		$\mathbf{G} = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3$	(2-24)	$\mathbf{r}=rac{1}{2}\mathbf{a}t^2+\mathbf{v}_0t$	(4-3)
$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$	(1-6)	$\mathbf{b}_i = \frac{2\pi \mathbf{a}_j \times \mathbf{a}_k}{\mathbf{a}_i \cdot (\mathbf{a}_i \times \mathbf{a}_k)}$	(2-25)	$\langle {f r} angle = {1 \over 2} {f a} \langle t^2 angle$	(4-4)
$\mathbf{R} = a\hat{\mathbf{i}}$ or [100],		v (j)	(0.00)	$\mathbf{v}_d = rac{1}{2}\mathbf{a}\langle t^2 angle/ au$	(4-5)
$\mathbf{R} = a\hat{\mathbf{i}} + a\hat{\mathbf{j}} \text{or} [100],$	(1-7)	$G = 2k\sin\theta$	(2-26)	$\mathbf{v}_d = -(e\tau/m)\mathbf{\mathcal{E}}$	(4-6)
$\mathbf{R} = a\hat{\mathbf{i}} + a\hat{\mathbf{j}} + a\hat{\mathbf{k}} \text{or} [111].$	(2 •)	$\sin\theta = G/2k$	(2-27)	$\mathbf{J} = -ne\mathbf{v}_d$	(4-7)
$\mathbf{a}_1 = -\frac{1}{2}a\hat{\mathbf{i}} + \frac{1}{2}a\hat{\mathbf{j}} + \frac{1}{2}a\hat{\mathbf{k}},$		$F = -\alpha(r - r_0)$	(3-1)	$\mathbf{J} = (ne^2 \tau/m) \mathbf{\mathcal{E}}$	(4-8)
$\mathbf{a}_1 = -\frac{1}{2}a\mathbf{i} + \frac{1}{2}a\mathbf{j} + \frac{1}{2}a\mathbf{k},$ $\mathbf{a}_2 = -\frac{1}{2}a\hat{\mathbf{i}} - \frac{1}{2}a\hat{\mathbf{j}} + \frac{1}{2}a\hat{\mathbf{k}},$	(1-8)	$r = r_0 + A\sin\omega t$	(3-2)	$J = \sigma \mathcal{E}$	(4-9)
$\mathbf{a}_2 = \frac{1}{2}a\mathbf{i} - \frac{1}{2}a\mathbf{j} + \frac{1}{2}a\mathbf{k},$ $\mathbf{a}_3 = \frac{1}{2}a\hat{\mathbf{i}} + \frac{1}{2}a\hat{\mathbf{j}} - \frac{1}{2}a\hat{\mathbf{k}}.$	(1-0)	$x_n = na$	(3-3)	$\sigma = ne^2 \tau / m$	(4-10)
		$F_n = -\alpha(2u_n - u_{n+1} - u_{n-1})$	(3-4)	V = IR	(4-11)
$\mathbf{a}_1 = \frac{1}{2}a\hat{\mathbf{j}} + \frac{1}{2}a\hat{\mathbf{k}},$	(1.0)	$a_n = \frac{d^2 u_n}{dt^2}$	(3-5)	$R = L/A\sigma$	(4-12)
$\mathbf{a}_2 = \frac{1}{2}a\hat{\mathbf{i}} + \frac{1}{2}a\hat{\mathbf{k}},$	(1-9)	$a\iota$, ,	$\mathcal{E} = V/L$ $\mathbf{F} = -e\mathbf{v}_d imes \mathbf{B}$	(4.19)
$\mathbf{a}_3 = \frac{1}{2}a\hat{\mathbf{i}} + \frac{1}{2}a\hat{\mathbf{j}}.$		$-\alpha(2u_n - u_{n+1} - u_{n-1}) = m\frac{d^2u_n}{dt^2}$	(3-6)	$\mathbf{F} = -e\mathbf{v}_d imes \mathbf{B}$ $\mathbf{F} = -e(\mathbf{v}_d imes \mathbf{B}) - e\mathbf{\mathcal{E}}_H$	(4-13) $(4-14)$
$F = -\frac{e^2}{4\pi\epsilon_0 r^2}$	(1-10)	$u_n = A\sin(kx_n - \omega t)$	(3-7)	$\mathbf{E}_H = -\mathbf{e}(\mathbf{v}_d imes \mathbf{B}) - e\mathbf{e}\mathbf{G}_H$	(4-14) $(4-15)$
17.007		$\omega^2 = \omega_m^2 \sin^2(ka/2)$	(3-8)	11 0	, ,
$F = Be^{-r/R},$	(0.1)	$\omega = \omega_m \sin(ka/2) $	(3-9)	$\mathbf{\mathcal{E}}_{H}=rac{1}{ne}\mathbf{J} imes\mathbf{B}$	(4-16)
$y = A\sin(kx - \omega t)$	(2-1)	$\omega_m = \sqrt{4\alpha/m}$	(3-10)	$\mathbf{\mathcal{E}}_{H} = -R_{H}\mathbf{J} \times \mathbf{B}$	(4-17)
$k = 2\pi/\lambda$	(2-2)	$\omega_m = \sqrt{4\alpha/m}$ $\omega = vk$,	$R_H = -1/ne$	(4-18)
T = 1/f	(2-3)		(3-11)	$\mathbf{F} = -e\mathbf{v} \times \mathbf{B}$	(4-19)
$\omega = 2\pi f$	(2-4)	$\omega \approx (\omega_m a/2) k $	(3-12)	$evB = mv^2/r$	(4-20)
$v = \lambda f$	(2-5)	$v = \omega_m a/2$	(3-13)	$\omega = eB/m$	(4-21)
$\omega = vk$	(2-6)	$-\alpha(2u_{2n} - u_{2n+1} - u_{2n-1}) = m_1$	$\frac{d^2u_{2n}}{dt^2}$	E = hf	(5-1)
$x_2 - x_1 = n\lambda$	(2-7)		(3-14)	$p = h/\lambda$ $E = \hbar \omega$	(5-2) $(5-3)$
$x_2 - x_1 = (n + \frac{1}{2})\lambda$	(2-8)	$-\alpha(2u_{2n+1} - u_{2n+2} - u_{2n}) = m_2 \frac{d^2}{d^2}$	$\frac{u_{2n+1}}{dt^2}$.	$\mathbf{p}=\hbar\mathbf{k}$	(5-3) $(5-4)$
$d\sin\theta = n\lambda$	(2-9)		(3-15)	$\hbar\omega_i = \hbar\omega_f + E$	(5-4) $(5-5)$
$2d\sin\theta = n\lambda$	(2-10)	$u_{2n} = A_1 \sin(kx_{2n} - \omega t)$	(3-16)	$\hbar \mathbf{k}_i = \hbar \mathbf{k}_f + \mathbf{p}$	(5-6)
$\Delta x = R\cos\theta_1 + R\cos\theta_2$	(2-11)	$u_{2n+1} = A_2 \sin(kx_{2n+1} - \omega t)$	(3-17)	$E_f = E_i + \hbar \omega$	(5-7)
$R\cos\theta_1 + R\cos\theta_2 = n\lambda$	(2-12)	$\omega^2 = \alpha \left(\frac{1}{m_1} + \frac{1}{m_2} \right)$		$\mathbf{p}_f = \mathbf{p}_i + \hbar \mathbf{k}$	(5-8)
$\mathbf{R} \cdot \mathbf{k}_1 = Rk \cos(\pi - \theta_1) = -Rk \mathbf{c}$		(11111111111111111111111111111111111111		$E_f = E_i - \hbar \omega$	(5-9)
	(2-13)	$\pm \alpha \sqrt{\left(\frac{1}{m_1} + \frac{1}{m_2}\right)^2 - \frac{4\sin^2(\frac{1}{m_1})^2}{m_1}}$	$\frac{ka/2)}{}$.	$\mathbf{p}_f = \mathbf{p}_i - \hbar \mathbf{k}$	(5-10)
$\mathbf{R} \cdot \mathbf{k}_2 = Rk \cos \theta_2$	(2-14)	$\bigvee (m_1 - m_2) \qquad m_1$	m_2 (3-18)	$\omega_f = \omega_i + \omega$	(5-11)
$\mathbf{R} \cdot (\mathbf{k}_2 - \mathbf{k}_1) = nk\lambda = 2\pi n$	(2-15)	$A_2 = A_1(1 - m_1\omega^2/2\alpha)\sec(ka/2)$	(3-19)	$\mathbf{k}_f = \mathbf{k}_i + \mathbf{k}$	(5-12)
$\mathbf{R} \cdot \mathbf{G} = 2\pi n,$	(2-16)	$\alpha \sim ka \sqrt{\alpha}$	(3-20)	$\omega_f = \omega_i - \omega$	(5-13)
$\mathbf{G} = \mathbf{k}_2 - \mathbf{k}_1$	(2-17)	$\omega \approx ka\sqrt{\frac{\alpha}{2(m_1 + m_2)}}$	(0-20)	$\mathbf{k}_f = \mathbf{k}_i - \mathbf{k}$	(5-14)
$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$	(2-18)	$\sqrt{2a\left(1+1\right)}$	(2.21)	$k = k_i \sqrt{2}$	(5-15)
$\mathbf{a}_1 \cdot \mathbf{G} = 2\pi m_1,$	()	$\omega \approx \sqrt{2\alpha \left(\frac{1}{m_1} + \frac{1}{m_2}\right)}.$	(3-21)	$\lambda = h/p$	(5-16)
$\mathbf{a}_2 \cdot \mathbf{G} = 2\pi m_2,$	(2-19)	$v = a\sqrt{\frac{\alpha}{2(m_1 + m_2)}}$	(3-22)	$ z = \sqrt{x^2 + y^2}$	(6-1)
$\mathbf{a}_3 \cdot \mathbf{G} = 2\pi m_3,$	()	$v = u\sqrt{\frac{2(m_1 + m_2)}{2(m_1 + m_2)}}$	(3-22)	$\exp(ix) = 1 + (ix) + \frac{1}{2}(ix)^2 + \frac{1}{6}(ix)^2$	$)^3 + \cdots$
$\mathbf{a}_1 = a\hat{\mathbf{i}}, \ \mathbf{a}_2 = a\hat{\mathbf{j}}, \ \mathbf{a}_3 = a\hat{\mathbf{k}}$	(2-20)	$\omega = \sqrt{2\alpha/m_1}$ (acoustic branch)	(3-23)	$\sum_{n=1}^{\infty} 1_{(n)n}$	
$G_x = m_1(2\pi/a), \ G_y = m_2(2\pi/a)$	(a),	$\omega = \sqrt{2\alpha/m_2}$ (optical branch)	(3-24)	$=\sum_{n=0}^{\infty}\frac{1}{n!}(ix)^n.$	
$G_z = m_3(2\pi/a)$	(2-21)	$\mathbf{u}_n = \mathbf{A}\sin(\mathbf{k}\cdot\mathbf{r}_n - \omega t)$	(3-25)		(6-2)
$\mathbf{G} = m_1 \frac{2\pi}{a} \hat{\mathbf{i}} + m_2 \frac{2\pi}{a} \hat{\mathbf{j}} + m_3 \frac{2\pi}{a} \hat{\mathbf{k}}$	(2-21)	ar.	(3.26)	$\exp(ix) = (1 - \frac{1}{2}x^2 + \cdots) + i(x - \frac{1}{6}x^2 + \cdots)$	$x^3 + \cdots$
a a	` /	$U = -\int_{r_0}^{r} F \ dr$	(3-26)	$=\cos x + i\sin x.$	(6-3)
$\mathbf{b}_1 = (2\pi/a)\hat{\mathbf{i}},$		$U = \frac{1}{2}\alpha(r - r_0)^2$	(3-27)	$ \exp(ix) = 1$	(6-4)
$\mathbf{b}_2 = (2\pi/a)\hat{\mathbf{j}},$	(2-23)	${f F}=-e{f E}$	(4-1)	$\psi = A \exp(ikx - i\omega t)$	(6-5)
$\mathbf{b}_3 = (2\pi/a)\hat{\mathbf{k}},$		$\mathbf{a} = -(e/m)\mathbf{\mathcal{E}}$	(4-2)	$\psi = A\cos(kx - \omega t) + iA\sin(kx - \omega t)$	(6-6)

```
-i\hbar\frac{\partial\psi}{\partial x} = p\psi,
                                                                                                                                                                                     N = \int_{0}^{\infty} f_D(E)g(E) dE
                                                                                                            \mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}
                                                                                                                                                          (6-38)
                                                                       (6-7)
                                                                                                                                                                                                                                               (7-29)
                                                                                                    \mathbf{k} = k_x \hat{\mathbf{i}} + k_y \hat{\mathbf{j}} + k_z \hat{\mathbf{k}}
                                                                                                                                                          (6-39)
                                                                                                                                                                                   \Delta \mathbf{k} = (1/\hbar)\Delta \mathbf{p} = (m/\hbar)\mathbf{v}_d
                                                                                                                                                                                                                                               (7-30)
                             i\hbar \frac{\partial \psi}{\partial t} = E\psi.
                                                                       (6-8)
                                                                                              \mathbf{v}_g = \frac{\partial \omega}{\partial k_x} \hat{\mathbf{i}} + \frac{\partial \omega}{\partial k_y} \hat{\mathbf{j}} + \frac{\partial \omega}{\partial k_z} \hat{\mathbf{k}}
                                                                                                                                                                                     J \approx (nv_d/v_F)ev_F = nev_d
                                                                                                                                                          (6-40)
                                                                                                                                                                                                                                               (7-31)
                                                                                                                                                                                                     v_d = e \tau_F \mathcal{E}/m
                      -\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} = i\hbar \frac{\partial \psi}{\partial t}
                                                                                                                                                                                                                                               (7-32)
                                                                       (6-9)
                                                                                     \psi(x, y, z, t) = A\sin(k_x x)\sin(k_y y)\sin(k_z z)\exp(-i\omega t),
                                                                                                                                                                                                     \sigma = ne^2 \tau_F / m
                                                                                                                                                                                                                                               (7-33)
                                                                                                                                                            (7-2)
           -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + U\psi = i\hbar\frac{\partial\psi}{\partial t}
                                                                                                          \mathbf{k} = k_x \hat{\mathbf{i}} + k_y \hat{\mathbf{j}} + k_z \hat{\mathbf{k}}
                                                                                                                                                            (7-3)
                                                                                                                                                                                                         \ell = v_F \tau_F
                                                                                                                                                                                                                                               (7-34)
                                                                     (6-10)
                                                                                                                                                                                                   E = (\hbar^2/2m)k^2
                                                                                                               k_x = n_x(\pi/L),
                                                                                                                                                                                                                                                 (8-1)
                                                                     (6-11)
                                                                                                               k_y = n_y(\pi/L),
                                                                                                                                                            (7-4)
                                                                                                                                                                                     \psi = A \exp(\pm i\pi x/a - i\omega t)
                                                                                                                                                                                                                                                 (8-2)
       \psi = A \int_{b}^{k_2} \exp(ikx - i\omega t) dk
                                                                                                               k_z = n_z(\pi/L),
                                                                     (6-12)
                                                                                                                                                                                      \psi_1 = 2A\cos(\pi x/a)\exp(-i\omega t)
                                                                                            \psi(x+L,y,z,t) = \psi(x,y,z,t),
                                                                                                                                                                                 \psi_2 = 2iA\sin(\pi x/a)\exp(-i\omega t)
                                                                                                                                                                                                                                                 (8-3)
     \omega(k) \approx \omega(\bar{k}) + \left. \frac{d\omega}{dk} \right|_{k=\bar{k}} (k-\bar{k})
                                                                     (6-13)
                                                                                            \psi(x, y + L, z, t) = \psi(x, y, z, t),
                                                                                                                                                            (7-5)
                                                                                                                                                                                            |\psi_1|^2 = 4A^2 \cos^2(\pi x/a)
                                                                                            \psi(x, y, z + L, t) = \psi(x, y, z, t).
                                                                                                                                                                                            |\psi_2|^2 = 4A^2 \sin^2(\pi x/a)
                                                                                                                                                                                                                                                 (8-4)
                         \bar{k} = \frac{1}{2}(k_1 + k_2)
                                                                     (6-14)
                                                                                     \psi(x, y, z, t) = A \exp(ik_x x + ik_y y + ik_z z - i\omega t)
                                                                                                                                                                                      \psi = u_k(x) \exp(ikx - i\omega t)
                                                                                                                                                                                                                                                 (8-5)
                               \bar{\omega} = \omega(\bar{k})
                                                                     (6-15)
                                                                                                                                                            (7-6)
                                                                                                                                                                                                 u_k(x+a) = u_k(x)
                                                                                                                                                                                                                                                 (8-6)
                                                                                                              k_x = n_x(2\pi/L),
                           v_g = \left. \frac{d\omega}{dk} \right|_{k=\bar{k}}
                                                                     (6-16)
                                                                                                                                                                                    \psi = u_{k'}(x) \exp(ik'x - i\omega t)
                                                                                                              k_y = n_y(2\pi/L),
                                                                                                                                                                                                                                                 (8-7)
                                                                                                                                                            (7-7)
                                                                                                              k_z = n_z(2\pi/L).
                                                                                                                                                                                    \psi = u_{n,k}(x) \exp(ikx - i\omega t)
                                                                                                                                                                                                                                                 (8-8)
                      \omega = \bar{\omega} + (k - \bar{k})v_g
                                                                     (6-17)
                                                                                                                                                                               u_{n,k}(x) = u_{k'}(x) \exp(-i2\pi nx/a)
\psi = 2A \frac{\sin\left[(x - v_g t)\Delta k/2\right]}{x - v_q t} \exp(i\bar{k}x - i\bar{\omega}t)
                                                                                                                                                                                                                                                 (8-9)
                                                                                             \mathbf{k} = (2\pi/L)(n_x\hat{\mathbf{i}} + n_y\hat{\mathbf{j}} + n_z\hat{\mathbf{k}})
                                                                                                                                                            (7-8)
                                                                                                                                                                                   \psi = u_{\mathbf{k}}(\mathbf{r}) \exp(i\mathbf{k} \cdot \mathbf{r} - i\omega t),
                                                                                                                                                                                                                                               (8-10)
                                                                                                             g(\mathbf{k}) = 2V/(2\pi)^3
                                                                                                                                                            (7-9)
                                                                     (6-18)
                                                                                                                                                                                                  \mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}
                                                                                                                                                                                                                                               (8-11)
                                                                                                 E = p^2/2m = \hbar^2 k^2/2m
                           \Delta k = k_2 - k_1
                                                                                                                                                          (7-10)
                                                                     (6-19)
                                                                                                                                                                                         \mathbf{k} = k_x \hat{\mathbf{i}} + k_y \hat{\mathbf{j}} + k_z \hat{\mathbf{k}}
                                                                                                                                                                                                                                               (8-12)
    |\psi|^2 = 4A^2 \frac{\sin^2[(x - v_g t)\Delta k/2]}{(x - v_g t)^2}
                                                                                                              k = \sqrt{2mE/\hbar^2}
                                                                                                                                                          (7-11)
                                                                     (6-20)
                                                                                                                                                                                          u_{\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{\mathbf{k}}(\mathbf{r})
                                                                                                                                                                                                                                               (8-13)
                                                                                           V_k = \frac{4}{3}\pi k^3 = \frac{4}{3}\pi (2mE/\hbar^2)^{3/2}
                                                                                                                                                          (7-12)
                                                                                                                                                                                                    V_k = (2\pi)^3 / V_c
                                                                                                                                                                                                                                               (8-14)
                             \omega = \frac{\hbar}{2m}k^2
                                                                     (6-21)
                                                                                      N(E) = V_k \ g(\mathbf{k}) = (V/3\pi^2)(2mE/\hbar^2)^{3/2}
                                                                                                                                                                          V_k g(\mathbf{k}) = [(2\pi)^3/V_c] [2V/(2\pi)^3] =
                                                                                                                                                                                                                                               2V/V_c
                                                                                                                                                          (7-13)
                                                                                                                                                                                                                                               (8-15)
      v_g = \frac{d\omega}{dk} = \frac{d}{dk} \left( \frac{\hbar}{2m} k^2 \right) = \frac{\hbar k}{m} = v
                                                                                                                                                                                                   v=\frac{d\omega}{dk}=\frac{1}{\hbar}\frac{dE}{dk}
                                                                                                   N(E) = \int_0^E g(E) \ dE
                                                                                                                                                                                                                                                 (9-1)
                                                                                                                                                          (7-14)
Re \psi = 2A \frac{\sin[(x - v_g t)\Delta k/2]}{x - v_g t} \cos(\bar{k}x - \bar{\omega}t)
                                                                                                                                                                                                      dE = F_{\rm ext} dx
                                                                                                                                                                                                                                                 (9-2)
                                                                                                            g(E) = \frac{dN(E)}{dE}
                                                                                                                                                          (7-15)
                                                                                                                                                                                                     dE = F_{\text{ext}}vdt
                                                                                                                                                                                                                                                 (9-3)
                                                                     (6-23)
                                                                                                                                                                                                       \frac{dE}{dt} = F_{\text{ext}}v
                                                                                         g(E) = (V/2\pi^2)(2m/\hbar^2)^{3/2}E^{1/2}
                                                                                                                                                          (7-16)
                              \Delta x \Delta p \approx \hbar
                                                                     (6-24)
                                                                                                                                                                                                                                                 (9-4)
                                                                                        N = V_k g(\mathbf{k}) = (V/3\pi^2)(2mE_F/\hbar^2)^{3/2}.
\psi = A \exp(ikx - i\omega t) - A \exp(-ikx - i\omega t)
                                                                                                                                                                                                   \frac{dE}{dt} = F_{\rm ext} \frac{1}{\hbar} \frac{dE}{dk}
                                                                                                                                                                                                                                                 (9-5)
                                                                     (6-25)
                                                                                                                                                          (7-17)
    \psi(x,t) = 2iA\sin(kx)\exp(-i\omega t)
                                                                                                E_F = (\hbar^2/2m)(3\pi^2n)^{2/3}
                                                                                                                                                          (7-18)
                                                                     (6-26)
                                                                                                                                                                                                      F_{\rm ext} = \hbar \frac{dk}{dt}
                                                                                                                                                                                                                                                 (9-6)
                             k = n(\pi/L)
                                                                     (6-27)
                                                                                             W_{21} = W_{12} \exp\left(\frac{E_2 - E_1}{k_B T}\right)
                                                                                                                                                          (7-19)
\psi = \begin{cases} 2iA\sin(n\pi x/L)\exp(-i\omega t), \\ 0, \end{cases}
                                                                                                                                                                               F = \frac{d(\hbar k)}{dt} = \frac{dp}{dt} = m\frac{dv}{dt} = ma.
                                                                   0 \le x \le L,
                                                                                                                                                                                                                                                 (9-7)
                                                                   x \le 0 \text{ or } x \ge L. W'_{12} = W_{12}P_1(1 - P_2)
                                                                                                                                                          (7-20)
                                                                     (6-28)
                                                                                                                                                                                                     \mathbf{F}_{\mathrm{ext}} = \hbar \frac{d\mathbf{k}}{dt}
                                                                                                                                                                                                                                                 (9-8)
                                                                                                  W_{21}' = W_{21}P_2(1 - P_1)
                                                                                                                                                          (7-21)
            |\psi|^2 = 4A^2 \sin^2(n\pi x/L)
                                                                     (6-29)
                                                                                        W_{12}P_1(1-P_2) = W_{21}P_2(1-P_1)
                                                                                                                                                                                                    \frac{d\mathbf{k}}{dt} = -(e/\hbar)\mathbf{E}
                                                                                                                                                          (7-22)
                \hbar^2 k^2 / 2m + U = \hbar \omega
                                                                     (6-30)
                                                                                                                                                                                                                                                 (9-9)
                                                                                     \frac{P_1}{1 - P_1} \exp(E_1/k_B T) = \frac{P_2}{1 - P_2} \exp(E_2/k_B T).
                 k = \sqrt{\frac{2m(E - U)}{\hbar^2}}
                                                                                                                                                                                                  a = \frac{dv}{dt} = \frac{dv}{dk}\frac{dk}{dt}
                                                                     (6-31)
                                                                                                                                                                                                                                               (9-10)
                                                                                                                                                          (7-23)
                                                                                        \frac{P_n}{1 - P_n} \exp(E_n/k_B T) = \text{constant}
                                                                                                                                                                                     a = \left(\frac{1}{\hbar} \frac{d^2 E}{dk^2}\right) \left(\frac{1}{\hbar} F_{\text{ext}}\right)
                                                                     (6-32)
                                                                                                                                                         (7-24)
                                                                                                                                                                                                                                               (9-11)
                \alpha = \sqrt{\frac{2m(U - E)}{\hbar^2}}
                                                                                                constant = \exp(E_F/k_BT)
                                                                                                                                                          (7-25)
                                                                                                                                                                                         m^* = \left(\frac{1}{\hbar^2} \frac{d^2 E}{dk^2}\right)^{-1}
                                                                     (6-33)
                                                                                                                                                                                                                                               (9-12)
                                                                                                P_n = \frac{1}{\exp\left(\frac{E_n - E_F}{k_B T}\right) + 1}
                                                                                                                                                          (7-26)
         \psi = A \exp(-\alpha x) \exp(-i\omega t)
                                                                     (6-34)
                                                                                                                                                                                                      a = F_{\rm ext}/m^*
                                                                                                                                                                                                                                               (9-13)
              |\psi|^2 = A^2 \exp(-2\alpha x)
                                                                     (6-35)
                                                                                                                                                                                                       E_p = -E_n
                                                                                                                                                                                                                                               (9-14)
                                                                                              f_D(E) = \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right) + 1}
                                                                                                                                                          (7-27)
   \frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2}\right) + U\psi = i\hbar\frac{\partial\psi}{\partial t}
                                                                                                                                                                                                        \mathbf{k}_p = -\mathbf{k}_n
                                                                                                                                                                                                                                               (9-15)
                                                                                                                                                                                                    q_p = -q_n = +e
                                                                                                                                                                                                                                               (9-16)
                                                                     (6-36)
                                                                                                f_D(E) = \begin{cases} 1, & E < E_F, \\ 0, & E > E_F. \end{cases}
                                                                                                                                                          (7-28)
                                                                     (6-37)
             \psi = A \exp(i\mathbf{k} \cdot \mathbf{r} - i\omega t)
                                                                                                                                                                                                      \mathbf{a} = \mathbf{F}_{\mathrm{ext}}/m_p^*
                                                                                                                                                                                                                                               (9-17)
```

```
m_p^* = \left(\frac{1}{\hbar^2} \frac{d^2 E_p}{dk_n^2}\right)^{-1}.
                                                                                                            n \approx N_d,
                                                                                                                                                                                  \phi = eN_d x_d^2 / 4\epsilon_r \epsilon_0
                                                                                                                                                                                                                                 (11-17)
                                                                                                                                                (10-21)
                                                                  (9-18)
                                                                                                            p \approx n_i^2/N_d.
                                                                                                                                                                               x_d = \sqrt{4\epsilon_r \epsilon_0 \phi / eN_d}
                                                                                                                                                                                                                                 (11-18)
                            m_p^* = -m_n^*
                                                                 (9-19)
                                                                                                            p \approx N_a,
                                                                                                                                                                               \mathcal{E}_{\max} = \sqrt{eN_d\phi/\epsilon_r\epsilon_0}
                                                                                                                                                                                                                                 (11-19)
                                                                                                                                                (10-22)
                                                                                                            n \approx n_i^2/N_a.
                      \mathbf{\mathcal{E}}_{H} = -R_{H}\mathbf{J} \times \mathbf{B}
                                                                 (9-20)
                                                                                                                                                                                            I_{nr0} = I_{ng0}
                                                                                                                                                                                                                                 (11-20)
                                                                                                  \sigma_n = ne^2 \tau_n / m_n^*
                          R_H = -1/ne
                                                                                                                                                (10-23)
                                                                 (9-21)
                                                                                                                                                                                           I_{pr0} = I_{pg0}
                                                                                                                                                                                                                                 (11-21)
                                                                                                               \mathbf{J} = \sigma_n \mathbf{\mathcal{E}}
                                                                                                                                                (10-24)
                          R_H = +1/pe
                                                                  (9-22)
                                                                                                                                                                        E_{cp} = E_{vn} + E_g + e(\phi - V_a)
                                                                                                                                                                                                                                 (11-22)
                                                                                                            \mathbf{J} = -ne\mathbf{v}_d
                                                                                                                                                (10-25)
                           \omega = eB/m^*
                                                                 (9-23)
                                                                                                                                                                     n(V_a) = \frac{1}{V} \int_E^{\infty} f_D(E) g(E) \ dE
                                                                                            \mathbf{v}_d = -\frac{\sigma_n}{ne} \mathbf{E} = -\frac{e\tau_n}{m_n^*} \mathbf{E}
                                                                                                                                                                                                                                 (11-23)
                                                                                                                                                (10-26)
                         E_g = E_c - E_v
                                                                 (10-1)
E(k) = E(0) + \frac{dE}{dk} \bigg|_{k=0} k + \frac{1}{2} \left. \frac{d^2E}{dk^2} \right|_{k=0}
                                                                                                                                                                     n(V_a) = N_c \exp\left(-\frac{E_{cp} - E_F}{k_B T}\right)
                                                                                                          \mu_n = e\tau_n/m_n^*
                                                                                                                                                (10-27)
                                                                                                                                                                                                                                 (11-24)
                                                                  k^2 + \cdots
                                                                                                           \mathbf{v}_d = -\mu_n \mathbf{E}
                                                                                                                                                (10-28)
                                                                 (10-2)
                                                                                                                                                                  n(V_a) = N_c \times
                                                                                                             \sigma_n = ne\mu_n
                                                                                                                                                (10-29)
                     E = E_c + \frac{\hbar^2}{2m_\pi^*}k^2
                                                                                                                                                                            \exp\left(-\frac{E_{vn} + E_g + e(\phi - V_a) - E_F}{k_B T}\right)
                                                                 (10-3)
                                                                                                  \sigma_p = pe^2 \tau_p / m_p^*
                                                                                                                                                (10-30)
                      E = E_v - \frac{\hbar^2}{2m_n^*} k^2
                                                                                                           \mu_p = e\tau_p/m_p^*
                                                                                                                                                (10-31)
                                                                 (10-4)
                                                                                                                                                                        n(V_a) = n(0) \exp(eV_a/k_B T)
                                                                                                                                                                                                                                 (11-26)
                                                                                                             \mathbf{v}_d = \mu_p \mathbf{\mathcal{E}}
                                                                                                                                                (10-32)
                                                                                                                                                                          I_{nr} = I_{nr0} \exp(eV_a/k_BT)
                                                                                                                                                                                                                                 (11-27)
    g(E) = \frac{V}{2\pi^2} (2m_n^*/\hbar^2)^{3/2} (E - E_c)^{1/2}.
                                                                                                             \sigma_p = pe\mu_p
                                                                                                                                                (10-33)
                                                                                                                                                                          I_{pr} = I_{pr0} \exp(eV_a/k_BT)
                                                                                                                                                                                                                                 (11-28)
                                                                                                           \sigma = \sigma_n + \sigma_p
                                                                                                                                                (10-34)
                                                                 (10-5)
    g(E) = \frac{V}{2\pi^2} (2m_p^*/\hbar^2)^{3/2} (E_v - E)^{1/2}.
                                                                                                                                                                                             I_{ng} = I_{ng0}
                                                                                                                                                                                                                                 (11-29)
                                                                                                 \mathbf{\mathcal{E}}_{H} = -R_{H}\mathbf{J} \times \mathbf{B}
                                                                                                                                                (10-35)
                                                                                                                                                                                             I_{pg} = I_{pg0}
                                                                                                                                                                                                                                 (11-30)
                                                                                                           R_H = -1/ne
                                                                                                                                                (10-36)
     f_D(E) = \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right) + 1}
                                                                                                                                                                          I = I_{nr} - I_{ng} + I_{pr} - I_{pg}
                                                                 (10-7)
                                                                                                           R_H = +1/pe
                                                                                                                                                                                                                                 (11-31)
                                                                                                                                                (10-37)
                                                                                                                                                                          I = I_0 \left[ \exp(eV_a/k_B T) - 1 \right]
                                                                                                                                                                                                                                 (11-32)
                                                                                                           \mu_n = -\sigma R_H
                                                                                                                                                (10-38)
                                                                                                                                                                                  I_0 = I_{ng0} + I_{pg0}
                                                                                                                                                                                                                                 (11-33)
                                                                                                             \mu_p = \sigma R_H
                                                                                                                                                (10-39)
          N = \int_{E}^{\infty} f_D(E)g(E) dE
                                                                 (10-8)
                                                                                E_F = \frac{1}{2}(E_c + E_v) + \frac{1}{2}k_BT \ln\left[(N_v/N_c)^{1/2}(N_d/n_i)\right]
                                                                                                                                                                          x_d = \sqrt{4\epsilon_r \epsilon_0 (\phi - V_a)/eN_d}
        n = \frac{1}{V} \int_{E}^{\infty} f_D(E) g(E) \ dE
                                                                                                                                                  (11-1)
                                                                                                                                                                                                                                 (11-34)
                                                                                E_F = \frac{1}{2}(E_{cn} + E_{vn}) + \frac{1}{2}k_BT \ln \left[ (N_v/N_c)^{1/2}(N_d/n_i) \right]
                                                                                E_F = \frac{1}{2} (E_{cp} + E_{vp}) - \frac{1}{2} k_B T \ln \left[ (N_c/N_v)^{1/2} (N_a/n_i) \right]^{\epsilon_{Dax}} = \sqrt{eN_d(\phi - V_a)/\epsilon_r \epsilon_0}.
       f_D(E) \approx \exp\left(-\frac{E - E_F}{k_B T}\right)
                                                                                                                                                                                                                                 (11-35)
                                                               (10-10)
                                                                                                                                                                                             C = \frac{\epsilon_r \epsilon_0 A}{x_d}
                                                                                                                                                                                                                                 (11-36)
                                                                                                                                                  (11-3)
        n = N_c \exp\left(-\frac{E_c - E_F}{k_B T}\right)
                                                               (10-11)
                                                                                     E_{vp} - E_{vn} = k_B T \ln(N_d N_a / n_i^2)
                                                                                                                                                  (11-4)
                                                                                                                                                                        C = A\sqrt{eN_d\epsilon_r\epsilon_0/4(\phi - V_a)}
                                                                                                                                                                                                                                 (11-37)
                                                                                                        e\phi = E_{vp} - E_{vn}
                                                                                                                                                  (11-5)
          N_c = 2\left(\frac{m_n^* k_B T}{2\pi\hbar^2}\right)^{3/2}.
                                                                                                                                                                                        p = mv = \frac{m}{\hbar} \frac{dE}{dk}
                                                               (10-12)
                                                                                         \phi = (k_B T/e) \ln(N_d N_a/n_i^2)
                                                                                                                                                  (11-6)
                                                                                                                                                                                                                                   (12-1)
                                                                                                         \oint \mathbf{E} \cdot d\mathbf{S} = Q/\epsilon
                 \int_0^\infty \sqrt{x}e^{-x} \ dx = \frac{1}{2}\sqrt{\pi},
                                                                                                                                                  (11-7)
                                                                                                                                                                                \oint \mathbf{E} \cdot d\ell = -d\Phi_B/dt
                                                                                                                                                                                                                                   (13-1)
                                                                                                                \epsilon = \epsilon_r \epsilon_0
                                                                                                                                                  (11-8)
                                                                                                                                                                                 \mathbf{B} = \mathbf{B}_0 \exp(-x/\lambda)
                                                                                                                                                                                                                                   (13-2)
  p = \frac{1}{V} \int_{-\infty}^{E_v} [1 - f_D(E)] g(E) \ dE
                                                                                                                \hat{\imath} \; 3 = 3
                                                                                                                                                  (11-9)
                                                                                                                                                                                 \lambda = \frac{\lambda_0}{\sqrt{1 - (T/T_c)^4}}
                                                                                                                                                                                                                                   (13-3)
                                                                                                                                                 (11-10)
   1 - f_D(E) \approx \exp\left(-\frac{E_F - E}{k_D T}\right)
                                                               (10-14)
                                                                                                                                                                        B_c(T) = B_c(0) \left[ 1 - (T/T_c)^2 \right]
                                                                                                                                                                                                                                   (13-4)
                                                                                               \mathcal{E} = \frac{1}{\epsilon_x \epsilon_0} \int_{-\infty}^{x} \rho \ dx.
                                                                                                                                                (11-11)
        p = N_v \exp\left(-\frac{E_F - E_v}{k_B T}\right)
                                                                                                                                                                                           B = \mu_0 I / 2\pi R
                                                                                                                                                                                                                                   (13-5)
                                                               (10-15)
                                                                                             -(eN_d/\epsilon_r\epsilon_0)(\frac{1}{2}x_d+x),
                                                                                                                                           -\frac{1}{2}x_d \le x \le 0,
                                                                                                                                                                                          I_c = 2\pi r B_c/\mu_0
                                                                                                                                                                                                                                   (13-6)
          N_v = 2\left(\frac{m_p^* k_B T}{2\pi\hbar^2}\right)^{3/2}.
                                                               (10-16)
                                                                                                                                              0 \le x \le \frac{1}{2}x_d,
                                                                                                                                                                                          \mathbf{k}_{1f} = \mathbf{k}_{1i} - \mathbf{k}
                                                                                                                                              otherwise.
                                                                                                                                                                                          \mathbf{k}_{2f} = \mathbf{k}_{2i} + \mathbf{k}
                                                                                                                                                                                                                                   (13-7)
    E_F = \frac{1}{2}(E_c + E_v) + \frac{1}{2}k_B T \ln(N_v/N_c)
                                                                                                                                                (11-12)
                                                                                                                                                                              \mathbf{k}_{1f} + \mathbf{k}_{2f} = \mathbf{k}_{1i} + \mathbf{k}_{2i}
                                                                                                                                                                                                                                   (13-8)
                                                                                              \mathcal{E}_{\max} = eN_d x_d / 2\epsilon_r \epsilon_0
                                                                                                                                                (11-13)
      n_i = p_i = \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2k_B T}\right).
                                                                                                                                                                                 \mathbf{k}_1 + \mathbf{k}_2 = \text{constant}
                                                                                                                                                                                                                                   (13-9)
                                                                                               \Delta U = -\int_{-\infty}^{\infty} F \ dx
                                                                                                                                                (11-14)
                                                                                                                                                                          \psi = \sum A_{ij} \psi_1(\mathbf{k}_i) \psi_2(\mathbf{k}_j)
                                                                                                                                                                                                                                 (13-10)
                                                                (10-18)
                                                                                              \Delta U = e \int_{-x_d/2}^{x_d/2} \mathcal{E} \, dx
        np = N_c N_v \exp\left(-\frac{E_g}{k_B T}\right)
                                                               (10-19)
                                                                                                                                                (11-15)
                                                                                                                                                                                    2\Delta \approx 3.5 k_B T_c
                                                                                                                                                                                                                                 (13-11)
                 np = n_i p_i = n_i^2
                                                                                             \Delta U = -e^2 N_d x_d^2 / 4\epsilon_r \epsilon_0
                                                               (10-20)
                                                                                                                                                (11-16)
                                                                                                                                                                                    \mathbf{k}_1 + \mathbf{k}_2 = \Delta \mathbf{k}
                                                                                                                                                                                                                                 (13-12)
```

1 H			-	Γhe Po	eriodio	: Tabl	e of th	ne Ele:	ments								2 He	
1.008			1st line: atomic number										4.003					
3	4		2nd line: atomic symbol									5	6	7	8	9	10	
Li 6.941	Be 9.012		B C N O F									Ne 20.18						
11	12		13 14 15 16 17									18						
Na	Mg											Al	Si	P	S	CI	Ar	
22.99	24.31								ı	ı	1	26.98	28.09	30.97	32.07	35.45	39.95	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe	
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)	
87	88	89	104	105	106	107	108	109										ļ
Fr (222)	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt										
(223)	226.0	227.0	(261)															
									Ι		1	ı	1	1				
58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Du	67 Ho	68 Er	69 Tm	70 Yb	71					
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	Dy 162.5	164.9	167.3	168.9	173.0	Lu 175.0					
90	91	92	93	94	95	96	97	98	99	100	101	102	103					
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr					
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)					
89 Ac	act	inium	L	(68 Er	erb	ium		10	1 Md	me	ndelev	ium	10	4 Rf	rut	herford	lium
13 Al		minuı	m		63 Eu		opiun	1		80 Hg		rcury			2 Sm		narium	L
95 An 51 Sb		ericiu timony		10	00 Fm 9 F		mium orine			2 Mo 60 Nd		lybder dymit			1 Sc 6 Sg		ndium borgiu	m
18 Ar	arg		y	8	37 Fr		ncium			.0 Ne	neo		1111		4 Se		nium	111
33 As	ars	enic			64 Gd	_	loliniu	ım		3 Np		tuniu	m		4 Si	silio		
85 At 56 Ba		atine rium			31 Ga 32 Ge	0	lium maniu	1100		8 Ni 1 Nb	nicl	kel bium			7 Ag 1 Na	silv	er ium	
97 Bk		keliur	n		79 Au	_		1111		7 N		ogen			8 Sr		ntium	L
4 Be	bei	ylliun		,	72 Hf	haf	nium			2 No	nob	elium		1	6 S	sulf		
83 Bi 107 Bh		muth hrium		10	08 Hs 2 He		sium ium			6 Os 8 O		nium			3 Ta 3 Tc		talum metiu	
5 B	boı			(и до пе 2 Но		rum mium			6 Pd		gen ladiun	1		3 Tc 2 Te		metiu. urium	Ш
$35 \mathrm{Br}$	bro	omine			1 H	hyo	drogen		1	.5 P		sphor		6	5 Tb	terl	oium	
48 Cd		lmiun -:	1		49 In		ium			8 Pt	-	$\lim_{t \to 0}$			1 Tl		llium	
20 Ca 98 Cf		cium iforniı	ım		53 I 77 Ir	iod irid	ine lium			4 Pu 4 Po		toniur onium			0 Th 9 Tm		rium lium	
6 C		bon			26 Fe	iro				9 K	_	assiur			0 Sn	tin		
58 Ce		ium			36 Kr	·	pton			9 Pr	_	seody			2 Ti		nium	
55 Cs 17 Cl		ium orine			57 La 03 Lr		thanu rencii			1 Pm 1 Pa	-	methi tactin			4 W 2 U		gsten nium	
24 Cr		omiui	m		32 Pb					88 Ra	_	ium	14111		3 V		adium	L
27 Co		oalt			3 Li		ium			66 Rn	rad				4 Xe	xen		
29 Cu 96 Cm		oper rium			71 Lu 12 Mg		etium gnesiu	ım		5 Re 5 Rh		nium dium			0 Yb 9 Y		erbium rium	1
105 Db		bnium	1		12 Mg 25 Mr	-	ngane			5 Kn 7 Rb		idium			0 Zn	zino		
66 Dy	dys	sprosi	um		09 Mt		itneriv			4 Ru		heniur			0 Zr		onium	l
99 Es	ein	steini	um															

Listed below are the crystal structures of various elements and compounds. The lattice parameters a in units of Å are also given.

Elemen	nts with a bo	ec lattic	ee			Compo	ounds with t	he sodi	um chloride	structu	re
Li	3.50	Ba	5.02	Mo	3.14	LiF	4.02	RbI	7.32	BaTe	6.99
Na	4.30	V	3.04	W	3.15	LiCl	5.14	CsF	6.00	MnO	4.43
K	5.20	Nb	3.30	Fe	2.86	${ m LiBr}$	5.49	MgO	4.20	MnS	5.21
Rb	5.59	Ta	3.32	Eu	4.58	LiI	6.00	MgS	5.19	MnSe	5.45
Cs	6.50	Cr	2.87			NaF	4.61	MgSe	5.45	FeO	4.28
		. 1				NaCl	5.63	CaO	4.80	CoO	4.25
Eleme	nts with an f	cc latti	ce			NaBr	5.96	CaS	5.68	NiO	4.17
Ca	5.56	Pd	3.87	Al	4.04	NaI	6.46	CaSe	5.91	AgF	4.92
Sr	6.08	Pt	3.90	Pb	4.93	KF	5.36	CaTe	6.34	AgCl	5.54
Ac	5.31	Cu	3.61	Ce	5.12	KCl	6.27	SrO	5.15	AgBr	5.76
Rh	3.80	Ag	4.07	Yb	5.48	KBr	6.58	SrS	6.01	CdO	4.70
Ir	3.82	Au	4.07	Th	5.08	KI	7.05	SrSe	6.23	SnTe	6.28
Ni	3.52					RbF	5.63	SrTe	6.65	PbS	5.93
		1.	1			RbCl	6.53	BaO	5.53	PbSe	6.14
Eleme	nts with the	diamor	id structure			RbBr	6.85	BaSe	6.59	PbTe	6.44
\mathbf{C}	3.56	Ge	5.65	Sn	6.46	Comp	ounds with t	ho zina	blanda atmia	-1100	
Si	5.42					Compo	Junus with t	ne zmc	biende struc	ure	
~						BeS	4.86	ZnTe	6.09	GaP	5.44
Compo	ounds with t	he cesiu	ım chloride s	structui	e	CuCl	5.41	CdTe	6.46	GaAs	5.64
CsCl	4.11	TlI	4.18	CuPd	2.99	CuBr	5.68	AlP	5.45	GaSb	6.09
CsBr	4.28	TlSb	3.85	AgZn		CuI	6.05	AlAs	5.63	InSb	6.45
CsI	4.56	TlBi	3.90	AuZn		ZnS	5.42	AlSb	6.10	SnSb	6.13
TlCl	3.84	CuZn	2.95	AlNi	2.82	ZnSe	5.66				
TlBr	3.97					-					

Fig. 1-19. (a) The Wigner-Seitz cell for the fcc lattice. (b) These cells fit together to fill all space.

Fig. 1-16. (a) The Wigner-Seitz cell for the bcc lattice. (b) These cells fit together to fill all space.

Fig. 1-12. Body-centered cubic arrangement of atoms.

Fig. 1-13. The conventional unit cell of the bcc lattice

Fig. 1-17. Face-centered cubic arrangement of atoms

Fig. 1-18. The conventional unit cell of the fcc lattice.

Fig. 1-21. The conventional unit cell for the sodium chloride structure. The large and small spheres represent two different types of atoms.

Fig. 1-27. The conventional unit cell of the diamond structure. All atoms are identical. $\,$

Fig. 1-25. The conventional unit cell of the cesium chloride structure. The large and small spheres represent two different types of atoms.

Fig. 1-26. The conventional unit cell for the zincblende structure. The large and small spheres represent two different types of atoms.

UNITS

The SI units are given in parentheses. Other commonly used units are given in terms of the SI units. Symbols conform with the recommendations of the American National Standards Institute (ANSI) and the American Institute of Physics (AIP).

С	ommon	lу	used	mu	ltipl	es	of	SI	units:	
---	-------	----	------	----	-------	----	----	----	--------	--

			c ,			
	prefix	$_{ m symbol}$				
	tera	T	10^{12}			
	giga	G	10^{9}			
	mega	M	10^{6}			
	kilo	k	10^{3}			
	centi	c	10^{-2}			
	milli	m	10^{-3}			
	$_{\rm micro}$	μ	10^{-6}			
	nano	n	10^{-9}			
	pico	p	10^{-12}			
	femto	f	10^{-15}			
length: meter (m)						

 $= 10^{-10} \text{ m}$

 $= 2.54 \times 10^{-2} \; \mathrm{m}$

 $= 1.000 \times 10^5 \text{ Pa}$

revolution

foot	1 ft	= 0.3048 m		
mile	1 mi	= 1609 m		
mass: kilogram (kg)				
atomic mass unit	1 u	$=1.661 \times 10^{-27} \text{ kg}$		
slug	1 slug	$=14.59~\mathrm{kg}$		
force: newton $(N = kg)$	$(-m/s^2)$			
dyne	1 dyn	$= 10^{-5} \text{ N}$		
pound	1 lb	= 4.448 N		
pressure: pascal (Pa =	$= kg/m \cdot s^2$)		
atmosphere	1 atm	$=1.013\times 10^5~\mathrm{Pa}$		
pounds/square inch	1 psi	$=6895~\mathrm{Pa}$		
cm of mercury	1 cm Hg	= 1333 Pa		

1 bar

1 Å

1 in.

angstrom

inch

bar

IMPURITY LEVELS IN SILICON AND GERMANIUM

All values are given for room temperature (300 K).

Donors	E_d in Si	E_d in Ge
P	$0.044~\mathrm{eV}$	0.0120 eV
As	0.049	0.0127
Sb	0.039	0.0096
Bi	0.069	
Acceptors	${\cal E}_a$ in Si	E_a in Ge
В	$0.046~\mathrm{eV}$	0.0104 eV
A1	0.057	0.0102
Ga	0.065	0.0108
Ga In	0.065 0.16	0.0108 0.0112

time: second (s)		
minute	$1 \min$	=60 s
hour	1 h	$=3600~\mathrm{s}$
frequency: hertz (Hz	$= s^{-1}$)	_
radians/second	$1~{\rm rad/s}$	$=1/2\pi~\mathrm{Hz}$
energy: joule $(J = kg)$	$-m^2/s^2$	
erg	1 erg	$= 10^{-7} \text{ J}$
electron volt	$1~{ m eV}$	$= 1.602 \times 10^{-19}~{\rm J}$
calorie	1 cal	$=4.187~\mathrm{J}$
kilowatt-hour	$1~\mathrm{kW}{\cdot}\mathrm{h}$	$=3.6\times10^6~\mathrm{J}$
British thermal unit	$1~\mathrm{Btu}$	$=1055~\mathrm{J}$
power : watt $(W = kg)$	$\cdot \text{m}^2/\text{s}^3$)	
horsepower	$1~\mathrm{hp}$	$=745.7~\mathrm{W}$
charge: coulomb (C =	$A \cdot s)$	
electric potential: vo	olt (V = kg	\cdot m ² /s ³ · A)
current: ampere (A)		
resistance: ohm ($\Omega =$	$\mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}^3$	\cdot A ²)
capacitance: farad (F	$= s^4 \cdot A^2 /$	$(\text{kg} \cdot \text{m}^2)$
magnetic field: tesla	$(T = kg/s^2)$	· A)
gauss	1 G	$=10^{-4}~\mathrm{T}$
magnetic flux: weber	(Wb = kg	\cdot m ² /s ² · A)
maxwell	$1 \mathrm{Mx}$	$=10^{-8} \text{ Wb}$
magnetic inductance	e: henry (H	$I = kg \cdot m^2/s^2 \cdot A^2)$
temperature: kelvin ((K)	
degrees Celsius	0°C	$=273.15~\mathrm{K}$
angle: radian (rad)		
degree	1°	$=\pi/180~\mathrm{rad}$

1 rev

 $=2\pi$ rad

Fig. 2-14. (a) Diagram showing the relation, $\mathbf{G} = \mathbf{k}_2 - \mathbf{k}_1$. (b) \mathbf{G} is perpendicular to planes of lattice points in real space. (c) Diagram showing the relation between G, k, and θ .

SOME PHYSICAL CONSTANTS

electron charge	e	$1.602 \times 10^{-19}~{\rm C}$
electron mass		$9.11\times10^{-31}~\mathrm{kg}$
proton mass		$1.673 \times 10^{-27}~{\rm kg}$
neutron mass		$1.675 \times 10^{-27} \ \mathrm{kg}$
Planck's constant	h	$6.626\times10^{-34}~\mathrm{J\cdot s}$
	\hbar	$1.055\times10^{-34}~\mathrm{J\cdot s}$
Boltzmann's constant	k_B	$1.380 \times 10^{-23}~{\rm J/K}$
permittivity constant	ϵ_0	$8.854 \times 10^{-12}~{\rm F/m}$
permeability constant	μ_0	$1.257\times10^{-6}~\mathrm{H/m}$
speed of light	c	$3.00\times10^8~\mathrm{m/s}$
Avogadro's number		$6.022\times10^{23}~/\mathrm{mol}$
Bohr magneton	μ_B	$9.27\times10^{-24}~\mathrm{J/T}$