FINITE DIMENSIONAL RANKED VECTOR SPACES

Yoshiko TAGUCHI

(Received November 1, 1982)

After the introduction of the method of ranked spaces by K. Kunugi in 1954 ([1]), ranked vector spaces have been investigated by many researchers with various definitions ([2], [4], [6]). In this paper, we consider the finite dimensional ranked vector spaces (abbreviated as f. d. r. v. s.) over the field K which is R or C defined by the condition that the scalar multiplication and the addition are r-continuous as in S. Nakanishi ([4]). Defining r-isomorphisms between two f. d. r. v. s., we prove that every f. d. r. v. s. which satisfies the separation property $(r-T_1)$ is r-isomorphic to the standard f. d. r. v. s. $(K^d, \{B^d(0, \frac{1}{2i})\})$, that is, we have essentially only one f. d. r. v. s. when the dimension d is given just as in the case of finite dimensional topological vector spaces.

Let us remark that we use essentially the r-continuity of scalar multiplication and addition in our proof. In fact, if we define f. d. r. v. s. by using continuity in the sense of r-convergent sequences, i.e., for any sequences $\{\alpha_i\}$ in K, $\{x_i\}$ in E and $\{y_i\}$ in E which r-converge to $\alpha \in K$, $x \in E$ and $y \in E$ respectively, the sequences $\{\alpha_i x_i\}$ and $\{x_i + y_i\}$ in E r-converge to $\alpha x \in E$ and $x + y \in E$ respectively, then the theorem is no longer true even for the one-dimensional case. (See the example in §3.)

Here is a brief outline of this paper: In §1, we start with some definitions and properties mainly to unify terminologies. Then we introduce the standard f. d. r. v. s. $(K^d, \{B^d(0, \frac{1}{2i})\})$ in §2. Finally, in §3, we prove the main theorem.

- Preliminaries.
- 1.1. Ranked spaces ([1], [3]).

A space E is called a ranked space (of indicator ω_0) if, for every point x of E, there is associated a non-empty family $\mathcal V(x)$ consisting of subsets of E and, for every non-negative integer n, there is associated a subfamily $\mathcal V_n$ of $\mathcal V$ = { $\mathcal V(x)$; x ϵ E} satisfying following conditions:

Y. TAGUCHI

- (A) For every member U(x) of $\mathcal{V}(x)$, $x \in U(x)$.
- (a) For every point x of E, every member U(x) of $\mathcal{V}(x)$ and every nonnegative integer n, there are another integer m and a member V(x) of \mathcal{V}_m such that m > n and $V(x) \subset U(x)$.

Members of $\mathcal{V}(x)$ are called preneighborhoods of x and written U(x), V(x), etc. Preneighborhoods of x belonging to \mathcal{V}_n are of rank n and written U(x, n), V(x,n), etc. These preneighborhoods are also written simply U, V, etc.

A sequence $\{U_i\} = \{U(x, n_i)\}$ of preneighborhoods of center x is called fundamental if it satisfies the following conditions:

- $(f.1) \quad U_1 \supset U_2 \supset \dots \supset U_{\dot{1}} \supset \dots$
- (f.2) $n_1 < n_2 < \ldots < n_i < \ldots$

Sequences of preneighborhoods are sometimes written u, v, etc. For two sequences u = $\{U_i\}$ and v = $\{V_i\}$, u > v means that, for every U_i , there is a V_j such that $U_i \supset V_j$ and the equivalence u \circ v means that u > v and v > u. Any subsequence v of a fundamental sequence u is also a fundamental sequence equivalent to u.

A sequence $\{x_i\}$ in a ranked space E is said to be r-convergent or to r-converge to x if there is a fundamental sequence $u = \{U_j\}$ of center x satisfying that, for every j, there is an i_0 such that $x_i \in U_j$ where $i \ge i_0$. Then we write x = r-lim x_i .

A ranked space E is said to satisfy the separation property $(r-T_1)$ if, for every x of E and for every fundamental sequence $u = \{U(x, n_i)\}$ of center x, the intersection $\cap u = \bigcap_i U(x, n_i) = \{x\}$ (a set consisting of the element x alone).

1.2. Cartesian products of ranked spaces ([5]).

The Cartesian product of two ranked spaces E and F, written E \times F, is the ranked space associated with $\mathcal{W}(x,y)$ ((x,y) \in E \times F)) and \mathcal{W}_{ℓ} defined as follows:

Let E and F be associated with $\mathcal{U}(x)$, \mathcal{U}_n and $\mathcal{V}(y)$, \mathcal{V}_m respectively. The set E × F is the Cartesian product of sets E and F,

$$\mathcal{W}(\mathbf{x}, \mathbf{y}) = \{\mathbf{U} \times \mathbf{V}; \ \mathbf{U} \in \mathcal{U}(\mathbf{x}), \ \mathbf{V} \in \mathcal{V}(\mathbf{y})\} \ ((\mathbf{x}, \mathbf{y}) \in \mathbf{E} \times \mathbf{F}),$$

$$\mathcal{W}_{l} = \{\mathbf{U} \times \mathbf{V}; \ \mathbf{U} \in \mathcal{U}_{n}, \ \mathbf{V} \in \mathcal{V}_{m}, \ \min(\mathbf{n}, \mathbf{m}) = l\}.$$

For two sequences $u = \{U_i\}$ in E and $v = \{V_i\}$ in F, $u \times v$ means the sequence $\{U_i \times V_i\}$ in the Cartesian product of ranked spaces E and F. It is easily verified ([5],1.4.) that we may take fundamental sequences of center (x, y) in E \times F only of the form $u \times v$ where u is of center x and y is of center y respectively.

1.3. Mappings of ranked spaces.

Let E and F be ranked spaces. A mapping f of ranked space E into ranked

space F is called r-continuous at x ϵ E if, for every fundamental sequence $u = \{U_{\dot{1}}(x)\}$ of center x in E, there is a fundamental sequence $v = \{V_{\dot{1}}(f(x))\}$ of center f(x) in F satisfying v > f(u), where $f(u) = \{f(U_{\dot{1}}(x))\}$. f is called r-continuous on E if f is r-continuous at each point x in E.

Ranked spaces E and F are called r-isomorphic if there is a one-to-one mapping of E onto F which is r-continuous with r-continuous inverse.

1.4. Finite dimensional ranked vector spaces.

Let E be a vector space over the scalar field K. E is called a ranked vector space if E is a ranked space with the property that the operations of addition $\sigma\colon E\times E \to E$ and multiplication by scalars $\mu\colon K\times E \to E$ are r-continuous ([4]). A ranked vector space is called a finite dimensional ranked vector space if E is of finite dimension over the scalar field K.

§2. The standard d-dimensional ranked vector space
$$(\mathbb{K}^d, \{\mathbb{B}^d(0, \frac{1}{2i})\})$$
.

In this paper, we understand that K means at the same time the one-dimensional vector space over the scalar field K and K^d means the d-dimensional vector space over the same scalar field K which is the Cartesian product of d copies of one-dimensional vector space K.

2.1. (K,
$$\{B(0, \frac{1}{2i})\}$$
).

If, for every point λ of the vector space K and every non-negative integer n, we associate families $\mathcal{V}(\lambda)$ and \mathcal{V}_n such that $\mathcal{V}(\lambda)$ = $\cup \left\{\lambda + B(0,\frac{1}{2^n}); \ n \geq 0\right\} \text{ where } B(0,\frac{1}{2^n}) = \left\{\alpha \in \mathbb{K}; \ |\alpha| \leq \frac{1}{2^n}\right\} \text{ and } \mathcal{V}_n = \\ \cup \left\{\lambda + B(0,\frac{1}{2^n}); \ \lambda \in \mathbb{K}\right\}, \text{ it is easily shown that the vector space K becomes one-dimensional ranked vector space, which is written as <math display="inline">(\mathbb{K}, \{B(0,\frac{1}{2^i})\}).$ In this case, $\{B(0,\frac{1}{2^i})\}$ is essentially only one, therefore called the fundamental sequence of center $0 \in \mathbb{K}.$

The scalar field K also becomes a ranked space with the families $\sqrt[n]{\lambda}$, $\sqrt[n]{n}$ defined as above. Then, the fundamental sequence of 0 means the sequence $\{B(0,\frac{1}{2^i})\}$. Let us remark, in this case, a sequence $\{x_n\}$ in K r-converges to an $x \in K$ if and only if it converges topologically in K.

2.2.
$$(K^d, \{B^d(0, \frac{1}{2i})\}).$$

The vector space K^d becomes a ranked vector space if the families $\mathcal{W}(\Lambda)$ and \mathcal{W}_n are associated with each $\Lambda \in K^d$; $\Lambda = (\lambda_1, \ldots, \lambda_d)$ and non-negative integer n in the following manner: Let $B^d(0, \frac{1}{2n}) = \{\Lambda \in K^d; \|\Lambda\| =$

$$\sqrt{\left|\lambda_1\right|^2+\ldots+\left|\Lambda_d\right|^2}\leq\frac{1}{2^n}\}, \mathcal{W}(\Lambda)\ =\ \cup\,\{\Lambda\,+\,B^d(0\,,\,\frac{1}{2^n})\,;\,\,n\,\geqq\,0\} \ \ \text{and}$$

 $\mathcal{W}_n = \bigcup \{ \Lambda + B^d(0, \frac{1}{2^n}); \ \Lambda \in \mathbb{K}^d \}. \ \text{This is called the standard d-dimensional ranked vector space and is written as $(K^d, \{B^d(0, \frac{1}{2^i})\})$. As in the one-dimensional case, the fundamental sequence of center <math>0 \in \mathbb{K}^d$ may be taken as $\{B^d(0, \frac{1}{2^i})\}$ and the same remark applies for the convergence of sequences in \mathbb{K}^d .

2.3. $\mathbb{K} \times \mathbb{E}$.

Let K be the ranked space of scalars and let E be a ranked space associated with the families $\mathcal{V}(x)$ and \mathcal{V}_n for each x in E and each non-negative integer n. The Cartesian product K × E defined in 1.2. becomes a ranked vector space with the families $\mathcal{U}(\lambda,\,x)$ and \mathcal{U}_z associated with each $(\lambda,\,x)$ ε K × E and each non-negative integer ι respectively such that $\mathcal{U}(\lambda,\,x)$ = $\{(\lambda+B(0,\frac{1}{2^n}))\times V;\,n\ge 0,\,V\in\mathcal{V}(x)\}$ and $\mathcal{U}_z=\{(\lambda+B(0,\frac{1}{2^n}))\times V;\,V\in\mathcal{V}_m,\,\min(n,m)=z\}$. By the standard nature of K, a fundamental sequence of center $(0,\,0)$ ε K × E may be taken in the form $\{B(0,\frac{1}{2^i})\}\times u=\{B(0,\frac{1}{2^i})\times U_i\}$ where $u=\{U_i\}$ is a fundamental sequence of center 0 in E.

§3. Proof of the main theorem.

<u>Theorem</u>. Let E be a d-dimensional ranked vector space satisfying the separation property $(r-T_1)$. Then, E and the standard d-dimensional ranked vector space $(K^d, \{B^d(0, \frac{1}{21})\})$ are r-isomorphic.

For the proof, we will need the following lemma which is proved in [2]p.270, [4]p.182 and [5]p.362:

Lemma. Let E be a ranked vector space satisfying the separation property (r-T₁). If $x \in E$ and $y \in E$ are r-limits of a sequence $\{x_i\}$ in E, then x=y.

Proof of the theorem. For each $x \in E$, let us denote by Φ_X the family of all fundamental sequences of center x. The set $\{x_1,\ldots,x_d\}$ is chosen as a K-basis of E. Let f be the mapping of E onto K^d defined by $f(x)=(\lambda_1,\ldots,\lambda_d)$ where $x=\lambda_1x_1+\ldots+\lambda_dx_d$. f is an algebraic isomorphism of E onto K^d . Step F. We will show that the inverse mapping f^{-1} : $K^d \to E$ is r-continuous. It is enough to show it at the origin $0=(0,\ldots,0)$ $\in K^d$.

For each k where $1 \le k \le d$, the k-th projection mapping p_k : $\mathbb{K}^d \to \mathbb{K}$ is defined by $p_k(\Lambda) = \lambda_k$ for $\Lambda = (\lambda_1, \ldots, \lambda_d)$. Then, we can express the inverse mapping f^{-1} as

$$f^{-1}(\Lambda) = p_1(\Lambda)x_1 + \dots + p_d(\Lambda)x_d$$

From the definition of B(0, $\frac{1}{2^i}$) and B^d(0, $\frac{1}{2^i}$), we have

$$p_k(B^d(0, \frac{1}{2i})) \subset B(0, \frac{1}{2i}),$$

hence

 $f^{-1}(B^d(0,\frac{1}{2^i})) \subset B(0,\frac{1}{2^i})x_1+\ldots + B(0,\frac{1}{2^i})x_d \text{ for every i. Next, since the mapping } \mu\colon K\times E\to E \text{ defined by the scalar multiplication is r-continuous,}$ for each k where $1\le k\le d$, the mapping $\mu(\lambda,\,x_k)$ is r-continuous at $(0,\,x_k)$. That is, for any $u_k\in\Phi_{X_k}$, there exists a $v_k\in\Phi_0$ satisfying $\{B(0,\frac{1}{2^i})\}\cdot u_k< v_k$ for each k where $1\le k\le d$. Moreover, the mapping $\sigma\colon E\times E\to E$ defined by the addition is r-continuous, consequently, by repeated applications of σ , there exists a $w\in\Phi_0$; $w=\{W_i\}$ satisfying $v_1+\ldots+v_d< w$. That is, for every $W_i\in W$, there is an m such that $V_{lm}+\ldots+V_{dm}\subset W_i$ where $V_{km}\in v_k$ for each k where $1\le k\le d$.

Combining these considerations, we conclude that, for the fundamental system $\{B^d(0,\frac{1}{2^i})\}$ in \mathbb{K}^d there exists a w ϵ Φ_0 such that for every W_i ϵ w, there is an ϵ satisfying $f^{-1}(B^d(0,\frac{1}{2^\ell})) \subset B(0,\frac{1}{2^\ell})x_1+\ldots+B(0,\frac{1}{2^\ell})x_d \subset V_{lm}+\cdots+V_{dm} \subset W_i$. This shows that $f^{-1}(\{B^d(0,\frac{1}{2^i})\}) < w$. Step II. We will show that the mapping $f \colon E \to \mathbb{K}^d$ is r-continuous. It is enough to show it at the origin $0 \in E$.

We suppose that the mapping $f\colon E\to K^d$ were not r-continous at the origin $0\in E$. Then, for some $u\in \Phi_0$, $f(u) \not\in \{B^d(0,\frac1{2i})\}$. That is, there would exist j such that $f(U_{\underline{i}})\not\subset B^d(0,\frac1{2j})$ for each i. This means that, for each i, there would exist $y_i\in U_i$ such that $f(y_i)\not\in B^d(0,\frac1{2j})$, i.e., $\|f(y_i)\|\ge \frac1{2j}$.

(Case I) where the sequence $\{f(y_i)\}$ in \mathbb{K}^d would have an accumulation point A in the topological space \mathbb{K}^d . Then, $\|A\| \ge \frac{1}{2^j}$, so that $A \ne 0$. We choose a suitable subsequence $\{y_{i_k}\} \subset \{y_i\}$ so that the sequence $\{f(y_{i_k})\}$ would r-converge to A, noted $f(y_\infty)$, when $k \ne \infty$ in $(\mathbb{K}^d, \{B^d(0, \frac{1}{2^i})\})$. By the step I, the sequence $\{y_{i_k}\}$ would r-converge to y_∞ when $k \ne \infty$. We know that $y_\infty \ne 0$ since $A \ne 0$. On the other hand, the sequence $\{y_{i_k}\}$ would r-converge to 0 when $k \ne \infty$ since $y_{i_k} \in U_{i_k}$ and $u = \{U_i\} \in \Phi_0$. By the lemma, this is a contradiction.

(Case II) where the sequence $\{f(y_i)\}$ in K^d would have no accumulation points. We can choose a suitable subsequence $\{y_{i_k}\} \subset \{y_i\}$ such that $\| f(y_{i_k}) \| \ge 2^k \ (k=1,2,\dots)$. Putting $A_k = \frac{f(y_{i_k})}{\| f(y_{i_k}) \|} \| (k=1,2,\dots)$, then $\| A_k \| = 1 \ (k=1,2,\dots)$. As the set $S = \{A \in K^d; \| A \| = 1\}$ is compact in the topological space K^d , we can take a suitable subsequence $\{A_{k_j}\} \subset \{A_k\}$ which would converge to some element $A_\infty \in S$ when $j \to \infty$.

By the step I, the sequence $\left\{ \begin{array}{l} y_{k_j} / \| f(y_{k_j})\| \right\}$ would r-converge to y_{∞} ; y_{∞} = $f^{-1}(A_{\infty}) \neq 0$. On the other hand, the sequence $\{y_{k_j}\}$, which is a subsequence of the sequence $\{y_i\}$ which r-converges to 0, would r-converge to 0 too. Hence, if the r-convergence to 0 of the sequence $\left\{ \begin{array}{l} y_{k_j} / \| f(y_{k_j}) \| \end{array} \right\} (k \rightarrow \infty)$ would be shown, there arises a contradiction to the above lemma.

To complete the proof, we have to show that for a sequence $\{z_i\}$ in E which r-converges to 0 and a sequence $\{\alpha_i\}$ in E; $|\alpha_i| \ge 2^i$, the sequence $\{^{z_i}/_{\alpha_i}\}$ in E is r-convergent to 0.

From the hypothesis, there is a $u=\{U_i\}$ ϵ Φ_0 satisfying that, for every i, there exists a k, such that z_n ϵ U_i where $n \geq k$. By the condition of r-continuity of the scalar multiplication $\mu\colon \mathbb{K}\times E \to E$, there is a $v=\{V_i\}$ ϵ Φ_0 satisfying $\{B(0,\frac{1}{2^i})\}\cdot u < v$. That is, for each V_i ϵ v, there is a j such that $B(0,\frac{1}{2^j})\cdot U_j \subset V_i$. Accordingly, for each V_i , we choose a j and for this j, we choose a k. Putting $\ell=\max(k,j)$, we have, for any $n\geq \ell$, $\frac{1}{\alpha_n}\cdot z_n \in B(0,\frac{1}{2^j})\cdot U_j \subset V_i.$ This shows r-convergence to 0 of the sequence $\{z_i/\alpha_i\}$.

Example. We take the underlying set of E as C itself. Let A be the family of all subsets A of $[0, 2\pi)$ which are non-empty and at most countable, and define $U(A, \eta) = \{re^{\sqrt{-1}a}; a \in A, 0 \le r \le \eta\}$ (A $\in A$, $\eta > 0$). Then, the preneighborhoods and the ranks in E are defined by

$$\mathcal{U}(x) = \{x + U(A, \eta); A \in \mathcal{A}, \eta > 0\} (x \in E)$$

$$\mathcal{U}_n = \{x + U(A, \frac{1}{2^n}); A \in \mathcal{A}, x \in E\} (n = 1, 2, ...).$$

Now, one can prove easily that, in the ranked space E, a sequence $\{x_n\}$ is r-convergent to an x if and only if $|x_n - x| \to 0$, i.e., x_n converges to x topologically in C. Hence, E becomes a ranked vector space defined by using continuity in the sense of r-convergent sequences. Nevertheless, the ranked vector space E is not r-isomorphic to the standard one-dimensional ranked vector space (C, $\{B(0, \frac{1}{2i})\}$).

Acknowledgements. The author would like to express her sincere gratitude to Professors Y. Nagakura and S. Nakanishi for their valuable criticisms and suggestions which improved greatly the presentation of this paper.

FINITE DIMENSIONAL RANKED VECTOR SPACES

REFERENCES

- [1] K.Kunugi: Sur les espaces complets et régulierèment complets, I, Proc.
- Japan Acad., 30 (1954), 553-556.
 [2] Y.Nagakura: Differential calculus in linear ranked spaces, Hiroshima Mathematical Journal, 8(1978), 269-299.
 [3] S.Nakanishi: The method of ranked spaces proposed by Professor Kinjiro
- Kunugi, Math. Japonica 23, no.3(1978), 291-323.
 [4] S.Nakanishi: Main spaces in distribution theory treated as ranked spaces and Borel sets, Math. Japonica 26, no.2(1981), 179-201.
 [5] S.Nakanishi: Sieves on ranked spaces and Borel-graph theorem, Math.
- Japonica 27, no.3(1982), 357-380.
 [6] M.Washihara: On ranked spaces and linearity I-II, Proc. Japan Acad., 43(1967), 584-589, 45(1969), 238-242.

SCIENCE UNIVERSITY OF TOKYO