

Bachelor's Thesis

Title of the Bachelor's Thesis

Noncommutative Geomtetry and Physics

submitted by Popović Milutin

in partial fulfilment of the requirements for the degree of Bachelor of Science (BSc)

Vienna, July 2021

student ID number:

11807930

degree programme code as it appears on / the student record sheet:

A 033 676

Physics

degree programme as it appears on / the student record sheet:

Lisa Glaser, PhD

Supervisor:

Contents

1	Introduction	n	2
2	Main Section		2
	2.0.1	Metric on Finite Discrete Spaces	2
	2.0.2	Exercises	4
3	Conclusion		5
4	Acknowleds	ement	5

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2 Main Section

2.0.1 Metric on Finite Discrete Spaces

Let us come back to our finite discrete space X, we can describe it by a structure space \hat{A} of a matrix algebra A. To describe distance between two points in X (as we would in a metric space) we use an array $\{d_{ij}\}_{i,j\in X}$ of real non-negative entries in X such that

- $d_{ij} = d_{ji}$ Symmetric
- $d_{ij} \leq d_{ik}d_{kj}$ Triangle Inequality
- $d_{ij} = 0$ for i = j (the same element)

In the commutative case, the algebra A is commutative and can describe the metric on X in terms of algebraic data.

Theorem 1. Let d_{ij} be a metric on X a finite discrete space with N points, $A = \mathbb{C}^N$ with elements $a = (a(i))_{i=1}^N$ such that $\hat{A} \simeq X$. Then there exists a representation π of A on a finite-dimensional inner product space H and a symmetric operator D on H such that

$$d_{ij} = \sup_{a \in A} \{|a(i) - a(j)| : ||[D, \pi(a)]|| \le 1\}$$
(2.1)

Proof. We claim that this would follow from the equality:

$$||[D, \pi(a)]|| = \max_{k \neq l} \left\{ \frac{1}{d_{kl}} |a(k) - a(l)| \right\}$$
 (2.2)

This can be proved with induction. Set N=2 then $H=\mathbb{C}^2$, $\pi:A\to L(H)$ and a hermitian matrix D.

$$\pi(a) = \begin{pmatrix} a(1) & 0 \\ 0 & a(2) \end{pmatrix} \quad D = \begin{pmatrix} 0 & (d_{12})^{-1} \\ (d_{21})^{-1} & 0 \end{pmatrix}$$
 (2.3)

Then we commpute the commutator

$$||[D, \pi(a)]|| = (d_{12})^{-1}|a(1) - a(2)|$$
 (2.4)

For the case $A = \mathbb{C}^3$, we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus H_2^1 \oplus H_2^2$. The the representation $\pi(a)$ reads

$$\pi((a(1), a(2), a(3))) = \begin{pmatrix} a(1) & 0 \\ 0 & a(2) \end{pmatrix} \oplus \begin{pmatrix} a(1) & 0 \\ 0 & a(3) \end{pmatrix} \oplus \begin{pmatrix} a(2) & 0 \\ 0 & a(2) \end{pmatrix}$$
$$= \operatorname{diag}(a(1), a(2), a(1), a(3), a(2), a(3)) \tag{2.5}$$

And the operator D takes the form

$$D = \begin{pmatrix} 0 & x_1 \\ x_1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & x_2 \\ x_2 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & x_3 \\ x_3 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & x_1 & 0 & 0 & 0 & 0 \\ x_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & 0 & 0 \\ 0 & 0 & x_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & x_3 \\ 0 & 0 & 0 & 0 & x_3 & 0 \end{pmatrix}. \tag{2.6}$$

Then the norm of the commutator would be the largest eigenvalue

$$||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||, \tag{2.7}$$

where the this matrix in the norm from equation 2.7 is a skew symmetric matrix. Its eigenvalues are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$. The λ 's are on the upper and lower diagonal. The matrix norm would be the maximum of the norm with the larges eigenvalues:

$$||[D, \pi(a)]|| = \max_{a \in A} \{x_1 | a(2) - a(1)|,$$

$$x_2 |(a(3) - a(1))|,$$

$$x_3 |(a(3) - a(2))|, \}$$
(2.8)

Hence the metric turns out to be

$$d = \begin{pmatrix} 0 & a(1) - a(2) & a(1) - a(3) \\ a(2) - a(1) & 0 & a(2) - a(3) \\ a(3) - a(1) & a(3) - a(2) & 0 \end{pmatrix}$$
(2.9)

Suppose this holds for N with π_N , $H_N = \mathbb{C}^N$ and D_N . Then it has to holds for N+1 with $H_{N+1} = H_N \oplus \bigoplus_{i=1}^N H_N^i$, since the representation reads

$$\pi_{N+1}(a(1),\ldots,a(N+1)) = \pi_N(a(1),\ldots,a(N)) \oplus \begin{pmatrix} a(1) & 0 \\ 0 & a(N+1) \end{pmatrix} \oplus \oplus \cdots \oplus \begin{pmatrix} a(N) & 0 \\ 01 & a(N+1) \end{pmatrix}$$
(2.10)

And the operator D_{N+1} is

$$D_{N+1} = D_N \oplus \begin{pmatrix} 0 & (d_{1(N+1)})^{-1} \\ (d_{1(N+1)})^{-1} & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & (d_{N(N+1)})^{-1} \\ (d_{N(N+1)})^{-1} & 0 \end{pmatrix}$$
(2.11)

From this follows equation 2.2. Thus we can continue the proof by setting for fixed i, j, $a(k) = d_{ik}$, which then gives $|a(i) - a(j)| = d_{ij}$ and thereby

$$\Rightarrow \frac{1}{d_{kl}}|a(k) - a(l)| = \frac{1}{d_{kl}}|d_{ik} - d_{il}| \le 1$$
 (2.12)

The translation of the metric on X into algebraic data assumes commutativity in A, this can be extended to a noncommutative matrix algebra, by the following metric on a structure space \hat{A} of a matrix algebra $M_{n_i}(\mathbb{C}$

$$d_{ij} = \sup_{a \in A} \{ |\text{Tr}(a(i)) - \text{Tr}((a(j))| : ||[D, a]|| \le 1 \}.$$
 (2.13)

Equation 2.13 is special case of the Connes' distance formula on a structure space of A. Finally we have all three ingredients to define a finite spectral triple, an mathematical structure which encodes finite discrete geometry into algebraic data.

Definition 1. A *finite spectral triple* is a tripe (A, H, D), where A is a unital *-algebra, faithfully represented on a finite-dimensional Hilbert space H, with a symmetric operator $D: H \to H$.

Note that *A* is automatically a matrix algebra.

2.0.2 Exercises

Exercise 1

Compute the metric on the space of three points given by $d_{ij}=\sup_{a\in A}\{|a(i)-a(j)|:||[D,\pi(a)]||\leq 1\}$ for the set of data $A=\mathbb{C}^3$ acting in the defining representation $H=\mathbb{C}^3$, and

$$D = \begin{pmatrix} 0 & d^{-1} & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{2.14}$$

for some $d \in \mathbb{R}$

We have $A = \mathbb{C}^3$, $H = \mathbb{C}^3$ and D from above, then

$$||[D, \pi(a)]|| = d^{-1} \left\| \begin{pmatrix} 0 & a(2) - a(1) & 0 \\ -(a(2) - a(1)) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\|$$
(2.15)

The metric is then

$$d = \begin{pmatrix} 0 & a(1) - a(2) & a(1) \\ a(2) - a(1) & 0 & a(2) \\ -a(1) & -a(2) & 0 \end{pmatrix}$$
 (2.16)

Exercise 2

Show that d_{ij} from Equation 2.20 is a metric on \hat{A} by establishing that:

$$d_{ij} = 0 \Leftrightarrow i = j \tag{2.17}$$

$$d_{ii} = d_{ii} \tag{2.18}$$

$$d_{ij} \le d_{ik} + d_{kj} \tag{2.19}$$

$$d_{ij} = \sup_{a \in A} \left\{ |\mathbf{Tr}(a(i)) - \mathbf{Tr}((a(j))| : ||[D, a]|| \le 1 \right\}$$
 (2.20)

For Equation 2.17 set i = j in 2.20.

$$d_{ii} = \sup_{a \in A} \{ |\text{Tr}(a(i)) - \text{Tr}((a(i))| : ||[D, a]|| \le 1 \}$$
 (2.21)

$$d_{ii} = \sup_{a \in A} \{ |\text{Tr}(a(i)) - \text{Tr}((a(i))| : ||[D, a]|| \le 1 \}$$

$$= \sup_{a \in A} \{ 0 : ||[D, a]|| \le 1 \} = 0$$
(2.21)

For Equation 2.18 obviously we have the commuting property of addition.

For Equation 2.19, for k = j then $d_{kj} = 0$ and the equality holds. For i = k then $d_{ik} = 0$ and equality holds. Else set $d_{ik} = 1$ and $d_{kj} = 1$ then $d_{ij} = 1 \le d_{ik} + d_{kj} = 2$

3 **Conclusion**

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Acknowledgment 4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,

placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

References

- [1] Koen van den Dungen and Walter van Suijlekom. "Electrodynamics from non-commutative geometry". In: *Journal of Noncommutative Geometry* 7.2 (2013), pp. 433–456. ISSN: 1661-6952. DOI: 10.4171/jncg/122. URL: http://dx.doi.org/10.4171/JNCG/122.
- [2] Walter D. van Suijlekom. *Noncommutative Geometry and Particle Physics*. eng. Springer Netherlands, 2015.
- [3] Howard Georgi. *Lie Algebras in Particle Physics From Isospin to Unified Theories*. eng. 2. ed. Westview Press, 1999.
- [4] Thijs van den Broek. NCG in 4 pages: A very brief introduction into noncommutative geometry. 2013. URL: http://www.noncommutativegeometry.nl/wp-content/uploads/2013/09/NCGin4pages1.pdf (visited on 04/13/2021).
- [5] Peter Bongaarts. A short introduction to noncommutative geometry. 2004. URL: http://www.lorentz.leidenuniv.nl/modphys/ncg-lecture.pdf (visited on 04/13/2021).
- [6] D.V. Vassilevich. "Heat kernel expansion: user's manual". In: *Physics Reports* 388.5-6 (Dec. 2003), pp. 279–360. ISSN: 0370-1573. DOI: 10.1016/j.physrep. 2003.09.002. URL: http://dx.doi.org/10.1016/j.physrep.2003.09.002.