

Molecular Subtype Prediction for Breast Cancer Using H&E Specialized Backbone

Samaneh Abbasi-Sureshjani, Anıl Yüce, Simon Schönenberger, Maris Skujevskis, Uwe Schalles, Fabien Gaire, Konstanty Korski

Proceedings of the MICCAI Workshop on Computational Pathology, PMLR 156:1-9, 2021 [link]

Digital (Histo)Pathology

- Histo: the Greek word for 'Tissue' i.e., thin slices of a organ/animal/plant that is removed from the host to be examined.
- Steps: Tissue preparation ⇒ fixation ⇒ staining ⇒ scanning ⇒ Read to process
- H&E: cellular morphological features
- IHC: cellular surface antigens

2

H&E based prognostic algorithms

Personalize treatment options for early breast cancer patients

Al powered - DP prognostic model for better stratification of HER2 eBC patients

Clinically known prognostic factors e.g. molecular subtype

Patient survival prediction

End-to-end models: harder to interpret & less accurate

Impact:

eBC patients' stratification beyond standard prognostic biomarkers

Optimization of treatment options and increase patients' access to tailored therapies
Providing additional tools supporting clinical decision making process

\$

Future clinical trials design support

Molecular subtypes of invasive breast cancer

Controlling how the cells behave

- The molecular subtypes are based on the genes the cancer cells express
- Presence of specific proteins (receptors) for hormones determines the categories
- The standard clinical practice:
 - Analysis based on multiple immunohistochemistry (IHC) stainings for each biomarker
 - Expensive and inconsistent when lacking resources.
- One step prediction based on H&E slides?

Algorithm Overview

Preprocessing

QC, Tumor detection & tile extraction

- Identifying good quality tissue regions
- Excluding background, artefacts such as blurred tiles and pen markers
- Detecting the tumor region (excluding the healthy tissue)
- Tile extraction at 20x magnification with 256x256 resolution
 - Good combination of cellular and global context

Feature Extraction

Specialized Backbone

- Pre-extraction of features to help speeding up the training.
- Imagenet-based backbones are sub-optimal for DP.
- Self-supervised learning: a set of auxiliary tasks are created to supervise the model.
 - No expensive annotations needed
 - Various augmentations applied
 - Encoders: Resnet architectures
- Training set: ~1m tiles (256×256 tiles at 0.5 μm/pixel) of different tissue types
- Backbone has been evaluated on different benchmark tasks.

$$\mathcal{L}_{ heta,\xi} riangleq \left\| \overline{q_{ heta}}(z_{ heta}) - \overline{z}_{\xi}'
ight\|_{2}^{2} = 2 - 2 \cdot rac{\left\langle q_{ heta}(z_{ heta}), z_{\xi}'
ight
angle}{\left\| q_{ heta}(z_{ heta})
ight\|_{2} \cdot \left\| z_{\xi}'
ight\|_{2}}.$$

Different tissue types

End-to-end deep learning model

Embedding-based approach

Only slide-level labels (based on IHCs) are available thus an attention-based deep MIL framework is used.

Experiment Design

Datasets & experiments

- A diverse set of public and private datasets with different scanners
- Samples may have different antigens or hormonal receptor status
- Created four main categories
 - Some classes may have overlaps.
- Test 1: 20% from all cohorts
- Test 2: unseen data sources in the test set (all CVD data at test time)
- Different experiments to control the complexity and samples size.

An overview of the number of slides per cohort used in train/test sets

Cohort	class (I)	class (II)	class (III)	class (IV)	Total
TCGA-BRCA	493/121	32/11	123/29	121/33	769/194
CVD	150/36	50/12	82/26	160/40	442/114
ID1	71/19	9/2	24/4	6/1	110/26
ID2	939/248	118/26	168/44	513/128	1738/446
Test 1	1653/424	209/51	397/103	800/202	3059/780
Test 2	1503/574	159/101	315/185	640/362	2617/1055

Results

Overall & per dataset

- Our specialized backbone archives comparable results to the backbone pre-trained on imagenet
- Better performance in terms of generalization to unseen data
- Comparative results to the SOTA techniques

Test AUCs obtained per cohort and experiment. Num: Number of test slides

Setting	Backbone	TCGA-BRCA		CVD - DP200		CVD - Philips		ID1		ID2	
		Num	AUC	Num	\mathbf{AUC}	\mathbf{Num}	AUC	\mathbf{Num}	AUC	\mathbf{Num}	AUC
Exp.1 & Test 1	ImageNet H&E	40	0.639 0.649	19	$0.885 \\ 0.731$	19	$0.782 \\ 0.769$	6	1.00 0.25	70	$0.736 \\ 0.783$
Exp.1 & Test 2	ImageNet H&E	40	$0.680 \\ 0.803$	85	0.703 0.653	84	0.712 0.649	6	$0.750 \\ 0.375$	70	0.758 0.782
Exp.2 & Test 1	ImageNet H&E	193	0.758 0.760	56	0.918 0.951	56	0.929 0.923	26	$0.877 \\ 0.750$	446	$0.83 \\ 0.823$
Exp.2 & Test 2	$\begin{array}{c} {\rm ImageNet} \\ {\rm H\&E} \end{array}$	193	$0.755 \\ 0.735$	277	$0.654 \\ 0.559$	272	$0.529 \\ 0.69$	26	$0.920 \\ 0.879$	446	$0.828 \\ 0.833$
Exp.3 & Test 1	ImageNet H&E	193	$0.722 \\ 0.739$	56	$0.898 \\ 0.897$	56	$0.865 \\ 0.869$	26	$0.675 \\ 0.787$	446	$0.802 \\ 0.783$
Exp.3 & Test 2	ImageNet H&E	193	$0.721 \\ 0.715$	277	$0.601 \\ 0.553$	272	0.538 0.639	26	$0.759 \\ 0.735$	446	0.811 0.801

Reminder notes:

- Test 1 is with training images from all datasets
- Test 2 contains images from unseen datasets
- Experiment I: (her2+, hr+) vs. (her2+, hr-),
- Experiment II: (hr+, her2-) vs. (her2+, hr+/-) vs. tnbc,
- Experiment III: (hr+, her2-) vs. (her2+, hr+) vs. (her2+, hr-) vs. tnbc

Explainability

- Attention heatmaps are created to get better insights to the model
- Pathologist's review suggests that the network focuses on biologically meaningful regions such as tumor epithelial cells, collagen-rich stroma and TILs aggregates
- The lymphocytic infiltration in some tumor nests and necrotic areas are informative for differentiating the ER- samples from ER+ ones within her2+ population (experiment I).

Conclusions

- H&E images contain biologically interpretable morphological patterns that are predictive of molecular subtypes
- Faster and less expensive prediction based on H&E compared to multiple IHCs
- Advantages of pre-training a specialized backbone on H&E WSI:
 - Transfer learning when lacking large and precisely annotated dataset
 - Optimal backbone for each dataset compared to pre-training on natural images
- The discriminatory morphological patterns for HR+ are harder to identify when both ER and Her2 are present:
 - Her2 overexpression is a dominant transformation mechanism in tumors.
- Combining with other risk factors and using for patient survival prediction

Doing now what patients need next