

OUTDOOR SENSOR

GPS

(Global Positioning System)

What is GPS?

- GPS ย่อมาจาก Global Positioning System
- GPS ประกอบด้วย
 - O Satellites
 - 30 GPS navigation satellites
 - O Ground stations
 - monitor the satellites
 - Control the satellites
 - O Receivers
 - Listening for signals from satellites

REF: https://www.arduitronics.com/category/42/sensors-modules/gps-antenna

GPS

- Standalone or Standard GNSS
 - O มักรู้จักกันในชื่อ Single Point Positioning
 - ไม่มีการทำ error corrections
 - O Accuracy <= 1.5 m
- Differential GNSS or DGPS
 - 🔾 เป็นการที่เรารู้ fixed position แล้วนำมาทำการ eliminate errors
 - O จำเป็นต้องมี base-station
 - O Accuracy <= 40 cm
- Real-Time Kinematic (RTK)
 - O concept คล้ายๆกับ DGPS
 - จำเป็นต้องมี base-station
 - O มีการ live communicate ระหว่าง base-station กับหุ่นยนต์ตลอดเวลา
 - O Accuracy น้อยกว่า DGPS
 - O เหมาะสำหรับการทำ survey

IMU

__ .

(Inertial Measurement Unit)

What is IMU?

- IMU ย่อมาจาก Inertial Measurement Unit
- IMU ประกอบด้วย
 - Accelerometers
 - O Gyroscopes
- IMU สามารถวัด
 - O Velocity
 - Orientation
 - O Gravitational force

 $\textit{REF:} \ https://hobbyking.com/en_us/kingduino-6-dof-imu-module-attitude-control-6dof-3205-345.html$

LiDAR

(Light Detection and Ranging)

What is LiDAR?

- LiDAR ย่อมาจาก Light Detection and Ranging
- เป็นการใช้แสงจาก laser เพื่อทำการวัดระยะทาง
- ชนิดของ LiDAR
 - O Topographic
 - ใช้ near-infrared laser สำหรับทำ map บนบก
 - O Bathymetric
 - ใช้ water-penetrating green light ในการวัด seafloor และ วัดระดับความสูงของแม่น้ำ

UGM-50LAP/UGM-50LAN 120 m and 190 degrees

UTM-30LX
30 m and 270 degrees

Outdoor LiDAR

- Resistance to Ambient Light
- Resistance to Environmental Noise
- High Environmental Rating
- Temperature Range
- Electromagnetic (EMI) Considerations

- 3D LiDAR
 - O ทำงานคล้ายๆกับ LiDAR ทั่วไป แต่จะมีการเพิ่ม sensor ขึ้นมาอีกเป็นแนวๆ เพื่อให้ได้ข้อมูลที่เป็น 3 มิติ

- 3D camera
 - O แบ่งออกเป็น stereo vision กับ ToF(Time of Flight)

	Stereo Vision	ToF
Working distance	≤2m	0.4-5m
Accuracy	5%-10% of distance	≤0.5% of distance
Resolution	medium	low
Power consumption	comparatively high	medium
Use environment	environment with ambient light or outdoor	indoor and outdoor
Frame rate	high	variable
Hardware cost	low	medium
Software processing requirement	high	low

REF: https://www.seeedstudio.com/blog/2020/07/03/3d-imaging-technology-comparison-tof-time-of-flight-vs-stereo-vision-m/superior-to-flight-vs-st

ArduPILOT

(ROVER)

ArduRover