Machine Learning

(Học máy – IT3190E)

Khoat Than

School of Information and Communication Technology Hanoi University of Science and Technology

Contents

- Introduction
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Practical advice

Reinforcement Learning problem

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$$
, where $0 \le \gamma < 1$

(γ is the discount factor for future rewards)

Characteristics of Reinforcement learning

- What makes Reinforcement Learning (RL) different from other machine learning paradigms?
 - There is no explicit supervisor, only a reward signal
 - Training examples are of form ((S, A), R)
 - Feedback is often delayed
 - Time really matters (sequential, not independent data)
 - Agent's actions affect the subsequent data it receives
- Examples of RL
 - Play games better than humans
 - Manage an investment portfolio
 - Make a humanoid robot walk

...

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward
- Reinforcement learning is based on the reward hypothesis:
 - All goals can be described by the maximization of expected cumulative reward

Examples of reward

- Play games better than humans
 - + reward for increasing score
 - reward for decreasing score
- Manage an investment portfolio
 - + reward for each \$ in bank
- Make a humanoid robot walk
 - + reward for forward motion
 - reward for falling over

Sequential decision making

- Goal: Select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice an immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Blocking opponent moves (might help winning chances, after many moves from now)

Agent and Environment (1)

- At each step t, the agent:
 - \Box Executes action A_t
 - \square Receives observation O_t
 - \square Receives scalar reward R_t

Agent and Environment (2)

- At each step t, the agent:
 - \Box Executes action A_t
 - \square Receives observation O_t
 - \square Receives scalar reward R_t
- At each step t, the environment:
 - \square Receives action A_t
 - Emits observation O_{t+1}
 - \blacksquare Emits scalar reward R_{t+1}
- t increments at environment step

History and State

The history is the sequence of observations, actions, rewards:

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- All observable variables up to time t
- The sensorimotor stream of the agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment state

- The **environment state** S_t^e is the environment's private representation
 - The information the environment uses to pick the next observation or reward
- The environment state is not usually visible to the agent

Agent state

- The **agent state** S_t^a is the agent's internal representation
 - The information the agent uses to pick the next action
 - It is the information used by reinforcement learning algorithms
 - It can be a function of history:

$$S_t^a = f(H_t)$$

Information state

- An information state (a.k.a. Markov state) contains all useful information from the history
- \blacksquare A state S_t is **Markov** if and only if:

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1, ..., S_t)$$

The future is independent of the past given the present

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Fully observable environments

Full observability: Agent directly observes environment state

$$O_{\mathsf{t}} = S^a_t = S^e_t$$

- Agent state =Environment state =Information state
- Formally, this is a Markov decision process (MDP)

Partially observable environments

- Partial observability: Agent indirectly observes environment:
 - E.g., a robot with camera vision isn't told its absolute location
 - E.g., a trading agent only observes current prices
 - E.g., a poker playing agent only observes public cards
- Now, Agent state ≠ Environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S_t^a :
 - * E.g., by using complete history: $S_t^a = H_t$
 - * E.g., by using a recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Major components of a RL agent

A RL agent may include one or more of these components:

- Policy: Agent's behavior function
- Value function: How good is each state and/or action
- Model: Agent's representation of the environment

Policy

- A policy is the agent's behavior
- It is a map from state to action
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = P(A_t = a | S_t = s)$

Value function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore, to select between actions

$$v_{\pi}(s) = \mathbb{E}_{\pi}(R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s)$$

where R_{t+1} , R_{t+2} , ... are generated by following policy π starting at state s

- For each policy π , we have a value $v_{\pi}(s)$
- We want to find the optimal policy π^* such that

$$v^*(s) = \max_{\pi} v_{\pi}(s)$$
, $\forall s$

- A model predicts what the environment will do next
- P predicts the next state

$$P_{SS^*}^a = P(S_{t+1} = s^* | S_t = s, A_t = a)$$

R predicts the next (immediate) reward

$$R_s^a = \mathbb{E}(R_{t+1}|S_t = s; A_t = a)$$

Maze example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

(https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf)

Maze example: Policy

• Arrows represent policy $\pi(s)$ for each state s

(https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf)

Maze example: Value function

• Numbers represent value $v_{\pi}(s)$ of each state s

(https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf)

Maze example: Model

(https://www.davidsilver.uk/wp-content/uploads/2020/03/intro RL.pdf)

- Agent may have an internal model of the environment
- Dynamics: How actions change the state
- Rewards: How much reward from each state
- Grid layout represents transition model P_{ss}^a ,
- Numbers represent immediate reward R_s^a from each state s (same for all actions a)

Categorizing RL agents (1)

- Value-based
 - No policy
 - Value function
- Policy-based
 - Policy
 - No value function
- Actor critic
 - Policy
 - Value function

Categorizing RL agents (2)

- Model-free
 - Policy and/or Value function
 - No model
- Model-based
 - Policy and/or Value function
 - * Model

Exploration and Exploitation (1)

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- from its experiences of the environment
- without losing too much reward along the way

Exploration and Exploitation (2)

- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to both explore and exploit

Exploration and Exploitation: Examples

- Restaurant selection
 - Exploitation: Go to your favorite restaurant
 - Exploration: Try a new restaurant
- Online banner advertisements
 - Exploitation: Show the most successful advertisement
 - Exploration: Show a different advertisement
- Game playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

Q-Learning: What to learn

- lacktriangle We might try to have agent learn the value function v_π
- It could then do a lookahead search to choose best action from any state s because

$$\pi(s) = \arg\max_{a} \left(r(s, a) + \gamma v_{\pi}(\delta(s, a)) \right)$$

- * δ : $S \times A \rightarrow S$ will map a given action a and state s to the next state
- * $r: S \times A \to R$ provides the reward of action a, from state s
- A problem:
 - lacktriangledown This works well if agent knows functions δ and r
 - But when it doesn't, it can't choose actions by this way

Define new function very similar to v:

$$Q(s,a) = r(s,a) + \gamma v_{\pi}(\delta(s,a))$$

- Q(s,a) shows how good it is to perform action a when in state s
- * whereas $v_{\pi}(s)$ shows how good it is for the agent to be in state s
- If agent learns Q, it can choose optimal action

$$\pi(s) = \arg\max_{a} \left(r(s, a) + \gamma v_{\pi}(\delta(s, a)) \right) = \arg\max_{a} Q(s, a)$$

Q is the value function the agent will learn

Training rule to learn Q

lacktriangle Note that Q and v_{π} are closely related

$$v_{\pi}(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_{t}, a_{t}) = r(s_{t}, a_{t}) + \gamma v_{\pi}(\delta(s_{t}, a_{t}))$$

$$= r(s_{t}, a_{t}) + \gamma v_{\pi}(s_{t+1})$$

$$= r(s_{t}, a_{t}) + \gamma \max_{a'} Q(s_{t+1}, a')$$

 Let Q* denote learner (agent)'s current approximation to Q, consider the training rule

$$Q^*(s,a) \leftarrow r(s,a) + \gamma \max_{a'} Q^*(s',a')$$

• where s' is the state resulting from applying action a in state s

Q-Learning for deterministic worlds

For each s, initialize table entry $Q^*(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- * Receive immediate reward r
- * Observe the new state s'
- Update the table entry for $Q^*(s, a)$ as follows:

$$Q^*(s,a) \leftarrow r + \gamma \max_{a'} Q^*(s',a')$$

$$*s \leftarrow s'$$

Note:

- Finite action space
- Finite state space

Updating Q*

■
$$Q^*(s_1, a_{right}) \leftarrow r + \gamma. \left(\max_{a'} Q^*(s_2, a')\right)$$

 $\leftarrow 0 + 0.9 \cdot max(63, 81, 100)$
 $\leftarrow 90$

Note that if rewards are non-negative, then

$$\forall s, a, n: Q_{n+1}^*(s, a) \ge Q_n^*(s, a)$$

$$\forall s, a, n : 0 \le Q_n^*(s, a) \le Q(s, a)$$

• Where Q_n^* is the value at iteration n

Q-Learning for non-deterministic worlds

- What if reward and next state are non-deterministic?
- We redefine v_{π} and Q by taking expected values

$$v_{\pi}(s) = \mathbb{E}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots]$$

$$Q(s, a) = \mathbb{E}[r(s, a) + \gamma v_{\pi}(\delta(s, a))]$$

$$= \sum_{s', r} P(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

- Q-learning generalizes to non-deterministic worlds
 - \diamond Alter the training rule at iteration n to:

$$Q_n^*(s,a) \leftarrow (1-\alpha_n). Q_{n-1}^*(s,a) + \alpha_n \left[r + \max_{a'} Q_{n-1}^*(s',a') \right]$$

 \diamond where α_n is sometimes known as learning rate

References

- •D. Silver. Lecture 1: Introduction to Reinforcement Learning (https://www.davidsilver.uk/wp-content/uploads/2020/03/intro RL.pdf).
- •T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.