1 nalen

 $x \in y$.1 $x \in y$.7 $x \subseteq y$. $x \subseteq y$

שניהם. $x \subseteq y$. $x \subseteq y$. $x \subseteq y$

2 nalen

 $,\oplus$ א. מהגדרת

$$A \oplus B = (A - B) \cup (B - A)$$

לפי ההדרכה לשאלה, נבחר U המכילה את A,B ונרשום

$$= (A \cap B') \cup (B \cap A')$$

בעזרת דיסטריבוטיביות החיתוך מעל האיחוד (עמי 17 בספר הלימוד)

$$= (A \cup B) \cap (A \cup A') \cap (B' \cup B) \cap (B' \cup A')$$

 $A \cup A' = B \cup B' = U$ לפי טענה בתחתית עמי 22 בספר,

לפי שאלה 1.11 בעמי 16 בספר, ניתן לזרוק את U מהחיתוך.

נקבל בהמשך לשוויון המקורי,

$$= (A \cup B) \cap (B' \cup A')$$

בעזרת כלל דה-מורגן (סעיף 1.4.3 בספר)

$$= (A \cup B) \cap (B \cap A)'$$

ולבסוף, שוב לפי ההדרכה לשאלה

$$= (A \cup B) - (B \cap A)$$

ב. נתחיל בעזרת ההדרכה לשאלה:

$$(A-B) \cup (B-C) = (A \cap B') \cup (B \cap C')$$

מכאן בעזרת שימוש חוזר בפילוג (דיסטריבוטיביות, סעיף 1.3.4 בספר) של האיחוד מעל החיתוך:

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup B) \cap (B' \cup C')$$

 $B' \cup B$ נזרוק את $B' \cup B$ (נימוק רי בצעד דומה בהוכחת סעיף אי למעלה)

$$= (A \cup B) \cap (A \cup C') \cap (B' \cup C')$$

שימוש בכלל דה-מורגן בגורם הימני, וכינוס שני האיברים השמאליים בעזרת חוק הפילוג:

$$= (A \cup (B \cap C')) \cap (B \cap C)'$$

ובעזרת ההדרכה לשאלה

$$= (A \cup (B - C)) - (B \cap C)$$

ג. נתחיל בעזרת ההדרכה לשאלה:

$$(A-B) \cap (C-D) = (A \cap B') \cap (C \cap D')$$

בעזרת קיבוץ (אסוציאטיביות) וחילוף (קומוטטיביות, עמי 15 בספר) החיתוך

$$= (A \cap C) \cap (B' \cap D')$$

ולפי כלל דה-מורגן:

$$= (A \cap C) \cap (B \cup D)'$$

ושוב לפי ההדרכה לשאלה:

$$= (A \cap C) - (B \cup D)$$

उ नगिरा

 $A:A: \mathcal{A}$ נבצע בשני האגפים הפרש סימטרי עם . $X\oplus A=Y\oplus A$ א.

$$(X \oplus A) \oplus A = (Y \oplus A) \oplus A$$

לפי שאלה 1.22 (אסוציאטיביות) נקבל

$$X \oplus (A \oplus A) = Y \oplus (A \oplus A)$$

: ולכן קיבלנו , $A \oplus A = \emptyset$, ואלה, שאלה בי באותה מהמשך איף בי

$$X \oplus \emptyset = Y \oplus \emptyset$$

ולפי טענה אחרת באותו סעיף (הפרש סימטרי עם הקבוצה הריקה) קיבלנו

$$X = Y$$

, (שוב 22.1ב) הערה: הפרש סימטרי הוא פעולה חילופית

X=Y אז $A\oplus X=A\oplus Y$ אם $A\oplus X=A\oplus Y$ אז או לכן קיבלנו שנוכל לצמצם גם משמאל, כלומר:

- $A \oplus A = \varnothing$: מיידי משאלה 1.22 מיידי (A = B ב. כיוון אחד
- $A \oplus A = \emptyset$ (כי כאמור $A \oplus B = A \oplus A$ משמע $A \oplus B = \emptyset$ (כי כאמור $A \oplus B = \emptyset$

A : B = A : B בסעיף איB = A מכאן לפי כלל הצמצום משמאל שהוכחנו למעלה בסעיף אי

ים אפרטים) (השלימו הפרטים) אם A=B' אם אם A=B' אם אם אם אור בשאלה אור בשאלה אור בשאלה אם אם אור בשאלה אור בשאל

כיוון שני: נובע מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיף ב׳:

 $A \oplus A' = U$, זה, של סעיף הראשון בכיוון העמור בכיוון . $A \oplus B = U$ נניח

. B=A' : לכן אי: . $A\oplus B=A\oplus A'$ לכן הצמצום מסעיף אי

ד. כיוון אחד: אם $\varnothing=B$ אז אB=A לפי שאלה ב1.22 (הפרש סימטרי עם הקבוצה .. כיוון אחד: אם מהכיוון הראשון בעזרת כלל הצמצום, בדומה לסעיפים ב, ג

4 22167

n אי הכפולות של , $B_n = \{n \cdot k \mid k \in \mathbf{N^*}\}$ א.

$$B_n \cap B_m = \{nk \mid k \in \mathbf{N}^*\} \cap \{ms \mid s \in \mathbf{N}^*\}$$

c(n,m) מענה שבהדרכה, נובע שכל אבר של $B_n \cap B_m$ מתחלק ב מבהדרכה, נובע שכל מכאן, לפי

$$B_n \cap B_m \subseteq B_{c(n,m)}$$

c(n,m) - מעמע x מתחלק ב, $x \in B_{c(n,m)}$ מצד שני, יהי

לפיכך . m -ב והן ב- n והן ב- n לכן n לכן n -ב מתחלק הן ב- n והן ב- n

$$B_{c(n,m)} \subseteq B_n \cap B_m$$

 $B_n \cap B_m = B_{c(n,m)} :$ משתי ההכלות

על תכונות הכפולה המשותפת המינימלית ראו

http://mathworld.wolfram.com/LeastCommonMultiple.html

http://en.wikipedia.org/wiki/Least common multiple

 $m\in \mathbb{N}$ יהי הנייל. יהי m אינו שייך לחיתוך הנייל. m , $m\in \mathbb{N}$ ב. בראה כי לכל m , $m\in \mathbb{N}$ אינו שייך לחיתוך הנייל. בפרט מובן כי n כללית, מהגדרת n כל אברי n גדולים או שווים n כל אברי בפרט מובן כי

. אינו שייך לחיתוך כל ה- B_n אינו שייך לחיתוך כל

ג. קבוצה זו היא קבוצת המספרים הראשוניים. נוכיח זאת:

 $D_n=\emptyset$ יהי נוכיח מספר שאינו ראשוני, מספר $n\in \mathbb{N}^*$ יהי יהי כיוון אחד:

: נראה שלא ייתכן , $x \in D_n$ יהי

. n = km - כך ש- , 1 < m, k < n , $m, k \in \mathbf{N}^*$ כך ש- ההנחה ש- n

 $x \in B_m$ בפרט . m - מתחלק ב- n מתחלק ב- , m בפרט , m בפרט מכיון ש

. בסתירה להנחה, $x \notin D_n$ נקבל כי D_n אז מהגדרת 1 < m < n מכיון ש-

. ריקה שאינו ש- D_n שאינו ראשוני.

 $n \in D_n$ ולכן בפרט ולכן נראה כי $n \in D_n$ מצד שני, אם אם ראשוני, נראה כי

 $n \in B_n$ מתקיים $n \in \mathbf{N} *$

 $n \notin B_m$ ולכן , m - אינו מתחלק הn , 1 < m < n טבעי המקיים m טבעי אינו מתחלק ה

. היקה אינה D_n ולכן D_n אינה ריקה מהגדרת לקבל אפוא כי D_n

משני הכיוונים יחד, הראינו שקבוצת ערכי n עבורם שקבוצת הראינו יחד, הראינו משני הכיוונים יחד, הראינו

הראשוניים.

איתי הראבן