Week 03 review worksheet — exercises for §3

Part A. Exercises for interactive discussion

E3.1 (Sweedler notation) Let C be a coalgebra with coproduct Δ and counit ϵ . Let $x \in C$. Review the Sweedler notation, $\Delta x = \sum x_{(1)} \otimes x_{(2)}$, for the coproduct; we will write it without the \sum symbol.

Which of the following are necessarily the same as x?

(Exclude the options where the Sweedler notation is used incorrectly or which are ill-defined.)

$$\begin{split} A &= \epsilon(x_{(1)}) x_{(2)} & D &= \epsilon(x_{(1)}) \epsilon(x_{(2)}) \\ B &= x_{(1)} \epsilon(x_{(2)}) & E &= \frac{1}{2} (x_{(1)} + x_{(2)}) \\ C &= x_{(2)} & F &= \epsilon(x_{(1)}) \epsilon(x_{(2)}) x_{(2)} \\ \end{split}$$

E3.2 (grouplike elements) Let (C, Δ, ϵ) be a coalgebra. Review the definition of a grouplike element of C.

- (a) Prove that any $g \in C$ such that $g \neq 0$ and $\Delta g = g \otimes g$, is grouplike.
- (b) Let G(C) denote the set of all grouplike element of C. Prove that G(C) is a linearly independent set. (*Hint:* use the algebra-coalgebra duality and an exercise from last week!)
- (c) What are the grouplikes in A^* where A is a finite-dimensional algebra?
- (d) What are the possible 1-dimensional coalgebras?

E3.3 Let G be a finite monoid (e.g., a finite group), so that $\mathbb{C}G$ is a finite-dimensional algebra. The coalgebra $(\mathbb{C}G)^*$ has a basis $\{\delta_g\}_{g\in G}$ dual to the basis $\{g\}_{g\in G}$ of $\mathbb{C}G$. Give formulae for $\Delta\delta_g$ and $\epsilon(\delta_g)$.

E3.4 (a) Assume that a coalgebra C has basis $\{\chi_0, \chi_1, \chi_2\}$ of grouplikes. Let $A = C^*$ be the dual algebra. Describe the multiplication on the dual basis $\{e_0, e_1, e_2\}$ of A.

(b) In the case when $A=\mathbb{C}\Gamma$ is the group algebra of the cyclic group $\Gamma=\{e,g,g^2\}$, and $C=(\mathbb{C}\Gamma)^*$, take χ_k to be the character of Γ which sends g to ω^k with $\omega=e^{2\pi i/3}\in\mathbb{C}$. Calculate the basis $\{e_0,e_1,e_2\}$ of $\mathbb{C}\Gamma$. Check directly that the multiplication on this basis is as you expect from (a).

E3.5 (the trigonometric coalgebra) Let C be a two-dimensional space over \mathbb{R} with basis $\{c, s\}$. Define $\Delta \colon C \to C \otimes C$ by

$$\Delta c = c \otimes c - s \otimes s, \quad \Delta s = s \otimes c + c \otimes s.$$

- (a) Define a counit $\epsilon \colon C \to \mathbb{R}$ so that (C, Δ, ϵ) becomes a coalgebra.
- (b) Does C contain any grouplikes? Does C have proper subcoalgebras?
- (c) How does the answer to (b) change if the field \mathbb{R} is replaced by \mathbb{C} ?

E3.6 Review the definition of an action of an associative unital algebra A on a vector space V.

True or false: every algebra can act on a 1-dimensional space?

Part B. Extra exercises

Attempt these exercises and compare your answers with the model solutions, published after the session.

E3.7 (left regular module and left regular comodule) Let A be an algebra. Prove that the map $\rhd_{\text{reg}} : A \otimes A \to A$ given by $a \rhd_{\text{reg}} v = av$ (product in A) is an action of the algebra A on the vector space A. (This action of A on A is called the *left regular action*.)

Develop the parallel notion of left regular coaction for coalgebras.