Erica Chio, Assigned coursework #6

Due date: April 9th (two weeks), 11pm EST

Submission: PDF document by email to daniel.depledge@nyulangone.org

The objective of this assignment is to align m⁶A data against the human genome and determine which genes produce m⁶A-modified mRNAs in test vs. control conditions

exomePeak - http://bioconductor.org/packages/release/bioc/html/exomePeak.html m6A-viewer - http://dna2.leeds.ac.uk/m6a/

Name	Condition		
SRR7992458	iCTRL1		
SRR7992461	iCTRL2		
SRR7992460	iCTRL3		
SRR7992450	iDS1	abbreviation	meaning
SRR7992457	iDS2	i	input RI
SRR7992456	iDS3	m	m ⁶ A enriched R
SRR7992455	mCTRL1	CTRL	control data
SRR7992454	mCTRL2	DS	test
dataset			
SRR7992459	mCTRL3	1-3	biological
replicates			
SRR7992453	mDS1		
SRR7992452	mDS2		
SRR7992451	mDS3		

1. Download data from the SRA, trim, and align (bowtie2) to HG38 genome

```
#!/bin/bash

#SBATCH --job-name=<filename> # Job name

#SBATCH --mail-type=END, FAIL # Mail events (NONE, BEGIN, END, FAIL, ALL)

#SBATCH --mail-user=Erica.Chio@nyulangone.org # Where to send mail

#SBATCH --ntasks=8 # Run on a single CPU

#SBATCH --mem=16gb # Job memory request

#SBATCH --time=24:00:00 # Time limit hrs:min:sec

#SBATCH --output=<filename>_%j.log # Standard output and error log
```

```
module purge
#sra
module load sratoolkit/2.9.1
module load fastqc/0.11.7
#trim
module load trimgalore/0.5.0
module load python/cpu/2.7.15-ES
#bowtie
module load bowtie2/2.3.5.1
#samtools
module load samtools/1.3
echo ${SLURM_ARRAY_TASK_ID}
#download sra
fastq-dump SRR79924${SLURM_ARRAY_TASK_ID} --gzip -0 /gpfs/scratch/ebc308/AIS/
coursework6data/SRR79924${SLURM_ARRAY_TASK_ID} --origfmt
rm -r ~/ncbi
#trim
# !single end reads!
# --fastqc (run FastQC)
trim_galore -o /gpfs/scratch/ebc308/AIS/coursework6data/SRR79924$
{SLURM_ARRAY_TASK_ID}/ --fastqc /gpfs/scratch/ebc308/AIS/coursework6data/
SRR79924${SLURM_ARRAY_TASK_ID}/SRR79924${SLURM_ARRAY_TASK_ID}.fastq.gz
#bowtie
# already a bowtie index in Home_sapiens file.
```

```
# -q (reads are in fastq file)
# -x (base name of reference genome. Home_sapies has Bowtie2Index genome)
# --end-to-end (--very-sensitive to be more stringent - better peaks?)
bowtie2 --threads 8 --end-to-end --very-sensitive -q -x /gpfs/scratch/ebc308/
Homo_sapiens/UCSC/hg38/Sequence/Bowtie2Index/genome -U /gpfs/scratch/ebc308/
AIS/coursework6data/SRR79924${SLURM_ARRAY_TASK_ID}/SRR79924$
{SLURM_ARRAY_TASK_ID}_trimmed.fq.gz -S /gpfs/scratch/ebc308/AIS/
coursework6data/SRR79924${SLURM_ARRAY_TASK_ID}/SRR79924$
{SLURM ARRAY TASK ID}.sam
samtools view -S -b /gpfs/scratch/ebc308/AIS/coursework6data/SRR79924$
{SLURM_ARRAY_TASK_ID}/SRR79924${SLURM_ARRAY_TASK_ID}.sam > /gpfs/scratch/
ebc308/AIS/coursework6data/SRR79924${SLURM_ARRAY_TASK_ID}/SRR79924$
{SLURM_ARRAY_TASK_ID}.bam
#sort bam files
samtools sort /gpfs/scratch/ebc308/AIS/coursework6data/SRR79924$
{SLURM_ARRAY_TASK_ID}/SRR79924${SLURM_ARRAY_TASK_ID}.bam -o /gpfs/scratch/
ebc308/AIS/coursework6data/SRR79924${SLURM ARRAY TASK ID}/SRR79924$
{SLURM_ARRAY_TASK_ID}_sorted.bam
```

```
sbatch --array=50,51,52,53,54,55,56,57,58,59,60,61 download_trim_bowtie.sh
```

2. Use exomePeak to identify genes producing m⁶A modified transcripts that differ between test and control datasets

```
### STEP ONE - LOAD PACKAGE AND DATA
library("exomePeak")

#gene annotation
gtf <- "/gpfs/scratch/ebc308/Homo_sapiens/UCSC/hg38/Annotation/Genes.gencode/
genes.gtf"

#ip_bam - untreated condition</pre>
```

```
#SRR7992455 (mCTRL1), SRR7992454 (mCTRL2), SRR7992459 (mCTRL3)
mCTRL1 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992455/
SRR7992455_sorted.bam"
mCTRL2 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992454/
SRR7992454 sorted.bam"
mCTRL3 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992459/
SRR7992459_sorted.bam"
#input_bam - control samples from the untreated condition
# SRR7992458 (iCTRL1), SRR7992461 (iCTRL2), SRR7992460 (iCTRL3)
iCTRL1 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992458/</pre>
SRR7992458_sorted.bam"
iCTRL2 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992461/</pre>
SRR7992461 sorted.bam"
iCTRL3 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992460/</pre>
SRR7992460 sorted.bam"
#treated_ip_bam - treated condition
#SRR7992453 (mDS1), SRR7992452(mDS2), SRR7992451 (mDS3)
mDS1 <- "/qpfs/scratch/ebc308/AIS/coursework6data/SRR7992453/
SRR7992453_sorted.bam"
mDS2 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992452/
SRR7992452 sorted.bam"
mDS3 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992451/
SRR7992451_sorted.bam"
#treated_input_bam - control samples from the treated condition
#SRR7992450 (iDS1), SRR7992457 (iDS2), SRR7992456 (iDS3)
iDS1 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992450/</pre>
SRR7992450_sorted.bam"
iDS2 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992457/</pre>
SRR7992457_sorted.bam"
iDS3 <- "/gpfs/scratch/ebc308/AIS/coursework6data/SRR7992456/</pre>
SRR7992456_sorted.bam"
IP_BAM <- c(mCTRL1,mCTRL2,mCTRL3)</pre>
INPUT_BAM <- c(iCTRL1,iCTRL2,iCTRL3)</pre>
TREATED_IP_BAM <- c(mDS1,mDS2,mDS3)</pre>
TREATED_INPUT_BAM <- c(iDS1,iDS2,iDS3)</pre>
```

```
### SET WORKING DIRECTORY WHERE YOU WANT YOUR OUTPUT TO BE PLACED
setwd("/gpfs/home/ebc308/AIS_coursework/coursework6/exomePeakResult")

result <- exomepeak(GENE_ANNO_GTF=gtf, IP_BAM=IP_BAM, INPUT_BAM=INPUT_BAM,
TREATED_IP_BAM=TREATED_IP_BAM, TREATED_INPUT_BAM=TREATED_INPUT_BAM)

setwd("/gpfs/home/ebc308/AIS_coursework/coursework6/exomePeakResult/
exomePeak_output")

con_sig_diff_peak <- read.table("con_sig_diff_peak.xls", head = TRUE)
length(unique(con_sig_diff_peak$name)) #167</pre>
```

Datasets Genes Modified

All Three Datasets 167

I first ran exomePeak for all three datasets together to get how many genes were consistently modified (con_sig_diff file to get the consistently significantly differentiated peaks) in all the datasets. I then ran exomePeak for each treated dataset individually to get the number of genes modified for that specific dataset. I picked the con_sig_diff_peak.xls of each dataset because it shows the peaks that consistently show up in every dataset - which indicate the highest confidence.*

```
#DS1
### SET WORKING DIRECTORY WHERE YOU WANT YOUR OUTPUT TO BE PLACED
setwd("/gpfs/home/ebc308/AIS_coursework/coursework6/DS1")
result1 <- exomepeak(GENE_ANNO_GTF=gtf, IP_BAM=IP_BAM, INPUT_BAM=INPUT_BAM,
TREATED_IP_BAM=c(mDS1), TREATED_INPUT_BAM=c(iDS1))

#DS2
### SET WORKING DIRECTORY WHERE YOU WANT YOUR OUTPUT TO BE PLACED
setwd("/gpfs/home/ebc308/AIS_coursework/coursework6_exomePeak/DS2")
result2 <- exomepeak(GENE_ANNO_GTF=gtf, IP_BAM=IP_BAM, INPUT_BAM=INPUT_BAM,
TREATED_IP_BAM=c(mDS2), TREATED_INPUT_BAM=c(iDS2))

#DS3
### SET WORKING DIRECTORY WHERE YOU WANT YOUR OUTPUT TO BE PLACED
setwd("/gpfs/home/ebc308/AIS_coursework/coursework6_exomePeak/DS3")
result3 <- exomepeak(GENE_ANNO_GTF=gtf, IP_BAM=IP_BAM, INPUT_BAM=INPUT_BAM,</pre>
```

```
TREATED_IP_BAM=c(mDS3), TREATED_INPUT_BAM=c(iDS3))
```

How many genes are modified in each individual dataset?

```
# set directory
# open con_sig_diff to get consistently signficantly differentiated peaks
# get all of the modified gene names from each dataset
# unique to ensure no overlap of gene names

setwd("/gpfs/home/ebc308/AIS_coursework/coursework6/DS1/exomePeak_output")
ds1_con_sig_diff_peak <- read.table("con_sig_diff_peak.xls", head = TRUE)
length(unique(ds1_con_sig_diff_peak$name)) #171

setwd("/gpfs/home/ebc308/AIS_coursework/coursework6/DS2/exomePeak_output")
ds2_con_sig_diff_peak <- read.table("con_sig_diff_peak.xls", head = TRUE)
length(unique(ds2_con_sig_diff_peak$name)) #155

setwd("/gpfs/home/ebc308/AIS_coursework/coursework6/DS3/exomePeak_output")
ds3_con_sig_diff_peak <- read.table("con_sig_diff_peak.xls", head = TRUE)
length(unique(ds3_con_sig_diff_peak$name)) #468</pre>
```

Dataset	Genes Modified
DS1	171
DS2	155
DS3	468

How many genes are present in at least two test but none of the control datasets?

To get how many genes are present in at least two datasets, I merged all the unique names of genes of each con_sig_diff and then counted how many showed up at least two times.

```
# get all of the modified gene names from each dataset
# unique to ensure no overlap of gene names
ds1_names <- unique(ds1_con_sig_diff_peak$name)
ds2_names <- unique(ds2_con_sig_diff_peak$name)
ds3_names <- unique(ds3_con_sig_diff_peak$name)</pre>
```

```
# merge all the names of genes modified from all datasets together
total <- c(as.vector(ds1_names),as.vector(ds2_names), as.vector(ds3_names))
# table() creates a table with the frequency of each element and element name
mergedTogether <- DataFrame(table(total))
nrow(subset(mergedTogether, Freq >= 2 )) #153
```

Datasets Genes Modified
At Least Two Datasets 153

3. Use m⁶A viewer to show the m⁶A peak structure in IFNB1 (screenshot is fine)

 Note: peaks will only be visible in the test dataset as IFNB1 is not detected in the control datasets

m⁶A viewer requires files to be sorted and indexed:

```
module purge
module load samtools/1.3

# copy all bam files to new folder
cp /gpfs/scratch/ebc308/AIS/coursework6data/SRR79924${SLURM_ARRAY_TASK_ID}/
SRR79924${SLURM_ARRAY_TASK_ID}_sorted.bam /gpfs/scratch/ebc308/AIS/
coursework6data/indexed

# index all files in the new folder
samtools index /gpfs/scratch/ebc308/AIS/coursework6data/indexed/SRR79924$
{SLURM_ARRAY_TASK_ID}_sorted.bam
```

all .bai files must be in the same folder as .bam folders for m⁶A viewer to read indexed BAM files

Location: Chromsome 9, 21076104-21079104

mDS1 vs iDS1

mDS2 vs iDS2

mDS3 vs iDS3

Provide full coding, justification for parameters chosen, pertinent figures and tables (with legends) -all in a single pdf file

(#appliedsequencinginformatics