Inhaltsverzeichnis

		tetigkeit in einer Dimension
1	Differe	entialrechnung in höheren Dimensionen
	1.1 .	
	1.	1.1 Korollar
	1.	1.2 Konvention
	1.	1.3 Definition der ε -Umgebung
	1.	1.4 Topologische Grundbegriffe
	1.	1.5 Definition
	1.	1.6 Beispiele
	1.	1.7 Satz
	1.	1.8 Satz

Einführung

Stetigkeit in einer Dimension 0.1

f ist stetig in x_0

$$\Leftrightarrow \quad \lim_{x \to x_0} f(x) = f(x_0)$$

$$\Leftrightarrow \quad \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = f(x_0)$$

$$\Leftrightarrow \quad \forall \ \varepsilon > 0 \quad \exists \ \delta \quad \text{mit } \quad |f(x) - f(x_0)| < \varepsilon \quad \forall \ x \in (x_0 - \delta, x_0 + \delta)$$

Bemerkung: Der Grenzwert von Funktionen ist über den Grenzwert von Folgen definiert und kann auch nur so überprüft werden.

0.2Zwei Sonderfälle

Skalarfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}$

Visualisierung durch Höhenlinien: $H_c := \{x \in \mathbb{R}^n : f(x) = c\}$ Beispiel: $f(x,y) = x^2 + y^2$

Vektorfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

Beispiel: $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Kapitel 1

Differentialrechnung in höheren Dimensionen

1.1

Skalarprodukt

Definition: $\langle x,y \rangle := x^\top y = \sum_{k=1}^n x_k y_k$ für $x,y \in \mathbb{R}^n$

Euklidische Norm

Definition:
$$||x||_2 := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^n x_k^2}$$

1.1.1 Korollar

Sei
$$x \in \mathbb{R}^n$$
 mit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

1.

$$\max_{1\leqslant k\leqslant n}|x_k|\leqslant \|x\|\leqslant \sqrt{n}\max_{1\leqslant k\leqslant n}|x_k|$$

2. Cauchy-Schwarz-Ungleichung:

$$\forall x, y \in \mathbb{R}^n : |\langle x, y \rangle| \leq ||x|| \cdot ||y||$$

Begründung (nicht Beweis!) durch alternative Definition: $\langle x,y\rangle = \|x\|\cdot\|y\|\underbrace{\cos\alpha}_{\leqslant 1}$

Dabei ist α der Winkel der zwischen x und y eingeschlossen wird. Daraus folgt:

$$|\langle x,y\rangle|=\|x\|\cdot\|y\|\Leftrightarrow x,y$$
 sind lin. unabhängig : $x=\lambda y$ oder $y=\lambda x$ für $\lambda\in\mathbb{R}$

- 3. $\|\cdot\|$ ist eine Norm. Eine Norm hat folgende Eigenschaften:
 - (i) $||x|| \ge 0$ und $||x|| = 0 \Leftrightarrow x = 0$
 - (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$
 - (iii) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

1.1.2 Konvention

Für $A \subset \mathbb{R}^n$ gilt für das Komplement $A^c = \mathbb{R}^n \setminus A$

1.1.3 Definition der ε -Umgebung

Sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$, dann gilt für die ε -Umgebung $U_{\varepsilon}(x_0)$ von x_0 :

$$U_{\varepsilon}(x_0) := \{ x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon \}$$

1.1.4 Topologische Grundbegriffe

Sei $A \subset \mathbb{R}^n$, dann heißt ein Punkt $x_0 \in \mathbb{R}^n$

- (i) ein **innerer Punkt**, wenn gilt $\exists \ \varepsilon > 0 \ \text{mit} \ U_{\varepsilon}(x_0) \subset A$ Menge aller inneren Punkte: $\mathring{A} = \{x \in \mathbb{R}^n : \exists \ \varepsilon > 0 \ \text{mit} \ U_{\varepsilon}(x) \subset A\}$
- (ii) ein **Berührungspunkt**, wenn $\forall \ \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ abgeschlossene Hülle: $\overline{A} = \{x \in \mathbb{R}^n : \forall \ \varepsilon > 0 \text{ gilt } U_{\varepsilon}(x_0) \neq \emptyset\}$
- (iii) ein **Häufungspunkt**, wenn $\forall \varepsilon > 0$ gilt $(U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$ Die Menge aller Häufungspunkte wird mit A' bezeichnet.
- (iv) ein **Randpunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ und $U_{\varepsilon}(x_0) \cap A^c \neq \emptyset$ Menge aller Randpunkte oder auch **Rand** von A wird mit ∂A bezeichnet.

Korollar

- (i) $\mathring{A} \subset A$
- (ii) $\mathring{A} \subset \overline{A}$
- (iii) $\partial A \subset \overline{A}$
- (iv) $\overline{A} = \mathring{A} \cup \partial A$
- (v) $\overline{A} = A \cup \partial A$ (schwächere Aussage als (iv))

1.1.5 Definition

Eine Menge $A \subset \mathbb{R}^n$ heißt

- (i) **offen**, wenn $A = \mathring{A}$ gilt (A besteht nur aus inneren Punkten)
- (ii) abgeschlossen, wenn $\partial A \subset A$ gilt (wenn der Rand in der Menge enthalten ist)

1.1.6 Beispiele

- 1. Jede ε -Umgebung $U_{\varepsilon}(x_0 \in \mathbb{R}^n)$ ist offen
- 2. Sei $I \subset \mathbb{R}$, dann gilt
 - (i) I ist offen, wenn I=(a,b) mit $-\infty \leqslant a \leqslant b \leqslant \infty$ für a=b gilt $I=\varnothing$ mit I offen und für $a=-\infty, b=\infty$ ist I auch offen
 - (ii) I ist abgeschlossen, wenn I = [a, b] mit $a, b \in \mathbb{R}$ oder $I = (-\infty, b]$ oder $I = [a, \infty)$ oder $I = (-\infty, \infty) = \mathbb{R}$

(die reellen Zahlen sind offen und abgeschlossen zugleich)

1.1.

1.1.7 Satz

für $A\subset \mathbb{R}^n$ sind folgenden Aussagen äquivalent:

- (i) A ist abgeschlossen $A = \overline{A}$
- (ii) A enthält alle Häufungspunkte, $A' \subset A$
- (iii) Aenthält alle Randpunkte, $\partial A \subset A$
- (iv) A^c ist offen

1.1.8 Satz

- (i) \varnothing und \mathbb{R}^n sind offen
- (ii) Die Vereinigung beliebig vieler offene Mengen O_j mit $j \in J$ ist stets offen
- (iii) Der Durchschnitt

 endlich vieler offener Mengen $O_1,...,O_r$ ist stets offen