Analysis 1. Semester (WS2017/18)

Dozent: Prof. Dr. Friedemann Schuricht Kursassistenz: Moritz Schönherr

Stand: 7. Dezember 2017

Inhaltsverzeichnis

1	Grundlagen der Mathematik	1					
1	Grundbegriffe aus Mengelehre und Logik						
2	Aufbau einer mathematischen Theorie 2.1 Relationen und Funktionen	5					
II	Zahlenbereiche	10					
3	Natürliche Zahlen	10					
4	Ganze und rationale Zahlen	13					
5	Reelle Zahlen 5.1 Struktur von archimedisch angeordneten Körper (allg.)	17 17					
6	Komplexe Zahlen (kurzer Überblick)	19					
II	I Metrische Räume und Konvergenz	20					
7	Grundlegen Ungleichungen	20					
8	Metrische Räume	21					

Teil I

Grundlagen der Mathematik

Mathematik besitzt eine Sonderrolle unter den Wissenschaften, da

- Resultate nicht empirisch gezeigt werden müssen
- Resultate nicht durch Experimente widerlegt werden können

Literatur

- Forster: Analysis 1 + 2, Vieweg
- Königsberger: Analysis 1 + 2, Springer
- Hildebrandt: Analysis 1 + 2, Springer
- Walter: Analysis 1 + 2, Springer
- \bullet Escher/Amann: Analysis 1+2, Birkhäuser
- Ebbinghaus: Einfühung in die Mengenlehre, BI-Wissenschaftsverlag
- Teubner-Taschenbuch der Mathematik, Teubner 1996
- Springer-Taschenbuch der Mathematik, Springer 2012

Kapitel 1

Grundbegriffe aus Mengelehre und Logik

Mengenlehre: Universalität von Aussagen

Logik: Regeln des Folgerns, wahre/falsche Aussagen

Definition 1.1 (Definition Aussage)

Sachverhalt, dem man entweder den Wahrheitswert "wahröder "falschßuordnen kann, aber nichts anders.

Beispiel

 $5 ist eine Quadratzahl \rightarrow falsch (Aussage)$

Die Elbe fließt durch Dresden \rightarrow wahr (Aussage)

 $Mathematik \ ist \ rot \rightarrow ??? \ (keine \ Aussage)$

Definition 1.2 (Menge)

Zusammenfassung von bestimmten wohlunterscheidbaren Objekten der Anschauung oder des Denkens, welche die Elemente der Menge genannt werden, zu einem Ganzen.
(Cantor, 1877)

Beispiel

 $M_1 := Menge \ aller \ St\"{a}dte \ in \ Deutschland$

 $M_2 := \{1; 2; 3\}$

Für ein Objekt m und eine Menge M gilt stets $m \in M$ oder $m \notin M$

Für die Mengen M und N gilt M=N, falls dieselben Elemente enthalten sind $\{1;2;3\}=\{3;2;1\}=\{1;2;2;3\}$

- $N \subseteq M$, falls $n \in M$ für jedes $n \in N$
- $N \subset M$, falls zusätzlich $M \neq N$

Definition 1.3 (Aussageform)

Sachverhalt mit Variablen, der durch geeignete Ersetzung der Variablen zur Aussage wird.

Beispiel

- A(X) := Die Elbe fließt durch X
- B(X;Y;Z) := X + Y = Z
- $aber\ A(Dresden), B(2; 3; 4)\ sind\ Aussagen,\ A(Mathematik)\ ist\ keine\ Aussage$
- A(X) ist eine Aussage fü jedes $X \in M_1 \to Generalisierung von Aussagen durch Mengen$

Bildung und Verknüpfung von Aussagen

- 4							
	A	B	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \iff B$
	w	w	f	W	W	W	w
	w	f	f	f	W	f	f
	f	w	W	f	W	W	f
Ì	f	f	W	f	f	W	W

Beispiel 1.4

• $\neg (3 \text{ ist gerade}) \rightarrow w$

- $(4 \text{ ist gerade}) \land (4 \text{ ist Primzahl}) \rightarrow f$
- (3 ist gerade) \vee (3 ist Primzahl) \rightarrow w
- (3 ist gerade) \Rightarrow (Mond ist Würfel) \rightarrow w
- (Die Sonne ist heiß) \Rightarrow (es qibt Primzahlen) \rightarrow w

Auschließendes oder: (entweder A oder B) wird realisiert durch $\neg (A \iff B)$. Aussageform A(X) sei für jedes $X \in M$ Aussage: neue Aussage mittels Quantoren

- ∀: "für alle"
- ∃: ës existiert"

Beispiel 1.5

 $\forall n \in \mathbb{N} : n \text{ ist } gerade \to f$ $\exists n \in \mathbb{N} : n \text{ ist } gerade \to w$

Definition 1.6 (Tautologie bzw. Kontraduktion/Widerspruch)

Zusammengesetzte Aussage, die unabhängig vom Wahrheitsgehalt der Teilaussagen stest wahr bzw. falsch ist.

Beispiel 1.7

- Tautologie (immer wahr): $(A) \vee (\neg A), \neg (A \wedge (\neg A)), (A \wedge B) \Rightarrow A$
- Widerspruch (immer falsch): $A \wedge (\neg A), A \iff \neg A$
- besondere Tautologie: $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$

Satz 1.8 (Morgansche Regeln)

Folgende Aussagen sind Tautologien:

- $\neg (A \land B) \iff \neg A \lor \neg B$
- $\bullet \neg (A \lor B) \iff \neg A \land \neg B$

Bildung von Mengen

Seien M und N Mengen

- Aufzählung der Elemente: {1; 2; 3}
- mittels Eigenschaften: $\{X \in M \mid A(X)\}$
- \emptyset := Menge, die keine Elemente enthält
 - leere Menge ist immer Teilmenge jeder Menge M
 - Warnung: $\{\emptyset\} \neq \emptyset$
- Verknüpfung von Mengen wie bei Aussagen

Definition 1.9 (Mengensystem)

Ein Mengensystem \mathcal{M} ist eine Menge, bestehend aus anderen Mengen.

- $\bigcup M := \{X \mid \exists M \in \mathcal{M} : X \in M\}$ (Vereinigung aller Mengen in \mathcal{M})
- $\bigcap M := \{X \mid \forall M \in \mathcal{M} : X \in M\}$ (Durchschnitt aller Mengen in \mathcal{M})

Definition 1.10 (Potenzmenge)

Die Potenzmenge \mathcal{P} enthält alle Teilmengen einer Menge M.

$$\mathcal{P}(X) := \{ \tilde{M} \mid \tilde{M} \subset M \}$$

Beispiel:

• $M_3 := \{1; 3; 5\}$ $\rightarrow \mathcal{P}(M_3) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1; 3\}, \{1; 5\}, \{3; 5\}, \{1; 3; 5\}\}\$

Satz (de Morgansche Regeln für Mengen):

- $\bullet \ (\bigcup_{N \in \mathcal{N}} N)^C = \bigcap_{N \in \mathcal{N}} N^C$ $\bullet \ (\bigcap_{N \in \mathcal{N}} N)^C = \bigcup_{N \in \mathcal{N}} N^C$

Definition 1.11 (Kartesisches Produkt)

 $M \times N := \{m, n \mid m \in M \land n \in N\}$ (m,n) heißt geordnetes Paar (Reihenfolge wichtig!) all gemeiner: $M_1 \times ... \times M_k := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$ $M^k := M \times ... \times M := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$

Satz 1.12 (Auswahlaxiom)

Sei \mathcal{M} ein Mengensystem nichtleerer paarweise disjunkter Mengen M.

- Es existiert eine Auswahlmenge M, die mit jedem $M \in \mathcal{M}$ genau 1 Element gemeinsam
- beachte: Die Auswahl ist nicht konstruktiv!

Aufbau einer mathematischen Theorie

Axiome \rightarrow Beweise \rightarrow Sätze ("neue" wahre Aussagen) \rightarrow ergibt Ansammlung (Menge) wahrer Aussagen

Formulierung mathematischer Aussagen

- typische Form eines mathematischen Satzes: "Wenn A gilt, dann gilt auch B."
- formal: $A \Rightarrow B$ bzw. $A(X) \Rightarrow B(X)$ ist stets wahr (insbesondere falls A wahr ist) Beispiel
 - $X \in \mathbb{N}$ und ist durch 4 teilbar $\Rightarrow X$ ist durch 2 teilbar
 - beachte: Implikation auch wahr, falls X = 5 oder X = 6, dieser Fall ist aber uninteressant
 - genauer meint man sogar $A \wedge C \Rightarrow B$, wobei C aus allen bekannten wahren Aussagen besteht
 - \bullet man sagt: B ist **notwendig** für A, da A nur wahr sein kann, wenn B wahr ist
 - man sagt: A ist hinreichend für B, da B stets wahr ist, wenn A wahr ist

Mathematische Beweise

- direkter Beweis: finde Zwischenaussagen $A_1, ..., A_k$, sodass für A auch wahr: $(A \Rightarrow A_1) \land (A_1 \Rightarrow A_2) \land ... \land (A_k \Rightarrow B)$
- Beispiel: Zeige $x > 2 \Rightarrow x^2 3x + 2 > 0$ $(x > 2) \Rightarrow (x - 2 > 0) \land (x - 1 > 0) \Rightarrow (x - 2) \cdot (x - 1) \Rightarrow x^2 - 3x + 2 > 0$
- indirekter Beweis: auf Grundlage der Tautologie $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$ führt man direkten Beweis $\neg B \Rightarrow \neg A$ (das heißt angenommen B falsch, dann auch A falsch)
- praktisch formuliert man das auch so: $(A \land \neg B) \Rightarrow ... \Rightarrow (A \land \neg A)$
- Beispiel: Zeige $x^2 3x + 2 \le 0$ sei wahr $\neg B \Rightarrow (x 2) \cdot (x 1) \le 0 \Rightarrow 1 \le x \le 2 \Rightarrow \neg A$

2.1 Relationen und Funktionen

Definition 2.1 (Relation)

Seien M und N Mengen. Dann ist jede Teilmenge R von $M \times N$ eine Relation. $(x,y) \in R$ heißt: x und y stehen in Relation zueinander

Beispiel

M ist die Menge aller Menschen. Die Liebesbeziehung x liebt y sieht als geordnetes Paar geschrieben so aus: (x,y). Das heißt die Menge der Liebespaare ist das: $L := \{(x,y) \mid x \text{ liebt } y\}$. Und es gilt: $L \subset M \times M$.

Die Relation $R \subset M \times N$ heißt **Ordnungsrelation** (kurz. Ordnung) auf M, falls für alle $a, b, c \in M$ gilt:

• $(a, a) \in R$ (reflexiv)

- $(a,b),(b,a) \in R$ (antisymetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ (transitiv)
- z.B. $R = \{(X, Y) \in \mathcal{P}(Y) \times \mathcal{P}(Y) \mid X \subset Y\}$

Eine Ordnungsrelation heißt **Totalordnung**, wenn zusätzlich gilt: $(a,b) \in R \vee (b,a) \in R$

Beispiel

Seien m, n und o natürliche Zahlen, dann ist $R = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\}$ eine Totalordnung, da

- $m \le m$ (reflexiv)
- $(m \le n \land n \le m) \Rightarrow m = n \text{ (antisymetrisch)}$
- $(m \le n \land n \le o) \Rightarrow m \le o \text{ (transitiv)}$
- $m \le n \lor n \le m$ (total)

Eine Relation auf M heißt Äquivalenzrelation, wenn für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a, b), (b, a) \in R$ (symetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ (transitiv)

Obwohl Ordnungs- und Äquivalenzrelation die gleichen Eigenschaften haben, haben sie unterschiedliche Zwecke: Ordnungsrelationen ordnen Elemente in einer Menge (z.B. das Zeichen \leq ordnet die Menge der natürlichen Zahlen), während Äquivalenzrelationen eine Menge in disjunkte Teilmengen (Äquivalenzklassen) ohne Rest aufteilen.

Wenn R eine Ordnung auf M ist, so wird häufig geschrieben:

```
a \le b bzw. a \ge b falls (a, b) \in \mathbb{R}
 a < b bzw. a > b falls zusätzlich a \ne b
```

Definition 2.2 (Abbildung/Funktion)

Eine Funktion F von M nach N (kurz: $F: M \to N$), ist eine Vorschrift, die jedem Argument/Urbild $m \in M$ genau einen Wert/Bild $F(m) \in N$ zuordnet.

```
D(F) := M \ \textit{heißt Definitionsbereich/Urbildmenge}
```

N heißt Zielbild

 $F(M') := \{ n \in N \mid n = F(m) \text{ für ein } m \in M' \} \text{ ist Bild von } M' \subset M$

 $F^{-1}(N') := \{ m \in M \mid n = F(m) \text{ für ein } N' \} \text{ ist Urbild von } N' \subset N$

R(F) := F(M) heißt Wertebereich/Bildmenge

 $graph(F) := \{(m, n) \in M \times N \mid n = F(m)\} \text{ heißt Graph von } F$

 $F_{|M'}$ ist Einschränkung von F auf $M' \subset M$

Unterschied Zielmenge und Wertebereich: $f(x) = \sin(x)$:

Zielmenge: \mathbb{R}

Wertebereich: [-1;1]

Funktionen F und G sind gleich, wenn

- D(F) = D(G)
- $F(m) = G(m) \quad \forall m \in D(F)$

Manchmal wird auch die vereinfachende Schreibweise benutzt:

- $F: M \to N$, obwohl $D(F) \subseteq M$ (z.B. $\tan : \mathbb{R} \to \mathbb{R}$, Probleme bei $\frac{\pi}{2}$)
- gelegentlich spricht man auch von "Funktion F(m)ßtatt Funktion F

Definition 2.3 (Komposition/Verknüpfung)

Die Funktionen $F: M \to N$ und $G: N \to P$ sind verknüpft, wenn $F \circ G: M \to P$ mit $(F \circ G)(m) := G(F(m))$

Eigenschaften von Funktionen:

- injektiv: Zuordnung ist eineindeutig $\rightarrow F(m_1) = F(m_2) \Rightarrow m_1 = m_2$
- Beispiel: x^2 ist nicht injektiv, da F(2) = F(-2) = 4
- surjektiv: $F(M) = N \quad \forall n \in N \ \exists m \in M : F(m) = n$
- Beispiel: sin(x) ist nicht surjektiv, da es kein x für y=27 gibt
- bijektiv: injektiv und surjektiv

Für bijektive Abbildung $F: M \mapsto N$ ist Umkehrabbildung/inverse Abbildung $F^{-1}: N \mapsto M$ definiert durch: $F^{-1}(n) = m \iff F(m) = n$

Hinweis: Die Notation $F^{-1}(N')$ für Urbild bedeutet nicht, dass die inverse Abbildung F^{-1} existiert.

Satz 2.4

Sei $F: M \to N$ surjektiv. Dann existiert die Abbildung $G: N \to M$, sodass $F \circ G = id_N$ (d.h. $F(G(n)) = n \quad \forall n \in N$)

Definition 2.5 (Rechenoperation/Verknüpfung)

Eine Rechenoperation auf einer Menge M ist die Abbildung $*: M \times M \to M$ d.h. $(m, n) \in M$ wird das Ergbnis $m * n \in M$ zugeordnet.

Eigenschaften von Rechenoperationen:

- hat neutrales Element $e \in M : m * e = m$
- ist kommutativ m * n = n * m
- ist assotiativ k * (m * n) = (k * m) * n
- hat ein inverses Element $m' \in M$ zu $m \in M : m * m' = e$

e ist stets eindeutig, m' ist eindeutig, wenn die Operation * assoziativ ist.

Beispiele:

- Addition +: $(m,n) \mapsto m+n$ Summe, neutrales Element heißt Nullelement, inverses Element -m
- Multiplikation $: (m, n) \mapsto m \cdot n$ Produkt, neutrales Element Eins, inverses Element m^{-1} Addition und Multiplikation sind distributiv, falls $k(m+n) = k \cdot m + k \cdot n$

Definition 2.6 (Körper)

Eine Menge M ist ein Körper K, wenn man auf K eine Addition und eine Multiplikation mit folgenden Eigenschaften durchführen kann:

- es gibt neutrale Elemente 0 und $1 \in K$
- Addition und Multiplikation sind jeweils kommutativ und assoziativ
- ullet Addition und Multiplikation sind distributiv
- es gibt Inverse -k und $k^{-1} \in K$
 - ightarrow die reellen Zahlen sind ein solcher Körper

Eine Menge M habe die Ordnung " \leq " und diese erlaubt die Addition und Multiplikation, wenn

- $a \le b \iff a + c \le b + c$
- $a \le b \iff a \cdot c \le b \cdot c \quad c > 0$
 - \rightarrow Man kann die Gleichungen in gewohnter Weise umformen.

Ein Körper K heißt angeordnet, wenn er eine Totalordnung besitzt, die mit Addition und Multiplikation verträglich ist.

Isomorphismus bezüglich einer Struktur ist die bijektive Abbildung $I: M_1 \mapsto M_2$, die die vorhandene Struktur auf M_1 und M_2 erhält, z.B.

- Ordnung \leq_1 auf M_1 , falls $a \leq_1 b \iff I(a) \leq_2 I(b)$
- Abbildung $F_i: M_i \to M_i$, falls $I(F_1(a)) = F_2(I(a))$
- Rechenoperation $*_i: M_i \times M_i \to M_i$, falls $I(a *_1 b) = I(a) *_2 I(b)$
- spezielles Element $a_i \in M_i$, falls $I(a_1) = a_2$

Ës gibt 2 verschiedene Arten von reellen Zahlen, meine und Prof. Schurichts. Wenn wir einen Isomorphismus finden, dann bedeutet das, dass unsere Zahlen strukturell die selben sind."

Beispiele: $M_1 = \mathbb{N}$ und $M_2 = \{\text{gerade Zahlen}\}$, jeweils mit Addition, Multiplikation und Ordnung $\to I: M_2 \to M_2$ mit $I(k) = 2k \quad \forall k \in \mathbb{N}$

→ Isomorphismus, der die Addition, Ordnung und die Null, aber nicht die Multiplikation erhält

Bemerkungen zum Fundament der Mathematik

Forderungen an eine mathematische Theorie:

- widerspruchsfrei: Satz und Negation nicht gleichzeitig herleitbar
- vollständig: alle Aussagen innerhalb der Theorie sind als wahr oder falsch beweisbar

zwei Unvollständigkeitssätze:

- $\bullet\,$ jedes System ist nicht gleichzeitig widerspruchsfrei und vollständig
- $\bullet\,$ in einem System kann man nicht die eigene Widerspruchsfreiheit zeigen

Teil II

Zahlenbereiche

Kapitel 3

Natürliche Zahlen

 \mathbb{N} sei diejenige Menge, die die **Peano-Axiome** erfüllt, das heißt

- N sei induktiv, d.h. es existiert ein Nullelement und eine injektive Abbildung NtoN mit $\nu(n) \neq 0 \quad \forall n$
- Falls $N \subset \mathbb{N}$ induktiv in \mathbb{N} $(0, \nu(n) \in N \text{ falls } n \in N \Rightarrow N = \mathbb{N}$
- $\rightarrow \mathbb{N}$ ist die kleinste induktive Menge

Nach der Mengenlehre ZF (Zermelo-Fraenkel) existiert eine solche Menge $\mathbb N$ der natürlichen Zahlen. Mit den üblichen Symbolen hat man:

- \bullet 0 := \emptyset
- $1 := \nu(0) := \{\emptyset\}$
- $2 := \nu(1) := \{\emptyset, \{\emptyset\}\}\$
- $3 := \nu(2) := \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\$

Damit ergibt sich in gewohnter Weise $\mathbb{N} = \{1; 2; 3; ...\}$ anschauliche Notation $\nu(n) = n + 1$ (beachte: noch keine Addition definiert!)

Theorem 3.1 Falls \mathbb{N} und \mathbb{N}' die Peano-Axiome erfüllen, sind sie isomorph bezüglich Nachfolgerbildung und Nullelement. Das heißt alle solche \mathbb{N}' sind strukturell gleich und können mit obigem \mathbb{N} identifiziert werden.

Satz 3.2 (Prinzip der vollständigen Induktion)

Sei $\{A_n \mid n \in N\}$ eine Menge von Aussagen A_n mit der Eigenschaft:

IA: A_0 ist wahr

IS: $\forall n \in \mathbb{N} \ gilt \ A_n \Rightarrow A_{n+1}$

 A_n ist wahr für alle $n \in \mathbb{N}$

Lemma 3.3

Es gilt:

- 1. $\nu(n) \cup \{0\} = \mathbb{N}$
- 2. $\nu(n) \neq n \quad \forall n \in \mathbb{N}$

Satz 3.4

(rekursive Definition/Rekursion) Sei B eine Menge und $b \in B$. Sei F eine Abbildung mit $F: B \times \mathbb{N} \mapsto B$. Dann liefert nach Vorschrift: f(0) := b und $f(n+1) = F(f(n), n) \quad \forall n \in \mathbb{N}$ genau eine Abbildung $f: \mathbb{N} \mapsto B$. Das heißt eine solche Abbildung exstiert und ist eindeutig.

Rechenoperationen:

- Definition Addition '+': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch $n+0 := n, n+\nu(m) := \nu(n+m) \quad \forall n, m \in \mathbb{N}$
- Definition Multiplikation '.': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch $n \cdot 0 := 0$, $n \cdot \nu(m) := n \cdot m + n \quad \forall n, m \in \mathbb{N}$ Für jedes feste $n \in \mathbb{N}$ sind beide Definitionen rekursiv und eindeutig definiert. $\forall n \in \mathbb{N}$ gilt: $n + 1 = n + \nu(0) = \nu(n + 0) = \nu(n)$

Satz 3.5

Addition und Multiplikation haben folgende Eigenschaften:

- es existiert jeweils ein neutrales Element
- kommutativ
- assoziativ
- distributiv

Es gilt $\forall k, m, n \in \mathbb{N}$:

- $m \neq 0 \Rightarrow m + n \neq 0$
- $m \cdot n = 0 \Rightarrow n = 0$ oder m = 0
- $m + k = n + k \Rightarrow m = n$ (Kürzungsregel der Addition)
- $m \cdot k = n \cdot k \Rightarrow m = n$ (Kürzungsregel der Multiplikation)

Ordnung auf \mathbb{N} : Relation $R:=\{(m,n)\in\mathbb{N}\times\mathbb{N}\mid m\leq n\}$ wobei $m\leq n\iff n=m+k$ für ein $k\in\mathbb{N}$

Satz 3.6

Es gilt auf \mathbb{N} :

- $m \le n \Rightarrow \exists! k \in \mathbb{N} : n = m + k$, nenne n m := k (Differenz)
- Relation R (bzw. \leq) ist eine Totalordnung auf \mathbb{N}
- Ordnung ≤ ist verträglich mit der Addition und Multiplikation

Beweis

```
Sei n=m+k=m+k'\Rightarrow k=k'

Sei n=n+0\Rightarrow n\leq n\Rightarrow reflexiv

sei k\leq m, m\leq n\Rightarrow \exists l, j: m=k+l, n=m+j=(k+l)+j=k+(l+j)\Rightarrow k\leq n\Rightarrow transitiv

sei nun m\leq nundn\leq m\Rightarrow n=m+j=n+l+j\Rightarrow 0=l+j\Rightarrow j=0\Rightarrow n=m\Rightarrow antisymmetrisch

Totalordnung, d.h. \forall m, n\in\mathbb{N}: m\leq n \text{ oder } n\leq m

IA: m=0 \text{ wegen } 0=n+0 \text{ folgt } 0\leq n\forall n

IS: \text{ gelte } m\leq n \text{ oder } n\leq m \text{ mit festem } m \text{ und } \forall n\in\mathbb{N}, \text{ dann}

falls \ n\leq m\Rightarrow n\leq m+1

falls \ m<n\Rightarrow\exists k\in\mathbb{N}: n=m+(k+1)=(m+)1+k\Rightarrow m+1\leq n

m\leq n \text{ oder } n\leq m \text{ gilt } \text{für } m+1 \text{ und } \forall n\in\mathbb{N}, \text{ also } \forall n, m\in\mathbb{N}
```

Ganze und rationale Zahlen

Frage: Existiert eine natürliche Zahl x mit n = n' + x für ein gegebenes n und n'?

Antwort: Das geht nur falls $n \leq n'$, dann ist x = n - n'

Ziel: Zahlenbereichserweiterung, sodass die Gleichung immer lösbar ist. Ordne jedem Paar $(n, n') \in \mathbb{N} \times \mathbb{N}$ eine neue Zahl als Lösung zu. Gewisse Paare liefern die gleiche Lösung, z.B. (6,4), (5,3), (7,5). Diese müssen mittels Relation identifiziert werden.

$$\mathbb{Q} := \{ (n_1, n_1'), (n_2, n_2') \in (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \mid n_1 + n_2' = n_1' + n_2 \}$$

Definition 4.1

 \mathbb{Q} ist die Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$.

Beispiel

$$(5,3) \sim (6,4) \sim (7,5)$$
 bzw. $(5-3) \sim (6-4) \sim (7-5)$
 $(3,6) \sim (5,8)$ bzw. $(3-6) \sim (5-8)$

Beweis

offenbar $((n, n'), (n, n')) \in \mathbb{Q} \Rightarrow reflexiv$ falls $((n_1, n'_1), (n_2, n'_2)) \in \mathbb{Q} \Rightarrow (n_2, n'_2), (n_1, n'_1)) \in \mathbb{Q} \Rightarrow symmetrisch$ sei $((n_1, n'_1), (n_2, n'_2)) \in \mathbb{Q}$ und $((n_2, n'_2), (n_3, n'_3)) \in \mathbb{Q} \Rightarrow n_1 + n'_2 = n'_1 + n_2, n_2 + n'_3 = n'_2 + n_3 \Rightarrow n_1 + n'_3 = n'_1 + n_3 \Rightarrow ((n_1, n'_1), (n_3, n'_3)) \in \mathbb{Q} \Rightarrow transitiv.$

setze $\overline{\mathbb{Z}} := \{[(n, n')] \mid n, n' \in \mathbb{N}\}$ Menge der ganzen Zahlen, [ganze Zahl] Kurzschreibweise: $\overline{m} := [(m, m')]$ oder $\overline{n} := [(n, n')]$

Satz 4.2

Sei $[(n, n')] \in \overline{\mathbb{Z}}$. Dann existiert eindeutig $n* \in \mathbb{N}$ mit $(n*, 0) \in [(n, n')]$, falls $n \geq n'$ bzw. $(0, n*) \in [(n, n')]$ falls n < n'.

Beweis

$$n \ge n' \Rightarrow \exists! n* \in \mathbb{N} : n = n' + n* \Rightarrow (n*,0) \sim (n,n')$$

$$n < n' \Rightarrow \exists! n* \in \mathbb{N} : n + n* = n' \Rightarrow (0,n*) \sim (n,n')$$

Frage: Was hat $\overline{\mathbb{Z}}$ mit \mathbb{Z} zu tun?

Antwort: identifiziere (n,0) bzw. (n-0) mit $n \in \mathbb{N}$ und identifiziere (0,n) bzw. (0-n) mit Symbol -n

 \Rightarrow ganze Zahlen kann man eindeutig den Elementen folgender Mengen zuordnen: $\mathbb{Z} := \mathbb{N} \cup \{(-n) \mid n \in \mathbb{N}\}$

Rechenoperationen auf $\overline{\mathbb{Z}}$:

- Addition: $\overline{m} + \overline{n} = [(m, m')] + [(n, n')] = [(m + n, m' + n')]$
- Multiplikation: $\overline{m} \cdot \overline{n} = [(m, m')] \cdot [(n, n')] = [(mn + m'n', mn' + m'n)]$

Satz 4.3

Addition und Multiplikation sind eindeutig definiert, d.h. unabhängig von Repräsentant bezüglich $\mathbb Q$

Beweis

Sei
$$(m_1, m'_1) \sim (m_2, m'_2), (n_1, n'_1) \sim (n_2, n'_2)$$

 $\Rightarrow m_1 + m'_2 = m'_1 + m_2, n_1 + n'_2 = n'_1 + n_2$
 $\Rightarrow m_1 + n_1 + m'_2 + n'_2 = m'_1 + n'_1 + m_2 + n_2$
 $\Rightarrow (m_1, m'_1) + (n_1, n'_1) \sim (m_2, m'_2) + (n_2, n'_2)$

Satz 4.4

Für Addition und Multiplikation auf \mathbb{Z} gilt $\forall \overline{m}, \overline{n} \in \overline{\mathbb{Z}}$:

- 1. es existiert eine neutrales Element: 0 := [(0,0)], 1 := [(1,0)]
- 2. jeweils kommutativ, assoziativ und gemeinsam distributiv
- 3. $-\overline{n} := [(n', n)] \in \mathbb{Z}$ ist invers bezüglich der Addition zu $[(n, n')] = \overline{n}$
- 4. $(-1) \cdot \overline{n} = -\overline{n}$
- 5. $\overline{m} \cdot \overline{n} = 0 \iff \overline{m} = 0 \lor \overline{n} = 0$

Beweis

zu 1) offenbar
$$\overline{n} + 0 = 0 + \overline{n} = \overline{n}$$
 und $\overline{n} \cdot 1 = 1 \cdot \overline{n} = \overline{n}$

 $zu\ 2)\ Flei\betaarbeit o SeSt$

zu 3) offenbar
$$\overline{n} + (-\overline{n}) = (-\overline{n}) + \overline{n} = [(n+n', m+m')] = 0$$

$$zu \ 4) \ (-1) \cdot \overline{n} = [(0,1)] \cdot [n,n'] = [n',n] = -\overline{n}$$

zu 5) $\ddot{U}A$

Satz 4.5

 $F\ddot{u}r\ \overline{m}, \overline{n} \in \mathbb{Z}$ hat die Gleichung $\overline{m} = \overline{n} + \overline{x}$ die Lösung $\overline{x} = \overline{m} + (-\overline{n})$.

Ordnung auf $\overline{\mathbb{Z}}$: betrachte Relation $R := \{(\overline{m}, \overline{n}) \in \overline{\mathbb{Z}} \times \overline{\mathbb{Z}} \mid \overline{m} \leq \overline{n}\}$

Satz 4.6

R ist Totalordnung auf $\mathbb Z$ und verträglich mit Addition und Multiplikation

Ordnung verträglich mit Addition: $\overline{n} < 0 \iff 0 = \overline{n} + (-\overline{n}) < -\overline{n} = (-1) \cdot \overline{n}$

beachte: $\mathbb{Z} := \mathbb{N} \cup \{(-n) \mid n \in \mathbb{N}_{>0}\}$

Satz 4.7

 \mathbb{Z} und $\overline{\mathbb{Z}}$ sind isomorph bezüglich Addition, Multiplikation und Ordnung.

Beweis

betrachte Abbildung $I: \mathbb{Z} \to \overline{\mathbb{Z}}$ mit I(k) := [(k,0)] und $I(-k) := [(0,k)] \quad \forall k \in \mathbb{N} \Rightarrow \ddot{U}A$

Notation: verwende stets \mathbb{Z} , schreibe m, n, \dots statt $\overline{m}, \overline{n}, \dots$ für ganze Zahlen in \mathbb{Z}

Frage: Existiert eine ganze Zahl mit $n = n' \cdot x$ für $n, n' \in \mathbb{Z}, n' \neq 0$

Antwort: im Allgemeinen nicht **Ziel:** Zahlbereichserweiterung analog zu $\mathbb{N} \to \mathbb{Z}$

ordne jedem Paar $(n, n') \in \mathbb{Z} \times \mathbb{Z}$ neue Zahl x zu

schreibe (n, n') auch als $\frac{n}{n'}$ oder n: n'

identifiziere Paare wie z.B. $\frac{4}{2}, \frac{6}{3}, \frac{8}{4}$ durch Relation

$$\mathbb{Q} := (\frac{n_1}{n_2'}, \frac{n_2}{n_2'}) \in (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \times (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \mid n_1 n_2' = n_1' n_2$$

 $\Rightarrow \mathbb{Q}$ ist eine Äquivalenzrelation auf $\mathbb{Z} \times \mathbb{Z}_{\neq 0}$

setze $\mathbb{Q} := \left[\frac{n}{n'}\right] \mid (n, n') \in \mathbb{Z} \times \mathbb{Z}_{\neq 0}$ Menge der rationalen Zahlen

beachte: unendlich viele Symbole $\frac{n}{n'}$ für gleiche Zahl $\left\lceil \frac{n}{n'}\right\rceil$

wir schreiben später $\frac{n}{n'}$ für die Zahl $\left[\frac{n}{n'}\right]$

offenbar gilt die Kürzungsregel: $\left[\frac{n}{n'}\right] = \left[\frac{kn}{kn'}\right] \quad \forall k \in \mathbb{Z}_{\neq 0}$

Rechenoperationen auf \mathbb{Q} :

- Addition: $\left[\frac{m}{m'}\right] + \left[\frac{n}{n'}\right] := \left[\frac{mn' + m'n}{m'n'}\right]$ Multiplikation: $\left[\frac{m}{m'}\right] \cdot \left[\frac{n}{n'}\right] := \left[\frac{mn}{m'n'}\right]$

Satz 4.8

Mit Addition und Multiplikation ist \mathbb{Q} ein Körper mit neutralen Elementen: $0 = \begin{bmatrix} 0\mathbb{Z} \\ 1\mathbb{Z} \end{bmatrix} = \begin{bmatrix} 0\mathbb{Z} \\ n\mathbb{Z} \end{bmatrix}, 1 := \begin{bmatrix} 1\mathbb{Z} \\ 1\mathbb{Z} \end{bmatrix} = \begin{bmatrix} n \\ n \end{bmatrix} \neq 0$ inversen Elementen: $-\begin{bmatrix} n \\ n' \end{bmatrix} = \begin{bmatrix} -n \\ n \end{bmatrix}, \begin{bmatrix} n \\ n' \end{bmatrix}^{-1} = \begin{bmatrix} n' \\ n \end{bmatrix}$

Ordnung auf \mathbb{Q} : für $[\frac{n}{n'}] \in \mathbb{Q}$ kann man stets n' > 0 annehmen Realtion: $R := \{([\frac{m}{n'}], [\frac{n}{n'}]) \in \mathbb{Q} \times \mathbb{Q} \mid mn' \leq m'n, m', n' > 0\}$ gibt Ordnung \leq

Satz 4.9

 \mathbb{Q} ist ein angeordneter Körper (d.h. \leq ist eine Totalordnung undv erträglich mit Addition und Multiplikation).

Notation: schreibe vereinfacht nur noch $\frac{n}{n'}$ für die Zahl $\left[\frac{n}{n'}\right] \in \mathbb{Q}$ und verwende auch Symbole p,q,... für Elemente aus \mathbb{Q}

Gleichung $p \cdot x = q$ hat stets eindeutige Lösung: $x = q \cdot p^{-1} \ (p, q \in \mathbb{Q}, p \neq 0)$

Frage: $\mathbb{N} \subset \mathbb{Z} \to \mathbb{Z} \subset \mathbb{Q}$? Antwort: Sei $\mathbb{Z}_{\mathbb{Q}} := \frac{n}{1} \in \mathbb{Q} \mid n\mathbb{Z}, I : \mathbb{Z} \to \mathbb{Z}_{\mathbb{Q}}$ mit $I(n) = \frac{n}{1} \Rightarrow I$ ist Isomorphismus bezüglich Addition, Multiplikation und Ordnung. In diesem Sinn: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

Folgerung 4.10

Körper \mathbb{Q} ist archimedisch angeordnet, d.h. für alle $q \in \mathbb{Q} \exists n \in \mathbb{N} : q <_{\mathbb{Q}} n$.

Beweis

$$\begin{array}{l} Sei \; q = \left[\frac{k}{k'}\right] \; mit \; k' > 0 \\ n := 0 \; falls \; k < 0 \Rightarrow q = \left[\frac{k}{k'}\right] < \left[\frac{0}{k'}\right] = 0 = n \\ n := k + 1 \; falls \; k \geq 0 \Rightarrow q = \left[\frac{k}{k'}\right] < \left[\frac{k+1}{k'}\right] = n \end{array}$$

Reelle Zahlen

Frage: Frage: algebraische Gleichung $a_0 + a_1 x + \cdots + a_x^k = 0 \ (a_j \in \mathbb{Z})$ i.A nur für k = 1 lösbar (d.h. lin. Gl.)

Beispiel 5.1

 $x^2-2=0$ keine Lösung in \mathbb{Q} . Angenommen es existiert eine Lösung $x=\frac{m}{n}\in\mathbb{Q}$, o.B.d.A. höchstens eine der Zahlen m,n gerade $\Rightarrow \frac{m^2}{n^2}=2\Rightarrow m^2=2n^2\Rightarrow m$ gerade $\stackrel{m=2k}{\Rightarrow}4k^2=2n^2\Rightarrow 2n^2\Rightarrow 2k^2=n^2\Rightarrow n$ gerade $\Rightarrow \frac{4}{4}$.

Offenbar $1, 4^2 < 2 < 1, 5^2, 1, 41^2 < 2 < 1, 42^2, \ldots$, falls es $\sqrt{2}$ gibt, kann diese in $\mathbb Q$ beliebig genau approximiert werden. Es folgt, dass $\mathbb Q$ anscheinend "Lücken" hat. **Fläche auf dem Einheitskreis** kann durch rationale Zahlen beliebig genau approximiert werden. Falls "Flächenzahl" π existiert, ist das **nicht** Lösung einer algebraischen Gleichung (Lindemann 1882).

Ziel: Konstruktion eines angeordneten Körpers, der diese Lücken füllt.

5.1 Struktur von archimedisch angeordneten Körper (allg.)

 \mathbb{K} sei ein (bel.) Körper mit bel. Elementen 0,1 bzw. $0_K, 1_K$.

Satz 5.2

Sei \mathbb{K} Körper. Dann gilt $\forall a, b \in \mathbb{K}$:

- 1) $0, 1, (-a), b^{-1}$ sind eindeutig bestimmt
- 2) (-0) = 0, $1^{-1} = 1$
- 3) $-(-a) = a, (b^{-1})^{-1} = b \ (b \neq 0)$
- 4) $-(a+b) = (-a) + (-b), (a^{-1}b^{-1}) = (a^{-1}b^{-1}) (a, \neq 0)$
- 5) $-a = (-1) \cdot a$, (-a)(-b) = ab, $a \cdot 0 = 0$
- 6) $ab = 0 \iff a = 0 \text{ oder } b = 0$
- 7) a + x = b hat eindeutige Lösung x = b + (-a) =: b a Differenz ax = b hat eindeutige Lösung $x = a^{-1}b := \frac{b}{a}$ Quotient

Beweis

- zu 1) vgl. lin. Algebra
- $zu\ 2)\ betrachte\ 0+0=0\ bzw.\ 1\cdot 1=1$

$$zu\ 3)\ (-a) + a = 0 \stackrel{komm}{\Rightarrow} a = -(-a)\ Rest\ analog$$

$$zu \ 4) \ a+b=((-a)+(-b)) \Rightarrow Behauptung, Addition und Multiplikation analog$$

zu 5)
$$a \cdot 0 = 0$$
 vgl. lin. Algebra $1a + (-1)a = 0 \Leftrightarrow (1-1)a = 0 \Rightarrow (-1)a = -1, (-a)(-b) = (-1)(-a)b \stackrel{3.5}{=} ab$

zu 6) (
$$\Leftarrow$$
): nach 5) (\Rightarrow) sei $a \neq 0$ (sonst klar) $\Rightarrow 0 = a^{-1} \cdot 0 \stackrel{ab=0}{=} a^{-1}ab = b \Rightarrow Beh$.

zu 7)
$$a + x = b \Leftrightarrow x = (-a) + a \neq x = (-a) + b$$
, für $ax = b$ analog

Setze für alle $a, \ldots a_k \in \mathbb{K}, n \in \mathbb{N}_{>1}$

Vielfache $n \cdot a$ (kein Produkt in $\mathbb{K}!$)

Potenzen
$$a^n = \prod_{k=1}^n a_k$$
 für $n \in N_{\geq 1}$ damit $(-n)a := n(-a)$, $0_{\mathbb{N}}a = 0_{\mathbb{N}}$ für $n \in \mathbb{N}_{\geq 1}$ $a^{-n} = (a^-1)^n$, $a^{0_{\mathbb{N}}} := 1_{\mathbb{K}}$ für $n \in \mathbb{N}_{\geq 1}$, $a \neq 0$ beachte $: 0^0 = (0_{\mathbb{N}})^{0_{\mathbb{N}}}$ nicht definiert!

Recherregeln $\forall a, b \in \mathbb{K}, m, n \in \mathbb{Z}$ (sofern Potenz definiert)

Komplexe Zahlen (kurzer Überblick)

Problem: $x^2 = -1$ keine Lösung in $\mathbb{R} \Rightarrow$ Körpererweiterung $\mathbb{R} \to \mathbb{C}$

Betrachte Menge der komplexen Zahlen $\mathbb{C}:=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2$

mit Addition und Multiplikation:

$$(x, x') + (y, y') = (x + y, x' + y')$$

 $(x, x') \cdot (y, y') = (xy - x'y', xy' + x'y)$

 $\mathbb C$ ist ein Körper mit (vgl. lin Algebra):

$$0_{\mathbb{K}} = (0,0), \ 1_{\mathbb{K}} = (1,0), \ -(x,y) = (-x,-y) \text{ and } (x,y)^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)$$

mit imaginärer Einheit $\iota = (0,1)$

 $z=x+\iota y$ statt z=(x,y) mit $x:=\mathrm{Re}(z)$ Realteil von $z,\,y:=\mathrm{Im}(z)$ Imaginärteil von z komplexe Zahl $z=x+\iota y$ wird mit reeller Zahl $x\in\mathbb{R}$ identifiziert

offenbar $\iota^2=(-1,0)=-1$, d.h. $z=\iota\in\mathbb{C}$ und löst die Gleichung $z^2=-1$ (nicht eindeutig, auch $(-\iota)^2=-1$)

Betrag $|\cdot|: \mathbb{C} \to \mathbb{R}_{>0}$ mit $|z| := \sqrt{x^2 + y^2}$ (ist Betrag/Länge des Vektors (x, y)) es gilt:

- a) $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}, \operatorname{Im}(z) = \frac{z+\overline{z}}{2\iota}$
- b) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- c) $|z| = 0 \iff z = 0$
- d) $|\overline{z}| = |z|$
- e) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- f) $|z_1 + z_2| \le |z_1| + |z_2|$ (Dreiecks-Ungleichung: Mikoswski-Ungleichung)

Beweis

SeSt

Teil III

Metrische Räume und Konvergenz

Konvergenz: grundlegender Begriff in Analysis

Kapitel 7

Grundlegen Ungleichungen

Satz 7.1 (Geometrisches und arithmetisches Mittel)

Seien
$$x_1, \dots, x_n \in \mathbb{R}_{>0}$$

 $\Rightarrow \sqrt[n]{x_1, \dots, x_n} = \frac{x_1, \dots, x_n}{n}$
 $\Rightarrow geoemtrisches Mittel$ arithmetisches Mittel
Gleichheit $gdw \ x_1 = \dots = x_n$.

Beweis

Zeige zunächst mit vollständiger Induktion

$$\prod_{i=1}^{n} x_i = 1 \Rightarrow \sum_{i=1}^{n} x_i \ge n \tag{7.1}$$

Metrische Räume