Object Tracking

Al Model Development

Time: 60 mins

Introduction

In this class, the student/s will learn to detect the basketball and trace its trajectory.

New Commands Introduced

cv2.legacy.TrackerCSRT create()

• tracker = Loads the tracker

tracker.init(image,boxes[i])
Initializes the tracker

Import math
Imports math library

• cv2.circle() Draws circle

Vocabulary

 Object tracking is an application of deep learning where the program takes an initial set of object detections and develops a unique identification for each of the initial detections and then tracks the detected objects as they move around frames in a video.

Learning Objectives

Student/s should be able to:

- Recall how to process an image using the open cv library.
- **Demonstrate** how to plot the trajectory for the basketball.
- Explain the concepts of detecting the goal when the ball touches the basket.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s about improving the basketball detection system by tracking the path of the ball to detect the goal.
- 2. Concept Introduction Activity: (5 mins)
 - Let the student/s play the explore-activity to track the basketball.

Note: Ask students to download and extract required files, install requirements and add yolov3.weights in each activity file.

- Using the slides, explain that the student/s will learn:
 - o to add a tracker
 - to trace the basketball
 - to detect the goal
- 3. Activity 1:Add a Tracker: (12 mins)

Teacher Activity: (6 mins).

- Explain the process of loading and initializing the tracker.
- Demonstrate to the student/s how to update the tracker information and draw a box.

Student Activity: (6 mins)

- Guide the student/s to load, initialize the tracker and draw the box on successful tracking.
- 4. Activity 2: Trace the Basketball: (12 mins)

Teacher Activity: (6 mins)

- Explain to students how to find the create the goalTrack() function to track the ball.
- Explain how to get the center of the bounding box and draw the circle for everyframe.
- Demonstrate how to display all circular dots to represent a trajectory using for loop..

Student Activity: (6 mins)

• Guide the student/s to create the goalTrack() function to track the ball

Probing question: What is the use of the cv2.cvtColor() function?

Expected answer: Changes the color of the image to grey scale image.

5. Activity 3: Detect the Goal: (12 mins)

Teacher Activity: (6 mins)

• Explain the student/s to calculate the distance between basket and basketball and notify the basket when the distance between them is less.

Student Activity: (6 mins)

• Guide the student/s to calculate the distance between basket and basketball and notify the basket when the distance between them is less.

6. Introduce the Post class project: (2 min)

Students will create the tracker to track the car in the video.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through guizzes and summarize learning after respective missions.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student to change the color of the bounding box based on its distance from the goal.
- Encourage the student to draw a dotted line for the trajectory.

9. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to detect the hand and identify the finger which can be used to control gestures.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table		
Activity	Activity Name	Link
Class Presentation	Object Tracking	https://s3-whjr-curriculum-uploads.whj r.online/145f1691-7608-4214-b33e-bc 53193e28a5.html
Explore Activity	Object Tracking	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS-BP
Teacher Activity 1	Add a Tracker	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-TAS-BP
Teacher Activity 1 Solution	Add a Tracker	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-TAS
Student Activity 1	Add a Tracker	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS-BP
Teacher Reference: Student Activity 1 Solution	Add a Tracker	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS
Teacher Activity 2	Trace the Basketball	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-TAS-BP
Teacher Activity 2 Solution	Trace the Basketball	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-TAS
Student Activity 2	Trace the Basketball	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS-BP
Teacher Reference: Student Activity 2 Solution	Trace the Basketball	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS
Teacher Activity 3	Detect the Goal	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-TAS-BP
Teacher Activity 3 Solution	Detect the Goal	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-TAS
Student Activity 3	Detect the Goal	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS-BP
Teacher Reference: Student Activity 3 Solution	Detect the Goal	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS
Student's Additional Activity 1	Recolor the Bounding Box	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS-BP

Teacher Reference: Student's Additional Activity 1 Solution	Recolor the Bounding Box	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS
Student's Additional Activity 2	Style the Trajectory	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Style the Trajectory	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-SAS
Post Class Project	Track the Car	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-PCP-BP
Teacher Reference: Post Class Project Solution	Track the Car	https://github.com/Tynker-Computer-Vision/TNK-M9-PRO-C68-PCP