主管	
领导	
审核	
签字	

哈尔滨工业大学 2023 年 秋季学期 微积分先修试题

题号	_	=	三					总分
			11	12	13	14	15	心 /)
得分								
阅卷人								

片纸鉴心 诚信不败

注意事项:

- 1. 本卷满分 100 分;
- 2. 本卷共五大页,请勿缺损,否则按作弊处理;
- 3. 本卷背面亦可作为演草纸使用,但阅卷以答题区域为准。

- **一. 选择题**(共 5 小题,每小题 4 分,满分 20 分)
- 1. 设f(0)=0,则f(x)在点x=0处可导的充要条件为()
 - (A) $\lim_{h\to 0} \frac{1}{h} [f(h) f(-h)]$ 存在; (B) $\lim_{h\to 0} \frac{1}{h} f[\ln(1+h)]$ 存在;
 - (C) $\lim_{h\to 0} \frac{1}{h^2} f(\sinh^2)$ 存在; (D) $\lim_{h\to 0} \frac{1}{h^2} f(e^{h^2} 1)$ 存在.
- 2. 设f(x)在 $(-\infty, +\infty)$ 内可导,则()
 - (A) 当f'(x) 为单调函数时,f(x)一定为单调函数;
 - (B) 当f(x) 为单调函数时,f'(x)一定为单调函数;
 - (C) 当f'(x) 为偶函数时,f(x)一定为奇函数;
 - (D) 当f(x) 为偶函数时,f'(x)一定为奇函数.

草 纸

- 3. 设f(x)在[0,1]上连续,且F'(x)=f(x),则定积分 $\int_0^1 f(ax) dx (a \neq 0)$ 为()
 - (A) F(1) F(0)

(B) F(a) - F(0)

(C) $\frac{1}{a} [F(a) - F(0)]$

- (D) a[F(a) F(0)]
- \mathfrak{S} 4. 设f(x), g(x)在 x_0 处可导,且 $f(x_0) = g(x_0) = 0$, $f'(x_0)g'(x_0) > 0$, $f''(x_0)$, $g''(x_0)$ 均存在,则
 - (A) x_0 不是 f(x)g(x) 的驻点;
 - (B) x_0 是 f(x)g(x) 的驻点, 但不是极值点;
 - (C) x_0 是 f(x)g(x) 的驻点,且是 f(x)g(x) 的极小值点;
 - (D) x_0 是 f(x)g(x) 的驻点,且是 f(x)g(x) 的极大值点.
- 5. 若已知 $f(\pi) = 2$ 且 $\int_0^{\pi} [f(x) + f''(x)] \sin x \, dx = 5$,则f(0) = ()
 - (A) 0

(B) 1

(C) 2

(D) 3

- 二. **填空题**(共 5 小题,每小题 4 分,满分 20 分)
- 6. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1+2+\cdots+k} = \underline{\hspace{1cm}}$
- 7. 函数 $f(x) = x^4$ 在区间 [1,2] 上满足拉格朗日中值定理的 $\xi = ____$.

草纸

- 8. $\lim_{x \to 0^+} \ln^2 x \cdot \ln \left(1 + \frac{x}{\ln x} \right) = \underline{\qquad}.$
- 9. 己知 $y = x^2 e^{x^2}$,则 $y^{(5)}(0) =$ ______.
- - **三. 解答题**(每小题 12 分, 共 5 小题, 满分 60 分)
- 11. 设f(x)满足 $\lim_{x\to 0} \frac{f(x)}{x^2} = -1$,当 $x\to 0$ 时, $\ln\cos x^2$ 是比 $x^n f(x)$ 高阶的无穷小量,而 $x^n f(x)$ 是比 $e^{\sin^2 x} 1$ 高阶的无穷小量,求正整数n.

草 纸

12. 设函数 $f(x) = \begin{cases} g(x)\sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 且g(0) = g'(0) = 0. 讨论f(x)在点x = 0处的连续性与可

导性.

13. $\forall f(x+h) = f(x) + hf'(x+\theta h) (0 < \theta < 1), f''(x) \not\equiv g, \exists f''(x) \neq 0, \forall \lim_{h \to 0} \theta.$

草 纸

14. 设f(x)是可导的偶函数,它在x=0的某邻域内满足关系式 $f(e^{x^2})-3f(1+\sin x^2)=2x^2+o(x^2), 求曲线<math>y=f(x)$ 在点(-1,f(-1))处的切线方程.

- 對15. 设f(x)二阶可导,且f(0)=0,f(1)=1, $\int_0^1 f(x) dx = \frac{1}{2}$.
 - (1) 证明:存在 $c \in (0,1)$,使得f(c) = c;
 - (2) 证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 1 f'(\xi)$.

草 纸