ГУАП

КАФЕДРА № 42

ОТЧЕТ
ЗАЩИЩЕН С ОЦЕНКОЙ
ПРЕПОДАВАТЕЛЬ

доктор технических наук, профессор должность, уч. степень, звание

подпись, дата

С.И.Зиатдинов инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №4

Сетевые источники постоянного тока

по курсу: Электроника и схемотехника

РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4128		В.А. Воробьев
		подпись, дата	инициалы, фамилия

Цель работы: изучение и практическое исследование работы сетевых источников постоянного тока.

Схемы экспериментальных установок:

Рисунок 1 - Схема источника питания с однополупериодным выпрямителем.

Рисунок 2 - Схема источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой.

Рисунок 3 - Схема источника питания с двухполупериодным выпрямителем на основе диодного моста.

Результаты измерений и вычислений:

1) Исследование источника питания с однополупериодным выпрямителем.

C = 100 мк Φ - Таблица 1

R _H , O _M	100	300	500	700	1000	1500	2000	5000
U _n , B	2,8	1,5	1,2	1,0	0,6	0.5	0.3	0.1

 $R_{II} = 100 \, \text{Ом} - \text{Таблица } 2$

						Tt _H 10	O OM I	иолица 2
С, мкФ	10	50	100	500	750	1500	3000	5000
U _n , B	3.8	3.6	2.9	1.3	0.8	0.4	0.5	0.1

2) Исследование источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой.

C = 100 мк Φ - Таблица 3

R _H , O _M	100	300	500	700	1000	1500	2000	5000
U_n , B	2.1	0.8	0.5	0.4	0.3	0.2	0.2	0.1

R_н = 100 Ом - Таблица 4

С, мкФ	10	50	100	500	750	1500	3000	5000
U_n , B	3.7	2.6	2.1	0.5	0.3	0.3	0.1	0

3) Исследование источника питания с двухполупериодным выпрямителем на основе диодного моста.

C = 100 мк Φ - Таблица 5

R _H , O _M	100	300	500	700	1000	1500	2000	5000
U_n , B	1.4	0.6	0.4	0.3	0.2	0.2	0.1	0.1

R_н = 100 Ом - Таблица 6

С, мкФ	10	50	100	500	750	1500	3000	5000
U_n , B	3.2	2.4	1.5	0.4	0.3	0.2	0.2	0.1

Графики зависимостей уровня пульсаций напряжения на выходе источника питания от параметров схемы.

Рисунок 4 - График зависимости уровня пульсации напряжения к таблице 1.

Рисунок 5 - График зависимости уровня пульсации напряжения к таблице 2.

Рисунок 6 - График зависимости уровня пульсации напряжения к таблице 3.

Рисунок 7 - График зависимости уровня пульсации напряжения к таблице 4.

Рисунок 8 - График зависимости уровня пульсации напряжения к таблице 5.

Рисунок 9 - График зависимости уровня пульсации напряжения к таблице 6.

Вывод:

1) Источник питания с однополупериодным выпрямителем:

При положительной полуволне напряжения U2 на вторичной обмотке диод VD открыт и пропускает в нагрузку положительную полуволну напряжения U2. При отрицательной полуволне напряжения U2 диод закрыт, обладает большим сопротивлением. В результате отрицательная полуволна напряжения U2 в нагрузку практически не поступает.

Для сглаживания пульсаций напряжения с выхода выпрямителя в источнике питания используются сглаживающие фильтры в виде конденсатора большой ёмкости, достигающей десятков тысяч мк Φ .

При подключении конденсатора за время положительной полуволны напряжения U2 диод VD открыт и через его малое сопротивление происходит быстрый заряд конденсатора током I3.

В паузе конденсатор частично разряжается через сопротивление нагрузки Rн. Ток разряда Ip , протекая через сопротивление нагрузки, создает на ней практически постоянное напряжение с определенным уровнем пульсаций. Величина пульсаций напряжения на нагрузке зависит от ёмкости С сглаживающего конденсатора и сопротивления нагрузки Rн.

С уменьшением ёмкости сглаживающего конденсатора и сопротивления нагрузки происходит больший разряд конденсатора и, следовательно, увеличение уровня пульсаций напряжения на нагрузке.

Для уменьшения уровня пульсаций используются двухполупериодные выпрямители.

 Источник питания с двухполупериодным выпрямителем на базе диодного моста:

В данном источнике питания диоды VD_1 - VD_4 являются диодным мостом и выполняют функцию двухполупериодного выпрямителя.

При положительной полуволне напряжения со вторичной обмотки открыты диоды VD_2 и VD_4 . Через эти диоды током I_3 происходит заряд конденсатора так, что на верхней обкладке накапливается положительный заряд. При отрицательной полуволне напряжения со вторичной обмотки трансформатора открыты VD_1 и VD_3 , через которые током I_3 заряжается конденсатор. При этом на его верхней обкладке накапливается также положительный заряд.

В паузе между полуволной конденсатор заряжается через сопротивление нагрузки. В результате ток разряда $I_{\rm p}$ течет через нагрузку в одном направлении.

Уровень пульсации достаточно высокий. Его снижение достигается использованием стабилизаторов напряжения.

3) Источник питания с двухполупериодным выпрямителем на базе трансформатора со средней точкой:

В данном источнике питания диоды VD1-VD4 являются диодным мостом и выполняют функцию двухполупериодного выпрямителя.

При положительной полуволне напряжения со вторичной обмотки открыты диоды VD2 и VD 4. Через эти диоды током происходит заряд конденсатора так, что на верхней обкладке накапливается положительный заряд. При отрицательной полуволне напряжения со вторичной обмотки трансформатора открыты VD1 и VD3, через которые током заряжается конденсатор. При этом на его верхней обкладке накапливается также положительный заряд.

В паузе между полуволной конденсатор заряжается через сопротивление нагрузки. В результате ток разряда течет через нагрузку в одном направлении.

Уровень пульсации достаточно высокий. Его снижение достигается использованием стабилизаторов напряжения.