AUTOMATIC DOOR LOCK SYSTEM

By Group 4
E/15/119
E/15/202
E/15/208

PROBLEM

- Unauthorized access to property
- Avoid entries behind others
- Maintain different security levels
- View entry details

SOLUTION

DATA FLOW AND INFRASTRUCTURE

Block Diagram

RFID reader

Web application

Highly secured places

Fingerprint sensor

Face recognition

NodeMCU

RFID Reader

LCD Module

Solenoid Door Lock

Failure Handling

- In case of network failure
 - 4MB storage provided by nodemcu
- In case of power failure
 - generator will be used to supply power

TECHNOLOGIES

Front-End Technology

ReactJS

- Use JavaScript
 - Fast and Responsive
- Virtual DOM
 - Enables the creation of fast, scalable web apps
- Component Creation
- Improve Code Stability With Tests
- Quickly Debug Faults

Back-End Technology

Firebase

- Realtime Database
 - NoSQL database
 - JSON structure
- Authentication
 - provides instant UI Libraries and SDKs
 - can integrate various sign-in techniques to allow user login
- Hosting
 - Fast, secure, static, and production-grade hosting

Sensors and Actuators

- Fingerprint Sensor
- PIR Sensors
- RFID Reader
- Solenoid Door Lock
- Raspberry-pi cam Module
- LCD Module

ESP8266 Module

- 3.3V power supply

Raspberry-pi Board

- 5V/2.5A DC input power

Solenoid Door Lock

- Operating voltage: 12VDC
- Draws 650 mA at 12V, 500 mA at 9V when activated

PIR Sensors

- Operating voltage range : DC 4.5-20V
- Output voltage: HIGH-3.3V/LOW 0V

Fingerprint Sensors(R307)

- Supply voltage: DC 4.2 ~ 6.0V
- Storage capacity: 1000 pieces

Design changes from proposal evaluation

- Raspberry-pi board instead of a NodeMCU for face recognition
 - Data processing is quick
- Raspberry pi cam module instead of a Webcam
 - High resolution
 - High sensitivity
- NodeMCU instead of Arduino board
 - NodeMCU has LAN facility with wireless connection
- Power adapter instead of Rechargeable Battery
 - Rechargeable batteries often become weak with the time

PROJECT DEMONSTRATION

Use 2 nodes —— RFID reader + PIR Sensors

Fingerprint sensor + Face recognition

- Prototype Structure
 - Two doors

Web Application

GUI Design

BUDGET

Required Items	Number of Items	Price(LKR)
Solenoid door lock	2	1900
Buzzer	2	100
NodeMCU	1	1000
Fingerprint sensor	1	2800
RFID module	1	560
Power adapter	1	400
PIR sensors	2	420
LCD display	2	600
Relay module	1	180
Total Cost		7960

TIMELINE

PROJECT COMBINATION

1. Embedded

- RFID
- Fingerprint Sensor
- PIR sensor
- Face Recognition

2. Network

 Data from sensors and controllers are sent to a centralized server using wifi module

3. Security

- Firebase authentication data is encrypted in transit
- HTTPS protocols used by firebase

4. Web Application

- When?
- Who?
- Where?
- Alert unauthorized access

5. Data structures

Considered in storing data in a database

THANK YOU!