Ground State Calculator: Mathematics and Development Notes

Adam J. Robinson

October 28, 2019

Contents

1	Gaussian Functions	2
2	General Equations	2
3	Gaussian Trial Function 3.1 Simplifying the Hamiltonian	6
4	Appendix A: Generalized Integration By Parts	10

1 Gaussian Functions

This section covers important properties of Gaussian functions generalized to any number of dimensions in cartesian coordinates.

For the purposes of this program and its documentation, a Gaussian function in n dimensions will be defined as

$$G_n(\mathbf{x}) \equiv \exp\left[-\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{s}^T \mathbf{x}\right]$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}$$

and is a column vector of input coordinates for the Gaussian function. s is a length n column vector that defines the shift of the function.

$$\mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{n-1} \\ s_n \end{bmatrix}$$

A is an $n \times n$ matrix of values that define the shape of the Gaussian function.

$$\mathbf{A} = \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{array} \right]$$

This matrix is symmetric and positive definite, meaning that

$$\mathbf{z}^T \mathbf{A} \mathbf{z} > 0 \ \forall \ \sum_i |z_i| > 0, \ z_i \in \mathbb{R}$$

The integral of such a Gaussian function over all space

$$\int_{\mathbb{R}^{n}} \mathcal{G}_{n}(\mathbf{x}) d\mathbf{x} = \sqrt{\frac{\pi^{n}}{\det \mathbf{A}}} \exp \left[\frac{1}{4} \mathbf{s}^{T} \mathbf{A}^{-1} \mathbf{s} \right]$$

Where \mathbf{A}^{-1} denotes the inverse of the matrix \mathbf{A} .

2 General Equations

This section defines equations that are generally applicable.

For a given normalized wavefunction

$$\psi = \psi(\mathbf{x})$$

the expectation value of the Hamiltonian in cartesian coordinates is

$$\langle H \rangle = \int_{\mathbb{R}^n} \psi^* H \psi \, d\mathbf{x}$$

For a system of N_u atomic nuclei approximated as points with N_e electrons orbiting them and the Born-Oppenheimer approximation applied, the Hamiltonian of the system is

$$H = \frac{-\hbar^2}{2m_e} \left[\sum_{n=1}^{N_e} \nabla_n^2 \psi\left(\mathbf{x}\right) \right] + \frac{q_e}{4\pi\epsilon_0} \left[q_e \sum_{n=1}^{N_e} \sum_{m>n}^{N_e} \left| \mathbf{r}_n - \mathbf{r}_m \right|^{-1} - \sum_{n=1}^{N_u} \sum_{m=1}^{N_e} Q_n \left| \mathbf{R}_n - \mathbf{r}_m \right|^{-1} \right] \psi\left(\mathbf{x}\right)$$
(1)

where ∇_n^2 denotes the cartesian Laplacian of the wavefunction with respect to the *n*th electrons position, m_e denotes the mass of the electron, q_e denotes the charge of the electron (positive), \mathbf{r}_n denotes the position of the *n*th electron w.r.t the origin, \mathbf{R}_n denotes the position of the *n*th nucleus w.r.t the origin and Q_n denotes the charge of the *n*th nucleus. Because of the definition of the Laplacian in cartesian coordinates, this expression can be rewritten as

$$H = \frac{-\hbar^2}{2m_e} \left[\sum_{i=1}^{N_e} \frac{\partial^2}{\partial x_i^2} \psi(\mathbf{x}) \right] + \frac{q_e}{4\pi\epsilon_0} \left[q_e \sum_{n=1}^{N_e} \sum_{m>n}^{N_e} |\mathbf{r}_n - \mathbf{r}_m|^{-1} - \sum_{n=1}^{N_u} \sum_{m=1}^{N_e} Q_n |\mathbf{R}_n - \mathbf{r}_m|^{-1} \right] \psi(\mathbf{x})$$
(2)

Here, each Laplacian term has been replaced by three, 2nd partial derivative terms. In each term, x_n denotes the nth input coordinate of the trial wavefunction.

3 Gaussian Trial Function

The Gaussian Trial function is defined

$$\mathcal{G}_{n}^{(m)}(\mathbf{x}) \equiv B \sum_{j=1}^{m} C_{j} \exp \left[-\mathbf{x}^{T} \mathbf{A}^{(j)} \mathbf{x} + \mathbf{s}^{(j)T} \mathbf{x} \right]$$

Where m is the number of Gaussian terms in the trial function, B is a normalization constant, C_j is an arbitrary real constant, $\mathbf{A}^{(j)}$ defines the shape matrix of the jth term in the trial function and $\mathbf{s}^{(j)T}$ is the transpose of the shift vector of the jth term in the trial function.

3.1 Simplifying the Hamiltonian

In order to simplify the Hamiltonian, for the purposes of computing its expectation value, it is necessary to better define

$$\frac{\partial^2}{\partial x_i^2} \mathcal{G}_n^{(m)}(\mathbf{x}) = \frac{\partial^2}{\partial x_i^2} B \sum_{j=1}^m C_j \exp\left[-\mathbf{x}^T \mathbf{A}^{(j)} \mathbf{x} + \mathbf{s}^{(j)T} \mathbf{x}\right]$$

First, convert the interior of the exponential into a sum

$$-\mathbf{x}^{T}\mathbf{A}^{(j)}\mathbf{x} + \mathbf{s}^{(j)T}\mathbf{x} = -\sum_{k=1}^{n} x_{k} \left(\sum_{l=1}^{n} x_{l} A_{kl}^{(j)}\right) + \sum_{k=1}^{n} s_{k}^{(j)} x_{k}$$

Note that since **A** is symmetric, the term A_{kl} in the inner sum can also be written A_{lk} . The symmetry of **A** also means that all off diagonal terms in the sum have an identical term in the sum corresponding to their element in \mathbf{A}^T . This means that only one half of the off diagonal terms need to actually be computed. Their value can then be doubled. Re-writing the derivative

$$\frac{\partial^2}{\partial x_i^2} \mathcal{G}_n^{(n)}(\mathbf{x}) = B \sum_{j=1}^m C_j \frac{\partial^2}{\partial x_i^2} \exp\left[-\sum_{k=1}^n x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) + \sum_{k=1}^n s_k^{(j)} x_k\right]$$

$$let \exp\left[-\mathbf{x}^T \mathbf{A}^{(j)} \mathbf{x} + \mathbf{s}^{(j)^T} \mathbf{x}\right] = \hat{\mathcal{G}}^{(j)}$$

$$\frac{\partial^2}{\partial x_i^2} \exp\left[-\sum_{k=1}^n x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) + \sum_{k=1}^n s_k^{(j)} x_k\right] = \frac{\partial}{\partial x_i} \left\{\hat{\mathcal{G}}^{(j)} \frac{\partial}{\partial x_i} \left[-\sum_{k=1}^n x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) + \sum_{k=1}^n s_k^{(j)} x_k\right]\right\}$$

$$\frac{\partial}{\partial x_i} \left[-\sum_{k=1}^n x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) + \sum_{k=1}^n s_k^{(j)} x_k\right] = -\sum_{k=1}^n \frac{\partial}{\partial x_i} x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) + \sum_{k=1}^n \frac{\partial}{\partial x_i} s_k^{(j)} x_k$$

$$= -\sum_{k=1}^n \frac{\partial}{\partial x_i} x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) + s_i^{(j)}$$

$$\sum_{k=1}^n \frac{\partial}{\partial x_i} x_k \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) = \sum_{k=1}^n \left[\left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) \frac{\partial}{\partial x_i} x_k + x_k \frac{\partial}{\partial x_i} \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right)\right]$$

$$\sum_{k=1}^n \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) \frac{\partial}{\partial x_i} x_k = \sum_{k=1}^n \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) \delta_{ik}$$

$$= \sum_{l=1}^n x_l A_{il}^{(j)}$$

$$\sum_{k=1}^n x_k \frac{\partial}{\partial x_i} \left(\sum_{l=1}^n x_l A_{kl}^{(j)}\right) = \sum_{k=1}^n x_k \left(\sum_{l=1}^n \frac{\partial}{\partial x_i} x_l A_{kl}^{(j)}\right)$$

$$= \sum_{k=1}^n x_k \left(\sum_{l=1}^n A_{kl}^{(j)} \delta_{li}\right)$$

$$= \sum_{k=1}^n x_k A_{ki}^{(j)}$$

Combining all of the sub-terms derived above and applying the second derivative

$$\begin{split} \frac{\partial}{\partial x_{i}} \left\{ \hat{\mathcal{G}}^{(j)} \frac{\partial}{\partial x_{i}} \left[-\sum_{k=1}^{n} x_{k} \left(\sum_{l=1}^{n} x_{l} A_{kl}^{(j)} \right) + \sum_{k=1}^{n} s_{k}^{(j)} x_{k} \right] \right\} &= \frac{\partial}{\partial x_{i}} \left\{ \hat{\mathcal{G}}^{(j)} \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \right\} \\ &= \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \frac{\partial}{\partial x_{i}} \hat{\mathcal{G}}^{(j)} + \hat{\mathcal{G}}^{(j)} \frac{\partial}{\partial x_{i}} \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \end{split}$$

As derived above,

$$\frac{\partial}{\partial x_i} \hat{\mathcal{G}}^{(j)} = \hat{\mathcal{G}}^{(j)} \left[-\sum_{l=1}^n x_l A_{il}^{(j)} - \sum_{k=1}^n x_k A_{ki}^{(j)} + s_i^{(j)} \right]$$

Completing the second derivative terms

$$\begin{split} \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \frac{\partial}{\partial x_{i}} \hat{\mathcal{G}}^{(j)} &= \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \hat{\mathcal{G}}^{(j)} \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \\ &= \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \\ &= \left[-\sum_{l=1}^{n} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} + s_{i}^{(j)} \right] \\ &= \hat{\mathcal{G}}^{(j)} \left\{ -\sum_{l=1}^{n} \frac{\partial}{\partial x_{i}} x_{l} A_{il}^{(j)} - \sum_{k=1}^{n} \frac{\partial}{\partial x_{i}} x_{k} A_{ki}^{(j)} \right\} \\ &= \hat{\mathcal{G}}^{(j)} \left\{ -\sum_{l=1}^{n} A_{il}^{(j)} \delta_{li} - \sum_{k=1}^{n} x_{k} A_{ki}^{(j)} \delta_{ki} \right\} \\ &= \hat{\mathcal{G}}^{(j)} \left\{ -A_{ii}^{(j)} - A_{ii}^{(j)} \right\} \\ &= -2A_{ij}^{(j)} \hat{\mathcal{G}}^{(j)} \end{split}$$

Finally

$$\frac{\partial^2}{\partial x_i^2} \hat{\mathcal{G}}^{(j)} = \left[-\sum_{l=1}^n x_l A_{il}^{(j)} - \sum_{k=1}^n x_k A_{ki}^{(j)} + s_i^{(j)} \right]^2 \hat{\mathcal{G}}^{(j)} - 2A_{ii}^{(j)} \hat{\mathcal{G}}^{(j)}$$

Meaning that

$$\begin{split} \frac{\partial^2}{\partial x_i^2} \mathcal{G}_n^{(m)} \left(\mathbf{x} \right) &= B \sum_{j=1}^m C_j \left\{ \left[-\sum_{l=1}^n x_l A_{il}^{(j)} - \sum_{k=1}^n x_k A_{ki}^{(j)} + s_i^{(j)} \right]^2 \hat{\mathcal{G}}^{(j)} - 2 A_{ii}^{(j)} \hat{\mathcal{G}}^{(j)} \right\} \\ &= B \sum_{j=1}^m C_j \left\{ \left[-\left(\sum_{k=1}^n x_k A_{ik}^{(j)} + x_k A_{ki}^{(j)} \right) + s_i^{(j)} \right]^2 \hat{\mathcal{G}}^{(j)} - 2 A_{ii}^{(j)} \hat{\mathcal{G}}^{(j)} \right\} \end{split}$$

Recalling that **A** is symmetric,

$$\frac{\partial^{2}}{\partial x_{i}^{2}} \mathcal{G}_{n}^{(m)}(\mathbf{x}) = B \sum_{j=1}^{m} C_{j} \hat{\mathcal{G}}^{(j)} \left\{ \left[s_{i}^{(j)} - 2 \sum_{k=1}^{n} x_{k} A_{ik}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right\}$$

where

$$\hat{\mathcal{G}}^{(j)} = \exp\left[-\mathbf{x}^T \mathbf{A}^{(j)} \mathbf{x} + \mathbf{s}^{(j)T} \mathbf{x}\right]$$

Applying this definition to simplify the Hamiltonian, the kinetic energy portion

$$T\mathcal{G}_{n}^{(m)}\left(\mathbf{x}\right) = \frac{-\hbar^{2}}{2m_{e}} \left[\sum_{i=1}^{n} B \sum_{j=1}^{m} C_{j} \hat{\mathcal{G}}^{(j)} \left\{ \left[s_{i}^{(j)} - 2 \sum_{k=1}^{n} x_{k} A_{ik}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right\} \right]$$

$$= \frac{-B\hbar^{2}}{2m_{e}} \sum_{i=1}^{n} \sum_{j=1}^{m} C_{j} \hat{\mathcal{G}}^{(j)} \left\{ \left[s_{i}^{(j)} - 2 \sum_{k=1}^{n} x_{k} A_{ik}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right\}$$

No derivatives need to be calculated for the potential energy portion, so it can be written

$$V\mathcal{G}_{n}^{(m)}(\mathbf{x}) = \frac{q_{e}}{4\pi\epsilon_{0}} \left[q_{e} \sum_{i=1}^{N_{e}} \sum_{j>i}^{N_{e}} |\mathbf{r}_{i} - \mathbf{r}_{j}|^{-1} - \sum_{i=1}^{N_{u}} \sum_{j=1}^{N_{e}} Q_{i} |\mathbf{R}_{i} - \mathbf{r}_{j}|^{-1} \right] \mathcal{G}_{n}^{(m)}(\mathbf{x})$$

3.2 Simplifying the Expectation Value of the Hamiltonian

The expectation value of the Hamiltonian for this system can be written

$$\int_{\mathbb{R}^q} \psi^* H \psi \, d\mathbf{x} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^* H \psi \, dx_1 \, dx_2 \cdots \, dx_q$$
$$\psi^* H \psi = \psi^* \left(T \psi + V \psi \right)$$

Where n is the number of inputs to the trial function. Since the trial function is real, $\psi^* = \psi$

$$\psi^{*} (T\psi + V\psi) = \psi T\psi + V\psi^{2}$$

$$V\psi^{2} = \frac{q_{e}}{4\pi\epsilon_{0}} \left[q_{e} \sum_{i=1}^{N_{e}} \sum_{j>i}^{N_{e}} |\mathbf{r}_{i} - \mathbf{r}_{j}|^{-1} - \sum_{i=1}^{N_{u}} \sum_{j=1}^{N_{e}} Q_{i} |\mathbf{R}_{i} - \mathbf{r}_{j}|^{-1} \right] \left[\mathcal{G}_{n}^{(m)} (\mathbf{x}) \right]^{2}$$

$$\psi T\psi = \mathcal{G}_{n}^{(m)} (\mathbf{x}) \frac{-B\hbar^{2}}{2m_{e}} \sum_{i=1}^{n} \sum_{j=1}^{m} C_{j} \hat{\mathcal{G}}^{(j)} \left\{ \left[s_{i}^{(j)} - 2 \sum_{k=1}^{n} x_{k} A_{ik}^{(j)} \right]^{2} - 2A_{ii}^{(j)} \right\}$$

Breaking up the integral

$$\int_{\mathbb{R}^q} \psi^* H \psi \, d\mathbf{x} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi T \psi \, dx_1 \, dx_2 \cdots \, dx_n + \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V \psi^2 \, dx_1 \, dx_2 \cdots \, dx_n$$

3.2.1 Kinetic Energy Integral

In order to calculate the integral,

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi T \psi \, dx_1 \, dx_2 \cdots \, dx_n$$

it is necessary to break it up into a product of integrals w.r.t each dx_n to the furthest extent that it is possible. In order to do this, it is necessary to express the function $\hat{\mathcal{G}}(\mathbf{x})$ in terms of a product of multiple exponential functions.

$$\hat{\mathcal{G}}^{(j)} = \exp\left[-\mathbf{x}^{T}\mathbf{A}^{(j)}\mathbf{x} + \mathbf{s}^{(j)T}\mathbf{x}\right]$$

$$= \exp\left[-\sum_{k=1}^{n} x_{k} \left(\sum_{l=1}^{n} x_{l} A_{kl}^{(j)}\right) + \sum_{k=1}^{n} s_{k}^{(j)} x_{k}\right]$$

$$= \exp\left[-\sum_{k=1}^{n} x_{k} \left(\sum_{l=1}^{n} x_{l} A_{kl}^{(j)}\right)\right] \exp\left[\sum_{k=1}^{n} s_{k}^{(j)} x_{k}\right]$$

$$\exp\left[\sum_{k=1}^{n} s_{k}^{(j)} x_{k}\right] = \prod_{k=1}^{n} \exp\left[s_{k}^{(j)} x_{k}\right]$$

$$\exp\left[-\sum_{k=1}^{n} x_{k} \left(\sum_{l=1}^{n} x_{l} A_{kl}^{(j)}\right)\right] = \prod_{k=1}^{n} \exp\left[-x_{k} \left(\sum_{l=1}^{n} x_{l} A_{kl}^{(j)}\right)\right]$$

$$= \prod_{k=1}^{n} \exp\left[-x_{k}^{2} A_{kk}^{(j)} - x_{k} \left(\sum_{l\neq k}^{n} x_{l} A_{kl}^{(j)}\right)\right]$$

$$= \prod_{k=1}^{n} \exp\left[-x_{k}^{2} A_{kk}^{(j)}\right] \exp\left[-\sum_{l\neq k}^{n} x_{k} x_{l} A_{kl}^{(j)}\right]$$

$$= \prod_{k=1}^{n} \left\{\exp\left[-x_{k}^{2} A_{kk}^{(j)}\right] \left(\prod_{l\neq k}^{n} \exp\left[-x_{k} x_{l} A_{kl}^{(j)}\right]\right)\right\}$$

$$\therefore \hat{\mathcal{G}}^{(j)} = \left[\prod_{k=1}^{n} \left\{\exp\left[-x_{k}^{2} A_{kk}^{(j)}\right] \left(\prod_{l\neq k}^{n} \exp\left[-x_{k} x_{l} A_{kl}^{(j)}\right]\right)\right\}\right] \left[\prod_{k=1}^{n} \exp\left[s_{k}^{(j)} x_{k}\right]\right]$$
(3)

At this point, it becomes convenient to apply a significant simplification, at the expense of removing some generality from the trial function. Now, assume that \mathbf{A} is a diagonal matrix, more explicitly

$$A_{ij} = 0 \text{ for } i \neq j$$

Applying this to eq. 3.

$$\begin{split} \hat{\mathcal{G}}^{(j)} &= \left[\prod_{k=1}^n \left\{ \exp\left[-x_k^2 A_{kk}^{(j)} \right] \left(\prod_{t \neq k}^n \exp\left[-x_k^2 A_{kl}^{(j)} \right] \right)^1 \right\} \right] \left[\prod_{k=1}^n \exp\left[s_k^{(j)} x_k \right] \right] \\ &= \prod_{k=1}^n \exp\left[-x_k^2 A_{kk}^{(j)} \right] \prod_{k=1}^n \exp\left[s_k^{(j)} x_k \right] \\ &= \prod_{k=1}^n \exp\left[-x_k^2 A_{kk}^{(j)} \right] \exp\left[s_k^{(j)} x_k \right] \end{split}$$

Using this to write the expression $\psi T \psi$ as explicitly as possible

$$\begin{split} \psi T \psi &= \mathcal{G}_{n}^{(m)} \left(\mathbf{x} \right) \frac{-B \hbar^{2}}{2m_{e}} \sum_{i=1}^{n} \sum_{j=1}^{m} C_{j} \hat{\mathcal{G}}^{(j)} \left\{ \left[s_{i}^{(j)} - 2 \sum_{k=1}^{n} x_{k} A_{ik}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right\} \\ &= \mathcal{G}_{n}^{(m)} \left(\mathbf{x} \right) \frac{-B \hbar^{2}}{2m_{e}} \sum_{i=1}^{n} \sum_{j=1}^{m} C_{j} \hat{\mathcal{G}}^{(j)} \left\{ \left[s_{i}^{(j)} - 2 x_{i} A_{ii}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right\} \\ &= \frac{-B^{2} \hbar^{2}}{2m_{e}} \left(\sum_{j'=1}^{m} C_{j'} \prod_{l=1}^{n} \exp \left[-x_{l}^{2} A_{ll}^{(j')} \right] \exp \left[s_{l}^{(j')} x_{l} \right] \right) \times \\ &\sum_{i=1}^{n} \sum_{j=1}^{m} C_{j} \left(\prod_{k=1}^{n} \exp \left[-x_{k}^{2} A_{kk}^{(j)} \right] \exp \left[s_{k}^{(j)} x_{k} \right] \right) \left\{ \left[s_{i}^{(j)} - 2 x_{i} A_{ii}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right\} \\ &= \frac{-B^{2} \hbar^{2}}{2m_{e}} \sum_{j'=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{n} C_{j'} C_{j} \left(\prod_{l=1}^{n} \exp \left[-x_{l}^{2} A_{ll}^{(j')} \right] \exp \left[s_{l}^{(j')} x_{l} \right] \right) \left(\prod_{k=1}^{n} \exp \left[-x_{k}^{2} A_{kk}^{(j)} \right] \exp \left[s_{k}^{(j)} x_{k} \right] \right) \times \\ &\left(\left[s_{i}^{(j)} - 2 x_{i} A_{ii}^{(j)} \right]^{2} - 2 A_{ii}^{(j)} \right) \end{aligned}$$

Next, we simplify the two product terms

$$\left(\prod_{l=1}^{n} \exp\left[-x_l^2 A_{ll}^{(j')}\right] \exp\left[s_l^{(j')} x_l\right]\right) \left(\prod_{k=1}^{n} \exp\left[-x_k^2 A_{kk}^{(j)}\right] \exp\left[s_k^{(j)} x_k\right]\right)$$

$$= \prod_{l=1}^{n} \exp\left[-x_l^2 A_{ll}^{(j')}\right] \exp\left[s_l^{(j')} x_l\right] \exp\left[-x_l^2 A_{ll}^{(j)}\right] \exp\left[s_l^{(j)} x_l\right]$$

$$= \prod_{l=1}^{n} \exp\left[-x_l^2 A_{ll}^{(j')} - x_l^2 A_{ll}^{(j)}\right] \exp\left[s_l^{(j')} x_l + s_l^{(j)} x_l\right]$$

 $= \prod_{l}^{n} \exp \left[-x_{l}^{2} \left(A_{ll}^{\left(j'\right)} + A_{ll}^{\left(j\right)} \right) \right] \exp \left[x_{l} \left(s_{l}^{\left(j'\right)} + s_{l}^{\left(j\right)} \right) \right]$

Inserting this into the original expression.

$$\psi T \psi = \frac{-B^2 \hbar^2}{2m_e} \sum_{j'=1}^m \sum_{i=1}^m \sum_{i=1}^n C_{j'} C_j \left(\left[s_i^{(j)} - 2x_i A_{ii}^{(j)} \right]^2 - 2A_{ii}^{(j)} \right) \prod_{l=1}^n \exp \left[-x_l^2 \left(A_{ll}^{(j')} + A_{ll}^{(j)} \right) \right] \exp \left[x_l \left(s_l^{(j')} + s_l^{(j)} \right) \right]$$

Expanding the last term in the above expression.

$$\left[s_{i}^{(j)}-2x_{i}A_{ii}^{(j)}\right]^{2}-2A_{ii}^{(j)}=\left[s_{i}^{(j)}\right]^{2}+4x_{i}^{2}\left[A_{ii}^{(j)}\right]^{2}-4x_{i}A_{ii}^{(j)}s_{i}^{(j)}-2A_{ii}^{(j)}$$

This allows for the integral that defines the expectation value of the kinetic energy to be simplified significantly. First, recall that

$$\int \cdots \int \int \prod_{i=1}^{n} f_i(x_i) dx_1 dx_2 \cdots dx_N = \prod_{i=1}^{n} \int f_i(x_i) dx_i$$
 (4)

Emphasis being on the fact that all functions in the integrand depend on a single variable of integration, never more, never less. Before applying this, we allow the following definitions, in order to be concise.

$$let f(x_l) = \exp\left[-x_l^2 \left(A_{ll}^{(j')} + A_{ll}^{(j)}\right)\right] \exp\left[x_l \left(s_l^{(j')} + s_l^{(j)}\right)\right]$$

$$let g(x_i) = \left[s_i^{(j)}\right]^2 + 4x_i^2 \left[A_{ii}^{(j)}\right]^2 - 4x_i A_{ii}^{(j)} s_i^{(j)} - 2A_{ii}^{(j)}$$

We now write the expectation value of the kinetic energy

$$\begin{split} \langle T \rangle &= \frac{-B^2 \hbar^2}{2m_e} \int \cdots \int \int \left\{ \sum_{j'=1}^m \sum_{j=1}^m \sum_{i=1}^n C_{j'} C_j g\left(x_i\right) \prod_{l=1}^n f\left(x_l\right) \right\} dx_1 dx_2 \cdots dx_n \\ &= \frac{-B^2 \hbar^2}{2m_e} \left\{ \sum_{j'=1}^m \sum_{j=1}^m \sum_{i=1}^n C_{j'} C_j \int \cdots \int \int g\left(x_i\right) \prod_{l=1}^n f\left(x_l\right) dx_1 dx_2 \cdots dx_n \right\} \\ &= \frac{-B^2 \hbar^2}{2m_e} \left\{ \sum_{j'=1}^m \sum_{j=1}^m \sum_{i=1}^n C_{j'} C_j \int \cdots \int \int g\left(x_i\right) f\left(x_i\right) \prod_{l\neq i}^n f\left(x_l\right) dx_1 dx_2 \cdots dx_n \right\} \\ &= \frac{-B^2 \hbar^2}{2m_e} \left\{ \sum_{j'=1}^m \sum_{j=1}^m \sum_{i=1}^n C_{j'} C_j \int g\left(x_i\right) f\left(x_i\right) dx_i \prod_{l\neq i}^n \int f\left(x_l\right) dx_l \right\} \end{split}$$

This now leaves us with only the following two integrals to calculate.

$$\int_{-\infty}^{\infty} f(x_l) dx_l = \int_{-\infty}^{\infty} \exp\left[-x_l^2 \left(A_{ll}^{(j')} + A_{ll}^{(j)}\right)\right] \exp\left[x_l \left(s_l^{(j')} + s_l^{(j)}\right)\right] dx_l$$

$$\int_{-\infty}^{\infty} g(x_i) f(x_i) dx_i = \int_{-\infty}^{\infty} \left(\left[s_i^{(j)}\right]^2 + 4x_i^2 \left[A_{ii}^{(j)}\right]^2 - 4x_i A_{ii}^{(j)} s_i^{(j)} - 2A_{ii}^{(j)}\right) \exp\left[-x_i^2 \left(A_{ii}^{(j')} + A_{ii}^{(j)}\right) + x_i \left(s_i^{(j')} + s_i^{(j)}\right)\right] dx_i$$

The second integral can be split into a sum of three integrals, making the full list of integrals to be computed

$$\begin{split} I_{1} &\equiv \int_{-\infty}^{\infty} \exp\left[-x_{l}^{2} \left(A_{ll}^{(j')} + A_{ll}^{(j)}\right)\right] \exp\left[x_{l} \left(s_{l}^{(j')} + s_{l}^{(j)}\right)\right] dx_{l} \\ I_{2} &\equiv \left(\left[s_{i}^{(j)}\right]^{2} - 2A_{ii}^{(j)}\right) \int_{-\infty}^{\infty} \exp\left[-x_{i}^{2} \left(A_{ii}^{(j')} + A_{ii}^{(j)}\right)\right] \exp\left[x_{i} \left(s_{i}^{(j')} + s_{i}^{(j)}\right)\right] dx_{i} \\ I_{3} &\equiv 4 \left[A_{ii}^{(j)}\right]^{2} \int_{-\infty}^{\infty} x_{i}^{2} \exp\left[-x_{i}^{2} \left(A_{ii}^{(j')} + A_{ii}^{(j)}\right)\right] \exp\left[x_{i} \left(s_{i}^{(j')} + s_{i}^{(j)}\right)\right] dx_{i} \\ I_{4} &\equiv -4A_{ii}^{(j)} s_{i}^{(j)} \int_{-\infty}^{\infty} x_{i} \exp\left[-x_{i}^{2} \left(A_{ii}^{(j')} + A_{ii}^{(j)}\right)\right] \exp\left[x_{i} \left(s_{i}^{(j')} + s_{i}^{(j)}\right)\right] dx_{i} \end{split}$$

All of which can be computed analytically. First,

$$let \ D_{ljj'} = A_{ll}^{(j')} + A_{ll}^{(j)}$$

$$let \ F_{ljj'} = s_l^{(j')} + s_l^{(j)}$$

$$I_1 = \sqrt{\frac{\pi}{D_{ljj'}}} \exp\left[\frac{F_{ljj'}^2}{4D_{ljj'}}\right]$$

$$I_2 = \left(\left[s_i^{(j)}\right]^2 - 2A_{ii}^{(j)}\right)\sqrt{\frac{\pi}{D_{ijj'}}} \exp\left[\frac{F_{ijj'}^2}{4D_{ijj'}}\right]$$

$$I_3 = \left[A_{ii}^{(j)}\right]^2 \exp\left[\frac{F_{ijj'}^2}{4D_{ijj'}}\right] \left(2D_{ijj'} + F_{ijj'}^2\right)\sqrt{\frac{\pi}{D_{ijj'}^5}}$$

$$I_4 = -4A_{ii}^{(j)} s_i^{(j)} \exp\left[\frac{F_{ijj'}^2}{4D_{ijj'}}\right] F_{ijj'}\sqrt{\frac{\pi}{4D_{ijj'}^3}}$$

We are now equipped to write a complete, closed form solution to the expectation value of the kinetic energy.

$$\langle T \rangle = \frac{-B^2 \hbar^2}{2m_e} \left\{ \sum_{j'=1}^m \sum_{j=1}^m \sum_{i=1}^n C_{j'} C_j \left(I_2 + I_3 + I_4 \right) \prod_{l \neq i}^n I_1 \right\}$$

The completely expanded form being

$$\begin{split} \langle T \rangle &= \frac{-B^2 \hbar^2}{2m_e} \pi^{\frac{n+1}{2}} \left\{ \sum_{j'=1}^m \sum_{j=1}^m \sum_{i=1}^n C_{j'} C_j \Gamma_{ijj'} \prod_{l \neq i}^n D_{ljj'}^{-1/2} \exp\left[\frac{F_{ljj'}^2}{4D_{ljj'}}\right] \right\} \\ \Gamma_{ijj'} &\equiv \exp\left[\frac{F_{ijj'}^2}{4D_{ijj'}}\right] \left\{ \left(\left[s_i^{(j)}\right]^2 - 2A_{ii}^{(j)}\right) D_{ijj'}^{-1/2} + \left[A_{ii}^{(j)}\right]^2 \left(2D_{ijj'} + F_{ijj'}^2\right) D_{ijj'}^{-5/2} - 2A_{ii}^{(j)} s_i^{(j)} F_{ijj'} D_{ijj'}^{-3/2} \right\} \\ D_{kjj'} &\equiv A_{kk}^{(j')} + A_{kk}^{(j)} \\ F_{kjj'} &= s_k^{(j')} + s_k^{(j)} \end{split}$$

4 Appendix A: Generalized Integration By Parts

$$\frac{d}{dx} \prod_{i=1}^{n} f_{i}(x) = f_{1}(x) \frac{d}{dx} \prod_{i=2}^{n} f_{i}(x) + \left(\prod_{i=2}^{n} f_{i}(x)\right) \frac{d}{dx} f_{1}(x)
= \left(\prod_{i=2}^{n} f_{i}(x)\right) \frac{d}{dx} f_{1}(x) + f_{1}(x) \left[\left(\prod_{i=3}^{n} f_{i}(x)\right) \frac{d}{dx} f_{2}(x) + f_{2}(x) \frac{d}{dx} \prod_{i=3}^{n} f_{i}(x)\right]
= \left(\prod_{i=2}^{n} f_{i}(x)\right) \frac{d}{dx} f_{1}(x) + f_{1}(x) \left(\prod_{i=3}^{n} f_{i}(x)\right) \frac{d}{dx} f_{2}(x) + f_{1}(x) f_{2}(x) \frac{d}{dx} \prod_{i=3}^{n} f_{i}(x)$$

From this, we can define the derivative of the generalized product to be a sum of terms

$$\frac{d}{dx}\prod_{i=1}^{n}f_{i}\left(x\right) = \sum_{i=1}^{n}F_{i-1}\left(x\right)\left(\prod_{i'=i+1}^{n}f_{i'}\left(x\right)\right)\frac{d}{dx}f_{i}\left(x\right)$$

Where

$$F_n(x) \equiv f_n(x) f_{n-1}(x) \cdots f_1(x)$$

$$F_0(x) \equiv 1$$

This can be simplified as follows

$$\frac{d}{dx}\prod_{i=1}^{n}f_{i}\left(x\right) = \sum_{i=1}^{n}\left(\prod_{i'\neq i}^{n}f_{i'}\left(x\right)\right)\frac{d}{dx}f_{i}\left(x\right)$$

Recall the derivation of integration by parts

$$\frac{d}{dx}f(x)g(x) = g(x)\frac{d}{dx}f(x) + f(x)\frac{d}{dx}g(x)$$

$$\int \frac{d}{dx}f(x)g(x) = \int g(x)\frac{d}{dx}f(x) + \int f(x)\frac{d}{dx}g(x)$$

$$f(x)g(x) = \int g(x)\frac{d}{dx}f(x) + \int f(x)\frac{d}{dx}g(x)$$

$$\int g(x)\frac{d}{dx}f(x) = f(x)g(x) - \int f(x)\frac{d}{dx}g(x)$$

Or, in the more common notation

$$\int gf' = fg - \int fg'$$

Next, using the same argument, we derive a generalization for any number of products in the intgrand.

$$\int \frac{d}{dx} \prod_{i=1}^{n} f_{i}(x) = \int \sum_{i=1}^{n} \left(\prod_{i'\neq i}^{n} f_{i'}(x) \right) \frac{d}{dx} f_{i}(x)$$
$$\prod_{i=1}^{n} f_{i}(x) = \sum_{i=1}^{n} \int \left(\prod_{i'\neq i}^{n} f_{i'}(x) \right) \frac{d}{dx} f_{i}(x)$$

From the expression on the right of the equal sign, we can extract any chosen element of the sum and move it to the left hand side.

$$\int \left(\prod_{i'\neq\gamma}^{n} f_{i'}\left(x\right)\right) \frac{d}{dx} f_{\gamma}\left(x\right) = \prod_{i=1}^{n} f_{i}\left(x\right) - \sum_{i\neq\gamma}^{n} \int \left(\prod_{i'\neq i}^{n} f_{i'}\left(x\right)\right) \frac{d}{dx} f_{i}\left(x\right)$$

$$(5)$$

This provides us with a means of reasoning about the products in the integrand of the kinetic energy function.