Metodi Numerici per L'intelligenza Artificiale.

Andrea Cecchini 27 febbraio 2023

Indice

1	Intr	oduzione all'Analisi Numerica.	3
	1.1	Analisi Numerica	3
		1.1.1 Fasi della risoluzione di un problema numerico	3
		1.1.2 Errori nel risolvere un problema numerico	3
	1.2	Classificazione dei problemi numerici	4
		1.2.1 Problema numerico	4
		1.2.2 Classificazione dei problemi numerici	4
2	Intr	oddinone dir incomponita di entodice	5
	2.1	Cambio di paradigma di programmazione	6
		2.1.1 Paradigma classico	6
		2.1.2 Paradigma del Machine Learning	6
	2.2	I dati	8
		2.2.1 Acquisizione dei dati	8
		2.2.2 Annotazione dei dati	8
		2.2.3 Organizzazione dei dati	8
	2.3	Complessità dei dati	9
		2.3.1 Feature extraction	9
	2.4	Machine Learning tasks	1
		2.4.1 Classificazione	1
		2.4.2 Regressione	1
		2.4.3 Clustering	2
	2.5	Loss Function	
	2.6	Tipi di apprendimento	2
		2.6.1 Apprendimento supervisionato	
		2.6.2 Apprendimento non supervisionato	
		2.6.3 Apprendimento con rinforzo	

1 Introduzione all'Analisi Numerica.

1.1 Analisi Numerica.

Introduciamo nel definire il compito dell'analisi numerica.

Analisi Numerica.

L'Analisi Numerica è la parte di matematica che si occupa di dare una **risposta numerica** ad un problema matematico che modellizza un problema reale

1.1.1 Fasi della risoluzione di un problema numerico.

Al fine di raggiungere tale problema, ci avvaliamo delle seguenti fasi:

- Tradurre il problema reale in un insieme di equazioni matematiche in grado di descriverlo
- Trasformare il problema matematica nel continuo in un problema numerico discreto che sia risolubile.
- Trasportare il problema discreto in un calcolatore mediante l'applicazione di algoritmi numerici capaci di determinare la soluzione in un tempo ottimale.
- Interpretare la soluzione numerica nei termini della situazione reale e verificare così sia l'adeguatezza del modello matematico sia l'efficienza dell'algoritmo risolutivo.

1.1.2 Errori nel risolvere un problema numerico.

Nel percorso appena descritto vi possono essere numerevoli errori, le quali sorgenti sono:

- Errori nel modello matematico Nascono da una cattiva traduzione del problema reale a quello matematico, per esempio si considerano alcune cose come trascurabili quando non lo sono.
- Errori nel modello numerico-computazionale Vengono descritti come errori di discretizzazione o troncamento.
- Errori presenti nei dati Nati da uno strumento di misurazione fallace o da misurazioni che possono essere influenzate da errori sistematici.
- Errori di arrotondamento nei dati e nei calcoli Sono gli errori introdotti nella rappresentazone dei numeri sul calcolatore.

1.2 Classificazione dei problemi numerici

1.2.1 Problema numerico

Problema Numerico.

Per problema numerico intendiamo una descrizione chiara di una relazione funzionale tra i dati (input) e i risultati (output).

In particolare, in un problema numerico abbiamo i seguenti elementi:

- F rappresenta la relazione funzionale tra input ed output.
- x rappresenta il dato di input della relazione funzionale.
- y rappresenta l'output dell; a funzione di un determinato input

1.2.2 Classificazione dei problemi numerici.

Descritti questi 3 elementi, è possibile classificare il problema numerico in base a cosa stiamo cercando:

- Problema diretto F e x sono dati, bisogna trovare y.
- Problema inverso F e y sono dati, bisogna trovare x.
- Problema di identificazione x e y sono noti, bisogna trovare F.

Quest'ultimo problema è quello che interesserà di più durante il corso, perchè è proprio il problema numerico che l'intelligenza artificiale cerca di risolvere.

Summary

Abbiamo introdotto la materia dell'analisi numerica e quello che si prefissa di risolvere. Successivamente abbiamo definito il concetto di problema numerico ed abbiamo elencato i diversi tipi, quali problema diretto, problema inverso e problema di identificazione.

2 Introduzione all'Intelligenza artificiale

Intelligenza Artificiale. Per intelligenza artificiale si intende una parziale riproduzione dell'attività intellettuale propria dell'uomo.

Esistono due tipi di intelligenze artificiali, basate sul loro dominio applicativo:

- Intelligenza artificiale "debole": Sono dei sistemi basati per risolvere problemi specifici.
- Intelligenza artificiale "forte": Sono dei sistemi in grado di replicare tutte le funzioni cognitive dell'essere umano. Spesso per riferirci a questa categoria useremo il termine "Intelligenza Generalista".

Molti tendono a confondere e a non capire il legame tra **intelligenza artificiale**, ,**machine learning** e **deep learning**.

Rappresenteremo il loro legame attraverso il seguente diagramma di Venn:

Detto ciò, capiamo cosa cambia grazie all'utilizzo di questa tecnologia.

2.1 Cambio di paradigma di programmazione

2.1.1 Paradigma classico

Il paradigma sul quale noi siamo abituare a creare programmi è il seguente:

- Il **programmatore** elabora e crea un **algoritmo** (programma).
- All'algoritmo vengono forniti dei dati come input.
- L'elaboratore computa l'input sulla base dell'algoritmo e fornisce un output.

Questo modo di agire prevede una forte presenza dell'essere umano, il quale in veste di programmatore, crea l'algoritmo voluto.

2.1.2 Paradigma del Machine Learning

Machine Learning

In questo paradigma il ruolo dell'uomo viene "sostituito" dalla tecnica del Machine Learning.

Machine Learning.

Sistema in grado di apprendere automaticamente da esempi specifici (**training data**) e di generalizzare la conoscenza su nuovi campioni (**test data**) dello stesso dominio

Difatti, il machine learning dato input ed output, procede nella risoluzione del problema di identificazione.

Andiamo ad analizzare le diverse fasi di questo paradigma:

- Acquisizione dati I dati sono l'elemento base di tutte le applicazioni di M.L.. E' molto importante quindi sapere come acquisire questi dati.
- Data processing I dati raccolti nella fase precedente vengono processati al fine da attarli al meglio al al modello M.L. che intendiamo sviluppare.
- Modello Insieme di techiche matematiche e statistiche in grado di apprendere da una certa distribuzione di dati.
- **Predizione** Una volta ottenuto il modello è possibile "predire" l'output correlato ad un certo input non presentato nel training data.

2.2 I dati

2.2.1 Acquisizione dei dati

E' possibile ottenere i dati in due modi:

- Usare set di dati pubblici: sono presenti molte piattaforme, come kaggle.
- Acquisento un nuovo set di dati.

E' molto comune nel mondo della ricerca di fornire questi set di dati pubblici, in modo altruista. Visto ciò, non usarli sarebbe un peccato.

2.2.2 Annotazione dei dati

Etichetta.

Annotare i dati vuol dire assegnare un **etichetta** (output) ad una determinata istanza di input. L'etichetta rappresenta il contenuto semantico dei dati.

Diremo quindi che un dato è annotato se associato ad una etichetta.

I dati non annotati sono spesso **inutili**. Tuttavia, grazie alla tecnica di apprendimento **non supervi-sionata** (vedremo dopo) è possibile comunque estrarre conoscenza da essi.

2.2.3 Organizzazione dei dati

Bisogna **organizzare** i dati come segue:

- Training set sono i dati sui quali il modello apprende automaticamente durante la fase di apprendimento.
- Validation set sottoinsieme del training set, sono i dati con il quali si informa il sistema della validazione del suo apprendimento.
- **Testing set** dati con il quali si testa il modello. Questa fase verifica l'efficacia del modello, anche attraverso misure numberiche qualitative e quantitative.

Nell'immagine qui sopra si elenca differenti proporzioni in cui si dovrebbe suddividere il set di dati che abbiamo nei subset descritti precedentemente.

2.3 Complessità dei dati

Dimensionalità.

La dimensionalità di un dato rappresenta la densità di quest'ultimo, ovvero la quantità.

Complessità.

Diremo che un dato è complesso se presenta una alta dimensionalità.

Dare al sistema di M.L. una mole spoporzionata di dati, come tutti i pixel di un'immagine, non è una buona cosa.

Se stessimo lavorando su un classificatore di immagini, sarebbe un errore grave dargli dati ad alta dimensionalità, in quanto non riuscirebbe ad apprendere da così tanti dati **inutili**.

La soluzione a questo problema si chiama feature extraction.

2.3.1 Feature extraction

Feature.

La **feature** srappresenta la parte più utile del dato grezzo.

Feature Expansion.

Rappresenta l'operazione di estrazione di features dal dato grezzo.

E' un modo per creare un nuovo e più piccolo insieme di dati che cattura la maggiore parte dell'informazione dei dati grezzi.

Feature Descriptor.

Un **featuer descriptor** rappresenta un vettore n dimensionale di feature numeriche che rappersentano qualche oggetto.

Object A geometric shape

Data Array of values (coordinates)

Features

A (sub)set of the coordinates A «new value» that we can compute from coordinates

An image

Object

Data Matrix of values (pixels)

Features

Unrolled or a subset of pixels A «new value» that we can compute from pixels

2.4 Machine Learning tasks

Il machine learning offre diversi task a seconda dell'output che vogliamo

- Classificazione
- Regressione
- Clustering

2.4.1 Classificazione

Classe.

Una classe è un set di dati con proprietà comuni.

Il concetto di classe è correlato al concetto di "etichetta".

Classificazione.

Dato un input specifico, il modello (classificatore) emette una classe.

- Se ci sono 2 classi, chiamiamo il problema come problema di classificazione binaria
- Se ci sono n classi con n > 2, chiamiamo il problema come **problema di classificazione** multiclasse.

2.4.2 Regressione

Regressione.

La **relazione** viene utilizzata per **modellare la relazione** tra le variabili indipendenti e le variabili dipendenti.

Quindi la regressione si occupa di risolvere un problema di identificazione.

Regressione Multi-Variata. La **regressione multivariata** prevede l'impiego di più variabili in gioco rispetto alla classica regressione lineare.

2.4.3 Clustering

Clustering.

Il **clustering** permette di identificare dei gruppi di dati in classi, senza saper a priori le classi.

Il clustering è spesso applicato, infatti, in un ambiente di apprendimento non supervisionato, in cui le classi del problema non sono noti a priori.

2.5 Loss Function

Facciamo una picolissima diramazione di poche righe per spiegare il concetto di loss function.

Loss Function.

La loss function (funzione di perdita) è un indicatore che permette di descrivere la qualità dell'apprendimento del sistema.

Al fine di aver un sistema che appreso in maniera esaustiva, bisogna far tendere verso il basso il valore della **loss function**.

- 2.6 Tipi di apprendimento
- 2.6.1 Apprendimento supervisionato
- 2.6.2 Apprendimento non supervisionato
- 2.6.3 Apprendimento con rinforzo