Read Dataset

Out[1]:

	Species	Weight	Vertical	Diameter	Cross	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340
5	Bream	450.0	26.8	29.7	34.7	13.6024	4.9274
6	Bream	500.0	26.8	29.7	34.5	14.1795	5.2785
7	Bream	390.0	27.6	30.0	35.0	12.6700	4.6900
8	Bream	450.0	27.6	30.0	35.1	14.0049	4.8438
9	Bream	500.0	28.5	30.7	36.2	14.2266	4.9594

Exploratory Data Analysis

Dataset Briefing

```
Fishe.info()
In [2]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 159 entries, 0 to 158
        Data columns (total 7 columns):
            Column
                     Non-Null Count Dtype
                                      object
            Species
                      159 non-null
             Weight
                      159 non-null
                                      float64
            Vertical 159 non-null
                                      float64
            Diameter
                                      float64
                      159 non-null
                      159 non-null
                                      float64
            Cross
                                      float64
            Height
                      159 non-null
             Width
                                      float64
                      159 non-null
        dtypes: float64(6), object(1)
        memory usage: 8.8+ KB
```

Correlations Between Variables

Out[3]: <AxesSubplot: >

Values Distribution

Weigth Distribution

Vertical Length Distribution

Diameter Length Distribution

Linear Regression Model

Data Preprocessing

Model Creation

```
In [11]: from sklearn.linear_model import LinearRegression
Regression = LinearRegression()
MyModel = Regression.fit(X_train,y_train)
print("Intercept:", MyModel.intercept_)
print("Slope:", MyModel.coef_)

Intercept: -473.8812237761917
Slope: [-75.31413532 89.34449281 9.90734155]
```


Prediction and Evaluation from Model

```
In [12]: # Model Evaluation
    from sklearn.metrics import mean_squared_error, r2_score
    y_pred = MyModel.predict(X_test)
    print("R^2:", r2_score(y_test, y_pred))
```

R^2: 0.8865103929899906

Model Visualization

```
In [16]: # Model Visuals (Vertical)
import matplotlib.pyplot as matplot
matplot.scatter(X_test["Vertical"], y_test, color = "blue")
matplot.scatter(X_test["Vertical"], y_pred, color = "red")
matplot.xlabel("Vertical Length")
matplot.ylabel("Weight")
matplot.title("Predicted Vertical Length")
```

Out[16]: Text(0.5, 1.0, 'Predicted Vertical Length')

Insert

Cell

Kernel