ASTR8150/PHYS8150 Optimization

Fabien Baron

Georgia State University baron@chara.gsu.edu

Fall 2017 - Version 1

Convexity of a set

- In a convex set, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region.
- A set which is hollow or has an indent, for example, a crescent shape, is not convex.

Convexity of a function

- A real-valued function is called is convex if the set of points on or above the graph of the function (epigraph) is a convex set.
- For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex. Examples: $f(x) = x^2$ or $f(x) = e^x$
- Jensen's inequality: if X is a convex set and $f: X \to \mathbb{R}$, f is convex if:

$$\forall x_1, x_2 \in X, \forall t \in [0,1]: f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

Smoothness of a function

- The smoothness of a function is a property measured by the number of derivatives it has which are continuous. A smooth function is a function that has derivatives of all orders everywhere in its domain.
- The function $f(x) = |x|^k$ is continuous and k times differentiable at all x. But at x = 0 they are not (k + 1) times differentiable.
- The norms ℓ_1 and pseudo-norm ℓ_0 are used in regularization. ℓ_1 is convex, differentiable but nonsmooth. ℓ_0 is non-convex and nonsmooth.

Gradient descent (1)

• Gradient descent is based on the observation that if the multi-variable function $f(\mathbf{x})$ is defined differentiable in a neighborhood of a point $\mathbf{x_0}$, then $F(\mathbf{x})$ decreases "fastest" if one goes from $\mathbf{x_0}$ in the direction of the negative gradient of f at $\mathbf{x_0}$, $-\nabla f(\mathbf{x_0})$.

Gradient descent (2)

It follows that, if

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \nabla f(\mathbf{x}_n) \tag{1}$$

for α small enough, then $f(\mathbf{x_n}) \geq f(\mathbf{x_{n+1}})$. In other words, the term $\alpha \nabla f(\mathbf{x})$ is subtracted from \mathbf{x} because we want to move against the gradient, namely down toward the minimum.

- How can we choose α ?
- The Rosenbrock function $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$. has a narrow curved valley which contains the minimum. The bottom of the valley is very flat. Because of the curved flat valley the optimization is zig-zagging slowly with small stepsizes towards the minimum.

Line search

• A line search strategy is one of two basic iterative approaches to find a local minimum \mathbf{x}^* of an objective function $f: \mathbb{R}^n \to \mathbb{R}$. The other approach is trust region.

Algorithm 1 Line Search

```
1: procedure LINE SEARCH(f, \mathbf{x})
                                                                                                   k=0, \mathbf{x}_0
                                               ▶ Iteration counter + initial parameter guess
          while \|\nabla f(\mathbf{x}_k)\| > \epsilon do
                                                                                               \triangleright \epsilon = \mathsf{tolerance}
3:
                Descent direction \mathbf{d}_k \triangleright \mathbf{d}_k = -\nabla f(x_k) called steepest descent
4.
5:
                \alpha_k \sim \operatorname{argmin} f(\mathbf{x}_k + \alpha \mathbf{d}_k)
                           \alpha \in \mathbb{R}_+
                \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k
6:
7:
               k = k + 1
          end while
g٠
```

9: end procedure

Nonlinear conjugate gradient methods

- Let's pose $\mathbf{g_k} = \nabla f(x_k)$
- \bullet Conjugate directions deviate from the steepest descent $d_k=-g_k$ by attempting moves based on the history of the previous moves
- The descent direction for nonlinear conjugate gradient methods is

$$\mathbf{d}_{\mathbf{k}+\mathbf{1}} = -\mathbf{g}_{\mathbf{k}+\mathbf{1}} + \beta_k \mathbf{d}_{\mathbf{k}}, \quad \mathbf{d}_{\mathbf{0}} = -\mathbf{g}_{\mathbf{0}}$$
 (2)

- \bullet The variation of the gradient is measured by $y_k = g_{k+1} g_k$
- The Conjugate Gradient update parameter β_k can be updated with different formulas

Nonlinear conjugate gradient methods

$$\beta_k^{HS} = \frac{\mathbf{g}_{k+1}^\mathsf{T} \mathbf{y}_k}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k}$$
 (1952) in the original (linear) CG paper of Hestenes and Stiefel [59]
$$\beta_k^{FR} = \frac{\|\mathbf{g}_{k+1}\|^2}{\|\mathbf{g}_k\|^2}$$
 (1964) first nonlinear CG method, proposed by Fletcher and Reeves [45]
$$\beta_k^D = \frac{\mathbf{g}_{k+1}^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}{\mathbf{d}_k^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}$$
 (1967) proposed by Daniel [39], requires

$$\frac{3L}{\mathbf{d}_k^T \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k} = \frac{\mathbf{d}_k^T \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}{\mathbf{d}_k^T \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}$$
(1967) proposed by Daniel [39], requires evaluation of the Hessian $\nabla^2 f(\mathbf{x})$

$$\beta_k^{PRP} = \frac{\mathbf{g}_{k+1}^\mathsf{T} \mathbf{y}_k}{\|\mathbf{g}_k\|^2}$$
 (1969) proposed by Polak and Ribière [84] and by Polyak [85]

$$\beta_k^{CD} = \frac{\|\mathbf{g}_{k+1}\|^2}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
 (1987) proposed by Fletcher [44], CD stands for "Conjugate Descent"

$$\beta_k^{LS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{\mathbf{d}_{k}^{\mathsf{T}} \mathbf{g}_k}$$
 (1991) proposed by Liu and Storey [67]

$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_{t}^T \mathbf{y}_k}$$
 (1999) proposed by Dai and Yuan [27]

$$\beta_k^N = \left(\mathbf{y}_k - 2\mathbf{d}_k \frac{\|\mathbf{y}_k\|^2}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k}\right)^\mathsf{T} \frac{\mathbf{g}_{k+1}}{\mathbf{d}_k^\mathsf{T} \mathbf{y}_k} \quad (2005) \quad \text{proposed by Hager and Zhang [53]}$$

Newton optimization method

Figure: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route.

Hessian is used to exploit the curvature information

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha [\mathbf{H}f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$
 (3)

10 / 14

• $\alpha \in (0,1)$, with $\alpha = 1$ the exact form.

Fabien Baron (GSU) Optimization Fall 2017 - Version 1

Newton-Raphson root-finding and eccentric anomaly

- Newton optimization method and Newton-Raphson's root finding methods are based on similar principles
- Newton-Raphson: $x_{n+1} = x_n f(x_n)/f'(x_n)$
- Example: the mean anomaly is proportional to time it is an easily measured quantity for an orbiting body. Given the mean anomaly M, find the eccentric anomaly E and the orbital eccentricity e with Kepler's Equation:

$$M = E - e \sin E \tag{4}$$

Better than Newton: semi-Newton methods

- Also known as variable metric methods, they avoid computing the Hessian then its inverse.
- The Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Davidon-Fletcher-Powell (DFP) algorithms build iteratively approximations of $[\mathbf{H}f(\mathbf{x}_n)]^{-1}$.
- The most successfull is Limited-memory BFGS (L-BFGS) that approximates $[\mathbf{H}f(\mathbf{x}_n)]^{-1}\nabla f(\mathbf{x}_n)$ directly and thus can work on large scale problems (millions of variables).
- There are variants that attempt to deal with non-smooth functions (subgradient and bundle method)
- There are variants that deal with constrained miminization (i.e. bounds on variables or linearly tied variables) such as L-BFGS-B. Further refinements led to the VMLM algorithm in OptimPack.

12 / 14

Trust-region method and Levenberg-Marquardt

• Consider the quadratic approximation of function f around x_0 :

$$q(\epsilon) \simeq f(x_0) + \nabla f(x_0)\epsilon + \frac{1}{2}\epsilon^T \nabla^2 f(x_0)\epsilon$$
 (5)

- $q(\epsilon)$ has a close-form mimimum.
- $q(\epsilon)$ remains a good approximation within a given radius, $||e||_2 < r^2$ defines the **trust region** radius r.
- The quadratic approximation predicts a certain reduction in the cost function, Δf_{pred} , which is compared to the true reduction $\Delta f_{\mathrm{actual}} = f(x) f(x+\epsilon)$. By looking at the ratio $\Delta f_{\mathrm{pred}}/\Delta f_{\mathrm{actual}}$ we can estimate the trust-region size at each iteration, jump to the closed-form minimum within the trust region, and iterate.
- The Levenberg-Marquardt algorithm (first published in 1944 by Kenneth Levenberg, rediscovered in 1963 by Donald Marquardt) uses the trust-region approach with conjugate-gradients and Gauss-Newton (Newton optimized for non-linear χ^2). Like conjugate gradient and Newton, these local optimization.

Derivative-free optimization methods

- Among the most popular local optimizer is NelderMead method (aka downhill simplex method or amoeba method), which moves points of a polytope of n+1 vertices in n-parameter dimensions via reflection, contraction, expansion steps
- Most MCMC optimization methods.
- NLopt library provides mostly derivative-free algorithms, some of them for global optimization.