Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 7 з дисципліни "Алгоритми та структури даних-1. Основи алгоритмізації"

" Дослідження лінійних алгоритмів" Варіант: <u>12</u>

Виконав студент: <u>ІП-12 Єльчанінов Артем Юрійович</u> (шифр, прізвище, ім'я, по батькові)

Лабораторна робота 7

Дослідження лінійного пошуку в послідовностях

Мета – дослідити методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 12

Задача: Знайти суму елементів, коди яких більше 101

Вираз для обчислення 1-го масиву: 95 + i Вираз для обчислення 2-го масиву: 105 - i

Постановка задачі

Результатом розв'язку задачі ϵ знаходження суми елементів третього масиву, коди яких більше 101.

Спершу заповнюємо за даними умовою задачі виразами для знаходження елементів перший та другий масиви, але враховуючи специфіку задачі ми ще в дії заповнення масивів заповнюємо третій масив пустими елементами. Потім виводимо на екран за допомогою допоміжної функції елементи 1-го та 2-го масивів. Далі відбувається заповнення 3-го масиву рівними елементами 1-го та 2-го масивів, після цієї дії виведення на екран елементів масиву. Останньою дією є знаходження суми елементів, коди яких більше 101, яке відбувається перебором елементів 3-го масиву, і якщо код елемента більше 101, то він додається до змінної, яка зберігатиме значення суми. І після виконання цієї дії задача буде виконана.

Математична модель

Змінна	Тип	Ім'я	Призначення
Розмір масивів	Цілий	size	Вхідне дане
Перший масив	Символьний	array_1	Промідне дане
Другий масив	Символьний	array_2	Проміжне дане
Третій масив	Символьний	array_3	Проміжне дане
Лічильник для арифметичних цилів	Цілий	i	Проміжне дане
Додатковий лічильник для арифметичного циклу	Цілий	j	Проміжне дане

Сума елементів,	Цілий	sum	Вихідне дане
коди яких більше			
101			
Функція для	Відсутній	output_array	Допоміжний
виведення значень	(void)		алгоритм
масиву			

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію заповнення трьох масивів.
- Крок 3. Деталізуємо дію заповнення 3-го масиву рівними елементами 1-го та 2-го масивів.
- Крок 4. Деталізуємо дію обчислення суми.

Псевдокод алгоритму

Крок 1:

Початок

Ініціалізація змінних

Заповнення трьох масивів

Виведення елементів першого масиву

Виведення елементів другого масиву

Перебір елементів 1-го масиву

Перебір елементів 2-го масиву

Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів

Виведення елементів третього масиву

Обчислення суми

Виведення sum

Крок 2:

Початок

```
size:= 10; sum:= 0;
```

Заповнення трьох масивів

Виведення елементів першого масиву

Виведення елементів другого масиву

Перебір елементів 1-го масиву

Перебір елементів 2-го масиву

Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів

Виведення елементів третього масиву

Обчислення суми

Виведення sum

Кінець

Крок 3:

Початок

```
size:= 10; sum:= 0;
для і від 0 до size з кроком 1
array_1[i] := 95 + i
array_2[i] := 105 - i
array_3[i] := 0
```

все повторити

Виведення елементів першого масиву

Виведення елементів другого масиву

Перебір елементів 1-го масиву

Перебір елементів 2-го масиву

Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів

Виведення елементів третього масиву

Обчислення суми

Виведення sum

Крок 4:

```
Початок
```

```
size := 10; sum := 0;
 для і від 0 до size з кроком 1
   array 1[i] := 95 + i
   array 2[i] := 105 - i
   array 3[i] := 0
 все повторити
 output array(array 1, size)
 Виведення елементів другого масиву
 Перебір елементів 1-го масиву
 Перебір елементів 2-го масиву
 Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів
 Виведення елементів третього масиву
 Обчислення суми
Виведення sum
```

Кінець

Крок 5:

Початок

```
size:= 10; sum:= 0;
для і від 0 до size з кроком 1
 array 1[i] := 95 + i
 array 2[i] := 105 - i
 array 3[i] := 0
все повторити
output array(array 1, size)
output array(array 2, size)
Перебір елементів 1-го масиву
Перебір елементів 2-го масиву
Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів
Виведення елементів третього масиву
Обчислення суми
```

Виведення sum

```
Крок 6:
```

```
Початок
```

```
size := 10; sum := 0;
   для і від 0 до size з кроком 1
     array 1[i] := 95 + i
     array_2[i] := 105 - i
     array 3[i] := 0
   все повторити
   output array(array 1, size)
   output array(array 2, size)
   для і від 0 до size з кроком 1
     Перебір елементів 2-го масиву
     Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів
   все повторити
   Виведення елементів третього масиву
   Обчислення суми
 Виведення sum
Кінець
Крок 7:
Початок
   size:= 10; sum:= 0;
   для і від 0 до size з кроком 1
     array 1[i] := 95 + i
     array 2[i] := 105 - i
     array 3[i] := 0
   все повторити
   output array(array 1, size)
   output array(array 2, size)
   для і від 0 до size з кроком 1
```

для і від 0 до size з кроком 1

Заповнення 3-го масиву рівними елементами 1-го та 2-го масивів

все повторити

все повторити

Виведення елементів третього масиву

Обчислення суми

Виведення sum

Крок 8:

Початок

```
size:= 10; sum:= 0;
   для і від 0 до size з кроком 1
     array_1[i] := 95 + i
     array_2[i] := 105 - i
     array_3[i] := 0
   все повторити
   output_array(array_1, size)
   output array(array 2, size)
   для і від 0 до size з кроком 1
     для ј від 0 до size з кроком 1
      якщо array_1[i] == array_2[j]
        T0
          array_3[i] := array_1[i]
       все якщо
     все повторити
   все повторити
   Виведення елементів третього масиву
   Обчислення суми
 Виведення sum
Кінець
```

Крок 9:

Початок

```
size:= 10; sum:= 0;
 для і від 0 до size з кроком 1
   array_1[i] := 95 + i
   array_2[i] := 105 - i
   array_3[i] := 0
 все повторити
 output_array(array_1, size)
 output array(array 2, size)
 для і від 0 до size з кроком 1
   для ј від 0 до size з кроком 1
     якщо array_1[i] == array_2[j]
       T0
        array_3[i] := array_1[i]
     все якщо
   все повторити
 все повторити
 output array(array 3, size)
 Обчислення суми
Виведення sum
```

Крок 10:

```
Початок
   size:= 10; sum:= 0;
   для і від 0 до size з кроком 1
     array 1[i] := 95 + i
     array_2[i] := 105 - i
     array 3[i] := 0
   все повторити
   output array(array 1, size)
   output array(array 2, size)
   для і від 0 до size з кроком 1
     для ј від 0 до size з кроком 1
      якщо array 1[i] == array 2[j]
        T0
          array 3[i] := array 1[i]
       все якщо
     все повторити
   все повторити
   output array(array 3, size)
   для і від 0 до size з кроком 1
     якщо array 3[i] > 101
       T0
        sum += array 3[i]
     все якщо
   все повторити
 Виведення sum
Кінець
output array(array[], size):
Початок
 для і від 0 до size з кроком 1
   Виведення array[i]
 все повторити
Кінець
```

Блок-схема

Крок 1:

Крок 2:

Крок 5:

Крок 7:

Крок 10:

output_array(array[], size):

Код програми на мові С++:

```
#include <iostream>
#include <iomanip>
using namespace std;
void output array(char array[], int size);
int main() {
        int sum = 0;
       const int size = 10;
       char array_1[size], array_2[size], array_3[size];
        for (int i = 0; i < size; i++) {
               array_1[i] = 95 + i;
               array 2[i] = 105 - i;
               \operatorname{array}_{3}[i] = 0;
       cout << "array 1:" << endl;
       output_array(array_1, size);
       cout << "array 2:" << endl;
       output_array(array_2, size);
       for (int i = 0; i < size; i++) {
                for (int j = 0; j < size; j++) {
                        if (array 1[i] == array 2[j]) {
                               array_3[i] = array_1[i];
                        }
                }
       cout << "array 3:" << endl;
       output array(array 3, size);
       for (int i = 0; i < size; i++) {
               if (array 3[i] > 101) {
                       sum += array_3[i];
                }
       cout << "sum: " << sum << endl;
       system("pause");
       return 0;
}
void output array(char array[], int size) {
       for (int i = 0; i < size; i++) {
               cout \ll setw(2) \ll array[i];
       cout << endl << endl;
}
```

Тестування програми:

```
array_1:
_ ` a b c d e f g h

array_2:
i h g f e d c b a `

array_3:
` a b c d e f g h

sum: 309
```

Висновок.

У результаті лабораторної роботи було розроблено математичну модель, що відповідає постановці задачі; псевдокод та блок-схеми, які пояснюють логіку алгоритму. Було набуто практичного новичок у використанні методів лінійного пошуку в послідовностях та їх інтерпретації у блок-схеми і псевдокод.

Алгоритм був випробуваний з використанням значень виразів для знаходження елементів 1-го(95 + i) та 2-го(105 - i) масивів, заданих умовою задачі. У підсумку було отримано, що sum = 309. Таким чином, було доведено вірність складеного алгоритму. Отже, його можна застосовувати для лінійного пошуку в послідовностях.