Matemática Discreta Aula 12 Recorrências Lineares

Rosane Rossato Binotto

01/11/2023

Tópicos

- Recorrências lineares de primeira, segunda, terceira, ... ordem.
- Recorrências lineares homogêneas e não homogêneas com coeficientes constantes.

Sequências Definidas por Recorrências

 Sequências definidas por recorrências são sequências definidas por regras que permitem calcular qualquer termo em função dos anteriores (usualmente do antecessor imediato ou de uma quantidade pequena de antecessores imediatos).

Exemplos:

• **Exemplo 1:** Uma progressão aritmética de primeiro termo *a* e razão *r*:

$$x_1 = a, \ x_{n+1} = x_n + r, \ \text{para } n \ge 1.$$

Sequências Definidas por Recorrências

• Exemplo 2: Uma sequência dada por

$$a_{n+2} = 3a_n - a_{n+1}, \quad a_1 = 2, \quad a_2 = -1, \quad \text{para } n \ge 1.$$

 Não basta dar a lei de recorrência é preciso também fornecer o(s) primeiro(s) termo(s).

A Sequência de Fibonacci

Exemplo 3:

Quantos pares de coelhos serão produzidos em um ano, a partir de um único casal, se cada casal procria a cada mês um novo casal que se torna produtivo depois de dois meses?

Mês	Número de casais do mês anterior	Número de casais recém-nascidos	Total
1º	0	1	1
2 ^o	1	0	1
3 <u>0</u>	1	1	2
4º	2	1	3
5º	3	2	5
6 <u>°</u>	5	3	8
7 ⁹	8	5	13

A Sequência de Fibonacci

- Se x_n representa o n-ésimo termo da sequência de Fibonacci, temos que
 - $x_1 = 1$;
 - $x_2 = 1$;
 - $x_{n+2} = x_n + x_{n+1}$, para todo n natural.
- Temos que

$$x_{n+2} = x_n + x_{n+1}$$

representa uma recorrência.

Exemplo 4:

Quantas são as sequências de 6 termos, pertencentes a $\{0,1,2\}$, que não têm dois termos consecutivos iguais a 0?

Solução:

- Seja x_n o número de sequências com n termos respeitando as condições do enunciado.
 - Por exemplo, para n=1 temos as seguintes sequências: $a_1=(0), \ a_2=(1), \ a_3=(2).$
 - Todas elas satisfazem a condição dada.
 - Logo, $x_1 = 3$.

- Continuando...
 - Para n = 2 temos as seguintes sequências:

$$\begin{aligned} a_1 &= (0,0), \ a_2 &= (0,1), \ a_3 &= (0,2), \ a_4 &= (1,0), \ a_5 &= (1,1), \\ a_6 &= (1,2), \ a_7 &= (2,0), \ a_8 &= (2,1), \ a_9 &= (2,2). \end{aligned}$$

Com exceção de $a_1 = (0,0)$ as demais sequências satisfazem a condição dada. Logo, $x_2 = 8$.

• Para n = 3, vejamos algumas sequências:

$$a_1 = (0,0,1), \ a_2 = (1,0,1), \ a_3 = (1,2,1), \ a_4 = (2,2,1), \ \dots$$

Com exceção de $a_1=(0,0,1)$ as demais sequências satisfazem a condição dada. Qual o valor de x_3 ?

 Vamos contar separadamente as sequências, de acordo com seu termo inicial, para uma sequência com n termos.

• O número dessas sequências começando por 1 é x_{n-1} :

$$a_n = (1, \underbrace{\dots, n-1 \text{ termos}});$$

• O número dessas sequências começando por 2 é x_{n-1} :

$$a_n = (2, \underbrace{\dots});$$

• O número dessas sequências começando por 0 é x_{n-2} , pois:

$$a_n = (0, 1, \underbrace{\dots, n-2 \text{ termos}})$$
 ou $a_n = (0, 2, \underbrace{\dots, n-2 \text{ termos}})$.

- Logo $x_n = 2x_{n-1} + 2x_{n-2}$, $n \ge 3$, com $x_1 = 3$ e $x_2 = 8$.
- Portanto,

$$x_3 = 2x_2 + 2x_1 = 22,$$

e assim sucessivamante.

Recorrências Lineares de Primeira Ordem

- Uma recorrência de primeira ordem expressa x_{n+1} em função de x_n .
- Ela é dita **linear** quando essa função for do primeiro grau.
- As recorrências

$$x_{n+1} = 2x_n - n^2$$
 e $x_{n+1} = nx_n$

são lineares e a recorrência $x_{n+1} = x_n^2$ não é linear.

• As duas últimas são ditas **homogêneas**, por não possuírem termo independente de x_n .

Recorrências Lineares Homogêneas

Exemplo 5:

Resolva a recorrência $x_{n+1} = 4x_n$.

- Solução:
 - $x_2 = 1x_1$
 - $x_3 = 2x_2$
 - $x_4 = 3x_3$
 -
 - $\bullet \quad x_n = (n-1)x_{n-1}$
- Multiplicando em ambos os lados e simplicando obtemos:

$$x_n = (n-1)! \cdot x_1.$$

Solução geral:

$$x_n = C \cdot (n-1)!,$$

onde $x_1 = C$ é uma constante.

Exempo 6:

Resolva a recorrência

$$x_{n+1} = x_n + 2^n, \quad x_1 = 1.$$

- Solução:
 - $x_2 = x_1 + 2$
 - $x_3 = x_2 + 2^2$
 - $x_4 = x_3 + 2^3$
 -
 - $x_n = x_{n-1} + 2^{n-1}$
- Somando:

$$x_n = x_1 + (2 + 2^2 + 2^3 + \dots + 2^{n-1}) = 1 + 2 + 2^2 + 2^3 + \dots + 2^{n-1}$$

= $2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{n-1} = 1\frac{2^n - 1}{2 - 1} = 2^n - 1$.

Exercícios:

Exercício 1:

Seja x_n o número máximo de regiões em que n retas podem dividir o plano. Caracterize x_n recursivamente.

Resposta: $x_{n+1} = x_n + (n+1)$, para $n \ge 1$ e $x_1 = 2$.

Exercício 2:

Quantas são as sequências de n termos, pertencentes a $\{0,1\}$, que possuem um número ímpar de termos iguais a 0?

Recorrências lineares de primeira ordem homogêneas com coeficientes constantes

 Recorrências lineares de primeira ordem homogêneas com coeficientes constantes são recorrências da forma

$$x_{n+1} + px_n = 0,$$

com $p \neq 0$.

• A equação característica da recorrência é dada por:

$$r + p = 0$$

- sendo uma equação do primeiro grau que possui somente uma raiz.
- Essa raiz da equação característica desempenha um papel fundamental na expressão da solução geral para a recorrência.
- Como $p \neq 0$, essa raiz não é nula.

Recorrências lineares de segunda ordem homogêneas com coeficientes constantes

• Recorrências lineares de segunda ordem são recorrências da forma

$$x_{n+2} + px_{n+1} + qx_n = 0$$
,

com $q \neq 0$ (se q = 0, a recorrência é, na verdade, de primeira ordem).

• A equação característica da recorrência é:

$$r^2 + pr + q = 0.$$

- Veremos a seguir que as raízes da equação característica desempenham um papel fundamental na expressão da solução geral para a recorrência.
- Como $q \neq 0$, essas raízes são necessariamente não nulas.

Raízes da equação característica e soluções da recorrência

• Se r é raiz da equação

$$r^2 + pr + q = 0,$$

então

$$x_n = r^n$$

é solução da recorrência

$$x_{n+2} + px_{n+1} + qx_n = 0.$$

• De fato, substituindo $x_n = r^n$ na recorrência:

$$x_{n+2} + px_{n+1} + qx_n = r^{n+2} + pr^{n+1} + qr^n =$$

= $r^n(r^2 + pr + q) = r^n \cdot 0 = 0.$

Raízes da equação característica e soluções da recorrência

Consequência:

Se r_1 e r_2 são raízes distintas de $r^2 + pr + q = 0$, então $x_n = C_1 r_1^n + C_2 r_2^n$ é solução da recorrência $x_{n+2} + px_{n+1} + qx_n = 0$, quaisquer que sejam os valores das constantes C_1 e C_2 .

- Sejam $y_n = r_1^n$, $z_n = r_2^n$ e $x_n = C_1 r_1^n + C_2 r_2^n = C_1 y_n + C_2 z_n$.
- Assim,

$$x_{n+2} + px_{n+1} + qx_n =$$

$$= (C_1y_{n+2} + C_2z_{n+2}) + p(C_1y_{n+1} + C_2z_{n+1}) + q(C_1y_n + C_2z_n) =$$

$$= C_1(y_{n+2} + py_{n+1} + qy_n) + C_2(z_{n+2} + pz_{n+1} + qz_n) =$$

$$= C_1 \cdot 0 + C_2 \cdot 0 = 0.$$

já que y_n e z_n são soluções da recorrência $x_{n+2} + px_{n+1} + qx_n = 0$.

Resolvendo a recorrência: caso $r_1 \neq r_2$

 De modo geral, se y_n e z_n são soluções de uma recorrência linear homogênea, qualquer combinação linear de y_n e z_n também é solução da recorrência.

Resultado:

Se as raízes de $r^2 + pr + q = 0$, com $q \neq 0$ são r_1 e r_2 , com $r_1 \neq r_2$, então todas as soluções da recorrência

$$x_{n+2} + px_{n+1} + qx_n = 0$$

são da forma

$$x_n = C_1 r_1^n + C_2 r_2^n$$

onde C_1 e C_2 são constantes.

Prova do resultado

- **Prova:** Seja (x_n) uma solução qualquer de $x_{n+2} + px_{n+1} + qx_n = 0$.
- É sempre possível escolher constantes C_1 e C_2 tais que:

$$\begin{cases} C_1 r_1 + C_2 r_2 &= x_1 \\ C_1 r_1^2 + C_2 r_2^2 &= x_2. \end{cases}$$

esse sistema sempre tem solução única pois $r_1 \neq r_2$.

- Vamos provar que $x_n = C_1 r_1^n + C_2 r_2^n$, para todo n natural.
- Prova por indução em n.
- A afirmativa vale para n=1 e n=2, já que C_1 e C_2 foram escolhidos de modo que isto ocorra.

Prova do resultado

- Suponhamos válida para naturais $n \in n+1$.
- Temos $x_{n+2} + px_{n+1} + qx_n = 0$.
- Logo,

$$x_{n+2} = -px_{n+1} - qx_n = -p\left(C_1r_1^{n+1} - C_2r_2^{n+1}\right) - q\left(C_1r_1^n + C_2r_2^n\right) =$$

$$= -C_1r_1^n\left(pr_1 + q\right) - C_2r_2^n\left(pr_2 + q\right).$$

• Somando e subtraindo $C_1 r_1^{n+2} + C_2 r_2^{n+2}$ obtemos:

$$x_{n+2} = -C_1 r_1^n \left(r_1^2 + p r_1 + q \right) - C_2 r_2^n \left(r_2^2 + p r_2 + q \right) + C_1 r_1^{n+2} + C_2 r_2^{n+2}.$$

• Mas as expressões entre parênteses se anulam, levando a

$$x_{n+2} = C_1 r_1^{n+2} + C_2 r_2^{n+2},$$

o que completa a prova por indução.

Exemplo 7:

Determinar as soluções da recorrência

$$x_{n+2} + 3x_{n+1} - 4x_n = 0.$$

• Solução: A equação característica

$$r^2 + 3r - 4 = 0$$
,

tem raízes 1 e -4.

As soluções da recorrência são as sequências da forma

$$x_n = C_1 1^n + C_2 (4)^n$$
, isto é,
 $x_n = C_1 + C_2 (-4)^n$,

onde C_1 e C_2 são constantes arbitrárias.

Exemplo - Sequência de Fibonacci

Exercício 3:

Determinar as soluções da recorrência - sequência de Fibonacci

$$F_{n+2} = F_{n+1} + F_n,$$

com $F_0 = F_1 = 1$.

- Solução:
- Solução geral:

$$F_n = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n,$$

onde C_1 e C_2 são constantes arbitrárias.

• Considerando as condições $F_0 = F_1 = 1$ obtemos

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}.$$

Resolvendo a recorrência: caso $r_1 = r_2$

Resultado:

Se as raízes de $r^2 + pr + q = 0$, com $q \neq 0$ são $r_1 = r_2 = r$, então todas as soluções da recorrência

$$x_{n+2} + px_{n+1} + qx_n = 0$$

são da forma

$$x_n = C_1 r^n + C_2 n r^n,$$

onde C_1 e C_2 são constantes.

• A prova é análoga ao caso em que $r_1 \neq r_2$.

Raízes da equação característica e soluções da recorrência

- De fato, seja $r_1 = r_2 = r$ raiz da equação característica $r^2 + pr + q = 0$.
- Já mostramos que $y_n = r^n$ é solução da recorrência $x_{n+2} + px_{n+1} + qx_n = 0$ pelo fato de r ser raiz da equação característica.
- Vamos mostrar agora que $z_n = nr^n$ também é solução da recorrência e assim, $x_n = C_1 r^n + C_2 nr^n$ é solução geral da recorrência dada.

Raízes da equação característica e soluções da recorrência

Assim,

$$z_{n+2}+pz_{n+1}+qz_n = (n+2)r^{n+2}+p(n+1)r^{n+1}+qnr^n =$$

$$= nr^n(r^2+pr+q)+2r^{n+2}+pr^{n+1} = n\cdot 0+r^{n+1}(2r+p).$$

- O primeiro parênteses é igual a zero pois *r* é raiz da equação característica.
- Como as raízes da equação característica são $r+r=-\frac{p}{1}$, segue 2r+p=0 e o segundo parênteses também é igual igual a zero.
- Logo,

$$z_{n+2} + pz_{n+1} + qz_n = \dots = 0.$$

Exemplo 8:

Determinar as soluções da recorrência

$$x_{n+2} - 4x_{n+1} + 4x_n = 0.$$

• Solução: A equação característica

$$r^2 - 4r + 4 = 0,$$

tem raízes $r_1 = r_2 = 2$.

As soluções da recorrência são as sequências da forma

$$x_n = C_1 2^n + C_2 n(2)^n$$

onde C_1 e C_2 são constantes arbitrárias.

Exercícios

Exercício 4:

Determinar as soluções da recorrência

$$x_{n+2} - 5x_{n+1} + 6x_n = 0,$$

onde
$$x_0 = 1$$
 e $x_1 = 5$.

• Solução: em aula.

Exercícios

Exercício 5:

Determinar as soluções da recorrência

$$x_{n+2} - 6x_{n+1} + 9x_n = 0.$$

Solução: em aula.

Exemplo 9:

Determinar as soluções da recorrência de primeira ordem

$$x_{n+1}-8x_n=0.$$

• Solução: em aula.

Exemplo 10:

Resolver a recorrência

$$x_{n+2} - 5x_{n+1} + 6x_n = 7.$$

- Essa recorrência é linear de segunda ordem não homogênea com coeficientes constantes.
- O termo não homogêneo é a função constante f(n) = 7.
- Como resolver uma recorrência não homogênea (ou heterogênea)?

Método:

Dada a recorrência não homogênea

$$x_{n+2} + px_{n+1} + qx_n = f(n).$$
 (*)

Toda solução dessa recorrência é da forma

$$x_n = a_n + p_n$$

onde a_n é uma solução da recorrência homogênea

$$x_{n+2} + px_{n+1} + qx_n = 0$$

e p_n é uma solução particular de (*).

- Logo, para encontrar a solução geral de uma recorrência não homogênea, "basta" encontrar uma solução particular e somá-la à solução geral da recorrência homogênea.
- De fato, seja x_n a solução geral da recorrência (*) e p_n uma solução particular. Temos que:

$$\begin{cases} x_{n+2} + px_{n+1} + qx_n = f(n) \\ p_{n+2} + pp_{n+1} + qp_n = f(n). \end{cases}$$

Subtraindo:

$$(x_{n+2}-p_{n+2})+p(x_{n+1}-p_{n+1})+q(x_n-p_n)=0.$$

•

$$(x_{n+2}-p_{n+2})+p(x_{n+1}-p_{n+1})+q(x_n-p_n)=0.$$

Logo,

$$a_n = x_n - p_n$$

é uma solução da recorrência homogênea, o que equivale a dizer que

$$x_n = a_n + p_n$$

onde a_n é solução da recorrência homogênea.

Voltando ao Exemplo 10: Resolver a recorrência

$$x_{n+2} - 5x_{n+1} + 6x_n = 7.$$
 (*)

- Passos para resolver essa recorrência:
 - (i) Encontrar a solução da recorrência homogênea associada a (*).
 - (ii) Encontrar uma solução particular de (*).
- Solução:

- (i) Solução da recorrência homogênea associada a (*).
- A recorrência homogênena é dada por:

$$x_{n+2} - 5x_{n+1} + 6x_n = 0 (**)$$

que tem como equação característica:

$$r^2 - 5r + 6 = 0,$$

cujas raízes são: $r_1 = 2$ e $r_2 = 3$.

Logo, a solução de (**) é dada por

$$a_n = C_1(2)^n + C_2(3)^n,$$
 (1)

com C_1 e C_2 constantes.

- (ii) Solução particular da recorrência não homogênea (*).
- Uma solução não particular de

$$x_{n+2} - 5x_{n+1} + 6x_n = 7 (*)$$

é do tipo

$$p_n = A$$
,

onde A é uma constante.

• Substituindo $p_n = A$ em (*) obtemos

$$A - 5A + 6A = 7 \quad \Longrightarrow \quad A = \frac{7}{2}.$$
 (2)

 De (1) e (2) segue que a solução da recorrência não homogênea

$$x_{n+2} - 5x_{n+1} + 6x_n = 7$$

é dada por

$$x_n = C_1 2^n + C_2 3^n + \frac{7}{2},$$

onde C_1 e C_2 são constantes.

• Comentar a solução quando $x_0 = 1$ e $x_1 = -1$.

Exercícios

Exercício 6:

Determinar as soluções da recorrência

$$x_{n+2} - 5x_{n+1} + 6x_n = 4^n$$
.

• **Solução:** em aula. Usar que $p_n = A \cdot 4^n$.

Exercício 7:

Determinar as soluções da recorrência de primeira ordem

$$x_{n+1}-3x_n=3^n,$$

onde $x_1 = 5$.

• **Solução:** em aula. Usar que $p_n = A \cdot n \cdot 3^n$.

Recorrência linear homogênea de terceira ordem

• Uma recorrência linear homogênea de ordem 3 com coeficientes constantes é da forma,

$$x_{n+3} + px_{n+2} + qx_{n+1} + sx_n = 0,$$

- onde p, q, s são constantes com $s \neq 0$.
- Resolver uma recorrência de ordem 3 é semelhante ao caso de uma recorrência de ordem 2.

Recorrência linear homogênea de terceira ordem

Exercício 8:

Determinar as soluções da recorrência

$$x_{n+3} - 6x_{n+2} + 11x_{n+1} - 6x_n = 0.$$

- Solução: em aula.
- Mostrar que a equação característica é: $r^3 - 6r^2 + 11r - 6 = (r - 3)(r - 1)(r - 2)$.
- **Resposta:** $x_n = C_1 1^n + C_2 2^n + C_3 3^n$, onde C_1 , C_2 e C_3 são constantes.

Referências

- LIMA, E. L. et al. A matemática no ensino médio.
 6. ed. Rio de Janeiro: SBM, 2006. v. 2. (Coleção do Professor de Matemática)
- MORGADO, A. C.; CARVALHO de, P. C. P.
 Matemática Discreta. Rio de Janeiro: SBM, 2014. (Coleção PROFMAT).
- ROSEN, K. H. Matemática Discreta e Suas Aplicações. 6. ed. McGraw-Hill, 2009.
- Slides do PROFMAT.