√مساله ۱

در یک ترانزیستور p-n-p آلایش امیتر ده برابر آلایش بیس است. موبیلیتی باربرهای اقلیت در امیتر نصف مقدارش در بیس است و عرض بیس یک دهم طول نفوذ باربر اقلیت در آن است.طول عمر باربرها برابرند. مقدار α و β را در این ترانزیستور محاسبه کنید.

در یک ترانزیستور دوقطبی:

آ) میزان آلایش بیس ده برابر و عرض بیس را نصف کرده ایم. جریان کلکتور در حالت فعال چه تغییری می کند؟

ب) میزان آلایش امیتر صد برابر آلایش بیس است و عرض امیتر یک دهم عرض بیس است. عرض بیس و امیتر کمتر از طول نفوذ باربرها است. ضریب تزریق امیتر چقدر است؟ ضریب ترابرد بیس چقدر است؟

پ) با فرض برابر بودن طول نفوذ الكترون و حفره و بيشتر بودن عرض بيس و اميتر از طول نفوذ باربرها ضريب تزريق اميتر و ضريب ترابرد در بيس چقدر است؟

مساله ۳

 $V\gg KT/q$ در حالت دیودی به چهار صورت مختلف استفاده می شود. فرض کنید p^+-n-p^+ در حالت دیودی به چهار صورت مختلف استفاده به عنوان دیود مناسب تر است چرا $\delta p(x_n)$

مساله ۶

رابطهای برای جریان دیود مساله قبل در حالت (b) به دست آورید. نتیجه را با دیود بیس کوتاه (مساله ۴ تمرین سری ششم) مقایسه کنید. تقسیم جریان بین پایه بیس و کلکتور چگونه است؟

ساله ۵

در یک ترانزیستور دوقطبی p-n-p با p-n-p با p-n-p باربرهای اکثریت را با فلش در حالت فعال ترانزیستور نشان در یک ترانزیستور دوقطبی $I_{En}=100$ با $I_{En}=100$ و $I_{En}=100$ باشند، ضریب ترابرد بیس، ضریب $I_{Cn}=1$ و $I_{Cn}=100$ و $I_{En}=100$ باشند، ضریب ترابرد بیس، نهره جریان کامان امیتر و I_{CBO} را محاسبه کنید. اگر بار اقلیت ذخیره شده در بیس و طول عمر باربر را محاسبه کنید. $I_{CBO}=100$ باشد مقدار زمان عبور باربر از بیس و طول عمر باربر را محاسبه کنید.

✓ مساله ۶

در یک ترانزیستور دوقطبی میزان آلایش امیتر و کلکتور و بیس به ترتیب $N_E=10^{20}$ و $N_E=10^{10}$ و $N_E=10^{10}$ است و عرض بیس 0.5 است. مقدار قله میدان الکتریکی را در پیوند کلکتور بیس (CB) و خازن ناحیه تخلیه را در این پیوند در حالت فعال و $V_{CB}=50$ محاسبه کنید. عرض بیس در حالت خنثی در این ولتاژ با چشم پوشی از ناحیه تخلیه EB چقدر کوتاهتر شده است؟ این ولتاژ چه تاثیری بر روی ویژگیهای ترانزیستور دارد و این اثر چه نامیده می شود؟

مساله ۷

در یک ترانزیستور دوقطبی:

آ) چگونه ممکن است که زمان متوسط گذار حفره از ناحیه بیس au_t کوتاهتر از طول عمر آن au_p در بیس باشد؟

ب) توضیح دهید چرا روشن شدن گذرا در ناحیه فوق اشباع سریع تر است؟

مساله ۸

ضریب تقویت جریان β در یک ترانزیستور دوقطبی به عرض بیس و نسبت آلایش بیس به امیتر بسیار حساس است. این ضریب را برای ترانزیستور دوقطبی p-n-p با p-n-p و $\mu_n^p=\mu_p^n$ در حالات زیر محاسبه کنید.

$$W_b/L_p^n = 0.01/1 \, g \, n_n = p_p \, (\tilde{1})$$

$$n_n/p_p = 0.01/1$$
 و $W_b = L_p^n$ (ب

مشخصات یک ترانزیستور دوقطبی p-n-p از جنس Si در دمای اتاق به صورت زیر است.

$$\tau_n = \tau_p = 0.1 \mu s, \ D_n = D_p = 10 cm^2/s, N_E = 10^{19} cm^{-3} \ , N_B = 10^{16} cm^{-3}, N_C = 10^{16} cm^$$

مقادیر عرض خنثی بیس W_b را برای $V_{CB}=0$ و $V_{CB}=0$ محاسبه کنید. اگر $V_{EB}=0.6$ باشد محاسبات را تکرار کنند.

 $A=10^{-4} cm^2$. مشخصات یک ترانزیستور دوقطبی p-n-p از جنس Si در دمای اتاق به صورت زیر است

Emitter	Base	Collector
$N_a = 5 \times 10^{18} cm^{-3}$	$N_d = 10^{16} c m^{-3}$	$N_a = 5 \times 10^{15} c m^{-3}$
$\tau_n = 100 ps$	$\tau_p = 2500 ps$	$\tau_n = 2\mu s$
$\mu_n = 150c m^2/Vs$	$\mu_n = 1500 c m^2 / V s$	$\mu_n = 1500c m^2/Vs$
$\mu_p = 100 cm^2/Vs$	$\mu_p = 400 c m^2/Vs$	$\mu_p = 450c m^2/Vs$
	$W_b = 0.2 \mu m$	

با استفاده از مدل کنترل بار مقدار eta و γ را برای این ترانزیستور محاسبه کنید ودر مورد نتایج بحث کنید.