ML in healthcare 336546 HW3 Answers Adi Alfassi 208929299

1. Clustering

a. The goal of K-medoid algorithm is to minimizes a sum of pairwise dissimilarities, while K-means algorithm minimizes the sum of squared Euclidean distances. Therefore K-medoid algorithm would be more robust to noises and outliers than K-means algorithm.

b.

Bonus:

Vonus: To find	l mainum \	ralue, we m	eed to Fin	d in for	which:		
2 / F	(i - /n)) = c)					
Assumg	Xi are ar	ranged by	ther va	lue, and	m is an e	wen number,	
c the	median is	s difined c	$\frac{\chi_m}{2}$	C < Xm +1			
We'd like	! to prove	e that	C Mit	nimizes th	e given be	erm, so for any	_ a:
Σ Xi - C	4	→ @ { ->	(X; - a -	- X ₁ - C) ≥	0		
Assumng	a <c, td="" we<=""><td>11 set 3</td><td>g coups:</td><td>6</td><td></td><td></td><td></td></c,>	11 set 3	g coups:	6			
A = Si:	Xi <a), b<="" td=""><td>): {i : az</td><td>Xi < C }</td><td><i>C</i> : <i>c</i></td><td>Si: γ; > C?</td><td>ForA</td><td></td></a),>): {i : az	Xi < C }	<i>C</i> : <i>c</i>	Si: γ; > C?	ForA	
A° → Xi - a							
B: - X: - a)	- Xi - C	= Xi - a	- C +	· Xi - 9	Xi - a - (2 ≥ 2a-a-c	= O - C
C: - Xi - al	- Xi - C	= \(\lambda_i - O\)	- χί +	C=C	- A		
back to ®							
ξ (V; - a -	X(-C1)= 5	(a-c) +	€ (a-c)	+ 5 (C	(-a) = (a-	c) ([A]+ IB	1-((1)
Since c is t	he median	0	C	= 3 =	IA\+ [B]		
(3) → € X; -1	7 - Ki -C	≥ (a-c) ([A]+[B] -	(C) = (O	(-C) (m-m-m) = 0	
lence the cen	broid that	minmizes th	e tenn is	s c- the	median S	m examples	

2. SVM

- A and D are classified with a linear kernel SVM because of the linear line of the classifier.
 For large values of C, the classification line would have a small margin range.
 We notice that the margin in D is smaller. Furthermore, a small value of C may allow misclassifications, which occurs in A there are 2 purple dots inside the margin range. Therefore: D=2, A=1
- Since RBF stands for Radial Basis Function, I would expect that the classification would be with a radial shaped line- Images B and E are relevant.
 The gamma value represents the influence of a single example, when high gamma value means "close influence", and low value means "far influence". These are reflected in the size of the radial shapes caused by the classifier.
 Therefore: B=6, E=5.
- The classification shape in C looks the most similar to a 2nd order polynomial function (parabola). Therefore, the kernel matches this image is 2nd order polynomial kernel: C=3.
- The classification shape in F doesn't resemble as a known/radial function and looks very complex. A complex shape for a classifier would imply a complex function for a kernel (and a risk of over-fitting), for example a 10th order polynomial kernel. F=4.

3. Capability of generalization

- a. This balance in the aspect of machine learning is the balance between model complexity and performance. The term for this balance is Generalization- As Einstein mentioned, we'd like a simple model but with enough complexity to make a good-performing model.
- b. The 2p term when p is the total number of learned parameters represents the complexity of the model. Therefore, and from the formula we can say that the bigger 2p is- the bigger the complexity and the bigger the AIC.
 - L is the estimated likelihood (varies from 0-1) and represents the performance of the model. Mathematically, 2ln(L) can vary from $(-\infty)$ to 0. From the formula we can see that the bigger the likelihood, the bigger 2ln(L) and the lower AIC. That's how and why these terms represent the balance mentioned earlier.
- c. In case of high complexity and high performance, there is a risk of over-fitting: If the model learns from a large number of parameters it may cause a high complexity. That model may have a very high performance with the specific examples given but wouldn't work that way for any other dataset. In case of low complexity there is a risk of under-fitting: If the model learns from a small number of parameters it may cause a low complexity, which leads to a model that with a low performance and won't be accurate enough.
- d. As mentioned in section b, low AIC means low 2p value- represents low complexity, and high 2ln(L) (high L value)- represents high performance. Since this is the balance we'd like to achieve (Best and most simple model), we would like to minimize the value of AIC.