### **GENERAL ASSEMBLY: DATA SCIENCE**

Final Project: Predicting Real Estate Values by proximity to transit

By Simon Mettler

August 2016



### **Context**: Real estate market in NYC is crazy







### **Context:** Transit has an effect on real estate- right?



# **Goal**: Build a model that predicts real estate values based on proximity to transit

A STATE OF THE STA

- Multivariate linear regression
- Geo-spatial variables
- Focus on transit accessibility as primary independent variable

### Approach: Identifying the dependent variable

- City Department of Finance maintains property tax records for every lot in the city
- As part of these records, they calculate an estimated market value for each lot
- Methodology isn't perfect, but good proxy for real estate values



While the data is public, it's in this format- luckily someone has already scraped it and created a single, ~1M row CSV for every parcel in the city

## Approach: Join BBL-level DOF data to MapPluto dataset

- MapPLUTO can be thought of as the dataset of record for all landuse related data about the city
  - Unit of analysis is the BBL- Borough Block Lot
  - ~800k rows
  - Includes hundreds of columns, including info on
    - Zoning designations
    - Districts
    - Building age/size
    - Special rules/regulations
    - ...and much more- a treasure trove to identify potential control variables!!
- Every BBL in the city is geo-coded, and therefore can be used for spatial analysis
- All of the DOF data is also available at BBL level, facilitating the join

# <u>Approach</u>: Join BBL-level DOF data to MapPluto dataset

- Joined on BBL
- Scrubbed for rows with missing or incomplete values
- Eliminated non residential real estate or unbuilt properties
- Resulted in dataframe of ~600k rows, ready for further analysis

|   | BBL        | Borough | SchoolDist | PolicePrct | BldgArea | emv       |
|---|------------|---------|------------|------------|----------|-----------|
| 1 | 1000970045 | MN      | 2.0        | 1.0        | 1845     | 2424000.0 |
| 2 | 1000970055 | MN      | 2.0        | 1.0        | 13015    | 8644000.0 |
| 3 | 1000970144 | MN      | 2.0        | 1.0        | 1880     | 1955000.0 |
| 4 | 1001350011 | MN      | 2.0        | 1.0        | 11515    | 9104000.0 |
| 5 | 1001400024 | MN      | 2.0        | 1.0        | 11913    | 7400000.0 |

Example of df.head()-many more columns...

# Approach: Identify potential control variables and identify source for them

| Source      | Potential control variable                                        | How to encode                                                            | Variable Details                               |
|-------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|
|             | Building Area                                                     | Use value in MapPluto                                                    | Total sq. feet of building floor area          |
|             | Building Age                                                      | Use year built to calculate age                                          | Years, drop any value >200 (likely data error) |
| MapPLUTO    | Historic District Encode dummy based on whether historic district | Encode dummy based on whether in historic district                       | True/False                                     |
|             | Landmarked Building                                               | Encode dummy based on whether landmarked                                 | True/False                                     |
|             | Borough                                                           | Run getdummies for all boroughs                                          | T/F for all boroughs except 1                  |
| Police Dep. | Crime Rate                                                        | Join police crime rate data by precinct on precint field on MapPLUTO     | # of crimes per 1000 residents                 |
| DOE         | School Quality                                                    | Join school grad data by school district on schooldist field on MapPLUTO | 4 year grad rate in district                   |
| Census data | Race, Income                                                      | Join Census demographic data on census block/NTA                         | % white, median income, in NTA                 |

# Some variables are clearly correlated with EMV Correlation: Building Area & EMV, R^2=.48



#### Others are less clearly correlated with EMV Correlation: Building Age & EMV, R^2=.12



## Approach: How to evaluate access to transit



#### Approach: Using subway walkshed map and cartodb, create a table of bbls within 5, 7.5, and 10 min of a subway stop



### Preliminary analysis: Being in a subway walkshed appears to be a significant variable

ANOVA table with 3 different subway dummy variables

|               | df       | sum_sq       | mean_sq      | F            | PR(>F)       |
|---------------|----------|--------------|--------------|--------------|--------------|
| Borough       | 4.0      | 1.177774e+17 | 2.944435e+16 | 85944.569301 | 0.000000e+00 |
| within300     | 1.0      | 3.793012e+12 | 3.793012e+12 | 11.071355    | 8.767758e-04 |
| within450excl | 1.0      | 7.604393e+13 | 7.604393e+13 | 221.963246   | 3.454351e-50 |
| within600excl | 1.0      | 1.178184e+14 | 1.178184e+14 | 343.898020   | 9.558487e-77 |
| Residual      | 528562.0 | 1.810837e+17 | 3.425969e+11 | NaN          | NaN          |

ANOVA table with singular subway dummy variables

|           | df       | sum_sq       | mean_sq      | F            | PR(>F)        |
|-----------|----------|--------------|--------------|--------------|---------------|
| Borough   | 4.0      | 1.177774e+17 | 2.944435e+16 | 85950.044421 | 0.000000e+00  |
| within600 | 1.0      | 2.085055e+14 | 2.085055e+14 | 608.641828   | 2.632935e-134 |
| Residual  | 528564.0 | 1.810729e+17 | 3.425751e+11 | NaN -        | NaN           |

### Initial Regression: All variables significant

#### OLS Regression Results

| Dep. Variable:    | emv              | R-squared:          | 0.588       |  |  |  |  |  |  |  |
|-------------------|------------------|---------------------|-------------|--|--|--|--|--|--|--|
| Model:            | OLS              | Adj. R-squared:     | 0.588       |  |  |  |  |  |  |  |
| Method:           | Least Squares    | F-statistic:        | 5.023e+04   |  |  |  |  |  |  |  |
| Date:             | Tue, 09 Aug 2016 | Prob (F-statistic): | 0.00        |  |  |  |  |  |  |  |
| Time:             | 23:22:33         | Log-Likelihood:     | -7.6678e+06 |  |  |  |  |  |  |  |
| No. Observations: | 528570           | AIC:                | 1.534e+07   |  |  |  |  |  |  |  |
| Df Residuals:     | 528554           | BIC:                | 1.534e+07   |  |  |  |  |  |  |  |
| Df Model:         | 15               |                     |             |  |  |  |  |  |  |  |
| Covariance Type:  | nonrobust        |                     |             |  |  |  |  |  |  |  |
|                   |                  |                     |             |  |  |  |  |  |  |  |

| Mostly as expected | l, some surprises: |
|--------------------|--------------------|
|--------------------|--------------------|

- Within 300 is negative but the other transit ones are positive
- Landmarks and historic districts are very strong- may be capturing something else
- Building age has a negligible effect- likely because of a nonlinear distribution

|                    | coef       | std err  | t        | P> t  | [95.0% Conf. Int.]  |
|--------------------|------------|----------|----------|-------|---------------------|
| Intercept          | -1.339e+06 | 9229.567 | -145.042 | 0.000 | -1.36e+06 -1.32e+06 |
|                    |            |          |          |       |                     |
| ishist[T.True]     | 7.268e+05  | 5077.913 | 143.136  | 0.000 | 7.17e+05 7.37e+05   |
| islandmark[T.True] | 7.785e+05  | 3.64e+04 | 21.379   | 0.000 | 7.07e+05 8.5e+05    |
| BldgArea           | 302.8127   | 0.924    | 327.697  | 0.000 | 301.002 304.624     |
| school_grad_rate   | 2.915e+05  | 9386.951 | 31.052   | 0.000 | 2.73e+05 3.1e+05    |
| crime_rate         | -1745.0011 | 263.551  | -6.621   | 0.000 | -2261.552 -1228.450 |
| is_BK              | 4.726e+05  | 2957.690 | 159.795  | 0.000 | 4.67e+05 4.78e+05   |
| is_BX              | 3.484e+05  | 3614.031 | 96.415   | 0.000 | 3.41e+05 3.56e+05   |
| is_MN              | 4.312e+06  | 9041.076 | 476.935  | 0.000 | 4.29e+06 4.33e+06   |
| is_QN              | 3.591e+05  | 2494.038 | 143.973  | 0.000 | 3.54e+05 3.64e+05   |
| buildingage        | 1414.5918  | 27.376   | 51.674   | 0.000 | 1360.937 1468.247   |
| Med_Income         | 10.0170    | 0.051    | 195.273  | 0.000 | 9.916 10.118        |
| perc_white         | 2.553e+05  | 3104.883 | 82.215   | 0.000 | 2.49e+05 2.61e+05   |
| within300          | -4.462e+04 | 1.5e+04  | -2.967   | 0.003 | -7.41e+04 -1.51e+04 |
| within450excl      | 1.215e+04  | 4416.617 | 2.752    | 0.006 | 3496.929 2.08e+04   |
| within600excl      | 1.225e+04  | 3302.256 | 3.711    | 0.000 | 5781.382 1.87e+04   |
|                    |            |          |          |       |                     |

| Omnibus:       | 1028137.063 | Durbin-Watson:    | 0.470          |  |
|----------------|-------------|-------------------|----------------|--|
| Prob(Omnibus): | 0.000       | Jarque-Bera (JB): | 8468613974.126 |  |
| Skew:          | 14.916      | Prob(JB):         | 0.00           |  |
| Kurtosis:      | 622.380     | Cond. No.         | 3.47e+06       |  |
|                |             |                   |                |  |

#### Regression # 2: Remove non-helpful independent variables

#### With some adjustments, looks

slightly better:

- R squared value about the same @ .59
- Changing dummy variable for transit to simply be within 10 minutes of subway or not results in stronger coefficient
- Eliminating building age has negligible effect on overall model

#### OLS Regression Results

| OLS Regression Results |            |         |                 |       |               |            |
|------------------------|------------|---------|-----------------|-------|---------------|------------|
| Dep. Variable:         | emv        |         | R-squared:      |       | 0.58          | 36         |
| Model:                 |            | OLS     | Adj. R-squared: |       | 0.58          | 36         |
| Method:                | Least      | Squares | F-statistic:    |       | 6.225e+0      | 04         |
| Date:                  | Tue, 09 A  | ug 2016 | Prob (F-statis  | tic): | 0.00          |            |
| Time:                  | 2          | 3:41:44 | Log-Likelihood  | :     | -7.6691e+06   |            |
| No. Observations:      |            | 528570  | AIC:            |       | 1.534e+0      | 07         |
| Df Residuals:          |            | 528557  | BIC:            |       | 1.534e+0      | 07         |
| Df Model:              |            | 12      |                 |       |               |            |
| Covariance Type:       | no         | nrobust |                 |       |               |            |
|                        |            |         |                 |       | ========      |            |
|                        | coef       | std er  | r t             | P> t  | [95.0% Co     | onf. Int.] |
| Intercept              | -1.253e+06 | 9106.16 | <br>1 -137.625  | 0.000 | -1.27e+06     | 1 240+06   |
| ishist[T.True]         | 7.636e+05  | 5034.67 |                 | 0.000 |               | 7.73e+05   |
| islandmark[T.True]     |            | 3.65e+0 |                 | 0.000 | 7.52e+05      |            |
| BldgArea               | 295.5614   | 0.91    |                 | 0.000 | 293.766       |            |
| school grad rate       |            | 9407.81 |                 | 0.000 | 2.82e+05      |            |
| crime rate             |            |         |                 | 0.000 |               |            |
| _                      | -1787.6201 | 264.36  |                 |       | -2305.771     |            |
| is_BK                  | 5.203e+05  | 2818.72 |                 | 0.000 | 5.15e+05      |            |
| is_BX                  | 3.812e+05  | 3567.13 |                 | 0.000 | 3.74e+05      |            |
| is_MN                  | 4.388e+06  | 8945.86 |                 | 0.000 | 4.37e+06      |            |
| is_QN                  | 3.965e+05  | 2393.30 |                 | 0.000 | 3.92e+05      |            |
| Med_Income             | 9.8308     | 0.05    |                 | 0.000 | 9.730         |            |
| perc_white             | 2.616e+05  | 3109.24 |                 | 0.000 | 2.55e+05      |            |
| within600              | 2.686e+04  | 2860.54 | 5 9.388         | 0.000 | 2.12e+04      | 3.25e+04   |
|                        |            |         |                 |       |               | ==         |
| Omnibus:               | 1027       | 302.856 | Durbin-Watson:  |       | 0.46          | 56         |
| Prob(Omnibus):         |            | 0.000   | Jarque-Bera (J  | B):   | 8429637978.70 | 00         |
| Skew:                  |            | 14.889  | Prob(JB):       |       | 0.0           | 00         |
| Kurtosis:              |            | 620.953 | Cond. No.       |       | 3.47e+0       | 06         |

#### Further analyses: Adjusting and fine-tuning regression models

|   | Model                                | Training R^2 | Test R^2     | Coefficient on transit dummy | Comments                                                            |
|---|--------------------------------------|--------------|--------------|------------------------------|---------------------------------------------------------------------|
| 1 | Baseline                             | 0.5848969376 | 0.5866645106 | 2.95E+04                     | Baseline model previously described                                 |
| 2 | Baseline, w/ intercept of 0          | 0.5700045197 | 0.5719172058 | 3.27E+04                     | Makes school quality a negative indicator                           |
| 3 | Baseline, normalized                 | 0.5848969376 | 0.5866645106 | 2.95E+04                     | Doesn't appear to have any effect over non-normalized equivalent    |
| 4 | Baseline, w/ intercept 0, normalized | 0.5700045197 | 0.5719172058 | 3.27E+04                     | Doesn't appear to have any effect over non-normalized equivalent    |
| 5 | Baseline, Lasso                      | ~ .57        | ~ .57        | ~3E04                        | Higher alpha results in slightly lower transit coefficient          |
| 6 | Baseline, Ridge                      | ~ .555       | ~ .555       | Up to ~9E04                  | Higher alpha increases transit coefficient, but decreases R squared |



Even with some adjustments and fine-tuning, R^2 steady ~0.6, and roughly consistent performance across test/train; Ridge suggests transit coefficient could more significant than others

### However, a simple dummy model performs better

#### Created a simple dummy model that only considers NTA, neighborhood, building size, and the binary transit variable

- Considers all ~180 NTAs (corresponding roughly to neighborhoods) as their own dummy variable and regresses on them
- Assumes that within that neighborhood "dummy", all things that could affect value- e.g. attractiveness of neighborhood, crime, school quality, etc.- are already captured
- Coefficient for binary transit variable: 3.22220691e+04
  - Consistent with other regressions/models
  - Suggests ~\$32K of value can be attributed *only to* being within 10 min of a subway
- R squared on test: 0.79,
- R squared on train: 0.80



Question for further analysis: What other "quantifiable" metrics might exist that could explain what makes a neighborhood valuable in real estate

#### Summary



#### Conclusion

- Regardless of model used or way parameters were cut, the binary "within 10 min of subway" variable is always significant and contributes ~\$25-\$40K to the value of a property
- Most attributes that were analyzed perform as expected, but there are certainly other predictive variables are out there that can be analyzed/quantified
- It seems safe to extrapolate this model as predictive- in an "all things equal" scenario, e.g. the opening of a new subway will add value to properties in East Harlem-BUT of course the opening of the new subway could also change the neighborhood more fundamentally in other ways that increase value (e.g. independent variables are related)

#### **Shortcomings**

- Data at different levels/units, so not always granular enough
- EMV methodology is imperfect doesn't always reflect up to date reality-Opportunity to analyze other data, e.g. zillow transaction data, rents
- Could associate an exact time to subway for each BBL instead of a simple binary variable
- Count areas with more subways differently, weigh the "quality" of a certain subway stop
- Consider buses and ferries and their effects