LABORATÓRIO DE HARDWARE

PROF° DOUGLAS ROBERTO ROSA PEREIRA

PERIFÉRICOS DE ENTRADA E SAÍDA

- De modo simples, podemos definir os periféricos de entrada e saída como placas ou aparelhos que recebem ou enviam informações para o computador.
- Alguns tem a função de somente receber dados de entrada (input)
- Outros tem a função de somente enviar dados de saída (output)
- E existem alguns que fazem ambas as funções (input and output ou I/O)

PERIFÉRICOS DE ENTRADA E SAÍDA

Principais exemplos:

- Mouse
- Teclado
- Monitor
- Caixa de som (alto-falantes)
- Microfone
- Impressora

- Leitor e gravador de CD/DVD
- Placa de rede

- Foi criado na década de 1960
- Tornou-se popular apenas em 1984 com o lançamento do Apple Machintosh O primeiro a oferecer um sistema operacional com interface gráfica a um preço acessível.

• Fonte: Clube do hardware

- Em resumo é um dispositivo bem simples, que detecta os movimentos e envia as coordenadas que são usadas pelo Sistema Operacional para calcular a posição do cursor.
- Existem 3 tipos principais:

- Os primeiros mouses eram baseados em sistemas mecânicos, onde o mais usado foi o sistema opto-mecânico encontrado no popular "mouse de bolinha".
- Apesar se ser uma tecnologia que surgiu na década de 1980, ele é simples e barato por isso foi fabricado por muito tempo.
- O grande inconveniente desse modelo era que ele acumulava sujeira, sendo necessário abrir, retirar a "bolinha" e fazer a limpeza periodicamente.

- Logo após surgiram os mouses óticos. Neles o a parte mecânica foi substituída por um pequeno sensor similar ao usado em câmeras, que tira fotos da superfície sob o mouse.
- As capturas são sincronizadas com a emissão de uma luz de um LED vermelho que ilumina a superfície como um flash de câmera.
- Embora tenha uma resolução baixa, ele trabalha em uma alta taxa de captura. Essas fotos são processadas por um chip DSP que detecta o movimento comparando os quadros.
- O movimento é calculado tomando como base pontos de referencia (grãos de poeira, detalhes coloridos do *mousepad* ou imperfeições da superfície), que são escolhidos automaticamente.

- O terceiro modelo mais conhecido é o mouse laser.
- A única diferença para o mouse ótico é que o sensor ao invés de emitir uma luz através de um LED vermelho, ele emite um laser imperceptível a olho nu.
- Ambos os modelos trabalham baseados na reflexão de luz e na existência de irregularidades na superfície. Por esse motivo eles não funcionam corretamente em superfícies transparentes ou muito brilhantes (ou polidas).
- Sobre as portas de conexão, os mouses mais antigos utilizam a conexão PS/2 enquanto os mais recentes utilizam a conexão USB.

CONEXÃO PS/2 E USB

TECLADO

- Os teclados pouco mudaram desde o seu surgimento até hoje.
- A tecnologia mais utilizada é a dome-switch, que consiste no uso de duas folhas plásticas com trilhas impressas e domos de borracha. Dependendo do modelo, podem ser utilizados domos individuais para cada tecla ou uma membrana inteiriça com os domos para todas as teclas.
- Quando as teclas são pressionadas, um pino central do domo pressiona a junção de contatos referente a tecla, fechando o contato.
- Por fim um controlador simples registra o pressionamento das teclas e faz a interface com o computador.

CONEXÕES DO TECLADO

• As conexões dos teclados foram mudando ao longo do tempo. Os mais antigos utilizavam a conexão DIMM, depois passaram a usar a PS/2 e por fim a USB.

Conector DIM

- Os primeiros computadores das décadas de 1960 e 1970 não utilizavam monitores. Ao invés disso eram usadas impressoras onde os resultados eram lentamente impressos nos rolos de papel.
- Os monitores passaram a ser utilizados em grande quantidade no final da década de 1970.
- Os primeiros monitores eram utilizavam a tecnologia CRT, similar aos televisores mais antigos.
- No CRT, um canhão de elétrons bombardeia as células de fósforo que recobrem a tela, fazendo com que elas se iluminem em diferentes intensidades, formando a imagem.

- O monitor CRT apresenta um problema conhecido como *flicker*. O *flicker* ocorre pois as células de fósforo se apagam muito rapidamente, por isso a imagem deve ser atualizada varias vezes por segundo, um processo chamado *refresh*.
- Esta é uma configuração importante nos monitores de CRT pois o *flicker* causa um desconforto na visão, portanto a taxa de *refresh* deve ser ajustada o mais alto possível.
- Porem isso nem sempre é possível, já que quanto maior a resolução da tela, menor é a capacidade do monitor de atingir altos índices de refresh.

- Passado um tempo surgiram os monitores de LCD para substituírem os antigos CRT. Eles eram menores, mais leves e consumiam menos energia.
- O LCD (*Liquid Crystal Display*) funciona da seguinte forma: O cristal líquido é transparente em sua forma natural, mas ao receber uma carga elétrica ele se torna opaco, impedindo a passagem de luz. Diferentes tensões aplicadas produzem diferentes tonalidades na tela.
- Os LCDs mais simples como de calculadoras (monocromáticos) ou dos antigos videogames *Gameboy* não emitem luz e possuem o problema de só poderem ser utilizadas em ambientes iluminados. Essas telas são chamadas de transflexivas.

- Os LCDs usados em computadores de mesa e notebooks são chamados de transmissivos, pois a tela possui um sistema de iluminação que a permite ser utilizada em qualquer ambiente.
- Seu ponto fraco é que por ser mais complexa ela esta mais propensa a defeitos e consomem mais energia que as sem iluminação.

- Outro tipo de monitor é o de plasma.
- Nessa tecnologia, pequenos volumes de gás neon e xenônio são depositados em minúsculas câmaras seladas entre duas placas de vidro. Aplicando-se tensão nos eletrodos dessa câmara o gás dela se torna plasma passando a emitir luz ultravioleta que por sua vez ativa uma camada de fósforo que passa a emitir a luz visível.
- O problema desta tecnologia é que as células de gás são relativamente grandes, impedindo a produção de monitores com densidade grande (tamanho físico vs resolução). Outro problema é que o monitor de plasma sofre do mesmo problema de Burn-in que o CRT sofre, onde se a mesma imagem fica muito tempo sendo exibida a tela pode ficar marcada.

- Além destes tipos de telas apresentadas anteriormente, hoje temos o OLED e o QLED.
- O OLED vem de *Organic Light-Emitting Diode* Diodo emissor de luz orgânico. Nessa tecnologia são utilizados polímeros contendo substancias orgânicas que brilham ao receber um impulso elétrico. A principal diferença entre LED e OLED é que os OLEDs são compostos líquidos que podem ser impressos sobre vários tipos de superfície enquanto os LEDs são componentes eletrônicos que precisam ser construídos e encapsulados individualmente.
- O QLED (Quantum Dot Light Emitting Diodes) trabalha com o principio de minúsculos cristais que absorvem e emitem frequências de luz para criar a imagem na tela.

- Eles são cristais em nano escala feitos de seleneto de cádmio que absorvem a luz e a reemitem em uma onda diferente, bem específica.
- Esta tecnologia promete consumir menos energia e entregar cores mais vivas.
- Durante sua evolução, os monitores apresentaram diversos conectores, entre ele podemos citar:
- VGA (Video Graphics Array) Analógico
- S-VIDEO (Separate Video) Analógico
- DVI (Digital Visual Interface) Digital

- HDMI (High-Definition Multimedia Interface) Digital
- DISPLAY PORT Concorrente do HDMI Digital

S-VIDEO

DVI

HDMI

DISPLAY PORT

• O conector VGA transporta sinais analógicos referentes as três cores primárias (azul, verde e vermelho) além dos sinais de sincronismo horizontal e vertical.

Conector VGA

CAIXA DE SOM (ALTO FALANTES)

- Hoje qualquer computador atual vem com uma placa de som integrada, mas esse dispositivo só se popularizou na segunda metade da década de 1990.
- Antes das placas de som integradas era necessário conectar uma placa de som dedicada me sua placa mãe para então poder desfrutar do uso de alto falante como fazemos hoje.

MICROFONES

- Os microfones participam do mesmo caso dos alto falantes, necessitam de uma placa de som para seu funcionamento (integrada na placa mãe atualmente).
- Ambos os dispositivos utilizam conectores P2, S/PDIF(Sony/Philips Digital Interface Format) ou USB.

S/PDIF ótico

S/PDIF coaxial

IMPRESSORAS

- A impressora não faz parte do computador, ela é na verdade um segundo equipamento que se liga ao computador, e serve para obter resultados impressos em papel, sejam eles textos, gráficos ou fotos.
- Atualmente se conectam ao computador via USB ou rede, mas no passado se comunicavam usando a porta paralela (também chamada de DB 25).

IMPRESSORAS

• Hoje no mercado temos impressoras matriciais (imprimem em formulário contínuo e utilizam fita de impressão), jato de tinta (utilizam cartuchos) e laser (utilizam toner).

Matricial Jato de tinta Laser

LEITOR/GRAVADOR DE CD/DVD

- Hoje estão em desuso devido ao declínio da venda de software em mídia física (jogos principalmente) e a redução de espessura dos notebooks (conhecidos como ultrabooks).
 Porém ainda existem grandes quantidades em uso.
- As unidades de CD permitem usar discos CD-ROM, com capacidade de 700 MB. Os primeiros modelos lançados apenas podiam ler CDs, depois esses dispositivos evoluíram e começaram a gravar CDs.
- Pouco tempo depois surgem os dispositivos que leem e gravam CDs mas apenas leem DVD (capacidade de 4,7 GB) e por fim surgem as unidades que fazem a leitura e gravação de ambas as mídias.

PLACA DE REDE

- É uma placa através da qual computadores próximos podem trocar dados entre si, através de um cabo apropriado ou através de comunicação sem fio (wifi).
- Ao serem conectados desta forma, dizemos que os PCs formam uma "rede local" (Local Area Network LAN). Isto permite enviar mensagens entre os computadores, compartilhar dados e impressoras.
- A placa de rede também é usada para conectar o computador com a Internet através de banda larga.
- Elas podem vir integradas a placa mãe, ou em placas offboard para serem ligadas a placa mãe.

PLACA DE REDE

Placa de rede ethernet

Placas de rede Wireless(desktop e notebook)

REFERÊNCIAS

- MORIMOTO, Carlos Eduardo. **Hardware, o guia definitivo II.** Porto Alegre: Sul Editores, 2010.
- https://www.clubedohardware.com.br/artigos/museu/por-dentro-do-macintosh-128kr36108/