Дискретная математика

Сидоров Дмитрий

Группа БПМИ 219

November 11, 2021

$N_{2}1$

Про функцию f из множества X в множество Y и множество $B\subseteq Y$ известно, что f^{-1} (B)=X . Верно ли, что B=Y?

Решение:

Например, для множеств $X = \{1\}$, $Y = \{2,3\}$ и $B = \{2\}$ и f(1) = 2 верно, что $f^{-1}(B) = X$, но при этом $B \neq Y$.

Ответ: нет

№2

Функция f определена на множестве X и принимает значения в множестве Y, при этом $A \cup B \subseteq X$ и f(A) = f(B). Верно ли, что при этих условиях $f^{-1}(f(A)) = f^{-1}(f(B))$? Приведите доказательство или контрпример в каждом случае.

Решение:

Для любого $a \in A$ элемент f(a) принадлежит f(A), а значит a принадлежит прообразу множества f(A). Таким образом, $A \subseteq f^{-1}(f(A))$ и аналогично $B \subseteq f^{-1}(f(B))$. По условию f(A) = f(B), значит $\forall a \in A \ \exists b \in B : f(a) = f(b) = z$. Пусть все такие z образуют множество Z, тогда $f^{-1}(f(a)) = f^{-1}(f(b)) = f^{-1}(Z)$.

Ответ: Верно

$N_{\overline{2}}3$

Функция f определена на множестве $A \cup B$ и принимает значения в множестве Y. Если заменить в утверждении $f(A \triangle B)$? $f(A) \triangle f(B)$ знак? на один из знаков включения \subseteq или \supseteq , получится утверждение. Какие из получившихся двух утверждений верны для любой f? Приведите доказательство или контрпример в каждом случае.

Решение:

Контрпример для $f(A \triangle B) \subseteq f(A) \triangle f(B)$: Пусть $A = \{1,2,3,4\}, B = \{4,5\} (\Rightarrow A \cup B = \{1,2,3,4,5\}), f(A) = \{1,2,3\} (f(1) = 1,f(2) = 2,f(3) = 3,f(4) = 3), f(B) = \{3,5\} (f(4) = 3,f(5) = 5),$ таким образом, $(A\triangle B = \{1,2,3,5\} \Rightarrow f(A\triangle B) = \{1,2,3,5\},$ но $f(A) \triangle f(B) = \{1,2,3\} \triangle \{3,5\} = \{1,2,5\}$ и $f(A\triangle B) \subseteq f(A) \triangle f(B)$, те $\{1,2,3,5\} \subseteq \{1,2,3\}$ - ложь.

Докажем, что $f(A \triangle B) \supseteq f(A) \triangle f(B)$ верно для любой f. Для любого $a \in (f(A) \setminus f(B))$: $f(a)^{-1} \in (A \setminus B)$, аналогично для любого $b \in (f(B) \setminus f(A))$: $f(b)^{-1} \in (B \setminus A)$, а значит $f(A \triangle B) \supseteq f(A) \triangle f(B)$.

Ответ: $f(A \triangle B) \supseteq f(A) \triangle f(B)$

№4

О функциях f из множества A в множество B и g из множества B в множество C известно, что g \circ f биекция. Верно ли, что g всюду определена? (Множества A , B , C не обязательно конечные.)

Решение:

Неверно, тк существует контрпример: пусть множества A,B,C совпадают с множеством натуральных чисел, а f(x)=x+1,g(x)=x-1. Тогда $f(1)=2,f(2)=3,f(3)=4,f(4)=5,\ldots$, а $g(2)=1,g(3)=2,g(4)=3,g(5)=4,\ldots$, таким образом, $g\circ f=g(f(x))$ - биекция, тк $g(f(1))=1,g(f(2))=2,g(f(3))=3,\ldots$, но при этом g(1) не определена.

Ответ: Неверно

$N_{2}5$

О всюду определённых функциях f, g из множества A в себя известно, что $f \circ g \circ f = id$ A. Верно ли, что f биекция? (Множество A не обязательно конечное.)

Решение:

 $(f \circ g) \circ f = f \circ (g \circ f)$, тк композиция функций ассоциативна, $f(g(x)) \circ f = f \circ g(f(x)) = id_A$ Функция является биекцией тогда и только тогда, когда она является инъекицей и сюръекцией. Заметим, что f является левой и правой обратной, а значит является инъекцией и сюръекцией (доказано на семинаре), а значит f - биекция.

Ответ: Верно

№6

О функциях f , g из множества A в себя (не обязательно всюду определённых) известно, что g \circ f всюду определённая. Множество A состоит из 2021 элемента. Найдите минимально возможное количество элементов в образе $f \circ g(A)$.

Решение:

Покажем, что минимально возможное количество элементов в образе $f \circ g(A)$ равно 1. Количество элементов в образе $f \circ g(A)$ не равно 0, тк g(f(A)) всюду определена, те функция g определена на каждом элементе множества f(A), в том числе f(g(A)). Пример, в котором количество элементов в образе $f \circ g(A)$ равно 1: пусть множество = $\{1, 2, 3, \ldots, 2021\}$ (состоит из 2021 элемента), f(1) = 1, g(1) = 1, и f и g определены только в точке 1, тогда $g \circ f$ всюду определена, и количество элементов в образе $f \circ g(A)$ равно 1.

Ответ: 1

№7

В графе на n вершинах для любой пары вершин u и v есть ровно две вершины, с которыми соединены и u, и v. Докажите, что степени всех вершин в этом графе одинаковы.

Доказательство:

По условию для любой пары вершин u и v есть ровно две вершины, с которыми соединены и u, и v. Заметим, что если выбрать произвольные вершины a, b, то в графе есть ровно 2 вершины x, y, с которыми соедиенны и a, и b, а значит вершины a, b, x, y образуют простой цикл длины 4.

Выберем в графе произвольную вершину x, обозначим её степень d_x (те из x выходит d_x рёбер). Заметим, что если выбрать произвольную пару ребёр, которые исходят из вершины x (пусть это рёбра xa,xb), то существует вершина y такая, что существуют рёбра ay,by (тк по условию для любой пары вершин u и v есть ровно две вершины, с которыми соединены и u, и v), те образуется цикл длины 4 с вершиной x. Заметим, что пару рёбер из x можно выбрать $\frac{d_x(d_x-1)}{2}$ способами, а значит x входит в $\frac{d_x(d_x-1)}{2}$ простых цикла длины 4.

Пусть в графе k штук простых циклов длины 4. Заметим, что каждая вершина графа входит в одно и то же число простых циклов длины 4 (по условию), а значит каждая вершина входит в $\frac{4k}{n}$ цикла длины 4. Вернёмся к ранее выбранной вершине x: заметим, что для x $\frac{4k}{n} = \frac{d_x(d_x-1)}{2}$. Заметим, что из этого уравнения можно найти d_x , причём $d_x^2 - d_x - \frac{8k}{n} = 0$, а значит d_x зависит только от k и n и не зависит от выбранной вершины x, те какую бы вершину x мы не выбрали, её степень будет одна и та же. Таким образом, степени всех вершин в этом графе одинаковы.