Détection de la mutation PIK3CA dans le cancer du sein

par OWKIN

La Team

Antoine Gauchot, Anisse Id-Benaddi, Loris Megy, Adrien Moulinas, Pierre Samaha,

Contexte

Données

- 334 scans d'une lame histologique
- 1000 tuiles extraites de chaque scan
- 2048 features extraites de chaque tuile

Supervision faible

- Pas de label individuel pour chaque tuile
 Label global pour chaque scan

Scans de centres différents

Analyse des données

Vecteurs de features et métadonnées

Importance de l'origine des images (Hôpital et positions spatiales)

Réduction des données ? (PCA)

Approches diverses

Une approche vocabulaire

i/Réduire la dimension avec une PCA

ii/ Déterminer N clusters de tuiles sur l'ensemble des scans (344K vecteurs) (K-means, DBSCAN)

iii/Chaque scan est alors représenté par sa proportion de tuiles appartenant à chaque cluster (vecteur de taille N)

iv/régression logistique sur les vecteurs de proportion représentant chaque scan

Clustering spatial

i/Reprendre la Baseline avec un max.

ii/ Clustering spatial.

iii/ Pour chaque scan appliquer la Baseline.

iv/Régression logistique sur les vecteurs des prédictions ordonnées.

Modèle

Classification avec Attention-based Deep Multiple Instance Learning (MIL)

- Entrée : les 1000 vecteurs de taille 2048+3
- Couche d'attention pour attribuer un score d'attention à chaque tuile
- Multiplication des features avec leur score d'attention
- Concaténation avec les métadonnées zoom et id du centre
- Softmax pour classifier

Le **mécanisme d'attention** permet de déterminer quelles tuiles dans chaque scan a le plus d'impact sur le label -> permet de résoudre en partie la supervision faible

Réseau invariant par permutation des tuiles

Modèle et Mécanisme d'attention

Résultats

Mieux que la baseline : AUC de **0.6466** Mieux qu'hier, moins bien que demain

