Finding near-duplicates

Mining Massive Datasets Carlos Castillo Topic 04

Source for this deck

• Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 3) [slides ch3]

Fast near-neighbor applications

- For documents
 - Find "legitimate" duplicates
 - Copies of the same press release or cable
 - Mirrors of the same documents, for efficiency
 - Find "illegitimate" duplicates
 - Plagiarism
- For baskets
 - Find customers who purchase similar items

Example: plagiarism detection

Fast near-neighbor challenges

- Too many documents to compare all pairs
 - OK to pay linear or log cost, but not quadratic
- Documents cannot fit in main memory
 - They are too large or too many
- Many small pieces of one document can appear out of order in another

Shingling (ngrams)

First step: shingling

Candidate pairs:

those pairs of signatures that we need to test for similarity

The set of strings of length **k** that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Naïve solution: feature selection over bag of words

- Document = set of terms
 - → Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?

Naïve solution: feature selection over bag of words

- Document = set of terms
 - → Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?
 - Doesn't preserve the ordering
 - Unimportant terms are also relevant (stylistic)

Shingles

- An ngram in a document is a sequence of n tokens that appears in the doc
- Shingles are either ngrams (word-level) or sequences of characters, depending on the application
- Character-level example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice:
 S'(D₁) = {ab, bc, ca, ab}

Example: 4-grams (shingle = 4 consecutive words)

```
E.g., 4-shingles of "My name is Inigo Montoya. You killed my father. Prepare to die":
```

- my name is inigo
 - name is inigo montoya
 - is inigo montoya you
 - inigo montoya you killed
 - montoya you killed my
 - you killed my father
 - killed my father prepare
 - my father prepare to
 - father prepare to die

Compressed representation of shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Documents as sets of shingles

- A document is now a set of shingles
 - Dimensionality reduced from "words in a dictionary" to "number of distinct shingles"
 - Higher dimensionality but more sparse
- Working assumption
 - Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Using shingles directly

- Suppose we need to find near-duplicate documents among million documents
- Naïvely, we would have to compute all pairwise
 Jaccard similarities ≈ 5*10¹¹ comparisons
- At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For 10 million, it takes more than a year...

Min hashing

Next step: min hashing

Candidate pairs:

those pairs of signatures that we need to test for similarity

The set of strings of length **k** that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Sets can be bit vectors

- Many similarity problems involve finding subsets with substantial intersection
- Remember we can encode sets using bit vectors
 - set intersection = bitwise AND
 - set union = bitwise OR

• Example:
$$C_1 = 10111$$
; $C_2 = 10011$

- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = 3/4
- Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

$$J(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

From sets to boolean matrices

- Rows = items (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is very sparse!

Hashing set representations

- We don't want to compare c_1 , c_2 , they might be too large, slowing down the computation
- Instead, we compute signatures $h(c_1)$, $h(c_2)$ that are smaller in size than c_1 and c_2

Desired properties:

$$c_1 = c_2 \Rightarrow \text{Prob.}(h(c_1) = h(c_2)) \text{ is large}$$

 $c_1 \neq c_2 \Rightarrow \text{Prob.}(h(c_1) \neq h(c_2)) \text{ is large}$

Hashing set representations (cont.)

- Naïve approach (non-LSH-based):
 - 1) Compute signatures of columns: small summaries of columns
 - 2) Examine all pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: verify that columns with similar signatures are really similar
- Warnings:
 - Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hash function for Jaccard metric: min hashing

- Imagine the rows of the boolean matrix permuted under random but fixed permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:
 - $-h_{\pi}(\mathbf{C})=\min_{\pi}\pi(\mathbf{C})$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Minhash example

Try it! Minhash

Permutation π

Rows=Shingles, Columns=Documents D1 D3 D4

1	0	1	0

1 0 0

1 0 1 0

0 1 0

0 1 0 1

0 0

1 0 \mathbf{O}

Signature matrix M

Index of the bit vector position where the first 1 occurs according to the ordering of the permutation

Minhash approximates Jaccard

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), y∈ X is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either:

```
\pi(y) = \min(\pi(C_1)) if y \in C_1 or \pi(y) = \min(\pi(C_2)) if y \in C_2
```

- So the prob. that **both** are true is the prob. $y ∈ C_1 ∩ C_2$
- $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1\cap C_2|/|C_1\cup C_2|=sim(C_1, C_2)$

A single hash function is too coarse for our purposes

- We will use many permutations (say, 100)
- A signature is a collection of minhashes: one for each permutation
- Jaccard(c_1 , c_2) = E[minhashsim(c_1 , c_2)]
 - minhashsim(c1,c2) = J(minhash(C1), minhash(C2))

Example: three permutations

Permutation π			
2	4	3	
3	2	4	
7	1	7	
6	3	2	
1	6	6	
5	7	1	
4	5	5	

Rows=Shingles, Columns=Documents D1 D2 D3 D4				
1	О	1	О	
1	O	O	1	
o	1	O	1	V .
0	1	O	1	
О	1	О	1	Similar
1	О	1	О	Comple
1	O	1	0	Signat

Signature matrix M

Similarities:

Complete **Signatures**

1-3	2-4	1-2	3-4
0.75	0.75 1.00	0	0
0.67	1.00	0	0

Minhash signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- **sig(C)[i]** = according to the *i*-th permutation, the index of the first row that has a 1 in column *C*
 - $sig(C)[i] = min(\pi_i(C))$
- Note: The sketch (signature) of document C is small:
 ~100 bytes (depends on size of table)
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation

- Permuting rows even once is prohibitive
- Pick K = 100 hash functions k_i
 - Ordering of $\{1,2,...,n\}$ under k_i (computing h(1), h(2), ..., h(n) and sorting in increasing order) gives a random permutation!
- One-pass implementation
 - For each column $m{C}$ and hash function $m{k}_i$ keep a variable for the min-hash value
 - Initialize all sig(C)[i] = ∞
 - Keep the min hash value in a row containing a 1:
 - Suppose row j has 1 in column C
 - Then for each k_i if $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

Locality-sensitive hashing

Final step: locality-sensitive hashing

Candidate pairs:

those pairs of signatures that we need to test for similarity

The set of strings of length **k** that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

LSH: first idea

- **Goal:** Find documents with Jaccard similarity at least **s** (for some similarity threshold, e.g., **s**=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - 1) Hash columns of signature matrix **M** to many buckets
 - 2) Each pair of documents that hashes into the same bucket is a **candidate pair**

Signature matrix <i>M</i>				
d1	d2	d3	d4	
2	1	4	1	
1	2	1	2	
2	1	2	1	

Selecting candidates

- Pick a similarity threshold s (0 < s < 1)
- Columns x and y of M are a candidate pair if their signatures agree (M (i, x) = M (i, y)) on at least fraction s of their rows
- We expect documents x and y to have the same (Jaccard) similarity as their signatures

Creating buckets of similar documents

- Big idea: hash columns of signature matrix M
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b bands of size r

Signature matrix *M*

Partition M into b bands of size r (cont.)

- Partition matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Signature matrix <i>M</i>				
d1	d2	d3	d4	
2	1	4	1	
1	2	1	2	
2	1	2	1	

Hashing bands

Simplifying assumption: no collisions (no false positives)

- We will assume there are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of bands

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
 - Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- Goal: Find pairs of documents that are at least s = 0.8 similar

Suppose $sim(C_1, C_2) = 0.8$

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Since $sim(C_1, C_2) \ge s$, we want C_1 , C_2 to be a candidate pair
 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C₁, C₂ are **not** similar in all of the 20 bands:

$$(1-0.328)^{20} = 0.00035$$

- i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we will miss them)
- We would find 99.965% pairs of truly similar documents

Suppose $sim(C_1, C_2) = 0.3$

- Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Since $sim(C_1, C_2) < s$, we do not want C_1 , C_2 to be a candidate pair
- Probability C₁, C₂ identical in one particular band:

$$(0.3)^5 = 0.00243$$

• Probability C₁, C₂ identical in at least 1 of 20 bands:

$$1 - (1 - 0.00243)^{20} = 0.0474$$

- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH involves a trade-off

- Pick:
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

LSH: what we want

What 1 band of 1 row gives you

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = tr
 - Prob. that some row in band unequal = 1 tr
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = 1 (1 tr)b

What b bands of r rows give you

Example: b=20, r=5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: the S curve

Picking r and b to get the best S-curve

50 hash-functions (r=5, b=10)

Blue area: False Negative rate

Green area: False Positive rate

LSH summary

- Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary

Things to remember

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity $\geq s$

Exercises for this topic

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises 3.1.4 (Jaccard similarity)
 - Exercises 3.2.5 (Shingling)
 - Exercises 3.3.6 (Min hashing)
 - Exercises 3.4.4 (Locality-sensitive hashing)