Supplemental file of "Multi-Layer Competitive-Cooperative Framework for Performance Enhancement of Differential Evolution"

Sheng Xin Zhang, Li Ming Zheng, Kit Sang Tang, Shao Yong Zheng, Wing Shing Chan

Part I Pseudocodes of Four MLCC Variants.

Algorithm S-1. MLCC-SI

Algorithm S-2. MLCC-SBi

Algorithm S-3. MLCC-SIBi

Algorithm S-4. MLCC-L-SI

Descriptions of MLCC-SI

As seen from **Algorithm S-1**, each individual in MLCC-SI has independent layer associated operations and parameters. For the superior individuals, lines 11-19 generate two trial vectors for each individual by simultaneously using SHADE [2] and IDE [1]. As required by SHADE, if the generated offspring is better than the target vector, its algorithmic configuration is updated. (lines 14-16). Afterward, lines 20-26 are used to select the better one as offspring to compete with the target vector. If the offspring successfully replaces the target vector, its corresponding layer preference is set as its generation optimizer (line 23). For the inferior solutions, they are evolved following lines 28-46 based on the individual preference. Lines 49-51 randomly remove some individuals from the external archive to keep the archive size $|A| \le NP$. Line 52 updates the memory M_F and M_{CR} based on the successful parameter archives S_F and S_{CR} respectively, following the original proposal in SHADE [2]. When $G \ge G_T$, line 53 changes the setting of SR_T to distinguish earlier and later stages and determine the IDM mutation strategy (lines 17-19 and 38-40), which are the same as those done in IDE [1].

Algorithm S-1. MLCC-SI

1: Initialize a population $P_0 = \{\vec{x}_{i,0}, i \in \{1, 2, \dots NP\}\}$,

- 2: Initialize SHADE layer: Set memory M_F , M_{CR} , set history lengeth H, initialize history index k = 1, initialize external archive $A = \emptyset$;
- 3: Initialize IDE layer: Set maximum generation number G_{max} , set consecutive generations T = 1000D/NP, generation index threshold $G_T = 5 \times T$, the success ratio threshold $SR_T = 0$, Accumulation = 0, Stage = earlier stage;
- 4: Initialize the individual preference $\{IP_{i,0} = ceil(rand_i(0,1)\times 2), i \in \{1,2,\cdots NP\}\}$, set generation count G = 0, set N = 0.05, set SHADE as method 1, IDE as method 2;
 - 5: While the stopping criteria are not satisfied, Do
- 6: Determine the fitness ranking FR(i), $i \in \{1, 2, \dots NP\}$ of each individual; set $top_G = ceil(rand(0, 1) \times NP \times N)$, initialize success count SC = 0;
 - 7: Set $S_F = \emptyset$, $S_{CR} = \emptyset$; (For SHADE layer)
- 8: Classify the population copy of IDE layer into superior (*S*) and inferior (*I*) subpopulations based on fitness (See **Procedure 1**); (For IDE layer)
 - 9: **For** i = 1: *NP* **Do**
 - 10: **If** $FR(i) \leq top_G$
 - 11: For $\vec{x}_{i,G}$, generate two trial vectors $\vec{u}_{i,m}$, $m \in \{1,2\}$ by using SHADE and IDE, respectively as follows:

------ For SHADE Layer ------

12: $r_i = randint[1, H]$, $F^{SHA}_{i,G} = randc_i(M_{F,r_i}, 0.1)$, $CR^{SHA}_{i,G} = randn_i(M_{CR,r_i}, 0.1)$, where randc(a,b) and randn(a,b) are Cauchy distribution and normal distribution with location parameter a and scale parameter b, respectively.

- 13: Generate trial vector $\vec{u}_{i,G}$ via current-to-pbest/1/bin [2] using $F^{SHA}_{i,G}$ and $CR^{SHA}_{i,G}$;
- 14: **If** $f(\vec{u}_{i}) \le f(\vec{x}_{i,G})$
- 15: $S_F \leftarrow F^{SHA}_{i,G}, S_{CR} \leftarrow CR^{SHA}_{i,G};$
- 16: **End If**

17: Set o = i when Stage = eariler stage;

18:
$$F^{IDE}_{o,G} = randn(FR(o)/NP), 0.1)$$
, $CR^{IDE}_{i,G} = randn(FR(i)/NP), 0.1)$;

19: Generate trial vector $\vec{u}_{i^2,G}$ via IDM mutation strategy (See **Procedure 2**) and classic crossover operation using $F^{IDE}_{o,G}$ and $CR^{IDE}_{i,G}$;

20: Choose the better trial vector \vec{u}_{j^b} in terms of fitness from \vec{u}_{j^m} , $m \in \{1, 2\}$, where b indicates the index of the better method;

21: **If**
$$f(\vec{u}_{i^b,G}) \le f(\vec{x}_{i,G})$$

22:
$$\vec{x}_{i,G+1} = \vec{u}_{i^b,G}, A \leftarrow \vec{x}_{i,G}, SC = SC + 1;$$

23: $IP_{i,G+1} = b$;

```
24: Else
  25:
         \vec{x}_{i,G+1} = \vec{x}_{i,G};
  26: End If
 27: Else If FR(i) > top_G
 28: For \vec{x}_{i,G},
 29: If IP_{i,G} = 1
  ------For SHADE Laver -------
 30: r_i = randint[1, H], F^{SHA}_{i,G} = randc_i(M_{F,r}, 0.1), CR^{SHA}_{i,G} = randn_i(M_{CR,r}, 0.1);
 31: Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin [2] using F^{SHA}_{i,G} and CR^{SHA}_{i,G};
  32:
        If f(\vec{u}_{iG}) \leq f(\vec{x}_{iG})
           S_F \leftarrow F^{SHA}_{i,G}, S_{CR} \leftarrow CR^{SHA}_{i,G}, A \leftarrow \vec{x}_{i,G},
 33:
           \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, SC = SC + 1;
  34:
        Else
  35:
           \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = 2;
  36: End If
  37: Else If IP_{i,G} = 2
       38: Set o = i when Stage = eariler stage;
 39: F_{o,G}^{IDE} = randn(FR(o)/NP), 0.1), CR_{i,G}^{IDE} = randn(FR(i)/NP), 0.1);
  40: Generate trial vector \vec{u}_{i,G} via IDM mutation strategy (See Procedure 2) and classic crossover operation using F^{IDE}_{a,G} and
CR^{IDE}_{i,G};
  41:
       If f(\vec{u}_{iG}) \leq f(\vec{x}_{iG})
  42:
           \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, A \leftarrow \vec{x}_{i,G}, SC = SC + 1;
  43:
           \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = 1;
  44:
  45: End If
  46: End If
  47: End If
 48: End For
 49: If |A| > NP
 50: randomly delete |A| - NP individuals from A;
  51: End If
  52: Update M_F and M_{CR} based on S_F and S_{CR}, respectively (See Procedure 3); (For SHADE layer)
  53: Insert Procedure 4 here. (For IDE layer)
  54: G = G + 1:
  55: End While
```

Procedure 1: Classify the population copy of IDE layer into superior (S) and inferior (I) subpopulations based on fitness [1]

The proportion of superior individuals is set as

$$ps = 0.1 + 0.9 \times 10^{5(G/G_{\text{max}} - 1)}$$

Where G is the current generation index and G_{max} is the maximum generation number.

Procedure 2: IDM mutation strategy [1]

$$\begin{split} \vec{v}_{i,G} &= \vec{x}_{o,G} + \begin{cases} F^{IDE}_{\quad \ o,G} \cdot (\vec{x}_{r_i,G} - \vec{x}_{o,G}) + F^{IDE}_{\quad \ o,G} \cdot (\vec{x}_{r_2,G} - \vec{d}_{r_3,G}) & o \in S \\ F^{IDE}_{\quad \ o,G} \cdot (\vec{x}_{better,G} - \vec{x}_{o,G}) + F^{IDE}_{\quad \ o,G} \cdot (\vec{x}_{r_2,G} - \vec{d}_{r_3,G}) & o \in I \end{cases} \\ o \neq r_1 \neq r_2 \neq r_3 \end{split}$$

Where o, r_1, r_2 and r_3 are selected from the range [1, NP] and are mutually different, better is the index of a individual selected from the superior subpopulation $S, \vec{d}_{r,G}$ is perturbation vector to avoid local optimal with each dimension j determined by

$$d_{r_{3},G}^{j} = \begin{cases} L^{j} + rand(0,1) \cdot (U^{j} - L^{j}) & if \ rand_{i}^{j}(0,1) < p_{d} \\ x_{r_{3},G}^{j} & otherwise \end{cases}$$

Where U^j and L^j are upper and lower bound of dimension j, $rand_i^j(0,1)$ is a uniformly distributed random number within (0,1), and p_d is set as $0.1 \times ps$.

Procedure 3: Update M_F and M_{CR} [2]

.....

$$\begin{split} \boldsymbol{M}_{F,k,G+1} &= \begin{cases} mean_{W_L}(S_F) & if \ S_F \neq \varnothing \\ \boldsymbol{M}_{F,k,G} & otherwise \end{cases} \\ \boldsymbol{M}_{CR,k,G+1} &= \begin{cases} mean_{W_A}(S_{CR}) & if \ S_{CR} \neq \varnothing \\ \boldsymbol{M}_{CR,k,G} & otherwise \end{cases} \end{split}$$

 $\text{Where } mean_{W_A}(S_{CR}) = \sum_{m=1}^{|S_{CR}|} w_m \cdot S_{CR,m} \,, \qquad mean_{W_L}(S_F) = \frac{\sum_{m=1}^{|S_F|} w_m \cdot S_{F,m}^2}{\sum_{m=1}^{|S_F|} w_m \cdot S_{F,m}^2} \,,$

$$w_m = \frac{\Delta f_m}{\sum_{m=1}^{|S_{CR}|} \Delta f_m} \text{ where } \Delta f_m = \left| f(\vec{u}_{m,G}) - f(\vec{x}_{m,G}) \right|$$

```
If S_F \neq \emptyset and S_{CR} \neq \emptyset

k = k + 1;

If k > H

k = 1;

End If
```

End If

Procedure 4: Determine earlier or latter stages [1]

```
1: Success rate SR = SC/NP;
2: If G < G_T
                 //SR_T = 0 for earlier stage
3:
      If SR = 0
4:
         Accumulation = Accumulation + 1;
5:
6:
        Accumulation = 0;
7:
      End If
      If Accumulation \geq T
8:
9:
        If Stage = eariler stage
10:
            Set Stage = later stage;
11:
        End If
12:
      End If
13: Else
```

```
14:
       If SR \le 0.1 // SR_T = 0.1 for later stage
         Accumulation = Accumulation + 1;
15:
16:
       Else
17:
         Accumulation = 0;
18:
       End If
19:
      If Accumulation \geq T
20:
        If Stage = eariler stage
21:
            Set Stage = later stage;
         End If
22:
23:
      End If
24: End If
```

Procedure 5: Generate $F^{BiD}_{i,G}$ and $CR^{BiD}_{i,G}$ for each individual i according to bimodal parameter sample [3].

```
F_{i,G}^{BiD} = \begin{cases} rand_{C_{i}}(0.65, 0.1) & if \ rand(0,1) < 0.5 \\ rand_{C_{i}}(1.0, 0.1) & otherwise \end{cases}
CR_{i,G}^{BiD} = \begin{cases} rand_{C_{i}}(0.1, 0.1) & if \ rand(0,1) < 0.5 \\ rand_{C_{i}}(0.95, 0.1) & otherwise \end{cases}
```

Where $rand_{C_i}(a,b)$ is a random number for individual i, generated by a Cauchy distribution with location parameter a and scale parameter b.

Descriptions of MLCC-SBi

As seen from Algorithm S-2, the two layers in MLCC-SBi have the same generation strategy but different parameter strategies, i.e SHA for SHADE layer and BiD for BiDE layer. For the superior individuals, lines 10-21 generate two trial vectors for each individual by simultaneously using SHADE and BiDE. As required by SHA, if the generated offspring is better than the target vector, its algorithmic configuration is updated (lines 13-15). As for BiD, its algorithmic configuration is updated according to comparision result of the offspring vector and the target vector (lines 17-21). Specifically, if the offspring vector is better than the target vector, the parameters are preserved to the next generation (line 18), otherwise, the parameters are regenerated by the bimodal parameter sample (line 20). Afterward, lines 22-28 are used to select the better one as offspring to compete with the target vector. If the offspring successfully replaces the target vector, its corresponding layer preference is set as its generation optimizer (line 25). For the inferior solutions, they are evolved following lines 30-48 based on the individual preference. Lines 50-52 randomly remove some individuals from the external archive to keep the archive size $|A| \le NP$. Line 53 updates the memory M_F and M_{CR} based on the successful parameter archives S_F and S_{CR} respectively, following the original proposal in SHADE [2].

Algorithm S-2. MLCC-SBi

1: Initialize a population $P_0 = \{\vec{x}_{i,0}, i \in \{1, 2, \dots NP\}\}\$,

- 2: Initialize SHADE layer: Set memory M_F , M_{CR} , set history lengeth H, initialize history index k = 1, initialize external archive $A = \emptyset$;
- 3: Initialize BiDE layer: Generate $F^{BiD}_{i,G}$ and $CR^{BiD}_{i,G}$, $i \in \{1, 2, \dots NP\}$ according to bimodal parameter sample. (See **Procedure** 5)
- 4: Initialize the individual preference $\{IP_{i,0} = ceil(rand_i(0,1)\times 2), i \in \{1,2,\cdots NP\}\}$, set generation count G = 0, set N = 0.05, set SHADE as method 1, BiDE as method 2;
 - 5: While the stopping criteria are not satisfied, Do
 - 6: Determine the fitness ranking FR(i), $i \in \{1, 2, \dots NP\}$ of each individual, set $top_G = ceil(rand(0, 1) \times NP \times N)$;
 - 7: Set $S_F = \emptyset$, $S_{CR} = \emptyset$; (For SHADE layer)

```
8: For i = 1: NP Do
9: If FR(i) \leq top_G
10: For \vec{x}_{i,G}, generate two trial vectors \vec{u}_{i^m}, m \in \{1,2\} by using SHADE and BiDE, respectively as follows:
11: r_i = randint[1, H], F_{i,G}^{SHA} = randc_i(M_{F,E}, 0.1), CR_{i,G}^{SHA} = randn_i(M_{CR,E}, 0.1);
12: Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin [2] using F^{SHA}_{i,G} and CR^{SHA}_{i,G};
13: If f(\vec{u}_{i}) \le f(\vec{x}_{i,G})
        S_F \leftarrow F^{SHA}_{i,G}, S_{CR} \leftarrow CR^{SHA}_{i,G};
14:
15: End If
------ For BiDE Layer -------
16: Generate trial vector \vec{u}_{i^2 G} via current-to-pbest/1/bin [2] using F^{BiD}_{i,G} and CR^{BiD}_{i,G};
17: If f(\vec{u}_{i^2|G}) \le f(\vec{x}_{i,G})
        F^{BiD}_{i,G+1} = F^{BiD}_{i,G}, CR^{BiD}_{i,G+1} = CR^{BiD}_{i,G};
18:
19: Else
        Generate F^{BiD}_{i,G+1} and CR^{BiD}_{i,G+1} for individual i according to bimodal parameter sample. (See Procedure 5)
20:
21: End If
22: Choose the better trial vector \vec{u}_{i^b,G} in terms of fitness from \vec{u}_{i^m,G}, m \in \{1,2\}, where b indicates the index of the better method;
23: If f(\vec{u}_{i,G}) \le f(\vec{x}_{i,G})
24:
        \vec{x}_{i,G+1} = \vec{u}_{i,G}, A \leftarrow \vec{x}_{i,G};
25:
        IP_{i,G+1} = b;
26: Else
27:
        \vec{x}_{i,G+1} = \vec{x}_{i,G};
28: End If
29: Else If FR(i) > top_G
30: For \vec{x}_{i,G},
31: If IP_{i,G} = 1
------For SHADE Layer ------
32: r_i = randint[1, H], F^{SHA}_{i,G} = randc_i(M_{F,r_i}, 0.1), CR^{SHA}_{i,G} = randn_i(M_{CR,r_i}, 0.1);
33: Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin [2] using F^{SHA}_{i,G} and CR^{SHA}_{i,G};
      If f(\vec{u}_{i,G}) \leq f(\vec{x}_{i,G})
34:
          \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, A \leftarrow \vec{x}_{i,G}, S_F \leftarrow F^{SHA}_{i,G}, S_{CR} \leftarrow CR^{SHA}_{i,G};
35:
36:
37:
          \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = 2;
      End If
39: Else If IP_{i,G} = 2
------ For BiDE Laver
40: Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin [2] using F^{BiD}_{i,G} and CR^{BiD}_{i,G};
41:
      If f(\vec{u}_{iG}) \leq f(\vec{x}_{iG})
         \vec{x}_{i,G+1} = \vec{u}_{i,G} \,, \, IP_{i,G+1} = IP_{i,G} \,, \, A \leftarrow \vec{x}_{i,G} \,, \, F^{BiD}_{i,G+1} = F^{BiD}_{i,G} \,, \, \, CR^{BiD}_{i,G+1} = CR^{BiD}_{i,G} \,;
42:
43:
         \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = 1;
44:
        Generate F^{BiD}_{i,G+1} and CR^{BiD}_{i,G+1} for individual i according to bimodal parameter sample. (See Procedure 5)
45:
```

47: End If

- 48: **End If**
- 49: End For
- 50: **If** |A| > NP
- 51: randomly delete |A| NP individuals from A;
- 52: **End If**
- 53: Update M_F and M_{CR} based on S_F and S_{CR} , respectively (See **Procedure 3**); (For SHADE layer)
- 54: G = G + 1:
- 55: End While

Algorithm S-3. MLCC-SIBi

1: Initialize a population $P_0 = \{\vec{x}_{i,0}, i \in \{1, 2, \dots NP\}\}$,

- 2: Initialize SHADE layer: Set memory M_F , M_{CR} , set history lengeth H, initialize history index k = 1, initialize external archive $A = \emptyset$;
- 3: Initialize IDE layer: Set maximum generation number G_{max} , set consecutive generations T = 1000D/NP, generation index threshold $G_T = 5 \times T$, the success ratio threshold $SR_T = 0$, Accumulation = 0, Stage = earlier stage;
- 4: Initialize BiDE layer: Generate $F^{BiD}_{i,G}$ and $CR^{BiD}_{i,G}$, $i \in \{1, 2, \dots NP\}$ according to bimodal parameter sample. (See **Procedure** 5)
- 5: Initialize the individual preference $\{IP_{i,0} = ceil(rand_i(0,1)\times 3), i \in \{1,2,\cdots NP\}\}$, set generation count G = 0, set N = 0.05, set SHADE as method 1, IDE as method 2, BiDE as method 3;
 - 6: While the stopping criteria are not satisfied, Do
- 7: Determine the fitness ranking FR(i), $i \in \{1, 2, \dots NP\}$ of each individual; set $top_G = ceil(rand(0, 1) \times NP \times N)$, initialize success count SC = 0;
 - 8: Set $S_F = \emptyset$, $S_{CR} = \emptyset$; (For SHADE layer)
- 9: Classify the population copy of IDE layer into superior (*S*) and inferior (*I*) subpopulations based on fitness (See **Procedure 1**); (For IDE layer)
 - 10: **For** i = 1: *NP* **Do**
 - 11: **If** $FR(i) \leq top_G$
 - 12: For $\vec{x}_{i,G}$, generate three trial vectors $\vec{u}_{i,m}$, $m \in \{1,2,3\}$ by using SHADE, IDE and BiDE, respectively as follows:

------ For SHADE Layer ------

```
13: \quad r_i = randint \left[ 1, H \right], \ F^{SHA}_{i,G} = rand c_i(M_{F,r_i}, 0.1) \ , \ CR^{SHA}_{i,G} = rand n_i(M_{CR,r_i}, 0.1) \ ;
```

- 14: Generate trial vector $\vec{u}_{i^{l},G}$ via current-to-pbest/1/bin using $F^{SHA}_{i,G}$ and $CR^{SHA}_{i,G}$;
- 15: **If** $f(\vec{u}_{i,G}) \le f(\vec{x}_{i,G})$
- 16: $S_F \leftarrow F^{SHA}_{i,G}, S_{CR} \leftarrow CR^{SHA}_{i,G};$
- 17: **End If**

------For IDE Layer ------

- 18: Set o = i when Stage = eariler stage;
- 19: $F^{IDE}_{o.G} = randn(FR(o)/NP), 0.1)$; $CR^{IDE}_{i,G} = randn(FR(i)/NP), 0.1)$;
- 20: Generate trial vector $\vec{u}_{i^2,G}$ via IDM mutation strategy (See **Procedure 2**) and classic crossover operation using $F^{IDE}_{o,G}$ and $CR^{IDE}_{i,G}$;

-------For BiDE Layer -------

- 21: Generate trial vector $\vec{u}_{i^3,G}$ via current-to-pbest/1/bin using $F^{BiD}_{i,G}$ and $CR^{BiD}_{i,G}$;
- 22: **If** $f(\vec{u}_{i^3G}) \le f(\vec{x}_{i,G})$
- 23: $F_{i,G+1}^{BiD} = F_{i,G}^{BiD}$, $CR_{i,G+1}^{BiD} = CR_{i,G}^{BiD}$;
- 24: Else
- 25: Generate $F^{BiD}_{i,G+1}$ and $CR^{BiD}_{i,G+1}$ for individual i according to bimodal parameter sample. (See **Procedure 5**)
- 26: **End If**

```
27: Choose the best trial vector \vec{u}_{j^b} in terms of fitness from \vec{u}_{j^m}, m \in \{1, 2, 3\}, where b indicates the index of the best method;
  28: If f(\vec{u}_{i',G}) \le f(\vec{x}_{i,G})
  29:
           \vec{x}_{i,G+1} = \vec{u}_{i,b}, A \leftarrow \vec{x}_{i,G}, SC = SC + 1;
  30:
           IP_{i,G+1} = b;
  31: Else
  32:
           \vec{x}_{i,G+1} = \vec{x}_{i,G};
  33: End If
  34: Else If FR(i) > top_G
  35: For \vec{x}_{i,G},
  36: If IP_{iG} = 1
                     ------ For SHADE Layer ------
       r_i = randint[1, H], F^{SHA}_{i,G} = randc_i(M_{F,r_i}, 0.1), CR^{SHA}_{i,G} = randn_i(M_{CR,r_i}, 0.1);
        Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin using F^{SHA}_{i,G} and CR^{SHA}_{i,G};
  39:
         If f(\vec{u}_{i,G}) \leq f(\vec{x}_{i,G})
             S_F \leftarrow F_{i,G}, S_{CR} \leftarrow CR_{i,G}, A \leftarrow \vec{x}_{i,G}
  40:
             \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, SC = SC + 1;
  41:
             \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = ceil(rand(0,1) \times 3) \setminus 1;
  42:
  43:
         End If
  44: Else If IP_{i,G} = 2
                                                ------ For IDE Layer ------
  45: Set o = i when Stage = eariler stage;
  46: F_{o,G}^{IDE} = randn(FR(o)/NP), 0.1), CR_{i,G}^{IDE} = randn(FR(i)/NP), 0.1);
  47: Generate trial vector \vec{u}_{i,G} via IDM mutation strategy (See Procedure 2) and classic crossover operation using F^{IDE}_{o,G} and
CR^{IDE}_{i,G};
  48: If f(\vec{u}_{iG}) \le f(\vec{x}_{iG})
            \vec{x}_{i,G+1} = \vec{u}_{i,G} \,,\, IP_{i,G+1} = IP_{i,G} \,,\, A \longleftarrow \vec{x}_{i,G} \,,\, SC = SC + 1;
  49:
  50:
  51:
             \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = ceil(rand(0,1) \times 3) \setminus 2;
  52:
         End If
  53: Else If IP_{i,G} = 3
  ------ For BiDE Layer ------
  54: Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin using F^{BiD}_{i,G} and CR^{BiD}_{i,G};
         If f(\vec{u}_{iG}) \leq f(\vec{x}_{iG})
            \vec{x}_{i,G+1} = \vec{u}_{i,G} , IP_{i,G+1} = IP_{i,G} , A \leftarrow \vec{x}_{i,G} , F^{BiD}_{i,G+1} = F^{BiD}_{i,G} , CR^{BiD}_{i,G+1} = CR^{BiD}_{i,G} , SC = SC + 1;
  56:
  57:
  58:
            \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = ceil(rand(0,1) \times 3) \setminus 3;
           Generate F^{BiD}_{i,G+1} and CR^{BiD}_{i,G+1} for individual i according to bimodal parameter sample. (See Procedure 5)
  59:
  60:
  61: End If
  62: End If
  63: End For
  64: If |A| > NP
```

65: randomly delete |A| - NP individuals from A;

- 66: End If
- 67: Update M_F and M_{CR} based on S_F and S_{CR} , respectively (See **Procedure 3**); (For SHADE layer)
- 68: Insert **Procedure 4** here. (For IDE layer)
- 69: G = G + 1; 70: **End While**

(a) At G = 0, layer L-SHADE has a population of $20 \times D$ individulas while layer M_IDE has a population of $5 \times D$ individulas;

(b) At G > 0, when $NP_G \ge 5 \times D$ (the initial population size of M_IDE), the population size of L-SHADE decreases by following the liniear population size reduction (LPSR) scheme while the population size of M_IDE remains $5 \times D$.

(c) At G > 0, when $NP_G < 5 \times D$ (the initial population size of M_IDE), the population sizes of L-SHADE and M_IDE both decrease following LPSR scheme.

(d) At the last generation, the population sizes of L-SHADE and M_IDE both decrease to 4, the minimum number of individuals required by mutation operation.

Fig. S1 Graphic illustration of MLCC-L-SI (Algorithm S-4).

Algorithm S-4. MLCC-L-SI

```
1: Initialize a population P_0 = \{\vec{x}_{i,0}, i \in \{1, 2, \dots NP^{init}\}\}, set NP_0 = NP^{init}, set NP^{M\_IDE}, initialize external archive A = \emptyset, initialize the maximum external archive size MAS_0 = \text{ceil}(2.6 \times NP_0), set NPT_0 = \min(NP_0, NP^{M\_IDE}), set maximum generation number G_{max};
```

- 2: Initialize L-SHADE layer: Set memory M^{LSHA}_{F} , M^{LSHA}_{CR} , set history lengeth H^{LSHA} , initialize history index $k^{LSHA} = 1$;
- 3: Initialize M_IDE layer: Set memory $M^{M_IDE}_F$, $M^{M_IDE}_{CR}$, set history lengeth H^{M_IDE} , initialize history index $k^{M_IDE} = 1$, set consecutive generations $T = \text{ceil}(0.1 \times G_{max})$, generation index threshold $G_T = 5 \times T$, the success ratio threshold $SR_T = 0$, Accumulation = 0, Stage = eariler stage;
- 4: Initialize the individual preference $\{IP_{i,0} = 1, i \in \{1, 2, \dots NP_0\}\}$, set generation count G = 0, set N = 0.05, set L-SHADE as method 1, M_IDE as method 2;
 - 5: While the stopping criteria are not satisfied, **Do**
 - 6: Set $S^{LSHA}_{F} = \emptyset$, $S^{LSHA}_{CR} = \emptyset$; (For L-SHADE layer)
 - 7: Set $S^{M_IDE}_{F} = \emptyset$, $S^{M_IDE}_{CR} = \emptyset$; (For M_IDE layer)
 - 8: Determine the fitness ranking FR(i), $i \in \{1, 2, \dots, NPT_G\}$, set $top_G = ceil(rand(0, 1) \times NPT_G \times N)$;
 - 9: **For** i = 1: NPT_G **Do**
 - 10: **If** $FR(i) \leq top_G$
 - 11: For $\vec{x}_{i,G}$, generate two trial vectors $\vec{u}_{i^m,G}$, $m \in \{1,2\}$ by using L-SHADE and M_IDE, respectively as follows:

----- For L-SHADE Layer

$$12: \quad r^{LSHA}_{\quad i} = randint \left[1, H^{LSHA} \right], \; F^{LSHA}_{\quad i,G} = randc_i (M^{LSHA}_{\quad F,r^{LSHA}_i}, 0.1) \,, \; CR^{LSHA}_{\quad i,G} = randn_i (M^{LSHA}_{\quad CR,r^{LSHA}_i}, 0.1) \,;$$

- 13: Generate trial vector $\vec{u}_{i'G}$ via current-to-pbest/1/bin [4] using $F^{LSHA}_{i,G}$ and $CR^{LSHA}_{i,G}$;
- 14: **If** $f(\vec{u}_{i,G}) \le f(\vec{x}_{i,G})$
- 15: $S^{LSHA}_{F} \leftarrow F^{LSHA}_{i,G}, S^{LSHA}_{CR} \leftarrow CR^{LSHA}_{i,G};$
- 16: End If

- 17: Set o = i when Stage = earlier stage;
- 18: $r^{M_{-}IDE}_{i} = randint \left[1, H^{M_{-}IDE} \right], F^{M_{-}IDE}_{i,G} = randc_{i} (M^{M_{-}IDE}_{F,r^{M_{-}IDE}}, 0.1), CR^{M_{-}IDE}_{i,G} = randn_{i} (M^{M_{-}IDE}_{CR,r^{M_{-}IDE}}, 0.1);$
- 19: Generate trial vector $\vec{u}_{i^2,G}$ via IDM mutation strategy (See **Procedure 2**) and classic crossover operation using $F^{M_IDE}_{i,G}$

and $CR^{M_{-}IDE}_{i,G}$;

- 20: **If** $f(\vec{u}_{i^2G}) \le f(\vec{x}_{iG})$
- 21: $S^{M_{-}IDE}_{F} \leftarrow F^{M_{-}IDE}_{i,G}, S^{M_{-}IDE}_{CR} \leftarrow CR^{M_{-}IDE}_{i,G};$
- 22: **End If**

22. Change the better trial vector \vec{x} in terms of fitness from \vec{x} and (1,2) where k indicates the index of the better method.

- 23: Choose the better trial vector $\vec{u}_{i^b,G}$ in terms of fitness from $\vec{u}_{i^m,G}$, $m \in \{1,2\}$, where b indicates the index of the better method;
- 24: **If** $f(\vec{u}_{i,G}) \le f(\vec{x}_{i,G})$
- 25: $\vec{x}_{i,G+1} = \vec{u}_{i,G}$, $A \leftarrow \vec{x}_{i,G}$, SC = SC + 1;
- 26: $IP_{i,G+1} = b$;
- 27: **Else**
- 28: $\vec{x}_{i,G+1} = \vec{x}_{i,G}$;
- 29: **End If**
- 30: Else If $FR(i) > top_G$
- 31: For $\vec{x}_{i,G}$,
- 32: **If** $IP_{i,G} = 1$

- $33: \quad r^{\textit{LSHA}}_{\quad i} = randint \Big[1, H^{\textit{LSHA}} \Big] \,, \\ F^{\textit{LSHA}}_{\quad i,G} = rand c_i (M^{\textit{LSHA}}_{\quad F,r^{\textit{LSHA}}_i}, 0.1) \,, \\ \ CR^{\textit{LSHA}}_{\quad i,G} = rand n_i (M^{\textit{LSHA}}_{\quad CR,r^{\textit{LSHA}}_i}, 0.1) \,; \\ \ randing (M^{\textit{LSHA}}_{\quad CR,r^{\textit{LSHA}}_i}, 0.1) \,, \\ \ randing (M^{\textit{LSHA}}_{\quad CR,r^{\textit{LSHA}}_i}, 0.1) \,; \\ \ randing (M^{\textit{LSHA}}_{\quad CR,r^{\textit{LSHA}}_i}, 0.1) \,, \\ \ randing (M^{\textit{LSHA}}_{\quad CR,r^{\textit{LSHA}}_i}, 0.1) \,; \\ \ randing (M^{\textit{LSHA}}_{\quad CR,r^{\textit{LSHA}_i}_i}, 0.1) \,; \\ \ randing (M^{\textit{LSHA}_i}_{\quad CR,r^{\textit{LSHA}_i}_i}, 0.1) \,; \\ \ randing (M^{\textit{LSHA}_$
- 34: Generate trial vector $\vec{u}_{i,G}$ via current-to-pbest/1/bin [4] using $F^{LSHA}_{i,G}$ and $CR^{LSHA}_{i,G}$;

```
35: If f(\vec{u}_{iG}) \le f(\vec{x}_{iG})
             S^{LSHA}_{F} \leftarrow F^{LSHA}_{i,G}, S^{LSHA}_{CR} \leftarrow CR^{LSHA}_{i,G}, A \leftarrow \vec{x}_{i,G},
   36:
              \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, SC = SC + 1;
   37:
   38:
              \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = 2;
   39:
         End If
  40: Else If IP_{i,G} = 2
   41: Set o = i when Stage = eariler stage;
  42: r^{M\_IDE}_{i} = randint \left[ 1, H^{M\_IDE} \right], \; F^{M\_IDE}_{i,G} = randc_{i} \left( M^{M\_IDE}_{F,r^{M\_IDE}_{i}}, 0.1 \right), \; CR^{M\_IDE}_{i,G} = randn_{i} \left( M^{M\_IDE}_{CR,r^{M\_IDE}_{i}}, 0.1 \right);
  43: Generate trial vector \vec{u}_{i,G} via IDM mutation strategy (See Procedure 2) and classic crossover operation using F^{M\_IDE}_{i,G}
and CR^{M_{-}IDE}_{i,G};
   44: If f(\vec{u}_{i,G}) \leq f(\vec{x}_{i,G})
             S^{M_{-}IDE}_{F} \leftarrow F^{M_{-}IDE}_{i,G}, S^{M_{-}IDE}_{CR} \leftarrow CR^{M_{-}IDE}_{i,G}, A \leftarrow \vec{x}_{i,G},
   45:
             \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, SC = SC + 1;
   46:
             \vec{x}_{i,G+1} = \vec{x}_{i,G}, IP_{i,G+1} = 1;
   47:
   48: End If
   49: End If
   50: End If
   51: End For
   52: If NP_G > NP^{M\_IDE}
           For i = NPT_G+1: NP_G Do // These individuals only connect to the L-SHADE layer, as shown in Fig. S1.(b).
            r^{LSHA}_{i} = randint \left[ 1, H^{LSHA} \right], F^{LSHA}_{i,G} = randc_{i}(M^{LSHA}_{F,r^{LSHA}_{i}}, 0.1), CR^{LSHA}_{i,G} = randn_{i}(M^{LSHA}_{CR,r^{LSHA}_{i}}, 0.1);
  54:
            Generate trial vector \vec{u}_{i,G} via current-to-pbest/1/bin [4] using F^{LSHA}_{i,G} and CR^{LSHA}_{i,G};
  55:
            If f(\vec{u}_{i,G}) \leq f(\vec{x}_{i,G})
   56:
                S^{LSHA}_{F} \leftarrow F^{LSHA}_{i,G}, S^{LSHA}_{CR} \leftarrow CR^{LSHA}_{i,G}, A \leftarrow \vec{x}_{i,G},
   57:
                \vec{x}_{i,G+1} = \vec{u}_{i,G}, IP_{i,G+1} = IP_{i,G}, SC = SC + 1;
             Else
   58:
                \vec{x}_{i,G+1} = \vec{x}_{i,G};
   59:
   60:
             End If
   61:
           End For
   63: Update M^{LSHA}_F and M^{LSHA}_{CR} based on S^{LSHA}_F and S^{LSHA}_{CR}, respectively (See Procedure 3); (For L-SHADE layer)
   64: Update M^{M\_IDE}_F and M^{M\_IDE}_{CR} based on S^{M\_IDE}_F and S^{M\_IDE}_{CR}, respectively (See Procedure 3); (For M\_IDE layer)
   65: Insert Procedure 4 here. (For M IDE layer)
   66: Calculate NP_{G+1} based on the linear population size reduction (LPSR) scheme [4];
   67: If NP_G > NP_{G+1}
   68: Delete the worst NP_G - NP_{G+1} individuals in term of fitness from P_G;
   69: Discard the preferences of the deleted individuals;
   70: End If
  71: MAS_G = ceil(2.6 \times NP_G);
  72: If |A| > MAS_G, randomly delete |A| - MAS_G individuals from A; End If
   73: G = G + 1;
   74: NPT_G = min(NP_G, NP^{M\_IDE});
   75: End While
```

References

- [1] L. Tang, Y. Dong, J. Liu, Differential evolution with an individual-dependent mechanism, IEEE Trans. Evol. Comput. 19 (2015) 560-574.
- [2] R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution, In: Proceedings of the IEEE Congress on Evolutionary Computation 2013, June20–23, Cancún, México, 2013, pp.71–78.
- Y. Wang, H.-X. Li, T. Huang, L. Li, Differential evolution based on covariance matrix learning and bimodal distribution parameter setting, Appl. Soft Comput.18 (2014) 232–247.
- [4] R. Tanabe , A.S. Fukunaga , Improving the search performance of SHADE using linear population size reduction, in: Evolutionary Computation (CEC), 2014 IEEE Congress on, IEEE, 2014, pp. 1658–1665 .

Part II Experiment Results

TABLE CAPTIONS

- TABLE S1 PARAMETER SETTINGS FOR NINE DE VARIANTS
- TABLE S2 PERFORMANCE COMPARISONS OF NINE STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 30-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE \$3 COMPARISON RESULTS OF THE NINE DE VARIANTS WITH EACH OTHER ON 30-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE **S4** PERFORMANCE COMPARISONS OF MLCC-SI WITH ITS VARIANTS ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S5 PERFORMANCE COMPARISONS OF VARIANT-I OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S6 PERFORMANCE COMPARISONS OF VARIANT-II OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S7 PERFORMANCE COMPARISONS OF VARIANT-III OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE **\$8** PERFORMANCE COMPARISONS OF VARIANT-IV OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE **S9** PERFORMANCE COMPARISONS OF MLCC-SI WITH ITS VARIANTS WITH DIFFERENT *N* SETTINGS ON 30-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE \$10 PERFORMANCE COMPARISONS OF MLCC-SBI WITH SHADE AND BIDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S11 PERFORMANCE COMPARISONS OF BIDE WITH SHADE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S12 PERFORMANCE COMPARISONS OF MLCC-SI AND MLCC- SBI WITH H-SI AND H-SBI RESPECTIVELY ON 30-AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE \$13 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 30-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S14 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S15 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 30-DIMENSIONAL CEC2017 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S16 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 50-DIMENSIONAL CEC2017 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S17 PERFORMANCE COMPARISONS OF MLCC-SIBI WITH SHADE, IDE AND BIDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS
- TABLE S18 PERFORMANCE COMPARISONS OF MLCC-L-SI WITH L-SHADE AND M_IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

TABLE S1 PARAMETER SETTINGS FOR NINE DE VARIANTS

Algorithm	Parameter Settings
jDE	$\gamma_1 = 0.1$, $\gamma_2 = 0.1$, $F_1 = 0.1$, $F_u = 0.9$ and $NP = 100$;
SaDE	LP = 50, NP = 50;
EPSDE	$F \in [0.4, 0.5, 0.6, 0.7, 0.8, 0.9], CR \in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] \text{ and } NP = 50;$
JADE	$p = 0.05$, $c = 0.1$, $\mu_F = 0.7$, $\mu_{CR} = 0.5$ and $NP = 100$;
CoDE	[F = 1.0, Cr = 0.1]; [F = 1.0, Cr = 0.9]; [F = 0.8, Cr = 0.2] and $NP = 30;$
CoBiDE	pb = 0.4, ps = 0.5 and NP = 60;
MPEDE	$\lambda_1 = \lambda_2 = \lambda_3 = 0.2$, $ng = 20$ and $NP = 250$;
SHADE	$NP = 100, M_F = \{0.7\}, M_{CR} = \{0.5\} \text{ and } H = NP$
IDE	$NP = 100, T = 1000D/NP, G_T = 5T, SR_T = 0 (G < G_T) \text{ and } SR_T = 0.1 (G \ge G_T)$

TABLE S2 PERFORMANCE COMPARISONS OF NINE STATE-OF-THE-ART AND

 $\textit{UP-TO-DATE} \; \textit{DE} \; \textit{VARIANTS} \; \textit{ON} \; \; 30 \text{-} \\ \textit{DIMENSIONAL} \; \textit{CEC2014} \; \textit{BENCHMARK} \; \textit{SET} \; \textit{OVER} \; 51 \; \textit{INDEPENDENT} \; \textit{RUNS}$

	UP-	TO-DATE DE V	ARIANTS ON	30-DIMENSIO	NAL CECZU14	BENCHMARK	SET OVER 51	INDEPENDEN.	I RUNS	
	jDE	SaDE	EPSDE	JADE	CoDE	CoBiDE	MPEDE	SHADE	IDE	SHADE v.s. IDE
F1	5.86E+04	6.85E+04	1.51E+04	1.75E+03	2.33E+04	1.97E+04	0.00E+00	2.30E+03	1.04E+05	+
F1	(4.66E+04)	(5.67E+04)	(3.18E+04)	(2.27E+03)	(1.76E+04)	(1.43E+04)	(0.00E+00)	(3.04E+03)	(9.74E+04)	+
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	=
	0.00E+00	0.00E+00	0.00E+00	4.51E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.18E-03)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	=
	5.19E+00	2.03E+00	3.45E+00	1.24E+00	5.06E+00	8.64E-02	0.00E+00	0.00E+00	2.97E-03	
F4	(1.45E+01)	(9.06E+00)	(1.78E+00)	(8.88E+00)	(1.75E+01)	(5.58E-01)	(0.00E+00)	(0.00E+00)	(1.52E-02)	+
	2.04E+01	2.09E+01	2.03E+01	2.03E+01	2.00E+01	2.02E+01	2.04E+01	2.02E+01	2.02E+01	
F5	(3.53E-02)	(6.14E-02)	(4.05E-02)	(3.68E-02)	(7.07E-02)	(2.74E-01)	(4.94E-02)	(2.72E-02)	(5.16E-02)	=
	1.52E+00	2.29E+00	1.89E+01	8.64E+00	2.33E+00	1.28E+00	4.82E-01	4.81E-01	2.97E-02	
F6	(2.87E+00)	(1.43E+00)	(1.36E+00)	(2.49E+00)	(1.63E+00)	(1.27E+00)	(6.52E-01)	(1.11E+00)	(2.10E-01)	-
	0.00E+00	4.77E-03	1.21E-03	3.87E-04	4.35E-04	3.38E-04	7.25E-04	0.00E+00	0.00E+00	
F7		4.77E-03 (9.01E-03)	(4.21E-03)	3.8/E-04 (1.99E-03)	(2.19E-03)	3.38E-04 (1.71E-03)	(2.53E-04)	(0.00E+00)		=
	(0.00E+00)								(0.00E+00)	
F8	0.00E+00	3.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.41E-03	=
	(0.00E+00)	(1.71E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.86E-02)	
F9	4.25E+01	2.90E+01	4.29E+01	2.64E+01	4.01E+01	4.02E+01	2.89E+01	1.86E+01	2.60E+01	+
	(6.27E+00)	(8.26E+00)	(6.90E+00)	(4.51E+00)	(1.06E+01)	(1.06E+01)	(8.20E+00)	(2.88E+00)	(4.92E+00)	
F10	1.63E-03	3.71E+01	2.22E-01	7.76E-03	4.75E-01	3.23E+01	1.13E+00	6.12E-03	5.25E+00	+
110	(5.65E-03)	(3.14E+01)	(1.93E-01)	(1.17E-02)	(6.22E-01)	(1.26E+01)	(5.33E-01)	(1.12E-02)	(1.76E+01)	·
F11	2.51E+03	5.15E+03	3.60E+03	1.65E+03	1.80E+03	1.81E+03	2.35E+03	1.59E+03	1.96E+03	+
1.11	(2.57E+02)	(4.53E+02)	(4.26E+02)	(2.45E+02)	(4.99E+02)	(5.37E+02)	(4.57E+02)	(2.04E+02)	(3.92E+02)	'
E12	4.76E-01	1.74E+00	5.13E-01	2.57E-01	7.03E-02	1.46E-01	4.88E-01	2.02E-01	2.68E-01	+
F12	(6.04E-02)	(2.32E-01)	(4.94E-02)	(4.16E-02)	(5.33E-02)	(2.35E-01)	(1.03E-01)	(2.62E-02)	(7.49E-02)	+
F1.0	2.89E-01	2.51E-01	2.52E-01	2.08E-01	2.35E-01	2.28E-01	2.16E-01	1.92E-01	1.81E-01	
F13	(4.08E-02)	(3.69E-02)	(4.03E-02)	(3.02E-02)	(5.12E-02)	(5.14E-02)	(3.16E-02)	(2.60E-02)	(2.46E-02)	-
	2.74E-01	2.48E-01	2.72E-01	2.24E-01	2.39E-01	2.31E-01	2.42E-01	2.00E-01	1.91E-01	
F14	(3.00E-02)	(3.10E-02)	(5.76E-02)	(3.19E-02)	(3.25E-02)	(4.01E-02)	(2.92E-02)	(3.78E-02)	(2.65E-02)	=
	5.80E+00	5.63E+00	5.45E+00	3.21E+00	3.00E+00	3.19E+00	3.97E+00	2.89E+00	2.61E+00	
F15	(6.09E-01)	(2.63E+00)	(6.87E-01)	(4.09E-01)	(7.92E-01)	(7.73E-01)	(7.66E-01)	(3.49E-01)	(5.29E-01)	-
	9.79E+00	1.17E+01	1.12E+01	9.47E+00	9.08E+00	9.41E+00	1.01E+01	9.53E+00	9.82E+00	
F16	(3.06E-01)	(3.44E-01)	(3.87E-01)	(3.44E-01)	(7.92E-01)	(9.66E-01)	(3.73E-01)	(3.36E-01)	(5.54E-01)	+
	1.68E+03	3.89E+03	3.42E+04	1.08E+03	1.81E+03	3.19E+02	2.50E+02	1.04E+03	7.50E+02	
F17	(2.20E+03)	(2.19E+03)	(3.51E+04)	(3.52E+02)	(2.14E+03)	(1.85E+02)	(1.66E+02)	(3.69E+02)	(2.38E+02)	-
	1.72E+01	2.46E+02	3.38E+02	1.45E+02	1.23E+01	1.33E+01	1.24E+01	4.09E+01	1.52E+01	
F18	(7.16E+00)	(3.44E+02)	(8.34E+02)	(3.59E+02)	(4.70E+00)	(5.92E+00)	(4.96E+00)	(1.80E+01)	(4.85E+00)	-
	4.46E+00	5.89E+00	1.31E+01	4.52E+00	2.75E+00	2.91E+00	3.92E+00	4.43E+00	3.07E+00	
F19										-
	(6.07E-01)	(8.30E+00)	(1.27E+00)	(6.92E-01)	(8.15E-01)	(3.36E-01)	(6.47E-01)	(5.68E-01)	(5.56E-01)	
F20	1.08E+01	7.25E+01	1.14E+02	3.01E+03	1.25E+01	8.61E+00	9.43E+00	1.06E+01	9.88E+00	=
	(3.70E+00)	(4.04E+01)	(2.09E+02)	(3.06E+03)	(5.15E+00)	(3.22E+00)	(3.35E+00)	(5.52E+00)	(2.65E+00)	
F21	2.65E+02	1.07E+03	1.00E+04	1.39E+03	1.96E+02	1.58E+02	8.76E+01	2.53E+02	2.52E+02	=
	(1.67E+02)	(9.00E+02)	(1.66E+04)	(7.71E+03)	(1.43E+02)	(1.22E+02)	(9.29E+01)	(1.18E+02)	(1.30E+02)	
F22	1.15E+02	9.89E+01	2.50E+02	1.32E+02	1.79E+02	1.09E+02	5.90E+01	8.91E+01	5.82E+01	-
	(5.38E+01)	(6.66E+01)	(1.02E+02)	(7.40E+01)	(9.78E+01)	(8.74E+01)	(5.14E+01)	(5.86E+01)	(5.30E+01)	
F23	3.15E+02	3.15E+02	3.14E+02	3.15E+02	3.15E+02	3.15E+02	3.15E+02	3.15E+02	3.15E+02	_
	(4.02E-13)	(4.02E-13)	(1.03E-12)	(4.02E-13)	(3.73E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(3.46E-13)	
F24	2.24E+02	2.26E+02	2.30E+02	2.24E+02	2.24E+02	2.23E+02	2.24E+02	2.24E+02	2.24E+02	_
	(2.24E+00)	(3.59E+00)	(5.88E+00)	(1.69E+00)	(3.21E+00)	(9.99E-01)	(8.99E-01)	(9.48E-01)	(7.19E-01)	
F25	2.03E+02	2.08E+02	2.00E+02	2.05E+02	2.03E+02	2.03E+02	2.03E+02	2.06E+02	2.03E+02	_
1 23	(5.18E-01)	(2.69E+00)	(3.44E-01)	(2.05E+00)	(6.07E-01)	(4.36E-01)	(3.38E-01)	(1.88E+00)	(1.24E-01)	
F26	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	1.00E+02	
1.20	(3.75E-02)	(3.31E-02)	(4.52E-02)	(3.38E-02)	(5.47E-02)	(5.41E-02)	(2.81E-02)	(3.52E-02)	(2.92E-02)	_
F27	3.48E+02	3.72E+02	8.73E+02	3.68E+02	3.69E+02	3.89E+02	3.66E+02	3.31E+02	3.69E+02	+
1.77	(5.03E+01)	(3.89E+01)	(3.67E+01)	(4.92E+01)	(4.44E+01)	(3.28E+01)	(4.73E+01)	(4.58E+01)	(4.72E+01)	<u> </u>
F20	7.89E+02	8.69E+02	3.96E+02	8.00E+02	8.36E+02	8.28E+02	8.37E+02	8.03E+02	8.08E+02	1
F28	(2.34E+01)	(3.67E+01)	(1.34E+01)	(1.89E+01)	(2.62E+01)	(2.82E+01)	(3.53E+01)	(2.38E+01)	(1.32E+02)	+
E20	7.95E+02	9.13E+02	2.14E+02	7.18E+02	7.68E+02	5.27E+02	6.88E+02	7.22E+02	2.91E+02	
F29	(6.99E+01)	(2.04E+02)	(1.46E+00)	(6.90E+01)	(1.43E+02)	(2.62E+02)	(1.24E+02)	(2.67E+01)	(1.49E+02)	-
	1.20E+03	1.86E+03	5.99E+02	1.56E+03	9.35E+02	7.29E+02	6.37E+02	1.24E+03	5.22E+02	
F30	(4.47E+02)	(5.78E+02)	(1.46E+02)	(5.17E+02)	(4.22E+02)	(2.83E+02)	(1.99E+02)	(3.38E+02)	(7.29E+01)	-
Ranking	5.76	7.53	6.38	5.15	4.86	4.06	4.21	3.48	3.53	
Ranking	5.70	1.33	0.30	J.1J	7.00	4.00	4.21	J. + 0	رد.د	

Note: "-", "=" and "+" at last column represent that the performance of SHADE is significantly worse than, similar to or better than that of IDE, respectively.

table S3 comparison results of the nine de variants with each other on $\,$ 30-dimensional cec2014 benchmark set over 51 independent runs

-/=/+	jDE	SaDE	EPSDE	JADE	CoDE	CoBiDE	MPEDE	SHADE	IDE
jDE		18/6/6	15/5/10	8/10/12	5/11/14	3/10/17	4/11/15	4/13/13	3/10/17
SaDE	6/6/18		10/6/14	3/6/21	2/6/22	1/6/23	0/6/24	0/5/25	1/4/25
EPSDE	10/5/15	14/6/10		6/4/20	7/6/17	7/6/17	6/6/18	5/3/22	6/3/21
JADE	12/10/8	21/6/3	20/4/6		9/9/12	6/12/12	8/10/12	1/15/14	6/6/18
CoDE	14/11/5	22/6/2	17/6/7	12/9/9		1/21/8	7/10/13	8/8/14	9/9/12
CoBiDE	17/10/3	23/6/1	17/6/7	12/12/6	8/21/1		7/13/10	9/9/12	9/8/13
MPEDE	15/11/4	24/6/0	18/6/6	12/10/8	13/10/7	10/13/7		9/7/14	7/7/16
SHADE	13/13/4	25/5/0	22/3/5	14/15/1	14/8/8	12/9/9	14/7/9		9/8/13
IDE	17/10/3	25/4/1	21/3/6	18/6/6	12/9/9	13/8/9	16/7/7	13/8/9	

Note: "-", "=" and "+" represent the number of functions that algorithms in row win, tie and lose to algorithms in column according to Wilcoxon's signed-rank test with a significance level of 0.05, respectively.

 $\hbox{table S4 Performance comparisons of mlcc-si with its variants on 30- and 50-dimensional cec 2014 benchmark set over $51 independent runs \\$

			D = 30	OVE	R 51 INDEPENI	DENT KUNS		D = 50		
		I	D = 50	I	I		1	D = 30	1	
	Variant-I	Variant-II	Variant-III	Variant-IV	MLCC-SI	Variant-I	Variant-II	Variant-III	Variant-IV	MLCC-SI
F1	6.00E+03 = (6.81E+03)	<u>9.15E+02</u> + (2.06E+03)	1.24E+03 + (2.86E+03)	3.49E+03 = (3.73E+03)	4.76E+03 (5.69E+03)	2.97E+05 = (1.01E+05)	<u>1.07E+05</u> + (4.11E+04)	1.15E+05 + (5.07E+04)	2.42E+05 = (8.92E+04)	2.79E+05 (1.00E+05)
F2	0.00E+00 =	<u>0.00E+00</u> =	0.00E+00 =	0.00E+00 =	0.00E+00	4.49E-04 -	<u>0.00E+00</u> +	<u>0.00E+00</u> +	1.07E-04 +	2.67E-04
1.72	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(5.00E-04)	(0.00E+00)	(0.00E+00)	(1.41E-04)	(3.59E-04)
F3	$\frac{0.00E+00}{(0.00E+00)} =$	$\frac{0.00E+00}{(0.00E+00)} =$	$\frac{0.00E+00}{(0.00E+00)} =$	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)	2.22E-09 = (8.73E-09)	$\frac{0.00E+00}{(0.00E+00)} =$	6.86E-01 = (4.90E+00)	4.25E-01 = (3.03E+00)	2.10E-10 (1.50E-09)
F4	2.40E-07 =	<u>0.00E+00</u> +	<u>0.00E+00</u> +	6.03E-07 =	1.63E-07	6.60E+01 =	8.05E+01 -	8.27E+01 -	7.00E+01 -	6.53E+01
Г4	(6.38E-07)	(0.00E+00)	(0.00E+00)	(2.29E-06)	(4.37E-07)	(2.76E+01)	(1.29E+01)	(6.01E+00)	(2.53E+01)	(2.62E+01)
F5	2.04E+01 - (5.22E-02)	$\frac{2.02E+01}{(4.90E-02)} =$	2.03E+01 - (5.46E-02)	2.04E+01 - (4.56E-02)	2.02E+01 (5.40E-02)	2.06E+01 - (4.58E-02)	$\frac{2.03E+01}{(5.22E-02)} =$	2.05E+01 - (5.56E-02)	2.06E+01 - (4.04E-02)	2.03E+01 (5.46E-02)
F6	1.68E-01 =	9.31E-01 -	1.11E+00 -	<u>2.69E-02</u> =	8.71E-02	1.47E-01 +	5.57E-01 =	3.76E-01 =	2.06E-01 +	3.96E-01
- 10	(6.60E-01) 0.00E+00 =	(1.45E+00) 0.00E+00 =	(1.25E+00)	(9.09E-02) 0.00E+00 =	(2.84E-01)	(1.98E-01) 0.00E+00 =	(6.31E-01)	(5.11E-01)	(3.89E-01)	(5.61E-01) 0.00E+00
F7	0.00E+00 = (0.00E+00)	0.00E+00 = (0.00E+00)	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	$\frac{0.00E+00}{(0.00E+00)} =$	$\underline{0.00E+00} = (0.00E+00)$	$\frac{0.00E+00}{(0.00E+00)} =$	(0.00E+00)
F8	<u>0.00E+00</u> =	<u>0.00E+00</u> =	0.00E+00 =	<u>0.00E+00</u> =	0.00E+00	4.55E-07 -	3.97E+00 -	9.25E+00 -	1.33E-07 -	0.00E+00
	(0.00E+00)	(0.00E+00) 2.17E+01 =	(0.00E+00)	(0.00E+00) 2.03E+01 =	(0.00E+00)	(2.62E-06)	(1.28E+00)	(1.43E+00) 5.25E+01 -	(2.57E-07)	(0.00E+00) 4.47E+01
F9	$\frac{2.01E+01}{(3.57E+00)} =$	(4.71E+01 = (4.71E+00))	2.13E+01 = (4.56E+00)	(4.26E+00)	2.14E+01 (4.44E+00)	$\frac{4.25E+01}{(8.50E+00)} =$	5.48E+01 - (1.12E+01)	5.25E+01 - (1.22E+01)	4.36E+01 = (8.45E+00)	(8.15E+00)
F10	2.24E+00 -	2.59E+00 -	6.05E+00 -	2.56E+00 -	1.12E+00	1.57E+01 -	2.54E+01 -	6.28E+01 -	1.81E+01 -	9.00E+00
110	(1.37E+00) 1.81E+03 -	(1.22E+00) 1.72E+03 =	(2.83E+00) 1.79E+03 -	(1.73E+00) 1.70E+03 =	(9.49E-01)	(7.26E+00) 3.93E+03 =	(1.44E+01) 4.77E+03 -	(2.43E+01) 5.31E+03 -	(9.40E+00)	(3.38E+00) 4.03E+03
F11	(3.30E+02)	1.72E+03 = (2.92E+02)	(3.84E+02)	(3.59E+02)	1.63E+03 (3.34E+02)	3.93E+03 = (6.24E+02)	(3.91E+02)	5.31E+03 - (5.31E+02)	$\frac{3.92E+03}{(6.72E+02)} =$	4.03E+03 (5.06E+02)
F12	4.01E-01 -	<u>2.57E-01</u> =	3.12E-01 -	3.84E-01 -	2.60E-01	5.66E-01 -	3.39E-01 =	4.60E-01 -	5.93E-01 -	3.51E-01
1.17	(6.09E-02)	(5.68E-02)	(5.74E-02)	(7.25E-02)	(5.31E-02)	(8.17E-02)	(5.05E-02)	(5.81E-02)	(6.83E-02)	(5.92E-02)
F13	1.98E-01 - (2.46E-02)	1.91E-01 = (2.54E-02)	$\frac{1.83E-01}{(2.64E-02)} =$	1.98E-01 - (2.03E-02)	1.83E-01 (2.79E-02)	2.84E-01 = (3.84E-02)	$\frac{2.77E-01}{(2.97E-02)} =$	2.84E-01 = (2.77E-02)	2.84E-01 = (2.73E-02)	2.77E-01 (2.58E-02)
F14	2.05E-01 -	1.94E-01 =	1.97E-01 =	2.00E-01 =	1.94E-01	2.71E-01 -	<u>2.51E-01</u> =	2.60E-01 =	2.63E-01 =	2.56E-01
114	(2.82E-02)	(2.31E-02)	(2.49E-02)	(2.48E-02)	(2.21E-02)	(1.90E-02)	(2.37E-02)	(2.12E-02)	(2.32E-02)	(2.36E-02)
F15	2.61E+00 = (5.61E-01)	3.11E+00 - (4.82E-01)	3.53E+00 - (4.93E-01)	2.63E+00 = (4.98E-01)	2.47E+00 (4.20E-01)	6.97E+00 = (2.05E+00)	9.39E+00 - (1.13E+00)	1.09E+01 - (1.19E+00)	7.29E+00 - (1.95E+00)	6.41E+00 (1.34E+00)
F16	9.77E+00 -	9.58E+00 =	9.81E+00 -	9.79E+00 -	9.52E+00	1.89E+01 -	1.84E+01 =	1.89E+01 -	1.89E+01 -	1.85E+01
1.10	(4.84E-01)	(4.87E-01)	(3.51E-01)	(3.48E-01)	(4.66E-01)	(5.07E-01)	(4.92E-01)	(3.48E-01)	(3.95E-01)	(4.53E-01)
F17	2.44E+02 = (1.38E+02)	4.05E+02 - (2.24E+02)	4.73E+02 - (2.35E+02)	2.56E+02 = (1.43E+02)	2.31E+02 (1.23E+02)	1.36E+03 = (3.48E+02)	1.77E+03 - (4.83E+02)	1.79E+03 - (4.48E+02)	$\frac{1.26E+03}{(4.55E+02)} =$	1.27E+03 (4.01E+02)
F18	9.13E+00 =	1.34E+01 -	1.25E+01 -	9.36E+00 =	9.79E+00	3.07E+01 =	4.77E+01 -	4.84E+01 -	2.93E+01 +	3.55E+01
1.19	(3.63E+00)	(5.17E+00)	(4.86E+00)	(3.28E+00)	(3.36E+00)	(8.48E+00)	(1.59E+01)	(1.29E+01)	(9.31E+00)	(1.17E+01)
F19	3.05E+00 = (4.93E-01)	3.33E+00 - (5.27E-01)	3.55E+00 - (3.97E-01)	3.06E+00 = (4.65E-01)	3.02E+00 (5.37E-01)	9.92E+00 = (4.59E-01)	1.07E+01 - (3.00E+00)	1.11E+01 - (3.11E+00)	1.00E+01 = (4.58E-01)	9.87E+00 (3.98E-01)
F20	5.30E+00 +	6.86E+00 =	6.05E+00 =	5.72E+00 =	5.91E+00	2.54E+01 =	4.15E+01 -	3.98E+01 -	2.56E+01 =	2.53E+01
F20	(1.96E+00)	(2.74E+00)	(2.00E+00)	(1.76E+00)	(1.42E+00)	(6.27E+00)	(1.47E+01)	(1.35E+01)	(6.76E+00)	(6.78E+00)
F21	$\frac{1.03E+02}{(7.42E+01)} =$	1.18E+02 = (8.81E+01)	1.40E+02 - (6.83E+01)	1.09E+02 = (6.86E+01)	1.04E+02 (7.65E+01)	6.19E+02 = (2.05E+02)	6.43E+02 - (2.25E+02)	6.57E+02 - (2.10E+02)	5.62E+02 = (1.86E+02)	5.42E+02 (1.92E+02)
F22	5.10E+01 =	7.30E+01 -	5.15E+01 -	5.74E+01 -	3.55E+01	2.94E+02 =	$\frac{(2.25E+02)}{2.65E+02} =$	2.70E+02 =	2.76E+02 =	2.75E+02
1.77	(4.81E+01)	(5.79E+01)	(4.37E+01)	(5.13E+01)	(3.45E+01)	(1.17E+02)	(1.09E+02)	(1.03E+02)	(1.08E+02)	(1.13E+02)
F23	$\frac{3.15E+02}{(3.59E-13)} =$	$\frac{3.15E+02}{(4.02E-13)} =$	$\frac{3.15E+02}{(4.02E-13)} =$	$\frac{3.15E+02}{(4.02E-13)} =$	3.15E+02 (4.02E-13)	$\frac{3.44E+02}{(4.32E-13)} =$	$\frac{3.44E+02}{(4.39E-13)} =$	$\frac{3.44E+02}{(4.67E-13)} =$	$\frac{3.44E+02}{(4.25E-13)} =$	3.44E+02 (4.18E-13)
F24	2.23E+02 =	2.23E+02 =	2.23E+02 =	2.23E+02 =	2.23E+02	2.58E+02 =	2.58E+02 =	2.59E+02 =	2.58E+02 =	2.58E+02
_	(7.73E-01) 2.03E+02 =	(8.31E-01) 2.03E+02 =	(7.26E-01) 2.03E+02 =	(7.66E-01) 2.03E+02 =	(7.91E-01) 2.03E+02	(1.59E+00) 2.06E+02 =	(2.96E+00) 2.07E+02 -	(3.67E+00) 2.07E+02 -	(1.55E+00) 2.06E+02 =	(2.93E+00) 2.06E+02
F25	(2.73E-01)	(4.01E-01)	(4.66E-01)	(2.87E-01)	(2.95E-01)	(8.37E-01)	(1.35E+00)	(1.36E+00)	(6.65E-01)	(8.22E-01)
F26	$\frac{1.00E+02}{(2.48E-02)} =$	$\frac{1.00E+02}{(2.17E-02)} =$	$\frac{1.00E+02}{(2.64E-02)} =$	$\frac{1.00E+02}{(2.70E-02)} =$	1.00E+02 (2.41E-02)	1.02E+02 = (1.40E+01)	1.02E+02 = (1.40E+01)	$\underline{1.00E+02} = (2.49E-02)$	1.02E+02 = (1.40E+01)	1.00E+02 (2.83E-02)
E27	3.32E+02 =	3.10E+02 +	3.30E+02	3.08E+02 +	3.47E+02	3.23E+02 =	3.16E+02 =	3.14E+02 =	3.13E+02 =	3.20E+02
F27	(4.71E+01)	(3.01E+01)	(4.62E+01)	(2.72E+01)	(5.07E+01)	(2.65E+01)	(2.46E+01)	(2.39E+01)	(2.17E+01)	(2.65E+01)
F28	7.95E+02 - (3.07E+01)	8.09E+02 - (2.06E+01)	8.05E+02 - (2.83E+01)	7.97E+02 - (2.09E+01)	7.89E+02 (3.09E+01)	1.13E+03 + (4.90E+01)	1.18E+03 - (4.54E+01)	1.16E+03 = (3.82E+01)	1.13E+03 + (3.19E+01)	1.16E+03 (3.60E+01)
F29	6.73E+02 =	6.75E+02 =	6.36E+02 +	6.64E+02 +	6.94E+02	6.17E+02 =	6.01E+02 =	5.84E+02 =	6.15E+02 =	6.22E+02
1.27	(1.54E+02)	(1.49E+02)	(1.92E+02)	(1.69E+02)	(1.27E+02)	(1.36E+02)	(7.52E+01)	(8.30E+01)	(1.09E+02)	(1.41E+02)
F30	$\frac{4.96E+02}{(8.28E+01)} =$	5.01E+02 = (8.89E+01)	5.36E+02 = (1.53E+02)	5.15E+02 = (1.12E+02)	5.20E+02 (1.60E+02)	8.67E+03 = (4.42E+02)	8.73E+03 = (5.24E+02)	8.82E+03 - (4.19E+02)	8.67E+03 = (4.38E+02)	8.61E+03 (3.99E+02)
-/=/+	8/21/1	8/19/3	13/14/3	7/21/2	(1.002102)	7/21/2	13/15/2	16/12/2	7/19/4	(5.772102)
				· · · · · · · · · · · · · · · · · · ·						

TABLE S5 PERFORMANCE COMPARISONS OF VARIANT-I OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC 2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

		D = 30			D = 50	
	SHADE	IDE	Variant-I	SHADE	IDE	Variant-I
F1	2.59E+02 +	1.18E+05 -	6.00E+03	1.19E+05 +	1.24E+06 -	2.97E+05
LI	(5.67E+02)	(9.41E+04)	(6.81E+03)	(6.14E+04)	(3.41E+05)	(1.01E+05)
F2	<u>0.00E+00</u> =	<u>0.00E+00</u> =	0.00E+00	0.00E+00 +	2.28E+00 -	4.49E-04
	(0.00E+00) 0.00E+00 =	(0.00E+00) 0.00E+00 =	(0.00E+00) 0.00E+00	(0.00E+00) 0.00E+00 +	(2.53E+00) 1.85E+01 -	(5.00E-04) 2.22E-09
F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.27E+01)	(8.73E-09)
F4	<u>0.00E+00</u> +	2.08E-02 -	2.40E-07	8.35E+01 =	7.19E+01 -	6.60E+01
	(0.00E+00)	(4.14E-02) 2.02E+01 +	(6.38E-07)	(1.16E+01) 2.05E+01 +	(2.97E+01) 2.03E+01 +	(2.76E+01)
F5	2.03E+01 + (3.54E-02)	(5.68E-02)	2.04E+01 (5.22E-02)	(4.03E-02)	(5.95E-02)	2.06E+01 (4.58E-02)
F6	6.41E+00 -	<u>6.20E-02</u> =	1.68E-01	1.18E+00 -	9.34E-02 +	1.47E-01
10	(3.86E+00)	(2.82E-01)	(6.60E-01)	(3.45E+00)	(3.14E-01)	(1.98E-01)
F7	$\frac{0.00E+00}{(0.00E+00)} =$	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)	$\frac{0.00E+00}{(0.00E+00)}$	2.22E-03 - (4.10E-03)	0.00E+00 (0.00E+00)
	0.00E+00	4.33E-10 =	0.00E+00)	1.84E-02 -	4.32E-02 -	4.55E-07
F8	(0.00E+00)	(3.09E-09)	(0.00E+00)	(5.39E-03)	(1.97E-01)	(2.62E-06)
F9	2.75E+01 -	2.46E+01 -	2.01E+01	8.82E+01 -	5.99E+01 -	4.25E+01
1'7	(4.18E+00)	(5.33E+00)	(3.57E+00)	(8.25E+00)	(1.01E+01)	(8.50E+00)
F10	<u>1.57E-01</u> + (3.94E-02)	5.68E+00 - (1.66E+01)	2.24E+00	6.06E+01 - (6.43E+00)	3.34E+01 +	1.57E+01
	1.97E+03 -	1.92E+03 =	(1.37E+00) 1.81E+03	6.27E+03 -	(4.90E+01) 4.20E+03 -	(7.26E+00) 3.93E+03
F11	(2.06E+02)	(3.53E+02)	(3.30E+02)	(3.93E+02)	(6.65E+02)	(6.24E+02)
F12	3.08E-01 +	2.91E-01 +	4.01E-01	6.12E-01 -	3.68E-01 +	5.66E-01
1.17	(4.82E-02)	(5.97E-02)	(6.09E-02)	(6.73E-02)	(7.37E-02)	(8.17E-02)
F13	2.15E-01 - (2.58E-02)	1.87E-01 + (2.20E-02)	1.98E-01 (2.46E-02)	3.01E-01 - (2.99E-02)	2.96E-01 = (3.09E-02)	2.84E-01 (3.84E-02)
	2.14E-01 =	1.82E-01 +	2.46E-02) 2.05E-01	2.50E-01 +	2.70E-01 =	2.71E-01
F14	(2.24E-02)	(3.19E-02)	(2.82E-02)	(1.82E-02)	(2.23E-02)	(1.90E-02)
F15	3.83E+00 -	2.69E+00 =	2.61E+00	1.18E+01 -	7.36E+00 =	6.97E+00
1.13	(4.70E-01)	(5.27E-01)	(5.61E-01)	(8.02E-01)	(1.93E+00)	(2.05E+00)
F16	9.55E+00 + (3.49E-01)	1.00E+01 - (3.94E-01)	9.77E+00 (4.84E-01)	$\frac{1.88E+01}{(2.77E-01)} =$	1.92E+01 - (4.21E-01)	1.89E+01 (5.07E-01)
	7.62E+02 -	5.97E+02 -	2.44E+02	2.21E+03 -	7.22E+03 -	1.36E+03
F17	(3.58E+02)	(2.97E+02)	(1.38E+02)	(5.57E+02)	(2.74E+03)	(3.48E+02)
F18	1.44E+01 -	1.90E+01 -	9.13E+00	8.03E+01 -	3.93E+01 -	3.07E+01
- 110	(7.28E+00)	(5.87E+00)	(3.63E+00)	(2.31E+01)	(1.09E+01)	(8.48E+00)
F19	4.01E+00 - (6.47E-01)	<u>2.91E+00</u> = (4.69E-01)	3.05E+00 (4.93E-01)	1.29E+01 - (5.85E+00)	1.03E+01 - (7.50E-01)	9.92E+00 (4.59E-01)
	4.96E+00 =	1.08E+01 -	5.30E+00	4.11E+01 -	4.54E+01 -	2.54E+01
F20	(2.19E+00)	(3.24E+00)	(1.96E+00)	(1.63E+01)	(1.04E+01)	(6.27E+00)
F21	1.29E+02 =	3.30E+02 -	1.03E+02	9.75E+02 -	1.23E+03 -	6.19E+02
	(8.62E+01) 1.23E+02 -	(1.54E+02) 7.30E+01 =	(7.42E+01) 5.10E+01	(2.81E+02) 4.85E+02 -	(3.77E+02) 3.04E+02 =	(2.05E+02) 2.94E+02
F22	(5.85E+01)	(5.78E+01)	(4.81E+01)	4.85E+02 - (1.22E+02)	3.04E+02 = (1.06E+02)	(1.17E+02)
E22	3.15E+02 =	3.15E+02 =	3.15E+02	3.44E+02 =	3.44E+02 =	3.44E+02
F23	(4.02E-13)	(3.46E-13)	(3.59E-13)	(4.60E-13)	(4.46E-13)	(4.32E-13)
F24	2.23E+02 =	2.23E+02 -	2.23E+02	2.69E+02 -	2.58E+02 +	2.58E+02
	(9.22E-01) 2.04E+02 -	(7.24E-01) 2.03E+02 -	(7.73E-01) 2.03E+02	(1.90E+00) 2.11E+02 -	(3.39E+00) 2.07E+02 -	(1.59E+00) 2.06E+02
F25	(7.68E-01)	(2.33E-01)	(2.73E-01)	(2.59E+00)	(6.05E-01)	(8.37E-01)
E26	1.00E+02 -	1.00E+02 =	1.00E+02	1.00E+02 -	1.06E+02 =	1.02E+02
F26	(2.79E-02)	(2.60E-02)	(2.48E-02)	(3.37E-02)	(2.37E+01)	(1.40E+01)
F27	3.00E+02 + (1.11E-13)	3.30E+02 = (4.63E+01)	3.32E+02 (4.71E+01)	3.33E+02 = (2.79E+01)	3.06E+02 + (1.65E+01)	3.23E+02 (2.65E+01)
	7.92E+02 =	8.26E+02 -	(4.71E+01) 7.95E+02	1.09E+01)	1.28E+03 -	1.13E+03
F28	(1.86E+01)	(8.10E+01)	(3.07E+01)	(3.20E+01)	(9.49E+01)	(4.90E+01)
F29	7.20E+02 =	<u>5.75E+02</u> =	6.73E+02	8.27E+02 -	1.03E+03 -	6.17E+02
1 23	(6.01E+00)	(2.15E+02)	(1.54E+02)	(5.63E+01)	(1.26E+02)	(1.36E+02)
F30	1.22E+03 -	5.18E+02 -	4.96E+02 (8.28E+01)	8.45E+03 +	9.90E+03 -	8.67E+03
-/=/+	(4.61E+02) 12/11/7	(7.28E+01) 13/13/4	(0.40£+U1)	(4.59E+02) 18/5/7	(5.82E+02) 18/6/6	(4.42E+02)
-/ -/ +	14/11//	13/13/4	<u> </u>	10/3//	10/0/0	l .

TABLE S6 PERFORMANCE COMPARISONS OF VARIANT-II OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

0111		D = 30	DOZOT I BENIO	III III III DEI O	D = 50	ZAZZANI KONS
	SHADE	IDE	Variant-II	SHADE	IDE	Variant-II
	2.59E+02 +	1.18E+05 -	9.15E+02	1.19E+05 =	1.24E+06 -	1.07E+05
F1	(5.67E+02)	(9.41E+04)	(2.06E+03)	(6.14E+04)	(3.41E+05)	(4.11E+04)
F2	0.00E+00 =	<u>0.00E+00</u> =	0.00E+00	<u>0.00E+00</u> =	2.28E+00 -	0.00E+00
1.7	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.53E+00)	(0.00E+00)
F3	$\frac{0.00E+00}{(0.00E+00)} =$	$\frac{0.00E+00}{(0.00E+00)}$	0.00E+00 (0.00E+00)	$\underline{0.00E+00} = (0.00E+00)$	1.85E+01 - (1.27E+01)	0.00E+00 (0.00E+00)
F4	<u>0.00E+00</u> =	2.08E-02 -	0.00E+00	8.35E+01 +	7.19E+01 =	8.05E+01
1'4	(0.00E+00)	(4.14E-02)	(0.00E+00)	(1.16E+01)	(2.97E+01)	(1.29E+01)
F5	2.03E+01 - (3.54E-02)	$\frac{2.02E+01}{(5.68E-02)} =$	(4.90E-02)	2.05E+01 - (4.03E-02)	2.03E+01 - (5.95E-02)	2.03E+01 (5.22E-02)
F6	6.41E+00 -	6.20E-02 +	9.31E-01	1.18E+00 =	9.34E-02 +	5.57E-01
10	(3.86E+00)	(2.82E-01)	(1.45E+00)	(3.45E+00)	(3.14E-01)	(6.31E-01)
F7	0.00E+00 = (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00	$\frac{0.00E+00}{(0.00E+00)}$ =	2.22E-03 -	0.00E+00
	(0.00E+00) 0.00E+00 =	(0.00E+00) 4.33E-10 =	(0.00E+00) 0.00E+00	(0.00E+00) 1.84E-02 +	(4.10E-03) 4.32E-02 +	(0.00E+00) 3.97E+00
F8	(0.00E+00)	(3.09E-09)	(0.00E+00)	(5.39E-03)	(1.97E-01)	(1.28E+00)
Т0	2.75E+01 -	2.46E+01 -	2.17E+01	8.82E+01 -	5.99E+01 -	5.48E+01
F9	(4.18E+00)	(5.33E+00)	(4.71E+00)	(8.25E+00)	(1.01E+01)	(1.12E+01)
F10	<u>1.57E-01</u> +	5.68E+00 -	2.59E+00	6.06E+01 -	3.34E+01 +	2.54E+01
	(3.94E-02)	(1.66E+01)	(1.22E+00)	(6.43E+00)	(4.90E+01)	(1.44E+01)
F11	1.97E+03 - (2.06E+02)	1.92E+03 - (3.53E+02)	1.72E+03 (2.92E+02)	6.27E+03 - (3.93E+02)	4.20E+03 + (6.65E+02)	4.77E+03 (3.91E+02)
	3.08E-01 -	2.91E-01 -	2.57E-01	6.12E-01 -	3.68E-01 =	3.39E-01
F12	(4.82E-02)	(5.97E-02)	(5.68E-02)	(6.73E-02)	(7.37E-02)	(5.05E-02)
E10	2.15E-01 -	1.87E-01 =	1.91E-01	3.01E-01 -	2.96E-01 -	2.77E-01
F13	(2.58E-02)	(2.20E-02)	(2.54E-02)	(2.99E-02)	(3.09E-02)	(2.97E-02)
F14	2.14E-01 -	<u>1.82E-01</u> =	1.94E-01	2.50E-01 =	2.70E-01 -	2.51E-01
117	(2.24E-02)	(3.19E-02)	(2.31E-02)	(1.82E-02)	(2.23E-02)	(2.37E-02)
F15	3.83E+00 - (4.70E-01)	2.69E+00 + (5.27E-01)	3.11E+00 (4.82E-01)	1.18E+01 - (8.02E-01)	7.36E+00 +	9.39E+00
	9.55E+00 =	1.00E+01 -	9.58E+00	1.88E+01 -	(1.93E+00) 1.92E+01 -	(1.13E+00) 1.84E+01
F16	(3.49E-01)	(3.94E-01)	(4.87E-01)	(2.77E-01)	(4.21E-01)	(4.92E-01)
F17	7.62E+02 -	5.97E+02 -	4.05E+02	2.21E+03 -	7.22E+03 -	1.77E+03
Г17	(3.58E+02)	(2.97E+02)	(2.24E+02)	(5.57E+02)	(2.74E+03)	(4.83E+02)
F18	1.44E+01 =	1.90E+01 -	1.34E+01	8.03E+01 -	3.93E+01 +	4.77E+01
	(7.28E+00) 4.01E+00 -	(5.87E+00)	(5.17E+00)	(2.31E+01)	(1.09E+01)	(1.59E+01)
F19	(6.47E-01)	2.91E+00 + (4.69E-01)	3.33E+00 (5.27E-01)	1.29E+01 - (5.85E+00)	$\frac{1.03E+01}{(7.50E-01)} =$	1.07E+01 (3.00E+00)
	4.96E+00 +	1.08E+01 -	6.86E+00	4.11E+01 =	4.54E+01 -	4.15E+01
F20	(2.19E+00)	(3.24E+00)	(2.74E+00)	(1.63E+01)	(1.04E+01)	(1.47E+01)
F21	1.29E+02 =	3.30E+02 -	1.18E+02	9.75E+02 -	1.23E+03 -	6.43E+02
121	(8.62E+01)	(1.54E+02)	(8.81E+01)	(2.81E+02)	(3.77E+02)	(2.25E+02)
F22	1.23E+02 -	$\frac{7.30E+01}{(5.79E+01)} =$	7.30E+01	4.85E+02 -	3.04E+02 =	2.65E+02
	(5.85E+01) 3.15E+02 =	(5.78E+01) 3.15E+02 +	(5.79E+01) 3.15E+02	(1.22E+02) 3.44E+02 =	(1.06E+02) 3.44E+02 =	(1.09E+02) 3.44E+02
F23	$\frac{3.13E+02}{(4.02E-13)}$	(3.46E-13)	(4.02E-13)	(4.60E-13)	$\frac{3.44E+02}{(4.46E-13)}$	(4.39E-13)
E2.4	2.23E+02 =	2.23E+02 =	2.23E+02	2.69E+02 -	2.58E+02 =	2.58E+02
F24	(9.22E-01)	(7.24E-01)	(8.31E-01)	(1.90E+00)	(3.39E+00)	(2.96E+00)
F25	2.04E+02 -	2.03E+02 =	2.03E+02	2.11E+02 -	2.07E+02 =	2.07E+02
	(7.68E-01)	(2.33E-01)	(4.01E-01)	(2.59E+00)	(6.05E-01)	(1.35E+00)
F26	1.00E+02 - (2.79E-02)	$\frac{1.00E+02}{(2.60E-02)} =$	1.00E+02 (2.17E-02)	1.00E+02 - (3.37E-02)	1.06E+02 = (2.37E+01)	1.02E+02 (1.40E+01)
E27	$\frac{(2.75E-02)}{3.00E+02} =$	3.30E+02 -	3.10E+02	3.33E+02 -	3.06E+02 +	3.16E+02
F27	(1.11E-13)	(4.63E+01)	(3.01E+01)	(2.79E+01)	(1.65E+01)	(2.46E+01)
F28	7.92E+02 +	8.26E+02 -	8.09E+02	1.09E+03 +	1.28E+03 -	1.18E+03
- 20	(1.86E+01)	(8.10E+01)	(2.06E+01)	(3.20E+01)	(9.49E+01)	(4.54E+01)
F29	7.20E+02 -	$\frac{5.75E+02}{(2.15E+02)} =$	6.75E+02	8.27E+02 -	1.03E+03 -	6.01E+02
	(6.01E+00) 1.22E+03 -	(2.15E+02) 5.18E+02 =	(1.49E+02) 5.01E+02	(5.63E+01) 8.45E+03 +	(1.26E+02) 9.90E+03 -	(7.52E+01) 8.73E+03
F30	(4.61E+02)	(7.28E+01)	(8.89E+01)	(4.59E+02)	(5.82E+02)	(5.24E+02)
-/=/+	15/11/4	13/13/4	(5.5, 2.01)	18/8/4	15/8/7	(2.2.2.2)
					0, ,	

Table S7 Performance comparisons of variant-III of MLCC-si with shade and ide on 30- and 50-dimensional cec 2014 benchmark set over 51 independent runs

SHADE	ON S	30- and 50-di		EC2014 BENC	HMARK SET O		ENDENT RUNS
F1			D = 30			D = 50	
Force		SHADE	IDE	Variant-III	SHADE	IDE	Variant-III
C.5.6/E-002 (9.41E-044) (2.86E+043) (0.06E+06) (3.47E+05) (5.07E+04) (0.00E+06)	F1						
F3		()					(/
F3	F2						
February Condition Condi	F3						
February February	13						
F5	F4						
F5							
Fig. Gase	F5						
F7 0.00E+00 0.00	E6	6.41E+00 -	6.20E-02 +	1.11E+00	1.18E+00 =	9.34E-02 +	3.76E-01
F	го	(3.86E+00)	(2.82E-01)	(1.25E+00)	(3.45E+00)	(3.14E-01)	(5.11E-01)
F8	F7						
Fig. (0.00E+00) (3.09E+09) (0.00E+00) (5.39E-03) (1.97E-01) (1.43E+00) (2.25E+01 - 2.46E+01 - 2.13E+01) (3.25E+01) (4.18E+00) (5.33E+00) (4.56E+00) (8.25E+00) (1.01E+01) (1.22E+01) (5.33E+00) (4.56E+00) (6.05E+00) (6.05E+00) (4.90E+01) (2.25E+01) (3.94E-02) (1.66E+01) (2.83E+00) (6.05E+00) (4.90E+01) (2.43E+01) (4.82E-02) (3.53E+02) (3.34E+02) (3.93E+02) (6.65E+02) (5.31E+02) (5.31E+02) (6.65E+02) (5.31E+02) (6.65E+02) (5.31E+02) (6.65E+02) (7.37E+02)					,		
F9	F8						
Fig. (4.18E+00) (5.33E+00) (4.56E+00) (8.25E+00) (1.01E+01) (1.22E+01)							
Fit	F9						
F11	F10						
F11	110				,		
F12	F11						
F12							
F13	F12						
F13	F1.0						
F14	F13	(2.58E-02)	(2.20E-02)		(2.99E-02)	(3.09E-02)	
C.24E-02 (3.19E-02) (2.49E-02) (1.82E-02) (2.23E-02) (2.12E-02)	F14						
F15 (4.70E-01) (5.27E-01) (4.93E-01) (8.02E-01) (1.93E+00) (1.19E+00)							
F16	F15						
The					` ,		
F17	F16						
Table Canal Cana	E17						
F18	1.17				,		
F19	F18						
F19							
F20 4.96E+00+ (2.19E+00) 1.08E+01- (3.24E+00) 6.05E+00 (2.00E+00) 4.11E+01= (1.63E+01) 4.54E+01- (1.04E+01) 3.98E+01- (1.35E+01) F21 1.29E+02= (8.62E+01) 3.30E+02- (1.54E+02) 1.40E+02 (6.83E+01) 9.75E+02- (2.81E+02) 1.23E+03- (3.77E+02) 6.57E+02 (2.00E+02) F22 1.23E+02- (5.85E+01) 7.30E+01= (5.78E+01) 5.15E+01 (4.37E+01) 4.85E+02- (1.22E+02) 3.04E+02= (1.06E+02) 2.70E+02 (1.03E+02) F23 3.15E+02= (4.02E-13) 3.15E+02+ (4.02E-13) 3.15E+02 (4.02E-13) 3.44E+02= (4.06E-13) 3.44E+02 (4.67E-13) F24 2.23E+02 = (9.22E-01) 2.23E+02 = (7.68E-01) 2.23E+02 (2.69E+02) 2.58E+02 + (2.59E+02) 2.59E+02 F25 2.04E+02 - (7.68E-01) 2.03E+02 = (2.33E+02) 2.01E+02 - (2.59E+00) 2.07E+02 - (6.05E-01) 2.07E+02 - (3.37E-02) 2.07E+02 - (2.37E+01) F26 1.00E+02 - (2.79E-02) 1.00E+02 - (2.60E-02) 1.00E+02 - (3.37E-02) 1.00E+02 - (2.37E+01) 1.00E+02 - (2.39E+01) F27 3.00E+02 + (1.86E+01) 8.30E+02 - (8.16E+01) 8.05E+02 - (8.30E+01) 8.26E+03 + (3.20E+01) 1.28E+03 - (6.01E+00) 1.16E+03 (3.82E+01)	F19						
C2.19E+00 (3.24E+00) (2.00E+00) (1.63E+01) (1.04E+01) (1.35E+01)	F20				,		
F21 (8.62E+01) (1.54E+02) (6.83E+01) (2.81E+02) (3.77E+02) (2.10E+02) F22 1.23E+02 - (5.85E+01) 7.30E+01 = (5.78E+01) 5.15E+01 (4.37E+01) 4.85E+02 - (1.06E+02) 3.04E+02 = (2.70E+02) 2.70E+02 (1.03E+02) F23 3.15E+02 = (4.02E-13) (3.46E-13) (4.02E-13) (4.60E-13) (4.46E-13) (4.67E-13) F24 2.23E+02 = (9.22E-01) 2.23E+02 = (7.26E-01) 2.23E+02 (7.26E-01) 2.58E+02 + (2.59E+02) 2.58E+02 + (2.59E+02) F25 2.04E+02 - (2.33E+02) = (2.33E+02) 2.03E+02 (2.59E+00) 2.07E+02 - (3.37E+02) 2.07E+02 - (3.66E-01) F26 1.00E+02 - (2.79E-02) (2.60E-02) (2.64E-02) (3.37E-02) (2.37E+01) (2.49E-02) F27 3.00E+02 + (3.30E+02) 3.30E+02 - (2.79E+01) 3.30E+02 - (2.37E+01) 3.06E+02 + (2.39E+01) 3.14E+02 F28 7.92E+02 + (8.26E+02) - (8.06E+01) (2.83E+01) (2.79E+01) (1.65E+01) (2.39E+01) F29 7.20E+02 - (5.75E+02) 6.36E+02 8.27E+02 - (1.03E+03) 1.06E+02 8.84E+03 F30 1.22E+03 - (6.01E+00) <td>F20</td> <td>(2.19E+00)</td> <td>(3.24E+00)</td> <td>(2.00E+00)</td> <td>(1.63E+01)</td> <td>(1.04E+01)</td> <td></td>	F20	(2.19E+00)	(3.24E+00)	(2.00E+00)	(1.63E+01)	(1.04E+01)	
F22 1.23E+02 - 7.30E+01 5.15E+01 4.85E+02 - 3.04E+02 2.70E+02 (5.85E+01) (5.78E+01) (4.37E+01) (1.22E+02) (1.06E+02) (1.03E+02) (1.03E+02) (1.03E+02) (1.03E+02) (1.03E+02) (1.03E+02) (1.03E+02) (1.03E+0	F21						
F22 (5.85E+01) (5.78E+01) (4.37E+01) (1.22E+02) (1.06E+02) (1.03E+02) F23 3.15E+02 =					,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F22						
F25	F10.0				,		
F24 (9.22E-01) (7.24E-01) (7.26E-01) (1.90E+00) (3.39E+00) (3.67E+00) F25 2.04E+02 - (7.68E-01) 2.03E+02 = (2.33E-01) 2.03E+02 = (2.59E+00) 2.11E+02 - (6.05E-01) 2.07E+02 - (1.36E+00) F26 1.00E+02 - (2.79E-02) 1.00E+02 = (2.64E-02) 1.00E+02 - (3.37E-02) 1.06E+02 = (2.47E-01) 1.00E+02 - (2.49E-02) F27 3.00E+02 + (1.11E-13) 3.30E+02 = (3.30E+02) 3.30E+02 - (3.37E-02) 3.36E+02 + (3.36E+02) 3.14E+02 F28 7.92E+02 + (8.26E+02) - (8.10E+01) 8.26E+02 - (2.83E+01) 1.28E+03 - (1.6E+03) 1.16E+03 F29 7.20E+02 - (5.75E+02) = (3.66E+02) 6.36E+02 (1.92E+02) 6.36E+02 (1.92E+02) 1.03E+03 - (8.30E+01) F30 1.22E+03 - (3.18E+02) = (7.28E+01) 5.36E+02 (1.53E+02) 8.45E+03 + (4.59E+02) 9.90E+03 - (8.82E+03) F30 4.61E+02) (7.28E+01) (1.53E+02) (4.59E+02) (5.82E+02) 4.19E+02)	F23						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F24						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 44						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F25		(2.225.01)	(4.665.01)		(5.05E 01)	(1.0 () 00)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F26						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F27	3.00E+02 +	3.30E+02 =	3.30E+02	3.33E+02 -	3.06E+02 +	3.14E+02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12/						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F28						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
F30 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F29						
F30 (4.61E+02) (7.28E+01) (1.53E+02) (4.59E+02) (5.82E+02) (4.19E+02)	E20						
-/=/+ 13/11/6 9/15/6 16/9/5 15/4/11	F30						
	-/=/+	13/11/6	9/15/6		16/9/5	15/4/11	

TABLE S8 PERFORMANCE COMPARISONS OF VARIANT-IV OF MLCC-SI WITH SHADE AND IDE ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

ON S	30- and 50-di	MENSIONAL C	EC2014 BENC	HMARK SET O'	ver 51 indepi	ENDENT RUNS
		D = 30			D = 50	
	SHADE	IDE	Variant-IV	SHADE	IDE	Variant-IV
F1	2.59E+02 +	1.18E+05 -	3.49E+03	1.19E+05 +	1.24E+06 -	2.42E+05
1.1	(5.67E+02)	(9.41E+04)	(3.73E+03)	(6.14E+04)	(3.41E+05)	(8.92E+04)
F2	0.00E+00 =	0.00E+00 =	0.00E+00	<u>0.00E+00</u> +	2.28E+00 -	1.07E-04
	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.53E+00)	(1.41E-04)
F3	0.00E+00 =	0.00E+00 =	0.00E+00	0.00E+00 =	1.85E+01 -	4.25E-01
	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.27E+01)	(3.03E+00)
F4	<u>0.00E+00</u> +	2.08E-02 -	6.03E-07	8.35E+01 =	7.19E+01 -	7.00E+01
	(0.00E+00)	(4.14E-02)	(2.29E-06)	(1.16E+01)	(2.97E+01)	(2.53E+01)
F5	2.03E+01 +	2.02E+01 +	2.04E+01	2.05E+01 +	2.03E+01 +	2.06E+01
	(3.54E-02)	(5.68E-02)	(4.56E-02)	(4.03E-02)	(5.95E-02)	(4.04E-02)
F6	6.41E+00 -	6.20E-02 -	2.69E-02	1.18E+00 -	9.34E-02 +	2.06E-01
	(3.86E+00)	(2.82E-01)	(9.09E-02)	(3.45E+00)	(3.14E-01)	(3.89E-01)
F7	0.00E+00 =	<u>0.00E+00</u> =	0.00E+00	<u>0.00E+00</u> =	2.22E-03 -	0.00E+00
	(0.00E+00)	(0.00E+00)	(0.00E+00) 0.00E+00	(0.00E+00) 1.84E-02 -	(4.10E-03) 4.32E-02 -	(0.00E+00) 1.33E-07
F8	$\frac{0.00E+00}{(0.00E+00)} =$	4.33E-10 = (3.09E-09)	(0.00E+00)	(5.39E-03)	4.32E-02 - (1.97E-01)	(2.57E-07)
	2.75E+01 -	2.46E+01 -	2.03E+01	8.82E+01 -	5.99E+01 -	4.36E+01
F9	(4.18E+00)	(5.33E+00)	(4.26E+00)	(8.25E+00)	(1.01E+01)	(8.45E+00)
	1.57E-01 +	5.68E+00 -	2.56E+00	6.06E+01 -	3.34E+01 +	1.81E+01
F10	(3.94E-02)	(1.66E+01)	(1.73E+00)	(6.43E+00)	(4.90E+01)	(9.40E+00)
774.4	1.97E+03 -	1.92E+03 -	1.70E+03	6.27E+03 -	4.20E+03 -	3.92E+03
F11	(2.06E+02)	(3.53E+02)	(3.59E+02)	(3.93E+02)	(6.65E+02)	(6.72E+02)
F12	3.08E-01 +	2.91E-01 +	3.84E-01	6.12E-01 =	3.68E-01 +	5.93E-01
F12	(4.82E-02)	(5.97E-02)	(7.25E-02)	(6.73E-02)	(7.37E-02)	(6.83E-02)
F13	2.15E-01 -	1.87E-01 +	1.98E-01	3.01E-01 -	2.96E-01 =	2.84E-01
1.13	(2.58E-02)	(2.20E-02)	(2.03E-02)	(2.99E-02)	(3.09E-02)	(2.73E-02)
F14	2.14E-01 -	<u>1.82E-01</u> +	2.00E-01	<u>2.50E-01</u> +	2.70E-01 =	2.63E-01
	(2.24E-02)	(3.19E-02)	(2.48E-02)	(1.82E-02)	(2.23E-02)	(2.32E-02)
F15	3.83E+00 -	2.69E+00 =	2.63E+00	1.18E+01 -	7.36E+00 =	7.29E+00
	(4.70E-01)	(5.27E-01)	(4.98E-01)	(8.02E-01)	(1.93E+00)	(1.95E+00)
F16	9.55E+00 + (3.49E-01)	1.00E+01 - (3.94E-01)	9.79E+00 (3.48E-01)	$\frac{1.88E+01}{(2.77E-01)} =$	1.92E+01 -	1.89E+01 (3.95E-01)
	7.62E+02 -	5.97E+02 -	2.56E+02	2.21E+03 -	(4.21E-01) 7.22E+03 -	1.26E+03
F17	(3.58E+02)	(2.97E+02)	(1.43E+02)	(5.57E+02)	(2.74E+03)	(4.55E+02)
	1.44E+01 -	1.90E+01 -	9.36E+00	8.03E+01 -	3.93E+01 -	2.93E+01
F18	(7.28E+00)	(5.87E+00)	(3.28E+00)	(2.31E+01)	(1.09E+01)	(9.31E+00)
F10	4.01E+00 -	2.91E+00 =	3.06E+00	1.29E+01 -	1.03E+01 -	1.00E+01
F19	(6.47E-01)	(4.69E-01)	(4.65E-01)	(5.85E+00)	(7.50E-01)	(4.58E-01)
E20	4.96E+00 +	1.08E+01 -	5.72E+00	4.11E+01 -	4.54E+01 -	2.56E+01
F20	(2.19E+00)	(3.24E+00)	(1.76E+00)	(1.63E+01)	(1.04E+01)	(6.76E+00)
F21	1.29E+02 =	3.30E+02 -	1.09E+02	9.75E+02 -	1.23E+03 -	5.62E+02
1 41	(8.62E+01)	(1.54E+02)	(6.86E+01)	(2.81E+02)	(3.77E+02)	(1.86E+02)
F22	1.23E+02 -	7.30E+01 =	5.74E+01	4.85E+02 -	3.04E+02 =	2.76E+02
	(5.85E+01)	(5.78E+01)	(5.13E+01)	(1.22E+02)	(1.06E+02)	(1.08E+02)
F23	3.15E+02 =	3.15E+02 +	3.15E+02	3.44E+02 =	$\frac{3.44E+02}{(4.46E+12)} =$	3.44E+02
	(4.02E-13)	(3.46E-13)	(4.02E-13)	(4.60E-13)	(4.46E-13)	(4.25E-13)
F24	$\frac{2.23E+02}{(0.22E,01)} =$	2.23E+02 -	2.23E+02	2.69E+02 -	2.58E+02 +	2.58E+02
	(9.22E-01)	(7.24E-01) 2.03E+02 =	(7.66E-01) 2.03E+02	(1.90E+00)	(3.39E+00) 2.07E+02 -	(1.55E+00) 2.06E+02
F25	2.04E+02 - (7.68E-01)	(2.33E+02) = (2.33E-01)	(2.87E-01)	2.11E+02 - (2.59E+00)	(6.05E-01)	(
	1.00E+02 -	1.00E+02 =	1.00E+02	1.00E+02 -	1.06E+02 =	(6.65E-01) 1.02E+02
F26	(2.79E-02)	(2.60E-02)	(2.70E-02)	(3.37E-02)	(2.37E+01)	(1.40E+01)
T10 -	3.00E+02 =	3.30E+02 -	3.08E+02	3.33E+02 -	3.06E+02 =	3.13E+02
F27	(1.11E-13)	(4.63E+01)	(2.72E+01)	(2.79E+01)	(1.65E+01)	(2.17E+01)
E20	7.92E+02 =	8.26E+02 -	7.97E+02	1.09E+03 +	1.28E+03 -	1.13E+03
F28	(1.86E+01)	(8.10E+01)	(2.09E+01)	(3.20E+01)	(9.49E+01)	(3.19E+01)
E20	7.20E+02 -	<u>5.75E+02</u> =	6.64E+02	8.27E+02 -	1.03E+03 -	6.15E+02
F29	(6.01E+00)	(2.15E+02)	(1.69E+02)	(5.63E+01)	(1.26E+02)	(1.09E+02)
F30	1.22E+03 -	5.18E+02 =	5.15E+02	8.45E+03 +	9.90E+03 -	8.67E+03
	(4.61E+02)	(7.28E+01)	(1.12E+02)	(4.59E+02)	(5.82E+02)	(4.38E+02)
-/=/+	14/9/7	14/11/5		18/6/6	18/7/5	

Table S9 Performance comparisons of MLCC-si with its variants with different $\it n$ settings on 30-dimensional cec2014 benchmark set over 51 independent runs

	on 30-	DIMENSIONAL	LCEC2014 BEN	NCHMARK SET	OVER 51 INDE	PENDENT RUN	IS
	Setting-I	Setting-II	Setting-III	Setting-IV	Setting-V	Setting-VI	MLCC-SI
171	4.37E+03 =	3.06E+03 =	2.77E+03 +	2.54E+03 +	6.58E+03 =	2.42E+03 +	4.76E+03
F1	(4.52E+03)	(3.89E+03)	(3.01E+03)	(3.80E+03)	(6.94E+03)	(3.14E+03)	(5.69E+03)
F2	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00
F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00
F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	6.55E-08 =	<u>6.05E-08</u> =	9.48E-08 =	1.20E-05 -	8.44E-07 =	1.47E+00 -	1.63E-07
F4	(1.72E-07)	(1.74E-07)	(3.44E-07)	(4.80E-05)	(4.16E-06)	(9.24E+00)	(4.37E-07)
	2.02E+01 =	2.02E+01 =	2.02E+01 =	2.02E+01 =	2.02E+01 -	2.02E+01 -	2.02E+01
F5	(4.40E-02)	(3.39E-02)	(4.66E-02)	(5.22E-02)	(5.80E-02)	(5.91E-02)	(5.40E-02)
-	8.51E-02 =	5.29E-01 =	2.60E-01 -	2.16E+00 =	2.05E-01 =	2.05E+00 =	8.71E-02
F6	(2.59E-01)	(1.36E+00)	(7.68E-01)	(3.11E+00)	(6.71E-01)	(3.77E+00)	(2.84E-01)
	0.00E+00=	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00
F7		(0.00E+00)		(0.00E+00) =	(0.00E+00)	(0.00E+00)	
	(0.00E+00)		(0.00E+00)				(0.00E+00)
F8	<u>0.00E+00</u> =	<u>0.00E+00</u> =	2.18E-09 =	2.75E-10 =	<u>0.00E+00</u> =	1.01E-06 -	0.00E+00
	(0.00E+00)	(0.00E+00)	(1.08E-08)	(1.96E-09)	(0.00E+00)	(2.37E-06)	(0.00E+00)
F9	2.13E+01 =	2.20E+01 =	2.10E+01 =	2.17E+01 =	2.12E+01 =	2.37E+01 -	2.14E+01
	(3.69E+00)	(3.77E+00)	(3.77E+00)	(3.47E+00)	(5.05E+00)	(3.40E+00)	(4.44E+00)
F10	9.84E-01 =	7.44E-01 =	2.72E+00 -	9.15E+00 -	2.22E+00 -	1.35E+01 -	1.12E+00
110	(8.83E-01)	(5.15E-01)	(1.13E+00)	(2.85E+00)	(1.69E+00)	(3.45E+00)	(9.49E-01)
F11	1.66E+03 =	1.70E+03 =	1.62E+03 =	1.80E+03 -	1.74E+03 =	1.91E+03 -	1.63E+03
1.11	(3.36E+02)	(2.63E+02)	(3.47E+02)	(2.43E+02)	(3.05E+02)	(2.87E+02)	(3.34E+02)
F12	2.50E-01 =	2.30E-01 +	2.29E-01 +	2.41E-01 =	2.82E-01 =	2.68E-01 =	2.60E-01
FIZ	(5.18E-02)	(5.63E-02)	(5.18E-02)	(4.97E-02)	(7.75E-02)	(5.76E-02)	(5.31E-02)
E12	1.80E-01 =	1.83E-01 =	1.84E-01 =	1.85E-01 =	1.91E-01 =	1.89E-01 =	1.83E-01
F13	(2.96E-02)	(2.21E-02)	(2.17E-02)	(2.46E-02)	(2.57E-02)	(2.78E-02)	(2.79E-02)
F1.4	1.92E-01 =	1.91E-01 =	1.99E-01 =	1.92E-01 =	2.00E-01 =	1.92E-01 =	1.94E-01
F14	(2.36E-02)	(3.01E-02)	(2.11E-02)	(2.16E-02)	(2.68E-02)	(2.75E-02)	(2.21E-02)
	2.56E+00 =	2.48E+00 =	3.06E+00 -	3.14E+00 -	2.68E+00 -	3.43E+00 -	2.47E+00
F15	(5.17E-01)	(5.71E-01)	(5.16E-01)	(4.10E-01)	(5.12E-01)	(4.84E-01)	(4.20E-01)
	9.53E+00 =	9.55E+00 =	9.60E+00 =	9.56E+00 =	9.66E+00 =	9.65E+00 =	9.52E+00
F16	(4.72E-01)	(4.89E-01)	(4.20E-01)	(4.43E-01)	(4.65E-01)	(4.32E-01)	(4.66E-01)
	2.51E+02 =	2.41E+02 =	2.87E+02 =	3.23E+02 -	2.61E+02 =	2.93E+02 -	2.31E+02
F17	(1.33E+02)	(1.26E+02)	(1.52E+02)	(1.66E+02)	(1.52E+02)	(1.46E+02)	(1.23E+02)
	1.01E+01 =	1.02E+01 =	8.76E+00 =	9.91E+00 =	9.67E+00 =	1.11E+01 =	9.79E+00
F18	(3.49E+00)	(3.76E+00)	(3.17E+00)	(4.73E+00)	(3.64E+00)	(4.15E+00)	(3.36E+00)
	2.99E+00 =	3.13E+00 =	3.33E+00 -	3.45E+00 -	3.01E+00 =	3.48E+00 -	3.02E+00
F19	(5.33E-01)	(5.12E-01)	(5.66E-01)	(4.47E-01)	(5.26E-01)	(5.39E-01)	(5.37E-01)
-							
F20	5.73E+00 =	6.12E+00 =	6.56E+00 =	5.77E+00 =	<u>5.69E+00</u> =	5.95E+00 =	5.91E+00
	(1.54E+00)	(1.55E+00)	(2.03E+00)	(2.10E+00)	(1.96E+00)	(1.68E+00)	(1.42E+00)
F21	1.02E+02 =	9.17E+01 =	8.88E+01 = (7.67E+01)	9.88E+01 =	1.01E+02 =	1.12E+02 =	1.04E+02
	(7.67E+01)	(7.73E+01)	(7.67E+01)	(8.09E+01)	(8.98E+01)	(7.94E+01)	(7.65E+01)
F22	4.79E+01 -	6.05E+01 -	7.10E+01 -	6.42E+01 -	6.25E+01 -	7.57E+01 -	3.55E+01
	(4.73E+01)	(5.51E+01)	(5.74E+01)	(5.25E+01)	(5.49E+01)	(5.66E+01)	(3.45E+01)
F23	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02
	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)
F24	2.23E+02 =	2.23E+02 =	2.23E+02 =	2.23E+02 -	$\frac{2.23E+02}{(7.54E+0.1)} =$	2.23E+02 =	2.23E+02
	(8.77E-01)	(7.48E-01)	(8.60E-01)	(6.70E-01)	(7.54E-01)	(6.99E-01)	(7.91E-01)
F25	2.03E+02 =	2.03E+02 =	2.03E+02 =	2.03E+02 =	2.03E+02 =	2.03E+02 =	2.03E+02
	(3.36E-01)	(3.37E-01)	(2.54E-01)	(3.33E-01)	(3.25E-01)	(3.37E-01)	(2.95E-01)
F26	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02 =	1.00E+02
- 20	(2.69E-02)	(2.57E-02)	(2.55E-02)	(2.49E-02)	(2.87E-02)	(2.75E-02)	(2.41E-02)
F27	3.10E+02 +	3.20E+02 +	3.06E+02 +	3.20E+02 +	3.10E+02 +	3.22E+02 +	3.47E+02
12/	(3.02E+01)	(4.03E+01)	(2.38E+01)	(4.02E+01)	(3.02E+01)	(4.17E+01)	(5.07E+01)
F28	8.00E+02 -	8.06E+02 -	8.07E+02 -	8.06E+02 -	7.93E+02 =	8.14E+02 -	7.89E+02
1.79	(2.39E+01)	(2.84E+01)	(2.93E+01)	(2.52E+01)	(2.98E+01)	(2.40E+01)	(3.09E+01)
E20	6.78E+02 =	6.39E+02 =	6.64E+02 =	6.56E+02 +	6.52E+02 =	6.55E+02 +	6.94E+02
F29	(1.49E+02)	(1.97E+02)	(1.71E+02)	(1.74E+02)	(1.82E+02)	(1.72E+02)	(1.27E+02)
E20	4.91E+02 =	5.10E+02 =	5.24E+02 =	5.10E+02 =	5.15E+02 =	4.60E+02 +	5.20E+02
F30	(7.94E+01)	(1.10E+02)	(1.12E+02)	(1.03E+02)	(1.23E+02)	(8.15E+01)	(1.60E+02)
-/=/+	2/27/1	2/26/2	6/21/3	9/18/3	4/25/1	11/15/4	Í
-/=/+						,, .	

table S10 Performance comparisons of MLCC-sbi with shade and bide on 30- and 50-dimensional cec 2014 benchmark set over 51 independent runs

SHADE	ON S	30- AND 30-DI	$\frac{\text{MENSIONAL CI}}{D = 30}$	EC2014 BENC	HMARK SET OV	D = 50	ENDENT RUNS
F1			<i>D</i> = 30			<i>D</i> = 30	
Force							MLCC-SBi
F2	F1						8.14E+04 (4.33E+04)
F2			` ,				0.00E+00
Formula Form	F2				(0.00E+00)		(0.00E+00)
F4	F3						0.00E+00
Feb							(0.00E+00)
F5	F4						(4.26E+01)
F6		(,				2.05E+01
F16	F5		(1.22E-01)	(1.05E-01)	(4.03E-02)	(8.52E-02)	(6.14E-02)
F7	F6						2.01E+00
F7							(4.58E+00) 0.00E+00
F8	F7						(0.00E+00)
F9	Fo		,				1.11E+01
F10	гв	(0.00E+00)	,		,		(1.86E+00)
F10	F9						5.63E+01
F10							(1.11E+01) 2.89E+02
F11	F10						(8.55E+01)
F12 (3.08E-01) (1.01E-02) (3.95E+02) (1.40E+03) (0.92E-01) (1.50E-01) (1.02E+00) (1.15E-01) (2.76E-01) (1.15E-01) (2.58E-02) (8.44E-02) (3.02E-02) (2.99E-02) (5.23E-02) (3.96E-01) (3.96E-01) (3.96E-01) (3.96E-01) (3.96E-01) (3.96E-01) (3.96E-01) (3.96E-01) (3.96E-02) (3.96E-02)	E11		,				4.72E+03
F12	FII						(6.92E+02)
F13	F12						5.69E-01
F13							(1.15E-01)
F14	F13						(3.96E-02)
F15	E14			2.11E-01			2.49E-01
F15 (4.70E-01) (8.94E-01) (7.18E-01) (8.02E-01) (3.82E+00) (2.19E-00) (3.49E-01) (5.31E-01) (5.27E-01) (2.77E-01) (6.30E-01) (5.37E-01) (5.37E-01) (5.27E-01) (2.77E-01) (6.30E-01) (5.37E-01) (5.37E-01) (5.27E-01) (6.30E-01) (5.37E-01) (6.35E-02) (1.38E+02) (1.38E+02) (1.52E+02) (5.57E+02) (5.57E+02) (5.57E+02) (4.18E-02) (3.48E+02) (3.34E+00) (3.67E+00) (5.57E+02) (5.57E+02) (5.57E+02) (2.28E+01) (2.28E+01) (2.28E+01) (2.28E+01) (2.28E+01) (2.31E+01) (2.42E+01) (1.08E-01) (6.47E-01) (6.55E-01) (7.03E-01) (5.85E+00) (7.45E-01) (6.37E-02) (6.37E-02) (2.31E+01) (2.42E+01) (6.37E-02) (2.31E+01) (2.42E+01) (6.37E-02) (2.31E+01) (2.29E+01-1) (3.31E+01-1) (3.31E+	Г14				,		(2.50E-02)
F16	F15						8.11E+00
F16			,				(2.19E+00) 1.87E+01
This	F16						(5.37E-01)
F18	F17		<u>2.12E+02</u> =	2.35E+02	2.21E+03 -	1.38E+03 -	1.07E+03
F18	1717						(4.18E+02)
F19 4.01E+00 - (6.47E-01) 2.62E+00 = (6.55E-01) 2.71E+00 (5.85E+00) 1.29E+01 (7.45E-01) 1.14E+01 - (6.03E (6.03	F18						2.98E+01
F19							1.09E+01
F20 4.96E+00 = (2.19E+00) 8.37E+00 - (2.35E+00) 5.32E+00 - (1.85E+00) 4.11E+01 - (1.63E+01) 3.31E+01 - (9.20E+00) 2.38E - (6.17E -	F19						(6.03E-01)
F21 1.29E+02 1.28E+02 1.14E+02 9.75E+02 8.62E+02 (1.92E 1.23E+01 (1.16E+02) (8.33E+01) (2.81E+02) (2.94E+02) (1.92E 1.23E+02 9.45E+01 (5.97E+01) (1.22E+02) (1.51E+02) (1.92E 1.23E+02 3.15E+02 3.15E+02 (4.02E-13) (4.02	F20			5.32E+00			2.38E+01
F21 (8.62E+01) (1.16E+02) (8.33E+01) (2.81E+02) (2.94E+02) (1.92E F22 1.23E+02 - (5.85E+01) 9.45E+01 = (5.97E+01) 7.50E+01 4.85E+02 - (1.22E+02) 3.86E+02 - (1.47E F23 3.15E+02 = (4.02E-13) 3.15E+02 = (4.02E-13) 3.15E+02 = (4.02E-13) 3.44E+02 - (4.12E-13) 4.18E F24 2.23E+02 = (2.20E+02 + (2.23E+02)) 2.69E+02 = (2.69E+02 + (2.68E+02 + (2	1.20						(6.17E+00)
F22 1.23E+02 - (5.85E+01) 9.45E+01 = (8.43E+01) 7.50E+01 (5.97E+01) 4.85E+02 - (1.2E+02) 3.86E+02 - (1.47E-02) 3.10E (1.47E-02) F23 3.15E+02 = (4.02E-13) 3.15E+02 = (4.02E-13) 3.15E+02 = (4.02E-13) 3.44E+02 = (4.12E-13) 3.44E+02 - (4.12E-13) 4.41E-13 3.44E+02 - (4.12E-13) 4.41E-13	F21						4.83E+02
F22 (5.85E+01) (8.43E+01) (5.97E+01) (1.22E+02) (1.51E+02) (1.47E F23 3.15E+02 = (4.02E-13) 3.15E+02 = (4.02E-13) 3.44E+02 = (4.02E-13) 3.44E+02 = (4.12E-13) 4.12E-13							3.10E+02
F23 (4.02E-13) (4.02E-13) (4.02E-13) (4.12E-13) (4.18E 1.00E+02 1.00E+02 1.00E+02 (1.11E-13) (3.8E+02 1.11E-13) (3.8E+02 1.8E+02 1.8E+02 (1.11E-13) (3.8E+02 1.11E-02 1.00E+02 (1.11E-13) (3.8E+02 1.11E-02 1.00E+02 (1.11E-13) (3.8E+02 1.11E-02 (3.33E+02 1.00E+02 1.00E+02 (3.37E-02) (3.37E-02) (3.38E+02 1.00E+02 1.00E+02 (3.37E-02) (3.38E+02 1.00E+02 (3.38E+02 1.00E+02 1.00E+02 (3.38E+02 1.00E+02 1.00E+02 (3.38E+02 1.00E+02 (3.38E+02 1.00E+02 1.00E+02 (3.38E+02 (3.38E+02	F22						(1.47E+02)
F24	F23						3.44E+02
F24 (9.22E-01) (6.75E+00) (9.03E-01) (1.90E+00) (1.76E+00) (1.86E F25 2.04E+02 - (7.68E-01) 2.03E+02 + (2.15E-01) 2.03E+02 - (2.59E+00) 2.11E+02 - (3.66E-01) + (3.66E-01) 2.05E+02 + (3.66E-01) 2.05E+02 + (3.66E-01) 2.05E+02 + (3.66E-01) 2.06E + (4.68E + (2.79E-02)) 4.68E+02 + (2.79E-02) 1.00E+02 - (2.79E-02) 1.00E+02 - (3.37E-02) 1.00E+02 - (4.07E + (4.07E + (2.79E+01)) 1.00E+02 - (4.07E + (2.79E+01)) 3.38E+02 - (3.39E + (2.79E+01)) 3.38E+02 - (3.39E + (2.79E+01)) 3.39E+02 - (3.79E+01) 3.39E+02 - (3.79E+01) 3.39E+02 - (3.29E+01) 3.39E+02 - (3.29E+01) 1.16E+03 - (3.91E + (3.29E+02)) 1.09E+03 - (7.13E+01) 3.91E F29 7.20E+02 - (6.01E+00) 7.16E+02 + (3.38E+00) 7.17E+02 - (3.38E+01) 8.27E+02 - (3.38E+01) 7.64E+02 + (4.03E + (4.0			,		_		(4.18E-13)
F25	F24						(1.86E+00)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E25		,				2.06E+02
F26 (2.79E-02) (4.89E-02) (2.70E-02) (3.37E-02) (5.58E-02) (4.07E	F25		(2.16E-01)	(2.15E-01)		(3.66E-01)	(4.68E-01)
C2.79E-02 (4.89E-02) (2.70E-02) (3.37E-02) (3.58E-02) (4.07E	F26						1.00E+02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				(4.07E-02)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F27						3.39E+02 (3.23E+01)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E20						1.09E+03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F28	(1.86E+01)		(2.41E+01)			(3.91E+01)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F29						8.08E+02
F30							(4.03E+01) 8.33E+03
(〒.OュヒTOZ) (J.O∠ヒTOZ) (J.ZJヒTOZ) (4.JプヒTOZ) (Z.4プヒTOZ) (3.61E/	F30	(4.61E+02)	(3.02E+02)	(3.25E+02)	8.45E+03 - (4.59E+02)	$\frac{8.21E+03}{(2.49E+02)} =$	(3.81E+02)
-/=/+ 15/13/2 6/21/3 15/13/2 19/8/3	-/=/+						,/

Table S11 Performance comparisons of bide with shade on 30- and 50-dimensional cec2014 benchmark set over 51 independent runs

D = 30D = 50SHADE SHADE BiDE BiDE 2.59E+02 =3.00E+02 1.19E+05 + 1.55E+05 F1 (5.67E+02)(6.14E+04)(6.19E+02)(8.27E+04)0.00E+00 =0.00E+00 0.00E+00+5.06E-04 F2 (0.00E+00)(0.00E+00)(0.00E+00)(5.12E-04) 0.00E+00 =0.00E+000.00E+00 =0.00E+00F3 (0.00E+00)(0.00E+00)(0.00E+00)(0.00E+00)0.00E+00 + 2.57E-08 8.35E+01 -3.32E+01 F4 (0.00E+00)(4.92E-08) (1.16E+01) (3.64E+01) 2.03E+01 -2.01E+01 2.05E+01+2.07E+01F5 (3.54E-02) (1.22E-01) (4.03E-02) (8.52E-02) 6.41E+00 -5 74E-01 1.18E+00 + 6.35E+00 F6 (3.86E+00)(8.99E-01) (3.45E+00)(1.01E+01)0.00E+00 =0.00E+00 0.00E+00 =0.00E+00 F7 (0.00E+00)(0.00E+00)(0.00E+00)(0.00E+00)0.00E+00 + 1.84E-02 + 2.14E-03 5.98E+01 F8 (3.25E-03) (5.39E-03) (0.00E+00)(4.25E+00)2.75E+01 + 3.18E+01 8.82E+01+1.99E+02 (4.18E+00)(7.22E+00)(8.25E+00)(3.82E+01)1.57E-01 + 1.20E+02 6.06E+01 + 2.36E+03 F10 (3.94E-02) (6.43E+00) (2.69E+01)(3.27E+02)1.97E+03 -1.59E+03 6.27E+03 + 7.96E+03 F11 (2.06E+02)(4.02E+02)(3.93E+02)(1.40E+03)3 08E-01 -1.61E-01 6.12E-01 + 1.02E+00 F12 (4.82E-02) (8.44E-02) (6.73E-02) (2.76E-01)2.15E-01 = 2.08E-01 3.01E-01 = 2.95E-01 F13 (2.58E-02)(4.34E-02) (2.99E-02)(5.23E-02) 2.14E-01 = 2.14E-01 2.50E-01 = 2.52E-01 F14 (2.89E-02) (3.45E-02) (2.24E-02)(1.82E-02)3.83E+00 -3.18E+001.18E+01 + 1.97E+01F15 (8.02E-01) (4.70E-01) (8.94E-01) (3.82E+00)9.55E+00 =9.36E+00 1.88E+01 +2.02E+01 F16 (3.49E-01) (5.31E-01) (2.77E-01) (6.30E-01) 7.62E+02 2.12E+02 2.21E+03 -1.38E+03 F17 (5.57E+02) (3.58E+02)(1.38E+02)(5.57E+02)8.03E+01 -1.44E+01 -8.57E+00 5.25E+01 F18 (7.28E+00)(3.34E+00)(2.31E+01)(2.42E+01)4 01E+00 -2.62E+001.29E+01 =1.14E+01 (6.55E-01) (6.47E-01) (5.85E+00)(7.45E-01) 4.96E+00 + 8.37E+00 4.11E+01 -3.31E+01 F20 (2.19E+00)(2.35E+00)(1.63E+01)(9.20E+00)1.29E+02 = 1.28E+02 9.75E+02 -8.62E+02 F21 (8.62E+01) (1.16E+02)(2.81E+02)(2.94E+02)1.23E+02 -9.45E+014.85E+02 -3.86E+02 F22 (5.85E+01)(1.22E+02)(8.43E+01)(1.51E+02)3.15E+02 = 3.15E+02 3.44E+02 + 3.44E+02 F23 (4.02E-13) (4.60E-13) (4.02E-13) (4.12E-13) 2.23E+02 -2.20E+02 2.69E+02 -2.68E+02 F24 (9.22E-01) (6.75E+00)(1.90E+00)(1.76E+00)2.04E+02 -2.03E+022.11E+02 -2.05E+02F25 (7.68E-01) (2.16E-01) (2.59E+00) (3.66E-01) 1.00E+02 -1.00E+02 1.00E+02 =1.00E+02 F26 (2.79E-02) (4.89E-02) (3.37E-02) (5.58E-02) 3.00E+02 + 3.19E+02 3.33E+02 = 3.38E+02 F27 (1.11E-13) (3.86E+01)(2.79E+01) (2.77E+01)1.09E+03+7.92E+02 =7.88E+021.16E+03 F28 (1.86E+01) (3.63E+01) (3.20E+01) (7.13E+01)7.20E+02 -7.16E+02 8.27E+02 -7.64E+02 F29 (6.01E+00) (1.54E+00) (5.63E+01) (4.63E+01) 1.22E+03 -8.45E+03 -7.30E+02 8.21E+03 F30 (3.02E+02) (4.61E+02) (4.59E+02) (2.49E+02)-/=/+ 14/10/6 10/7/13

TABLE S12 PERFORMANCE COMPARISONS OF MLCC-SI AND MLCC-SBI WITH H-SI AND H-SBI RESPECTIVELY ON 30- AND 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

			MENSIONAL CI					50
	D =	: 30	D =	: 50	D =	= 30	D =	: 50
	H-SI	MLCC-SI	H-SI	MLCC-SI	H-SBi	MLCC-SBi	H-SBi	MLCC-SBi
F1	2.03E+03 +	4.76E+03	2.00E+05 +	2.79E+05	$\frac{7.32E+02}{(1.44E+02)} =$	1.08E+03	8.43E+04 =	8.14E+04
	(3.50E+03)	(5.69E+03)	(9.24E+04)	(1.00E+05)	(1.44E+03)	(2.59E+03)	(3.70E+04)	(4.33E+04)
F2	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)	<u>0.00E+00</u> + (0.00E+00)	2.67E-04 (3.59E-04)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)
F2	0.00E+00 =	0.00E+00	0.00E+00 =	2.10E-10	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.50E-09)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
F4	4.37E-08 +	1.63E-07	6.91E+01 -	6.53E+01	<u>0.00E+00</u> =	2.49E+00	3.41E+01 =	4.15E+01
	(2.37E-07)	(4.37E-07)	(2.78E+01)	(2.62E+01)	(0.00E+00)	(1.24E+01)	(3.72E+01)	(4.26E+01)
F5	2.03E+01 - (4.71E-02)	2.02E+01	2.05E+01 -	2.03E+01	2.04E+01 -	2.02E+01 (1.05E-01)	2.06E+01 -	2.05E+01 (6.14E-02)
	1.93E-01 =	(5.40E-02) 8.71E-02	(6.29E-02) 8.49E-02 +	(5.46E-02) 3.96E-01	(4.75E-02) 1.63E+00 =	3.37E-01	(3.14E-02) 3.41E+00 -	(6.14E-02) 2.01E+00
F6	(7.82E-01)	(2.84E-01)	(2.56E-01)	(5.61E-01)	(3.17E+00) =	(6.95E-01)	(7.42E+00)	(4.58E+00)
	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
F7	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
F8	0.00E+00 =	0.00E+00	1.25E-01 -	0.00E+00	0.00E+00 =	0.00E+00	1.46E+01 -	1.11E+01
1.0	(0.00E+00)	(0.00E+00)	(1.13E-01)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.20E+00)	(1.86E+00)
F9	2.28E+01 =	2.14E+01	6.66E+01 -	4.47E+01	3.45E+01 -	2.92E+01	1.44E+02 -	5.63E+01
	(4.05E+00)	(4.44E+00)	(1.50E+01)	(8.15E+00)	(9.19E+00)	(7.00E+00)	(1.43E+01)	(1.11E+01)
F10	7.29E+00 - (2.40E+00)	1.12E+00 (9.49E-01)	1.35E+02 - (4.19E+01)	9.00E+00 (3.38E+00)	9.37E+00 = (1.79E+00)	8.92E+00 (3.15E+00)	4.94E+02 - (7.78E+01)	2.89E+02 (8.55E+01)
	2.02E+03 -	1.63E+03	5.69E+03 -	4.03E+03	2.54E+03 -	1.66E+03	7.44E+03 -	4.72E+03
F11	(2.98E+02)	(3.34E+02)	(4.29E+02)	(5.06E+02)	(4.69E+02)	(4.45E+02)	(4.29E+02)	(6.92E+02)
F10	3.34E-01 -	2.60E-01	4.54E-01 -	3.51E-01	4.56E-01 -	1.31E-01	8.03E-01 -	5.69E-01
F12	(7.30E-02)	(5.31E-02)	(7.42E-02)	(5.92E-02)	(1.04E-01)	(5.88E-02)	(7.58E-02)	(1.15E-01)
F13	1.84E-01 =	1.83E-01	<u>2.67E-01</u> =	2.77E-01	2.09E-01 -	1.86E-01	3.07E-01 =	3.02E-01
113	(2.40E-02)	(2.79E-02)	(2.46E-02)	(2.58E-02)	(3.53E-02)	(3.02E-02)	(3.40E-02)	(3.96E-02)
F14	2.01E-01 =	1.94E-01	2.71E-01 -	2.56E-01	1.99E-01 +	2.11E-01	2.56E-01 =	2.49E-01
	(2.79E-02)	(2.21E-02)	(2.44E-02) 1.18E+01 -	(2.36E-02)	(3.03E-02)	(2.92E-02)	(2.31E-02)	(2.50E-02)
F15	3.95E+00 - (4.69E-01)	2.47E+00 (4.20E-01)	(1.22E+00)	6.41E+00 (1.34E+00)	4.85E+00 - (6.56E-01)	2.88E+00 (7.18E-01)	1.59E+01 - (1.07E+00)	8.11E+00 (2.19E+00)
- T1 6	9.85E+00 -	9.52E+00	1.89E+01 -	1.85E+01	9.93E+00 -	9.01E+00	1.95E+01 -	1.87E+01
F16	(3.53E-01)	(4.66E-01)	(3.89E-01)	(4.53E-01)	(4.04E-01)	(5.27E-01)	(2.97E-01)	(5.37E-01)
F17	4.33E+02 -	2.31E+02	1.80E+03 -	1.27E+03	2.96E+02 =	2.35E+02	1.38E+03 -	1.07E+03
	(2.08E+02)	(1.23E+02)	(4.71E+02)	(4.01E+02)	(1.85E+02)	(1.52E+02)	(3.71E+02)	(4.18E+02)
F18	1.06E+01 = (4.68E+00)	9.79E+00 (3.36E+00)	3.95E+01 = (1.23E+01)	3.55E+01 (1.17E+01)	$\frac{8.69E+00}{(4.03E+00)} =$	9.55E+00 (3.67E+00)	3.00E+01 = (1.02E+01)	2.98E+01 (1.08E+01)
	3.53E+00 -	3.02E+00	1.08E+01 -	9.87E+00	3.54E+00 -	2.71E+00	1.15E+01 -	1.09E+01)
F19	(5.35E-01)	(5.37E-01)	(2.98E-01)	(3.98E-01)	(6.75E-01)	(7.03E-01)	(6.96E-01)	(6.03E-01)
F20	5.35E+00 +	5.91E+00	3.17E+01 -	2.53E+01	5.82E+00 =	5.32E+00	2.60E+01 =	2.38E+01
F20	(1.64E+00)	(1.42E+00)	(9.21E+00)	(6.78E+00)	(1.74E+00)	(1.85E+00)	(9.78E+00)	(6.17E+00)
F21	$\frac{1.03E+02}{(7.73E+01)} =$	1.04E+02	6.90E+02 -	5.42E+02	1.35E+02 =	1.14E+02	4.81E+02 =	4.83E+02
	(7.73E+01) 6.13E+01 -	(7.65E+01) 3.55E+01	(2.57E+02) 2.44E+02 =	(1.92E+02) 2.75E+02	(1.05E+02) 8.21E+01 =	(8.33E+01) 7.50E+01	(1.67E+02) 2.69E+02 =	(1.92E+02) 3.10E+02
F22	(5.16E+01)	(3.45E+01)	(1.20E+02)	(1.13E+02)	6.21E+01 = (6.15E+01)	(5.97E+01)	$\frac{2.09E+02}{(1.34E+02)}$	(1.47E+02)
	3.15E+02 +	3.15E+02	3.44E+02 +	3.44E+02	3.15E+01	3.15E+02	3.44E+02 +	3.44E+02
F23	(2.83E-13)	(4.02E-13)	(2.87E-13)	(4.18E-13)	(4.29E-13)	(4.02E-13)	(2.87E-13)	(4.18E-13)
F24	2.23E+02 =	2.23E+02	2.60E+02 =	2.58E+02	2.23E+02 =	2.23E+02	2.69E+02 -	2.68E+02
1.74	(8.27E-01)	(7.91E-01)	(4.63E+00)	(2.93E+00)	(7.78E-01)	(9.03E-01)	(1.96E+00)	(1.86E+00)
F25	2.03E+02 =	2.03E+02	2.07E+02 =	2.06E+02	$\frac{2.03E+02}{(2.62E-01)} =$	2.03E+02	2.06E+02 -	2.06E+02
	(3.09E-01) 1.00E+02 =	(2.95E-01)	(1.02E+00)	(8.22E-01)	(3.62E-01)	(2.15E-01)	(5.74E-01)	(4.68E-01)
F26	1.00E+02 = (2.34E-02)	1.00E+02 (2.41E-02)	$\frac{1.00E+02}{(2.41E-02)} =$	1.00E+02 (2.83E-02)	$\frac{1.00E+02}{(3.12E-02)} =$	1.00E+02 (2.70E-02)	$\frac{1.00E+02}{(3.88E-02)} =$	1.00E+02 (4.07E-02)
TO -	3.08E+02 +	3.47E+02	$\frac{(2.41E-02)}{3.20E+02} =$	3.20E+02	3.11E+02 +	3.47E+02	3.23E+02 =	3.39E+02
F27	(2.73E+01)	(5.07E+01)	(2.47E+01)	(2.65E+01)	(3.05E+01)	(5.07E+01)	(2.38E+01)	(3.23E+01)
F28	8.02E+02 -	7.89E+02	<u>1.16E+03</u> =	1.16E+03	7.84E+02 +	7.97E+02	1.14E+03 -	1.09E+03
1 20	(2.37E+01)	(3.09E+01)	(4.35E+01)	(3.60E+01)	(1.83E+01)	(2.41E+01)	(8.02E+01)	(3.91E+01)
F29	6.86E+02 +	6.94E+02	6.17E+02 =	6.22E+02	7.18E+02 =	7.17E+02	8.02E+02 = (2.53E+01)	8.08E+02
	(1.27E+02)	(1.27E+02)	(9.07E+01)	(1.41E+02)	(3.78E+00)	(3.38E+00)	(3.53E+01)	(4.03E+01)
F30	$\frac{5.17E+02}{(1.26E+02)} =$	5.20E+02 (1.60E+02)	$\frac{8.58E+03}{(4.57E+02)} =$	8.61E+03 (3.99E+02)	$\frac{7.30E+02}{(3.17E+02)} =$	8.27E+02 (3.25E+02)	8.43E+03 = (4.65E+02)	8.33E+03 (3.81E+02)
-/=/+	10/14/6	(1.00£±02)	14/12/4	(3.77£±04)	8/19/3	(3.43£±04)	14/15/1	(J.01E+U4)
-/-/T	10/17/0	I	17/14/7	I	0/17/3	I	17/13/1	

TABLE S13 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 30-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

						CHMARK SET			
	jDE	SaDE	EPSDE	JADE	CoDE	CoBiDE	SinDE	MPEDE	MLCCDE
T21	5.86E+04 -	6.85E+04 -	1.51E+04 =	1.75E+03 +	2.33E+04 -	1.97E+04 -	1.05E+06 -	0.00E+00 +	7.47E+03
F1	(4.66E+04)	(5.67E+04)	(3.18E+04)	(2.27E+03)	(1.76E+04)	(1.43E+04)	(4.82E+05)	(0.00E+00)	(5.58E+03)
Ea	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00
F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
F3	0.00E+00 =	0.00E+00 =	<u>0.00E+00</u> =	4.51E-04 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00
1.2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.18E-03)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
F4	5.19E+00 -	2.03E+00 -	3.45E+00 -	1.24E+00 =	5.06E+00 -	8.64E-02 -	5.37E+00 -	0.00E+00 =	0.00E+00
17	(1.45E+01)	(9.06E+00)	(1.78E+00)	(8.88E+00)	(1.75E+01)	(5.58E-01)	(1.53E+01)	(0.00E+00)	(0.00E+00)
F5	2.04E+01 -	2.09E+01 -	2.03E+01 -	2.03E+01 -	2.00E+01 +	2.02E+01 =	2.05E+01 -	2.04E+01 -	2.02E+01
	(3.53E-02)	(6.14E-02)	(4.05E-02)	(3.68E-02)	(7.07E-02)	(2.74E-01)	(5.79E-02)	(4.94E-02)	(4.60E-02)
F6	1.52E+00 -	2.29E+00 -	1.89E+01 -	8.64E+00 -	2.33E+00 -	1.28E+00 -	2.16E-02 =	4.82E-01 -	8.01E-02
	(2.87E+00)	(1.43E+00)	(1.36E+00)	(2.49E+00)	(1.63E+00)	(1.27E+00)	(1.02E-01)	(6.52E-01)	(3.94E-01)
F7	<u>0.00E+00</u> =	4.77E-03 -	1.21E-03 -	3.87E-04 =	4.35E-04 =	3.38E-04 =	0.00E+00 =	7.25E-04 - (2.53E-03)	0.00E+00
	(0.00E+00)	(9.01E-03)	(4.21E-03) 0.00E+00 =	(1.99E-03)	(2.19E-03) 0.00E+00 =	(1.71E-03)	(0.00E+00)	(,	(0.00E+00) 0.00E+00
F8	$\underline{0.00E+00} = (0.00E+00)$	3.00E+00 -		$\underline{0.00E+00} = (0.00E+00)$		0.00E+00 = (0.00E+00)	2.04E-02 - (1.39E-01)	$\underline{0.00E+00} = (0.00E+00)$	
	4.25E+01 -	(1.71E+00) 2.90E+01 -	(0.00E+00) 4.29E+01 -	2.64E+01 -	(0.00E+00) 4.01E+01 -	(0.00E+00) 4.02E+01 -	3.04E+01 -	2.89E+01 -	(0.00E+00) 2.12E+01
F9	(6.27E+00)	(8.26E+00)	(6.90E+00)	(4.51E+00)	(1.06E+01)	(1.06E+01)	(8.08E+00)	(8.20E+00)	(3.87E+00)
	1.63E-03 +	3.71E+01 -	2.22E-01 +	7.76E-03 +	4.75E-01 =	3.23E+01 -	6.06E+00 -	1.13E+00 -	5.01E-01
F10	(5.65E-03)	(3.14E+01)	(1.93E-01)	(1.17E-02)	(6.22E-01)	(1.26E+01)	(2.71E+00)	(5.33E-01)	(5.72E-01)
	2.51E+03 -	5.15E+03 -	3.60E+03 -	1.65E+03 =	1.80E+03 =	1.81E+03 =	1.68E+03 =	2.35E+03 -	1.72E+03
F11	(2.57E+02)	(4.53E+02)	(4.26E+02)	(2.45E+02)	(4.99E+02)	(5.37E+02)	(4.18E+02)	(4.57E+02)	(3.31E+02)
F10	4.76E-01 -	1.74E+00 -	5.13E-01 -	2.57E-01 -	7.03E-02 +	1.46E-01 +	4.93E-01 -	4.88E-01 -	2.09E-01
F12	(6.04E-02)	(2.32E-01)	(4.94E-02)	(4.16E-02)	(5.33E-02)	(2.35E-01)	(1.37E-01)	(1.03E-01)	(5.46E-02)
E12	2.89E-01 -	2.51E-01 -	2.52E-01 -	2.08E-01 -	2.35E-01 -	2.28E-01 -	1.50E-01 +	2.16E-01 -	1.75E-01
F13	(4.08E-02)	(3.69E-02)	(4.03E-02)	(3.02E-02)	(5.12E-02)	(5.14E-02)	(3.74E-02)	(3.16E-02)	(2.43E-02)
E1.4	2.74E-01 -	2.48E-01 -	2.72E-01 -	2.24E-01 -	2.39E-01 -	2.31E-01 -	2.22E-01 -	2.42E-01 -	1.98E-01
F14	(3.00E-02)	(3.10E-02)	(5.76E-02)	(3.19E-02)	(3.25E-02)	(4.01E-02)	(3.01E-02)	(2.92E-02)	(2.55E-02)
F15	5.80E+00 -	5.63E+00 -	5.45E+00 -	3.21E+00 -	3.00E+00 -	3.19E+00 -	3.33E+00 -	3.97E+00 -	2.35E+00
1.13	(6.09E-01)	(2.63E+00)	(6.87E-01)	(4.09E-01)	(7.92E-01)	(7.73E-01)	(7.44E-01)	(7.66E-01)	(4.79E-01)
F16	9.79E+00 -	1.17E+01 -	1.12E+01 -	9.47E+00 =	<u>9.08E+00</u> +	9.41E+00 =	9.26E+00 =	1.01E+01 -	9.51E+00
- 10	(3.06E-01)	(3.44E-01)	(3.87E-01)	(3.44E-01)	(7.92E-01)	(9.66E-01)	(6.90E-01)	(3.73E-01)	(5.46E-01)
F17	1.68E+03 -	3.89E+03 -	3.42E+04 -	1.08E+03 -	1.81E+03 -	3.19E+02 =	1.14E+05 -	2.50E+02 +	3.59E+02
	(2.20E+03)	(2.19E+03)	(3.51E+04)	(3.52E+02)	(2.14E+03)	(1.85E+02)	(7.74E+04)	(1.66E+02)	(2.03E+02)
F18	1.72E+01 =	2.46E+02 -	3.38E+02 -	1.45E+02 -	1.23E+01 +	1.33E+01 +	5.25E+02 -	1.24E+01 +	1.78E+01
	(7.16E+00)	(3.44E+02)	(8.34E+02)	(3.59E+02)	(4.70E+00)	(5.92E+00)	(6.91E+02)	(4.96E+00)	(7.43E+00)
F19	4.46E+00 - (6.07E-01)	5.89E+00 - (8.30E+00)	1.31E+01 - (1.27E+00)	4.52E+00 - (6.92E-01)	2.75E+00 = (8.15E-01)	2.91E+00 - (3.36E-01)	3.32E+00 - (6.17E-01)	3.92E+00 - (6.47E-01)	2.59E+00 (6.49E-01)
	1.08E+01 -	7.25E+01 -	1.14E+02 -	3.01E+03 -	1.25E+01 -	8.61E+00 =	1.17E+01 =	9.43E+00 =	9.41E+00
F20	(3.70E+00)	(4.04E+01)	(2.09E+02)	(3.06E+03)	(5.15E+00)	(3.22E+00)	(7.25E+00)	(3.35E+00)	(3.56E+00)
	2.65E+02 -	1.07E+03 -	1.00E+04 -	1.39E+03 -	1.96E+02 =	1.58E+02 =	8.13E+03 -	8.76E+01 +	1.67E+02
F21	(1.67E+02)	(9.00E+02)	(1.66E+04)	(7.71E+03)	(1.43E+02)	(1.22E+02)	(7.85E+03)	(9.29E+01)	(9.55E+01)
T100	1.15E+02 -	9.89E+01 -	2.50E+02 -	1.32E+02 -	1.79E+02 -	1.09E+02 -	5.21E+01 =	5.90E+01 -	4.06E+01
F22	(5.38E+01)	(6.66E+01)	(1.02E+02)	(7.40E+01)	(9.78E+01)	(8.74E+01)	(5.85E+01)	(5.14E+01)	(4.25E+01)
F23	3.15E+02 =	3.15E+02 =	3.14E+02 +	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02
F23	(4.02E-13)	(4.02E-13)	(1.03E-12)	(4.02E-13)	(3.73E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)
F24	2.24E+02 -	2.26E+02 -	2.30E+02 -	2.24E+02 -	2.24E+02 =	2.23E+02 =	2.23E+02 +	2.24E+02 -	2.24E+02
1.774	(2.24E+00)	(3.59E+00)	(5.88E+00)	(1.69E+00)	(3.21E+00)	(9.99E-01)	(1.44E+00)	(8.99E-01)	(8.57E-01)
F25	2.03E+02 =	2.08E+02 -	<u>2.00E+02</u> +	2.05E+02 -	2.03E+02 =	2.03E+02 =	2.04E+02 -	2.03E+02 +	2.03E+02
123	(5.18E-01)	(2.69E+00)	(3.44E-01)	(2.05E+00)	(6.07E-01)	(4.36E-01)	(5.38E-01)	(3.38E-01)	(4.08E-01)
F26	1.00E+02 -	1.00E+02 -	1.00E+02 -	1.00E+02 -	1.00E+02 -	1.00E+02 -	1.00E+02 +	1.00E+02 -	1.00E+02
	(3.75E-02)	(3.31E-02)	(4.52E-02)	(3.38E-02)	(5.47E-02)	(5.41E-02)	(3.62E-02)	(2.81E-02)	(2.51E-02)
F27	3.48E+02 =	3.72E+02 -	8.73E+02 -	3.68E+02 -	3.69E+02 -	3.89E+02 -	3.03E+02 +	3.66E+02 =	3.44E+02
<u> </u>	(5.03E+01)	(3.89E+01)	(3.67E+01)	(4.92E+01)	(4.44E+01)	(3.28E+01)	(1.11E+01)	(4.73E+01)	(5.00E+01)
F28	7.89E+02 +	8.69E+02 -	3.96E+02 +	8.00E+02 =	8.36E+02 -	8.28E+02 -	7.86E+02 +	8.37E+02 -	8.02E+02
<u> </u>	(2.34E+01)	(3.67E+01)	(1.34E+01)	(1.89E+01)	(2.62E+01)	(2.82E+01)	(2.08E+01)	(3.53E+01)	(2.45E+01)
F29	7.95E+02 -	9.13E+02 - (2.04E+02)	2.14E+02 +	7.18E+02 =	7.68E+02 -	5.27E+02 + (2.62E+02)	1.41E+03 -	6.88E+02 + (1.24E+02)	6.19E+02 (2.11E+02)
 	(6.99E+01) 1.20E+03 -	1.86E+03 -	(1.46E+00) 5.99E+02 =	(6.90E+01) 1.56E+03 -	(1.43E+02) 9.35E+02 -	7.29E+02	(2.05E+02) 1.25E+03 -	6.37E+02	6.38E+02
F30	(4.47E+02)	(5.78E+02)	$\frac{5.99E+02}{(1.46E+02)}$	(5.17E+02)	9.33E+02 - (4.22E+02)	7.29E+02 = (2.83E+02)	(4.95E+02)	0.3/E+02 = (1.99E+02)	(2.36E+02)
-/=/+	20/8/2	27/3/0	20/5/5	18/10/2	15/11/4	13/14/3	16/9/5	16/8/6	(2.30ET02)
-/ —/ T	20/0/2	411310	201313	10/10/2	15/11/7	13/14/3	10/2/3	10/0/0	l

TABLE S14 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 50-DIMENSIONAL CEC2014 BENCHMARK SET OVER 51 INDEPENDENT RUNS

	UF-10	-DATE DE VAF	IANTS ON 50-	DIMENSIONAL	CEC2014 BEN	CHWARK SET	OVER 31 INDE	LIDENI KUN	ه ا
	jDE	SaDE	EPSDE	JADE	CoDE	CoBiDE	SinDE	MPEDE	MLCCDE
F1	4.11E+05 -	3.73E+05 -	4.36E+06 +	1.59E+04 +	2.19E+05 -	3.13E+05 -	1.99E+06 -	5.89E+04 +	1.74E+05
1.1	(1.45E+05)	(1.33E+05)	(1.13E+07)	(8.93E+03)	(9.60E+04)	(1.10E+05)	(7.96E+05)	(3.87E+04)	(5.63E+04)
F2	5.30E-09 -	2.54E+03 -	1.65E-08 -	<u>0.00E+00</u> =	3.51E+01 -	4.25E+03 -	4.28E+03 -	0.00E+00 =	0.00E+00
	(1.17E-08)	(3.25E+03)	(2.51E-08)	(0.00E+00)	(7.36E+01)	(3.98E+03)	(4.12E+03)	(0.00E+00)	(0.00E+00)
F3	$\frac{0.00E+00}{(0.00E+00)} =$	1.04E+00 - (1.91E+00)	1.73E-04 - (5.77E-04)	3.74E+03 - (2.50E+03)	3.23E+01 - (6.70E+01)	2.33E-02 - (5.13E-02)	4.14E+02 - (2.71E+02)	8.34E-05 - (2.75E-04)	4.49E-04 (3.20E-03)
	8.18E+01 -	5.41E+00	3.23E+01 -	2.02E+03)	2.86E+01 -	5.47E+01 -	9.25E+01 -	3.77E+01 =	2.33E+01
F4	(1.74E+01)	(3.39E+01)	(2.40E+01)	(4.05E+01)	(3.55E+01)	(3.38E+01)	(5.65E+00)	(4.17E+01)	(3.16E+01)
F5	2.04E+01 -	2.11E+01 -	2.06E+01 -	2.03E+01 -	2.00E+01 +	2.01E+01 +	2.07E+01 -	2.05E+01 -	2.03E+01
1.3	(3.27E-02)	(3.25E-02)	(4.77E-02)	(3.04E-02)	(4.54E-02)	(2.75E-01)	(5.80E-02)	(4.96E-02)	(4.31E-02)
F6	4.56E+00 -	1.25E+01 -	4.55E+01 -	1.62E+01 -	8.93E+00 -	7.08E+00 -	2.12E-01 +	6.35E+00 -	1.15E+00
	(5.39E+00) 0.00E+00 =	(2.48E+00) 7.72E-03 -	(3.64E+00) 7.63E-03 -	(5.06E+00) 2.17E-03 -	(3.26E+00) 2.85E-03 -	(3.71E+00) 7.25E-04 -	(4.48E-01) 0.00E+00 =	(2.27E+00) 2.32E-03 -	(9.91E-01) 0.00E+00
F7	(0.00E+00)	(9.20E-03)	(8.90E-03)	(4.77E-03)	(4.79E-03)	(2.53E-04 -	(0.00E+00)	(4.81E-03)	(0.00E+00)
	0.00E+00 =	1.23E+01 -	2.15E-01 =	0.00E+00 =	5.85E-01 -	3.51E-01 -	4.28E+00 -	0.00E+00 =	0.00E+00
F8	(0.00E+00)	(3.97E+00)	(1.26E+00)	(0.00E+00)	(7.49E-01)	(1.12E+00)	(2.52E+00)	(0.00E+00)	(0.00E+00)
F9	9.05E+01 -	6.83E+01 -	1.45E+02 -	5.41E+01 -	7.76E+01 -	8.69E+01 -	6.36E+01 -	5.40E+01 -	4.25E+01
1'9	(1.09E+01)	(1.34E+01)	(1.92E+01)	(7.45E+00)	(1.98E+01)	(2.41E+01)	(1.15E+01)	(1.29E+01)	(6.97E+00)
F10	1.96E-03 +	1.03E+02 -	6.08E+02 -	8.57E-03 +	4.97E+00 =	1.15E+02 -	1.67E+01 -	5.80E-01 +	3.84E+00
- 110	(5.22E-03)	(9.78E+01)	(5.90E+02)	(8.83E-03)	(3.21E+00)	(5.29E+01)	(7.00E+00)	(2.26E-01)	(1.71E+00)
F11	5.11E+03 - (4.90E+02)	8.92E+03 - (2.07E+03)	9.09E+03 - (8.51E+02)	3.78E+03 + (3.00E+02)	4.39E+03 - (7.64E+02)	4.40E+03 - (7.40E+02)	4.14E+03 = (7.00E+02)	5.18E+03 - (6.71E+02)	3.98E+03 (5.01E+02)
	5.09E-01 -	2.58E+00 -	(8.51E+02) 8.42E-01 -	2.53E-01 =	9.53E-02 +	6.77E-02 +	5.56E-01 -	5.48E-01 -	2.53E-01
F12	(5.86E-02)	(2.43E-01)	(9.48E-02)	(3.27E-02)	(4.75E-02)	(6.64E-02)	(1.81E-01)	(9.88E-02)	(5.82E-02)
	3.90E-01 -	3.82E-01 -	3.75E-01 -	3.29E-01 -	3.39E-01 -	3.23E-01 -	2.22E-01 +	2.70E-01 =	2.74E-01
F13	(4.35E-02)	(5.98E-02)	(5.81E-02)	(4.47E-02)	(5.43E-02)	(5.94E-02)	(3.96E-02)	(4.16E-02)	(3.56E-02)
F14	3.10E-01 -	3.04E-01 -	3.32E-01 -	2.93E-01 -	2.78E-01 -	2.76E-01 -	2.64E-01 +	3.10E-01 -	2.64E-01
1.14	(2.98E-02)	(2.96E-02)	(8.49E-02)	(3.20E-02)	(3.48E-02)	(3.46E-02)	(1.01E-01)	(3.16E-02)	(2.84E-02)
F15	1.18E+01 -	9.03E+00 -	1.87E+01 -	7.45E+00 -	7.02E+00 -	7.11E+00 -	6.56E+00 -	6.31E+00 -	5.16E+00
	(1.32E+00)	(1.93E+00)	(2.51E+00)	(9.96E-01)	(1.44E+00)	(1.64E+00)	(1.11E+00)	(1.50E+00) 1.85E+01 -	(8.50E-01)
F16	1.81E+01 = (3.98E-01)	2.12E+01 - (3.24E-01)	2.09E+01 - (4.49E-01)	1.78E+01 + (4.71E-01)	1.82E+01 = (1.05E+00)	1.85E+01 = (1.06E+00)	1.82E+01 = (6.64E-01)	(4.69E-01)	1.81E+01 (5.78E-01)
	1.89E+04 -	3.58E+04 -	2.17E+05 -	2.51E+03 -	1.62E+04 -	1.15E+04 -	3.31E+05 -	1.70E+03 +	2.16E+03
F17	(1.20E+04)	(2.22E+04)	(1.37E+05)	(8.70E+02)	(9.33E+03)	(9.74E+03)	(1.74E+05)	(4.64E+02)	(9.57E+02)
E10	3.17E+02 -	5.12E+02 -	2.51E+03 -	1.63E+02 -	3.23E+02 -	1.86E+02 -	2.37E+02 -	1.26E+02 -	6.17E+01
F18	(3.75E+02)	(3.41E+02)	(3.26E+03)	(3.42E+01)	(4.03E+02)	(2.47E+02)	(3.20E+02)	(3.08E+01)	(3.24E+01)
F19	1.31E+01 -	1.73E+01 -	2.45E+01 -	1.44E+01 -	<u>6.05E+00</u> +	6.55E+00 +	9.03E+00 =	7.05E+00 +	9.31E+00
117	(5.08E+00)	(1.24E+01)	(1.47E+00)	(5.91E+00)	(1.23E+00)	(9.05E-01)	(8.10E-01)	(1.10E+00)	(5.96E-01)
F20	5.16E+01 -	3.09E+02 -	2.97E+02 -	5.88E+03 -	2.80E+02 -	3.27E+01 +	4.57E+02 -	6.10E+01 -	4.08E+01
	(2.12E+01) 1.07E+04 -	(1.06E+02) 2.00E+04 -	(3.24E+02) 1.03E+05 -	(6.90E+03) 4.89E+04 -	(3.44E+02) 9.62E+03 -	(1.28E+01) 3.74E+03 -	(1.19E+03) 2.36E+05 -	(3.05E+01) 7.37E+02 =	(1.23E+01) 6.42E+02
F21	(1.09E+04)	(1.45E+04)	(8.12E+04)	(3.40E+05)	9.02E+03 - (1.18E+04)	(3.40E+03)	(1.55E+05)	(2.16E+02)	(2.04E+02)
FCC	5.20E+02 -	3.38E+02 =	8.11E+02 -	4.92E+02 -	6.09E+02 -	5.21E+02 -	2.86E+02 =	5.66E+02 -	3.05E+02
F22	(1.73E+02)	(1.34E+02)	(1.85E+02)	(1.64E+02)	(2.20E+02)	(1.94E+02)	(1.55E+02)	(2.10E+02)	(1.20E+02)
F23	3.44E+02 -	3.44E+02 -	3.37E+02 +	3.44E+02 -	3.44E+02 +	3.44E+02 =	3.44E+02 -	3.44E+02 =	3.44E+02
1 23	(3.91E-13)	(4.65E-13)	(3.52E-12)	(4.35E-13)	(2.87E-13)	(3.91E-13)	(4.27E-13)	(4.53E-13)	(4.43E-13)
F24	2.68E+02 -	2.75E+02 -	2.74E+02 -	2.75E+02 -	2.71E+02 -	2.69E+02 -	2.65E+02 -	2.75E+02 -	2.60E+02
	(2.05E+00) 2.07E+02 =	(3.39E+00) 2.16E+02 -	(4.92E+00) 2.01E+02 +	(2.12E+00) 2.22E+02 -	(2.71E+00) 2.09E+02 =	(2.60E+00) 2.07E+02 =	(3.60E+00) 2.08E+02 -	(1.99E+00) 2.08E+02 =	(4.70E+00) 2.07E+02
F25	(1.38E+00)	(9.85E+00)	(2.41E+00)	(4.70E+00)	2.09E+02 = (4.91E+00)	(3.26E+00)	2.08E+02 - (1.65E+00)	(7.37E+00)	(2.20E+00)
F2 :	1.00E+02 -	1.69E+02 -	1.00E+02 -	1.00E+02 -	1.12E+02 -	1.04E+02 -	1.02E+02 =	1.00E+02 =	1.02E+02
F26	(4.27E-02)	(4.67E+01)	(4.26E-02)	(1.21E-01)		(1.96E+01)	(1.40E+01)	(2.96E-02)	(1.40E+01)
F27	3.75E+02 -	6.45E+02 -	1.57E+03 -	4.38E+02 -	5.54E+02 -	4.43E+02 -	3.45E+02 =	4.72E+02 -	3.35E+02
12/	(5.11E+01)	(7.53E+01)	(4.19E+01)	(5.36E+01)	(7.53E+01)	(6.80E+01)	(1.92E+01)	(5.74E+01)	(3.35E+01)
F28	1.13E+03 =	1.27E+03 -	3.87E+02 +	1.15E+03 =	1.19E+03 -	1.18E+03 -	1.06E+03 +	1.14E+03 =	1.14E+03
<u> </u>	(5.00E+01)	(1.38E+02)	(1.36E+01)	(4.03E+01)	(5.40E+01)	(5.85E+01)	(3.80E+01)	(6.61E+01)	(3.80E+01)
F29	9.97E+02 - (1.45E+02)	1.09E+03 - (1.78E+02)	2.26E+02 + (8.88E+00)	8.86E+02 - (5.90E+01)	9.40E+02 - (1.10E+02)	1.07E+03 - (2.04E+02)	2.20E+03 - (3.81E+02)	8.33E+02 - (8.62E+01)	6.76E+02 (1.52E+02)
<u> </u>	8.63E+02)	1.03E+04 -	1.17E+03 +	9.69E+03 -	8.97E+03 =	8.92E+03 =	8.35E+02)	9.40E+03 -	8.95E+03
F30	(4.02E+02)	(9.79E+02)	(1.85E+02)	(8.05E+02)	(4.93E+02)	(4.72E+02)	(4.81E+02)	(6.93E+02)	(5.68E+02)
-/=/+	22/6/2	29/1/0	23/1/6	21/4/5	22/4/4	22/4/4	18/7/5	17/9/4	

TABLE S15 PERFORMANCE COMPARISONS OF MLCCDE WITH STATE-OF-THE-ART AND UP-TO-DATE DE VARIANTS ON 30-DIMENSIONAL CEC2017 BENCHMARK SET OVER 51 INDEPENDENT RUNS

	UP-TO-DATE DE VARIANTS ON 30-DIMENSIONAL CEC2017 BENCHMARK SET OVER 51 INDEPENDENT RUNS								
	jDE	SaDE	EPSDE	JADE	CoDE	CoBiDE	SinDE	MPEDE	MLCCDE
E1	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	1.16E+00 -	0.00E+00 =	0.00E+00
F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(7.99E+00)	(0.00E+00)	(0.00E+00)
E2	2.46E-04 -	3.86E-04 -	2.83E-05 +	1.68E-05 +	1.33E-04 -	9.96E-05 -	2.49E-01 -	1.02E-07 +	5.25E-05
F2	(8.84E-05)	(1.67E-04)	(1.37E-05)	(8.66E-06)	(4.03E-05)	(3.78E-05)	(1.39E+00)	(1.96E-07)	(2.12E-05)
F3	4.32E-04 -	0.00E+00 =	8.32E+03 -	9.73E+03 -	0.00E+00 =	0.00E+00 =	8.62E+02 -	0.00E+00 =	4.49E-03
гэ	(1.35E-03)	(0.00E+00)	(3.66E+04)	(1.75E+04)	(0.00E+00)	(0.00E+00)	(7.15E+02)	(0.00E+00)	(3.21E-02)
F4	5.22E+01 -	1.82E+01 -	1.17E+00 =	3.76E+01 -	3.66E+01 -	3.36E+01 -	8.46E+01 -	5.64E+01 -	2.31E+01
1'4	(2.10E+01)	(2.80E+01)	(1.70E+00)	(2.84E+01)	(2.88E+01)	(2.96E+01)	(4.38E+00)	(1.41E+01)	(2.87E+01)
F5	4.04E+01 -	2.73E+01 -	3.94E+01 -	2.63E+01 -	3.75E+01 -	4.11E+01 -	2.61E+01 -	2.83E+01 -	2.09E+01
1.3	(5.53E+00)	(8.60E+00)	(6.98E+00)	(4.36E+00)	(1.16E+01)	(9.24E+00)	(6.21E+00)	(6.40E+00)	(4.98E+00)
F6	0.00E+00 =	7.51E-07 -	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E + 00
10	(0.00E+00)	(3.31E-06)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
F7	7.69E+01 -	5.76E+01 -	7.52E+01 -	5.39E+01 -	6.61E+01 -	7.06E+01 -	6.23E+01 -	5.49E+01 -	5.06E+01
- '	(6.24E+00)	(7.45E+00)	(6.13E+00)	(4.68E+00)	(9.94E+00)	(1.23E+01)	(7.45E+00)	(5.59E+00)	(3.43E+00)
F8	4.34E+01 -	2.97E+01 -	4.32E+01 -	2.50E+01 -	3.79E+01 -	4.27E+01 -	2.99E+01 -	2.81E+01 -	2.27E+01
	(5.50E+00)	(9.19E+00)	(6.02E+00)	(2.97E+00)	(1.05E+01)	(1.23E+01)	(7.82E+00)	(7.40E+00)	(5.25E+00)
F9	<u>0.00E+00</u> =	5.24E-01 -	1.45E-01 -	2.83E-02 -	<u>0.00E+00</u> =	0.00E+00 =	<u>0.00E+00</u> =	1.24E-02 =	0.00E+00
	(0.00E+00)	(6.99E-01)	(5.27E-01)	(9.16E-02)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(6.55E-02)	(0.00E+00)
F10	2.76E+03 -	5.28E+03 -	3.68E+03 -	1.92E+03 =	2.05E+03 =	1.97E+03 =	1.92E+03 =	2.66E+03 -	1.93E+03
	(2.86E+02)	(3.49E+02)	(3.33E+02)	(2.56E+02)	(5.24E+02)	(5.40E+02)	(5.09E+02)	(3.64E+02)	(3.75E+02)
F11	2.53E+01 -	5.21E+01 -	2.50E+01 -	3.04E+01 -	2.00E+01 -	2.13E+01 -	2.58E+01 -	2.48E+01 -	8.61E+00
	(2.43E+01) 8.71E+03 -	(2.62E+01) 8.69E+03 -	(1.40E+01) 2.63E+04 -	(2.40E+01) 2.23E+03 +	(1.59E+01) 6.37E+03 -	(1.91E+01) 6.83E+03 -	(2.70E+01) 6.41E+04 -	(1.42E+01)	(1.19E+01) 2.87E+03
F12	8.71E+03 - (4.86E+03)			(2.02E+03)		(7.33E+03)	(8.27E+04)	1.05E+03 + (4.66E+02)	(2.46E+03)
	2.66E+01 =	(5.06E+03) 4.94E+03 -	(3.45E+04) 1.88E+03 -	4.64E+01 -	(5.57E+03) 3.18E+01 =	2.62E+03	3.39E+03 -	2.22E+01 +	2.76E+03)
F13	(9.10E+00)	(5.30E+03)	(6.34E+03)	(3.49E+01)	(1.81E+01)	(1.10E+01)	(3.00E+03)	(8.67E+00)	(8.70E+01)
	2.46E+01 =	9.81E+01 -	7.19E+01 -	2.08E+03 -	1.57E+01 +	1.27E+01 +	2.52E+01 =	1.61E+01 +	2.33E+01
F14	(9.82E+00)	(3.30E+01)	(4.34E+01)	(6.38E+03)	(8.45E+00)	(7.80E+00)	(9.03E+00)	(9.86E+00)	(9.90E+00)
	1.10E+01 -	1.21E+02 -	1.39E+02 -	3.85E+02 -	1.12E+01 -	8.34E+00 =	3.98E+01 -	7.54E+00 =	8.82E+00
F15	(5.25E+00)	(5.84E+01)	(2.01E+02)	(1.79E+03)	(4.53E+00)	(3.80E+00)	(1.85E+02)	(2.59E+00)	(5.13E+00)
	4.44E+02 -	2.56E+02 =	6.15E+02 -	4.29E+02 -	5.26E+02 -	4.00E+02 -	1.53E+02 +	3.84E+02 -	2.25E+02
F16	(1.35E+02)	(1.79E+02)	(1.60E+02)	(1.37E+02)	(2.06E+02)	(1.81E+02)	(1.33E+02)	(1.91E+02)	(1.18E+02)
F17	8.88E+01 -	5.85E+01 -	1.82E+02 -	7.99E+01 -	7.38E+01 =	4.90E+01 -	3.01E+01 =	5.60E+01 -	2.78E+01
F17	(2.30E+01)	(3.27E+01)	(7.32E+01)	(3.06E+01)	(7.70E+01)	(4.68E+01)	(2.08E+01)	(2.86E+01)	(1.28E+01)
E10	5.06E+01 -	1.33E+03 -	1.58E+03 -	1.98E+04 -	9.09E+01 -	1.87E+01 +	3.73E+04 -	2.44E+01 +	2.75E+01
F18	(4.19E+01)	(2.83E+03)	(1.61E+03)	(4.81E+04)	(1.08E+02)	(9.55E+00)	(2.16E+04)	(5.38E+00)	(5.99E+00)
F19	1.09E+01 -	7.21E+01 -	3.14E+01 -	5.38E+02 -	6.23E+00 +	4.90E+00 +	7.78E+00 =	7.54E+00 =	8.15E+00
1.19	(3.13E+00)	(3.49E+01)	(3.00E+01)	(2.40E+03)	(2.22E+00)	(1.70E+00)	(3.50E+00)	(2.48E+00)	(3.18E+00)
F20	7.52E+01 -	4.97E+01 =	1.36E+02 -	9.54E+01 -	9.74E+01 -	5.64E+01 =	3.43E+01 =	5.65E+01 -	2.60E+01
1 20	(3.26E+01)	(5.31E+01)	(5.50E+01)	(5.53E+01)	(8.32E+01)	(7.02E+01)	(4.51E+01)	(4.28E+01)	(2.86E+01)
F21	2.43E+02 -	2.31E+02 -	2.48E+02 -	2.27E+02 -	2.39E+02 -	2.42E+02 -	2.31E+02 -	2.29E+02 -	2.22E+02
	(6.46E+00)	(8.81E+00)	(7.62E+00)	(4.18E+00)	(9.58E+00)	(1.18E+01)	(8.10E+00)	(8.29E+00)	(4.42E+00)
F22	1.00E+02 =	1.00E+02 -	1.86E+03 -	1.00E+02 =	1.28E+02 =	1.00E+02 -	1.00E+02 =	1.00E+02 =	1.00E+02
ļ	(9.20E-14)	(3.44E-01)	(1.95E+03)	(1.00E-13)	(1.98E+02)	(2.34E-13)	(1.37E-13)	(1.00E-13)	(1.00E-13)
F23	3.88E+02 -	3.76E+02 -	3.96E+02 -	3.73E+02 -	3.87E+02 -	3.88E+02 -	3.76E+02 -	3.80E+02 -	3.66E+02
	(6.14E+00)	(1.13E+01)	(8.61E+00)	(5.13E+00)	(1.33E+01)	(1.15E+01)	(7.85E+00) 4.46E+02 -	(9.09E+00)	(6.93E+00)
F24	4.57E+02 - (6.80E+00)	4.47E+02 - (7.92E+00)	4.67E+02 -	$\frac{4.39E+02}{(5.42E+00)}$ =	4.59E+02 -	4.62E+02 -		4.46E+02 - (7.92E+00)	4.39E+02 (5.41E+00)
 	3.87E+02 =	3.87E+00 -	(7.63E+00) 3.79E+02 +	(5.42E+00) 3.87E+02 -	(1.22E+01) 3.87E+02 =	(1.19E+01) 3.87E+02 +	(7.19E+00) 3.87E+02 =	3.87E+00)	3.87E+00)
F25	3.8/E+02 = (1.62E-01)	3.8/E+02 - (1.81E+00)	(7.39E-01)	(2.08E-01)	3.87E+02 = (1.24E-01)	(6.72E-01)	3.8/E+02 = (1.19E-01)	(7.77E-02)	3.8/E+02 (1.41E-01)
 	1.32E+03 -	1.26E+03 -	1.22E+03 -	1.18E+03 -	1.35E+03 -	1.38E+03 -	1.17E+03 -	1.21E+03 -	1.12E+03
F26	(8.19E+01)	(1.84E+02)	(1.39E+02)	(7.41E+01)	(2.17E+02)	(2.66E+02)	(7.44E+01)	(8.82E+01)	(6.94E+01)
 	5.02E+02 =	5.08E+02 -	5.00E+02	5.03E+02 -	5.01E+02	4.99E+02 =	4.99E+02 =	5.02E+02 =	5.00E+02
F27	(5.73E+00)	(8.38E+00)	(8.07E-05)	(6.09E+00)	(7.34E+00)	(1.01E+01)	(6.13E+00)	(7.31E+00)	(6.73E+00)
	3.34E+02 -	3.32E+02 -	4.99E+02 -	3.29E+02 -	3.23E+02 =	3.19E+02 -	3.52E+02 -	3.38E+02 -	3.13E+02
F28	(5.28E+01)	(5.11E+01)	(3.03E+00)	(5.00E+01)	(4.50E+01)	(4.17E+01)	(5.37E+01)	(5.56E+01)	(3.48E+01)
	4.90E+02 -	4.76E+02 -	5.02E+02 -	4.74E+02 -	4.47E+02 =	4.32E+02 +	4.32E+02 +	4.53E+02 -	4.42E+02
F29	(3.60E+01)	(4.55E+01)	(8.32E+01)	(2.50E+01)	(5.63E+01)	(3.79E+01)	(2.26E+01)	(3.07E+01)	(2.17E+01)
F20	2.14E+03 =	3.21E+03 -	2.23E+02 +	2.12E+03 =	2.14E+03 =	2.07E+03 =	4.23E+03 -	2.02E+03 +	2.10E+03
F30	(1.38E+02)	(1.92E+03)	(1.14E+01)	(1.21E+02)	(1.53E+02)	(1.10E+02)	(1.27E+03)	(9.14E+01)	(1.07E+02)
-/=/+	21/9/0	26/4/0	23/4/3	22/6/2	15/13/2	15/10/5	18/10/2	15/8/7	<u> </u>
									•

Table S16 Performance comparisons of mlccde with state-of-the-art and up-to-date de variants on 50-dimensional cec2017 benchmark set over 51 independent runs

	jDE	SaDE	EPSDE	JADE	CoDE	CoBiDE	SinDE	MPEDE	MLCCDE
	3.16E-08 -	1.46E+03 -	2.50E-08 -	0.00E+00 =	4.68E+01 -	2.61E+03 -	3.78E+03 -	0.00E+00 =	0.00E+00
F1	(4.72E-08)	(1.74E+03)	(1.11E-07)	(0.00E+00) =	(1.02E+02)	(3.83E+03)	(4.72E+03)	(0.00E+00) =	(0.00E+00)
F2	7.76E-04 -	9.71E-04 -	8.23E-05 +	4.59E-05 +	4.81E-04 -	4.62E-04 -	2.02E+00 -	6.68E-05 +	2.66E-04
12	(2.03E-04)	(2.86E-04)	(5.93E-05)	(1.35E-05)	(1.20E-04)	(1.18E-04)	(8.18E+00)	(3.42E-05)	(9.34E-05)
F3	2.07E+02 -	1.17E-03 -	6.72E+04 -	1.66E+04 +	1.01E-09 +	2.29E-08 +	1.63E+04 -	8.20E-05 +	7.31E-06
	(3.61E+02)	(3.86E-03)	(1.35E+05)	(3.65E+04)	(5.39E-09)	(5.74E-08)	(3.86E+03)	(3.16E-04)	(1.12E-05)
F4	7.47E+01 -	9.16E+01 -	3.01E+01 =	3.23E+01 =	5.08E+01 =	6.93E+01 -	5.81E+01 -	5.62E+01=	5.05E+01
	(4.29E+01) 9.01E+01 -	(4.33E+01) 7.39E+01 -	(1.85E+01) 1.51E+02 -	(4.18E+01) 5.52E+01 -	(4.53E+01) 7.79E+01 -	(4.72E+01) 8.54E+01 -	(4.97E+01) 6.22E+01 -	(4.82E+01) 5.52E+01 -	(4.62E+01) 4.45E+01
F5	(1.11E+01)	(1.54E+01)	(1.59E+01)	(6.99E+00)	(1.71E+01)	(1.92E+01)	(1.40E+01)	(1.39E+01)	(8.54E+00)
	0.00E+00 +	8.29E-03 -	0.00E+00 +	0.00E+00 +	1.11E-06 =	7.50E-09 +	0.00E+00 +	2.14E-03 -	7.43E-08
F6	(0.00E+00)	(1.47E-02)	(0.00E+00)	(0.00E+00)	(7.44E-06)	(5.35E-08)	(0.00E+00)	(5.23E-03)	(3.21E-07)
F7	1.50E+02 -	1.23E+02 -	2.07E+02 -	1.02E+02 -	1.30E+02 -	1.34E+02 -	1.18E+02 -	1.09E+02 -	9.19E+01
F7	(1.04E+01)	(1.68E+01)	(1.66E+01)	(7.31E+00)	(1.52E+01)	(1.88E+01)	(1.44E+01)	(1.48E+01)	(8.55E+00)
F8	9.08E+01 -	7.48E+01 -	1.52E+02 -	5.53E+01 -	7.63E+01 -	8.83E+01 -	6.28E+01 -	5.24E+01 =	4.79E+01
1.0	(1.03E+01)	(1.46E+01)	(1.76E+01)	(7.91E+00)	(1.92E+01)	(1.57E+01)	(1.26E+01)	(1.36E+01)	(6.52E+00)
F9	3.36E-02 +	2.11E+01 -	3.65E+00 =	1.97E+00 -	5.37E+00 -	1.15E-01 =	<u>0.00E+00</u> +	1.17E+00 -	1.08E-01
	(9.59E-02)	(1.52E+01)	(1.51E+01)	(1.49E+00)	(7.12E+00)	(1.93E-01)	(0.00E+00)	(1.24E+00)	(1.92E-01)
F10	5.13E+03 -	8.65E+03 -	8.82E+03 -	3.71E+03 +	4.44E+03 -	4.31E+03 -	4.13E+03 -	4.84E+03 -	3.86E+03
	(3.43E+02)	(2.15E+03)	(5.24E+02)	(2.97E+02)	(7.89E+02)	(9.00E+02)	(6.49E+02)	(6.98E+02)	(5.44E+02)
F11	5.05E+01 - (1.06E+01)	1.31E+02 -	7.79E+01 -	1.40E+02 - (3.40E+01)	5.71E+01 -	5.79E+01 -	3.85E+01 =	1.04E+02 -	3.80E+01 (6.29E+00)
	5.01E+04 -	(4.81E+01) 3.04E+04 -	(5.20E+01) 1.77E+05 -	5.95E+03 +	(1.39E+01) 3.76E+04 -	(1.58E+01) 6.54E+04 -	(3.60E+00) 8.64E+05 -	(2.24E+01) 9.48E+03 +	1.93E+04
F12	(3.12E+04)	(1.79E+04)	(1.17E+05)	(3.37E+03)	(1.85E+04)	(3.09E+04)	(6.01E+05)	(6.65E+03)	(1.62E+04)
	2.07E+03 -	2.16E+03 -	8.73E+03 -	2.88E+02 -	3.74E+03 -	3.44E+03 -	1.96E+03 -	9.05E+01 =	1.16E+02
F13	(2.07E+03)	(2.97E+03)	(1.72E+04)	(1.80E+02)	(4.44E+03)	(4.60E+03)	(2.07E+03)	(4.07E+01)	(1.17E+02)
	6.00E+01 =	7.90E+02 -	1.57E+03 -	7.88E+03 -	7.52E+01 -	5.07E+01 =	9.87E+03 -	6.21E+01 -	5.42E+01
F14	(1.78E+01)	(6.90E+02)	(3.01E+03)	(3.98E+04)	(7.11E+01)	(1.20E+01)	(1.74E+04)	(1.40E+01)	(1.01E+01)
1715	9.91E+01 =	2.40E+03 -	3.03E+03 -	2.80E+02 -	1.47E+02 -	7.44E+01 -	1.25E+03 -	7.98E+01 -	4.97E+01
F15	(1.68E+02)	(2.10E+03)	(6.89E+03)	(1.22E+02)	(1.48E+02)	(5.57E+01)	(1.26E+03)	(4.38E+01)	(1.26E+01)
F16	9.96E+02 -	7.39E+02 =	1.21E+03 -	7.81E+02 -	1.10E+03 -	1.00E+03 -	7.33E+02 =	9.04E+02 -	6.44E+02
110	(1.54E+02)	(2.51E+02)	(2.85E+02)	(1.61E+02)	(2.71E+02)	(3.17E+02)	(2.79E+02)	(2.92E+02)	(2.10E+02)
F17	7.09E+02 -	4.43E+02 =	8.63E+02 -	6.45E+02 -	7.29E+02 -	6.01E+02 -	3.41E+02 +	5.78E+02 -	4.24E+02
	(1.37E+02) 2.26E+03 -	(1.77E+02)	(1.85E+02)	(1.31E+02)	(2.28E+02)	(2.21E+02)	(1.77E+02)	(1.93E+02)	(1.09E+02)
F18	(2.76E+03)	1.77E+04 - (1.69E+04)	6.71E+03 - (6.14E+03)	1.70E+02 - (7.33E+01)	3.52E+03 - (2.95E+03)	1.91E+03 - (1.37E+03)	2.68E+05 - (2.53E+05)	1.38E+02 = (1.09E+02)	7.78E+01 (7.43E+01)
	2.93E+01 =	9.06E+03 -	2.68E+02 -	3.81E+02 -	3.87E+03)	2.99E+01 =	7.65E+03 -	4.87E+01 -	2.68E+01
F19	(1.29E+01)	(5.89E+03)	(5.40E+02)	(1.67E+03)	(7.19E+01)	(2.12E+01)	(5.67E+03)	(1.75E+01)	(5.42E+00)
	4.96E+02 -	2.26E+02 =	6.55E+02 -	4.78E+02 -	5.03E+02 -	3.92E+02 -	2.29E+02 =	3.92E+02 -	2.38E+02
F20	(1.25E+02)	(1.71E+02)	(1.58E+02)	(1.44E+02)	(2.03E+02)	(1.71E+02)	(1.64E+02)	(1.98E+02)	(1.06E+02)
F2.1	2.93E+02 -	2.64E+02 -	3.47E+02 -	2.54E+02 -	2.76E+02 -	2.87E+02 -	2.64E+02 -	2.48E+02 =	2.44E+02
F21	(9.17E+00)	(1.41E+01)	(1.47E+01)	(7.47E+00)	(1.61E+01)	(2.17E+01)	(1.25E+01)	(1.22E+01)	(7.32E+00)
F22	3.29E+03 -	5.60E+03 -	9.48E+03 -	3.26E+03 =	4.81E+03 -	4.19E+03 -	3.72E+03 =	1.97E+03 =	2.56E+03
1.77	(2.70E+03)	(3.92E+03)	(5.22E+02)	(1.86E+03)	(1.26E+03)	(1.33E+03)	(1.68E+03)	(2.48E+03)	(2.28E+03)
F23	5.11E+02 -	4.93E+02 -	5.60E+02 -	4.79E+02 -	5.03E+02 -	5.21E+02 -	4.75E+02 -	4.73E+02 -	4.65E+02
<u> </u>	(1.39E+01)	(1.82E+01)	(3.10E+01)	(1.12E+01)	(2.19E+01)	(2.25E+01)	(1.45E+01)	(1.39E+01)	(8.39E+00)
F24	5.75E+02 -	5.61E+02 -	6.42E+02 -	5.42E+02 -	5.72E+02 -	5.82E+02 -	5.51E+02 -	5.42E+02 -	5.33E+02
	(1.35E+01) 5.11E+02 =	(1.73E+01) 5.52E+02 -	(2.23E+01) 4.51E+02 +	(9.56E+00) 5.25E+02 =	(1.88E+01) 5.16E+02 =	(2.03E+01) 5.13E+02 =	(1.15E+01) 4.91E+02 +	(1.37E+01) 5.17E+02 =	(7.30E+00) 5.28E+02
F25	5.11E+02 = (3.70E+01)	5.52E+02 - (4.00E+01)	(2.05E+01)	5.25E+02 = (3.58E+01)	5.16E+02 = (3.64E+01)	5.13E+02 = (2.90E+01)	4.91E+02 + (2.70E+01)	5.1/E+02 = (3.26E+01)	5.28E+02 (3.71E+01)
	1.94E+03 -	1.97E+03 -	2.60E+01)	1.60E+03 -	1.95E+03 -	2.04E+01 -	1.67E+01)	1.55E+03 -	1.47E+01)
F26	(1.05E+02)	(2.08E+02)	(4.40E+02)	(9.98E+01)	(2.07E+02)	(2.70E+02)	(1.34E+02)	(1.48E+02)	(1.04E+02)
	5.33E+02 =	6.04E+02 -	5.00E+02 +	5.62E+02 -	5.38E+02 -	5.43E+02 -	5.12E+02 +	5.51E+02 -	5.30E+02
F27	(1.81E+01)	(4.65E+01)	(9.74E-05)	(2.55E+01)	(1.91E+01)	(2.60E+01)	(7.70E+00)	(2.73E+01)	(1.05E+01)
E20	4.85E+02 -	5.00E+02 -	5.00E+02 =	4.96E+02 -	4.88E+02 =	4.80E+02 -	4.65E+02 =	4.88E+02 =	4.85E+02
F28	(2.43E+01)	(1.87E+01)	(1.03E-04)	(1.79E+01)	(2.76E+01)	(2.36E+01)	(1.59E+01)	(2.27E+01)	(2.40E+01)
E20	4.92E+02 -	5.97E+02 -	9.70E+02 -	4.75E+02 -	5.74E+02 -	5.81E+02 -	3.47E+02 +	4.40E+02 =	3.95E+02
F29	(7.63E+01)	(1.34E+02)	(1.81E+02)	(7.31E+01)	(1.73E+02)	(1.82E+02)	(1.86E+01)	(1.16E+02)	(4.31E+01)
F30	6.05E+05 -	6.35E+05 -	1.50E+03 +	6.44E+05 -	5.97E+05 =	6.03E+05 -	6.65E+05 -	6.85E+05 -	5.95E+05
	(2.73E+04)	(7.54E+04)	(2.07E+03)	(5.66E+04)	(2.28E+04)	(2.71E+04)	(5.26E+04)	(1.05E+05)	(2.57E+04)
-/=/+	23/5/2	27/3/0	22/3/5	21/4/5	23/6/1	24/4/2	19/5/6	17/10/3	

Table S17 Performance comparisons of MLCC-sibi with shade, ide and bide on 30- and 50-dimensional cec2014 benchmark set over 51 independent runs

			= 30	LECZOTA BENC	HMARK SET OVER 51 INDEPENDENT RUNS $D = 50$					
	SHADE IDE BIDE MLCC-SIBI			SHADE	IDE	BiDE	MLCC-SIBi			
F1	2.59E+02 +	1.18E+05 -	3.00E+02 +	1.11E+03	<u>1.19E+05</u> =	1.24E+06 -	1.55E+05 =	1.39E+05		
	(5.67E+02) 0.00E+00 =	(9.41E+04) 0.00E+00 =	(6.19E+02) 0.00E+00 =	(2.29E+03) 0.00E+00	(6.14E+04) 0.00E+00 =	(3.41E+05) 2.28E+00 -	(8.27E+04) 5.06E-04 -	(7.09E+04) 0.00E+00		
F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.53E+00)	(5.12E-04)	(0.00E+00)		
F3	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 = (0.00E+00)	$\frac{0.00E+00=}{(0.00E+00)}$	0.00E+00 (0.00E+00)	$\frac{0.00E+00}{(0.00E+00)} =$	1.85E+01 - (1.27E+01)	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)		
F4	$\frac{0.00E+00}{(0.00E+00)} =$	2.08E-02 -	2.57E-08 -	0.00E+00	8.35E+01 -	7.19E+01 -	3.32E+01 =	2.29E+01		
F5	2.03E+01 -	(4.14E-02) 2.02E+01 -	(4.92E-08) 2.01E+01 =	(0.00E+00) 2.01E+01	(1.16E+01) 2.05E+01 -	(2.97E+01) 2.03E+01 =	(3.64E+01) 2.07E+01 -	(2.95E+01) 2.03E+01		
	(3.54E-02) 6.41E+00 -	(5.68E-02) 6.20E-02 +	(1.22E-01) 5.74E-01 =	(6.26E-02) 5.89E-01	(4.03E-02) 1.18E+00 =	(5.95E-02) 9.34E-02 +	(8.52E-02) 6.35E+00 -	(5.74E-02) 5.23E-01		
F6	(3.86E+00)	(2.82E-01)	(8.99E-01)	(1.30E+00)	(3.45E+00)	(3.14E-01)	(1.01E+01)	(6.94E-01)		
F7	$\underline{0.00E+00} = (0.00E+00)$	$\frac{0.00E+00}{(0.00E+00)} =$	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)	$\underline{0.00E+00} = (0.00E+00)$	2.22E-03 - (4.10E-03)	$\frac{0.00E+00}{(0.00E+00)} =$	0.00E+00 (0.00E+00)		
F8	<u>0.00E+00</u> =	4.33E-10 =	2.14E-03 -	0.00E+00	1.84E-02 -	4.32E-02 -	5.98E+01 -	7.17E-06		
F0	(0.00E+00) 2.75E+01 =	(3.09E-09) 2.46E+01 +	(3.25E-03) 3.18E+01 =	(0.00E+00) 2.96E+01	(5.39E-03) 8.82E+01 -	(1.97E-01) 5.99E+01 =	(4.25E+00) 1.99E+02 -	(2.34E-05) 6.08E+01		
F9	(4.18E+00)	(5.33E+00)	(7.22E+00)	(8.33E+00)	(8.25E+00)	(1.01E+01)	(3.82E+01)	(1.25E+01)		
F10	1.57E-01 + (3.94E-02)	5.68E+00 - (1.66E+01)	1.20E+02 - (2.69E+01)	1.19E+00 (8.50E-01)	6.06E+01 - (6.43E+00)	3.34E+01 + (4.90E+01)	2.36E+03 - (3.27E+02)	1.77E+01 (5.89E+00)		
F11	1.97E+03 - (2.06E+02)	1.92E+03 - (3.53E+02)	$\frac{1.59E+03}{(4.02E+02)} =$	1.77E+03 (4.09E+02)	6.27E+03 - (3.93E+02)	4.20E+03 = (6.65E+02)	7.96E+03 - (1.40E+03)	4.13E+03 (6.75E+02)		
F12	3.08E-01 -	2.91E-01 -	1.61E-01 =	1.54E-01	6.12E-01 -	3.68E-01 -	1.02E+00 -	3.24E-01		
	(4.82E-02) 2.15E-01 -	(5.97E-02) 1.87E-01 =	(8.44E-02) 2.08E-01 -	(7.49E-02) 1.87E-01	(6.73E-02) 3.01E-01 =	(7.37E-02) 2.96E-01 =	(2.76E-01) 2.95E-01 =	(6.51E-02) 2.93E-01		
F13	(2.58E-02)	(2.20E-02)	(4.34E-02)	(3.31E-02)	(2.99E-02)	(3.09E-02)	(5.23E-02)	(3.13E-02)		
F14	2.14E-01 - (2.24E-02)	$\frac{1.82E-01}{(3.19E-02)} =$	2.14E-01 - (2.89E-02)	1.92E-01 (2.40E-02)	2.50E-01 + (1.82E-02)	2.70E-01 = (2.23E-02)	2.52E-01 = (3.45E-02)	2.64E-01 (2.49E-02)		
F15	3.83E+00 - (4.70E-01)	2.69E+00 = (5.27E-01)	3.18E+00 - (8.94E-01)	2.65E+00 (6.60E-01)	1.18E+01 - (8.02E-01)	7.36E+00 = (1.93E+00)	1.97E+01 - (3.82E+00)	6.72E+00 (1.66E+00)		
F16	9.55E+00 =	1.00E+01 -	9.36E+00 =	9.42E+00	1.88E+01 -	1.92E+01 -	2.02E+01 -	1.86E+01		
	(3.49E-01) 7.62E+02 -	(3.94E-01) 5.97E+02 -	(5.31E-01) 2.12E+02 =	(5.25E-01) 1.64E+02	(2.77E-01) 2.21E+03 -	(4.21E-01) 7.22E+03 -	(6.30E-01) 1.38E+03 -	(5.34E-01) 9.64E+02		
F17	(3.58E+02)	(2.97E+02)	(1.38E+02)	(1.15E+02)	(5.57E+02)	(2.74E+03)	(5.57E+02)	(2.70E+02)		
F18	1.44E+01 - (7.28E+00)	1.90E+01 - (5.87E+00)	8.57E+00 + (3.34E+00)	1.09E+01 (5.33E+00)	8.03E+01 - (2.31E+01)	3.93E+01 - (1.09E+01)	5.25E+01 - (2.42E+01)	3.46E+01 (9.37E+00)		
F19	4.01E+00 -	2.91E+00 -	2.62E+00 =	2.48E+00	1.29E+01 -	1.03E+01 =	1.14E+01 -	1.02E+01		
F20	(6.47E-01) 4.96E+00 +	(4.69E-01) 1.08E+01 -	(6.55E-01) 8.37E+00 -	(4.62E-01) 6.35E+00	(5.85E+00) 4.11E+01 -	(7.50E-01) 4.54E+01 -	(7.45E-01) 3.31E+01 -	(4.92E-01) 2.49E+01		
	(2.19E+00) 1.29E+02 -	(3.24E+00) 3.30E+02 -	(2.35E+00) 1.28E+02 =	(2.17E+00) 1.01E+02	(1.63E+01) 9.75E+02 -	(1.04E+01) 1.23E+03 -	(9.20E+00) 8.62E+02 -	(5.62E+00) 4.88E+02		
F21	(8.62E+01)	(1.54E+02)	(1.16E+02)	(7.61E+01)	(2.81E+02)	(3.77E+02)	(2.94E+02)	(1.82E+02)		
F22	1.23E+02 - (5.85E+01)	7.30E+01 = (5.78E+01)	9.45E+01 - (8.43E+01)	6.07E+01 (5.41E+01)	4.85E+02 - (1.22E+02)	3.04E+02 = (1.06E+02)	3.86E+02 - (1.51E+02)	3.03E+02 (1.41E+02)		
F23	3.15E+02 =	3.15E+02 +	3.15E+02 =	3.15E+02	3.44E+02 =	3.44E+02 =	3.44E+02 -	3.44E+02		
F24	(4.02E-13) 2.23E+02 =	(3.46E-13) 2.23E+02 -	(4.02E-13) 2.20E+02 +	(4.02E-13) 2.23E+02	(4.60E-13) 2.69E+02 -	(4.46E-13) 2.58E+02 +	(4.12E-13) 2.68E+02 -	(4.43E-13) 2.59E+02		
F24	(9.22E-01) 2.04E+02 -	(7.24E-01) 2.03E+02 -	(6.75E+00) 2.03E+02 +	(7.64E-01) 2.03E+02	(1.90E+00) 2.11E+02 -	(3.39E+00) 2.07E+02 -	(1.76E+00) 2.05E+02 +	(2.86E+00) 2.06E+02		
F25	(7.68E-01)	(2.33E-01)	(2.16E-01)	(2.67E-01)	(2.59E+00)	(6.05E-01)	(3.66E-01)	(5.00E-01)		
F26	1.00E+02 - (2.79E-02)	$\frac{1.00E+02}{(2.60E-02)} =$	$\underline{1.00E+02} = (4.89E-02)$	1.00E+02 (2.87E-02)	1.00E+02 - (3.37E-02)	1.06E+02 = (2.37E+01)	1.00E+02 - (5.58E-02)	1.00E+02 (3.28E-02)		
F27	3.00E+02 +	3.30E+02 +	3.19E+02 +	3.75E+02	3.33E+02 =	3.06E+02 +	3.38E+02 =	3.28E+02		
	(1.11E-13) 7.92E+02 +	(4.63E+01) 8.26E+02 -	(3.86E+01) 7.88E+02 +	(4.42E+01) 8.04E+02	(2.79E+01) 1.09E+03 +	(1.65E+01) 1.28E+03 -	(2.77E+01) 1.16E+03 =	(3.26E+01) 1.14E+03		
F28	(1.86E+01)	(8.10E+01)	(3.63E+01)	(4.08E+01)	(3.20E+01)	(9.49E+01)	(7.13E+01)	(4.97E+01)		
F29	7.20E+02 - (6.01E+00)	$\frac{5.75E+02}{(2.15E+02)} =$	7.16E+02 = (1.54E+00)	7.07E+02 (7.88E+01)	8.27E+02 - (5.63E+01)	1.03E+03 - (1.26E+02)	7.64E+02 - (4.63E+01)	5.42E+02 (9.93E+01)		
F30	1.22E+03 - (4.61E+02)	$\frac{5.18E+02}{(7.28E+01)} =$	7.30E+02 - (3.02E+02)	5.30E+02 (1.44E+02)	8.45E+03 - (4.59E+02)	9.90E+03 - (5.82E+02)	8.21E+03 = (2.49E+02)	8.30E+03 (3.19E+02)		
-/=/+	16/9/5	15/11/4	9/15/6	(1.112102)	20/8/2	16/10/4	20/9/1	(3.171102)		

Table S18 Performance comparisons of MLCC-L-SI with L-Shade and m_ide on 30- and 50-dimensional cec 2014 benchmark set over 51 independent runs

ON	OU- AND SU-DII	D = 30	ECZU14 BENCI	HMARK SET OVER 51 INDEPENDENT RUNS $D = 50$				
		<i>D</i> = 30	\#. GG					
	L-SHADE	M_IDE	MLCC- L-SI	L-SHADE	M_IDE	MLCC- L-SI		
F1	$\frac{0.00E+00}{(0.00E+00)} =$	3.04E+03 - (3.66E+03)	0.00E+00 (0.00E+00)	8.72E+02 + (1.04E+03)	1.75E+05 - (7.85E+04)	2.32E+03 (2.68E+03)		
FO	0.00E+00 =	0.00E+00 =	0.00E+00	0.00E+00 =	6.99E-07 -	0.00E+00		
F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.24E-06)	(0.00E+00)		
F3	0.00E+00 =	0.00E+00 =	0.00E+00	0.00E+00 =	2.61E-06 -	0.00E+00		
- 10	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(9.25E-06)	(0.00E+00)		
F4	0.00E+00 =	0.00E+00 =	0.00E+00	5.90E+01 =	2.12E+01 +	6.73E+01		
	(0.00E+00) 2.01E+01 =	(0.00E+00) 2.03E+01 -	(0.00E+00) 2.01E+01	(4.53E+01) 2.03E+01 =	(2.97E+01) 2.05E+01 -	(4.41E+01) 2.03E+01		
F5	(2.45E-02)	(8.07E-02)	(4.58E-02)	(2.94E-02)	(3.81E-02)	(7.23E-02)		
	1.93E-02 =	9.12E-01 -	0.00E+00	1.78E-01 +	4.12E+00 -	1.29E-01		
F6	(1.38E-01)	(7.51E-01)	(0.00E+00)	(4.74E-01)	(1.73E+00)	(3.69E-01)		
F7	0.00E+00 =	5.35E-03 -	0.00E+00	0.00E+00 =	6.08E-03 -	0.00E+00		
F7	(0.00E+00)	(1.02E-02)	(0.00E+00)	(0.00E+00)	(7.58E-03)	(0.00E+00)		
F8	0.00E+00 =	0.00E+00 =	0.00E+00	3.38E-08 -	3.78E+00 -	3.05E-10		
10	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.93E-08)	(1.01E+00)	(2.18E-09)		
F9	7.82E+00 =	1.81E+01 -	7.46E+00	1.26E+01 =	4.93E+01 -	1.20E+01		
	(1.65E+00) 6.12E-03 -	(2.73E+00) 1.19E-05 -	(1.58E+00) 0.00E+00	(2.55E+00) 1.80E-01 -	(5.35E+00) 9.15E+00 -	(2.21E+00) 1.13E-01		
F10	(9.58E-03)	(4.53E-05)	(0.00E+00)	(5.96E-02)	(5.96E+00)	(3.36E-02)		
	1.21E+03 =	1.96E+03 -	1.21E+03	3.34E+03 =	5.59E+03 -	3.25E+03		
F11	(2.47E+02)	(2.55E+02)	(2.34E+02)	(2.97E+02)	(3.06E+02)	(3.51E+02)		
F12	1.70E-01 =	3.42E-01 -	1.77E-01	2.45E-01 =	5.19E-01 -	2.34E-01		
F12	(3.15E-02)	(4.39E-02)	(2.76E-02)	(3.31E-02)	(4.42E-02)	(3.58E-02)		
F13	<u>1.18E-01</u> =	1.75E-01 -	1.21E-01	<u>1.60E-01</u> +	3.04E-01 -	1.71E-01		
113	(1.68E-02)	(2.87E-02)	(1.68E-02)	(1.69E-02)	(3.52E-02)	(1.83E-02)		
F14	2.21E-01 =	1.99E-01 +	2.21E-01	3.20E-01 -	<u>2.84E-01</u> =	2.86E-01		
	(3.32E-02) 2.22E+00 =	(2.71E-02) 3.43E+00 -	(3.15E-02) 2.15E+00	(5.12E-02) 5.38E+00 -	(2.39E-02) 9.86E+00 -	(2.69E-02) 4.95E+00		
F15	(2.31E-01)	(3.48E-01)	(2.29E-01)	(4.31E-01)	(8.76E-01)	(4.76E-01)		
	8.52E+00 +	9.62E+00 -	8.68E+00	1.68E+01 =	1.83E+01 -	1.69E+01		
F16	(4.14E-01)	(3.22E-01)	(4.53E-01)	(5.06E-01)	(3.45E-01)	(5.18E-01)		
F17	2.47E+02 -	1.30E+02 +	1.67E+02	1.69E+03 -	8.00E+02 +	1.51E+03		
	(1.22E+02) 7.73E+00 -	(9.60E+01) 1.10E+01 -	(9.03E+01) 5.08E+00	(4.27E+02) 9.75E+01 -	(3.66E+02) 4.11E+01 +	(4.29E+02) 9.03E+01		
F18	(4.33E+00)	(3.88E+00)	(1.80E+00)	(1.40E+01)	(2.13E+01)	(1.83E+01)		
	3.85E+00 -	3.79E+00 =	3.58E+00	8.05E+00 +	1.65E+01 -	9.97E+00		
F19	(5.69E-01)	(5.23E-01)	(6.17E-01)	(1.68E+00)	(1.01E+01)	(1.33E+00)		
F20	3.00E+00 =	6.69E+00 -	2.91E+00	1.39E+01 =	2.28E+01 -	1.39E+01		
1.20	(1.26E+00)	(1.94E+00)	(1.12E+00)	(4.15E+00)	(6.37E+00)	(3.82E+00)		
F21	1.10E+02 = (7.05E+01)	1.08E+02 = (8.67E+01)	9.34E+01 (7.87E+01)	5.59E+02 - (1.55E+02)	$\frac{4.16E+02}{(1.25E+02)} =$	4.62E+02 (1.32E+02)		
	2.40E+01 =	1.58E+02 -	2.86E+01	9.54E+01 +	4.60E+02 -	1.36E+02		
F22	(3.95E+00)	(4.18E+01)	(1.81E+01)	(8.11E+01)	(1.10E+02)	(7.05E+01)		
F23	3.15E+02 =	3.15E+02 =	3.15E+02	3.44E+02 +	3.44E+02 -	3.44E+02		
1.23	(4.02E-13)	(4.02E-13)	(4.02E-13)	(3.32E-13)	(3.97E-13)	(4.41E-13)		
F24	2.25E+02 -	2.24E+02 -	2.23E+02	2.75E+02 -	2.60E+02 +	2.69E+02		
	(2.16E+00) 2.03E+02 =	(1.02E+00) 2.04E+02 -	(1.19E+00)	(7.97E-01) 2.05E+02 -	(6.34E+00) 2.13E+02 -	(5.26E+00) 2.05E+02		
F25	(4.10E-02)	(1.75E+00)	2.03E+02 (1.19E-01)	(3.03E-01)	(8.42E+00)	(2.79E-01)		
F2.6	1.00E+02 +	1.00E+02 -	1.00E+02	1.00E+02 =	1.37E+02 -	1.00E+02		
F26	(1.48E-02)	(2.71E-02)	(1.87E-02)	(1.66E-02)	(4.87E+01)	(1.76E-02)		
F27	3.00E+02 + (1.29E-13)	3.27E+02 - (3.51E+01)	3.00E+02 (3.32E-13)	3.44E+02 - (2.84E+01)	4.14E+02 - (3.90E+01)	3.25E+02 (3.06E+01)		
Eco	8.52E+02 -	8.26E+02 -	8.33E+02	1.12E+03 =	1.43E+03 -	1.13E+03		
F28	(1.05E+01)	(1.13E+02)	(1.24E+01)	(3.90E+01)	(2.00E+02)	(3.39E+01)		
E20	7.16E+02 -	2.95E+02 +	7.16E+02	8.01E+02 -	5.69E+02 =	5.13E+02		
F29	(2.84E+00)	(2.17E+02)	(5.86E+00)	(2.62E+01)	(1.93E+02)	(8.26E+01)		
F30	2.03E+03 =	4.76E+02 +	1.90E+03	8.72E+03 =	1.00E+04 -	8.58E+03		
	(7.46E+02)	(1.01E+02)	(8.31E+02)	(3.68E+02)	(5.36E+02)	(3.44E+02)		
-/=/+	7/20/3	19/7/4		11/13/6	23/3/4			