Lista de exercícios No. 1 - Processamento de Imagens

Gustavo Lopes Rodrigues

12 de maio de 2022

Questão 1.

- a) Teste
- **b**) Teste 2
- \mathbf{c}) Teste 3

Questão 2.

k	k	k	k
k	k	k	k

Questão 3.

-1	0	1
-2	0	2
-1	0	1

Tabela 1: Imagem A

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 2: Imagem B

Questão 4.

k	k	k	k
k	k	k	k

Questão 5.

k	k	k	k
k	k	k	k

Questão 6.

Questão 7.

- $\mathbf{b})$
- $\mathbf{c})$
- **d**) MAX = 255

$$N = 25$$

 $r = round(\tfrac{Somatorio}{n}*MAX)$

s	h(s)	Somatório	r
1	13	13	133
2	6	19	194
3	1	20	204
4	1	21	214
5	2	23	235
6	2	25	255

Tabela 3: Calculando novos valores de A

s	h(s)	Somatório	r
1	7	7	71
2	4	11	112
5	2	13	133
6	4	17	173
7	3	20	204
8	5	25	255

Tabela 5: Calculando novos valores de B

204	235	194	133	133
133	214	255	194	133
133	133	235	255	194
133	133	133	133	133
133	194	194	194	133

Tabela 4: Imagem A com equalização

133	71	112	71	255
173	173	133	173	71
112	71	255	204	204
173	71	112	255	255
204	255	112	71	71

Tabela 6: Imagem B com equalização

s	h(s)	Somatório	r
1	10	10	102
2	4	14	143
7	1	15	153
8	4	20	194
9	6	25	255

Tabela 7: Calculando novos valores de C

102	102	255	102	102
102	102	255	194	153
255	255	255	143	102
102	102	143	194	194
102	143	143	194	255

Tabela 8: Imagem C com equalização

e) Sobel

-1	0	1
-2	0	2
-1	0	1

Tabela 9: Kernel sobel G(x)

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 10: Imagem A

*	*	*	*	*
*	-13	3	14	*
*	-13	-8	11	*
*	-5	-5	4	*
*	*	*	*	*

Tabela 11: Imagem A com sobel $\mathbf{G}(\mathbf{x})$

-1	-2	-1
0	0	0
1	2	1

Tabela 12: Kernel sobel G(y)

3	5	2	1	1
1	4	6	2	1
1	1	5	6	2
1	1	1	1	1
1	2	2	2	1

Tabela 13: Imagem A

*	*	*	*	*
*	7	7	14	*
*	11	14	7	*
*	1	9	12	*
*	*	*	*	*

Tabela 14: Imagem A com sobel na direção Y

*	*	*	*	*
*	20	10	28	*
*	24	22	18	*
*	6	14	16	*
*	*	*	*	*

Tabela 15: Imagem A com sobel |G(x)| + |G(y)|

Questão 8.

- a) Quanto a imagem saída, os tons de cinza escuros da imagem foram comprimidos, ficando mais escuros. Mesmo aconteceu com os tons claros, ficando ainda mais claros. Devido a compressão dos tons, houve elementos que foram perdidos para expandir a parte média, tendo no final o mesmo tamanho.
- **b**) As funções de transformação de histograma, tem como objetivo "pintar" a imagem com outras cores, permitindo com detalhes da imagem possam ser realçado.
- c) Teste 3

Questão 9.

- a) Os elementos de baixa frequência são aqueles que possuem baixa variabilidade na mudança do tons de cinza na imagem, então isso seria a região onde tem o fundo preto e as regiões do cérebro com cor homogênea por exemplo.
- b) Os elementos de alta frequência seriam aqueles onde há uma brusca modificação do nível do tom de cinza na imagem. Isto seria por exemplo a transição do fundo preto para o cérebro e da região central do cérebro onde vai do branco para o cinza.
- c) Para obter a imagem B a partir de A, foi aplicado uma convulação de uma máscara de blur gaussiano, isso é perceptível pela perca de detalhes, além do fato que as bordas estão consideravelmente mais borradas.
- d) Para obter a Imagem C, foi aplicado o desfoque que gerou a imagem B, e então foi aplicado um operador de Laplace (também conhecido como Sharpen). Isto pode ser notado pelo fato que a imagem C é notavelmente mais nítida que a imagem B, porém não possui o nível de detalhes que o crânio tem na Imagem A. Em compensação, o ruído foi removido
- e) Por fim, a imagem D é o resultado do filtro de Sobel para detecção de bordas, o que pode explicar porque a imagem tem apenas dois tons, preto para indicar o fundo, e branco para detectar as bordas, incluindo as bordas dos ruídos da imagem original.