Lab-5

Correlation Analysis

- Name:Bhavesh Waghela
- Student ID:N01639685

Import Libraries

```
In [2]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt

In [6]: import seaborn as sns
   %matplotlib inline
```

Import Titanic dataset

```
In [3]: data = pd.read_csv('Titanic.csv')
```

Read head of the dataset

In [4]: data

Out[4]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN
	•••							•••		
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN

418 rows × 11 columns

4

Exercise 1

In [10]: # CODE HERE

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x21196b17208>


```
In [5]: plt.hist(data['Fare'].values, color='pink', bins=30)
```

```
Out[5]: (array([235., 84., 19., 24., 21.,
                                                3.,
                                                            4.,
                                                                  5.,
                                                                        2.,
                                                      2.,
                                                                               0.,
                                    1.,
                              1.,
                                          7.,
                  0.,
                        8.,
                                                0.,
                                                      0.,
                                                            0.,
                                                                  0.,
                                                                        0.,
                                                                               0.,
                                                            1.]),
                              0.,
                                    0.,
                                          0.,
                                                      0.,
                  0.,
                        0.,
                                                0.,
                         , 17.07764, 34.15528, 51.23292, 68.31056, 85.3882 ,
         array([ 0.
                102.46584, 119.54348, 136.62112, 153.69876, 170.7764, 187.85404,
                204.93168, 222.00932, 239.08696, 256.1646, 273.24224, 290.31988,
                307.39752, 324.47516, 341.5528, 358.63044, 375.70808, 392.78572,
                409.86336, 426.941 , 444.01864, 461.09628, 478.17392, 495.25156,
                512.3292 ]),
         <BarContainer object of 30 artists>)
```


Exercise 2

In [9]: # CODE HERE

Out[9]: Text(0.5, 1.0, 'df.corr()')

In [8]: sns.heatmap(data.corr(),cmap='coolwarm')

Out[8]: <AxesSubplot:>

Exercise 3

Find "Pearson correlation" and "Spearman correlation" between "Age" and "Parch" column?

```
In [17]: # CODE HERE
    import scipy
    from scipy.stats.stats import pearsonr
    from scipy.stats.stats import spearmanr

data.dropna(subset=['Age'], inplace=True)

age = data['Age']
    parch = data['Parch']

pearsonr_coefficient, p_value = pearsonr(age, parch)
    print('PeasonR Correlation Coefficient %0.3f'% (pearsonr_coefficient))

spearmanr_coefficient, p_value = spearmanr(age, parch)
    print('Spearman Rank Correlation Coefficient %0.3f' % (spearmanr_coefficient))
```

PeasonR Correlation Coefficient -0.061 Spearman Rank Correlation Coefficient -0.130

C:\Users\bhave\AppData\Local\Temp\ipykernel_13400\2819273084.py:3: Deprecatio nWarning: Please use `pearsonr` from the `scipy.stats` namespace, the `scipy. stats.stats` namespace is deprecated.

from scipy.stats.stats import pearsonr

C:\Users\bhave\AppData\Local\Temp\ipykernel_13400\2819273084.py:4: Deprecatio nWarning: Please use `spearmanr` from the `scipy.stats` namespace, the `scip y.stats.stats` namespace is deprecated.

from scipy.stats.stats import spearmanr

Exercise 4

Calculate the standard deviation, variance and mean of column "Fare" and "Age"

```
In [23]: # CODE HERE

mean_fare = data['Fare'].mean()

std_dev_fare = data['Fare'].std()

std_dev_age = data['Age'].std()

variance_fare = data['Fare'].var()

variance_age = data['Age'].var()

print(f"Mean Fare: {mean_fare}")

print(f"Mean Age: {mean_age}")

print(f"Nstandard Deviation of Fare: {std_dev_fare}")

print(f"Standard Deviation of Age: {std_dev_age}")

print(f"\nVariance of Fare: {variance_fare}")

print(f"Variance of Age: {variance_age}")
```

Mean Fare: 40.98208731117823 Mean Age: 30.272590361445783

Standard Deviation of Fare: 61.22855822554924 Standard Deviation of Age: 14.18120923562442

Variance of Fare: 3748.9363423794734 Variance of Age: 201.10669538455937

In []: