Signetics

SCN8031AH, SCN8051AH Single-Chip 8-Bit Microcontroller

Product Specification

Microprocessor Products

DESCRIPTION

The Signetics SCN8031AH/8051AH is a high-performance microcontroller fabricated using Signetics' highly reliable +5V, depletion-load, N-channel, silicongate, N500 MOS process technology. It provides the hardware features, architectural enhancements and new instructions that are necessary to make it a powerful and cost-effective controller for applications requiring up to 64K bytes of program memory and/or up to 64K bytes of data storage.

The SCN8051AH contains a 4K x 8 read-only program memory; a 128 x 8 read-only program memory; a 128 x 8 read-write data memory; 32 I/O lines; two 16-bit timer/counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The SCN8031AH is identical, except that it lacks the program memory. For systems that require extra capability, the SCN8051AH can be expanded using standard TTL compatible memories and byte oriented peripheral controllers.

The SCN8051AH microcontroller, like its SCN8048 predecessor, is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte. 41% two-byte, and 15% three-byte instructions. With a 12MHz crystal, 58% of the instructions execute in 1 µs, 40% in 2µs and multiply and divide require only 4 us. Among the many instructions added to the standard SCN8048 instruction set are multiply, divide, subtract, and compare.

FEATURES

- Reduced supply current
- 4K x 8 ROM (SCN8051AH)
- 128 x 8 RAM
- Four 8-bit ports, 32 I/O lines
- Two 16-bit timer/event counters
- High-performance full-duplex serial channel
- External memory expandable to 128K
- Boolean processor
- SCN80 series architecture enhanced with:
 - Non-paged jumps
 - Direct addressing
 - Four 8-register banks
 - Stack depth up to 128-bytes
 - Multiply, divide, subtract, compare
- Most instructions execute in 1μs
- 4us multiply and divide

LOGIC SYMBOL

PIN CONFIGURATION

SCN8031AH, SCN8051AH

ORDERING CODE

BLOCK DIAGRAM

SCN8031AH, SCN8051AH

PIN DESCRIPTION

		NO.			
MNEMONIC	DIP	LCC	TYPE	NAME AND FUNCTION	
V _{SS}	20	22	1	Circuit ground potential.	
V _{CC}	40	44		Supply voltage during normal operation and program verification.	
P0.0 – P0.7	39 – 32	43 – 36	1/0	address and data bus during accesses to external memory. It also outputs instruction bytes during program verification. External pullups are required during program verification. Port 0 can sink (and in bus operation source) eight LS TTL inputs.	
P1.0 – P1.7	1 – 8	2-9	1/0	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pullups. It receives the low-order address byte during program verification. Port 1 can sink/source three LS TTL inputs.	
P2.0 – P2.7	21 – 28	24 – 31	1/0	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pullups. It emits the high-order address byte during accesses to external memory. It also receives the high-order address bits and control signals during program verification. Port 2 can sink/source three LS TTL inputs.	
P3.0 – P3.7	10 – 17	11, 13 – 19	1/0	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pullups. Port 3 can sink/source three LS TTL inputs. It also serves the functions of various special features as listed below. The output latch corresponding to a secondary function must be programmed to a logic 1 for that function to operate.	
	10	11	1	RXD (P3.0). Serial input port	
	11	13	0	TXD (P3.1): Serial output port	
	12	14	1	INTO (P3.2): External interrupt 0	
	13	15	1	INT1 (P3.3): External interrupt 1	
	14	16	1	T0 (P3.4): Timer 0 external input	
	15	17		T1 (3.5): Timer 1 external input	
	16	18	0	WR (P3.6): External data momory write strobe	
	17	19	0	RD (P3.7): External data momory read strobe	
RST	9	10	l	Reset: A high level on this pin for two machine cycles while the oscillator is running resets the device. An external pulldown rosistor (\approx 8.2K) from reset to V _{SS} permits power-on reset using only a capacitor (\approx 10 μ F) connected from this pin to V _{CC} .	
ALE	30	33	0	Address Latch Enable: Output for latching the low byte of the address during accesses to external memory. ALE is activated at a constant rate of 1/6 the oscillator frequency except during an external data memory access, at which time one ALE pulse is skipped. ALE can sink/source eight LS TTL inputs.	
PSEN	29	32	0	Program Store Enable: Output is the read strobe to external program memory. PSEN is activated twice each machine cycle during fetches from external program memory. (Howover, when executing out of external program memory, two activations of PSEN are skipped during each access to external data memory.) PSEN is not activated during fetches from internal program memory. PSEN can sink/source eight LS TTL inputs.	
ĒĀ	31	35	1	Instruction Execution Control: When \overline{EA} is held high, the CPU executes out of internal program memory (unless the program counter exceeds OFFFH). When \overline{EA} is held low, the CPU executes only out of external program memory. \overline{EA} must not be floated.	
XTAL1	19	21	1	Crystal 1: Input to the inverting amplifier that forms the oscillator. This pin should be connected to V _{SS} when an external oscillator is used.	
XTAL2	18	20	0	Crystal 2: Output of the inverting amplifier that forms the oscillator, and input to the internal clock generator. XTAL2 receives the oscillator signal when an external oscillator is used.	

SCN8031AH, SCN8051AH

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Operating ambient temperature ²	0 to +70	°C
Storage temperature	-65 to +150	l °c
All voltages with respect to ground ³	-0.5 to +7.0	l v
Power dissipation	1.0	w

DC ELECTRICAL CHARACTERISTICS $T_A=0^{\circ}C$ to $+70^{\circ}C$, $V_{CC}=4.5$ to 5.5V, $V_{SS}=0V^{4,5}$

		TEGT CONDITIONS	LIMITS			
	PARAMETER	TEST CONDITIONS	Min	Max	UNIT	
V _{IL} V _{IH} V _{IH1}	Input low voltage Input high voltage (except RST and XTAL2) Input high voltage to RST for reset, XTAL2	XTAL1 to V _{SS}	-0.5 2.0 2.5	0.8 V _{CC} + 0.5 V _{CC} + 0.5	V V V	
V _{OL} V _{OL1} V _{OH} V _{OH1}	Output low voltage ports 1, 2, 3 ⁶ Output low voltage port 0, ALE, PSEN ⁶ Output high voltage ports 1, 2, 3 Output high voltage port 0, ALE	$I_{OL} = 1.6mA$ $I_{OL} = 3.2mA$ $I_{OH} = -80\mu A$ $I_{OH} = -400\mu A$	2.4 2.4	0.45 0.45	V V V	
l _{IL} l _{IH1} l _{L1} l _{IL2}	Logical 0 input current ports 1, 2, 3 Input high current to RST for reset Input leakage current to port 0, EA Logical 0 input current for XTAL2	$\begin{aligned} &V_{IN} = 0.45V \\ &V_{IN} < V_{CC} - 1.5V \\ &0.45 < V_{IN} < V_{CC} \\ &XTAL1 = V_{SS}, \ V_{IN} = 0.45V \end{aligned}$		-800 500 ± 10 -2.5	μΑ μΑ μΑ mA	
I _{CC} C _{IO}	Power supply current Capacitance of I/O buffer	All outputs disconnected $f_C = 1MHz$, $T_A = 25^{\circ}C$		125 10	mA pF	

$T_A = -40$ °C to +85°C - Extended temperature range - SCN8051HAC only

V _{IH} V _{IH1}	Input high voltage (except RST and XTAL2) Input high voltage to RST for reset, XTAL2	XTAL1 to V _{SS}	2.2 2.7	V _{CC} +0.5	V V
Icc	Power supply current	All outputs disconnected		175	mA

NOTES:

- Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of
 the device at these or at any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.
- 2. For operating at elevated temperatures, the device must be derated based on +150°C maximum junction temperature.
- 3. This product includes circuitry specifically designed for the protection of its internal devices from damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying voltages greater than the rated maxima.
- 4. Parameters are valid over operating temperature range unless otherwise specified.
- 5. All voltage measurements are referenced to ground. For testing, all input signals swing between 0.45V and 2.4V with a transition time of 20ns maximum. All time measurements are referenced at input voltages of 0.8V and 2.0V and at output voltages of 0.8V and 2.0V as appropriate.
- 6. V_{OL} is degraded when the SCN8031AH/SCN8051AH rapidly disch arges external capacitance. This AC noise is most pronounced during emission of address data. When using external memory, locate the latch or buffer as close to the SCN8031AH/SCN8051AH as possible.

	Limang	Degraded	
Datum	Ports	I/O Lines	V _{OL} (Peak Max)
Address	P2, P0	P1, P3	0.8V
Write data	· P0	P1. P3. ALE	0.8V

^{7.} $C_L = 100pF$ for port 0, ALE and PSEN outputs; $C_L = 80pF$ for all other ports.

AC ELECTRICAL CHARACTERISTICS $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 10$ %, $V_{SS} = 0V^{4,5,7}$

	PARAMETER	12MHz	CLOCK		E CLOCK WHz to 12MHz	UNIT
		Min	Max	Min	Max	
Program i	memory char (fig. 1)					
t _{LHLL}	ALE pulse width	127		2t _{CLCL} -40		ns
t _{AVLL}	Address set-up to ALE	43	1	t _{CLCL} -40		ns
tLLAX	Address hold after ALE	48		t _{CLCL} -35	1	ns
t _{LLIV}	ALE to valid instr in		223		4t _{CLCL} -100	ns
t _{LLPL}	ALE to PSEN	58	ì	t _{CLCL} -25	\$	ns
t _{PLPH}	PSEN pulse width	215		3t _{CLCL} -35		ns
t _{PLIV}	PSEN to valid instr in		125		3t _{CLCL} -125	ns
t _{PXIX}	Input instr hold after PSEN	0		0	1	ns
t _{PXIZ}	Input instr float after PSEN		63		t _{CLCL} -20	ns
t _{PXAV}	Address valid after PSEN	. 75		t _{CLCL} -8	1	ns
t _{AVIV}	Address to valid instr in		302		5t _{CLCL} -115	ns
t _{PLAZ}	PSEN to address float		25		25	ns
External d	ata memory char (fig. 2 and 3)					
t _{RLRH}	RD pulse width	400		6t _{CLCL} -100	İ	ns
twLWH	WR pulse width	400		6t _{CLCL} -100		ns
t _{LLAX}	Address hold after ALE	48		t _{CLCL} -35	ì	ns
t _{RLDV}	RD to valid data in		250	}	5t _{CLCL} -165	ns
t _{RHDX}	Data hold after RD	0) o		ns
t _{RHDZ}	Data float after RD		97	[2t _{CLCL} -70	ns
tLLDV	ALE to valid data in		517		8t _{CLCL} -150	ns
tAVDV	Address to valid data in		585		9t _{CLCL} -165	ns
tLLWL	ALE to WR or RD	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
tAVWL	Address to WR or RD	203		4t _{CLCL} -130	ł	ns
twhLH	WR or RD high to ALE	43	123	t _{CLCL} -40	t _{CLCL} +40	ns
	high					
t _{DVWX}	Data valid to WR transition	23		t _{CLCL} -60		ns
tavwh	Data set-up before WR	433		7t _{CLCL} -150		ns
twHQX	Data hold after WR	33		t _{CLCL} -50		ns
tRLAZ	Address float after RD		25		25	ns
External c	clock (fig. 4)					
tclcl	Oscillator period			83.3	286	ns
tchcx	High time		,	20		ns
tCLCX	Low time			20	İ	ns
t _{CLCH}	Rise time				20	ns
tCHCL	Fall time				20	ns

SCN8031AH, SCN8051AH

PORT 0

PORT 2

ADDRESS OR SFR-P2

ADDRESS A15-A8 OR SFR-P2

ADDRESS A15-A8 OR SFR-P2

ADDRESS A15-A8 OR SFR-P2

MFG1640S

NOTES

- 1. AC testing inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0".
- 2. Timing measurements are made at 2.0V for a logic "1" and 0.8V for a logic "0".
- 3. For timing purposes, the float state is defined as the point at which a P0 pin sinks 3.2mA or sources 400 µA at the voltage test levels.

SCN8031AH, SCN8051AH

NOTE:

All internal timing is referenced to the internal time states shown at the top of the page. This waveform represents the signal on the X2 input of the oscillator. This diagram represents when these signals are actually clocked within the chip. However, the time it takes a signal to propagate to the pins is in the range of 50-150ns. Propagation delays are dependent on many variables, such as temperature and pin loading. Even the different signals vary. Typically though, RD and WR have propagation delays of approximately 50ns and the other timing signals approximately 85ns. At room temperature, fully loaded, these differences in propagation delays between signals have been integrated into the timing specs.

Table 1. INSTRUCTION SET

N	INEMONIC	DESCRIPTION	BYTE	CYCLES
Arithmetic				
ADD	A,Rn	Add register to accumulator	1 1	1
ADD	A,direct	Add direct byte to accumulator	. 2	1
ADD	A,@Ri	Add indirect RAM to accumulator	1 1	1
ADD	A,R#data	Add immediate data to accumulator	2	1
ADDC	A,Rn	Add register to accumulator with carry	1	1
ADDC	A,direct	Add direct byte to A with carry flag	2	1
ADDC	A,@Ri	Add indirect RAM to A with carry flag	1	1
ADDC	A,#data	Add immediate data to A with carry flag	2	1
SUBB	A,Rn	Subtract register from A with borrow	1 1	1
SUBB	A,direct	Subtract direct byte from A with borrow	2	1
SUBB	A,@Ri	Subtract indirect RAM from A w/borrow	1	1
SUBB	A,#data	Subtract immed. data from A w/borrow	2	1
INC	A	Increment accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	@Ri	Increment indirect RAM	1	1
DEC	Α	Decrement accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	@Ri	Decrement Indirect RAM	1	1
INC	DPTR	Increment data pointer	1	2
MUL	AB	Mulitiply A & B	j 1	4
DIV	AB	Divide A by B	1	4
DA	A	Decimal adjust accumulator	1	1
Logical Op				
ANL	A,Rn	AND register to accumulator	1	1
ANL	A,direct	AND direct byte to accumulator	2	1
ANL	A,@Ri	AND indirect RAM to accumulator	1	1
ANL	A,#data	AND immediate data to accumulator	2	1
ANL	direct,A	AND accumulator to direct byte	2	1
ANL	direct,#data	AND immediate data to direct byte	3	2
ORL	A,Rn	OR register to accumulator	1	1
ORL	A, direct	OR direct byte to accumulator	2	1
ORL	A,@Ri	OR indirect RAM to accumulator	1	1
ORL	A,#data	OR immediate data to accumulator	2	1
ORL	direct.A	OR accumulator to direct byte	2	1
ORL	direct,#data	OR immediate data to direct byte	3	2
XRL	A,Rn	Exclusive-OR register to accumulator	1	1
XRL	A,direct	Exclusive-OR direct byte to accumulator	2	1
XRL	A,@Ri	Exclusive-OR indirect RAM to A	1	1
XRL	A,#data	Exclusive-OR immediate data to A	2	1
XRL	direct,A	Exclusive-OR accumulator to direct byte	2	1
XRL	direct,#data	Exclusive-OR immediate data to direct	3	2
CLR	Α	Clear accumulator	1	1
CPL	A	Complement accumulator	1 1	1
RL	A	Rotate accumulator left	1 1	1
RLC	A	Rotate A left through the carry flag	1 1	1
RR	A	Rotate accumulator right	i	i
RRC	Ä	Rotate A right through carry flag	l i	i
SWAP	Ä	Swap nibbles within the accumulator	l i	i
Data Trans	fer		<u> </u>	
MOV	A,Rn	Move register to accumulator	1	1
MOV	A,direct	Move direct byte to accumulator	2	1
MOV	A,@Ri	Move indirect RAM to accumulator	1	1
MOV	A,#data	Move immediate data to accumulator	2	1
MOV	Rn,A	Move accumulator to register	1 1	i
MOV	Rn,direct	Move direct byte to register	2	ż
MOV	Rn,#data	Move immediate data to register	2	1
MOV	direct,A	Move accumulator to direct byte	2	i
MOV	direct,A	Move register to direct byte	2	2
MOV	direct, direct	Move direct byte to direct	3	2
MOV	direct,@Ri	Move indirect BAM to direct byte	2	2
MOV	direct, #data	Move immediate data to direct byte	3	2
IVIUV	un eci, #uaid	wove minerate data to direct byte	د ا	۔ ا

SCN8031AH, SCN8051AH

Table 1. INSTRUCTION SET (Continued)

	MNEMONIC	DESCRIPTION	BYTE	CYCLES
Data Tra	nsfer (Continued)			
MOV	@Ri,A	Move accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	@Ri,#data	Move immediate data to indirect RAM	2	1
MOV	DPTR,#data16	Load data pointer with a 16-bit constant	3	2
MOVC	A,@A + DPTR	Move code byte relative to DPTR to A	1	2
MOVC	A,@A + PC	Move code byte relative to PC to A	1	2
MOVX	A.@Ri	Move external RAM (8-bit addr) to A	1 1	2
MOVX	A,@DPTR	Move external RAM (16-bit addr) to A) i	2
MOVX	@Ri.A	Move A to external RAM (8-bit addr)	l i	2
MOVX	@DPTR.A	Move A to external RAM (16-bit addr)	li	2
PUSH	direct	Push direct byte onto stack	2	2
		Pop direct byte from stack	2	2
POP	direct			
XCH	A,Rn	Exchange register with accumulator	1	1
XCH	A,direct	Exchange direct byte with accumulator	2	1
KCH	A,@Ri	Exchange indirect RAM with A	1	1
KCHD	A,@Ri	Exchange low-order digit ind. RAM w/A	1	1
	Variable Manipulation			
CLR	С	Clear carry flag	1 1	1
CLR	bit	Clear direct bit	2	1
SETB	С	Set carry flag	1	1
SETB	bit	Set direct bit	2	1
CPL	С	Complement carry flag	1	1
CPL	bit	Complement direct bit	2	1
ANL	C,bit	AND direct bit to carry flag	2	2
ANL	C,bit	AND complement of direct bit to carry	2	2
ORL	C,bit	OR direct bit to carry flag	2	2
ORL	C,bit	OR complement of direct bit to carry	2	2
MOV	C,bit	Move direct bit to carry flag	2	1
MOV	bit,C	Move carry flag to direct bit	2	2
Program	and Machine Contro	- <u>-</u>		
ACALL	addr11	Absolute subroutine call	2	2
LCALL	addr16	Long subroutine call	3	2
RET	444	Return from subroutine	1 1	2
RETI		Return from interrupt	1 1	2
AJMP	addr11	Absolute jump	2	2
LJMP	addr16	Long jump	3	2
SJMP	rel	Short jump (relative addr)	2	2
JMP	@A + DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if accumulator is zero	2	2
1817	rel	Jump if accumulator is not zero	2	2
			2	2
JC	rel	Jump if carry flag is set		
JNC JC	rel	Jump if no carry flag	2	2
JC JNC JB	rel bit,rel	Jump if no carry flag Jump if direct bit set	3	2 2
JC JNC JB JNB	rel bit,rel bit,rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set	3 3	2 2 2
JC JNC JB JNB JBC	rel bit,rel bit,rel bit,rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set Jump if direct bit is set & clear bit	3 3 3	2 2 2 2
JC JNC JNB JNB JBC	rel bit,rel bit,rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set	3 3 3 3	2 2 2 2 2
JC JNC JB JNB JBC CJNE	rel bit,rel bit,rel bit,rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set Jump if direct bit is set & clear bit	3 3 3	2 2 2 2 2
JC JNC JB JNB JBC CJNE CJNE	rel bit,rel bit,rel bit,rel A,direct,rol	Jump if no carry flag Jump if direct bit set Jump if direct bit not set Jump if direct bit is set & clear bit Compare direct to A & jump if not equal	3 3 3 3	2 2 2 2 2 2
JC JNC JB JNB JBC CJNE CJNE CJNE	rel bit,rel bit,rel bit,rel A,direct,rol A,#data, rel Rn,#data, rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set Jump if direct bit not set Jump if direct bit is set & clear bit Compare direct to A & jump if not equal Comp. immed. to A & jump if not equal Comp. immed. to reg. & jump if not equal	3 3 3 3 3 3	2 2 2 2 2 2 2 2 2
JC JNC JB JNB JBC CJNE CJNE CJNE CJNE CJNE CJNE	rel bit,rel bit,rel bit,rel A,direct,rol A,#data, rel Rn,#data, rel @ Ri,#data, rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set Jump if direct bit is set & clear bit Compare direct to A & jump if not equal Comp. immed. to A & jump if not equal Comp. immed. to reg. & jump if not equal Comp. immed. to ind. & jump if not equal	3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2
JNZ JC JNC JB JNB JNB CJNE CJNE CJNE CJNE DJNZ DJNZ	rel bit,rel bit,rel bit,rel A,direct,rol A,#data, rel Rn,#data, rel	Jump if no carry flag Jump if direct bit set Jump if direct bit not set Jump if direct bit not set Jump if direct bit is set & clear bit Compare direct to A & jump if not equal Comp. immed. to A & jump if not equal Comp. immed. to reg. & jump if not equal	3 3 3 3 3 3	2 2 2 2 2 2 2 2

Notes on data addressing modes:

Rn -Working register R0-R7

direct —128 internal RAM locations, any I/O port, control or status register @Ri —Indirect Internal RAM location addressed by register R0 or R1

#data -8-bit constant included in instruction

#data16 -16-bit constant included as bytes 2 & 3 of instruction bit -128 software flags, any I/O pin, control or status bit

Notes on program addressing modes:

addr16
addr16
-Destination address for LCALL & LJMP may be anywhere within the 64-kilobyte program memory address space,
-Destination address for ACALL & AJMP will be within the same 2-kilobyte page of program memory as the first byte of the following instruction.

-SJMP and all conditional jumps include an 8-bit offset byte. Range is +127 - 128 bytes relative to first byte of the

following instruction.

rel

Table 2. INSTRUCTION OPCODES IN HEXADECIMAL ORDER

HEX CODE	NUMBER OF BYTES	MNEMONIC	OPERANDS
00	1	NOP	
01	2	AJMP	code addr
02	3	LJMP	code addr
03	1	RR	A
04	1	INC	A
05	2	INC	data addr
06	1	INC	@R0
07	i	INC	@R1
08		INC	RO
09	1	INC	R1
	1		
0A	1	INC	R2
0B	1	INC	R3
0C	1	INC	R4
0D	1	INC	R5
0E	1	INC	R6
0F	1	INC	R7
10	3	JBC	bit addr, code addr
11	3 2	ACALL	code addr
12	3	LCALL	code addr
13	1	RRC	A
14	i	DEC	Ä
	2	DEC	data addr
15			
16	1	DEC	@R0
17	1	DEC	@R1
18	1	DEC	R0
19	1	DEC) R1
1A	1	DEC	R2
1B	1	DEC	R3
1C	1	DEC	R4
1D	1	DEC	R5
1E	1	DEC	R6
1F	1	DEC	R7
20	j ġ	JB	bit addr, code addr
21	2	AJMP	code addr
22	1	RET	code addi
			^
23	1	RL	A
24	2	ADD	A, # data
25	2	ADD	A,data addr
26	1	ADD	A,@R0
27	1	ADD	A,@R1
28	1	ADD	A,R0
29	1	ADD	A,R1
2A	1	ADD	A,R2
2B	1	ADD	A,R3
2C	1	ADD	A,R4
2D	1	ADD	A,R5
2E	i i	ADD	A.R6
2F	i	ADD	A.R7
30	3	JNB	bit addr,code addr
	2	ACALL	code addr
31			code addi
32	1 1	RETI	
33	1	RLC	A
34	2	ADDC	A, # data
35	2	ADDC	A,data addr
36	1	ADDC	A,@R0
37	1	ADDC	A,@R1
38	1	ADDC	A,R0
39	1	ADDC	A,R1
3A	l i	ADDC	A,R2
3B	1 4	ADDC	A,R3
3B 3C	1	ADDC	A,R3
	1		
	1	ADDC	A,R5
3D		ADDO	l ADC
3E 3F	1	ADDC ADDC	A,R6 A,R7

Table 2. INSTRUCTION OPCODES IN HEXADECIMAL ORDER (Continued)

HEX CODE	NUMBER OF BYTES	MNEMONIC	OPERANDS
40	2	JC	code addr
41	2	AJMP	code addr
42	2	ORL	data addr,A
43	2	ORL	data addr,#data
	3 2	ORL	
44	2		A, # data
45	2	ORL	A,data addr
46	1 ·	ORL	A,@R0
47	1	ORL	A,@R1
48	1 .	ORL	A,R0
49	i	ORL	A,R1
4A	i	ORL	
			A,R2
4B	1	ORL	A,R3
4C	1	ORL	A,R4
4D	1	ORL	A,R5
4E	1	ORL	A,R6
4F	1	ORL	A,R7
50	2	JNC	code addr
	2		
51	2	ACALL	code addr
52	2	ANL	data addr,A
53	3	ANL	data addr,#data
54	2	ANL	A,#data
55	2	ANL	A,data addr
56	1	ANL	A,@R0
	1		
57	!	ANL	A,@R1
58	1	ANL	A,R0
59	1	ANL	A,R1
5A	1	ANL	A,R2
5B	1	ANL	A,R3
5C	i	ANL	A,R4
	i		
5D	•	ANL	A,R5
5E	1	ANL	A,R6
5F	1	ANL	A,R7
60	2	JZ	code addr
61	2	AJMP	code addr
62	2	XRL	data addr,A
	3		
63		XRL	data addr, # data
64	2	XRL	A,#data
65	2	XRL	A,data addr
66	1	XRL	A,@R0
67	1	XRL	A,@R1
68	1	XRL	A,R0
69	i	XRL	A,R1
	•		
6A	1	XRL	A,R2
6B	1	XRL	A,R3
6C	1	XRL	A,R4
6D	1	XRL	A,R5
6E	1	XRL	A,R6
6F	i	XRL	A,R7
	2		
70	2	JNZ	code addr
71	2	ACALL	code addr
72	2	ORL	C,bit addr
73	1	JMP	@A+DPTR
74	2	MOV	A,#data
75	3	MOV	data addr, # data
76	2	MOV	@ R0, # data
77	2	MOV	@R1,#data
78	2	MOV	R0,#data
79	2	MOV	R1,#data
7A	2	MOV	R2,#data
	2		
7B	2	MOV	R3, # data
7C	2	MOV	R4,#data
		LION	DE # data
7D 7E	2 2	MOV MOV	R5, # data R6, # data

SCN8031AH, SCN8051AH

Table 2. INSTRUCTION OPCODES IN HEXADECIMAL ORDER (Continued)

HEX CODE	NUMBER OF BYTES	MNEMONIC	OPERANDS
7F	2	MOV	R7,#data
80		SJMP	code addr
	2 2		
81		AJMP	code addr
82	2	ANL	C,bit addr
83	1	MOVC	A,@A + PC
84	i	DIV	AB
85	3	MOV	data addr,data addr
86	2	MOV	data addr,@R0
87	2	MOV	data addr,@R1
88	2	MOV	data addr,R0
89	2	MOV	data addr,R1
8A	2	MOV	data addr,R2
8B	2	MOV	data addr,R3
8C	2	MOV	data addr.R4
8D	2	MOV	data addr,R5
8E	2	MOV	data addr,R6
8F	2	MOV	data addr,R7
90	3	MOV	DPTR,#data
91	2	ACALL	code addr
92	2	· MOV	bit addr,C
93	1	MOVC	A,@A + DPTR
94	ż	SUBB	A,#data
95	2	SUBB	A,data addr
96	1	SUBB	A,@R0
97	1	SUBB	A,@R1
98	!	SUBB	A,R0
99	1	SUBB	A,R1
9A	1	SUBB	A,R2
9B	1	SUBB	A,R3
9C	1	SUBB	
	!		A,R4
9D	1	SUBB	A,R5
9E	1	SUBB	A,R6
9F	i	SUBB	A,R7
		ORL	
A0	2		C,/bit addr
A1	2	AJMP	code addr
A2	2	MOV	C,bit addr
A3	1	INC	DPTR
A4	1	MUL .	AB
A5		reserved	
A6	2	MOV	@R0,data addr
A7	2	MOV	@R1,data addr
A8	2	MOV	R0,data addr
A9	2	MOV	R1,data addr
AA	2	MOV	R2,data addr
AB	2	MOV	R3,data addr
	2	MOV	R4,data addr
AC			
AD	2	MOV	R5,data addr
AE	2	MOV	R6,data addr
AF	2	MOV	R7,data addr
			C,/bit addr
B0	2	ANL	
B1	2	ACALL	code addr
B2	2	CPL	bit addr
B3	1	CPL	C
B4	3	CJNE	A,#data,code addr
B5	3	CJNE	A,data addr,code addr
В6	3	CJNE	@R0,#data,code addr
B7	3	CJNE	@R1,#data,code addr
B8	3	CJNE	R0,#data,code addr
B9	3	CJNE	R1,#data,code addr
BA	3	CJNE	R2,#data,code addr
BB	3	CJNE	
			R3, # data, code addr
BC	3	CJNE	R4,#data,code addr
	3	CJNE	R5, # data, code addr
BD \	3		
BD) BE	3	CJNE	R6, # data, code addr

February 20, 1985 3-54

Table 2. INSTRUCTION OPCODES IN HEXADECIMAL ORDER (Continued)

HEX NUMBER CODE OF BYTES	MNEMONIC	OPERANDS
	PUSH AJMP CLR SWAP XCH XCH XCH XCH XCH XCH XCH XCH XCH XCH	data addr code addr bit addr C A A,data addr A,@R0 A,@R1 A,R0 A,R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7 data addr code addr bit addr C C A data addr,code addr A,@R0 A,@R1 R0,code addr R1,code addr R2,code addr R3,code addr R4,code addr R5,code addr R6,code addr R7,code addr R7,code addr R7,code addr A,@PTR code addr A,@R0 A,@R1 A,@R0 A,@R1 A,R0 A,@R1 A A,data addr A,@R0 A,@R1 A,R0 A,R1 A,R1 A,R1 A,R2 A,R3 A,R4 A,R3 A,R4 A,R1 A,R1 A A A A A A A A A A A A A A A A A A A