

GEOMETRÍA

Capítulo 24

ECUACIÓN DE LA PARÁBOLA

APLICACIONES DE LA PARÁBOLA

Las aplicaciones de las parábolas son básicamente aquellos fenómenos en donde nos interesa hacer converger o divergir un haz de luz y sonido principalmente. La dirección de propagación de una onda se representa mediante líneas que se denominan rayos y según la forma de la superficie en la que inciden así será la dirección de los rayos reflejados. Cuando la forma de dicha superficie es parabólica todos los rayos que llegan paralelos al eje focal de la parábola se reflejan pasando por un mismo punto que se denomina foco.

Ecuación de la parábola

Dada la recta fija L, denominada directriz y un punto fijo F, denominado foco, que no pertenece a dicha recta, se define la parábola como el lugar geométrico del conjunto de puntos P(x, y) que equidistan del foco F y la recta L.

Elementos asociados a la parábola

.FOCO: F

. EJE FOCAL $: L_1$

.DIRECTRIZ : L

. VERTICE : V(h; k)

.PARAMETRO : p(VF = VQ = p)

.CUERDA : ST

.CUERDA FOCAL : AB

. LADO RECTO $: \overline{MN} (MN = 4p)$

Ecuación de la parábola con eje focal paralelo al

$$(x-h)^2 = 4p(y-k)$$

Ecuación de la parábola con el eje focal en el eje y

Ecuación de la parábola con el eje focal paralelo al

Ecuación de la parábola con eje focal en el eje x

1. De la figura, halle la ecuación de la parábola siendo F el foco y O su vértice.

Resolución:

Piden: La ecuación de parábola

$$x^2 = -4py$$

El parámetro :

$$p = 5$$

Remplazando en la ecuación

$$x^2 = -4(5)y$$

$$x^2 = -20y$$

2. En la figura, F es el foco de la parábola y O su vértice. Halle el valor de p.

Resolución:

- Piden: p
- La ecuación de parábola

$$y^{2} = 4px$$

$$6x = 4px$$

$$\frac{6}{4} = p$$

$$p = \frac{3}{2}$$

3. En la parábola mostrada, determine las coordenadas del foco F si O es su vértice.

p=3F(0;-3)(6; -3)A

Resolución:

- Piden: La coordenada del foco.
- La ecuación de parábola

$$x^2 = -4py$$

 Remplazando el par ordenado (6; -3) en la ecuación.

$$6^2 = -4p(-3)$$

 $36 = 12p$
 $3 = p$

La coordenada del foco.

$$\mathbf{F}(\mathbf{0}; \mathbf{-3})$$

4. De la figura, determine la ecuación de la recta directriz L_D de la parábola de foco F y vértice O.

Resolución:

- Piden: L_D
- La ecuación de parábola

$$x^{2} = 4py$$

$$8y = 4py$$

$$2 = p$$

$$y = -2$$

 L_{D} : y + 2 = 0

5. Halle la longitud del lado recto de la parábola $y^2 + 24x = 0$

Resolución:

Piden: LR

$$LR = 4p \qquad ... (1)$$

La ecuación de parábola

$$y^{2} = -4px$$

$$-24x = -4px$$

$$6 = p \qquad ... (2)$$

Reemplazando 2 en 1.

$$LR = 4(6)$$

LR = 24

HELICO | PRACTICE

6. En la figura podemos observar un puente que es sostenido por un cable que tiene forma parabólica, determine la ecuación del arco parabólico.

Resolución:

Piden: Ecuación de la parábola

En el gráfico: $x^2 = 4pv$

Como P es un punto de la curva

$$x^2 = 4py$$

$$6^2 = 4p(9)$$

$$36 = 36p$$

$$p = 1$$

Reemplazando $x^2 = 4py$

$$x^2 = 4py$$

$$x^2 = 4(1)y$$

$$x^2 = 4y$$

HELICO | PRACTICE

7. En la figura se muestran dos postes separados 24m. A una altura de 10m en ambos postes, se encuentra suspendido un cable, el cual forma una curva parabólica. Si la parte más baja del cable se encuentra a 1 m del piso, halle la ecuación de la parábola descrita por dicho cable.

Resolución:

- Piden: La ecuación de parábola $x^2 = 4py$
- Remplazando el par ordenado (12 ; 9) en la ecuación:

$$(12)^2 = 4p(9)$$

 $144 = 36p$
 $4 = p$

Reemplazando:

$$x^2 = 4(4)y$$

$$x^2 = 16y$$