DC Motor Velocity Control Using Pulse Width Modulation (PWM)

e-Yantra Team

Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

IIT Bombay March 9, 2020

Agenda for Discussion

- Introduction
 - Pulse Width Modulation
 - Duty Cycle
- PWM Generation in AVR
 - Timers in AVR
 - Timer/Counter 5 (TCNT5)
 - Output Compare Register
 - TCCR5A
 - TCCR5B
 - Summary

• Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- 3 Examples: Electric stoves, Lamp dimmers, and Robotic Servos

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Servos Examples: Electric stoves, Lamp dimmers, and Robotic Servos

- Pulse Width Modulation (PWM), is a method of transmitting information on a series of pulses
- The data that is being transmitted is encoded on the width of these pulses to control the amount of power being sent to a load
- Servos Examples: Electric stoves, Lamp dimmers, and Robotic Servos

The signal remains "ON" for some time and "OFF" for some time.

- The signal remains "ON" for some time and "OFF" for some time.
- **⊘** Ton = Time the output remains high.

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- When output is high the voltage is 5v

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- When output is high the voltage is 5v
- When output is low the voltage is 0v

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- Toff = Time the output remains Low.
- When output is high the voltage is 5v
- When output is low the voltage is 0v
- Time Period(T) = Ton + Toff

- The signal remains "ON" for some time and "OFF" for some time.
- Ton = Time the output remains high.
- Toff = Time the output remains Low.
- When output is high the voltage is 5v
- When output is low the voltage is 0v
- Time Period(T) = Ton + Toff
- Duty Cycle = Ton*100/(Ton + Toff)

Firebird ATmega2560 Robotics Research Platform

- The signal remains "ON" for some time and "OFF" for some time.
- \bigcirc Ton = Time the output remains high.
- Toff = Time the output remains Low.
- When output is high the voltage is 5v
- When output is low the voltage is 0v
- \bigcirc Time Period(T) = Ton + Toff
- Outy Cycle = Ton*100/(Ton + Toff)
- Duty Cycle = 50%

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

- Ton = Time the output remains high = 1
- Toff = Time the output remains Low = 7

- \bigcirc Ton = Time the output remains high = 1
- Toff = Time the output remains Low = 7
- Outy Cycle = 12.5%

Ton = Time the output remains High = 6

- \bigcirc Ton = Time the output remains High = 6
- Toff = Time the output remains Low = 2

- ▼ Ton = Time the output remains High = 6
- \bigcirc Toff = Time the output remains Low = 2
- **⊘** Duty Cycle = 75%

imers in AVR
imer/Counter 5 (TCNT5)
butput Compare Register
CCR5A
CCCR5B
ummary

PWM Generation in AVR

Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

PWM Generation in AVR

Pulse width waveform generated for motion control of Firebird V is:

Value in OCR		
Value in TCNT5 ///	Comparator	PWM Output

Pulse width waveform generated for motion control of Firebird V is:

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

Timer/Counter register 5 (TCNT5)

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

- Timer/Counter register 5 (TCNT5)
- Output Compare registers 5 (OCR5A and OCR5B)

Pulse width waveform generated for motion control of Firebird V is:

Its generation involves the use of following registers:

- Timer/Counter register 5 (TCNT5)
- Output Compare registers 5 (OCR5A and OCR5B)
- Timer/Counter Control registers (TCCR5A and TCCR5B)

Outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B

Timers in AVR

Timers in AVR

• The AVR microcontroller ATmega2560 has

Timers in AVR

- 1 The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and

Timers in AVR

- The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)

Timers in AVR

- The AVR microcontroller ATmega2560 has
 - Two 8-bit timers (Timer 0 and Timer 2) and
 - Four 16-bit timers (Timer 1, 3, 4 and 5)
- 2 For speed control of Firebird V, Timer 5 is used.

Timer/Counter 5 (TCNT5)

Timer/Counter 5 (TCNT5)

• The Timer/Counter is a register that increments its value after every clock cycle.

- The Timer/Counter is a register that increments its value after every clock cycle.
- **②** The maximum value depends upon the resolution of Counter.

- The Timer/Counter is a register that increments its value after every clock cycle.
- The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

- The Timer/Counter is a register that increments its value after every clock cycle.
- ② The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

4 For n-bit counter, maximum value $= 2^n - 1$.

- The Timer/Counter is a register that increments its value after every clock cycle.
- ② The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

- 4 For n-bit counter, maximum value = $2^n 1$.
- The Timer/Counter 5 is a 16 bit register.

- The Timer/Counter is a register that increments its value after every clock cycle.
- ② The maximum value depends upon the resolution of Counter.
- For example, a 3 bit counter will have 8 values (i.e. 0-7). Its waveform will be seen as follows:

- **4** For n-bit counter, maximum value = $2^n 1$.
- The Timer/Counter 5 is a 16 bit register.
- **6** We use it in 8-bit mode, for PWM generation.

Output Compare Register

Output Compare Register (OCR5A, OCR5B and OCR5C)

Output Compare Register (OCR5A, OCR5B and OCR5C)

• The value of the Timer/Counter 5 is constantly compared with a reference value.

Timers in AVR Output Compare Register

Output Compare Register (OCR5A, OCR5B and OCR5C)

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- 2 This reference value is given in the Output Compare Register (OCR).

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.
- For motion control of Firebird V, we use OCR5A and OCR5B registers.

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- Or This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.
- For motion control of Firebird V, we use OCR5A and OCR5B registers.
- OCR5A is associated with the OC5A pin (PORTL3). This pin is connected to the enable(EN2) pin of motor driver, which is associated with the left motor.

- The value of the Timer/Counter 5 is constantly compared with a reference value.
- Or This reference value is given in the Output Compare Register (OCR).
- Output Compare Registers associated with Timer 5 for PWM generation: OCR5A, OCR5B and OCR5C.
- For motion control of Firebird V, we use OCR5A and OCR5B registers.
- OCR5A is associated with the OC5A pin (PORTL3). This pin is connected to the enable(EN2) pin of motor driver, which is associated with the left motor.
- Similarly, OCR5B is associated with the OC5B pin (PORTL4). This pin is connected to the enable(EN1) pin of motor driver, which is associated with the right motor.

PWM signal for Left and Right motor

PWM signal for Left and Right motor

TCCR5A- Timer Counter Control Register A

TCCR5A- Timer Counter Control Register A

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

TCCR5A- Timer Counter Control Register A

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

• There are 2 types of bits in TCCR5A: Compare output mode bit waveform generation mode bit.

TCCR5A- Timer Counter Control Register A

Bit	Symbol	Description	Bit Value
7	COM5A1	Compare Output Mode for Channel A bit 1	1
6	COM5A0	Compare Output Mode for Channel A bit 0	0
5	COM5B1	Compare Output Mode for Channel B bit 1	1
4	COM5B0	Compare Output Mode for Channel B bit 0	0
3	COM5C1	Compare Output Mode for Channel C bit 1	1
2	COM5C0	Compare Output Mode for Channel C bit 0	0
1	WGM11	Waveform Generation Mode bit 1	0
0	WGM10	Waveform Generation Mode bit 0	1

- There are 2 types of bits in TCCR5A: Compare output mode bit waveform generation mode bit.
- Compare Output Mode bits decide the action to be taken when counter(TCNT5) value matches reference value in Output Compare Register(OCR5).

Compare Output Mode bits

Compare Output Mode bits

Table 17-4. Compare Output Mode, Fast PWM

COMnA1 COMnB1 COMnC1	COMnA0 COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected.
0	1	WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected.
1	0	Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at BOTTOM (non-inverting mode).
1	1	Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at BOTTOM (inverting mode).

Outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B

Cont...

Cont..

• We are using non-inverting mode for PWM generation.

Cont..

- We are using non-inverting mode for PWM generation.
- 2 Non-inverting mode and inverting mode

Waveform Generation Bit

TCCR5A

Waveform Generation Bit

Table 17-2. Waveform Generation Mode Bit Description(1)

Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation	тор	Update of OCRnx at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	CTC	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	BOTTOM	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM,Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
-11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	CTC	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	воттом	TOP
15	1	1	1	1	Fast PWM	OCRnA	BOTTOM	TOP

TCCR5B- Timer Counter Control Register B

TCCR5B- Timer Counter Control Register B

Bit	Symbol	Description	Bit Value
7	ICNC5	Input Capture Noise Canceller	0
6	ICES5	Input Capture Edge Select	0
5	_	Reserved Bit	0
4	WGM53	Waveform Generation Mode bit 3	0
3	WGM52	Waveform Generation Mode bit 2	1
2	CS52	Clock Select	0
1	CS51	Clock Select	1
0	CS50	Clock Select	1

TCCR5B- Timer Counter Control Register B

Bit	Symbol	Description	Bit Value
7	ICNC5	Input Capture Noise Canceller	0
6	ICES5	Input Capture Edge Select	0
5	_	Reserved Bit	0
4	WGM53	Waveform Generation Mode bit 3	0
3	WGM52	Waveform Generation Mode bit 2	1
2	CS52	Clock Select	0
1	CS51	Clock Select	1
0	CS50	Clock Select	1

Clock Select Bits

Clock Select Bits

Table 17-6. Clock Select Bit Description

CSn2	CSn1	CSn0	Description
0	0	0	No clock source. (Timer/Counter stopped)
0	0	1	clk _{I/O} /1 (No prescaling
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{l/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on Tn pin. Clock on falling edge
1	1	1	External clock source on Tn pin. Clock on rising edge

$$\mathsf{PWM}_{\mathit{frequency}} = \mathit{Clock}_{\mathit{frequency}} / (\mathit{N} * 255)$$

where,

 $Clock_{frequency} = 14745600 Hz$

N = prescaler factor

Outline Introduction PWM Generation in AVR Timers in AVR
Timer/Counter 5 (TCNT5)
Output Compare Register
TCCR5A
TCCR5B
Summary

Summary

Summary

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

Summary

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

 \bigcirc TCNT5L = 0x00

Summary

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0×00
- \bigcirc TCCR5A = 0×A9

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0×00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0x00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0×00
- \bigcirc TCCR5A = 0xA9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00
- \bigcirc OCR5AL = 0xFF

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0×00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00
- \bigcirc OCR5AL = 0xFF
- \bigcirc OCR5BH = 0x00

In order to use Fast PWM mode to control the speed of dc motors of Firebird V. We have to initialize following registers with the corresponding values:

- \bigcirc TCNT5L = 0x00
- \bigcirc TCCR5A = 0×A9
- \bigcirc TCCR5B = 0x0B
- \bigcirc OCR5AH = 0×00
- OCR5AL = 0xFF
- **OCR5BH** = 0×00
- **⊘** OCR5BL = 0xFF

Outline Introduction PWM Generation in AVR Summary

Thank You!

