Find stationary and inflection points for

$$y = x^3(5-x)$$
 $y = 5x^3-x^4$
 $ds = 15x^2-4x^3$
 $2x^2(15-4x)=0$
 $2x = 2x^2(15-4x)=0$

Stationary points at $(0,0)$ and $(3.75,65.918)$
 $d^2y = 30x - 12x^2$
 $dsu^2 = 6x(5-2x)$

If $x = 0$

If $x = 0$

If $x = 3.75$
 $d^2y = 0$
 $d^2y = 56.25$

Lunkinson at this $(3.75,65.918)$ is a local mass.

Sign diagram for $d^2y = 6x(5-2x)=0$
 $x = 0$
 $x = 0$

Change of sign at $x = 0$

Change of sign at $x = 0$

So $(0,0)$ is a stationery so $(2.5,37.0625)$

in flection point is a non-stationery inflection point

Find stationary and inflection points for:

$$J(x) = \frac{x}{30} + 64x$$

$$J'(x) = \frac{6x}{30} + 64$$

$$\frac{x}{30} + 64x$$

$$\frac{x}{30} + 64$$

