Modeling Temporary Impact g(x) from Market Data-

I modeled temporary price impact gt(x) as the execution-price premium (vs. mid) paid to trade size x at time t. Using top-10 MBP-10 snapshots for three tokens across 21 days, I constructed observations of g(x) and compared non-linear, state-dependent models against classical parametric curves. I explored more flexible approaches that account for the concavity of the impact curve induced by the depth ladder and the strong dependence on spread, depth, imbalance, volatility, and time-of-day. Out-of-sample tests (GroupKFold by day/ticker) revealed that tree ensembles (Gradient Boosting, Random Forest) provided the most accurate predictions ($R^2 \approx 0.77$).

A. Constructing gt(x) from the order book (h.py)

Goal. For each snapshot t, I computed the slippage a market buy of size x would have incurred by sweeping the visible ask ladder (analogous for sells).

- 1. **Book features.** For each snapshot I computed the mid mt, the best-level spread, the total top-10 depth Vt (both sides), the best-level imbalance, a rolling intraday volatility proxy, and the hour-of-day.
- 2. **Simulated sweep.** For sizes x∈{100,200,...,2000, I accumulated fills from L1 upward and computed the average execution price p⁻t(x).
- 3. **Temporary impact.** I defined $gt(x)=p^{-}t(x)-mt$.

Output. I wrote an "enhanced slippage" CSV for each ticker-day with columns:

```
timestamp, size, slippage (=gt(x)), vol_ratio (=x/depth), spread, depth, imbalance, volatility, hour_of_day
```

These files fed the modeling stage.

Performance. I vectorized the sweep in a Numba-compiled loop over levels and sizes, which allowed me to process tens of millions of snapshots efficiently and write compact per-snapshot/per-size observations.

Non-linear, state-dependent modeling of gt(x) (I.py)

How I designed the study-

- **Target.** I modeled gt(x)=p⁻t(x)-mt in price units.
- Used the liquidity ratio rt=x/Vt.
- Features. I engineered
 {x/V^0.5, x/V, logx, spread, depth, imbalance, volatility, hour_of_day}
- Aggregation. I averaged each ticker-day into 20 size buckets and tagged each with a file_id. Concatenating all days/tickers yielded ~1,280 rows.
- Validation. I used GroupKFold (5 folds) by file_id, so each test fold was a completely unseen day/ticker and there was no leakage.

Models I compared-

- · Parametric, non-linear in size/liquidity
 - ullet Square-root: $g=\sigma\sqrt{x/V}$
 - Logarithmic: $g = a + b \log x$
 - Quadratic in size: $g=b_1x+b_2x^2$
 - ullet Power-law (liquidity-scaled): $g=lpha\,(x/V)^eta$ (non-linear fit for lpha,eta)
- Linear w/ regularization on full state
 - Ridge, ElasticNet
- Non-parametric, state-aware
 - Random Forest, Gradient Boosting, XGBoost, KNN, SVR

Equations for Random Forest, Gradient Boost-

$$\hat{g}_t(x) = rac{1}{B} \sum_{b=1}^B \sum_m c_{b,m} \, \mathbf{1}\{\phi_t(x) \in R_{b,m}\} \quad ext{(RF)}$$
 $\hat{g}_t(x) = F_0 + \sum_{k=1}^K \sum_m \eta \, \gamma_k \, d_{k,m} \, \mathbf{1}\{\phi_t(x) \in R_{k,m}\} \quad ext{(GB)}$ with $\phi_t(x) = [\sqrt{x/V_t}, x/V_t, \log x, \operatorname{spread}_t, V_t, \operatorname{imbalance}_t, \operatorname{vol}_t, \operatorname{hour}_t].$

Results-

Cross-validated Model Performance:				
model	mean_test_mse	std_test_mse	mean_test_r2	std_test_r2
GradientBoost	2.389680	0.835836	0.774102	0.074274
RandomForest	2.463870	1.038403	0.766079	0.100258
XGBoost	2.834322	0.827539	0.725054	0.099264
Ridge	4.420681	1.165765	0.589537	0.054985
Linear x/V	5.726270	1.539792	0.470070	0.070683
PowerLaw x/V	5.733184	1.579140	0.469843	0.075209
Square-root	6.728375	1.438590	0.373448	0.039820
Quadratic	6.944874	1.335428	0.349971	0.041279
ElasticNet	7.683910	1.540505	0.284034	0.026587
Logarithmic	8.325828	1.400881	0.218657	0.031837
SVR	10.848014	2.022484	-0.012478	0.035985

Interpretation and Model Choice-Top predictive accuracy-

- Gradient Boosting achieved the lowest MSE (2.39) and highest mean R2=0.774, with a moderate fold-to-fold variability (σR2=0.074).
- Random Forest was a close second (R2=0.766, but higher variance), and XGBoost followed (R2=0.725).

Gradient Boosting is the best out-of-sample predictor of gt(x). It flexibly captures both the concave size-dependence and the interactions with spread, depth, imbalance, volatility, and time-of-day. To guard against overfitting, I used 5-fold GroupKFold cross-validation by day/ticker and kept tree depth and learning-rate settings moderate (e.g.100 trees, default max depth), ensuring the model generalizes across unseen days rather than memorizing noise. Its CV variability is modest, giving confidence in its stability.