Build Survival Model: Random Survival Forest

Mingcheng Hu

Table of contents

Load Data	2
Variable Selection	4 7 9
<pre>library(tidyverse) library(survival) library(randomForestSRC) library(caret) library(survcomp) library(parallel) library(doParallel) library(mcprogress) # wrap mclapply with progress bar. library(kableExtra) # include knitr automatically source("/work/users/y/u/yuukias/BIOS-Material/BIOS992/utils/csv_utils.r") # * Don't use setwd() for Quarto documents! # setwd("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data")</pre>	
<pre>adjust_type <- ifelse(exists("params"), params\$adjust_type, "partial") #</pre>	

```
# string of parameters
adjust_type_str <- switch(adjust_type,
    minimal = "minimal",
    partial = "partial",
    full = "full"
)
print(paste0("Model Adjustment Type: ", adjust_type_str))</pre>
```

[1] "Model Adjustment Type: partial"

```
impute_type_str <- switch(impute_type,
    unimputed = "unimputed",
    imputed = "imputed"
)
print(paste0("Data Imputation Type: ", impute_type_str))</pre>
```

[1] "Data Imputation Type: unimputed"

Load Data

```
if (include_statin == "yes") {
    data_train <-
    read.csv(paste0("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data/train_data_",
    impute_type_str, "_statin.csv"),
        header = TRUE
    )
} else {
    data_train <-
    read.csv(paste0("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data/train_data_",
    impute_type_str, ".csv"),
        header = TRUE
    )
}
data_train <- data_train[, -1] # the first column is the index generated by
    sklearn
(dim(data_train))</pre>
```

[1] 28127 100

```
data <- select_subset(data_train, type = adjust_type)
(dim(data))</pre>
```

[1] 28127 75

colnames(data)

[1]	"event"	"time"
[3]	"HRV_MeanNN"	"HRV_SDNN"
[5]	"HRV_RMSSD"	"HRV_SDSD"
[7]	"HRV_CVNN"	"HRV_CVSD"
[9]	"HRV_MedianNN"	"HRV_MadNN"
[11]	"HRV_MCVNN"	"HRV_IQRNN"
[13]	"HRV_SDRMSSD"	"HRV_Prc20NN"
[15]	"HRV_Prc80NN"	"HRV_pNN50"
[17]	"HRV_pNN20"	"HRV_MinNN"
[19]	"HRV_MaxNN"	"HRV_HTI"
[21]	"HRV_TINN"	"HRV_LF"
[23]	"HRV_HF"	"HRV_VHF"
[25]	"HRV_TP"	"HRV_LFHF"
[27]	"HRV_LFn"	"HRV_HFn"
[29]	"HRV_LnHF"	"HRV_SD1"
[31]	"HRV_SD2"	"HRV_SD1SD2"
[33]	"HRV_S"	"HRV_CSI"
[35]	"HRV_CVI"	"HRV_CSI_Modified"
[37]	"HRV_PIP"	"HRV_IALS"
[39]	"HRV_PSS"	"HRV_PAS"
[41]	"HRV_GI"	"HRV_SI"
[43]	"HRV_AI"	"HRV_PI"
[45]	"HRV_C1d"	"HRV_C1a"
[47]	"HRV_SD1d"	"HRV_SD1a"
[49]	"HRV_C2d"	"HRV_C2a"
[51]	"HRV_SD2d"	"HRV_SD2a"
[53]	"HRV_Cd"	"HRV_Ca"
[55]	"HRV_SDNNd"	"HRV_SDNNa"
[57]	"HRV_ApEn"	"HRV_ShanEn"
[59]	"HRV_FuzzyEn"	"HRV_MSEn"
[61]	"HRV_CMSEn"	"HRV_RCMSEn"

```
[63] "HRV_CD"
                                     "HRV_HFD"
[65] "HRV_KFD"
                                     "HRV_LZC"
[67] "HRV_DFA_alpha1"
                                     "HRV_MFDFA_alpha1_Width"
[69] "HRV_MFDFA_alpha1_Peak"
                                     "HRV_MFDFA_alpha1_Mean"
[71] "HRV MFDFA alpha1 Max"
                                     "HRV MFDFA alpha1 Delta"
[73] "HRV_MFDFA_alpha1_Asymmetry"
                                     "HRV_MFDFA_alpha1_Fluctuation"
[75] "HRV MFDFA alpha1 Increment"
data <- tibble::as_tibble(data)</pre>
# * It is very hard to compare the HR as different predictors are on
→ different magnitudes, so we need to normalize them.
time col <- data$time
event col <- data$event
data <- data %>%
    select(-c(time, event)) %>%
   mutate(across(where(is.numeric), scale)) %>%
    mutate(
        time = time_col,
        event = event_col
    )
```

Note now the interpretation of HR is different! For example, if HR=1.16 for the predictor in the univariate model fitted using scaled data, it means that each standard deviation increase is associated with 16% higher risk of event.

```
# For RSF model, we don't need to exclude the missing values
```

Random Survival Forest (RSF)

Variable Selection

The method argument can be set to vh instead for variable hunting, which should be used for problems where the number of variables is substantially larger than the sample size.

```
n_cores <- min(parallel::detectCores() - 1, 32)
cl <- makeCluster(n_cores)
registerDoParallel(cl)</pre>
```

```
rsf_var_select <- var.select.rfsrc(Surv(time, event) ~ .,</pre>
    data = data,
   method = "md",
    seed = 1234,
   ntree = 200,
   parallel = TRUE
) # minimal depth variable selection
```

running forests ... minimal depth variable selection ...

family : surv
var. selection : Minimal Depth
conservativeness : medium x-weighting used? : TRUE dimension : 73 sample size : 26782 ntree : 200 nsplit : 10
mtry : 25
nodesize : 2
refitted forest : FALSE
model size : 73

depth threshold : 15.4073 PE (true 00B) : 44.7123

Top variables:

	depth	vimp
HRV_Prc20NN	2.005	0.000
HRV_CD	3.375	0.004
HRV_MaxNN	3.480	0.016
HRV_KFD	3.760	0.004
HRV_SI	4.045	0.002
HRV_ApEn	4.420	0.002
HRV_MedianNN	4.600	-0.001
HRV_LZC	4.695	-0.004
HRV_PIP	4.705	0.000
HRV_IALS	4.810	0.000

HRV_HTI	4.850	-0.001
HRV_PI	4.890	0.001
HRV_pNN50	4.905	0.002
HRV_MadNN	4.915	0.003
HRV_MeanNN	4.950	0.008
HRV_ShanEn	5.020	-0.001
HRV_MinNN	5.115	0.007
HRV_TINN	5.165	0.004
HRV_PAS		0.003
HRV_SD2a	5.175	0.009
HRV_IQRNN	5.185	-0.003
HRV_GI	5.240	0.001
HRV_C2d	5.370	0.002
HRV_CMSEn	5.375	0.003
HRV_RCMSEn	5.415	-0.001
HRV_MFDFA_alpha1_Peak	5.420	0.002
HRV_MFDFA_alpha1_Asymmetry	5.460	-0.001
HRV_Prc80NN	5.475	0.002
HRV_MCVNN	5.505	0.000
HRV_pNN20	5.570	0.003
HRV_PSS	5.600	0.000
HRV_HFn	5.635	0.002
HRV_SDRMSSD	5.685	0.002
HRV_VHF	5.700	0.003
HRV_AI	5.750	0.003
HRV_LF	5.755	0.002
HRV_MFDFA_alpha1_Max	5.755	0.002
HRV_C1a	5.775	0.001
HRV_FuzzyEn	5.800	0.000
${\tt HRV_MFDFA_alpha1_Fluctuation}$	5.805	0.001
HRV_CSI_Modified	5.850	0.005
HRV_C2a	5.865	0.002
HRV_MFDFA_alpha1_Width	5.945	0.001
HRV_C1d	5.965	-0.002
HRV_Ca	5.965	0.001
HRV_MFDFA_alpha1_Delta	5.975	0.001
HRV_MFDFA_alpha1_Mean	6.000	-0.002
HRV_SD2	6.020	0.004
HRV_LFHF	6.025	0.001
HRV_MFDFA_alpha1_Increment	6.100	0.001
HRV_Cd	6.105	0.001
HRV_DFA_alpha1	6.125	-0.001
HRV_HFD	6.135	0.000

```
HRV_LFn
                             6.160 0.001
HRV_MSEn
                             6.190 0.000
HRV_CVSD
                             6.240 0.000
HRV_TP
                             6.295 0.001
HRV SD1a
                             6.320 -0.001
HRV_SDNN
                             6.390 0.005
HRV SD1SD2
                             6.395 0.002
HRV_HF
                             6.425 0.001
HRV_CVNN
                             6.430 0.001
HRV_LnHF
                             6.445 0.001
HRV_SDNNa
                             6.535 0.004
                             6.635 0.001
HRV_S
                             6.670 0.001
HRV_CSI
                             6.760 0.003
HRV_CVI
                             6.880 0.002
HRV_SDNNd
HRV_SD2d
                             6.920 0.001
HRV_SDSD
                             6.985 0.000
HRV_SD1d
                             7.010 0.001
HRV_SD1
                            7.020 0.000
HRV RMSSD
                             7.195 0.000
```

```
stopCluster(cl)
```

```
vars_ranked <- rsf_var_select$topvars
```

Cross Validation to Select the Best Number of Features

We will use 10-fold cross validation to select the best number of features used in the model.

```
set.seed(1234)
folds <- createFolds(data$event, k = n_folds) # return indices of folds

cv_errors <- pmclapply(seq(1, length(vars_ranked), by = 1),
    function(num_vars) {
    selected_vars <- vars_ranked[1:num_vars]

fold_errors <- sapply(folds, function(fold_idx) {
        train_data_fold <- data[-fold_idx, c("time", "event", selected_vars)]
        val_data_fold <- data[fold_idx, c("time", "event", selected_vars)]</pre>
```

```
model <- rfsrc.fast(Surv(time, event) ~ .,</pre>
            data = train_data_fold,
            ntree = 200,
            forest = TRUE
        pred <- predict(model,</pre>
            newdata = val_data_fold,
            na.action = "na.impute" # * There may be missing values in the

→ dataset

        ) $predicted # define pred has attributes survival(sample_size*time)
 \rightarrow and predicted(sample_size) for risk
        # Use C-index to measure the performance of the model
        1 - concordance.index(
            pred, # pass risk prediction for first argument
            val_data_fold$time,
            val_data_fold$event
        )$c.index
    })
    mean(fold_errors)
}, title = "Cross Validation to Select the Best Number of Features")
```

```
cv_errors <- as.numeric(cv_errors)
plot(1:length(cv_errors), cv_errors)</pre>
```



```
best_num_vars <- which.min(cv_errors)
vars_selected <- vars_ranked[1:best_num_vars]
print(paste0("The best number of features to retain is ", best_num_vars))</pre>
```

[1] "The best number of features to retain is 8"

Model Fitting

```
data_selected <- data[, c("time", "event", vars_selected)]

# Before formally fitting the model, we can tune the hyperparameters to find:
# 1. optimal mtry (possible split at each node)
# 2. optimal nodesize (minimum size of terminal nodes)
rsf_tuned <- tune.rfsrc(
    Surv(time, event) ~ .,
    data = data_selected,
)</pre>
```

```
rsf_model <- rfsrc(Surv(time, event) ~ .,
    data = data_selected,
    ntree = 500,
    mtry = rsf_tuned$best.mtry,
    nodesize = rsf_tuned$best.nodesize
)</pre>
```

```
# We also fit the full model
rsf_tuned_full <- tune.rfsrc(
    Surv(time, event) ~ .,
    data = data,
)

rsf_model_full <- rfsrc(Surv(time, event) ~ .,
    data = data,
    ntree = 1000,
    mtry = rsf_tuned_full$best.mtry,
    nodesize = rsf_tuned_full$best.nodesize
)</pre>
```

```
# plot.rfsrc?
# plot.variable.rfsrc?
# print.rfsrc?
```