#### DEEP LEARNING FOR COMPUTER VISION

Summer Seminar UPC TelecomBCN, 4 - 8 July 2016



**Instructors** 



Giró-i-Nieto





Salvador







Mohedano

McGuinness

**Organizers** 















Day 2 Lecture 6

# **Recurrent Neural Networks**



Xavier Giró-i-Nieto



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Department of Signal Theory and Communications Image Processing Group



## **Acknowledgments**



#### Santi Pascual



#### **General** idea



#### ConvNet



## **General** idea



#### ConvNet



## **Multilayer Perceptron**



Output Layer



The output depends ONLY on the current input.

Hidden Layers

Input Layer

Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"

The hidden layers and the output depend from previous states of the hidden layers





The hidden layers and the output depend from previous states of the hidden layers





Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"



Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"

#### Common visual sequences:







The input is a **SEQUENCE x(t)** of any length.

Still image



Spatial scan (zigzag, row, column)

#### Common visual sequences:







Temporal sampling



The input is a **SEQUENCE x(t)** of any length.



Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"

### **Bidirectional RNN (BRNN)**



Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"

### **Bidirectional RNN (BRNN)**



## Formulation: One hidden layer



## Formulation: One hidden layer



## Formulation: Multiple hidden layers

Single layer (1) 
$$\mathbf{h}_t = g(\mathbf{W} \cdot \mathbf{x}_t + \mathbf{U} \cdot \mathbf{h}_{t-1} + \mathbf{b}_h)$$
 Recurrence 
$$\text{Multiple layers (T)}$$
 
$$\mathbf{h}_t = g(\mathbf{W} \cdot \mathbf{x}_t + \mathbf{U} \cdot g(\cdots g(\mathbf{W} \cdot \mathbf{x}_{t-T} + \mathbf{U} \cdot \mathbf{h}_{t-T} + \mathbf{b}_h) \cdots) + \mathbf{b}_h)$$

## **RNN** problems

Long term memory vanishes because of the T nested multiplications by U.

$$\mathbf{h}_t = g(\mathbf{W} \cdot \mathbf{x}_t + \mathbf{U} \cdot g(\mathbf{W} \cdot \mathbf{x}_{t-T} + \mathbf{U}) \mathbf{h}_{t-T} + \mathbf{b}_h) \cdots) + \mathbf{b}_h)$$

## **RNN** problems

During training, gradients may explore or vanish because of temporal depth.

Example: Backpropagation in time with 3 steps.







LSTMs are really mainstream now ... just referenced in the @Apple #WWDC2016 keynote for iOS QuickType auto-completion





Hochreiter, Sepp, and Jürgen Schmidhuber. <u>"Long short-term memory."</u> Neural computation 9, no. 8 (1997): 1735-1780.

Based on a standard RNN whose neuron activates with tanh...



Figure: Cola's blog, "Understanding LSTM Networks" (2015)

...three more sigmoid neural layers are added.



**C**<sub>t</sub> is the cell state, which flows through the entire chain.



The three **gates** are governed by sigmoids [0,1], which define how much of their input must go through.



Figure: Cola's blog, "Understanding LSTM Networks" (2015)



#### Forget Gate:

$$f_t = \sigma \left( W_f \cdot [h_{t-1}, x_t] + b_f \right)$$
Concatenate

Figure: Cola's blog, "Understanding LSTM Networks" (2015) / Slide: Alberto Montes



Vector

Transfer

**Neural Network** 

Layer

**Pointwise** 

Operation

#### **Input Gate Layer**

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

#### **New contribution to cell state**



Figure: Cola's blog, "Understanding LSTM Networks" (2015) / Slide: Alberto Montes

Copy

Concatenate



#### **Update Cell State (memory):**

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$



#### **Output Gate Layer**

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

### **Gated Recurrent Unit (GRU)**

Similar performance as LSTM with less computation.



Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

### **Applications: Machine Translation**



Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

### **Applications: Image Classification**

#### RowLSTM



Diagonal BiLSTM



#### **Classification MNIST**

| Model                                  | <b>NLL Test</b> |
|----------------------------------------|-----------------|
| DBM 2hl [1]:                           | $\approx 84.62$ |
| DBN 2h1 [2]:                           | $\approx 84.55$ |
| NADE [3]:                              | 88.33           |
| EoNADE 2hl (128 orderings) [3]:        | 85.10           |
| EoNADE-5 2hl (128 orderings) [4]:      | 84.68           |
| DLGM [5]:                              | $\approx 86.60$ |
| DLGM 8 leapfrog steps [6]:             | $\approx 85.51$ |
| DARN 1hl [7]:                          | $\approx 84.13$ |
| MADE 2hl (32 masks) [8]:               | 86.64           |
| DRAW [9]:                              | $\le 80.97$     |
| Diagonal BiLSTM (1 layer, $h = 32$ ):  | 80.75           |
| Diagonal BiLSTM (7 layers, $h = 16$ ): | 79.20           |

van den Oord, Aaron, Nal Kalchbrenner, and Koray Kavukcuoglu. <u>"Pixel Recurrent Neural Networks."</u> arXiv preprint arXiv:1601.06759 (2016).

## **Applications: Segmentation**



Francesco Visin, Marco Ciccone, Adriana Romero, Kyle Kastner, Kyunghyun Cho, Yoshua Bengio, Matteo Matteucci, Aaron Courville, <u>"ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation"</u>. DeepVision CVPRW 2016.

## Thanks! Q&A?



#### Follow me at



/ProfessorXavi



@DocXavi



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

**Department of Signal Theory** and Communications

Image Processing Group

https://imatge.upc.edu/web/people/xavier-giro