Vector space and Subspace

A **vector space** is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w).
- There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- **6.** The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = (c\underline{d})\mathbf{u}$.
- 10. 0 = u. $2 + \frac{1}{2} = 1$

Vectors in \mathbb{R}^3 $(\mathbb{R}^3, \bigoplus_{i=1}^{N})$ $(\mathbb{R}^3,$

$$2 - |u_1 + u_2| = \frac{u_1 + u_2 + u_3}{(7_1 + 7_2) + 7_3} = \frac{(x_1 + x_2) + x_3}{(7_1 + 7_2) + 7_3} = \frac{x_1 + (x_2 + x_3)}{(7_1 + 7_2) + 7_3} = \frac{u_1 + (u_2 + u_3)}{(7_1 + 7_2) + 7_3}$$

$$4 - \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0$$
 , $5 - U = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$, $-U = \begin{pmatrix} -1 \\ -4 \\ -7 \end{pmatrix}$, $U - U = 0$

A subspace of a vector space V is a subset H of V that has three properties:

- a. The zero vector of V is in H^2
- b. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- c. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and } t \text{ are real} \right\}$$

is a subset of \mathbb{R}^3 that "looks" and "acts" like \mathbb{R}^2 , although it is logically distinct from \mathbb{R}^2 . See Fig. 7. Show that H is a subspace of \mathbb{R}^3 .

The zero vector of V is in H

$$\begin{pmatrix} 5 \\ t \\ 6 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix} \in H$$

$$\underline{\underline{H}} = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and } t \text{ are real} \right\}$$

$$V = IR^3$$
, $0 = \begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}$

H is closed under vector addition $u_{1}=\begin{pmatrix} s_{1} \\ t_{1} \end{pmatrix}$, $u_{2}=\begin{pmatrix} s_{2} \\ t_{2} \end{pmatrix} \in \mathbb{H}$; s_{1} , t_{1} , s_{2} , t_{2} $\in \mathbb{R}$

H is closed under multiplication by scalars $u = \begin{pmatrix} s \\ t \end{pmatrix}$, $c \in \mathbb{R}$

$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and } t \text{ are real} \right\} = SPan\left\{ \mathcal{C}_{1}, \mathcal{C}_{2} \right\} \leqslant \mathbb{R}^{3}$$

$$\begin{pmatrix} S \\ t \\ 0 \end{pmatrix} = S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = S \ell_1 + t \ell_2$$

For each \mathbf{u} in V and scalar c,

$$0\mathbf{u} = \mathbf{0} \tag{1}$$

$$c\mathbf{0} = \mathbf{0} \tag{2}$$

$$-\mathbf{u} = (-1)\mathbf{u} \tag{3}$$