SEL0365 – Linhas de Transmissão de Energia Elétrica

Lista de Exercícios 3 — Cálculos Envolvendo Linhas de Transmissão da Energia Elétrica

- Com base nos desenvolvimentos feitos em aula, determine como os parâmetros do modelo
 T-nominal podem ser obtidos.
- 1. Uma linha de transmissão de energia elétrica trifásica, a qual opera à frequência de 60 Hz, possui como parâmetros uma resistência série de 0,107 Ω/km, uma indutância série de 1,355 mH/km e uma capacitância *shunt* de 8,45 nF/km. Todos esses parâmetros são referentes à sequência positiva. Considerando que a linha possui 100 km, represente a linha por meio de seus circuitos nominais.
- 2. Considerando que a linha de transmissão de energia elétrica do Exercício 1 alimente em um de seus terminais uma carga com potência aparente igual à 50 MVA e fator de potência 0,95 indutivo e que a tensão na carga seja de 135 kV determine a tensão, a corrente e as componentes de potência no terminal fonte da linha. Determine as grandezas solicitadas considerando ambos os circuitos nominais encontrados no Exercício 1, ou seja, Pi-nominal e T-nominal.
- 3. A regulação de uma linha de transmissão é definida como sendo a variação percentual entre as tensões no terminal fonte e no terminal carga em relação à tensão no terminal carga, ou seja, $Reg = |U_1 U_2|/U_2$. Tendo como base esse conceito determine a regulação da linha considerando os resultados alcançados no Exercício 2.
- 4. Considerando as potências ativas do Exercício 2 determine o rendimento da linha.
- 5. Calcule a tensão a vazio no terminal carga supondo que no terminal fonte a tensão seja igual a 138 kV. Calcule a corrente de curto-circuito no terminal carga supondo que a tensão na fonte seja de 138 kV.

- 6. Refaça o Exercício 1 até o Exercício 4 empregando os modelos equivalentes das linhas, ou seja, considerando modelos para linha médias.
- 7. Refaça o Exercício 1 até o Exercício 4 empregando o modelo de linhas curtas.
- 8. Tendo como base os resultados alcançados no Exercício 5 é possível determinar a impedância série equivalente da linha junto ao terminal carga. Empregando essa impedância como parâmetro para o modelo de linha curta refaça o Exercício 1 até o Exercício 4 e compare com os valores encontrados no Exercício 7. Seria possível sugerir uma abordagem alternativa para a determinação do modelo de linha curta?
- 9. Como se comporta a tensão a vazio da linha com parâmetros apresentados no Exercício 1 para comprimentos de 50, 100, 150 e 200 km. Empregue para tanto modelos nominais.
 Descreva o fenômeno observado e investigue como o mesmo é denominado.