Assignment 1

Homework assignments will be done individually: each student must hand in their own answers. Use of partial or entire solutions obtained from others or online is strictly prohibited. Electronic submission on Canvas is mandatory.

1. **Probability** (10 points) Suppose that we have three coloured boxes r (red), b (blue), and g (green). Box r contains 3 apples, 4 oranges, and 3 limes, box b contains 1 apple, 1 orange, and 0 limes, and box g contains 3 apples, 3 oranges, and 4 limes. If a box is chosen at random with probabilities p(r) = 0.2, p(b) = 0.2, p(g) = 0.6, and a piece of fruit is removed from the box (with equal probability of selecting any of the items in the box), then what is the probability of selecting an apple? If we observe that the selected fruit is in fact an orange, what is the probability that it came from the green box?

2. **Maximum Likelihood** (10 points) Assuming data points are independent and identically distributed (i.i.d.), the probability of the data set given parameters: μ and σ^2 (the likelihood function):

$$P(\mathbf{x}|\mu, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Please calculate the solution for μ and σ^2 using Maximum Likelihood (ML) estimator.

3. **Maximum Likelihood** (15 points) We assume there is a true function $f(\mathbf{x})$ and the true value is given by $y = f(x) + \epsilon$ where ϵ is a Gaussian distribution with mean 0 and variance σ^2 . Thus we can write:

$$p(y|x, w, \beta) = \mathcal{N}(y|f(x), \beta^{-1})$$

where $\beta^{-1} = \sigma^2$.

Assuming the data points are drawn independently from the distribution, we obtain the likelihood function:

$$p(\mathbf{y}|\mathbf{x}, w, \beta) = \prod_{n=1}^{N} \mathcal{N}(y_n|f(x), \beta^{-1})$$

Please show that maximizing the likelihood function is equivalent to minimizing the sum-of-squares error function.

4. **MAP estimator** (20 points) Given input values $\mathbf{x} = (x_1, ..., x_N)^T$ and their corresponding target values $\mathbf{y} = (y_1, ..., y_N)^T$, we estimate the target by using function $f(x, \mathbf{w})$ which is a polynomial curve. Assuming the target variables are drawn from Gaussian distribution:

$$p(y|x, \mathbf{w}, \beta) = \mathcal{N}(y|f(x, \mathbf{w}), \beta^{-1})$$

and a prior Gaussian distribution for w:

$$p(\mathbf{w}|\alpha) = (\frac{\alpha}{2\pi})^{(M+1)/2} \exp(-\frac{\alpha}{2} \mathbf{w}^T \mathbf{w})$$

Please prove that maximum posterior (MAP) is equivalent to minimizing the regularized sum-of-squares error function. Note that the posterior distribution of \mathbf{w} is $p(\mathbf{w}|\mathbf{x}, \mathbf{y}, \alpha, \beta)$. Hint: use Bayes' theorem.

5. Linear regression (45 points) Please choose one of the below problems. You will need to submit your code.

a) UCI Machine Learning: Conventional and Social Media Movies

Please apply both Lasso regression and Ridge regression algorithms on this dataset for predicting movie ratings. You do not need to use all the features. Report how you divide data into training, validation, and testing. Run both regression algorithms 10 times and report the mean and standard deviation of the training error. Report the mean squared error (MSE) on the testing data.

a) UCI Machine Learning: Residential Building Data Set Data Set

Please apply both Lasso regression and Ridge regression algorithms on this dataset for predicting the house sale prices. You do not need to use all the features. Report how you divide data into training, validation, and testing. Run both regression algorithms 10 times and report the mean and standard deviation of the training error. Report the mean squared error (MSE) on the testing data.