Ordered Sets Exercises

1) Prove that for the set of positive integers, the relation "m is a multiple of n" is an order relation.

Solution: First show reflexiveness. Reflexiveness requires that $a \succeq a$ for all $a \in \mathbb{Z}_+$. Note that $a \succeq b$ iff $\frac{a}{b} \in \mathbb{Z}_+$. It is straightforward to check that $\frac{a}{a} = 1 \in \mathbb{Z}$. Therefore reflexiveness holds. Now check transitivity. $a \succeq b$ implies $\frac{a}{b} = \alpha \in \mathbb{Z}_+$. $b \succeq c$ implies $\frac{b}{c} = \beta \in \mathbb{Z}_+$. This yields $b = \beta c$, $\frac{a}{\beta c} = \alpha$, $\frac{a}{c} = \alpha \beta$. Since $\alpha, \beta \in \mathbb{Z}_+$, $\alpha \beta \in \mathbb{Z}_+$. Therefore $a \succeq c$. Finally, we need to show that symmetry does not hold, that is, $a \succeq b$ does not imply $b \succeq a$. It is sufficient to find a single counter example to prove this. Let a = 2 and b = 1. $a \succeq b$ is true: 2/1 = 1. $b \succeq a$, however, is not true: $1/2 \notin \mathbb{Z}$.

2) Let $X = \{1, 2, ..., 9\}$, ordered by the relation "m is a multiple of n". Find all maximal and best elements of this ordered set and its least upper bound in \mathbb{Z} .

Solution: To find the maximal elements, we need to find the set of all y such that there is no $x \in X$ with $x \succ y$ where \succ is the relation "x is a proper multiple of y." First check for $x \succ 1$. Clearly for all x > 1, this holds. Now check for $x \succ 2$. All even x > 2, this holds. Similarly for 3 and 4: $9 \succ 3$ and $8 \succ 4$. For 5, the next proper multiple of 5 is $10 \notin X$. Therefore 5 is a maximal element. Similarly, the next proper multiple of 6 is 12, 7 is 14, 8 is 16, and 9 is 18. None of these are in X. We conclude that the maximal set is the set $\{5,6,7,8,9\}$. To find a best element, we need to find a member x of the maximal set such that $x \succsim y$ for all $y \in X$. Let's try 5. Is it true that $5 \succsim 9$? No. Therefore 5 cannot be a best element. What about 6? $6 \succsim 9$ is also false. Similarly, $7 \succsim 9$ and $8 \succsim 9$ are both false.

What about 9? $9 \succeq 9$ is true. But $9 \succeq 2$ and $9 \succeq 4$ are false. Therefore we conclude that the ordered set has no best element. Finally, to find a lower bound, we need to find an integer $z \in \mathbb{Z}$ such that $z \succeq x$ for all $x \in X$. That is, we need to find a multiple of every element of X. In particular, we need to find the *least common multiple* of 1, ...9. It turns out that 2520 is the least common multiple and therefore the least upper bound of X.

3) Show that $x \sim y$ is an equivalence relation if \succsim is rational.

Solution: \succsim rational means that \succsim is complete, reflexive, and transitive. \sim is defined as $x \sim y \iff x \succsim y \land y \succsim x$. We need to show that \sim is reflexive, symmetric, and transitive. Let's start with reflexiveness. $x \sim x$ implies $x \succsim x$ (and $x \succsim x$). Because \succsim is reflexive, $x \sim x$ is reflexive. Now for transitivity. $x \sim y$ implies $x \succsim y$ and $y \succsim x$. $y \sim z$ implies $y \succsim z$ and $z \succsim y$. Because \succsim is transitive, we have that $x \succsim y$ and $y \succsim z$ imply $x \succsim z$. Therefore $x \sim y$ and $y \sim z$ imply $x \sim z$. Finally we check symmetry. $x \sim y$ implies $x \succsim y$ and $y \succsim x$. We also know from the definition of \sim that $y \succsim x$ and $x \succsim y$ iff $y \sim x$. Therefore because $y \succsim x \land x \succsim y \equiv x \succsim y \land y \succsim x$, $x \sim y$ implies $y \sim x$.

- 4) Prove or disprove the following statements
 - i) Every best element is a maximal element.
 - ii) Every maximal element is a best element.
 - iii) An element is a best element if and only if it is a maximal element.

Solution:

- i) True. By the definition of best element, $x \succeq y$ for all $y \in X$. If x is not maximal, this implies that for some $z \in X$, $z \succ x$ i.e. $z \succeq x$ and $\neg [x \succeq z]$. Therefore every best element is a maximal element.
 - ii) False. See counterexamples in lecture notes.
 - iii) False. Proof follows immediately from ii.
- 5) Let $X = \Delta^1$ and \succeq be defined such that for any $(a,b), (c,d) \in X$, $(a,b) \succeq (c,d)$ if and only if $\max\{a,b\} \ge \max\{c,d\}$.
 - i) Find all maximal elements and best elements if they exist.

- ii) Find all least upper bounds of the set in \mathbb{R}^2 .
- iii) Use the properties of binary relations to identify whether the set is partially ordered, totally ordered, and/or weakly ordered.

Solution

- i) Maximal elements and best elements are the same: (0,1) and (1,0).
- ii) The set of least upper bounds is the set of all points (1, a) and (b, 1) for $a, b \le 1$.
- iii) The order relation is not antisymmetric: $(0,1) \succsim (1,0)$ and $(1,0) \succsim (0,1)$ but $(1,0) \neq$
- (0,1). Therefore the ordered set is not a partially ordered set or a totally ordered set. It is straightforward to check that the order relation on X is complete and transitive.
- 6) Prove that if X is finite, (X, \succeq) has at least one maximal element for all order relations.

Solution If X is a singleton, x is trivially a maximal element. Now consider a non-singleton finite X and assume that there is no maximal element. This implies that for all $x \in X$, there exists a $z \in X$ such that $z \succ x$. Consider an arbitrary $x_0 \in X$. We know that there must be some element in X that is strictly preferred to x_0 . By the definition of \succ and the reflexiveness of \succsim , this must be distinct from x_0 . Label this x_1 . We now have $x_1 \succ x_0$. Because there is no maximal element, there must be some element in X that is strictly preferred to x_1 . By the transitivity of \succsim , this cannot be x_0 . By reflexiveness and the definition of \succ , this element can also not be x_1 . Label this new element x_2 . Let X denote the cardinality of the set X. Continue this process until element x_{N-1} . Now there must be some x_N such that $x_N \succ x_{N-1}$. By transitivity and reflexivity, x_N must be the last remaining element that has not been shown to be strictly preferred to any other. Because there is no maximal x, there must be some $x \succ x_N$. But if such an x exists, $x_N \succ x$ by the transitivity of the order relation. By the definition of \succ , this is a contradiction. Therefore there exists a maximal element.