МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра програмних систем і технологій

Дисципліна

«Ймовірнісні основи програмної інженерії»

Звіт з лабораторної роботи № 5

на тему:

«Дискретні розподіли ймовірностей»

Виконала:	Дрозд Єлизавета Андріївна	Перевірила:	Марцафей А. С.
Група	ΙΠ3-12(2)	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

Мета роботи:

Навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Постановка задачі:

- 1. Аналітичним шляхом розв'язати вказані задачі.
- 1. Ймовірність знаходження в кожному прибулому потязі вагонів на дане призначення 0,2. Визначити ймовірність того, що в трьох із п'яти потягів, які прибувають протягом однієї години, будуть вагони на дане призначення.
- 2. Знайти ймовірність того, що в п'яти незалежних випробуваннях подія А відбудеться: а) рівно 4 рази; б) не менше 4 разів, якщо в кожному випробуванні ймовірність появи події становить 0,8.
- 3. На кондитерській фабриці 20% всіх цукерок складають льодяники. Знайти ймовірність того, що серед 400 вибраних навмання цукерок буде рівно 80 льодяників.
- 4. На автомобільному заводі у звичному режимі роботи з конвеєра сходить 100000 автомобілів. Ймовірність бракованого автомобіля дорівнює 0,0001. Знайти ймовірність того, що з конвеєра зійшло 5 бракованих автомобілів.
- 5. Ймовірність того, що пара взуття, яка взята навмання з виготовленої партії виявиться вищого гатунку дорівнює 0,4. Чому дорівнює ймовірність того, що серед 600 пар, які поступили на контроль, виявиться від 228 до 252 пар взуття вищого гатунку?
- 6. Банк обслуговує 100 клієнтів, від кожного з яких може надійти вимога на проведення фінансової операції на наступний день з ймовірністю 0,4. Знайти найімовірніше число вимог клієнтів кожного дня, та його ймовірність.
- 7. Завод випускає в середньому 4% нестандартних виробів. Яка ймовірність того, що число нестандартних виробів у партії з 4000 штук не більше 170?.
- 8. Яка ймовірність того, що при 10000 незалежних киданнях монети герб випаде 5000 разів?
- 9. Фірма відправила на базу 1000 якісних виробів. Ймовірність того, що вироби в дорозі пошкодяться дорівнює 0,002. Знайти ймовірність того, що на базу прибуде 5 пошкоджених виробів.
- 10. Нехай ймовірність того, що грошовий приймальник автомату при опусканні монети скидає неправильно дорівнює 0,03. Знайти найімовірніше число випадків правильної роботи автомату, якщо буде кинуто 150 монет.
 - 2. Написати програму, яка, використовуючи відомі формули теорії ймовірності(запрограмувати вручну) розв'яже задачі приведені у п.1.
 - 3. Порівняти результати обчислень, зробити висновки.

Побудова математичної моделі:

Формули, які були використані для розв'язання даних задач:

1.3.2. Формула Бернуллі

Теорема 1. Ймовірність того, що в n повторних незалежних випробуваннях, в кожному з яких ймовірність появи випадкової події A рівна p (0 < p < 1), дана подія відбудеться рівно m разів знаходиться за формулою Бернуллі:

$$P_n(m) = C_n^m p^m q^{n-m} (1.3.1.)$$

де q = 1 - p – ймовірність не появи події A в кожному випробуванні.

Зауваження 1. Ймовірність появи події A в n випробуваннях схеми Бернуллі менше m разів знаходять за формулою

$$P_n(k < m) = P_n(0) + P_n(1) + ... + P_n(m-1).$$

Ймовірність появи події A не менше m разів можна знайти за формулою

$$P_n(k \ge m) = P_n(m) + P_n(m+1) + ... + P_n(n).$$

або за формулою

$$P_n(k \ge m) = 1 - \sum_{k=0}^{m-1} P_n(k).$$

Ймовірність появи події A хоча б один раз у n випробуваннях доцільно знаходити за формулою

$$P_{n}(1 \le m \le n) = 1 - q^{n}$$
.

1.3.3. Локальна теорема Муавра-Лапласа

Якщо число випробувань n достатньо велике і ймовірність появи A в кожному випробуванні не мала $p \in (0,1)$, а число npq > 10, то використовують теореми Муавра-Лапласа, які дають добре наближення при n > 40. Коли треба більш висока точність, то дані теореми використовують для $n \ge 100$.

Локальна теорема Муавра-Лапласа. Якщо ймовірність p появи події A в кожному випробуванні постійна і відмінна від нуля і одиниці $(0 , то ймовірність <math>P_n(m)$ того, що подія A з'явиться в n випробуваннях рівно m разів, приблизно дорівнює значенню функції

$$P_{n}(m) = \frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} e^{\frac{x^{2}}{2}} = \frac{1}{\sqrt{npq}} \varphi(x_{m})$$
 (1.3.5.)

Де
$$x_m = \frac{m - np}{\sqrt{npq}}$$
.

Функція $\varphi(x_m) = \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}}$ - це функція Гауса, значення якої занесені в таблиці

(дод. А) і вона має такі властивості:

- а) $\varphi(x)$ визначена на всій числовій осі; б) $\varphi(x)$ парна, $\varphi(-x) = \varphi(x)$;
- в) $\varphi(x)$ спадає при x>0;

г) $\varphi(x)=0,0001$ при $x \ge 4$.

1.3.4. Інтегральна теорема Муавра-Лапласа

Теорема 2. Якщо ймовірність p появи події A в кожному випробуванні постійна і відмінна від нуля і одиниці $(0 , то ймовірність <math>P_n(m_1 \le m \le m_2)$ того, що подія A з'явиться в n випробуваннях від m_1 до m_2 разів, приблизно рівна визначеному інтегралу

$$P_n(m_1 \le m \le m_2) \approx \frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{z^2}{2}} dz = \Phi(x_2) - \Phi(x_1), \qquad (1.3.6.)$$

Де
$$x_1 = \frac{m_1 - np}{\sqrt{npq}}$$
, $x_2 = \frac{m_2 - np}{\sqrt{npq}}$

 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{z^{2}}{2}} dz$ - функція Лапласа, значення якої занесені в таблиці

(дод. В) і має такі властивості:

- а) $\Phi(x)$ визначена на всій числовій осі;
- б) $\Phi(x)$ непарна $\Phi(-x)$ = - $\Phi(x)$;
- в) $\varphi(x)$ зростає при x>0 до 0,5 і спадає при x<0 до -0,5;
- г) для x>5 $\Phi(x)\approx0.5$; для x<-5 $\Phi(x)\approx-0.5$.

1.3.5. Теорема Пуассона

Якщо n достатньо велике, а ймовірність події настільки мала, що число np невелике (звичайно $p \le 0, 1$; $npq \le 10$), тобто для подій, що рідко трапляються, використовують асимптотичну формулу Пуассона.

Теорема 3. Якщо ймовірність p появи поді A в кожному випробуванні при необмеженому збільшенні числа випробувань n змінюється таким чином, що при $np=\lambda$, $\lambda=$ const, то ймовірність того, що деяка подія A з'явиться m разів в n випробуваннях обчислюється за формулою

$$P_{n}(m) = \frac{\lambda^{m}}{m!} e^{-\lambda} \tag{1.3.7.}$$

Для використання формули Пуассона немає необхідності знати окремо числа n і p, а лише їх добуток $\lambda = np$.

66

1.3.6. Найімовірніше число появ випадкової події

Означення 4. Число m_0 , при якому при заданому п відповідає максимальна біноміальна ймовірність $P_n(m_0)$, називається найімовірнішим числом появи події A.

Найімовірніше число m_0 задовольняє системі нерівностей:

$$np - q \le m_0 \le np + p$$
 and $(n+1)p - 1 \le m_0 \le (n+1)p$ (1.3.8.)

якщо np-q - неціле, то є одне значення m_0 , якщо np-q - ціле, то таких

67

значень ϵ два, які будуть відрізнятися між собою на 1:

$$m_1 = (n+1)p-1$$
 Ta $m_2 = (n+1)p$.

Псевдокод алгоритму:

```
def muavra_laplasa_integral(n, p, m1, m2):
def gaus(x):
   return (1 / sqrt(2 * pi)) * exp(x ** 2 / 2)
def muavra_laplasa_local(n, p, m):
    x = (m - n * p) / sqrt(n * p * q)
    return pow(x, m) / factorial(m) * exp(-x)
def m0(n, p):
     m = 0
         if i % 1 == 0:
def task1():
```

```
def task4():
 def task5():
     m2 = 252
      f2.write("\ntering 5: p(a) = %s\n" % muavra_laplasa_integral(n, p, m1, m2))
 def task6():
     f2.write("\ntask 6: m0 = %s\n" % m0(n, p))
  def task7():
     f2.write("ntask 7: p(a) = %sn" % muavra_laplasa_integral(n, p, m1, m2))
  def task8():
```

Випробування алгоритму:

Висновки:

Під час виконання цієї лабораторної роботи я навчилася використовувати здобуті знання про центральні тенденції та міри на практиці за допомогою мови програмування Python.