

# Supersaturation measurement and modelling

an application for pharmaceutical drug development











# What is supersaturation and why is it interesting?

"an unstable system which has a greater concentration of a material in solution than would exist at equilibrium"

- IUPAC

 $\frac{Solution\ concentration}{equilibrium\ solubility} > 1$ 







### **Biorelevant or fundamental study?**

### Which approach to take?

**Biorelevant based study:** Design a method mimicking the solution state of a GI transit (pH, dilution, gastric residence and emptying, bile salts and phospholipids). Add the sample as a dosage form or similar. Measure the dissolution and precipitation rates.

- Possible correlation of in vitro supersaturation profile to in vivo data
- Evaluate propensity or risk of precipitation
- Don't learn much about compound

**Property based study:** Find the media conditions where the compound is supersaturated and precipitation is observed. Explore the supersaturation profile at different starting concentrations.

- Understand the fundamental aspects that govern nucleation, induction and crystal growth
- Include excipients and polymers for formulation development
- Not biopredictive





### **Typical data output**

### **Biorelevant based study**

pH shift: Sample may be either a stock solution or a solid, but must be fully dissolved at start pH. The pH is then shifted/titrated to a target value at a defined temperature (sample must ionisable).

### **Property based study**

Solvent quench: Prepare sample as a stock solution and add a defined volume to the media at a defined temperature and pH (universal method for all sample types).









### **Hardware Features of the Sirius inForm**











# Solvent quench method

#### **Method Overview**

- 1. Use a fixed volume of FaSSIF v1 (40 mL on inForm) maintained at 37°C and find the concentration where instantaneous precipitation occurs (left graph). This is the maximum level of supersaturation.
- 2. Run some exploratory supersaturation assays below this concentration to observe a sigmoidal shape to the concentration vs. time profile (right graph)
- 3. Run supersaturation experiments using at least two different supersaturation levels.
- 4. Measure the induction time, decay constant and extrapolated solubility and fit to Classic Nucleation Theory (CNT).
- 5. Compare to other sites on selected compounds.









### **Classic Nucleation Theory**

Determining induction time, decay constant and extrapolated solubility

#### Induction time

- Isolate data on the upper plateau (left graph)
- Fit straight line to plateau data (black line) and find the RMSD
- Assign induction point as the first point that exceeds 3 sigma (red lines)
- Induction time = induction point time zero

### Decay constant and extrapolated solubility

- Isolate data in the decaying part and lower plateau of the curve (right graph)
- Fit a 1<sup>st</sup> order model and find the decay constant and extrapolated solubility

$$J = A \times \exp\left(\frac{16\pi v^2 \gamma^3}{3k^3 T^3 \ln(DS)^2}\right)$$

$$lnJ = lnA + ln\left(\frac{16\pi\nu^2\gamma^3}{3k^3T^3}\right) \cdot 1/ln(DS)^2$$









# Aprepitant (n)

|                       | Induction time |      | Decay constant  |      | Extrapolated Solubility |      |
|-----------------------|----------------|------|-----------------|------|-------------------------|------|
| Injection Volume (μL) | Average (s)    | %CV  | Average (s-1)   | %CV  | Average (μg/mL)         | %CV  |
| 500                   | 137.3 ± 18.6   | 13.5 | 0.4490 ± 0.0613 | 13.7 | 12.10 ± 1.76            | 14.5 |
| 400                   | 169.4 ± 18.5   | 10.9 | 0.3185 ± 0.0179 | 5.6  | 8.70 ± 3.79             | 43.6 |
| 300                   | 513.1 ± 85.1   | 16.6 | 0.1715 ± 0.0401 | 23.4 | 9.13 ± 0.65             | 7.2  |
| 200                   | 1417 ± 91.4    | 6.4  | 0.0649 ± 0.0441 | 68.0 | 9.93 ± 2.50             | 25.2 |

# Controlled SS of Aprepitant in FaSSIF v2 n=3









## Tadalafil (n)

|                       | Induction time                 |      | Decay constant             |      | Extrapolated Solubility |      |
|-----------------------|--------------------------------|------|----------------------------|------|-------------------------|------|
| Injection Volume (μL) | Average (s)                    | %CV  | Average (s <sup>-1</sup> ) | %CV  | Average (μg/mL)         | %CV  |
| 200                   | 404.3 ± 38.7                   | 9.6  | 0.3421 ± 0.0231            | 6.7  | 15.17 ± 0.85            | 5.6  |
| 150                   | 739.3 ± 64.4                   | 8.7  | 0.2579 ± 0.0109            | 4.2  | 10.87 ± 0.7             | 6.4  |
| 100                   | 1347 ± 353                     | 26.2 | 0.1477 ± 0.0239            | 16.2 | 11.17 ± 1.40            | 12.6 |
| 50                    | No precipiatation over 2 hours |      |                            |      |                         |      |



Controlled SS of Tadalafil in FaSSIF v1







# Indomethacin (a,4.2)

|                       | Induction time |      | Decay constant             |      | Extrapolated Solubility |      |
|-----------------------|----------------|------|----------------------------|------|-------------------------|------|
| Injection Volume (μL) | Average (s)    | %CV  | Average (s <sup>-1</sup> ) | %CV  | Average (μg/mL)         | %CV  |
| 300                   | 294.0 ± 87.1   | 29.6 | 0.1123 ± 0.034             | 30.3 | 3.35 ± 0.41             | 12.2 |
| 240                   | 575.7 ± 18.9   | 3.3  | 0.0835 ± 0.003             | 3.6  | 3.33 ± 0.06             | 1.8  |
| 180                   | 904 ± 275.1    | 30.4 | 0.0866 ± 0.011             | 12.7 | 3.26 ± 0.17             | 5.2  |
| 120                   | 4030 ± 1.9     | 0.05 | 0.0509                     | -    | 2.375                   | -    |

#### Indomethacin CNT



Controlled SS of Indomethacin at pH2 n=3







### Ketoconazole (b)

|                       | Induction time |      | Decay constant  |      | Extrapolated Solubility |      |
|-----------------------|----------------|------|-----------------|------|-------------------------|------|
| Injection Volume (μL) | Average (s)    | %CV  | Average (s-1)   | %CV  | Average (μg/mL)         | %CV  |
| 500                   | 1613 ± 812.7   | 50.4 | 0.0421 ± 0.0086 | 20.5 | 27.36 ± 1.93            | 7.0  |
| 400                   | 3031 ± 185.4   | 6.1  | 0.0245 ± 0.0047 | 19.4 | 28.76 ± 10.87           | 37.8 |
| 300                   | 2760 ± 528.4   | 19.1 | 0.0137 ± 0.0026 | 18.7 | 31.81 ± 3.23            | 10.2 |
| 200                   | 8833 ± 190.2   | 2.2  |                 | _    |                         | _    |



Controlled SS of Ketoconazole in FaSSIF v2 n=3







# Felodipine (n)

|                       | Induction time |      | Decay constant  |      | Extrapolated Solubility |      |
|-----------------------|----------------|------|-----------------|------|-------------------------|------|
| Injection Volume (μL) | Average (s)    | %CV  | Average (s-1)   | %CV  | Average (μg/mL)         | %CV  |
| 450                   | 2019 ± 1379    | 68.3 | 0.0421 ± 0.0086 | 20.5 | 27.36 ± 1.93            | 7.0  |
| 400                   | 3066 ± 185     | 6.0  | 0.0245 ± 0.0047 | 19.4 | 28.76 ± 10.87           | 37.8 |
| 350                   | 4632 ± 1326    | 28.6 | 0.0137 ± 0.0026 | 18.7 | 31.81 ± 3.23            | 10.2 |
| 300                   | 10086 ± 521    | 5.2  | 0.0075          | -    | 61.45                   | -    |



Controlled SS of Felodipine in FaSSIF v1 n=3







# Not all compounds follow CNT!







### Fenofibrate (n)

|                       | Induction time |      | Decay constant             |      | Extrapolated Solubility |      |
|-----------------------|----------------|------|----------------------------|------|-------------------------|------|
| Injection Volume (μL) | Average (s)    | %CV  | Average (s <sup>-1</sup> ) | %CV  | Average (μg/mL)         | %CV  |
| 600                   | 3469 ± 732     | 21.1 | 0.007 ± 0.001              | 18.9 | 5.14 ± 1.57             | 30.6 |
| 500                   | 2195 ± 918     | 41.8 | 0.004 ± 0.0003             | 8.7  | 5.06 ± 0.38             | 7.5  |
| 400                   | 9780 ± 1518    | 15.5 | 0.0021 ± 0.0001            | 6.7  | 3.30 ± 0.6              | 18.2 |

#### Fenofibrate CNT



#### Controlled SS of Fenofibrate in FaSSIF v2







### How can this data be used?

| Rank | Compound     | CNT slope |
|------|--------------|-----------|
| 1    | Indomethacin | 54.4      |
| 2    | Tadalafil    | 34.1      |
| 3    | Ketoconazole | 22.6      |
| 4    | Aprepitant   | 20.4      |
| 5    | Felodipine   | 12.8      |







### Roche mechanistic model, aprepitant



|                  | 500 uL      | 400 uL      | 300 uL   | 200 uL      | average     | %error      |
|------------------|-------------|-------------|----------|-------------|-------------|-------------|
| concentration t0 | 132.0522205 | 105.0162274 | 77.91472 | 51.43376213 |             |             |
| kdiss            | 0.000926968 | 0.000929994 | 0.000671 | 0.000390711 | 0.000729635 | 30.4470692  |
| knuc             | 2.33012E-06 | 2.95299E-06 | 2.61E-05 | 2.95967E-05 | 1.52484E-05 | 83.08251835 |
| solubility       | 10          | 10          | 10       | 10          |             |             |
| volume           | 40          | 40          | 40       | 40          |             |             |
| alpha            | 1.959874051 | 1.876949727 | 1.192725 | 0.952142738 | 1.495422757 | 28.91834497 |
| RMSD             | 2.882398065 | 1.879568244 | 1.100314 | 1.289490351 |             |             |

P. Jakubiak et al, **Development of a Unified Dissolution and Precipitation Model** and Its Use for the Prediction of Oral Drug Absorption *Mol.*Pharmaceutics, **2016**, *13* (2), pp 586–598

Dissolution rate

$$\frac{dC}{dt} = k_{diss} \cdot \frac{A_s \cdot (1 - SR)}{V} - k_{nuc} \cdot C^{\alpha}$$

Precipitation rate

$$\frac{dA_s}{dt} = -k_{diss} \cdot A_s \cdot (1 - SR) + k_{nuc} \cdot C^{\alpha} \cdot V$$

Evaluate dissolution rate and precipitation rate simultaneously to determine solution phase and solid phase quantities.

Use Excel Solver to vary concentration, kdiss, knuc and alpha and minimise RMSD.

Low RMSDs indicate good model fit to the data and the rate constants and alpha were similar at 500 and 400  $\mu$ L. But constants were different at 300 and 200  $\mu$ L (high % error).





### Roche mechanistic model, erlotinib





