

Instalações Elétricas 1

Stéfani Vanussi Silva de Melo stefani.melo@ufes.br

Linha elétrica

- Conjunto constituído por um ou mais condutores, com os elementos de fixação e suporte;
- Destina-se ao transporte de energia elétrica ou sinais elétricos;
- A linha pode ser aérea, aparente, embutida ou subterrânea.

- Pela excelente relação custo versus resistência mecânica e condutividade, o cobre e o alumínio são dois metais de escolha para a fabricação de condutores.
- A NBR 5410 não admite condutor de alumínio em instalações elétricas de locais com alta taxa de ocupação (residências, hotéis, e hospitais).

- Observações importantes segundo a NBR5410/2004:
 - Nas Instalações Elétricas Residenciais: somente podem ser empregados condutores de cobre, exceto condutores de aterramento e proteção;
 - Nas Instalações Elétricas Comerciais: é permitido o uso de condutores de alumínio, desde que a seção seja maior ou igual a 50mm2.
 - Nas Instalações Elétricas Industriais: é permitido o uso de condutores de alumínio, desde que a seção seja maior ou igual a 16mm2, a carga instalada maior ou igual a 50kW e instalações e manutenções qualificadas.

FIO: Produto metálico maciço e flexível, de seção transversal invariável.

CABO: Conjunto de fios encordoados, isolados ou não entre si.

- Quanto à flexibilidade: a NBR 6880 atribui seis classes:
 - Fios são enquadrados na classe 1;
 - Os cabos são enquadrados entre as classes 2 a 6, sendo 6 a máxima flexibilidade.

- Os condutores têm que passar por curvas e caixas de passagem, muitas vezes em conjunto com outros cabos.
- A experiência mostra que cabos flexíveis (mínimo classe 5) facilita a colocação e retirada do interior do eletroduto.

Condutor nu: é um condutor que não possui qualquer isolamento elétrico contínuo:

Fio nu

Cabo nu

 Condutor Isolado: é o conjunto constituído pela alma condutora revestida de uma ou mais camadas de material isolante, que garantem o seu isolamento elétrico;

• Cabo unipolar: cabo constituído por um único condutor isolado e dotado, no mínimo, de cobertura;

• Cabo Multipolar : cabo constituído por dois ou mais condutores isolados e dotado, no mínimo, de cobertura.

O CETE OWNES OF THE OWNES OF TH

• Condutores unipolar e multipolar

> CONDUTOR:

Metal: fios de cobre nu, têmpera moie.
 Encordoamento: classe 5.

> ISOLAÇÃO:

(2) Composto termoplástico de PVC flexível SEM CHUMBO antichama.

> ENCHIMENTO:

(3) Composto termoplástico de PVC flexível SEM CHUMBO.

> COBERTURA:

(4) Composto termoplástico de PVC flexível SEM CHUMBO antichama.

Isolação: Conjunto dos materiais isolantes utilizados para confinar o campo elétrico gerado pela tensão, isolando-os eletricamente do exterior reduzindo ou eliminado o risco de choque e curto-circuitos (PVC, EPR, etc).

Isolamento: Conjunto das propriedade adquiridas por um corpo

condutor decorrentes de sua isolação:

condutores isolados: 450/750V

condutores multipolares: 0,6/1kV

Temperaturas características dos cabos em função do material da isolação				
Material	θ _ζ (°C)	θ _{sc} (°C)	θ _{CC} (°C)	
PVC	70	100	160	
EPR	90	130	250	
XLPE	90	130	250	

O UNIVERSIDATIO SAVIO STATE OWNES CENTRA OF SAVIO SAVI

 A seguir são apresentadas as características quanto a variação de temperatura dos diversos materiais usados na isolação de condutores para instalações elétricas.

Tipo de Material	Temperatura de operação em regime contínuo (°C)	Temperatura de sobrecarga (°C)	Temperatura de curto-circuito (°C)
Policloreto de Vinila (PVC) até 300 mm²	70	100	160
Policloreto de Vinila (PVC) maior que 300 mm²	70	100	140
Borracha - etileno - propileno (EPR)	90	130	250
Polietileno reticulado (XLPE)	90	130	250

- A temperatura máxima para serviço contínuo é a máxima temperatura admitida para operação normal.
- A temperatura limite de sobrecarga não deve atingir 100 horas durante 12 meses consecutivos, nem 500 horas durante a vida do cabo.
- A temperatura limite de curto-circuito é a temperatura máxima que a isolação pode atingir durante um curto-circuito que não ultrapasse 5 segundos.

- Segundo a NBR 5410:
- 6.2.3.2 Os cabos uni e multipolares devem atender as seguintes normas:
 - 1. os cabos com isolação de EPR, a NBR 7286;
 - 2. os cabos com isolação de XLPE, a NBR 7287;
 - 3. os cabos com isolação de PVC, a NBR 7288 ou NBR 8661 (devem ser não propagantes de chama tipo BWF);

PVC cloreto de polivinila EPR borracha etileno-propileno XLPE polietileno reticulado

- Seção nominal: Caracteriza-se os condutores pela seção nominal
 S, em mm2.
 - Diferentemente do que possa parecer, S não se refere à seção transversal da seção metálica, mas ao enquadramento do condutor em uma série de valores padrões de resistência elétrica.
 - um condutor de S = 4mm2 por exemplo, não terá (muito provavelmente) um diâmetro igual a 2,257mm.

O UNIVERSION DOCE LE OWNES GENTA

Fio de fase: cores preto, vermelho, branco.

Fio de retorno: qualquer uma das duas cores remanescentes que não

foram utilizadas para os fios de fase.

Fio neutro: cor azul claro.

Fio de proteção: cor verde (ou verde e amarelo).

- Condutor de proteção de uma instalação residencial:
 - condutor prescrito em certas medidas de proteção contra choques elétricos;
 - destinado à interligação de massas metálicas;
 - elementos condutores estranhos à instalação;
 - terminal ou barra de aterramento e/ou pontos de alimentação ligados `a terra.
 - Símbolo (PE).
 - Popularmente chamado de fio terra.

Conduto elétrico: elemento de uma linha elétrica destinado a conter os condutores elétricos.

A tabela 33 da NBR 5410:2004 identifica os seguintes tipos de instalações ao ar livre dos sistemas de bandejamento:

- Eletrocalha : anteriormente chamada de calha, é um elemento de linha elétrica fechada, aparente, cobertura desmontável, podendo ser liso ou perfurado.
- Bandeja : é uma eletrocalha sem tampa e geralmente na forma de U, podendo também ser liso ou perfurada.
- Perfilado: eletrocalha ou bandeja de dimensões reduzidas como 38 X 38 mm e no máximo 38 X 76 mm.
- Leito : por ser parecido com uma escada esse era sua denominação anteriormente utilizada pela norma.

18

Um **eletroduto** é um elemento de linha elétrica fechada, de seção circular ou não, destinado a conter condutores elétricos, permitindo tanto a enfiação quanto a retirada dos condutores por puxamento. Na prática, o termo se refere tanto ao elemento (tubo), quanto ao conduto formado pelos diversos tubos.

Uma **eletrocalha** é um conduto fechado utilizado em linhas aparentes, com tampas em toda sua extensão, para permitir a instalação e a remoção de condutores. As calhas podem ser metálicas (aço, alumínio) ou isolantes (plástico); as paredes podem ser maciças ou perfuradas e a tampa simplesmente encaixada ou fixada com auxílio de ferramenta.

Um **bloco alveolado** é um bloco de construção com um ou mais furos que, por justaposição com outros blocos, forma um ou mais condutos fechados.

Chamamos de **moldura** o conduto utilizado em linhas aparentes, fixado ao longo de paredes, compreendendo uma base com ranhuras para colocação de condutores e uma tampa desmontável em toda sua extensão. Recebe o nome de **alizar**, quando fixada em torno de um vão de porta ou de janela, e de **rodapé**, quando fixada junto ao ângulo parede-piso. As molduras podem ser de madeira ou de plástico.

Uma canaleta no solo é um conduto com tampas ao nível do solo, removíveis e instaladas em toda sua extensão. As tampas podem ser maciças e/ou ventiladas e os cabos podem ser instalados diretamente ou em eletrodutos.

A **prateleira para cabos** (ou simplesmente prateleira) é um suporte contínuo para condutores, engastado ou fixado numa parede ou no teto por um de seus lados e com uma borda livre.

Um **gancho para cabos** (ou apenas **gancho**) é um suporte constituído por elementos simples fixados à estrutura ou aos elementos da construção.

Uma **escada para cabos** (ou simplesmente escada) é um suporte constituído por uma base descontínua, formada por travessas ligadas a duas longarinas longitudinais, sem cobertura. As travessas devem ocupar menos de 10% da área total da base. Assim como as bandejas, as escadas são geralmente metálicas.

Tabela 33 — Tipos de linhas elétricas

Método de instalação número	Esquema ilustrativo Descrição		Método de referência ¹⁾	
1	Face interna	Condutores isolados pu cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante ²⁾	A1	
2	Face interna	Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante ²⁾	A2	
3		Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto	B1	
4		Cabo multipolar em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto	B2	
5	<u></u>	Condutores isolados ou cabos unipolares em eletroduto aparente de seção não-circular sobre parede	B1	

7	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria	B1
8	Cabo multipolar em eletroduto de seção circular embutido em alvenaria	B2

Tabela 33 (continuação)

Método de instalação número	Esquema ilustrativo	Descrição	Método de referência ¹⁾
52		Cabos unipolares ou cabo multipolar embutido(s) diretamente em alvenaria sem proteção mecânica adicional	С
53		Cabos unipolares ou cabo multipolar embutido(s) diretamente em alvenaria com proteção mecânica adicional	С
61		Cabo multipolar em eletroduto(de seção circular ou não) ou em canaleta não-ventilada enterrado(a)	D
61A		Cabos unipolares em eletroduto(de seção não-circular ou não) ou em canaleta não-ventilada enterrado(a) ⁸⁾	D
63		Cabos unipolares ou cabo multipolar diretamente enterrado(s), com proteção mecânica adicional ⁹⁾	D

Métodos de Instalação versus Condutores Pern	nitidos		
Tipo de Linha Elétrica	Condutor	Cabo Unipolar	Cabo
Afastado da parede ou suspenso por cabo de suporte (a)	Não	V	~
Bandejas não perfuradas ou prateleiras	Não	V	~
Bandejas perfuradas (horizontal ou vertical)	Não	V	~
Canaleta fechada no piso, solo ou parede	V	~	~
Canaleta ventilada no piso ou solo	Não	V	~
Diretamente em espaço de construção (b): 1,5 De ≤ V < 5De	Não	~	~
Diretamente em espaço de construção (b): 5 De ≤ V ≤ 50 De	Não	V	V
Diretamente enterrado	Não	V	~
Eletrocalha	~	V	V
Eletroduto aparente	~	~	~
Eletroduto de seção não circular embutido em alvenaria	Não	V	~
Eletroduto de seção não circular embutido em alvenaria (b): $1,5 De \le V < 5 De$	V	Não	Não
Eletroduto de seção não circular embutido em alvenaria (b): 5 De ≤ V ≤ 50 De	V	Não	Não
Eletroduto em canaleta fechada (b): 1,5 De ≤ V < 20 De	V	~	Não
Eletroduto em canaleta fechada (b): V ≥ 20 De	V	V	Não
Eletroduto em canaleta ventilada no piso ou solo	~	Não	Não
Eletroduto em espaço de construção	Não	V	~
Eletroduto em espaço de construção (b): 1,5 De ≤ V < 20 De	~	Não	Não
Eletroduto em espaço de construção (b): V ≥ 20 De	~	Não	Não
Eletroduto embutido em alvenaria	V	~	V

Eletroduto embutido em caixilho de porta ou janela		Não	Não
Eletroduto embutido em parede isolante	~	~	V
Eletroduto enterrado no solo ou canaleta não ventilada no solo	Não	~	V
Embutimento direto em alvenaria	Não	~	V
Embutimento direto em caixilho de porta ou janela	Não	~	V
Embutimento direto em parede isolante	Não	Não	V
Fixação direta em parede ou teto (c)	Não	~	V
Forro falso ou piso elevado (b): $1,5 De \le V < 5 De$	Não	~	V
Forro falso ou piso elevado (b): 5 De ≤ V ≤ 50 De	Não	~	V
Leitos, suportes horizontais ou telas	Não	~	V
Moldura	~	V	Não
Sobre isoladores	~	Não	Não

Notas:

- (a): a distância entre o cabo e a parede deve ser, no mínimo, igual a 30% do diâmetro externo do cabo;
- (b): De = diâmetro externo do cabo; V = altura do espaço de construção ou da canaleta;
- (c): a distância entre o cabo e a parede ou teto deve ser menor ou igual a 30% do diâmetro externo do cabo.

- Quanto à instalação dos condutores nos condutos, observar:
 - Todos os condutores vivos do mesmo circuito, inclusive o neutro, devem ser agrupados no mesmo conduto.
 - Em eletrodutos, eletrocalhas e blocos alveolados podem ser instalados condutores de mais de um circuito quando:
 - os circuitos pertencerem à mesma instalação, isto é, se originarem do mesmo dispositivo geral de manobra e proteção;
 - as seções nominais dos condutores de fase estiverem contidas dentro de um intervalo de três valores normalizados sucessivos.

O CETE OWNES GENTLE OWNES OF THE OWNES OF TH

Nas instalações elétricas residenciais, a prática é utilizar-se eletrodutos rígidos apenas no piso, onde os esforços mecânicos são mais elevados, e transversalmente elásticos (flexíveis) nas paredes e lajes.

• É vedado o uso, como eletroduto, de produtos que não sejam expressamente apresentados e comercializados como tal;

 As Mangueiras, apesar de vastamente empregadas, não o deveriam ser, pois sua capacidade de suportar esforços transversais é extremamente reduzida, o que compromete a integridade dos condutores.

Chamamos de **caixa de derivação** a caixa utilizada para passagem e/ou ligações de condutores entre si e/ou a dispositivos nela instalados.

Espelho é a peça que serve de tampa para uma caixa de derivação, ou de suporte e remate para dispositivos de acesso externo.

Condulete é uma caixa de derivação para linhas aparentes, dotada de tampa própria.

luva (rígidos) - peça cilíndrica rosqueada internamente, destinada a unir dois tubos ou um tubo e uma curva

bucha (rígidos) - peça de arremate das extremidades dos eletrodutos, destinada a evitar danos à isolação dos condutores por eventuais rebarbas, durante o puxamento. Instalada na parte interna da caixa de derivação

arruela (rígidos) - peça rosqueada internamente (porca), colocada na parte externa da caixa de derivação, complementando a fixação do eletroduto à caixa

curva (rígidos) - de 45° e 90°

braçadeira (rígidos e flexíveis)

box (flexíveis) - peça destinada a fixar um eletroduto flexível a uma caixa ou a um eletroduto rígido

As dimensões internas dos eletrodutos e de suas conexões devem permitir que, após montagem da linha, os condutores possam ser instalados e retirados com facilidade.

 Os trechos contínuos de tubulação, sem interposição de caixas ou equipamentos, não devem exceder 15 m de comprimento para linhas internas às edificações e 30 m para as linhas em áreas externas às edificações, se os trechos forem retilíneos.

 Se os trechos incluírem curvas, o limite de 15 m e o de 30 m devem ser reduzidos em 3 m para cada curva de 90°

Como há uma curva de 90° , o comprimento máximo para o trecho permitido é de (15m - 3m = 12m), o que levou à inserção de mais de uma caixa de passagem (CP3). Assim, o comprimento máximo entre duas caixas com uma curva passa a ser: (4m + 6m = 10m)

• Em cada trecho de tubulação delimitado, de um lado e de outro, por caixa ou extremidade de linha, qualquer que seja essa combinação (caixa..caixa, caixa..extremidade ou extremidade..extremidade), podem ser instaladas no máximo três curvas de 90° ou seu equivalente até no máximo 270°. Em nenhuma hipótese devem ser instaladas curvas com deflexão superior a 90°.

 As curvas, quando originadas do dobramento do eletroduto, sem o uso de acessório específico, não devem resultar em redução das dimensões internas do eletroduto.

O CETE OWNES GENTLY OF SOUND STATE OF STATE OWNES

- Devem ser empregadas caixas:
 - a) em todos os pontos da tubulação onde houver entrada ou saída de condutores, exceto nos pontos de transição de uma linha aberta para a linha em eletrodutos, os quais, nestes casos, devem ser rematados com buchas;
 - b) em todos os pontos de emenda ou de derivação de condutores;
 - c) sempre que for necessário segmentar a tubulação.

ONNES OINES OINES

 Os condutores devem formar trechos contínuos entre as caixas, não se admitindo emendas e derivações senão no interior das caixas. Condutores emendados ou cuja isolação tenha sido danificada e recomposta com fita isolante ou outro material não devem ser enfiados em eletrodutos.

OG UNIVERSIDA

 A localização das caixas deve ser de modo a garantir que elas sejam facilmente acessíveis. Elas devem ser providas de tampas ou, caso alojem interruptores, tomadas de corrente, fechadas com os espelhos que completam a instalação desses dispositivos. As caixas de saída para alimentação de equipamentos podem ser fechadas com as placas destinadas à fixação desses equipamentos.

