2016

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Announcement

- JFLAP (Java Formal Languages and Automata Package)
 - http://www.jflap.org/

Outline

1	Deterministic Finite Accepters (DFA)
2	Nondeterministic Finite Accepters (NFA)
3	Equivalence of DFA and NFA
4	Reduction of the Number of States in FA*

Automata

Automaton:

An abstract model of a digital computer

- Deterministic V.S. Nondeterministic
- An automaton whose output is YES or NO Accepter
- •An automaton whose output are strings of symbols Transducer

Transition Graph

Initial Configuration Input String

Reading the Input

Input finished

Output: "accept"

Rejection

Input finished

Another Rejection

Output: "reject"

Another Example

Input finished

Rejection

Input finished

Output: "reject"

Trap state

Definition 2.1

Deterministic Finite Accepter (DFA) is define by the 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

: a finite set of internal states

: a finite set of symbols called input alphabet

 δ : Q x $\Sigma \rightarrow$ Q called **transition function** (Total function)

 $q_0 : q_0 \in Q$ is the initial state

F : F ⊆Q is a set of final states

Input Alphabet Σ

$$\Sigma = \{a, b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State 90

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \rightarrow Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b) = q_5$$

$$\delta(q_2,b) = q_3$$

Transition Function δ

δ	а	Ь	
<i>q</i> ₀	q_1	95	
<i>9</i> ₁	9 5	92	
92	q_5	<i>q</i> ₃	a,b
<i>9</i> ₃	94	95	
94	9 5	95	q_5
<i>9</i> ₅	9 5	95	b a a b a,b
$- (q_0) \xrightarrow{a} (q_1) \xrightarrow{b} (q_2) \xrightarrow{b} (q_3) \xrightarrow{a} (q_4)$			

Extended Transition Function δ *

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: If there is a walk from $\it q$ to $\it q'$ with label $\it w$

Theorem 2.1

iff
$$\delta *(q, w) = q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q, w\sigma) = q'$$

$$\delta * (q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta * (q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta * (q, w) = q_1$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_1 \qquad b \qquad q_3 \qquad a \qquad b$$

$$q_4 \qquad b \qquad a \qquad b$$

$$q_5 \qquad a \qquad b \qquad a \qquad b$$

Languages Accepted by DFAs

Take DFA M

Definition:

-The language L(M) contains all input strings accepted by M

-L(M)= { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

M

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

M

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

 $q' \in F$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

Example 2.2 $M = (Q, \Sigma, \delta, q_0, F)$

$$L(M) = \{a^n b : n \ge 0\}$$

Example 2.3

L(M)= { all strings with prefix ab}

Example 2.4

 $L(M) = \{ \text{ all strings without substring 001 } \}$

Regular Languages

A language L is regular iff there exists some DFA M such that L = L(M)

All regular languages form a language family

Examples of regular languages:

$$\{abba\}$$
 $\{\lambda, ab, abba\}$ $\{a^nb: n \ge 0\}$

```
{ all strings with prefix ab}
```

{ all strings without substring 001 }

There exists DFA that accept these Languages

Example 2.5

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular:

Is regular:
$$L = L(M)$$

$$q_0 \qquad a \qquad q_2 \qquad a \qquad q_3$$

$$q_4 \qquad a, b$$

Example 2.6

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular, how about L^2 ?

$$L = \{a^n b^n : n \ge 0\}$$
 ?

There exist languages which are <u>not</u> Regular: There is no DFA that accepts such a language (we will prove this later in the class)

DFA Recap

- A machine with finite number of states, some states are accepting states, others are rejecting states
- At any time, it is in one of the states
- It reads an input string, one character at a time

DFA Recap

- After reading each character, it moves to another state depending on what is read and what is the current state
- If reading all characters, the DFA is in an accepting state, the input string is accepted.
- Otherwise, the input string is rejected.

Definition 2.1

Deterministic Finite Accepter (DFA) is define by the 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

: a finite set of internal states

: a finite set of symbols called input alphabet

 δ : Q x $\Sigma \rightarrow$ Q called transition function

 q_0 : $q_0 \in Q$ is the initial state

F : F ⊆Q is a set of **final states**

Regular Languages

A language L is regular iff there exists some DFA M such that L = L(M)

Definition:

- The language L(M) contains all input strings accepted by a DFA $\,M\,$
- L(M)= { strings that drive M to a final state}

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

- All strings that contain exactly 4 "0"s.
- All strings containing exactly 4 "0" s and at least 2 "1" s.
- All strings of length at most five.
- All strings ending in "1101".
- All strings whose binary interpretation is divisible by 5.
- All strings that contain the substring 0101.
- All strings that don't contain the substring 110.

Exercise 2.1.7

Find DFAs for the following languages on $\Sigma = \{a,b\}$

- (a) $L = \{w: |w| \mod 3 = 0\}$
- (b) L = {w: $n_a(w) \mod 3 > n_b(w) \mod 3$ }

Exercise 2.1.7

Find DFAs for the following languages on $\Sigma = \{a,b\}$

(a) $L = \{w: |w| \mod 3 = 0\}$

(b) L = {w: $n_a(w) \mod 3 > n_b(w) \mod 3$ }

Exercise 2.1.9

(a) Every 00 is followed immediately by a 1.

Ex: 101, 0010,0010011001 ϵ L

0001 and 00100 € L

$$\Sigma = \{0,1\}$$

Questions?

Short Quiz

- All strings that start with 0 and have odd length or start with 1 and have even length.
- All strings where every odd position is a 1.

Short Quiz

All strings that start with 0 and have odd length or start with 1 and have even length.

• All strings where every odd position is a 1.

