LINEAR PROGRAMMING SUDOKU SOLVER

Anna Petrone DC Hack && Tell 6/7/2016

MY RELATIONSHIP WITH SUDOKU ...

5		8		7	3	1	9	
9			6			4		8
			9		8		3	5
	7						6	
		2				9		
	1						8	
1	9		3		6			
2		3			7			9
	8	7	1	9		3		4

LINEAR PROGRAMMING

Feasible region

Formulation

Max/min $z = c_1x$

 $z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$

subject to:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \ (\leq, =, \geq) \ b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \ (\leq, =, \geq) \ b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \ (\leq, =, \geq) \ b_m \end{cases}$$

 x_j = decision variables

b_i = constraint levels

c_i = objective function coefficients

a_{ij} = constraint coefficients

SUDOKU LP DECISION VARIABLES

Binary decision variables

$$x_{ij}^{1} = \begin{cases} 1 & \text{if row } i, \text{ column } j \text{ is a 1} \\ 0 & \text{if not} \end{cases}$$

$$x_{ij}^2 = \begin{cases} 1 & \text{if row } i, \text{ column } j \text{ is a 2} \\ 0 & \text{if not} \end{cases}$$

Notation

LP CONSTRAINTS

Let
$$\mathcal{N} = \{1, 2, ...N\}$$

satisfy game rules:

Each row must have the numbers 1, 2, ... N exactly once

$$\forall p \in \mathcal{N}:$$
 $\forall i \in \mathcal{N}:$

$$\sum_{j \in \mathcal{N}} x_{ij}^p = 1$$

- Each column must have the numbers 1, 2, ... N exactly once
 - [similar]
- Each box must have the numbers 1, 2, ... N exactly once
 - [tricky]

"gotcha" constraint

Each cell must be assigned a single value

$$\forall i \in \mathcal{N}:$$
 $\forall j \in \mathcal{N}:$

$$\sum_{p \in \mathcal{N}} x_{ij}^p = 1$$

CPLEX IMPLEMENTATION

Note there is no objective function – any feasible solution will do the trick.

This is called a constraint programming problem

```
int ndigits = 9; // update the box dimension
     int sqrt ndigits = 3; // this number should be the square root of the above number
     range N = 1..ndigits;
     range Ns = 1..sqrt ndigits;
 12
    dvar int+ x[N][N][N] in 0..1;
 14
 15 minimize 0:
 subject to{
17
 18⊜
        forall(val in N) {
 19⊜
            forall(row in N) {
                sum(i in N)(x[val][row][i]) == 1;
 20
 22
            forall(col in N) {
 23⊜
 24
                sum(i in N)(x[val][i][col]) == 1;
 25
 26
 27⊝
            forall(b1 in Ns) {
 28⊖
                forall(b2 in Ns) {
 29
                    sum(i in Ns)(sum(j in Ns)(x[val][i + (b1-1)*sqrt ndigits ][j+ (b2-1)*sqrt ndigits ])
 30
 31
 32
 33
 34
        forall(row in N) {
 35⊜
 36⊜
            forall(col in N) {
                sum(val in N)(x[val][row][col]) == 1; // cant assign more than one value to a cell
 37
 38
 39
 40
 41 // here add the values that were initially specified.
 42 //x[1][2][3]==1; // means row 2, column 3 is a 1
 43 }
```

RESULTS

- Finds solution for 9x9, 16x16, and 25x25 grids in **a few seconds**
- 64 x 64 couldn't solve after 1 hour!

N	rows (N^4 + N^2)	columns (N^3)	non zeros coeffs	pre-solve time (ticks)	total time (ticks)
4	64	64	256	0.12	0.36
9	324	729	2,916	1.31	3.64
16	1,024	4096	16,384	7.06	20.41
25	2,500	15625	62,500	26.65	2137.18
64	16,384	262,144	1,048,576	451.51	
81					

FUTURE QUESTIONS

- What's the minimum number of cells you must pre-specify in order for the solution to be unique?
- More generally, what is the relationship between the number of cells initially specified and the number of possible solutions?
- Quantifying difficulty level
 - Follow up: can you judge difficulty just from knowing initial number of specified cells?
- Reformulation as column generation problem for solving for large N
 - Incrementally adds variables according to a "pricing" sub-problem

THANKS!

Anna Petrone
Github.com/AMPETR/sudoku
Twitter @1littlevictory

