MOST OF WHAT WE DO USES INFERENTIAL AND DESCRIPTIVE STATISTICS.

Inferential statistics applies analyses to a random sample from some population to infer information about it.

MOST OF WHAT WE DO USES INFERENTIAL AND DESCRIPTIVE STATISTICS.

Descriptive statistics is about two things: central tendencies (i.e., means) and spread of your data (i.e., variance).

Today, we're going to focus on this.

	Population	Estimate Based on a Sample
Variance	$\sigma^2 = \frac{\Sigma (X - \mu)^2}{N}$	$s^2 = \frac{\Sigma (X - \overline{X})^2}{n - 1}$
	where Σ = to sum X = a score in the distribution μ = the population mean N = the number of cases in the population	where Σ = to sum X = a score in the distribution \overline{X} = the sample mean n = the number of cases in the sample
Standard Deviation	$\sigma = \sqrt{\frac{\Sigma (X - \mu)^2}{N}}$	$s = \sqrt{\frac{\Sigma(X - \overline{X})^2}{n - 1}}$
	where Σ = to sum X = a score in the distribution μ = the population mean N = the number of cases in the Population	where Σ = to sum X = a score in the distribution \overline{X} = the sample mean n = the number of cases in the sample

HICGHO

and spread of your data (i.e., variance).

Today, we're going to focus on this.

A = a score in the destribution

A = the population mean

Population

A = the sample mean n = the number of cases in the sample

Standard Deviation

$$\sigma = \sqrt{\frac{\Sigma (X - \mu)^2}{N}}$$

s = √ π-1

where 2 = to sum X = a score in the distribution $\mu = the population mean$ N = the number of cases in the Population

where $\Sigma = \text{to sum}$ X = a score in the distribution $\overline{X} = \text{the sample mean}$ n = the number of cases in thesample