Análise II

2º semestre do ano letivo 2025 — LEI-LECD, Departamento de Matemática, Universidade de Coimbra

Teste modelo 1 — março 2025

nº de inscrição: regime:

nome completo:

nº de aluno:

v1

A prova tem a duração de 90' e termina com a palavra "Fim".

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na tabela ao lado qual das quatro proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 2.0; nenhuma ou mais do que uma proposição selecionadas: 0; resposta errada: -0.5, sendo 0 a cotação mínima neste grupo.

	1	2	3	4	5	6
Α						
В						
С						
D						

- **I.1** A série $\sum_{n=1}^{\infty} \left(\frac{3n}{4n+1} \frac{3n+3}{4n+5} \right)$
 - A diverge para $-\infty$

 - B converge para $\frac{3}{5}$ C converge para $-\frac{3}{20}$
 - D converge para $\frac{3}{4}$
- **1.2** Quais das seguintes séries convergem?

- I. $\sum_{n=1}^{\infty} \frac{(-1)^n}{1 + \frac{1}{n}}$ II. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\frac{2}{3}}}$ III. $\sum_{n=2}^{\infty} \left(\frac{1}{\ln(n^4)}\right)^n$ A Só a I.

 - B. Só a II. e a III.
 - C. Só a II.
 - D. As três.
- 1.3 Qual das seguintes séries é convergente?

$$\boxed{\mathsf{B}} \sum_{n=1}^{\infty} 7^n 3^{1-n}$$

$$\boxed{\mathsf{D}} \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right)$$

- **1.4** A série $\sum_{n=0}^{\infty} \frac{(-2)^n}{5^{n+1}}$
- A. converge para 0
- B. converge para $\frac{1}{7}$
- C converge para $\frac{5}{7}$
- $|\mathsf{D}|$ diverge para $-\infty$
- **1.5** A série $\sum_{n=1}^{\infty} \frac{(-1)^n (n-1)^3}{n!}$ é
 - absolutamente convergente
 - divergente, sem ser para $+\infty$ ou $-\infty$
- divergente para $-\infty$
- convergente, mas não absolutamente convergente

		∞	1
1.6	A série	\mathcal{L}	
1.0	A SCITC	\angle	$n \ln(n)$

A. converge para e

B. converge para ln(e)

C converge para $\frac{1}{2}$

 \square diverge para $+\infty$

Grupo II — Responda na folha que lhe foi fornecida, por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efetuar, bem como as respetivas justificações.

- **II.1** [4 pontos] Considere a série de potências $\sum_{n=1}^{\infty} \frac{n^2 x^n}{(\sqrt{\pi})^{-n}}.$
- 1) Determine o raio de convergência R.
- 2) Estude a convergência da série nos pontos x = -R e x = R.
- **II.2** [2 pontos] Averigue se a série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+\ln n}$ é divergente, convergente ou absolutamente convergente.
- **II.3** [2 pontos] Estude a natureza da série numérica $\sum_{n=1}^{\infty} \frac{n^2 + 1}{\sqrt{n^7 + 2n}}.$

Fim.

Correção

- **I.1** C.
- **I.2** B.
- **I.3** D.
- **I.4** B.
- **I.5** A
- **I.6** D.
- **II.1** Sendo $a_n = n^2(\sqrt{\pi})^n$, a série de potências é dada por $\sum_{n=1}^{\infty} a_n x^n$.
- 1) Como $\lim_{n} \frac{|a_n|}{|a_{n+1}|} = \lim_{n} \frac{n^2(\sqrt{\pi})^n}{(n+1)^2(\sqrt{\pi})^{n+1}} = \frac{1}{\sqrt{\pi}}$, o raio de convergência da série é $R = \frac{1}{\sqrt{\pi}}$.
- 2) Se x = R, temos a série de Riemann $\sum_{n=1}^{\infty} n^2$, que é divergente.

Se x=-R temos a série alternada $\sum_{n=1}^{\infty} a_n$ com $a_n=(-1)^n n^2$. Como (a_n) não converge para 0 quando $n\to\infty$, deduzimos que a série diverge.

- 3) Trata-se de uma série geométrica de razão $x\sqrt{\pi}$, logo é convergente se e só se $|x\sqrt{\pi}| < 1$, ou seja, $|x| < \frac{1}{\sqrt{\pi}}$. O domínio da série é $] \frac{1}{\sqrt{\pi}}, \frac{1}{\sqrt{\pi}}[$.
- **II.2** Sejam $u_n = \frac{(-1)^n}{n + \ln n}$ e $v_n = \frac{1}{n}$. Como $\lim_{n \to +\infty} \frac{|u_n|}{v_n} = 1$ e a série de termo geral v_n é divergente, deduzimos que a série de termo geral u_n não é absolutamente convergente.

Por outro lado, a sucessão ($|u_n|$) é decrescente, com limite 0, logo, pelo critério de Leibniz, a série alternada de termo geral u_n é convergente.

II.3 Seja $u_n = \frac{n^2 + 1}{\sqrt{n^7 + 2n}}$ o termo geral da série e consideremos a série de Riemann de termo geral $v_n = n^{-3/2}$, que é convergente porque -3/2 < -1.

$$\lim_{n\to+\infty}\frac{u_n}{v_n}=1$$

as duas séries são de mesma natureza e concluímos que a série de termo geral u_n é convergente.