

## Árvores Prof. Marcos Carrard carrard@univali.br carrard@gmail.com

Escola

**Politécnica** 

#### Árvores

- Estrutura muito utilizada na computação
- Estrutura que gera relacionamento de hierarquia e subordinação
- Pode representar muitos problemas





#### Árvores

- Podemos pensar em 3 tipos de hierarquia principais:
  - Especialização;
  - Composição; e
  - Dependência.









#### Formas de representação

- Diagramas
  - Inclusão
  - Barras
  - Aninhamento
  - Numeração por níveis





#### Formas de representação

• Inclusão







#### Formas de representação

• Barras



#### Formas de representação

Aninhamento





#### Formas de representação

• Numeração por níveis

1A; 1.1B; 1.1.1D; 1.2C





#### **Terminologia**

- Raiz
- Nós ou nodos (descendentes e ascendentes)
- Subárvore
- Grau de <u>um</u> nodo (número de descendentes)
- Grau da árvore (nodo com maior número de descendentes)
- Folha ou terminal (nodos de grau 0)





### Árvores

- Raiz
- Nós
- Subárvores
- · Grau de Nodo
- · Grau da árvore
- Folha



#### **Terminologia**

- Nível de um nodo (nº de nodos até a raiz+1)
- Caminho (sequência de nós consecutivos de um nó fonte a um nó de destino)
- Comprimento do caminho (nº de níveis entre 2 nós)
- Altura ou profundidade
- Floresta (conjunto de árvores disjuntas)
- Árvore ordenada
- · Árvore binária / n-ária
- Árvore balanceada





# Árvores • Nível de um nodo • Caminho • Comprimento do caminho • Altura/profundidade



#### Árvore Binária



#### Árvore Binária

- Definição (Árvore Binária) Uma árvore binária Té um conjunto finito de nós com as propriedades:
- 1. Ou o conjunto é vazio,  $T = \emptyset$ ; ou
- 2.O conjunto consiste em uma raiz, r, e exatamente duas árvores binárias distintas  $T_{Le}T_R$ . A árvore  $T_L$  é chamada árvore da esquerda de T, e a árvore  $T_R$  é chamada árvore da direita de T.

$$T = \{r; T_L; T_R\}$$













#### Veja uma árvore binária....



#### Caminhamento em Árvores

Encaminhamentos sistemáticos em árvore baseiamse na ordem em que a raiz é visitada com relação a seus descendentes.

- Têm normalmente o mesmo custo.
- A diferença está no efeito produzido.
- Muitas vezes, para uma situação há um encaminhamento mais adequado.



#### Caminhamento Pré-Fixado

- A raiz é visitada antes dos seus descendentes.
- Depois as sub-árvores da raiz são visitadas em préfixado da esquerda para a direita.









#### Caminhamento Pós-Fixado

- As sub-árvores da raiz são visitadas em pósfixado da esquerda para a direita.
- A raiz é visitada depois dos seus descendentes.





#### **Caminhamentos**

• Pré-fixado:

Raiz-[ESQUERDA] - [DIREITA]

• Infixado:

[ESQUERDA] - Raiz - [DIREITA]

Pós-fixado

[ESQUERDA] - [DIREITA] - Raiz





#### Caminhamento ou percurso sobre árvores binárias



Fig 5.11 Percurso sobre árvore binária

Percurso ou notação pré-fixada: A-B-D-H-I-E-C-F-G
 Percurso ou notação infixada: H-D-I-B-E-A-F-C-G
 Percurso ou notação pós-fixada: H-I-D-E-B-F-G-C-A





#### Árvore Binária de Busca





#### Árvore Binária de Busca

- É uma estrutura de dados que foi criada com o intuito de otimizar o tempo de busca, em comparação às listas.
- Todo nó de uma árvore binária de busca possui um dado.
- Neste dado, deve haver um índice (ou chave), que deverá ser utilizado como base para as comparações.
- IMPORTANTE: não podem haver dois nós com a mesma chave

























































#### Considerações

- Como operações da TAD, podemos citar:
  - · inicializar;
  - · inserir;
  - · remover;
  - buscar;
  - calcular\_altura\_no;
  - destruir arvore.





#### Considerações

- Pode-se criar TADs de árvores binárias genéricas
  - Nestes casos é interessante sobrecarregar os operadores de igualdade, maior e menor (respectivamente ==, > e <) para comparar os valores das chaves.





