基于逆序数理论的排序算法严谨分析(修正版)

符号表

本文采用以下数学符号和记号:

基本符号

- $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$: 正整数集
- R: 实数集
- $[n] = \{1, 2, ..., n\}$: 前 n 个正整数的集合
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$: 二项式系数
- |S|: 集合 S 的基数
- [x]: 不小于 x 的最小整数
- f(n) = O(g(n)): 大O记号,存在常数 c, n_0 使得 $f(n) \leq c \cdot g(n)$ 对所有 $n \geq n_0$ 成立
- $f(n) = \Theta(g(n))$: $f(n) = O(g(n)) \boxtimes g(n) = O(f(n))$
- $f(n) = \Omega(g(n))$:存在常数 c, n_0 使得 $f(n) \geq c \cdot g(n)$ 对所有 $n \geq n_0$ 成立

序列与置换

- X_n : n 元素序列空间
- $X = (x_1, x_2, ..., x_n)$: 长度为 n 的序列
- S_n : n 次对称群([n] 上的双射群)
- $\pi \in S_n$: 置换
- $e \in S_n$: 恒等置换
- $\pi \cdot X$: 置换 π 作用于序列 X
- $\tau_{i,j}$: 交换位置 i 和 j 的换位

逆序数相关

- inv(X) 或 I(X): 序列 X 的逆序数
- $d_{\tau}(X,Y)$: 序列 X 和 Y 之间的 Kendall au 距离
- invcross(L,R): 子序列 L 和 R 之间的跨逆序对数

算法复杂度

- T(X) 或 T(n): 算法的时间复杂度
- $T_{\text{comp}}(X)$: 比较次数
- $T_{\text{swap}}(X)$: 交换次数

• H(X): 序列 X 的排序信息复杂度

图论

• $\Gamma(G,S)$: 群G关于生成集S的 Cayley 图

• V, E: 图的顶点集和边集

• $d_G(u,v)$: 图 G 中顶点 u 和 v 的距离

1. 基本定义与记号

定义 1.1 (有限序列空间)设 $\mathbb{N}^+ = \{1, 2, 3, \ldots\}$,对于 $n \in \mathbb{N}^+$,定义 n 元素序列空间为:

$$X_n=\{X=(x_1,x_2,\ldots,x_n):x_i\in\mathbb{R},1\leq i\leq n\}$$

定义 1.2 (对称群)n 次对称群 S_n 是集合 $\{1,2,\ldots,n\}$ 上所有双射的集合,群运算为函数复合。

定义 1.3 (置换作用)对于 $\pi \in S_n$ 和 $X = (x_1, \ldots, x_n) \in X_n$,定义置换作用:

$$\pi \cdot X = (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$$

定义 1.4 (逆序数)对于序列 $X=(x_1,x_2,\ldots,x_n)\in X_n$,定义其逆序数为:

$$\operatorname{inv}(X) = |\{(i, j) : 1 \le i < j \le n \ \ \exists \ x_i > x_j\}|$$

示例:对于序列 [3,1,2],逆序对为 (1,2) (3>1) 和 (1,3) (3>2),因此 $\mathrm{inv}([3,1,2])=2$ 。

定义 1.5 (相邻换位)对于 $1 \leq i \leq n-1$,相邻换位 $au_{i,i+1} \in S_n$ 定义为:

$$au_{i,i+1} \cdot X = (x_1, \dots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \dots, x_n)$$

定义 1.6 (排序问题)给定序列 $X\in X_n$,排序问题是找到置换 $\pi^*\in S_n$ 使得:

$$\pi^* \in rg\min_{\pi \in S_n} \operatorname{inv}(\pi \cdot X)$$

当 X 的元素互不相等时,解唯一存在且 $\mathrm{inv}(\pi^*\cdot X)=0$ 。

2. 逆序数的基本性质

引理 2.1 (逆序数的界)对于任意 $X \in X_n$:

$$0 \leq \operatorname{inv}(X) \leq \binom{n}{2} = rac{n(n-1)}{2}$$

证明:下界显然,因为逆序对的个数非负。上界:总共有 $\binom{n}{2}$ 个位置对 (i,j) 满足 $1 \leq i < j \leq n$,当且仅当 $x_1 > x_2 > \cdots > x_n$ (严格递减)时达到上界。 \square

定理 2.2 (相邻换位的逆序数效应)设 $X' = \tau_{i,i+1} \cdot X$,则:

证明:相邻换位 $\tau_{i,i+1}$ 只影响涉及位置 i 和 i+1 的逆序对。具体分析:

设 $A = \{(j,k): 1 \leq j < k \leq n, (j,k) \neq (i,i+1), x_j > x_k\}$,这些逆序对不受交换影响。 对于位置对 (i,i+1):

- 若 $x_i > x_{i+1}$,则 (i, i+1) 在 X 中是逆序对,在 X' 中不是
- 若 $x_i < x_{i+1}$,则 (i, i+1) 在 X 中不是逆序对,在 X' 中是
- 若 $x_i = x_{i+1}$,则交换前后都不是逆序对

因此 $\operatorname{inv}(X') = |A| + \delta$,其中 δ 如定理所述。 \square

推论 2.3 任何单次相邻换位最多改变逆序数1个单位,这是所有可能交换中变化最小的。

定理 2.4 (Kendall au 距离)对于序列 $X,Y\in X_n$,定义Kendall au 距离:

$$d_{ au}(X,Y) = |\{(i,j): 1 \leq i < j \leq n \; extstyle \perp (x_i - x_j)(y_i - y_j) < 0\}|$$

则 (X_n, d_{τ}) 构成度量空间。

证明: 需验证度量公理:

- 1. 非负性: $d_{ au}(X,Y)\geq 0$,等号当且仅当 X 和 Y 具有相同的相对顺序
- 2. 对称性: $d_{ au}(X,Y)=d_{ au}(Y,X)$ 显然成立
- 3. 三角不等式:对任意 X,Y,Z,有 $d_{ au}(X,Z) \leq d_{ au}(X,Y) + d_{ au}(Y,Z)$

三角不等式的证明:对于位置对 (i,j),考虑 (x_i-x_j) , (y_i-y_j) , (z_i-z_j) 的符号。若 $(x_i-x_j)(z_i-z_j)<0$,则必有 $(x_i-x_j)(y_i-y_j)<0$ 或 $(y_i-y_j)(z_i-z_j)<0$ 中至少一个成立(否则三者符号关系矛盾)。 \square

3. 排序算法的收敛性理论

定义 3.1 (比较交换算法)比较交换排序算法是一个函数序列 $\{f_k\}_{k=0}^{\infty}$,其中每个 $f_k:X_n \to \{1,2,\ldots,n-1\} \cup \{\bot\}$,满足:

- 若 $f_k(X)=i
 eq ot$,则执行相邻换位 $au_{i,i+1}$
- 若 $f_k(X)=\perp$,则算法终止

定理 3.2 (收敛性定理)设算法 $\{f_k\}$ 满足改进条件:若 $\mathrm{inv}(X)>0$,则存在 i 使得 $f_k(X)=i$ 且 $x_i>x_{i+1}$ 。则算法必在有限步内收敛。

证明:设第k步后的序列为 $X^{(k)}$,逆序数为 $I_k=\operatorname{inv}(X^{(k)})$ 。

由改进条件和定理2.2,当 $I_k > 0$ 时,有 $I_{k+1} = I_k - 1 < I_k$ 。

序列 $\{I_k\}$ 满足:

- 1. $I_k \in \mathbb{N} \cup \{0\}$ (离散性)
- 2. $I_k > 0 \Rightarrow I_{k+1} < I_k$ (单调性)
- $3.I_k \geq 0$ (有界性)

由自然数的良序原理,严格单调递减的非负整数序列必在有限步内达到最小值0。当 $I_k=0$ 时,序列已排序,算法终止。 \square

定理 3.3 (最优性下界)任何基于相邻换位的排序算法至少需要 $\mathrm{inv}(X)$ 次交换。

证明:由定理2.2,每次相邻换位最多减少1个逆序数。初始逆序数为 $\mathrm{inv}(X)$,终止时逆序数为0,因此至少需要 $\mathrm{inv}(X)$ 次交换。 \square

4. 置换群的组合结构

定义 4.1 (Cayley图)相邻换位生成的Cayley图 $\Gamma(S_n,T)$ 定义为:

- 顶点集: V = S_n
- 边集: $E = \{(\pi, \pi\tau) : \pi \in S_n, \tau \in T\}$
- 生成集: $T = \{\tau_{i,i+1} : 1 \leq i \leq n-1\}$

定理 4.2 (连通性)Cayley图 $\Gamma(S_n,T)$ 是连通图。

证明:需证明相邻换位生成整个对称群 S_n 。

任意置换 $\pi \in S_n$ 可分解为不相交轮换的乘积。每个长度为 k 的轮换 $(a_1\ a_2\ \cdots\ a_k)$ 可表示为 k-1 个相邻换位的乘积:

$$(a_1\ a_2\ \cdots\ a_k) = au_{a_1,a_2} au_{a_2,a_3}\cdots au_{a_{k-1},a_k}$$

但这里需要将任意换位表示为相邻换位。实际上,任意换位 $au_{i,j}$ (i < j) 可表示为:

$$au_{i,j} = au_{i,i+1} au_{i+1,i+2} \cdots au_{j-1,j} au_{j-2,j-1} \cdots au_{i,i+1}$$

因此任意置换都可表示为相邻换位的乘积。□

例:对于 S_3 ,其Cayley图 $\Gamma(S_3,\{ au_{1,2}, au_{2,3}\})$ 的结构为:

- 顶点: {e, (12), (23), (13), (123), (132)}
- 从每个顶点出发有两条边,分别对应右乘 $au_{1,2}$ 和 $au_{2,3}$

• 图的直径为 $\binom{3}{2}=3$,对应完全逆序 (3,2,1) 到 (1,2,3) 的最短路径长度

定理 4.3 (测地距离)在Cayley图 $\Gamma(S_n,T)$ 中,从恒等置换 e 到置换 π 的测地距离等于 $\mathrm{inv}(\pi\cdot(1,2,\ldots,n))$ 。

证明:设 $X_0=(1,2,\ldots,n)$,则 $\pi\cdot X_0$ 的逆序数即为所需的最少相邻交换次数。由定理3.3,这也是测地距离的下界。构造性地,总可以通过恰好 $\operatorname{inv}(\pi\cdot X_0)$ 次相邻交换将 $\pi\cdot X_0$ 排序为 X_0 ,对应从 π 到 e 的路径。 \square

推论 4.4 (直径) Cayley图 $\Gamma(S_n,T)$ 的直径为 $\binom{n}{2}$ 。

5. 信息论分析

定义 5.1 (排序问题的信息复杂度)对于输入序列 X,其排序信息复杂度定义为:

$$H(X) = \lceil \log_2(\operatorname{inv}(X)!) \rceil$$

定理 5.2 (信息论下界)任何基于比较的排序算法在最坏情况下至少需要 H(X) 次比较。

证明:需要确定 inv(X) 个逆序对的正确顺序,这相当于在 inv(X)! 种可能的配置中确定正确的一种。 每次比较最多提供1比特信息,因此至少需要 $\lceil \log_2(inv(X)!) \rceil$ 次比较。 \square

定理 5.3 (Stirling近似下的渐近界) 当 $\operatorname{inv}(X) = \Theta(n^2)$ 时:

$$H(X) = \Theta(n^2 \log n)$$

证明: 使用Stirling公式 $\log(k!) = k \log k - k + O(\log k)$,得:

$$H(X) = \operatorname{inv}(X) \log(\operatorname{inv}(X)) - \operatorname{inv}(X) + O(\log(\operatorname{inv}(X)))$$

当 $\operatorname{inv}(X) = \Theta(n^2)$ 时,主导项为 $\Theta(n^2 \log n)$ 。 \square

6. 典型算法的严格分析

6.1 冒泡排序

算法描述:

BubbleSort(X):

for k from n-1 down to 1:

for i from 1 to k:

if X[i] > X[i+1]:

swap(X[i], X[i+1])

定理 6.1 (冒泡排序的交换复杂度)冒泡排序的交换次数恰好等于输入的逆序数:

$$T_{\text{swap}}(X) = \text{inv}(X)$$

证明: 算法只对满足 X[i] > X[i+1] 的相邻对执行交换。由定理2.2,每次交换使逆序数减少1。算法终止时逆序数为0,因此总交换次数等于初始逆序数。 \square

定理 6.2 (冒泡排序的比较复杂度)冒泡排序的比较次数为:

$$T_{ ext{comp}}(X) = inom{n}{2} = rac{n(n-1)}{2}$$

与输入无关。

证明:外层循环执行 n-1 次,第 k 次内层循环执行 k 次比较。总比较次数:

6.2 插入排序

算法描述:

```
InsertionSort(X):

for k from 2 to n:

j = k

while j > 1 and X[j-1] > X[j]:

swap(X[j-1], X[j])

j = j - 1
```

定理 6.3 (插入排序的复杂度) 插入排序的时间复杂度为:

$$T(X) = n - 1 + \mathrm{inv}(X)$$

其中n-1是比较次数的下界,inv(X)是交换次数。

证明: 处理第 k 个元素时:

- 比较次数: $1 + |\{j : j < k, X[j] > X[k]\}|$
- 交换次数: $|\{j: j < k, X[j] > X[k]\}|$

总交换次数 = $\sum_{k=2}^{n} |\{j: j < k, X[j] > X[k]\}| = \operatorname{inv}(X)$

总比较次数 = $\sum_{k=2}^n (1 + |\{j: j < k, X[j] > X[k]\}|) = (n-1) + \mathrm{inv}(X)$ \square

6.3 归并排序

定理 6.4 (归并排序的逆序数分解) 对于序列 $X = L \oplus R$ (左右子序列的连接),有:

$$inv(X) = inv(L) + inv(R) + invcross(L, R)$$

其中 $invcross(L, R) = |\{(i, j) : i \in L, j \in R, x_i > x_j\}|_{\circ}$

定理 6.5 (归并排序的时间复杂度) 归并排序的时间复杂度为:

$$T(n) = \Theta(n \log n)$$

与输入的逆序数分布无关。

证明:递推关系 $T(n)=2T(n/2)+\Theta(n)$,由主定理得 $T(n)=\Theta(n\log n)$ 。 \square

6.4 选择排序

算法描述:

SelectionSort(X):

for k from 1 to n-1:

min_idx = k

for j from k+1 to n:

if X[j] < X[min_idx]:

min_idx = j

swap(X[k], X[min_idx])

定理 6.6 (选择排序的非自适应性)选择排序的时间复杂度为: $T(X) = \Theta(n^2)$,与输入序列的逆序数无关。

证明: 算法的两层循环结构决定了:

- 外层循环执行 n-1 次
- 第 k 次外层循环时,内层循环执行 n-k 次比较

总比较次数:

$$\sum_{k=1}^{n-1} (n-k) = \sum_{i=1}^{n-1} i = rac{n(n-1)}{2} = \Theta(n^2)$$

选择排序每轮都必须扫描剩余元素找到最小值,无法利用输入的有序性,因此是完全非自适应的。□

定理 6.7 (选择排序的逆序数效应)选择排序第 k 轮将最小元素 x 交换到位置 k 时,消除的逆序数为: $\Delta I_k = |\{j: j>k, X[j] < x\}|$

该式理论上表示若将最小元素 x 移动到位置 k 所消除的逆序数,但由于 x 是最小值,右侧没有更小的元素,故实际值为0。选择排序的交换操作不直接反映逆序数的减少,其非自适应性正在于此。 \square

6.5 快速排序

算法描述:

```
QuickSort(X, low, high):
if low < high:
pivot_pos = Partition(X, low, high)
QuickSort(X, low, pivot_pos - 1)
QuickSort(X, pivot_pos + 1, high)

Partition(X, low, high):
pivot = X[high]
i = low - 1
for j from low to high - 1:
if X[j] <= pivot: // 修正: 使用j而非i
i = i + 1
swap(X[i], X[j])
swap(X[i], X[j])
swap(X[i+1], X[high])
return i + 1
```

定理 6.8 (快速排序的期望复杂度) 在随机选择主元的情况下,快速排序的期望时间复杂度为:

$$E[T(X)] = \Theta(n \log n)$$

定理 6.9 (快速排序与逆序数的关系)快速排序的性能与输入的逆序数分布存在复杂关系:

1. **最好情况**: 当每次分割都接近均匀时, $T(X) = \Theta(n \log n)$

2. **最坏情况**:当输入已排序或逆序时, $T(X)=\Theta(n^2)$

3. **平均情况**: 主元选择的随机性使得期望复杂度为 $\Theta(n \log n)$

证明框架:

• 最好情况:每次分割将问题规模减半,递推关系 $T(n)=2T(n/2)+\Theta(n)$

• 最坏情况:每次分割极不均匀,递推关系 $T(n)=T(n-1)+\Theta(n)$,解得 $T(n)=\Theta(n^2)$

• 平均情况:需要分析所有可能分割的概率分布,通过概率论方法可证明期望复杂度为 $\Theta(n \log n)$ \square

注记:虽然快速排序不是直接的逆序数自适应算法,但其性能确实受到输入数据分布的影响。在某些特殊的逆序数分布下(如接近有序),快速排序可能表现较差。

7. 复杂度比较与最优性

定理 7.1 (算法复杂度比较) 各算法的复杂度总结:

算法	时间复杂度	空间复杂度	稳定性	自适应性
冒泡排序	$O(n^2)$	O(1)	稳定	部分自适应
插入排序	$O(n+\mathrm{inv}(X))$	O(1)	稳定	完全自适应
选择排序	$\Theta(n^2)$	O(1)	不稳定	非自适应
归并排序	$\Theta(n \log n)$	O(n)	稳定	非自适应
快速排序	期望 $O(n\log n)$,最坏 $O(n^2)$	期望 $O(\log n)$,最坏 $O(n)$	不稳定	间接相关

注: 快速排序的空间复杂度主要指递归栈深度。

定理 7.2 (最优性定理) 在基于比较的排序算法中:

- 1. 最坏情况下界: $\Omega(n \log n)$
- 2. 插入排序在 $\operatorname{inv}(X) = O(n)$ 时达到 O(n) 最优复杂度
- 3. 归并排序在最坏情况下达到渐近最优

证明:

- 1. 信息论下界:排序 n 个不同元素需要区分 n! 种排列,每次比较提供最多1比特信息,因此至少需要 $\lceil \log_2(n!) \rceil = \Omega(n \log n)$ 次比较。
- 2. 当输入接近有序时($\mathrm{inv}(X)=O(n)$),插入排序的复杂度为 $O(n+\mathrm{inv}(X))=O(n)$,达到线性最优。
- 3. 归并排序在任何输入下都保持 $\Theta(n \log n)$,匹配最坏情况下界。

8. 进阶理论分析

8.1 逆序数的概率分布

定理 8.1 (随机序列的逆序数期望)对于随机排列 $\pi \in S_n$,其逆序数的期望值为: $E[\operatorname{inv}(\pi)] = \frac{n(n-1)}{4}$

证明:对于任意位置对 (i,j),i< j,有 $P(x_i>x_j)=\frac{1}{2}$ (假设元素值连续且无重复)。因此: $E[\mathrm{inv}(\pi)]=\sum_{1\le i\le j\le n}P(x_i>x_j)=\binom{n}{2}\cdot\frac{1}{2}=\frac{n(n-1)}{4}$ \square

定理 8.2 (逆序数的方差)随机排列的逆序数方差为: $\mathrm{Var}[\mathrm{inv}(\pi)] = \frac{n(n-1)(2n+5)}{72}$

8.2 平均情况复杂度

推论 8.3 (平均复杂度) 各算法在随机输入下的平均时间复杂度:

• 冒泡排序: $E[T] = \frac{n(n-1)}{4} + \frac{n(n-1)}{2} = \frac{3n(n-1)}{4} = \Theta(n^2)$

• 插入排序: $E[T] = (n-1) + \frac{n(n-1)}{4} = \frac{n(n+3)}{4} - 1 = \Theta(n^2)$

• 归并排序: $E[T] = \Theta(n \log n)$ (与输入无关)

8.3 自适应性的定量分析

定义 8.1 (自适应比)算法 A 的自适应比定义为: $ho_A = \max_{X \in X_n} rac{T_A(X)}{T_A^{
ho t}(X)}$

其中 $T_A^{\text{opt}}(X)$ 是算法A在输入X上的理论最优复杂度。

定理8.4 (自适应比分析)

- 插入排序: $\rho_{\text{ins}} = 1$ (完全自适应)
- 冒泡排序: $ho_{
 m bubble}=rac{n-1}{{
 m inv}(X)}+1$ (部分自适应)
- 选择排序: $\rho_{\text{select}} = \infty$ (非自适应)

9. 实际应用与优化策略

9.1 混合排序算法

算法 9.1 (Introsort策略)

```
IntroSort(X, depth_limit):

if |X| <= INSERTION_THRESHOLD:

InsertionSort(X)

elif depth_limit == 0:

HeapSort(X)

else:

pivot_pos = Partition(X)

IntroSort(X[1:pivot_pos-1], depth_limit - 1)

IntroSort(X[pivot_pos+1:|X|], depth_limit - 1)
```

其中(INSERTION_THRESHOLD≈16), (depth_limit = 2Llog₂ n])。

定理 9.1 Introsort 的时间复杂度为 $O(n \log n)$,结合了快速排序的平均性能和堆排序的最坏情况保证。

9.2 并行排序算法

定理 9.2 (并行归并排序)在 p 处理器的并行模型下,归并排序的时间复杂度为: $T_p(n) = O\left(\frac{n\log n}{p} + \log n\right)$

证明框架:

- ullet 分治阶段可以完全并行化,深度仍为 $O(\log n)$
- 每层的工作量 O(n) 可在 p 个处理器间均匀分配
- 诵信开销主要在合并阶段

结论

本文基于逆序数理论对经典排序算法进行了严谨的数学分析,建立了统一的理论框架,给出了各主要算法的精确复杂度界,并通过 Cayley 图理论提供了排序问题的几何直观。逆序数作为衡量序列"无序程

度"的核心指标,为理解和优化排序算法提供了深刻的数学基础。

参考文献

- [1] Knuth, D. E. *The Art of Computer Programming, Volume 3: Sorting and Searching*. 2nd Edition, Addison-Wesley, 1998.
- [2] Sedgewick, R. *Algorithms in C++: Fundamentals, Data Structures, Sorting, Searching*. 3rd Edition, Addison-Wesley, 2001.
- [3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. *Introduction to Algorithms*. 3rd Edition, MIT Press, 2009.