

DEVELOPMENT OF AN EMERGENCY COMPATIBILITY (CROSSMATCH) TEST

ANNUAL REPORT

Lawrence D. Petz, M.D.
Research Scientist
Institutes of Medical Sciences
Pacific Medical Center

George Garratty, F.I.M.L.S.
Research Associate
Institutes of Medical Sciences
Pacific Medical Center

April, 1978

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, MD 21701

DAMD17-77-C-7013

Approved for Public Release; Distribution Unlimited

The findings in this report are not to be construed as an official Dept. of the Army position unless so designated by other authorized documents.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
The same of the sa	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
an entiledice entre cet (elititate bas) 31TIT	5. TYPE OF REPORT & PERIOD COVERED
DEVELOPMENT OF AN EMERGENCY	1-1-77 to 12-31-77
COMPATIBILITY (CROSSMATCH) TEST	6. PERFORMING ORG. REPORT NUMBER
	DAMD17-77-C-7013
Lawrence D. Petz, M.D.	8. CONTRACT OR GRANT NUMBER(*)
George Garratty, F.I.M.L.S.	DAMD17-77-C-7013
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
AAAA ITID AMTID AM	41 - 62774A
2200 WEBSTER ST. SAN FRANCISCO, CALIFORNIA 94115	35762774A820.00.002
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Medical Research & Development Command	April 4, 1978
Fort Detrick, Frederick, MD 21701	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office)	15. SECURITY CLASS. (of this report)
	15. DECLASSIFICATION/DOWNGPADING
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	-1 Francisco Co.
	ACCESSION for NTIS White Section D
Approved for public release; distribution unli	
npploved for pastic research, in	UNANNOUNCED
	JUSTIFICATION
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	om Report)
	DISTRIBUTION / LVAN ADDITY DODGE
	DISTRIBUTION/AYALABUITY CODES DIST. AVAIL END/OF SPECIAL
	DIST. AVAIL BID OF STEERING
18. SUPPLEMENTARY NOTES	Δ
	17.
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Low Ionic Strength Transfusion	
Compatibility Testing Antibody Detection	on
Crossmatch Blood Transfusion	
20. ABSTRACT (Continue on reverse side if necessary and identity by block number)	· · · · · · · · · · · · · · · · · · ·
When red cells are suspended in saline	of lower ionic strength
(LISS) than usual (e.g., 0.03 M instead	of 0.17 M) the rate of
antibody association is enhanced. Studie	es were performed to
evaluate the use of LISS for compatibility optimal ionic strength; optimal serum/re	d cell ratio and incuba-
tion time; sensitivity compared with met	hods used nationally at
present; and non-specific reactions. 0.	03 M NaCl + 0.3 M glycine
was established as the optimal LISS. Sl	ightly enhanced reacti-

\$

8

20. vity was obtained if equal vol of serum and RBC suspensions were used rather than the usual 2 vol of serum and 1 vol of RBC. After only 5 minutes incubation in LISS 67% of antiglobulin reactive weak antibodies were detected, compared with only 33-36% in saline or albumin.

When 30 weak red cell alloantibodies were tested, 90% were detected after only 10 minutes incubation in LISS compared with 80% after 30, and only 70% after 15 minutes in saline or albumin (examples of Rh, Duffy, and Kidd antibodies were not detected). The three antibodies missed by LISS were very weak examples of anti-Lea which were retested x2 later and found to be weakly reactive in LISS. When 100 antibodies of varying characteristics were tested, agglutinating antibodies were generally found to not be enhanced by LISS but all of the antiglobulin reactive antibodies reacted equally or better with LISS suspended cells. Non-specific reactions have not been a problem to date. LISS appears to have significant advantages over current compatibility test procedures.

Low fenic Strength Transfusion
Conjectionities Lesting Antirody Detection
Clorestates
Linca Transfusion

world high so will not be an accordant to his light -

three cells are suspended in saline of lower ionic structh (block) then usual (c.d., 0.05 hinstead of 0.17 %) the return anticody association is enhanced. Studies were performed to evaluate the as of bls. for compatibility tests. In evaluate: or that ionic strength; optical serum/red cell ratio and incustion time; constitivity conjured with methods used hationally as the time; constitivity conjured with methods used hationally as the security one non-succific reactions. 0.03 H.LaCl + 0.3 highers.

AD	

DEVELOPMENT OF AN EMERGENCY COMPATIBILITY (CROSSMATCH) TEST

ANNUAL REPORT

Lawrence D. Petz, M.D.
Research Scientist
Institutes of Medical Sciences
Pacific Medical Center

5

8

3

8

0

40

00

George Garratty, F.I.M.L.S.
Research Associate
Institutes of Medical Sciences
Pacific Medical Center

April, 1978

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Washington, D. C. 20314

DAMD17-77-C-7013

TABLE OF CONTENTS

		Page
SUM	MARY	1
BAC	KGROUND	2
LIT	ERATURE CITED	4
REAL	DING (GRADING) OF AGGLUTINATION RESULTS FOR TOTAL STUDY	5
1.	DETERMINATION OF OPTIMUM IONIC STRENGTH FOR RED CELL DILUENT	6
	METHODS	6
	PREPARATION OF LOW IONIC STRENGTH SOLUTIONS (LISS)	7
	RESULTS	8 - 11
	SUMMARY	12
2.	DETERMINATION OF OPTIMAL INCUBATION PERIOD	13
	METHODS	13
	RESULTS	14 - 19
	SUMMARY	20
3.	FALSE-POSITIVE REACTIONS USING LISS	21
	METHODS	21
	RESULTS	22 - 28
	SUMMARY	29
4.	COMPARISON OF SALINE, ALBUMIN AND LISS SENSIT IN ANTIBODY DETECTION	IVITY 30
	METHODS	30
	RESULTS	31 - 40
	SUMMARY	41

0

		Page
5.	SPECIFICITY AND SENSITIVITY UNDER ROUTINE CONDITIONS	42
	METHODS	42
	RESULTS	43 - 84
	SUMMARY	85

O

SUMMARY

When red cells are suspended in saline of lower ionic strength (LISS) than usual (e.g., 0.03 M instead of 0.17 M) the rate of antibody association is enhanced. Studies were performed to evaluate the use of LISS for compatibility tests. We evaluated: optimal ionic strength; optimal serum/red cell ratio and incubation time; sensitivity compared with methods used nationally at present; and non-specific reactions. 0.03 M NaCl + 0.3 M glycine was established as the optimal LISS. Slightly enhanced reactivity was obtained if equal volume of serum and 1 volume of RBC. After only 5 minutes incubation in LISS 67% of antiglobulin reactive weak antibodies were detected, compared with only 33-36% in saline or albumin.

When 30 weak red cell alloantibodies were tested, 90% were detected after only 10 minutes incubation in LISS compared with 80% after 30, and only 70% after 15 minutes in saline or albumin (examples of Rh, Duffy, and Kidd antibodies were not detected). The three antibodies missed by LISS were very weak examples of anti-Le^a which were retested x2 later and found to be weakly reactive in LISS. When 100 antibodies of varying characteristics were tested, agglutinating antibodies were generally found to not be enhanced by LISS but all of the antiglobulin reactive antibodies reacted equally or better with LISS suspended cells. Non-specific reactions have not been a problem to date. LISS appears to have significant advantages over current compatibility test procedures.

BACKGROUND

It has been common practice for many years to carry out compatibility testing on red cells suspended in normal (0.9%) saline (NaCl). The most commonly used procedures involve incubating donor red cells and recipient serum at room temperature and 37C. Bovine albumin is often added and after the tubes are inspected for agglutination the red cells are washed and tested with antiglobulin serum (indirect antiglobulin test). Incubation times are not standard, but usually times such as those recommended by the AABB Technical Methods and Procedures Manual (1) are used, i.e., 15-30 minutes at room temperature followed by 15-30 minutes at 37C. It was reported that sensitization of cells in bovine albumin medium, prior to the addition of the antiglobulin reagent, enhanced the strength of the reaction above that of the traditional method using saline (2). From this study it was concluded that a 15 minute sensitization period of albumin-suspended cells, with sera containing antibodies, is equal to a longer time of incubation in either medium when followed by the antiglobulin procedure.

In 1964, Hughes-Jones et al (3) and Elliot et al (4) showed that if the ionic strength of the red cell suspending medium was lowered the antiglobulin reaction was considerably enhanced. The speed of reaction can be increased 1000-fold by a reduction in the salt concentration from 0.17 M to 0.03 M (5). Although these reports suggested from the detection of most blood group antibodies was enhanced, and indeed, suggested that sensitivity equaled that of using enzyme-treated red cells, the principles have not been generally utilized in manual testing although they have been employed in automated antibody testing (6).

However, one study (7) has been reported using a low ionic strength solution as a red cell diluent as a routine method in a large blood bank, and the results appear very promising. Following institution of the low ionic strength method, the total number of antibodies detected increased, and the reactions were more clearcut and easier to interpret. An incubation time of only 5 minutes was employed. More than 100,000 units of blood crossmatched using this method have been transfused without any transfusion reactions due to unidentified blood group antibodies. Unfortunately, parallel studies utilizing low ionic strength solution and saline were not reported, the only controls consisting of a comparison with results of the previous year.

Two further studies have been published, utilizing a low ionic strength medium for antibody detection (8,9). Both of these studies suggested that low ionic strength solutions were advantageous in antibody detection.

The main advantages of LISS seem to be: 1) A generally agreed upon shortening of the incubation time and 2) There are indications

in the literature that some antibodies may be detected by LISS that are missed in the regular saline system. Some of these antibodies belong to the group generally considered as being clinically important (e.g., Rh and Kidd) but others are considered clinically insignificant (e.g., Bg).

The disadvantages of LISS may be 1) Non-specificity under certain conditions (e.g., ionic strength of solution too low causing non-specific aggregation of non-sensitized red cells; non-specific uptake of complement under certain conditions (10); non-specificity associated with certain anti-human sera. 2) Enhancement of clinically insignificant antibodies (e.g., cold auto-antibodies (I), Bg, etc). 3) Increase in thermal range of some cold antibodies (e.g., some anti-M that react only at room temperature with saline suspended cells will react at 37C with LISS suspended cells. 4) One report shows decreased sensitivity in the detection of Lewis antibodies. 5) Instability of LISS (without preservatives).

LITERATURE CITED

- 1. Technical Methods and Procedures, 6th Edition, American Association of Blood Banks, Washington, D.C., 1974.
- 2. Stroup, M. and M. MacIlroy: Evaluation of the albumin antiglobulin technic in antibody detection. Transfusion 5:184, 1965.
- 3. Hughes-Jones, N.C., M.J. Polley, R. Telford, B. Gardner and G. Kleinschmidt: Optimal conditions for detecting blood group antibodies by the antiglobulin test. Vox Sang 9:385, 1964.
- 4. Elliot, M., E. Bossom, M.E. Dupuy and S.P. Masouredis: Effect of ionic strength on the serologic behavior of red cell isoantibodies. Vox Sang 9:396, 1964.
- 5. Hughes, Jones, N.C., B. Gardner and R. Telford: The effect of pH and ionic strength on the reaction between anti-D and erythrocytes. Immunology 7:72, 1964.
- 6. Perrault, R. and C. Högman: Automated red cell antibody analysis. A parallel study. I. Detection and quantitation. Vox Sang 20:340, 1971.
- 7. Low, B. and L. Messeter: Antiglobulin test in low-ionic strength salt solution for rapid antibody screening and cross-matching. Vox Sang 26:53, 1974.
- 8. Moore, H.C. and P. L. Mollison: Use of a Low-Ionic Strength Medium in Manual Tests for Antibody Detection. Transfusion 16:291, 1976.
- 9. Wicker, B. and C.H. Wallas: A Comparision of a Low Ionic Strength Saline Medium with Routine Methods for Antibody Detection. Transfusion 16:469, 1976.
- 10. Mollison, P.L. and M.J. Polley: Uptake of -globulin and Complement by Red Cells Exposed to Serum at Low Ionic Strength. Nature 2:535, 1964.

READING (GRADING) OF AGGLUTINATION RESULTS FOR TOTAL STUDY

All tests were inspected macroscopically and all negative reactions were checked microscopically. The following gradings were used.

- 4 ≅ ++++ No agglutinated cells background clear*
- 3 ≥ +++ Several large agglutinates few free cells background clear*
- 2 ₹ ++ Moderate size agglutinates more free cells background slightly cloudy*
- 1 ≥ + Numerous small agglutinates many free cells background cloudy*
 - *Visible Macroscopically
- \$ \(\xi \) Scattered agglutinates in a sea of unagglutinated
 cells**
- 0 No agglutination-

à

- **Usually visible macroscopically
- If () is used it indicates a slightly weaker reaction e.g., (1) is weaker than 1.
- 1 = intermediate reaction e.g., 2½ is stronger than 2 but weaker than 3.

I. DETERMINATION OF OPTIMUM IONIC STRENGTH FOR RED CELL DILUENT

- a) Low ionic strength solutions (LISS) were prepared using 0.17 M NaCl diluted in varying amounts of 0.3 M solution sodium glycinate. Osmolality of all solutions was measured and recorded.
- b) A pilot study was performed on 20 normal sera containing no antibodies by saline, albumin, enzyme or antiglobulin techniques, and 20 weak antibodies (e.g., ABO, Rh, K, Fy^a, Jk^a) using red cells suspended in NaCl solutions with molarities ranging from 0.01 - 0.17.

An ionic strength that gave no false-positive reactions with the normal sera and gave optimal reactions with the antibodies was selected for the rest of the study.

PREPARATION OF LOW IONIC STRENGTH SOLUTIONS (LISS)

			So	dium Chi	loride	Molarit	<u>y</u>	
	pН	0.17	0.10	0.07	0.04	0.03	0.02	0.01
Saline (0.17 M)	6.3	980	590	410	236	180	118	59 ml
PO ₄ Buffer (0.15 M)	6.7	20	20	20	20	20	20	20 ml
Sodium Glycinate (0.3 M)	6.7	.	390	570	744	800	862	921 ml
Osmolality		316	308	304	302	300	298	295 ml
рН		6.4	6.6	6.7	6.8	6.8	6.8	6.9

- Normal Serum X Bay Area Panel 4022577
- a) Agglutination at 37°C (30 minutes incubation)

SALT SOLUTIONS

	0.01	0.02	0.03	0.04	0.07	0.10	0.17
1	. 0	0	0	0	0 .	. 0	0
2	0	0	0	0	0	0	0
3	0	0	0	0 .	0	0	. 0
4	0	0 .	0	. 0	0	0	(0
5	0	0	0	0	. 0	0 .	0
6	0	0	. 0	0	.0	0	0
7	0	0	0	0	0	0	0
8 .	0	0 .	0.	0	0	0	0
9	0	0	0	0	0	. 0	0
10	0	0	0	. 0	0	0	0
11	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0
13	0	0	. 0	· o '	. , 0	0	0
14	0	0	0	0	0	0	0
15	0	0	0	. 0	0 -	. 0.	0
16	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0
18	Ö	. 0	. 0	0	0	0	0
19	0	0	0	0	0	0	0
20	. 0	0	0	0	0	0	0
			•				

6

b) Indirect Antiglobulin Tost at 37°C (30 minutes incubation)

SALT SOLUT	IONS	
------------	------	--

	0.01	0.02	0.03	0.04	0.07	0.10	0.17
1	†m	0 ⁸	0	08	0 ⁸	0	0
2	(±) m	0 ⁸	08	0s	0 ⁸	0	0 .
3	(1)	+m	0	0	0 .	0	. 0
-4	1	±m	+m	08	0 ⁸	. 0 ⁸	08
5	1 m	0 ⁸	0	08	0	0	0
6	+m	(±) m	0	0 .	. 0	0 ⁸	0
7.	(1) ^m	(+) m	0.	0 ⁸	08	0	0
8	+m	o ^s	0 ^s	0	0	08	. 0
9	0 ⁸	0 ⁸	0.	0	0	0	0
10	0 ^s	0 ⁸	0	0	0	. 0	0.
11	(+) m	(±) m	0 .	0	0	0	0
12	0 ⁸	o ^s	0	0	.0	0	0
13	(_) m	0 ^s	0	0	0	0	0
14	(<u>+</u>) ^m	(±) ^m	0.	0	0	. 0	0
15	(±) ^m	(±) ^m	08	08	0.	0	0
16	08	0 ⁸	0	. 0a .		0	0
17	(+) m	(<u>+</u>) ^m	0	0.	0	0	0
18	0 ⁸	(±) m	0	0	0 _	0	0
19 .	0 ⁸	0 ^s	0 ⁸ .	0	08	0	0
20	0 ⁸	0	. 0	0	.0	0	0

m = microscopically positive

s = "sticky", i.e., a few cells sticking together, no definite agglutination

II. Serum Containing Alloantibodies X Bay Area Panel #022577

a) Agglutination at 20°C (30 minutes incubation)

			SALT	SOLUTION	S		
	0.01	0.02	0.03	0.04	0.07	0.10	0.17
1. Anti-A	4	4 .	4	4	4	4	4
2. Anti-B 3. Anti-H	1	i	i	(1)	(1)	(1)	(1)
4. Anti-N	(1)	(1)	(1)	1	0	0	Ō
5. Anti-Lea 6. Anti-P ₁	(1)	(1)	(1)	(1)	(1) 2½	(1) 2½	(1) 25

b) Agglutination at 37°C (30 minutes incubation)

				SALT SOL	UTIONS			
		0.01	0.02	0.03	.04 0	.07 0	.10 0	.17
7. Ar	nti-K	.0	0	0	0	0	0	0
8. Ar	nti-K	0	0	0	0	0	0	0
9. Ar	nti-Jk ^a	0	0	0	0	0	0	0
10. Ar	nti-Jk ^a	0	0	0	0	0	0	0
11. Ar	nti-Fy ^a	0 -	o ·	0	0	0	0	0
12. Ar	nti-Fy ^a	0	0	0	0 .	0	0	0
13. Ar	ti-Fy ^a -	0	0	0	0	0 .	0	0
14. Ar	ti-Fy ^a	0	0	0	0	o · :	0	0 .
15. Ar	nti-D	0	0	0	0,	0	0	0
16. Ar	nti-C	0	0	0	0	0	ō	0
17. An	ti-E	0	0	0	0	0	0	0
18. An	ti-c	0	0	0 .	0	0	0	0
19. Ar	ti-e	0	0	0	0	0	0	0
20. Ar	ti-Le ^a	0	0	0	0	0	0	0

11. Serum Containing Alloantibodies X Bay Area Panel #022577

c) Indirect Antiglobulin Test at 37°C (30 minutes incubation)

•			SALT	SALT SOLUTIONS			
	0.01	0.02	0.03	0.04	0.07	0.10	0.17
7. Anti-K	14	13	2	2	2	.2	14
8. Anti-K	25	21/2	23	21	21/2	2	21
9. Anti-Jk ^a	13	14	11	11/2	1	1	(1)
10. Anti-Jka	1	1	1	1	1	1	1
11. Anti-Fy ^a	1	1.	1	1	1	1	1
12. Anti-Fy ^a	1	1	1 .	1	1	1	1
13. Anti-Fy ^a	(1)	(1)	(1)	(1)	(1)	(1)	(1)
14. Anti-Fy ^a	13	14	13	1	ľ	1	1
15. Anti-D	2	. 2	2	2	2 .	2	15
16. Anti-C	(1)	(1)	(1)	(1)	(1)	(1)	(1)
17. Anti-E	11	11	. 2	1	1	1	1
18. Anti-c	3	3	3	3	3	. 3	3
19. Anti-e	14	11	14	1	1	(1)	(1)
20. Anti-Le ^a	(1)	(1)	(1)	(1)	(1)	(1)	(1)

Summary of Results of Part I

Salt solutions of different ionic strengths were prepared by diluting buffered saline with sodium glycinate solutions to produce solutions with sodium chloride molarities varying from 0.01 to 0.17.

20 normal sera were then tested for their ability to agglutinate normal red cells after incubation at 37C in each of these solutions. Normal sera did not cause direct agglutination of normal red cells in any of the solutions tested.

The 20 normal sera were then tested against normal red cells by the indirect antiglobulin test after incubation at 37C. Microscopically positive results were obtained with salt solutions of sodium chloride molarity of 0.01 and 0.02. Although there were occasional "sticky" reactions using solutions of molarity of 0.03 and higher there was only one microscopically positive reaction at molarity of 0.03.

Next, 20 sera containing antibodies were tested. Antibodies tested included Anti-A, -B, -H, -N, -Le^b, -P₁, -K, -Jk^a, -Fy^a, -D, -C, -E, -e, -c and -Le^a. The results of direct agglutination at 37C were negative throughout. Results of direct agglutination at 20C and of the indirect antiglobulin test at 37C revealed slight but definite augmentation of the reactions particularly in solutions of sodium chloride molarity of 0.03. The 0.03 M solution was selected for further studies.

2. DETERMINATION OF OPTIMAL INCUBATION PERIOD

30 weak antibodies (antibodies were selected that gave 2+, or less, reactions by conventional techniques using saline suspended cells) were tested against red cells suspended in saline (0.17 M), 30% bovine albumin or low ionic strength solution (LISS) by indirect antiglobulin test.

A recently published study (Moore, H.C. and Mollison, P.L., Transfusion 16:291, 1976) has shown that is important to use equal volumes of LISS suspended red cells and serum rather than the conventional 2 volumes of serum to 1 volume of 5% red cells, (to avoid affecting the ionic strength of the LISS). Therefore, the following techniques were used in the comparative study.

Indirect Antiglobulin Test (IAT)

Saline (Sal): 2 volumes of serum were added to a 10x75mm glass tube and 1 volume of 5% red cells suspended in 0.17 M saline were added. Tests were either washed x4 in 0.17 M saline immediately or incubated at 37C for 5 minutes, 10 minutes, 15 minutes, 30 minutes or 60 minutes before washing.

Albumin (Alb): Same as saline test but 2 volumes of 30% bovine albumin were added to the serum before red cells were added.

Low Ionic Strength Solution (LISS): 2 volumes of serum were added to a 10x75 mm glass tube and 2 volumes of 2% red cells were added. Tests were either washed x4 in 0.17 M immediately, or incubated at 37C for 5 minutes, 10 minutes, 15 minutes, 30 minutes, or 60 minutes before washing.

Six sera were tested by direct agglutination, using the same red cell diluents, volumes, and incubation periods as above. The tests were centrifuged immediately, or following incubation, and read for agglutination.

Notes: All red cells used were washed x3 in normal saline before being resuspended in 0.17 M saline or LISS. Some of the weak antibodies were obtained by diluting antibodies in inert normal serum.

As an extra volume of red cells were used in the LISS method a weaker cell suspension (2%) was used in order to keep the final antigen antibody approximately equal in all three methods.

DIRECT ACCLUTINATION: INCUBATION TIME (MINS) AT 24°C

	. 0	5	10	15	30	60
Anti-A						
1. Sal Alb LISS	4 4 4	4 4 4*	4 4 4*	4 4 4*	4 4 4*	4 4 3½*
Anti-B						
1. Sal Alb LISS	4 4	4 4 4*	4 4 4*	4 4 3½*	4 4 4	4 4 35*
Anti-M						
1. Sal Alb LISS	0 0 0	0 0 1	0 0 2	0 (1) 2	0 (1) 2	0 (1) 2
Anti-N						
1. Sal Alb LISS	(1) 0 (1)	1½ (1) 1½	2 (1) 2	2½ 2 2½	3 . 2 3	3 2 3
Anti-P1		•				
1. Sal Alb LISS	(1) 0 (1)	2 1½ 2	3 2 3	3 2 3	3 2 3	3 2 3
Anti-Leb						
1. Sal Alb LISS	0 0 0	1 1 1	1½ 1 1½	1½ 1 .1½	2 1½ 2	2 1½ 2

^{*} Lysed (2+)

INDIRECT ANTIGLOBULIN TEST INCUBATION TIMES (MINS)

	0	5	10	15	30	60	_
Anti-K							
1. Sal Alb LISS	1 1 1	1 11	1½ 1½ 1½	1½ 1½ 1½	11/2 11/2 .	1½ 1½ 1½	
2. Sal Alb LISS	(1) (1) (1)	1 1½ 1½	1½ 1½ 1½	1½ 2 2	2 2 2	2 2 2	
J. Sal Alb LISS	7	1 1 1½	1½ 1½ 1½	1½ 1½ 1½	2 2 2	2 2 2	
4. Sal Alb LISS	0.0	(1) (1) (1)	1 1 1	1 1 1	1 1 1½	1 1 1½	
5. Sal Alb LISS	(1) (1)	1 1 1	1 1 1	. 1 1 1	2 - 2 2	2 2 2	
6. Sal Alb LISS	0 0 0	(1) (1) (1)	(1) (1) (1)	(1) (1) (1)	1 1 1	1 1 1	
Anti-k				•			
1. Sal Alb LISS	0 0	0 0 (1)	0 <u>t</u> (1)	(1) (1) 1	(1) (1) 1	(1) (1)	
Anti-Jka							
1. Sal Alb LISS	0 0	0 0	0 0 (1)	(1) (1) (1)	(1) (1) 1	(1) (1) 1	
2. Sal Alb LISS	0	0 0 0	0 0 1	0 0 1	0 (1) 1½	1 1 1½	
3. Sal Alb LISS	0 0	0	(1) (1)	(1) (1) 1	(1) (1) 1	(1) (1) 1	
4. Sal Alb LISS	0 0	0 0 (1)	(1) (1) 1	1 1 14	1 1 14	· 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

INDIRECT ANTIGLOBULIN TEST INCUBATION TIMES (MINS)

	0	5	1.0	15	30	60
Anti-Jka						
. 5. Sal Alb LISS	0 0	1 1 21,	2 2 2 ¹ / ₂	2½ 2½ 2½	2½ 2½ 2½	2½ 2½ 2½
Anti-Fy ^a						
1. Sal Alb LISS	. 0	0 0 (1)	0 (1)	1 1	(1) 1	(1) 1
2. Sal Alb LISS	0 .	0 0 0	0 0 (1)	0 0 (1)	0 0 (1)	1/2 1/2 (1)
3. Sal Alb LISS	0 0	0 0 (1)	0 (1) 1	(1) (1) 1	(1) (1) 1	(1) (1) 1
4. Sal Alb LISS	0 0	0 0 (1)	0 0 1½	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) (1) 1½	(1) (1) 1½
5. Sal Alb LISS	0 0 0	0 ½ 1	0 (1) 1	(1) (1) 1	(1) (1) 1	1 1 1
6. Sal Alb LISS	0 0 0	1	(1) (1) 1	1 1 1	. 1 1½ 1½	1½ 1½ 1½
Anti-Fy ^b						
l. Sal Alb LISS	0 0	0 0 1	0 0 1	0 0 1	0 0 1	(1) (1) 1
Anti-Rh					•	
Anti-D					•	
l. Sal Alb LISS	0	0	(1) (1) 2	1 1 2	1½ 1½ 2	1 ½ 2 ½ 2 ½

INDIRECT AUTICLOBULIN TEST INCUBATION TIMES (MINS)

ℓ . \cdot .	0	. 5	10	15	30	. 60 .	_
Anti-Rh				•			
Anti-D							
2. Sal Alb LISS	0 0	0 0 0	0 0 (1)	0 ., 1 .	(1) 1	(1) 1	
Alb LISS	0 0	0 0 (1)	0 0 1½	0 0 1½	0 0 1½	1 1 1½	
Anti-C				•			
1. Sal Alb LISS	0	0 0	0 0 (1)	0 0 (1)	0 0 (1)	0 ½ (1)	
Anti-E							
Alb	0 0	0 0	0 0 1	0 0 1	(1) 1	(1) 1	
Anti-c							
1. Sal Alb LISS	0 0 0	(1) (1) 1	1 1½ 2	1 1½ 2	2 2 2	2 2 2	
Anti-e							
1. Sal Alb LISS	0 0 0	0 0 (1)	0 0 (1)	0 ½ (1)	(1) (1)	(1) 1 1	
Anti-Lea*		•				•	
1. Sal Alb LISS	· 0 0 0	0	0	0 0	0	0 0	
2. Sal Alb LISS	0	0	0 0	(1) 0 0	(1) 0 0	(1) 0 0	

^{*}An equal volume of fresh Le(a-b) serum was added to all sera as a source of fresh complement.

INDIRECT ANTIGLOBULIN TEST INCUBATION TIMES (MINS)

•			0	5	. 1.0	15	30	60	
	Anti-Lea*							•	
3.	Sal Alb LISS		0 0	(1) (1) (1)	1 1 1	1 1 1	1 1 71	1½ 1½ 1	
4.	Sal Alb LISS	•	0 0	0 0 0	. 0	0 0	(1) ½ 0	(1) ½ 0	

SUMMARY OF INDIRECT ANTIGLOBULIN TESTS

1. Number (Percentage) of Antibodies Detected By IAT Following Each Incubation Period in Various Diluents

	, , ,	Red Cell Diluent	
Incubation Period	Saline	Albumin	LISS
No incubation	2 (7%)	2 (7%)	2 (7%)
5 minutes	10 (33%)	11 (36%)	20 (67%)
10 minutes	12 (40%)	16 (53%)	27 (90%)
15 minutes	20 (67%)	21 (70%)	27 (90%)
30 minutes	24 (80%)	24 (80%)	27 (90%)
60 minutes	-27 (90%)	28 (93%)	27 (90%)

2. Antibodies Not Detected By Each Method At Various Incubation Periods

Incubation Period

ANTI-

0 Mins	K (6)	k (1)	Jk ^a (5)	Fy ^a (6)	Fy ^b (1)	D(3)	C(1)	E(1)	c(1)	e(1)	Lea(4)
Sal Alb LISS	2 2 2	1 1 1	5 5 5	6 6 6	1 1 1	3 3 3	1 1 1	1 1 1	1 1 1	1 1 1	4 4 4
5 Mins											
Sal Alb LISS	0 0 0	1 1 0	4 4 2	5 4 1	1 1 0	3 3 2	1 1 1	1 1 1	1 1 0	1 1 0	3 3 3
10 Mins											
Sal Alb LISS	0 0 0	0 0 0	3 2 0	5 3 0	1 1 0	2 2 0	1 1 0	1 1 0	0 0 0	1 1 0	3 3 3
15 Mins					•						
Sal Alb LISS	0 0	0 0 0	1 2 0	1 1 0	1 1 0	2 1 0	1 0	1 1 0	0 0	1 0 0	2 3 3
30 Mins											
Sal Alb LISS	0 0 0	0 0 0	1 0 0	1 1 0	1 1 0	2 1 0	1 1 0	1 0 0	0 0 0	0 0 0	0 2 3
60 Mins				ı							
Sal Alb LISS	0 0 0	0 0 0	0 0	0	0 0	0 0	1 0 0	1 0 0	D 0 0	00 0	0 2 3

SUMMARY OF RESULTS OF PART 2

The use of weak antibodies for the tests demonstrated significant increases in sensitivity when LISS was used in contrast to normal saline or albumin. After only 5 minutes incubation at 37C, 67% of the weak antibodies were detected using LISS suspended red cells, whereas only 33-36% were detected using saline or albumin. At 10 minutes, 90% of the antibodies were detected in LISS compared to 40-53% in saline or albumin. The number of antibodies detected by LISS did not increase, even after 1 hour incubation; three examples of weak anti-Le^a not being detectable at any incubation period. After 60 minutes incubation, two of the anti-Le were not detected using albumin either, but were detected using saline suspended cells. Three examples of weak Rh antibodies, anti-C, anti-E and anti-c, were not detected by saline suspended red cells even after one hour of incubation. These same Rh antibodies were detected after 10 minutes using LISS and using albumin suspended cells one was detected at 10 minutes, two at 30 minutes and all three at 1 hour.

It is interesting to note that after 15 minutes incubation in albumin, which is one of the most commonly used procedures for compatibility testing in the United States, only 70% of the very weak antibodies were detected; l anti-Jka, l anti-Fya, l anti-Fyb, 3 anti-Rh and 3 anti-Lea were not detected. In contrast, at 10 or 15 minutes only the 3 very weak anti-Lea were missed by the LISS technique. These three anti-Lea were tested x2 on different days following the initial testing and were then found to react very weakly with LISS suspended cells. If these results are substituted then the LISS techniques detected 100% the antibodies at 10 minutes.

8

8

- a) Sera from 100 normal blood donors and 100 unselected hospital patients antibodies by conventional screening methods were retested in parallel with LISS. All tests were incubated at room temperature and then 37C, read for agglutination and sensitization detected by the antiglobulin test. All negative reactions were checked microscopically.
- b) Complement components and indeed gamma globulin are known to be bound to red cells by non-immune mechanisms under certain low ionic strength conditions. Therefore, 20 of the sera from a) were retested using monospecific antiglobulin sera at the antiglobulin phase (e.g., anti-IgG, -IgM, -IgA, -C3, -C4). As there is considerable variation in the amount of anti-C-3 and -C4 present in commercial broadspectrum reagents and the amount of anti-C3 may be increased in future products, the monospecific anti-C-3 and -C4 used will be at a concentration greater than that present in any commercial reagent at present.

(a) 100 Normal donors

		P	T	. 3	7C +	1	ΑT		RT	37C -	TAT	Π
		SAL	ALB	SAL	ALB	SAL	ALB		LISS	LISS	LISS	
		0	0	0	0	.0	D		0	0	0	
2		0	O	0	0	0	0		0	0	0	
3		0	0	0	D	0	0.		0	0	D	
4		0	0	0	0.	0	0		0	0	0	
5		0	0	. 0	0	0	0.		0	0	0	
6	EZZE	0	. 0	0	0	0	0		0	0.	之	
71		0	0	0	0	0	0		0	0	D	
8		0	0	0	0	0	0	•	0	0	0	
. 9		0	0,	0	.0	.0	0		0	6	0	
-10		0	0	0	0.	0	0		0	0	6 .	
711		0	0	0	0	O	٥		0	0	0	
12		0	0	0	0.	0	0		0	0	0	
13		0	0	0	0	D	O		0	٥	0	
14		0	0	0	0	0	0		0.	0	0	
15		0	0	0	0	0	0		0	0	0	
16		0	0	0	0	0	0		0	0	0	
17		. 0	0	0	0	U	0		0	0	0	
181		0	0	0	0	0	0		0	0	0	
19		0	0	0	0	0	٥		0	0	0	
20		0	Ó	Ö	0	0	0		0	0	0	
21	·	0	0	٥	0	0	0		0	0	0	
22		0	0	0	٥	0.	0		0	0	0	
23		0	0	0	0	0	0	1	0	0	0	
724	•	0	0	0	0	0	0		0	0	0	
25		0	0	0	0	0	0		0	0	05	
	Cells:		O segm Pfize			3x in	Saline	, lx ir	LISS			-

(a) 100 Normal donors

	1	<u> </u>				1		T	T
	T	÷ 3	7C +		AT		RT ·	37C -	INT
SAL	ALB	SAL	ALB	SAL	ALB		LISS	LISS	LISS
0	0	0	0	0	0		0	0	0
0	0	0	0	0	0		0	0	٥
0	0	0	0	0	0.		0	0	0
0	0	0	0,	o.	0		0	0	0
0	0	. 0	0	0	0		. 0	0	05
0	. 0	0	0	O	0		0	0.	ō
0	0	0	0	0	O		0	0	0
0	0	0	0	0	0		6.	0	٥
0	0	0	.0	.0	0		0	0	O
0	0	0	0.	0	0		O	0	6.
. 0	0	0	0	0	0		0	O	O
0	0	0	0.	0	0		0	0	(1)
0	0	٥	0	O	0		0	0	0
0	0	O	0	0	0		0	ō	0
0	0	0	0	0	0		0	0	0
0	0	0	0	٥	٥		0	0	0
. 0	0	0	0	0	. 0		0	0	δ
0	0	0	0	0	0		0	0	0
0	0	0	0	0	0		0	0	0
0	0.	0	0	0	0		Ö	0	0
0	0	0	0	D	0		0	0	0
0	0	0	0	0	0		0	0	ō
0	0	٥	o	0	0	1	0	0	0
0	0	O	٥	0	O		0	0	0
0	0	v	0	0	0		0	0	0
						12 12			
	erum:	Pfizer	73051	3x 1n	Saline	, 1X 11	LISS		
п		group O segmoulin serum:	group O segments, oulin serum: Pfizer	group O segments, washed oulin serum: Pfizer 73051	group O segments, washed 3x in oulin serum: Pfizer 73051 -23-		group O segments, washed 3x in Saline, 1x in Suline serum: Pfizer 73051 -23-	group O segments, washed 3x in Saline, 1x in LISS oulin serum: Pfizer 73051 -23-	group O segments, washed 3x in Saline, 1x in LISS pulin serum: Pfizer 73051 -23-

(a) 100 Normal donors

		F	T	3	7C +	1	AT	5	RT	37C -	IAT	
		SAL	ALB	SAL	ALB	SAL	ALB		LISS	LISS	LISS	-
51		0	0	0	0	0	O		0	0	0	
52		0	٥	0	0	0	0		0	0	D	
53		0	0	0	0	.0	0.		0	0	0	
54		0	0	0	0,	0.	0		Ô	0	0	
55		0	0	. 0	0	0	0		0	O	Ø	
56		0	. 0	0	0	0	0		0	0.	0	
57		0	O	0	0	0	0		0	0	0	
58	*	0	0	0	0	0	0		0.	0	0	
. 59		0	0.	٥	.0	.0	D		0	0	0	
60		0	0	0	٥.	0	0		0	0	٥.	
61		O	0	0	0	0	0		U	O	0	
.62		0	0	0	0.	0	0		0	0	0	
63		0	0	0	0	0	0		0	0	0	
64		0	О	0	0	O	0		0	0	0	
65		0	0	0	0	0	0		0	٥	0	
66		0	0	0	0	0	0		0	0	٥	
67		. 0	0	0	0	0	0		0	0	O	
68		0	0	0	0,	0	0		0	0	0	
69		0	0	0	0	0	0		0	0	٥	
70		0	0	0	0	0	O		0	0	ō	
71		0	0	0	0	0	0		0	٥	0	
72		0	0	0	0	0.	0		0	0	0	
73		0	0	0	0	0	0	1	٥	0	0	
74	• ,	0	0	0	0	D	0		0	0	0	
75		0	0	0	٥	0	0		0	0	0	
	Cells:	group	O segm	ents,	washed	3x in	Saline	, lx ir	LISS			
	Antiglob					-24-						
				1		4				-,		

(a) 100 Normal donors

		R	T ·	- 3	7C +	1	AT		RT	37C -	IAT	
		SAL	ALB	SAL	ALB	SAL	ALB		LISS	LISS	LISS	
76		0	0	0	0	. 0	0		0	0	0	
77	WALK	0	0	0	0	0	0		0	0	15	
78		0	0	0	0	.0	0.		0	0	O	
79		0	0	0	0,	0	0		0	0	0	
80		0	0	. O	0	0	0.		0	0	0	
81		0	. 0	0	0	0	0		0	0.	6	
82		0	0	0	0	0	0		0	0	0	
83		0	0	0	. 0	۵,	0		0	0	0	
. 84		0	0.	0	.0	.0	0		0	0	05	
. 85		0	0	0	0.	0	0		0	0	0	
86		0	.0	0	0	0	0		0	0	0	
87		0	0	0	0.	0	0		0	0	0	
88		0	0	0	D	0	0.	•	0	0	0	
89		0	0	0	D	0	0		0.	0	0	
90		0	0	0	0	0	o o		0	0	0	
91		0	0	0	0	0	0		0	0	0	
92	MILL	. 0	0	0	٥	٥	0		0	0	(1)	
93		0	0	0	0	0	0		0	0	0	
94		0	0	0	0	0	0		0	0	0	
95		0	0	Ó	O	0	0		0	0	0	
96		ð	0	O	0	0	0.		0	6	0	
97		0	. 0	0	0	0	0		0	0	٥	
98		0	0	٥	٥	0	0	1	0	0	0	
7100		0	0	0	0	0	0		0	0	٥	
		0.	0	0	Ò	D	0		0	0	٥	
	Cells:	group	O seam	ents,	washed	3x in	Saline	, lx ir	LISS			
- p 4 #	Antoglol	ulin S		fizer		-25-						

(b). 20 negative sera tested with monospecific antiglobulin sera.

	L1;	ss su	spended	red	cells	10	mins.	incubati 37C f	or 1	o mins	tempe	ratur
	1	RT →	37C +	IAT								
			Ar	ti-Ic	G An	ti [†] IgM	Ar	ıti [‡] IgA	Ant	ti+C3	A	nti ⁺ C4
1		0	0	0		0		0		0		0
2		0	0	0		0		0		0		0
3		0	0	0		0		0		0		0
4		0	0	0		0		0		O		0
5		0	0	0		0		0		0		03
6		0	0	0		0		0		0		0
7		0	0	0		0		0		0		0
8		0	0	0		0		0		0		0
9		0	0	0		0		0		0		05
10		0	0	0		0		0		0		0
11		0	0	0		0		0		0		0
12		0	0	0		0		0		0		0
13		0	O	0		0		0		0		0
14		0	0	0		0		0		0		0
15		0	0	0		0		0		0		0 5
16		0	0	0		0		0		0		0
17		0	0	0		0		0		0		0
18		0	O	0		0		0		O		0
19		0	0	0		0		0		0		士
20		0	0	0		0		0		0		03
	Cells: (Groun	0 seam	ents.	washed	3x in	saline	1x LISS				
	Anti-IgG	r, 4	, 5, 6,	(1:1	28)		nti-C3	: R123+	(1:8)			
	Anti-IgM Anti-IgA					32, 20	1-30-	: ABC (1 -75(1:20)	:8)			

-26-

32 FALSE POSITIVE REACTIONS USING LISS

a) 100 sera from unselected hospital patients were tested against a pool of two screening cells (i.e., containing most common blood group antigens). The cells were washed x3 in normal saline and then resuspended to 2% in LISS. Two volumes of these cells were added to two volumes of sera and incubated at 37°C for 10 minutes (incubation time selected from previous experiments) and then washed x4 and tested with commercial (Ortho) antiglobulin sera. If a positive result was found the sera was retested in parallel with albumin suspended red cells and also tested against a panel of phenotyped red cells to identify the specificity of the antibody.

Sera	INDIPECT	LISS ANTIGLOBULIN TEST	SERA	INDIRECT	LISS ANTIGLOBULIN TEST
1 2 3		0	35		0
2		0	36		0
_		0	. 37		0
4		0	38		3 (Alb IAT 3+)
5		1/2 (Alb IAT Negative)	39		Anti-Leb
•		Unidentified	40		0
7 .		0	41		0
8		Ŏ	42		Ŏ
٤		Ŏ	43 .		Ŏ.
10		Ŏ	44		0
11		0	45		0
12		Ŏ.	46		Ŏ
13		•	47	•	Ŏ
14		Ŏ	48		ŏ
15		0	49		ŏ
16		0	50		Ŏ
17		0	51		. 0
18		0	52		o o
19		0	53		.0
27		0	54		Ŏ
21		0	55		Ŏ
22		Ö	56		0
23		Ò	57		Ŏ
24		0 .	. 58		Ō
25		0	59		0
2.		0	.60		0
27		0	61		0
28		0	62		0
29		Ö	63		0
30		0	64		Ó
31		0	65		Ò
34		0	66		Ö
33		0	6.7		0
34		3 (Alb INT 1 1/2). Anti-D	68		, O.

" / ".e	INDIPECT AUTICIOBULIN TEST	SERA	IISS INDIPECT MITICIOBULIN TEST
69 .	0 .	85	0
70	Ō	86 .	0
	3 (Alb IAT Negative)	87	0
••.	Unidentified	88	. 0
72	0	89	0
73	Ŏ	90	0
74	Ŏ	91	0
75	o ·	92	0
76	Ŏ	93	0
77	Ŏ.	94	. 0
78	Ŏ	95	0
79	0	96	Ö
80		97	0
(1	ň	98	0
82	Ď.	99	0
83	Ŏ	100	. 0
84	Ŏ		

b) 21 of the negative sera were further tested by indirect antiglobulin test using anti-IgG, -IgA, -C3 and -C4 at optimal dilutions.

Antiglobulin Sera

	Anti-IgG	Anti-IgA	Anti-C3	Anti-C4
1 .	0	0	. 0	0
2 .	0	0	. 0	0
3	0	0 .	. 0	0
4	0	0	0	. 0
5	ň	Ŏ	Ŏ	ŏ
6		Č	. 0	
7	Ů,	•	0	0
	0	. 0	0	0
8	0	0	0	0
9	0 .	0 .	0	0
10	0	. 0	. 0	0
11	0	0	0	0
12	0	0	0	0
13	Ó	Ŏ	Ŏ	ň
14	Č	^		Š
74	•	. 0	•	
12	Ü	. 0	. 0	0
16	. 0	0	0	0
17	0	0 .	0	0
18	0	0	0	. 0
19	0	0	0	0
20	Ô	0	0	0
21	· ŏ	ŏ	· ŏ	· ŏ

SUMMARY OF RESULTS OF PART 3

When sera from 100 unselected hospital patients were tested four positive results were obtained. One serum contained anti-D and another anti-Le^D; both of these antibodies reacted by "non-LISS" methods. Two of the sera contained antibodies reacting by LISS techniques only but unfortunately insufficient sera was available to identify these antibodies.

No non-specific results were observed when sera from 100 normal blood donors were tested by the LISS method.

The use of powerful monospecific anti-IgG, -IgA, -C3 and -C4 reagents, prepared in our own laboratory, yielded no false positive reactions either.

4. COMPARISON OF SALINE, ALBUMIN AND LISS SENSITIVITY IN ANTIBODY DETECTION

One hundred antibodies were tested against saline, albumin and low ionic strength solution (LISS) suspended red cells. Fifty of the antibodies were IgM agglutinating antibodies; 24 of the sera contained IgM agglutinating and IgG sensitizing Rh antibodies and 26 reacted only by indirect antiglobulin test.

The 50 agglutinating antibodies were read after immediate centrifugation and incubation at room temperature (24C) or 20C for ten minutes. The antiglobulin reactive antibodies were read for agglutination following:

- a) Immediate centrifugation, then followed by washing x4 and addition of antiglobulin serum.
- b) 37C incubation for optimal incubation period (i.e., 60 minutes for saline and albumin and 10 minutes for LISS) then followed by washing x4 and addition of antiglobulin serum.

4. COMPARISON OF SENSITIVITY IN ANTIBODY DETECTION

Direct Agglutination

1. ABO Sera from hospital patients tested against A cells or B cells, as appropriate. Read after immediate centrifugation (I.C.) and following incubation at room temperature (24°C) for 10 minutes.

	Sali		211			
	IC	10 mins	Albu IC		LIS IC	10 mins
Group O						
#1	4	4	4	. 4	4	4
#2	3	3	3	3	2	3
‡ 3	4	4	4	4	4	4
# 4	14	2	1	2	1	11/2
‡ 5	4	4	4	4	4	4
‡ 6	4	4	2	3	3	31/2
‡ 7	4	4	4	4	4	4
#8	4	4	3	4	4	4
# 9	4	4	3	4	4	4
#10	3	4	21/2	4	3	4
Group A						
#1	21/2	3	1	3	21	3
#2	4	4	11/3	3	3	4
#3	3	3	1	21/2	3	3
#4	4	4	21/2	31/2	4	4
# 5	21/2	3	1	21/2	14	3
16	3	34	21/2	314	3	31/3

Direct Agglutinati	on conti	nued			
	Sali		Album		LISS
	IC	10 mins	IC	10 mins	IC 10 mins
Group B					
#1	4	4	4	4	4 4
#2	4	4	3	4	4 4
#3	4	4	31/2	4	4 4
#4	4	4	4	4	4 4
# 5	4	4	3	4	4 4
2. Anti-I (10 Minute	es at 240	<u>C)</u>			
#1	0	1	0	2	0 2
‡ 2	0	11/2	0	25	0 1
‡ 3	0	1	0	4	0 (1)
#4	0	21,	0	ì	0 1
# 5	0	1 ′	0	1	0 1
† 6	0	2	0	3	0 2
3. Anti-H (10 Minutes	-+ 4001				
				11.	0 1
#1	0	1	0	1½ 2	0 1½
#2 #3	0	15	0	15	0 1
			0	2	0 2
#4	0	2	·	-	0 2
4. Anti-M (10 Minutes	at 20°C)				
#1	0	11/2	0	11/2	0 11/2
‡ 2	0	1	0	1	0 1
‡ 3	0	1	0	1	0 1
14	0	0	0	0	0 (1)
# 5	0	0	0	0	0 1

Direct Agglutination

	Sal IC	ine 10 mins	Albu	umin	LIS	s
				10 mins	10	10 mins
5. Anti-N (10 Minu	tes at 20	o _C)				
#1	0	23	0	2	0	2
#2	0	21,	0	21		
#3	0	3	0	24	0	21/2
#4	0	1	0	2片	0	2
# 5	0	3		(1)	0	1
		3	0	21/2	0	25
6. Anti-P1 (10 Mir.	utes at 2	20°C)				
\$ 1	0	3	0	3	0	3
12	0	1	0	1		
#3	0	1	0		0	15
			·	.2	0	11/2
7. Anti-Lea (10 Mi	nutes at 2	20°C)				
₹1.	0	1	. 0	2	0	1
2	0	0	0	1 .	0	0
‡ 3	0	0	0	2片	0	0
8.Anti-Leb (10 Min	utes at 2	0°C)				
#1	0	14	0	11/2	0	1
12	0	4	0	11/2	0	
				+3	U	ż
9.Anti-Rho (D) (10	Minutes a	at 37°C)				
#1	0	3	0	21/2	0	31/2

Indirect Antiglobulin Test (IAT)

All tests were read for agglutination following:

- a) Immediate centrifugation, then followed by washing x4 and addition of antiglobulin serum
- b) 37°C incubation for optimal incubation period (i.e., 60 minutes for saline and albumin and 10 minutes for LISS) then followed by washing x4 and addition of antiglobulin serum.
- a) Immediate Centrifugation (IC) -> Indirect Antiglobulin Test (IAT)

	Sali		Albu		LIS	
	IC	IAT	IC	IAT	IC	TAI
Anti-D		.,				
#1	2	4	4	4	0	4
#2	2	3	3	3	. 2	2
‡ 3	0	(1)	0	(1)	0	(1)
#4	1	3.	1	3	0	3
# 5	2	3	2	3	1	3
#6	(1)	3	(1)	3	(1)	31/2
17	1	31/2	3	31/2	(1)	31/2
B	3	4	3	4	31/2	4
Đ	11/2	31/2	3	31/2	1	31/2
‡10	15	3	3	3	(1)	3
#11	0	31/2	2	31/2	(1)	3½
#12	0	4	3	4	0	4

	Sali: IC	ne IAT	Albi IC	umin IAT	LISS IC	S LAT
Anti-E						
#1	0	14	0	(1)	0	11/2
‡ 2	(1)	1	(1)	2	(1)	2
‡ 3	(1)	2	(1)	2	(1)	2
#4	11/2	2	(1)	2	11/2	2
# 5	1	3	1	25	1	31/2
Anti-C						
#1	(1)	3	(1)	21/2	(1)	31/2
#2	(1)	(1)	(1)	(1)	(1)	1
Anti-c						
#1	(1)	3	2	3	(1)	31/2
‡ 2	11,	2	13	11/2	15	21/2
‡ 3	2	3	1	3	2	31/2
Anti-e						
#1	(1)	13	(1)	1	(1)	2
#2	(1)	1	(1)	1	(1)	14
Anti-Lea						
#1	0	0	0	0	0	0
#2	0	0	0	0	0	0
#3	0	0	0	0	0	0
#4	0	0	0	0	0	0
4 5	0	0	0	0 .	0	0

	Sali		Albu		LIS		
	IC	TAT	IC	IAT	IC	IAT	
Anti-Leb							
#1	0	0	0	0	0	0	
#2	0	0	0	0	0	0	
Anti-S							
#1	0	(1)	0	(1)	0	1	
#2	0	0	. 0	0	0	(1)	
Anti-s							
#1	0	(1)	0	(1)	0	2	
#2	0	1	0	11/2	0	2	
Anti-Lua							
#1	0	0	0	0	. 0	0	
‡ 2	0	0	0	0	0	0	
Anti-Lub							
#1	0	(1)	0	(1)	0	(1)	
#2	0	1/2	0	15	0	1/2	
Anti-K							
#1	0	11/2	0	11,	0	2	
# 2	0	(1)	0	(1)	0	(1)	
Anti-K							
#1	0	24	0	24	0	3.	
#2	0	3	0	. 3	0	3	

	Sal		Albu		LIS	
	IC .	IAT	IC	IAT	IC :	LAT
Anti-Fy ^a						
#1	0	(1)	0	(1)	0	1
\$ 2	0	0	0	0	0	0
Anti-Fy ^b						
#1	0	(1)	0	(1)	0	11/2
\$ 2	0	1	0	1	0	11/2
Anti-Jk ^a						
#1	0	14	0	(1)	0	2
‡ 2	0	1	0	(1)	0	21/2
Anti-Jk ^b						
#1	0	0	0	0	. 0	0
‡ 2	0	0	0	0	0	0

b) Optimal Incubation Period + IAT

	Sali	Saline		min	LISS		
	. 1 hr	IAT	1 hr	IAT	10 mins	IAT	
Anti-D							
#1	0	4	(1)	4	0	4	
‡ 2	(1)	31/2	3	31/3	0	31/2	
‡ 3	0	(1)	0	11)	0	(1)	
#4	1	31,	1	315	1	31/2	
# 5	(1)	4	(1)	4	(1)	4	
# 6	3	31/2	3	31,	31/2	31/2	

		Saline Albumin 1 hr IAT 1 hr IAT			LISS 10 mins IAT		
		-			,		
Anti-D (cont.)							
# 7	0	4	1	4	0	4	
#8	0	4	2	4	0	4	
#9	11/2	4	3	4	1	4	
#10	(1)	3	21/2	3	0	31/2	
#11	0	31/2	3	31/2	0	3½	
#12	0	4	1	4	0	4	
*							
Anti-E							
#1	14	2	2	23	21/2	3	
‡ 2	11/3	23	2	3	25	3	
#3	2片	31/2	25	3½	21/2	3½	
# 4	15	4	1	4	14	4	
# 5 Anti-C	2片	3	21/2	3	2½	4	
#1	11/2	3	15	3	11/2	3	
‡ 2	1	13	1	14	1	2	
Anti-c							
#1	1	4	2	4	15	4	
‡ 2	2	31/2	21/2	3	21/3	31/2	
# 3	3	3	2	3	3	31/2	
Anti-ē							
# 1	11,	21/2	1	21/3	15	21/2	
‡ 2	14	14	1	14	14		

	Sali	ne	Albu	min	LISS		
	1 hr	IAT	1 hr	IAT	10 mins	IAT	
•							
Anti-Le ^a							
#1	0	0	0	(1)	0	Θ	
#2	0	0	0	4	0	4	
#3	0	1	0	1	0	1	
#4	0	4	0	1	0	(1)	
# 5	0	14	0	(1)	0	1	
Anti-Leb							
. #1	0	0	0	D	0	0	
#2	0	4	0	15	0	15	
Anti-S							
#1	0	1	0	1	0	11/2	
#2	0	(1)	0	(1)	0	1	
Anti-S							
#1	0	11/2	0	11/2	0	21/2	
‡ 2	0	15	0	2	0	2	
Anti-Lu ^a							
#1	0	4	0	1,	0	15	
‡ 2	0	15	0	1/2	0	15	
Anti-Lub							
#1	0	13	0	11/2	0	11,	
† 2	0	1	0	1	0	11,	
Anti-K							
#1	0	1	0	ī	0	14	
# 2	. 0	(1)		(1)	0	1	

Indirect Antig	lobulin Te	st (IAT)	continu	ed		
	Sali		Albu		LI	
	1 hr	IAT	1 hr	IAT	10 mins	IAT
Anti-K						
#1	0	21/2	0	21/2	0	3
#2	0	31/2	0	31/2	0	31/2
Anti-Fy ^a						
#1	0	11/2	0	11/2	0	11/2
#2	0	(1)	0	(1)	0	(1)
Anti-Fyb						
. #1	0	11/2	0	11/2	0	2
† 2	0	1	0	2	0	14
Anti-Jka					•	
#1	0	21/2	. 0	23	0	3
# 2	0	21/2	0	21/2	0	21/2
Anti-Jkb						
*1	0	(1)	0	(1)	0	(1)
# 2	0	2	0	2	0	2

Q

GUMMARY OF RESULTS OF PART 4

One hundred antibodies were tested against saline, albumin and low ionic strength solution (LISS) suspended red cells. Fifty of the antibodies were IgM agglutinating antibodies; 24 of the sera contained IgM agglutinating and IgG sensitizing Rh antibodies and 26 reacted only by indirect antiglobulin test.

The 50 agglutinating antibodies were read after immediate centrifugation and incubation at room temperature (24°C) or 20°C for ten minutes. All of the antibodies, except two reacted in saline, albumin or LISS. The two exceptions were anti-M that were only detected in LISS.

The Rh antibodies all reacted by indirect antiglobulin test in saline, albumin or LISS but some of the IgM agglutination reactions were only detectable by immediate centrifugation (probably because the powerful IgG antibodies present blocked available Rh antigenic sites on incubation). One such reaction was undetectable in LISS on immediate centrifugation but detectable in saline or albumin. It should be noted that this same serum reacted well when the immediate centrifugation test in LISS was tested with antiglobulin serum.

Of the other 26 antiglobulin reactive antibodies, one anti-Le^a was not detectable in albumin whereas one other anti-Le^a was detectable in LISS and albumin but not saline. All other antibodies were detectable in all three systems. Except for the anti-Le^a mentioned, all antibodies reacted equal or better in the LISS system (e.g., 2/2 anti-S, 2/2 anti-s, 2/2 anti-K, 1/2 anti-Fy^a, 2/2 anti-Fy^b and 1/2 anti-Jk^a tested reacted better in LISS than saline and albumin).

It should once again be noted that the LISS incubation time is only ten minutes compared to one hour for saline and albumin.

5. Specificity and Sensitivity Under Routine Conditions

1000 sera from unselected hospital patients were tested against red cells from donor units. Conventional methods using saline-suspended red cells with and without the addition of 30% albumin were compared with duplicate tests using the same red cells suspended in LISS. Optimal incubation times were used. All tests were incubated at room temperature and then 37C, read for agglutination at both temperatures and sensitization detected by the antiglobulin test. All negative reactions were checked microscopically. Any positive reactions were investigated to determine antibody specificity.

Pooled Group O segment from PMC blood bank. Sal cells: washed 3x in saline 5% LISS cells: washed 3x in saline 1x in LISS 2%

Sera (St. Joseph)

		15'		30'		1	5'	15'	10'		IAT
		(24C)		37C	IAT(imm)	IAT	RT	37C	IAT	(5C
	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LIS
	0	0	0	0	0	0	0 0	0	0	0	0
2	0	0	0	0	0	0	0 0	0	0	0	0
3	0	0	0	0	0	0	0 0	0	0	0	0
4 NUE	IEZ O	0	0	0	0	O	0 0	0	0	土	1
5	0	0	0	0	0	0	0 0	0	0	0	0
6	0	0	0	0	0	0	00	0	0	0	0
7	0	0	0	0	0	0	00	O	0	0	0
8	0	0	0	0	0	0	00	0	0	٥	0
9	0	0	0	0	0	0	0 0	0	0	0	0
10	0	0	0	0	0	0	00	0	0	0	0
11	0	0	0	0	0	0	0 0	0	0	0	0
12	0	0	0	0	0	0	00	0	0	0	C
13	0	0	0	0	0	0	0 0	0	0	0	0
14	0	0	0	0	0	0	0 0	0	0	0	0
15	0	0	0	0	0	0	0 0	0	0	0	0
16	0	0	0	0	0	0	0 0	0	0	0	0
17	0	0	0	0	0	0	0 0	0	0	0	4
18	0	0	0	0	0	0	0 0	0	0	0	0
19	0	0	0	0	0	0	0 0	0	0	0	0
20	0	0	0	0	0	0	0 0	0	0	0	0
21	0	0	0	0	0	0	0 0	0	0	0	(
22	0	0	0	0	0	0	00	0	0	0	C
	0	0	0	0	0	0	0 0	0	0	0	0
23					0	0	0 0	0	0	110000000000000000000000000000000000000	0

SERA from: ST. JOSEPH'S

		RT 1	(24C)	3	30°	IAT(i	mm)		AT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL	ALB	LISS	LISS	LISS	LISS
25		0	0	0	0	0	0	0	0	0	0	0	0
26		0	0	0	0	0	0	0	0	0	0	0	0
21		0	0	0	0	0	0	0	0	0	0	0	0
28		0	0	0	0	. 0	0	0	0	0	0	0	0
29		0	0	.0	0	0	0	0	0	.0	0	0	0
30		0	0	0	0	0	0	0	0	0	0	0	0
31	NURIER DREW,7-27-77	0	1	0	1/2	4	3	4	3	0	0	3	3
32		0	0	0	0	0	0	0	0	0	0	0	0
33		0	0.	0	0	0	0	0	0	0	0	0	0
	WEDDINGTON, PATRICIA	0	15	0	0	0	0	0	0	0	0	0	0
35		0	0	0	0	0	0	0	0	0	0	0	0
36		0	0	0	0	0	U	0	0	0	0	0	0
37	-	0	0	0	0	0	0	0	0	0	0	0	0
38		0	0	0	0	0	0	0	0	0	0	0	0
39		0	0	0	0	0	0	0	0	0	0	0.	0
40		0	0	0	0	0	0	0	0	0	0	0	0
41		0	0	0	0.	0	0	0	0	0	0	0	0
42		0	0	0	0	0	0	0	0	0	0	0	0
43		0	0	0	0	0	٥	0	0	0	0	0	0
44		0	0	0	0	0	0	0	0	0	0	0	0
45		0	0	0	0	0	0	0	0	0	0	0	0
. 46		0	0	0	0	0	0	0	0	0	0	0	0
47		0	0.	0	0	O.	0	0	0	0	0	0	0
<u> 148</u>		0	0	0	0	0	. 0	0	0	0	0	0	0
						-44-							3

SERA from: ST. JOSEPH'S

	R.T. = 24C												
		RT 15	(24C)		30 °	IAT(i	mm)	5'	15' RT	10' 37C	IAT	IAT (5C)	
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALI	LISS	LISS	LISS	LISS	
49		0	0	0	0	0	0	0 0	0	0	0	0	
50		0	0	0	0	0	0	0 0	0	0	0	0	
51		0	0	0	0	0	0	0 0	0	0	0	0	
52		0	0	0	0	. 0	0	0 0	0	0	0	0	
53		0	0	. 0	0	0	0	0 0	. 0	0	0	0	
54		0	0	0	0	0	0	0 0	0	0	٥	0	
55		0	0	0	0	0	0	0 0	0	0	0	0	
56 M	DELD, EARLE	0	0	0	0	0	6	0 0	(1)	0	0	0	
57		0	0.	0	0	0	0	0 0	0	0	0	0	
58		0	0	0	0	0	0	0 0	0	0	0	0	
59		0	0	0	0	0	0	0 0	0	0	0	0	
60		0	0	0	0	0	0	0 0	0	0	0	0	
61	-	0	0	0	0	0	0	0 0	0	0	0	0	
62		0	0	0	0	0	O	00	0	0	0	0	
63		0	0	0	0	0	0	00	0	0	0.	0	
. 64		0	0	0	0	0	0	00	0	0	0	0	
65		0	0	0	0	0	0	0 0	0	0	0	0	
66		0	0	0	0	0	0	00	0	0	0	0	
67		0	0	0	0	0	0	0 0	0	0	0	0	
68		0	0	0	0	0	0	00	0	0	0	0	
69		0	0	0	0	0	0	00	0	0	0	0	
. 70		0	0	0	0	0	0	00	0	0	0	0	
71		0	0	0	0	Q.	0	00	0	0	0	0	
772		0	٥	0	0	0	. 0	00	0	0	0	0	
						-45-							

SERA from: ST. JOSEPHS

	R.T.	= 240					,					
		RT 15	(24C)	3	30 ' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
13		0	0	0	0	0	0	00	0	0	0	0
74		0	0	0	0	0	0	0 0	0	0	0	0
75		0	0	O	0	0	0.	00	0	0	0	0
76	BACKMAN,	0	0	0	Ø	之	(1)	(生) 立	0	0	(1)	05
77		0	0	· 0	0	0	0	0 0	0	0	0	0
78		0	.0	0	0	0	0	00	0	0.	0	0
79		0	0	0	٥	Ò	O	00	0	0	0	0
80		0	0	0	0	0	0	0 0	0	0	0	0
. 81		0	0.	0	0	0	0	0 0	0	0	0	0
82		0	0	0	0.	0	0	0 0	0	0	0.	0
* 83		0	0	0	0	0	0	00	0	0	0	0
. 84		0	0	0	6.	0	٥	00	٥	0	os	0
85		0	0	0	0	0	0	00	0	0	0	0
86		0	0	0	0	0	0	0 0	0	0	0	0
87		0	0	0	0	0	0	00	0	0	٥	0
88		0	0	0	0	0	0	00	0	0	0 \$	0
. 89		0	0	0	0	0	0	0 0	0	0	0	0
90		0	0	0	0	0	0	0 0	0	0	0	0
91		0	0	0	0	0	0	00	0	٥	0	0
92	BACKMAN	0	Ó	0	0	0	1	0 (主)	0	0	(1)	(1)
93		0	0	0	Ô	0	0	00	0	0	05	0
94		0	0	0	0	0.	0	00	0	0	0	0
95		0	0	0	0	0	0	00	0	0	ō	0
	KATSUNI	0	0	0	0	0	0	00	0	U	1/2	0
						-46-						

SERA from: ST. JOSEPH'S

	R.T. = 24C			701		,						
	RT 1	5'(24C)		30 °	IAT(i	mm)	5 1A		15' RT	10' 37C	IAT	IA'
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL	ALB	LISS	LISS	LISS	LIS
97	0	0	0	0	0	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0	Ö	0	0	0	0
99	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	O	0	0
101	0	0	. 0	0	0	Ö	0	0	0	0	0	0
102	0	D	0	0	0	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0	0	0	0	0	C
105	0	0.	0	0	0	0	0	O	٥	0	0	0
106 LAUR	DN. O	0	0	0	0	0	0	0	0	0	1	0
107	0	. 0	0	٥	0	0	0	٥	0	0	0	0
108	0	0	Ö	0	0	0	0	.0	0	0	0	0
109	0	0	0	0	0	0	0	0	٥	0	0	0
110	0	0	6	0	0	0	0	0	0.	0	0	0
111	0	0	0	0	0	0	0	0	0	. 0	. 0	0
112	0	0	0	0	0	0	0	0	0	0	0	0
113	0	0	0	0	0	0	0	0	0	٥	0	0
114	0	0	0	0	0	0	0	0	0	0	0	0
115	0	0	0	0	0	0	0	0	0	0	0	0
116	0	0	0	0	0	0	0	0	0	0	0	0
117	0	0	0	0	0	Ö	0	O	0	0	0	0
118	0	0	0	0	0	0	0	D	0	٥	0	0
119	0	0	0	0	0	0	0	0	0	0	0	0
1/20	0	0	0	0	. 0	٥	0	0	0	0	0	0

SERA from: ST. JOSEPH'S

	R.T.	= 24C										
		RT 1	5'(24C)	3	30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
121		0	0	0	0	0	0	00	0	0	0	0
122		0	0	٥	0	0	0	00	0	0	0	0
123		0	0	٥	٥	0	٥	00	0	0	0	0
124		0	0	0	0	. 0	0	00	0	0	0	0
125		0	0	. 0	0	٥	0	00	. 0	0	0	0
126		0	0	0	0	٥	0	0 0	0	. 0	0	0
127		0	0	٥	0	0	0	0 0	0	0	0	0
128		0	0	0	0	0	0	00	0	0	0	0
129		0	0.	0	6	0	0	00	0	0	0	0
130		0	0	0	0	٥	0	00	0	0	٥	0
131		0	0	0	.0	0	0	00	0	0	0	0
132		0	0	0	0	0	0	00	0	0	0	0
133	-	0	0	0	0	0	0	00	0	0	0	0
134		0	0	0	0	0	0	00	0	0	0	0
135		0	0	0	0	0	0	00	0	0	0	0
. 136		0	0	0	0	0	6	00	0	0	0	0
137		0	0	0	0	0	0	00	0	0	0	0
138		0	0	0	0	0	0	00	0	0	0	0
139		0	0	0	0	0	0	00	0	0	0	0
140		0	0	0	0	0	0	00	٥	0	0	0
141		0	0	0	0	0	٥	00	٥	0	0	0
142		0	0	0	0	0	0	00	0	0	0	0
143		0	0	0	0	0	0	00	0	0	0	0
744		0	0	0	0	0	. 0	00	0	0	0	0
						-48-						

SERA from: ST. JOSEPH'S

	1	5' (240)		30'		T	5'	15'	10'	1	IAT
	RI	(240)		7C	IAT(i		IAT	RT	37C	INT	(5C)
	SAL	ALB	SAL	ALB	SAL		SAL ALB	LISS	LISS	LISS	
145	0	0	0	0	0	٥	0 0	0	0	0	0
146	0	0	0	0	0	0	0 0	0	0	٥	0
147	0	0	0	0	0	0.	0 0	0	0	0	0
148 -CHENKO	0	1	0	0	0	0	0 0	0	0	0	0
149	0	0	. 0	0	0	٥	0 0	0	0	0	0
150	0	. 0	D	0	0	0	0 0	0	0	0	0
151 A-1-2-58	0	0	0	0	0	0	0 0	0	0	(1)	1
152	0	0	0	0	0	0	0 0	0	0	0	0
153	0	0.	D	0	0	0	0 0	0	0	0	0
154	0	0	0	0.	0	0	0 0	0	6	0.	0
155	0	0	0	0	0	0	0 0	0	0	0	0
156	0	0	0	0.	0	0	0 0	0	0	6	0
157	0	0	0	0	0	0	0 0	0	6	0	0
158	0	0	0	0	0	0	0 0	0_	0	0	0
159	0	0	0	0	0	0	00	0	0	0	0
160	0	0	0	0	0	0	00	0	0	0	0
161	0	0	0	0	0	0	00	٥	0	0	0
162	0	0	0	Ö	0	0	00	Ò	0	0	0
163	0	0	0	0	0	0	0 0	0	0	0	0
164	0	0	0	0	0	0	00	0	0	0	0
165	0	0	0	0	0	0	0 0	0	0	Ò	0
16.2	0	0	0	0	Ó	0	00	0	٥	0	0
167	0	0	0	0	0	0	0 0	0	0	0	0
768	0	0	0	0	0	0	00	0	0	0	0
* .											
					-49-						
		1			-49-				1	1	

SERA from: P.M.C.

	R.T. = 24C													
		RT 1	(24C)	3	30' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	1A! (50		
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS		
		0	0	0	0	0	0	0 0	0	0	0	0		
2		0	0	0	0	6	0	0 0	0	0	0	0		
3		0	0	0	0	0	0	0 0	0	0	0	0		
4		0	0	0	0	0	0	0 0	0	0	0	0		
5		0	6	. 0	0	0	0	0 0	0	0	0	0		
. 6	RODGERS, D 1-7-78	1	1	0	1	0	(1)	0 0	(1)	0	0	0		
7		0	0	O	0	0	0	0 0	0	0	0	0		
8		Ö	0	6	0	0	0	00	0	0	0	0		
9		0	0.	0	0	0	0	00	0	0	0	0		
		0	0	0	0	0	0	00	0	0	0	0		
		0	. 0	0	0	0	0	00	0	0	0	0		
12		0	0	0	0	0	0	0 0	0	0	0	0		
13		0	0	٥	0	0	0	0 0	0	0	0	0		
14	MARK, F 1-7-78	0	0	0	0	0	0	00	1	0	os	o		
15		0	0	0	0	0	0	00	0	. 0	. 0	0		
16		0	0	0	0	0	0	00	0	0	0	0		
17		0	0	0	0	0	0	00	0	0	0	0		
18		0	0	0	O	0	0	00	0	0	0	0		
19		0	0	0	0	0	0	00	0	0	0	0		
20		0	0	0	0	0	0	00	0	0	0	0		
21		0	0	0	٥	0	0.	00	0_	0	0	0		
22		0	0	0	0	0	0	0 0	0	0	0	0		
23		0	0	0	0	0	9	00	0	0	0	0		
24		0	0	0	0	. 0	0	0 0	0	0	0	0		
*														
						-50-								

SERA from: PMC

	R.I.	- 240			30*		,		151			1-
		RT 15	(24C)	3	7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	I.
		SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LI
25		0	6	0	0	0	. 0	0 0	0	0	0	
26		0	0	0	0	0	0	00	0	0	0	
27		D	0	0	0	0	0	00	0	0	0	
28		0	0	0	0	. 0	0	00	0	0	0	
29		0	0	. 6	0	0	0	00	. 0	0	0	
30		0	0	0	0	0	0	00	0	0	0	
31		0	0	0	0	0	0	00	0	0	0	
32		0	0	0	O	0	0	00	0	0	0	
33		0	0.	0	0	0	05	0 0	0	0	0 ^s	
34		0	0	0	0	0	0	00	0	0	0	
35		0	0	0	0	0	0	00	0	0	0	
36	Urraus,s.	O	3	0	3	3	3	0 0	0	0	4	
37	-	0	0	O	0	0	0	00	0	0	O	
38	MARK, F 1-9-78	0	0	0	0	0	0	00		0	05	1
39		0	0	6	6	6	0	00	٥	0	0	
. 40		0	0	0	0	0	Q	00	٥	0	0	ŀ
41		0	0	0	0	0	0	00	0	0	0	
42		0	0	0	0	0	0	00	0	0	0	
43		0	0	٥	O	0	0	00	٥	0	0	
44		0	0	0	0	0	0	00	0	0	٥	
45		0	0	0	0	0	0	00	0	0	0	
46		0	0	0	٥	0	0	00	0	0	6	
47		0	0	0	0	0.	D	00	O	0	0	
748		0	Ó	0	0	0	. 0	0 0	0	٥	0	-
		-			·		- 1					+
						-51-						-

SERA from: PMC

	R.T.		,		30	,						
		RT 1	5'(24C)	3	7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
49	LEONARD, R. 1-10-78	0	0	0	0	0	0	00	(1)	0	0	0
50		0	0	0	0	0	O	00	0	0	0	0
51	HALE, W. 1-10-78	D	0	0	0	0	0.	00	0	0	1	0
52		0	0	0	0	0	0	0 0	0	0	0	0
53		0	0	. 0	0	0	0	00	0	0	0	0
54		0	.0	0	0	D	0	00	0	0	0	0
55		0	0	0	0	0	0	00	0	0	0	0
56		0	0	0	0	0	0	00	0	0	0	0
57		0	0.	0	0	0	0	00	0	0	0	0
_ 58		0	0	0	0	0	0	00	0	0	0	. 0
59	ELLIS, J. 1-10-78	0	0	0	0	(1)	(1)	(1) (1)	0	0	(1)	(1)
60		0	0	0	0.	O	0	00	0	0	0	0
61		0	0	0	0	0	0	00	0	0	0	0
62		0	0	0	0	0	0	00	0	0	6	0
63		0	0	0	0	0	0	00	0	0	0	0
64		0	0	6	0	0	0	00	0	0	0	0
65		. 0	0	0	0	0	0	00	0	0	0	0
66		0	0	0	Ò	0	0	00	0	0	0	0
67		0	0	0	0	0	0	00	0	0	0	0
68		0	Q	0	0	D	0	00	Ō	0	0	0
69		0	0	0	0	0	0	00	0	0	0	0
70		0	0	0	0	Ö	0	00	0	0	0	0
71		0	0	0	0	0	0	00	0	0	0	0
772	•	0	0	0	0	0	0	00	0	0	0	0
						-52-						

SERA from: PMC

		RT 15	5' (24C)	3	30 °	IAT(i	mm)	5'	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALE		LISS		LISS
73 411	M, G.	0	O	0	0	0	0	0 0	0	0	12	05
74		0	0	0	0	0	0	0 0	0	0	0	0
75 SK	RACE, P. -12-78	0	0	0	0	0	0	0 0	0	O	立	05
76		0	0	0	0	0	0	0 0	0	0	0	0
77		0	0	. 0	0	0	0	0 0	0	0	0	0
- 78		0	0	0	0	0	0	00	0	0	0	0
79		0	0	0	0	٥	0	.0 0	0	0	0	0
80		0	0	0	0	0	0	0 0	0	0	0	0
81		0	O,	٥	0	0	0	0 0	0	0	0	0
. 82		0	0	0	0	0	6	0 0	0	0	0	0
83		0	. 0	0	0	0	0	0 0	0	0	0	0
64		0	0	0	0	0	0	00	0	O	0	0
85 REG	CIARDO, 12ABETH	0	0	0	0	0	0	0 0	0	0	12	0
86		0	0	0	0	0	0	00	0	٥	0	0
87		0	0	0	0	0	0	0 0	0	. 0	.0	0
88		0	0	0	0	0	0	00	0	0	0	0
89		0	0	0	0	0	0	00	٥	0	0	0
90 512	LAN, NEHA 12-78	0	0	0	0	0	0	00	0	0	(1)	(1)
91		0	٥	0	0	0	0	00	0	0	0	0
92		0	0	0	0	0	0	00	0	0	0	0
93		0	0	0	0	0	Ö	00	0	٥	0	0
94		0	0	0	0	0	0	00	0	0	0	0
95		0	0	0	0	0	0	0 0	0	0	0	0
796		0	0	0	0	. 0	0	0 0	0	0	0	0
						-53-						1

SERA from: PMC

	R.T. =	240	,				,			,		
		RT 1	5 (24C)	3	30 ' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C
	,	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
97		0	0	0	0	0	0	00	0	0	0	0
98		0	0	0	0	0	6	0 0	0	0	0	0
99		0	0	0	0	D	0	00	0	0	0	0
100		0	0	0	0	. 0	0	00	0	0	0	0
101		0	0	. 0	0	0	0	00	. 0	0	0	0
102		0	0	0	0	0	0	0 0	0	0	0	0
103		0	0	0	0	0	0	00	0	0	0	0
104		0	0	0	0	0	0	00	0	0	0	0
105		0	0.	0	0	0	0	00	0	0	0	0
106		0	0	0	0	0	0	00	0	a	0	0
167		0	0	D	0	D	0	00	0	0	0	0
108		0	0	0	6	O	0	00	0	0	0	0
109	-	0	0	0	0	٥	0	00	0	0	0 -	0
110		0	0	0	0	0	0	0 0	0	0	0	0
111		0	0	Ò	0	0	0	0 0	0	0	0	0
112		0	0	0	0	0	0	00	0	9	0	0
1/3		0	0	٥	0	0	0	00	0	O	0	0
114		0	0	0	٥	0	0	00	0	0	0	0
115		0	0	D	O	0	O	0 0	0	0	0	0
116		0	0	O	0	0	0	00	0	0	0	0
117		0	0	٥	0	0	0	00.	O	d	0	0
118		0	0	0	0	Q	0	00	0	0	0	0
119		0	0	0	0	0	0	00	0	0	0	0
720		0	0	0	٥	0	. 0	00	0	0	0	٥
•												
						-54-						

SERA from: PMC

	R.T.	= 240											
		RT 15	(24C)	3	30' 7C	IAT(i	mm)	17	T.	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL	ALB	LISS	LISS	LISS	LISS
121		0	0	0	0	0	0	0	0	0	0	0	0
122		0	0	0	0	0	0	0	0	0	0	0	0
123		0	6	0	0	0	0.	0	0	0	0	0	0
124		0	0	0	0	0	0	0	0	0	0	0	0
125		0	0	. 0	٥	0	0	0	0	0	0	0	0
126		0	. 0	0	0	0	0	0	0	٥	0	0	0
127		0	0	0	0	0	0	0	0	٥	0	٥	0
128		0	0	0	0	0	0	0	0	0	0	0	0
129		0	0.	0	0	- 0	0	0	0	0	0	0	0
/30		0	0	0	0.	0	0	0	0	0	0	0	0
131	URALOFE, ELEANOR 1-16-78	0	0	0	0	0	2	0	2	0	0	(1)	1
132		0	0	0	0	٥	0	8	0	0	0	0	0
133		0	0	0	0	0	0	G	0	0	0	0	0
134		0	0	0	0	0	0	0	0	0	0	0	0
135		0	0	0	0	0	0	0	0	0	0	0 5	ó
136		0	0	6	0	0	0	0	0	0	0	0	0
137		0	0	O	0	0	0	0	0	0	0	0	0
138		0	0	0	0	0	0	0	0	0	0	0	0
/39		0	0	0	0	0	0	0	C	0	O	0	0
140		0	Q	O	0	0	0	0	0	0	0	05	30
141		O	0	0	O	0	0	0	O	0	0	03	0
142		C	0	0	0	Ó	0	0	0	٥	0	0	0
143		0	0	٥	0	0	0	0	0	0	0	0	0
7144		0	O	٥	0	0	0	0	0	0	0	0	0
						-55-							
		1						•					

SERA from: PMC

	RT 15'(24C)			30' 7C	IAT(i	mm)	5'	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
145	0	0	0	0	0	0	00	0	0	0	0
146	0	0	0	0	6	0	00	0	0	0	
147 RUSSELLY 1-16-78	0	0	٥	0	0	0	00	2	0	0	0
148	0	0	0	0	0	0	00	0	0	0	0
149	0	0	. 0	0	0	Ó	00	0	0	0	0
150	0	0	0	0	0	0	00	0	0	0	0
151	0	0	0	0	0	0	00	0	0	0	0
152	o	0	0	0	٥	0	00	0	0	0	0
153	0	Ŏ.	0	0	0	٥	00	0	0	0	0
154	0	0	6	0	6	0	00	0	0	0	0
155	0	.0	0	0	0	0	00		0	0	0
156	0	0	0	0	0	0	00	0	0	0	0
157	0	0	0	0	0	0	00	0	0	0	0
158	0	0	0	0	0	٥	00	0	0	0	٥
159	0	0	0	0	0	0	00	0	. 0	. 0	0
160	0	0	0	0	9	0	00	0	0	0	0
161	0	0	0	0	0	0	00	0	0	0	0
162	0	0	0	0	0	0	00	0	0	0	0
163	0	0	O	0	0	0	00	0	0	0	0
164	0	0	0	0	0	6	00	0	0	0	0
165	0	0	0	0	0	Ó	00	0	0	0	0
166	0	0	0	0	0	0	00	0	0	0	0
167	0	٥	0	0	0	0	00	0	0	0	0
768	0	0	0	0	. 0	0	00	٥	0	0	0
	-										
		9			-56-						

SERA from: STANFORD

	RT	15' (24C)		30' 37C	IAT(i	mm)	5' JAT	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
1	0	0	0	0	0	0	0 0	0	0	0	0
2	0	1=	0	0	0	0	0 0	0	0	0	0
3	0	0	0	0	0	0	0 0	0	0	0	0
4	0	0	0	0	0	0	0 0	0	0	0	0
5	0	0	. 0	0	0	0	00	. 0	0	0	0
6	0	0	0	0	0	0	0 0	0	0	0	0
7	0	0	0	0	0	0	00	0	0	0	0
8	0	0	0	0	0	0	00	0	0	0	0
9	0	0.	0	0	0	0	0 0	0	0	0	0
- 10	0	0	0	0	0	0	0 0	0	0	0	0
711		0	0	0	0	0	0 0	0	0	0	0
12	0	0	0	0	0	0	00	0	0	0	0
13	0	0	0	0	0	0	00	0	0	٥	0
14	0	0	0	0	0	0	00	0	0	0	0
12	0	0	0	0	0	0	00	0	0	0	0
. 16	0	0	0	٥	0	0	00	0	0	0	0
17	0	0	0	0	0	0	00	0	0	0	0
18	. 0	0	0	0	0	0	00	0	0	0	0
19	0	0	0	0	0	0	00	0	0	0	0
20	0	0	0	0	0	0	00	0	0	0	0
21	0	0	0	0	0	0	00.	0	0	0	0
. 22	0	0	0	0	0	0	00	0	0	0	0_
22	0	0	O	0	0	0	00	0	0	0	0
724	0	0	0	0	0	. 0	00	0	0	0	0
					-57-						

SERA from: IHR

	R.T. = 24C											
		RT 15	(24C)	3	30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
		0	0	0	0	0	0	0 0	0	0	0	0
2		0	0	0	0	0	0	0 0	0	0	0	0
3		0	0	0	0	0	0.	0 0	0	0	0	0
4		0	0	0	D	٥.	0	0 0	0	0	0	6
5		0	0	. 0	0	0	0	0 0	0	0	0	0
6		0	. 0	0	0	٥	0	0 0	0	0	0	0
7		0	0	0	0	0	0	00	0	0	0	0
8		0	0	0	0	0	0	0 0	0	0	0	0
9		0	0.	0	0	0	0	0 0	0	0	0	0
	•	0	0	0	0.	0	0	0 0	0	0	0	. 0
71		0	0	0	0	0	0	0 0	0	0	D	0
12		0	0	0	0.	0	0	00	0	0	0	0
13		0	0	0	0	0	0	00	0	0	0	0
14		0	0	0	0.	0	0	0 0	0	0	0	0
15		0	0	0	0	0	0	00	0	8	0	0
16		0	0	0	0	0	0	0 0	0	0	0	0
. 17		0	0	0	0	0	0	00	0	0	0	0
18		0	O	0	0	0	0	00	0	0	0	0
19		0	0	0	0	٥	0	00	0	0	0	0
20		0	٥	0	0	0	0	00	0	0	٥	0
21		0	0	0	0	0	0	00	0	0	0	0
2.2		0	0	0	0	O.	0	00	8	0	٥	0
23		0	0	0	0	0	0	0 0	0	0	0	0
	•	0	0	D	0	٥	0	0 0	0	0	0	0
1												
						-58-						

SERA from:]HR

	RT 1	(24C)	3	30' 7C	IAT(i	nm)	5'	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB		LISS		.ISS
25	0	0	0	0	0	0	0 0	0	0	0	0
26	0	0	0	0	0	0	0 0	0	0	0	0
27	0	0	0	0	0	0	0 0	0	0	0	0
28	0	0	0	0	0	0	00	0	0	0	0
29	0	0	. 0	0	0	6	00	0	0	0	9
. 30	0	0	0	0	0	0	00	0	0	Ó	0
31	0	0	0	0	0	0	00	0	0	0	0
32	0	0	0	0	0	0	00	0	0	0	0
33	0	0.	0	0	0	0	00	0	0	0	0
34	0	0	0	0	0	0	00	0	0	0	0
35	0	. 0	0	0	0	0	00	0	0	0	0
36	0	0	0	0	0	0	00	0	0	0	0
37	0	0	0	0	0	0	00	0	0	0	0
38	0	0	0	0	0	0	00	0	0	0	0
39	0	0	0	0	0	0	00	0	. 0	. 0	0
40	0	0	0	0	6	0	00	0	0	0	0
41 05BO-R	1	0	0	0	05	0	05 0	0	0	05	05
42	0	0	0	0	0	0	00	0	0	0	0
43	0	0	0	0	0	0	00	0	0	0	0
44	0	0	0	0	0	0	00	0	0	0	0
45	0	0	0	0	0	Ö	00	0	0	0	0
46	0	С	0	0	0	0	00	0	0	0	0
47	0	0	0	0	0	0	00	0	0	0	0
748	0	0	0	0	0	0	00	0	0	0	0
					-59-	•					

SERA from: THR

	R.T. = 24C										,	
		RT 15	(24C)	3	30' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
	1	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	ISS
49		0	0	0	0	0	0	0 0	0	0	0	0
50		0	0	0	O	٥	0	0 0	O	0	0	0
51		0	6	0	0	0	0	0 0	0	0	0	0
52		0	0	0	6	. 0	0	00	0	٥	Ō	0
53		0	0	. 0	0	0	0	00	. 0	0	0	0
54		0	0	0	0	0	0	0 0	0	. 0	0	0
55		0	0	0	0	0	0	00	0	0	0	0
56		0	0	0	0	05	05	0505	0	0	0 5	05
57		0	0	O	0	0	0	00	٥	٥	0	0
58		0	0	0	0	0	0	00	O	0	0	0
59		6	0	0	.0	0	0	00	0	0	0	0
60		0	0	0	0	0	0	00	0	0	0	0
61	-	0	0	0	0	0	0	00	0	0	0	0
62	1007252- 061E	0	0	0	0	0	0	0 0	0	0	12	(1)
63		0	0	0	0	0	0	00	0	O	٥.	0
. 64		0	0	0	0	0	0	00	0	0	٥	0
65		0	O	0	0	0	٥	00	0	0	0	0
66		0	6	0	0	0	0	00	0	O	٥	0
67		0	0	0	0	0	0	00	٥	0	0	0
68		0	0	0	0	0	0	00	0	٥	0	0
69		0	0	0	0	0	0	00.	0	0	٥	0
. 70		0	0	0	0	O	0	00	0	0	٥	٥
71		0	0	0	0	05	0	0 0	0	0	05	٥
72		0	0	0	0	0	. 0	00	0	0	0	0_
6.44												
						-60-						

SERA from: IHR

	K.I.	- 240			701							
		RT 15	(24C)	3	30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IA! (50
		SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LIS
73		0	0	0	0	0	0	00	0	0	0	0
74		0	0	0	0	0	0	0 0	0	0	0	0
75		0	0	0	0	0	0.	00	0	0	0	0
76		0	0	6	0	0	0	00	0	0	0	0
77		0	0	. 0	0	0	0	00	0	0	0	0
78		0	.0	0	0	0	O	00	0	0	0	0
79		0	6	0	0	0	0	00	0	0	0	0
80		0	0	0	0	0	0	00	0	O	0	0
. 81		6	0.	0	0	0	0	00	0	0	0	0
82		0	0	0	Ö	0	0	00	0	0	0	0
83		0	0	0	0	0	0	00	0	0	0	٥
84		0	0	0	0.	0	0	00	0	0	0	0
45		0	0	0	0	0	0	00	0	0	0	0
86		0	0	0	O	0	0	00	0	0	0	0
87	0-079087 TAYL	0	0	0	0	0	2 ±	0 (1)	0	0	2	12
88		0	0	0	0	0	0	0 0	0	0	0	0
89		•	0	0	0	0	0	00	0	0	0	0
90		0	0	0	0	0	0	00	O	0	0	0
91		0	0	O	0	0	٥	00	0	0	O	0
92		0	0	0	0	0	0	00	0	0.	0	0
93		0	0	٥	0	٥	0	00	0	0	O	0
94		0	0	0	0	Ō,	0	00	0	0	0	
95		0	0	0	0	0	0	00	0	0	0	0
396	•	0	0	0	0	0	0	00	0	0	0	O
		•										
						-61-						
The second second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		The second second	The second of						Maria Maria Colonia de Carrollo	

SERA from: IHR

	R.T.											
		RT 15	(24C)		30' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
97		0	0	0	0	0	0	00	0	0	0	0
98		0	O	0	0	0	0	00	1	0	(1)	(1)
99		0	0	0	0	0	0	00	0	0	0	0
100		0	0	0	0	0	0	0 0	0	0	0	6
101	Q-049916 LAVE	0	0	. 0	0	0	0	00	0	0	1/2	05
. 102		0	0	0	0	0	0	00	0	0	0	0
103		0	0	0	0	0	0	00	0	0	0	0
104		0	0	0	0	0	0	00	0	0	0	0
105		0	0.	0	0	0	0	00	0	0	0	6
		0	0	0	0	0	0	00	0	0	0	0
107		0	. 0	0	0	0	0	00	0	0	0	0
108		0	0	0	0	0	0	00	0	0	0	0
109		0	0	0	0	0	0	00	0	0	0	0
		0	0	0	0	0	0	00	0	0	0	0
111		0	8	0	0	0	0	00	0	. 0	. 0	0
112		0	0	0	0	0	0	00	0	0	0	0
113		0	0	0	0	0	0	00	0	0	0	0
114		0	0	0	0	0	0	00	0	0	0	0
115		0	0	0	0	0	0	00	0	0	0	0
116		0	0	0	0	0	0	00	0	0	0	0
117		0	0	0	0	0	0	00	0	0	0	6
118	-	0	0	0	0	6	0	00	0	0	0	0
119	R-037333 MINN	(,)	(1)	O	0	0	0	00	4	0	0	0
	V-088054 -CROE	(1)	0	0	0	. 0	0	00	(1)	0	1/2	0
						-62-						
The second	A					P.O.						

SERA from: IHR

 $R.T. = 24\dot{C}$

	K.1.	R.T. = 24C										
		RT 15	(24C)	3	30 ° 7C	IAT(i	mm)	5'	15' RT	10' 37C	IAT	IAT (5C)
	:	SAL	ALB	SAL	ALB	SAL	ALB	SAL AL	LISS	LISS	LISS	LISS
121		0	0	0	0	0	0	0 0	0	0	0	0
122		0	0	0	0	0	0	0 0	0	0	0	0
123		0	0	0	0	0	0	0 0	0	0	0	0
124		0	0	0	0	. 0	0	00	6	0	0	0
125		0	0	. 0	0	0	0	0 0	. 0	0	0	0
126	M-091173 KOPE	O	0	O	0	0	0	0 0	0	0	1 2	(1)
127		0	0	0	0	0	0	0 0	0	0	0	0
128		0	0	0	0	0	0	00	0	0	0	0
129		0	0,	0	0	0	0	00	0	0	0	0
130		0	0	0	0	0	0	0 0	0	0	0	0
131		0	0	0	0	0	0	0 0	0	0	0	0
132		0	0	0	0	0	0	0 0	0	0	0	0
133	-	0	0	0	0	0	0	0 0	0	0	0	0
134		0	0	0	0	0	0	0 0	0	0	0	0
135		0	0	0	0	0	0	0 0	0	0	0.	0
. 136		0	0	0	0	0	6	00	0	0	0	0
137		0	0	0	0	0	0	00	0	0	0	0
138		0	0	0	0	0	0	00	0	0	0	0
139		0	0	0	0	0	0	00	0	0	0	0
140		0	0	0	0	0	0	00	0	0	0	0
141		0	0	٥	0	0	0	00	0	0	0	0
142		0	0	0	0	0	0	00	0	0	0	6
143		0	0	٥	6	٥.	0	0 0	0	0	0	0
7144		0	0	O	O	0	. 0	00	0	0	0	0
	•											
						10-9						
						-63-					1	

SERA from: IHR

	R.T. = 240										
	RT	15' (24C)	<u></u>	30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	INT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
145	0	0	0	0	0	0	0 0	0	0	0	0
146	0	0	0	0	0	0	00	0	0	0	0
147	0	0	0	0	0	0	00	0	0	0	0
148	0	0	0	0	0	0	00	0	0	0	0
149	0	0	. 0	0	0	0	00	0	0	0	0
150	0	.0	0	0	0	0	00	0	0	0	0
151	0	0	0	0	0	0	00	0	0	0	0
152	0	0	0	0	0	0	00	0	0	6	0
153	0	0.	0	0	0	O	00	0	0	0	0
154	0	0	0	0	0	0	00	0	0	0	0
155	0	0	0	0	0	0	00	0	0	0	0
156	0	0	0	0.	0	0	00	0	0	0	0
157	0	0	0	0	05	0	0 0	0	0	05	0
158	0	6	0	0	05	05	0505	0	0	03	0
159	0	0	O	0	0	0	00	0	0	0	0
160	0	0	0	0	0	0	00	0	0	0	0
161	0	6	O	0	0	0	00	0	D	0	0
162	0	0	0	0	0	0	00	0	0	os	0
163	0	0	0	0	03	05	6 8	0	0	0 5	0
164	0	0	0	0	0	0	00	0	0	0	0
165	0	0	0	0	0	0	00	0	0	0	0
166	0	0	0	0	Ó	0	00	0	0	0	0
167 DON			0	0	0	0	0 0	0	0	1	05
768	•										
					-64-						

SERA from: IHR

	R.T. =	- 240										
		RT 15	(24C)	3	30' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
169		0	0	0	0	0	0	00	0	0	0	0
170		0	0	0	0	0	0	00	0	0	0	0
171		0	0	0	0	0	0	0 0	0	0	0	0
172		0	0	0	0	0	0	00	0	0	0	0
173		0	0	. 0	0	0	Ö	00	0	0	0	0
-174		0	0	0	0	0	0	00	0	0	0	0
175		0	ပ	O	0	0	0	0 0	0	0	0	0
176		0	0	0	0	0	0	0 0	0	0	0	0
ורו		0	0.	0	٥	0	0	0 0	0	0	0	0
178		0	0	0	0	0	0	00	0	0	Ó	6
179		0	.0	0	0	0	0	00	0	0	0	0
180		0	0	0	0	0	0	00	0	0	0	0
181		0	0	0	0	0	0	00	0	0	0	0
182		0	0	0	0	0	0	00	0	0	0	0
183		0	0	0	6	0	0	00	0	. 0	. 0	0
184		0	6	٥	0	0	0	00	0	0	0	0
185		0	0	٥	0	0	0	00	0	0	0	0
186		0	0	٥	0	0	0	00	0	0	0	0
187		0	0	0	0	0	0	00	0	0	0	0
/88		0	0	0	0	0	0	00	0	0	0	0
189		0	0	0	0	0	0	00	0	0	0	0
190		0	0	0	0	0	0	00	0	0	0	0
191		0	٥	0	0	0	0	00	0	0	0	0
192		0	0	0	0	. 0	0	0 0	0	0	0	0_
								1,716				
						-65-						

SERA from: IHR

 $R.T. = 24\dot{C}$

	1	5'(240)		301	T	Ι	5'	15'	10'		IAT
	RT	(24C)	3	7C	IAT(i		INT	RT	37C_	IAT	(5C)
;	SAL	ALB	SAL	ALB	SAL		SAL ALB		LISS	+	LISS
193	0	0	0	0	0	0	00	0	0	0	0
194	0	Ô	0	0	0	0	00	0	0	0	0
195	0	0	0	0	0	0	0 0	0	6	0	0
196	0	0	0	0	. 0	0	00	0	0	0	0
197	0	0	. 0	0	0	0	0 0	. 0	0	0	0
198	0	0	0	0	0	0	00	0	0	0	0
199	0	0	0	0	0	0	00	0	0	0	0
200	0	0	0	0	0	0	00	0	0	0	0
201	0	0	0	0	0	0	00	0	0	0	0
202	0	0	0	٥	0	0	00	0	0	0	0
203	0	0	0	0	0	0	00	0	0	0	0
204	0	0	0	O	0	0	00	0	0	0	0
205	0	0	0	0	0	0	00	0	0	0	0
206	0	0	0	0	0	O	00	0	0	0	0
207	0	0	0	0	0	0	00	0	0	0	0
. 208	0	0	0	0	0	0	00	0	0	0	0
207 WES	r I	(1)	0	0	0	0	0 0	1	0	0	0
210	. 0	0	0	0	0	0	00	0	0	0	0
211	0	0	0	0	O	0	00	0	٥	0	0
212	0	0	0	0	0	0	0 0	0	0	0	0
213	0	0	0	٥	0	0	0 0	0	0	0	0
214	0	0	0	٥	0	O	00	0	0	0	0
215	0	0	0	0	0	0	00	0	0	0	0
216	0	0	٥	0	0	. 0	0 0	٥	0	0	0
					-66-						
		1		2 1 201 - 1	KT 5 7 P	1		-			

SERA from: I HR

	R.T. = 24C	-,									
	RT 1	5' (24C)		30' 37C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
217	0	0	0	0	0	0	0 0	0	0	0	0
218	0	0	0	0	0	0	0 0	0	0	0	0
219	0	0	0	0	0	0	00	0	0	0	0
220	0	0	0	0	0	0	0 0	0	0	0	0
221	0	0	. 0	0	0	0	0 0	0	0	0	0
222	0	0.	0	0	0	0	00	0	0	0	0
223	0	0	0	В	0	0	0 0	0	0	0	0
224	0	0	0	0	0	0	0 0	0	0	0	0
225	0	0.	0	0	0	0	0 0	0	0	0	0
226	0	0	0	0.	0	0	0 0	0	0	0	. 0
227	0	O	0	0	0	0	0 0	0	0	0	0
228	0	0	0	B	0	0	0 0	0	0	0	0
229	0	0	0	0	0	0	0 0	0	0	0	0
230	0	0	0	0	0	0	0 0	0	0	0	0
231	0	0	0	0	0	0	0 0	0	0	0	0
232	0	0	0	0	0	0	00	a	0	0	0
233	0	0	0	C	0	٥	0.0	0	0	0	0
234	0	0	0	0	0	0	00	0	0	0	0
235	0	0	0	0	0	0	00	0	0	0	0
236	0	O.	0	0	0	0	0 0	Ö	0	0	0
237	0	0	0	0	0	0	0.0	0	0	0	0
238	0	0	0	0	0.	0	00	0	0	0	0
239	0	0	0	0	O	0	0 0	0	0	0	0
240	· 0	0	0	0	0	0	0.0	0	0	0	0
		4			-		-				
											-

SERA from: I HR

	RT 15	(24C)	3	30' 7C	IAT(i	mm)		5'	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL	ALB	LISS	LISS	LISS I	LISS
241	0	Q	0	9	C	0	0	0	0	0	0	0
242	0	Q	0	Q	0	Q	0	0	0	0	Q	0
243	0	0	0	Q	0	0	0	0	0	0	6	0
244	6	0	0	0	Q	0	0	0	0	0	Q	Q
245	0	0	. 0	0	0	0	0	0	0	0	0	Q
246	0	6	0	0	Q	0	0	0	0	0	Q	0
247	0	0	0	0	0	Q	Q	0	0	0	0	0
248	. 0	0	0	0	Q	0	0	0	0	0	0	0
249	0	0.	0	0	0	0	0	0	0	0	0	0
-250	0	0	0	0	0	0	Ó	0	0	0	0	0
251	6	. 0	0	0	0	0	0	0	0	0	0	0
252	0	0	0	0	0	0	0	٥	0	0	0	9
253	0	0	0	0	0	0	0	0	9	0	0	0
25-4	0	0	0	0	0	0	0	0	3 .	0	0	9
255	0	0	0	0	0	0	0	0	0	. 0	.0	0
256	0	O	0	0	0	0	0	0	0	0	0	0
257	0	0	0	0	0	0	0	0	0	0	0	0
258	0	0	0	0	0	0	0	0	•	0	0	0
259	0	0	0	0	0	0	0	0	Q	0	O	0
260	0	0	0	0	0	0	0	0	Q	0	0	0
261	0	0	0	0	0	0	0	0	Q	0	0	0
262	0	Ø	0	0	6	0	0	0	Q	0	0	0
263	0	0	0	0	0	0	0	0	0	0	0	0
264	0	0	0	0	. 0	0	0	0	0	0	0	0
265	0	0	0	0	0	0	0	0	0	0	0	0
					-68-		+-		4			

SERA from:

	. = 24C			30*		,		161	1201		725-
	RT 1	(24C)	3	7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
266	0	0	0	0	0	0	0 0	0	0	0	0
267	0	0	0	0	0	0	00	0	0	0	0
268	0	0	0	0	0	0	00	0	0	0	0
269	6	0	0	0	0	0	00	0	0	0	0
270	0	0	. 0	0	0	0	00	. 0	0	0	0
271	0	0	0	0	0	0	00	0	D	0	0
272	0	0	0	0	0	0	00	0	0	0	0
273	0	6	0	0	0	0	00	0	0	0	0
274	0	0.	0	0	0	6	00	0	0	0	0
275	0	0	٥	٥	0	٥	00	0	0	0	0
276	0	0	0	0	0	0	00	0	0	0	0
277	0	0	0	0	0	0	00	0	0	0	6
218	0	0	8	٥	0	٥	00	0	0	0	0
279	0	0	0	0	0	0	00	0	0	O	0
280	0	0	0	0	0	0	00	0	0	0	0
281	0	0	٥	0	0	0	00	0	0	0	0
282	6	0	D	0	0	0	00	0	0	0	0
283	0	0	0	0	0	0	00	0	6	0	0
284 ROB1	0	2	0	0	0	0	0 0	1	0	0	0
285	0	0	0	0	0	0	00	0	0	0	0
286	0	0	0	0	0	0	00.	0	0	0	0
287	0	0	0	0	0	6	00	0	0	0	0
218	0	Ŏ,	D	0	O.	0	00	0	0	6	0
289	0	0	0	0	0	. 0	00	0	0	0	0
					-69-						

SERA from: IHR

	RT 1	(24C)	3		IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	. 0	05	0 0	1	0	05	0
·	0	0	· 0	0	0	0	00	. 0	0	6	0
Wood	0	0	0	0	1	1	(i) (i)	0	0	15	(1)
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	D	0	0
	0	0	0	0	(立)	05		0	0	(七)	03
	0	0	0	0	0	0	0 0	0	0	0	٥
	0	0	0	o	0	0	00	0	0	0	0
MOON	0	1	0	0	0	0	00	0	0	0	0
_	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	0	0	0
	0	0	D	0	0	0	00	0	0	0.	0
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	0	0	0
	0	0	0	0	0	0	00	0	O	0	0
	0	0	0	0	0	0	00	O	0	0	0
	0	0	0	0	0	0	00.	0	0	0	0
	0	0	0	0	0	0	00	0	0	O	0
	0	0	0	0	a	0	00	٥	O	0	0
	0	0	0	0	0	. 0	00	٥	0	0	0
•											
					-70-						
	Wood	SAL	RT 15' (24C) SAL ALB O O O O O O O O O O O O O O O O O O	RT 15'(24C) 3 3 3 3 3 3 3 3 3	RT 15' (24C) 37C 37C	RT 15'(24C) 37C IAT(1) SAL ALB SAL ALB SAL O O O O O O O O O	RT 15'(24C) 37C IAT(1 mm)	RT 15'(24C) 37C IAT(1 mm) 1AT SAL ALB SAL ALB SAL ALB SAL ALB SAL ALB SAL ALB O	RT 15 (24C) 37C 1AT (1mm) 1AT RT SAL ALB SAL ALB SAL ALB SAL ALE SAL ALE LISS O	RT 15' (24C) 37C IAT (1 mm) 15' 15' 10' 37C SAL ALB SAL ALB SAL ALB SAL ALB SAL ALB LISS LISS O	RT 15

SERA from: IHR

	RT 1	5'(24C)		30' 37C	IAT(i	mm)	5'	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	1
314	0	0	0	0	0	0	00	0	0	0	0
315	0	0	0	0	0	0	00	0	0	0	0
316	6	0	0	0	0	0	00	0	0	0	0
317	. 0	0	0	0	0	0	00	0	٥	0	0
318	0	0	. 0	0	0	0	00	0	0	٥	0
319	0	0	0	0	0	0	00	0	0.	0	0
320	0	0	0	0	0	0	00	0	0	0	0
321	0	0	0	0	0	0	00	0	0	0	0
322	0	0	0	0	0	0	00	0	0	0	6
373	0	0	0	0	0	0	00	0	0	0.	0
324	0	0	0	0	0	0	00	0	0	O	0
325	0	0	0	0.	0	0	00	O	0	0	0
326	0	0	6	0	0	0	00	0	0	0	0
327	0	0	0	0	0	0	00	0	0	0	0
328	0	U	0	0	0	0	00	6	0	0	0
329	0	e	0	0	Ó	0	00	0	0	0	0
330	. 0	0	0	0	0	6	00	0	0	0	0
331	0	0	0	O	0	0	00	0	0	0	0
332	0	0	0	0	0	0	00	0	0	0	0
333	0	0	0	0	O	0	00	0	0	0	0
334	0	0	0	0	0	O	00	0	0	0	0
335	0	0	O	0	0.	0	0 0	0	0	0	0
336	0	0	0	0	0	0	00	0	O	0	0
	. 0	0	0	0	Ö	0	00	0	0	0	0_
					-71-						

SERA from: IHR

	1			411		1		251			
	RT -	5'(24C)	3	30 ' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
338	0	0	0	0	0	0	00	0	0	0	0
339	0	0	٥	0	0	0	00	0	0	0	0
340	0	0	0	0	0	0	00	0	0	0	0
341	0	0	0	0	0	0	00	0	0	0	0
342	0	0	. 0	0	0	0	00	0	0	0	0
343	0	. 0	0	0	0	0	00	0	0	0	0
344	0	0	0	0	0	0	00	0	0	0	0
345	0	0	0	0	0	0	00	0	0	0	0
346	0	Ó	0	0	0	0	00	0	0	0	0
347	0	0	0	0.	0	0	00	0	0	0.	0
348	0	0	0	٥	0	0	00	0	0	0	0
349	0	0	٥	0.	0	0	00	0	0	0	0
350	0	0	0	0	0	0	00	0	0	0	0
351	0	0	0	0	0	0	00	0	0	0	0
352	0	0	0	0	0	0	00	0	0	0	0
353	٥	0	0	0	0	0	00	0	0	0	0
354	0	0	0	0	0	0	00	0	0	0	0
355	0	٥	0	0	0	0	00	O	0	0	0
356	0	٥	0	٥	0	0	0 0	0	0	0	0
357	0	Q	0	0	٥	0	0 0	٥	0	٥	0
358	0	0	0	0	0	0	00	0	0	0	0
359	0	0	0	0	0.	0	0 0	0	0	0	0
360	0	ð	0	0	0	0	0 0	0	0	٥	0
361	, 0	0	6	0	0	0	0 0	0	0	0	0
	·										
					-72-						

SERA from: IHR

362 363 364 365 366 367	SAL	15' (24C)	SAL 0 0 0 0 0 0 0 0	30° 87C ALB O O	SAL O O O	ALB O O	SAL ALB	LISS O O	10' 37C LISS 0 0	LISS :	LISS
363 364 365 366	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0	0	0	0 0	0	0	0	٥
363 364 365 366	0 0 0	0 0 0 0	0 0	0 0	0	0	00	0	0	0	0
363 364 365 366	0 0 0	0 0 0	0 0	0	0	0				-	
365 366 367	0 0 0	0 0	. 0	0	 		0 0	0	0	0	0
366 367	0 0	0	. 0		0	•					
366 367	0	0		0		0	00	0	٥	0	٥
-367	0		0		0	0	00	0	٥	0	٥
		4		0	0	0	00	0	٥	0	0
368		0	0	0	0	٥	00	0	٥	0	٥
369	0	0	0	0	0	0	00	0	0	0	0
370	0	6.	0	0	0	0	00	0	0	0	0
.37]	0	0	6	0	0	6	00	0	0	0	0
4 1	LL O	(1)	0	0	05	05	03 3	0	0	03	0
373	0	0	0	0	0	0	0 0	0	0	0	0
374	0	0	0	0	0	O	00	6	0	0	0
375	0	0	0	0	0	0	00	٥.	0	0	0
376	0	0	0	0	0	0	00	0	. 0	.0	0
377 STE	(1) W	1	0	0	(之)	士	(生)(生)	(1)	0	士	(七)
378	0	0	0	0	0	0	00	0	0	0	0
379	0	0	0	0	0	0	00	0	0	0	0
380	0	0	0	0	0	0	00	٥	0	0	0
38/	0	0	0	0	0	O	0 0	0	0	0	0
382	0	0	O	0	0	0.	0 0	0	0	0	0
363	0	0	0	0	0	٥	00	0	٥	0	0
384	0	D	0	0	0	0	0 0	0	0	0	0
315	٥	0	0	0	. 0	0	0 0	0	0	0	0
		3			-73-						

SERA from: I H R

		RT 1	(24C)		30' 37C	IAT(i	mm)	5'	15' RT	10' 37C	IAT	IA (5
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS		LIS
386		0	0	0	0	0	0	0 0	0	0	0	(
387		0	0	0	0	0	0	0 0	0	0	0	(
388		0	0	0	0	0	0	0 0	0	0	0	(
369		0	0	0	0	0	0	0 0	0	0	0	
390		0	0	. 0	0	0	0	0 0	. 0	0	0	(
391		0	0	0	٥	0	0	0 0	0	0	0	(
392		0	0	٥	0	0	0	0 0	0	0	0	(
393		0	0	0	0	0	0	00	0	0	0	C
394		0	0.	0	0	0	0	00	0	0	0	(
395		0	0	0	0	0	0	0 0	0	0	0	(
396		0	0	0	Ö	0	0	0 0	0	0	0	1
397		0	0	0	0	0	0	0 0	0	0	0	
398	-	0	0	0	0	0	0	0 0	0	0	0	(
399		0	0	0	0	0	0	00	0	0	0	0
400		0	0	0	0	0	0	0 0	0	0	0.	
401		0	0	0	0	0	0	00	0	0	0	1
402		0	0	6	0	0	0	00	0	0	0	
403		0	0	0	0	0	0	0 0	0	0	0	1
404		0	0	0	0	05	0	0 0	0	0	0	C
405		0	0	0	0	0	0	00	0	0	0	(
406		0	0	0	0	0	0	0 0.	0	0	0	0
407		0	٥	0	0	0	0	00	0	0	0	(
408		0	0	0	0	0	0	00	0	0	0	0
409		0	10	0	0	05	. 0	00	0	0	0	4
410		0	0	0	.0	0	0	00	0	٥	0	(
						-74-						

SERA from: IHR

		RT 1	(24C)	,	30' 7C	IAT(i	mm)	5'	15' RT	10'	7.50	IAT
		SAL	ALB	SAL	ALB	SAL		\$AL A		J7C LISS	LISS	(5C)
411		0	0	0	0	0	0		0	0	0	0
412		0	0	0	0	0	O	0 0	_	0	0	0
413		0	0	0	0	0	0	0 0		0	0	0
414		0	0	0	0	0	0	6 0		0	0	0
415		0	0	. 0	0	0	0	0 0	0	6	03	05
416		0	. 0	0	0	0	0	0 0		٥.	0	05
411		0	0	0	0	0	0	0 0		0	0	0
418		0	0	0	0	0	0	0 0	0	0	0	٥
419		0	0.	0	0	0	0	0 0	0	0	0	0
420		0	0	0	0.	D	0	0	0	0	0	0
421		0	0	0	0	٥	0	0 0	0	0	0	٥
Keh		0	0	6	0.	0	0	0 0	O	0	0	0
423		0	0	0	0	0	0	6 0	0	0	0	0
424	•	0	0	0	0	0	0	0	0	0	0	0
425		0	6	٥	0	0	0	0	0	0	0	0
426		0	٥	0	0	0	0	0 0	0	0	0	0
427		0	0	0	0	0	0	0 0	0	0	0	0
428		0	0	0	0	0	0	0 0	0	0	0	0
439		0	0	٥	O	0	0	0 0	0	0	0	0
430		0	G	٥	0	0	0	0	0	0	0	0
431		0	0	0	0	0	٥	0	0	0	0	0
432		0	0	0	0	o.	0	0 0	0	0	0	0
433		0	0	0	0	0	0	0 0	0	0	0	0
434	•	0	0	0	0	٥	0	0 0	0	0	6	0
						-75-	-					

SERA from: IHR

R.T	. = 24C										
	RT 1	5'(24C)		30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
435	0	0	0	0	0	0	00	0	0	0	0
436	0	0	0	0	0	0	00	0	0	0	0
437	0	0	0	0	0	0	00	0	0	0	0
488	0	6	0	0	0	0	00	0	0	0	0
439	0	0	. 0	0	0	o	00	0	٥	0	0
440	0	0	0	0	0	0	00	0	0	0	0
441	0	0	0	0	0	0	0 0	0	0	0	0
442	Ö	0	0	0	0	0	00	0	0	0	0
443	0	Ó	0	0	0	0	00	0	0	0	0
444	0	0	0	0	0	0	0 0	0	0	0	0
445 VANN	0	.0	٥	0	0	0	00	0	0	12	05
446	0	0	0	0	0	0	00	0	0	0	0
447	0	0	0	0	0	0	00	0	0	0	0
448	0	0	0	0	0	0	00	0	0	0	0
449	0	0	0	0	0	0	0 0	0	0	.0	0
450	0	0	0	0	0	0	0 0	0	0	0	0
451	0	0	0	0	0	0	0 0	0	0	0	0
452	0	0	0	0	0	0	00	0	0	0	0
453	0	0	0	0	0	0	00	0	0	0	0
454	0	6	0	0	0	6	00	0	0	0	0
455	0	0	0	0	0	Ö	00	٥	0	0	0
456	0	0	0	0	0	0	00	0	0	0	0
457	0	0	0	0	0	٥	00	0	0	0	0
1458	0	0	0	0	. 0	0	00	0	0	0	0
459	0	0	0	0	0	0	00	0	0	0	0
					-76-						

SERA from: IHR

	RT 15			701								
	V.T	(24C)	3	30' 7C	IAT(i	mm)	17	T	15' RT	10' 37C	IAT	I
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL	ALB	LISS	LISS	LISS	LI
	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	D	0	0	0	0	6	0	0	4
	0	0	0	0	0	0	0	0	0	0	0	
	0	0	. 0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	6
	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
	0	0.	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
	0	. 0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	•
MILL	1	0	0	0	0	0	0	0	1	0	1	0
	0	0	0	٥	0	0	0	0	Ö	0	0	(
	0	0	0	0.	0	0	0	0	0	. 0	. 0	(
	0	0	0	0	0	0	0	0	0	0	0	(
VIEL	0	0	0	0	0	0	0	0		0	0	0
	0	0	0	0	0	6	0	0	0	0	0	C
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	(
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	. 0	0	0	0	0	0	0	0
					-77-							
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SERA from: IHR

		- 240	,		701-							-
		RT 15	(24C)	3	30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	[[]
	,	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LIS
484	BAKE	0	0	0	0	0	0	00	1	0	0	1
485		0	0	0	0	0	0	00	6	0	0	1
486		0	0	0	0	0	0	00	0	0	0	
487		0	0	0	0	. 0	0	00	0	0	0	1
488		0	0	. 0	D	0	0	00	0	0	0	
489		0	0	0	0	0	0	00	0	0	0	
490		0	0	0	0	0	0	00	0	0	0	1
491		0	0	0	0	0	0	00	0	0	0	
492	-	0	0.	0	0	0	0	00	0	0	0	
.493		0	0	0	0	0	0	00	0	0	0	
494		0	0	0	. 0	0	0	00	0	0	0	
495		0	0	0	0	0	0	00	0	0	0	
496	-	O	0	0	0	0	0	00	0	0	0	
497		0	0	0	0	0	0	00	0	0	0	
498		0	0	0	0	0	0	00	0	0	0.	
499		0	0	0	0	0	0	00	0	0	0	
500		0	0	0	0	0	0	00	0	0	0	
501		0	0	0	0	0	0	00	0	0	0	
502		0	0	0	0	0	0	00	0	0	0	
503		0	0	0	0	0	0	00	0	0	0	1
504		0	0	0	0	0	0	0.0	O	0	05	
505		0	0	0	0	0	0	00	0	0	0	
50b	NEWB	0	0	0	0	0	0	00	(1)	0	士	(:
.507		0	0	0	0	0	. 0	00	0	0	0	1
												+
						-78-						-

SERA from: IHR

	RT	15' (24C)		30 ' 37C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C)
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALE	LISS	LISS	LISS	
508	0	0	0	0	0	0	0 0	0	0	0	0
509	0	0	0	0	0	0	0 0	0	0	0	0
510	0	0	0	0	0	0.	00	0	0	0	0
511	0	0	0	0	0	0	0 0	0	0	0	0
512	0	0	. 0	0	0	0	00	0	0	0	0
513	0	.0	0	0	0	0	00	0	0	0	0
514	0	6	0	0	0	0	0 0	0	0	0	0
515	0	0	0	0	0	0	00	0	0	0	0
516	0	0.	0	0	0	0	00	0	0	0	0
517	0	0	0	0	0	0	00	0	0	0.	6
518	0	0	0	0	0	0	00	0	0	0	0
519	0	0	0	0.	0	0	00	0	0	0	0
520	0	0	0	0	0	6	0 0	0	0	0	0
521	0	0	0	0	0	6	0 0	٥	0	0	0
542	0	0	0	0	0	٥	00	0	0	0	0
593	0	0	0	0	0	0	00	0	0	0	0
524	0	0	0	0	0	0	0 0	0	0	0	0
525	0	0	0	0	0	0	00	0	0	0	0
526	0	0	0	O	0	0	00	0	. 0	0	0
527	0	0	0	0	0	0	00	0	0	0	0
528	0	0	0	0	0	0	00	0	0	0	0
529	0	0	0	0	9	0	00	0	6	0	0
530	0	0	0	0	0	0	00	0	0	0	0
7531	, 0	O	0	0	0	0	00	0	0	0	0
					-79-						

SERA from: IHR

	R.T.	= 240				,						
		RT 1	(24C)	3	30 °	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IAT (5C
		SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LISS
532		0	0	0	0	0	0	00	0	0	0	0
533		0	0	0	0	0	0	00	0	0	0	0
534		0	0	0	0	0	0	00	0	0	0	05
535		0	0	0	0	0	0	00	0	0	0	0
536		0	0	. 0	0	0	Ö	00	0	0	0	0
537		0	0	0	0	0	0	00	0	0	0	0
538		0	0	0	0	0	0	00	0	0	0	0
539		0	0	0	0	0	0	00	0	0	05	0
540		6	Ο,	0	0	0	0	o o	0	0	0	0
541		0	0	0	0	0	٥	00	0	0	0	0
542		0	. 0	0	0	0	0	00	0	0	0	0
543		0	0	0	0	0	0	00	0	0	0	0
544		0	0	0	0	0	0	00	0	0	0	0
545		0	0	0	0	0	0	0 0	0	0	0	0
546		0	0	0	0	0	0	00	0	. 0	. 0	0
547		0	0	0	0	0	6	00	0	0	O	6
548		0	٥	0	0	0	0	00	0	0	0	0
549		0	0	0	0	0	0	00	0	D	0	0
5.50		Ó	0	0	0	0	0	00	0	0	0	0
551		0	0	0	0	0	0	00	0	6	0	0
222		Ø	0	0	0	0	0	00	0	0	0	0
522		0	0	0	0	0	0	00	0	0	0	0
554		O	0	0	0	0	0	00	0	0	0	0
355		0	0	0	0	. 0	0	0 0	0	0	0	0
			16			-80						

SERA from: IHR

	RT 1	5'(24C)	,	30' 7C	IAT(i	mm)	5'	15' RT	10' 37C	T. m.	IAT
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB		LISS	LISS	(5C)
556	0	0	0	0	0	0	0 0	0	0	0	8
557	0	70	0	0	0	0	0 0	0	0	0	0
558	0	0	0	0	0	0	00	0	0	0	0
559	0	6	0	٥	0	0	0 0	0	0	0	0
560WALK	0	ı	· (ı)	(1)	1	1	(1) (1)	. 1	(1)	1主	1
561	0	0	0	0	0	0	00	0	0	0	0
562	0	0	0	0	0	0	00	0	0	0	0
563	0	0	0	0	0	0	00	0	0	0	0
564	0	0.	Ò	0	0	0	00	G	0	0	0
.565	0	0	0	٥	0	0	0 0	0	0	0	٥
566	0	0	0	o	0	0	00	0	0	0	6
567	0	٥	0	0	0	٥	00	0	0	0	0
568	0	0	٥	0	0	0	0 0	0	0	0	0
569	0	0	0	0	0	0	00	O	0	0	0
570	0	0	0	0	0	0	00	0	0	O	0
571	0	0	0	0	0	0	00	0	0	0	0
572	0	0	0	6	0	0	00	0	0	0	0
573	0	0	0	0	0	0	00	0	0	0	0
574	0	O	0	0	0	0	00	0	0	0	0
575	0	0	0	0	0	0	00	٥	0	0	0
576	0	0	0	0	0	0	00	0	0	0	0
577	0	٥	0	0	0	0	00	0	0	0	0
578	0	0	0	0	0	0	00	0.	D	0	0
579	0	0	0	0	0	. 0	00	0	0	0	0
580	0	0	0	.0	0	0	00	0	0	0	0
					-81-						

SERA from: IHR

	- 240			30*				151	101		T 3.5
	RT 1	(24C)	13	7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IA'
	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LISS
581	0	0	0	0	0	0	00	0	6	0	0
582	0	0	0	0	0	0	00	0	0	0	0
583	0	0	0	0	0	0.	00	0	0	0	0
584	0	0	0	0	0	0	00	0	0	0	0
585	0	0	. 0	0	0	0	00	0	0	0	0
586	0	. 0	0	0	0	6	00	0	0	0	0
587 WALK	. 0	0	0	0	0	0	00	0	0	15	十五
588	0	0	0	0	0	0	00	0	0	0	0
589	0	0,	0	0	0	0	00	0	0	0	6
.590	0	0	0	Ö	0	0	00	0	0	0	6
591	0	0	0	0	0	0	00	0	0	٥	0
592	0	0	0	0	0	٥	0 0	0	0	0	0
593	0	0	0	0	0	0	00	ಲ	0	0	0
594	0	0	0	0	0	0	00	0	0	0	0
595	0	0	0	0	0	0	00	0	0	0	0
596	0	0	0	0	0	0	00	0	0	0	0
597	0	0	0	0	0	0	00	0	0	0	
598	0	0	0	Ö	0	0	00	0	0	0	0
599	0	0	0	0	0	0	00	0	0	O	0
600	0	0	0	0	0	0	00	0	0	0	0
601	0	0	0	G	0	0	0 0	0	0	0	0
602	0	0	0	0	0	0	00	U	0	0	0
603	0	0	0	0	0	0	00	0	0	0	0
.804	U	0	0	0	٥	0	00	٥	٥	٥	0
					-82-						

SERA from: IHR

	RT 15	(24C)	3	30' 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	IA (5
	SAL	ALB	SAL	ALB	SAL	ALB	\$AL ALB	LISS	LISS	LISS	LIS
605	0	0	0	0	0	0	00	0	0	0	1
606	0	0	Ö	0	0	0	00	0	0	0	1
607	0	0	0	0	0	0	00	0	6	0	
608	0	0	0	6	0	0	00	0	0	0	
609	0	0	. 0	0	0	Ó	00	0	0	0	_
610	0	0	0	0	0	0	00	0	0	0	
611	0	0	0	0	0	0	.00	0	0	0	
612	0	0	0	0	0	0	60	0	0	0	
613	0	0,	0	0	0	0	0 0	0	0	0	
614	0	0	0	0	0	0	00	0	0	6	
615	0	.0	0	0	0	0	00	0	0	0	
616	0	0	,0	0	0	0	00	O	0	٥	
617	0	0	0	0	0	0	00	0	0	0	
618	0	0	0	0	0	0	00	0	0	0	
619	0	0	0	O	0	0	00	0	. 0	.0	
620	٥	0	0	6	0	0	00	0	٥	6	
621	0	٥	0	0	0	0	00	0	6	0	1
622	0	0	0	٥	0	0	00	0	0	٥	
623	O	0	0	0	0	0	00	0	0	0	
624	0	0	0	0	0	0	00	0	0	0	
625	0	0	0	0	0	ö	00	0	0	0	
626	0	0	0	O	0	٥	00	0	٥	0	
627	0	0	0	0	0	0	00	0	0	0	
028	0	٥	0	D	. 0	0	00	0	0	0	
								~~~~			
		*			-83-						

SERA from: IHR

	R.T.	= 24C										
		RT 15	(24C)	3	30 ° 7C	IAT(i	mm)	5' IAT	15' RT	10' 37C	IAT	I
	:	SAL	ALB	SAL	ALB	SAL	ALB	SAL ALB	LISS	LISS	LISS	LI
629		6	O	0	0	0	0	00	0	0	0	
630		0	0	0	O	0	0	00	0	0	0	
631		0	0	0	0	0	٥	0 0	0	0	0	
632		0	6	0	0	, 0	0	00	0	0	0	
633		0	O	. 0	0	0	0	00	. 0	0	0	
634		0	0	0	0	0	0	00	O	0	0	
635		0	٥	O	0	0	0	00	0	0	0	
636		0	0	0	0	0	0	00	0	0	0	
637		0	0,	0	0	0	0	00	0	0	0	
638		0	0	0	0	0	0	00	0	0	0	
639		0	0	0	0	0	0	00	0	0	0	
640		0	0	0	٥	0	0	00	0	ပ	0	
641	-	0	0	0	0	0	0	00	0	0	0	
642		0	0	0	0	0	0	00	0	0	0	
643		0	0	0	0	0	0	00	0	0	0.	
644		0	0	0	0	0	0	00	0	0	0	1
645		O	0	0	0	0	0	00	0	0	0	
646		0	0	0	0	0	0	00	0	0	0	-
647		0	٥	0	0	0	0	00	0	0	0	
648		6	٥	0	0	0	0	00	0	0	0	
649		6	0	0	0	0	0	00	0	0	0	
650	BURN	(1)	2七	0	O	0	0	00	1	0	1	-
3						·						
												+
						-84-						1

## SUMMARY OF RESULTS OF PART 5

One thousand and one sera from unselected hospital patients (sera from four different pathology laboratories) were tested against red cells from CPD donor segments by saline, albumin and LISS techniques at room temperature and 37C. The tests were initially set -up by incubating at room temperature, and then moved to 37C. All positive reactions at 37C were repeated using a prewarmed technique at 37C. A total of 44 sera contained antibodies.

The following results were obtained:

*

	Numb	er of Sera Reac	tions
	Saline	Albumin	LISS
Room Temperature (24C) Agglutination	8	15	20
37C Agglutination	1	4	1
Indirect Antiglobulin Test (RT + 37C)	8	12	27
Indirect Antiglobulin Test (Pre-warmed 37C)	8	12	26

Agglutination at room temperature occurred in 20 sera (2%) in LISS as compared to 8 in saline (0.8%) and 15 (1.5%) in albumin. Indirect antiglobulin tests at 37C (with a 15 minutes of incubation at room temperature preceding the 37C incubation) were positive with 27 (2.7%) of the sera using LISS but only 12 (1.2%) using albumin and 8 (0.9%) using saline suspended red cells. When the tests were carried out at 37C without the room temperature incubation one less serum reacted by the LISS procedure.

Of the 44 reactive sera only 39 had sufficient quantity to test against panels.

Of the 39 sera tested 9 did not react with any panel cells and 13 showed blood group specificity.

The following specificities have so far been defined:

## Agglutinins

- 1 anti-Lea: Reacted only by LISS at room temperature.
- 1 anti-Le^b: Reacted by saline, albumin and LISS at room temperature.
- 1 anti-P₁: Reacted by saline, albumin and LISS at room
  temperature.
- 2 anti-N: Reacted by albumin and LISS only at room temperature.
- 1 anti-I: Reacted by LISS only at room temperature.
- 2 anti-I: Reacted by albumin only at room temperature
- 1 anti-I: Reacted by saline, albumin and LISS at room
  temperature.

## Indirect Antiglobulin Test (IAT) at 37C

- 1 anti-D: Reacted by saline, albumin, and LISS in the IAT.
- 1 anti-E: Reacted by saline, ablumin, and LISS in the IAT.
- 1 anti-K: Reacted by LISS only in the IAT.
- 1 ? anti-I, H or IH: Reacted by saline, albumin and LISS in IAT only.

The 26 antibodies not containing specific antibodies were retested x2 (different days). (It should be noted that the initial screening was performed against red cells from donor segments (CPD) and the repeat screenings were performed against Pfizer Panoscreen Reagent Red Cells and our own Bay Area Red Cell Panel.)

Only 13 of the 26 sera reacted when retested. None of these
13 showed a definable specificity by the tests performed. Of these:

- 7 reacted by LISS only.

6

- 2 reacted by saline, albumin and LISS.
- 3 reacted by albumin and LISS only.
- 1 reacted by saline and LISS only.