

-

Configurable Power Conversion

Shortcomings of Existing Products

- Large in size and heavy
- Require internal batteries
- o Relies on proprietary input connectors

Handheld Power Conversion

- o DC inputs to variable DC output
- o Simple & intuitive UI design
- o Adaptable to any scenario

Portability

- Small & lightweight
- Recreational & Professional

Compatibility

- Input from from any common power source
- Easy to configure output

PLAN OF ACTION

Part Selection

Simulation

HW Design

Determine components for best performance & function according to purpose

Verify performance of core components and refine for efficiency

Incorporate selected parts into schematic design and PCB layout

FW Dev

Testing

Design firmware architecture for system control & UI based on existing systems

Manufacture design & test performance, adjust parts per testing results

4-Switch Buck-Boost Converter

Figure 1. Simplified Diagram of the Output Switches

PART SELECTION

Powerful, small package switching buck-boost controller with

voltage/current limiting

LT3790

STM32 CPU

Reliable processor with all necessary peripherals to control LT3790 & OLED screen

SIMULATION

SIMULATION - INITIAL TESTING

Identify Performance Metrics

- Input/Output voltage ripple
- Output voltage stability
- Power efficiency
- Input current draw in stress cases

Converter Operating Parameters

- Input UVLO/OVLO hysteresis
- Switching Frequency
- Passive component values

SIMULATION - TYPICAL BUCK CASE

12V to 5V @ 6A (30W)

General Measurements

- 0.86 Ohm Load
- Output Ripple: 10-15 mV
- Efficiency: Pout/Pin = 93.03%

SIMULATION - TYPICAL BOOST CASE

5V to 12V @ 4A (48W)

General Measurements

- 3 Ohm Load
- Output Ripple: 0.4V P-P
- Efficiency: Pout/Pin = 88.67%

HARDWARE OVERVIEW

HARDWARE DESIGN

CPU

Powerpath

Converters

SOFTWARE OVERVIEW

SOFTWARE OVERVIEW

SOFTWARE DEVELOPMENT Useful UI

- OLED code displays text and other graphics.
- Screen and buttons offer valuable information, navigation, and device control.

Programmed Reliability

- Reliability of control and information is integral for proper consumer use.
- Development in C++ optimized for embedded system.

SOFTWARE DEVELOPMENT Useful UI

- OLED code displays text and other graphics.
- Screen and buttons offer valuable information, navigation, and device control.

Programmed Reliability

- Reliability of control and information is integral for proper consumer use.
- Development in C++ optimized for embedded system.

FUNCTIONAL TESTING

Initial Trials

- 12V Input boosted to 24V Output
- Vctrl monitoring for CC or CV state
- Ensuring consistent DC waveforms internal to system
- Comparing input/output range to simulation

Peripheral Bringup

- SPI for OLED screen
- I2C for DAC and Digipot
- ADC for Sensing

Vout

FUNCTIONAL TESTING

Simulated Inductor Voltage

Actual Inductor Voltage

COST ANALYSIS

APPENDIX A: SIMULATION - STRESS CASES

5V to 60V @ 2A

