

LoCoDL: COMMUNICATION-EFFICIENT DISTRIBUTED LEARNING WITH LOCAL TRAINING AND COMPRESSION

Laurent Condat, Artavazd Maranjyan, Peter Richtárik

LoCoDL

end for

input: stepsizes $\gamma, \chi, \rho > 0$; probability $\rho \in (0,1]; \omega \geq 0$; initial estimates $x_1^0, \dots, x_n^0, y^0 \in \mathbb{R}^d$ and $u_1^0, \dots, u_n^0, v^0 \in \mathbb{R}^d$ such that $\frac{1}{n} \sum_{i=1}^n u_i^0 + v^0 = 0$. for $t = 0, 1, \dots$ do for $i = 1, \dots, n$, at clients in parallel, do $\hat{x}_i^t \coloneqq x_i^t - \gamma \nabla f_i(x_i^t) + \gamma u_i^t$ $\hat{y}^t \coloneqq y^t - \gamma \nabla g(y^t) + \gamma v^t$ // identical copies at clients flip a coin $\theta^t \in \{0, 1\}$ with $\operatorname{Prob}(\theta^t = 1) = \rho$ if $\theta^t = 1$ then $d_i^t \coloneqq \mathcal{C}_i^t(\hat{x}_i^t - \hat{y}^t)$ send d_i^t to the server at server: aggregate $\bar{d}^t \coloneqq \frac{1}{2n} \sum_{j=1}^n d_j^t$ and send \bar{d}^t to all clients $x_i^{t+1} \coloneqq (1-\rho)\hat{x}_i^t + \rho(\hat{y}^t + \bar{d}^t)$ $u_i^{t+1} \coloneqq u_i^t + \frac{\rho \chi}{\gamma(1+2\omega)}(\bar{d}^t - d_i^t)$ $y^{t+1} \coloneqq \hat{y}^t + \rho \bar{d}^t$ $v^{t+1} \coloneqq v^t + \frac{\rho \chi}{\gamma(1+2\omega)}\bar{d}^t$ else $x_i^{t+1} \coloneqq \hat{x}_i^t, y^{t+1} = \hat{y}^t, u_i^{t+1} \coloneqq u_i^t, v^{t+1} \coloneqq v^t$ end if end for

Distributed optimization with *n* clients + server:

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \ \frac{1}{n} \sum_{i=1}^n f_i(x) + g(x)$$

 f_i : private loss, g: shared loss Client i calls ∇f_i and ∇g

All f_i and g are L-smooth and μ -strongly convex. $\kappa := \frac{L}{\mu}$

primal-dual optimality conditions:

•
$$X_1 = \cdots = X_n = Y$$

•
$$0 = \nabla f_i(x_i) - u_i, \ \forall i \in [n]$$

•
$$0 = \nabla q(y) - v$$

•
$$0 = u_1 + \cdots + u_n + nv$$

General unbiased compressors with relative variance $\omega > 0$:

$$\mathbb{E}\left[\left\|\mathcal{C}(x) - x\right\|^{2}\right] \leq \omega \left\|x\right\|^{2}, \ \forall x$$
 e.g. rand- k : $\omega = \frac{d}{k} - 1$

Theorem (linear convergence). With
$$\gamma < \frac{2}{L+\mu}$$
, suitable ρ and χ , then for every $t \geq 0$,
$$\mathbb{E}\left[\Psi^{t}\right] \leq \max\left((1-\gamma\mu)^{2}, 1-\frac{p^{2}\chi}{1+2\omega}\right)^{t}\Psi^{0},$$
 where $\Psi^{t} \coloneqq \frac{1}{\gamma}\left(\sum_{i=1}^{n}\left\|x_{i}^{t}-x^{\star}\right\|^{2}+n\left\|y^{t}-x^{\star}\right\|^{2}\right)\frac{\gamma(1+2\omega)}{p^{2}\chi}\left(\sum_{i=1}^{n}\left\|u_{i}^{t}-\nabla f_{i}(x^{\star})\right\|^{2}+n\left\|v^{t}-\nabla g(x^{\star})\right\|^{2}\right)$

Best complexity with independent rand-k compressors, $k = \lceil \frac{d}{n} \rceil$

Uplink communication complexity in #reals:

Algorithm	$\mathcal{O}(\cdot \log \epsilon^{-1})$	if $n = \mathcal{O}(d)$	
Scaffold	$d\kappa$	$d\kappa$	
Scaffnew	$d\sqrt{\kappa}$	$d\sqrt{\kappa}$	
EF21	$d\kappa$	$d\kappa$	*,
DIANA	$(1+\frac{d}{n})\kappa+d$	$\frac{d}{n}\kappa + d$	f(x)
ADIANA	$\left(1+\frac{d}{\sqrt{n}}\right)\sqrt{\kappa}+d$	$\frac{d}{\sqrt{n}}\sqrt{\kappa} + d$	
FedComGate	$d\kappa$	$d\kappa$	
5GCS-CC	$\left(\sqrt{d} + \frac{d}{\sqrt{n}}\right)\sqrt{\kappa} + d$	$\frac{d}{\sqrt{n}}\sqrt{\kappa} + d$	
C-Scaffnew	$\left(\sqrt{d} + \frac{d}{\sqrt{n}}\right)\sqrt{\kappa} + d$	$\frac{d}{\sqrt{n}}\sqrt{\kappa} + d$	
LoCoDL	$\left(\sqrt{d} + \frac{d}{\sqrt{n}}\right)\sqrt{\kappa} + d$	$\frac{d}{\sqrt{n}}\sqrt{\kappa} + d$	

Logistic regression, LibSVM a5a, d = 122, n = 288