数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

组合逻辑电路

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

用译码器设计组合逻辑电路

- 3位二进制译码器给出3变量的全部最小项, n 位二进制译码器给出 n 个变量的全部最小项;
- 任意函数:将*n*位二进制译码输出的最小项组合起来,可获得任何变量不大于*n*的组合函数

$$Y = \sum m_i$$

用译码器设计组合逻辑电路举例

● 例:利用74HC138设计一个多输出的组合逻辑电路,输出逻辑函数式为:

$$Z_1 = AC' + A'BC + AB'C$$

$$Z_2 = BC + A'B'C$$

$$Z_3 = A'B + AB'C$$

$$Z_4 = A'BC' + B'C' + ABC$$

$$Z_1 = AC' + A'BC + AB'C = \sum m(3, 4, 5, 6) = (m'_3 m'_4 m'_5 m'_6)'$$

$$Z_2 = BC + A'B'C = \sum m(1, 3, 7) = (m'_1 m'_3 m'_7)'$$

$$Z_3 = A'B + AB'C = \sum m(2, 3, 5) = (m'_2 m'_3 m'_5)'$$

$$Z_4 = A'BC' + B'C' + ABC = \sum m(0, 2, 4, 7) = (m'_0 m'_2 m'_4 m'_7)'$$

用数据选择器实现逻辑函数方法

● 4选1数据选择器的逻辑式

$$Y_1 = S_1(D_{10}(A_1'A_0') + D_{11}(A_1'A_0) + D_{12}(A_1A_0') + D_{13}(A_1A_0))$$

• 当 $S_1 = 1$ 时,输出与输入间的逻辑关系为

$$Y_1 = D_0(A_1'A_0') + D_1(A_1'A_0) + D_2(A_1A_0') + D_3(A_1A_0)$$

- A₁、A₀作为两输入变量,输出端可以产生任何形式的三变量逻辑组合函数
- 同理,用具有n位地址输入的数据选择器,可以产生任何形式输入变量数不 大于n+1的组合逻辑函数

七段字符显示译码器(1)

- 功能:把二进制码转换成控制数码管显示相应 字符的编码
- 七段数码管
 - 7个显示控制信号
 - 共阳: 7个显示发光管的"正"极连在一起,控制信号为"低"点亮
 - 共阴: 7个显示发光管的"负"极连在一起,控制信号为"高"点亮

七段字符显示译码器(2)

从真值表画出 $Y_a \sim Y_g$ 的卡诺图,圈 "0" 然后求反可得各输出端的逻辑式

数	输		输入		输				出		
字	A_3	A_2	A_1	A_0	Y_a	Y_b	Y_c	Y_d	Y_e	Y_f	$\boldsymbol{Y_g}$
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
10	1	0	1	0	0	0	0	1	1	0	1
11	1	0	1	1	0	0	1	1	0	0	1
12	1	1	0	0	0	1	0	0	0	1	1
13	1	1	0	1	1	0	1	1	0	1	1
14	1	1	1	0	0	0	0	1	1	1	1
15	1	1	1	1	0	0	0	0	0	0	0

七段字符显示译码器(3)

● 译码器输出逻辑函数

$$Y_{a} = (A'_{3}A'_{2}A'_{1}A_{0} + A_{3}A_{1} + A_{2}A'_{0})'$$

$$Y_{b} = (A_{3}A_{1} + A_{2}A_{1}A'_{0} + A_{2}A'_{1}A_{0})'$$

$$Y_{c} = (A_{3}A_{2} + A'_{2}A_{1}A'_{0})'$$

$$Y_{d} = (A_{2}A_{1}A_{0} + A_{2}A'_{1}A'_{0} + A'_{2}A'_{1}A_{0})'$$

$$Y_{e} = (A_{2}A'_{1} + A_{0})'$$

$$Y_{f} = (A'_{3}A'_{2}A_{0} + A'_{2}A_{1} + A_{1}A_{0})'$$

$$Y_{g} = (A'_{3}A'_{2}A'_{1} + A_{2}A_{1}A_{0})'$$

- 测试端, LT'=0, 七段同时点亮; 工作时LT'=1
- 灭 "0"端,RBI'= 0,显示的"0"熄灭
- ▼ 灭灯输入/输出端, RI'/RBO'
 - ✓ 灭灯输入端, 当RI'=0, 熄灭相应数码段
 - ✓ 作为输出端使用时,当 A_3A_2 A_1 A_0 =0,并且RBI'=0时,可使本该显示的零熄灭

七段字符显示译码器(4)

● 例:利用RBI'和RBO'的配合,实现多位显示系统的灭零控制

- 整数部分: 最高位是0, 而且灭掉以后, 输出RBO'作为次高位的输入信号RBI'

- 小数部分:最低位是0,而且灭掉以后,输出RBO'作为次低位的输入信号RBI'

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

数据选择器概念

● 多个输入,一个输出,通过选择 信号控制哪个输入连到输出

2-1数据选择器 (Multiplexer, MUX)

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

数据选择器实例

- 数据选择器
 - Data Selector,也称多路开关(Multiplexer)
 - 功能: 数字信号传输过程中, 从多个数据中选出某一个送到输出端
- 例: 双4选1数据选择器74HC153

 $S'_1 = 0$ 工作模式 $S'_1 = 1$ 锁定模式输出为 低电平

S_1'	A ₁	A_0	Υ ₁
1	X	X	0
0	0	0	D ₁₀
0	0	1	D ₁₁
0	1	0	D ₁₂
0	1	1	D ₁₃

$$Y_1 = S_1(D_{10}(A_1'A_0') + D_{11}(A_1'A_0) + D_{12}(A_1A_0') + D_{13}(A_1A_0))$$

数据选择器功能扩展

● 例,用两个带附加控制端的"4-1数据选择器" 组成一个"8-1数据选择器"

● 扩展方法:

- 数据输入: 2个"4选1"有8个数据输入

- 地址选择: "8选1"需3位地址选择输入,用"4选

1"的2位地址入,附加控制信号S'用作第3位地址

● 逻辑表达式:

$$Y = (A'_2 A'_1 A'_0) D_0 + (A'_2 A'_1 A_0) D_1 + (A'_2 A_1 A'_0) D_2 + (A'_2 A_1 A_0) D_3$$
$$+ (A_2 A'_1 A'_0) D_4 + (A_2 A'_1 A_0) D_5 + (A_2 A_1 A'_0) D_6 + (A_2 A_1 A_0) D_7$$

用数据选择器实现逻辑函数方法

● 4选1数据选择器的逻辑式

$$Y_1 = S_1(D_{10}(A_1'A_0') + D_{11}(A_1'A_0) + D_{12}(A_1A_0') + D_{13}(A_1A_0))$$

• 当 $S_1 = 1$ 时,输出与输入间的逻辑关系为

$$Y_1 = D_0(A_1'A_0') + D_1(A_1'A_0) + D_2(A_1A_0') + D_3(A_1A_0)$$

- A₁、A₀作为两输入变量,输出端可以产生任何形式的三变量逻辑组合函数
- 同理,用具有n位地址输入的数据选择器,可以产生任何形式输入变量数不 大于n+1的组合逻辑函数

用数据选择器实现交通信号灯监视电路

● 交通信号灯监视电路的逻辑函数式:

$$Z = R'A'G' + R'AG + RA'G + RAG' + RAG$$

= $R'(A'G') + R(A'G) + R(AG') + 1 \cdot (AG)$

● 4-1数据选择器的逻辑函数式:

$$Y_1 = S_1(D_0(A_1'A_0') + D_1(A_1'A_0) + D_2(A_1A_0') + D_3(A_1A_0))$$

- 比较逻辑函数式Z与 Y_1
 - $-A_1 = A$, $A_0 = G$
 - $-D_0 = R', D_3 = 1$
 - $-D_1 = D_2 = R$

用数据选择器实现逻辑函数举例

● 用8选1数据选择器产生三变量逻辑函数

$$\begin{split} Z = &A'B'C' + AC + A'BC \\ = &1 \cdot (A'B'C') + 0 \cdot (A'B'C) + 0 \cdot (A'BC') + 1 \cdot (A'BC)) + \\ &0 \cdot (AB'C') + 1 \cdot (AB'C) + 0 \cdot (ABC') + 1 \cdot (ABC) \end{split}$$

● 8选1数据选择器 *74HC151*在 *E'* = 0 (*E*=1) 时,输出逻辑式为

$$Y = I_0(S_2'S_1'S_0') + I_1(S_2'S_1'S_0) + I_2(S_2'S_1S_0') + I_3(S_2'S_1S_0) + I_4(S_2S_1'S_0') + I_5(S_2S_1'S_0) + I_6(S_2S_1S_0') + I_7(S_2S_1S_0)$$

$$\bar{Y} = Y'$$

● 对照上述Z、Y表达式

$$-I_0 = I_3 = I_5 = I_7 = 1$$

 $-I_1 = I_2 = I_4 = I_6 = 0$
 $-S_2 = A, S_1 = B, S_0 = C$

用数据选择器实现1位全减器(1)

- 试用双4选1数据选择器74HC153构成全减器,设 A为被减数,B为减数,C₁为低位的借位,D为差 ,C₀为向高位的借位
- 全减器真值表如右,输出逻辑函数式:

$$D = m_1 + m_2 + m_4 + m_7$$

$$= A'B'C_I + A'BC_I' + AB'C_I' + ABC_I$$

$$= A \cdot B'C_I' + A' \cdot B'C_I + A' \cdot BC_I' + A \cdot BC_I$$

$$C_O = m_1 + m_2 + m_3 + m_7$$

$$= A'B'C_I + A'BC_I' + A'BC_I + ABC_I$$

$$= 0 \cdot B'C_I' + A' \cdot B'C_I + A' \cdot BC_I' + 1 \cdot BC_I$$

A	В	C_I	D	C_o
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

用数据选择器实现1位全减器(2)

● 数据选择器函数式:

$$Y_{1} = S_{1}(D_{0}(A'_{1}A'_{0}) + D_{1}(A'_{1}A_{0}) + D_{2}(A_{1}A'_{0}) + D_{3}(A_{1}A_{0}))$$

$$D = m_{1} + m_{2} + m_{4} + m_{7}$$

$$= A'B'C_{I} + A'BC'_{I} + AB'C'_{I} + ABC_{I}$$

$$= A \cdot B'C'_{I} + A' \cdot B'C_{I} + A' \cdot BC'_{I} + A \cdot BC_{I}$$

$$C_{O} = m_{1} + m_{2} + m_{3} + m_{7}$$

$$= A'B'C_{I} + A'BC'_{I} + A'BC_{I} + ABC_{I}$$

$$= 0 \cdot B'C'_{I} + A' \cdot B'C_{I} + A' \cdot BC'_{I} + 1 \cdot BC_{I}$$

组合逻辑电路重点内容

- 组合逻辑电路的的描述方法
- 构成组合逻辑电路的基本组件
- 组合逻辑电路的分析与设计方法
- 常用的组合逻辑电路模块及其应用实例
 - 编码器、译码器、数据选择器、加法器、数据比较器
- 竞争-冒险现象及其避免方法

数值比较器的概念

- 用于比较两个数值大小的逻辑电路
- 1位数值比较器, A,B两个1位二进制数比较有3种可能结果

输	λ		输出	1	
A	В	$Y_{A>B}$	$Y_{A=B}$	$Y_{A < B}$	
0	0	0	1	0	$Y_{(A>B)}=AB'$
0	1	0	0	1	$B \longrightarrow Y_{(A=B)} = A \odot B$
1	0	1	0	0	$Y_{(A < B)} = A'B$
1	1	0	1	0	

多位数值比较器

- 原理: 从高位比起。高位相等, 再比较下一位
- 比较两个4为二进制数*A*₃ *A*₂ *A*₁ *A*₀和 *B*₃ *B*₂ *B*₁ *B*₀,输出为 *Y*_(A>B)、 *Y*_(A=B) 和 *Y*_(A<B)

$$Y_{(A < B)} = A_3' B_3 + (A_3 \oplus B_3)' A_2' B_2 + (A_3 \oplus B_3)' (A_2 \oplus B_2)' A_1' B_1 + (A_3 \oplus B_3)' (A_2 \oplus B_2)' (A_1 \oplus B_1)' A_0' B_0$$

$$Y_{(A=B)} = (A_3 \oplus B_3)'(A_2 \oplus B_2)'(A_1 \oplus B_1)'(A_0 \oplus B_0)'$$

$$Y_{(A>B)} = (Y_{(A$$

可扩展4位数值较器逻辑图

真值表

C	CASCADING INPUTS			OUTPUTS					
A ₃ ,B ₃	A ₂ ,B ₂	A ₁ ,B ₁	A_0,B_0	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	O _{A>B}	O _{A<b< sub=""></b<>}	O _{A=B}
A3>B3	X	Х	X	Х	X	Х	Н	L	L
A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>Х</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b3<>	X	X	X	Х	X	X	L	Н	L
A3=B3	A2>B2	X	X	Х	X	X	Н	L	L
A3=B3	A2 <b2< td=""><td>X</td><td>X</td><td>Х</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b2<>	X	X	Х	X	X	L	Н	L
A3=B3	$A_2 = B_2$	A ₁ >B ₁	X	Х	X	X	Н	L	L
A3=B3	A2=B2	A ₁ <b<sub>1</b<sub>	X	Х	X	X	L	Н	L
A3=B3	A2=B2	A ₁ =B1	A ₀ >B ₀	Х	X	X	Н	L	L
A3=B3	$A_2 = B_2$	A ₁ =B ₁	$A_0 < B_0$	Х	X	X	L	Н	L
A3=B3	$A_2 = B_2$	A ₁ =B ₁	$A_0 = B_0$	н	L	L	Н	L	L
A3=B3	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	L	Н	L	L	Н	L
A3=B3	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	Х	X	н	L	L	н
A3=B3	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	н	Н	L	L	L	L
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	L	L	L	Н	Н	L

74LS85比较器

多位比较器扩展举例

- 例,用两片74LS585组成一个8位数值比较器
- 根据多位比较的规则,在高位相等时取决于低位的比较结果
- 因此只要将两个数
 - 高4位A₇A₆A₅A₄和B₇B₆B₅B₄接到第2片74LS85上
 - 将低4位的 $A_3A_2A_1A_0$ 和 $B_3B_2B_1B_0$ 接到第1片74LS85上
 - 把第1片的 $Y_{(A>B)}$ 、 $Y_{(A<B)}$ 和 $Y_{(A=B)}$ 接到第2片 $I_{(A>B)}$ 、 $I_{(A<B)}$ 和 $I_{(A=B)}$ 即可
 - 因为第1片74LS85没有来自低位的比较信号输入,所以将它的 $I_{(A>B)}$ 和 $I_{(A<B)}$ 接" $_0$ ", $I_{(A=B)}$ 接" $_1$ "

问题和建议?

