Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri și m>n muchii. Să se afișeze punctele critice în care sunt incidente muchii critice. Pentru fiecare astfel de punct se va afișa numărul de muchii critice care sunt incidente în el și numărul de componente biconexe care îl conțin, fără a memora componentele biconexe ale grafului și fără a memora muchiile critice.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

graf.in	lesire pe ecran (nu neaparat in aceasta ordine)
9 10	Puncte critice cerute:
12	1:
13	incidente 2 muchii critice
2 4	este in 2 componente biconexe
27	2:
47	incidente 1 muchii critice
45	este in 2 componente biconexe
4 6	7:
5 6	incidente 2 muchii critice
78	este in 3 componente biconexe
79	

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- pe următoarea linie (a (m+2)-a linie) din fișier este un număr natural k (0<k<n) reprezentând numărul de vârfuri sursă; vârfurile sursă din G vor fi 1, 2, ..., k
- pe ultima linie a fișierului sunt două vârfuri t₁ și t₂, reprezentând vârfurile destinație ale grafului.

Notăm cu $S = \{1,...,k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1,t_2\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din G acă există un drum de la G y. Presupunem că există cel puțin un vârf destinație care este accesibil dintr-un vârf sursă.

Să se determine distanța între cele două mulțimi:

$$d(S, T) = min \{d(x, y) | x \in S, y \in T\}$$

Să se determine în plus și o pereche de vârfuri (s,t) cu $s \in S$ și $t \in T$ cu

$$d(s,t) = d(S,T) = \min \{d(x, y) \mid x \in S, y \in T\}$$

și să se afișeze (pe ecran) un drum minim de la s la t. Complexitate O(mlog(n))

Exemplu

graf.in	Iesire pe ecran
6 8	distanta intre multimi = 2
1 2 3	s=2 t=3
1 6 10	drum minim 2 4 3
6 2 2	
2 4 1	
4 3 1	
5 3 4	
1 5 5	
3 2 7	
2	
3 6	

Explicații

$$k=2 \Rightarrow S = \{1, 2\}$$

 $T = \{3, 6\}$
 $d(1,3)=5, d(2,3)=2$
 $d(1,6)=10, d(2,6)=\infty$
Cea mai mică este $d(2,3)$
Un drum minim de la 2 la 3 este 2 4 3

Subjectul 3

Fisierul graf.in conține următoarele informații despre un graf bipartit conex:

- pe prima linie sunt 2 numere naturale n și m reprezentând numărul de vârfuri și numărul de muchii
- pe următoarele m linii sunt perechi de numere x y (separate prin spațiu) reprezentând extremitătile unei muchii

Se consideră graful G dat în fișierul graf.in. Notăm cu k numărul de vârfuri de grad impar din graf.

- a) Folosind un algoritm de determinare a unui flux maxim într-o rețea de transport, determinați un cuplaj maxim în subgraful indus de mulțimea vârfurilor de grad impar din G.
- b) Folosind punctul a) determinați dacă exista k/2 muchii care se pot elimina din G astfel încât să se obțină un graf cu următoarele proprietăți:
- gradul fiecărui vârf din G' este egal cu cel din G sau cu unu mai mic.
- în G' în fiecare componentă conexă există câte un ciclu care conține toate muchiile din componentă (o singura dată) Complexitate O(nm²)

graf.in	lesire pe ecran (solutia nu este unica)
8 9	16
15	2 5
16	3 7
17	
2 5	
3 5	
3 7	
3 4	
8 7	
8 4	

