Codage de canal

$$\begin{array}{c|c} k & n \\ \hline 010110 & \longrightarrow 11010010 \end{array}$$

Information (bits à transmettre)

$$x = \begin{pmatrix} x_{k-1} & x_{k-2} & \cdots & x_1 & x_0 \end{pmatrix} \in \mathbb{R}^{1 \times k}$$

$$G_S = egin{pmatrix} I_k & P \end{pmatrix} = egin{pmatrix} 1 & 0 & \cdots & 0 & x & \cdots & x \ 0 & 1 & \cdots & 0 & x & \cdots & x \ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \ 0 & 0 & \cdots & 1 & x & \cdots & x \end{pmatrix} \in \mathbb{R}^{k imes n}$$
 $H_S = egin{pmatrix} P^T & I_{n-k} \end{pmatrix} \in \mathbb{R}^{n-k imes n}$

 $y = (xG_S) \bmod 2$

 $S = (yH_S^T) \bmod 2 \begin{cases} = 0 \longrightarrow \text{ok} \\ \neq 0 \longrightarrow \text{erreur} \end{cases}$

 $\hat{x} = y[0:k-1]$

 $G_S H_S^T = 0$

Encodage:

Vérification (syndrome):

Décodage :

Propriétés

Codes linéaires

La somme de deux codes valides donne un nouveau code valide

Codes cycliques

Un décalage vers la gauche ou vers la droite donne un autre code valide.

Un décalage d'un mot-code de longueur n dans $\mathbb{R}_n[X]$ est similaire à une multiplication par X

1.3 Générateur \leftrightarrow matrice

On peut créer la matrice en effectuant des décalages cycliques du générateur g(x)

$$\begin{pmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 \\ 0 & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{pmatrix}$$

Avec le nombre de lignes correspondant à la longueur du message.