The Multi-Agent Programming Contest

Miriam Kölle

Research lab – Summer term 2014 University Koblenz-Landau

The Multi-Agent Programming Contest

- International online competition since 2005
- Incite research by
 - 1. Identifying key problems
 - 2. Collecting suitable benchmarks
 - 3. Gathering test cases

The Multi-Agent Programming Contest

- Changing scenarios
 - 2005: Food Gatherer
 - 2006-07: Goldminers
 - 2008-10: Cows and Cowboys
 - 2011-13: Agents on Mars
 - 2014: unsettled
- Focus: Agent cooperation and coordination
- Implementation technology left to participants
- Communication technology left to participants

Agents on Mars

»In the year 2033 mankind finally populates Mars.«

Search for water wells and occupy the best zones

- Challenge:
 - Find water and occupy zones
 - Attack rivals and defend
 - Earn money (milestones, as 5 successful attacks)

Goal: maximize the score (zones and money)

Environment

- Weighted graph
 - Weighted edge: costs of traversing this edge
 - Labeled node: value of this water well
- Unknown in the beginning
 - Agents must explore it

Occupying Zones

- Depends on all agents' current position
- 1. A node belongs to that team with the majority of agents standing on this node
- 2. Neighbors dominated by at least two neighbors belong to that team
- 3. All nodes in an isolated zone belong to that team
- One agent allein cannot establish a zone

Occupying Zones

Occupying Zones

Agents

- Attributes
 - Energy, health, strength, visibility range
- Actions
 - Most are self-explanatory (next slide)
 - Probe: find out the value of the current node
 - Survey: find out adjacent edges' weights
 - Inspect: find out current attributes of other agents
 - Buy: improve attributes
- Five different roles → "experts"

Agents

Role	Actions	Energy	Health	Strength	Visibility Range
Explorer	Skip, goto, probe , survey, buy, recharge	12	4	0	2
Repairer	Skip, goto, parry, survey, buy, repair , recharge	8	6	0	1
Saboteur	Skip, goto, parry, survey, buy, attack , recharge	7	3	4	1
Sentinel	Skip, goto, parry, survey, buy, recharge	10	1	0	3
Inspector	Skip, goto, inspect , survey, buy, recharge	8	6	0	1

- Attributes can vary during simulation:
 - Actions cost energy, Agents can get disabled

MASSim Server

- Agent teams run on participant's infrastructure
- Simulated environment runs on MASSim server
 - Agents communicate with the server by exchanging XML messages
- 3 phases:
 - Initial
 - Simulation
 - Final

Simulation Step

- collect all actions from the agents,
- let each action fail with a specific probability,
- execute all remaining attack and parry actions,
- determine disabled agents,
- execute all remaining actions,
- prepare percepts,
- deliver the percepts.

Simulation Step

Perceptions:

- State of the simulation
- State of the team
- State of the agent
- Visible vertices (+ dominating team)
- Visible edges
- Visible agents (+ node, team)
- Returns of probe, survey, and inspect

Visualization

Environment Design

- Agents are situated in an environment
- Agents (inter)act upon the environment
 - → based on perceptions
- Here: environment is only simulated
 - Needs to be modelled
 - Interesting approach: ELMS
 - Environment Description Language for MAS
 - Part of the MAS-SOC framework
 - XML Syntax

ELMS Modelling

- Objects
 - Set of properties
 - Set of re-actions (to agent's actions)
- Example:

ELMS Modelling

- Agents
 - Set of attributes
 - Set of actions
 - Set of perceptions
- Example:

Summary

Provide agents perceptions

Depending on perception list

Wait for all agents' next actions

Execute agents' actions

Random order Random failure Check disabled agents' actions

Execute objects' reactions

Conclusion

- Each Team: 28 agents
 - Competition: all against all others, 3 sim
- Agents need to
 - Choose zones in order to maximize the score
 - Only probed nodes "count their value"
- Find the best strategy
 - One agent gets all percepts and decides ?
 - "auction-based" agreement ?
 - Shared knowledge of the graph ?

Conclusion

- Other participants
 - Some take part quite regularly
 - UFSC (Winner of last two years)
 - Jason / JaCaMo (Jason, CArtAgO, Moise)
 - DTU
 - GOAL, Python
 - Others: Java, C++, JIAC

Thank you for your attention!

References