

AD-756 191

A METHOD FOR PRODUCING QUANTITATIVELY
BASED MILITARY GEOGRAPHIC INTELLIGENCE
PRODUCTS FOR AN AIRMOBILE DIVISION

Joseph L. Decell, et al

Army Engineer Waterways Experiment Station
Vicksburg, Mississippi

July 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

AD 756 191

MISCELLANEOUS PAPER M-72-6

A METHOD FOR PRODUCING QUANTITATIVELY BASED MILITARY GEOGRAPHIC INTELLIGENCE PRODUCTS FOR AN AIRMOBILE DIVISION

by

J. L. Decell, W. E. Grabau, B. O. Benn, J. K. Stoll, B. G. Stinson

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
U.S. Department of Commerce
Springfield VA 22151

July 1972

Sponsored by **U. S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia**

Conducted by **U. S. Army Engineer Waterways Experiment Station**
Mobility and Environmental Systems Laboratory
Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

81

Destroy this report when no longer needed. Do not return
it to the originator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated
by other authorized documents.

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) U. S. Army Engineer Waterways Experiment Station Vicksburg, Mississippi	2a. REPORT SECURITY CLASSIFICATION Unclassified
2b. GROUP	
3. REPORT TITLE A METHOD FOR PRODUCING QUANTITATIVELY BASED MILITARY GEOGRAPHIC INTELLIGENCE PRODUCTS FOR AN AIRMOBILE DIVISION	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final report	
5. AUTHOR(S) (First name, middle initial, last name) Joseph L. Decell Jack K. Stoll Warren E. Grabau Beryl G. Stinson Bob O. Benn	
6. REPORT DATE July 1972	7a. TOTAL NO. OF PAGES 80
7b. NO. OF REFS 5	
8. CONTRACT OR GRANT NO.	
9. PROJECT NO. c. Intra-Army Order No. MERDC 194.69, Task 9860032	
9b. OTHER REPORT NO(S) (Any other numbers that may be assigned to report)	
10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited.	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia
13. ABSTRACT Seven prototype military geographic intelligence (MGI) products, specifically designed to meet the terrain intelligence needs of an airmobile division in a tactical situation, were developed. The development included five steps: (1) compilation of conceptual models relating the terrain to certain tactical activities; (2) identification of significant terrain factors and assignment of class ranges of their values on the basis of the requirements of the models; (3) construction of factor maps of the selected study area on the basis of the selected terrain factor classes; (4) compilation of a factor complex map for each desired MGI product; and (5) transformation of the factor complex maps to "performance prediction" maps, which were the desired end product. Schematic flow charts of the models are presented, together with lists of significant factors, tables defining classifications of factor values, and the entire array of factor maps, factor complex maps, and MGI products maps.	

DD FORM 1 NOV 68 1473 REPLACES DD FORM 1473, 1 JAN 64, WHICH IS
OBsolete FOR ARMY USE.

Unclassified
Security Classification

Unclassified
Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Airmobile operations						
Military geographic intelligence						
Terrain analysis						
Terrain models						

Unclassified
Security Classification

Foreword

This study was part of an effort to design military geographic intelligence (MGI) products to meet specific terrain intelligence needs of an airmobile division. The participation of the U. S. Army Engineer Waterways Experiment Station (WES) in the study was sponsored by the Geographic Applications Branch of the U. S. Army Engineer Topographic Laboratories (ETL). The study was authorized by Intra-Army Order No. MERDC 194-69 under Task 9860032, dated 5 June 1969.

The study was conducted by personnel of the Mobility and Environmental Systems Laboratory, WES, under the general supervision of Messrs. W. G. Shockley, Chief, and S. J. Knight, Assistant Chief, and under the direct supervision of Mr. J. L. Decell formerly of the Vehicle Studies Branch, now of the Terrain Analysis Branch.

Photo interpretation and factor mapping were performed under the supervision of Mr. J. H. Shamburger, Chief, Military Projects Section, Geology Branch, Soils and Pavement Laboratory. The conceptual models used in this study were formulated by Messrs. B. G. Stinson and J. L. Gargaro of the Vehicle Studies Branch. This report was written by Mr. J. L. Decell, with assistance from Messrs. W. E. Grabau, B. O. Benn, J. K. Stoll, and R. G. Stinson.

Directors of WES during the conduct of this study were COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE. Technical Director was Mr. F. R. Brown.

Contents

	<u>Page</u>
Foreword	iii
Conversion Factors, British to Metric Units of Measurement. . .	vii
Summary	ix
Background	1
Objectives of Study	1
Scope	1
Approach	3
Selection of study area	3
Selection of prototype MGI products	4
Formulation of models	4
Terrain analysis.	5
Conclusions and Recommendations	9
Conclusions	9
Recommendations	9
Tables 1 and 2	
Figures 1-52	

Preceding page blank

Conversion Factors, British to Metric Units of Measurement

British units of measurement used in this report can be converted to metric units as follows:

<u>Multiply</u>	<u>By</u>	<u>To Obtain</u>
miles	1.609344	kilometers
pounds per square inch	0.00689476	megapascals (= meganewtons per square meter)

Preceding page blank

Summary

Seven prototype military geographic intelligence (MGI) products, specifically designed to meet the terrain intelligence needs of an air-mobile division in a tactical situation, were developed. The development included five steps: (1) compilation of conceptual models relating the terrain to certain tactical activities; (2) identification of significant terrain factors and assignment of class ranges of their values on the basis of the requirements of the models; (3) construction of factor maps of the selected study area on the basis of the selected terrain factor classes; (4) compilation of a factor complex map for each desired MGI product; and (5) transformation of the factor complex maps to "performance prediction" maps, which were the desired end product. Schematic flow charts of the models are presented, together with lists of significant factors, tables defining classifications of factor values, and the entire array of factor maps, factor complex maps, and MGI products maps.

Preceding page blank

A METHOD FOR PRODUCING QUANTITATIVELY BASED
MILITARY GEOGRAPHIC INTELLIGENCE PRODUCTS
FOR AN AIRMOBILE DIVISION

Background

1. In the past, military geographic intelligence (MGI) products have generally been designed to meet the needs of numerous potential users. Consequently, they often contain information on more subjects than any specific user needs, but seldom enough information on individual subjects that are critical to a specific user's requirements. A new concept is to produce terrain intelligence products to meet the specific needs of specialized Field Army elements, such as an airmobile division.

Objectives of Study

2. The objectives of the study reported herein were to develop the procedures required to produce a family of MGI products designed to furnish the specific information required by the commander of an airmobile division to plan and conduct certain critical tactical activities, and to produce prototype versions (maps) of these products.

Scope

3. The MGI products selected for the program were cross-country speed for vehicles, cross-country speed for personnel, helicopter landing zone (HLZ) construction effort, concealment characteristics, cover characteristics, airfield construction effort, and bunker construction effort. The prototype MGI product maps were to be constructed to a scale of 1:50,000, and were to cover a small area near Manati, Puerto Rico. For those activities for which no mathematical performance prediction models exist, conceptual models were to be prepared, but no

attempt was to be made to make such models into rigorous mathematical constructions. The emphasis of this program was on the development of new formats and concepts for MGI products, and not on the quantitative reliability of the prototypes.

4. The rationale for developing the proposed new MGI products is based on recognition of the fact that one of the most critical of the tactical commander's information needs is knowledge of the effects of the terrain on his men and equipment. That is, he needs a prediction of their performance in the proposed operational region. In the past, the predictions furnished him by the terrain analysts have been almost entirely subjective and qualitative: "cross-country going is good," "concealment potential is poor," and the like. It seems apparent that an MGI product that provided quantitative answers to the commander's questions concerning terrain impacts would be a significant improvement.

5. The acceptance of the need for quantitative predictions makes it mandatory that the predictions be based on some form of mathematically rigorous procedure. In effect, this means that the first step in the analytical process must be the development of mathematical performance prediction models of military functions to produce objective evaluations of the effects of terrain on the modeled functions. The model identifies the terrain factors that significantly affect the performance of the modeled function; those factors can then be objectively mapped in quantitative terms over the area of interest. The factor maps can then be compiled into a factor complex map that will contain the specific data required by one of the performance prediction models. The map can then be readily transformed into a performance prediction map by using the displayed terrain descriptions as input parameters to the appropriate performance prediction model.* The resulting performance prediction map becomes an invaluable tool for determining the

* W. E. Grabau, J. K. Stoll, and B. G. Stinson, "A Plan for Quantitative Evaluation of the Cross-Country Performance of Prototype Vehicles," Miscellaneous Paper M-70-7, Sep 1970, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

magnitudes of the effects of terrain on tactical functions in any part of the area of interest.

6. The proposed procedure yields objective evaluations of the effects of terrain on military activities, and thus reduces the dependence of the commander on subjective judgments. Even given an adequate description of the terrain, few tactical commanders have the necessary skill to quantitatively evaluate all of the terrain/activity interactions that will affect the operations of his unit. In most cases, the best that can be obtained is scarcely more than a subjective and very general qualitative estimate of such interactions. In modern war, this is no longer adequate.

Approach

Selection of study area

7. The area for which the prototype MGI products were produced was selected on the basis of four considerations. First, it was believed that the area selected should offer a wide variety of terrain characteristics. Second, as much ground-truth data as possible should be available within the area, because most of the actual mapping would have to be done by photo interpretation. Third, it was essential that recent, high quality air photography at a scale of about 1:20,000 be available, so that the factor mapping would be as reliable as possible. Fourth, the area should be reasonably accessible, so that field checks of the mapping could be conducted at some time in the future, if necessary.

8. Several areas were proposed, including small regions in Puerto Rico, the Federal Republic of Germany, Thailand, the Yuma area of Arizona, and the northeastern United States. An analysis of these areas revealed that the Manati area (bounded by $66^{\circ}37'30''$ and $66^{\circ}22'30''$ west longitude and $18^{\circ}15'$ and $18^{\circ}30'$ north latitude), Puerto Rico, would best satisfy all of the requirements. Adequate map and photographic coverage was available, the terrain presented a wide variation in conditions, abundant quantitative ground-truth data were readily

available, and the area was readily accessible.

Selection of prototype MGI products

9. Through a literature search of field manuals and discussions with personnel of airmobile division units, it was determined that, following the selection of the tactical objective, the operational plans for an airmobile division operation are developed sequentially as follows:

- a. Ground Tactical Plan (based on the objective)
- b. Air Landing Plan (based on the Ground Tactical Plan)
- c. Air Movement Plan (based on the Air Landing Plan)
- d. Loading Plan (based on the Air Movement Plan)
- e. Staging Plan (based on the Loading Plan)

Program restrictions were such that prototype MGI products were developed to satisfy only the first three of the operation plans (i.e. items a, b, and c, above).

10. Examination of the three operational plans (i.e. Ground Tactical Plan, Air Landing Plan, and Air Movement Plan), revealed that a major part of their terrain intelligence requirements could be met by the seven MGI products:

- a. Cross-country speed for vehicles
- b. Cross-country speed for personnel
- c. HLZ construction effort
- d. Concealment characteristics
- e. Cover characteristics (weapons effectiveness)
- f. Airfield construction effort
- g. Bunker construction effort

Formulation of models

11. Because the end product of military terrain analysis is ideally a quantitative prediction of the performance of a military activity or item of equipment in the operational environment, it follows that the actual terrain analysis had to be preceded by the compilation of an analytical model for each MGI product. Suitable mathematical models already existed for three of the MGI products: cross-country locomotion of vehicles, HLZ construction effort, and airfield

construction effort (figs. 1, 2, and 3, respectively). Since no mathematical models existed for the other four MGI products, the first effort had to be the compilation of such models. However, because the objective of the program was primarily to develop the formats of the new products and the procedures for constructing them, and not to prepare actual MGI products for tactical use, the four models were brought only to the conceptual stage. That is, they were formulated into reasonably sophisticated flow charts, but no attempt was made to complete them by converting the flow charts into completely quantitative mathematical statements. In consequence, four of the prototype MGI products (cross-country speed for personnel, concealment, cover, and bunker construction effort) are probably not intrinsically reliable, since the map unit values were obtained by somewhat subjective methods, albeit closely guided by their respective conceptual models. The four conceptual models are presented in graphic form (i.e. as flow charts) in figs. 4-7.

Terrain analysis*

12. The performance prediction models are in essence only highly formalized statements describing the interrelations among terrain factors and military activities or items of materiel. Thus, their formulation required the identification and definition of all terrain factors that are significant to the seven models. A total of 24 factors was found to be required to satisfy the input requirements of the seven models. A listing of these factors and their associations with each individual model and resulting products is shown in fig. 8.

13. Once the terrain factors were determined, class ranges were selected for each factor to be mapped. The factor classes were established by weighing several different considerations:

- a. Requirements for accuracy in the predictions. If great accuracy is required, class intervals must be small; if

* U. S. Army Engineer Waterways Experiment Station, CE, "Mobility Environmental Research Study: A Quantitative Method for Describing Terrain for Ground Mobility," Technical Report No. 3-726 (Vols I-VIII), Vicksburg, Miss.

relatively general predictions are acceptable, the class intervals may be large.

- b. Reliability of acquired terrain data. If the terrain data can be obtained with great accuracy, the class intervals may be small, but if the terrain data can only be obtained as estimates, the class limits must be large, and in fact ought to be as large as the "error of estimation" of the factor values.
- c. Significance of the factor to the performance prediction. If the factor plays only a small role in the performance prediction, the class intervals may be large, but if the factor is a major controlling element, then the class interval should be small.

14. It is evident that the actual class intervals were obtained by a trade-off process. The factor classes ultimately selected for the 24 factors mapped in this study are presented in table 1. References and a definition relating to the origin of selected factor classes are presented in table 2.

15. Factor mapping. The general sequence of stages by which a final MGI product map is constructed is shown in fig. 9. After the significant factors have been selected, the relevant data are withdrawn from the data files. These data comprise the available "ground truth" required by the photo interpreters. The ground truth is then plotted on an overlay that can be placed on the available aerial photographs. Then, on the basis of the accuracy of the data and other considerations (as previously noted), the total range of values presented by each factor is subdivided into acceptable classes, designated "factor classes." With the plotted data as guides, the photo interpreter then delineates the areas of occurrence of each factor class, one factor at a time. Thus there are as many "factor maps" as there are significant factors in the problem (in the present instance, 24).

16. When attempts to map the various factors are made, it is quickly discovered that there are two general classes between which the analyst is forced to differentiate because of peculiarities in their occurrence. All of the factors (see fig. 8) relating to substrate characteristics, surface macrogeometry, surface microgeometry, and vegetation structure are such that their expression can be mapped as areal

distributions. The reason for this is that, in general, they tend to occur in homogeneous areas that are large enough to be readily delineated on maps of the selected scale. These factors may thus be designated "areal terrain factors." The remainder of the factors, namely those describing hydrologic geometry, occur for all practical purposes only as linear features too narrow to show as a band on the appropriate maps. The most convenient method of dealing with this problem is to map them with line symbols. These factors may be designated "linear terrain factors." Fortunately, in most analytical processes the two kinds of distributions tend to result in different kinds of effects on military activities, and thus there is no particular reason to attempt to combine the two on the same maps.

17. The 24 factor maps specified as necessary for the seven MGI products were mapped for the entire study area. Small segments of those maps are illustrated in figs. 10-33. Of these, figs. 10-27 incorporate all of the areal terrain factors, and figs. 28-33 incorporate all linear factors.

18. Factor complex map compilation. After all of the individual factor maps have been completed, the array needed as input values for any one MGI product is selected and "stacked" to produce a factor complex map. For example, from the matrix of MGI prototype products versus factors presented in fig. 8, we note that the "Concealment" MGI product will need nine factors in the factor complex map: height of surface microgeometry feature, spacing of surface microgeometry feature, height of tallest plants, number of stems of tallest plants (per 1000 m²), stem diameters of tallest plants, horizontal obscuration, vertical obscuration, bank height of hydrologic geometry feature, and bank angle of hydrologic geometry feature. The process of "stacking" is illustrated in detail in fig. 34.

19. The legends for the factor complex maps may become quite complex. In effect, each map added to the "stack" adds at least one digit to the code describing the factor array in each patch. For example, let it be assumed that Factor A in fig. 34 represents "height of surface microgeometry feature" and Factor B represents "spacing of

surface microgeometry feature." The two-digit code in the patches of the factor complex map (Factors A + B, fig. 34) then represents the specific combination of factor values of the two factors in each patch. That is, the patch identified by a "11" code is characterized by surface microgeometry features 0-30 cm high and spaced at distances of less than 2 m apart. A complete legend is illustrated in fig. 34. It should be noted that the four simple units on the individual factor maps have proliferated into 13 map units on the factor complex map. It can readily be seen that the legend for a factor complex map that incorporates many factor maps may become very complex indeed, since the patch codes will contain at least as many digits as there are factors in the compilation. For example, the areal terrain factor complex map compiled for use with the "cross-country speed of vehicles" model will have a 10-digit code representing each patch, while that for the "helicopter landing zone construction effort" model will have 13.

20. Such arrays of numbers are far too long to be convenient as patch identifiers on the factor complex maps, so the usual technique is to simplify the identification code used on the factor complex maps. The process is illustrated in fig. 35. The identification codes are ranked in numerical order, and a "map unit" number is assigned to each in rigorous numerical sequence. These numbers are then placed in the appropriate patches on the factor complex maps. This procedure has the obvious disadvantage of making legend utilization somewhat more difficult: the user identifies the map unit, uses that number to identify the factor complex identification code, and then uses the digits in that code to establish the relevant factor value classes.

21. Examples of the various factor complex maps produced for this study are presented in figs. 36-44. On the map legends, the columns headed "Complex" contain the factor complex identification code. In every case, the order in which the factor codes are placed in the identification code is the same as the order of listing in fig. 8.

22. Performance prediction maps. Each "patch" (i.e. each delineated area) on the factor complex map represents an area that is essentially homogeneous with respect to the factors included in the

compilation. Thus, the factor values represented by the class codes on one patch on the map can be accepted as input values to the relevant performance prediction model, and one calculation will result in a value that represents the performance prediction for that entire patch. The general procedure is then to calculate the performance prediction for each patch, and then group the resulting values into convenient classes for the final MGI product map. In the normal course of events, some adjacent patches will exhibit closely similar performance values, and thus may fall into the same performance class. In this event, the boundaries between the similar patches are removed from the final MGI product map. The resultant MGI product map (or performance prediction map) may then resemble the example illustrated in fig. 45. In the example, the "model" used to make a "performance prediction" is only a simple algebraic relation, and is for illustrative purposes only.

23. Examples of portions of the performance prediction maps produced for this study are presented in figs. 46-52.

Conclusions and Recommendations

Conclusions

24. The concept and techniques in this study appear to comprise an expedient and economical method of producing quantitatively based MGI products for the field commander. In addition, the procedure seems to be far more objective than previous methods, thus making MGI products produced by different teams of analysts more uniform and less subject to individual bias or preconception.

Recommendations

25. In order to reduce the time required to compile the various MGI products, and to improve the reliability and objectivity of the final products, it is recommended that:

- a. Research be organized to develop the various mathematical performance prediction models that will be required to handle the full spectrum of terrain intelligence needs.

- b. Effort be devoted to the automation of many of the processes that must now be done manually. Of specific importance is the process of compiling the factor complex maps from the factor maps; this process is presently very time consuming and therefore costly, but it is entirely rigorous and could accordingly be accomplished by computer processing.

Table 1
Summary of Terrain Factor Classes Used in Constructing
Terrain Factor Complex Maps

<u>Substrate characteristics</u>	<u>Surface macrogeometry</u>
Soil type:	Slope, deg:
50% stones or rock fragments	0 to 2
Gravel	2 to 10
Sand	10 to 30
Silt	30 to 90
Clay	
Moisture content, cm water/cm soil:	Elevation, m:
0.0 to 0.1	0 to 10
0.1 to 0.3	10 to 500
0.3 to 0.8	500 to 1000
0.8 to 1.0	>1000
Surface strength, RCI:	Surface microgeometry
0 to 20	Height of feature, cm:
20 to 30	0 to 30
30 to 60	30 to 50
>60	50 to 70
Slope of soil strength profile, deg:	>70
0 to 10	Approach angle of feature, deg:
10 to 30	0 to 5
30 to 60	5 to 10
60 to 120	10 to 20
>120	20 to 30
Unconfined compressive strength, psi: [*]	30 to 90
<300	Spacing of feature, m:
>300	0 to 2
Soil thickness, m:	2 to 4
No soil	4 to 10
<0.2	>10
0.2 to 1.0	Vegetation structure
1.0 to 5.0	Height of tallest plants, m:
>5.0	0.0 to 0.5
Depth to water table, m:	0.5 to 3.0
0.0 to 0.5	3.0 to 8.0
0.5 to 1.5	8.0 to 14.0
1.5 to 4.0	14.0 to 24.0
>4.0	>24.0

(Continued)

* A table of factors for converting British units of measurement to metric units is presented on page vii.

Table 1 (Concluded)

<u>Vegetation structure (continued)</u>	<u>Hydrologic geometry</u>
Number of stems of tallest plants per 1000 m ² :	Bank height, m:
>900	0 to 1
500 to 900	1 to 2
100 to 500	2 to 3
10 to 100	3 to 5
2 to 10	>5
0 to 2	
Stem diameter of tallest plants, cm:	Bank angle, deg:
0 to 2	0 to 10
2 to 7	10 to 20
7 to 15	20 to 45
15 to 30	45 to 90
30 to 60	
>60	
Specific gravity of green wood:	Water width, m:
0.0 to 0.20	No water
0.20 to 0.40	0 to 9
0.40 to 0.60	9 to 15
0.60 to 0.80	15 to 21
>0.80	21 to 30
	>30
Horizontal obscuration, m:	Gap width, m:
0 to 5	0 to 9
5 to 10	9 to 15
10 to 20	15 to 21
20 to 50	21 to 30
>50	30 to 50
	>50
Vertical obscuration, % covered:	Water depth, cm:
0 to 10	No water
10 to 30	01 to 100
30 to 60	100 to 300
60 to 100	>300
	Water current velocity, mps:
	No water
	0 to 1
	1 to 2
	2 to 3
	>3

Table 2
References and/or Definitions for Origin of Selected
Factor Classes Found in Table 1

Factor	Class	Reference and/or Definition
Soil type	50% stones or rock fragments	From Unified Soil Classification System
	Gravel	
	Sand	
	Silt	
	Clay	
Surface strength	0 to 20 RCI	J. G. Kennedy and E. S. Rush, "Trafficability of Soils; Development of Revised Mobility Index Formula for Self-Propelled Wheeled Vehicles in Fine-Grained Soils," Technical Memorandum No. 3-240, 18th Supplement, Mar 1968, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
	20 to 30 RCI	
	30 to 60 RCI	
	>60 RCI	
Slope of soil strength profile	0 to 10 deg	
	10 to 30 deg	
	30 to 60 deg	
	60 to 120 deg	
	>120 deg	
Approach angle of feature	0 to 5 deg	
	5 to 10 deg	
	10 to 20 deg	
	20 to 30 deg	
	30 to 90 deg	
Horizontal obscuration	0 to 5 m	Defined as the distance at which an object of a given size is totally obscured. For this study the objects considered were a man and a jeep. "Visibility Studies I, Instrument and Concepts Development" (in preparation), U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
	5 to 10 m	
	10 to 20 m	
	20 to 50 m	
	>50 m	

(Continued)

Table 3 (Concluded)

Factor	Class	Reference and/or Definition
Vertical obscuration	0 to 10% covered 10 to 30% covered 30 to 60% covered 60 to 100% covered	Defined as the proportion of a given area that is encompassed when the crowns of all plants are projected vertically downward to the ground. H. T. Odum and R. F. Pigeon, ed., "Tropical Rain Forest; A Study of Irradiation and Ecology at El Verde, Puerto Rico," 1970, Division of Technical Information Extension, U. S. Atomic Energy Commission, Oak Ridge, Tenn.
Bank angle	0 to 10 deg 10 to 20 deg 20 to 45 deg 45 to 90 deg	See below
Water width	No water 0 to 9 m 9 to 15 m 15 to 21 m 21 to 30 m >30 m	<p>The diagram illustrates a river bend with a wavy water surface. A vertical line extends from the top of the bank down to the water level. The angle between this vertical line and the horizontal is labeled ①. Two horizontal arrows indicate the width of the river: one arrow spans the distance across the river at the water level, labeled ②; another arrow spans the distance across the river at the top of the bank, labeled ③.</p> <p>① BANK ANGLE ② WATER WIDTH ③ GAP WIDTH</p>
Gap width	0 to 9 m 9 to 15 m 15 to 21 m 21 to 30 m 30 to 50 m > 50 m	See above

Fig. 1. WES analytical model for predicting vehicle performance

Fig. 2. HIZ construction effort

Fig. 3. Airfield construction effort model

Fig. 4. An analytical model for determining cross-country speed for personnel

Fig. 5. An analytical model for determining concealment offered by naturally occurring terrain features

- * FOR THIS STUDY, MICROGEOMETRY IS DEFINED AS THOSE FEATURES OF THE TERRAIN NOT DELIMITATED BY NORMAL MAP CONTOUR INTERVALS THAT ARE OF SUFFICIENT MAGNITUDE TO COVER AN OBJECT OF A GIVEN SIZE.

Fig. 6. An analytical method for determining cover offered by naturally occurring terrain features

Fig. 7. Analysis of requirements for bunker construction effort relative to pertinent terrain features

PROTOTYPE MG1 PRODUCTS AND MODELS*

FACTORS	CROSS-COUNTRY SPEED FOR VEHICLES	CROSS-COUNTRY SPEED FOR PERSONNEL	HIZ CONSTRUCTION EFFORT	CONCEALMENT CHARACTERISTICS	COVER CHARACTERISTICS	AIRFIELD CONSTRUCTION EFFORT	BUNKER CONSTRUCTION EFFORT
SUBSTRATE CHARACTERISTICS							
SOIL TYPE			X		X	X	X
MOISTURE CONTENT			X			X	X
SURFACE STRENGTH	X	X			X	X	X
SLOPE OF SOIL STRENGTH PROFILE	X				X		
UNCONFINED COMPRESSIVE STRENGTH			X			X	X
SOIL THICKNESS			X			X	X
DEPTH TO WATER TABLE						X	X
SURFACE MACROGEOMETRY							
SLOPE	X	X	X		X	X	X
ELEVATION			X	X			
SURFACE MICROGEOMETRY							
HEIGHT OF FEATURE	X	X	X	X	X		
APPROACH ANGLE OF FEATURE	X		X				
SPACING OF FEATURE	X	X	X	X	X		
VEGETATION STRUCTURE							
HEIGHT OF TALLEST PLANTS			X	X	X	X	
NO OF STEMS OF TALLEST PLANTS/1000 M ²	X	X	X	X	X	X	X
STEM DIAMETER OF TALLEST PLANTS	X	X	X	X	X	X	X
SPECIFIC GRAVITY OF GREEN WOOD	X		X				X
HORIZONTAL OBSCURATION	X	X		X			
VERTICAL OBSCURATION					X		
HYDROLOGIC GEOMETRY							
BANK HEIGHT	X	X			X	X	
BANK ANGLE	X	X			X	X	
WATER WIDTH	X	X					
CAP WIDTH	X	X					
WATER DEPTH	X	X					
WATER CURRENT VELOCITY	X	X					

* THE MODEL IS THE ANALYTICAL PROCESS BY WHICH THE IDENTIFIED FACTORS ARE
CONSIDERED, THE RESULT BEING A PRODUCT OF THE SAME NAME.

Fig. 8. Matrix of interrelations among MG1 products and factors

Fig. 9. Sequence of stages in the construction of MGI product map

Fig. 10. Factor map. Substrate characteristics: Soil type

Fig. 11. Factor map. Substrate characteristics: Moisture content

Fig. 12. Factor map. Substrate characteristics: Surface strength

Fig. 13. Factor map. Substrate characteristics: Slope of soil strength profile

2

LEGEND

MAP UNIT	CLASS RANGE: UNCONFINED COMPRESSIVE STRENGTH, PSI		
		1	2
	< 300		
	> 300		

Fig. 14. Factor map. Substrate characteristics: Unconfined compressive strength

28

Fig. 15. Factor map. Substrate characteristics: Soil thickness

Fig. 16. Factor map. Substrate characteristics: Depth to water table

Fig. 17. Factor map. Surface macrogeometry: Slope

LEGEND

MAP UNIT	CLASS RANGE. ELEVATION, M
1	0-10
2	11-500
3	500-1000
4	> 1000

Fig. 18. Factor map. Surface macrogeometry: Elevation

Fig. 19. Factor map. Surface microgeometry: Height of feature

Fig. 20. Factor map. Surface microgeometry: Approach angle of feature

Fig. 21. Factor map. Surface microgeometry: Spacing of feature

Fig. 22. Factor map. Vegetation structure: Height of tallest plants

Fig. 23. Factor map. Vegetation structure: Number of stems of tallest plants per 1000 m²

Fig. 24. Factor map. Vegetation structure: Stem diameter of tallest plants

Fig. 25. Factor map. Vegetation structure: Specific gravity of green wood

Fig. 26. Factor map. Vegetation structure: Horizontal obscuration

Fig. 27. Factor map. Vegetation structure: Vertical obscuration

Fig. 28. Factor map. Hydrologic geometry: Bank height

Fig. 29. Factor map. Hydrologic geometry: Bank angle

Fig. 30. Factor map. Hydrologic geometry: Water width

Fig. 31. Factor map. Hydrologic geometry: Gap width

Fig. 32. Factor map. Hydrologic geometry: Water depth

Fig. 33. Factor map. Hydrologic geometry: Water current velocity

FACTOR "A"

FACTOR "B"

FACTORS "A" + "B"

LEGEND

MAP CODE	SURFACE MICROGEOMETRY			
	FACTOR "A"	FACTOR "B"	CLASS CODE	SPACING OF FEATURE M
	CLASS CODE	HEIGHT OF FEATURE CM		
11	1	0.30	1	0.2
12	1	0.30	2	2.4
21	2	30.50	1	0.2
22	2	30.50	2	2.4
23	2	30.50	3	4.10
31	3	50.70	1	0.2
32	3	50.70	2	2.4
33	3	50.70	3	4.10
34	3	50.70	4	> 10
41	4	> 70	1	0.2
42	4	> 70	2	2.4
43	4	> 70	4	4.10
44	4	> 70	4	> 10

Fig. 34. Method of "stacking" factor maps to create a factor complex map

FACTOR COMPLEX MAP

<u>MAP UNIT</u>	<u>FACTOR COMPLEX IDENTIFICATION CODE</u>	
	<u>FACTORS</u> <u>"A"</u> <u>"B"</u>	
1		11
2		12
3		21
4		22
5		23
6		31
7		32
8		33
9		34
10		41
11		42
12		43
13		44

Fig. 35. Technique for simplification of identification code

Fig. 36. Factor complex map. Areal terrain factor for cross-country speed for vehicles (M151) (sheet 1 of 2)

Legend
Cross Country Speed for Vehicles
Factor Complex Map

Map Unit	Complex	Map Unit	Complex	Map Unit	Complex	Map Unit	Complex	Map Unit	Complex	Map Unit	Complex
1	1211143353	100	332542115	17	4121121113	292	4131421343	305	5211542151	406	422512155
2	1211143463	101	332542136	206	4121125435	248	4131511615	306	5212143343	405	422513233
3	1211121112	102	332544243	201	4121121115	289	4131512151	307	5212223123	406	422513265
4	1211125535	103	332544243	202	4121121115	300	4131511342	308	412222125	407	422514243
5	1211125535	104	4111121112	203	4121121115	301	4131513143	309	4122231244	408	422514243
6	1211161112	105	4111121115	204	4121121115	302	4131514443	310	4122311112	500	422512251
7	1212111112	106	41111212151	205	4121121215	303	4131522125	301	4125111115	501	422522346
8	12121212151	107	41111212151	206	4121121215	304	4131522125	302	4125111115	501	422522346
9	12121212151	108	41111212151	207	4121121115	305	4131522125	303	4125111115	502	422523436
10	1411211112	109	4111121215	208	4121121115	306	4131522125	304	4125112125	503	422523215
11	1411254335	110	41111212151	209	4121121115	307	4131522342	305	4125112125	504	422523215
12	1411254335	111	41111212151	210	4121121115	308	4131522342	306	4125112125	504	422523215
13	1411161112	112	4111121353	211	4121121215	309	4131522342	307	4125113243	505	422546243
14	1411161112	113	4111121112	212	4121121215	310	4131523143	308	4125113243	506	422546243
15	1411161112	114	4111121115	213	4121121215	311	4131523143	309	4125212125	508	4231121115
16	1411161112	115	4111121115	214	4121121215	312	4131524443	310	4125212125	509	4231121115
17	1411161112	116	41111212151	215	4121121215	313	4131524443	311	4125212125	510	4231121115
18	1411211115	117	41111212151	216	4121121115	314	4131541115	412	4125212125	511	4231121115
19	1411211115	118	41111212151	217	4121121115	315	4131542151	413	4125212125	512	4231121115
20	1411211115	119	41111212151	218	4121121215	316	4131543143	414	4125212125	513	423114223
21	1412111112	120	4111121215	219	4121121115	317	4131543143	415	4125212125	514	423114334
22	1412112151	121	41111221215	220	4121121115	318	4131551115	416	4121121115	515	4231212155
23	1412112151	122	41111221215	221	4121121115	319	4131551115	417	4121121115	516	4231212155
24	1412112151	123	41111221215	222	4121121115	320	4131551115	418	4121121115	517	4231212155
25	1412112115	124	41111221215	223	4121121115	321	4131551115	419	4121121115	518	4231212155
26	1421141112	125	411112212151	224	4121121115	322	4132543344	420	4121121115	519	4231212155
27	1421141112	126	411112212151	225	4121121115	323	4132546243	421	4121121115	520	4231212155
28	2311113353	127	4111131115	226	41211242151	324	4141211115	422	4121121115	521	4231212155
29	2311163353	128	4111131115	227	41211242151	325	4141211115	423	4121121115	522	4231212155
30	2312112151	129	4111131115	228	41211242151	326	4141211115	424	4121121115	523	4231212155
31	2312112151	130	4111131115	229	41211242151	327	4141211115	425	4121121115	524	4231212155
32	2321121115	131	4111131115	230	41211242151	328	4141211115	426	4121121115	525	4231212155
33	2321121115	132	4111131115	231	41211242151	329	4141211115	427	4121121115	526	4231212155
34	2321121115	133	4111131115	232	41211242151	330	4141211115	428	4121121115	527	4231212155
35	3131144463	134	411112212151	233	41211242151	331	4141211115	429	4121121115	528	4231212155
36	3131144463	135	411112212151	234	41211242151	332	4141211115	430	4121121115	529	4231212155
37	3131144463	136	411112212151	235	41211242151	333	4141211115	431	4121121115	530	4231212155
38	3131144463	137	411112212151	236	41211242151	334	4141211115	432	4121121115	531	4231212155
39	3131144463	138	411112212151	237	41211242151	335	4141211115	433	4121121115	532	4231212155
40	3131152115	139	411112212151	238	41211242151	336	4141211115	434	4121121115	533	4231212155
41	3131152115	140	411112212151	239	41211242151	337	4141211115	435	4121121115	534	4231212155
42	3131152115	141	411112212151	240	41211242151	338	4141211115	436	4121121115	535	4231212155
43	3131152115	142	411112212151	341	41211242151	339	4141211115	437	4121121115	536	4231212155
44	3131152115	143	411112212151	342	41211242151	340	4141211115	438	4121121115	537	4231212155
45	3131152115	144	411112212151	343	41211242151	341	4141211115	439	4121121115	538	4231212155
46	3131152115	145	411112212151	344	41211242151	342	4141211115	440	4121121115	539	4231212155
47	3131152115	146	411112212151	345	41211242151	343	4141211115	441	4121121115	540	4231212155
48	3131152115	147	411112212151	346	41211242151	344	4141211115	442	4121121115	541	4231212155
49	3131152115	148	411112212151	347	41211242151	345	4141211115	443	4121121115	542	4231212155
50	3221112151	149	411112212151	348	41211242151	346	4141211115	444	4121121115	543	4231212155
51	3221112151	150	411112212151	349	41211242151	347	4141211115	445	4121121115	544	4231212155
52	3221112151	151	411112212151	350	41211242151	348	4141211115	446	4121121115	545	4231212155
53	3221112151	152	411112212151	351	41211242151	349	4141211115	447	4121121115	546	4231212155
54	3221112151	153	411112212151	352	41211242151	350	4141211115	448	4121121115	547	4231212155
55	3221112151	154	411112212151	353	41211242151	351	4141211115	449	4121121115	548	4231212155
56	3221112151	155	411112212151	354	41211242151	352	4141211115	450	4121121115	549	4231212155
57	3221112151	156	411112212151	355	41211242151	353	4141211115	451	4121121115	550	4231212155
58	3222112115	157	411112212151	356	41211242151	354	4141211115	452	4121121115	551	4231212155
59	3222112115	158	411112212151	357	41211242151	355	4141211115	453	4121121115	552	4231212155
60	3222112115	159	411112212151	358	41211242151	356	4141211115	454	4121121115	553	4231212155
61	3222112115	160	411112212151	359	41211242151	357	4141211115	455	4121121115	554	4231212155
62	3222112115	161	411112212151	360	41211242151	358	4141211115	456	4121121115	555	4231212155
63	3222112115	162	411112212151	361	41211242151	359	4141211115	457	4121121115	556	4231212155
64	3222112115	163	411112212151	362	41211242151	360	4141211115	458	4121121115	557	4231212155
65	3222112115	164	411112212151	363	41211242151	361	4141211115	459	4121121115	558	4231212155
66	3222112115	165	411112212151	364	41211242151	362	4141211115	460	4121121115	559	4231212155
67	3222112115	166	411112212151	365	41211242151	363	4141211115	461	4121121115	560	4231212155
68	3222112115	167	411112212151	366	41211242151	364	4141211115	462	4121121115	561	4231212155
69	3311141112	168	411112212151	367	41211242151	365	4141211115	463	4121121115	562	4231212155
70	33111521346	169	411112212151	368	41211242151	366	4141211115	464	4121121115	563	4231212155
71	33111521346	170	411112212151	369	41211242151	367	4141211115	465	4121121115	564	4231212155
72	33111521346	171	411112212151	370	41211242151	368	4141211115	466	4121121115	565	4231212155
73	3321122115	172	411112212151	371	41211242151	369	4141211115	467	4121121115	566	4231212155
74	3321122115	173	411112212151	372	41211242151	370	4141211115	468	4121121115	567	4231212155
75	3321122115	174	411112212151	373	412						

Fig. 37. Factor complex map. Areal terrain factors for cross-country speed for personnel (sheet 1 of 2)

Cross-Country Movement
of Personnel
Complex Legend

Map Unit	Complex No.								
1	111112211	76	322244423	151	412123332	226	421212011	302	432111115
2	111122117	77	322244434	152	412123333	227	421213332	303	432111116
3	111125545	78	331212721	153	412123443	228	421213333	304	432112211
4	111125555	79	331214331	154	412124333	229	421241115	305	432112715
5	111131115	80	332124423	155	412124334	230	421241165	306	432113332
6	111141115	81	332124434	156	412124355	231	421242211	307	432113333
7	111142127	82	332132215	157	412124431	232	421111115	308	432114423
8	111142311	83	332134334	158	412124443	233	421111165	309	432114434
9	111143333	84	332134423	159	412124551	234	422112211	310	432114443
10	111212112	85	332134434	160	412125545	235	422112215	311	432121115
11	111212211	86	332122215	161	412125555	236	422113332	312	432121165
12	111212211	87	332124423	162	412131115	237	422113333	313	432122211
13	111213331	88	332124431	163	412132211	238	422114333	314	432122215
14	112141115	89	332242215	164	412132215	239	422114334	315	432122343
15	112143433	90	332244334	165	412133343	240	422114443	316	432123335
16	112712112	91	332244423	166	412133423	241	422121115	317	432123333
17	112212211	92	332244434	167	412134333	242	422121165	318	432124333
18	121111115	93	332344423	168	412134355	243	422122211	319	432124365
19	121112211	94	333122215	169	412134443	244	422122215	320	432124423
20	121211115	95	333244423	170	412135545	245	422122343	321	432124434
21	121311115	96	342244423	171	412141115	246	422123333	322	432134443
22	121212211	97	411111165	172	412141165	247	422124333	323	432131111
23	122141115	98	411112112	173	412142211	248	422124334	324	432132211
24	132142112	99	411112211	174	412142215	249	422124355	325	432132215
25	211131115	100	411113332	175	412143333	250	422124423	326	432134423
26	211143333	101	411113333	176	412143343	251	422124434	327	432134424
27	212122211	102	411121115	177	412143443	252	422124443	328	432134415
28	212212211	103	411122212	178	412144321	253	422125515	329	432142211
29	222212211	104	411122211	179	412144355	254	422125555	330	432142215
30	232212211	105	411125545	180	412144423	255	422131115	331	432143332
31	311111115	106	411125555	181	412144431	256	422132211	332	432143333
32	311121112	107	411131115	182	412144443	257	422132215	333	432144331
33	311122211	108	411133333	183	412145505	258	422133333	334	432144345
34	311122115	109	411133343	184	412145555	259	422134334	335	432144423
35	311212115	110	411135555	185	412211115	260	422134355	336	432144434
36	311131115	111	411141115	186	412212211	261	422134423	337	432145555
37	311141115	112	411141165	187	412212215	262	422134434	338	432212211
38	311141165	113	411142212	188	412213332	263	422134443	339	432212211
39	311142211	114	411142211	189	412213333	264	422135545	340	432213333
40	311211115	115	411143333	190	412213434	265	422135555	341	432214335
41	311212211	116	411143443	191	412214333	266	422141115	342	432214423
42	311213331	117	411144443	192	412214423	267	422141165	343	432214443
43	311213115	118	411145454	193	412214443	268	422142211	344	432222211
44	311213343	119	411145555	194	412221115	269	422142215	345	432223133
45	312461115	120	411152115	195	412222211	270	422143332	346	432224334
46	312461165	121	411211165	196	412223332	271	422143373	347	432224423
47	312121115	122	411212112	197	412223333	272	422143343	348	432234423
48	312124134	123	411212211	198	412231021	273	422143713	349	432241111
49	312131115	124	411233333	199	412233255	274	422144334	350	432244355
50	322212211	125	412213443	200	412242211	275	422144355	351	432244423
51	312222211	126	412215555	201	412242215	276	422144423	352	433114434
52	322122213	127	412221115	202	412244443	277	422144434	353	433144423
53	321212211	128	412222211	203	412244423	278	422144463	354	433144434
54	322121211	129	412255454	204	412244434	279	422145555	355	433214423
55	322114434	130	411233333	205	413244423	280	422111115	356	433214434
56	322114443	131	411235555	206	421111115	281	422112211	357	433244423
57	322121115	132	411241115	207	421112112	282	422112215	358	433244434
58	322122215	133	411241165	208	421112211	283	422113332	359	442114474
59	322124334	134	411242211	209	421113332	284	422113333	360	442114443
60	322124423	135	411243333	210	421114443	285	422114423	361	442121115
61	322124434	136	411311165	211	421121115	286	422114434	362	442122211
62	322132215	137	-121134423	212	421124333	287	422114443	363	442123315
63	322134423	138	-121111165	213	421131115	288	422114444	364	442123332
64	322135555	139	421122211	214	421133333	289	422223333	365	442141334
65	322141115	140	421122215	215	421133443	290	422223215	366	442142334
66	322142211	141	421133322	216	421134443	291	422234355	367	442144334
67	322142225	142	421133333	217	421135555	292	422242112	368	442144215
68	322144334	143	421143443	218	421141115	293	422242215	369	442144334
69	322122211	144	421144443	219	421141165	294	422244334	370	442144434
70	322212215	145	421155555	220	421142112	295	422244423	371	442212215
71	322214436	146	421212115	221	421142211	296	422244434	372	442242214
72	322244423	147	421212165	222	421143443	297	422244423	373	442244423
73	322231115	148	421222211	223	421143443	298	421244434	374	442244434
74	322232215	149	421222215	224	421211115	299	431142211	375	443114423
75	322242215	150	421222343	225	421211165	300	431111115	376	443244423
						301	431212211	377	443244434

Fig. 37. (sheet 2 of 2)

Fig. 38. Factor complex map. Areal terrain factors for HLZ construction effort (sheet 1 of 2)

Fig. 38. (sheet 2 of 2)

Fig. 39. Factor complex map. Areal terrain factors for concealment characteristics (sheet 1 of 2)

Concealment Legend

<u>Map Unit</u>	<u>Complex No.</u>	<u>Map Unit</u>	<u>Complex No.</u>
1	1111115	42	1411615
2	1122115	43	1421112
3	1122131	44	1422115
4	1133323	45	1422131
5	1133332	46	1433323
6	1133343	47	1433332
7	1144233	48	1433343
8	1144324	49	1434433
9	1144443	50	1443344
10	1211114	51	1443515
11	1211615	52	1444233
12	1221112	53	1444324
13	1222115	54	1444443
14	1222131	55	1455425
15	1223423	56	1455525
16	1233323	57	2111115
17	1233332	58	2111615
18	1233333	59	2121112
19	1233343	60	2122115
20	1234433	61	2122131
21	1243344	62	2133323
22	1243515	63	2133332
23	1244233	64	2134433
24	1244324	65	2144233
25	1244344	66	2144324
26	1244443	67	2144443
27	1245533	68	2145435
28	1255425	69	2155425
29	1255525	70	2222131
30	1311115	71	2311115
31	1322115	72	2322115
32	1322131	73	2343515
33	1333323	74	2322115
34	1333423	75	24443344
35	1334433	76	24444233
36	1343344	77	24444324
37	1343515	78	3211615
38	1344233	79	3222131
39	1344324	80	3233323
40	1355425	81	4422131
41	1411115	82	

Fig. 39. (sheet 2 of 2)

Total
Vector Complex Cover
(Nearest Effectiveness)

No.	Couples No.	No.	Couples No.	No.	Couples No.	No.	Couples No.	No.	Couples No.
1	112121112	1024	111224121	202	111212111	211	111212112	102	112111111
2	112121111	101	111211111	201	111211111	203	111211111	101	112111111
3	113121111	101	111211111	204	111211111	201	111211111	101	112111111
4	113121112	105	111211112	205	111211112	202	111211112	105	112111112
5	113211111	106	111211111	206	111211111	203	111211111	106	112111111
6	113211112	107	111211112	207	111211112	204	111211112	107	112111112
7	113211113	108	111211113	208	111211113	205	111211113	108	112111113
8	113211114	109	111211114	209	111211114	206	111211114	109	112111114
9	113211115	109	111211115	209	111211115	207	111211115	109	112111115
10	113211116	110	111211116	210	111211116	208	111211116	109	112111116
11	113211117	111	111211117	211	111211117	209	111211117	110	112111117
12	113211118	112	111211118	212	111211118	210	111211118	111	112111118
13	113211119	113	111211119	213	111211119	211	111211119	112	112111119
14	113211120	114	111211120	214	111211120	212	111211120	113	112111120
15	113211121	115	111211121	215	111211121	213	111211121	114	112111121
16	113211122	116	111211122	216	111211122	214	111211122	115	112111122
17	113211123	117	111211123	217	111211123	215	111211123	116	112111123
18	113211124	118	111211124	218	111211124	216	111211124	117	112111124
19	113211125	119	111211125	219	111211125	217	111211125	118	112111125
20	113311121	120	111311121	220	111212125	211	111212121	119	112112121
21	113311122	120	111311122	221	111212121	212	111212121	119	112112121
22	113311123	120	111311123	222	111212121	213	111212121	119	112112121
23	113311124	121	111311124	223	111212121	214	111212121	119	112112121
24	113311125	122	111311125	224	111212121	215	111212121	119	112112121
25	113311126	123	111311126	225	111212121	216	111212121	119	112112121
26	113311127	123	111311127	226	111212121	217	111212121	119	112112121
27	113311128	123	111311128	227	111212121	218	111212121	119	112112121
28	113311129	124	111311129	228	111212121	219	111212121	119	112112121
29	113311130	125	111311130	229	111212121	220	111212121	119	112112121
30	113311131	125	111311131	229	111212121	221	111212121	119	112112121
31	113311132	126	111311132	229	111212121	222	111212121	119	112112121
32	113311133	126	111311133	229	111212121	223	111212121	119	112112121
33	113311134	127	111311134	229	111212121	224	111212121	119	112112121
34	113311135	127	111311135	229	111212121	225	111212121	119	112112121
35	113311136	128	111311136	229	111212121	226	111212121	119	112112121
36	113311137	128	111311137	229	111212121	227	111212121	119	112112121
37	113311138	129	111311138	229	111212121	228	111212121	119	112112121
38	113311139	129	111311139	229	111212121	229	111212121	119	112112121
39	113311140	129	111311140	229	111212121	230	111212121	119	112112121
40	113311141	129	111311141	229	111212121	231	111212121	119	112112121
41	113311142	129	111311142	229	111212121	232	111212121	119	112112121
42	113311143	129	111311143	229	111212121	233	111212121	119	112112121
43	113311144	129	111311144	229	111212121	234	111212121	119	112112121
44	113311145	129	111311145	229	111212121	235	111212121	119	112112121
45	113311146	129	111311146	229	111212121	236	111212121	119	112112121
46	113311147	129	111311147	229	111212121	237	111212121	119	112112121
47	113311148	129	111311148	229	111212121	238	111212121	119	112112121
48	113311149	129	111311149	229	111212121	239	111212121	119	112112121
49	113311150	129	111311150	229	111212121	240	111212121	119	112112121
50	113311151	129	111311151	229	111212121	241	111212121	119	112112121
51	113311152	129	111311152	229	111212121	242	111212121	119	112112121
52	113311153	129	111311153	229	111212121	243	111212121	119	112112121
53	113311154	129	111311154	229	111212121	244	111212121	119	112112121
54	113311155	129	111311155	229	111212121	245	111212121	119	112112121
55	113311156	129	111311156	229	111212121	246	111212121	119	112112121
56	113311157	129	111311157	229	111212121	247	111212121	119	112112121
57	113311158	129	111311158	229	111212121	248	111212121	119	112112121
58	113311159	129	111311159	229	111212121	249	111212121	119	112112121
59	113311160	129	111311160	229	111212121	250	111212121	119	112112121
60	113311161	129	111311161	229	111212121	251	111212121	119	112112121
61	113311162	129	111311162	229	111212121	252	111212121	119	112112121
62	113311163	129	111311163	229	111212121	253	111212121	119	112112121
63	113311164	129	111311164	229	111212121	254	111212121	119	112112121
64	113311165	129	111311165	229	111212121	255	111212121	119	112112121
65	113311166	129	111311166	229	111212121	256	111212121	119	112112121
66	113311167	129	111311167	229	111212121	257	111212121	119	112112121
67	113311168	129	111311168	229	111212121	258	111212121	119	112112121
68	113311169	129	111311169	229	111212121	259	111212121	119	112112121
69	113311170	129	111311170	229	111212121	260	111212121	119	112112121
70	113311171	129	111311171	229	111212121	261	111212121	119	112112121
71	113311172	129	111311172	229	111212121	262	111212121	119	112112121
72	113311173	129	111311173	229	111212121	263	111212121	119	112112121
73	113311174	129	111311174	229	111212121	264	111212121	119	112112121
74	113311175	129	111311175	229	111212121	265	111212121	119	112112121
75	113311176	129	111311176	229	111212121	266	111212121	119	112112121
76	113311177	129	111311177	229	111212121	267	111212121	119	112112121
77	113311178	129	111311178	229	111212121	268	111212121	119	112112121
78	113311179	129	111311179	229	111212121	269	111212121	119	112112121
79	113311180	129	111311180	229	111212121	270	111212121	119	112112121
80	113311181	129	111311181	229	111212121	271	111212121	119	112112121
81	113311182	129	111311182	229	111212121	272	111212121	119	112112121
82	113311183	129	111311183	229	111212121	273	111212121	119	112112121
83	113311184	129	111311184	229	111212121	274	111212121	119	112112121
84	113311185	129	111311185	229	111212121	275	111212121	119	112112121
85	113311186	129	111311186	229	111212121	276	111212121	119	112112121
86	113311187	129	111311187	229	111212121	277	111212121	119	112112121
87	113311188	129	111311188	229	111212121	278	111212121	119	112112121
88	113311189	129	111311189	229	111212121	279	111212121	119	112112121
89	113311190	129	111311190	229	111212121	280	111212121	119	112112121
90	113311191	129	111311191	229	111212121	281	111212121	119	112112121
91	113311192	129	111311192	229	111212121	282	111212121	119	112112121
92	113311193	129	111311193	229	111212121	283	111212121	119	112112121
93	113311194	129	111311194	229	111212121				

Fig. 41. Factor complex map. Areal terrain factors for airfield construction effort (sheet 1 of 2)

Legend
Airfield Construction
Effort Complex "nn"

Map Unit	Complex No.						
1	111224111	53	124234304	125	524224011	187	524251253
2	111224111	64	124244324	126	524224121	188	524251261
3	111224112	65	124244124	127	524224123	189	524251212
4	111224114	66	124254112	128	524224125	190	524251433
5	111224131	67	133153212	129	524224111	191	524251453
6	111224132	68	133153224	130	524224112	192	533252111
7	111224133	69	133153233	131	524224133	193	533252112
8	111224134	70	133153234	132	52423112	194	533252133
9	114224144	71	133153312	133	524231121	195	533252161
10	114224145	72	133153324	134	524231131	196	533252212
11	114224153	73	133153333	135	524231212	197	533252255
12	114224155	74	133153334	136	524231221	198	533252312
13	114224161	75	141151214	137	524231232	199	533252314
14	114224211	76	144224111	138	524231234	200	533254124
15	114224212	77	144224143	139	524231312	201	534224212
16	114224213	78	144224144	140	524231324	202	534234324
17	114224224	79	311141112	141	524231332	203	534231334
18	114224233	80	314224112	142	524231333	204	534234434
19	114224234	81	314224133	143	524231412	205	534244112
20	114224243	82	3142241311	144	524231421	206	534244153
21	114224244	83	314224132	145	524231433	207	534244212
22	114224245	84	314224133	146	524231434	208	534211224
23	114224253	85	3142241361	147	524241211	209	534244234
24	114224255	86	314242112	148	524251233	210	534244253
25	114224261	87	314242145	149	524252112	211	534244312
26	114224264	88	314244111	150	524252114	212	534211324
27	114224311	89	314244112	151	524252116	213	534214331
28	114224312	90	314244133	152	524252212	214	534214353
29	114224324	91	314244142	153	524253217	215	534214424
30	114224332	92	314244143	154	524254111	216	534254112
31	114224333	93	314244145	155	524254112	217	534254124
32	114224334	94	314244155	156	524254124	218	534254133
33	114224342	95	314244161	157	524254133	219	534254131
34	114224343	96	3142441211	158	524254143	220	534254153
35	114224344	97	314244212	159	524254144	221	534254122
36	114224355	98	314244233	160	524254145	222	534254224
37	114224361	99	314244243	161	524254152	223	534254231
38	114224412	100	314244244	162	524254153	224	534254253
39	114224433	101	314244245	163	524254155	225	534254312
40	114224434	102	314244255	164	524254161	226	534254324
41	114242112	103	314244261	165	524254211	227	534254334
42	114244112	104	314244311	166	524254212	228	541151111
43	114244145	105	314244312	167	524254213	229	541151112
44	114244155	106	314254312	168	524254222	230	542151131
45	114244233	107	424244112	169	524254224	231	542151132
46	114244311	108	424244124	170	524254232	232	542151133
47	114244333	109	424244134	171	524254233	233	542151145
48	114252111	110	424244212	172	524254234	234	542151155
49	114252133	111	424244224	173	524254244	235	542151211
50	114252161	112	424244234	174	524254245	236	542151212
51	114254124	113	424244312	175	524254253	237	542151311
52	114254133	114	424244324	176	524254255	238	542151343
53	114254211	115	424244333	177	524254261	239	524251355
54	114254212	116	424244334	178	524254311	240	542151111
55	114254234	117	424254112	179	524254312	241	542151112
56	114254245	118	511151112	180	524254313	242	542151211
57	114254312	119	514244145	181	524254323	243	542151212
58	114254324	120	514252111	182	524254324	244	542151312
59	114254332	121	514254244	183	524254333	245	542151111
60	114254333	122	524241133	184	524254334	246	542151112
61	114254324	123	524224112	185	524254343	247	542151311
62	124224244	124	524224133	186	524254344		

Fig. 41. (sheet 2 of 2)

Fig. 42. Factor complex map. Areal terrain factors for bunker construction effort (sheet 1 of 2)

Legend
Number Construction Factor Complex Map

Map Unit	Complex No.	Map Unit	Complex No.	Map Unit	Complex No.
1	1112242111	63	1331542244	125	5242314144
2	1122413244	64	3142241111	126	5242314144
3	1142224334	65	3142412115	127	5242314144
4	1142231334	66	3142411111	128	5242314144
5	1142241111	67	3142411122	129	5242314144
6	1142241112	68	3142411125	130	5242314144
7	1142241113	69	3142411234	131	5242314144
8	1142241134	70	3142411244	132	5242314144
9	1142241145	71	3142411253	133	5242314144
10	1142241325	72	3142411553	134	5242314144
11	1142241334	73	3142411611	135	5242314144
12	1142241344	74	3142412111	136	5242314144
13	1142241345	75	3142412125	137	5242314144
14	1142241444	76	3142412434	138	5242314144
15	1142241534	77	3142412444	139	5242314144
16	1142241553	78	3142412611	140	5242314144
17	1142241611	79	3142413111	141	5242314144
18	1142242111	80	3142414434	142	5242314144
19	1142242114	81	3342511125	143	5242314144
20	1142242122	82	3342511244	144	5242314144
21	1142242125	83	3342511334	145	5242314144
22	1142242134	84	3342512125	146	5242311125
23	1142242225	85	3342512211	147	5242511134
24	1142242244	86	3342512334	148	5242512127
25	1142242311	87	3342512344	149	5242512334
26	1142242334	88	3342513125	150	5242511125
27	1142242444	89	3342513244	151	5242511111
28	1142242425	90	3342513334	152	5242514115
29	1142242435	91	3342513344	153	5242511121
30	1142242444	92	3422541125	154	5242511122
31	1142242445	93	3431422325	155	5242511125
32	1142242453	94	3432323125	156	5242511322
33	1142242611	95	3432422125	157	5242511325
34	1142242614	96	3432422214	158	5242511326
35	1142243111	97	34324123125	159	5242511326
36	1142243114	98	3432422125	160	5242511326
37	1142243125	99	3432422344	161	5242511326
38	1142243244	100	3432423125	162	5242511326
39	1142243313	101	4232412125	163	5242511553
40	1142243325	102	4232413125	164	5242511554
41	1142243334	103	4242313244	165	5242511555
42	1142243344	104	4242411125	166	5242511611
43	1142243444	105	4242411314	167	5242512111
44	1142243534	106	4242412125	168	5242512122
45	1142243553	107	4242412144	169	5242512125
46	1142243611	108	4242412244	170	5242512224
47	1142244334	109	4242412344	171	5242512225
48	1142411111	110	4242413125	172	5242512325
49	1142521111	111	4242413244	173	5242512332
50	1142541125	112	4242413344	174	5242512334
51	1242511125	113	5111511111	175	5242512344
52	1331433125	114	5142243334	176	5242512421
53	1331531125	115	5242241125	177	5242512444
54	1331531334	116	5242521111	178	5242512453
55	1331532125	117	5242542334	179	5212542525
56	1331532244	118	5242542553	180	5212512534
57	1331532334	119	5211511453	181	5212542544
58	1331532344	120	5222542125	182	5212542611
59	1331533125	121	5222542534	183	5212543111
60	1331533244	122	5222513125	184	5212513124
61	1331533334	123	5232343125	185	5242513125
62	1331533344	124	5232343214	186	5242543225

Fig. 42. (sheet 2 of 2)

Fig. 43. Factor complex map. Linear features for cross-country speed for vehicles and cross-country speed for personnel.

Fig. 44. Factor complex map. Linear features for concealment and cover characteristics

PERFORMANCE PREDICTION MAP

FACTOR COMPLEX MAP UNIT	FACTOR CODE	"MODEL" CALCULATION* (A + 8B = P)	PERFORMANCE CLASS**
1	11	$15 + 8 \cdot 10 = 23$	1
2	12	$15 + 8 \cdot 30 = 39$	1
3	21	$40 + 8 \cdot 10 = 48$	1
4	22	$40 + 8 \cdot 30 = 64$	2
5	23	$40 + 8 \cdot 70 = 96$	3
6	31	$60 + 8 \cdot 10 = 68$	2
7	32	$60 + 8 \cdot 30 = 84$	2
8	33	$60 + 8 \cdot 70 = 116$	3
9	34	$60 + 8 \cdot 15 = 180$	4
10	41	$90 + 8 \cdot 10 = 98$	3
11	42	$90 + 8 \cdot 30 = 114$	3
12	43	$90 + 8 \cdot 70 = 146$	3
13	44	$90 + 8 \cdot 15 = 210$	4

* MIDPOINTS OF CLASS RANGES USED FOR CALCULATION.

** PERFORMANCE CLASSES:

CLASS CODE	PERFORMANCE VALUE RANGE
1	20-50
2	51-90
3	91-150
4	151-250

Fig. 45. Preparation of final MGI product map

Fig. 16. MGI product map. Cross-country speed for vehicles (M151)

Fig. 47. MGI product map. Cross-country speed for personnel

Fig. 48. MGI product map. HLZ construction effort

Fig. 49. MG1 product map. Concealment characteristics (sheet 1 of 2)

<u>Map Unit</u>	<u>Concealment Code (A)(B)(C)(D)</u>	<u>Map Unit</u>	<u>Concealment Code (A)(B)(C)(D)</u>
1	1311	14	3311
2	1312	15	3312
3	1411	16	3322
4	1412	17	3411
5	2111	18	3412
	2112	19	3511
7	2121	20	3512
8	2122	21	4211
9	2211	22	4212
10	2212	23	4511
11	2311	24	4512
12	2312	25	4522
13	2512		

Concealment Parameter Classes and Class Ranges

A. Probability of being observed from the air:

<u>Class</u>	<u>Class Range, %</u>
1	<5
2	>5-10
3	>10-35
4	>35-95

B. Distance at which the line of sight is totally obscured (100% probability):

<u>Class</u>	<u>Class Range, cm</u>
1	0-500
2	500-1000
3	1000-2000
4	2000-5000
5	>5000

C. Largest size of objects to be concealed:

<u>Class</u>	<u>Class Range, m</u>
1	15 x 30 x 200 (man)
2	75 x 150 x 1000 (jeep)

D. Number of objects concealed/1000 m²:

<u>Class</u>	<u>Class Range</u>
1	0-12
2	>12-36

Fig. 49. (sheet 2 of 2)

Fig. 50. MGI product map. Cover characteristics (sheet 1 of 2)

<u>Map Unit</u>	<u>Cover Code</u> <u>(A)</u> <u>(C)</u> <u>(D)</u>
1	1211
2	1212
3	1311
4	1312
5	2111
6	2112
7	2121
8	2122
9	2211
10	2212
11	2222
12	2311
13	2312
14	2322

Cover Parameter Classes and Class Ranges

A. Probability of projectile reaching an effective height:

<u>Class</u>	<u>Class Range</u>
1	0-60
2	60-100

B. Distance at which all fire is blocked:

<u>Class</u>	<u>Class Range, m</u>
1	0-20
2	>20-40
3	>40

C. Largest size of objects to be covered:

<u>Class</u>	<u>Class Range, cm</u>
1	15 x 30 x 200 (man)
2	75 x 150 x 1000 (jeep)

D. Number of objects covered/1000 m²:

<u>Class</u>	<u>Class Range</u>
1	0-12
2	>12-35

Fig. 50. (sheet 2 of 2)

Fig. 51. MGI product map. Airfield construction effort

* Water table too high for bunker construction.

★ Rock -- bunker construction impossible.

Fig. 52. MGI product map. Bunker construction effort