Discrete Mathematics ~ PrabhuBikash

- It includes subjects like combinatorics.
- The motive is to know about finite set.
- How we know counting?
- Ideas will flow from abstract to concrete and vice versa.

problem:

we are given a sea of finite sets $\{A_n\}_{n=1}^\infty$ & WISH to count the number of elements of each A_n Let, f(n) denote the number of elements of A_n , \forall integer $n \geq 1$

i.e.
$$f(n) = |A_n|$$
, \forall integer $n \ge 1$

The problem is to determine f(n)

Example:

A)

1. For each positive integer $n\geq 1$, let f(n) denote the number of subsets of $[n]=\{1,2,\ldots,n\}$ solution: Here, $f(n)=2^n, \ \forall \$ integer $n\geq 1$

$$\sum_{r=0}^{n} {}^{n}C_{r} = {}^{n}C_{0} + {}^{n}C_{1} + \dots + {}^{n}C_{n-1} + {}^{n}C_{n}$$

$$= {}^{n}C_{0} \times 1 + {}^{n}C_{1} \times 1 + \dots + {}^{n}C_{n-1} \times 1 + {}^{n}C_{n} \times 1$$

$$= (1+1)^{n}$$

2. For each positive integer $n \ge 1$, let f(n) denote the number of n-tuples consists of zero or one.

$$f(n)=|\{(x_1,x_2,\ldots,x_n)| orall i\in [n], x_i\in \{0,1\}\}|$$
 solution : Here, $f(n)=2^n$

for each position we have two options 0 or 1

$$\Rightarrow f(n) = 2 \times 2 \times 2 \times \cdots \times 2$$
 (n times)

B)Derangement Problem:

1. Suppose there are n many letter and n envelops. Put a letter into an envelop. Let f(n) denote the number of ways that one letter put into one envelop so that no letters receives it's own envelop.

solution:

Here,
$$f(n) = n! \sum_{k=0}^{n} (-1)^k \frac{1}{k!}, \forall$$
 integer $n \geq 1$

C)Matrix

Definition

An n imes n matrix over $\mathbb C$ is a function $f(n):[n] imes [n] o \mathbb C$

i.e.
$$f:\{1,2,\ldots,n\} imes\{1,2,\ldots,n\} o \mathbb{C}$$

$$f(1,1)=a_{11}$$
 $f(1,2)=a_{12}$ \cdots $f(1,n)=a_{1,n}$

$$f(1,1) = a_{11}$$
 $f(1,2) = a_{12}$ \cdots $f(1,n) = a_{1,n}$ $f(2,1) = a_{21}$ $f(2,2) = a_{22}$ \cdots $f(2,n) = a_{2,n}$ \vdots \vdots \vdots \vdots $f(n,1) = a_{n1}$ $f(n,2) = a_{n2}$ \cdots $f(n,n) = a_{n,n}$

$$f(n,1)=a_{n1}$$
 $f(n,2)=a_{n2}$ \cdots $f(n,n)=a_{n,n}$

in short,
$$[a_{ij}]_{i,j\in[n]}=egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,n} \ a_{21} & a_{22} & \cdots & a_{2,n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{n,n} \end{bmatrix}$$

1. Let, f(n) denote the number of $n \times n$ matrix over \mathbb{C} with zero one entries. solution:

Here,
$$f(n) = 2^{n^2}$$

count the number

- a) Each row consists of 3 ones.
- b) Each row and column consists of 3 ones.

My Solution

a) if n<3: f(n)=0 if $n\geq 3$: $f(n)={}^nC_3{}^n$ (possible combination in one row into number of rows) as number of combination is zero if n<3 it is reasonable to let ${}^{n<3}C_3=0$ $\Rightarrow f(n)={}^nC_3{}^n$ generalizing this idea for k ones: $f(n,k)={}^nC_k{}^n$ b)

D)Recurrence

A recurrence for f(n) may be given in terms of f(1) or f(2) or \cdots or f(n-1)

1. Let, f(x) denote the number of subsets of [n] that don't contain integers.

$$f(1)=2 \qquad f(2)=3 \qquad f(3)=5$$

$$\underline{\mathsf{claim}} : f(n) = f(n-1) + f(n-2), \forall \text{ integer } n \geq 3$$

$$\underline{\mathsf{solution}} :$$

$$\mathsf{Here}, f(n) = \frac{1}{\sqrt{5}} (\tau^{n+2} - \frac{1}{\tau^{n+2}}), \forall \text{ integer } n \geq 3$$

$$\mathsf{where}, \ \tau = \frac{1+\sqrt{5}}{2}$$