### **EPMiner**

### 1 Introduzione del progetto

EPMiner è un'applicazione, con interfaccia grafica, che permette, mediante l'utilizzo dell'algoritmo Apriori, di scoprire pattern frequenti e pattern emergenti partendo da due tabelle differenti. Con il termine **pattern frequenti** si intende l'insieme di item o pattern che occorrono con una frequenza minima chiamata **minimo supporto**, mentre con il termine **pattern emergenti** si intende l'insieme di pattern o item che occorrono con una frequenza minima e che hanno un **grow rate** o tasso di crescita superiore rispetto al passato.

## 2 Algoritmo Apriori

L'algoritmo utilizzato per la scoperta dei pattern è l'algoritmo Apriori. L'algoritmo Apriori è un classico algoritmo di ricerca delle associazioni. È utilizzato per la generazione dei pattern frequenti, per approssimazioni successive, a partire dagli itemset con un solo elemento. In sintesi, il presupposto teorico su cui si basa l'algoritmo parte dalla considerazione che, se un insieme di oggetti (itemset) è frequente, allora anche tutti i suoi sottoinsiemi sono frequenti, ma se un itemset non è frequente, allora neanche gli insiemi che lo contengono sono frequenti.

Un ambito dove questo algoritmo trova grande applicabilità è il market/basket problem. Per ricavare le associazioni viene impiegato un approccio bottom up, dove i sottoinsiemi frequenti sono costruiti aggiungendo un item per volta (generazione dei candidati); i gruppi di candidati sono successivamente verificati sui dati e l'algoritmo termina quando non ci sono ulteriori estensioni possibili.

I dati in input del problema sono i seguenti:

- un database di transizioni target DTarget
- un database di transizioni di background Dbackground
- un valore minimo di supporto  $(0 < \min S \le 1)$
- un valore minimo di grow rate  $(\min Gr \ge 1)$

L'obiettivo è trovare i pattern che siano frequenti (cioè con supporto maggiore o uguale a minS) in DTarget e emergenti (grow rate maggiore o uguale a minGr) rispetto a Dbackground. L'algoritmo si divide in due fasi: nella prima fase si scoprono i pattern di lunghezza k a partire dai pattern frequenti di lunghezza k-1, utilizzando la tabella DTarget. Nella seconda fase, si scoprono i pattern emergenti, calcolando i grow rate dei pattern frequenti in DTarget e in Dbackground e, confrontando i valori ottenuti, si selezionano i pattern con grow rate superiore alla soglia prefissata.

Di seguito viene riportato lo pseudo-codice dell'algoritmo:

### $frequentPatternDiscovery(DTarget,minS) \rightarrow FP$ begin FP= Ø $L_1 = \{1 \text{-item che compaiono in minS} \times |D| \text{ transazioni di DTarget}\}$ K=2while $\mathbb{L}_{K-1} \neq \emptyset$ do begin $C_{\kappa}$ = candidati generati da $L_{k-1}$ aggiungendo un nuovo item $\Gamma^{\kappa} = \emptyset$ for each $(p \in C_k)$ do if (supporto(p, DTarget) >= minS) then $L^{\kappa}=L^{\kappa}\cap b$ $\mathbf{F}P = FP \cup L_k$ K=K+1end return FP

Figura 1: Pseudo-codice per la scoperta di pattern frequenti.

Figura 2: Pseudo-codice per la scoperta di pattern emergenti.

## 3 Architettura del progetto

end

Il progetto EPMiner è stato sviluppato con l'IDE Intellij IDEA. Esso presenta una architettura di tipo client-server, in cui il client può mandare richieste al server per i seguenti servizi:

- scoprire dei nuovi pattern nel database
- caricare pattern salvati nell'archivio

Il client deve specificare i valori di minimo supporto, grow rate e le tabelle di target e background.

Il server elabora le richieste accedendo al database tramite il DBMS MySql. Il server viene avviato sulla porta 8080, pertanto il client deve essere avviato con i parametri "localhost" e la porta 8080. È possibile avviare server e client con parametri diversi.

### 4 Versione estesa del progetto

Per la versione estesa del progetto il gruppo ha realizzato un'interfaccia grafica lato client utilizzando le librerie offerte da **JavaFX**. Abbiamo deciso di non implementare l'interfaccia grafica lato server in quanto, per il server, non viene richiesta nessuna interazione diretta con l'utente. L'interfaccia grafica è stata implementata interamente tramite codice Java, senza l'utilizzo di tool grafici, ad esempio SceneBuilder ed è stato aggiunto un foglio di stile **CSS** per personalizzare lo stile grafico dell'applicazione.

#### 5 Guida all'installazione

Di seguito sono riportate le linee guida da seguire per il corretto funzionamento del server:

- 1. installare la Java Runtime Environment, versione 16 o superiore
- 2. installare il DBMS MySql, versione 5.7 o superiore
- 3. dopo aver avviato il server mysql, eseguire lo script "mysqlScript" presente nel seguente percorso: "EPMiner\Versione estesa\Server\mysqlScript.sql"

Le linee guida da seguire per il funzionamento del client sono:

- 1. installare la Java Runtime Environment, versione 16 o superiore
- 2. avviare il server prima di avviare il client

#### 6 Guida utente

#### 6.1 Avvio del server tramite batch

Per il corretto funzionamento del programma è necessario avviare prima il server. Per avviare il server bisogna eseguire il file serverBatch.bat, presente nel seguente percorso: "EPMiner\Versione estesa\Server\serverBatch.bat", tramite uno dei seguenti metodi:

- fare doppio clic con il mouse sul file batch
- eseguire il file batch tramite riga di comando (es. cmd o PowerShell)

In questo modo il server verrà avviato senza parametri sulla porta 8080. Se si ha necessità di avviare il server con **parametri** si può modificare il file serverBatch tramite un qualsiasi editor di testo, aggiungendo i parametri come segue:

```
1 cd build/libs
2
3 java -jar Server-1.0-SNAPSHOT.jar 45621
4 PAUSE
```

In questo modo il server verrà avviato sulla porta 45621 (se libera).

### 6.2 Avvio del client tramite batch

Per avviare il client bisogna eseguire il file clientBatch.bat presente nel seguente percorso: "EPMiner\Versione estesa\Client\clientBatch.bat", tramite uno dei seguenti metodi:

- fare doppio clic con il mouse sul file batch
- eseguire il file batch tramite riga di comando (es. cmd o PowerShell)

Nella versione estesa del progetto, viene chiesto all'utente di inserire l'indirizzo del server e il numero di porta del processo, quindi non bisogna modificare il file clientBatch.

### 6.3 Esempi di test

Di seguito sono riportati esempi di test.

All'avvio del client viene visualizzata una schermata per l'inserimento dei dati relativi all'indirizzo e porta del server per poter effettuare la connessione. Usando l'opzione "Usa impostazioni di default" i campi verranno automaticamente compilati con i parametri di default del server.



Se la connessione è avvenuta con successo, verrà visualizzata la schermata principale del programma in cui è possibile usufruire dei servizi offerti dal server. Un esempio di test di una richiesta "Nuova Scoperta":



Un esempio di test di una richiesta "Risultati in archivio":

22:(umidity=high) AND (play=no) AND (outlook=sunny)[0.375]

23:(play=no) AND (outlook=sunny) AND (umidity=high)[0.375]

24:(play=no) AND (umidity=high) AND (outlook=sunny)[0.375] 25:(play=no)[0.5]

22:(play=no) AND (outlook=sunny) AND (umidity=high)[0.375][Infinity]

23:(play=no) AND (umidity=high) AND (outlook=sunny)[0.375][Infinity]

24:(umidity=high) AND (wind=weak)[0.5][Infinity] 25:(wind=weak) AND (umidity=high)[0.5][Infinity]



Se la richiesta non viene eseguita con successo, verrà visualizzato un messaggio di errore:



# 7 Diagrammi UML

Diagramma delle classi del package Mining:



Diagramma delle classi del package Data:



Diagramma delle classi del package Utility:



Diagramma delle classi del package Database:



Diagramma delle classi Client:



Diagramma del package Client:



Diagramma del package Server:



## 8 Javadoc

È possibile visualizzare la documentazione del client e del server tramite le pagine presenti nei seguenti percorsi:

# 9 Studenti del gruppo

Il progetto è stato realizzato da:

- Marco Angelo Lillo MAT: 717683 m.lillo21@studenti.uniba.it
- Daniele Cecca MAT: 718588 d.cecca1@studenti.uniba.it
- Ferrulli Francesco MAT: 716836 f.ferrulli14@studenti.uniba.it

1

<sup>&</sup>lt;sup>1</sup>È possibile scaricare il progetto EPMiner dalla repository https://github.com/Ferru2000/EPMiner