Analisis y Diseño de Algoritmos 2 Proyecto 2

Alejandro Sierra Betancourt - 2259559, Juan Pablo Castaño Arango - 2258487, Juan Manuel Ramirez Agudelo - 2258482, Kevin Stiven Ramirez Torres - 2259371 Escuelas de Ingeniería de Sistemas Universidad del Valle, Tuluá, Colombia

Email: {alejandro.sierra, juan.castano, juan.ramirez, kevin.ramirez}@correounivalle.edu

Abstract—El presente informe documenta el desarrollo e implementación de una solución computacional para optimizar la ubicación de nuevos programas de ingeniería de sistemas en un plano cartesiano bidimensional. Este proyecto busca maximizar los beneficios poblacionales y empresariales bajo restricciones específicas, tales como evitar ubicaciones contiguas y garantizar umbrales mínimos de segmento poblacional y entorno empresarial.

La solución integra MiniZinc para modelar el problema de optimización combinatoria, PyQt5 para construir una interfaz gráfica que facilite la interacción con el usuario y Python como lenguaje de control y orquestación. El desarrollo cumple con las especificaciones planteadas en las rúbricas del proyecto, incluyendo la validación del modelo mediante pruebas exhaustivas.

Index Terms—Optimización combinatoria, MiniZinc, PyQt5, Ingeniería de Sistemas, Usabilidad

I. Introducción

El presente informe documenta el desarrollo e implementación de una solución computacional para optimizar la ubicación de nuevos programas de ingeniería de sistemas en un plano cartesiano bidimensional. Este proyecto busca maximizar los beneficios poblacionales y empresariales bajo restricciones específicas, tales como evitar ubicaciones contiguas y garantizar umbrales mínimos de segmento poblacional y entorno empresarial.

La solución integra MiniZinc para modelar el problema de optimización combinatoria, PyQt5 para construir una interfaz gráfica que facilite la interacción con el usuario y Python como lenguaje de control y orquestación. El desarrollo cumple con las especificaciones planteadas en las rúbricas del proyecto, incluyendo la validación del modelo mediante pruebas exhaustivas.

II. DESCRIPCIÓN DE LAS ETAPAS DEL PROYECTO

A. Interfaz Gráfica

La interfaz fue desarrollada utilizando PyQt5. Incluye las siguientes funcionalidades:

- Selección de archivos con datos de entrada (.dzn).
- Configuración del solver (gecode, chuffed o coin-bc).
- Visualización gráfica de los resultados en un plano cartesiano bidimensional.

Despliegue textual de la solución, incluyendo las ubicaciones base, nuevas ubicaciones propuestas y ganancias asociadas.

Se cuidó el diseño estético y la usabilidad mediante hojas de estilo CSS, garantizando control y libertad del usuario para configurar y analizar resultados.

B. Modelo Matemático

El modelo se construyó en MiniZinc, definiendo una función objetivo para maximizar la ganancia total. Se establecieron restricciones que aseguran:

- Que las nuevas ubicaciones no sean contiguas.
- Umbrales mínimos para los segmentos de población y el entorno empresarial.
- Ubicaciones predefinidas y un número fijo de programas. Estas reglas se implementaron utilizando funciones y estructuras como matrices y restricciones lógicas.

III. PRUEBAS

Se realizaron cinco pruebas para validar la funcionalidad y precisión del modelo:

• Prueba 1: Pruebas iniciales del proyecto

Fig. 1. Resultados de la Prueba 1

• Prueba 2: Prueba de 4 puntos muy cercanos entre si

Fig. 2. Resultados de la Prueba 2

• **Prueba 3**: Prueba de dos puntos con gran posibilidad a sus alrederores

Fig. 3. Resultados de la Prueba 3

• **Prueba 4**: Prueba de 3 puntos con ganancia en sus cercanias

Fig. 4. Resultados de la Prueba 4

• Prueba 5: Prueba de 3 puntos con ganancia en sus lejania

Fig. 5. Resultados de la Prueba 5

IV. CONCLUSIONES

Se resumió el impacto de la solución propuesta para la ubicación de nuevos programas de ingeniería de sistemas. El modelo implementado logró satisfacer las restricciones y optimizar la ganancia total en todos los casos probados. Sin embargo, se identificaron limitaciones en el tiempo de ejecución para matrices muy grandes y se proponen mejoras futuras, como la integración de heurísticas para reducir la complejidad computacional.

REFERENCES

- MiniZinc. Modelamiento básico en MiniZinc. Disponible en: https://docs.minizinc.dev/en/stable/modelling.html. Accedido el 15 de diciembre de 2024.
- [2] MiniZinc. Modelos más complejos en MiniZinc. Disponible en: https://docs.minizinc.dev/en/stable/modelling2.html. Accedido el 15 de diciembre de 2024.

- [3] MiniZinc. Integración de MiniZinc con Python. Disponible en: https://docs.minizinc.dev/en/stable/python.html. Accedido el 15 de diciembre de 2024.
 [4] Aucaruri, C. Modelado de vertederos en MiniZinc. Disponible en: https://github.com/Carlos-Andres-Aucaruri/modelling/andfill.Accedidoel12dediciembrede2024.