Notes from Homework 4

Subset - \subseteq - vs. Element - \in

- $\{1\} \subseteq \{1, 2, 3, 4\}$
- $\{1\} \nsubseteq \{\{1\}, 2, 3, 4\}$

For \subseteq , peel away a layer of the brackets on the left, and compare the two.

- $\{1\} \notin \{1, 2, 3, 4\}$
- $\{1\} \in \{\{1\}, 2, 3, 4\}$
- $1 \in \{1, 2, 3, 4\}$

For \in , leave the brackets (if there are any brackets), and compare the two.

Remember that \emptyset is a subset of every set.

Also remember that every set is a subset of itself, even \emptyset .

So, the power set, the set of all subsets, of \emptyset is the singleton set $\{\emptyset\}$

Why? The only subset of \emptyset is \emptyset . The set containing \emptyset is then $\{\emptyset\}$.

The power set of $\{\emptyset\}$ would then be $\{\emptyset, \{\emptyset\}\}$

Quiz 5

1. Prove that $(q \longrightarrow (q \lor r)) \land p \land (p \longrightarrow q) \Longrightarrow q \lor r$ using the logical implication method.

Note that:

 $\begin{array}{l} \mathbf{A} \\ A \longrightarrow B \\ \therefore \mathbf{B} \end{array}$

by modus ponens

- 1) p (premise)
- 2) $(p \longrightarrow q)$ (premise)
- 3) q (modus ponens using 1 and 2)

Note that at this point, you're done, since we've proved that the RHS is true. But, continuing on anyway:

- 4) $(q \longrightarrow (q \lor r))$ (premise)
- 5) $q \vee r$ (modus ponens using 3 and 4)

2. Let A = N, the set of natural numbers = $\{0,1,2,3,...\}$ Let B = Z, the set of integers = $\{...,-2,-1,0,1,2,...\}$ Find

- a) $A \cup B = B$
- b) $A \cap B = A$
- c) $B A = \{..., -2, -1\}$

Homework 5

2. Determine whether f is a function from \mathbf{Z} to \mathbf{R} if

A function from set A to set B is an assignment of exactly one element from B to each element of A.

A is the domain, and B is the codomain.

a)
$$f(n) = + - n$$
.

This is not a function since a single input will give two resulting values. Does f(3) = 3 or -3?

b)
$$f(n) = \sqrt{n^2 + 1}$$
.

For all integers n, f(n) gives a single, well-defined real value. So yes, its a function, and it does map \mathbf{Z} to \mathbf{R} .

c)
$$f(n) = 1/(n^2 - 4)$$
.

This is a function, but not with domain **Z**. It's undefined for n=2 and n=-2. So, no.

14. Determine whether $f: \mathbf{Z} \times \mathbf{Z} \longrightarrow \mathbf{Z}$ is onto if

For an onto function, the range and the codomain are the same - the function must map to all possible values in the codomain set.

Since the codomain is the set of integers \mathbf{Z}), an onto function f(m,n) must result in each and every integer. If there's a single integer that cannot result, the function is not onto.

a)
$$f(m,n) = 2m - n$$
.

f(0,-n)=n for all integers n. So, it's onto.

b)
$$f(m,n) = m^2 - n^2$$
.

Not onto, since 2, for example, is not in the range.

c)
$$f(m,n) = m + n + 1$$
.

f(0, n-1) = n for all integers n. So, it's onto.

d)
$$f(m,n) = |m| - |n|$$
.

For all integers n, $f(0,n) = -\mathbf{Z}$ and for all integers m, $f(m,0) = +\mathbf{Z}$. So, it's onto.

e)
$$f(m,n) = m^2 - 4$$
.

Not onto, since the range of f is a subset of \mathbf{Z} .

- 16. Given an example of a function from ${\bf N}$ to ${\bf N}$ that is
- a) one-to-one but not onto.

This function must map each natural number to a separate natural number (one-to-one),

but cannot map to every natural number (not onto).

$$f(n) = n + 1 \text{ (no 0)}.$$

b) onto but not one-to-one.

This function must map to all natural numbers (onto),

but the same natural number must result from at least two different input values (not one-to-one).

$$f(n) = \lceil n/2 \rceil$$
.

c) both onto and one-to-one (don't use f(n) = n).

If n is even, f(n) = n + 1. If n is odd, f(n) = n - 1.

d) neither one-to-one nor onto.

$$f(n) = 17$$

28. Find $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 1$ and g(x) = x + 2 are functions from **R** to **R**.

$$(fog)(x) = f(g(x)) = f(x+2)$$

$$f(x+2) = (x+2)^2 + 1 = x^2 + 4x + 5$$

$$(gof)(x) = g(f(x)) = g(x^2)$$

$$g(x^2) = (x^2 + 1) + 2 = x^2 + 3$$

Note that for these two functions, $fog \neq gof$.

30. Let f(x) = ax + b and g(x) = cx + d where a, b, c, and d are constants. Determine for which constants a, b, c, and d it is true that $f \circ g = g \circ f$.

$$f(g(x)) = f(cx + d) = a(cx + d) + b = acx + ad + b$$

$$q(f(x) = q(ax + b) = c(ax + b) + d = acx + cb + d$$

$$f \circ g = g \circ f \text{ if } ad + b = cb + d.$$

Equality holds for all combinations of (a,b,c,d) where ad + b = cb + d.

34. Let f be the function from **R** to **R** defined by $f(x) = x^2$. Find

a)
$$f^{-1}(\{1\})$$
.

What is the set of real number(s) that, when squared, equal 1? $\{-1,1\}.$

b)
$$f^{-1}(\{x|0 < x < 1\})$$
.

What is the set of real number(s) that, when squared, are between 0 and 1? Anything between -1 and 1, besides 0.

$$\{x|-1 < x < 0 \lor 0 < x < 1\}$$

c)
$$f^{-1}(\{x|x>4\})$$
.

What is the set of real number(s) that, when squared, are greater than 4? Anything larger than 2 or smaller than -2.

$$\{x|x > 2 \lor x < -2\}.$$

42. $x \in \mathbf{R}$ $m \in \mathbf{Z}$. Show that $\lceil x + m \rceil = \lceil x \rceil + m$.

Directly:

1) As a real number, x can be deconstructed as

 $x = n - \varepsilon$ where

n is an integer and

 $0 \leq \varepsilon < 1.$

- 2) The result of $\lceil x \rceil$ will be n.
- 3) Then $\lceil x + m \rceil = \lceil n \varepsilon + m \rceil = n + m$.
- 4) By 2, this equals $\lceil x \rceil + m$.

Or you could simply reference property (4b) in Table 1 on page 107.

66. Prove or disprove each of these statements about the floor and ceiling functions.

a)
$$\lfloor \lceil x \rceil \rfloor = \lceil x \rceil$$
 for all real numbers x .

[x] is an integer, so this is true.

b)
$$\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$$
 for all real numbers x and y .

Disproved by counterexample: x = y = 3/4.

$$1 \neq 0$$

c)
$$\lceil \lceil x/2 \rceil/2 \rceil = \lceil x/4 \rceil$$
 for all real numbers x .

This is true.

Direct proof by parts:

Let x be defined as 4n + k where n is an integer and $0 \le k < 4$.

Why? Since we divide by four on the right side, we'll define x in terms of its "multiple of fourness". So if k = 0, x is a multiple of 4.

The first part: If k = 0, both sides equal n.

The second part: If $0 < k \le 2$.

 $\lceil x/2 \rceil = 2n+1$, so the LHS is $\lceil n+1/2 \rceil = n+1$. And the RHS is n+1 as well.

The third part: If 2 < k < 4.

 $\lceil x/2 \rceil = 2n+2$, so the LHS is $\lceil n+1 \rceil = n+1$. And the RHS is n+1 as well.

Proved for all cases.

d) $\lfloor \sqrt{\lceil x \rceil} \rfloor = \lfloor \sqrt{x} \rfloor$ for all real numbers x.

Disproved by counterexample: x = 8.5

 $3 \neq 2$

e) $\lfloor x \rfloor + \lfloor y \rfloor + \lfloor x + y \rfloor \le \lfloor 2x \rfloor + \lfloor 2y \rfloor$ for all real numbers x and y.

This is true.

Write $x = n + \epsilon$ and $y = m + \delta$, where n and m are integers, and ϵ and δ are nonnegative real numbers less than 1.

Possibilities for the LHS:

$$n + m + (n + m) = 2n + 2m$$

or

$$n + m + (n + m + 1) = 2n + 2m + 1$$
 if $\epsilon + \delta \ge 1$

Possibilities for the RHS:

 $\lceil 2x \rceil$ becomes 2n if $\epsilon < 1/2$ or 2n + 1 otherwise.

[2y] becomes 2m if $\delta < 1/2$ or 2m + 1 otherwise.

Now: we are trying to prove that the LHS is always less than or equal to the RHS. Let's construct a proof by contradiction and assume the LHS is greater than the RHS.

So the LHS must be 2n + 2m + 1 and the RHS must be 2n + 2m.

But then $\epsilon + \delta \ge 1$, so at least one of them must be equal to or greater than 1/2.

So the RHS cannot equal 2n + 2m.

Yay!