ワイヤレス(非接触)で電力を効率良く伝送する電気回路技術

神戸大学大学院 海事科学研究科 マリンエンジニアリング講座 パワーエレクトロニクス研究室 三島 智和 田畑洋一郎 藤井健太

ワイヤレス(非接触)給電応用

家電•民生用機器

産業•車両用機器

送電コイルに 高周波交流を供給

磁界の変化に伴い 受電コイルに 誘導起電力が発生

高周波共振形電力変換技術

ゼロ電圧ソフトスイッチング(ZVS)

新型パワー半導体デバイス応用

優れた特性を有する窒化ガリウム(GaN) GaNを適用したパワートランジスタの パワーエレクトロニクス機器への 応用研究が活発化

回路構成と制御原理

特徴

- 送電コイルL」は直列共振インダクタとしての機能 を兼用
- ロスレススナバキャパシタCs1,Cs2の効果により 部分共振ZVSを実現
- PDM制御により出力電力を制御

実験結果と評価

Item	Value[Unit]
直流入力電圧 V_{in}	100[V]
直流出力電圧 V_o	50[V]
定格出力 P_o	240[W]
スイッチング周波数 f_s	350[kHz]
入力平滑キャパシタ $C_{\scriptscriptstyle in}$	50[μF]
1 次側直列補償キャパシタ C_1	15[nF]
2 次側直列補償キャパシタ C_2	400[nF]
ロスレススナバキャパシタ C_{s1}, C_{s2}	1[nF]
出力平滑キャパシタ C_o	10[μF]
負荷抵抗 R_o	$11[\Omega]$

0.73

10[mm]

結合係数(g=10mm) k

送受電コイル間ギャップ長 8

実測波形から〈低損失な電力伝送 ✓ ターンオフ・オン時のZVS動作を確認

