Assignment 2: Face Detection in a Scaled Representation

Question 1 & Question 2

Script interaction pasted below, commented version shown at the end of the pdf:

Question 4 & Question 5

Try out Threshold	False Positive	False Negative
0.6	15	10
0.61	11	12
0.62	6	12

Final selected threshold = 0.61

False positive = 11 False negative = 12

Question 6 Recall Rate

Image	True positives	Recall rate
family	2	2/3
fans	0	0/3
judybats	4	4/5
sports	0	0/1

students	21	21/27
tree	0	0/0

It's obvious that the two pictures have the lowest recall rate is relatively dark and the face orientation are much different than the template. So the NCC method has a very low recall rate on some images may due to different orientation, lighting conditions and also may cause by other factors that make the face dramatically different than the template.

Overall commented scripts and tests:

Part 1

```
Jupyter FindTemplate Last Checkpoint: 5 minutes ago (autosaved)
                                                                                                                                            Logout
File Edit View Insert Cell Kernel Widgets Help
                                                                                                                               Trusted / Python 2 O
E + % @ E ↑ ↓ N Run ■ C > Code
                                                            $
   In [212]: from PIL import Image, ImageDraw
              import numpy as np
              import math
              from scipy import signal
              import ncc
              def MakePyramid(image.minsize):
                  im = Image.open(image)
                  #create pyramid array
Pyramid = []
                   #stop creating pyramid if the width or the height of the image are less then minsize
                  while(im.size[0]>=minsize and im.size[1]>=minsize):
                       Pyramid.append(im)
                       #resize picture by the scale of 0.75
                       im = im.resize((int(im.size[0]*0.75),int(im.size[1]*0.75)),Image.BICUBIC)
                  return Pyramid
              def ShowPyramid(pyramid):
                  x = 0
                  y = 0
                   #set the size for the horizontal image
                  for im in pyramid:
                     x = x + im.size[0]
#use the largest height of pyramid as the height of the horizontal image
                      y = max(im.size[1],y)
                  #create a new image with proper heigh and width, use white as background color image = Image.new("L",(x,y),255)
                  offset_x = 0
                  for im in pyramid:
                       image.paste(im,(offset_x,0))
                       #use offset_x to make sure pyramid listed horizontally
offset_x = offset_x + im.size[0]
                  image.save("outputs/showpyramid.png",'PNG')
                   image.show()
                  return image
              def FindTemplate(pyramid,template,threshold):
                   #resize the template to fix width 15px, and scale the height accordingly template_size = 15 \,
                  template = Image.open(template)
template = template.resize((int(template_size),int(template.size[1]*template_size/template.size[0])),Image.BICUBIC)
                  image = pyramid[0].convert('RGB')
scale = 1
```


Part 3

