INSTRUCTION	OPCODE	TYPE	DESCRIPTION	OPERATION	INSTRUCTION CODING (21-bit BINARY)	VALUE OF THE PC AFTER INSTRUCTION IS EXECUTED	Control Unit signal values based on OpCode						
					(EI Dit Dittation)	INSTRUCTION IS EXECUTED	RegSrc(2)	ALUOp(3)	RegWrite(1)	Write7Seg(1)	WriteLEDs(1)	PCInc(1)	3eq(1) JiJr(2)
add rs rt rd	0000	Arith	Add the contents of the two registers denoted by the rs and rt fields and store the result in the register indicated in the rd field	rd = rs + rt	0000 rs rt rd xxxxxxxxx	PC = PC + 1	10	000	1	0	0	0	0 00
sub rs rt rd	0001	Arith	Subtract the contents of the register denoted by the rt field from the register denoted by the rs field and store the result in the register indicated in the rd field	rd = rs - rt	0001 rs rt rd xxxxxxxxx	PC = PC + 1	10	001	1	0	0	0	0 00
and rs rt rd	0010	Logic	And the contents of the two registers denoted by the rs and rt fields and store the result in the register indicated in the rd field	rd = rs AND rt	0010 rs rt rd xxxxxxxxx	PC = PC + 1	10	010	1	0	0	0	0 00
or rs rt rd	0011	Logic	Or the contents of the two registers denoted by the rs and rt fields and store the result in the register indicated in the rd field	rd = rs OR rt	0011 rs rt rd xxxxxxxxx	PC = PC + 1	10	011	1	0	0	0	0 00
xor rs rt rd	0100	Logic	Xor the contents of the two registers denoted by the rs and rt fields and store the result in the register indicated in the rd field	rd = rs XOR rt	0100 rs rt rd xxxxxxxxx	PC = PC + 1	10	100	1	0	0	0	0 00
not rs rd	0101	Logic	Invert the contents of the register denoted by the rs field and store the result in the register indicated in the rd field	rd = NOT rs	0101 rs xxx rd xxxxxxxx	PC = PC + 1	10	101	1	0	0	0	0 00
shl rs rd	0110	Arith	Shift the contents of the register denoted by the rs field left one position (filling the vacated slot on the right with a zero) and store the result in the register indicated in the rd field	rd = ← rs	0110 rs xxx rd xxxxxxxx	PC = PC + 1	10	110	1	0	0	0	0 00
shr rs rd	0111	Arith	Shift the contents of the register denoted by the rs field right one position (filling the vacated slot on the left with a zero) and store the result in the register indicated in the rd field	rd = → rs	0111 rs xxx rd xxxxxxxx	PC = PC + 1	10	111	1	0	0	0	0 00
ld rd i	1000	Other	Load the register denoted by the rd field with the contents of the immediate field of the instruction	rd = LOAD i	1000 xxx xxx rd iiiiiiii	PC = PC + 1	00	ххх	1	0	0	0	0 00
spc rd	1001	Other	Store the current contents of the 8-bit program counter in the register indicated in the rd field	rd = PC	1001 xxx xxx rd xxxxxxx	PC = PC + 1	01	ххх	1	0	0	0	0 00
beq rs rt i	1010	Other	If the contents of the two registers denoted by the rs and rt fields are equal then increment the program counter with the value in the immediate field	rs - rt	1010 rs rt xxx iiiiiiiii	if(Zero = 1) then PC+i else PC = PC+1	XX	001	0	0	0	0	1 00
ji i	1011	Other	Reset the program counter to the value found in the immediate field	PC = i	1011 xxx xxx xxx iiiiiiii	PC = i	XX	ххх	0	0	0	0	0 10
jr rs	1100	Other	Reset the program counter to the value stored in the register denoted by the rs field	PC = rs	1100 rs xxx xxx xxxx xxxxxxx	PC = rs	XX	ххх	0	0	0	0	0 01
w7seg rs	1101	Other	Write the contents of the register denoted by the rs field into another 8-bit register connected to the seven segment displays	SegH + Seg L = rs	1101 rs xxx xxx xxxx xxxxxxx	PC = PC + 1	XX	XXX	0	1	0	0	0 00
wleds rs	1110	Other	Write the contents of the register denoted by the rs field into another 8-bit register connected to the 8 LEDs	LEDs = rs	1110 rs xxx xxx xxxx xxxxxxx	PC = PC + 1	XX	XXX	0	0	1	0	0 00
rsw rd	1111	Other	Read the value of the least significant 8-switches and store the contents in the register denoted by the rd field	rd = switches(7 : 0)	1111 xxx xxx rd iiiiiiii	PC = PC + 1	11	ххх	1	0	0	0	0 00