МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

БГТУ.СМК-Ф-4.2-К5-02

<u> Факультет</u>	O	Естественнонаучный	
	шифр	наименование	
Кафедра	O7	Информационные системы и программная инженерия	
1 , 1	шифр	наименование	
Дисциплина		Программирование на языке высокого уровня	

КУРСОВАЯ РАБОТА

на тему

Объектно-ориентированная разработка программ с графическим пользовательским интерфейсом «сверху-вниз»: предварительное выявление классов, объектов и их отношений. Вариант: Создание многооконного приложения

Выполнил сту	удент группы	И501Б			
	Крылов И.О. Фамилия И.О.				
РУКОВОДИТЕЛЬ					
		7 1			
Вальштейн К.І		, ,			
Вальштейн К.І Фамилия И.О.	В.	пись			
-	В.				

САНКТ-ПЕТЕРБУРГ 2021 г.

Содержание

ВВЕДЕ	:НИЕ	3
1	Постановка задачи	4
2	Описание разработанной программы	5
2.1	Иерархия классов	5
2.2	Класс"Programm"	6
2.3	Класс"Form1"	6
2.4	Класс"Form3"	7
2.5	Абстрактный класс "Movie"	8
2.6	Класс ActionMovie	8
2.7	Класс Comedy	8
2.8	Класс Horror	9
2.9	Kласс Multiks	9
2.10) Класс DryDye	10
2.11	Класс River	10
3	Демонстрация работы	11
ЗАКЛЮ	ОЧЕНИЕ	16
СПИСО	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17
приложение и		10

ВВЕДЕНИЕ

Язык С# является наиболее известной новинкой в области создания языков программирования. Ввиду очень удобного объектно-ориентированного дизайна, С# является хорошим выбором для конструирования различных компонентов — от высокоуровневой бизнес логики до системных приложений, использующих низкоуровневый код. Также следует отметить, что С# является и Web ориентированным - используя встроенные конструкции языка компоненты, могут быть превращены в Web сервисы, к которым можно будет обращаться из Internet посредством любого языка на любой операционной системе.

В С# унифицирована система типов, можно рассматривать каждый тип как объект. Несмотря на то, используется класс, структура, массив или встроенный тип, можно обращаться к нему как к объекту. Объекты собраны в пространства имен (namespaces),которые позволяют программно обращаться к чему-либо. Это значит, что вместо списка включаемых файлов заголовков в своей программе необходимо написать какие пространства имен, для доступа к объектам и классам внутри них, будут использоваться. В С# выражение using позволяет не писать каждый раз название пространства имен, когда необходимо использовать класс из него. Например, пространство имен System содержит несколько классов, в том числе и Console.

Цель данной курсовой работы -- создание многооконного приложения. Задачи для достижения данной цели:

Создание иерархии классов;

Создание кнопочной формы;

Объединение иерархии классов и кнопочной формы;

Запись результатов в файл.

1 Постановка задачи

Создание иерархии классов было осуществлено с помощью языка с#. Кнопочная форма реализована с помощью технологии Windows Forms.

Объединение двух этих компонентов было произведено благодаря средствам языка с#, например делегатам.

Запись результатов в файл осуществляется средствами языка с# с использованием функций сериализации и десериализации.

2 Описание разработанной программы

2.1 Иерархия классов

На рисунке 1 представлена диаграмма классов. В программе используется 7 классов, 1 из которых абстрактный и 3 интерфейса.

Рисунок 1 - Диаграмма классов

2.2 Класс "Programm"

Класс содержит метод Main, в котором находится главная точка входа в приложение.

2.3 Класс "Form1"

Кнопочная форма, с помощью которой пользователь взаимодействует с приложением.

Содержит поле:

List<ICurse> _elements; - Список классов, которые пользователь может использовать в приложении.

Методы:

private void button_add_Click_1(object sender, EventArgs e) - Кнопка, при нажатии на которую, в список добавляется класс, выбранный пользователем.

Object sender - ссылка на данную кнопку. [1]

EventArgs е - параметр, содержащий данные о событии. [2]

private void button_remove_Click(object sender, EventArgs e) - Кнопка, при нажатии на которую, из списка удаляется выбранный элемент.

Object sender - ссылка на данную кнопку.

EventArgs e - параметр, содержащий данные о событии.

private void button4_Click(object sender, EventArgs e) - Кнопка, при нажатии на которую вызывается Form3 - форма для выбора метода класса.

Object sender - ссылка на данную кнопку.

EventArgs e - параметр, содержащий данные о событии.

private void button_save_Click(object sender, EventArgs e) - Кнопка, при

нажатии на которую список сохраняется в файл.

Object sender - ссылка на данную кнопку.

EventArgs e - параметр, содержащий данные о событии.

private void button_load_Click(object sender, EventArgs e) - Кнопка, при нажатии на которую список загружается из выбранного файла.

Object sender - ссылка на данную кнопку.

EventArgs e - параметр, содержащий данные о событии.

2.4 Класс "Form3"

string _result - поле, в котором хранится строка-результат выбранного метода.

List<Func<string>> _delegates - список делегатов.

internal string GetResult() - метод, который возвращает результат.

private void button1_Click(object sender, EventArgs e) - Кнопка, при нажатии на которую, в окно вывода выводится результат выбранного метода.

Object sender - ссылка на данную кнопку,

EventArgs e - параметр, содержащий данные о событии.

2.5 Абстрактный класс "Movie"

public abstract string RateTheMovie() — Оценка фильма
public virtual string WhatchMovie() — Просмотр фильма
public virtual string EatPopcorn() — Поесть попкорн
public virtual string GetClassName() — Получить имя класса

public List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов. [3]

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. [5]

2.6 Класс "ActionMovie"

public override string RateTheMovie() - Оценка
public String MaybeItIsGoodMovie() – Может это хороший фильм?
public override string GetClassName() – Имя класса

public new List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов.

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. Возвращает массив байтов.

2.7 Comedy

public override string RateTheMovie() - Оценка public string MaybeItIsBadMovie() - Может это плохой фильм?

public override string GetClassName() –Имя класса

public new List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов.

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. Возвращает массив байтов.

2.8 Класс Horror

public override string RateTheMovie() - Оценка
public string RatingEnoughHonest() – Достаточно ли объективная оценка?
public override string GetClassName() - Имя класса

public new List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов.

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. Возвращает массив байтов.

2.9 Класс Multiks (sealed)

public override string RateTheMovie() - Оценка
public string RatingEnoughHonest() – Достаточно ли объективная оценка?
public override string GetClassName() - Имя класса.

public new List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов.

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. Возвращает массив байтов.

2.10 Kласс DryDye

public override string RateTheMovie() - Оценка
public string WhatchMovie() – Просмотр
public string EatPopcorn() – Покушать попкорна

public new List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов.

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. Возвращает массив байтов.

2.11 Kласс River

public string RecieveWater() – получить воду

public new List<Func<string>> GenerateDelegateList() - Метод для добавления методов класса в список делегатов.

public byte[] GetByteArray() - Метод, который сериализует экземпляр класса. Возвращает массив байтов.

3 Демонстрация работы

На рисунке 2 показано главное меню многооконного приложения.

Рисунок 2 - Запуск приложения.

На рисунке 3 показана возможность выбора класса для добавления его экземпляра в список.

Рисунок 3 - Меню выбора типа.

На рисунке 4 пользователь заполнил список экземплярами всех классов.

Рисунок 4 - Экземпляры всех классов добавлены в список.

На рисунке 5 отображено окно для выбора метода для экземпляра выбранного класса. У каждого класса свой уникальный набор методов.

Рисунок 5 - Выбор метода выбранного элемента

На рисунке 6 пользователь выполнил метод выбранного элемента списка и результат отобразился в текстовом поле - "Консоль". При этом в спискеэлемент изменился, так как метод изменяет поля класса.

Рисунок 6 - Выполнение метода и вывод результата в консоль.

На рисунке 7 показан результат удаления элемента из списка.

Рисунок 7 - Удаление элементов из списка.

На рисунке 8 пользователь нажал кнопку "Сохранить". Эта кнопка вызывает системное окно для записи списка в файл.

Рисунок 8 - Сохранение в файл.

На рисунке 9 показан результат нажатия кнопки "Загрузить" - открывается системное меню, в котором пользователь может выбрать какой файл открыть, и, соответственно, какой список загрузить в приложение.

Рисунок 9 - Загрузка списка из файла.

На рисунке 10 отображён результат загрузки из файла. В пустой список добавились элементы, которые находились в файле.

Рисунок 10 - Результат загрузки.

ЗАКЛЮЧЕНИЕ

Во время написания курсовой работы были приобретены навыки работы с языком программирования С# и технологией windows forms.

Было разработано многооконное приложение с возможностью сохранения информации в файл и чтения из него. С помощью Windows Forms реализована кнопочная форма, позволяющая пользователю использовать многооконное приложение. В процессе реализации данной задачи использовались основные свойства объектно-ориентированного программирования. Все поставленные цели и задачи выполнены.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Windows Forms [Электронный ресурс] Официальная документация по технологии windows forms URL: https://docs.microsoft.com/ru-ru/dotnet/desktop/winforms/?view=netdesktop-5.0 (дата обращения: 12.11.2021).
- 2. Metanit.com [Электронный ресурс] Руководство по программированию в Windows Forms URL: https://metanit.com/sharp/windowsforms/ (дата обращения: 12.11.2021).
- 3. Техническая документация Майкрософт [Электронный ресурс]. URL: https://docs.microsoft.com/ru-ru (дата обращения: 12.11.2021).
- 4. ГОСТ 7.32-2017 Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления. Введ. 2018-07-01. М.: ФГУП СТАНДАРТИНФОРМ, 2018.
- 5. Мюллер Д. П., Семпф Б., Чак С. С# для чайников. Диалектика-Вильямс, 2019. – 608 с.

ПРИЛОЖЕНИЕ А

Папка с проектом прилагается к отчету