

LOW VOLTAGE VIDEO AMPLIFIER WITH LPF

■GENERAL DESCRIPTION

The NJM2561 is a Low Voltage Video Amplifier contained LPF circuit. Internal 75 Ω driver is easy to connect TV monitor directly.

The **NJM2561** features low power and small package, and is suitable for low power design on downsizing of DSC and DVC.

■PACKAGE OUTLINE

NJM2561F1

■FEATURES

Operating Voltage2.8 to 5.5V

6dB amplifier

● Internal LPF -33dB at 19MHz typ.

• Internal 75Ω Driver Circuit (2-system drive)

Power Save Circuit

Bipolar Technology

Package Outline MTP6

■BLOCK DIAGRAM

- 1. PowerSave
- 2. Vout
- 3. Vsag
- 4. Vin
- 5. GND
- 6. V +

■ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	7.0	V
Power Dissipation	P_{D}	200	mW
Operating Temperature Range	Topr	-40 to +85	°C
Storage Temperature Range	Tstg	-40 to +125	°C

■ELECTRICAL CHARACTERISTICS (V⁺=3.0V,R_L=150Ω,Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Operating Current	I _{cc}	No Signal	-	8.0	12.0	mA	
Operating Current at Power Save	Isave	No Signal, Power Save Mode	-	30	50	uA	
Maximum Output Voltage Swing	Vom	f=100kHz,THD=1%	2.2	2.5	-	Vp-p	
Voltage Gain	Gv	Vin=100kHz, 1.0Vp-p, Input Sine Signal	6.1	6.5	6.9	dB	
Low Pass Filter Characteristic	Gfy4.5M	Vin=4.5MHz/100kHz, 1.0Vp-p	-0.6	-0.1	0.4	- dB	
	Gfy19M	Vin=19MHz/100kHz, 1.0Vp-p	-	-33	-23		
Differential Gain	DG	Vin=1.0Vp-p, 10step Video Signal	-	0.5	-	%	
Differential Phase	DP	Vin=1.0Vp-p, 10step Video Signal	-	0.5	-	deg	
S/N Ratio	SNv	Vin=1.0Vp-p, R _L =75Ω 100% White Video Signal, 100KHz to 6MHz	-	+60	-	dB	
2nd. Distortion	Hv	Vin=1.0Vp-p, 3.58MHz,Sine Signal, R_L =75 Ω	1	-50	-	dB	
SW Change Voltage High Level	VthPH	Active	1.8	-	V ⁺	V	
SW Change Voltage Low Level	VthPL	PL Non-active		-	0.3		

■CONTROL TERMINAL

PARAMETER	STATUS	NOTE	
Power Save	Н	Power Save: OFF	
	L	Power Save: ON	
	OPEN	Power Save: ON	

■TEST CIRCUIT

■ APPLICATION CIRCUIT (2-system drive)

■ TERMINAL DESCRIPTION

No.	SYMBOL	VOLTAGE	EQUIVALENT CIRCUIT
1	Power Save	-	Power save $32K\Omega$ $48K\Omega$
2	Vout	0.33V	Vout V
3	Vsag	-	750Ω Vsag
4	Vin	1.10V	V^+
5	GND	-	
6	V ⁺	3V	

TYPICAL CHARACTERISTICS

Voltage Gain vs. Frequency

[CAUTION]

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.