

KONINKRIJK DER

NEDERLANDEN

Bureau voor de Industriële Eigendom

Hierbij wordt verklaard, dat in Nederland op 30 januari 2003 onder nummer 1022526,
ten name van:
DSM N.V.
te Heerlen
een aanvraag om octrooi werd ingediend voor:
"Werkwijze voor het afscheiden van NH₃ en optioneel tevens CO₂ en H₂O uit een mengsel
bevattende NH₃, CO₂ en H₂O ",
en dat de hieraan gehechte stukken overeenstemmen met de oorspronkelijk ingediende stukken.

Rijswijk, 30 januari 2004

De Directeur van het Bureau voor de Industriële Eigendom,
voor deze,

A handwritten signature in black ink.

Mw. M.M. Enhus

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

UITTREKSEL

De uitvinding betreft een werkwijze voor het afscheiden van NH₃ uit een mengsel bevattende NH₃, CO₂ en H₂O, omvattende een NH₃-rectificatiestap welke wordt uitgevoerd in een NH₃-scheidingsinrichting waaraan één of meer stromen welke NH₃, CO₂ en H₂O bevatten, waaronder het mengsel, worden toegevoerd, waarbij een in hoofdzaak uit gasvormige NH₃ bestaande stroom in de NH₃-scheidingsinrichting wordt gevormd, van het mengsel afgescheiden en afgevoerd. In de werkwijze volgens de uitvinding wordt een condensatiestap uitgevoerd op ten minste één van de in hoofdzaak uit gasvormige NH₃ bestaande stroom of de aan de NH₃-scheidingsinrichting toegevoerde één of meer stromen welke NH₃, CO₂ en H₂O bevatten, waarin ten minste een deel van de aanwezige CO₂ in een vloeibare fase wordt gebracht.

WERKWIJZE VOOR HET AFSCHEIDEN VAN NH₃, EN OPTIONEEL TEVENS CO₂ EN
H₂O, UIT EEN MENGSEL BEVATTENDE NH₃, CO₂ EN H₂O

5

De uitvinding heeft betrekking op een werkwijze voor het afscheiden van NH₃ uit een mengsel bevattende NH₃, CO₂ en H₂O, omvattende een NH₃-rectificatiestap welke wordt uitgevoerd in een NH₃-scheidingsinrichting waaraan één of meer stromen 10 welke NH₃, CO₂ en H₂O bevatten, waaronder het mengsel, worden toegevoerd, waarbij een in hoofdzaak uit gasvormige NH₃ bestaande stroom in de NH₃-scheidingsinrichting wordt gevormd, van het mengsel afgescheiden en afgevoerd.

15

Een dergelijke werkwijze is bekend uit NL 7804668 A. In de bekende werkwijze, welke toepassing kan vinden in processen voor de bereiding van melamine of ureum of de gecombineerde bereiding van melamine en ureum, is het mengsel dat aan de NH₃-scheidingsinrichting wordt toegevoerd gasvormig of vloeibaar. De NH₃-scheidingsinrichting is als een destillatie-inrichting uitgevoerd; in energiebehoefte worden door middel van stoom voorzien. De in hoofdzaak uit gasvormige NH₃ bestaande stroom wordt deels gecondenseerd, waarbij vloeibare NH₃ wordt gevormd. De vloeibare NH₃ 20 wordt teruggevoerd naar de NH₃-scheidingsinrichting. Het mengsel wordt uit de NH₃-scheidingsinrichting afgevoerd; in vervolgstappen kan een stroom die in hoofdzaak uit CO₂ bestaat en een stroom die in hoofdzaak uit H₂O bestaat van het mengsel worden afgescheiden.

25

Een nadeel van de bekende werkwijze is dat de NH₃-scheidingsinrichting moeilijk te regelen is. De samenstelling, druk en temperatuur zijn zodanig dat reguliere fluctuaties in de procesvoering het gevaar van vaste stofvorming met zich meebrengen. Indien dit plaatsvindt moet de vaste stof verwijderd worden door middel van spoelen met water waardoor de efficiëntie van de NH₃-scheidingsinrichting daalt.

30

Het is het doel van de uitvinding om genoemd nadeel te verminderen. Genoemd doel wordt in de werkwijze volgens de uitvinding bereikt doordat een condensatiestap wordt uitgevoerd op ten minste één van de in hoofdzaak uit gasvormige NH₃ bestaande stroom of de aan de NH₃-scheidingsinrichting toegevoerde één of meer stromen welke NH₃, CO₂ en H₂O bevatten, waarin ten minste een deel van de aanwezige CO₂ in een vloeibare fase wordt gebracht.

- Een voordeel van de werkwijze volgens de uitvinding is dat het gevaar voor vorming van vaste stof in de NH₃-scheidingsinrichting kleiner is dan in de bekende NH₃-scheidingsinrichting. Hierdoor is minder noodzaak tot efficiëntieschadende maatregelen als genoemde spoeling met water, waardoor de werkwijze stabiever is bij een lager energieverbruik, bijvoorbeeld in de vorm van stoom, en daardoor goedkoper is.

5 Zonder de intentie te hebben een theoretische verklaring voor de voordelen van de werkwijze volgens de uitvinding te geven, wordt verondersteld dat het in een vloeibare fase brengen van CO₂ de verhoudingen in de NH₃-rectificatiestap tussen NH₃, CO₂ en H₂O en/of de fase waarin zij zich bevinden zodanig beïnvloedt dat er minder 10 gevaar van vorming van vaste stof is. Daarnaast wordt verondersteld dat het mogelijk is de operationele mogelijkheden van samenstelling, druk en temperatuur binnenin de NH₃-scheidingsinrichting op zodanige wijze te verruimen dat er minder gevaar van vorming van vaste stof is.

15 De werkwijze volgens de uitvinding wordt toegepast op een mengsel bevattende NH₃, CO₂ en H₂O. De verhoudingen tussen NH₃, CO₂ en H₂O kunnen binnen brede grenzen variëren, evenals de druk en de temperatuur van het mengsel. Bij voorkeur is er geen vaste stof in het mengsel aanwezig. Daarnaast kan de wijze waarop de hierna te bespreken NH₃-rectificatiestap wordt uitgevoerd invloed hebben op de mogelijke verhoudingen tussen NH₃, CO₂ en H₂O, zoals bijvoorbeeld in geval van toepassing van destillatie in de NH₃-rectificatiestap. Dan is het van belang om, zoals in bijvoorbeeld NL. 20 7804668 A wordt aangehaald, rekening te houden met het bekende azeotropische karakter van mengsels van NH₃, CO₂ en H₂O. Hierdoor is het bij een gegeven samenstelling en druk via gewone destillatie alleen mogelijk zuivere NH₃ af te scheiden indien de samenstelling zich in het zogeheten NH₃-rijke gebied, dit is gebied I in fig. 1 van NL 7804668 A, bevindt. Analoog kan via gewone destillatie alleen zuivere CO₂ afgescheiden worden indien de samenstelling zich in het CO₂-rijke gebied, dit is gebied II 25 in fig. 1 van NL 7804668 A, bevindt.

30 Indien het mengsel aanwezig is in, of afkomstig is van, op zich bekende processen voor de bereiding van melamine of ureum, bevat het mengsel in het algemeen tussen 20 en 70 % NH₃, tussen 10 en 50 % CO₂ en tussen 10 en 70 % H₂O. Bij voorkeur bevat het mengsel tussen 25 en 60 % NH₃, tussen 15 en 40 % CO₂ en tussen 20 en 55 % H₂O. Met meer voorkeur bevat het mengsel tussen 30 en 50 % NH₃, tussen 15 en 25 %

CO₂ en tussen 25 en 50 % H₂O. Genoemde percentages hier en hierna zijn gewichtspercentages, tenzij anders vermeld.

Met NH₃-rectificatiestap wordt in de werkwijze volgens de uitvinding een stap bedoeld, toegepast op het mengsel, waarin door middel van een

- 5 scheidingstechnologie wordt bereikt dat een stroom ontstaat welke in hoofdzaak uit NH₃ bestaat. In beginsel is iedere scheidingstechnologie geschikt waarin bereikt wordt dat de in hoofdzaak uit gasvormige NH₃ bestaande stroom wordt gevormd, van het mengsel afgescheiden en kan worden afgevoerd. Voorbeelden van mogelijke scheidingstechnologieën zijn membraanscheiding en destillatie. Bij voorkeur wordt
10 destillatie toegepast.

- Het kan nuttig of nodig zijn dat één of meer additionele stromen aan de NH₃-rectificatiestap worden toegevoerd die het thermodynamisch evenwicht beïnvloeden. Een additionele stroom kan ook worden toegevoerd met als doel om er, net als bij het mengsel, NH₃ uit af te scheiden. De additionele stromen kunnen NH₃ en/of CO₂ en/of H₂O bevatten. Voorbeelden van additionele stromen zijn vloeibare NH₃, en recirculatiestromen afkomstig uit processtappen welke verder op het mengsel worden toegepast. De NH₃-rectificatiestap wordt uitgevoerd in een NH₃-scheidingsinrichting. Indien destillatie wordt gekozen als scheidingstechnologie liggen de drukken veelal tussen 0,1 en 6 MPa, bij voorkeur tussen 0,3 en 4 MPa, met meer voorkeur tussen 0,6 en 3 MPa; de temperatuur
15 20 ligt veelal tussen 5 en 160°C.

- De in hoofdzaak uit gasvormige NH₃ bestaande stroom welke in de NH₃-scheidingsinrichting wordt gevormd en van het mengsel afgescheiden, wordt afgevoerd. Naast NH₃ kan genoemde stroom ook kleine hoeveelheden van andere verbindingen zoals CO₂ en H₂O bevatten; bij voorkeur bevat de in hoofdzaak uit gasvormige NH₃ bestaande
25 stroom minder dan 15 % andere verbindingen, met meer voorkeur minder dan 10 %, met nog meer voorkeur minder dan 8 %, en met de meeste voorkeur minder dan 5 % of zelfs minder dan 1 %. Hierbij geldt dat de afweging gemaakt kan worden tussen de scheidingsinspanning die benodigd is om de hoeveelheid andere verbindingen verder te
30 reduceren en de hoeveelheid van de andere verbindingen welke toegelaten kan worden in het licht van de verdere toepassing van de in hoofdzaak uit gasvormige NH₃ bestaande stroom. Daarnaast geldt dat, indien het toestaan van een zekere hoeveelheid CO₂ in de in hoofdzaak uit gasvormige NH₃ bestaande stroom, bijvoorbeeld 5 % of minder, leidt tot een

vereenvoudiging of stabilisering van het bedrijven van de NH₃-scheidingsinrichting, het voordeel is om de later te bespreken condensatiestap volgens de uitvinding ten minste op de in hoofdzaak uit gasvormige NH₃ bestaande stroom toe te passen.

In de werkwijze volgens de uitvinding wordt een condensatiestap

- 5 toegepast op ten minste één van de in hoofdzaak uit gasvormige NH₃ bestaande stroom of de aan de NH₃-scheidingsinrichting toegevoerde één of meer stromen welke NH₃, CO₂ en H₂O bevatten. De condensatiestap kan door middel van op zich bekende technieken worden uitgevoerd. Voorbeelden van dergelijke technieken zijn: koeling door middel van direct contact met een koelmedium en/of door indirecte koeling in een warmtewisselaar
- 10 en/of het in contact brengen met een vloeibaar absorberend medium. Hierbij geldt dat ten minste een deel van de aanwezige CO₂ in een vloeibare fase wordt gebracht. De vloeibare fase kan tijdens de condensatiestap reeds aanwezig zijn, bijvoorbeeld doordat de condensatiestap op een gas/vloeistof mengsel wordt uitgevoerd; de vloeibare fase kan ook tijdens de condensatiestap worden gevormd, bijvoorbeeld doordat gasvormig H₂O
- 15 condenseert waarin de CO₂ alsmede NH₃ geabsorbeerd wordt; de vloeibare fase kan ook aangevoerd worden, zoals het vloeibaar absorberend medium als hierboven genoemd. Bij voorkeur wordt tussen 40 % en in hoofdzaak alle aanwezige CO₂ in een vloeibare fase gebracht; met meer voorkeur wordt tussen 50% en in hoofdzaak alle aanwezige CO₂ in een vloeibare fase gebracht, met nog meer voorkeur tussen 75% en 99% of 95%.

- 20 De werkwijze volgens de uitvinding kan toegepast worden met als doel om de in hoofdzaak uit gasvormige NH₃ bestaande stroom te verkrijgen uit het mengsel. Het kan daarnaast gewenst zijn om, naast NH₃, ook CO₂ en H₂O uit het mengsel vrij te maken. De werkwijze volgens de uitvinding omvat daarom verder bij voorkeur, teneinde CO₂ en H₂O af te scheiden van het mengsel:

- 25
 - een CO₂-rectificatiestap, welke in een CO₂-scheidingsinrichting wordt toegepast op het mengsel afkomstig uit de NH₃-scheidingsinrichting onder toevoering van een stroom afkomstig uit een desorptieinrichting, waarbij een in hoofdzaak uit CO₂ bestaande stroom in de CO₂-scheidingsinrichting wordt gevormd en van het mengsel wordt afgescheiden, en
 - 30 ▪ een desorptiestap, welke in de desorptieinrichting wordt toegepast op het mengsel afkomstig uit de CO₂-scheidingsinrichting, waarin een in hoofdzaak uit H₂O bestaande stroom wordt gevormd en van het mengsel wordt afgescheiden, waarna het mengsel

wordt teruggevoerd naar de NH₃-scheidingsinrichting en/of de CO₂-scheidingsinrichting.

- De CO₂-rectificatiestap kan met behulp van op zich bekende technieken worden uitgevoerd, in een CO₂-scheidingsinrichting. Voorbeeld van een dergelijke 5 techniek zijn membraanscheiding en destillatie. In het geval van destillatie is de in hoofdzaak uit CO₂ bestaande stroom het topproduct. Indien destillatie op het mengsel wordt toegepast, en er, zoals veelal het geval zal zijn, hoofdzakelijk NH₃, CO₂ en H₂O aanwezig zijn, is te verwachten dat er rekening moet worden gehouden met het eerder genoemde azeotropische gedrag. De samenstelling in de CO₂-scheidingsinrichting, zijnde 10 de inrichting waarin de CO₂-rectificatiestap wordt uitgevoerd, moet in het CO₂-rijke gebied zijn bij de heersende druk. Indien de samenstelling van het uit de NH₃-scheidingsinrichting aangevoerde mengsel, ook rekening houdend met de samenstelling van de stroom afkomstig uit de desorptiestap, ertoe zal leiden dat de samenstelling in de CO₂-scheidingsinrichting niet in het CO₂-rijke gebied is, is een aanvullende maatregel nodig. 15 Voorbeelden van dergelijke aanvullende maatregelen zijn: een verandering van druk, bijvoorbeeld een drukverhoging, en/of een verandering in samenstelling, bijvoorbeeld door toevoer van een additionele stroom zoals bijvoorbeeld een stroom H₂O. Indien drukverhoging wordt toegepast ligt de druk in de CO₂-scheidingsinrichting veelal tussen 0,5 en 10 MPa, met meer voorkeur tussen 1 en 6 MPa en in het bijzonder tussen 1,5 en 5 20 MPa. De top-temperaturen in de CO₂-scheidingsinrichting liggen dan veelal tussen 30 en 175°C, bij voorkeur tussen 100 en 150°C, de bodemtemperaturen veelal tussen 100 en 250°C, bij voorkeur tussen 150 en 200°C.

- Uit de CO₂-rectificatiestap komt, zoals hierboven aangeven, een in hoofdzaak uit CO₂ bestaande stroom vrij. Daarnaast komt het mengsel vrij; het mengsel 25 wordt uit de CO₂-scheidingsinrichting afgevoerd en vervolgens aan de desorptieinrichting toegevoerd, waar de desorptiestap wordt uitgevoerd. De desorptiestap heeft tot doel om een in hoofdzaak uit H₂O bestaande stroom uit het mengsel vrij te maken. Dit kan met behulp van op zich bekende technieken gebeuren, zoals met destillatie in welk geval de in hoofdzaak uit H₂O bestaande stroom het bodemproduct is. Nadat in de desorptiestap een 30 in hoofdzaak uit H₂O bestaande stroom is afgescheiden van het mengsel, wordt de resterende hoeveelheid van het mengsel, welke nog steeds NH₃, CO₂ en H₂O bevat, teruggevoerd naar de NH₃-scheidingsinrichting en/of de CO₂-scheidingsinrichting.

De condensatiestap volgens de uitvinding wordt in deze uitvoeringsvorm toegepast op de in hoofdzaak uit gasvormige NH₃ bestaande stroom uit de NH₃-scheidingsinrichting en/of op ten minste een deel van de stroom welke afkomstig is van de desorptieinrichting en welke aan de NH₃-scheidingsinrichting wordt toegevoerd.

- 5 In een bijzondere uitvoeringsvorm van de uitvinding wordt de desorptiestap uitgevoerd in twee desorptiezones waarbij de ene zone wordt bedreven bij een druk nagenoeg gelijk aan de druk in NH₃-scheidingsinrichting en de tweede bij een druk nagenoeg gelijk aan de druk in de CO₂-scheidingsinrichting. De uit de desorptiezones komende stromen worden overgebracht naar de beide scheidingsinrichtingen met de 10 nagenoeg overeenkomstige druk. Gevonden werd dat hierbij een reductie in stoomverbruik kan worden verkregen.

- Indien de condensatiestap volgens de uitvinding wordt toegepast op de in hoofdzaak uit gasvormige NH₃ bestaande stroom, wordt dit bij voorkeur gedaan in een verdrongen condensor onder toevoeering van een waterige stroom en/of vloeibare NH₃ als 15 absorberend medium. Een verdrongen condensor is op zich bekend, uit bijvoorbeeld NL 8400839 A. De waterige stroom bestaat in hoofdzaak uit water maar kan daarnaast ook andere verbindingen bevatten; voorbeelden hiervan zijn NH₃, CO₂, ammoniumcarbamaat, melamine, of ureum. In de verdrongen condensor komt de in hoofdzaak uit gasvormige NH₃ bestaande stroom in direct contact met de tevens toegevoerde waterige stroom en/of 20 vloeibare NH₃, waarin CO₂ zal absorberen. Het voordeel hiervan is dat minder hoge eisen aan de CO₂-verwijdering in de NH₃-scheidingsinrichting gesteld worden dan in de bekende werkwijze, hetgeen de stabilitet van bedrijven ten goede komt en het risico van vorming van vaste stof vermindert. Zoals eerder vermeld leidt vorming van vaste stof tot een incidenteel en/of structureel hoger stoomverbruik. Tevens kunnen, door keuze van de 25 toegevoerde stromen en hun temperaturen, de omstandigheden voor wat betreft warmteoverdracht en stofoverdracht optimaal gekozen worden hetgeen vooral gunstig is voor wat betreft de overgang van CO₂ uit de gasfase naar de vloeibare fase in de verdrongen condensor.

- Indien de in hoofdzaak uit gasvormige NH₃ bestaande stroom na het 30 verlaten van de verdrongen condensor en als gevolg van het contact met de waterige stroom een ongewenste hoeveelheid H₂O bevat, verdient het de voorkeur om een absorptiestap op de in hoofdzaak uit gasvormige NH₃ bestaande stroom toe te passen,

waarin genoemde stroom in contact wordt gebracht met vloeibare NH₃. Als gevolg hiervan zal het H₂O geabsorbeerd worden in de vloeibare NH₃. De absorptiestap kan met behulp van op zich bekende technieken worden uitgevoerd, bijvoorbeeld in een schotelkolom.

- In een andere uitvoeringsvorm van de condensatiestap volgens de uitvinding wordt deze stap als een partiële condensatiestap uitgevoerd op de stroom die afkomstig is uit de desorptieinrichting en welke aan de NH₃-scheidingsinrichting wordt toegevoerd. De partiële condensatiestap wordt bij voorkeur uitgevoerd door middel van indirekte koeling met een koelmedium, in bijvoorbeeld een warmtewisselaar. De stroom die afkomstig is uit de desorptieinrichting bevat tevens H₂O en NH₃; als gevolg van de partiële condensatiestap zal ten minste een deel van de H₂O vloeibaar worden, waarin een deel van de CO₂ geabsorbeerd wordt, alsmede een deel van de NH₃. Hierdoor wordt het bedrijven van de NH₃-scheidingsinrichting eenvoudiger, en stabiever vanwege een kleiner risico op vorming van vaste stof. Bij voorkeur wordt het mengsel aanwezig in de NH₃-scheidingsinrichting als koelmedium in de partiële condensatiestap gebruikt.

- De werkwijze volgens de uitvinding wordt nader toegelicht aan de hand van de tekeningen.

- In de tekeningen laat Figuur 1 een uitvoeringsvorm volgens de bekende stand der techniek zien, waarin in een absorber een in hoofdzaak uit gasvormige NH₃ bestaande stroom wordt afgescheiden van een gasvorming mengsel van NH₃, CO₂ en H₂O;

Figuur 2 een uitvoeringsvorm volgens de uitvinding, waarin de condensatiestap wordt uitgevoerd op zowel de in hoofdzaak uit gasvormige NH₃ bestaande stroom alsook op de stroom welke afkomstig is van de desorptieinrichting en welke aan de NH₃-scheidingsinrichting wordt toegevoerd.

- Het eerste cijfer van de nummers in de figuren is hetzelfde als het nummer van het figuur. Indien de laatste twee cijfers van de nummers van verschillende figuren overeenkomen, betreft het een zelfde onderdeel.

- In Fig. 1 wordt een mengsel van NH₃, CO₂ en H₂O via leiding 102 toegevoerd aan NH₃-scheidingsinrichting 104, welke als een destillatiekolom is uitgevoerd en bij voorkeur bij een temperatuur gelegen tussen 15 – 160°C en bij een druk gelegen tussen 0,1 en 6 MPa bedreven wordt. Aan de NH₃-scheidingsinrichting 104 wordt tevens via leiding 106 lucht gedoseerd, om de apparatuur te beschermen tegen corrosie. De in

hoofdzaak uit gasvormige NH₃ bestaande stroom wordt via leiding 108 afgevoerd naar ammoniakkkoeler 110; het mengsel wordt als een vloeibare oplossing van NH₃ en CO₂ in water via leiding 111 afgevoerd en overgebracht naar een – niet getekende – CO₂-scheidingsinrichting. In ammoniakkkoeler 110 wordt vrijwel alle NH₃ vloeibaar gemaakt en via leiding 112 afgevoerd, deels om via leiding 114 gerecirkuleerd te worden naar NH₃-scheidingsinrichting 104, deels om via 113 elders te worden gebruikt. Uit ammoniakkkoeler 110 komt tevens een gasfase, welke hoofdzakelijk uit inerte gassen en een weinig NH₃ bestaat en welke via leiding 116 naar wasser 118 wordt geleid. In wasser 118 wordt de stroom uit leiding 116 in contact gebracht met waswater, een in hoofdzaak uit water bestaande stroom, welke via leiding 120 wordt aangevoerd, als gevolg waarvan de NH₃ in het waswater wordt opgenomen waarbij een oplossing van NH₃ in water ontstaat. De inerte gassen worden via leiding 122 afgevoerd; de oplossing van NH₃ in water wordt via leiding 124 naar koeler 126 toegevoerd, en daarna deels via leiding 128 gerecirkuleerd naar wasser 118, en deels via leiding 130 wordt gerecirkuleerd naar NH₃-scheidingsinrichting 104, waaraan verder nog via leiding 132 een stroom H₂O en via leiding 134 mengsel uit de niet afgebeelde desorptie-inrichting worden toegevoerd. De stroom H₂O welke via leiding 132 wordt aangevoerd dient in hoofdzaak voor het voorkomen van vaste stof vorming in de NH₃-scheidingsinrichting 104 of voor het spoelen ervan in het geval dat vaste stof vorming toch heeft plaatsgevonden.

In Fig. 2 wordt een mengsel van NH₃, CO₂ en H₂O via leiding 202 toegevoerd aan NH₃-scheidingsinrichting 204; op het via 234 uit de desorptie-inrichting aangevoerde mengsel wordt in koeler 236 de partiële condensatiestap volgens de uitvinding toegepast. Hierbij dient mengsel uit de NH₃-scheidingsinrichting 204, via leiding 238 aangevoerd, als koelmedium, waarna het mengsel via 240 weer teruggevoerd wordt naar de NH₃-scheidingsinrichting 204. Het partiële gecondenseerde uit de desorptie-inrichting afkomstige mengsel wordt via leiding 242 aan de NH₃-scheidingsinrichting 204 toegevoerd. De in hoofdzaak uit gasvormig NH₃ bestaande stroom wordt via leiding 244 aan verdronken condensor 246 toegevoerd en wordt daar in contact gebracht met een deel van de oplossing van NH₃ in water welke afkomstig is van koeler 226, en met een stroom vloeibare NH₃ via 214 aangevoerd, waarbij een gas/vloeistofmengsel ontstaat welk via leiding 248 aan gas/vloeistof scheider 250 wordt toegevoerd. In scheider 250 wordt de vloeibare fase afgescheiden en afgevoerd via leiding 252, waarna de vloeibare fase wordt

samengevoegd met het mengsel dat via 202 wordt aangevoerd; de gasfase wordt afgescheiden, afgevoerd en aan ammoniakkooler 210 toegevoerd via leiding 208.

- De werkwijze volgens de uitvinding wordt verder toegelicht aan de hand van een vergelijkend experiment en een Voorbeeld. Het vergelijkend experiment is gedaan volgens de uitvoeringsvorm van Fig. 1; het Voorbeeld is gedaan volgens de uitvoeringsvorm van Fig. 2. De resultaten zijn weergegeven in onderstaande tabellen.

Tabel 1 – Resultaten van het vergelijkend experiment (zie Fig. 1)

Stroom	P (MPa)	T (°C)	NH ₃ (kg/h)	CO ₂ (kg/h)	H ₂ O (kg/h)	N ₂ (kg/h)	O ₂ (kg/h)	Totaal (kg/h)
102	3	50	350	200	450			1000
106	2	80				4	1	5
108	2	50	680			10	3	693
111	2	136	320	250	660			1230
113	2	40	350					350
114	2	40	300					300
130	2	50	30		30			60
132	2	50			60			60
134	3	175	320	50	120	6	2	498

10

De totale hoeveelheid benodigde stoom van 4 Mpa en 430°C in het vergelijkend experiment was 700 kg/h. Teneinde de vorming van vaste stof tijdens operatie te voorkomen, was het noodzakelijk om een stroom water via 132 toe te voeren.

Tabel 2 – Resultaten van het Voorbeeld (zie Fig. 2)

Stroom	P (MPa)	T (°C)	NH ₃ (kg/h)	CO ₂ (kg/h)	H ₂ O (kg/h)	N ₂ (kg/h)	O ₂ (kg/h)	Totaal (kg/h)
202	3	50	350	200	450			1000
206	2	80				4	1	5
208	2	50	450			10	3	463
211	2	135	300	250	600			1150
213	2	40	350					350
214	2	40	70					70
230	2	50	30		50			80
232					0			0
234	3	170	300	50	100	6	2	458
244	2	100	530	10	20	10	3	573
252	2	50	180	10	70			260

- De hoeveelheid benodigde stoom van 4 Mpa en 430°C in het vergelijkend
- 5 experiment was 650 kg/h. Tijdens bedrijfsoperatie bleek dat in het Voorbeeld geen vaste
stofvorming optrad, ofschoon geen stroom water via 232 werd toegevoerd zoals in het
vergelijkend experiment noodzakelijk was. Hieruit blijkt de stabiliserende werking van de
condensatiestap volgens de uitvinding. Daarnaast blijkt de hoeveelheid benodigde stoom
in het Voorbeeld lager te zijn dan in het vergelijkend experiment, ofschoon dezelfde
10 hoeveelheid mengsel verwerkt wordt. Deze lagere stoombehoefte is een additioneel
voordeel van de werkwijze volgens de uitvinding.

CONCLUSIES

1. Werkwijze voor het afscheiden van NH₃ uit een mengsel bevattende NH₃, CO₂ en H₂O, omvattende een NH₃-rectificatiestap welke wordt uitgevoerd in een NH₃-scheidingsinrichting waaraan één of meer stromen welke NH₃, CO₂ en H₂O bevatten, waaronder het mengsel, worden toegevoerd, waarbij een in hoofdzaak uit gasvormige NH₃ bestaande stroom in de NH₃-scheidingsinrichting wordt gevormd, van het mengsel afgescheiden en afgevoerd, met het kenmerk dat een condensatiestap wordt uitgevoerd op ten minste één van de in hoofdzaak uit gasvormige NH₃ bestaande stroom of de aan de NH₃-scheidingsinrichting toegevoerde één of meer stromen welke NH₃, CO₂ en H₂O bevatten, waarin ten minste een deel van de aanwezige CO₂ in een vloeibare fase wordt gebracht.
2. Werkwijze volgens conclusie 1, waarin de condensatiestap wordt uitgevoerd door de te condenseren stroom te koelen en/of in contact te brengen met een absorberend medium.
3. Werkwijze volgens conclusie 1 of 2, waarbij de werkwijze, teneinde CO₂ en H₂O af te scheiden van het mengsel, verder omvat:
 - een CO₂-rectificatiestap, welke in een CO₂-scheidingsinrichting wordt toegepast op het mengsel afkomstig uit de NH₃-scheidingsinrichting onder toevoering van een stroom afkomstig uit een desorptieinrichting, waarbij een in hoofdzaak uit CO₂ bestaande stroom in de CO₂-scheidingsinrichting wordt gevormd en van het mengsel wordt afgescheiden, en
 - een desorptiestap, welke in de desorptieinrichting wordt toegepast op het mengsel afkomstig uit de CO₂-scheidingsinrichting, waarin een in hoofdzaak uit H₂O bestaande stroom wordt gevormd en van het mengsel wordt afgescheiden, waarna het mengsel wordt teruggevoerd naar de NH₃-scheidingsinrichting en/of de CO₂-scheidingsinrichting,waarin de condensatiestap wordt uitgevoerd op de in hoofdzaak uit gasvormige NH₃ bestaande stroom uit de NH₃-scheidingsinrichting en/of op ten minste een deel van de stroom welke afkomstig is van de desorptieinrichting en welke aan de NH₃-scheidingsinrichting wordt toegevoerd.

4. Werkwijze volgens een der conclusies 1 - 3, waarin de condensatiestap wordt uitgevoerd op de in hoofdzaak uit gasvormige NH₃ bestaande stroom uit de NH₃-scheidingsinrichting in een verdrunken condensor onder toevoering van een waterige stroom en/of vloeibare NH₃ als absorberend medium.
5. Werkwijze volgens conclusie 4, waarin na de condensatiestap een absorptiestap op de in hoofdzaak uit gasvormige NH₃ bestaande stroom wordt toegepast, waarin genoemde stroom in contact wordt gebracht met vloeibare NH₃.
6. Werkwijze volgens een der conclusies 1 - 3, waarin de condensatiestap als een partiële condensatiestap wordt uitgevoerd, middels indirecte koeling met een koelmedium, op de stroom die afkomstig is uit de desorptieinrichting en welke aan de NH₃-scheidingsinrichting wordt toegevoerd.
7. Werkwijze volgens conclusie 6, waarin het mengsel aanwezig in de NH₃-scheidingsinrichting als koelmedium in de partiële condensatiestap wordt gebruikt.

FIGUUR 1/2

FIGUUR 2/2

