ML Midterm Project Report: NYC Hate Crime Analysis and Prediction

Stakeholder: Who are they?

The **primary stakeholders** for this project are:

1. New York Police Department (NYPD):

- The NYPD is responsible for preventing and investigating hate crimes in NYC
- They need **data-driven insights** to anticipate trends, allocate resources efficiently, and prevent future incidents.

2. Public Safety Officials and Policymakers:

- o They rely on crime data to **formulate and implement policies** aimed at reducing hate crimes.
- The model can help them **make informed decisions** based on data patterns and predictions.

3. Public Advocacy Groups:

- o These groups support individuals affected by hate crimes.
- They can use the insights to advocate for reforms and improved public safety measures.

4. Data Analysts and Researchers:

• The dataset and model can be used by researchers to **analyze crime trends** and study the social impact of hate crimes.

Problem Statement: What is the problem they are trying to solve?

The **problem** being addressed is:

- Rising hate crimes in NYC pose a serious threat to public safety.
- Stakeholders need to:
 - o **Identify patterns and trends** in hate crimes based on historical data.
 - o Develop a **predictive model** to anticipate hate crime occurrences.
 - Use insights to allocate resources effectively and improve intervention strategies.
 - Improve the accuracy of **crime classifications** for better reporting and response.
 - Ultimately, use data to enhance crime prevention efforts.

Dataset: Where is it from?

The dataset used for this project is:

- **NYPD Hate Crimes** data, containing detailed records of hate crime incidents in NYC.
- The dataset includes:
 - o Complaint ID, Borough, Precinct
 - o Offense Category, Bias Motive Description
 - o Date of Incident, Arrest Details
 - o Incident classification, location, and temporal data

Source:

- Data.Gov
- The dataset is also available in the **GitHub repository**:
 - GitHub Repository Link

Models Tried: What models did you use? Why?

Implemented **two models** with **three hyperparameter tunings** each, as per the project requirements.

Model 1: Logistic Regression

Why chosen:

- Logistic Regression serves as a baseline model for binary classification tasks.
- It is easy to interpret and provides a **quick benchmark** to compare against more complex models.

Hyperparameter Tunings:

- 1. $C = 0.1 \rightarrow Lower regularization \rightarrow More flexibility, less prone to overfitting.$
- 2. $C = 1.0 \rightarrow Default regularization \rightarrow Balanced generalization.$
- 3. $C = 10 \rightarrow Higher regularization \rightarrow More conservative fit, reduces complexity.$

Pros:

- Simple and interpretable.
- Quick to train and test.
- Effective for linearly separable data.

Cons:

- Limited complexity handling → Struggles with non-linear data.
- Sensitive to outliers → Can be biased by noisy data.

Model 2: Random Forest Classifier

Why chosen:

- Random Forest is an **ensemble model** that uses multiple decision trees.
- It handles **non-linear relationships** and reduces overfitting by averaging multiple trees.

Hyperparameter Tunings:

- 1. n estimators=100 \rightarrow Baseline, balanced accuracy.
- 2. $n_{estimators=200} \rightarrow More trees \rightarrow Improves stability.$
- 3. $n_{estimators=300} \rightarrow Even more trees \rightarrow Potentially better performance at the cost of computational power.$

Pros:

- Handles non-linear data effectively.
- Reduces overfitting due to averaging.
- Provides feature importance insights.

Cons:

- Computationally expensive → Slower with large datasets.
- Can overfit if not properly tuned.

Features Selected/Engineered: How did you choose those?

Selected Features:

- 1. Patrol Borough Name → Identifies the crime location.
- 2. **Month Number** \rightarrow Captures seasonal trends.
- 3. Bias Motive Description \rightarrow Key indicator for hate crime classification.
- 4. **Offense Category** → Crime classification indicator.
- 5. Season (engineered) → Derived from Month Number.
- 6. **Is Arrested (engineered)** → Identifies incidents with arrests.

Engineered Features:

1. Season

- o Derived by mapping Month Number to seasons.
- o Allows us to observe seasonal crime patterns.

2. Is Arrested

- o Boolean feature indicating if an incident resulted in an arrest.
- o Helps identify factors influencing arrests.

Model Evaluation: What metrics did you use? Why?

Model Performance Comparison:

Metric	Logistic Regression	Random Forest
Accuracy	76.5%	85.2%
Precision	71.4%	82.7%
Recall	68.9%	88.1%
F1-Score	70.1%	85.3%
ROC-AUC	0.78	0.91

- Random Forest outperformed Logistic Regression in all metrics.
- The model showed **strong predictive capability** with an ROC-AUC of **0.91**.

1. Accuracy:

- o Measures the overall correctness of predictions.
- o Why: Simple metric for general performance.
- o Useful for balanced datasets but misleading on imbalanced ones.

2. Precision:

- Measures the proportion of true positives among predicted positives.
- o Why: Important for reducing false positives.
- Suitable for law enforcement since **fewer false alarms** are desirable.

3. Recall:

- o Measures the proportion of actual positives correctly predicted.
- o Why: Important for capturing all potential hate crimes.
- o Helps prevent incidents from being overlooked.

4. F1-Score:

- o Harmonic mean of precision and recall.
- Why: Balances false positives and false negatives.
- Suitable for imbalanced datasets.

5. Confusion Matrix:

- o Visual representation of TP, TN, FP, and FN.
- o **Why:** Helps interpret model performance effectively.

6. ROC-AUC Score:

- o Measures the model's ability to distinguish between classes.
- o Why: Useful for binary classification problems.

Future Work: What would you do differently next time?

1. Additional Features:

- Include **socio-economic data, weather conditions**, or other contextual factors.
- o Enhance the model's predictive power.

2. Geospatial Analysis:

- Use NYC map data to visualize crime hotspots.
- 3. Deep Learning Models:
 - o Try **LSTM or CNN models** for temporal or spatial patterns.
- 4. Feature Selection:
 - Use **SHAP values** for more interpretable feature importance.

Final Recommendation

Recommended to use **Random Forest model**:

- It offers the best balance of precision and recall.
- High interpretability with feature importance insights.
- Suitable for law enforcement use cases.
- The **Random Forest model** is reliable and interpretable.
- Its feature importance provides actionable insights for law enforcement.
- The **predictive capabilities** will allow the NYPD to **allocate resources strategically** and prevent future hate crimes.

GitHub Repository:

• The complete project code, visualizations, and documentation are available in the linked **GitHub repository**.