TDM 729.89 915.51 185.62 \$\(25.43\)6 FLR 660.27 745.28 85.01 \$\(12.88\60.27 745.28 85.01 \$\(12.88\60.27 745.28 85.01 \$\(12.88\)6 DMW 833.72 1004.01 170.29 \$\(20.43\)6 QUV 440.55 540.21 99.66 \$\(22.62\)6 YZJ 903.49 1127.46 223.97 \$\(24.79\)6 HZT 285.51 344.98 59.47 \$\(20.83\)6 GLY 982.07 1219.39 237.32 \$\(24.17\)6 PCW 811.44 1029.66 218.22 \$\(26.89\)6 VDA 113.74 143.41 29.67 \$\(26.09\)6 AIK 361.77 451.39 89.62 \$\(24.77\)6 UVV 468.08 535.41 67.33 \$\(14.38\)6 ZJJ 858.36 994.57 136.21 \$\(15.87\)6 HJS 545.49 659.05 113.56 \$\(20.82\)6 C09.95 84.87 \$\(10.46.68\) 151.89 \$\(16.97\)6 C0 568.86 669.95 84.87 \$\(10.46.68\)6 151.89 \$\(16.97\)6 C0 568.86 669.95 84.87 \$\(10.46.68\)6 151.89 \$\(16.97\)6 C0 568.86 669.95 84.87 \$\(10.46.68\)6 151.89 \$\(10.46.68\)6 1

 PPJ
 912.63
 1038.36
 125.73 ** 13.78%
 ZGK
 39159
 491.48
 99.89 ** 25.51%

 UAQ
 1309.55
 1655.62
 346.07 ** 26.43 ***
 BNY
 969.21
 1130.65
 161.44 ** 16.66 **

 0AQ
 1295.17
 1641.66
 346.49 ** 26.75 **
 SDM
 735.44
 913.39
 177.95 ** 24.20 **

 PMR
 654.33
 775.84
 121.51 ** 18.57 **
 TDQ
 1323.91
 1646.42
 322.51 ** 24.36 **

Image Histogram

Image Histogram

Histogram

$$h(r_k) = n_k$$

Where r_k is the kth gray level and n_k is the number of pixels in the image having gray level r_k

Normalized histogram

$$p(r_k) = n_k / n$$

a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Image Histogram Algo

```
// Initialize the histogram
for (g = 0; g \le 255; g++)
h(g) = 0
// Compute the histogram
for (i = 0; i < MAX_{column}; i++)
for (j = 0; j < MAX_{row}; j++)
 h(f(i,j))++
```

Calculating Histogram in OpenCV

cv2.calcHist(images, channels, mask, histSize, range)

hist = cv2.calcHist([img],[0],None,[256],[0,255])

Histogram Equalization

 Histogram equalization can be used to improve the visual appearance of an image.

 Histogram equalization automatically determines a transformation function that produce and output image that has a near uniform histogram.

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-equalized images. Right column: histograms of the images in the center column.

Histogram Equalization

- Let r_k , $k \in [0..L-1]$ be intensity levels and let $p(r_k)$ be its normalized histogram function.
- The intensity transformation function for histogram equalization is

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$$
$$= \frac{L-1}{MN} \sum_{j=0}^k n_j, k = 0,1,2,...,L-1$$

Histogram Equalization - Example

a b c

 Let f be an image with size 64x64 pixels and L=8 and let f has the intensity distribution as shown in the table

r _k	n _k	$p_r(r_k)=n_k/MN$
0	790	0.19
1	1023	0.25
2	850	0.21
3	656	0.16
4	329	0.08
5	245	0.06
6	122	0.03
7	81	0.02

$$s_{0} = T(r_{0}) = 7 \sum_{j=0}^{0} p_{r}(r_{j}) = 7 p_{r}(r_{0}) = 1.33$$

$$s_{0} = 1.33 \rightarrow 1$$

$$s_{1} = 3.08 \rightarrow 3$$

$$s_{2} = 4.55 \rightarrow 5$$

$$s_{3} = 5.67, s_{4} = 6.23, s_{5} = 6.65, s_{6} = 6.86, s_{7} = 7.00.$$

$$s_{3} = 5.67 \rightarrow 6$$

$$s_{4} = 6.23 \rightarrow 6$$

$$s_{5} = 6.65 \rightarrow 7$$

$$s_{6} = 6.86 \rightarrow 7$$

$$s_{7} = 7.00 \rightarrow 7$$

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.