SysTick timer (STK)

В процессоре есть 24-битный системный таймер SysTick, который ведет обратный отсчет от значения перезагрузки до нуля, перезагружает (выполняет перенос) значение в регистре LOAD на следующем фронте тактового сигнала, а затем ведет обратный отсчет для последующих тактов.

Когда процессор останавливается для отладки, счетчик не уменьшается.

4.5.1 SysTick control and status register (STK_CTRL)

Address offset: 0x00

Reset value: 0x0000 0000

Регистр SysTick CTRL включает функции SysTick.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														COUNT FLAG
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											CLKSO URCE	TICK INT	EN ABLE	
													rw	rw	rw

Bit 16 COUNTFLAG:

Возвращает 1, если таймер отсчитал до 0 с момента последнего чтения.

Bit 2 CLKSOURCE: выбор источника синхронизации.

Выбирает источник синхронизации.

0: AHB / 8

1: Часы процессора (АНВ)

Bit 1 TICKINT: разрешение запроса на исключение SysTick

0: обратный отсчет до нуля не подтверждает запрос исключения SysTick

1: Обратный отсчет до нуля до утверждения запроса исключения SysTick.

Bit 0 РАЗРЕШЕНИЕ: включение счетчика.

Включает счетчик. Когда ENABLE установлен в 1, счетчик загружает значение RELOAD из регистра LOAD, а затем ведет обратный отсчет. При достижении 0 он устанавливает COUNTFLAG в 1 и, при необходимости, утверждает SysTick в зависимости от значения TICKINT. Затем он снова загружает значение RELOAD и начинает отсчет.

0: счетчик отключен

1: счетчик включен

4.5.2 SysTick reload value register (STK_LOAD)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved						RELOA	D[23:16]				
			IXES	erveu				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RELO	AD[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw rw		rw	rw	rw	rw	rw	rw	rw

Bit 23: 0 RELOAD [23: 0]: значение RELOAD

Регистр LOAD определяет начальное значение для загрузки в регистр VAL, когда счетчик включен и когда он достигает 0.

Вычисление значения RELOAD Значение RELOAD может быть любым значением в диапазоне 0x0000001-0x00FFFFFF. Начальное значение 0 возможно, но не имеет никакого эффекта, потому что запрос исключения SysTick и COUNTFLAG активируются при подсчете от 1 до 0.

Значение RELOAD рассчитывается в соответствии с его использованием:

Чтобы сгенерировать многозадачный таймер с периодом N тактовых циклов процессора, используйте значение RELOAD равное N-1. Например, если прерывание SysTick требуется каждые 100 тактовых импульсов, установите RELOAD на 99.

Чтобы доставить одно прерывание SysTick после задержки в N тактов процессора, используйте RELOAD со значением N., например, если прерывание SysTick требуется после 400 тактовых импульсов, установите RELOAD на 400.

4.5.3 SysTick current value register (STK_VAL)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved							CURRE	NT[23:16]			
			1763	erveu				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CURRENT[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 23:0 CURRENT[23:0]: Current counter value (Текущее значение счетчика)

Регистр VAL содержит текущее значение счетчика SysTick. Чтения возвращают текущее значение счетчика SysTick. Запись любого значения очищает поле до 0, а также сбрасывает бит COUNTFLAG в регистре STK_CTRL до 0.

Чтобы отсчёт интервалов был точнее, то перед началом отсчёта желательно сюда занести значение, равное значению, записываемое в STK LOAD.

4.5.4 SysTick calibration value register (STK_CALIB)

Address offset: 0x0C

Reset value: 0x0002328

Регистр CALIB указывает свойства калибровки SysTick.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NO REF	SKEW										TENMS	8[23:16]			
r	r							r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TEN	MS[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Бит 31 NOREF: флаг NOREF

Читается как ноль. Указывает, что предусмотрены отдельное эталонное тактирование. Частота этого тактирования - HCLK / 8. Если 1, то эталонная частота отсутствует.

Бит 30 SKEW: флаг SKEW

Читается как один. Калибровочное значение для неточного времени 1 мс неизвестно, потому что неизвестно значение TENMS. Это может повлиять на пригодность SysTick в качестве программного тактирования реального времени. Если читается как «1» — неточное время, либо не задано.

Биты 23: 0 TENMS [23: 0]: значение калибровки.

Указывает значение калибровки, когда счетчик SysTick работает на HCLK max/8 в качестве внешних часов. Значение зависит от продукта, см. Product Reference Manual, раздел «Калибровочное значение SysTick». Когда HCLK запрограммирован на максимальную частоту, период SysTick составляет 1 мс.

Если информация о калибровке неизвестна, рассчитайте необходимое значение калибровки на основе частоты тактовой частоты процессора или внешней тактовой частоты.

4.5.5 Советы и подсказки по дизайну SysTick

Счетчик SysTick работает по тактовой частоте процессора. Если этот тактовый сигнал остановлен для режима низкого энергопотребления, счетчик SysTick останавливается.

Убедитесь, что программное обеспечение использует доступ к выровненным словам для доступа к регистрам SysTick.

4.5.6 SysTick register map

В таблице показана карта регистров SysTick и значения сброса. Базовый адрес блока регистров SysTick - 0xE000 E010:

Table 49. SysTick register map and reset values

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	က	2	-	0
0x00	STK_CTRL	Reserv								vec							COUNTFLAG					F	Res	ser	ved	d					CLKSOURCE	TICK INT	EN ABLE
	Reset Value											0												0	0	0							
0x04	STK_LOAD			R	200	iri/c	ad												R	EL	OA	D[2	23:	0]									
0.04	Reset Value		Reserve				eu		Ī	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	STK_VAL		D		200	VPL 7.00	o d										_		Сι	JRF	REI	NT	[23	:0]									\Box
UXUO	Reset Value		Rese			rveu			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x0C	STK_CALIB		Dooor		an and							_			_	_	T	ΕN	M	S[2	3:0)]	_	_	_	_	_	_	_	_	\exists		
0.000	Reset Value		Reserved		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					

