

Deep Learning for ECE EECE-580G

Transfer Learning

ImageNet

- > 1 Million images, 1,000 classes
- Hierarchical structure
- One of the most diverse image datasets
- Most computer vision research is benchmarked on ImageNet
- <u>Benchmark</u>
- Pretrained weights:
 - https://github.com/qubvel/classification models
 - https://github.com/qubvel/efficientnet
 - https://www.tensorflow.org/api docs/python/tf/keras/applications
 - ... github repos

Transfer learning

Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." arXiv preprint arXiv:1801.06146 (2018).

Freeze

avg pool Image

Train

Train

Differential (discriminative) Learning Rate

Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text classification." arXiv preprint arXiv:1801.06146 (2018).

Progressive resizing

Jeremy Howard. Fastai - progressive resizing. https://www.fast.ai/2018/04/30/dawnbench-fastai/, 2018.

Fine-tune

Progressive resizing

Fine-tune

256X256

Example

- Oxford pets dataset
- Many classes, not enough samples per class
- This is usually the case in DL
- Need data augmentation!

>> Colab

Source: <u>kaggle</u>

Conclusion

In practice

- Transfer learning is very effective = usually the norm in Deep Learning
- Maybe not very useful when large dataset
- Still very heuristic and manual procedures...
- **Progressive unfreezing** + Some **LR** tricks (differential/schedules/...) seem to work well

Research

- Need more research related to Transfer Learning
- Works even when the task is very different from ImageNet classification! (e.g. forensics, steganalysis, etc.)

End