

F-OFDM

F-OFDM (Filtered Orthogonal Frequency Division Multiplexing) 基于滤波的正交频分复用

可以适应更高速度的用户移动

5G NR要求支持最大达到 500km/h的终端移动速度

子载波宽度可变

5G F-OFDM

多普勒效应

电磁波的频率因为波源和观测者的相对运动而产生变化:

- 相向运动,频率升高
- 背相运动,频率降低

多普勒效应

F-OFDM

② 更灵活控制时延

F-OFDM

③ 更高的频谱效率

LTE的90%频谱利用率,NR提升到95%以上

5G帧结构

5G在大的帧结构上面,并没有像4G一样,分FDD和TDD两种结构,而是统一结构

5G子载波间隔与时隙个数

Numerology参数集

5G NR用参数µ表示 OFDM Numerology配置,包含OFDM的基础参数集合,比如子载波间隔、循环前缀等,一共有5种配置:

/ SCS

μ	子载波间隔	循环前缀	每时隙符号数	每帧时隙数	每子帧时隙数	符号长度µs	CP长度
0	15KHZ	常规	14	10	1	66.7	5.2/4.69
1	30KHZ	常规	14	20	2	33.3	2.86/2.34
2	601/117	常规	14	40	4	16.7	1.69/1.17
2	60KHZ	拓展	12	40	4	16.7	4.17/4.17
3	120KHZ	常规	14	80	8	8.33	1.11/0.59
4	240KHZ	常规	14	160	16	4.17	0.81/0.29

目前没有使用240KHZ的子载波间隔

SCS (kHz) -15 30 60

FR1

SCS (kHz)

60 120

5G参数µ决定了子载波间隔与时隙个数

5G现网实际情况

	500	5	10	15	20	25	30	40	50	60	70	80	90	100
FR1	SCS (kHz)	MHz												
		N_{RB}												
	15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
	30	11	24	38	51	65	78	106	133	162	189	217	245	273
	60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

目前非毫米波波段,以30KHZ为主,100MHZ带宽,因此, μ =1,一个子帧2个时隙,每个时隙0.5ms,每个时隙14个符号

Ts和Tc

5G 定义了2种最小的时间单位,Tc和Ts

Tc=1/480000*4096=0.509 ns

Ts=1/15000*2048=32.55ns

Tc:表示的是5G OFDM符号的采样间隔

Ts: 和LTE一致,但是基本没什么用处,目前,除非另有说明, 否则 NR 时域中各个域的大小均表示为若干 Tc

Tc-采样时间间隔

信号采样

举个例子:

Tc=1/480000*4096秒

子载波间隔15K, OFDM符号周期T=1/15000秒

采样次数=T/Tc=131072

15KHZ子载波间隔的OFDM符号, 一个符号采样131072次

5G 时隙配置

TDD模式下,上下行配置,4,5G有很大的改变

4G以子帧为单位,叫做子帧配比 5G可以使用时隙进行配比,叫做时隙配比。另外符号级别也可以配置

在5G里面不用管子帧的概念,目前,资源的调度单位是以时隙为单位

5G的调度基本单位分为两种类型: **slot-based**和Non-slot-based。其中slot-based对应的基本调度单位为slot,而Non-slot-based对应的基本调度单位是mini-slot

45G调度对比举例

Mini slot微时隙

一般情况下,系统调度周期与时隙周期紧耦合,但是这并不是效率最高的方式。 为了实现进一步的动态调度,NR使用了Mini-Slot(微时隙)的机制来支持突 发性异步传输。

Mini-Slot的起始位置是可变的,且持续时间比典型的14个符号的时隙更短根据情况可以选择2个符号,4个符号,7个符号

Mini slot微时隙

目前,mini slot还没有实际应用

4G 讲究的是子帧配比

4G TDD子帧配比

5G讲究的是时隙配比

以某设备厂商的配比举例

- 时隙配比定义无线资源的上下行分配,5G RAN2.1版本支持三种配比:
 - a 4:1 DDDSU (Sub6G、Above6G)2.5ms 单周期
 - 。 8:2 DDDDDDDSUU (仅Sub-6G支持) 5ms 单周期
 - 。 7:3 DDDSUDDSUU (仅Sub-6G支持) 2.5ms 双周期

4:1 (2.5ms单周期)配置

8:2 (5ms单周期)配置

7:3 (2.5ms双周期)配置

5G时隙 (slot)类型

5G符号类型:

自包含时隙

自包含时隙

定义: 同一时隙包含UL、DL和GP

自包含时隙:实现更快的下行HARQ反馈和上行数据调度,以及更快的信道测量, 让基站和终端能够在一个时隙内完成数据的完整交互,以达到降低时延的目标

5G时隙符号配比

3GPP 在时隙内允许61个预定义符号组合,62-255为预留的

5G时隙符号配比

255

27	D	D	D	F	F	F	F	F	F	F	F	U	U	U
28	D	D	D	D	D	D	D	D	D	D	D	D	F	U
29	D	D	D	D	D	D	D	D	D	D	D	F	F	U
30	D	D	D	D	D	D	D	D	D	D	F	F	F	U
31	D	D	D	D	D	D	D	D	D	D	D	F	U	U
32	D	D	D	D	D	D	D	D	D	D	F	F	U	U
33	D	D	D	D	D	D	D	D	D	F	F	F	U	U
34	D	F	U	U	U	U	U	U	U	U	U	U	U	U
35	D	D	F	U	U	U	U	U	U	U	U	U	U	U
36	D	D	D	F	U	U	U	U	U	U	U	U	U	U
37	D	F	F	U	U	U	U	U	U	U	U	U	U	U
38	D	D	F	F	U	U	U	U	U	U	U	U	U	U
39	D	D	D	F	F	U	U	U	U	U	U	U	U	U
40	D	F	F	F	U	U	U	U	U	U	U	U	U	U
41	D	D	F	F	F	U	U	U	U	U	U	U	U	U
42	D	D	D	F	F	F	U	U	U	U	U	U	U	U
43	D	D	D	D	D	D	D	D	D	F	F	F	F	U
44	D	D	D	D	D	D	F	F	F	F	F	F	U	U
45	D	D	D	D	D	D	F	F	U	U	U	U	U	U
46	D	D	D	D	D	F	U	D	D	D	D	D	F	U
47	D	D	F	U	U	U	U	D	D	F	U	U	U	U
48	D	F	U	U	U	U	U	D	F	U	U	U	U	U
49	D	D	D	D	F	F	U	D	D	D	D	F	F	U
50	D	D	F	F	U	U	U	D	D	F	F	U	U	U
51	D	F	F	U	U	U	U	D	F	F	U	U	U	U
52	D	F	F	F	F	F	U	D	F	F	F	F	F	U
53	D	D	F	F	F	F	U	D	D	F	F	F	F	U
54	F	F	F	F	F	F	f	D	D	D	D	D	D	D
55	D	D	F	F	F	U	U	U	D	D	D	D	D	D
62-254	Reserved													
255	UE determines the slot format for the slot based on tdd-UL-DL-ConfigurationCommon, or tdd-ULDL-													

ConfigurationDedicated and, if any, on detected DCI formats

可以设置 自包含时隙

自包含子帧

A方案,子帧级别进行信息反馈,对终端硬件能力要求高 B方案,延迟了信息反馈,对终端硬件能力要求低

目前,自包含子帧还没有实际应用

技术的使用犹如瑞士军刀

5G上下行时隙配比介绍

5G对上下行子帧配比一共分了四个等级,实现动态时隙配比

第一级配置:通过系统消息SIB1进行半静态配置(小区级别)

第二级配置:通过用户级RRC消息进行配置

第三级配置:通过UE-group的DCI中的SFI指示进行配置(符号级别配比)

第四级配置:通过UE-specific的DCI进行配置(符号级配比)

5G上下行时隙配比介绍

静态时隙配比参数(实际现网)

SIB1 (TDD-UL-DL-ConfigCommon)中承载

```
TDD-UL-DL-ConfigCommon ::= SEQUENCE {
    referenceSubcarrierSpacing
                                                SubcarrierSpacing,
                                                TDD-UL-DL-Pattern,
    pattern1
    pattern2
                                                TDD-UL-DL-Pattern OPTIONAL,
    . . .
TDD-UL-DL-Pattern ::= SEQUENCE {
    dl-UL-TransmissionPeriodicity
                                                ENUMERATED {ms0p5, ms0p625, ms1,
                                                            ms1p25, ms2, ms2p5, ms5, ms10},
                                                INTEGER (0..maxNrofSlots),
    nrofDownlinkSlots
                                                INTEGER (0..maxNrofSymbols-1),
    nrofDownlinkSymbols
    nrofUplinkSlots
                                                INTEGER (0..maxNrofSlots),
    nrofUplinkSymbols
                                                INTEGER (0..maxNrofSymbols-1),
```


以中移动的配比举例子-5ms单周期

RE与RB

- RE (Resource Element) ,
 时间上一个OFDM符号 , 频域
 上一个子载波。
- RB(Resource Block), 在频域
 连续的12子载波。

RE与RB

CRB与PRB

CRB: 公共资源块

PRB: 部分带宽(BWP) 里面的资源块

BWP部分带宽技术

BWP的技术优势主要有四个方面:

- 1. UE无需支持全部带宽,只需要满足最低带宽要求即可,有利于低成本终端的开发,促进产业发展;
- 2. 当UE业务量不大时,UE可以切换到低带宽运行,可以非常明显的降低功耗;
- 3. 5G技术前向兼容,当5G添加新的技术时,可以直接将新技术在新的BWP上运行,保证了系统的前向兼容;
- 4. 适应业务需要,为业务动态配置BWP。

BWP不仅在每个BWP不仅仅频点和带宽不一样,其子载波间隔(SCS)、CP类型等都可以差异化配置

为DL/UL分别最多可以配置4个专有的BWP,对同一个UE来说,DL或UL同一时刻只能有一个BWP处于激活的状态,UE在这个BWP上进行数据的收发

除此之外

RBG, REG, CCE这三个资源单位,我们留到物理信道哪里再讲解!

5g理论下行网速计算(粗算)

普通时隙: 1个时隙有14个符号,其中11个符号可以传用户数据

特殊时隙:有4个符号可以用来传用户数据

(273*12*11*7+273*12*4) *8*4/0.005=1.7Gbps

