CS2040 Data Structures and Algorithms Lecture Note #9

AVL Tree

An AVL tree – named for its inventors, Adel'son-Vel'skii and Landis – is a balanced binary search tree.

Previously, on BST

```
\Box findMin O(h) where h = height of the tree
```

```
search O(h)
```

```
delete O(h)
```

```
But h is not always O(log_2 N)!
Best case is h=O(log_2 N) and worst case is h=O(N)!
```

Rotation

The **rotate** operation is an important operation for maintaining the balance of a BST.

For example, the skewed tree on the left can be converted into the "balanced" tree on the right through a series of rotations. How?

AVL Tree Property

Goal: Keep the height difference between left and right subtrees ≤ 1 . Define an invariant (something that will not change).

Figure: The difference between the levels of the two dotted lines is one.

Rotate Right at 3

After Rotate Right at 3 (cont.)

Rotation changes the **heights** of some nodes. In this example, the depth of node 4 increases by 1. The depth of node 0 decreases by 1. The depth of node 2 remains unchanged.

After Rotate Right at 3 (cont.)

Rotation modifies the pointers shown in red.

NUS CS1102

Rotate Right at 3 (cont.)

The pseudo code on the right shows how we rotate right at x. The red arrows are the pointers after modification.

rotateRight(x)

```
I = x.left
if I is empty
  return
x.left = I.right
I.right = x
p = x.parent
if x is a left child
  p.left= I
else
  p.right = 1
```

Rotate Left at 5

After Rotate Left at 5 (cont.)

Right and Left Rotation

Right Rotation

- Need X to have a left child Y
- Make X right child of Y
- Make B (right child of Y) left
 child of X

Left Rotation

- Need Y to have a right child X
- Make Y left child of X
- Make B (left child of X) right
 child of Y

Rotation Summary

AVL Tree

An AVL tree – named for its inventors, Adel'son-Vel'skii and Landisis a balanced binary search tree.

AVL Tree Property

- A binary search tree
- At any node, the difference in height between left and right subtree is at most one (invariant).

$$|h_l - h_r| \leq 1$$

Where h_l and h_r are the heights of the left and right subtrees of the node.

This property must hold recursively for all subtrees.

AVL Tree Property

The difference between the levels of the two dotted lines is one.

AVL Tree Examples

Claim:

A height-balanced tree with $\bf N$ vertices has height $\bf h < 2 * log_2(\bf N)$

Proof:

Let N_h be the minimum number of vertices in a height-balanced tree of height h

The actual number of vertices $N \ge N_h$

- Minimal AVL trees of height h: AVL Trees having height h and fewest possible number of nodes
- Minimal AVL tree with height 0

Minimal AVL tree with height 1

Proof:

Let N_h be the minimum number of vertices in a height-balanced tree of height h

$$N_{h} = 1 + N_{h-1} + N_{h-2}$$
 $N_{h} > 1 + 2N_{h-2} \text{ (as } N_{h-1} > N_{h-2})$
 $N_{h} > 2N_{h-2} \text{ (obvious)}$
 $= 4N_{h-4} \text{ (recursive)}$
 $= 8N_{h-6}$
 $= \dots$
 $h-1$
 $\geq N_{h-1}$

Base case:

$$N_0 = 1$$

Proof:

Let N_h be the minimum number of vertices in a height-balanced tree of height h

$$N_h = 1 + N_{h-1} + N_{h-2}$$

 $N_h > 1 + 2N_{h-2}$

$$N_h > 2N_{h-2}$$

> $4N_{h-4}$
> $8N_{h-6}$

.

> ...

As at each step we reduce **h** by 2, then we need to do this step **h**/2 times to reduce **h** (assume **h** is even) to 0

Base case:

$$N_0 = 1$$

$$N_h > 2^{h/2} N_0$$

 $N_h > 2^{h/2}$

Claim:

```
A height-balanced tree is balanced, i.e., it has height \mathbf{h} = O(\log(\mathbf{N}))
```

We have shown that: $N_h > 2^{h/2}$ and $N \ge N_h$

```
N \ge N_h > 2^{h/2}

N > 2^{h/2}
```

$$\log_2(\mathbf{N}) > \log_2(2^{\mathbf{h}/2}) (\log_2 \text{ on both side})$$

$$log_2(N) > h/2$$
 (formula simplification)

$$2 \times \log_2(\mathbf{N}) > \mathbf{h} \text{ or } \mathbf{h} < 2 \times \log_2(\mathbf{N})$$

$$\mathbf{h} = O(\log(\mathbf{N}))$$

AVL Tree Insertion

Idea on Insertion

Insertion in red subtree never violates the AVL tree property. But insertion into blue and gray subtree may cause a violation.

To insert into an AVL tree, we insert the node as usual. After insertion, travel from new node back to the root. At each node, checks if $|h_1 - h_r| \le 1$. If violation occurs, rotate the tree based on the following cases.

Case 1: Insert Outside

- insert into left subtree of Y

The difference between the levels of the **left subtree of Y** and the **right subtree of X** is **2**.

Need to rotate right around X

Example: Insert Outside

e.g. insert 0

Example: Insert Outside (cont.)

Example: Insert Outside (cont.)

The tree after we performed a single **right rotation at 7 becomes an AVL tree.**

Case 2: Insert Inside

e.g., insert into blue sub-tree, i.e., the right subtree of Y

does not work!

The difference between the levels of the right subtree of Y and the right subtree of X is 2. **Single** right rotation at X does **not** work if the new node that causes violation belongs in the blue sub-tree. The height of the blue subtree remains unchanged. We need double rotations.

Case 2: Insert Inside (cont.)

(inserted node in the blue subtree)

First rotate left around Y - become case 1

- Y is the left node of the unbalanced tree with root X.

NUS CS1102

Case 2: Become Case 1

This is case 1.

Then rotate right around X

NUS CS1102

Example: Insert Inside

e.g., insert 3

NUS CS1102

Example: Insert Inside (cont.)

Example: Insert Inside (cont.)

After we rotate left at 1. We get the tree as shown above. Then rotate right around 4.

> **NUS CS1102** 36

Example: Insert Inside (cont.)

After we rotate right around 4, the tree becomes an AVL tree.

Summary (1)

- Insert outside: Single Rotation
- Insert inside: Double Rotation
- Two passes needed: first pass down to insert, second pass up to change violation and fix.

Q: How about deletion of nodes from an AVL tree?

Animation

Summary (2)

- Insert inside
 (on left):
 → double rotation
 Left-Right (LR)
 rotation
- Insert outside (on left):→ single rotation Right (R) rotation

Result:

Source: Wikipedia

NUS CS1102

Insert inside (on right):

→ double rotation Right-Left (RL) rotation

Insert outside (on right):

→ single rotation

Left (L) rotation

Result:

Order Statistics

Dynamic Set ADT

```
insert (key, data)
delete (key)
data = search (key)
key = findMin()
key = findMax()
key = findKth (k)
  data[] = findBetween (low, high)
successor (key)
                        (next larger)
  predecessor (key)
                        (next smaller)
```

Find K-th (Smallest) item

Example: A list of numbers: 8 6 5 4 9 0 7 3

```
findKth(1) = 0

findKth(2) = 3

findKth(5) = 6
```

Find K-th (Smallest) item

- by BST Property

findKth(T,K) on BST

Size of a Tree

Assume that each node n in the tree has a number that stores the size of the tree rooted at n. of substree

findKth (T,K) algorithm

Using the size of the tree, we can find the K-th smallest item in a BST using the recursive code shown here.

```
if T is empty
   return null
let sizeL be the size of T.left
if K == sizeL + 1
   return T.item
else if K ≤ sizeL
    return findKth(T.left, K)
   else
   return findKth(T.right, K - sizeL - 1)
```

findKth() on an unsorted array

To perform findKth() on an unsorted array, we make use of the partition algorithm you learned in quicksort.

findKth() on an array (cont.)

findKth() on an array (cont.)

findKth (A, i, j, K)

This algorithm finds the k-th smallest element on an unsorted array is also called "quickselect",
Where i and j define the subset of the unsorted array between index i to index j.

```
if i > j return NOT FOUND
pivot = partition(A, i, j)
if pivot + 1 == K
  return A[pivot]
else if K ≤ pivot
    return findKth(A, i, pivot - 1, K)
    else
    return findKth(A, pivot + 1, j, K-pivot - 1)
```

Running Time for findKth()

On BST : O(h)

- On Unsorted Array:
 - worst case O(N²)
 - best case O(N)