- b. Explain the production and detection of circularly polarized light using quarter wave plate?
- 32. a. Explain the modes of vibrations of CO₂ molecule. Describe the construction and working of CO₂ laser with necessary diagrams.

b.i. Define Numerical aperture and derive an expression for numerical aperture?

(8 Marks)

ii. Find the relative population of the two states in a Nd-YAG laser that produces a light beam of wavelength 6943 Å at 300 K. (4 Marks)

Reg. No.								

B.Tech. DEGREE EXAMINATION, NOVEMBER 2018

First Semester

18PYB101J - PHYSICS: ELECTROMAGNETIC THEORY, QUANTUM MECHANICS, WAVES AND OPTICS

(For the candidates admitted during the academic year 2018-2019)

Note:	
(i)	

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

	•											
		PART – A (20	$\times 1 = 20 \text{ Marks}$									
		Answer A	LL Questions									
. •	.1.	is defined as the nur	nber of magnetic lines of force passing through an									
		unit area of cross section.										
		(A) Magnetic flux density	(B) Magnetic flux									
		(C) Magnetic field Intensity	(D) Intensity of magnetization									
	2.	The vector field whose divergence is zero	is called									
		(A) Irrotational	(B) Rotational									
		(C) Conservative	(D) Solenoidal									
	3.	The dipole moment per unit volume of th	e dielectric material is called									
		(A) Polarizability	(B) Polarization vector									
		(C) Permittivity	(D) Dielectric constant									
. 4	4.	Orientation polarization arises due to the presence of										
		(A) Conductors	(B) Polar molecules									
		(C) Semiconductors	(D) Superconductors									
	5.	5. In soft magnetic materials, the nature of the hysteresis loop is										
		(A) Very steep	(B) Very broad									
		(C) Negligible	(D) Straight line									
	6.	A tiny movable magnetized cylind called	rical volume in thin magnetic material is									
		(A) Garnet	(B) Magnetoplumbites									
		(C) Magnetic bubble	(D) Ferrites									
		(c) Magnete babble	(b) Terrices									
	7.		atomic layers of insulator are known as									
			(B) Tunnel magnetoresistance									
		(C) Clossal Magnetoresistance	(D) Superconductor									
	8.	The boundary wall between domains is kn	nown as									
		(A) Potential wall	(B) Bloch wall									
		(C) Magnetic wall	(D) Semiconductor wall									
Page 1	of 4		17NF118PVR101T									

9.	The	characteristics of wave function ψ are									
	(A)	Real function, finite and	(B)	Complex, single valued, finite and							
	•	discontinuous		continuous function							
	(C)	Complex, infinite and discontinuous function	(D)	Complex single valued and infinite							
10	The	existence of matter waves was experim	ental	ly proved by							
10.		Raman		Davisson and Germer							
•	• •	De-Broglie	٠,	Fresnel							
11.	A va	ariable quantity which characterizes de-	Brog	lie waves is known as .							
-		Photon		Wave Function							
		Phonon	• /	Field							
12.		is the probability of finding	the 1	particle inside the box.							
	(A)	Quantisation		Normalisation							
	(C)	Hybridisation	` '	Interference							
13.	Brev	wster's law in terms of refractive index	can h	pe expressed as							
15.		$\mu = \sin \theta_p$		$\mu = \cos \theta_p$							
٠	• •	$\mu = \tan \theta_p$	` '	$\mu = \cot \theta_p$							
1 4	A NT		.1								
14.		icol prism is made from Crysta		Minimal							
		Calcite		Nickel							
	(C)	Cobalt	(D)	Zinc							
15.		raunhofer diffraction, the incident wave									
	• •	Elliptical	• •	Plane							
	(C)	Spherical	(D)	Cylindrical							
16.		resnel Diffraction									
	(A)		(B)	Source of light is kept at finite distance							
		distance from the aperture		from the aperture							
	(C)	Convex lens is used	(D)	Concave lens is used							
17.	The	minimum population inversion density	requ	ired to overcome the losses is called							
	<u> </u>	population inversion. Threshold	(D)	Normal							
	(A)		` .	Normal							
	(C)	Standard	(D)	Dense							
18.	_			oscillate along the axis of the molecule							
		ultaneously departing or approaching th									
	(A)	_	• •	Asymmetric stretching							
	(C)	Bending	(D)	Normal							
10		.Cal., El. (* d. 1° 1)	11 -								
19.	of the fiber is the light collecting efficiency of the fiber and is a measure of the amount of light rays that can be accepted by the fiber.										
	(A)	· · · · · · · · · · · · · · · · · · · ·		Cone							
	(C)	Efficiency	` '	Aperture							
	(~ <i>)</i>		(-)	- r							
		•									

	20.	In a fiber, the refractive index changes in a step fashion from the centre	;
		of the fiber, to cladding.	
		(A) Step Index (B) Graded index	
,		(C) Photo (D) Glass	
		PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	
	21.	Derive Poisson's equations.	•
	22.	Compare soft and hard magnetic materials.	
	23.	Explain Blackbody Radiation with neat diagram.	
	24.	Derive the expression for de Broglie wave length in terms of energy and voltage.	
	25.	Write the differences between Fresnel's and Fraunhofer's diffraction.	
	26.	Explain fiber optic communication system with a neat block diagram.	
	27.	Derive Einstein's relations and hence deduce the expressions for the ratio of spontaneous emission rate to be stimulated emission rate.	ous
		PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	
2	8. a.	What is meant by internal field? Derive an expression for the internal field in the case dielectrics?	of
		(OD)	
	b.i.	(OR) Derive an expression for Clausius-Mossotti equation. (8 Mark	s)
	ii.	Apply Gauss law to find the electric field intensity outside a uniformly charged spheri shell.	
2	9. a.	What are ferrites? Explain their different types of structures. Write their applications.	
		(OP)	
	b.i.	(OR) Explain in detail about the theory of magnetic domains in ferromagnetic material. (8 Mark	s)
	ii.	Write a note on magnetoplumbities. (4 Mark	is)
3	0. a.	Discuss the application of Schrodinger's wave equation to a particle enclosed in an odimensional potential box.	ne
		(OR)	
	b.i.	Describe the experimental verification of Davisson and Germer's diffraction experiment. (8 Mar)	ks)
	ii.	A neutron of mass 1.675×10 ⁻²⁷ kg is moving with a kinetic energy 10 keV. Calculate to de-Broglie wavelength associated with it. (4 Mark	
3	1. a.	Describe the intensity distribution in Fraunhofer diffraction pattern due to a single slit?	
		(OR)	