LaPIS Diagnostic Test Workbook - Mathematics

Mukesh A V Name :

Class

Section \mathbf{A}

School **AKV Public School**

Login ID **AKV110**

Mukesh A V's Performance Report

Percentage: 30.0%Score: 12/40

Mukesh A V's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is ____°.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved	
Area	Area of rectangle

Hi, here in this video you will learn Area

Question: 4

Find which of the shaded portion in the given shape represent it's area.

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 6

Shade the possible dimension of the door whose area is 500 m^2

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25\text{m} \times 20\text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Chance of probability Basis of probability		
Arithmetic mean, mode and median	Mean, Median and Mode	
Range	Finding the range	

Hi, here in this video you will learn Basics of probability	
Question: 7	
Identify the sure events and impossible events	
(i) The sun rises in the west.	
(ii) Water is colourless.	
(iii) Clock rotates in clock wise direction.	
(iv) Ball is square in shape.	
Answer:	
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.	
Question: 8	
Probability of sure events is (greater / smaller) than probability of imp	possible events
Answer:	
Probability of sure event =(0/ 1/ any number). Probability of impossible event = (0/ 1/ any number). Therefore, Probability of sure event Probability of impossible event.	
Question: 9	
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box probability of getting a pen from his box.	x. What is the

$\underline{Answer:}$						
	те					
-	pen in his box, of getting pen from hi	. , ,)		
Then probability	or getting pen from in	15 DOX 15	(0/ 1	-)		
Hi, here in the	nis video you will le	earn Me a	an, Med	ian, Mo	de	
$\underline{Question \colon 10}$						
Find the mode o	f the following data: 5,	15, 23, 5,	32, 44, 72,	55, 6, 3, 5	5, 65, 45, 67	7, 24, 19 and 98.
Answer:						
	ber that occursata in ascending order:					st of observations.
	occurs most number of					
Question: 11						
	ntains median of the given					
-			, , , , , ,	, ,		
	1	5			9	>
$\underline{Answer:}$						
Median is the	(first/cen	tral/last) v	value of a d	lata when	the data is	arranged in
ascending or desc	~	dor ·				
	n data in ascending ord the given data is					a data.
0						
Question: 12						
]
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
Mean =	, Median = an	d Mode =	:			
$\underline{Answer:}$						
$Mean = \frac{1}{m}$	of all observation umber of observation .					
Here s sum of all	observation = =	,	number of	observatio	on =	

Arrange the data in ascending order:	
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.	
Hi, here in this video you will learn Range	
Question: 13	
Range of the data =	
Answer:	
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =	
Question: 14	
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14	., 9
$-20 + 51$ $\frac{-38 - 51}{2}$ $51 + 38$ $\frac{51 + 20}{2}$	
Answer:	
Range = Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , Range = =	_
Question: 15	
Find the range of first 10 multiple of 5.	
Answer:	
First 10 multiple of 5 = Therefore, Highest value Paras	

Geometry

Topics to be Improved		
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Types of triangle Basics of types of triangle (sides)		
Related angles	Basic of angles	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Sum of lengths of two sides of a triangle Sum of two sides of a triangle		

not equal) to the three corresponding sides of the other triangle.

- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 18

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

 $\underline{Answer:}$

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn **Types of triangle**

Question: 19

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called _____.

Draw a diagram of polygon with three sides :

Question: 20

Identify the types of triangles.

......

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called ______ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 21

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft, then the possible length of third side of park can be ______.

......

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is ______.

Hi, here in this video you will learn **Related Angles**

Question: 22

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

(i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.

(ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 23

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

$\underline{Question: 24}$

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

$\angle DOE = $, and its complement angle is
Therefore, in the given figure the complementary angles are $\angle AOB$, and $\angle BOC$,
Hi, here in this video you will learn Pythagoras property
Question: 25
In a right angled triangle, square of the = sum of the squares of the legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs).
Pythagoras theorem states that
Question: 26
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
m
Pythagoras theorem states that square of the = sum of the squares of its
Given: Base =, Altitude =, Base and altitude are (hypotenuse/ legs) of the triangle.
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, hypotenuse of the triangle is
Question: 27
Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.
Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

 $= ___ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of 3D model

Question: 28

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

.....

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 29

Mark and find the number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 30

How many vertices, edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and ______ faces. Hi, here in this video you will learn Sum of the length of sides of the triangle Question: 31

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $\overline{\text{Side AC}} = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 32

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 33

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ____ Therefore, the length of the third side is less than _____

	The difference of the two sides of a triangle is $_$	than the third side of the		
triangle. Therefore, the third side should be Here, difference of the two sides =				
	Therefore, the length of the third side is greater			
Theref	ore, length of the third side is greater than	but less than		

Number system

Topics to be Improved				
Operations on rational numbers	Division of rational numbers			
Introduction to rational numbers	Basics of rational numbers			
Positive and negative rational numbers	Identification of positive rational numbers			
Decimals	Multiplication and division of decimals			
Fractions	Multiplication of fractions			
Integers	Basics of integers			
Exponents	Solving exponents			

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{15} \times \boxed{}$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

 $Question: 35 \dots$

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$,

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 36

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

.....

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Basics of rational numbers

Question: 37

The numbers in the diagram represents______.

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 38

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 39

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, _____ is/are rational number and _____ is/are not a rational number.

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 40

Segregate positive and negative rational number.

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

• If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

.....

.....

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this ____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 42

The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: Examples for negative rational numbers:

Positive rational number × Negative rational number = × = rational number	and this is
Hi, here in this video you will learn Basics of decimals	
Question: 43	
Shade 0.4 part of the given shape.	
Answer:	
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.	
Question: 44	
Solve the following.	
(i) 0.4×1.2	
(ii) 0.48×1.2	
Answer:	
(i) 0.4×1.2 : Multiplication of 0.4×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point,	
(ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point,	·
Question: 45	
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box chocolates?	

Answer:

One box contains _____ chocolates. The cost of one box is _____ Then cost of one chocolate = ____ ÷ ___ = ___

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is ______.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Hi, here in this video you will learn Multiplication on fractions

Question: 46

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

.....

.....

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 47

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Question: 48

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2 \frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Basics of integers**

Question: 49

Highlight the ring that contains whole numbers.

.....

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 50

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

.....

Naturals numbers

Answer:
Whole number consists of $0,1,2,3,4,$ Negative number consists of
Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 51
State whether the statement is true or false. Every positive number is an integer.
$\underline{Answer:}$
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Exponents and power Question: 52
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.
Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $
10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$
<i>Question:</i> 53

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

Question: 54

- (i) Tenth power of 100 is ____ ($(10)^{100}$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5 : Base = ____, Power/Exponent = ____, exponential form = ____.

Comparing Quantities

Topics to be Improved					
Equivalent ratios	Basic of proportion				
Simple interest	Calculation of simple interest				
Conversion of fraction into percentage	Conversion of fraction into percentage				
Percentage	Basic of percentage				

Hi, here in this video you will learn Basics of proportion	
<u>Question: 55</u>	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivalent standard form to express proportion is	ratios.
Question: 56	

A

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.

Question: 57

If a: b::	c: d	l is proportion, sha	de the correct	expi	ression	
	$\frac{bc}{d}$	$c = \frac{ad}{b}$	ad=cd			
\underline{Answer}	· <u>:</u>					
or First and In proporterms.	= _ l fourt rtion, e, a ×	(in fraction the term are called	and se terms is	econo	e written as a : b :: c : d l and third term are called (equal to/ not equal to) produ	
		this video you				
Question Match th		_		••••		
		Column A			Column B	1 •
	iii	Principle(P)		a	Interest calculated based on t	his
	iii	Amount (A) Rate (R)		b	Total sum you borrow Number of years	
	iv	Time period (T)		$\frac{c}{d}$	Total sum with interest	
Answer: Formula for calculating simple interest = Interest calculated based on Total sum you borrow is known as Number of years is Total sum with interest is Question: 59 Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.						
\underline{Answer}	· <u>·</u>					
If Amoun Interest :	nt and =	l principle is given,	then formula	for c		
$\overline{Questio}$	n: 60	<u>9</u>		• • • • •		

The simple interest	on Rs.5000 for 3 years is	s Rs.1350. Find th	e rate of interest.	
Answer:				
Interest =	$_{}$, Time period = $_{-}$		Principal =	·
Rate of interest =	x 100 Principal x			
Substituting values				
Rate of interest =	x 100 Principal x			
Rate of interest = _ Therefore, the rate of	of interest is	%		
Hi, here in this percentage	s video you will lear	_		
Question: 61				
Complete the box in	n the given equation.			
$5\% = \frac{5}{\square}$				
Answer:				
Percentage are the f	raction with the denomination	nator		
	Therefore, 5% can b	pe expressed as		
				
	nversion form of fraction	$\frac{1}{2}$ to percentage.		
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} =$	= 50%			
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = \frac{100}{100}$	= 200%			
(iii) $\frac{1}{2} \times 100 = \frac{100}{2}$	=50%			
Answer:				
100 or	into percentage, the value (multiply / divide)	the fraction with 1		numerator)should be
,	onversion form is			
Question: 63				

Find the percentage of shaded part of square.

Ans	wer:

The square shape is divided into ______ parts.

Number of shaded part of square is _____.

Shaded part of square in fraction is _____

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 64

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 65

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks. 75 % can be written in fraction form ____

	ı

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 66
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
Answer:
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved			
Basics of simple equation	Formating of simple equation, Solving of simple equation		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
subtraction of algebraic expressions	subtraction of algebraic expressions		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		
Terms of an expression	Identification of terms in an expression		

Hi, here in this video you will learn Solving an equation using application

Question: 67

Box B contains times the number of chocolates in Box	Α
--	---

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 68

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

.....

The equation is
Question: 69
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2
Hi, here in this video you will learn Types of expression
Question: 70
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, (variables/ terms) are connected together with operations of addition. The terms in the expression are,, and Therefore, there are terms in the expression.
Question: 71
Classify the following expression into monomial, binomial and polynomial.
1. $7m + n + 2$
2. $8x^2 + 0$
3. 7xy + 4m
Answer:
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a

\overline{Que}	<i>stion: 72</i>				
$5m^2$	+ m + 0 is a	expression	. (Monomial/ H	Binomial/ Trinomia	1)
Ans	wer:				
		on $5m^2 + m + 0$ are ter		led a	expression.
Hi,	here in this vi	deo you will learn	Subtraction	n on expressio	n
\overline{Que}	stion: 73				
Find	the sum of two ex	expressions $a + b + c$	and $b + c + d$		
\underline{Ans}	<u>wer:</u>				
The The	two terms will get sum of two expres answer is	ions are and _ added only if they are sions = +	re(Like	, ,	
			School A	School B	
			SCHOOL A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B i	S		
(iii)	How many more	teachers are there in s	school B than se	chool A?	
\underline{Ans}	wer:				
(i)	Number of boys	in school A = in school B = boys in school A and	_•	+ = .	
(ii)	Number of girls i	in school B = n school B = students in school B i	·•	=	

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 75

Solve the following:

$$\begin{array}{ccc}
 & 13x + \underline{\hspace{1cm}} \\
 & (+) & 12x + 10y \\
 & \underline{\hspace{1cm}} & + 25y
\end{array}$$

.....

......

......

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn Solving an equation

Question: 76

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley ② is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 77

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 + 3 = -4$$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

<u>Question: 78</u>

Arrange the terms in the descending order when the value of x is 2.

$$5x \times 1$$
 $x + 3$

$$x+3$$
 $2x-4$

$$\frac{1}{2}x$$

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, _____.

Hi, here in this video you will learn Addition on expression

Question: 79

Shade the like terms.

Answer:

Given terms are ______.

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______.

Question: 80

Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$

Answer:

 $___$ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (7 + _ - 2)_{r^2} = _$$

Question: 81

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates Ram and Sam have : _____

(ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

......

Hi, here in this video you will learn Terms of an expression

Question: 82

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

$\underline{Question:~83}\qquad \dots \dots$

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The	terms in	the expression	4xy is/are	e	
The	terms in	the expression	12a + b +	- 1 is/are	
The	terms in	the expression	7m + 0 is	s/are	

Question: 84

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

$\underline{Answer:}$

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.