一、设备部署工具使用手册

1.1 环境准备

- 软件要求: PyCharm, MySQL
- Python 需安装相关工具包(如 pandas, dxfgrabber)
- 需先在 MySQL 中创建数据库(不需创建表),创建完毕后在ApDeployment/ApDeploymentByScp/ApDeploymentByScp/settings.py中对数据库连接进行配置,包括 NAME(库名), USER(用户名), PASSWORD(密码)等.

```
## Second Reserve Sec
```

• 在 pycharm 的 terminal 中创建数据库表:分别执行如下命令(注意:该操作是我首次创建数据库表时候的操作,不确保转移到另一台设备后也按此方式执行,如果报错可先尝试按报错内容自行百度解决方法)

```
python3 manage.py makemigrations
python3 manage.py migrate
```

1.2 使用方式

1.2.1 启动工具

• Step1. 使用 PyCharm 打开项目,在 terminal 中输入 python manage.py runserver 即可启动项目

• Step2. 在浏览器中输入网址 http://127.0.0.1:8000/users/login/ 进入工具的登录页面

1.2.2 设计设备部署方案

Step1. 登录账号,输入用户名和密码(若无账号,先注册)
 注意:每次登录有效时间为1小时,连续登录1小时后需要重新登录

• **Step2.** 设置 CAD 文件参数:点击左侧导航栏中的 **CAD 设置**(登录页面进去时会自动跳转到该页面),设置完毕后点击页面底部的"设置"按钮。

注意:每次的 CAD 设置有效时间为 1 小时,超过 1 小时需要重新设置

参数说明

∠)//.	A 33	УИ нП
_参数	含义	说明
选择实例	设置当前实例为	内置了 15 个实例, 当选中内置实例时, 会自
	内置/自定义	动设置好所有参数,不用手动设置; 当上传
		新实例时,选择"自定义",此时需要手动设
		置 参数详情 板块中的所有参数
マルキュサ田	CAD 总版出址法	
X坐标范围	CAD 实例中待读	需事先在 CAD 软件中确认坐标轴范围,以免
	取区域的 X 坐标	读取到不想读取的内容(如图例等)
	的下限和上限	
Y坐标范围	CAD 实例中待读	
	取区域的 Y 坐标	
	的下限和上限	
图层关键	要读取的 墙壁	该参数指定需要读取的图层名,由于每个
字	图层/玻璃图层/	CAD 图对图层的命名规范不统一,需事先在
	木门图层/其他	CAD 软件中确认要读取的图层(并按图层名
	图层 的图层名	大致分为墙、窗、门和其他四种类型),将图
	列表, 以英文逗	层名填入对应的文本框中
	号隔开	
是否连接	0 为不连接(默	该参数为对特殊图做特殊处理, 一般不会使
零碎障碍	认),1为连接	用到,大部分情况默认为0即可,实例1需
物		用到该参数
具体设置可以内置实例的设置为例进行参考		

• **Step3.**设置部署参数:点击左侧导航栏中的**开始部署**,设置参数完毕后点击页面底部的"开始部署"按钮。

注意:设置完 CAD 参数后才可设置部署参数,当部署的是同一个 CAD 图时,对 CAD 参数设置一次即可。

参数说明

参数		含义	说明
文件上	dxf 文	要部署的 CAD 图文件	点击 选择文件 上传文件
传	件	(DXF 格式)	

	文件说 明	文件的相关说明	Eg. 部署测试
部署约	覆盖次	每个位置需要接收到	硬约束(必须满足)
束	数	的信号数量	Eg. 3
	设备间	设备的最小间距	软约束 (尽量满足)
	隔		Eg. 5
信号约	信号传	信号在无障碍物情况	Eg. 30
東	播距离	下的最远传播距离	
	(米)		
	遇障碍	遇墙、玻璃、木材、	Eg. 10 8 5 10
	物后的	其他四种类型的障碍	
	衰减距	物后的衰减距离	
	离(米)		
算 法 约	运行时	算法的运行时间	Eg. 30
束	间(秒)		

• Step4. 得到部署结果页面,点击"保持结果"按钮可保持结果

1.2.3 查询与管理部署历史

Step1. 登录账号(同 1.2.2 中的登录步骤)

Step2. 点击导航栏中的我的部署,可查看对应账号下的部署历史任务。该页面可实现以下功能:

- ✓ **下载文件**:点击 cad 文件名或部署图的文件名即可下载对应文件
- ✓ **查看详细部署信息**:点击表格中的"点击查看部署信息"可查看详细的部署 方案图和部署参数
- ✓ 删除部署历史:表格滑至最右侧,可选择部署历史,点击"删除"进行删除

二、代码阅读手册

2.1 设备部署关键代码调用路径

执行设备部署任务的函数: ApDeployment/ApDeploymentByScp/users/views.py 中的 uploadCad 方法,关键代码路径如下:

- 的 调 用 ApDeployment/ApDeploymentByScp/users/readCad.py 中 saveLinesByTypes 方法。该方法读取上传的 CAD 文件, 生成一份包含障碍物 的 坐 标 和 类 型 的 数 据 文 该 文 件 为 ApDeployment/ApDeploymentByScp/data/linesDataByMaterials.csv
- 通过 ApDeployment/ApDeploymentByScp/users/readCad.py 中的 getInput 方法来调用数据处理过程,产出后续算法所需要的数据文件。数据处理过程的完整代码位于 ApDeployment/ApDeploymentByScp/cppFiles/ProcessData 下,使用 C++ 实 现 。 产 出 的 数 据 文 件 为 ApDeployment/ApDeploymentByScp/data/newtestfile.
- 通过 ApDeployment/ApDeploymentByScp/users/readCad.py 中的 runScp 方法 调用集合覆盖(或 MaxSAT)的局部搜索算法,求解设备部署方案,产出部署结果文件。局部搜索算法的完整代码位于ApDeployment/ApDeploymentByScp/cppFiles/SCP1下。产出的结果文件为ApDeployment/ApDeploymentByScp/data/solution.res,记录了应该放置设备的位置编号。

- 通过 ApDeployment/ApDeploymentByScp/users/readCad.py 中的 getResPoints 方法将上一步得到的位置编号转换为位置坐标,得到部署点的坐标以及设备 放置在部署点时信号能够覆盖到哪些坐标的位置。得到的文件为 ApDeployment/ApDeploymentByScp/data/resPoints
- 通过 ApDeployment/ApDeploymentByScp/users/readCad.py 中的 readScpRes 方 法绘制部署方案图,由上一步中得到的位置文件绘制部署方案图。

2.2 数据处理代码说明

位置: ApDeployment/ApDeploymentByScp/cppFiles/ProcessData

数据处理过程的主要目标是对 cad 中获取到的原始数据进行处理,得到算法所需的输入文件。完成的功能主要包括:确定目标点(需被信号覆盖到的点)和部署点(可以放置设备的点)的坐标、设备放置在每一个部署点上信号可覆盖到哪些目标点(考虑障碍物情况下)。

main 函数接收的参数如下:

参数	含义	说明
data_type	要获取的数据的类型	0: 处理数据并生成算法所需要的数据文件 1: 由局部搜索算法产出的结果文件生成部署方案中设备的放置坐标 2: 手动构造解(一般不使用) 3: 调用正四边形法进行部署(对比方法,一般不使用) 4: 调用正六边形法进行部署(对比方法,一般不使用)
spread_dist	信号在无障碍物情况下 的最远传播距离	对应着在网页设置的部署参数
cover_num	信号覆盖次数	
dist_thre	设备最小间隔	
wall(glass, wood,	信号遇墙、玻璃、木门、	
other)_reduce_dist	其他障碍物的衰减距离	
merge	是否要连接零碎障碍物	
absolute_path	数据保存的路径	-

其余说明见代码注释

2.3 局部搜索算法代码说明

位置: ApDeployment/ApDeploymentByScp/cppFiles/SCP1

设备部署工具中目前调用的是 MaxSAT 的代码,若要使用集合覆盖的代码,需在 ApDeployment/ApDeploymentByScp/users/readCad.py 中的 runScp 方法中调换方法。

MaxSAT 的局部搜索算法对于输入的数据文件,会求解最优的部署位置,并产出部署结果文件。

main 函数接收的参数如下:

参数	含义	
cutofftime	算法运行时间	
filename	约束数据文件地址	
savepath	保存求解结果的地址	

算法的具体逻辑见论文: ApDeployment/ApDeploymentByScp/cppFiles/SCP1/ECNF.pdf