CESSNA 150/LYCOMING O-320-E2D LIMITED PERFORMANCE EVALUATION

RUSSELL E. ERB

Major, USAF Project Flight Test Engineer

JEAN M. FERNAND Lt Col, USAF Project Pilot

DTIC QUALITY INSPECTED &

October 1996

FINAL REPORT

Approved for Public Release. Distribution Unlimited

DEPARTMENT OF AERONAUTICS

USAF ACADEMY

UNITED STATES AIR FORCE

This Technical Report (Cessna 150/Lycoming O-320-E2D Limited Performance Evaluation) was submitted by the Department of Aeronautics, United States Air Force Academy, Colorado, 80840-6222.

Approved for Public Release. Distribution Unlimited.

Prepared By:

RUSSELL E. ERB

Major, USAF

Project Flight Test Engineer Department of Aeronautics

JEAN M. FERNAND

Liqutenant Colonel, USAF

Project Pilot

Department of Aeronautics

This report has been reviewed and is approved for publication:

MICHAEL L. SMITH

Colonel, USAF

Professor and Head

Department of Aeronautics

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, suite 1204, Allington, va 11222 soci	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
1. AGENCY USE ONLY (Leave blank)	October 1996		95 - 16 May 96
4. TITLE AND SUBTITLE	OCCODET 1990	111107 0 001	5. FUNDING NUMBERS
Cessna 150/Lycoming 0-3 Evaluation	320-E2D Limited Perf	ormance	
6. AUTHOR(S)			
Erb, Russell E.			
Fernand, Jean M.			
			8. PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATION NAME Department of Aeronaut	(S) AND ADDRESS(ES)		REPORT NUMBER
2354 Fairchild Dr., Su	ite 6H22		
United States Air Force	e Academy, CO 80840-	6222	
	•		
9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
94th Flying Training So	quadron		
United States Air Force	e Academy, CO 00040		
		:	
11. SUPPLEMENTARY NOTES			
			12b. DISTRIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY STA	IEMENI		125. 2.3112311
Distribution is approve	ed for public releas	e.	
13. ABSTRACT (Maximum 200 words)			avaluation of the USAE
This report presents the	he results of a limi	ted performance	evaluation of the USAF
a Lycoming 0-320-E2D e	nging of 150 horsens	nd 130. Each a wer The gener	ircraft was fitted with
evaluation was to dete	rmine the modified C	essna 150 perfo	rmance characteristics
for purposes of general			
Flight test data were	reduced and used to	develop a compu	ter model of the aircraft
using the Reciprocating	g Engine and Propell	er Modeling Pro	gram (RPM). This computer
model was then used to	create performance	charts and tabu	lated data for the flight
regimes tested for inc	rusion in the next u	puace of the FI	rgne nanaar.
No changes to existing	Flight Manual perfo	rmance speeds w	ere recommended.
Additional testing was	recommended to inve	stigate any per	tormance differences
between airframes and	to further validate	the performance	charts presented in this
report.			
AA CURISCT TERMS			15. NUMBER OF PAGES
14. SUBJECT TERMS	flow takeof	f GPS	179
0000110 200	of climb modeli		16. PRICE CODE
nerformance rate	of descent Pitot-	static	
17. SECURITY CLASSIFICATION 18.	SECURITY CLASSIFICATION	19. SECURITY CLASSIFI	CATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE CLASSIFIED	OF ABSTRACT UNCLASSIFIED	
UNCLASSIFIED UN	OFUSSILIED	0110110011110	

PREFACE

This report presents the results of the limited performance evaluation of the United States Air Force Academy Cadet Competition Flying Team Cessna 150s. In each aircraft, the original Continental O-200 engine was replaced with a Lycoming O-320-E2D engine. This testing was conducted to generate new performance data for inclusion in the aircraft flight manual. This test was accomplished by the Department of Aeronautics for the 94th Flying

Training Squadron (FTS). The 94th FTS provided the aircraft and flight time. The Department of Aeronautics provided the flight test aircrew.

Sincere appreciation is expressed to Captain Gerald Peaslee of the 94th FTS and Dale Zawacki and his maintenance crew of UNC Aviation Services for their support in scheduling and maintenance of the aircraft.

This page intentionally left blank.

EXECUTIVE SUMMARY

This report presents the results of a limited performance evaluation of the USAF Academy Cadet Competition Flying Team (CCFT) Cessna 150. Each aircraft was fitted with a Lycoming O-320-E2D engine of 150 horsepower in place of the production Continental O-200 of 100 horsepower. This program consisted of 24 flights totalling 41.0 flight hours during the period of 3 July 1995 to 16 May 1996.

The general objective of this evaluation was to determine the modified Cessna 150 performance characteristics for purposes of generating flight manual performance charts. Areas included were pitot-static calibration, and cruise, climb, descent, and takeoff performance. All objectives were met.

Flight test data were reduced and used to develop a computer model of the aircraft using the Reciprocating Engine and Propeller Modeling Program (RPM). This computer model was then used to create performance

charts and tabulated data for the flight regimes tested for inclusion in the next update of the Flight Manual. Cruise and climb data, including airspeeds, climb rates, engine settings, and fuel flow rates were satisfactorily modeled. Pitot-static corrections, descent data, and takeoff data were reduced and presented using traditional methods.

No changes to existing Flight Manual performance speeds were recommended. Additional testing was recommended to investigate any performance differences between airframes and to further validate the performance charts presented in this report.

The performance of the CCFT Cessna 150 was satisfactorily characterized. Further testing should address the recommendations of this report, and the results of this testing should be incorporated in the Flight Manual.

This page intentionally left blank.

TABLE OF CONTENTS

Page No.	<u>).</u>
PREFACEiii	
EXECUTIVE SUMMARYv	
LIST OF ILLUSTRATIONSxi	
LIST OF TABLESxv	
INTRODUCTION1	
Backgroundl	
Test Objective1	
Test Item Description1	
TEST AND EVALUATION3	
General	
Cruise Performance	
Test Objectives3	
Test Procedures	
Test Results3	
Flight Test Data Reduction3	
RPM Model Generation5	
Predicted Aircraft Performance5	
Pitot-Static Calibration	
Test Objectives	
Test Procedures8	
GPS Speed Course Method8	
GPS Ground Speed Method8	
Test Results 8	
Climb Performance	
Test Objectives	
Test Procedures	
Test Results 10	
Descent Performance 12	
Test Objectives	
Test Procedures	
Test Results	

Takeoff Performance	13
Test Objectives	13
Test Procedures	13
Test Results	14
CONCLUSIONS AND RECOMMENDATIONS	15
REFERENCES	17
APPENDIX A - TEST DATA	19
APPENDIX B - FLIGHT MANUAL INPUTS	103
APPENDIX C - AIRCRAFT MODELING	117
Matching RPM Model to Flight Test Data	118
Propeller Model Adjustment	118
Engine Model Adjustment	118
Fuel Flow Adjustment	119
Full Throttle Modeling	120
Rate of Climb Adjustment	120
Aircraft Model File C150150.ACF	
Engine Model File LO320A.ENG	
Propeller Model File C150150.PRP	134
APPENDIX D - FLIGHT TEST TECHNIQUE AND DATA REDUCTION DETAILED)
DESCRIPTION	135
Cruise Performance	
Test Procedures	136
Data Reduction Methods	
Data Presentation	
True Airspeed and RPM at Non-Standard Conditions	
Fuel Flow at Non-Standard Conditions	
Range and Endurance at Non-Standard Conditions	
Pitot-Static Calibration	
Test Procedures	
GPS Speed Course Method	
Data Reduction Methods	
GPS Ground Speed Method	
Data Reduction Methods	
Climb Performance	
Test Procedures	
Data Reduction Methods	
Data Presentation	147

Descent Performance	
Test Procedures	148
Data Reduction Methods	148
Data Presentation	150
Takeoff Performance	150
Test Procedures	150
Data Reduction Methods	150
Data Presentation	152
LIST OF ARRESTIATIONS AND SYMBOLS	

This page intentionally left blank.

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page No.
1	Cessna 150 General Arrangement	2
	APPENDIX A	
Al	Engine Horsepower Determination Methods Comparison	20
A2	Drag Polar Curve Fit	20
A3	N557TH Drag Results Compared to Aircraft Drag Polar	21
A4	N557AW Drag Results Compared to Aircraft Drag Polar	21
A5	N557SH Drag Results Compared to Aircraft Drag Polar	22
A6	Brake Horsepower Required Curve Fit	22
A7	N557TH Brake Horsepower Required Results Compared to Aircraft Brake Horsepow Required	er 23
A8	N557AW Brake Horsepower Required Results Compared to Aircraft Brake Horsepower Required	ver 23
A 9	N557SH Brake Horsepower Required Results Compared to Aircraft Brake Horsepow Required	er 24
A10	Brake Specific Fuel Consumption Results	24
A11	Specific Air Range Results	25
A12	Specific Endurance Results	25
A13	Cruise Airspeed Performance	26
A14	Cruise RPM Performance	26
A15	Cruise Fuel Flow Performance	27
A16	Dual Constant Airspeed Cruise Range Performance	27
A17	Dual Constant Airspeed Cruise Range Performance With 45 Minute Reserve	28
A18	Dual Constant Airspeed Cruise Endurance Performance	28
A19	Dual Constant Airspeed Cruise Endurance Performance With 45 Minute Reserve	29
A20	Solo Constant Airspeed Cruise Range Performance	29
A21	Solo Constant Airspeed Cruise Range Performance With 45 Minute Reserve	30
A22	Solo Constant Airspeed Cruise Endurance Performance	30
A23	Solo Constant Airspeed Cruise Endurance Performance With 45 Minute Reserve	31
A24	Aircraft Brake Horsepower Required and Available	31
A25	Aircraft Thrust Horsepower Required and Available	32
A26	Aircraft Thrust Required and Available	32
A27	Airspeed Pitot-Static Position Correction	33

A28	Altitude Pitot-Static Position Correction	33
A29	Airspeed Pitot-Static Position Correction, N557SH	34
A30	Standard Day Rate of Climb Performance (Indicated Airspeed)	34
A31	Standard Day Rate of Climb Performance (Calibrated Airspeed)	35
A32	Test Day Rate of Climb Matching.	35
A33	Test Day Rate of Climb Matching	36
A34	Nonstandard Day Rate of Climb Performance at 65 KIAS	36
A35	Nonstandard Day Time and Fuel to Climb at 65 KIAS	37
A36	Nonstandard Day Distance to Climb at 65 KIAS	37
A37	Nonstandard Day Rate of Climb Performance at 80 KIAS	38
A38	Nonstandard Day Time and Fuel to Climb at 80 KIAS	38
A39	Nonstandard Day Distance to Climb at 80 KIAS	39
A40	Idle Descent Drag Polar Curve Fit	39
A41	Idle Descent Drag Polar	40
A42	Idle Descent Penetration Chart	40
A43	Idle Descent Polar Chart by Indicated Airspeed	41
A44	Idle Descent Polar Chart by True Airspeed	41
A45	Nonstandard Day Idle Rate of Descent Performance at 65 KIAS	42
A46	Nonstandard Day Time and Fuel to Descend at Idle at 65 KIAS	42
A47	Nonstandard Day Distance to Descend at Idle at 65 KIAS	43
A48	Nonstandard Day Idle Rate of Descent Performance at 107 KIAS, 2250 RPM	43
A49	Nonstandard Day Time and Fuel to Descend at 107 KIAS, 2250 RPM	44
A50	Nonstandard Day Distance to Descend at 107 KIAS, 2250 RPM	44
A51	Standardized Takeoff Ground Roll Performance	45
A52	Mean Takeoff Ground Run	45
A53	Takeoff 95th Percentile Dispersion	46
A54	Takeoff 99th Percentile Dispersion	46
	APPENDIX C	
Cl	RPM Engine Model For Lycoming O-320-E2D	121
C2	RPM Propeller Model For McCauley TM7458/1C172; Thrust Coefficient	122
C3	RPM Propeller Model For McCauley TM7458/1C172; Torque Coefficient	122
C4	RPM Propeller Model For McCauley TM7458/1C172; Power Coefficient	123
C5	RPM Propeller Model For McCauley TM7458/1C172; Propeller Efficiency	123
C6	RPM Model RPM Matching	124

C7	RPM Model Manifold Pressure Matching	124
C8	RPM Model Fuel Flow Matching (in gal/hr)	125
C 9	RPM Model Fuel Flow Matching (in percent)	125
C10	RPM Model Full Throttle Manifold Pressure Matching	126
C11	Slipstream Effects on Rate of Climb	126
	APPENDIX D	
D1	Determining Fuel Burn Amount for Cruise Test Points	154
D2	GPS Speed Course Distance Arcs	154
D3	GPS Speed Course Wind Drift Error	155
D4	Determining Leg Length for GPS Speed Course Test Points	155
D5	Ground Speed Variation in a Turn	156
D6	GPS Ground Speed Method Vector Diagram	156
D7	Finding Test Day Rate of Climb	157
D8	Finding Test Day Rate of Descent	157

This page intentionally left blank.

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page No.
1	Range and Endurance Scenarios	6
2	Climb Speed Comparison (in KIAS (KCAS))	10
3	Maximum Performance Climb Results	10
	APPENDIX A	
A1	Tabulated Cruise Data by Indicated Airspeed	47
A2	Tabulated Cruise Data by RPM	77
A3	Maximum Range Airspeed	101
A4	Range Results by Airspeed.	101
	APPENDIX D	
D1	GPS Ground Speed Method Example Data	145

This page intentionally left blank.

INTRODUCTION

BACKGROUND

This test program was requested by the 94th Flying Training Squadron (FTS) to collect flight manual performance data for the Cessna 150 flown by the United States Air Force Academy (USAFA) Cadet Competition Flying Team (CCFT). The Air Force Academy airfield elevation is 6572 feet. To improve performance for operating from the high elevation airfield at the Air Force Academy, the original 100 HP Continental O-200 engine was replaced with a 150 HP Lycoming O-320-E2D engine. As a result, the manufacturer's flight manual performance data were no longer applicable.

The primary operational requirement for this test was determining engine fuel consumption. These data were necessary for determining range and endurance for flight planning. These data were also necessary for CCFT competitions, where fuel burn must be predicted within 10 percent for certain events.

These tests were conducted by members of the USAFA Department of Aeronautics. Aircraft scheduling and maintenance was performed by the 94th FTS. This program consisted of 24 flights totalling 41.0 flight hours during the period of 3 July 1995 to 16 May 1996. Primary flight testing was conducted in the local area around the Air Force Academy. Additional flight testing to verify results at

lower altitudes was accomplished between the Air Force Academy and Hays, Kansas.

TEST OBJECTIVE

The general objective of this evaluation was to determine the modified Cessna 150 performance characteristics for purposes of generating flight manual performance charts. Areas included were pitot-static calibration, and cruise, climb, descent, and takeoff performance. All objectives were met.

TEST ITEM DESCRIPTION

The Cessna 150, as operated by the USAFA CCFT, is a two-place general aviation airplane. A three-view drawing of the aircraft is shown in Figure 1. It is powered by one normally aspirated, carbureted, 4-cylinder, 150 horsepower Lycoming O-320-E2D engine driving a MacCauley TM7458/IC172 fixedpitch propeller. The high wing has an area is 160 square feet and an aspect ratio is 7.0. The maximum takeoff gross weight was 1760 lbs. The flight control system is a reversible flight control system. Each Cessna 150 operated by the USAFA CCFT is considered representative of the other two. Cessna 150s are not considered production representative of unmodified Cessna 150s. Reference 1 has a more complete description of the CCFT Cessna 150.

Figure 1 Cessna 150 General Arrangement

TEST AND EVALUATION

GENERAL

Pitot-static calibrations and takeoff, cruise, climb and descent performance tests were conducted. Production instrumentation was used for measuring airspeed, altitude, outside air temperature (OAT), and RPM. A manifold pressure guage was added for flight test in place of the VOR 2 head. A fuel flow/used indicator was installed for use in normal operations. Time was recorded using a digital wristwatch and a Hewlett Packard 48SX calculator. Position was determined from a Garmin GPS 55 handheld Global Positioning System (GPS) receiver. No additional calibration of instruments was accomplished beyond normal Federal Aviation Administration (FAA) Instrument Flight Rules (IFR) requirements.

Flight testing was accomplished in the USAFA local flying areas at pressure altitudes of 8,000 to 12,000 feet. Additional data were collected at lower altitudes near La Junta, CO (6,000 feet), Hays, KS (3,000 feet), and on routes between USAFA, CO and Hays, KS (4,500 - 7,500 feet).

Flight test data were used to create and verify a computer model of the Cessna 150 aircraft, engine, and propeller using the Reciprocating Engine and Propeller Modeling Program (RPM). (Reference 2) This computer model was used to expand standardized data to create the flight manual data. Details of the construction of the aircraft model are contained in Appendix C.

CRUISE PERFORMANCE

Test Objectives:

The test objectives for cruise performance were:

- 1. Determine power settings, fuel flow, range, and endurance as functions of airspeed and altitude.
- 2. Determine power required and power available as a function of airspeed.
 - 3. Determine the aircraft drag polar.

- 4. Determine airspeeds for maximum range and for maximum endurance.
- 5. Create charts and tabulated data for Flight Manual cruise data.

Test Procedures:

Cruise data were collected using steady state trim shots at constant pressure altitude (PA) and airspeeds of 50, 60, 70, 80, 90, and 100 knots. Trim shots were also recorded at the airspeed for full throttle. Data recorded included the indicated altitude (h_i), indicated airspeed (V_i), outside air temperature (OAT), manifold pressure (MAP), engine RPM, start and end time, initial fuel used and final fuel used.

Fuel used was measured by a Hoskins FT101A Fuel Totalizer. Fuel used was reported to the nearest tenth of a gallon. This indicator normally displayed fuel flow, which varied too much to be usable for this test. This variation arose primarily from the actual variation in fuel flow as the carburetor float opened and closed the fuel inlet valve to the carburetor bowl. Fuel used could be read by pressing a button on the indicator. After displaying the fuel used for a few seconds, the display would revert to fuel flow.

To improve the accuracy of the fuel used measurement, the flight test engineer pressed the button on the indicator each time the display reverted to fuel flow. This resulted in a reasonably constant display of fuel used. Timing for each test point was begun or ended as the tenths digit changed. Test points were flown long enough to burn exactly 0.5 gallons. Further information on fuel measurement can be found in Appendix D.

Cruise data were reduced using the P_{iw} - V_{iw} method and other cruise data reduction methods shown in Appendix D.

Test Results:

Flight Test Data Reduction.

Cruise data were collected as described above. Additionally, MAP and RPM data were used from Pitot-static test points. These data increased the amount of data available for determining drag and power required, but did not include fuel flow data.

The drag and power required were determined using engine horsepower and propeller efficiency. The engine horsepower was determined from MAP, RPM, h_i, and OAT, using the engine chart as described in Appendix C. Propeller efficiency was determined from RPM and true airspeed (V), using the propeller chart as described in Appendix C.

N557TH was the only aircraft to have a MAP gauge installed, and not for all flights. On flights when a MAP gauge was not available, engine horsepower was determined using the propeller power coefficient. Figure A1 compares the horsepower calculated by each method for test points where a MAP gauge was available. Ideally, all points would lie on the line with a slope of 1:1. The match between the two methods is satisfactory, especially considering that the propeller model is fairly simple, with only inputs of blade shape, diameter, and pitch.

The drag polar was determined by a linear least squares curve fit to the drag coefficient (C_D) versus the square of the lift coefficient (C_L) , as shown in Figure A2. This technique assumed a drag polar of the form

$$C_D = C_{D_0} + KC_L^2$$

with no linear C_L term. The aircraft drag polar was

$$C_D = 0.042696 + 0.068861 C_L^2$$

While this drag polar reports more significant figures than can be justified from the flight test data, this drag polar is reported as the drag polar used in the *RPM* model.

Given the aspect ratio of 7.0, this drag polar indicates an Oswald's efficiency factor of 0.66. The parasite drag coefficient is also higher than normally seen for general aviation aircraft. This difference is suspected to be caused by separation drag from the rear window. This separation is suspected again later when explaining the climb results.

Figure A3 compares the drag results from aircraft N557TH, the primary test aircraft, with the drag polar. These data are in agreement with the drag polar. Drag data from two flights in N557AW are shown in Figure

A4, again with good agreement. Drag data from N557SH were not originally in good agreement with the drag polar. After applying a different position correction to the N557SH data, as suggested from the Pitot-static tests, the agreement was improved to an acceptable level, as shown in Figure A5. Additional testing should be conducted to verify the validity of the drag polar for all three aircraft. (R1)¹

The brake horsepower required by a linear least squares curve fit to the product of standardized brake horsepower and standardized equivalent airspeed (BHP_{iw}V_{iw}) versus standardized equivalent airspeed raised to the fourth power (V_{iw}⁴), as shown in Figure A6. This technique also assumes a drag polar of the form shown earlier and a negligible change in the propeller efficiency between the test data point and the standardized data point. Using this curve fit, the brake horsepower required was calculated, as shown in Figure A7 through Figure A9. These figures also show that the brake horsepower required results from each aircraft agree with the brake horsepower required curve in the same manner as the drag results with the drag polar.

Figure A10 shows the fuel consumption results as brake specific fuel consumption (BSFC) plotted against brake horsepower. BSFC is normally considered as a constant with respect to brake horsepower. Thus, Figure A10 shows BSFC results for all cruise points, from pressure altitudes of 3,000 to 9,000 feet. The fairings are derived from *RPM* model data at cruise conditions at altitudes from sea level to 15,000 feet. According to the *RPM* model, the BSFC for a given brake horsepower will change slightly with altitude. However, all of these fairings are well within the boundaries of the scatter of the data, and are therefore considered reasonable.

Figure A11 shows the results for specific air range (SAR) for all cruise data collected at all altitudes. Specific air range can be expressed as

$$SAR = \frac{\eta_p}{BSFC} \frac{C_L}{C_D} \frac{1}{W} = \frac{V}{\dot{w}_f}$$

¹ Numerals preceded by an "R" in parentheses at the end of a paragraph correspond to the recommendation numbers tabulated in the Conclusions and Recommendations section of this report.

If the propeller efficiency (η_p) and the BSFC are considered constant with altitude for a given equivalent airspeed, then SAR should be independent of altitude. In practice and according to the RPM model, propeller efficiency does remain constant, but BSFC will vary slightly, as shown in Figure A10. Thus, the fairings derived from RPM model data at cruise conditions at altitudes from sea level to 15,000 feet show a variation similiar to the variation seen in the BSFC data. Again, all of the SAR fairings are within the boundaries of the scatter of the data, and are therefore considered reasonable.

Figure A12 shows the results for specific endurance (SE) for all cruise data collected at all altitudes. Specific endurance can be expressed as

$$SE = \frac{\eta_p}{BSFC} \frac{C_L^{\frac{3}{2}}}{C_D} \left(\frac{\rho S}{2}\right)^{\frac{1}{2}} \frac{1}{w_f^{\frac{3}{2}}} = \frac{1}{\dot{w}_f}$$

Since density appears explicitly in this equation, SE will be a function of altitude. Figure A12 does not attempt to break out the SE data by altitude, as the variation with altitude, shown by the fairings from RPM data, is smaller than the scatter of the data. Any adjustments to improve the fit of SE data would be accomplished by improving the fit of the fuel flow data, which also affects BSFC. If the modeling of the fuel flow data is satisfactory, then the modeling of SE and BSFC will be satisfactory. Again, all of the SE fairings are within the boundaries of the scatter of the data, and are therefore considered reasonable.

RPM Model Generation.

A computer model of the performance of the aircraft was generated using the Reciprocating Engine and Propeller Modeling Program (RPM). The airframe was modeled using the drag polar derived from flight test data. The engine model and propeller model were adjusted until a satisfactory fit was obtained with flight test MAP, RPM, and fuel flow data. The process of this adjustment and the resulting model data files are described in detail in Appendix C.

Predicted Aircraft Performance.

The RPM model was used to create performance charts similar to those seen in the Flight Manual for a general aviation aircraft. Figure A13 shows the cruise

true airspeed as a function of density altitude and power setting. To use this chart, start with the OAT, go straight up to the pressure altitude, go straight across to the power setting, then straight down to read the true airspeed. For the example shown:

OAT: 40° F
Pressure Altitude: 8,000 feet
Power Setting: 60%
True Airspeed: 102 KTAS

Figure A14 relates RPM to power setting as a function of density altitude. To use this chart, start with the OAT, go straight up to the pressure altitude, go straight across to the power setting, then straight down to read the RPM. For the example shown:

OAT: 40° F
Pressure Altitude: 8,000 feet
Power Setting: 60%
RPM: 2345

Appendix D shows that true airspeed and RPM remain the same for an aircraft in cruise flight at the same density altitude, power setting, and weight. Thus, the density altitude can be used to account for nonstandard conditions.

Figure A15 shows the cruise fuel flow as a function of pressure altitude, power setting, and OAT. To use this chart, start with the pressure altitude, go straight across to the power setting, then straight down to the zero temperature deviation line. Follow the guidelines (up for OAT above standard, down for OAT below standard) by the amount of temperature deviation from the standard temperature for the pressure altitude. Then go straight down to read the fuel flow. For the example shown:

Pressure Altitude: 8,000 feet
Power Setting: 60%

OAT: Std + 60° F
Fuel Flow: 8.6 gal/hr

Appendix D discusses the correction to fuel flow for non-standard temperatures.

Table A1 tabulates the cruise performance for various altitudes, airspeeds, and temperatures. Values for manifold pressure, percent power, RPM, true airspeed, and fuel flow are given for each flight condition. This table was reproduced on 5x8" cards

for the flight crews for flight planning purposes, without the manifold pressure and percent power information. Power settings above 75 percent were flagged. Cards were produced with data at each 1000 feet of altitude. Cards were also produced corresponding to Visual Flight Rules (VFR) hemispheric altitudes (each 1000 feet + 500 feet). Images of these cards are shown in Appendix B.

Table A2 shows the same information as Table A1, except that data is arranged by RPM, not indicated airspeed. This format is similar to that used in Cessna Flight Manuals.

Figure A16 through Figure A23 show the range and endurance for cruise at a constant indicated airspeed. Data are shown for dual and solo flight. Both conditions assume takeoff at maximum gross weight. Takeoff at less than maximum gross weight (with the same amount of fuel) would result in longer range and endurance. Table 1 details the assumptions for the dual and solo scenarios.

Table 1

RANGE AND ENDURANCE SCENARIOS

Parameter	Dual	Solo
Empty Weight	1249 lbs	1249 lbs
Aircrew	2 (340 lbs)	1 (170 lbs)
Baggage	15 lbs	113 lbs
Unusable Fuel	3 gal	3 gal
Useable Fuel	23 gal	35 gal
Startup, Taxi, Takeoff, and Climb Fuel	2 gal	2 gal
Climb Distance	10 nm	10 nm
Climb Time	8 min	8 min

The range and endurance charts were created using the *RPM* model. After setting the aircraft weight and useable fuel, the fuel consumption was computed in 10 minute time intervals. Between each interval, the aircraft and engine were retrimmed to account for reduction in drag arising from the reduction in weight. This process was continued until all of the useable fuel was consumed. Figure A16 through Figure A23 include the climb distance and climb time shown in Table 1. No distance or time for descent were included in these charts.

To use the range charts, start with the OAT, go straight up to the pressure altitude, go straight across to the indicated airspeed, then straight down to the zero temperature deviation line. Follow the guidelines (up for OAT above standard, down for OAT below standard) by the amount of temperature deviation from the standard temperature for the pressure altitude. Then go straight down to read the range. For the example shown:

OAT: 80° F

 $Std + 35^{\circ} F$

Pressure Altitude: Indicated Airspeed:

4,000 feet 80 KIAS

Range:

315

Appendix D explains the corrections to range for nonstandard conditions.

To use the endurance charts, start with the pressure altitude, go straight across to the indicated airspeed, then straight down to the zero temperature deviation line. Follow the guidelines (up for OAT above standard, down for OAT below standard) by the amount of temperature deviation from the standard temperature for the pressure altitude. Then go straight down to read the endurance. For the example shown:

Pressure Altitude: 4,000 feet
Indicated Airspeed: 80 KIAS
OAT: Std + 35° F

Endurance: 3.7 hr

Appendix D discusses the correction to endurance for non-standard temperatures.

Figure A24 shows the brake horsepower required and available at altitudes from sea level to 15,000 feet. This figure was created using the *RPM* model. To determine other performance parameters, propeller efficiency was applied to the curves of Figure A24 to calculate thrust horsepower required and available, shown in Figure A25. From this chart, thrust required and available were calculated, shown in Figure A26.

Table A3 shows the airspeed for maximum range as determined by three methods at sea level and 10,000 feet. Assuming constant propeller efficiency and BSFC, maximum range for a propeller driven aircraft occurs at the airspeed for maximum L/D. (Reference 5) Thus, the airspeed for maximum range would be found at the minimum of the thrust required curve

(Figure A26) or at the tangent from the origin to the thrust horsepower required curve (Figure A25). This method gives an indicated airspeed of 56 KIAS.

Using the SAR shown in Figure A11, the SAR is a maximum at 73 KIAS at sea level and 68 KIAS at 10,000 feet. These values of SAR are for maximum gross weight at a given standardized airspeed. As the weight the standardized decreases. corresponding to a constant indicated airspeed will increase. Increasing standardized airspeed from the airspeed for maximum SAR will reduce the SAR. Therefore, for an overall maximum range, the indicated airspeed would be less than the values indicated on this chart. Additionally, changes in propeller efficiency or BSFC as weight decreased would change the values of SAR.

According to the range charts (Figure A16 and Figure A20), the maximum range occurs at 65 KIAS for both dual and solo flight. The range at 56 KIAS is not shown in Figure A16 since it was less than the maximum, but the range at 56 KIAS was only 8 to 11 nautical miles less than the range at 65 KIAS, depending on altitude. Assuming an approximate range of 300 nautical miles, this difference would be 3 to 4 percent. At 73 KIAS, Figure A16 suggests the difference in range to be 0 to 5 nautical miles shorter than the range at 65 KIAS. This difference would be under 2 percent. Thus, each method results in an airspeed giving a range within 4 percent of the other methods. Since this method used to create Figure A16 accounts for the changes in weight during cruise, 65 KIAS was probably the most accurate airspeed for maximum range, even though the change in range is very small with airspeed around 65 KIAS. Therefore, 65 KIAS was chosen as the airspeed for maximum range.

Flying at maximum range airspeed is typically too slow for operational considerations. Table A4 shows the effect on range of flying at higher speeds at typical cruise altitudes of 5,000 and 10,000 feet. Reference 6 suggests that the airspeed for maximizing airspeed per amount of fuel burned, and thus the most efficient cruise speed considering time and fuel use, is found at the tangent from the origin to the thrust required line. Figure A26 shows this airspeed to be 85 KCAS. This airspeed corresponds to 86.5 KIAS. However, for ease of reading the range charts and operational simplicity (the airspeed indicator has a mark at 85 KIAS), this airspeed was investigated at 85 KIAS. Flying at 85

KIAS increases the airspeed by 20 KIAS, with only a 10 to 20 percent reduction in range.

Table A4 also shows range performance for the typical operational technique practiced at the 94th FTS. Flight time has an operational cost since the maximum flight time allowable per day is limited, thus limiting the total range available per day. Additionally, flight time has a monetary cost in per diem payments for TDY aircrew. Since fuel cost is typically negligible compared to the cost associated with flight time, flights are typically conducted at maximum airspeed, either at 75 percent power or full throttle if 75 percent power is not attainable. At 5,000 feet density altitude, 75 percent power yields an indicated airspeed of 105 KIAS and a 34 to 40 percent reduction in range. At 10,000 feet density altitude, full throttle yields 90 KIAS and a 23 to 25 percent reduction in range.

The airspeed for maximum endurance can also be determined three ways: the minimum power required, the maximum specific endurance, and the largest calculated endurance from the *RPM* model. In each of these cases (Figure A12, Figure A18, Figure A22, and Figure A25) the maximum endurance airspeed is shown to be the minimum speed tested, or 50 KIAS. Although slightly more endurance would probably be possible at a slower speed, 50 KIAS is the minimum practical endurance speed for holding, considering the Flight Manual reported stall speed of 47 KIAS.

Flight data, such as RPM, fuel flow, fuel used, indicated airspeed, true airspeed, range, and endurance should be collected on 94th FTS deployments and CCFT practice and competition flights and compared to the performance data presented in this report for further verification of these performance data. (R2)

PITOT-STATIC CALIBRATION

Test Objectives:

The test objectives for Pitot-static calibration were:

- 1. Complete a calibration of the production Pitotstatic system.
- 2. Verify Pitot-static corrections given in the Flight Manual.

Test Procedures:

GPS Speed Course Method.

This Pitot-static calibration method was an adaptation of the traditional ground speed course method (Reference 3). Instead of using landmarks to determine distance. GPS distance-to-go readings were used. These distance-to-go readings were based on a waypoint at least 30 nm away. This waypoint was chosen such that the heading directly toward or away from the waypoint would be approximately perpindicular to the wind. The aircraft was flown on a heading directly toward and away from the waypoint with no wind drift correction. For each airspeed tested, the time to fly four nautical miles (ground distance) was recorded in each direction. Additionally, hi, Vi, OAT, MAP, RPM, and fuel used were recorded. The true airspeed was assumed to be equal to the average ground speed for runs toward and away from the From this true airspeed the position correction was determined. For this testing, airspeed and altitude instrument errors were assumed to be negligible. A more complete description of this technique and the data reduction are shown in Appendix D.

GPS Ground Speed Method.

The GPS ground speed method was developed at the USAF Test Pilot School (USAF TPS), and became known to the test team during the flight test phase of this project (Reference 4). Additional Pitot-static testing was completed to compare the relative position errors of different CCFT aircraft, and at the request of USAF TPS for further development of this method.

In this method, the aircraft true airspeed was estimated based on indicated airspeed, estimated position correction, pressure altitude, and outside air temperature. Starting on a heading with an expected headwind or tailwind, a slow turn was initiated. The turn was continued until the GPS ground speed matched the calculated true airspeed. At this point the aircraft should be heading perpindicular to the wind. The aircraft was then turned 180 degrees to confirm the same ground speed. These headings were then used for the data collection.

The aircraft was flown at the aim airspeed and altitude on the crosswind heading. The primary data

collected were Vi, heading, GPS ground speed, and GPS track angle. Additionally, h., OAT, MAP, RPM, and fuel used were collected. The primary data were recorded multiple times for approximately one minute to detect any variations from outside effects such as wind gradients. The same data were collected for the same flight conditions on the opposite heading. The true airspeed was determined by multiplying the GPS ground speed by the cosine of the angle difference between the heading angle and the GPS track angle (i.e. the drift angle). For this testing, airspeed and altitude instrument errors were assumed to be A more complete description of this negligible. method and the data reduction are shown in Appendix D.

Test Results:

Figure A27 shows the flight test derived position correction curve compared with the flight test data and the Flight Manual position correction curve. The flight test derived curve seems reasonable, as it follows the general trend of the Flight Manual curve. The flight test data shown in this figure were all collected in N557TH. Pitot-static data were collected in this aircraft on flights 1, 5, 6, 7, 10, 22, and 23. The flight 1 data are not shown as they were significantly different from all later flights and did not pass the reasonableness test. On flight 1, Pitot-static data were collected using the GPS Speed Course method, but with legs only one nautical mile in length. Prior to flight 5, the test team decided that legs of at least four nautical miles in length were necessary to reduce possible errors to an acceptable level. (See Appendix D)

Pitot-static data was collected using the GPS Speed Course method on flights 5, 7, and 10. The data shown for flight 5 have a similar slope to the final position correction curve, but were displaced down from the curve by two to four knots. These data were weighted less heavily than the rest, since the leg times implied that the legs were not being flown perpindicular to the wind. Thus, the data was suspected to have been corrupted by wind effects.

Starting with flight 7, more care was taken to ensure that legs were flown perpindicular to the wind. The data from flights 7 and 10 agreed well, and were used to create the position correction curve. The leg times showed that wind effects were minimal for these flights.

No Pitot-static data points had been collected to this time at 50 KIAS, so these were picked up on flights 22 and 23. These data were collected using the GPS Ground Speed method, which had become known to the test team by this point. These two data points agreed very well with the slope implied by the previous data points at 60 and 70 KIAS.

Further confidence was gained in the flight test derived position correction curve when drag polar data and power required data fell into the shapes expected from theory. Using prior position correction curves, such as the curves used based on flight 1 or flight 5 data, the drag polar and power required data did not follow the generally linear trend seen in Figure A2 and Figure A6. When the final position correction was used, the data lined up as shown in these figures with no further compensation.

The CCFT normally plans its competition navigation legs at 90 KIAS. At this airspeed, the flight test derived position correction is only one knot different from the Flight Manual position correction, well within the scatter of the data. The negative value also correlates with historical experience by the CCFT of seeing "higher than expected headwinds" in practice and competition. Failure to correct for the Pitot-static position error would result in the aircraft flying slower than was planned for. Additionally, most cross country flights by the 94 FTS are flown at full throttle or 75 percent power, whichever is lower. In this range of airspeeds, the flight test and Flight Manual position corrections are within a knot of each other. However, at low airspeeds, the flight test position correction is about 6 knots higher than the Flight manual position correction. This will result in a conservative error, with the aircraft on the proper approach indicated airspeed actually flying at a higher calibrated airspeed than predicted by the flight manual. Since operations at the 94 FTS have been successful over the years, there is no reason to change the Flight Manual takeoff or approach speeds.

Figure A28 shows the altitude position correction curve at sea level from flight test and the Flight Manual. These curves were derived from the airspeed position correction curve, using the equation from Reference 3:

$$\Delta H_{pc} = \frac{-\Delta P_g}{\rho g} = \frac{1}{2\sigma g} \left(CAS^2 - IAS^2 \right)$$

While this correction varies slightly with altitude, the small values of ± 30 feet are not operationally significant, and can be ignored for normal operations.

All preceding Pitot-static data were collected on N557TH. Additional investigation was conducted to determine if noticeable differences existed in the Pitot-static errors between the three CCFT aircraft. One test point was flown using the GPS Ground Speed method in N557AW, but was rejected for excessive wind error. However, all drag polar and cruise data collected in N557AW (Figure A4 and Figure A8) matched the data of N557TH within the experimental scatter using the same position correction curve. Therefore, the flight test derived position correction curve was considered valid for both N557TH and N557AW.

The flight test derived position correction curve did not work as well for N557SH. Figure A29 shows the curve along with Pitot-static data collected in N557SH. These data were collected using the GPS Ground Speed method. While the flight test data do not match the curve, the data do have the same basic shape. For N557SH, an acceptable position correction could be found by subtracting 4 knots from the flight test derived position correction curve, as shown in Figure A29. This finding correlates with operational experience that N557SH flying side by side with either of the two other aircraft would show a higher indicated airspeed. Investigate the Pitot-static position corrections for N557SH and N557AW. (R3)

The test team found the GPS Ground Speed method to be superior to the GPS Speed Course method in both test efficiency and data quality. Test points could be accomplished much faster using the GPS Ground Speed method, and did not require maintaining a stable airspeed as long as in the GPS Speed Course method. Since the legs were shorter, it was easier to avoid local air disturbances such as thermals or upslope winds. Since the method includes a technique for approximating a crosswind heading, wind effects from incorrect winds aloft forecasts are minimized. Additionally, the data can be evaluated by inspection for wind effects such as not being on a crosswind heading or wind gradients. GPS Speed Course data required calculations to determine effects of not being on crosswind heading, and did not indicate wind gradients in any way.

CLIMB PERFORMANCE

Test Objectives:

The test objectives for climb performance were:

- 1. Determine maximum rate of climb at full throttle.
- Determine the airspeed for maximum rate of climb at full throttle.
- 3. Determine rate of climb as a function of airspeed at full throttle.
 - 4. Determine best angle of climb at full throttle.
- 5. Determine the airspeed for best angle of climb at full throttle.
- 6. Determine time to climb, distance to climb, and fuel to climb as a function of altitude.
 - 7. Create charts for Flight Manual climb data.

Test Procedures:

Climb data were collected using the sawtooth climb FTT (Reference 3). Full throttle constant airspeed climbs were conducted at 50, 60, 65, 70, 80, and 90 KIAS. For each test point, two climbs were flown on opposite headings perpendicular to the wind. Times were recorded every 100 feet of pressure altitude using the time function of the Hewlett Packard 48SX calculator. Climb data were reduced as shown in Appendix D.

Test Results:

Figure A30 and Figure A31 show the standard day rate of climb performance in terms of indicated and calibrated airspeed. Each figure shows lines indicating the best rate of climb airspeed and best angle of climb airspeed as they vary with altitude. While the values in indicated airspeed are more useful operationally, the values in calibrated airspeed are shown to justify the best angle of climb airspeed can be found at the tangent line from the origin to the rate of climb curve. This determination can be done on a rate of climb chart plotted against calibrated, equivalent, or true airspeed, since in each

case the entire line for a given altitude is multiplied by the same factor regardless of airspeed. However, this determination cannot be performed on a rate of climb chart plotted against indicated airspeed. The shape of the curve changes since the conversion from calibrated to indicated airspeed is non-linear and dependent upon airspeed. The best angle of climb airspeeds were found using the chart plotted against calibrated airspeed, and these calibrated airspeeds were converted to indicated airspeeds and plotted on Figure A30.

The flight test derived climb speeds compare to the Flight Manual climb speeds as shown in Table 2. In converting between indicated and calibrated airspeed, the flight test derived Pitot-static position correction was used for flight test data, and the Flight Manual correction was used for Flight Manual data. The resulting rates and angles of climb are shown in Table 3

Table 2
CLIMB SPEED COMPARISON (IN KIAS (KCAS))

	Best Angle		Best Rate	
	Flight	Flight	Flight	Flight
Altitude	Test	Manual	Test	Manual
Sea Level	54 (60)	56 (56)	71 (72)	68 (66)
10,000 ft	50 (58)	56 (56)	59 (64)	62 (61)

Table 3

MAXIMUM PERFORMANCE CLIMB RESULTS
(Standard Day, Standard Weight)

	Best Angle		Best Rate	
Altitude	Airspeed (KIAS)	Angle (deg)	Airspeed (KIAS)	Rate (ft/min)
Sea Level	56	7.5	65	865
10,000 ft	56	2.6	65	330

Comparing climb speeds in calibrated airspeed, the flight test results for best angle of climb are 2 to 4 knots faster than recommended in the Flight Manual. Flight test best rate airspeeds are 3 to 6 knots faster than recommended in the Flight Manual. Flying at the Flight Manual recommended speed for best angle will result in a climb angle of 7.2 degrees at sea level for a 0.3 degree (4 percent) loss of climb angle. The Flight Manual recommended speed for best rate will result in a rate of climb of 850 ft/min at sea level for a 15 ft/min

(less than 2 percent) loss of climb rate. These differences are small enough that no changes in the Flight Manual are warranted.

Climb data is also presented for a cruise climb at 80 KIAS, which increases distance flown at a small loss of climb rate (2 percent at sea level, increasing to 26 percent at 10,000 feet) for situations where the maximum rate of climb is not required. Additionally, climbing at 80 KIAS improves the pilot's forward visibility by lowering the pitch angle.

The climb data were analyzed using the *RPM* model. Since the *RPM* model will simulate nonstandard atmospheric conditions, it was assumed that if the model could be made to match the flight test data at several non-standard conditions, then the model would be considered good and valid for any atmospheric conditions. Figure A32 shows climb data for two flight conditions, one at 8,000 feet and one at 12,000 feet pressure altitude and temperatures close to standard day temperatures. The *RPM* model was adjusted to closely match the 8,000 foot data, and then compared to the 12,000 foot data. The fairings in Figure A32 represent the *RPM* model prediction. The *RPM* model data were considered to be in reasonable agreement with the 12,000 foot data.

Figure A33 shows climb data for two flight conditions, one at 6,000 feet and one at 8,000 feet pressure altitudes and temperatures significantly above standard day temperatures. Climb data from the same RPM model is shown to be in reasonably good agreement with the flight test data. The maximum deviation from the flight test data is 50 ft/min, which is only 1/2 a division on a Vertical Velocity Indicator (VVI). The RPM model produced a valid representation of the aircraft climb performance.

To get the RPM model data to match the climb data, two additional compensations were made within the computer program. The first was to account for expanding pressure contours on non-standard days. On a hotter than standard day, 1000 feet of pressure altitude is greater than 1000 feet of tapeline altitude. Therefore, a rate of climb expressed in terms of pressure altitude will be less than the same rate of climb expressed in terms of tapeline altitude. This compensation was merely an application of a principle normally used in climb data reduction.

The second compensation was to account for an apparent increase in aircraft drag in climbs over that seen in cruise flight. This difference in drag was more noticeable at low speeds and less noticeable at high speeds. This result was hypothesized to be a result of the interaction of the slipstream and the separation drag from the cockpit rear window. The steeply sloping rear window is known to cause separated flow and thus increase the aircraft drag. Additionally, this window is fully engulfed in the propeller slipstream. At low speeds, the difference between the induced velocity of the propeller at full power and cruise power is the greatest, reducing to no difference at maximum airspeed. Therefore, the slipstream velocity over the rear window would be much higher in a slow speed climb than in cruise flight at the same airspeed. A relationship was developed and applied to the model data to account for this extra drag. This relationship and the method for accounting for non-standard day pressure altitude variations are further described in Appendix C.

Because the sawtooth climbs were relatively short compared to the amount of fuel burned, fuel used during the climb was not recorded. The fuel flows were calculated by the *RPM* model using the same fuel flow calculation method from cruise flight as a function of engine MAP and RPM.

Figure A34 through Figure A39 show rate of climb, fuel flow, time to climb, fuel to climb, and distance to climb at 65 KIAS and 80 KIAS. These charts are also submitted for Flight Manual inputs in Appendix B. These charts represent the *RPM* model and will give values for non-standard conditions. To determine rate of climb, enter the bottom left side of the chart at the appropriate OAT, go up to the pressure altitude, across to the rate of climb line, and straight down to read the rate of climb. The variation of fuel flow with non-standard temperature and pressure are almost identical to the rate of climb variation, so both of these values are plotted on the same chart. For the example shown in Figure A34:

OAT: 80° F
Pressure Altitude: 6,000 feet
Rate of Climb: 450 ft/min

Fuel flow is found using the same procedure with the fuel flow line.

To determine time to climb, fuel to climb, or distance to climb, the chart must be used twice. Enter with the initial OAT, go up to the initial pressure altitude, over to the appropriate line, and straight down to read the value. Repeat this process with the final conditions. The difference between the two values will be the time, fuel, or distance expected to be seen in the climb. For the example shown in Figure A35:

Start OAT: Start Pressure Altitude:

Start Time:

6,000 feet 16 min

80° F

End OAT:
End Pressure Altitude:

66° F 10,000 feet

End Time:

27 min

Time to Climb:

11 min

Fuel to climb and distance to climb are found using the same procedure with the appropriate line.

There is a substantial difference between the variation of time, fuel, and distance to climb and the variation of rate of climb with non-standard conditions. Thus, these are plotted on separate charts. However, the difference in the variation of time and fuel to climb and the variation of distance to climb with non-standard conditions is small; on the order of 5 percent. To reduce the number of charts in the pilot's checklist, the time, fuel, and distance to climb are presented on the same chart in the Flight Manual inputs in Appendix B. This is consistent with the data presentation format used by some general avaiation manufacturers.

The climb data presented were based on results from N557TH. The CCFT suspects that differences may exist between the climb performance of the three aircraft. Further testing should determine if differences exist in the climb performance of the three CCFT aircraft. (R4)

DESCENT PERFORMANCE

Test Objectives:

The test objectives for descent performance were:

1. Determine the best no wind glide ratio with throttle idle.

- 2. Determine airspeed for best glide ratio with throttle idle.
- 3. Determine the minimum sink rate with throttle idle.
- 4. Determine airspeed for minimum sink rate with throttle idle.
- 5. Determine time to descend, distance to descend, and fuel to descend at the best glide ratio airspeed as a function of altitude.
- 6. Determine time to descend, distance to descend, and fuel to descend at maximum structural cruising speed (V_{NO} top of green arc on airspeed indicator) as a function of altitude.
 - 7. Create charts for Flight Manual descent data.

Test Procedures:

Descent data were collected using the sawtooth descent FTT (Reference 3). Idle power constant airspeed descents were conducted at 50, 60, 65, 70, 80, and 90 KIAS. Descents were also flown at 107 KIAS and 2250 RPM to simulate enroute descents. For each test point, two descents were flown on opposite headings perpendicular to the wind. Times were recorded every 100 feet of pressure altitude using the time function of the Hewlett Packard 48SX calculator. Descent data were reduced using the methods described in Appendix D.

Test Results:

Descents were analyzed by considering the aircraft as a glider, i.e. counting any windmilling drag from the propeller against the airframe, and finding a drag polar which would represent the descent performance. This drag polar was determined by fitting a straight line to values of the drag coefficient plotted against the square of the lift coefficient, as was done for cruise data. This curve fit is shown in Figure A40. The resulting drag polar is shown in Figure A41. For reference, these figures also show the cruise drag polar. The idle descent drag polar is unusual in that it is less than the cruise flight drag polar. Generally a windmilling drag polar is greater than the cruise drag polar due to the additional drag from the windmilling propeller. However, in this case it was suspected that the reduction in separation drag over the cockpit rear window from the reduced slipstream velocity was larger than any increase in drag arising from the windmilling propeller. The fact that both drag polars have the same parasite drag coefficient was suspected to be strictly coincidental. Aircraft without a rear window like the Cessna 150, and thus without the separation drag, would see a different relationship between the cruise and idle descent drag polars.

The idle descent drag polar was

$$C_D = 0.0427 + 0.0477 C_L^2$$

Using this drag polar, the descent performance for the aircraft was analyzed. Figure A42 shows the penetration chart (L/D vs. Indicated Airspeed). The maximum glide ratio was 11 at 50 KIAS. At the Flight Manual recommended glide speed of 65 KIAS, the glide ratio was 10.5, or a reduction of 5 percent. Either airspeed should be operationally acceptable. The Flight Manual speed has the advantage of being the same as the climb speed, and thus one less airspeed for the pilot to remember.

Figure A43 shows the polar chart (Rate of Descent vs Indicated Airspeed). Figure A44 shows the same data presented against true airspeed. These charts show a small variation in rate of descent with altitude. The minimum sink rate at sea level is 530 ft/min at 50 KIAS. Theory states that the minimum sink rate should occur at a slower airspeed than the best glide ratio. The true minimum sink rate probably occurs at a slower speed than 50 KIAS, and possibly the minimum sink rate is at just above the stall speed, and not at the minimum of the power required curve. For the airspeeds tested, the minimum sink rate occured at 50 KIAS.

Figure A40 through Figure A44 also show values for a penetration descent at V_{NO} (107 KIAS) and 2250 RPM. The tachometer was placarded to avoid descending in the range of 1850 - 2250 RPM. Idle RPM would be below this range, and the descent rate would be too high for a normal penetration descent. Flying at full throttle and 107 KIAS would overspeed the engine at high altitudes and have too slow of a descent rate. An RPM of 2250 was chosen as being easy to remember, and the top end of the caution range. A C_L of 0.28 and a C_D of 0.022 were used to predict descent performance for this flight condition, as shown by the two labeled data points on Figure A41. The resulting descent rate of 900 ft/min is probably still too

high for a penetration descent in operational conditions. Investigate descents at 107 KIAS and RPM greater than 2250 to find the optimum throttle setting for a penetration descent. (R5)

Fuel burn was not measured during the descents because of the short duration of the descents. By observing the fluctuating fuel flow indications, the test team estimated a fuel flow of 1.5 gal/hr for idle descents, and a fuel flow of 5.5 gal/hr for descents at 107 KIAS and 2250 RPM.

Figure A45 through Figure A47 show the descent performance at idle power and 65 KIAS for non-standard conditions. Figure A48 through Figure A50 show the same data for descents at 107 KIAS and 2250 RPM. These charts are also submitted for Flight Manual inputs in Appendix B. These charts are used in the same manner as the corresponding climb charts. In this case, the variation of distance with non-standard conditions was sufficiently different from that of time and fuel that distance is presented as a separate chart.

TAKEOFF PERFORMANCE

Test Objectives:

The test objectives for takeoff performance were:

- 1. Determine takeoff ground roll using the Flight Manual takeoff procedure.
 - 2. Create charts for Flight Manual takeoff data.

Test Procedures:

Takeoff data were collected using the Flight Manual procedure. This procedure consisted of

Maintain directional control by use of nosewheel steering. Hold the elevator slightly aft of neutral to keep weight off the nose gear and hold aileron into the wind. At 50 KIAS, raise the nose smoothly to takeoff attitude. Maintain this attitude and allow the aircraft to fly off the ground which will occur between 50 and 60 knots. (Reference 1)

All takeoffs were done with flaps fully retracted. The fuel mixture was leaned at fields above 5000 feet elevation. Below 5000 feet elevation, takeoffs were done with the mixture at full rich.

Pressure altitude, outside air temperature, fuel used, wind direction and wind velocity were recorded prior to takeoff. The time from brake release to liftoff and the liftoff airspeed were recorded during the takeoff. If available, runway lights were used to estimate the takeoff distance. The data were reduced and corrected to a common liftoff speed to determine takeoff distance. These distances were standardized to produce a chart for predicting takeoff distance by the methods shown in Appendix D.

Test Results:

Twenty four takeoffs were accomplished at pressure altitudes ranging from 1490 to 6780 feet. The Flight Manual procedure specifies a rotation airspeed, not a liftoff airspeed. The liftoff airspeeds varied from 52 to 65 KIAS, with an average of 57 KIAS. All takeoff data were standardized to a liftoff airspeed of 57 KIAS, zero wind, standard weight of 1760 pounds, and sea level density. These results are shown in Figure A51. This chart was also included in the Flight Manual inputs in Appendix B.

The mean ground roll distance was 1000 feet at a mean liftoff airspeed of 57 KIAS. The 95 percent confidence interval for ground roll distance (one-tailed test; shorter ground rolls are not an operational concern) was bounded at 1165 feet. The 99 percent confidence interval for ground roll distance was bounded at 1234 feet. The 95 percent confidence interval (two-tailed test) for liftoff airspeed was bounded at 51 KIAS and 63 KIAS.

Using the methods shown in Appendix D, the mean ground roll distance was expanded for non-standard conditions as shown in Figure A52. This

chart is of the same form used by several general aviation manufacturers. To use this chart, enter at the field OAT. Go up to the current field pressure altitude. Go across to the Weight Reference Line. From here, follow the guidelines down until reaching the vertical line for the takeoff weight. Go across to the Wind Reference Line. Follow the guidelines to the wind component down the runway (down for headwinds, up for tailwinds). Go across to the right side to read the mean takeoff ground roll in feet. For the example shown:

OAT: 80° F
Pressure Altitude: 6,500 feet
Weight: 1600 lbs
Headwind: 10 knots
Ground Roll: 1170 feet

Figure A53 and Figure A54 are included to show the effects of dispersion on ground roll distance. These figures show how much additional distance should be added to find the distance at the limit of the 95 percent and 99 percent confidence intervals. Only the effects of weight and density altitude are shown. A headwind will always shorten the takeoff roll, and takeoffs should not be attempted in anything above a very small tailwind. To use these charts, enter with the takeoff weight, go up to the appropriate density altitude, and to the left to read the dispersion distance. Add this distance to the mean takeoff ground roll to get the maximum expected ground roll.

Note that normally Figure A53 and Figure A54 would not be needed by the operational pilot. Additional runway length allowed for stopping after an engine failure on the runway will normally greatly exceed the additional distance from dispersion.

CONCLUSIONS AND RECOMMENDATIONS

Performance data were collected on the USAF Academy Cadet Competition Flying Team (CCFT) Cessna 150 in the areas of cruise, Pitot-statics, climb, descent, and takeoff. These data were used to develop a computer model of the aircraft using the Reciprocating Engine and Propeller Modeling Program (RPM). This computer model was then used to create performance charts and tabulated data for the operational flight envelope for inclusion in the next update of the Flight Manual. All test objectives were met.

Cruise flight was characterized by the aircraft drag polar,

 $C_D = 0.042696 + 0.068861 C_L^2$

derived from flight test. Based on limited flights in two of the aircraft, drag and power required data for all three aircraft were in satisfactory agreement.

1. Additional testing should be conducted to verify the validity of the drag polar for all three aircraft. (Page 4)²

The fuel flow data was modeled with satisfactory agreement with the flight test data. Tabulated cruise data were created on 5x8" cards for flight planning purposes, with power settings above 75 percent flagged.

The maximum range airspeed was 65 KIAS. An airspeed of 85 KIAS gave the maximum airspeed per pound of fuel burned, with a reduction in range of 10 to 20 percent. Typical 94 FTS operational procedures of flying at maximum speed resulted in a reduction in range of 23 to 40 percent. The maximum endurance for airspeeds tested occurred at 50 KIAS, the minimum airspeed tested.

2. Flight data, such as RPM, fuel flow, fuel used, indicated airspeed, true airspeed, range, and endurance should be collected on 94th FTS deployments and CCFT practice and competition flights and compared to the

performance data presented in this report for further verification of these performance data. (Page 7)

The Pitot-static position correction curve was derived from flight test using the GPS Speed Course and GPS Ground Speed methods. The flight test derived curve followed the general trend of the Flight Manual curve. At airspeeds normally seen during competition or cross country flight, the flight test derived curve was within one knot of the Flight Manual curve. At low speeds, the flight test curve is about 6 knots higher than the Flight Manual curve, resulting in higher calibrated airspeeds at Flight Manual takeoff and approach speeds. Based on good operational experience, there is no reason to change the Flight Manual takeoff and approach speeds.

The flight test derived position correction curve was considered valid for N557TH and N557AW. An acceptable position correction curve for N557SH could be found by subtracting 4 knots from the flight test derived position correction curve.

3. Investigate the Pitot-static position corrections for N557SH and N557AW. (Page 9)

Climb data were analyzed using the RPM model to match flight test data at several non-standard conditions. The model was then considered valid at all flight conditions. The flight test results for best angle of climb airspeed and best rate of climb airspeed were in good agreement with the Flight Manual, and do not warrant any changes to the Flight Manual airspeeds. The maximum rate of climb was 865 ft/min at sea level and 330 ft/min at 10,000 feet. The maximum angle of climb was 7.5 degrees at sea level and 2.6 degrees at 10,000 feet. Climb charts are presented for maximum rate of climb at 65 KIAS and for cruise climb at 80 KIAS. The climb data presented were based on results from N557TH. The CCFT suspects that differences may exist between the climb performance of the three aircraft.

4. Further testing should determine if differences exist in the climb performance of the three CCFT aircraft. (Page 12)

² Page numbers in parentheses refer to the page number in the Test and Evaluation section of this report where the recommendation is made.

Descent data were analyzed by considering the aircraft as a glider, counting the windmilling drag of the propeller against the airframe. The idle descent drag polar was

$$C_D = 0.0427 + 0.0477 C_L^2$$

which led to the curious conclusion that the idle descent drag was less than the cruise drag. This was suspected to result from the interaction between the slipstream and separation drag from the cockpit rear window.

The maximum glide ratio was 11 at 50 KIAS, and 10.5 at the Flight Manual recommended glide speed of 65 KIAS. This small difference does not warrant a change to the Flight Manual, since 65 KIAS is easier to remember as the same airspeed for best rate of climb. The minimum sink rate for the airspeeds tested was 530 ft/min at 50 KIAS.

Descent performance was also investigated for a penetration descent at 107 KIAS ($V_{\rm NO}$) and 2250 RPM. At these conditions, the lift coefficient was 0.28 and

the drag coefficient was 0.022. The resulting descent rate of 900 ft/min is probably still too high for a penetration descent in operational conditions.

5. Investigate descents at 107 KIAS and RPM greater than 2250 to find the optimum throttle setting for a penetration descent. (Page 13)

Takeoff data were standardized to zero wind, standard weight of 1760 pounds, and sea level density. The mean ground roll distance was 978 feet at a mean liftoff airspeed of 57 KIAS. The 95 percent confidence interval for ground roll distance was bounded at 1140 feet. The 99 percent confidence interval for ground roll distance was bounded at 1208 feet. The 95 percent confidence interval for liftoff airspeed was bounded at 51 KIAS and 63 KIAS.

The performance of the CCFT Cessna 150 was satisfactorily characterized. Further testing should address the recommendations of this report, and the results of this testing should be incorporated in the Flight Manual.

REFERENCES

- 1. Operating Instruction 51-150, 94th FTS, USAF Academy, Colorado, 15 September 1993.
- 2. Erb, Russell E., Reciprocating Engine and Propeller Modeling Program, computer software, Erb Engineering, Arlington Texas, yet to be published.
- 3. Payne, James M., Flight Test Handbook, JP Aviation, USAF Academy, Colorado, 1989.
- 4. Bailey, William D., Captain, USAF, et al, Investigation of Using Global Positioning System for Air Data System Calibration of General Aviation Aircraft (HAVE PACER II), AFFTC-TR-95-76, AFFTC, Edwards AFB, California, January 1996.
- 5. Anderson, John D., Jr., Introduction to Flight, 3rd ed., McGraw-Hill Book Company, New York, 1989.
- Carson, B. H., Fuel Efficiency of Small Aircraft, AIAA-80-1847, AIAA Aircraft Systems Meeting, Anaheim, CA, 4-6 August 1980.
- 7. von Mises, Richard, Theory of Flight, Dover Publications, Inc., New York, 1959.

This page intentionally left blank.

APPENDIX A TEST DATA

Figure A1 Engine Horsepower Determination Methods Comparison

Figure A2 Drag Polar Curve Fit

Figure A3 N557TH Drag Results Compared to Aircraft Drag Polar

Figure A4 N557AW Drag Results Compared to Aircraft Drag Polar

Figure A5 N557SH Drag Results Compared to Aircraft Drag Polar

Figure A6 Brake Horsepower Required Curve Fit

Figure A7 N557TH Brake Horsepower Required Results Compared to Aircraft Brake Horsepower Required

Figure A8 N557AW Brake Horsepower Required Results Compared to Aircraft Brake Horsepower Required

Figure A9 N557SH Brake Horsepower Required Results Compared to Aircraft Brake Horsepower Required

Figure A10 Brake Specific Fuel Consumption Results

Figure All Specific Air Range Results

Figure A12 Specific Endurance Results

Figure A13 Cruise Airspeed Performance

Figure A14 Cruise RPM Performance

Figure A15 Cruise Fuel Flow Performance

Figure A16 Dual Constant Airspeed Cruise Range Performance

Figure A17 Dual Constant Airspeed Cruise Range Performance With 45 Minute Reserve

Figure A18 Dual Constant Airspeed Cruise Endurance Performance

Figure A19 Dual Constant Airspeed Cruise Endurance Performance With 45 Minute Reserve

Figure A20 Solo Constant Airspeed Cruise Range Performance

Figure A21 Solo Constant Airspeed Cruise Range Performance With 45 Minute Reserve

Figure A22 Solo Constant Airspeed Cruise Endurance Performance

Figure A23 Solo Constant Airspeed Cruise Endurance Performance With 45 Minute Reserve

Figure A24 Aircraft Brake Horsepower Required and Available

Figure A25 Aircraft Thrust Horsepower Required and Available

Figure A26 Aircraft Thrust Required and Available

Figure A27 Airspeed Pitot-Static Position Correction

Figure A28 Altitude Pitot-Static Position Correction

Figure A29 Airspeed Pitot-Static Position Correction, N557SH

Figure A30 Standard Day Rate of Climb Performance (Indicated Airspeed)

Figure A31 Standard Day Rate of Climb Performance (Calibrated Airspeed)

Figure A32 Test Day Rate of Climb Matching

Figure A33 Test Day Rate of Climb Matching

Figure A34 Nonstandard Day Rate of Climb Performance at 65 KIAS

Figure A35 Nonstandard Day Time and Fuel to Climb at 65 KIAS

Figure A36 Nonstandard Day Distance to Climb at 65 KIAS

Rate of Climb (ft/min) and Fuel Flow (gal/hr*100)

800 1000 1200

Outside Air Temperature (°F)

Figure A38 Nonstandard Day Time and Fuel to Climb at 80 KIAS

Figure A39 Nonstandard Day Distance to Climb at 80 KIAS

Figure A40 Idle Descent Drag Polar Curve Fit

Figure A41 Idle Descent Drag Polar

Figure A42 Idle Descent Penetration Chart

Figure A43 Idle Descent Polar Chart by Indicated Airspeed

Figure A44 Idle Descent Polar Chart by True Airspeed

Figure A45 Nonstandard Day Idle Rate of Descent Performance at 65 KIAS

Figure A46 Nonstandard Day Time and Fuel to Descend at Idle at 65 KIAS

Figure A47 Nonstandard Day Distance to Descend at Idle at 65 KIAS

Figure A48 Nonstandard Day Idle Rate of Descent Performance at 107 KIAS, 2250 RPM

Figure A49 Nonstandard Day Time and Fuel to Descend at 107 KIAS, 2250 RPM

Figure A50 Nonstandard Day Distance to Descend at 107 KIAS, 2250 RPM

Figure A51 Standardized Takeoff Ground Roll Performance

Figure A52 Mean Takeoff Ground Run

Figure A53 Takeoff 95th Percentile Dispersion

Figure A54 Takeoff 99th Percentile Dispersion

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 1 of 30)

Engine: Lycoming O-320-E2D Mixture: Propeller: McCauley TM7458/1C172 Carb Heat:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

ight: 1760 lbs Data Baps: UP

	GРН	12.0	10.7	9.3	8.2	9.7	0.7	6.5	6.1	5.8	5.5	5.3	5.1	5.0	6.4	8.4		12.1	10.8	9.4	8.3	9.7	0.7	6.5	6.1	5.8	5.5	5.3	5.1	5.0	4.8	4. 8.
	KTAS	111	2	5	95	91	8	82	78	74	2	29	25	89	2	ន		112	107	102	96	32	87	æ	79	75	7	8	2	61	24	<u>z</u>
40° F (4° C)	RPM	2534	2432	2320	2210	2122	2036	1961	1886	1819	1757	1715	1671	1637	1595	1573		2556	2452	2339	2230	2141	2055	1979	1902	1837	1774	1726	1683	1652	1606	1589
4	%BHP	88	79	8	19	22	\$	4	4	37	×	32	30	82	88	27		8	2	2	61	જ	\$	4	4	37	¥	32	8	ଷ	8	58
	MAP	27.0	25.3	23.8	22.5	21.5	20.7	20.0	19.5	19.1	18.8	18.6	18.5	18.4	18.4	18.4		26.9	25.2	23.7	22.4	21.4	20.5	19.9	19.3	18.9	18.6	18.4	18.2	18.2	18.2	18.2
	GPH	12.0	10.7	9.3	8.3	7.7	7.1	9.9	6.2	5.9	5.6	5.4	5.2	5.1	2.0	4.9		12.2	10.8	9.4	8.4	7.7	7.1	9.9	6.2	5.9	5.6	5.4	5.2	5.1	2.0	4 . 0.
	KTAS	109	호	8	8	88	88	20	9/	73	8	8	ន	83	ኤ	22		110	5	8	g	8	ଞ	8	11	73	8	8	ន	8	ଝ	22
20° F (-7° C)	RPM	2480	2380	2273	2165	5079	1995	1920	1848	1783	1723	1677	1638	1595	1561	1540		2505	2401	2293	2185	2098	2014	1939	1864	1799	1738	1692	1651	1609	1583	549
N	%ВНР	87	11	88	29	53	8	8	39	38	33	3	8	28	27	22		88	28	8	8	72	8	4	4	8	क्र	સ	ଛ	ଷ	8	72
	MAP	26.5	24.9	23.5	22.2	21.2	20.5	19.8	19.4	19.0	18.7	18.5	18.4	18.3	18.4	18.4		26.4	24.8	23.4	22.1	21.1	20.3	19.7	19.2	18.8	18.5	18.3	18.2	18.1	18.1	18.1
	GPH	12.0	10.6	9.4	8.4	7.8	7.2	6.7	6.3	0.9	5.7	5.5	5.4	5.2				12.1	10.7	9.4	8.4	7.8	7.2	6.7	6.3	6.0	5.7	5.5	5.3	5.2		
	Y	106	102	8	91	87	8	2	75	7	29	2	61	83				107	5	26	82	88	\$	8	9/	72	8	æ	62	88		
• F (-18° C)	RPM	2428	2329	2225	2121	2037	1954	1879	1810	1744	1689	1642	1603	1563				2450	2351	2243	2137	2054	1973	1897	1825	1763	1703	1656	1614	1576		
0	%BHP	88	22	29	8	52	47	4	33	જ	83	34	8	28				88	92	29	හු	83	47	£	8	જ્	8	33	ଷ	28		
	MAP	26.0	24.5	23.1	21.9	21.0	20.2	19.7	19.2	18.9	18.6	18.4	18.4	18.3				25.9	24.4	23.0	21.7	50.9	8.1	19.5	19.0	18.6	18.4	18.2	18.1	18.1		
	KIAS	115	110	55	8	જ	8	8	8	75	2	છ	8	55	ß	\$	4	115	10	55	8	ક્ક	8	88	8	75	2	જ	8	55	ß	& 4
	Afftude	0	(59° F)	(15°C)														200	(57° F)	(14°C)												

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 2 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	11.8	10.6	9.4	8.2	7.4	6.8	6.3	5.8	5.5	5.2	5.0	6.4	4.7	4.6	4.5	4.5		10.7	9.5	8.3	7.5	6.8	6.3	5.9	5.5	5.2	5.0	4.9	4.7	4.6	4.5	4.5
0	KTAS	117	112	9	101	98	9	87	83	78	74	7	89	2	8	જુ	52		113	107	102	97	35	88	83	79	75	72	88	2	61	27	ន
100° F (38° (RPM	2681	2571	2453	2338	2246	2156	2075	1994	1928	1860	1810	1769	1726	1686	1664	1646		2595	2475	2359	2267	2176	2082	2015	1946	1877	1827	1786	1738	1704	1673	1664
٦	%ВНР	22	\$	23	64	83	52	47	42	93	88	ষ্	32	31	83	8	23		2	74	65	28	25	47	43	æ	જ્	×	32	31	ଛ	ଷ	প্ত
	MAP	28.6	26.7	24.9	23.4	22.3	21.4	20.6	19.9	19.5	19.1	18.9	18.7	18.6	18.6	18.6	18.7		26.7	24.8	23.3	22.2	21.3	20.5	19.8	19.4	19.0	18.7	18.5	18.4	18.4	18.4	18.5
	ВРН	11.8	10.7	9.4	8.2	7.4	6.8	6.3	5.9	5.6	5.3	5.1	4.9	4.8	4.7	4.6	4.6	11.9	10.8	9.5	8.3	7.5	6.9	6.3	5.9	5.6	5.3	5.1	4.9	4.8	4.7	4.6	4.6
-	KTAS	115	110	5	8	98	8	8	81	11	73	2	99	ည	8	ß	51	116	÷	र्ठ	100	96	6	8	82	78	7	2	29	ន	8	ଞ	25
80° F (27° C)	RPM	2631	2524	2408	2296	2205	2117	2038	1958	1891	1826	1781	1737	1695	1656	1634	1616	2655	2547	2430	2317	9777	2137	2054	1976	1908	28	1793	1753	1708	1674	1642	1629
80	%BHP	82	82	22	ន	25	2	4	41	88	જ	ಜ	31	8	ଷ	88	82	93	8	22	2	25	2	4	42	33	ജ	ಜ	32	ස	ଷ	ଷ	28
	MAP	28.0	26.2	24.5	23.1	22.1	21.1	8.04	19.8	19.4	19.0	18.8	18.6	18.6	18.5	18.5	18.7	27.9	292	24.5	23.0	22.0	21.0	20.5	19.6	19.2	18.8	18.6	18.4	18.4	18.3	18.3	18.4
	GPH	11.9	10.7	9.4	8.2	7.5	6.9	6.4	6.0	2.7	5.4	5.2	5.0	4.9	4.8	4.7	4.7	12.0	10.8	9.2	8.3	7.5	6.9	6.4	6.0	5.7	5.4	5.2	5.0	4.9	4.8	4.7	4.7
6	KTAS	113	8	1 33	97	83	88	\$	8	9/	22	88	65	61	፠	¥	ଝ	114	2	\$	86	93	28	8	8	9/	2	8	99	29	፠	ß	21
60° F (16° (RPM	2583	2480	2363	2252	2164	2077	2002	1923	1855	1792	1748	1702	1663	1625	1604	1585	2606	2499	2385	2274	2184	2096	2016	1940	1873	1808	1760	1716	1677	1649	1619	1595
9	% ВНР	91	8	2	62	52	ន	&	41	37	¥	33	31	ଛ	88	28	28	91	8	7	62	99	ଜ	\$	41	88	ક્ષ	ಜ	31	30	83	88	88
	MAP	27.5	25.8	24.1	22.7	21.8	20.9	20.2	19.6	19.2	18.9	18.7	18.5	18.5	18.4	18.5	18.6	27.5	25.7	24.1	22.7	21.7	20.8	20.0	19.5	19.1	18.7	18.5	18.3	18.3	18.2	18.3	18.4
	KIAS	115	110	5	100	98	8	82	8	75	2	ß	8	ß	ន	£	\$	115	110	501	100	8	8	8	8	75	2	ß	8	55	ន	₹	4
	Aftitude	0	(59° F)	(15°C)														200	(57°F)	(14°C)													

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 3 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	12.1	10.9	9.5	8.4	9.7	7.0	6.5	6.1	5.8	5.5	5.3	5.1	5.0	6.4	8.4		11.0	9.6	8.4	1.7	7.1	6.5	6.1	5.8	5.5	5.3	5.1	4.9	4.9	4.8
	KTAS	113	8	5	97	35	8	2	79	75	7	88	65	61	8	¥		109	<u>ස</u>	86	63	88	2	8	92	22	8	8	62	ቖ	25
40° F (4° C)	RPM	2579	2473	2360	2249	2161	2074	1997	1921	1853	1789	1742	1698	1660	1632	1595		2496	2381	2270	2181	2093	2013	1936	1870	1806	1758	1718	1673	<u>2</u>	1618
4	%ВНР	8	8	2	62	જ	ន	₹	41	37	፠	33	31	30	8	88		81	7	62	95	යි	4	41	88	35	ಜ	31	8	ଷ	28
	MAP	56.9	25.2	23.6	22.3	21.3	20.4	19.7	19.2	18.8	18.4	18.2	18.0	18.0	18.0	18.0		25.2	23.6	22.2	21.2	20.3	19.6	19.0	18.6	18.3	18.0	17.9	17.8	17.8	17.8
	GPH	12.2	10.9	9.2	8.4	7.7	7.1	9.9	6.2	5.9	5.6	5.4	5.2	5.1	5.0	6.4		11.0	9.6	8.4	7.7	7.1	9.9	6.2	5.9	5.6	5.4	5.2	5.1	2.0	4 .
	KTAS	111	8	8	ጼ	91	8	82	78	74	2	29	8	09	22	ន		107	5	8	9	84	8	79	22	7	29	8	61	21	ន
20° F (-7° C	RPM	2527	2422	2312	2204	2117	2032	1957	1881	1815	1754	1707	1665	1634	1591	1561		2445	2334	2224	2136	2051	1972	1898	1833	1769	1722	1681	1640	1614	1576
N	%ВНР	88	78	8	5	22	4	4	4	37	34	32	30	67	88	27		6/	2	61	55	₽	4	4	37	¥	33	8	દ્ય	8	27
	MAP	26.4	24.8	23.2	22.0	21.0	20.2	19.5	19.0	18.6	18.3	18.1	18.0	18.0	17.9	18.0		24.7	23.2	21.8	50.9	8.	19.4	18.8	18.5	18.1	17.9	17.8	17.7	17.7	17.8
	СРН	12.2	10.9	9.5	8.5	7.8	7.2	6.7	6.3	6.0	5.7	5.5	5.3	5.2	5.1			11.0	9.6	8.5	7.8	7.3	6.8	6.3	6.0	5.7	5.5	5.3	5.2	2.0	
	¥	108								ı				1				\$	8	8	88	8	25	11	73	69	8	ន	23	፠	
0° F (-18° C	RPM	2472	2373	2265	2159	2074	1990	1916	1842	1771	1718	1674	1632	1590	558			2395	2285	2177	2082	2008	1931	1858	1795	1734	1690	1644	1613	1566	
O	%BHP					ı				ક્ષ				ı				78	88	8	¥	8	4	33	38	8	32	ස	83	27	
	MAP	25.8	24.4	22.9	21.6	20.8	20.0	19.4	18.9	18.4	18.2	18.0	17.9	17.9	17.9			24.3	22.8	21.5	20.6	19.9	19.2	18.7	18.4	18.1	17.8	17.7	17.7	17.6	
	KIAS	115	110	8	8	95	8	85	8	75	20	39	8	55	20	3	4	110	501	8	88	8	æ	8	75	20	ß	8	55	ଊ	ਨੇ ਤੇ
	Altitude	1000	(55° F)	(13.0)	1					•								1500	(54° F)	(12°C)											

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 4 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

			2	60° E /16° C	1.			Ja	J - LU - J - N					7 100e /	1	
					7				2 1 2	_			2	100 F (30 C)	3	
Affitude	KIAS	MAP	%BHP	RPM	KTAS	GPH	MAP	%BHP	RPM	KTAS	GPH	MAP	% BHP	RPM	KTAS	GPH
1000	115	27.4	82	2628	115	12.0	28.1	\$	2680	117	12.1					
(55° F)	110	25.7	82	2522	110	10.9	29.5	2	2571	112	10.8	9.92	85	2618	114	10.8
(13°C)	50	24.0	72	2406	5	9.6	24.4	2	2452	8	9.6	24.8	75	2498	108	9.6
	100	22.6	ន	2294	8	8.3	22.9	8	2338	5	8.4	23.2	92	2381	103	8.4
	88	21.6	25	2204	22	9.7	21.9	æ	2246	88	7.5	22.2	83	2288	88	7.5
	8	20.7	51	2116	8	7.0	20.9	22	2156	9	6.9	21.2	S	2196	83	6.8
	8	19.9	\$	2035	æ	6.4	20.1	47	2074	87	6.4	20.4	8	2112	28	6.3
	8	19.3	41	1959	81	6.0	19.5	42	1997	ಜ	5.9	19.7	£	2033	2	5.9
	75	18.9	88	1890	11	5.7	19.1	88	1928	78	5.6	19.2	\$	1963	8	5.5
	2	18.5	38	1825	23	5.4	18.7	88	1861	74	5.3	18.8	37	4894	92	5.2
	છ	18.3	8	1771	2	5.2	18.4	क्र	1810	7	5.1	18.5	8	1844	72	5.0
	8	18.1	31	1736	98	5.0	18.2	32	1765	88	4.9	18.3	33	1797	8	4.8
	જ	18.1	೫	1692	ೞ	4.9	18.1	ଛ	1722	8	4.8	18.2	31	1753	છ	4.7
	ଜ	18.0	প্ত	1658	8	8.4	18.1	೫	1689	8	4.7	18.2	8	1719	61	4.6
	&	18.1	ଷ	1635	ß	4.7	18.1	প্ত	1656	æ	4.6	18.2	೫	1697	25	4.6
	8	18.2	28	1617	51	4.7	18.3	83	1649	52	4.6	18.3	8	1679	ន	4.5
1500	110	25.7	83	2546	111	11.0	26.2	2	2595	113	10.9	26.6	98	2642	115	10.9
(54° F)	56	23.9	22	2428	505	9.7	24.4	74	2475	107	9.7	24.8	75	2521	\$	9.7
(15°C)	5	22.5	ಜ	2315	9	8.4	22.8	æ	2358	102	8.4	23.1	98	2401	\$	8.5
	95	21.5	22	2224	જ	9.7	21.8	88	2267	97	7.6	22.1	83	2310	8	7.6
	8	50.6	51	2135	91	7.0	20.8	23	2175	8	6.9	21.1	ಜ	2216	8	6.9
	8	19.8	8	2053	8	6.5	20.0	47	2083	88	6.4	20.2	84	2131	83	6.3
	8	19.2	42	1975	82	6.0	19.4	£3	2015	83	0.9	19.5	£	2049	85	5.9
	75	18.8	ඝ	1909	78	5.7	18.9	æ	1945	79	5.6	19.0	8	1978	8	5.5
	2	18.4		1842	74	5.4	18.5	ജ	1877	55	5.3	18.7	37	1915	92	5.3
	ß	18.2	ಜ	1793	2	5.2	18.3	¥	1828	22	5.1	18.4	32	1861	73	5.0
	8	18.0	32	1753	29	5.0	18.1	32	1786	88	4.9	18.2	ಜ	1814	8	4.8
	ន	17.8	ജ	1705	ಜ	4.8	17.9	31	1741	2	4.8	18.0	31	1773	8	4.7
	ន	17.9	প্ত	1672	8	4.8	18.0	8	1703	5	4.7	18.0	8	1734	62	4.6
	\$	17.9	88	1640	ß	4.7	18.0	ম	1677	25	4.6	18.1	8	1708	8	4.5
	4	17.9	28	1626	52	4.7	18.1	8	1666	ន	4.6	18.2	8	1687	73	4.5

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 5 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

_		_	_		_	_			_	_		_	_	_	_	_			_				_				_	$\overline{}$			
	GPH	11.1	9.8	8.5	7.7	7.7	9.9	6.1	5.8	5.5	5.3	5.1	4.9	4.9	4.8	4.7	11.2	6.6	8.5	7.8	7.1	6.6	6.1	5.8	5.5	5.3	5.1	4.9	4.8	4.8	4.8
	KTAS	110	5	8	8	8	æ	81	11	2	g	99	ಜ	20	ß	51	111	5	9	፠	8	98	82	78	2	2	29	ន	g	ß	25
40° F (4° C)	RPM	2519	2403	2290	2201	2112	2033	1956	1890	1823	1774	1730	1687	1656	1625	1600	2543	2425	2310	2222	2132	2051	1975	1905	1840	1790	1750	1702	1668	1649	1633
4		82	72	ಜ	25	5	8	41	88	ક્ષ	ន	31	8	8	82	28	ន	2	ន	25	2	94	42	88	98	ಜ	32	8	ଷ	ଷ	8
	MAP	25.1	23.5	27.1	21.1	20.2	19.5	18.9	18.5	18.1	17.9	17.7	17.6	17.6	17.6	17.6	25.1	23.4	22.0	21.0	20.1	19.4	18.7	18.3	18.0	17.7	17.5	17.4	17.4	17.5	17.6
	СРН	11.1	9.7	8.5	7.8	7.2	6.7	6.2	5.9	2.6	5.4	5.2	5.0	6.4	6.4		11.3	8.6	9.8	7.8	7.2	6.7	6.2	5.9	5.6	5.4	5.2	5.0	2.0	6.4	8.4
	KTAS	108	1 02	26	35	88	\$	79	75	7	8	92	61	8	72		601	<u>ន</u>	86	83	28	\$	80	9/	22	8	85	62	88	ጷ	<u>.</u>
20° F (-7° C)	RPM	2467	235	2243	2156	2069	8	1915	1852	1785	1739	1695	1654	1620	159		2492	2376	2264	2177	2089	5002	1933	1865	1802	1754	1715	1669	464	1607	1596
×	%BHP	8	2	61	55	ន	\$	4	88	¥	32	31	82	88	83		81	7	62	8	ଝ	\$	41	88	æ	ಜ	31	ଛ	ଷ	8	78
	MAP	24.7	23.1	21.7	20.8	20.0	19.3	18.7	18.3	18.0	17.8	17.6	17.5	17.5	17.6		24.7	23.0	21.6	20.7	19.9	19.1	18.5	18.1	17.8	17.6	17.4	17.3	17.4	17.4	17.4
	СРН	11.1	9.6	9.6	7.9	7.3	6.7	6.3	6.0	2.5	5.5	5.3	5.2	5.1	5.0		11.2	9.7	8.6	7.9	7.3	6.8	6.3	6.0	5.7	5.5	5.3	5.2	5.0	2.0	
	KTAS	Ť									29						106	ē	86	91	87	æ	78	74	2	29	2	61	22	ន	
F (-18° C	RPM	2417	2306	2198	2110	2028	1949	1874	1811	1751	1705	1662	1625	1584	1570		2439	2326	2218	2133	2045	1969	1894	1827	1764	1721	1680	1642	1602	1576	
0	%BHP	Г									32						79	8	9	જ	4	4	4	37	ষ্ক	32	31	ଷ	82	88	
	MAP	24.3	7.22	21.5	20.5	19.7	19.0	18.5	18.2	17.8	17.7	17.6	17.5	17.5	17.6		24.2	22.6	21.4	20.4	19.6	19.0	18.4	18.0	17.6	17.5	17.4	17.3	17.3	17.4	
	KIAS	110	505	9	88	8	æ	8	75	2	જ	8	55	20	\$	4	110	55	8	æ	8	82	8	75	2	જ	8	55	ន	\$	\$
	Aftitude	2000	(52° F)	(1. (C)													2500	(50° F)	(10°C)									_			

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 6 of 30)

USAFA CCFT Cessna 150/150 HP

Carb Heat: Mixture: McCauley TM7458/1C172 Lycoming O-320-E2D

Engine: Propeller:

Weight: Leaned OFF OFF

Flaps:

Data Basis: RPM Model 1760 lbs

GPH 8.6 7.6 6.9 6.3 5.9 7.7 5.3 5.3 5.0 4.9 KTAS **50082888410883** 100° F (38° C) 2667 2544 2423 2423 2327 2236 2150 2069 1998 1932 1878 2568 22446 22349 2257 2257 22170 2016 1950 1950 1895 1895 1798 1736 1736 %BHP 2683244 383383888 8244 4888888888 24.7 23.0 22.0 20.9 20.0 20.0 19.3 18.7 18.1 17.7 17.7 17.7 17.7 MAP 26.6 24.7 22.7 22.1 22.1 20.1 19.4 18.9 18.3 18.3 18.3 17.9 17.8 17.9 18.0 GPH 11.0 9.8 8.6 7.6 6.9 6.0 5.6 5.3 5.5 5.3 5.1 9.9 8.4.4 7.4.6 11.1 9.9 8.7 7.7 7.0 6.4 6.0 S 57 65 80° F (27° C) 2644 2521 2402 2307 2216 2213 2051 2288 2196 2112 2031 1758 1719 1691 1672 1980 1914 1861 1814 1960 1895 1798 1798 323458228 ភននន 8 6 8 8 8 8 8 37 35 33 33 8888 26.1 224.3 22.7 221.7 20.7 20.7 19.9 19.2 18.4 18.4 18.1 24.3 21.5 20.6 19.8 19.1 MAP 17.8 17.7 17.8 17.9 18.6 18.3 18.0 7.8 17.6 17.6 17.6 17.6 11.1 9.9 7.8 7.0 6.5 6.5 5.7 5.7 5.0 5.0 7.7 7.0 7.0 6.5 7.0 5.7 5.2 5.0 0 8 7 7 KTAS 60° F (16° C) 2569 2451 2451 2245 2015 2015 1993 1993 11869 1725 1666 1661 2593 2474 2474 2357 2267 2017 2012 1942 1876 1827 1780 %BHP 2528374 888888888 2 4 8 8 8 4 4 8 8 8 8 8 8 8 8 8 8 MAP 25.6 23.9 22.4 22.4 20.4 19.0 18.0 18.0 18.0 17.8 25.6 23.9 22.3 21.4 20.4 18.9 18.4 18.1 17.8 17.6 17.7 17.7 17.7 5 5 5 8 8 8 8 5 5 8 8 8 8 8 4 5 5 5 8 8 8 8 5 6 8 8 8 8 4 8 2500 (50° F) (10° C) 2000 (52° F) (11° C) Altitude

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 7 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	ВРН	11.3	10.0	8.7	7.8	7.1	9.9	6.2	5.8	5.5	5.3	5.1	4.9	4.8	4 .8	4.7	10.1	8.8	7.9	7.2	9.9	6.2	5.8	5.5	5.3	5.1	4.9	4.8	8. 4
	KTAS	112	9	5	86	91	87	82	78	74	7	29	25	8	ያ	52	107	101	26	8	88	83	79	75	7	88	64	61	25
40° F (4° C)	RPM	2566	2448	2332	2241	2152	2070	1 89	1923	1857	1807	1762	1723	1687	1657	1640	2471	2353	2362	2173	88	2010	1938	1877	1824	1779	1734	1703	1672
4	%BHP	83	73	Z	22	25	47	4	39	36	怒	32	8	53	ଷ	8	74	\$	85	25	47	43	33	8	섫	32	31	ස	88
	MAP	25.1	23.4	21.9	20.9	20.0	19.2	18.6	18.1	17.8	17.6	17.4	17.3	17.2	17.3	17.4	23.4	21.8	20.8	19.9	19.1	18.5	18.0	17.7	17.4	17.2	17.1	17.0	17.1
	ВРН	11.4	10.0	9.8	7.8	7.2	6.7	6.2	5.9	5.6	5.4	5.2	5.0	4.9	6.4	4.8	10.1	8.7	7.9	7.2	6.7	6.3	5.9	5.6	5.4	5.2	5.0	6.4	0.4
	KTAS	110	\$	8	8	88	8	20	1	73	8	8	8	83	ß	51	55	8	જ	8	8	81	11	E	2	67	ಜ	ß	8
)* F (-7° C)	RPM	2514	2398	2285	2196	2108	2028	195	1882	1820	1771	1726	1685	1650	1632	1608	2420	2306	2215	2128	8	1969	1899	1836	1787	1744	1700	1665	95
50.	%BHP	82	22	ន	28	51	8	4	88	જ	ន	3	೫	ଷ	ଷ	28	72	ន	25	5	8	42	38	જ્	ಜ	32	೫	ឧ	88
	MAP	24.6	23.0	21.6	20.6	19.7	19.0	18.4	18.0	17.7	17.5	17.3	17.2	17.1	17.2	17.3	22.9	21.5	20.5	19.6	18.9	18.3	17.8	17.5	17.3	17.1	17.0	16.9	17.0
	GPH	11.3	6.6	8.7	7.9	7.3	6.8	6.4	0.9	5.7	5.5	5.3	5.1	5.0	2.0	4.9	10.0	8.8	8.0	7.3	8.9	6.3	6.0	5.7	5.5	5.3	5.1	5.0	5.0
	KTAS	107	5	88	35	87	8	2	75	71	88	8	61	88	2	20	103	97	93	88	2	8	9/	72	88	65	62	88	\$ 5
F (-18° C)	RPM	2462	2349	2238	2149	2065	1988	1912	484	1782	1732	1695	1650	1615	1592	1571	2366	2259	2171	2084	2000	1927	1860	1798	1747	1710	1668	1633	1603
0° F	%BHP	8	2	5	ĸ	ន	ð.	4	37	જ	32	3	83	88	82	22	2	83	æ	ß	\$	4	88	ક્ષ	33	31	೫	ଷ	8 8
	MAP	24.1	27.6	21.3	20.3	19.5	18.8	18.3	17.9	17.6	17.3	17.2	17.1	17.1	17.2	17.2	22.4	21.2	20.2	19.4	18.7	18.1	17.7	17.4	17.1	17.1	16.9	16.9	17.0
	KIAS	110	5	8	જ	8	8	8	75	2	જ	8	22	ន	8	4	505	8	ક્ષ	8	8	8	75	20	જ	8	ક્ક	ଜ	& :
	Altitude	3000	(48° F)	(O •6)	,					-							3500	(47°F)	(8°C)										

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 8 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

60° F (16° C	18	0° F (16° C		KTAS	Hab	MAP	% RHP	80° F (27° C	KTAS	На	MAP	10 4.RHP	100° F (38°	C)	100
+	85	_	2618	114	11.2				2014	5	CIA	Line	N	2017	בוים
23.8 75			2497	8	10.0	24.2	92	254	110	6.6	24.7	4	2591	112	6.6
65		_ 1	2378	103	8.7	22.6	8	2424	\$	8.8	23.0	88	2469	901	8.8
65	-		2286	88	7.8	21.5	22	2328	\$	7.8	21.8	61	2371	101	7.8
ន			2195	83	7.1	20.5	73	2237	æ	2.0	20.8	55	2280	97	7.0
84			2111	8	6.5	19.7	84	2151	8	6.5	19.9	4	2191	8	6.4
43			2031	84	6.1	19.0	4	2070	98	6.0	19.2	\$	2107	87	5.9
න			1961	8	5.7	18.4	04	1996	18	5.6	18.6	41	2033	ಜ	5.6
37		_	988	92	5.4	18.1	37	1932	1	5.3	18.2	8	1 96	78	5.2
ጸ		_	84	72	5.2	17.8	જ્ઞ	1879	74	5.1	18.0	98	1916	72	5.1
33			197	89	5.0	17.6	£,	1831	20	4.9	17.7	8	1865	7	6.4
31	_		1757	99	4.9	17.5	+82	1785	8	4.8	17.6	32	1819	29	4.7
8		_	720	61	4.7	17.4	31	1753	23	4.7	17.5	3	1785	S	9.4
প্ত		_	689	25	4.7	17.4	೫	1721	8	4.6	17.5	న	1755	8	4.5
8			683	જ	4.7	17.6	೫	1709	ጷ	4.6	17.7	31	1740	55	4.5
		2	520	109	10.1	24.2	77	2568	111	10.0	24.6	78	2616	113	10.0
88		~	401	103	8.8	22.6	29	2447	50	8.9	22.9	88	2492	107	8.9
ß		CA	307	66	7.8	21.4	99	2349	101	7.9	21.7	9	2393	102	7.9
ន		•	2216	2	7.1	20.4	72	2257	88	7.1	20.6	ß	2297	97	7.0
8		••	2131	8	9.9	19.6	\$	2172	20	6.5	19.8	ß	2211	83	6.4
\$		`'	<u>22</u>	82	6.1	18.9	4	2089	98	6.0	19.1	\$	2128	88	6.0
4			1977	81	5.7	18.3	4	2014	82	5.6	18.5	41	2052	84	5.6
37			1914	92	5.4	17.9	37	1947	28	5.3	18.1	æ	1984	79	5.3
ક્ષ			1864	R	5.2	17.7	98	1899	7	5.1	17.8	ဗ္တ	1933	92	5.
33			1814	69	5.0	17.5	×	1849	7	6.4	17.6	8	1883	72	6,4
31			1769	99	4.8	17.3	32	1803	29	4.8	17.4	33	1836	88	4.7
ଛ			1736	8	4.7	17.2	3	170	ន	4.7	17.4	3	1802	B	9.4
ຂ	_		404	88	4.7	17.2	೫	1740	S	9.4	17.3	31	1771	8	5.4
8			1693	7	4.7	17.4	8	1735	8	46	17.5	7	1754	· 4	4

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 9 of 30)

Engine: Lycoming O-320-E2D Mixth Propeller: McCauley TM7458/1C172 Carb

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 17
Carb Heat: OFF Flaps: U

Weight: 1760 lbs D Flaps: UP

	GPH	10.2	8.9	7.9	7.2	6.7	6.2	5.8	5.5	5.3	5.1	4.9	4.8	4.7	4.7	10.3	9.0	8.0	7.2	6.7	6.2	5.8	5.5	5.3	5.1	4.9	4.8	4.7	4.7
	KTAS	108	102	8	8	88	\$	8	72	2	8	છ	5	22	53	109	103	8	\$	8	88	8	92	೮	8	99	8	፠	2
40° F (4° C)	RPM	2494	2376	2281	2192	2109	2029	1959	1891	1844	1796	1756	1719	1685	1674	2518	2399	2303	2	2129	2048	1977	1908	1861	1813	1768	1731	1706	1691
4	ا ما	75	છ	82	ន	8	£	ඉ	೫	ક્ષ	33	હ	ຂ	ଷ	ଷ	75	99	ß	ន	8	£	4	37	ક્ષ	33	31	೫	೫	33
	MAP	23.3	21.8	20.7	19.8	19.0	18.4	17.9	17.5	17.3	17.1	16.9	16.9	16.9	17.0	23.3	21.7	50.6	19.6	18.9	18.3	17.7	17.3	17.2	16.9	16.8	16.7	16.7	16.9
	ВРН	10.2	8.8	6.7	7.3	6.7	6.3	5.9	5.6	5.4	5.2	5.0	6.4	8.4	4.8	10.3	8.9	8.0	7.3	8.9	6.3	5.9	5.6	5.4	5.2	5.0	6.4	8.4	4.8
	KTAS	106	100	88	29	87	82	78	74	7	29	2	8	ኤ	52	107	101	26	8	87	ಜ	79	75	7	88	\$	8	ያ	25
F (-7°C)		2443	2327	2237	2148	2067	1987	1917	1855	408	1759	1720	1681	1651	1644	2466	2349	2257	2168	2085	2006	1935	1870	1823	1776	1731	989	1671	1657
8	%BHP	73	\$	25	25	47	42	88	8	8	32	ജ	8	৪	8	74	8	88	23	47	43	33	8	श्र	32	31	ജ	ଷ	ଷ
	MAP	22.9	21.4	20.4	19.5	18.8	18.2	17.7	17.4	17.1	17.0	16.8	16.8	16.8	16.9	22.8	21.3	20.3	19.4	18.7	18.0	17.5	17.2	17.0	16.8	16.7	16.6	16.6	16.8
	GPH	10.2	8.8	8.0	7.4	6.8	6.4	0.9	5.7	5.5	5.3	5.1	5.0	6,4	4.9	10.3	8.9	8.1	7.4	6.8	6.4	0.9	5.7	5.5	5.3	5.1	5.0	4.9	6.4
	KTAS	5	86	2	28	88	81	92	22	89	98	29	8	સુ	51	105	8	જ	8	88	81	11	73	2	99	ន	g	ß	5
լա	RPM	2393	2280	2190	2102	2024	1947	1877	1815	1766	1726	1685	1646	1617	1601	2415	2301	2211	2120	8	1967	1897	1832	1784	1743	1699	1663	1636	1616
o	%BHP	7	ន	æ	ន	9	4	8	ઝ	33	32	೫	83	78	88	72	B	22	5	94	42	జ	જ	೫	32	జ	ଷ	28	28
	MAP	225	21.1	20.1	19.3	18.6	18.0	17.5	17.2	17.0	16.9	16.7	16.8	16.7	16.8	22.4	21.0	20.1	19.1	18.4	17.9	17.4	17.1	16.8	16.7	16.6	16.6	16.5	16.7
	KIAS	505	8	8	8	85	8	75	2	65	8	83	S	₹	4	105	8	ß	8	85	8	75	2	65	8	55	S	\$	8
	Altitude	4000	(45° F)	0.6	·											4500	(43°F)	(6°C)											

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 10 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	10.0	8	8.0	7.1	6.5	0.9	5.6	5.3	5.0	4.9	4.7	4.6	4.5	4.5		9.0	8.1	7.2	6.5	0.9	5.6	5.3	5.1	4.9	4.7	4.6	4.5	4.5
0	KTAS	115	108	103	88	g	28	2	8	92	E	8	જ	8	99		8	\$	8	¥	8	85	26	1	೭	8	જ	61	22
00° F (38° C		2641	2515	2415	2318	2232	2147	2071	2002	1948	1904	1854	1814	1788	1769		2539	2438	2340	2253	2167	2090	2019	1968	1920	1871	1831	908	1789
ę	%BHP	79	69	62	ß	S	94	42	æ	æ	35	33	32	3	31		2	8	æ	5	4	42	ඉ	37	ઝ	ಜ	32	ल	31
	MAP	24.6	22.9	21.6	20.6	19.7	19.0	18.4	17.9	17.6	17.5	17.3	17.2	17.2	17.3		22.9	21.6	20.5	19.7	18.9	18.3	17.8	17.5	17.3	17.2	17.1	17.1	17.1
	ВРН	10.1	8.9	8.0	7.2	6.5	0.9	5.7	5.3	5.1	4.9	4.8	4.7	9.4	4.6	10.2	9.0	8.1	7.2	9.9	6.1	5.7	5.3	5.1	5.0	4.8	4.7	4.6	4.6
	KTAS	112	106	101	26	8	87	83	28	75	71	29	ន	20	55	113	107	102	87	8	88	8	20	92	22	88	2	8	8
80° F (27° C)	RPM	2592	2470	2371	2281	2192	2109	2034	1964	1916	1867	1820	1786	1755	1739	2617	2493	2393	88	2213	2128	2053	1983	1831	1886	1836	1798	1774	1758
æ	<u> a.</u>	11	88	61	ß	3	45	41	æ	జ	श्र	32	ਲ	ଛ	31	78	8	5	ß	ଝ	45	41	8	ଞ	क्ष	33	હ	रू	34
	MAP	24.2	22.5	21.3	8.7	19.5	18.8	18.2	17.8	17.6	17.3	17.2	17.1	17.1	17.3	24.2	27.5	21.2	20.2	19.4	18.7	18.1	17.6	17.4	17.2	17.0	16.9	17.0	17.0
	GPH	10.1	8.9	7.9	7.2	9.9	6.1	5.7	5.4	5.2	5.0	8.4	4.7	4.7	4.7	10.2	9.0	8.0	7.2	9.9	6.1	5.7	5.4	5.2	5.0	4.8	4.7	4.7	4.6
()	_															111													
J. F (16° C	RPM	2544	2424	2327	2238	2151	2069	1995	1927	<u>88</u>	1831	1786	1753	1723	1707	2567	2446	2348	22.	2171	2089	2014	1945	1897	1852	1802	1765	1740	1721
Ø	%ВНР										- 1					11					- 1				- 1				- 1
	MAP	23.7	22.2	21.0	8.	19.3	18.6	18.0	17.6	17.4	17.2	17.1	17.0	17.0	17.2	23.7	27.	50.9	19.9	19.2	18.5	17.9	17.5	17.3	17.1	16.9	16.8	16.8	16.9
	KIAS	105	8	ક્ક	8	82	8	75	2	જ	8	ß	ន	8	4	105	8	ይ	8	& &	8	75	2	ន	8	ß	S	&	9
	Altitude	4000	(45°F)	(C)							_					4500	(43°F)	(ပဲ							•				

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 11 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP Mixture: Leaned Weight: Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	10.3	9.1	8.1	7.3	6.7	6.2	5.8	5.5	5.3	5.1	4.9	4.8	4.7	4.7	9.2	8.2	7.3	6.7	6.2	5.9	5.5	5.3	5.1	4.9	4.8	4 .	4.7
	KTAS	110	\$	8	88	8	98	81	=	ಜ	20	99	8	8	22	105	100	88	<u>8</u>	98	82	82	7	71	29	ន	ŝ	જ
40° F (4° C)	RPM	2541	2421	2324	2233	2149	2067	1994	1925	1875	1833	1784	1747	1722	1706	2444	2346	25	2169	2086	2013	1 94	1892	1850	1801	1783	1740	1722
4	% ВНР	9/	99	23	ಜ	8	4	9	37	ક્ષ	33	32	31	೫	8	29	09	¥	4	4	41	37	ક્ષ	8	32	સ	೫	ස
	MAP	23.2	21.7	20.5	19.6	18.8	18.1	17.6	17.2	16.9	16.8	16.6	16.6	16.6	16.7	21.6	20.5	19.5	18.7	18.0	17.5	17.1	16.8	16.7	16.5	16.4	16.4	16.5
	GPH	10.4	9.1	8.1	7.3	6.8	6.3	5.9	5.6	5.4	5.2	5.0	4.9	8.4	4.8	9.2	8.1	7.4	6.8	6.3	5.9	5.6	5.4	5.2	5.0	6.4	8.4	8.4
	KTAS	108	102	26	8	88	84	8	75	22	69	65	6	22	23	103	86	2	8	85	8	92	೭	8	65	83	24	ß
20° F (-7° C)	RPM	2490	2372	7772	2187	2105	2025	1954	1887	184	1796	1747	171	1688	1668	2395	2239	2203	2125	2044	1972	5	1855	1813	1765	1727	40,	1688
8	%BHP	74	જ	88	22	47	43	33	æ	ĸ	33	31	೫	8	83	99	SS	ន	84	43	8	37	श्र	ಜ	31	ജ	೫	೫
	MAP	22.8	21.3	20.2	19.3	18.6	17.9	17.4	17.0	16.9	16.7	16.5	16.5	16.5	16.6	21.2	20.1	19.2	18.5	17.8	17.3	16.9	16.7	16.5	16.4	16.3	16.3	16.4
	GPH	10.3	9.0	8.1	7.4	6.9	6.4	6.0	5.7	5.5	5.3	5.1	5.0	6.4	4.9	9.1	8.2	7.4	6.9	6.4	6.0	5.7	5.5	5.3	5.1	5.0	4.9	6.4
	KTAS	5	8	જ	6	8	82	78	74	2	29	ន	8	ß	52	101	88	83	87	8	79	74	7	88	2	8	82	52
		2435	2323	2230	2142	2062	1983	1916	1848	1802	1754	1715	1681	1651	1633	2345	2252	2162	2081	2001	1931	1865	1818	1773	1727	1697	1667	1653
ċ	%BHP	72	2	22	2	47	42	೫	æ	श्र	32	೫	8	প্ত	8	g	88	25	47	4	ස	æ	8	32	31	ଛ	8	8
	MAP	22.3	21.0	19.9	19.0	18.4	17.7	17.3	16.9	16.7	16.5	16.4	16.4	16.4	16.5	20.9	19.9	19.0	18.3	17.6	17.1	16.8	16.6	16.4	16.2	16.2	16.2	16.3
	KIAS	55	8	જ	8	æ	8	75	2	8	8	55	S	\$	4	8	જ	8	85	8	75	2	85	8	55	ଝ	£	4
	Altitude	2000	(41°F)	(5.0)								•				5500	(39° F)	. CO.										

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 12 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH		9.0	8.2	7.3	9.9	0.9	5.6	5.3	5.1	6.4	4.7	9.4	4.5	4.5	9.1	8.3	7.4	9.9	6.1	5.7	5.3	5.1	6.4	4.7	9.4	4.5	45
2	KTAS		110	165	8	ጼ	8	98	8	78	74	20	99	23	27	111	901	5	8	9	87	82	78	75	7.1	8	62	85
100° F (38° C)	RPM		2563	2461	2362	2722	2188	2110	2039	1986	1935	1892	1850	1818	1807	2587	2484	2384	2293	2211	2130	2058	2002	1955	1909	1870	1835	1824
10	%BHP		2	ន	8	5	4	42	ස	37	ક્ષ	g	32	32	32	7	2	22	5	47	8	8	37	æ	क्ष	83	33	33
	MAP		27.8	21.5	20.4	19.5	18.8	18.2	17.7	17.4	17.1	17.0	16.9	16.9	17.0	22.8	21.5	20.3	19.4	18.7	18.1	17.6	17.3	17.0	16.9	16.8	16.8	16.9
	GPH	10.2	9.1	8.2	7.2	9.9	6.1	5.7	5.4	5.1	2.0	4.8	4.7	4.6	4.6	9.2	8.3	7.3	6.7	6.1	5.7	5.4	5.1	4.9	4.8	4.7	4.6	4.6
	KTAS	115	108	501	8	8	88	2	8	9/	23	8	ß	8	8	109	\$	83	Z	8	82	20	11	73	8	æ	6	22
80° F (27° C)	RPM	2641	2516	2416	2319	2334	2148	2073	500	1948 848	1904	1855	1815	1790	1773	2540	2440	234	2256	2169	2062	2020	1966	1918	1875	5 83	1802	1792
8	% ВНР	79	88	62	R	ន	46	42	æ	æ	35	æ	32	동	31	70	29	ន	5	46	77	න	æ	35	33	32	3	34
	MAP	24.1	22.4	21.2	8.	19.3	18.6	18.0	17.5	17.2	17.1	16.9	16.8	16.8	16.9	22.4	21.2	20.0	19.3	18.5	17.9	17.4	17.1	16.9	16.8	16.7	16.6	16.8
	GРН	10.3	9.1	8.1	7.2	9.9	6.2	5.8	5.4	5.2	5.0	4.9	4.7	4.7	4.6	9.2	8.2	7.3	6.7	6.2	5.8	5.4	5.2	5.0	4.9	4.7	4.7	4.7
	KTAS	112	106	101	97	82	87	83	78	75	71	29	ន	ß	33	107	102	97	83	88	\$	29	92	72	88	2	8	8
J. F (16° C)	RPM	2592	2469	2370	2776	2191	2108	2034	1964	1912	1869	1819	1781	1757	1739	2492	2394	2297	2214	2128	2053	1984	1932	1886	1840	1798	1768	1756
.09	%ВНР	78	88	61	¥	8	\$	41	æ	જ્ઞ	8	32	સ	હ	ଞ	68	61	જ	જ	45	14	88	ജ	34	33	ਲ	3	3
	MAP	23.7	22.1	50.9	19.8	19.1	18.4	17.8	17.4	17.1	16.9	16.8	16.7	16.7	16.8	22.0	20.8	19.8	19.0	18.3	17.7	17.2	17.0	16.8	16.6	16.5	16.5	16.6
	KIAS	105	9	ક્ષ	8	88	8	75	2	æ	8	ß	ន	£	8	100	88	8	8	8	75	2	જુ	8	55	S	\$	8
	Aftitude	2000	(41°F)	(2°C)												2200	(38° F)	(5°4)										

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 13 of 30)

Engine: Lycoming O-320-E2D Mixture:
Propeller: McCauley TM7458/1C172 Carb Heat:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 1
Carb Heat: OFF Flaps: U

Weight: 1760 lbs Flaps: UP

	GPH	9.3	8.3	7.4	6.8	6.3	5.9	5.5	5.3	5.1	4.9	4 .	4.7	4.7	9.4	8.4	7.4	6.8	6.3	5.9	5.5	5.3	5.1	5.0	4 .	4.7	4.7
	KTAS	106	101	88	83	87	æ	20	25	71	29	ន	ß	33	107	102	26	8	88	\$	æ	92	22	89	8	8	ሄ
40° F (4° C)	RPM	2467	2370	2274	2190	2106	2032	2	1910	1883	1818	1780	1750	1738	2491	2392	228	228	2127	2052	1982	1928	1883	1839	1798	1768	1757
4	%BHP	89	61	2	Q	\$	4	8	ક્ષ	怒	32	હ	೫	೫	89	61	ß	ಜ	\$	41	8	ଞ	8	જ	3	સ	31
	MAP	21.6	20.4	4.01	18.6	17.9	17.4	16.9	16.7	16.4	16.4	16.3	16.3	16.4	21.5	20.4	19.3	18.5	17.8	17.3	16.8	16.5	16.3	16.2	16.1	16.1	16.2
	ВРН	9.3	8.2	7.4	6.8	6.3	5.9	5.6	5.4	5.2	5.0	6.4	8.4	4.8	9.4	8.3	7.5	8.9	6.4	6.0	5.6	5.4	5.2	2.0	6.4	4.8	4.8
	KTAS	104	8	g	8	88	81	1	ಜ	20	98	23	8	\$	105	100	88	6	98	82	82	74	20	29	ន	ස	\$
F (-7°C)	RPM	2417	2321	822	2146	2064	1991	1923	1871	1825	1785	174	1721	1703	2440	2343	2249	2163	2083	2010	1940	1890	1844	1801	1761	1731	1721
20.	%BHP	99	ß	ន	8	4	8	37	જ્ઞ	33	32	ജ	ജ	8	29	8	¥	84	4	41	37	જ્ઞ	ಜ	32	ਲ	೫	೫
	MAP	21.2	20.1	19.1	18.4	17.7	17.2	16.8	16.5	16.3	16.3	16.2	16.2	16.2	21.1	20.0	19.0	18.2	17.6	17.1	16.6	16.4	16.2	16.1	16.0	16.0	16.1
	ВРН	9.2	8.2	7.5	6.9	6.4	6.0	5.7	5.5	5.3	5.1	5.0	9.4	6.4	9.4	8.3	7.5	6.9	6.5	6.1	5.7	5.5	5.3	5.1	5.0	6.4	6.4
	KTAS	102	26	8	88	2	79	75	22	88	85	9	25	S	103	8	8	88	\$	8	92	22	69	65	61	22	S
F (-18° C)	RPM	2367	2722	2184	2099	2019	1951	1884	1835	1791	1743	1707	1680	1669	2390	2296	2202	2119	8	1969	1900	1849	1808	1761	1723	1 69	1677
ċ	%BHP	85	88	22	4	4	జ	æ	¥	83	31	8	8	8	8	S	S	8	\$	\$	37	ક્ષ	ಜ	31	೫	ଷ	8
	MAP	20.8	19.8	18.9	18.1	17.4	17.0	16.7	16.4	16.2	16.1	16.0	16.0	16.2	20.8	19.7	18.8	18.0	17.4	16.9	16.5	16.3	16.1	15.9	15.9	15.9	16.0
	KIAS	8	S.	8	82	8	75	2	8	8	53	S	3	\$	8	88	8	8	8	75	20	8	8	55	S	\$	\$
	Affinde	9009	(38° F)	3	3										9200	(3e F)	0.6	1									

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 14 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	9.2	8.4	7.5	6.7	6.1	5.7	5.3	5.1	6.4	4.7	4.6	5.4	4.5		8.4	2.6	8.9	6.1	5.7	5.4	5.1	6.4	4.7	9.4	5.5	4 2
	KTAS	112	107	25	26	8	88	8	20	75	71	29	æ	28		88	\$	88	8	88	\$	8	92	72	8	ន	9
100° F (38° C)		2613	2508	2407	2315	2230	2151	2078	202	1971	1923	1888	1857	1842		2532	2430	2337	2248	2172	2088	204	1990	1944	2	1873	4 BEA
e e	% ВНР	72	2	88	52	47	\$	8	8	8	×	8	33	32		જ	88	25	84	4	4	38	98	怒	ಜ	ಜ	33
	MAP	22.8	21.5	20.3	19.4	18.6	18.0	17.5	17.1	16.9	16.7	16.7	16.7	16.7		21.4	20.3	19.3	18.5	17.9	17.4	17.0	16.8	16.6	16.5	16.5	16.6
	СРН	9.2	8.4	7.4	6.7	6.1	5.7	5.4	5.1	5.0	4.8	4.7	4.6	4.6	9.3	8.4	7.5	6.7	6.2	5.8	5.4	5.2	5.0	4.8	4.7	4.6	46
(KTAS	110	105	8	ક્ષ	91	88	20	78	74	20	8	8	22	111	90	5	88	91	87	82	78	75	71	29	8	3
80° F (27° C)	RPM	2564	2463	2363	2273	2190	2111	2040	1985	1939	1892	1851	1819	1809	2590	2486	2386	2285	2210	2132	2000	2005	1954	1906	1866	2	1820
8	%ВНР	70	ಟ	8	ર	47	63	න	37	35	श्र	32	33	32	7.1	8	2	5	47	43	4	37	ઝ	क्र	8	33	33
	MAP	22.4	21.1	20.0	19.1	18.4	17.8	17.3	17.0	16.7	16.6	16.5	16.5	16.6	22.4	21.1	19.9	19.0	18.3	17.7	17.2	16.9	16.6	16.4	16.3	16.4	16.5
	ВРН	9.3	8.3	7.4	6.7	6.2	5.8	5.5	5.2	5.0	4.9	4.7	4.7	4.7	9.4	8.4	7.5	6.7	6.2	5.8	5.5	5.2	5.0	4.9	4.7	4.7	47
	KTAS	108	103	88	8	88	2	8	9/	73	69	છ	8	26	109	401	8	8	8	85	8	1	73	99	જ	5	2
)* F (16° C	RPM	2516	2416	2319	23	2148	2073	2002	950	1900	1857	1816	1785	1775	2540	2439	2341	2252	2169	2002	2021	1966	1918	1874	1832	1802	1792
•09	% ВНР	69	62	ĸ	ଌ	46	42	ස	జ	क्ष	೫	32	ਲ	31	20	62	፠	ଝ	46	42	ළ	æ	33	ಜ	32	હ	~
	MAP	22.0	20.8	19.7	18.8	18.2	17.6	17.1	16.8	16.6	16.5	16.4	16.4	16.5	21.9	20.7	19.6	18.7	18.1	17.5	17.0	16.7	16.5	16.4	16.2	16.3	16.4
	KIAS	100	ક્ક	8	8	8	75	2	જ	8	SS.	ß	8	9	9	8	8	8	8	75	2	92	8	ß	ß	&	4
	Altitude	0009	(38°F)	(3°C)											6500	(36° F)	(5°C)		*								

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 15 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

_		_	_																				_	_	_	
	GPH	9.5	8.5	7.5	6.8	6.3	5.9	5.6	5.3	5.1	4.9	4 .8	4.7	4.7	8.6	9.7	6.9	6.3	5.9	5.6	5.3	5.1	4.9	8.	4.8	4.7
	KTAS	108	103	8	2	88	\$	8	92	73	69	8	8	જ	\$	8	3	8	8	∞	F	73	69	æ	6	22
40° F (4° C)	RPM	2514	2415	2317	822	2147	2071	800	1947	1898	1854	1818	1785	1774	2438	2339	22	2165	2091	2020	1966	1916	1872	1835	1805	1786
~	%ВНР	69	62	ĸ	ន	8	42	ജ	ဗ္တ	34	33	32	3	31	62	æ	ន	46	42	ඝ	37	35	33	32	32	31
	MAP	21.5	20.3	19.3	18.4	17.7	17.2	16.7	16.4	16.2	16.0	16.0	16.0	16.1	20.3	19.2	18.3	17.6	17.1	16.6	16.3	16.1	15.9	15.9	15.9	16.0
	GPH	9.5	4.8	7.5	6.9	6.4	0.9	5.6	5.4	5.2	5.0	4.9	4.8	4.8	9.8	9.7	6.9	6.4	6.0	5.6	5.4	5.2	5.0	4.9	8.4	8.4
	KTAS	106	101	88	8	87	83	28	2	71	29	ន	B	53	102	97	8	88	ಜ	g	R	72	89	8	8	SS
PF (-7°C)	RPM	2464	2366	2270	2184	2104	5029	2	1907	1861	1817	1781	1747	1738	2388	282	238	2124	2049	1979	1926	1878	1832	1798	1764	1749
8	% ВНР	89	19	2	4	45	41	8	ક્ષ	8	32	3	ຂ	31	61	R	4	\$	41	జ	8	क्ष	32	33	સ	ਲ
	MAP	21.1	20.0	18.9	18.1	17.5	17.0	16.6	16.3	16.1	15.9	15.9	15.9	16.0	19.9	18.9	18.1	17.4	16.9	16.4	16.1	15.9	15.8	15.8	15.7	15.8
	СРН	9.4	8.4	9.7	7.0	6.5	6.1	5.7	5.5	5.3	5.1	2.0	6.4	4.9	8.5	9.7	2.0	6.5	6.1	5.7	5.5	5.3	5.1	5.0	4.9	4.9
	KTAS		1				ı							22	1				ı				1			
0 F (-18 C)	RPM	2410	2317	2225	2138	2059	1987	1918	1868	1824	1780	1740	1711	1697	2339	2247	2162	2078	2002	96	1887	1838	1797	1759	1727	1714
0	%ВНР	г	Г				Г				Γ			8					ı				1			
	MAP	20.6	19.6	18.7	17.9	17.3	16.8	16.3	16.2	16.0	15.8	15.7	15.7	15.8	19.6	18.6	17.8	17.2	16.7	16.3	16.0	15.8	15.7	15.6	15.6	15.7
	KIAS	8	æ	8	8	8	75	20	55	8	55	8	4	\$	8	8	8	8	75	02	58	8	55	S	5	8
	Altitude	2000	(34° F)	()	;										7500	(32° F)	0.0	7								

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 16 of 30)

Lycoming O-320-E2D McCauley TM7458/IC172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH		8.5	9.7	8.9	6.2	5.7	5.4	5.1	6.4	4.7	4.6	4.6	4.6	8.5	7.7	6.9	6.2	5.8	5.4	5.1	6.4	8.4	4.6	4.5	4.6
(3)	KTAS		109	\$	86	2	88	8	8	11	73	88	2	23	110	5	8	ક્ષ	8	8	8	78	73	89	8	8
100° F (38° (RPM		2556	2454	2359	2270	2192	2117	2062	2010	1962	1921	1891	1876	2582	2477	2382	239	2215	2138	2081	2029	1981	1937	505	1893
5	% ВНР		8	8	S	84	4	4	8	36	35	33	8	33	8	ß	ន	84	Ą	4	ဓ္ဌ	37	35	섫	ន	33
	MAP		21.4	20.5	19.2	18.4	17.8	17.3	17.0	16.7	16.5	16.3	16.4	16.5	21.4	20.5	19.2	18.3	17.8	17.2	16.8	16.6	16.3	16.2	16.2	16.4
	GPH		8.5	9.7	6.8	6.2	5.8	5.4	5.2	5.0	4.8	4.7	9.4	4.6	8.6	7.7	6.9	6.2	2.8	5.4	5.2	5.0	4.8	4.7	4.6	4.6
()	KTAS		107	102	97	32	88	8	2	75	71	29	S	28	108	103	8	8	8	\$	8	76	72	8	ន	20
80° F (27° C)	RPM		2510	2409	2317	2233	2152	2080	2024	1973	1927	1885	1857	1839	2534	2432	2339	22	2176	2080	24	1992	1945	1902	1874	1859
æ	% ВНР		2	8	22	48	43	8	8	38	æ	ಜ	33	32	æ	æ	22	&	4	8	æ	38	¥	ಜ	ಜ	æ
	MAP		21.0	19.9	18.9	18.2	17.6	17.1	16.8	16.5	16.3	16.2	16.3	16.4	21.0	19.8	18.9	18.1	17.5	17.0	16.7	16.4	16.2	16.1	16.1	16.2
	GPH	9.4	8.5	9.7	6.8	6.3	5.8	5.5	5.2	5.0	4.9	8.	4.7	4.7	8.6	7.7	6.9	6.3	5.9	5.5	5.3	5.0	6.4	4.7	4.7	4.7
(;	KTAS	110	105	8	æ	91	98	81	78	74	20	98	62	57	106	5	88	9	87	82	78	75	7	29	8	88
60° F (16° C)	RPM	2564	2463	2363	2273	2192	2112	2049	1986	1939	1891	1854	1820	1803	2486	2387	238	2208	2133	2060	2002	1955	1909	1868	8	1821
9	дна%	20	ස	93	2	47	£3	ඉ	37	35	33	ಜ	32	32	R	22	5	47	£	4	37	35	¥	32	32	32
	MAP	21.9	20.7	19.6	18.7	18.0	17.4	16.9	16.6	16.3	16.2	16.2	16.1	16.2	20.6	19.5	18.6	17.8	17.3	16.8	16.5	16.2	16.1	16.0	16.0	16.1
	KIAS	100	88	8	88	8	75	2	æ	8	SS	ន	\$	各	88	8	æ	8	32	2	જ	8	ĸ	ន	&	各
	Altitude	2000	(34°F)	() :-											2500	(32°F)	(၁.၅)									

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 17 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

							_	_			_			_	-		_	_	_	_	_	_	-		_	
		GPH	8.7	7.7	6.9	6.3	5.9	5.6	5.3	5.1	4.9	4.8	4.8	4.8	8.8	7.8	7.0	6.4	0.9	5.6	5.4	5.1	5.0	4.8	4.8	48
		KTAS	105	8	જ	8	88	2	78	74	20	8	8	22	106	5	88	91	87	82	20	75	71	8	25	8
1000	1 4 C)	RPM	2462	2363	272	2186	2111	2039	1985	1935	1887	1851	1822	1807	2485	2386	82	2207	2132	2059	2002	1955	1905	1869	838	1824
ľ	4	%BHP	ಜ	22	51	46	54	ස	37	35	88	32	32	32	49	22	5	47	£	4	37	35	ষ্ঠ	ಜ	32	3
		MAP	20.2	19.1	18.2	17.5	17.0	16.5	16.2	15.9	15.8	15.7	15.7	15.9	20.2	19.1	18.2	17.4	16.9	16.4	16.1	15.9	15.7	15.6	15.6	157
I		ВРН	8.7	7.7	7.0	6.4	6.0	5.7	5.4	5.2	5.0	4.9	4.9	4.8	8.8	7.8	0.7	6.4	6.0	5.7	5.4	5.2	5.0	4.9	8.4	48
		KTAS	103	88	g	88	2	8	9/	73	89	S	8	26	401	8	\$	8	88	20	1	73	89	9	9	22
	20" F (-/" C)	RPM	2411	2314	922	2143	2069	1998	1945	1897	1850	1811	1786	1767	2435	2337	2247	2162	2089	2018	200	1915	1868	1 83	<u>8</u>	1788
	Z	% ВНР	62	ß	ន	\$	42	න	ဗ္တ	¥	83	3	ઝ	31	62	ሄ	ន	94	42	න	37	35	33	32	3	દ
		MAP	19.9	18.8	18.0	17.3	16.8	16.3	16.0	15.8	15.6	15.5	15.6	15.7	19.8	18.8	17.9	17.2	16.7	16.2	15.9	15.7	15.5	15.4	15.4	15.6
-		ВРН	8.6	7.7	7.0	6.5	6.1	5.8	5.5	5.3	5.1	5.0	6.4	4.9	8.7	7.8	7.1	6.5	6.1	5.8	5.5	5.3	5.1	5.0	6.4	40
		KTAS					1				ı				102											
	F (-18°C)	RPM	2362	2267	2179	2098	2026	1958	1902	1857	1814	1778	174	1731	2382	2289	22	2120	2045	1977	1922	1876	1830	482	1763	17.47
	0	%BHP	61	\$	4	4	4	8	જ	8	32	31	8	ස	61	જ	Q	&	14	8	æ	8	33	3	31	3
		MAP	19.5	18.5	17.8	17.1	16.6	16.2	15.8	15.7	15.6	15.5	15.5	15.6	19.4	18.5	17.6	17.0	16.5	16.0	15.7	15.5	15.4	15.3	15.3	15.4
		KIAS	જ	8	85	8	75	2	જ	8	જ	ន	45	4	88	8	85	8	75	2	8	8	ક્ક	ន	\$	ç
		Aftitude	8000	(30°F)	0.1										8500	(3°F)	(-2°C)									
	_	_	-				_	_		_							_				_				_	_

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 18 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

		GPH	8.6	7.8	7.0	6.3	5.8	5.4	5.2	5.0	4.8	4.6	4.6	4.5		7.9	7.1	6.4	5.8	5.5	5.2	5.0	4.8	4.6	4.6	4.0
	[[111	106	5	98	91	8	82	78	74	2	ß	8		107	102	97	82	87	æ	79	75	2	8	
	100° F (38° C)	1 1	2605	2501	2406	2314	2232	2162	2101	2049	1998	1959	1927	1907		2525	2429	2336	2254	2182	2121	2069	2017	1975	1945	4000
	10	%BHP	29	8	2	49	45	42	ඉ	37	35	8	ಜ	33		8	ß	9	\$	4	4	37	36	용	×	72
		MAP	21.3	20.1	19.1	18.3	17.6	17.1	16.7	16.5	16.2	16.1	16.1	16.2		8.	19.1	18.2	17.5	17.1	16.7	16.4	16.1	16.0	16.0	181
		GPH	8.6	7.8	2.0	6.3	5.8	5.5	5.2	5.0	4.8	4.7	4.6	4.6	8.7	7.9	7.1	6.3	5.8	5.5	5.2	5.0	4.8	4.7	4.6	97
	(KTAS	6	\$	8	26	88	æ	20	11	73	8	\$	20	110	5	8	88	86	æ	82	78	73	8	æ	8
	80° F (27° C)	RPM	2559	2456	2362	2222	2192	2120	2063	2012	1965	1924	1889	1876	2582	2479	2385	2293	212	2143	2083	2032	1981	1943	1910	1801
	8	%ВНР	88	B	ន	84	4	4	8	98	જ	8	ಜ	33	98	ස	¥	48	44	4	ඉ	37	35	¥	ಜ	33
		MAP	21.0	19.8	18.8	18.0	17.4	16.9	16.6	16.3	16.1	16.0	16.0	16.1	20.9	19.7	18.8	17.9	17.3	16.9	16.5	16.2	16.0	15.9	15.8	150
		GPH	8.7	7.8	6.9	6.3	5.9	5.5	5.3	5.1	4.9	4.7	4.7	4.7	8.8	7.9	7.0	6.4	5.9	5.6	5.3	5.1	6.4	8.4	4.7	47
	(KTAS	107	102	97	32	88	8	2	75	71	29	ន	28	108	5	8	83	88	\$	8	9/	72	88	ß	ğ
- 1) F (16 C	RPM	2510	2410	2317	822	2153	2080	2024	1974	1927	1885	1857	1842	2536	2433	2339	2251	2172	2100	2044	1993	1947	1906	1874	1850
	. 09	%ВНР	\$	æ	22	47	£	4	జ	36	8	೫	32	32	99	æ	25	84	4	4	æ	98	怒	83	32	33
		MAP	20.6	19.5	18.5	17.7	17.2	16.7	16.4	16.1	15.9	15.8	15.9	16.0	20.6	19.4	18.5	17.7	17.1	16.6	16.3	16.0	15.8	15.7	15.7	955
		KIAS	જ	8	8	8	75	2	જ	8	55	ଌ	\$	8	83	8	8	8	75	2	8	8	R	ន	\$	Q.
		Altitude	8000	(30°F)	(C)										8500	(29°F)	(-5°C)									

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 19 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	8.9	7.9	7.1	6.4	0.9	5.6	5.4	5.2	5.0	8.4	4.8	4.7	8.0	7.2	6.5	6.0	5.7	5.4	5.2	5.0	8.4	4.8	8.4
	KTAS	107	52	97	92	88	8	2	75	71	29	ន	28	£	8	83	88	\$	8	76	72	88	ន	23
40° F (4° C)	RPM	2510	2409	2316	2228	2150	2079	2024	1974	1923	1887	1855	1837	2432	23.65	2250	2171	2102	2043	1993	1943	1902	1874	1858
4	%ВНР	29	፠	25	47	£3	4	8	38	×	ಜ	32	32	83	ន	48	4	4	æ	36	ਲ	೫	ន	32
	MAP	20.2	19.0	18.1	17.3	16.7	16.3	16.0	15.7	15.5	15.4	15.4	15.5	19.0	18.1	17.3	16.7	16.3	15.9	15.6	15.4	15.3	15.3	15.4
	СРН	8.9	7.9	7.1	6.5	6.1	5.7	5.4	5.2	5.0	4 .0	8.4	4.8	8.0	7.1	6.5	6.1	5.7	5.5	5.2	5.1	4.9	4.8	4.8
	KTAS	105	\$	8	8	88	20	28	74	20	8	6	22	101	88	91	87	83	28	75	71	8	8	88
)* F (-7° C	RPM	2458	2360	2268	2183	2109	2037	28	1934	1885	1847	1818	1803	2383	\$	2205	2127	202	2002	1952	1907	288	1833	1820
20.	%ВНР	ន	፠	5	46	43	ඉ	37	જ	33	32	32	32	22	5	47	43	\$	37	35	8	32	32	32
	MAP	19.8	18.7	17.8	17.1	16.6	16.1	15.8	15.6	15.4	15.3	15.3	15.4	18.7	17.8	17.0	16.4	16.0	15.7	15.5	15.3	15.2	15.2	15.3
	ВРН	8.9	7.8	7.1	9.9	6.1	5.8	5.5	5.3	5.1	5.0	6.4	4.9	7.9	7.2	9.9	6.2	5.8	5.5	5.3	5.1	5.0	4.9	6.4
	KTAS					ı								86										
0 F (-18 C	RPM	2407	231	222	2141	2064	1992	1943	1896	1846	1812	1771	1766	2334	2246	2158	2083	2014	1962	1911	1866	1825	1796	1783
0	%BHP	ŀ				ı								જ			ŀ			1				
	MAP	19.4	18.4	17.6	16.9	16.4	15.9	15.7	15.4	15.3	15.2	15.1	15.3	18.3	17.5	16.8	16.2	15.8	15.5	15.3	15.1	15.1	15.1	15.1
	KIAS	ጽ	8	æ	8	75	2	ß	8	જ	S	Ą.	8	8	8	8	75	2	65	8	ક્ક	S	\$	4
	Altitude	0006	(27° F)	3.0										9500	(25° F)	4.0								

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 20 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH		7.9	7.2	6.5	5.9	5.5	5.2	5.0	4.8	4.7	4.6	4.6	8.0	7.3	9.9	5.9	5.5	5.2	5.0	4.8	4.7	4.6	4.6
(3)	KTAS		108	103	86	93	88	\$	8	75	7	8	62	109	\$	8	\$	8	æ	8	76	72	29	62
100° F (38°	RPM		2551	2452	2359	2276	2202	2142	2089	2037	1994	1964	1947	2575	2476	2382	2298	222	2165	2110	2057	2015	1980	1
10	%BHP		61	82	ß	46	5	4	88	36	જ	8	34	62	ß	ន	46	€	4	8	36	32	8	×
	MAP		8.	19.0	18.1	17.4	17.0	16.6	16.3	16.0	15.9	15.9	16.0	20.0	19.0	18.1	17.4	16.8	16.5	16.2	15.9	15.8	15.8	15.9
	GPH		8.0	7.2	6.4	5.9	5.5	5.3	5.0	4.9	4.7	9.4	4.6	8.0	7.3	6.5	5.9	5.6	5.3	5.1	4.9	4.7	4.6	4.6
()	KTAS		9	힏	88	91	8	82	78	74	2	ន	61	107	102	97	25	87	ន	20	75	2	8	9
80° F (27° C)	RPM		25 25	2408	2316	2234	2163	21 24	2052	2001	1962	1928	1912	2529	2432	2338	2256	2184	2127	2072	2020	1978	1947	1931
8	жвнр		8	ል	49	45	42	ස	37	35	8	ន	ಜ	61	ĸ	8	\$	4	4	38	36	श्ल	8	8
	MAP		19.7	18.7	17.9	17.2	16.8	16.4	16.1	15.9	15.7	15.7	15.8	19.7	18.7	17.8	17.1	16.7	16.3	16.0	15.8	15.6	15.6	15.7
	GPH	8.8	8.0	7.1	6.4	5.9	5.6	5.3	5.1	4.9	4 .	4.7	4.7	8.1	7.2	6.5	0.9	5.6	5.3	5.1	6.4	8.4	4.7	4.7
()													29											
60° F (16° C)	RPM	2558	2456	2383	2273	2192	2121	2064	2013	1963	1925	1892	1876	2481	2386	2295	2214	2143	2084	2033	1982	1940	1911	1895
Ø	%ВНР				48				- 1				33	1										
	MAP	20.5	19.4	18.4	17.6	17.0	16.5	16.2	15.9	15.7	15.6	15.6	15.7	19.3	18.4	17.5	16.9	16.5	16.1	15.8	15.6	15.5	15.5	15.6
	KIAS	88	8	85	8	75	2	ន	8	જ	ន	3	8	8	8	8	22	2	8	8	જ	ያ	4	4
	Afftude	0006	(27° F)	(3°C)										9500	(25°F)	.4. ()								

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 21 of 30)

Data Basis: RPM Model 1760 lbs UP USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps: Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

									Г														
	GPH	8.1	7.3	6.5	6.0	5.7	5.4	5.2	5.0	4.9	4.8	4.8	8.2	4.7	9.9	6.1	5.7	5.4	5.2	5.0	4.9	4.8	48
	KTAS	\$	8	8	88	æ	20	77	73	88	2	59	105	\$	જ	06	ಜ	82	78	73	8	જ	8
40° F (4° C)	RPM	2456	2362	2272	2192	2122	2064	2013	1963	1922	1893	1876	2481	2386	2294	2213	2138	2084	2033	1982	1961	191	1808
4	%ВНР	53	ន	48	4	4	ස	37	35	8	33	33	8	\$	49	44	¥	98	37	32	¥	ಜ	33
	MAP	19.0	18.0	17.2	16.6	16.2	15.8	15.5	15.3	15.2	15.2	15.3	18.9	18.0	17.1	16.5	16.0	15.7	15.4	15.2	12.1	15.1	15.2
	СРН	8.1	7.2	9.9	6.1	5.7	5.5	5.3	5.1	6.4	8.4	4.8	8.2	7.3	6.6	6.1	5.7	5.5	5.3	5.1	4.9	4.8	48
	KTAS	102	97	92	87	ജ	79	75	71	29	ន	28	103	83	8	88	2	8	9/	72	88	ន	Q.
20° F (-7° C)	RPM	2406	2315	2226	2147	2077	2022	1971	1923	583	1851	1839	2430	2337	2248	2168	2082	2 4	1991	1942	1901	1869	4853
×	% ВНР	88	8	47	5	4	8	98	8	ន	g	32	æ	ន	8	4	\$	8	ક્ષ	뚕	ಜ	33	દ
	MAP	18.6	17.7	16.9	16.3	15.9	15.6	15.4	15.2	15.1	15.0	15.1	18.6	17.7	16.9	16.3	15.8	15.6	15.3	15.1	15.0	14.9	15.0
	GPH	8.0	7.2	9.9	6.2	5.8	5.6	5.3	5.1	5.0	4.9	4.9	8.2	7.3	6.7	6.2	5.8	5.6	5.4	5.1	2.0	4.9	9
	KTAS								ı				101			1				l .			
F (-18° C	RPM	2354	2266	2180	2105	2033	1981	1932	1876	1845	1814	1798	2379	2289	2204	2125	2050	1997	1951	1901	1863	1832	4047
ò	жвнр												57										
	MAP	18.2	17.4	16.7	16.2	15.7	15.4	15.2	14.9	15.0	14.9	15.0	18.2	17.4	16.7	16.1	15.6	15.3	15.1	14.9	14.8	14.8	440
	KIAS	8	88	8	75	2	ß	8	55	S	\$	4	8	88	8	75	2	B	8	જ	S	\$	ç
	Aftitude	10000	(23° F)	(S									10500	(22°F)	9								
_		_	_						_			_	-			_	_	_					_

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 22 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

1760 lbs UP USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

		_			_				_				_	_		_		_		_	_		
	GPH		7.4	9.9	6.0	5.5	5.3	5.0	4.8	4.7	4.6	4.6		7.4	6.7	6.1	5.6	5.3	5.1	4.9	4.7	4.6	46
(C)	KTAS		55	8	ક્ક	8	88	8	11	22	88	ಜ		106	8	85	8	98	82	78	73	88	8
100° F (38° C)	RPM		2201	2406	2320	2241	2186	2133	2077	2034	2000	1983		2526	2429	2344	2263	2204	2154	2101	2054	2019	2003
10	жвнр		ሄ	2	47	€	4	33	37	ક્ષ	35	35		23	22	47	₹	4	33	37	ဗ္တ	જ	ň
	MAP		18.9	18.0	17.3	16.7	16.4	16.1	15.9	15.7	15.7	15.8		18.9	18.0	17.3	16.7	16.3	16.0	15.8	15.6	15.6	157
	СРН	8.1	7.3	9.9	6.0	5.6	5.3	5.1	4.9	4.7	4.7	4.6		7.4	6.7	6.0	5.6	5.3	5.1	4.9	4 .	4.7	47
(KTAS	108	8	88	93	8	\$	8	9/	7	8	62		\$	8	8	8	8	81	9/	22	29	3
80° F (27° C)	RPM	2552	2455	2362	2278	2202	2147	2092	2040	1998	1964	1947		2480	2386	2300	222	2167	2115	2060	2017	1983	1967
æ	%ВНР	61	જ	ଝ	94	42	\$	88	36	જ્ઞ	\$	34		æ	21	46	€	4	88	8	æ	ষ্ক	ኢ
	MAP	19.6	18.6	17.8	17.1	16.5	16.2	15.9	15.7	15.5	15.5	15.6		18.6	17.7	17.0	16.4	16.1	15.9	15.6	15.4	15.4	15.5
	GPH	8.1	7.3	6.5	6.0	9.6	5.4	5.1	4.9	4.8	4.7	4.7	8.2	7.4	6.6	0.9	5.6	5.4	5.2	5.0	4 .8	4.7	47
(;	KTAS	106	5	96	91	8	82	78	74	2	ß	61	107	1 02	97	92	87	æ	79	75	2	8	2
60° F (16° C)	RPM	5206	2409	2317	2235	2160	2107	2053	2002	1960	1929	1914	2528	2433	2341	2257	2180	2127	2073	2021	1979	1946	1930
9	% ВНР	9	3	49	\$	4	ജ	37	35	×	8	34	61	જ	ន	\$	4	\$	88	36	æ	¥	75
	MAP	19.3	18.3	17.5	16.8	16.4	16.0	15.7	15.5	15.4	15.3	15.4	19.3	18.3	17.4	16.7	16.2	15.9	15.6	15.4	15.3	15.2	15.3
	KIAS	8	8	8	75	2	8	8	55	ദ	ð,	8	8	8	8	75	2	85	8	ß	ß	\$	9
	Altitude	10000	(23°F)	(2°C)									10500	(22°F)	(Se C)								

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 23 of 30)

Engine: Lycoming O-320-E2D Mixture: Le Propeller: McCauley TM7458/1C172 Carb Heat: OF

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs Data Basis: RPM Model UP

	СРН	7.5	6.7	6.1	5.7	5.5	5.2	5.0	4.9	8.4	4.8	9.7	6.8	6.2	5.7	5.5	5.3	5.1	4.9	4.8	48
	KTAS	101	88	91	8	82	78	74	2	જ	61	102	97	92	87	ಜ	ድ	75	02	8	6
40° F (4° C)	RPM	2409	2318	2235	2159	2107	2052	2001	960	1927	1910	2433	2341	1577	2180	2122	2075	2022	1979	1946	1930
4	%ВНР	2	49	\$	4	ස	37	32	8	ಜ	33	55	22	45	4	ဓ္ဌ	8	જ	35	ጽ	8
	MAP	17.9	17.1	16.4	15.9	15.7	15.3	15.1	15.0	15.0	15.1	17.9	17.0	16.4	15.8	15.5	15.3	15.0	14.9	14.9	15.0
	ВРН	7.4	6.7	6.2	5.8	5.5	5.3	5.1	5.0	6.4	4.9	7.5	6.7	6.2	5.8	5.5	5.3	5.1	5.0	4.9	49
(KTAS	88	8	68	2	20	11	73	88	B	29	100	92	96	8	₩	28	73	89	B	8
20° F (-7° C)	RPM	2360	2271	2190	2116	2065	2011	1961	1921	1887	1875	2384	2293	2211	2136	2080	88	1981	1940	1907	1891
2	%ВНР	ß	&	4	4	ඝ	38	35	श्र	೫	33	\$	49	44	4	න	37	જ્ઞ	क्र	ន	33
	MAP	17.6	16.8	16.2	15.7	15.5	15.2	15.0	14.9	14.8	14.9	17.6	16.8	16.1	15.6	15.3	15.1	14.9	14.8	14.7	148
	GPH	7.4	6.7	6.2	5.9	5.6	5.4	5.1	5.0	4.9	4.9	7.4	8.9	6.3	5.9	5.6	5.4	5.2	5.0	5.0	50
	KTAS	97	8	87	8	20	75	71	19	ន	88	8	8	88	\$	8	92	22	89	ន	ğ
0° F (-18° C)	RPM	2311	2225	2144	2073	2019	1970	1918	1879	1849	1834	2331	2244	2168	2002	2039	1987	1942	1897	1868	1852
ò	%ВНР	23	47	43	4	88	8	R	ສ	32	32	52	84	4	4	88	8	8	33	32	33
	MAP	17.3	16.6	16.0	15.5	15.2	15.0	14.7	14.7	14.7	14.8	17.2	16.5	15.9	15.4	15.1	14.9	14.7	14.5	14.6	147
	KIAS	8	8	75	2	ß	8	SS.	8	\$	4	88	8	75	2	85	8	8	S	45	Ş
	Aftitude	11000	(20° F)	-1.C								11500	(18° F)	(S)							

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 24 of 30)

Engine: Lycoming O-320-E2D Mixture:
Propeller: McCauley TM7458/1C172 Carb Heat:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 1760 lbs
Carb Heat: OFF Flaps: UP

	GPH		6.8	6.2	5.6	5.3	5.1	4.9	4.7	4.6	4.6		6.9	6.3	5.7	5.3	5.1	4.9	4.8	4.7	4.7
(၁	KTAS		101	88	9	87	8	78	74	8	2		102	97	8	8	\$	79	75	2	જ
100° F (38° (RPM		2453	2367	2286	2225	2170	2121	2075	2040	2023		2480	2390	2307	2247	2191	2142	5083	2064	2047
10	%BHP		25	848	4	4	8	88	æ	જ	8		ន	84	4	54	各	8	37	ဗ္ဂ	8
	MAP		17.9	17.2	16.6	16.2	15.9	15.7	15.5	15.5	15.6		17.9	17.2	16.5	16.1	15.8	15.6	15.5	15.4	15.5
	СРН	7.5	6.8	6.1	5.6	5.3	5.1	4.9	8.4	4.7	4.7		6.9	6.2	2.7	5.4	5.1	5.0	4.8	4.7	4.7
(KTAS	501	9	88	8	8	81	11	ಜ	8	æ		101	8	8	8	82	78	73	8	B
80° F (27° C)	RPM	2503	2409	2324	24	2184	2135	2084	2037	2003	1987		2433	2347	2266	500	2152	2104	2061	2023	2006
8	% ВНР	95	51	47	₽	4	39	37	æ	ક્ષ	35		52	47	4	4	ඝ	37	36	ષ્ઠ	જ્ઞ
	MAP	18.5	17.7	16.9	16.4	16.0	15.8	15.5	15.4	15.3	15.4		17.6	16.9	16.3	15.9	15.6	15.4	15.3	15.2	15.3
	GPH	7.5	6.7	6.1	5.7	5.4	5.2	5.0	8.4	4.7	4.7	9.7	6.8	6.2	5.7	5.4	5.2	5.0	4.9	8.4	4.8
	KTAS	103	88	93	88	2	8	92	7	8	62	\$	8	94	8	æ	26	26	72	29	23
60° F (16° C)	RPM	2457	2364	2279	2302	24	2096	2042	1999	1965	1949	2483	2387	2303	222	2164	2116	2065	2019	1985	1968
8	%BHP	55	S	94	2	4	88	ક્ષ	ક્ટ	¥	æ	95	51	94	\$	4	జ	37	જ્ઞ	ક્ષ	35
	MAP	18.2	17.4	16.7	16.1	15.8	15.6	15.3	15.2	15.1	15.2	18.2	17.3	16.6	16.1	15.7	15.5	15.3	15.1	15.1	15.2
	KIAS	85	80	75	20	85	8	ß	S	4	8	88	8	75	2	92	8	SS	ន	ð.	各
	Altitude	11000	(20°F)	(-7°C)								11500	(18°F)	(S & C)							

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 25 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH		1.7	6.9	6.2	5.8	5.5	5.2	5.1	4.9	4 .	4.8	7.0	6.3	5.8	5.5	5.3	5.1	4.9	4.8	4.8
	KTAS		8	88	ន	88	\$	8	92	7	8	62	8	2	8	8	81	92	2	29	62
40° F (4° C)	RPM		2459	2364	2281	2202	24	2091	2045	1999	1966	1950	2388	2303	2224	2165	2111	2059	2019	1986	1969
4	S BHP	1 122	ß	ន	9	42	4	æ	8	ક્ષ	8	34	51	46	a	\$	38	ક્ષ	ક્ષ	ક્ષ	જ
	MAP	, , , ,	17.9	17.0	16.3	15.8	15.4	15.1	15.0	14.8	14.8	14.9	16.9	16.3	15.7	15.3	15.0	14.8	14.7	14.7	14.8
	Hde		7.6	6.8	6.2	5.8	5.5	5.4	5.1	5.0	4.9	4.9	6.9	6.3	5.8	5.6	5.3	5.1	5.0	4.9	4.9
	KTAS	2012	101	88	91	98	82	78	74	2	88	61	26	35	87	8	79	75	2	98	6
20° E (.7° C)	Mdd	N 1 M	2407	2316	2233	2158	2101	2054	2001	1959	1926	1910	2339	2257	2179	2121	2069	2018	1982	1945	1929
2	SK BHD	שמע	\$	49	45	4	න	37	35	क्र	×	8	ន	45	42	න	37	98	જ	8	8
	MAD	MINI	17.5	16.7	16.0	15.5	15.2	15.0	14.8	14.6	14.6	14.7	16.6	16.0	15.5	15.1	14.8	14.6	14.6	14.5	14.6
	Tag	פרים	7.6	8.9	6.3	5.9	5.6	5.4	5.2	5.0	6,4	5.0	6.9	6.3	5.9	5.6	5.4	5.2	5.1	5.0	5.0
	74.6	KIAS	8	8	88	2	20	1	72	88	2	23	ક્ક	8	8	8	1	73	8	2	8
	0 - 1-18 - 0	Z Z	2357	2268	2187	2116	2057	5003	1960	1917	1882	1870	2291	2209	2133	2079	2028	1977	1939	1903	1889
		*BHP	ន	8	4	4	8	37	35	8 8	3 8	8	5	4	4	8	37	35	8	8	33
		MAP	17.2	16.4	15.8	15.4	15.0	14.8	146	144	14.4	14.6	16.4	15.8	15.2	14.9	14.7	145	14.4	14.3	144
	0.00	KIAS	85	8	75	2.2	. 12	8	8	3 8	3 4	. 4	8	25	2	. 18	8	8	8	3	8
		Attitude	12000	(16° F)	9	5							12500	(14° F)	10.0	· · ·					

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 26 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

_	-	-		_				-				_	_				-		-	
	GPH		2.0	6.3	8	5.4	5.1	4.9	8.4	4.7	4.7		6.4	5.8	5.4	5.2	4.9	8	4.7	4.7
(KTAS		103	88	8	8	82	8	22	2	જ		83	2	8	88	81	92	7	98
100° F (38° C)	RPM		2504	2414	2332	2269	2213	2158	2119	28	2066		2438	2355	2283	2235	2180	2135	2103	2082
10	%BHP		ಬ	8	4	4	4	8	37	æ	36		64	₹	4	4	88	37	37	36
	MAP		17.9	17.1	16.5	16.1	15.7	15.5	15.4	15.3	15.4		17.1	16.4	16.0	15.7	15.4	15.2	15.2	15.3
	GPH		7.0	6.3	5.7	5.4	5.1	4.9	4.8	4.7	4.7	7.0	6.4	5.8	5.5	5.2	5.0	6.4	8.4	4.7
(;	KTAS		102	88	6	87	ಙ	62	7	8	2	103	97	8	8	\$	79	75	2	છ
80° F (27° C)	RPM		2459	2371	2290	2228	2173	2120	2081	2046	2029	2483	2394	2313	22	2194	2140	2101	2066	2049
80	%BHP		25	84	4	4	39	28	98	8	98	53	84	&	42	4	38	37	ജ	ဆ
	MAP		17.6	16.8	16.3	15.8	15.5	15.3	15.2	15.2	15.3	17.5	16.8	16.2	15.8	15.4	15.2	15.1	15.1	15.2
	GPH		6.9	6.3	5.7	5.4	5.2	5.0	6.4	4 .	4.8	7.0	6.3	5.8	5.5	5.2	5.0	6.4	4 .8	4.8
	KTAS		100	88	8	8	82	11	22	8	ಜ	101	96	6	8	82	78	ಜ	88	g
60° F (16° C)	RPM		2411	3326	2246	2186	2132	2085	2042	2009	1988	2437	2349	2269	2208	2153	2101	2062	2028	2011
	%BHP		51	47	\$	4	88	37	୫	ક્ષ	35	52	47	4	4	8	37	မွ	જ્ઞ	æ
	MAP		17.3	16.6	16.0	15.6	15.3	15.2	120	15.0	15.1	17.3	16.5	16.0	15.5	15.2	15.0	14.9	14.9	15.0
	KIAS	88	8	75	2	જ	8	ß	ଜ	&	8	8	75	2	જ	8	83	S S	\$	용
	Altitude	12000	(16° F)	(O .6-)								12500	(14°F)	(-10°C)						

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 27 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

8 8	3	8 8	4888	3388	8821288	8 8 8 8 1 2 8 8 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 3 7 8 8 8	8 8 8 7 7 8 8 8 9 7	88825283	8 8 2 2 2 8 3 2 2 8 8 8 2 2 2 8 8 8	88822588825	8887258885	8 8 8 7 2 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8	888758885588888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 3 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 8 8 8 6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88877888	3 8 8 8 7 7 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8	8 8 8 7 7 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8	888888888888888888888888888888888888888	888755887558888888888888888888888888888	888 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8888 6288 6288 6288 6288 8888 8888 8888	8888 25 28 88 88 88 88 88 88 88 88 88 88 88 88	3882528828282828282828282828282828282828
	ક ક્ર	÷ € € %	\$ 2 4 8 %	\$ 4 ± 8 % %	2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	52 23 28 28 25 25 25 25 25 25 25 25 25 25 25 25 25	4 2 2 8 8 3 8 4 5 5 4	2	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 8 8 8 8 8 8 8 4 4 4 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.2 4/1 2320 16.3 4/1 2320 16.0 38 2132 14.7 37 2080 14.6 35 2083 14.7 37 2080 14.7 37 2080 14.7 35 2436 16.9 52 2436 16.9 52 2436 16.0 47 2350 14.6 37 2101 14.5 38 2028 14.6 37 2101 14.6 37 201 14.6 37 202 14.8 37 2176 14.4 35 2028 14.4 35 2028 14.8 35 2028 14.8 35 2028 14.8 35 2028 14.8 203 2048 14.8 36 2028 14.8 36
, , ,	6.4 5.9	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	5.6 5.6 5.6 5.6 5.6	6.4 5.6 5.6 5.4 5.0 6.0	4.0.0.0.0.4.4 0.0.0.4.4 0.0.0.0.0.0.0	4.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7	4.0 0.0 0.0 0.0 0.0 0.0 1.7 1.7 4.0	4.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0	4.0.0.0.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0	4.0.0.0.0.4.4.7.0.0.0.0.0.0.0.0.0.0.0.0.	4.0.0.0.0.4.4.7.7.0.0.0.0.0.0.0.0.0.0.0.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 6 6 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.0 6.5 6.4 6.5 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	4.0.0.0.0.4.4.7.7.0.0.0.0.4.4.0.0.0.0.0.	4.0.0.0.0.4.4.7.7.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0	4.0.0.0.4.4.7.7.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0	4.0.0.0.4.4.7.7.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0	4.0.0.0.4 4 7 7 0.0.0.4 4 0.0.0.0.4 4 0.0.0.0.4 4 0.0.0.0.	4.0.0.0.4 4.0.0.4 4.0.0.4	4.0.0.0.0.4.4.7.7.0.0.0.4.4.0.0.0.0.0.4.4.0.0.0.0	4.0.0.0.0.4.4.7.7.0.0.0.4.4.0.0.0.0.4.4.0.0.0.0	4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
╀	_						 																				2279 93 2201 88 2203 84 2143 84 2038 76 1986 71 1987 62 2236 94 2385 99 2302 94 2224 86 2110 81 2246 85 2246 86 2376 87 2079 77 2079 77 2036 77 2036 73 2250 86 2250 87 22079 89 2163 86 2163 86 2163 86 2163 86 2163 86 2163 87 2163 87 2163 73 2163 73 2163 73 2163 73 2163
1																											15.9 15.0
ł	-																										88 8 6.0 6.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.7 5.5 5.5
ŀ																											45 2234 33 2100 34 1989 35 1989 36 1989 37 2048 38 1984 49 2176 39 2063 30 2069 30 2069 31 32 204 40 2176 40 2176 4
							15.7 15.2 14.9 14.2 14.2 14.3 15.6 15.7	15.7 15.2 14.9 14.2 14.2 16.2 15.6 15.7	15.7 15.7 15.2 15.6 15.6 15.6 15.6 15.6 15.6	15.7 15.2 14.9 14.4 14.2 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	15.7 16.2 16.2 16.2 16.2 16.2 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	15.7 16.2 16.2 16.2 16.2 16.2 16.2 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	15.7 16.2 16.2 16.2 16.2 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	15.7 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.3	7.25 6.44 6.44 6.44 6.45	15.7 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	15.7 16.2	7.25 6.4.4 6.4.4 6.2.4 6.2.4 6.3.5 6.3	7.35 6.4.4 6.4.4 6.4.4 6.5.5 6.5	7.35 6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	7.25 4.4.4 4.4.4 4.5.5 6.2.5 6.2.5 6.3	7.35 6.4.4.4.4.4.4.4.5.5.5.5.5.5.5.5.5.5.5.5.	7.35 6.44 6.44 6.45	15.7 16.2	7.27 6.44 6.44 6.45	4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4	7.30 6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
_	_	= 10	o	- :- a la a		등 R B R B 4 4 8																			5 R B R B 4 4 B E 5 8 B R B 4 4 E 5 8 B R B 4 4 E 5 8 B	5 x 8 x 8 x 8 8 x 5 x 8 x 8 x 8 x 8 x 6 x 8 x 8 x 8 x 8 x 8	

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 28 of 30)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

1760 lbs UP USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

		ত	0° F (16° (0			8	80° F (27° C)				9	100° F (38° C)	0	
	MAP	%ВНР	RPM	KTAS	СРН	MAP	%BHP	RPM	KTAS	ВРН	MAP	% ВНР	RPM	KTAS	GPH
	17.2	52	2460	102	7.1										
1	16.5	48	2373		6.4	16.8	64	2418	88	6.5	17.0	ន	2463	100	6.5
	15.9	4	2282		5.9	16.1	री	2336	ន	5.9	16.4	4	2379	88	5.9
	15.5	4	23		5.5	15.7	2	2274	8	5.5	16.0	€ €	2316	9	5.5
	15.2	39	2175		5.2	15.4	8	2217	88	5.2	15.6	4	2257	8	5.2
	14.9	37	2122		5.0	15.1	88	2912	8	5.0	15.3	တ္တ	2202	82	5.0
	14.8	જ્	2021		6.4	15.0	37	2117	22	4.8	15.1	37	2156	4	8.4
	14.8	જ્ઞ	2047		8.4	14.9	æ	2082	2	4.7	15.1	37	2120	22	4.7
	14.9	38	2030		4.8	15.0	98	2065	65	4.7	15.2	37	2102	29	4.7
	16.5	84	2399	86	6.5	16.7	8	2443	88	9.9					
	15.8	45	2315	85	5.9	16.1	₹	2360	8	6.0	16.4	46	2403	88	6.0
	15.4	42	254	88	5.6	15.7	£	2297	8	5.6	15.9	4	2339	65	5.6
	15.1	40	2197	8	5.3	15.3	9	2239	98	5.3	15.5	4	2281	87	5.3
	14.8	88	2143	79	5.1	15.0	88	2183	81	5.0	15.3	æ	2224	82	5.0
	14.7	8	2088	75	6.4	14.9	37	2138	92	6.4	15.1	8	2178	78	8
	14.7	8	2064	2	4.8	14.8	×	2102	7	8.4	15.0	37	2141	2	4.7
- 1	14.8	36	2049 649	92	4.8	14.9	37	2088	98	4.8	15.1	37	2123	29	4.7
1	16.4	49	2423	88	9.9										
	15.8	\$	2339	8	0.9	16.1	94	2386	ક્ષ	6.1	16.3	47	2429	26	6.1
	15.4	4	2277	83	5.6	15.6	4	2320	91	5.6	15.9	4	2363	83	5.7
	15.0	40	2219	85	5.3	15.3	4	2263	88	5.3	15.5	42	2304	88	5.3
	14.8	88	2164	88	5.1	15.0	88	2206	82	5.1	15.2	4	2248	æ	5.1
	14.6	37	2119	22	6.4	14.8	8	2160	1	4.9	15.0	8	2200	78	9.
	14.6	8	28	7	8.	14.8	37	2124	22	4.8	15.0	37	2163	E	8.4
	14.7	36	2066	99	4.8	14.8	37	2106	29	4.8	15.0	8	2145	88	4.7
	15.8	9	2365	8	6.1	16.0	84	2408	8	62					
	15.3	\$	2300	8	5.7	15.6	4	34	8	5.7	15.9	45	2389	8	8
	15.0	41	2243	88	5.4	15.2	41	2286	87	5.4	15.4	4	2328	8	5.4
	14.7	39	2186	81	5.1	14.9	න	2230	æ	5.1	15.2	4	2271	2	5.1
	14.5	37	2141	92	2.0	14.7	8	2182	28	4.9	:5.0	න	2224	20	6.4
	14.5	38	2105	۲	4.9	14.7	37	2145	R	8.	14.9	8	2185	74	4.8
용	14.6	38	2087	99	4.8	14.8	37	2127	29	4.8	15.0	8	2167	8	4.8

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 29 of 30)

Lycoming O-320-E2D McCauley TM7458/IC172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

			_	_	_	-		_				_	_		_											
	GPH	6.2	5.7	5.4	5.2	5.0	4.9	4.9	6.2	5.8	5.5	5.2	5.1	5.0	4.9	5.9	5.5	5.3	5.1	20	5.0	9.6	5.3	5.1	20	2.0
	KTAS	83	28	88	8	92	7	8	98	8	88	8	92	7	8	91	87	82	1	22	29	28	83	28	೭	88
40° F (4° C)	RPM	2342	2278	2222	2167	228	2085	2068	2365	230	2244	2189	2142	2107	2089	2324	2267	2212	2166	238	2113	2232	2234	2188	2152	2134
4	% ВНР	45	4	\$	8	37	æ	8	46	\$	14	ස	37	37	37	43	41	33	8	37	37	42	4	8	37	37
	MAP	15.5	15.0	14.7	14.5	14.3	14.2	14.3	15.4	15.0	14.6	14.4	14.2	14.2	14.2	14.9	14.6	14.3	14.2	14.1	14.2	14.6	14.3	14.1	14.0	14.1
	GPH	6.1	5.7	5.5	5.2	5.1	2.0	5.0	6.2	5.8	5.5	5.3	5.1	2.0	5.0	5.9	5.6	5.3	5.1	5.0	5.0	9.9	5.3	5.2	5.1	5.1
	KTAS	91	87	ಜ	79	4	8	\$	82	88	8	79	22	2	92	8	8	8	92	7	88	98	81	92	7	99
20° F (-7° C)	RPM	2232	2232	2177	2122	2078	2043	2026	2317	2255	2199	2145	860X	2063	2046	2278	2221	2167	2122	2085	2067	2244	2189	214	2108	2092
8	%BHP ∣	4	4	39	37	8	ક્ષ	જ	45	42	4	38	37	8	36	42	4	88	37	æ	38	41	88	37	37	37
	MAP	15.2	14.8	14.5	14.2	1.4	14.0	14.1	15.2	14.7	14.4	14.2	14.0	13.9	14.0	14.7	14.4	14.1	14.0	13.9	14.0	14.3	14.1	13.9	13.8	13.9
	ВРН	6.1	5.8	5.5	5.3	5.2	5.1	5.1	6.1	5.8	5.6	5.3	5.2	5.1	5.1	5.9	5.6	5.4	5.2	5.1	5.1	5.6	5.4	5.2	5.1	5.1
	KTAS	8	8	8	11	72	88	æ	8	8	82	78	23	8	2	87	8	78	74	8	8	2	79	72	2	85
F (-18° C)		2241	2185	2131	2082	2038	2002	1987	2263	2002	2153	2102	2060	2024	2006	2230	2172	2121	2079	2046	2024	2198	2140	2085	2063	2040
0	%BHP	£\$	4	න	37	æ	જ્ઞ	જ	\$	4	8	37	98	ક્ષ	જ	42	g	జ	æ	ജ	35	\$	88	æ	8	36
	MAP	14.9	14.5	14.3	14.1	13.9	13.9	14.0	14.8	14.4	14.2	14.0	13.8	13.8	13.9	14.4	14.1	13.9	13.8	13.7	13.8	14.1	13.8	13.6	13.6	13.7
	KIAS	02	8	8	88	S	4	8	2	59	8	55	8	\$	4	જ	8	R	8	45	4	8	85	S	45	4
	Altitude	15000	(5° F)	(-15°C)					15500	(4° F)	(-16°C)					16000	(Z*F)	(74.0)	:			16500	O. F.	(-18°C)		

Table A1

TABULATED CRUISE DATA BY INDICATED AIRSPEED (Page 30 of 30)

Engine: Lycoming O-320-E2D Mixture: Propeller: McCauley TM7458/IC172 Carb Heat

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 176
Carb Heat: OFF Flaps: UP

aned Weight: 1760 lbs Data Basis: RPM Model

%BHP RPM KTAS GPH 45 2411 94 5.8 43 2354 90 5.5 41 2294 85 5.1 39 2246 80 4.9 38 2209 75 4.8 38 2190 69 4.8	Z209 KTAS 2246 90 Z294 85 Z246 80 Z209 75 Z190 69 Z320 86 Z269 81 Z320 86 Z269 81 Z273 75 Z213 70	Z46 B6 Z209 B6 Z209 B6 Z209 B6 Z209 B6 Z200 B75 Z246 B7 Z220 B75 Z232 B75 Z232 B75 Z232 Z232 Z232 Z238 Z2285 B75 Z2285 Z
2411 2354 2394 2246 2209 2190	2411 2354 2354 2246 2209 2209 2320 2320 2232 2232 2232 2233	2411 2354 2246 2246 2200 2200 2200 2200 2200 220
2411 2354 2294 2246 2209 2190	2411 2354 2294 2209 2209 2130 2320 2232 2232 2232	2411 2354 2266 2208 2320 2320 2320 2320 2320 2320 2320
	2411 2354 2246 2209 2130 2320 2320 2320 2320 2320	2411 2354 2269 2320 2320 2320 2320 2320 2320 2320 232
2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4		
-		
_		
	8.6.0.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
5	22	278 88 88 82 52 52 88 88 88 88 88 88 88 88 88 88 88 88 88
	2289 2187 2150 2132	238 233 233 234 235 236 238 238 238 238
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 8 8 8 8 6 4 4 8
	0.44 0.44 0.44 0.54 0.54	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3	88844	8 8 8 4 4 8 8 8 8 8 4 4 8 8 8
_	· O	(-16°C) 16000 (2°F) (-17°C) 16500 (0°F)

TABULATED CRUISE DATA BY RPM (Page 1 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	0	0. F (-18° C				×	20° F (-7° C)				1	40° F (4° C)		
%8HP		JAS	KTAS	СРН	MAP	%BHP	KIAS	KTAS	GPH	MAP	% ВНР	KIAS	KTAS	GРН
_		124	115	14.2	28.4	83	12	115	13.5	27.8	2	118	114	12.6
		118	109	13.1	56.9	8	116	60	12.3	26.5	98	113	1 09	11.6
		113	5	11.3	24.9	78	111	55	10.7	24.8	75	109	\$	10.2
L	1	108	100	10.2	23.6	8	106	90	9.5	23.5	29	\$	8	9.1
		1 8	8	8.9	27.5	8	102	8	8.6	22.5	8	83	¥	8.2
		5	20	8.2	21.6	R	8	8	7.9	21.4	ន	æ	23	7.4
		8	85	7.5	20.7	9	8	85	7.2	20.6	84	88	82	6.9
L	1	87	8	7.0	19.6	42	\$	8	6.4	19.5	4	8	79	6.1
_		8	75	6.2	19.0	æ	92	74	5.9	18.9	35	7	ಬ	5.6
_		7	88	5.7	18.4	33	8	88	5.4	18.5	3	8	8	2.5
18.4		8	61	5.3	18.4	82	22	23	5.1	18.5	28	84	55	4.9
27	1	14	48	5.1	18.2	22	43	51	4.7					
_														
_		52	115	14.4	28.0	88	8	114	13.3	27.5	8	117	114	12.4
_		117	<u>5</u>	12.7	26.1	98	115	60	11.9	22. 8.	8	112	\$	11.2
_		112	56	11.3	24.6	26	110	104	10.6	24.4	74	108	104	10.1
73	ı	107	8	10.1	23.4	8	105	100	9.5	23.0	8	\$	100	8.9
_		5	8	9.0	22.0	8	ē	8	8.4	27.7	ß	8	¥	8.0
		8	91	8.0	21.2	ফ	8	28	7.7	21.1	ន	8	8	7.4
		9	8	7.4	20.4	49	8	8	7.2	20.2	47	88	2	6.7
-		88	8	6.9	19.3	41	æ	88	6.4	19.4	4	79	78	6.1
		78	74	6.1	19.0	37	74	2	5.9	18.7	ક્ષ	2	ಜ	5.6
		8	29	5.7	18.4	32	8	8	5.4	18.4	હ	8	2	5.2
18.0 28		23	61	5.2	18.8	31	4	49	5.2	18.3	28	46	22	8.4
					17.9	ß	8	51	4.7					

Table A2

TABULATED CRUISE DATA BY RPM (Page 2 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

_	_	_				_				_	_	_		_	_	_		_	_			_	_	_	_		_
	GPH	12.1	10.9	6.6	8.9	7.8	7.1	6.4	9	5.4	5.0	8.			11.8	10.7	8.8	8.8	7.7	7.0	6.3	5.9	5.3	6.4	4.6		
0	KTAS	118	114	60	103	88	8	83	æ	11	8	ន			118	114	108	103	88	2	8	æ	76	8	88		
100° F (38° C	KIAS	116	112	107	102	97	8	87	8	73	ន	4			115	110	92	ē	88	20	88	79	72	6	47		
₽	%ВНР	98	88	4	8	62	ß	8	4	37	¥	32			22	\$	92	88	61	ß	47	54	37	ಜ	ജ		
	MAP	29.0	27.1	25.6	24.3	23.0	22.0	20.7	20.2	19.3	18.9	19.2			28.4	26.7	25.3	23.9	7.22	21.7	20.4	19.9	19.1	18.7	18.5		
	GPH	12.7	11.4	10.4	9.3	8.2	7.4	6.8	6.1	5.6	5.2	8.4	4.6		12.4	11.1	10.1	9.2	8.1	7.4	6.7	6.2	5.5	5.1	4.7	4.4	
(;	KTAS	118	114	50	104	83	2	88	83	78	7	ន	25		118	113	9	\$	86	3	8	83	78	7	83	22	
80° F (27° C)	KIAS	118	114	8	105	100	2	88	æ	9/	8	æ	4		116	112	188	183	88	ន	88	82	2/2	જ	Ŋ	8	
80	% BHP	100	2	2	71	25	22	ន	4	38	¥	ຂ	8		26	88	4	20	ಜ	፠	ន	4	88	¥	ଛ	92	
	MAP	29.3	27.3	25.7	24.4	23.2	27	21.1	20.1	19.4	18.9	18.5	18.5		28.7	26.7	25.2	24.1	22.9	21.9	50.9	20.0	19.0	18.6	18.3	18.1	
	GPH	13.1	12.3	10.8	9.6	9.8	7.7	7.1	6.4	5.9	5.4	5.0	4.7			11.8	10.7	9.6	8.5	7.7	7.1	6.3	5.8	5.3	4.9	4.7	
(;	X	118	114	8	2	8	ጼ	28	8	11	22	ß	ß			114	8	401	66	8	2	84	8/	7	2	23	
60° F (16° C)	KIAS	120	116	111	107	102	88	9	86	11	2	8	€			115	110	106	101	ጼ	8	85	78	8	83	43	
Ø	%ВНР	101	8	81	73	99	22	25	45	4	ક્ષ	8	28			8	8	72	8	22	25	4	33	¥	ස	28	
	MAP	29.3	78.1	25.9	24.6	23.3	21.9	21.3	20.1	19.7	18.9	18.4	18.5			27.1	25.5	24.2	23.0	21.9	21.0	19.8	19.2	18.7	18.3	18.3	
	RPM	2700	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	1600	1500	2700	2600	2200	2400	2300	2200	2100	2000	1900	1800	1700	1600	1500
	Altitude	0	(59° F)	(15°C)											200	(57° F)	(14°C)										
	_			-		_	_	_					_	_	_							_			_		

Table A2

TABULATED CRUISE DATA BY RPM (Page 3 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	12.4	1.3	10.0	8.8	6.7	7.3	6.7	0.9	5.5	5.1	4.7			12.0	1.1	9.8	8.7	6.7	7.2	6.6	5.9	5.4	2.0	4.8
	KTAS		_	8		2	8	2	79	22	જ	83			- 4	8	Š	8	2	8	2	78	22	2	ន
0	Н		_			_	_	-				\dashv	_		_	_			-		_			_	\dashv
40° F (4°	KIAS	116	=======================================	107	102	8	9	8	79	۲	6	€		;	£	2	106	101	8	8	85	28	2	88	\$
	%BHP	83	8	73	8	ß	22	\$	න	8	ଛ	27		1	20	82	22	æ	ස	22	46	33	¥	ଛ	8
	MAP	27.4	25.7	24.1	22.9	21.8	50.9	20.0	19.0	18.4	18.0	17.9		į	20.5	25.4 4.	23.8	22.6	21.5	<u> </u>	19.7	18.7	18.2	17.8	17.9
	GРH	13.0	11.8	10.4	9.3	8.3	9.7	6.9	6.3	5.8	5.3	5.0		,	12.8	11.7	10.3	9.4	8. 1.	7.5	6.9	6.3	5.7	5.3	5.1
	KTAS	115	69	105	9	8	2	8	78	R	8	22			114	5	104	100	8	2	2	8/	R	8	ß
20° F (-7° C	KIAS	, 120		109	104	8	æ	87	81	74	2	ន		ļ	117	112	108	104	8	ន	98	79	R	ន	14
×	%ВНР	88	æ	75	89	B	ន	47	41	æ	3	28			2	8	74	8	æ	ន	47	41	જ	સ	S
	MAP	27.3	82	24.2	23.1	21.7	6.0	20.0	19.3	18.5	18.1	18.0			27.0	25.6	23.9	23.1	21.4	20.7	19.8	19.0	18.3	17.8	18.2
	ВРН	14.1	12.7	11.1	8.6	9.0	7.9	7.3	9.9	0.9	5.6	5.2	4.9		13.8	12.5	10.9	6.6	8.8	7.9	7.2	6.5	6.1	5.5	5.1
	KTAS	115	8	5	100	88	8	\$	8	74	8	28	49		115	8	ह	100	8	2	\$	8	22	8	83
0° F (-18° C	IAS	122	116	=	107	52	88	8	88	1	8	\$	41		22	115	110	106	5	88	8	2	74	88	ß
ċ	%ВНР	102	8	28	2	B	Š	8	42	æ	33	8	92		8	88	1	71	8	ß	4	14	37	32	28
	MAP	282	8	24.5	23.2	22.3	20.7	20.1	19.2	18.5	181	18.0	17.9		27.7	26.0	24.1	23.2	22.0	20.7	19.9	18.9	18.5	17.8	17.6
	RPM	2700	250	2400	2300	2200	2100	2000	1900	1800	1700	1600	1500	2700	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	1600
	Attitude	1000	3.6	6										1500	(54° F)	(12°C)									

Table A2

TABULATED CRUISE DATA BY RPM (Page 4 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

			۵	60° F (16° C)				8	80° F (27° C	0			10	100° F (38°	0	
KIAS KTAS	%BHP KIAS KTAS	KIAS KTAS	KIAS KTAS	KTAS	۲	GPH	MAP	%BHP	KIAS	KTAS	GPH	MAP	%BHP		KTAS	GPH
				┞			28.2	જ	115	117	12.1	28.0	83	114	118	11.7
26.8 89 114 114	89 114 114	114 114	414	_	_	1.7	26.5	ಜ	11	114	11.0	26.1	82	8	113	10.5
25.2 79 109 109	79 109 109	109 109	8	_	=	5.5	23.1	1	107	5	10.1	25.0	75	5	108	9.7
23.9 71 105 104	71 105 104	105 104	104	-	.	3.5	23.8	8	102	103	9.1	23.6	29	8	103	8.6
22.7 64 100 99	100 99	100 99	88		_	8.4	9.77	29	26	88	8.0	22.4	8	જ	88	7.7
21.7 57 95 94	57 85		2	_		9.7	21.6	%	ឌ	\$	7.3	21.4	\$	8	8	7.0
20.8 51 89 89	51 89 89	89 89	88		_	0	50.6	ଜ	87	8	6.7	20.2	47	8	88	6.2
19.6 44 83 84	44 83 84	83 84	84	4	9	2	19.8	4	81	ន	6.1	19.7	\$	28	82	5.8
18.8 38 77 78	38 77 78	87 77	78		S	7.	18.8	37	74	11	5.4	18.8	37	2	76	5.2
18.5 34 67 71	34 67 71	67 71	7		w	رب د	18.5	ಜ	ន	8	5.1	18.2	32	6	2	8.
30 56	30 56		2		4	o.	18.9	ន	4	ន	4.9	18.2	೫	46	8	4.5
1600																
1500																
				_								27.6	91	112	117	11.5
26.7 89 113 114	89 113 114	113 114	4:		-	9.1	26.2	8	100	114	10.9	26.0	82	8	113	10.4
25.0 79 108 109	79 108 109	108	8		=	5.5	24.8	92	2	8	10.0	24.6	74	\$	108	9.5
23.6 70 103 104	70 103 104	103 104	\$	_	8	4.	23.4	88	101	103	8.9	23.3	29	100	<u>8</u>	8.6
22.4 62 99 99	88 88	86	8		w	2	22.3	9	8	88	7.9	22.2	09	જ્ઞ	88	9.7
21.4 56 93 93		88	8		-	7.5	21.3	ß	6	8	7.2	20.7	51	8	8	6.7
20.5 50 88 89	88 89	88	8		9	o.	19.9	4	8	2	6.4	19.9	8	ន	88	6.1
19.4 43 82 83	43 82 83	82 83	83	-	9	-	19.3	42	79	83	5.9	19.3	4	9/	82	5.7
18.6 38 75 78	38 75 78	75 78	78		S	9	18.6	37	7.5	9/	5.4	18.6	98	88	75	5.2
18.3 34 65 70	88 88 8	65 70	2	_	ιΩ	7	18.2	ន	5	8	2.0	18.3	ಜ	22	29	4.9
18.0 30 52 61	30 52 61	52 61	6		4	6	18.0	೫	47	æ	4.7	18.0	8	£	ሄ	4.5
170 28 44 52	28 41 52	44 52	3		4	ď										:

Table A2

TABULATED CRUISE DATA BY RPM (Page 5 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GРН		1.9	10.8	9.7	8.6	7.8	7.1	6.3	5.8	5.3	2.0	4.7	;	11.7	10.7	9.6	8.4	9.7	8.9	6.2	5.8	5.3	4.9	4.7
	KTAS		4	110	호	83	2	8	æ	28	7	æ	\$		115	8	ই	83	g	8	2	78	2	83	25
40° F (4° C)	KIAS		4 4	110	5	5	8	8	2	1	8	ሄ	£3		174	108	\$	83	8	8	82	75	છ	ន	4
4	% ВНР		88	62	7	ফ্র	25	2	\$	8	8	ജ	27		87	20	71	ន	ያ	84	8	88	8	ജ	28
	MAP		26.3	24.6	23.5	22.2	21.2	20.3	19.1	18.4	17.9	17.7	17.5		25.7	24.5	23.2	21.9	50.9	19.6	18.9	18.2	17.8	17.5	17.4
	СРН		12.6	1.5	10.2	9.0	8.1	4.7	6.8	6.1	5.6	5.2	4.9		12.7	11.3	10.1	8.9	8.0	7.3	8.9	6.2	5.5	5.1	8.4
	KTAS		115	8	ই	8	ä	8	2	78	73	2	સ્		114	\$	\$	83	3	8	\$	78	72	8	8
20° F (-7° C)	KIAS		117	112	107	102	97	6	88	79	2	හු	43		116	Ξ	106	101	8	9	8	78	2	ß	5
8	%ВНР		8	8	2	99	88	25	46	4	¥	હ	82		8	20	23	65	፠	25	94	8	¥	31	28
	MAP		26.5	8	23.6	22.4	21.3	4.02	19.5	18.6	17.9	17.7	17.8		26.6	24.7	23.3	22.1	21.0	20.7	19.3	18.5	17.8	17.4	17.4
	ВРН		13.5	12.1	10.6	9.5	8.5	7.8	7.2	6.4	5.9	5.5	5.2		13.2	12.0	10.6	9.4	8.4	7.7	7.1	6.4	5.8	5.4	5.1
	KTAS		114	110	\$	101	88	28	88	8	23	8	22		114	8	\$	8	8	8	2	62	2	8	S
F (-18° C)	CIAS		119	115	8	56	ē	8	88	82	R	જ	41		117	113	8	Š	5	82	87	200	23	23	41
0. F	% ВНР		26	ಜ	75	29	8	23	8	14	æ	32	30		8	\$	75	29	ន	83	47	8	8	3	8
	MAP		27.2	25.2	23.7	22.4	21.3	20.5	19.7	18.6	18.0	17.6	18.0		26.7	ß	23.4	223	50.9	20.2	19.4	18.4	17.8	17.5	17.6
	RPM	2700	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	1600	2700	2600	2200	2400	2300	2200	2100	2000	1900	1800	1700	600
	Attitude	2000	(52° F)	(11.0)										2500	(50°F)	(10.0)									
ᆫ			_						_	_		_		ш	_	_									

Table A2

TABULATED CRUISE DATA BY RPM (Page 6 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	11.2	10.3	9.2	8.5	7.6	9.9	6.0	5.5	5.1	4.7	4.5		11.0	10.0	9.1	8.4	7.5	6.5	6.0	5.5	5.1	4.7	4.4
0	KTAS	117	113	8	103	88	8	87	82	74	29	\$		117	114	\$	5	88	8	87	26	73	8	ß
100° F (38° (KIAS	111	107	\$	86	2	88	82	92	98	22	\$		1 09	107	\$	86	ಜ	87	25	E	প্র	ន	4
Þ	%ВНР	8	8	7	88	65	5	\$	4	98	32	8		87	28	2	88	88	S	\$	4	36	32	ଷ
	MAP	27.1	25.7	23.9	23.0	21.9	20.5	19.6	18.8	18.5	17.9	18.0		26.6	24.9	23.5	22.8	21.6	29.5	19.4	18.8	18.3	17.8	17.6
	GPH		10.9	9.7	8.9	7.8	7.1	6.3	5.8	5.3	4.9	4.6			10.5	9.7	8.8	7.7	8.9	6.2	5.7	5.3	6.4	4.6
	KTAS		113	8	5	88	æ	88	82	9/	8	8			114	8	103	88	8	88	82	75	29	ሄ
80° F (27° C)	KIAS		8	90	101	ક્ક	8	\$	71	20	8	₹			8	ই	901	8	8	8	76	88	22	A
8	%BHP		2	2	88	8	ঠ	8	42	37	೫	৪			20	7	29	8	2	8	41	98	೫	প্ত
	MAP		26.0	24.1	23.2	22.0	21.0	19.7	19.1	18.4	17.9	17.8			25.2	24.0	22.9	21.7	20.2	19.5	18.8	18.2	17.8	17.6
	ВРН		11.6	10.2	9.2	8.1	7.4	9.9	6.2	5.5	5.2	8.			11.1	10.2	9.2	8.0	7.3	6.5	6.1	5.5	5.	8.
	KTAS		+	10	\$	86	8	8	83	78	8	8			113	8	133	86	2	88	83	77	8	8
	KIAS		112	8	103	26	33	88	81	74	ន	ន			9	8	102	86	<u>გ</u>	8	79	73	9	47
8	% ВНР		8	92	8	62	ĸ	47	4	37	¥	ణ			\$	92	8	61	ន	47	43	37	ಜ	೫
	MAP		26.5	24.3	23.3	22.1	21.1	19.7	19.3	18.3	18.0	17.8			25.6	24.2	23.0	21.8	20.8	19.6	19.0	18.1	17.8	17.6
	RPM	2700	2600	2200	2400	2300	2200	2100	2000	1900	1800	1700	1600	2700	2600	2200	2400	2300	2200	2100	2000	1900	1800	200
	Attitude	2000	(52° F)	(11.0)										2500	F	(10.0)								

TABULATED CRUISE DATA BY RPM (Page 7 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

								_	_			_	_					_	_		_	_	
	GPH	11.5	10.6	9.5	8.3	7.5	6.7	6.3	5.6	5.3	4.8		11.7	10.2	9.5	8.2	7.5	6.7	6.1	5.6	5.2	4 .8	
	KTAS	114	\$	104	86	æ	8	82	78	8	8		114	8	104	86	3	8	ಜ	11	8	8	
40° F (4° C)	KIAS	112	107	103	86	8	88	8	74	ន	S		111	9	102	96	8	8	79	72	6	ន	
4	%ВНР	98	=	20	29	ĸ	47	43	37	¥	ଷ		87	75	89	61	R	4	42	37	೫	প্ত	
	MAP	25.4	24.1	22.9	21.6	50.6	19.3	18.8	17.9	17.6	17.2		25.6	23.5	22.7	21.3	20.3	19.2	18.3	17.8	17.4	17.0	
	СРН	12.4	11.1	10.0	8.8	7.9	7.3	6.5	5.9	5.5	5.1	4.8	12.1	10.9	9.8	8.6	7.8	7.2	6.4	5.9	5.4	2.0	4.8
(KTAS	114	8	104	86	\$	88	8	78	7	\$	2	113	2	4	8	83	8	ಜ	11	2	ន	22
20° F (-7° C)	KIAS	114	5	105	50	æ	8	8	11	88	22	43	112	90	104	66	8	8	82	2/2	જ	ĸ	14
7	%ВНР	91	8	72	2	22	ত	4	æ	8	ଛ	27	88	78	70	ణ	፠	5	8	88	ਲ	೫	%
	MAP	26.1	24.3	23.0	21.8	20.7	19.8	18.7	18.0	17.6	17.1	17.1	25.6	23.8	22.6	21.4	20.4	19.6	18.4	17.9	17.4	17.0	17.0
	GPH	12.9	11.6	10.5	9.3	8.3	9.7	8.9	6.3	5.8	5.3	5.0	12.7	11.6	10.2	9.1	8.2	7.5	6.7	6.2	5.7	5.3	40
	KTAS	113	8	\$	8	8	8	83	79	22	2	S	113	110	40	88	8	8	88	78	22	ន	'n
0 F (-18 C	KIAS	116	112	107	103	26	35	87	79	22	8	4	114	111	90	102	8	9	88	78	2	24	44
0	%BHP	85	82	74	88	S	83	\$	64	8	31	28	8	82	72	છ	æ	23	4	စ္တ	જ	સ	28
	MAP	26.1	24.4	23.1	22.0	20.9	20.0	18.7	18.2	17.6	17.3	17.3	25.6	24.2	22.7	21.7	20.6	19.7	18.4	17.9	17.4	17.1	170
	RPM	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	1600	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	4600
	Attitude	3000	(48° F)	6									3500	(47° F)	(8°C)								
_	_	_				_	_					_		_			_						

Table A2

TABULATED CRUISE DATA BY RPM (Page 8 of 24)

Engine: Lycoming O-320-E2D M
Propeller: McCauley TM7458/1C172 C3

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 1
Carb Heat: OFF Flaps: U

Veight: 1760 lbs D laps: UP

	GPH	9.8	9.1	8.4	7.1	6.4	5.9	5.4	5.0	6.4	!		9.8	0.6	7.9	0.7	6.3	5.8	5.4	5.0	4.6	
(5)	KTAS	113	8	\$	83	8	8	8	23	æ			113	107	5	8	8	88	2	22	2	
100° F (38° (KIAS	1 65	101	97	82	88	79	22	8	4			26	8	8	8	æ	78	2	8	ଌ	1
10	%ВНР	11	2	8	55	49	4	33	98	æ			9/	8	9	ß	\$	54	33	35	31	
	MAP	24.6	23.5	22.5	20.8	19.9	19.1	18.4	18.0	18.3			24.3	23.2	21.7	20.6	19.6	18.8	18.3	17.8	17.3	
	GPH	10.4	9.5	8.7	7.7	6.7	6.1	5.7	5.2	8.4	4.5		10.3	9.4	9.8	7.6	9.9	0.9	5.6	5.2	8.4	4.4
(KTAS	113	8	\$	88	2	87	8	75	8	22		113	8	50	88	8	87	84	73	ß	24
80° F (27° C)	KIAS	107	8	8	22	8	82	75	29	22	\$		106	5	86	ಜ	87	8	74	g	ន	£
æ	%ВНР	8	23	99	53	ୟ	री	41	8	32	83		8	22	98	æ	ន	4	8	88	33	83
	MAP	24.9	23.7	22.6	21.4	19.9	19.2	18.6	18.0	17.4	17.3		24.8	23.3	22.4	21.2	19.7	18.9	18.3	17.8	17.4	17.0
	GPH	11.0	10.0	9.1	8.0	7.2	6.4	5.9	5.4	5.0	4.8		10.7	6.6	9.0	7.9	6.9	6.3	5.8	5.4	5.0	4.7
	KTAS	113	80	103	86	8	88	82	9/	2	2		114	8	\$	8	2	88	82	75	8	¥
7 F (16°C)	KIAS	109	ह	101	ક્ક	8	ಜ	78	20	5	4		109	\$	100	જ	8	8	9/	89	æ	4
.09	%BHP	\$	75	88	8	72	9	41	37	32	31		81	74	29	8	5	4	41	36	32	ଛ
	MAP	25.3	839	22.7	21.5	20.5	19.3	18.6	18.0	17.4	17.8		24.7	23.5	22.5	21.3	19.8	19.0	18.2	17.8	17.3	17.3
	RPM	2600	2200	2400	2300	200	2100	2000	1900	1800	1700	1600	2600	2500	2400	2300	200	2100	2000	1900	1800	1700
	Afftude	3000	(48°F)	(O .6)									3200	(47°F)	(8°C)							

Table A2

TABULATED CRUISE DATA BY RPM (Page 9 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP Mixture: Leaned Weight: Carb Heat: OFF Flaps:

1760 lbs UP

			0 F (-18 C	(၁			×	20° F (-7° C)				4	40° F (4° C)		
RPM MAP	-	%BHP	IP KIAS	KTAS	ВРН	MAP	% ВНР	KIAS	KTAS	GPH	MAP	%BHP	KIAS	KTAS	GPH
2	t					25.1	87	111	113	11.9	25.1	88	110	114	11.4
_	_	8	_	100	11.5	23.7	82	107	8	10.9	23.2	74	ह	108	10.2
_		72	_	5	10.2	22.6	71	103	\$	9.8	22.3	88	101	\$	9.3
H	_	2		8	9.0	21.2	29	88	8	8.6	21.1	8	98	88	8.2
_		22		2	8.2	20.2	જ	g	8	7.7	20.1	\$	6	83	7.4
_		5		8	7.5	18.9	84	88	8	6.9	18.9	47	8	88	9.9
_		4		8	9.9	18.2	42	81	æ	6.3	18.1	41	78	82	6.0
1900 17.6	۔,	ස	11	78	6.1	17.7	88	73	11	5.8	17.4	88	71	11	5.5
	٠.	8		7	5.6	17.2	8	ន	8	5.4	17.0	32	8	2	5.1
		8		8	5.2	16.9	31	ន	ខ	5.1	16.9	ଷ	₹	S	4.7
		8		51	4.9										
L	1		-			24.6	88	110	113	11.6	24.6	ಜ	108	113	11.2
_	_	<u>8</u>	_	8	11.5	23.4	11	92	8	10.7	33.1	74	\$	80	10.1
	-	72	_	\$	10.2	22.2	88	102	40	9.7	21.9	29	100	103	9.1
2300 21.1	_	ន	8	8	8.9	20.9	61	26	86	8.5	20.8	8	8	83	8.1
_	-	2		3	8.1	19.9	ß	8	2	9.7	19.4	2	8	2	7.1
	-	₩		28	7.2	18.7	47	8	88	6.8	18.6	4	8	88	6.5
_		4	_	\$	6.5	18.0	42	79	ಜ	6.2	17.9	41	92	82	5.9
_	مرا	8		11	6.0	17.4	37	7.2	11	2.5	17.3	36	8	9/	5.4
	_	8		7	5.6	17.0	ಜ	61	8	5.3	16.9	32	B	88	5.0
	10	×		8	5.1	16.6	ස	ያ	8	4.9	16.6	ଷ	4	8	4.7
-	10	2		3	48										

Table A2

TABULATED CRUISE DATA BY RPM (Page 10 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	9.8	8.9	7.8	6.9	6.2	5.7	5.3	4.9	4.5			9.4	8.8	7.9	6.8	6.1	5.6	5.2	4.8	4.5	
0	KTAS	112	107	103	88	82	88	8	7	23			112	108	102	97	83	85	2	72	ន	
100° F (38° C)	KIAS	103	8	8	89	ಜ	92	89	83	47			102	86	83	88	83	75	88	88	\$	
¥	жвнр	4	8	8	22	8	₽	39	જ	31			73	8	61	ន	47	42	æ	怒	સ	
	MAP	24.3	22.9	21.3	20.3	19.3	18.6	18.0	17.6	17.2			23.5	27.6	21.3	20.0	19.1	18.3	17.8	17.2	17.0	
	GPH	10.0	9.3	8.2	7.2	6.5	0.9	5.5	5.1	4.7			10.0	9.2	8.1	7.2	6.4	5.9	5.4	5.0	4.7	
<u>.</u>	KTAS	113	\$	103	86	83	8	8	73	99			113	108	103	86	8	88	8	72	8	
80° F (27° C)	KIAS	505	ō	87	82	98	2	22	62	25			5	5	88	8	8	82	7	09	4	
8	%BHP	11	7	ខ	SS	64	4	\$	98	32			11	2	61	22	4	₹	ඉ	35	33	
	MAP	24.1	23.1	21.5	20.3	19.4	18.7	18.1	17.6	17.1			23.9	22.7	21.2	20.2	19.2	18.4	17.8	17.4	17.1	
	HdS	10.6	9.7	8.9	7.9	6'9	6.2	5.7	5.3	4.9			10.4	9.6	8.5	8.7	6.7	6.2	5.6	5.3	4.8	
(KTAS	113	\$	\$	98	26	87	81	75	65			114	108	104	86	æ	87	81	73	જ	
60° F (16° C)	KIAS	108	ද	83	8	88	82	75	29	\$			107	1 02	88	83	87	₩	74	\$	ន	
9	%BHP	8	72	29	59	51	4	各	36	æ			79	71	ಜ	85	ଊ	\$	4	36	32	
	MAP	24.5	23.	22.2	21.0	19.6	18.7	18.0	17.5	17.3			24.0	22.8	21.4	20.7	19.3	18.5	17.8	17.4	17.0	
	RPM	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	1600	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700
	Altitude	4000	(45° F)	(). ()									4500	(43°F)	(O.9)							

TABULATED CRUISE DATA BY RPM (Page 11 of 24)

Engine: Lycoming O-320-E2D Mixture
Propeller: McCauley TM7458/1C172 Carb H

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

eight: 1760 lbs Da aps: UP

	СРН	10.9	6.6	8.8	8.0	6.9	6.4	5.8	5.4	6.4	4.7	10.7	9.6	8.7	7.7	6.9	6.3	5.8	5.3	6.4	
_	KTAS	112	\$	\$	88	8	87	8	75	8	22	112	\$	\$	8	ឌ	87	81	75	8	
40° F (4° C)	KIAS	107	\$	8	\$	8	83	75	29	2	43	106	52	88	83	87	<u>8</u>	74	8	2	
4	%ВНР	81	2	ጀ	ß	ន	\$	4	જ	32	23	79	72	ಜ	95	ୟ	\$	4	32	32	
	MAP	24.1	22.5	21.2	20.6	19.1	18.3	17.6	17.1	16.6	16.5	23.7	22.4	20.9	19.9	18.9	18.1	17.4	16.8	16.5	
	ВРH		10.4	9.4	8.4	9.7	6.7	6.1	5.6	5.2	4.9		10.3	9.3	8.4	7.2	9.9	6.1	9.5	5.1	8 4
	KTAS		8	103	8	2	8	82	9/	8	88		8	103	88	8	88	82	5/	8	92
20° F (-7° C)	KIAS		9	101	88	8	8	78	71	8	47		\$	100	ક્ષ	8	2	11	69	ශ	54
8	%BHP		74	29	61	ß	4	4	37	æ	ജ		E	99	61	5	4	4	37	8	8
	MAP		27.7	21.7	20.7	19.7	18.4	17.7	17.1	16.8	16.5		22.4	21.4	20.5	18.9	18.2	17.5	17.0	16.4	163
	GPH		10.9	8.6	8.8	7.9	7.1	6.5	6.0	5.5	5.1		10.9	8.6	8.8	7.9	7.0	6.4	5.9	5.4	, v
	KTAS		80	5	83	8	8	8	1	2	62		\$	\$	83	2	88	ន	92	8	8
0° F (-18° C)	KIAS		107	\$	83	8	8	20	74	2	ន		107	102	97	83	87	8	72	83	40
6	%ВНР		92	8	ន	æ	8	£	88	¥	8		4	8	62	8	47	42	88	¥	Ş
	MAP		22.9	21.7	20.8	19.8	18.6	17.8	17.3	16.8	16.4		22.8	21.6	20.6	19.6	18.3	17.5	17.0	16.6	46.2
	RPM	2600	2200	2400	2300	2200	2100	2000	1900	1800	1700	2600	2500	2400	2300	2200	2100	2000	1900	1800	470
	Altitude	2000	(41° F)	(2.0)								5500	(39° F)	. C.							

Table A2

TABULATED CRUISE DATA BY RPM (Page 12 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GPH	9.4	8.6	7.8	6.9	6.1	5.6	5.1	4.8	4.5		9.5	8.4	7.7	9.9	6.0	5.5	5.0	4.7	4.4
(C)	KTAS	112	107	102	97	56	88	26	2	8		113	108	102	26	9	2	79	8	8
100° F (38° C	KIAS	101	26	82	87	25	74	29	ક્ક	£		ē	88	9	88	79	72	જ	52	£
9	% ВНР	73	29	8	22	47	42	37	क्ष	31		71	8	29	51	4	4	37	स्र	ଛ
	MAP	23.3	22.2	21.1	20.1	18.8	18.1	17.4	17.1	16.8		22.8	21.5	20.8	19.4	18.6	17.9	17.2	17.0	16.5
	GPH	9.6	9.2	7.9	7.0	6.3	5.8	5.4	4.9	9.4		9.6	8.7	7.8	6.9	6.2	5.7	5.4	4.9	4.6
(၁	KTAS	113	\$	103	86	83	8	79	73	62		113	107	102	- 62	83	8	79	71	8
80° F (27° (KIAS	Ž	8	ጀ	68	æ	9/	89	8	47		103	88	93	88	æ	22	88	99	₹
8	% ВНР	22	2	8	54	₹	₹	ଞ	ষ্ক	3		73	88	8	83	47	4	න	×	8
	MAP	23.4	22.6	20.8	19.8	18.9	18.2	17.7	17.0	16.8		23.0	21.7	20.5	19.5	18.6	17.9	17.5	17.0	16.8
	GPH	10.5	9.4	8.5	7.4	9.9	6.1	5.6	5.3	5.0		10.3	9.2	8.4	7.2	6.5	0.9	5.5	5.1	4.9
(၁	KTAS	113	8	102	86	83	87	8	74	92		113	8	102	26	83	88	8	74	93
60° F (16° C	KIAS	105	102	98	28	8	2	72	64	4		104	현	8	8	8	78	71	29	4
9	%ВНР	8	8	ន	55	4	4	4	98	¥		78	88	ន	22	đ	₹	8	8	¥
	MAP	24.1	223	21.3	20.0	19.0	18.2	17.7	17.2	17.4		23.6	21.9	21.1	19.7	18.7	18.0	17.4	16.8	17.1
	RPM	2600	2500	2400	2300	200	2100	2000	1900	1800	1700	2600	2500	2400	2300	200	2100	2000	1900	1800
	Altitude	2000	(41°F)	(2°C)								2200	(39°F)	(4°C)						

Table A2

TABULATED CRUISE DATA BY RPM (Page 13 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	_				_	_	_	$\overline{}$	-		_	_	_	_	_	_	_	_	_		-
	GPH	10.5	9.6	8.7	7.5	6.8	6.2	5.7	5.4	5.1			9.5	8.6	7.4	6.7	6.1	5.6	5.2	ς; Ο	
	KTAS	112	8	103	83	8	87	8	74	æ			107	102	83	8	8	8	74	ሄ	
40° F (4° C)	KIAS	105	102	8	99	8	2	72	B	4			8	જ	8	8	78	71	8	4	
4	%ВНР	11	2	হ	જ	\$	4	33	98	×			8	ಜ	2	4	\$	නී	怒	8	
	MAP	23.2	21.8	20.9	19.5	18.6	17.8	17.2	16.8	17.0			21.7	20.7	19.2	18.3	17.6	17.0	16.4	16.7	
	ВРН		10.2	9.1	8.0	7.2	6.5	6.0	5.5	5.1	4.8		10.2	9.1	7.8	7.0	6.4	5.9	5.4	5.0	4.7
	KTAS		\$	103	8	g	8	2	75	88	22		108	103	86	ន	87	81	22	8	22
20° F (-7° C)	KIAS		ਛ	8	22	8	82	75	88	22	43		102	86	83	87	2	74	29	2	\$
×	%BHP		R	જ	25	5	8	\$	88	32	82		73	85	95	ន	\$	8	35	32	8
	MAP		22.3	21.1	19.7	18.8	17.9	17.2	16.7	16.2	16.1		22.1	20.8	19.4	18.5	17.6	17.0	16.4	16.1	15.8
	GPH		10.7	9.7	8.7	7.5	6.9	6.3	5.8	5.4	5.1		10.6	9.5	8.3	7.4	6.8	6.2	5.7	5.2	5.0
	KTAS		8	103	83	2	8	8	92	8	ន		9	50	83	ន	88	82	75	8	75
0º F (-18º C	2		107	5	26	8	8	2	7	ස	₹		105	9	88	8	25	1	8	8	41
0	%BHP		74	8	62	25	4	4	37	33	31		74	67	88	25	9	4	37	32	8
	MAP		22	21.3	20.4	18.8	18.0	17.3	16.8	16.4	16.5		200	21.0	19.6	18.6	17.8	17.0	16.6	16.0	161
	RPM	2600	2500	2400	2300	2200	2100	200	1900	1800	1700	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700
	Affitude	5003	38. E	3.0								6500	(3.5° F)	(5°C)	1						
_		_	_		_		_					_	_				_				

Table A2

TABULATED CRUISE DATA BY RPM (Page 14 of 24)

Engine: Lycoming O-320-E2D Mixture: Leaned Propeller: McCauley TM7458/1C172 Carb Heat: OFF

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 1760 lbs
Carb Heat: OFF Flaps: UP

	GPH	9.1	8.4	9.7	6.5	5.9	5.4	5.0	4.6	4.3		8.9	83	7.5	6.4	5.8	5.4	5.0	4.6		
0	KTAS	112	107	102	86	8	æ	11	8	19		113	98	101	26	8	8	75	8		
100° F (38° C)	KIAS	8	8	8	2	78	71	62	52	₹		88	83	88	83	11	8	26	84		
10	%ВНР	71	જ	88	51	46	41	37	33	প্ত		69	2	88	22	\$	41	37	33		
	MAP	22.6	21.5	20.5	19.1	18.3	17.7	17.1	16.7	16.2		22.1	21.2	20.2	18.8	18.1	17.5	17.0	16.6		
	GPH	9.7	8.6	7.9	7.0	6.1	5.7	5.2	4.8			9.5	8.6	7.8	6.7	6.1	5.6	5.1	4.8	4.4	
3)	KTAS	113	1 08	102	26	83	\$	79	0/			112	107	102	26	5	\$	79	88	61	
80° F (27° C)	KIAS	102	86	35	28	8	22	29	93			100	ጽ	9	88	2	72	ន	52	£	
80	жвнь	75	æ	8	22	4	4	37	æ			73	R	ŝ	51	4	4	37	ষ্ক	ജ	
	MAP	23.2	21.4	20.6	19.6	18.3	17.7	17.0	16.7			22.7	21.3	20.4	19.0	18.2	17.5	16.8	16.6	16.1	
	GPH	10.1	9.2	8.3	7.1	6.4	5.9	5.4	5.0	4.7		9.8	9.0	8.2	7.2	6.3	5.8	5.5	5.0	4.7	
_ 1	KTAS	112	107	102	26	8	8	79	22	8		111	107	103	26	83	8	79	1.2	නු	
60° F (16° C)	KIAS	103	8	\$	68	2	92	8	09	47		102	88	93	88	ಜ	22	88	95	43	
Ø	%BHP	9/	8	62	22	84	£	38	34	સ		74	29	61	22	47	42	39	8	32	
	MAP	23.2	21.9	20.7	19.4	18.4	17.8	17.1	16.6	16.4		22.7	21.4	20.5	19.4	18.2	17.6	17.1	16.6	16.4	
	RPM	2600	2200	2400	2300	2200	2100	2000	1900	1800	1700	2600	220	2400	2300	2200	2100	2000	1900	1800	1700
	Aftitude	0009	(38°F)	(3°C)								9200	(36°F)	(5°C)							

TABULATED CRUISE DATA BY RPM (Page 15 of 24)

Engine: Lycoming O-320-E2D Mixture:
Propeller: McCauley TM7458/1C172 Carb Heaf

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

Weight: 1760 lbs Flaps: UP

	GPH		9.3	8.5	7.3	6.8	0.9	5.6	5.1	4 .			9.5	8.5	7.4	6.5	0.9	5.5	2.0	4 .	
	KTAS		8	183	88	8	8	79	7.5	છ			107	103	87	8	ଞ	78	72	ß	
40° F (4° C)	KIAS		8	2	28	8	92	89	29	47			8	93	88	8	25	29	83	\$	
4	% ВНР		29	62	72	ଜ	4	39	35	स			29	62	જ	47	4	88	¥	32	
	MAP		21.2	20.4	19.0	18.4	17.4	16.8	16.3	16.0			21.0	20.2	19.0	17.8	17.2	16.6	16.0	16.0	
	GРН		6.6	9.0	6.7	6.9	6.3	5.8	5.4	5.0	4.6		9.6	8.8	9.7	6.8	6.2	5.7	5.3	5.1	4.5
	KTAS		8	103	97	æ	87	8	74	2	83		8	103	88	8	8	8	73	ሄ	88
20° F (-7° C)	KIAS		102	97	91	8	8	72	2	2	43		5	88	8	8	8	71	61	4	\$
×	%ВНР		2	2	22	\$	4	8	35	33	28		8	ಜ	55	4	4	8	35	봈	22
	MAP		21.5	50.6	19.4	18.2	17.4	16.8	16.3	16.0	15.5		21.0	20.2	18.8	17.9	17.2	16.6	16.1	16.3	15.2
	ВРН		10.4	9.3	8.1	7.3	6.7	6.1	5.7	5.2	4.9		10.2	9.3	8.1	7.2	9.9	0.9	5.5	5.1	6.4
	KTAS		50	103	88	83	88	82	75	29	25		109	103	97	8	87	æ	75	29	2
0 F (-18°C)			\$	8	જ	8	8	92	29	ß	41		133	86	92	88	8	74	29	ß	\$
ò	% ВНР		22	B	88	25	री	4	37	ಜ	8		7	æ	88	51	4	4	35	32	8
	MAP		21.6	20.6	19.3	18.4	17.5	16.8	16.4	16.0	15.8		21.2	20.5	19.3	18.1	17.3	16.6	16.0	15.7	15.6
	RPM	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700
	Altitude	2000	(34° F)	- -								7500	(32° F)	0.0							

Table A2

TABULATED CRUISE DATA BY RPM (Page 16 of 24)

Engine: Lycoming O-320-E2D Mixture: Propeller: McCauley TM7458/1C172 Carb Heat:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs Data Basis: RPM Model UP

_				_		_			_		_	_	_		_	_	_	_	_	-	-
	GPH	9.0	8.2	7.2	6.4	5.8	5.3	6.4	4.6			8.8	8.1	7.1	6.3	5.7	5.3	4.8	4.5		
0	KTAS	112	107	101	જ	8	82	92	62			111	106	5	83	88	82	75	ន		
100° F (38° C)	KIAS	26	8	87	81	75	29	ß	\$			86	91	98	8	R	જ	88	\$		
٦	%BHP	20	ន	જ	ន	4	4	ક્ષ	怒			88	83	\$	64	4	4	જ	33		
	MAP	22.2	21.0	19.6	18.7	17.9	17.3	16.7	16.6			21.8	20.7	19.3	18.4	17.7	17.1	16.4	16.2		
	ВРН	9.3	8.5	7.5	9.9	6.0	5.5	5.1	4.9	4.3		9.1	8.5	7.4	9.9	5.9	5.5	5.0	4.7		
(၁	KTAS	112	\$	102	8	8	\$	4	65	6		111	107	102	98	8	ន	26	જ		
80° F (27° C	KIAS	8	2	8	84	78	۲	62	14	₹		6	8	88	83	4	8	89	47		
8	%BHP	71	2	99	51	94	4	37	%	প্ত		8	8	જ	S	4	4	98	8		
	MAP	22.2	21.0	19.6	18.7	17.9	17.3	16.7	17.0	15.8		21.8	50.9	19.4	18.5	17.7	17.1	16.5	16.3		
	GPH	9.6	9.1	8.1	7.2	6.3	5.8	5.3	4.9	4.7			9.0	7.8	7.1	6.2	5.7	5.3	4.9	4.5	
()	KTAS	111	8	102	26	6	\$	29	71	22			107	102	26	9	2	78	88	5	
	KIAS	100	97	35	98	∞	೭	29	જ	4			88	9	88	2	72	8	ಜ	4	
9	жвнр	7.5	29	8	54	47	4	37	इ	83			29	28	E S	8	4	88	34	8	
	MAP	22.3	21.4	20.3	19.2	18.0	17.3	16.6	16.3	16.2			21.1	19.6	18.9	17.8	17.1	16.6	16.1	15.7	
	RPM	2600	2500	2400	2300	2200	2100	2000	1900	1800	1700	2600	2200	2400	2300	2200	2100	2000	1900	900	1700
	Altitude	2000	(34°F)	(3.5)								7500	(32° F)	(O •							
_	_	_			_				_	_											-

Table A2

TABULATED CRUISE DATA BY RPM (Page 17 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	GРН	0	8.1	7.3	4.9	5.9	5.4	2.0	4.8	o a	. a	0	7.0	6.3	5.8	5.3	5.0	4.6	8.7	8.0	6.9	6.2	2.7	5.3	6.4		8.6	7.9	6.8	6.2	5.7	5.2	5.0	
	KTAS	207	5 5	26	8	\$	77	8	25	407	<u> </u>	707	97	6	\$	78	8	8	107	101	96	86	ಜ	11	8		107	101	8	8	8	76	8	
40° F (4° C)	KIAS		6 A	87	26	R	છ	\$	8	8	8 8	3	8	79	22	65	53	5	98	88	84	28	7	8	ઍ		8	88	ಜ	92	8	8	4	
4	% ВНР		8	\$	8	42	88	8	32	33	3 8	ñ	5	94	42	37	34	ස	ಜ	88	51	4	4	37	8		62	28	22	\$	4		જ	
	MAP	000	19.4	18.8	17.5	16.9	16.4	16.0	15.8	600	50.5	1.0	18.1	17.4	16.7	16.0	15.7	15.3	19.9	19.1	17.9	17.1	16.5	15.9	15.6		19.6	18.9	17.7	16.9	16.3	15.7	15.8	
	ВРН	L C		7.7	6.7	6.2	5.7	5.2	4.9	7.0	† *	4.0	9.7	9.9	6.1	5.6	5.2	4.9	9.5	8.4	7.2	6.5	9	5.5	5.1	4.8	9.2	8.2	7.2	6.5	5.9	5.4	5.0	4.7
	KTAS	007	<u> </u>	26	83	8	79	73	62	90,	3 5	3	97	85	88	78	1.1	8	108	102	86	8	ଞ	79	2	8	107	101	26	5	\$	20	2	8
20° F (-7° C)	KIAS	- 00,	3 %	8	\$	1	8	61	47	8	8 8	\$	8	8	25	67	22	43	86	35	87	82	74	29	ß	£3	8	8	88	8	2	છ	જ	43
×	%ВНР		8 8	જ	8	\$	33	8	31	8	8 8	8	ß	47	£	38	38	32	88	8	52	4	42	37	33	31	98	29	25	8	42	37	33	ଛ
	MAP		19.6	18.9	17.7	17.0	16.4	15.8	15.6	, %	4.6	19.3	18.6	17.4	16.8	16.2	15.8	15.6	20.5	19.3	18.0	17.1	16.5	15.8	15.6	15.3	20.1	18.9	17.8	17.0	16.3	15.6	15.3	15.0
	ВРН		10.3	8.1	7.1	6.5	5.9	5.5	5.1	, 6,	2 6	9.0	8.0	7.0	6.4	5.9	5.4	5.2	9.9	8.8	9.7	6.9	6.3	5.9	5.3	5.1	9.6	8.7	9.7	6.8	6.2	5.8	5.3	2.0
	KTAS	-	3 5	26	8	87	8	75	85	96,	3 5	707	8	8	88	8	74	8	107	102	86	82	88	8	73	25	107	102	97	82	8	79	71	22
0 F (-18° C)	JAS		102 64	6	8	8	23	85	53		5 5	ક્ક	5	8	79	7	ន	4	8	2	8	8	1	2	09	41	8	8	88	8	92	8	83	4
Č	% ВНР	i	2 3	27	S	4	98	35	32	1	2 8	63	22	64	4	98	35	33	8	29	2	8	4	4	35	32	29	5	83	8	\$	39	8	32
	MAP		4.0	19.0	17.8	17.0	16.4	15.8	15.6		0.12	19.7	18.8	17.5	16.8	16.2	15.6	15.8	20.5	19.4	18.1	17.3	16.6	16.1	15.5	15.5	20.1	19.2	17.9	17.1	16.4	15.9	15.3	15.3
	RPM	2600	2500	2300	2002	2100	2000	1900	1800	2600	300	2400	2300	2200	2100	2000	1900	1800	2500	2400	2300	2200	2100	2000	1900	1800	2500	2400	2300	2200	2100	2000	1900	1800
	Aftitude	8000	8	5						8500	(28°F)	(5.2°)							0006	(27° F)	(%)						9500	(25° F)	4					

Table A2

TABULATED CRUISE DATA BY RPM (Page 18 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	_	_			•	-		_	_	_		_	_	т-	_			T	_		_					•	_	т –		_	_	Г
	GPH	8.6	7.8	7.0	6.2	5.6	5.1	4.8	4.5		8.4	7.7	6.9	6.1	5.6	5.1	4.7		7.6	6.7	6.0	5.5	5.0	4.7		7.5	6.7	0.9	5.5	5.0	4.6	
	KTAS	110	8	101	જ્ઞ	88	82	74	ន		110	হ	101	क्र	87	20	72		90,0	8	g	87	8	22		105	8	g	87	2	8	
100° F (38° C)	KIAS	g	8	82	79	22	B	55	£		93	8	8	78	2	8	25		aa	3 8	76	8	8	21		88	8	75	29	8	47	
9	%BHP	29	8	\$	84	4	ස	35	32		65	න	સ	8	\$	න	35		5,8	3 23	47	\$	88	35		57	51	47	\$	8	35	
	MAP	21.3	20.0	19.0	18.2	17.5	16.7	16.2	16.0		20.9	19.9	18.7	17.9	17.3	16.5	16.2		105	18.4	17.7	17.1	16.4	15.9		19.3	18.2	17.5	16.9	16.2	15.8	
	СРН	8.9	8.1	7.3	6.4	5.9	5.4	5.0	4.7			8.1	7.2	6.4	5.8	5.4	6.4	4.6	70	7.1	6.3	5.7	5.2	5.0	4.6	7.9	7.0	6.2	5.7	5.3	5.1	4.4
	KTAS	110	101	101	86	8	83	74	8			56	101	88	88	82	2	ಜ	107	5	જ	88	82	74	09	106	101	8	87	26	62	\$
80° F (27° C)	KIAS	88	8	87	82	75	29	22	41			8	98	8	73	æ	ß	43	ē	8	79	7	8	જ	40	88	8	11	2	ន	14	43
88	%ВНР	88	5	જ	49	4	\$	98	8			6	2	9	4	4	æ	æ	Š	8 8	84	4	ജ	98	æ	8	52	848	5	4	æ	32
	MAP	21.3	5 0.5	19.1	18.1	17.4	16.9	16.3	16.3			8	18.9	18.0	17.3	16.7	16.2	15.9	19.5	18.5	17.7	17.1	16.3	16.1	15.8	19.6	18.3	17.5	16.9	16.3	16.5	15.3
	GPH		8.6	7.7	0.7	6.1	5.6	5.2	4.8	4.4		8.6	9.7	2'9	0.9	5.5	5.1	4.8	A 8.	7.4	9.9	0.9	5.5	5.0	4.7	8.2	7.5	6.5	5.9	5.4	5.0	4.7
()	KTAS		107	102	26	8	ន	76	88	9		90	102	86	8	8	92	65	106	5	88	28	82	92	62	1 06	101	ક્ક	88	26	75	ន
60° F (16° C)	KIAS		3	8	2	78	2	61	51	\$		ន	88	ಜ	1	8	8	47	8	87	8	75	8	23	43	91	8	8	ಬ	Ŗ	57	£
8	% ВНР		8	27	ಬ	4	7	37	33	82		2	26	20	\$	4	36	34	63	8	49	45	4	38	33	61	56	49	4	4	35	ಜ
	MAP		20.5	19.3	18.7	17.5	16.9	16.4	15.9	15.4		20.3	19.0	18.1	17.3	16.7	16.0	15.9	19.9	18.7	17.8	17.1	16.5	15.8	15.6	19.5	18.8	17.6	16.9	16.3	15.6	15.5
	RPM	2600	2200	2400	2300	2200	2100	2000	1900	1800	2600	2500	2400	2300	2200	2100	2000	1900	2500	2400	2300	2200	2100	2002	1900 1800	2500	2400	2300	2002	2100	2002	1900 1800
	Aftitude	8000	(30°F)	() ()							8200	(Z) E)	(-2°C)						0006	(27°F)	(3°C)					9500	(25°F)	() ()				

Table A2

TABULATED CRUISE DATA BY RPM (Page 19 of 24)

Engine: Lycoming O-320-E2D Mixture: Propeller: McCauley TM7458/1C172 Carb Heat:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

Weight: 1760 lbs Flaps: UP

			ò	0° F (-18° C				×	20° F (-7° C)				4	40° F (4° C)		
Altitude	RPM	MAP	₩8HP	KIAS	KTAS	GPH	MAP		ı×ı	KTAS	СРН	MAP	%ВНР	KIAS	KTAS	GPH
10000	2500	19.7	જ	88	106	9.4	19.7	2	22	106	9.0	19.7	ន	83	107	8.7
(23° F)	2400	18.5	8	83	50	8.4	18.5	22	8	102	8.0	18.3	જ	87	101	7.6
(2°C)	2300	17.7	ន	87	26	7.5	17.5	51	\$	88	7.1	17.4	8	81	8	6.7
	2200	16.8	47	18	16	6.7	16.7	46	82	8	6.4	16.7	₹	75	8	6.1
	2100	16.2	42	74	8	6.2	16.1	4	7	8	5.9	16.1	4	29	82	5.6
	2000	15.6	8	æ	78	5.7	15.5	37	29	11	5.4	15.5	98	88	75	5.1
	1900	15.2	इ	જ	71	5.2	15.2	8	51	88	5.0	15.4	¥	£	8	4.9
	1800	14.9	31	4	28	4.9	14.6	82	£	61	4.6					
10500	2500						19.3	62	83	106	8.8	19.3	61	91	901	8.5
(22°F)	2400	18.6	29	6	102	8.5	18.2	93	88	102	7.9	18.3	93	98	101	7.7
(P. C)	2300	17.4	52	88	97	7.4	17.3	20	ន	88	7.0	17.2	9	8	98	9.9
	2200	16.6	4	8	6	9.9	16.5	\$	11	8	6.3	16.5	4	73	88	0.9
	2100	16.0	42	73	2	6.1	15.9	4	8	8	5.8	15.9	4	8	82	5.6
	2000	15.2	37	88	79	5.5	15.3	98	8	26	5.3	15.2	35	57	75	5.0
	1900	15.1	发	S	89	5.2	15.2	8	47	8	5.0	15.2	ಜ	5	ន	4 .
	1800	14.8	31	4	22	4.9										
11000	2500											18.9	8	88	50	8.2
(20°F)	2400	18.4	ß	8	102	8.4	18.2	æ	87	101	7.9	18.0	ጃ	\$	8	7.5
(-7°C)	2300	17.2	51	88	86	7.2	17.0	SS	82	88	6.9	17.0	84	79	88	6.5
	2200	16.4	94	28	8	6.5	16.3	\$	72	2	6.2	16.3	4	22	88	2.9
	2100	15.8	4	7	2	6.0	15.7	4	29	8	5.7	15.7	4	\$	æ	5.5
	2000	15.3	38	ន	11	5.6	15.2	36	88	75	5.3	15.3	æ	25	72	5.1
	1900	15.3	36	41	59	5.3	15.0	34	43	62	5.0	15.0	33	53	ន	4.8
11500	2500											18.5	88	87	\$	8.0
(18° F)	2400	18.0	22	8	5	8.2	17.7	ઝ	88	101	7.7	17.5	જ	ಜ	\$	7.3
(C)	2300	16.9	ß	ಜ	88	7.1	16.7	84	81	86	2.9	16.7	84	11	22	6.5
,	2200	16.0	\$	28	9	6.4	16.1	4	74	28	6.1	16.1	£	2	87	5.9
	2100	15.6	4	8	ន	5.9	15.4	ළ	29	8	5.6	15.4	8	8	<u>ھ</u>	5.3
	2000	14.9	98	61	92	5.4	15.0	98	26	74	5.2	15.0	જ્	સ	22	5.0
	1900	15.0	35	41	29	5.2	14.7	33	43	ಜ	4.9					

Table A2

TABULATED CRUISE DATA BY RPM (Page 20 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

			Ø	.91	(3)			8	80° F (27° C)				2	100° F (38°	0	
Attitude	RPM	MAP	% ВНР	KIAS	KTAS	GPH	MAP	%BHP	KIAS	×	GPH	MAP	% 8HP			GPH
10000	2500	19.2	ß	8	106	8.1	19.2	88	87	1 05	7.7	18.9	ß	85	59	7.3
(23°F)	2400	18.2	ន	8	5	7.2	18.1	25	82	9	6.9	18.0	2	20	8	9.9
(-5°C)	2300	17.3	84	62	8	6.4	17.3	47	92	\$	6.1	17.2	46	22	92	5.9
	2200	16.7	44	71	88	5.8	16.7	43	8	87	5.6	16.7	42	8	88	5.4
	2100	16.0	33	2	82	5.3	16.0	88	8	8	5.1	16.1	88	57	78	50
	2000	15.6	æ	25	72	5.0	15.7	જ્ઞ	47	88	4.8	15.7	જ	£	99	4.6
	1900	15.4	ಜ	£	ន	4.7										}
	1800															
10500	2500	19.3	8	88	901	8.1	18.8	57	88	55	7.6	18.6	SS	8	105	7.2
(2°F)	2400	17.9	23	83	100	7.1	17.8	51	9	8	8.9	17.8	ន	28	88	6.5
(O.9-)	2300	17.1	48	11	8	6.3	17.1	94	74	88	6.1	17.0	\$	71	92	5.8
	2200	16.5	\$	20	87	5.8	16.5	43	88	87	5.6	16.5	42	2	98	5.4
	2100	16.0	4	83	8	5.4	15.8	8	22	78	5.1	15.9	88	2	11	9
	2000	16.1	88	4	29	5.1	15.4	જ્ઞ	47	8	4.7	15.6	35	4	3	4.6
	1900	14.9	32	43	2	4.5										
	1800															
11000	2500	18.9	29	87	501	8.0	18.4	æ	83	565	7.4	18.4	83	82	5	7.1
(20°F)	2400	17.7	52	82	100	2.0	17.5	20	8	9	6.7	17.6	S	92	88	6.4
(-7°C)	2300	16.9	47	9/	¥	6.2	16.8	46	23	35	6.0	16.8	\$	2	9	5.7
	200	16.3	\$	8	87	5.7	16.3	4	8	8	5.5	16.1	4	23	æ	5.2
	2100	15.6	8	8	8	5.2	15.7	æ	8	8/	5.1	15.8	88	21	75	6.4
	2000	15.4	35	47	89	4.9	15.3	32	8	88	4.7	15.3	¥	4	89	4.5
	1900															
11500	2500	18.5	22	82	\$	7.7	18.4	88	\$	\$	7.5	18.0	ន	82	104	7.0
(18° F)	2400	17.4	51	81	8	6.9	17.2	ନ	79	8	9.9	17.3	64	75	6	6.3
(၁ . မှ	2300	16.7	46	74	83	6.2	16.6	8	71	92	5.9	16.6	45	88	86	57
	2200	16.1	&	29	87	5.7	15.9	4	B	8	5.3	15.9	4	8	æ	5.1
	2100	15.4	8	88	2	5.1	15.6	æ	¥	1	5.0	15.4	8	51	22	4.7
	2000	15.4	38	\$	જ	4.9	15.0	8	8	29	4.6					:
	1900															

Table A2

TABULATED CRUISE DATA BY RPM (Page 21 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172

Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

			Ó	0 F (-18°C)				20	20" F (-/" C)				₹	40 r (4 C)		
Attitude	RPM	MAP	%BHP	KIAS	KTAS	ВРН	MAP	%ВНР	KIAS	KTAS	GРН	MAP	%ВНР	KIAS	KTAS	GPH
12000 16° E)	2500	17.6	95	87	ē	8.0	17.7	83	88	101	7.7	17.5	ន	82	8	7.3
	3300	16.6	40	83	8	7.0	16.6	8	73	જ	6.7	16.5	47	76	2	6.4
5	2002	5.00	2	35	8	6.4	15.9	4	22	8	6.1	15.9	\$	8	87	5.8
	2100	15.4	4	29	8	5.9	15.4	4	ষ	8	5.6	15.1	8	5	8	5.3
	2000	14.8	8	8	22	5.4	14.9	36	જ	72	5.2	15.0	98	ន	71	5.0
	1900	14.6	33	41	9	5.0	14.6	33	43	ಜ	4.9					
12500 (14° F)	2500	17.3	SS	88	101	6.2	17.2	ន	8	100	7.5	17.2	52	88	8	7.2
(10.0)	2300	163	64	81	88	6.9	16.3	84	11	22	9.9	16.3	47	74	83	6.3
	2200	15.7	4	74	68	6.3	15.7	£	7	88	0.9	15.7	₹	29	87	5.8
	2100	15.3	4	. 29	8	5.9	15.2	4	ន	26	5.6	15.0	8	8	79	5.2
	2000	14.5	: KS	8	75	5.3	15.4	88	4	23	5.4	14.9	35	43	65	4.9
	1900	14.5	×	41	19	5.1	14.1	31	43	ል	4.6					
13000	2400	17.3	55	85	101	8.0	16.9	52	82	100	7.3	16.8	22	90	66	7.0
(13° F)	2300	16.2	84	62	જ્ઞ	6.9	16.1	47	92	\$	6.5	16.1	94	23	82	6.2
(-11-C)	220	15.5	4	22	88	6.2	15.6	£	8	87	0.9	15.6	4	8	8	5.7
	2100	14.8	න	8	82	5.7	14.8	88	8	8	5.4	14.8	37	25	28	5.2
	2000	14.6	98	ß	74	5.3	14.4	35	30	71	5.0	14.8	အ	41	ই	4.9
	1900	14.2	33	41	61	4.9										
13500	2400	17.0	Ŗ	ಜ	138	7.7	16.6	51	81	100	7.2	16.6	20	9,2	86	6.9
(11.F)	L	16.2	9	78	8	6.9	15.9	46	74	ន	6.4	15.9	45	1.1	35	6.1
(-12°C)	2200	15.3	\$	7	88	6.1	15.4	4	29	87	5.9	15.1	4	B	æ	5.5
	_	14.8	4	8	81	5.7	14.6	8	ß	8	5.3	14.6	37	ß	78	5.1
	2000	149	8	4	8	5.4	14.3	35	47	8	5.0	14.3	क्र	₹	29	4.7

Table A2

TABULATED CRUISE DATA BY RPM (Page 22 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

	7	-	-	_	-	_	-	-	_	_	_				_	_	~	_	_	_	-	-	_	-	
	GPH	7.0	6.3	5.5	5.1	47	:		6.8	6.2	55	20	8	2		6.2	5.4	5.	4.6	2		6.1	5.4	9	4.6
	KTAS	103	26	91	82	71			102	8	9	82	67	;		88	8	8	2			85	88	79	2
100° F (38° C)	KIAS	79	74	88	8	8			4	22	88	92	4	:		7.	ន	ß	\$			8	9	5	\$
٦	%ВНР	22	84	43	4	37			52	84	43	33	88			84	42	4	98			47	42	g	ထွ
	MAP	18.0	17.1	16.2	15.8	15.4			17.7	16.8	16.0	15.5	15.5			16.7	15.9	15.6	14.9			16.5	15.7	15.2	14.9
	GPH	7.3	6.5	5.8	5.4	4.9			7.1	6.4	5.8	5.2	4.8			6.5	5.7	5.2	4.8			6.3	5.7	5.1	8.4
0	KTAS	103	88	91	8	75			102	88	91	8	75			26	8	82	22			88	8	82	8
80° F (27° C	KIAS	81	76	89	62	21			79	9/	88	ß	ន			74	29	22	47			72	85	ß	53
8	%BHP	53	49	45	4	37			છ	8	\$	4	æ			\$	4	8	జ			47	4	8	37
	MAP	18.1	17.1	16.5	15.9	15.3			17.7	16.8	16.3	15.6	15.0			16.8	16.1	15.4	14.9			16.4	15.9	15.2	14.9
	СРН	7.5	6.9	6.1	5.5	5.1	4.8			6.8	0.9	5.4	5.1	4.8		6.7	6.0	5.4	5.3	4.5		9.9	5.9	5.4	<u>ئ.</u>
0	KTAS	103	8	85	8	4	99			8	91	8	1	29		26	35	8	8	29		97	06	\$	8
60° F (16° (KIAS	æ	79	22	8	ß	43			78	1.2	B	Ŗ	4 3		9/	02	82	4	43		75	89	8	4
9	%ВНР	9 8	2	46	4	8	35			S	46	4	88	જ્ઞ		92	45	4	4	33		49	4	4	33
	MAP	18.1	17.3	16.5	15.7	15.3	15.0			17.0	16.3	15.5	15.2	14.9		16.8	16.1	15.3	15.7	14.3		16.5	15.8	15.3	15.3
	RPM	2500	2400	2300	2200	2100	2000	1900	2500	2400	2300	2200	2100	2000	1900	2400	2300	2200	2100	2000	1900	2400	2300	2200	2100
	Altitude	12000	(16° F)	(O .6-)					12500	(14°F)	(-10°C)					13000	(13°F)	(-11°C)				13500	(11°F)	(-12°C)	
			_	_	_						-				-					_	_			_	

Table A2

TABULATED CRUISE DATA BY RPM (Page 23 of 24)

Engine: Lycoming O-320-E2D Mixture:
Propeller: McCauley TM7458/1C172 Carb Heat:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight: 1
Carb Heat: OFF Flaps: U

ht: 1760 lbs Data B : UP

Γ	GРH	7.0	6.1	9	6		.7	0.	5.5	7		3.5	5.9	4.	<u>.</u>		6.3	5.3	0.		5.7	3.3		
	Ö	7	9	ഹ	ις)		9	9	(J)	(I)		9	4)	4)	4)	_	<u>"</u>	4)	٠,					
	KTAS	86	91	8	છ		26	06	2	8		98	91	82	8		88	8	29		88	23		
40° F (4° C)	KIAS	11	20	8	4		74	88	8	4		72	29	24	4		R	ß	4		ន	22		
4	%BHP	20	45	4	4		49	4	4	ඉ		47	43	4	88		44	ඉ	37		42	ස		
	MAP	16.6	15.7	12.1	15.3		16.2	15.5	15.0	15.0		15.9	15.2	14.7	14.5		15.1	14.5	14.3		14.8	14.4		
	GPH	7.2	6.3	5.7	5.3	4.9	7.0	6.4	5.6	5.2	4.8		6.2	5.6	5.2	4.7	6.2	5.5	5.1	4.6	6.0	5.5	5.0	
	KTAS	86	8	87	2	98	26	83	8	78	29		91	æ	75	67	91	2	75	88	8	82	8	
20° F (-7° C)	KIAS	79	74	29	25	£3	11	72	æ	SS	43		20	8	25	43	88	8	ន	43	29	22	\$	
×	%BHP	51	45	4	37	35	જ	8	4	37	34		\$	\$	37	33	45	4	8	32	43	4	8	
	MAP	16.6	15.6	14.9	14.4	14.2	16.2	15.7	14.7	14.3	13.9		15.4	14.6	14.2	13.6	15.2	14.4	14.0	13.3	14.8	14.3	13.9	
	GPH	7.5	6.7	6.1	5.6	5.4		6.8	0.9	5.4	5.3		9.9	5.8	5.4	5.2	6.4	5.9	5.4	5.0	6.3	5.8	5.3	49
	KTAS	8	2	87	8	ಜ		g	8	8	ಜ		83	87	78	2	35	æ	92	2	35	85	74	55
0° F (-18° C)	IAS	81	76	8	9	4		75	29	ß	4		73	29	ሄ	4	72	2	ន	4	71	8	ន	14
ò	%BHP	52	14	4	ළ	37		8	42	8	37		47	4	8	8	55	42	æ	જ્ઞ	3	4	37	34
	MAP	16.6	15.7	15.2	14.7	14.7		15.8	15.0	14.2	14.4		15.5	14.6	14.2	14.1	15.1	14.6	14.1	13.8	14.9	14.5	14.0	13.5
	RPM	2400	2300	2200	2100	2000	2400	2300	2200	2100	2000	2400	2300	2200	2100	2000	2300	2200	2100	2000	2300	2200	2100	2000
	Affinde	14000	(d. 6)	(-13°C)	` ! .		14500	9.6	(-14° C)	· · ·		15000	(5° F)	(-15°C)			15500	(4° F)	(-16°C)		16000	(2° F)	(-17°C)	

Table A2

TABULATED CRUISE DATA BY RPM (Page 24 of 24)

Lycoming O-320-E2D McCauley TM7458/1C172 Engine: Propeller:

USAFA CCFT Cessna 150/150 HP
Mixture: Leaned Weight:
Carb Heat: OFF Flaps:

1760 lbs UP

_									_			_	_				_	_					
	GPH	5.9	5.3	6.4	4.4		9	53	9			5.8		8			52	4.7					
0	KTAS	g	8	22	7		g	88	2			8		23			82	2					
100° F (38° C	KIAS	29	8	47	\$		98	57	5			23		5			51	3	!				
2	%BHP	94	14	æ	×		94	42	න			55		8			4	37					
	MAP	16.2	15.4	15.2	14.3		16.2	15.4	15.2			15.8		14.9			15.1	14.5					
	GPH	6.2	5.6	5.2	8.4		6.2	5.6	2.0	4.7		6.0	5.4	2.0			5.4	20			5.3	4.9	
	KTAS	88	88	25	2		જ	88	28	7		93	88	75			8	22			88	23	
80° F (27° C)	KIAS	71	62	ĸ	\$		89	9	5	€		88	83	47			æ	\$			55	\$	
æ	% ВНР	46	43	\$	37		47	\$3	ස	8		46	4	88			42	න			41	8	
	MAP	16.1	15.6	15.2	14.8		16.2	15.5	14.9	14.5		15.8	15.1	14.9			15.1	14.8			14.8	14.5	
	GPH	6.4	5.8	5.3	5.0		6.5	5.7	5.2	4.9		6.2	5.6	5.2	4.7		5.6	5.1			5.5	5.1	
	KTAS	88	8	82	8		96	8	82	8		g	88	20	2		87	92			87	25	
60° F (16° C)	KIAS	74	98	22	₽		72	92	ន	\$		89	ន	25	4		8	ន			88	4	
Ø	%ВНР	47	4	4	37		48	43	ස	æ		47	42	න	ଞ		53	න			42	ස	
	MAP	16.2	15.7	15.0	14.8		16.2	15.3	14.8	14.5		15.8	15.1	14.8	14.2		15.1	14.5			14.8	14.5	
	RPM	2400	2300	2200	2100	2000	2400	2300	2002	2100	2000	2400	2300	2200	2100	2000	2300	2200	2100	2000	2300	2200	2,00
	Aftitude	14000	(9°F)	(-13°C)			14500	(7°F)	(-14°C)			15000	(5° F)	(-15°C)			15500	(4 · F)	(-16°C)		16000	(2°F)	(-17°C)
					_										_			_					

Table A3

MAXIMUM RANGE AIRSPEED

		Method	
Altitude	Thrust Required/Thrust Horsepower Required	Specific Air Range	RPM Model Range
Sea Level 10,000 feet	56 KIAS (62 KCAS) 56 KIAS (62 KCAS)	73 KIAS (74 KCAS) 68 KIAS (70 KCAS)	65 KIAS (68 KCAS) 65 KIAS (68 KCAS)

Table A4

RANGE RESULTS BY AIRSPEED

Indicated Airspeed (KIAS)	Altitude (ft)	Dual Range (nm)	Dual Range with 45 minute reserve (nm)	Percentage of Maximum Range	Solo Range (nm)	Solo Range with 45 minute reserve (nm)	Percentage of Maximum Range
65	5,000	308	253	100%	484	429	100%
65	10,000	322	263	100%	506	477	100%
85	5,000	286	218	86%	452	385	90%
85	10,000	287	214	81%	456	383	80%
105	5,000	235	153	60%	367	284	66%
90	10,000	278	202	77%	436	359	75%

This page intentionally left blank.

APPENDIX B FLIGHT MANUAL INPUTS

HAVE FLOW INTERIM DATA PACKAGE II

Pitot-Static Position Error

KIAS	Aircraft	50	60	70	80	90	100	110	120
KCAS	TH/AW	58	65	71.5	79.5	88	97	108	118
KCAS	SH	54	61	67.5	75.5	84	93	103	113

Note: Shaded values **NOT** based on HAVE FLOW Flight Test. These values are estimated based on trends and Flight Manual Data.

Pressure Altitude Conversion Factor

Add the Pressure Altitude Conversion Factor to the altimeter reading to get Pressure Altitude

Altimeter	Pressure	Altimeter	Pressure
Setting	Altitude	Setting	Altitude
(in Hg)	Conversion	(in Hg)	Conversion
	Factor		Factor
28.00	1824	29.60	298
28.10	1727	29.70	205
28.20	1630	29.80	112
28.30	1533	29.90	20
28.40	1436	29.92	0
28.50	1340	30.00	-73
28.60	1244	30.10	-165
28.70	1148	30.20	-257
28.80	1053	30.30	-348
28.90	957	30.40	-440
29.00	863	30.50	-531
29.10	768	30.60	-622
29.20	673	30.70	-712
29.30	579	30.80	-803
29.40	485	30.90	-893
29.50	392	31.00	-983

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0.1	- (-18	3° C)	20°	F (-7	'° C)	40°	F (4	° C)	60°	F (16	3° C)	80°	F (27	7° C)	100°	F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
1000	115 (119	2472	108	12.2	2527	111	12.2	2579	113	12.1	2628	115	12.0	2680	117	12.1			
(55° F	110 (114	2373	104	10.9	2422	106	10.9	2473	108	10.9	2522	110	10.9	2571	112	10.8	2618	114	10.8
(13° C	105 (109	2265	98	9.5	2312	100	9.5	2360	102	9.5	2406	104	9.6	2452	106	9.6	2498	108	9.6
	100 (104	2159	93	8.5	2204	95	8.4	2249	97	8.4	2294	99	8.3	2338	101	8.4	2381	103	8.4
A	95 (99)	2074	89	7.8	2117	91	7.7	2161	92	7.6	2204	94	7.6	2246	96	7.5	2288	98	7.5
	90 (94)	1990	84	7.2	2032	86	7.1	2074	88	7.0	2116	90	7.0	2156	91	6.9	2196	93	6.8
	85 (89)	1916	80	6.7	1957	82	6.6	1997	84	6.5	2035	85	6.4	2074	87	6.4	2112	89	6.3
	80 (84)	1842	76	6.3	1881	78	6.2	1921	79	6.1	1959	81	6.0	1997	83	5.9	2033	84	5.9
2000	110 (114	2417	105	11.1	2467	108	11.1	2519	110	11.1	2569	112	11.0	2619	114	11.0	2667	116	11.0
(52° F	105 (109	2306	100	9.6	2354	102	9.7	2403	104	9.8	2451	106	9.8	2498	108	9.8	2544	110	9.7
(11° C	100 (104	2198	95	8.6	2243	97	8.5	2290	99	8.5	2335	101	8.5	2380	103	8.6	2423	104	8.6
	95 (99)	2110	90	7.9	2156	92	7.8	2201	94	7.7	2245	96	7.7	2288	98	7.6	2327	100	7.6
1	90 (94)	2028	86	7.3	2069	88	7.2	2112	90	7.1	2154	91	7.0	2196	93	6.9	2236	95	6.9
	85 (89)	1949	82	6.7	1991	84	6.7	2033	85	6.6	2072	87	6.5	2112	89	6.4	2150	90	6.3
	80 (84)	1874	78	6.3	1915	79	6.2	1956	81	6.1	1993	83	6.0	2031	84	6.0	2069	86	5.9
- A	75 (79)	1811	74	6.0	1852	75	5.9	1890	77	5.8	1926	78	5.7	1960	80	5.6	1998	81	5.5

HAVE FLOW

PERFORMANCE DATA

5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0.1	- (-18	, C)	20°	F (-7	'° C)	40°	F (4	°C)	60°	F (16	3° C)	80°	F (27	7° C)	100°	F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
1500	110 (114	2395	104	11.0	2445	107	11.0	2496	109	11.0	2546	111	11.0	2595	113	10.9	2642	115	10.9
(54° F	105 (109	2285	99	9.6	2334	101	9.6	2381	103	9.6	2428	105	9.7	2475	107	9.7	2521	109	9.7
(12° C	100 (104	2177	94	8.5	2224	96	8.4	2270	98	8.4	2315	100	8.4	2358	102	8.4	2401	104	8.5
	95 (99)	2092	89	7.8	2136	91	7.7	2181	93	7.7	2224	95	7.6	2267	97	7.6	2310	99	7.6
	90 (94)	2008	85	7.3	2051	87	7.1	2093	89	7.1	2135	91	7.0	2175	92	6.9	2216	94	6.9
	85 (89)	1931	81	6.8	1972	83	6.6	2013	84	6.5	2053	86	6.5	2093	88	6.4	2131	89	6.3
	80 (84)	1858	77	6.3	1898	79	6.2	1936	80	6.1	1975	82	6.0	2015	83	6.0	2049	85	5.9
	75 (79)	1795	73	6.0	1833	75	5.9	1870	76	5.8	1909	78	5.7	1945	79	5.6	1978	81	5.5
2500	110 (114	2439	106	11.2	2492	109	11.3	2543	111	11.2	2593	113	11.1	2644	115	11.1			
(50° F	105 (109	2326	101	9.7	2376	103	9.8	2425	105	9.9	2474	107	9.9	2521	109	9.9	2568	111	9.8
(10° C	100 (104	2218	96	8.6	2264	98	8.6	2310	100	8.5	2357	102	8.6	2402	104	8.7	2446	105	8.7
	95 (99)	2133	91	7.9	2177	93	7.8	2222	95	7.8	2267	97	7.8	2307	99	7.7	2349	101	7.7
	90 (94)	2045	87	7.3	2089	89	7.2	2132	90	7.1	2174	92	7.0	2216	94	7.0	2257	96	7.0
	85 (89)	1969	83	6.8	2009	84	6.7	2051	86	6.6	2092	88	6.5	2131	89	6.4	2170	91	6.4
	80 (84)	1894	78	6.3	1933	80	6.2	1975	82	6.1	2012	83	6.1	2051	85	6.0	2088	86	5.9
	75 (79)	1827	74	6.0	1865	76	5.9	1905	78	5.8	1942	79	5.7	1980	81	5.6	2016	82	5.5

HAVE FLOW

PERFORMANCE DATA

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172
Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	(-18	° C)	20°	F (-7	7° C)	40°	F (4	°C)	60°	F (16	g, C)	80°	F (27	/° C)	100°	° F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
3000	110 (114	2462	107	11.3	2514	110	11.4	2566	112	11.3	2618	114	11.2						
(48° F	105 (109	2349	102	9.9	2398	104	10.0	2448	106	10.0	2497	108	10.0	2544	110	9.9	2591	112	9.9
(9° C)	100 (104	2238	96	8.7	2285	99	8.6	2332	101	8.7	2378	103	8.7	2424	104	8.8	2469	106	8.8
` 1	95 (99)	2149	92	7.9	2196	94	7.8	2241	96	7.8	2286	98	7.8	2328	100	7.8	2371		7.8
	90 (94)	2065	87	7.3	2108	89	7.2	2152	91	7.1	2195	93	7.1	2237	95	7.0	2280	97	7.0
	85 (89)	1988	83	6.8	2028	85	6.7	2070	87	6.6	2111	89	6.5	2151	90	6.5	2191	92	6.4
	80 (84)	1912	79	6.4	1951	81	6.2	1991	82	6.2	2031	84	6.1	2070	86	6.0	2107	87	5.9
	75 (79)	1844	75	6.0	1882	77	5.9	1923	78	5.8	1961	80	5.7	1996	81	5.6	2033	83	5.6
4000	105 (109	2393	104	10.2	2443	106	10.2	2494	108	10.2	2544	110	10.1	2592	112	10.1	2641	115	10.0
(45° F	100 (104	2280	98	8.8	2327	100	8.8	2376	102	8.9	2424	104	8.9	2470	106	8.9	2515	108	8.9
(7° C)	95 (99)	2190	94	8.0	2237	96	7.9	2281	98	7.9	2327	100	7.9	2371	101	8.0	2415	103	8.0
` ′	90 (94)	2102	89	7.4	2148	91	7.3	2192	93	7.2	2238	95	7.2	2281	97	7.2	2318	98	7.1
	85 (89)	2024	85	6.8	2067	87	6.7	2109	88	6.7	2151	90	6.6	2192	92	6.5	2232	94	6.5
	80 (84)	1947	81	6.4	1987	82	6.3	2029	84	6.2	2069	86	6.1	2109	87	6.0	2147	89	6.0
	75 (79)	1877	76	6.0	1917	78	5.9	1959	80	5.8	1995	81	5.7	2034	83	5.7	2071	84	5.6
	70 (74)	1815	72	5.7	1855	74	5.6	1891	75	5.5	1927	77	5.4	1964	78	5.3	2002	80	5.3

HAVE FLOW

PERFORMANCE DATA

5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	(-18	° C)	20°	F (-7	° C)	40°	F (4	° C)	60°	F (16	3° C)	80°	F (27	'° C)	100°	F (3	
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
3500	105 (109	2366	103	10.0	2420	105	10.1	2471	107	10.1	2520	109	10.1	2568	111	10.0	2616	113	10.0
(47° F	100 (104	2259	97	8.8	2306	99	8.7	2353	101	8.8	2401	103	8.8	2447	105	8.9	2492		8.9
(8° C)	95 (99)	2171	93	8.0	2215	95	7.9	2262	97	7.9	2307	99	7.8	2349		7.9	2393		7.9
	90 (94)	2084	88	7.3	2128	90	7.2	2173	92	7.2	2216	94	7.1	2257	96	7.1	2297	97	7.0
	85 (89)	2006	84	6.8	2047	86	6.7	2090	88	6.6	2131	89	6.6	2172		6.5	2211	93	6.4
	80 (84)	1927	80	6.3	1969	81	6.3	2010	83	6.2	2050	85	6.1	2089	86	6.0	2128		6.0
9	75 (79)	1860	76	6.0	1899	77	5.9	1938	79	5.8	1977	81	5.7	2014		5.6	2052		5.6
	70 (74)	1798	72	5.7	1836	73	5.6	1877	75	5.5	1914	76	5.4	1947	78	5.3	1984	79	5.3
4500	105 (109	2415	105	10.3	2466	107	10.3	2518	109	10.3	2567	111	10.2	2617	113	10.2			
(43° F	100 (104	2301	99	8.9	2349	101	8.9	2399	103	9.0	2446	105	9.0	2493	107	9.0	2539	109	9.0
(6° C)	95 (99)	2211	95	8.1	2257	97	8.0	2303	99	8.0	2348	101	8.0	2393	102	8.1	2438	104	8.1
` ′	90 (94)	2120	90	7.4	2168	92	7.3	2211	94	7.2	2254	96	7.2	2299	97	7.2	2340	99	7.2
	85 (89)	2040	86	6.8	2085	87	6.8	2129	89	6.7	2171	91	6.6	2213	93	6.6	2253	94	6.5
	80 (84)	1967	81	6.4	2006	83	6.3	2048	85	6.2	2089	86	6.1	2128	1	6.1	2167	90	6.0
	75 (79)	1897	77	6.0	1935	79	5.9	1977	80	5.8	2014	82	5.7	2053	84	5.7	2090		5.6
	70 (74)	1832	73	5.7	1870	75	5.6	1908	76	5.5	1945	78	5.4	1983	79	5.3	2019	81	5.3

HAVE FLOW

PERFORMANCE DATA

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	- (-18	3° C)	20°	F (-7	, C)	40°	F (4	°C)	60°	F (16	3° C)	80°	F (27	/° C)	100°	F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
5000	105 (109	2435	106	10.3	2490	108	10.4	2541	110	10.3	2592	112	10.3	2641	115	10.2			
(41° F	100 (104	2323	100	9.0	2372	102	9.1	2421	104	9.1	2469	106	9.1	2516	108	9.1	2563	110	9.0
(5° C)	95 (99)	2230	95	8.1	2277	97	8.1	2324	99	8.1	2370	101	8.1	2416	103	8.2	2461	105	8.2
	90 (94)	2142	91	7.4	2187	93	7.3	2233	95	7.3	2276	97	7.2	2319	98	7.2	2362	100	7.3
	85 (89)	2062	86	6.9	2105	88	6.8	2149	90	6.7	2191	92	6.6	2234	94	6.6	2272	95	6.6
	80 (84)	1983	82	6.4	2025	84	6.3	2067	86	6.2	2108	87	6.2	2148	89	6.1	2188	90	6.0
	75 (79)	1916	78	6.0	1954	80	5.9	1994	81	5.8	2034	83	5.8	2073	84	5.7	2110	86	5.6
	70 (74)	1848	74	5.7	1887	75	5.6	1925	77	5.5	1964	78	5.4	2001	80	5.4	2039	81	5.3
6000	100 (104	2367	102	9.2	2417	104	9.3	2467	106	9.3	2516	108	9.3	2564	110	9.2	2613	112	9.2
(38° F	95 (99)	2272	97	8.2	2321	99	8.2	2370	101	8.3	2416	103	8.3	2463	105	8.4	2508	107	8.4
(3° C)	90 (94)	2184	92	7.5	2228	94	7.4	2274	96	7.4	2319	98	7.4	2363	100	7.4	2407	102	7.5
	85 (89)	2099	88	6.9	2146	90	6.8	2190	92	6.8	2231	94	6.7	2273	95	6.7	2315	97	6.7
	80 (84)	2019	84	6.4	2064	85	6.3	2106	87	6.3	2148	89	6.2	2190	91	6.1	2230	92	6.1
	75 (79)	1951	79	6.0	1991	81	5.9	2032	83	5.9	2073	84	5.8	2111	86	5.7	2151	88	5.7
	70 (74)	1884	75	5.7	1923	77	5.6	1964	78	5.5	2002	80	5.5	2040	81	5.4	2078	83	5.3
	65 (69)	1835	72	5.5	1871	73	5.4	1910	75	5.3	1950	76	5.2	1985	78	5.1	2022	79	5.1

HAVE FLOW PERFORMANCE DATA 5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	- (-18	° C)	20°	F (-7	'° C)	40°	F (4	° C)	60°	F (16	3° C)	80°	F (27	7° C)	100°	F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
5500	100 (104	2345	101	9.1	2395	103	9.2	2444	105	9.2	2492	107	9.2	2540	109	9.2	2587	111	9.1
(39° F	95 (99)	2252	96	8.2	2299	98	8.1	2346	100	8.2	2394	102	8.2	2440	104	8.3	2484	106	8.3
(4° C)	90 (94)	2162	92	7.4	2209	94	7.4	2254	96	7.3	2297	97	7.3	2341	99	7.3	2384	101	7.4
	85 (89)	2081	87	6.9	2125	89	6.8	2169	91	6.7	2214	93	6.7	2256	94	6.7	2293	96	6.6
	80 (84)	2001	83	6.4	2044	85	6.3	2086	86	6.2	2128	88	6.2	2169	90	6.1	2211	91	6.1
	75 (79)	1931	79	6.0	1972	80	5.9	2013	82	5.9	2053	84	5.8	2092	85	5.7	2130	87	5.7
	70 (74)	1865	74	5.7	1904	76	5.6	1944	78	5.5	1984	79	5.4	2020	81	5.4	2058	82	5.3
	65 (69)	1818	71	5.5	1855	73	5.4	1892	74	5.3	1932	76	5.2	1966	77	5.1	2002	78	5.1
6500	100 (104	2390	103	9.4	2440	105	9.4	2491	107	9.4	2540	109	9.4	2590	111	9.3			
(36° F	95 (99)	2296	98	8.3	2343	100	8.3	2392	102	8.4	2439	104	8.4	2486	106	8.4	2532	108	8.4
(2° C)	90 (94)	2202	93	7.5	2249	95	7.5	2296	97	7.4	2341	99	7.5	2386	101	7.5	2430	103	7.6
	85 (89)	2119	89	6.9	2163	91	6.8	2208	93	6.8	2252	94	6.7	2295	96	6.7	2337	98	6.8
	80 (84)	2040	84	6.5	2083	86	6.4	2127	88	6.3	2169	90	6.2	2210	91	6.2	2248	93	6.1
	75 (79)	1969	80	6.1	2010	82	6.0	2052	84	5.9	2092	85	5.8	2132	87	5.8	2172	88	5.7
	70 (74)	1900	76	5.7	1940	78	5.6	1982	79	5.5	2021	81	5.5	2060	82	5.4	2098	84	5.4
	65 (69)	1849	72	5.5	1890	74	5.4	1928	76	5.3	1966	77	5.2	2005	78	5.2	2041	80	5.1

HAVE FLOW PERFORMANCE DATA 5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	(-18	° C)	20°	F (-7	/° C)	40°	F (4	°C)	60°	F (16	8° C)	80°	F (27	7° C)	100°	' F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
7000	100 (104	2410	104	9.4	2464	106	9.5	2514	108	9.5	2564	110	9.4						
(34° F	95 (99)	2317	99	8.4	2366	101	8.4	2415	103	8.5	2463	105	8.5	2510	107	8.5	2556	109	8.5
(1° C)	90 (94)	2225	94	7.6	2270	96	7.5	2317	98	7.5	2363	100	7.6	2409	102	7.6	2454	104	7.6
` ′	85 (89)	2138	90	7.0	2184	92	6.9	2229	94	6.8	2273	95	6.8	2317	97	6.8	2359	99	6.8
	80 (84)	2059	85	6.5	2104	87	6.4	2147	89	6.3	2192	91	6.3	2233	92	6.2	2270	94	6.2
	75 (79)	1987	81	6.1	2029	83	6.0	2071	84	5.9	2112	86	5.8	2152	88	5.8	2192	89	5.7
	70 (74)	1918	77	5.7	1960	78	5.6	2000	80	5.6	2040	81	5.5	2080	83	5.4	2117	85	5.4
	65 (69)	1868	73	5.5	1507	75	5.4	1947	76	5.3	1986	78	5.2	2024	79	5.2	2062	81	5.1
8000	95 (99)	2362	101	8.6	2411	103	8.7	2462	105	8.7	2510	107	8.7	2559	109	8.6	2605	111	8.6
(30° F	90 (94)	2267	96	7.7	2314	98	7.7	2363	100	7.7	2410	102	7.8	2456	104	7.8	2501	106	7.8
(-1° C)	85 (89)	2179	91	7.0	2226	93	7.0	2272	95	6.9	2317	97	6.9	2362	99	7.0	2406	101	7.0
` ' '	80 (84)	2098	87	6.5	2143	89	6.4	2186	90	6.3	2229	92	6.3	2272	94	6.3	2314	96	6.3
	75 (79)	2026	82	6.1	2069	84	6.0	2111	86	5.9	2153	88	5.9	2192	89	5.8	2232	91	5.8
	70 (74)	1958	78	5.8	1998	80	5.7	2039	81	5.6	2080	83	5.5	2120	85	5.5	2162	86	5.4
	65 (69)	1902	75	5.5	1945	76	5.4	1985	78	5.3	2024	79	5.3	2063	81	5.2	2101	82	5.2
	60 (64)	1857	71	5.3	1897	73	5.2	1935	74	5.1	1974	75	5.1	2012	77	5.0	2049	78	5.0

HAVE FLOW

PERFORMANCE DATA

5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	(-18	. C)	20°	F (-7	° C)	40°	F (4	°C)	60°	F (16	9. C)	80°	F (27	'° C)			8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
7500	95 (99)	2339	100	8.5	2388	102	8.6	2438	104	8.6	2486	106	8.6	2534	108	8.6	2582	110	8.5
(32° F	90 (94)	2247	95	7.6	2292	97	7.6	2339	99	7.6	2387	101	7.7	2432		7.7	2477	105	7.7
(0° C)	85 (89)	2162	91	7.0	2205	93	6.9	2250	94	6.9	2295	96	6.9	2339		6.9	2382		6.9
	80 (84)	2078	86	6.5	2124	88	6.4	2165	90	6.3	2208	91	6.3	2250		6.2	2291	95	6.2
	75 (79)	2007	82	6.1	2049	83	6.0	2091	85	5.9	2133	87	5.9	2176	88	5.8	2215		5.8
	70 (74)	1940	77	5.7	1979	79	5.6	2020	81	5.6	2060	82	5.5	2099	84	5.4	2138	85	5.4
	65 (69)	1887	74	5.5	1926	75	5.4	1966	77	5.3	2005	78	5.3	2044	80	5.2	2081	81	5.1
	60 (64)	1838	70	5.3	1878	72	5.2	1916	73	5.1	1955	75	5.0	1992	76	5.0	2029	78	4.9
8500	95 (99)	2382	102	8.7	2435	104	8.8	2485	106	8.8	2536	108	8.8	2582	110	8.7			
(29° F	90 (94)	2289	97	7.8	2337	99	7.8	2386	101	7.8	2433	103	7.9	2479	105	7.9	2525	107	7.9
(-2° C)	85 (89)	2201	92	7.1	2247	94	7.0	2294	96	7.0	2339	98	7.0	2385	100	7.1	2429	102	7.1
	80 (84)	2120	88	6.5	2162	90	6.4	2207	91	6.4	2251	93	6.4	2293	95	6.3	2336		6.4
	75 (79)	2045	83	6.1	2089	85	6.0	2132	87	6.0	2172	88	5.9	2212	90	5.8	2254		5.8
	70 (74)	1977	79	5.8	2018	81	5.7	2059	82	5.6	2100	84	5.6	2143		5.5	2182		5.5
	65 (69)	1922	75	5.5	1964	77	5.4	2005	78	5.4	2044	80	5.3	2083		5.2	2121	83	5.2
	60 (64)	1876	72	5.3	1915	73	5.2	1955	75	5.1	1993	76	5.1	2032	78	5.0	2069	79	5.0

HAVE FLOW

PERFORMANCE DATA

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0. E	- (-18	s, C)	20°	F (-7	,, C)	40°	F (4	° C)	60°	F (16	3° C)	80°	F (27	7° C)	100	° F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
9000	95 (99)	2407	103	8.9	2458	105	8.9	2510	107	8.9	2558	109	8.8						
(27° F	90 (94)	2311	98	7.8	2360	100	7.9	2409	102	7.9	2456	104	8.0	2504	106	8.0	2551	108	7.9
(-3° C)	85 (89)	2225	93	7.1	2269	95	7.1	2316	97	7.1	2363	99	7.1	2408	101	7.2	2452	103	7.2
	80 (84)	2141	88	6.6	2183	90	6.5	2228	92	6.4	2273	94	6.4	2316	96	6.4	2359	98	6.5
	75 (79)	2064	84	6.1	2109	86	6.1	2150	88	6.0	2192	89	5.9	2234	91	5.9	2276	93	5.9
	70 (74)	1992	80	5.8	2037	81	5.7	2079	83	5.6	2121	85	5.6	2163	86	5.5	2202	88	5.5
	65 (69)	1943	76	5.5	1983	78	5.4	2024	79	5.4	2064	81	5.3	2104	82	5.3	2142	84	5.2
	60 (64)	1896	72	5.3	1934	74	5.2	1974	75	5.2	2013	77	5.1	2052	78	5.0	2089	80	5.0
10000	90 (94)	2354	100	8.0	2406	102	8.1	2456	104	8.1	2506	106	8.1	2552	108	8.1			
(23° F	85 (89)	2266	95	7.2	2315	97	7.2	2362	99	7.3	2409	101	7.3	2455	103	7.3	2501	105	7.4
(-5° C)	80 (84)	2180	90	6.6	2226	92	6.6	2272	94	6.5	2317	96	6.5	2362	98	6.6	2406	99	6.6
	75 (79)	2105	86	6.2	2147	87	6.1	2192	89	6.0	2235	91	6.0	2278	93	6.0	2320	95	6.0
	70 (74)	2033	81	5.8	2077	83	5.7	2122	85	5.7	2160	86	5.6	2202	88	5.6	2241	90	5.5
	65 (69)	1981	77	5.6	2022	79	5.5	2064	81	5.4	2107	82	5.4	2147	84	5.3	2186	85	5.3
	60 (64)	1932	74	5.3	1971	75	5.3	2013	77	5.2	2053	78	5.1	2092	80	5.1	2133	81	5.0
	55 (59)	1876	70	5.1	1923	71	5.1	1963	73	5.0	2002	74	4.9	2040	76	4.9	2077	77	4.8

HAVE FLOW

PERFORMANCE DATA

5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	(-18	, C)	20°	F (-7	'° C)	40°	F (4	° C)	60°	F (16	8° C)	80°	F (27	7° C)	100°	F (3	8° C
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
9500	90 (94)	2334	99	7.9	2383	101	8.0	2432	103	8.0	2481	105	8.1	2529	107	8.0	2575	109	8.0
(25° F	85 (89)	2246	94	7.2	2291	96	7.1	2340	98	7.2	2386	100	7.2	2432	102	7.3	2476	104	7.3
(-4° C)	80 (84)	2158	89	6.6	2205	91	6.5	2250	93	6.5	2295	95	6.5	2338	97	6.5	2382	99	6.6
	75 (79)	2083	85	6.2	2127	87	6.1	2171	88	6.0	2214	90	6.0	2256	92	5.9	2298	94	5.9
	70 (74)	2014	80	5.8	2057	82	5.7	2102	84	5.7	2143	85	5.6	2184	87	5.6	2220	89	5.5
	65 (69)	1962	77	5.5	2002	78	5.5	2043	80	5.4	2084	82	5.3	2127	83	5.3	2165	85	5.2
	60 (64)	1911	73	5.3	1952	75	5.2	1993	76	5.2	2033	78	5.1	2072	79	5.1	2110	81	5.0
	55 (59)	1866	69	5.1	1907	71	5.1	1943	72	5.0	1982	73	4.9	2020	75	4.9	2057	76	4.8
10500	90 (94)	2379	101	8.2	2430	103	8.2	2481	105	8.2	2528	107	8.2						
(22° F	85 (89)	2289	96	7.3	2337	98	7.3	2386	100	7.4	2433	102	7.4	2480	104	7.4	2526	106	7.4
(-6° C)	80 (84)	2204	91	6.7	2248	93	6.6	2294	95	6.6	2341	97	6.6	2386	99	6.7	2429	100	6.7
	75 (79)	2125	86	6.2	2168	88	6.1	2213	90	6.1	2257	92	6.0	2300	94	6.0	2344	95	6.1
	70 (74)	2050	82	5.8	2095	84	5.7	2138	85	5.7	2180	87	5.6	2222	89	5.6	2263	90	5.6
	65 (69)	1997	78	5.6	2044	80	5.5	2084	82	5.4	2127	83	5.4	2167	85	5.3	2204	86	5.3
	60 (64)	1951	74	5.4	1991	76	5.3	2033	78	5.2	2073	79	5.2	2115	81	5.1	2154	82	5.1
	55 (59)	1901	70	5.1	1942	72	5.1	1982	73	5.0	2021	75	5.0	2060	76	4.9	2101	78	4.9

HAVE FLOW

PERFORMANCE DATA

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude	KIAS	0° F	(-18	, C)	20°	F (-7	/° C)	40°	F (4	°C)	60°	F (16	8° C)						
(Std Temp	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
11000	85 (89)	2311	97	7.4	2360	99	7.4	2409	101	7.5	2457	103	7.5	2503	105	7.5			
(20° F	80 (84)	2225	92	6.7	2271	94	6.7	2318	96	6.7	2364	98	6.7	2409	100	6.8	2453		6.8
(-7° C)	75 (79)	2144	87	6.2	2190	89	6.2	2235	91	6.1	2279	93	6.1	2324	95	6.1	2367	96	6.2
` '	70 (74)	2073	83	5.9	2116	84	5.8	2159	86	5.7	2202	88	5.7	2244	90	5.6	2286	91	5.6
	65 (69)	2019	79	5.6	2065	81	5.5	2107	82	5.5	2144	84	5.4	2184	86	5.3	2225	87	5.3
	60 (64)	1970	75	5.4	2011	77	5.3	2052	78	5.2	2096	80	5.2	2135	81	5.1	2170	83	5.1
	55 (59)	1918	71	5.1	1961	73	5.1	2001	74	5.0	2042	76	5.0	2084	77	4.9	2121	78	4.9
	50 (54)	1879	67	5.0	1921	68	5.0	1960	70	4.9	1999	71	4.8	2037	73	4.8	2075	74	4.7
12000	85 (89)	2357	99	7.6	2407	101	7.6	2459	103	7.7									
(16° F	80 (84)	2268	94	6.8	2316	96	6.8	2364	98	6.9	2411	100	6.9	2459	102	7.0	2504	103	7.0
(-9° C)	75 (79)	2187	89	6.3	2233	91	6.2	2281	93	6.2	2326	95	6.3	2371	96	6.3	2414	98	6.3
,/	70 (74)	2116	84	5.9	2158	86	5.8	2202	88	5.8	2246	90	5.7	2290	91	5.7	2332	93	5.8
	65 (69)	2057	81	5.6	2101	82	5.5	2144	84	5.5	2186	86	5.4	2228	87	5.4	2269	89	5.4
	60 (64)	2009	77	5.4	2054	78	5.4	2091	80	5.2	2132	82	5.2	2173	83	5.1	2213		5.1
	55 (59)	1960	72	5.2	2001	74	5.1	2045	76	5.1	2085	77	5.0	2120	79	4.9	2158		4.9
	50 (54)	1917	68	5.0	1959	70	5.0	1999	71	4.9	2042	73	4.9	2081	74	4.8	2119	75	4.8

HAVE FLOW

PERFORMANCE DATA

5/23/96

USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0% Shaded Values Exceed 75% Power

Pressur Altitude (Std Temp	KIAS	0° F (-18° C)			20° F (-7° C)			40° F (4° C)			60° F (16° C)			80° F (27° C)			100° F (38° C		
	TH-AW (SH)	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH	RPM	KTAS	GPH
11500	85 (89)	2331	98	7.4	2384	100	7.5	2433	102	7.6	2483	104	7.6						
(18° F	80 (84)	2244	93	6.8	2293	95	6.7	2341	97	6.8	2387	99	6.8	2433		6.9	2480		6.9
(-8° C)	75 (79)	2168	88	6.3	2211	90	6.2	2257	92	6.2	2303	94	6.2	2347	96	6.2	2390		6.3
	70 (74)	2092	84	5.9	2136	85	5.8	2180	87	5.7	2224	89	5.7	2266	90	5.7	2307	92	5.7
	65 (69)	2039	80	5.6	2080	81	5.5	2122	83	5.5	2164	85	5.4	2206		5.4	2247	88	5.3
	60 (64)	1987	76	5.4	2034	78	5.3	2075	79	5.3	2116	81	5.2	2152		5.1	2191	84	5.1
	55 (59)	1942	72	5.2	1981	73	5.1	2022	75	5.1	2065	76	5.0	2104	78	5.0	2142		4.9
	50 (54)	1897	68	5.0	1940	69	5.0	1979	70	4.9	2019	72	4.9	2061	73	4.8	2099	75	4.8
12500	80 (84)	2291	95	6.9	2339	97	6.9	2388	99	7.0	2437	101	7.0	2483	103	7.0			
(14° F	75 (79)	2209	90	6.3	2257	92	6.3	2303	94	6.3	2349	96	6.3	2394	97	6.4	2438	99	6.4
(-10° C	70 (74)	2133	85	5.9	2179	87	5.8	2224	89	5.8	2269	91	5.8	2313	92	5.8	2355	94	5.8
, , ,	65 (69)	2079	81	5.6	2121	83	5.6	2165	85	5.5	2208	86	5.5	2250	88	5.5	2293	90	5.4
	60 (64)	2028	77	5.4	2069	79	5.3	2111	81	5.3	2153	82	5.2	2194	84	5.2	2235	85	5.2
	55 (59)	1977	73	5.2	2018	75	5.1	2059	76	5.1	2101	78	5.0	2140	79	5.0	2180	81	4.9
	50 (54)	1939	69	5.1	1982	70	5.0	2019	72	4.9	2062	73	4.9	2101	75	4.9	2135		4.8
	45 (49)	1903	64	5.0	1945	66	4.9	1986	67	4.8	2028	68	4.8	2066	70	4.8	2103	71	4.7

HAVE FLOW

PERFORMANCE DATA

HAVE FLOW PI

PERFORMANCE DATA

6/4/96

HAVE FLOW

PERFORMANCE DATA

Outside Air Temperature (°F)

Rate of Climb (ft/min) and Fuel Flow (gal/hr*100)

HAVE FLOW

PERFORMANCE DATA

6/4/96

HAVE FLOW

PERFORMANCE DATA

HAVE FLOW

20

40

60

80

PERFORMANCE DATA

400

600

800

1000

200

Outside Air Temperature (°F) Rate of Descent (ft/min) and Fuel Flow (gal/hr*100)

6/4/96

HAVE FLOW

PERFORMANCE DATA

Descent 107 KIAS 2250 RPM

HAVE FLOW

PERFORMANCE DATA

6/4/96

Descent Data at 107 KIAS/2250 RPM USAFA CCFT Cessna 150/150HP Engine: Lycoming O-320-E2D Prop: McCauley TM7458/1C172 Mixture: Leaned Carb Heat: OFF Weight: 1760 Flaps: 0%

HAVE FLOW

PERFORMANCE DATA

APPENDIX C AIRCRAFT MODELING

MATCHING RPM MODEL TO FLIGHT TEST DATA

The computer model of the aircraft in the Reciprocating Engine and Propeller Modeling Program (RPM) actually consisted of three models; the engine, the propeller, and the aircraft itself. (Reference 2). Figure C1 shows the final engine model used for this investigation. Figure C2 through Figure C5 show the final propeller model used for this investigation. At the end of this appendix, the input files to RPM for the aircraft, engine, and propeller models are listed.

Each of these models was adjusted individually to accurately model the entire aircraft performance. The aircraft model was fairly straight forward, being primarily the aircraft drag polar. Finding the proper adjustment for the engine and propeller models was an iterative process. The drag polar was chosen and the propeller and engine models were adjusted to match flight test data. The convergence was fairly quick, as good initial models could be created prior to flight test based on Flight Manual data.

Propeller Model Adjustment:

Initially, the drag polar was derived from flight test data. This drag polar was dependent on the engine model (to find brake horsepower (BHP)) and the propeller model (to find propeller efficiency) used to reduce the data. This drag polar was entered into the aircraft model.

The program was then set up to trim the aircraft for level, unaccelerated flight at a specified airspeed, pressure altitude and outside air temperature. The lift coefficient was calculated for the current weight, and knowing the lift coefficient, the drag coefficient was calculated using the drag polar. Once the drag was known, the thrust required for level unaccelerated flight was calculated. The propeller thrust was a function of the thrust coefficient, air density, RPM, and propeller diameter. (Reference 7) Since the air density and propeller diameter were known, the only variables were thrust coefficient and RPM. For a fixed pitch propeller, thrust coefficient is strictly a function of advance ratio. (Reference 7) Advance ratio is a function of true airspeed, RPM, and propeller diameter. Since the true airspeed was set by the input conditions and propeller diameter was known, for this flight condition the advance ratio has a one to one

correspondence with RPM. Since the thrust coefficient has a one to one correspondence with advance ratio, at this flight condition thrust coefficient will have a one to one correspondence with RPM. The RPM was then adjusted until the proper thrust coefficient was found to produce the thrust required.

The inputs to the propeller model were the blade planform shape, number of blades, propeller diameter, and propeller pitch. A helical pitch distribution was assumed. (Reference 2) The only input which could be varied to match flight test data was the propeller pitch. The pitch was adjusted in a similar fashion to the method used to regulate the RPM of a constant speed propeller. With the model stabilized in level, unaccelerated flight at a known flight test airspeed. altitude, and temperature, the value of RPM reported by the model was noted. If the RPM reported was higher than the RPM seen in flight test, the propeller pitch in the propeller model was increased. If the RPM reported was lower than the RPM seen in flight test. the propeller pitch in the propeller model was This process was repeated for many different cruise flight test points until a satisfactory overall match was made.

Figure C6 shows the final match between flight test recorded RPM and model reported RPM. The difference of model RPM minus flight test RPM is plotted against indicated airspeed. The mean error was -8 RPM, and the 95 percent confidence interval was ±72 RPM. This was considered a satisfactory match, since the 95 percent confidence interval was smaller than ±1 division (100 RPM/division) on the tachometer.

Engine Model Adjustment:

At this point, a second iteration propeller model was in hand. However, to get this propeller model, the engine power output was adjusted as required to generate the power required as specified by the propeller power coefficient. Like the thrust coefficient, the power coefficient for a fixed pitch propeller is solely a function of advance ratio. The inputs to the engine model to determine BHP were manifold pressure (MAP), RPM, pressure altitude, and outside air temperature. (Reference 2) The pressure altitude and outside air temperature were set by the conditions for the flight test point. The RPM was set as required by the propeller to produce the correct thrust. The only remaining input to the engine model was the MAP.

Because only MAP remains, the propeller model can be adjusted independant of the engine model. The engine model would produce the BHP required by the propeller. The difference with different engine models would show in the resulting MAP. If the engine model was more powerful than the actual engine, a lower value of MAP would be required by the engine model to produce the required horsepower. If the engine model was less powerful than the actual engine, a higher value of MAP would be required by the engine model to produce the required horsepower.

To adjust the engine model to match the model MAP with the flight test MAP, the "fit coefficient" was varied. Note on the sea level side of Figure C1 (the left side) the different lines of constant RPM. As the fit coefficient was modified, the line of maximum constant RPM (in this case, 2700 RPM) does not change. As the fit coefficient was reduced, the other lines of constant RPM moved up, thus moving closer together. As the fit coefficient was increased, the lines of constant RPM moved down, spreading farther apart. The result of changing the fit coefficient was that for a given BHP (specified by the propeller parameters), a lower fit coefficient resulted in a lower MAP. Likewise, a higher fit coefficient resulted in a higher MAP. Thus, the fit coefficient was adjusted for many different cruise flight test points until a satisfactory overall match was made.

Figure C7 shows the final match between flight test recorded MAP and model reported MAP. The difference of model MAP minus flight test MAP is plotted against RPM. The mean error was -0.12 in Hg, and the 95 percent confidence interval was ± 0.98 in Hg. This was considered a satisfactory match, since the 95 percent confidence interval was smaller than ± 1 division (1 in Hg/division) on the MAP gauge.

At this point, a second iteration engine model was in hand. However, this engine model was based on the second iteration propeller model and the first iteration drag polar. The new engine and propeller model were incorporated in the data reduction of the original flight test data, and a new second iteration drag polar was found. The next iteration was then started back at "Propeller Model Adjustment." These iterations were continued until the aircraft, propeller, and engine models converged.

Fuel Flow Adjustment:

Although the fuel flow adjustment was made in the engine model, it was considered separately because an accurate adjustment of fuel flow required having a satisfactory prediction of RPM and MAP first.

The fuel flow rate is calculated by multiplying the mixture times the mass flow rate of air. The mass flow rate of air is calculated by (Reference 2)

$$\dot{m}_{air} = \frac{MAP}{R*T} * \frac{RPM}{2} * Displacement * \eta_{vol}$$

The manifold pressure (MAP), manifold temperature (T), and RPM are already known. R is the gas constant (1716 ft-lb/slug- $^{\circ}$ R). The displacement is a fixed value for the engine. The remaining factor is the volumetric efficiency (η_{vol}), which is the ratio of the mass of fuel-air mixture drawn into the cylinder on the intake stroke to the mass of fuel-air mixture that would fill the cylinder at the intake manifold density. In other words, it measures how efficiently the cylinder is filled with the fuel-air charge. The volumetric efficiency allows adjustment of the amount of air flowing through the engine, and thus adjustment of the amount of fuel flowing through the engine.

The volumetric efficiency was modeled as a function of RPM. The values of volumetric efficiency were adjusted until the mean error was no longer a function of RPM. The final match between flight test recorded fuel flow and model reported fuel flow is shown in Figure C8. In this figure, the scatter of the data points (difference of model fuel flow minus flight test fuel flow) is evenly distributed about a horzontal line. Once the distribution mean is horizontal, the result is the best possible match. Looking at the air mass flow equation above, the air mass flow is a function of MAP and RPM. Since fuel flow is just the mixture times the air mass flow, fuel flow will also be a function of MAP and RPM. Therefore, any scatter in MAP and RPM (as shown in Figure C6 and Figure C7) will create scatter in the fuel flow prediction. A further improvement of agreement would require improving the MAP agreement and the RPM agreement. The mean error was -0.13 gal/hr, and the 95 percent confidence interval was ±0.89 gal/hr.

Figure C9 presents the fuel flow error in percent. This value was determined by dividing the fuel flow error by the flight test fuel flow reading. The 95

percent confidence interval boundaries are slightly in excess of the ± 10 percent error allowed in predicting fuel consumption in competition. However, assuming this error was normally distributed, predicted fuel flows should tend toward actual fuel flows sufficiently within the ± 10 percent error band most of the time.

Full Throttle Modeling:

An additional adjustment for the engine model was necessary to adjust the full throttle MAP. This was important for predicting maximum airspeed in level flight and climb performance at full throttle. The maximum MAP was calculated by

$$MAP_{max} = P_T - \left(P_{SL} - MAP_{max_{SL}}\right)$$

Effectively this equation says that the maximum MAP available is equal to the freestream total pressure (static pressure plus ram rise from airspeed) minus the losses in the intake manifold. The intake manifold losses were modeled as constant for all flight conditions. The intake manifold loss was determined by the standard sea level pressure (P_{SL} = 29.92 in Hg) minus the maximum MAP at sea level. Since the MAP at sea level on a standard day could not be measured directly, the value was adjusted until the predicted full throttle MAP satisfactorily matched the MAP recorded on flight test points at full throttle. These results are shown in Figure C10. The data points show a good agreement with the model predicted full throttle MAP (fairing).

When adjusting the maximum MAP at sea level in the engine model, it was also necessary to adjust the corresponding maximum BHP at sea level such that the maximum line of constant RPM did not change.

Rate of Climb Adjustment:

Two modifications were made to the RPM program to improve the match of climb predictions with flight test data. The first modification was to account for the expansion and contraction of pressure contours on non-standard days. On hot days, the pressure contours will expand, making 1000 feet of pressure altitude greater than 1000 feet of tapeline altitude. The opposite occurs on cold days. Pressure altitude is simply another unit for pressure, and a given change in pressure altitude at standard density will equate to a particular change in pressure. This change

in pressure will also equate to the actual tapeline altitude change at the actual density. In equation form:

$$\Delta P = -\rho_s g \Delta H_p = -\rho_t g \Delta H_{tl}$$

Solving this equation for the ratio of pressure altitude change to tapeline altitude change gives

$$\frac{\Delta H_p}{\Delta H_{tl}} = \frac{\rho_t}{\rho_s} = \frac{\frac{P}{RT_t}}{\frac{P}{RT_s}} = \frac{T_s}{T_t}$$

where T_{\bullet} is the standard temperature for the pressure altitude and T_{t} is the actual (or test) temperature.

Following this same line of reasoning, the effects of non-standard conditions can be seen on rate of climb. Assuming a hot day, if the aircraft has climbed 1000 feet of tapeline altitude, it may have only climbed through 930 feet of pressure altitude, since the vertical distance between pressure contours 1000 feet of pressure altitude apart is greater than 1000 feet of tapeline altitude. Thus, if the tapeline rate of climb was 1000 ft/min, the pressure altitude rate of climb would only be 930 ft/min. The rate of climb in terms of pressure altitude is what the pilot is interested in, since he is measuring altitude in terms of pressure altitude. Thus, the tapeline rate of climb calculated in RPM is adjusted to a pressure altitude rate of climb by the equation

$$ROC_{pressure} = ROC_{tl} * \frac{T_s}{T_t}$$

The second modification was to account for changes in drag on the aircraft caused by changes in the slipstream velocity. This is commonly referred to as "scrubbing." This scrubbing is usually a minor effect on the aircraft drag, but because of the separation over the rear window embedded in the slipstream, this effect was very noticeable on the Cessna 150. Since traditional aerodynamic theory normally considers this drag as part of the airframe drag, an equation to describe the effect was not immediately available. An empirical relationship was developed to model this effect. This relationship was

$$\Delta D_{\text{slipstream}} = C_{\Delta D} * \frac{\rho}{2} (v_i v_{i|\text{level}} - v_{i|\text{level}}^2) * S$$

where v_i is the propeller induced velocity at the current flight condition, and $v_{i_{Level}}$ is the propeller induced velocity at the same conditions in level, unaccelerated flight. This relationship is patterned after the traditional expression for drag. Of interest is that because the propeller induced velocity is small compared to the freestream velocity, the coefficient (C_{AD}) can be quite large compared to the aircraft drag coefficient. For instance, for the Cessna 150 tested, $C_{AD} = 2.8$.

Figure C11 shows the effect of accounting for the slipstream effects. The circles show the actual data points (the 8,000 feet data from Figure A32). The upper line shows the RPM predicted rate of climb for the final model with all corrections except the slipstream drag correction (i.e. $C_{\Delta D} = 0$). Applying the slipstream drag correction moves the RPM predicted rate of climb down to the lower line, which shows excellent agreement with the data points.

Figure C1 RPM Engine Model For Lycoming O-320-E2D

McCauley TM7458/1C172

Figure C2 RPM Propeller Model For McCauley TM7458/1C172; Thrust Coefficient

Figure C3 RPM Propeller Model For McCauley TM7458/1C172; Torque Coefficient

Figure C4 RPM Propeller Model For McCauley TM7458/1C172; Power Coefficient

Figure C5 RPM Propeller Model For McCauley TM7458/1C172; Propeller Efficiency

Figure C6 RPM Model RPM Matching

Figure C7 RPM Model Manifold Pressure Matching

Figure C8 RPM Model Fuel Flow Matching (in gal/hr)

Figure C9 RPM Model Fuel Flow Matching (in percent)

Figure C10 RPM Model Full Throttle Manifold Pressure Matching

Figure C11 Slipstream Effects on Rate of Climb

AIRCRAFT MODEL FILE C150150.ACF

[General]
Aircraft Designation=USAFA CCFT Cessna 150/150HP
Engine Designation=LO320A.ENG
Prop Designation=C150150.PRP

[Weights]
Empty Weight=1267
Fuel Weight=138
Crew Weight=345
Baggage Weight=10
Max Gross Weight=1760
Maximum Fuel Weight=210

[Dimensions] Wing Span=33.08 Wing Area=160 Number of Engines=1 CL Max=1.28036694423438 Wing Incidence=0.5 Thrust Incidence=0 Fuselage Deck Angle=0 CDo=0.042696 K2=0 K1=0.068861 Landing Gear Type 0=0 Landing Gear Type 1=-1 Retracts=0 Alpha Zero Lift=-2 Flaps List Index=4 Flapped Area=61 Fowler Flap Chord Ratio=1 Landing Gear CDo=0 Maximum Flap Deflection=40 Slipstream Drag Factor=2.8 Minimum Flap Deflection=0

[Simulation Options]
Airspeed Units 0=-1
Airspeed Units 1=0
Airspeed Units 2=0
Fuel Units 0=0
Fuel Units 1=-1
Fuel Units 2=0
Carb Heat Temp=150
VVI Lag Check=0
VVI Lag=9
Talking Otto=0

[Pitot Static Corrections]
Pitot Static Check=1

Position Correction Altitude=9000

Airspeed Rows=12

Indicated Airspeed 1=0

Airspeed Instrument Error 1=0

Airspeed Position Error 1=0

Altitude Position Error 1=0

Calibrated Airspeed 1=0

Indicated Airspeed 2=67.555555555556

Airspeed Instrument Error 2=0

Airspeed Position Error 2=17.2266666666667

Altitude Position Error 2=53.4797178002151

Calibrated Airspeed 2=84.782222222223

Airspeed Instrument Error 3=0

Airspeed Position Error 3=13.257777777778

Altitude Position Error 3=49.2121346716584

Calibrated Airspeed 3=97.702222222222

Indicated Airspeed 4=101.333333333333

Airspeed Instrument Error 4=0

Airspeed Position Error 4=8.444444444445

Altitude Position Error 4=36,3297504729515

Calibrated Airspeed 4=109.7777777778

Indicated Airspeed 5=118.22222222222

Airspeed Instrument Error 5=0

Airspeed Position Error 5=2.533333333333333

Altitude Position Error 5=12.3375832606144

Calibrated Airspeed 5=120.75555555555

Indicated Airspeed 6=135.111111111111

Airspeed Instrument Error 6=0

Altitude Position Error 6=-4.63567616034862

Calibrated Airspeed 6=134.26666666667

Indicated Airspeed 7=152

Airspeed Instrument Error 7=0

Airspeed Position Error 7=-3.377777777778

Altitude Position Error 7=-20.6934258693933

Calibrated Airspeed 7=148.62222222222

Indicated Airspeed 8=168.888888888888

Airspeed Instrument Error 8=0

Airspeed Position Error 8=-5.0666666666667

Altitude Position Error 8=-34.3534120472231

Calibrated Airspeed 8=163.82222222222

Indicated Airspeed 9=185.7777777778

Airspeed Instrument Error 9=0

Airspeed Position Error 9=-3.377777777778

Altitude Position Error 9=-25.3436339299311

Calibrated Airspeed 9=182.4

Indicated Airspeed 10=202.66666666667

Airspeed Instrument Error 10=0

Airspeed Position Error 10=-3.377777777778

Altitude Position Error 10=-27.6687379602

Calibrated Airspeed 10=199.288888888888

Indicated Airspeed 11=219.55555555555

Airspeed Instrument Error 11=0

Airspeed Position Error 11=-1.688888888888888

Altitude Position Error 11=-15.0550485959912

Calibrated Airspeed 11=217.866666666667

Indicated Airspeed 12=236.44444444445

Airspeed Instrument Error 12=0

Airspeed Position Error 12=0

Altitude Position Error 12=0

Calibrated Airspeed 12=236.44444444445

Altitude Rows=9

Indicated Altitude 1=0

Altitude Instrument Error 1=0

Indicated Altitude 2=1000

Altitude Instrument Error 2=0

Indicated Altitude 3=2000

Altitude Instrument Error 3=0

Indicated Altitude 4=3000

Altitude Instrument Error 4=0

Indicated Altitude 5=4000

Altitude Instrument Error 5=0

Indicated Altitude 6=5000

Altitude Instrument Error 6=0

Indicated Altitude 7=6000

Altitude Instrument Error 7=0

Indicated Altitude 8=7000

Altitude Instrument Error 8=0

Indicated Altitude 9=8000

Altitude Instrument Error 9=0

ENGINE MODEL FILE LO320A.ENG

[General]

Engine Designation=Lycoming O-320-A2B, A2C, E2A, E2D, IO-320-E2A

Model Method=2

Supercharger List Index=0

Auto Fit Coefficient 0=0

Fit Coefficient 0=3.7

Auto Fit Coefficient 1=1

Fit Coefficient 1=4.442958

Auto Fit Coefficient 2=1

Fit Coefficient 2=4.442958

IBHP Tablel

Number of Rows=17

Low MAP, 0=XXXXXXX

High MAP, 0=XXXXXX

Altitude Low MAP, 0=XXXXXXX

BHP Table 2, 1, 0=2700

BHP Table 2, 2, 0=XXXXXX

BHP Table 2, 3, 0=XXXXXX

BHP Table 2, 4, 0=XXXXXX

BHP Table 2, 5, 0=XXXXXX

BHP Table 2, 6, 0=81.84

BHP Table 3, 1, 0=2600

BHP Table 3, 2, 0=XXXXXX

BHP Table 3, 3, 0=XXXXXX

BHP Table 3, 4, 0=XXXXXX

BHP Table 3, 5, 0=XXXXXX

BHP Table 3, 6, 0=81.84

BHP Table 4, 1, 0=2500

BHP Table 4, 2, 0=XXXXXX

BHP Table 4, 3, 0=XXXXXX

BHP Table 4, 4, 0=XXXXXX

BHP Table 4, 5, 0=XXXXXX

BHP Table 4, 6, 0=82.28

BHP Table 5, 1, 0=2400

BHP Table 5, 2, 0=XXXXXX

BHP Table 5, 3, 0=XXXXXX

BHP Table 5, 4, 0=XXXXXX

BHP Table 5, 5, 0=XXXXXX

BHP Table 5, 6, 0=81.012

BHP Table 6, 1, 0=2300

BHP Table 6, 2, 0=XXXXXX

BHP Table 6, 3, 0=XXXXXX

BHP Table 6, 4, 0=XXXXXX

BHP Table 6, 5, 0=XXXXXX

BHP Table 6, 6, 0=78.54

BHP Table 7, 1, 0=2200

BHP Table 7, 2, 0=XXXXXX

BHP Table 7, 3, 0=XXXXXX

BHP Table 7, 4, 0=XXXXXX

- BHP Table 7, 5, 0=XXXXXX
- BHP Table 7, 6, 0=77.59
- BHP Table 8, 1, 0=2100
- BHP Table 8, 2, 0=XXXXXX
- BHP Table 8, 3, 0=XXXXXX
- BHP Table 8, 4, 0=XXXXXX
- BHP Table 8, 5, 0=XXXXXX
- BHP Table 8, 6, 0=77.59
- BHP Table 9, 1, 0=2000
- BHP Table 9, 2, 0=XXXXXX
- BHP Table 9, 3, 0=XXXXXX
- BHP Table 9, 4, 0=XXXXXX
- BHP Table 9, 5, 0=XXXXXX
- BHP Table 9, 6, 0=77.59
- BHP Table 10, 1, 0=1900
- BHP Table 10, 2, 0=XXXXXX
- BHP Table 10, 3, 0=XXXXXX
- BHP Table 10, 4, 0=XXXXXX
- BHP Table 10, 5, 0=XXXXXX
- BHP Table 10, 6, 0=77.59
- BHP Table 11, 1, 0=1800
- BHP Table 11, 2, 0=XXXXXX
- BHP Table 11, 3, 0=XXXXXX
- BHP Table 11, 4, 0=XXXXXX
- BHP Table 11, 5, 0=XXXXXX
- BHP Table 11, 6, 0=77.59
- BHP Table 12, 1, 0=1700
- BHP Table 12, 2, 0=XXXXXX
- BHP Table 12, 3, 0=XXXXXX
- BHP Table 12, 4, 0=XXXXXX
- BHP Table 12, 5, 0=XXXXXX
- BHP Table 12, 6, 0=77.59
- BHP Table 13, 1, 0=1600
- BHP Table 13, 2, 0=XXXXXX
- BHP Table 13, 3, 0=XXXXXX
- BHP Table 13, 4, 0=XXXXXX
- BHP Table 13, 5, 0=XXXXXX
- BHP Table 13, 6, 0=77.59
- BHP Table 14, 1, 0=1500
- BHP Table 14, 2, 0=XXXXXX
- BHP Table 14, 3, 0=XXXXXX
- BHP Table 14, 4, 0=XXXXXX
- BHP Table 14, 5, 0=XXXXXX
- BHP Table 14, 6, 0=77.59
- BHP Table 15, 1, 0=1400
- BHP Table 15, 2, 0=XXXXXX
- BHP Table 15, 3, 0=XXXXXX
- BHP Table 15, 4, 0=XXXXXX
- BHP Table 15, 5, 0=XXXXXX
- BHP Table 15, 6, 0=77.59
- BHP Table 16, 1, 0=1300
- BHP Table 16, 2, 0=XXXXXX

BHP Table 16, 3, 0=XXXXXX BHP Table 16, 4, 0=XXXXXX BHP Table 16, 5, 0=XXXXXX BHP Table 16, 6, 0=77.59

[Ratings]

Low Variable=0

Takeoff BHP=148

Takeoff RPM=2700

Takeoff MAP=28.65

Low Military BHP=150

Low Military RPM=2700

Low Military PA=0

Low Normal BHP=150

Low Normal RPM=2700

Low Normal PA=0

Low Cruise BHP=110

Low Cruise RPM=2450

Low Cruise PA=7000

Low Gear Ratio=

Aux Military BHP=

Aux Military RPM=

Aux Military PA=

Aux Normal BHP=

Aux Normal RPM=

Aux Normal PA=

Aux Cruise BHP=

Aux Cruise RPM=

Aux Cruise PA=

Aux Gear Ratio=

Aux Variable=0

Aux Hi Military BHP=

Aux Hi Military RPM=

Aux Hi Military PA=

Aux Hi Normal BHP=

Aux Hi Normal RPM=

Aux Hi Normal PA=

Aux Hi Cruise BHP=

Aux Hi Cruise RPM=

Aux Hi Cruise PA=

Aux Hi Gear Ratio=

Low Efficiency=

Low Efficiency Default=0

Aux Efficiency=

Aux Efficiency Default=0

Aux Hi Efficiency=

Aux Hi Efficiency Default=0

[Engine Specs]

Engine Displacement=320

Bore=5.125

Stroke=3.875

BSFC=.575
Reduction Gear Ratio=1
Cycle Type 0=-1
Cycle Type 1=0
Ram Effect=1
Check Intercooler=0
Intercooler Exit Temp=
Intercooler Default=0
Check Aftercooler=0
Aftercooler Exit Temp=
Aftercooler Default=0
Turbo Control 0=0
Turbo Control 1=0

PROPELLER MODEL FILE C150150.PRP

[General] Prop Designation=MacCauley TM7458/1C172 (C-150/150HP) Diameter=74 Dimension Type 0=-1 Dimension Type 1=0 Pitch=58.6 Number of Blades=2 Blade Alpha Zero Lift=-4.5 Blade Element Width=5 Pitch Type 0=-1 Pitch Type 1=0 Pitch Type 2=0 Max Blade Angle= Min Blade Angle= [Blade Planform] Rows=17 Planform Table 1, 2=5.50000000000001 Planform Table 2, 1=9.000000000000003 Planform Table 2, 2=5.50000000000001 Planform Table 3, 1=11 Planform Table 3, 2=5.625 Planform Table 4, 1=13 Planform Table 4, 2=5.625 Planform Table 5, 1=15 Planform Table 5, 2=5.625 Planform Table 6, 1=17 Planform Table 6, 2=5.56250000000001 Planform Table 7, 1=19.0000000000001 Planform Table 7, 2=5.43750000000002 Planform Table 8, 1=21.0000000000001 Planform Table 8, 2=5.3125 Planform Table 9, 2=5.125000000000002 Planform Table 10, 1=25 Planform Table 10, 2=4.87500000000001 Planform Table 11, 1=27 Planform Table 11, 2=4.625 Planform Table 12, 1=29.0000000000001 Planform Table 12, 2=4.25000000000001 Planform Table 13, 1=31.0000000000001 Planform Table 13, 2=3.87500000000001 Planform Table 14, 1=32.99999999999999 Planform Table 14, 2=3.37499999999999 Planform Table 15, 1=35 Planform Table 15, 2=2.9375 Planform Table 16, 1=37

Planform Table 16, 2=2.5

APPENDIX D

FLIGHT TEST TECHNIQUE AND DATA REDUCTION DETAILED DESCRIPTION

CRUISE PERFORMANCE

Test Procedures:

Cruise data were collected using steady state trim shots at constant pressure altitude (PA) and airspeeds of 50, 60, 70, 80, 90, and 100 knots. Trim shots were also recorded at the airspeed for full throttle.

The aircraft was trimmed in level flight at the aim airspeed and pressure altitude. Heading was as desired by the pilot. The altimeter was set at 29.92 in Hg to indicate pressure altitude. Typically, a cruise test point was scheduled immediately after a Pitot-static test point (either GPS Speed Course or GPS Ground Speed) at the same conditions. This order allowed the pilot to fine tune the throttle based on the aircrast behaviour (slight gain or loss of airspeed or altitude) during the Pitot-static test point. Since the Pitot-static test points were less sensitive to altitude deviations, more complete use of test time was possible while getting a good trim shot for the cruise test point. During the test point, airspeed was held constant, allowing the alititude to vary slightly if necessary. Any altitude deviations were recorded as part of the test data.

Once the pilot called "On Conditions," the flight test engineer started pushing the button on the fuel totalizer to display fuel used, and waited until the tenths digit (the least significant figure) changed. When the tenths digit changed, the time was recorded. At this time the test point was started. The flight test engineer recorded the starting fuel used, indicated altitude (h_i), indicated airspeed (V_i), outside air temperature (OAT), manifold pressure (MAP), engine RPM, and pilot comments. The flight test engineer would then repeatedly push the button on the fuel totalizer until the indicated fuel used was 0.5 gallon greater than the starting fuel used. On the first indication of the final fuel used, the time was recorded, and the test point was complete.

Fuel used was measured by a Hoskins FT101A Fuel Totalizer. The manufacturer's literature for this instrument claims an accuracy within ±2 percent. After the first two flights of the program, when it became apparent that the fuel totalizer was indicating incorrectly, the instrument was sent back to the manufacturer to be recalibrated. No separate verification of the calibration was accomplished by the test team. Fuel used was reported to the nearest tenth

of a gallon. This indicator normally displayed fuel flow, which varied too much to be usable for this test. This variation arose primarily from the actual variation in fuel flow as the carburetor float opened and closed the fuel inlet valve to the carburetor bowl. Fuel used could be read by pressing a button on the indicator. After displaying the fuel used for a few seconds, the display would revert to fuel flow.

To improve the accuracy of the fuel used measurement, the flight test engineer pressed the button on the indicator each time the display reverted to fuel flow. This resulted in a reasonably constant display of fuel used.

Figure D1 shows why a value of 0.5 gallons was chosen. This figure assumed zero error in the fuel used indicator and a nominal cruise fuel flow of 8 gallons per hour. Time was read from a digital wristwatch displaying hours, minutes, and seconds. This method introduced a random error of ±0.5 seconds. All time readings would be late, as it would be impossible to see a display change before it changes. If the time readings at the beginning and the end of the run were both 1 second late, for instance, then the time recorded for the run would have no error. If the ending time had more error than the starting time, the time recorded for the run would be too long. If the starting time had more error than the ending time, the time recorded for the run would be too short. Considering time to notice the change on the fuel used display and look at the watch, a time error of no more than 2 seconds was considered reasonable. For this time error, burning 0.5 gallons would result in a measurement error of 0.88 percent. This error is less than the ±2 percent error claimed by the manufacturer for the fuel totalizer, and therefore is not worth trying to reduce further. Burning 1.0 gallons would only reduce the error to 0.44 percent. This would result in a small reduction in error but a large increase in flight time, lengthening a typical test point from 5 minutes to 10 minutes. Balancing error reduction against efficient use of flight time, a fuel burn of 0.5 gallons was chosen.

The amount of fuel in the tanks was measured before and after each flight in an attempt to verify the accuracy of the fuel totalizer. The amount of fuel was measured using a dipstick. The mean error comparing the measured fuel amount to the fuel burned shown on the fuel totalizer was 1.2 gallons per flight. However, the standard deviation was so large (1.6 gallons per

flight) as to make the results inconclusive. The large standard deviation was thought to be caused primarily by the large errors inherent in measuring the fuel in the tanks with a dipstick. The dipstick had a very low resolution (1 gallon), and the amount read was dependant on the attitude of the airplane. Since the aircraft was not always parked in the same spot when the dipstick was read, additional errors were introduced into this measurement. The one conclusion that can be safely drawn is that the data did not statistically show that the fuel totalizer was inaccurate, therefore the fuel totalizer was assumed accurate.

Data Reduction Methods:

Example Data:

 $h_i = 5990$ feet

 $V_i = 90 \text{ KIAS}$

 $T_i = 31^{\circ} F$

MAP = 18.6 in Hg

RPM = 2230

Start Time = 9:35:27

End Time = 9:40:00

Start Fuel Used = 6.0 gal

End Fuel Used = 6.5 gal

Takeoff Weight = 1780 lbs

Propeller Diameter = 6.1667 ft

Standard Weight = 1760 lbs

Wing Area = 160 ft^2

Temperature Recovery Factory (K) = 0.8

1. Find the airspeed position correction from the flight test derived position correction chart (Figure A27).

At 90 KIAS, $\Delta V_{pc} = -2$ knots

2. Find the calibrated airspeed.

$$V_{pc} = V_i + \Delta V_{pc}$$

$$V_{pc} = 88 \text{ KCAS}$$

3. Find the fuel flow.

$$\dot{w}_f = \frac{\text{Start Fuel} - \text{End Fuel}}{\text{End Time} - \text{Start Time}} * \frac{3600 \text{ sec onds}}{\text{hour}}$$

$$\dot{w}_{f} = 6.593 \text{ gal / hr}$$

4. Find gross weight.

$$Fuel Used = \frac{End Fuel Used - Start Fuel Used}{2}$$

Fuel Used = 6.25 gal

$$W_t = \text{Takeoff Weight} - \text{Fuel Used} * 6 \frac{\text{lb}}{\text{gal}}$$

$$W_t = 1742.5 lbs$$

5. Find pressure ratio (P/Pal).

$$\delta_t = (1 - 6.87559 \times 10^{-6} \text{ h}_i)^{5.2559}$$

$$\delta_t = 0.801679$$

6. Find Mach Number.

$$M = \sqrt{5} \left[\frac{1}{\delta_t} \left\{ \left[1 + 0.2 \left(\frac{V_{pc}}{a_{sl}} \right)^2 \right]^{3.5} - 1 \right\} + 1 \right]^{\frac{2}{7}} - 1} \right]$$

$$M = 0.148501$$

7. Find ambient temperature.

$$T_a = \frac{T_i + 460}{1 + 0.2 \text{KM}^2}$$

$$T_{\bullet} = 489^{\circ} R$$

8. Find temperature ratio (T/T_{al}) .

$$\theta_t = \frac{T_a}{T_{al}}$$

$$\theta_1 = 0.942724$$

9. Find density ratio (ρ/ρ_{sl}) .

$$\sigma_t = \frac{\delta_t}{\theta_t}$$

$$\sigma_t = 0.850386$$

10. Find altitude position correction.

$$\mathbf{h}_{pc} = \mathbf{h}_{i} + \frac{\mathbf{V}_{c}^{2} - \mathbf{V}_{i}^{2}}{2\sigma_{*}g} * \left(\frac{6080 \text{ ft / mi}}{3600 \text{ sec/ hr}}\right)^{2}$$

$$h_{\infty} = 5971$$
 feet

11. Find true airspeed.

$$V = Ma_{sl} \sqrt{\theta_t}$$

$$V = 161 \text{ ft/sec}$$

12. Find equivalent airspeed.

$$V_e = V_t \sqrt{\sigma_t} * \frac{3600 \text{ sec/ hr}}{6080 \text{ ft/nm}}$$

$$V_{\bullet} = 87.9 \text{ KEAS}$$

13. Standardize airspeed to sea level and standard weight.

$$V_{iw} = V_e \sqrt{\frac{W_s}{W_t}}$$

$$V_{iw} = 88.3 \text{ knots}$$

14. Find test brake horsepower from engine chart (Figure C1).

$$BHP_t = 74.3 \text{ hp}$$

15. Find propeller advance ratio.

$$J = \frac{V}{RPM * D} * \frac{60 \text{ sec}}{min}$$

$$J = 0.702$$

16. Find propeller efficiency from chart (Figure C5).

$$\eta_p = 0.832$$

17. Find propeller power coefficient from chart (Figure C4).

$$C_p = 0.0461$$

18. Find test brake horsepower from propeller power coefficient.

BHP_t =
$$C_p \rho_{sl} \sigma_t (RPM)^3 D^5 * \left(\frac{min}{60 \text{ sec}}\right)^3 * \left(\frac{550 \frac{\text{ft lbs}}{\text{sec}}}{\text{hp}}\right)$$

$$BHP_{t} = 77.6 \text{ hp}$$

19. Standardize brake horsepower to sea level and standard weight. Use the BHP_t from the engine chart if available (Step 14). Otherwise use BHP_t obtained from the propeller power coefficient.

$$BHP_{iw} = BHP_{t}\sigma_{t}^{1/2} \left(\frac{W_{s}}{W_{t}}\right)^{3/2}$$

$$BHP_{iw} = 69.6 \text{ hp}$$

20. Find Lift Coefficient.

$$C_L = \frac{2W_t}{\rho_{sl} V_e^2 S} + \left(\frac{3600 \text{ sec/ hr}}{6080 \text{ ft/nm}}\right)^2$$

$$C_L = 0.424$$

21. Find Drag Coefficient.

$$C_{D} = \frac{\eta_{p} BHP_{t}}{V} \frac{2}{\rho_{sl}\sigma_{t}V^{2}S} * \left(\frac{550 \frac{ft lbs}{sec}}{hp}\right)$$

$$C_D = 0.0514$$

22. Find Specific Air Range.

$$SAR = \frac{V}{\dot{w}_{f}} \frac{W_{t}}{W_{s}} + \frac{3600 \text{ sec/ hr}}{6080 \text{ ft/ nm}}$$

$$SAR = 14.3 \text{ nm/gal}$$

23. Find Specific Endurance.

$$SE = \frac{1}{\dot{W}_c} \left(\frac{W_t}{W_s} \right)^{\frac{3}{2}}$$

$$SE = 0.149 \text{ hr/gal}$$

24. Find Brake Specific Fuel Consumption

$$BSFC = \frac{\dot{w}_f}{BHP_t}$$

BSFC = 0.532 lb/hp/hr

Data Presentation:

True Airspeed and RPM at Non-Standard Conditions.

Figure A13 and Figure A14 are both plotted with an entry on the left side by density altitude. The implication of the plotting method is that the true airspeed and engine RPM will be the same for any two flight conditions at the same density altitude, the same percent power setting, and the same weight. To see this is true, consider two flight conditions at the same density altitude, the same power setting (in percent power) and the same weight:

Case 1: Standard pressure, standard density

Case 2: Non-standard pressure, non-standard density

So far we know

$$W_1 = W_2$$

$$BHP_1 = BHP_2$$

For cruise in level, unaccelerated flight, lift equals weight, so

$$L_1 = L_2$$

$$C_{L_1} \frac{\rho_1 V_1^2}{2} S = C_{L_2} \frac{\rho_2 V_2^2}{2} S$$

Since $\rho_1 = \rho_2$ (same density altitude), S = S, and 2 = 2, we have two options to satisfy this equality:

1.
$$C_{L_1} = C_{L_2}$$
 and $V_1 = V_2$

2.
$$\frac{C_{L_1}}{C_{L_2}} = \frac{V_2}{V_1}$$

Since $BHP_1 = BHP_2$ then

$$\frac{D_1 V_1}{\eta_{p_1}} = \frac{D_2 V_2}{\eta_{p_2}}$$

Converting drag to coefficient form

$$C_{D_1} \frac{\rho_1 V_1^3}{2\eta_{p_1}} S = C_{D_2} \frac{\rho_2 V_2^3}{2\eta_{p_2}} S$$

Again, $\rho_1 = \rho_2$ (same density altitude), S = S, and 2 = 2, leaving

$$\frac{C_{D_1}}{C_{D_2}} = \frac{\eta_{p_1} V_2^3}{\eta_{p_2} V_1^3}$$

Expressing the drag coefficient as the drag polar,

$$\frac{C_{D_0} + KC_{L_1}^2}{C_{D_0} + KC_{L_2}^2} = \frac{\eta_{p_1} V_2^3}{\eta_{p_2} V_1^3}$$

Substituting for the lift coefficient,

$$C_{L} = \frac{2W}{\rho V^{2}S}$$

$$\frac{C_{D_o} + \frac{4KW^2}{\rho^2 S^2 V_1^4}}{C_{D_o} + \frac{4KW^2}{\rho^2 S^2 V_2^4}} = \frac{\eta_{p_1} V_2^3}{\eta_{p_2} V_1^3}$$

Ouch! Let's group constants as

$$c_1 = C_{D_0}$$

$$c_2 = \frac{4KW^2}{\rho^2 S^2}$$

$$\frac{c_1 + c_2 V_1^{-4}}{c_1 + c_2 V_2^{-4}} = \frac{\eta_{p_1} V_2^3}{\eta_{p_2} V_1^3}$$

Rearranging.

$$\eta_{p_2}\,V_1^3\!\left(c_1+c_2\,V_1^{-4}\right)\!=\eta_{p_1}\,V_2^3\!\left(c_1+c_2\,V_2^{-4}\right)$$

$$c_1\eta_{p_2}\,V_1^3+c_2\eta_{p_2}\,V_1^{-1}=c_1\eta_{p_1}\,V_2^3+c_2\eta_{p_1}\,V_2^{-1}$$

$$V_1^3 + \frac{c_2}{c_1} \frac{1}{V_1} = \frac{\eta_{p_1}}{\eta_{p_2}} V_2^3 + \frac{c_2}{c_2} \frac{\eta_{p_1}}{\eta_{p_2}} \frac{1}{V_2}$$

$$V_1^3 - \frac{\eta_{p_1}}{\eta_{p_2}} V_2^3 = \frac{c_2}{c_1} \left(\frac{\eta_{p_1}}{\eta_{p_2}} \frac{1}{V_2} - \frac{1}{V_1} \right)$$

For a fixed pitch propeller, a given RPM will result in a unique airspeed in level unaccelerated flight. Given the power coefficient

$$C_p = \frac{BHP}{\rho (RPM)^3 D^5}$$

If we assume temporarily that the RPM for both cases is the same, and we know that the BHP, density, and prop diameter are the same for both cases, then the power coefficient will be the same for both cases. The power coefficient is a unique function of advance ratio,

so the advance ratio must be the same for both cases. The propeller efficiency is also a unique function of advance ratio, so the propeller efficiency must be the same for both cases. Therefore,

$$V_1^3 - V_2^3 = \frac{c_2}{c_1} \left(\frac{1}{V_2} - \frac{1}{V_1} \right)$$

This equation will be satisfied if $V_1 = V_2$. If $V_1 = V_2$, then $RPM_1 = RPM_2$, since a given RPM will result in a unique airspeed in level unaccelerated flight. Thus all equations and conditions are satisfied. Because airspeed is uniquely related to RPM, and this is a solution to the equation, then it is the only solution. Therefore, true airspeed and RPM will be the same for any condition at a given weight, power setting, and density altitude.

<u>Fuel Flow at Non-Standard</u> Conditions.

Figure A15 shows a correction to fuel flow for non-standard temperatures. This correction has the functional relationship of

$$\dot{\mathbf{w}}_{\mathbf{f_t}} = \dot{\mathbf{w}}_{\mathbf{f_s}} \left(\frac{\mathbf{T_s}}{\mathbf{T_t}} \right)^{1/2}$$

where $T_{\rm s}$ is the standard temperature at altitude and $T_{\rm t}$ is the actual temperature at altitude. Strictly speaking, the relationship shown is

$$\dot{\mathbf{w}}_{\mathbf{f_t}} = \dot{\mathbf{w}}_{\mathbf{f_s}} \left(\frac{\mathbf{T_{sl}}}{\mathbf{T_{sl}} + \Delta \mathbf{T}} \right)^{\frac{1}{2}}$$

for ease of graphing. While the ratio will change as the standard temperature changes with altitude, the difference is very slight. For instance, at 10,000 feet pressure altitude and a temperature 40° F above standard, the change in fuel flow is a factor of 0.961 using the standard temperature at 10,000 feet. Using the sea level standard temperature and an actual temperature 40° F above standard, the change in fuel flow is a factor of 0.964, or an error of 0.3 percent.

The basis for this relationship can be seen by looking at the change in the air mass flow rate at non-standard conditions. Recall that the fuel flow is related to the air mass flow rate by the mixture ratio. Consider

two flight conditions at the same pressure altitude, the same power setting (in percent power) and the same weight:

Case 1: Standard pressure, standard density

Case 2: Standard pressure, non-standard density (i.e. non-standard temperature)

In case 2, increasing the temperature (decreasing the density) will reduce the load on the propeller, allowing it to turn faster at the same brake horsepower input. However, the increased temperature reduces that brake horsepower output of the engine, so the MAP must be increased to main ain the same brake horsepower. However, the MAP and RPM increases are not as great as the increase in temperature, such that considering the air mass flow equation,

$$\dot{m}_{air} = \frac{MAP}{R * T} * \frac{RPM}{2} * Displacement * \eta_{vol}$$

the overall result is that less airflow, and thus less fuel flow is required at higher temperatures for the same brake horsepower. This is also reasonable considering that since the engine is producing more RPM, less torque is required for the same power. Since less torque is required, less fuel-air mixture is required in the cylinders, and hence less airflow. The relationship stated for correcting fuel flow for non-standard conditions is the relationship that empirically best matched the results from the RPM model.

Range and Endurance at Non-Standard Conditions.

Range is a function of both true airspeed and fuel flow. The simplest form of the range equation would be

$$\mathbf{R} = \mathbf{SAR} * \Delta t = \frac{\mathbf{V}}{\dot{\mathbf{w}}_{\mathbf{c}}} \Delta t$$

The only variables affected by non-standard conditions are the true airspeed and the fuel flow. Thus, the range can be adjusted for non-standard conditions by using the same adjustments as used for true airspeed and fuel flow. The true airspeed is accounted for by entering the range chart with density altitude. The fuel flow correction is the same as discussed for cruise, except that it is inverted since fuel flow is in the denominator

(hence the opposite slope in the guide lines). This method agrees well with the *RPM* model predictions for non-standard conditions.

Endurance is a function only of fuel flow. The simplest form of the endurance equation would be

$$R = SE * \Delta t = \frac{1}{\dot{w}_f} \Delta t$$

The only variable affected by non-standard conditions is the fuel flow. Thus, the endurance can be adjusted for non-standard conditions by using the same adjustment as used for fuel flow. The fuel flow correction is the same as discussed for cruise, except that it is inverted since fuel flow is in the denominator (hence the opposite slope in the guide lines). This method agrees well with the *RPM* model predictions for non-standard conditions.

PITOT-STATIC CALIBRATION

Test Procedures:

GPS Speed Course Method.

This Pitot-static calibration method was an adaptation of the traditional ground speed course method (Reference 3). Instead of using landmarks to determine distance, Global Positioning System (GPS) distance-to-go readings were used. These distance-to-go readings were based on a waypoint at least 30 nm away, as shown in Figure D2. At this distance the arcs of constant distance to the waypoint will appear as essentially parallel lines to the aircraft. The waypoint was chosen such that the heading directly toward or away from the waypoint would be approximately perpendicular to the wind. A commercially available Garmin GPS 55 was used for this test.

Winds should be calm, but no greater than a 10 knot crosswind component. Stronger winds will introduce more drift, and will likely include more turbulence.

The aircraft was flown on a heading directly toward and away from the waypoint with no wind drift correction. The Pitot tube senses airspeed in the direction of the aircraft heading, not the aircraft track. Therefore, the distance measured must be in the direction of the aircraft heading. This distance is

measured by maintaining the initial heading to the station. Wind drift will add a minimal error because the arcs are not parallel. Figure D3 shows the error in measuring distance introduced by a worst case scenario of low airspeed (50 KTAS), and a strong crosswind (10 knots). The drift angle for this scenario is 11.3 degrees, and over a 4 nm leg the aircraft will drift 0.799 nm. On a 30 nm arc, this will result in a distance error of an additional 0.0106 nm in the heading direction, which is 0.26 percent of 4 nm. This is an acceptable error in distance measurement, and will be smaller at higher airspeeds and lower crosswinds.

Errors introduced by headwinds or tailwinds were removed by flying the course twice on opposite headings, both to and from the waypoint. The measured groundspeed (distance divided by time) for both legs were averaged to find the true airspeed. This method assumed that the wind velocity remained constant for both runs, and no wind gradients existed along the speed course. A drawback of this method was that this assumption could not be tested for validity during flight.

All Pitot-static errors were assumed to be in the measurement of static pressure. Total pressure (Pitot pressure) was assumed to have no errors. Airspeed and altitude instrument errors were assumed to be negligible.

The aircraft was trimmed in level flight at the aim airspeed and pressure altitude, on a heading either directly toward or away from the waypoint. This heading was taken as the course (or its reciprocal) to the waypoint shown by the GPS. The altimeter was set at 29.92 in Hg to indicate pressure altitude. During the test point, airspeed was held constant, allowing the altitude to vary slightly if necessary. Any altitude deviations were recorded as part of the test data.

Once the pilot called "On Conditions," the flight test engineer watched the distance-to-go on the GPS. When the tenths digit changed, the starting time and distance-to-go were recorded. At this time the test point was started. The flight test engineer recorded the starting fuel used, h_i, V_i, OAT, MAP, engine RPM, and pilot comments. The ending time was recorded when the distance-to-go was 4 nm less (or greater) than the starting distance-to-go. The ending fuel used was recorded, and the test point was complete.

Figure D4 shows why a leg distance of 4.0 nm was chosen. Since errors in timing would be increased with increasing airspeed, this figure shows a worst case scenario at 100 KTAS. Time was read from a digital wristwatch displaying hours, minutes, and seconds. This method introduced a random error of ± 0.5 seconds. All time readings would be late, as it would be impossible to see a display change before it changes. If the time readings at the beginning and the end of the run were both 1 second late, for instance, then the time recorded for the run would have no error. If the ending time had more error than the starting time, the time recorded for the run would be too long. If the starting time had more error than the ending time, the time recorded for the run would be too short. Figure D4 shows the error in measured ground speed for recorded times 1, 2, and 5 seconds too long. Considering time to notice the change on the GPS display and look at the watch, a time error of no more than 2 seconds was considered reasonable. For this time error, flying 1 nm resulted in an error of 5.2 percent. Flying 4 nm reduced this error to 1.3 percent. Increasing the leg length more would only reduce the error slightly while greatly increasing the flight time required. Thus, 4 nm was chosen as the appropriate leg length.

Data Reduction Methods

Example Data:

Temperature Recovery Factory (K) = 0.8

 C_p (specific heat) = 6009 ft²/sec²/°R

Standard Altitude = Sea Level

Ratio of Specific Heats $(\gamma) = 1.4$

First leg:

 $V_i = 90 \text{ KIAS}$

 $h_i = 9000 ft$

 $T_{i} = 34^{\circ} F$

Start Time₁ = 7:31:08

End Time₁ = 7:34:07

 $Distance_1 = 5 nm$

Second leg:

$$V_i = 90 \text{ KIAS}$$

$$h_i = 9040 \text{ ft}$$

$$T_i = 34^{\circ} F$$

Start Time₂ =
$$7:35:39$$

End Time₂ =
$$7:38:02$$

$$Distance_2 = 4 nm$$

1. Find true airspeed from average ground speed.

$$V = \frac{1}{2} \left(\frac{\text{Dis } \tan \infty_1}{\text{End Time}_1 - \text{Start Time}_1} + \frac{\text{Dis } \tan \infty_2}{\text{End Time}_2 - \text{Start Time}_2} \right) * 3600 \frac{\text{sec}}{\text{hr}}$$

$$V = 100.6 KTAS$$

2. Find ambient temperature.

$$T_a = T_i - \frac{KV^2}{2C_n} * \left(\frac{6080 \text{ ft/nm}}{3600 \text{ sec/hr}}\right)^2 + 460$$

$$T_a = 492.1^{\circ} R$$

3. Find temperature ratio (T/T_{sl}) .

$$\theta_t = \frac{T_a}{T_{-1}}$$

$$\theta_{\rm t} = 0.9481$$

4. Find Mach Number based on measured true airspeed.

$$M = \frac{V}{a_{sl} \sqrt{\theta_t}}$$

$$M = 0.1563$$

5. Find instrument corrected altitude

$$h_{ic} = h_i + \Delta h_{ic}$$

$$h_{ic} = 9020$$
 feet (for this test, assume $\Delta h_{ic} = 0$)

6. Find instrument corrected airspeed

$$V_{ic} = V_i + \Delta V_{ic}$$

$$V_{ic} = 90 \text{ KIAS (for this test, assume } \Delta V_{ic} = 0)$$

7. Find pressure ratio (P/P_{sl}).

$$\delta_{ic} = (1 - 6.87559 \times 10^{-6} h_{ic})^{5.2559}$$

$$\delta_{ic} = 0.7143$$

8. Find Mach number based on indicated airspeed and pressure altitude.

$$M = \sqrt{5} \left[\frac{1}{\delta_{ic}} \left\{ \left[1 + 0.2 \left(\frac{V_{ic}}{a_{sl}} \right)^2 \right]^{3.5} - 1 \right\} + 1 \right]^{\frac{2}{7}} - 1 \right]$$

$$M_{ic} = 0.1609$$

9. Find the Mach position correction.

$$\Delta M_{pc} = M - M_{ic}$$

$$\Delta M_{pc} = -0.00461$$

10. Find the temperature ratio at standard altitude to convert flight test corrections to standard altitude.

$$\theta_{s_{std}} = (1 - 6.87559 \times 10^{-6} h_{std})$$

$$\theta_{\bullet, td} = 1$$

11. Find altitude position correction.

$$\Delta H_{pc} = \frac{\theta_{s_{std}}}{3.61382 \times 10^{-5}} \frac{\gamma M_{ic} \Delta M_{pc}}{1 + 0.2 M_{ic}^2}$$

$$\Delta H_{pc} = -28.6$$
 feet

12. Find airspeed position correction.

$$\Delta V_{pc} = \frac{a_{sl}^2 \delta_{ic}}{\left[1 + 0.2 \left(\frac{V_{ic}}{a_{sl}}\right)^2\right]^{2.5} V_{ic}} \frac{M_{ic} \Delta M_{pc}}{1 + 0.2 M_{ic}^2}$$

 $\Delta V_{pc} = -2.5 \text{ knots}$

GPS Ground Speed Method:

The GPS ground speed method was developed at the USAF Test Pilot School (USAF TPS), and became known to the test team during the flight test phase of this project (Reference 4). Additional Pitot-static testing was completed to compare the relative position errors of different CCFT aircraft, and at the request of USAF TPS for further development of this method.

In this method, the aircraft true airspeed was estimated based on indicated airspeed, estimated position correction, pressure altitude, and outside air temperature using a flight computer, such as an E-6B. Starting on a heading with an expected headwind or tailwind, based on forecasted winds aloft, a slow turn was initiated. As shown in Figure D5, the turn was continued until the GPS ground speed was equal to the estimated true airspeed. The aircraft was then stabilized on heading and the ground speed and ground track were recorded. Turning 180 degrees to the reciprocal heading, the ground speed and ground track were again recorded and compared to the previous values. If the aircraft was flown perpendicular to the wind, the ground speeds would be equal and the absolute difference between the ground tracks and headings flown would be equal. If these data were different, the actual direction of the wind could be determined from the data and the heading refined. To prevent infinite iterations, a difference of 5 knots in ground speed between the two directions was determined to be acceptable.

The aircraft was flown at the aim airspeed and altitude on the crosswind heading. The primary data collected were V_i, heading, GPS ground speed, and GPS track angle. Additionally, h_i, OAT, MAP, RPM, fuel used, and pilot comments were collected. The primary data were recorded multiple times for approximately one minute to detect any variations from outside effects such as wind gradients. The same data were collected for the same flight conditions on the

reciprocal heading. The true airspeed was determined by multiplying the GPS ground speed by the cosine of the angle difference between the heading angle and the GPS track angle (i.e. the drift angle).

Flying each test condition on reciprocal headings perpendicular to the wind minimized the headwind and tailwind components. As shown in Figure D6, the average of the true airspeed calculated for each direction will give the actual true airspeed, even if the headings flown are not exactly perpendicular to the wind. The combined length of the two calculated true airspeed vectors is the same as twice the length of the actual true airspeed vector. Therefore dividing the combined length of the two calculated true airspeed vectors in half (i.e. averaging them) will give the actual true airspeed. For example, assume the two runs are flown on headings of 090° (Mag Heading 1) and 270° (Mag Heading 2) at 50 KTAS (True Airspeed). The wind direction is 040° at 10 knots. For run 1, the drift angle would be 9.97°, and the calculated true airspeed would be 43.58 KTAS. For run 2, the drift angle would be 7.73°, and the calculated true airspeed would be 56.42 KTAS. Averaging 43.58 KTAS and 56.42 KTAS gives the correct true airspeed, 50 KTAS.

A strength of the GPS Ground Speed method is that certain errors caused by winds and wind gradients can be identified in flight. The data tolerances were ±100 feet altitude, ±1 knot indicated airspeed, and ±2 degrees heading. If the GPS groundspeed varied more than 5 knots during a run or the track varied more than 5 degrees the data were discarded. Either of these conditions would indicate wind gradients which would corrupt the data. Additionally, the data were discarded if the ground speed corrected for drift angle (calculated true airspeed) was more than 5 knots different between test points at the same conditions in opposite directions. This error would indicate a change in the wind direction and a need to re-determine the crosswind heading.

Data Reduction Methods

Example Data:

Aim Airspeed = 50 KIAS

Temperature Recovery Factory (K) = 0.8

 C_p (specific heat) = 6009 ft²/sec²/°R

Standard Altitude = Sea Level

Ratio of Specific Heats $(\gamma) = 1.4$

First leg:

 $h_i = 9020 \text{ ft}$

 $T_i = 61^{\circ} F$

Second leg:

 $h_i = 8980 \text{ ft}$

 $T_i = 61^{\circ} F$

Additional data for these runs are shown in Table D1.

1. Find drift angle.

Drift Angle = GPS Mag Track - Mag Heading

See Table D1 for results.

2. Calculate true airspeed as the component of ground speed in the heading direction.

V = GPS Ground Speed * cos(Drift Angle)

See Table D1 for results.

 $\label{eq:Table D1} \text{GPS GROUND SPEED METHOD EXAMPLE DATA}$

Magnetic Heading (deg)	Indicated Air Speed (knots)	GPS Track (deg)	GPS Ground Speed (knots)	Drift Angle (deg)	True Air Speed (knots)	Adjusted True Air Speed (knots)
First Leg						
185	50	177	69.7	-008	69.0	69.0
185	52	176	72.6	-009	71.7	69.7
185	49	175	69.1	-010	68.0	69.0
185	50	174	69.3	-011	68.0	68.0
185	50	175	70	-010	68.9	68.9
181	51	172	72.4	-009	71.5	70.5
180	51	172	71.6	-008	70.9	69.9
Second Leg						
005	50	020	72.2	015	69.7	69.7
004	50	019	71.3	015	68.8	68.8
006	50	019	71.2	013	69.3	69.3
005	50	020	71.1	015	68.6	68.6
005	50	019	74.1	014	71.8	71.8
004	51	020	73.9	016	71.0	70.0
005	50	020	73	015	70.5	70.5
001	51	018	72.4	017	69.2	68.2

3. Adjust true airspeed by difference in actual indicated airspeed and aim airspeed (this adjustment assumes that the size of an indicated knot and a true knot are the same for small changes). By doing this step, all true airspeeds will correspond to the same indicated airspeed, even though the actual data may have varied slightly.

$$V_{adi} = V + (V_{aim} - V_i)$$

See Table D1 for results.

4. Average all adjusted true airspeeds to determine true airspeed corresponding to aim airspeed.

$$V = 69.5 KTAS$$

5. Find ambient temperature.

$$T_a = T_i - \frac{KV^2}{2C_n} * \left(\frac{6080 \text{ ft/nm}}{3600 \text{ sec/hr}}\right)^2 + 460$$

$$T_{\bullet} = 520.1^{\circ} R$$

6. Find temperature ratio (T/T_{sl}) .

$$\theta_t = \frac{T_a}{T_{a1}}$$

$$\theta_1 = 1.0021$$

7. Find Mach Number based on measured true airspeed.

$$M = \frac{V}{a_{sl} \sqrt{\theta_t}}$$

$$M = 0.1050$$

8. Find instrument corrected altitude

$$h_{ic} = h_i + \Delta h_{ic}$$

 h_{ic} = 9000 feet (for this test, assume Δh_{ic} =0)

9. Find instrument corrected airspeed

$$V_{ic} = V_{sim} + \Delta V_{ic}$$

 $V_{ic} = 50 \text{ KIAS (for this test, assume } \Delta V_{ic} = 0)$

10. Find pressure ratio (P/P_{sl}).

$$\delta_{ic} = (1 - 6.87559 \times 10^{-6} h_{ic})^{5.2559}$$

$$\delta_{ic} = 0.7148$$

11. Find Mach number based on indicated airspeed and pressure altitude.

$$M_{ic} = \sqrt{5[(\frac{1}{\delta_{ic}}\{[1+0.2(\frac{V_{ic}}{a_{sl}})^2]^2 - 1\} + 1)^{2/7} - 1]}$$

$$M_{ic} = 0.0894$$

12. Find the Mach position correction.

$$\Delta M_{pc} = M - M_{ic}$$

$$\Delta M_{pc} = 0.0156$$

13. Find the temperature ratio at standard altitude to convert flight test corrections to standard altitude.

$$\theta_{s_{std}} = (1 - 6.87559 \times 10^{-6} h_{std})$$

$$\theta_{s_{atd}} = 1$$

14. Find altitude position correction.

$$\Delta H_{pc} = \frac{\theta_{s_{std}}}{3.61382 \times 10^{-5}} \frac{\gamma M_{ic} \Delta M_{pc}}{1 + 0.2 M_{ic}^2}$$

$$\Delta H_{\infty} = 53.9 \text{ feet}$$

15. Find airspeed position correction.

$$\Delta V_{pc} = \frac{a_{sl}^2 \delta_{ic}}{\left[1 + 0.2 \left(\frac{V_{ic}}{a_{sl}}\right)^2\right]^{2.5} V_{ic}} \frac{M_{ic} \Delta M_{pc}}{1 + 0.2 M_{ic}^2}$$

$$\Delta V_{pc} = 8.7 \text{ knots}$$

CLIMB PERFORMANCE

Test Procedures:

Climb data were collected using the sawtooth climb flight test technique (FTT). The data band was ±500 feet from the test altitude. Prior to starting the tests, the crosswind headings were determined using the method described previously under GPS Ground Speed Method. The altimeter was set at 29.92 in Hg to indicate pressure altitude.

Starting approximately 500 feet below the data band (1000 feet below the test altitude), full throttle was applied and the nose pulled up as required to stabilize in a climb at the aim airspeed on a crosswind heading. Entering the data band, the pilot called a time hack followed by indicated airspeed at each 100 foot altitude increment. At each time hack, the flight test engineer recorded the time using the Hewlett Packard 48SX calculator. This calculator had a real time clock, and pressing the appropriate key caused the current time to be stored in the calculator's memory. During the climb, MAP, RPM, fuel used, and any deviations from aim airspeed were recorded. Passing through the test altitude, the Vertical Velocity Indicator (VVI) reading was recorded as a cross check. The OAT at test altitude was also recorded. Airspeed was maintained ±2 knots.

Upon climbing through the top of the data band, the pilot continued the climb to approximately 500 feet above the data band to set up for a sawtooth descent. Above the data band the pilot was allowed to vary airspeed as desired. The flight test engineer recorded on the flight card the last time entered on the 48SX calculator to ensure that the proper times were recorded for each test point after the flight.

Following a sawtooth descent, another sawtooth climb was flown on the reciprocal heading to minimize wind effects on the data. Turns to reciprocal headings were done either above or below the data band as required to remain inside the assigned airspace.

After the flight, the times for each altitude increment were hand copied from the 48SX calculator to the flight card.

Data Reduction Methods:

Sawtooth climb data were analyzed by adjusting the *RPM* model, as described in Appendix C, until the model accurately predicted flight test data at several non-standard conditions. Test day rate of climb values were found by plotting altitude against time as shown in Figure D7. A line was manually fitted to the data which best represented the rate of climb. The slope of this line was taken as the rate of climb.

Data Presentation:

Figure A34 through Figure A39 present climb data for non-standard conditions. The pressure altitude and temperature scales on the left side of the charts do not represent a density altitude conversion as on the cruise charts. These scales represent the actual changes necessary to correct for non-standard conditions, and are different on each chart.

These charts were created from RPM model output for climbs at temperature deviations from standard of -80° F, -40° F, 0° F, +40° F, and +80° F. The lines on the right side of the chart are the data for the climb at standard temperature. To build the left hand side of the chart, consider the rate of climb chart. To draw the lines of constant pressure altitude, the first point would be drawn at the standard temperature as the x coordinate and the pressure altitude as the y coordinate. The x coordinate of the next point would be the temperature at the pressure altitude on the nonstandard day (i.e. standard + deviation). coordinate is found by first looking at the non-standard day rate of climb at the desired pressure altitude. Using this rate of climb, the standard day data is consulted to determine the pressure altitude that had the same rate of climb on a standard day. This altitude from the standard day data becomes the y coordinate. This process is repeated until all temperature deviations at all pressure altitudes are plotted. The same procedure was used to build the time to climb/fuel to climb and the distance to climb charts.

The variation of rate of climb and fuel flow with non-standard conditions were essentially the same, so both values are shown on the same chart. Likewise, the variation of time to climb and fuel to climb were essentially the same, so both values are shown on the same chart. The variation of distance to climb was slightly different from time and fuel to climb, as can be seen by comparing the left sides of Figure A35 and

Figure A36. However, distance can be plotted with time and fuel with no more than approximately 5% error, as was done for the Flight Manual inputs.

DESCENT PERFORMANCE

Test Procedures:

Descent data were collected using the sawtooth descent FTT. The data band was ±500 feet from the test altitude. Prior to starting the tests, the crosswind headings were determined using the method described previously under GPS Ground Speed Method. The altimeter was set at 29.92 in Hg to indicate pressure altitude. A sawtooth descent was normally done after each sawtooth climb.

Starting approximately 500 feet above the data band (1000 feet above the test altitude), the throttle was set as required (idle or 2250 RPM). The nose was pushed over as required to stabilize in a descent at the aim airspeed on a crosswind heading. Entering the data band, the pilot called a time hack followed by indicated airspeed at each 100 foot altitude increment. At each time hack, the flight test engineer recorded the time using the Hewlett Packard 48SX calculator. This calculator had a real time clock, and pressing the appropriate key caused the current time to be stored in the calculator's memory. During the descent, RPM, fuel used, and any deviations from aim airspeed were recorded. Fuel flow was estimated by mentally averaging the indicated fuel flow from the fuel totalizer. Passing through the test altitude, the Vertical Velocity Indicator (VVI) reading was recorded as a The OAT at test altitude was also cross check. recorded. Airspeed was maintained ±2 knots. MAP was not recorded, as the indicated MAP was well below the bottom of the scale shown on the MAP gauge.

Upon descending through the bottom of the data band, the pilot continued the descent to approximately 500 feet below the data band to set up for a sawtooth climb. Below the data band the pilot was allowed to vary airspeed as desired. The flight test engineer recorded on the flight card the last time entered on the 48SX calculator to ensure that the proper times were recorded for each test point after the flight.

Following a sawtooth climb, another sawtooth descent was flown on the reciprocal heading to

minimize wind effects on the data. Turns to reciprocal headings were done either above or below the data band as required to remain inside the assigned airspace.

After the flight, the times for each altitude increment were hand copied from the 48SX calculator to the flight card.

Data Reduction Methods:

Example Data:

 $V_i = 80 \text{ KIAS}$

Test $h_{ic} = 6000 \text{ ft}$

 $T_i = 71^{\circ} F$

 $W_t = 1721 \text{ lbs}$

Wing Area = 160 ft^2

Temperature Recovery Factory (K) = 0.8

1. Find the airspeed position correction from the flight test derived position correction chart (Figure A27).

At 80 KIAS,
$$\Delta V_{pc} = -0.5$$
 knots

2. Find the calibrated airspeed.

$$V_{pc} = V_i + \Delta V_{pc}$$

$$V_{pc} = 79.5 \text{ KCAS}$$

3. Find pressure ratio (P/P_{sl}).

$$\delta_{ic} = (1 - 6.87559 \times 10^{-6} h_{ic})^{5.2559}$$

$$\delta_{ic} = 0.8014$$

6. Find Mach Number.

$$\mathbf{M} = \sqrt{5} \left[\frac{1}{\delta_{ic}} \left\{ \left[1 + 0.2 \left(\frac{V_{pc}}{a_{sl}} \right)^2 \right]^{3.5} - 1 \right\} + 1 \right]^{2/7} - 1 \right]$$

$$M = 0.1342$$

7. Find ambient temperature.

$$T_{\bullet} = \frac{T_{i} + 460}{1 + 0.2 \text{KM}^{2}}$$

$$T_{\bullet} = 529.5^{\circ} R$$

8. Find temperature ratio (T/T_{sl}) .

$$\theta_t = \frac{T_a}{T_{al}}$$

$$\theta_{\rm t} = 1.0202$$

9. Find density ratio (ρ/ρ_{sl}) .

$$\sigma_{t} = \frac{\delta_{t}}{\theta_{t}}$$

$$\sigma_t = 0.7855$$

10. Find altitude position correction.

$$\mathbf{h}_{po} = \mathbf{h}_{i} + \frac{V_{c}^{2} - V_{i}^{2}}{2\sigma_{t}g} * \left(\frac{6080 \text{ ft / mi}}{3600 \text{ sec/ hr}}\right)^{2}$$

$$h_{\infty} = 5996$$
 feet

11. Find standard temperature ratio at test altitude.

$$\theta_a = 1 - 6.87559 \times 10^{-6} h_{ic}$$

$$\theta_{1} = 0.95877$$

12. Find true airspeed.

$$V = Ma_{sl} \sqrt{\theta_l}$$

$$V = 151 \text{ ft/sec}$$

13. Find equivalent airspeed.

$$V_e = V_t \sqrt{\sigma_t} * \frac{3600 \text{ sec/ hr}}{6080 \text{ ft/nm}}$$

$$V_0 = 79.4 \text{ KEAS}$$

14. Find average rate of descent by plotting altitude against time as shown in Figure D8. Fit a line to the data which best represents the rate of descent. The slope of this line is the rate of descent. Do this for both descents at the current conditions and average the results.

Test
$$ROD_1 = -976$$
 ft/min

Test
$$ROD_2 = -871$$
 ft/min

$$ROD_t = -924 \text{ ft/min} = -15.4 \text{ ft/sec}$$

15. Find the density corrected rate of descent. This step converts the rate of descent from a pressure altitude rate of descent to a tapeline altitude rate of descent by accounting for expansion and contraction of pressure layers at non-standard temperature.

$$ROD_d = ROD_t \sqrt{\frac{\theta_t}{\theta_s}}$$

$$ROD_d = -15.9 \text{ ft/sec}$$

16. Find Lift Coefficient.

$$C_L = \frac{2W_t}{\rho_{el}V_e^2S} * \left(\frac{3600 \text{ sec/hr}}{6080 \text{ ft/nm}}\right)^2$$

$$C_L = 0.5031$$

17. Find Drag Coefficient.

$$C_D = \frac{ROD_d}{V} \frac{2W_t}{\rho_{sl}\sigma_t V^2 S}$$

$$C_D = 0.05279$$

18. Find L/D ratio.

$$\frac{L}{D} = \frac{C_L}{C_D}$$

$$L/D = 9.53$$

Data Presentation:

Figure A45 through Figure A50 present descent data for non-standard conditions. These charts were created by calculating descent data at temperature deviations from standard of -80° F, -40° F, 0° F, +40° F. and +80° F. The lines on the right side of the chart are the data for the descent at standard temperature. To build the left hand side of the chart, consider the rate of descent chart. To draw the lines of constant pressure altitude, the first point would be drawn at the standard temperature as the x coordinate and the pressure altitude as the y coordinate. The x coordinate of the next point would be the temperature at the pressure altitude on the non-standard day (i.e. standard + deviation). The y coordinate is found by first looking at the non-standard day rate of descent at the desired pressure altitude. Using this rate of descent, the standard day data is consulted to determine the pressure altitude that had the same rate of descent on a standard day. This altitude from the standard day data becomes the y coordinate. This process is repeated until all temperature deviations at all pressure altitudes are plotted. The same procedure was used to build the time to descend/fuel to descend and the distance to descend charts.

The variation of rate of descent and fuel flow with non-standard conditions were essentially the same, so both values are shown on the same chart. Likewise, the variation of time to descend and fuel to descend were essentially the same, so both values are shown on the same chart. The variation of distance to descend was significantly different from time and fuel to descend, as can be seen by comparing the left sides of Figure A46 and Figure A47. Therefore, distance to descend was plotted separately.

TAKEOFF PERFORMANCE

Test Procedures:

Takeoff data were collected using the average acceleration FTT. If a constant acceleration was assumed from brake release to liftoff, then the ground roll distance could be calculated knowing the liftoff speed and the elapsed time for the takeoff.

Prior to takeoff, the runway number was recorded. The pressure altitude was found by temporarily setting the altimeter to 29.92 in Hg. OAT was read from the aircraft's OAT gauge. Fuel used was recorded from the fuel totalizer. For flights at the USAF Academy, wind speed and direction were given immediately prior to takeoff by the control tower. For flights away from the USAF Academy, wind data was recorded from the local Automated Weather Observation System (AWOS) broadcast.

The pilot announced brake release and a stopwatch was started. The pilot then announced the liftoff and noted the liftoff airspeed. At liftoff, the stopwatch was stopped and the time and airspeed recorded.

Data Reduction Methods:

Example Data:

$$h_{pc} = 6060 \text{ ft}$$

$$T_i = 26^{\circ} F$$

$$W_t = 1791 \text{ lbs}$$

Runway Heading = 337°

Runway slope = 0°

Wind Direction = 360°

Wind Speed = 9 knots

 $V_i = 55 \text{ KIAS}$

t = 23.53 sec

Standard Weight = 1760 lbs

Standard Altitude = Sea Level

1. Find ambient temperature.

$$T_a = T_i + 460$$

$$T_{a} = 486^{\circ} R$$

2. Find pressure ratio (P/P_{sl}).

$$\delta_{\rm s} = (1 - 6.87559 \times 10^{-6} \, h_{\rm sc})^{5.2559}$$

$$\delta_t = 0.7996$$

3. Find temperature ratio (T/T_{sl}) .

$$\theta_t = \frac{T_a}{T_{al}}$$

$$\theta_1 = 0.9364$$

4. Find density ratio (ρ/ρ_{sl}) .

$$\sigma_t = \frac{\delta_t}{\theta_*}$$

$$\sigma_t = 0.8539$$

5. Find the airspeed position correction from the flight test derived position correction chart (Figure A27) at liftoff airspeed.

At 55 KIAS,
$$\Delta V_{pc} = 5$$
 knots

6. Find the calibrated airspeed at liftoff.

$$V_{pc} = V_i + \Delta V_{pc}$$

$$V_{pc} = 60 \text{ KCAS}$$

Find Mach Number at liftoff.

$$\mathbf{M} = \sqrt{5} \left[\frac{1}{\delta_t} \left\{ \left[1 + 0.2 \left(\frac{V_{pc}}{a_{sl}} \right)^2 \right]^{3.5} - 1 \right\} + 1 \right]^{2/7} - 1 \right]$$

$$M = 0.1014$$

8. Find true airspeed at liftoff.

$$V_1 = Ma_{sl} \sqrt{\theta_t}$$

$$V_1 = 110 \text{ ft/sec}$$

9. Find angle of wind.

$$AOW = 23^{\circ}$$

10. Find headwind component.

$$V_w = \text{Wind Speed *}\cos(\text{AOW}) * \frac{6080 \text{ ft/nm}}{3600 \text{ sec/hr}}$$

$$V_w = 14.0 \text{ ft/sec}$$

11. Find ground speed at liftoff.

$$V_{G_1} = V_1 - V_w$$

$$V_{G_1} = 95.6 \text{ ft/sec}$$

12. Find actual ground roll.

$$S_{G_1} = 0.5 * V_{G_1} * t$$

$$S_{G_1} = 1124 \text{ feet}$$

13. Convert standard liftoff airspeed of 62 KCAS (57 KIAS) to true airspeed at ambient temperature.

$$V_2 = \frac{62 \text{ KCAS}}{\sqrt{\sigma_1}} * \frac{6080 \text{ ft/nm}}{3600 \text{ sec/hr}}$$

$$V_2 = 113$$
 ft/sec

14. Find ground speed corresponding to standard liftoff airspeed.

$$V_{G_2} = V_2 - V_w$$

$$V_{G_2} = 99.3 \text{ ft/sec}$$

15. Find time to accelerate to standard liftoff airspeed.

$$t_c = t \frac{V_{G_2}}{V_{G_1}}$$

$$t_{c} = 24.45 \text{ sec}$$

16. Find ground roll corrected to standard liftoff airspeed.

$$S_{G_c} = 0.5 * V_{G_2} * t_c$$

$$S_{G_a} = 1214$$
 feet

17. Correct for runway slope to find takeoff distance on a level runway.

$$S_{level} = \frac{S_{G_c}}{1 + \left(\frac{2gS_{G_c}\sin\theta}{V_2^2}\right)}$$

where θ is the runway slope from horizontal (+ uphill, - downhill) measured in angular measurement, not percent slope.

Correct for headwind to find takeoff distance with no wind.

$$S_{w} = S_{level} \left(\frac{V_{G_1} + V_{w}}{V_{G_1}} \right)^{1.85} = S_{level} \left(\frac{V_1}{V_{G_1}} \right)^{1.85}$$

$$S_{-} = 1564 \text{ feet}$$

19. Correct for weight to find takeoff distance at standard weight.

$$S_{wt} = S_w \left(\frac{W_s}{W_t}\right)^{2.4}$$

$$S_{wt} = 1500$$
 feet

20. Correct for altitude to find takeoff distance at standard altitude.

$$S_{std} = S_{wt} \left(\frac{\sigma_s}{\sigma_t} \right)^{-2.4}$$

$$S_{std} = 1026$$
 feet

Data Presentation:

The mean takeoff ground roll shown in Figure A52 is shown in a format similar to that used by several general aviation manufacturers. This chart is created basically by reversing the data standardization process.

After standardizing all of the takeoff data, ideally every takeoff would standardize to the same distance as all of the other takeoffs, which would be the takeoff distance at sea level, at standard weight, with no wind on a level runway. Of course, the result is a distribution with a mean and a standard deviation. Starting with this mean takeoff distance, the density correction is created by varying pressure altitude and temperature to change the density ratio in the equation

$$S_{wt} = \frac{S_{std}}{\left(\frac{\sigma_s}{\sigma_t}\right)^{-2.4}}$$

The weight correction guide lines are created by selecting a distance at standard weight (S_{wt}) . This distance is the value of the curve at the weight reference line. The remainder of the curve is formed by varying W_t in the equation

$$S_{w} = \frac{S_{wt}}{\left(\frac{W_{s}}{W_{t}}\right)^{2.4}}$$

The wind correction guide lines are created by selecting a distance at zero wind (S_w) . This distance is the value of the curve at the wind reference line. The remainder of the curve is formed by varying V_w in the equation

$$S_{level} = \frac{S_w}{\left(\frac{V}{V - V_w}\right)^{1.85}}$$

where V is the takeoff true airspeed.

The dispersion charts shown in Figure A53 and Figure A54 were created using the standard deviation of the standardized takeoff distances. Assuming the takeoff data were normally distributed, a one-tailed test was used, since takeoffs shorter than the mean distance are not a operational concern. For a 95 percent confidence interval, the normal distribution gives a z = 1.65. For a 99 percent confidence interval, the normal distribution gives a z = 2.33. Multiplying the standard deviation by the appropriate z value gives the

dispersion at sea level, at standard weight, with no wind on a level runway. To adjust the dispersion for density, the density ratio was varied in the following equation, where S_{std} was the dispersion at standard conditions.

$$S_{wt} = \frac{S_{std}}{\left(\frac{\sigma_s}{\sigma_t}\right)^{-2.4}}$$

To adjust for weight, W_t in the following equation is varied.

$$S_{w} = \frac{S_{wt}}{\left(\frac{W_{s}}{W_{t}}\right)^{2.4}}$$

No correction is made for headwind, since any headwind would shorten the takeoff run, so

$$S_{level} = S_w$$

Figure D1 Determining Fuel Burn Amount for Cruise Test Points

Figure D2 GPS Speed Course Distance Arcs

Figure D3 GPS Speed Course Wind Drift Error

Figure D4 Determining Leg Length for GPS Speed Course Test Points

Figure D5 Ground Speed Variation in a Turn

Figure D6 GPS Ground Speed Method Vector Diagram

Figure D7 Finding Test Day Rate of Climb

Figure D8 Finding Test Day Rate of Descent

This page intentionally left blank.

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation	<u>Definition</u>	<u>Units</u>
AOW	angle of wind	deg
2.1	speed of sound at sea level	1116.4 ft/sec
AWOS	Automated Weather Observation System	
BHP	brake horsepower	
BHPiw	standardized brake horsepower required	hp
BHPt	test brake horsepower	hp
BSFC	brake specific fuel consumption	hp/lb/hr
C	Celsius	deg
c ₁	constant of convenience	-
c_2	constant of convenience	
CAS	calibrated airspeed	knots
CCFT	Cadet Competition Flying Team	
C_{D}	drag coefficient	unitless
$C_{D_{\bullet}}$	parasite drag coefficient	unitless
$\mathbf{C}_{\mathtt{L}}$	lift coefficient	unitless
C_p	power coefficient	unitless
C _p	specific heat at constant pressure	6009 ft ² /sec ² /°R
Cq	torque coefficient	unitless
G	thrust coefficient	unitless
D	drag	lbs
D	propeller diameter	ft ·
$\Delta D_{alipstream}$	additional drag from slipstream	lbs
deg	degree	
F	Fahrenheit	deg
FAA	Federal Aviation Administration	
FTS	Flying Training Squadron	
FIT	flight test technique	-
ft	feet	
GPH	gallons per hour	
GPS	Global Positioning System	***
g	acceleration of gravity	32.2 ft/sec ²

At	breviation	Definition	<u>Units</u>
	gal	gallon	
	$\mathbf{h_i}$	indicated altitude	ft
	\mathbf{h}_{ic}	indicated altitude corrected for instrument error	ft
	HP, hp	horsepower	
	$\mathbf{h}_{\mathbf{pc}}$	altitude corrected for instrument and position error	ft
	h _{etd}	standard altitude	ft
	Δh_{ic}	altitude instrument correction	ft
	ΔH_p	change in pressure altitude	ft
	$\Delta H_{pc}, \ \Delta h_{pc}$	altitude position correction	ft
	ΔH_{tl}	change in tapeline altitude	ft
	hr	hour	
	IAS	indicated airspeed	knots
	IFR	Instrument Flight Rules	
	in Hg	inches of mercury	***
	1	advance ratio	unitless
	K	induced drag coefficient	unitless
	KCAS	knots calibrated airspeed	
	KEAS	knots equivalent airspeed	
	KIAS	knots indicated airspeed	
	KTAS	knots true airspeed	
	L	lift	lbs
	L/D	lift to drag ratio	unitless
	lbs	pounds	
	M	Mach number	unitless
	MAP	manifold pressure	in Hg
	MAP _{mex}	full throttle MAP	in Hg
	$MAP_{max_{sl}}$	full throttle MAP at sea level standard day	in Hg
	m _{air}	mass flow rate of air	slugs/sec
	\mathbf{M}_{ic}	indicated Mach number corrected for instrument error	unitless
	min	minute	
	ΔM_{pc}	Mach position correction	unitless
	nm	nautical miles	
	OAT	outside air temperature	°F

Abbreviation	<u>Definition</u>	<u>Units</u>
P	static pressure	lb/ft²
PA	pressure altitude	ft
P_{iw}	standardized power required	hp
P_{al}	standard day sea level pressure	2116 lb/ft²
$\mathbf{P}_{\mathtt{T}}$	total pressure	lb/ft²
ΔР	change in pressure	lb/ft²
ΔΡ,	static pressure error	lb/ft²
R	universal gas constant	1716 lb-ft/slug/°R
R	range	nm
R	Rankine	deg
ROC	rate of climb	ft/min
ROCpressure	rate of climb in pressure altitude	ft/min
ROC _d	rate of climb in tapeline altitude	ft/min
ROD	rate of descent	ft/min
ROD_t	test day rate of descent	ft/min
ROD_d	rate of descent corrected for density effects	ft/min
<i>RPM</i>	Reciprocating Engine and Propeller Modeling Program	
RPM	revolutions per minute	
S	wing reference area	ft²
SAR	specific air range	nm/gal
SE	specific endurance	hr/gal
S_G	takeoff ground roll distance	ft
Slevel	takeoff ground roll distance corrected for runway slope	ft
Satd	standardized takeoff ground roll distance	ft
S _w	takeoff ground roll distance corrected for wind	ft
S _{wt}	takeoff ground roll distance corrected for weight	ft
T	temperature	°F, °R
t	time	sec
t _e	time to accelerate to standard liftoff airspeed	sec
T _a	ambient temperature	°F, °R
T_i	indicated temperature	°F, °R
TPS	Test Pilot School	
T,	standard day temperature	°F, °R

Abbreviation	Definition	<u>Units</u>
T_{al}	standard sea level temperature	59° F, 519° R
T_t	test day temperature	°F, °R
USAF	United States Air Force	
USAFA	United States Air Force Academy	
V	true airspeed	knots, ft/sec
V_{adj}	adjusted airspeed	knots
V.	equivalent airpseed	knots
VFR	Visual Flight Rules	
V_G	ground speed	knots
V_{i}	indicated airspeed	knots
$\mathbf{v_i}$	propeller induced velocity	ft/sec
V_{ic}	indicated airspeed corrected for instrument error	knots
ΔV_{ic}	airspeed instrument error	knots
Vi _{lovel}	propeller induced velocity in level unaccelerated flight	ft/sec
V_{iw}	standardized equivalent airspeed	knots
V_{NO}	maximum structural cruising speed	knots
VOR	VHF Omnidirectional Range	***
V_{pc}	airspeed corrected for position error	knots
ΔV_{pc}	airspeed position correction	knots
VVI	vertical velocity indicator	
V_{w}	headwind component of wind speed	knots
W	weight	lbs
W,	standard weight	lbs
$\mathbf{W_t}$	test weight	lbs
₩ _f	fuel flow	gal/hr
$\dot{\mathbf{w}}_{\mathbf{f}_{\mathbf{s}}}$	standardized fuel flow	gal/hr
w _{ft}	test day fuel flow	gal/hr
%	percent	•
γ	ratio of specific heats	1.4 (air)
δ_{ic}	pressure ratio for h _{ic} , P/P _{sl}	unitless
δ_{t}	test day pressure ratio, P/P _{sl}	unitless
η_p	propeller efficiency	unitless
η_{vol}	volumetric efficiency	unitless

Abbreviation	<u>Definition</u>	<u>Units</u>
ρ	density	slugs/ft³
P _s	standard day density	slugs/ft³
ρ _{al}	standard day sea level air density	0.0023769 slugs/ft ³
Pit Pt	test day density	slugs/ft³
σ	density ratio, $\rho/\rho_{\rm sl}$	unitless
σ,	standard day density ratio, $\rho/\rho_{\rm hl}$	unitless
σι	test day density ratio, ρ/ρ_{*1}	unitless
θ,	standard day temperature ratio, T/T _{si}	unitless
	standard day temperature ratio at standard altitude, T/T _{sl}	unitless
θ _{s_{std}} θ.	test day temperature ratio, T/T _{s1}	unitless