Labeling Land:

Land Use Classification Using Convolutional
Neural Networks

Claire Miles

Introduction

Background

- Satellite data is extremely useful
 - a. Bird's eye view of the world
 - b. Help us more
 efficiently use
 natural resources and
 solve environmental
 problems
- Problem: satellite data is massive and confusing

Can we create a model that can classify the landscape/land use of a given image?

This Project

- Create a land classification model using a convolutional neural network
- Tools: Python keras/tensorflow, rasterio, gdal
- Steps:
 - a. Data preparation
 - b. Exploratory DataAnalysis
 - c. Deep Learning Modeling

Data Collection

Methods

- Download data locally
- Translate files from TIF
 to JPEG format using
 gdal_translate
- Only extract red, green, and blue bands
- Separate data into training, validation and test sets

Satellite Data

- EuroSAT Sentinel-2 images from the German Research Center for Artificial Intelligence
- Ten different land use classifications

- 13 bands
 - Only RGB used in this project

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m)
Band 1 - Coastal aerosol	0.443	60
Band 2 - Blue	0.490	10
Band 3 - Green	0.560	10
Band 4 - Red	0.665	10
Band 5 - Vegetation Red Edge	0.705	20
Band 6 - Vegetation Red Edge	0.740	20
Band 7 - Vegetation Red Edge	0.783	20
Band 8 - NIR	0.842	10
Band 8A - Vegetation Red Edge	0.865	20
Band 9 - Water vapour	0.945	60
Band 10 - SWIR - Cirrus	1.375	60
Band 11 - SWIR	1.610	20
Band 12 - SWIR	2.190	20

Sentinel-2 Bands, Wavelength, and Resolution

Exploratory Data Analysis

Methods

- Use histograms and bar plots to visualize data
 - Differences between categories
 - o Differences between
 color bands

Basic Convolutional Neural Network

Methods & Results

- One convolutional input layer, one flatten layer in the middle, and one dense output layer
- Good to test data preparation and parameters
- Not good for model performance
- 10% accuracy == random guess

Transfer Learning

Methods & Results

- Adapt a pre-trained model to this project
- VGG16 model, trained on
 15 million images in
 over 22k categories
- Freeze first 12 layers, train last 10
- 94% accuracy > random guessing

- 60

Convolutional layer
early in the model

Pooling layer early in
the model

Convolutional layer
late in the model

Model Tuning

Methods & Results

- Data augmentation
 - Computational challenge to the CNN
 - O Increases dataset size
- Batch normalization
 - Improves speed and performance of the neural network
- 56% accuracy
 - Could increase with more epochs and higher learning rate

- 120

- 100

- 80

- 60

- 40

- 20

Conclusions & Next Steps

Conclusions

- 1. Save on employee costs
 - a. Money spent manually categorizing satellite imagery can be saved by having the model handle it
- 2. Use employee talents for projects that add value to the company
 - a. Research and development
 - b. Growth strategy
 - c. Human-centered design

Future Explorations

- 1. Improve model tuning techniques
 - a. Dropout regularization
 - b. Weight initialization

2. Explore other base models for transfer learning a. MobileNet

3. Use satellite data from other sources to corroborate or improve the model

Thank you! Questions?