system_wrapper.v

AUTHORS

JAY CONVERTINO

DATES

2023/11/02

INFORMATION

Brief

System wrapper for pl and ps for zc702 board.

License MIT

Copyright 2023 Jay Convertino

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

system_wrapper

```
module system_wrapper #(
parameter
FPGA_TECHNOLOGY
=
1,
parameter
FPGA_FAMILY
=
4,
parameter
SPEED_GRADE
```

```
= 10,
parameter
DEV_PACKAGE
= 14,
parameter
DELAY_REFCLK_FREQUENCY
= 200,
parameter
ADC_INIT_DELAY
= 23,
parameter
DAC_INIT_DELAY
= 0
) ( inout [14:0] ddr_addr, inout [ 2:0] ddr_ba, inout ddr_cas_n, inout ddr_c
```

System wrapper for pl and ps for zc702 board.

Parameters

FPGA TECHNOLOGY Type of FPGA, such as Ultrascale, Arria 10. 1 is for 7 series.

parameter

FPGA_FAMILY Sub type of fpga, such as GX, SX, etc. 4 is for zynq.

parameter

SPEED_GRADE Number that corresponds to the ships recommended

parameter speed. 10 is for -1.

DEV_PACKAGE Specify a number that is equal to the manufactures

parameter package. 14 is for cl.

DELAY_REFCLK_FREQUENCY

parameter

Reference clock frequency used for ad_data_in instances

ADC_INIT_DELAY Initial Delay for the ADC

parameter

DAC_INIT_DELAY Initial Delay for the DAC

parameter

Ports

ddr_addr	DDR interface
ddr_ba	DDR interface
ddr_cas_n	DDR interface
ddr_ck_n	DDR interface
ddr_ck_p	DDR interface
ddr_cke	DDR interface
ddr_cs_n	DDR interface
ddr_dm	DDR interface
ddr_dq	DDR interface
ddr_dqs_n	DDR interface
ddr_dqs_p	DDR interface
ddr_odt	DDR interface
ddr_ras_n	DDR interface

ddr_reset_nDDR interfaceddr_we_nDDR interfacefixed_io_ddr_vrnDDR interfacefixed_io_ddr_vrpDDR interface

fixed_io_mio ps mio fixed_io_ps_clk ps clk fixed_io_ps_porb ps por fixed_io_ps_srstb ps rst

iic_scl_fmcfmcomms2-3 i2ciic_sda_fmcfmcomms2-3 i2c

gpio_bd gpio

rx_clk_in_p fmcomms2-3 rx clk rx clk in n fmcomms2-3 rx clk rx_frame_in_p fmcomms2-3 rx frame rx_frame_in_n fmcomms2-3 rx frame rx_data_in_p fmcomms2-3 rx data rx_data_in_n fmcomms2-3 rx data tx_clk_out_p fmcomms2-3 tx clk tx_clk_out_n fmcomms2-3 tx clk tx_frame_out_p fmcomms2-3 tx frame tx frame out n fmcomms2-3 tx frame tx_data_out_p fmcomms2-3 tx data

tx_data_out_n fmcomms2-3 tx data txnrx fmcomms2-3 txnrx enable fmcomms2-3 enable gpio_muxout_tx fmcomms2-3 gpio gpio_muxout_rx fmcomms2-3 gpio fmcomms2-3 gpio gpio_resetb fmcomms2-3 gpio gpio_sync gpio_en_agc fmcomms2-3 gpio fmcomms2-3 gpio gpio_ctl gpio_status fmcomms2-3 gpio spi_csn spi chip select

spi_clk spi clk

spi_mosispi master outspi_misospi master in

INSTANTIANTED MODULES

inst_system_pl_wrapper

```
system_pl_wrapper #(

FPGA_TECHNOLOGY(FPGA_TECHNOLOGY),

FPGA_FAMILY(FPGA_FAMILY),

SPEED_GRADE(SPEED_GRADE),

DEV_PACKAGE(DEV_PACKAGE),

ADC_INIT_DELAY(ADC_INIT_DELAY),

DAC_INIT_DELAY(DAC_INIT_DELAY),

DELAY_REFCLK_FREQUENCY(DELAY_REFCLK_FREQUENCY)
) inst_system_pl_wrapper ( .axi_aclk(s_axi_clk), .axi_aresetn(s_axi_aresetn))
```

Module instance of system_pl_wrapper for the fmcomms2-3 device.

inst_system_ps_wrapper

```
system_ps_wrapper inst_system_ps_wrapper (
GPIO_I(gpio_i),
GPIO_O(gpio_o),
GPIO_T(gpio_t),
SPI0_SCLK_I(1'b0),
SPI0_SCLK_0(spi_clk),
SPI0_MOSI_I(1'b0),
SPI0_MOSI_0(spi_mosi),
SPI0_MISO_I(spi_miso),
SPI0_SS_I(1'b1),
SPI0_SS_0(spi_csn),
SPI1_SCLK_I(1'b0),
SPI1_SCLK_0(spi_udc_sclk),
SPI1_MOSI_I(spi_udc_data),
SPI1_MOSI_0(spi_udc_data),
SPI1_MISO_I(1'b0),
SPI1_SS_I(1'b1),
SPI1_SS_0(spi_udc_csn_tx),
```

```
SPI1_SS1_0(spi_udc_csn_rx),
SPI1_SS2_0(),
M_AXI_araddr(w_axi_araddr),
M_AXI_arprot(w_axi_arprot),
M_AXI_arready(w_axi_arready),
M_AXI_arvalid(w_axi_arvalid),
M_AXI_awaddr(w_axi_awaddr),
M_AXI_awprot(w_axi_awprot),
M_AXI_awready(w_axi_awready),
M_AXI_awvalid(w_axi_awvalid),
M_AXI_bready(w_axi_bready),
M_AXI_bresp(w_axi_bresp),
M_AXI_bvalid(w_axi_bvalid),
M_AXI_rdata(w_axi_rdata),
M_AXI_rready(w_axi_rready),
M_AXI_rresp(w_axi_rresp),
M_AXI_rvalid(w_axi_rvalid),
M_AXI_wdata(w_axi_wdata),
M_AXI_wready(w_axi_wready),
M_AXI_wstrb(w_axi_wstrb),
M_AXI_wvalid(w_axi_wvalid),
S_AXI_HP0_arready(),
S_AXI_HP0_awready(adc_hp0_axi_awready),
S_AXI_HP0_bvalid(adc_hp0_axi_bvalid),
S_AXI_HP0_rlast(),
S_AXI_HP0_rvalid(),
S_AXI_HP0_wready(adc_hp0_axi_wready),
S_AXI_HP0_bresp(adc_hp0_axi_bresp),
S_AXI_HP0_rresp(),
S_AXI_HP0_bid(),
S_AXI_HPO_rid(),
S_AXI_HP0_rdata(),
S_AXI_HP0_ACLK(s_axi_clk),
```

```
S_AXI_HP0_arvalid(1'b0),
S_AXI_HP0_awvalid(adc_hp0_axi_awvalid),
S_AXI_HP0_bready(adc_hp0_axi_bready),
S_AXI_HP0_rready(1'b0),
S_AXI_HP0_wlast(adc_hp0_axi_wlast),
S_AXI_HP0_wvalid(adc_hp0_axi_wvalid),
S_AXI_HP0_arburst(2'b01),
{\tt S\_AXI\_HP0\_arlock(0),}
S_AXI_HP0_arsize(3'b011),
S_AXI_HP0_awburst(adc_hp0_axi_awburst),
S_AXI_HP0_awlock(0),
S_AXI_HP0_awsize(adc_hp0_axi_awsize),
S_AXI_HP0_arprot(0),
S_AXI_HP0_awprot(adc_hp0_axi_awprot),
S_AXI_HP0_araddr(0),
S_AXI_HP0_awaddr(adc_hp0_axi_awaddr),
S_AXI_HP0_arcache(4'b0011),
S_AXI_HP0_arlen(0),
S_AXI_HP0_arqos(0),
S_AXI_HP0_awcache(adc_hp0_axi_awcache),
S\_AXI\_HP0\_awlen(adc\_hp0\_axi\_awlen),
S_AXI_HP0_awqos(0),
S_AXI_HP0_arid(0),
S_AXI_HP0_awid(0),
S_AXI_HP0_wid(0),
S_AXI_HP0_wdata(adc_hp0_axi_wdata),
S_AXI_HP0_wstrb(adc_hp0_axi_wstrb),
S_AXI_HP1_arready(dac_hp1_axi_arready),
S_AXI_HP1_awready(),
S_AXI_HP1_bvalid(),
S_AXI_HP1_rlast(dac_hp1_axi_rlast),
S_AXI_HP1_rvalid(dac_hp1_axi_rvalid),
S_AXI_HP1_wready(),
```

```
S_AXI_HP1_bresp(),
S_AXI_HP1_rresp(dac_hp1_axi_rresp),
S_AXI_HP1_bid(),
S_AXI_HP1_rid(),
S_AXI_HP1_rdata(dac_hp1_axi_rdata),
S_AXI_HP1_ACLK(s_axi_clk),
S_AXI_HP1_arvalid(dac_hp1_axi_arvalid),
S_AXI_HP1_awvalid(1'b0),
S_AXI_HP1_bready(1'b0),
S_AXI_HP1_rready(dac_hp1_axi_rready),
S_AXI_HP1_wlast(1'b0),
S_AXI_HP1_wvalid(1'b0),
S_AXI_HP1_arburst(dac_hp1_axi_arburst),
S_AXI_HP1_arlock(0),
S_AXI_HP1_arsize(dac_hp1_axi_arsize),
S_AXI_HP1_awburst(2'b01),
S_AXI_HP1_awlock(0),
S_AXI_HP1_awsize(3'b011),
S_AXI_HP1_arprot(dac_hp1_axi_arprot),
S_AXI_HP1_awprot(0),
S_AXI_HP1_araddr(dac_hp1_axi_araddr),
S_AXI_HP1_awaddr(0),
S_AXI_HP1_arcache(dac_hp1_axi_arcache),
S_AXI_HP1_arlen(dac_hp1_axi_arlen),
S_AXI_HP1_arqos(0),
S_AXI_HP1_awcache(4'b0011),
S_AXI_HP1_awlen(0),
S_AXI_HP1_awqos(0),
S_AXI_HP1_arid(0),
S_AXI_HP1_awid(0),
S_AXI_HP1_wid(0),
S_AXI_HP1_wdata(0),
S_AXI_HP1_wstrb(~0),
```

```
IRQ_F2P({{2{1'b0}}}, s_adc_dma_irq, s_dac_dma_irq, s_iic2intc_irpt, {11{1'b0}}
FCLK_CLK0(s_axi_clk),
FCLK_CLK1(s_delay_clk),
FIXED_IO_mio(fixed_io_mio),
DDR_cas_n(ddr_cas_n),
DDR_cke(ddr_cke),
DDR_ck_n(ddr_ck_n),
DDR_ck_p(ddr_ck_p),
DDR_cs_n(ddr_cs_n),
DDR_reset_n(ddr_reset_n),
DDR_odt(ddr_odt),
DDR_ras_n(ddr_ras_n),
DDR_we_n(ddr_we_n),
DDR_ba(ddr_ba),
DDR_addr(ddr_addr),
FIXED_IO_ddr_vrn(fixed_io_ddr_vrn),
FIXED_IO_ddr_vrp(fixed_io_ddr_vrp),
DDR_dm(ddr_dm),
DDR_dq(ddr_dq),
DDR_dqs_n(ddr_dqs_n),
DDR_dqs_p(ddr_dqs_p),
FIXED_IO_ps_srstb(fixed_io_ps_srstb),
FIXED_IO_ps_clk(fixed_io_ps_clk),
FIXED_IO_ps_porb(fixed_io_ps_porb),
peripheral_aresetn(s_axi_aresetn)
```

 $\label{lem:module instance of inst_system_ps_wrapper for the built in CPU.} \\$