CS 135 Spring 2018: Problem Set 3.

Problem 1. (10 points)

- a. Give explicit formulas for functions from the set $\mathbb Z$ of integers to the set $\mathbb N$ that are:
 - i. One-to-one but not onto
 - ii. Onto but not one-to-one
 - iii. One-to-one and onto
 - iv. Neither one-to-one nor onto
- b. If functions f and $f \circ g$ are both onto, does it follow that g is onto? Prove or give a counterexample.
- c. Let A, B, and C be sets, and let $f: B \to C$ and $g: A \to B$ be functions. Let $h: A \to C$ be the composition, $f \circ g$, that is, h(x) = f(g(x)) for $x \in A$. Prove, or give a counterexample, for each of the following claims:
 - i. If *h* is surjective, then *f* must be surjective.
 - ii. If h is surjective, then g must be surjective.
 - iii. If h is injective, then f must be injective.
 - iv. If h is injective and f is total¹, then g must be injective.

Problem 2. (10 points)

Use the well-ordering principle to prove the validity of the following logical argument in which P(x) is a predicate defined over the set of natural numbers, i.e., $x \in \mathbb{N}$.

P(0) $\forall k \in \mathbb{N}: (P(k) \Rightarrow P(k+1))$ $\therefore \forall n \in \mathbb{N}: P(n)$

¹ See the definition of a total function in the textbook.