

FACULTAD DE INGENIERÍA Y GESTIÓN ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS

SÍLABO

I. DATOS GENERALES

1.1. Asignatura : Algoritmos de computación gráfica

 1.2. Código
 : ISO6R4

 1.3. Semestre
 : 2022-I

 1.4. Ciclo
 : VIII

1.5. Carácter : Obligatorio

1.6. Área : Estudios de Especialidad

1.7. Créditos : 3

1.8. Pre requisito : Lenguaje de programación II

1.9. Duración : 17 1.10. Horas Teóricas : 2 1.11. Horas Práctica : 2 1.12. Horas Totales : 4

1.13. Docente(s) : Mg. Juan Carlos Reátegui Morales

jreategui@untels.edu.pe

II. SUMILLA

El curso de Algoritmos de computación gráfica, es un curso de formación de naturaleza teoría y práctica. A través de él, se desea formar en los alumnos competencias relacionadas con: la generación y representación de imágenes a través de la computación, visión computacional y procesamiento de imágenes. Los temas principales: Proceso de creación de una imagen a partir de un modelo en un ordenador, fundamentos de computación gráfica en 2D y 3D, transformación modelo – vista, proyección, viewport y rendering, OpenCV. Visión computacional y procesamiento de imágenes como mejoramiento de contraste, filtros y detección de bordes.

III. COMPETENCIA Y CAPACIDADES DE LA ASIGNATURA

COMPETENCIA	CAPACIDADES
Implementa aplicaciones y sistemas informáticos empleando técnicas de representación gráfica mediante un entorno de programación de uso general.	Implementa líneas con primitivas bidimensionales y tridimensionales usando motor gráfico. Implementa diferentes curvas en 2d usando motor gráfico. Implementa diferentes modelados de textura en 3d usando motor gráfico. Implementa proyectos aplicativos de gamificación y mapas aplicados a la empresa y a la investigación,
	haciendo uso de técnicas de computación gráfica en el contexto de transformación digital.

IV. PROGRAMACIÓN DE CONTENIDOS EN UNIDADES DE APRENDIZAJE

	UNI	DAD DE APRENDIZAJE N° 1			
	Generación de líneas con primitiva bidimensionales y tridimensionales				
		CAPACIDAD N° 1			
Im	Implementa líneas con primitivas bidimensionales y tridimensionales usando motor gráfico.				
SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL		

1	Introducción a computación gráfica por computadora y aplicaciones. Examen de entrada.	Conceptos de computación gráfica y su utilidad. Genera puntos con librerías gráficas.	Puntualidad y muestra interés por comprender la gráfica por computadora. Deseo de revisar bibliografía relacionada a la
	Introducción a la programación gráfica con librería grafica openCV.	Generar gráficos digitales con ayuda de un software de programación (Python).	computación gráfica. Disposición a la investigación.
2	Primitivas Bidimensionales. Algoritmo de línea bresenham y DDA. Implementación de algoritmos de línea. Guia de laboratorio: Implementación usando Dev C++ con openCV y/o Phyton.	Comprende los algoritmos y analiza las diferencias de cada una. Implementa algoritmo de DDA y Bresenham con openCV en cada uno de los cuadrantes.	Puntualidad y participa activamente en la implementación de algoritmos de línea. Equipos de trabajo de los alumnos
3	Transformaciones geométricas bidimensionales. Implementación de algoritmos de transformación. Implementación de las coordenadas homogéneas.	Comprende los algoritmos y analiza las diferencias de cada una. Implementa algoritmos geométricos bidimensionales con openCV y representación de curvas.	Puntualidad y participa activamente en la creación de aplicaciones geométricas bidimensionales con openCV. Disposición a la investigación.
4	Transformaciones geométricas tridimensionales. Implementación de algoritmos de transformación. Implementación de las coordenadas homogéneas. Práctica Calificada I	Comprende los algoritmos y analiza las diferencias de cada una. Implementa algoritmos geométricos tridimensionales con openCV y representación de curvas.	Puntualidad y participa activamente en la creación de aplicaciones geométricas tridimensionales con openCV. Disposición a la investigación.

EVIDENCIA DE LA CAPACIDAD 1: Implementa aplicaciones prácticas de Computación Gráfica usando un lenguaje de programación y librería OpenCV.

Práctica Calificada I

UNIDAD DE APRENDIZAJE N° 2	
Generación de curvas 2d	

CA	$\mathbf{P}\mathbf{\Lambda}$	CII	Δ	ו ח	N٥	2

Implementa diferentes curvas en 2d usando motor gráfico.

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL
5	Representación de curvas y superficies, curvas de bezier, y castelljau. Implementación de algoritmos de bezier, y castelljau.	Comprende la importancia del uso de generación de curvas de bezier y castelljau. Implementa algoritmo bezier, y castelljau con openCV.	Puntualidad y participa activamente en la creación de aplicaciones de bezier, y castelljau. Disposición a la investigación y búsqueda de información adicional.
6	Algoritmo de B-spline	Comprende en clase de los conceptos presentados. Analiza el método de generación de curva b-spline. Implementa algoritmo b-spline con openCV	Puntualidad y participación para comprender la generación de curva Bspline. Disposición a la investigación y búsqueda de información adicional.
7	Curvas Hermite Implementación de curvas Hermite. Práctica Calificada II	Analiza, comprende e implementa curvas Hermite con openCV.	Puntualidad y participación activa en el análisis e implantación de curvas Hermite con openCV.
8		Examen parcial	

EVIDENCIA DE LA CAPACIDAD 2:

- Implementa algoritmos y aplicaciones de Computación Gráfica en base a curvas 2D.

Práctica Calificada II

	UNIDAD DE APRENDIZAJE N° 3				
		Modelado en 3d			
		CAPACIDAD N° 3			
	Implementa diferentes modelados de textura en 3d usando motor gráfico.				
SEMANA	SEMANA CONCEPTUAL CONTENIDO PROCEDIMENTAL CONTENIDO ACTITUDINAL				

9	Nube de puntos. Implementación de nube de puntos en openGl.	Avance de proyecto basado en generación de líneas y curvas a partir de una nube de puntos	Puntualidad, participación activa y valoración correspondiente el uso de nube de puntos, valora la investigación.
10	Modelamiento geométrico de objetos en 3D mediante la representación de fronteras (Brep), despliegue de superficies cuádricas.	Evaluar y modela objetos en 3D mediante la representación de fronteras	Puntualidad, participación activa en el modelado de objetos en 3D mediante la representación de fronteras
11	Modelamiento geométrico de objetos en 3D mediante la geometría constructiva (Cgs).	Evaluar y modela objetos en 3D mediante la representación de fronteras Cgs.	Puntualidad, participación activa en problemas basados en el conocimiento.
12	Los fractales y el caos, modelos fractales: comprensión de imágenes, diseño e implementación de un fractal bidimensional. Práctica Calificada III	Implementa y discute el uso de fractales y el caos.	Puntualidad, participación activa en problemas basados en sistemas difusos.

EVIDENCIA DE LA CAPACIDAD 3:

- Implementa algoritmos y aplicaciones de Computación Gráfica en base a curvas 3D.

Práctica Calificada III

UNIDAD DE APRENDIZAJE N° 4

Texturas y radicación de luz

CAPACIDAD N° 4

Implementa diferentes texturas y radicación de luz usando motor gráfico.

	CONTENIDO		CONTENIDO	
SEMANA	CONCEPTUAL	CONTENIDO PROCEDIMENTAL	ACTITUDINAL	
13	Mapeado y texturizado, mapas de bits, ficheros como texturas, algoritmos de mapeado, implementación de un mapa de bits, mapeado de texturas basado en ficheros gráficos	Implementa, y analiza el mapeado y texturizado, mapas de bits	Puntualidad, participación activa en la creación de mapeado y texturizado, mapas de bits	
14	Ray tracing. Radicación de luz, Caso fuera, dentro y tangente a la esfera.	Modelo de aplicación de ray tracing.	Puntualidad, participación activa en problemas basados en tensores para redes neuronales.	
15	Ray tracing. Aplicación de orden de imagen esfera. Aplicación en DevC++ con openCV. Práctica Calificada IV	Modelo de aplicación de ray tracing.	Puntualidad, participación activa en su exposición.	
16		Examen Final	1	

EVIDENCIA DE LA CAPACIDAD 4:

- Implementa algoritmos y aplicaciones de Computación Gráfica en base a texturas y radicación de luz usando motor gráfico.

Práctica Calificada IV

V. METODOLOGÍA DEL PROCESO DE ENSEÑANZA-APRENDIZAJE

La metodología activa es una enseñanza centrada en el estudiante, la asignatura se basará en el aula invertida y el trabajo colaborativo:

5.1. Sesiones de aprendizaje asíncrono: Aula virtual UNTELS:

- Sesiones de aprendizaje **asíncrono**: Los alumnos revisan el material didáctico y realizan las actividades que el docente ha planificado y ha subido a la plataforma virtual previamente por semanas. (Folletos, videos, diapositivas, lecturas, casos, páginas web, etc). El docente asume un rol de facilitador y el estudiante es autónomo y responsable de realizar las actividades y revisar los materiales planificados.

5.2. Sesiones de aprendizaje síncrono:

- Sesiones de aprendizaje **síncrono**: Los alumnos en equipos realizan actividades colaborativas que refuerzan y desarrollan los temas revisados en la plataforma virtual. (Control de lectura, desarrollo de casos, desarrollo de prácticas guiadas/calificadas, desarrollo de laboratorios). El profesor asume un rol guía y coach. El estudiante participa de forma activa en las sesiones de clase.

VI. SISTEMA DE EVALUACIÓN

EVALUACIÓN	CÓD	DETALLE	PESO
Evaluación de	EC1	Evaluación del aprendizaje de la primera	10%
Capacidad de la UA1		unidad (taller, laboratorio, control de lectura,	
		foro en aula virtual, Práctica Calificada,	
		otros)	
Evaluación de	EC2	Evaluación del aprendizaje de la segunda	10%
Capacidad de la UA2		unidad (taller, laboratorio, control de lectura,	
		foro en aula virtual, Práctica Calificada,	
		otros)	
Evaluación Parcial	EP	Examen parcial de asignatura	20%
Evaluación de	EC3	Evaluación del aprendizaje de la tercera	10%
Capacidad de la UA3		unidad (taller, laboratorio, control de lectura,	

		foro en aula virtual, Práctica Calificada,	
		otros)	
Evaluación de	EC4	Evaluación del aprendizaje de la cuarta	10%
Capacidad de la UA4		unidad (taller, laboratorio, control de lectura,	
		foro en aula virtual, Práctica Calificada,	
		otros)	
Trabajo aplicativo	TA	Investigación Formativa	20%
Evaluación Final	EF	Examen final de asignatura	20%

$$PF = (40) EC + 20(EP) + 20(EF) + 20(TA)$$

$$100$$

$$EC = (EC1 + EC2 + EC3 + EC4)/4$$

VII. FUENTES DE INFORMACIÓN

7.1 BÁSICA

- Alcocer Ramiro. Programación Grafica http://www.geocities.com/valcoey/Contenido.html
- 2. Shene C. K. Introduction to Computing with Geometry. Departament of Computer Sciencie. Michigan technological University.
- 3. http://www.cs.mtu.edu/~shene/COURSES/CS3621/NOTES/notes.html
- Kilgard Mark J. The OpenGL Utility Toolkit (GLUT) Programming Interface (API Version 3). Silicon Graphics, Inc 1996, www.opengl.org
- 5. Neider J., Davis T. & Woo M. OpenGL Programming Guide The Red Book Silicon Graphics, Inc 1994, www.opengl.org

7.2 COMPLEMENTARIA

- 1. OpenGL Silicon Graphics Inc. www.opengl.org
- Segal Mark & Akeley Kurt. The OpenGL Graphics System: A Specification (Version 1.2) Silicon Graphics, Inc 1998, www.opengl.org

- Donald P. Hearn, Pauline Baker. Ed.Prentice-Hall Hispanoamericana
 Graficas por Computadora con OpenGL 2006
- Manuel Escribano Ed. Iberoamericanal Programación de Gráficos en 3D
 1995
- 5. Monroy Olivares Editorial RJ, Alfaomega "Curvas Fractales" 2002

7.3 RESULTADOS DE INVESTIGACIONES

- Mateo Torres Universidad Católica "Nuestra Señora de la Asunción", Estado del Arte:
 Computación Gráfica, 2015
- 2. Repositorio Institucional (UNTELS)

Villa El Salvador, 18 de abril 2022