

10073464 07 1002

10/070464

JC18 Rec'd PCT/PTO 07 MAR 2002

- 1 -

SEQUENCE LISTING

<110> ABBOTT, Catherine Anne
GORRELL, Mark Douglas

<120> DIPEPTIDYL PEPTIDASES

<130> GH-007

<150> PCT/AU00/01085

<151> 2000-09-11

<150> AU PQ5709

<151> 2000-02-18

<150> AU PQ2762

<151> 1999-09-10

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 882

<212> PRT

<213> Homo Sapiens

<400> 1

Met	Ala	Ala	Ala	Met	Glu	Thr	Glu	Gln	Leu	Gly	Val	Glu	Ile	Phe	Glu
1				5				10				15			
Thr	Ala	Asp	Cys	Glu	Glu	Asn	Ile	Glu	Ser	Gln	Asp	Arg	Pro	Lys	Leu
				20				25				30			
Glu	Pro	Phe	Tyr	Val	Glu	Arg	Tyr	Ser	Trp	Ser	Gln	Leu	Lys	Lys	Leu
				35				40			45				
Leu	Ala	Asp	Thr	Arg	Lys	Tyr	His	Gly	Tyr	Met	Met	Ala	Lys	Ala	Pro
				50				55		60					
His	Asp	Phe	Met	Phe	Val	Lys	Arg	Asn	Asp	Pro	Asp	Gly	Pro	His	Ser
				65				70		75		80			
Asp	Arg	Ile	Tyr	Tyr	Leu	Ala	Met	Ser	Gly	Glu	Asn	Arg	Glu	Asn	Thr
				85				90			95				
Leu	Phe	Tyr	Ser	Glu	Ile	Pro	Lys	Thr	Ile	Asn	Arg	Ala	Ala	Val	Leu
				100				105			110				
Met	Leu	Ser	Trp	Lys	Pro	Leu	Leu	Asp	Leu	Phe	Gln	Ala	Thr	Leu	Asp
				115				120			125				
Tyr	Gly	Met	Tyr	Ser	Arg	Glu	Glu	Glu	Leu	Leu	Arg	Glu	Arg	Lys	Arg
				130				135			140				
Ile	Gly	Thr	Val	Gly	Ile	Ala	Ser	Tyr	Asp	Tyr	His	Gln	Gly	Ser	Gly
				145				150			155			160	
Thr	Phe	Leu	Phe	Gln	Ala	Gly	Ser	Gly	Ile	Tyr	His	Val	Lys	Asp	Gly
				165				170			175				
Gly	Pro	Gln	Gly	Phe	Thr	Gln	Gln	Pro	Leu	Arg	Pro	Asn	Leu	Val	Glu

- 2 -

	180	185	190
Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp			
195	200	205	
Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn			
210	215	220	
Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu			
225	230	235	240
Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val			
245	250	255	
Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys			
260	265	270	
Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu			
275	280	285	
Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met			
290	295	300	
Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr			
305	310	315	320
Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala			
325	330	335	
Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe			
340	345	350	
Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr			
355	360	365	
Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr			
370	375	380	
Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu			
385	390	395	400
Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser			
405	410	415	
Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn			
420	425	430	
Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Glu Ile			
435	440	445	
Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr			
450	455	460	
Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg Ser Ser Gly			
465	470	475	480
Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile			
485	490	495	
Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn			
500	505	510	
Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys			
515	520	525	
Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro			
530	535	540	
Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His Ser Cys Cys			
545	550	555	560
Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser Asn Gln Lys			
565	570	575	
Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser Ser Pro Glu Asp Asp			
580	585	590	
Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu Asp Ser Ala			
595	600	605	

- 3 -

Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser Phe Glu Ser
 610 615 620
 Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro His Asp Leu
 625 630 635 640
 Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr Gly Gly Pro
 645 650 655
 Gln Val Gln Leu Val Asn Asn Arg Phe Lys Gly Val Lys Tyr Phe Arg
 660 665 670
 Leu Asn Thr Leu Ala Ser Leu Gly Tyr Val Val Val Val Ile Asp Asn
 675 680 685
 Arg Gly Ser Cys His Arg Gly Leu Lys Phe Glu Gly Ala Phe Lys Tyr
 690 695 700
 Lys Met Gly Gln Ile Glu Ile Asp Asp Gln Val Glu Gly Leu Gln Tyr
 705 710 715 720
 Leu Ala Ser Arg Tyr Asp Phe Ile Asp Leu Asp Arg Val Gly Ile His
 725 730 735
 Gly Trp Ser Tyr Gly Tyr Leu Ser Leu Met Ala Leu Met Gln Arg
 740 745 750
 Ser Asp Ile Phe Arg Val Ala Ile Ala Gly Ala Pro Val Thr Leu Trp
 755 760 765
 Ile Phe Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met Gly His Pro Asp
 770 775 780
 Gln Asn Glu Gln Gly Tyr Tyr Leu Gly Ser Val Ala Met Gln Ala Glu
 785 790 795 800
 Lys Phe Pro Ser Glu Pro Asn Arg Leu Leu Leu Leu His Gly Phe Leu
 805 810 815
 Asp Glu Asn Val His Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu
 820 825 830
 Val Arg Ala Gly Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg
 835 840 845
 His Ser Ile Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu
 850 855 860
 Leu His Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile Ala Ala Leu Lys
 865 870 875 880
 Val Ile

<210> 2
 <211> 3120
 <212> DNA
 <213> Homo Sapiens

<400> 2
 aagtgtctaaa gcctccgagg ccaaggccgc tgctactgcc gcccgtgtt ctttagtgccg 60
 cgttcgccgc ctgggttgtc accggcgccg ccggcgagga agccactgca accaggaccg 120
 gagtgaggcgc ggcgcagcat gaagcggcgc agggccgctc catagcgcac gtccggacgg 180
 tccggggcggg gcccggggga aggaaaaatgc aacatggcag cagcaatggaa aacagaacag 240
 ctgggtgtt agatatttga aactgcggac tgtgaggaga atattgaatc acaggatcgg 300
 cctaaattgg agcctttta tggctacatg atggctaagg caccacatga tttcatgttt 360
 gccgatacca gaaaatatca tggctacatg atggctaagg caccacatga tttcatgttt 420
 gtgaagagga atgatccaga tggacctcat tcagacagaa tctattacct tgccatgtct 480
 ggtgagaaca gagaaaatac actgttttat tctgaaattc ccaaactat caatagagca 540

- 4 -

gcagtcttaa tgctctcttgaaggcctttt ttcagggAAC actggactat 600
 ggaatgtatt ctcgagaAGA agaactatta agagaaAGAA aacgcattgg aacagtCGGA 660
 attgcttctt acgattatca ccaaggaAGT ggaacatttc tgTTCAAGC cgtagtGGA 720
 atttatcacg taaaAGATGG agggccacaA ggatttacgc aacaacCTT aaggcccAAT 780
 cttagtgAAA cttagttgtcc caacatacgg atggatccaa aattatGCC CGCTGATCCA 840
 gactggatttgc ttTTTataca tagcaacgtt atttggatat ctaacatCGT aaccagAGAA 900
 gaaaggagac tcacttatgt gcacaatgag ctAgCCAACA tggAAGAAGA tgCCAGATCA 960
 gctggagtcg ctacccTTGT tCTCCAAGAA gaatttgata gatattCTGG ctattGGTGG 1020
 tgtccaaaAG ctgaaaacaAC tcccAGTGGT ggtaAAATTc ttAgAAATTCT atatGAAGAA 1080
 aatgtatGAAT ctgaggGTGA aattattcat gttacatCCC ctatGTTGA aacaaggAGG 1140
 gcagattcat tccgttatcc taaaACAGGT acagCAAATC ctaaaAGTCAC tttaAGATG 1200
 tcagaaataa tgattgatgc tgaagGAAGG atcatAGATG tcatagataa ggaactaatt 1260
 caacCTTTG agattctatt tgaaggAGTT gaatataTTG ccagAGCTGG atggACTCCT 1320
 gagggAAAAT atgcttggTC catcCTacta gatcgCTCCC agactCGCCT acagatAGT 1380
 ttgatctcac ctgaaattatt tatcccAGTA gaagatGATG ttatGAAAG gCAGAGACTC 1440
 attgagtcaG tgcctgattc tGtGACGCCA ctaattatCT atgaAGAAAC aacAGACATC 1500
 tggataaata tccatgacat ctTTcatTTT ttTCCCCAA gtcacGAAGA gggAAATTGAG 1560
 ttTatTTTG cctctGAATG caaaACAGGT ttccGTCATT tatacAAAT tacatCTATT 1620
 ttaaaggAAA gcaaataAA acgatccAGT ggtggGCTGC ctgctccaAG tgatttcaAG 1680
 tgcctatca aagaggAGAT agcaattACC agtGGTGAAT gggAAAGTTCT tggccGGCAT 1740
 gnatctaATA tccaaAGTGA tgaagtCAGA aggCTGGTAT atTTGAAGG caccaAAAGAC 1800
 tcccTTTAG agcatCACCT gtacGTagTC agttacGtaA atcctGGAGA ggtGACAAGG 1860
 ctgactgacc gtggCTactC acattCTTC tgcAtCAGTC agcactGTGA ctTCTTTATA 1920
 agtaagtata gtaaccAGAA gaatCCACAC tGtGtGtCCC ttTacaAGCT atcaAGTCCT 1980
 gaagatgacc caactTGCAA aacAAAGGAA ttttggGCCA ccattttGGA ttcaGcAGGT 2040
 CCTCTTCTG actataCTCC tccAGAAATT ttctCTTTG aaagtactAC tggatttACA 2100
 ttgtatGGGA tgctctacAA gcctcatGAT ctacAGCCTG gaaAGAAATA tcctactGTG 2160
 ctgttcataAT atggTGGTCC tcaggTGCAG ttggTGAATA atcggttAA aggAGTCAG 2220
 tatttccGCT tgaatACCTCt agcctctcta ggttatGTTG ttgtatGtGAT agacaACAGG 2280
 ggatCCTGTC accgaggGGCT taaatttGAA ggcGCCttA aatataAAAT gggTCAAATA 2340
 gaaattGACG atcaggGTGA aggactCCAA tatctAGCTT ctcgatATGA tttcattGAC 2400
 tttagatCtg tggcAtCCa cggcTGGTCC tatggaggAT acctCTCCt gatggCatta 2460
 atgcagagGT cagatATCTT caggGTTGCT attGCTGGGG ccccAGTCAC tctGtGGATC 2520
 ttctatGATA caggataCAC ggaACGTTAT atGGGTcAcc ctgaccAGAA tgaACAGGGC 2580
 tattacttag gatctGtGGC catGcaAGCA gaaaAGTTCC cctctGAACC aaatCgttA 2640
 ctgctcttac atggTTCTT ggatGAGAAT gtcCATTtG cacatACCAg tatattACTG 2700
 agtttttag tgaggGCTGG aaagccATAT gatttACAGA tctatCCTCA ggagAGACAC 2760
 agcataAGAG ttccTGAATC gggAGAAcAT tatGAACTGC atctttGCA ctacCttCAA 2820
 gaaaACCTG gatcacGtAT tgctGCTCA aaagtGATAT aatttGACC tGtGtGAGAAC 2880
 tctctGGTAT acactGGCTA tttaACCAAA tgaggAGGT taatCAACAG AAAACACAGA 2940
 attgatcatc acatttGAT acctGCCATG taacatCTAC tcctGAAAAAT aaatGtGGTG 3000
 ccatgcaggG gtctacGGT tGtGGTAGTA atctaataCC ttaACCCAC atGCTAAAA 3060
 tcaaAtGATA catattCCTG agagACCAG caatACCATA agaattACTA aaaaaaaaaa 3120

<210> 3
 <211> 310
 <212> PRT
 <213> Homo Sapiens

<400> 3
 Phe Glu Gly Thr Lys Asp Ser Pro Leu Glu His His Leu Tyr Val Val
 1 5 10 15

- 5 -

<210> 4
<211> 1197
<212> DNA
<213> Homo Sapiens

```
<400> 4
attttgaagg caccaaagac tccccctttag agcatcacct gtacgtagtc agttacgtaa 60
atcctggaga ggtgacaagg ctgactgacc gtggctactc acattttgc tgcatcagtc 120
agcaactgtga cttctttata agtaagtata gtaaccagaa gaatccacac tttgtgtccc 180
tttacaagct atcaagtcct gaagatgacc caacttgcaa aacaaaggaa ttggggcca 240
ccattttggta ttcagcgagg cctcttctg actatactcc tccagaaaatt ttctcttttg 300
aaagtactac tggatttaca ttgtatggta tgctctacaa gcctcatgtat ctacagcctg 360
gaaagaaaata tcctactgtg ctgttcatat atgggtggcc tcagggtcaat atagaaaattg 420
```

- 6 -

acgatcaggt ggaaggactc caatatctag cttctcgata tgatttcatt gacttagatc 480
 gtgtggcat ccacggctgg tcctatggag gataacctc cctgatggca ttaatgcaga 540
 ggtagatcat ctccagggtt gctattgtg gggccccagt cactctgtgg atcttctatg 600
 atacaggata cacggaacgt tatatgggtc accctgacca gaatgaacag ggctattact 660
 taggatctgt ggccatgcaa gcagaaaagt tccctctga accaaatctgt ttactgctct 720
 tacatggttt cctggatgag aatgtccatt ttgcacatac cagtatatta ctgagtttt 780
 tagtgaggc tggaaaagcca tatgattac agatctatcc tcaggagaga cacagcataa 840
 gagttcctga atcgggagaa cattatgaac tgcattttt gcactacctt caagaaaacc 900
 ttggatcacg tattgctgct ctaaaagtga tataatttt acctgtgttag aactctctgg 960
 tatacactgg ctatthaacc aaatgaggag gttaatcaa cagaaaacac agaattgatc 1020
 atcacattt gatacgtgcc atgtaacatc tactcctgaa aataaatgtg gtgccatgca 1080
 ggggtctacg gtttggta gtaatcta accttaaccc cacatgctca aaatcaaatg 1140
 atacatattc ctgagagacc cagcaataacc ataagaatta caaaaaaaaaaaaaaa 1197

<210> 5

<211> 465

<212> PRT

<213> Homo Sapiens

<400> 5

Thr	Gly	Thr	Ala	Asn	Pro	Lys	Val	Thr	Phe	Lys	Met	Ser	Glu	Ile	Met
1								10						15	
Ile	Asp	Ala	Glu	Gly	Arg	Ile	Ile	Asp	Val	Ile	Asp	Lys	Glu	Leu	Ile
							20			25				30	
Gln	Pro	Phe	Glu	Ile	Leu	Phe	Glu	Gly	Val	Glu	Tyr	Ile	Ala	Arg	Ala
							35		40				45		
Gly	Trp	Thr	Pro	Glu	Gly	Lys	Tyr	Ala	Trp	Ser	Ile	Leu	Leu	Asp	Arg
							50		55				60		
Ser	Gln	Thr	Arg	Leu	Gln	Ile	Val	Leu	Ile	Ser	Pro	Glu	Leu	Phe	Ile
							65		70			75			80
Pro	Val	Glu	Asp	Asp	Val	Met	Glu	Arg	Gln	Arg	Leu	Ile	Glu	Ser	Val
							85			90				95	
Pro	Asp	Ser	Val	Thr	Pro	Leu	Ile	Ile	Tyr	Glu	Glu	Thr	Thr	Asp	Ile
							100		105				110		
Trp	Ile	Asn	Ile	His	Asp	Ile	Phe	His	Val	Phe	Pro	Gln	Ser	His	Glu
							115		120				125		
Glu	Glu	Ile	Glu	Phe	Ile	Phe	Ala	Ser	Glu	Cys	Lys	Thr	Gly	Phe	Arg
							130		135				140		
His	Leu	Tyr	Lys	Ile	Thr	Ser	Ile	Leu	Lys	Glu	Ser	Lys	Tyr	Lys	Arg
							145		150			155			160
Ser	Ser	Gly	Gly	Leu	Pro	Ala	Pro	Ser	Asp	Phe	Lys	Cys	Pro	Ile	Lys
							165			170			175		
Glu	Glu	Ile	Ala	Ile	Thr	Ser	Gly	Glu	Trp	Glu	Val	Leu	Gly	Arg	His
							180		185				190		
Gly	Ser	Asn	Ile	Gln	Val	Asp	Glu	Val	Arg	Arg	Leu	Val	Tyr	Phe	Glu
							195		200				205		
Gly	Thr	Lys	Asp	Ser	Pro	Leu	Glu	His	His	Leu	Tyr	Val	Val	Ser	Tyr
							210		215				220		
Val	Asn	Pro	Gly	Glu	Val	Thr	Arg	Leu	Thr	Asp	Arg	Gly	Tyr	Ser	His
							225		230			235			240
Ser	Cys	Cys	Ile	Ser	Gln	His	Cys	Asp	Phe	Phe	Ile	Ser	Lys	Tyr	Ser
							245			250			255		
Asn	Gln	Lys	Asn	Pro	His	Cys	Val	Ser	Leu	Tyr	Lys	Leu	Ser	Ser	Pro

- 7 -

	260	265	270
Glu Asp Asp Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu			
275	280	285	
Asp Ser Ala Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser			
290	295	300	
Phe Glu Ser Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro			
305	310	315	320
His Asp Leu Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr			
325	330	335	
Gly Gly Pro Gln Val Ala Ile Ala Gly Ala Pro Val Thr Leu Trp Ile			
340	345	350	
Phe Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met Gly His Pro Asp Gln			
355	360	365	
Asn Glu Gln Gly Tyr Tyr Leu Gly Ser Val Ala Met Gln Ala Glu Lys			
370	375	380	
Phe Pro Ser Glu Pro Asn Arg Leu Leu Leu Leu His Gly Phe Leu Asp			
385	390	395	400
Glu Asn Val His Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu Val			
405	410	415	
Arg Ala Gly Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg His			
420	425	430	
Ser Ile Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu Leu			
435	440	445	
His Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile Ala Ala Leu Lys Val			
450	455	460	
Ile			
465			

<210> 6
<211> 1669
<212> DNA
<213> Homo Sapiens

<400> 6

```
aacaggtaca gcaaattccta aagtcacttt taagatgtca gaaataatga ttgatgctga 60
aggaaggatc atagatgtca tagataagga actaattcaa ccttttgaga ttcttatttga 120
aggagttgaa tatattgcca gagctggatg gactcctgag ggaaaatatg cttggtccat 180
cctactagat cgctccccaga ctcgcctaca gatagtgttgc atctcacctg aattattttat 240
cccagtagaa gatgatgtta tggaaaaggca gagactcatt gagtcagtgc ctgattctgt 300
gacgccacta attatctatg aagaaaacaaac agacatctgg ataaatatcc atgacatctt 360
tcatgtttt ccccaaagtc acgaagagga aattgagttt atttttgcct ctgaatgcaa 420
aacaggtttc cgtcatttat aaaaaattac atctattttt aaggaaagca aatataaacg 480
atccagtgtt gggctgcctg ctccaagtga ttcaagtgt cctatcaaag aggagatagc 540
aattaccagt ggtaatggg aagttcttgg ccggcatggta tctaataatcc aagttgatga 600
agtcagaagg ctggtatatt ttgaaggcac caaagactcc ccttttagagc atcacctgt 660
cgtagtcagt tacgtaaatc ctggagaggt gacaaggctg actgaccgtg gctactcaca 720
ttcttgctgc atcagtcagc actgtgactt ctttataagt aagtatagtt accagaagaa 780
tccacactgt gtgtccctt acaagctatc aagtccctgaa gatgacccaa cttgcaaaac 840
aaaggaattt tggccacca ttttggattc agcaggctt cttccctgact atactcctcc 900
agaaaatttc tctttgaaa gtactactgg atttacattt tatggatgc tctacaagcc 960
tcatgatcta cagcctggaa agaaaatatcc tactgtgctg ttcatataatg gtggccctca 1020
gtttgctatt gctggggccc cagtcacttctc tatgatacag gatacacgga 1080
```

acgttatatg ggtcaccctg accagaatga acagggttat tacttaggat ctgtggccat 1140
 gcaagcagaa aagtccccct ctgaaccaaa tcgtttactg ctcttacatg gtttcctgga 1200
 tgagaatgtc cattttgcac ataccagtat attactgagt ttttagtga ggctggaaa 1260
 gccatatgtat ttacagatct atcctcagga gagacacago ataagagttc ctgaatcggg 1320
 agaacattat gaactgcac tttgcacta ccttcaagaa aaccttgat cacgtattgc 1380
 tgctctaaaa gtgatataat tttgacctgt gtagaactct ctggtataca ctggctattt 1440
 aacccaaatga ggaggtttaa tcaacagaaa acacagaatt gatcatcaca ttttgatacc 1500
 tgccatgtaa catctactcc tgaaaataaa tgggtgcca tgcaggggtc tacggtttgt 1560
 ggttagtaatc taatacctt acccacatg ctcaaaatca aatgatacat attcctgaga 1620
 gaccaggca taccataaga attactaaaa aaaaaaaaaa aaaaaaaaaa 1669

<210> 7

<211> 360

<212> PRT

<213> Homo Sapiens

<400> 7

Glu	Glu	Asp	Ala	Arg	Ser	Ala	Gly	Val	Ala	Thr	Phe	Val	Leu	Gln	Glu
1								10						15	
Glu	Phe	Asp	Arg	Tyr	Ser	Gly	Tyr	Trp	Trp	Cys	Pro	Lys	Ala	Glu	Thr
	20							25						30	
Thr	Pro	Ser	Gly	Gly	Lys	Ile	Leu	Arg	Ile	Leu	Tyr	Glu	Glu	Asn	Asp
	35							40						45	
Glu	Ser	Glu	Val	Glu	Ile	Ile	His	Val	Thr	Ser	Pro	Met	Leu	Glu	Thr
	50							55						60	
Arg	Arg	Ala	Asp	Ser	Phe	Arg	Tyr	Pro	Lys	Thr	Gly	Thr	Ala	Asn	Pro
65								70						80	
Lys	Val	Thr	Phe	Lys	Met	Ser	Glu	Ile	Met	Ile	Asp	Ala	Glu	Gly	Arg
	85							90						95	
Ile	Ile	Val	Asp	Glu	Val	Arg	Arg	Leu	Val	Tyr	Phe	Glu	Gly	Thr	Lys
	100							105						110	
Asp	Ser	Pro	Leu	Glu	His	His	Leu	Tyr	Val	Val	Ser	Tyr	Val	Asn	Pro
	115							120						125	
Gly	Glu	Val	Thr	Arg	Leu	Thr	Asp	Arg	Gly	Tyr	Ser	His	Ser	Cys	Cys
	130							135						140	
Ile	Ser	Gln	His	Cys	Asp	Phe	Phe	Ile	Ser	Lys	Tyr	Ser	Asn	Gln	Lys
145								150						160	
Asn	Pro	His	Cys	Val	Ser	Leu	Tyr	Lys	Leu	Ser	Ser	Pro	Glu	Asp	Asp
	165							170						175	
Pro	Thr	Cys	Lys	Thr	Lys	Glu	Phe	Trp	Ala	Thr	Ile	Leu	Asp	Ser	Ala
	180							185						190	
Gly	Pro	Leu	Pro	Asp	Tyr	Thr	Pro	Pro	Glu	Ile	Phe	Ser	Phe	Glu	Ser
	195							200						205	
Thr	Thr	Gly	Phe	Thr	Leu	Tyr	Gly	Met	Leu	Tyr	Lys	Pro	His	Asp	Leu
210								215						220	
Gln	Pro	Gly	Lys	Lys	Tyr	Pro	Thr	Val	Leu	Phe	Ile	Tyr	Gly	Gly	Pro
225								230						240	
Gln	Val	Gln	Leu	Val	Asn	Asn	Arg	Phe	Lys	Gly	Val	Lys	Tyr	Phe	Arg
	245							250						255	
Leu	Asn	Thr	Leu	Ala	Ser	Leu	Gly	Tyr	Val	Val	Val	Ile	Asp	Asn	
	260							265						270	
Arg	Gly	Ser	Cys	His	Arg	Gly	Leu	Lys	Phe	Glu	Gly	Ala	Phe	Lys	Tyr
	275							280						285	

- 9 -

Lys	Met	Gly	Gln	Ile	Glu	Ile	Asp	Asp	Gln	Val	Glu	Gly	Leu	Gln	Tyr
290					295					300					
Leu	Ala	Ser	Arg	Tyr	Asp	Phe	Ile	Asp	Leu	Asp	Arg	Val	Gly	Ile	His
305					310				315					320	
Gly	Trp	Ser	Tyr	Gly	Gly	Tyr	Leu	Ser	Leu	Met	Ala	Leu	Met	Gln	Arg
					325				330				335		
Ser	Asp	Ile	Phe	Arg	Val	Ala	Ile	Ala	Gly	Ala	Pro	Val	Thr	Leu	Trp
					340				345				350		
Ile	Phe	Tyr	Asp	Thr	Gly	Tyr	Thr								
					355				360						

<210> 8

<211> 1083

<212> DNA

<213> Homo Sapiens

<400> 8

ggaagaagat gccagatcag ctggagtcgc tacctttgtt ctccaagaag aatttgatag 60
 atattctggc tatttgtgtt gtccaaaagc tgaaacaact cccagtggtg gtaaaaattct 120
 tagaattcta tatgaagaaa atgatgaatc tgaggtggaa attattcatg ttacatcccc 180
 tatgttgaa acaaggaggg cagattcatt ccgttatacct aaaacaggta cagcaaatcc 240
 taaagtcaact tttaagatgt cagaaataat gattgatgct gaaggaagga tcatagttga 300
 tgaagtcaga aggctggtat attttgaagg cacaaagac tcccctttag agcatcacct 360
 gtacgtagtc agttacgtaa atcctggaga ggtgacaagg ctgactgacc gtggctactc 420
 acattcttgc tgcatacgatc agcactgtga cttctttata agtaagtata gtaaccagaa 480
 gaatccacac tgggtgtccc tttaacaagct atcaagtccat gaagatgacc caacttgcaa 540
 aacaaaggaa ttttgggcca ccattttgga ttcagcaggt cctcttcctg actatactcc 600
 tccagaaaatt ttctcttttgc aaagtactac tggatttaca ttgtatggga tgctctacaa 660
 gcctcatgat ctacagcctg gaaagaaaata tcctactgtg ctgttcatat atgggtggtcc 720
 tcaggtgcag ttggtaata atcggtttta aggagtcaag tatttccgct tgaataccct 780
 agcctctcta ggttatgtgg ttgttagtgc agacaacagg ggatcctgtc accgagggct 840
 taaatttggaa ggcgccttta aatataaaaat gggtaaata gaaattgacg atcaggtgga 900
 aggactccaa tatctagctt ctcgatatga tttcatttgc ttagatcgtg tggcattcca 960
 cggctggtcc tatggaggat acctctccct gatggcatta atgcagaggt cagatatctt 1020
 cagggttgcattt attgctgggg ccccagtcac tctgtggatc ttctatgata caggatacac 1080
 gga 1083

1.ST25.txt
SEQUENCE LISTING

<110> THE UNIVERSITY OF SYDNEY

<120> DIPEPTIDYL PEPTIDASE

<130> P37354

<150> AU PQ2762

<151> 1999-09-10

<150> AU PQ5709

<151> 2000-02-18

<160> 8

<170> PatentIn version 3.0

<210> 1

<211> 882

<212> PRT

<213> Homo sapiens

<400> 1

Met	Ala	Ala	Ala	Met	Glu	Thr	Glu	Gln	Leu	Gly	Val	Glu	Ile	Phe	Glu
1				5					10				15		

Thr	Ala	Asp	Cys	Glu	Glu	Asn	Ile	Glu	Ser	Gln	Asp	Arg	Pro	Lys	Leu
			20					25				30			

Glu	Pro	Phe	Tyr	Val	Glu	Arg	Tyr	Ser	Trp	Ser	Gln	Leu	Lys	Lys	Leu
				35			40				45				

Leu	Ala	Asp	Thr	Arg	Lys	Tyr	His	Gly	Tyr	Met	Met	Ala	Lys	Ala	Pro
					50		55			60					

His	Asp	Phe	Met	Phe	Val	Lys	Arg	Asn	Asp	Pro	Asp	Gly	Pro	His	Ser
65				70					75			80			

Asp	Arg	Ile	Tyr	Tyr	Leu	Ala	Met	Ser	Gly	Glu	Asn	Arg	Glu	Asn	Thr
				85				90			95				

Leu	Phe	Tyr	Ser	Glu	Ile	Pro	Lys	Thr	Ile	Asn	Arg	Ala	Ala	Val	Leu
				100				105			110				

Met	Leu	Ser	Trp	Lys	Pro	Leu	Leu	Asp	Leu	Phe	Gln	Ala	Thr	Leu	Asp
				115				120			125				

Tyr	Gly	Met	Tyr	Ser	Arg	Glu	Glu	Glu	Leu	Leu	Arg	Glu	Arg	Lys	Arg
				130			135				140				

Ile	Gly	Thr	Val	Gly	Ile	Ala	Ser	Tyr	Asp	Tyr	His	Gln	Gly	Ser	Gly
					145		150			155			160		

1.ST25.txt

Thr Phe Leu Phe Gln Ala Gly Ser Gly Ile Tyr His Val Lys Asp Gly
 165 170 175
 Gly Pro Gln Gly Phe Thr Gln Gln Pro Leu Arg Pro Asn Leu Val Glu
 180 185 190
 Thr Ser Cys Pro Asn Ile Arg Met Asp Pro Lys Leu Cys Pro Ala Asp
 195 200 205
 Pro Asp Trp Ile Ala Phe Ile His Ser Asn Asp Ile Trp Ile Ser Asn
 210 215 220
 Ile Val Thr Arg Glu Glu Arg Arg Leu Thr Tyr Val His Asn Glu Leu
 225 230 235 240
 Ala Asn Met Glu Glu Asp Ala Arg Ser Ala Gly Val Ala Thr Phe Val
 245 250 255
 Leu Gln Glu Glu Phe Asp Arg Tyr Ser Gly Tyr Trp Trp Cys Pro Lys
 260 265 270
 Ala Glu Thr Thr Pro Ser Gly Gly Lys Ile Leu Arg Ile Leu Tyr Glu
 275 280 285
 Glu Asn Asp Glu Ser Glu Val Glu Ile Ile His Val Thr Ser Pro Met
 290 295 300
 Leu Glu Thr Arg Arg Ala Asp Ser Phe Arg Tyr Pro Lys Thr Gly Thr
 305 310 315 320
 Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met Ile Asp Ala
 325 330 335
 Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile Gln Pro Phe
 340 345 350
 Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala Gly Trp Thr
 355 360 365
 Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg Ser Gln Thr
 370 375 380
 Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile Pro Val Glu
 385 390 395 400
 Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val Pro Asp Ser
 405 410 415
 Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile Trp Ile Asn
 420 425 430
 Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu Glu Glu Ile
 435 440 445
 Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg His Leu Tyr

1.ST25.txt

450	455	460
Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr	465 470	475
Lys Arg Ser Ser Gly		480
Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys Glu Glu Ile	485	490 495
Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His Gly Ser Asn	500	505 510
Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu Gly Thr Lys	515	520 525
Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr Val Asn Pro	530	535 540
Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His Ser Cys Cys	545	550 555 560
Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser Asn Gln Lys	565	570 575
Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser Ser Pro Glu Asp Asp	580	585 590
Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu Asp Ser Ala	595	600 605
Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser Phe Glu Ser	610	615 620
Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro His Asp Leu	625	630 635 640
Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr Gly Gly Pro	645	650 655
Gln Val Gln Leu Val Asn Asn Arg Phe Lys Gly Val Lys Tyr Phe Arg	660	665 670
Leu Asn Thr Leu Ala Ser Leu Gly Tyr Val Val Val Val Ile Asp Asn	675	680 685
Arg Gly Ser Cys His Arg Gly Leu Lys Phe Glu Gly Ala Phe Lys Tyr	690	695 700
Lys Met Gly Gln Ile Glu Ile Asp Asp Gln Val Glu Gly Leu Gln Tyr	705	710 715 720
Leu Ala Ser Arg Tyr Asp Phe Ile Asp Leu Asp Arg Val Gly Ile His	725	730 735
Gly Trp Ser Tyr Gly Gly Tyr Leu Ser Leu Met Ala Leu Met Gln Arg	740	745 750

1.ST25.txt

Ser Asp Ile Phe Arg Val Ala Ile Ala Gly Ala Pro Val Thr Leu Trp
755 760 765

Ile Phe Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met Gly His Pro Asp
770 775 780

Gln Asn Glu Gln Gly Tyr Tyr Leu Gly Ser Val Ala Met Gln Ala Glu
785 790 795 800

Lys Phe Pro Ser Glu Pro Asn Arg Leu Leu Leu His Gly Phe Leu
805 810 815

Asp Glu Asn Val His Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu
820 825 830

Val Arg Ala Gly Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg
835 840 845

His Ser Ile Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu
850 855 860

Leu His Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile Ala Ala Leu Lys
865 870 875 880

Val Ile

<210> 2
<211> 3120
<212> DNA
<213> Homo sapiens

<400> 2
aagtgcataaa gcctccgagg ccaaggccgc tgctactgcc gccgctgctt ctttagtgccg
60

cgttcgccgc ctgggttgtc accggcgccg ccgccgagga agccactgca accaggacccg
120

gagtggaggc ggcgcagcat gaagcggcgc aggcccgtc catagcgcac gtcgggacgg
180

tccggggcggg gccggggggga aggaaaatgc aacatggcag cagcaatgga aacagaacag
240

ctgggtgttg agatatttga aactgcggac tgtgaggaga atattgaatc acaggatcgg
300

cctaaatgg agcctttta tggctacatg atggctaagg caccacatga tttcatgttt
360

gccgatacca gaaaatatca tggctacatg atggctaagg caccacatga tttcatgttt
420

1.ST25.txt

gtgaagagga atgatccaga tggacctcat tcagacagaa tctattacct tgccatgtct
480

ggtgagaaca gagaaaatac actgttttat tctgaaattc caaaaactat caatagagca
540

gcagtcttaa tgctctcttg gaaggctctt ttggatctt ttcaggcaac actggactat
600

ggaatgtatt ctcgagaaga agaactatta agagaaagaa aacgcattgg aacagtcgga
660

attgcttctt acgattatca ccaaggaagt ggaacatttc tgttcaagc cggtagtgga
720

atttatcacg taaaagatgg agggccacaa ggatttacgc aacaacctt aaggccaat
780

ctagtggaaa ctagttgtcc caacatacgg atggatccaa aattatgccc cgctgatcca
840

gactggattg cttttataca tagcaacgat attggatata ctaacatcgt aaccagagaa
900

gaaaggagac tcacttatgt gcacaatgag ctagccaaca tggaagaaga tgccagatca
960

gctggagtcg ctaccttgt tctccaagaa gaatttgata gatattctgg ctattggtg
1020

tgtccaaaag ctgaaacaac tcccagtgg ggtaaaattc tttagaattct atatgaagaa
1080

aatgatgaat ctgaggtgga aattattcat gttacatccc ctatgttgg aacaaggagg
1140

gcagattcat tccgttatcc taaaacaggt acagcaaatc ctaaagtcac ttttaagatg
1200

tcagaaataa tgattgatgc tgaaggaagg atcatagatg tcataagataa ggaactaatt
1260

caacctttg agattctatt tgaaggagtt gaatatattg ccagagctgg atggactcct
1320

gagggaaaat atgcttggtc catcctacta gatcgctccc agactcgct acagatagt
1380

ttgatctcac ctgaattatt tatcccagta gaagatgatg ttatggaaag gcagagactc
1440

attgagtcag tgcctgattc tgtgacgcca ctaattatct atgaagaaac aacagacatc
1500

tggataaata tccatgacat ctttcatgtt tttccccaaa gtcacgaaga gggaaatttgag

1.ST25.txt

1560
tttatttttg cctctgaatg caaaacaggt ttccgtcatt tataaaaaat tacatctatt
1620
ttaaaggaaa gcaaataaa acgatccagt ggtgggctgc ctgctccaag tgatttcaag
1680
tgtcctatca aagaggagat agcaattacc agtggtaat ggaaagttct tggccggcat
1740
ggatctaata tccaagttga tgaagtcaga aggctggtat atttgaagg caccaaagac
1800
tcccccttag agcatcacct gtacgtagtc agttacgtaa atcctggaga ggtgacaagg
1860
ctgactgacc gtggctactc acattcttgc tgcacgttc agcactgtga cttcttata
1920
agtaagtata gtaaccagaa gaatccacac tgtgtgtccc tttacaagct atcaagtcct
1980
gaagatgacc caacttgcaa aacaaaggaa ttttggcca ccattttgga ttcagcaggt
2040
cctcttcctg actatactcc tccagaaatt ttctctttg aaagtactac tggatttaca
2100
ttgtatggga tgctctacaa gcctcatgat ctacagcctg gaaagaaata tcctactgtg
2160
ctgttcatat atggtggtcc tcaggtgcag ttggtaata atcggtttaa aggagtcaag
2220
tattccgct tgaataccct agcctctcta gttatgtgg ttgttagtcat agacaacagg
2280
ggatcctgtc accgagggct taaattgaa ggcccttta aatataaaat gggtaaata
2340
gaaattgacg atcaggtgga aggactccaa tatctagctt ctcgatatga tttcattgac
2400
ttagatcggt tggcatcca cggctggtcc tatggaggat acctctccct gatggcatta
2460
atgcagaggt cagatatctt cagggttgct attgctgggg ccccagtcac tctgtggatc
2520
ttctatgata caggatacac ggaacgttat atgggtcacc ctgaccagaa tgaacagggc
2580
tattacttag gatctgtggc catgcaagca gaaaagttcc cctctgaacc aaatcggtta
2640

1.ST25.txt

ctgctttac atggttcct ggatgagaat gtccatttg cacataccag tatattactg
2700
agtttttag tgagggctgg aaagccatat gattacaga tctatcctca ggagagacac
2760
agcataagag ttccctgaatc gggagaacat tatgaactgc atctttgca ctaccccaa
2820
gaaaaccttgc gatcacgtat tgctgctcta aaagtgat aatttgacc tgtgtagaac
2880
tctctggtat acactggcta tttaaccaa tgaggaggtt taatcaacag aaaacacaga
2940
attgatcatc acattttgat acctgccatg taacatctac tcctgaaaat aaatgtggtg
3000
ccatgcaggg gtctacggtt tgtggtagta atctaatacc ttaacccac atgctaaaaa
3060
tcaaatgata catattcctg agagacccag caataccata agaattacta aaaaaaaaaa
3120

<210> 3
<211> 310
<212> PRT
<213> Homo sapiens

<400> 3

Phe Glu Gly Thr Lys Asp Ser Pro Leu Glu His His Leu Tyr Val Val
1 5 10 15
Ser Tyr Val Asn Pro Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr
20 25 30
Ser His Ser Cys Cys Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys
35 40 45
Tyr Ser Asn Gln Lys Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser
50 55 60
Ser Pro Glu Asp Asp Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr
65 70 75 80
Ile Leu Asp Ser Ala Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile
85 90 95
Phe Ser Phe Glu Ser Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr
100 105 110
Lys Pro His Asp Leu Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe

1.ST25.txt

115	120	125	
Ile Tyr Gly Gly Pro Gln Gly Gln Ile Glu Ile Asp Asp Gln Val Glu 130	135	140	
Gly Leu Gln Tyr Leu Ala Ser Arg Tyr Asp Phe Ile Asp Leu Asp Arg 145	150	155	160
Val Gly Ile His Gly Trp Ser Tyr Gly Gly Tyr Leu Ser Leu Met Ala 165	170	175	
Leu Met Gln Arg Ser Asp Ile Phe Arg Val Ala Ile Ala Gly Ala Pro 180	185	190	
Val Thr Leu Trp Ile Phe Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met 195	200	205	
Gly His Pro Asp Gln Asn Glu Gln Gly Tyr Tyr Leu Gly Ser Val Ala 210	215	220	
Met Gln Ala Glu Lys Phe Pro Ser Glu Pro Asn Arg Leu Leu Leu Leu 225	230	235	240
His Gly Phe Leu Asp Glu Asn Val His Phe Ala His Thr Ser Ile Leu 245	250	255	
Leu Ser Phe Leu Val Arg Ala Gly Lys Pro Tyr Asp Leu Gln Ile Tyr 260	265	270	
Pro Gln Glu Arg His Ser Ile Arg Val Pro Glu Ser Gly Glu His Tyr 275	280	285	
Glu Leu His Leu Leu His Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile 290	295	300	
Ala Ala Leu Lys Val Ile 305	310		

<210> 4
<211> 1197
<212> DNA
<213> Homo sapiens

<400> 4
attttgaagg caccaaagac tcccccttag agcatcacct gtacgtagtc agttacgtaa
60
atcctggaga ggtgacaagg ctgactgacc gtggctactc acattcttgc tgcatcagtc
120
agcactgtga cttctttata agtaagtata gtaaccagaa gaatccacac tgtgtgtccc
180
tttacaagct atcaagtccct gaagatgacc caacttgcaa aacaaaggaa ttttgggcca
240

1.ST25.txt

ccattttggta ttcagcaggta cctcttcctg actatactcc tccagaaatt ttctctttg
300

aaagtactac tggatttaca ttgtatggga tgctctacaa gcctcatgat ctacagcctg
360

gaaagaaaata tcctactgtg ctgttcatat atggtggtcc tcagggtcaa atagaaaattg
420

acgatcaggta ggaaggactc caatatctag cttctcgata tgatttcatt gacttagatc
480

gtgtgggcat ccacggctgg tcctatggag gatacctctc cctgatggca ttaatgcaga
540

ggtcagatata cttcagggtt gctattgctg gggccccagt cactctgtgg atcttctatg
600

atacaggata cacggaacgt tatatgggtc accctgacca gaatgaacag ggctattact
660

taggatctgt ggccatgcaa gcagaaaaagt tcccctctga accaaatcgt ttactgctct
720

tacatggttt cctggatgag aatgtccatt ttgcacatac cagtatatta ctgagtttt
780

tagtgagggc tggaaagcca tatgatttac agatctatcc tcaggagaga cacagcataaa
840

gagttcctga atcgggagaa cattatgaac tgcattttt gcactacctt caagaaaacc
900

ttggatcactg tattgctgct ctaaaagtga tataattttg acctgtgttag aactctctgg
960

tatacactgg ctatttaacc aaatgaggag gttaatcaa cagaaaacac agaattgatc
1020

atcacatttt gatacctgcc atgtaacatc tactcctgaa aataaatgtg gtgccatgca
1080

gggtctacg gtttgtggta gtaatcta atccttaaccc cacatgctca aaatcaaatg
1140

atacatattc ctgagagacc cagcaatacc ataagaatta ctaaaaaaaaaa aaaaaaaaa
1197

<210> 5
<211> 465
<212> PRT
<213> Homo sapiens

1.ST25.txt

<400> 5

Thr Gly Thr Ala Asn Pro Lys Val Thr Phe Lys Met Ser Glu Ile Met
1 5 10 15

Ile Asp Ala Glu Gly Arg Ile Ile Asp Val Ile Asp Lys Glu Leu Ile
20 25 30

Gln Pro Phe Glu Ile Leu Phe Glu Gly Val Glu Tyr Ile Ala Arg Ala
35 40 45

Gly Trp Thr Pro Glu Gly Lys Tyr Ala Trp Ser Ile Leu Leu Asp Arg
50 55 60

Ser Gln Thr Arg Leu Gln Ile Val Leu Ile Ser Pro Glu Leu Phe Ile
65 70 75 80

Pro Val Glu Asp Asp Val Met Glu Arg Gln Arg Leu Ile Glu Ser Val
85 90 95

Pro Asp Ser Val Thr Pro Leu Ile Ile Tyr Glu Glu Thr Thr Asp Ile
100 105 110

Trp Ile Asn Ile His Asp Ile Phe His Val Phe Pro Gln Ser His Glu
115 120 125

Glu Glu Ile Glu Phe Ile Phe Ala Ser Glu Cys Lys Thr Gly Phe Arg
130 135 140

His Leu Tyr Lys Ile Thr Ser Ile Leu Lys Glu Ser Lys Tyr Lys Arg
145 150 155 160

Ser Ser Gly Gly Leu Pro Ala Pro Ser Asp Phe Lys Cys Pro Ile Lys
165 170 175

Glu Glu Ile Ala Ile Thr Ser Gly Glu Trp Glu Val Leu Gly Arg His
180 185 190

Gly Ser Asn Ile Gln Val Asp Glu Val Arg Arg Leu Val Tyr Phe Glu
195 200 205

Gly Thr Lys Asp Ser Pro Leu Glu His His Leu Tyr Val Val Ser Tyr
210 215 220

Val Asn Pro Gly Glu Val Thr Arg Leu Thr Asp Arg Gly Tyr Ser His
225 230 235 240

Ser Cys Cys Ile Ser Gln His Cys Asp Phe Phe Ile Ser Lys Tyr Ser
245 250 255

Asn Gln Lys Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser Ser Pro
260 265 270

Glu Asp Asp Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu
275 280 285

1.ST25.txt

Asp Ser Ala Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser
 290 295 300
 Phe Glu Ser Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro
 305 310 315 320
 His Asp Leu Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr
 325 330 335
 Gly Gly Pro Gln Val Ala Ile Ala Gly Ala Pro Val Thr Leu Trp Ile
 340 345 350
 Phe Tyr Asp Thr Gly Tyr Thr Glu Arg Tyr Met Gly His Pro Asp Gln
 355 360 365
 Asn Glu Gln Gly Tyr Tyr Leu Gly Ser Val Ala Met Gln Ala Glu Lys
 370 375 380
 Phe Pro Ser Glu Pro Asn Arg Leu Leu Leu Leu His Gly Phe Leu Asp
 385 390 395 400
 Glu Asn Val His Phe Ala His Thr Ser Ile Leu Leu Ser Phe Leu Val
 405 410 415
 Arg Ala Gly Lys Pro Tyr Asp Leu Gln Ile Tyr Pro Gln Glu Arg His
 420 425 430
 Ser Ile Arg Val Pro Glu Ser Gly Glu His Tyr Glu Leu His Leu Leu
 435 440 445
 His Tyr Leu Gln Glu Asn Leu Gly Ser Arg Ile Ala Ala Leu Lys Val
 450 455 460

Ile
465

<210> 6
 <211> 1669
 <212> DNA
 <213> Homo sapiens

<400> 6
 aacaggtaaca gcaaattccta aagtcaacttt taagatgtca gaaataatga ttgatgctga
 60
 aggaaggatc atagatgtca tagataagga actaattcaa ccttttggaga ttcttatttgaa
 120
 aggagttgaa tatattgccaa gagctggatg gactcctgag ggaaaatatg cttgggtccat
 180
 cctactagat cgctcccaga ctcgcctaca gatagtgttg atctcacctg aattatttat
 240

1.ST25.txt

cccaactgatggaa gatgatgtt a tggaaaggca gagactcatt gagtcagtgc ctgattctgt
300

gacgccacta attatctatg aagaaaacaac agacatctgg ataaatatcc atgacatctt
360

tcatgtttt ccccaaagtc acgaagagga aatttagttt attttgctt ctgaatgcaa
420

aacaggttc cgtcatttat acaaaattac atctatttta aaggaaagca aatataaaacg
480

atccagtggt gggctgcctg ctccaagtga tttcaagtgt cctatcaaag aggagatagc
540

aattaccagt ggtgaatggg aagttcttgg ccggcatgga tctaataatcc aagttgatga
600

agtcagaagg ctggtatatt ttgaaggcac caaagactcc ccttagagc atcacctgta
660

cgtagtcagt tacgtaaatc ctggagaggt gacaaggctg actgaccgtg gctactcaca
720

ttcttgctgc atcagtcagc actgtgactt ctttataagt aagtatagt aaccagaagaa
780

tccacactgt gtgtcccttt acaagctatc aagtcctgaa gatgacccaa cttgcaaaac
840

aaaggaattt tgggccacca ttttggattc agcaggtcct cttcctgact atactcctcc
900

agaaatttc tctttgaaa gtactactgg atttacattt tatggatgc tctacaagcc
960

tcatgatcta cagcctggaa agaaatatcc tactgtgctg ttcataatatg gtggcctca
1020

ggttgctatt gctggggccc cagtcactct gtggatcttc tatgatacag gatacacgga
1080

acgttatatg ggtcaccctg accagaatga acagggctat tacttaggt ctgtggccat
1140

gcaaggagaa aagttccctt ctgaaccaaa tcgtttactg ctcttacatg gtttcctgga
1200

tgagaatgtc cattttgcac ataccagtat attactgagt ttttagtga gggctggaaa
1260

gccatatgtat ttacagatct atcctcagga gagacacagc ataagagttc ctgaatcgaa
1320

agaacattat gaactgcattc tttgcacta cttcaagaa aaccttggat cacgtattgc

1.ST25.txt

1380

tgctctaaaa gtgatataat tttgacctgt gtagaactct ctggtataaca ctggctattt
1440

aaccaaatga ggaggtttaa tcaacagaaa acacagaatt gatcatcaca ttttgatacc
1500

tgccatgtaa catctactcc tgaaaataaa tgtggtgcca tgcaggggtc tacggtttgt
1560

ggtagtaatc taatacctta accccacatg ctc当地atca aatgatacat attcctgaga
1620

gaccTAGCAA TACCATAGA ATTACTAAAA AAAAAAAAAA AAAAAAAAAA
1669

<210> 7

<211> 360

<212> PRT

<213> Homo sapiens

<400> 7

Glu	Glu	Asp	Ala	Arg	Ser	Ala	Gly	Val	Ala	Thr	Phe	Val	Leu	Gln	Glu
1															
														10	15

Glu	Phe	Asp	Arg	Tyr	Ser	Gly	Tyr	Trp	Trp	Cys	Pro	Lys	Ala	Glu	Thr	
														20	25	30

Thr	Pro	Ser	Gly	Gly	Lys	Ile	Leu	Arg	Ile	Leu	Tyr	Glu	Glu	Asn	Asp	
														35	40	45

Glu	Ser	Glu	Val	Glu	Ile	Ile	His	Val	Thr	Ser	Pro	Met	Leu	Glu	Thr	
														50	55	60

Arg	Arg	Ala	Asp	Ser	Phe	Arg	Tyr	Pro	Lys	Thr	Gly	Thr	Ala	Asn	Pro		
														65	70	75	80

Lys	Val	Thr	Phe	Lys	Met	Ser	Glu	Ile	Met	Ile	Asp	Ala	Glu	Gly	Arg	
														85	90	95

Ile	Ile	Val	Asp	Glu	Val	Arg	Arg	Leu	Val	Tyr	Phe	Glu	Gly	Thr	Lys	
														100	105	110

Asp	Ser	Pro	Leu	Glu	His	His	Leu	Tyr	Val	Val	Ser	Tyr	Val	Asn	Pro	
														115	120	125

Gly	Glu	Val	Thr	Arg	Leu	Thr	Asp	Arg	Gly	Tyr	Ser	His	Ser	Cys	Cys	
														130	135	140

Ile	Ser	Gln	His	Cys	Asp	Phe	Phe	Ile	Ser	Lys	Tyr	Ser	Asn	Gln	Lys		
														145	150	155	160

1.ST25.txt

Asn Pro His Cys Val Ser Leu Tyr Lys Leu Ser Ser Pro Glu Asp Asp
 165 170 175

Pro Thr Cys Lys Thr Lys Glu Phe Trp Ala Thr Ile Leu Asp Ser Ala
 180 185 190

Gly Pro Leu Pro Asp Tyr Thr Pro Pro Glu Ile Phe Ser Phe Glu Ser
 195 200 205

Thr Thr Gly Phe Thr Leu Tyr Gly Met Leu Tyr Lys Pro His Asp Leu
 210 215 220

Gln Pro Gly Lys Lys Tyr Pro Thr Val Leu Phe Ile Tyr Gly Gly Pro
 225 230 235 240

Gln Val Gln Leu Val Asn Asn Arg Phe Lys Gly Val Lys Tyr Phe Arg
 245 250 255

Leu Asn Thr Leu Ala Ser Leu Gly Tyr Val Val Val Val Ile Asp Asn
 260 265 270

Arg Gly Ser Cys His Arg Gly Leu Lys Phe Glu Gly Ala Phe Lys Tyr
 275 280 285

Lys Met Gly Gln Ile Glu Ile Asp Asp Gln Val Glu Gly Leu Gln Tyr
 290 295 300

Leu Ala Ser Arg Tyr Asp Phe Ile Asp Leu Asp Arg Val Gly Ile His
 305 310 315 320

Gly Trp Ser Tyr Gly Gly Tyr Leu Ser Leu Met Ala Leu Met Gln Arg
 325 330 335

Ser Asp Ile Phe Arg Val Ala Ile Ala Gly Ala Pro Val Thr Leu Trp
 340 345 350

Ile Phe Tyr Asp Thr Gly Tyr Thr
 355 360

<210> 8

<211> 1083

<212> DNA

<213> Homo sapiens

<400> 8

ggaagaagat gccagatcag ctggagtgc tacctttgtt ctccaagaag aatttgatag
 60

atattctggc tattgggtgt gtccaaaagc tgaaacaact cccagtggtg gtaaaattct
 120

tagaattcta tatgaagaaa atgatgaatc tgaggtggaa attattcatg ttacatcccc
 180

tatgttggaa acaaggaggg cagattcatt ccgttatcct aaaacaggtt cagcaaatcc

1.ST25.txt

240

taaagtcact tttaagatgt cagaaataat gattgatgct gaaggaagga tcatagttga
300

tgaagtcaga aggctggtat attttgaagg caccaaagac tcccccttag agcatcacct
360

gtacgtagtc agttacgtaa atcctggaga ggtgacaagg ctgactgacc gtggctactc
420

acattcttgc tgcatcagtc agcactgtga cttctttata agtaagtata gtaaccagaa
480

gaatccacac tgtgtgtccc tttacaagct atcaagtccct gaagatgacc caacttgcaa
540

aacaaaggaa ttttgggcca ccattttgga ttcagcaggt cctcttcctg actataactcc
600

tccagaaaatt ttctcttttgc aaagtactac tggatttaca ttgtatggga tgctctacaa
660

gcctcatgat ctacagcctg gaaagaaata tcctactgtg ctgttcatat atgggtggcc
720

tcaggtgcag ttggtaata atcggtttaa aggagtcaag tatttccgct tgaataaccct
780

agcctctcta ggttatgtgg ttgttagtgc agacaacagg ggatcctgtc accgagggct
840

taaatttcaa ggcgcctta aatataaaat gggtaaata gaaattgacg atcaggtgga
900

aggactccaa tatctagctt ctcgatataa tttcattgac ttagatcgtg tggcatcca
960

cggctggcc tatggaggat acctctccct gatggcatta atgcagaggt cagatatctt
1020

cagggttgc attgctgggg ccccagtcac tctgtggatc ttctatgata caggatacac
1080

gga
1083