Why is computation important?

Bayesian inference centres around the posterior distribution

$$p(\boldsymbol{\theta}|x) \propto p(x|\boldsymbol{\theta}) \times p(\boldsymbol{\theta})$$

where θ is typically a large vector of parameters $\theta = \{\theta_1, \theta_2,, \theta_k\}$

- $p(x|\theta)$ and $p(\theta)$ will often be available in closed form, but $p(\theta|x)$ is usually not analytically tractable, and we want to
 - obtain marginal posterior $p(\theta_i|x) = \int \int ... \int p(\theta|x) d\theta_{(-i)}$ where $\theta_{(-i)}$ denotes the vector of θ 's excluding θ_i
 - calculate properties of $p(\theta_i|x)$, such as mean $(=\int \theta_i p(\theta_i|x) d\theta_i)$, tail areas $(=\int_T^\infty p(\theta_i|x) d\theta_i)$ etc.
- → numerical integration becomes vital

Monte Carlo integration

We have already seen that Monte Carlo methods can be used to simulate values from prior distributions and from **closed form** posterior distributions

If we had algorithms for sampling from arbitrary (typically high-dimensional) posterior distributions, we could use Monte Carlo methods for Bayesian estimation:

• Suppose we can draw samples from the joint posterior distribution for θ , i.e.

$$(\theta_1^{(1)}, ..., \theta_k^{(1)}), (\theta_1^{(2)}, ..., \theta_k^{(2)}), ..., (\theta_1^{(N)}, ..., \theta_k^{(N)}) \sim p(\boldsymbol{\theta}|x)$$

- Then
 - $-\theta_1^{(1)},...,\theta_1^{(N)}$ are a sample from the marginal posterior $p(\theta_1|x)$

$$-E(g(\theta_1)) = \int g(\theta_1)p(\theta_1|x)d\theta_1 \approx \frac{1}{N}\sum_{i=1}^N g(\theta_1^{(i)})$$

- → this is Monte Carlo integration
- \to theorems exist which prove convergence in limit as $N \to \infty$ even if the sample is dependent (crucial to the success of MCMC)

How do we sample from the posterior?

- ullet We want samples from joint posterior distribution $p(oldsymbol{ heta}|x)$
- Independent sampling from $p(\theta|x)$ may be difficult
- **BUT** dependent sampling from a Markov chain with $p(\theta|x)$ as its stationary (equilibrium) distribution is easier
- A sequence of random variables $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, ...$ forms a Markov chain if $\theta^{(i+1)} \sim p(\theta|\theta^{(i)})$ i.e. conditional on the value of $\theta^{(i)}, \theta^{(i+1)}$ is independent of $\theta^{(i-1)}, ..., \theta^{(0)}$
- Several standard 'recipes' available for designing Markov chains with required stationary distribution $p(\theta|x)$
 - Metropolis et al. (1953); generalised by Hastings (1970)
 - Gibbs Sampling (see Geman and Geman (1984), Gelfand and Smith (1990), Casella and George (1992)) is a special case of the Metropolis-Hastings algorithm which generates a Markov chain by sampling from full conditional distributions
 - See Gilks, Richardson and Spiegelhalter (1996) for a full introduction and many worked examples.

Gibbs sampling

Let our vector of unknowns θ consist of k sub-components $\theta = (\theta_1, \theta_2, ..., \theta_k)$

- 1) Choose starting values $\theta_1^{(0)}$, $\theta_2^{(0)}$, ..., , $\theta_k^{(0)}$
- 2) Sample $\theta_1^{(1)}$ from $p(\theta_1|\theta_2^{(0)},\theta_3^{(0)},...,\theta_k^{(0)},x)$ Sample $\theta_2^{(1)}$ from $p(\theta_2|\theta_1^{(1)},\theta_3^{(0)},...,\theta_k^{(0)},x)$ Sample $\theta_k^{(1)}$ from $p(\theta_k|\theta_1^{(1)},\theta_2^{(1)},...,\theta_{k-1}^{(1)},x)$
- 3) Repeat step 2 many 1000s of times eventually obtain sample from $p(\theta|x)$

The conditional distributions are called 'full conditionals' as they condition on all other parameters

Gibbs sampling ctd.

Example with k=2

- Sample $\theta_1^{(1)}$ from $p(\theta_1|\theta_2^{(0)},x)$
- Sample $\theta_2^{(1)}$ from $p(\theta_2|\theta_1^{(1)},x)$
- Sample $\theta_1^{(2)}$ from $p(\theta_1|\theta_2^{(1)},x)$
-

 $\theta^{(n)}$ forms a Markov chain with (eventually) a stationary distribution $p(\theta|x)$.

Using MCMC methods

There are two main issues to consider

- Convergence (how quickly does the distribution of $\theta^{(t)}$ approach $p(\theta|x)$?)
- Efficiency (how well are functionals of $p(\theta|x)$ estimated from $\{\theta^{(t)}\}$?)

Checking convergence

This is the users responsibility!

- Note: Convergence is to target **distribution** (the required posterior), not to a single value.
- Once convergence reached, samples should look like a random scatter about a stable mean value

Convergence diagnosis

- How do we know we have reached convergence?
- i.e. How do we the know number of 'burn-in' iterations?
- Many 'convergence diagnostics' exist, but none foolproof
- CODA and BOA software contain large number of diagnostics

Gelman-Rubin-Brooks diagnostic

- A number of runs
- Widely differing starting points
- Convergence assessed by quantifying whether sequences are much further apart than expected based on their internal variability
- Diagnostic uses components of variance of the multiple sequences

Example: A dose-response model

Consider the following response rates for different doses of a drug

dose x_i	No. subjects n_i	No. responses r_i
1.69	59	6
1.72	60	13
1.75	62	18
1.78	56	28
1.81	63	52
1.83	59	53
1.86	62	61
1.88	60	60

Fit a logistic curve with 'centred' covariate $(x_i - \overline{x})$:

$$r_i \sim \mathsf{Bin}(p_i, n_i)$$
 $\log \mathsf{it} \ p_i = lpha + eta(x_i - \overline{x})$
 $lpha \sim \mathsf{N}(0, 10000)$
 $eta \sim \mathsf{N}(0, 10000)$

Checking convergence with multiple runs

- Set up multiple initial value lists, e.g. list(alpha=-100, beta=100) list(alpha=100, beta=-100)
- Before clicking compile, set num of chains to 2
- Load both sets of initial values
- Monitor from the start of sampling
- Assess how much burn-in needed using the bgr statistic

Using the bgr statistic

- Green: width of 80% intervals of pooled chains: should be stable
- Blue: average width of 80% intervals for chains: should be stable
- Red: ratio of pooled/within: should be near 1
- Double-click on plot, then cntl + right click gives statistics

Output for 'centred' analysis

node	mean	sd	MC error	2.5%	median	97.5%	start	sample	
alpha	0.7489	0.139	0.00138	0.4816	0.7468	1.026	1001	14000	
beta	34.6	2.929	0.02639	29.11	34.53	40.51	1001	14000	

Problems with convergence

Fit a logistic curve with 'un-centred' covariate x:

$$r_i \sim \mathsf{Bin}(p_i, n_i)$$
 $p_i = \alpha + \beta x_i$
 $\alpha \sim \mathsf{N}(0, 10000)$
 $\beta \sim \mathsf{N}(0, 10000)$

History plots for 'un-centred' analysis

bgr output for 'un-centred' analysis

Drop first 40,000 iterations as burn-in

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
beta	33.97	2.955	0.1734	28.7	33.89	40.3	40001	40000

Output for 'un-centred' analysis

bivariate posteriors

How many iterations after convergence?

- After convergence, further iterations are needed to obtain samples for posterior inference.
- More iterations = more accurate posterior estimates.
- Efficiency of sample mean of θ as estimate of theoretical posterior expectation $E(\theta)$ usually assessed by calculating Monte Carlo standard error (MC error)
- MC error = standard error of posterior sample mean as estimate of theoretical expectation for given parameter
- MC error depends on
 - true variance of posterior distribution
 - posterior sample size (number of MCMC iterations)
 - autocorrelation in MCMC sample
- ullet Rule of thumb: want MC error < 1 5% of posterior SD

Inference using posterior samples from MCMC runs

A powerful feature of the Bayesian approach is that all inference is based on the joint posterior distribution

 \Rightarrow can address wide range of substantive questions by appropriate summaries of the posterior

- Typically report either mean or median of the posterior samples for each parameter of interest as a point estimate
- 2.5% and 97.5% percentiles of the posterior samples for each parameter give a 95% posterior credible interval (interval within which the parameter lies with probability 0.95)

```
node mean sd MC error 2.5% median 97.5% start sample beta 34.60 2.929 0.0239 29.11 34.53 40.51 1001 14000
```

So point estimate of beta would be 34.60, with 95% credible interval (29.11, 40.51)

Probability statements about parameters

- Classical inference cannot provide probability statements about parameters (e.g. p-value is not $Pr(H_0 \text{ true})$, but probability of observing data as or more extreme than we obtained, given that H_0 is true)
- In Bayesian inference, it is simple to calculate e.g. $Pr(\theta > 1)$:
 - = Area under posterior distribution curve to the right of 1
 - = Proportion of values in posterior sample of θ which are > 1

- In WinBUGS use the step function:
 p.theta <- step(theta 1)
- For discrete parameters, may also be interested in $\Pr(\delta = \delta_0)$: p.delta <- equals(delta, delta0)
- Posterior means of p.theta and p.delta give the required probabilities

Complex functions of parameters

- Classical inference about a function of the parameters $g(\theta)$ requires construction of a specific estimator of $g(\theta)$. Obtaining appropriate error can be difficult.
- Easy using MCMC: just calculate required function $g(\theta)$ as a logical node at each iteration and summarise posterior samples of $g(\theta)$

In dose-response example, suppose we want to estimate the ED95: that is the dose that will provide 95% of maximum efficacy.

logit 0.95 =
$$\alpha + \beta (ED95 - \overline{x})$$

 $ED95$ = (logit 0.95 - α)/ $\beta + \overline{x}$

Simply add into model

```
ED95 <- (logit(0.95) - alpha)/beta + mean(x[])
```

node	mean	sd	MC error	2.5%	${\tt median}$	97.5%	start	sample
ED95	1.857	0.007716	8.514E-5	1.843	1.857	1.874	1001	10000