18.650 - Fundamentals of Statistics

3. Methods for estimation

Goals

In the kiss example, the estimator was **intuitively** the right thing to do: $\hat{p} = \bar{X}_n$.

In view of LLN, since $p=\mathbb{E}[X]$, we have \bar{X}_n so $\hat{p}\approx p$ for n large enough.

- 1. Maximum likelihood estimation (MLE): a generic approach with very good properties
- 2. Method of moments: a (fairly) generic and easy approach that extends the setup where $\theta = {\rm I\!E}[X]$
- 3. M-estimators: a generalization of MLE, flexible, and close to machine learning

Distance measures

probability distributions

Total variation distance

Let $(E,(\mathbb{P}_{\theta})_{\theta\in\Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1,\ldots,X_n . Assume that there exists $\theta^*\in\Theta$ such that $X_1\sim\mathbb{P}_{\theta^*}\colon\theta^*$ is the **true** parameter.

Statistician's goal: given X_1,\ldots,X_n , find an estimator $\hat{\theta}=\hat{\theta}(X_1,\ldots,X_n)$ such that $\mathbb{P}_{\hat{\theta}}$ is close to \mathbb{P}_{θ^*} for the true parameter θ^* .

This means: $\left|\mathbb{P}_{\hat{\theta}}(A) - \mathbb{P}_{\theta^*}(A)\right|$ is small for all $A \subset E$.

Definition

The total variation distance between two probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is defined by

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \max_{A \subset E} \Big| \mathbb{P}_{\theta}(A) - \mathbb{P}_{\theta'}(A) \Big|$$

4/5

Total variation distance between discrete measures

Assume that E is discrete (i.e., finite or countable). This includes Bernoulli, Binomial, Poisson, . . .

Therefore X has a PMF (probability mass function): $\mathbb{P}_{\theta}(X=x) = p_{\theta}(x)$ for all $x \in E$,

$$p_{\theta}(x) \ge 0 \ , \quad \sum_{x \in E} p_{\theta}(x) = 1 \ .$$

The total variation distance between \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is a simple function of the PMF's p_{θ} and $p_{\theta'}$:

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \sum_{x \in E} \left| p_{\theta}(x) - p_{\theta'}(x) \right|.$$

5/51

Total variation distance between continuous measures

Assume that E is continuous. This includes Gaussian, Exponential, \dots

Assume that X has a density $\mathbb{P}_{\theta}(X \in A) = \int_A f_{\theta}(x) dx$ for all $A \subset E$.

$$f_{\theta}(x) \ge 0, \quad \int_{E} f_{\theta}(x) dx = 1.$$

The total variation distance between \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is a simple function of the densities f_{θ} and $f_{\theta'}$:

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \int_{E} |f_{\theta}(x) - f_{\theta'}(x)| dx.$$

An estimation strategy

Build an estimator $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$ for all $\theta \in \Theta$. Then find $\hat{\theta}$ that minimizes the function $\theta \mapsto \widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$.

problem: Unclear how to build $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})!$

Kullback-Leibler (KL) divergence

There are **many** distances between probability measures to replace total variation. Let us choose one that is more convenient.

Definition

The Kullback-Leibler¹ (KL) divergence between two probability measures \mathbb{P}_{θ} and $\mathbb{P}_{\theta'}$ is defined by

$$\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \left\{ \begin{array}{ll} \displaystyle \sum_{x \in E} p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\theta'}(x)}\right) & \text{if E is discrete} \\ \\ \displaystyle \int_{E} f_{\theta}(x) \log \left(\frac{f_{\theta}(x)}{f_{\theta'}(x)}\right) \! dx & \text{if E is continuous} \end{array} \right.$$

¹KL-divergence is also know as "relative entropy"

Properties of KL-divergence

- ightharpoonup $\mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'})
 eq \mathsf{KL}(\mathbb{P}_{\theta'},\mathbb{P}_{\theta})$ in general
- $ightharpoonup \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \geq 0$
- If $KL(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = 0$ then $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'}$ (definite)
- $\blacktriangleright \ \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \nleq \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta''}) + \mathsf{KL}(\mathbb{P}_{\theta''},\mathbb{P}_{\theta'}) \ \mathsf{in} \ \mathsf{general}$

Not a distance.

This is is called a divergence.

Asymmetry is the key to our ability to estimate it!

Maximum likelihood estimation

Estimating the KL

$$\mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \mathbb{E}_{\theta^*} \Big[\log \Big(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \Big) \Big]$$
$$= \mathbb{E}_{\theta^*} \Big[\log p_{\theta^*}(X) \Big] - \mathbb{E}_{\theta^*} \Big[\log p_{\theta}(X) \Big]$$

So the function $\theta \mapsto \mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta})$ is of the form:

"constant"
$$-\mathbb{E}_{\theta^*}[\log p_{\theta}(X)]$$

Can be estimated: $\mathbb{E}_{\theta^*}[h(X)] \leadsto \frac{1}{n} \sum_{i=1}^n h(X_i)$ (by LLN)

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

Maximum likelihood

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

$$\begin{split} \min_{\theta \in \Theta} \widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) & \Leftrightarrow & \min_{\theta \in \Theta} -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(X_i) \end{split}$$

This is the maximum likelihood principle.

Likelihood, Discrete case (1)

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \ldots, X_n . Assume that E is discrete (i.e., finite or countable).

Definition

The *likelihood* of the model is the map L_n (or just L) defined as:

$$L_n: E^n \times \Theta \to \mathbb{R}$$

 $(x_1, \dots, x_n; \theta) \mapsto \mathbb{P}_{\theta}[X_1 = x_1, \dots, X_n = x_n].$

Likelihood for the Bernoulli model

Example 1 (Bernoulli trials): If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathrm{Ber}(p)$ for some $p \in (0,1)$:

- \triangleright $E = \{0, 1\};$
- $\Theta = (0,1);$
- $\forall (x_1, \dots, x_n) \in \{0, 1\}^n, \forall p \in (0, 1),$

$$L(x_1, ..., x_n; p) = \prod_{i=1}^n \mathbb{P}_p[X_i = x_i]$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}.$$

Likelihood for the Poisson model

Example 2 (Poisson model):

If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poiss}(\lambda)$ for some $\lambda > 0$:

- $ightharpoonup E = \mathbb{N};$
- $\Theta = (0, \infty);$
- $\forall (x_1,\ldots,x_n) \in \mathbb{N}^n, \forall \lambda > 0,$

$$L(x_1, \dots, x_n; \lambda) = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! \dots x_n!}.$$

Likelihood, Continuous case

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \ldots, X_n . Assume that all the \mathbb{P}_{θ} have density f_{θ} .

Definition

The *likelihood* of the model is the map L defined as:

$$L : E^n \times \Theta \to \mathbb{R}$$

$$(x_1, \dots, x_n; \theta) \mapsto \prod_{i=1}^n f_{\theta}(x_i).$$

Likelihood for the Gaussian model

Example (Gaussian model): If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for some $\mu \in \mathbb{R}, \sigma^2 > 0$:

- $ightharpoonup E = \mathbb{R};$
- $\Theta = \mathbb{R} \times (0, \infty)$
- $\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \quad \forall (\mu,\sigma^2) \in \mathbb{R} \times (0,\infty),$

$$L(x_1, ..., x_n; \mu, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$$

Likelihood for the Uniform model

Example (Uniform model): If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Unif}(0, \theta)$, for some $\theta > 0$:

- $ightharpoonup E=(0,\infty);$
- $\Theta = (0, \infty)$
- $\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \ \forall (\mu,\sigma^2) \in \mathbb{R} \times (0,\infty),$

$$L(x_1, \dots, x_n; \theta) = \frac{1}{\theta^n} \mathbb{I}\{x_{(n)} \le \theta\}$$

where $x_{(n)} = \max_i x_i$

Likelihood for the Mixture of two Gaussians model

Example 1 (Mixture of Gaussians model): If X_1,\ldots,X_n are i.i.d from a mixture of two Gaussians, with means $\mu_1,\mu_2\in\mathbb{R}$, variances, $\sigma_1^2,\sigma_2^2>0$ and $\pi\in(0,1)$

- $ightharpoonup E = \mathbb{R};$
- $\Theta = \mathbb{R} \times \mathbb{R} \times (0,1)$
- $\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \quad \forall (\mu,\sigma^2) \in \mathbb{R} \times (0,\infty),$

$$L(x_1, \dots, x_n; \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \pi) = \frac{1}{(\sqrt{2\pi})^n} \prod_{i=1}^n \left\{ \frac{\pi}{\sigma_1} \exp\left(-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}\right) + \frac{1 - \pi}{\sigma_2} \exp\left(-\frac{(x_i - \mu_2)^2}{2\sigma_2^2}\right) \right\}.$$

Maximum likelihood estimator

Let X_1,\ldots,X_n be an i.i.d. sample associated with a statistical model $\left(E,(\mathbb{P}_{\theta})_{\theta\in\Theta}\right)$ and let L be the corresponding likelihood.

Definition

The maximum likelihood estimator of θ is defined as:

$$\hat{\theta}_n^{\text{MLE}} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(X_1, \dots, X_n, \theta),$$

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact that

$$\hat{\theta}_n^{\text{MLE}} = \underset{\theta \in \Theta}{\operatorname{argmax}} \log L(X_1, \dots, X_n, \theta).$$

20/5

Interlude: maximizing/minimizing functions

Note that

$$\min_{\theta \in \Theta} -h(\theta) \quad \Leftrightarrow \quad \max_{\theta \in \Theta} h(\theta)$$

In this class, we focus on maximization.

Maximization of arbitrary functions can be difficult:

Example: $\theta \mapsto \prod_{i=1}^n (\theta - X_i)$

Concave and convex functions

Definition

A function twice differentiable function $h:\Theta\subset\mathbb{R}\to\mathbb{R}$ is said to be *concave* if its second derivative satisfies

$$h''(\theta) \le 0$$
, $\forall \theta \in \Theta$

It is said to be *strictly concave* if the inequality is strict: $h''(\theta) < 0$

Moreover, h is said to be (strictly) *convex* if -h is (strictly) concave, i.e. $h''(\theta) \ge 0$ ($h''(\theta) > 0$).

Examples:

- $\Theta = \mathbb{R}, \ h(\theta) = -\theta^2,$
- $\Theta = (0, \infty), \ h(\theta) = \sqrt{\theta},$
- $\Theta = (0, \infty), h(\theta) = \log \theta,$
- $\Theta = [0, \pi], h(\theta) = \sin(\theta)$
- $\Theta = \mathbb{R}, \ h(\theta) = 2\theta 3$

Optimality conditions

Strictly concave functions are easy to maximize: if they have a maximum, then it is **unique**. It is the unique solution to

$$h'(\theta) = 0\,,$$

or, in the multivariate case

$$\nabla h(\theta) = 0 \in \mathbb{R}^d$$
.

There are many algorithms to find it numerically: this is the theory of "convex optimization". In this class, often a **closed form** formula for the maximum.

Examples of maximum likelihood estimators

- ▶ Bernoulli trials: $\hat{p}_n^{\text{MLE}} = \bar{X}_n$.
- Poisson model: $\hat{\lambda}_n^{\mathrm{MLE}} = \bar{X}_n$.
- ▶ Gaussian model: $(\hat{\mu}_n, \hat{\sigma}_n^2)^{\text{MLE}} = (\bar{X}_n, \hat{S}_n)$.
- lacksquare Uniform model: $\hat{ heta}^{\mathrm{MLE}} = X_{(n)} = \max_i X_i$
- Mixture of Gaussians: no closed form. Need to use an optimization algorithm, for example EM.

The EM algorithm

To maximize the (log-) likelihood in mixtures of Gaussians, we often use the popular Expectation-Maximization (EM) algorithm.

- It is a heuristic. In particular, it can fail to find the MLE.
- Some very recent guarantees have been proved but require structural assumptions and/or good initialization.
- In practice, the algorithm is started from different random initializations and the solution with largest log-likelihood is kept in the end.
- ► The EM algorithm was introduced in 1977 and is still hugely popular

TITLE	CITED BY	YEAR
Maximum Likelihood from Incomplete Data Via the EM Algorithm AP Dempster, NM Laird, DB Rubin AP Dempster, NM Laird, DB Rubin AP Dempster, NM Laird, DB Rubin	61636	1977

Likelihood

To illustrate EM, assume that $\pi=1/2$, and $\sigma_1^2=\sigma_2^2=1$. Recall that the PDF is

$$f(x) = \frac{1}{2\sqrt{2\pi}} \left\{ e^{-\frac{(x-\mu_1)^2}{2}} + e^{-\frac{(x-\mu_2)^2}{2}} \right\}.$$

So log-likelihood is:

$$\ell(x_1, \dots, x_m; \mu_1, \mu_2) = \sum_{i=1}^n \log \left[e^{-\frac{(x_i - \mu_1)^2}{2}} + e^{-\frac{(x_i - \mu_2)^2}{2}} \right) - n \log(2\sqrt{2\pi})$$

Not easily tractable.

26/5

Complete observations

We also have the sampling description:

$$X = ZX^{(1)} + (1 - Z)X^{(2)}$$

Z is a *latent* variable with pmf $p(z) = \left\{ \begin{array}{ll} 1/2 & \text{if } z = 0 \\ 1/2 & \text{if } z = 1 \end{array} \right.$

What if we observed both (Z, X)? Their joint density is

$$f(x,z) = p(z) \cdot f(x|z)$$

$$= \frac{1}{2} \cdot \left(z \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu_1)^2}{2}} + (1-z) \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu_2)^2}{2}} \right)$$

$$= \frac{1}{2\sqrt{2\pi}} e^{-z\frac{(x-\mu_1)^2}{2}} e^{-(1-z)\frac{(x-\mu_1)^2}{2}}$$

$$= \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{z(x-\mu_1)^2 + (1-z)(x-\mu_2)^2}{2} \right)$$

Complete likelihood

The complete likelihood becomes

$$L^{\mathsf{comp}}\left((x_1,z_1),\dots,(x_n,z_n);\mu_1,\mu_2\right) = \prod_{i=1}^n \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{z_i(x_i-\mu_1)^2 + (1-z_i)(x_i-\mu_2)^2}{2}\right)$$

and the corresponding complete log-likelihood is

$$\ell^{\mathsf{comp}}(\mu_1, \mu_2) = -n \log(2\sqrt{2\pi}) - \frac{1}{2} \sum_{i=1}^{n} [Z_i(X_i - \mu_1)^2 + (1 - Z_i)(X_i - \mu_2)^2]$$

Easy to maximize:

$$\hat{\mu}_1 = \frac{\sum_{i=1}^n Z_i X_i}{\sum_{i=1}^n Z_i}, \qquad \hat{\mu}_2 = \frac{\sum_{i=1}^n (1 - Z_i) X_i}{\sum_{i=1}^n (1 - Z_i)}$$

but requires knowledge of the Z_i s which we don't have...

The E step

Idea: replace unknown Z_i by its (conditional) Expectation:

- First attempt: $Z_i \approx \mathbb{E}[Z_i] = 1/2$. This is **too rough!**
- ▶ Second attempt: $Z_i \approx \mathbb{E}[Z_i|X_i]$. This is much better!

$$\begin{split} \mathbb{E}[Z_i|X_i] &= \mathbb{P}[Z_i = 1|X_i] \\ &= \frac{f(X_i|Z_i = 1)\mathbb{P}[Z_i = 1]}{f(X_i|Z_i = 1)\mathbb{P}[Z_i = 1] + f(X_i|Z_i = 0)\mathbb{P}[Z_i = 0]} \\ &\qquad \qquad \qquad \text{(Bayes formula)} \\ &= \frac{\frac{1}{\sqrt{2\pi}}e^{-\frac{(X_i - \mu_1)^2}{2}} \cdot \frac{1}{2}}{\frac{1}{\sqrt{2\pi}}e^{-\frac{(X_i - \mu_1)^2}{2}} \frac{1}{2} + \frac{1}{\sqrt{2\pi}}e^{-\frac{(X_i - \mu_2)^2}{2}} \cdot \frac{1}{2}} \\ &= \frac{e^{-\frac{(X_i - \mu_1)^2}{2}}}{e^{-\frac{(X_i - \mu_1)^2}{2}} + e^{-\frac{(X_i - \mu_2)^2}{2}}} =: w_i \in (0, 1) \end{split}$$

Note that w_i depends on μ_1, μ_2 .

The M step

If we replace Z_i by $\mathop{\mathrm{I\!E}}[Z_i|X_i]=w_i$ in the complete log-likelihood, we get

$$\tilde{\ell}(\mu_1, \mu_2) = -n \log(2\sqrt{2\pi}) - \frac{1}{2} \sum_{i=1}^{n} [w_i (X_i - \mu_1)^2 + (1 - w_i) (X_i - \mu_2)^2]$$

Which is easy to maximize. It yields

$$\hat{\mu}_1 = \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}, \qquad \hat{\mu}_2 = \frac{\sum_{i=1}^n (1 - w_i) X_i}{\sum_{i=1}^n (1 - w_i)}$$

0/51

The EM algorithm

Input data: X_1, \ldots, X_n .

- 1. Initialize $\hat{\mu}_1, \hat{\mu}_2$ (e.g. independent $\mathcal{N}(0,1)$)
- 2. Repeat until convergence:
 - Compute weights (E-step):

$$w_i \leftarrow \frac{e^{-\frac{(X_i - \mu_1)^2}{2}}}{e^{-\frac{(X_i - \mu_1)^2}{2}} + e^{-\frac{(X_i - \mu_2)^2}{2}}}, \quad i = 1, \dots, n$$

Update centers (M-step):

$$\hat{\mu}_1 \leftarrow \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}, \qquad \hat{\mu}_2 \leftarrow \frac{\sum_{i=1}^n (1 - w_i) X_i}{\sum_{i=1}^n (1 - w_i)}$$

Consistency of maximum likelihood estimator

Under mild regularity conditions, we have

$$\hat{\theta}_n^{\text{MLE}} \xrightarrow[n \to \infty]{\mathbb{P}} \theta^*$$

This is because for all $\theta \in \Theta$

$$\frac{1}{n}\log L(X_1,\dots,X_n,\theta)\xrightarrow[n\to\infty]{\mathbb{P}}\text{"constant"}-\mathsf{KL}(\mathbb{P}_{\theta^*},\mathbb{P}_{\theta})$$

Moreover, the minimizer of the right-hand side is θ^* if the parameter is identifiable.

Technical conditions allow to transfer this convergence to the minimizers.

Fisher Information

Definition: Fisher information

Define the log-likelihood for one observation as:

$$\ell(\theta) = \log L_1(X, \theta), \quad \theta \in \Theta \subset \mathbb{R}$$

Assume that ℓ is a.s. twice differentiable. Under some regularity conditions, the *Fisher information* of the statistical model is defined as:

$$I(\theta) = \operatorname{var}[\ell'(\theta)] = -\operatorname{I\!E}[\ell''(\theta)]$$

Equivalence of the two definitions

We write it in the case of a continuous r.v. with pdf f_{θ} . It all starts with the \star identity (we will write $\stackrel{\star}{=}$ when we use it):

$$\int f_{\theta}(x)dx = 1 \implies \frac{d}{d\theta} \int f_{\theta}(x)dx = \left[\int \frac{d}{d\theta} f_{\theta}(x)dx = 0 \right] \tag{*}$$

We now compute $\text{var}[\ell'(\theta)]$ and $-\text{I\!E}[\ell''(\theta)]$ and check that they are indeed equal. First we compute derivatives:

$$\ell'(\theta) = \frac{d}{d\theta} \log f_{\theta}(x) = \frac{\frac{d}{d\theta} f_{\theta}(x)}{f_{\theta}(x)}, \qquad \ell''(\theta) = \frac{\frac{d^2}{d\theta^2} f_{\theta}(x)}{f_{\theta}(x)} - \left(\frac{\frac{d}{d\theta} f_{\theta}(x)}{f_{\theta}(x)}\right)^2.$$

The first identity gives

$$\begin{split} \operatorname{var}[\ell'(\theta)] &= \mathbb{E}[(\ell'(\theta))^2] - (\mathbb{E}[\ell'(\theta)])^2 = \int \big(\frac{\frac{d}{d\theta}f_{\theta}(x)}{f_{\theta}(x)}\big)^2 f_{\theta}(x) dx - \big(\int \frac{\frac{d}{d\theta}f_{\theta}(x)}{f_{\theta}(x)}f_{\theta}(x) dx\big)^2 \\ &= \int \frac{\left(\frac{d}{d\theta}f_{\theta}(x)\right)^2}{f_{\theta}(x)} dx - \big(\int \frac{d}{d\theta}f_{\theta}(x) dx\big)^2 \stackrel{\star}{=} \int \frac{\left(\frac{d}{d\theta}f_{\theta}(x)\right)^2}{f_{\theta}(x)} dx \end{split}$$

Moreover, the second identity gives

$$\begin{split} \mathbb{E}[\ell''(\theta)] &= \int \frac{\frac{d^2}{d\theta^2} f_{\theta}(x)}{f_{\theta}(x)} f_{\theta}(x) dx - \int \left(\frac{\frac{d}{d\theta} f_{\theta}(x)}{f_{\theta}(x)}\right)^2 f_{\theta}(x) dx \\ &= \frac{d}{d\theta} \int \frac{d}{d\theta} f_{\theta}(x) dx - \int \frac{\left(\frac{d}{d\theta} f_{\theta}(x)\right)^2}{f_{\theta}(x)} dx \stackrel{\star}{=} - \int \frac{\left(\frac{d}{d\theta} f_{\theta}(x)\right)^2}{f_{\theta}(x)} dx = -\text{var}[\ell'(\theta)] \,. \end{split}$$

Fisher information of the Bernoulli experiment

Let $X \sim \mathsf{Ber}(p)$.

$$\ell(p) = \log(p^X(1-p)^(1-X)) = X\log p + (1-X)\log(1-p)$$

$$\ell'(p) = \frac{X}{p} - \frac{1 - X}{1 - p}$$
 $var[\ell'(p)] = \frac{1}{p(1 - p)}$

$$\ell''(p) = -\frac{X}{p^2} - \frac{1-X}{(1-p)^2} - \mathbb{E}[\ell''(p)] = \frac{1}{p(1-p)}$$

Asymptotic normality of the MLE

Theorem

Let $\theta^* \in \Theta$ (the *true* parameter). Assume the following:

- 1. The parameter is identifiable.
- 2. For all $\theta \in \Theta$, the support of \mathbb{P}_{θ} does not depend on θ ;
- 3. θ^* is not on the boundary of Θ ;
- 4. $I(\theta) \neq 0$ in a neighborhood of θ^* ;
- 5. A few more technical conditions.

Then, $\hat{\theta}_n^{\mathrm{MLE}}$ satisfies:

$$m{\hat{ heta}}_n^{ ext{MLE}} \xrightarrow[n o \infty]{ ext{P}} heta^* \qquad ext{w.r.t. } ext{IP}_{ heta^*};$$

36/5

An idea of the proof

We can use a technique resembling what we used for the Δ -method. How? We need to write the MLE as the function of an average. Write $\ell_i(\theta) := \log f_\theta(X_i)$ and by CLT, we have

$$\sqrt{n} \Big\{ \frac{1}{n} \sum_{i=1}^{n} \ell_i'(\theta) - \mathbb{E}[\ell'(\theta)] \Big\} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \mathsf{var}[\ell'(\theta)])$$

Note first that, $\mathbb{E}[\ell'(\theta)] \stackrel{\star}{=} 0$ and $\mathrm{var}[\ell'(\theta)] = I(\theta)$. Moreover, to make the MLE appear, recall that since it maximizes the log likelihood so that $\sum_{i=1}^n \ell_i'(\hat{\theta}^{\mathrm{MLE}}) = 0$.

Therefore, we can write we can write

$$\sqrt{n} \left\{ \frac{1}{n} \sum_{i=1}^{n} (\ell_i'(\hat{\theta}^{\text{MLE}}) - \ell_i'(\theta)) \right\} \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, I(\theta))$$

Now we start being more informal. Using a first order Taylor expansion (which is justified because the MLE is consistent), we have that

$$\frac{1}{\hat{\theta}^{\mathrm{MLE}} - \theta} \Big\{ \frac{1}{n} \sum_{i=1}^{n} (\ell_i'(\hat{\theta}^{\mathrm{MLE}}) - \ell_i'(\theta)) \Big\} \approx \Big\{ \frac{1}{n} \sum_{i=1}^{n} \ell_i''(\theta) \Big\} \xrightarrow[n \to \infty]{a.s.} \mathbb{E}[\ell_i''(\theta)] = -I(\theta) \quad \text{(LLN)}$$

The two above displays together with Slutsky yield

$$-I(\theta)\sqrt{n}(\hat{\theta}^{\text{MLE}} - \theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, I(\theta))$$

Dividing both sides by $-I(\theta)$ yields an asymptotic variance of $I(\theta)/I(\theta)^2=1/I(\theta)$.

M-estimation

MLE Strategy

Observe $X_1, \ldots, X_n \sim \mathbb{P}_{\theta^*}$, i.i.d, θ^* unknown.

- 1. Ideal loss function: $\theta \mapsto \mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta})$ minimized at $\theta = \theta^*$
- 2. Observe that $\mathsf{KL}(\mathbb{P},\mathbb{P}_{\theta}) = -\mathbb{E}\log[p_{\theta}(X)]$ (plus additive constant)
- 3. Estimate by $-\frac{1}{n}\sum_{i=1}^n \log[p_{\theta}(X_i)]$ (-log-likelihood)
- 4. $\hat{\theta} := \operatorname{argmin} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log[p_{\theta}(X_i)] \right\}$

M-estimators

Idea:

- Let X_1, \ldots, X_n be i.i.d with some unknown distribution \mathbb{P} in some sample space E ($E \subseteq \mathbb{R}^d$ for some $d \ge 1$).
- ▶ No statistical model needs to be assumed (similar to ML).
- ▶ Goal: estimate some parameter μ^* associated with IP, e.g. its mean, variance, median, other quantiles, the true parameter in some statistical model...
- ▶ Find a function $\rho: E \times \mathcal{M} \to \mathbb{R}$, where \mathcal{M} is the set of all possible values for the unknown μ^* , such that:

$$Q(\mu) := \mathbb{E}\left[\rho(X_1, \mu)\right]$$

achieves its minimum at $\mu = \mu^*$.

Examples (1)

- ▶ If $E = \mathcal{M} = \mathbb{R}$ and $\rho(x,\mu) = (x-\mu)^2$, for all $x \in \mathbb{R}, \mu \in \mathbb{R}$: $\mu^* =$
- If $E = \mathcal{M} = \mathbb{R}^d$ and $\rho(x, \mu) = \|x \mu\|_2^2$, for all $x \in \mathbb{R}^d$, $\mu \in \mathbb{R}^d$: $\mu^* =$
- ▶ If $E = \mathcal{M} = \mathbb{R}$ and $\rho(x, \mu) = |x \mu|$, for all $x \in \mathbb{R}$, $\mu \in \mathbb{R}$: μ^* is a median of \mathbb{P} .

MLE is an M-estimator

Assume that $(E, \{\mathbb{I}\mathbb{P}_{\theta}\}_{\theta \in \Theta})$ is a statistical model associated with the data.

Theorem

Let $\mathcal{M}=\Theta$ and $\rho(x,\theta)=-\log L_1(x,\theta)$, provided the likelihood is positive everywhere. Then,

$$\mu^* = \theta^*$$
,

where $\mathbb{P} = \mathbb{P}_{\theta^*}$ (i.e., θ^* is the true value of the parameter).

Definition

▶ Define $\hat{\mu}_n$ as a minimizer of:

$$Q_n(\mu) := \frac{1}{n} \sum_{i=1}^n \rho(X_i, \mu).$$

Examples: Empirical mean, empirical median, empirical quantiles, MLE, etc.

The method of moments

Moments

Let X be a random variable with distribution \mathbb{P}_{θ} (write \mathbb{E}_{θ} for its expectation).

Definition

For $k = 1, 2, \ldots$, the **moment** of order k of X is given by

$$m_k = m_k(\theta) = \mathbb{E}_{\theta}[X^k]$$

Example 1: $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{array}{ll} m_1 &= \mathbb{E}[X] = \mu \\ m_2 &= \mathbb{E}[X^2] \\ &= \operatorname{var}[X] + (\mathbb{E}[X])^2 \\ &= \sigma^2 + \mu^2 \end{array}$$

Example 2: $X \sim \text{Ber}(p)$

$$m_1 = \mathbb{E}[X] = p$$

 $m_k = \mathbb{E}[X^k] = p$

Moment generating function

For many distributions 2 IP, all the moments of $X \sim$ IP are contained in a *single* function called Moment Generating Function, or simply MGF:

$$M_X(t) = \mathbb{E}[e^{tX}]$$
 , $t \in \mathbb{R}$.

The moments are given by successive derivatives of $M_X(\cdot)$ at t=0:

$$\begin{split} M_X^{(1)}(t) &= \mathbb{E} \left[\frac{d}{dt} e^{tX} \right] &= \mathbb{E} \left[X e^{tX} \right] = \mathbb{E} [X] = m_1 \quad \text{for } t = 0 \\ M_X^{(2)}(t) &= \mathbb{E} \left[\frac{d^2}{dt^2} e^{tX} \right] &= \mathbb{E} \left[X^2 e^{tX} \right] = \mathbb{E} [X^2] = m_2 \quad \text{for } t = 0 \\ &\vdots \end{split}$$

$$M_X^{(k)}(t) = \mathbb{E}\left[\frac{d^k}{dt^k}e^{tX}\right] = \mathbb{E}\left[X^k e^{tX}\right] = \mathbb{E}[X^k] = m_k \quad \text{for } t = 0$$

²It may be infinite for some t. For if X has a Cauchy distribution with pdf given by $f(x) = \frac{1}{\pi(1+x^2)}$

³For a function f(t), we write $f^{(k)}(t) = \frac{d^k}{dt^k} f(t)$ for its kth derivative.

MGF of a Standard Gaussian

Consider the Standard Gaussian r.v. $Z \sim \mathcal{N}(0,1)$. We compute its MGF:

$$M_Z(t) = \mathbb{E}[e^{tZ}] = \frac{1}{\sqrt{2\pi}} \int e^{tz} e^{-\frac{z^2}{2}} dz$$

To compute it, we use a standard trick when manipulating Gaussians: *completing the square*

$$\frac{1}{\sqrt{2\pi}} \int e^{tz} e^{-\frac{z^2}{2}} dz = \frac{1}{\sqrt{2\pi}} \int e^{-\frac{(z-t)^2}{2}} e^{\frac{t^2}{2}} dz$$
$$= e^{\frac{t^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \int e^{-\frac{(z-t)^2}{2}} dz$$
$$= e^{\frac{t^2}{2}} \cdot 1$$

Therefore

$$M_Z(t) = e^{\frac{t^2}{2}}$$

Moments of a Standard Gaussian

We have seen that for any r.v X,

$$m_k = M_X^{(k)}(0), \quad k = 1, 2, \dots$$

If $X = Z \sim \mathcal{N}(0, 1)$, compute

$$M_Z^{(k)}(0) = \frac{d^k}{dt^k} e^{\frac{t^2}{2}} \Big|_{t=0}$$

It yields

$$\begin{array}{ll} M_Z^{(1)}(t) &= t e^{\frac{t^2}{2}} & \Rightarrow m_1 = M_Z^{(1)}(0) = 0 \\ M_Z^{(2)}(t) &= e^{\frac{t^2}{2}} + t^2 e^{\frac{t^2}{2}} & \Rightarrow m_2 = M_Z^{(2)}(0) = 1 \\ M_Z^{(3)}(0) &= 0 \\ M_Z^{(4)}(0) &= 3 \end{array}$$

Sample moments

- ▶ Statistical model $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$.
- ightharpoonup Assume $heta \subset {\rm I\!R}^d$ (d parameters to estimate)
- ightharpoonup Moments $m_k(\theta) = \mathbb{E}[X^k], k = 1, 2, \dots$
- Let X_1, \ldots, X_n be an i.i.d. observations from this model

The kth sample moment is

$$\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

By LLN, we have

$$\hat{m}_k \xrightarrow[n \to \infty]{\mathbb{P}/a.s} m_k(\theta)$$

Methods of moments estimator

Definition

The methods of moments estimator $\hat{\theta}_n \in \mathbb{R}^d$ satisfies

$$m_1(\hat{\theta}_n) = \hat{m}_1$$

$$m_2(\hat{\theta}_n) = \hat{m}_2$$

$$\vdots \qquad \vdots$$

$$m_d(\hat{\theta}_n) = \hat{m}_d$$

This a system of d equations with d unknowns.

Ex. 1:
$$X \sim \mathcal{N}(\mu, \sigma^2)(d=2)$$
 Ex. 2: $X \sim \text{Ber}(p)(d=1)$
$$m_1 = \mu \qquad m_1 = p$$

$$m_2 = \sigma^2 + \mu^2$$

$$(\hat{\mu}_n, \hat{\sigma}_n^2) = \left(\bar{X}_n, \bar{X}_n^2 - (\bar{X}_n)^2\right)$$

$$\hat{p}_n = \bar{X}_n$$

Recap

- ► Three principled methods for estimation: maximum likelihood, *M*-estimation, and the method of moments.
- ▶ Maximum likelihood is an example of *M*-estimation
- ▶ MLE tends to be best: asymptotic variance is smallest, given by inverse Fisher information.