

SVD, LSA and LSI

Dr. Goutam Chakraborty

Objectives

- Explain the conceptual and mathematical basics of SVD, LSA and LSI in analyzing textual data.
- Explain the terms and document mapping in the SVD space.

What is SVD?

SVD as a Factorization Technique

- Singular value decomposition (SVD) is a means of decomposing a matrix into *a* product of three simpler matrices. This is how it is typically used in text analytics
- In this way it is related to other matrix decompositions such as eigen decomposition, principal components analysis (PCA), and non-negative matrix factorization (NNMF).
- Typically, term-by-document matrix is very large and sparse and rarely used directly in documents clustering or for topic extraction from documents.
 - Instead, the matrix is transformed to reduce its dimensionality (via SVD) yet retain most of the information.
 - Then SVD numbers are used for clustering, topic mining etc.
- SVD may also be used in other applications such as "least squares approximation" or, "for summarizing matrices with partial values"

SVD, LSA and LSI

- Latent Semantic Analysis: LSA is an application of reduced-order SVD in which the rows of the input matrix represent words and the columns documents, with entries being the count of the words in the document.
 - The singular vectors and corresponding singular values produced by SVD allow words and documents to be mapped into the same "latent semantic space".
 - The resulting embedding places similar words and documents as measured by co-occurrence near one another even if they never co-occurred in the training corpus.
- Latent Semantic Indexing: Application of LSA's notion of term-document similarity to information retrieval, the resulting systems being known as latent semantic indexing (LSI).
 - A query consisting of several terms corresponds to the sum of their k-dimensional vectors. The resulting k-dimensional query vector may be compared to the k-dimensional document vectors to determine similarity (typically using the *cosine similarity measure*).

Mathematics of SVD

- Let **A** (mxn) be the term-by-document matrix with m>n (*more terms* than documents) and where the entries in the matrix are real numbers (such as presence or absence of a term, or entropy weights).
- SVD will compute matrices **U**, **S**, and **V** such that the original matrix can be re-created using the formula,
- $A = USV^T$, where:
 - U is the matrix of orthogonal Eigenvectors of the square symmetric matrix $\mathbf{A}\mathbf{A}^{T}$.
 - S is the diagonal matrix of square roots of nonzero eigenvalues of the square symmetric matrix $\mathbf{A}\mathbf{A}^{\mathrm{T}}$.
 - V is the matrix of orthogonal eigenvectors of the square symmetric matrix $A^{T}A$.

A Numerical Example of SVD

- Consider these 4 text documents.
- D1: I love Ipad
- D2: Ipad is great <u>for</u> kids
- D3: Kids love <u>to</u> play soccer
- D4: I play soccer at OSU
- The stop words are <u>underlined</u>.

Term/Document	D1	D2	D3	D4
1	1	0	0	1
Love	1	0	1	0
Ipad	1	1	0	0
Is	0	1	0	1
Great	0	1	0	0
Kids	0	1	1	0
Play	0	0	1	1
Soccer	0	0	1	1
OSU	0	0	0	1

- A is a (9X4) term-by-document matrix
- A^T is a (4X9) document-by-term matrix
- A^T A is a (4X4) document-by-document matrix
- **AA**^T is a (9**X9**) term-by-term matrix

Eigenvalues and Eigenvectors of A^TA

- **The** eigenvalues of A^TA are 7.783, 3.511, 2.253 and 2.453.
- The square roots of the eigenvalues of A^TA are 2.790, 1.874, 1.566, and 1.501.

U:

0.355 0.120 -0.088 0.649

0.314 -0.056 0.677 0.205

0.265 -0.575 0.045 0.355

0.380 -0.164 -0.560 -0.069

0.145 -0.430 -0.214 -0.182

0.340 -0.340 0.205 -0.513

0.429 0.356 0.072 -0.220

0.429 0.356 0.072 -0.220

0.235 0.266 -0.346 0.112

S:

2.790 0.000 0.000 0.000

0.000 1.874 0.000 0.000

0.000 0.000 1.566 0.000

0.000 0.000 0.000 1.501

\mathbf{V}^{T}

0.335 0.405 0.542 0.655

-0.273 -0.806 0.168 0.498

0.405 -0.335 0.655 -0.542

0.806 -0.273 -0.498 0.168

Compare A versus USV^T

A

Term/	D1	D2	D3	D4
Document				
1	1	0	0	1
Love	1	0	1	0
Ipad	1	1	0	0
Is	0	1	0	1
Great	0	1	0	0
Kids	0	1	1	0
Play	0	0	1	1
Soccer	0	0	1	1
OSU	0	0	0	1

USV^T

0.999 0.000 -0.001 0.999
1.000 0.000 0.998 -0.001
1.000 0.999 0.000 -0.001
0.000 0.999 0.000 0.999
0.000 1.000 0.001 0.000
0.001 1.000 1.001 0.001
-0.001 -0.001 0.999 1.000
-0.001 -0.001 0.999 1.000
0.000 0.000 0.001 1.000

More on SVD

- In full SVD, there is no dimensionality reduction and hence no loss of information.
- In practice, we use only the first few eigenvalues and keep the SVDs corresponding to those eigenvalues.
 - This means some loss of information but a gain of simple structure to represent data.
 - ullet The documents are represented in the SVD space by a column vector of the matrix ${f V}^T$.
 - The terms are represented in the SVD space by the row vectors of the multiplication of the matrix **U** and the matrix **S**.

Two-Dimensional Representation

ID	Туре	SVD1	SVD2
D1	Document	0.335	-0.273
D2	Document	0.405	-0.806
D3	Document	0.542	0.168
D4	Document	0.655	0.498
1	Term	0.99	0.225
Love	Term	0.876	-0.105
Ipad	Term	0.739	-1.078
is	Term	1.06	-0.307
Great	Term	0.405	-0.806
Kids	Term	0.949	-0.637
Play	Term	1.197	0.667
Soccer	Term	1.197	0.667
OSU	Term	0.656	0.498

Documents: V^T

0.335 0.405 0.542 0.655 -0.273 -0.806 0.168 0.498 0.405 -0.335 0.655 -0.542 -0.806 -0.273 -0.498 0.168

Terms: U.S

U: 0.355 0.120 -0.088 0.649 0.314 -0.056 0.677 0.205 0.265 -0.575 0.045 0.355 0.380 -0.164 -0.560 -0.069 0.145 -0.430 -0.214 -0.182 0.340 -0.340 0.205 -0.513 0.429 0.356 0.072 -0.220 0.429 0.356 0.072 -0.220 0.235 0.266 -0.346 0.112

S:

 $2.790\ 0.000\ 0.000\ 0.000$ $0.000\ 1.874\ 0.000\ 0.000$ $0.000\ 0.000\ 1.566\ 0.000$ $0.000\ 0.000\ 0.000\ 1.501$

Term, I = 0.355*2.79 + 0.12*0 - 0.088*0 + 0.649*0 = 0.99 (SVD 1) Term, I = 0.324*0 - 0.056*1.874 + 0.677*0 + 0.205*0 = -0.105 (SVD 2)

Document Plot in the SVD Space

Document Plot in the Rotated SVD Space

Document Plot in the Rotated SVD Space

