Math 260 Exercises 1.A

David L. Meretzky

Tuesday August 21th, 2018

Problem 1. Suppose a and b are real numbers, not both 0. Find real numbers c and d such that $\frac{1}{(a+bi)} = c + di$.

This problem shows that every complex number has a multiplicative inverse. We can then be sure that our definition of division for complex numbers from class will hold, that is for $\alpha \in \mathbb{C}$ where $\alpha \neq 0$. This is exactly the requirement that for $\alpha = a + bi$, a and b are real numbers which are not both 0.

Problem 2. Verify properties of \mathbb{C} :

Note from class: Think of λ as a scalar or number like something in \mathbb{F} and think of α , β , and γ as vectors in \mathbb{F}^n , (in this case the vectors are actually in \mathbb{C}^n) for n = 1.

Show that for all α , β , γ λ in \mathbb{C} .

- 1. $\alpha + \beta = \beta + \alpha$ commutativity of addition
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ associativity of addition
- 3. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ commutativity of multiplication
- 4. Show that for every α there is a β so that $\alpha + \beta = 0$
- 5. Show that for every α there is a β so that $\alpha\beta = 1$
- 6. $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$

Problem 3. Find $x \in \mathbb{R}^4$ such that (4, -3, 1, 7) + 2x = (5, 9, -6, 8).

Problem 4. Explain why there does not exist $\lambda \in \mathbb{C}$ such that $\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i)$.

Problem 5. Verify properties of \mathbb{F}^n : Let $x, y, z \in \mathbb{F}^n$ be vectors and $a, b \in \mathbb{F}$ be scalars

- 1. show associativity of addition (x + y) + z = x + (y + z)
- 2. show associativity of scalar multiplication (ab)x = a(bx)
- 3. show there is a multiplicative identity 1x = x
- 4. show distributivity of scalar multiplication (vector side) a(x+y) = ax + ay
- 5. show distributivity of scalar multiplication (scalar side) (a+b)x = ax + bx