

Explicant les dades probabilísticament

Coneixement, Raonament i Incertesa.

El contingut d'aquest document s'ha derivat de material provinent de Tom Mitchell, William Cohen, Andrew Moore, Aarti Singh, Eric Xing, Carlos Guestrin.

On som?

- Necessitem 2ⁿ files en la joint distribution per poder fer inferencia (m és el número de variables)
 - Solució? No sempre podem assegurar independència
- No sempre tenim informació de tots els casos Solució? Buscar maneres alternatives a la 'joint distribution'

Simplifiquem el món: Naïve Bayes

No hi ha connexió entre les propietas (variables aleatories) que defeneixen els notres objectes

Descrivim les propietats (variables aleatòries) per una funció de probabilitat segons el que observem

Tipus de variables aleatories

Discretes
 binària, 'multivariades'

Continues

Moneda, dau, ...

Alçada, ingressos, ...

Com les caracteritzem?

Exemple:

The numeric weather data with summary statistics													
out	temperature			humidity			windy			play			
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3		83	85		86	85	false	6	2	9	5
overcast	4	0		70	80		96	90	true	3	3		
rainy	3	2		68	65		80	70					
				64	72		65	95					
				69	71		70	91					
				75			80						
				75			70						
				72			90						
				81			75						
sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2	false	6/9	2/5	9/14	5/14
overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	true	3/9	3/5		
rainy	3/9	2/5										. 5	5

Tipus de variables aleatòries

Discretes

Booleanes, multiavaluades

$$\sum_{u} \Pr(X = u) = 1$$

$$P(X = x_i \cap X = x_j) = 0 \text{ if } i \neq j$$

 $P(X = x_i \cup X = x_i) = P(X = x_i) + P(X = x_i) \text{ if } i \neq j$

Continues

$$f(x) \ge 0, \forall x$$

$$\int_{-\infty}^{+\infty} f(x) = 1$$

$$\Pr[a \le X \le b] = \int_a^b f(x) \, dx$$

Distribució de probabilitat

Densitat de probabilitat

Alçada població, ...

Estimació de la densitat de probabiliat

 Un estimador de Densitat apren un mapejat a partir d'un conjunt d'atributs cap a una probabilitat

- Sovint ho coneixem com a estimador de parametres si s'especifica la forma de la distribució
 - Binomial, Gaussian ...
- A tenir en compte:
 - Natura de les dades (iid, correlacionades, ...)
 - Funció objectiu (MLE, MAP, …)
 - Algorisme (algebra simple, mètodes del gradient, EM, ...)
 - Esquema d'avaluació (likelihood sobre les dades de test, consistència, ...)

Recordar

Aprenentatge de paràmetres sobre dades idd

Objectiu: estimar els parametres de la distribució θ a partir d'un conjunt de dades de N casos d'aprenentatge independents, identicament distribuïts (*iid*), completament observats

$$D = \{x_1, \ldots, x_N\}$$

Maximum likelihood estimation (MLE)

- 1. Un dels estimadors més comuns
- 2. Amb asumcions de iid i observació completa, $L(\theta)$ és la likelihood de les dades:

$$L(\theta) = P(x_1, x_2, ..., x_N \mid \theta)$$

$$= P(x_1 \mid \theta) P(x_2 \mid \theta), ..., P(x_N \mid \theta)$$

$$= \prod_{i=1}^{N} P(x_i \mid \theta)$$

3. Triar el conjunt de paràmetres que més plausiblement han generat les dades que tenim:

$$\theta^* = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \log L(\theta)$$

Tipus de funcions de densitat de probabilitat

Tipus de funcions de densitat de probabilitat

- Dades:
 - Observem *N* iid tirades de moneda: *D*={1, 0, 1, ..., 0}
- Representació:

r.v binaria:
$$x_n = \{0,1\}$$

- Distribució de Bernoulli: $P(x) = \begin{cases} 1 \theta & \text{per } x = 0 \\ \theta & \text{per } x = 1 \end{cases} \Rightarrow P(x) = \theta^{x} (1 \theta)^{1 x}$
- Com expresem la likelihood d'una única observació x_i?

$$P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{1 - x_i}$$

La likelihood de les dades D={x₁, ...,x_N}:

$$P(x_1, x_2, ..., x_N \mid \theta) = \prod_{i=1}^{N} P(x_i \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_i} (\mathbf{1} - \theta)^{1 - x_i}\right) = \theta^{\sum_{i=1}^{N} x_i} (\mathbf{1} - \theta)^{\sum_{i=1}^{N} 1 - x_i} = \theta^{\text{\#head}} (\mathbf{1} - \theta)^{\text{\#tails}}$$

MLE

Funció objectiu:

$$\ell(\theta; D) = \log P(D \mid \theta) = \log \theta^{n_h} (\mathbf{1} - \theta)^{n_t} = n_h \log \theta + (N - n_h) \log(\mathbf{1} - \theta)$$

- Hem de maximitzar-ho respecte a θ
- Prenem la derivada respecte θ i busquem el 0

$$\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0$$

$$\widehat{\theta}_{MLE} = \frac{n_h}{N}$$

$$\widehat{\theta}_{MLE} = \frac{n_h}{N}$$
 o $\widehat{\theta}_{MLE} = \frac{1}{N} \sum_i x_i$

Overfitting

Recordar que per la distribució de Bernoulli, tenim

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

- Que passa si tirem la moneda massa poques vegades de manera que tenim 0 cares? Tindriem $\hat{\theta}_{M}^{head} = 0$, i prediriem que la propabilitat
 - que la següent tirada fos cara seria zero!!!
- solució:
 - On n' es coneix com additive smoothing o Laplace smoothing

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n'}$$

Exemple 2: distribució normal univariada

- Dades:
 - Observem N iid dades reals (continues):

$$D=\{-0.1, 10, 1, -5.2, ..., 3\}$$

Model:

$$P(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Log likelihood:

$$\ell(\theta; D) = \log P(D | \theta) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2}$$

 MLE: prendre la derivada i buscar el zero per a maximitzar: TENIM 2 PARÀMETRES

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_{n} (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (x_n - \mu)^2$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n)$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu)^2$$

Com afegim informació a priori?

Objectiu: estimar els parametres de la distribució

 a paritr d'un conjunt de dades de N casos d'aprenentatge independents, identicament distribuïts (iid), completament observats

$$D = \{x_1, \ldots, x_N\}$$

- Maximum a posteriori (MAP)
 - 1. Un altre dels estimadors més comuns
 - 2. Amb asumcions de iid i observació completa, I aplicant la regla de Bayes:

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

3. De forma equivalent

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$$

4. Triem el conjunt de parametres θ que maximitzin $P(\theta|D)$

$$\theta_{MAP} = \arg \max_{\theta} P(\theta \mid D) = \arg \max_{\theta} P(D \mid \theta) P(\theta)$$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$

Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

$$P(\theta \mid x_1, ..., x_N) = \frac{p(x_1, ..., x_N \mid \theta) p(\theta)}{p(x_1, ..., x_N)} \propto \theta^{\alpha_h} (1 - \theta)^{\alpha_t} \times \theta^{\beta_h - 1} (1 - \theta)^{\beta_t - 1} = \theta^{\alpha_h + \beta_h - 1} (1 - \theta)^{\alpha_t + \beta_t - 1}$$

$$\theta_{MAP} = \frac{\alpha_h + \beta_h - 1}{\alpha_h + \beta_h - 1 + \alpha_t + \beta_t - 1}$$

Prior: $Beta(\beta_H, \beta_T)$

Data: α_H heads and α_T tails

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

- Quan N creix el prior per importancia
- Per poques dades és important

$$\theta_{MAP} = \frac{\alpha_h + \beta_h - 1}{\alpha_h + \beta_h - 1 + \alpha_t + \beta_t - 1}$$