

Exercice 1

Intégrer les équations différentielles :

- (1) $y' + 2y = e^t$
- (2) $y' y = e^t$
- (3) y' + ty = t
- $(4) y' + y = \cos t$
- (5) $y' + \tan t \ y = 1, \ t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$

Exercice 2

1. Soit l'équation différentielle :

$$ty' + y = \frac{2t}{t^2 + 1}$$

- **1.1.** Résoudre l'équation sur les intervalles $I_1 =]0, +\infty[$ et $I_2 =]-\infty, 0[$.
- 1.2. Montrer qu'il existe une solution unique définie sur $\mathbb R$ tout entier.
- 2. Peut-on faire de même avec l'équation $y' \frac{1}{t} y = 1$?

Exercice 3

Soit l'équation différentielle :

$$t^2y' - 2ty + t^2 = 0$$

1

- 1. Déterminer la famille de solutions y_{C_1} (resp. y_{C_2}) définies sur $I_1 =]0, +\infty[$ (resp. $I_2 =]-\infty, 0[$).
- **2.** Justifier que $\forall C_1, C_2 \in \mathbb{R}$, il existe une solution y_{C_1,C_2} définie sur \mathbb{R} .
- **3.** Représenter y_{C_1,C_2} pour C_1 , $C_2 > 0$; pour $C_1 < 0$, $C_2 > 0$.

Exercice 4

Résoudre les équations de Ricatti:

- (1) $y(x) y'(x) = y^2(x) + xy'(x)$
- (2) $y'(x) = \frac{-1}{3}y^2(x) \frac{2}{3}$, en notant que $y(x) = \frac{1}{x}$ est solution particulière.