Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék

Digitális Rendszerek (BSc)

előadás: Szekvenciális hálózatok I.
 Szinkron és aszinkron tárolók, regiszterek

Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Jegyzetek, segédanyagok:

- Könyvfejezetek:
 - □ http://www.knt.vein.hu
 - ⇒ Oktatás ⇒ Tantárgyak ⇒ Digitális Rendszerek (BSc).

(04_chapter.pdf + további részek amik a könyvben nem szerepelnek!)

- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

2

Digitális-logikai hálózatok csoportosítása:

- 1.) Kombinációs Hálózatok (K.H.)
- 2.) Sorrendi Hálózatok (S.H.) [könyv 4. és 12. fejezete]

Ism: Kombinációs hálózatok

(K.H.) Kombinációs logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációk értéke csupán a bemeneti kombinációk pillanatnyi értékétől függ (tároló "kapacitás", vagy memória nélküli hálózatok).

(S.H.) Sorrendi (szekvenciális) logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációt, nemcsak a pillanatnyi bemeneti kombinációk, hanem a korábban fennállt bementi kombinációk és azok sorrendje is befolyásolja. (A szekunder/másodlagos kombinációk segítségével az ilyen hálózatok képessé válnak arra, hogy az ugyanolyan bemeneti kombinációkhoz más-más kimeneti kombinációt szolgáltassanak, attól függően, hogy a bemeneti kombináció fellépésekor, milyen értékű a szekunder kombináció, pl. a State Register tartalma)

Szekvenciális (sorrendi) hálózatok (S.H.)

6

Szekvenciális hálózatok

- Hazárdjelenségek
- Visszacsatolás szerepe
- Építő elemek:
 - □ Szinkron tárolók és flip-flopok (szint- vagy él-vezérelt)/
 - ☐ Aszinkron tárolók (latch)
 - □ Regiszterek (Flip-flopok összekapcsolásából)
 - □ Számlálók (counters)
 - ☐ Memóriák: RAM, ROM nagy memóriatömbök
 - □ Időzítő-vezérlő egységek

Eddig:

- a kommunikáció (két kapu közötti információátvitel) sebességét végtelenül gyorsnak tekintettük (K.H).
 - □(S.H.) Valóságban azonban a kapuknak véges kapukésleltetéssel (propagálási idő) rendelkeznek, amelyet figyelembe kell venni!
- A kimeneti értékek generálása csak az aktuális bemeneti állapottól függött. (K.H)
 - □(S.H.) Azonban a korábbi állapotok értékét is figyelembe kell vennünk!

Hazárd jelenségek

- Def: **Hazárdok:** Késleltetés okozta nem-kívánt kimenetek, állapotok.
- Hazárd alakulhat ki, ha egy kapu kimenete a bemenetek változásához képest csak véges időn belül változik (szilícium lapkán lévő elektron- és lyuk- vezetés következtében). T_{propagation delay} (Nem feltétlenül alakul ki, de lehetséges!)
- Hazárdoknak több fajtája lehetséges:
 - □ Funkcionális / Statikus
 - □ Dinamikus

9

11

a.) Jelterjedési (propagation delay) késleltetés:

a logikai <u>kapu</u> bemeneteinek és a kimeneteinek változása közötti időkülönbség miatt.

- Függ:
 - ☐ Jelalak a bemeneten (waveform)
 - □ Hőmérséklet
 - ☐ Kimenet terhelése (output loading Fan-out)
 - ☐ Disszipált teljesítmény (operating power)
 - ☐ Logikai eszköz típusa (type / device family)

Példa: egy TTL 74LS eszközöknél, 1-gates kapu esetén a propagációs késleltetés kb. 5ns lehet.

10

Hazárdok kialakulása II.

b.) Összeköttetési (interconnection delay) késleltetés:

a logikai kapukat összekötő <u>vezetéken</u> lévő véges jelterjedés miatt.

- □ PI: ~20 cm/ns sebességű jelátvitel az elektromos vezetéken
- □ bizonyos vezetékhosszúság felett léphet fel

Példa: hazárd jelenségre

Input: A.H → A.L (fesz. polaritását változtatjuk)

Idődiagram analízis: a bemenet változását a kimenet csak véges idő alatt követi (t_{p LH} ill. t_{p HL})

Példa: Késleltetés szerepe áramkörnél

■ Tekintsük a A + A -t realizáló áramkört:

- Legyen t_n a jelterjedési késleltetés.
- Ha "A" változik T→F, akkor egy nem-kívánt ("spurious") kimenet lesz, ami egységnyi kapu-késleltetésig tart ("H")

Tudjuk, hogy "A" bármely logikai értékére, a kimenet "T". és azt is hogy "L" lesz a kimeneti fesz. értéke.

Hazárd (glitch = impulzus hiba) 13

a.) Statikus / Funkcionális hazárd

- Általában elegendő időt várakozva a kimenet a megfelelő (becsült) logikai- és feszültség- értékre áll be (lásd előző példa).
- De vannak olyan hazárd-jelenségek is, melyek idővel nem szűnnek meg, ekkor a tervezőnek kell beavatkozni (funkcionális hazárd).
 - □ Pl. ha szomszédos 1-esek vannak Karnough táblában, amelyek nincsenek egy tömbbe összevonva, akkor hazárd kialakulása <u>lehetséges:</u>

Hazárd-mentességet biztosítottunk!

 $A + \overline{A} = T = 1$

Példa: Statikus hazárd

■ Vegyünk egy komplexebb, 3-változós esetet:

$$\overline{A} \cdot \overline{B} + A \cdot C + \overline{B} \cdot C$$

Ha a szomszédos, itt kételemű tömbök között a "szaggatottal" jelölt összevonást is képezzük, akkor biztosíthatjuk a hazárdmentességet (de extra hardver szükséglet: 1 AND ill. 1 OR kapu – ezért költségesebb is.)

Példa: hazárdmentesítésre

Legyen $F = \sum_{i=0}^{n=4} (0,1,2,5,7,10,11,13,15)$ //DNF!

Ekkor a következő K-tábla írható fel:

$$F(A, B, C, D) = \overline{A} \cdot \overline{B} \cdot \overline{C} + B \cdot D +$$

$$A \cdot C \cdot D + \overline{B} \cdot C \cdot \overline{D} +$$

 $+\overline{A}\cdot\overline{C}\cdot D + A\cdot\overline{B}\cdot C + \overline{A}\cdot\overline{B}\cdot\overline{D}$

Hazárdmentesítés miatt kellenek (extra kapuk)

Ebből már felrajzolható a hazárdmentesített áramkör!

- Olyan többszintű hálózatokban jöhet létre, ahol a statikus hazárd az alacsonyabb hierarchia szinteken nem lett kiküszöbölve.
- Megszüntethető: szinkronizálással (órajel felvagy lefutó élére működtetjük a hálózatot)

Oszcillácó - visszacsatolt áramkörökben

- + visszacsatolás/"feedback" (iteratív. szekvenciális működés): nem csak külső bemenetek, hanem a kimenet eredeti (korábbi) értékét is figyelembe veszi az aktuális kimenet meghatározásánál. "Szokatlan" működést biztosít.
- Példa: Ring oszcillátor:
 - Mindig páratlan számú invertert tartalmaz!
 - Kimeneti feszültség/logikaiérték vissza van csatolva a bemenetre, amelynek értéke a kimeneten, mindig invertált formában jelenik meg! (oszcillál a hálózat!)

Stabilitás - visszacsatolt hálózatoknál

 Eltávolítva a ring oszcillátorból egy invertert a következőt kapjuk (páros számú elemmel):

Amíg egyik inverter alacsony, addig a másik magas feszültségszintre áll be (instabilitási periódus alatt: "settle time"). De miután beálltak, stabil értéket kapunk a kimeneten (függően attól, hogy mi volt a v.cs. output értéke!)

Stabilitás:

- Előző stabilitást biztosító áramkör átrajzolásából kapjuk:
 - □ Mivel az áramkör nem rendelkezik külső bemenettel, ezért a viselkedésének leírására pusztán a K.H-nál megismert Boole-algebra nem elegendő.
 - □ "Emlékező" áramkör = tároló / memória (de nyilván külső bemenetek nélkül használata értelmetlen lenne)
 - ☐ Tárolók / flip-flopok esetén alkalmazzuk ezt a jelölést (más logikai kapukkal is helyettesítve az invertert).

Szekvenciális hálózatok

- Van visszacsatolás
- Korábbi állapot, és az aktuális külső bemenetek függvényében ⇒ határozzuk meg a kimeneteket.
- Digitális rendszert kontrollálható memóriával szekvenciális rendszernek nevezzük.
- Építőelemei:
 - □ Latch (retesz)
 - ☐ Flip-flop
 - □ Regiszter, számláló
 - □ Memória

Szekvenciális hálózatok csoportosítása – memória elemekre:

- 1.) órajel nélküli, **aszinkron** hálózatok:
 - □ a.) Latch (retesz)
 - □ b.) Aszinkron RS-tároló
- 2.) órajellel vezérelt / időzített szinkron hálózatok:
 - □ a.) Szinkron RS tároló szintvezérelt
 - □ b.) MS Flip-Flop (tároló)
 - □ c.) Tiszta (pure) él-vezérelt FF
 - □ d.) JK Flip-Flop (tároló)
 - □ e.) D Flip-Flop (tároló)
 - ☐ f.) T Flip-Flop (tároló)

22

Él-vezérelt

- Aszinkron esetben a "tároló" kifejezést használjuk (órajel nélküli)
- Szinkron esetben (órajellel vezérelt).
 - □ Szint-vezérelt (level-triggered) eszközök: adott logikai / feszültség szintet jelent – "tároló" kifejezést használjuk
 - □ Él-vezérelt (edge-triggered) eszközök: le / felfutó élre "flip-flop kifejezést használjuk. (ekkor fontos, hogy csak egy meghatározott időpontban vegyünk mintát!)

1.) Órajel nélküli, aszinkron sorrendi hálózatok

1/a.) Latch

- Latch (retesz): legegyszerűbb tároló elem. Az idő mint fontos paraméter játszik szerepet működésében.
- Tulajdonsága: a bemenetén lévő log. igaz ('T') adat azonnali kimenetre helyezése.

- Hibája, hogy amíg HOLD=T, ha egy impulzus zaj érkezik, akkor egy Y=T jelenik meg (glitch v. impulzus hiba).
- További tul. hogy a pillanatnyi 'T' érték a kimeneten Y=T megjelenik mindaddig, amíg HOLD=F nem lesz. (Ezt hívják 1's catching). Néha hasznos, de veszélyes is lehet pl. leragadásos hiba!

Latch időzítési diagrammja:

- Több eset aleset lehetséges:
 - □ Case A: Ha HOLD=F, akkor Y=DATA
 - □ Case B: Ha HOLD=T, akkor bármely előfordulásakor a DATA=T esetén az adatot tárolja ("hold"=tartja), mindaddig amíg HOLD=F nem lesz. Ekkor a kimenetére helyezi. Három aleset lehetséges:
 - Case B1: DATA=F, amikor HOLD=T. Ekkor Y=F
 - Case B2: DATA=T és HOLD=F. Amikor HOLD=T lesz, tárolja az adatot, addíg ameddig HOLD=F nem lesz újra. Ekkor a kimenetre helyezi
 - Case B3: DATA=F, amikor HOLD=F. Majd az adat DATA=T lesz, és ezáltal Y=T (DATA) lesz. Mindaddig kitartja Y-t, amíg HOLD=F.

4

1/b.) Aszinkron RS-tároló (latch)

- Visszacsatolt hálózatok a memóriák egy sajátos típusát képezik: "visszaemlékezik" a feszültség, v. logikai szintek állapotára (1-bites tároló)
- Két stabil állapota lehetséges (bistabil eszköz), amelyeket eddig azonban külsőleg nem tudtunk befolyásolni.
- Ezért kell más logikai kapukat alkalmazni az inverterek helyett a visszacsatolásnál!
 így kapunk aszinkron RS-tárolót.
- Például: itt NOR kapukat használva
 - ☐ S: Set (beállítás)
 - □ R: Reset (újrabeállítás / törlés)
 - ☐ Kimenetek: Q (állapot),X (Q negáltja).
- (Megj: X-et jelölik Q-al is!)

Aszinkron RS-tároló - két stabil (**bi- stabil**) állapota:

■ i.) Logikai NOR kapcsolással

igazságtáblázat

I.) RS tároló Q='0'-ás állapotban

II.) RS tároló Q='1'-es állapotban

S=R='0'='F' logikai szinten rögzítve tárolás során!

Aszinkron RS-tároló – "Set/Reset":

■ i.) Logikai NOR kapcsolással (folyt)

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0
	NOR	

igazságtáblázat

III.) Tfh: **S=1**, és Q=0.

Ekkor X=0

Ezután Q=1 lesz.

Tehát Q 0->1 (Set) történt!

IV.) Tfh: **R=1**, és Q=1.

Ekkor X=1

Ezután Q=0 lesz.

Tehát Q 1-> 0 (Reset)

történt!

Aszinkron RS-tároló - két stabil (bistabil) állapota:

■ ii.) Logikai NAND kapcsolással

Α	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0
	NIA NII	`

NAND igazságtáblázat

I.) RS tároló Q='0'-ás állapotban

II.) RS tároló Q='1'-es állapotban

S=R='1'='T' logikai szinten rögzítve tárolás során! (Duálisa a NOR-nak!)

Aszinkron RS-tároló – "**Set/Reset**":

■ ii.) Logikai NAND kapcsolással (folyt.)

Α	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NAND igazságtáblázat

III.) Tfh: **S=0**, és Q=0.

Ekkor X=0

Ezután Q=1 lesz.

Tehát Q 0->1 (Set) történt!

IV.) Tfh: R=0, és Q=1.

Ekkor X=1

Ezután Q=0 lesz.

Tehát Q 1-> 0 (Reset)

történt!

RS tárolók Karnough táblái:

Ha S=1.

NOR esetben:

törlés akkor

q: 1->0 lesz

állapot

(R=S=1)

NAND esetben:

31

állapotok

(tárol)

Aszinkron RS-tároló feszültséglogikai viselkedése (NOR kapuval)

Mixed-logikai kapcsolása ('T'='H' pozitív logika a bemeneteknél):

Amíg **S.H és R.H** "**L"** ("**F"**) feszültségszinten van, a tároló aktuális állapotát tárolja, Q-tól függően (a bistabil állapot közül az egyikbe kerülünk).

Ha S-t, vagy R-t változtatjuk:

- S: control bemenet Set State-be helyezi az áramkört (Q=H), **S=H ('T')** esetén.
- R: control bemenet Reset State-be helyezi az á.k.-t (Q=L), amikor R=H ('T').

Aszinkron RS-tároló feszültséglogikai viselkedése (NAND kapuval)

Mixed-logikai kapcsolása (NOR duálisa) és szimbóluma ('T'='L' negatív logika a bemeneteknél):

Amíg **S.L és R.L "H"** feszültségszinten van, a tároló aktuális állapotát tárolja, Q-tól függően. A bistabil állapot közül az egyikbe kerülünk.

Ha S-t, vagy R-t változtatjuk:

- S: control bemenet Set State-be helyezi az áramkört (Q=H), **S='L'** esetén.
- R: control bemenet Reset State-be helyezi az á.k.-t (Q=L), amikor R='L'.

Aszinkron RS-tároló feszültséglogikai viselkedése (NOR kapuval)

- Tekintsük a hálózatot pozitív logikával, ahol T=H (F=L)
- Tfh: R.L, S.L és Q=L. Ekkor ⇒ X.H lesz. Ezt visszacsatolva Q.L lesz megint. Tehát addig nincs változás a stabil viselkedésben, ameddig az R és S állapotokon nem változtatunk! ('L' / '0' állapotban van)
- Bi-stabilitása miatt ez igaz lesz Q.H ⇒ X.L –re is ('H' /'1' állapot).

Aszinkron RS-tároló tulajdonságai

- Aszinkronitás: nincs közös rendszer órajel, amely működtetné. Csupán az S és R control jelek hatására válaszol a kimenet ("azonnal" – véges időn belül).
- Asynchronous (unlocked) latch
- !Hibája, hogy érzékeny impulzus zajokra: glitch-ek lehetnek az S / R bemeneteken, amikor a másik Reset- / Set- state állapotban vagyunk.
 - □ Általános tervezési eszközként ezért nem ajánlatos használni.

Gerjesztési tábla:

"feszültség értékek" ábrázolására

- Gerjesztési (Excitation) tábla: sorrendi hálózatoknál a logikai- és feszültség- értékek felírására használatos, az időbeliség figyelembe vételével! (t: idő múlva, δ: beállási (settle) idő)
- A NOR kapukból felépülő RS tároló működésének leírása gerjesztési táblázat segítségével (feszültség értékekre):

S	R	Q_{io}	X_{ω}	Q(t+8)	$X_{(r+\delta)}$	
L	L	q	x	q	х	Hold
L	H	q	x	L	H	Reset
H	L	q	x	н	L	Set
H	H	q	x			Disallowed
Kétértelm	űség! (NC	OR miatt)		I		3

Gerjesztési tábla:

"logikai értékek" ábrázolására

A NOR kapukból felépülő RS tároló működésének leírása gerjesztési táblázat segítségével (logikai értékekre):

		,	•	•
S	R	Q	Q'	
0	0	q	~q	Hold Reset
0	1	0	1	Reset
1	0	1	0	Set
1	1	-	-	Disallow
				•

Kétértelműség! (NOR miatt, ha R=S=1)

38

Gerjesztési tábla:

"logikai értékek" ábrázolására

A NAND kapukból felépülő RS tároló működésének leírása gerjesztési táblázat segítségével (logikai értékekre):

s	R	Q	Q'	
0	0	-	-	Disallowed
0	1	1	0	Set
1	0	0	1	Reset
1	1	q	~q	Hold

Kétértelműség! (NAND miatt, ha R=S=0 vagyis ha R=S=1)

NOR duálisa: kapuk, bemenetek és állapotok felcserélésével kapjuk.

2.) Órajellel vezérelt, szinkron sorrendi hálózatok

- A digitális áramkörökben az események történésének sorrendje kritikus (megfelelő időzítés kell ⇒ órajel vezérléssel)
- Óra: impulzusok sorozatát bocsátja ki, pontosan meghatározott szélességgel [t(pw)], és időintervallummal.
- Ciklus-idő (clock-cycle): két egymást követő pulzus élei közötti időintervallum [t(cycle)].
 - □ Példa: Órajel Frekvencia: f=100 000 000 [Hz] ([1/s])
 - \Box Ekkor T=1/f=1 / 100 000 000 = 10 [ns]
- Kristály-oszcillátor szolgáltatja ált. az órajelet.

Órajellel vezérelt szinkron sorrendi hálózatok:

- Eml: aszinkron tárolók ('1' / 'T' catching)
- Szinkron tárolók (flip-flop-ok): általánosabb építő elemek
- Szinkronizálás: A kimenet mindaddig nem fog változni, amíg egy rendszer órajelre (CLK) nem engedélyeződik.
- CLK: órajel impulzus ált. négyszögjel formájában adott (timing waveform)

42

2/ a.) Szinkron RS-tároló

 Felépítése hasonló az aszinkron RS tárolóhoz, csupán az R / S állapotok aktivitását órajellel szabályozzuk.

- A kimenet értéke csak az órajel 'igaz' ('T') állapota alatt változhat meg ("Level-driven": szint vezérelt eszköz)
- De az órajel (itt magas aktív) állapotát elegendően szűkre kell beállítani, különben hazárdok lehetségesek ("shock").

Órajel meghatározása

- Órajel beállítása: a célunk, hogy elegendően kis intervallumot biztosítsunk, amelynek hatására a kimenet megváltozhat, a bemenettől függően (a szint-vezérelt működés helyett, él-vezérelt működést kell biztosítani!)
- Él-vezérelt működés: (edge-driven / edge-triggered): órajel feszültség átmenete
 - □ Pozitív (felfutó) él: CLK.L→H
 □ Negatív (lefutó) él: CLK.H→L
- Megj: Az órajellel vezérelt szekvenciális rendszereket a továbbiakban él-vezérelt működésű eszközöknek tekintjük (más megnevezés: időzített flip-flopok)

2/ b.) Szinkron MS flip-flop

Régóta széles körben használt eszköz, egyszerű felépítésű

- Ha a CLK magas aktív ('H'), akkor a kimenet megváltozik a bemenettől függően.
- H -> L átmenetnél (lefutó él) leválasztja az **Master** tárolót a S / R bemenetekről (ekkor tárol változatlan tartalom)
- Feszültség invertálás miatt a **Slave** tároló ellenütemben működik: negatív (lefutó) él esetén lesz aktív (S / R bemeneteit a Master állapottól kapja)

2/ c.) Tiszta (pure) él-vezérelt FF

- Célunk: elkerüljük a hazárdokat (glitch, noise-zaj stb.)
- MS-FF helyett alkalmazzuk: 1's catching tulajdonságot próbáljuk elkerülni használatával (clk pozitív részén)
- Az órajelciklus negatív részén viszont az R / S control bemeneteket kell stabil állapotba hozni
- Tiszta él-vezérlés: állapot-átmeneteket is használni kell
 - □ Aktív él: F→T amelyre az átmenet megtörténik (lehet H→L vagy
 L→H)
 - ☐ Aktív élre a bemeneteket (R / S) kell figyelni (sensing)
 - □ Aktív él eredményeként (adott log / fesz. szinten) szabad csak megváltoznia az állapotnak (Q)

46

Gerjesztési tábla: logikai és feszültség értékek ábrázolására

- Él-vezérelt Flip-flopok esetén használatos táblázat
- Jelölések:
 - ☐ Minden aktív élre vagy Set, vagy Reset állapotba jut (bistabil) a bemeneti értékeknek és az aktuális tárolt állapotnak megfelelően.
 - □ Q(n): n. órajel trigger ("aktív él-váltás") állapota
 - ☐ Ha ekkor a tároló Set állapotban van, akkor Q(n) = 'T'
 - ☐ Ha ekkor a tároló *Reset* állapotban van, akkor Q(n) = 'F'
 - □ **Q(n+1):** n. utáni (következő) aktív élre (táblázat készítése összes lehetséges kombinációjára)
 - □ **Setup time**: megbizonyosodni az R / S control inputok stabil voltáról, az aktív él előtt röviddel.
 - □ **Hold time**: R / S control inputok stabilitása az aktív él után röviddel.

2/ d.) Szinkron JK flip-flop

- Ism: Az RS tárolónál kétértelműség volt az R /S bemenetek azonossága esetén (ott nem-megengedett volt!)
- Azonban JK esetén az összes R / S bemeneti kombinációra <u>egyértelmű</u> kimeneti eredményt kapunk.
- Gerjesztési tábla a JK tároló logikai vizsgálatához:
 - ☐ Megfeleltetés: J:=Set / K:=Reset mint control bemenetek

Clock	J	K	$Q_{\scriptscriptstyle (n)}$	$Q_{(n+1)}$	
F T † †	X X F T T	X X F T F	q q q q q	9 9 9 F T 7	Szint-vezérelt viselkedés: Stabil 'T' v. 'F' esetén a JK kimenete érzéketlen Hold Reset RS tárolóval analóg működést biztosít. Set Toggle (complement) negált
1	: CLK	felfutó	élére (po	ozitív) vezé	erelt (F \rightarrow T) 48

₽7

JK flip-flop Karnough táblája

Nagyon hasonló az RS-tárolóhoz, de itt az J=K=1 állapot is megengedett (toggle)!

JK tárolók típusai:

- Kereskedelmi forgalomban több típussal, jelöléssel is találkozhatunk:
 - □ Aktív-éle az órajelnek lehet:
 - Pozitív (felfutó) él-vezérelt: $(F \rightarrow T)$
 - Negatív (lefutó) él-vezérelt: CLK (T → F)
 - □ J / K control jelek aktív feszültség-szintjei:
 - J / K is magas aktív (T=H): pozitív logika
 - J aktív magas ('H') / K aktív alacsony ('L')
 - □ Aszinkron R / S módú viselkedés (availability):
 - Direct-clear (Pre-clear): aszinkron Reset (szimbólum alján)
 - Direct-set (Pre-set): aszinkron Set (szimbólum tetején)
 - □ Szinkron R / S módú viselkedés (alap)
 - Clear: lehet J, vagy K control (logikai clear: Q=F)
 - Set: lehet J, vagy K control (logikai set: Q=T)

50

Példa: 74LS109 Dual JK Flip-flop

- Pozitív (felfutó) él-vezérelt SSI tároló elem
- Control jelei: J magas aktív (H) / K alacsony aktív (L)
- Set: Q-t 'T' be állítja (logikai set)
- Clear: Q-t 'F' be állítja, törli (logikai clear)

Példa: 74LS109 Gerjesztési tábla – feszültség értékek esetén

Preset	Preclear	Clock	J	K	$Q_{(n+1)}$	Action if Q is active-high
L	Н	X	X	Х	Н	Direct set
H	· L	×	X	Х	L	Direct clear
L	L	X	X	Х	_	Disallowed configuration
Н	H	1	L	L	L	Clear (Reset)
H	H	Ť	L	н	$Q_{(n)}$	Hold
H	н	†	H	L	$\sim Q_{(n)}$	Toggle
Н .	н	Ť	Н	н	Ĥ	Set

- $\sim Q_{(n)} = Q_{(n)}$ negáltja (komplemense: "toggel mód"-ban)
- X: don't care állapot
- –: nem megengedett állapot

Aszinkron viselkedés

- Általánosan használt, jól controllálható működésű tároló (flexibilitás)
- Adattárolásra (hold): gerjesztési tábla alapján
 - □ Q(n+1) = Q(n) = q lesz bármikor, ha J=K=F (felfutó élre) ez egy egyszerű adattárolási mód
- Adatbevitelre: J / K nem adat, hanem vezérlő vonalak! Háromféleképpen használható:
 - □ a.) Clear -> majd Set
 - □ b.) Set -> majd Clear
 - □ c.) Tárolás: egy órajel ciklus ideig (részletesen a könyvben)

2/ e.) Szinkron D-flip-flop

- Rendkívül egyszerű működésű, általános tároló elem.
- **D** (Delay) tároló: késleltetéses-alapú működés (egy órajel ciklus ideig tartja az értéket, amelyet a következő ciklusban a kimenetére helyez)
- CLK=0→1 értékére működik (1→0-nál tárolt érték (q(n))
- Kapcsolása, szimbóluma, és logikai gerjesztési táblázata:

D-flip-flop Karnogh táblája

JK tárolóból származtatható, ahol csak a különböző bemeneti értékű JK kombinációk a megengedettek → D

D-tároló jelei

- Kereskedelmi forgalomban a következő variációkban, jelölésekkel kapható
 - □ i.) CLK órajel aktív éle:
 - Pozitív (felfutó): L → H
 - Negatív (lefutó): H → L (kis kör jelöli)
 - □ ii.) Direct (aszinkron) Set / Clear (ha jelölik akkor általában alacsony aktív állapotúak 1's catcher)
 - □ iii.) Legtöbb esetben csak a Q kimenete van feltüntetve, vagy a negált Q-val biztosítja mindkét polarítást

- **Késleltető elem**: egy órajel ciklusig késlelteti a bemenetre adott értéket, mire az a kimenetre kerül
- Szinkronizáló elem: különböző jelek rendszer órajelhez való időbeli ütemezése (szinkronizálatlan jel a bemenetén).
- Adat tároló elem: adatbevitel és tárolás
- Engedélyező elem: LOAD engedélyező bemenet (MUX-on keresztül választódik ki a bemenet, vagy v.cs. értéke

- LOAD = 0, visszacsatolt Q állapot kering
- LOAD = 1, külső bemenet (DATA)

2/ f.) Szinkron T-flip-flop

- Rendkívül egyszerű működésű
- T (toggle) tároló: késleltetéses-alapú működés (egy órajel ciklus ideig tartja az értéket, a következő ciklusban viszont az érték negáltját teszi a kimenetére)
- CLK=0->1 értékére működik (tárol)
- szimbóluma, és logikai gerjesztési táblázata:

Т	Q(n+1)
0	1
1	0

58

T-flip-flop Karnogh táblája

JK tárolóból származtatható, ahol csak az azonos bemeneti értékű JK kombinációk a megengedettek → T

A tárolót a JK bemenetek összekötéséből kapjuk!

Regiszterek

- Regiszter: n db tároló (Flip-flop) elemekből felépülő rendezett tömb
- Ideiglenes adattárolásra használjuk (néhány bites érték tárolása aritmetikai műveletekhez)
- Byte, vagy word (szóhosszúság) szervezésű
- MSI-szintű építőelem
- Példák:
 - □ Engedélyező bemenetű D-regiszter (EN)
 - ☐ Tiszta (pure) D-regiszter (EN=1 nek feltételezzük)
 - 4, 6, 8, 16, 32 ...számú D Flip-flop-ból épülhetnek fel.
 - Közös órajel (esetleg törlő és engedélyező jel)
 - ☐ Shift-regiszter (kimenetek sorba kötésével léptetés)

4-bites Parallel In/ Parallel Out regiszter (D-tárolókból felépítve)

LOAD: a D1...D4 bemeneteknek párhuzamos

beírására is lehetőség van. (LOAD=1)

LSB

MSB

Aszinkron bináris moduló-4 számláló JK tárolóból

- Hasonlóan működik az előzőhöz:
 - □ Q₀ alternál ("toggle mode") minden CLK-ra (mivel J=K='T') //bal FF
 - \square Q₀ generál egy T \rightarrow F (H \rightarrow L ebben az esetben) átmenetet
 - □ Q₁ is alternál, de Q₁ tól függően (J=K='T' re) //jobboldali FF
 - □ Q₁ –es FF órajelét a Q₀ biztosítja (aszinkron működés)

LSB bit: Qo balra (alternáló jelleg)

MSB bit: Q, jobbra (akkor változtatja az értékét alternáló jelleggel, amikor Q₀ ='T' / '1')

t_n: propagációs □ Idődiagram: késleltetés [ns] 63

Számlálók (counters)

- Bináris számlálók
 - □ Moduló-N számláló: M moduló N (M / N utáni maradék) értékét tárolja
 - □ 3-bites számláló: 10³ különböző értékre 000-999 –ig, majd 999 után újból 000-tól indul, inicializálódik. (Ez egy "M moduló 1000" számláló.)
- Számláló JK tárolókból: "toggle mode"-ban használjuk a tárolót
 - ☐ Modulo-2 számláló: (q negált).
 - CLK impulzusa: 0 1 2 3 4 5 6 7 8 ...
 - FF Q kimenete: 0 1 0 1 0 1 0 1 0 ... (q / \overline{q}) //alternáló jelleg
 - □ Szinkron Modulo-4 számláló: (közös CLK)
 - 0 1 2 3 4 5 6 7 8 ... CLK impulzusa: ■ FF Q₁,Q₀ kimenete: | 00 | 01 10 11 | 00 | 01 10 11 | 00 | ...

értékeket reprezentál

Logikai

LSB bit: Qo balra (alternáló jelleg)

MSB bit: Q1 jobbra (akkor változtatja az értékét alternáló jelleggel, amikor Q₀ ='T' / '1')

Ezekből nagyobb méretű modulo-N számláló is felépíthető sorbakötésükkel!

4-bites moduló-16 számláló (counter)

Aszinkron (ripple) counter:

Pl. átmenet 3 -> 4 között

Szinkron counter:

Extra AND kapuk:

"toggle-mode" szinkronizációja az egyes FF-nál

Közös CLK!

Szinkron MSI számlálók:

- Kereskedelmi forgalomban is kaphatóak
 - □ Moduló-10 (dekád) számláló
 - ☐ Moduló-16 (4-bites bináris) számláló
 - □ Példa: 12-bites bináris számláló 3 db 'LS163 4-bites szinkron bináris számláló összekapcsolásából.

Közös CLK: szinkron működés

CLOCK.H: rendszer óraiel

Szinkron Clear (0) / Load (Set)

TC: terminal count Eszköz CET: Count Enable > vezérlők Trickle

CEP: Count Enable 65 Parallel (master)

Példa: számláló tervezése D-FF-ből

- Tervezzünk bináris számlálót szinkron D-tárolóból, amely 0...5-ig tárolja D-tárolóra lesz szükségünk). az értékeket. (6 érték → összesen 3 db
- lgazságtáblázata:

count	QA(i)	QB(i)	QC(i)	DA(i-1)	DB(i-1)	DC(i-1)	i. clk
0	0	0	0	0	0	一 1	1
1	0	0	1 🗲	0	1	0	2
2	0	1	0	0	1	1	3
3	0	1	1	1	0	0	4
4	1	0	0	1	0	1	5
5	1	0	1	0	0	0	6
0	-	-	-	-	-	-	-
1	-	-	-	-	-	-	-

egy órajellel később jelennek meg Dx értékei a Qx kimeneteken!

Realizáljuk pl. a DC-t (A,B,C kimenetű K.H-ból) DC:

(Hasonlóan lehet képezni a Karnough táblákat a DA, DB-kre is!)

68

4-bites Shift (léptető) regiszter (Serial in/Parallel Out - D-tárolós)

Shift regiszter. Oldalirányú (laterális) léptetés, az egyik bitpozíciótól a szomszédosig.

D: Data bemeneten lévő adatot lépteti sorosan balról-jobbra minden egyes órajel ciklusban. 1.clk-ban a 1. tárolóba a D1-et, majd 2 clk-ban 2. tárolóba a D1-et és az 1. be a D2-t.

Q: a kimeneteken párhuzamosan kapjuk az adatot

CLK	Q4	Q3	Q2	Q1
1	D1	-	-	-
2	D2	D1	-	-
3	D3	D2	D1	-
4	D4	D3	D2	D1
5	D5	D4	D3	D2
6	D6	D5	D4	D3
7	D7	D6	D5	D4

67

4-bites Shift-regiszter működése

- Közös szinkron CLK
- Két szelektor jel: S0, S1 (az állapotok kiválasztásához! 4:1 MUX)

4-állapot: HOLD/ SHL /SHR /LOAD

Kapcsolási rajz:

Táblázat:

Clock	SI	SO	Result desired	Selected mux position	Required mux input
1	0	0	Hold present data	0	Q_{ι}
Ť	0	1	Shift right	1	Q_{i+1}
Ť	1	0	Shift left	2	Q_{i-1}
1	1	1	Load new data	3	$DATA_i$

Ajánlott: a fejezetek végén lévő feladatok (Exercises) részek áttekintése.