

Answer Keys and Solutions

. (3)	2. (3)	3. (3)	4. (3)	5. (1)	6. (1)	7. (2)	8. (21)
	` '	` ′	` '	` '	` '	` ′	8. (21) /// mathongo //
(3)							
∵ System of	equation has non tri	vial solution. It is pos	ssible only when Δ	= 0. mathongo			
1	-c $-c$						
mathagg	c / $\frac{1}{2}$ nathong	/// mathongo					
$\Rightarrow 1(1-c^2)$ $\Rightarrow 2c^3+3c^3$	$ig)+cig(-c-c^2ig)-cig(c^2-1=0$	+ c) = 0					
	greatest value of $c =$	-					
(3) For the g	given system to have	a non-trivial solution	, we must have				
1 k 3	0 1 33						
$\begin{vmatrix} 3 & k & -2 \\ 2 & 3 & -4 \end{vmatrix}$	$0 \Rightarrow K = \frac{1}{2}$ mathongo						
(3)	0						
$\Delta = egin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$	$\begin{vmatrix} 0 \\ -6 \end{vmatrix} = 0$						
$egin{array}{c c} 0 & 6 \\ -11 \end{array}$	$egin{array}{c c} -18 & & & \\ 6 & 0 & & & \end{array}$	$ -2 \ \ -11 \ \ 6 $					
$\Delta_1 = -3$	20 $\left -6 \right eq 0: \Delta_2$	= 6	0/// mathongo				
$egin{array}{c c} & -1 \\ & 2 \end{array}$	$egin{array}{ccc} 6 & -18 \ 6 & -11 \end{array}$	0					
and $\Delta_3 = 6$	$\begin{vmatrix} 20 & -30 \\ 6 & -1 \end{vmatrix} \neq 0$						
	ystem is inconsistent						
(3) _{athong}	mathongo						
	$-2 \lambda + 3 \mid = 0$						
$\begin{array}{c c} 2 & 3\lambda \\ P_{2} & P_{2} \end{array}$	$+1 3(\lambda-1)$						
$R_3 ightarrow R_3 -$	R_1						
$\begin{vmatrix} \lambda - 1 & 3\lambda \\ 0 & \lambda \end{vmatrix}$	$\begin{vmatrix} +1 & 2\lambda \\ -3 & -\lambda + 3 \end{vmatrix} = 0$						
$3-\lambda$	$\lambda - 3$						
$egin{array}{c} C_1 ightarrow C_1 + \ 3\lambda - 1 & 3\lambda \end{array}$	$egin{array}{ccc} C_3 & & & & & \\ \lambda+1 & & 2\lambda & & & & \end{array}$						
$3-\lambda$ λ	$\begin{vmatrix} -3 & 3 - \lambda \\ 0 & \lambda - 3 \end{vmatrix} = 0$						
$\Rightarrow (\lambda - 3)^2$	$0 \lambda - 3 \mid [6\lambda] = 0 \Rightarrow \lambda = 0, 3$	mathongo					
sum of value							

Answer Keys and Solutions

Answer Keys and Solutions

Ans	wer Keys and Solutions				JEE Main Crash Course
8.	(21) We observe $5P_2 - P_1 = 3P_3$ So, $15 - K = -6$				
9.	$\Rightarrow K = 21$ (3) mathongo				
	$P_1: x + 2y - 3z = a$ $P_2: 2x + 6y - 11z = b$ $P_3: x - 2y + 7z = c$				
	Clearly $5P_1 = 2P_2 + P_3$ if $5a = 2b + c$ \Rightarrow All the planes sharing a line of \Rightarrow infinite solutions	/// mathongo /// intersection			
10	(3) athongo mathongo $D = \begin{vmatrix} 1 & -2 & 0 \\ 1 & -1 & k \end{vmatrix} = 4 - k^{2}$				
	$\begin{vmatrix} 2 & 1 & k \\ 0 & k & 4 \end{vmatrix}$ so, A is correct and B, C, E are in $\begin{vmatrix} 1 & -2 & 0 \end{vmatrix}$	mathomas $k = 2$			
	$D_1 = \begin{vmatrix} -2 & -1 & 2 \\ 6 & 2 & 4 \end{vmatrix} = -48 \neq 0$ So no solution				