Математическая логика и теория алгоритмов Лекция 14 Продукционные нечёткие системы

Куценко Дмитрий Александрович

Белгородский государственный технологический университет имени В. Г. Шухова

Институт информационных технологий и управляющих систем Кафедра программного обеспечения вычислительной техники и автоматизированных систем

31 мая 2013 г.

Введение

Основателем нечёткой логики является Л. Заде, однако не менее значимый вклад в развитие этого направления внесли и его последователи.

Эбрагим Мамда́ни (1942—2010) английский математик

В частности, в 1975 г. Э. Мамдани разработал алгоритм, основанный на нечётком логическом выводе, для управления паровым двигателем, который позволяет избежать чрезмерно большого объёма вычислений и в настоящее время является одним из наиболее распространённых в задачах нечёткого моделирования.

Алгоритм Мамдани

В алгоритме используется множество продукционных правил вида «Условие—Заключение».

На вход алгоритму подаётся массив числовых значений, на выходе также получается массив числовых значений.

Сам алгоритм состоит из следующих шагов:

- Фаззификация входов.
- Агрегирование подусловий.
- Активация подзаключений.
- Аккумулирования заключений.
- Дефаззификация выходов.

Пример нечёткой системы

Рассмотрим систему с двумя входами x, y и одним выходом z:

Входные нечёткие лингвистические переменные:

Каждому входу и выходу системы соответствуют т. н. нечёткие лингвистические переменные.

Входные нечёткие лингвистические переменные рассматриваемого примера имеют следующий вид:

Выходные нечёткие лингвистические переменные

Единственному выходу системы соответствует следующая нечёткая лингвистическая переменная:

Пример набора правил

Пример набора правил:

- Если финансирование проекта избыточное или персонал немногочисленный, то риск низкий.
- Если финансирование проекта допустимое и персонал многочисленный, то риск средний.
- Если финансирование проекта низкое, то риск высокий.

Их можно записать в следующем виде:

- ullet Если ${f x}$ есть \widetilde{A}_1 или ${f y}$ есть \widetilde{B}_1 , то ${f z}$ есть \widetilde{C}_1 .
- Если x есть \widetilde{A}_2 и y есть \widetilde{B}_2 , то z есть \widetilde{C}_2 .
- Если x есть \widetilde{A}_3 , то z есть \widetilde{C}_3 .

Структура нечёткой логической системы

Система нечёткого логического вывода на основе алгоритма Мамдани состоит из следующих частей:

Иногда блок с функциями принадлежности называют базой данных.

Шаг 1. Фаззификация входов

Пусть на вход системы поступают значения x'=10000, y'=150:

Тогда значения функций принадлежности нечётких множеств входных лингвистических переменных будут следующие: $\mu_{\widetilde{A}_{\circ}}(x') = 0$, $\mu_{\widetilde{A}_{\circ}}(x') = 0,8$, $\mu_{\widetilde{A}_{\circ}}(x') = 0,2$. $\mu_{\widetilde{B}_{\circ}}(y') = 0,3$, $\mu_{\widetilde{B}_{\circ}}(y') = 0,7$.

Шаг 2. Агрегирование подусловий

Условия правил имеют следующий вид:

- ullet х есть \widetilde{A}_1 или у есть \widetilde{B}_1 .
- x есть \widetilde{A}_2 и y есть \widetilde{B}_2 .
- х есть A₃.

Используя в качестве конъюнкции минимум, а в качестве дизъюнкции максимум, найдём значения функций принадлежности условия каждого из правил (значения подусловий).

Шаг 2. Агрегирование подусловий (продолжение)

На шаге 1 были получены следующие значения:

$$\begin{split} &\mu_{\widetilde{A}_1}(x') = 0, \, \mu_{\widetilde{A}_2}(x') = 0.8, \, \mu_{\widetilde{A}_3}(x') = 0.2. \\ &\mu_{\widetilde{B}_1}(y') = 0.3, \, \mu_{\widetilde{B}_2}(y') = 0.7. \end{split}$$

Значения подусловий рассчитываются следующим образом:

- $\mu_{\widetilde{R}_1} = \max(\mu_{\widetilde{A}_1}, \, \mu_{\widetilde{B}_1}) = \max(0, \, 0.3) = 0.3.$
- $\mu_{\widetilde{R}_2} = \min(\mu_{\widetilde{A}_2}, \ \mu_{\widetilde{B}_2}) = \min(0.8, \ 0.7) = 0.7.$
- $\mu_{\widetilde{R}_3} = \mu_{\widetilde{A}_3} = 0.2.$

Шаг 3. Активация подзаключений

На этом шаге нужно сделать так, чтобы максимальные значения функций принадлежности заключений правил были равны значениям подусловий соответствующих правил. Один из способов — «срезать» нечёткие множества заключений правил:

в нашем случае $\mu_{\widetilde{C}'_i}(z)=\min(\mu_{\widetilde{C}_i}(z),\mu_{\widetilde{R}_i}(z))$ для всех возможных значений z.

Шаг 4. Аккумулирования заключения

На этом шаге выполняется объединение (с помощью максимума) активированных нечётких множеств из предыдущего шага: $\widetilde{C}'=\bigcup_i \widetilde{C}'_i$.

Шаг 5. Дефаззификация выходов

На этом шаге получаем чёткое значение выхода системы путём нахождения центра тяжести фигуры, полученной на

предыдущем шаге:
$$z' = \frac{\int \mu_{\widetilde{C}'}(z) \cdot z \ dz}{\int \mu_{\widetilde{C}'}(z) \ dz}$$

