SHORT HW 4: Leptonic Electroweak Theory

Course: Physics 165, Introduction to Particle Physics (2018)

INSTRUCTOR: Prof. Flip Tanedo (flip.tanedo@ucr.edu)

Due by: **Thursday**, February 1

Note that this short assignment is due in class on Thursday. You have only two days to do it. This should be quick, I recommend doing it right after class on Tuesday.

1 Rules of the theory

You may find previous homework assignments useful. In this problem you will motivate the rules of the unbroken leptonic electroweak theory for a single generation¹. Your symmetries are as follows:

- 1. Spacetime symmetry: translations in spacetime and Lorentz.
- 2. U(1) hypercharge, gauged.
- 3. SU(2) weak, gauged.

Your particle content is:

- 1. Hypercharge gauge boson, B_{μ} , required by the gauged hypercharge symmetry. It is spin-1 with no other charges.
- 2. Electroweak gauge boson, W_{μ}^{A} , required by the gauged weak symmetry. It is spin-1 with triplet (adjoint) SU(2) weak charge, A = 1, 2, 3.
- 3. A lepton doublet, $L^{a\alpha}$. This is a spin-1/2 fermion that has hypercharge Y = -1/2 and is in the doublet (fundamental) representation of SU(2) weak. The two components have special names, $L^1 = \nu_L$ and $L^2 = e_L$.
- 4. A left-handed positron, \bar{E}^{α} that has hypercharge Y=+1 and carries no SU(2) weak charge. You can think of \bar{E} as the anti-particle to $(\bar{E})^{\dagger}=e_R$, a right-handed electron.
- 5. A Higgs doublet, H^a , that has hypercharge Y = +1/2 and is in the doublet (fundamental) representation of SU(2) weak. For now we can refer to the components as H^1 and H^2 .

Write out all of the allowed three-particle Feynman rules for this theory in terms of B_{μ} , W_{μ}^{A} , $L^{\alpha a}$, \bar{E}^{α} , and H^{a} .

Extra credit: write out the allowed three-particle Feynman rules in terms of B_{μ} , W_{μ}^{\pm} , W^{3} , ν_{L} , e_{L} , e_{R} , and $H^{1,2}$.

Extra credit: What combination of quantum numbers (charges) in this theory seems to give the correct electric charge 'in real life?'

¹The words 'unbroken' and the reference to 'single generation' are hints that we're going to make things more complicated in the near future.