BIOSTAT 651

Notes #8: Analysis of Binary Data

- Lecture Topics:
 - Measures of association
 - \circ Sampling mechanisms
 - o Potential biases
 - \circ Examples

Data Structure

• Example: Consider a study of liver cancer patients (n=120) who have refused conventional therapy. Such patients were randomized to receive either an experimental treatment $(X_i = 1)$ or placebo $(X_i = 0)$. Patients were then followed for one year, with the response defined as alive $(Y_i = 0)$ or dead $(Y_i = 1)$. A total of 20 patients refused to be randomized, insisting on receiving the placebo.

The observed data are provided in the following table:

	Y=0	Y=1	total
X=0	27	43	70
X=1	10	40	50
total	37	83	120

Measures of Frequency

- For now, ignore treatment ...
- Risk of death: $P(Y_i = 1)$,

$$\widehat{P}(Y_i = 1) = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{83}{120} = 0.692$$

• Odds of death,

Odds_i =
$$\frac{P(Y_i = 1)}{P(Y_i = 0)}$$

 $\widehat{\text{Odds}}_i$ = $\frac{83/120}{37/120} = 2.24$

Measures of Frequency (continued)

 \bullet Odds is sometimes used to estimate risk

π	$\pi/(1-\pi)$
0.02	0.020
0.04	0.042
0.06	0.064
0.08	0.090
0.1	0.111
0.2	0.250
0.3	0.429
0.4	0.667
0.5	1

Measures of Association

• Returning to the liver cancer example, we now focus on comparing the treatment and placebo groups

$$\frac{X}{0} \frac{\widehat{\pi}_{j}}{0 \quad 43/70=0.61}$$

$$\frac{1}{0} \frac{40/50=0.80}{40/50=0.80}$$
where $\pi_{j} \equiv P(Y_{i}=1|X_{i}=j)$

• Risk ratio

$$RR = \frac{\pi_1}{\pi_0}$$

$$\widehat{RR} = \frac{\widehat{\pi}_1}{\widehat{\pi}_0} = 1.31$$

- excess relative risk: $(RR 1) \times 100\%$ in our example: 31%
- Risk difference:

$$RD = \pi_1 - \pi_0$$

 $\widehat{RD} = 0.8 - 0.61 = 0.19$

Difference versus Ratio

- Risk difference and ratio may yield very different interpretations of exactly the same data set
- e.g., Suppose a flu vaccine is being evaluated, with the risk of the UM650 virus as given in the following table

$$\begin{array}{c|c}
X & \widehat{\pi}_j \\
\hline
0 & 0.01 \\
1 & 0.003
\end{array}$$

$$\circ \widehat{RR} =$$

$$\circ \widehat{RD} =$$

Difference versus Ratio (continued)

• e.g., Suppose a second flu vaccine is being evaluated, this time with the risk of the UM651 virus given by:

$$\begin{array}{c|c}
X & \widehat{\pi}_j \\
\hline
0 & 0.9 \\
1 & 0.7
\end{array}$$

$$\circ \widehat{RR} =$$

$$\circ \widehat{RD} =$$

Measures of Association (continued)

• Odds ratio:

$$OR = \frac{\text{odds}_1}{\text{odds}_0}$$

$$= \frac{P(Y_i = 1 | X_i = 1) / P(Y_i = 0 | X_i = 1)}{P(Y_i = 1 | X_i = 0) / P(Y_i = 0 | X_i = 0)}$$

$$= \frac{\pi_1 / (1 - \pi_1)}{\pi_0 / (1 - \pi_0)}$$

• e.g., in the liver cancer example,

$$\widehat{OR} =$$

compare to relative risk: $\widehat{RR} = 1.31$

• The OR is often used to approximate the RR

OR as an Estimator of RR

- How accurately the OR approximates the RR depends on baseline risk
 - \circ consider the table below, where RR = 1.5

π_0	OR
0.02	1.51
0.04	1.53
0.06	1.55
0.08	1.57
0.1	1.59
0.2	1.71
0.3	1.91
0.4	2.25
0.5	3.00

Odds Ratio: Further Considerations

- In addition to its relationship with the RR, the OR is often viewed as an interesting measure in its own right
 - OR can be estimated consistently for biased samples (ex. case-control design)
 - OR is easily computed using logistic regression
- At this point, it is useful to consider the commonly used study designs ...

Observational Study: Study Designs

• Cohort Study:

- subjects sampled independently of outcome status followed (prospectively or retrospectively) to ascertain outcome
- RR and OR are both relevant

• Case Control Study:

- o subjects sampled based on outcome status
- e.g., select 100 cases $(Y_i = 1)$ and 300 controls $(Y_i = 0)$ then, obtain treatment/exposure information
- o often used when studying rare diseases
- o Can't use RR

• Cross-sectional Study:

- both covariate and outcome status are obtained at the same time point often, a common calendar date
- RR and OR are both relevant

Study Designs: Cohort Studies

- A cohort study may be either *prospective* or retrospective
 - Prospective cohort: response variate has *not* been observed at the start of the study
 - Retrospective cohort: response variate has already been observed by the time the study began
- Prospective designs are considered to be less prone to bias
- Retrospective studies are often more cost- and time-efficient
 - o e.g, using large pre-collected databases

[wikipedia]

Study Designs: Comparisons

- Simulation: comparison between cohort vs case-control designs
 - Smoking is a risk factor for the colorectal cancer. It can increase the risk twice.
 - Assumptions:
 - * Risk for the cancer among non-smoker: 0.05
 - * Prevalence of smoking: 20%
 - Studies
 - * Cohort study with 10,000 samples
 - * Cohort study with 5,000 non-smoker vs 5,000 smokers
 - * Case-control study with 5,000 cases vs 5,000 controls.

Study Designs: Comparisons

• Settings:

- ∘ Y=1 (cancer) vs 0 (no-cancer)
- \circ X=1 (smoker) vs 0 (non-smoker)
- \circ RR=2
- P(X=1) = 0.2
- $P(Y=1|X=0) = \pi_0 = 0.05$
- P(Y = 1|X = 1) = 0.1

Cohort Study

- Sample 10,000 healthy individual without considering smoking status, and follow them several years.
- The observed data (after several years of follow up)

	Y=0	Y=1	total
X=0	7613	385	7998
X=1	1808	194	2002
total	9421	579	10000

$$\circ \widehat{\pi_0} = \widehat{\pi_1} =$$

$$\circ \widehat{RR} =$$

$$\circ \widehat{OR} =$$

Cohort Study: Use exposures

- Sample 5000 healthy smokers and 5000 healthy non-smokers.
- The observed data (after several years of follow up)

	Y=0	Y=1	total
X=0	4748	252	5000
X=1	4465	535	5000
total	9213	787	10000

$$\circ \widehat{\pi_0} = \widehat{\pi_1} =$$

$$\circ \widehat{RR} =$$

$$\circ \widehat{OR} =$$

Case-Control

- Sample 5000 cancer patients and 5000 heathy controls.
- Investigate their smoking history.

	Y=0	Y=1	total
X=0	4022	3358	7380
X=1	978	1642	2620
total	5000	5000	10000

$$\circ \ \widehat{\pi_0} =$$

$$\hat{\pi_1} =$$

$$\circ \widehat{RR} =$$

$$\circ \widehat{OR} =$$

Case-Control

- P(Y = 1|X) cannot be estimated, so RR.
- The OR can be accurately estimated
 - \circ use the *Exposure odds ratio*

$$EOR = \frac{\text{odds}(X = 1|Y = 1)}{\text{odds}(X = 1|Y = 0)}$$

$$= \frac{P(X = 1|Y = 1)}{P(X = 0|Y = 1)} \cdot \frac{P(X = 0|Y = 0)}{P(X = 1|Y = 0)}$$

$$= \dots$$

$$= OR$$

Misclassification Bias

• Misclassification:

- \circ e.g., some subjects with Y=1 are mistakenly classified as Y=0
- if random, OR is generally biased towards the null

if non-random, bias can be in either direction

• Examples:

o recall bias (e.g., case-control study)

Recall bias

- Colorectal cancer example (Case-Control)
- 20 % of previous-smokers without cancer misidentify them as non-smokers.

	Y=0	Y=1	total
X=0	4231	3271	7502
X=1	769	1729	2498
total	5000	5000	10000

$$\circ \widehat{OR} =$$

Selection Bias

- Selection:
 - Sample obtained is not representative of the population intended to be analyzed
- Key: Does the selected sample accurately represent the target population?
 - if not (resulting from the selection mechanism): selection bias

Confounding

- Even in the absence of selection or misclassification, bias can still occur
- ullet e.g., Suppose that there is an unmeasured covariate, C
 - \circ confounding occurs when:
 - (i) C is associated with X
 - (ii) C is associated with Y (i.e., adjusting for X)
- Confounding can lead to substantial bias

Example: Confounding

• Example: A study was carried out to investigate the association between alcohol consumption (X_i) and lung cancer Y_i . A random sample of n = 220 Ann Arbor residents was classified based on whether they drank alcohol $(X_i = 1)$ or not $(X_i = 0)$. The cohort was then followed for 30 years and classified based on whether they had been diagnosed with lung cancer $(Y_i = 1)$ or not $(Y_i = 0)$.

Observed data are summarized by the following table:

	$Y_i=0$	$Y_i=1$	total
$X_i=0$	91	19	110
$X_i=1$	19	91	110
total	110	110	220

• Odds ratio: $\widehat{OR} =$

Example: Confounding (continued)

• However, if information on smoking status S_i had been recorded, the following data would have been observed

for non-smokers, $S_i = 0$

	$Y_i=0$	$Y_i=1$	total
$X_i=0$	90	9	99
$X_i=1$	10	1	11
total	100	10	110

and for smokers, $S_i = 1$

	$Y_i=0$	$Y_i=1$	total
$X_i=0$	1	10	11
$X_i=1$	9	90	99
total	10	100	110

• The apparent association between alcohol consumption and lung cancer was completely due to *confounding* by smoking