Computer Architecture

Oprițoiu Flavius flavius.opritoiu@cs.upt.ro

October 5, 2021

Chap. 1 Representation of numbers in computer systems

1.1 - Information classification

Information tree:

1.1 - Information classification (contd.)

Bit: binary digit

- byte
- words

Codes for non-numerical data

- ► American Standard Code for Information Interchange (ASCII)
- Extended Binary Coded Decimal Interchange Code (EBCDIC)
- ▶ UNICODE

1.1 - Information classification (contd.)

Fixed-point numbers

- integers
- fractionals

Floating point numbers:

- approximate representation
 - Consider value 1e20
 - (3.14 + 1e20) 1e20 = 0
 - ightharpoonup 3.14 + (1e20 1e20) = 3.14
 - ► ⇒ Floating-point addition: not associative!

1.2 - Representation of fixed-point numbers

Number X represented in radix \boldsymbol{r} :

$$X = x_{n-1}x_{n-2}\cdots x_1x_0.x_{-1}x_{-2}\cdots x_{-m}$$

- ▶ integer part: $x_{n-1}x_{n-2}\cdots x_1x_0$
- fractional part: $x_{-1}x_{-2}\cdots x_{-m}$
- Most Significant Bit (MSB): x_{n-1}
- Least Significant Bit (LSB): x_{-m}

Value of X represented in radix \boldsymbol{r} :

$$X = \sum_{j=-m}^{n-1} x_j * r^j, \ 0 \le x_j < r$$

- $ightharpoonup r^j$: weight of digit x_j
- positional representation

1.2 - Representation of fixed-point numbers (contd.)

When radix $r = 2 \rightarrow$ binary representation system.

Example:

$$103_{(10)} = 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad . \quad (2)$$
weights $2^{6} \quad 2^{5} \quad 2^{4} \quad 2^{3} \quad 2^{2} \quad 2^{1} \quad 2^{0} \quad (2)$

$$68_{(10)} = 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad . \quad (2)$$

Position of the binary point:

- convention for representing integers and fractions
 - avoids encoding point's position in the number representation
 - save more bits for precision

1.2 - Representation of fixed-point numbers (contd.)

For integers, the binary point is situated to the right of the LSB.

 $X = x_{n-1}x_{n-2}\cdots x_1x_0$. $= \sum_{i=0}^{n-1} x_i * 2^i$, for X on n bits

For fractionals, the binary point is situated to the left of the MSB.

$$X = x_{n-1}x_{n-2}\cdots x_1x_0 = \sum_{i=0}^{n-1} x_i * 2^{i-n}$$
, for X on n bits

Example:

$$\frac{103}{128}_{\text{(10)}} = \cdot 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1_{(2)}$$
weights
$$-2^{-1} \quad 2^{-2} \quad 2^{-3} \quad 2^{-4} \quad 2^{-5} \quad 2^{-6} \quad 2^{-7}$$

$$\frac{17}{32}_{\text{(10)}} = \cdot 1 \quad 0 \quad 0 \quad 0 \quad 1_{(2)}$$

1.2.1 - Sign-Magnitude

The MSB encodes the sign of the number. Sign convention:

- positives have a sign bit of 0
- negatives have a sign bit of 1

Number X, on n bits, is represented in Sign-Magnitude as:

- $X = x_{n-1} \ x_{n-2}x_{n-3} \cdots x_1x_0$, with
 - $ightharpoonup x_{n-1}$ being the sign of X
 - $\triangleright x_{n-2}x_{n-3}\cdots x_1x_0$ being the magnitude of X

Example:

$$+103_{10} = 0 \ 1100111_{(SM)}$$

 $-103_{10} = 1 \ 1100111_{(SM)}$

Range of values:

- ▶ largest integer on *n* bits, in Sign-Magnitude:
 - $\qquad \qquad \textbf{MAXINT}_{SM} \colon 0 \ \underbrace{11 \cdots 111}_{}.$
 - \triangleright value of $MAXINT_{SM} = 2^{n-1} 1$
- ▶ ⇒ range of values for *n*-bit integers: $[1-2^{n-1}; 2^{n-1}-1]$

- ▶ largest fractional on *n* bits, in Sign-Magnitude:
 - MAXFRA_{SM}: $0.11 \cdot \cdot \cdot 111$
 - ▶ value of $MAXFRA_{SM} = 1 2^{-n+1}$
- ▶ ⇒ range of values for *n*-bit fractionals: $[2^{-n+1}-1;1-2^{-n+1}]$

Precision:

- consider Sign-Magnitude numbers on n bits
- how many decimal digits are required for representing any of the Sign-Magnitude numbers on n bits?
 - $ightharpoonup 2^{n-1} 1 = 10^p$, with p being the precision
 - ▶ it follows that $p = \lceil log_{10}(2^{n-1} 1) \rceil$
 - thus $p < \lceil log_{10}(2^{n-1}) \rceil =$
 - ▶ and ultimately, $p \approx \lceil (n-1) * 0.3 \rceil =$

Example: consider Sign-Magnitude numbers on 10 bits.

- ▶ precision $p \approx \lceil 9 * 0.3 \rceil = \lceil 2.7 \rceil = 3$
- ▶ largest integer in Sign-Magnitude on 10 bits is +511, which requires 3 decimal digits

Hardware complexity of Sign-Magnitude representation:

- moderate HW complexity
- favours multiplication

Disadvantages:

▶ there are **two** binary configurations for 0 in Sign-Magnitude

 $+0: 0 00 \cdots 000$ $-0: 1 00 \cdots 000$

Disadvantages:

- Sign-Magnitude addition
 - ightharpoonup consider operands X=5 and Y=2, on 4 bits
 - the four possible sign configurations for addition

1.2.2 - One's Complement

The MSB encodes the sign (same convention as for SM).

Number X, on n bits, is represented in One's Complement as:

 $ightharpoonup \overline{x_i}$ representing the complement of x_i : $\overline{x_i} = 1 - x_i$

Example:

$$\begin{array}{rcl} +103_{10} & = & 0.1100111_{(C1)} \\ -103_{10} & = & 1.0011000_{(C1)} \end{array}$$

1.2.2 - One's Complement (contd.)

Range of values:

- same as for Sign-Magnitude
 - ► for a given number of bits *n*, Sign-Magnitude and One's Complement encode the same number of values

Precision:

- same as for Sign-Magnitude
 - since encoding the same number of values, One's Complement has the same precision as Sign-Magnitude

Hardware complexity:

- the HW complexity is somewat higher for One's Complement
 - not favouring anymore multiplication

Disadvantages:

- ▶ there are **two** binary configurations for 0 in One's Complement
 - **▶** +0: 0 00 · · · 000
 - $-0: 111 \cdots 111$

1.2.2 - One's Complement (contd.)

Disadvantages:

- ► One's Complement addition
 - \triangleright consider same operands X=5 and Y=2, on 4 bits
 - ▶ the four possible sign configurations for addition

Are there disadvantages regarding One's Complement addition?