$Y = \{y_{laser} - c_y : \Delta y : y_{laser} + c_y\}$ 3 for y in Y:
1 for x in X:
1 Locate $T(x_l, y) = T_m$ and $T(x_r, y) = T_m$

2 Width defined by T_m for a certain y:

|• In this case study, $\Delta x = \Delta y = 1~\mu\mathrm{m}$, $c_x = 150~\mu\mathrm{m}$, and $c_y = 100~\mu\mathrm{m}$ |

 $X = \{x_{laser} - c_x : \Delta x : x_{laser} + c_x\}$

 $w_v = x_r - x_l$

Algorithm Calculation of Melt Pool Width

2 Points to traverse:

4 Melt pool width $w = \max(w_v)$

1 Locate laser beam position: x_{laser} and y_{laser}