Sprawozdanie – Laboratorium nr 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda Newtona).

Tomasz Rajchel 2019/04/04

Wstęp teoretyczny

Metoda dzielenia wielomianu

Dany jest wielomian, którego zera chcemy znaleźć:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0 = 0$$

Jeśli podzielimy wielomian przez wyraz $(x - x_i)$ to otrzymamy:

$$f(x)=(x-x_j)(b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+...+b_0)+R_j$$

Z porównania współczynników przy jednakowych potęgach otrzymujemy zależność:

$$a_{n} = b_{n-1}$$

$$a_{n-1} = b_{n-2} - x_{j} b_{n-1}$$

$$\vdots$$

$$a_{1} = b_{0} - x_{j} b_{1}$$

$$a_{0} = R_{j} - x_{j} b_{0}$$

Zatem współczynniki nowego wielomianu można wyliczyć rekurencyjnie:

$$b_n = 0$$

$$b_k = a_{k+1} + x_j b_{k+1}, k = n - 1, n - 2, ..., 0$$

$$R_j = a_0 + x_j b_0$$

Dzieląc jeszcze raz wielomian otrzymamy:

$$f(x)=(x-x_i)^2(c_{n-2}x^{n-2}+c_{n-3}x^{n-3}+...+c_0)+R'_i(x-x_i)+R_i$$

Gdzie współczynniki c_n oraz czynnik R'_i wyznaczamy identycznie jak b_n oraz R_i.

Znajdowanie zer wielomianu

W metodzie Newtona zera wielomianu możemy wyznaczać iteracyjnie zgodnie z poniższym wzorem (Wzór jednokrokowy metody Newtona):

$$x_{j+1} = x_j - \frac{R_j}{R'_i}$$

gdzie x_{j+1} to kolejne, lepsze przybliżenie zera, a czynniki $R_j\,$ i R'_j (reszty z dzielenia) wyznaczamy zgodnie ze wzorami powyżej.

Po znalezieniu pierwiastka wielomianu usuwamy go (redukując tym samym stopień o 1), a następnie szukamy następnego.

Opis zadania

Celem zadania jest znalezienie wszystkich zer wielomianu:

$$f(x)=x^5+14x^4+33x^3-92x^2-196x+240$$

Dodatkowo należy zapisać do pliku numer zera(pierwiastka wielomianu), numer iteracji, wartość przybliżenia x_j oraz wartość reszty z dzielenia R_j i R'_j .

Skorzystamy z opisanego we wstępie teoretycznym wzoru jednokrokowego metody Newtona:

$$x_{j+1} = x_j - \frac{R_j}{R'_j}$$

,który korzysta z napisanej przez nas funkcji do znalezienia reszt z dzielenia przez wielomian. Jako wartość startową x_0 przyjmujemy 0.

Kod napiszemy w języku C++, nie korzystając z żadnych bibliotek numerycznych.

Przerywamy działanie algorytmu gdy różnica pomiędzy kolejnymi przybliżeniami jest mniejsza od 10⁻⁷.

Wyniki

L	iteracja	X _{it}	R_{it}	R' _{it}
1	1	0	240	-196
1	2	1.22449	-43.1289	-158.813
1	3	0.952919	10.5714	-228.86
1	4	0.999111	0.195695	-220.179
1	5	1	7.96468e-05	-220
1	6	1	1.32729e-11	-220

L	iteracja	X _{it}	R_{it}	R' _{it}
2	1	0	-240	-44
2	2	-5.45455	-120.975	122.071
2	3	-4.46352	-24.2755	68.3304
2	4	-4.10825	-4.31754	43.7539
2	5	-4.00957	-0.347977	36.6891
2	6	-4.00009	-0.00323665	36.0065
2	7	-4	-2.90891e-07	36

L	iteracja	X _{it}	R_{it}	R' _{it}
3	1	0	-60	4
3	2	15	5850	1009
3	3	9.20218	1687.53	460.488
3	4	5.53752	469.259	217.818
3	5	3.38316	118.159	112.767
3	6	2.33534	22.07	71.739
3	7	2.0277	1.67505	60.9441
3	8	2.00021	0.0128842	60.0073
3	9	2	7.83733e-07	60

L	iteracja	X _{it}	\mathbf{R}_{it}	R' _{it}
4	1	0	30	13
4	2	-2.30769	5.32544	8.38462
4	3	-2.94284	0.403409	7.11433
4	4	-2.99954	0.00321531	7.00092
4	5	-3	2.10929e-07	7

L	iteracja	X _{it}	R _{it}	R' _{it}
5	1	0	10	1
5	2	-10	0	1

w kolumnach kolejno:

L – numer miejsca zerowego,

it – numer iteracji,

x_{it} – przybliżenie miejsca zerowego w danej iteracji,

 R_{it} – reszta z dzielenia wielomianu w danej iteracji,

R'_{it} – reszta z powtórnego dzielenia wielomianu w danej iteracji.

Wnioski

Poprawnie wyznaczyliśmy pierwiastki wielomianu. Metoda iterowanego dzielenia jest prosta do zaimplementowania oraz dosyć szybka (zbieżność kwadratowa).