For all questions, answer choice (E) NOTA means that none of the given answers is correct. The $\sqrt{-1} = i$. Good Luck!

- 1. What is the area enclosed by the conic represented by the equation $4x^2 + 5xy + y^2 = 1$ in the argand plane?
 - (A) $\frac{2\pi}{3}$
- (B) The conic is degenerate. (C) 6π

- (E) NOTA

- 2. What is $\cos(36^\circ)$?
 - (A) $\frac{1-\sqrt{5}}{4}$
- (B) $\frac{1+\sqrt{5}}{4}$ (C) $\frac{1-\sqrt{5}}{2}$ (D) $\frac{1+\sqrt{5}}{2}$
- (E) NOTA
- 3. Find the acute angle formed by the intersection of the two planes x + y + z = 5 and 2x y z = 2017. (Hint: use
 - (A) $180^{\circ} \arccos\left(\frac{\sqrt{2}}{3}\right)$

- (B) $\arccos\left(\frac{\sqrt{5}}{5}\right)$ (C) $\arccos\left(\frac{\sqrt{2}}{3}\right)$ (D) $180^{\circ} \arccos\left(\frac{\sqrt{5}}{5}\right)$
- 4. Which of the following summations converges?
 - I. $\sum_{x=1}^{\infty} \frac{1}{\sqrt{x^3 + 2x}}$
 - II. $\sum_{x=3}^{\infty} \frac{1}{\sqrt[3]{x^3 + 2x^2}}$ III. $\sum_{x=1}^{\infty} \frac{1}{\sqrt[4]{x^7 + 5x}}$
- (B) I and II only
- (C) I, II, and III
- (D) I and III only
- (E) NOTA

- 5. Evaluate the following summation: $\sum_{x=1}^{\infty} \frac{x}{3^x}$.
 - (A) $\frac{1}{2}$

(D) $\frac{5}{9}$

- (E) NOTA
- 6. Find the cosine of the acute angle formed by the intersection of the lines y = 4x + 10 and y = 6x 35.

 (A) $\frac{25}{\sqrt{629}}$ (B) $\frac{2}{625}$ (C) $\frac{4}{\sqrt{235}}$ (D) $\frac{36}{\sqrt{293}}$ (Fig. 1)

- (E) NOTA

- 7. Classify the following polar curve: $r = 4 3\sin(\theta)$.
 - (A) Cardioid
- (B) Convex Limacon
- (C) Dimpled Limacon
- (D) Lemniscate
- (E) NOTA

- 8. Find the area of the triangle defined by the points (1,3,6), (4,5,7), and (9,4,10).
- (B) $\frac{83\sqrt{3}}{4}$
- (C) 83
- (D) $\frac{3\sqrt{26}}{2}$
- (E) NOTA

- 9. What is the eccentricity of the polar curve $r = \frac{8}{5 10\cos(\theta)}$?

 (A) $\frac{8}{5}$ (B) 2 (C) $\frac{4}{5}$
 - (A) $\frac{8}{5}$

- (D) $\frac{1}{2}$

- (E) NOTA
- 10. Find the area of the annulus defined by two concentric circles given that a chord of length 46 of the larger circle is tangent to the smaller circle.
 - (A) 200π
- (B) 625π
- (C) 529π
- (D) 324π
- (E) NOTA
- 11. Find the volume of the parallelepiped determined by the vectors $\langle 1, -9, -1 \rangle$, $\langle 4, 7, -9 \rangle$, and $\langle 2, 3, 2 \rangle$.
 - (A) 287
- (B) 50
- (C) $\frac{235}{6}$
- (D) $\frac{190}{6}$

12. How many petals does the rose curve $r = \sin(14\theta)$ have?

(A) 28

(B) 14

(C) 13

(D) 261

(E) NOTA

13. What is the 6th pentagonal number?

(A) 105

(B) 51

(C) 8

(D) 16

(E) NOTA

14. Find the period of $f(x) = \cos(\cos x)$.

(A) 6π

(B) 2π

(C) $\frac{\pi}{2}$

(D) π

(E) NOTA

15. What is the amplitude of $f(x) = 4\sin(x) + \sqrt{26}\cos(x)$?

(A) $\sqrt{42}$

(B) $\frac{\sqrt{26}}{2}$

(D) $\frac{4+\sqrt{26}}{2}$

(E) NOTA

16. How many solutions are there to $\sin(8x) + \sin(12x) = 0$ over the interval $(0, 2\pi]$?

(A) 25

(B) 48

(C) 24

(D) 50

(E) NOTA

17. Find the determinant of the following 4×4 matrix:

$$\begin{bmatrix} 2 & 5 & 12 & 10 \\ 7 & -5 & 9 & 11 \\ 3 & \frac{15}{2} & 17 & 15 \\ -1 & 4 & 8 & -10 \end{bmatrix}$$

(A) 543

(B) 0

(C) -537

(D) 592

(E) NOTA

18. How many times do the graphs of $y = \frac{x}{20}$ and $y = \sin(x)$ intersect? (A) 8 (B) 9 (C) 10

(D) 11

(E) NOTA

19. A cylinder of radius 8 and height 27 is laying on its side and is filled with water. The water rises to a height of 4. What is the volume of the water? (Keep in mind, the cylinder is on its side, not standing on its base.)

(A) $288\pi - 432\sqrt{3}$

(B) $576\pi - 432\sqrt{3}$

(C) 216π

(D) $288\pi - 216\sqrt{3}$

(E) NOTA

20. What is the equation of the plane defined by the points (1,3,5), (-4,7,6), and (5,8,-2)?

(A) 5x - 4y - z = -12 (B) 9x + y - 8z = -28 (C) 33x + 31y + 41z = 331 (D) 53x + 40y + 32z = 333 (E) NOTA

21. A regular hexagon is graphed on the Cartesian plane, centered on the origin. One vertex can be represented by the polar coordinate $(-6, 240^{\circ})$. What is the area enclosed by this hexagon?

(A) $27\sqrt{3}$

(B) $9\sqrt{3}$

(C) $15\sqrt{3}$

(D) Cannot be determined. (E) NOTA

22. The function $\sinh(x) = \frac{e^x - e^{-x}}{2}$ is called the Hyperbolic Sine Function. What does the inverse of the Hyperbolic Sine Function evaluate to at x = 4?

(A) $\ln (4 + \sqrt{17})$

(B) $\ln(17)$

(C) $\pm \ln{(\sqrt{17} - 4)}$ (D) $\ln{(2\sqrt{17})}$

(E) NOTA

23. Given that $\log(2) + \log(\cos\theta) + \log(\sin\theta) = \sqrt{3}$, solve for $\sin(2\theta)$.

(A) $\frac{10^{\sqrt{3}}}{2}$

(B) $\frac{10^{2\sqrt{3}}}{2}$

(D) $10^{\sqrt{3}}$

(E) NOTA

24. What are the eigenvalues of the following matrix?

$$\begin{bmatrix} 3 & 9 \\ -5 & 17 \end{bmatrix}$$

- (A) 3, 17
- (B) 8, 12
- (C) 9, 11
- (D) 7, 13
- (E) NOTA

25. Evaluate:

$$\lim_{x \to \infty} (\sqrt{x^2 + \frac{3}{4}x} - \sqrt{x^2})$$

- (A) ∞
- (B) $\frac{3}{4}$

- (C) $\frac{3}{8}$
- (D) $\frac{3}{2}$
- (E) NOTA

26. Classify the following conic: $3x^2 + 12xy - 6y^2 + 23x + 420y - 5 = 0$.

- (A) Hyperbola
- (B) Parabola
- (C) Ellipse
- (D) Circle
- (E) NOTA

27. What type of graph do the following parametric equations define?

- $x = 3\sin(\theta) 5$
- $y = 7\cos(\theta) + 8$ (A) Circle
- (B) Parabola
- (C) Hyperbola
- (D) Ellipse
- (E) NOTA

28. Given that $\sin \theta = \frac{2}{5}$ and $0 \le \theta \le \frac{\pi}{2}$, find $\tan \frac{\theta}{2}$.

- (A) $\frac{5+\sqrt{21}}{2}$
- (B) $\frac{5}{2}$
- (C) $\frac{\sqrt{21}}{2}$
- (D) $\frac{5-\sqrt{21}}{2}$
- (E) NOTA

29. Assuming the function $cis(x) = \cos x + i \sin x$ has its domain restricted to $[0, 2\pi]$, simplify $(-i)^{\frac{1}{2}}$.

- (A) $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$
- (B) $\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i$ (C) $-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ (D) $-\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i$
- (E) NOTA

30. Congratulations! You have made it to the end of the test. What is $\cos^{-1}(\cos(\frac{7\pi}{6}))$?

- (A) $\frac{7\pi}{6}$
- (B) $-\frac{\pi}{6}$
- (C) $\frac{5\pi}{6}$
- (D) Undefined.
- (E) NOTA