OCS-WAF: un Web Application Firewall basado en anomalías con clasificadores One-Class SVM

Nico Epp Ralf Funk

Universidad Nacional de Asunción Facultad Politécnica Ingeniería en Informática

Defensa Técnica de Trabajo Final de Grado

San Lorenzo, Paraguay 13 de Noviembre 2017

Contenido Introducción

Motivación de la investigación Objetivos para la investigación

Implementación de OCS-WAF

Arquitectura general Fase de entrenamiento Fase de detección

Pruebas y resultados

Conjuntos de datos de prueba Análisis de la eficacia de detección Análisis del tiempo de respuesta de las aplicaciones Análisis del tiempo de entrenamiento Compración con otros trabajos

Conclusiones

Resumen de la investigación Logro de los objetivos Trabajos futuros **Publicaciones**

Nico Epp v Ralf Funk

OCS-WAF

Contenido Introducción

Motivación de la investigación Objetivos para la investigación

Implementación de OCS-WAF

Arquitectura general

Fase de entrenamiento

Fase de detección

Pruebas y resultados

Conjuntos de datos de prueba

Análisis de la eficacia de detección

Análisis del tiempo de respuesta de las aplicaciones

Análisis del tiempo de entrenamiento

Compración con otros trabajos

Conclusiones

Resumen de la investigación

Logro de los objetivos

Trabajos futuros

Publicaciones

Nico Epp y Ralf Funk

OCS-WAF

Propiedades de las aplicaciones web

- Ubicuidad
- Acceso anónimo
- Código escrito por no expertos
- Vulnerabilidades presentes

Nico Epp y Ralf Funk

FP-UNA

Vulnerabilidades en aplicaciones web

Nico Epp y Ralf Funk FP-UNA

OCS-WAF

¹Acunetix Web Application Vulnerability Report 2016 (Datos entre abril 2015 y marzo 2016)

Vulnerabilidades en aplicaciones web

84% are susceptible to at least one medium-severity vulnerability

- ▶ Tipos de vulnerabilides incluidas¹
 - Severidad alta: XSS, Inyección SQL, entre otros
 - Severidad media: CSRF, DoS, entre otros

¹ Acunetix Web Application Vulnerability Report 2016 (Datos entre abril 2015 y marzo 2016)

Vulnerabilidades en aplicaciones web

- Estrategia de mitigación del riesgo de ataques:
 - Uso de Web Application Firewall (WAF)

Sistemas de Deteción de Intrusiones (IDS)

Motivación de la investigación

Sistemas de Deteción de Intrusiones (IDS)

- Modo de respuesta:
 - Pasivo detección (IDS)
 - Activo prevención (IPS)

Sistemas de Deteción de Intrusiones (IDS)

- Modo de respuesta:
 - Pasivo detección (IDS)
 - Activo prevención (IPS)
- Fuente de datos:
 - Host-based systems (HIDS)
 - Network-based systems (NIDS)
 - ▶ Mensajes HTTP → WAF

Motivación de la investigación

Sistemas de Deteción de Intrusiones (IDS)

- Modo de respuesta:
 - Pasivo detección (IDS)
 - Activo prevención (IPS)
- Fuente de datos:
 - Host-based systems (HIDS)
 - Network-based systems (NIDS)
 - ▶ Mensajes HTTP → WAF
- Método de detección:
 - Por firmas de ataques
 - Por anomalías

Motivación de la investigación

WAF con deteción de anomalías

- Dos fases:
 - Fase de entrenamiento: construcción de modelos que describen mensajes HTTP normales
 - Fase de detección: comparación de nuevos mensajes con modelos construidos

WAF con deteción de anomalías

- Dos fases:
 - Fase de entrenamiento: construcción de modelos que describen mensajes HTTP normales
 - Fase de detección: comparación de nuevos mensajes con modelos construidos
- Ventaja: detección de ataques nuevos sin re-entrenar
- Desventaja: dificultad de contrucción de modelos significativos

00000000

WAF con deteción de anomalías

- Dos fases:
 - Fase de entrenamiento: construcción de modelos que describen mensajes HTTP normales
 - Fase de detección: comparación de nuevos mensajes con modelos construidos
- Ventaja: detección de ataques nuevos sin re-entrenar
- Desventaja: dificultad de contrucción de modelos significativos
- Estrategías de abordaje:
 - Métodos estadísticos (definición de threshold)
 - ▶ Problema de clasificación utilizando herramientas de Machine Learning

Motivación de la investigación

Introducción

Problemas de clasificación y Machine Learning

Problemas de clasificación y Machine Learning

Clasificación no supervisada

Problemas de clasificación y Machine Learning

Clasificación supervisada

00000000

Problemas de clasificación y Machine Learning

- Clasificación no supervisada
- Clasificación supervisada
- Clasificación semi-supervisada
 - Caso especial: entrenamiento con muestras de una sola clase OCC: One-Class Classification
 - Una herramienta posible: One-Class SVM

Objetivo general

Objetivos para la investigación

Objetivo general

Detectar mensajes HTTP anómalos entre las aplicaciones web y sus usuarios con el fin de mitigar los riesgos de ataques contra dichas aplicaciones, utilizando un WAF basado en clasificadores One-Class SVM.

Objetivos específicos

Objetivos específicos

 Diseñar procesos de extracción de características (features) específicamente para mensajes HTTP, basado en aportes de otros investigadores de la literatura.

Objetivos para la investigación

Objetivos específicos

- Diseñar procesos de extracción de características (features) específicamente para mensajes HTTP, basado en aportes de otros investigadores de la literatura.
- Implementar un WAF basado en anomalías, utilizando los procesos de extracción de features diseñados junto con clasificadores One-Class SVM.

Objetivos para la investigación

Objetivos específicos

- Diseñar procesos de extracción de características (features) específicamente para mensajes HTTP, basado en aportes de otros investigadores de la literatura.
- Implementar un WAF basado en anomalías, utilizando los procesos de extracción de features diseñados junto con clasificadores One-Class SVM.
- Evaluar la eficacia del WAF implementado en cuanto a la detección de mensajes HTTP anómalos.

Objetivos específicos

- Diseñar procesos de extracción de características (features) específicamente para mensajes HTTP, basado en aportes de otros investigadores de la literatura.
- Implementar un WAF basado en anomalías, utilizando los procesos de extracción de features diseñados junto con clasificadores One-Class SVM.
- Evaluar la eficacia del WAF implementado en cuanto a la detección de mensajes HTTP anómalos.
- Analizar la viabilidad de utilizar el WAF implementado para detección de ataques en tiempo real.

Contenido

Introducción

Motivación de la investigación Objetivos para la investigación

Implementación de OCS-WAF

Arquitectura general
Fase de entrenamiento
Fase de detección

Pruebas y resultados

Análisis de la eficacia de detección

Análisis del tiempo de respuesta de las aplicaciones

Análisis del tiempo de entrenamiento

Compración con otros trabajos

Conclusiones

Resumen de la investigaciór Logro de los objetivos Trabajos futuros

Detector de anomalías OCS-WAF

https://github.com/nico-ralf-ii-fpuna/tfg

Nico Epp y Ralf Funk FP-UNA OCS-WAF

Fase de entrenamiento de OCS-WAF

Estructura de peticiones HTTP

```
Método HTTP
                   URL
                                                 query string
GET http://localhost:8080/ver.jsp?email=juan%40gmail.com&full=y HTTP/1.1
Accept-Charset: utf-8, utf-8;q=0.5
Accept-Language: en
                                       p_1
                                                   V۱
Método HTTP
                             URL
POST http://localhost:8080/tiendal/publico/pagar.jsp HTTP/1.1
Accept-Charset: utf-8, utf-8;q=0.5
                                                   cabeceras
Accept-Language: en
cantidad=5&precio=330
                                                   cuerpo
   p_1
```

16

1. Paso de agrupamiento

Nico Epp y Ralf Funk FP-UNA

OCS-WAF _____

1. Paso de agrupamiento

Agrupación por método HTTP y URL

Similitud entre peticiones de un mismo grupo G_i

$$\forall i = 1, 2, ..., |G|$$

Descripciones más precisas del comportamiento normal dentro de cada grupo G_i

Nico Epp v Ralf Funk FP-UNA OCS-WAF

- Represetación de características de las peticiones mediante vectores numéricos de features
 - ▶ Petición HTTP \rightarrow $\vec{f} \in \mathbb{R}^n$
 - dimensiones distintas para cada grupo G_i

- Represetación de características de las peticiones mediante vectores numéricos de features
 - Petición HTTP $ightarrow ec{f} \in \mathbb{R}^n$
 - dimensiones distintas para cada grupo G_i
- Características analizadas por OCS-WAF:
 - Distribución de caracteres
 - Entropía
 - Cantidad de caracteres

- Distribución de caracteres
 - Aporte de Kruegel y Vigna²
 - Distribución de frecuencias relativas de caracteres
 - Suma de frecuencias relativas en cinco intervalos

²Kruegel and Vigna (2003) Anomaly detection of web-based attacks.

- Distribución de caracteres
 - Aporte de Kruegel y Vigna²
 - Distribución de frecuencias relativas de caracteres
 - Suma de frecuencias relativas en cinco intervalos

²Kruegel and Vigna (2003) Anomaly detection of web-based attacks.

- Distribución de caracteres
 - Aporte de Kruegel y Vigna²
 - Distribución de frecuencias relativas de caracteres
 - Suma de frecuencias relativas en cinco intervalos

²Kruegel and Vigna (2003) Anomaly detection of web-based attacks.

- Distribución de caracteres
 - Aporte de Kruegel y Vigna²
 - Distribución de frecuencias relativas de caracteres
 - Suma de frecuencias relativas en cinco intervalos

²Kruegel and Vigna (2003) Anomaly detection of web-based attacks.

- Distribución de caracteres
 - Aporte de Kruegel y Vigna²
 - Distribución de frecuencias relativas de caracteres
 - Suma de frecuencias relativas en cinco intervalos

²Kruegel and Vigna (2003) Anomaly detection of web-based attacks.

- Entropía (Teoría de la información)
 - Relación entre longitud del valor y cantidad de caracteres distintos
 - Aporte de Nguyen et. al.³
 - Fórmula propuesta por Claude Shannon⁴

$$H(x) = -\sum_{i=1}^{|c|} \left(\frac{c_i}{|x|} \times \log_2 \frac{c_i}{|x|} \right)$$

Ejemplo

$$x = aabbc$$

$$|x| = 5$$

$$|c| = 3$$

$$c_1=2 \rightarrow a$$

$$c_2 = 2 \rightarrow b$$

 $c_3 = 1 \rightarrow c$

⁴Shannon (1948) A Mathematical Theory of Communication.

³Nguyen et. al. (2011) Application of the generic feature selection measure in detection of web attacks.

- Entropía (Teoría de la información)
 - Relación entre longitud del valor y cantidad de caracteres distintos
 - Aporte de Nguyen et. al.³
 - Fórmula propuesta por Claude Shannon⁴

Ejemplo: petición normal

Ejemplo: petición con buffer overflow

$$H(x) = 5,092$$

$$H(x) = 0.901$$

³Nguyen et. al. (2011) Application of the generic feature selection measure in detection of web attacks.

⁴Shannon (1948) A Mathematical Theory of Communication.

20

2. Paso de preprocesamiento

- Cantidad de caracteres
 - Aporte de Kruegel y Vigna⁵, y Nguyen et. al.⁶
 - Conjuntos de caracteres
 - 1. Todos
 - Dígitos
 - Letras
 - 4. Otros caracteres

⁵Kruegel and Vigna (2003) *Anomaly detection of web-based attacks*.

⁶Nguyen et. al. (2011) Application of the generic feature selection measure in detection of web attacks.

- Cantidad de caracteres
 - Aporte de Kruegel y Vigna⁵, y Nguyen et. al.⁶
 - Conjuntos de caracteres
 - Todos
 - 2. Dígitos
 - Letras
 - Otros caracteres

Ejemplo: petición normal Ejemplo: petición con code injection

Todos	=	100	Todos	=	132
Dígitos	=	9	Dígitos	=	21
Letras	=	74	Letras	=	78
Otros	=	17	Otros	=	33

⁵Kruegel and Vigna (2003) Anomaly detection of web-based attacks.

⁶Nguyen et. al. (2011) Application of the generic feature selection measure in detection of web attacks.

10 features extraídos

Features	Tipo de dato	Rango de valores
Dist. de caract intervalo 0	núm. reales	[0, 1]
Dist. de caract intervalo 1	núm. reales	[0, 1]
Dist. de caract intervalo 2	núm. reales	[0, 1]
Dist. de caract intervalo 3	núm. reales	[0, 1]
Dist. de caract intervalo 4	núm. reales	[0, 1]
Entropía	núm. reales	$[0,\infty)$
Longitud o cantidad total	núm. enteros	$[0,\infty)$
Cantidad de dígitos	núm. enteros	$[0,\infty)$
Cantidad de letras	núm. enteros	$[0,\infty)$
Cantidad de otros caracteres	núm. enteros	$[0,\infty)$

- Análisis de valores de parámetros
 - Obtención de parámetros presentes en peticiones de G_i

```
Q_i = [\text{"email"}, \text{"full"}]
B_i = []
```

Extracción de features de cada valor de los parámetros

```
GET http://localhost:8080/ver.jsp?email=juan%40gmail.com&full=y HTTP/1.1
GET http://localhost:8080/ver.jsp?email=pedro%40gmail.com HTTP/1.1
GET http://localhost:8080/ver.jsp?email=jose%40gmail.com HTTP/1.1
```

Composición del vector de features

$$n_i = 10 \times (1 + |Q_i| + |B_i|)$$


```
GET http://localhost:8080/ver.jsp?email=juan%40gmail.com&full=y HTTP/1.1
GET http://localhost:8080/ver.jsp?email=pedro%40gmail.com HTTP/1.1
GET http://localhost:8080/ver.jsp?email=jose%40gmail.com HTTP/1.1
```

Composición del vector de features

$$n_i = 10 \times (1 + |Q_i| + |B_i|)$$

$$M_i = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n_i} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n_i} \\ \vdots & \vdots & \ddots & \vdots \\ x_{|G_i|,1} & x_{|G_i|,2} & \cdots & x_{|G_i|,n_i} \end{bmatrix}$$

Escalamiento de features (normalización)

⁷Rieck (2009) Machine Learning for Application-Layer Intrusion Detection

- Escalamiento de features (normalización)
 - Problema:
 - Distintas importancias de features debido a rangos diferentes

⁷Rieck (2009) Machine Learning for Application-Layer Intrusion Detection

- Escalamiento de features (normalización)
 - Problema:
 - Distintas importancias de features debido a rangos diferentes
 - Finalidad del escalamiento estándar⁷:
 - Promedio cercano a 0 y una varianza cercana a 1 en cada feature (cada columna de M_i)

$$x_{
m nuevo} = rac{x_{
m actual} - \mu_{
m de\ la\ columna}}{\sigma_{
m de\ la\ columna}}$$

⁷Rieck (2009) Machine Learning for Application-Layer Intrusion Detection

Support Vector Machine (SVM)

- Clasificadores binarios de aprendizaje supervisado
- Separación de clases mediante un hiperplano

Support Vector Machine (SVM)

- Clasificadores binarios de aprendizaje supervisado
- Separación de clases mediante un hiperplano

One-Class SVM

- Versión modificada para problemas OCC
- Separación de única clase del origen

Support Vector Machine (SVM)

- Clasificadores binarios de aprendizaje supervisado
- Separación de clases mediante un hiperplano

One-Class SVM

- Versión modificada para problemas OCC
- Separación de única clase del origen
- Transformación a otros espacios
 - Radial Basis Function (RBF) kernel

26

3. Paso de entrenamiento de clasificadores

3. Paso de entrenamiento de clasificadores

- Un One-Class SVM por cada grupo G_i
- Entrenamiento realizado con los vectores de features construidos
- Almacenamiento persistente del clasificador entrenado

Fase de detección

1. Paso de enrutamiento

1. Paso de enrutamiento

- Identificación del grupo Gi de las nuevas peticiones según su método HTTP y URL
- Delegación al proceso de extracción de features del grupo y al clasificador correspondiente

- Construcción de vectores de features para nuevas peticiones
- Uso de las listas de parámetros Q_i y B_i para la extracción de valores
- Nuevos parámetros no contenidos en estas listas no agregan features al vector
- Vectores construidos con misma dimensión n_i del grupo

Nico Epp y Ralf Funk
OCS-WAF

30

3. Paso de clasificación

3. Paso de clasificación

- ► Uso del hiperplano obtenido para el grupo G_i
- Análisis de la posición de nuevas peticiones:
 - Lado opuesto al origen:
 - Petición normal
 - Mismo lado que el origen:
 - Petición anómala o ataque

31

4. Paso de respuesta

4. Paso de respuesta

- Distintas acciones como respuesta al resultado de clasificación
- Peticiones normales:
 - Reenvío a las aplicaciones web destino
- Peticiones anómalas:
 - Registro en un log
 - Opcionalmente: bloqueo de la petición

Contenido

Introduccior

Motivación de la investigación Objetivos para la investigación

mplementación de OCS-WAF

Arquitectura general
Fase de entrenamiento
Fase de detección

Pruebas y resultados

Conjuntos de datos de prueba Análisis de la eficacia de detección Análisis del tiempo de respuesta de las aplicaciones Análisis del tiempo de entrenamiento Compración con otros trabajos

Conclusiones

Resumen de la investigación Logro de los objetivos Trabajos futuros

Nico Epp y Ralf Funk

FP-IINA

Conjuntos de datos de prueba

Conjuntos de datos utilizados

- Conjuntos utilizados:
 - CSIC 2010⁸
 - ► CSIC TORPEDA 20129
- Peticiones HTTP simuladas a una aplicación de comercio electrónico
- Distintos tipos de ataques
 - Inyección SQL, buffer overflow, cross-site scripting (XSS), entre otros
- Datos utilizados:
 - 18 grupos de peticiones según método HTTP y URL
 - 40 130 peticiones normales y 42 444 anomalías

⁸http://www.isi.csic.es/dataset/

⁹http://www.tic.itefi.csic.es/torpeda

Análisis de la eficacia de detección

Pruebas de eficacia de detección

		Clasificación real		
		N	Р	
		Negatives	Positives	
		(peticiones normales)	(peticiones anómalas)	
Negatives (peticiones detections of the components) Negatives (peticiones detections) Positives (peticiones detections)	Namativaa	TN	FN	
		True Negatives	False Negatives	
		(peticiones normales detectadas	(peticiones anómalas detectadas	
	come normales)	correctamente como normales)	incorrectamente como normales)	
(peticione	Desitives	FP	TP	
	Positives (peticiones detectadas como anómalas)	False Positives	True Positives	
		(peticiones normales detectadas	(peticiones anómalas detectadas	
		incorrectamente como anómalas)	correctamente como anómalas)	

$$TPR = \frac{TP}{P} \quad , \quad FPR = \frac{FP}{N} \quad , \quad F_1 \textit{-score} = \frac{2TP}{2TP + FP + FN}$$

F₁-score es más robusto frente a datos no balanceados

Análisis de la eficacia de detección

Pruebas de eficacia de detección

- Mejoras obtenidas por el análisis de valores de parámetros
 - Promedio de los 18 grupos
 - ightharpoonup pprox 2 000 peticiones normales en cada grupo
 - ➤ ≈ 1 300 peticiones anómalas en cada grupo
 - Usando 1 500 peticiones para entrenamiento
 - ➤ ≈ 75% de los datos normales
 - 3 iteraciones con distintos conjuntos de entrenamiento

	TPR	FPR	F ₁ -score
Solo petición completa	0.77 ± 0.28	0.11 ± 0.22	0.79 ± 0.23
Con análisis de parámetros	0.93 ± 0.11	0.03 ± 0.03	0.95 ± 0.08

Análisis del tiempo de respuesta de las aplicaciones

Pruebas de tiempo de respuesta

- Medición del impacto de OCS-WAF sobre las aplicaciones protegidas
 - Promedio de los 18 grupos
 - 100 peticiones de cada grupo

	Tiempo de respuesta promedio		
	(en milisegundos)		
Directo a la aplicación web	$4,0 \pm 0,6$		
A través de OCS-WAF	$8,7 \pm 1,3$		

Análisis del tiempo de entrenamiento

Pruebas de tiempo de entrenamiento

- Medición de relación entre tiempo de entrenamiento y cantidad de peticiones utilizadas
 - Duración máxima de los 18 grupos

Cantidad de			
peticiones	(en milisegundos)	total	
10	2,0	< 1 segundos	
100	1,7	< 1 segundos	
1 000	1,7	< 2 segundos	
10 000	1,8	< 20 segundos	
100 000	7,0	< 12 minutos	

Trabajos relacionados de otros autores

Utilización del mismo conjunto de datos CSIC 2010

Sistema de detección	TPR	FPR	F ₁ -score
OCS-WAF	0,93	0,03	0,95
ModSecurity ^{10 11}	0,56	0,00	0,71
HTTP-WS-AD ¹²	0,99	0,02	0,99
Árboles de decisión - Torrano-Giménez ¹³	0,95	0,05	-
OC-WAD ¹⁴	0,96	0,03	-

¹⁰ https://www.modsecurity.org/

¹¹Giménez (2015) HTTP-WS-AD: Detector de anomalías orientada a aplicaciones web y web services.

¹²Giménez (2015) HTTP-WS-AD: Detector de anomalías orientada a aplicaciones web y web services.

¹³Torrano-Giménez (2015) Study of stochastic and machine learning techniques for anomaly-based detection.

¹⁴Parhizkar y Abadi (2015) OC-WAD: A one-class classifier ensemble approach for anomaly detection.

Contenido

Introduccior

Motivación de la investigación Objetivos para la investigación

Implementación de OCS-WAF

Arquitectura general

Fase de entrenamiento

Fase de detección

Pruebas y resultados

Conjuntos de datos de prueba

Análisis de la eficacia de detección

Análisis del tiempo de respuesta de las aplicaciones

Análisis del tiempo de entrenamiento

Compración con otros trabajos

Conclusiones

Resumen de la investigación

Logro de los objetivos

Trabajos futuros

Publicaciones

OCS-WAF

- Implementación de un WAF para protección de múltiples aplicaciones web
- Detección de anomalías en mensajes HTTP mediante clasificadores One-Class SVM

41

Objetivos específicos

- Diseñar procesos de extracción de características (features) específicamente para mensajes HTTP, basado en aportes de otros investigadores de la literatura.
 - Diseño de nuevos procesos de extracción de features para mensajes HTTP

- Diseñar procesos de extracción de características (features) específicamente para mensajes HTTP, basado en aportes de otros investigadores de la literatura.
 - Diseño de nuevos procesos de extracción de features para mensajes HTTP
- Implementar un WAF basado en anomalías, utilizando los procesos de extracción de features diseñados junto con clasificadores One-Class SVM.
 - Implementación de OCS-WAF

- 3. Evaluar la eficacia del WAF implementado en cuanto a la detección de mensajes HTTP anómalos.
 - ▶ Pruebas de eficacia de detección con un TPR de 0,93, FPR de 0,03 y F₁-score de 0,95

- 3. Evaluar la eficacia del WAF implementado en cuanto a la detección de mensajes HTTP anómalos.
 - ▶ Pruebas de eficacia de detección con un TPR de 0,93, FPR de 0,03 y F₁-score de 0,95
- 4. Analizar la viabilidad de utilizar el WAF implementado para detección de ataques en tiempo real.
 - Realización de pruebas de impacto de OCS-WAF sobre el tiempo de respuesta de las aplicaciones protegidas

Logro de los objetivos

Objetivo general

Nico Epp y Ralf Funk

OCS-WAF

FP-UNA

Objetivo general

- Detectar mensajes HTTP anómalos entre las aplicaciones web y sus usuarios con el fin de mitigar los riesgos de ataques contra dichas aplicaciones, utilizando un WAF basado en clasificadores One-Class SVM.
 - Detección de mensajes HTTP anómalos con OCS-WAF

Nico Epp y Ralf Funk

FP-UNA

Realizar pruebas con otros conjuntos de datos.

- Realizar pruebas con otros conjuntos de datos.
- Explorar otras características de los mensajes HTTP.

- Realizar pruebas con otros conjuntos de datos.
- Explorar otras características de los mensajes HTTP.
- Extender para incluir cuerpos de otros formatos, por ejemplo datos binario, JSON, XML, entre otros.

- Realizar pruebas con otros conjuntos de datos.
- Explorar otras características de los mensajes HTTP.
- Extender para incluir cuerpos de otros formatos, por ejemplo datos binario, JSON, XML, entre otros.
- Extender para incluir mensajes HTTP/2.

- Realizar pruebas con otros conjuntos de datos.
- Explorar otras características de los mensajes HTTP.
- Extender para incluir cuerpos de otros formatos, por ejemplo datos binario, JSON, XML, entre otros.
- Extender para incluir mensajes HTTP/2.
- Explorar la posibilidad de paralelizar el proceso de entrenamiento en OCS-WAF.

Publicación de nuestro trabajo

 Título: Anomaly-based Web Application Firewall using HTTP-specific features and One-Class SVM

WRSeg 2017

- Workshop Regional de Segurança da Informação e Sistemas Computacionais
- Santa María, Brasil
- 25 de Setiembre 2017

Revista REABTIC

- Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação
- Enviado para revisión

Gracias por su atención!

https://github.com/nico-ralf-ii-fpuna/tfg

Anexo: One-Class SVM

► Hiperplano del clasificador para el grupo Gi

$$\vec{w_i} \cdot \phi(\vec{x}) - \rho_i = \sum_{i=1}^{|G_i|} \left(a_{ij} K_i(\vec{f_{ij}}, \vec{x}) \right) - \rho_i = 0$$
 (1)

Kernel Radial Basis Function (RBF)

$$K(\vec{x_1}, \vec{x_2}) = \phi(\vec{x_1}) \cdot \phi(\vec{x_2}) = \exp(-\gamma ||\vec{x_1} - \vec{x_2}||^2)$$
 (2)

Anexo: One-Class SVM

Entrenamiento: problema de minimización para el grupo Gi

$$\min_{\vec{w_i}, \rho_i, \xi_i} \frac{1}{2} ||\vec{w_i}||^2 - \rho_i + \frac{1}{\nu_i |G_i|} \sum_{j=1}^{|G_i|} \xi_{ij}$$
 (3)

$$\vec{w_i} \cdot \phi(\vec{f_{ij}}) \geqslant \rho_i - \xi_{ij} , \quad \xi_{ij} \geqslant 0 , \quad \forall j = 1, 2, \dots, |G_i|$$
 (4)

Entrenamiento: formulación dual de la optimización

$$\min_{a_i} \frac{1}{2} a_i S_i a_i^T \tag{5}$$

$$\sum_{i=1}^{|G_i|} a_{ij} = 1, \quad 0 \leqslant a_{ij} \leqslant \frac{1}{\nu_i |G_i|} \ \forall j = 1, 2, \dots, |G_i|$$
 (6)

Anexo: One-Class SVM

Detección: función de decisión del grupo Gi

$$g_i(\vec{x}) = \begin{cases} \vec{w_i} \cdot \phi(\vec{x}) - \rho_i \geqslant 0 & +1 \\ \text{caso contrario} & -1 \end{cases}$$
 (7)

$$g_i(\vec{x}) = \begin{cases} \sum_{j=1}^{|G_i|} \left(a_{ij} K_i(\vec{f}_{ij}, \vec{x}) \right) - \rho_i \geqslant 0 & +1 \\ \text{caso contrario} & -1 \end{cases}$$
 (8)

Anexo: Datos utilizados para las pruebas

Información sobre los 18 grupos de peticiones

ID	Conjunto de datos CSIC		Método HTTP y URL	Cant. parám.	Peticiones normales	Peticiones anómalas
c00	2010	GET	/tienda1/miembros/editar.jsp	13	2 000	1 362
c01	2010	POST	/tienda1/miembros/editar.jsp	13	2 000	1 362
c02	2010	GET	/tienda1/publico/anadir.jsp	5	2 000	1 380
c03	2010	POST	/tienda1/publico/anadir.jsp	5	2 000	1 380
c04	2010	GET	/tienda1/publico/autenticar.jsp	5	2 000	1 361
c05	2010	POST	/tienda1/publico/autenticar.jsp	5	2 000	1 361
c06	2010	GET	/tienda1/publico/caracteristicas.jsp	1	2 000	954
c07	2010	POST	/tienda1/publico/caracteristicas.jsp	1	2 000	954
c08	2010	GET	/tienda1/publico/entrar.jsp	1	2 000	897
c09	2010	POST	/tienda1/publico/entrar.jsp	1	2 000	897
c10	2010	GET	/tienda1/publico/pagar.jsp	3	2 000	1 343
c11	2010	POST	/tienda1/publico/pagar.jsp	3	2 000	1 343
c12	2010	GET	/tienda1/publico/registro.jsp	13	2 000	1 364
c13	2010	POST	/tienda1/publico/registro.jsp	13	2 000	1 364
c14	2010	GET	/tienda1/publico/vaciar.jsp	1	2 000	919
c15	2010	POST	/tienda1/publico/vaciar.jsp	1	2 000	919
t00	2012	POST	/tienda1/miembros/editar.jsp	12	5 608	10 121
t01	2012	POST	/tienda1/publico/registro.jsp	12	2 522	13 163
	Total				40 130	42 444

Anexo: Resultados de detección

► Resultados de los 18 grupos de peticiones

Grupo	TPR	FPR	F ₁ -score
c00	$0,71 \pm 0,01$	$0,05 \pm 0,00$	$0,80 \pm 0,00$
c01	$0,72 \pm 0,01$	$0,05 \pm 0,01$	0.80 ± 0.00
c02	$1,00 \pm 0,00$	0.03 ± 0.01	0.98 ± 0.01
c03	$1,00 \pm 0,00$	0.03 ± 0.00	0.98 ± 0.00
c04	0.91 ± 0.01	$0,01 \pm 0,00$	$0,95 \pm 0,01$
c05	$0,92 \pm 0,01$	$0,01 \pm 0,00$	$0,95 \pm 0,00$
c06	$0,99 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
c07	$0,99 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
c08	$1,00 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
c09	$1,00 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
c10	$1,00 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
c11	$1,00 \pm 0,00$	$0,01 \pm 0,00$	$0,99 \pm 0,00$
c12	0.74 ± 0.00	$0,05 \pm 0,01$	0.81 ± 0.01
c13	0.74 ± 0.00	$0,05 \pm 0,01$	0.81 ± 0.01
c14	$1,00 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
c15	$1,00 \pm 0,00$	$0,00 \pm 0,00$	$1,00 \pm 0,00$
t00	$0,99 \pm 0,01$	0.06 ± 0.04	$0,98 \pm 0,00$
t01	$1,00 \pm 0,00$	$0,09 \pm 0,06$	$0,99 \pm 0,01$
	$0,93 \pm 0,11$	0.03 ± 0.03	$0,95 \pm 0,08$

Anexo: Resultados de detección

Resultados con anomalías entre los datos de entrenamiento

0.92 0.90 0.88 0.86

52

0.94

Nico Epp y Ralf Funk FP-UNA

OCS-WAF

53

https://github.com/nico-ralf-ii-fpuna/tfg