

3-Terminal Fixed Positive Voltage Regulator

TO-220 ITO-220

Pin Definition:

- 1. Input
- 2. Ground (tab)
- 3. Output

General Description

The TS7800 series voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsink they can deliver output currents up to 1 ampere. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

Features

- Output Voltage Range 5 to 24V
- Output current up to 1A
- No external components required
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance

Ordering Information

Part No.	Package	Packing
TS78xxCZ C0	TO-220	50pcs / Tube
TS78 <u>xx</u> Cl C0	ITO-220	50pcs / Tube

Note: Refer to detail ordering information table.

Standard Application Circuit

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

XX = these two digits of the type number indicate voltage.

- cin is required if regulator is located an appreciable distance from power supply filter.
- ** = Co is not needed for stability; however, it does improve transient response.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
lanut Valtage	V _{OUT} =5~18V	\/	35		
Input Voltage	V _{OUT} =24V	V _{IN}	40	V	
Output Current		I _{OUT}	Internal Limited		
Power Dissipation	P _D Internal Limited				
Operating Junction Temperature	TJ	0~+125	°C		
Storage Temperature Range		T _{STG}	-65~+150	°C	
Thermal Decistores - Junetics to Con-	TO-220	В	5	°C/W	
Thermal Resistance - Junction to Case	ITO-220	− R _{⊖JC}	5		
The second Decistance Associated to Archivet	TO-220	Б	50	0000	
Thermal Resistance - Junction to Ambient	ITO-220	$R_{\Theta JA}$	60	°C/W	

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions are not implied.

3-Terminal Fixed Positive Voltage Regulator

TS7805 Electrical Characteristics

 $(V_{IN}=10V, I_{OUT}=500mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN}=0.33\mu F, C_{OUT}=0.1\mu F; unless otherwise specified.)$

Parameter	Symbol	Te	est Condition	Min	Тур	Max	Unit
		T _J =25°C		4.80	5	5.20	
Output voltage	V _{OUT}		7.5V≤V _{IN} ≤20V, 10mA≤I _{OUT} ≤1A, P _D ≤15W		5	5.25	V
Line Degulation	DEC	T _J =25°C	7.5V≤V _{IN} ≤25V	1	3	100	
Line Regulation	REG _{LINE}	1 _J =25 C	8V≤V _{IN} ≤12V	1	1	50	m)/
Lood Regulation	DEC	T _{.I} =25°C	10mA≤l _{OUT} ≤1A	-	15	100	mV
Load Regulation	REG _{LOAD}	1 J=25 C	250mA≤l _{OUT} ≤750mA	🔏	5	50	
Quiescent Current	I_{Q}	I _{OUT} =0, T _J		4.2	8		
Ouisseent Current Change	Δ1	7.5V≤V _{IN} ≤	25V	-		1.3	mA
Quiescent Current Change	ΔI_Q	10mA≤l _O ∪	_T ≤1A			0.5	
Output Noise Voltage	V_N	10Hz≤f≤1	10Hz≤f≤100KHz, T _J =25°C		40		μV
Ripple Rejection Ratio	RR	f=120Hz,	f=120Hz, 8V≤V _{IN} ≤18V		78		dB
Voltage Drop	V _{DROP}	I _{OUT} =1.0A	, T _J =25°C		2		V
Output Resistance	R _{OUT}	f=1KHz			17		mΩ
Output Short Circuit Current	lós	T _J =25°C		A 0	750		mA
Peak Output Current	I _o peak	T _J =25°C			2.2		Α
Temperature Coefficient of Output Voltage	ΔV _{OUT} / ΔΤ _J	I _{OUT} =10m	A, 0°C≤Tյ≤125°C		-0.6		mV/°C

TS7808 Electrical Characteristics

 $(V_{IN}=14V, I_{OUT}=500mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN}=0.33 \mu F, C_{OUT}=0.1 \mu F; unless otherwise specified.)$

Parameter C	Symbol) T	est Condition	Min	Тур	Max	Unit
		T _J =25°C		7.69	8	8.32	
Output Voltage	Vour		10.5V≤V _{IN} ≤23V, 10mA≤I _{OUT} ≤1A, P _D ≤15W		8	8.40	V
Line Regulation	REGLINE	T _J =25°C	10.5V≤V _{IN} ≤25V		6	160	
Line Regulation	REGLINE	1 5=23 C	11V≤V _{IN} ≤17V		2	80	m\/
Load Regulation	DEC	10mA≤I _{OUT} ≤1	10mA≤l _{OUT} ≤1A		12	160	mV
Load Regulation	REG _{LOAD}	T _J ≠25°C	250mA≤I _{OUT} ≤750mA		4	80	
Quiescent Current	la	Ι _{ΟUT} =0, Τ _J =25°C			4.3	8	
Quiescent Current Change		10.5V≤V _{IN} ≤25V				1	mA
Quiescent Current Change	ΔΙζ	10mA≤l _{Ol}	_{JT} ≤1A			0.5	
Output Noise Voltage	V_N	10Hz≤f≤1	00KHz, T _J =25°C		52	ŀ	μV
Ripple Rejection Ratio	RR	f=120Hz,	11V≤V _{IN} ≤21V	56	72	ŀ	dB
Voltage Drop	V_{DROP}	I _{OUT} =1.0A	, T _J =25°C		2	-	V
Output Resistance	R _{OUT}	f=1KHz			16		mΩ
Output Short Circuit Current	I _{OS}	T _J =25°C			450	ŀ	mA
Peak Output Current	I _O peak	T _J =25°C			2.2	ŀ	Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT}/\Delta T_{J}$	I _{OUT} =10m	A, 0°C≤T _J ≤125°C		-0.8		mV/°C

Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.

This specification applies only for DC power dissipation permitted by absolute maximum ratings.

3-Terminal Fixed Positive Voltage Regulator

TS7809 Electrical Characteristics

 $(V_{IN}=15V, I_{OUT}=500mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN}=0.33\mu F, C_{OUT}=0.1\mu F; unless otherwise specified.)$

Parameter	Symbol	Te	Min	Тур	Max	Unit	
		T _J =25°C		8.65	9	9.36	
Output voltage	V _{OUT}	11.5V≤V _{IN} ≤23V, 10mA≤I _{OUT} ≤1A, P _D ≤15W		8.57	9	9.45	V
Line Regulation	DEC	T _J =25°C	11.5V≤V _{IN} ≤26V		6	180	
Line Regulation	REG _{LINE}	1 _J =25 C	12V≤V _{IN} ≤17V		2	90	m)/
Lood Regulation	DEC	T _J =25°C	10mA≤I _{OUT} ≤1A		12	180	mV
Load Regulation	REG _{LOAD}	1 J=25 C	250mA≤l _{OUT} ≤750mA		4	90	
Quiescent Current	I_{Q}	I _{OUT} =0, T _J =25°C			4.3	8	
Quiacont Current Change	Δ1	11.5V≤V _{IN} ≤26V		()		1	mΑ
Quiescent Current Change	ΔI_Q	10mA≤l _{o∪}	10mA≤I _{OUT} ≤1A			0.5	
Output Noise Voltage	V_N	10Hz≤f≤1	10Hz≤f≤100KHz, T _J =25°C		52		μV
Ripple Rejection Ratio	RR	f = 120Hz,	12V≤V _{IN} ≤22V	55	72		dB
Voltage Drop	V _{DROP}	I _{OUT} =1.0A	, T _J =25°C		2		V
Output Resistance	Rour	f=1KHz			16		mΩ
Output Short Circuit Current	los	T _J =25°C		A (2	450		mA
Peak Output Current	l _o peak	T _J =25°C		-	2.2		Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT}/\Delta T_{J}$	I _{OUT} =10m	A, 0°C≤Tյ≤125°C		-1		mV/°C

TS7812 Electrical Characteristics

 $(V_{IN}=19V, I_{OUT}=500mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN}=0.33 \mu F, C_{OUT}=0.1 \mu F; unless otherwise specified.)$

Parameter C	Symbol	7) To	est Condition	Min	Тур	Max	Unit
		T _J =25°C		11.53	12	12.48	
Output Voltage	Vour		14.5V≤V _{IN} ≤27V, 10mA≤I _{OUT} ≤1A, P _D ≤15W		12	12.60	V
Line Regulation	REGLINE	T _J =25°C	14.5V≤V _{IN} ≤30V		10	240	
Line Regulation	KEGLINE	1 j=25 C	15V≤V _{IN} ≤19V		3	120	m\/
Load Regulation	DEC	T _J ≠25°C	10mA≤l _{OUT} ≤1A		12	240	mV
Load Regulation	REG _{LOAD}	1j=25 C	250mA≤I _{OUT} ≤750mA		4	120	
Quiescent Current	la	Ι _{ουτ} =0, Τ _J =25°C			4.3	8	
Ouisseent Current Change		14.5V≤V _{IN} ≤30V			1	1	mA
Quiescent Current Change	Δlq	10mA≤l _{OUT} ≤1A				0.5	i
Output Noise Voltage	V_N	10Hz≤f≤1	00KHz, T _J =25°C		75		μV
Ripple Rejection Ratio	RR	f=120Hz,	15V≤V _{IN} ≤25V	55	71		dB
Voltage Drop	V_{DROP}	I _{OUT} =1.0A	, T _J =25°C		2		V
Output Resistance	R _{OUT}	f=1KHz			18		mΩ
Output Short Circuit Current	I _{os}	T _J =25°C			350		mA
Peak Output Current	I _O peak	T _J =25°C			2.2		Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T_{J}$	I _{OUT} =10m	A, 0°C≤T _J ≤125°C		-1		mV/°C

Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.

This specification applies only for DC power dissipation permitted by absolute maximum ratings.

3-Terminal Fixed Positive Voltage Regulator

TS7824 Electrical Characteristics

 $(V_{IN}=24V, I_{OUT}=500mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN}=0.33\mu F, C_{OUT}=0.1\mu F; unless otherwise specified.)$

Parameter	Symbol	Te	Min	Тур	Max	Unit	
		T _J =25°C	$T_J=25^{\circ}C$		24	24.96	
Output voltage	V _{OUT}	27V≤V _{IN} ≤3 P _D ≤15W	27V≤V _{IN} ≤38V, 10mA≤I _{OUT} ≤1A, P _D ≤15W		24	25.20	V
Line Regulation	DEC	T _J =25°C	27V≤V _{IN} ≤38V		18	480	
Line Regulation	REG _{LINE}	1 J=25 C	28V≤V _{IN} ≤32V		6	240	mV
Load Regulation	DEC	T _J =25°C	10mA≤l _{OUT} ≤1A		12	480	IIIV
Load Regulation	REG _{LOAD}	1 J=25 C	250mA≤l _{OUT} ≤750mA		4	240	
Quiescent Current	I_{Q}	I _{OUT} =0, T _J		4.6	8		
Quiacoant Current Change	A1	27V≤V _{IN} ≤38V		()		1	mA
Quiescent Current Change	Δl _Q	10mA≤l _o ∪	_T ≤1A			0.5	
Output Noise Voltage	V_N	10Hz≤ f ≤1	10Hz≤f≤100KHz, T _J =25°C		170		μV
Ripple Rejection Ratio	RR	f=120Hz,	f=120Hz, 27V≤V _{IN} ≤37V		70		dB
Voltage Drop	V _{DROP}	I _{OUT} =1.0A	, T _J =25°C		2		V
Output Resistance	R _{OUT}	f=1KHz		1	28		mΩ
Output Short Circuit Current	los	T _J =25°C			150		mA
Peak Output Current	I _o peak	T _J =25°C			2.2		Α
Temperature Coefficient of Output Voltage	ΔV _{ΟυΤ} / ΔΤ _J	I _{OUT} =10m	A, 0°C≤Tյ≤125°C		-1.5		mV/°C

Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as Junt sep Jaipation perm. possible, and thermal effects must be taken into account separately.

This specification applies only for DC power dissipation permitted by absolute maximum ratings.

3-Terminal Fixed Positive Voltage Regulator

Electrical Characteristics Curve

Figure 1. Peak Output Current as a Function of Input-Output Differential Voltage

Figure 2. Ripple Rejection as a Function of Output Voltage

Figure 3. Ripple Rejection as a Function of Frequency

Figure 4. Output Voltage as a Function of Junction Temperature

Figure 5. Output Impedance as a Function of Output Voltage

Figure 6. Quiescent Current as a Function of Temperature

3-Terminal Fixed Positive Voltage Regulator

Ordering information

Voltage	TO-220	ITO-220
5V	TS7805CZ C0	TS7805CI C0
8V	TS7808CZ C0	TS7808CI C0
9V	TS7809CZ C0	TS7809CI C0
12V	TS7812CZ C0	TS7812CI C0
24V	TS7824CZ C0	20

Packing	code	info	orma	tion

Packing 50pcs / Tube 50pcs / Tube

3-Terminal Fixed Positive Voltage Regulator

TO-220 Mechanical Drawing

3-Terminal Fixed Positive Voltage Regulator

ITO-220 Mechanical Drawing

3-Terminal Fixed Positive Voltage Regulator

restable to the second restable to the second

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiwan Semiconductor:

TS7812CZ TS7812CI TS7809CZ TS7809CI TS7824CZ TS7805CI TS7805CZ TS7808CZ TS7808CI