Théorie des probabilités — Cours

Ivan Lejeune

24janvier2025

Table des matières

Chapitre	l — Bases de la théorie des probabilités
1	Espaces probabilisés
	1.1 Probabilité
	1.4 Exemples d'espaces probabilisés
2	Variables aléatoires
	2.1 Loi d'une variable aléatoire
	2.8 Lois usuelles
3	Moments d'une variable aléatoire
	3.1 Espérance
	3.5 Moments d'ordre p
	3.9 Moments de lois usuelles
4	Fonctions associées à une variable aléatoire
	4.1 Fonction de répartition
	4.3 Fonction caractéristique
	4.5 Fonction génératrice
Chapitre	2 — Indépendance
1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
-	1.1 Conditionnement
	1.2 Quelques formules
2	Indépendance de variables aléatoires
-	2.2 Critères d'indépendance
	Cas discrèt
	Avec les fonctions de répartition
	Avec les fonctions caractéristiques
	Cas des variables aléatoires à densité
3	Résultats asymptotiques
0	3.1 Lemme de Borel-Cantelli
	3.2 Loi du 0 – 1 de Kolmogorov
Chanitre	B — Loi des grands nombres
1	Différents modes de convergence
1	1.1 Convergences presque sûre et probabilité
	1.4 Convergence dans $\mathcal{L}^p = \mathcal{L}^p(\Omega, \mathscr{F}, \mathbb{P})$
2	Loi forte des grands nombres
2	2.1 Le résultat
	2.2 Applications
	Marche aléatoire non centrée
	Approximation d'intégrales
Chanitra	4 — Convergence en loi et théorème central limite
1	Convergence en loi
1	1.1 Définition et premiers exemples
	1.3 Deux cas particuliers
	1.3 Deux cas particuliers
	1.3.2 Loi à densité sur \mathbb{R}

	1.4	Lien avec les autres modes de convergence											37
2	Carao	etérisation de la convergence en loi											39
	2.1	Restriction des fonctions tests											39
	2.2	Caractérisation via la fonction de répartitie	on	et	la	for	nct	ion	ca	ra	cté	ris-	
		tique											40
3	Théo	rème central limite											40

Chapitre 1 — Bases de la théorie des probabilités

1 Espaces probabilisés

1.1 Probabilité

Définition 1.2. Soit (Ω, \mathscr{F}) un espace mesurable. Une mesure sur (Ω, \mathscr{F}) est une application

$$\mu: \mathscr{F} \to [0, +\infty]$$

$$A \mapsto \mu(A)$$

qui vérifie les propriétés suivantes :

- 1. $\mu(\emptyset) = 0$
- 2. μ est σ -additive, c'est-à-dire que pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments 2 à 2 disjoints de \mathscr{F} , on a

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

On dit alors que $(\Omega, \mathcal{F}, \mu)$ est un **espace mesuré**.

Si de plus $\mu(\Omega) = 1$, on dit que $(\Omega, \mathcal{F}, \mu)$ est un **espace probabilisé** et μ est une **probabilité**. On notera alors $\mu = \mathbb{P}$.

Remarque. Comme $\mathbb{P}(\Omega) = 1$, une mesure de probabilité est une mesure dans [0,1]. Un événement A est dit **presque sûr** si $\mathbb{P}(A) = 1$.

Exemples 1.3.

1. Soit (Ω, \mathscr{F}) un espace mesurable et ω un élément fixé dans Ω . La mesure (ou masse) de Dirac en ω est la mesure définie pour tout $A \in \mathscr{F}$ par

$$\delta_{\omega}(A) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{sinon} \end{cases} = \mathbb{1}_{A}(\omega)$$

On vérifie facilement que c'est bien une probabilité.

- 2. Sur le segment [0,1] muni de sa tribu borélienne, la mesure de Lebesgue est une probabilité.
- 3. Si $(\Omega, \mathcal{F}, \mu)$ est un espace mesuré avec $0 < \mu(\Omega) < +\infty$, alors on obtient une probabilité en considérant la mesure

$$\mathbb{P} = \frac{\mu(\cdot)}{\mu(\Omega)}$$

Interprétation. Un espace probabilisé est donc un cas particulier d'espace mesuré pour lequel la masse totale de la mesure est égale à 1. En fait, le point de vue diffère de la théorie de l'intégration : dans le cadre de la théorie des probabilités, on cherche à fournir un modèle mathématique pour une "expérience aléatoire".

- L'ensemble Ω est appelé univers : il représente l'ensemble de toutes les éventualiés possibles, toutes les déterminations du hasard dans l'expérience considérée. Les éléments ω de Ω , parfois appelés événements élémentaires, correspondent donc aux issues possibles de l'expérience aléatoire.
- La tribu \mathscr{F} correspond à l'ensemble des **événements** : ce sont les parties de Ω dont on peut évaluer la probabilité. Il faut voir un événement A de \mathscr{F} comme un sous-ensemble de Ω contenant toutes les éventualités ω pour lesquelles une certaine propriété est vérifiée.
- On associe à chaque événement $A \in \mathcal{F}$ un réel $\mathbb{P}(A) \in [0,1]$ qui donne la plausibilité que le résultat de l'expérience soit dans A.

1.4 Exemples d'espaces probabilisés

Suivent quelques exemples classiques d'espaces probabilisés.

Exemples 1.5. cours a completer

2 Variables aléatoires

2.1 Loi d'une variable aléatoire

Définition 2.2. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé et (E, \mathscr{E}) un espace mesurable. Une variable aléatoire est une application

$$X:\Omega \to E$$

mesurable. C'est-à-dire

$$\forall A \in \mathscr{E}, X^{-1}(A) = \{ \omega \in \Omega \mid X(\omega) \in A \} \in \mathscr{F}$$

Si $E = \mathbb{R}$ et $\mathscr{E} = \mathscr{B}(\mathbb{R})$, on parle de variable aléatoire réelle.

Si $E = \mathbb{R}^d$ et $\mathscr{E} = \mathscr{B}(\mathbb{R}^d)$, on parle de variable aléatoire vectorielle.

Exemples 2.3.

▶ Lancer de deux dés.

On considère l'expérience aléatoire qui consiste à lancer deux dés équilibrés. Alors

$$\Omega = \{1, \ldots, 6\}^2, \quad \mathscr{F} = \mathscr{P}(\Omega).$$

On s'intéresse à la somme des résultats obtenus et on définit

$$X: \Omega \to \{2, \dots, 12\}$$
$$(i, j) \mapsto i + j$$

On munit l'ensemble d'arrivée de la tribu pleine.

X est une variable aléatoire car l'espace de départ est muni de la tribu pleine.

▷ Infinité de lancers d'un dé.

On considère l'expérience aléatoire qui consiste à lancer un dé équilibré une infinité de fois. Alors

$$\Omega = \{1, \dots, 6\}^{\mathbb{N}^*} = \{\omega = (\omega_n)_{n \in \mathbb{N}^*} \mid \omega_n \in \{1, \dots, 6\}\}$$

On considère la tribu \mathscr{F} la plus petite tribu contenant les A_{x_1,\dots,x_k} . On s'intéresse au nombre de lancers jusqu'à l'apparition du premier 6. On définit

$$Y: \Omega \to \mathbb{N}^* \cup \{+\infty\}$$

$$\omega = (\omega_n)_{n \in \mathbb{N}^*} \mapsto \inf\{n \in \mathbb{N}^* \mid \omega_n = 6\}$$

avec la convention inf $\varnothing=+\infty.$ On munit l'ensemble d'arrivée de la tribu pleine. Pour $k\geq 1,$ on a

$$Y^{-1}(\{k\}) = \{\omega = (\omega_n)_{n \in \mathbb{N}^*} \mid \omega_1 \neq 6, \dots, \omega_{k-1} \neq 6, \omega_k = 6\}$$

$$= \bigcup_{x_1, \dots, x_{k-1} \in \{1, \dots, 5\}} A_{x_1, \dots, x_{k-1}, 6} \in \mathscr{F}$$

Par ailleurs,

$$Y^{-1}(\{+\infty\}) = \{\omega = (\omega_n)_{n \in \mathbb{N}^*} \mid \forall n \in \mathbb{N}^*, \omega_n \neq 6\}$$
$$= \bigcap_{k=1}^{+\infty} \bigcup_{x_1, \dots, x_k \in \{1, \dots, 5\}} A_{x_1, \dots, x_k} \in \mathscr{F}$$

Comme $\mathbb{N} \cup \{+\infty\}$ est dénombrable, on en déduit que Y est une variable aléatoire.

⊳ Bouteille à la mer.

On considère l'expérience aléatoire qui consiste à observer la position d'une bouteille à la mer. Alors

$$\Omega = \mathscr{C}^0([0,1],\mathbb{R}^2)$$

On considère la tribu ${\mathscr F}$ la plus petite tribu rendant mesurables les applications coordonnées

$$f_t: \Omega \to \mathbb{R}^2$$
$$\omega \mapsto \omega(t)$$

On s'intéresse à la position de la bouteille au temps t=1. On définit

$$Z: \Omega \to \mathbb{R}^2$$

 $\omega \mapsto \omega(1)$

Alors, par construction de la tribu \mathscr{F} , on a que Z est une variable aléatoire.

Définition 2.4. Soit X une variable aléatoire de $(\Omega, \mathscr{F}, \mathbb{P})$ dans (E, \mathscr{E}) . La **loi** de X est la mesure image de X par \mathbb{P} , définie par

$$\forall A \in \mathscr{E}, \mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(X \in A)$$

Exemples 2.5.

▶ Infinité de lancers d'un dé.

On considère

$$Y: \Omega = \{1, \dots, 6\}^{\mathbb{N}^*} \to \mathbb{N}^* \cup \{+\infty\}$$
$$\omega = (\omega_n)_{n \in \mathbb{N}^*} \mapsto \inf\{n \in \mathbb{N}^* \mid \omega_n = 6\}$$

La loi \mathbb{P}_Y de Y est une mesure de probabilité sur $\mathbb{N}^* \cup \{+\infty\}$. Soit $k \in \mathbb{N}^*$. On a

$$\mathbb{P}_{Y}(\{k\}) = \mathbb{P}(Y^{-1}(\{k\}))
= \mathbb{P}(Y = k)
= \mathbb{P}\left(\bigcup_{x_{1},...,x_{k-1} \in \{1,...,5\}} A_{x_{1},...,x_{k-1},6}\right)
= \sum_{x_{1},...,x_{k-1}} \mathbb{P}(A_{x_{1},...,x_{k-1},6})
= \frac{5}{6^{k}}
= \frac{5}{6^{k}} = \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$$

Par ailleurs, on a vu à la fin de la section précédente que la probabilité de ne jamais obtenir de 6 est nulle :

$$\mathbb{P}_Y(\{+\infty\}) = \mathbb{P}(Y^{-1}(\{+\infty\})) = \mathbb{P}(Y = +\infty) = 0$$

On en déduit que la loi de Y est

$$\sum_{k=1}^{+\infty} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6} \delta_k$$

Cette loi est appelée loi géométrique de paramètre $\frac{5}{6}$.

Définition 2.6 Variable aléatoire discrète. Une variable aléatoire X est dite **discrète** si X est à valeurs dans un ensemble E au plus dénombrable. On prend alors $\mathscr{E} = \mathscr{P}(E)$ et si $A \in \mathscr{E}$, on a

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A) = \mathbb{P}(X \in \cup_{x \in A} \{x\}) = \sum_{x \in A} \mathbb{P}(X = x)$$

La loi \mathbb{P}_X de X est alors entièrement déterminée par les quantités $p_x = \mathbb{P}(X = x)$ pour tout $x \in E$:

$$\mathbb{P}_X(A) = \sum_{x \in E} p_x \delta_x$$

Définition 2.7 Variable aléatoire à densité. Une variable aléatoire X à valeurs dans $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$ est dite à densité par rapport à la mesure de Lebesgue λ_d si il existe une fonction mesurable

$$f: \mathbb{R}^d \to [0, +\infty[$$

telle que $\mathbb{P}_X = f\lambda_d$:

$$\forall A \in \mathscr{B}(\mathbb{R}^d), \mathbb{P}_X(A) = \int_A f(x) \, d\lambda_d(x)$$

Il faut que f vérifie

$$\int_{\mathbb{R}^d} f(x) \, d\lambda_d(x) = 1$$

Par exemple, si d = 1, on a

$$\mathbb{P}_X\left([a,b]\right) = \int_a^b f(x) \, d\lambda_1(x)$$

On notera souvent $f_X = f$ et on appelle cette fonction la densité de X.

2.8 Lois usuelles

▶ Lois discrètes :

Loi uniforme sur un ensemble fini $\{x_1, \ldots, x_n\}$.

Soit $E = \{x_1, \ldots, x_n\}$ un ensemble fini.

Une variable aléatoire X suit une loi uniforme sur E, notée $X \sim \mathcal{U}(E)$, si sa loi est

$$\mathbb{P}_X = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

c'est-à-dire

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A) = \frac{\operatorname{card}(A)}{n}$$

⊳ Loi de Bernoulli.

Une variable aléatoire X suit une loi de Bernoulli de paramètre $p \in [0,1]$, notée $X \sim \mathcal{B}(p)$, si sa loi est

$$\mathbb{P}_X = p\delta_1 + (1-p)\delta_0$$

c'est-à-dire

$$\mathbb{P}(X=1) = p, \quad \mathbb{P}(X=0) = 1 - p$$

 \triangleright Loi binomiale.

Une variable aléatoire X suit une loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$, notée $X \sim \mathcal{B}(n,p)$, si sa loi est

$$\mathbb{P}_X = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \delta_k$$

cela correspond au nombre de succès dans n répétitions d'une expérience de Bernoulli de paramètre p (de manière indépendante).

▶ Loi géométrique.

Une variable aléatoire X suit une loi géométrique de paramètre $p \in]0,1]$, notée $X \sim \mathcal{G}(p)$, si sa loi est

$$\mathbb{P}_X = \sum_{k=1}^{+\infty} p(1-p)^{k-1} \delta_k$$

c'est-à-dire

$$\mathbb{P}(X=k) = p(1-p)^{k-1}$$

cela correspond au nombre de répétitions d'une expérience de Bernoulli de paramètre p avant le premier succès.

▶ Loi de Poisson.

Une variable aléatoire X suit une loi de Poisson de paramètre $\theta > 0$, notée $X \sim \mathcal{P}(\theta)$, si sa loi est

$$\mathbb{P}_X = \sum_{k=0}^{+\infty} \frac{\theta^k}{k!} e^{-\theta} \delta_k$$

c'est-à-dire

$$\mathbb{P}(X=k) = \frac{\theta^k}{k!}e^{-\theta}$$

cela correspond au nombre d'événements rares dans un intervalle de temps donné.

 \triangleright Lois à densité sur \mathbb{R}^d :

Loi uniforme sur un ensemble A de \mathbb{R}^d .

Soit $A \in \mathcal{B}(\mathbb{R}^d)$, telle que $0 < \lambda_d(A) < +\infty$. Une variable aléatoire X suit une loi uniforme sur A, notée $X \sim \mathcal{U}(A)$, si sa loi est

$$\mathbb{P}_X = \frac{1}{\lambda_d(A)} \mathbb{1}_A$$

c'est-à-dire \mathbb{P}_X admet la densité constante $\frac{1}{\lambda_d(A)}\mathbb{1}_A$. Autrement dit, si $B \in \mathcal{B}(\mathbb{R}^d)$, on a

$$\mathbb{P}_X(B) = \int_B \frac{1}{\lambda_d(A)} \mathbb{1}_A(x) \, d\lambda_d(x) = \frac{\lambda_d(A \cap B)}{\lambda_d(A)}$$

dans le cas d=1 et A=[a,b], la densité est $f(x)=\frac{\mathbbm{1}_{[a,b]}(x)}{b-a}$.

▶ Loi exponentielle.

Une variable aléatoire X suit une loi exponentielle de paramètre $\theta > 0$, notée $X \sim \mathcal{E}(\theta)$, si sa loi est

$$\mathbb{P}_X = \theta e^{-\theta x} \lambda_1 \mathbb{1}_{\mathbb{R}^+}$$

c'est-à-dire \mathbb{P}_X admet la densité $f_X(x)\theta e^{-\theta x}\mathbb{1}_{\mathbb{R}^+}$ par rapport à la mesure de Lebesgue λ_1 . Autrement dit, si $A \in \mathcal{B}(\mathbb{R})$, on a

$$\mathbb{P}_X(A) = \int_A \theta e^{-\theta x} \mathbb{1}_{\mathbb{R}_+}(x) \, d\lambda_1(x)$$

dans le cas d=1. Cette loi vérifie la propriété de l'absence de mémoire, c'est-à-dire

$$\forall s, t > 0, \mathbb{P}(X > s + t \mid X > s) = \mathbb{P}(X > t)$$

▶ Loi normale ou gaussienne.

Une variable aléatoire X suit une loi normale de paramètres $\mu \in \mathbb{R}$ et $\sigma > 0$, notée $X \sim \mathcal{N}(\mu, \sigma^2)$, si sa loi est

$$\mathbb{P}_X = f_X \lambda_1$$

où f_X est la densité de la loi normale, donnée par

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Autrement dit, si $A \in \mathcal{B}(\mathbb{R})$, on a

$$\mathbb{P}_X(A) = \int_A \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} d\lambda_1(x)$$

remarque, la loi $\mathcal{N}(,)$, c'est-à-dire avec la densité

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

est appelée loi normale standard.

3 Moments d'une variable aléatoire

On considère dans la suite $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé

3.1 Espérance

Définition 3.2. Soit $X:\Omega \to \mathbb{R}$ une variable aléatoire réelle. On appelle **espérance** de X la quantité

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega)$$

qui est bien définie si X est positive ou si $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.

On définit de même l'espérance d'une variable aléatoire $X:\Omega\to\mathbb{C}$. Sk $X=(X_1,\ldots,X_d)$ est un vecteur aléatoire, alors on pose

$$\mathbb{E}[X] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])$$

si $\mathbb{E}[X_i]$ existe pour tout $i \in \{1, \dots, d\}$.

Remarque.

- 1. On interprète $\mathbb{E}[X]$ comme la valeur moyenne de X.
- 2. Si $\mathbb{E}[X] = 0$, on dit que X est centrée.
- 3. Si $X = \mathbb{1}_A$, alors $\mathbb{E}[X] = \mathbb{P}(A)$.
- 4. On omettra le cas où X est positive et $\mathbb{E}[X] = +\infty$.

Proposition. Soient X et Y deux variables aléatoires admettant une espérance et $a, b \in \mathbb{R}$. Alors

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

De plus, si X > 0, alors $\mathbb{E}[X] \ge 0$ avec $\mathbb{E}[X] = 0$ si et seulement si X = 0-P-p.p.

Proposition Formule de transfert. Soit $X:\Omega \to E$ une variable aléatoire à valeurs dans un espace mesurable (E,\mathscr{E}) . Soit $h:E\to\mathbb{R}$ une fonction mesurable positive.

Alors, $h \circ X$ est une variable aléatoire et

$$\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$$
$$= \int_{E} h(x) d\mathbb{P}_{X}(x)$$

Si $h: E \to \mathbb{R}$ et mesurable (pas forcément positive), alors $h \in \mathcal{L}^1(E, \mathcal{E}, \mathbb{P}_X)$ si et seulement si $h \circ X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ et l'égalité précédente reste vraie.

Démonstration. Vue en théorie de la mesure.

On vérifie l'égalité :

- · pour les fonctions indicatrices,
- pour les fonctions étagées,
- pour les fonctions positives,
- pour les fonctions intégrables

Remarque. En particulier, si $E = \mathbb{R}$ et $h = Id_{\mathbb{R}}$, on obtient

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, d\mathbb{P}_X(x)$$

à condition que cette quantité existe.

Exemples 3.3. Loi de Bernoulli

$$\mathbb{P}_{X} = (1-p)\delta_{0} + p\delta_{1}$$

$$\mathbb{E}[X] = \int_{\mathbb{R}} x d\mathbb{P}_{X}(x)$$

$$= \int_{\mathbb{R}} x d((1-p)\delta_{0} + p\delta_{1})(x)$$

$$= (1-p)\underbrace{\int_{\mathbb{R}} x d\delta_{0}(x)}_{=0} + p\underbrace{\int_{\mathbb{R}} x d\delta_{1}(x)}_{=1}$$

Si X suit une loi discrète

$$\mathbb{P}_X = \sum_{k=1}^{\infty} p_k \delta_{i_k}$$

alors son espérance vaut

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, d\mathbb{P}_X$$

$$= \sum_{k=1}^{\infty} p_k \underbrace{\int_{\mathbb{R}} x \, d\delta_{x_k}}_{=x_k}$$

$$= \sum_{k=1}^{\infty} p_k x_k$$

Proposition. Soit $X: \Omega \to E$ une variable aléatoire. La loi de X est caractérisée par les quantités $\mathbb{E}[h(X)]$ où $h: E \to \mathbb{R}$ décrit l'ensemble des fonctions mesurables bornées. C'est-à-dire, si X et X' sont deux variables aléatoires vérifiant

$$\mathbb{E}[h(X)] = \mathbb{E}[h(X')]$$

pour toute fonction h mesurable bornée, alors X et X' ont la même loi.

 $D\acute{e}monstration$. Soient X et X' telles que $\mathbb{E}[h(X)] = \mathbb{E}[h(X')]$ pour toute fonction h mesurable bornée.

Soit $A \in \mathcal{E}$. On pose $h = \mathbb{1}_A$ et alors

$$\mathbb{P}(X \in A) = \mathbb{E}[\mathbb{1}_A(X)] = \mathbb{E}[h(X)] = \mathbb{E}[h(X')] = \mathbb{E}[\mathbb{1}_A(X')] = \mathbb{P}(X' \in A)$$

Donc X et X' ont la même loi.

Exemples 3.4. On considère une variable aléatoire X de loi uniforme sur]0,1[et on pose $Y=-\ln(X)$. Déterminons la loi de Y.

Soit h une fonction mesurable bornée. Alors

$$\mathbb{E}[h(Y)] = \mathbb{E}[h(-\ln(X))]$$

$$= \int_{\mathbb{R}} h(-\ln(x)) d\mathbb{P}_X(x)$$

$$= \int_{\mathbb{R}} h(-\ln(x)) \underbrace{\mathbb{1}_{]0,1[}(x) d\lambda_1(x)}_{=\mathbb{P}_X}$$

$$= \int_{\mathbb{R}} h(y) \underbrace{\mathbb{1}_{]0,\infty[}(y)e^{-y} d\lambda_1(y)}_{=\mathbb{P}_X} \quad \text{avec } y = -\ln(x)$$

D'après la proposition précédente, la loi de Y est

$$\mathbb{1}_{]0,\infty[}(y)e^{-y}\lambda_1(y)$$

c'est-à-dire que Y suit une loi exponentielle de paramètre 1.

3.5 Moments d'ordre p

Pour $p \in [1, \infty[$, on définit l'espace $\mathscr{L}^p(\Omega, \mathscr{F}, \mathbb{P})$ comment l'ensemble des variables aléatoires vérifiant

$$||X||_p = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega)\right)^{\frac{1}{p}} < \infty$$

On a bien que $\|\cdot\|_p$ est une norme qui rend $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ complet (toute suite de Cauchy converge). Dans le cas $p = \infty$, on pose

$$||X||_{\infty} = \sup_{\omega \in \Omega} |X(\omega)| = \lim_{p \to \infty} ||X||_p$$

Donc $\mathcal{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ est l'ensemble des variables aléatoires bornées.

Définition 3.6. Soit $p \in [1, \infty[$ et X une variable aléatoire dans $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$. Le **moment** d'ordre p de X est

$$\mathbb{E}[X^p] = \int_{\Omega} X(\omega)^p d\mathbb{P}(\omega) = \int_{\mathbb{R}} x^p d\mathbb{P}_X(x)$$

Remarque.

- 1. Le moment d'ordre 1 correspond à l'espérance.
- 2. Si $p \leq q$ alors $\mathcal{L}^q(\Omega, \mathcal{F}, \mathbb{P}) \subset \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ En particulier, si X admet un moment d'ordre q alors X admet un moment d'ordre p pour tout $p \leq q$

Proposition Inégalité de Markov. Soit X une variable aléatoire réelle positive et $p \in [1, \infty[$. Alors, pour tout t > 0, on a

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X^p]}{t^p}$$

Cette inégalité permet de contrôler le comportement à l'infini de X.

Démonstration. On part de l'inégalité

$$t^p \mathbb{1}_{\{X>t\}} \le X^p$$

On applique l'espérance

$$t^{p}\mathbb{E}\left[\mathbb{1}_{\{X \ge t\}}\right] \le \mathbb{E}\left[X^{p}\right]$$
$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}\left[X^{p}\right]}{t^{p}}$$

Le cas $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$:

On rappelle que $\mathscr{L}^2(\Omega, \mathscr{F}, \mathbb{P})$ est muni d'un produit scalaire

$$\langle X, Y \rangle = \mathbb{E}[XY] = \int_{\Omega} X(\omega)Y(\omega) d\mathbb{P}(\omega)$$

La norme associée est

$$||X||_2 = \sqrt{\langle X, X \rangle} = \sqrt{\int_{\Omega} X(\omega)^2 d\mathbb{P}(\omega)}$$

Définition 3.7. La variance d'une variable aléatoire réelle X est le moment d'ordre 2 de X – $\mathbb{E}[X]$, soit

$$\mathsf{Var}(X) = \|X - \mathbb{E}[X]\|_2^2 = \int_{\Omega} (X(\omega) - \mathbb{E}[X])^2 d\mathbb{P}(\omega),$$

qui est bien définie si $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.

On définit **l'écart-type** par

$$\sigma(X) = \operatorname{Var}(X) = \|X - \mathbb{E}[X]\|_2$$

Remarque.

1. En développant le carré dans la définition de la variance, on obtient

$$\mathsf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

2. On a Var(X) = 0 si et seulement si X est constante.

Proposition Inégalité de Bienaymé-Tchebychev. Soit X une variable aléatoire dans $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Alors, pour tout t > 0, on a

$$\mathbb{P}\left(|X - \mathbb{E}[X]|_2 \ge t\right) \le \frac{\mathsf{Var}(X)}{t^2}$$

Définition 3.8. Soient X et Y deux variables aléatoires dans $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. On définit la covariance de X et Y par

$$COV(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \langle X - \mathbb{E}[X], Y - \mathbb{E}[Y] \rangle$$

où on rappelle que

$$\langle U, V \rangle = \mathbb{E}[UV] = \int_{\Omega} U(\omega)V(\omega) \, d\mathbb{P}(\omega)$$

Par les propriétés du produit scalaire dans $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, on en déduit que la covariance est symétrique, bilinéaire et positive :

$$COV(X, X) = Var(X) \ge 0$$

Par ailleurs, on a aussi la relation de Pythagore :

$$Var(X + Y) = Var(X) + Var(Y) + 2COV(X, Y)$$

3.9 Moments de lois usuelles

Sous forme de tableau :

Loi	Espérance	Variance
$\mathcal{U}(\{1,\ldots,n\})$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
$\mathcal{B}(p)$	p	p(1-p)
$\mathcal{B}(n,p)$	np	np(1-p)
$\mathcal{G}(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\mathcal{P}(heta)$	θ	θ
$\mathcal{U}([a,b])$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{E}(heta)$	$\frac{1}{\theta}$	$\frac{1}{\theta^2}$
$\mathcal{N}(\mu, \sigma^2)$	μ	σ^2

4 Fonctions associées à une variable aléatoire

4.1 Fonction de répartition

Définition 4.2. Soit X une variable aléatoire réelle. La fonction de répartition de X est la fonction

$$F_X: \mathbb{R} \to [0,1], \quad t \mapsto \mathbb{P}(X \le t)$$

Exemple. Si X est une variable réelle de densité f_X par rapport à la mesure de Lebesgue $(\mathbb{P}_X = f_X \lambda_1)$, alors

$$\mathbb{P}_X(A) = \int_A f_X(t) \, d\lambda_1(t)$$

Donc, la fonction de répartition de X est donnée par

$$F_X(t) = \mathbb{P}_X([-\infty, t]) = \int_{-\infty}^t f_X(u) d\lambda_1(u)$$

Par exemple, si $X \sim \mathcal{E}(\theta)$, c'est-à-dire

$$f_X(t) = \theta e^{-\theta t} \mathbb{1}_{\mathbb{R}_+}(t)$$

alors

$$F_X(t) = \int_{-\infty}^t \theta e^{-\theta u} \mathbb{1}_{\mathbb{R}_+}(u) d\lambda_1(u)$$

$$= \begin{cases} 0 & \text{si } t < 0 \\ [-e^{-\theta u}]_0^t & \text{si } t \ge 0 \end{cases}$$

$$= (1 - e^{-\theta t}) \mathbb{1}_{\mathbb{R}_+}(t)$$

De manière générale, l'égalité $F_X(t) = \int_{-\infty}^t f_X(u) d\lambda_1(u)$ assure que F_X est dérivable λ_1 -p.p., avec $F_X'(t) = f_X(t)$ pour λ_1 -presque tout $t \in \mathbb{R}$.

Exemple. On considère $X \sim \mathcal{B}(p)$ et $\mathbb{P}_X = (1-p)\delta_0 + p\delta_1$. Alors, la fonction de répartition de X est donnée par

$$F_X(t) = \mathbb{P}_X ([-\infty, t])$$

$$= (1 - p)\delta_0 ([-\infty, t]) + p\delta_1 ([-\infty, t])$$

$$= \begin{cases} 0 & \text{si } t < 0 \\ 1 - p & \text{si } 0 \le t < 1 \\ 1 & \text{si } t \ge 1 \end{cases}$$

Plus généralement, si X est une variable aléatoire discrète de loi $\mathbb{P}_X = \sum_{k \in E} p_k \delta_{x_k}$, avec les x_k ordonnés, alors

$$F_X(t) = \sum_{k=0}^{\infty} p_k \delta_{x_k} \left(\left[-\infty, t \right] \right) = \sum_{k=0}^{\infty} p_k \mathbb{1}_{\left[x_k, +\infty \right[} \left(t \right) \right)$$

Proposition. Soit X une variable aléatoire réelle de fonction de répartition F_X . Alors

- 1. F_X est croissante, continue à droite et admet des limites à gauche (càdlàg)
- 2. Les limites de F_X en $-\infty$ et $+\infty$ sont

$$\lim_{t\to\infty} F_X(t) = 1, \quad \lim_{t\to-\infty} F_X(t) = 0$$

3. En posant

$$F_X(t-) = \lim_{\substack{\varepsilon \to 0 \ \varepsilon > 0}} F_X(t-\varepsilon)$$

On a

$$F_X(t-) = \mathbb{P}(X < t) = \mathbb{P}(X \le t)$$

et donc

$$\mathbb{P}(X=t) = F_X(t) - F_X(t-)$$

Démonstration. Admise (ou a faire en exercice)

Proposition. La fonction de répartition d'une variable aléatoire X caractérise sa loi. C'est à dire que deux variables aléatoires ayant la même fonction de répartition ont la même loi.

Démonstration. Si $F_X = F_Y$ alors les mesures de probabilités \mathbb{P}_X et \mathbb{P}_Y associées à X et Y coïncident sur les ensembles de la forme $[-\infty, t]$. Ces ensembles engendrent la tribu borélienne de \mathbb{R} et sont stables par intersection finie, donc le lemme de classes monotones assure que $\mathbb{P}_X = \mathbb{P}_Y$.

4.3 Fonction caractéristique

Définition 4.4. Soit X une variable aléatoire réelle. La fonction caractéristique de X est la fonction

$$\varphi_X : \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \mathbb{E}[e^{itX}] = \int_{\Omega} e^{itX(\omega)} d\mathbb{P}(\omega)$$

Remarque.

1. La fonction caractéristique est bien définie car

$$\int_{\Omega} \left| e^{itX(\omega)} \right| d\mathbb{P}(\omega) = \int_{\Omega} d\mathbb{P}(\omega) = 1$$

2. La fonction caractéristique correspond à un signe près à la transformée de Fourier de la variable aléatoire X.

Exemple.

• Soit $X \sim \mathcal{B}(p)$. Alors

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = (1-p)e^{it0} + pe^{it1} = 1 - p + pe^{it}$$

• Soit X une variable aléatoire discrète de loi $\mathbb{P}_X = \sum_{k \in E} p_k \delta_{x_k}$. Alors

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = \sum_{k \in E} p_k e^{itx_k}$$

• Soit $X \sim \mathcal{U}([a,b])$. Alors

$$\varphi_X(t) = \mathbb{E}\left[e^{itX}\right]$$

$$= \int_{\mathbb{R}} e^{itx} \frac{1}{b-a} \mathbb{1}_{[a,b]}(x) d\lambda_1(x)$$

$$= \left[\frac{e^{itx}}{it}\right]_a^b$$

$$= \frac{e^{itb} - e^{ita}}{it(b-a)} \quad \text{si } t \neq 0$$

et pour t = 0, on a

$$\varphi_X(0) = \mathbb{E}[e^{i0X}] = \mathbb{E}[1] = 1$$

• Soit $X \sim \mathcal{N}(0,1)$. Alors

$$\varphi_X(t) = \mathbb{E}\left[e^{itX}\right] = \int_{\mathbb{R}} e^{itx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} d\lambda_1(x) = e^{-\frac{t^2}{2}}$$

cf. TD4 pour le calcul de l'intégrale.

Proposition. Soit X une variable aléatoire réelle. Si X admet un moment d'ordre $p \in \mathbb{N}$, alors

la fonction caractéristique φ_X est de classe \mathscr{C}^p et

$$\mathbb{E}[X^p] = (-i)^p \varphi_X^{(p)}(0)$$

 $D\acute{e}monstration$. La fonction $g:(t,\omega)\mapsto e^{itX(\omega)}$ est intégrable par rapport à ω , dérivable par rapport à t et vérifie

$$\left| \frac{\partial g}{\partial t}(t,\omega) \right| = \left| iX(\omega)e^{itX(\omega)} \right| = \left| X(\omega) \right|$$

Donc si X admet un moment d'ordre 1, alors

$$\left| \frac{\partial g}{\partial t}(t,\omega) \right| = |X(\omega)|$$

qji est intégrable, donc le théorème de dérivation sous le signe intégral assure que

$$\varphi_X'(t) = \int_{\Omega} iX(\omega)e^{itX(\omega)} d\mathbb{P}(\omega)$$

en particulier, en t = 0, on a

$$\varphi_X'(0) = i\mathbb{E}[X]$$

On raisonne ensuite par récurrence sur p pour les autres moments.

Théorème. La fonction caractéristique φ_X caractérise la loi de X. C'est-à-dire que si $\varphi_X = \varphi_Y$ alors X et Y ont la même loi.

 $D\acute{e}monstration$. Admise, elle est basée sur l'injectivié de la transformée de Fourier de mesures. \Box

4.5 Fonction génératrice

On considère ici des variables aléatoires à valeurs dans N.

Définition 4.6. Soit X une variable aléatoire à valeurs dans \mathbb{N} . La fonction génératrice de X est la série entière

$$G_X(z) = \mathbb{E}[z^X] = \sum_{n=0}^{\infty} \mathbb{P}(X = n)z^n$$

Comme $\sum_{n=0}^{\infty} \mathbb{P}(X=n) = 1$, on en déduit que le rayon de convergence de cette série entière est au moins 1, donc G_X est définie sur [-1,1] et continue sur [-1,1]. Par ailleurs, G_X est de classe \mathscr{C}^{∞} sur]-1,1[avec

$$\mathbb{P}(X=n) = \frac{G_X^{(n)}(0)}{n!}$$

Donc G_X caractérise la loi de X.

En dérivant G_X terme à terme, on obtient

$$G_X'(z) = \sum_{n=1}^{\infty} n \mathbb{P}(X=n) z^{n-1} = \mathbb{E}[X z^{X-1}]$$

On prend une suite $(z_k)_{k\in\mathbb{N}}$ qui croit vers 1. Alors, la suite des fonctions $(Xz_k^{X-1})_k$ est croissante, positive et donc par le théorème de convergence monotone, on a

$$\mathbb{E}\left[\lim_{k\to\infty} X z_k^{X-1}\right] = \lim_{k\to\infty} \underbrace{\mathbb{E}\left[X z_k^{X-1}\right]}_{G_X'(z_k)}$$

d'où

$$\mathbb{E}[X] = \lim_{\substack{z \to 1 \\ z < 1}} G_X'(z)$$

On peut noter $G'_X(1-) = \lim_{\substack{z \to 1 \\ x \neq 1}} G'_X(z)$.

Bref, si X admet un moment d'ordre 1, alors $G'_X(1-) = \mathbb{E}[X]$.

Plus généralement, on peut montrer que

$$G_X^{(k)}(1-) = \mathbb{E}[X(X-1)...(X-k+1)]$$

pour tout $k \in \mathbb{N}$. Cela permet de déterminer les moments de X.

Exemple. \triangleright Soit $X \sim \mathcal{B}(p)$. Alors

$$G_X(z) = \mathbb{E}[z^X] = (1-p)z^0 + pz^1 = 1-p+pz$$

et donc

$$G_X'(z) = p$$

donc

$$\mathbb{E}[X] = G_X'(1) = p$$

 \triangleright Soit $X \sim \mathcal{B}(n, p)$. Alors

$$G_X(z) = \mathbb{E}[z^X] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} z^k$$
$$= (pz+1-p)^n$$

donc

$$G'_X(z) = np(pz + 1 - p)^{n-1}$$

et donc

$$\mathbb{E}[X] = G_X'(1) = np$$

ightharpoonup Soit $X \sim \mathcal{G}(p)$. Alors

$$G_X(z) = \mathbb{E}[z^X] = \sum_{k=1}^{\infty} p(1-p)^{k-1} z^k$$
$$= zp \sum_{k=1}^{\infty} (1-p) z^{k-1}$$
$$= \frac{zp}{1 - (1-p)z}$$

 et

$$\mathbb{E}[X] = G'_X(1) \to \text{exercice}$$

 \triangleright Soit $X \sim \mathcal{P}(\theta)$. Alors

$$G_X(z) = \mathbb{E}[z^X] = \sum_{k=0}^{\infty} e^{-\theta} \frac{\theta^k}{k!} z^k$$
$$= e^{-\theta} \sum_{k=0}^{\infty} \frac{(\theta z)^k}{k!}$$
$$= e^{-\theta} e^{\theta z}$$
$$= e^{\theta(z-1)}$$

donc

$$G_X'(z) = \theta e^{\theta(z-1)}$$

et donc

$$\mathbb{E}[X] = G_X'(1) = \theta$$

Chapitre 2 — Indépendance

On considère ici $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

1 Indépendances d'événements

1.1 Conditionnement

Si $A \in \mathscr{F}$ est un événement tel que $\mathbb{P}(A) > 0$, alors la **probabilité conditionnelle de** $B \in \mathscr{F}$ sachant A est définie par

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}.$$

alors, l'application

$$\mathbb{P}_A: \mathscr{F} \to [0,1]$$
$$B \mapsto \mathbb{P}_A(B) = \mathbb{P}(B|A)$$

est une probabilité sur (Ω, \mathscr{F}) . Intuitivement, l'espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P}_A)$ correspond à une expérience aléatoire où l'on sait a priori que l'événement A est vérifié.

Si A et B sont deux événements de probabilité strictement positive, alors

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$
 formule de Bayes.

1.2 Quelques formules

Une partition $(A_i)_{i \in I}$ avec $I \subset \mathbb{N}$ formée d'événements A_i est une famille d'événements vérifiant

- $\forall i, j \in I, i \neq j \implies A_i \cap A_j = \emptyset$,
- $\bigcup_{i \in I} A_i = \Omega$.

Dans ce cas, on a la formule des probabilités totales :

$$\mathbb{P}(B) = \sum_{i \in I} \mathbb{P}(A_i) \mathbb{P}(B|A_i).$$

pour tout événement $B \in \mathscr{F}$ et $\mathbb{P}(A_i) \geq 0$ pour tout $i \in I$.

Cas particulier: avec la partition (A, \overline{A}) , on a

$$\mathbb{P}(B) = \mathbb{P}(A)\mathbb{P}(B|A) + \mathbb{P}(A^{c})\mathbb{P}(B|A^{c}).$$

où $A^{c} = \{ \omega \in \Omega \mid \omega \notin A \}$ est le complémentaire de A.

On peut alors étendre la formule de Bayes à une partition $(A_i)_{i \in I}$ de Ω :

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{j \in I} \mathbb{P}(B|A_j)\mathbb{P}(A_j)}.$$

Cas particulier: avec la partition (A, \overline{A}) , on a

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A)\mathbb{P}(B|A)}{\mathbb{P}(A)\mathbb{P}(B|A) + \mathbb{P}(A^{c})\mathbb{P}(B|A^{c})}.$$

Exemple. On se place dans la cas d'une maladie qui touche une personne sur 100. Si une personne est malade (noté M), alors le test est positif dans 99% des cas. Si une personne n'est pas malade (noté M^c), alors le test est positif dans 1% des cas.

Notons P l'événement "le test est positif ». Alors, si un test est positif, la probabilité que la

personne soit malade est donnée par

$$\mathbb{P}(M|P) = \frac{\mathbb{P}(P|M)\mathbb{P}(M)}{\mathbb{P}(P|M)\mathbb{P}(M) + \mathbb{P}(P|M^{c})\mathbb{P}(M^{c})}$$
$$= \frac{0.99 \times 0.01}{0.99 \times 0.01 + 0.01 \times 0.99}$$
$$= \frac{1}{2}.$$

Définition 1.3. Deux événements A et B sont indépendants si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

En particulier,

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$
 et $\mathbb{P}(A|B) = \mathbb{P}(A)$.

Exemple. On lance 2 dés. On a alors

$$\Omega = \{1, 2, \dots, 6\}^2, \quad \mathscr{F} = \mathscr{P}(\Omega), \quad \mathbb{P} = \text{probabilit\'e uniforme}.$$

On considère les événements

$$A = \{6\} \times \{1, \dots, 6\}, \quad B = \{1, \dots, 6\} \times \{6\}.$$

Alors,

$$\mathbb{P}(A) = \mathbb{P}(B) = \frac{1}{6},$$

et

$$\mathbb{P}(A \cap B) = \mathbb{P}(\{6\} \times \{6\}) = \frac{1}{36} = \mathbb{P}(A)\mathbb{P}(B).$$

Donc A et B sont indépendants

Définition 1.4. Des événements $A_1, \ldots, A_n \in \mathscr{F}$ sont indépendants si

$$\forall I \in \{1, \dots, n\}, I \neq \emptyset, \quad \mathbb{P}\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} \mathbb{P}(A_i).$$

Plus généralement, une famille d'événements $(A_i)_{i \in I}$ est indépendante si toute sous-famille finie est constituée d'événements indépendants.

Exemple. On lance 2 dés. On considère les événements

A =le premier dé est pair,

B =le deuxième dé est pair,

C = la somme des dés est paire.

Alors,

$$\mathbb{P}(A) = \frac{1}{2},$$

$$\mathbb{P}(B) = \frac{1}{2},$$

$$\mathbb{P}(A \cap B) = \frac{1}{4},$$

$$\mathbb{P}(C) = \frac{1}{2},$$

$$\mathbb{P}(A \cap C) = \frac{1}{4},$$

$$\mathbb{P}(B \cap C) = \frac{1}{4},$$

Donc les événements A et B, A et C, B et C sont indépendants respectivement. Par ailleurs, on a

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A \cap B) = \frac{1}{4} \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = \frac{1}{8}.$$

Donc les événements $A,\,B$ et C ne sont pas indépendants.

Remarque. L'indépendance d'événements $A_1, \ldots A_n$ implique l'indépendance de A_1^c, A_2, \ldots, A_n (et de même en passant au complémentaire sur d'autres indices). En particulier, si A et B sont indépendants, alors A et B^c sont indépendants.

2 Indépendance de variables aléatoires

Définition 2.1. Soient X_1, \ldots, X_n des variables aléatoires à valeurs dans $(E_1, \mathcal{E}_1), \ldots, (E_n, \mathcal{E}_n)$. On dit que ces variables aléatoires sont **indépendantes** si pour tout $B_1 \in \mathcal{E}_1, \ldots, B_n \in \mathcal{E}_n$, les événements $\{X_1 \in B_1\}, \ldots, \{X_n \in B_n\}$ sont indépendants :

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i).$$

Cetté égalité se réécrit

$$\mathbb{P}((X_1, \dots, X_n) \in B_1 \times \dots \times B_n) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i)$$
$$\mathbb{P}_{(X_1, \dots, X_n)}(B_1 \times \dots \times B_n) = \prod_{i=1}^n \mathbb{P}_{X_i}(B_i).$$

Cela signifie que

$$\mathbb{P}_{(X_1,\ldots,X_n)} = \mathbb{P}_{X_1} \otimes \cdots \otimes \mathbb{P}_{X_n}.$$

Plus généralement, une famille de variables aléatoires $(X_i)_{i \in I}$ est indépendante si toute sous-famille finie l'est.

Proposition. Soit X_1, \ldots, X_n des variables aléatoires à valeurs dans $(E_1, \mathcal{E}_1), \ldots, (E_n, \mathcal{E}_n)$. Les assertions suivantes sont équivalentes :

- 1. Les variables aléatoires X_1, \ldots, X_n sont indépendantes.
- 2. Pour toutes fonctions $h_1: E_1 \to \mathbb{R}, \dots, h_n: E_n \to \mathbb{R}$ positives ou intégrables pour $(\mathcal{L}^1(E_k, \mathcal{E}_k, \mathbb{P}_{X_k}))$, on a

$$\mathbb{E}[h_1(X_1)\cdots h_n(X_n)] = \mathbb{E}[h_1(X_1)]\cdots \mathbb{E}[h_n(X_n)].$$

 $D\acute{e}monstration. \triangleright On montre que 1. implique 2.$

On considère le vecteur aléatoire

$$X = (X_1, \dots, X_n) : \Omega \to E_1 \times \dots \times E_n,$$

$$\omega \mapsto (X_1(\omega), \dots, X_n(\omega)).$$

Alors

$$\mathbb{E}\left[h_{1}(X_{1})\cdots h_{n}(X_{n})\right] = \int_{\Omega} h_{1}(X_{1}(\omega))\cdots h_{n}(X_{n}(\omega)) \ d\mathbb{P}(\omega)$$

$$\text{formule de transfert} = \int_{E_{1}\times\cdots\times E_{n}} h_{1}(x_{1})\cdots h_{n}(x_{n}) \ d\mathbb{P}_{(X_{1},\ldots,X_{n})}(x_{1},\ldots,x_{n})$$

$$= \int_{E_{1}\times\cdots\times E_{n}} h_{1}(x_{1})\cdots h_{n}(x_{n}) \ d\left(\mathbb{P}_{X_{1}}\otimes\cdots\otimes\mathbb{P}_{X_{n}}\right)(x_{1},\ldots,x_{n})$$

$$\mathbb{P}_{\text{Tonelli}} = \int_{E_{n}} \int_{E_{n-1}} \cdots \int_{E_{1}} h_{1}(x_{1})\cdots h_{n}(x_{n}) \ d\mathbb{P}_{X_{1}}(x_{1})\cdots d\mathbb{P}_{X_{n}}(x_{n})$$

$$= \int_{E_{1}} h_{1}(x_{1}) \ d\mathbb{P}_{X_{1}}(x_{1})\cdots \int_{E_{n}} h_{n}(x_{n}) \ d\mathbb{P}_{X_{n}}(x_{n})$$

$$= \mathbb{E}[h_{1}(X_{1})]\cdots\mathbb{E}[h_{n}(X_{n})].$$

 \triangleright On montre que 2. implique 1.

Soit $A_1 \in \mathcal{E}_1, \dots, A_n \in \mathcal{E}_n$. On pose $h_i = \mathbb{1}_{A_i}(x_i)$. Alors

$$\mathbb{E}[h_1(X_1)\cdots h_n(X_n)] = \mathbb{E}[h_1(X_1)]\cdots \mathbb{E}[h_n(X_n)]$$

se réécrit

$$\mathbb{E}\left[\mathbb{1}_{A_1}(X_1)\cdots\mathbb{1}_{A_n}(X_n)\right] = \mathbb{E}\left[\mathbb{1}_{A_1}(X_1)\right]\cdots\mathbb{E}\left[\mathbb{1}_{A_n}(X_n)\right]$$

et donc

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \dots \mathbb{P}(X_n \in A_n).$$

Exemple. Si X_1 et X_2 sont des variables aléatoires intégrables et indépendantes, alors

$$\mathbb{E}[X_1X_2] = \mathbb{E}[X_1]\mathbb{E}[X_2].$$

En particulier,

$$Cov(X_1, X_2) = \mathbb{E}[X_1 X_2] - \mathbb{E}[X_1] \mathbb{E}[X_2] = 0.$$

et donc

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2 Cov(X_1, X_2) = Var(X_1) + Var(X_2).$$

Exemple. Soit $t \in \mathbb{R}$ fixé et X_1, X_2 deux variables aléatoires réelles indépendantes. Avec $h_j(x_j) = e^{itx_j}$, j = 1, 2, on obtient

 $\mathbb{E}\left[e^{itX_1}e^{itX_2}\right] = \mathbb{E}\left[e^{itX_1}\right]\mathbb{E}\left[e^{itX_2}\right].$

c'est-à-dire

$$\varphi_{X_1+X_2}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t).$$

2.2 Critères d'indépendance

Cas discrèt

Soit X et Y deux variables aléatoires à valeurs dans des espaces discrets E et F. Elles sont indépendantes si et seulement si

$$\mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y)$$

pour tout $x \in E$ et $y \in F$.

En effet, si $A \subseteq E$ et $B \subseteq F$, alors

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in \cup_{x \in A} \{x\}, Y \in \cup_{y \in B} \{y\})$$
$$= \sum_{\substack{x \in A \\ y \in B}} \mathbb{P}(X = x, Y = y)$$

Avec les fonctions de répartition

Soient X et Y deux variables aléatoires à valeurs réelles. Elles sont indépendantes si et seulement si pour tout $x, y \in \mathbb{R}$,

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y).$$

c'est-à-dire

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

Avec les fonctions caractéristiques

Soient X_1, X_2 deux variables aléatoires à valeurs réelles. Elles sont indépendantes si et seulement si

$$\begin{split} & \mathbb{E}\left[e^{it_1X_1}e^{it_2X_2}\right] = \mathbb{E}\left[e^{it_1X_1}\right]\mathbb{E}\left[e^{it_2X_2}\right] \\ & \mathbb{E}\left[e^{i(t_1X_1+t_2X_2)}\right] = \mathbb{E}\left[e^{it_1X_1}\right]\mathbb{E}\left[e^{it_2X_2}\right]. \end{split}$$

c'est-à-dire

$$\varphi_{(X_1+X_2)}(t_1+t_2) = \varphi_{X_1}(t_1)\varphi_{X_2}(t_2).$$

Cas des variables aléatoires à densité

Soit (X_1, X_2) un vecteur aléatoire de densité $f_{(X_1, X_2)}$ par rapport à λ_2 (mesure de Lebesgue sur \mathbb{R}^2). On suppose que

$$f_{(X_1,X_2)}(x_1,x_2) = f_1(x_1)f_2(x_2)$$

avec $f_j: \mathbb{R} \to \mathbb{R}_+$ positive et vérifiant

$$\int_{\mathbb{R}} f_j(x) \, d\lambda_1(x) = 1.$$

Alors les variables aléatoires X_1 et X_2 sont indépendantes de densité respectives f_1 et f_2 .

Exemple. Soit (X,Y) un vecteur aléatoire de densité

$$f(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}.$$

Alors,

$$f(x,y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$$

donc les variables aléatoires X et Y sont indépendantes et suivent toutes les deux une loi normale centrée réduite.

3 Résultats asymptotiques

3.1 Lemme de Borel-Cantelli

Si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements et $A_n\in\mathcal{F}, \forall n\in\mathbb{N},$ alors on pose

$$\limsup_{n\to\infty}A_n=\bigcap_{n=0}^{\infty}\bigcup_{k=n}^{\infty}A_k=\left\{\omega\in\Omega\mid\omega\in A_k,\text{pour une infinit\'e de }k\right\}.$$

et

$$\liminf_{n\to\infty}A_n=\bigcup_{n=0}^{\infty}\bigcap_{k=n}^{\infty}A_k=\left\{\omega\in\Omega\mid\omega\in A_k, \text{pour tout }k\text{ à partir d'un certain rang}\right\}.$$

On remarque que

$$\left(\limsup_{n\to\infty}A_n\right)^c=\liminf_{n\to\infty}A_n^c.$$

et

$$\left(\liminf_{n\to\infty} A_n\right)^c = \limsup_{n\to\infty} A_n^c.$$

Proposition Lemme de Borel-Cantelli. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements, alors

1. Si
$$\sum_{n=0}^{\infty} \mathbb{P}(A_n) < \infty$$
, alors

$$\mathbb{P}(\limsup_{n\to\infty}A_n)=0.$$

ou de manière équivalente

$$\{n \in \mathbb{N}, \omega \in A_n\}$$
 est fini, \mathbb{P} -p.s.

2. Si $\sum_{n=0}^{\infty}\mathbb{P}(A_n)=\infty$ et les événements A_n sont indépendants, alors

$$\mathbb{P}(\limsup_{n\to\infty}A_n)=1.$$

ou de manière équivalente

$$\{n \in \mathbb{N}, \omega \in A_n\}$$
 est infini, \mathbb{P} -p.s.

Remarque. L'indépendance est nécessaire. Prendre $A_n = A$ avec $\mathbb{P}(A) \in]0,1[$. Alors $\sum_{n=0}^{\infty} \mathbb{P}(A) = \infty$ et $\mathbb{P}(\limsup_{n\to\infty} A_n) = \mathbb{P}(A) \neq 1$.

 $D\acute{e}monstration.~\rhd$ On montre 1.

On pose $B_n = \bigcup_{k=n}^{\infty} A_k$. Comme les $(B_n)_{n \in \mathbb{N}}$ sont décroissants, on a

$$\mathbb{P}(\bigcap_{n=0}^{\infty} B_n) = \lim_{n \to \infty} \mathbb{P}(B_n)$$

 et

$$\mathbb{P}(B_n) = \mathbb{P}\left(\bigcup_{k=n}^{\infty} A_k\right)$$

$$\leq \sum_{k=n}^{\infty} \mathbb{P}(A_k)$$

$$\underset{n \to \infty}{\longrightarrow} 0.$$

donc

$$\mathbb{P}(\limsup_{n\to\infty} A_n) = \mathbb{P}(\bigcap_{n=0}^{\infty} B_n) = 0.$$

 \triangleright On montre 2. Pour $n \in \mathbb{N}$, on a

$$\mathbb{P}(\bigcap_{k=n}^{\infty} A_k^c) = \mathbb{E}\left[\mathbb{1}_{\bigcap_{k=n}^{\infty} A_k^c}\right]$$

$$= \mathbb{E}\left[\lim_{N \to \infty} \mathbb{1}_{\bigcap_{k=n}^{N} A_k^c}\right]$$

$$= \mathbb{E}\left[\lim_{N \to \infty} \prod_{k=n}^{N} \mathbb{1}_{A_k^c}\right]$$

Par théorème de convergence dominée (par 1), on a

$$\mathbb{P}(\bigcap_{k=n}^{\infty} A_k^c) = \lim_{N \to \infty} \mathbb{E}\left[\prod_{k=n}^{N} \mathbb{1}_{A_k^c}\right]$$

$$= \lim_{N \to \infty} \mathbb{P}\left(\bigcap_{k=n}^{N} A_k^c\right)$$
par indep des $A_k = \lim_{N \to \infty} \prod_{k=n}^{N} \mathbb{P}(A_k^c)$

$$= \lim_{N \to \infty} \prod_{k=n}^{N} (1 - \mathbb{P}(A_k))$$

$$\leq \lim_{N \to \infty} \prod_{k=n}^{N} e^{-\mathbb{P}(A_k)}$$

$$= \lim_{N \to \infty} e^{-\sum_{k=n}^{N} \mathbb{P}(A_k)}$$

$$= e^{-\sum_{k=n}^{\infty} \mathbb{P}(A_k)}$$

$$= 0.$$

On conclut en écrivant

$$\mathbb{P}(\liminf_{n\to\infty} A_k^c) = \mathbb{P}\left(\bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} A_k^c\right) = 0$$

Exemple. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires avec $X_n \sim \mathcal{B}(p_n)$.

On considère les événements $A_n = \{X_n = 1\}$.

de sorte que $p_n = \mathbb{P}(X_n = 1) = \mathbb{P}(A_n)$.

Borel-Cantelli donne alors

- 1. Si $\sum_{n=0}^{\infty} p_n < \infty$ alors la suite (X_n) prend la valeur 1 un nombre fini de fois, \mathbb{P} -presque sûrement
- 2. Si $\sum_{n=0}^{\infty} p_n = \infty$ et que les (X_n) sont indépendantes, alors la suite (X_n) prend une infinité de fois la valeur 1, \mathbb{P} -presque sûrement.

Exemple. On observe les motifs dans une suite indépendante et idéntiquement distribuée.

Soit $(X_k)_{k\geq 1}$ une suite de variables aléatoires indépendantes et de même loi $\mathcal{B}(\frac{1}{2})$.

Soit $n \ge 1$ fixé. Soit $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ une suite déterministe fixée dans $\{0, 1\}^n$.

Pour $k \in \mathbb{N}$, on définit

$$B_k(\varepsilon) = \left\{ (x_i)_{i \ge 1} \in \{0, 1\}^{\mathbb{N}^*} \mid x_{k+1} = \varepsilon_1, \dots, x_{k+n} = \varepsilon_n \right\}.$$

On considère alors l'événement

$$A_k(\varepsilon) = \left\{ (X_i)_{i>1} \in B_k(\varepsilon) \right\} = \left\{ X_{k+i-1} = \varepsilon_1, \dots X_{k+n} = \varepsilon_n \right\}.$$

l'événement $A_k(\varepsilon)$ est réalisé si X_{k+1} prend la valeur ε_1 , X_{k+2} prend la valeur ε_2 et ainsi de suite avec X_{k+n} qui prend la valeur ε_n . On pose

$$A(\varepsilon) = \limsup_{k \to \infty} A_k(\varepsilon)$$

qui correspond à l'événement "le motif $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ apparaît une infinité de fois dans la suite $(X_k)_{k>1}$ ».

Les événements $(A_k(\varepsilon))_{k>0}$ ne sont pas indépendants :

$$A_0(\varepsilon) = \{X_1 = \varepsilon_1, \dots, X_n = \varepsilon_n\},$$

$$A_1(\varepsilon) = \{X_2 = \varepsilon_1, \dots, X_{n+1} = \varepsilon_n\}. A_2(\varepsilon) = \{X_3 = \varepsilon_1, \dots, X_{n+2} = \varepsilon_n\}.$$

les événements $(A_{k\times n}(\varepsilon))_{k\in\mathbb{N}}$ sont indépendants

$$A_{0\times n}(\varepsilon) = \{X_1 = \varepsilon_1, \dots, X_n = \varepsilon_n\},$$

$$A_{1\times n}(\varepsilon) = \{X_{n+1} = \varepsilon_1, \dots, X_{2n} = \varepsilon_n\}.A_{2\times n}(\varepsilon) = \{X_{2n+1} = \varepsilon_1, \dots, X_{3n} = \varepsilon_n\}.$$

Par ailleurs, on a

$$\mathbb{P}(A_{k\times n}(\varepsilon)) = \mathbb{P}(X_{k\times n+1} = \varepsilon_1, \dots, X_{(k+1)\times n} = \varepsilon_n)$$

$$= \mathbb{P}(X_{k\times n+1} = \varepsilon_1) \cdots \mathbb{P}(X_{(k+1)\times n} = \varepsilon_n)$$

$$= \frac{1}{2^n}.$$

qui est le terme général d'une série DIVERGENTE (car on somme sur k). Par Borel-Cantelli, on a

$$\mathbb{P}(\limsup_{k\to\infty} A_{k\times n}(\varepsilon)) = 1.$$

Il en suit

$$\mathbb{P}(A(\varepsilon)) = \mathbb{P}(\limsup_{k \to \infty} A_k(\varepsilon))$$
$$= \mathbb{P}(\limsup_{k \to \infty} A_{k \times n}(\varepsilon))$$
$$= 1.$$

Donc si on tape au hasard sur un clavier binaire, on fera apparaitre n'importe quel texte une infinité de fois avec probabilité 1.

3.2 Loi du 0-1 de Kolmogorov

Soit $\mathscr{F}_1, \mathscr{F}_2, \ldots$ des sous-tribus de \mathscr{F} . On pose

$$\overline{\mathscr{F}_n} = \sigma(\mathscr{F}_n, \mathscr{F}_{n+1}, \ldots).$$

la tribu engendrée par les $\mathscr{F}_k, k \geq n$.

On définit alors la tribu asymptotique (ou de queue) par

$$\mathscr{F}_{\infty} = \bigcap_{n \geq 1} \overline{\mathscr{F}_n}.$$

Exemple. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires et $\mathscr{F}_n = \sigma(X_n) = \{X_n^{-1}(B), B \in \mathscr{B}\}$. Montrons que l'événement " X_n converge" est dans \mathscr{F}_{∞} .

L'événement " X_n converge" est réalisé si et seulement si l'événement " $(X_n)_{n\geq k}$ converge" est réalisé pour tout $k\geq 1$. Bref,

$$\left\{ (X_n)_{n\geq 1} \text{ converge} \right\} = \left\{ (X_n)_{n\geq k} \text{ converge} \right\} \in \overline{\mathcal{F}_k}.$$

 $\operatorname{car}(X_n)_{n\geq k}$ ne dépend que de X_k, X_{k+1}, \ldots

Ceci est vrai pour tout k donc

$$\{(X_n)_{n\geq 1} \text{ converge}\} \in \bigcap_{k\geq 1} \overline{\mathscr{F}_k} = \mathscr{F}_{\infty}.$$

Proposition Loi du 0-1 **de Kolmogorov.** Si les tribus $\mathscr{F}_1, \mathscr{F}_2, \ldots$ sont indépendantes (un événement d'une tribu est indépendant de tout événement d'une autre tribu), alors la tribu asymptotique \mathscr{F}_{∞} ne contient que des événements de probabilité 0 ou 1:

$$\forall A \in \mathscr{F}_{\infty}, \mathbb{P}(A) \in \{0, 1\}.$$

Exemple. Dans l'exemple précédent, on a donc

$$\mathbb{P}((X_n)_{n>1} \text{ converge}) \in \{0,1\}.$$

Donc soit la suite $(X_n)_{n\geq 1}$ converge presque sûrement, soit elle diverge presque sûrement.

Chapitre 3 — Loi des grands nombres

Dans tout ce chapitre, on considère $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles (ou complexes) définies sur un espace probabilisé $(\Omega, \mathscr{F}, \mathbb{P})$ et une variable aléatoire X réelle (ou complexe).

1 Différents modes de convergence

1.1 Convergences presque sûre et probabilité

Définition 1.2. On dit que X_n converge **presque sûrement** vers X et on note $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, si

$$\mathbb{P}(X_n \xrightarrow[n \to \infty]{} X) = \mathbb{P}\left(\left\{\omega \in \Omega \mid X_n(\omega) \xrightarrow[n \to \infty]{} X(\omega)\right\}\right) = 1.$$

Remarque.

- 1. Cela correspond à la convergence presque partout pour la mesure de probabilité \mathbb{P} .
- 2. Si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$ et si $h : \mathbb{R} \to \mathbb{R}$ est une fonction continue, alors $h(X_n) \xrightarrow[n \to \infty]{\text{p.s.}} h(X)$. En particulier, si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$ et $Y_n \xrightarrow[n \to \infty]{\text{p.s.}} Y$, alors

$$aX_n + bY_n \xrightarrow[n \to \infty]{\text{p.s.}} aX + bY, \quad a, b \in \mathbb{R}.$$

et

$$X_n Y_n \xrightarrow[n \to \infty]{\text{p.s.}} XY.$$

Définition 1.3. On dit que $(X_n)_{n\geq 1}$ converge **en probabilité** vers X si

$$\forall \varepsilon > 0, \mathbb{P}(|X_n - X| \ge \varepsilon) \xrightarrow[n \to \infty]{} 0.$$

On note alors $X_n \xrightarrow{\mathbb{P}} X$.

Cela signifie que la probabilité que X_n s'écarte de X d'un écart supérieur à ε tend vers 0 lorsque n tend vers l'infini.

Exemple. \triangleright On considère $X_n \sim \mathcal{E}(n)$

Regardons
$$\mathbb{P}(|X_n| \ge \varepsilon)$$
:

$$\mathbb{P}(|X_n| \ge \varepsilon) = \mathbb{P}(X_n \ge \varepsilon)$$

$$= \int_{\varepsilon}^{+\infty} ne^{-nx} dx$$

$$= [-e^{-nx}]_{\varepsilon}^{+\infty}$$

$$= e^{-n\varepsilon}.$$

Donc $X_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$.

On peut montrer que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} 0$ (en TD).

Proposition. Si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, alors $X_n \xrightarrow{\mathbb{P}} X$.

 $D\acute{e}monstration$. Soit $\varepsilon > 0$. On a

$$\mathbb{P}(|X_n - X| \ge \varepsilon) = \mathbb{E}\left[\underbrace{\mathbb{1}_{|X_n - X| \ge \varepsilon}}_{f_n \xrightarrow{n \to \infty} 0 - \text{p.p.}}\right]$$

Comme $|f_n| \le 1$ qui est intégrable, le théorème de convergence dominée donne

$$\mathbb{P}(|X_n - X| \ge \varepsilon) = \mathbb{E}\big[\lim_{n \to \infty} \mathbb{1}_{|X_n - X| \ge \varepsilon}\big] = 0.$$

Exemple Réciproque fausse. On considère $(X_n)_{n\geq 1}$ une suite de variables aléatoires de loi

$$\mathbb{P}(X_n = n) = \frac{1}{n}$$
, et $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n}$.

Soit $\varepsilon > 0$. Alors

$$\mathbb{P}(|X_n| \ge \varepsilon) \le \frac{1}{n} \xrightarrow[n \to \infty]{} 0.$$

donc $X_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$.

Supposons que les $(X_n)_{n\geq 1}$ sont indépendantes. Les événements $A_n=\{X_n=n\}$ sont indépendants et vérifient

$$\sum_{n=1}^{+\infty} \mathbb{P}(A_n) = \sum_{n=1}^{+\infty} \mathbb{P}(X_n = n)$$
$$= \sum_{n=1}^{+\infty} \frac{1}{n}$$
$$= +\infty.$$

Donc par Borel-Cantelli, on a

$$\mathbb{P}(\limsup_{n\to\infty} A_n) = 1.$$

Donc avec probabilité 1, X_n prend la valeur n une infinité de fois. Donc avec probabilité 1, $(X_n)_{n\geq 1}$ ne converge pas vers 0. Donc $(X_n)_{n\geq 1}$ ne converge pas presque sûrement.

Proposition Loi faible des grands nombres. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles dans $\mathcal{L}^2(\Omega, \mathscr{F}, \mathbb{P})$. On suppose que les X_n sont indépendantes et identiquement distribuées (c'est-à-dire de même loi, i.i.d. en abrégé).

On note μ leur espérance : $\mu = \mathbb{E}[X_1]$. On pose $S_n = X_1 + \dots + X_n$. Alors

$$\overline{X_n} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n} \underset{n \to \infty}{\xrightarrow{\mathbb{P}}} \mu.$$

On appelle $\overline{X_n} = \frac{S_n}{n}$ la moyenne empirique

Démonstration.

 \triangleright On calcule d'abord l'espérance de $\overline{X_n}$:

$$\mathbb{E}[\overline{X_n}] = \frac{\mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]}{n} = \mu.$$

 \triangleright On calcule ensuite la variance de $\overline{X_n}$:

$$\begin{aligned} \operatorname{Var}(\overline{X_n}) &= \operatorname{Var}\left(\frac{X_1 + \dots + X_n}{n}\right) \\ &= \frac{1}{n^2} \operatorname{Var}(X_1 + \dots + X_n) \\ &= \frac{\operatorname{Var}(X_1)}{n} \end{aligned}$$

 \rhd On applique ensuite l'inégalité de Bienaymé-Tchebychev :

Soit $\varepsilon > 0$. On a

$$\begin{split} \mathbb{P}(\left|\overline{X_n} - \mu\right| \geq \varepsilon) &= \mathbb{P}(\left|\overline{X_n} - \mathbb{E}\left[\overline{X_n}\right]\right| \geq \varepsilon) \\ & \text{B-T} \leq \frac{\mathsf{Var}(\overline{X_n})}{\varepsilon^2} \\ &= \frac{\mathsf{Var}(X_1)}{n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0. \end{split}$$

Donc $\overline{X_n} \xrightarrow[n \to \infty]{\mathbb{P}} \mu$.

Exemple. Si les X_n sont i.i.d. de loi $\mathcal{B}(p)$, alors

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{\mathbb{P}} p.$$

1.4 Convergence dans $\mathcal{L}^p = \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$

Définition 1.5. Soit $p \in [1, +\infty]$. On dit que $(X_n)_{n\geq 1}$ converge vers X dans \mathcal{L}^p , notée $X_n \xrightarrow[n\to\infty]{\mathcal{L}^p} X$, si

$$\mathbb{E}[|X_n - X|^p] \underset{n \to \infty}{\longrightarrow} 0.$$

Remarque.

1. On rappelle que \mathcal{L}^p est un espace vectoriel muni de la norme

$$\|\cdot\|_p = \left(\mathbb{E}[|X|^p]\right)^{\frac{1}{p}} = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega)\right)^{\frac{1}{p}}.$$

2. Les espaces \mathcal{L}^p sont décroissants pour l'inclusion : si $p \leq q$, alors $\mathcal{L}^q \subset \mathcal{L}^p$ avec l'inégalité $\|\cdot\|_p \leq \|\cdot\|_q$. Donc la convergence dans \mathcal{L}^q implique la convergence dans \mathcal{L}^p pour $p \leq q$.

Proposition. Si $X_n \xrightarrow[n \to \infty]{\mathcal{L}^p} X$, alors $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$.

 $D\acute{e}monstration.$ Soit $\varepsilon>0.$ On a

$$\mathbb{P}(|X_n - X| \ge \varepsilon) \le \frac{\mathbb{E}[|X_n - X|^p]}{\varepsilon^p} \xrightarrow[n \to \infty]{} 0.$$

Donc
$$X_n \xrightarrow{\mathbb{P}} X$$
.

Exemple Réciproque fausse. On se fixe $p \in [1, +\infty[$ et on modifie l'exemple précédent en définissant la suite $(X_n)_{n\geq 1}$ via

$$\mathbb{P}(X_n = n^{\frac{1}{p}}) = \frac{1}{n}, \text{ et } \mathbb{P}(X_n = 0) = 1 - \frac{1}{n}.$$

Soit $\varepsilon > 0$. Alors

$$\mathbb{P}(|X_n| \ge \varepsilon) \le \frac{1}{n} \longrightarrow 0.$$

Donc $X_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$. Par ailleurs

 $\mathbb{E}[|X_n|^p] = \left(n^{\frac{1}{p}}\right)^p \times \frac{1}{n} + 0^p \times \left(1 - \frac{1}{n}\right)$

Donc $X_n \xrightarrow[n \to \infty]{\mathcal{L}_p^p} 0$. Cependant, si q < p, alors

 $\mathbb{E}[|X_n|^q] = n^{\frac{q}{p}} \times \frac{1}{n} + 0^q \times \left(1 - \frac{1}{n}\right)$ $= n^{\frac{q}{p} - 1} \underset{n \to \infty}{\longrightarrow} 0.$

Donc $X_n \xrightarrow[n \to \infty]{\mathcal{L}^p} 0$ pour q < p.

Remarque.

- 1. Si $X_n \xrightarrow[n \to \infty]{\mathcal{L}^p} X$, alors il existe une suite extraite $(n_k)_{k \ge 1}$ telle que $X_{n_k} \xrightarrow[n \to \infty]{\text{p.s.}} X$. 2. Si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$ et si $|X_n| \le Y \in \mathcal{L}^p$, alors $X_n \xrightarrow[n \to \infty]{\mathcal{L}^p} X$ (par convergence dominée). 3. Si $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ alors il existe une suite extraite $(n_k)_{k \ge 1}$ telle que $X_{n_k} \xrightarrow[n \to \infty]{\text{p.s.}} X$.

- 4. Si $X_n \xrightarrow[n \to \infty]{\mathbb{P}} X$ et s'il existe M > 0 tel que $\mathbb{E}[|X_n|^p] \le M$, alors $X_n \xrightarrow[n \to \infty]{\mathcal{L}^q} X$ pour $q \in [1, p[$.

2 Loi forte des grands nombres

2.1 Le résultat

Théorème Loi forte des grands nombres. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles i.i.d. dans $\mathcal{L}^1(\Omega, \mathscr{F}, \mathbb{P})$. Alors

$$\overline{X_n} = \frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[X_1].$$

Remarque.

1. Si les X_n sont des variables aléatoires positives d'espérance infinie ($\mathbb{E}[X_1] = +\infty$), alors le théorème reste vrai au sens suivant :

$$\frac{X_1+\cdots+X_n}{n}\underset{n\to\infty}{\overset{\mathrm{p.s.}}{\longrightarrow}}+\infty.$$

2. La convergence est également vérifiée dans $\mathcal{L}^1(\Omega, \mathscr{F}, \mathbb{P})$:

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{\mathcal{L}^p} \mathbb{E}[X_1].$$

 $D\'{e}monstration.$

 \rhd Posons $S_n=X_1+\cdots+X_n$ et $S_0=0.$ Considérons $a\geq \mathbb{E}[X_1]$

⊳ Idée : on va montrer que

$$S_n - na \le M < +\infty$$
 p.s.

pour un certain M. Si c'est vrai, alors

$$\frac{S_n}{n} \le a + \frac{M}{n}$$
 p.s.

et donc

$$\left(\limsup_{n\to\infty}\frac{S_n}{n}\right) \le a \quad \text{p.s.}$$

et on conclut en faisant tendre a vers $\mathbb{E}[X_1]$.

▷ On pose

$$M_n = \max_{k=0,\ldots,n} (S_k - ka) = \max(0, X_1 - a, X_1 - a + X_2 - a, \ldots, (X_1 - a) + \cdots + (X_n - a)).$$

La suite $(M_n)_{n>0}$ est positive et croissante, donc elle converge presque sûrement vers

$$M = \sup_{n \ge 0} (S_n - na) \in [0, +\infty].$$

 \triangleright Étape 1 : montrons que $\mathbb{P}(M = \infty) \in \{0, 1\}$

Pour $k \ge 1$, on écrit

$$\{M = \infty\} = \left\{ \sup_{n \ge 0} (X_1 + \dots + X_n - na) = +\infty \right\}$$
$$= \left\{ \sup_{n \ge k} (X_k + \dots + X_n - na) = +\infty \right\}$$

Ce dernier événement dépend uniquement de X_k, X_{k+1}, \ldots Donc il appartient à $\overline{\mathscr{F}_k}\sigma(X_k, X_{k+1}, \ldots)$. Céci étant vrai pour tout $k \geq 1$, on en déduit que

$$\{M=\infty\}\in\bigcap_{k>1}\overline{\mathscr{F}_k}=\mathscr{F}_\infty.$$

Les X_n étant indépendantes, la loi du 0–1 de Kolmogorov assure que $\mathbb{P}(M=\infty) \in \{0,1\}$.

 \triangleright Étape 2 : montrons que $\mathbb{P}(M = \infty) = 0$

On pose $S'_n = X_2 + \dots + X_{n+1}, n \ge 1$ et $S'_0 = 0$. Alors

$$M'_n = \max_{k=0,\dots,n} (S'_k - ka) = \max(0, X_2 - a, X_2 - a + X_3 - a, \dots, (X_2 - a) + \dots + (X_{n+1} - a)).$$

On obtient la relation

$$M_{n+1} = \max(0, M'_n + (X_1 - a))$$

= $M'_n - \min(a - X_1, M'_n)$.

Comme avant, la suite $(M'_n)_{n\geq 0}$ est croissante positive donc converge vers $M' = \sup_{n\geq 0} (M'_n - na) \in [0, +\infty]$.

Comme les variables aléatoires X_n sont i.i.d., on en déduit que $(S_n)_{n\geq 0}$ et $(S'_n)_{n\geq 0}$ ont même loi. De même, M_n et M'_n ont même loi et M et M' ont même loi. Alors

$$\mathbb{E}[\min(a - X_1, M'_n)] = \underbrace{\mathbb{E}[M'_n]}_{\mathbb{E}[M_n]} - \mathbb{E}[M_{n+1}] \le 0$$

Or, la suite $Y_n = \min(a - X_1, M'_n)$ converge vers $Y = \min(a - X_1, M')$ et vérifie $|Y_n| \le |a - X_1|$ qui est intégrable.

On en deduit que

$$\mathbb{E}[\min(a - X_1, M')] = \lim_{n \to \infty} \mathbb{E}[\min(a - X_1, M'_n)] \le 0.$$

Si on suppose que $\mathbb{P}(M = \infty) = 1$, alors $\mathbb{P}(M' = \infty = 1)$ (de même loi) et donc $\mathbb{E}[\min(a - X_1, M')] = \mathbb{E}[a - X_1]$, ce qui donne $a \leq \mathbb{E}[X_1]$, ce qui est exclu. Donc $\mathbb{P}(M = \infty) = 0$, c'est-à-dire que M est fini presque sûrement.

Comme $M = \sup_{n>0} (S_n - na)$, on obtient pour tout $n \ge 0$,

$$S_n - na \le M$$
$$\frac{S_n}{n} \le a + \frac{M}{n}$$

Par suite, comme M est fini p.s., on obtient

$$\mathbb{P}\left(\left(\limsup_{n\to\infty}\frac{S_n}{n}\right)\leq a\right)=1.$$

On en déduit que

$$\mathbb{P}\left(\left(\limsup_{n\to\infty}\frac{S_n}{n}\right)\leq \mathbb{E}[X_1]\right) = \mathbb{P}\left(\bigcap_{\substack{a>\mathbb{E}[X_1]\\a\in\mathbb{Q}}}\left\{\left(\limsup_{n\to\infty}\frac{S_n}{n}\right)\leq a\right\}\right)$$

$$\stackrel{\text{decroissance}}{\underset{n\to\infty}{\text{monotone}}} = \lim_{\substack{a>\mathbb{E}[X_1]\\a\in\mathbb{Q}}}\mathbb{P}\left(\left(\limsup_{n\to\infty}\frac{S_n}{n}\right)\leq a\right)$$

$$= 1.$$

En faisant de même avec $-X_n$, on obtient

$$\mathbb{P}\left(\left(\liminf_{n\to\infty}\frac{S_n}{n}\right)\geq \mathbb{E}[X_1]\right)=1.$$

Ceci prouve que

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{n}=\liminf_{n\to\infty}\frac{S_n}{n}=\mathbb{E}[X_1]\right)=1.$$

donc

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}[X_1]\right)=1.$$

2.2 Applications

Marche aléatoire non centrée

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelle i.i.d. intégrables. On pose $S_n = X_1 + \cdots + X_n$. On appelle souvent $(S_n)_{n\geq 1}$ une marche aléatoire.

Exemple. On considère $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles i.i.d. comme suit :

Dans le cas général, supposons que $\mathbb{E}[X_1] \neq 0$. La loi forte des grands nombres donne alors

$$\frac{S_n}{n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[X_1]$$

donc

$$\left|\frac{S_n}{n}\right| \xrightarrow[n \to \infty]{\text{p.s.}} + \infty, \qquad \left(\mathbb{P}\left(\left|S_n\right| \xrightarrow[n \to \infty]{} + \infty\right) = 1\right).$$

Approximation d'intégrales

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction intégrable. On souhaite calculer

$$\int_0^1 f(x) \, d\lambda_1(x).$$

Souvent, on ne sait pas faire donc on cherche une valeur approchée. Soient U_1, \ldots, U_n des variables aléatoires indépendantes de loi uniforme sur [0,1]. Alors, les variables aléatoires $f(U_1), \ldots, f(U_n)$ sont i.i.d. et intégrables donc la loi forte des grands nombres donne

$$\frac{f(U_1) + \dots + f(U_n)}{n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[f(U_1)] = \int_0^1 f(x) \, d\lambda_1(x).$$

 \triangleright Avantages de la méthode : aucune hypothèse de régularité sur f et extensible au cas $f : \mathbb{R}^d \to \mathbb{R}$ (en considérant U_1, \ldots, U_n uniformes sur $[0,1]^d$).

 \triangleright Inconvénient : convergence lente (en \sqrt{n}).

Cette méthode est appelée méthode de Monte-Carlo.

Chapitre 4 — Convergence en loi et théorème central limite

Contexte

On a vu que si $(X_n)_{n\in\mathbb{N}}$ était une suite i.i.d. de variables aléatoires réelles intégrables, alors

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[X_1]$$

Question

Que dire de l'écart entre $\frac{X_1+\cdots+X_n}{n}$ et $\mathbb{E}[X_1]$?

1 Convergence en loi

Notation

Dans cette section, $C_b^0(\mathbb{R})$ l'ensemble des fonctions $h:\mathbb{R}\to\mathbb{R}$ continues bornées munies de la norme

$$||h||_{\infty} = \sup_{x \in \mathbb{R}} |h(x)|$$

1.1 Définition et premiers exemples

Définition 1.2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles et X une variable aléatoire réelle. On dit que $(X_n)_{n\geq 1}$ converge en loi vers X si pour tout $h\in C_b^0(\mathbb{R})$, on a

$$\mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$$

On note alors

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$$

ou bien

$$X_n \xrightarrow[n \to \infty]{(\mathcal{D})} X$$

Remarque.

- 1. On peut étendre cette définition à des vecteurs aléatoires en prenant des fonctions $h: \mathbb{R}^d \to \mathbb{R}$ continues bornées.
- 2. Cette notion de convergence ne fait intervenir que la loi des variables aléatoires considérées. Dans la limite, on peut donc remplacer X par n'importe quelle variable aléatoire Y de même loi.

Si μ désigne la loi de X, on notera alors

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} \mu$$

Exemple. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires telles que pour tout $n\geq 1,$ X_n suit une loi uniforme sur $\left\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n},1\right\}$.

$\frac{1}{2}$				$\frac{1}{2}$
0				1
0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	1
0	$\frac{1}{3}$		$\frac{2}{3}$	1

La loi de X_n est donnée par

$$\mathbb{P}(X_n = k) = \frac{1}{n+1}$$
 pour $k = 0, 1, ..., n$

Soit $h \in C_b^0(\mathbb{R})$. On a

$$\mathbb{E}[h(X_n)] = \sum_{k=0}^{n} h\left(\frac{k}{n}\right) \frac{1}{n+1}$$
$$= \frac{1}{n+1} \sum_{k=0}^{n} h\left(\frac{k}{n}\right)$$
$$\xrightarrow{n \to \infty} \int_{0}^{1} h(x) dx$$

par convergence des sommes de Riemann. On considère une variable aléatoire X suivant une loi uniforme sur [0,1]. On a alors

$$\mathbb{E}[h(X)] = \int_0^1 h(x) \, dx$$

Donc pour tout $h \in C_b^0(\mathbb{R})$, on a

$$\mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$$

et donc

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$$

Pkus simplement, on écrit

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} \mathcal{U}([0,1])$$

Exemple. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires telle que $X_n \sim \mathcal{N}(0, \sigma_n^2)$ avec $\sigma_n > 0$ et $\sigma_n \underset{n\to\infty}{\longrightarrow} 0$. On a alors

$$\mathbb{E}[h(X_n)] = \int_{\mathbb{R}} h(x) \frac{e^{-\frac{x^2}{2\sigma_n^2}}}{\sqrt{2\pi}\sigma_n} dx$$

$$y = \frac{x}{\sigma_n} = \int_{\mathbb{R}} \underbrace{h(\sigma_n y) \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}}_{g_n(y) \longrightarrow h(0) \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}} dy$$

Comme $|g_n(y)| \le ||h||_{\infty} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}$, on applique le théorème de convergence dominée pour obtenir

$$\mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} h(0) \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy = h(0)$$

Soit X de loi δ_n . On a montré que pour tout $h \in C_b^0(\mathbb{R})$,

$$\mathbb{E}[h(X_n)] \underset{n \to \infty}{\longrightarrow} \mathbb{E}[h(X)] = h(0)$$

donc

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$$

ce qu'on réécrit

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} \delta_0$$

1.3 Deux cas particuliers

1.3.1 Loi sur \mathbb{N}

Proposition. Une suite de variables aléatoires $(X_n)_{n\geq 1}$ converge vers une variable aléatoire X à valeurs dans $\mathbb N$ si et seulement si pour tout $k\in \mathbb N$, on a

$$\mathbb{P}(X_n = k) \xrightarrow[n \to \infty]{} \mathbb{P}(X = k)$$

Démonstration.

▷ Sens direct :

Supposons que $X_n \xrightarrow{(\mathcal{L})} X$. Soit $k \in \mathbb{N}$. On sait que pour tout $h \in C_b^0(\mathbb{R})$, on a

$$\mathbb{E}[h(X_n)] = \sum_{j=0}^{+\infty} h(j)\mathbb{P}(X_n = j)$$

$$\underset{n \to \infty}{\longrightarrow} \mathbb{E}[h(X)]$$

$$= \sum_{j=0}^{+\infty} h(j)\mathbb{P}(X = j)$$

On prend alors h telle que h(k) = 1 et h(j) = 0 pour $j \neq k$. Ainsi,

$$\mathbb{E}[h(X_n)] = \sum_{j=0}^{+\infty} h(j)\mathbb{P}(X_n = j) = \mathbb{P}(X_n = k)$$

et de même pour X, donc

$$\mathbb{P}(X_n = k) \xrightarrow[n \to \infty]{} \mathbb{P}(X = k)$$

▶ Réciproque vue plus tard.

.: - 1-1 -

Exemple. Approximation binomiale de la loi de Poisson. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires de loi $X_n \sim \mathcal{B}(n, p_n)$ avec $np_n \xrightarrow[n\to\infty]{} \theta > 0$. Montrons que $X_n \xrightarrow[n\to\infty]{} X$ où $X \sim \mathcal{P}(\theta)$. Soit $k \in \mathbb{N}$. On a

$$\mathbb{P}(X_n = k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$= \frac{n!}{k!(n-k)!} p_n^k (1 - p_n)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{p_n}{1-p_n}\right)^k (1-p_n)^n$$

$$\xrightarrow[n \to \infty]{} \frac{\theta^k}{k!} e^{-\theta}$$

Bref, on obtient

$$\mathbb{P}(X_n = k) \xrightarrow[n \to \infty]{} \frac{\theta^k}{k!} e^{-\theta} = \mathbb{P}(X = k)$$

donc

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$$

ou encore

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} \mathcal{P}(\theta)$$

1.3.2 Loi à densité sur $\mathbb R$

Proposition. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires telles que X_n a pour densité f_n et X une variable aléatoire de densité f. Si

$$f_n \xrightarrow[n \to \infty]{} f$$
, λ -p.p.

alors

$$X_n \xrightarrow[n \to \infty]{(\mathscr{L})} X$$

Démonstration. On veut montrer que pour tout $h \in C_b^0(\mathbb{R})$, on a

$$\mathbb{E}[h(X_n)] = \int_{\mathbb{R}} h(x) f_n(x) d\lambda_1(x)$$

$$\xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$$

$$= \int_{\mathbb{R}} h(x) f(x) d\lambda_1(x)$$

le théorème de convergence dominée ne s'applique pas.

On applique le lemme de Fatou à la suite de fonctions positives mesurables

$$g_n(x) = \min(f_n(x), f(x)) = \frac{f_n(x) + f(x) - |f_n(x) - f(x)|}{2}$$

On a

$$\int_{\mathbb{R}} \liminf_{n \to +\infty} g_n(x) \, d\lambda_1(x) \le \liminf_{n \to +\infty} \int_{\mathbb{R}} g_n(x) \, d\lambda_1(x)$$

Par ailleurs, on a

$$\int_{\mathbb{R}} g_n(x) d\lambda_1(x) = \frac{1}{2} \int_{\mathbb{R}} f_n(x) d\lambda_1(x) + \frac{1}{2} \int_{\mathbb{R}} f(x) d\lambda_1(x) - \frac{1}{2} \int_{\mathbb{R}} |f_n(x) - f(x)| d\lambda_1(x)$$

$$= 1 - \frac{1}{2} \int_{\mathbb{R}} |f_n(x) - f(x)| d\lambda_1(x)$$

Bref, on a

$$0 \le \liminf_{n \to +\infty} \int_{\mathbb{R}} |f_n(x) - f(x)| \, d\lambda_1(x)$$

Ainsi, on a

$$\limsup_{n \to +\infty} \int_{\mathbb{R}} |f_n(x) - f(x)| d\lambda_1(x) \le 0$$

et donc

$$\lim_{n\to+\infty}\int_{\mathbb{R}}|f_n(x)-f(x)|\,d\lambda_1(x)=0$$

Par suite, on en déduit que

$$|\mathbb{E}[h(X_n)] - \mathbb{E}[h(X)]| \le ||h||_{\infty} \int_{\mathbb{R}} |f_n(x) - f(x)| \, d\lambda_1(x) \underset{n \to \infty}{\longrightarrow} 0$$

Exemple. Si $X \sim E(\theta_n)$ avec $\theta_n \xrightarrow[n \to \infty]{} \theta$, alors les densités de X_n vérifient

$$f_n(x) = \theta_n e^{-\theta_n x} \xrightarrow[n \to \infty]{} \theta e^{-\theta x} = f(x)$$

où f est la densité d'une loi exponentielle de paramètre θ . Donc

$$X_n \xrightarrow[n \to \infty]{(\mathscr{L})} \mathcal{E}(\theta)$$

1.4 Lien avec les autres modes de convergence

Proposition. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires et X une variable aléatoire. Alors

$$X_n \xrightarrow[n \to \infty]{\mathbb{P}} X \implies X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$$

Démonstration. Soit $h \in C_b^0(\mathbb{R})$ et $\varepsilon > 0$. On a

$$\underbrace{\left|\mathbb{E}[h(X_n)] - \mathbb{E}[h(X)]\right|}_{=\alpha} \leq \mathbb{E}[|h(X_n) - h(X)|]$$

οù

$$\alpha = \mathbb{E}[|h(X_n) - h(X)| \mathbb{1}_{|h(X_n) - h(X)| \ge \varepsilon}]$$
 (1)
+ $\mathbb{E}[|h(X_n) - h(X)| \mathbb{1}_{|h(X_n) - h(X)| < \varepsilon}]$ (2)

On a alors

$$(1) \leq \mathbb{E}[(|h(X_n)| + |h(X)|) \mathbb{1}_{|h(X_n) - h(X)| \geq \varepsilon}]$$

$$\leq 2||h||_{\infty} \underbrace{\mathbb{P}(|h(X_n) - h(X)| \geq \varepsilon)}_{\leq \varepsilon}$$

 $\operatorname{car} h(X_n) \xrightarrow[n \to \infty]{\mathbb{P}} h(X)$. De même,

$$(2) \le \mathbb{E}[\varepsilon \mathbb{1}_{|h(X_n) - h(X)| < \varepsilon}] \le \varepsilon$$

Bref, on a

$$|\mathbb{E}[h(X_n)] - \mathbb{E}[h(X)]| \le \varepsilon (1 + 2||h||_{\infty})$$

donc
$$\mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$$
, donc $X_n \xrightarrow[n \to \infty]{} X$.

Exemple Réciproque fausse. On prend

$$X \sim \mathcal{B}\left(\frac{1}{2}\right), \quad X_n = X \quad \text{pour tout } n \ge 1$$

Alors, on a bien $X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$.

Remarquons que $Y = 1 - X \sim \mathcal{B}\left(\frac{1}{2}\right)$ donc on a ausse $X_n \xrightarrow[n \to \infty]{(\mathcal{L})} Y$ (ce qu'on écrit $X_n \xrightarrow[n \to \infty]{(\mathcal{L})} \mathcal{B}\left(\frac{1}{2}\right)$).

$$|X_n - Y| = |X - (1 - X)| = |2X - 1| = 1$$

et donc $(X_n)_{n\geq 1}$ ne converge pas en probabilité vers Y.

Proposition. Si $X_n \xrightarrow[n \to \infty]{(\mathcal{L})} c$ où c est une constante, alors $X_n \xrightarrow[n \to \infty]{\mathbb{P}} c$.

 $D\acute{e}monstration$. Soit $\varepsilon > 0$. On a

$$\mathbb{P}(|X_n - c| \ge \varepsilon) = \mathbb{E}[\mathbb{1}_{|X_n - c| \ge \varepsilon}]$$

$$\le \mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(c)] = 0$$

pour un h judicieusement choisi.

On choisit alors $h(x) = \min(1, \frac{|x-c|}{\varepsilon}).$ On a

2 Caractérisation de la convergence en loi

2.1 Restriction des fonctions tests

Notation

On note $\mathcal{C}^0_C(\mathbb{R})$ l'ensemble des fonctions continues à support compact. Cet ensemble est dense pour la norme $\|\cdot\|_{\infty}$ dans $C^0_b(\mathbb{R})$.

Proposition. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles et X une variable aléatoire réelle. Alors,

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X \iff \forall h \in \mathcal{C}_C^0(\mathbb{R}), \quad \mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$$

De plus, si H est un ensemble de fonctions mesurables bornées tel que $\mathcal{C}^0_C(\mathbb{R}) \subset \overline{H}$ (adhérence de H pour la norme $\|\cdot\|_{\infty}$), et si $\forall h \in H$, $\mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$, alors $X_n \xrightarrow[n \to \infty]{} X$.

Démonstration. On montre l'équivalence.

▷ Sens direct : evident.

 \triangleright Sens indirect :

Soit $h \in C_b^0(\mathbb{R})$. Soit g_k la fonction dans $\mathcal{C}_C^0(\mathbb{R})$ définie par On obtient que $g_k \longrightarrow 1$ et donc $h_{g_k} \in \mathcal{C}_C^0(\mathbb{R})$ vérifie $h_{g_k} \longrightarrow h$. En particulier, pour tout $k \ge 1$,

$$\mathbb{E}[h_{g_k}(X_n)] \underset{n \to \infty}{\longrightarrow} \mathbb{E}[h_{g_k}(X)]$$

On écrit

$$|\mathbb{E}[h(X_n) - h(X)]| \leq |\underbrace{\mathbb{E}[h(X_n) - h_{g_k}(X_n)]|}_{(1)} + \underbrace{|\mathbb{E}[h_{g_k}(X_n) - h_{g_k}(X)]|}_{(2)} + \underbrace{|\mathbb{E}[h_{g_k}(X) - h(X)]|}_{(3)}$$

On a alors

(2) $\leq \varepsilon$ pour n assez grand car $h_{g_k} \in \mathcal{C}_C^0(\mathbb{R})$,

(1)
$$\leq \mathbb{E}[|h - h_{g_k}|(X_n)] \leq \mathbb{E}[\|h - h_{g_k}\|_{\infty}] = \|h - h_{g_k}\|_{\infty} \longrightarrow 0,$$

$$(3) \leq \mathbb{E}[|h - h_{g_k}|(X)] \leq ||h - h_{g_k}||_{\infty} \longrightarrow 0.$$

Pour le deuxième, on utilise la même technique en prenant $h \in \mathcal{C}^0_C(\mathbb{R})$ et $g_k \in H$ telle que $g_k \longrightarrow h$ pour $\|\cdot\|_{\infty}$

Application

Preuve de

$$\mathbb{P}(X_n = k) \xrightarrow[n \to \infty]{} \mathbb{P}(X = k) \implies X_n \xrightarrow[n \to \infty]{} X$$

pour X_n et X des variables aléatoires à valeurs dans \mathbb{N} .

(cf. proposition de la section 1.2.1)

Soit $h \in \mathcal{C}_C^0(\mathbb{R})$; h est nulle en dehors de [-K, K]. Alors

$$\mathbb{E}[h(X_n)] = \sum_{k=0}^{+\infty} h(k) \mathbb{P}(X_n = k)$$

$$= \sum_{k=0}^{\lfloor K \rfloor} h(k) \mathbb{P}(X_n = k)$$

$$\underset{n \to \infty}{\longrightarrow} \sum_{k=0}^{\lfloor K \rfloor} h(k) \mathbb{P}(X = k)$$

$$= \mathbb{E}[h(X)]$$

et donc $X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X$.

2.2 Caractérisation via la fonction de répartition et la fonction caractéristique Rappel

Si X est une variable aléatoire réelle, sa fonction de répartition F_X est définie par

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{E}[\mathbb{1}_{]-\infty,t]}(X)$$

On sait que F_X est continue à droite et que

$$\mathbb{P}(X = t) = F_X(t) - \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} F_X(t - \varepsilon)$$

donc F_X est continue en t si et seulement si $\mathbb{P}(X = t) = 0$.

Proposition. $(X_n)_{n\geq 1}$ converge en loi vers une variable aléatoire X si et seulement si pour tout point de continuité t de F_X , on a

$$F_{X_n}(t) \underset{n \to \infty}{\longrightarrow} F_X(t)$$

Démonstration. Dans les grandes lignes, on a

▷ Sens direct :

Supposons

$$\mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)]$$

Ob va approcher $\mathbbm{1}_{]-\infty,t]}$ par une fonction continue bornée h :

On sait qu'il y a convergence de $\mathbb{E}[h(X_n)]$ vers $\mathbb{E}[h(X)]$ donc par encadrement il y a convergence de $\mathbb{E}[\mathbb{1}_{]-\infty,t]}(X_n)$ vers $\mathbb{E}[\mathbb{1}_{]-\infty,t]}(X)$

 \triangleright Sens indirect :

On note D l'ensemble des points de discontinuité de ${\cal F}_X$ et on définit

$$H = \{\mathbb{1}_{\lceil a,b \rceil}, a < b, a, b \in \mathbb{R} \setminus D\}$$

On montre que

- $-- \forall h \in H, \mathbb{E}[h(X_n)] \xrightarrow[n \to \infty]{} \mathbb{E}[h(X)],$
- $-\mathcal{C}_C^0(\mathbb{R}) \subset \overline{H}.$

et on applique la proposition précédente.

Théorème de Lévy. On a

$$X_n \xrightarrow[n \to \infty]{(\mathcal{L})} X \iff \forall t \in \mathbb{R}, \quad \varphi_{X_n}(t) \xrightarrow[n \to \infty]{} \varphi_X(t)$$

 $D\acute{e}monstration$. admise, elle s'appuie sur l'injectivité de la transformée de Fourier de mesures. \Box

3 Théorème central limite

Rappel

Si $(X_n)_{n\geq 1}$ est une suite de variables aléatoires i.i.d. dans $L^1(\Omega, \mathscr{F}, \mathbb{P})$, alors la loi forte des grands nombres assure que

$$\overline{X_n} = \frac{X_1 + \dots + X_n}{n} = \frac{S_n}{n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[X_1]$$

Que dire alors de l'écart entre S_n et $n\mathbb{E}[X_1]$?

Théorème central limite. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles i.i.d. dans

 $L^2(\Omega, \mathcal{F}, \mathbb{P}).$ On suppose que $\sigma^2 = \mathsf{Var}(X_1) > 0.$ Alors

$$\frac{S_n - n\mathbb{E}[X_1]}{\sigma\sqrt{n}} \xrightarrow[n \to \infty]{(\mathscr{L})} \mathcal{N}(0,1)$$

Remarque.

1. Pour se souvenir de la normalisation, il suffit de penser à centrer et réduire S_n avec

$$\mathbb{E}[S_n] = n\mathbb{E}[X_1]$$

$$Var(S_n) = n Var(X_1) = n\sigma^2$$

2. On peut réécrire la convergence de diverses façons :

$$\frac{S_n - n\mathbb{E}[X_1]}{\sqrt{n}} \xrightarrow[n \to \infty]{(\mathscr{L})} \mathcal{N}(0, \sigma^2)$$

$$\frac{\overline{X_n} - \mathbb{E}[X_1]}{\xrightarrow[n \to \infty]{\sigma}} \mathcal{N}(0, 1)$$

3. La caractérisation de la convergence en loi via les fonctions de répartition donne :

$$\forall x \in \mathbb{R}, \quad \mathbb{P}\left(\frac{S_n - n\mathbb{E}[X_1]}{\sigma\sqrt{n}} \le x\right) \underset{n \to \infty}{\longrightarrow} \mathbb{P}(N \le x) = \int_{-\infty}^x \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$$

avec $N \sim \mathcal{N}(0,1)$.

Plus généralement, si a < b, alors

$$\mathbb{P}\left(a \le \frac{S_n - n\mathbb{E}[X_1]}{\sigma\sqrt{n}} \le b\right) \xrightarrow[n \to \infty]{} \int_a^b \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$$

On notera parfois

$$\Phi(x) = \int_{-\infty}^{x} \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt = \mathbb{P}(N \le x)$$

Démonstration. On montre la convergence en loi via les fonctions caractéristiques. On suppose, quitte à remplacer X_k par $X_k - \mathbb{E}[X_1]$, que les X_k sont centrées. Montrons que

$$\frac{S_n}{\sigma\sqrt{n}} \xrightarrow[n \to \infty]{(\mathcal{L})} \mathcal{N}(0,1)$$

Montrons que

$$\varphi_{\frac{S_n}{\sigma\sqrt{n}}}(t) \xrightarrow[n\to\infty]{} \varphi_N(t) = e^{-\frac{t^2}{2}}$$

pour tout $t \in \mathbb{R}$. On a

$$\begin{split} \varphi_{\frac{S_n}{\sigma\sqrt{n}}}(t) &= \mathbb{E}[e^{it\frac{S_n}{\sigma\sqrt{n}}}] \\ &= \mathbb{E}[e^{it\frac{X_1 + \dots + X_n}{\sigma\sqrt{n}}}] \\ &= \mathbb{E}[e^{it\frac{X_1}{\sigma\sqrt{n}}} \cdots e^{it\frac{X_n}{\sigma\sqrt{n}}}] \\ &= \mathbb{E}[e^{it\frac{X_1}{\sigma\sqrt{n}}}] \cdots \mathbb{E}[e^{it\frac{X_n}{\sigma\sqrt{n}}}] \\ &= \mathbb{E}[^{\exists \approx \frac{X_{\mathbb{K}}}{\sigma\sqrt{\mathbb{K}}}}]^n \\ &= \mathbb{E}[^{\exists \approx \frac{X_{\mathbb{K}}}{\sigma\sqrt{\mathbb{K}}}}]^n \end{split}$$

Comme les X_k sont dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$, φ_{X_1} est dans $\mathscr{C}^2(\mathbb{R}, \mathbb{C})$ avec

$$\varphi'_{X_1}(0) = i\mathbb{E}[X_1] = 0,$$

 $\varphi''_{X_1}(0) = -\mathbb{E}[X_1^2] = -\sigma^2$

Un développement limité en 0 de φ_{X_1} donne

$$\varphi_{X_1}(x) = \varphi_{X_1}(0) + x\varphi'_{X_1}(0) + \frac{x^2}{2}\varphi''_{X_1}(0) + o(x^2)$$

On en déduit que

$$\varphi_{\frac{S_n}{\sigma\sqrt{n}}}(t) = \varphi_{X_1} \left(\frac{t}{\sigma\sqrt{n}}\right)^n$$

$$= \left(1 - \frac{t^2}{2n\sigma^2}\sigma^2 + o\left(\frac{t^2}{n}\right)\right)^n$$

$$\xrightarrow{n \to \infty} e^{-\frac{t^2}{2}}$$

Exemple. Soient $X_1 \dots, X_n$ des variables aléatoires i.i.d. de loi $\mathcal{B}\left(\frac{1}{2}\right)$. On pose $S_n = X_1 + \dots + X_n$. Ici, on a

$$\mathbb{E}[X_1] = \frac{1}{2}$$

$$Var(X_1) = \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{4}$$

le théorème central limite donne

$$2\sqrt{n}\left(\frac{S_n}{n} - \frac{1}{2}\right) \xrightarrow[n \to \infty]{(\mathscr{L})} \mathcal{N}(0,1)$$

Application à la statistique

 \triangleright Contexte général : On dispose de données x_1, \ldots, x_n que l'on suppose provenir des variables aléatoires X_1, \ldots, X_n , supposées i.i.d.. Cela signifie que $x_1 = X_1(\omega), \ldots, x_n = X_n(\omega)$ pour un certain $\omega \in \Omega$.

Si on souhaite estimer la quantité $\mu = \mathbb{E}[X_1]$, qui est inconnue, on va considérer l'estimateur

$$\overline{X_n} = \frac{X_1 + \dots + X_n}{n}$$

On sait d'après la loi forte des grands nombres que

$$\overline{X_n} \xrightarrow[n \to \infty]{\text{p.s.}} \mu$$

Si on suppose que les X_k sont dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$, alors le théorème central limite assure que

$$\sqrt{n} \frac{\overline{X_n} - \mu}{\sigma} \xrightarrow[n \to \infty]{(\mathscr{L})} \mathcal{N}(0, 1)$$

où $\sigma^2 = \text{Var}(X_1)$.

Plus spécifiquement, pour t > 0,

$$\mathbb{P}(\left|\overline{X_n} - \mu\right| \ge \frac{\sigma t}{\sqrt{n}}) = \mathbb{P}\left(\sqrt{n} \left| \frac{\overline{X_n} - \mu}{\sigma} \right| \ge t\right)$$

$$\underset{n \to \infty}{\longrightarrow} \mathbb{P}(|N| \ge t)$$

où
$$N \sim \mathcal{N}(0,1)$$
.
Or, on a

$$\mathbb{P}(|N| \ge t) = \mathbb{P}(N \le -t) + \mathbb{P}(N \ge t)$$

$$= 2\mathbb{P}(N \ge t)$$

$$= 2(1 - \mathbb{P}(N \le t))$$

$$= 2(1 - \Phi(t))$$

Si on souhaite avoir $\mathbb{P}(|N| \ge t) = 0.05$, alors la table de la loi normale standard donne $t \approx 1.96$. Donc, avec cette valeur, on obtient

$$\mathbb{P}\left(\left|\overline{X_n} - \mu\right| \le \frac{1.96\sigma}{\sqrt{n}}\right) \underset{n \to \infty}{\longrightarrow} 1 - 0.05 = 0.95$$

c'est-à-dire.

$$\mathbb{P}\left(\overline{X_n} - \frac{1.96\sigma}{\sqrt{n}} \le \mu \le \overline{X_n} + \frac{1.96\sigma}{\sqrt{n}}\right) \xrightarrow[n \to \infty]{} 0.95$$

Ainsi, il y a asymptotiquement 95% de chances que le paramètre inconnu μ soit dans l'intervalle

$$\left[\overline{X_n} - \frac{1.96\sigma}{\sqrt{n}}, \overline{X_n} + \frac{1.96\sigma}{\sqrt{n}}\right]$$

Cet intervalle est appelé intervalle de confiance asymptotique de niveau 95% pour μ .

Exemple Les sondages. On considère une élection avec deux candidats A et B. On note p la proportion de votes en faveur de A le jour de l'élection : c'est une quantité inconnue.

Un sondage consiste à interroger n personnes et à noter leur intention de vote (en pratique, on a souvent n = 1000 ou plus). On note X_k la variable aléatoire qui vaut 1 si la k-ième personne interrogée vote pour A et 0 sinon.

Ainsi, les X_k suivent une loi $\mathcal{B}(p)$ et on les suppose indépendantes. A l'issue du sondage, on obtient des données x_1, \ldots, x_n dans $\{0, 1\}$.

On estime la quantité inconnue p par $\overline{X_n}$ et la loi forte des grands nombres assure que

$$\overline{X_n} \xrightarrow[n \to \infty]{\text{p.s.}} \mathbb{E}[X_1] = p$$

Quelle erreur fait-on en assimilant p à $\overline{X_n}$? Le théorème central limite donne

$$\sqrt{n} \frac{\overline{X_n} - p}{\sqrt{p(1-p)}} \xrightarrow[n \to \infty]{(\mathscr{L})} N \sim \mathcal{N}(0,1)$$

ce qui se réécrit

$$\mathbb{P}\left(\sqrt{n}\frac{\left|\overline{X_n}-p\right|}{\sqrt{p(1-p)}} \ge t\right) \underset{n\to\infty}{\longrightarrow} \mathbb{P}(|N| \ge t) = 2\left(1-\Phi(t)\right)$$

En prenant $2(1 - \Phi(t) = 0.05)$, la table de la loi normale standard donne $t \approx 1.96$. On obtient alors

$$\mathbb{P}\left(\sqrt{n}\frac{\left|\overline{X_n} - p\right|}{\sqrt{p(1-p)}} \le 1.96\right) \xrightarrow[n \to \infty]{} 0.95$$

$$\iff \mathbb{P}\left(\overline{X_n} - \frac{1.96\sqrt{p(1-p)}}{\sqrt{n}} \le p \le \overline{X_n} + \frac{1.96\sqrt{p(1-p)}}{\sqrt{n}}\right) \xrightarrow[n \to \infty]{} 0.95$$

Ainsi, asymptotiquement, le paramètre inconnu p se trouve dans l'intervalle

$$\left[\overline{X_n} - \frac{1.96\sqrt{p(1-p)}}{\sqrt{n}}, \overline{X_n} + \frac{1.96\sqrt{p(1-p)}}{\sqrt{n}} \right]$$

avec une probabilité de 95%.

Cet intervalle est inutilisable en pratique car il dépend de p. On majore alors p(1-p) par $\frac{1}{2}$, et on obtient alors l'intervalle de confiance asymptotique de niveau 95% suivant :

$$I_c = \left[\overline{X_n} - \frac{0.98}{\sqrt{n}}, \overline{X_n} + \frac{0.98}{\sqrt{n}} \right]$$

Avec n = 1000, on obtient $\frac{0.98}{\sqrt{1000}} \approx 0.03$, qui est la marge d'erreur du sondage, ici de 3%.

▷ Question : est-il possible de déterminer un intervalle de confiance non asymptotique ? On souhaite contrôler $\mathbb{P}(|\overline{X_n} - p| \ge t)$.

D'après Bienaymé-Tchebychev, on peut écrire

$$\mathbb{P}\left(\left|\overline{X_n} - p\right| \ge t\right) \le \frac{\mathsf{Var}(\overline{X_n})}{t^2} = \frac{p(1-p)}{nt^2} \le \frac{1}{4nt^2}$$

où on utilise l'inégalité $p(1-p) \le \frac{1}{4}$. En prenant $\frac{1}{4nt^2} = 0.05$, on obtient $t = \frac{1}{2\sqrt{0.05n}} = \frac{2.24}{\sqrt{n}}$. Ainsi, on obtient

$$\mathbb{P}\left(\left|\overline{X_n} - p\right| \le \frac{2.24}{\sqrt{n}}\right) \ge 0.95.$$

On a donc un intervalle de confiance non asymptotique de niveau 95% pour p donné par

$$I_c' = \left[\overline{X_n} - \frac{2.24}{\sqrt{n}}, \overline{X_n} + \frac{2.24}{\sqrt{n}}\right]$$

On remarque que I'_c est plus large que I_c , cependant, l'intervalle de confiance I'_c est valable pour tout n, alors que I_c ne l'est que pour n grand.