

UiO University of Oslo

IN3050/IN4050, Lecture 12 Reinforcement learning

5: Q-learning example Kai Olav Ellefsen

Next video: On-policy and off-policy learning

Q-learning

 Values are learned by "backing up" values from the current state to the previous one:

The same can be done for v-values:

$$V(s_t) \leftarrow V(s_t) + \mu(r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

Q-learning example

• Credits: Arjun Chandra

toy problem

expected long term value of taking some action in each state, under some action selection scheme?

E{R}	E{R}	E{R}		
E{R} E{R}	E(R) 2 $E(R)$	<u>£</u> {R} E{R}		
E{R}	E{R}	E{R}		
E{R}	E{R}	E{R}		
E{R} E{R}	E{R} E{R}	E{R} E{R}		
E{R}	[R]	E{R}		
E{R}	E{R}	E{R}		
E{R} h E{R}	E{R} E{R}	E{R} E{R}		
E{R}	E{R}	E{R}		

our toy problem lookup table

let's fix $\mu = 0.1$, $\gamma = 0.5$

episode 1 begins...

	10	(-1)					
0	+		0			0	
0 (1	0	?	2	0	0	3	0
0	PL-		0			0	
0			0			0	
o 4	. 0	0	5	0	0	6	0
0		J;	0			0	
0			0			0	
₀ 7 hor	ne	0	8	0	0	9	0
0			0			0	

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\begin{array}{c} - \mid & \text{0.5 learned value} \\ \hline r_{t+1} + & \gamma & \cdot & \underbrace{\max}_{a} Q(s_{t+1}, a) \\ \hline \end{array} \right)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\left(\begin{array}{c} - \mid & \text{0.5 learned value} \\ \hline r_{t+1} + & \gamma & \cdot & \underbrace{\max}_{a} Q(s_{t+1}, a) \\ \hline \end{array} \right)}_{ ext{estimate of optimal future value}} - \underbrace{\left(\begin{array}{c} - \mid & \text{0.5 learned value} \\ \hline \end{array} \right)}_{ ext{old value}}$$

	0			0			0	
0	1	0	-0.1	2	0	0	3	0
	o P			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
٥	7 iome	0	o	8	0	0	9	0
	0			0			0	

	1							
	0			0			0	
0	1	0	-0.1	2	0	0	3	0
	o 🖑			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		73	0			0	
	0			0			0	
o h	7 iom	0	0	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{-\int_{ ext{reward discount factor}}^{ ext{old scount factor}} \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
o h	7 iome	0	0	8	0	0	9	o
	0			0			0	

	-0.5			0			0	
o	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	50			0	
	0			0			0	
o h	7 iom	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	?	,-	-1	0			0	
	0 🚽			0			0	
o	4	0	0	5	0	0	6	0
	0		13	-0			0	
	0			0			0	
0 h	7 nome	0	0	8	0	0	9	0
	0			0			0	

$$\begin{array}{c|c} - \circlearrowleft & \\ Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\mu}_{\text{learning rate}} \cdot \left(\underbrace{r_{t+1} + \underbrace{\gamma}_{\text{reward discount factor}}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}} \right) \end{array} \right)$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	o
	0		73	-0			0	
	0			0			0	
o h	7 nome	0	o	8	0	0	9	o
	0		-	0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0	-	-10	0	
	0			0 🚽			0	
0	4	?	0	5	o	0	6	o
	0		73	0			0	
	0			0			0	
0 F	7 nome	0	0	8	o	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward discount factor}}^{ ext{learned value}} \underbrace{r_{t+1}}_{ ext{eward discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 h	7 nome	0	0	8	0	0	9	o
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	o
	0		13	0			0	
	0			0			0	
o h	7 iome	0	0	8	o	0	9	o
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
o	4	-1	0	5	0	0	6	0
	0		13	5	,-	-1	0	
	0			0 🚽	7		0	
o -	7 nome	0	0	8	0	0	9	0
	0		e e	0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\mu}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1} + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}^{\text{learned value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{old value}}$$

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	o
	0		73	-0.1			0	
	0			0			0	
o h	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		1}	-0.1			0	
	0			0			0	
٥	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
o	4	-1	0	5	0	0	6	0
	0		13	-0.1			0	
	0		-1 0	0			0	
o h	7 nome	0	?	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward discount factor}}^{ ext{learned value}}_{ ext{estimate of optimal future value}}^{ ext{learned value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{learned value}}$$

let's work out the next episode, starting at state 4

go WEST and then SOUTH

how does the table change?

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
-0.5	4	-1	0	5	0	0	6	0
	1			-0.1			0	
	0			0			0	
0	7	0	1	8	0	0	9	0
	0			0			0	

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \left(\underbrace{\overbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)$$

and the next episode, starting at state 3

go WEST -> SOUTH -> WEST -> SOUTH

how does the table change?

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{\frac{-| \quad \ \ \ }{r_{t+1}} + \gamma \cdot \underbrace{\max Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

UiO University of Oslo

IN3050/IN4050, Lecture 12 Reinforcement learning

6: On-policy and off-policy learning Kai Olav Ellefsen

Action selection

- Estimate the *value* of each action: $Q_{s,t}(a)$
- · Decide whether to:
 - Explore, or
 - exploit

	-0.5			0			0	
0	1	0	-0.1	2	0	-0.1	3	0
	-0.1			-1			0	
	0			0			0	
-0.5	4	-1	-0.05	5	0	0	6	0
	1.9			-0.1			0	
	0			0			0	
0	7	0	1	8	0	0	9	0
	0			0			0	

Action selection

- The function deciding which action to take in each state is called the policy, π . Examples:
 - Greedy: Always choose most valuable action
 - ϵ -greedy: Greedy, except small probability (ϵ) of choosing the action at random
- The q-learning we just saw is an example of off-policy learning.

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1} + \gamma}_{ ext{reward discount factor}} \cdot \underbrace{\left(\underbrace{max}_a Q(s_{t+1}, a) \right)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

7

Off-Policy Learning

The Q-Learning Algorithm

- Initialisation
 - set Q(s,a) to small random values for all s and a
- Repeat:
 - initialise s
 - repeat:
 - * select action a using ϵ -greedy or another policy
 - * take action a and receive reward r
 - * sample new state s'
 - * update $Q(s, a) \leftarrow Q(s, a) + \mu(r + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - * set $s \leftarrow s'$
 - For each step of the current episode
- Until there are no more episodes

Source: Marsland

On-Policy Learning

The Sarsa Algorithm

- Initialisation
 - set Q(s, a) to small random values for all s and a
- · Repeat:
 - initialise s
 - choose action a using the current policy
 - repeat:
 - * take action a and receive reward r
 - * sample new state s'
 - * choose action a' using the current policy
 - * update $Q(s, a) \leftarrow Q(s, a) + \mu(r + \gamma Q(s', a') Q(s, a))$
 - * $s \leftarrow s', a \leftarrow a'$
 - for each step of the current episode
- Until there are no more episodes

Off-Policy Learning

The Q-Learning Algorithm

- Initialisation
 - set Q(s,a) to small random values for all s and a
- Repeat:
 - initialise s
 - repeat:
 - * select action a using ϵ -greedy or another policy
 - * take action a and receive reward r
 - * sample new state s'
 - * update $Q(s, a) \leftarrow Q(s, a) + \mu(r + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - * set $s \leftarrow s'$
 - For each step of the current episode
- Until there are no more episodes

Source: Marsland

On-Policy Learning

The Sarsa Algorithm

- Initialisation
 - set Q(s, a) to small random values for all s and a
- Repeat:
 - initialise s
 - choose action a using the current policy
 - repeat:
 - * take action a and receive reward r
 - * sample new state s'
 - * choose action a' using the current policy
 - * update $Q(s, a) \leftarrow \hat{Q}(s, a) + \mu(r + \gamma Q(s', a') Q(s, a))$
 - * $s \leftarrow s', a \leftarrow a'$
 - for each step of the current episode
- Until there are no more episodes

Off-Policy Learning

The Q-Learning Algorithm

- Initialisation
 - set Q(s,a) to small random values for all s and a
- Repeat:
 - initialise s
 - repeat:
 - * select action a using ϵ -greedy or another policy
 - * take action a and receive reward r
 - * sample new state s'
 - * update $Q(s, a) \leftarrow Q(s, a) + \mu(r + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - * set $s \leftarrow s'$
 - For each step of the current episode
- Until there are no more episodes

Source: Marsland

On-Policy Learning

The Sarsa Algorithm

- Initialisation
 - set Q(s, a) to small random values for all s and a
- Repeat:
 - initialise s
 - choose action a using the current policy
 - repeat:
 - * take action a and receive reward r
 - * sample new state s'
 - * choose action a' using the current policy
 - * update $Q(s, a) \leftarrow Q(s, a) + \mu(\underline{r} + \gamma Q(s', a') Q(s, a))$
 - $* s \leftarrow s', a \leftarrow a'$
 - for each step of the current episode
- Until there are no more episodes

On-policy vs off-policy learning

Q-learning (off-policy):

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{\mu}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{stimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} \right)}_{ ext{old value}}$$

Sarsa (on-policy):

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \mu[r_{t+1} + \sqrt{Q(s_{t+1}, a_{t+1})} - Q(s_t, a_t)]$$

On-policy vs off-policy learning

- Reward structure: Each move: -1. Move to cliff: -100.
- Policy: 90% chance of choosing best action (exploit). 10% chance of choosing random action (explore).

On-policy vs off-policy learning: Q-learning

- Always assumes optimal action -> does not visit cliff often while learning. Therefore, does not learn that cliff is dangerous.
- Resulting path is efficient, but risky.

On-policy vs off-policy learning: sarsa

- During learning, we more frequently end up outside the cliff (due to the 10% chance of exploring in our policy).
- That info propagates to all states, generating a safer plan.

Which plan is better?

• sarsa (on-policy):

• Q-learning (off-policy):

