# Weekly Highlight Report Document (Rev. 1.00)

ELEC5881M – Multi-core RISC Processor Design

**Ben Lancaster 201280376**MSc (Eng) Embedded Systems Engineering

March 25, 2019

# **Revision History**

Table 1: Document revisions.

| Date       | Week  | Changes                   |
|------------|-------|---------------------------|
| 25/03/2019 | 3,4,5 | Week 3, 4, and 5 reports. |
| 03/03/2019 | 2     | Week 2 report.            |
| 25/02/2019 | 1     | Initial week 1 report.    |

# **Table of Contents**

| 1 | Weekly Reports                       |  |  |  |  |  |  |  |
|---|--------------------------------------|--|--|--|--|--|--|--|
|   | 1.1 Weekly Report 5                  |  |  |  |  |  |  |  |
|   | 1.2 Weekly Report 4                  |  |  |  |  |  |  |  |
|   | 1.3 Weekly Report 3                  |  |  |  |  |  |  |  |
|   | 1.4 Weekly Report 2                  |  |  |  |  |  |  |  |
|   | 1.5 Weekly Report 1                  |  |  |  |  |  |  |  |
| 2 | Weekly Report Attachments 2.1 Week 1 |  |  |  |  |  |  |  |
| 3 | isks and Challenges                  |  |  |  |  |  |  |  |
|   | 3.1 Project Management               |  |  |  |  |  |  |  |
|   | 3.2 Other                            |  |  |  |  |  |  |  |

## 1 Weekly Reports

## 1.1 Weekly Report 5

#### Weekly Report 5 - 25/03/19

#### Active project stage:

(ON-TIME) Stage 2.3 – (CORE) Local memory impl & integration

(ON-TIME) Stage 3.1 – (CORE) Memory mapped register layout

(ON-TIME) Stage 8.0 - (CORE) Final Report

#### Review of work undertaken:

Minimal contributions to the project have been made due to high workload and demand from other modules.

#### (EARLY) Stage 8.0 – (CORE) Final Report

Some work has been started on the interim report.

#### **Risks and Challenges:**

RC2: Multiple tests and deadlines for other modules.

#### Plan of work for the next week:

Next weeks goals are the same as this weeks due to RC2.

Stage 2.3 – (CORE) Local memory impl & integration

Stage 3.1 – (CORE) Memory mapped register layout

## Date(s) of supervisory meeting(s) since last Highlight:

19/03/19 – Weekly highlight meeting (skipped due to other commitments).

#### Notes from supervisory meeting(s) held since last Highlight:

/

## 1.2 Weekly Report 4

#### Weekly Report 4 – 18/03/19

#### Active project stage:

(ON-TIME) Stage 2.3 – (CORE) Local memory impl & integration

(ON-TIME) Stage 3.1 – (CORE) Memory mapped register layout & impl

#### Review of work undertaken:

Minimal contributions to the project have been made due to high workload and demand from other modules.

#### Risks and Challenges:

RC2: Multiple tests and deadlines for other modules.

#### Plan of work for the next week:

Next weeks goals are the same as this weeks due to RC2.

Stage 2.3 – (CORE) Local memory impl & integration

Stage 3.1 – (CORE) Memory mapped register layout

## Date(s) of supervisory meeting(s) since last Highlight:

12/03/19 – Weekly highlight meeting (skipped due to other commitments).

## Notes from supervisory meeting(s) held since last Highlight:

/

## 1.3 Weekly Report 3

## Weekly Report 3 – 11/03/19

#### Active project stage:

(ON-TIME) Stage 2.3 – (CORE) Local memory impl & integration

(ON-TIME) Stage 3.1 – (CORE) Memory mapped register layout & impl

#### Review of work undertaken:

Minimal contributions to the project have been made due to high workload and demand from other modules.

#### Risks and Challenges:

RC2: Multiple tests and deadlines for other modules.

#### Plan of work for the next week:

Next weeks goals are the same as this weeks due to RC2.

Stage 2.3 – (CORE) Local memory impl & integration.

Stage 3.1 – (CORE) Memory mapped register layout.

## Date(s) of supervisory meeting(s) since last Highlight:

05/03/19 - Weekly highlight meeting.

#### Notes from supervisory meeting(s) held since last Highlight:

Discussion about time management to allow for time to be spent on other modules.

## 1.4 Weekly Report 2

#### Weekly Report 2 – 03/03/19

#### Active project stage:

(ON-TIME) Stage 2.3 – (CORE) Local memory impl & integration

(ON-TIME) Stage 3.1 – (CORE) Memory mapped register layout & impl

#### Review of work undertaken:

#### (ON-TIME) Stage 2.3 – (CORE) Local memory impl & integration

The new decoder has been integrated into the pipeline and basic instruction sequences have been verified.

#### (ON-TIME) Stage 3.1 – (CORE) Memory mapped register layout

An internal wishbone master interface has been implemented and is controlled by the MMU. A wishbone slave interface has been added to the inputs/outputs of the SoC module. Interaction between cores is still under design, although it will not use Wishbone.

#### Risks and Challenges:

RC2: Multiple tests and deadlines for other modules.

#### Plan of work for the next week:

Stage 2.3 – (CORE) Local memory impl & integration

Stage 3.1 – (CORE) Memory mapped register layout

#### Date(s) of supervisory meeting(s) since last Highlight:

26/02/19 – Weekly highlight meeting

#### Notes from supervisory meeting(s) held since last Highlight:

Discussion about target FPGAs: It was decided to target Xilinx Spartan 6 with ISE and Altera Cyclone V with Quartus.

## 1.5 Weekly Report 1

#### Weekly Report 1 – 25/02/19

## Active project stage:

(ON-TIME) Stage 1.2 – (CORE) Stage/Time Allocation Planning

(ON-TIME) Stage 2.1 – (CORE) Decoder, Register set, impl & integration

#### Review of work undertaken:

Project tasks and deliverables have been formalised and broken up into smaller tasks.

#### (ON-TIME) Stage 1.2 – (CORE) Stage/Time Allocation Planning

The project has been broken up into smaller tasks. Each task has been assigned a start date and expected duration. A gantt chart has also been produced. Images of the gantt chart and task list are included in section 2.1.

#### (ON-TIME) Stage 2.1 – (CORE) Decoder, Register set, impl & integration

The new decoder for the new ISA has been built and has been somewhat integrated into the pipeline through the <code>vmicro16\_idex</code> module.

#### **Risks and Challenges:**

#### Resolved risks:

RC1 – Project planning not adequately performed. The project should be broken down into smaller tasks and each task should be assigned a priority and timeslot.

## Plan of work for the next week:

Stage 2.1 – Continue integrating the new decoder into the CPU module.

#### Date(s) of supervisory meeting(s) since last Highlight:

19/02/19 - Weekly highlight meeting

#### Notes from supervisory meeting(s) held since last Highlight:

RC1 – It was decided to perform a weekly highlight report, which details progress, challenges, and obstacles.

## 2 Weekly Report Attachments

#### 2.1 Week 1

| Stage ID | Task                                                | Start Date D | uration |
|----------|-----------------------------------------------------|--------------|---------|
| 1        | (CORE) Research                                     | 04-Feb       | 7       |
| 1.1      | (CORE) Requirement gathering/review                 | 11-Feb       | 14      |
| 1.1      | (CORE) Processor specification, architecture, ISA   | 18-Feb       | 100     |
| 1.2      | (CORE) Stage/Time Allocation Planning               | 25-Feb       | 7       |
| 2.1      | (CORE) Decoder, Register Set, impl & integration    | 25-Feb       | 14      |
| 2.2      | (CORE) Register set impl & integration              | 04-Mar       | 14      |
| 2.3      | (CORE) Local memory impl & integration              | 11-Mar       | 14      |
| X        | Intense Coursework/Test month                       | 04-Mar       | 31      |
| 3.1      | (CORE) Memory mapped register layout & impl         | 01-Apr       | 21      |
| 3.2      | (CORE) Wishbone peripheral bus connected to MMU     | 08-Apr       | 21      |
| 3.3      | (CORE) Pipelined implementation and verification    | 15-Apr       | 21      |
| 3.1      | (CORE) Cache memory design & impl                   | 22-Apr       | 28      |
| 4.1      | (CORE) Multi-core communication interface           |              |         |
| 4.2      | (CORE) Shared-memory controller                     |              |         |
| 4.4      | (CORE) Scalable multi-core interface (10s of cores) |              |         |
| 4.3      | (CORE) Multi-core example program (reduction)       |              |         |
| 5.1      | (EXT) SPI-FPGA interface for OTG programming        |              | 14      |
| 5.2      | (EXT) FPGA-PC interfacing                           |              | 28      |
| 5.3      | (EXT) FPGA-PC debugging (instruction breakpoints)   |              | 28      |
| 6.1      | (EXT) Compiler backend for vmicro16                 |              | 7       |
| 6.2      | (EXT) Compiler support for multi-core codegen       |              | 21      |
| 7.1      | (CORE) Wishbone peripherals for demo                | 01-Aug       | 7       |
| 8        | Final Report                                        | 11-Mar       | 150     |

Figure 1: Deliverables have been formalised and their development has been broken up into stages. Green/yellow colour simply identifies tasks in a new stage.



 $\textbf{Figure 2:}\ \ \textbf{Visualisation of the stages in a Gantt chart}.$ 

## 3 Risks and Challenges

## Urgent risks:

• RC2: Multiple tests and deadlines for other modules.

New risks Existing risks Resolved risks

## 3.1 Project Management

• RC1: Project planning not adequately performed. The project should be broken down into smaller tasks and each task should be assigned a priority and timeslot.

#### 3.2 Other

There are currently no additional risks/challenges.