Есть ли что-то общее?

Сколькими способами можно

- рассадить 5 из 25 человек на 5 занумерованных мест?
- отправить 4 из 12 групп
 в 4 достаточно большие аудитории?
- расположить в ряд 3 карточные масти из 4?

Есть ли что-то общее?

Сколькими способами можно

- собрать команду из 5 участников, если всего человек 25?
- отправить 4 из 12 групп
 в одну достаточно большую аудиторию?
- выбрать 3 участвующие в игре карточные масти из 4?

§2. Выборки

Пусть $X = \{x_1, x_2, \dots, x_n\}$ — n-элементное множество, r — целое неотрицательное число.

Определение

Набор $[x_{i_1}, x_{i_2}, \ldots, x_{i_r}]$ из r элементов n-элементного множества X назовём выборкой объёма r из n элементов или (n,r)-выборкой.

- Выборка, в которой задан (важен) порядок следования элементов, называется упорядоченной выборкой.
- Выборка, в которой не задан (не важен) порядок следования элементов, называется неупорядоченной выборкой.

Пример:

$$X = \{1, 2\}.$$

- [1,2] и [2,1] две различные упорядоченные
 (2,2)-выборки из X;
- [1,2] и [2,1] одна и та же неупорядоченная (2,2)-выборка из X.

Пусть
$$a=[a_1,a_2,\ldots,a_r],\; b=[b_1,b_2,\ldots,b_s]$$
 — две упорядоченные выборки из одного множества.

Они считаются равными, если и только если

- r = s
- $a_i = b_i$ для каждого $i = 1, 2, \dots, r$.

Пример:

$$X = \{1,2,3,4,5\}$$
 [1,1,2,5], [1,1,2,4], [5,1,2,1] — упорядоченные (5,4)-выборки из X .

- $[5,1,2,1] \neq [1,1,2,4];$
- $[5,1,2,1] \neq [1,1,2,5];$
- [1, 1, 2, 5] = [1, 1, 2, 5].

Иными словами,

две упорядоченные выборки считаются одинаковыми, если и только если у них одинаковы

- и состав элементов (с учётом количества вхождений каждого),
- и порядок следования этих элементов.

Замечание:

По сути, упорядоченная (n,r)-выборка $[x_1,x_2,\ldots,x_r]$ из X — это то же самое, что упорядоченный набор (x_1,x_2,\ldots,x_r) длины r из элементов множества X.

Пусть $a=[a_1,a_2,\ldots,a_r],\ b=[b_1,b_2,\ldots,b_s]$ — две неупорядоченные выборки из одного множества. Они считаются равными, если и только если

- r = s
- ullet существует биекция $arphi:\{1,2,\ldots,r\} o\{1,2,\ldots,r\}$ такая, что $a_i=b_{arphi(i)}$ для каждого $i=1,2,\ldots,r.$

Пример

```
X = \{1,2,3,4,5\} [1,1,2,5], [1,1,2,4], [5,1,2,1] — неупорядоченные (5,4)-выборки из X.
```

- $[5,1,2,1] \neq [1,1,2,4];$
- [5,1,2,1] = [1,1,2,5]. $(\varphi: \{1,2,3,4\} \rightarrow \{1,2,3,4\},$ $\varphi(1) = 4, \varphi(2) = 2, \varphi(3) = 3, \varphi(4) = 1).$

Иными словами,

две неупорядоченные выборки считаются одинаковыми, если и только если у них одинаков

состав элементов
 (с учётом количества вхождений каждого).

- Выборки, в которых допустимы повторения элементов, называются выборками с повторениями.
- Выборки, в каждой из которых элементы не повторяются, называются выборками без повторений.

Примеры

$$X = \{1, 2\}.$$

- [1, 1], [1, 2], [2, 1], [2, 2] всевозможные упорядоченные (2, 2)-выборки из X с повторениями.
- [1,1], [1,2], [2,2] всевозможные неупорядоченные
 (2,2)-выборки из X с повторениями.
- [1,2], [2,1] всевозможные упорядоченные
 (2,2)-выборки из X без повторений.
- [1,2] всевозможные неупорядоченные
 (2,2)-выборки из X без повторений.

Замечание:

По сути, неупорядоченная (n,r)-выборка $[x_1,x_2,\ldots,x_r]$ из X без повторений

— это то же самое, что r-элементное подмножество $\{x_1, x_2, \dots, x_r\}$ множества X.

Пусть $X = \{x_1, x_2, \dots, x_n\}$ — n-элементное множество, r — целое неотрицательное число.

Замечание

Количество

- упорядоченных (n, r)-выборок из X с повторениями,
- упорядоченных (n,r)-выборок из X без повторений,
- неупорядоченных (n,r)-выборок из X с повторениями,
- неупорядоченных (n,r)-выборок из X без повторений зависит от числа r и мощности n множества X, но не зависит того, какие именно в X элементы.

§3. Размещения и перестановки

Пусть $n\geqslant 1$, $r\geqslant 0$ — целые неотрицательные числа.

Определение

Упорядоченная (n,r)-выборка с повторениями называется (n,r)-размещением с повторениями.

Определение

Упорядоченная (n,r)-выборка без повторений называется (n,r)-размещением без повторений или просто (n,r)-размещением.

Nombre d'arrangements

Обозначения количеств

- \overline{A}_{n}^{r} количество всевозможных (n,r)-размещений с повторениями.
- A_n^r количество всевозможных (n, r)-размещений без повторений.

Пусть $n\geqslant 1$, $r\geqslant 0$ — целые неотрицательные числа.

Определение

Упорядоченная (n, n)-выборка без повторений $(\tau. e. (n, n)$ -размещение без повторений) называется перестановкой (элементов соответствующего n-элементного множества).

Nombre de permutations

Обозначение количества

• P_n — количество всевозможных перестановок n элементов.

Утверждение 1

Пусть $n \geqslant 1$.

Тогда

при r ≥ 1:

$$\overline{A}_{n}^{r}=n^{r};$$

• при 1 ≤ r ≤ n:

$$A_n^r = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1) = \frac{n!}{(n-r)!};$$

$$P_n = n!$$

Воспользуемся тем, что количество различных выборок равно количеству способов составить одну такую выборку.

Пусть $[x_1, x_2, \dots, x_r]$ — упорядоченная (n, r)-выборка с повторениями, где $n \geqslant 1, r \geqslant 1$.

- Элемент x_1 в ней может быть выбран n различными способами.
- Элемент x_2 в ней может быть выбран n различными способами.

. . .

• Элемент x_r в ней может быть выбран n различными способами.

При этом, поскольку выборка упорядоченная, различные способы выбора любого из элементов x_i , $1 \leqslant i \leqslant r$ приводят к различным упорядоченным выборкам.

Тогда, по правилу произведения, вся выборка может быть составлена

$$\underbrace{n \cdot n \cdot \cdots \cdot n}_{r \text{ pas}} = n^r$$

различными способами, откуда $\overline{A}_{n}^{r} = n^{r}$.

Пусть $[x_1, x_2, \dots, x_r]$ — упорядоченная (n, r)-выборка без повторений, где $n \ge 1, r \ge 1$.

- Элемент x_1 в ней может быть выбран n различными способами.
- Элемент x_2 в ней может быть выбран n-1 различными способами.

. . .

• Элемент x_r в ней может быть выбран n-r+1 различными способами. При этом, поскольку выборка упорядоченная, различные способы выбора любого из элементов x_i , $1 \leqslant i \leqslant r$ приводят к различным упорядоченным выборкам.

Тогда, по правилу произведения, вся выборка может быть составлена

$$n\cdot (n-1)\cdot \cdots \cdot (n-r+1)=\frac{n!}{(n-r)!}$$

различными способами,

откуда
$$A_n^r = \frac{n!}{(n-r)!}$$
.

Пусть $[x_1,x_2,\ldots,x_r]$ — перестановка, т. е. упорядоченная (n,r)-выборка без повторений, где $n\geqslant 1, r=n$.

- Элемент x_1 в ней может быть выбран n различными способами.
- Элемент x_2 в ней может быть выбран n-1 различными способами.

. . .

• Элемент $x_r = x_n$ в ней может быть выбран 1 различным способом.

При этом, поскольку выборка упорядоченная, различные способы выбора любого из элементов $x_i,\ 1\leqslant i\leqslant r$ приводят к различным упорядоченным выборкам.

Тогда, по правилу произведения, вся выборка может быть составлена

$$n\cdot (n-1)\cdot \cdot \cdot \cdot 1=n!$$

различными способами, откуда $P_n = A_n^n = n!$.

Утверждение

Пусть $n \geqslant 1$.

Тогда

• при r ≥ 1:

$$\overline{A}_{n}^{r}=n^{r};$$

• при 1 ≤ r ≤ n:

$$A_n^r = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1) = \frac{n!}{(n-r)!};$$

$$P_n = n!$$

А что при r > n?

При r > n:

- $\overline{A}_n^r = n^r$,
- $A_n^r = 0$ (по определению числа A_n^r).

A что при r = 0?

При r = 0 и $n \geqslant 1$:

- $\overline{A}_n^0 = 1$,
- $A_n^0 = 1$,

поскольку имеется только одна выборка, содержащая 0 элементов множества (пустая выборка).

Тогда формулы

- $\overline{A}_n^r = n^r$
- $A_n^r = \frac{n!}{(n-r)!}$

возвращают верное значение и при r=0.

A что при n = 0?

Может иметь смысл считать, что при n=0 и r=0:

- $\overline{A}_0^0 = 1$,
- $A_0^0 = 1$,
- $P_0 = 1$

Тогда формулы

- $A_n^r = \frac{n!}{(n-r)!}$
- $u P_n = n!$

возвращают верное значение и при n=r=0.

Некоторые рекуррентные выражения

При $n \ge 1, r \ge 1$:

$$\bullet \ A_n^r = n \cdot A_{n-1}^{r-1},$$

•
$$A_n^r = A_n^{r-1} \cdot (n-r+1)$$
,

•
$$P_n = n \cdot P_{n-1}$$
.

Не лучшее доказательство 1

$$n \geqslant 1, r \geqslant 1,$$

$$\bullet \ A_n^r = n \cdot A_{n-1}^{r-1}$$

$$A_{n}^{r} = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1) =$$

$$= n \cdot \left((n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1) \right) =$$

$$= n \cdot \left((n-1) \cdot (n-2) \cdot \dots \cdot ((n-1) - (r-1) + 1) \right)$$

$$= n \cdot A_{n-1}^{r-1}$$

Не лучшее доказательство 2

$$n \geqslant 1, r \geqslant 1,$$

 $\bullet \ A_n^r = A_n^{r-1} \cdot (n-r+1)$

$$A_{n}^{r} = n \cdot (n-1) \cdot \dots \cdot (n-r+2) \cdot (n-r+1) =$$

$$= \left(n \cdot (n-1) \cdot \dots \cdot (n-r+2)\right) \cdot (n-r+1) =$$

$$= \left(n \cdot (n-1) \cdot \dots \cdot (n-(r-1)+1)\right) \cdot (n-r+1) =$$

$$= A_{n}^{r-1} \cdot (n-r+1).$$

Примеры задач

Замечание

Вместо «(n,r)-размещение (с повторениями или без)» часто будем говорить «размещение (с повторениями или без) из n по r». (Так просто удобнее.)

Задача

Сколько различных 7-буквенных паролей можно составить из строчных букв латинского алфавита (их 26)?

Задача

Сколько различных 7-буквенных паролей можно составить из строчных букв латинского алфавита (их 26)?

Ответ

Каждый такой пароль — это размещение с повторениями из 26 по 7, поэтому ответ:

$$\overline{A}_{26}^7 = 26^7 = 8\,031\,810\,176.$$

Задача

Сколько различных 7-буквенных паролей, в каждом из которых буквы не повторяются, можно составить из строчных букв латинского алфавита (их 26)?

Задача

Сколько различных 7-буквенных паролей, в каждом из которых буквы не повторяются, можно составить из строчных букв латинского алфавита (их 26)?

Ответ

Каждый такой пароль — это размещение без повторений из 26 по 7, поэтому ответ:

$$A_{26}^7 = 26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 = 3315312000.$$

Задача

Сколько различных 6-значных натуральных чисел, цифры в каждом из которых не повторяются, можно составить из цифр 0,1,2,3,4,5?

Задача

Сколько различных 6-значных натуральных чисел, цифры в каждом из которых не повторяются, можно составить из цифр 0,1,2,3,4,5?

Ответ

$$P_6 - P_5$$
.

Очень краткое решение

- Куда биекция: в перестановки этих шести цифр, в которых первая цифра не 0.
- Сколько их: |A| |B|, где
 - A множество всех перестановок этих 6 цифр (несложно понять, что $|A| = P_6$),
 - B множество тех перестановок этих 6 цифр, в которых первая цифра 0.
- Куда биекция из B: во множество перестановок оставшихся пяти цифр. (Тогда несложно понять, что $|B|=P_5$.)
- Таким образом, ответ: $P_6 P_5$.

Важный пример 4

Задача

Пусть X и Y — два непустых конечных множества, $|X|=n,\ |Y|=k.$

Сколько существует различных

- ullet отображений f:X o Y,
- ullet инъекций f:X o Y,
- биекций $f:X \to Y$?

Важный пример 4

Задача

Пусть X и Y — два непустых конечных множества, $|X|=n,\ |Y|=k.$

Сколько существует различных

- ullet отображений f:X o Y,
- ullet инъекций f:X o Y,
- биекций $f:X \to Y$?

Ответы

- \overline{A}_{k}^{n}
- A_k^n ,

$$lackbox\{P_n, & \text{если } k=n, \\ 0, & \text{иначе.} \end{cases}$$

Ключевая идея

- Каждое отображение $f: X \to Y$ может быть описано в виде (y_1, y_2, \ldots, y_n) , где $y_i = f(x_i) \in Y$ для каждого $i = 1, 2, \ldots, n$, причём такое описание уникально для каждого отображения,
- и наоборот, по любому упорядоченному набору (y_1, y_2, \ldots, y_n) , где $y_i \in Y$ для каждого $i=1,2,\ldots,n$, можно построить уникальное отображение $f:X \to Y$, такое что $f(x_i)=y_i$ для каждого $i=1,2,\ldots,n$.
- Отсюда все нужные биекции:

Ключевая идея

Отсюда все нужные биекции:

- отображений в размещения из k по n,
- инъекций в размещения без повторений из k по n,
- биекций в перестановки п элементов.

§4. Сочетания с повторениями и без повторений

Пусть $n\geqslant 1$, $r\geqslant 0$ — целые неотрицательные числа.

Определение

Неупорядоченная (n, r)-выборка с повторениями называется (n, r)-сочетанием с повторениями.

Определение

Неупорядоченная (n,r)-выборка без повторений называется (n,r)-сочетанием без повторений или просто (n,r)-сочетанием.

Nombre de combinaisons

Обозначения количеств

- \overline{C}_{n}^{r} количество всевозможных (n,r)-сочетаний с повторениями.
- С_n количество всевозможных (n, r)-сочетаний без повторений.

Утверждение 2

Пусть $n \geqslant 1$.

Тогда

• при 1 ≤ r ≤ n:

$$C_n^r = \frac{A_n^r}{P_r} = \frac{n!}{r!(n-r)!},$$

• при r ≥ 1:

$$\overline{C}_n^r = C_{n+r-1}^r$$
.

- 1) Рассмотрим отображение f, действующее из множества всех упорядоченных (n,r)-выборок без повторений $(\tau. e. us множества всех <math>(n,r)$ -размещений) во множество всех неупорядоченных (n,r)-выборок без повторений $(\tau. e. во множество всех <math>(n,r)$ -сочетаний) следующим образом: $f\left((x_1,x_2,\ldots,x_r)\right)=\{x_1,x_2,\ldots,x_r\}.$
- Отметим, что при таком отображении в каждое сочетание $\{x_1, x_2, \dots, x_r\}$ переходят ровно $P_r = r!$ различных размещений,

а потому f — это r!-функция.

Отсюда по правилу деления получаем $C_n^{\,r} = rac{A_n^r}{P_r} = rac{n!}{r!(n-r)!}.$

2) Рассмотрим множества

$$Z = \{1,2,\dots,n+r-1\}$$
 и $Y = \{1,2,\dots,n\}.$ Отметим, что $|Z| = n+r-1$, $|Y| = n.$

• Пусть $\{a_1,a_2,\dots,a_r\}$ — произвольная неупорядоченная (n+r-1,r)-выборка из Z без повторений (т. е. (n+r-1,r)-сочетание).

Не ограничивая общности, будем считать, что $a_1 < a_2 < \cdots < a_r$.

(Тогда
$$1 \leqslant a_1 < a_2 < \cdots < a_r \leqslant n + r - 1$$
.)

$$1 \leqslant a_1 < a_2 < \cdots < a_r \leqslant n+r-1$$

- Преобразуем выборку $\{a_1,a_2,\ldots,a_r\}$ по следующему правилу, которое обозначим φ : каждое число a_i $(i=1,2,\ldots,i)$ в выборке заменим на число $a_i-(i-1)$.
- Таким образом будет получена выборка $[a_1-0,a_2-1,\ldots,a_r-(r-1)].$

• Заметим, что в силу $1 \leqslant a_1 < a_2 < \cdots < a_r \leqslant n+r-1$ имеет место следующая цепочка неравенств:

$$1\leqslant a_1-0\leqslant a_2-1\leqslant \cdots\leqslant a_r-(r-1)\leqslant n.$$

Действительно, для любой пары натуральных чисел a и b неравенство a < b эквивалентно неравенству $a+1 \leqslant b$. Последнее эквивалентно $a \leqslant b-1$, что при любом k эквивалентно неравенству $a-k \leqslant b-(k+1)$.

$$1\leqslant a_1-0\leqslant a_2-1\leqslant \cdots\leqslant a_r-(r-1)\leqslant n.$$

- Таким образом, для любого (n+r-1,r)-сочетания $\{a_1,a_2,\ldots,a_r\}$ из Z выборка $[a_1-0,a_2-1,\ldots,a_r-(r-1)]$, полученная из него правилом φ , является неупорядоченной* (n,r)-выборкой с повторениями из Y.
- Потому что выборка,
 в которой порядок элементов произвольный,
 и выборка с теми же элементами,
 упорядоченными по неубыванию,
 это одна и та же неупорядоченная выборка.

- Следовательно, φ это отображение множества всех (n+r-1,r)-сочетаний из Z во множество всех (n,r)-сочетаний с повторениями из Y.
- Покажем, что φ биекция, для чего докажем инъективность и сюръективность φ .

- ullet Покажем инъективность arphi .
- Пусть $\{a_1,a_2,\ldots,a_r\}$, где $a_1 < a_2 < \cdots < a_r$, и $\{b_1,b_2,\ldots,b_r\}$, где $b_1 < b_2 < \cdots < b_r$, два различных (n+r-1,r)-сочетания из Z.
- Поскольку они различны, существует такое k, $1 \leqslant k \leqslant r$, что $a_k \neq b_k$.
- Тогда $a_k-(k-1) \neq b_k-(k-1)$, а потому различны и выборки $[a_1-0,a_2-1,\ldots,a_r-(r-1)]$ и $[b_1-0,b_2-1,\ldots,b_r-(r-1)]$, являющиеся образами исходных (n+r-1,r)-сочетаний при отображении φ .

- ullet Покажем сюръективность arphi .
- Пусть $[c_1, c_2, \dots, c_r]$, где $c_1 \leqslant c_2 \leqslant \dots \leqslant c_r$, произвольное (n,r)-сочетание с повторениями из Y.
- Рассмотрим следующую выборку: $[c_1+0,c_2+1,\dots,c_r+(r-1)].$ Нетрудно убедиться в том, что $[c_1+0,c_2+1,\dots,c_r+(r-1)] = \text{это}$ (n+r-1,r)-сочетание из Z, поскольку $1\leqslant c_1+0 < c_2+1 < \dots < c_r+(r-1)\leqslant n+r-1.$

- Заметим, что образом (n+r-1,r)-сочетания $[c_1+0,c_2+1,\ldots,c_r+(r-1)]$ из Z при отображении φ является выборка $[c_1+0-0,c_2+1-1,\ldots,c_r+(r-1)-(r-1)]$, т. е. выборка $[c_1,c_2,\ldots,c_r]$, являющаяся (n,r)-сочетанием с повторениями из Y.
- В силу произвола в выборе (n,r)-сочетания с повторениями $[c_1,c_2,\ldots,c_r]$ из Y, заключаем, что отображение φ , действующее во множество всех (n,r)-сочетаний с повторениями из Y, является сюръективным.

- Учитывая ранее доказанную инъективность отображения φ , делаем вывод, что φ биекция.
- Тогда по биективному правилу получаем, что различных (n+r-1,r)-сочетаний из Z столько же, сколько и (n,r)-сочетаний с повторениями из Y, т. е.

$$\overline{C}_n^r = C_{n+r-1}^r$$
.

Утверждение

Пусть $n \geqslant 1$.

Тогда

• при 1 ≤ r ≤ n:

$$C_n^r = \frac{A_n^r}{P_r} = \frac{n!}{r!(n-r)!},$$

• при r ≥ 1:

$$\overline{C}_n^r = C_{n+r-1}^r$$
.

A что при r > n?

При r > n:

- $C_n^r = 0$ (по определению числа C_n^r),
- $\overline{C}_n^r = C_{n+r-1}^r$

A что при r = 0?

При r = 0 и $n \geqslant 1$:

- $C_n^0 = 1$,
- $\overline{C}_n^0 = 1$,

поскольку имеется только одна выборка, содержащая 0 элементов множества (пустая выборка).

Таким образом, формулы

- $C_n^r = \frac{n!}{r!(n-r)!}$
- $u \overline{C}_n^r = C_{n+r-1}^r$

возвращают верное значение и при r=0 (на вторую в этом случае нужно дополнительное ограничение $n\geqslant 2$.)

A что при n = 0?

Может иметь смысл считать, что при n=0 и r=0:

- $C_0^0 = 1$,
- $\overline{C}_0^0 = 1$.

Тогда формула

• $C_n^r = \frac{n!}{r!(n-r)!}$

возвращает верное значение и при n=r=0.

Важные примеры задач на сочетания без повторений

Замечание

Вместо $\ll(n,r)$ -сочетание (с повторениями или без)» часто будем говорить \ll сочетание (с повторениями или без) из n по r». (Так просто удобнее.)

Задача

Сколько различных k-элементных подмножеств у произвольного n-элементного множества?

Задача

Сколько различных k-элементных подмножеств у произвольного n-элементного множества?

Ответ

Каждое такое подмножество — это сочетание без повторений из n по k, поэтому ответ:

 C_n^k .

Задача

Сколько существует различных бинарных векторов длины n, в каждом из которых ровно k единиц?

Задача

Сколько существует различных бинарных векторов длины n, в каждом из которых ровно k единиц?

Ответ

 C_n^k

Ключевая идея

- Каждому вектору из нулей и единиц с ровно k единицами поставим в соответствие подмножество $\{i_1,i_2,\ldots,i_k\}$ множества $\{1,2,\ldots,n\}$ по следующему принципу: i_1,i_2,\ldots,i_k это номера компонент вектора, в которых стоят единицы.
- Это соответствие между векторами и подмножествами биективно.

Задача

Дана решётка (m-1) imes (n-1) квадратиков.

Узлы решётки — углы квадратов.

Ходить можно только по сторонам квадратов,

одна сторона = 1 ход.

Сколько существует различных кратчайших путей из левого нижнего узла в правый верхний?

Задача

 $oxed{Д}$ ана решётка (m-1) imes (n-1) квадратиков.

Узлы решётки — углы квадратов.

Ходить можно только по сторонам квадратов,

одна сторона = 1 ход.

Сколько существует различных кратчайших путей из левого нижнего узла в правый верхний?

Ответ

$$C_{m+n}^m$$
 или C_{m+n}^n .

Ключевая идея

Любой кратчайший путь из левого нижнего узла в правый верхний

- представляет собой yпорядоченную последовательность m+n ходов,
- из которых *m* ходов ходы вправо,
 и *n* ходов ходы вверх.
- Сколько существует упорядоченных наборов длины m+n, каждая компонента которых имеет одно из двух возможных значений, причём количество компонент с одним из этих значений фиксировано?
- См. предыдущий пример.

Просто важный пример

Задача

В группе из 23 человек 5 отличников.

Требуется сформировать команду из 3 участников так, чтобы в неё входили как минимум 2 отличника.

Сколькими способами можно это сделать?

Решение 1

- Способов составить команду (выбираем двух отличников, добираем к ним третьего): $C_5^2 \cdot C_{23-2}^1$.
- Тогда, по правилу произведения, ответ:

$$C_5^2 \cdot C_{21}^1 = \frac{5!}{2!3!} \cdot 21 = 10 \cdot 21 = 210.$$

Решение 2

- Разделим все команды на те, в которых 2 отличника, и те, в которых 3 отличника.
- Способов составить команду из трёх отличников: C_5^3 .
- Способов составить команду из двух отличников (выбираем двух отличников, добираем к ним не отличника): $C_5^2 \cdot C_{23}^2$ Б.
- Тогда, по правилу суммы, ответ:

$$C_5^3 + C_5^2 \cdot C_{18}^1 = \frac{5!}{3!2!} + \frac{5!}{2!3!} \cdot 18 = 10 + 10 \cdot 18 = 190.$$

Важные примеры задач на сочетания с повторениями

Задача

В магазине имеется мороженое 5 видов (порции одного вида считаются неразличимыми).

Сколькими способами можно купить 12 порций?

Задача

В магазине имеется мороженое 5 видов (порции одного вида считаются неразличимыми).

Сколькими способами можно купить 12 порций?

Ответ

 \overline{C}_{5}^{12} .

Пояснение

Каждый способ — это последовательность длины 12, каждый член которой выбран из 5-элементного множества. Порядок членов в последовательности не важен, повторяться в последовательности они могут.

Таким образом, каждый способ — это сочетание с повторениями из 5 по 12.

Задача

В ряд стоят n неокрашенных одинаковых шаров.

Сколькими способами можно раскрасить их в k различных цветов?

(Шары одного цвета неотличимы друг от друга.)

Задача

В ряд стоят n неокрашенных одинаковых шаров.

Сколькими способами можно раскрасить их в k различных цветов?

(Шары одного цвета неотличимы друг от друга.)

Ответ

 \overline{C}_{k}^{n}

Пояснение

Каждый способ покраски описывается последовательность длины n, каждый член которой выбран из k-элементного множества. Порядок членов в последовательности не важен, повторяться в последовательности они могут.

Таким образом, каждый способ — это сочетание с повторениями из k по n.

Задача

Сколько решений имеет уравнение

$$x_1 + x_2 + x_3 + x_4 + x_5 = 12$$

в неотрицательных целых числах?

Задача

Сколько решений имеет уравнение

$$x_1 + x_2 + x_3 + x_4 + x_5 = 12$$

в неотрицательных целых числах?

Ответ

$$\overline{C}_{5}^{12}$$
.

Идея решения 1

Вспомним задачу про мороженое и заметим, что способы покупки мороженого биективно соответствуют решениям этого уравнения.

Соответствие можно описать, например, правилом $\ll x_i$ — число купленных порций мороженого вида i, i=1,2,3,4,5».

Идея решения 2

Чтобы распределить 12 единиц по 5 переменным, будем красить каждую в один из 5 цветов.

Тогда различных решений столько же, сколько раскрасок. (Единицы одинаковы, цвета различны.)