

Topic 1: Higher order derivatives

The derivative of $\frac{dy}{dx}$ w.r.t. x is called the **second** order derivative of y = f(x) and is denoted by $\frac{d^2y}{dx^2}$ or f''(x). Thus,

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = f''(x) = \frac{d^2y}{dx^2}$$

Similarly, successive derivatives are: $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \cdots, \frac{d^ny}{dx^n}$ or

$$f'(x), f''(x), f'''(x), \dots, f^{(n)}(x)$$

Available from 09:00 Monday 10 March -17:00 Sunday 16 March 2025

Illustration: Given $y = e^{3x}$, show that $\frac{d^3y}{dx^3} - 27y = 0$.

$$\frac{dy}{dx} = \frac{d}{dx}(e^{3x}) = 3e^{3x}, \quad \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(3e^{3x}) = 9e^{3x}$$

$$\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d}{dx} (9e^{3x}) = 27e^{3x} \quad \Rightarrow \frac{d^3y}{dx^3} = 27y \quad \therefore \frac{d^3y}{dx^3} - 27y = 0$$

1. Given
$$y = 2x^2 + \ln x$$
, $x > 0$. Show that $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2 = 0$.

Answer:

2. Given
$$y = \ln(x + \sqrt{1 + x^2})$$
. Show that $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0$.

1. Given $y = \tan x$, find $\frac{d^2y}{dx^2}$

2. Given $y = e^x \sin x$, find $\frac{d^2y}{dx^2}$

Answer:

Answer:

3. Given $y = \sin^{-1} x$; |x| < 1, find $\frac{d^2 y}{dx^2}\Big|_{x=\frac{1}{3}}$

4. Given $y = (1 + x^2) \tan^{-1} x$, find $\frac{d^2y}{dx^2}$

Answer:

Topic 2: Parametric Differentiation

Illustration: Given $x = a(t - \sin t)$ and $y = a(1 - \cos t)$ (where $a \neq 0$ is a constant),

find
$$\left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}}$$

$$\frac{dx}{dt} = a(1 - \cos t)$$

$$\frac{dx}{dt} = a(1 - \cos t)$$
Note: $\frac{dy}{dt}$ is in the numerator
$$\frac{dy}{dt} = a \sin t$$

$$\frac{dy}{dt} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{a \sin t}{a(1 - \cos t)} = \frac{\sin t}{1 - \cos t}$$

$$\therefore \left. \frac{dy}{dx} \right|_{t=\frac{\pi}{2}} = \frac{\sin\frac{\pi}{2}}{1 - \cos\frac{\pi}{2}} = 1$$

1. Given $x = \cos t$, $y = \sin^2 t$. Use the method of parametric differentiation to find $\frac{dy}{dx}\Big|_{t=\pi/3}$

1.	Given $x = a \sec \theta$,	$y = b \tan \theta$	use the n	nethod of pa	arametric	differentiation	to find	$\frac{dy}{dx}$	$\theta = \pi/4$
----	-----------------------------	---------------------	-----------	--------------	-----------	-----------------	---------	-----------------	------------------

Answer:

2. Given $x = a \cos \theta$, $y = b \sin \theta$. Use the method of parametric differentiation to find $\frac{dy}{dx} \Big|_{\theta = \pi/4}$

Answer:

3. Given $x = \cos^3 \theta$, $y = \sin^3 \theta$. Use the method of parametric differentiation to find $\frac{dy}{dx} \Big|_{\theta = 3\pi/4}$

Topic 3: Maclaurin's Series

Let f(x) be a continuously differentiable function then the

Maclaurin's series expansion of f(x) is given by:

$$f(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \frac{f'''(0)}{3!} \cdot x^3 + \cdots$$

Illustration: Given $f(x) = \frac{1}{1-x}$; -1 < x < 1, obtain the Maclaurin's series expansion of f(x) up to the terms in x^4 .

$$f(x) = \frac{1}{1-x} \qquad \Rightarrow f(0) = 1$$

$$f'(x) = \frac{-1}{(1-x)^2} \cdot (-1) = \frac{1}{(1-x)^2} \qquad \Rightarrow f'(0) = 1$$

$$f''(x) = \frac{-2}{(1-x)^3} \cdot (-1) = \frac{2}{(1-x)^3} \qquad \Rightarrow f''(0) = 2$$

$$f'''(x) = \frac{-6}{(1-x)^4} \cdot (-1) = \frac{6}{(1-x)^4} \qquad \Rightarrow f'''(0) = 6$$

$$f^{(4)}(x) = \frac{-24}{(1-x)^5} \cdot (-1) = \frac{24}{(1-x)^5} \qquad \Rightarrow f^{(4)}(0) = 24$$

$$\therefore \frac{1}{1-x} = 1 + 1 \cdot x + \frac{2}{2!} \cdot x^2 + \frac{6}{3!} \cdot x^3 + \frac{24}{4!} \cdot x^4 + \cdots$$

$$= 1 + x + x^2 + x^3 + x^4 + \cdots$$

1. Given $f(x) = \ln(1+x)$; |x| < 1, find the Maclaurin's series expansion of f(x) up to terms with x^4

2. Given $f(x) = \tan^{-1} x$, find the Maclaurin's series expansion of f(x) up to terms with x^3

Answer:

Answer:

3. Given $f(x) = \tan x$, find the Maclaurin's series expansion of f(x) up to terms with x^3

4. Given $f(x) = \frac{1}{1-x^2}$; |x| < 1, find the Maclaurin's series expansion of f(x) up to terms with x^2

Answer:

1. Obtain Maclaurin's series expansion of $f(x) = e^x$, and show that:

$$\frac{1}{2}(e^x - e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

Answer:

2. Obtain Maclaurin's series expansion of $f(x) = \ln(1+x)$, and show that:

$$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)}$$

Topic 3: Maclaurin's Series (additional illustration)

Let f(x) be a continuously differentiable function then the

Maclaurin's series expansion of f(x) is given by:

$$f(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \frac{f'''(0)}{3!} \cdot x^3 + \cdots$$

Illustration: Given $f(x) = \cos^2 x$, find the Maclaurin's series expansion of f(x) up to the terms in x^4 . Hint: use $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$

Let
$$g(x) = \cos 2x$$
 $\Rightarrow g(0) = 1$
 $g'(x) = -2\sin 2x$ $\Rightarrow g'(0) = 0$
 $g''(x) = -4\cos 2x$ $\Rightarrow g''(0) = -4$
 $g'''(x) = 8\sin 2x$ $\Rightarrow g'''(0) = 0$
 $g^{(4)}(x) = 16\cos 2x$ $\Rightarrow g^{(4)}(0) = 16$
 $g(x) = g(0) + g'(0) \cdot x + \frac{g''(0)}{2!} \cdot x^2 + \frac{g'''(0)}{3!} \cdot x^3 + \frac{g^{(4)}(0)}{4!} \cdot x^4 + \cdots$
 $= 1 + 0 \cdot x + \frac{-4}{2!} \cdot x^2 + \frac{0}{3!} \cdot x^3 + \frac{16}{4!} \cdot x^4 + \cdots = 1 - 2x^2 + \frac{2}{3}x^4 + \cdots$
 $f(x) = \cos^2 x = \frac{1}{2}(1 + g(x)) = 1 - x^2 + \frac{x^4}{3} + \cdots$

1. Given $f(x) = x^2 \sin 2x$, find the Maclaurin's series expansion of f(x), show the first 3 non-zero terms.

Hint: find the Maclaurin's series of $g(x) = \sin 2x$, then $f(x) = x^2 \cdot g(x)$

Answer:

2. Given $f(x) = x \sin^2 2x$, find the Maclaurin's series expansion of f(x), show the first 3 non-zero terms. Hint: use $\sin^2 2x = \frac{1}{2}(1 - \cos 4x)$

Topic 4: Equations of Tangent and Normal Lines

The equation of a tangent line to the curve y = f(x) at the point (x_1, y_1) is given by

$$y - y_1 = m \left(x - x_1 \right)$$

where $m = \frac{dy}{dx}\Big|_{(x_1, y_1)}$

The equation of a normal line to the curve y = f(x) at the point (x_1, y_1) is given by

$$y - y_1 = n \left(x - x_1 \right)$$

where $n = -\frac{1}{m}$

Illustration: The equation of a curve is given by $y = \frac{1}{x}$. Find the equation of the tangent line and the normal line to the curve at point (1,1).

$$\frac{dy}{dx} = -\frac{1}{x^2} \quad \Longrightarrow \quad m = \left. \frac{dy}{dx} \right|_{x=1} \qquad = -\frac{1}{(1)^2} = -1$$

Equation of tangent line: $y - y_1 = m(x - x_1)$

$$\Rightarrow y - 1 = -1(x - 1)$$

$$\therefore$$
 $y + x - 2 = 0$ Equation of the tangent line at $(1,1)$

Equation of normal line: $y - y_1 = -\frac{1}{m}(x - x_1)$

$$\Rightarrow y - 1 = 1(x - 1)$$

$$\therefore$$
 $y = x$ Equation of the normal line at $(1,1)$

1. Find the equations of the tangent and the normal lines to the curve $x^2y + 3xy^2 = 2$ at point (2, -1).

2. Find the equations of the tangent and the normal lines to the curve $y^2e^x + x^2 = 9$ at point (0,3).

Answer:

Answer:

3. Find the equation of the tangent to the curve $y = x^4 + 4x$ which is parallel to the line y = 36x + 47.

4. Find the equation of the tangent to the curve $y = x^2 + 4$ which is perpendicular to the line 3x - y + 1 = 0.

Answer:

Topic 5: Related Rates

Illustration: The area and circumference of a circle with radius r are given by πr^2 and $2\pi r$ respectively. Given that the area of the circle is decreasing at a rate of $0.5 \text{ cm}^2/\text{s}$, find the rate at which the circumference is decreasing when the radius is 2 cm.

Given information: Area of circle $A = \pi r^2$,

Circumference of circle $C = 2\pi r$,

$$\frac{dA}{dt} = -0.5 \text{cm}^2/\text{s}.$$

To find: $\left. \frac{dC}{dt} \right|_{r=2 \, \text{cm}} = ?$

$$C = 2\pi r$$
 \Rightarrow $\frac{dC}{dt} = \frac{dC}{dr} \cdot \frac{dr}{dt} = 2\pi \frac{dr}{dt}$

$$A = \pi r^2 \quad \Rightarrow \quad \frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt} = \pi (2r) \cdot \frac{dr}{dt} \quad \Rightarrow \quad -0.5 = \pi (2r) \cdot \frac{dr}{dt}$$

$$\therefore \quad \frac{dr}{dt} = -\frac{0.5}{2\pi r} = -\frac{1}{4\pi r}$$

$$\therefore \quad \frac{dC}{dt} = 2\pi \left(-\frac{1}{4\pi r} \right) = -\frac{1}{2r}$$

$$\frac{dC}{dt}\Big|_{r=2 \text{ cm}} = -\frac{1}{2(2)} = -\frac{1}{4} \text{ cm/s}$$

1.	The volume of a right circular cone is given by $V = \frac{1}{3} \pi r^2 h$, where r is the radius of the base
	and h is the height of the cone. If the height of the cone is increasing at the rate of 3 cm/s and
	radius of the base is not changing with time, find the rate at which its volume is increasing if
	the radius of the base is 5 cm.

Answer:

2. A spherical balloon is inflated by a machine which pumps-in air at a rate of $10 \text{ cm}^3/\text{s}$. Find the rate at which its radius is increasing when its radius is 10 cm.