Introduction to Causal Inference

Chapter I: Introduction

• What is causal?

Motivation of Causal inference

Causation or Association?

Association: Two variables statistically dependent

Figure 1.3: The yearly number of movies Nicolas Cage appears in correlates with the yearly number of pool drownings [1].

 Causality: The change of dependent variable will lead to the change of independent variable

 Association: Two variables statistically dependent, intervention will have no effect

 Causality: The change of independent variable will lead to the change of dependent variable,

• Intervention on independent variable will cause dependent variable to change; but intervention on dependent variable will not make any sense.

Why Causal Inference matter?

Simpson's Paradox

	Mild	Severe	Total
penicillin	15% (210/1400)	30% (30/100)	16% (240/1500)
tetracycline	10% (5/50)	20% (100/500)	19% (105/550)

	Mild	Severe	Total
penicillin	15% (210/1400)	30% (30/100)	16% (240/1500)
tetracycline	10% (5/50)	20% (100/500)	19% (105/550)

T: treatment

C: condition

r: result

Causal structure determines our decision