Matching pursuits with time-frequency dictionaries

A.M. Alvarez-Meza, Ph.D. A.A. Orozco-Gutierrez, Ph.D. andres.alvarez1;aaog@{utp.edu.co}

Grupo de automática Universidad Tecnológica de Pereira

Outline

- Signal representation
- 2 Time-frequency atomic decomposition
- Matching pursuit in Hilbert spaces
- Matching pursuit with time-frequency dictionaries
- 5 Matching pursuit with Gabor atoms
- 6 Matlab toolkits and exercises

Signal representation

- Natural languages have large vocabularies (words with close meanings).
- Low level signal representations provide explicit information.
- Numerical parameters should offer compact characterizations of the elements we are looking for.
- A suitable representation gives simple cues to differentiate patterns!

Signal representation

source: Computer vision example - Stanford vision Lab

The generalized Fourier series

Let Ψ be a set of square-integrable functions in ${\mathcal F}$

$$\Psi = {\phi_n : [a, b] \to \mathcal{F}}_{n=0}^{\infty},$$

which are pairwise orthogonal for the inner product

$$\langle f, g \rangle = \int_{a}^{b} f(x)g^{*}(x)w(x)dx$$

w(x): weight function.

The generalized Fourier series with respect to $\Psi,$ is then

$$f(x) \sim \sum_{n=0}^{\infty} c_n \phi_n(x)$$
 (1)

where the coefficients are given by

$$c_n = \frac{\langle f, \phi_n \rangle}{\|\phi_n\|_w^2}$$

If Ψ is a complete set, i.e., an orthonormal basis on $[a,b],\sim$ becomes = in the L^2 sense.

The Fourier transform

Let $f(t) \in L^2(R)$ be a function in the Hilbert space $L^2(R)$, the Fourier transform $f(\omega)$ is defined by:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt.$$
 (2)

The inverse Fourier transform is defined as:

$$\hat{f}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega.$$

The Short Time Fourier transform

Employs a window function to localize the complex sinusoid as:

$$F(\omega, u) = \int_{-\infty}^{\infty} f(t)h(t - u)e^{-i\omega t}dt$$
 (3)

- $u \in \mathbb{R}$ is a translation parameter and h(t-u) is the window function which confines the complex sinusoid $e^{-i\omega t}$.
- Some Window shapes: Hanning, hamming, cosine, Gaussian, etc.
- Gaussian windowed STFT (Gabor transform):

$$h_{\xi,u}(t) = h(t-u)e^{i2\pi\xi t}, \tag{4}$$

 $h(t) = \frac{1}{\sqrt{\sigma}\pi^{1/4}}e^{-\frac{1}{2}(t^2/\sigma^2)}, \ \sigma \in \mathbb{R}^+, \ \text{and} \ \xi \in \mathbb{R}$: modulating factor.

• $h_{\xi,u}(t)$ is known as a windowed Fourier atom.

The Short Time Fourier transform

• Convolving the atom with the signal:

$$F(\xi, u) = \int_{-\infty}^{\infty} f(t) h_{\xi, u}^{*}(t) dt$$

$$= \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{\sigma} \pi^{1/4}} e^{\frac{-1}{2}[(t-u)^{2}/\sigma^{2}]} e^{-i2\pi\xi t} dt$$
(5)

The Wavelet transform

• To match a signal by moving and stretching/squezzing a wavelet function.

$$T(s,u) = \int_{-\infty}^{\infty} f(t)\psi_{s,u}^{*}(t)dt$$
 (6)

- Example: Morlet wavelet $\psi(t) = \frac{1}{\pi^{1/4}} e^{i2\pi\xi_0 t} e^{-t^2/2}$, ξ_0 : central frequency.
- The Morlet wavelet transform gives:

$$T(s,u) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s}\pi^{1/4}} e^{\frac{-1}{2}[(t-u)^2/s^2]} e^{-i2\pi(\xi_0/s)(t-u)} dt$$
 (7)

The Time-frequency atomic decomposition

- To extract information from complex signals, we need to adapt the time-frequency decomposition to the particular signal structures.
- A family of time-frequency atoms can be generated by scaling, translating, and modulating a single window function $g(t) \in L^2(R)$.
- g(t) is continuously differentiable and ||g(t)||=1, $g(0) \neq 0$.
- For any scale s>0, frequency modulating ξ , and translation u, we denote $\gamma=(s,u,\xi)$ and define:

$$g_{\gamma}(t) = \frac{1}{\sqrt{s}}g\left(\frac{t-u}{s}\right)e^{i\xi t}$$
 (8)

where $\frac{1}{\sqrt{s}}$ normalizes $\|g_{\gamma}(t)\| = 1$.

The Time-frequency atomic decomposition

• The Fourier transform of g(t) yields:

$$g_{\gamma}(\omega) = \sqrt{s}g\left(s(\omega - \xi)\right)e^{-i(\omega - \xi)u},$$
 (9)

since $|g(\omega)|$ is even, $g_{\gamma}(\omega)$ is centered at frequency $\omega = \xi$.

- The family $\mathfrak{D} = \{g_{\gamma}(t)\}_{\gamma \in \Gamma}$ is redundant $(\Gamma = \mathbb{R}^+ \times \mathbb{R}^2)$.
- To represent properly f(t) we must select a subset of atoms $\{g_{\gamma_n}(t)\}_{n\in\mathbb{N}}$, with $\gamma_n=(s_n,u_n,\xi_n)$, so that:

$$f(t) = \sum_{n = -\infty}^{\infty} a_n g_{\gamma_n}(t)$$
 (10)

The Fourier and wavelet transforms correspond to different families of time-frequency atoms

The Fourier transform's atoms

$$F(\xi_n, u_n) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{\sigma} \pi^{1/4}} e^{\frac{-1}{2}[(t - u_n)^2 / \sigma^2]} e^{-i2\pi \xi_n t} dt$$
 (11)

- All the atoms have a constant scale $s_n = s_0$ ($s_0 \sim \sigma$ for Gabor window).
- If the main signal structures are localized over a time-scale of the order of s_0 and a_n gives important insights on their localization and frequency content.
- Window Fourier transform is not well adapted to describe structures that are much smaller or much larger than s_0 .
- To analyze components of varying sizes, it is necessary to use time-frequency atoms of different scales.

The wavelet transform's atoms

$$T(s_n, u_n) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s_n} \pi^{1/4}} e^{\frac{-1}{2} [(t - u_n)^2 / s_n^2]} e^{-i2\pi (\xi_0 / s_n)(t - u_n)} dt$$
 (12)

- Decomposes signals over time-frequency atoms of varying scales, called wavelets.
- The resulting family is composed of dilations and translations of a single function, multiplied by complex phase parameter.
- The expansion coefficients a_n characterize the scaling behavior of signal structures.
- However, wavelet coefficients do not provide precise estimates of the frequency content of waveforms whose Fourier transforms is well localized (restriction on the frequency parameter $\xi_n = \xi_0/s_n$).

Matching pursuit in Hilbert spaces

- We want to compute a linear expansion of $f \in L^2(R)$ over a set of vectors selected from $\mathcal{D} = (g_\gamma)_{\gamma \in \Gamma}$ to best match its inner structures.
- Procedure: successive approximations of f with orthogonal projections on elements of \mathcal{D} .
- Let $g_{\gamma_0} \in \mathcal{D}$, then:

$$f = \langle f, g_{\gamma_0} \rangle g_{\gamma_0} + Rf, \tag{13}$$

where Rf is the residual vector.

• Since g_{γ_0} is orthogonal to Rf (Exercise: proof it):

$$||f||^2 = ||\langle f, g_{\gamma_0} \rangle||^2 + ||Rf||^2.$$
 (14)

Matching pursuit in Hilbert spaces

- To minimize ||Rf|| we must choose $g_{\gamma_0} \in \mathcal{D}$ such that $|\langle f, g_{\gamma_0} \rangle|$ is maximum.
- It is possible to find a vector that is almost the best:

$$|\langle f, g_{\gamma_0} \rangle| \ge \alpha \sup_{\gamma \in \Gamma} |\langle f, g_{\gamma} \rangle|, \tag{15}$$

where $0 < \alpha \le 1$.

• Matching pursuit is an iterative algorithm that subdecomposes the residue Rf by projecting it on a vector of \mathcal{D} that matches Rf almost at best.

Matching pursuit in Hilbert spaces

• Energy conservation equation:

$$||f||^2 = \sum_{n=0}^{m-1} |\langle R^n f, g_{\gamma_n} \rangle|^2 + ||R^m f||^2.$$
 (16)

• In practice, the algorithm is terminated either when the residual energy below a preset cut-off level:

$$||R^n f||^2 < \epsilon ||f||^2; \quad \forall \epsilon \in \mathbb{R}^+. \tag{17}$$

- The original *f* is decomposed into a sum of dictionary elements, that are chosen to best match its residues.
- The decomposition is nonlinear, however, we maintain an energy conservation as if it was a linear orthogonal decomposition.
- Matching pursuit is a greedy algorithm that chooses at each iteration a waveform that is best adapted to approximate part of the signal.

Matching pursuit with time-frequency dictionaries

- For dictionaries of time-frequency atoms a matching yields an adaptive time-frequency transform.
- The function *f* is decomposed into a sum of complex time-frequency atoms that best match its residues.
- The matching pursuit decomposes f as:

$$f = \sum_{n=0}^{+\infty} \langle R^n f, g_{\gamma_n} \rangle g_{\gamma_n}, \tag{18}$$

where $\gamma_n = (s_n, u_n, \xi_n)$ and

$$g_{\gamma_n}(t) = \frac{1}{\sqrt{s_n}} g\left(\frac{t - u_n}{s_n}\right) e^{i\xi_n t}.$$
 (19)

Matching pursuit with time-frequency dictionaries

• At each iteration the MP algorithm selects a vector g_{γ_n} that satisfies:

$$|\langle R^n f, g_{\gamma_n}| \ge \alpha \sup_{\gamma \in \Gamma} |\langle R^n f, g_{\gamma} \rangle|. \tag{20}$$

- From the decomposition of any f(t) within a time-frequency dictionary a new time-frequency energy distribution is obtained by adding the Wigner distribution of each selected atom.
- The cross Wigner distribution of two functions f(t) and h(t) is defined by:

$$W[f,h](t,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f\left(t + \frac{\tau}{2}\right) h^*\left(t - \frac{\tau}{2}\right) e^{-i\omega\tau} d\tau.$$
 (21)

where $Wf(t,\omega) = W[f,f](t,\omega)$.

Matching pursuit with time-frequency dictionaries

• A picture of the energy distribution of f(t) in the time-frequency plane can be defined as (Exercise: Proof it):

$$Ef(t,\omega) = \sum_{n=0}^{\infty} |\langle R^n f, g_{\gamma_n} \rangle|^2 W g_{\gamma_n}(t,\omega).$$
 (22)

Matching pursuit with Gabor atoms

ullet The signal approximation reconstructed from N MP expansion coefficients is given by:

$$f_N(t) = \sum_{n=0}^{N-1} M_n h_{s_n, u_n, \xi_n}(t).$$
 (23)

• The Gabor atom for the MP method is defined as:

$$h_{s_n,u_n,\xi_n}(t) = \frac{1}{\sqrt{s_n}} h\left(\frac{t-u_n}{s_n}\right)$$
 (24)

Matching pursuit with Gabor atoms

A Gaussian window is defined for the MP as:

$$h(t) = 2^{1/4}e^{-\pi t^2} \tag{25}$$

• The Gabor atom for MP can be written as:

$$h_{s_n,u_n,\xi_n,\phi_n}(t) = K_n \frac{2^{1/4}}{\sqrt{s_n}} e^{-\pi[(t-u_n)/s_n]^2} \cos(2\pi \xi_n t + \phi_n)$$
 (26)

 s_n : scale, u_n : localization factor for Gaussian envelope, ξ_n : frequency, ϕ_n : phase of the real sinusoid, K_n : normalization factor to preserve unit energy.

• The expansion coefficients are determined as follows:

$$M(s_n, u_n, \xi_n, \phi_n) = \int_{-\infty}^{\infty} f(t) K_n \frac{2^{1/4}}{\sqrt{s_n}} e^{-\pi [(t - u_n)/s_n]^2} \cos(-2\pi \xi_n t + \phi_n) dt$$
(27)

Summary: playing with signals (Gabor atoms example)

Fourier:

$$F(\xi_n) = \int_{-\infty}^{\infty} f(t)e^{-i2\pi\xi_n t}dt.$$
 (28)

Short-time Fourier transform:

$$F(\xi_n, u_n) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{\sigma} \pi^{1/4}} e^{\frac{-1}{2} [(t - u_n)^2 / \sigma^2]} e^{-i2\pi \xi_n t} dt$$
 (29)

Wavelet transform:

$$T(s_n, u_n) = \int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{s_n} \pi^{1/4}} e^{\frac{-1}{2} [(t - u_n)^2 / s_n^2]} e^{-i2\pi (\xi_0 / s_n)(t - u_n)} dt$$
 (30)

• Matching pursuit transform:

$$M(s_n, u_n, \xi_n, \phi_n) = \int_{-\infty}^{\infty} f(t) K_n \frac{2^{1/4}}{\sqrt{s_n}} e^{-\pi [(t - u_n)/s_n]^2} \cos(-2\pi \xi_n t + \phi_n) dt$$
(31)

Matlab toolkits

- Fourier: fft.m
- Short-time Fourier transform: spectrogram.m
- Wavelet transform
 - Continuous wavelet transform: cwt.m
 - Discrete wavelet transform: dwt.m
- Matching pursuit: wmpalg.m

Exercises

- Summarize the main properties of the following time-frequency decompositions: Fourier, Short-time Fourier, Wavelet, and MP.
- Proof equation (14) (orthogonal property for MP in Hilbert spaces).
- Proof equation (22) (energy estimation in MP using the Wigner distribution).
- Test the Fourier, STFT, wavelet, and MP transforms over a non-stationary signal (see wavemenu Matlab function).
- Discuss and conclude about the obtain results.

References I

Addison, P. S. (2002).

The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance.

CRC press.

Mallat, S. G. and Zhang, Z. (1993).

Matching pursuits with time-frequency dictionaries. *IEEE Transactions on signal processing*, 41(12):3397–3415.