Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 8 Chaines de Markov

Exercice 4 (Classes communicantes et réccurence). Donner les classes communicantes de la chaine de Markov associée à la matrice de transition

$$P = \begin{bmatrix} 1/2 & 0 & 1/3 & 0 & 1/2 \\ 1/2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/3 & 1/6 & 0 \\ 0 & 0 & 1/3 & 1/3 & 0 \end{bmatrix}$$

après avoir dessiné le graphe associé.

Exercice 5 (Recurrence de la marche aléatoire simple sur \mathbb{Z}). On considère $(X_n)_{n\in\mathbb{N}}$ la marche aléatoire simple sur \mathbb{Z} , de matrice de transition $P_{xy} = \frac{1}{2}\mathbf{1}_{|x-y|=1}$.

- (a) Montrer que cette chaine de Markov est irréductible.
- (b) Calculer $(P^n)_{00}$ pour tout $n \ge 1$.
- (c) A l'aide de la formule de Stirling?, montrer que cette chaine de Markov est récurrente.
- (d) Que pensez-vous du cas de la marche aléatoire simple non-symétrique, définie par $X_0:=0$ et $X_{n+1}=X_n+\varepsilon_n$ où $(\varepsilon_n)_n\in\mathbb{N}$ est une suite de variables i.i.d. telle que $\mathbb{P}(\varepsilon_n=1)=1-\mathbb{P}(\varepsilon_n=-1)=p$ où $p\in]0,1[$ et $p\neq 1/2$?

Exercice 6 (Loi des excursions). Soit (X_n) une chaine de Markov. On fixe $x \in E$ que l'on suppose récurrent et on considère pour tout $k \ge 1$ le temps d'arrêt $\tau_x^{(k)}$ introduit à l'Exercice 1, à savoir le k-ième temps de retour en $x \in E$. On s'intéresse à la loi des excursions successives (E_0, E_1, \ldots) où

$$E_k := (X_{\tau_x^{(k)}}, X_{\tau_x^{(k)}+1}, \dots, X_{\tau_x^{(k+1)}}).$$

- (a) Décrivez l'ensemble \mathscr{E} où les variables E_k prennent leurs valeurs.
- (b) Si $X_0 := x$ p.s, montrer que la suite $(E_0, E_1, ...)$ est i.i.d.

Formule de Stirling : $n! \sim \sqrt{2\pi n} (n/e)^n$ quand $n \to \infty$.

Exercice 7 (Recurrence et invariance). Pour $x \in E$ fixé, on considère la mesure $\pi^{(x)}$ sur E définie par

$$\pi_y^{(x)} := \mathbb{E}_x \left[\sum_{n=0}^{\tau_x - 1} \mathbf{1}_{X_n = y} \right], \quad y \in E.$$

- (a) Montrer que $\pi^{(x)}(E) < \infty \Leftrightarrow x$ est récurrent positif.
- (b) Montrer que $P\pi^{(x)} = \pi^{(x)} \Leftrightarrow x$ est récurrent.