

- Network Congestion
- Congestion Control in FR
- Traffic Management in ATM
- Internet QoS
- Resource Allocation and RSVP
- Differentiated Services

Network Congestion

- Congestion
 - Number of packets transmitted through the network approaches the packet handling capacity of the network
- One or more switches/routers becomes overloaded
 - Generally 80% utilization is critical
- Congestion control
 - Keep number of packets below level at which performance falls off dramatically

Queues at a Switch

 Switch overloads because receiving packets faster than it can forward

- Congestion at switch
 - Bursty traffic / poor topology
 - Packet arrival rate exceeds the outgoing link capacity

- Packet processing rate < packet arriving rate
- Insufficient memory to store arriving packets
- Effects caused at congested switch
 - Discard queued packets to make room for new comings
 - Prevent additional packets from entering the congested port (link-layer flow control)

Network Utilization

Delay and Throughput vs. Network Load

b. Throughput as a function of load

Communication Power

$$Power = \frac{Throughput}{Delay}$$

- Assume all the links have similar capacity, and run in full for both direction
- Then switches 3 and 4 will be in congestion

Mechanisms for Congestion Control

- Choke Packet
- Backpressure
- Warning bit
- Congestion window
- Random early discard
- Traffic shaping

- 抑制分组
- 反压
- 警告位
- 拥塞窗口
- 随机早期丢弃
- 流量整形

- Control packet
 - Generated at congested node
 - Sent to source node
- ICMP source quench
 - From router or destination, sent for every discarded packet

- Hop-by-Hop Choke Packets
 - Propagation time > transmission time (long distance or high speed link)
 - Choke packets from router to source are not effective
 - Require each hop to reduce its transmission

- Special bits set in the packet header by switches
 - Alerts end systems of increasing congestion
 - End systems take steps to reduce offered load

Backwards

- Congestion avoidance in opposite direction to congested packet
- Assume congestion will burst up quickly

Forwards

- Congestion avoidance in same direction as congested packet
- Assume congestion will cumulate slowly

(4) Congestion Window

- Control congestion at hosts
 - Packet timeout as a signal of network congestion
 - Dynamic send window management (as in TCP) to hold the packet sending

- Control congestion at routers (switches)
 - Combined with congestion window at hosts
- Internet (TCP) global synchronization problem
 - Traffic burst fills queues so packets lost, TCP connections enter slow start
 - Traffic drops so network under utilized, connections leave slow start at same time causing burst again
- Handle the problem RED
 - Router randomly discards packets before buffer becomes completely full

The RED Algorithm

Compute average queue length

 $avgLen = (1-\omega) \times avgLen + \omega \times sampleLen$

Calculate average queue size avgLen if $avgLen < TH_{min}$ queue packet

else if $TH_{min} \le \alpha vgLen < TH_{max}$ calculate probability p with probability p discard packet else with probability 1-p queue packet

else if $avg \ge TH_{max}$ discard packet

- Shape the traffic (packet flow) before it enters the network
 - Control the rate at which packets are sent
 - At connection set-up, host and end switch negotiate a traffic pattern (shape)
- Two traffic shaping algorithms
 - Leaky Bucket
 - Token Bucket

- Shape bursty traffic into fixed-rate traffic by averaging the data rate
- May drop the packets if the bucket is full

Leaky Bucket

Do nothing when input is idle

Packet output rate is

fixed

Fixed-rate data

Token Bucket

- Use token to control the output traffic, allowing vary output rate
- Token generation rate is fixed, may drop token (not packet) when bucket full

Token Bucket

Token bucket is more powerful in traffic shaping

3 metrics defined

- Average traffic rate
- Burst traffic rate
- Maximum burst size

Summary

- Mechanisms for Network Congestion Control
 - Choke packet
 - Backpressure
 - Warning bit
 - Congestion window
 - Random early discard
 - Traffic shaping

Appendix

Congestion Control in FR & ATM

Congestion Control in FR

- Explicit signaling use warning bits in packet
 - Backward/Forward explicit congestion notification
- Traffic Rate Management
 - Define Committed information rate (CIR)
 - Congestion avoidance
 - Discard strategy

Committed information Rate

- Average bandwidth (throughput) guaranteed for a virtual circuit
 - Aggregate CIR should not exceed line speed
 - Data in excess of CIR liable to discard, i.e. not guaranteed
- 2 metrics in CIR
 - Committed burst size (B_c in duration T) $CIR = {}^{B_C}/T$
 - Excess burst size (B_e in duration T)
- Discard strategy
 - Data between B_c+B_e are permitted but not guaranteed
 - Data above B_c+B_e are discarded

- ATM Peculiarities
 - Wide range of application demands, from several kbps to hundreds of Mbps
 - Different traffic patterns, from real-time traffic to bursty traffic
 - Different network QOS, from lost sensitive to delay sensitive
 - Real-time traffic not amenable to flow control (not draw back)

Traffic Patterns

Latency/Speed Effects

- ATM transmission rate is 150Mbps
 - Time to insert a cell $53 \times 8/(150 \times 10^6) \approx 2.8 \times 10^{-6} s$
 - Time to traverse network: $\approx 50 \times 10^{-3}$ seconds
- If using choking packet or timeout mechanism
 - By the time source knows a cell is dropped, number of wasted bits will be:

$$N = \frac{50 \times 10^{-3}}{2.8 \times 10^{-6}} = 1.8 \times 10^4 \text{ cell} = 7.6 \text{ Mbits}$$

Real-Time Traffic

- For ATM voice/video, data is a real-time stream of cells
 - There will always be some variation in transit

Cell delivery delay is needed to maintain constant bit rate

at app

Cell Delay Variation

- Resource management using virtual paths
- Connection admission control
- Usage parameter control
 - Traffic shaping using Token Bucket
- Selective cell discard
- Cell scheduling

Resource Management Using Virtual Paths

- Separate traffic flow according to traffic characteristics
 - User to User, User to Network, Network to Network
 - Cell loss ratio, Cell transfer delay, Cell delay variation

 VCs within a VP should experience similar network performance

VPC = Virtual path connection
VCC = Virtual channel connection
VP-Sw = Virtual path switching function
VC-Sw = Virtual channel switching function

VPC a

VP-Sw

VCCs

VC-Sw

VP-Sw

VP-Sw

Connection Admission Control

First line of defense

- User specifies traffic characteristics for new connection (VC or VP) by selecting a traffic contract
- Network accepts connection only if it can meet the demand

Traffic contract

- Peak cell rate: max cell per second
- Cell delay variation tolerance: millisecond diff tolerated
- Sustainable cell rate: average cell per second
- Maximum burst size: max number of cells in PCR

- Traffic policing
 - Monitor connection to ensure traffic conforms to contract
 - Based on traffic contracts
- Combined with cell tagging
 - CLP: Cell Loss Priority
 - Variable bit rate connections
 - Constant bit rate connections

Parameter Control in VBR

- Apply token bucket
 - Cells that exceed PCR are discarded
 - Cells that below SCR is ok
 - Cells that exceed SCR+MBS are either discarded or tagged with CLP=1
 - Cells that exceed SCR (<MBS) may be tagged with CLP=1
- Suppose PCR set to 20Mbps, MBS set to 100 cells
 - Then time for burst will be

$$(100cells \times 424bits/cell)/20 \times 10^6bits/second = 2.12ms$$

- Much like leaky bucket
 - Compute cell inter-arrival time d = 1/PCR
 - (d CDVT) will be the tolerance limit
- Tagging policy
 - Cells that exceed tolerance limit are discarded
 - Cells that below PCR is ok
 - Cells that exceed PCR but blow tolerance limit are either tagged or discarded

Cell Scheduling

 On each switch, instead of FIFO queue, priority queuing is applied for each cell

More Advanced Scheduling

Weighted fair queuing, scheduling based on VP or VC

