Rough differential equations in C^* algebras

Nicolas Gilliers, Trondheim, Norway

joint work with Carlo Bellingeri, TU Berlin, Germany

Bergen meeting, 30.10.2020

The problem

The class C of differential equations

Let $(\mathcal{A},\cdot,\|\cdot\|)$ be a C^{\star} algebra. Consider the following class of differential equations :

$$\mathrm{d} Y_t = a(Y_t) \cdot \mathrm{d} X_t \cdot b(Y_t), \ t \in [0,1].$$

 $ightharpoonup X: [0,1]
ightarrow \mathcal{A}$ is a continuous path with Hölder regularity $0 < \alpha < 1$,

$$||X_t - X_s|| \prec |t - s|^{\alpha}, \ t, s \in [0, 1]$$

- b two smooth functions a and b.
- \triangleright The problem is well-posed if X is a smooth path... or $\alpha = 1$.
- ▷ "Strong theory" for solving this kind of equations may have important applications in free probability theory.

Non-commutative probability theory

Examples of equations in the class $\mathcal C$ emerge in non-commutative free probability.

Non commutative probability space (Voiculescu '85

A probability space is a pair (\mathcal{A},ϕ) with \mathcal{A} a C^* algebra (in fact a von Neumann algebra...) and ϕ a positive linear map.

For example, classical probability theory corresponds to choosing for $\mathcal A$ the algebra of essentially bounded random variables on a probability space $(\Omega, \mathcal F, \mathbb P)$ and $\phi = \mathbb E$.

Whereas in classical probability, there is an unique way to define independence between two random variables X and Y, there are multiple ways to do in non-commutative probability.

Various notions of classical probability have counterparts in n-c. probability, such as (n-c.) stochastic processes, conditional expectations, martingales, Markov processes...

Free stochastic differential equations

Freeness is a notion of independence, that is a set of rules for computing a joint ditribution knowing the distributions of the marginales. Freeness has been introduced by Voiculescu in 85 and later Speicher in 93 sorted out the underlying combinatorics, defining free cumulants $(k_n(a))$ of a random variable a.

Free Brownian motion

Let $(\mathcal{F}_t)_{t\geq 0}$ be a growing family of vN algebras. The free Browian motion is a process $w_t:[0,1]\to\mathcal{A}$, that is a collection of self-adjoint elements and

$$k_2^{free}(w_t) = t, \ k_{n \geq 3}^{free}(w_t) = 0, \ w_t - w_s \ \mathrm{is} \ \mathrm{free} \ \mathrm{from} \ \mathcal{F}_s$$

For each t > 0, the law of w_t is the semi-circular law with parameter t,

$$\phi(f(w_t)) = \int_{[-2,2]} f(x) \frac{1}{4\pi t} \sqrt{4t - x^2} dx$$

The Free Brownian motion is $\frac{1}{2}$ Hölder

Free stochastic calculus of Biane and Speicher

⊳ Biane and Speicher, 1998, Kümmerer and Speicher 1992

$$dY_t = Y_0 + \int_0^t a(Y_t) \cdot dw_t \cdot b(Y_t)$$

Free stochastic integra

If A_t and B_t are two adapted processes, the Riemann sums

$$\lim_{n \to 0} \sum_{i=1}^{n} A_{t_i} (w_{t_{i+1}} - w_{t_i}) B_t = \int_{s}^{t} A_u dw_u B_u$$

exists in L^2 norm... and in the operator norm! ($p=\infty$ Burkholder-David-Gundy inequality)

These Riemann sums converges also for the q-deformed free Brownian motion... Donati-Martin 2003.

ightharpoonup The equation $\mathrm{d} Y_t = \mathsf{a}(Y_t) \cdot \mathrm{d} w_t \cdot \mathsf{b}(Y_t)$ is meaningful.

Rough-path principles

⊳ Chen '77, Lyons '88, Gubinelli '2010 ...

Controlled differential equations

V a finite dimensional vector space.

$$\mathrm{d}Y_t = \sum_{i=1}^d V_i(Y_t) \mathrm{d}X_t^i \Leftrightarrow \int_s^t V_i(Y_u) \mathrm{d}X_u, Y_t \in V, \ t \in [0,1].$$

$$Y_t^j - Y_s^j = \sum_{k=1}^N \sum_{j_1, \dots, j_k} V_{j_1} \dots V_{j_k}^j \int_{s < t_1 < \dots < t_k < t} dX_{t_1}^{i_1} \dots dX_{t_k}^{i_k} + R_N(s, t)$$

- \triangleright How to define $\int_s^t Y_u dX_u$ if X is irregular? and for which integrands Y?
- \triangleright The space of integrands should be stable by composition with a vector field V_i

Beyond Young integration : Sewing lemma

How to define
$$I_t - I_s = \int_s^t f(t) \cdot \dot{g}(t) dt$$
?

If g is C^1 or with bounded variations, one can use *Riemann-Stieljes integration*. If both f and g are Hölder continuous, with exponent α , respectively β with $\alpha+\beta>1$, one can use *Young integration*.

... What if $\alpha + \beta < 1$?

$$I_{t} - I_{s} = f(s)(g(t) - g(s)) + \int_{s}^{t} (f(t) - f(s))\dot{g}(s)ds$$

$$= f(s)(g(t) - g(s)) - R_{st}, \ R_{st} = O(|t - s|^{1+})$$
(1)

Therefore, I is the unique function such that (1) holds, $A_{st} = f(s)(g_t - g_s)$ is the germ. Besides

$$\delta_{sut}R=R_{st}-R_{su}-R_{ut}=(f(t)-f(s))(g(t)-g(s))=A_{st}-A_{su}-A_{ut}=\delta_{sut}A$$
 and $\delta_{sut}R\prec |t-s|^2.$

Sewing Lemma

If $A_{st} \prec |t-s|^{\alpha}$ is quasi-additive $(\delta_{sut}A_{st} \prec |t-s|^{1+\epsilon})$ then

$$\lim_{\pi\downarrow 0} \sum_{[s,t]\in\pi} A_{st} = I_t - I_s \text{ for some } I,\ I_t - I_s = A_{st} + R_{st}$$

Notice also that if

$$f(t) = F(g(t)) = F(g(s)) + F'(g(s))(g_t - g_s) + F''(g(s))\frac{1}{2}(g(t) - g(s))^2 + \cdots$$

We say that increments of f are controlled by g, then

$$\int_{s}^{t} f(g(u)dg(u) = F(g(s)) \int_{s}^{t} dX_{u} + F'(g(s)) \int_{\Delta^{2}(s,t)} dX_{t_{1}} dX_{t_{2}} + \cdots$$

$$= \sum_{k=1}^{n} F^{(k)}(g(s)) \operatorname{Sign}_{st}^{k+1}(g) + \cdots$$

(weakly) (geometric) Rough Paths

Let X be a α -Hölder path in V and set $N = \lfloor \frac{1}{\alpha} \rfloor$.

Geometric rough path (Lyons 1998)

A geometric rough path above X is

$$\mathbb{X}_{\mathsf{st}} = (1, X_t - X_s, \mathbb{X}^2_{\mathsf{st}}, \dots, \mathbb{X}^k_{\mathsf{st}}, \dots) \in \hat{\mathcal{T}}(V), \ \mathbb{X}^k_{\mathsf{st}} \in V^{\otimes k}$$

reproducing algebraic / analytical properties of the iterated integrals of a bounded variations path X,

$$ightharpoonup$$
 (Chen relation) $\chi_{st}^N = \sum_{k=0}^N \chi_{su}^k \otimes \chi_{ut}^{N-k}$

$$\begin{split} \int_{s < t_1 < t_2 < t_3 < t} \mathrm{d} X_{t_1} \mathrm{d} X_{t_2} \mathrm{d} X_{t_3} &= \\ \cdots + \int_{s < t_1 < t_2 < u} \mathrm{d} X_{t_1} \mathrm{d} X_{t_2} \int_s^t \mathrm{d} X_{t_3} + \int_{s < t_1 < u} \int_{u < t_2 < t_3 < t} \mathrm{d} X_{t_1} \mathrm{d} X_{t_2} \mathrm{d} X_{t_3} \end{split}$$

(weakly) (geometric) Rough Paths

Let X be a α -Hölder path in V and set $N = \lfloor \frac{1}{\alpha} \rfloor$.

Geometric rough path (Lyons 1998)

A geometric rough path above X is

$$\mathbb{X}_{st} = (1, X_t - X_s, \mathbb{X}^2_{st}, \dots, \mathbb{X}^k_{st}, \dots) \in \hat{\mathcal{T}}(V), \ \mathbb{X}^k_{st} \in V^{\otimes k}$$

reproducing algebraic / analytical properties of the iterated integrals of a bounded variations path X,

$$\mathbb{X}_{\mathsf{st}}^i \mathbb{X}_{\mathsf{st}}^j = \int_{s < t_1 < t_2 < t} \mathrm{d} X_{\mathsf{s}}^i \mathrm{d} X_{\mathsf{s}}^j + \int_{s < t_1 < t_2 < t} \mathrm{d} X_{\mathsf{s}}^j \mathrm{d} X_{\mathsf{s}}^i$$

 $\triangleright |X_{st}^k| \prec |t-s|^{k\alpha}$

(weakly) (geometric) Rough Paths

Let X be a α -Hölder path in V and set $N = \lfloor \frac{1}{\alpha} \rfloor$.

Geometric rough path (Lyons 1998)

A geometric rough path above X is

$$\mathbb{X}_{st} = (1, X_t - X_s, \mathbb{X}_{st}^2, \dots, \mathbb{X}_{st}^k, \dots) \in \hat{T}(V), \ \mathbb{X}_{st}^k \in V^{\otimes k}$$

reproducing algebraic / analytical properties of the iterated integrals of a bounded variations path X,

- \triangleright X., is a two parameters trajectory on a group $G \subset \hat{T}(V)$ and $\mathbb{X}_{st} = \mathbb{X}_s^{-1} \otimes \mathbb{X}_t$
- \triangleright A rough path is determined by its N-jet $(1, X_t X_s, \dots, X_{st}^{(N)})$.

Set
$$N = \left[\frac{1}{\alpha}\right]$$
.

Rough Integral

Let \mathbb{X} be a α -rough path

$$A_{st} = \sum_{k=1}^{N-1} F^{(k)}(X_s) \mathbb{X}_{st}^{k+1} = F(X_s)(X_t - X_s) + F^{(1)}(X_s) \mathbb{X}_{st}^2 + \dots + F^{(N-1)}(X_s) \mathbb{X}_{st}^N$$

satisfies the condition of the Sewing lemma,

$$\int_{s}^{t} F(X_{s}) dX_{s,.} = F^{(1)}(X_{s})(X_{t} - X_{s}) + F^{(1)}(X_{s})X_{st}^{2} + \dots + R_{st}$$

> The good notion is the one of controlled rough path (Gubinelli 2010)

$$Y^{(k)}(t) = Y_s^{(k)} + Y_s^{(k+1)}(X_t - X_s) + \cdots + Y_s^N X_{st}^{N-k} + R_{st}$$

Deya & Schott approach to n-c. stochastic calculus

Rough path theory works well with finite dimensional state spaces...What about replacing V with a Banach space? In our case, with a C^* algebra? The algebraic tensor product is not a complete normed space anymore...

Projective and spatial tensor products

The projective tensor product is the completion of $\mathcal{A}\otimes\mathcal{A}$ with respect to the norm

$$||x|| = \min_{x = \sum_{i} a_{i} \otimes b_{i}} \sum_{i=1}^{n} ||a_{i}|| ||b_{i}||$$

The spatial tensor product $\mathcal{A} \otimes_{\sigma} \mathcal{A}$ is the completion $\mathcal{A} \otimes \mathcal{A}$ seen as an subalgebra of $\mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ for the operator norm.

Let $(\mathcal{B}, \|\|)$ be a Banach algebra containing $\mathcal{A} \otimes \mathcal{A}$, and $\|\mathbf{a} \otimes \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\|$ then $\mathcal{A} \hat{\otimes} \mathcal{A} \subset \mathcal{B}$.

Free Lévy area

Free Lévy's area (C. Donati-Martin 2001)

There exists a free Lévy area in the in the spatial tensor product $\mathcal{A} \otimes_{\sigma} \mathcal{A}$ above the Free Brownian motion.

$$\int_{S}^{t} \mathrm{d}w_{t} \otimes \mathrm{d}w_{t} \in \mathcal{A} \otimes_{\sigma} \mathcal{A}$$

Deya & Schott 2016

The controlled differential equation $dY_t = a(Y_t) \cdot dw_t$ always has a solution.

Deya & Schott 2016

Let $(A, \mu, \|\cdot\|, \star, 1)$ be a von Neumann algebra accommodating a free Brownian process, then the multiplication map μ is not continuous for the spatial topology.

Free Lévy area

Victoir 200

There is no Lévy area in the projective tensor product above the free Brownian motion.

We are facing a problem : The field $x \mapsto a(x) \otimes b(x)$ is not continuous for the topology containing the Free Lévy area.

Free Lévy area

Victoir 200

There is no Lévy area in the projective tensor product above the free Brownian motion.

We are facing a problem : The field $x \mapsto a(x) \otimes b(x)$ is not continuous for the topology containing the Free Lévy area.

Is it the end of the story?

What do we look for?

We have to define a notion of rough paths, controlled paths tailored to the class C...suitable to define rough integration.

$$\begin{split} \mathrm{d}_{x}a\left(Y\right) &= \partial_{x}a|_{(1)} \cdot Y \cdot \partial_{x}a|_{(2)} = \partial_{x}a \ \sharp \ Y, \ \partial_{x}a \in \mathcal{A} \otimes \mathcal{A}^{op}, \ Y \in \mathcal{A}. \\ Y_{t} &= Y_{s} + a(Y_{s})(X_{t} - X_{s})b(Y_{s}) \\ &+ \int_{s < t_{1} < t_{2} < t} \left(\left[\partial a(Y_{s}) \cdot (a(Y_{s}) \otimes b(Y_{s})) \right] \sharp \mathrm{d}X_{t_{1}} \right) \cdot \mathrm{d}X_{t_{2}} \cdot b(Y_{s}) \\ &+ \int_{s < t_{1} < t_{2} < t} a(Y_{s}) \cdot \mathrm{d}X_{t_{2}} \cdot \left(\left[\left(a(Y_{s}) \otimes b(Y_{s}) \right) \cdot \partial b(Y_{s}) \right] \sharp \mathrm{d}X_{t_{1}} \right) \\ &+ \mathrm{reeeeaaallyyyyyy \ messy \ terms} \end{split}$$

with $A \otimes B \sharp X = A \cdot X \cdot B$. In infinite dimensions, the data of the map $\mathbb{X}^2 : A \mapsto \mathbb{X}^2_{st}|_{(1)} \cdot A \cdot \mathbb{X}^2_{st}|_{(2)}$ is weaker than the data of \mathbb{X}^2_{st} !

Non-commutative rough paths

The signature as operators in $\operatorname{End}_{\mathcal{A}}$

Let $A_0, \ldots, A_n \in \mathcal{A}$ and define

$$\mathbb{X}_{s,t}^{\sigma}(A_0,\ldots,A_n) = \int_s^t \int_s^{t_2} \cdots \int_s^{t_{n-1}} A_0 \cdot d\mathbf{X}_{\sigma \cdot \mathbf{t_1}} \cdot A_1 \cdots A_{n-1} \cdot d\mathbf{X}_{\sigma \cdot \mathbf{t_n}} \cdot A_n, \ \sigma \in \mathcal{S}_n$$

We choose to encode a permutation by a tree, see the following figure.

Non-commutative rough paths

How is the Chen relation written for these operators?

$$\begin{split} & \int_{s < t_3 < t_2 < t_1 < t} A_0 \cdot dX_{t_2} \cdot A_1 \cdot dX_{t_1} \cdot A_2 \cdot dX_{t_3} \cdot A_3 \\ & = \int_{\Delta^{(3)}(s,u)} A_0 \cdot dX_{t_2} \cdot A_1 \cdot dX_{t_1} \cdot A_2 \cdot dX_{t_3} \cdot A_3 + \int_{\Delta^{(3)}(u,t)} A_0 \cdot dX_{t_2} \cdot A_1 \cdot dX_{t_1} \cdot A_2 \cdot dX_{t_3} \cdot A_3 \\ & + \int_{t_1 \in \Delta^{(1)}(u,t)} \int_{(t_2,t_3) \in \Delta^{(2)}(u,t)} A_0 \cdot dX_{t_2} \cdot A_1 \cdot dX_{t_1} \cdot A_2 \cdot dX_{t_3} \cdot A_3 \\ & + \int_{(t_1,t_2) \in \Delta^{(2)}(s,u)} \int_{t_3 \in \Delta^{(3)}(u,t)} A_0 \cdot dX_{t_2} \cdot A_1 \cdot dX_{t_1} \cdot A_2 \cdot dX_{t_3} \cdot A_3 \end{split}$$

We can pictorially represents the above sum as

It appears that we need partial contraction operators!

Non-commutative rough paths

To each leveled forest we associate a partial contraction operator

Proposition

Let s < u < t < T three times. Let τ be an almost binary tree. Then,

$$\mathbb{X}_{\mathsf{s},\mathsf{t}}^{\tau} = \sum_{\tau' \subset \tau} \mathbb{X}_{\mathsf{ut}}^{\tau'} \circ \left[\mathbb{X}_{\mathsf{su}}^{\tau \setminus \tau'} \right]$$

We find back the usual Chen relation by looking at comb trees:

Model for non-commutative rough differential equations

$$\mathsf{LPBT}(\mathcal{A}) = \bigoplus_{\tau \in \mathsf{LPBT}} \mathcal{A}^{\otimes |\tau|}$$

A model (in the sense of Hairer's regularity structure)

$$\begin{array}{cccc} \bar{\mathbb{X}}_{\mathsf{st}} : & \bigoplus_{\tau \in \mathrm{Perm.}} \mathcal{A}^{\otimes |\tau|} & \to & \bigoplus_{\tau \in \mathrm{Perm.}} \mathcal{A}^{\otimes |\tau|}, \\ & & (\mathcal{A}^{\otimes |\tau|} \cdot \tau) & \mapsto & \sum_{\tau' \subset \tau} \mathbb{X}_{\mathsf{st}}^{\tau \setminus \tau'} (\mathcal{A}^{\otimes |\tau|}) \cdot \tau' \end{array}$$

- $ightarrow \overline{\mathbb{X}}_{st} = \overline{\mathbb{X}}_{ut} \circ \overline{\mathbb{X}}_{su}$
- ightarrow $ar{\mathbb{X}}_{st}$ is invertible and $ar{\mathbb{X}}_{st} = ar{\mathbb{X}}_{0t} \circ ar{\mathbb{X}}_{0s}^{-1}$
- $\bar{\mathbb{X}}_{st} = \sum_{k=0}^{\infty} \bar{\mathbb{X}}_{st}^{(k)}$, $\|\bar{\mathbb{X}}_{st}^k\| \prec |t-s|^{k\alpha}$, $\mathbb{X}^{(k)}$ kills the k last generations of a tree.

Model for non-commutative rough differential equations

$$\begin{array}{cccc} \mathsf{L} : & \mathsf{LPBT}(\mathcal{A}) \, \hat{\circ} \, \mathsf{LPBT}(\mathcal{A}) & \to & \mathsf{LPBT}(\mathcal{A}) \\ & U \cdot \alpha \otimes X_1 \tau_1 \otimes \cdots \otimes X_{\sharp \alpha} \tau_{\sharp \alpha} & \mapsto & \sum_{\alpha, \tau_1, \dots, \tau_{\sharp \alpha}} \mathsf{L}(U^\tau \otimes X_1 \otimes X_{\sharp \tau}) \cdot \tau_1 \sqcup \cdots \sqcup \tau_{\sharp \alpha} \end{array}$$

(weak) Geometricity

For any pair of times s < t,

$$L \circ (id \, \hat{\circ} \, \mathbb{X}_{st}) = \mathbb{X}_{st} \circ L.$$

$$\int_{s}^{t} A_{0} dX_{u} A_{1}$$

$$\downarrow$$

$$\int_{s < t_{1} < t_{2} < t} B_{0} dX_{t_{2}} B_{1} dX_{t_{1}} B_{2}$$

... can be written as a sum of iterated integrals

Model for non-commutative rough differential equations

What is strong geometricity?

$$\int_{s}^{t} A_{0} dX_{u} A_{1}$$

$$\downarrow$$

$$\int_{s < t_{1} < t_{2} < t} B_{0} dX_{t_{2}} B_{1} dX_{t_{1}} B_{2}$$

 \dots can be written as a sum of iterated integrals, but this is meaningless in a probabilistic settings !

 \triangleright If X is smooth, then strong geometricity holds and all the iterated integrals of X can be packed into a trajectory of a group (a kind of convolution group). However, if X is trully irregular, then it is too much to require existence of such a trajectory packing the data we need on X to build a strong solution theory!

On going works

- We can define controlled rough paths in this settings, aka generalized Taylor expansion,
- In the smooth setting, we can use higher category theory to create a bi-algebra (B, Δ) (a duoid in a 2-monoidal category) such that

$$\bar{\mathbb{X}}_{st} = (\mathrm{id} \boxtimes \mathbb{X}_{st}) \circ \Delta$$

- ▶ We build a rough integral,
- ▶ We prove existence of solutions to

$$\mathrm{d} Y_t = a(Y_t) \cdot \mathrm{d} X_t \cdot b(Y_t)$$

References I

- Carlo Bellingeri and Nicolas Gilliers, Higher order rough paths theory for non commutative processes.
- Philippe Biane and Roland Speicher, Stochastic calculus with respect to free brownian motion and analysis on wigner space, Probability theory and related fields **112** (1998), no. 3, 373–409.
- Mireille Capitaine and Catherine Donati-Martin, *The lévy area process for the free brownian motion*, Journal of Functional Analysis **179** (2001), no. 1, 153–169.
- Catherine Donati-Martin, Stochastic integration with respect to q brownian motion, Probability theory and related fields 125 (2003), no. 1, 77–95.
- Aurélien Deya and René Schott, On the rough-paths approach to non-commutative stochastic calculus, Journal of Functional Analysis **265** (2013), no. 4, 594–628.
- _____, On stochastic calculus with respect to q-brownian motion, Journal of Functional Analysis **274** (2018), no. 4, 1047–1075.