Exercise: DFA

 $L = \{a^nb^n : 0 \le n \le 4\}$ verilmiş olsun:

L dilinin düzenli olduğunu ispatlayınız.

İspat-1

• Bir FA tasarlanabilirse RL'dir

İspat-2: Bir RE yazılabilirse RL'dir.

(e ∪ ab ∪ aabb ∪aaabbb ∪aaaabbbb)

PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2021 BAHAR

Biçimsel Diller ve Otomata Teorisi Formal languages and automata theory

NFA- Nondeterministic Finite Automata

- Aynı giriş bilgisi ve aynı durum için birden fazla sonraki durum olabilir.
- Bu durumlardan herhangi birine geçebilir, bu yüzden nondeterministic olarak adlandırılır.
- Bilgisayarların gerçek modellenmesinde kullanılmazlar, somut bir makine karşılığı yoktur.
- Automata problem tanımlamasını basitleştirmek için kullanılır.
- Her NFA'nın DFA karşılığı vardır.

 $L = (ab \cup aba)^*$ dilini tanıyan **deterministic automaton**

• Her node'dan a ve b olmak üzere iki çıkış vardır.

Aynı dil $L = (ab \cup aba)^*$, aşağıdaki nondeterministic automata tarafından tanımlanabilir.

Bir string başlangıç durumundan bir sonuç durumuna herhagi bir şekilde geçişi sağlayabiliyorsa kabul edilir.

 Nondeterministic automaton tarafından e string (okuma yapmadan durum değişikliği) için de geçiş tanımlanabilir.

Definition:

Bir NFA quintuple olarak tanımlanır. $M = (K, \sum, \Delta, s, F)$

K sonlu sayıda durumlar kümesi

 \sum alfabe

 \triangle transition relation (fonksiyon değil) $K \times (\sum \bigcup \{e\}) \rightarrow K$

 $s \in K$ başlangıç durumu (sadece bir tane)

 $F \subseteq K final state(s) kümesi$

• Her $(q, u, p) \subseteq \Delta$ üçlüsü M'in geçişi olarak adlandırılır.

• M'nin configuration' $1 K x \sum^* 'dir. (q, w) \mid_{M} (q', w')$ geçişi için

$$w = uw', u \in I \cup \{e\}$$
 ve $(q, u, q') \in L \text{ olmak}$

zorundadır.

- \vdash_{M} bir fonksiyon değildir çünkü bir (q, w) konfigürasyonu için çok sayıda (q', w') konfigürasyonu olabilir.
- Bir string $w \in \Sigma^*$ kabul edilir, eğer sadece ve sadece $(s, w) \models_{\mathrm{M}}^* (q, e)$ ve $q \in F$ ise
- Sonuç olarak bir M otomatı tarafından tanınan dil L(M) şeklinde gösterilir ve tüm

kabul edilen string'ler kümesidir.

Örnek:

M bir NFA ve $M = (K, \sum, \Delta, s, F)$ şeklinde tanımlanmıştır ve içerisinde bb veya bab substring'i bulunduran stringleri tanır.

Örnek:

M bir NFA ve $M = (K, \sum, \Delta, s, F)$ şeklinde tanımlanmıştır ve içerisinde bb veya bab substring'i bulunduran stringleri tanır.

$$K = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\sum = \{a, b\}$$

$$\Delta = \{(q_0, a, q_0), (q_0, b, q_0), (q_0, b, q_1), (q_1, b, q_2), (q_1, a, q_3), (q_2, e, q_4), (q_3, b, q_4), (q_4, e, q_4), (q_4, e, q_4), (q_5, e, q_4), (q_5, e, q_4), (q_5, e, q_4), (q_5, e, q_4), (q_6, e, q_5), (q_6, e, q_5), (q_6, e, q_5), (q_6, e, q_5), (q_6, e, q_5), (q_6, e, q_5), (q_6, e, q_5),$$

$$a, q_4), (q_4, b, q_4) \}$$

$$s = q_0$$

$$F = \{q_4\}$$

Örnek:(Devam) bababab string'ini tanırmı?

 q_3

Örnek:

M bir NFA ve $M = (K, \Sigma, \Delta, s, F)$ şeklinde tanımlanmıştır. M otomatı

 $L(M) = \{w \in \sum * : w \text{ string 'i alfabedeki en az bir elemanı bulundurmaz} \}$ dilini tanır.

$$K = \{s, q_1, q_2, q_3\}$$

$$\sum = \{a_1, a_2, a_3\},\$$

$$F = \{q_1, q_2, q_3\}$$

 (s, e, q_i) initial transitions

 (q_i, a_j, q_i) main transitions $i \neq j$

$$e, a_1, a_2, a_1a_1a_3a_1 \in L$$

$$a_3a_1a_3a_1a_2 \notin L$$

- Deterministic automata'da δ transition $Kx \sum \rightarrow K$ 'ya bir fonksiyondur.
- Deterministic automata'da $(q, e, p) \notin \delta$ 'dır.
- Deterministic automata'da her $q \in K$ ve $a \in \Sigma$ için sadece bir tane $p \in K$ vardır ve $(q, a, p) \in \delta$ 'dır.
- Bir nondeterministic automata'nın kendisine eşit bir deterministic karşılığı her zaman bulunabilir (NFA to DFA conversion).
- \blacksquare iki automata M_1 ve M_2 eşittir sadece ve sadece

$$L(M_1) = L(M_2)$$
 ise

Örnek:

Aşağıdaki nondeterministic finite automaton hangi stringleri kabul eder.

b

bab

e

aa

abab

ab(aba)*

abaab

abaaa

abb

Örnek:

 $((ab)^*(ba)^*)$ U aa^* dilini tanıyan nondeterministic automata'nın state diagram'ını çiziniz.

Hangi girişler için hata oluşur?

Exercise

Aşağıdaki NFA için 1011 girişi kabul edilir mi?

reachable states

- e {q0}
- 1:{q1}
- 10: {q0, q2}
- 101 : {q0, q1}
- 1011: {q0, q1}

Exercise

Aşağıdaki dili kabul eden NFA için durum diyagramını çiziniz.

(10)*1*01*0

(10)*1*01*0

Exercise

L = {w ∈ {a, b} * | en az bir a sembolü w katarının herhangi bir i. konumunda oluşur ve bir b de i + 2. pozisyonunda oluşur}.

Exercise

• aa* (a U b) RE tanıyan NFA çiziniz.

Ödev

■ Problemleri çözünüz 2.2.1, 2.2.2, 2.2.3, 2.2.6(a) (sayfa 73-63)