Metody Optymalizacji Laboratorium 1

Adrian Herda 2025-04-03

1. Zadanie 1

1.1. Model

1.1.1. Zmienne decyzyjne

• $n \in \mathbb{N}$ - Wymiar problemu

$$\begin{array}{c}
\bullet \\
x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \ge 0
\end{array}$$

1.1.2. Ograniczenia

$$Ax = b$$

gdzie:

•
$$a_{ij} = \frac{1}{i+j-1}$$
, dla $i, j, = 1, ..., n$

•
$$b_i = \sum_{j=1}^n \Bigl(\frac{1}{i+j-1}\Bigr)$$
, dla $i,j,=1,...,n$

1.2. Funkcja kosztu

$$\min c^T x = \sum_{i=1}^n c_i \cdot x_i$$

gdzie: •
$$c_i = \sum_{j=1}^n \left(\frac{1}{i+j-1}\right)$$
, dla $i,j,=1,...,n$

1.3. Wyniki

Prawidłowym rozwiązaniem jest x=1. Skoro znamy już ten wynik, bardziej interesujące będzie przeanalizowanie błędów względnych by lepiej zobrazować co się dzieje.

$$error = \frac{\|x - \hat{x}\|_2}{\|x\|_2}$$

n	error
1	0
2	$1.05325004057301 \cdot 10^{-15}$
3	$3.67157765110227 \cdot 10^{-15}$
4	$3.27016385075681 \cdot 10^{-13}$
5	$3.35139916635905 \cdot 10^{-12}$
6	$6.83335790676898 \cdot 10^{-11}$
7	$1.67868542192291 \cdot 10^{-08}$

n	error
8	0.514058972177268
9	0.682911338087722
10	0.990387574803086

n	Funkcja kosztu				
1	1				
2	2.333333333333333				
3	3.7				
4	5.07619047619048				
5	6.45634920634921				
6	7.83852813852814				
7	9.22187257187257				
8	10.6059496062796				
9	11.9905168356488				
10	13.37542804637291				

1.4. Wnioski

Zadanie szukania zadanego wektora jest źle uwarunkowane, ponieważ do jego liczenia jest potrzebna macierz Hilberta.

Błąd względny dla wymiaru n=7 jest jeszcze wyjątkowo mały ale już dla n=8 błąd ten wynosi prawie 0.5

2. Zadanie 2

Zadanie opisuje problem optymalnego przemieszczenia dźwigów między miastami aby zniwelować zapotrzebowania w miastach wykorzystując nadmiary w innych miastach

2.1. Model

2.1.1. Zmienne decyzyjne

- $movI_{m1,m2}$ liczba dźwigów typu I przeniesiona z miasta m1 do miasta m2,
- $movII_{m1,m2}$ liczba dźwigów typu II przeniesiona z miasta m
1 do miasta m
2,
- $movIII_{m1,m2}$ liczba dźwigów typu II przeniesiona z miasta m
1 do miasta m 2 w celu zastąpienia dźwigów typu I,

2.1.2. Ograniczenia

- 1. Ograniczenie przenoszonych dźwigów wedle nadmiarów
 - $\sum_{m2 \in M} movI_{m1,m2} \leq surpI_{m1}$
 - $\sum_{m2 \in M} \left(movII_{m1,m2} + movIII_{m1,m2} \right) \leq surpII_{m1}$
- 2. Ograniczenie przenoszonych dźwigów wedle braków
 - $\sum_{m1 \in M} (movI_{m1,m2} + movIII_{m1,m2}) \ge shortI_{m2}$
 - $\sum_{m1 \in M} movII_{m1,m2} \ge surpII_{m2}$

2.2. Funkcja kosztu

Minimalizujemy koszt związany z transportem

$$\min \textstyle \sum_{m1,m2 \in M} \left(dist_{m1,m2} \cdot movI_{m1,m2} + 1.2 \cdot dist_{m1,m2} \cdot \left(movII_{m1,m2} + movIII_{m1,m2} \right) \right)$$

2.3. Wyniki

z	do	ile	typ dźwigu	
Opole	[Brzeg]	4	I	
Opole	Kędzierzyn-Koźle	3	I	
Nysa	Brzeg	5	I	
Nysa	Prudnik	1	I	
Strzelce Opolskie	Kędzierzyn-Koźle	5	I	
Nysa	Nysa Opole		II	
Prudnik	Strzelce Opolskie	4	II	
Prudnik	Kędzierzyn-Koźle	2	II	
Prudnik	nik Racibórz 1 II		II	
Brzeg	Brzeg	1	II zmiana na I	
Prudnik	Prudnik	3	II zmiana na I	

Całkowity koszt wyniósł 1400.44 jakimi posługiwał się twórca zadania. Pozbycie się warunku na całkowitoliczbowość zmiennych decyzyjnych nie wpływa na końcowy wynik. Solver widocznie lubi wykorzystanie dźwigów typu II jako typu I bez zmiany miasta przez to że nie wprowadza to żadnych kosztów związanych z przewozem. Zapotrzebowanie na dźwigi zostało zlikwidowane w optymalny sposób.

3. Zadanie 3

Zadanie to polegało na optymalizacji kosztów rafinerii tworzącej 3 rodzaje paliw z dwóch rodzajów ropy. Rafineria wykorzystuje destylacje i krakowanie jako metody tworzenia paliw.

3.1. Model

- $R = \{B1, B2\}$ rodzaje ropy
- $P_d = \{$ benzyna, olej, destylat, reszta $\}$ produkty destylacji
- $P_k = \{ {\rm benzyna}, \, {\rm olej}, \, {\rm reszta} \}$ produkty krakowania destylatu
- $W_o = \{\text{domowe, ciezkie}\}$ wykorzystanie oleju z destylacji
- $W_d = \{ \text{krak, ciezkie} \}$ wykorzystanie destylatu

3.1.1. Parametry

- wydajnosc $_{r,p}$ wydajność destylacji ropy określająca ile produktu $p \in P_d$ zostało stworzonego z ropy $r \in R$
- wydajnosc_krak $_p$ wydajność krakowania destylatu określająca ile produktu $p \in P_k$ zostało stworzonego
- desty_siarka_r udział siarki w oleju pozyskanego z destylacji ropy $r \in R$
- krak_siarka_r udział siarki w oleju pozyskanego z krakowania destylatu ropy $r \in R$

3.1.2. Zmienne decyzyjne

• $\operatorname{ropa}_r, r \in R$ – ilość ton zakupionej oraz przetwarzanej ropy B1 oraz B2

- olej $_{r,c}$, $r\in R$, $c\in W_o$ określa ilość, w tonach, oleju z każdego rodzaju ropy idącego do paliw domowych i ciężkich
- desty $_{r,c}$, $r \in R$, $c \in W_d$ określa ilość, w tonach, destylatu z każdego rodzaju ropy idącego do krakowania i paliw ciężkich

3.1.3. Ograniczenia

 Suma oleju wyprodukowanego z danego typu ropy musi równać się sumie ton oleju wykorzystywanego do różnych celów

$$\forall_{r \in R} \left(\text{wydajnosc}_{r, \text{ olej}} \cdot \text{ropa}_r = \sum_{w \in W_o} \text{olej}_{r, w} \right)$$

 Suma destylatu wyprodukowanego z danego typu ropy musi równać się sumie ton destylatu wykorzystywanego do różnych celów

$$\forall_{r \in R} \left(\text{wydajnosc}_{r, \text{ destylat}} \cdot \text{ropa}_r = \sum_{w \in W_d} \text{desty}_{r, w} \right)$$

• Ilość wyprodukowanych paliw silnikowych nie może być mniejsza niż podane w zadaniu $\min_s=200000$ na ilość wyprodukowanego paliwa składa się benzyna z destylacji oraz benzyna z krakowania destylatu

$$\sum_{r \in R} \left(\text{wydajnosc_krak}_{\text{benzyna}} \cdot \text{desty}_{r, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ benzyna}} \cdot \text{ropa}_r \right) \geq \min_{s \in R} \left(\text{wydajnosc_krak}_{s, \text{ krak}} + \text{wydajnosc}_{r, \text{ krak}} + \text{wydajnosc}_{r, \text{ krak}} \right)$$

• Ilość wyprodukowanych paliw olejowych nie może być mniejsza niż podane w zadaniu $\min_o=400000$ na ilość wyprodukowanego paliwa składa się część oleju z destylacji oraz olej z krakowania destylatu

$$\sum_{r \in R} \left(\text{wydajnosc_krak}_{\text{olej}} \cdot \text{desty}_{r, \text{ krak}} + \text{olej}_{r, \text{ domowe}} \right) \geq \min_{o}$$

• Ilość wyprodukowanych paliw ciężkich nie może być mniejsza niż podane w zadaniu $\min_c=250000$ na ilość wyprodukowanego paliwa składa się część oleju z destylacji, część destylatu, resztki destylacji oraz resztki z krakowania destylatu

$$\sum_{r \in R} \left(\text{wydajnosc_krak}_{\text{reszta}} \cdot \text{desty}_{r, \text{ krak}} + \text{desty}_{r, \text{ reszta}} + \text{olej}_{r, \text{ ciezkie}} + \text{wydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \geq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{desty}_{r, \text{ krak}} + \text{desty}_{r, \text{ reszta}} + \text{olej}_{r, \text{ ciezkie}} + \text{wydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \geq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{desty}_{r, \text{ reszta}} + \text{olej}_{r, \text{ ciezkie}} + \text{wydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \geq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ reszta}} \cdot \text{ropa}_{r} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ ropa}_{r}} \right) \leq \min_{c} \left(\text{vydajnosc}_{r, \text{ ropa}_{$$

• Wyprodukowane paliwa olejowe nie mogą mieć więcej niż $\max_s=0.5\%$ siarki w swoim składzie. Skład siarki w podawany jest przez parametry desty_siraka oraz krak_siarka

$$\begin{split} \sum_{r \in R} & \left(\text{desty_siarka}_r \cdot \text{olej}_{r, \text{ ciezkie}} + \text{krak_siarka}_r \cdot \text{wydajnosc_krak}_{r, \text{ olej}} \cdot \text{desty}_{r, \text{ krak}} \right) \leq \\ & \max_{s} \cdot \sum_{r \in R} & \left(\text{wydajnosc_krak}_{\text{olej}} \cdot \text{desty}_{r, \text{ krak}} + \text{olej}_{r, \text{ domowe}} \right) \end{split}$$

3.2. Funkcja kosztu

- $C_{B1} = 1300$ koszt tony ropy B1
- $\,C_{B2} = 1500$ koszt tony ropy B2
- $CR_1 = 10$ koszt destylacji ropy
- $CR_2=20$ koszt krakowania destylatu

Chcemy zminimalizować koszty produkcji paliw:

$$\min \sum_{r \in R} \left(\operatorname{ropa}_r * (C_r + CR_1) + CR_2 * \operatorname{desty}_{r, \text{ krak}} \right)$$

3.3. Wyniki

Optymalnym rozwiązaniem okazuje się zakup wyłącznie tańszej ropy B1. Ta ropa nie dość że jest tańsza w kupnie jak i w obróbce ale ma również mniejszą zawartość siarki.

- Kupujemy 1026030.37 ton ropy B1
- 381561.37 ton oleju z destylacji idzie na cele paliw olejowych
- 28850.325 ton oleju z destylacji idzie na cele paliw ciężkich
- 91190.89 ton destylatu idzie do krakowania
- 61713.67 ton destylatu idzie na cele paliw ciężkich

Całkowity koszt wyniósł 1345943600.87\$

4. Zadanie 4

Zadanie polegało na znalezieniu optymalnego planu ćwiczeń wedle godzin i ocen zajęć podanych w treści zadania. Dodatkowo w plan trzeba było zmieścić godzinną przerwę w godzinach 12 - 14 a także zajęcia sportowe co najmniej raz w tygodniu.

4.1. Model

- Zaj = {algebra, analiza, fizyka, chemia_minerałów, chemia_organiczna} Zbiór wszystkich ćwiczeń
- $Gr = \{gr1, gr2, gr3, gr4\}$ grupy ćwiczeniowe z których można wybierać
- $Gr_wf = \{gr1, gr2, gr3\}$ grupy zajęć sportowych z których można wybierać

4.1.1. Parametry

- Start $_{z,g},z\in {\rm Zaj},g\in {\rm Gr}$ macierz zawierająca informacje na temat godzin o których zajęcia się zaczynały
- Koniec $_{z,g}$, $z\in {\rm Zaj}, g\in {\rm Gr}$ macierz zawierająca informacje na temat godzin o których zajęcia się kończyły
- Dzien $_{z,g} \in [1,2,3,4,5], z \in \text{Zaj}, g \in \text{Gr}$ macierz zawierająca informacje na temat dni w których zajęcia się odbywały
- $\mathrm{Pkt}_{z,g},z\in\mathrm{Zaj},g\in\mathrm{Gr}$ macierz zawierająca informacje na temat preferencji co do zajęć
- Start_wf_{z,g}, $z\in {\rm Zaj}, g\in {\rm Gr}$ macierz zawierająca informacje na temat godzin o których zajęcia sportowe się zaczynały
- Koniec_wf_{z,g}, $z\in {\rm Zaj}, g\in {\rm Gr}$ macierz zawierająca informacje na temat godzin o których zajęcia sportowe się kończyły
- Dzien_wf $_{z,g} \in [1,2,3,4,5], z \in \text{Zaj}, g \in \text{Gr}$ macierz zawierająca informacje na temat dni w których zajęcia sportowe się odbywały

4.1.2. Zmienne decyzyjne

- Wybrane $_{z,g} \in [0,1], z \in \text{Zaj}, g \in \text{Gr}$ Macierz określająca które zajęcia wybraliśmy
 - 1 oznacza wybranie zajęć
 - ► 0 oznacza nie wybranie zajęć
- Wybrane_wf_{z,q} \in [0, 1], $z \in$ Zaj, $g \in$ Gr Macierz określająca które zajęcia sportowe wybraliśmy
 - 1 oznacza wybranie zajęć
 - ▶ 0 oznacza nie wybranie zajęć

4.1.3. Ograniczenia

1. Z każdego przedmiotu możemy wybrać tylko jedną grupę

$$\forall_{z \in \text{Zaj}} \left(\sum_{g \in \text{Gr}} \text{Wybrane}_g = 1 \right)$$

2. Z wf musimy wybrać minimalnie jedną grupę

$$\sum_{g \in \text{Gr_wf}} \text{Wybrane_wf}_g \ge 1$$

3. Możemy mieć maksymalnie 4h ćwiczeń dziennie

$$\forall_{d \in [5]} \left(\sum_{g \in \operatorname{Gr}, z \in \operatorname{Zaj}, \operatorname{Dzien}_{z,g} = d} \left(\operatorname{Koniec}_{z,g} - \operatorname{Start}_{z,g} \right) \leq 4 \right)$$

4. Zajęcia nie mogą się zaczynać w trakcie innych zajęć - sprawdzamy to poprzez porównywanie czasu rozpoczęcia i zakończenia par zajęć, jeśli czas rozpoczęcia jednych zajęć zawiera się w pomiędzy granicami innych zajęć to wybrać możemy co najwyżej jedne z nich

$$\begin{split} \big(\forall_{z1,z2\in\,\mathrm{Zaj}}\big)\big(\forall_{g1,g2\in\,\mathrm{Gr}}\big) \\ \big((z1,g1) \neq (z2,g2) \land \mathrm{Dzien}_{z1,g1} = \mathrm{Dzien}_{z2,g2} \land \mathrm{Start}_{z1,g1} \leq \mathrm{Start}_{z2,g2} \land \mathrm{Start}_{z2,g2} \leq \mathrm{Koniec}_{z1,g1}\big) \\ \Longrightarrow \mathrm{Wybrane}_{z1,g1} + \mathrm{Wybrane}_{z2,g2} \leq 1 \end{split}$$

5. Podobnie treningi nie mogą się zaczynać w trakcie ćwiczeń

$$\begin{split} \big(\forall_{z \in \, \operatorname{Zaj}}\big)\big(\forall_{g \in \, \operatorname{Gr}}\big)\big(\forall_{g^{\operatorname{wf}} \in \, \operatorname{Gr}_{\operatorname{wf}}}\big) \\ \big(\operatorname{Dzien}_{z,g} = \operatorname{Dzien}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \wedge \operatorname{Start}_{z,g} \leq \operatorname{Start}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \wedge \operatorname{Start}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \leq \operatorname{Koniec}_{z,g}\big) \\ \Longrightarrow \operatorname{Wybrane}_{z,g} + \operatorname{Wybrane}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \leq 1 \end{split}$$

6. Ani nie mogą się kończyć w trakcie ćwiczeń

$$\begin{split} \big(\forall_{z \in \, \operatorname{Zaj}}\big) \big(\forall_{g \in \, \operatorname{Gr}}\big) \big(\forall_{g^{\operatorname{wf}} \in \, \operatorname{Gr}_{\operatorname{wf}}}\big) \\ \big(\operatorname{Dzien}_{z,g} = \operatorname{Dzien}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \wedge \operatorname{Start}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \leq \operatorname{Start}_{z,g} \wedge \operatorname{Start}_{z,g}\big) \leq \operatorname{Koniec}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \\ \Longrightarrow \operatorname{Wybrane}_{z,g} + \operatorname{Wybrane}_{\operatorname{wf}}_{g^{\operatorname{wf}}} \leq 1 \end{split}$$

7. Ćwiczenia muszą zostawić godzinę przerwy w godzinach 12-14 na obiad na stołówce

$$\left(\forall_{d \in [5]}\right) \\ \sum_{g \in \text{Gr}, z \in \text{Zaj,Dzien}_{z,g} = d, \text{Start}_{z,g} < 12, \text{Koniec}_{z,g} \leq 14} \left(\left(\text{Koniec}_{z,g} - 12\right) \cdot \text{Wybrane}_{z,g}\right) + \\ \sum_{g \in \text{Gr}, z \in \text{Zaj,Dzien}_{z,g} = d, \text{Start}_{z,g} \geq 12, \text{Koniec}_{z,g} \leq 14} \left(\left(\text{Koniec}_{z,g} - \text{Start}_{z,g}\right) \cdot \text{Wybrane}_{z,g}\right) + \\ \sum_{g \in \text{Gr}, z \in \text{Zaj,Dzien}_{z,g} = d, \text{Start}_{z,g} \geq 12, \text{Koniec}_{z,g} > 14} \left(\left(14 - \text{Start}_{z,g}\right) \cdot \text{Wybrane}_{z,g}\right) + \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g < 12, \text{Koniec_wf}_g \leq 14} \left(\left(\text{Koniec_wf}_g - 12\right) \cdot \text{Wybrane_wf}_g\right) + \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g \leq 14} \left(\left(\text{Koniec_wf}_g - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) + \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g \leq 14} \left(\left(14 - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) \leq 1 \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g > 14} \left(\left(14 - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) \leq 1 \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g > 14} \left(\left(14 - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) \leq 1 \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g > 14} \left(\left(14 - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) \leq 1 \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g > 14} \left(\left(14 - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) \leq 1 \\ \sum_{g \in \text{Gr_wf,Dzien_wf}_g = d, \text{Start_wf}_g \geq 12, \text{Koniec_wf}_g > 14} \left(\left(14 - \text{Start_wf}_g\right) \cdot \text{Wybrane_wf}_g\right) \leq 1$$

4.1.4. Ograniczenia dodatkowe

1. Brak ćwiczeń w środy oraz 5

$$\big(\forall_{g \in \operatorname{Gr}, z \in \operatorname{Zaj}}\big) \big(\operatorname{Dzien}_{z,g} \in \{3,5\} \Longrightarrow \operatorname{Wybrane}_{z,g} = 0\big)$$

2. Brak ćwiczeń o preferencji mniejszej niż 5

$$\left(\forall_{g\in\;\mathrm{Gr},z\in\;\mathrm{Zaj}}\right)\!\left(\mathrm{Pkt}_{z,g}\leq 5\Longrightarrow \mathrm{Wybrane}_{z,g}=0\right)$$

4.2. Funkcja kosztu

Naszym celem jest zmaksymalizowanie wybieranie preferowanych ćwiczeń. W tym celu maksymalizujemy sumę preferencji wszystkich wybranych ćwiczeń

$$\max \sum_{g \in \operatorname{Gr}, z \in \operatorname{Zaj}} \! \left(\operatorname{Pkt}_{z,g} \cdot \operatorname{Wybrane}_{z,g} \right)$$

4.3. Wyniki

4.3.1. Bez dodatkowych warunków

Bez dodatkowych warunków plan prezentuje się następująco:

	Pn.	Wt.	Śr.	Cz.	Pt.
8:00	chemia min. (I)				
8:30	chemia min. (I)				
9:00	chemia min. (I)				
9:30	chemia min. (I)				
10:00		analiza (II)	algebra (III)		
10:30	chemia org. (II)	analiza (II)	algebra (III)		
11:00	chemia org. (II)	analiza (II)	algebra (III)		
11:30	chemia org. (II)	analiza (II)	algebra (III)		
12:00	lunch	lunch	lunch	lunch	lunch
12:30	lunch	lunch	lunch	lunch	lunch
13:00	trening				
13:30	trening				
14:00	trening				
14:30	trening				
15:00					
15:30					
16:00					
16:30					
17:00				fizyka (IV)	
17:30				fizyka (IV)	
18:00				fizyka (IV)	
18:30				fizyka (IV)	
19:00				fizyka (IV)	
19:30				fizyka (IV)	

Suma preferencji wynosi 37. Można by nawet dodać jeszcze jedne zajęcia sportowe w środę od 13:00 do 15:00 ale to nie jest już wymagane od solvera.

4.3.2. Dodatkowe warunki

Ograniczenia dodatkowe widoczne w Sekcja 4.1.4 powodują zmiany w planie prezentujące się następująco:

	Pn.	Wt.	Śr.	Cz.	Pt.
8:00				analiza (IV)	
8:30				analiza (IV)	
9:00				analiza (IV)	
9:30				analiza (IV)	
10:00		fizyka (II)			
10:30	chemia org. (II)	fizyka (II)			
11:00	chemia org. (II)	fizyka (II)	trening		
11:30	chemia org. (II)	fizyka (II)	trening		
12:00	lunch	fizyka (II)	trening	lunch	lunch
12:30	lunch	fizyka (II)	trening	lunch	lunch
13:00	algebra (I)	lunch	lunch	chemia min. (III)	
13:30	algebra (I)	lunch	lunch	chemia min. (III)	
14:00	algebra (I)			chemia min. (III)	
14:30	algebra (I)			chemia min. (III)	

W tym wypadku suma preferencji wynosi 28. Jest to znacznie mniej niż w poprzednim wypadku ale jej kosztem zapewniliśmy dwa wolne dni od ćwiczeń.