Our examples so far, like IR", IR", or their subspaces,
have been "over R", meaning that the spaces have to
be closed under multiplication by arbitrary real numbers
$(0,1,\frac{1}{2},\sqrt{2},\pi,)$
But linear algebra makes sense over other fields, too, and some are very important.
Example: C = {a+bi a,b∈R}
$i^2 = -1$ $(a+bi)(c+di) = (ac-bd) + (ad+bc)i$
What is a field? R C https://en.wikipedia.org/wiki/Field (mathematics)#Classic definition Formally, a field is a set together with two operations called addition and multiplication. In An operation is a
The second of the author of a and b is called the sum of a and b is called the sum of a and b and denoted $a + b$. Similarly, the result of the autition of a and b is called the sum of a and b and denoted $a + b$. Similarly, the result of the multiplication of a and b is called the sum of a and b and denoted ab or $a + b$. These operations are required to as salely the following properties, referred to as field axioms: In the sequel, a , b and c are arbitrary elements of F . *Associativity of addition and multiplication: $a + (b + c) = (a + b) + c$ and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
 Multiplication division division and a versus two different elements 0 and 1 in F such that a + 0 = a and a + 1 = a. Additive inverses: for every a in F, there exists an element in F, denoted −a, called additive inverse of a, such that a * (-a) = 0.
* Multiplicative inverses: for every $a \neq 0$ in F , there exists an element in F , denoted by a^{-1} , $1/a$, or a^{-1} called the multiplicative inverse of a , such that $a \cdot a^{-1} = 1$, $2 \cdot 2 = 1$ and $3 \cdot 9 \cdot 2^{-1} = 2$. * Distributivity of multiplication over addition: $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$. **Proof of the content of the
$Z = set of integers, -2, -1, 0, 1, 2,$ is not a field addition, soltraction $\sqrt{1 + x}$
multiplication , divorce a &
Linear algebra over \mathbb{Z} doesn't really work $\begin{cases} 2 & 3 \\ 2 & 3 \end{cases}$ $\begin{cases} 4 & 2 \\ 2 & 3 \end{cases}$
+32/5, (C)
Example: We need division $\{(x_2) 3x_1 + 3x_2 = 0\}$
Q= { 1/6 a,b \in Z,b \neq 0} is a field rational numbers
Example: Fz = {0,1} is a finite field
A (

 $V=\{(3),(9),(1)\}$ is not a subspace not closed under addition $\begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \delta \end{pmatrix} \notin \bigvee$ Exercise: Span $\{(3), (0)\} = \{a(0) + b(0) | a, b \in \mathbb{F}_2 = \{0, 1\}\}$ $= \left\{ \begin{pmatrix} 8 \\ 9 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1$ How many subspaces are there of {0,13°? More finite fields $2^{1}2=1 \mod 3$ $\frac{1}{\sqrt{2}} = \alpha \cdot \beta$ $F_3 = \{0, 1, 23 \text{ is a field} \}$ [-1] = 1, $2^{-1} = 2$ $2^{-1} = 2$ {0,1,2,3} is not a field 1'=1,3'=3 (3×3=1 mod 4) but you can't divide by 2! 2' does not exist in \$6,1,2,3\$ 2x=1 mod 4 no answell $x=2^{-1}$ mode {0,1,2,3,4} is a field (mod 5, Ts) $\Gamma'=1$, $2^{-1}=3$, $3^{-1}=2$, $4^{-1}=4$ Def-Inverse of x {0,1,2,...,p-1} is a field if and only if p is prime! $\times^{-1} \cdot \times = \bot$ 2'. 2 = 1 mod 5 a-b'' = a+(-b)where a+(-b)=0 $= 2^{-1} = 3$ $2^{1} \mod 7 = 4$ -6 is the additive inverse of 6 where 5' is the multiplicative inverse of 6 $a = a \cdot b$ P.P. = 7 15=2 mod 13 $15 \cdot 2 = 2 \cdot 2 = 4 \mod 13$ 12 = -1 mod 13 Fp= 20, 1, 2, --, p-18
Fp= 20, 1, 2, --, p-18
Fp= 20, 1, 2, --, p-18 over R

EE 510 Linear algebra Page 3

Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960.^[1] They have many applications, the most prominent of which include consumer technologies such as CDs, DVDs, Blu-ray Discs, QR Codes, data transmission technologies such as DSL and WiMAX, broadcast systems such as DVB and ATSC, and storage systems such as RAID 6. They are also used in satellite communication.

In coding theory, the Reed–Solomon code belongs to the class of non-binary cyclic error-correcting codes. The Reed–Solomon code is based on univariate polynomials over finite fields.

Data storage [edit]

Reed-Solomon coding is very widely used in mass storage systems to correct the burst errors associated with media defects

Reed–Solomon coding is a key component of the compact disc. It was the first use of strong error correction coding in a mass-produced consumer product, and DAT and DVD use similar schemes. In the CD, two layers of Reed–Solomon coding separated by a 28-way convolutional interleaver yields a scheme called Cross-Interleaved Reed–Solomon Coding (CIRC). The first element of a CIRC decoder is a relatively weak inner (32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to 2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, Re., blocks with more than 2 byte errors. The decoded 28-byte blocks, with erasure indications, are then spread by the deinterleaver to different blocks of the (28,24) outer code. Thanks to the deinterleaving, an erased 28-byte block from the inner code becomes a single erased byte in each of 28 outer code blocks. The outer code easily corrects this, since it can handle up to 4 such erasures per block.

The result is a CIRC that can completely correct error bursts up to 4000 bits, or about 2.5 mm on the disc surface. This code is so strong that most CD playback errors are almost certainly caused by tracking errors that cause the laser to jump track, not by uncorrectable error bursts.^[5]

DVDs use a similar scheme, but with much larger blocks, a (208,192) inner code, and a (182,172) outer code

Reed-Solomon error correction is also used in parchive files which are commonly posted accompanying multimedia files on USENET. The Distributed online storage service Wuala (discontinued in 2015) also used to make use of Reed-Solomon when breaking up files.

Example: Over #2.

Example: Over \exists , x^{n+1} is reducible for 17^{n} of $(x+1) \cdot (x+1) = x^{2} + 2x + 1 = x^{2} + 1)$ Proof: $(x+1) \cdot (x+1) = x^{2} + 2x + 1 = x^{2} + 1$ $(x^{2}+1)(x^{2}+1) = x^{2}+1$ $(x^{2}+1)(x^{2}+1) = x^{2}+1$ Irreducible $(x^{2}+1)(x^{2}+1) = x^{2}+1$ $(x^{2}+1)(x^{2}+1) = x^{2}+1$ Factortist[$x^{4}+1$, Hodulus +2] $(x^{2}+1)(x^{2}+1) = x^{2}+1$ Irreducible $(x^{2}+1)(x^{2}+1) = x^{2}+1$ $(x^{2}+1)(x^{2}+1) = x^{2}+1$ Proof: $(x+1)(x+1) = x^{2}+1$ Proof: (x+1)(x+1) =