Параллельный алгоритм умножения матрицы на вектор

Постановка задачи: Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор. Провести исследование эффективности разработанной программы.

Детали реализации: Для передачи данных между процессорами использовались функции MPI_Send и MPI_Recv. Деление матрицы на передаваемые блоки происходит наиболее эффективным образом с помощью регулирования оставшихся процессов и строк матрицы. Для замера времени использовалась функция MPI_Wtime. Вычислялось время работы каждого процесса, включая обработку пересылок, и выбиралось самое большое время работы, которые и считается итоговым временем работы программы.

Результаты запуска программы:

Запуск производился на системе Polus, где максимальное количество используемых процессов ограничено значением 64. Запуск происходил на одинаковых входных данных, размер входной матрицы 4096 x 4096.

Кол-во процессов	1	2	4	8	16	32	64
Время (с)	0.136759	0.137868	0.138846	0.146817	0.069102	0.064470	0.076208

Вывод: Использование технологий MPI позволило увеличить эффективность работы программы перемножения плотной матрицы на вектор. Даже не смотря на накладные расходы в виде передачи данных между процессами наблюдается значительное увеличение скорости работы программы в данном случае на 16 процессах.

Гадиева Тамара, 323 группа