解析

大上由人

2024年11月16日

小平解析ゼミの内容を可能な限り簡潔にまとめたい。

0.1 数列の極限

- Def. 数列の極限 ·

数列 $\{a_n\}$ がある実数 α に収束するとは、任意の正の実数 ε に対応して、ある自然数 $n_0(\varepsilon)$ が 定まって

$$n > n_0(\varepsilon) \Rightarrow |a_n - \alpha| < \varepsilon$$
 (0.1)

が成り立つことである。また、このとき α を数列 $\{a_n\}$ の極限といい、

$$\lim_{n \to \infty} a_n = \alpha \tag{0.2}$$

と書く。

Thm.

数列 $\{a_n\}$ が実数 α に収束するための必要十分条件は、 $\rho<\alpha<\sigma$ なる実数 ρ,σ が任意に与えられたとき、不等式

$$\rho < a_n < \sigma \quad (n = 1, 2, 3, \cdots) \tag{0.3}$$

が有限個の自然数nを除いて成立することである。

Prf.

 (\Rightarrow)

 $\{a_n\}$ が α に収束すると仮定する。 $\rho<\alpha<\sigma$ なる実数 ρ,σ が任意に与えられたとする。 $\min\{\alpha-\rho,\sigma-\alpha\}=\varepsilon$ とおくと、

$$\rho \le \alpha - \varepsilon \le \sigma \tag{0.4}$$

が成り立つ。仮定により、 $n > n_0(\varepsilon)$ のとき、 $|a_n - \alpha| < \varepsilon$ である。すなわち、

$$\alpha - \varepsilon < a_n < \alpha + \varepsilon \tag{0.5}$$

が成り立つ。したがって、有限個の自然数nを除いて、

$$\rho \le \alpha - \varepsilon < a_n < \alpha + \varepsilon \le \sigma \tag{0.6}$$

が成り立つ。

 (\Leftarrow)

正の実数 ε が任意に与えられたとする。このとき、条件より、有限個の自然数 n を除いて、

$$\alpha - \varepsilon < a_n < \alpha + \varepsilon \tag{0.7}$$

が成り立つ。 *1 したがって、この有限個の自然数のうち最大のものを $n_0(\varepsilon)$ とおくと、

$$n > n_0(\varepsilon) \Rightarrow |a_n - \alpha| < \varepsilon$$
 (0.8)

が成り立つ。したがって、 $\{a_n\}$ は α に収束する。

· Cor. 極限の一意性 -

数列 $\{a_n\}$ がある実数 α に収束するとき、その極限は一意的である。

Prf.

背理法により示す。 $\{a_n\}$ が異なる実数 α と β に収束すると仮定し、 α < β とする。このとき、有理数の稠密性から、 α < r < β なる有理数 r が存在する。このとき、前の定理より、有限個の自然数 n を除いて、 a_n < r が成り立つ。また、有限個の自然数 n を除いて、 a_n > r が成り立つ。これは矛盾である。したがって、 α = β である。

- Thm.Cauthy の収束条件 ―

数列 $\{a_n\}$ が収束するための必要十分条件は、任意の正の実数 ε に対応して一つの自然数 $n_0(\varepsilon)$ が定まって、

$$m, n > n_0(\varepsilon) \Rightarrow |a_m - a_n| < \varepsilon$$
 (0.9)

が成り立つことである。

Prf.

 (\Rightarrow)

 $\{a_n\}$ が α に収束すると仮定する。任意に与えられた正の実数 ε に対して、 $0 < a < \varepsilon$ となるような有理数 a をとる。(これが存在することは、有理数の稠密性から明らか。) このとき、仮定より、

$$n > n_0(\varepsilon) \Rightarrow |a_n - \alpha| < \frac{a}{2}$$
 (0.10)

なる自然数 $n_0(\varepsilon)$ が定まる。(有理数にしか割り算が定まっていないのでこのように抑えている。) このとき、 $m,n>n_0(\varepsilon)$ とすると、

$$|a_m - a_n| \le |a_m - \alpha| + |\alpha - a_n| < \frac{a}{2} + \frac{a}{2} = a < \varepsilon$$
 (0.11)

^{*1} 条件より、今みたいに都合よく ρ,σ を $\alpha-\varepsilon,\alpha+\varepsilon$ と取れる。

が成り立つ。

 (\Leftarrow)

hoge(実数の連続性からわかる。)