Лабораторная работа №5

Верификаторы

Задание. Для заданного языка

- 1. построить описание верификатора с полиномиальной временной сложностью и соответствующего сертификата принадлежности;
- 2. реализовать данный верификатор в виде программы;
- 3. провести тестовые исследования, демонстрирующие совпадение фактической временной сложности с теоретической.

Варианты

- 1. $ISO = \{\langle G, F \rangle \colon G, F$ изоморфные графы $\}$, где два графа G и F называются изоморфными, если можно переобозначить вершины одного графа G так, чтобы G и F оказались идентичны;
- 2. $HALF CLIQUE = \{\langle G \rangle : G$ неориентированный граф с m вершинами, который содержит клику размером не менее $\frac{m}{2}\}$;
- 3. $LPATH = \{ \langle G, a, b, k \rangle : G$ неориентированный граф, содержащий простой путь не короче k из вершины a в вершину $b\}$;
- 4. $DOUBLE SAT = \{ \langle \varphi \rangle \colon \varphi$ булева формула, допускающая по крайней мере 2 подстановки, обращающие её в истину $\}$; Сертификат 2 выполняющих набора
- 5. $CNF_3 = \{ \langle \varphi \rangle \colon \varphi$ выполнимая булева формула в КНФ, каждая переменная в которой появляется не более, чем в 3 позициях $\}$; Сертификат 1 выполняющий набор
- 6. $MAX CUT = \{\langle G, k \rangle : G$ неориентированный граф, который допускает разрез размером k или более $\}$, где разрезом графа называется разбиение его вершин на два непересекающихся подмножества, размером разреза называется число дуг, соединяющих вершины из различных подмножеств разделения;
- 7. $3COLOR = \{\langle G \rangle : G$ неориентированный граф, вершины которого могут быть окрашены в три цвета так, чтобы никакие две смежные вершины не были окрашены одинаково $\}$;
- 8. $SET SPLITING = \{\langle S, C \rangle : S$ конечное множество, $\mathbb{C} = \{C_1, \dots, C_N\}, C_i \subset S, N > 0$, при этом все элементы S могут быть окрашены в два цвета так, чтобы в составе C не было одноцветных подмножеств $\}$;
- 9. $DOMINATING SET = \{\langle G, k \rangle : G$ неориентированный граф, который имеет поглощающее множество размера $k\}$, где поглощающим множеством называется подмножество вершин графа такое, что каждая вершина графа является смежной хотя бы с одной вершиной из данного подмножества;
- 10. $CLIQUE = \{ \langle G, k \rangle \colon G$ неориентированный граф, содержащий k-клику $\};$
- 11. $HAMPATH = \{\langle G, s, t \rangle \colon G$ ориентированный граф, в котором есть гамильтонов путь из вершины s в вершину $t\};$
- 12. $VERTEX-COVER=\{\langle G,k\rangle\colon G$ неориентированный граф, содержащий покрытие размера $k\};$

- 13. $FEEDBACK VSET = \{ \langle G, k \rangle \colon G$ неориентированный граф, в котором удалив не более k вершин, можно устранить все циклы $\}$;
- 14. $FEEDBACK-VSET=\{\langle G,k\rangle\colon G$ ориентированный граф, в котором удалив не более k рёбер, можно устранить все циклы $\};$
- 15. $SET PACKING = \{ \langle S, C, k \rangle : S$ конечное множество, $\mathbb{C} = \{ C_1, \dots, C_N \}, C_i \subset S, N > 0,$ при этом существует набор попарно не пересекающихся подмножеств $C_{i_1}, \dots, C_{i_k} \in C \}.$