0.1 Moduli liberi

Definizione

Sia R un anello e sia X un insieme. Un R-modulo sinistro L dotato di una mappa $i_X \colon X \to L$ si dice libero su X se per ogni $\phi \colon X \to M$ con M che è R-modulo sinistro, esiste un unico $\phi_* \colon L \to M$ omomorfismo di R-moduli tale che $\phi = \phi_* \circ i_X$.

Aggiungere diagrammino dagli appunti. Esistono definizioni analoghe per i gruppi, per le algebre, etc. Il concetto di libero è una generalizzazione del concetto di funtore aggiunto. Ma proseguiamo la prossima volta. Se prendo $R = \mathbb{K}$ campo, M = V spazio vettoriale, $X = \mathcal{B}$ base di V e i_X l'inclusione canonica, allora lo spazio vettoriale V lo possiamo vedere come modulo libero sulla base \mathcal{B} . L'idea è che basta definire i valori di una mappa \mathbb{K} -lineare sulla base, e so già come si comporta in tutto lo spazio V.

Lezione del 10/12/2019 (vedi appunti cartacei)

La lezione del 10/12/2019 la ho negli appunti cartacei per ora. Le cose su teoria dei moduli sono davvero troppo a caso come ordine, dovrei davvero risistemarle.

Lezione del 18/12/2019 (appunti grezzi)

Scopo di questa lezione è arrivare al teorema che mostri che se R è un PID, allora ogni R-modulo finitamente generato senza torsione possiamo in realtà vederlo come R-modulo libero su un opportuno insieme finito. Per fare ciò, procediamo step by step.

La somma diretta: sia R un anello e M un R-modulo sinistro. Allora, $M \simeq A \oplus B$, dove A e B sono R-sottomoduli di M, se e solo se dette $\iota_A \colon A \to M$, $\iota_B \colon B \to M$ le inclusioni e $\pi_A \colon M \to A$ e $\pi_B \colon M \to B$ le rispettive proiezioni sul quoziente, accade che $\pi_A \circ \iota_A = \mathrm{id}_A$, $\pi_B \circ \iota_B = \mathrm{id}_B$ e $\iota_A \circ \pi_A + \iota_B \circ \pi_B = \mathrm{id}_M$.

Proposizione 3.5.4

Sia R un anello, M un R-modulo sinistro, A un R-sottomodulo di M e $\iota_A \colon A \to M$ e $\pi_A \colon M \to A$ omomorfismi di R-moduli tali che $\pi_A \circ \iota_A = \mathrm{id}_A$. Allora, $M \simeq A \oplus \ker(\pi_A)$.

Dimostrazione. Sia $\phi: A \oplus \ker(\pi_A) \to M$ la mappa definita come $\phi(a,x) = \iota_A(a) + x$, dove $a \in A$ e $x \in \ker(\pi_A)$. Chiaramente tale mappa è un omomorfismo di R-moduli. Inoltre, se $\phi(a,x) = 0$, allora $\iota_A(a) = -x$, cioè $a = \pi_A(\iota_A(a)) = \pi_A(-x) = 0$, da cui a = 0, cioè -x = 0 e quindi x = 0, dunque (a,x) = (0,0) il che mostra che ϕ è iniettiva. Infine, ϕ è anche suriettiva. Infatti, sia $z \in M$ e sia $y = z - \iota_A(\pi_A(z)) \in M$. Allora, $\pi_A(y) = \pi_A(z) - \pi_A(\iota_A(\pi_A(z))) = \pi_A(z) - \pi_A(z) = 0$, dove nell'ultimo passaggio abbiamo usato che $\pi_A \circ \iota_A = \mathrm{id}_A$, da cui $y \in \ker(\pi_A)$. Dunque, $z = \phi(\pi_A(x), y) = \iota_A(\pi_A(z)) + y$, e questo prova la suriettività di ϕ , da cui esso è quindi un isomorfismo e vale quindi $M \simeq A \oplus \ker(\pi_A)$.

Vale una proposizione simile nel caso dei moduli liberi.

Proposizione 3.5.5

Sia M un R-modulo sinistro, $\pi \colon M \to F$ un omomorfismo suriettivo e F un R-modulo sinistro libero su un insieme Y. Allora, $M \simeq F \oplus \ker(\pi)$.

Dimostrazione. Sia $\iota_X : X \to F$ una mappa tale che (F, ι_X) sia libero su X, e per ogni $x \in X$ sia $m_x \in M$ tale che $\pi(m_x) = \iota_X(x)$. Sia $\psi : X \to M$ la mappa definita come $\psi(x) = m_x$.

Essendo F libero su X, sappiamo che esiste un'unica mappa $\psi_{\star} \colon F \to M$ tale che $\psi_{\star} \circ \iota_X = \psi$. Resta da verificare che $\pi \circ \psi_{\star} = \mathrm{id}_F$. Poiché $\pi(\psi_{\star}(\iota_X(x))) = \pi(\psi(x)) = \pi(m_x) = \iota_X(x)$, abbiamo che $(\pi \circ \psi_{\star})(\iota_X(x)) = \iota_X(x)$ per ogni $x \in X$. Abbiamo quindi trovato due mappe che fanno commutare il diagramma seguente:

Tuttavia, essendo F libero, la mappa che fa commutare tale diagramma è unica, da cui $\pi \circ \psi_{\star} = \mathrm{id}_{F}$. Dunque, presa $\iota_{F} = \psi_{\star}$, per la *Proposizione 3.5.4* vale $M \simeq F \oplus \ker(\pi)$.

Per dimostrare il Teorema, vogliamo procedere per induzione sul numero di generatori di M. Tuttavia, per fare ciò dobbiamo prima essere in grado di dimostrare il passo base e lo step induttivo. Ci servono quindi altre due proposizioni.

Proposizione 3.5.6

Sia R un PID, $\mathbb{K} = \operatorname{quot}(R)$ e sia $M \subseteq \mathbb{K}$ un R-sottomodulo finitamente generato. Allora, $M \simeq R$ oppure $M = \{0\}$.

Dimostrazione. Poiché M è finitamente generato, esistono $m_1,\ldots,m_n\in M$ tali che $M=\sum_{i=1}^nR\cdot m_i$. Essendo $M\subseteq\mathbb{K}$, sappiamo che ogni m_i è della forma $m_i=\frac{a_i}{s_i}$ per degli opportuni $a_i\in R$ e $s_i\in R\setminus\{0\}$. Sia $s=s_1\cdot\ldots\cdot s_n$, così che $s\cdot M\subseteq R$ sia un R-sottomodulo (perché?). Siano $r_1,\ldots,r_n\in R$; allora, $s\cdot\sum_{i=1}^nr_i\cdot\frac{a_i}{s_i}=\sum_{i=1}^nr_is_i^\times a_i$ dove $s_i^\times=\prod_{j\neq i}s_j$ (non so cosa stia facendo qui). Dunque, essendo $s\cdot M$ un ideale di R, poiché R è un PID ogni suo ideale è principale, quindi esiste $b\in R$ tale che $s\cdot M=\langle b\rangle$, da cui $M=R\cdot\frac{b}{s}$. Allora, la mappa $\phi_{b/s}\colon R\to M$ definita come $\phi_{b/s}(r)=r\cdot\frac{b}{s}$ è un omomorfismo suriettivo. Se b=0, allora banalmente $M=\{0\}$. Se $b\neq 0$, allora $\ker(\phi_{b/s})=\{0\}$ e $\phi_{b/s}$ è quindi un isomorfismo.

Manca ancora un'ultima (spero meno dubbia della precedente) proposizione prima di poter dimostrare il Teorema. Altro che sagra della primavera, qui è la sagra delle proposizioni.

Proposizione 3.5.7

Sia R un anello, F_1 un R-modulo sinistro libero su X e F_2 un R-modulo sinistro libero su Y. Allora, $F_1 \oplus F_2$ è un R-modulo libero su $X \sqcup Y$.

Dimostrazione. Siano $\iota_X\colon X\to F_1$ e $\iota_Y\colon Y\to F_2$ le mappe dei moduli liberi F_1 e F_2 , rispettivamente, e sia $\iota_{X\sqcup Y}\colon X\sqcup Y\to F_1\oplus F_2$ la mappa definita come $\iota_{X\sqcup Y}(x)=\iota_X(x)$ e $\iota_{X\sqcup Y}(y)=\iota_Y(y)$ per ogni $x\in X$ e $y\in Y$ (sappiamo che tale mappa è ben definita per le proprietà dell'unione disgiunta). Sia M un R-modulo sinistro e sia $\phi\colon X\sqcup Y\to M$ una mappa qualunque. Allora, detta $\phi_\star\colon F_1\oplus F_2\to M$ la mappa $\phi_\star(f_1,f_2)=\phi_1(f_1)+\phi_2(f_2),$ dove $\phi_1\colon F_1\to M$ e $\phi_2\colon F_2\to M$ sono gli omomorfismi di R-moduli tali che $\phi_{|X}=\phi_1\circ\iota_X$ e $\phi_{|Y}=\phi_2\circ\iota_Y$ (che credo esistano essendo F_1 e F_2 moduli liberi), si ha che $\phi_\star\circ\iota_{X\sqcup Y}=\phi$, il che prova l'esistenza. Resta da mostrare la unicità di tale mappa ϕ_\star per concludere che $F_1\oplus F_2$ è libero. D'altra parte, se $\psi\colon F_1\oplus F_2\to M$ è una mappa tale che $\psi\circ\iota_{X\sqcup Y}=\phi$, in particolare deve essere $\psi_{|X}=\phi_1$ e $\psi_{|Y}=\phi_2$, da cui $\psi(f_1,f_2)=\psi(f_1,0)+\psi(0,f_2)=\phi_1(f_1)+\phi_2(f_2)=\phi_\star(f_1,f_2)$, da cui $\psi=\phi_\star$ provando l'unicità di ϕ_\star .

It's time for the big theorem, boi:)

Teorema 3.5.8

Sia R un PID e sia M un R-modulo sinistro finitamente generato con $tor_R(M) = \{0\}$. Allora, esiste un insieme finito X con $|X| = d_R(M)$ tale che M è libero su X.

Dimostrazione. Procediamo per induzione sul numero di generatori $d_R(M)$. Se $d_R(M) = 1$, esiste $m \in M$ tale che $M = R \cdot m$. Allora, $\phi_m : R \to M$ definita come $\phi_r(m) = r \cdot m$ è un omomorfismo di moduli suriettivo, e $\ker(\phi_m) = \operatorname{Ann}_R(m) = \{0\}$ perché per ipotesi $\mathrm{tor}_R(M) = \{0\}$. Dunque ϕ_m è iniettivo, da cui $M \simeq R$, quindi il teorema vale (perchè ogni anello è un modulo libero su se stesso con 1 generatore, in quanto $R=\langle 1_R \rangle$, cioè $\{1_R\}$ è una base). Supponiamo ora che la tesi valga per $d_R(M) \leq n$. Sia M con $d_R(M) =$ n+1 e $\operatorname{tor}_R(M)=\{0\}$. Allora, esistono $m_0,\ldots,m_n\in M$ tali che $M=\sum_{i=0}^nR\cdot m_i$. Sia $M_0 = \operatorname{sat}_M(R \cdot m_0)$. Allora, $\operatorname{sat}_M(M_0) = \operatorname{sat}_M(\operatorname{sat}_M(M_0)) = M_0$ (il passaggio in mezzo è inutile, il punto è che il sat del sat è ancora il sat), dunque per la Proposizione 3.2.2 si ha che $tor_R(M/M_0) = sat_M(M_0)/M_0 = \{0\}$ (perché il quoziente è M_0/M_0). Poiché $d_R(M/M_0) \leq n$, per ipotesi induttiva M/M_0 è libero e per la Proposizione 3.5.5 vale $M \simeq M_0 \oplus M/M_0$. Dunque, basta far vedere che anche M_0 è libero. Preso $x \in M_0$, (da qui in poi è delirio) sappiamo che esistono $r_x \in R$ e $s_x \in R \setminus \{0\}$ tali che $s_x \cdot x = r_x \cdot m_0$. Sia $\alpha \colon M_0 \to \operatorname{quot}(R)$ la mappa $\alpha(x) = \frac{r_x}{s_x}$ se $x \neq 0$ e $\alpha(0) = 0$. Siano $r, r' \in R$ e $s, s' \in R \setminus \{0\}$ con $s \cdot x = r \cdot m_0$ e $s' \cdot x = r' \cdot m_0$. Allora, $ss' \cdot x = s'r \cdot m_0 = sr' \cdot m_0$, cioè $(s'r - sr') \cdot m_0 = 0$, da cui $s'r - sr' \in Ann_R(m_0) = \{0\}$ e quindi s'r - sr' = 0, cioè $\frac{r}{s} = \frac{r'}{s'}$ (a che serve sta cosa?). Mostriamo che α è un omomorfismo iniettivo di R-moduli. Infatti, presi $x, y \in M_0$, siano $s_x \cdot x = r_x \cdot m_0$ e $s_y \cdot y = r_y \cdot m_0$, così che moltiplicando la prima equazione per s_y e la seconda per s_x e sommandole, valga $s_x s_y(x+y) = (s_y r_x + s_x r_y) \cdot m_0$, da cui $\alpha(x+y) = \frac{s_y r_x + s_x r_y}{s_x s_y} = \frac{r_x}{s_x} + \frac{r_y}{s_y} = \alpha(x) + \alpha(y)$. Inoltre, preso $r \neq 0$, $r s_x \cdot x = r r_x \cdot m_0$, quindi $\alpha(r \cdot x) = \frac{r \cdot r_x}{s_x} = r \cdot \alpha(x)$. Per l'iniettività, se $\alpha(x) = 0$ esiste $s_x \in R \setminus \{0\}$ tale che $s_x \cdot x = 0$, cioè $x \in \operatorname{tor}_R(M_0) \subseteq M$, da cui x = 0 essendo $\operatorname{tor}_R(M) = \{0\}$. Dunque, per il Primo teorema d'isomorfismo si ha $M_0 \simeq \operatorname{Im}(\alpha) \subseteq M$. Tuttavia, per la Proposizione 3.5.6, essendo $\operatorname{Im}(\alpha)$ un R-sottomodulo di $\operatorname{quot}(R)$, vale $\operatorname{Im}(\alpha) \simeq R$, quindi $M_0 \simeq R$. Poiché R è libero su $\{\cdot\}$ (come detto prima la base è un insieme di cardinalità 1) e per ipotesi induttiva M/M_0 è libero su X' di cardinalità $|X'| = d_R(M) - 1$, concludiamo che M è libero su $X = X' \sqcup \{\cdot\}$ e $|X| = d_R(M)$ come desiderato.

Ci sono un sacco di punti che non mi sono chiari: perchè il sat del sat è il sat? che succede quando compare un m_0 selvaggio con tutto il delirio degli r_x e s_x ? Alla fine che succede?