Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 10, 2019

Statistical and computational methods for bioinformatics and social network analysis

- ▶ We live in a non-*IID* world.
- ► Some times, looking the whole helps understanding the parts.
- ▶ We have the computational tools to do such.

Contents

Keck School of Medicine of USC

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Contents

Keck School of Medicine of USC

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

What are Exponential Random Graph Models

Keck School of Medicine of USC

Exponential Family Random Graph Models, aka ERGMs are:

What are Exponential Random Graph Models

Keck School of Medicine of USC

Exponential Family Random Graph Models, aka ERGMs are:

► Statistical models of (social) networks

Exponential Family Random Graph Models, aka ERGMs are:

- ► Statistical models of (social) networks
- ▶ In simple terms: statistical inference on what network patterns/structures/motifs govern social networks

A vector of model parameters

A vector of sufficient statistics

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \theta, \mathbf{X}\right) = \frac{\exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$
All positive of the normalizing

constant

All possible networks

A vector of

A vector of model parameters sufficient statistics

$$\mathsf{Pr}\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$

$$\mathsf{All possible networks}$$

$$\mathsf{Constant}$$

The normalizing constant has $2^{n(n-1)}$ terms!

ERGMs: State of the Art

Keck School of Medicine of USC Medium-large (dozens to a couple of thousand vertices) networks

- ► Maximum Pseudo Likelihood (MPLE)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- ► Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

What about small networks?

Keck School of Medicine of USC

Keck School of Medicine of USC

We see small networks everywhere

► Families and friends

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ▶ etc.

Keck School of Medicine of USC

From the methodological point of view, current methods are great, but:

Keck School of Medicine of USC

From the methodological point of view, current methods are great, but:

► Possible accuracy issues (error rates)

Keck School of Medicine of USC

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ▶ Prone to degeneracy problems (sampling and existence of MLE)

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ► Prone to degeneracy problems (sampling and existence of MLE)
- ▶ It is not MLE...

Keck School of Medicine of USC

GGVY Stat. Comp. Bioinf & SocNets. 10 / 39

Keck School of Medicine of USC

▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ▶ For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute **the normalizing constant**.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

Figure 1 Random sample of 5 networks simulated using the ergmito package

Figure 1 Random sample of 5 networks simulated using the ergmito package

	Bernoulli	Full model
Edge-count	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59^{*}
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5

Standard errors in parenthesis. *** p < 0.001, ** p < 0.01, * p < 0.05

Table 1 Fitted ERGMitos using the fivenets dataset.

Full model

-1.70**

(0.54)

1.59* (0.64)

Figure 1 Random sample of 5 networks simulated using the ergmito package

AIC	78.38	73.34			
BIC	80.48	77.53			
Log Likelihood	-38.19	-34.67			
Num. networks	5	5			
Standard errors in parenthesis.	***p < 0.001, *	p < 0.01, p < 0.05			
Table 1 Fitted ERGMitos using the fivenets dataset.					

Bernoulli

-0.69*

(0.27)

We performed a large simulation study comparing MC-MLE (ergm) with MLE (ergmito).

Stat. Comp. Bioinf & SocNets.

Edge-count

Homophily (on Gender)

		P(Type I error)		
Sample size	N. Simulations	MC-MLE (ergm)	MLE (ergmito)	χ^2
5	2,189	0.084	0.057	11.71 ***
10	2,330	0.070	0.045	12.46 ***
15	2,395	0.084	0.066	5.55 *
20	2,430	0.074	0.060	3.58
30	2,460	0.057	0.052	0.67
50	2,495	0.046	0.044	0.17
100	2,499	0.048	0.048	0.00

Table 2 Empirical Type I error rates. The χ^2 statistic is from a 2-sample test for equality of proportions, and the significance levels are given by *** p < 0.001, ** p < 0.01, and * p < 0.05. The lack of fitted samples in some levels is due to failure of the estimation method.

Paper 1 Simulation Studies: Elapsed time

Keck School of Medicine of USC

▶ more results

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Next steps

- ► Revisit measurement of goodness-of-fit.
- ► Explore extending this method for (very) large networks.

Contents

Keck School of Medicine of USC

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Genes

How we organize the information about genes (according to the Gene Ontology Project)

How we organize the information about genes (according to the Gene Ontology Project)

Molecular function

Active transport GO:0005215

How we organize the information about genes (according to the Gene Ontology Project)

Molecular function

Active transport GO:0005215

Cellular component

Mitochondria GO:0004016

How we organize the information about genes (according to the Gene Ontology Project)

Molecular function Active transport GO:0005215

Cellular component Mitochondria GO:0004016

Biological process

Heart contraction GO:0060047

Diastole (filling)

The Gene Ontology Project

Keck School of Medicine of USC

 \blacktriangleright Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.

The Gene Ontology Project

- \blacktriangleright Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.
- \blacktriangleright Of all annotations, about \sim 500,000 are on human genes.

The Gene Ontology Project

- \blacktriangleright Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.
- \blacktriangleright Of all annotations, about \sim 500,000 are on human genes.
- ▶ Knowledge about gene functions can accelerate bio-medical research.

Example of GO term

Accession	GO:0060047
Name	heart contraction
Ontology	biological_process
Synonyms	heart beating, cardiac contraction, hemolymph circulation
Alternate	IDs None
Definition	The multicellular organismal process in which the heart decreases in volume
	in a characteristic way to propel blood through the body. Source: GOC:dph

Table 3 Heart Contraction Function. source: amigo.geneontology.org

Example of GO term

Accession	GO:0060047
Name	heart contraction
Ontology	biological_process
Synonyms	heart beating, cardiac contraction, hemolymph circulation
Al ternate	IDs None
Definition	The multicellular organismal process in which the heart decreases in volume
	in a characteristic way to propel blood through the body. Source: GOC:dph

Table 3 Heart Contraction Function. source: amigo.geneontology.org

You know what is interesting about this function?

Stat. Comp. Bioinf & SocNets.

These four species have a gene with that function...

Felis catus pthr10037

Anolis carolinensis pthr11521

Oryzias latipes pthr11521

Equus caballus pthr24356

GGVY

These four species have a gene with that function... and two of these are part of the same evolutionary tree!

Felis catus pthr10037

Oryzias latipes pthr11521

Anolis carolinensis pthr11521

Equus caballus pthr24356

 $Phylogenetic\ Trees:\ The\ PANTHER\ classification\ system$

Keck School of Medicine of USC

Phylogenetic Trees: The PANTHER classification system

Keck School of Medicine of USC

► It can be very general: think of the tree of life

Phylogenetic Trees: The PANTHER classification system

Keck School of Medicine of USC

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species
- ► The PANTHER project provides information about 15,524 trees w/ 1.7 million genes

Phylogenetic Trees: The PANTHER classification system

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species
- ► The PANTHER project provides information about 15,524 trees w/ 1.7 million genes

Figure 2 Random annotated phylogenetic tree.

We can use

the evolutionary tree

to infer presence/absence of

gene functions (annotations)!

An evolutionary model of gene functions

Keck School of Medicine of USC

► Initial (spontaneous) gain of function.

- ► Initial (spontaneous) gain of function.

An evolutionary model of gene functions

Keck School of Medicine of USC

- ► Initial (spontaneous) gain of function.
- ▶ We control for human error.

- ► Initial (spontaneous) gain of function.
- ▶ We control for human error.

We implemented the model using Felsenstein's' pruning algorithm (linear complexity) in the R package aphylo Proce.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ψ_0	0.00	0.00	0.23	0.25	0.00	0.00	0.21	0.25
ψ_1	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.01
μ_{d0}	0.01	0.01	0.97	0.96	1.00	0.01	1.00	0.98
μ_{d1}	0.01	0.02	0.52	0.58	0.25	0.02	0.51	0.58
$\mu_{ m s0}$	0.00	0.00	0.05	0.06	0.07	0.00	0.05	0.06
μ_{s1}	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02
π	0.81	0.91	0.78	0.45	0.82	0.91	0.83	0.49
Tree count	88	88	141	141	88	88	141	141
Method	МСМС	МСМС	мсмс	мсмс	MLE	MLE	MLE	MLE
Prior	Uniform	Beta	Uniform	Beta	Uniform	Beta	Uniform	Beta
Inferred	Yes	Yes	No	No	Yes	Yes	No	No
AUC	1.00	1.00	0.69	0.67	0.98	1.00	0.70	0.67
P. Score (obs)	1.00	1.00	0.81	0.81	0.92	1.00	0.81	0.81
P. Score (random)	0.71	0.71	0.61	0.61	0.71	0.71	0.61	0.61

 Table 4 Parameter estimates using different estimation methods, priors, and types of annotations.

Annotated Phylogenetic Tree

Prediction with real data: Out-of-sample prediction

Keck School of Medicine of USC

Stat. Comp. Bioinf & SocNets.

Key takeaways

- ▶ (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Key takeaways

- ▶ (Yet another) model for predicting gene functions using phylogenetics.
- ▶ Big difference... computationally scalable.
- Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Next steps

▶ Adapt the model to incorporate joint estimation of functions using pseudo-likelihood.

$$P(a,b,c) \approx P(a,b)P(b,c)P(a,c)$$

▶ Make the model hierarchical when pooling trees: different mutation rates.

Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 10, 2019

Thanks!

References I

Dodd, D. M. B. (1989). Reproductive isolation as a consequence of adaptive divergence in drosophila pseudoobscura. *Evolution*, 43(6), 1308–1311. Retrieved from http://www.jstor.org/stable/2409365

Here are some by-products of my research here at USC

- ► The slurmR R package
- ► The pruner C++ library
- ► The fmcmc R package

Sufficient statistics have various forms

Representation	Description
\longrightarrow	Mutual Ties (Reciprocity)
	$\sum_{i \neq j} y_{ij} y_{ji}$
_ / 	Transitive Triad (Balance)
$\bigcirc \!$	$\sum_{i \neq j \neq k} y_{ij} y_{jk} y_{ik}$
	Homophily
	$\sum_{i\neq j} y_{ij} 1 (x_i = x_j)$
	Covariate Effect for Incoming Ties
	$\sum_{i \neq j} y_{ij} x_j$
$\bigcirc \longleftarrow$	Four Cycle
	$\sum_{i\neq j\neq k\neq l} y_{ij} y_{jk} y_{kl} y_{li}$

One of the most popular methods for estimating ERGMs is the MC-MLE approach (citations here) This consists on the following steps

- 1. Start from a sensible guess on what should be the population parameters (usually done using pseudo-MLE estimation)
- 2. While the algorithm doesn't converge, do:
 - 2.1 Simulate a stream of networks with the current state of the parameter, θ_t
 - 2.2 Using the law of large numbers, approximate the ratio of likelihoods based on the parameter θ_t , this is the objective function
 - 2.3 Update the parameter by a Newton-Raphson step
 - 2.4 Next iteration

The ergmito

- ► Implements estimation of ERGMs using exact statistics for small networks
- ▶ Meta-programming allows specifying likelihood (and gradient) functions for joint models
- ► Includes tools for simulating, and post-estimation checks
- ► Getting ready for CRAN!

Keck School of Medicine of USC

We performed a simulation study with the following features:

▶ Draw 20,000 samples of groups of small networks

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)

◀ go back

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks
- ▶ We estimated the models using MC-MLE and MLE.

Paper 1 Simulation Studies: Empirical Bias

Keck School of Medicine of USC

An evolutionary model of gene functions (algorithmic view)

```
Keck
School of
Medicine
of USC
```

```
Data: A phylogenetic tree, \{\pi, \mu, \psi\} (Model probabilities)
Result: An annotated tree
for n \in PostOrder(N) do
   Nodes gain/loss function depending on their parent;
   switch class of n do
       case root node do
           Gain function with probability \pi:
       case interior node do
           if Parent has the function then Keep it with prob. (1 - \mu_1):
           else Gain it with prob. \mu_0:
   end
   Finally, we allow for mislabeling:
   if n is leaf then
       if has the function then Mislabel with prob. \psi_1:
       else Mislabel with prob. \psi_0:
end
```

▶ go back

Figure 3 11989DoddDodd (): After one year of isolation, flies showed a significant level or assortativity in mating (wikimedia)

Figure 4 A key part of molecular innovation, gene duplication provides opportunity for new functions to emerge (wikimedia)

Stat.

GGVY

The aphylo

- ▶ Pruning algorithm implemented in C++ using the pruner template library (implemented in this project).
- ▶ The estimation is done using either Maximum Likelihood, Maximum A Posteriory, or MCMC.
- ► The MCMC estimation is done via the fmcmc R package using adaptive MCMC (also implemented as part of this project)

◀ go back