Administrativia: no discussions, no extra material consulted

Problem

Let S denote all subsets of some set of elements U.

For $A, B \in S$, define $A\Delta B = \{x \in U \mid (x \in A) \text{ XOR } (x \in B)\}.$

Note that δ is commutative and associative since XOR is commutative and associative.

Let $n \in \mathbb{Z}^+$ and let $A_1, \ldots, A_n \in S$.

Formally prove (using induction) that, for all $x \in U$, $x \in A_1 \Delta A_2 \Delta \cdots \Delta A_n$ if and only if $\#\{i \in \{1, \ldots, n\} \mid x \in A_i\}$ is odd.

Solution

For any $i \in \mathbb{N}$, let T_i be the set of all sets consisting of i subsets in S.

Let A_i be the i^{th} element in each $Q_i \in T_i$.

For $n \in \mathbb{N}$, let

 $P(n) = \text{``}\forall \tau_n \in T_n. \forall x \in U. (x \in A_1 \Delta \cdots \Delta A_n \text{ IFF } \#\{i \in \{1, \dots, n\} \mid x \in A_i\} \text{ is odd''}.$

(1) P(1)	Base Case for all $x \in U$, if $x \in A_1$, then, $\#\{i \in \{1, \dots, n\} \mid x \in A_i\} = 1$, which is odd
(2) $\forall i \in [1, k] \cap \mathbb{N}.P(i) \text{ for some } k \in \mathbb{N}$	Inductive Step Assumption
$(3) \qquad P(k)$	Specialisation, (2)
(4) $ \forall Q'_k \in T_k. \forall x \in U. $ $ (x \in A_1 \Delta \cdots \Delta A_k \text{ IFF } \#\{i \in \{1, \dots, k\} \mid x \in A_i\} \text{ is odd}) $	Definition of P , (3)
(5) Let $S_k \in T_k$ be arbitrary.	
(6) Let $x \in U$ be arbitrary.	
(7) $\mid \cdot \mid \cdot \mid$ Let A_1, \ldots, A_k be distinct elements in S_k .	
(8) $ \ \ \ x \in A_1 \Delta \cdots \Delta A_k \text{ IFF } \#\{i \in \{1, \dots, k\} \mid x \in A_i\} \text{ is odd}$	ld Specialisation, (4)
(9) $\left \begin{array}{c c} & \text{Let } A_{k+1} \in S \text{ be arbitrary.} \end{array} \right $	
$(10) \left \right \left A_k \Delta A_{k+1} \in S \right $	Definition of S
(11) $ \ \ \ \ \ \ \ \ \ $	S = (5), (10)
(12) $ \left \begin{array}{c} \left \begin{array}{c} \text{Let } Q_k = A_k \Delta A_{k+1} \\ \text{and } Q_i = A_i \text{ for } i \in [1, k-1] \cap \mathbb{N}. \end{array} \right $	

(42)

 $\forall n \in \mathbb{N}.P(n)$

 $\#\{i \in \{k, k+1\} \mid x \in A_i\}$ $+\#\{i \in \{1,\ldots,k-1\} \mid x \in A_i\}$ Definition of $= \#\{i \in \{1, \dots, k+1\} \mid x \in A_i\}$ $\#\{i \in \{1,\ldots,k+1\} \mid x \in A_i\}$ (36) $\#\{i \in \{1,\ldots,k\} \mid x \in Q_i\}$ is odd IFF (37) $\#\{i \in \{1, \dots, k+1\} \mid x \in A_i\}$ is odd Substitution, (35) $x \in A_1 \Delta \cdots \Delta A_k \Delta A_{k+1}$ IFF Use of Tautology (Modus Ponens), $\#\{i \in \{1, \dots, k+1\} \mid x \in A_i\}$ is odd (38)(18), (30), (37) $\forall x \in U. (x \in A_1 \Delta \cdots \Delta A_k \Delta A_{k+1})$ IFF (39) $\#\{i \in \{1,\ldots,k+1\} \mid x \in A_i\} \text{ is odd}\}$ Generalisation, (6) $\forall S \in T_k. \forall x \in U. (x \in A_1 \Delta \cdots \Delta A_k \Delta A_{k+1})$ IFF $\#\{i \in \{1, \dots, k+1\} \mid x \in A_i\} \text{ is odd}\}$ (40)Generalisation, (5) P(k+1)(41)Direct Proof; (2)-(40)

Induction; (1)-(41)