COMS 4771 Homework 1

Rui Ding (rd2622), Xiaochun Ma (xm2203), Seungmin Lee (sl3254) Sep $25,\,2017$

1 Problem 1

1.1 (i)

$$p(x|\theta) = \theta e^{-\theta x}$$
 for $x >= 0$

Given n iid observations x_1 to x_n , the Likelihood function:

$$L(\theta|x_1, x_2...x_n) = p(x_1|\theta)p(x_2|\theta)....p(x_n|\theta)$$

$$L = \theta^n e^{-\theta(\sum x_i)}$$

The log likelikhood is l = log L:

$$l = nlog(\theta) - \theta(\sum x_i)$$

We want to choose a $\hat{\theta}$ such that l is maximized. First order condition:

$$\frac{dl}{d\theta} = 0$$

$$\frac{n}{\hat{\theta}} - \sum x_i = 0$$

$$\hat{\theta} = \frac{n}{\sum x_i}$$

This gives the MLE of θ .

1.2 (ii)

$$p(x|\theta) = \frac{1}{\theta}$$
 for $0 <= x <= \theta$

Given n iid observations x_1 to x_n , the Likelihood function:

$$L(\theta|x_1, x_2...x_n) = p(x_1|\theta)p(x_2|\theta)....p(x_n|\theta)$$

Under the condition that all x_i are in $[0, \theta]$:

$$L = \frac{1}{\theta^n}$$

Otherwise this would just be zero due to the probability distribution. This condition is met when $\theta >= max(x_i)$ assuming all x_i positive. (Otherwise any parameter will return a likelihood of zero due to the negative observation.) Under the condition that $\theta >= max(x_i)$, $L(x|\theta) = \frac{1}{\theta^n} <= \frac{1}{max(x_i)^n}$. The MLE is the $\hat{\theta}$ that maximizes L. So $\hat{\theta} = max(x_i)$ is the MLE of θ .

1.3 (iii)

 $p(x|\mu,\sigma^2)$ is given for all x.

Given n iid observations x_1 to x_n , the Likelihood function:

$$L(\mu, \sigma^2 | x_1, x_2...x_n) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{\sum (x_i - \mu)^2}{2\sigma^2}}$$

The log likelikhood is l = log L:

$$l = -\frac{n}{2}(log(2\pi) + log(\sigma^2)) - \frac{\sum (x_i - \mu)^2}{2\sigma^2}$$

Since μ is unknown, we need to estimate as well. We want to choose a $\hat{\sigma}^2$ and a $\hat{\mu}$ such that l is maximized. First order condition:

$$\frac{dl}{d\sigma^2} = 0$$

$$\frac{dl}{d\mu} = 0$$

$$\hat{\mu} = \frac{\sum x_i}{n} = \bar{x}$$

$$-\frac{n}{2\hat{\sigma}^2} + \frac{\sum (x_i - \mu)^2}{2\hat{\sigma}^2^2} = 0$$

$$\hat{\sigma}^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$

This gives the MLE of σ^2 , next we find its expectation, utilizing iid assumption:

$$E[\hat{\sigma^2}] = E[(x_i - \bar{x})^2] = E[x_i^2 + \bar{x}^2 - 2x_i\bar{x}] = Var(x_i) + E[x_i]^2 + Var(\bar{x}) + E[\bar{x}]^2 - 2E[x_i]E[\bar{x}]$$
$$E[\hat{\sigma^2}] = \sigma^2 + \mu^2 + \frac{\sigma^2}{n} + \mu^2 - 2\mu^2 = (1 + \frac{1}{n})\sigma^2$$

This result suggests that $\hat{\sigma^2}$ is a biased estimator of σ^2 .

A modification to make the MLE consistent would be to know the mean μ ahead of time, which would be normalizing your dataset and have a mean zero.

1.4 (iv)

 $\hat{\theta}$ is the MLE for θ , so given x_i data points, it is the most likely θ associated with the observations' underlying distribution. It maximizes:

$$L(\theta|x_1,x_2,...,x_n)$$

Since $g(\theta)$ is a well-formed function of θ , by definition the induced likelihood of $\gamma = g(\theta)$ is:

$$L^{\star}(\gamma|x_1, x_2, ..., x_n) = \sup_{\gamma = q(\theta)} L(\theta|x_1, x_2, ..., x_n)$$

This suprema is taken when $\hat{\theta}$ satisfies $\hat{\gamma} = g(\hat{\theta})$. Then the maximized induced likelihood is:

$$L^{\star}(\hat{\gamma}|x_1, x_2, ..., x_n) = L(\hat{\theta}|x_1, x_2, ..., x_n)$$

This shows that $\hat{\gamma}_{mle} = g(\hat{\theta}_{mle})$ Therefore, in (iii) we have $\hat{\sigma^2} = \frac{\sum (x_i - \bar{x})^2}{n}$, applying function $\hat{\sigma} = \sqrt{\hat{\sigma^2}}$, we get $\hat{\sigma} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$, which is the MLE of the standard deviation.

2 Problem 2

2.1 (i)

Given this is a binary classification: Error rate $E = P[f_t(X) = y_1, Y = y_2] + P[f_t(X) = y_2, Y = y_1] = P[X > t, Y = y_2] + P[X <= t, Y = y_1]$

2.2 (ii)

At any threshold t, we can compute

$$\frac{dE}{dt} = P[X = t, Y = y_1] - P[X = t, Y = y_2]$$

(since $\frac{d}{dt}P[X \le t] = P[X = t]$) Therefore if $\frac{dE}{dt}$ is not zero, then there is a modification we can make to t such that this reduces the error rate E. Thus, the minimized error rate appears at a optimal threshold value t which satisfies:

$$P[X = t, Y = y_1] = P[X = t, Y = y_2]$$

$$P[X = t|Y = y_1]P[Y = y_1] = P[X = t|Y = y_2]P[Y = y_2]$$

2.3 (iii)

First calculate Error Rate when given the distributions $P[X|Y=y_1]$, $P[X|Y=y_2]$ are two gaussians, and that $P[Y=y_1]=P[Y=y_2]=\frac{1}{2}$. We write the first condition as:

$$P[X \le t | Y = y_1] = \Phi_1(t), P[X \le t | Y = y_2] = \Phi_2(t)$$

So error rate E(as a function of t) is:

$$E(t) = \frac{1}{2}(1 - \Phi_2(t)) + \frac{1}{2}\Phi_1(t)$$

Now consider a Naive Bayes classifier on this binary classification problem. We write the pdf of $X|Y=y_1$ as $g_1(X)$ and pdf of $X|Y=y_2$ as $g_2(X)$. Bayes Error $=P[Y=y_2,g_1(X)>g_2(X)]+P[Y=y_1,g_2(X)>g_1(X)]$, which is an averaged probability for all the observations (x,y) Considering the fact that at a given x, either $P[g_1(x)>g_2(x)]=1$ or $P[g_2(x)>g_1(x)]=1$, so the Bayes error for each case is : $P[Y=y_2|g_1(X)>g_2(X)]$ or $P[Y=y_1|g_2(x)>g_1(x)]$, which by the contruction of naive Bayes, we know are both smaller than 0.5. Therefore a weighted average of such Bayes error rates over all n observations is smaller than 0.5.

$$BE < \frac{1}{2}$$

To achieve this rate BE using our threshold classifier $f_t(X)$, we would need:

$$\frac{1}{2}(1 - \Phi_2(t)) + \frac{1}{2}\Phi_1(t) = BE < \frac{1}{2}$$

In a setting such that the gaussian distribution $g_2(x)$ at a far left side of the real line and $g_1(x)$ is at a far right side (so they basically does not intersect), we can easily achieve E(t) = BE by picking some value t in the far left side such that $\frac{1}{2}(1 - \Phi_2(t)) \approx BE$ while $\Phi_1(t) \approx 0$.

On the other hand, if we switch the position of these two guassians, than E(t) would be always greater than $\frac{1}{2}$, thus failing to achieve BE.

3 Problem 3

$3.1 \quad (i)$

Notice that given a state x, f(x) is a random variable denoting the choice to be made. We have: $E[R(X, f(X))] = \int E[R(x, f(x))]p(x)dx$ For every given x, expectation is a weighted average over all possible choices of actions a, where is reward is R(x,a): $E[R(x,f(x))] = \sum R(x,a)p(a|x)$

$$E[R(X, f(X))] = \int (\sum R(x, a)p(a|x))p(x)dx$$

3.2 (ii)

Notice that $\sum p(a|x) = 1$ for any given x. For any x, there must be a maximum reward in that state, call it $R^*(x)$, such that: $R(x,a) <= R^*(x)$ for all a in A, and the equality is taken with some optimal action $a = \hat{a}$ Therefore:

$$E[R(X, f(X))] = \int (\sum R(x, a)p(a|x))p(x)dx <= \int R^{\star}(x)(\sum p(a|x))p(x)dx = \int R^{\star}(x)p(x)dx$$

This maximum expected reward is achieved only by selecting the optimal action \hat{a} in every state x.

3.3 (iii)

No. In a suboptimal rule where the best choice \hat{a} in a state x is not chosen, then among the remaining choices there will be a choice that returns a second largest reward R_2 . Then by randomizing between the remaining choices, the expected reward will not exceed this R_2 values. Thus, if in a suboptimal situation, randomizing will not give you higher benefit/reward than deterministically choosing the second optimal action.

4 Problem 4

4.1 (i)

First prove that f has a bounded second derivative. For any x in R, let it be in between a infinitely small interval [a,b]. We know that for some z in [a,b] and a fixed number L:

$$|f'(a) - f'(b)| = |f''(z)(a - b)| \le L|a - b|$$

In the limit that a-¿b, —f"(z)— = —f"(x)—;=L. Now consider $x - \hat{n}f'(x)$, $f(\hat{x}) = f(x) - f'(x)nf'(x) + \frac{1}{2}f''(z)n^2f'(x)^2$ for some z in between x and \hat{x} .

$$f(x) - f(\hat{x}) = nf'(x)^2 - \frac{1}{2}f''(z)n^2f'(x)^2 > = (n - \frac{L}{2}n^2)f'(x)^2$$

The result uses Taylor reminder theorem and the fact that f" is bounded by L. If we choose $0 < n < \frac{2}{L}$, then $f(x) - f(\hat{x}) > 0$ is guaranteed. In particular, if $n = \frac{1}{L}$, then this difference is a maximal decrease. This equality is taken only when f'(x) = 0.

4.2 (ii)

Pseudocode to return minimum value: start at some $x = x_0$, given the functional form of f, f', f" as input. While $f'(x) \neq 0$: $L = |f''(x)| \ n = \frac{1}{L} \ x = x - nf'(x)$ return f(x)

4.3 (iii)

See attached python code. The result for the given function is: Minimum of f appears at x = 1.25175793139, the minimum values is f(x) = 6.55283446767 First derivative at minimum point: 0.0

5 Problem 6

5.1 (i)

From the definition of f, we can see that it is essentially:

$$f = \sum_{k=1,2,\dots,10} \sum_{y_i=k} \sum_{d} -\frac{(x_d^i - \theta_k)^2}{2}$$

For all k = 1, 2, ..., 10:

$$\frac{\partial}{\partial \theta_k} f = \sum_{y_i = k} (\sum_d x_d^i - D\theta_k)$$

The gradient vector would just be:

$$\nabla_{\theta}f = (\frac{\partial}{\partial \theta_1}f, \frac{\partial}{\partial \theta_2}f,, \frac{\partial}{\partial \theta_{10}}f)$$

where all partial derivatives take the form above.

5.2 (ii)

5.3 (iii)

Given a particular sample (x_i, y_i) , let $k_i = y_i$

$$f_i = \sum_{d} -\frac{(x_d^i - \theta_{k_i})^2}{2}$$

The first partial derivatives of f_i are all zero except:

$$\frac{\partial}{\partial \theta_{k_i}} f_i = \sum_{d} x_d^i - D\theta_{k_i}$$

Therefore the gradient of f_i has only one nonzero entry at the k_i th index with value shown above.

6 Problem 7

6.1 (i)

See python code. The hyperparameter K is maximum depth of the tree.

6.2 (ii)

The plots are shown in the next section. Random shuffle of the entire dataset at the beginning ensures random split.

6.3 (iii)

The general trend is alike, with the training error decreasing almost linearly with the increasing depth of the decision tree. The test error decreases first and reaches a minimum error rate at some depth then turns upward. For three splitting between the training data and the test data using ratios 9:1,8:2,7:3, we find that the maximal depth is around 8 to 9, where the test error reaches a minimum value. The 9:1 split has a higher test error rate and it returns an optimal depth of 9 while the other two returns 8. The 7:3 split has the smoothest curve showing a clear minimal error rate at depth 8.

6.4 (iv)

The difference in training error and test error behavior with tree depth K is explained by the concept of overfitting. At the beginning as we increase K the model gets better so both errors should decrease. While the training error will necessarily decrease with K since we constructed the decision tree based on training data, the test error will reach a minimum value and no longer decrease. Because as K gets large, our model is too specified and may overfit the training data and perform less well against generalizations.

$6.5 \quad (v)$

As shown before in section (iii), the error convergence tests show that a good max tree depth K is about 8.