Deep Generative Models

Lecture 7

Roman Isachenko

Autumn, 2022

Recap of previous lecture

Gaussian AR NF

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- Sampling is sequential, density estimation is parallel.
- Forward KL is a natural loss.

Inverse gaussian AR NF

$$\mathbf{z} = g(\mathbf{z}, \boldsymbol{\theta}) \quad \Rightarrow \quad x_j = \tilde{\sigma}_j(\mathbf{z}_{1:j-1}) \cdot z_j + \tilde{\mu}_j(\mathbf{z}_{1:j-1})$$
$$\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}) \quad \Rightarrow \quad z_j = (x_j - \tilde{\mu}_j(\mathbf{z}_{1:j-1})) \cdot \frac{1}{\tilde{\sigma}_j(\mathbf{z}_{1:j-1})}.$$

- Sampling is parallel, density estimation is sequential.
- Reverse KL is a natural loss.

Recap of previous lecture

Let split **x** and **z** in two parts:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}].$$

Coupling layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}(\mathbf{z}_1, \boldsymbol{\theta}) + \boldsymbol{\mu}(\mathbf{z}_1, \boldsymbol{\theta}). \end{cases} \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}(\mathbf{x}_1, \boldsymbol{\theta})) \odot \frac{1}{\boldsymbol{\sigma}(\mathbf{x}_1, \boldsymbol{\theta})}. \end{cases}$$

Estimating the density takes 1 pass, sampling takes 1 pass!

Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{0_{d \times m - d}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{i = 1}^{m - d} \frac{1}{\sigma_j(\mathbf{x}_1, \boldsymbol{\theta})}.$$

Coupling layer is a special case of autoregressive flow.

Recap of previous lecture

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
	stochastic	$\begin{array}{c} deterministic \\ z = f(x \boldsymbol{\theta}) \end{array}$
Encoder	$ z \sim q(z x,\phi)$	$q(\mathbf{z} \mathbf{x},\boldsymbol{\theta}) = \delta(\mathbf{z} - f(\mathbf{x},\boldsymbol{\theta}))$
		deterministic
	stochastic	$x = g(z oldsymbol{ heta})$
Decoder	$\mathbf{x} \sim p(\mathbf{x} \mathbf{z}, oldsymbol{ heta})$	$p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - g(\mathbf{z}, \boldsymbol{\theta}))$
Parameters	$oldsymbol{\phi},oldsymbol{ heta}$	$ heta \equiv \phi$

Theorem

MLE for normalizing flow is equivalent to maximization of ELBO for VAE model with deterministic encoder and decoder:

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - f^{-1}(\mathbf{z}, \boldsymbol{\theta})) = \delta(\mathbf{x} - g(\mathbf{z}, \boldsymbol{\theta}));$$
$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - f(\mathbf{x}, \boldsymbol{\theta})).$$

Nielsen D., et al. SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows, 2020

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

2. ELBO surgery

3. VAE limitations VAE prior VAE posterior

- Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data
- ELBO surgery
- 3. VAE limitations VAE prior VAE posterior

Discrete data vs continuous model

Let our data \mathbf{y} comes from discrete distribution $\Pi(\mathbf{y})$ and we have continuous model $p(\mathbf{x}|\theta) = \mathsf{NN}(\mathbf{x},\theta)$.

- ▶ Images (and not only images) are discrete data, pixels lie in the integer domain ({0, 255}).
- By fitting a continuous density model $p(\mathbf{x}|\theta)$ to discrete data $\Pi(\mathbf{y})$, one can produce a degenerate solution with all probability mass on discrete values.

Discrete model

- ▶ Use **discrete** model (e.x. $P(\mathbf{y}|\theta) = \mathsf{Cat}(\pi(\theta))$).
- ▶ Minimize any suitable divergence measure $D(\Pi, P)$.
- ► NF works only with continuous data **x** (there are discrete NF, see papers below).
- If pixel value is not presented in the train data, it won't be predicted.

Hoogeboom E. et al. Integer discrete flows and lossless compression Tran D. et al. Discrete flows: Invertible generative models of discrete data

Discrete data vs continuous model

Continuous model

- Use **continuous** model (e.x. $p(\mathbf{x}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{x}), \sigma_{\theta}^2(\mathbf{x}))$), but
 - **discretize** model (make the model outputs discrete): transform $p(\mathbf{x}|\theta)$ to $P(\mathbf{y}|\theta)$;
 - **dequantize** data (make the data continuous): transform $\Pi(y)$ to $\pi(x)$.
- Continuous distribution know numerical relationships.

CIFAR-10 pixel values distribution

1. Discrete data vs continuous model Discretization of continuous distribution

Dequantization of discrete data

- ELBO surgery
- 3. VAE limitations VAE prior VAE posterior

Discretization of continuous distribution

Model discretization through CDF

$$F(\mathbf{x}|\boldsymbol{\theta}) = \int_{-\infty}^{\mathbf{x}'} p(\mathbf{x}'|\boldsymbol{\theta}) d\mathbf{x}'; \quad P(\mathbf{y}|\boldsymbol{\theta}) = F(\mathbf{y} + 0.5|\boldsymbol{\theta}) - F(\mathbf{y} - 0.5|\boldsymbol{\theta})$$

Mixture of logistic distributions

$$p(x|\mu,s) = \frac{\exp^{-(x-\mu)/s}}{s(1+\exp^{-(x-\mu)/s})^2}; \quad p(x|\pi,\mu,s) = \sum_{k=1}^K \pi_k p(x|\mu_k,s_k).$$

PixelCNN++

$$p(\mathbf{x}|\theta) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\theta); \quad p(x_j|\mathbf{x}_{1:j-1},\theta) = \sum_{k=1}^{K} \pi_k p(x|\mu_k,s_k).$$

Here, $\pi_k = \pi_{k,\theta}(\mathbf{x}_{1:j-1}), \ \mu_k = \mu_{k,\theta}(\mathbf{x}_{1:j-1}), \ s_k = s_{k,\theta}(\mathbf{x}_{1:j-1}).$

For the pixel edge cases of 0, replace x-0.5 by $-\infty$, and for 255 replace x+0.5 by $+\infty$.

Salimans T. et al. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications, 2017

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

- 2. ELBO surgery
- 3. VAE limitations VAE prior VAE posterior

Uniform discretization

Let dequantize discrete distribution $\Pi(\mathbf{y})$ to continuous distribution $\pi(\mathbf{x})$ in the following way: $\mathbf{x} = \mathbf{y} + \mathbf{u}$, where $\mathbf{u} \sim U[0,1]$.

Theorem

Fitting continuous model $p(\mathbf{x}|\boldsymbol{\theta})$ on uniformly dequantized data is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{y}|\boldsymbol{\theta}) = \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

Proof

$$\begin{split} \mathbb{E}_{\pi} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \int \pi(\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{y} = \sum \Pi(\mathbf{y}) \int_{U[0,1]} \log p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \leq \\ &\leq \sum \Pi(\mathbf{y}) \log \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} = \\ &= \sum \Pi(\mathbf{y}) \log P(\mathbf{y}|\boldsymbol{\theta}) = \mathbb{E}_{\Pi} \log P(\mathbf{y}|\boldsymbol{\theta}). \end{split}$$

Variational dequantization

- ▶ $p(\mathbf{x}|\boldsymbol{\theta})$ assign uniform density to unit hypercubes $\mathbf{y} + U[0,1]$ (left fig).
- Smooth dequantization is more natural (right fig).
- Neural network density models are smooth function approximators.

Introduce variational dequantization noise distribution $q(\mathbf{u}|\mathbf{y})$, which tells what kind of noise we have to add to our discrete data. Treat it as an approximate posterior as in VAE model.

Variational dequantization

Variational lower bound

$$egin{aligned} \log P(\mathbf{y}|oldsymbol{ heta}) &= \left[\log \int q(\mathbf{u}|\mathbf{y}) rac{p(\mathbf{y}+\mathbf{u}|oldsymbol{ heta})}{q(\mathbf{u}|\mathbf{y})} d\mathbf{u}
ight] \geq \ &\geq \int q(\mathbf{u}|\mathbf{y}) \log rac{p(\mathbf{y}+\mathbf{u}|oldsymbol{ heta})}{q(\mathbf{u}|\mathbf{y})} d\mathbf{u} = \mathcal{L}(q,oldsymbol{ heta}). \end{aligned}$$

Uniform dequantization is a special case of variational dequantization $(q(\mathbf{u}|\mathbf{x}) = U[0,1])$.

Flow++: flow-based variational dequantization

Let $\mathbf{u} = g(\epsilon, \mathbf{x}, \lambda)$ is a flow model with base distribution $\epsilon \sim p(\epsilon)$:

$$q(\mathbf{u}|\mathbf{x}) = p(f(\mathbf{u},\mathbf{x},\lambda)) \cdot \left| \det \frac{\partial f(\mathbf{u},\mathbf{x},\lambda)}{\partial \mathbf{u}} \right|.$$

$$\log P(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(oldsymbol{\lambda},oldsymbol{ heta}) = \int p(oldsymbol{\epsilon}) \log \left(rac{p(\mathbf{x}+g(oldsymbol{\epsilon},\mathbf{x},oldsymbol{\lambda})|oldsymbol{ heta})}{p(oldsymbol{\epsilon})\cdot |oldsymbol{\mathrm{det}} \mathbf{J}_{oldsymbol{arepsilon}}|^{-1}}
ight) doldsymbol{\epsilon}.$$

Ho J. et al. Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design, 2019

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

2. ELBO surgery

3. VAE limitations VAE prior VAE posterior

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\boldsymbol{\theta}) = \frac{1}{n}\sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})}\log p(\mathbf{x}_{i}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z}))\right].$$

Theorem

$$\frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}]$$

- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x})$.
- First term pushes $q_{agg}(z)$ towards the prior p(z).
- Second term reduces the amount of information about x stored in z.

ELBO surgery

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \mathbb{I}_q[\mathbf{x},\mathbf{z}].$$

Proof

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n} \textit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) = \frac{1}{n}\sum_{i=1}^{n}\int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})}d\mathbf{z} = \\ &= \frac{1}{n}\sum_{i=1}^{n}\int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\text{agg}}(\mathbf{z})q(\mathbf{z}|\mathbf{x}_{i})}{p(\mathbf{z})q_{\text{agg}}(\mathbf{z})}d\mathbf{z} = \int \frac{1}{n}\sum_{i=1}^{n}q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q_{\text{agg}}(\mathbf{z})}{p(\mathbf{z})}d\mathbf{z} + \\ &+ \frac{1}{n}\sum_{i=1}^{n}\int q(\mathbf{z}|\mathbf{x}_{i})\log\frac{q(\mathbf{z}|\mathbf{x}_{i})}{q_{\text{agg}}(\mathbf{z})}d\mathbf{z} = \textit{KL}(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) + \frac{1}{n}\sum_{i=1}^{n}\textit{KL}(q(\mathbf{z}|\mathbf{x}_{i})||q_{\text{agg}}(\mathbf{z})) \end{split}$$

Without proof:

$$\mathbb{I}_q[\mathbf{x},\mathbf{z}] = \frac{1}{n} \sum_{i=1}^n KL(q(\mathbf{z}|\mathbf{x}_i)||q_{\text{agg}}(\mathbf{z})) \in [0,\log n].$$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

ELBO surgery

ELBO revisiting

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(q, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i})||p(\mathbf{z})) \right] =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i})} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Prior distribution $p(\mathbf{z})$ is only in the last term.

Optimal VAE prior

$$KL(q_{\text{agg}}(\mathbf{z})||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\text{agg}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_i).$$

The optimal prior $p(\mathbf{z})$ is the aggregated posterior $q_{agg}(\mathbf{z})!$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

- Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data
- 2. ELBO surgery
- 3. VAE limitations VAE prior VAE posterior

Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data

2. ELBO surgery

3. VAE limitations
VAE prior
VAE posterior

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Optimal VAE prior

- ▶ Standard Gaussian $p(\mathbf{z}) = \mathcal{N}(0, I) \Rightarrow$ over-regularization;
- $p(z) = q_{agg}(z) = \frac{1}{n} \sum_{i=1}^{n} q(z|x_i) \Rightarrow \text{overfitting and highly}$ expensive.

Non learnable prior p(z) Learnable prior $p(z|\lambda)$

ELBO revisiting

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}_{i}(q,\boldsymbol{\theta}) = \mathsf{RL} - \mathsf{MI} - \mathit{KL}(q_{\mathsf{agg}}(\mathbf{z})||p(\mathbf{z}|\boldsymbol{\lambda}))$$

It is Forward KL with respect to $p(\mathbf{z}|\lambda)$.

Flow-based VAE prior

Flow model in latent space

$$\log p(\mathbf{z}|\boldsymbol{\lambda}) = \log p(\mathbf{z}^*) + \log \left| \det \left(\frac{d\mathbf{z}^*}{d\mathbf{z}} \right) \right| = \log p(f(\mathbf{z}, \boldsymbol{\lambda})) + \log \left| \det(\mathbf{J}_f) \right|$$

 $z = g(z^*, \lambda) = f^{-1}(z^*, \lambda)$

- RealNVP with coupling layers.
- ▶ Autoregressive flow (fast $f(\mathbf{z}, \lambda)$, slow $g(\mathbf{z}^*, \lambda)$).
- ► Is it OK to use IAF for VAE prior?

ELBO with flow-based VAE prior

$$\begin{split} \mathcal{L}(\phi, \theta) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}|\lambda) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) + \underbrace{\left(\log p(f(\mathbf{z}, \lambda)) + \log \left| \det(\mathbf{J}_f) \right| \right)}_{\text{flow-based prior}} - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] \end{split}$$

Is it possible to use non-invertible model in VAE prior?

- Discrete data vs continuous model
 Discretization of continuous distribution
 Dequantization of discrete data
- ELBO surgery
- 3. VAE limitations
 VAE prior
 VAE posterior

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathsf{x})).$$

Variational posterior

ELBO decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

- ► E-step of EM-algorithm: $KL(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}|\mathbf{x},\theta)) = 0$. (In this case the lower bound is tight $\log p(\mathbf{x}|\theta) = \mathcal{L}(q,\theta)$).
- $q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))$ is a unimodal distribution (not expressive enough).
- NF convert a simple distribution to a complex one. Let use NF in VAE posterior.

Apply a sequence of transformations to the random variable

$$\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}) = \mathcal{N}(\mathbf{z}|oldsymbol{\mu_{\phi}}(\mathbf{x}), oldsymbol{\sigma_{\phi}^2}(\mathbf{x})).$$

Let $q(\mathbf{z}|\mathbf{x}, \phi)$ (VAE encoder) be a base distribution for a flow model.

Flows in VAE posterior

- ▶ Encoder outputs base distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- Flow model $\mathbf{z}^* = f(\mathbf{z}, \boldsymbol{\lambda})$ transforms the base distribution $q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})$ to the distribution $q(\mathbf{z}^*|\mathbf{x}, \boldsymbol{\phi}, \boldsymbol{\lambda})$.
- ▶ Distribution $q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)$ is used as a variational distribution for ELBO maximization.
- ▶ Here ϕ encoder parameters, λ flow parameters.

Flow model in latent space

$$\log q(\mathbf{z}^*|\mathbf{x}, \boldsymbol{\phi}, \boldsymbol{\lambda}) = \log q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) + \log \left| \det \left(\frac{d\mathbf{z}}{d\mathbf{z}^*} \right) \right|$$
$$\mathbf{z}^* = f(\mathbf{z}, \boldsymbol{\lambda}) = g^{-1}(\mathbf{z}^*, \boldsymbol{\lambda})$$

ELBO with flow-based VAE posterior

$$\mathcal{L}(\phi, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)} \log p(\mathbf{x}|\mathbf{z}^*, \theta) - KL(q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)||p(\mathbf{z}^*)).$$

The second term in ELBO is reverse KL divergence with respect to $q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)$.

Flow-based VAE posterior

ELBO objective

$$\begin{split} \mathcal{L}(\phi, \theta, \lambda) &= \mathbb{E}_{q(\mathbf{z}^* | \mathbf{x}, \phi, \lambda)} \big[\log p(\mathbf{x} | \mathbf{z}^*, \theta) + \log p(\mathbf{z}^*) - \log q(\mathbf{z}^* | \mathbf{x}, \phi, \lambda) \big] = \\ &= \mathbb{E}_{q(\mathbf{z}^* | \mathbf{x}, \phi, \lambda)} \bigg[\log p(\mathbf{x} | \mathbf{z}^*, \theta) + \log p(\mathbf{z}^*) - \\ &- \bigg(\log q(g(\mathbf{z}^*, \lambda) | \mathbf{x}, \phi) + \log |\det(\mathbf{J}_g)| \bigg) \bigg]. \end{split}$$

- RealNVP with coupling layers.
- ▶ Inverse autoregressive flow (slow $f(\mathbf{z}, \lambda)$, fast $g(\mathbf{z}^*, \lambda)$).
- ▶ Is it OK to use AF for VAE posterior?

Flows-based VAE prior vs posterior

Theorem

VAE with the flow-based prior $p(\mathbf{z}|\lambda)$ for latent code \mathbf{z}^* is equivalent to VAE with flow-based posterior $q(\mathbf{z}|\mathbf{x},\phi,\lambda)$ for latent code \mathbf{z} .

Proof

$$\begin{split} \mathcal{L}(\phi, \theta, \lambda) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \underbrace{\mathcal{K}L(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\lambda))}_{\text{flow-based prior}} \\ &= \mathbb{E}_{q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)} \log p(\mathbf{x}|f(\mathbf{z}^*, \lambda), \theta) - \underbrace{\mathcal{K}L(q(\mathbf{z}^*|\mathbf{x}, \phi, \lambda)||p(\mathbf{z}^*))}_{\text{flow-based posterior}} \end{split}$$

(Here we use Flow KL duality theorem from Lecture 5 and LOTUS)

- ▶ IAF posterior decoder path: $\mathbf{z} \sim p(\mathbf{z})$, $\mathbf{x} \sim p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- AF prior decoder path: $\mathbf{z}^* \sim p(\mathbf{z}^*)$, $\mathbf{z} = f(\mathbf{z}^*, \lambda)$, $\mathbf{x} \sim p(\mathbf{x}|\mathbf{z}, \theta)$.

Flows-based VAE prior vs posterior

Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

image credit: https://courses.cs.washington.edu/courses/cse599i/20au

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Summary

- Lots of data are discrete. We able to discretize the model or to dequantize our data to use continuous model.
- Uniform dequantization is the simplest form of dequantization. Variational dequantization is a more natural type that uses variational inference.
- ► The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated posterior.
- ▶ We could use flow-based prior in VAE (even autoregressive).
- We could use flows to make variational posterior more expressive. This is equivalent to the flow-based prior in some sort.