a. Montrez que la suite géométrique de premier $\frac{1}{10}$ et de raison 5 a pour terme général

b. Montrez que la suite géométrique de premier terme $u_0=12$ et de raison $\frac{1}{4}$ a pour terme général $u_n = \frac{3}{4^{n-1}}.$

c. Montrez que la suite géométrique de premier terme $u_1=\frac{1}{60}$ et de raison $\frac{1}{10}$ a pour terme général $u_n=\frac{10^{-n}}{6}$.

Pour chacune des suites suivantes : calculez les trois premiers termes ; vérifiez que l'on passe d'un terme à son suivant en multipliant toujours par le même nombre, exprimez $rac{u_{n+1}}{u_{n+1}}$, montrez que la suite est géométrique.

a.
$$u_n=rac{4^n}{3^{n-1}}$$

b.
$$u_n=6 imes 7^{-n}$$
 c. u_n

$$u_n = 8^n - 8^{n-1}$$

Q3 Associez la suite au terme général.

$$u_0=2 ext{ et } q=3 ullet$$

$$ullet u_n=3 imes 2^n$$

$$u_1=2 ext{ et } q=3 ullet$$

$$\bullet u_n = 2 \times 3^n$$

$$u_0=3 ext{ et } q=2 ullet$$

$$ullet u_n=3 imes 2^{n-1}$$

$$u_1=3 ext{ et } q=2 ullet$$

$$ullet u_n=2 imes 3^{n-1}$$

Q4 On se propose de démontrer la formule pour la somme $1+q+q^2+\ldots+q^n$ où q est un nombre réel.

a. Montrez que si q=1 alors

$$1 + q + q^2 + \ldots + q^n = n + 1$$
.

c. Notons $S=1+q+q^2+\ldots+q^n$ où $q\neq 1$. Déduire de la question précédente que $S(1-q)=1-q^{n+1}$. Conclure.

d. En déduire la formule pour les suites géométriques.

Q5 Associez chaque suite à sa somme.

$$u_n=6 imes 4^n$$
 et $S=u_0+\ldots+u_8$ $ullet$

$$\bullet \ S = 4^{10} - 1$$

$$u_n=3 imes 4^n ext{ et } S=u_1+\ldots+u_9$$
 $ullet$

$$\bullet \ S = 3(4^{10} - 1)$$

$$u_n=3 imes 4^n ext{ et } S=u_0+\ldots+u_9$$
 $ullet$

$$\bullet \ S = 2(4^9 - 1)$$

$$u_n = 9 \times 4^n ext{ et } S = u_0 + \ldots + u_9 ullet$$

$$\bullet S = 2(4 - 4)$$
 $\bullet S = 4^{10} - 4$

Q6 Pour chacun des cas, calculer les quatres premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$, conjecturez les variations de la suite puis démontrez votre conjecture.

a.
$$u_n = 3 \times (-2)^n$$

$$b = 2 \times 2$$

c.
$$u_n = -3 \times 2^n$$

d.
$$u_n=3 imes\left(rac{1}{2}
ight)^n$$

conjecture. a.
$$u_n=3\times (-2)^n$$
 b. $u_n=3\times 2^n$ c. $u_n=-3\times 2^n$ d. $u_n=3\times \left(\frac{1}{2}\right)^n$ e. $u_n=-3\times \left(\frac{1}{2}\right)^n$ f. $u_n=3\times \left(-\frac{1}{2}\right)^n$ g. $u_n=-3\times \left(-\frac{1}{2}\right)^n$

f.
$$u_n=3 imes\left(-rac{1}{2}
ight)^r$$

g.
$$u_n = -3 imes \left(-rac{1}{2}
ight)^n$$

Associez chaque figure à une suite ci-dessus.

2.

з.

4.

5.

7.

Quelles sont les limites de ces suites si elles existent ?