ESO209: Tutorial 2 (Week: 4 Aug 2021. Based on Lecture 2 and 3)

- 1. Prove the following identities. Note how formulae (a)-(c) "tensorize" vector operations
 - (a) $\mathbf{a} \cdot \mathbf{b} = \operatorname{tr} (\mathbf{a} \otimes \mathbf{b})$
 - (b) $\mathbf{a} \times \mathbf{b} = -2 \operatorname{ax} \{\operatorname{sk} (\mathbf{a} \otimes \mathbf{b})\}$; the operation '<u>ax</u>' was defined in lectures. The operation '<u>sk</u>' computes the skew-symmetric tensor associated with a tensor A by the formula $\operatorname{sk}(A) = (A A^T)/2$; easy to check that $\operatorname{sk}(A)$ is skew-symmetric.
 - (c) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \text{tr } (\mathbf{a} \otimes \mathbf{c}) \mathbf{b} \text{tr } (\mathbf{a} \otimes \mathbf{b}) \mathbf{c}$
 - (d) $\mathbf{a} \cdot (\mathbf{A} \cdot \mathbf{b}) = (\mathbf{A}^T \cdot \mathbf{a}) \cdot \mathbf{b}$; this equality is often used as a definition of \mathbf{A}^T .
 - (e) $\mathbf{a} \otimes (\mathbf{A} \cdot \mathbf{b}) = (\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{A}^T$;
- 2. Find the principal values λ_i and principal vectors $\hat{\mathbf{v}}_i$ of the second order tensor $D = 6(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_1) + \hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_2 + 9(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_3) + 2(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_2) + 2(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_3) + \hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_3$. Confirm that $\hat{\mathbf{v}}_i$ are independent, so that we can define the principal CS \mathscr{P} of D. Is \mathscr{P} Cartesian? Express D in terms of the unit tensorial basis by $\hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_j$ in \mathscr{P} and also find $[D]_{\mathscr{P}}$.
- 3. Let in some CS $\{\mathscr{B}, G, \hat{\mathbf{e}}_i\}$ there be a vector $\mathbf{r} = x_1\hat{\mathbf{e}}_1 + x_2\hat{\mathbf{e}}_2 + x_3\hat{\mathbf{e}}_3$ and a second order tensor $\mathbf{I} = 6(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_1) + 2(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_2) + 2(\hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_3)$. Show that $\mathbf{r} \cdot \mathbf{I} \cdot \mathbf{r} = 1$ represents an ellipsoid, and find the lengths of it semi-major axes.
- 4. Determine the skew-symmetric part of D given in Problem 2 using the formula for sk(D) given in problem 1(b). Then its axial vector (also called *dual* vector).
- 5. Find the principal values λ_i and real principal vectors $\hat{\mathbf{v}}_i$ of the second order tensor $\mathbf{W} = 2(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_2) 2(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_1) 4(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_3) + 4(\hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_1) 4(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_3) + 4(\hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_2)$. How many principal values are real? Also investigate if all the principal vectors are orthogonal to each other. Find the axial vector \mathbf{w} of \mathbf{W} . How does \mathbf{w} relate to \mathbf{W} 's principal vector(s)? *Hint*: Try crossing/dotting the principal vectors with \mathbf{w} .
- 6. Find the principal values λ_i and principal vectors $\hat{\mathbf{v}}_i$ of the second order tensor $T = \hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_1 + 2(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_3) + \hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_2 + 2(\hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_1) 2(\hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_3)$. Comment on the nature of the principal values and vectors. Confirm that $\hat{\mathbf{v}}_i$ are independent, so that we can define a CS \mathscr{P} . Is \mathscr{P} Cartesian? Express T in terms of the unit tensorial basis by $\hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_j$ in \mathscr{P} and also find $[T]_{\mathscr{P}}$.