Hints / Solutions to Exercise sheet 2

Curves and Surfaces, MTH201

```
Question 1: For \mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2 and \mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2, show that (\mathbf{v}(t).\mathbf{w}(t))' =
\mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t).
Solution 1:
\mathbf{v}(t) = (v_1(t), v_2(t))
\mathbf{w}(t) = (w_1(t), w_2(t))
\mathbf{v}(t).\mathbf{w}(t) = v_1(t)w_1(t) + v_2(t)w_2(t)
(\mathbf{v}(t).\mathbf{w}(t))' = (v_1(t)w_1(t))' + (v_2(t)w_2(t))' (by definition of differentiating a
function to \mathbb{R}^2)
(\mathbf{v}(t).\mathbf{w}(t))' = v_1'(t)w_1(t) + v_1(t)w_1'(t) + v_2'(t)w_2(t) + v_2(t)w_2(t)'
Rearranging,
(\mathbf{v}(t).\mathbf{w}(t))' = (v_1'(t)w_1(t) + v_2'(t)w_2(t)) + (v_1(t)w_1'(t) + v_2(t)w_2(t)')
(\mathbf{v}(t).\mathbf{w}(t))' = (v_1'(t), v_2'(t)).(w_1(t), w_2(t)) + (v_1(t), v_2(t)).(w_1'(t).w_2(t)')
(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)
```

Question 2: If $\mathbf{n}:(\alpha,\beta)\to\mathbf{R}^2$ is such that $||\mathbf{n}(t)||$ is constant, then prove that $\dot{\mathbf{n}}(t)$ is either 0 or perpendicular to $\mathbf{n}(t)$.

Solution 2:

This question just generalizes what was seen n(t).n(t) = CDifferentiating,

$$\dot{n}(t).n(t) + n(t).\dot{n}(t) = 0$$

so, $2\dot{n}(t).n(t) = 0$
so, $\dot{n}(t).n(t) = 0$

Question 3: if we denote,

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| du$$
$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| du$$

prove that $s_{\beta}(t) - s_{\alpha}(t)$ is a constant (assume that $t_{\alpha} < t_{\beta}$).

Solution 3:

This exercise is just saying that if you start measuring the distance traced out by your parametrization at time t_{β} rather than time t_{α} , you only need to add the distance covered from time t_{α} to time t_{β} We use the rule that,

$$\int_{a}^{c} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt$$

and therefore,

$$\int_{c}^{c} f(t)dt - \int_{b}^{c} f(t)dt = \int_{c}^{b} f(t)dt$$

So,

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| du$$
$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| du$$

$$s_{\beta}(t) - s_{\alpha}(t) = \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| du - \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| du = \int_{t_{\alpha}}^{t_{\beta}} ||\dot{\gamma}(u)|| du$$

But the last integral is just a real number and does not depend on t so it is constant with respect to t.

Question 4: If $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth **and regular** parametrization, then show that $||\dot{\gamma}(t)||:(\alpha,\beta)\to\mathbb{R}$ is smooth.

Solution 4

We actually need to assume that γ is regular. Let $\gamma(t)=(x(t).y(t)).$

$$\begin{split} \dot{\gamma}(t) &= (\dot{x}(t).\dot{y}(t)).\\ \|\dot{\gamma}(t)\| &= \sqrt{\dot{x}^2(t) + \dot{y}^2(t)}. \end{split}$$

x(t) and y(t) are smooth because that is the meaning of $\gamma(t)$ being smooth. Of course, even their derivatives are smooth, so $\dot{x}(t)$ and $\dot{y}(t)$ are smooth.

The squares of smooth functions are smooth, so $\dot{x}^2(t)$ and $\dot{y}^2(t)$ are smooth.

The sum of smooth functions is smooth, so $\dot{x}^2(t) + \dot{y}^2(t)$ is smooth.

We need to be careful about the square root function. Whenever x > 0, then if,

$$f(x) = \sqrt{x}$$

usin the rule for differentiating anything of the form x^n (in this case $x^{1/2}$),

$$f'(x) = \frac{1}{2\sqrt{x}}$$

Note that at x=0, this is undefined, and indeed it is not differentiable at x=0. So we need to ensure that we are taking the square root of something which is strictly positive. But $\dot{x}^2(t)+\dot{y}^2(t)>0$ except when $\dot{x}(t)$ and $\dot{y}(t)$ are both 0, in which case $\dot{\gamma}(t)=0$ for that t, but that cannot happen with a regular parametrization.