Lab 2 - Adding Stuff Up

$\bullet\,$ Part 1 - One Bit Half Adder

	Α	В	Cout	Sum
	0	0	0	0
1.	0	1	0	1
	1	0	0	1
	1	1	1	0

- 2. $Sum \equiv (A \lor B) \land \neg (A \land B)$ $Cout \equiv (A \land B)$
- 3. One Bit Half Adder

• Part 2 - One Bit Full Adder

	Α	В	Cin	Cout	Sum
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
1.	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1

2.
$$Sum \equiv (\neg A \wedge \neg B \wedge Cin) \vee (\neg A \wedge B \wedge \neg Cin) \vee (A \wedge \neg B \wedge \neg Cin) \vee (A \wedge B \wedge C) \\ (A \wedge B \wedge C) \\ Cout \equiv (B \wedge Cin) \vee (A \wedge Cin) \vee (A \wedge B)$$

3. One Bit Full Adder

• Part 3 - 4-bit Adder

1. Four Bit Adder

$\bullet\,$ Part 4 - Logisim 4-bit Adder

1. Logisim Four Bit Adder

- Questions about a 4-bit Adder
 - 1. $0_{10}to15_{10}$
 - 2. 4-bit adder table:

Bin. A input	Bin. B input	Bin. sum	Dec. A input	Dec. B input	Dec. Sum	Carry
0000	0111	0111	0	7	7	0
1100	0101	0001	12	5	17	1
0101	0101	1010	5	5	10	0
0111	1111	0110	7	12	22	1
0010	0110	1000	2	6	8	0

- 3. The only constraint are that the inputs can only be 4 bit unsigned integers, and because of this the circuit will always produce a result that is meaningful considering that there is also a carry out bit.
- 4. The carry out pin signifies the 5th bit in the sum.
- 5. The four bit adder will use the carry out pin as the "fifth bit" for the sum.