EXERCICES — CHAPITRE 5

Évènements et langage ensembliste

Exercice 1 – Soient A, B, C trois évènements d'un espace probabilisé Ω . Exprimer en terme ensembliste les évènements suivants.

- 1. A et B sont réalisés.
- 2. Seulement A est réalisé.
- 3. Aucun des évènements A, B ou C n'est réalisé.
- 4. Un seul des évènements A, B ou C est réalisé.
- 5. Au moins deux des trois évènements A, B ou C sont réalisés.
- 6. Pas plus de deux des trois évènements *A*, *B* ou *C* sont réalisés.

Exercice 2 – Soient A, B, C trois évènements d'un espace probabilisé Ω .

- 1. Vérifier que $(A \cup B) \cap C$ entraı̂ne $A \cup (B \cap C)$.
- 2. À quelle condition sur A et C les deux évènements précédents sont-ils égaux?

Exercice 3 - On tire deux cartes dans un jeu de 32 cartes. On considère les ensembles suivants.

- A: "les deux cartes tirées sont rouges",
- B: "les deux cartes tirées sont un valet et un dix",
- C: "les deux cartes tirées sont des personnages".
- 1. Que représente les ensembles suivants?
 - (a) \overline{A}

(c) $(A \cap \overline{C}) \cap (B \cap \overline{C})$ (d) $(A \cap B) \cap C$

(b) $A \cap B \cap \overline{C}$

- 2. Écrire à l'aide des ensembles *A*, *B*, *C* les ensembles suivants.
 - F: "les deux cartes tirées sont des figures et ne sont pas toutes les deux rouges",
 - *G* : "on obtient au plus une figure".

Exercice 4 - Dans une boîte, il y a 4 jetons disponibles numérotés de 1 à 4. On tire simultanément au hasard deux jetons.

1. Donner tous les tirages possibles. Pour la suite, on note *A* : "les deux jetons sont pairs".

- 2. Quels sont les tirages constituant les ensembles \overline{A} , « A ou \overline{A} » et $A \cap \overline{A}$.
- 3. On considère l'ensemble C : "la somme des chiffres numérotés sur les deux jetons est paire". Quels sont les tirages constituant les ensembles

$$\overline{C}$$
, $A \cup C$, « A et C », « A ou \overline{C} » et $A \cap \overline{C}$.

Exercice 5 - Une épreuve aléatoire consiste à effectuer des lancers successifs d'un dé. Pour tout entier naturel k supérieur ou égal à 1, A_k désigne l'évènement : "le k-ième lancer a fourni un 6".

Exprimer les évènements ci-dessous à l'aide des évènements A_k et des opérations autorisées sur les évènements.

- E₂: "Le premier 6 a été obtenu au deuxième lancer",
 - E₅: "Le premier 6 a été obtenu au cinquième lancer",
 - E_n : "Le premier 6 a été obtenu au n-ième lancer" où n désigne un entier supérieur ou égal à 2.
- G₃: "Le deuxième 6 a été obtenu au troisième lancer",
 - *G*₄ : "Le deuxième 6 a été obtenu au quatrième lancer".

Calculs directs de probabilités

Exercice 6 – On extrait 3 cartes d'un jeu de 32 cartes, une par une, avec remise.

- 1. Quelle est la probabilité que l'on obtienne 3 valets?
- 2. Quelle est la probabilité que l'on obtienne 3 fois la même carte?

Exercice 7 – On extrait *n* boules d'une urne contenant une boule noire et une boule blanche, une par une, avec remise. Quelle est la probabilité qu'au moins l'une des boules tirées soit blanche?

Exercice 8 - On lance un dé équilibré deux fois de suite.

- 1. Quelle est la probabilité que la somme des numéros obtenus soit égale à 8?
- 2. Il y a 11 sommes possibles (tous les entiers entre 2 et 12). Pourquoi la probabilité calculée à la première question n'est-elle pas tout simplement égale à $\frac{1}{11}$?

Probabilités conditionnelles

Exercice 9 – Soient A, B, C trois évènements d'un espace probabilisé Ω avec $P(B \cap C) > 0$. Vérifier que

$$P_{B\cap C}(A)P_C(B)=P_C(A\cap B).$$

Exercice 10 – Une urne contient 8 boules blanches et 2 boules noires. On tire sans remise et successivement 3 boules de cette urne.

- 1. Quelle est la probabilité qu'au moins une boule noire figure à l'intérieur du tirage?
- 2. Sachant qu'une boule noire figure dans le tirage. Quelle est la probabilité que la première boule tirée soit noire?

Exercice 11 – On considère deux évènements *A* et *B* tels que

$$P(A) = 0.2$$
, $P(B) = 0.6$ et $P(A \cup B) = 0.7$.

- 1. Calculer $P(A \cap B)$.
- 2. En déduire les probabilités conditionnelles $P_A(B)$ et $P_B(A)$.

Formules des probabilités composées et totales

Exercice 12 – Une urne contient 8 boules blanches et deux boules noires. On tire sans remise et successivement 3 boules de cette urne. Quelle est la probabilité que la troisième boule du tirage soit noire?

Exercice 13 – On s'intéresse à une entreprise chargée de mettre du lait en bouteilles. La bouteille vide arrive sur un tapis roulant et passe successivement dans deux machines M_1 et M_2 . La machine M_1 remplit la bouteille de lait et la machine M_2 met le bouchon. Une étude statistique portant sur un grand nombre de bouteilles de lait à la fin de la chaîne a permis d'établir que 5% des bouteilles ne sont pas correctement remplies et que parmi elles 8% n'ont pas de bouchon. D'autre part, 4% des bouteilles correctement remplies n'ont pas de bouchon. On choisit une bouteille de lait au hasard à la fin de la chaîne et on note

- R l'évènement : "la bouteille est correctement remplie",
- *B* l'évènement : "la bouteille a un bouchon".
- 1. Calculer P(R), $P(\overline{R})$, $P_R(B)$, $P_R(\overline{B})$, $P_{\overline{R}}(\overline{B})$ et $P_{\overline{R}}(B)$.
- 2. Calculer P(R).
- Calculer la probabilité qu'une bouteille soit correctement remplie et qu'elle ait un bouchon.

Exercice 14 – Une association de consommateurs a fait une enquête sur des ventes de sacs de pommes. On sait que

• 15% des sacs sont vendus directement dans l'exploitation agricole et le reste est vendu dans des supermarchés.

- Parmi les sacs vendus directement dans l'exploitation agricole, 80% contiennent des pommes de varitétés différentes et les autres ne contiennent qu'un seul type de pommes.
- Parmi les sacs vendus dans des supermarchés, 10% contiennent des pommes de variétés différentes et les autres ne contiennent qu'un seul type de pommes.

On désigne par *E* l'évènement "les sacs de pommes sont vendus sur l'exploitation" et par *V* l'évènement "les sacs contiennent des pommes de variétés différentes".

On achète de facon aléatoire un sac de pommes.

- 1. Calculer P(E), $P(\overline{E})$, $P_E(V)$, $P_E(\overline{V})$, $P_{\overline{F}}(\overline{V})$ et $P_{\overline{F}}(V)$.
- 2. Calculer P(V).
- 3. On constate que le sac de pommes contient des pommes de variétés diffétentes. Calculer la probabilité qu'il ait été acheté dans un supermarché.

Exercice 15 – Dans un magasin de CD, 5 % des boîtes sont en mauvais état, 60 % des boîtes abîmées contiennent un CD défectueux, et 98 % des boîtes en bon état contiennent un CD en bon état. Un client achète un CD. On note *A* l'évènement "la boîte achetée est abîmée" et *D* l'évènement "le CD acheté est défectueux".

- 1. Calculer P(A), $P(\overline{A})$, $P_A(D)$, $P_A(\overline{D})$, $P_{\overline{A}}(\overline{D})$ et $P_{\overline{A}}(D)$.
- 2. Calculer P(D).
- 3. Le client constate que son CD est défectueux. Quelle est la probabilité qu'il ait acheté une boîte abimée?

Exercice 16 – Un gardien de but doit faire face, lors d'une démonstration, à un certain nombre de tirs directs. Les expériences précédentes conduisent à penser que

- s'il a arrêté le n-ième tir, la probabilité pour qu'il arrête le (n+1)-ième est 0,8,
- s'il a laissé passer le *n*-ième tir, la probabilité pour qu'il arrête le suivant est 0,6,
- la probabilité pour qu'il arrête le premier tir est 0,7.

On note A_n l'évènement "le gardien arrête le n-ième tir". On a donc $P(A_1) = 0,7$.

- 1. (a) Donner, pour $n \ge 1$, les valeurs de $P_{A_n}(A_{n+1})$ et $P_{\overline{A_n}}(A_{n+1})$.
 - (b) En déduire que, pour tout entier $n \ge 1$, on a

$$P(A_{n+1}) = 0.2P(A_n) + 0.6.$$

- 2. On pose à présent, pour $n \ge 1$, $p_n = P(A_n)$ et $u_n = p_n 0.75$.
 - (a) Démontrer que u_n est une suite géométrique de raison 0,2.
 - (b) En déduire l'expression de p_n en fonction de n.

Exercice 17 –

Première partie:

On considère la suite (u_n) de nombres réels définie pour tout entier naturel $n \ge 1$ par la relation de récurrence $u_{n+1} = \frac{4}{10} - \frac{3}{10} u_n$ et par la condition initiale $u_1 = \frac{1}{2}$.

- 1. Soit (v_n) la suite de nombres réels définie pour tout entier naturel $n \ge 1$ par $v_n = 13u_n 4$. Montrer que (v_n) est une suite géométrique dont on donnera la raison.
- 2. Exprimer v_n en fonction de n.
- 3. Prouver que pour tout entier naturel $n \ge 1$,

$$u_n = \frac{4}{13} + \frac{5}{26} \left(-\frac{3}{10} \right)^{n-1}$$
.

Deuxième partie:

Un professeur oublie fréquemment les clés de sa salle de khôlle. Pour tout entier naturel $n \ge 1$, on note E_n l'évènement : "le professeur oublie ses clés le jour n" et $p_n = P(E_n)$. On suppose qu'il oublie ses clés le premier jour avec une probabilité $\frac{1}{2}$. On suppose en outre que

- s'il oublie ses clés le jour n, alors il oublie ses clés le jour n+1 avec une probabilité $\frac{1}{10}$,
- s'il n'oublie pas ses clés le jour n, alors il oublie ses clés le jour n+1 avec une probabilité $\frac{4}{10}$.
- 1. Calculer les probabilités

$$P_{E_n}(E_{n+1})$$
 et $P_{\overline{E_n}}(E_{n+1})$.

2. À l'aide de la formule des probabilités totales, montrer que pour tout entier $n \ge 1$,

$$p_{n+1} = \frac{4}{10} - \frac{3}{10}p_n.$$

3. À l'aide des résultats de la **Première partie**, donner l'expression de p_n en fonction de n.

Exercice 18 – Soit $a \in \left]0; \frac{1}{2}\right[$. Dans une bourse de valeurs, un titre donné peut monter, rester stable, ou baisser. Le premier jour, le titre est stable.

Si un jour n le titre monte, le jour n+1, il montera avec la probabilité 1-2a, restera stable avec la probabilité a et baissera avec la probabilité a.

Si un jour n le titre est stable, le jour n+1, il montera avec la probabilité a, restera stable avec la probabilité 1-2a et baissera avec la probabilité a.

Si un jour n le titre baisse, le jour n+1 il montera avec la probabilité a, restera stable avec la probabilité a et baissera avec la probabilité 1-2a.

On note M_n (resp. S_n , resp. B_n) l'évènement "le titre monte (resp. reste stable, resp. baisse) le jour n".

On pose $p_n = P(M_n)$, $q_n = P(S_n)$ et $r_n = P(B_n)$.

- 1. Expliciter p_{n+1} et q_{n+1} en fonction de p_n , q_n et r_n .
- 2. Que vaut $p_n + q_n + r_n$? En déduire l'expression de r_n en fonction de p_n et q_n .
- 3. Montrer que les suites (p_n) et (q_n) sont arithmético-géométriques.
- 4. En déduire p_n , q_n puis r_n en fonction de n.

Exercice 19 - Les poules pondent des œufs que l'on classe suivant trois calibres A, B, C.

- Si une poule pond un œuf de calibre A, l'œuf qu'elle pondra ensuite sera de calibre A, B, ou C avec des probabilités respectives $\frac{1}{2}$, $\frac{1}{4}$ et $\frac{1}{4}$.
- Si une poule pond un œuf de calibre B, l'œuf qu'elle pondra ensuite sera de calibre A, B, ou C avec des probabilités respectives $\frac{1}{4}$, $\frac{1}{2}$ et $\frac{1}{4}$.
- Si une poule pond un œuf de calibre C, l'œuf qu'elle pondra ensuite sera de calibre A, B, ou C avec des probabilités respectives $\frac{1}{4}$, $\frac{1}{4}$ et $\frac{1}{2}$.

Pour $n \in \mathbb{N}^*$, on désigne par a_n , b_n et c_n les probabilités respectives pour que le n-ième œuf pondu par une poule soit de calibre A, B ou C.

- 1. On suppose que le premier œuf pondu par une poule est de calibre C. Calculer a_1 , b_1 , c_1 , a_2 , b_2 , et c_2 .
- 2. Calculer les probabilités suivantes.

$$P_{A_n}(A_{n+1}), P_{A_n}(B_{n+1}), P_{A_n}(C_{n+1}),$$

 $P_{B_n}(A_{n+1}), P_{B_n}(B_{n+1}), P_{B_n}(C_{n+1}),$
 $P_{C_n}(A_{n+1}), P_{C_n}(B_{n+1}), P_{C_n}(C_{n+1}).$

3. À l'aide de la formule des probabilités totales, montrer que

$$a_{n+1} = \frac{1}{2}a_n + \frac{1}{4}b_n + \frac{1}{4}c_n$$

$$b_{n+1} = \frac{1}{4}a_n + \frac{1}{2}b_n + \frac{1}{4}c_n$$

$$c_{n+1} = \frac{1}{4}a_n + \frac{1}{4}b_n + \frac{1}{2}c_n$$

Exercice 20 – On étudie le comportement d'un consommateur M à partir d'une semaine donnée (appelée "semaine 1"). Ce consommateur choisit chaque semaine chez le pâtissier un dessert parmi les trois desserts A, B et C. On considère en outre que

- si M a choisi le dessert A la semaine n, alors la semaine n+1 il choisit le dessert A avec une probabilité de $\frac{1}{3}$ ou le dessert C avec une probabilité de $\frac{2}{3}$,
- si M a choisi le dessert B la semaine n, alors la semaine n+1 il choisit le dessert A avec une probabilité de $\frac{1}{3}$ ou le dessert B avec une probabilité de $\frac{2}{3}$,
- si M a choisi le dessert C la semaine n, il reprend le dessert C la semaine n+1,
- le consommateur choisit de manière équiprobable son dessert la première semaine.

On notera, pour tout entier naturel non nul n,

- A_n l'évènement : "M a choisi le dessert A la n-ième semaine",
- B_n l'évènement : "M a choisi le dessert B la n-ième semaine",
- C_n l'évènement : "M a choisi le dessert C la n-ième semaine".
- 1. Donner $P(A_1)$, $P(B_1)$, $P(C_1)$ ainsi que les probabilités :

$$P_{A_n}(A_{n+1}), \quad P_{A_n}(B_{n+1}), \quad P_{A_n}(C_{n+1}),$$

 $P_{B_n}(A_{n+1}), \quad P_{B_n}(B_{n+1}), \quad P_{B_n}(C_{n+1}),$
 $P_{C_n}(A_{n+1}), \quad P_{C_n}(B_{n+1}), \quad P_{C_n}(C_{n+1}).$

2. À l'aide de la formule des probabilités totales, justifier avec soin que

$$P(A_{n+1}) = \frac{1}{3}P(A_n) + \frac{1}{3}P(B_n).$$

Donner de même des relations exprimant $P(B_{n+1})$ et $P(C_{n+1})$ en fonction de $P(A_n)$, $P(B_n)$ et $P(C_n)$.

Indépendance

Exercice 21 – On lance un dé à six faces parfaitement équilibré. Justifier l'indépendance des évènements *A* : "on obtient le tirage 2, 4 ou 6" et *B* : "on obtient le tirage 3 ou 6".

Exercice 22 – Dans une population de 10 000 personnes, il y a 45% de fumeurs et 35% de personnes atteintes de bronchite. De plus, 65% des personnes ayant une bronchite sont fumeurs.

- On choisit une personne au hasard dans cette population. Calculer la probabilité des évènements suivants.
 - *E*₁: "la personne choisie fume et a une bronchite",
 - E₂: "la personne choisie ne fume pas et a une bronchite",
 - *E*₃ : "la personne choisie ne fume pas et n'a pas de bronchite".
- 2. Fumer et avoir une bronchite sont-ils des évènements indépendants?
- 3. On choisit une personne au hasard parmi les fumeurs. Calculer la probabilité que cette personne ait une bronchite.

Exercice 23 – Dans une ville comprenant deux arrondissements A et B, la probabilité pour une entreprise de faire l'objet d'un contrôle fiscal est de $\frac{1}{4}$ dans l'arrondissement A et de

 $\frac{1}{5}$ dans l'arrondissement B. On suppose que ces deux évènements sont indépendants. Un groupe financier possède un hypermarché implanté dans l'arrondissement A et un autre dans l'arrondissement B.

Déterminer la probabilité de chacun des évènements suivants.

- *E*₁ : "les deux hypermarchés sont contrôlés",
- E2: "l'un au moins des hypermarchés est contrôlés",
- E₃: "un hypermarché et un seul est contrôlé",
- *E*₄ : "aucun des deux hypermarchés n'est contrôlé".

Exercice 24 – Un archer tire sur une cible située à 20m et une cible située à 50m. Il effectue trois tirs en changeant de cible à chaque fois. La probabilité d'atteindre la cible à 20m (resp. 50m) est $\frac{1}{3}$ (resp. $\frac{1}{4}$). On suppose que les trois tirs sont indépendants. L'archer gagne s'il atteint deux cibles consécutivement.

Calculer la probabilité de gagner en commençant par la cible située à 20m et en commençant par la cible située à 50m. Par quelle cible a-t-il intérêt à commencer?