Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

Partie I - Résultats préliminaires

I.A - Distance de A à As

On notera \langle , \rangle le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$.

I.A - 1) On sait que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont des sous-espaces supplémentaires de dimensions respectives $\frac{n(n+1)}{2}$ et $\frac{n(n-1)}{2}$. Vérifions que ces sous-espaces sont orthogonaux l'un à l'autre.

Soit $(S, A) \in \mathscr{S}_n(\mathbb{R}) \times \mathscr{A}_n(\mathbb{R})$.

$$\langle A, S \rangle = \operatorname{Tr}(A^{\mathsf{T}}S) = \operatorname{Tr}(-AS) = -\operatorname{Tr}(AS) = -\operatorname{Tr}(SA) = -\operatorname{Tr}(S^{\mathsf{T}}A) = -\langle S, A \rangle = -\langle A, S \rangle$$

et donc $2\langle A, S \rangle = 0$ puis $\langle A, S \rangle = 0$. Ainsi, $\mathscr{A}_n(\mathbb{R}) \subset \mathscr{S}_n(\mathbb{R})^{\perp}$ puis $\mathscr{A}_n(\mathbb{R}) = \mathscr{S}_n(\mathbb{R})^{\perp}$ par égalité des dimensions.

I.A - 2) Soit $(A,S) \in \mathcal{M}_n(\mathbb{R}) \times \mathcal{S}_n(\mathbb{R})$. Alors, $A - A_s = A_a \in \mathcal{S}_n(\mathbb{R})^{\perp}$ et $A_s - S \in \mathcal{S}_n(\mathbb{R})$. D'après le théorème de Pythagore

$$||A - S||_2^2 = ||(A - A_s) + (A_s - S)||_2^2 = ||A - A_s||_2^2 + ||A_s - S||_2^2 \ge ||A - A_s||_2^2$$

ou encore $\|A - S\|_2 \geqslant \|A - A_s\|_2$ avec égalité si et seulement si $\|A_s - S\|_2 = 0$ ce qui équivaut à $S = A_s$.

I.B - Valeurs propres de A_s

- I.B 1) La matrice A_s est symétrique réelle et donc ses valeurs propres dans $\mathbb C$ sont réelles d'après le théorème spectral.
- Supposons que $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ X^T A_s X \geqslant 0$ (resp. $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ X^T A_s X > 0$). Soient $\lambda \in \mathbb{R}$ une valeur propre de A_s puis X un vecteur propre associé (en particulier, $X \neq 0$). Alors,

$$X^{\mathsf{T}} A_s X = X^{\mathsf{T}} (\lambda X) = \lambda ||X||_2^2.$$

Par suite, $\lambda \|X\|_2^2 \geqslant 0$ (resp. $\lambda \|X\|_2^2 > 0$). Puisque $\|X\|_2^2 > 0$, on en déduit $\lambda \geqslant 0$ (resp. $\lambda > 0$). Ainsi, $A_s \in S_n^+(\mathbb{R})$ (resp. $A_s \in S_n^+(\mathbb{R})$).

• Supposons que $A_s \in S_n^+(\mathbb{R})$. D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ (de sorte que $P^{-1} = P^T$) et $D = \operatorname{diag}(\lambda_i)_{1 \leqslant i \leqslant n} \in \mathscr{D}_n(\mathbb{R}^+)$ telles que $A_s = PDP^{-1}$. Pour $X = (x_i)_{1 \leqslant i \leqslant n} \in \mathscr{M}_{n,1}(\mathbb{R})$, posons $P^{-1}X = X' = (x_i')_{1 \leqslant i \leqslant n} \in \mathscr{M}_{n,1}(\mathbb{R})$.

$$X^TA_sX = X^TPDP^{-1}X = \left(P^{-1}X\right)^TD\left(P^{-1}X\right) = X'^TDX' = \sum_{i=1}^n \lambda_i \chi_i'^2 \geqslant 0.$$

Donc $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^T A_s X \geq 0.$

Supposons de plus $A_s \in S_n^{++}(\mathbb{R})$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$. Puisque P est inversible, $X' = P^{-1}X \neq 0$ et donc l'un au moins des x_i' est non nul. Mais alors

$$X^{T}A_{s}X = \sum_{i=1}^{n} \lambda_{i} x_{i}^{2} > 0$$

car tous les $\lambda_i x_i'^2$ sont positifs, l'un d'entre eux au moins étant strictement positif. Donc, $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, X^T A_s X > 0$.

I.B - 2) Soient λ une valeur propre réelle de A puis X un vecteur propre unitaire associé.

$$\lambda = \lambda ||X||_2^2 = \lambda X^T X = X^T A X = X^T A_s X + X^T A_a X.$$

Ensuite, $X^TA_{\alpha}X = -X^TA_{\alpha}^TX = -(A_{\alpha}X)^TX = -\left((A_{\alpha}X)^TX\right)^T = -X^TA_{\alpha}X$ et donc $X^TA_{\alpha}X = 0$. Avec les notations de la question précédente, il reste donc

$$\lambda = X^{\mathsf{T}} A_s X = X'^{\mathsf{T}} \mathsf{D} X = \sum_{i=1}^n \lambda_i \chi_i'^2.$$

Puisque P est une matrice orthogonale, $\sum_{i=1}^{n} x_i'^2 = \|X'\|_2^2 = \|X\|_2^2 = 1$ et donc

$$\lambda\geqslant \operatorname{Min}\{\lambda_{\mathfrak{i}},\ 1\leqslant \mathfrak{i}\leqslant \mathfrak{n}\}\sum_{\mathfrak{i}=1}^{n}x_{\mathfrak{i}}'^{2}=\operatorname{Min}\{\lambda_{\mathfrak{i}},\ 1\leqslant \mathfrak{i}\leqslant \mathfrak{n}\}$$

et de même $\lambda \leqslant \operatorname{Max}\{\lambda_i,\ 1 \leqslant i \leqslant n\}$. On a montré que

$$\operatorname{Min} \operatorname{sp}_{\mathbb{R}} (A_s) \leq \lambda \leq \operatorname{Max} \operatorname{sp}_{\mathbb{R}} (A_s)$$
.

Supposons de plus $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$, Min $\operatorname{sp}_{\mathbb{R}}(A_s) > 0$ et donc toute valeur propre réelle de A est strictement positive. En particulier, 0 n'est pas valeur propre de A et donc A est inversible.

I.B - 3) a) On pose $A_s = PDP^{-1}$ où $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_i)_{1 \leq i \leq n} \in \mathscr{D}_n(]0, +\infty[)$. Soit $\Delta = \operatorname{diag}(\sqrt{\lambda_i})_{1 \leq i \leq n} \in \mathscr{D}_n(]0, +\infty[)$ puis $B = P\Delta P^{-1}$.

B est orthogonalement semblable à une matrice diagonale à coefficients diagonaux strictement positifs et donc $B \in \mathscr{S}_n^{++}(\mathbb{R})$. De plus, $B^2 = P\Delta^2 P^{-1} = PDP^{-1} = A_s$. Ceci montre l'existence de B.

 $B = P\Delta P^{-1} \text{ désignant la matrice précédente, soit } B' \in \mathscr{S}_n^{++}(\mathbb{R}) \text{ telle que } B'^2 = A_s. \ B' \text{ est diagonalisable d'après le théorème spectral et donc } \mathscr{M}_{n,1}(\mathbb{R}) = \bigoplus_{\lambda \in \operatorname{Sp}(B')} E_{\lambda}(B'). \text{ De même, } \mathscr{M}_{n,1}(\mathbb{R}) = \bigoplus_{\lambda \in \operatorname{Sp}(A_s)} E_{\lambda}(A_s).$

Mais pour chaque λ de B', $E_{\lambda}(B') \subset E_{\lambda^2}(A_s)$ car $B'X = \lambda X \Rightarrow A_s X = B^2 X = \lambda^2 X$ et de plus, les λ éléments de Sp(B') étant strictement positifs, les λ^2 , $\lambda \in Sp(B')$, sont deux à deux distincts. Ceci montre que le spectre de A_s est exactement l'ensemble des λ^2 , $\lambda \in Sp(B')$ et que pour chaque $\lambda \in Sp(B')$, $E_{\lambda}(B') = E_{\lambda^2}(A_s)$.

Dit autrement, la matrice $P^{-1}B'P$ est une matrice diagonale $D' = \operatorname{diag}(\mu_i)_{1 \leqslant i \leqslant n}$ où les μ_i sont strictement positifs.. Enfin,

$$B'^2 = A_s \Leftrightarrow PD'^2P^{-1} = PDP^{-1} \Leftrightarrow D'2 = D \Leftrightarrow \forall i \in \llbracket 1, n \rrbracket, \ \mu_i^2 = \lambda_i \Leftrightarrow \forall i \in \llbracket 1, n \rrbracket, \ \mu_i = \sqrt{\lambda_i} \Leftrightarrow D' = \Delta \Leftrightarrow B' = B.$$

Ceci montre l'unicité de B.

 $\textbf{b)} \text{ Soit } B \in \mathscr{S}_n^{++}(\mathbb{R}) \text{ telle que } B^2 = A. \text{ Puisque } B \in \mathscr{S}_n^{++}(\mathbb{R}), \text{ B est inversible et on peut poser } Q = B^{-1}A_\alpha B^{-1}.$

$$Q^T = \left(B^{-1}A_\alpha B^{-1}\right)^T = \left(B^T\right)^{-1}A_\alpha^T \left(B^T\right)^{-1} = -B^{-1}A_\alpha B^{-1} = -Q \text{ et donc } Q \in \mathscr{A}_n(\mathbb{R}). \text{ Ensuite,}$$

$$\begin{split} \det(A) &= \det\left(A_s + A_\alpha\right) = \det\left(B^2 + A_\alpha\right) = \det\left(B\left(I_n + B^{-1}A_\alpha B^{-1}\right)B\right) = \det(B)\det\left(I_n + Q\right)\det(B) \\ &= \det\left(B^2\right)\det\left(I_n + Q\right) = \det\left(A_s\right)\det\left(I_n + Q\right). \end{split}$$

La matrice Q convient.

c) Vérifions que $\det (I_n + Q) \ge 1$.

Soit λ une valeur propre de Q dans \mathbb{C} puis $X=(x_i)_{1\leq i\leq n}\in \mathcal{M}_{n,1}(\mathbb{C})\setminus\{0\}$. Puisque Q est antisymétrique réelle,

$$\lambda \overline{X}^T X = \overline{X}^T (\lambda X) = \overline{X}^T Q X = -\overline{X}^T \overline{Q}^T X = -\left(\overline{QX}\right)^T X = -\overline{\lambda} \ \overline{X}^T X$$

et donc $(\lambda + \overline{\lambda}) \overline{X}^T X = 0$ avec $\overline{X}^T X = \sum_{i=1}^n |x_i|^2 > 0$. On en déduit que $\lambda + \overline{\lambda} = 0$ puis que $\lambda \in i\mathbb{R}$. Ainsi, les valeurs propres de Q sont imaginaires pures. En particulier, la seule valeur propre réelle possible de Q est 0.

Autre solution : $(Q^2)^T = (-Q)(-Q) = Q^2$ et donc Q^2 est symétrique réelle. Pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R}), \ X^TQ^2X = -(QX)^TQX = -\|QX\|_2^2 \leqslant 0$ et donc Q^2 est symétrique réelle négative. Si λ est une valeur propre réelle de Q dans \mathbb{C} , alors λ^2 est une valeur propre de Q^2 dans \mathbb{C} et donc λ^2 est un réel négatif puis λ est un imaginaire pur.

Le déterminant de $I_n + Q$ est le produit des valeurs propres de $I_n + Q$ qui sont les $1 + \lambda$, $\lambda \in \operatorname{Sp}(Q)$. La valeur propre éventuelle 0 de Q fournit la valeur propre éventuelle 1 de $I_n + Q$. Sinon, puisque Q et donc $I_n + Q$ sont réelles, pour tout $\lambda \in i\mathbb{R} \setminus \{0\}$ valeur propre éventuelle de Q, $1 + \overline{\lambda}$ est valeur propre de $I_n + Q$ avec le même ordre de multiplicité que $1 + \lambda$.

On regroupe les éventuels conjugués deux à deux. Le déterminant de $I_n + Q$ est alors le produit d'un nombre de 1 et de nombres réels de la forme $(1+\lambda)$ $(1+\overline{\lambda})=(1+ix)(1-ix)=1+x^2, x\in\mathbb{R}$. Tous les facteurs de ce produit sont supérieurs ou égaux à 1 et donc $\det (I_n + Q) \ge 1$.

Puisque $A_s \in \mathscr{S}_n^{++}(\mathbb{R})$, det $(A_s) > 0$ et donc

$$\det(A) = \det(A_s) \times \det(I_n + Q) \geqslant \det(A_s) \times 1 = \det(A_s).$$

I.B - 4) Vérifions que $A(A^{-1})_s A^T = A_s$. $A = A_s + A_a$. Mais d'autre part,

$$A = A (A^{-1})^{\mathsf{T}} A^{\mathsf{T}} = A ((A^{-1})_{s} + (A^{-1})_{a})^{\mathsf{T}} A^{\mathsf{T}} = A (A^{-1})_{s} A^{\mathsf{T}} - A (A^{-1})_{a} A^{\mathsf{T}}.$$

Maintenant, $A(A^{-1})_s A^T$ est symétrique (car $(A(A^{-1})_s A^T)^T = A(A^{-1})_s A^T$) et $A(A^{-1})_a A^T$ est anti-symétrique. Par unicité de la décomposition, $A(A^{-1})_s A^T = A_s$. Mais alors

$$\det\left(A_s\right) = \det\left(A\left(A^{-1}\right)_s A^{\mathsf{T}}\right) = (\det(A))^2 \det\left(\left(A^{-1}\right)_s\right).$$

I.C - Partie symétrique des matrices orthogonales

I.C - 1) Soient $\lambda \in \mathbb{R}$ une valeur propre de A_s puis X un vecteur propre unitaire associé. Déjà.

$$X^{\mathsf{T}}A_{\mathfrak{a}}X = -X^{\mathsf{T}}A_{\mathfrak{a}}^{\mathsf{T}}X = -\left(A_{\mathfrak{a}}X\right)^{\mathsf{T}}X = -\left(\left(A_{\mathfrak{a}}X\right)^{\mathsf{T}}X\right)^{\mathsf{T}} = -X^{\mathsf{T}}A_{\mathfrak{a}}X$$

et donc $X^T A_{\alpha} X = 0$ puis

$$X^{\mathsf{T}}AX = X^{\mathsf{T}}A_{\mathsf{S}}X + X^{\mathsf{T}}A_{\mathsf{G}}X = X^{\mathsf{T}}(\lambda X) = \lambda X^{\mathsf{T}}X = \lambda.$$

Par suite, d'après l'inégalité de Cauchy-Schwarz,

$$\begin{aligned} |\lambda| &= \left| X^{\mathsf{T}} A X \right| = |\langle X, A X \rangle| \\ &\leqslant \|X\| \|A X\| = \|X\|^2 \; (\operatorname{car} A \in O_{\mathfrak{n}}(\mathbb{R})) \\ &= 1. \end{aligned}$$

Ceci montre que $\operatorname{Sp}_{\mathbb{R}}(A_s) \subset [-1, 1]$.

I.C - 2) Les matrices orthogonales A de format 2 sont de deux types disjoints.

- $$\begin{split} \bullet & \ A = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) . \ \mathrm{Dans} \ \mathrm{ce} \ \mathrm{cas}, \ A_s = \cos\theta I_n \ \mathrm{puis} \ \mathrm{Sp}(A) = (\cos\theta, \cos\theta). \\ \bullet & \ A = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array} \right) . \ \mathrm{Dans} \ \mathrm{ce} \ \mathrm{cas}, \ A_s = A \ \mathrm{puis} \ \mathrm{Sp}(A_s) = \mathrm{Sp}(A) = (1,-1). \end{split}$$

Donc, par exemple, S = diag(1,0) est une matrice symétrique dont le spectre est contenu dans [-1,1] et qui n'est la partie symétrique d'aucune matrice orthogonale de format 2.

I.C - 3) a) Soit $S \in \mathscr{S}_n(\mathbb{R})$ telle que $\operatorname{Sp}_{\mathbb{R}}(S) \subset [-1, 1]$ et que pour tout valeur propre λ de S dans]-1, 1[, la dimension de $E_{\lambda}(S)$ est paire. Puisque S est diagonalisable, la dimension de chaque sous-espace propre est l'ordre de multiplicité de la valeur propre correspondante et donc les éventuelles valeurs propres éléments de]-1,1[peuvent se regrouper par paires de valeurs propres égales.

D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $D \in \mathcal{D}_n(\mathbb{R})$ telles que $S = PDP^{-1}$ et D est de la forme $D = PDP^{-1}$ $\operatorname{diag}(1, \dots, 1, -1, \dots, -1, \cos(\theta_1), \cos(\theta_1), \cos(\theta_2), \cos(\theta_2), \dots, \cos(\theta_k), \cos(\theta_k)).$

 $A' \ \mathrm{est} \ \mathrm{une} \ \mathrm{matrice} \ \mathrm{orthogonale} \ \mathrm{telle} \ \mathrm{que} \ A'_s = D \ \mathrm{et} \ \mathrm{donc} \ A \ \mathrm{est} \ \mathrm{une} \ \mathrm{matrice} \ \mathrm{orthogonale} \ \mathrm{telle} \ \mathrm{que} \ A_s = S.$

b) Soit $A \in O_n(\mathbb{R}$ telle que $A_s = S$. On sait qu'il existe $P \in O_n(\mathbb{R})$ telle que $P^{-1}AP$ est du type A'. Puisque $A = A_s + A_a$, $P^{-1}AP = P^{-1}A_sP + P^{-1}A_\alpha P$ avec $P^{-1}A_sP \in \mathscr{S}_n(\mathbb{R})$ et $P^{-1}A_\alpha P \in \mathscr{S}_n(\mathbb{R})$. Donc, toujours avec les notations de la question précédente,

$$D = A'_s = (P^{-1}AP)_s = P^{-1}A_sP = P^{-1}SP$$

puis $S = PDP^{-1}$ avec $D = \operatorname{diag}(1, \ldots, 1, -1, \ldots, -1, \cos(\theta_1), \cos(\theta_1), \cos(\theta_2), \cos(\theta_2), \ldots, \cos(\theta_k), \cos(\theta_k))$. Les valeurs propres de S qui sont les valeurs propres de D sont toutes dans [-1, 1] (ce qui était déjà connu après la question I.C.1) et les valeurs propres éléments de]-1,1[éventuelles sont d'ordre pair. Mais alors, puisque S est diagonalisable, la dimension d'un sous-espace propre associé à une valeur propre élément de]-1,1[éventuelle est paire.

Partie II - Matrices F-singulières

II.A - Cas où F est un hyperplan

II.A - 1) Si $A \in \mathcal{M}_n(\mathbb{R})$ est singulière, il existe $X \in E_n \setminus \{0\}$ tel que AX = 0 Mais alors, il existe $X \in E_n \setminus \{0\}$ tel que pour tout $Z \in E_n$, $Z^T AX = 0$.

Inversement, supposons qu'il existe $X \in E_n \setminus \{0\}$ tel que pour tout $Z \in E_n$, $Z^T A X = 0$. Alors, $\forall Z \in E_n$, $\langle Z, AX \rangle = 0$ puis $AX \in E_n^{\perp} = \{0\}$. Ainsi, X est un vecteur non nul du noyau de A et donc A est singulière.

II.A - 2) Soit $A \in \mathcal{M}_n(\mathbb{R})$.

A est H-singulière
$$\Leftrightarrow \exists X \in H \setminus \{0\} / \forall Z \in H, \ Z^T A X = 0$$

 $\Leftrightarrow \exists X \in H \setminus \{0\} / \forall Z \in H, \ \langle A, AX \rangle = 0$
 $\Leftrightarrow \exists X \in H \setminus \{0\} / AX \in H^{\perp} = \operatorname{Vect}(N)$
 $\Leftrightarrow \exists X \in H \setminus \{0\} / \exists \lambda \in \mathbb{R} / AX = \lambda N$

II.A - 3) Si A est H-singulière, soient $X \in H \setminus \{0\}$ et $\lambda \in \mathbb{R}$ tels que $AX = \lambda N$. Soit $X' = \begin{pmatrix} X \\ -\lambda \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}) \setminus \{0\}$. Un calcul par blocs fournit

$$A_{N}X' = \begin{pmatrix} A & N \\ N^{T} & 0 \end{pmatrix} \begin{pmatrix} X \\ -\lambda \end{pmatrix} = \begin{pmatrix} AX - \lambda N \\ \langle N, X \rangle \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

X' est un vecteur non nul du noyau de A_N et donc A_N est singulière.

Inversement, supposons que la matrice A_N soit singulière. Soit $X' = \begin{pmatrix} X \\ -\lambda \end{pmatrix}$, $X \in E_n$, $\lambda \in \mathbb{R}$, un vecteur non nul du noyau de cette matrice. Alors, $AX = \lambda N$ et $\langle N, X \rangle = 0$. Donc, $X \in N^{\perp} = H$. D'autre part, si X = 0, alors $\lambda = 0$ puis X' = 0 ce qui n'est pas. Donc, X est un élément non nul de H tel qu'il existe $\lambda \in \mathbb{R}$ tel que $AX = \lambda N$. On en déduit que A est H-singulière.

II.A - 4) Un calcul par blocs fournit

$$A_NB = \left(\begin{array}{cc} A & N \\ N^T & 0 \end{array}\right) \left(\begin{array}{cc} B_1 & B_2 \\ B_3 & B_4 \end{array}\right) = \left(\begin{array}{cc} AB_1 + NB_3 & AB_2 + NB_4 \\ N^TB_1 & N^TB_2 \end{array}\right).$$

On prend $B_2=-A^{-1}N,\,B_1=A^{-1},\,B_3=0$ et $B_4=1\in\mathscr{M}_{1,1}(\mathbb{R}).$ On obtient

$$A_NB = \left(\begin{array}{cc} A & N \\ N^T & 0 \end{array}\right) \left(\begin{array}{cc} A^{-1} & -A^{-1}N \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} I_n & 0 \\ N^TA^{-1} & -N^TA^{-1}N \end{array}\right).$$

$$\begin{split} \mathbf{II.A - 5)} \ \mathrm{Un\ calcul\ par\ blocs\ fournit\ } \det(B) &= \det\left(A^{-1}\right) \\ &= \frac{1}{\det(A)} \ \mathrm{et\ } \det\left(\begin{array}{cc} I_n & 0 \\ N^TA^{-1} & -N^TA^{-1}N \end{array} \right) \\ &= -N^TA^{-1}N. \end{split}$$
 L'égalité $\det\left(A_N\right) \det(B) = \det\left(\begin{array}{cc} I_n & 0 \\ N^TA^{-1} & -N^TA^{-1}N \end{array} \right) \ \mathrm{fournit\ } \det\left(A_N\right) = -N^TA^{-1}N \det(A). \end{split}$

II.A - 6) Supposons que det $((A^{-1})_s) = 0$. Soit N un vecteur unitaire du noyau de $(A^{-1})_s$. On a déjà vu que $N^T(A^{-1})_a$ N = 0 et donc

$$N^TAN = N^T \left(A^{-1}\right)_s N + N^T \left(A^{-1}\right)_\alpha N = N^T \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

La question précédente montre que det $(A_N) = 0$ et la question II.A.3 montre que A est H-singulière où $H = N^{\perp}$.

II.A - 7) Si $\det(A_s) = 0$, alors $(\det(A))^2 \det((A^{-1})_s) = 0$ d'après la question I.B.4 puis $\det((A^{-1})_s) = 0$ car A est inversible. La question précédente montre qu'il existe un hyperplan H telle que A est H-singulière.

II.A - 8) Supposons par l'absurde qu'il existe un hyperplan H tel que A soit H-singulière. Soit N un vecteur unitaire normal à H. Il existe un vecteur X de H \ $\{0\}$ et un réel λ tel que $AX = \lambda N$. Mais alors

$$X^TA_sX = X^TA_sX + X^TA_\alpha X = X^TAX = \lambda X^TN = \lambda \langle X,N \rangle = 0.$$

Mais ceci est impossible car A_s est définie, positive et X est non nul. Donc, pour tout hyperplan H, A est H-régulière.

II.B - Exemple

II.B - 1) $\det(A(\mu)) = (2 - \mu)(2 - \mu + \mu - 1) + (-1 + \mu) = 1 \neq 0$. Donc, $A(\mu)$ est inversible pour tout réel μ .

$$\mathbf{II.B - 2)} \ (A(\mu))_s = \frac{1}{2} \left(\left(\begin{array}{cccc} 2 - \mu & -1 & \mu \\ -1 & 2 - \mu & \mu - 1 \\ 0 & -1 & 1 \end{array} \right) + \left(\begin{array}{cccc} 2 - \mu & -1 & 0 \\ -1 & 2 - \mu & -1 \\ \mu & \mu - 1 & 1 \end{array} \right) \right) = \left(\begin{array}{cccc} 2 - \mu & -1 & \frac{\mu}{2} \\ -1 & 2 - \mu & \frac{\mu}{2} - 1 \\ \frac{\mu}{2} & \frac{\mu}{2} - 1 & 1 \end{array} \right).$$

En développant suivant la première colonne, on obtient

$$\begin{split} \det\left((A(\mu))_s\right) &= (2-\mu)\left(-\frac{\mu^2}{4}+1\right) + \left(-\frac{\mu^2}{4}+\frac{\mu}{2}-1\right) + \frac{\mu}{2}\left(\frac{\mu^2}{2}-\frac{3\mu}{2}+1\right) \\ &= \frac{\mu^3}{2} - \frac{3\mu^2}{2} + 1 = (\mu-1)\left(\frac{\mu^2}{2}-\mu-1\right) = \frac{1}{2}(\mu-1)\left(\mu^2-2\mu-2\right) \\ &= \frac{1}{2}(\mu-1)\left(\mu-\left(1+\sqrt{3}\right)\right)\left(\mu-\left(1-\sqrt{3}\right)\right) \end{split}$$

 $\mathrm{Donc},\, (A(\mu))_s \,\,\mathrm{est \,\, singulière \,\, si \,\, et \,\, seulement \,\, si }\,\, \mu \in \Big\{1,1+\sqrt{3},1-\sqrt{3}\Big\}.$

II.B - 3) $A(1) = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$. Soit $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de $\mathscr{M}_{3,1}(\mathbb{R})$ puis $\mathscr{B}' = (e'_1, e'_2, e'_3)$ la base de $\mathscr{M}_{3,1}(\mathbb{R})$ telle que $A(1) = \mathscr{P}_{\mathscr{B}}^{\mathscr{B}'}$. Alors, $A(1)^{-1} = \mathscr{P}_{\mathscr{B}'}^{\mathscr{B}}$.

$$\begin{split} A(1) &= \mathscr{P}_{\mathscr{B}}^{\mathscr{B}'} \Leftrightarrow \left\{ \begin{array}{l} e_1' = e_1 - e_2 \\ e_2' = -e_1 + e_2 - e_3 \\ e_3' = e_1 + e_3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} e_2 = e_1 - e_1' \\ e_3 = -e_1 + e_3' \\ e_2' = -e_1 + (e_1 - e_1') - (-e_1 + e_3') \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} e_1 = e_1' + e_2' + e_3' \\ e_2 = e_2' + e_3' \\ e_3 = -e_1' - e_2' \end{array} \right. \end{split}$$

et donc $A(1)^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ puis $\left(A(1)^{-1}\right)_s = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Un vecteur unitaire du noyau de $\left(A(1)^{-1}\right)_s$ est

 $N = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Pour ce vecteur N, on a $N^TA^{-1}N = N^T \left(A^{-1}\right)_s N = 0$ puis $\det\left(A_N\right) = 0$ d'après la question II.A.5 et donc A(1) est N^{\perp} -singulière.

En résumé, A(1) est H-singulière où H est le plan d'équation z = 0.

II.C - Cas où F est de dimension n-2

II.C - 1) A est F-singulière si et seulement si il existe $X \in F \setminus \{0\}$ tel que $AX \in F^{\perp}$ ce qui équivaut à l'existence de $X \in F \setminus \{0\}$ et de deux réels λ_1 et λ_2 tels que $AX = \lambda_1 N_1 + \lambda_2 N_2$.

II.C - 2) Si A est F-singulière, soit
$$X \in F \setminus \{0\}$$
 et $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ tels que $AX = \lambda_1 N_1 + \lambda_2 N_2$. Soit $X' = \begin{pmatrix} X \\ -\lambda_1 \\ -\lambda_2 \end{pmatrix} \in \mathcal{M}_{n+2,1}(\mathbb{R}) \setminus \{0\}$.

$$\begin{split} A_N X' &= \left(\begin{array}{ccc} A & N_1 & N_2 \\ N_1^T & 0 & 0 \\ N_2^T & 0 & 0 \end{array} \right) \left(\begin{array}{c} X' \\ -\lambda_1 \\ -\lambda_2 \end{array} \right) = \left(\begin{array}{c} AX - \lambda_1 N_1 - \lambda_2 N_2 \\ \langle N_1, X \rangle \\ \langle N_2, X \rangle \end{array} \right) \\ &= \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right). \end{split}$$

X' est un vecteur non nul du noyau de A_N et donc A_N est singulière.

Réciproquement, si A_N est singulière, il existe $X'=\begin{pmatrix} X\\ -\lambda_1\\ -\lambda_2 \end{pmatrix}\in \mathcal{M}_{n+2,1}(\mathbb{R})\setminus\{0\}$ tel que $A_NX'+0$ ou encore tel que

 $AX = \lambda_1 N_1 + \lambda_2 N_2 \text{ et } \langle N_1, X \rangle = \langle N_2, X \rangle = 0.$

 $X \in (N_1, N_2)^{\perp} = F$. De plus, si X = 0, alors $\lambda_1 N_1 + \lambda_2 N_2 = 0$ puis $\lambda_1 = \lambda_2 = 0$ car (N_1, N_2) est libre et finalement X' = 0 ce qui n'est pas. Donc, X est un vecteur non nul de F tel qu'il existe deux réels λ_1 et λ_2 tels que $AX = \lambda_1 N_1 + \lambda_2 N_2$. On en déduit que A est F-singulière.

$$\begin{aligned} \mathbf{II.C-3)} \; \mathrm{Soit} \; \mathbf{B} &= \left(\begin{array}{cc} A^{-1} & -A^{-1} \mathbf{N} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right). \\ A_{\mathbf{N}} \mathbf{B} &= \left(\begin{array}{cc} A & \mathbf{N} \\ \mathbf{N}^\mathsf{T} & \mathbf{0} \end{array} \right) \left(\begin{array}{cc} A^{-1} & -A^{-1} \mathbf{N} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right) = \left(\begin{array}{cc} \mathbf{I}_n & \mathbf{0} \\ \mathbf{N}^\mathsf{T} A^{-1} & -\mathbf{N}^\mathsf{T} A^{-1} \mathbf{N} \end{array} \right). \end{aligned}$$

II.C - 4) Un calcul par blocs fournit $det(B) = det(A^{-1}) = \frac{1}{det(A)}$ puis

$$\det\left(A_N\right) = \frac{1}{\det(B)}\det\left(I_n\right)\det\left(-N^TA^{-1}N\right) = \det(A)\times(-1)^2\det\left(N^TA^{-1}N\right) = \det\left(N^TA^{-1}N\right)\det(A).$$

II.C - 5) On pose $P = (P_1 P_2) \in \mathcal{M}_{n,2}(\mathbb{R})$.

$$P^TA^{-1}P = \left(\begin{array}{c} P_1^T \\ P_2^T \end{array}\right)A\left(\begin{array}{cc} P_1 & P_2 \end{array}\right) = \left(\begin{array}{c} P_1^TA \\ P_2^TA \end{array}\right)\left(\begin{array}{cc} P_1 & P_2 \end{array}\right) = \left(\begin{array}{cc} P_1^TAP_1 & P_1^TAP_2 \\ P_2^TAP_1 & P_2^TAP_2 \end{array}\right)$$

où les $P_i^TAP_j$ sont des réels. Posons $P_1'=A^{-1}P_1$ et $P_2'=A^{-1}P_2$ puis $P'=\begin{pmatrix} P_1' & P_2' \end{pmatrix}$. Puisque A^{-1} est inversible, $P'\in\mathscr{G}_{n,2}(\mathbb{R})\Leftrightarrow P\in\mathscr{G}_{n,2}(\mathbb{R})$. Ensuite, pour $(i,j)\in\{1,2\}^2$,

$$P_{i}'^{\mathsf{T}}AP_{j}' = \left(A^{-1}P_{2}\right)^{\mathsf{T}}AA^{-1}P_{j} = P_{2}^{\mathsf{T}}\left(A^{-1}\right)^{\mathsf{T}}P_{j} = \left(P_{2}^{\mathsf{T}}\left(A^{-1}\right)^{\mathsf{T}}P_{j}\right)^{\mathsf{T}} = P_{j}^{\mathsf{T}}A^{-1}P_{i}$$

et donc

$$\begin{split} \det \left({{P'}^T A P'} \right) &= \det \left({\begin{array}{*{20}{c}} {P_1'^T A P_1' - P_1'^T A P_2' \\ {P_2'^T A P_1' - P_2'^T A P_2'} \end{array}} \right) \\ &= \left({P_1'^T A P_1'} \right) \left({P_2'^T A P_2'} \right) - \left({P_2'^T A P_1'} \right) \left({P_1'^T A P_2'} \right) \\ &= \left({P_1^T A^{-1} P_1} \right) \left({P_2^T A^{-1} P_2} \right) - \left({P_1^T A^{-1} P_2} \right) \left({P_2^T A^{-1} P_1} \right) \\ &= \det \left({\begin{array}{*{20}{c}} {P_1^T A^{-1} P_1 - P_1^T A^{-1} P_2 \\ {P_2^T A^{-1} P_1 - P_2^T A^{-1} P_2} \end{array}} \right) \\ &= \det \left({P^T A^{-1} P} \right). \end{split}$$

En particulier, $\det (P'^TAP') = 0 \Leftrightarrow \det (P^TA^{-1}P) = 0.$

$$\mathbf{II.C - 6)} \, \det \left(N'^T A N' \right) = \det \left(\begin{array}{cc} N_1'^T A N_1' & N_1'^T A N_2' \\ N_2'^T A N_1' & N_2'^T A N_2' \end{array} \right) = \left(N_1'^T A N_1' \right) \left(N_2'^T A N_2' \right) - \left(N_2'^T A N_1' \right) \left(N_1'^T A N_2' \right). \, \text{Ensuite},$$

- $\bullet \ \left(N_1'^T A N_1' \right) = \left(N_1'^T A_s N_1' \right) + \left(N_1'^T A_\alpha N_1' \right) = \left(N_1'^T A_s N_1' \right) \ \mathrm{et} \ \mathrm{de} \ \mathrm{même} \ \left(N_2'^T A N_2' \right) = \left(N_2'^T A_s N_2' \right) \ \mathrm{puis} \ \left(N_1'^T A N_1' \right) \left(N_2'^T A N_2' \right) = \left(N_1'^T A_s N_1' \right) \left(N_2'^T A_s N_2' \right).$
- $(N_2^{\prime T} A_{\alpha} N_1^{\prime}) = (N_2^{\prime T} A_{\alpha} N_1^{\prime})^T = -(N_1^{\prime T} A_{\alpha} N_2^{\prime})$ et donc

$$\begin{split} \left(N_{2}^{\prime\mathsf{T}}\mathsf{A}N_{1}^{\prime}\right)\left(N_{1}^{\prime\mathsf{T}}\mathsf{A}N_{2}^{\prime}\right) &= \left(\left(N_{2}^{\prime\mathsf{T}}\mathsf{A}_{s}N_{1}^{\prime}\right) + \left(N_{2}^{\prime\mathsf{T}}\mathsf{A}_{\alpha}N_{1}^{\prime}\right)\right)\left(\left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{s}N_{2}^{\prime}\right) + \left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{\alpha}N_{2}^{\prime}\right)\right) \\ &= \left(\left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{s}N_{2}^{\prime}\right) - \left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{\alpha}N_{2}^{\prime}\right)\right)\left(\left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{s}N_{2}^{\prime}\right) + \left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{\alpha}N_{2}^{\prime}\right)\right) \\ &= \left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{s}N_{2}^{\prime}\right)^{2} - \left(N_{1}^{\prime\mathsf{T}}\mathsf{A}_{\alpha}N_{2}^{\prime}\right)^{2} \end{split}$$

 $\mathrm{et\ finalement,\ det}\left(N'^{T}AN'\right) = \left(N_{1}'^{T}A_{s}N_{1}'\right)\left(N_{2}'^{T}A_{s}N_{2}'\right) - \left(N_{1}'^{T}A_{s}N_{2}'\right)^{2} + \left(N_{1}'^{T}A_{\alpha}N_{2}'\right)^{2}.$

II.C - 7) On suppose que $A_s \in \mathscr{S}_n^{++}(\mathbb{R})$. L'application $\phi: (X,Y) \mapsto X^T A_s Y$ est bilinéaire, symétrique $(X^T A_s Y) = (X^T A_s Y)^T = Y^T A_s X)$, définie, positive car A_s est définie, positive. Donc, ϕ est un produit scalaire sur $\mathscr{M}_{n,1}(\mathbb{R})$. D'après l'inégalité de Cauchy-Schwarz, la famille (N_1', N_2') étant libre,

$$\left(N_{1}^{\prime T}A_{s}N_{1}^{\prime}\right)\left(N_{2}^{\prime T}A_{s}N_{2}^{\prime}\right)-\left(N_{1}^{\prime T}A_{s}N_{2}^{\prime}\right)^{2}=\phi\left(N_{1}^{\prime},N_{1}^{\prime}\right)\phi\left(N_{2}^{\prime},N_{2}^{\prime}\right)-\phi\left(N_{1}^{\prime},N_{2}^{\prime}\right)^{2}>0$$

$$\begin{split} & \mathrm{et} \; \mathrm{donc} \; \mathrm{det} \left(N^{\mathsf{T}} A^{-1} N \right) = \mathrm{det} \left(N'^{\mathsf{T}} A N' \right) = \left(N_1'^{\mathsf{T}} A_s N_1' \right) \left(N_2'^{\mathsf{T}} A_s N_2' \right) - \left(N_1'^{\mathsf{T}} A_s N_2' \right)^2 + \left(N_1'^{\mathsf{T}} A_\alpha N_2' \right)^2 \geqslant \left(N_1'^{\mathsf{T}} A_s N_1' \right) \left(N_2'^{\mathsf{T}} A_s N_2' \right) - \left(N_1'^{\mathsf{T}} A_s N_2' \right)^2 > 0. \end{split}$$

II.C - 8) On suppose que $A_s \in \mathscr{S}_n^{++}(\mathbb{R})$. D'après la question précédente, pour tout $N = (N_1 \ N_2) \in \mathscr{G}_{n,2}(\mathbb{R})$,

$$\det\left(A_{N}\right)=\det\left(N^{T}A^{-1}N\right)\det(A)\neq0,$$

et donc A n'est pas $(N_1, N_2)^{\perp}$ -singulière. On a montré que pour tout sous-espace F de dimension n-2, A est F-régulière.

II.D - Exemple

$$\mathbf{II.D - 1)} \ A(1)_s = \begin{pmatrix} 1 & -1 & \frac{1}{2} \\ -1 & 1 & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix} \text{ et } A(1)_\alpha = \begin{pmatrix} 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}.$$

On choisit déjà pour N_1' un vecteur non nul du noyau de $A(1)_s$. On peut prendre $N_1' = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Alors, $\left(N_1'^T A_s N_1'\right) = 0$ et $\left(N_1'^T A_s N_2'\right)^2 = \left(N_2'^T A_s N_1'\right)^2 = 0$. D'après la question II.C.6, il reste det $\left(N'^T A N'\right) = \left(N_1'^T A_\alpha N_2'\right)^2$.

On cherche alors $N_2' = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ non colinéaire à N_1' et vérifiant $N_1'^T A(1)_\alpha N_2' = 0$.

$$N_1'^T A(1)_{\alpha} N_2' = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z.$$

On prend par exemple $N_2' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

II.D - 2) Si on prend
$$N_1 = A(1)N_1' = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \text{ et } N_2 = A(1)N_2' = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, puis

$$N = \begin{pmatrix} 0 & 1 \\ 0 & -1 \\ -1 & 0 \end{pmatrix}$$

alors det $(N^TA(1)^{-1}N) = 0$ et donc A(1) est $(N_1, N_2)^{\perp}$ -singulière. $F = (N_1, N_2)^{\perp}$ est la droite d'équations $\begin{cases} x - y = 0 \\ z = 0 \end{cases}$ ou encore F est la droite vectorielle engendrée par $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

II.E - Cas général

 $\begin{array}{l} \textbf{II.E - 1)} \ \mathrm{Soit} \ A \ \in \ \mathscr{M}_n(\mathbb{R}). \ \mathrm{On \ note} \ (N_1, \ldots, N_p) \ \mathrm{une \ base \ de \ } F^\perp \ \mathrm{puis} \ N \ = \ \left(\begin{array}{cc} N_1 & \ldots & N_p \end{array} \right) \ \in \ \mathscr{G}_{n,p} \ \mathrm{puis} \ A_N \ = \ \left(\begin{array}{cc} A & N \\ N^T & 0_p \end{array} \right) \in \mathscr{M}_{n+p}(\mathbb{R}). \ \mathrm{Comme \ aux \ questions \ II.A.3 \ ou \ II.C.2}, \ A \ \mathrm{est \ F-singulière \ si \ et \ seulement \ si \ det} \ (A_N) \ = \ 0. \end{array}$

On suppose de plus A inversible. Comme aux questions II.A.4 et II.C.4, A est F-singulière si et seulement si det $(N^TA^{-1}N) = 0$

Pour $i \in [1,p]$, on pose $N_i' = A^{-1}N_i$ puis $N' = (N_1' \dots N_p')$. Puisque A^{-1} est inversible, $N' \in \mathcal{G}_{n,p}$ puis

$$(N^{T}A^{-1}N) = (AN')^{T}N' = N'^{T}A^{T}N' = (N'^{T}AN')^{T}$$

et donc det $(N^TA^{-1}N) = \det(N'^TAN')$. N' est un élément de $\mathcal{G}_{n,p}$ tel que A est F-singulière si et seulement si $\det(N'^TAN') = 0$.

II.E - 2) Soit $X \in \mathcal{M}_{p,1}(\mathbb{R})$. N'X est un élément de $\mathcal{M}_{n,1}(\mathbb{R})$ et donc

$$X^{T}N'AN'X = X^{T}N'A_{s}N'X \ge 0.$$

Supposons de plus N'X=0. Puisque $N'\in \mathcal{G}_{n,p}$, il existe \mathfrak{p} lignes de N' constituant une base de $\mathcal{M}_{1,\mathfrak{p}}(\mathbb{R})$. La matrice N'_1 constituée de ces \mathfrak{p} lignes est inversible de format \mathfrak{p} et donc

$$N'X = 0 \Rightarrow N'_1X = 0 \Rightarrow X = 0.$$

 $\mathrm{Finalement, \ si} \ X \in \mathscr{M}_{\mathfrak{p},1}(\mathbb{R}) \setminus \{0\}, \ \mathrm{alors} \ X^T N'AN'X > 0.$

II.E - 3) N'^TAN' est un élément de $\mathcal{M}_p(\mathbb{R})$. Soient λ une éventuelle valeur propre réelle de N'^TAN' puis $X \in \mathcal{M}_{p,1}(\mathbb{R}) \setminus \{0\}$ un vecteur propre associé. Puisque $X \neq 0$, $X^TN'AN'X > 0$ avec

$$X^T N'AN'X = X^T (\lambda X) = \lambda ||X||_2^2$$
.

Puisque $||X||_2^2 > 0$, on en déduit que $\lambda > 0$.

II.E - 4) Le déterminant de N'^TAN' est le produit des valeurs propres de N'^TAN'. Les éventuelles valeurs propres réelles de N'^TAN' sont strictement positives et les éventuelles valeurs propres non réelles de N'^TAN' se regroupent deux à deux sous la forme $\lambda \times \overline{\lambda} = |\lambda|^2 > 0$ (puisque $\lambda \neq 0$). Donc det $(N'^TAN') > 0$.

II.E - 5) Pour tout $N' \in \mathcal{G}_{n,p}$, 0 n'est pas valeur propre de N'^TAN' d'après la question II.E.3 et donc det $\left(N'^TAN'\right) \neq 0$ puis A n'est pas F-singulière. On a montré que A est F-régulière pour tout sous-espace F de dimension n-p avec $1 \leqslant p \leqslant n-1$ et d'autre part A n'est pas E_n singulière d'après la question II.A.1. Finalement, A est F-régulière pour tout sous-espace $F \neq \{0\}$ de E_n .

Partie III - Matrices positivement stables

III.A - Exemples

III.A - 1) Le polynôme caractéristique de A est $\chi_A = X^2 - (\text{Tr}(A))X + \det(A)$. Si χ_A admet deux solutions réelles éventuellement confondues strictement positives x_1 et x_2 , il est nécessaire que $\text{Tr}(A) = x_1 + x_2 > 0$ et $\det(A) = x_1x_2 > 0$. Si χ_A admet deux solutions non réelles z_1 et $z_2 = \overline{z_1}$ de parties réelles strictement positives, on a $\det(A) = |z_1|^2 > 0$ et il est nécessaire que $\text{Tr}(A) = 2\text{Re}(z_1) > 0$. On a montré que si A est positivement stable, alors Tr(A) > 0 et $\det(A) > 0$.

Réciproquement, supposons que $\operatorname{Tr}(A)>0$ et $\det(A)>0$. Si χ_A admet deux solutions réelles éventuellement confondues x_1 et x_2 , alors $x_1x_2>0$ de sorte que x_1 et x_2 sont non nuls et de même signe puis $x_1+x_2>0$ de sorte que $x_1>0$ et $x_2>0$. Si χ_A admet deux solutions non réelles conjuguées z_1 et $z_2=\overline{z_1}$, alors $\operatorname{Re}(z_1)=\operatorname{Re}(z_2)=\frac{1}{2}(z_1+z_2)=\frac{1}{2}\operatorname{Tr}(A)>0$.

On a montré que pour tout $A \in \mathcal{M}_2(\mathbb{R})$, A est positivement stable si et seulement si $\mathrm{Tr}(A) > 0$ et $\det(A) > 0$.

III.A - 2) a) Les matrices $A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ sont positivement stables car de traces égales à 1 et de déterminants égaux à 1 mais la matrice $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ n'est pas positivement stable car est de déterminant nul.

Donc, si A et B sont positivement stables, A + B n'est pas nécessairement positivement stable.

- b) Montrons par récurrence que pour tout $n \ge 1$, deux éléments A et B de $\mathcal{M}_{n,1}(\mathbb{R})$ qui commutent sont simultanément trigonalisables dans \mathbb{C} .
- C'est clair pour n = 1.
- Soit $n \ge 1$. Supposons le résultat pour n. Soient A et B deux éléments de $\mathcal{M}_{n+1}(\mathbb{R})$ qui commutent. Soient f et g les endomorphismes de \mathbb{C}^{n+1} canoniquement associés à A et B respectivement.

f admet au moins une valeur propre λ_1 dans $\mathbb C$. Puisque f et g commutent, le sous-espace propre $E_{\lambda_1}(f)$ est stable par g ou encore g induit un endomorphisme de $E_{\lambda_1}(f)$. Mais alors, g admet au moins un vecteur propre dans $E_{\lambda}(f)$ qui est un vecteur propre e_1 commun à f et g. On complète la famille libre (e_1) en une base (e_1, \ldots, e_{n+1}) de $\mathbb C^{n+1}$ dans laquelle les

matrices de f et g s'écrivent sous la forme $\begin{pmatrix} \lambda_1 & L_A \\ 0 & A' \end{pmatrix}$ et $\begin{pmatrix} \mu_1 & L_B \\ 0 & B' \end{pmatrix}$ où A' et B' sont des matrices carrées de format n et L_A et L_B sont des matrices lignes.

Il existe donc $P_1 \in GL_n(\mathbb{C})$ telles que $P_1^{-1}AP_1 = \begin{pmatrix} \lambda_1 & L_A \\ 0 & A' \end{pmatrix}$ et $P_1^{-1}BP_1 = \begin{pmatrix} \mu_1 & L_B \\ 0 & B' \end{pmatrix}$. Par hypothèse de récurrence, il existe $Q \in GL_n(\mathbb{C})$ telle que $Q^{-1}A'Q$ et $Q^{-1}B'Q$ soient des matrices triangulaires T_A et T_B . Si on pose $P_2 = \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix}$, P_2 est un élément de $GL_{n+1}(\mathbb{C})$ tel que $P_2^{-1}P_1^{-1}AP_1P_2 = \begin{pmatrix} \lambda_1 & \times \\ 0 & T_A \end{pmatrix}$ et $P_2^{-1}P_1^{-1}BP_1P_2 = \begin{pmatrix} \mu_1 & \times \\ 0 & T_B \end{pmatrix}$ ou encore, si $P = P_1 P_2 \in GL_{n+1}(\mathbb{C})$, alors $P^{-1}AP$ et $P^{-1}BP$ sont triangulaires.

Le résultat est démontré par récurrence.

Soient maintenant A et B deux éléments de $\mathcal{M}_n(\mathbb{R})$ positivement stables et qui commutent. Posons $\operatorname{Sp}(A) = (\lambda_i)_{1 \leq i \leq n}$ et

$$\mathrm{Sp}(B) = (\mu_i)_{1\leqslant i\leqslant n}. \ \mathrm{Il} \ \mathrm{existe} \ P \in GL_n(\mathbb{C}) \ \mathrm{telle} \ \mathrm{que} \ P^{-1}AP \ \mathrm{soit} \ \mathrm{de} \ \mathrm{la} \ \mathrm{forme} \left(\begin{array}{cccc} \lambda_1 & \times & \dots & \times \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \dots & 0 & \lambda_n \end{array} \right) \ \mathrm{et} \ P^{-1}BP \ \mathrm{soit} \ \mathrm{de} \ \mathrm{la} \ \mathrm{forme} \ \mathrm{de} \ \mathrm{la} \ \mathrm{l$$

$$\operatorname{Sp}(B) = (\mu_i)_{1\leqslant i\leqslant n}. \text{ Il existe } P \in \operatorname{GL}_n(\mathbb{C}) \text{ telle que } P^{-1}AP \text{ soit de la forme} \begin{pmatrix} \lambda_1 & \times & \dots & \times \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \text{ et } P^{-1}BP \text{ soit de la forme} \\ \begin{pmatrix} \mu_1 & \times & \dots & \times \\ 0 & \ddots & \ddots & \times \\ \vdots & \ddots & \ddots & \times \\ 0 & \dots & 0 & \mu_n \end{pmatrix}. \text{ Mais alors } P^{-1}(A+B)P = \begin{pmatrix} \lambda_1 + \mu_1 & \times & \dots & \times \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \dots & 0 & \lambda_n + \mu_n \end{pmatrix} \text{ puis } \operatorname{Sp}(A+B) = (\lambda_i + \mu_i)_{1\leqslant i\leqslant n}.$$
Puisque pour tout $i \in [\![1,n]\!], \operatorname{Re}(\lambda_i + \mu_i) = \operatorname{Re}(\lambda_i) + \operatorname{Re}(\mu_i) > 0, \operatorname{la matrice} A + B \text{ est positivement stable.}$

III A 2) a) $\operatorname{Pe}(\overline{\nabla}^T AX) = \operatorname{Pe}((\nabla - iZ)^T A(Y+iZ)) = \nabla^T AX + Z^T AZ = \nabla^T AX + Z^T AZ = \operatorname{Puisque} X \neq 0 \text{ on a } X \neq 0 \text{ on a$

III.A - 3) a) Re $\left(\overline{X}^T A X\right)$ = Re $\left((Y - iZ)^T A (Y + iZ)\right)$ = $Y^T A Y + Z^T A Z = Y^T A_s Y + Z^T A_s Z$. Puisque $X \neq \emptyset$, on a $Y \neq \emptyset$ ou $Z \neq 0$. Puisque $A_{\alpha} \in \mathscr{S}_{n}^{++}(\mathbb{R})$, les deux réels $Y^{T}A_{s}Y$ et $Z^{T}A_{s}Z$ sont positifs, l'un d'entre eux au moins étant strictement positif. Donc, $\operatorname{Re}\left(\overline{X}^{T}AX\right) > 0$.

 $\mathbf{b)} \text{ Soit } \lambda \text{ une valeur propre de } A \text{ dans } \mathbb{C} \text{ puis } X = (x_k)_{1 \leqslant k \leqslant n} \in \mathscr{M}_{n,1}(\mathbb{C}) \setminus \{0\} \text{ un vecteur propre associ\'e. Alors,}$

$$\operatorname{Re}\left(\overline{X}^TAX\right)=\operatorname{Re}\left(\lambda\overline{X}^TX\right)=\operatorname{Re}(\lambda)\sum_{k=1}^n\left|x_k\right|^2>0.$$

Puisque $X \neq 0$, $\sum_{k=1}^{\infty} |x_k|^2 > 0$ et finalement $\text{Re}(\lambda) > 0$. Ceci montre que A est positivement stable.

III.A - 4) La matrice $A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ a une trace et un déterminant strictement positifs et est donc positivement stable. Mais $A_s = diag(1,0)$ admet 0 pour valeur propre et n'est donc pas définie positive.

III.B -

 $\mathbf{III.B - 1)} \ \nu = \mu' + \lambda \mu \Rightarrow \forall t \in \mathbb{R}^+, \ \left(e^{\lambda t}\mu\right)'(t) = e^{\lambda t}\nu(t) \Rightarrow \forall t \in \mathbb{R}^+, \ \mu(t) = \mu(0)e^{-\lambda t} + e^{-\lambda t} \int_0^t e^{\lambda x}\nu(x) \ dx. \ \mathrm{Soit \ alors}$ M un majorant de la fonction |v| sur \mathbb{R}^+ . Pour $t \in [0, +\infty[$,

$$\begin{split} |u(t)| &\leqslant |u(0)| \left| e^{-\lambda t} \right| + \left| e^{-\lambda t} \right| \int_0^t \left| e^{\lambda x} \right| |\nu(x)| \; dx \leqslant M \left(|u(0)| e^{-\operatorname{Re}(\lambda)t} + e^{-\operatorname{Re}(\lambda)t} \int_0^t e^{\operatorname{Re}(\lambda)x} \; dx \right) \\ &= M \left(|u(0)| + e^{-\operatorname{Re}(\lambda)t} \frac{1}{\operatorname{Re}(\lambda)} \left(e^{\operatorname{Re}(\lambda)t} - 1 \right) \right) \; (\operatorname{car} \, \operatorname{Re}(\lambda) > 0) \\ &= M \left(|u(0)| + \frac{1}{\operatorname{Re}(\lambda)} \left(1 - e^{-\operatorname{Re}(\lambda)t} \right) \right) \\ &\leqslant M \left(|u(0)| + \frac{1}{\operatorname{Re}(\lambda)} \right). \end{split}$$

Donc la fonction \mathfrak{u} est bornée sur \mathbb{R}^+ .

 $\begin{tabular}{l} \textbf{III.B - 2)} \ On \ note \ $\lambda_1, \dots, \lambda_n$ les coefficients diagonaux de T. On a $u'_n + \lambda_n u_n = 0$. D'après la question précédente, la fonction u_n est bornée sur \mathbb{R}^+. Soit $i \in [\![1,n-1]\!]$. Supposons que les fonctions u_n, u_{n-1}, \dots, u_{i+1} soient bornées sur n est bornées. The supposons que les fonctions u_n and u_{n-1}, \dots, u_{i+1} soient bornées sur n est bornées. The supposons que les fonctions u_n and u_{n-1}, \dots, u_{i+1} soient bornées sur n est bornées. The supposons que les fonctions u_n and u_{n-1}, \dots, u_{i+1} soient bornées sur n est bornées. The supposons que les fonctions u_n and u_{n-1}, \dots, u_{i+1} soient bornées sur n est bornées sur n e$ $\mathbb{R}^+. \text{ A la ligne i du système } U' + TU = \emptyset, \text{ on obtient une égalité de la forme } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_k. \text{ D'après la question } u_i' + \lambda_i u_i' = \sum_{k=1}^n \alpha_k u_i' + \lambda_i u_i' = \sum_{k=1}^n$ précédente, la fonction u_i est bornée sur \mathbb{R}^+ .

On a montré par récurrence descendante que chaque fonction u_i , $1 \le i \le n$, est bornée sur \mathbb{R}^+ .

III.B - 3) On note $\mu_1 = \lambda_1 - \alpha$, ..., $\mu_n = \lambda_n - \alpha$ les valeurs propres de la matrice $A - \alpha I_n$. Les parties réelles de ces valeurs propres sont strictement positives. Il existe une matrice triangulaire supérieure T dont les coefficients diagonaux sont μ_1, \ldots, μ_n et une matrice $P \in GL_n(\mathbb{C})$ telles que $P^{-1}(A - \alpha I_n)P = T$.

Les solutions de U' + TU = 0 sont les fonction $U : t \mapsto e^{tT}U_0, U_0 \in \mathcal{M}_{n,1}(\mathbb{C})$ avec

$$e^{tT} = e^{tP^{-1}(A - \alpha I_n)P} = P^{-1}e^{-\alpha t}e^{tA}P$$

et ces solutions sont bornées sur \mathbb{R}^+ . En posant V(t)=PU(t) et $V_0=PU_0$ de sorte que U_0 décrit $\mathcal{M}_{n,1}(\mathbb{C})$ si et seulement si V_0 décrit $\mathcal{M}_{n,1}(\mathbb{C})$, on obtient le fait que les fonctions de la forme $V: t\mapsto e^{-\alpha t}e^{tA}V_0, V_0\in \mathcal{M}_{n,1}(\mathbb{C})$, sont bornées sur \mathbb{R}^+ .

En prenant en particulier pour V_0 chacun des vecteurs de la base canonique de $\mathcal{M}_{n,1}(\mathbb{C})$, on obtient le fait que les fonctions vecteurs colonnes de la fonction matricielle $t\mapsto e^{-\alpha t}e^{tA}$ sont bornées sur \mathbb{R}^+ et finalement la fonction $t\mapsto e^{-\alpha t}e^{tA}$ est bornée sur \mathbb{R}^+ .

III.C - Une caractérisation des matrices positivement stables

III.C - 1) Pour $M \in \mathcal{M}_n(\mathbb{C})$, posons $\Phi_1'(M) = A^TM$ et $\Phi_2'(M) = MA$ et on note Φ_1 et Φ_2 les restrictions de Φ_1' et Φ_2' à $\mathcal{M}_n(\mathbb{R})$ de sorte que $\Phi = \Phi_1 + \Phi_2$. Φ_1 et Φ_2 commutent $(\forall M \in \mathcal{R})$, $\Phi_1 \circ \Phi_2(M) = \Phi_2 \circ \Phi_1(M) = A^TMA$. D'après la question III.A.2.b), il suffit de montrer que Φ_1 et Φ_2 sont positivement stables.

Une valeur propre $\lambda \in \mathbb{C}$ de Φ_2 est encore valeur propre de Φ_2' et donc il existe $M \in \mathcal{M}_n(\mathbb{C}) \setminus \{0\}$ telle que $MA = \lambda M$ puis $M(A - \lambda I_n) = 0$. Si $A - \lambda I_n$ est inversible, alors M = 0 ce qui n'est pas. Donc, $A - \lambda I_n$ n'est pas inversible ou encore λ est une valeur propre de A. Par suite, $Re(\lambda) > 0$. Ceci montre que Φ_2 est positivement stable.

Puisque A^T et A ont les mêmes valeurs propres, on montre de manière analogue que Φ_1 est positivement stable. Finalement, Φ est positivement stable.

III.C - 2) (a) Φ est un endomorphisme de l'espace de dimension finie $\mathscr{M}_n(\mathbb{R})$ n'admettant pas 0 pour valeur propre. Donc, Φ est un automorphisme de l'espace $\mathscr{M}_n(\mathbb{R})$. En particulier, il existe un élément $B \in \mathscr{M}_n(\mathbb{R})$ et un seul tel que $A^TB + BA = I_n$.

(b) En transposant, on obtient $A^TB^T + B^TA = I_n$ ou encore $\Phi(B^T) = I_n$. Par unicité, on en déduit que $B^T = B$ et donc B est symétrique.

Puisque B est symétrique, $I_n = A^T B^T + BA = (BA)^T + BA = 2(BA)_s$ et donc $(BA)_s = \frac{1}{2}I_n$. Par suite, $(BA)_s \in \mathscr{S}_n^{++}(\mathbb{R})$ puis d'après la question I.B.3.c,

$$\det(A)\det(B) = \det(BA) \geqslant \det((BA)_s) > 0.$$

Le déterminant de A est un produit de réels strictement positifs et de nombres de la forme $\lambda \overline{\lambda} = |\lambda|^2$, $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Donc, $\det(A) > 0$ et finalement $\det(B) > 0$.

III.C - 3) (a) L'application $M \mapsto M^T$ est un endomorphisme de l'espace $\mathcal{M}_n(\mathbb{R})$ et donc l'application $M \mapsto M^T$ est continue sur $\mathcal{M}_n(\mathbb{R})$. Par suite, pour $t \in \mathbb{R}$,

$$\begin{split} \exp\left(-tA^{T}\right) &= \lim_{p \to +\infty} \sum_{k=0}^{p} \frac{\left(-tA^{T}\right)^{k}}{k!} = \lim_{p \to +\infty} \left(\left(\sum_{k=0}^{p} \frac{(-tA)^{k}}{k!}\right)^{T}\right) = \left(\left(\lim_{p \to +\infty} \sum_{k=0}^{p} \frac{(-tA)^{k}}{k!}\right)^{T}\right) \\ &= \left(\exp\left(tA\right)\right)^{T}. \end{split}$$

- $\bullet \ \ \mathrm{Pour \ tout} \ \ t \in \mathbb{R}, \ \left(\exp\left(-tA^\mathsf{T}\right)\exp(tA)\right)^\mathsf{T} = \left(\exp(tA)\right)^\mathsf{T} \left(\exp\left(-tA^\mathsf{T}\right)\right)^\mathsf{T} = \exp\left(-tA^\mathsf{T}\right)\exp(tA) \ \ \mathrm{et \ donc} \ \ V(t) \in \mathscr{S}_n(\mathbb{R}).$
- Soit $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$. On sait que $\forall t \in \mathbb{R}$, $\exp(-tA) \in GL_n(\mathbb{R})$ et donc $\exp(-tA)X \neq 0$ puis

$$X^TV(t)X = X^T \exp\left(-tA^T\right) \exp(tA)X = \left(\exp(tA)X\right)^T \exp(tA)X = \left\|\exp(tA)X\right\|_2^2 > 0.$$

Donc, pour tout $t \in \mathbb{R}$, $V(t) \in \mathcal{S}_n^{++}(\mathbb{R})$.

 \bullet En posant pour tout $t\in\mathbb{R},\,V(t)=(\nu_{i,j}(t))_{1\leqslant i,j\leqslant n},$ on a

$$(W(t))^{\mathsf{T}} = \left(\left(\int_{0}^{t} \nu_{i,j}(s) \ ds \right)_{1 \leq i,j \leq n} \right)^{\mathsf{T}} = \left(\int_{0}^{t} \nu_{j,i}(s) \ ds \right)_{1 \leq i,j \leq n} = \int_{0}^{t} V(s)^{\mathsf{T}} \ ds = \int_{0}^{t} V(s) \ ds = W(t)$$

et donc, pour tout $t \in \mathbb{R}$, $W(t) \in \mathcal{S}_n(\mathbb{R})$.

• Pour tout $X = (x_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ et pour t > 0,

$$\begin{split} X^TW(t)X &= \sum_{1\leqslant i,j\leqslant n} x_i x_j \int_0^t \nu_{i,j}(s) \ ds = \int_0^t \left(\sum_{1\leqslant i,j\leqslant n} x_i x_j \nu_{i,j}(s) \right) \ ds \\ &= \int_0^t X^TV(s)X \ ds > 0 \ (\text{int\'egrale d'une fonction continue, positive et non nulle)}. \end{split}$$

Donc, pour tout t > 0, $W(t) \in \mathcal{S}_n^{++}(\mathbb{R})$.

(b) La fonction $t \mapsto A^T W(t) + W(t) A = \Phi(W(t))$ est dérivable sur \mathbb{R} , de dérivée la fonction $t \mapsto A^T W'(t) + W'(t) A = A^T \exp\left(-tA^T\right) \exp\left(-tA\right) + \exp\left(-tA^T\right) \exp\left(-tA\right) = -V'(t)$. En intégrant, on obtient pour tout $t \in \mathbb{R}$,

$$A^{\mathsf{T}}W(t) + W(t)A = \Phi(W(t)) = \Phi(W(t)) - \Phi(W(0)) = -\int_0^t V'(s) \ ds = V(0) - V(t) = I_n - V(t).$$

(c) D'après la question III.B.3, $\exp(-tA) \underset{t \to +\infty}{=} O\left(e^{-\alpha t}\right)$ et $\exp\left(-tA^T\right) \underset{t \to +\infty}{=} O\left(e^{-\alpha t}\right)$ (car A^T a le même spectre que A) et donc $V(t) \underset{t \to +\infty}{=} O\left(e^{-2\alpha t}\right)$. Puisque $\alpha > 0$, on a déjà $\lim_{t \to +\infty} V(t) = 0$.

Ensuite, toujours puisque $V(t) = O(e^{-2\alpha t})$, la fonction V est intégrable sur \mathbb{R}^+ et donc la fonction W a une limite quand t tend vers $+\infty$ qui est une matrice carrée W_∞ . Quand t tend vers $+\infty$, on obtient $A^TW_\infty + W_\infty A = I_n$.

Par unicité, $W_{\infty}=B$. Soit $X\in \mathscr{M}_{n,1}(\mathbb{R})$. Par continuité de l'application linéaire $M\mapsto X^TMX$,

$$X^TBX = X^TW_{\infty}X = X^T\lim_{t \to +\infty} W(t)X = \lim_{t \to +\infty} X^TW(t)X \geqslant 0.$$

Donc, B est symétrique définie positive ou encore les valeurs propres de B sont des réels positifs. Enfin, $\det(B) > 0$ et donc $B \in \mathscr{S}_n^{++}(\mathbb{R})$.