Clase Física 2 12

Circuitos resistivos mixtos
Circuitos bajo las leyes de Kirkchoff
Circuitos RC

Ejemplo 1. Determine la resistencia equivalente de los siguientes circuitos resistivos.

Ejemplo 2. En el circuito de la figura la diferencial de voltaje de la resistencia de 6 Ω es 7.2 V con la polaridad mostrada.

- a. ¿Cuál es el valor de la corriente en A en la resistencia de 15Ω?
- b. ¿Cuál es el valor de la fem del circuito en V?
- c. ¿Valor de la potencia qu e suministra la fem al circuito?

Ejemplo 3.

Ejemplo 4.

- 1. Suponga que en la figura, $\epsilon_1 = 4.22$ v, $\epsilon_2 = 1.13$ v, $R_1 = 9.77$ Ω , $R_2 = 11.6$ Ω y $R_3 = 5.40$ Ω . Encuentre el valor de la corriente que sale del punto "d" (en mA)
 - 2. ¿Cuál es la diferencia de potencial entre los puntos "c" y "d"? (en volts)
 - 3.¿Cuál es la corriente (en mA) que pasa por la fuente 1? (ε₁)
 - 4. ¿Cuál es la potencia por el resistor R₃ ?

Ejemplo 5.

En el circuito, las baterías tienen resistencias internas despreciables y los medidores son ideales. Con el interruptor S abierto, el voltímetro da una lectura de 15.0 V. Determinar:

- 1. La fem de la batería en Volts
- 2. ¿Cuál será la lectura del amperímetro cuando se cierre el interruptor en A?
- 3. Cuál es la potencia que para por la fuente de 25V
- 4. La corriente que pasa por el resistor de 75 Ω

Ejemplo 6.

Suponga que el interruptor ha estado cerrado durante un tiempo suficientemente largo para que el capacitor se cargue por completo.

Determine:

- 1. la corriente en estado estacionario de la resistencia de $3.00~\mathrm{K}\Omega$
- 2. la carga Q del capacitor
- 3. la corriente en estado estacionario de la resistencia de $15 \mathrm{K}\Omega$ en mA.

