Chapter 1

Real Analysis and Topology

Lectured by Someone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Notation. Unbracketed superscripts are used to label the components of vectors, with unbracketed subscripts labellin different vectors.

Contents

T	Rea	u Anai	ysis and Topology
L1	1	Euclid	ean spaces
		1.1	Euclidean norm
		1.2	Convergence in \mathbb{R}^n
	2	Contin	nuity and limits of functions
		2.1	Open sets
		2.2	Continuity
	3	Deriva	tive of maps of Euclidean spaces
		3.1	Total derivatives
		3.2	Directional and partial derivatives
		3.3	Higher order derivatives
	4	Inverse	e and implicit function theorems
		4.1	Inverse function theorem
		4.2	Implicit function theorem
	5		z spaces
	Ü	5.1	Introduction
		5.2	Normed vector spaces
		5.3	Sets in metric spaces
		5.4	Continuous maps of metric spaces
	6		ogical spaces
	O	6.1	Topologies and their spaces
		6.2	Convergence and Hausdorff property
		6.3	Closed sets
		6.4	Continuous maps
	7		ectedness
	•	7.1	Definition
		7.2	Continuous maps
		7.3	Path connected sets
	8		actness
	O	8.1	Covers
		8.2	Sequential compactness
		8.3	Continuous maps
		8.4	Arzelá-Ascoli theorem
	9		leteness
	Э	9.1	
		9.1	•
		9.2	Fixed point theorem

Lecture 1 Monday 30/10/2023

1 Euclidean spaces

Definition 1.0.1 (\mathbb{R}^n). The set $\mathbb{R}^n = \{(x^1, x^2, \dots, x^n) : x^i \in \mathbb{R}, \forall i \in [1, n]\}$ will be considered with the operations to make it a real vector space.

1.1 Euclidean norm

Definition 1.1.1 (Inner product). We will have the **inner product** on \mathbb{R}^n by $\langle \cdot, \cdot \rangle : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfying:

$$\langle x, y \rangle := \sum_{i=1}^{n} x^{i} y^{i},$$

with the Euclidean norm given by,

$$||\cdot||: \mathbb{R}^n \to [0,\infty) \text{ with } ||x|| = \sqrt{\langle x,x\rangle}.$$

Proposition 1.1.2 (Properties of the Euclidean norm). The Euclidean norm satisfies the following properties:

- (N1) for all $x \in \mathbb{R}^n$, $||x|| \ge 0$ achieving equality iff x = 0,
- (N2) for all $x \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$, $||\lambda x|| = |\lambda| \cdot ||x||$,
- (N3) for all $x, y \in \mathbb{R}^n$: ||x + y|| < ||x|| + ||y||,

Theorem 1.1.3 (Cauchy-Swartz innequality). For all $x, y \in \mathbb{R}^n$, $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

Theorem 1.1.4 (Reverse triangle innequality). For all $x, y \in \mathbb{R}^n$, $||x|| - ||y|| \le ||x - y||$.

Proposition 1.1.5. For $x = (x^1, x^2, \dots, x^n) \in \mathbb{R}^n$,

$$\max_{k \in [1,n]} |x^k| \le ||x|| \le \sqrt{n} \max_{k \in [1,n]} |x^k|.$$

Proof. Exercise

1.2 Convergence in \mathbb{R}^n

Definition 1.2.1 (Open ball). In \mathbb{R}^n we define the open ball around $x \in \mathbb{R}^n$ of size $r \in \mathbb{R}$ as

$$B_r(x) := \{ y \in \mathbb{R}^n : ||x - y|| < r \}.$$

This will be analoguous the the notion of open intervals used throughout analysis 1.

Definition 1.2.2 (Sequence in \mathbb{R}^n). A sequence in \mathbb{R}^n is an ordered list $x_0, x_1, \ldots, x_i \ldots$ with $x_i \in \mathbb{R}^n$ for all $i \in \mathbb{N}$, written $(x_i)_{i=0}^{\infty}$

Definition 1.2.3 (Convergence in \mathbb{R}^n). We say a sequence in \mathbb{R}^n , $(x_i)_{i=0}^{\infty}$ converges to $x \in \mathbb{R}^n$ iff

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that, } \forall n \geq N, \ ||x_i - x|| < \epsilon$$

and we write $x_i \to x$ as $i \to \infty$ or $\lim_{i \to \infty} x_i = x$.

Lemma 1.2.4. The sequence of vectors in \mathbb{R}^n , $(x_i)_{i=0}^{\infty}$, converges to some $x = (x^1, x^2, \dots, x^n) \in \mathbb{R}^n$ iff each component of x_i converges to the corresponding component in x:

$$\forall k \in [1, n] \lim_{i \to \infty} x_i^k = x^k.$$

Proof. (\Longrightarrow) Given $\lim_{i\to\infty} x_i^k = x^k$ for all $k\in[1,n]$ we have that for all $\epsilon>0$, $\left|x_i^k-x^k\right|<\frac{\epsilon}{\sqrt{n}}$ for all $i\geq N_k$ for each $k\in[1,n]$ respectively. We take $N=\max_i N_k$ and now have:

for each
$$k \in [1, n]$$
 respectively. We take $N = \max_{k \in [1, n]} N_k$ and now have:
$$\max_{k \in [1, n]} \left| x_i^k - x^k \right| < \frac{\epsilon}{\sqrt{n}} \implies ||x_i - x|| \le \sqrt{n} \max_{k \in [1, n]} \left| x_i^k - x^k \right| < \epsilon.$$

(\iff) Similarly, given $\lim_{i\to\infty} x_i = x \implies ||x_i - x|| < \epsilon$ for all $\epsilon > 0$:

$$|x_i^k - x^k| \le \max_{k \in [1,n]} |x_i^k - x^k| \le ||x_i - x|| < \epsilon,$$

therefore $\lim_{i\to\infty} x_i^k = x^k$ for all $k\in[1,n].$

2 Continuity and limits of functions

2.1 Open sets

Definition 2.1.1 (Open set in \mathbb{R}^n). A subset $U \subseteq \mathbb{R}^n$ is open in \mathbb{R}^n iff:

$$\forall x \in U, \ \exists r > 0 \text{ such that } B_r(x) \subseteq U.$$

2.2 Continuity

Definition 2.2.1 (Continuity). Let $A \subseteq \mathbb{R}^n$ the we have $f: A \to \mathbb{R}^m$ continuous at some $p \in A$ iff

$$\forall \epsilon > 0, \ \exists \delta > 0 \text{ such that } \forall x \in A \text{ with } ||x - p|| < \delta, \ ||f(x) - f(p)|| < \epsilon.$$

If f is continuous at all $p \in A$ we say f is **continuous on** A.

Theorem 2.2.2. Let $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ with $f: A \to B$ continuous at $p \in A$. Supporse $g: B \to \mathbb{R}^l$ is continuous as f(p), then $g \circ f: A \to \mathbb{R}^l$ is continuous at p.

Proof.

3 Derivative of maps of Euclidean spaces

3.1 Total derivatives

Definition 3.1.1 (Total derivate). Given open $\Omega \subset \mathbb{R}^n$, the function $f:\Omega \to \mathbb{R}^m$ is differentiable as $p \in \Omega$ iff there is a linear linear map $\Lambda: \mathbb{R}^n \to \mathbb{R}^m$ satisfying:

$$\lim_{x \to p} \frac{||f(x) - f(p) - \Lambda(x - p)||}{||x - p||} = 0.$$

Have $Df(p) := \Lambda$ be the **total derivative** of f at p.

Remark 3.1.2. Given $f:(a,b)\to\mathbb{R}$ differentiable at $p\in(a,b)$, we have

$$\lim_{x \to p} \frac{||f(x) - f(p) - \Lambda(x - p)||}{||x - p||} = \lim_{x \to p} \frac{|f(x) - f(p) - \lambda \cdot (x - p)|}{|x - p|} = \lim_{x \to p} \left| \frac{f(x) - f(p)}{x - p} - \lambda \right| = 0$$

$$\implies \lim_{x \to p} \left| \frac{f(x) - f(p)}{x - p} \right| = \lambda, \text{ which satisfies the normal definition for a derivative.}$$

Theorem 3.1.3 (Uniqueness of total derivative). If the total derivative of a function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ exists, then it is unique.

Proof.

Theorem 3.1.4 (Chain rule). Let $\Omega \subset \mathbb{R}^n$, $\Omega' \subset \mathbb{R}^m$ be open and have $g: \Omega \to \Omega'$, $f: \Omega' \to \mathbb{R}^l$ differentiable at p, g(p) respectively and let $h := f \circ g$, $Dh(p) = Df(g(p)) \circ Dg(p)$.

Proof.

3.2 Directional and partial derivatives

Definition 3.2.1 (Direction derivative). Suppose $\Omega \subseteq \mathbb{R}^n$ is open with $f: \Omega \to \mathbb{R}^m$ differentiable at $p \in \Omega$. For all $v \in \mathbb{R}^n$ the **directional derivative** of f at p in the direction of v is:

$$\frac{\partial f}{\partial v}(p) := \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t} = Df(p)[v].$$

With the partial derivatives of f given by:

$$D_i f(p) := \frac{\partial f}{\partial e_i}(p)$$
, for all $i \in [1, n]$.

Remark 3.2.2. If the total derivative of a function exists, then so do all of its directional derivatives.

Theorem 3.2.3. If $\Omega \subset \mathbb{R}^n$ is open with $f: \Omega \to \mathbb{R}$ with all partial derivatives existing for all $x \in \Omega$. If the map $x \mapsto D_i f(x)$ is continuous at $p \in \Omega$ for all partial derivatives, then f is differentiable at p.

- 3.3 Higher order derivatives
- 4 Inverse and implicit function theorems
- 4.1 Inverse function theorem
- 4.2 Implicit function theorem
- 5 Metric spaces
- 5.1 Introduction
- 5.2 Normed vector spaces
- 5.3 Sets in metric spaces
- 5.4 Continuous maps of metric spaces
- 6 Topological spaces
- 6.1 Topologies and their spaces
- 6.2 Convergence and Hausdorff property
- 6.3 Closed sets
- 6.4 Continuous maps
- 7 Connectedness
- 7.1 Definition
- 7.2 Continuous maps
- 7.3 Path connected sets
- 8 Compactness
- 8.1 Covers
- 8.2 Sequential compactness
- 8.3 Continuous maps
- 8.4 Arzelá-Ascoli theorem
- 9 Completeness
- 9.1 Banach spaces
- 9.2 Fixed point theorem