MATH 355: HOMEWORK 6

ALEXANDER LEE

Exercise 1 (3.2.2). (a) Limit points of $A: \{-1,1\}$. Limit points of B: [0,1].

- (b) A is neither open nor closed. B is neither open nor closed.
- (c) A contains isolated points. B does not contain isolated points.
- (d) $\overline{A} = A \cup \{-1\}$. $\overline{B} = [0, 1]$.

Exercise 2 (3.2.4). (a) If $s \in A$, then $s \in \overline{A}$ and we are done. Now suppose $s \notin A$. By Lemma 1.3.8, for every $\epsilon > 0$, there exists an $a \in A$ ($a \neq s$) such that $s - \epsilon < a$. Since $s = \sup(A)$, we also know that a < s. Thus, every ϵ -neighborhood $V_{\epsilon}(s)$ intersects A at some point other than s. That is, s is a limit point of A, so $s \in \overline{A}$ in this case as well.

(b) An open set O cannot contain its supremum $s = \sup(O)$ since every ϵ -neighborhood $V_{\epsilon}(s)$ of s is not be a subset of O. Specifically, this is because for any $\epsilon > 0$ and $a \in O$, we have that $a < s + \epsilon$ since $s = \sup(O)$.

Exercise 3 (3.2.6).

Exercise 4 (3.2.8).

Exercise 5 (3.2.9).

Exercise 6 (3.2.10).

Exercise 7 (3.2.13).

Exercise 8 (3.2.14).