SCORE Search Results Details for Application 10568108 and Search Result 20070629_130903_us-10-568-108-2.rag.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10568108 and Search Result 20070629_130903_us-10-568-108-2.rag.

Go Back to previous page

GenCore version 6.2.1 Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: June 30, 2007, 00:44:29; Search time 260 Seconds

(without alignments)

41.405 Million cell updates/sec

US-10-568-108-2

Perfect score: 109

1 GAYDLRRRERQSRLRRRERQSR 22 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2782304 segs, 489333398 residues

Total number of hits satisfying chosen parameters: 2782304

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : A Geneseq 200701:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

geneseqp2005s:* 10: geneseqp2006s:*

geneseqp2007s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Query

Result

Score Match Length DB

Description

1	109	100.0	22	9	ADY21199	Adv21199	Human cel
2	109	100.0	22	9	ADY21241	_	Gram-nega
3	109	100.0	22	9	ADY29688	-	Antibacte
4	109	100.0	23	9	ADY21209	-	Human cel
5	66	60.6	22	9	ADY21246	-	Gram-nega
6	66	60.6	22	9	ADY29693	-	Antibacte
7 .	66	60.6	197	1	AAP91931	-	. Human hep
8	66	60.6	199	7	ADF17970	- ,	Human cat
9	66	60.6	199	7	ADG42089		Human cor
10	66	60.6	200	8	ABM84641	-	Human dia
11	66	60.6	221	2	AAR84663		Human hep
1.2	66	60.6	221	2	AAW04875		Heparin b
13	66	60.6	222	2	AAR41935		Recombina
14	66	60.6	222	2	AAW73210		CAP37 pro
15	66	60.6	222	7	ADG42088		Human pol
16	66	60.6	225	2	AAW88362		Human mat
17	66	60.6	225	2	AAY21551		. Human hep
18	66	60.6	225	2	AAW88118		Mature hu
19	66	60.6	225	3	AAY71881	,	. Human hep
20	66	60.6	225	3	AAY71882	——————————————————————————————————————	Human hep
21	66	60.6	225	3	AAY71883	•	Human hep
22	66	60.6	225	3 .	AAY71876	Aay71876	Human mat
23	66	60.6	225	4	AAY71891	Aay71891	. Human mat
24	66	60.6	225	7	ADE11587	Ade11587	Human mat
25	66	60.6	225	7	ADE11551	Ade11551	. Human mat
26	· 66	60.6	225	8	ADK42019	Adk42019	Human hep
27.	66	60.6	225	9	ADV21099	Adv21099	Human azu
28	66	60.6	225	9	ADX69310	Adx69310	Human hep
29	66	60.6	225	9	ADY82139	Ady82139	Human hep
30	66	60. <u>6</u>	225	10	AEJ02080	Aej0208	30 Human mat
31	66	60.6	226	2	AAR10669	` Aar10669	Cationic
32	66	60.6	228	7	ADE11545	Ade11545	Human mat
33	66	60.6	232	2	AAW88364	Aaw88364	Human pro
34	66	60.6	232	2	AAY21550	Aay21550	Human hep
35	66	60.6	232	2	AAW88120	Aaw88120	Human hep
36	66	60.6	232	3	AAY71877	Aay71877	Human pre
37	66	60.6	232	1.0	AEJ02083		33 Human mat
38	66	60.6	238	7	ADE11549		Human mat
39	66	60.6	244	4	AAY71893	-	Human pre
40	66	60.6	245	7	ADE11547	•	Human mat
41	66	60.6	251	2	AAR10668		Cationic
42	66	60.6	251	2	AAR84666		Human hep
43	66	60.6	251	2	AAW88365		Human pre
44	66	60.6	251	2	AAW88121		Complete
45	. 66	60.6	251	3	AAY71878	Aay71878	Human pre

ALIGNMENTS

```
RESULT 1
ADY21199
     ADY21199 standard; peptide; 22 AA.
XX
AC
     ADY21199;
XX
DT
     05-MAY-2005
                  (first entry)
XX
DE
     Human cell penetration vector peptide, DPV15b.
XX
     cell permeabilization; virucide; antibacterial; cytostatic; vasotropic;
KW
KW
     antimicrobial; antiapoptotic; antiangiogenic; pharmaceutical; cosmetics;
KW
     diagnostic; viral infection; metastasis; cell; vector.
XX
```

SCORE Search Results Details for Application 10568108 and Search Result 20070629_130905_us-10-568-108-2.rup.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10568108 and Search Result 20070629_130905_us-10-568-108-2.rup.

Go Back to previous page

GenCore version 6.2.1
Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: June 30, 2007, 00:47:37; Search time 343 Seconds

· (without alignments)

68.766 Million cell updates/sec

Title: US-10-568-108-2

Perfect score: 109

Sequence: 1 GAYDLRRRERQSRLRRRERQSR 22

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 3281787 seqs, 1072124677 residues

Total number of hits satisfying chosen parameters: 3281787

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : UniProt_8.4:*

1: uniprot_sprot:*
2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		૪					
Result		Query					
No.	Score	Match	Length	DB	ID	Descrip	otion
					OOGGDO WINAN	0062	
1	.66	60.6	226	. 4	Q86SR2_HUMAN	-	homo sapien
2	66	60.6	251	1	CAP7_HUMAN	P20160	homo sapien
3	61	56.0	1109	2	Q4BRC8_BURVI	Q4brc8	burkholderi
4	58	53.2	785	2	Q3JNU7_BURP1	Q3jnu7	burkholderi
5	. 57	52.3	386	2	Q29RC7 BRARE	Q29rc7	brachydanio
6	57	52.3	1117	2	Q7RHG1_PLAYO	Q7rhg1	plasmodium
7	55	50.5	336	2	Q1LJA3 RALME	Q1lja3	ralstonia m
8	54	49.5	77	1	PRT2 SEPOF	P80002	sepia offic

9	54	49.5	167	2	Q71RF1_HUMAN	Q71rf1	homo sapien
10	54	49.5	167	2	Q7Z780_HUMAN	Q7z780	homo sapien
11	54	49.5	194	2	Q9W1I6_DROME	Q9w1i6	drosophila
12	54	49.5	227	2	Q4RWW6_TETNG	Q4rww6	tetraodon n
13 '	54	49.5	237	2	Q98SE2_CHICK	Q98se2	gallus gall
14	54	49.5	238	1	U2AF1_MOUSE	Q9d883	mus musculu
15	54	49.5	239	1	U2AF1_HUMAN	Q01081	homo sapien
16	54	49.5	239	2	Q3KR55_RAT	Q3kr55	rattus norv
17	54	49.5	240	2	Q701P4_HUMAN	Q701p4	homo sapien
18	54	49.5	245	2	Q32NM8_XENLA	Q32nm8	xenopus lae
19	54	49.5	973	2	Q25VT3_MYCVN	Q25vt3	mycobacteri
20	54	49.5	1450	2	Q2H922_CHAGB	Q2h922	chaetomium
21	54	49.5	1867	2	Q19PP0_POPTR	Q19pp0	populus tri
22	.54	49.5	1886	2	Q4SLF6_TETNG	Q4slf6	tetraodon n
23	53.5	49.1	176	2	Q5QMK8_ORYSA	Q5qmk8	oryza sativ
24	53	48.6	60	1	HSP1_MACAG	P42137	macropus ag
25	53	48.6	61	1	HSP1 MACEU	P42138	macropus eu
26	. 53	48.6	· 175	1	IF3 AQUAE	067653	aquifex aeo
27	53	48.6	185	2	Q293G4_DROPS	Q293g4	drosophila
28	53	48.6	227	2	Q4SMD2_TETNG	Q4smd2	tetraodon n
29	53	48.6	249	2	Q8JHJ3 BRARE	Q8jhj3	brachydanio
30	53	48.6	250	2	Q4G0A1_BRARE	Q4g0a1	brachydanio
31	53	48.6	394	2	Q3JHD3_BURP1	Q3jhd3	burkholderi
32	53	48.6	550	2	Q2QXR6_ORYSA	Q2qxr6	oryza sativ
33	53	48.6	640	2	Q2S5C1_SALRD	Q2s5c1	salinibacte
34	53	48.6	957	1	PG03_MYCTU	P56877	mycobacteri
35	53	48.6	2002	2	Q2S5B6_SALRD	Q2s5b6	salinibacte
36	52.5	48.2	526	2	Q2KG03_MAGGR	Q2kg03	magnaporthe
37	52	47.7	63	1	HSP1_HYPMS	Q9glq1	hypsiprymno
38	52	47.7	118	2	Q7M4A3_LOLPE	.Q7m4a3	loligo peal
39	52	47.7	175	2	Q5YPL2_NOCFA	Q5ypl2	nocardia fa
40	52	47.7	285	2	Q90626_CHICK	Q90626	gallus gall
41	52	47.7	286	2	Q84Q43_ORYSA	Q84q43	oryza sativ
42	52	47.7	292	1	SEN34_ASHGO	Q754t3	ashbya goss
43	52	47.7	298	2	Q292D3_DROPS	Q292d3	drosophila
44	52	47.7	311	2	Q6C9Y5_YARLI	Q6c9y5	yarrowia li
45	52	47.7	372	2	Q6DUB6_PIG	Q6dub6	sus scrofa

ALIGNMENTS .

```
Q86SR2 HUMAN
ID
     Q86SR2 HUMAN
                    PRELIMINARY;
AC
     Q86SR2;
     01-JUN-2003, integrated into UniProtKB/TrEMBL.
DT
     01-JUN-2003, sequence version 1.
DT
     13-JUN-2006, entry version 23.
DT
DE
     AZU1 protein (Fragment).
GN
     Name=AZU1;
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC
OC
     Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
     NUCLEOTIDE SEQUENCE.
RΡ
RC
     TISSUE=Lung;
     MEDLINE=22388257; PubMed=12477932; DOI=10.1073/pnas.242603899;
RX
     Strausberg R.L., Feingold E.A., Grouse L:H., Derge J.G.,
RA
     Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
     Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RΑ
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
```

RESULT 1

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10568108 and Search Result 20070629_130907_us-

GenCore version 6.2.1 Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: June 30, 2007, 00:49:00; Search time 34 Seconds (without alignments)

62.258 Million cell updates/sec

Title: US-10-568-108-2

Perfect score: 109

Sequence: 1 GAYDLRRRERQSRLRRRERQSR 22

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : PIR_80:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID .	Description
1	66	60.6	251	1	TRHUAZ	azurocidin precurs
2	54	49.5	77	2	B40973	spermatid-specific
3	54	49.5	240	2	A46179	U2 snRNP auxiliary
4	53	48.6	175	2	C70453	translation initia
5	53	48.6	957	2	D70835	hypothetical glyci
6	52	47.7	118	2	S56117	spermatid-specific
7	52	47.7	285	2	S53710	ribonucleoprotein
8	51	46.8	309	2	T41889	PE38 orf153 - Bomb
9	51	46.8	2019	2	T27702	hypothetical prote
10	49	45.0	43	2	D58213	protamine III - Am
11	49	45.0	261	2	AB3070	conserved hypothet

12	49	45.0	319	2,	H98216	hypothetical prote
13	49	45.0	1407	1	S28589	trichohyalin - rab
14	48	44.0	36	2	JA0173	basic peptide - wi
15	48	44.0	234	2	S27956	arginine-rich prot
16	48	44.0	294	2	E87538	hypothetical prote
17	48	44.0	420	2	A45166	protein-lysine 6-o
18	48	44.0	517	1	A39038	l-caldesmon, nonmu
19	48	44.0	550	2	A46419	trophoblast-endoth
20	48	44.0	695	2	I54325	gene XE7 protein -
21	48	44.0	771	1	A33430	h-caldesmon - chic
22	47.5	43.6	694	2.	T07638	SWH1 protein homol
23	47	43.1	27	1	SRAPC	protamine B - Russ
24	47	43.1	58	2	S10755	protamine St2b - h
25	47	43.1	62	2	S10754	protamine St2a - h
26	47	43.1	78	2	A40973	spermatid-specific
27	47	43.1	79	2	S56116	spermatid-specific
28	47	43.1	132	2	S10305	protamine - boll w
29	. 47	43.1	378	2	S04336	U1 snRNP 70K prote
30	47	43.1	406	2	T24492	hypothetical prote
31	47	43.1	531	2	A55887	caldesmon, non-mus
32	47	43.1	669	2	JC5662	hepatoma-derived g
33	47	43.1	728	2	T43632	serine/threonine p
34	47	43.1	792	2	T43630	serine/threonine p
35	47	43.1	793	1	JH0628	caldesmon - human
36	47	43.1	1075	2	T27623	hypothetical prote
37	47	43.1	1080	2	T27622	hypothetical prote
38	47	43.1	1549	1	A40691	trichohyalin - she
39	46.5	42.7	56	2	C58213	protamine II - Ame
40	46	42.2	126	2	S58321	probable membrane
41	46	42.2	224	2	F69444	conserved hypothet
42	46	42.2	321	1	A43681	immediate-early pr
43	46	42.2	321	2	C72869	hypothetical prote
44	46	42.2	354	2	T27099	hypothetical prote
45	46	42.2	580	1	S33743	aspartate-tRNA lig
						- · · · · · · · · · · · · · · · · · · ·

```
g
                                    ALIGNMENTS
RESULT 1
TRHUAZ
azurocidin precursor [validated] - human
N; Alternate names: cationic antimicrobial protein CAP37; heparin-binding protein; neutrophil-derive
C; Species: Homo sapiens (man)
C;Date: 31-Mar-1992 #sequence_revision 30-Sep-1993 #text change 09-Jul-2004
C; Accession: A46268; A46455; S16450; S18520; S12881; S15445; S14738; B33913; A60708; B43600; A49211
R; Zimmer, M.; Medcalf, R.L.; Fink, T.M.; Mattmann, C.; Lichter, P.; Jenne, D.E.
Proc. Natl. Acad. Sci. U.S.A. 89, 8215-8219, 1992
A:Title: Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are or
A; Reference number: A46268; MUID: 92390417; PMID: 1518849
A; Accession: A46268
A; Molecule type: DNA
A; Residues: 1-251 <ZIM>
A;Cross-references: UNIPROT:P20160; UNIPARC:UPI0000126ECD; GB:M96326; NID:g179301; PIDN:AAB59353.1;
A; Note: sequence extracted from NCBI backbone (NCBIN:112883, NCBIN:112891, NCBIN:112893, NCBIN:1128
R; Morgan, J.G.; Sukiennicki, T.; Pereira, H.A.; Spitznagel, J.K.; Guerra, M.E.; Larrick, J.W.
J. Immunol. 147, 3210-3214, 1991
A; Title: Cloning of the cDNA for the serine protease homolog CAP37/azurocidin, a microbicidal and c
A; Reference number: A46455; MUID: 92013155; PMID: 1919011
```

A;Cross-references: UNIPARC:UPI0000126ECD; GB:M96326; NID:g179301; PIDN:AAB59353.1; PID:g179302

A; Note: sequence extracted from NCBI backbone (NCBIN:60386, NCBIP:60395) R; Almeida, R.P.; Melchior, M.; Campanelli, D.; Nathan, C.; Gabay, J.E.

A; Accession: A46455 A; Molecule type: mRNA A; Residues: 1-251 < MOR>

SCORE Search Results Details for Application 10568108 and Search Result 20070705_094920_us-10-568-108-1.rag.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10568108 and Search Result 20070705_094920_us-10-568-108-1.rag.

Go Back to previous page

GenCore version 6.2.1 Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM protein - protein search, using sw model

July 5, 2007, 09:49:40; Search time 97 Seconds Run on:

(without alignments)

80.715 Million cell updates/sec

US-10-568-108-1 Title:

Perfect score: 76

1 LRRERQSRLRRERQSR 16 Sequence:

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2782304 seqs, 489333398 residues

2782304 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 50 summaries

Database : A Geneseq 200701:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

geneseqp2003as:*

genesegp2003bs:*

geneseqp2004s:* 9: geneseqp2005s:*

10: geneseqp2006s:*

geneseqp2007s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

Description Score Match Length DB

http://es/ScoreAccessWeb/GetItem.action?AppId=10568108&seqId=09323b678025e435&ItemName=20...

					• •	
1	76	100.0	16	9	ADY21198	Ady21198 Human cel
2	76	100.0	16	9	ADY21240	Ady21240 Gram-nega
3	76	100.0	16	9	ADY29687	Ady29687 Antibacte
4	76	100.0	17	9	ADY21208	Ady21208 Human cel
5	65.5	86.2	17	4	AAG67730	Aag67730 Peptide H
6	65.5	86.2	17	6	ABP59497	Abp59497 Human hep
7	61.5	80.9	22	9	ADY21199	Ady21199 Human cel
8	61.5	80.9	22	9	ADY21241	Ady21241 Gram-nega
9	61.5		22	9	ADY29688	Ady29688 Antibacte
10	61.5	80.9	23	9	ADY21209	Ady21209 Human cel
11	52	68.4	476	4	ABB65935	Abb65935 Drosophil
12	51	67.1	541	2	AAW37148	Aaw37148 Mammalian
13 .	51	67.1	783	2	AAW37151	Aaw37151 Mouse neu
14	51	67.1	787	2	AAW37152	Aaw37152 Mouse neu
15	51	67.1	801	8	ADQ97686	Adq97686 Mouse can
16	51	67.1	802	2	AAW37153	. Aaw37153 Mouse neu
17	51	67.1	802	4	AAU09139	Aau09139 Mammalian
18	50	65.8	390	3	AAB58287	Aab58287 Lung canc
19	50	65.8	467	7	ADM04921	Adm04921 Human pro
20	50	65.8	467	9	AEC87851	Aec87851 Human cDN
21	50	65.8	472	3	AAB23039	Aab23039 Human AVE
22	50	65.8	472	6	ADA23299	Ada23299 Human SEC
23	50	65.8	491	3	AAB23040	Aab23040 Human AVE
24	50	65.8	491	6	ADA23301	Ada23301 Human SEC
25	50	65.8	537	8	ADQ97689	Adq97689 Human can
26	50	65.8	570	9	AED84702	Aed84702 Ponsin in
27	50	65.8	719	8	ADQ97691	Adq97691 Human can
28	49	64.5	1898	2	AAY30795	Aay30795 A human t
29	49	64.5	1898	7	ADD48869	Add48869 Human Pro
30	49	64.5	1898	10	AEK65354	Aek65354 Human tri
31	48	63.2	70	9	AEC62684	Aec62684 PAP7 upst
·32 ·	48	63.2	97	3	AAB43257	Aab43257 Human ORF
33	48	63.2	126	8	ADY22957 ·	Ady22957 Plant ful
34	48	63.2	319	6	ABU70389	Abu70389 Human adi
35	48	63.2	364	8	ADS34465	Ads34465 POSH prot
36	48	63.2	364	8	ADU69062	Adu69062 Human GOC
37	48	63.2	528	4	AAM78918	Aam78918 Human pro
38	48	63.2	528	8	ADS34467	Ads34467 POSH prot
39	48.	63.2	528	8	ADS34466	Ads34466 POSH prot
40	48	63.2	528	8	ADS34464	Ads34464 POSH prot
41	48	63.2	528	8	ADU69063	Adu69063 Human GOC
42	48	63.2	528	8	ADU69061	Adu69061 Human GOC
43	48	63.2	528	8	ADU69064	Adu69064 Human GOC
44	48	63.2	528	9	ADX06778	Adx06778 Cyclin-de
45	48	63.2	545	4	AAM79902	Aam79902 Human pro
46	47	61.8	239	4	ABG16782	Abg16782 Novel hum
47	47	61.8	247	, 8	ADX90684	Adx90684 Plant ful
. 48	47	61.8	247	8	ADX90698	Adx90698 Plant ful Aab42307 Human ORF
49 50	47 47	61.8 61.8	311 658	3 4	AAB42307 ABB65632	Abb65632 Drosophil
50	4 /	01.0	0.70	-7	ADD03032 .	DIOSOPHII

ALIGNMENTS

```
RESULT 1
ADY21198
ID ADY21198 standard; peptide; 16 AA.
XX
AC ADY21198;
XX
DT 05-MAY-2005 (first entry)
XX
DE Human cell penetration vector peptide, DPV15.
```

SCORE Search Results Details for Application 10568108 and Search Result 20070705_094922_us-10-568-108-1.rup.

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10568108 and Search Result 20070705_094922_us-10-568-108-1.rup.

Go Back to previous page

GenCore version 6.2.1 Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: July 5, 2007, 09:49:44; Search time 353 Seconds

(without alignments)

48.595 Million cell updates/sec

Title: US-10-568-108-1

Perfect score: 76

Sequence: 1 LRRERQSRLRRERQSR 16

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 3281787 segs, 1072124677 residues

Total number of hits satisfying chosen parameters: 3281787

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 50 summaries

Database : UniProt_8.4:*

1: uniprot_sprot:*
2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		-0					
Result		Query					
No.	Score	Match	Length	DB	ID	Descrip	otion
1	52	68.4	2753	2	Q3KN34_DROME	Q3kn34	drosophiļa
2	52	68.4	2935	2	Q7Z1Y4_DROME	Q7z1y4	drosophila
3	52	68.4	2946	2	Q9W053_DROME	Q9w053	drosophila
4	51	67.1	513	2	Q9DEG2_CHICK	. Q9deg2	gallus gall
5	51	67.1	526	2	Q5XHX3_RAT	Q5xhx3	rattus norv
6	51	67.1	550	2	O93263 CHICK	093263	gallus gall
7	51	67.1	784	2	Q90YB5 CHICK	Q90yb5	gallus gall
8	51	67.1	802	1	ENAH_MOUSE	Q03173	mus musculu

9	50	65.8	320	2	Q4DK01_TRYCR	Q4dk()1 trypanosoma
10	50	65.8	391	2	Q4CTG4_TRYCR	Q4ctq	14 trypanosoma
11	50 .	65.8	591	1	ENAH_HUMAN	Q8n8s	7 homo sapien
12	49	64.5	359	2	Q16LV4_AEDAE	. Q161v	4 aedes aegyp
13	49	64.5	1190	2	Q519A0_ENTHI	Q519a	10 entamoeba h
14	49	64.5	1439	2	Q5CQG9_CRYPV	Q5cqq	9 cryptospori
15	49	64.5	1898	1	TRHY_HUMAN	Q0728	33 homo sapien
16	49	64.5	1943	2	Q5VUI3_HUMAN	Q5vui	.3 homo sapien
17	48	63.2	260	2	Q5ZD80_ORYSA	Q5zd8	30 oryza sativ
18	48	63.2	372	2	Q6DUB6_PIG	Q6duk	o6 sus scrofa
19	48	63.2	523	2	Q5RHP5_BRARE	Q5rh <u>r</u>	5 brachydanio
20	48	63.2	527	1	GCP60_HUMAN	Q9h3p	o7 h golgi res
21	48	63.2	540	2	Q2J1R0_RHOP2	Q2j11	0 rhodopseudo
22	48	63.2	668	2	Q57VZ5_9TRYP	Q57v2	5 trypanosoma
23	48	63.2	685	1	CS021_PONPY	Q5rbl	13 pongo pygma
24	48	63.2	1094	2	Q26774_9TRYP		4 trypanosoma
25	48	63.2	1784	2	Q54TU2_DICDI	Q54tı	12 dictyosteli
26	48	63.2	1914	2	Q3GJD8_CHLPH	Q3gjc	18 prosthecoch
27	47	61.8	154	2	Q6YTG1_ORYSA	Q6yto	gl oryza sativ
28	47	61.8	359	2	Q5Z6A2_ORYSA	Q5z6a	12 oryza sativ
29	47	61.8	524	1	GCP60_MOUSE	Q8bmg	o6 m golgi res
30	47	61.8	544	2	Q5B8X7_EMENI	Q5b8x	d7 emericella
31	47	61.8	. 545	2	Q4CVF8_TRYCR	Q4cvi	8 trypanosoma
32	47	61.8	. 545	2	Q4CMJ9_TRYCR	Q4cm	9 trypanosoma
33	47	61.8	791	2	Q26LI9_XANP2	-	.9 xanthobacte
34	47	61.8	800	2	Q9Y102_DROME	Q9y10)2 drosophila
35	47	61.8	925	2	Q2QNZ9_ORYSA	Q2qn2	29 oryza sativ
36	47	61.8	971	2	Q6C1S3_YARLI		33 yarrowia li
37	47	61.8	1046,	2	Q3JNP6_BURP1		o6 burkholderi
38	47	61.8	1229	2	Q6C1W6_YARLI		v6 yarrowia li
39	47	61.8	2486	2	Q9VXM5_DROME		n5 drosophila
40	46	60.5	117	2	Q9VNS4_DROME		34 drosophila
41	46	60.5	129	2	Q9VNS6_DROME		66 drosophila
42	46	60.5	289	1	CWC23_SCHPO	-	c6 schizosacch
43	46	60.5	298	2	Q1LZ42_DROME		12 drosophila
44	46	60.5	399	2	Q510K9_ENTHI	Q510}	19 entamoeba h
45	46	60.5	436	2	Q624C9_CAEBR	Q6240	9 caenorhabdi
46	46	60.5	536	2	Q50N21_ENTHI	-	21 entamoeba h
47	46	60.5	537	2	Q9U3Z8_ENTHI	~	8 entamoeba h
48	46	60.5	564	2	Q4SFM4_TETNG		n4 tetraodon n
49	46	60.5	586	2	Q34WM2_9GAMM		n2 alkalilimni
50	46	60.5	589	2	Q1EA13_COCIM	Q1ea1	3 coccidioide

ALIGNMENTS

```
Q3KN34 DROME
ID
     Q3KN34 DROME
                    PRELIMINARY;
                                    PRT;
                                          2753 AA.
AC
     Q3KN34;
DT
     08-NOV-2005, integrated into UniProtKB/TrEMBL.
DT
     08-NOV-2005, sequence version 1.
DT
     18-APR-2006, entry version 5.
DE
     GH18167p (Fragment).
GN
    .Name=CG33484-RA;
OS
     Drosophila melanogaster (Fruit fly).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC
     Ephydroidea; Drosophilidae; Drosophila.
     NCBI TaxID=7227;
OX
RN
     [1]
     NUCLEOTIDE SEQUENCE.
RP
RC
     STRAIN=Berkeley;
     Stapleton M., Carlson J., Chavez C., Frise E., George R., Pacleb J.,
```

RESULT 1

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Suggestions

This page gives you Search Results detail for the Application 10568108 and Search Result 20070705_094924_us-

GenCore version 6.2.1 Copyright (c) 1993 - 2007 Biocceleration Ltd.

OM protein - protein search, using sw model

Run on: July 5, 2007, 09:50:55; Search time 31 Seconds

(without alignments)

49.660 Million cell updates/sec

Title: US-10-568-108-1

Perfect score: 76

Sequence: 1 LRRERQSRLRRERQSR 16

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 50 summaries

Database : PIR 80:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

	•	ક	•			
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	49	64.5	1898	1	A45973	trichohyalin - hum
2	48	63.2	1094	2	A53435	vesicular transpor
3	46	60.5	675	2	D83405	conserved hypothet
4	46	60.5	699	2	E84565	hypothetical prote
5	45	59.2	1027	2	T46481	hypothetical prote
6	45	59.2	1233	2	T30989	serine/threonine p
7	45	59.2	3498	2	T22330	hypothetical prote
8	44	57.9	36	2	JA0173	basic peptide - wi
9	44	57.9	263	2	B84778	hypothetical prote
10	44	57.9	454	2	T19433	hypothetical prote
1.1	44	57.9	679	2	T00636	hypothetical prote

12	44	57.9	1407	1	S28589	trichohyalin - rab
13	43	56.6	. 118	2	S56117	spermatid-specific
14	43	56.6	308	2	F95416	hypothetical prote
15	43	56.6	413	2	H88481	protein let-756 [i
16	43	56.6	427	2	AE2512	hypothetical prote
17	43	56.6	444	2	T32648	hypothetical prote
18	43	56.6	468	1	FOMVMU	gag polyprotein -
19	43	56.6	538	1	FOMVM	gag polyprotein -
20	43	56.6	569	2	T43531	probable potassium
21	43	56.6	733	2	G84668	hypothetical prote
22	43	56.6	1175	2	T22491	hypothetical prote
23	42	55.3	58	2	S34045	protamine - North
24	42	55.3	78	2	A40973	spermatid-specific
25	42	55.3	79	2	S56116	spermatid-specific
26	42	55.3	99	2	B46598	ski-related protei
27	42	55.3	126	2	.S58321	probable membrane
28	42	55.3	296	2	S73007	hypothetical prote
29	42	55.3	513	2	T03916	hypothetical prote
30	42	55.3	614	2	AB2304	two-component hybr
31	42	55.3	684	1	TVHUSN	transforming prote
32	42	55.3	690	2	I51298	transforming prote
33	42	55.3	704	2	T24517	hypothetical prote
34	42	55.3	710	2	AE1956	hypothetical prote
35	42	55.3	737	2	T15597	hypothetical prote
36	42	55.3	749	2	T08101	outer dynein arm d
37	42	55.3	788	2	G89901	hypothetical prote
38	42	55:3	810	2	T44430	protein PV100 [imp
39	42	55.3	919	2	F81998	ribonuclease E (EC
40	42	55.3	919	2	F81225	ribonuclease E NMB
41	42	55.3	1017	2	T15598	hypothetical prote
42	42	55.3	1131	2	S22266	FUN30 protein - ye
43	42	55.3	2550	2	B53435	vesicular transpor
44	41	53.9	45	2	B58208	protamine II-1 - p
45	41	53.9	47	2	F58208	protamine II-5 - p
46	41	53.9	47	2	E58208	protamine II-4 - p
47	41	53.9	142	2	B72667	hypothetical prote
48	41	53.9	227	2	T46264	hypothetical prote
49	41	53.9	279	2	T26166	hypothetical prote
50	41	53.9	325	2	H96815	hypothetical prote
						·

```
ALIGNMENTS
RESULT 1
A45973
trichohyalin - human
C; Species: Homo sapiens (man)
C;Date: 03-May-1994 #sequence revision 01-Mar-1996 #text_change 09-Jul-2004
C; Accession: A45973
R;Lee, S.C.; Kim, I.G.; Marekov, L.N.; O'Keefe, E.J.; Parry, D.A.D.; Steinert, P.M.
J. Biol. Chem. 268, 12164-12176, 1993
A;Title: The structure of human trichohyalin. Potential multiple roles as a functional EF-hand-like
A; Reference number: A45973; MUID: 93280194; PMID: 7685034
A; Accession: A45973
A; Molecule type: DNA
A; Residues: 1-1898 <LEE>
A;Cross-references: UNIPROT:Q07283; UNIPARC:UPI000013738B; GB:L09190; NID:g292835; PIDN:AAA65582.1;
A; Note: authors translated the codon AGG for residue 1714 as Pro
C; Comment: Trichohyalin is a protein of the medulla of the hair and of the inner root sheath cells
C; Genetics:
A; Gene: GDB: THH
A; Cross-references: GDB:136223; OMIM:190370
A; Map position: 1q21-1q21
C; Superfamily: trichohyalin; calmodulin repeat homology
```

OTHER NAMES: CN GenBank SQL 162 LC STN File STIH REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to: CN CN CN CN Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem. USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 American Chemical Society (ACS) STIH TC SQT ÖES OTHER CA INDEX NAMES: CN GenBank BAF35211 **RELATED SEQUENCES AVAILABLE WITH SEQLINK** SEQ => d L10 1-11 rn cn sql nte lc kwic http://www.cas.org/support/stngen/stndoc/properties.html TSCA INFORMATION NOW CURRENT THROUGH December 2, 2006 New CAS Information Use Policies, enter HELP USAGETERMS for details DICTIONARY FILE UPDATES: STRUCTURE FILE UPDATES: FILE 'REGISTRY' ENTERED AT 14:54:44 ON 03 JUL 2007 => file registry conducting SmartSELECT searches. Please note that search-term pricing AT: GenBank BAF35211 Protein (Carsonella ruddii strain PV 162-amino acid) AT: L-valyl-L-seryl-L- α -aspartylglycyl-L-arginylglycyl-L- α -aspartyl-L-tyrosyl- (9CI) (CA INDEX NAME) L-Proline, L-arginyl-L-alanyl-L-alanyl-L-lysyl-L-lysyl-L-arginyl-L-alanyl-L-arginyl-L-alanyl-L-alanyl-L-arginyl-L-STN Files: alanyl-L-alanyl-L-lysyl-L-lysyl-L-arginyl-L-leucylglycyl-L-tyrosyl-L-valyl-904743-62-0 REGISTRY ANSWER 2 OF 11 REGISTRY COPYRIGHT 2007 ACS on STN STN Files: GenBank BAF35211 (Translated from: GenBank AP009180) 915064-58-3 REGISTRY ANSWER 1 OF 11 REGISTRY aspartyl-L-tyrosyl- (9CI) 1 RAAKKRARAA KKRARAAKKR LGYVVSDGRG DYP 1 MNNILKKKIF FLSFIFTKKK LKILKKRKIK FFKLEKFFFK KLILRNIISH 4-18 ξ Ç, (9CI) CAPLUS, TOXCENTER, USPATFULL CAPLUS 2 JUL 2007 2 JUL 2007 COPYRIGHT 2007 ACS on STN does apply when HIGHEST RN 940883-34-1 HIGHEST RN 940883-34-1 (CA INDEX NAME) rc Sor S 5 CN R S S 8 Z Q 2

ANSWER 3 OF

H

REGISTRY

COPYRIGHT 2007 ACS

9 STN

OTHER NAMES

Protein (Leishmania major strain Friedlin 1219-amino acid) (9CI) INDEX NAME)

ĝ

856545-74-9 REGISTRY

STIH SEQ SEQ 70°5 OTHER NAMES: SEQ rc Sõr HITS AT: SEQ TC SÕF OTHER NAMES: HITS AT: **RELATED SEQUENCES AVAILABLE WITH SEQLINK** AT: AT: Low temperature requirement protein A (plasmid pE33L466 gene ltrA) (9CI) (CA INDEX NAME) L-Lysine, L-arginyl-L-alanyl-L-alanyl-L-lysyl-L-lysyl-L-arginyl-L-alanyl-L-arginyl-L-alanyl-L ANSWER 7 OF 11 REGISTRY COPYRIGHT 2007 ACS on ANSWER 6 OF 11 REGISTRY 883429-38-7 REGISTRY L-arginyl-L-alanyl-L-alanyl-L-lysyl-L-lysyl-L-lysyl-L-arginyl-L-alanyl-L-arginyl-L-alanyl-L-alanyl-L-lysyl-L-lysyl-L-arginyl-L-leucylglycyl-L-tyrosyl-L-valyl-ANSWER 5 OF 11 REGISTRY COPYRIGHT 2007 ACS STN Files: CA, CAPLUS GenBank ABA27329 (Translated from: GenBank DQ158857) INDEX NAME) MRNA splicing factor (Bigelowiella natans strain CCMP 621) (9CI) STN Files: GenBank AAY60513 (Translated from: GenBank CP000040) STN Files: L-valyl-L-seryl-L- α -aspartylglycyl-L-arginylglycyl-L- α -L-Proline, L-arginyl-L-alanyl-L-alanyl-L-lysyl-L-lysyl-L-arginyl-L-alanyl-884551-00-2 892537-73-4 ANSWER 4 OF 11 STN Files: 902768-63-2 REGISTRY aspartyl-L-tyrosyl- (9CI) 301 LSTTFIFHKY RFVKKRLKIY HLGLFICILL IFLIFDLFIV VPNIIIFAQI 1 RAAKKRARAA KKRARAAKKR LGYVVSDGRG DYP 1 MVDTKSDHIK KVRFLHKKLH IYKGIPKFIQ SYNYSKNNFS KPELHRNKRY 1 RAAKKRARAA KKRARAAKK 308-321 4-18 4-18 REGISTRY CA, CAPLUS, TOXCENTER, USPATFULL ξ REGISTRY CA, CAPLUS, TOXCENTER B II II REGISTRY COPYRIGHT 2007 ACS on STN REGISTRY COPYRIGHT 2007 ACS on STN CAPLUS (CA INDEX NAME) 9 NIS STN

```
OTHER NAMES:
CN 942: PN
SQL 176 :
LC STN File
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ty Sp. CX
                                                                                                                                                                                                                                                                                                                                                                                                     CN RN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 OTHER
CN 4
SQL 2
LC S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CN CN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SILH
                                                                                                                                                                                                                                                                                      OTHER
CN 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CA BY
                                                                 CN PL
                                                                                                                                                                                                  SEQ
                                                                                                                                                                                                                                           TC
ZŠF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SEQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SEQ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AT:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             A
I
                  L-Alanine, L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-lysyl-L-alanyl-L-leucyl-L-histidyl-L-arginyl-L-arginyl-L-valyl-L-lysyl-L-isoleucyl-L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
                                                                                                                                                         AT:
                                                                                                                                                                                                                                                                                                                                                       L-Alanine, L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
lysyl-L-alanyl-L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
lysyl-L-alanyl-L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
                                                                                                                                                                                                                                                                                                                                                                                                                       ANSWER 10 OF 11 REGISTRY COPYRIGHT 2007 ACS on STN 610317-86-7 REGISTRY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         L-Alanine, L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
1ysyl-L-alanyl-L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
1ysyl-L-alanyl-L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
1ysyl-L-alanyl-L-phenylalanyl-L-histidyl-L-arginyl-L-arginyl-L-isoleucyl-L-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Protein (corn clone
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            STN Files:
                                                                                     610317-84-5 REGISTRY
                                                                                                          ANSWER 11 OF 11 REGISTRY COPYRIGHT 2007 ACS on STN
                                                                                                                                                                                                                                               STN Files:
                                                                                                                                                                                                                                                                                      26: PN: US20030190364 SEQID: 25 claimed
                                                                                                                                                                                                                                                                                                                                     lysyl- (9CI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STN Files:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 610323-99-4 REGISTRY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ANSWER 9 OF 11 REGISTRY COPYRIGHT 2007 ACS on STN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             STN Files:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        942: PN: US20040034888 SEQID: 44942 claimed protein
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        661663-02-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ANSWER 8 OF 11 REGISTRY COPYRIGHT 2007 ACS on STN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1219
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GenBank CAJ04087 (Translated from: GenBank CT005261)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GenBank CAJ04087
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         49: PN: US20030190364 SEQID: 48 claimed protein
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NAMES:
                                                                                                                                                                                                                                                                                                                 NAMES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                101 WLRLRLVGLW RRFRLVRLRR RFRLVRPWWL RLWSDHRPRL RRIIIAGGGD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               501 FPVSAWPSIP HFLRTFIAPD VPNYFWTETQ AACILYNFFK RYKAIRRRAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1 FHRRIKAFHR RIKAFHRRIK AFHRRIKA
                                                                                                                                                                                                  1 FHRRIKAFHR RIKAFHRRIK A
                                                                                                                                                         2-16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         540-553
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FVRDNKMLAP RVYQLFEHRE VLLTRLDAGK EDVAAAEENT PFGYVVTQFA
                                                                                                                                                                                --------
                                                                                                                                                                                                                                             Š
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     REGISTRY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Ç,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CA,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ÇĄ,
(CA INDEX NAME)
                                                                                                                                                                                                                                                                                                                                     (CA INDEX NAME)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CAPLUS
                                                                                                                                                                                00000
                                                                                                                                                                                                                                             CAPLUS, USPATFULL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ------
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               700452394_FLI.pep fragment) (9CI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   USPATFULL
                                                                                                                                                                                                                                                                                          sequence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (CA INDEX NAME)
```

OTHER NAMES:

CN 24: PN: US20030190364 SEQID: 23 claimed sequence

SQL 21

LC STN Files: CA, CAPLUS, USPATFULL

SEQ 1 FHRRIKALHR RVKIFHRRIK A

HITS AT: 2-16

=> file zcaplus
FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

FILE 'ZCAPLUS' ENTERED AT 14:56:19 ON 03 JUL 2007

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS is strictly prohibited.

FILE COVERS 1907 - 3 Jul 2007 VOL 147 ISS 2 FILE LAST UPDATED: 2 Jul 2007 (20070702/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details

This file contains CAS Registry Numbers for easy and accurate substance identification.

'OBI' IS DEFAULT SEARCH FIELD FOR 'ZCAPLUS' FILE

=> d L13 tot ibib abs

L13 ANSWER 1 OF 11

ZCAPLUS COPYRIGHT 2007 ACS on STN

DOCUMENT NUMBER: SOURCE: PATENT ASSIGNEE (S): PATENT INFORMATION: FAMILY ACC. NUM. LANGUAGE: DOCUMENT TYPE: INVENTOR (S): ACCESSION NUMBER: COUNT: PCT Int. A English Patent CODEN: PIXXD2 Avrameas, Alexandre Peptide vectors facilitating intracellular 2005:161031 intranuclear 142:266763 Appl., ZCAPLUS delivery of 102 pp Full-text drugs and their therapeutic

WO 2005016960 WO 2005016960 PATENT NO. AE, AG, CN, CO, GE, GH, 4 8 B AZ AM, CU, HR, HU, CZ, 20050224 20050407 , AU, AZ, , DE, DK, , ID, IL, IN, BB, DZ, IS, WO 2004-IB2936 APPLICATION NO AP, EC, BG, KE, KG 8 ES, BZ, CA, FI, GB, KR, KZ, DATE 20040813 ¥ 8 5

```
PRIORITY APPLN. INFO.:
                                                           FR 2858772
EP 1512696
               BR 2004013521
US 2007042492
                                   EP 1654285
                                             AU 2004265159
                        R: AT, BE,
IE, SI,
                                                       <del>بر</del>
                                                                                    78 T 8 K
                                                                     NS
                                                                              띮
                                               SI,
                                                                                             H N F
                                                                              S
                                                                                    YΒ
                                                                                        EH.
                                                 59
                                                                     TR
TG
                                                                                    S S
               A1
DE,
LV,
A1
A1
A2
PE,
RO,
A
                                                                          # # K E # P F
                                                 FI,
                         DK, ES, FR,
CY, TR, BG,
                                                                          BG M GT PH L
                                       20050224
20050224
                                                 ES, FR,
RO, MK,
                                                           20050309
                                   20060510
                                                                          CF RU
                                                                          ಕ್ಷ ನಿ
                                                                                    4444
                         GB, GR, IT, LI, LU, CZ, EE, HU, PL, SK
                                                 CY, AL,
         BR 2004-13521
US 2006-568108
EP 2003-292030
                                   EP 2004-769334
                                             A
                                                         FR 2003-9962
EP 2003-292030
 WO 2004-IB2936
                                                 GR, IT, LI, LU, AL, TR, BG, CZ,
                                                                                    AT US RO
      2003-9962
                                        2004-2535670
                                             2004-265159
                                                                                         2 S S X
                                                                          GN BS VC SD
                                                                                        TZ YN
                                                                          8 4
                              Į
                                                 E F
                                                                          A 20030814
W 20040813
                              SE, MC, PT,
                                                 SE, MC, PT,
HU, SK
          20030814
      20030814
               20060213
                   20040813
                                   20040813
                                       20040813
                                             20040813
                                                           20030814
                                                                 20030814
                                                                          MR DE W
                                                                                              SL,
                                                                          SE DA
```

AB The invention describes amino acid sequences having the capacity to facilitate penetration of a substance of interest such as a drug into cells and/or cell nuclei. More specifically, the peptide vectors DPV15 and DPV15b and their analogs having the capacity to facilitate penetration of a drug into a cell are provided. These peptide vectors were used for the intracellular delivery of 1251-anti-carcinoembryonic antigen antibodies. In vivo efficacy of DPV15-and DPV15b-doxorubicin conjugates was studied. Anti-tunor activity of DPV7b-doxorubicin and DPV3-RNAse A conjugates was evaluated in vivo.

PATENT INFORMATION: FAMILY ACC. NUM. COUNT: LANGUAGE: DOCUMENT TYPE: PATENT ASSIGNEE(S): INVENTOR (S): TITLE: DOCUMENT NUMBER: ACCESSION NUMBER: L13 ANSWER 2 OF 11 WO 9907414 PATENT NO. RW. ö 중 무 FR GG N R E ZCAPLUS E G PL ES PCT Int. CODEN: PIXXD2 Curie (Paris VI) Institut Pasteur, Fr., Universite Pierre et Marie Michelson, Susan; Zipeto, Donato Peptides derived from antibodies to DNA for targetting of substances to cells and stimulation of uptake Ternynck, Therese; Avrameas, Alexandre; French Patent Marie-Francoise; Blondel, Buttin, Gerard; Avrameas, Stratis; Saron, 130:192714 1999:130599 ZCAPLUS E ∰ SI R ř មួ AZ, COPYRIGHT 2007 ACS on STN:130599 ZCAPLUS Full-text 19990218
, BA, BB, GE, GH, LS, RU, SD, YU, ZW, SD, SZ, IT, LU, ۲, ö SE, 84 pp. APPLICATION NO. NF. SG, BR, WO 1998-FR1740 ä Bruno; Couderc, Therese; SE, SK, ð 님 BF CH SE M ۲, ₁2 H IS CR , DE, DK, ES, CF, CG, CI, g Y X ď, DATE 19980804 H KE CZ, 1 X & E

LANGUAGE:

English

٠.				_												
ΑB				PRIORITY APPLN. INFO .:												
Per				RITY	S	S	S	ď			PΡ	AU	Ç	FR	FR	
ptid				APP	US 2007098741	US 2003206900	US 6635248	JP 2001513335		;U	EP 1001815	AU 9889880	CA 2298934	FR 2766826	FR 2766826	
es d				Ĕ	860	206	248	513	Ħ	AT	815	880	934	826	826	ğ
Peptides derived from antibodies to DNA that can penetrate cell membranes and				INF	741	900		335	IE, FI	R: AT, BE,						G.
ed.																B
mo.j								. 1		CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,	~	_		_	~	GA, GN, GW, ML, MR, NE, SN, TD, TG
ant					Н	A1	B 1	"		, U	=		A	=	۲	Σ
odi					20	20	20	20		.σ m	20	19	19	20	19	, 3
dies					20070503	20031106	20031021	20010904		Š	20000524	19990301	19990218	20010518	19990205	R,
8					503	901	021	904		Ŗ,	524	301	218	518	205	Æ.
DNA	_	_	_		_	_	_	٠.		ନ୍ଥ			_		ш	SN,
뉹	JS 2	JS 2	Õ	R 1	JS 2	JS 2	JS 2	JP 2		ନ୍ନ	3P 1	1	7A 1		7R 1	,ar
t t	US 2003-460471	US 2000-497997	WO 1998-FR1740	FR 1997-9972	2006-482834	US 2003-460471	US 2000-497997	JP 2000-507001		Ţ,	EP 1998-941540	AU 1998-89880	998-		FR 1997-9972	īG
an E	460	497	FR1	.997	482	460	497	507		Ľ	941	898	229		.997	
ene.	471	997	740	N	834	471	997	100		٤	540	80	CA 1998-2298934		N	
crat							•			N.						
e Ce	A1	A	ε	Þ						is S						
Ë	200	200	199	199	200	200	200	199		, Z	199	199	199		199	
nemb	A1 20030613	A3 20000204	19980804	19970804	20060710	20030613	20000204	19980804		٦,	19980804	19980804	19980804		19970804	
rane	Ü	4	4	4	0	Ü	4	4		Ä	4	4	4		4	
e Si						•										
ದ																

AB Peptides derived from antibodies to DNA that can penetrate cell membranes and so can be used for intracellular delivery of therapeutic peptides or DNA are described. These peptides can also be used as antiviral agents. Sequencing of cDNAs for monoclonal antibodies to DNA identified CDRs rich in lysine and arginine. A series of peptides derived from these CDRs were synthesized and tested for their ability to penetrate cells. Peptides derived from CDR3 showed efficient penetration of cultured fibroblasts and they could introduce large mols. (peroxidase or alkaline phosphatese) conjugated with them. One of these peptides with an N-terminal lysine 19-mer and used to introduce a luciferase reporter plasmid into CCL39 cells without the use of other membrane permeabilizing agents. Efficiency of transformation, judged by luciferase levels, were apprx.1,000-fold higher than with polylysine. Transformation efficiency further increased when the medium contained glycerol 0.23M. The peptides also inhibited the replication of a number of viruses, including HIV-1 in animal cells.

THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS

: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

CORPORATE SOURCE: AUTHOR (S) : DOCUMENT TYPE: TITLE: DOCUMENT NUMBER: ACCESSION NUMBER: L13 ANSWER 3 OF 11 PUBLISHER: ZCAPLUS Bioconjugate Chemistry (1999), CODEN: BCCHES; ISSN: 1043-1802 d'Immunocytochimie Departement d'Immunologie, Unite de Genetique Somatique (URA CNRS 1960) and Unite Gasmi, Avrameas, Alexandre; Ternynck, Therese; Journal American Chemical Society Pasteur, Paris, 75724, Fr. Efficient Gene Delivery by a Peptide Derived from a Monoclonal anti-DNA Antibody 1998:789501 COPYRIGHT 2007 ACS on STN Leila; Buttin, Gerard ZCAPLUS Full-text 10(1), 87-93

We recently reported that translocating murine polyreactive anti-DMA antibodies can be used as vectors for the transfer of macromols. Into cells growing in culture. We show here that two such monoclonal antibodies (J20.8 and F4.1) conjugated to polylysine with a high (93) but not a low (19) number of lysine residues can transfer genes in the presence of serum. A 30 amino acid long peptide, VAYISRGGYSTYSDFVKORFTROKYNKRA (peptide P3), corresponding to joined heavy-chain complementary-determining regions 2 and 3 of F4.1 antibody and carrying 19 lysine residues at its N-terminal, was found to be an efficient vector for the transfection of the luciferase gene into 3T3 and CCL39 cells in the presence of serum. Addition of 0.23 M glycerol during transfection considerably enhanced gene delivery. These results show that

6

conjugation of a short polylysine tail converted a spontaneously internalizing peptide into a potent nontoxic plasmid vector.

REFERENCE COUNT: 39 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS

DOCUMENT NUMBER ACCESSION NUMBER: L13 ANSWER 4 OF 11 ZCAPLUS COPYRIGHT 2007 ACS on STN 129:80389 1998:311775 ZCAPLUS Full-text

CORPORATE SOURCE: AUTHOR (S) Unite de Genetique Somatique, Departement and intranuclear translocation of macromolecules Avrameas, Alexandre; Ternynck, Therese; Proceedings of the National Academy of Sciences of Biotechnologie, Institut Pasteur, Paris, 75015, Fr Nato, Faridabano; Buttin, Gerard; Avrameas, Stratis derived peptide as vectors for the intracytoplasmic Polyreactive anti-DNA monoclonal antibodies and a

United States of America (1998), 95(10), 5601-5606 CODEN: PNASA6; ISSN: 0027-8424 National Academy of Sciences Journal

the

English

DOCUMENT TYPE: PUBLISHER:

LANGUAGE: Naturally occurring polyreactive anti-DNA mabs derived from a nonimmunized (NZB + NZW)F1 mouse with spontaneous lupus erythematosus penetrated and accumulated in the nuclei of a variety of cultured cells. These mabs and their F(ab')2 and Fab' fragments, covalently coupled to fluorescein, peroxidase, or a 15-mer polynucleotide, also translocated to the cell nuclei. A 30-amino acid peptide corresponding to the combined sequences of the lysine residues at its N-terminal was highly effective in transfecting 373 cells with a plasmid containing the luciferase gene. Thus, penetrating mAbs and derived peptides are versatile vectors for the intracellular delivery of Streptavidin-peroxidase conjugates complexed with the N-biotinylated peptide were rapidly translocated into cells. Similarly, peroxidase or antiperoxidase polyclonal antibodies covalently coupled to the N-cysteinylated peptide through an heterobifunctional maleimide cross-linker were also rapidly of one mAb was able to penetrate into the cytoplasm and nucleus of cells of several lines. This peptide recognized DNA and was strongly polyreactive. proteins and genes. internalized and frequently accumulated in nuclei. The peptide carrying 19 complementary-determining regions 2 and 3 of the heavy chain variable region

30 THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

REFERENCE COUNT:

DOCUMENT NUMBER: ACCESSION NUMBER: L13 ANSWER 5 OF 11 ZCAPLUS COPYRIGHT 2007 ACS on STN 127:134458 1997:332328 ZCAPLUS Full-text

identified using phage-display peptide libraries Sibille, Pierre; Ternynck, Therese; Nato, Faridabano; Buttin, Gerard; Strosberg, Donny; Avrameas, Mimotopes of polyreactive anti-DNA antibodies

European Journal of Immunology (1997), 27(5). Institut Cochin Genetique Moleculaire, Paris, Fr

CODEN: EJIMAF; ISSN: 0014-2980

SOURCE:

CORPORATE SOURCE:

AUTHOR (S):

VCH

PUBLISHER:

DOCUMENT TYPE: English Journal

LANGUAGE: Three monoclonal IgG2a anti-DNA polyreactive autoantibodies, derived from lupus-prone mice (NZB + NZW)F1, were studied by surface plasmon resonance (BIAcore) anal. using 3 different synthetic double-stranded (ds)

> peptides (and vice versa). Binding of all phages selected on F14.6 was inhibited with 700 ng/mL soluble DNA. The binding of a group of peptides selected on J20.8 was inhibited by 400 ng/mL soluble DNA, of a 2nd group by 2500 ng/mL, while binding of a 3rd group was not inhibited. The determined consensus sequences do not match with known sequences. Peptides specific for F14.6 share neg. charges and aromatic rings that may mimic a DNA backbone, while peptides selected with J20.8 do not bear any neg. charge, implying a different kind of mol. recognition, for example hydrogen or salt bonds. The peptides selected on J20.8 also bind serum antibodies from human patients with systemic lupus erythematosus. BALB/c mice immunized with some of the selected phages exhibit high serum titers of IgG3 anti-dsDNA antibodies, further supporting the hypothesis that peptide epitopes may mimic an oligonucleotide 0.0001 (mAb F14.6 and F4.1) to 0.01/s (mAb J20.8) and kon ranging from 2+105 to 2+106 /M/s. The screening of a constrained random peptide library displayed on M13 bacteriophages on these mAb allowed the determination of the specific consensus motifs (mimotopes) for mAb F14.6 and J20.8, but not for mAb F4.1. No cross-reaction was observed between F14.6- and J20.8-specific antibodies (mAb) exhibited dissociation rate consts. oligonucleotides of 25, 30, structure. and 25 base pairs (bp). (koff) ranging from These monoclonal

DOCUMENT NUMBER: L13 ANSWER 6 OF 11 ACCESSION NUMBER: ZCAPLUS COPYRIGHT 2007 ACS on STN 124:230006 1996:181560 ZCAPLUS Full-text

INVENTOR (S): Sibille, Pierre; Sonigo, Pierre; Strosberg, Arthur Avrameas, Alexandre; Pancino, Gianfranco; antibody detection and disease diagnosis virus (FIV) and its use as a diagnostic reagent for Peptide fragment specific for feline immunodeficiency

DOCUMENT TYPE: Eur. Pat. Appl., Patent CODEN: EPXXDW

Centre National de la Recherche Scientifique (CNRS);

PATENT ASSIGNEE(S):

Donny

ANGUAGE French

PATENT INFORMATION: FAMILY ACC. NUM. COUNT:

PRIORITY APPLN. INFO.

AB A peptide fragment P253 was prepared from the Env protein of feline immunodeficiency virus Wo strain, derived from positions 693-709 of the protein, wherein the 3rd and/or 10th residues are replaced with cysteine or serine. The peptide is used to detect antibodies to the virus in biol. fluids FR 2721031 EP 688790 PATENT NO. US 5648209 as a diagnostic kit. The peptide proved more sensitive in a comparative ELISA than did P237. 2721031 AT, BE, Ä A1 19951227 (, DE, DK, ES, FR, (A1 19951215 B1 19960726 KIND Þ 19970715 DATE GB, GR, IE, IT, LI, LU, MC, NL, PT, US 1995-487485 FR 1994-7062 EP 1995-401316 FR 1994-7062 APPLICATION NO. 19950607 DATE 19950607 19940609 S

DOCUMENT NUMBER: ACCESSION NUMBER: L13 ANSWER 7 OF 11 ZCAPLUS COPYRIGHT 2007 ACS on STN 1996:115032 ZCAPLUS Full-tex 124:143569 ZCAPLUS Full-text

Expression of a mannose/fucose membrane lectin on

PUBLIS DOCUME LANGUA AB CORPOR SOURC AUTHOR human dendritic cells

FAMILY ACC. NUM. COUNT: 1	LANGUAGE:	DOCUMENT TYPE:	SCORCE:	PATENT ASSIGNEE (S):				INVENTOR(S):			TITLE:	DOCUMENT NUMBER:	ACCESSION NUMBER:	L13 ANSWER 8 OF 11 ZC
	French	Patent	CODEN: EPXXDW	Centre National de la Recherche Scientifique, Fr.	Strosberg, Arthur Donny	Saurin, William; Avrameas, Alexandre;	Moraillon, Anne; Klatzmann, David; Sonigo, Pierre;	Pancino, Gianfranco; Chappey, Colombe; Hurtrel, Bruno;	diagnosis and prophylaxis of infection	feline immunodeficiency virus and their use in	Gene and protein sequence from the WO isolate of	120:240016	1994:240016 ZCAPLUS Full-text	L13 ANSWER 8 OF 11 ZCAPLUS COPYRIGHT 2007 ACS on STN

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

P577458 A1 19940105 EP1993-401538 19930616

EP 577458 B1 20040929

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE FR 2692279 B1 19950519

FR 2692279 B1 19950519

FR 2692269 A1 19931217 FR 1992-7258 19920616

20.00	Airmon Alexandra. Morting.
CR (8):	Controller James Britain Defection Debes Dateins
	Monsigny, Michel; Roche, Annie Claude; Midoux, Patrick
ORATE SOURCE:	Glycobiol., Cent Biophysique Moleculaire, CNRS, Univ.
	d'Orleans, Orleans, Fr.
	CODEN: EJIMAF; ISSN: 0014-2980
ISHER:	VCH
MENT TYPE:	Journal .
UAGE:	English
Dendritic cells (DC	Dendritic cells (DC) are the most efficient antigen presenting cells for T
lymphocytes. CD1a+	lymphocytes. CDla+ CDl4- DC with high antigen-presenting capacities can now
be obtained easily	be obtained easily from adherent peripheral blood monocytes by culture in the
presence of granulo	presence of granulocyte/macrophage colony-stimulating factor and interleukin-4
(Sallusto et al.,]	(Sallusto et al., 1994). Human macrophages express a membrane lectin, or
sugar-specific rece	sugar-specific receptor, which specifically mediates the binding and
endocytosis of mann	endocytosis of mannose- and fucose-terminated glycoproteins and is involved in
the phagocytosis of	the phagocytosis of pathogens. A similar lectin activity was sought on
cultured human DC u	cultured human DC using flow cytometry and confocal microscopy to detect
binding and interna	binding and internalization of fluoresceinated neoglycoproteins [bovine serum
albumin (BSA) subst	albumin (BSA) substituted with sugar residues]. Several neoglycoproteins,
especially a-L-fuce	especially $\alpha\text{-L-fucosyl-}$, $\alpha\text{-D-mannosyl-}$, N,N'-di-acetyl- β -chitobiosyl- and $\beta\text{-D-}$
glucosyl-BSA, were	glucosyl-BSA, were endocytosed by cultured human CDla+ DC as well as by CDla-
CD14- cells which w	CD14- cells which were also obtained in the culture. Fuc-BSA and Man-BSA had
the same number of	the same number of binding sites (1.7 + 106/cell) on CDla+ DC, and bound with
an affinity constar	an affinity constant close to 107 L/mol. Inhibition expts. indicated that that
these two neoglycop	these two neoglycoproteins bound to the same membrane lectin. CDla+ and CDla-
cells were both lak	cells were both labeled by an antiserum specific for the human macrophage
mannose receptor.	mannose receptor. The membrane lectin specific for mannose and fucose that is
evidenced in these	evidenced in these expts. on cultured DC may be similar to the macrophage
membrane lectin or	membrane lectin or may share functional and structural properties with it.

•									
			ΑВ			PRIORITY APPLN. INFO.:			
e a con	. e g p	μ. . Ο.	Z			ij	ΑŢ	FR	FR
ire pie	ines agr	ent	ic1e			×	27	26	26
sade ant o	an Fot	ifi	oti			MAd	AT 278018	FR 2692270	FR 2692269
fic et al	d g	e d	de			 H	_	õ	9
luma he c	ene Ene	pre	and			NFO			
en is	pro	the	pro			:.			
y rolat olat g. dif	duct	ger	teir				н	Αl	81
oter c	X B S C	es	1 60					μ	μ.
The uence ent:	re c	used	que				20	19	19
vere ce d	clc	, to	ces				20041015	19931217	19950519
th the seq	ned (ma	f				215	217	519
ed i	eriz	nufa	on 1						
rai	d mc	ctu	eli	F	FR	FR	AT	FR	
he d	as erij	ř.	ne	FR 1992-14026	FR 1992-7258	FR 1992-7257	AT 1993-401538	FR 1992-14026	
e us weer by h	are pher	Vira	jmm	14	-72	-72	-40	-14	
ied th th inos	the	בו קיי	mod	026	58	57	1538	026	
to o	SU	ept	efic				_		
Intected animals by Frk using primers derived from the contresponding of the Petaluma isolate. These sequences were used to construct ful copies of the genes. Sequence divergence between the Petaluma and Were sufficient to differentiate the strains by hybridization. Immuephtopes of the env protein were used in the diagnosis of infection.	diagnostics and prophylaxis, e.g. vaccines. specifically, the env and genes and gene products are characterized as are the SU and TM epitopes envertein. Sequences were cloned from peripheral blood lymphocytes of the subject of the sequences were cloned from peripheral blood lymphocytes of the sequences were cloned from peripheral blood lymphocytes of the sequences.	identified and the genes used to manufacture viral peptides for use in	ien			~			
truc uma on.	Aut. Euse	fo	су	_	_	_	سر	, 	
and Im	epi epi	S.	li ru	A 19921123	19920616	19920616	19930616	19921123	
ull ull wo	top	e Li	S. W.	1123	616	9190	616	1123	
Intected animals by F.K. ushing primers derived from the contresponding sequences of the Petaluma isolate. These sequences were used to construct full-length copies of the genes. Sequence divergence between the Petaluma and WO isolates were sufficient to differentiate the strains by hybridization. Immunodominant epitopes of the env protein were used in the diagnosis of infection.	diagnostics and prophylaxis, e.g. vaccines. Specifically, the env and gag genes and gene products are characterized as are the SU and TM epitopes of the env protein. Sequences were cloned from protein blood lymphocytes of		Nucleotide and protein sequences from feline immunodeficiency virus WO are						
lenc lgth blat lina	, ř. lá		r						
n to s	he								

	АВ	NGU.	CORPOR	TITLE: AUTHOR(S):	L13 / ACCES
Four peptides (epitopes of FIV were synthesize from naturally a conserved non ELISA performed specific pathog infected cat se inmunoassay for nonapeptide is proteins.	Feline immunode cats, causing a present work wa	DOCUMENT TYPE: LANGUAGE:	CORPORATE SOURCE:	; ; ; ;	L13 ANSWER 9 OF 11 ACCESSION NUMBER:
Intection, using synthetic peptides from FIV envelope (EnV) glycoproteins. Four peptides (8 to 11 amino acids long) corresponding to group-specific epitopes of FIV Env extracellular (SU) or transmembrane (TM) glycoproteins were synthesized. They were evaluated by ELISA for immunozeactivity with sera from naturally or exptl. FIV TM, folded as a loop between two cysteines. ELISA performed with P237 on 171 sera from FIV-infected cats and 46 sera from specific-pathogen-free cats showed no false pos. cases and 1004 detection of infected cat sera. Thus, the P237 ELISA is a sensitive and specific immunoassay for early detection of antibodies to FIV. This synthetic nonapeptide is easier to produce and purify than virus prepns. or recombinant proteins.	Feline immunodeficiency virus (FTV) is a lentivirus which infects domestic cats, causing an acquired immunodeficiency syndrome (AIDS). The aim of the present work was the development of an immunoassay for the diagnosis of FTV	CODEN: RESVEY, ISSN: 0923-2516 Journal English	A., Sonigo, P., Pancino, G. Unite Immunopharmacol. Mol. Genet. Virus, Inst. Cochin Genet. Mol., Paris, Fr. Research in Virology (1993), 144(3), 209-18	Serological diagnosis of feline immunodeficiency virus infection based on synthetic peptides from Env glycoproteins Avrameas, A.; Strosberg, A. D.; Moraillon,	ZCAPLUS COPYRIGHT 2007 ACS on STN 1993:557786 ZCAPLUS <u>Full-text</u> 119:157786

SOURCE:	PATENT ASSIGNEE (S):	INVENTOR (S):	-	TITLE:	DOCUMENT NUMBER:	ACCESSION NUMBER:	L13 ANSWER 10 OF 11
Fr. Demande, 38 pp. CODEN: FRXXBL	Moraillon, Anne; Strosberg, Arthur Donny Centre National de la Recherche Scientifique, Fr.	<pre>diagnostic and therapeutic uses thereof Avrameas, ALexandre; Guillet, Jean Gerard;</pre>	fragments, antibodies to the peptide fragments, and	Feline immunodeficiency virus (FIV)-derived peptide	118:37475	1993:37475 ZCAPLUS <u>Full-text</u>	L13 ANSWER 10 OF 11 ZCAPLUS COPYRIGHT 2007 ACS on STN