gleicher Kette durch Thinning

Schätzung der Modellparameter

Ziel: Zentrierung der Statitiken der simulierten Netzwerke über denen des beobachteten Netzwerkes:

$$E_{\theta}(z(X)) - z(x_{obs}) = 0 \tag{2}$$

- Problem: $E_{\theta}(z(X)) = \sum_{x \in \mathcal{X}} z(x) P_{\theta}(x)$
- Lösung: Importance Sampling
- 1 Ziehung einer großen Stichprobe von Graphen auf Basis eines vorläufigen Parametervektors $\tilde{\theta}$.
 - Benutzung gewichteter Stichprobendurchschnitt der Statistiken.
 - **3** Erzeugen einer Sequenz von Parametern $\widetilde{\theta}, \theta^{(1)}, \theta^{(2)}, ..., \theta^{(G)}$ durch Fisher Scoring.
 - **4** Neustart mit $\theta^{(G)}$ als $\tilde{\theta}$.

Anwendung des ERGM

Vergleich mit Großwaffenhandel

6 Fazit

Fazit₁