### **DPENCLASSROOMS**

### **Parcours Data Scientist**

# Projet 7 : Implémentez un modèle de scoring

Etudiant: Eric Wendling Mentor: Julien Heiduk

GitHub: <a href="https://github.com/leerik/OC\_DS\_P7">https://github.com/leerik/OC\_DS\_P7</a>

Date: 20/10/2020



# Crédit Scoring

# Définition du projet







## Définition du projet





Analyse et traitement des données existantes Modélisation d'un système de classification binaire Réalisation d'un dashboard interactif

- Prédiction de scores
- Informations clients
- Explicabilité des décisions

















### Valeurs manquantes

#### Dataframe

- df app 2
  - Le dataframe comprend 1771 variables (avec ID et Cible)
  - Il y a 1588 variables avec des valeurs manquantes

#### Réduction de dimension

- Réduction du nombre de variables
  - On supprime les variables qui ont plus de 80% de valeurs manquantes
  - Après suppression des variables, le dataframe comprend 1702 variables
- Remplacement des valeurs manquantes
  - Valeurs de remplacement

    - Moyenne ou médiane
      - Traitement par classe
      - Déduction par similarité (proches voisins)







'EXT SOURCE 1': 173378 (ratio = 0.56) Valeurs nulles 'EXT\_SOURCE\_2': 660 (ratio = 0.00) 'EXT SOURCE 3': 60965 (ratio = 0.20)

Crédit Scoring

#### Corrélations des variables avec la cible (références KDE)

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.1553 Valeur médiane pour les crédits non remboursés = 0.3617 Valeur médiane pour les crédits remboursés = 0.5175



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1605 Valeur médiane pour les crédits non remboursés = 0.4404 Valeur médiane pour les crédits remboursés = 0.5739



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1789 Valeur médiane pour les crédits non remboursés = 0.3791 Valeur médiane pour les crédits remboursés = 0.5460



### Après remplacement des valeurs nulles par 0

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.0647 Valeur médiane pour les crédits non remboursés = 0.0000 Valeur médiane pour les crédits remboursés = 0.0000



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1590 Valeur médiane pour les crédits non remboursés = 0.4395 Valeur médiane pour les crédits remboursés = 0.5734



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1196 Valeur médiane pour les crédits non remboursés = 0.2881 Valeur médiane pour les crédits remboursés = 0.4741





Parcours Data Scientist

Projet 7: Implémentez un modèle de scoring

'EXT SOURCE 1': 173378 (ratio = 0.56) Valeurs nulles 'EXT\_SOURCE\_2': 660 (ratio = 0.00) 'EXT SOURCE 3': 60965 (ratio = 0.20)



#### Corrélations des variables avec la cible (références KDE)

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.1553 Valeur médiane pour les crédits non remboursés = 0.3617 Valeur médiane pour les crédits remboursés = 0.5175



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1605 Valeur médiane pour les crédits non remboursés = 0.4404 Valeur médiane pour les crédits remboursés = 0.5739



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1789 Valeur médiane pour les crédits non remboursés = 0.3791 Valeur médiane pour les crédits remboursés = 0.5460



### Après remplacement des valeurs nulles par la valeur médiane

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.0989 Valeur médiane pour les crédits non remboursés = 0.5060 Valeur médiane pour les crédits remboursés = 0.5060



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1603 Valeur médiane pour les crédits non remboursés = 0.4411 Valeur médiane pour les crédits remboursés = 0.5734



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1559 Valeur médiane pour les crédits non remboursés = 0.4758 Valeur médiane pour les crédits remboursés = 0.5353





Parcours Data Scientist

Projet 7: Implémentez un modèle de scoring

'EXT SOURCE 1': 173378 (ratio = 0.56) Valeurs nulles 'EXT\_SOURCE\_2': 660 (ratio = 0.00) 'EXT SOURCE 3': 60965 (ratio = 0.20)

Crédit Scoring

#### Corrélations des variables avec la cible (références KDE)

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.1553 Valeur médiane pour les crédits non remboursés = 0.3617 Valeur médiane pour les crédits remboursés = 0.5175



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1605 Valeur médiane pour les crédits non remboursés = 0.4404 Valeur médiane pour les crédits remboursés = 0.5739



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1789 Valeur médiane pour les crédits non remboursés = 0.3791 Valeur médiane pour les crédits remboursés = 0.5460



#### Après remplacement des valeurs nulles par la valeur médiane par classe

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.2719 Valeur médiane pour les crédits non remboursés = 0.3617 Valeur médiane pour les crédits remboursés = 0.5175



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1607 Valeur médiane pour les crédits non remboursés = 0.4404 Valeur médiane pour les crédits remboursés = 0.5739



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.2133 Valeur médiane pour les crédits non remboursés = 0.3791 Valeur médiane pour les crédits remboursés = 0.5460





Parcours Data Scientist

Projet 7: Implémentez un modèle de scoring

'EXT SOURCE 1': 173378 (ratio = 0.56) Valeurs nulles 'EXT\_SOURCE\_2': 660 (ratio = 0.00) 'EXT SOURCE 3': 60965 (ratio = 0.20)

Crédit Scoring

#### Corrélations des variables avec la cible (références KDE)

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.1553 Valeur médiane pour les crédits non remboursés = 0.3617 Valeur médiane pour les crédits remboursés = 0.5175



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1605 Valeur médiane pour les crédits non remboursés = 0.4404 Valeur médiane pour les crédits remboursés = 0.5739



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1789 Valeur médiane pour les crédits non remboursés = 0.3791 Valeur médiane pour les crédits remboursés = 0.5460



#### Après remplacement des valeurs nulles par la moyenne des valeurs des plus proches voisins, par classe

La corrélation entre la variable EXT SOURCE 1 et la cible est de -0.2108 Valeur médiane pour les crédits non remboursés = 0.3640 Valeur médiane pour les crédits remboursés = 0.5028



La corrélation entre la variable EXT SOURCE 2 et la cible est de -0.1606 Valeur médiane pour les crédits non remboursés = 0.4400 Valeur médiane pour les crédits remboursés = 0.5737



La corrélation entre la variable EXT SOURCE 3 et la cible est de -0.1979 Valeur médiane pour les crédits non remboursés = 0.3858 Valeur médiane pour les crédits remboursés = 0.5394





**Parcours Data Scientist** 

Projet 7: Implémentez un modèle de scoring



#### Histogrammes avant traitement



Histogrammes après remplacement des valeurs nulles par la moyenne des valeurs des plus proches voisins





### Corrélations

#### Dataframe

- df\_app\_2
  - Le dataframe comprend 1702 variables
  - (307511 dossiers)

#### Corrélations entre variables

- Lien entre les variables
  - Nature du lien: linéaire ou plus complexe
- Identification des variables corrélées
  - Corrélation de Pearson (relation linéaire)
  - Corrélation de Spearman (relation monotone)

#### Réduction de dimension

- Identification des variables corrélées
  - Identification des variables corrélées à plus de 95%
  - Suppression d'une variable pour chaque paire de variables corrélées
  - Après suppression des variables, le dataframe comprend 913 variables (avec la Cible)

|  |                  | SK_ID_CURR | CNT_CHILDREN | AMT_INCOME_TOTAL | AMT_CREDIT | AMT_ANNUITY | AMT_GOODS_PRICE |
|--|------------------|------------|--------------|------------------|------------|-------------|-----------------|
|  | \$K_ID_CURR      | 1.0        | -0.0011      | -0.0018          | -0.00034   | -0.00041    | -0.00039        |
|  | CNT_CHILDREN     | -0.0011    | 1.0          | 0.013            | 0.0021     | 0.021       | -0.002          |
|  | AMT_INCOME_TOTAL | -0.0018    | 0.013        | 1.0              | 0.16       | 0.19        | 0.16            |
|  | AMT_CREDIT       | -0.00034   | 0.0021       | 0.16             | 1.0        | 0.77        | 0.99            |
|  | AMT_ANNUITY      | -0.00041   | 0.021        | 0.19             | 0.77       | 1.0         | 0.78            |
|  | AMT_GOODS_PRICE  | -0.00039   | -0.002       | 0.16             | 0.99       | 0.78        | 1.0             |

{'AMT\_CREDIT': ['AMT\_CREDIT', 'AMT\_GOODS\_PRICE']}

#### Valeurs des variables corrélées

|        | AMT_CREDIT | AMT_GOODS_PRICE |
|--------|------------|-----------------|
| 0      | 406597.5   | 351000.0        |
| 1      | 1293502.5  | 1129500.0       |
| 2      | 135000.0   | 135000.0        |
| 3      | 312682.5   | 297000.0        |
| 4      | 513000.0   | 513000.0        |
|        |            |                 |
| 307506 | 254700.0   | 225000.0        |
| 307507 | 269550.0   | 225000.0        |
| 307508 | 677664.0   | 585000.0        |
| 307509 | 370107.0   | 319500.0        |
| 307510 | 675000.0   | 675000.0        |
|        |            |                 |



### Variance

#### Définition

Mesure de la dispersion des valeurs d'une variable

#### Dataframe

- df\_app\_2
  - Le dataframe comprend **912** variables (sans la Cible)
  - Il y a 14 variables avec une variance = 0

#### Réduction de dimension

- Réduction du nombre de variables
  - On supprime les variables inférieures à un seuil de variance
  - On a fixé le seuil à 0 afin de supprimer les variables avec une variance = 0
  - Après suppression des variables, le dataframe comprend 898 variables

|    | index                                          | Variance     |
|----|------------------------------------------------|--------------|
|    | client_credit_card_balance_SK_DPD_min_sum      | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_min_min      | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_DEF_min_mean | 0.000000e+00 |
| ie | ent_POS_CASH_balance_NAME_CONTRACT_STATUS_X    | 0.000000e+00 |
| ļ  | previous_application_NAME_GOODS_CATEGORY_House | 0.000000e+00 |
|    | client_POS_CASH_balance_SK_DPD_DEF_min_min     | 0.000000e+00 |
| ļ  | previous_application_NAME_GOODS_CATEGORY_House | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_DEF_min_max  | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_min_mean     | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_DEF_min_min  | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_DEF_min_sum  | 0.000000e+00 |
| ie | ent_POS_CASH_balance_NAME_CONTRACT_STATUS_X    | 0.000000e+00 |
|    | client_POS_CASH_balance_SK_DPD_min_min         | 0.000000e+00 |
|    | client_credit_card_balance_SK_DPD_min_max      | 0.000000e+00 |
|    | client_credit_card_balance_NAME_CONTRACT_STATU | 1.390690e-08 |
| ie | ent_POS_CASH_balance_NAME_CONTRACT_STATUS_X    | 3.583340e-08 |
| ie | ent_POS_CASH_balance_NAME_CONTRACT_STATUS_C    | 4.582500e-07 |
|    | client_POS_CASH_balance_SK_DPD_DEF_min_mean    | 8.129790e-07 |
|    | client_bureau_balance_STATUS_4_count_norm_min  | 8.519733e-07 |
| ie | ent_POS_CASH_balance_NAME_CONTRACT_STATUS_C    | 9.412349e-07 |



### 2 Traitement des données



### Jeux de données

#### Dataframe

- df app 2
  - X (307511, **898**)
  - y (307511, )
- df\_app\_2\_test
  - (48744, **898**)



Sans étiquette

#### Jeux d'entraînement et de test

- df\_app\_2
  - Réservation de 20% des données pour le jeu de test

```
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X, y, train_size = 0.8, random_state = rs_)

Jeu d'entraînement: x_train (246008, 898)

Etiquettes: y_train (246008,)

Jeu de test: x_test (61503, 898)

Etiquettes: y_test (61503,)
```



### Jeux de données

### Déséquilibre des données

- Sur-représentation d'une classe
  - Crédit remboursé (client solvable): 91,93%
  - Crédit non remboursé (client non solvable): 8,07%
- Méthodes
  - Sur-échantillonnage de la classe minoritaire (Smote)
  - Sous-échantillonnage de la classe majoritaire (NearMiss)

| D | onnées | Traitement           | Individus | Non solvables (1) | Solvables (0) | % Non solvables (1) |
|---|--------|----------------------|-----------|-------------------|---------------|---------------------|
| 0 | Test   | Non                  | 61503     | 4982              | 56521         | 8.10                |
| 1 | Train  | Non                  | 246008    | 19843             | 226165        | 8.07                |
| 2 | Train  | Sur-échantillonnage  | 271398    | 45233             | 226165        | 16.67               |
| 3 | Train  | Sous-échantillonnage | 200775    | 19843             | 180932        | 9.88                |

Sur-éch.

Sous-éch.





**Parcours Data Scientist** 

Projet 7: Implémentez un modèle de scoring

Eric Wendling

2020-10-20



## Caractéristiques du modèle

### Jeux de données

- Entraînement
  - (246008, **897**)
- Test avec étiquettes
  - (61503, **897**)
- Test sans étiquette
  - (48744, **897**)



### Objectifs

- Classification de dossiers de crédits en 2 classes
  - Classification binaire
  - Apprentissage supervisé
- Compréhension des critères de décision
  - Interprétabilité (ou explicabilité)
  - Importance des variables
    - Global
    - Local
- Volumes de données importants
  - > Temps d'exécution raisonnables



- Mesures des performances
  - Optimisation fonction de perte
  - Définir les Métriques



### Modélisation



## Mesure de performance d'un classifieur

| Dossier | Négatif<br>Remboursé | Positif<br>Non remboursé | Seuil | Prédiction | Réel | Vrai<br>Positif | Vrai<br>Négatif | Faux<br>Positif | Faux<br>Négatif |
|---------|----------------------|--------------------------|-------|------------|------|-----------------|-----------------|-----------------|-----------------|
| 1       | 0,3                  | 0,7                      | 0,6   | 1          | 0    | <b>1</b> 6      |                 | 1               |                 |
| 2       | 0,6                  | 0,4                      | 0,6   | 0          | 0    | 6 8             | 1               |                 |                 |
| 3       | 0,8                  | 0,2                      | 0,6   | 0          | 0    | i i             | 1               |                 |                 |
| 4       | 0,1                  | 0,9                      | 0,6   | 1          | 1    | 1               | 3               | 9               |                 |
| 5       | 0,5                  | 0,5                      | 0,6   | 0          | 0    | 6 - 1           | 1               | 9               |                 |
| 6       | 0,3                  | 0,7                      | 0,6   | 1          | 0    | 6               |                 | 1               |                 |
| 7       | 0,4                  | 0,6                      | 0,6   | 0          | 1    | 6               | l. S            | 9               | 1               |
| 8       | 0,8                  | 0,2                      | 0,6   | 0          | 0    | 6               | 1               | 0               |                 |
| 9       | 0,6                  | 0,4                      | 0,6   | 0          | 0    | 6               | 1               |                 |                 |
| 10      | 0,3                  | 0,7                      | 0,6   | 1          | 1    | 1               |                 |                 |                 |

Seuil = 0,6

Sensibilité = TP / (TP + FN) = 2/3 = 0,67Spécificité = TN / (TN + FP) = 5/7 = 0,71Précision = TP / (TP + FP) = 2/4 = 0,5



|                    | Réel Négatif |   | Réel Positif |   |
|--------------------|--------------|---|--------------|---|
| Prédiction Négatif | TN           | 5 | FN           | 1 |
| Prédiction Positif | FP           | 2 | TP           | 2 |
| 0                  | 9.89         | 7 |              | 3 |



### Modélisation



## Type de modèle

### Seuil = 0,3



|                    | Réel Négatif |   | Réel Positi |   |
|--------------------|--------------|---|-------------|---|
| Prédiction Négatif | TN           | 2 | FN          | 0 |
| Prédiction Positif | FP           | 5 | TP          | 3 |
|                    |              | 7 |             | 3 |

### Seuil = 0,6

Sensibilité = TP / (TP + FN) = 
$$2/3 = 0.67$$
  
Spécificité = TN / (TN + FP) =  $5/7 = 0.71$   
Précision = TP / (TP + FP) =  $2/4 = 0.5$ 



|                    | Rée | l Négatif | Rée | l Positif |   |
|--------------------|-----|-----------|-----|-----------|---|
| Prédiction Négatif | TN  | 5         | FN  | 1         | 1 |
| Prédiction Positif | FP  | 2         | TP  | 2         |   |
| 100                | 8.5 | 7         | 8.1 | 3         |   |

2



## Courbe ROC







## Caractéristiques du modèle

### Jeux de données

- Entraînement
  - (246008, 897)
- Test avec étiquettes
  - (61503, 897)
- Test sans étiquette
  - (48744, 897)



### Objectifs

- Classification de dossiers de crédits en 2 classes
  - Classification binaire
  - Apprentissage supervisé
- Compréhension des critères de décision
  - Interprétabilité (ou explicabilité)
  - Importance des variables
    - Global
    - Local
- Volumes de données importants
  - > Temps d'exécution raisonnables



- Mesures des performances
  - Optimisation fonction de perte
  - Métriques: Mesures ROC et AUC



### Modélisation



### Classifieurs

### Arbres de décision

| Données | Traitement          | Individus | Non solvables (1) | Solvables (0) | % Non solvables (1) |
|---------|---------------------|-----------|-------------------|---------------|---------------------|
| Test    | Non                 | 61503     | 4982              | 56521         | 8.10                |
| Train   | Sur-échantillonnage | 271398    | 45233             | 226165        | 16.67               |

- Forêts aléatoires
- Méthodes ensemblistes

#### Modèles testés

- Random Forest
- XGBoost
- CatBoost
- LightGBM







## Comparaison des performances AUC

#### Sans traitement

|   | Features dim  | Model  | Train score | Test score | Run time |
|---|---------------|--------|-------------|------------|----------|
| 4 | (246008, 897) | lgbm_1 | 0.868       | 0.835      | 289.0    |
| 2 | (246008, 897) | xgb_1  | 0.895       | 0.834      | 3389.0   |
| 3 | (246008, 897) | catb_1 | 0.874       | 0.831      | 1854.0   |
| 1 | (246008, 897) | rf_1   | 1.000       | 0.790      | 1041.0   |
| 0 | (246008, 897) | Ir_1   | 0.613       | 0.607      | 132.0    |

### Sur-échantillonnage Smote

|   | Features dim  | Model  | Train score | Test score | Run time |
|---|---------------|--------|-------------|------------|----------|
| 2 | (271398, 897) | xgb_1  | 0.955       | 0.834      | 3934.0   |
| 4 | (271398, 897) | lgbm_1 | 0.936       | 0.833      | 354.0    |
| 3 | (271398, 897) | catb_1 | 0.942       | 0.831      | 2499.0   |
| 1 | (271398, 897) | rf_1   | 1.000       | 0.790      | 971.0    |
| 0 | (271398, 897) | lr_1   | 0.631       | 0.619      | 143.0    |

### Sous-échantillonnage NearMiss

|   | Features dim  | Model  | Train score | Test score | Run time |
|---|---------------|--------|-------------|------------|----------|
| 4 | (200775, 897) | lgbm_1 | 0.885       | 0.778      | 231.0    |
| 2 | (200775, 897) | xgb_1  | 0.912       | 0.765      | 2728.0   |
| 3 | (200775, 897) | catb_1 | 0.883       | 0.764      | 1580.0   |
| 1 | (200775, 897) | rf_1   | 1.000       | 0.722      | 853.0    |
| 0 | (200775, 897) | Ir_1   | 0.657       | 0.593      | 102.0    |









**Parcours Data Scientist** 

Projet 7: Implémentez un modèle de scoring



### Réduction de dimensions

### Importance des variables

- Combinaison des variables importantes des différents classifieurs
  - Sélection N variables les plus importantes (par classifieur)

```
• N = 300
```

> Option 1: On combine l'ensemble des variables et on supprime les doublons

Option 2: On retient uniquement les variables communes

Nombre de variables: 1200 Nombre de doublons: 748 Nombre de variables uniques: 452

Nombre de variables après suppression des doublons: 452

Nombre de variables total: 897 Nombre de variables communes: 300 Nombre de variables communes: 191 Nombre de variables communes: 160 Nombre de variables communes: 150

#### Recursive Feature Elimination

- Basé sur l'apprentissage d'un classifieur
- Réduction du dataset aux variables importantes

```
Nombre de variables initial: 897
step (1): 100
n_features_to_select (1): 600
Nombre de variables restantes après l'étape 1: 600
step (2): 50
n_features_to_select (2): 300
Nombre de variables restantes après l'étape 2: 350
```





### Réduction de dimensions

### Jeux de données

- Entraînement
  - (246008, 350)
- Test avec étiquettes
  - (61503, 350)
- Test sans étiquette
  - (48744, 350)

### Entraînement LightGBM

|   | Features dim  | Model   | Train score | Test score | Run time |
|---|---------------|---------|-------------|------------|----------|
| 2 | (271398, 350) | lgbm_1b | 0.936       | 0.833      | 194.0    |
| 1 | (271398, 897) | lgbm_1  | 0.936       | 0.833      | 354.0    |
| 0 | (271398, 897) | Ir_1    | 0.631       | 0.619      | 143.0    |





### Optimisation



## Optimisation des paramètres

#### Méthodes

- Aléatoire / Grilles
  - > Temps de traitement long
- Inférence bayésienne
  - Prise en compte des résultats des itérations précédentes
  - > Plus performante et plus rapide
  - Implémentation Hyperopt



- > Choix de la mesure d'évaluation
  - Standard (AUC)
  - Custom (métier)

### Domain space

### Fonction objective

#### Fonction de substitution

Optimisation d'un modèle de probabilité

Sélection des prochaines valeurs à tester (principe "bayésien" )

| Résultats |
|-----------|
|-----------|

|   | loss   | threshold | n_estimator | class_weight | iteration | train_time |
|---|--------|-----------|-------------|--------------|-----------|------------|
| 0 | 0.1763 | 0.200     | 400         | None         | 13        | 625.0      |
| 1 | 0.1788 | 0.225     | 800         | None         | 3         | 336.0      |
| 2 | 0.1874 | 0.100     | 800         | None         | 5         | 1020.0     |
| 3 | 0.1874 | 0.300     | 400         | None         | 8         | 340.0      |
| 4 | 0.1921 | 0.250     | 800         | balanced     | 19        | 565.0      |
|   |        |           |             |              |           |            |



### Optimisation



## Optimisation des paramètres







## Optimisation des paramètres



### Optimisation



### Optimisation des paramètres

### Hyperopt

- Optimisation
  - AUC
  - F1-Score
  - Gain normalisé
- Résultats
  - Meilleurs paramètres

results\_auc\_score = optim(r\_, roc\_auc\_score, 1)
results\_hyperopt(results\_auc\_score).head()

|   | loss   | threshold | n_estimator | class_weight | iteration | train_time |
|---|--------|-----------|-------------|--------------|-----------|------------|
| 0 | 0.1763 | 0.200     | 400         | None         | 13        | 625.0      |
| 1 | 0.1788 | 0.225     | 800         | None         | 3         | 336.0      |
| 2 | 0.1874 | 0.100     | 800         | None         | 5         | 1020.0     |
| 3 | 0.1874 | 0.300     | 400         | None         | 8         | 340.0      |
| 4 | 0.1921 | 0.250     | 800         | balanced     | 19        | 565.0      |

results\_f1\_score = optim(r\_, f1\_score, 1)
results\_hyperopt(results\_f1\_score).head()

|   | loss   | threshold | n_estimator | class_weight | iteration | train_time |
|---|--------|-----------|-------------|--------------|-----------|------------|
| 0 | 0.2699 | 0.450     | 400         | None         | 18        | 541.0      |
| 1 | 0.2843 | 0.825     | 400         | None         | 3         | 391.0      |
| 2 | 0.2920 | 0.850     | 200         | None         | 7         | 328.0      |
| 3 | 0.3015 | 0.550     | 800         | balanced     | 4         | 1089.0     |
| 4 | 0.3166 | 0.525     | 600         | balanced     | 1         | 594.0      |

results\_g\_norm = optim(r\_, g\_norm\_, 1)
results hyperopt(results g norm).head()

|   | loss   | threshold | n_estimator | class_weight | iteration | train_time |
|---|--------|-----------|-------------|--------------|-----------|------------|
| 0 | 0.1919 | 0.425     | 600         | balanced     | 20        | 990.0      |
| 1 | 0.1939 | 0.275     | 600         | balanced     | 13        | 336.0      |
| 2 | 0.2021 | 0.175     | 600         | None         | 14        | 360.0      |
| 3 | 0.2080 | 0.075     | 400         | balanced     | 10        | 490.0      |
| 4 | 0.2163 | 0.500     | 400         | halanced     | 5         | 518.0      |





## Optimisation des paramètres

### Hyperopt

- Entraînement LightGBM
  - AUC (lgbm\_2)
  - F1-Score (lgbm\_2b)
  - Gain normalisé (lgbm\_3)
- Résultats
  - Meilleurs scores

|   | Features dim  | Model   | Train score | Test score | Run time |                 |
|---|---------------|---------|-------------|------------|----------|-----------------|
| 8 | (271398, 350) | lgbm_3  | 0.961       | 0.837      | 1173.0   | Gain            |
| 7 | (271398, 350) | lgbm_2b | 0.947       | 0.836      | 574.0    | F1-Score        |
| 6 | (271398, 350) | lgbm_2  | 0.959       | 0.836      | 658.0    | AUC             |
| 2 | (271398, 897) | xgb_1   | 0.955       | 0.834      | 3934.0   | Défaut          |
| 5 | (271398, 350) | lgbm_1b | 0.936       | 0.833      | 194.0    | Défaut (350 var |
| 4 | (271398, 897) | lgbm_1  | 0.936       | 0.833      | 354.0    | Défaut (897 var |
| 3 | (271398, 897) | catb_1  | 0.942       | 0.831      | 2499.0   | Défaut          |
| 1 | (271398, 897) | rf_1    | 1.000       | 0.790      | 971.0    | Défaut          |
| 0 | (271398, 897) | lr_1    | 0.631       | 0.619      | 143.0    | Défaut          |
|   |               |         |             |            |          |                 |





## Optimisation



# Optimisation des paramètres

### Hyperopt

• Entraînement LightGBM

Résultats

• Seuil optimal

• Matrice de confusion







### **Evolution des indicateurs**

Gain normalisé



Evolution du gain en fonction du seuil (données d'entrainement)



Mesures ROC







Parcours Data Scientist

Projet 7: Implémentez un modèle de scoring



### Importance des variables

### Méthode utilisée pour la réduction de dimension avec RFE

- Sélection récursive des variables
  - Score par lot

|   | Variable                   | Importance |
|---|----------------------------|------------|
| 0 | CNT_CHILDREN               | 1          |
| 1 | AMT_INCOME_TOTAL           | 1          |
| 2 | AMT_CREDIT                 | 1          |
| 3 | AMT_ANNUITY                | 1          |
| 4 | REGION_POPULATION_RELATIVE | 1          |

| Importance | Variable                                                    |     |
|------------|-------------------------------------------------------------|-----|
| 2          | bureau_AMT_CREDIT_SUM_LIMIT_mean                            | 276 |
| 2          | ORGANIZATION_TYPE_Police                                    | 166 |
| 2          | FONDKAPREMONT_MODE_regoperaccount                           | 191 |
|            |                                                             |     |
| 6          | ${\it client\_bureau\_balance\_MONTHS\_BALANCE\_max\_mean}$ | 300 |
| 6          | ORGANIZATION_TYPE_Culture                                   | 140 |

### Variables importantes d'un modèle

- Identification des variables importantes
  - Score par variable





## 7 Interprétabilité



## Interprétabilité locale

#### LIME

- Local Interpretable Model-Agnostic Explanations
  - Génère des individus proches
  - Prédiction
  - Modèle linéaire local
  - > Facile à interpréter







#### SHAP

- Shapley Additive exPlanations
  - Calcul de la valeur de Shapley pour toutes les variables
    - Moyenne de l'impact d'une variable sur toutes les combinaisons de variables possibles
  - > La somme des effets de chaque variable explique la prédiction



## 7 Interprétabilité



### Interprétabilité locale

LIME

Dossier de crédit = 124856 Prédiction proba pour l'individu sélectionné: 0.1232 Prédiction binaire pour l'individu sélectionné: 0 Valeur réelle pour l'individu sélectionné: 0





Parcours Data Scientist

Projet 7: Implémentez un modèle de scoring



## Interprétabilité SHAP (locale)







# Interprétabilité SHAP (globale)







## Développement d'une application web

### **Technologies**

- Dash (Flask)
  - Langage Python
  - Interface web
- Heroku
  - Déploiement

### **Fonctionnalités**

- Scoring
  - Prédiction automatique de la classe d'un dossier
- Interprétabilité
  - Globale: variables importantes
  - Locale: SHAP
- Analyse
  - Simulations
  - Comparaison de dossiers







## Architecture et déploiement

### Modélisation

- Analyse
  - P7\_01\_analyse.ipynb
- Machine Learning
  - P7 02 scoring.ipynb

### **Application**

- Traitement spécifique
  - P7 03 dashboard.ipynb
    - Traitement des données
    - Fonction globale
- **Application Dash** 
  - P7 03 dashboard.ipynb
    - Application Dash (instanciation)
    - Dash layout (présentation)
    - Dash callbacks (interactivité)



https://github.com/leerik/OC DS P7



**Parcours Data Scientist** 

Projet 7: Implémentez un modèle de scoring





#### Dossier de crédit





#### Score

Le score du dossier est la probabilité que le crédit ne soit pas remboursé.



Le score du dossier en cours est situé entre le meilleur score (plus petit) et le moins bon score (plus grand).

#### Indicateurs

| AUC      | 0.837 | Sensibilité | 0.72 |
|----------|-------|-------------|------|
| Gain     | 0.756 | Spécificité | 0.79 |
| F-Mesure | 0.35  | Précision   | 0.23 |



### Précision Gain Sensibilité Spécificité SEUIL OPTIMAL Réel N Réel P 44763 1405

3577

#### Simulation seuil



Seuil sélectionné: 0.3126

#### Analyse statistique

Le seuil de classification permet de classer un dossier selon son score. Si le score est supérieur au seuil, le dossier présente des risques.

On peut modifier le statut du dossier en faisant varier le seuil et observer les conséquences sur d'autres indicateurs avec les simulations de seuil et de gain.

| lé | el | N |   | F | ιé | el | P |
|----|----|---|---|---|----|----|---|
| 1  | 89 | 5 | ı |   | 24 | 44 |   |
| 34 | 62 | 6 |   |   | 47 | 3  | В |

11758

|   | Réel N | Réel P |
|---|--------|--------|
| N | 55137  | 3604   |
| Р | 1384   | 1378   |

#### Simulation gain



Gain sélectionné: 0.65









# Analyse statistique

Le seuil de classification permet de classer un dossier selon son score. Si le score est supérieur au seuil, le dossier présente des risques.

On peut modifier le statut du dossier en faisant varier le seuil et observer les conséquences sur d'autres indicateurs avec les simulations de seuil et de gain.











## Interprétabilité

#### Variables

Dossier courant: 441310

Les informations des dossiers "courant" et de "référence" sont affichées avec leur taux de variation et leur importance normalisée (0 à 100).

Dossier de référence:

| \$ Variable                                      | ‡Courant | \$Référence | \$Variation | <pre> ‡ Importance</pre> |
|--------------------------------------------------|----------|-------------|-------------|--------------------------|
| filter data                                      |          |             |             |                          |
| EXT_SOURCE_3                                     | 0.11     | 0.492       | 78          | 100                      |
| EXT_SOURCE_1                                     | 0.809    | 0.733       | 9           | 85                       |
| EXT_SOURCE_2                                     | 0.096    | 0.815       | 88          | 79                       |
| DAYS_BIRTH                                       | -17987   | -19950      | 10          | 53                       |
| AMT_CREDIT                                       | 790830   | 888840      | 11          | 46                       |
| AMT_ANNUITY                                      | 52978.5  | 29016       | 45          | 39                       |
| DAYS_EMPLOYED                                    | -4407    | -5639       | 22          | 31                       |
| client_installments_payments_AMT_PAYMENT_min_min | 2896.83  | 6299.865    | 54          | 22                       |
| DAYS_ID_PUBLISH                                  | -1477    | -3383       | 56          | 22                       |
| bureau_DAYS_CREDIT_ENDDATE_max                   | 30962    | 1391        | 96          | 17                       |

#### Analyse métier

O Score O Variables

Le dossier "courant" est comparé avec des dossiers similaires, sur la base du score ou des variables.

Degré de similarité

| Importance | éf. 4 ‡ | ÷ | Réf. 3  | 2 = | Réf.    | ÷ | Réf. 1  | 0 | Courant | Variable     |
|------------|---------|---|---------|-----|---------|---|---------|---|---------|--------------|
|            |         |   |         |     |         |   |         |   |         | filter data  |
|            | 4446_   |   | 325159_ | 5_  | 309395  |   | 211109_ |   | 441310_ | SK_ID_CURR   |
|            | 05858   |   | 0.67975 | 58  | 0.4576  | 2 | 0.38292 |   | 0.31258 | _P           |
|            | 0       |   | 1       | 1   |         | L | 1       |   | 0       | _Pred        |
|            | 0       |   | 1       | 0   |         | 9 | 0       |   | 0       | _True        |
| 100        | 0.492   |   | 0.303   | 43  | 0.24    |   | 0.361   |   | 0.11    | EXT_SOURCE_3 |
| 85         | 0.733   |   | 0.373   | 93  | 0.39    | 5 | 0.436   |   | 0.809   | EXT_SOURCE_1 |
| 79         | 0.815   |   | 0.419   | 32  | 0.20    | 1 | 0.554   |   | 0.096   | EXT_SOURCE_2 |
| 53         | 19950   |   | -18285  | 50  | -1605   | 3 | -11583  |   | -17987  | DAYS_BIRTH   |
| 46         | 88840   |   | 832977  | .5  | 852088. | 9 | 746280  |   | 790830  | AMT_CREDIT   |
| 39         | 29016   |   | 42660   | 21  | 3392    | 5 | 58963.5 |   | 52978.5 | AMT ANNUITY  |

434446 × \*





## Interprétabilité

#### Interprétation par dossier



Mise à jour: Sun Sep 20 22:23:18 2020

Connexion: 2020-09-20 22:06:01.809209



## Dashboard Optimisé





#### Dossier de crédit



Test O Subm

#### Score

Le score du dossier est la probabilité que le crédit ne soit pas remboursé.



Le score du dossier en cours est situé entre le meilleur score (plus petit) et le moins bon score (plus grand).

| AUC      | 0.837 | Sensibilité | 0.72 |
|----------|-------|-------------|------|
| Gain     | 0.756 | Spécificité | 0.79 |
| F-Mesure | 0.35  | Précision   | 0.23 |



#### Indicateurs



#### Simulation seuil



Seuil sélectionné: 0.3126

#### Analyse statistique

Le seuil de classification permet de classer un dossier selon son score. Si le score est supérieur au seuil, le dossier présente des risques.

On peut modifier le statut du dossier en faisant varier le seuil et observer les conséquences sur d'autres indicateurs avec les simulations de seuil et de gain.

|   | Réel N | Réel P |
|---|--------|--------|
| N | 21895  | 244    |
| Р | 34626  | 4738   |

|   | Réel N | Réel P |
|---|--------|--------|
| N | 55137  | 3604   |
| Р | 1384   | 1378   |

#### Simulation gain



Gain sélectionné: 0.65

### Dashboard V1





#### Dossier de crédit

244476



Test O Subm



#### Score

Le score du dossier est la probabilité que le crédit ne soit pas remboursé.



Le score du dossier en cours est situé entre le meilleur score (plus petit) et le moins bon score (plus grand).

| AUC      | 0.786 | Sensibilité | 0.68 |
|----------|-------|-------------|------|
| Gain     | 0.711 | Spécificité | 0.75 |
| F-Mesure | 0.3   | Précision   | 0.19 |



#### Indicateurs

| AUC     | 0.786 | Sensibilité | 0.68 |
|---------|-------|-------------|------|
| 3ain    | 0.711 | Spécificité | 0.75 |
| -Mesure | 0.3   | Précision   | 0.19 |
|         |       |             |      |



#### Simulation seuil



Seuil sélectionné: 0.0902

#### Analyse statistique

Le seuil de classification permet de classer un dossier selon son score. Si le score est supérieur au seuil, le dossier présente des risques.

On peut modifier le statut du dossier en faisant varier le seuil et observer les conséquences sur d'autres indicateurs avec les simulations de seuil et de gain.

| Réel P | Réel N |   |
|--------|--------|---|
| 497    | 24599  | N |
| 4485   | 31922  | Р |

Précision

SEUIL OPTIMAL

00000000 V004W04

Réel P

1586

3396

Spécificité

Gain

Sensibilité

Réel N

42116

14405

|   | Réel N | Réel P |
|---|--------|--------|
| N | 53041  | 3335   |
| Р | 3480   | 1647   |

#### Simulation gain



Gain sélectionné: 0.65

# 8 Dashboard Optimisé vs V1





### Conclusion







#### Machine Learning



#### Validation





Optimisation



Analyse



### Optimisation

- Technique
  - Paramètres des modèles
  - Similarité des dossiers
- Métier (traitement des données)

### Application

- Analyse des besoins métier
  - Fonction de coût
- Analyse fonctionnelle

### Interprétabilité

- ➤ SHAP (Global + Local)
- Déploiement web?
- Explorer d'autres solutions