Semaine du 30/03 au 03/04

1 Cours

Dérivabilité

Définition et premières propriétés Définition comme limite du taux de variation. Équation de la tangente. Fonction dérivée. Opérations sur les dérivées (somme, produit, quotient, composée, application réciproque).

Étude globale des fonctions dérivables Condition nécessaire d'extremum local. Théorème de Rolle. Théorèmes d'égalité et d'inégalité des accroissements finis. Une fonction dérivable à dérivée bornée est lipschitzienne. Application aux suites récurrentes $u_{n+1} = f(u_n)$. Dérivée et sens de variation. Théorème de la limite de la dérivée.

Dérivées successives Dérivée $n^{\text{ème}}$. Fonctions de classe \mathscr{C}^n ou \mathscr{C}^∞ . Opérations sur les dérivées successives (somme, produit, quotient, composée, application réciproque). Formule de Leibniz. Théorème de prolongement \mathscr{C}^k . Formule de Taylor avec reste intégral. Inégalité de Taylor-Lagrange.

Fonctions à valeurs complexes Définition de la dérivabilité. Une fonction est dérivable/ \mathscr{C}^k si et seulement si ses parties réelle et imaginaire le sont.

2 Méthodes à maîtriser

- ightharpoonup Démontrer qu'une fonction est dérivable ou de classe \mathscr{C}^n par opérations.
- ▶ Établir des inégalités via les accroissements finis.
- ▶ Étudier la convergence d'une suite du type $u_{n+1} = f(u_n)$ où f est K-lipschitzienne avec K ∈ [0, 1[.
- ▶ Utiliser la formule de Leibniz dans le cas où un des facteurs est un polynôme de faible degré.
- ▶ Utilisation de l'inégalité de Taylor-Lagrange pour prouver la convergence de séries.

3 Questions de cours

▶ Série exponentielle Soit $x \in \mathbb{R}$. A l'aide de l'inégalité de Taylor-Lagrange, montrer que la série

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

- ► Banque CCP 03 On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$.
 - 1. Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définition respectifs.
 - 2. On pose $f(x) = \frac{e^{2x}}{1+x}$. En utilisant la formule de Leibniz concernant la dérivée $n^{\text{ième}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.
 - 3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

▶ Banque CCP 04

- 1. Énoncer le théorème des accroissements finis.
- 2. Soit $f:[a,b] \to \mathbb{R}$ et soit $x_0 \in]a;b[$. On suppose que f est continue sur [a,b] et que f est dérivable sur $]a,x_0[$ et sur $]x_0,b[$. Démontrer que, si f' admet une limite finie en x_0 , alors f est dérivable en x_0 et $f'(x_0) = \lim_{x \to x_0} f'(x)$.
- 3. Prouver que l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse. Indication : on pourra considérer la fonction g définie par : $g(x) = x^2 \sin \frac{1}{x} \sin x \neq 0$ et g(0) = 0.
- ▶ Point fixe attractif. Soit (u_n) la suite de premier terme $u_0 = 0$ et vérifiant $u_{n+1} = \sqrt{2 u_n}$ pour tout $n \in \mathbb{N}$. Étudier la convergence de la suite (u_n) .
- ▶ Polynômes de Legendre. On pose $Q_n = (X^2 1)^n$ et $L_n = Q_n^{(n)}$. Montrer que L_n est scindé à racines simples toutes dans l'intervalle] -1,1[.
- ▶ Limite de la dérivée. On pose $f: x \mapsto \arcsin(1-x^4)$. Justifier que f est dérivable en 0.