

Perturbed Systems

0

We want to analyse systems on the form

$$\dot{x} = f(t, x) + g(t, x) \tag{1}$$

- $D \subset \mathbb{R}^n$ is a domain that contains the origin $x^* = 0$
- f and $g:[0,\infty)\times D\to\mathbb{R}^n$, piecewise continuous in t and locally Lipschitz in x on $[0, \infty) \times D$
- Nominal system

$$\dot{x} = f(t, x). \tag{2}$$

The Perturbation term g(t,x)

often unknown, but with a known upper bound on ||g(t,x)||

• modeling errors, uncertainties, disturbances etc.

BigDog is the alpha male of the Boston Dynamics family of robots

0

Robust Predictive Flight Control

0

3

Shark Attacks! - Not So Easy to Eat This Robot

Vanishing Perturbation

Part I

Vanishing Perturbation

Lecture 8: Stability of Perturbed Systems

Equilibrium Point

0

Vanishing Additive Perturbations

- Suppose that $\dot{x} = f(t,x)$ has an exponentially stable equilibrium point at $x^* = 0$
- and suppose that g(t,0) = 0 for all t

if $x^* = 0$ is an equilibrium point for the nominal system

$$\dot{x} = f(t, x)$$

 $\Rightarrow x^* = 0$ is an equilibrium point for the entire system

$$\dot{x} = f(t, x) + g(t, x)$$

Vanishing Perturbation Perturbation Term g(t,x)

0

0

Lyapunov Function

Suppose $x^* = 0$ is

- an exponentially stable equilibrium point of $\dot{x} = f(t, x)$,
- and let V(t,x) be a Lyapunov function that satisfies

$$c_1 ||x||^2 \le V(t, x) \le c_2 ||x||^2$$
 (3)

$$\frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t, x) \le -c_3 \|x\|^2 \tag{4}$$

$$\left\| \frac{\delta V}{\delta x} \right\| \le c_4 \|x\| \tag{5}$$

for all $(t,x) \in [0,\infty) \times D$ for some positive constants c_1, c_2, c_3 and c_4 .

NB

The existence of such a Lyapunov function is guaranteed by Th. 4.14.

Lecture 8: Stability of Perturbed System

Linear growth bound on the perturbation term

Assume that g(t,x) satisfies the linear growth bound

$$||g(t,x)|| \le \gamma ||x|| \tag{6}$$

It can be shown that

$$\dot{V}(t,x) = \frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t,x) + \frac{\delta V}{\delta x} g(t,x)$$

$$\leq -c_3 \|x\|^2 + \left\| \frac{\delta V}{\delta x} \right\| \|g(t,x)\|$$

$$\leq -c_3 \|x\|^2 + c_4 \|x\| \gamma \|x\|$$
(7)

$$\dot{V}(t,x) < 0$$
 if

$$\gamma < \frac{c_3}{c_4} \tag{8}$$

Exponentially Stable Equilibrium Point

0

Lemma 9.1

- Let $x^* = 0$ be an exponentially stable equilibrium point of the nominal system $\dot{x} = f(t,x)$
- Let V(t,x) be a Lyapunov function of the nominal system that satisfies

$$c_1 \|x\|^2 \le V(t, x) \le c_2 \|x\|^2$$
 and $\left\| \frac{\delta V}{\delta x} \right\| \le c_4 \|x\|$

in $[0, \infty) \times D$

• Suppose the perturbation term g(t,x) satisfies

$$\|g(t,x)\| \le \gamma \|x\|$$
 and $\gamma < \frac{c_3}{c_4}$

Then, the origin is an exponentially stable equilibrium point of the perturbed system $\dot{x} = f(t,x) + g(t,x)$.

16

Lecture 8: Stability of Perturbed System

Exponentially Stable Equilibrium Poi

Global Exponentially Stable Equilibrium Point

0

Global Exponential Stability

If all assumptions hold globally \Rightarrow the origin is globally exponentially stable.

< d> < d> < d> < d> < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d

17

Vanishing Perturbation Exponentially Stable Equilibrium Point Example: Exp. stable linear nominal system

0

Example

Consider the system

$$\dot{x} = Ax + g(t,x)$$

where A is Hurwitz and $\|g(t,x)\|_2 \leq \gamma \|x\|_2$ for all $t \geq 0$ and all $x \in \mathbb{R}^n$

Choose $Q = Q^T > 0$ and solve the Lyapunov equation $PA + A^TP = -Q$ for P and use $V(t,x) = x^TPx$.

Lecture 8: Stability of Perturbed Syste

Example: Exp. stable linear nominal system

Example

The Lyapunov function satisfies

$$\lambda_{\min}(P) \|x\|_2^2 \le V(t, x) \le \lambda_{\max}(P) \|x\|_2^2$$
 (9)

$$\frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t, x) \le -\lambda_{\min}(Q) \|x\|_2^2 \tag{10}$$

$$\left\| \frac{\delta V}{\delta x} \right\| \le 2\lambda_{\max}(P) \left\| x \right\|_2 \tag{11}$$

• By Lemma 9.1, x = 0 is a globally exponentially stable equilibrium point of $\dot{x} = Ax + g(t,x)$ if $\gamma < \frac{\lambda_{\min}(Q)}{2\lambda_{\max}(P)}$. By choosing Q = I, this ratio is maximized.

Lecture 8: Stability of Perturbed System

Example: Exp. stable equilibrium point

0

0

Example

Consider the second-order system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -4x_1 - 2x_2 + \beta x_2^3$$

where the constant $\beta \geq 0$ is unknown. Show that the origin $x^* = 0$ is exponentially stable.

Vanishing Perturbation Uniformly Asymptotically Stable Equilibrium Point

Uniformly Asymptotically Stable $x^* = 0$

0

Uniformly Asymptotic Stability

• Suppose $x^* = 0$ is a uniformly asymptotically stable equilibrium point of the nominal system $\dot{x} = f(t,x)$, and let V(t,x) be a positive definite, decrescent Lyapunov function that satisfies

$$\frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t, x) \le -W_3(x)$$

for all $(t,x) \in [0,\infty) \times D$ where $W_3(x)$ is positive definite and continuous.

The derivative of V is given by

$$\dot{V}(t,x) = \frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t,x) + \frac{\delta V}{\delta x} g(t,x) \le -W_3(x) + \left\| \frac{\delta V}{\delta x} g(t,x) \right\|$$

Uniformly Asymptotically Stable $x^* = 0$

0

Uniformly Asymptotic Stability cont.

• If V(t,x) is positive definite, decrescent, and satisfies

$$\frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t, x) \le -c_3 \phi^2(x) \tag{12}$$

$$\left\| \frac{\delta V}{\delta x} \right\| \le c_4 \phi(x) \tag{13}$$

for all $(t,x) \in [0,\infty) \times D$ for some positive constants c_3 and c_4 and $\phi: \mathbb{R}^n \to \mathbb{R}$ that is positive definite and continuous.

• If the perturbation term satisfies

$$\|g(t,x)\| < \gamma \phi(x) \tag{14}$$

$$\gamma < \frac{c_3}{c_4}$$

Uniformly Asymptotically Stable $x^* = 0$

0

(15)

Uniformly Asymptotic Stability cont.

Then,

$$\dot{V}(t,x) \le -(c_3 - c_4 \gamma) \phi^2(x) \tag{16}$$

is negative definite and the perturbed system

$$\dot{x} = f(t, x) + g(t, x)$$

is asymptotically stable.

Vanishing Perturbation Uniformly Asymptotically Stable Equilibrium Point

Example: GAS nominal system

0

Example

$$\dot{x} = -x^3 + g(t, x).$$

Show that $x^* = 0$ is a GUAS equilibrium point of the perturbed system. Consider $V(t,x) = x^4$ as a Lyapunov function for the nominal system.

NB

A nominal system with UAS origin is not robust to smooth perturbations with arbitrarily small linear growth bounds

$$||g(t,x)|| \le \gamma ||x||$$

Example

$$\dot{x} = -x^3 + \gamma x.$$

Show that $x^* = 0$ is unstable.

25

Lecture 8: Stability of Perturbed System

Nonvanishing Perturbation

Part I

Nonvanishing Perturbation

□ > 4**♂** > 4 ≧ > 4 ≧ > 9 0 0

26

Porturbation Torm -(4-2)

Nonvanishing Additive Perturbations

0

Nominal system

$$\dot{x} = f(t, x)$$

Perturbed system :

$$\dot{x} = f(t,x) + g(t,x), g(t,0) \neq 0$$

- In this case, $x^* = 0$ may not be an equilibrium point of the perturbed system
- It can no longer be study the stability of the origin or expect that the solution of the perturbed system approaches the origin as $t \to \infty$.

The best we can do is find a bound on the size of g(t,x) that ensures x(t) remains close to the origin.

27

Lecture 8: Stability of Perturbed Systems

Uniform Ultimate Boundedness (UUB)

Nonvanishing Perturbations ⇔ Uniform Ultimate Boundedness

Definition

Solutions of the nominal system $\dot{x}=f(t,x)$ are uniformly ultimately bounded (UUB) if there exists positive constants b and c and for all $\alpha\in(0,c)$ there is positive constant $T=T(\alpha)$ such that

$$||x(t_0)|| < \alpha \Longrightarrow ||x(t)|| \le b$$
 for all $t \ge t_0 + T$

NB

The constant *b* is called the **ultimate bound**.

Lecture 8: Stability of Perturbed System

Nonvanishing Perturbation

Exponentially Stable Equilibrium Poir

Exponential stable origin of $\dot{x} = f(t,x)$

0

0

Lemma 9.2

- Let $x^* = 0$ be an exponentially stable equilibrium point of the nominal system $\dot{x} = f(t,x)$
- Let V(t,x) be a Lyapunov function of the nominal system that satisfies

$$c_{1} \|x\|^{2} \leq V(t,x) \leq c_{2} \|x\|^{2}$$

$$\frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t,x) \leq -c_{3} \|x\|^{2}$$

$$\left\| \frac{\delta V}{\delta x} \right\| \leq c_{4} \|x\|$$

in $[0, \infty) \times D$, where $D = \{x \in \mathbb{R}^n | ||x|| < r\}$

29

Ecotate of Citability of Fertained Cyste

Nonvanishing Perturbation

Exponentially Stable Equilibrium Poir

Exponential stable origin of $\dot{x} = f(t, x)$

0

Lemma 9.2 cont.

• Suppose the perturbation term g(t,x) satisfies

$$\|g(t,x)\| \le \delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \theta r$$

for all t > 0, all $x \in D$ and some positive constant $\theta < 1$.

Then, the solution x(t) of the perturbed system for all $||x(t_0)|| < \sqrt{c_1/c_2}r$ satisfies

$$||x(t)|| \le k \exp[-\gamma(t-t_0)] ||x(t_0)||, \quad \forall t_0 \le t < t_0 + T$$

 $||x(t)|| \le b, \quad \forall t \ge t_0 + T$

for some finite T, where

$$k = \sqrt{\frac{c_2}{c_1}} \qquad \gamma = \frac{(1-\theta)c_3}{2c_2} \qquad b = \frac{c_4}{c_3}\sqrt{\frac{c_2}{c_1}}\frac{\delta}{\theta}$$

30

Lecture 8: Stability of Perturbed System

Example: Nonvanishing Perturbation

0

0

Example

Consider the second-order system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -4x_1 - 2x_2 + \beta x_2^3 + d(t)$$

where $\beta \geq 0$ is unknown and d(t) is a uniformly bounded disturbance that satisfies $|d(t)| \le \delta$ for all $t \ge 0$. Using the Lyapunov function $V(x) = x^T P x$ show that all solutions of the perturbed system are uniformly bounded.

NB

The results are similar for the case when the origin is Uniformly Asymptotically Stable equilibrium.

Uniformly asymptotically stable origin of $\dot{x} = f(t,x)$

Lemma 9.3

- Let $x^* = 0$ be a uniformly asymptotically stable equilibrium point of the nominal system $\dot{x} = f(t,x)$.
- Let V(t,x) be a Lyapunov function of the nominal system that satisfies inequalities

$$\alpha_{1}(\|x\|) \leq V(t,x) \leq \alpha_{2}(\|x\|)$$

$$\frac{\delta V}{\delta t} + \frac{\delta V}{\delta x} f(t,x) \leq -\alpha_{3}(\|x\|)$$

$$\left\|\frac{\delta V}{\delta x}\right\| \leq \alpha_{4}(\|x\|)$$

in $[0, \infty) \times D$, where $D = \{x \in \mathbb{R}^n | ||x|| < r\}$ and $\alpha_i(\cdot)$ are class \mathcal{K} functions.

Lecture 8: Stability of Perturbed Systems

Nonvanishing Perturbation Uniformly Asymptotically Stable Equilibrium Point

Uniformly asymptotically stable origin of $\dot{x} = f(t,x)$ 0

Lemma 9.3 cont.

• Suppose the perturbation term g(t,x) satisfies

$$\|g(t,x)\| \le \delta < \frac{\theta \alpha_3(\alpha_2^{-1}(\alpha_1(r)))}{\alpha_4(r)}$$

for all $t \ge 0$, all $x \in D$ and some positive constant $\theta < 1$.

Then, for all $||x(t_0)|| < \alpha_2^{-1}(\alpha_1(r))$, the solution x(t) of the perturbed system satisfies

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t_0 \le t < t_0 + T$$

 $||x(t)|| \le \rho(\delta), \quad \forall t \ge t_0 + T$

for some \mathscr{KL} function β and some finite T, where ρ is a class \mathscr{K} function of δ defined by $ho(\delta)=lpha_1^{-1}\left(lpha_2\left(lpha_3^{-1}\left(rac{\deltalpha_4(r)}{ heta}
ight)
ight)$

Uniformly asymptotically stable origin of $\dot{x} = f(t,x)$

NB

Lemma 9.3 is similar to Lemma 9.2 in the special case of exponential stability

In the case of exponential stability, δ is required to satisfy

$$\|g(t,x)\| \le \delta < \frac{c_3}{c_4} \sqrt{\frac{c_1}{c_2}} \theta r$$

It can be seen that the right-hand side of the equation approaches ∞ as $r \to \infty$.

Therefore, if the assumptions hold globally, we can conclude that for all uniformly bounded disturbances, the solution of the perturbed system will be uniformly bounded.

0

0

Uniformly asymptotically stable origin of $\dot{x} = f(t,x)$

In the case of UAS, δ is required to satisfy

$$\|g(t,x)\| \le \delta < \frac{\theta \alpha_3(\alpha_2^{-1}(\alpha_1(r)))}{\alpha_4(r)}$$

We can not say anything about the right-hand side as $r \to \infty$.

Therefore, we can not conclude that uniformly bounded perturbations of a nominal system with a UAS equilibrium at the origin will have bounded solutions irrespective to the size of the perturbation.

Next lecture

0

Next lecture: Passivity

Khalil Chapter 6

Sections 6.1 and 6.2

(Section 6.3 is additional material)

Sections 6.4 - 6.5, page 254

(Pages 254-259, incl. Ex. 6.12, is additional material)