REAL ANALYSIS: LECTURE 8

OCTOBER 2ND, 2023

1. Preliminaries

Recall that last time we were approximating real numbers by integers. Specifically, we were proving the following:

Proposition 1. $\forall x \in \mathbb{R}, \exists N \in \mathbb{Z} \text{ and } \alpha \in [0, 1) \text{ s.t.}$

$$x = N + \alpha$$
.

Moreover, N, α are uniquely determined by x.

Proof. Last time we went through this in more depth, but here's where we were. We'll only consider $x \ge 1$. Let

$$J := \{ n \in \mathbb{Z}_{pos} : n > x \}$$

be the set of positive integers greater than x. Since \mathbb{Z}_{pos} well ordered, J has a least element m. Let N:=m-1 and $\alpha=x-N$. We proved last time that

- (1) $N \in \mathbb{Z}_{pos}$
- (2) $\alpha \in [0,1)$
- (3) $x = N + \alpha$ (trivially).

Thus, we've shown the existence of a solution, so let's now prove uniqueness. Suppose

$$x = N + \alpha = M + \beta$$
,

where $N, M \in \mathbb{Z}_{pos}$ and $\alpha, \beta \in [0, 1)$. Notice the goal here is to show N = M and $\alpha = \beta$. Without loss of generality (WLOG), let $M \ge N$. Then

$$M - N = \alpha - \beta$$
.

Since M,N are integers with $M \geq N$ we get $M-N \in \mathbb{Z}_{pos} \cup \{0\}$ (proved in chapter 6 but intuitively it's certainly true). However, Emily noted $\alpha-\beta<1$ since $\alpha<1$ and $-\beta\leq 0$, so $\alpha-\beta<1-0=1$. Thus, M-N=0, since 1 is the least positive integer, i.e. $\alpha-\beta<1$ means that the only integer $\alpha-\beta$ can be is 0. Thus, $\alpha-\beta=M-N=0$, which implies M=N and $\alpha=\beta$, which satisfies for uniqueness.

This proof seems fine, but it all relies on the well ordering of J, which is only true **as long as** J **is nonempty**. But we never proved that J is nonempty! We'll now prove a formal version of this, known as the **Archimedian Property of** \mathbb{R} .

2. ARCHIMEDIAN PROPERTY

Theorem 1 (Archimedian Property). $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}_{pos} \text{ s.t. } n > x. \text{ In other words, there are arbitrarily large positive integers.}$

After combining pieces of proofs from Edith, Jenna, Sarah, Blakeley, Harry, and more, we arrived at the following:

Proof. Suppose, for the sake of contradiction, that there exists $x \in \mathbb{R}$ s.t. $x \ge n \ \forall n \in \mathbb{Z}_{pos}$. Then by (A13) the existence of an upper bound means $\omega := \sup(\mathbb{Z}_{pos}) \in \mathbb{R}$. Notice $\omega - 1 < \omega$ is *not* an upper bound on \mathbb{Z}_{pos} . Thus, by definition there's some $H \in \mathbb{Z}_{pos}$ s.t. $H > \omega - 1$. Yet, $H + 1 \in \mathbb{Z}_{pos}$ by closure of positives, and $H > \omega$, which contradicts ω is an upper bound on the positive integers.

It turns out it is absolutely necessary to use (A13) to prove the Archimedian Property, as there are examples of ordered fields (satisfy A1- A12) that do not satisfy the Archimedian Property. Here's a corollary, also known as the Archimedian Property:

Proposition 2. $\forall \epsilon > 0, \exists n \in \mathbb{Z}_{pos} \text{ s.t. } \frac{1}{n} < \epsilon. \text{ In other words, there are arbitrarily small integers.}$

Proof. Fix $\epsilon > 0$. Notice $\frac{1}{\epsilon} \in \mathbb{R}$. By the previous Archimedian Property, $\exists n > 1/\epsilon$, which rearranges to $\frac{1}{n} < \epsilon$. Notice that the problem with $\epsilon < 0$ is that rearranging the inequality would require flipping the inequality, which Ben pointed out.

Here's the 3rd Archimedian Property, which is probably at least 2 Archimedian Properties too many...

Proposition 3. $\forall \epsilon > 0, \forall x \in \mathbb{R}, \exists n \in \mathbb{Z}_{pos} \text{ s.t. } n\epsilon > x.$

We're now going to move on to our first Real Analysis theorem!

3. REALLY REAL REAL ANALYSIS

We have previously proved that $\sqrt{2}$ is not rational. However, we never proved that $\sqrt{2} \in \mathbb{R}$.

Theorem 2. $\exists \alpha \in \mathbb{R} \text{ s.t. } \alpha^2 = 2.$

Let's start with some scratchwork.

Scratchwork 1. Intuitively, $\alpha = \pm \sqrt{2}$. Forrest suggested the following. Let $A := \{x \in \mathbb{R} : x^2 \leq 2\}$.

By trichotomy, exactly one of $\alpha^2 = 2$, $\alpha^2 > 2$, $\alpha^2 < 2$ is possible. Our general strategy is to show the latter two aren't possible. Then we get $\alpha^2 = 2$, i.e. we win!

Suppose $\alpha^2 > 2$. Intuitively we should be slightly to the right of $\sqrt{2}$, which means there's some wiggle room. Thus, there should be some element in the middle such that if we square that element we are still > 2, which contradicts α being the supremum. Formally, the idea is that $(\alpha - \operatorname{tiny})^2 > 2$.

What do we mean by tiny? Well one way we know how to find arbitrarily small positive integers is to find some $n \in \mathbb{Z}_{pos}$ s.t. $(\alpha - \frac{1}{n})^2 > 2$. Rearranging this requires

$$\begin{split} \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} &> 2 \\ \alpha^2 - 2 &> \frac{2\alpha}{n} - \frac{1}{n^2} \\ \alpha^2 - 2 &= \frac{1}{n} \left(2\alpha - \frac{1}{n} \right), \end{split}$$

which means we win if we can find some n s.t.

$$\frac{1}{n} < \frac{\alpha^2 - 2}{2\alpha - \frac{1}{n}}.$$

We can't immediately use Archimedian Property here since the RHS depends on n. Remember, we don't need to be exact here; let's just bump n huge:

Jenna suggested using

$$\frac{1}{n} < \frac{\alpha^2 - 2}{2\alpha}$$

$$< \frac{\alpha^2 - 2}{2\alpha - \frac{1}{\alpha}}.$$

So, we can just find some $n \in \mathbb{Z}_{pos}$ s.t. $\frac{1}{n} < \frac{\alpha^2 - 2}{2\alpha}$ (which exists by Archimedian Property!) and then backtrack these steps and be good. Here's a picture of this whole thing:

Proof. Let $A:=\{x\in\mathbb{R}:x^2\leq 2\}$. Define $\alpha:=\sup A$, which exists by (A13). Suppose $\alpha^2>2$. By Archimedian Property, $\exists n\in\mathbb{Z}_{\rm pos}$ s.t.

$$n > \frac{2\alpha}{\alpha^2 - 2}.$$

Thus,

$$\frac{1}{n} < \frac{\alpha^2 - 2}{2\alpha}$$

$$\frac{1}{n} < \frac{\alpha^2 - 2}{2\alpha - \frac{1}{n}}$$

$$\frac{1}{n} \left(2\alpha - \frac{1}{n}\right) < \alpha^2 - 2$$

$$\frac{2\alpha}{n} - \frac{1}{n^2} < \alpha^2 - 2$$

$$\implies \left(\alpha - \frac{1}{n}\right)^2 > 2,$$

which implies $\alpha - 1/n$ is an upper bound of A. However, $\alpha - 1/n < \alpha$, which contradicts α being the least upper bound of A. Thus, $\alpha^2 \not \geq 2$.