

HARIUN NISHAS

I 1.Data type of all columns in the "customers table"

RESULT:

- This is customer data table
- It shows all details about the customer
- It is combine orders and orderitem table

2. Get the time range between which the orders were placed.

QUERY:

Select min(order_purchase_timestamp) as start_date, max(order_purchase_timestamp) as end_date from `sql-project-2025-471915.proj_sql_2025.orders`;

RESULT:

Query results						Save results ▼	Open in ▼
Job information	Results	Visualization	JSON	Execution details	Execution graph		
Row start_date ▼		end_date ▼		//			
1 2016-09-04 21:	:15:19 UTC	2018-10-17 17:30	0:18 UTC				

- This shows the time period of orders
- It shows order and transaction
- It shows the ordertime which customer place first and last

3. Count the Cities & States of customers who ordered during the given period.

QUERY:

```
select count(customer_city) as totcity , count(customer_state) as totstate from `sql-project-2025-471915.proj_sql_2025.customer` c join `sql-project-2025-471915.proj_sql_2025.orders` o on c.customer_id=o.customer_id where order_purchase_timestamp between '2015-01-01'and'2017-12-01'
```

RESULT:

- It shows the unque customer with total city and total state
- It shows all customer city and state

II. 1. Is there a growing trend in the no. of orders placed over the past years?

QUERY:

select
orderyear,ordermonth,totalorder,lag(totalorder)o
ver(order by orderyear,ordermonth)as
pervi_sales,
 (totalorder)-lag(totalorder)over(order by
orderyear,ordermonth) as diff_sales from
 (select extract(year from
 order_purchase_timestamp) as orderyear,
 extract(month from order_purchase_timestamp)
 as ordermonth,
 count(order_purchase_timestamp) as totalorder
 from `sql-project-2025471915.proj_sql_2025.orders`
 group by orderyear,ordermonth
 order by orderyear,ordermonth)

_							
Query r	results				Save results ▼	Open in ▼	0
Job inform	mation Res	sults Visualizati	ion JSON	Execution details	Execution graph		
Row / or	deryear ▼	ordermonth ▼ / t	otalorder ▼ // F	pervi_sales ▼ // d	iff_sales ▼		
1	2017	6	3245	3700	-455		
2	2016	12	1	324	-323		
3	2018	4	6939	7211	-272		
4	2017	2	1780	800	980		
5	2017	12	5673	7544	-1871		
6	2017	1	800	1	799		
7	2017	5	3700	2404	1296		
8	2018	5	6873	6939	-66		
9	2018	9	16	6512	-6496		
10	2018	1	7269	5673	1596		
			•				

- It shows the order place month of month
- It shows the month and yearwise growth
- No of orders were placed and what is perivous year sales

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

QUERY:

select extract (month from order_purchase_timestamp) as monthlyorder, count(order_id) as totalorder from`sql-project-2025-471915.proj_sql_2025.orders` group by monthlyorder

RESULT:

Que	ry results				Save results ▼	Open in ▼	0
Job in	formation	Results	Visualization .	JSON Execution deta	ils Execution graph		
Row /	customer_state	-	totalorder -	monthlyorder •			
1	PI		1	2			
2	RO		1	4			
3	SE		1	11			
4	AL		1	12			
5	PI		1	2			
6	то		1	2			
7	RR		1	1			
8	PI		1	3			
9	RO		1	6			
10	RO		1	8			

interpertation:

 This query shows the total order monthlywise and give the growth of orders in seasonality where customers purchased 3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

QUERY:

select case when extract(hour from o.order_purchase_timestamp) between 0 and 6 then'Dawn' when extract(hour from o.order_purchase_timestamp) between 7 AND 12 then 'Morning' when extract(hour from o.order_purchase_timestamp) BETWEEN 13 AND 18 then'Afternoon' else 'Night' end as time_order, count(o.order_id) as totorder, c.customer state from 'sql-project-2025-471915.proj_sql_2025.orders`o join `sql-project-2025-471915.proj_sql_2025.customer`c on o.customer id=c.customer id group by time_order,customer_state order by totorder desc;

RESULT:

Que	ry results					
Job in	formation	Results	Visualization .	JSON	Execution details	Execution graph
Row //	time_order ▼	/	totorder ▼	_ customer_	state ▼ //	
1	Afternoon		18482	SP		
2	Morning		13315	SP		
3	Night		13083	SP		
4	Afternoon		5634	RJ		
5	Afternoon		5014	MG		
6	Night		4074	RJ		
7	Morning		3987	RJ		
8	Morning		3812	MG		
9	Night		3779	MG		
10	Dawn		2569	SP		

- This query shows the brazil customer placed their orders in dawn, morning, afernoon, night
- It shows the no of orders where placed in particular time period which time was placed more orders

III 1. Get the month on month no. of orders placed in each state.

QUERY:

select c.customer_state, count(o.order_id) as totalorder, extract(month from o.order_purchase_timestamp) as monthlyorder from `sql-project-2025-471915.proj_sql_2025.customer` c join `sql-project-2025-471915.proj_sql_2025.orders` o on c.customer_id=o.customer_id group by c.customer_state, o.order_id, monthlyorder;

RESULT:

INTERPRETATION:

 This query shows the no of orders placed by monthlywise with the state of customer in unique 2. How are the customers distributed across all the states?

QUERY:

select count(customer_id) as totcustomer,customer_state from

`sql-project-2025-471915.proj_sql_2025.customer` group by customer_state order by totcustomer desc;

RESULT:

Query r	results				Save results ▼	Open in ▼	0
Job inform	mation Results	s Visualization	JSON	Execution details	Execution graph		
Row / ord	deryear ▼ // ord	ermonth • totals	order 🕶 🔑 po	ervi_sales ▼ / diff_	sales ▼		
1	2017	6	3245	3700	-455		
2	2016	12	1	324	-323		
3	2018	4	6939	7211	-272		
4	2017	2	1780	800	980		
5	2017	12	5673	7544	-1871		
6	2017	1	800	1	799		
7	2017	5	3700	2404	1296		
8	2018	5	6873	6939	-66		
9	2018	9	16	6512	-6496		
10	2018	1	7269	5673	1596		
			•				

INTERPRETATION:

 This query shows total customer who placed order with their state and calculate the customer's total in unique IV A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

QUERY:

select extract(year from o.order_purchase_timestamp) as totyear, sum(oi.price) as totcost, sum(oi.price) * 100.0 / sum(sum(oi.price)) over() as precen_tot from 'sql-project-2025-471915.proj_sql_2025.order_items`oi join `sql-project-2025-471915.proj_sql_2025.orders` 0 on o.order id = oi.order id where extract(year from o.order_purchase_timestamp) in (2017, 2018) and extract(month from o.order_purchase_timestamp) between 1 and 8 group by totyear order by totyear desc;

Quer	ry results						
Job int	formation	Re	sults	Visualiza	ation	JSON	Execution details
Row /	totyear 🕶	11	totcost	- /	precent	tot 🕶 //	
1		2018	7385905	5.800003	70.349	28892193	
2		2017	3113000	319999	29.650	71107806	

- For this query, we have extract the month and year
- Also it is showing total number of price, percentage and months only from jan to aug
- It combining the table customer and order

B. Calculate the Total & Average value of order price for each state.

QUREY:

select sum(oi.price)as totalvalue,count(o.order_id) as totalorder, avg(oi.price)as avgvalue ,c.customer_state from`sql-project-2025-471915.proj_sql_2025.order_items`oi join `sql-project-2025-471915.proj_sql_2025.orders`o on oi.order_id=o.order_id join `sql-project-2025-471915.proj_sql_2025.customer`c on o.customer_id=c.customer_id group by customer_state order by totalorder;

Que	ry results					Save re	sults 🕶	Open in ▼	-
Job in	formation R	esults Visua	alization	JSON	Execution deta	ails Ex	ecution gra	ph	
Row /	totalvalue 🔻	totalorder ▼	/ avgvalu	e ~ //	customer_state ▼				
1	7829.4299999999	5	150.56	59615384	RR				
2	13474.299999999	3	164.32	07317073	AP				
3	15982.94999999	ç	173.72	77173913	AC				
4	22356.84000000	16	5 135.49	60000000	AM			•	
5	46140.64000000	27	78 165.97	35251798	RO				
6	49621.74000000	31	5 157.52	93333333	то				
7	58920.8500000001	38	153.04	11688311	SE				
8	80314.809999999	44	14 180.88	92117117	AL				
9	83034.979999999	52	9 156.96	59357277	RN				
10	86914.079999999	54	12 160.35	80811808	PI				

 This query is the combination of table customer and order

 It shows the totalprice and average of price which was purchased by customer by their states c. Calculate the Total & Average value of order freight for each state.

QUERY:

select c.customer_state, avg(oi.freight_value) as avg_freight, sum(oi.freight_value) as tot_freight from `sql-project-2025-471915.proj_sql_2025.order_items`oi join `sql-project-2025-471915.proj_sql_2025.orders`o on oi.order_id=o.order_id join `sql-project-2025-471915.proj_sql_2025.customer`c on o.customer_id=c.customer_id group by customer_state order by avg_freight,tot_freight

Que	ry results		E)	Save results ▼	Open in ▼	٥
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					_
< -	Job information	Results	Visualization	JSON E	xecution details	>
Row /	customer_state ▼	1.	avg_freight ▼ //	tot_freight ▼	8.	
1	SP		15.14727539041	718723.0700000		
2	PR		20.53165156794	117851.6799999		
3	MG		20.63016680630	270853.4600000		
4	RJ		20.96092393168	305589.3100000		
5	DF		21.04135494596	50625.50000000		
6	sc		21.47036877394	89660.25999999		
7	RS		21.73580433039	135522.7399999		
8	ES		22.05877659574	49764.599999999		
9	GO		22.76681525932	53114.98000000		
10	MS		23.37488400488	19144.03000000		

- This query is the combination of table customer, orders, order item
- It shows the total freight value and average freight value of customer by their states order result shows the total freight cost

- V. Analysis based on sales, freight and delivery time.
- A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.
- B. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

QUERY:

select order_id, date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as delivery_day,

date_diff(order_delivered_customer_date, order_estimated_delivery_date, day) as estimate_dif_day

from `sql-project-2025-471915.proj_sql_2025.orders` where order_delivered_customer_date is not null;

RESULT:

Job inf	formation	Results	Visualization	JSON	Execution details	Execution graph
Row /	order_id ▼		delivery_day ▼	estimat	e_dif_day 🔻	
1	65d1e226dfae	eb8cdc42f665422	3	5	-16	
2	2c45c33d2f9d	cb8ff8b1c86cc28	3	0	-28	
3	1950d777989	f6a877539f53795	. 3	0	12	
4	bfbd0f9bdef8	4302105ad712db	5	4	36	
5	98974b076b0	1553d49ee64679	4	3	-6	
6	c4b41c36dd5	89e901f6879f25a	3	6	-14	
7	d2292ff2201e	74c5db154d1b7a		9	-20	
8	95e01270fcba	e986342340010	3	0	-19	
9	ed8c7b1b3eb	256c70ce0c7423	4	4	-5	
10	5cc475c7c03	290048eb2e742c	6	8	18	

- In this query deliveryday tells the deliverydate of order which customer purchased
- Estimated day tells delivery of the order before or after from orderdate
- It is positive the product was delivery before delivery date
- It is negative the product was delivery after delivery date

B. Find out the top 5 states with the highest & lowest average freight value.

Hint: We want you to find the top 5 & the bottom 5 states arranged in increasing order of the average freight value.

QUERY:

```
with avg_freight_value as (
select
c.customer_state,
avg(oi.freight_value) as avg_freight,
dense_rank() over(order by avg(oi.freight_value)
desc) as high_freight,
dense_rank() over (order by avg (oi.freight_value)ase
as low_freight
from 'sql-project-2025-
471915.proj_sql_2025.order_items`oi
join `sql-project-2025-471915.proj_sql_2025.orders`
on oi.order_id = o.order_id
join 'sql-project-2025-
471915.proj_sql_2025.customer`c
on o.customer_id = c.customer_id
group by c.customer_state
```

select
 customer_state,
 avg_freight,
 high_freight,
 low_freight
from avg_freight_value
where high_freight <= 5 or low_freight <= 5
order by avg_freight desc;</pre>

Que	ry results				
Job in	formation Res	sults Visualization	JSON Execut	ion details Exc	ecution graph
Row /	customer_state ▼	avg_freight ▼	/ high_freight ▼	low_freight ▼	
1	RR	42.98442307692	. 1	27	
2	PB	42.72380398671	. 2	26	
3	RO	41.06971223021	. 3	25	
4	AC	40.07336956521	. 4	24	
5	PI	39.14797047970	. 5	23	
6	DF	21.04135494596	. 23	5	
7	RJ	20.96092393168	. 24	4	
8	MG	20.63016680630	. 25	3	
9	PR	20.53165156794	. 26	2	
10	SP	15.14727539041	. 27	1	

- In this query have find the average of freight value
- We shoud make the rank for top 5 state with high freight value
- And have to show the top 5 state with low freight

C. Find out the top 5 states with the highest & lowest average delivery time.

Query:

```
with avg_delivery_per_state as (
  select
c.customer_state,avg(date_diff(o.order_delivered_
customer_date, o.order_purchase_timestamp,
day)) as avg_delivery,
  rank()over(order by
avg(date_diff(o.order_delivered_customer_date,
o.order_purchase_timestamp, day))asc)as
lowrank,
  rank() over(order by
avg(date_diff(o.order_delivered_customer_date,
o.order_purchase_timestamp,day))desc)as
highrank
 from 'sql-project-2025-
471915.proj_sql_2025.orders`o
join 'sql-project-2025-
471915.proj_sql_2025.customer`c
on o.customer id = c.customer id
```

```
where
o.order_delivered_customer_date is not
null
and o.order_purchase_timestamp is
not null
group by c.customer_state
)
select customer_state,
avg_delivery,lowrank,highrank
from avg_delivery_per_state
where lowrank <= 5 or highrank <= 5
order by avg_delivery asc;</pre>
```

Query results									
Job in	formation	Results	Visualization	JSON Executi	ion details Exc	ecution graph			
ow /	customer_state	-	avg_delivery ▼	lowrank ▼	highrank ▼				
1	SP		8.298061489072	1	27				
2	PR		11.52671135486	2	26				
3	MG		11.54381329810	3	25				
4	DF		12.50913461538	4	24				
5	SC		14.47956019171	5	23				
6	PA		23.31606765327	23	5				
7	AL		24.04030226700	24	4				
8	AM		25.98620689655	25	3				
9	AP		26.73134328358	26	2				
10	RR		28.97560975609	27	1				

- It showing the avgerage delivery time by customer state
- It based on the distance
- Highest delivery time may be near warehouse or based on shipping
- Lower delivery time may be based on rural areas

D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

QUERY:

select c.customer_state,
date_diff(o.order_estimated_delivery_date,
o.order_delivered_customer_date,day) as
fast_delivery
from `sql-project-2025471915.proj_sql_2025.orders`o
join `sql-project-2025471915.proj_sql_2025.customer`c
on o.customer_id=c.customer_id
where (o.order_delivered_customer_date) is not
null

RESULT:

Que	ry results		_		Save results ■
Job in	formation Results	Visualization JSO	N Execution details	Execution graph	
Row //	customer_state ▼	fast_delivery ▼			
1	RJ	45			
2	SP	44			
3	RJ	41			
4	MG	-12			
5	SP	-36			
6	SP	39			
7	RJ	40			
8	SP	34			
9	SP	41			
10	SP	33			

INTERPRETATION:

 Here we get the information of fastest delivery state by comparing the delivery date and estimated delivery date

- VI. Analysis based on the payments:
- A. Find the month on month no. of orders placed using different payment types.

QUERY:

```
select count(o.order_id) as totalorder, extract(month from o.order_purchase_timestamp) as month_order, extract(year from o.order_purchase_timestamp) as year_order, p.payment_type from `sql-project-2025-471915.proj_sql_2025.orders`o join `sql-project-2025-471915.proj_sql_2025.payments`p on o.order_id=p.order_id group by month_order,p.payment_type,year_order order by totalorder, month_order,year_order desc;
```

RESULT:

INTERPRETATION:

 It tells about the totalorder of customer by year and month and using the payment mode of customer B. Find the no. of orders placed on the basis of the payment installments that have been paid.

QUERY:

select p.payment_installments, count(o.order_id) as totalorder, from `sql-project-2025-471915.proj_sql_2025.orders` o join `sql-project-2025-471915.proj_sql_2025.payments`p on o.order_id=p.order_id group by p.payment_installments order by totalorder desc

Query results					
Job information		esults Visualization		JSON	Execut
Row payment_installm totalorder ▼					
1	1	52546			
2	2	12413	_		
3	3	10461	•		
4	4	7098			
5	10	5328			
6	5	5239			
7	8	4268			
8	6	3920			
9	7	1626			
10	9	644			

 In this query we getting no of orders with full payments by customer paid mode

THANK YOU