A Hybridizable Mixed Finite Element Method for Planar Linear Elasticity

Shihua Gong Joint Work with Prof. Jinchao Xu and Shuonan Wu

Beijing International Center for Mathematical Research, Peking University gongshihua@pku.edu.cn

Beijing, Aug. 13, 2015

Outline

- Mixed Methods for Linear Elasticity
- 2 A Nodal Basis for the Space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_{k+1}$
- A Mixed Finite Element Method
- 4 Hybridization
- Numerical Results

Outline

- Mixed Methods for Linear Elasticity
- 2 A Nodal Basis for the Space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_{k+1}$
- A Mixed Finite Element Method
- 4 Hybridization
- Numerical Results

Linear Elasticity

We consider the following linear elasticity problem with pure displacement boundary condition

$$\begin{cases} \mathcal{A}\sigma - \epsilon(u) = 0, & \text{in } \Omega, \\ \operatorname{div}\sigma = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
 (1)

where $\Omega \subset \mathbb{R}^2$.

- displacement: $u: \Omega \mapsto \mathbb{R}^2$
- stress: $\sigma : \Omega \mapsto \mathbb{S} := \mathbb{R}^{2 \times 2}_{sym}$
- $A : \mathbb{S} \mapsto \mathbb{S}$: SPD operator
- $\bullet \ \epsilon(\underline{u}) := (\nabla u + (\nabla u)^T)/2$

Linear Elasticity

We consider the following linear elasticity problem with pure displacement boundary condition

$$\begin{cases} \mathcal{A}\sigma - \epsilon(u) = 0, & \text{in } \Omega, \\ \operatorname{div}\sigma = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
 (1)

where $\Omega \subset \mathbb{R}^2$.

- displacement: $u: \Omega \mapsto \mathbb{R}^2$
- stress: $\sigma : \Omega \mapsto \mathbb{S} := \mathbb{R}^{2 \times 2}_{sym}$

- $A : \mathbb{S} \mapsto \mathbb{S}$: SPD operator
- $\bullet \ \epsilon(u) := (\nabla u + (\nabla u)^T)/2$

Symmetric matrix:

$$\begin{pmatrix} * & \star \\ \star & * \end{pmatrix} \in \mathbb{R}^{2 \times 2}_{sym},$$

Hellinger-Reissner Variational Principle

The saddle point problem is to find $(\sigma, u) \in \Sigma \times V$, such that

$$\begin{cases} (\mathcal{A}\boldsymbol{\sigma},\boldsymbol{\tau})_{\Omega} + (\operatorname{div}\boldsymbol{\tau},\boldsymbol{u})_{\Omega} &= 0, & \forall \boldsymbol{\tau} \in \Sigma, \\ (\operatorname{div}\boldsymbol{\sigma},\boldsymbol{v})_{\Omega} &= (f,\boldsymbol{v})_{\Omega}, & \forall \boldsymbol{v} \in \boldsymbol{V}. \end{cases}$$
(2)

where

$$\Sigma \times V \triangleq H(\operatorname{div}, \Omega; \mathbb{S}) \times L^{2}(\Omega; \mathbb{R}^{2})$$
(3)

$$H(\operatorname{div}, \Omega; \mathbb{S}) = \{ \sigma \in L^2(\Omega; \mathbb{S}) \mid \operatorname{div} \sigma \in L^2(\Omega; \mathbb{R}^2) \}$$
 (4)

with the norm defined by

$$\|\tau\|_{\text{div},\Omega}^2 \triangleq \|\tau\|_{0,\Omega}^2 + \|\text{div}\tau\|_{0,\Omega}^2, \quad \forall \tau \in \textit{H}(\text{div},\Omega;\mathbb{S}).$$

Hellinger-Reissner Variational Principle

The saddle point problem is to find $(\sigma, u) \in \Sigma \times V$, such that

$$\begin{cases} (\mathcal{A}\boldsymbol{\sigma},\boldsymbol{\tau})_{\Omega} + (\operatorname{div}\boldsymbol{\tau},\boldsymbol{u})_{\Omega} &= 0, & \forall \boldsymbol{\tau} \in \Sigma, \\ (\operatorname{div}\boldsymbol{\sigma},\boldsymbol{v})_{\Omega} &= (f,\boldsymbol{v})_{\Omega}, & \forall \boldsymbol{v} \in \boldsymbol{V}. \end{cases}$$
(2)

where

$$\Sigma \times V \triangleq H(\operatorname{div}, \Omega; \mathbb{S}) \times L^{2}(\Omega; \mathbb{R}^{2})$$
(3)

$$H(\operatorname{div}, \Omega; \mathbb{S}) = \{ \sigma \in L^2(\Omega; \mathbb{S}) \mid \operatorname{div} \sigma \in L^2(\Omega; \mathbb{R}^2) \}$$
 (4)

with the norm defined by

$$\|\tau\|_{\text{div},\Omega}^2 \triangleq \|\tau\|_{0,\Omega}^2 + \|\text{div}\tau\|_{0,\Omega}^2, \quad \forall \tau \in \textit{H}(\text{div},\Omega;\mathbb{S}).$$

- Avoid Locking phenomena
- Provide direct approximation to stress

• Natural discretization: $\mathcal{P}_{k+1} - \mathcal{P}_k^{-1}$

• Natural discretization: $\mathcal{P}_{k+1} - \mathcal{P}_k^{-1}$

- Conservation of angular momentum:
 - ▶ the stress tensor is required to be symmetric.

• Natural discretization: $\mathcal{P}_{k+1} - \mathcal{P}_k^{-1}$

- Conservation of angular momentum:
 - ▶ the stress tensor is required to be symmetric.
- Conservation of translational momentum:
 - ▶ the stress approximation must lie in H(div).

• Natural discretization: $\mathcal{P}_{k+1} - \mathcal{P}_k^{-1}$

- Conservation of angular momentum:
 - ▶ the stress tensor is required to be symmetric.
- Conservation of translational momentum:
 - ightharpoonup the stress approximation must lie in $H(\operatorname{div})$.

Two requirements for the stress element: symmetric and conforming!

Literature Review

- Composite Element: different grids for stress and displacement;
 - ▶ Johnson-Mercier (1978), Arnold-Douglas (1984),
- Weakly Symmetric and Conforming Element: introducing a Lagrangian multipiler to enforce stress weakly symmetric;
 - Amara-Thomas (1979), Stenberg (1988), Farhloul-Fortin (1997), Qiu-Demkowicz (2009)
- Symmetric and non-Conforming Element: relaxing the conformity.
 - ► Arnold-Winther(2003), Yi(2005,2006), Hu-Shi(2007), Gopalakrishnan-Guzman(2011), Arnold-Awanou-Winther(2014), Gong-Wu-Xu(2015)

Literature Review

- Composite Element: different grids for stress and displacement;
 - ▶ Johnson-Mercier(1978), Arnold-Douglas(1984),
- Weakly Symmetric and Conforming Element: introducing a Lagrangian multipiler to enforce stress weakly symmetric;
 - Amara-Thomas (1979), Stenberg (1988), Farhloul-Fortin (1997), Qiu-Demkowicz (2009)
- Symmetric and non-Conforming Element: relaxing the conformity.
 - Arnold-Winther(2003), Yi(2005,2006), Hu-Shi(2007), Gopalakrishnan-Guzman(2011), Arnold-Awanou-Winther(2014), Gong-Wu-Xu(2015)
- Symmetric and Conforming Element:
 - ► Arnold-Winther(2002), Adams-Cockburn(2005), Arnold-Awanou-Winther(2008), Hu-Zhang(2014, 2015)

Literature Review

- Composite Element: different grids for stress and displacement;
 - ▶ Johnson-Mercier(1978), Arnold-Douglas(1984),
- Weakly Symmetric and Conforming Element: introducing a Lagrangian multipiler to enforce stress weakly symmetric;
 - ► Amara-Thomas(1979), Stenberg(1988), Farhloul-Fortin(1997), Qiu-Demkowicz(2009)
- Symmetric and non-Conforming Element: relaxing the conformity.
 - Arnold-Winther(2003), Yi(2005,2006),
 Hu-Shi(2007), Gopalakrishnan-Guzman(2011),
 Arnold-Awanou-Winther(2014), Gong-Wu-Xu(2015)
- Symmetric and Conforming Element:
 - ► Arnold-Winther(2002), Adams-Cockburn(2005), Arnold-Awanou-Winther(2008), Hu-Zhang(2014, 2015)

Question: symmetric, conforming and hybridizable elements?

Outline

- Mixed Methods for Linear Elasticity
- 2 A Nodal Basis for the Space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_{k+1}$
- A Mixed Finite Element Method
- 4 Hybridization
- Numerical Results

The Discrete Stress Space

Our discrete stress space is defined as follows.

$$\Sigma_{h,k+1} = \{ \tau \in H(\Omega; \operatorname{div}, \mathbb{S}) \mid \tau |_{K} \in P_{k+1}(K; \mathbb{S}) \quad \forall K \in \mathcal{T}_{h} \}.$$
 (5)

That is the full $C^{\text{div}} - P_{k+1}$ space.

The Discrete Stress Space

Our discrete stress space is defined as follows.

$$\Sigma_{h,k+1} = \{ \tau \in H(\Omega; \operatorname{div}, \mathbb{S}) \mid \tau|_{K} \in P_{k+1}(K; \mathbb{S}) \quad \forall K \in \mathcal{T}_{h} \}.$$
 (5)

That is the full $C^{\text{div}} - P_{k+1}$ space.

Using Ciarlet's notation, a finite element is usually defined by a triple $(\mathcal{T}, \mathcal{P}_K, \mathcal{L}_K)$.

- ullet A triangulation ${\mathcal T}$ consisting of polyhedral elements ${\mathcal K}$;
- For each K, a space of shape function \mathcal{P}_K ;

The Discrete Stress Space

Our discrete stress space is defined as follows.

$$\Sigma_{h,k+1} = \{ \tau \in H(\Omega; \operatorname{div}, \mathbb{S}) \mid \tau \mid_{K} \in P_{k+1}(K; \mathbb{S}) \quad \forall K \in \mathcal{T}_{h} \}.$$
 (5)

That is the full $C^{\text{div}} - P_{k+1}$ space.

Using Ciarlet's notation, a finite element is usually defined by a triple $(\mathcal{T}, \mathcal{P}_K, \mathcal{L}_K)$.

- A triangulation \mathcal{T} consisting of polyhedral elements K;
- For each K, a space of shape function \mathcal{P}_K ;
- For each K, a set of local DoFs \mathcal{L}_K : a set of functionals on \mathcal{P}_K , each associated to a face of T. These must unisolvent, i.e. form a basis for $\mathcal{P}(K)'$

Hu-Zhang's Stress Space

$$\Sigma_{h,k+1}^{HZ} = \{ \tau \in H(\Omega; \operatorname{div}, \mathbb{S}) \mid \tau|_{K} \in P_{k+1}(K; \mathbb{S}), \\ \tau|_{a} \in C^{0}, \quad \forall K \in \mathcal{T}_{h}, a \in \mathcal{N}_{h} \}.$$
(6)

The local DoFs are defined as follows

$$\sigma(a)$$
 for all vertices a of K . (7a)

$$\int_{e} \sigma \boldsymbol{n} \cdot \boldsymbol{v} \, ds \quad \text{for all } \boldsymbol{v} \in P_{k-1}(e; \mathbb{R}^{2}), \tag{7b}$$

$$\int_{K} \sigma : \tau \, d\boldsymbol{x} \quad \text{for all } \tau \in P_{k-1}(K; \mathbb{S}), \tag{7c}$$

$$\int_{K} \boldsymbol{\sigma} : \boldsymbol{\tau} \, d\boldsymbol{x} \quad \text{for all } \boldsymbol{\tau} \in P_{k-1}(K; \mathbb{S}), \tag{7c}$$

Stress Function on a vertex

A symmetric matrix τ on a_0 can be determined by two double normal values:

$$d_i := (\mathbf{n}_i^T \boldsymbol{\tau} \mathbf{n}_i)(a_0), \quad i = 1:2$$

one cross normal values:

$$c_1:=(\boldsymbol{n}_1^T\boldsymbol{\tau}_a\boldsymbol{n}_2)(a_0),$$

Stress Function on a vertex

A symmetric matrix τ on a_0 can be determined by two double normal values:

$$d_i := (\boldsymbol{n}_i^T \boldsymbol{\tau} \boldsymbol{n}_i)(a_0), \quad i = 1:2$$

one cross normal values:

$$c_1:=(\boldsymbol{n}_1^T\boldsymbol{\tau}_a\boldsymbol{n}_2)(a_0),$$

A multi-valued symmetric matrix τ_a on the star(a) can be determined by following values

the double normal values:

$$d_i := \mathbf{n}_i^T \boldsymbol{\tau}_a \mathbf{n}_i|_{e_i}, \quad i = 1: n_a,$$

the cross normal values:

$$c_i := \mathbf{n}_i^T \tau_a \mathbf{n}_{i+1}|_{K_i}, \quad i = 1:n_a.$$

The DoFs on vertices

One cross normal value:

$$l_{a,c}(\boldsymbol{\sigma}) = \boldsymbol{n}_1^T \boldsymbol{\sigma} \boldsymbol{n}_2|_{K_1}, \tag{8}$$

where K_1 is the element contains e_1 , e_2 .

The DoFs on vertices

One cross normal value:

$$l_{a,c}(\boldsymbol{\sigma}) = \boldsymbol{n}_1^T \boldsymbol{\sigma} \boldsymbol{n}_2|_{K_1}, \tag{8}$$

where K_1 is the element contains e_1 , e_2 .

• the double normal values:

$$l_{a,d}^{i}(\boldsymbol{\sigma}) = \boldsymbol{n}_{i}^{T} \boldsymbol{\sigma} \boldsymbol{n}_{i}|_{\boldsymbol{e}_{i}}, \begin{cases} i = 2, 3, \cdots, n_{a}, & \text{if } a \text{ is an internal non-singular vertex} \\ i = 1, 2, \cdots, n_{a}, & \text{otherwise.} \end{cases}$$
(9)

where n_a is the number of edges meeting at a.

Figure: Singular vertex; non-singular vertex; boundary vertex

The Global DoFs

We then define the global degrees of freedom for the discrete stress space $\Sigma_{h,k+1}$:

$$l_{a,c}(\sigma) = \mathbf{n}_1^T \sigma \mathbf{n}_2|_{K_1}, \qquad \forall a \in \mathcal{N}_h$$
 (10a)

$$l_{a,d}^{i}(\sigma) = \mathbf{n}_{i}^{T} \sigma \mathbf{n}_{i}|_{e_{i}}$$
 $\forall a \in \mathcal{N}_{h}$ (10b)

$$l_e^{\mu}(\sigma) = \int_e \sigma \mathbf{n} \cdot \mu \, ds, \qquad \forall \mu \in P_{k-1}(e, \mathbb{R}^2), e \in \mathcal{E}_h.$$
 (10c)

$$I_{K}^{\tau}(\sigma) = \int_{K} \sigma : \tau \ d\mathbf{x}, \qquad \forall \tau \in P_{k-1}(K; \mathbb{S}), K \in \mathcal{T}_{h},$$
 (10d)

where K_1 and the range of i are defined in (8) and (9).

Unisolvent

Proposition

The set of global DoFs defined above is unisolvent for the space $\Sigma_{h,k+1}$. And the dimension of $\Sigma_{h,k+1}$ is

$$\dim(\Sigma_{h,k+1}) = \frac{3}{2}k(k+1)T + 2(k+1)E + E^{\partial} + S, \tag{11}$$

where T is the number of elements of \mathcal{T}_h , E the number of total edges, E^{∂} the number of the boundary edges and S the number of the internal singular vertices.

Outline

- Mixed Methods for Linear Elasticity
- 2 A Nodal Basis for the Space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_{k+1}$
- A Mixed Finite Element Method
- 4 Hybridization
- Numerical Results

Mixed Formulation

We take the discrete displacement space as the full $C^{-1} - \mathcal{P}_k$ space, i.e.

$$\mathbf{V}_{h,k} = \mathbf{V}_{h,k} \times \mathbf{V}_{h,k} \tag{12}$$

where $V_{h,k} = \{ v \in L^2(\Omega; \mathbb{R}) \mid v|_K \in P_k(K, \mathbb{R}) \}.$

Mixed Formulation

We take the discrete displacement space as the full $C^{-1} - \mathcal{P}_k$ space, i.e.

$$\mathbf{V}_{h,k} = \mathbf{V}_{h,k} \times \mathbf{V}_{h,k} \tag{12}$$

where $V_{h,k} = \{ v \in L^2(\Omega; \mathbb{R}) \mid v|_K \in P_k(K, \mathbb{R}) \}.$

The mixed finite element approximation of the elastic problem (2) reads: Find $(\sigma_h, \mathbf{u}_h) \in \Sigma_{h,k+1} \times \mathbf{V}_{h,k}$ such that

$$\begin{cases} (\mathcal{A}\boldsymbol{\sigma}_{h},\boldsymbol{\tau})_{\Omega} + (\boldsymbol{u}_{h},\operatorname{div}\boldsymbol{\tau})_{\Omega} = \langle \boldsymbol{g},\boldsymbol{\tau}\boldsymbol{n}\rangle_{\partial\Omega}, \\ (\operatorname{div}\boldsymbol{\sigma}_{h},\boldsymbol{v})_{\Omega} = (\boldsymbol{f},\boldsymbol{v})_{\Omega}, \end{cases}$$
(13)

for any $(\boldsymbol{\tau}, \boldsymbol{v}) \in \Sigma_{h,k+1} \times \boldsymbol{V}_{h,k}$.

Stability

According to the theory of mixed method, the stability of the saddle point problem is the corollary of the following two conditions (Brezzi, 1974, 1991)

• K-ellipticity: There exits a constant $C \ge 0$, independent of the mesh size such that

$$(\mathcal{A}\tau_h,\tau_h)\geq C\|\tau_h\|_{\mathrm{div},h}^2,\quad\forall\tau_h\in Z_h.$$
 (14)

2 The discrete inf-sup condition: There exits a constant $C \ge 0$, independent of the mesh size such that

$$\inf_{\mathbf{v}_h \in V_h} \sup_{\mathbf{\tau}_h \in \Sigma_h} \frac{b_h(\mathbf{\tau}_h, \mathbf{v}_h)}{\|\mathbf{\tau}_h\|_{\mathrm{div}, h} \|\mathbf{v}_h\|_0} \ge C. \tag{15}$$

A discrete elastic complex

$$0 \; \longrightarrow \; P_1 \; \stackrel{\hookrightarrow}{\longrightarrow} \; Q_{h,k+3} \; \xrightarrow{\operatorname{curl \; curl}} \; \Sigma_{h,k+1} \; \xrightarrow{\operatorname{div}} \; V_{h,k} \; \longrightarrow \; 0$$

where

Figure: discrete elastic complex

$$Q_{h,k+3} = \{q \in H^2(\Omega) \mid q|_K \in P_{k+3}, \forall K \in \mathcal{T}_h\}.$$

A discrete elastic complex

$$0 \; \longrightarrow \; P_1 \; \stackrel{\hookrightarrow}{\longrightarrow} \; Q_{h,k+3} \; \stackrel{\text{curl curl}}{\longrightarrow} \; \Sigma_{h,k+1} \; \stackrel{\text{div}}{\longrightarrow} \; V_{h,k} \; \longrightarrow \; 0$$

where

Figure: discrete elastic complex

$$Q_{h,k+3} = \{q \in H^2(\Omega) \mid q|_K \in P_{k+3}, \forall K \in \mathcal{T}_h\}.$$

Strang's conjecture: $k + 3 \ge 5$ (Scott, Morgan, 1975); k + 3 = 4(Alfeld, Piper and Schumaker, 1988); k + 3 = 3(Scott, Morgan, 1996);

$$\dim(Q_{h,k+3}) \ge \frac{1}{2}(k+4)(k+5)T - (2k+7)E^i + 3V^i + S$$

A discrete elastic complex

$$0 \longrightarrow P_1 \stackrel{\hookrightarrow}{\longrightarrow} Q_{h,k+3} \stackrel{\text{curl curl}}{\longrightarrow} \Sigma_{h,k+1} \stackrel{\text{div}}{\longrightarrow} V_{h,k} \longrightarrow 0$$

where

Figure: discrete elastic complex

$$Q_{h,k+3} = \{q \in H^2(\Omega) \mid q|_K \in P_{k+3}, \forall K \in \mathcal{T}_h\}.$$

Strang's conjecture: $k + 3 \ge 5$ (Scott, Morgan, 1975); k + 3 = 4(Alfeld, Piper and Schumaker, 1988); k + 3 = 3(Scott, Morgan, 1996);

$$\dim(Q_{h,k+3}) \ge \frac{1}{2}(k+4)(k+5)T - (2k+7)E^i + 3V^i + S$$

If the equality hold, we have

$$\dim P_1 - \dim Q_{h,k+3} + \dim \Sigma_{h,k+1} - \dim V_{h,k} = 0,$$

which means the div operator is surjective.

Comparison

Figure: discrete elastic complexes

Comparison

Figure: discrete elastic complexes

where

$$\begin{split} \tilde{Q}_{h,k+3} &= \{q \in H^2(\Omega) \mid q|_K \in P_{k+3}, q|_a \in C^2, \forall K \in \mathcal{T}_h, a \in \mathcal{N}_h\}, \\ \Sigma_{h,k+1}^{AW} &= \{\tau \in H(\Omega; \operatorname{div}, \mathbb{S}) \mid \tau|_K \in P_{k+1}(K; \mathbb{S}), \ \operatorname{div} \tau|_K \in P_{k-1}(K; \mathbb{R}^2), \\ \tau|_a \in C^0, \quad \forall K \in \mathcal{T}_h, a \in \mathcal{N}_h\}. \end{split}$$

Inf-sup Condition I

Lemma

For k=0,1, suppose $\mathcal{P}_{k+2}-\mathcal{P}_{k+1}$ are stable for the Stokes problem on the grids. For any $\mathbf{v}_h \in \mathbf{V}_k$, there exists $\sigma_h \in \Sigma_{h,k+1}$ such that

$$\operatorname{div} \boldsymbol{\sigma}_h = \boldsymbol{v}_h \quad \text{and} \quad \|\boldsymbol{\sigma}_h\|_{\operatorname{div}} \lesssim \|\boldsymbol{v}_h\|_0. \tag{17}$$

Proof.

• Using the BDM element to find $\tau_h \in H(\text{div}, \Omega; \mathbb{M}) \cap P_{k+1}^{-1}(\mathcal{T}_h; \mathbb{M})$ such that

$$\operatorname{div} \boldsymbol{\tau}_h = \boldsymbol{v}_h \text{ and } \|\boldsymbol{\tau}_h\|_{\operatorname{div}} \lesssim \|\boldsymbol{v}_h\|_0. \tag{18}$$

• Adding a divergence free term to symmetrize τ_h , i.e.

$$\sigma_h = \tau_h + \text{curl} \boldsymbol{u}_h$$

where

$$\operatorname{div} \boldsymbol{u}_h = \tau_{h,12} - \tau_{h,21}$$
. and $\|\boldsymbol{u}_h\|_1 \lesssim \|\tau_h\|_0$.

Then we can use the result for the Stokes problem.

(19)

(20)

Inf-sup Condition II

Lemma

For $k \ge 2$, suppose the grids are shape regular. For any $\mathbf{v}_h \in \mathbf{V}_k$, there exists $\sigma_h \in \Sigma_{h,k+1}$ such that

$$\operatorname{div} \, \boldsymbol{\sigma}_h = \boldsymbol{v}_h \qquad \text{and} \qquad \|\boldsymbol{\sigma}_h\|_{\operatorname{div}} \lesssim \|\boldsymbol{v}_h\|_0. \tag{21}$$

This is the corollary of the result of Hu-Zhang (2014).

k = 0, 1	<i>k</i> ≥ 2
Special grids	General grids

Table: Constrain on grids

On special grids, the pair $\mathcal{P}_3 - \mathcal{P}_2$ and $\mathcal{P}_2 - \mathcal{P}_1$ is stable for Stokes problem.(Arnold, Qin, 1992)

Stability and Convergence Theorem

Theorem

Suppose the grids satisfy the corresponding condition in Lemma 2 or 3. For any $\mathbf{f} \in L^2(\Omega; \mathbb{R}^2)$, the discrete problem (13) is uniformly well-posed for $(\Sigma_{h,k+1}, \|\cdot\|_{\mathrm{div}})$ and $(V_{h,k}\|\cdot\|_0)$.

Theorem

Suppose the grids satisfy the corresponding condition in Lemma 2 or 3. Let $(\sigma, \mathbf{u}) \in \Sigma \times V$ be the exact solution of the problem (2) and $(\sigma_h, \mathbf{u}_h) \in \Sigma_{h,k+1} \times V_{h,k}$ the finite element solution of (13). Then we have

$$\|\sigma - \sigma_h\|_{\text{div}} + \|\boldsymbol{u} - \boldsymbol{u}_h\|_0 \lesssim h^{k+1}(|\sigma|_{k+2} + |\boldsymbol{u}|_{k+1})$$
 (22)

Outline

- Mixed Methods for Linear Elasticity
- ② A Nodal Basis for the Space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_{k+1}$
- A Mixed Finite Element Method
- 4 Hybridization
- Numerical Results

Hybridization

Hybridization removes the interelement continuity requirements from the space $\Sigma_{h,k+1}$ and places them as an additional equation.

Hybridization

Hybridization removes the interelement continuity requirements from the space $\Sigma_{h,k+1}$ and places them as an additional equation.

Accordingly, we need the space

$$\Sigma_{h,k+1}^{-1} = \{ \tau \in L^2(\Omega; \mathbb{S}) \mid \tau|_K \in P_{k+1}(K; \mathbb{S}) \quad \forall K \in \mathcal{T}_h \}$$
 (23)

without any interelement continuity constraints, as well as a Lagrangian multiplier space

$$J_{h,k+1} = \{ \boldsymbol{\mu} \in L^2(\mathcal{E}_h, \mathbb{R}^2) \mid \boldsymbol{\mu}|_{\boldsymbol{e}} = [\boldsymbol{\tau}]|_{\boldsymbol{e}} \quad \forall \boldsymbol{\tau} \in \Sigma_{h,k+1}^{-1}, \boldsymbol{e} \in \mathcal{E}_h^i$$
 and $\boldsymbol{\mu}|_{\mathcal{E}_h^{\partial}} = 0 \},$ (24)

which is defined on the edges.

Variational Form

The approximation solution given by the hybridized method is $(\sigma_h, \mathbf{u}_h, \lambda_h) \in \Sigma_{h,k+1}^{-1} \times \mathbf{V}_{h,k} \times J_{h,k+1}$, satisfying

$$a(\sigma_h, \mathbf{u}_h; \tau, \mathbf{v}) + b(\tau, \mathbf{v}; \lambda_h) = f(\tau, \mathbf{v})$$
 (25a)

$$b(\boldsymbol{\sigma}_h, \boldsymbol{u}_h; \boldsymbol{\mu}) = 0 \tag{25b}$$

for all $(\tau, \mathbf{v}, \mu) \in \Sigma_{h,k+1}^{-1} \times \mathbf{V}_{h,k} \times J_{h,k+1}$. The bilinear forms in the system are defined as

$$a(\boldsymbol{\sigma}, \boldsymbol{u}; \boldsymbol{\tau}, \boldsymbol{v}) := (\mathcal{A}\boldsymbol{\sigma}, \boldsymbol{\tau})_{\Omega} + (\boldsymbol{u}, \operatorname{div}\boldsymbol{\tau})_{\Omega} + (\operatorname{div}\boldsymbol{\sigma}, \boldsymbol{v})_{\Omega}$$
 (26)

$$b(\boldsymbol{\sigma}, \boldsymbol{u}; \boldsymbol{\mu}) := -\langle [\boldsymbol{\sigma}], \boldsymbol{\mu} \rangle_{\mathcal{E}_{\boldsymbol{\mu}}^{i}} \tag{27}$$

$$f(\boldsymbol{\tau}, \boldsymbol{v}) := (\boldsymbol{f}, \boldsymbol{v})_{\Omega} \tag{28}$$

Equivalence

Proposition

There is a unique solution $(\sigma_h, \mathbf{u}_h, \lambda_h) \in \Sigma_{h,k+1}^{-1} \times \mathbf{V}_{h,k} \times J_{h,k+1}$ for the hybridized system (25). Moreover, the first two components of the solution coincide with that of the mixed method (13).

Proof.

Taking it as a saddle point problem, we can use the standard LBB theory to prove the proposition.

Characterization of the Multiplier Space

To characterize the multiplier space, we define the following auxiliary spaces

$$\begin{split} M_{h,k+1}^{-1} &= \{ \mu \in L^2(\mathcal{E}_h, \mathbb{R}^2) \mid \mu|_{e} = P_{k+1}(e, \mathbb{R}^2) \quad \forall e \in \mathcal{E}_h^i \text{ and } \mu|_{\mathcal{E}_h^{\partial}} = 0 \}, \\ M_{h,k+1} &= \{ \mu \in M_{h,k+1}^{-1} \mid \mu \text{ satisfies the following property } \}. \end{split}$$

Characterization of the Multiplier Space

To characterize the multiplier space, we define the following auxiliary spaces

$$\begin{split} \textit{M}_{h,k+1}^{-1} &= \{ \mu \in \textit{L}^2(\mathcal{E}_h, \mathbb{R}^2) \mid \mu|_e = \textit{P}_{k+1}(e, \mathbb{R}^2) \quad \forall e \in \mathcal{E}_h^i \text{ and } \mu|_{\mathcal{E}_h^\partial} = 0 \}, \\ \textit{M}_{h,k+1} &= \{ \mu \in \textit{M}_{h,k+1}^{-1} \mid \mu \text{ satisfies the following property } \}. \end{split}$$

Property: at any internal singular vertex \mathbf{x}_0 of \mathcal{T}_h ,

$$\sum_{i=1}^{4} (-1)^{i} \boldsymbol{\mu}_{i} \cdot \boldsymbol{n}_{i+1} = 0, \qquad (29)$$

where $\mu_i = \mu|_{e_i}(\mathbf{x}_0)$ and $e_i = \overline{\mathbf{x}_0}\overline{\mathbf{x}_i}$, i = 1:4 are the edges meeting at \mathbf{x}_0 , and \mathbf{n}_i is the unit normal vector of e_i , as shown in Figure 27.

Figure: Singular vertex

Characterization of the Multiplier Space

Proposition

For any triangulation grids \mathcal{T}_h , we have

$$J_{h,k+1} = M_{h,k+1} (30)$$

Proof.

- $J_{h,k+1} \subset M_{h,k+1}$.
- dim $J_{h,k+1}$ = dim $M_{h,k+1}$.

SPD System for λ_h

Using the above notation, we have the following system

$$\begin{pmatrix} A & B^{t} \\ B & 0 \end{pmatrix} \begin{pmatrix} (\sigma_{h}, \boldsymbol{u}_{h}) \\ \lambda_{h} \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$
 (31)

where A is a block-diagonal matrix.

SPD System for λ_h

Using the above notation, we have the following system

$$\begin{pmatrix} A & B^t \\ B & 0 \end{pmatrix} \begin{pmatrix} (\boldsymbol{\sigma}_h, \boldsymbol{u}_h) \\ \lambda_h \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$
 (31)

where A is a block-diagonal matrix.

Using the Schur complement, we can derive a equation only involved one variable λ_h , i.e. the multiplier:

$$(-BA^{-1}B^t)\lambda_h = -BA^{-1}F. \tag{32}$$

The original variable can be locally recover by

$$(\boldsymbol{\sigma}_h, \boldsymbol{u}_h) = A^{-1}(F - B^t \lambda_h) \tag{33}$$

Local solver

For any $m \in M_{h,k+1}$, we denote the solution of the following equation system (34) by $(\sigma_m, \mathbf{u}_m) \in \Sigma_{h,k+1}^{-1} \times \mathbf{V}_{h,k}$

$$(\mathcal{A}\boldsymbol{\sigma}_{m},\boldsymbol{\tau})_{K}+(\boldsymbol{u}_{m},\operatorname{div}\boldsymbol{\tau})_{K}=\langle m,\boldsymbol{\tau}\boldsymbol{n}\rangle_{\partial K},$$
 (34a)

$$-(\operatorname{div}\boldsymbol{\sigma}_{m},\boldsymbol{v})_{K}=0, \tag{34b}$$

for any $(\boldsymbol{\tau}, \boldsymbol{v}) \in \Sigma_{h,k+1}^{-1} \times \boldsymbol{V}_{h,k}, \, K \in \mathcal{T}_h$.

Local solver

For any $m \in M_{h,k+1}$, we denote the solution of the following equation system (34) by $(\sigma_m, \mathbf{u}_m) \in \Sigma_{h,k+1}^{-1} \times \mathbf{V}_{h,k}$

$$(\mathcal{A}\boldsymbol{\sigma}_{m},\boldsymbol{\tau})_{K}+(\boldsymbol{u}_{m},\operatorname{div}\boldsymbol{\tau})_{K}=\langle m,\boldsymbol{\tau}\boldsymbol{n}\rangle_{\partial K},$$
 (34a)

$$-(\operatorname{div}\boldsymbol{\sigma}_m, \mathbf{v})_K = 0, \tag{34b}$$

for any $(\boldsymbol{ au}, \boldsymbol{ extbf{v}}) \in \Sigma_{h,k+1}^{-1} imes \boldsymbol{ extbf{V}}_{h,k}, \, K \in \mathcal{T}_h.$

For any $f \in L^2(\Omega; \mathbb{R}^2)$, we denote the solution of the following equation system (35) by $(\tilde{\sigma}_f, \tilde{\boldsymbol{u}}_f) \in \Sigma_{h,k+1}^{-1} \times \boldsymbol{V}_{h,k}$

$$(\mathcal{A}\tilde{\sigma}_{\mathbf{f}}, \boldsymbol{\tau})_{\mathcal{K}} + (\tilde{\boldsymbol{u}}_{\mathbf{f}}, \operatorname{div}\boldsymbol{\tau})_{\mathcal{K}} = 0,$$
 (35a)

$$-(\operatorname{div}\tilde{\boldsymbol{\sigma}}_{\boldsymbol{f}},\boldsymbol{v})_{\mathcal{K}} = -(\boldsymbol{f},\boldsymbol{v})_{\mathcal{K}},\tag{35b}$$

for any $(\tau, \mathbf{v}) \in \Sigma_{h,k+1}^{-1} \times \mathbf{V}_{h,k}$, $K \in \mathcal{T}_h$.

The SPD system for the Multiplier

Theorem

The Lagrangian multiplier λ_h satisfies following equation

$$\tilde{a}(\lambda_h, \mu) = \tilde{f}(\mu) \qquad \forall \mu \in J_{h,k+1},$$
 (36)

where $\tilde{a}(\lambda_h, \mu) = (\mathcal{A}\sigma_\lambda, \sigma_\mu)_{\mathcal{T}_h}$ and $\tilde{f}(\mu) = -(\mathbf{f}, \mathbf{u}_\mu)_{\mathcal{T}_h}$. Moreover, the bilinear form $a_h(\lambda, \mu)$ in (36) is symmetric positive-definite. The solution of the system (25) satisfies

$$\sigma_h = \sigma_{\lambda_h} + \tilde{\sigma}_f$$
 and $u_h = u_{\lambda_h} + \tilde{u}_f$. (37)

Outline

- Mixed Methods for Linear Elasticity
- ② A Nodal Basis for the Space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_{k+1}$
- A Mixed Finite Element Method
- 4 Hybridization
- Numerical Results

Numerical Results

We consider the pure displacement problem on the unit square $\Omega = [0,1]^2$ with homogeneous boundary condition.

The compliance tensor in our computation is

$$\mathcal{A}\boldsymbol{\sigma} = \frac{1}{2\mu} \left(\boldsymbol{\sigma} - \frac{\lambda}{2\mu + 2\tau} \operatorname{tr}(\boldsymbol{\sigma}) \boldsymbol{I} \right),$$

where the Lamé constants are set to be $\mu = 1/2$ and $\lambda = 1$.

Let the exact solution be

$$u = \begin{pmatrix} e^{x-y}xy(1-x)(1-y) \\ \sin(\pi x)\sin(\pi y) \end{pmatrix}.$$
 (38)

Tests for the Lowest Order

Figure: Unstructured grid and HCT grid with 1/h = 2

Tests for the Lowest Order

1/h	$\ u - u_h\ _0$	h ⁿ	$\ \boldsymbol{\sigma} - \boldsymbol{\sigma}_h\ _0$	h ⁿ	$\ \operatorname{div} \boldsymbol{\sigma} - \operatorname{div} \boldsymbol{\sigma}_h\ _0$	h ⁿ	D ¹	dim M _{h, 1}
2	1.5654e-1	_	5.0400e-1	_	4.2952e-0	_	363	180
4	9.5309e-2	0.71	2.0147e-1	1.32	2.6589e-0	0.69	1089	2412
8	4.5289e-2	1.07	4.9971e-2	2.01	1.2995e-0	1.03	4554	2412
16	2.2009e-2	1.04	1.2357e-2	2.01	6.3735e-1	1.02	18612	10012
32	1.0976e-2	1.00	3.1761e-3	1.96	3.1827e-1	1.00	74447	40328
64	5.4797e-3	1.00	8.0961e-4	1.97	1.5892e-1	1.00	297264	161592

Table: The errors and the convergence order on HCT grids using hybridized method with k=0

1/h	$\ u - u_h\ _0$	h ⁿ	$\ \boldsymbol{\sigma} - \boldsymbol{\sigma}_h\ _0$	h ⁿ	$\ \operatorname{div} \boldsymbol{\sigma} - \operatorname{div} \boldsymbol{\sigma}_h\ _0$	h ⁿ	D	dim M _{h,1}
2	2.0098e-1	-	6.6940e-1	-	5.4550e-0	_	121	48
4	1.2864e-1	0.64	2.9520e-1	1.18	3.5429e-0	0.62	374	168
8	6.0929e-2	1.07	7.6893e-2	1.94	1.7416e-0	1.02	1518	756
16	2.9574e-2	1.04	2.7646e-2	1.47	8.5519e-1	1.02	6204	3244
32	1.4742e-2	1.00	1.2393e-2	1.15	4.2699e-1	1.00	24816	13256
64	7.3592e-3	1.00	6.0029e-3	1.04	2.1325e-1	1.00	99088	53496

Table: The errors and the convergence order on unstructured grids using hybrided method with k = 0

 $^{1}D = \dim \Sigma_{h,1}^{-1} + \dim V_{h,0}$

Tests for the Higher Order

Figure: Uniform grid and criss-cross grid with 1/h = 2

Tests for the Higher Order

1/h	$\ u - u_h\ _0$	h ⁿ	$\ \boldsymbol{\sigma} - \boldsymbol{\sigma}_h\ _0$	h ⁿ	$\ \operatorname{div} \boldsymbol{\sigma} - \operatorname{div} \boldsymbol{\sigma}_h\ _0$	h ⁿ	D^2	dim M _{h,1}
2	1.6541e-2	_	3.0057e-2	-	4.7388e-1	_	336	64
4	2.1758e-3	2.92	2.0260e-3	3.73	6.2558e-2	2.92	1344	320
8	2.7561e-4	2.98	1.5145e-4	3.89	7.9274e-3	2.98	5376	1408
16	3.4569e-5	2.99	9.7454e-6	3.95	9.9431e-4	2.99	21504	5888
32	4.3248e-6	2.99	6.1737e-7	3.98	1.2439e-4	3.00	86016	24064
64	5.4072e-7	3.00	3.8838e-8	3.99	1.5552e-5	3.00	344064	97280

Table: The errors and the convergence order on uniform grids using hybridized method with k=2.

1/h	$\ u - u_h\ _0$	h ⁿ	$\ \boldsymbol{\sigma} - \boldsymbol{\sigma}_h\ _0$	h ⁿ	$\ \operatorname{div} \boldsymbol{\sigma} - \operatorname{div} \boldsymbol{\sigma}_h\ _0$	h ⁿ	D	dim M _{h,1}
2	4.5314e-3	-	4.7780e-3	-	1.3437e-1	-	672	160
4	5.7633e-4	2.97	3.1371e-4	3.92	1.7027e-2	2.98	2688	704
8	7.2355e-5	2.99	2.0057e-5	3.96	2.1361e-3	2.99	10752	2944
16	9.0541e-6	2.99	1.2672e-6	3.98	2.6726e-4	2.99	43008	12032
32	1.1320e-6	3.00	7.9629e-8	3.99	3.3416e-4	3.00	172032	48640
64	1.4151e-7	3.00	4.9899e-9	4.00	4.1772e-5	3.00	688128	195584

Table: The errors and the convergence order on criss-cross grids using hybridized method with k = 2.

 $^{2}D = \dim \Sigma_{h,1}^{-1} + \dim V_{h,0}$

Conclusion

- We propose a nodal basis for the stress space $H(\text{div}, \mathbb{S}) \cap \mathcal{P}_k$.
- We prove optimal error estimate of our mixed method for both displacement and stress.
- Our method can be efficiently implemented by hybridization.

Symmetric, Conforming and Hybridizable Elements!

Thank you!