Chromatic Polynomials

Thomas Cohn

9/20/18

Defn: $G = (V, E), k \in \mathbb{N}.$

 $\chi_G(k)$ is the number of proper colorings of G with $\leq k$ colors.

Ex: If G has n vertexes, k colors, and 0 edges, then $\chi_G(k) = k^n$.

Ex: If $G = K_n$, k colors, then $\chi_G(k) = \underbrace{k(k-1)(k-2)\cdots(k-(n-1))}_n$. Note: If k < n, there is no proper coloring on $G = K_n$ (the pigeonhole principle can be used to prove

this). Notice that $k < n \to \exists j \in \mathbb{N} \text{ s.t. } k+j=n, \text{ so } \chi_G(k)=0 \text{ as expected.}$

Ex: G a tree on n vertices. Then $\chi_G(k) = \underbrace{k(k-1)(k-1)\cdots(k-1)}_{n-1} = k(k-1)^{n-1}$

Notice that χ_G is a polynomial of degree n.

Thm: Give any graph G on n vertexes, $\chi_G(k)$ is a polynomial of degree n in k.

 $\chi_G(k) = c_n k^n + c_{n-1} k^{n-1} + \dots + c_1 k + c_0$, with $c_i \in \mathbb{Z}$ and $c_n > 0, c_{n-1} \le 0, c_{n-2} \ge 0, \dots$

Proof: Strong induction on (n, m) = (|V|, |E|). If $m = 0, \chi_G(k) = k^n$. If $n = 1, \chi_G(k) = k$.

Assume the thm holds for all graphs with < n vertices and all graphs on n vertices with < medges.

Consider any edge $e = (x, y) \in E$.

Let $G_1 = G - e$ (removing e); $n \to n$, $m \to m - 1$. Let $G_1 = G/e$ (contracting e); $n \to n - 1$, $m \to m' < m$. $m' = m - 1 - |N(x) \cap N(y)|$.

 G_1 has < m edges G_2 has < n vertices \rightarrow induction hypothesis holds for G_1 and G_2 .

Claim: $\chi_G(k) = \chi_{G_1}(k) - \chi_{G_2}(k)$. This makes sense because the number of ways to color G_1 is equal to the number of ways to color G_1 with $c(x) \neq c(y)$ plus the number of ways to color G_1 with c(x) = c(y). And the number of ways to color G_2 is equal to the number of ways to color G with c(x) = c(y). So $\chi_{G_1}(k) - \chi_{G_2}(k)$ should be the number of ways to color G with $c(x) \neq c(y)$, as intended.

$$\begin{split} \chi_{G_1}(k) &= d_n k^n + d_{n-1} k^{n-1} + \dots + d_0 \\ \chi_{G_2}(k) &= e_{n-1} k^{n-1} + e_{n-2} k^{n-2} + \dots + e_0 \\ \operatorname{So} \chi_G(k) &= \chi_{G_1}(k) - \chi_{G_2}(k) = d_n k^n + (d_{n-1} - e_{n-1}) k^{n-1} + (d_{n-2} - e_{n-2}) k^{n-2} + \dots \end{split}$$

$$d_n > 0$$
, so $d_n > 0$.

 $d_{n-1} \le 0$, and $e_{n-1} > 0$, so $(d_{n-1} - e_{n-1}) \le 0$.

 $d_{n-2} \ge 0$, and $e_{n-2} \le 0$, so $(d_{n-2} - e_{n-2}) \ge 0$.

Ex:
$$G = C_n$$
, the cycle of size n . $\chi_{C_n} = ?$. $\chi_{C_n}(k) = \chi_{C_{n-c}}(k) - \chi_{C_n/e}(k) = \chi_{P_n}(k) - \chi_{C_{n-1}}(k) = k(k-1)^{n-1} - \chi_{C_{n-1}}(k) = k(k-1)^{n-1} - k(k-1)^{n-2} + k(k-1)^{n-3} - \dots \pm k(k-1) = k((k-1)^{n-1} - (k-1)^{n-2} + (k-1)^{n-3} - \dots \pm (k-1)) = k\left((k-1)^{\frac{1-(k-1)^n}{n-(k-1)}}\right) = \dots = (k-1)^n + (-1)^n(k-1)$

Defn: Given G = (V, E), an <u>acyclic orientation</u> on G is a way to orient the edges in E so that we have no directed cycle.

Defn: Given G = (V, E), let a(G) be the number of acyclic orientations on G.

Ex: $a(K_n) = n!$