Reinforcement Learning (RL)

Chapter 4:

Monte-Carlo Methods on Reinforcement Learning

Saeed Saeedvand, Ph.D.

Contents

In this Chapter:

- ✓ Model-Based Learning and Model-Free Learning
- ✓ First-Visit Method MC Prediction
- ✓ Every-Visit Method MC Prediction
- ✓ Monte Carlo Exploring Starts (MC-ES)
- ✓ MC Epsilon Greedy (without Exploring Starts)

Aim of this chapter:

✓ Understand the differences of model-based and model-free algorithms. Learning about Monte Carlo different approaches both based on Prediction and Control.

Monte-Carlo Algorithm (Model free RL)

Idea:

- ✓ In policy and value iteration algorithms the assumption includes the agent that has access to complete model of the environment:
 - Transition Dynamics (possible states after each action)
 - No need to interact and calculations were predictable (including rewards)

This is impractical in many scenarios and environments

Monte-Carlo Algorithm (Model free RL)

Idea:

- ✓ The agent maybe cannot have all information of the environment that we need algorithms to solve it
- ✓ So we need agent that interacts in the environment to learn policy

Monte-Carlo Algorithm

Monte Carlo term meaning:

Any estimation method with significant random components.

MC Definition

- ✓ Monte Carlo methods works based on experience sampling
- ✓ Experience sampling is **sequences of** states, actions, and rewards from actual or simulated **interaction** with an environment
 - Not predictable before real try in many cases.
- ✓ Only generate sample transitions, not the complete probability distributions of all as it was in dynamic programming.

Monte-Carlo Algorithm

MC Definition

- ✓ Monte Carlo methods are ways of solving the reinforcement learning problem based on averaging sample returns.
- ✓ Monte Carlo methods can thus be incremental in an episode-by-episode sense, but not in a step-by-step (online) sense.

Markov Decision Processes (MDPs)

What was Definition of the MDPs?

- ✓ There are set of states S, actions A
- ✓ Reward model

$$R_t = R(S_t, A_t)$$

✓ Transition Model:

$$P(S_t|S_{t-1},a_{t-1})$$

- ✓ Discount Factor (γ) , it is between [0,1]
- \checkmark Horizon (h) (episode, or time steps)

We do not have them in MC algorithms

Monte-Carlo Algorithm (RL)

Assumption

- ✓ We assume experience is divide into episodes (eventually terminate)
- ✓ Learn and update policy based on the interaction
- ✓ Agent doesn't know about the environment and the model of environment
- ✓ Agent **needs to interact** and try

Model-Based vs Model-Free Learning

Model

✓ A model in RL strictly refers to whether the agent is using **learning through environment** actions or not.

Model-Based Learning

- ➤ In Model-Based RL, the agent has access to a model of the environment.
- > The advantage is that this allows the agent to plan ahead by prediction ahead

Model-Free learning

➤ In Model-Free learning, the agent does not have access to a model of the environment (**Predictions of state transition and executing to get rewards**).

Monte-Carlo Algorithm

Underlying Idea of all Monte Carlo methods

- ✓ Monte Carlo methods aim for learning the **state-value** or **action-values** function (based on which approach we are using)
- ✓ Simple average the returns observed after visits to that state
- ✓ More returns are observed, the average should converge to the expected value
- ✓ Monte Carlo for episodic RL problems with a terminal state problem

Quick Reminder

What was the state-value function:

➤ Value of a state is the expected return

What was the action-value function:

- > Value of a each action in state is the expected return
- > Known as Q-value

What is the expected return:

Expected cumulative future discounted reward starting from that state

Monte-Carlo Algorithm-Exploring Starts

Different versions of Monte-Carlo Algorithm

- ✓ First-Visit method (MC Prediction)
 - The first-visit MC method estimates $v_{\pi}(s)$ as the average of the returns following first visits to state s
 - Based on the state-value (estimation of value function)
- ✓ Every-Visit method (MC Prediction)
 - The every-visit MC method estimates $v_{\pi}(s)$ as the average of the all visits to state s
 - Based on the state-value (estimation of value function)
- **✓ Exploring Starts method (MC Control)**
 - Based on the state-action pair
- ✓ MC Epsilon Greedy (MC Control)
 - without Exploring Starts
- **√** ...

Monte-Carlo Algorithm-Exploring Starts

Differences between control and prediction in RL and Monte Carlo methods

RL Prediction

- \checkmark A prediction task in RL is when **policy** π already is given and we need to measure how well it performs.
- ✓ It means action already are fixed $(\pi(a, s))$
- ✓ Only predict expected total reward for any state

RL Control

- ✓ In control task for RL the policy is not fixed and the goal is to find the optimal policy
- ✓ It means find $\pi(a, s)$ that maximizes expected reward

Monte-Carlo Algorithm

First-Visit Method MC Prediction

```
Input: policy \pi, number of episodes n_ep
Output: value function V (if n_ep is large enough V \approx v_{\pi}; means the prediction is accurate by sampling)
Initialize: Returns(s) = 0 for all s \in S
Initialize: N(s) = 0 for all s \in S
for episode e = 1 to n_ep do
   Generate an episode (s_0, a_0, r_0), (s_1, a_1, r_1), ..., (s_{T-1}, a_{T-1}, r_T) using policy \pi (T number of steps)
   G = 0
   for time step t = T - 1 to 0 do (each state of the episode)
       G = \gamma G + R_{t+1}
       if search(S_t) == false then (search from start to see if S_t is not existing at that episode anymore (finished \rightarrow first occur of S_t)
           Returns(S_t) = Returns(S_t) + G (per each episode the return of each S_t will be collected)
          N(S_t) = N(S_t) + 1
       end if
    end for
end for
V(s) = \text{Return}s(s)/N(s), for all s \in S
return (V)
Function bool search (state S_t)
  for state = 0 to t - 1 in episode do
       if episode(state) == S_t then return (true) (search for S_t in generated episode steps one by one)
       else
                                         return (false)
```

Example

Environment

Generate an episodes (T = 3):

$$E_1: (s_4, U, r_4) \rightarrow (s_1, R, r_1) \rightarrow (s_2, L, r_2) \rightarrow (s_1, stop, r_1)$$

$$E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

Given Policy π

reward

Terminal

s_0	s_1	s_2
s_3	S_4	S ₅

+50	-1	-3
-1	-2	-4

Example

Episodes:

 $E_1: (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$ $E_2: (s_3, U, r_3) \to (s_0, stop, r_0)$ $E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$ Given Policy π

reward

+50	-1	-3
-1	-2	-4

First Visit Monte Carlo:

 \checkmark First visit estimates (Value | State: s_t) as the average of the returns following the first visit to the state s_t

Every Visit Monte Carlo:

✓ It estimates (Value | State: s_t) as the average of returns for **every visit to** the State s_t .

Example

$$G = \gamma G + R_{t+1}$$

Episodes:

$$E_1: (s_4, U, r_4) \rightarrow (s_1, R, r_1) \rightarrow (s_2, L, r_2) \rightarrow (s_1, stop, r_1)$$

 $E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

Given Policy π

S_0 T	<i>s</i> ₁	<i>s</i> ₂
s_3	S ₄	S ₅

reward

+50	-1	-3
-1	-2	-4

First Visit Monte Carlo:

✓ Summing all the rewards coming after the first visit to (S_t) . Here s_1 (for simplicity $\gamma = 1$).

For episode
$$E_1$$
: $G = ((0 \times 1) + (-3)) + (-1) \rightarrow G = -4$

For episode E_2 : Null

For episode E_3 : G = -3

$$V(s_1) = \frac{-4-3}{2} = -4.5$$

Value function V

Т	-4.5	0
0	0	0

Note: if an episode doesn't have an occurrence of s_1 , it won't be considered in the average

Example

Episodes:

$$E_1: (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

$$E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

First Visit Monte Carlo:

✓ Calculations for s_2

For episode E_1 : $G = (-1) \rightarrow G = -1$

For episode E_2 : Null

For episode E_3 : $G = 0 \rightarrow G = 0$

$$V(s_2) = \frac{-1+0}{2} = -0.5$$

Given Policy π

S_0 T	S_1	<i>s</i> ₂
S ₃	S_4	S ₅

reward

+50	-1	-3
-1	-2	-4

T	-4.5	-0.5
0	0	0

Example

Episodes:

$$E_1: (s_4, U, r_4) \rightarrow (s_1, R, r_1) \rightarrow (s_2, L, r_2) \rightarrow (s_1, stop, r_1)$$

$$E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

First Visit Monte Carlo:

✓ Calculations for s_3

For episode E_1 : Null

For episode E_2 : G = 50

For episode E_3 : Null

$$V(s_3) = \frac{50}{1} = 50$$

Given Policy π

S_0 T	<i>s</i> ₁	<i>s</i> ₂
S_3	S_4	S ₅

reward

+50	-1	-3
-1	-2	-4

T	-4.5	-0.5
50	0	0

Example

Episodes:

$$E_1: (\mathbf{s_4}, \mathbf{U}, \mathbf{r_4}) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

$$E_2$$
: $(s_3, U, r_3) \rightarrow (s_0, stop, r_0)$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

First Visit Monte Carlo:

✓ Calculations for s_4

For episode E_1 : $G = (-1) + (-3) + (-1) \rightarrow G = -5$

For episode E_2 : Null

For episode E_3 : $G = (-1) + (-3) \rightarrow G = -4$

$$V(s_4) = \frac{-4-5}{2} = -4.5$$

Terminal

Given Policy π

s ₀ T	s_1	<i>s</i> ₂
<i>s</i> ₃	S_4	\$5

reward

+50	-1	-3
-1	-2	-4

Т	-4.5	-0.5
50	-4.5	0

Example

Episodes:

$$E_1: (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

$$E_2$$
: $(s_3, U, r_3) \rightarrow (s_0, stop, r_0)$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

First Visit Monte Carlo:

✓ Calculations for s_5

For episode E_1 : Null

For episode E_2 : Null

For episode E_3 : $G = (-2) + (-1) + (-3) \rightarrow G = -6$

$$V(5) = \frac{-6}{1} = -6$$

Terminal

Given Policy π

S_0 T	<i>S</i> ₁	<i>s</i> ₂
S ₃	S_4	S ₅

reward

+50	-1	-3
-1	-2	-4

T	-4.5	-0.5
50	-4.5	-6

Every-Visit Method MC Prediction

```
Input: policy \pi, number of episodes n_ep
Output: value function V (if n_ep is large enough V \approx v_{\pi}; means the prediction is accurate by sampling)
Initialize: Returns(s) = 0 for all s \in S
Initialize: N(s) = 0 for all s \in S
for episode e = 1 to n_ep do
   Generate an episode (s_0, a_0, r_0), (s_1, a_1, r_1), ..., (s_{T-1}, a_{T-1}, r_T) using policy \pi (T number of steps)
   G = 0
   for time step t = T - 1 to 0 in episode e do (each state of the episode)
        G = \gamma G + R_{t+1}
        Returns(S_t) = Returns(S_t) + G (per each episode the return of each S_t will be collected,
                                            S_t may visited multiple times and add its <u>following states in episode will be summed again</u>)
        N(S_t) = N(S_t) + 1 (per each time visit of S_t its visiting time will be increased,
                                             so automatically if one state is not in a episode it's counter will not increased)
    end for
end for
V(s) = \text{Return}s(s)/N(s), for all s \in S
return (V)
```

Same Example

Environment

Generate an episode (T = 4): (We did 3 times to see)

$$E_1: (s_4, U, r_4) \rightarrow (s_1, R, r_1) \rightarrow (s_2, L, r_2) \rightarrow (s_1, R, r_1) \rightarrow (s_2, stop, r_2)$$

$$E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

First Visit Monte Carlo:

 \checkmark First visit estimates (Value | State: s_t) as the average of the returns **following the first visit** to the state s_t

Terminal

s_0	s_1	s_2
s_3	S_4	<i>S</i> ₅

Given	
Policy π	

+50	-1	-3
-1	-2	-4

reward

Every Visit Monte Carlo:

✓ It estimates (Value | State: s_t) as the average of returns for every visit to the State s_t .

Example

$$G = \gamma G + R_{t+1}$$

Episodes:

$$E_1: (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, R, r_1) \to (s_2, stop, r_2)$$

 $E_2: (s_3, U, r_3) \to (s_0, stop, r_0)$
 $E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$

Terminal

Given Policy π

reward

+50	-1	-3
-1	-2	-4

Every Visit Monte Carlo:

✓ Summing all the rewards coming after the first visit to (S_t) . Here s_1 (for simplicity $\gamma = 1$).

For episode
$$E_1$$
: $G = ((1 \times 0) + (-3)) \rightarrow G = -3$

For episode
$$E_1$$
: $G = (-3) + (-1) + (-3) \rightarrow G = -7$

For episode E_2 : Null

For episode
$$E_3$$
: $G = (0) \rightarrow G = 0$

For episode
$$E_3$$
: $G = (-3) + (-1) \rightarrow G = -4$

$$V(s_1) = \frac{(-3) + (-7) + (0) + (-4)}{4} = -3.5$$

Note again: if an episode doesn't have an occurrence of s_1 , it won't be considered in the average

Example

Episodes:

$$E_1: (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, L, r_1) \to (s_2, stop, r_2)$$

 $E_2: (s_3, U, r_3) \to (s_0, stop, r_0)$
 $E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$

Terminal

Given Policy π

Value function V

s_0 T	<i>S</i> ₁	S ₂
<i>S</i> ₃	S ₄	S ₅

reward

+50	-1	-3
-1	-2	-4

First Visit Monte Carlo:

✓ Calculations for s_2

For episode E_1 : $G = (0) \rightarrow G = 0$

For episode E_1 : $G = (-1) + (-3) \rightarrow G = -4$

For episode E_2 : Null

For episode E_3 : $G = -1 \rightarrow G = -1$

 $V(s_2) = \frac{0 + (-4) + (-1)}{3} = -1.66$

Т	-3.5	-1.66
0	0	0

Example

Episodes:

$$E_1: (s_4, U, r_4) \rightarrow (s_1, R, r_1) \rightarrow (s_2, L, r_2) \rightarrow (s_1, L, r_1) \rightarrow (s_2, stop, r_2)$$

$$E_2$$
: $(\mathbf{s_3}, \mathbf{U}, \mathbf{r_3}) \rightarrow (s_0, stop, r_0)$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

First Visit Monte Carlo:

✓ Calculations for s_3

For episode E_1 : Null

For episode E_2 : G = 50

For episode E_3 : Null

$$V(s_3) = \frac{50}{1} = 50$$

Terminal

Given Policy π

s ₀ T	s_1	<i>S</i> ₂
<i>s</i> ₃	S ₄	S ₅

reward

+50	-1	-3
-1	-2	-4

7	Γ	-3.5	-1.66
5	0	0	0

Example

Episodes:

$$E_1: (\mathbf{s_4}, \mathbf{U}, \mathbf{r_4}) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, L, r_1) \to (s_2, stop, r_2)$$

 $E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

Terminal

Given Policy π

$\frac{s_0}{T}$	s_1	<i>S</i> ₂	
<i>s</i> ₃	S_4	\$5	

reward

+50	-1	-3
-1	-2	-4

First Visit Monte Carlo:

✓ Calculations for s_4

For episode E_1 : $G = (-1) + (-3) + (-1) + (-3) \rightarrow G = -8$

For episode E_2 : Null

For episode E_3 : $G = (-1) + (-3) + (-1) \rightarrow G = -5$

 $V(s_4) = \frac{-8-5}{2} = -6.5$

Т	-3.5	-1.66
50	-6.5	0

Example

Episodes:

$$E_1: (s_4, U, r_4) \rightarrow (s_1, R, r_1) \rightarrow (s_2, L, r_2) \rightarrow (s_1, L, r_1) \rightarrow (s_2, stop, r_2)$$

$$E_2: (s_3, U, r_3) \rightarrow (s_0, stop, r_0)$$

$$E_3: (s_5, L, r_5) \to (s_4, U, r_4) \to (s_1, R, r_1) \to (s_2, L, r_2) \to (s_1, stop, r_1)$$

Terminal

Given Policy π

s_0 T	S_1	S ₂
<i>s</i> ₃	S ₄	\$5

reward

+50	-1	-3
-1	-2	-4

First Visit Monte Carlo:

✓ Calculations for s_5

For episode E_1 : Null

For episode E_2 : Null

For episode E_3 : $G = (-2) + (-1) + (-3) + (-1) \rightarrow G = -7$

$$V(5) = \frac{-7}{1} = -7$$

T	-3.5	-1.66
50	-6.5	-7

Monte-Carlo Algorithm-Exploring Starts (Control)

Exploring Starts Method

Monte Carlo Exploring Starts (MC-ES), for estimating $\pi \approx \pi_*$

Initialize:

```
\pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathbb{S}

Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in \mathbb{S}, a \in \mathcal{A}(s)

Returns(s,a) \leftarrow \text{empty list, for all } s \in \mathbb{S}, \ a \in \mathcal{A}(s)
```


Loop forever (for each episode):

Choose $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ randomly such that all pairs have probability > 0Generate an episode from S_0, A_0 , following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$

Loop for each step of episode, $t = T-1, T-2, \ldots, 0$:

$$G \leftarrow \gamma G + R_{t+1}$$

Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} :

Append G to $Returns(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$$

$$\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$$

Monte-Carlo Algorithm-Exploring Starts (Control)

Follow the steps

- a) Assign arbitrary value for Q-values and Policy first Repeat Until Converge (no policy change) optimal policy π_*
 - b) Select random state s and action a pair in the environment
 - c) Generate an episode by policy π (T steps)
 - > Start from selected state s and run selected action a
 - d) For each state-action pair compute the discounted returns and create list
 - > Return is calculation of only all next states of each state in episode

$$V_{\pi}(s) = E_{\pi}[G(s)], G = \gamma g + R_{t+1}$$

e) Average the value of list and update the Q-value for state-action pairs

$$Q(s_i, a_j) = AVG(List(s_i, a_j))$$

f) Update the Policy

$$\pi(s) = argmax_a Q(s, a)$$

Monte-Carlo Exploring Starts Algorithm (Example)

Example Environment path planning

Problem: A robot needs to go from Start to Target

Reward: +100 for target, -1 for each other step

Q-value: for simplicity all zero

Target

s_0	s_1	s_2	s_3	S_4	<i>S</i> ₅
<i>s</i> ₆	S ₇	<i>S</i> ₈	S_9		S ₁₀
<i>S</i> ₁₁		S ₁₂		S ₁₃	S ₁₄
S ₁₅	S ₁₆	S ₁₇	S ₁₈	S ₁₉	S ₂₀

Start

a) We assign arbitrary Policy (up, down, left, right) and value for Q-values first.

 $L \stackrel{U}{\longleftarrow} R$ D

Arbitrary Policy

b) Select random state s and random action a pair in the environment

Note: Consider only possible actions from each state

c) Generate an episode by policy π (T steps, 6 here)

 \triangleright Start from selected random state s and run selected random action a

first

E1

Generate episode (1):

$$(s_7, L)$$

T
$$S_1$$
 S_2
 S_3
 S_4
 S_5
 S_5
 S_6
 S_7
 S_8
 S_9
 S_{10}
 S_{11}
 S_{12}
 S_{13}
 S_{14}
 S_{14}
 S_{15}
 S_{16}
 S_{17}
 S_{18}
 S_{19}
 S_{20}

$$(s_7, L) \rightarrow (s_6, R) \rightarrow (s_7, R) \rightarrow (s_8, D) \rightarrow (s_{12}, D) \rightarrow (s_{17}, L) \rightarrow (s_{16}, L)$$

- d) For each state-action pair compute the discounted returns and create list:
 - Return is calculation of only all next states of each state in episode

Discounted returns:
$$G = \gamma G + R_{t+1}$$
 $\gamma = 0.9$ $(s_7, L) \rightarrow (s_6, R) \rightarrow (s_7, R) \rightarrow (s_8, D) \rightarrow (s_{12}, D) \rightarrow (s_{17}, L) \rightarrow (s_{16}, L)$

$$(s_{17}, L) = (0.9 \times 0) - 1 = -1$$

 $(s_{12}, D) = (0.9 \times -1) - 1 = -1.9$
 $(s_{8}, D) = (0.9 \times -1.9) - 1 = -2.71$
 $(s_{7}, R) = (0.9 \times -2.71) - 1 = -3.439$
 $(s_{6}, R) = (0.9 \times -3.349) - 1 = -4.095$
 $(s_{7}, L) = (0.9 \times -4.095) - 1 = -4.685$

Returns_list(s_{17} , L)=[-1] Returns_list(s_{12} , D)=[-1.9] Returns_list(s_{8} , D)=[-2.71] Returns_list(s_{7} , R)=[-3.439] Returns_list(s_{6} , R)=[-4.095] Returns_list(s_{7} , L)=[-4.685]

Note: since we do **did not run action for the last state**, do not need to include.

f) Update the Policy

$$\pi(s) = argmax_a Q(s, a)$$

E2

Generate another episode by policy π (T steps, 6 here)

Random

 (s_8, R)

Generate episode (2):

$$(s_8, R) \rightarrow (s_9, U) \rightarrow (s_3, L) \rightarrow (s_2, L) \rightarrow (s_1, L) \rightarrow (s_0, stop)$$

Discounted returns:
$$G = \gamma G + R_{t+1}$$
 $\gamma = 0.9$

$$(s_8, R) \to (s_9, U) \to (s_3, L) \to (s_2, L) \to (s_1, L) \to (s_0, stop)$$

$$(s_1, L) = (0.9 \times 0) + 100 = 100$$

 $(s_2, L) = (0.9 \times 100) - 1 = 89$
 $(s_3, L) = (0.9 \times 89) - 1 = 79.1$
 $(s_9, U) = (0.9 \times 79.1) - 1 = 70.19$
 $(s_8, R) = (0.9 \times 70.19) - 1 = 62.171$

Returns_list(
$$s_{17}$$
, L)=[-1]
Returns_list(s_{12} , D)=[-1.9]
Returns_list(s_{8} , D)=[-2.71]
Returns_list(s_{7} , R)=[-3.439]
Returns_list(s_{6} , R)=[-4.095]
Returns_list(s_{7} , L)=[-4.685]
Returns_list(s_{1} , L)=[100]
Returns_list(s_{2} , L)=[89]
Returns_list(s_{3} , L)=[79.1]
Returns_list(s_{9} , U)=[70.19]
Returns_list(s_{8} , R)=[62.171]

f) Update the Policy

 S_{16}

$$\pi(s) = argmax_a Q(s, a)$$

Update the Policy

 $Q(s_{17}, L)=[-1]$

 $Q(s_3, L)=[79.1]$

 $Q(s_9, U)=[70.19]$

 $Q(s_8, R) = [62.171]$

 $Q(s_{12}, D)=[-1.9]$

Average of the list:

Returns_list(s_{17} , L)=[-1]

Returns_list(s_{12} , D)=[-1.9]

Returns list(s_8 , D)=[-2.71]

Returns_list(s_7 , R)=[-3.439]

Returns_list(s_6 , R)=[-4.095]

Returns_list(s_7 , L)=[-4.685]

Returns_list(s_1 , L)=[100]

Returns_list(s_2 , L)=[89]

Returns_list(s_3, L)=[79.1]

Returns_list(s_9 , U)=[70.19]

Returns_list(s_8 , R)=[62.171]

E3

Generate another episode by policy π (T steps, 6 here)

Generate episode (3):

$$(s_{12}, U) \rightarrow (s_8, R) \rightarrow (s_9, U) \rightarrow (s_3, L) \rightarrow (s_2, L) \rightarrow (s_1, L) \rightarrow (s_0, stop)$$

Discounted returns:
$$G = \gamma G + R_{t+1}$$
 $\gamma = 0.9$

$$G = \gamma G + R_{t+1} \qquad \gamma = 0.9$$

$$(s_{12}, U) \rightarrow (s_8, R) \rightarrow (s_9, U) \rightarrow (s_3, L) \rightarrow (s_2, L) \rightarrow (s_1, L) \rightarrow (s_0, stop)$$

$$(s_1, L) = (0.9 \times 0) + 100 = 100$$

 $(s_2, L) = (0.9 \times 100) - 1 = 89$
 $(s_3, L) = (0.9 \times 89) - 1 = 79.1$
 $(s_9, U) = (0.9 \times 79.1) - 1 = 70.19$
 $(s_8, R) = (0.9 \times 70.19) - 1 = 62.171$
 $(s_{12}, U) = (0.9 \times 62.171) - 1 = 54.953$

Returns_list(
$$s_{12}$$
, D)=[-1.9]
Returns_list(s_{8} , D)=[-2.71]
Returns_list(s_{7} , R)=[-3.439]
Returns_list(s_{6} , R)=[-4.095]
Returns_list(s_{7} , L)=[-4.685]
Returns_list(s_{1} , L)=[100, 100]
Returns_list(s_{2} , L)=[89, 89]
Returns_list(s_{3} , L)=[79.1, 79.1]
Returns_list(s_{9} , U)=[70.19, 70.19]
Returns_list(s_{8} , R)=[62.171, 62.171]
Returns_list(s_{12} , U)=[54.953]

Returns list(s_{17} , L)=[-1]

f) Update the Policy

$$\pi(s) = argmax_a Q(s, a)$$

Update the Policy

 $Q(s_17, L)=[-1]$

 $Q(s_12, D)=[-1.9]$

 $Q(s_8, D)=[-2.71]$

 $Q(s_7, R) = [-3.439]$

 $Q(s_6, R) = [-4.095]$

 $Q(s_7, L)=[-4.685]$

 $Q(s_1, L)=[100]$

 $Q(s_3, L)=[79.1]$

 $Q(s_9, U)=[70.19]$

 $Q(s_8, R) = [62.171]$

 $Q(s_{12}, U) = [54.953]$

 $Q(s_2, L) = [89]$

T S_1 S_2 S_3 S_4 S_5 S_5 S_6 S_7 S_8 S_9 S_{10} S_{10} S_{11} S_{12} S_{13} S_{14} S_{14} S_{15} S_{16} S_{16} S_{17} S_{18} S_{19} S_{20}

Average of the list:

P 11

Returns_list(s_{17} , L)=[-1]

Returns_list(s_{12} , D)=[-1.9]

Returns_list(s_8 , D)=[-2.71]

Returns_list(s_7 , R)=[-3.439]

Returns_list(s_6 , R)=[-4.095]

Returns_list(s_7 , L)=[-4.685]

Returns_list(s_1, L)=[100, **100**]

Returns_list(s_2, L)=[89, **89**]

Returns_list(s_3 , L)=[79.1, **79.1**]

Returns_list(s_9 , U)=[70.19, **70.19**]

Returns_list(s_8 , R)=[62.171, **62.171**]

Returns_list(s_{12} , U)=[54.953]

Saeedvand@ntnu.edu.tw, Reinforcement Learning (RL)

E4

Generate another episode by policy π (n steps, 6 here)

 (s_7, U)

Generate an episode (4):

$$(s_7, U) \rightarrow (s_1, L) \rightarrow (s_0, stop)$$

Discounted returns:
$$G = \gamma G + R_{t+1}$$

$$(\mathbf{s_7}, \mathbf{U}) \rightarrow (s_1, L) \rightarrow (s_0, stop)$$

$$(s_1, L) = (0.9 \times 0) + 100 = 100$$

 $(s_7, U) = (0.9 \times 100) - 1 = 89$

y = 0.9

Returns_list(
$$s$$
_12, D)=[-1.9]
Returns_list(s _8, D)=[-2.71]
Returns_list(s _7, R)=[-3.439]
Returns_list(s _6, R)=[-4.095]
Returns_list(s _7, L)=[-4.685]
Returns_list(s _1, L)=[100, 100, 100]
Returns_list(s _2, L)=[89, 89]
Returns_list(s _3, L)=[79.1, 79.1]
Returns_list(s _9, U)=[70.19, 70.19]
Returns_list(s _8, R)=[62.171, 62.171]
Returns_list(s _12, U)=[54.953]
Returns_list(s _7, U)=[89]

Returns_list(s_17 , L)=[-1]

f) Update Policy

$$\pi(s) = argmax_a Q(s, a)$$

Update the Policy

 $Q(s_{17}, L)=[-1]$ $Q(s_{12}, D)=[-1.9]$ $Q(s_{8}, D)=[-2.71]$ $Q(s_{7}, R)=[-3.439]$ $Q(s_{6}, R)=[-4.095]$ $Q(s_{7}, L)=[-4.685]$ $Q(s_{1}, L)=[100]$ $Q(s_{2}, L)=[89]$ $Q(s_{3}, L)=[79.1]$ $Q(s_{9}, U)=[70.19]$ $Q(s_{8}, R)=[62.171]$

 $Q(s_{12}, U)=[54.953]$

 $Q(s_7, U) = [89]$

Average of the list:

Returns_list(s_{17} , L)=[-1]

Returns_list(s_{12}, D)=[-1.9]

Returns_list(s_8 , D)=[-2.71]

Returns_list(s_7 , R)=[-3.439]

Returns_list(s_6, R)=[-4.095]

Returns_list(s_7 , L)=[-4.685]

Returns_list(s_1 , L)=[100, 100, **100**]

Returns_list(s_2 , L)=[89, 89]

Returns_list(s_3 , L)=[79.1, 79.1]

Returns_list(s_9 , U)=[70.19, 70.19]

Returns_list(s_8 , R)=[62.171, 62.171]

Returns_list(s_{12} , U)=[54.953]

Returns_list(s_7 , U)=[89]

Arbitrary Policy

Updated Policy after 4 episodes

MC Epsilon Greedy algorithm (without Exploring Starts): (Control)

Idea

- ✓ In some problems we can not calculate all edge cases.
 - For example in an application that resetting the environment always goes back to one state not random one!
- ✓ In such cases MC Exploring start becomes infeasible!

Solution

- ✓ We eliminate randomly selection for all starting points from MC Exploring Starts.
- ✓ **Apply random policy** sometimes by **Epsilon-Greedy** technique

MC Approaches

Problem

To update the value and policy we need to wait until the end of episode.

Is there any better idea?

✓ Solution is Temporal differences (TD) RL

Summery

- ✓ We discussed Model-Based and Model-Free Learnings
- ✓ We discussed State-value function and state-action function
- ✓ We undestood examples of First-Visit Method MC Prediction
- ✓ We undestood Every-Visit Method MC Prediction
- ✓ We undestood Monte Carlo Exploring Starts (MC-ES)
- ✓ We undestood MC Epsilon Greedy (without Exploring Starts)