Algèbre 2 Examen

AU 2015-2016 CPI 1 Durée: 2h

Exercice 1 (2pt):

- 1. Calculer pgcd(18480,9828).
- 2. Trouver U et V tels que : 18480 U + 9828 V = 84.

Exercice 2 (3pt):

Soient $a \ge 1, b \ge 1$. Montrer que:

- 1. $(2^a 1)|(2^{ab} 1)$
- 2. 2^{p-1} premier $\Rightarrow p$ premier
- 3. $pgcd(2^a 1, 2^b 1) = 2^{pgcd(a,b)} 1$.

Exercice 3 (3pt):

Résoudre dans N² les systèmes :

1)
$$\begin{cases} x + y = 100 \\ pgcd(x, y) = 10 \end{cases}$$
;

$$2) \begin{cases} ppcm(x,y) = 60 \\ pgcd(x,y) = 5 \end{cases}$$

Exercice 4 (4pt):

Résoudre les équations suivantes :

- a) $Q^2 = XP^2$ avec $P, Q \in \mathbb{K}[X]$
- b) $PoP = P \text{ avec } P \in \mathbb{K}[X]$
- c) $P'^2 = 4P \text{ avec } P \in \mathbb{K}[X]$
- d) $(X^2 + 1)P'' 6P = 0$ avec $P \in \mathbb{K}[X]$.

Exercice 5 (4pt):

Montrer que pour tout $a, b \in \mathbb{N}$

$$a|b \Leftrightarrow X^a - 1|X^b - 1$$

Exercice 6 (4pt):

Soit le polynôme $P = X^3 - 8X^2 + 23X - 28$.

On se propose de trouver, dans \mathbb{C} , x_1, x_2, x_3 les racines de P sachant que $x_1 + x_2 = x_3$.

- 1. Ecrire le système d'équations qui donne la relation entre les racines de P, ses coefficients et $\sigma_1, \sigma_2, \sigma_3$ les expressions symétriques en x_1, x_2, x_3 .
- 2. En utilisant $x_1 + x_2 = x_3$ monter que : $x_1 + x_2 = 4$ et $x_1x_2 = 7$.
- 3. Trouver x_1, x_2 et x_3 .