Deep Learning Project: Instrument recognition in music

Presented by:

Ofek Dahan & Ori Hefetz

Agenda

Our goals

Theory

Settled on model

Results

Our Goals

In this project, we aimed to classify instruments present in a music sample.

- Initially, we attempted to classify multiple instruments per datapoint (Using a one hot vector, a result of "1" if the instrument is present, "0" if it's not)
- We wanted to reach high accuracy using digital signal processing methods, and a multi-branch CNN.
- Later, we opted to classifying the most prominent instrument, instead of multiple ones.

Deep learning tools

We focused our energies on the pre-processing part of the deep learning methodology.

We tried using many methods to provide the most discernable images for the CNN:

- 1. Different signal transformations.
- 2. Normalization, data mixing, and random noise.
- 3. Additive samples, portraying multiple instruments.
- 4. Transfer learning.

The IRMAS dataset

- Training set: Multi instrument, single label. 6700 samples
- Test set: Multi instrument, multi label. 2900 samples.

Theory: The basics

- Our output: 11x1 binary vector. '1' for each instrument identified.
- Loss: Binary cross entropy
- Optimizer: Adam. We chose batch size 16 to include a large diversity of instruments in each run, and keep the model light

Theory: The STFT- Short time Fourier

transform

- Choose time window
- 2. Move time window over signal
- 3. Calculate Fourier transform for each window position.
- 4. Result: timeline of frequencies in the signal

On the right, violin STFT (up)
Vs drum STFT (down)

Model 1.0: the 9-spectrogram model

Lessons from model 1.X

- Each CNN must be wide and deep enough to reach results independently.
- Too many CNNs- data too sparse over a large network
- Repetitive data.
- The model becomes too large before it is useful.

Best accuracy acquired: 15%

Model 2.0: the 3-spectrogram tight model

Model 2.3: the 3-spectrogram tight model, with transfer learning

	(type:depth-idx)	Output Shape	Param #
	rapper	[1, 11]	100
-Mult	iSTFTCNN_WithPANNs: 1-1	[1, 11]	\$5.5)
L	-ModuleList: 2-1	15.5 N	5. T
	└─PANNsFeatureExtractor: 3-1	[1, 512]	1,550,784
	└─PANNsFeatureExtractor: 3-2	[1, 512]	1,550,784
	└─PANNsFeatureExtractor: 3-3	[1, 512]	1,550,784
	-Sequential: 2-2	[1, 512]	
	└Linear: 3-4	[1, 1536]	2,360,832
	└BatchNorm1d: 3-5	[1, 1536]	3,072
	└ReLU: 3-6	[1, 1536]	
	└─Dropout: 3-7	[1, 1536]	
	└Linear: 3-8	[1, 768]	1,180,416
	└BatchNorm1d: 3-9	[1, 768]	1,536
	└ReLU: 3-10	[1, 768]	(07.7)
	└─Dropout: 3-11	[1, 768]	
	└Linear: 3-12	[1, 512]	393,728
	└BatchNorm1d: 3-13	[1, 512]	1,024
	└ReLU: 3-14	[1, 512]	174-4
	-Linear: 2-3	[1, 11]	5,643

Model 2.3: the 3-spectrogram tight model, with transfer learning

Results- Model 2.3

```
6 Ground truth: acoustic guitar, voice
  Top prediction: piano (0.2611)
  ■ Evaluation: X INCORRECT
  Running accuracy: 1462/2871 = 50.9%
.....
7 2872/2874 Iron Maiden - 11 - The Evil That Men Do-8.way
  @ Ground truth: acoustic guitar, voice
  Top prediction: voice (0.8681)
  🔣 Evaluation: 🔽 CORRECT
  Running accuracy: 1463/2872 = 50.9%
-----
2873/2874 Debussy - Arabesque-7.wav
  @ Ground truth: piano
  Top prediction: clarinet (0.8762)
  ■ Evaluation: X INCORRECT
  Running accuracy: 1463/2873 = 50.9%
-----
7 2874/2874 15 more than a feeling - boston-4.wav
  6 Ground truth: acoustic guitar
  Top prediction: voice (0.8689)
  ■ Evaluation: X INCORRECT
  Running accuracy: 1463/2874 = 50.9%
Inference completed!
Final accuracy: 1463/2874 = 50.9%
______
FINAL SUMMARY
______
Total files processed: 2874
Files with ground truth: 2874
Correct predictions: 1463
Overall accuracy: 50.9%
______
```

Lessons from model 2.X

- 1. Smaller network, with little loss in data.
- 2. Still, the CNNs were not deep enough to reach consistent decisions for all instruments
- 3. Some instruments did get good classifications- Idea for next project: Specialized networks for specific cases?
- 4. Multiple instrument training is too noisy. We got better results identifying the most prominent instrument here.
- 5. The network is still very large, not efficient enough
- 6. Best accuracy acquired: 51%

Conclusion

Our design was not good enough to justify it's complexity.

Choosing a better dataset could improve results, for some tasks.

We believe this field has potential, but as students we did not find the means to discover it.

Thank you!