



# **Application Layer Protocols & Network Security**

#### 1. Key Networking Protocols

| Protocol | Port                     | Description                | Security Consideration              |
|----------|--------------------------|----------------------------|-------------------------------------|
| HTTP     | 80                       | Unsecured web              | Vulnerable to                       |
|          |                          | communication (plaintext)  | eavesdropping                       |
| HTTPS    | 443                      | HTTP + SSL/TLS encryption  | Secure against sniffing             |
| FTP      | 20 (data), 21 (control)  | File transfer protocol     | Use <b>SFTP</b> (22) or <b>FTPS</b> |
|          |                          | (unencrypted)              | instead                             |
| DNS      | 53                       | Translates domain names to | Vulnerable to <b>DNS</b>            |
|          |                          | IPs                        | spoofing                            |
| DHCP     | 67 (server), 68 (client) | Assigns IP addresses       | DHCP spoofing                       |
|          |                          | dynamically                | possible                            |
| SMTP     | 25 (unencrypted), 587    | Sends emails               | Use <b>SMTPS</b> ( <b>465</b> ) for |
|          | (TLS)                    |                            | security                            |

# 1. HTTP (Hypertext Transfer Protocol)

**Port:** 80 (Unencrypted)

Function: Transfers web pages in plaintext between clients (browsers) and servers.

# **Key Features:**

- **Stateless protocol** (no memory of previous requests).
- Uses **GET**, **POST**, **PUT**, and **DELETE** methods.
- Vulnerable to eavesdropping, MITM attacks.

#### 2. HTTPS (HTTP Secure)

**Port:** 443 (Encrypted via SSL/TLS)

**Function:** Secure version of HTTP with data encryption.

### **Key Features:**

- Uses **TLS/SSL** certificates (issued by CAs like DigiCert, Let's Encrypt).
- Encrypts data with **AES**, **ChaCha20** (symmetric) + **RSA/ECC** (asymmetric).
- Prevents MITM, tampering, and snooping.

# Security Advantages:

- ✓ **Data Integrity** (Hashing with SHA-256).
- ✓ **Authentication** (Prevents phishing via cert checks).





#### 3. FTP (File Transfer Protocol)

**Port:** 20 (Data), 21 (Control)

Function: Transfers files between client and server.

### Modes:

• **Active FTP** → Server connects back to client (issues with firewalls).

• **Passive FTP** → Client initiates both connections (better for firewalls).

## Security Risks:

• **No encryption** → Credentials sent in plaintext.

• **Brute-force attacks** on FTP logins.

### Secure Alternatives:

• SFTP (SSH FTP, Port 22)  $\rightarrow$  Encrypted over SSH.

• FTPS (FTP + SSL, Port 989/990)  $\rightarrow$  FTP with TLS.

#### 4. DNS (Domain Name System)

Port: 53 (UDP/TCP)

Function: Translates domain names (e.g., google.com) to IPs (e.g., 8.8.8.8).

## DNS Record Types:

| Record | Purpose          | Example                                   |
|--------|------------------|-------------------------------------------|
| A      | IPv4 Address     | example.com $\rightarrow$ 192.0.2.1       |
| AAAA   | IPv6 Address     | example.com $\rightarrow$ 2001:db8::1     |
| CNAME  | Alias            | www.example.com $\rightarrow$ example.com |
| MX     | Mail Server      | example.com → mail.example.com            |
| TXT    | SPF/DKIM Records | "v=spf1 include:_spf.google.com ~all"     |

### DNS Security Risks:

- **DNS Spoofing** (Fake DNS responses).
- **DNS Amplification Attacks** (DDoS using open resolvers).

### Protections:

- **DNSSEC** (Digitally signs DNS records).
- DoH (DNS over HTTPS) / DoT (DNS over TLS).





#### 5. DHCP (Dynamic Host Configuration Protocol)

**Port:** 67 (Server), 68 (Client)

**Function:** Automatically assigns IP addresses to devices on a network.

#### DHCP Process (DORA):

- 1. **Discover** → Client broadcasts "DHCP Discover".
- 2. **Offer**  $\rightarrow$  Server responds with "DHCP Offer" (IP lease).
- 3. **Request**  $\rightarrow$  Client accepts with "DHCP Request".
- 4. **Acknowledge** → Server confirms with "DHCP Ack".

### Security Risks:

- **DHCP Spoofing** → Rogue server gives malicious IPs.
- **Exhaustion Attacks** → Flooding DHCP requests.

#### Protections:

- **DHCP Snooping** (Network switches filter rogue DHCP).
- Static IP Reservations for critical devices.

#### 6. SMTP (Simple Mail Transfer Protocol)

Port: 25 (Unencrypted), 587 (TLS), 465 (SMTPS)

Function: Sends emails between servers.

### **SMTP Commands:**

- HELO → Initiates connection.
- MAIL FROM → Sender's email.
- RCPT TO → Recipient's email.
- DATA  $\rightarrow$  Email body.
- QUIT → Ends session.

### Security Risks:

- Open Relays → Spammers abuse unsecured SMTP servers.
- **Email Spoofing** → Fake "From" addresses.

### Protections:

- **SPF, DKIM, DMARC** (Email authentication protocols).
- **Force TLS** (Encrypts email transit).





# SSL/TLS (Secure Sockets Layer / Transport Layer Security)

# Purpose:

Encrypts data transmitted over networks (e.g., web traffic, emails) to prevent eavesdropping and tampering.

- SSL (Deprecated, insecure)  $\rightarrow$  Replaced by TLS (v1.2, v1.3 are secure).
- Works via **asymmetric** + **symmetric** encryption:
  - o **Asymmetric** (RSA/ECC): Handshake/key exchange.
  - o **Symmetric** (AES/ChaCha20): Encrypts actual data.

# Security Risks & Fixes:

| Risk                     | Solution                                          |
|--------------------------|---------------------------------------------------|
| Expired Certificates     | Auto-renew with <b>ACME</b> (e.g., Certbot).      |
| Weak Ciphers (e.g., DES) | Enforce <b>TLS 1.2</b> +, disable SSL.            |
| MITM Attacks             | Use <b>HSTS</b> (HTTP Strict Transport Security). |

#### **Firewalls**

### Purpose:

Filters network traffic to block unauthorized access while allowing legitimate communication.

# Types of Firewalls:

| Type                | How It Works                                | Use Case                    |
|---------------------|---------------------------------------------|-----------------------------|
| Packet-Filtering    | Blocks traffic by IP/port.                  | Basic network security.     |
| Stateful Inspection | Tracks active connections (state).          | Enterprise networks.        |
| Proxy Firewall      | Acts as an intermediary (analyzes content). | Web filtering.              |
| Next-Gen (NGFW)     | Deep packet inspection (DPI), IDS/IPS.      | Advanced threat prevention. |

# **Quick Comparison**

| Feature              | SSL/TLS                        | Firewall                                |
|----------------------|--------------------------------|-----------------------------------------|
| Purpose              | Encrypts data in transit.      | Filters network traffic.                |
| Layer                | Transport Layer (OSI Layer 4). | Network/Layer 3 or Application/Layer 7. |
| Attack<br>Prevention | MITM, sniffing.                | Unauthorized access, DDoS.              |





### **Digital Signature**

Digital signatures provide **authentication**, **integrity**, and **non-repudiation** for digital documents/messages.

# Common Algorithms

| Algorithm | Usage                    | Key Size (Bits) |
|-----------|--------------------------|-----------------|
| RSA       | Widely used (SSL, PGP)   | 2048, 4096      |
| ECDSA     | Efficient (Bitcoin, TLS) | 256, 384        |
| DSA       | Older systems (FIPS)     | 1024, 2048      |
| EdDSA     | Modern (Ed25519)         | 256             |

# **Digital Signature Process**

# Signing:

- 1. **Hash** the message (SHA-256, SHA-3).
- 2. **Encrypt** the hash with the sender's **private key**.
- 3. **Attach** the signature to the message.

#### Verification:

- 1. **Decrypt** the signature with the sender's **public key**,  $\rightarrow$  reveals the hash.
- 2. **Hash** the received message.
- 3. **Compare** the two hashes:
  - $\circ$  **Match**  $\rightarrow$  Valid signature.
  - o **Mismatch**  $\rightarrow$  Tampered or forged.