Gradient Boosting Modellari

- XGboost
- LightGBM
- CatBoost

Gradient Boosting - bu mashinani o'rganish texnikasi bo'lib, u bir necha zaif modellar (masalan, decision tree) laridan foydalanib kuchli modellar hosil qilishga asoslanagan. U xatoliklarni ketma ket kamaytiradi.

Asosiy Jarayonlar

- 1. Boshlang'ich Model:
- 2. Xatolikni aniqlash
- 3. Gradienni hisoblash
- 4. Yangi Model qo'shish
- 5. Takrorlash
- 6. Kombinatsiya

Kamchiliklari:

- Hisoblashlar ko'p vaqt talab qilishi mumkin
- Parameyrlarni sozlash murakkkab bo'lishi mumkin

Diagramma

- 1. Model 1 → Xato
- 2. Model 2 → Xatoni kamaytiradi
- 3. Model 3 → Yana xatoni kamaytiradi
- 4. Yakuniy natija: Yaxshilangan model

Quyida **XGBoost**, **LightGBM**, va **CatBoost** kutubxonalarini solishtirish uchun toʻliq **jadval** keltirilgan:

Scenario	XGBoost	LightGBM	CatBoost
Uy narxini aniqlash	~	Z	<u> </u>
Katta datasetlarda bashorat	⚠ Biroz sekinroq	✓ Juda tez	✓ Tez
Kategorik ma'lumotlar koʻp	⚠ Oldindan kodlash kerak	⚠ Qoʻlda kodlash yoki koʻrsatish	Avtomatik ishlaydi
Resurslar cheklangan	⚠ Koʻproq xotira talab qiladi	✓ Kam xotira talab qiladi	✓ Kam xotira talab qiladi
Overfittingni boshqarish	✓ Kuchli boshqaruv	⚠ Parametr sozlash talab qilinadi	☑ Dinamik boshqaruv
Yoʻqolgan qiymatlar (Missing values)	⚠ Qoʻlda toʻldirish kerak	✓ Avtomatik ishlaydi	Avtomatik ishlaydi
Scaling (Masshtablash)	⚠ Oldindan talab qilinishi mumkin	✓ Talab qilinmaydi	✓ Talab qilinmaydi
Oʻrta datasetlar bilan ishlash	✓ Juda yaxshi	✓ Juda yaxshi	✓ Juda yaxshi
Kichik datasetlarda ishlash	✓ Juda yaxshi	✓ Juda yaxshi	✓ Juda yaxshi
GPU qoʻllab- quvvatlash	✓ Juda samarali	✓ Yaxshi	✓ Yaxshi
Kodlash soddaligi	⚠ Biroz koʻproq sozlash talab qilinadi	✓ Oson sozlanadi	✓ Juda oddiy va avtomatik
Tezlik	✓ Tez	✓ Juda tez	✓ Juda tez

Xulosa:

XGBoost:

- o Yuqori aniqlik va nazorat kerak boʻlganda yaxshi.
- o Kichik va oʻrta datasetlar uchun juda samarali.
- o Qoʻshimcha kodlash talab qilinishi mumkin.

LightGBM:

- o Juda katta datasetlar va resurs cheklovlari boʻlganda ideal.
- o Kategorik ma'lumotlar uchun qo'lda ishlov berish talab qilinadi.

CatBoost:

- Kategorik ma'lumotlar ko'p bo'lsa yoki preprocessingni minimallashtirish kerak bo'lsa, eng qulay tanlov.
- o Har xil datasetlar bilan ishlashga mos.

Boosting Algoritmlarini Solishtirish

Algoritm	Afzalliklari	Kamchiliklari	Qachon ishlatiladi?
Gradient Boosting	Yuqori aniqlik, moslashuvchan	Sekin, ba'zan overfitting	Oddiy holatlar va yaxshi aniqlik talab qilinganda
XGBoost	Tez, GPU qoʻllab- quvvatlash, overfitting boshqaruvi	Ba'zan resurs talab qiladi	Oʻrta datasetlar va yuqori aniqlik talab qilinsa
LightGBM	Juda tez, katta datasetlar uchun ideal	Qoʻlda kodlash talab qilinadi	Juda katta datasetlar va resurs cheklangan holatlar
CatBoost	Kategorik ma'lumotlar bilan avtomatik ishlaydi	Ba'zan sekinrod	Kategorik ma'lumotlar koʻp boʻlganda
HistGradientBoosting	Tezlik, katta datasetlar uchun samarali	GPU yoʻqligi	Katta datasetlar va xotira samaradorligi muhim boʻlganda

Algoritm	Afzalliklari	Kamchiliklari	Qachon ishlatiladi?
AdaBoost	lkichik datasetlarda		Oddiy va kichik datasetlar uchun

Xulosa

- 1. **Boosting algoritmlari** ketma-ket zaif modellarni birlashtirib, kuchli model yaratadi.
- 2. Har bir algoritmning oʻz afzallik va kamchiliklari bor:
 - o Katta datasetlar uchun: LightGBM yoki HistGradientBoosting.
 - o Kategorik ma'lumotlar koʻp boʻlsa: CatBoost.
 - Oddiy va kichik datasetlar uchun: AdaBoost.
- 3. XGBoost eng mashhur va koʻp maqsadli, lekin ba'zan resurs talab qiladi.