Fl is a fluorophore;

N is a hitrogen atom;

 B_{d1} and B_{d2} are independently selected binding groups, wherein the binding groups are capable of binding the analyte molecule to form a stable 1:1 complex;

Sp is an aliphatic spacer;

An is an anchor group for attaching the sensor to a solid substrate; and n = 1 or 2, m = 1 or 2, and x is an integer;

- (b) contacting the sensor with the sample whereby the sensor binds the analyte and generates a detectable analyte signal that is responsive to the analyte concentration in the sample;
 - (c) detecting the generated analyte signal; and
- (d) determining the concentration of the analyte contained in the sample.
- 41. (New) The method of claim 40, wherein the analyte is selected from the group consisting of sancharides, amino saccharides, and carbonyl saccharides.
- 42. (New) The method of claim 41, wherein the Sp comprises six carbon atoms and the analyte is gluçose.
- 43. (New) The method of claim 40, wherein Fl is selected from the group consisting of naphtyl, anthryl, pyrenyl, phenanthryl, and perylene.
- 44. (New) The method of claim 40, wherein B_{d1} is R_1 -B(OH)₂ and B_{d2} is R_2 -B(OH)₂, wherein R_1 and R_2 are aliphatic or aromatic functional groups selected independently from each other and B is a boron atom.
- 45. (New) The method of claim 44, wherein R_1 and R_2 selected from the group consisting of: methyl, ethyl, propyl, butyl, phenyl, methoxy, ethoxy, butoxy, and phenoxy groups.
- 46. (New) The method of claim 40, wherein An comprises methyl or phenyl.

47. (New) The method of claim 40, wherein the modular fluorescence sensor has the following general formula:

FI N (CH₂)_x And
$$R_1$$
 R₂ R_2 R_3 HO OH HO OH

wherein:

B is a boron atom; and

 R_1 and R_2 are aliphatic or aromatic functional groups which allow covalent binding of an analyte to the hydroxyl groups forming a stable 1:1 complex, wherein R_1 and R_2 are selected independently from each other.

- 48. (New) The method of claim 47, wherein Fl is selected from the group consisting of naphtyl, anthryl, pyrenyl, phenanthryl, and perylene.
- 49. (New) The sensor of claim 47, wherein R₁ and R₂ are independently selected from the group consisting of: methyl, ethyl, propyl, butyl, phenyl, methoxy, ethoxy, butoxy, and phenoxy groups.
 - 50. (New) The method of claim 47, wherein the analyte is glucose.
- 51. (New) The method of claim 40, wherein the analyte is glucose and the modular fluorescence sensor has the following general formula:

72-52. (New) A composition comprising:

a modular fluorescence sensor having the following general formula:

$$Fl-(CH_2)_n-N < (CH_2)_m-Bd_1$$
 Sp
 $N-(CH_2)_x-An$
 $(CH_2)_y-Bd_2$

wherein:

Fl is a fluorophore;

N is a nitrogen atom;

 B_{d1} and B_{d2} are independently selected binding groups, wherein the binding groups are capable of binding an analyte molecule to form a stable 1:1 complex;

Sp is an aliphatic spacer;

An is an anchor group for attaching the sensor to a solid substrate; and $n_1 m_2 x_3 = 1$ or $x_3 = 1$ or $x_4 = 1$ or $x_5 = 1$ or

an analyte bound to the sensor.

73-53. (New) The composition of claim 52, wherein the analyte is selected from a group comprising saccharides, amino saccharides, and carbonyl saccharides.

24.54. (New) The composition of claim 52, wherein the Sp comprises six carbon atoms and the analyte is glucose.

25.55: (New) The composition of claim 52, wherein the modular fluorescence sensor has the following general formula:

wherein:

B is a boron atom; and

 R_1 and R_2 are aliphatic or aromatic functional groups which allow covalent binding of an analyte to the hydroxyl groups forming a stable 1:1 complex, wherein R_1 and R_2 are selected independently from each other.

76. (New) The composition of claim 52, wherein the analyte is glucose and the modular fluorescence sensor has the following general formula:

57. (New) A method for detecting glucose contained in a sample comprising the steps of:

(a) providing a modular fluorescence sensor having the following general formula:

FI N (CH₂)_x—An
$$R_1$$
 R_2 R_2 R_3 R_4 HO OH

wherein:

Fl is a fluorophore;

N is a nitrogen atom;

B is a boron atom;

 R_1 and R_2 are aliphatic or aromatic functional groups which allow covalent binding of an analyte to the hydroxyl groups forming a stable 1:1 complex, wherein R_1 and R_2 are selected independently from each other;

An is an anchor group for attaching the sensor to a solid substrate; and x is an integer.

- (b) contacting the sensor with the sample whereby the sensor binds the analyte and generates a detectable analyte signal that is responsive to the analyte concentration in the sample;
 - (c) detecting the generated analyte signal; and
- (d) determining the concentration of the analyte contained in the sample.
- 58. (New) The method of claim 57, wherein the analyte is glucose and the modular fluorescence sensor has the following formula:

1.7 -59. (New) A composition comprising:

a modular fluorescence sensor having the following general formula:

FI N (CH₂)_x—An N
$$R_1$$
 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_9 R

wherein:

Fl is a fluorophore;

N is a nitrogen atom;

B is a boron atom;

 R_1 and R_2 are aliphatic or aromatic functional groups which allow covalent binding of an analyte to the hydroxyl groups forming a stable 1:1 complex, wherein R_1 and R_2 are selected independently from each other;

An is an anchor group for attaching the sensor to a solid substrate; and x is an integer; and

glucose bound to the sensor.

28 60: (New) The composition of claim 59; wherein the modular fluorescence sensor has the following general formula: