🖵 Maths - Feuille d'exos n° 4 💳

Nombres complexes

$$\overline{\text{cx. 4.1}} \quad \text{Soit } f: \left\{ \begin{array}{c} \mathbb{C}\backslash\{i\} & \to & \mathbb{C}\backslash\{i\} \\ z & \mapsto & \frac{iz-1}{2} \end{array} \right.$$

Ex. 4.2 Soit $u \in \mathbb{C} \setminus \{1\}$ et $z \in \mathbb{C} \setminus \mathbb{R}$. Montrer que $\frac{z-u\bar{z}}{1-u} \in \mathbb{R} \Leftrightarrow |u| = 1$

Ex. 4.3 Montrer que si z_1 et z_2 sont des complexes de module inférieur ou égal à 1 alors $|z_1 + z_2| \le \sqrt{2}$ ou $|z_1 - z_2| \le \sqrt{2}$.

II. Trigonométrie

 $\overline{\mathbf{Ex. 4.4}}$ Écrire sous la forme trigonométrique les complexes suivants : $z_1 = -3$ $z_2 = -3i$ $z_3 = -2 + 2i$ $z_4 = \sqrt{3} - i$ $z_5 = \tan\left(\frac{\pi}{7}\right) - i$

Ex. 4.5 On note $j = e^{\frac{2i\pi}{3}}$.

- a. Montrer que $j^2 = \overline{j} = -1 j$.
 - b. Calculer $j^2 e^{\frac{3i\pi}{4}}$.

En déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Ex. 4.6 Soit $\zeta = e^{\frac{2i\pi}{7}}$. On pose $a = \zeta + \zeta^2 + \zeta^4$ et $b = \zeta^3 + \zeta^5 + \zeta^6$.

- a. Montrer que $\bar{a} = b$ puis calculer a + b et ab.
- b. En déduire a et b.

Ex. 4.7 Soit $\theta \in \mathbb{R}$.

a. Écrire $\sin(5\theta)$ en fonction de $\sin(\theta)$.

b. En prenant $\theta = \frac{\pi}{5}$, déduire de la question précédente la valeur exacte de $\sin\left(\frac{\pi}{5}\right)$ et de $\cos\left(\frac{\pi}{5}\right)$.

c. Montrer que $\sin\left(\frac{\pi}{5}\right) + \sin\left(\frac{2\pi}{5}\right) + \sin\left(\frac{3\pi}{5}\right) + \sin\left(\frac{4\pi}{5}\right) = \frac{1}{\tan\left(\frac{\pi}{10}\right)}$

I. Rappels $A(x) = \sin^5 x$ Linéariser les polynômes trigonométriques : $A(x) = \sin^5 x$ $B(x) = \cos^3 x \sin^2 x$ $C(x) = \cos^6 x$

Ex. 4.9 [**] Soient $n \in \mathbb{N}^*$ et $D_n : x \in [-\pi; \pi] \mapsto 1 + 2 \sum_{k=1}^{\infty} \cos(kx)$

a. Que vaut $D_n(0)$?

b. Montrer que pour tout $x \in [-\pi; \pi] \setminus \{0\}$,

 $D_n(x) = 2\cos\left(\frac{(n+1)x}{2}\right)\frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} + 1.$

c. En déduire que pour tout $x \in [-\pi; \pi] \setminus \{0\}$,

$$D_n(x) = \frac{\sin\left((2n+1)\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

d. Que vaut $\lim_{x\to 0} \frac{\sin\left((2n+1)\frac{x}{2}\right)}{\sin(x)}$?

e. Montrer que pour tout $x \in [-\pi; \pi] \setminus \{0\}$,

$$F_n(x) = \frac{1}{n} \left(\frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}} \right)^2$$

f. Que vaut $\lim_{x\to 0} F_n(x)$?