

海量数据分布式存储

——Apache HDFS之最新进展

目录 content

- 大数据发展趋势
- HDFS 存储演化
 - HDFS 缓存 (Cache)
 - HDFS 分层存储 (HSM)
 - HDFS 纠删码 (EC)
- HDFS在未来
 - 智能存储管理 (SSM)
 - 对象存储
 - 存储在云端

大数据发展趋势

要存储和处理的数据量越来越庞大

- 物联网的发展使得接入设备越来越多
- 实时流处理技术的发展使数据导入速度越来越快
- 数据分析(OLAP)日趋成熟
- 人工智能(AI)新时代,人们希望聚集更多的历史数据进行深度学习

对处理数据速度的期望越来越高

- 能处理大量数据只是基本要求,还要处理的快
- 新数据从产生到及时被处理,催生各种实时流处理框架
- 顺序读取已不能满足要求,各种存储格式改进和跨越式读取

存储的场景更复杂,更丰富

- 一个集群,同时支持好:
 - 大文件、小文件
 - 热数据、冷数据
 - 在线处理、离线分析
- 对象存储

存储设备的两极:越来越廉价和越来越快

- 要么更廉价,更多更老的数据促进更廉价的设备,tape死而复生?
- 要么更快, SSD步伐越来越快
- 3XD Point技术和NVM设备,存储和内存统一起来

网络带宽也越来越高

- 10Gb的网络已经是标配
- 40Gb乃至100Gb也即将到来

存储和计算相分离,大数据加速向云端迁移

- 云计算,大势所趋
- 弹性计算,更灵活,可伸缩
- 跨集群、跨数据中心,远程读取不可避免

HDFS 存储演化

HDFS Cache 缓存支持

HDFS HSM 多层次存储体系

HDFS EC 纠删码支持 (1)

HDFS EC 纠删码支持 (2)

Hadoop 3.0 with EC:1. Alpha1 released2. Alpha2 on going

3. GA in the year

Phase 1. Done (release in 3.0 in 2016)

Striping

Replication

Current HDFS

Contiguous

Erasure Coding

Phase 2. In design

HDFS EC 纠删码支持 (3)

硬件加速的ISA-L编解码器,性能>10X

- 开源 (https://github.com/01org/isa-l)
- 通过利用硬件的高级指令集(如SSE, AVX, AVX2)来实现EC编解码的优化
- 同时支持Linux和Windows平台

ISA-L Native Coder:

- ✓Direct ByteBuffer, 数据零拷贝
- √核心数据一次初始化,高速缓存

HDFS EC 纠删码支持 (4)

TeraSort Execution Time (s)

TPC-H 500 GB Query Time (s)

Note: 2 DataNodes Killed

HDFS 在未来

HDFS 在未来

智能存储管理 (SSM)

(Smart Storage Management)

目前面临的问题和挑战,在支持了那么多非常好的特性之后

- 如何选择合适的文件形态?
 - 对于Replica , 如何及时调整合适的备份数 ?
 - 对于EC,如何选择合适的schema?
- 如何预测数据的读取趋势,提前将非常热的数据cache起来
- 如何及时感知数据的温度
 - 将经常读的数据转入到SSD
 - 将变冷的数据移入到廉价设备
- 如何评估存储设备的存储和读取效率?

HDFS Smart Storage Management (SSM)

- 端到端的全面的智能存储解决方案
- 完整地收集集群的存储和数据访问统计
- 简化地、智能地和全面地及时感知集群存储状态变化并作出存储策略调整
- <u>HDFS-7343</u>:正在开发当中,欢迎反馈和参与!

将Kafka引入到 Hadoop,作为基础服务(KafkaService)

HADOOP-13633, 欢迎反馈和参与!

系统架构

系统设计

Read messages from KafkaService

Execute action

HDFS 在未来

对象存储(Object Store)

Object store in HDFS (1) HDFS-7240

- Hadoop正在演化成为一个更为通用的平台,甚至支持传统的服务和应用
- 对象(Object)更为轻量,没有file metadata 和 ACL,基于K/V的API 在一些场景下更为友好
- 支持对象存储是一个流行的趋势:S3, Azure, Aliyun,
- 目标:
 - □ 支持数以亿计的数据对象
 - □ 支持任意大小的对象,从几K到几十MB
 - □ 保证─致性、可靠性和可用性

Object store in HDFS (2)

HDFS 在未来

存储在云端

统一的Hadoop文件系统和API

Hadoop兼容文件系统抽象层:统一的存储API接口 hadoop fs -ls s3a://job/

快速弹性的HDFS缓存层 HDFS-9806

Figure 1: Loading an external namespace as part of HDFS namespace.

Figure 2: DFSClient reading a PROVIDED HDFS block.

Reference

- HDFS-EC perf blog: <u>Progress Report: Bringing Erasure Coding to Apache Hadoop</u>
- Zhang Zhe, Chen Xiao: <u>Apache Hadoop十周岁:展望前方讲话</u>
- OZONE: <u>AN OBJECT STORE IN HDFS</u>

欢迎交流和协作 kai.zheng@intel.com

