

金融行业运维实践-上海站

开源数据库云端灾备的应用实践

fuscott@yunify.com

开源数据库云端灾备的应用实践

fuscott@yunify.com

目录

▶ 背景情况

> 实践架构

▶ 技术展望

背景情况

- 保险行业核心业 务系统
- 面向互联网的金融创新业务
- ▶ 基于开源、分布 式的业务系统架 构

背景情况

- ▶ 以云计算平台做为IT基础设施 小型机 / SAN存储 / VMware / 云计算平台
- ▶ 以分布式架构作为系统设计要求 路由分片 / userid / redis
- 域名访问实现数据切换与调度 内网域名改造 / 生产视图 / 灾备视图 / 演练视图
- ▶ 自动化运维工具 统一发布系统 / CMDB / ITCS / 域名监控

1、测试数据库部署位置 北京生产区、武汉灾备区

2、数据库规格配置

BJ Master Cluster: 2c/4G/100G 1主1从架构

WH Slave Cluster: 2c/4G/100G 1主1从架构

BJ Slave Cluster: 2c/4G/100G 1主1从架构

WH Master Cluster: 2c/4G/100G 1主1从架构

步骤一:Master节点数据库提取GTID

SHOW MASTER STATUS;

步骤二:Master节点添加同步帐号与密码

GRANT REPLICATION SLAVE, REPLICATION CLIENT

ON *.*

TO 'repluser'@'%'
IDENTIFIED BY 'Zhu88jie';
FLUSH PRIVILEGES;


```
步骤一:修改Master节点为GTID的同步方式
CHANGE MASTER TO
master_host='<master-cluster IP>',
master_user='repluser',
master_port=3306, (VPC互联VPC为可配参数,
VPC互联VBC为必配参数)
master_password='p12cHANgepwD',
master_auto_position=1;
RESET MASTER:
SET GLOBAL GTID PURGED='<master-cluster
Executed_Gtid_Set>';
START SLAVE;
```

```
root@10.147.16.254) [(none)]> CHANGE MASTER TO
         master_host='10.130.12.214',
         master_port=3306,
         master_user='repluser',
         master_password='Zhu88jie',
        master_auto_position=1;
Query OK, O rows affected, 2 warnings (0.02 sec)
(root@10.147.16.254) [(none)]>
(root@10.147.16.254) [(none)]>
(root@10.147.16.254) [(none)]>
(root@10.147.16.254) [(none)]>
(root@10.147.16.254) [(none)]> reset master;
Query OK, O rows affected (0.03 sec)
(root@10.147.16.254) [(none)]> SET GLOBAL GTID_PURGED="37d07c78-8f59-11e6-b376-ecf4bbec0432:1-13";
Query OK, O rows affected (0.02 sec)
(root@10.147.16.254) [(none)]> START SLAVE;
Query OK, O rows affected (0.02 sec)
```


步骤一:修改Slave节点以GTID的方式进行同步

STOP SLAVE; START SLAVE;

RESET MASTER;

SET GLOBAL GTID_PURGED='<master-cluster Executed_Gtid_Set>';

START SLAVE;

```
(root@10.147.16.254) [(none)]> reset master;
Query OK, 0 rows affected (0.03 sec)
(root@10.147.16.254) [(none)]> SET GLOBAL GTID_PURGED='37d07c78-8f59-11e6-b376-ecf4bbec0432:1-13';
Query OK, 0 rows affected (0.02 sec)
(root@10.147.16.254) [(none)]> START SLAVE;
Query OK, 0 rows affected (0.02 sec)
```


步骤一: Master节点数据库提取GTID

SHOW MASTER STATUS;

步骤二:Master节点添加同步帐号与密码

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
TO 'repluser'@'%'
IDENTIFIED BY 'Zhu88jie';
FLUSH PRIVILEGES;

```
oot@10.147.16.8) [(none)]> show master status \G;
 ********************** 1. row *******************
           File: mysql-bin.000001
       Position: 3364
   Binlog_Do_DB:
Binlog_Ignore_DB:
xecuted_Gtid_Set: fb6d2c58-903a-11e6-854c-246e960d0bca:1-13
row in set (0.01 sec)
RROR:
lo query specified
root@10.147.16.8) [(none)]>
root@10.147.16.8) [(none)]>
root@10.147.16.8) [(none)]>
root@10.147.16.8) [(none)]>
root@10.147.16.8) [(none)]> GRANT REPLICATION SLAVE, REPLICATION CLIENT
  -> ON *.*
  -> TO 'repluser'@'%'
  -> IDENTIFIED BY 'Zhu88jie';
luery OK, O rows affected (0.02 sec)
(root@10.147.16.8) [(none)]> flush privileges ;
Duery OK, O rows affected (0.02 sec)
```



```
步骤一:修改Master节点为GTID的同步方式
CHANGE MASTER TO
master_host='<master-cluster IP>',
master_user='repluser',
master_port=3306, (VPC互联VPC为可配参数,
VPC互联VBC为必配参数)
master_password='p12cHANgepwD',
master_auto_position=1;
RESET MASTER;
SET GLOBAL GTID_PURGED='<master-
cluster Executed_Gtid_Set>';
START SLAVE;
```


步骤一:修改Slave节点以GTID的方式进行同步

STOP SLAVE; START SLAVE;

RESET MASTER;

SET GLOBAL GTID_PURGED='<master-cluster Executed_Gtid_Set>'; START SLAVE;

call pro11();

数据库测试脚本(1000万)
create database testdb ;
create table testdb.testdata(id int(11), content varchar(255), date1 TIMESTAMP(6));
use testdb;
DELIMITER \$\$
create procedure pro11()
-> begin
-> declare i int default 0;
-> repeat
-> insert into testdb.testdata values(i,concat('adasfsdfFJDSFJISDFJFSFFFF',i),now());
-> set i=i+1;
-> until i>=10000000
-> end repeat;
-> end\$\$
DELIMITER;
select now();

应用组件环境配置

1 * LB (4C/8G) 1 * nginx (4C/8G) 2 * tomcat (4C/8G)

应用测试场景说明(Loadrunner压力生成):

测试1:一定数量的交易(5分钟20万笔交易)

测试2:一定时间的测试(30分钟连续压测)

测试3:灾难模拟测试

时间:5分钟 并发用户:50并发

平均响应时间: 0.033秒 TPS: 673.651笔/秒 成功交易数: 208215笔

VM CPU使用率:app01 75% app02 75% web01 10%

序号	统计时间	环境	表s_trade	表s_verifylog	延时/说明
测试开始	2016/4/14 20:33	北京主库	86515	86826	
	2016/4/14 20:33	武汉主库	86515	86826	
测试结束	2016/4/14 20:38	北京主库	294730	295041	294730-86515=208215
	2016/4/14 20:38	武汉主库	294730	295041	295041-86826=208215

时间:30分钟 并发用户:50并发

平均响应时间: 0.023秒 TPS: 826.502笔/秒 成功交易数: 1527140笔

VM CPU使用率: app01 75% app02 75% web01 10%

北京主库带宽(进28Mbps出56Mbps)CPU28% 武汉主库带宽(进出均为18Mbps)CPU10%

序号	统计时间	环境	表s_trade	表s_verifylog	延时/说明
时间点1	2016/4/14 20:49	北京主库	425081	425508	
	2016/4/14 20:49	武汉主库	425847	426293	北京和武汉无延迟
时间点2	2016/4/14 20:55	北京主库	689447	689955	3006/848=3.5s
	2016/4/14 20:55	武汉主库	686441	686916	北京和武汉延迟3.5s
时间点3	2016/4/14 21:00	北京主库	982695	983273	6,291/848=7.42s
	2016/4/14 21:00	武汉主库	976404	976973	武汉延迟7.42s
时间点4	2016/4/14 21:05	北京主库	1240943	1241543	11089/848=13.07s
	2016/4/14 21:05	武汉主库	1229854	1230544	武汉延迟13.07s
时间点5	2016/4/14 21:10	北京主库	1476944	1477670	9045/848=10.67s
	2016/4/14 21:10	武汉主库	1467899	1468577	武汉延迟10.67s
时间点6	2016/4/14 21:16	北京主库	1776173	1776868	7234/848=8.53s
	2016/4/14 21:16	武汉主库	1768939	1769632	武汉延迟8.53s
时间点7	2016/4/14 21:17	北京主库	1821870	1822181	1821870-294730=1,527,140
	2016/4/14 21:17	武汉主库	1821870	1822181	与压测显示的成功笔数一致

- 1、应用故障:不影响数据的同步,数据可以保持一致,延时规律与测试项目2一致,业务恢复取决于应用恢复/切换时间。
- 2、数据库故障:本次测试为关闭数据库组件服务,但是由于binlog仍然存在并可以同步,两边数据仍能保持一致;若宕机导致无法访问binlog,将会丢失部分数据(实验2中延时范围内的数据),是否能完全恢复取决于北京主库binlog日志是否可以还原或者应用日志是否可以提取恢复。
- 3、北京基础环境及网络等发生灾难:
- 22:31:37 中断GRE隧道
- 22:32:04 停止nginx 、app、LB等

灾难发生后,两边数据不一定一致,取决于灾难如何发生,以及发生后具体情况而定数据是否能完全恢复。丢失量约为:实验2中延时时间范围内的数据

分项	统计时间	环境	表s_trade	表s_verifylog
1、应用故障	故障前	北京主库	1821870	1822181
ngxin, tomcat均宕机	故障前	武汉主库	1821870	1822181
	故障后	北京主库	2084256	2084567
	故障后	武汉主库	2084256	2084567
2、数据库故障	故障前	北京主库	2091602	2091913
数据库宕机	故障前	武汉主库	2091602	2091913
	故障后	北京主库	2401356	2401667
	故障后	武汉主库	2401356	2401667
3、基础资源及网络所有	故障前	北京主库	2401356	2401667
发生灾难	故障前	武汉主库	2401356	2401667
	故障后	北京主库	2735442	2735753
	故障后	武汉主库	2712419	2712734

测试场景-1结论

事务数与压力成功事务数一致 , 北京和武汉基本同时完成 。

测试场景-2结论

该测试最大延迟在15s以内, 当交易数据不高时, 基本无延迟。

测试场景-3结论

- 1、应用故障:不影响数据的同步,数据可以保持一致,延时规律与测试项目2一致,业务恢复取决于应用恢复/切换时间。
- 2、数据库故障:本次测试为关闭数据库组件服务,但是由于binlog仍然存在并可以同步,两边数据仍能保持一致;若宕机导致无法访问binlog,将会丢失部分数据(实验2中延时范围内的数据),是否能完全恢复取决于北京主库binlog日志是否可以还原或者应用日志是否可以提取恢复。
- 3、北京基础环境及网络等发生灾难:

灾难发生后,两边数据不一定一致,取决于灾难如何发生,以及发生后具体情况而定数据是否能完全恢复。丢失量约为:实验2中延时时间范围内的数据

技术展望

- 分片规则调整需要相关业务系统中间件重启
- ▶ 业务系统对数据库的压力无法实现自动调度
- ▶ 单库容量受限

技术展望

分布式数据库对业务系统支撑能力的体现

- ▶ 高性能 SQL优化 / 连接池优化 / 网络与存储性能优化
- ▶ 高可靠 基于类似RAFT+GTID的高可用架构 / 同城异地容灾架构
- ▶ 可扩展 自动分库分表 / 自动存储扩容

MySQL PLUS 数据库架构

数据一致性--同步复制

在master上提交事务并写入 binlog后,需要收到绝大多 数slave节点已完成该事务的 确认

▶ 如果master没有收到确认, 将一直等待,直到成功

业务高可用--服务高可用

- ▶ 一主多从
- ► Raft 协议秒级切换
- ▶ 高可用 VIP

服务高可用--Raft选主过程

- ▶ 利用raft协议,结合GTID来选主,选主之后还是通过MySQL来做复制
- ▶ Leader: 定期发送心跳
- ▶ Follower:接收同步消息
- ▶ Candidate: 候选人,发起新一轮选举

服务高可用--只读节点

- ▶ 不参与选主,不主动投票
- ▶ 其他成员不认可它的投票权
- ▶ 新主产生时重置主从关系

服务高可用--读写VIP

- ▶ 读写VIP不随角色变化
- ▶ 动态修改VIP配置,摘掉故障节点

海量存储--分布式数据库

海量存储--分布式数据库架构

Thank you.

fuscott@yunify.com

限时优惠,扫码抢票

DAMS 中国数据资产管理峰会 Shang Hai ◆ 上海小南国花园酒店

APAC OTN TOUR 2017

The APAC OTN Tour 2017 will be running from November 20th until December 9th visiting 4 countries/7 Cities in the Asia Pacific Region. Bellow you can find more information regarding the events that are part of this year tour:

Dates:

- Wellington, NZ : November 20th
- Auckland, NZ: November 22nd
- Sydney, Australia: November 24th
- Melbourne, Australia: November 27th
- Perth, Australia: November 29th
- Shanghai, China: December 3rd
- Hyderabad, India: December 8 and 9

12月3日 D+ Day 欢迎来撩:

讲师、茶歇、场地、赞助, 统统可以。

预计150人规模。

微信来撩: boypoo

