Summary

and

Jointly Distributed Random Variables

• If X and Y are discrete random variables, then their joint probability mass function p(x, y) is defined by

$$p(x,y) = P \{ X = x \text{ and } Y = y \}$$

• We say that X and Y are jointly continuous if there exists a nonnegative function f(x,y) such that for every subset C of the xy-plane \mathbb{R}^2 , we have

$$P\{(X,Y)\in C\}=\iint\limits_{C}f(x,y)\;\mathrm{d}x\;\mathrm{d}y$$
 The function $f(x,y)$ is called the joint probability density function of X and Y.

• If X and Y are jointly continuous, then they are individually continuous, and their individual probability density functions are given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$$

• For any random variables X and Y, the joint probability distribution function of X and Y is defined by

$$F(x,y) = P \{ X \leq x, Y \leq y \}$$

Independent Random Variables

• The random variables X and Y are independent if

• Discrete random variables X and Y are independent if and only if

$$p(x,y) = P_{X}(x) P_{Y}(y)$$
 for all x,y

• Continuous random variables X and Y are independent if and only if

$$f(x,y) = \mathcal{J}_{X}(x) \mathcal{J}_{Y}(y)$$
 for all x, y

• The random variables X_1, X_2, \dots, X_n are independent if

Sums of Independent Random Variables

• If X and Y are independent discrete random variables, then the probability density function of X + Y is given by

$$p_{X+Y}(n) = \sum_{\mathbf{a} \mid \mathbf{k}} p_{\mathbf{x}}(\mathbf{k}) p_{\mathbf{y}} (\mathbf{n} - \mathbf{k})$$

• If X_1, X_2, \dots, X_n are independent Poisson random variables with parameters $\lambda_1, \lambda_2, \dots, \lambda_n$, respectively, then $X = X_1 + X_2 + \ldots + X_n$ is

a Poisson r.v. with parameter
$$\lambda = \sum_{i=1}^{n} \lambda_i$$

• If X and Y are independent continuous random variables, then the probability massfunction of X + Y is given by

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) dy$$

• If X_1, X_2, \ldots, X_n are independent normal random variables with means $\mu_1, \mu_2, \ldots, \mu_n$ and variances $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$, respectively, then $X = X_1 + X_2 + \dots + X_n$ is

a normal r.v.
$$\overline{\omega}$$
 mean $M = \sum_{i=1}^{n} M_i$ and ional Distributions
$$G^2 = \sum_{i=1}^{n} G_i^2.$$

Conditional Distributions

• If X and Y are discrete random variables and $p_Y(y) > 0$, then the conditional probability mass function of X given that Y = y is defined by

$$p_{X \mid Y}(x \mid y) = \frac{\rho(x,y)}{\rho_{Y}(y)}$$

• If X and Y are jointly continuous with joint density f(x,y) and $f_Y(y) > 0$, then the conditional probability density function of X given that Y = y is defined by

$$f_{X\mid Y}(x\mid y) = \frac{\mathcal{F}(\kappa, \gamma)}{\mathcal{F}_{\gamma}(\gamma)}$$