Devoir maison n°6

Corrigé

* * *

1 Non prouvabilité en logique intuitionniste

Question 1 On remarque qu'avec ces hypothèses, cela correspondrait à la sémantique booléenne usuelle, en associant 0 à \emptyset et 1 à \mathbb{R} . On vérifie que l'évaluation se comporte bien de la même façon sur chaque opérateur.

Question 2 On pose $C = (A \lor B) \land \neg A$. On obtient l'arbre de preuve :

$$\frac{C \vdash (A \lor B) \land \neg A}{C \vdash A \lor B} \land_{e} \xrightarrow{C, A \vdash A} \underbrace{\frac{C, A \vdash (A \lor B) \land \neg A}{C, A \vdash \neg A}}_{C, A \vdash B} \land_{e} \xrightarrow{C, A \vdash A} \xrightarrow{C, A \vdash A} \land_{e} \xrightarrow{C, A \vdash A} \land_{e} \xrightarrow{C, A \vdash A} \xrightarrow{C,$$

Question 3 Montrer que le séquent est valide revient à montrer que $\mu(((A \lor B) \land \neg A) \to B) = \mathbb{R}$, pour tout A, B formules. On a en effet :

$$-\mu(\neg A) = \mu(A)^{\complement};$$

$$-\mu((A \lor B) \land \neg A) = \mu(B) \cap \mu(A)^{\complement} \text{ (car } \mu(A)^{\complement} \subseteq \mu(A)^{\complement} \text{ donc son intersection avec } \mu(A) \text{ est vide)};$$

$$-\mu(((A \lor B) \land \neg A) \to B) = \left(\mu(B) \cap \mu(A)^{\complement}\right)^{\complement} \cup \mu(B) = \mathbb{R}. \text{ En effet, } \mu(B) \cap \mu(A)^{\complement} \subseteq \mu(B), \text{ donc } \mu(B)^{\complement} \subseteq \mu(B), \text{ donc } \mu(B)^{$$

Question 4 On obtient l'arbre suivant :

$$\frac{A \to B, A \vdash A}{A \to B, A \vdash A} \xrightarrow{\text{ax}} A \to B, A \vdash A \to B \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash B} \xrightarrow{\text{ax}} \xrightarrow{A \to B, A \vdash B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{A \to B, A \vdash A \to B} \xrightarrow{\text{ax}} e \xrightarrow{\text{ax$$

Question 5 Ce séquent n'est pas valide. En effet, si on considère la formule $(x \to y) \to (\neg x \lor y)$, avec $\mu(x) = \mu(y) = \mathbb{R}^*$, on a :

$$-\mu(x \to y) = \overbrace{\mu(x)^{\complement} \cup \mu(y)}^{\circ} = \mathbb{R};$$

$$-\mu(\neg x \lor y) = \overbrace{\mu(x)^{\complement} \cup \mu(y)}^{\circ} = \mathbb{R}^{*};$$

$$-\mu((x \to y) \to (\neg x \lor y)) = \overbrace{\mu(x \to y)^{\complement} \cup \mu(\neg x \lor y)}^{\circ} = \widehat{\mathbb{R}}^{*} = \mathbb{R}^{*} \neq \mathbb{R}.$$

Question 6 Pour les règles concernées :

- règle (\rightarrow_i) : supposons $\mu(\Gamma, A) \subseteq \mu(B)$, soit $\mu(\Gamma) \cap \mu(A) \subseteq \mu(B)$. Alors $\mu(\Gamma) = (\mu(\Gamma) \cap \mu(A)) \cup (\mu(\Gamma) \cap \mu(A))^{\complement}$). Alors :
 - $\star \ \mu(\Gamma) \cap \mu(A) \subseteq \mu(B) \subseteq \mu(A)^{\complement} \cup \mu(B),$
 - * $\mu(\Gamma) \cap \mu(A)^{\complement} \subseteq \mu(A)^{\complement} \subseteq \mu(A)^{\complement} \cup \mu(B)$.

On en déduit $\mu(\Gamma) \subseteq \mu(A)^{\complement} \cup \mu(B)$, soit, $\mu(\Gamma)$ étant ouvert, $\mu(\Gamma) = \mu(\Gamma) \subseteq \mu(A)^{\complement} \cup \mu(B) = \mu(A \to B)$;

- règle (\rightarrow_e) : supposons $\mu(\Gamma) \subseteq \mu(A)$ et $\mu(\Gamma) \subseteq \mu(A \rightarrow B)$. Montrons que $\mu(\Gamma) \subseteq \mu(B)$. En effet, comme l'intersection de deux intérieurs est égale à l'intérieur de l'intersection, on a :

$$\mu(\Gamma) \subseteq \mu(A) \cap \mu(A)^{\complement} \cup \mu(B) = \mu(A) \cap \mu(A)^{\complement} \cup \mu(B) = \mu(A) \cap (\mu(A)^{\complement} \cup \mu(B)) = \mu(A) \cap (\mu(A)^{\complement} \cup \mu(B)) = \mu(A) \cap \mu(B) \subseteq \mu(B)$$

- règle (\vee_e) : supposons $\mu(\Gamma) \subseteq \mu(A \vee B)$, $\mu(\Gamma, A) \subseteq \mu(C)$ et $\mu(\Gamma, B) \subseteq \mu(C)$. Alors:

$$\mu(\Gamma) = (\mu(\Gamma) \cap \mu(A)) \cup (\mu(\Gamma) \cap \mu(B)) \subseteq \mu(C)$$

- règle (\perp_e) : supposons $\mu(\Gamma) \subseteq \mu(\perp)$. Alors $\mu(\Gamma) = \emptyset$, donc $\mu(\Gamma) \subseteq \mu(A)$, pour tout A.

Question 7 On montre ce résultat par induction sur l'arbre de preuve d'un séquent $\Gamma \vdash A$ prouvable en logique intuitionniste :

- si ce séquent est un axiome, par validité de la règle (ax), ce séquent est valide;
- supposons que toutes les prémisses de la dernière règle appliquée sont valides. Alors par validité de la règle, la conclusion est valide.

On conclut par induction que $\Gamma \vdash A$ est valide, donc que la logique intuitionniste est correcte pour la sémantique de Heyting.

Question 8 On pose
$$A = x \vee \neg x$$
, et $\mu(x) = \mathbb{R}^*$. Alors $\mu(A) = \mu(x) \cup \widehat{\mu(x)^{\complement}} = \mathbb{R}^* \cup \{\stackrel{\circ}{0}\} = \mathbb{R}^* \neq \mathbb{R}$.

On en déduit que la règle (te) n'est pas valide, donc dans le cas général, $A \vee \neg A$ n'est pas prouvable en logique intuitionniste d'après la question précédente. Or, $A \vee \neg A$ est une tautologie pour la sémantique booléenne usuelle, qui ne rend donc pas complète la logique intuitionniste.

2 Réductions entre problèmes de prouvabilité

2.1 Transformation de Gödel

Question 9 On a $g(x \vee \neg x) = \neg \neg (\neg \neg x \vee \neg \neg \neg x)$.

Question 10 Supposons $\vdash_m g(A)$. Alors $\vdash_c g(A)$. Par correction de la logique classique pour la sémantique booléenne, $\vDash g(A)$. Or, on peut montrer par une induction rapide que $A \equiv g(A)$. On en déduit que $\vDash A$, puis par complétude de la logique classique pour la sémantique booléenne, $\vdash_c A$.

Question 11 On a l'arbre de preuve suivant :

$$\frac{\overline{A, \neg A \vdash A} \text{ ax}}{\frac{A, \neg A \vdash \neg A}{A, \neg A \vdash \neg A}} \xrightarrow{\neg_e} \frac{A, \neg A \vdash \bot}{\frac{A \vdash \neg \neg A}{A}} \xrightarrow{\neg_i}$$

Question 12 D'après la question précédente et par \wedge_i , cela revient à montrer que $\vdash_m \neg \neg \neg A \rightarrow \neg A$ pour toute formule A:

$$\frac{\frac{A \vdash \neg \neg A}{A \vdash \neg \neg A} \text{ aff } \frac{A \vdash \neg \neg A}{\neg \neg \neg A, A \vdash \neg \neg \neg A} \text{ ax}}{\frac{\neg \neg \neg A, A \vdash \bot}{\neg \neg \neg A \vdash \neg A} \xrightarrow{\neg e}} \frac{\text{ax}}{\neg e}$$

Question 13 On montre ce résultat par induction sur la formule A.

- $g(\bot) = \bot$ est stable. En effet, $\vdash_m \lnot \lnot \bot \to \bot$, par l'arbre :

$$\frac{\neg \neg \bot, \bot \vdash \bot}{\neg \neg \bot \vdash \neg \bot} \stackrel{\text{ax}}{\neg \neg} \underbrace{\neg \neg \bot \vdash \neg \neg \bot}_{\neg \neg} \underset{\neg e}{\text{ax}}$$

- si A = x est une variable, alors $g(A) = \neg \neg x$ est stable par la question précédente;
- supposons que g(B) et g(C) sont stables. On a donc $\vdash_m \neg \neg g(B) \rightarrow g(B)$ et $\vdash_m \neg \neg g(C) \rightarrow g(C)$. Distinguons :
 - * si $A = B \vee C$, alors g(A) est stable par la question précédente;
 - * si $A = B \wedge C$, alors $g(A) = g(B) \wedge g(C)$. Montrons dans un premier temps, en posant $\Gamma = \{\neg\neg(g(B) \wedge g(C)), \neg g(B)\}$, que $\neg\neg(g(B) \wedge g(C)) \vdash_m \neg\neg g(B)$:

$$\frac{\frac{\Gamma,g(B)\wedge g(C)\vdash g(B)\wedge g(C)}{\Gamma,g(B)\wedge g(C)\vdash g(B)} \overset{\text{ax}}{\wedge_e} \frac{}{\Gamma,g(B)\wedge g(C)\vdash \neg g(B)} \overset{\text{ax}}{\neg_e}}{\frac{\Gamma,g(B)\wedge g(C)\vdash \bot}{\Gamma\vdash \neg (g(B)\wedge g(C))}} \overset{\text{ax}}{\neg_e} \frac{}{\Gamma\vdash \neg \neg (g(B)\wedge g(C))} \overset{\text{ax}}{\neg e} \frac{}{\neg (g(B)\wedge g(C))\vdash \neg \neg g(B)} \overset{\text{ax}}{\neg_e}$$

Dès lors, on obtient :

$$\frac{\text{Preuve précédente}}{\frac{\neg \neg (g(B) \land g(C)) \vdash \neg \neg g(B)}{}} \frac{\text{Hypothèse d'induction}}{\frac{\neg \neg (g(B) \land g(C)) \vdash \neg \neg g(B) \rightarrow g(B)}{}} \rightarrow_{e} \frac{\text{idem}}{\frac{\neg \neg (g(B) \land g(C)) \vdash g(B)}{}} \land_{i} \frac{\frac{\neg \neg (g(B) \land g(C)) \vdash g(B) \land g(C)}{}{}}{\frac{\neg \neg (g(B) \land g(C)) \rightarrow g(B) \land g(C)}{}} \rightarrow_{i}$$

* si $A = B \rightarrow C$, alors $g(A) = g(B) \rightarrow g(C)$. On pose $\Gamma = \{ \neg \neg (g(B) \rightarrow g(C)), g(B), \neg g(C) \}$. Montrons dans un premier temps que $\Gamma \vdash_m \neg (g(B) \rightarrow g(C))$.

$$\frac{\overline{\Gamma,g(B) \to g(C) \vdash g(B)}}{\frac{\Gamma,g(B) \to g(C) \vdash g(C)}{\Gamma}} \xrightarrow{\mathrm{ax}} \frac{\Gamma,g(B) \to g(C) \vdash g(B) \to g(C)}{\Gamma} \xrightarrow{\bullet_e} \frac{\Gamma,g(B) \to g(C) \vdash \neg g(C)}{\frac{\Gamma,g(B) \to g(C) \vdash \bot}{\Gamma \vdash \neg (g(B) \to g(C))}} \xrightarrow{\neg_e} \frac{\mathrm{ax}}{\Gamma}$$

On obtient alors, en posant $\Delta = \{\neg\neg(g(B) \rightarrow g(C)), g(B)\}$:

$$\frac{\frac{\text{Preuve précédente}}{\Gamma \vdash \neg (g(B) \to g(C))} - \frac{\Gamma \vdash \neg \neg (g(B) \to g(C))}{\Gamma \vdash \neg \neg (g(B) \to g(C))}}{\frac{\Delta \vdash \neg \neg g(C)}{\Delta \vdash \neg \neg g(C)}} \xrightarrow{\neg_e} \frac{\text{Hypothèse d'induction}}{\Delta \vdash \neg \neg g(C) \to g(C)}}{\frac{\Delta \vdash g(C)}{\vdash \neg \neg (g(B) \to g(C)) \to (g(B) \to g(C))}} \xrightarrow{\bullet}_i \times 2}$$

On conclut par induction.

Question 14 Soit $\Gamma \vdash A$ un séquent prouvable en logique classique. Montrons que $g(\Gamma) \vdash_m g(A)$:

- si la dernière règle de la preuve est (ax) ou (aff), le résultat est immédiat;
- si la dernière règle de la preuve est une règle de l'opérateur \land ou →, on obtient le résultat en appliquant g au prémisses et à la conclusion de la règle (les prémisses modifiées étant prouvables par hypothèse d'induction);
- si la dernière règle est \vee_i , on obtient une preuve de la forme :

$$\frac{\frac{g(\Gamma) \vdash g(B)}{g(\Gamma) \vdash g(B) \lor g(C)}}{\frac{g(\Gamma) \vdash g(B) \lor g(C)}{g(\Gamma) \vdash \neg \neg (g(B) \lor g(C))}}$$

La dernière règle correspondant à un résultat montré précédemment.

– si la dernière règle est \vee_e , le résultat est un peu plus compliqué à montrer. Supposons que $A = B \vee C$ et que, par hypothèse d'induction, $g(\Gamma) \vdash_m g(B \vee C)$, $g(\Gamma)$, $g(B) \vdash_m g(A)$ et $g(\Gamma)$, $g(C) \vdash_m g(A)$. Montrons dans un premier temps, en posant $\Delta = g(\Gamma) \cup \{\neg g(A), g(B) \vee g(C)\}$, que $\Delta \vdash \bot$.

$$\frac{\frac{\text{Hypothèse d'induction}}{g(\Gamma), g(B) \vdash g(A)}}{\frac{\Delta \vdash g(B) \lor g(C)}{\Delta}} \text{ ax } \frac{\frac{g(\Gamma), g(B) \vdash g(A)}{\Delta} \text{ aff }}{\frac{\Delta, g(B) \vdash g(A)}{\Delta}} \xrightarrow{\neg_e} \frac{\frac{\text{Idem}}{\Delta, g(C) \vdash \bot}}{\Delta \vdash \bot}}{\frac{\Delta}{\Box}} \vee_e$$

On obtient alors:

$$\frac{\frac{\text{Hypothèse d'induction}}{g(\Gamma) \vdash g(B \lor C)}}{\frac{g(\Gamma), \neg g(A) \vdash \neg \neg (g(B) \lor g(C))}{g(\Gamma), \neg g(A) \vdash \neg \neg (g(B) \lor g(C))}} \overset{\text{Preuve précédente}}{\underbrace{\frac{G(\Gamma), \neg g(A) \vdash \bot}{g(\Gamma) \vdash \neg \neg g(A)}}}_{\neg_i} \neg_i$$

La dernière règle correspondant à la question précédente.

- si la dernière règle est (raa), on obtient, en se limitant à la fin de l'arbre précédent :

$$\frac{g(\Gamma), \neg g(A) \vdash \bot}{g(\Gamma) \vdash \neg \neg g(A)} \neg_i$$
$$\frac{g(\Gamma) \vdash g(A))}{g(\Gamma) \vdash g(A))}$$

On conclut par induction, et en se limitant ensuite à un séquent sans contexte (le résultat montré est en fait plus fort).

2.2 Lien avec la logique intuitionniste

Question 15 Par induction sur A:

- si $A = \bot$, alors $g(A) = \bot$, et on a déjà montré précédemment que \bot est stable;
- si A = x, une variable, alors $q(A) = \neg \neg A$;
- supposons que $\vdash_i g(B) \rightarrow \neg \neg B$ et $\vdash_i g(C) \rightarrow \neg \neg C$. Distinguons :
 - * si $A = B \wedge C$, alors $g(A) = g(B) \wedge g(C)$. On obtient donc $\vdash_i g(A) \rightarrow (\neg \neg B \wedge \neg \neg C)$ en utilisant les hypothèses d'induction, puis par la propriété admise, $\vdash_i g(A) \rightarrow \neg \neg (B \wedge C)$ ce qui est le résultat voulu :
 - * si $A = B \to C$, alors $g(A) = g(B) \to g(C)$. Par les hypothèses d'induction, on obtient $\vdash_i g(A) \to \neg \neg C$, puis par la propriété admise $\vdash_i g(A) \to \neg \neg (B \to C)$;
 - * si $A = B \vee C$, alors $g(A) = \neg \neg (g(B) \vee g(C))$. Par hypothèse d'induction, on obtient (avec $(\neg_i \text{ et } \neg_e) : \vdash_i g(A) \rightarrow \neg \neg (\neg \neg B \vee \neg \neg C)$, puis par la propriété admise $\vdash_i g(A) \rightarrow \neg (\neg \neg \neg B \wedge \neg \neg \neg C)$, puis $\vdash_i g(A) \rightarrow \neg (\neg B \wedge \neg C)$ et enfin $\vdash_i g(A) \rightarrow \neg \neg (B \vee C)$.

On conclut par induction.

Question 16 Le sens réciproque se fait de la même manière que le sens réciproque du théorème précédent. Pour le sens direct, supposons que $\vdash_c A$. Alors par le théorème précédent, $\vdash_m g(A)$, donc $\vdash_i g(A)$, et par l'implication de la question précédente, $\vdash_i \neg \neg A$.
