Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/PL05/000024

International filing date: 02 April 2005 (02.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: PL

Number: P-366885

Filing date: 02 April 2004 (02.04.2004)

Date of receipt at the International Bureau: 08 July 2005 (08.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

URZĄD PATENTOWY RZECZYPOSPOLITEJ POLSKIEJ

PCT/PL2005/00024

ZAŚWIADCZENIE

INSTYTUT FARMACEUTYCZNY, Warszawa, Polska

złożył w Urzędzie Patentowym Rzeczypospolitej Polskiej dnia 02 kwietnia 2004 r. podanie o udzielenie patentu na wynalazek pt.: "Sposób wytwarzania krystalicznej formy α soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N[4-metylo-3-[(4-pirydyn-3-ylo)pirymidyn-2-yloamino)fenylo]benzamidu."

Dołączone do niniejszego zaświadczenia opis wynalazku, zastrzeżenia patentowe i rysunki są wierną kopią dokumentów złożonych przy podaniu w dniu 02 kwietnia 2004 r.

Podanie złożono za numerem P-366885.

Warszawa, dnia 23 czerwca 2005 r.

z upoważnienia Prezesa

mgr Jowita Mazur p.o. Naczelnik Wydziału

5

15

20

25

Sposób wytwarzania krystalicznej formy α soli addycyjnej kwasu metanosulfonowego i 4(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[(4-pirydyn-3-ylo)pirymidyn-2yloamino)fenylo]benzamidu

Przedmiotem wynalazku jest sposób wytwarzania krystalicznej formy α soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[(4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu.

4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[(4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamid, o nazwie międzynarodowej imatinib, znany z dokumentu patentowego EP 0 564 409 A1, stanowi inhibitor kinazy tyrozynowej stosowany w leczeniu chorób nowotworowych, w szczególności białaczki.

W publikacji międzynarodowego zgłoszenia WO 99/03854 ujawniono nową szczególną postać metanosulfonianu 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[(4-piperydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu, a mianowicie krystaliczną formę β, którą otrzymuje się między innymi z mniej trwałej termodynamicznie formy α, przez jej trawienie w zawiesinie w polarnym rozpuszczalniku, zwłaszcza w alkoholu takim jak metanol. Formę β można również otrzymać bezpośrednio z wolnej zasady w wyniku traktowania jej zawiesiny w metanolu kwasem metanosulfonowym, zatężenia uzyskanego roztworu i zaszczepienia go zarodkami krystalicznymi formy β.

W publikacji tej stwierdzono ogólnie, iż formę krystaliczną α można otrzymać na przykład przez wytrącenie soli metanosulfonianowej z roztworu w rozpuszczalniku innym niż alkohol, taki jak metanol, i bez dodawania zarodków krystalicznych formy β. W Przykładzie 1 podano, że formę krystaliczną α otrzymuje się w następujący sposób:

(1) zawiesinę wolnej zasady w etanolu traktuje się kwasem metanosulfonowym, po czym uzyskany roztwór soli ogrzewa się we wrzeniu przez 20 minut,

5

15

20

25

- (2) tak otrzymany roztwór zatęża się do połowy objętości, a powstały osad odsącza w temp. 25°C, uzyskując materiał filtracyjny A,
- (3) przesącz zatęża się do sucha i do otrzymanej pozostałości dodaje materiał filtracyjny A, po czym dodaje się odpowiednie ilości etanolu i wody-i całość rozpuszcza we wrzeniu,
 - (4) po powolnym ochłodzeniu roztworu do temp. 25°C i odsączeniu wydziela się krystaliczną formę α.

Przy próbach odtworzenia przykładu 1 okazało się, że powyższe ujawnienie jest niewystarczające dla otrzymywania formy α w sposób selektywny i powtarzalny.

Powtarzając procedurę podaną w przykładzie z zastosowaniem bezwodnego etanolu (zawierającego 0,1% wag/obj wody) stwierdziliśmy, że materiał filtracyjnym A połączony z pozostałością po zatężeniu przesączu nie rozpuszcza się całkowicie w podanej ilości etanolu i wody. Z roztworu otrzymanego po odsączeniu nie rozpuszczonych kryształów, pozostawionego do powolnego ochłodzenia do temperatury pokojowej, wypadają kryształy soli. Jednak, jak wykazuje analiza metodą rentgenowskiej dyfrakcji proszkowej oparta na opisie WO 99/03854, jest to forma krystaliczna β. Natomiast w przypadku użycia etanolu zawierającego 4,8% wag/obj wody, roztwór zatężony do połowy objętości krystalizuje niechętnie, a finalny roztwór soli nie krystalizuje samorzutnie nawet po 36 godzinach po ochłodzeniu do temp. około 16°C.

Ponadto, zaproponowana w publikacji WO 99/03854 metoda otrzymywania formy α wymaga przeprowadzenia kilku operacji jednostkowych, takich jak wyodrębnianie kryształów surowego metanosulfonianu z mieszaniny reakcyjnej, zatężanie roztworu przez

odparowywanie etanolu i ponowne zawieszanie metanosulfonianu w tym samym rozpuszczalniku.

5

10

15

20

25

Stwierdziliśmy ponadto, że krystalizacja soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu bez zaszczepienia mieszaniny reakcyjnej zarodkami krystalicznymi zachodzi w sposób przypadkowy, tzn. w tych samych warunkach losowo otrzymuje się formę α, formę β albo ich mieszaniny.

Obecny wynalazek rozwiązuje problem selektywnego i powtarzalnego wytwarzania krystalicznej formy α soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu w cyklu operacji możliwych do przeprowadzenia w jednym naczyniu reakcyjnym.

Istota wynalazku polega na tym, że reakcję kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-(4-pirydyn-3-ylo)pirymidyn-2-

yloamino)fenylo]benzamidu (nazywanego w dalszej części opisu związkiem I) prowadzi się w alkoholu etylowym, ewentualnie w mieszaninie alkoholu etylowego z innym alkoholem alifatycznym C_1 - C_4 , po czym do mieszaniny reakcyjnej dodaje się ester kwasu karboksylowego i alkoholu alifatycznego C_1 - C_4 , a następnie całość chłodzi się do temperatury wewnętrznej A, dodaje zarodki krystaliczne formy α i mieszaninę reakcyjną pozostawia się, mieszając, do krystalizacji w temperaturze wewnętrznej B na okres czasu konieczny do wykrystalizowania formy α .

Reakcję addycji kwasu metanosulfonowego i związku I zgodnie z wynalazkiem prowadzi się przy mieszaniu, utrzymując temperaturę wewnętrzną mieszaniny w zakresie od temperatury pokojowej do temperatury wrzenia roztworu.

Odpowiednie medium dla reakcji kwasu metanosulfonowego i związku I stanowi alkohol etylowy. Jednakże stwierdzono, że selektywnemu powstawaniu formy α nie przeszkadza również dodanie określonej ilości drugiego alkoholu alifatycznego, korzystnie stanowiącego bezpośredni analog alkoholu etylowego, lub niewielkiej ilości wody. Udział

dodatkowego alkoholu w mieszaninie rozpuszczalników nie powinien przekraczać 55 % objętościowych. W reakcji stosuje się od 15 do 25 części objętościowych alkoholu lub mieszaniny alkoholi na 1 część wagową związku I.

Niezbędnym warunkiem selektywnej krystalizacji formy α jest dodanie do mieszaniny reakcyjnej, po zakończeniu reakcji związku I z kwasem i dokładnym wymieszaniu, estru niższego kwasu karboksylowego, takiego jak mrówkowy, octowy i propionowy, i alkoholu alifatycznego C₁-C₄. Szczególnie korzystny ester stanowi octan etylu. Korzystne rezultaty daje także zastosowanie octanu izopropylu. Objętość dodawanego estru jest co najmniej równa objętości mieszaniny rozpuszczalników alkoholowych.

5

10

15

20

25

Po dodaniu estru mieszaninę reakcyjną chłodzi się do temperatury wewnętrznej A mieszczącej się w zakresie od 20 do 35°C i w tej temperaturze dodaje się zarodki krystaliczne formy α, niezbędne dla wykrystalizowania soli addycyjnej kwasu metanosulfonowego i związku I w pożądanej formie. Do uzyskania pożądanej formy krystalicznej wystarczający jest dodatek około 0,2-1,0%, korzystnie 0,5% wagowych zarodków krystalicznych formy α.

Po dodaniu zarodków mieszaninę reakcyjną chłodzi się do temperatury B, korzystnie niższej o co najmniej 5°C od temperatury A i mieszczącej się w zakresie od 10 do 25°C, korzystnie 13-21°C. W temperaturze B mieszaninę pozostawia się, cały czas mieszając, na okres czasu potrzebny do wykrystalizowania formy α, który na ogół wynosi od 3 do 5 godzin. Krystaliczny osad wyodrębnia się w zwykły sposób, odsączając, przemywając rozpuszczalnikiem, na przykład estrem i susząc najpierw w temperaturze pokojowej, a następnie w temperaturze ok. 60°C, pod zmniejszonym ciśnieniem.

W alternatywnym wykonaniu wynalazku wszystkie operacje (addycji i krystalizacji soli) można przeprowadzić w temperaturze pokojowej (20-25°C).

Korzystne przykłady realizacji sposobu wytwarzania soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-(4-pirydyn-3-ylo)pirymidyn-2-yloamino)fenylo]benzamidu według wynalazku zebrano w Tabeli 1.

Tabela 1. Parametry krystalizacji

5

10

Przykł.	Rozpuszczalnik reakcji addycji	Ester	Temp.	Temp.	Czas krystali- zacji	Wydaj- ność
	(ml)	(ml)	(°)	(°)	(h)	(g)
1	alkohol etylowy (85)	octan etylu (85)	30	13-20	4	2,954
2	alkohol etylowy (75)	octan etylu (100)	30	15-18	3,40	2,957
3	alkohol etylowy (85) + woda (0,5)	octan etylu (85)	25	17-21	3,50	2,733
4	alkohol etylowy (85)	octan izopropylu (85)	25	16-18	4,40	3,790
5	alkohol etylowy (40) + alkohol metylowy (45)	octan izopropylu (85)	25	16-20	4,50	2,229
6	alkohol etylowy (65) + alkohol izopropylowy (20)	octan etylu (85)	24	16-20	4,20	3,951
7	alkohol etylowy (85)	octan etylu (85)	21	20-21	5	3,168

Sposób według wynalazku zapewnia powtarzalne otrzymywanie zasadniczo czystej formy krystalicznej α soli addycyjnej kwasu metanosulfonowego i związku I.

Za zasadniczo czystą formę krystaliczną α soli addycyjnej kwasu metanosulfonowego i związku I, do celów obecnego wynalazku, uważa się postać krystaliczną soli addycyjnej kwasu metanosulfonowego i związku I nie wykazującą obecności domieszek innych postaci krystalicznych w ilościach wykrywalnych typowo stosowanymi metodami analitycznymi, czyli zawierającą poniżej 2%, korzystnie poniżej 1% wagowych postaci β.

Uzyskaną sposobem według wynalazku formę krystaliczną soli addycyjnej kwasu metanosulfonowego i związku I analizowano na podstawie widma w podczerwieni, rentgenowskiego dyfraktogramu proszkowego i różnicowej kalorymetrii skaningowej,

porównując z danymi wzorcowej formy krystalicznej β, otrzymanej metodą opisaną w WO 99/03854, przykład 1, oraz danymi analitycznymi dla obu form podanymi w publikacji powyższego zgłoszenia patentowego.

Widmo formy α w podczerwieni wykonane techniką prasowanych tabletek z bromkiem potasu (na spektrometrze z transformacją Fouriera FT-IR firmy Perkin Elmer BX w zakresie 4000 - 400 cm⁻¹, z rozdzielczością 4 cm⁻¹), wyraźnie różni się od widma formy β w całym zakresie spektralnym 4000 - 400 cm⁻¹, jak zobrazowano w Tabeli 2.

Tabela 2. Widma FT-IR (tabletki KBr): Porównanie charakterystycznych pasm różniących formy krystaliczne α i β

Forma krystaliczna α		Forma krystaliczna β	
ν (cm ⁻¹)	Intesywność*	ν (cm ⁻¹)	Intensywność*
3257	m	3336	m
3033 - 3010	m	3006 - 2946	m
2824 - 2782	m	2801 - 2758	m
2706 - 2492	m - w		
1660	S	1656	S
		1596	S
1572	s	1574	S
1527	S	1534	S
		1482	S
1447	s		
1321	m	1310	m
1221	s	1224	S
1161	s	1168	S
1037	S	1037	S
907	m	815	m
807	m	803	m
772		765	m
749	m	751	m
555	m	549	m
		521	m

^{*} s = silna, m = srednia, w = słaba

Porównanie widm w podczerwieni formy krystalicznej α otrzymanej sposobem według wynalazku i wzorcowej formy β w całym zakresie pomiarowym przedstawia Fig.1.

10

5

Fig. 2 przedstawia porównanie krzywych DSC form krystalicznych α i β, uzyskanych metodą różnicowej kalorymetrii skaningowej przy użyciu aparatu Mettler Toledo DSC 822, w tyglu aluminiowym o wielkości 40 μl, w atmosferze azotu z szybkością przepływu gazu 60 ml/min, w zakresie temperatur 30-260°C, w segmencie dynamicznym z prędkością ogrzewania 5°C/min, poprzedzonym segmentem izotermicznym (30°C przez 5 minut). Na krzywych form krystalicznych α i β obserwuje się charakterystyczne piki endotermiczne, odpowiadające procesowi topnienia substancji. Forma β charakteryzuje się niższą od formy α temperaturą topnienia i większą entalpią. Temperatury i entalpie topnienia dwu form krystalicznych zamieszczone są również w Tabeli 3. Wartości temperatur topnienia określano dwoma sposobami: jako "pik ekstrapolowany", będący punktem przecięcia krzywych stycznych poprowadzonych do piku oraz jako "onset", będący punktem przecięcia stycznych poprowadzonych do linii podstawowej i linii narastającego piku.

Tabela 3. Porównanie temperatur i entalpii topnienia form krystalicznych α i β.

	Forma α	Forma β
Temperatura topnienia, °C	224,3	216,5
(wg. ekstrapolacji piku)		
Temperatura topnienia, °C	223,7	214,7
(wg. onset)		
Entalpia topnienia, J/g	108	127

Fig. 3 i 4 przedstawiają charakterystyczne dyfraktogramy proszkowe form krystalicznych α i wzorcowej formy β , uzyskane metodą dyfrakcji rentgenowskiej na aparacie typu MINI FLEX firmy Rigaku, w postaci zależności intensywności względnych linii dyfrakcyjnych $CuK\alpha$, wartości ugięcia θ i odległości międzypłaszczyznowych d, przy

zakresie kąta 2θ od 3-40°, szybkości skanowania 0,5 deg/min i zakresie zliczania 0,03 deg. Porównanie położeń i intensywności głównych linii dyfrakcyjnych (o intensywności względnej ponad 20% i ewentualnie słabszych służących do identyfikacji danej formy) form krystalicznych α i β przedstawiono w Tabelach 4 i 5.

5

Tabela 4. Rentgenowski dyfraktogram proszkowy formy α (główne linie dyfrakcyjne)

Nr kolejny refleksu	d (Å)	Kąt 2θ (°)	I/I ₀ (%)
1	17,89	4,9	10,4
2	8,41	10,5	53,6
3	5,93	14,9	37,1
4	5,36	16,5	26,3
5	5,00	17,7	51,9
6	4,89	18,1	64,6
7	4,75	18,6	100,0
8	4,64	19,1	72,2
9	4,17	21,3	61,5
10	4,10	21,6	73,8
11	3,92	22,7	23,1
12	3,83	23,2	32,3
13	3,74	23,8	29,2
14	3,57	24,9	76,1
15	3,25	27,4	22,0
16	3,18	28,0	21,7
17	3,12	28,6	72,4

Tabela 5. Rentgenowski dyfraktogram proszkowy formy β (główne linie dyfrakcyjne)

- 1	(
,	٠,٠

Nr	d (Å)	Kąt 2θ (°)	I/I ₀ (%)
kolejny			
refleksu			
1	15,28	5,8	8,2
2	10,55	8,4	4,5
3	9,12	9,7	19,1
4	6,37	13,9	30,8
5	5,09	17,4	59,3
6	4,89	18,1	66,6
7	4,70	18,9	21,2
8	4,45	19,9	55,8
9	4,32	20,5	100,0

10	4,22	21,0	75,3
11	4,03	22,0	65,4
12	3,92	22,7	34,8
13	3,75	23,7	32,8
14	3,52	25,3	20,9
15	3,33	26,8	25,0
16	3,01	29,7	31,9
17	2,90	30,8	25,6

W Tabelach 4 i 5 wytłuszczono charakterystyczne refleksy mogące służyć do identyfikacji obu form w ich mieszaninach oraz oznaczania stopnia ich czystości krystalicznej. Refleksy charakterystyczne dla formy α występują przy kątach 2θ około: 4,9; 18,6; 19,1; 23,2 i 28,6°, a dla formy β przy kątach 2θ około: 5,8; 8,4; 9,7; 17,4; 19,9 i 20,5°.

Analiza wyników uzyskanych metodami rentgenowskiej dyfrakcji proszkowej, widma w podczerwieni i różnicowej kalorymetrii skaningowej wskazuje, iż sposób według wynalazku prowadzi do uzyskania formy krystalicznej α soli addycyjnej kwasu metanosulfonowego i związku I, zasadniczo nie zawierającej domieszki formy β.

Wynalazek ilustrują następujące przykłady wykonania, nie ograniczające jego zakresu.

Przykład 1

5

10

15

20

Zawiesinę 3,802 g 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-(4-pirydyn-3-ylo)pirymidyn-2-yloamino)fenylo]benzamidu (związku I) w 85 ml alkoholu etylowego (bezw.), ogrzano mieszając do 75°C, po czym powoli wkroplono 0,5 ml kwasu metanosulfonowego i dalej mieszano w temperaturze około 75°C przez 10 min. Do tak sporządzonej mieszaniny wkroplono 85 ml octanu etylu i całość mieszając ochłodzono do 30°C, dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę ochłodzono i mieszając utrzymywano w temperaturze 13 do 20°C w ciągu 4 godz. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 2,954 g produktu, który zidentyfikowano jako formę krystaliczną α.

Przykłady 2-7

Metodyka ogólna

Sól addycyjną kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[(4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu wytwarzano postępując analogicznie jak w przykładzie 1, ale stosując różne układy rozpuszczalników i temperatury A i B. Parametry reakcji addycji i krystalizacji zebrano w Tabeli 5 (ilości kwasu metanosulfonowego, związku I oraz zarodków krystalicznych - jak w przykładzie 1).

10 Przykład 2

5

15

20

25

Zawiesinę 3,802 g związku I w 75 ml alkoholu etylowego mieszano i ogrzano do 75°C, po czym powoli wkroplono 0,5 ml kwasu metanosulfonowego i dalej mieszano w tej samej temperaturze przez 10 min. Do tak sporządzonej mieszaniny wkroplono 100 ml octanu etylu i całość mieszając ochłodzono do 30°C, dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę ochłodzono i mieszając utrzymywano w temperaturze 15 do 18°C w ciągu 3 h 40 min. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 2,957 g produktu.

Przykład 3

Zawiesinę 3,802 g związku I w 85 ml alkoholu etylowego mieszano i ogrzano do 75°C, po czym powoli wkroplono 0,5 ml kwasu metanosulfonowego, a następnie 0,5 ml wody i dalej mieszano w tej samej temperaturze przez 10 min. Do tak sporządzonej mieszaniny wkroplono 85 ml octanu etylu i całość mieszając ochłodzono do 25°C, dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę ochłodzono i mieszając utrzymywano w temperaturze 17 do 21°C w ciągu 3 h 50 min. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 2,733 g produktu.

Przykład 4

Zawiesinę 3,802 g związku I w 85 ml alkoholu etylowego mieszano i ogrzano do 75°C, po czym powoli wkroplono 0,5 ml kwasu metanosulfonowego i dalej mieszano w tej samej temperaturze przez 10 min. Do tak sporządzonej mieszaniny wkroplono 85 ml alkoholu izopropylowego i całość mieszając ochłodzono do 25°C, dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę ochłodzono i mieszając utrzymywano w temperaturze 16 do 18°C w ciągu 4 h 40 min. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 3,790 g produktu.

Przykład 5

10

15

5

Zawiesinę 3,802 g związku I w mieszaninie 40 ml alkoholu etylowego i 45 ml alkoholu metylowego mieszano i ogrzano do 65°C, po czym powoli wkroplono 0,5 ml kwasu metanosulfonowego i dalej mieszano w tej samej temperaturze przez 10 min. Do tak sporządzonej mieszaniny wkroplono 85 ml alkoholu izopropylowego i całość mieszając ochłodzono do 25°C, dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę ochłodzono i mieszając utrzymywano w temperaturze 16 do 20°C w ciągu 4 h 50 min. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 2,229 g produktu.

Przykład 6

20

25

Zawiesinę 3,802 g związku I w mieszaninie 65 ml alkoholu etylowego i 20 ml alkoholu izopropylowego mieszano i ogrzano do 75°C, po czym powoli wkroplono 0,5 ml kwasu metanosulfonowego i dalej mieszano w tej samej temperaturze przez 10 min. Do tak sporządzonej mieszaniny wkroplono 85 ml octanu etylu i całość mieszając ochłodzono do 24°C, dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę ochłodzono i mieszając utrzymywano w temperaturze 16 do 20°C w ciągu 4 h 20 min. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 3,951 g produktu.

Zawiesinę 3,802 g związku I w 85 ml alkoholu etylowego mieszano w temperaturze pokojowej (około 21°C) i powoli wkroplono 0,5 ml kwasu metanosulfonowego, po czym mieszano w tej temperaturze przez 15 min. Do tak sporządzonej mieszaniny wkroplono 85 ml octanu etylu i dodano 17 mg zarodków krystalicznych formy α, po czym mieszaninę utrzymywano w temperaturze 20 do 21°C w ciągu 5 h. Kryształy odsączono, przemyto 40 ml octanu etylu i wysuszono. Otrzymano 3,168 g produktu.

5

Rzecznik Patentowy

mgr inż. Ewa Ifrzy vdzińsko

5

25

Zastrzeżenia patentowe

- 1. Sposób wytwarzania krystalicznej formy α soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu, znamienny tym, że reakcję kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu prowadzi się w alkoholu etylowym, ewentualnie w mieszaninie alkoholu etylowego z dodatkowym alkoholem alifatycznym C₁-C₄, do mieszaniny reakcyjnej dodaje się ester kwasu karboksylowego i alkoholu alifatycznego C₁-C₄, a następnie całość chłodzi się do temperatury wewnętrznej A, dodaje zarodki krystaliczne formy α i mieszaninę reakcyjną pozostawia się, mieszając, do krystalizacji w temperaturze wewnętrznej B na okres czasu konieczny do wykrystalizowania formy α.
 - 2. Sposób według zastrz.1, znamienny tym, że dodatkowy alkohol alifatyczny stanowi alkohol metylowy lub izopropylowy, a jego udział objętościowy w mieszaninie rozpuszczalników nie przekracza 55 %.
 - 3. Sposób według zastrz.1, znamienny tym, że ester stanowi octan etylu.
 - 4. Sposób według zastrz.1, znamienny tym, że ester stanowi octan izopropylu.
 - 5. Sposób według zastrz.1, znamienny tym, że w reakcji kwasu metanosulfonowego
 - i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-

yloamino]fenylo]benzamidu stosuje się od 15 do 25 części objętościowych alkoholu lub mieszaniny alkoholi na 1 część wagową związku I.

- 6. Sposób według zastrz.1, znamienny tym, że reakcję kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-
- yloamino]fenylo]benzamidu prowadzi się przy mieszaniu, utrzymując temperaturę wewnętrzną mieszaniny w zakresie od temperatury pokojowej do temperatury wrzenia mieszaniny reakcyjnej.
 - 7. Sposób według zastrz.1, znamienny tym, że temperatura wewnętrzna mieszaniny A mieści się w zakresie od 20 do 35°C.
- 8. Sposób według zastrz.1, znamienny tym, że temperatura wewnętrzna B mieszaniny mieści się w zakresie od 10 do 25°C, korzystnie od 13 do 21°C.
 - 9. Sposób według zastrz.1, znamienny tym, że reakcję kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu oraz krystalizację soli addycyjnej prowadzi się w temperaturze pokojowej.

15

- 10. Sposób według zastrz.1, znamienny tym, że dodaje się 0,2-1,0 % wagowych, korzystnie 0,5% wagowych zarodków krystalicznych formy α w przeliczeniu na masę związku I.
- 11. Sposób według zastrz.1-7, znamienny tym, że otrzymuje się formę krystaliczną
 20 α soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu posiadającą w rentgenowskim dyfraktogramie proszkowym uzyskanym dla promieniowania CuKα i długości fali λ=1,54056 Å charakterystyczne refleksy przy kątach 2θ około: 4,9; 18,6; 19,1; 23,2 i 28,6°.
- 12. Sposób według zastrz.8, znamienny tym, że otrzymuje się formę krystaliczną α soli addycyjnej kwasu metanosulfonowego i 4-(4-metylopiperazyn-1-ylometylo)-N-[4-metylo-3-[4-pirydyn-3-ylo)pirymidyn-2-yloamino]fenylo]benzamidu posiadającą w rentgenowskim dyfraktogramie proszkowym refleksy o intensywności względnej ponad

20% przy kątach 2θ około: 10,5; 14,9; 16,5; 17,7; 18,1; 18,6; 19,1; 21,3; 21,6; 22,7; 23,2; 23,8; 24,9; 27,4; 28,0 i 28,6°.

Rzecznik Patentowy

1 W Y

mgr inż Ewd Krzywdzińska

Fig. 1. Widmo IR (pastylka KBr): 1. forma krystaliczna $\alpha,$ 2. forma krystaliczna β

Rzecznik Patentowy Myf mgr inż. Ewa Krzywdzińska

Fig. 2. DSC: Porównanie temperatur topnienia form krystalicznych α i β

Rzecznik Patentowy
mgr inż. Ewa Krzywdzińska

Fig. 3. Rentgenowski dyfraktogram proszkowy formy krystalicznej α

Fig. 4. Rentgenowski dyfraktogram proszkowy formy krystalicznej β

Rzecznik Patentowy My G' mgr inż. Ewa Krzywdzińska