

Simple Web Request

Response

The Request

- How do we tell the web server what we want?
- How do we even find the web server?
- How do the web server and browser talk to each other?

HTTP Request

GET / HTTP/1.1

Host:markusproject.org

...

reply

HTTP/1.1 200 OK

Date: Tue, 13 Mar 2017

Server: Apache/2.2.22(Debian)

Content-Type: text/html

How do we find the server?

- Every computer on the Internet has an Internet address.
- Called an IP address (Internet Protocol)
- An IP address is 4 numbers separated by dots.

markusproject.org = 69.164.221.145

Domain Name Servers

This is getting complicated!

Now what?

- Okay, we have the address.
- What do we do with it?
- Let's look at how two computers communicate.
- HTTP is a high-level protocol
- HTTP is specific to the web.
- Computers communicate for many reasons.

Protocols

- Computers use several layers of general protocols to communicate.
- To understand why these layers are important, think about how a company sends you an invoice for a purchase.

Protocols

Invoice:

Customer: Karen Reid

Order No: 5379

 Qty:
 Unit Price Total

 1 Athalon
 219.00 219.00

 2 128 MB
 149.95 299.90

Subtotal 518.90 Tax 77.84 TOTAL 596.74

CPUS are us

Karen Reid Dept. of Computer Science University of Toronto

Karen Reid Feb 18, 2001

Payable to: CPUS are us \$596.74 Five hundred ninety six 74/100

Karen Reid

CPUS are us 0 College Street Toronto Ontario M5S 3G4

TCP/IP

- Transmission Control Protocol.
- Tells us how to package up the data.

source address		dest. address
bytes	ack	port
data		

TCP Connection

Packaging up the data

make packets

01100111001001 00100010001111 10100010111

•Each TCP packet is given a header

-sequence number

-checksum

 put in an IP envelope with another header

To 207.99.53.46 To 207.99.53.46 To 207.99.53.46 To 207.99.53.46

The Big Picture

- Client-Server model: a client process wants to talk to a server process
- Client must find server DNS lookup
- Client must find process on server ports
- Finally establish a connection so two processes can talk

Routing (15 hops)

7 cities, 5 states/prov, 2 countries

Putting it together

How many messages?

- It depends on the size of the web page
- The web page that appears for markusproject.org is less than 30 Kbytes
- If the web page is 30 Kbytes (small!) it will likely be broken up into ~20 IP packets.

```
8 (DNS) + 20 * 15 hops
= 308 messages
```

When something goes wrong

- A packet might not arrive
 - traffic overload
 - bit corruption
- Receiver asks for missing packets to be resent.
- Want to send data as fast as possible.
- But sending too fast wastes resources.

TCP Congestion Control

- Window-based:
 - some number of packets allowed to be sent and not ack'd
 - as successful ack's arrive, grow window
 - if packet loss is detected, cut window size

TCP Congestion Control

All we did was click on a link...

Take aways

- The web today is made up of complex layers of software
- No one person, organization, or company could have created it in isolation
- We can understand it because we can study one layer at a time
- We can create new things by building on top of existing layers