

PROGETTAZIONE DI STRUTTURE IN LEGNO MASSICCIO E LAMELLARE SECONDO LE NTC 2008

ESEMPI DI INTERVENTI SULLE STRUTTURE LIGNEE ESISTENTI

Pistoia 05-11-2010

Ing. Leonardo Negro

LegnoPiù s.r.l. - Via Borgo Valsugana, 11 - 59100 Prato leonardo.negro@strutturedilegno.it - www.strutturedilegno.it

Nota 1 - Obbligatorietà delle verifiche contro l'incendio

NTC2008 - § 2.1 – Principi fondamentali

- "...In particolare, secondo quanto stabilito nei capitoli specifici, le opere e le varie tipologie strutturali devono possedere i seguenti requisiti:
- **sicurezza nei confronti di stati limite ultimi (SLU):** capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone ovvero comportare la perdita di beni, ovvero provocare gravi danni ambientali e sociali, ovvero mettere fuori servizio l'opera;
- sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;
- robustezza nei confronti di azioni eccezionali: capacità di evitare danni sproporzionati rispetto all'entità delle cause innescanti quali incendio, esplosioni, urti....."

NTC2008 - § 3.6 - Azioni Eccezionali

Le azioni eccezionali sono quelle che si presentano in occasione di **eventi quali incendi, esplosioni ed urti.** Quando è necessario tenerne conto esplicito, si considererà la combinazione eccezionale di azioni di cui al § 2.5.3.

Quando non si effettuano verifiche specifiche nei confronti delle azioni eccezionali, quali esplosioni, urti, ecc., la concezione strutturale, i dettagli costruttivi ed i materiali usati dovranno essere tali da evitare che la struttura possa essere danneggiata in misura sproporzionata rispetto alla causa.

Le verifiche contro l'incendio, **non sono espressamente obbligatorie** ma per non farle bisognerebbe verificare che un eventuale danno causato da incendio non provochi danneggiamenti sproporzionati.

Nota 2- Certificazioni

§11.1 A – Per i materiali e prodotti per uso strutturale per i quali sia disponibile una norma europea armonizzata l'impiego è possibile soltanto se in possesso della Marcatura CE.

§11.1.B – Per i materiali e prodotti per uso strutturale per i quali **non sia disponibile una norma armonizzata** ovvero la stessa **ricada nel periodo di coesistenza**, per il loro impiego è prevista la **qualificazione**.

Attualmente il legno massiccio e il lamellare può essere accompagnato dalla: Qualificazione del Servizio Tecnico Centrale (CASO B – Coesistenza)

Direttore Tecnico

Produttore

Centro di lavorazione

Oppure da Marcatura CE.

Da Settembre 2012 per il L.M. e da Dicembre 2011 per il L.L., il materiale potrà essere accompagnato solo da **Marcatura CE**.

Nota 2- Certificazioni

§11.7.1 NTC2008

Oltre che dalla documentazione indicata nei §11.1 e § 11.7.10, ogni fornitura deve essere accompagnata, a cura del produttore, da un manuale contenente le specifiche tecniche per la posa in opera.

Il Direttore dei Lavori è tenuto a rifiutare le eventuali forniture non conformi a quanto sopra prescritto.

§11.7.5 PANNELLI A BASE DI LEGNO (OSB, Compensato, truciolare, MDF, ecc)

I pannelli a base di legno per uso strutturale, per i quali si applica il caso A di cui al §11.1, debbono essere conformi alla norma europea armonizzata UNI EN 13986.

Proprietà di resiste	enza	Proprietà di modulo el	Proprietà di modulo elastico			ca	
Flessione	$f_{m,k}$	Modulo elastico parallelo medio **	E _{0,mean}		Massa volumica caratteristica	ρ_{k}	
Trazione parallela	$f_{t,0,k}$	Modulo elastico parallelo caratteristico	E _{0,05}		Massa volumica media *,**	$\rho_{\rm mean}$	Contenuti dei certificati, necessari
Trazione perpendicolare	$f_{\text{t,90,k}}$	Modulo elastico perpendicolare medio **	E _{90,mean}				per il loro utilizzo.
Compressione parallela	$f_{c,0,k}$	Modulo elastico tangenziale medio **	G _{mean}				
Compressione perpendicolare	$f_{c,90,k}$						
Taglio	$f_{v,k}$						

§11.1 C – Per materiali e prodotti per uso strutturale innovativi e non ricadenti in una delle tipologie A) o B) il produttore potrà pervenire alla Marcatura CE in conformità a **Benestare Tecnici Europei (ETA)**, ovvero, in alternativa, dovrà essere in possesso di un **Certificato di Idoneità Tecnica all'Impiego rilasciato dal Servizio Tecnico Centrale**.

Nota 3 - Plinto a bicchiere

Affogando un elemento ligneo in un getto di calcestruzzo è probabile avere problemi di durabilità dovuti a:

- Umidità per risalita capillare
- Infiltrazioni d'acqua
- Poca o nulla traspirazione
- Lenta asciugatura a seguito di una possibile infiltrazione

Palestra Reggio Emilia

Piscina Pescasseroli

Nota 3 - Plinto a bicchiere

Incastro traslato in luce

Pilastro in c.a.

Controvento con pareti Platform

Nota 4 - Specifiche di progetto

LEGNO LAMELLARE PER TRAVI :	
MARCATO CE SECONDO EN14080 O EQUIVALENTE	
CLASSE DI RESISTENZA (EN1194)	GL24c
UMIDITA' ELEMENTI INTERNI	< 12%
UMIDITA' ELEMENTI ESTERNI	< 18%
TOLLERANZE DIMENSIONALI CONFORMI ALLA	EN390
LEGNO MASSICCIO	
MARCATO CE SECONDO EN14081 O EQUIVALENTE	
CLASSE DI RESISTENZA (EN338)	C22
UMIDITA' ELEMENTI	< 18%
TOLLERANZE DIMENSIONALI CONFORMI ALLA	EN336
OSB (ORIENTED STRAND BOARD) TIPO 3	
PANNELLI PORTANTI PER ÚSO IN AMBIENTE UMIDO	
MARCATO SECONDO EN 300	
SPESSORE	15 - 22 mm
VALORI CARATTERISTICI RESISTENZE,	
RIGIDEZZE, MASSA VOLUMICA SECONDO UNI 12369	-1
ACCIAIO DA CARPENTERIA E PIASTRE	S235
ACCIAIO PER BULLONI	8.8
ACCIAIO PER VITI	10.9
ACCIAIO PER CHIODI	6.8
N.B. MEZZI DI UNIONE METALLICI CONFORMI ALLA	EN 14592
N.B. CONNETTORI METALLICI CONFORMI ALLA	EN 14545
VITA NOMINALE EDIFICIO	Vn >= 50anni
CLASSE D'USO	II

Prescrizioni per la durabilita':

- 1- Per elementi lignei interni ed esterni coperti: trattamento preventivo contro funghi ed insetti per classe di rischio 2 secondo UNI EN 335 conferita mediante impregnante a spazzola o a immersione a base di sali di Boro o equivalente.
- 2- Per elementi lignei esterni non coperti, classe di rischio 3 secondo UNI EN 335, usare legno con alburno completamente impregnato a pressione o a bagno dopo le lavorazioni a base di CCA o equivalenti.
- 3- Per elementi in acciaio e connettori protezione contro la corrosione secondo UNI EN 1995-1-1 P.4.1; zincatura Fe/Zn 12c (Z275) per classe 1 e 2, zincatura Fe/Zn 25c (Z350) per classe 3 o equivalenti.

Particolari costruttivi e dettagli delle unioni sono parte integrante degli elaborati per il deposito al Genio Civile.

Nota 5 - Nuova versione UNI338

UNI EN 338:2009 – non ancora tradotta in italiano

		Softw	ood spe	cies										Hard	wood sp	pecies					
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
Strength properties (in N	/mm²)											•									
Bending	$f_{m,k}$	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Tension parallel	$f_{t,0,k}$	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Tension perpendicular	$f_{190,k}$	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compression parallel	$f_{c,0,k}$	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compression perpendicular	$f_{c,90,k}$	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7,5	7,8	8,0	8,1	8,3	9,3	10,5	13,5
Shear	$f_{v,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
Stiffness properties (in kl	N/mm²)																				
Mean modulus	E _{0,mean}	7	8	9	9,5	10	11	11,5	12	13	14	15	16	9,5	10	11	12	13	14	17	20
of elasticity parallel																					
5 % modulus of	E _{0,05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,0	10,7	8	8,5	9,2	10,1	10,9	11,8	14,3	16,8
elasticity parallel																					
Mean modulus	E _{90,mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,63	0,67	0,73	0,80	0,86	0,93	1,13	1,33
of elasticity perpendicular																					
Mean shear modulus	G _{moon}	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,59	0,62	0,69	0,75	0,81	0,88	1,06	1,25
Density (in kg/m3)																					
Density	ρ_{k}	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	550	620	700	900
Mean density	Pmean	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080

NOTE 1 Values given above for tension strength, compression strength, shear strength, 5 % modulus of elasticity, mean modulus of elasticity perpendicular to grain and mean shear modulus, have been calculated using the equations given in Annex A.

Un incremento medio del 30% della resistenza a taglio, ridotta solo nelle classi: D50, D60, D70.

Riduzione della resistenza a trazione ortogonale alla fibra.

NOTE 2 The tabulated properties are compatible with timber at a moisture content consistent with a temperature of 20 °C and a relative humidity of 65 %

NOTE 3 Timber conforming to classes C45 and C50 may not be readily available.

NOTE 4 Characteristic values for shear strength are given for timber without fissures, according to EN 408. The effect of fissures should be covered in design codes.

ARGOMENTI TRATTATI

RIFERIMENTI NORMATIVI CLASSIFICAZIONE DEL LEGNO IN OPERA DIAGNOSI DURABILITA'

ESEMPI DI CALCOLO

- TRAVE ANIMATA
- TRAVE COMPOSTA
- RICOSTRUZIONE DI TESTATE

RIFERIMENTI NORMATIVI

NORME TECNICHE PER LE COSTRUZIONI - D.M.14.01.2008 CIRCOLARE ESPLICATIVA N.617 - 02.02.2009

CAP. 4.4 - COSTRUZIONI DI LEGNO

CAP. 7.7 - COSTRUZIONI DI LEGNO - PROGETTAZIONE PER AZIONI SISMICHE

CAP. 11.7 - MATERIALI E PRODOTTI A BASE DI LEGNO

D.P.C.M.12.10.2007 (Beni Culturali ma non vincolante)

UNI EN 1995-1

CNR-DT 206/2007

4.4 COSTRUZIONI DI LEGNO

Formano oggetto delle presenti norme le opere costituite da strutture portanti realizzate con elementi di legno strutturale (legno massiccio, segato, squadrato oppure tondo) o con prodotti strutturali a base di legno (legno lamellare incollato, pannelli a base di legno) assemblati con adesivi oppure con mezzi di unione meccanici, eccettuate quelle oggetto di una regolamentazione apposita a carattere particolare.

La presente norma può essere usata anche per le verifiche di strutture in legno esistenti purché si provveda ad una corretta valutazione delle caratteristiche del legno e, in particolare, degli eventuali stati di degrado.

I materiali e i prodotti devono rispondere ai requisiti indicati nel § 11.7.

Tutto il legno per impieghi strutturali deve essere classificato secondo la resistenza, prima della sua messa in opera.

Per intervenire sulle strutture esistenti è obbligatorio provvedere ad eseguire una diagnosi adeguata.

RIFERIMENTI NORMATIVI

C4.4 COSTRUZIONI DI LEGNO

L'impostazione generale relativa alla valutazione della sicurezza delle strutture di legno di nuova costruzione può essere utilizzata anche per le strutture di legno esistenti purché si provveda ad una attenta valutazione delle caratteristiche fisiche e meccaniche del legno con metodi di prova diretti o indiretti. I calcoli, riferiti alle reali dimensioni geometriche degli elementi in sito, terranno opportunamente conto dei difetti del legno, degli eventuali stati di degrado, delle condizioni effettive dei vincoli e dei collegamenti.

Con riferimento anche a quanto previsto nel §8.5 delle NTC, particolare attenzione va posta inoltre per le costruzioni antiche di rilevante interesse storico per le quali risulti rilevante l'interesse per il mantenimento dei materiali originali, e per le quali si giustifica l'impiego di prove e criteri di valutazione che tengano conto anche delle prestazioni dimostrate dagli elementi strutturali nel corso della storia dell'opera.

Come si classifica il legno in opera

La norma stabilisce che **ogni elemento strutturale ligneo deve classificato secondo la resistenza**. Tale classificazione deve basarsi su metodi di **valutazione visiva dell'elemento ligneo**, di **misurazione non distruttiva** di una o più proprietà fisico-meccaniche, oppure su opportune combinazioni delle precedenti.

La classificazione deve essere eseguita secondo le modalità operative riportate nella norma stessa.

UNI 11035:2010 (parti 1 e 2) descrive una metodologia di classificazione applicabile anche a elementi strutturali in opera, purché siano soddisfatte tuttavia una serie di condizioni che non sempre è possibile riscontrare (in particolare la visibilità e accessibilità dell'elemento devono essere estese ad almeno 3 lati e ad una delle due testate)

profili resistenti in termini di valori caratteristici. si può quindi far riferimento alla UNI 11035, applicata secondo quanto previsto al punto 7.6 della UNI 11119:2004.

UNI 11119:2004. Beni culturali - Manufatti lignei - Strutture portanti degli edifici - Ispezione *in situ* per la diagnosi degli elementi in opera.

La norma stabilisce procedure e requisiti per la diagnosi dello stato di conservazione e la stima della resistenza e della rigidezza di elementi lignei in opera nelle strutture portanti di edifici compresi nell'ambito dei beni culturali, attraverso l'esecuzione di ispezioni in situ e l'impiego di tecniche e metodologie di prova non distruttive.

profili resistenti in termini di tensioni ammissibili e valori medi di modulo elastico a flessione (valori tratti dal testo Tecnica delle Costruzioni in Legno di Guglielmo Giordano)

Le diagnosi su strutture esistenti sono quasi sempre condotte secondo la UNI 11119.

Dalla diagnosi si ottiene:

- Specie Legnosa
- Geometria
- Presenza o meno di degrado
- Entità del degrado
- Classificazione secondo la resistenza alle tensioni ammissibili !!!
- Tutti i dati previsti nel C.8.5

			Tensioni massime (N/mm²)									
Specie	Categoria in opera	compre parallela alla fibratura	perpendi- colare alla	flessione statica	trazione parallela alla fibratura ¹⁾	taglio (parallelo alla fibratura)	modulo di elasticità a flessione					
			fibratura									
Abete bianco	1	11	2,0	11,5	11	0,9	13 000					
(Abies alba Mill.)	ll ll	9	2,0	10	9	8,0	12 000					
	III	7	2,0	7,5	6	0,7	11 000					
Abete rosso	1	10	2,0	11	11	1,0	12 500					
(Picea abies Karst.)	ll ll	8	2,0	9	9	0,9	11 500					
	III	6	2,0	7	6	8,0	10 500					
Larice		12	2,5	13	12	1,1	15 500					
(Larix spp.)	ll ll	10	2,2	11	9,5	1,0	14 500					
	III	7,5	2,0	8,5	7	0,9	13 500					
Pini	- 1	11	2,0	12	11	1,0	13 000					
(Pinus spp.)	l II	9	2,0	10	9	0,9	12 000					
	III	7	2,0	8	6	8,0	11 000					
Castagno	1	11	2,0	12	11	0,8	10 000					
(Castanea sativa	ll ll	9	2,0	10	9	0,7	9 000					
Mil.)	III	7	2,0	8	6	0,6	8 000					
Pioppo	ı	10	1,5	10,5	9	0,6	9 000					
(Populus spp.)	ll ll	8	1,5	8,5	7	0,5	8 000					
	III	6	1,5	6,5	4,5	0,4	7 000					
Quercia	- 1	12	3,0	13	12	1,2	13 500					
(Quercus spp.)	l II	10	2,5	11	10	1,0	12 500					
	III	7,5	2,2	8,5	7	0,9	11 500					

Correlazione tra le tensioni ammissibili e le resistenze caratteristiche

Un modo per ottenere da questi valori di resistenza, un valore caratteristico per le verifiche agli Stati limite potrebbe essere:

$$f_k = \sigma_{amm} \cdot \gamma_m \cdot \gamma_{G,Q} / k_{\text{mod}}$$

$$\gamma_m = 1.5$$

$$\gamma_{G,Q} = \frac{1.3 + 1.5}{2} = 1.45$$

$$k_{\rm mod} = 0.8$$

Per poter verificare la capacità portante di un elemento una struttura in legno esistente o per progettarne un intervento di ripristino, dovrà essere eseguita un'adeguata diagnosi.

La diagnosi corrisponde ad un Livello di Conoscenza 3 = fattore di confidenza = 1

In realtà le NTC non trattano espressamente le strutture in legno esistenti, far riferimento agli edifici in muratura è corretto dato che nella maggior parte dei casi si interviene su solai in legno in edifici in muratura

$$X_d = k_{\text{mod}} \cdot \frac{X_k}{\gamma_m \cdot FC}$$

Il consolidamento di una struttura esistente richiede uno sforzo in più rispetto al progetto di una nuova struttura in quanto necessita dell'interpretazione del funzionamento dell'organismo strutturale e delle cause che hanno causato degrado o dissesto.

Per prima cosa si dovranno eliminare le cause del degrado, sapendo che il dissesto può essere causato da:

- **Degrado biologico da funghi** (carie); agli appoggi non areati delle travi o per percolazione d'acqua.
- Rotture in luce; per cattiva qualità, aumento dei carichi, sottodimensionamento.
- **Degrado biologico da insetti**; eccessiva perdita di sezione resistente.
- **Sconnessioni** tra gli elementi di strutture composte.

<u>Deformazioni eccessive</u>

Lesioni o rotture

Insetti xilofagi

Durabilità del legno

La definizione delle classi di rischio si ritrovano nella UNI 335 "Durabilità del legno e dei prodotti a base di legno"

Classe di rischio 1

Ambiente riparato, protetto dagli agenti atmosferici (umidità del legno sempre < 20%). Le condizioni garantiscono contro il rischio di attacco fungino, è possibile l'attacco da parte di insetti.

Classe di rischio 2

Ambiente riparato ma con elevata umidità dell'aria (umidità del legno a volte > 20%). Può essere presente l'attacco fungino, è possibile l'attacco da parte di insetti.

Classe di rischio 3

Elementi lignei anche esposti (è frequente un'umidità del legno > 20%). Il materiale è esposto all'attacco fungino, è possibile l'attacco da parte di insetti.

Classe di rischio 4

Elementi lignei esposti, anche a contatto diretto con il terreno o con acqua dolce. Il materiale è permanentemente esposto all'attacco fungino, è possibile l'attacco da parte di insetti (termiti)

Classe di rischio 5

Elementi permanentemente a contatto diretto con acqua salata.

E' possibile l'attacco di organismi invertebrati marini. Attacco di insetti per le parti non immerse.

Durabilità del legno

Elementi in Classe di rischio 1

Completamente protetti = Elementi situati all'interno di costruzioni riscaldate.

Per gli elementi in classe di rischio > 1

si dovranno attuare misure di protezione per garantire: Azione del degrado < Resistenza al degrado

Per verificare la disuguaglianza, e quindi ottenere la durabilità necessaria, possiamo agire riducendo le azioni e/o aumentando la resistenza agli attacchi biotici (fungini e xilofagi).

Riduzione dell'azione di degrado:

- Adeguata concezione strutturale
- Aggiunta di elementi protettivi del legno

Aumento della resistenza al degrado:

- Uso di specie legnose più resistenti
- Trattamento protettivo del legno di superficie o impregnazione

Resistenza naturale del legno agli agenti biologici **5 classi di resistenza:**

1 – molto durabile

2 – durabile

3 – moderatamente durabile

4 – poco durabile

5 – non durabile

Specie legnosa	Classe di resistenza Uso nella costruzi		Aspettativa di vita (anni)
Abete rosso, Abete bianco, Pino	4	molto frequente	da 5 a 15
Larice, Duglasia	3-4	molto frequente	da 15 a 25
Faggio, Frassino	5	raro, in fase di sviluppo	da 0 a 5
Quercia	2	carpenteria classica	da 35 a 50
Castagno	1-2	localmente frequente	oltre i 50 fino a 100
Robinia	1-2	raro	oltre i 50 fino a 100

ASPETTATIVA DI VITA Per elementi in opera senza alcuna protezione dalle intemperie

Durabilità del legno

La durabilità del legno si garantisce principalmente con una corretta progettazione del particolare:

- Evitando il contatto diretto con le zone umide
- Coprendo gli elementi esposti alle intemperie
- Allontanando gli elementi dal terreno
- Garantendo la copertura della gronda
- Permettendo il rapido deflusso e asciugatura

La durabilità del legno può essere aumentata con preservanti:

Trattamenti di superficie: con un effetto di azione in profondità molto limitata con un effetto di azione in profondità elevata

E' importante che il trattamento sia del tipo ad impregnazione e che non formi uno strato impermeabile sulla superficie esterna del legno.

Il trattamento serve a **limitare l'assorbimento dell'acqua** e quindi a mantenere l'umidità **al di sotto del 20%**, nel caso si verifichi un parziale assorbimento **non deve ostacolare una rapida asciugatura**.

Durabilità dei connettori

Prescrizioni minime per la protezione contro la corrosione dei connettori. EC5 Tab. 4.1

Mezzo di unione		Classe di servizio ^t)
	1	2	3
Chiodi e viti con d ≤4 mm	Nessuna protezione	Fe/Zn 12c ^{a)}	Fe/Zn 25c ^{a)}
Bulloni, spinotti, chiodi e viti con d >4 mm	Nessuna protezione	Nessuna protezione	Fe/Zn 25c ^{a)}
Cambrette	Fe/Zn 12c ^{a)}	Fe/Zn 12c ^{a)}	Acciaio inossidabile
Mezzi di unione a piastra metallica punzonata e piastre di acciaio fino a 3 mm di spessore	Fe/Zn 12c ^{a)}	Fe/Zn 12c ^{a)}	Acciaio inossidabile
Piastre di acciaio da 3 mm fino a 5 mm di spessore	Nessuna protezione	Fe/Zn 12c ^{a)}	Fe/Zn 25c ^{a)}
Piastre di acciaio di spessore maggiore di 5 mm	Nessuna protezione	Nessuna protezione	Fe/Zn 25c ^{a)}

Se si utilizza la zincatura a caldo, si raccomanda che Fe/Zn 12c sia sostituito da Z275 e Fe/Zn 25c da Z350 in conformità alla EN 10147.

Per condizioni particolarmente corrosive, si raccomanda di prendere in considerazione una zincatura a caldo di maggiore spessore, oppure l'acciaio inossidabile.

Analisi dei risultati della diagnosi

La specie legnosa è Pino, di terza categoria per deviazione della fibratura C'è del degrado superficiale dovuto a insetti, 2 cm massimo.

Non ha indebolimenti concentrati quali: rotture, intagli, carie, ecc.

Il muro al di sotto dell'appoggio sinistro è lesionato

La sezione resistente da considerare sarà quella depurata dello spessore degradato Possiamo considerare una sezione costante:

Analisi dei risultati della diagnosi

Trave di Pino III Cat. Per deviazione della fibratura radiale. **UNI 11119**

				Tensioni mas	sime (N/mm²)		
Specie	Categoria in opera	compre parallela alla fibratura	perpendi- colare alla fibratura	flessione statica	trazione parallela alla fibratura ¹⁾	taglio (parallelo alla fibratura)	modulo di elasticità a flessione
Abete bianco (Abies alba Mill.)	 	11 9 7	2,0 2,0 2,0	11,5 10 7,5	11 9 6	0,9 0,8 0,7	13 000 12 000 11 000
Abete rosso (Picea abies Karst.)	 	10 8 6	2,0 2,0 2,0	11 9 7	11 9 6	1,0 0,9 0,8	12 500 11 500 10 500
Larice (Larix spp.)	 	12 10 7,5	2,5 2,2 2,0	13 11 8,5	12 9,5 7	1,1 1,0 0,9	15 500 14 500 13 500
Pini (Pinus spp.)	 	11 9 7	2,0 2,0 2,0	12 10 8	11 9 6	1,0 0,9 0,8	13 000 12 000 11 000
Castagno (Castanea sativa Mill.)	 	11 9 7	2,0 2,0 2,0	12 10 8	11 9 6	0,8 0,7 0,6	10 000 9 000 8 000
Pioppo (Populus spp.)	 	10 8 6	1,5 1,5 1,5	10,5 8,5 6,5	9 7 4,5	0,6 0,5 0,4	9 000 8 000 7 000
Quercia (Quercus spp.)	 	12 10 7,5	3,0 2,5 2,2	13 11 8,5	12 10 7	1,2 1,0 0,9	13 500 12 500 11 500

$$f_k = \sigma_{amm} \cdot \gamma_m \cdot \gamma_{G,Q} / k_{mod}$$

$$\gamma_m = 1.5$$

$$\gamma_{G,Q} = \frac{1.3 + 1.5}{2} = 1.45$$

$$k_{mod} = 0.8$$

$$f_{c,90,k} = 2 \cdot 1.5 \cdot 1.45 / 0.8 = 5.44 N / mm^{2}$$

$$f_{m,k} = 8 \cdot 1.5 \cdot 1.45 / 0.8 = 21.75 N / mm^{2}$$

$$f_{v,k} = 0.8 \cdot 1.5 \cdot 1.45 / 0.8 = 2.18 N / mm^{2}$$

$$E = 11000 N / mm^{2}$$

$$X_d = k_{\text{mod}} \cdot \frac{X_k}{\gamma_m \cdot FC}$$

Verifica dello stato attuale

La freccia limite non è soddisfatta.

Base	В	280	mm
Altezza	Н	340	mm
Interasse	i	2.20	m
Modulo di resistenza	W	5.39E+06	mm3
Momento d'inerzia	J	9.17E+08	mm4
Modulo elastico	Е	11000	N/mm2
Modulo elastico a taglio	G	690	N/mm2
Luce netta	Ln	6.000	m
Luce di calcolo	Lc	6.300	m

	u,ist,Q	u,tot,fin	u,fin,Q
Verifica	mm	mm	mm
f. max	9.345	29.718	11.027
f. lim	21.000	25.200	31.500
	L/300	L/250	L/200
	ОК	NO	OK

		Qk	qk	u,ist	Kdef	ψ,2	u,fin	u,tot,ist	u,tot,fin
Deformazioni		KN/m2	KN/m	mm			mm	mm	mm
Carichi permanenti compiutamente definiti	Gk1	2.00	4.400	9.345	0.6	1	14.952		
Carichi permanenti non compiutamente definiti	Gk2	0.50	1.100	2.336	0.6	1	3.738		
Carichi variabili	Qk	2.00	4.400	9.345	0.6	0.3	11.027	21.027	29.718

Dovremo ripristinare la rigidezza e la resistenza mancante con l'inserimento di una piastra metallica.

Le verifiche di resistenza della sezione mista saranno eseguite per la combinazione più gravosa:

$$\frac{q_{SLU}}{k_{\text{mod }SLU}} > \frac{q_{SLU-P}}{k_{\text{mod }SLU-P}} \longrightarrow \frac{6.35}{0.8} > \frac{3.35}{0.6} \longrightarrow 2_\text{SLU}$$

Verifica dello stato attuale

Le resistenze di progetto nelle combinazioni SLU e SLU-P, Classe di servizio 1

$$f_{c,90,d} = f_{c,90,k} \frac{k_{\text{mod}}}{\gamma_m} = 5.44 \frac{0.8}{1.5} = 2.90 N / mm^2$$

$$f_{m,d} = f_{m,k} \frac{k_{\text{mod}}}{\gamma_m} = 21.75 \frac{0.8}{1.5} = 11.60 N / mm^2$$

$$f_{v,d} = f_{v,k} \frac{k_{\text{mod}}}{\gamma_m} = 2.18 \frac{0.8}{1.5} = 1.16 N / mm^2$$

$$f_{c,90,d} = f_{c,90,k} \frac{k_{\text{mod}}}{\gamma_m} = 5.44 \frac{0.6}{1.5} = 2.17 N / mm^2$$

$$f_{m,d} = f_{m,k} \frac{k_{\text{mod}}}{\gamma_m} = 21.75 \frac{0.6}{1.5} = 8.70 N / mm^2$$

$$f_{v,d} = f_{v,k} \frac{k_{\text{mod}}}{\gamma_m} = 2.18 \frac{0.6}{1.5} = 0.87 N / mm^2$$

Se gli smussi sono modesti cioè non superano 1/10 della larghezza della sezione, la loro influenza può essere trascurata e può essere considerata una sezione rettangolare.

Verifica dello stato attuale - resistenza

		Qd	qd	Mmax	Tmax	σ,m,s,max	σ,v,s,max	σ,c,90,max
Tensioni massime	e sollecitanti	KN/m2	KN/m	KNm	KN	N/mm2	N/mm2	N/mm2
1_SLU permanenti	1_SLU	3.3500	7.370	36.56	23.22	6.78	0.37	0.66
2_SLU	2_SLU	6.3500	13.970	69.31	44.01	12.85	0.69	1.26

	f,m,d	f,v,d	f,c,90,d
Resistenze di progetto	N/mm2	N/mm2	N/mm2
1_SLU permanenti	8.70	0.87	2.17
2_SLU	11.60	1.16	2.90

La tensione dovuta al momento flettente, supera la resistenza di progetto di circa il 11%.

Aumento della capacità portante di una trave mediante l'inserimento dall'estradosso di una piastra metallica longitudinale incollata con resina epossidica alla trave.

Può essere utilizzato nei seguenti casi:

- La trave è accessibile dall'estradosso
- E' completamente asciutta
- Ha una seppur minima capacità portante

Vantaggi:

- L'intervento non è visibile dall'esterno
- Buon incremento della capacità portante
- Prolungata resistenza al fuoco

Il calcolo dovrà essere eseguito in termini di **resistenza agli SLU** e **deformazioni SLE a breve e lungo termine**.

Si dovrà tener conto del contributo offerto dalla trave in legno, sia per la portata dei carichi verticali che per l'effetto stabilizzante offerto alla piastra di acciaio.

Il carico si ripartisce in proporzione alla rigidezza delle due sezioni che differiscono per modulo elastico e dimensioni geometriche.

$$E_l J_l$$
 Rigidezza flessionale lato legno $G_l A_l$ Rigidezza a taglio lato legno $E_a J_a$ Rigidezza flessionale lato acciaio $G_a A_a$ Rigidezza a taglio lato acciaio

N.B. la ripartizione dei carichi dovrà essere valutata sia a breve che a lungo termine in quanto nel legno avremo 2 valori differenti dei moduli elastici.

Moduli elastici iniziali
$$\longrightarrow$$
 E_{mean} ; G_{mean}

Moduli elastici finali \longrightarrow E_{mean} /(1+ k_{def}); G_{mean} /(1+ k_{def})

Coefficienti di ripartizione flessionale a breve e lungo termine:

Il taglio sarà ripartito in proporzione alla rigidezza a taglio.

$$g_{a} = \frac{G_{a}A_{a}}{G_{l}A_{l} + G_{a}A_{a}}$$

$$g_{a}^{\infty} = \frac{G_{a}A_{a}}{G_{l}A_{l}/(1 + k_{def}) + G_{a}A_{a}}$$

$$g_{l}^{\infty} = \frac{G_{l}A_{l}}{G_{l}A_{l}/(1 + k_{def}) + G_{a}A_{a}}$$

$$g_{l}^{\infty} = \frac{G_{l}A_{l}}{G_{l}A_{l}/(1 + k_{def}) + G_{a}A_{a}}$$

Per la valutazione della freccia **possiamo sommare il contributo dovuto al momento e al taglio**, **riferendoci alla parte in legno o di acciaio indistintamente**, in quanto avranno lo stesso abbassamento.

$$q_{l,m} = q \cdot r_l$$
 Quota parte di carico che compete al legno nella freccia dovuta a M

$$q_{l,t} = q \cdot g_l$$
 — Quota parte di carico che compete al legno nella freccia dovuta a T

$$f_{\text{max}}^{0} = \frac{5q_{l,m}l^{4}}{384E_{0,mean}J_{l}} + \frac{\chi q_{l,t}l^{2}}{8G_{mean}A_{l}}$$

$$f_{\max}^{\infty} = \frac{5q_{l,m}^{\infty}l^4}{384E_{0,mean}J_l/(1+k_{def})} + \frac{\chi q_{l,t}^{\infty}l^2}{8G_{mean}A_l/(1+k_{def})} \qquad \qquad \text{Dove} \qquad q_{l,m} = q \cdot r_l \\ q_{l,t} = q \cdot g_l^{\infty}$$

Inseriamo di una piastra 10x300mm di acciaio S235

GEOMETRIA					
		В	Н		
Base e altezza sezione di estremità in legno	A/Sx	28.0	34.0	cm	
Base e altezza sezione di estremità in legno	P/Dx	28.0	34.0	cm	
Base e altezza lamiera metallica		1.0	30.0	cm	
Peso lamiera di acciaio	р	148.4	daN		
Spessore resina di ancoraggio	s	0.5	cm		
Volume di resina necessaria	V _r	18900	cm ³		
Luce di calcolo	L	6.30	m		
Base e altezza media della trave in legno		28.0	34.0	cm	
Base e altezza residua della trave in legno		26.0	34.0	cm	

Si dovrà considerare la sezione residua del legno Non solo depurata della parte degradata ma anche della parte occupata dalla piastra e la colla

Coefficienti di ripartizione a breve e lungo termine per azioni flettenti

Coefficienti di ripartizione a breve e lungo termine per azioni di taglio

CARATTERISTICHE MECCANICHE				
Kdef		0.60		
Modulo elastico Legno t=0	E _{L,0}	110000	daN/cm²	
Modulo elastico Legno t=∞	E _{L,∞}	68750	daN/cm²	
Modulo elastico Acciaio	E _A	2100000	daN/cm²	
Modulo di elasticità tangenziale Legno t=0	G _{L,0}	5600	daN/cm²	
Modulo di elasticità tangenziale Legno t=∞	$G_{L,^\infty}$	3500	daN/cm²	
Modulo di elasticità tangenziale Acciaio	G _A	784000	daN/cm²	
Aerea sezione in legno	A _L	884	cm ²	
Area sezione in acciaio	A _A	30	cm ²	
Modulo di resistenza sezione in Legno	W _L	5009	cm ³	
Modulo di resistenza sezione in Acciaio	W _A	150	cm ³	
Momento d'inerzia sezione in Legno	J _L	85159	cm ⁴	
Momento d'inerzia sezione in Acciaio	J _A	2250	cm ⁴	
Rigidezza flessionale lato Legno t=0	(E _L J _L), ₀	9367453333	daN cm²	
Rigidezza flessionale lato Legno t=∞	(E _L J _L), _∞	5854658333	daN cm²	
Rigidezza flessionale lato Acciaio	$E_A J_A$	4725000000	daN cm ²	
Rigidezza a taglio lato Legno t=0	$(G_L A_L)_{,0}$	4950400	daN	
Rigidezza a taglio lato Legno t=∞	(G _L A _L), _∞	3094000	daN	
Rigidezza a taglio lato Acciaio	$G_A A_A$	23520000	daN	
Coeff.di rigidezza flessionale lato Legno t=0	r _{L,0}	0.66		
Coeff.di rigidezza flessionale lato Acciaio t=0	r _{A,0}	0.34		
Coeff.di rigidezza flessionale lato Legno t=∞	r _{L,∞}	0.55		
Coeff.di rigidezza flessionale lato Acciaio t=∞	r _{A,∞}	0.45		
Coeff.di rigidezza a taglio lato Legno t=0	$g_{L,0}$	0.17		
Coeff.di rigidezza a taglio lato Acciaio t=0	g _{A,0}	0.83		
Coeff.di rigidezza a taglio lato Legno t=∞	g _{L,∞}	0.12		
Coeff.di rigidezza a taglio lato Acciaio t=∞	g _{A,∞}	0.88		

Momento totale massimo	M _{max}	6931	daN m	
Taglio totale massimo	T _{max}	4401	daN	VERIFICHE

CARATTERISTICHE DI SOLL	ECITAZIONE e VERIFICHE p	er t =0 S.L.U.		
Momento massimo lato Legno	$M_{max,L}$	4607.04	daN m	
Momento massimo lato Acciaio	M _{max,A}	2323.82	daN m	
Taglio massimo lato Legno	T _{max,L}	765.16	daN	
Taglio massimo lato Acciaio	T _{max,A}	3635.39	daN	
Tensione normale massima lato Legno	$\sigma_{,L,max}$	91.97	daN/cm²	ок
Tensione normale massima lato Acciaio	$\sigma_{A,max}$	1549.21	daN/cm²	ок
Tensione tangenziale massima lato Legno	τ _{,L,max}	1.30	daN/cm²	ок
Tensione tangenziale massima lato Acciaio	τ _{,A,max}	181.77	daN/cm²	ок
CARATTERISTICHE DI SOLL	ECITAZIONE e VERIFICHE pe	ert=∞ S.L.U.		
Momento massimo lato Legno	$M_{max,L}$	3835.46	daN m	
Momento massimo lato Acciaio	M _{max,A}	3095.41	daN m	
Taglio massimo lato Legno	T _{max,L}	511.58	daN	
Taglio massimo lato Acciaio	T _{max,A}	3888.97	daN	
Tensione normale massima lato Legno	$\sigma_{,L,max}$	76.57	daN/cm²	ок
Tensione normale massima lato Acciaio	σ _{,A,max}	2063.60	daN/cm²	ок
Tensione tangenziale massima lato Legno	$ au_{,L,max}$	0.87	daN/cm²	ок
Tensione tangenziale massima lato Acciaio	τ _{,A,max}	194.45	daN/cm²	ок

Le tensioni sollecitanti migrano nel tempo scaricando la sezione in legno. Lo sfruttamento della sezione in legno in t=0 è pari l'80%, per diventare 66% a tempo infinito.

FRECCIA t=∞				
Carichi permanenti	q_G	5.50	daN/cm	
Carichi variabili	q_Q	4.40	daN/cm	
Carichi totali in combinazione SLE Quasi Permanente	q_{QP}	6.82	daN/cm	
Quota parte di carico sul legno per la deformazione a M	q _{I,m}	3.77	daN/cm	
Quota parte di carico sul legno per la deformazione a T	q _{I,t}	0.79	daN/cm	
Freccia totale a t=∞	f _{max}	1.34	cm	
Freccia limite	f _{lim}	2.52	cm	ок

La verifica della freccia è rispettata.

Una possibile alternativa alla trave animata, poteva essere quella di inserire una soletta collaborante.

L'intervento prevede la solidarizzazione alle strutture esistenti di una soletta in: **tavole di legno, calcestruzzo, compensato, profilati metallici**, ecc; eseguita con connettori metallici distribuiti lungo la luce della trave.

Travi composte con connessioni deformabili

Vantaggi:

- si riesce ad aumentare notevolmente la capacità portante degli elementi esistenti;
- si ha un notevole miglioramento della risposta del solaio in condizioni di esercizio (deformazioni e vibrazioni)
- la soletta contribuisce alla ripartizione dei carichi verticali e orizzontali;
- è di rapida realizzazione e di basso impatto visivo.

L'efficienza della sezione composta è tanto più elevata tanto più rigida è la connessione.

Nel caso di una trave inflessa, composta con connettori metallici puntuali, avremo una situazione intermedia del comportamento statico della sezione tra:

Connessione inesistente

Si conservano piane le sezioni delle singole travi.

Le due travi funzionano in parallelo.

Connessione infinitamente rigida

Si conserva piana la sezione composta

La rigidezza flessionale della trave composta risulta:

Connessione inesistente

Connessione infinitamente rigida

$$(EJ)_0 = \sum_i E_i J_i = \frac{1}{12} (E_1 b_1 h_1^3 + E_2 b_2 h_2^3)$$

$$(EJ)_{\infty} = \sum_{i} E_{i}J_{i} + \sum_{i} E_{i}A_{i}a_{i} = (EJ)_{0} + (EA)_{0} \cdot a^{2}$$

Dove: $(EA)_0 = \frac{E_1 A_1 \cdot E_2 A_2}{E_1 A_1 + E_2 A_2}$

a = distanza tra i baricentri

Il momento sollecitante esterno può essere quindi ripartito in proporzione alle rispettive rigidezze:

Connessione inesistente

$$M_1 = \frac{E_1 J_1}{(EJ)_0} M$$

$$M_2 = \frac{E_2 J_2}{(EJ)_0} M$$

Connessione infinitamente rigida

$$M_1 = \frac{E_1 J_1}{(EJ)_{\infty}} M$$

$$M_2 = \frac{E_2 J_2}{(EJ)_{\infty}} M$$

In questo caso nasce uno sforzo normale uguale e contrario nelle due sezioni e tale che:

$$M = M_1 + M_2 + N \cdot a \longrightarrow N = \frac{(EA)_0 \cdot a}{(EJ)_\infty} M$$

Nel caso in cui si utilizzi mezzi di unione metallici, ci troveremo in condizioni intermedie.

Nell'Eurocodice 5 in Appendice B l'argomento è trattato in forma semplificata.

Date le seguenti ipotesi:

- travi continue semplicemente appoggiate
- materiale elastico lineare
- elementi in legno o a base di legno monolitici
- mezzi di unione meccanici
- spaziatura "s" fra i mezzi di unione costante oppure che varia uniformemente secondo la forza di taglio tra s_{min} e s_{max} , con $s_{max} \le 4$ s_{min}
- carichi verticali che generano M variabile con leggi sinusoidali o paraboliche

La rigidezza efficace a flessione è assunta come:

$$(EI)_{ef} = \sum_{i=1}^{3} (E_i I_i + \gamma_i E_i A_i a_i^2)$$

utilizzando valori medi di E e in cui:

$$A_i = b_i h_i$$

$$I_{\rm i}=\frac{b_{\rm i}h_{\rm i}^3}{12}$$

Luce di calcolo della trave!!

$$\gamma_2 = 1$$

$$\gamma_i = [1 + \pi^2 E_i A_i s_i / (K_i I^2)]^{-1}$$
 per $i = 1$ e $i = 3$

$$a_2 = \frac{\gamma_1 E_1 A_1 (h_1 + h_2) - \gamma_3 E_3 A_3 (h_2 + h_3)}{3}$$
$$2 \sum_{i=1}^{n} \gamma_i E_i A_i$$

$$a_1 = a - a_2$$

$$a = h_1/2 + h_2/2$$

"efficienza della connessione"

Peso dell'elemento 1 e 3 nel calcolo della rigidezza flessionale effettiva della struttura composta

Nel caso di sezione a T si pone h₃=0

a₁ e a₂ sono le distanze dei baricentri geometrici delle due sezioni e il baricentro globale della sezione mista.

Il modulo di scorrimento K lo si assume in funzione del tipo di connettore e del materiale collegato in base alla tabella:

Valori di $K_{\rm ser}$ per mezzi di unione e connettori in N/mm, nelle connessioni legno-legno e pannello a base di legno-legno

Tipo di mezzo di unione	K _{ser}
Spinotti Bulloni con o senza gioco ^{a)} Viti Chiodi (con preforatura)	$ ho_{\rm m}^{1.5} d/23$
Chiodi (senza preforatura)	$\rho_{\rm m}^{1.5} d^{0.8}/30$
Cambrette	$\rho_{\rm m}^{1.5} d^{0.8}/80$
Connettori ad anello aperto di tipo A secondo EN 912 Connettori a tassello di tipo B secondo EN 912	$ ho_{\rm m}$ d _c /2
Connettori a piastra dentata:	
- Connettori dei tipi da C1 a C9 secondo EN 912	1,5 $\rho_{\rm m}$ d _c /4
- Connettori dei tipi C10 e C11 secondo EN 912	$ ho_{\rm m} d_{\rm c}/2$
Si raccomanda che il gioco sia aggiunto separatamente alla deformazione.	-

In condizioni di esercizio.

Per verifiche agli SLU si considera un modulo di scorrimento ridotto:

$$K = K_u = 2/3 K_{ser}$$

Per le verifiche di resistenza le tensioni massime si determinano con le seguenti formule:

Tensione normale dovuta a N

$$\sigma_{\rm i} = \frac{\gamma_{\rm i} E_{\rm i} a_{\rm i} M}{(EI)_{\rm ef}}$$

Tensione normale massima dovuta a M

$$\sigma_{\rm m,i} = \frac{0.5E_{\rm i}h_{\rm i}M}{(EI)_{\rm ef}}$$

Tensione massima di taglio nell'anima

$$\tau_{2,\text{max}} = \frac{\gamma_3 E_3 A_3 a_3 + 0.5 E_2 b_2 h_2^2}{b_2 (EI)_{\text{ef}}} V$$

Carico sul mezzo di unione

$$F_{i} = \frac{\gamma_{i} E_{i} A_{i} a_{i} s_{i}}{(EI)_{ef}} V$$

Si inserisce una tavola in legno lamellare 400x40, collegata con viti HBS.

Caratteristiche della connessione			
Connettore	VITI HE	BS 10x180	
Diametro	d	7.04 mm	
Spaziatura di calcolo	s _i	30 mm	
Interasse parallelo alla fibratura delle unioni	р	60 mm	
Numero di file di connettori	n	2 n	
Massa volumica media	ρ_{m}	575 kg/m ³	
Modulo di scorrimento SLE	K _{ser}	4220	2638 N/mm
Modulo di scorrimento SLU	K_{u}	2814	1758 N/mm
Luce di calcolo della trave	I	6300 mm	
Elemento 1			
Base	B ₁	400 mm	
Altezza	H ₁	40 mm	
Modulo elastico	E ₁	11600	7250 N/mm ²
Momento d'inerzia	J_1	2.13E+06 mm ⁴	
Area	A_1	16000 mm ²	
Peso SLE	γ_1	0.753	0.753
Peso SLU	γ_1	0.670	0.670
Elemento 2			
Base	B_2	280 mm	
Altezza	H ₂	340 mm	
Modulo elastico	E ₂	11000	6875 N/mm ²
Momento d'inerzia	J_2	9.17E+08 mm ⁴	
Area	A_2	95200 mm ²	
Peso SLE	γ_2	1	
Peso SLU	γ_2	1	

VERIFICHE PER t =∞					
		SLE	SLU		
Distanza tra i baricentri geometrici	а	190	190	mm	
Distanza baricentro elemento 1	a ₁	168	170	mm	
Distanza baricentro elemento 2	\mathbf{a}_2	22	20	mm	
Posizione dell'asse neutro	h	192	190		
Rigidezza efficace a flessione	$(EJ)_{\mathrm{eff}}$	9.10E+12	8.83E+12	N mm ²	
Verifiche di resistenza					
Momento flettente massimo SLU	M	6.93E+07 N i	mm		
Taglio massimo SLU	Т	4.40E+04 N			
Tensione normale massima su elemento 1	σ_1	7.62 N/ı	mm²	<	13.24 N/mm ²
Tensione normale massima su elemento 2	σ_2	10.26 N/ı	mm²	<	10.4 N/mm ²
Tensione tangenziale massima su elemento 2	τ_2	0.62 N/i	mm ²	<	1.04 N/mm ²
Azione massima sul mezzo di unione	F	1974 N		<	2926 N
Verifiche di deformazione					
Carico uniformemente distribuito SLE Quasi permanente	q	6.82 N/ı	mm		
Freccia massima	\mathbf{f}_{max}	15 mr	n ·	<	25.2 mm

Ricostruzione di testate

E' un tipo di intervento molto frequente nelle strutture antiche dove, a causa di un degrado da carie, si va a sostituire un appoggio mediante una "protesi".

I metodi più frequentemente utilizzati sono:

- BARRE INCOLLATE

- LEGNO LAMELLARE IN OPERA

- PROFILATI IN ACCIAIO

b

Ricostruzione di testate

Nelle soluzioni che prevedono l'uso di resine è bene fare attenzione a:

- L'elemento ligneo nuovo deve essere **sufficientemente stagionato** (oppure Legno Lamellare o recuperato) in modo tale che l'umidità della protesi sia prossima a quella di equilibrio in opera.
- Non possono essere posate a temperature generalmente inferiori ai 10°C
- Al crescere della temperatura a causa di un incendio perdono rapidamente resistenza
- Le operazioni di posa sono molto delicate, devono essere eseguite da personale specializzato
- Non possono essere utilizzate in Classe di servizio 3 (CNR-DT 206/2007 §7.10.1)

La porzione di testata degradata viene sostituita con una protesi di legno stagionato e collegata alla parte sana della trave per mezzo di 4 barre in acciaio incollate con resina epossidica.

Le barre sono alloggiate in scassi rettangolari che vengono richiusi mediante un listello di legno.

La messa in opera consiste delle seguenti fasi:

- 1 puntellare la trave e aprire una breccia nella muratura;
- 2 tagliare la trave a 45° e rimuovere la parte degradata;
- 3 preparare una protesi di legno con classe di resistenza e durabilità uguali o migliori rispetto a quelle della trave originale. L'umidità del legno con cui si realizza la protesi deve corrispondere all'incirca a quella attesa nelle condizioni di servizio previste (al momento della posa può superarla di un 5-6% al massimo);
- 4 preparare gli scassi di alloggiamento delle barre ed i listelli, avendo cura che le superfici siano esenti da bruciature, polveri, fibre strappate;
- 5 riempire gli scassi con resina, avendo cura che non ci siano zone prive di adesivo o bolle d'aria. Inserire le barre nell'adesivo chiudendo infine lo scasso con i listelli e rimovendo l'eccesso di colla dalle superfici esposte;
- 6 trascorso il periodo di reticolazione dell'adesivo ricostruire la muratura, togliere i puntelli e portare alla finitura desiderata le superfici della trave.

VANTAGGI

- Rapido ed economico
- Mantiene l'aspetto estetico
- Elevate resistenza e rigidezza (possibilità di aumentare i carichi di esercizio)

SVANTAGGI

- Mano d'opera specializzata
- Irreversibile
- Tossicità dei prodotti utilizzati

Risultati della diagnosi

Geometria	
Luce di calcolo	/= 4000 mm
Lunghezza di appoggio	a = 250 mm
Base trave	<i>b</i> = 160 mm
Altezza trave	h = 240 mm
Distanza tra le travi	i = 800 mm
Lunghezza parte degradata, dal filo muro	d _i = 100 mm

Sx	24	Dx	Sx 42	D	X
	16			16	

Legname di categoria C16 secondo EN 338	
Resistenza a trazione	f _{t,0,k} = 10 MPa
Densità	$ ho_{\!\scriptscriptstyle k}$ = 310 kg/m 3
Coefficiente parziale di sicurezza sul materiale, secondo EC5	$\gamma_{m,t} = 1,5$
Fattore modificativo (classe di servizio 1), sec. EC5	$k_{mod} = 0.8$

Risultati della diagnosi

DEGRADO BIOLOGICO - FUNGHI DELLA CARIE

- · degradano chimicamente il legno
- attaccano sia l'alburno che il durame
- non sempre si vedono segni evidenti dell'attacco
- si sviluppano solo se il legno si inumidisce (umidità del legno >20%), con valori inferiori l'attacco non si sviluppa oppure si ferma
- l'attacco è in genere localizzato
- Il danno è sempre grave perché l'attacco determina un rapido decadimento delle proprietà meccaniche.

Tipo di protesi che andremo a realizzare

Per realizzare la protesi utilizzeremo i seguenti materiali:

Legno Massiccio C16 come la trave esistente

Barre B450C	
Numero barre	n = 4
Diametro barre	<i>d</i> _{nom} = 12 mm
Lunghezza di incollaggio = max $[0,5d^2; 10d]$ = max $[72; 120]$	$I_{\rm a} = 200 \; {\rm mm}$
Distanza tra il centro della barra e il lato della trave (≥2,5 <i>d</i> =30 <i>mm</i>)	b _b = 35 mm
Distanza tra il centro della barra e il bordo inferiore della trave (≥2,5 <i>d</i> =30 <i>mm</i>)	$h_{\rm b} = 35 \; {\rm mm}$
Snervamento	f_{γ} = 450 MPa
Coefficiente parziale di sicurezza sul materiale	$\gamma_{m,s} = 1,15$

Adesivo Conforme alla UNI EN 301:2006	
Densità	1600 kg/m ³
Resistenza a compressione	45 MPa
Resistenza a taglio	10 Mpa
Resistenza a trazione	18 MPa
Modulo di elasticià	3000 Mpa

Carichi	
Permanenti	$G_k = 1,50 \text{ kN/m}^2$
Variabili	$Q_k = 2,00 \text{ kN/m}^2$
Coefficiente parziale di sicurezza per carichi permanenti	$\gamma_{\rm G} = 1.3$
Coefficiente parziale di sicurezza per carichi variabili	$\gamma_{Q} = 1,5$

Carico uniformemente distribuito allo stato limite ultimo

$$q_d = (\gamma_G G_k + \gamma_Q Q_k) \times i = (1,30 \times 1,50 + 1,5 \times 2,00) \times 0,80 = 3,96 \text{ kN/m}$$

Taglio massimo

$$T = \frac{q_d l}{2} = \frac{3.96 \times 4,00}{2} = 7,92 \text{ kN}$$

Distanza tra I centri delle barre (braccio della leva)

$$h_u = h - 2h_b = 240 - (2 \times 35) = 170 \text{ mm}$$

Lunghezza di taglio (proiezione orizzontale)

$$l_i = \frac{h}{\tan(\alpha)} = \frac{240}{\tan(45^\circ)} = 240 \text{ mm}$$

Distanza tra il punto intermedio della linea del taglio a 45° ed il filo muro

$$d_{\text{cal}} = d_{\text{i}} - \frac{l_{i}}{2} = 100 + \frac{240}{2} = 220 \text{ mm}$$

Sforzo di taglio nel punto medio della linea del taglio a 45°

$$V_{\text{cal}} = T - q_d d_{\text{cal}} = 7.92 - 3.96 \times 0.22 = 7.05 \text{ kN}$$

Momento flettente nel punto medio dellla linea del taglio a 45°

$$M_{\text{cal}} = T(d_{cal} + a/3) - \frac{q_d d_{cal}^2}{2} = 7.92 \times (0.22 + 0.25/3) - \frac{3.96 \times 0.22^2}{2} = 2.31 \text{ kNm}$$

Effetto delle forze di taglio: trazione sulle barre e compressione nel legno

Sforzo di trazione sulle barre

$$N_1 = V_{cal} \tan(\alpha) = 7.05 \text{ x tan } (45^\circ) = 7.05 \text{ kN}$$

$$F_{\rm c} = \frac{V_{cal}}{\cos(\alpha)} = \frac{7.05}{\cos(45^{\circ})} = 9.97 \text{ kN}$$

Effetto del momento flettente: trazione sulle barre inferiori e compressione su quelle superiori

$$N_2 = \frac{M_{cal}}{h_u} = \frac{2.31}{0.17} = 13.6 \text{ kN}$$

Forza di trazione su ciascuna barra inferiore

$$N_{\rm d} = \frac{N_1}{4} + \frac{N_2}{2} = \frac{7.05}{4} + \frac{13.6}{2} = 8.56 \text{ kN}$$

Il calcolo della capacità portante della barra incollata è ben descritto nelle CNR-DT 206/2007 §7.10.2.

Nota: la connessione di barre con resina, oltre ad avere elevata capacità portante, è l'unica che permette di trasmettere azioni di trazione parallelamente alla fibratura.

I modi di rottura da considerare sono:

- a) rottura a trazione della barra di acciaio;
- b) rottura per scorrimento del legno all'interfaccia con l'adesivo;
- c) rottura completa o parziale dell'elemento ligneo per trazione;

E' necessario rispettare i seguenti interassi e distanze dai bordi:

Barre d'acciaio incollate parallele alla direzione della fibratura	$\frac{a_2 = 5d}{a_{2,c} = 2.5d}$
Barre d'acciaio incollate ortogonali alla direzione della fibratura	$a_1 = 4d$ $a_2 = 4d$ $a_{1,t} = 4d$ $a_{2,c} = 2.5d$

Il valore caratteristico della capacità portante del collegamento con barre di acciaio incollate in direzione parallela alla fibratura si determina tramite la relazione:

$$F_{\rm ax,Rd} = \min \begin{array}{ll} f_{\rm yd} \cdot A_{\rm res} & \bmod o \ a \\ \pi \cdot d_{\rm eq} \cdot \ell_{\rm ad} \cdot f_{\rm v,d} & \bmod o \ b \\ f_{\rm t,0,d} \cdot A_{\rm eff} & \bmod o \ c \end{array}$$

- f_{yd} è il valore di calcolo della tensione di snervamento della barra di acciaio;
- A_{res} è la sezione resistente della barra di acciaio;
- d_{eq} è il diametro equivalente, da assumere pari al minore fra il diametro del foro e 1.10d;
- la lunghezza di ancoraggio della barra di acciaio;
- $-f_{v,d}$ è il valore di calcolo della resistenza allo scorrimento secondo la Tabella 7-11;
- f_{t,0,d} è la tensione di progetto di trazione in direzione parallela alla fibratura del legno;
- A_{eff} è l'area efficace di rottura del legno.

Tabella 7-11-Valori caratteristici della resistenza a scorrimento dello spessore di colla

Resistenza della linea di incollaggio	Lunghezz	a incollata effettiva l _{ad} do	ella barra d'acciaio [mm]
$f_{\rm v,k} [{ m N/mm}^2]$	≤ 250	$250 < l_{ad} \le 500$	$500 < l_{ad} \le 1000$
	4.0	$5.25 - 0.005 l_{ad}$	$3.5 - 0.0015 l_{ad}$

Non possiamo quindi considerare ancoraggi superiori a 1000mm

Dai valori caratteristici si ottengono i valori di progetto della resistenza secondo:

$$f_{yd} = \frac{f_{yk}}{\gamma_m} = \frac{450}{1.15} = 391N / mm^2$$

$$f_{vd} = \frac{k_{\text{mod}} \cdot f_{vk}}{\gamma_m} = \frac{0.8 \cdot 4}{1.50} = 2.13 N / mm^2$$

$$f_{t,0,d} = \frac{k_{\text{mod}} \cdot f_{t,0,k}}{\gamma_m} = \frac{0.8 \cdot 10}{1.50} = 5.33 N / mm^2$$

Lunghezza minima di incollaggio e area efficace:

$$l_{\text{ad,min}} = \max \begin{cases} 0.5 \ d^2 \\ 10 \ d \end{cases}$$

CAPACITA' PORTANTE BARRE INCOLLATE - Secondo CNR-DT 206/2007					
barre parallele alla fibratura					
Tensione caratteristica di snervamento acciaio	f_{yk}	450	N/mm ²		
Fattore di sicurezza acciaio	γ_{m}	1.15			
Tensione di progetto di snervamento acciaio	\mathbf{f}_{yd}	391	N/mm ²		
Diametro della barra	d	12	mm		
Sezione resistente della barra di acciaio	A_{res}	113	mm ²		
Diametro del foro	d_{foro}	16	mm		
Diametro equivalente	d_{eq}	13.2	mm		
Lunghezza di ancoraggio minima	I _{ad,min}	120	mm		
Moltiplicatore della lunghezza di ancoraggio minima	k	1.67			
Lunghezza di ancoraggio effettiva	I_{ad}	200	mm		
Valore di calcolo della resistenza a scorrimento (Tab. 7-11 CNR-DT 206/2007)	$f_{v,k}$	4.00	N/mm ²		
Coefficiente Kmod	\mathbf{k}_{mod}	0.80			
Coefficiente parziale di sicurezza dell'unione	γ_{m}	1.50			
Valore di calcolo della resistenza a scorrimento	$f_{v,d}$	2.13	N/mm ²		
Resistenza a trazione parallela alla fibratura del legno	$\mathbf{f}_{t,0,d}$	5.33	N/mm ²		
Area efficace di rottura del legno (Fig. 7-18 CNR-DT 206/2007)	A_{eff}	3960	mm^2		
Resistenza modo (a) trazione barra di acciaio	$F_{ax,RD,a}$	44255	N		
Resistenza modo (b) scorrimento interfaccia adesivo/legno	$F_{ax,RD,b}$	17697	N		
Resistenza modo (c) rottura per trazione del legno	$F_{ax,RD,c}$	21107	N		
Capacità portante della barra incollata parallelamente alla fibratura, caratteristica	$F_{ax,RD}$	17697	N		
Capacità portante della barra incollata parallelamente alla fibratura, di progetto	$F_{ax,RD}$	9438	N		
Diametro della barra	d	12	mm		
Lunghezza di ancoraggio	l _{ad}	200	mm		
Acciaio	f _{yk}	450	N/mm²		

> 8560 N

Capriate degradate agli appoggi Restaurate a piè d'opera

Restaurate a piè d'opera

Ripristino di strutture nuove

Capriate nuove in legno di Abete di cattiva qualità e mal progettate nelle unioni

> Puntone a sezione dimezzata nel nodo con la saetta

Denti del monaco mancanti

Ripristino di strutture nuove

Dardo di Giove allentato, realizzato con bietta di legno morbido.

Ripristino di strutture nuove

Ripristino e rinforzo del nodo Puntone Saetta

Rinforzo del nodo Puntone Catena

Rinforzo del nodo Puntone Monaco

Ripristino della continuità della catena con barre incollate

La testata degradata viene rimossa e sostituita con tavole di legno stagionato incollate alla parte sana rimanente. La messa in opera dell'intervento consiste delle seguenti fasi:

- 1 puntellare la trave e aprire una breccia nella muratura;
- 2 **tagliare la trave a tenone** e rimuovere la parte degradata, avendo cura che le superfici siano esenti da bruciature, polveri, fibre strappate;
- 3 preparare una serie di tavole di legno con **classe di resistenza e durabilità eguali o migliori** rispetto a quelle del legno costituente la trave originale. L'umidità del legno con cui si realizza la protesi deve corrispondere all'incirca a quella attesa nelle condizioni di servizio previste;
- 4 **incollare le tavole con adesivo tissotropico**, avendo cura che non ci siano zone prive di adesivo o bolle d'aria. Inchiodare od avvitare le tavole alla parte sana della trave durante il periodo di reticolazione dell'adesivo; 5 trascorso il periodo di reticolazione dell'adesivo ricostruire la muratura, togliere i puntelli (ed eventualmente i chiodi o viti) e **portare alla finitura desiderata le superfici della trave.**

VANTAGGI

- Stessa materia prima
- Tecniche simili a quelle tradizionali
- Parzialmente reversibile

SVANTAGGI

- Prestazioni limitate
- Interventi lenti, difficili, costosi
- Elevate superfici incollate in direzione trasversale alla fibratura

Prendiamo in esame la stessa trave dell'esempio precedente

000	100
	50-75% carie
250	

Geometria	
Luce di calcolo	/= 4000 mm
Lunghezza di appoggio	a = 250 mm
Base trave	<i>b</i> = 160 mm
Altezza trave	<i>h</i> = 240 mm
Distanza tra le travi	<i>i</i> = 800 mm
Lunghezza parte degradata, dal filo muro	d _i = 100 mm

Sx	24	Dx	Sx 4		Dx
	16			16	

Legname di categoria C16 secondo EN 338			
Resistenza a taglio	f _{v.k} = 3.2 MPa		
Densità	ρ_{k} = 310 kg/m ³		
Coefficiente parziale di sicurezza sul materiale, secondo EC5	$\gamma_{m,t} = 1,5$		
Fattore modificativo (classe di servizio 1), sec. EC5	$k_{mod} = 0.8$		

Geometria	
Larghezza delle tavole	b _p = 53,3 mm
Lunghezza di appoggio	a = 250 mm
Distanza tra il bordo della tavola più lunga ed il filo muro	a ₁ = 400 mm
Distanza tra il bordo della tavola più corta ed il filo muro	a ₂ = 100 mm

La verifica consiste nel limitare le tensioni tangenziali indotte dal taglio e momento flettente sulle due superfici di incollaggio.

Date le ridotte dimensioni della trave si inseriscono solo 3 tavole.

CALCOLO DELLE AZIONI INTERNE

Carico uniformemente distribuito allo stato limite ultimo

$$q_d = (\gamma_G G_k + \gamma_Q Q_k) \times i = (1,30 \times 1,50 + 1,5 \times 2,00) \times 0,80 = 3,96 \text{ kN/m}$$

Taglio massimo

$$T = \frac{q_d l}{2} = \frac{3.96 \times 4,00}{2} = 7,92 \text{ kN}$$

Coordinata della sezione di verifica

$$X = \frac{a_1 + a_2}{2} = 250mm$$

Sforzo di taglio e momento flettente nella sezione reistente

$$V_{\text{cal}} = T - q_d X = 7.92 - 3.96 \times 0.25 = 6.93 \text{ kN}$$

$$M_{\text{cal}} = T(X + \frac{a}{3}) - \frac{q_d X^2}{2} = 7,92 \times (0.25 + \frac{0.25}{3}) - \frac{3.96 \times 0.25^2}{2} = 2,52 \text{ kNm}$$

Effetto del taglio e del momento flettente

Sforzo di massimo taglio dovuto al momento flettente

$$\tau(M) = \frac{2M_{cal}}{n(\pi R^3)} = \frac{2 \times 2,52 \times 10^6}{2(\pi (120)^3)} = 0,46 \text{ MPa}$$

dove "n" è il numero dei piani di taglio.

R = raggio del cerchio massimo inscrivibile nell'unione

Tensione massima di taglio dovuta alle forze di taglio

$$\tau(V) = \frac{1.5 \cdot V_{cal}}{n(Bh)} = \frac{1.5 \cdot 6.93 \times 10^3}{2(300 \times 240)} = 0.07 \text{ MPa}$$

dove "n" è il numero dei piani di taglio.

Tensione massima di taglio

$$\tau_{sd} = \tau (M) + \tau (V) = 0.46 + 0.07 = 0.53 \text{ MPa}$$

Resistenza a taglio dell'unione

Resistenza a taglio caratteristica dell'unione

$$f_{vk} = min [f_{vk,glue}; f_{vk,wood}] = min [10, 3.2] = 3.2 MPa$$

Resistenza a taglio di progetto dell'unione

$$f_{\text{vd}} = \frac{k_{\text{mod}} f_{vk}}{\gamma_{m,t}} = \frac{0.8 \times 3.2}{1.5} = 1,70 \text{ MPa}$$

$$\tau_{sd}$$
 = 0,53 MPa < f_{vd} = 1,70 MPa (Verificata)

La testata degradata viene sostituita con profilati in acciaio (tipo HE o IPE) collegati con fasce in acciaio alla parte sana rimanente. La messa in opera dell'intervento consiste delle seguenti fasi:

- 1 puntellare la trave e aprire una breccia nella muratura;
- 2 tagliare la trave e rimuovere la parte degradata;
- 3 inserire i profilati in acciaio nella breccia e sull'estradosso della trave;
- 4 ricostruire la muratura avendo cura di creare un'adeguata superficie di appoggio per il profilato;
- 5 applicare una banda in acciaio per collegare la trave con i profilai, fissandola adeguatamente su entrambi i materiali;
- 6 togliere i puntelli e portare alla finitura desiderata le superfici della trave.

VANTAGGI

- Calcoli facili
- Possibilità di aumentare i carichi di esercizio
- Buona reversibilità

SVANTAGGI

- Molto visibile
- Aumento di peso
- Necessità di consolidare comunque i punti di ancoraggio
- Cambia lo schema statico

Materiali e geometria della protesi

Geometria	
Lunghezza del profilato inserito nella muratura	a = 250 mm
Distanza tra la fascia in acciaio e la testate della trave	c = 50 mm
Distanza tra la testate della trave ed il filo muro $d = 200 \text{ mm}$	
Distanza tra la fascia in acciaio e il filo interno dei profilati e = 60	
Profilati in acciaio IPE 80 Acciaio S235	
Larghezza	<i>b</i> = 46 mm
Altezza	h = 80 mm
Snervamento	f_{γ} = 235 MPa
Coefficiente parziale di sicurezza sul materiale	$\gamma_{m,s} = 1,05$
Fascia S235	
Larghezza	<i>b_{band}</i> = 100 mm
spessore	<i>t</i> = 4 mm
Snervamento	f _{yk} = 235 MPa
Coefficiente parziale di sicurezza sul materiale	$\gamma_{m,s} = 1,05$

La fascia di acciaio dovrà essere sufficientemente larga in modo da non far superare la limitata resistenza a compressione del legno.

Il tratto dove il profilato trasmette le tensioni di compressione alla trave può essere considerato a distribuzione triangolare.

Gli sforzi possono essere calcolati impostando le equazioni di equilibrio;

Carico uniformemente distribuito allo stato limite ultimo

$$q_d = (\gamma_G G_k + \gamma_Q Q_k) \times i = (1,30 \times 1,50 + 1,5 \times 2,00) \times 0,80 = 3,96 \text{ kN/m}$$

Taglio massimo

$$T = \frac{q_d l}{2} = \frac{3.96 \times 4,00}{2} = 7,92 \text{ kN}$$

Geometria	
Luce di calcolo	/= 4000 mm
Lunghezza di appoggio	a = 250 mm
Base trave	<i>b</i> = 160 mm
Altezza trave	<i>h</i> = 240 mm
Distanza tra le travi	i = 800 mm
Lunghezza parte degradata, dal filo muro	d _i = 100 mm

F è il taglio sulla trave nel tratto e-x; sarà sicuramente molto maggiore di T

Resistenza alla compressione del legno

$$f_{c,90,d} = \frac{k_{\text{mod}} f_{c,90,k}}{\gamma_m} = \frac{0.8 \times 2.2}{1.5} = 1.17 \text{ Mpa}$$

Lunghezza di appoggio "x", equazioni di equilibrio per i profilati:

(1)
$$F = \frac{1}{2} (2b) f_{c,90,d} \cdot x + T$$

(2)
$$T \cdot s = \frac{1}{2} (2b) f_{c,90,d} \cdot x(e - \frac{x}{3})$$

Da (2) otteniamo la lunghezza di appoggio:

x = 85,8 mm

Da (1) otteniamo la forza trasmessa dalla fascia alla trave di legno (taglio nel legno):

F = 12,54 kN

Verifica della resistenza alla compressione del legno a contatto con la fascia

$$\sigma_{\text{c,90,d}} = \frac{F}{B \, b_{band}} = \frac{12,54 \times 10^3}{160 \times 100} = 0,78 \text{ MPa}$$

$$\sigma_{\rm c,90,d}$$
 = 0,78 MPa < $f_{\rm c,90,d}$ = 1,17 MPa (Verificata) — A favore di sicurezza perché non considero $k_{\rm c,90}$ e $A_{\rm ef}$

Tensione di taglio nella trave di legno

$$\tau_{\rm sd} = 1.5 \frac{F}{BH} = 1.5 \frac{12.54 \times 10^3}{160 \times 240} = 0.49 \text{ MPa}$$

$$\tau_{\rm sd} = 0.49 \text{ MPa} < f_{\rm v,d} = \frac{k_{\rm mod} f_{\rm v,k}}{\gamma_m} = \frac{0.8 \times 3.2}{1.5} = 1.71 \text{ MPa}$$
 (Verificata)

Le tensioni negli elementi in acciaio sono largamente inferiori ai limiti.

GRAZIE PER L'ATTENZIONE

Pistoia 05-11-2010

Ing. Leonardo Negro

LegnoPiù s.r.l. - Via Borgo Valsugana, 11 - 59100 Prato leonardo.negro@strutturedilegno.it - www.strutturedilegno.it