# 第三届 "ScienceWord 杯" 数学中国

# 数学建模网络挑战赛 承 诺 书

我们仔细阅读了第三届"ScienceWord 杯"数学中国数学建模网络挑战赛的竞赛规 则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道, 抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参 考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规 则的行为,我们将受到严肃处理。

我们允许数学中国网站(www.madio.net)公布论文,以供网友之间学习交流,数学中 川的に 国网站以非商业目的的论文交流不需要提前取得我们的同意。

我们的参赛报名号为:

参赛队员 (签名):

队员 1: 许鸿尧

队员 2: 余天宇

队员 3: 肖峰

参赛队教练员 (签名):

参赛队伍组别: 大学本科

# 第三届 "ScienceWord 杯" 数学中国

# 数学建模网络挑战赛 编 号 专 用 页

参赛队伍的参赛号码: (请各个参赛队提前填写好): 1143

竞赛统一编号(由竞赛组委会送至评委团前编号):

竞赛评阅编号(由竞赛评委团评阅前进行编号):

数学中国YY网校频道:159214 数学中国www.madio.net 数学中国公众微信平台:shuxuezhongguo

# 2010 年第三届 "ScienceWord 杯"数学中国 数学建模网络挑战赛

| 题 目                                     | 聪明的汽车                                                                                                                        |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 关 键 词                                   | 汽车转向 几何作图 穷举算法                                                                                                               |
| 将所给图形转<br>建立模型。由于汽                      | 描 要: 车侧位停车的相关问题。 化为几何图形,结合第一个问题分析几何图形,得到相应的几何关系,<br>年实际长宽与转向半径相差不大,不能将汽车简单的看成质点,而将                                           |
| 转向半径。<br>本论文使用了<br>二个总体模型描述<br>前进停车模型描述 | 成质点比较合理,因此需要对汽车建立模型,得到汽车上对应的点和两个模型。第一个汽车子模型,得到汽车上对应的点和转向半径。第汽车实际停车过程。总体模型又分为前进停车模型和倒车停车模型。<br>汽车由车头先进入停车位的情况,倒车停车模型描述由车尾先进入停 |
| 得到一组合适的位<br>异常数据,最后用                    | 解,使用穷尽算法,穷举一定范围内的汽车位置和角度,代入模型,<br>置和角度,再对得到的数据分析,联系几何图形和实际情况去掉一些<br>求均值的方法求偏差。<br>模型产生误差的原因及求解方法并在模型求解过程中进行了使用。              |
| 最后通过改进                                  | 最终停车位置和中间路线两个条件,使模型更符合实际情况。                                                                                                  |
| 参赛队号                                    | 参赛密码<br>(由组委会填写)                                                                                                             |

数学中国YY网校频道:159214 数学中国www.madio.net 数学中国公众微信平台: shuxuezhongguo

数学中国YY网校频道:159214

#### 报名号 #1143

#### 一 问题重述

在狭窄的空间里把车停放在合适的位置,或在短小的停车位上侧位停车,一直是考验驾驶员技术与信心的问题。有调查报告称: 57%的驾驶员对自己的停车技术缺乏自信,这一方面影响人的驾驶体验,一方面也使停车空间不能得到充分利用。因此要解决一下的停车问题。

- (1)对侧位停车而言,在空位较短的时候,驾驶员会难以确定自己的汽车是否顺利停入。通过建立合理的模型来判断图(1)中的车是否能在该处侧位停车。停车位置平面图如下,包括停车空位的长度宽度等数据。考虑到实用性,模型所需的本车数据要能够容易测得,例如几何尺寸,转弯半径等。
- (2) 假设停车位置的平面图能够显示在汽车的车载显示器上。选择合理的位置和角度进入。理想的线路及允许的偏差显示在图(1-1)上。



图(1-1)

数学中国教师交流群:70339631 数学中国www.madio.net 官方微博:http://weibo.com/304456943

#### 报名号 #1143

# 二 符号说明

(x, y) : 已停汽车左后轮坐标

 $(x_B, y_B)$  : 初始时, 待停汽车右后轮坐标

 $(x_p, y_p)$  : 停好后,汽车右后轮坐标

 $(x_1,y_1)$  : 第一次转向形成圆的圆心坐标

第一次转向形成圆的圆心坐标

初始时,待停汽车与已停汽车的水平距离 m

: 初始时, 待停汽车与已停汽车的垂直距离 n

: 前后轮距 L

: 左右轮距 W

: 第 i 次转向时, 外侧轮转角  $\beta_{i}$ 

S : 前轮到车头距离

: 后轮到车尾距离 Т

 $R_{\min}^{i}$ : 第 i 次转向时,内侧后轮到圆心的距离

: 第 i 次转向时, 外前角顶点到圆心的距离  $R_1^i$ 

: 第 i 次转向时,内前角顶点到圆心的距离  $R_2^i$ 

第 i 次转向时,人前角顶点到圆心山。 : 第 i 次转向时,外后角顶点到圆心的距离 一心宽  $R_3^i$ 

 $P_{w}$ 

 $P_{I}$ 

## 三 问题分析

将所给的图抽象为几何图如图 (3-1):



矩形 ABCD 表示待停车,矩阵 EFGH 与矩阵 KLMN 表示已停车,线段 IJ表示边界障碍物。

停车分为前进停车(车头先进)和倒车停车(车尾先进)两种情况。

如果倒车停车(AD表示车尾)能顺利停车,则汽车能进入停车位,且未碰到其他汽车及边界障碍物即不出现如下情况:点 B 交与 EG。

通过以上条件可以建立模型。由于汽车体积与其转向半径相差不大,不能看作质点,还要对汽车建模,得到相应的质点及转向半径。因此使用两个模型:汽车子模型和总体模型,总体模型又分为:前进停车模型和倒车停车模型。

# 四 问题假设

- 1: 汽车为 2 轮后轮驱动符合阿克曼转动特征公式
- 2: 地面平整 (无坡度和倾斜情况)
- 3: 行驶过程中不出现侧滑,漂移等现象
- 4: 车速对转角不产生影响。
- 5: 汽车的最大外侧前轮转角确定为 $\beta$ ,即最小转向半径是确定的。
- 6: 最终停车位置为最佳位置(停车位正中间)。
- 7: 使用中最短的合适的停车路线。

#### 五 模型建立

汽车子模型: 原始图如图 (5-1):



图 (5-1)

$$R_{\min} = \frac{L}{\sin \beta} - W \qquad R_3 = \sqrt{(L \tan \beta)^2 + T^2}$$

数学中国YY网校频道:159214

#### 数学中国教师交流群:70339631

#### 报名号 #1143

抽象为几何图如图 (5-2):



作DEFGHHE=L+S+T,在HE上取点A使AE=T,过A于作HE垂线交FG于点 B,在HE上取点D,使AD=L,过D点做HE垂线交FG于点C。→ 过点 D 作线段 DI表示汽车外侧轮, 过 D 作 DI垂线交 AB 延长线于点 O。 连接 0C, 过 C 作 0C 垂线 CJ, CJ表示汽车的内侧轮。连接 0H,连接 0G。中 几何关系如下: ₽ 10 . VOX

ID  $\bot$ 0 D,  $\bot$ C  $\bot$ 0 C, OA  $\bot$ H E, CD  $\bot$ H E $\leftarrow$ HG/ØC/AB/ÆF₽

$$\triangle HDI = \triangle DOA = \beta_i^{+}$$

∠GCJ=∠COA= a₽

 $OB=R_{min}^{i}$ ,  $OE=R_{3}^{i}$ ,  $OH=R_{1}^{i}$ ,  $OG=R_{2}^{i}$ , AB=CD=W, HD=S, AD=L, AE=T.

注: D ∤C I 参考文献 1 ] →

数学中国教师交流群:70339631

#### 总体模型:

(1) 前进停车模型如图 (5-3):



### 基本几何关系式:

$$x_B = x - m, y_B = y + n$$

$$\dot{x_B} = x + W, \dot{y_B} = y + K$$

$$x_1 = x_B + R_{\min}^1, y_1 = y_B$$

$$x_2 = x_B' - \frac{L}{\tan \beta_2}, y_2 = y_B'$$

$$R_{\min}^{i} = \frac{L}{\tan \beta_{i}} - W$$

$$R_3^2 = \sqrt{(\frac{L}{\tan \beta_2})^2 + T^2}$$

$$R_1^2 = \sqrt{\left(\frac{L}{\tan \beta_2}\right)^2 + (L+S)^2}$$

$$R_2^2 = \sqrt{\left(\frac{L}{\tan \beta_2} - W\right)^2 + (L + S)^2}$$

约束条件:

两圆相切: 
$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = (R_3^2 - R_{\min}^1)^2$$

第一次转向不碰撞临界情况:

$$(R_{\min}^1 - m)^2 + (L + S)^2 \le R_{\min}^{1/2}$$

第二次转向不碰撞临界情况:

$$(W - \frac{L}{\tan \beta_2})^2 + (L + S - K)^2 \ge R_3^{2^2}$$

$$\frac{P_{w} - W}{2} + R_{\min}^2 \ge R_1^2$$

$$P_{I} - (S + L + T) + (L + S) \ge R_{2}^{2}$$

汽车最终停车位置:

$$(x_B' - x_2)^2 + (x_B' - y_2)^2 = R_2^{2^2}$$

总体模型简化(1):

$$F(m, n, \beta_1, \beta_2) = (L + S)^2 + W^2 - \frac{2WL}{\tan \beta_2}$$

$$f(m, n, \beta_1, \beta_2) = (2W + m - \frac{L}{\tan \beta_2} - \frac{L}{\tan \beta_1})^2 + (K - n)^2 - (\sqrt{(\frac{L}{\tan \beta_2})^2 + T^2} - \frac{L}{\tan \beta_2} + W)^2$$

$$f_1(m, n, \beta_1, \beta_2) = \frac{m}{2} + \frac{(L+S)^2}{2m} + W - \frac{L}{\tan \beta_1}$$

$$f_2(m, n, \beta_1, \beta_2) = \frac{2WL}{\tan \beta_2} + T^2 - W^2 - (L + S - K)^2$$

$$f_3(m, n, \beta_1, \beta_2) = (L + S)^2 - (\frac{P_w - 3W}{2})^2 - \frac{(P_w - 3W)L}{\tan \beta_2}$$

$$f_4(m, n, \beta_1, \beta_2) = \left(\frac{L}{\tan \beta_2} - W\right)^2 + (L + S)^2 - (P_l - T)^2$$

$$F(m, n, \beta_1, \beta_2) = 0 \Rightarrow \tan \beta_2 = \frac{2WL}{(L+S)^2 + W^2}$$

$$f(m, n, \beta_1, \beta_2) = 0$$

$$f_1(m,n,\beta_1,\beta_2) \le 0$$

$$f_2(m,n,\beta_1,\beta_2) \le 0$$

$$f_3(m,n,\beta_1,\beta_2) \leq 0$$

$$f_4(m,n,\beta_1,\beta_2) \le 0$$

$$f(m,n,\beta_1) = \left(\frac{3}{2}W + m - \frac{(L+S)^2}{2W} - \frac{L}{\tan\beta_1}\right)^2 + (K-n)^2 - \left(\sqrt{\left[\frac{(L+S)^2 + W^2}{2W}\right]^2 + T^2} + \frac{W}{2} - \frac{(L+S)^2}{2W}\right)$$

$$f_1(m, n, \beta_1) = \frac{m}{2} + \frac{(L+S)^2}{2m} + W - \frac{L}{\tan \beta_1}$$

$$f_2(m, n, \beta_1) = (L+S)^2 + T^2 - (L+S-K)^2$$

$$f_3(m,n,\beta_1) = (L+S)^2 - (\frac{P_w - 3W}{2})^2 - \frac{(L+S)^2 + W^2}{2W}$$

$$f(m, n, \beta_1) = 0$$
....(1)

$$f_1(m, n, \beta_1) \leq 0....(2)$$

$$f_2(m, n, \beta_1) \leq 0$$
....(3

$$f_2(m, n, \beta_1) \leq 0....(4)$$

$$f_4(m, n, \beta_1) \le 0....(5)$$

数学中国YY网校频道:159214

由(3)(4)(5)判断是否可以侧位停车

再由(1)(2)来寻找合适位置和角度

#### (2) 倒车停车模型如图 (5-4):



将前进停车模型中的 第一次转向不碰撞临界情况:

$$(R_{\min}^1 - m)^2 + (L + S)^2 \le R_{\min}^{1/2}$$

去掉,由图(5-4)可知上式必成立。 第二次转向不碰撞临界情况:

$$(W - \frac{L}{\tan \beta_2})^2 + (L + S - K)^2 \ge R_3^{2^2}$$

$$\frac{P_w - W}{2} + R_{\min}^2 \ge R_1^2$$

$$P_{l} - (S + L + T) + (L + S) \ge R_{2}^{2}$$

变为: 
$$P_1 - (S + L + T) + (L + S) \ge R_1^2$$

数学中国教师交流群:70339631 数学中国www.madio.net 官方微博:http://weibo.com/304456943

#### 报名号 #1143

最终模型:

$$f(m,n,\beta_1) = \left(\frac{3}{2}W + m - \frac{(L+S)^2}{2W} - \frac{L}{\tan\beta_1}\right)^2 + (K-n)^2 - \left(\sqrt{\left[\frac{(L+S)^2 + W^2}{2W}\right]^2 + T^2} + \frac{W}{2} - \frac{(L+S)^2}{2W}\right)$$

$$f_5(m, n, \beta_1) = (L+S)^2 + (\frac{(L+S)^2 + W^2}{2W})^2 - (Pl-T)^2$$

$$f(m,n,\beta_1)=0$$

$$f_5(m,n,\beta_1) \le 0$$

### 六 模型的求解

前进停车模型的求解:

先将汽车及停车位的相关参数  $LSTWKP_wP_l$  代入前进停车模型 (3) (4) (5) 式判断

是否能顺利停车,如果可以则用穷举算法。选定 m, n, a  $(a=\beta_1)$  的范围,通过  $\frac{1}{length}$  (length

为范围的长度)的间隔递增,代入方程(1)(2),选择合适的位置和角度。求解程序流程图如图(6-1):



10

图 (6-1)

#### 倒车停车模型的求解:

只需将前进停车模型中的"代入(3)(4)(5)式中"改为"代入②式中",并将"代入(1)(2)"改为"代入①式中"即可。其余条件不变。

度量438: K的长度 = 58.79mm 度量329: n的长度 = 7.79mm 度量326: P<sub>\*</sub>的长度 = 38.52mm 度量323: P<sub>\*</sub>的长度 = 57.70mm



通过对图 (6-2) 测量得到如表 (6-1) 数据 表 (6-1)

|        | L       | S      | T      | W       | K       | $P_{\scriptscriptstyle W}$ | $P_{l}$  |
|--------|---------|--------|--------|---------|---------|----------------------------|----------|
| 图 中 数据 | 27.04mm | 7.94mm | 8.71mm | 19.87mm | 58.79mm | 38.52mm                    | 57. 70mm |

计算得:不能前进停车但可以进行倒位停车

设: 初始值: m=0, m=0, a=0

变化范围: m 为 50, n 为 50, a 为 2;

递增长度:  $m 为 \frac{1}{50}$ ,  $n 为 \frac{1}{50}$ ,  $a 为 \frac{1}{1000}$ 

计算结果如表 (6-2)

表 (6-2)

| 计算结果            | m (mm)    | n(mm)     | a(弧度)    |
|-----------------|-----------|-----------|----------|
|                 | 3.420000  | 42.240000 | 0.639000 |
|                 | 3.420000  | 42.240000 | 0.637000 |
| <del>-</del> X- | 3.420000  | 41.640000 | 0.634000 |
| 40.             | 3.420000  | 41.640000 | 0.636000 |
| 7/11/2          | 18.920000 | 19.860000 | 0.348000 |
|                 | 18.920000 | 20.220000 | 0.351000 |
|                 | 18.920000 | 20.600000 | 0.352000 |
|                 | 18.920000 | 20.600000 | 0.354000 |
|                 | 18.920000 | 21.000000 | 0.355000 |
|                 | 18.920000 | 21.420000 | 0.358000 |
|                 | 18.920000 | 30.860000 | 0.406000 |
|                 | 18.920000 | 31.620000 | 0.409000 |
|                 | 18.920000 | 31.620000 | 0.411000 |
|                 | 18.920000 | 32.400000 | 0.412000 |
|                 | 18.920000 | 32.400000 | 0.414000 |
|                 | 18.920000 | 33.200000 | 0.417000 |
|                 | 19.800000 | 44.400000 | 0.489000 |
|                 | 19.800000 | 44.700000 | 0.492000 |
|                 | 19.800000 | 45.020000 | 0.495000 |
|                 | 19.800000 | 45.360000 | 0.498000 |
|                 | 19.800000 | 45.720000 | 0.501000 |
|                 | 19.800000 | 46.100000 | 0.504000 |
|                 | 19.800000 | 46.500000 | 0.507000 |
|                 | 19.800000 | 46.920000 | 0.510000 |
|                 | 19.800000 | 46.920000 | 0.510000 |

通过几何图形联系实际情况(两辆车之间存在后视镜,水平距离不能过于接近)去掉一些异常数据 得到如表(6-3)数据

表 (6-3)

| 计算结果 | m (mm)    | n(mm)     | a(弧度)    |
|------|-----------|-----------|----------|
|      | 18.920000 | 19.860000 | 0.348000 |
|      | 18.920000 | 20.220000 | 0.351000 |
|      | 18.920000 | 20.600000 | 0.352000 |
|      | 18.920000 | 20.600000 | 0.354000 |
|      | 18.920000 | 21.000000 | 0.355000 |
|      | 18.920000 | 21.420000 | 0.358000 |

表 (6-3) 续

| 计算结果 | m (mm)    | n(mm)     | a(弧度)    |
|------|-----------|-----------|----------|
|      | 18.920000 | 30.860000 | 0.406000 |
|      | 18.920000 | 31.620000 | 0.409000 |
|      | 18.920000 | 31.620000 | 0.411000 |
|      | 18.920000 | 32.400000 | 0.412000 |
|      | 18.920000 | 32.400000 | 0.414000 |
|      | 18.920000 | 33.200000 | 0.417000 |
|      | 19.800000 | 44.400000 | 0.489000 |
| ./.  | 19.800000 | 44.700000 | 0.492000 |
| 177  | 19.800000 | 45.020000 | 0.495000 |
| 7/2/ | 19.800000 | 45.360000 | 0.498000 |
| 177  | 19.800000 | 45.720000 | 0.501000 |
|      | 19.800000 | 46.100000 | 0.504000 |
|      | 19.800000 | 46.500000 | 0.507000 |
|      | 19.800000 | 46.920000 | 0.510000 |
|      | 19.800000 | 46.920000 | 0.510000 |
| 平均值  | 19.360000 | 34.640000 | 0.433000 |
| 最大值  | 19.800000 | 46.920000 | 0.510000 |
| 最小值  | 18.920000 | 19.860000 | 0.348000 |

m 偏差  $\Delta m = \pm 0.44mm$ 

n 偏差  $\Delta n = \pm 14.78mm$ 

a 偏差  $\Delta a = \pm 0.085$ 

# 七 模型的误差分析及求解方法

#### (一) 误差产生原因分析

1. 最终停车位的唯一性产生的误差

模型中最终停车位置是唯一确定的,而实际可以有多种情况。唯一的停车位置,会丢失一些不在唯一停车位上但也能停入停车位的情况。缩小了合适位置和角度的求值范围,进而产生误差。

2: 计算中产生的误差

通过穷举的方法求解, 计算结果的精确性, 每次取值的间隔有关, 间隔越小, 则精度越高。因此会产生误差。

(二) 求解思路及方法

数学中国YY网校频道:159214

- 1: 在(1)式中  $f(m,n,\beta_1)=0$ 加入一个系数  $\partial$  ( $|\partial|\leq 1$ ),使合适位置和角度的范围放宽,来减少误差。
- 2: 计算过程中减小间隔长度,由于角度的变化范围较小,设置 length 为 1000,使间隔 变为  $\frac{1}{1000}$  ,来减小误差。

# 八 模型的检验

需要一组不同车型,不同停车位的实际停车后得到的数据来代入模型进行检验。

### 九 模型改进

1: 由于汽车的最终停车位置只需停在停车位的线框内 所以将原模型中 $x_B = x + w, y_B = y + K$ 改为

$$\begin{aligned} x + W - \frac{Pw - W}{2} &\le x_B \le x + W + \frac{Pw - W}{2} \\ y + K - \left[Pl - \frac{(L + S + T)}{2}\right] &\le y_B \le y + K + \left[Pl - \frac{(L + S + T)}{2}\right] \end{aligned}$$

2: 两次转向不形成相切圆如图 (9-1):

数学中国YY网校频道:159214



图 (9-1)

由图可知 01A+A0<001,因此可将两圆相切方程:  $(x_1-x_2)^2+(y_1-y_2)^2=(R_3^2-R_{\min}^1)^2$  改为不相切的方程  $(x_1-x_2)^2+(y_1-y_2)^2\geq (R_3^2-R_{\min}^1)^2$ 

3: 通过加入修正程序,开始给出一组随机数据(m,n,a),通过模拟,不断修正数据,最终得到最佳数据。

4: 找到方向盘与转角之间的关系,转角可转化成方向盘的转圈,方便驾驶员识别,提高驾驶体验。

#### 十 模型评价

优点:

模型多处使用图形描述.使模型更加简洁明了。操作性强,适应范围广。缺点:

存在一定的误差,在寻找合适的位置和角度时,存在部分位置和角度的漏洗。

### 十一 参考文献

- [1] 周祥基,钱瑞明,汽车转向传动技术及其发展,机械制造与自动化,33(6):13-15,2004。
- [2] 卢耀祖, 罗志凡, 张氢, 一类自主移动小车的停车控制方法, 同济大学学报(自然科学版), 36(11): 1570-1573, 2008。
- [3]徐萃薇,孙绳武,计算方法引论(第三版),北京:高等教育出版社,2006

#### 十二 附录

```
附录一: 前进停车模型求解程序
#include"stdio.h"
#include"math.h"
                                   Children who
double pow(double a,int b)
{//求 a^b}
    int i;double temp=a;
    for(i=0;i< b;i++)
      temp=temp*a;
    return temp;
}
int fun1(double L, double S, double T, double W, double K, double PW, double Pl)
{//求(3)(4)(5)式
   double f2=pow(L+S,2)+pow(T,2)-pow((L+S-K),2);
   double f3=pow((L+S),2)-pow((Pw-3*W)/2,2)-(pow(L+S,2)+pow(W,2))/(2*\overline{W},2);
   double f4=pow((pow(L+S,2)/(2*W)-W/2)-W,2)+pow(L+S,2)-pow(Pl-T,2);
   if(f2 \le 0\&\&f3 \le 0\&\&f4 \le 0)
   return 1;
   else
   return 0;
int fun2(double L, double S, double T, double W, double K, double Pw, double Pl, double
m, double n, double a)
    {//求(1)(2)式
```

```
double temp1=3*W/2+m-pow(L+S,2)/(2*W)-L/tan(a);
      double
temp2=sqrt((pow(L+S,2)+pow(W,2))/(2*W)+pow(T,2))+W/2-pow(L+S,2)/(2*W);
      double f=pow(temp1,2)+pow(K-n,2)-temp2;
     double f1=m/2+pow(L+S,2)/(2*m)+W-L/tan(a);
     if(f==0\&\&f1<=0)
      return 1;
     else
     return 0:
void Search(double L, double S, double T, double W, double K, double Pw, double
Pl,double startm,double startn,double starta,int rankm,int rankn,int ranka)
    {//寻找前进停车的合适位置和角度
       int i,j,k,flag=0;
       double A[3] = \{0,0,0\};
       double temp1=startm;
       double temp2=startn;
          double temp3=starta;
       double temp4;
       double temp5;
       double temp6;
       for(i=1;i \le rankm;i++)
                      if(fun2(L,S,T,W,K,Pw,Pl,temp1,temp2,temp3))
                          printf("\%f,\%f,\%f\n",temp1,temp2,temp3);
              }
           }
main()
```

```
double L.S.T.W.K.Pw.Pl.m.n.a.startm.startn.starta.rankm.rankn.ranka:
L=27.04,S=7.94,T=8.71,W=19.87,K=58.79,Pw=38.52,Pl=57.70,startm=0,startn=0,starta=0,ra
nkm=100,rankn=30,ranka=1.7;
    if(fun1(L,S,T,W,K,Pw,Pl)==1)
        printf("可以停车\n"):
        Search(L,S,T,W,K,Pw,Pl,m,n,a,startm,startn,starta,rankm,rankn,ranka);
    else printf("不可以停车\n");
附录二: 倒车停车模型求解程序:
#include"stdio.h"
#include"math.h"
double pow(double a,int b
{//求 a^b}
    int i;double temp=a;
    for(i=0;i< b;i++)
      temp=temp*a;
    return temp;
int fun1(double L, double S, double T, double W, double K, double Pw, double Pl)
{//求②式
   double f5=pow((L+S),2)-pow(Pl-T,2)+pow((pow(L+S,2)+pow(W,2))/(2*W),2);
   if(f5 \le 0)
   return 1;
   else
   return 0;
int fun2(double L, double S, double T, double W, double K, double Pw, double Pl, double
m, double n, double a)
    {//求①式
      double temp1=3*W/2+m-pow(L+S,2)/(2*W)-L/tan(a);
       double
temp2 = sqrt(pow((pow(L+S,2)+pow(W,2))/(2*W),2)+pow(T,2))+W/2-pow(L+S,2)/(2*W);
       double f=pow(temp1,2)+pow(K-n,2)-temp2;
      double f1=0;
      //printf("test:%f\n",f);
      if(0 \le f \& f \le 0.75 \& f 1 \le 0)
      return 1;
```

```
else
                       return 0:
void
                          Search(double L, double S, double T, double W, double K, double Pw, double
Pl,double startm,double startn,double starta,int rankm,int rankn,int ranka)
                {//寻找倒车停车的合适位置和角度
                                int i,j,k,flag=0;
                              double A[3] = \{0,0,0\};
                              double temp1=startm;
                              double temp2=startn;
                              double temp3=starta;
                             double temp4;
                              double temp5;
                              double temp6;
                              for(i=1;i \le rankm;i++)
                                            (double)temp4=(double)i/rankm;
                                            temp1=temp1+temp4;
                                            temp5=0;
                                            for(j=1;j\leq=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=rankn;j=r
                                                                                                                                                                     M. Madio
                                                            (double)temp5=(double)j/rankn
                                                            temp2=(temp2+temp5);
                                                            if(temp2>=rankn)
                                                                           {temp2=0;}
                                                            temp6=0;
                                                            for(k=1;k\leq ranka;k++)
                                                                              (double)temp6=(double)k/1000;
                                                                                         temp3=(temp3+temp6);
                                                                                                        if(temp3>=ranka)
                                                                                                                        \{\text{temp3}=0;\}
                                                                                         if(fun2(L,S,T,W,K,Pw,Pl,temp1,temp2,temp3))
                                                                                                        printf("%f,%f,%f\n",temp1,temp2,temp3);
                                                            }
                                              }
main()
```

double L,S,T,W,K,Pw,Pl,m,n,a,startm,startn,starta,rankm,rankn,ranka;

```
L=27.04,S=7.94,T=8.71,W=19.87,K=58.79,Pw=38.52,Pl=57.70,startm=0,startn=0,starta=0,ra
nkm=50,rankn=50,ranka=2;
                              if(fun1(L,S,T,W,K,Pw,Pl)==1)
                                                          printf("可以停车\n");
                                                          Search(L,S,T,W,K,Pw,Pl,startm,startn,starta,rankm,rankn,ranka);
                                                                 ACTION MADE OF THE PARTY OF THE
                             else printf("不可以停车\n");
```