(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年7 月31 日 (31.07.2003)

PCT

(10) 国際公開番号 WO 03/063275 A1

(51) 国際特許分類⁷: H01M 4/58, 4/02, 10/40

PCT/JP03/00065

特願 2002-303684

2002年10月18日(18.10.2002) JP

(21) 国際出願番号:

(22) 国際出願日: 2003 年1 月8 日 (08.01.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2002-1724 2002 年1 月8 日 (08.01.2002) JP 特願 2002-296962

2002年10月10日(10.10.2002) JP

- (71) 出願人 /米国を除く全ての指定国について): ソニー株式会社 (SONY CORPORATION) [JP/JP]; 〒141-0001東京都品川区 北品川6丁目7番35号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 細谷 洋介 (HOSOYA,Yosuke) [JP/JP]; 〒141-0001 東京都 品川 区 北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 山本 佳克 (YAMAMOTO,Yoshikatsu) [JP/JP]; 〒969-1180 福島県 安達郡 本宮町字樋ノ口2番地 ソニー福島株式会社内 Fukushima (JP). 佐藤 隆史

/続葉有/

(54) Title: POSITIVE PLATE ACTIVE MATERIAL AND NONAQUEOUS ELECTROLYTE SECONDARY CELL USING SAME

1

(54) 発明の名称: 正極活物質及びこれを用いた非水電解質二次電池

(57) Abstract: A positive plate active material having a large capacity and improved charging/discharging cycle characteristics. A nonaqueous electrolyte secondary cell comprises a positive electrode (2) including such a positive active material, a negative electrode (3), and a nonaqueous electrolyte. The positive plate active material includes a mixture of a first lithium transition metal complex oxide containing Ni and Co and having a laminar structure and a second lithium transition metal complex oxide containing Ni and Mn and having a laminar structure.

品川6丁目7番35号 ソニー株式会社内 Tokyo (JP).

- (74) 代理人: 中村 友之 (NAKAMURA, Tomoyuki); 〒105-0001 東京都 港区 虎ノ門1丁目2番3号 虎ノ門第一ビ ル9階 三好内外国特許事務所内 Tokyo (JP).
- (81) 指定国 (国内): CN, KR, US.

(SATO,Takashi) [JP/JP]; 〒141-0001 東京都 品川区 北 (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

高容量でかつ充放電サイクル特性が向上した正極活物質であ る。正極活物質を有する正極(2)と、負極(3)と、非電解液 とを備え、Ni及びCoを含有し層状構造からなる第1のリチウ ム遷移金属複合酸化物と、Ni及びMnを含有し層状構造からな る第2のリチウム遷移金属複合酸化物との混合物を有する正極 活物質を用いる。

1

明細書

正極活物質及びこれを用いた非水電解質二次電池

5 技術分野

本発明は、電池に使用する正極活物質及びこの正極活物質を用いた非水電解質二次電池に関する。

背景技術

25

近年、二次電池の需要は、カメラー体型VTR、携帯電話、ラップトップコンピュータ等のポータブル電子機器が多く登場し、急速に拡大している。二次電池は、これらの電子機器の小型軽量化に伴い、ポータブル電源としてエネルギー密度を向上させることが必要とされている。二次電池の中でも、リチウムイオン二次電池は、従来の水系電解液二次電池である鉛電池及びニッケルカドミウム電池と比較して大きなエネルギー密度が得られるため期待されている。

リチウムイオン二次電池は、正極活物質として層状構造からなるリチウム・コバルト複合酸化物、スピネル構造を有するリチウム・マンガン複合酸化物、リチウム・ニッケル複合酸化物等が実用化されている。

- (1) スピネル構造を有するリチウム・マンガン複合酸化物は、 結晶構造は安定しているが、リチウム・コバルト酸化物やリチウム・ニッケル酸化物と比べて充電容量が低く、高温保存特性も若 干悪いといった問題点を有している。
- (2) リチウム・ニッケル複合酸化物は、原料の価格や供給安定

2

性の面ではリチウム・コバルト複合酸化物より優れており期待されている。しかしながら、リチウム・ニッケル複合酸化物は、結晶構造の安定性が低いため、充放電容量及びエネルギー密度の低下や高温環境下での充放電サイクル特性の劣化といった問題を有している。

5

2.0

25

リチウム・ニッケル複合酸化物の結晶構造の安定性を図り、充放電容量及びエネルギー密度の低下を抑制する方法としては、例えば、特開平5-283076号公報や特開平8-37007号公報に記載のニッケルの一部を他の元素で置換することによりサイクル特性を向上させる方法、特開平7-192721号公報に記載の特定の金属塩等を添加する方法、特開平10-302768号公報記載の正極合成中のバインダーを規定する方法等が提案されているが、近年の電子機器等の高密度化や集積回路等の高速化、又は携帯機器等に求められる耐環境性に対応するためには、より安定した結晶構造を形成することが求められている。

また、リチウム・ニッケル複合酸化物に安定な結晶構造を形成しているスピネル構造のリチウム・マンガン複合酸化物を混合する方法が提案されているが、スピネル構造のリチウム・マンガン複合酸化物は充電容量が低いため、リチウム・ニッケル複合酸化物の高容量が活かされず正極の充放電容量を低下させてしまうといった問題があった。

(3) リチウム・コバルト複合酸化物は、充電容量や熱的安定性等の物理的性質とコストのバランスが最も良く、幅広く利用されている。しかしながら、リチウム・コバルト複合酸化物は、コバルトの採掘量が少ないため価格面と供給安定性の面で問題点を有している。

3

また、リチウム・コバルト複合酸化物は、リチウム金属に対して、4.250Vから3.00Vの間で充放電を行うと、平均放電電圧が3.9~4.0V程度の値を示す。このため、リチウム・コバルト複合酸化物を正極としたリチウムイオン電池が過放電状態となると、負極の電位が上昇して集電体に用いられる銅箔の溶解などを引き起こし、再び充電した際に容量が低下するといった悪影響が生じることから、保護回路等の外部素子によって放電終了時の電圧を規制するようにしており、小型化・低コスト化の障害となっていた。

10 本発明は、このような従来の事情に鑑みて提案されたものであり、正極の充放電容量の高容量化及びエネルギー密度の向上、更には常温に限らず高温環境下においても良好な充放電サイクル特性が得られる正極活物質及びこの正極活物質を用いた非水電解質電池を提供することを目的としている。

15 また、本発明は、リチウム・コバルト複合酸化物を正極とした リチウムイオン電池において、高容量を有し過放電耐性に優れた リチウムイオン非水電解質二次電池を実現することができる正 極活物質と、このような正極活物質を用いたリチウムイオン非水 電解質二次電池を提供することを目的としている。

20

25

5

発明の開示

本発明における第1の発明は、正極活物質が少なくともNi及びCoを含有し、層状構造からなる第1の正極材料と、少なくともNi及びMnを含有し、層状構造からなる第2の正極材料との混合物を有することを特徴とする。

このような正極活物質では、少なくともNi及びCoを含有し、

4

層状構造からなる第1の正極材料と、少なくともNi及びMnを含有し、層状構造からなる第2の正極材料とが混合されており、第1の正極材料は高容量を有し、第2の正極材料は結晶構造が安定であることから、充放電容量の高容量化及びエネルギー密度の向上が図られ、高温環境下においても良好な充放電サイクル特性が得られる。

5

10

25

本発明の非水電解質二次電池は、正極集電体上に正極活物質を含有する正極合剤層が形成されてなる正極と、負極集電体上に負極活物質を含有する負極合剤層が形成されてなる負極と、非電解質とを備える。正極活物質には、少なくともNi及びCoを含有し、層状構造からなる第1の正極材料と、少なくともNi及びMnを含有し、層状構造からなる第2の正極材料とを混合した混合物が含有されていることを特徴とする。

この非水電解質二次電池では、少なくともNi及びCoを含有し、層状構造からなる第1の正極材料と、少なくともNi及びMnを含有し、層状構造からなる第2の正極材料とを混合した混合物を含有する正極活物質を用いることによって、第1の正極材料は高容量であり、第2の正極活物質は結晶構造が安定であることから、正極の充放電容量の高容量化及びエネルギー密度の向上が20 図られ、高温環境下においても良好な充放電サイクル特性が得られる。

また、本発明における第2の発明は、リチウムイオン非電解質 二次電池用の正極活物質が、層状構造を有し、XAFS(X線吸 収端微細構造解析)法で測定したニッケル元素のK殻吸収端のジャンプ高さの50%(全リチウム量の半分)の位置のシフト幅が、 1.0 e V以上であるリチウム・ニッケル複合酸化物を含有する

5

ものである。

10

15

20

25

本発明のリチウムイオン非水電解質二次電池は、リチウムイオンをドープし且つ脱ドープできる材料を正極活物質とする正極と、リチウムイオンをドープし且つ脱ドープできる材料を負極活物質とする負極と、非水媒体に電解質を分散して成る非水電解質とを備える二次電池であって、上記正極活物質が、全リチウム量の50%を引き抜いたときに、XAFS法で測定しうるニッケル原子のK殻吸収端のジャンプ高さの50%の位置のシフト幅が1.0eV以上であるリチウム複合酸化物を含有するものである。さらに、本発明における第3の発明は、正極活物質がリチウムイオン非水電解質二次電池に好適に用いられるものであって、リチウム、コバルトを主成分とし層状構造を有する第1のリチウム遷移金属複合酸化物と、層状構造を有し4.25V~3.00Vまで0.2Cの電流値で放電した際の平均放電電圧が上記第1の複合酸化物よりも0.05V以上低い第2のリチウム遷移金属複

かかる正極活物質では、リチウム・コバルト複合酸化物に対して、当該リチウム・コバルト複合酸化物よりも平均放電電圧が 0.05 V以上低いリチウム遷移金属複合酸化物を混合し、正極活物質として用いることによって放電末期における正極電位が低下し、過放電に対する耐性が大幅に向上する。

合酸化物を含有して成ることを特徴としている。

さらにまた、本発明のリチウムイオン非水電解質二次電池は、 リチウムイオンをドープ・脱ドープ可能な材料を正極括物質とす る正極と、同じくリチウムイオンをドープ・脱ドープ可能な材料 を負極活物質とする負極と、リチウムイオン伝導性を有する非水 電解質を備えた二次電池であって、上記正極活物質として、上記

6

正極活物質、すなわちリチウム・コバルトを主成分とする上記第 1のリチウム遷移金属複合酸化物と、当該第1の複合酸化物より も平均放電電圧が0.05 V以上低い上記第2のリチウム遷移金 属複合酸化物を含有して成る正極活物質が用いることを特徴と している。

図面の簡単な説明

5

第1図は、本発明に係る非水電解質二次電池の縦断面図である。

第2図は、本発明のリチウムイオン非水電解質二次電池の一例 10 を示す断面図である。

第3図は、帯状正極の構造を示す斜視図である。

第4図は、第2図のA-A線で切断した巻回電極体を示す断面 図である。

第5図は、巻回電極体の他の例を示す断面図である。

15 第6図は、巻回電極体の他の例を示す断面図である。

第7図は、巻回電極体の更に他の例を示す断面図である。

第8図は、巻回電極体の他の例を示す断面図である。

第9図は、未充電及び50%充電品のXAFS測定結果(実施例37)を示すグラフである

20 第10図は、未充電及び50%充電品のXAFS測定結果(比較例13)を示すグラフである。

第11図は、本発明のリチウムイオン非水電解質二次電池の一例を示す断面図である。

第12図は、帯状正極の構造を示す斜視図である。

25 第13図は、第11図のA-A線で切断した巻回電極体を示す 断面図である。

7

第14図は、巻回電極体の他の例を示す断面図である。

第15図は、巻回電極体の他の例を示す断面図である。

第16図は、巻回電極体の更に他の例を示す断面図である。

第17図は、巻回電極体の他の例を示す断面図である。

5

15

発明を実施するための最良の形態

以下、本発明の実施の形態として示す正極活物質及びこの正極活物質を用いた非水電解質二次電池について、図面を参照して詳細に説明する。

10 第1図に示すように、非水電解質二次電池1は、帯状の正極2 と、帯状の負極3とがセパレータ4を介して密着状態で巻回され た電極体が、電池缶5の内部に充填されてなる。

正極 2 は、正極活物質と結合剤と導電剤とからなる正極合剤を正極集電体上に層状に塗布して形成される。結合剤には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン等の熱可塑性樹脂を用いる。導電剤には、人工黒鉛やカーボンブラック等を用いる。なお、正極集電体としては、アルミニウム箔等の金属箔を用いる。

そして、正極活物質は、第1の正極材料と第2の正極材料とを 20 混合した混合物を含有する。

本発明における第1の発明では、正極活物質が少なくともNi 及びCoを含有し、層状構造からなる第1の正極材料と、少なく ともNi及びMnを含有し、層状構造からなる第2の正極材料と の混合物を有する。

25 第1の正極材料は、層状構造を有し、下記式(1)で表される 第1のリチウム遷移金属複合酸化物である。

8

$$L i_{x} N i_{1-y-z} C o_{y} M_{z} O_{z}$$
 (1)

5

20

25

式(1)中、Mは、遷移金属、或いは長周期型元素周期表の2族、3族、4族の元素のうち1種の元素若しくは複数種の元素から選ばれ、x、y、zの範囲は、0. 90 $\leq x$ <1. 1、0. 05 $\leq y$ ≤ 0 . 50、0. 01 $\leq z$ ≤ 0 . 10r

式(1)中のMは、具体的に第1のリチウム遷移金属複合酸化物の結晶中で均一に分散できる元素を表しているが、特に好ましくはFe、Co、Zn、Al、Sn、Cr、V、Ti、Mg、Gaの中から1種或いは複数種の元素から選ばれる。

10 第2の正極材料は、層状構造を有し、下記式(2)で表される 第2のリチウム遷移金属複合酸化物である。

$$L i_{s} N i_{1-t-1} M n_{t} M_{0} O_{2}$$
 (2)

式(2)中、M 、は、遷移金属、或いは長周期型元素周期表の 2族、3族、4族の元素のうち1種若しくは複数種の元素から選 ばれ、s、t、uの範囲は、0.90 \leq s<1.1、0.05 \leq t \leq 0.50、0.01 \leq u \leq 0.30である。

式(2)中のM´は、具体的に第2のリチウム遷移金属複合酸化物の結晶中を均一に分散できる元素を表しているが、特に好ましくは、Fe、Co、Zn、Al、Sn、Cr、V、Ti、Mg、Gaの中から1種或いは複数種の元素から選ばれる。

第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移 金属複合酸化物の混合比は、正極活物質全体に対して15重量% 以上、85重量%以下含有することが好ましく、更に好ましくは 30重量%以上、70重量%以下を含有するようにする。正極活 物質は、第1のリチウム遷移金属複合酸化物の混合比が15重 量%未満になると、第2のリチウム遷移金属複合酸化物の混合比

9

が85%を越え、正極活物質全体に対して低容量の第2のリチウム遷移複合酸化物の占める割合が多くなり、第1のリチウム遷移金属複合酸化物の高容量が活かされず正極活物質の初期容量が低下してしまう。また、第1のリチウム遷移金属複合酸化物の混合比が85重量%を越えると、第2のリチウム遷移複合酸化物の混合比が15%未満となり、正極活物質の結晶構造が不安定となるため、充放電を繰り返す度に結晶構造の劣化が進み高温環境下での充放電サイクル容量維持率が著しく低下してしまう。

5

10

15

20

25

この為、正極活物質は、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の各々の混合比を15重量%以上、85重量%の範囲で混合することによって、充放電容量及び充放電に伴う結晶構造の変化を互いに第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物とが相殺し合うことにより、結晶構造の変化が小さくなるため充放電サイクル容量維持率の向上が図られる。

また、正極活物質は、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の平均粒径を30μm以下とすることが好ましく、更に好ましくは2μm以上、30μm以下である。正極活物質は、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の平均粒径を2μm未満にすると、正極活物質と電解質との接触面積が大きくなるため、電解液の分解が進行して高温環境下の特性が低下してしまう。逆に、正極活物質は、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の平均粒径が30μmを越えると、第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物との混合が不十分となり、高温環境下での初期容量の低

10

下や充放電サイクル容量維持率の劣化が起こってしまう。

5

20

2.5

この為、正極活物質は、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の平均粒径を30μm以下にすることによって、正極活物質と電解液との接触面積が小さくなり、また、第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物とが十分に混合され、高温環境下での初期容量の高容量化及び充放電サイクル容量維持率の向上が図られる。

更に、正極活物質は、第1のリチウム遷移金属複合酸化物中の Coの比率及び第2のリチウム遷移金属複合酸化物のMnの比率を0.05以上、0.50以下にすることが好ましい。正極活物質は、Co及びMnの比率を0.05未満にすることによって、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の各結晶構造が不安定となり、充放電を繰り返す度に正極活物質の結晶構造が劣化して充放電サイクル特性が低下してしまう。逆に、正極活物質は、Co及びMnの比率を0.50以上にすることによって、充放電容量の低下を招く結晶構造を形成するため充放電容量が低下してしまう。

この為、正極活物質は、第1のリチウム遷移金属複合酸化物中のCoの比率及び第2のリチウム遷移金属複合酸化物のMnの比率を0.05以上、0.50以下にすることによって、結晶構造の劣化が抑制され充放電サイクル特性の向上が図られ。また、正極活物質は、Co及びMnの比率を0.05以上、0.50以下にすることによって、高容量の結晶構造を形成することにより充放電容量の高容量化が図られる。

第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移

11

金属複合酸化物は、リチウム、ニッケル、コバルト、マンガン等の炭酸塩を各組成に応じて混合し、空気雰囲気又は酸素雰囲気中で600~1100℃の温度範囲で焼成することにより得られる。なお、出発原料は、炭酸塩に限定されず、水酸化物、酸化物、硝酸塩、有機酸塩等からも同様に生成可能である。また、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物は、リチウム、ニッケル、コバルト、マンガン等を含有する複合水酸化物や複合炭酸塩等を原料として用いることも可能である。

以上のような正極活物質は、高容量な第1のリチウム遷移金属 10 複合酸化物と安定な結晶構造を形成している第2のリチウム遷 移金属複合酸化物とを混合した混合物からなることにより、充放 電容量の高容量化及び結晶構造の安定化が図られる。従って、正 極活物質は、充放電容量の高容量化、高エネルギー密度化、及び 高温環境下においての充放電サイクル容量維持率の向上が図ら 15 れる。また、正極活物質は、第1のリチウム遷移金属複合酸化物 と第2のリチウム遷移金属複合酸化物との混合比、平均粒径、及 び第1のリチウム遷移金属複合酸化物中のCo及び第2のリチ ウム遷移金属複合酸化物中のMnの比率、或いは第1のリチウム 遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物中 20の添加元素の有無を上述したように規定することによって、より 優れた初期容量及び充放電サイクル容量維持率が得られる。

負極3は、負極活物質と結合剤とを含有する負極合剤を負極集電体上に塗布して形成される。負極活物質には、対リチウム金属25 2.0 V以下の電位で電気化学的にリチウムをドープ・脱ドープできる材料を用いる。例えば、難黒鉛化性炭素、人造黒鉛、天然

12

黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭、カーボンブラック類等の炭素質材料を使用することができる。

5

20

また、負極活物質としては、リチウムと合金を形成可能な金属及びリチウムと合金を形成可能な金属からなる合金化合物も利用可能である。リチウムと合金形成可能な金属としては、半導体元素も含めることとして、例えば、Mg、B、A1、Ga、In、10 Si、Sn、Pb、Sb、Bi、Cd、Ag、Zn、Hf、Zr、Yである。更には、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の比較的電位が低電位で、リチウムイオンをドープ・脱ドープする酸化物やその他の窒化物なども同様に使用可能である。なお、負極集電体としては、銅箔等の金属を用いる。また、導電剤としては、正極2を作製する際に用いた導電剤と同様の人工黒鉛やカーボンブラック等の炭素材料や金属の粉末等を用いる。

上述した正極 2 及び負極 3 の作製方法は、正極活物質及び負極 活物質に結合剤、導電剤等を添加し溶剤を加えて塗布する方法、 正極活物質及び負極活物質に結合剤等を添加し加熱して塗布す る方法、正極活物質及び負極活物質を単独或いは導電剤、更には 結合剤と混合して成型等の処理を施して成型体電極を作成する 方法等がとられているが、それらに限定されるものではない。

例えば、正極2の作製方法は、第1のリチウム遷移金属複合酸 25 化物と第2のリチウム遷移金属複合酸化物とを混合して得られ た正極活物質に、上述した導電剤と結合剤とを所定の割合で混合

13

して正極合剤を作製し、この正極合剤をN-メチル-2-ピロリドン等の有機溶媒に分散させてスラリー状にする。次に、スラリー状とした正極合剤を正極集電体上に均一に塗布して正極合剤層を形成し、乾燥後、成型して正極 2 が得られる。

5

10

15

20

25

また、負極3の作製方法としては、上述した負極活物質と結合 剤とを所定の割合で混合した負極合剤をスラリー状とする。次に、 スラリー状とした負極合剤を負極集電体上に均一に塗布して負 極合剤層を形成し、乾燥後、成型して負極3が得られる。なお、 上述した正極2及び負極3の作製方法において、結合剤の有無に かかわらず、正極活物質及び負極活物質に熱を加えたまま加圧成 型することにより強度を有した正極2及び負極3を作製することもできる。

上述した正極 2 及び負極 3 を用いた非水電解質二次電池 1 の作製方法には、正極 2 と負極 3 との間にセパレータ 4 を介して巻芯の周囲を捲回する作製方法、又は正極 2 と負極 3 との間にセパレータ 4 を挟み正極 2 及び負極 3 を積層する積層方法等がある。

電解質には、非水溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有させた固体電解質、或いは非水溶媒と電解質塩とからなる非水電解液をマトリックス高分子に含浸させてゲル状としたゲル状電解質のいずれも用いることができる。

非水電解液は、有機溶媒と電解質塩とを適宜組み合わせて調製される。有機溶媒は、非水電解液系の電池に使用されているものであればいずれも用いることができる。有機溶媒には、例えば、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジエチルカーボネート、シメチルカーボネート、1,2-ジメトキシエタン、アーブチロラ

14

10

15

固体電解質には、リチウムイオン導電性を有する材料であれば無機固体電解質、高分子固体電解質のいずれも用いられる。無機固体電解質には、例えば窒化リチウム、よう化リチウム等がある。高分子固体電解質は、上述した電解質塩を含有する高分子化合物からなる。高分子化合物には、ポリエチレンオキサイドや同架橋体などのエーテル系高分子、ポリメタクリレート及びポリアクリレートなどのエステル系高分子を用いることができる。

ゲル状電解質のマトリックス高分子には、上記非水電解液を吸収してゲル化するものであれば種々の有機高分子を使用できる。マトリックス高分子には、例えば、ポリビニリデンフルオロライドやポリビニリデンフルオロライド-co-ヘキサフルオロプロピレン等のフッ素系高分子、ポリエチレンオキサイドや同架橋体等のエーテル系高分子、又はポリアクリロニトリル等がある。特に、ゲル状電解質のマトリックス高分子には、酸化還元安定性からフッ素系高分子を用いることが望ましい。

特に、酸化還元安定性の観点からフッ素系高分子材料を用いる

15

ことが望ましい。また、ポリマーの分子量としては、30万~8 0万程度が適当である。

なお、ポリマーへの電解質の分散は、代表的には、電解質を非 水溶媒に溶解した非水電解液にポリフッ化ビニリデン等のポリ マーを溶解させ、ゾル化させることにより行うことができる。

5

20

2.5

このように、ゲル状電解質のマトリックスは、非水電解液中の電解質塩を含有させることによりイオン導電性が付与されている。

更に、固体電解質としては、リチウムイオン導電性を有する材 10 料であれば無機固体電解質、高分子固体電解質のいずれをも用いることができ、無機固体電解質としては、窒化リチウム、ヨウ化リチウムなどの結晶質固体電解質や、 $LiI \cdot Li_2S \cdot P_2S_6$ 系ガラス及び $LiI \cdot Li_2S \cdot B_2S_6$ 系ガラスなどリチウムイオン伝導性ガラスなどに代表される非晶質固体電解質が挙げら れる。

また、高分子固体電解質は、電解質塩とそれを溶解する高分子 化合物から成り、この高分子化合物としては、ポリエチレンオキ シドや同架橋体などのエーテル系高分子、ポリメタクリレート及 びポリアクリレートなどのエステル系高分子を用いることがで きる。

本発明の非水電解質二次電池は、代表的には、上述の巻回電極を非水電解質とともに金属製やプラスチックス製のケース等に収容して成るが、軽量性や薄さの観点からはフイルム状外装ケースに収容するのが好適であり、かかるフイルム状外装ケースを形成するラミネートフィルムの材料には、ポリエチレンテレフタレート(PET)、溶融ポロプロピレン(PP)、無延伸ポリプロピ

16

レン (CPP)、ポリエチレン (PE)、低密度ポリエチレン (LDPE)、高密度ポリエチレン (HDPE)、直鎖状低密度ポリエチレン(LLDPE)及びポリアミド系合成高分子材料(商品名:ナイロン:Ny)等のプラスチック材料が用いられ、耐透湿性のバリア膜としてアルミニウム (A1)が用いられる。

上記ラミネートフィルムの最も一般的な構成としては、外装層 /金属膜 (バリア膜) /シーラント層がPET/A1/PEのも のを例示できる。また、この組み合わせに限らず、外装層/金属 膜/シーラント層の構成において、Ny/A1/CPP、PET 10 /A1/CPP、PET/A1/PET/CPP、PET/Ny /A1/CPP、PET/Ny/A1/Ny/CPP、PET/ Ny/A1/Ny/PE、Ny/PE/A1/LLDPE、PE T/PE/A1/PET/LDPE及びPET/Ny/A1/ LDPE/CPP等の組み合わせを採用することもできる。なお、 金属膜にA1以外の金属を採用し得ることはもちろんである

本発明のリチウムイオン非水電解質二次電池は、上述のように、本発明の正極活物質を含有する正極、負極及び非水電解質を必須の構成要件とするが、その電池形状については特に限定されるものではなく、例えば、円筒型、角型、コイン型、ボタン型、ラミネートシール型等の種々の電池形状を採用することができる。また、より安全性の高い密閉型非水電解質二次電池を得るべく、過充電等の異常時には電池内圧上昇により作動して電流を遮断させる安全弁等の手段を備えたものであることが望ましい。

20

本発明の非水電解質二次電池は、上述した各種材料、特に特定 25 の正極活物質を用いて構成されているので、高容量で、しかも過 放電耐性に優れたものとなっている。

17

円筒型の非水電解質二次電池1の作製方法は、先ず、上述したように作製された正極2と負極3とを多孔性ポリオレフィンフィルムからなるセパレータ4を介して多数回巻回して、渦巻き型の電極体を作製する。渦巻き型の電極体の上下両面に絶縁板6を配置して、ニッケルめっき処理を施した鉄製の電池缶5に収納する。正極2の集電をとるために、アルミニウム製正極リード7の一端を正極集電体から導出して、他端を電流遮断用薄板8に溶接して電池蓋9と電気的に接続する。また、負極3の集電をとるために、ニッケル負極リード10の一端を負極集電体から導出して、他端を電池缶5の底部に溶接する。

5

10

15

20

25

次に、上述した電極体が組み込まれた電池缶5内に、調製した非水電解液を注入後、絶縁封口ガスケット11を介して電池缶5をかしめることにより電池蓋9が固定さる。なお、非水電解質二次電池1において、正極リード7及び負極リード10に接続するセンターピン12が設けられているとともに、非水電解質二次電池1内部の圧力が所定の値よりも高くなった場合に、非水電解質電池1内部の気体を抜くための安全弁13、及び非水電解質二次電池1内部の温度上昇を防止するためのPTC(positive temperature coefficient)素子14が設けられている。

以上のように構成された非水電解質二次電池は、正極2を形成する正極活物質に高容量な第1のリチウム遷移金属複合酸化物と安定な結晶構造を形成している第2のリチウム遷移金属複合酸化物とを混合した混合物からなることにより、充放電容量の高容量化及び結晶構造の安定性が図られる。従って、この非水電解質二次電池1は、充放電容量の高容量化及び高エネルギー密度の向上と共に、常温及び高温環境下のおいての充放電サイクル容量

18

維持率の向上が図られる。

5

10

20

また、角型の非水電解質二次電池の場合には捲回する方式で本発明を適用すると有効である。その際には、巻芯の内径を電池製造の捲回時に使用される楕円形状の芯の中でも、最も曲率の大きい部分の直径に合わせて作製する。

本発明における第2の発明では、リチウムイオン非電解質二次電池用の正極活物質が、層状構造を有し、XAFS(X線吸収端微細構造解析)法で測定したニッケル元素のK殻吸収端のジャンプ高さの50%(全リチウム量の半分)の位置のシフト幅が、1.0eV以上であるリチウム・ニッケル複合酸化物を含有するものである。

以下、本発明の正極活物質について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示すものとする。

15 上述の如く、本発明の正極活物質は、リチウムイオン非水電解質二次電池に用いられるものであり、層状構造を有し、少なくともリチウム及びニッケルを構成元素とするリチウム複合酸化物を含有して成る。

かかるリチウム複合酸化物は、全リチウム量の50%を引き抜いたときに、X線吸収端微細構造解析(XAFS)法で測定しうるニッケル原子のK殻吸収端のジャンプ高さの50%の位置のシフト幅が1.0eV以上である。これより、高容量で高温作動時の耐性に優れた正極活物質が得られる。

リチウム遷移金属複合酸化物としては、LiNi〇₂等の、リ 25 チウム、ニッケルを主成分とし、リチウムを挿入離脱することが 可能で層状構造を有する物質が好ましい。また、構成元素の一部

19

を異種元素で置換した公知の材料も使用可能である。

このような構成により、リチウム・ニッケル複合酸化物におけるニッケルイオンの酸化状態の耐環境性が向上する。

ここで、X線吸収微細構造解析(X-ray absorpt ion fine structure; XAFS)について説明する。

一般に各元素には、内殻電子の電子遷移に起因して固有のエネルギーの X 線を吸収する性質がある。即ち、ある元素について X 線吸収スペクトルを測定すると、あるエネルギー以上で急激に吸収が大きくなる。これは吸収端と呼ばれている。この吸収端の近傍の微細構造はその元素の存在形態や周囲の環境を反映するため、この構造を解析することにより、電子状態や局所構造の解析が行われている

10

15

20

25

特に、吸収スペクトルからバックグラウンドを差し引き、吸収端のジャンプ付近のごく近傍の数 $1 \ 0 \ e \ V$ 程度の範囲を拡大して得られる構造はX線近吸収端構造(X-ray absorption fine structure; XAFS)と呼ばれ、主に中心元素の電子状態が反映される。 $LiNiO_2$ においても、充電に伴い、吸収端が高エネルギー側にシフトすることが指摘されている(例えばDENKI KAGAKU, 66(1998)968. など)。

本発明は、上述のリチウム遷移金属複合酸化物のNi-K殻吸収端のXANESスペクトルにおいて、吸収端のジャンプ高さの50%のエネルギー値に着目した場合、初期状態と、充電によりリチウムを50%引き抜いた状態(以下「50%充電状態」とする)との間で、エネルギー値のシフト幅が1.0eV以上である

20

ことを規定するものである。

15

一般にリチウムニッケル酸化物では酸素上の電子が充放電に大きく関与していることが知られており(Journalof Power Sources, 97-98(2001)326.など)、充電時には酸素上の電子が失われる。

これにより、充電時にリチウムニッケル酸化物が高温に曝された場合、酸素が離脱して活物質の分解、ひいては容量の劣化を引き起こす。即ち、容量劣化を抑制するためには、酸素ではなくニッケル上の電子が減少することが望ましい。

10 従って、本発明では、XANESスペクトルの変化を指標として、ニッケル上の電子状態の変化が大きいリチウム複合酸化物を 正極活物質として使用する。

また、本発明で用いるリチウム複合酸化物は、マンガン(Mn)、チタン(Ti)のいずれか一方又は双方を更に含有することが好ましい。これらを含有することにより、初期状態と50%充電状態との間でエネルギー値のシフト幅をより大きくすることができる。

次に、上述したリチウム複合酸化物の製造方法について説明する。

20 かかるリチウム遷移金属複合酸化物は、遷移金属源となるNi、 Co、Mn及びTiなどの水酸化物を各組成に応じて調整、混合 し、これにリチウム源となるLiOHを混合し、酸素雰囲気中6 00~1100℃で焼成することにより得られる。

この場合、使用できる遷移金属源の出発原料は上記のものに限 25 定されず、遷移金属の炭酸塩、硝酸塩及び硫酸塩なども使用でき る。

また、複数種の遷移金属を含む複合遷移金属の水酸化塩や炭酸塩なども使用できる。

一方、リチウム源の出発原料としては水酸化物以外にも、Li₂O、Li₂CO₃及びLiNiO₃などが使用できる。

5 次に、本発明のリチウムイオン非水電解質二次電池について説明する。

上述の如く、この非水電解質二次電池は、上記のリチウム複合酸化物を正極活物質とする正極と、リチウムを吸蔵・放出可能な材料を負極活物質とする負極と、非水電解質とを備える。

10 ここで、上記正極活物質に含まれるニッケルは、正極活物質の 総量に対してモル比率で 5 ~ 4 0 % であることが好適である。こ の場合は、リチウムイオンの吸蔵放出に有利な結晶構造、電子状 態となり易いので有効である。なお、この範囲から外れると充放 電容量が大きく低下することがある。

またこれ以外にも、リチウムとアルミニウム、鉛、銅及びイン 25 ジウム等とのリチウム合金や酸化鉄、酸化ルテニウム、酸化モリ ブデン、酸化タングステン、酸化チタン、酸化スズなどの比較的

22

電位が卑な電位でリチウムを吸蔵・放出できる金属酸化物や金属間化合物を形成する材料、同様にリチウムを吸蔵・放出できる窒化物、更にリチウムを吸蔵・放出できるポリアセチレン、ポリピロール等のポリマーも使用可能である。

なお、上述した炭素質材料や合金材料などへのリチウムのドープは、電池作製後に電池内で電気化学的に行ってもよいし、電池作製後又は電池作製前に、正極又は正極以外のリチウム源から供給して電気化学的にドープしてもよい。また、材料合成の際にリチウム含有材料として合成し、電池作製時には負極活物質に含有されている状態としてもよい。

5

10

15

20

本発明のリチウムイオン非水電解質二次電池において、正極又は負極は、代表的には、帯状乃至は矩形をなす集電体の両面に、上記の各活物質と結着剤を含む正極合剤又は負極合剤を被覆した正極合剤層又は負極合剤層を形成することにより作製できる。

ここで、集電体としては、集電機能を有する限り特に限定されず、形状的には、上記以外にも箔状、メッシュ及びエキスパンドメタル等の網状のものも用いられる。また、材質としては、正極集電体にはアルミニウム、ステンレス及びニッケル等が用いられ、負極集電体にはリチウムと合金を形成しない銅箔、ステンレス及びニッケル箔が用いられる。

また、正極合剤又は負極合剤は、上記の活物質以外にポリフッ化ビニリデン、フッ化ポリビニルピロリドン、スチレンーブタジエン樹脂等の公知の結着剤や、必要に応じてグラファイト等の導電剤など公知の添加剤を混合して得ることができる。

25 正極合剤層又は負極合剤層の形成は、代表的には、集電体の両面に正極合剤又は負極合剤を塗布し、乾燥させることによって行

23

われる。具体的には、結着材及び有機溶剤等を混合してスラリー 状とした後、集電体上に塗布、乾燥して作成することができる。 また、結着材の有無にかかわらず、活物質に熱を加えたまま加圧 成型することにより、強度を付与した電極を作成することも可能 である。

5

10

15

20

本発明のリチウムイオン非水電解質二次電池は、上述のように、 本発明の正極活物質を含有する正極、負極及び非水電解質を必須 の構成要件とするが、その電池形状については特に限定されるも のではなく、例えば、円筒型、角型、コイン型及びボタン型等の 種々の電池形状を採用することができる。

また、より安全性の高い密閉型非水電解液二次電池を得るべく、 過充電等の異常時には電池内圧上昇により作動して電流を遮断 させる安全弁等の手段を備えたものであることが望ましい。

本発明の非水電解質二次電池は、上述した各種材料、特に特定 の正極活物質をを用いて構成されているので、高容量で充放電サ イクルに伴う容量維持率が高いものとなっている。

本発明における第3の発明では、正極活物質がリチウムイオン非水電解質二次電池に好適に用いられるものであって、リチウム、コバルトを主成分とし層状構造を有する第1のリチウム遷移金属複合酸化物と、層状構造を有し4.25V~3.00Vまで0.2Cの電流値で放電した際の平均放電電圧が上記第1の複合酸化物よりも0.05V以上低い第2のリチウム遷移金属複合酸化物を含有して成る。

以下、本発明の正極活物質について詳細に説明する。なお、本 25 明細書において「%」は、特記のない限り質量百分率を表わすも のとする。

24

上記したように、本発明の正極活物質は、リチウムとコバルトを主成分とし層状構造を有する第1のリチウム遷移金属複合酸化物Aに対し、層状化合物であって4.25V~3.00Vまで0.2Cの電流値で放電した際の平均放電電圧が上記複合酸化物Aよりも0.05V以上低い第2のリチウム遷移金属複合酸化物Bを混合して成るものであって、このような複合酸化物の混合体を正極活物質として使用することにより、高容量で過放電耐性に優れた非水電解質二次電池を得ることができる。

5

15

本発明の正極活物質において使用される第1のリチウム遷移

10 金属複合酸化物Aとしては、LiCoO2等、リチウム及びコバルトを主成分とし、リチウムを挿入及び脱雛することができ、層状構造を有する物質であることを要する。

また、構成元素、例えばコバルトの一部、例えばモル比でその 10%程度を、例えばA1やMg等の異種元素、あるいはNiや Mn等の遷移金属元素で置換した材料を使用することも可能で ある。

なお、本発明において「リチウム及びコバルトを主成分とする」 とは、当該複合酸化物中の(Li+Co)含有量がモル比で40% 以上であることを意味する。

20 このようなリチウム遷移金属複合酸化物Aは、例えばコバルトを主成分とする酸化物に対して、炭酸リチウム等のリチウム源を混合し、空気雰囲気中において600~1100℃の温度範囲で焼成することにより得られる。なお、これらの元素を含有する複合水酸化物、複合炭酸塩、有機酸塩、酸化物等を原料として用いることも可能である。また、合成方法については、必ずしも上記の方法のみに限定されず、水熱合成などの任意の方法を適用する

25

ことができる。

5

一方、本発明において使用される第2のリチウム遷移金属複合酸化物Bとしては、リチウムの挿入及び脱離が可能な層状化合物であって、4.25 Vから3.00 Vまで0.2 Cの電流値で放電した際の平均放電電圧が上記複合酸化物Aより0.05 V以上低い物質であることを要する。

このような値に平均放電電圧を規定した物質を混合することによって、放電末期の正極電位を低下させ、負極の電位上昇を抑制し、過放電耐性を向上させることができる。

10 そして、第2のリチウム遷移金属複合酸化物 B としては、上記の平均放電電圧が第1の複合酸化物 A より 0.05 V 以上低いものでさえあれば特に限定されることなく使用することができ、例えば、上記したリチウム・コバルト複合酸化物におけるコバルトの20%以上をNiやMn等の遷移金属元素で置換した複合酸化物、すなわちLiCo_xNi_yMn₂O₂(但し、x+y+z=1)で表わされるような酸化物を用いることができる。

このような複合酸化物 B は、例えばニッケルを主成分とする無機塩の水溶液から共沈によって得た複合水酸化物に対して、水酸化リチウム等のリチウム源を混合し、空気雰囲気又は酸素雰囲気中において600~1100℃の温度範囲で焼成することによって得られる。なお、これらの元素を含有する複合炭酸塩、有機酸塩、酸化物等を原料として用いることも可能である。また、合成方法については、上記の方法のみに限定されず、前述の物性を実現できるものであれば固相合成、水熱合成などの任意の方法の適用が可能である。

第1のリチウム遷移金属複合酸化物Aと第2のリチウム遷移

金属複合酸化物Bの混合は公知の混合方法によって行うことができ、一方の粒子に他方の粒子を付着させ、複合粒子化することも可能である。

そして、これら複合酸化物A及びBの混合比としては、混合酸化物 (酸化物A+酸化物B)中における第2のリチウム遷移金属複合酸化物Bの比率が4%以上50%以下であることが好ましい。すなわち、当該複合酸化物Bの比率が4%未満になると、正極電位の低下が不十分となって過放電耐性が低下してしまい、50%を超えると放電カーブが低電圧側にシフトし、通常使用時における電池容量が低下してしまう傾向があることによる。

10

15

20

25

なお、第2のリチウム遷移金属複合酸化物 B は、 5μ m 以下の 1 次粒子が凝集して2 次粒子を形成した粒子形状を有している ことが好ましい。1 次粒子径が 5μ m を超えると、充放電に伴う膨張収縮によって粒子が破壊され、サイクル特性が低下する傾向がある。

また、これらリチウム遷移金属複合酸化物A及びBは、粒子の平均粒径が 30μ m以下であることが好ましく、さらには $2\sim3\mu$ mの範囲であることがより好ましい。すなわち、粒径が 30μ mを超えると、これら複合酸化物同士の混合が不十分となり電極内に電位分布が生じて、所期の効果が十分に得られないことがあることによる。

本発明のリチウムイオン非水電解質二次電池は、上述のように、 本発明の正極活物質を含有する正極、負極及び非水電解質を必須 の構成要件とするが、その電池形状については特に限定されるも のではなく、例えば、円筒型、角型、コイン型、ボタン型、ラミ ネートシール型等の種々の電池形状を採用することができるま

27

た、より安全性の高い密閉型非水雷解液二次電池を得るべく、過 充電等の異常時には電池内圧上昇により作動して電流を遮断さ せる安全弁等の手段を備えたものであることが望ましい。

本発明の非水電解質二次電池は、上述した各種材料、特に特定 の正極活物質を用いて構成されているので、高容量で、しかも過 放電耐性に優れたものとなっている。

本発明のリチウムイオン非水電解質二次電池において、正極及び負極電極の作製に際しては、例えば、材料に公知の結着剤、導電性材料等を添加し溶剤を加えて塗布する方法、材料に公知の結着剤を添加し加熱して塗布する方法、材料単独あるいは導電性材料さらには結着剤と混合して成型等の処理を施して成型体電極を作製する方法などが採用されるが、これら方法のみに限定されないものではない。より具体的には、結着剤、有機溶剤等と混合されてスラリー状にした後、集電体上に塗布し、乾燥することによって作製することができる。あるいは、結着剤の有無に拘わらず、活物質に熱を加えた状態で加圧成型することによって所定強度を備えた電極を作製することも可能である。

当該電池の作製方法としては、正負極間にセパレータを介して 巻芯の周囲に捲回する作製方法や、電極とセパレータを11順次 積層する積層方式などを採用することができる。角型電池の作製 に際して、捲回方式を採る場合にも本発明は有効である。

実施例

実施例1

5

10

15

20

25

以下、本発明を適用した正極活物質を用いた非水電解質二次電池の実施例及び比較例について具体的に説明する。ここでは、非水電解質二次電池の形状を円筒型の非水電解質二次電池とした。

28

先ず、第1のリチウム遷移金属複合酸化物(A)を次のようにして作製した。第1のリチウム遷移金属複合酸化物の原料には、市販の水酸化リチウム、一酸化ニッケル、酸化コバルトを用いた。第1のリチウム遷移金属複合酸化物は、水酸化リチウム、一酸化ニッケル、酸化コバルトを次のような配合で混合した。なお、実施例1では、遷移金属、或いは長周期型元素周期表の2族、3族、4族の元素のうち1種の元素若しくは複数種からなる化合物となる添加物Mを第1のリチウム遷移金属複合酸化物に添加せずに作製した。

5

15

20

10 従って、前述した第1のリチウム遷移金属複合酸化物の式(1) Li $_x$ Ni $_{1-y-z}$ Co $_y$ M $_z$ O $_z$ において、x=1. 0 2、1-y-z = 0.70、y=0.30、z=0となるように配合した。

次に、第1のリチウム遷移金属複合酸化物は、水酸化リチウム、一酸化ニッケル、酸化コバルトを上述した配合で混合したものを800℃の酸素気流中で10時間焼成した後、粉砕して得た。そして、得られた粉末を原子吸光分析機器により分析した結果、第1のリチウム遷移金属複合酸化物は前記式(1)で表されることが確認された。また、この粉末の平均粒径をレーザー回析法により測定した結果、15 μ mと確認された。また、この粉末のX線回析測定を行った結果、得られた回析パターンは、International Centre for Diffraction Date (以下ICDD) の09-0063にあるLiNiOの回析パターンに類似しており、LiNiOと同様の層状構造を形成していていることが確認された。

次に、第2のリチウム遷移金属複合酸化物(B)を次のようにし 25 て作製した。第2のリチウム遷移金属複合酸化物の原料には、市 販の水酸化リチウム、一酸化ニッケル、二酸化マンガンを用いた。

29

第2のリチウム遷移金属複合酸化物は、水酸化リチウム、一酸化ニッケル、二酸化マンガンを次のような配合で混合した。なお、第1のリチウム遷移金属複合酸化物と同様に第2のリチウム遷移金属複合酸化物に、遷移金属、或いは長周期型元素周期表の2族、3族、4族の元素のうち1種の元素若しくは複数種からなる化合物の添加物M′を第2のリチウム遷移金属複合酸化物に添加せずに作製した。下記式(2)で表される第2のリチウム遷移金属複合酸化物である。

前述した第2のリチウム遷移金属複合酸化物の式(2) L i $_{s}$ 10 N i $_{1-t-u}$ M n $_{t}$ M $_{u}$ O $_{2}$ において、 s=1 . 0 2 、 1-t-u=0 . 6 5 、 t=0 . 3 5 、 u=0 となるように混合した。

次に、第2のリチウム遷移金属複合酸化物は、水酸化リチウム、一酸化二ッケル、二酸化マンガンを上述した比になるように混合したものを800℃の酸素気流中で10時間焼成した後、粉砕して得られた。そして、得られた粉末を原子吸光分析機器により分析した結果、第2のリチウム遷移金属複合酸化物は前記式(2)で表されることが確認された。また、この粉末の平均粒径をレーザー回析法により測定した結果、15 μ mが確認された。また、この粉末のX線回析測定を行った結果、得られた回析パターンは、ICDDの09-0063にあるLiNiOの回析パターンに類似しており、LiNiOと同様の層状構造を形成していていることが確認された。

15

20

次に、正極を作製した。先ず、上述した第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物とを混合して正極活物質を作製した。正極活物質は、第1のリチウム遷移金属複合酸化物との混合比属複合酸化物と第2のリチウム遷移金属複合酸化物との混合比

30

が第1のリチウム遷移金属複合酸化物対第2のリチウム遷移金属複合酸化物=50重量%対50重量%となるように混合して作製した。次に、第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物を混合して得られた正極活物質86 重量%、導電剤としてグラファイト10重量%、結合剤としてポリフッ化ビニリデン(以下、PVdFと称する)4重量%を混合し、有機溶媒N-メチル-2-ピロリドン(以下、NMPと称する)に分散させて得られた正極合剤をスラリー状とした。次に、スラリー状にした正極合剤を厚さ20μmの帯状のアルミニウム箔の両面に均一に塗布して正極合剤層を形成し、乾燥後、ローラープレス機で圧縮して帯状の正極を得た。

次に、負極を作製した。負極は、負極活物質に粉末状の人造黒鉛を用い、人工黒鉛90重量%にPVdF10重量%を混合し、NMPに分散させて得られた負極合剤をスラリー状とした。このスラリー状にした負極合剤を厚さ 10μ mの銅箔の両面に均一に塗布して負極合剤層を形成し、乾燥後にローラープレス機で圧縮して負極を得た。

15

20

25

次に、非水電解液を作製した。非水電解液は、エチレンカーボネートとメチルエチルカーボネートとの体積混合比を1対1とする混合溶液を、濃度1 mol/dm となるように溶質L i P F 6 に溶解させて得られた。

次に、円筒型の非水電解質二次電池を作製した。先ず、以上のように作製された正極と負極とを多孔性ポリオレフィンフィルムからなるセパレータを介して多数回巻回して、渦巻き型の電極体を作製した。渦巻き型の電極体の上下両面に絶縁板を配置して、ニッケルめっき処理を施した鉄製の電池缶に収納した。正極の集

31

電をとるために、アルミニウム製正極リードの一端を正極集電体から導出して、他端を電流遮断用薄板に溶接することで電流遮断用薄板を介して電池蓋と電気的に接続した。また、負極の集電をとるために、ニッケル負極リードの一端を負極集電体から導出して、他端を電池缶の底部に溶接した。

次に、上述した電極体が組み込まれた電池缶内に、調製した非水電解液を注入後、絶縁封ロガスケットを介して電池缶をかしめることにより電池蓋が固定されて、外径18mm、高さ65mmの円筒型の非水電解質二次電池が作製された。なお、非水電解質二次電池において、正極リード及び負極リードに接続するセンターピンが設けられているとともに、非水電解質二次電池内部の圧力が所定の値よりも高くなった場合に、非水電解質電池内部の気体を抜くための安全弁、及び非水電解質二次電池内部の温度上昇を防止するためのPTC(positive temperature coefficient)素子が設けた。

実施例2

10

15

20

25

実施例 2 では、第 1 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムを用いて、これらの原料を次のような割合で混合した。第 1 のリチウム遷移金属複合酸化物の式 (1) Li_xNi_{1-y-z}Co_yM_zO₂において、x=1.02、1-y-z=0.70、y=0.25、z=0.05、M=A1となるように混合した以外は実施例 1 と同様にして、LiNiCoAlOの第 1 のリチウム遷移金属複合酸化物を作製した。そして、この第 1 のリチウム遷移金属複合酸化物を作製した。そして、この第 1 のリチウム遷移金属複合酸化物を用いたこと以外は実施例 1 と同様にして

32

非水電解質二次電池を作製した。

実施例3

実施例 3 では、第 2 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムを用いて、これらの原料を次のような割合で混合した。第 2 のリチウム遷移金属複合酸化物の式(2) LisNilon、MntM「uO2において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M「=A1となるように配合し混合した以外は実施例1と同様にして、LiNiMnA1Oの第2のリチウム遷移金属複合酸化物を作製した。その第 2 のリチウム遷移金属複合酸化物を作製した。その第 2 のリチウム遷移金属複合酸化物を作製した。その第 2 のリチウム遷移金属複合酸化物を作製した。

15 実施例4

実施例4では、第1のリチウム遷移金属複合酸化物を実施例2の第1のリチウム遷移金属複合酸化物と同様にして、化学式LiNiCoAlOの第1のリチウム遷移金属複合酸化物を作製した。第2のリチウム遷移金属複合酸化物は、実施例3の第2のリチウム遷移金属複合酸化物と同様にして、化学式LiNiMnAlOの第2のリチウム遷移金属複合酸化物を作製した。これら第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物とを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。

25

33

実施例 5 は、第 1 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて水酸化鉄を用いて、第 1 のリチウム遷移金属複合酸化物の式(1) L i_x N i_{1-y-z} C o_y M $_z$ O $_2$ において、x=1. 0 2、1-y-z=0. 7 0、y=0. 2 5、z=0. 0 5、 M = F e となるように混合した以外は実施例 4 と同様にして、L i N i C o F e O の第 1 のリチウム遷移金属複合酸化物を作製した。この第 1 のリチウム遷移金属複合酸化物を用いた以外は実施例 4 と同様にして非水電解質二次電池を作製した。

10

15

20

5

実施例6

実施例 6 は、第 1 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化スズを用いて、第 1 のリチウム遷移金属複合酸化物の式 (1) L i_x N i_{1-y-z} C o_y M $_z$ O $_z$ において、x=1. 0 2、1-y-z=0. 7 0、y=0. 2 5、z=0. 0 5、 M = S n となるように混合した以外は実施例 4 と同様にして、L i N i C o S n O の第 1 のリチウム遷移金属複合酸化物を作製した。この第 1 のリチウム遷移金属複合酸化物を用いたこと以外は実施例 4 と同様にして非水電解質二次電池を作製した。

実施例7

実施例 7 は、第 1 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化 25 アルミニウムに換えて酸化クロムを用いて、第 1 のリチウム遷移 金属複合酸化物の式(1) Li x Ni 1-v-x Co y M 2 O 2 において、

34

x=1.02、1-y-z=0.70、y=0.25、z=0.05、M=C r となるように混合した以外は実施例 4 と同様にして、 L i N i C o C r O の第 1 のリチウム遷移金属複合酸化物を作 製した。この第 1 のリチウム遷移金属複合酸化物を用いたこと以 外は実施例 4 と同様にして非水電解質二次電池を作製した。

実施例8

5

実施例 8 は、第 1 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化 7 ルミニウムに換えて五酸化バナジウムを用いて、第 1 のリチウム遷移金属複合酸化物の式(1) Li $_{x}$ Ni $_{1-y-z}$ Co $_{y}$ M $_{z}$ O $_{z}$ に おいて、x=1. 0 2、1 $_{-y-z}=0$. 7 0、y=0. 2 5、 z=0. 0 5、M=V となるように混合した以外は実施例 4 と同様にして、Li Ni Co V O の第 1 のリチウム遷移金属複合酸化物 を作製した。この第 1 のリチウム遷移金属複合酸化物を用いたこと以外は実施例 4 と同様にして非水電解質二次電池を作製した。

実施例9

実施例 9 は、第 1 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化チタンを用いて、第 1 のリチウム遷移金属複合酸化物の式 (1) し i_x N i_{1-y-z} C o_y M $_z$ O $_z$ において、x=1. 0 2 、 1-y-z=0. 7 0 、 y=0. 2 5 、 z=0. 0 5 、 M=T i となるように混合した以外は実施例 4 と同様にして、1 に 1 に 1 に 1 の第 1 のリチウム遷移金属複合酸化物を作製した。この第 1 のリチウム遷移金属複合酸化物を用いたこと以

35

外は実施例4と同様にして非水電解質二次電池を作製した。

実施例10

実施例10は、第1のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化マグネシウムを用いて、第1のリチウム遷移金属複合酸化物の式(1) L i $_x$ N i $_{1-y-z}$ C o $_y$ M $_z$ O $_z$ において、x=1 . 0 2、1 $_y$ - z=0 . 7 0、y=0 . 2 5、z=0 . 0 5、M=M g となるように混合した以外は実施例 4 と同様にして、L i N i C o M g O の第1のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を作製した。

15 実施例11

実施例11は、第1のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて硝酸ガリウムを用いて、第1のリチウム遷移金属複合酸化物の式(1) $Li_xNi_{1-y-z}Co_yM_zO_2$ に おいて、x=1.02、1-y-z=0.70、y=0.25、z=0.05、M=G a となるように混合した以外は実施例4と同様にして、LiNiCoGaOの第1のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製 した。

36

実施例12

実施例12は、第2のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて水酸化鉄を用いて、第2のリチウム遷移金属複合酸化物の式(2) Li_sNi_{1-1-u}Mn_tM $^{'}$ $_{u}$ O₂において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M $^{'}$ = Feとなるように配合し混合した以外は実施例4と同様にして、LiNiMnFeOの第2のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製した。

実施例 1 3

10

実施例 1 3 は、第 2 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化コバルトを用いて、第 2 のリチウム遷移金属複合酸化物の式(2) Li_sNi_{1-t-u}Mn_tM´_uO₂において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M´=Coとなるように配合し混合した以外は実施の4と同様にして、LiNiMnCoOの第 2 のリチウム遷移金属複合酸化物を作製した。この第 2 のリチウム遷移金属複合酸化物を作製した。この第 2 のリチウム遷移金属複合酸化物を作製した。

25 実施例14

実施例14は、第2のリチウム遷移金属複合酸化物の原料とし

37

て、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて水酸化亜鉛を用いて、第2のリチウム 遷移金属複合酸化物の式(2) Li_sNi_{1-t-u}Mn_tM´_uO₂において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M´=Znとなるように配合し混合した以外は実施例 4と同様にして、LiNiMnZnOの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製した。

10

15

20

5

実施例15

実施例 15 は、第 2 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化スズを用いて、第 2 のリチウム遷移金属複合酸化物の式(2) Li $_s$ Ni $_{1-t-u}$ Mn $_t$ M $_u$ O $_2$ において、s=1. 0 2 、 1-t-u=0. 6 5 、 t=0. 3 0 、 u=0. 0 5 、 M=S n となるように配合し混合した以外は実施例 4 と同様にして、Li Ni Mn Sn Oの第 2 のリチウム遷移金属複合酸化物を作製した。この第 2 のリチウム遷移金属複合酸化物を作製した。この第 2 のリチウム遷移金属複合酸化物を用いたこと以外は実施例 4 と同様にして非水電解質二次電池を作製した。

実施例16

実施例16は、第2のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化クロムを用いて、第2のリチウム

38

遷移金属複合酸化物の式(2) Li_sNi_{1-t-u}Mn_tM´_uO₂において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M´=Crとなるように配合し混合した以外は実施例1と同様にして、LiNiMnCrOの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製した。

実施例17

実施例17は、第2のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて五酸化バナジウムを用いて、第2のリチウム遷移金属複合酸化物の式(2) LisNil-t-uMntM「uO2において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M´=Vとなるように配合し混合した以外は実施例4と同様にして、LiNiMnVOの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を作製した。

20

実施例18

39

0.05、M´=Tiとなるように配合し混合した以外は実施例4と同様にして、LiNiMnTiOの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製した。

実施例19

5

10

15

実施例19は、第2のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて酸化マグネシウムを用いて、第2のリチウム遷移金属複合酸化物の式(2)Li $_{s}$ N i $_{1-t-u}$ M n $_{t}$ M $_{u}$ O $_{2}$ において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、 M $_{m}$ = M $_{m}$ となるように配合し混合した以外は実施例4と同様にして、L i N i M n M $_{m}$ O の第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製した。

実施例20

実施例 20 は、第 20 のリチウム遷移金属複合酸化物の原料として、水酸化リチウム、一酸化ニッケル、酸化コバルトの他に、水酸化アルミニウムに換えて硝酸ガリウムを用いて、第 20 リチウム遷移金属複合酸化物の式(2) Li $_s$ Ni $_{1-1-u}$ Mn $_t$ M $_u$ O $_2$ において、s=1.02、1-t-u=0.65、t=0.30、u=0.05、M $_t$ =Gaとなるように配合し混合した以外は実施例 4 と同様にして、LiNiMnGaOの第 2 のリチウム遷移金

40

属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いたこと以外は実施例4と同様にして非水電解質二次電池を作製した。

5 実施例21

実施例21は、第1のリチウム遷移金属複合酸化物(A)及び第2のリチウム遷移金属複合酸化物(B)の混合比を第1のリチウム遷移金属複合酸化物:第2のリチウム遷移金属複合酸化物=15重量%:85重量%として混合した以外は実施例4と同様にして正極活物質を作製した。この正極活物質を用いた以外は、実施例4と同様にして非水電解質二次電池を作製した。

実施例22

実施例22は、第1のリチウム遷移金属複合酸化物及び第2の リチウム遷移金属複合酸化物の混合比を第1のリチウム遷移金 属複合酸化物:第2のリチウム遷移金属複合酸化物=30重 量%:70重量%となるように混合した以外は実施例4と同様に して正極活物質を作製した。この正極活物質を用いた以外は、実 施例4と同様にして非水電解質二次電池を作製した。

20

2.5

実施例23

実施例23は、第1のリチウム遷移金属複合酸化物及び第2の リチウム遷移金属複合酸化物の混合比を第1のリチウム遷移金 属複合酸化物:第2のリチウム遷移金属複合酸化物=70重 量%:30重量%となるように混合した以外は実施例4と同様に して正極活物質を作製した。この正極活物質として用いた以外は

41

実施例4と同様にして非水電解質二次電池を作製した。

実施例24

実施例24は、第1のリチウム遷移金属複合酸化物及び第2の リチウム遷移金属複合酸化物の混合比を第1のリチウム遷移金 属複合酸化物:第2のリチウム遷移金属複合酸化物=85重 量%:15重量%となるように混合した以外は実施例4と同様に して正極活物質を作製した。この正極活物質を用いた以外は実施 例4と同様にして非水電解質二次電池を作製した。

10

5

実施例 2 5

実施例4と同様に操作を行い、焼成により得られた化学式Li NiCoAlOの第1のリチウム遷移金属複合酸化物を自動乳 鉢を用いて充分な時間粉砕し、次いで篩を用いて粗粉粒子を除い 5 て平均粒径2μmの第1のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を用いた以外は実施例4と同様にして非水電解質二次電池を作製した。

実施例26

実施例 4 と同様に操作を行い、焼成により得られた化学式Li NiCoA1〇の第1のリチウム遷移金属複合酸化物を自動乳 鉢を用いて一定時間粉砕し、次いで篩を用いて粗粉粒子を除いて 平均粒径 8 μm の第1のリチウム遷移金属複合酸化物を作製した。 この第1のリチウム遷移金属複合酸化物を用いる以外は実施例 4 と同様にして非水電解質二次電池を作製した。

42

実施例27

実施例 4 と同様に操作を行い、焼成により得られた化学式LiNiCoA1〇の第1のリチウム遷移金属複合酸化物を自動乳鉢を用いて短時間粉砕し、次いで篩を用いて粗粉粒子を除いて平均粒径20μmの第1のリチウム遷移金属複合酸化物を作製した。これ以外は実施例 4 と同様にして非水電解質二次電池を作製した。

実施例28

5

10 実施例 4 と同様に操作を行い、焼成により得られた化学式 L i N i C o A 1 O の第 1 のリチウム遷移金属複合酸化物を自動乳 鉢を用いて短時間粉砕し、次いで篩を用いて粗粉粒子を除いて平均粒径 3 0 μm の第 1 のリチウム遷移金属複合酸化物を作製した。この第 1 のリチウム遷移金属複合酸化物を用いる以外実施例 4 と同様にして非水電解質二次電池を作製した。

実施例29

実施例4と同様に操作を行い、焼成により得られた化学式Li NiMnAlOの第2のリチウム遷移金属複合酸化物を自動乳 20 鉢を用いて充分な時間粉砕し、次いで篩を用いて粗粉粒子を除いて平均粒径2μmの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いる以外は実施例4と同様にして非水電解質二次電池を作製した。

25 実施例30

実施例4と同様に操作を行い、焼成により得られた化学式Li

43

NiMnA1Oの第2のリチウム遷移金属複合酸化物を自動乳 鉢を用いて充分な時間粉砕し、次いで篩を用いて粗粉粒子を除い て平均粒径9μmの第2のリチウム遷移金属複合酸化物を作製し た。この第2のリチウム遷移金属複合酸化物を用いる以外は実施 例4と同様にして非水電解質二次電池を作製した。

実施例31

5

20

実施例4と同様に操作を行い、焼成により得られた化学式LiNiMnA1Oの第2のリチウム遷移金属複合酸化物を自動乳 10 鉢を用いて一定時間粉砕し、次いで篩を用いて粗粉粒子を除いて 平均粒径18μmの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いる以外は実施 例4と同様にして非水電解質二次電池を作製した。

15 実施例32

実施例4と同様に操作を行い、焼成により得られた化学式LiNiMnA1〇の第2のリチウム遷移金属複合酸化物を自動乳鉢を用いて短時間粉砕し、次いで篩を用いて粗粉粒子を除いて平均粒径30μmの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いる以外は実施例4と同様にして非水電解質二次電池を作製した。

実施例33

実施例 3 3 は、第 1 のリチウム遷移金属複合酸化物中のコバル 25 トの組成の比 y を 0 . 0 5 に変えたものであり、すなわち、第 1 のリチウム遷移金属複合酸化物の式(1) L i x N i 1-v-2 C o y M

44

z O_2 において、x = 1 . 0 2 、 1 - y - z = 0 . 9 0 、 y = 0 . 0 5 、 z = 0 . 0 5 、 M = A 1 となるように混合して、第 1 のリチウム遷移金属複合酸化物を作製した。これ以外は実施例 4 と同様にして非水電解質二次電池を作製した。

5

実施例34

実施例 34 は、第 1 のリチウム遷移金属複合酸化物中のコバルトの組成の比 y を 0 . 5 0 に変えたものであり、すなわち、第 1 のリチウム遷移金属複合酸化物の式 (1) L i_x N i_{1-y-z} C o_y M i_y 2 i_y 2 i_y 2 i_y 2 i_y 2 i_y 2 i_y 3 i_y 2 i_y 4 i_y 3 i_y 6 i_y 6 i_y 6 i_y 6 i_y 7 i_y 8 i_y 8 i_y 8 i_y 9 i_y 9

実施例35

実施例 3 5 は、第 2 のリチウム遷移金属複合酸化物中のマンガンの組成の比 t を 0 . 0 5 に変えたものであり、すなわち、第 2 のリチウム遷移金属複合酸化物の式(2) L i_s N i_{1-i-u} M n_t M i_u O i_u において、 i_u S i_u 2 i_u 2 i_u 2 i_u 2 i_u 2 i_u 2 i_u 3 i_u 6 i_u 6 i_u 6 i_u 7 i_u 7 i_u 8 i_u 6 i_u 6 i_u 7 i_u 7 i_u 7 i_u 8 i_u 6 i_u 7 i_u 8 i_u 6 i_u 8 i_u 6 i_u 8 i_u 9 i_u

45

実施例36

5

10

実施例 3 6 は、第 2 のリチウム遷移金属複合酸化物中のマンガンの組成の比 t を 0 . 5 0 に変えたものであり、すなわち、第 2 のリチウム遷移金属複合酸化物の式(2) L i $_s$ N i $_{1-t-u}$ M n $_t$ M $_{u}$ $_{u}$ $_{u}$ $_{u}$ $_{u}$ $_{u}$ $_{v}$ $_{u}$ $_{v}$ $_{$

比較例1

比較例 1 は、第 1 のリチウム遷移金属複合酸化物の原料として水酸化リチウム、一酸化ニッケル、酸化コバルトを次のような配合で混合した。第 1 のリチウム遷移金属複合酸化物の式(1) し i_x N i_{1-y-z} C o_y M $_z$ O $_2$ において、x=1 . 0 2 、 1-y-z=0 . 7 0 、y=0 . 3 0 、z=0 となるように配合した。第 1 のリチウム遷移金属複合酸化物は、化学式しi N i C o Oで表され、実施例 4 の第 1 のリチウム遷移金属複合酸化物と同様に作製した。比較例 1 では、第 2 のリチウム遷移金属複合酸化物を用いずに第 1 のリチウム遷移金属複合酸化物を単独で正極活物質を作製した。この正極活物質を用いること以外は実施例 4 と同様にして非水電解質二次電池を作製した。

25 比較例 2

比較例2は、第2のリチウム遷移金属複合酸化物の原料として、

46

市販の水酸化リチウム、一酸化ニッケル、二酸化マンガンを用いた。第2のリチウム遷移金属複合酸化物は、化学式LiNiMnOで表される第2のリチウム遷移金属複合酸化物Li。Ni_{1-t-u}Mn_tM^_uO₂を実施例4と同様にして作製した。比較例2では、第1のリチウム遷移複合酸化物を用いずに第2のリチウム遷移金属複合酸化物を単独で正極活物質を作製した。この正極活物質を用いる以外は実施例4と同様にして非水電解質二次電池を作製した。

10 比較例3

5

比較例 3 は、第 1 のリチウム遷移金属複合酸化物及び第 2 のリチウム遷移金属複合酸化物の混合比を、第 1 のリチウム遷移金属複合酸化物:第 2 のリチウム遷移金属複合酸化物=1 0 重量%:9 0 重量%として混合した以外は実施例 4 と同様にして正極活物質を作製した。この正極活物質を用いる以外は実施例 4 と同様にして非水電解質二次電池を作製した。

比較例4

比較例4は、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の混合比を、第1のリチウム遷移金属複合酸化物:第2のリチウム遷移金属複合酸化物=90重量%:10重量%として混合した以外は実施例4と同様にして正極活物質を作製した。こ以外は実施例4と同様にして非水電解質二次電池を作製した。

25

15

比較例5

47

実施例4と同様に操作を行い、焼成により得られた化学式LiNiCoAlOの第1のリチウム遷移金属複合酸化物を自動乳鉢を用いて充分な時間粉砕し、次いで篩を用いて粗粉粒子を除いて平均粒径1μmの第1のリチウム遷移金属複合酸化物を作製した。この第1のリチウム遷移金属複合酸化物を用いた以外は実施例4と同様にして非水電解質二次電池を作製した。

比較例6

実施例4と同様に操作を行い、焼成により得られた化学式Li NiCoAlOの第1のリチウム遷移金属複合酸化物を自動乳 鉢を用いて短時間粉砕し、次いで篩を用いて粗粉粒子を除いて平 均粒径40μmの第1のリチウム遷移金属複合酸化物を作製した。 この第1のリチウム遷移金属複合酸化物を用いた以外は実施例 4と同様にして非水電解質二次電池を作製した。

15

20

5

比較例7

実施例4と同様に操作を行い、焼成により得られた化学式Li Ni M n A 1 O の第2のリチウム遷移金属複合酸化物を自動乳 鉢を用いて充分な時間粉砕し、次いで篩を用いて粗粉粒子を除い て平均粒径1μmの第2のリチウム遷移金属複合酸化物を作製し た。この第2のリチウム遷移金属複合酸化物を用いた以外は実施 例4と同様にして非水電解質二次電池を作製した。

比較例8

25 実施例 4 と同様に操作を行い、焼成により得られた化学式 L i N i M n A 1 O の第 2 のリチウム遷移金属複合酸化物を自動乳

48

鉢を用いて充分な時間粉砕し、次いで篩を用いて粗粉粒子を除いて平均粒径40μmの第2のリチウム遷移金属複合酸化物を作製した。この第2のリチウム遷移金属複合酸化物を用いた以外は実施例4と同様にして非水電解質二次電池を作製した。

5

比較例 9

比較例 9 は、第 1 のリチウム遷移金属複合酸化物中のコバルトの組成の比 y を 0 . 0 1 に変えたものであり、すなわち、第 1 のリチウム遷移金属複合酸化物の式 (1) L i_x N i_{1-y-z} C o_y M $_z$ 10 O $_2$ において、x=1 . 0 2 、 1-y-z=0 . 7 0 、 y=0 . 0 1 、 z=0 . 0 5 、 M=A 1 となるように混合して、第 1 のリチウム遷移金属複合酸化物を実施例 4 の第 1 のリチウム遷移金属複合酸化物と同様にして作製した。この第 1 のリチウム遷移金属複合酸化物を用いる以外は実施例 4 と同様にして非水電解質二 5 次電池を作製した。

比較例10

比較例 $1 \ 0$ は、第 $1 \ 0$ リチウム遷移金属複合酸化物中のコバルトの組成の比 y を 0 . $6 \ 0$ に変えてたものであり、すなわち、第 $1 \ 0$ リチウム遷移金属複合酸化物の式 (1) L i_x N i_{1-y-z} C o_y M $_z$ O $_2$ において、 $_x$ = 1 . 0 2 、 1-y-z=0 . 7 0 、 y=0 . 6 0 、 z=0 . 0 5 、 M=A 1 となるように混合して、第 1 のリチウム遷移金属複合酸化物を実施例 4 の第 1 のリチウム遷移金属複合酸化物と同様にして作製した。この第 1 のリチウム遷移金 。 属複合酸化物を用いる以外は実施例 4 と同様にして非水電解質 二次電池を作製した。

49

比較例11

比較例12

比較例 $1 \ 2$ は、第 $2 \ 0$ リチウム遷移金属複合酸化物中のマンガンの組成の比 $t \ \epsilon \ 0$. $6 \ 0$ に変えたものであり、すなわち、第 $2 \ 0$ リチウム遷移金属複合酸化物の式 (2) L i_s N i_{1-t-u} M n_t M i_u O i_u において、 i_u S i_u C i_u C i

次に、以上のように作製した実施例及び比較例の非水電解質二 25 次電池について、環境温度23℃、充電電圧4.20V、充電電 流1000mA、充電時間2.5時間の条件で充電を行った後、充

50

電電流 1500 mA、終止電圧 2.75 V で放電を行い初期容量を測定した。更に、同条件で充放電を繰り返し、23 C における 100 サイクル目の放電容量を測定して、初期容量に対する 100 サイクル目の容量維持率を求めた。また、環境温度を 50 C に設定して、他の条件を環境温度 23 C の場合と同様にして、50 C での充放電を繰り返した時の 100 サイクル目の容量維持率の測定を行った。

5

以下に、実施例1乃至実施例20、比較例1及び比較例2における初期容量、23℃における100サイクル容量維持率及び50℃における100サイクル容量維持率の評価結果を表1に示す。

	100岁4外容量維持 率[%]	20°C	81.9	82.9	83.1	84.5	84.4	83.8	84.6	84.3	85	85.1	84	84.3	83.9	84.2	84.9	84.3	84.6	84.4	84.5	84.7	59.2	98
	1004/9/)	23°C	91.3	93.1	93.4	95.2	94.4	94.8	95	93.9	94.9	94.1	94.5	93.6	94.1	94	94.2	94.4	93.3	94.1	94.7	94.2	88.1	95.9
	幼児 御子 [mAh]		1720	1710	1690	1700	1690	1710	1710	1720	1680	1680	1670	1690	1710	1700	1700	1710	1710	1680	1690	1670	1820	1510
	第1のリチウム遷移金属複合酸化物 第2のリチウム遷移金属複合酸化物 (A)の組成		Li1.02Ni0.65Mn0.3502	Li _{1.02} Ni _{0.65} Mn _{0.35} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} O ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} 0 ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Al _{0.05} O ₂	$\text{Li}_{1.02} \text{Ni}_{0.65} \text{Mn}_{0.30} \text{Fe}_{0.05} \text{O}_{2}$	Li _{1.02} Ni _{0.65} Mn _{0.30} Co _{0.05} O ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Zn _{0.05} 0 ₂	$L_{1,02}N_{10.65}Mn_{0.30}Sn_{0.05}O_{2}$	Li _{1.02} Ni _{0.65} Mn _{0.30} Cr _{0.05} O ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} V _{0.05} O ₂	Li _{1.02} Ni _{0.65} Mn _{0.30} Ti _{0.05} 0 ₂	$Li_{1.02}Ni_{0.65}Mn_{0.30}Mg_{0.05}0_2$	Li 1.02Ni 0.65Mno.30Ga 0.0502	なし	Li _{1.02} Ni _{0.65} Mn _{0.35} O ₂
表1	第1のリチウム遷移金属複合酸化物 (A)の組成		Li _{1.02} Ni _{0.70} Co _{0.30} O ₂	$L_{i_1.02}N_{i_0.70}Co_{0.25}A_{i_0.05}O_2$	$L_{i_{1.02}N_{i_{0.70}}Co_{0.30}O_{2}}$	$L_{i_1.02}N_{i_0.70}Co_{0.25}A_{i_0.05}O_2$	$L_{i_1.02}N_{i_0.70}Co_{0.25}Fe_{0.05}O_2$	$L_{i_1.02}N_{i_0.70}Co_{0.25}Sn_{0.05}O_2$	$L_{i_1.02}N_{i_0.70}Co_{0.25}Cr_{0.05}O_2$	$L_{i_1.02}N_{i_0.70}Co_{0.25}V_{0.05}O_2$	$L_{i_{1.02}Ni_{0.70}Co_{0.25}Ti_{0.05}O_{2}}$	$Li_{1.02}Ni_{0.70}Co_{0.25}Mg_{0.05}O_2$	$L_{i_{1.02}N_{i_{0.70}}Co_{0.25}Ga_{0.05}O_{2}}$	$L_{i_1.02} N_{i_0.70} Co_{0.25} A_{i_0.05} O_2$	$L_{i_{1.02}Ni_{0.70}Co_{0.25}Al_{0.05}O_{2}}$	$Li_{1.02}Ni_{0.70}Co_{0.25}Al_{0.05}O_2$	$L_{i_{1.02}Ni_{0.70}Co_{0.25}Al_{0.05}O_{2}}$	$Li_{1.02}Ni_{0.70}Co_{0.25}AI_{0.05}O_2$	$Li_{1.02}Ni_{0.70}Co_{0.25}Al_{0.05}O_2$	$L_{i_{1.02}Ni_{0.70}Co_{0.25}Al_{0.05}O_{2}}$	Li _{1.02} Ni _{0.70} Co _{0.25} Al _{0.05} O ₂	Li _{1.02} Ni _{0.70} Co _{0.25} Al _{0.05} O ₂	Li _{1.02} Ni _{0.70} Co _{0.30} O ₂	なし
	混合比率 (A)/(B) 重量%	- 1	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	50/50	20/20	100/0	0/100
	第2のJチウム遷移金属複合酸化物(B)中のN,		添加なし	添加なし	A I	ΑΙ	A	A	A I	ΑΙ	A 1	A I	A 1	Fe	Co	Zn	Sn	C r	٧	T 1	Mg	Gа		添加なし
	第1のリチウム選第2のリチウム選。移金属複合移金属複合移金属複合 酸化物(A)中酸化物(B)中のM		添加なし	Α Ι	3 添加なし	ΑΙ	٦ ه	Sn	Cr	^	<u>.</u>	Mg	Ga	A 1	A 1	ΑΙ	ΑΙ	A 1	ΑΙ	ΑΙ	ΑΙ	A I	添加なし	1
				2	က	4	2	9	7	∞	6	10		12	13	14	15	16	17	18	19	20	1	2
L		\perp								出福	+ 49													

52

表1に示す評価結果から、第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物を混合した混合物を正極活物質に用いた実施例1乃至実施例20では、第1のリチウム遷移金属複合酸化物を単独で正極活物質を形成している比較例1と比べて、23℃及び50℃における100サイクル容量維持率の向上が図られていることが分かる。

比較例1は、第1のリチウム遷移金属複合酸化物を単独で正極活物質に用いた場合であり、遷移金属、或いは元素周期表の2族、3族、4族の元素のうち1種若しくは複数種からなる化合物が添加されていないため、結晶構造が不安定であるため充放電を繰り返す度に結晶構造が劣化している。その為、第1のリチウム遷移金属複合酸化物を単独で正極活物質に用いた場合は、充放電サイクル容量維持率が低下してしまう。特に、高温環境下における充放電サイクル容量維持率は、高温により結晶構造の劣化が促進され、更に電解質の分解によって著しく低下している。

10

15

20

25

一方、実施例1乃至実施例20は、第1のリチウム遷移金属複合酸化物の他に第2のリチウム遷移金属複合酸化物を混合することによって、第2のリチウム遷移金属複合酸化物の結晶構造が安定であることから、充放電に伴う正極活物質の結晶構造の変化が小さくなり、充放電に伴う正極活物質全体の結晶構造の劣化が抑制される。その為、正極活物質は、23℃及び50℃における100サイクル容量維持率が向上が図られている。

また、表1に示す評価結果から、実施例1乃至実施例20では、第2のリチウム遷移金属複合酸化物を単独で正極活物質を形成している比較例2と比べて、初期容量の高容量化が図られていることが分かる。

53

比較例2では、第2のリチウム遷移金属複合酸化物を単独で正極活物質に用いた場合であり、遷移金属、或いは元素周期表の2族、3族、4族の元素のうち1種若しくは複数種からなる化合物を添加されていないため、第2のリチウム遷移金属複合酸化物が低容量であるため初期容量が低下している。

一方、実施例1乃至実施例20は、第2のリチウム遷移金属複合酸化物の他に第1のリチウム遷移金属複合酸化物を混合することによって、第1のリチウム遷移金属複合酸化物が高容量であることから、正極活物質全体の初期容量が向上している。

10 以上のことから、非水電解質二次電池を作製する際に、正極活物質に第1のリチウム遷移金属複合酸化物と第2のリチウム遷移金属複合酸化物とを混合した混合物を用いることによって、初期容量の高容量化、高エネルギー密度化及び充放電サイクル容量維持率の向上に有効であることが明らかである。なお、実施例1のように、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物に、遷移金属、或いは元素周期表の2族、3族、4族中から選ばれる元素を加えなくても、初期容量の高容量化及び充放電サイクル容量維持率の向上が図られる。

20 次に、実施例 1、実施例 2 1 乃至実施例 2 4、比較例 3 及び比較例 4 における初期容量、2 3 ℃における1 0 0 サイクル容量維持率及び 5 0 ℃における1 0 0 サイクル容量維持率の評価結果を表 2 に示す。なお、第 1 のリチウム遷移金属複合酸化物及び第2 のリチウム遷移金属複合酸化物に添加する添加物 M 及び添加物 M 次は、実施例 1、実施例 2 1 乃至実施例 2 4、比較例 3 及び比較例 4 すべて A 1 である。

54

表 2

5

		第1のリチウム遷移金属複合酸化物	初期容量	100 サイクル	容量維
		(A)と第 2 のりチウム遷移金属複合		持率	[%]
		酸化物(B)の混合比(重量%):			
		(A)/(B)	[mAh]	23℃	50℃
実施例	1	50/50	1700	95.2	84.5
	2 1	15/85	1610	95.4	85.5
	2 2	30/70	1680	95.5	84.5
	2 3	70/30	1710	93.3	83.3
	2 4	85/15	1720	91.8	73.9
比較例	3	10/90	1540	96.1	86.8
	4	90/10	1740	89.3	61.3

表2に示す評価結果から、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の混合比を正極活物質全体に対して15重量%以上、85重量%以下にした実施例1、実施例21乃至実施例24では、第1のリチウム遷移金属複合酸化物を10%、第2のリチウム遷移金属複合酸化物を90%とした比較例3と比べて、初期容量の高容量化が図られていることが分かる。

10 比較例 3 は、正極活物質全体に対して第 1 のリチウム遷移金属 複合酸化物 1 0 重量%と第 2 のリチウム遷移金属複合酸化物 9 0 重量%とを混合した混合物を正極活物質に用いることによっ て、低容量の第 2 のリチウム遷移金属複合酸化物が正極活物質の 多くを占めているため、実施例 1 及び実施例 2 1 乃至実施 2 4 に

55

比べて初期容量が著しく低下している。

5

15

20

一方、実施例1、及び実施例21乃至実施例24は、正極活物質全体に対して第2のリチウム遷移金属複合酸化物の混合比を15重量%以上、85重量%以下の範囲で混合することによって、高容量の第1のリチウム遷移金属複合酸化物が正極活物質全体に対して適切な重量%で含有されているため初期容量の高容量化が図られている。また、実施例1、及び実施例21乃至実施例24では、第1のリチウム遷移金属複合酸化物の混合比が増加するに従って初期容量の高容量化が図られている。

また、表2に示す評価結果から、実施例1、及び実施例21乃 至実施例24は、第1のリチウム遷移金属複合酸化物90%、第 2のリチウム遷移金属複合酸化物10%とした比較例4に比べ て、23℃及び50℃における100サイクル容量維持率の向上 が図られていることが分かる。

比較例 4 は、正極活物質全体に対して第1のリチウム遷移金属複合酸化物 9 0 % と第 2 のリチウム遷移金属複合酸化物 1 0 % とを混合した混合物を正極活物質に用いることによって、結晶構造の不安定な第1のリチウム遷移金属複合酸化物が正極活物質の多くを占めているため、充放電を繰り返す度に結晶構造の劣化が促進されて充放電サイクル容量維持率が低下している。また、特に、正極活物質は、高温環境下において結晶構造の劣化が促進され、更に電解質の劣化も伴い 5 0 ℃における 1 0 0 サイクル容量維持率が著しく低下している。

一方、実施例1、及び実施例21乃至実施例24は、正極活物 25 質全体に対して第1のリチウム遷移金属複合酸化物の混合比を 15重量%以上、85重量%以下の範囲で混合し、正極活物質全

56

体に対して適当な重量%で混合されることによって、充放電に伴う正極活物質の結晶構造の変化が抑制され、充放電サイクル容量維持率が向上している。

以上のことから、正極活物質は、非水電解質二次電池を作製する際に、全体に対して第1のリチウム遷移金属複合酸化物の混合 比を15重量%以上、85重量%以下の範囲で混合することによって、初期容量の高容量化及び充放電サイクル容量維持率の向上 が図られることが分かる。

5

10 次に、実施例 1、実施例 2 7 乃至実施例 3 2、及び比較例 5 乃至比較例 8 における初期容量、2 3 ℃における 1 0 0 サイクル容量維持率及び 5 0 ℃における 1 0 0 サイクル容量維持率の評価結果を表 3 に示す。なお、第 1 のリチウム遷移金属複合酸化物と第 2 のリチウム遷移金属複合酸化物との混合比は、第 1 のリチウム遷移金属複合酸化物:第 2 のリチウム遷移金属複合酸化物 = 5 0 重量%:5 0 重量%である。

57

表 3

		平均粒	平均粒径[μm]		100 サイクル容			
					量維持率[%]			
		第1のリチウム遷移	第2のリチウム遷移	[mAh]	23℃	50℃		
		金属複合酸化物	金属複合酸化物					
	1	1 5	1 5	1700	95.2	84.5		
	2 5	2	1 5	1730	92.9	83.2		
:	2 6	8	1 5	1690	94.8	85.1		
実	2 7	2 0	1 5	1710	95.4	84.6		
施	28	30	1 5	1700	91.7	80		
例	2 9	1 5	2	1720	93.3	84.5		
	3 0	15	9	1720	94.5	83.9		
	3 1	15	1 8	1710	92.9	85.3		
	3 2	15	3 0	1700	9 3	82.1		
	5	1	1 5	1720	87.9	78.4		
比較	6	40	1 5	1710	84.7	62.2		
例	7	15	1	1730	89.2	79.1		
	8	1 5	4 0	1690	81.5	60.5		

表3の評価結果から、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の各々の平均粒径を2μm以上、30μm以下の範囲とした実施例1、実施例27乃至実施例32と、第1のリチウム遷移金属複合酸化物或いは第2のリチウム遷移金属複合酸化物のどちらか一方を1μm若しくは40μmとし、他方を15μmとした比較例5乃至比較例8とを比べると、

58

50℃100サイクル容量維持率の向上が図られていることが 分かる。

比較例 5 乃至比較例 8 では、第 1 のリチウム遷移金属複合酸化物或いは第 2 のリチウム遷移金属複合酸化物のどちらか一方の平均粒径が 2 μm未満、他方が 1 5 μmとすると、正極活物質と電解液との接触面積が大きくなりすぎるため、電解質の分解が進行して、実施例 1、実施例 2 7 乃至実施例 3 2 と比較すると 5 0 ℃におけるサイクル容量維持率が低下している。また、平均粒径が 3 0 μmを越えると、第 1 のリチウム遷移金属複合酸化物と第 2 のリチウム遷移金属複合酸化物の混合が不十分となり、サイクル容量維持率が低下している。

10

15

20

25

一方、実施例 1、実施例 2 5 乃至実施例 2 8 では、第 1 のリチウム遷移金属複合酸化物の平均粒径を 2 μm以上、 3 0 μm以下の範囲として、第 2 のリチウム遷移金属複合酸化物の平均粒径を 1 5 μmと一定にして混合した混合物を正極活物質に用いることで、正極活物質と電解液との接触面積が小さくなり、また第 1 のリチウム遷移金属複合酸化物と第 2 のリチウム遷移金属複合酸化物と第 2 のリチウム遷移金属複合酸化物と第 2 のリチウム遷移金属複合酸化物とが十分に混合される。従って、実施例 1、実施例 2 5 乃至実施例 2 8 では、比較例 5 乃至比較例 8 と比較すると 5 0 ℃における 1 0 0 サイクル容量維持率の向上が図られる。

以上のことから、正極活物質は、非水電解質二次電池を作製する際に、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物の平均粒径を2μm以上、30μm以下の範囲にすることより、50℃における100サイクル容量維持率が向上する。

59

次に、実施例 1、実施例 3 3 乃至実施例 3 6、及び比較例 9 乃至比較例 1 2 における初期容量、2 3 ℃における 1 0 0 サイクル容量維持率及び 5 0 ℃における 1 0 0 サイクル容量維持率の評価結果を表 4 に示す。なお、第 1 のリチウム遷移金属複合酸化物と第 2 のリチウム遷移金属複合酸化物との混合比は、第 1 のリチウム遷移金属複合酸化物対第 2 のリチウム遷移金属複合酸化物 = 5 0 重量%対 5 0 重量%である。

表 4

5

		第 1 のりチウム遷移	第 2 のリチウム遷移	初期容量	100 サイ	イクル容
		金属複合酸化物	金属複合酸化物	[mAh]	量維持	序率 [%]
		中の Co 比率 y	Mn 比率 t			
					23℃	50℃
	1	0.25	0.3	1700	95.2	84.5
実	33	0.05	0.3	1750	91.9	82.4
施	34	0.5	0.3	1640	96.3	85.7
例	35	0.25	0.05	1770	93.4	83.1
	36	0.25	0.5	1630	96	86.3
	9	0.01	0.3	1810	82.2	53.9
比較	10	0.6	0.3	1310	96.8	85.1
例	11	0.25	0.01	1820	81.7	56.8
	12	0.25	0.6	1290	95.8	87.2

10

表4の評価結果から、第1のリチウム遷移金属複合酸化物(LiNiCoMO₂)中のCoの比率y及び第2のリチウム遷移金

60

属複合酸化物(LiNiMnMO₂)中のMnの比率 t の範囲を 0.05以上、0.50以下とした実施例1及び実施例33乃至 実施例36は、yが0.05未満の比較例9又は t が0.05未 満の比較例11と比べて、50℃100サイクル容量維持率の向 上が図られていることが分かる。

比較例 9 では、1 のリチウム遷移金属複合酸化物のC o の比率 y を 0 . 0 1 として、比較例 1 1 は、第 2 のリチウム遷移金属複合酸化物のM n の比率 t を 0 . 0 1 とした場合である。このように比較例 9 又は比較例 1 1 では、第 1 のリチウム遷移金属複合酸化物中のC o の比率 y を 0 . 0 1、若しくは第 2 のリチウム遷移金属複合酸化物中のM n の比率 t を 0 . 0 1 にすることによって、各々の結晶構造が不安定となり充放電を繰り返す度に正極活物質の結晶構造が劣化して充放電サイクル容量維持率が低下している。また、特に、正極活物質は、高温環境下において結晶構造の劣化が促進されて 5 0 ℃における 1 0 0 サイクル容量維持率が著しく低下している。

10

15

これに対し、実施例1及び実施例33乃至実施例36では、第1のリチウム遷移金属複合酸化物中のCoの比率y及び第2のリチウム遷移金属複合酸化物(LiNiMnMO)中のMnの比20率 tの範囲を0.05以上、0.50以下とすることによって、第1のリチウム遷移金属複合酸化物及び第2のリチウム遷移金属複合酸化物中の各結晶構造が安定して高温環境下においても優れた充放電サイクル容量維持率が得られる。

また、表 4 に示す評価結果から、実施例 1 及び実施例 3 3 乃至 実施例 3 6 は、第 1 のリチウム遷移金属複合酸化物 (LiNiC o M O) 中の C o の比率 y が 0 . 5 0 を越えている比較例 1 0 又

61

は第2のリチウム遷移金属複合酸化物(LiNiMnMO)中のMnの比率 tが 0.50を超えている比較例 12と比べて、初期容量の高容量化が図られていることが分かる。

比較例10は、Coの比率yを0.60とする第1のリチウム 遷移金属複合酸化物であり、比較例12は、Mnの比率 tを0. 60とする第2のリチウム遷移金属複合酸化物とした場合であ る。これら比較例10万至比較例12のように、Co及びMnの 比率を0.5よりも大とすることにより、正極活物質全体の容量 が低下したため初期容量が低下した。

10 一方、実施例1及び実施例33乃至実施例36は、第1のリチウム遷移金属複合酸化物中のCoの比率y及び第2のリチウム遷移金属複合酸化物中のMnの比率tの範囲を0.05以上、0.50以下にすることによって、結晶構造が安定して初期容量の高容量化が図られた。

15 以上のように、非水電解質二次電池を作製する際には、第1の リチウム遷移金属複合酸化物中のCo及び第2のリチウム遷移 金属複合酸化物中のMnの比率を0.05以上、0.50以下の 範囲とすることによって、初期容量の高容量化及び充放電サイク ル特性の向上が図られることが分かった。

20

5

次に、本発明の第2の発明であるリチウムイオン非水電解質二次電池の若干の実施形態につき、図面を参照して具体的に説明する。

第2図は、本発明のリチウムイオン非水電解質二次電池の一例 25 を示す断面図である。同図に示すように、この非水電解質二次電 池は、帯状をなす正極211と負極212とをセパレータ213

62

を介して積層し、更に巻回して形成した巻回電極体210をその上下に絶縁板202を取り付けた状態で電池缶201に収容して成る。

また、電池缶201には、電池蓋204がガスケット207を 介してかしめて取り付けられており、この電池蓋204は正極リード215を介して正極211と電気接続され、この電池の正極 として機能する。一方、負極212は負極リード216を介して 電池缶201の底部と電気接続されており、電池缶201がこの 電池の負極として機能する構成となっている。

10 なお、この電池においては、巻回電極体210の中央部にセンターピン214が設けられ、電流の遮断機能を果たし、ディスク板205aを有する安全弁205は、電池内部の圧力が上昇すると、正極リード215と電気的に接続されている部位が変形して、電気的接続を解除する安全装置である。

また、安全弁205と電池蓋204との間に配置された感熱抵抗素子206は、最大定格電流値を超えた充放電状態や電池が高温に曝された際に電流を遮断する電池内の素子として機能する。

15

25

第3図に上述した帯状正極211の構造を示す。同図に示すように、この帯状正極211は、帯状の正極集電体211aの両面 (表面及び裏面)に、正極合剤層211b及び211cを被覆して成る。

本発明の非水電解質二次電池においては、図示したように、正極合剤層211b及び211cの端部同士を、この帯状正極211の両方又は一方の端部において長手方向に不揃いな配置とし、後述するように、電池反応に関与しない活物質量を低減して電池内部を有効に活用し、得られる非水電解質二次電池のエネルギー

63

密度を向上させることが望ましい。

15

また、帯状負極212は帯状正極211と同様の構造を有し、 正極の場合と同様に、集電体の表裏面に被覆された負極合剤層の 端部同士を側面から見て面一とならないように配置することに より、上記同様の効果が得られるが、負極構造は図示しない。

なお、正極及び負極の少なくとも一方につき、上記の合剤層端部処理を行うことにより上記の効果が得られるが、正極と負極の 双方に合剤層端部処理を行ってもよい。

第4図は、第2図に示した非水電解質二次電池をA-A線で切10 断した断面図であり、巻回電極体210を示している。

同図において、巻回電極体210は、帯状負極212、セパレータ213 (図示せず)、帯状正極211及びセパレータ213 (図示せず)の順に4層積層した積層体を渦巻き状に巻回して構成されており、帯状負極212が電極体210の内側(中央部)になるように配設されている。そして、帯状正極211及び帯状負極212については、各合剤層211c及び212cが巻回電極体210の内側(中央側)に、合剤層211b及び212bが外側に存在するように配置されている(第3図参照)。

また一般に、このような巻回電極体においては、充電時にリチ 20 ウムが析出して内部短絡するのを防止すべく、セパレータ213 (図示せず)を介して正極211と並列して存在する負極212 の幅(第2図で高さ)と長さ(巻回長)、即ち反応面積は、正極 211の幅と長さ(反応面積)よりも大きくなるように形成される。

25 なお、この図に示す巻回電極体は、一般的な巻回形式によるものであり、帯状正極211及び帯状負極212の合剤層端部には

64

処理が施されておらず、正極合剤層 2 1 1 b と 2 1 1 c の端部同士、負極合剤層 2 1 2 b と 2 1 2 c の端部同士は、側面から見て面一になっている。

5

10

15

20

第5図に、他の巻回形式によって形成された巻回電極体を示す。 同図に示す巻回電極体では、帯状負極212の一端、即ち巻回 電極体の最外周を構成する端部において、負極合剤層が片面だけ 形成されている。換言すれば、この巻回電極体の最外周では、負 極の内側合剤層212cのみが形成されており、外側合剤層21 2bは形成されていない。なお、帯状正極211の両端には処理 が施されておらず、両端において内側合剤層211cと外側合剤 層211bとは面一であるこのような巻回形式を採用すること により、電池反応に実際に関与する正極合剤層部分と負極合剤層 部分だけを電池内部に存在させることができるようになるので、 電池内部の有効活用が可能となり、得られる非水電解質二次電池 のエネルギー密度を向上させることができる。

第6図は、他の巻回形式を採用した巻回電極体を示すもので、 帯状負極212の他端(最内周側端部)では外側合剤層212b のみが形成されており、且つ帯状正極211については、一端(最 外周側端部)に内側合剤層211cのみが形成されている。なお、 帯状負極212の一端(最外周側端部)、帯状正極の他端(最内 周側端部)では、合剤層は面一に形成されている。

このような巻回形式の採用によっても、上記同様に電池内部が 有効活用され、得られる電池のエネルギー密度を向上させること ができる。

25 第7図は、更に他の巻回形式を採用したものであり、帯状正極 2 1 1 の一端(最外周側端部)では内側合剤層 2 1 1 c のみが形

65

成されており、他端(最内周側端部)で正極合剤層が面一になっているものである。なお、帯状負極212については、両端で負極合剤層が面一である。

更に、第8図は、他の巻回形式を採用したものであり、帯状正極211の他端(最内周端部)では外側合剤層211b、一端(最外周端部)では内側合剤層211cのみが形成されている。帯状負極212については、両端で負極合剤層が面一である第7図及び第8図に示す巻回形式によっても、上記同様に電池内部が有効活用され、得られる電池のエネルギー密度を向上させることができる。

以下、本発明を実施例により更に詳細に説明するが、本発明は これら実施例に限定されるものではない。

実施例37

10

15

20

まず、本実施例で用いた正極活物質の作成方法を以下に示す。市販の硝酸ニッケル、硝酸コバルト、硝酸マンガンを水溶液として、Ni、Co、Mnの比率がそれぞれ0.50, 0.20, 0.30となるように混合し、十分攪拌しながらアンモニア水を滴下して複合水酸化物を得た。これを水酸化リチウムと混合し、酸素気流中、850で10時間焼成した後に粉砕し、リチウム遷移金属複合酸化物を得た。得られた粉末を原子吸光分析により分析したところ、 $LiNi_{0.5}Co_{0.2}Mn_{0.30}O_2$ の組成が確認された。また、レーザー回折法により粒径を測定したところ、平均粒径は 13μ mであった。

また、この粉末のX線回折測定を行ったところ、得られたパタ 25 ーンはICDDの09-0063にある $LiNiO_2$ のパターン に類似しており、 $LiNiO_2$ と同様の層状岩塩構造を形成して

66

いることが確認された。また、SEMにより粉末を観察したところ、 $0.1\sim51\mu$ mの1次粒子が凝集した球状の粒子が観察された。

以上のようにして作製したリチウム遷移金属複合酸化物を 8 6 %、導電剤としてグラフアイトを 1 0 %、結着剤としてポリフッ化ビニリデン (P V d F) 4 %を混合し、N - メチル- 2 - ピロリドン (N M P) に分散させて合剤スラリーとした。このスラリーを厚さ 2 0 ミクロンの帯状のアルミニウム箔に均一に塗布・乾燥後、ローラープレス機で圧縮し、所定の寸法に打ち砕いてペレットを得た。

5

10

15

20

25

以上のように作製されたペレットを正極、リチウム箔を負極と し、両者を公知の多孔性ポリオレフインフイルムを介して積層し て直径20mm、高さ1.6mmのコインセルを作製した。

ここで、電解液はエチレンカーボネートとメチルエチルカーボネートとの体積混合比が1:1である混合溶液に1mol/dm³の濃度になるようにLiPF。を溶解して調製した非水電解液を用いた。

以上のコインセルを、全リチウム量の50%が引き抜かれるまで充電し、解体してペレットを取り出し、未充電のペレットとともにXAFS測定に共した。XAFS測定は分光結晶としてSi(111)を用い、X線エネルギーとして7960eV~9100eVの間を走査し、透過法にてX線吸収スペクトルを測定した。第9図には未充電、及び50%充電品の測定結果について、バックグラウンドを差し引き、吸収端のジャンプ高さを基準に規格化した吸収スペクトルの8190eV~8220eVの間を拡大した図を示す。吸光度が0.5の位置に着目すると、未充電品

67

と50%充電品の間で2.2eVのシフトが確認された。

以上のリチウム遷移金属複合酸化物を正極活物質として用い、 以下に記すように円筒型電池を作製し、高温時のサイクル特性を 評価した。

5 正極活物質を86%、導電剤としてグラフアイトを10%、結 着剤としてポリフッ化ビニリデン(PVdF)4%を混合し、N ーメチルー2ーピロリドン(NMP)に分散させて正極合剤スラ リーとした。このスラリーを厚さ20ミクロンの帯状のアルミニ ウム箔の両面に均一に塗布・乾燥後、ローラープレス機で圧縮し 10 て帯状正極を得た。

次に、負極として、粉末状の人造黒鉛90%にPVdFを1 0%混合し、NMPに分散させて負極合剤スラリーとした。この 負極合剤スラリーを厚さ10ミクロンの銅箔の両面に均一に塗 布し、乾燥後にローラープレス機で圧縮することで帯状負極を得 た。

15

以上のように作製された帯状正極、帯状負極を多孔性ポリオレフインフイルムを介して多数回巻回し、渦巻き型の電極体を作製した。この電極体をニッケルめっきを施した鉄製電池缶に収納し、当該電極体の上下両面に絶縁板を配置した。

20 次いで、アルミニウム製正極リードを正極集電体から導出して、 電池蓋と電気的な導通が確保された安全弁の突起部に溶接し、ニ ッケル製負極リードを負極集電体から導出して電池缶の底部に 溶接した。

一方、電解液はエチレンカーボネートとメチルエチルカーボネ 25 ートとの体積混合比が 1:1 である混合溶液に $1 \text{ mol} / \text{ d m}^3$ の濃度になるように LiPF_6 を溶解して非水電解液を調製した。

68

最後に、上述の電極体が組み込まれた電池缶内に電解液を注入 した後、絶縁封口ガスケットを介して電池缶をかしめることによ り、安全弁、PTC素子及び電池蓋を固定し、外径が18mmで 高さが65mmの円筒型電池を作製した。

以上のようにして作製した非水電解液2次電池について、環境 温度 4 5 ℃、充電電圧 4 . 2 0 V 、充電電流 1 0 0 0 m A 、充電 時間2.5時間の条件で充電を行った後、放電電流800mA、 終止電圧2.75Vで放電を行い、初期容量を測定した。更に初 期容量を求めた場合と同様にして充放電を繰り返し、100サイ クル目の放電容量を測定して、初期容量に対する維持率を求めた。 10

比較例13

原料の混合比を変え、更に焼成温度を750℃としたこと以外 は実施例37と同様の操作を繰り返して、リチウム遷移金属複合 酸化物LiNio.8Coo.2O2を作製した。

同様にXAFS測定を行ったところ、第10図に示すような結 果が得られ、シフト幅は0.8 e Vであった。その他は実施例3 7と同様に非水電解液2次電池を作製し、実施例37と同様の4 5℃でのサイクル維持率を測定した。

20

15

5

実施例38

原料の混合比率を変えたこと以外は実施例37と同様の操作 を繰り返して、リチウム遷移金属複合酸化物LiNi0.60С 0 0.20 O。を作製した。

同様にXAFS測定を行ったところ、シフト幅は1.9eVで 25 あった。その他は実施例37と同様に非水雷解液2次電池を作製

69

し、実施例37と同様の45℃でのサイクル維持率を測定した。

実施例39

原料の炭酸マンガンに代えて酸化チタンを用い、更に混合比率を変え、また、焼成温度を750 C としたこと以外は実施例 37 と同様の操作を繰り返して、リチウム遷移金属複合酸化物 L i N i $_{0.70}$ C O $_{0.20}$ T i $_{0.10}$ O $_{2}$ を作製した。

同様にXAFS測定を行ったところ、シフト幅は1.5 e Vであった。その他は実施例37と同様に非水電解液2次電池を作製 10 し、実施例37と同様の45℃でのサイクル維持率を測定した。

実施例40

原料として酸化チタンを加え、更に混合比率を変えたこと以外は実施例 3 7 と同様の操作を繰り返して、リチウム遷移金属複合酸化物LiNi $_{0.10}$ С O $_{0.20}$ М n $_{0.10}$ T i $_{0.10}$ O $_{2}$ を作製した。

同様にXAFS測定を行ったところ、シフト幅は1.8 e Vであった。その他は実施例37と同様に非水電解液2次電池を作製し、実施例37と同様の45℃でのサイクル維持率を測定した。

20 実施例41

15

原料の混合比を変え、更に焼成温度を800℃としたこと以外は実施例37と同様の操作を繰り返して、リチウム遷移金属複合酸化物Li Ni_{0.80}Co_{0.2}O₂を作製した。

同様にXAFS測定を行ったところ、シフト幅は1.2 e Vで 25 あった。その他は実施例37と同様に非水電解液を作製し、実施 例37と同様の45℃でのサイクル維持率を測定した。

70

実施例42

原料の混合比を変え、更に焼成温度を750 C としたこと以外は実施例 37 と同様の操作を繰り返して、リチウム遷移金属複合酸化物 L i N i $_{0.60}$ C O $_{0.40}$ O $_{2}$ を作製した。

同様にXAFS測定を行ったところ、シフト幅は1.3eVであった。その他は実施例37と同様に非水電解液2次電池を作製し、実施例37と同様の45℃でのサイクル維持率を測定した。

10 実施例43

5

原料の混合比を変え、更に焼成温度を 7 5 0 ℃とし、焼成時の雰囲気を酸素気流から空気気流に変えたこと以外は実施例 3 7 と同様の操作を繰り返して、リチウム遷移金属複合酸化物 Li N i 0.80 C o 0.20 O 2 を作製した。

15 同様にXAFS測定を行ったところ、シフト幅は1.4 e Vであった。

その他は実施例37と同様に非水電解液2次電池を作製し、実施例37と同様の45℃でのサイクル維持率を測定した。

20 比較例14

原料の混合比を変え、更に焼成温度を750 C としたこと以外は実施例 37 と同様の操作を繰り返して、リチウム遷移金属複合酸化物 L i N i $_{0.85}$ C O $_{0.10}$ A 1 $_{0.05}$ O $_{2}$ を作製した。

同様にXAFS測定を行ったところ、シフト幅は 0.7 e Vで 25 あった。その他は実施例 3 7 と同様に非水電解液 2 次電池を作製 し、実施例 3 7 と同様の 4 5 ℃でのサイクル維持率を測定した。

71

表 5

5

		組成	合成条件		シフト幅	容量維
					[eV]	持 率
F			温度℃	気 流		(%)
	3 7	LiNio. 50 Coo. 20 M no. 3 O 2	850℃	酸素	2.2	92.4
	3 8	LiNi _{0.6} Co _{0.2} Mn _{o.202}	850℃	酸素	1.9	91
実	3 9	LiM _{0.70} Co _{0.20} Tio. ₂₀ O ₂	750℃	酸素	1.5	90
施例	4 0	LiNi _{0.60} Co _{0.20} Mn _{0.1} Ti _{0.10} O ₂	850℃	酸素	1.8	91.1
ניעו	41	LiNi _{0.80} Co _{0.20} O ₂	800℃	酸素	1.2	85.6
	4 2	LiNi _{0.60} Co _{0.40} O ₂	750℃	酸素	1.3	86.4
	4 3	LiNio _{.80} Co _{o.20} O ₂	750℃	空気	1.4	86.8
比較	1 3	LiNi _{0.80} Co _{0.20} O ₂	750℃	酸素	0.8	71.9
例	1 4	LiNi _{0.85} Co _{0.10} A _{0.05} O ₂	750℃	酸素	0.7	70.3

以上の結果より、シフト幅を1.0 e V以上と規定することにより、高温時のサイクル特性が大きく向上することが確認された。また、特にMn、Tiから選ばれる少なくとも1種の元素を含有させることにより、特にシフト幅が大きくなり、高温時のサイクル特性が更に向上することが確認された。

以上、本発明を若干の好適実施例により詳細に説明したが、本 発明はこれら実施例に限定されるものではなく、本発明の要旨の 10 範囲内において種々の変形が可能である。即ち、本発明を実現す る手段は特に制限されず、例えば、リチウム遷移金属酸化物を合 成する際の合成条件や、異種元素の添加、構成元素の比率を検討 することで実現できる。

72

次に、本発明の第3の発明であるリチウムイオン非水電解質二次電池の若干の実施形態につき、図面を参照して具体的に説明する。

5 第11図は、本発明のリチウムイオン非水電解質二次電池の一例を示す断面図である。同図に示すように、この非水電解質二次電池は、帯状をなす正極311と負極312とをセパレータ313を介して積層し、更に巻回して形成した巻回電極体310をその上下に絶縁板302を取り付けた状態で電池缶301に収容10 して成る。

また、電池缶301には、電池蓋304がガスケット307を 介してかしめて取り付けられており、この電池蓋304は正極リード315を介して正極311と電気的に接続され、この電池の 正極として機能する。一方、負極312は負極リード316を介 して電池缶301の底部と電気的に接続されており、電池缶30 1がこの電池の負極として機能する構成となっている。

15

20

25

なお、この電池においては、巻回電極体310の中央部にセンターピン314が設けられ、電流の遮断機能を果たし、ディスク板305aを有する安全弁305は、電池内部の圧力が上昇すると、正極リード315と電気的に接続されている部位が変形して、電気的接続を解除する安全装置である。

また、安全弁305と電池蓋304との間に配置された感熱抵抗素子306は、最大定格電流値を超えた充放電状態や電池が高温に曝された際に電流を遮断する電池内の素子として機能する。

第12図に上述した帯状正極311の構造を示す。同図に示すように、この帯状正極311は、帯状の正極集電体311aの両

73

面(表面及び裏面)に、正極合剤層311b及び311cを被覆して成る。

本発明の非水電解質二次電池においては、図示したように、正極合剤層311b及び311cの端部同士を、この帯状正極311の両方又は一方の端部において長手方向に不揃いな配置とし、後述するように、電池反応に関与しない活物質量を低減して電池内部を有効に活用し、得られる非水電解質二次電池のエネルギー密度を向上させることが好ましい。

5

15

また、帯状負極312は帯状正極311と同様の構造を有し、 10 正極の場合と同様に、集電体の表裏面に被覆された負極合剤層の 端部同士を側面から見て面一とならないように配置することに より、上記同様の効果が得られるが、負極構造は図示しない。

なお、正極及び負極の少なくとも一方につき、上記の合剤層端 部処理を行うことにより上記の効果が得られるが、正極と負極の 双方に合斉 U 層端部処理を行ってもよい。

第13図は、第11図に示した非水電解質二次電池をA-A線で切断した断面図であり、巻回電極体310を示している。

同図において、巻回電極体 3 1 0 は、帯状負極 3 1 2、セパレータ 3 1 3 (図示せず)、帯状正極 3 1 1 及びセパレータ 3 1 3 (図示せず)の 1 1 項に 4 層積層した積層体を渦巻き状に巻回して構成されており、帯状負極 3 1 2 が電極体 3 1 0 の内側(中央部)になるように配設されている。そして、帯状正極 3 1 1 及び帯状負極 3 1 2 については、各合剤層 3 1 1 c 及び 3 1 2 c が巻回電極体 3 1 0 の内側(中央側)に、合剤層 3 1 1 b 及び 3 1 2 b が外側に存在するように配置されている(第 1 2 図参照)。

また一般に、このような巻回電極体においては、充電時にリチ

74

ウムが析出して内部短絡するのを防止すべく、セパレータ313 (図示せず)を介して正極311と並列して存在する負極312 の幅(第11図で高さ)と長さ(巻回長)、即ち反応面積は、正 極311の幅と長さ(反応面積)よりも大きくなるように形成される。

5

10

15

20

なお、この図に示す巻回電極体は、一般的な巻回形式によるものであり、帯状正極311及び帯状負極312の合剤層端部には処理が施されておらず、正極合剤層311bと311cの端部同士、負極合剤層312bと312cの端部同士は、側面から見て面一になっている。

第14図に、他の巻回形式によって形成された巻回電極体を示す。

同図に示す巻回電極体では、帯状負極312の一端、即ち巻回電極体の最外周を構成する端部において、負極合剤層が片面だけ形成されている。換言すれば、この巻回電極体の最外周では、負極の内側合剤層312cのみが形成されており、外側合剤層312bは形成されていない。なお、帯状正極311の両端には処理が施されておらず、両端において内側合剤層311cと外側合剤層311bとは面一であるこのような巻回形式を採用することにより、電池反応に実際に関与する正極合剤層部分と負極合剤層部分だけを電池内部に存在させることができるようになるので、電池内部の有効活用が可能となり、得られる非水電解質二次電池のエネルギー密度を向上させることができる。

第15図は、他の巻回形式を採用した巻回電極体を示すもので、 25 帯状負極312の他端(最内周側端部)では外側合剤層312b のみが形成されており、目つ帯状正極311については、一端(最 WO 03/063275

外周側端部)に内側合剤層 3 1 1 c のみが形成されている。なお、帯状負極 3 1 2 の一端 (最外周側端部)、帯状正極の他端 (最内周側端部)では、合剤層は面一に形成されている。

このような巻回形式の採用によっても、上記同様に電池内部が 有効活用され、得られる電池のエネルギー密度を向上させること ができる。

第16図は、更に他の巻回形式を採用したものであり、帯状正極311の一端(最外周側端部)では内側合剤層311cのみが形成されており、他端(最内周側端部)で正極合剤層が面一になっているものである。

なお、帯状負極312については、両端で負極合剤層が面一で ある。

更に、第17図は、他の巻回形式を採用したものであり、帯状正極311の他端(最内周端部)では外側合斉リ層311b、一端(最外周端部)では内側合剤層311cのみが形成されている。帯状負極312については、両端で負極合剤層が面一である第16図及び第17図に示す巻回形式によっても、上記同様に電池内部が有効活用され、得られる電池のエネルギー密度を向上させることができる。

20 実施例

5

10

15

以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、本発明の正極活物質を用いた二次電池の過放電耐`性については、円筒型電池を作製して評価した。

25 実施例44

(1) 第1のリチウム遷移金属複合酸化物Aの調製

76

市販の酸化コバルト及び炭酸リチウムを、Li及びCOのモル比が 1.02:1.00 となるように混合し、アルミナ製るつぼに入れ、乾燥空気の気流中で焼成した。得られた粉末を原子吸光分析法により定量分析した結果、LiCoO2の組成が確認された。また、レーザー回折法により粒径を測定したところ、平均粒径は 15μ mであった。さらに、この粉末の X 線回折測定を行ったところ、得られた回折パターンは、International Center for Diffraction Data (以下、 Γ ICDD」と略記する)の 36-1004にある L iCoO=のパターンに類似しており、LiCoO2と同様の層状構造を形成していることが確認された。

1.0

以上のようにして作製されたリチウム遷移金属複合酸化物A を86%、導電剤としてグラファイトを10%、結着剤としてポ リフッ化ビニリデン(以下、「PVdF」と略記する)を4%混 合し、N-メチル-2-ピロリドン(以下、「NMP」と略記す 15 る) に分散させて合剤スラリーとした。そして、このスラリーを 厚さ20umの帯状アルミニウム箔に均一に塗布し、乾燥後、口 ーラープレス機により圧縮して所定の寸法に打ち抜き、ペレット を得た。このペレットを正極、リチウム箔を負極とし、両者を公 知の多孔性ポリオレフインフイルムを介して積層し、直径 2 0 m 20 m、高さ1.6mmのコインセルを作製した。ここで、電解液と しては、エチレンカーボネートとメチルエチルカーボネートとの 体積混合率比が1:1である混合溶液に、1モル/dm³の濃度 になるようにLiPF₆を溶解して調整した非水雷解液を用いた。 25

そして、このように作製されたコインセルを4.250Vまで 充電し、0.2Cの電流値で3.000Vまで放電したところ、

77

平均放電電圧は、3.948Vであった。

15

(2) 第2のリチウム遷移金属複合酸化物Bの調製

市販の硝酸ニッケル、硝酸コバルト及び硝酸マンガンを水溶液 として、Ni、Co及びMnのモル比が 0.60:0.20:0.20となるように混合し、十分攪拝しながらアンモニア水を滴下して複合水酸化物を得た。これを水酸化リチウムと混合し、酸素気流中、800℃で10時間焼成した後に粉砕し、リチウム遷移金属複合酸化物 Bを得た。得られた粉末を原子吸光分析法により分析したところ、LiNi $_{0.5}$ Co $_{0.2}$ Mn $_{0.3}$ O $_{2}$ の組成が確認された。また、レーザー回折法により粒径を測定したところ、平均粒径は12 μ mであった。

さらに、この粉末のX線回折測定を行ったところ、得られた回 折パターンは、ICDDの09-0063にある $LiNiO_2$ の パターンに類似しており、LiNiO=と同様の層状岩塩構造を 形成していることが確認された。また、走査型電子顕微鏡により 粉末を観察したところ、 $0.1\sim41\mu$ mの1次粒子が凝集した 形状の粒子となっていることが観察された。

以上のようにして作製されたリチウム遷移金属複合酸化物 B を 8 6 %、導電剤としてグラフアイトを 1 0 %、結着剤として P V d F を 4 %混合し、N M P に分散させて合剤スラリーとした。そして、このスラリーを厚さ 2 0 μ m の帯状アルミニウム箔に均一に塗布して乾燥後、ローラープレス機により圧縮して所定の寸法に打ち抜き、ペレットを得た。このペレットを正極、リチウム 25 箱を負極とし、両者を公知の多孔性ポリオレフインフイルムを介して積層し、直径 2 0 m m、高さ 1 6 m m のコインセルを作製し

78

た。ここで、電解液としては、エチレンカーボネートとメチルエ チルカーボネートとの体積混合率比が1:1である混合溶液に、 1モル/d m 3 の 濃度になるようにL i P F $_6$ を溶解して調整した非水電解液を用いた。

5 このように作製されたコインセルを4.250 Vまで充電し、 0.2 Cの電流値で3.0 0 0 Vまで放電したところ、平均放電 電圧は、3.827 Vであった

(3)正極活物質の調製

10 以上のようにして作製したリチウム遷移金属複合酸化物A及 びリチウム遷移金属複合酸化物Bを質量比率で90:10となる ように混合して正極活物質とした

(4) 円筒型電池の作製

上記正極活物質を86%、導電剤としてグラフアイトを10%、 結着剤としてPVdFを4%混合し、NMPに分散させて正極合 剤スラリーとした。このスラリーを厚さ2μmの帯状アルミニウ ム箔の両面に均一に塗布して乾燥後、ローラープレス機を用いて 圧縮し、帯状正極を得た。

20 次に、負極として、粉末状の人造黒鉛 9 0 % に P V d F を 1 0 % 混合し、N M P に分散させて負極合剤スラリーとし、このスラリーを厚さ 1 0 , μ m の銅箔の両面に均一に塗布し、ローラープレス機で圧縮することによって帯状負極を得た。

以上のように作製された帯状正極と帯状負極を多孔性ポリオ 25 レフィンフィルムを介して多数回巻回し、渦巻き型の電極体を作 製した。この電極体をニッケルめっきを施した鉄製電池缶に収納

79

し、当該電極体の上下両面に絶縁板を配置した。

次いで、アルミニウム製正極リードを正極集電体から導出して、 電池蓋と電気的な導通が確保された安全弁の突起部に溶接し、ニッケル製負極リードを負極集電体から導出して電池缶の底部に 溶接した。

一方、電解液としては、エチレンカーボネートとメチルエチルカーボネートとの体積混合率比が1:1である混合溶液に、1モル/d m 3 の濃度になるようにL i P F $_6$ を溶解して非水電解液を調製した。

10 そして、上述の電極体が組み込まれた電池缶内に、上記電解液を注入した後、絶縁封口ガスケットを介して電池缶をかしめることにより、安全弁、PTC素子及び電池蓋を固定し、外径が18mmで、高さが65mmの円筒形をなす非水電解質二次電池を作製した。

15

20

5

実施例45

リチウム遷移金属複合酸化物 B の調製に際して、実施例 4 4 における原料の混合比率を変えることによって、L i N i $_{0.35}$ C o $_{0.25}$ M n $_{0.4}$ O $_2$ を作製し、同様に平均放電電圧を測定したところ、3.895 V であった。

そして、得られたリチウム遷移金属複合酸化物 B と実施例 4 4 で作製したリチウム遷移金属複合酸化物 A とを同様に混合して正極括物質としたのち、実施例 4 4 と同様の操作を繰り返し、本例の非水電解質二次電池を作製した。

25

80

リチウム遷移金属複合酸化物 A の調製に際して、実施例 4 4 における原料である酸化コバルトの一部を水酸化ニッケルとすることにより、LiC $O_{0.8}$ N $i_{0.2}$ O $_2$ を作製し、同様に平均放電電圧を測定したところ、3.911 V であった。

5 そして、得られたリチウム遷移金属複合酸化物Aと実施例44 で作製したリチウム遷移金属複合酸化物Bとを同様に混合して 正極活物質を得たのち、実施例44と同様の操作を繰り返し、本 例の非水電解質二次電池を作製した。

10 比較例15

リチウム遷移金属複合酸化物 B を混合することなく、実施例 4 4 で作製したリチウム遷移金属複合酸化物 A のみから成る正極 括物質を使用し、実施例 4 4 と同様の操作を繰り返し、本例の非 水電解質二次電池を作製した。

15

20

25

比較例16

リチウム遷移金属複合酸化物 B を混合することなく、実施例 4 6 で作製したリチウム遷移金属複合酸化物 A のみから成る正極活物質を使用し、実施例 4 4 と同様の操作を繰り返し、本例の非水電解質二次電池を作製した。

比較例17

リチウム遷移金属複合酸化物 B の調製に際して、実施例 44 における原料の混合比率を変えることによって、L i C o O $_2$ と、L i N i $_{0.8}$ C o $_{0.1}$ M n $_{0.1}$ O $_2$ とを作製し、同様に平均放電電圧を

測定したところ、3.919Vであった。

81

そして、得られたリチウム遷移金属複合酸化物 B と実施例 4 4 で作製したリチウム遷移金属複合酸化物 A とを同様に混合して正極活物質としたのち、実施例 4 4 と同様の操作を繰り返し、本例の非水電解質二次電池を作製した。

5

[過放電耐性の評価]

以上のようにして作製した実施例及び比較例それぞれの非水電解質二次電池について、環境温度 2 3 ℃、充電電圧 4 . 2 0 V、充電電流 1 0 0 0 m A、充電時間 2 . 5 時間の条件で充電を行った後、放電電流 8 0 0 m A、終止電圧 2 . 7 5 Vで放電を行い、初期容量を測定した。引き続き、過放電試験として 2 . 0 Ωの抵抗を正負極間に接続し、定抵抗放電を 2 4 時間行った。その後、初期容量を求めた場合と同様の要領により過放電試験後の容量を測定し、初期容量との比として容量維持率を求めた。この結果を表6に示す。

表 6

	-	正極活物質		平均放電電圧(V)		過放電耐性		容量維持		
		リチウム遷移金属 複合酸化物: A	リチウム遷移金属複合 酸化物:B	混合 比率 A:B	А	В	AとB との差	初期 容量 (mAh)	過放電 後容量 (mAh)	率(%)
実	44	LiCoO ₂	LiNi _{o.6} Co _{o.2} Mn _{o.2} O ₂	90:10	3.948	3.827	0.121	1890	1780	94. 2
施	45	LiCoO ₂	LiNi _{0.35} Co _{0.25} Mn _{0.4} O ₂	90:10	3.948	3.895	0.053	1880	1730	92.0
例	46	LiCo _{o.8} Ni _{o.2} O ₂	LiNi _{o.6} Co _{o.2} Mn _{o.2} O ₂	90:10	3.911	3.827	0.084	1900	1810	95.3
比	15	LiCoO ₂	なし	100:0	3.948	_		1860	1310	70.3
較 1		LiCo _{o.8} Ni _{o.2} O ₂	なし	100:0	3.911			1890	1350	71.4
	17	LiCoO ₂	LiCo _{o.8} Ni _{o.1} Mn _{o.1} O ₂	90:10	3.948	3.919	0.029	1880	1500	79.8

82

以上の結果より、第1のリチウム遷移金属複合酸化物Aに、第2のリチウム遷移金属複合酸化物Bを混合することにより過放電特」性が向上することが確認された。また、これら複合酸化物AとBの平均放電電圧の差が小さい場合には十分な効果が得られず、平均放電電位の差が0.05 V以上のときに良好な結果が得られることが判明した。

実施例47

実施例44において作製したリチウム遷移金属複合酸化物 A 10 とリチウム遷移金属複合酸化物 B との混合比率を質量比で 9 8:2として正極活物質を得たのち、実施例44と同様の操作を 繰り返し、本例の非水電解質二次電池を作製した。

実施例48

ま施例44において作製したリチウム遷移金属複合酸化物A とリチウム遷移金属複合酸化物Bとの混合比率を質量比で9 6:4として正極活物質を得たのち、実施例44と同様の操作を 繰り返し、本例の非水電解質二次電池を作製した。

20 実施例49

実施例44において作製したリチウム遷移金属複合酸化物A とリチウム遷移金属複合酸化物Bとの混合比率を質量比で7 0:30として正極活物質を得たのち、実施例44と同様の操作 を繰り返し、本例の非水電解質二次電池を作製した。

25

83

実施例44において作製したリチウム遷移金属複合酸化物A とリチウム遷移金属複合酸化物Bとの混合比率を質量比で5 0:50として正極活物質を得たのち、実施例44と同様の操作 を繰り返し、本例の非水電解質二次電池を作製した。

5

実施例51

実施例44において作製したリチウム遷移金属複合酸化物A とリチウム遷移金属複合酸化物Bとの混合比率を質量比で4 0:60として正極活物質を得たのち、実施例44と同様の操作 を繰り返し、本例の非水電解質二次電池を作製した。

[過放電耐性の評価]

以上のようにして作製した非水電解質二次電池について、同様の過放電試験を行った。その結果を表7に示す。

15

10

84

表 7

		第1のリチウム遷移金属複合	過放電耐性		容量維	
		酸化物Aと第2のリチウム遷移		持率(%)		
		金属複合酸化物 B の混合	İ			
		比(質量比) A: B				
			初期容量	過放電後容		
			(mAh)	量 (mAh)		
	47	98:2	1890	1480	78.3	
dz	48	96:4	1890	1750	92.6	
実施	49	70:30	1870	1770	94.7	
例	5 0	50:50	1850	1790	96.8	
	5 1	40:60	1710	1660	97.1	

表7の結果より、第2のリチウム遷移金属複合酸化物Bの混合 比率が4%未満である場合は、過放電耐性が低下し、50%を超 えると初期容量が低下する傾向が認められ、第2のリチウム遷移 金属複合酸化物Bの混合比率は4%以上50%以下であること が好ましいことが確認された。

以上、詳細に説明したように本発明によれば、高容量を有する 第1の正極材料と、結晶構造が安定な第2の正極材料とを混合し た混合物を含有する正極活物質を用いることによって、初期容量 の高容量化及び高エネルギー密度の向上が図られ、常温に限らず 高温環境下においても良好な充放電サイクル容量維持率を有す る非水電解質二次電池を得ることができる。

85

また、本発明によれば、 X線吸収端微細構造解析(XAFS) 法による充放電時のニッケルイオンの変化量が所定範囲内にあるリチウム複合酸化物を用いることとしたため、高容量且つ高温 時(常温~100℃程度)の特性を大きく向上させたリチウムイ オン非水電解質二次電池を実現できる正極活物質、及びこの正極 活物質を用いたリチウムイオン非水電解質二次電池を提供する ことができる。

更に、本発明によれば、リチウム、コバルトを主成分とする第 1のリチウム遷移金属複合酸化物と、この複合酸化物の平均放電 電圧よりも0.05 V以上低い平均放電電圧を有する第2のリチウム遷移金属複合酸化物を含有することとしたため、高容量で過放電耐」性に優れたリチウムイオン非水電解質二次電池を実現することができる正極活物質、及びこの正極活物質を用いたリチウムイオン非水電解質二次電池を提供することができる。

86

請求の範囲

- 1. 少なくともNi及びCoを含有し、層状構造からなる第1 の正極材料と、少なくともNi及びMnを含有し、層状構造からなる第2の正極材料との混合物を有することを特徴とする正極活物質。
- 2. 上記第1の正極材料が、下記式(1)に示される第1のリチウム遷移金属複合酸化物であり、

上記第2の正極材料が、下記式(2)に示される第2のリチウ 10 ム遷移金属複合酸化物であること

$$L i v N i v C O v M z O 2 \qquad (1)$$

(Mは、遷移金属、或いは元素周期表の 2 族、 3 族、 4 族の元素のうち、 1 種若しくは複数種の元素から選ばれ、<math>x、y、zの範囲は、 0. $9 \le x < 1$. 1 0、 0. 0 $5 \le y \le 0$. 5 0、0.

 $15 \quad 0 \quad 1 \leq z \leq 0 \quad 1 \quad 0 \quad constant$

$$L i_{s} N i_{1-t-u} M n_{t} M '_{u} O_{2}$$
 (2)

(M は、遷移金属、或いは元素周期表の 2 族、 3 族、 4 族の元素のうち、 1 種若しくは複数種の元素から選ばれ、 <math>s , t , u の範囲は、 0 . $9 \le S < 1$. 1 0 、 0 . 0 $5 \le t \le 0$. 5 0 、 0 .

 $20 \quad 0 \quad 1 \leq z \leq 0 \quad 3 \quad 0 \quad \text{\it cons} \quad 3$

を特徴とする請求の範囲第1項記載の正極活物質。

- 3. 上記第1の正極材料及び上記第2の正極材料の各々の混合 比が、上記正極活物質全体に対して15重量%以上、85重量% 以下の範囲であることを特徴とする請求の範囲第1項記載の正
- 25 極活物質。
 - 4. 上記第1の正極材料及び上記第2の正極材料の各々の平均

粒径が、2μm以上、30μm以下の範囲であることを特徴とする請求の範囲第1項記載の正極活物質。

- 5. 正極集電体上に正極活物質を含有する正極合剤層が形成されてなる正極と、負極集電体上に負極活物質を含有する負極合剤層が形成されてなる負極と、非水電解質とを備え、上記正極活物質が、少なくともNi及びCoを含有し、層状構造からなる第1の正極材料と、少なくともNi及びMnを含有し、層状構造からなる第2の正極材料とを混合した混合物を有していることを特徴とする非水電解質二次電池。
- 10 6. 上記第1の正極材料が、下記式(3)に示される第1のリ チウム遷移金属複合酸化物であり、上記第2の正極材料が、下記 式(4)に示される第2のリチウム遷移金属複合酸化物であるこ と

$$L i_{x} N i_{1-y-z} C o_{y} M_{z} O_{2}$$
 (3)

5

$$L i_{s} N i_{1-t-u} M n_{t} M '_{u} O_{2}$$
 (4)

を特徴とする請求の範囲第5項記載の非水電解質二次電池。

25 7. 上記第1の正極材料及び上記第2の正極材料の各々の混合 比が、上記正極活物質全体に対して15重量%以上、85重量%

以下の範囲であることを特徴とする請求の範囲第5項記載の非水電解質二次電池。

- 8. 上記第1の正極材料及び上記第2の正極材料の各々の平均 粒径が、2μm以上、30μm以下の範囲であることを特徴とす る請求の範囲第5項記載の非水電解質二次電池。
- 9. 層状構造を有し、少なくともリチウム及びニッケルを構成 元素とするリチウム複合酸化物を含有し、全リチウム量の50% を引き抜いたときに、X線吸収端微細構造解析(XAFS)法で 測定しうるニッケル原子のK殻吸収端のジャンプ高さの50%
- 10 の位置のシフト幅が 1.0 e V以上であることを特徴とする請求 の範囲第 1 項記載のリチウムイオン非水電解質二次電池用の正 極活物質。
 - 10. 上記リチウム複合酸化物が更にマンガン及び/又はチタンを含有して成ることを特徴とする請求の範囲第9項記載の正極活物質。
 - 11. リチウムイオンをドープし且つ脱ドープできる材料を正極活物質又は負極活物質とする正極及び負極と、リチウムイオン 伝導性を有する非水電解質を備えるリチウムイオン非水電解質 二次電池において、
- 20 上記正極活物質が、層状構造を有し、少なくともリチウム及び ニッケルを構成元素とするリチウム複合酸化物を含有し、全リチ ウム量の50%を引き抜いたときに、

X線吸収端微細構造解析(XAFS)法で測定しうるニッケル原子のK 殻吸収端のジャンプ高さの50%の位置のシフト幅が1.

25 0 e V 以上である

5

15

ことを特徴とする請求の範囲第9項記載のリチウムイオン非水

89

電解質二次電池。

15

12. 上記リチウム複合酸化物にマンガン及び/又はチタンを含有して成ることを特徴とする請求の範囲第11項に記載のリチウムイオン非水電解質二次電池。

5 13. 上記正極活物質に含まれるニッケル量がモル比率で5~40%であることを特徴とする請求の範囲第11項に記載のリチウムイオン非水電解質二次電池。

14. リチウム及びコバルトを主成分とし、層状構造を有する第1のリチウム遷移金属複合酸化物と、

10 層状構造を有し、0.2 Cの電流値で4.2 5 Vから3.0 0 Vまで放電した際の平均放電電圧が上記第1のリチウム遷移金属複合酸化物よりも0.05 V以上低い第2のリチウム遷移金属複合酸化物を含有して成る

ことを特徴とする請求の範囲第1項記載のリチウムイオン非水 電解質二次電池用の正極活物質。

15. 上記第2のリチウム遷移金属複合酸化物を4~50%の割合で含有することを特徴とする請求の範囲第14項記載の正極活物質。

16. リチウムイオンをドープし且つ脱ドープできる材料を正 20 極活物質又は負極活物質とする正極及び負極と、リチウムイオン 伝導性を有する非水電解質を備えたリチウムイオン非水電解質 二次電池において、

上記正極活物質が、リチウム及びコバルトを主成分とし、層状構造を有する第1のリチウム遷移金属複合酸化物と、層状構造を 有し、0.2 Cの電流値で4.2 5 Vから3.0 0 Vまで放電した際の平均放電電圧が上記第1のリチウム遷移金属複合酸化物

90

よりも0.05 V以上低い第2のリチウム遷移金属複合酸化物を含有して成るものである

ことを特徴とする請求の範囲第14項記載のリチウムイオン非水電解質二次電池。

5 17. 上記第2のリチウム遷移金属複合酸化物を4~50%の 割合で含有することを特徴とする請求の範囲第16項記載のリ チウムイオン非水電解質二次電池。

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

※XAFSにおけるNik殻 吸収スペクトル

Fig.10

※XAFSにおけるNi k殼 吸収スペクトル

Fig.11

Fig.12

Fig.13

Fig.14

Fig.15

Fig.16

Fig.17

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/00065

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01M4/58, 4/02, 10/40						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	S SEARCHED					
	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H01M4/36-4/62, 4/02-4/04, 10/40					
Jitsı Kokai	ion searched other than minimum documentation to the ayo Shinan Koho 1926—1996 L Jitsuyo Shinan Koho 1971—2003	Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Toroku Koho	1994–2003 1996–2003			
	ata base consulted during the international search (nam	e of data base and, where practicable, sear	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap		Relevant to claim No.			
P,X P,Y	JP 2002-141063 A (Toyota Cen Development Laboratories, Inc 17 May, 2002 (17.05.02), Claims 1 to 3; Par. Nos. [003 (Family: none)	·),	1-3,5-7,9-17 4,8			
P,X P,Y	JP 2002-343355 A (Japan Stor Ltd.), 29 November, 2002 (29.11.02), Claims 1 to 2 (Family: none)		1,3,5,7,9-17 2,4,6,8			
P, X P, Y	JP 2002-042816 A (Yugen Kais 08 February, 2002 (08.02.02), Claim 1 (Family: none)		1,3,5,7,9-17 2,4,6,8			
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
"A" docum- conside "E" earlier date "L" docum- cited to special docum- means docum- than th	categories of cited documents: ent defining the general state of the art which is not tred to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later the priority date claimed actual completion of the international search the pril, 2003 (28.04.03)	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 13 May, 2003 (13.05.03)				
	nailing address of the ISA/	Authorized officer				
	nese Patent Office	Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/00065

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
P,Y	JP 2002-319398 A (Matsushita Electric Industrial Co., Ltd.), 31 October, 2002 (31.10.02), Claims 1, 5, 7 (Family: none)	4,8			
P,Y	JP 2002-042887 A (Denso Corp.), 08 February, 2002 (08.02.02), Claims 1, 4; Par. No. [0033]; examples 11 to 13 (Family: none)	4,8			
X Y	JP 2001-357851 A (Japan Storage Battery Co., Ltd.), 26 December, 2001 (26.12.01), Claims 1 to 2 (Family: none)	1,3,5,7,9-17 2,4,6,8			
X Y	JP 11-162466 A (Sanyo Electric Co., Ltd.), 18 June, 1999 (18.06.99), Claims 1 to 3 (Family: none)	1,3,5,7,9-17 2,4,6,8			
P,A	JP 2002-208441 A (NEC Corp.), 26 July, 2002 (26.07.02), (Family: none)	1-17			
A	JP 11-086845 A (Asahi Chemical Industry Co., Ltd.), 30 March, 1999 (30.03.99), (Family: none)	1-17			
A	JP 07-235292 A (Matsushita Electric Industrial Co., Ltd.), 05 September, 1995 (05.09.95), (Family: none)	1-17			
A	NAKAI, Izumi, In site XAFS Measurements of Secondary Lithium Batteries, DENKI KAGAKU, October 1998, Vol.66, No.10, pages 968 to 976	9-13			

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ H01M 4/58, 4/02, 10/40

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ H01M 4/36-4/62, 4/02-4/04, 10/40

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996年

日本国公開実用新案公報

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

O. M.E. / 6	D C pic vy D A v & D C pic	
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, X	JP 2002-141063 A (株式会社豊田中央研究所), 2	1-3, 5-7, 9-17
P, Y	002.05.17,請求項1-3,【0030】~【0047】	4, 8
	(ファミリーなし)	
P, X	JP 2002-343355 A (日本電池株式会社), 200	1, 3, 5, 7, 9–17
P, Y	2. 11. 29, 請求項1-2 (ファミリーなし)	2, 4, 6, 8
P, X	JP 2002-042816 A (有限会社ケー・イー・イー),	1, 3, 5, 7, 9–17
P, Y	2002.02.08,請求項1 (ファミリーなし)	2, 4, 6, 8

図 C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示す もの

- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 28.04.03 国際調査報告の発送日 13.05.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) スターク 4 X 9 1 5 1 下野 斉 項便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3477

国際調査報告

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, Y	JP 2002-319398 A (松下電器産業株式会社), 20 02.10.31,請求項1,5,7 (ファミリーなし)	4, 8
Р, У	JP 2002-042887 A (株式会社デンソー), 200 2.02.08,請求項1,4,【0033】,実施例11-13 (ファミリーなし)	4, 8
X Y	JP 2001-357851 A (日本電池株式会社), 200 1.12.26,請求項1-2 (ファミリーなし)	1, 3, 5, 7, 9–17 2, 4, 6, 8
X	JP 11-162466 A (三洋電機株式会社), 1999. 0 6. 18, 請求項1-3 (ファミリーなし)	1, 3, 5, 7, 9–17 2, 4, 6, 8
P, A	JP 2002-208441 A (日本電気株式会社), 200 2.07.26 (ファミリーなし)	1-17
A	JP 11-086845 A (旭化成工業株式会社), 1999. 03.30 (ファミリーなし)	1-17
A	JP 07-235292 A (松下電器産業株式会社), 199 5.09.05 (ファミリーなし)	1-17
A	NAKAI, Izumi, <i>In site</i> XAFS Measurements of Secondary Lithium B atteries, DENKI KAGAKU, October 1998, Vol. 66, No. 10, pp. 968-976	9-13
,		