

Introduction

• On average, approximately 60,000 people globally died from natural disasters each year

• Low frequency, high impact events such as earthquakes cause significant but preventable loss of human life

Why Bother?

- Total \$210 billion dollars in losses world-wide in 2020
 - Up 26% since 2019
- Preventable loss of human life
 - Last year's natural disasters claimed approximately 8,200 lives
- Fraudulent insurance claims
- Why Twitter?
 - o real-time microblogging platform
 - 186 million daily active users as of 2020
 - o 150 million users worldwide, 36 million from US

Objectives

Detect natural disaster tweets

Detect natural disaster images from attached images

Data sources and Methodology part 1

- Business case
 - Real-time information currently lacking/under-serviced

- Gather data
 - Pre-labeled tweet dataset from Kaggle
 - o Pre-labeled images dataset from Kaggle
 - Generate dataframe

Data sources and Methodology part 2

Preprocess data

- Removed symbols, hyperlinks, punctuations, stop words using custom regex patterns
- Lemmatized words
- Changed target labels for tweets using non-natural disasters words
- Tweet sentiment

Visualization

- Barplots (count-based features)
- wordcloud

Modeling

- Logistic Regression
- Ensemble (RandomForest, GradientBoost)
- o Model optimization : Random search Cross validation

Results

- Best model based on accuracy
 - RandomForest classifier
 - ~78% accuracy with an FPR ~6.47%
 - o AUC ~0.85
 - Specificity of 94%
 - Sensitivity of 55%
- Worst model
 - o Unigram BoW with Gradient-Boost classifier
 - o ~65%
 - o AUC ~0.85

Limitations

- Class imbalance
 - o More non-disaster vs disaster tweets
 - Responsible for skew in sensitivity and specificity

- Bias introduced during pre-processing
 - Suicide, war were excluded
 - o Locations and keywords were excluded

Future Directions

• Include location and hashtags/keywords in modeling

• Improve accuracy of model (95% target)

• Word embeddings and deep learning (LSTM)

• Mobile app that tracks and sends email to subscriber

Fin