Validity of: $P \Rightarrow Q \Leftrightarrow \neg P \lor Q$

truth table:

Р	Q	¬P	$\neg P \lor Q$	$P \Rightarrow Q$	$P \Rightarrow Q \Leftrightarrow \neg \; P \vee Q$
Т	T	F	T	T	Т
T	F	F	F	F	Т
F	T	T	T	T	Т
F	F	Т	Т	T	Т

Validity of: $P \Leftrightarrow Q \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P)$

truth table:

Р	Q	$P \Leftrightarrow Q$	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q)$	P⇔Q ⇔
					$\Lambda (Q \Rightarrow P)$	$(P \Rightarrow Q)\Lambda(Q \Rightarrow P)$
T	T	T	T	T	Т	Т
T	F	F	F	Т	F	Т
F	Т	F	Т	F	F	Т
F	F	Т	T	Т	Т	Т

Tutorial 6 Logical Reasoning

Validity of:
$$P \Leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$

no truth table → rewriting rules / equivalences

using (ii):

$$P \Leftrightarrow Q \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P)$$

then using (i):

$$P \Leftrightarrow Q \Leftrightarrow (\neg P \vee Q) \land (\neg Q \vee P)$$

using distributivity of Λ over \vee :

$$\mathsf{P} \Leftrightarrow \mathsf{Q} \quad \Leftrightarrow \quad (\neg \ \mathsf{P} \ \Lambda \ \neg \ \mathsf{Q}) \lor (\neg \ \mathsf{P} \ \Lambda \ \mathsf{P}) \lor \\ (\mathsf{Q} \ \Lambda \ \neg \ \mathsf{Q}) \lor (\mathsf{Q} \ \Lambda \ \mathsf{P})$$

simplifying:

$$P \Leftrightarrow Q \Leftrightarrow (\neg P \land \neg Q) \lor (Q \land P)$$

finally, using commutativity of v:

$$P \Leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$

Propositional logic and Modus Ponens:

"Amy, Bob, Cal, Don, and Eve were invited to a party last night." → defines what we are talking about

constants: A :: "Amy went to the party", B, C, D, E

knowledge base:

"Cal will always go if Amy and Bob go."

$$(1) \qquad A \wedge B \Rightarrow C \qquad (\neg A \vee \neg B \vee C)$$

$$(\neg A \lor \neg B \lor C)$$

"Cal will not go if Don goes, and conversely."

$$\mathsf{D} \Rightarrow \neg \mathsf{C}$$

$$(\neg D \lor \neg C)$$

(2b)
$$C \Rightarrow \neg D$$

"Amy went to the party with Eve." $A \wedge E$

(3)

Α

(4)

"Bob goes to every party that Eve goes to."

(5)

 $\mathsf{E}\Rightarrow\mathsf{B}$

 $(\neg E \vee B)$

$$(4)+(5)$$

<u>proof</u>: (4)+(5) E, E \Rightarrow B \mid B

(6)

(3)+(6)+(1) A, B, A \wedge B \Rightarrow C |- C

(7)

(7)+(2b) C, $C \Rightarrow \neg D$

Don did not go to the party

The unicorn mystery:

constants: properties of the unicorn

Mythical, Magical, Horned, and

Mammal, Mortal (Immortal ⇔¬ Mortal)

knowledge base:

Mythical ⇒ ¬ Mortal → Horned

¬ Mythical ⇒ Mortal Mammal ⇒ Horned

 \neg Mythical \Rightarrow Mammal Horned \Rightarrow Magical

problem: only rules and no facts (!)

Modus Ponens: P, P \Rightarrow Q |- Q, but if *no P?*

- → nothing can be inferred directly from the KB
- → need some fact(s) i.e.,
 - 1) assume Mythical, then infer (what?)
 - 2) assume ¬ Mythical, then ...

Using the Modus Ponens rule of inference:

if the unicorn is mythical:

Mythical, Mythical $\Rightarrow \neg$ Mortal $\mid - \neg$ Mortal

¬ Mortal, ¬ Mortal ⇒ Horned |- Horned

Horned, Horned ⇒ Magical |- Magical

if the unicorn is not mythical:

¬ Mythical, ¬ Mythical ⇒ Mammal | — Mammal

Mammal, Mammal ⇒ Horned |- Horned

Horned, Horned \Rightarrow Magical |- Magical

conclusion: the unicorn is both horned and magical

(true in all cases – Mythical or ¬ Mythical)

still no conclusion about the unicorn being mythical

(note: in general this is <u>not</u> a workable approach...)

Using the resolution rule of inference:

binary resolution: $P \lor Q$, $\neg Q \lor R \mid -P \lor R$

knowledge base (CNF):

- 1. ¬ Mythical ∨ ¬ Mortal
- 2. Mythical v Mortal
- 3. Mythical v Mammal
- 4. Mortal ∨ Horned
- 5. ¬ Mammal ∨ Horned
- 6. ¬ Horned ∨ Magical

proof:

- 7. from 1 and 4: ¬ Mythical ∨ Horned
- 8. from 3 and 5: Mythical V Horned
- 9. from 7 and 8: Horned
- 10. from 9 and 6: Magical

conclusion: the unicorn is both horned and magicalstill no conclusion about the unicorn being mythical