

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Assignment 1 due on 3/14
 - Homework 7 due on 3/14
 - Lab 7 due on 3/18
 - Assignment 2 due on 3/28 (posted tonight)

Previous lecture ...

- Single-pass fixed-codeword-size Compression
 - LZW compression and expansion

CourseMIRROR Reflections (Interesting)

- The variety of different compression algorithms and their advantages was most interesting in today's class.
- Going through examples of LZW compression
- Stepping through the LZW algorithm and thinking about how to store and extract as a data structure
- creating the code book during LWZ expansion
- How tries and sorted arrays are similar
- I found it interesting how LZW changes the bit size of the codewords
- The LZW examples were interesting to work through. (The quick reference to Weissman Score was funny, good to know.)
- I thought the test was pretty fair, not overly challenging
- The multiple questions for low points is nice to ensure a decent grade

CourseMIRROR Reflections (Confusing)

- The general approach to the LZW compression algorithm today was most confusing.
- the LWZ corner case
- Lzw and how a table is created
- i would like to review when to use LZW and when to use Huffman
- Im not sure I understand decoding using LZW for the case when the codeword is not in the codebook
- Please update the slide on GitHub before the lecture
- The test wasn't awful, most difficult part being the LZW
- The true/false Java problem about the PHP Array (Lab6) runtime frequency analysis
- Some questions on the exam were confusing.

Assignment 1 runtime analysis

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called articulation points

Which Data Structure to use?

Let's think first about how to structure the data that we have in memory.

- Account1: Connection1, Connection2, ...
- Account2: Connection1, Connection2, ...
- •

Graphs!

Graphs

- A graph G = (V, E)
 - O Where V is a set of vertices
 - O E is a set of edges connecting vertex pairs
- Example:
 - \bigcirc V = {0, 1, 2, 3, 4, 5}
 - \bigcirc E = {(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)}

Why?

Can be used to model many different scenarios

Some definitions

- Undirected graph
 - \bigcirc Edges are unordered pairs: (A, B) == (B, A)
- Directed graph
 - O Edges are ordered pairs: (A, B) != (B, A)
- Adjacent vertices, or neighbors
 - O Vertices connected by an edge

Graph sizes

- Let v = |V|, and e = |E|
- Given v, what are the minimum/maximum sizes of e?
 - O Minimum value of e?
 - Definition doesn't necessitate that there are any edges...
 - **So**, 0
 - O Maximum of e?
 - Depends...
 - Are self edges allowed?
 - Directed graph or undirected graph?
 - In this class, we'll assume directed graphs have self edges while undirected graphs do not

More definitions

• A graph is considered *sparse* if:

$$\bigcirc$$
 e <= v lg v

A graph is considered *dense* as it
 approaches the maximum number of edges

$$\bigcirc$$
 I.e., $e == MAX - \epsilon$

 A complete graph has the maximum number of edges

Question:

• ?

Representing graphs

- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges
- Performance?
 - O Assume we're going to be analyzing static graphs
 - I.e., no insert and remove
 - O So what operations should we consider?

Using an adjacency matrix

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j) \in E

$$\bigcirc$$
 M[i][j] = 0 if (i, j) \notin E

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency matrix analysis

- Runtime?
- Space?

Adjacency lists

- Array of neighbor lists
 - O A[i] contains a list of the neighbors of vertex i

Adjacency list analysis

- Runtime?
- Space?

Comparison

- Where would we want to use adjacency lists vs adjacency matrices?
 - O What about the list of vertices/list of edges approach?

Graph Representation Example 2

Sparse Graphs

Comparison

- Where would we want to use adjacency lists vs adjacency matrices?
 - What about the list of vertices/list of edges approach?

Adjacency Matrix vs. Adjacency Lists

Even more definitions

- Path
 - A sequence of adjacent vertices
- Simple Path
 - A path in which no vertices are repeated
- Simple Cycle
 - A simple path with the same first and last vertex
- Connected Graph
 - A graph in which a path exists between all vertex pairs
- Connected Component
 - O Connected subgraph of a graph
- Acyclic Graph
 - A graph with no cycles
- Tree
 - 0 ?
 - A connected, acyclic graph
 - Has exactly v-1 edges

Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
 - Breadth-first search (BFS)
 - Search all directions evenly
 - I.e., from i, visit all of i's neighbors, then all of their neighbors, etc.
 - Would help us compute the distance between two vertices
 - Remember our problem of the day?
 - Depth-first search (DFS)
 - "Dive" as deep as possible into the graph first
 - Branch when necessary
 - Would help us find articulation points
 - Remember our problem of the day?

BFS

- Can be easily implemented using a queue
 - O For each vertex visited, add all of its neighbors to the Q (if not previously added)
 - Vertices that have been seen (i.e., added to the Q) but not yet visited are said to be the *fringe*
 - O Pop head of the queue to be the next visited vertex
- See example

BFS Pseudo-code

BFS example

Shortest paths

 BFS traversals can further be used to determine the shortest path between two vertices

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become partitioned?
 - These account are called articulation points

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all *connected*?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become partitioned?
 - These account are called articulation points

BFS would be called from a wrapper function

- If the graph is connected:
 - O bfs() is called only once and returns a *spanning tree*
- Else:
 - A loop in the wrapper function will have to continually call bfs() while
 there are still unseen vertices
 - O Each call will yield a spanning tree for a connected component of the graph

Wrapper function and connected components

Wrapper function for BFS

for each vertex V in G

BFS/DFS(V)

Component [V]= Comment

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become partitioned?
 - These account are called articulation points

DFS

- Already seen and used this throughout the term
 - O For tries...
 - O For Huffman encoding...
- Can be easily implemented recursively
 - For each vertex, visit first (in some arbitrary order) unseen neighbor
 - Backtrack at deadends (i.e., vertices with no unseen neighbors)
 - Try next unseen neighbor after backtracking

DFS Pseudo-code

DFS example 2

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

