PROGRAMME DE COLLES

SUP MPSI 1

Semaine 20

Du 11 au 15 mars 2024.

ARCHITECTURE DE LA MATIERE :

Structure Mat 1

CLASSIFICATION PERIODIQUE DES ELEMENTS

EN TD UNIQUEMENT.

Structure Mat 2

STRUCTURE ELECTRONIQUE DES MOLECULES

EN TD UNIQUEMENT.

Structure Mat 3 FORCES INTERMOLECULAIRES; SOLVANTS

EN TD UNIQUEMENT.

MECANIQUE 2:

Mécanique 5

LE MOMENT CINETIQUE

EN COURS ET TD.

Notions et contenus	Capacités exigibles
2.5. Moment cinétique	
Moment cinétique d'un point matériel par rapport à un point et par rapport à un axe orienté.	Relier la direction et le sens du vecteur moment cinétique aux caractéristiques du mouvement.
Moment cinétique d'un système discret de points par rapport à un axe orienté.	Utiliser le caractère algébrique du moment cinétique scalaire.
Moment d'une force par rapport à un point ou un axe orienté.	Calculer le moment d'une force par rapport à un axe orienté en utilisant le bras de levier.
Théorème du moment cinétique en un point fixe dans un référentiel galiléen. Conservation du moment cinétique.	Identifier les cas de conservation du moment cinétique.

Moment cinétique d'un pont matériel. Par rapport à un point O; Par rapport à un axe Δ .

Moment cinétique d'un système de points matériels.

Moment d'une force \vec{F} . Par rapport à un point O; Par rapport à un axe Δ ; Notion de bras de levier.

Théorème du moment cinétique en référentiel galiléen :

Théorème du moment cinétique en un point fixe O (énoncé + démonstration).

Théorème du moment cinétique en projection sur un axe fixe (énoncé + démonstration).

Application au pendule simple / point et / à un axe.

Mécanique 6 MOUVEMENT DANS UN CHAMP DE FORCES CENTRALES -CAS NEWTONIEN

EN COURS et TD pour les forces centrales. EN COURS UNIQUEMENT pour les champs newtoniens.

Notions et contenus	Capacités exigibles
2.6. Mouvements dans un champ de force centrale conservatif	
Point matériel soumis à un champ de force centrale.	Établir la conservation du moment cinétique à partir du théorème du moment cinétique. Établir les conséquences de la conservation du
	moment cinétique : mouvement plan, loi des aires.
Point matériel soumis à un champ de force centrale conservatif Conservation de l'énergie mécanique. Énergie potentielle effective. État lié et état de diffusion.	Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement. Exprimer la conservation de l'énergie mécanique et
	construire une énergie potentielle effective. Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique.
	<u>Capacité numérique</u> : à l'aide d'un langage de programmation, obtenir des trajectoires d'un point matériel soumis à un champ de force centrale conservatif.
Cas particulier du champ newtonien Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite, planète.	Établir que le mouvement est uniforme et déterminer sa période. Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une trajectoire elliptique.
Energie mécanique dans le cas du mouvement circulaire et dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire. Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Satellites terrestres Satellites géostationnaire, de localisation et de navigation, météorologique.	Différencier les orbites des satellites terrestres en fonction de leurs missions. Déterminer l'altitude d'un satellite géostationnaire et justifier sa localisation dans le plan équatorial.

Forces centrales conservatives : Définitions et exemples.

Propriétés des forces centrales conservatives.

Conservation du moment cinétique et conséquences (Conservation du moment cinétique ; Planéité du mouvement ; Loi des aires).

Propriétés énergétiques (L'énergie potentielle associée ne dépend que de *r* ; Conservation de l'énergie mécanique ; Energie potentielle effective ; Discussion graphique).

<u>Champ newtonien gravitationnel</u>: Les différents référentiels ;

Expression de l'énergie potentielle ; Etablissement de $E_{P\,eff}$ et son tracé ; Etats liés ; Etats de diffusion-Discussion.

Cas des états liés : Les 3 lois de Kepler (admises) :

Cas particulier des trajectoires circulaires :

Expression de la période T; Energie mécanique d'une orbite circulaire;

Mouvement uniforme ; Satellite géostationnaire.

Les satellites terrestres :

Cas particulier des trajectoires elliptiques ; Quelques définitions et caractéristiques des

orbites elliptiques; Energie mécanique d'une orbite elliptique en fonction de a (expression démontrée).