Hibajegyzék a A számítástudomány alapjai c. könyv 1. kiadásához

Katona Gyula Y. - Recski András - Szabó Csaba 2013. szeptember 18.

25. oldal:

2.2.4. Definíció Az F gráf a G gráf **feszítőfája**, ha F fa, és részgráfja G-nek. Helyesen:

2.2.4. Definíció Az F gráf a G gráf feszítőfája, ha F fa, és feszítő részgráfja G-nek.

31. oldal:

2.3.6. Tétel (Ore) Ha az n pontú G gráfban minden olyan $x,y \in V(G)$ pontpárra, amelyre $\{x,y\} \in E(G)$ teljesül az is, hogy $d(x)+d(y) \geq n$, akkor a gráfban van Hamiltonkör.

A fenti feltétel tehát a $\underline{\text{nem}}$ szomszédos pontpárok fokszámainak összegéről nem mond semmit.

Helyesen:

2.3.6. Tétel (Ore) *Ha az n pontú G gráfban minden olyan* $x, y \in V(G)$ *pontpárra, amelyre* $\{x,y\} \notin E(G)$ *teljesül az is, hogy* $d(x)+d(y) \geq n$ *, akkor a gráfban van Hamilton-kör.*

A fenti feltétel tehát a szomszédos pontpárok fokszámainak összegéről nem mond semmit.

56. oldal:

0. lépés ... $k \leftarrow 2$...

1. lépés ...

$$d^{(k+1)}(i,j) \leftarrow \min \left\{ d^{(k)}(i,j), \quad d^{(k)}(i,k) + d^{(k-1)}(k,j) \right\}$$

Helyesen:

0. lépés ... $k \leftarrow 1$...

1. lépés . . .

$$d^{(k+1)}(i,j) \leftarrow \min \left\{ d^{(k)}(i,j), \quad d^{(k)}(i,k) + d^{(k)}(k,j) \right\}$$

109. oldal:

Így ha valaki mondjuk $3^{2002}\pmod{7}$ -re kíváncsi, akkor tudva, hogy $3^6\equiv 1\pmod{7}$, először megállapítja, hogy $2002\equiv 3\pmod{6}$, vagyis hogy 2002=6l+3 alakban áll elő, és akkor

$$3^{2002} = 3^{6l+3} = (3^6)^l \cdot 3^3 \equiv 1^l \cdot 3^3 \equiv 6 \pmod{7}$$
.

Helyesen:

Így ha valaki mondjuk $3^{2001}\pmod{7}$ -re kíváncsi, akkor tudva, hogy $3^6\equiv 1\pmod{7}$, először megállapítja, hogy $2001\equiv 3\pmod{6}$, vagyis hogy 2001=6l+3 alakban áll elő, és akkor

$$3^{2001} = 3^{6l+3} = (3^6)^l \cdot 3^3 \equiv 1^l \cdot 3^3 \equiv 6 \pmod{7}.$$

110. oldal:

Csakugyan, ha ax - ax = a(x - y) osztható lenne m-mel, ...

Helyesen:

Csakugyan, ha ax - ay = a(x - y) osztható lenne m-mel, . . .

113. oldal:

$$11x \equiv 7 \pmod{23}$$

Helyesen:

$$11x \equiv 9 \pmod{23}$$

147. oldal:

 $Jel\"{o}l\'{e}se\ a \equiv b \pmod{n}\ vagy\ a \equiv b \pmod{n}.$

Helyesen:

Jelölése $a \equiv b \pmod{n}$ *vagy* $b \equiv a \pmod{n}$.

177. oldal:

Erdős-Ko-Radó

Helyesen:

Erdős-Ko-Rado

179. oldal:

8.1.3. Tétel (Ray-Chaudhuri-Wilson, 1975).

Helyesen:

8.1.3. Tétel (Frankl-Wilson, 1981). (Babai László bizonyítása.)