

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolić

Timing Issues

January 2003

Synchronous Timing

Timing Definitions

Latch Parameters

Delays can be different for rising and falling data transitions

Register Parameters

Delays can be different for rising and falling data transitions

Clock Uncertainties

Sources of clock uncertainty

Clock Nonidealities

□ Clock skew

• Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

□ Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term t_{JL}

Variation of the pulse width

Important for level sensitive clocking

Clock Skew and Jitter

- □ Both skew and jitter affect the effective cycle time
- Only skew affects the race margin

Clock Skew

Positive and Negative Skew

Positive Skew

Launching edge arrives before the receiving edge

Negative Skew

Receiving edge arrives before the launching edge

Timing Constraints

Minimum cycle time:

$$T - \delta = t_{c-q} + t_{su} +$$

 t_{logic} Worst case is when receiving edge arrives early (positive δ)

Timing Constraints

Hold time constraint:

$$t_{(c-q, cd)} + t_{(logic, cd)} > t_{hold} + \delta$$

Worst case is when receiving edge arrives late Race between data and clock

Impact of Jitter

Longest Logic Path in Edge-Triggered Systems

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$T_{c-q} + T_{LM} + T_{SU} < T - T_{JI,1} - T_{JI,2} - \delta$$

Minimum cycle time is determined by the maximum delays through the logic

$$T_{c-q} + T_{LM} + T_{SU} + \delta + 2 T_{JI} < T$$

Skew can be either positive or negative

Shortest Path

Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

$$T_{c-q} + T_{LM} - T_{JI,1} < T_H + T_{JI,2} + \delta$$

Minimum logic delay

$$T_{c-q} + T_{LM} < T_H + 2T_{JI} + \delta$$

How to counter Clock Skew?

Data and Clock Routing

Flip-Flop – Based Timing

Representation after M. Horowitz, VLSI Circuits 1996.

Flip-Flops and Dynamic Logic

Flip-flops are used only with static logic

Latch timing

When data arrives to transparent latch

Latch is a 'soft' barrier

t_{Clk-Q} When data arrives to closed latch

Data has to be 're-launched'

Single-Phase Clock with Latches

Latch-Based Design

Slack-borrowing

Latch-Based Timing

Can tolerate skew!

Clock Distribution

H-tree

Clock is distributed in a tree-like fashion

More realistic H-tree

[Restle98]

The Grid System

Example: DEC Alpha 21164

Clock Frequency: 300 MHz - 9.3 Million Transistors

Total Clock Load: 3.75 nF

Power in Clock Distribution network: 20 W (out of 50)

Uses Two Level Clock Distribution:

- Single 6-stage driver at center of chip
- Secondary buffers drive left and right side clock grid in Metal3 and Metal4

Total driver size: 58 cm!

21164 Clocking

Location of clock driver on die

- 2 phase single wire clock, distributed globally
- □ 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load
 - 58 cm final driver width
- Local inverters for latching
- Conditional clocks in caches to reduce power
- More complex race checking
- Device variation

Clock Skew in Alpha Processor

EV6 (Alpha 21264) Clocking 600 MHz – 0.35 micron CMOS

- 2 Phase, with multiple conditional buffered clocks
 - 2.8 nF clock load
 - 40 cm final driver width
- □ Local clocks can be gated "off" to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

21264 Clocking

EV6 Clock Results

GCLK Skew (at Vdd/2 Crossings)

GCLK Rise Times 345 (20% to 80% Extrapolated to 0% to 100%)

50

EV7 Clock Hierarchy

Active Skew Management and Multiple Clock Domains

- + widely dispersed drivers
- + DLLs compensate static and low-frequency variation
- + divides design and verification effort
- DLL design and verification is added work
- + tailored clocks

Self-timed and Asynchronous Design

Functions of clock in synchronous design

- 1) Acts as completion
- 2) Ensures the correct ordering of events

Truly asynchronous

design

- 1) Completion is ensured by careful timing
- 2) electing of events is implicit in logic

Self-timed

design

- 1) Completion ensured by completion signal
- 2) Ordering imposed by handshaking protocol

Synchronous Pipelined Datapath

Self-Timed Pipelined Datapath

Completion Signal Generation

Using Delay Element (e.g. in memories)

Completion Signal Generation

В	В0	B1
in transition (or reset)	0	0
0	0	1
1	1	0
illegal	1	1

Using Redundant Signal Encoding

Completion Signal in DCVSL

Self-Timed Adder

Completion Signal Using Current Sensing

Hand-Shaking Protocol

Two Phase Handshake

Event Logic – The Muller-C Element

(a) Schematic

A	В	$F{n\square 1}$
0	0	0
0	1	F_n
1	0	F_n
1	1	1

(b) Truth table

2-Phase Handshake Protocol

Advantage: FAST - minimal # of signaling events (important for global interconnect)

Disadvantage: edge - sensitive, has state

Example: Self-timed FIFO

All 1s or 0s -> pipeline empty
Alternating 1s and 0s -> pipeline
full

2-Phase Protocol

4-Phase Handshake Protocol

Also known as RTZ

Slower, but unambiguous

4-Phase Handshake Protocol

Implementation using Muller-C elements

Self-Resetting Logic

Clock-Delayed Domino

Asynchronous-Synchronous Interface

Synchronizers and Arbiters

- Arbiter: Circuit to decide which of 2 events occurred first
- Synchronizer: Arbiter with clock φ as one of the inputs
- □ Problem: Circuit HAS to make a decision in limited time - which decision is not important
- Caveat: It is impossible to ensure correct operation
- □ But, we can decrease the error probability at the expense of delay

A Simple Synchronizer

- Data sampled on rising edge of the clock
- Latch will eventually resolve the signal value, but ... this might take infinite time!

Synchronizer: Output Trajectories

Single-pole model for a flip-

$$v(t) = V_{MS}^{+} (v(0) - V_{MS}^{-})e^{t/\tau}$$

Mean Time to Failure

$$N_{sync}(0) = \frac{P_{init}}{T_{\phi}} = \frac{\left(\frac{V_{IH} - V_{IL}}{V_{swing}}\right)t_r}{T_{signal}} \frac{1}{T_{\phi}}$$

$$N_{sync}(T) = \frac{P_{init}e^{-T/\tau}}{T_{\phi}} = \frac{(V_{IH} - V_{IL})e^{-T/\tau}}{V_{swing}} \frac{t_r}{T_{signal}T_{\phi}}$$

$$T_f$$
 = 10 nsec = T
 T_{signal} = 50 nsec
 t_r = 1 nsec
 t = 310 psec
 V_{IH} - V_{IL} = 1 V (V_{DD} = 5 V)

N(T) =
$$3.9 \ 10^{-9}$$
 errors/sec
MTF (T) = $2.6 \ 10^{8}$ sec = 8.3 years
MTF (0) = $2.5 \ \mu$ sec

Influence of Noise

Low amplitude noise does not influence synchronization behavior

Typical Synchronizers

Using delay line

Cascaded Synchronizers Reduce MTF

Arbiters

(a) Schematic symbol

(b) Implementation

(c) Timing diagram

PLL-Based Synchronization

PLL Block Diagram

Phase Detector

Output before filtering

Phase-Frequency Detector

PFD Response to Frequency

PFD Phase Transfer Characteristic

Charge Pump

PLL Simulation

Clock Generation using DLLs

Delay-Locked Loop (Delay Line Based)

Phase-Locked Loop (VCO-Based)

Delay Locked Loop

DLL-Based Clock Distribution

