

Processador PoliLegv8 Processador Monociclo (2/3)

Edson S. Gomi

PCS - Departamento de Engenharia de Computação e Sistemas Digitais Escola Politécnica da Universidade de São Paulo

Outubro, 2020

Controle da III A

Unidade de

Fluxo de Dados

Unidade de

1 Implementação do processador monociclo

2 Controle da ULA

3 Unidade de Controle Principal

4 Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

6 Extensão da Unidade de Controle Principal para a instrução de salto incondicional B

Instruções do PoliLEG que serão implementadas

Implementação do processador monociclo

Controle da III A

Unidade de

Fluxo de Dados

Unidade de

Unidade de

 O PoliLEG terá um subconjunto das instruções do ARMv8 (LEGv8 do Hennessy e Patterson):

Load Register Unscaled (LDUR)

■ LDUR X1, [X2,40] : X1 = Memory[X2+40]

Store Register Unscaled (STUR)

STUR X1, [X2,40]: Memory [X2+40] = X1

Instruções lógico-ariméticas ADD, SUB, AND e ORR

ADD X1. X2. X3 : X1 = X2+X3

Compare and Branch Zero (CBZ)

CBZ X1, 25 : if (X1==0) goto PC+100

Branch (B)

B 2500 : goto PC+10000

Opcodes das instruções

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Funçao Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto

Instrução	Opcode	Tamanho do	Formato
		Opcode (bits)	
LDUR	11111000010	11	Formato-D
STUR	11111000000	11	Formato-D
ADD	10001011000	11	Formato-R
SUB	11001011000	11	Formato-R
AND	10001010000	11	Formato-R
ORR	10101010000	11	Formato-R
CBZ	10110100	8	Formato-CB
В	000101	6	Formato-B

Implementação do processador monociclo

Controle da III A

Unidade de

Fluxo de Dados

Unidade de

Unidade de

Name				Fields	Comments			
Field size		6 to 11 bits	5 to 10 bits 5 or 4 bits 2 bits		2 bits	5 bits	5 bits	All LEGv8 instructions are 32 bits long
R-format	R	opcode	Rm	sham	nt	Rn	Rd	Arithmetic instruction format
I-format	1	opcode	immediate			Rn	Rd	Immediate format
D-format	D	opcode	addre	:SS	op2	Rn	Rt	Data transfer format
B-format	В	opcode		address				Unconditional Branch format
CB-format	CB	opcode	address				Rt	Conditional Branch format
IW-format	IW	opcode	immediate Rd			Rd	Wide Immediate format	

- Formato-D para LDUR e STUR
- Formato-R para ADD, SUB, AND e ORR
- Formato-CB para CBZ
- Formato-B para B

Implementação do processador monociclo

Controle da III A

Unidade de

Operação do Fluxo de Dados

Unidade de

Unidade de instrução de

Field	opcode	Rm	shamt	Rn	Rd
Bit positions	31:21	20:16	15:10	9:5	4:0

a. R-type instruction

Field	1986 or 1984	address	0	Rn	Rt
Bit positions	31:21	20:12	11:10	9:5	4:0

b. Load or store instruction

Field	180	address	Rt
Bit positions	31:26	23:5	4:0

c. Conditional branch instruction

Visão Geral do Fluxo de Dados do PoliLEG

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto As unidades funcionais do Fluxo de Dados proposto para o PoliLEG são:

- Memórias, para instruções e dados
- Registrador, para PC
- Banco de registradores
- 4 ULA
- Multiplexadores
- 6 Sign-Extension
- Como o requisito é que as instruções executem em 1 ciclo de relógio, as unidades funcionais são duplicadas nos casos em que houver necessidade de uso simultâneo.

Visão Geral do Fluxo de Dados do PoliLEG

Implementação do processador monociclo

Unidade de

Fluxo de Dados

Unidade de

Unidade de

ALU Control

Implementação do processador monociclo

Controle da III A

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto

PCS

O primeiro controle a ser implementado será o ALU Control, que gera o ALU Operation:

Fluxo de Dados da ULA de 1 bit

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto

- O ALU Operation é formado pelos sinais Ainvert (1 bit), Binvert (1 bit) e Operation (2 bits)
- A ULA de 64 bits é construída com 63 cópias da ULA de 1 bit e uma ULA com detecção de overflow para o bit mais significativo

Sinal de controle ALU Operation

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para instrução de salto

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	pass input b
1100	NOR

Os 4 sinais de controle da ULA formam o ALU Operation e são representados nesta tabela no seguinte formato: <Ainvert, Binvert, Operation1, Operation0>

Sinal de Controle (ALUOp)

Controle da III A

Unidade de

Fluxo de Dados

Unidade de

Unidade de

	Permanentality	no or puo	Change Of
8	P		S

Instruction	ALUOp	Instruction operation	Opcode field	Desired ALU action	ALU control input
LDUR	00	load register	XXXXXXXXXX	add	0010
STUR	00	store register	XXXXXXXXXX	add	0010
CBZ	01	compare and branch on zero	XXXXXXXXXX	pass input b	0111
R-type	10	ADD	10001011000	add	0010
R-type	10	SUB	11001011000	subtract	0110
R-type	10	AND	10001010000	AND	0000
R-type	10	ORR	10101010000	OR	0001

- O sinal de controle Operation é gerado a partir do opcode e do sinal controle de 2 bits ALUOp:
- ALUOp indica se a operação a ser executada deve ser add (00) para LDUR e STUR, passar a entrada b (01) para CBZ, ou ser determinada pela operação codificada em opcode (10).

Tabela Verdade do sinal ALUOp

Implementação do processador monociclo

Controle da LILA

Unidade de Controle Principal

Operação do Fluxo de Dados

Combinatória d Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto ALUOp é gerado a partir dos bits 31-21 de opcode:

AL	UOp		Opcode field										
ALUOp1	ALUOp0	I[31]	1[30]	I[29]	I[28]	I[27]	I[26]	I[25]	I[24]	I[23]	I[22]	I[21]	Operation
0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0010
Х	1	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0111
1	X	1	0	0	0	1	0	1	1	0	0	0	0010
1	Х	1	1	0	0	1	0	1	1	0	0	0	0110
1	Х	1	0	0	0	1	0	1	0	0	0	0	0000
1	X	1	0	1	0	1	0	1	0	0	0	0	0001

ALUOp	Instrução	Operação da ULA
00	LDUR e STUR	add
01	CBZ	passar a entrada b
10	lógico-aritmética	determinada pela instrução

Unidade de Controle Principal

Implementação do processador monociclo

Controle da III A

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para instrução de salto

Controle da III A

Unidade de Controle Principal

Fluxo de Dados

Unidade de

Unidade de

A configuração dos sinais de controle é completamente determinada pelo campo opcode da instrução:

Instruction	Reg2Loc	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	ALUOp1	ALUOp0
R-format	0	0	0	1	0	0	0	1	0
LDUR	X	1	1	1	1	0	0	0	0
STUR	1	1	Х	0	0	1	0	0	0
CBZ	1	0	Х	0	0	0	1	0	1

A função dos 7 sinais de controle

Implementação do processador monociclo

Controle da III A

Unidade de Controle Principal

Operação do Fluxo de Dados

Função
Combinatória de
Unidade de
Controle
Principal

Unidade de Controle Principal para a instrução de salto

A Unidade de Controle Principal gera todos os sinais de
controle a partir de opcode, exceto PCSrc:

Signal name	Effect when deasserted	Effect when asserted
Reg2Loc	The register number for Read register 2 comes from the Rm field (bits 20:16).	The register number for Read register 2 comes from the Rt field (bits 4:0).
RegWrite	None.	The register on the Write register input is written with the value on the Write data input.
ALUSrc	The second ALU operand comes from the second register file output (Read data 2).	The second ALU operand is the sign-extended, lower 16 bits of the instruction.
PCSrc	The PC is replaced by the output of the adder that computes the value of PC + 4.	The PC is replaced by the output of the adder that computes the branch target.
MemRead	None.	Data memory contents designated by the address input are put on the Read data output.
MemWrite	None.	Data memory contents designated by the address input are replaced by the value on the Write data input.
MemtoReg	The value fed to the register Write data input comes from the ALU.	The value fed to the register Write data input comes from the data memory.

Controle da III A

Unidade de Controle Principal

Fluxo de Dados

Unidade de

- O sinal PCSrc seleciona qual será o próximo valor de PC e não é gerado diretamento do opcode.
- Este sinal é asserted se a instrução for CBZ e o sinal Zero da ULA também é asserted.
- Caso contrário, PC será PC + 4.

Unidade de

Operação do Fluxo de Dados

Unidade de

Funcionamento do ALU Control para instruções do tipo-R:

Instrução Tipo-R (ADD/SUB/AND/ORR

Controle da III A

Unidade de

Operação do Fluxo de Dados

Unidade de

Unidade de

Funcionamento do controle do Fluxo de Dados para instruções lógico-aritméticas, como por exemplo ADD X1, X2, X3:

- A instrução é lida da memória de instruções e PC é incrementado (PC = PC + 4)
- Os registradores X2 e X3 são lidos do banco de registradores
- A Unidade de Controle Principal configura as linhas de controle
- A UI A calcula o resultado
- O resultado é escrito em X1, no banco de registradores

Operação de instrução de load (LDUR) ou store (STUR)

Implementação do processador monociclo

Controle da III A

Unidade d Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para instrução de salto

Operação de instrução de load (LDUR) ou store (STUR)

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória de Unidade de Controle Principal

Unidade de Controle Principal para a instrução de salto incondicional B Funcionamento do controle do Fluxo de Dados para a instrução LDUR, como por exemplo LDUR X1, [X2,offset]:

- A instrução é lida da memória de instruções e PC é incrementado (PC = PC + 4)
- O registrador X2 é lido do banco de registradores
- A ULA calcula X2 + sinal-estendido(offset). O offset é obtido do campo de 9 bits correspondente na instrução
- O resultado da ULA é usado como endereço para a memória de dados
- O dado é lido da memória de dados para o registrador X1

Operação da instrução CBZ

Implementação do processador monociclo

Controle da III A

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para instrução de salto

Operação da instrução CBZ

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto incondicional B Funcionamento do controle do Fluxo de Dados para a instrução CBZ, como por exemplo CBZ X1, offset:

- A instrução é lida da memória de instruções e PC é incrementado (PC = PC + 4)
- O registrador X1 é lido do banco de registradores, usando os bits 4:0 (Rt) da instrução
- A ULA passa o dado lido do banco de registradores
- O valor de PC é somado com sinal-estendido(offset). Os 19 bits do campo offset da instrução são deslocados de 2 bits para a esquerda. O resultado da soma é o endereço do salto
- O sinal Zero da ULA decide qual endereço será escrito no PC

Tabela Verdade da Unidade de Controle Principal

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Unidade de Controle Principal para instrução de salto

Operação da instrução B (Salto Incondicional)

Implementação do processador monociclo

Controle da III A

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto incondicional B

Operação da instrução B (Salto Incondicional)

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Combinatória d Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto incondicional B Funcionamento do controle do Fluxo de Dados para a instrução B, como por exemplo B offset:

- O Fluxo de Dados do processador é estendido para incluir o sinal de controle Uncondbranch
- O endereço do salto é calculado somando PC com o sinal-estendido(offset) usando os 26 bits do campo de endereço imediato da instrução.
- Uma lógica adicional OR é usada para fazer com que o novo valor de PC seja o resultado desta soma.

Obrigado!

Referências

Implementação do processador monociclo

Controle da ULA

Unidade de Controle Principal

Operação do Fluxo de Dados

Função Combinatória da Unidade de Controle Principal

Extensão da Unidade de Controle Principal para a instrução de salto incondicional B

D. Patterson and J. Hennessy.

Computer Organization and Design ARM Edition: The Hardware Software Interface.

The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2016.

