ADD ON COURSE(GENERATIVE AI)

Day 1(24-06-2024)

Self attention-finding important points in a sentence .Important parameters are QUERY,KEY,VALUE(QKV) ,Self attention=softmax(QK^T/ \sqrt{dk})V

ARCHITECTURE

Transformers

Layers

How transformers work-Each are blocks/layers these are combination of transformers. Feature extraction takes place in these layers.

Input Embedding

Converting words to no.s. Tokenisation is taking place (every single characters are converted to no.s .This is important)

4 dimensional vector representation

Positional Encoding

Gives extra no.s to the no.s from the i/p embedding.

$$\begin{aligned} &\mathsf{PE}(1) = [\sin(\frac{1}{10000^{2\times0/4}}),\cos(\frac{1}{10000^{2\times0/4}}),\sin(\frac{1}{10000^{2\times1/4}}),\cos(\frac{1}{10000^{2\times1/4}})] \\ &\mathsf{PE}(2) = [\sin(\frac{2}{10000^{2\times0/4}}),\cos(\frac{2}{10000^{2\times0/4}}),\sin(\frac{2}{10000^{2\times1/4}}),\cos(\frac{2}{10000^{2\times1/4}})] \\ &\mathsf{PE}(3) = [\sin(\frac{3}{10000^{2\times0/4}}),\cos(\frac{3}{10000^{2\times0/4}}),\sin(\frac{3}{10000^{2\times1/4}}),\cos(\frac{3}{10000^{2\times1/4}})] \\ &\mathsf{PE}(4) = [\sin(\frac{4}{10000^{2\times0/4}}),\cos(\frac{4}{10000^{2\times0/4}}),\sin(\frac{4}{10000^{2\times1/4}}),\cos(\frac{4}{10000^{2\times1/4}})] \\ &\mathsf{PE}(5) = [\sin(\frac{5}{10000^{2\times0/4}}),\cos(\frac{5}{10000^{2\times0/4}}),\sin(\frac{5}{10000^{2\times1/4}}),\cos(\frac{5}{10000^{2\times1/4}})] \\ &\mathsf{PE}(6) = [\sin(\frac{6}{10000^{2\times0/4}}),\cos(\frac{6}{10000^{2\times0/4}}),\sin(\frac{6}{10000^{2\times1/4}}),\cos(\frac{6}{10000^{2\times1/4}})] \end{aligned}$$

$$PE = Sin\left(\frac{pos}{1000^{\left(\frac{2i}{dmodel}\right)}}\right)$$

$$PE = Cos(\frac{pos}{1000^{(\frac{2i}{dmodel})}})$$

Where model=4 size of matrix(vector)

• Self Attention(imp)

From softmax we will get probability

Q=Quetstion

K= Features

V=Vectors

T= Tangentiability

• Feed Forward(imp)

Indepth feature extraction ,add new no.s.

$$FFN(X) = max(0, xw_1 + b_2)W_2 + b_2$$

Relu Activation fn,max(0,x)

Output will be h= [0.927, 0.5913, 0.755, 0.919]

• Normalization

Normalizing output, errors in the model are resolved

LayerNorm(x)=
$$(\frac{x-\mu}{\sigma})^*\gamma + \beta$$

x=n

 $\mu = mean$

 $\sigma = sd$

DECODER LAYER

multihead(Q,K,V)=cncat(head1,head2,....headn)

Q projection,K projection,V projection,gain projection, up projection,down projection

• Output

May be functional to get probability

Example:

The quick brown fox jump over a lazy dog. (9 words so e^1 to e^9 assigned in order. The set values (refer note))

Day 2(25-06-2024)