The group G is isomorphic to the group labelled by [72, 30] in the Small Groups library. Ordinary character table of $G \cong C3 \times ((C6 \times C2) : C2)$:

	1a	3a	3b	3c	3d	3e	2a	6a	6b	2b	6c	6d	6e	6f	6g	6h	6i	6j	4a	12a	12b	2c	6k	6l	6m	6n	60
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	1
χ_3	1	1	1	1	1	1	-1	-1	-1	1	1	1	1	1	1	1	1	1	-1	-1	-1	1	1	1	1	1	1
χ_4	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_5	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	-1	-E(3)	$-E(3)^2$	-1	$-E(3)^2$	-E(3)	-E(3)	-1	$-E(3)^2$	$-E(3)^2$	-E(3)	-1	1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
$ \chi_6 $	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	$-E(3)^2$	-E(3)	-1	-E(3)	$-E(3)^2$	$-E(3)^2$	-1	-E(3)	-E(3)	$-E(3)^2$	-1	1	$E(3)^{2}$	E(3)	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
χ_7	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	-1	-E(3)	$-E(3)^{2}$	1	$E(3)^2$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	-1	-E(3)	$-E(3)^2$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_8	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-1	$-E(3)^{2}$	-E(3)	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1	-1 -	$-E(3)^{2}$	-E(3)	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_9	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	E(3)	$E(3)^{2}$	-1	$-E(3)^{2}$	-E(3)	-E(3)	-1	$-E(3)^{2}$	$-E(3)^{2}$	-E(3)	-1	-1	-E(3)	$-E(3)^{2}$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_{10}	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	-1	-E(3)	$-E(3)^{2}$	$-E(3)^{2}$	-1	-E(3)	-E(3)	$-E(3)^{2}$	-1	-1 -	$-E(3)^{2}$	-E(3)	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_{11}	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	E(3)	$E(3)^{2}$	1	$E(3)^2$	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_{12}	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	1	E(3)	$E(3)^2$	$E(3)^2$	1	E(3)	E(3)	$E(3)^{2}$	1	1	$E(3)^{2}$	E(3)	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_{13}	2	-1	-1	-1	2	2	0	0	0	-2	1	1	1	1	-2	1	-2	1	0	0	0	2	-1	-1	-1	2	2
χ_{14}	2	-1	-1	-1	2	2	0	0	0	2	-1	-1	-1	-1	2	-1	2	-1	0	0	0	2	-1	-1	-1	2	2
χ_{15}	2	2	2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	-2	-2	-2	-2
χ_{16}	2	$-E(3)^2$	-E(3)	-1	$2 * E(3)^2$	2 * E(3)	0	0	0	-2	$E(3)^{2}$	E(3)	E(3)	1	$-2*E(3)^2$	$E(3)^{2}$	-2*E(3)	1	0	0	0	2	$-E(3)^2$	-E(3)	-1	$2 * E(3)^2$	2 * E(3)
χ_{17}	2	-E(3)	$-E(3)^2$	-1	2 * E(3)	$2*E(3)^2$	2 0	0	0	-2	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	-2*E(3)	E(3)	$-2*E(3)^2$	1	0	0	0	2	-E(3)	$-E(3)^2$	-1	2 * E(3)	$2 * E(3)^2$
χ_{18}	2	$-E(3)^2$	-E(3)	-1	$2 * E(3)^2$	2 * E(3)	0	0	0	2	$-E(3)^2$	-E(3)	-E(3)	-1	$2 * E(3)^2$	$-E(3)^2$	2 * E(3)	-1	0	0	0	2	$-E(3)^2$	-E(3)	-1	$2 * E(3)^2$	2 * E(3)
χ_{19}	2	-E(3)	$-E(3)^2$	-1	2 * E(3)	$2*E(3)^2$	2 0	0	0	2	-E(3)	$-E(3)^2$	$-E(3)^2$	-1	2 * E(3)	-E(3)	$2 * E(3)^2$	-1	0	0	0	2	-E(3)	$-E(3)^2$	-1	2 * E(3)	$2 * E(3)^2$
χ_{20}	2	2 * E(3)	$2 * E(3)^2$			$2*E(3)^2$	2 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2 * E(3)	$-2*E(3)^2$	-2	-2 * E(3)	$-2*E(3)^2$
χ_{21}	2	()	2 * E(3)		\ /	2 * E(3)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	$-2 * E(3)^2$	-2 * E(3)	-2	$-2*E(3)^2$	-2 * E(3)
χ_{22}	2	-E(3)	$-E(3)^{2}$		\ /	$2*E(3)^2$		0	0	0	$E(3) + 2 * E(3)^2$	$2*E(3)+E(3)^2$	$-2*E(3)-E(3)^2$	$-E(3) + E(3)^2$	0	$-E(3) - 2 * E(3)^2$	0	$E(3) - E(3)^2$	0	0	0	-2	E(3)	$E(3)^{2}$	1	-2 * E(3)	$-2*E(3)^2$
χ_{23}	2	$-E(3)^2$	-E(3)		()	2 * E(3)		0	0		$2*E(3)+E(3)^2$	$E(3) + 2 * E(3)^2$	$-E(3) - 2 * E(3)^2$	$E(3) - E(3)^2$	0	$-2*E(3)-E(3)^2$	0	2(3) 1 2(3)	0	0	0	-2	$E(3)^{2}$	E(3)		$-2*E(3)^2$	-2 * E(3)
χ_{24}	2	-E(3)	$-E(3)^2$		\ /_	$2*E(3)^2$		0	0		$-E(3) - 2 * E(3)^2$	$-2*E(3)-E(3)^2$	$2 * E(3) + E(3)^2$	$E(3) - E(3)^2$	0	$E(3) + 2 * E(3)^2$	0	$-E(3) + E(3)^2$	0	0	0	-2	E(3)	$E(3)^{2}$		-2*E(3)	$-2*E(3)^2$
χ_{25}	2	$-E(3)^2$	-E(3)	-1	$2 * E(3)^2$	2 * E(3)	0	0	0	0	$-2*E(3)-E(3)^2$	$-E(3) - 2 * E(3)^2$	$E(3) + 2 * E(3)^2$	$-E(3) + E(3)^2$	0	$2*E(3)+E(3)^2$	0	$E(3) - E(3)^2$	0	0	0	-2	$E(3)^{2}$	E(3)	1	$-2*E(3)^2$	-2 * E(3)
χ_{26}	2	-1	-1	-1	2	2	0	0	0	0	$-E(3) + E(3)^2$	$E(3) - E(3)^2$	$-E(3) + E(3)^2$	$E(3) - E(3)^2$	0	$E(3) - E(3)^2$	0	$-E(3) + E(3)^2$	0	0	0	-2	1	1	1	-2	-2
χ_{27}	2	-1	-1	-1	2	2	0	0	0	0	$E(3) - E(3)^2$	$-E(3) + E(3)^2$	$E(3) - E(3)^2$	$-E(3) + E(3)^2$	0	$-E(3) + E(3)^2$	0	$E(3) - E(3)^2$	0	0	0	-2	1	1	1	-2	-2

Trivial source character table of $G \cong C3 \times ((C6 \times C2) : C2)$ at p = 3:

Trivial source character table of $G \cong C3 \times ((C6 \times C2) \times C2)$ at $p = 3$:											
Normalisers N_i	N_1	N_2	N_3	$\overline{N_4}$	N_5						
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5						
Representatives $n_j \in N_i$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1a $2b$ $2c$ $2a$ $4a$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a $2b$ $2a$ $2c$	$\begin{bmatrix} 1a & 2b & 2c & 2a & 4a \end{bmatrix}$						
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 $	9 3 -9 -3 9	0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 0 0						
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	9 3 9 3 9	0 0 0 0 0		0 0 0 0	0 0 0 0 0						
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} \end{vmatrix} $	9 -3 -9 3 9	0 0 0 0 0		0 0 0 0	0 0 0 0 0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	9 -3 9 -3 9	0 0 0 0 0		0 0 0 0							
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	18 0 0 0 -18	0 0 0 0 0		0 0 0 0	0 0 0 0 0						
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 $	6 0 0 0 -6	6 0 -6 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0						
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} \end{vmatrix} $	$\begin{bmatrix} 3 & -1 & -3 & 1 & 3 \end{bmatrix}$	3 -3 3 -1 1		0 0 0 0							
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} \end{vmatrix} $	$\begin{bmatrix} 3 & 1 & -3 & -1 & 3 \end{bmatrix}$	3 -3 3 1 -1		0 0 0 0							
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	3 1 3 1 3	3 3 3 1 1		0 0 0 0	0 0 0 0 0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	$\begin{bmatrix} 3 & -1 & 3 & -1 & 3 \end{bmatrix}$	3 3 3 -1 -1		0 0 0 0	0 0 0 0 0						
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 $	$\begin{bmatrix} 6 & 0 & 0 & 0 & -6 \end{bmatrix}$	0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0	0 0 0 0 0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	$\begin{bmatrix} 3 & -3 & 3 & -3 & 3 \end{bmatrix}$	0 0 0 0 0	$\begin{vmatrix} 3 & 3 & 3 & -3 & -3 \end{vmatrix}$	0 0 0 0							
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} \end{vmatrix} $	3 -3 -3 3 3	0 0 0 0 0	$\begin{vmatrix} 3 & -3 & 3 & -3 & 3 \end{vmatrix}$	0 0 0 0	0 0 0 0 0						
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} +$	3 3 3 3 3	0 0 0 0 0	3 3 3 3 9	0 0 0 0							
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	3 3 -3 -3 3	0 0 0 0 0	3 -3 3 3 -3	0 0 0 0	0 0 0 0 0						
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} \end{vmatrix} $	$\begin{bmatrix} 6 & 0 & -6 & 0 & 6 \end{bmatrix}$	0 0 0 0 0		3 3 -3 -3	0 0 0 0 0						
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0$	$\begin{bmatrix} 6 & 0 & 0 & 0 & -6 \end{bmatrix}$	0 0 0 0 0		3 -3 -3 3	0 0 0 0 0						
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	6 0 6 0 6	0 0 0 0 0		3 3 3	0 0 0 0 0						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	$\begin{bmatrix} 6 & 0 & 0 & 0 & -6 \end{bmatrix}$	0 0 0 0 0		3 -3 3 -3	0 0 0 0 0						
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1 1						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	1 -1 1 -1 1	1 1 1 -1 -1		1 1 1 1	1 1 1 -1 -1						
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} \end{vmatrix} $	1 -1 -1 1 1	1 -1 1 -1 1		1 1 -1 -1	1 -1 1 -1 1						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	1 1 -1 -1 1	1 -1 1 1 -1		1 1 -1 -1	1 -1 1 1 -1						
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	2 0 0 0 -2	2 0 -2 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 -2 0 0	$\begin{bmatrix} 2 & 0 & -2 & 0 & 0 \end{bmatrix}$						

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(5,7,9)(6,10,8)]) \cong C3$

 $P_2 = Group([(5,7,9)(6,10,8)]) = C3$ $P_3 = Group([(5,7,9)(6,8,10)]) \cong C3$

 $P_4 = Group([(5, 9, 7)]) \cong C3$

 $P_5 = Group([(5,7,9)(6,10,8),(5,7,9)(6,8,10)]) \cong C3 \times C3$

 $N_1 = Group([(2,4)(5,6)(7,10)(8,9),(1,2)(3,4),(5,9,7)(6,8,10),(1,3)(2,4),(5,7,9)(6,8,10)]) \cong C3 \times ((C6 \times C2) : C2)$

 $N_2 = Group([(2,4)(5,6)(7,10)(8,9),(1,2)(3,4),(5,9,7)(6,8,10),(1,3)(2,4),(5,7,9)(6,8,10)]) \cong C3 \times ((C6 \times C2) : C2)$

 $N_3 = Group([(2,4)(5,6)(7,10)(8,9),(1,2)(3,4),(5,9,7)(6,8,10),(1,3)(2,4),(5,7,9)(6,8,10)]) \cong C3 \times ((C6 \times C2) : C2)$

 $N_4 = Group([(5, 9, 7), (6, 8, 10), (1, 2)(3, 4), (1, 3)(2, 4)]) \cong C6 \times C6$

 $N_5 = Group([(2,4)(5,6)(7,10)(8,9),(1,2)(3,4),(5,9,7)(6,8,10),(1,3)(2,4),(5,7,9)(6,8,10)]) \cong C3 \times ((C6 \times C2) : C2)$