где k=0, если $x\geqslant 0$; k=1, если x<0, y>0, и k=-1, если x<0, y<0; при этом, как обычно, при x=0, y=0 считается $\arctan \frac{y}{x}=\frac{\pi}{2}sign\ y.$

Иногда на угол φ не накладывают ограничения $-\pi < \varphi \leqslant \pi$, а обозначают через φ любой угол, для которого $\operatorname{tg} \varphi = \frac{y}{x}$. В этом случае соответствие между упорядоченными парами (ρ,φ) , $\rho \neq 0$, и точками плоскости, отличными от начала координат, уже, очевидно, не является взаимно однозначным.

Если задана непрерывная функция

$$\rho = \rho(\varphi), \alpha \leqslant \varphi \leqslant \beta, \tag{17.29}$$

то, подставляя ее в (17.28), получаем

$$x = \rho(\varphi)\cos\varphi, y = \rho(\varphi)\sin\varphi, \tag{17.30}$$

т. е. параметрическое представление некоторой кривой Г. В этом смысле можно говорить, что уравнение (17.29) задает в полярных координатах кривую Г. Для вычисления кривизны, радиуса кривизны и эволюты кривой Г, заданной уравнением (17.29), надо перейти к ее параметрическому представлению (17.30) и воспользоваться выведенными выше формулами.

УПРАЖНЕНИЯ. 2. Пусть в полярных координатах задана кривая $\rho=\rho(\varphi)$, пусть α - угол наклона ее касательной к оси Ox, а ω - угол, образованный этой касательной с продолжением радиус-вектора точки касания. Доказать, что $\alpha=\omega+\varphi$ и $\operatorname{tg}\omega=\frac{\rho}{\rho\prime}$.

3. Найти эволюту кривой $\rho=\alpha(1+\cos\varphi), 0\leqslant \varphi\leqslant 2\pi$, называемой кардиоидой.

Указание. Воспользоваться результатами упражнений 1 и 2.

Задача 14. Пусть Γ — дважды дифференцируемая кривая без особых точек, $\Gamma = \{r(t); a \leqslant t \leqslant b\}$, и пусть $t_0 \in [a,b], t_0 + \Delta t_1 \in [a,b], t_0 + \Delta t_2 \in [a,b]$. Проведем через точки $r(t_0), r(t_0 + \Delta t_1)$ и $r(t_0 + \Delta t_2)$ плоскость; доказать, что если в точке $r(t_0)$ кривизна $k \neq 0$, то при $\Delta t_1 \to 0$ и $\Delta t_2 \to 0$ эта плоскость стремится (определите это понятие) к соприкасающейся плоскости в точке $r(t_0)$.

Задача 15. В предположении предыдущей задачи проведем через те же три точки $r(t_0),\,r(t_0+\Delta t_1)$ и $r(t_0+\Delta t_2)$ окружность. Доказать, что эта окружность при $\Delta t_1 \to 0$ и $\Delta t_2 \to 0$ стремится к окружности (опреде-