PARALLEL AND DISTRIBUTED COMPUTING

LAB 1

S Shyam Sundaram 19BCE1560 14th August, 2021

QUESTION

Compare the time taken when vector addition is serialized and parallelized.

CODE

```
#include <stdio.h>
#include "omp.h"
#include<time.h>
#define N 10000
int main()
{
  float a[N],b[N],c[N];
  int i;
  float start, end, exec;
  for(i=0;i< N;++i)
  {
     a[i]=(i+1)*1.0;
     b[i]=(i+1)*2.0;
  }
  start=omp_get_wtime();
  #pragma omp parallel default(none), private(i), shared(a,b,c)
  {
     #pragma omp for
```

```
for(i=0;i<N;++i)
{
     c[i]=a[i]+b[i];
}
end=omp_get_wtime();
exec=end-start;
printf("Time taken is: %f\n",exec);
return 0;
}</pre>
```

EXECUTION

```
commands:
export OMP_NUM_THREADS=2
gcc -fopenmp prog.c
./a.out
```

Note: For Sequential, OMP_NUM_THREADS=1

OUTPUT

Time taken by sequential execution and parallel execution with varying number of threads are recorded below.

Size of the Vector	Time for Sequential Execution	Number of threads	Time for Parallel Execution
1000		2	0.000244
1000	0.00002	4	0.000244
1000		8	0.000244
10000		2	0.000244
10000	0.00000	4	0.000244
10000		8	0.000488
100000		2	0.000506
100000	0.000629	4	0.000458
100000		8	0.003638
600000		2	0.003662
600000	0.007080	4	0.002441
600000		8	0.005616