# Intrusion Detection and Monitoring System

**Team: Watchful Eyes** 

- 1.DEVARINTI JYOTHIKA (21BLC1050)
- 2. AKRUTI SOMKUWAR(21BLC1024)
- 3. ADITYA UTTAM DHAVALE(21BLC1040)

## **Project Objective**

Our project aims to develop a motion-activated intruder detection system utilizing motion sensors and camera in an Internet of Things (IoT) framework. The Motion Sensor Camera project with WiFi Connectivity aims to develop a versatile surveillance system that detects motion and captures images wirelessly. The motion detector camera system will provide a reliable, efficient and user-friendly solution for monitoring and recording motion events in various settings such as homes, offices, warehouses or outdoor areas.

## **Project description**

The system's primary function is to detect the presence of intruders and promptly capture their images and sends them to remote device over WiFi for identification and security purposes.

Develop a motion detection algorithm that accurately detects and tracks movements within a specified area.

Integrate a camera module capable of capturing clear images.

Establish a WiFi connection to facilitate real-time transmission of captured data to a remote device.

Implement a user-friendly interface to control and configure the system settings.

Enable real-time notifications/alerts on connected devices when motion is detected.

## Components

1. ESP32 -cam (Al thinker)



- The ESP32-CAM is a compact development board that combines the power of the ESP32 microcontroller with a camera module.
- It enables you to capture images and videos, and it has built-in Wi-Fi and Bluetooth capabilities for IoT applications.
- With features like GPIO pins, a microSD card slot, and a USB interface, it is a versatile board for building projects involving image and video capture.

#### 2. PIR motion sensor



- The PIR motion sensor consists of a sensor element that detects changes in infrared radiation, a lens that focuses the infrared energy onto the sensor, and electronic circuitry that interprets the sensor's output.
- When a moving object enters the sensor's field of view, it causes
  a change in the infrared radiation pattern, triggering the sensor
  to send a signal indicating motion.

#### **3.NPN Transistor**



- The NPN transistor operates by controlling the flow of current between the collector and emitter terminals.
- When a small current is applied to the base terminal, it allows a larger current to flow from the collector to the emitter. This behavior makes the NPN transistor useful for amplification and switching applications in electronic circuits.

#### 4. FTDI 232 USB to serial communication cable



- The FTDI FT232 is a USB-to-serial converter cable that allows communication between a computer and serial devices.
- The FT232 cable features an integrated FT232R chip, which handles the USB-to-serial conversion. It converts the USB signals from the computer into serial signals that can be understood by the connected device.
- It provides a convenient and straightforward way to establish serial communication with devices that lack built-in USB ports.

5. Resistors 6.LED 7. 5 volt DC Supply 8. Jumping Cables

## **Software Used**

1. Arduino IDE (Version 2.1.0)



## **Schematic**





## **Algorithm**

Step - 2: Install Arduino - IDE (2.1.0) in laptop

**Step - 3**: Connect the ESP 32 camera with FTDI 232 USB to serial communication interface using jumping cables as per the schematic.



**Step - 4**: Connect the FTDI 232 serial communication to USB interface with laptop and interface the code in it .

**Step - 5**: In the code give the wifi network Username and Password for wireless connection between the blynk app and the schematic.

**Step - 6**: After interfacing remove the ESP 32 and connect it with PIR sensor as per the schematic.

**Step - 7**: The GPIO 13 pin of ESP 32 is connected with PIR sensor.

**Step - 8**: When PIR sensor detects motion, output pin of PIR sensor become high, and give high pulse to the NPN transistor.

**Step - 9**: As the NPN transistor is given high pulse, LED glows, the GPIO 13 becomes low and ESP 32 starts taking images.

**Step - 10**: Through the Wifi connection in the board the notification is sent to the telegram app and we can detect the intruder.

## **Progress**

 We assembled the components Esp32 camera, FTDI 232 USB to serial communication cable, NPN transistor, PIR sensor

• Downloaded Arduino-IDE and installed the telegram app

• We interfaced the code in Esp32 camera using FTDI 232 USB to serial communication cable.

## THANK YOU