Indian Institute of Technology Roorkee Spring Semester 2023-24 MAI-102 (Mathematics II)

Assignment 1

- (1) Determine whether the following set of vector are vector spaces or not over \mathbb{R} , with respect to given addition '+' and scalar multiplication '.':
 - (a) The set

$$\{(a,b) \in \mathbb{R}^2 : b = 5a + 1\},\$$

with respect to usual addition and multiplication.

- (b) The set $M_n(\mathbb{R})$ of all $n \times n$ real matrices over \mathbb{R} with respect to usual addition and multiplication.
- (c) The set \mathbb{R}^2 over \mathbb{R} with respect to the addition and scalar multiplication defined by

$$\lambda \cdot (a,b) := (\lambda a, 0)$$

for $(a, b) \in \mathbb{R}^2, \lambda \in \mathbb{R}$.

- (d) The set C[a, b] of all real valued continuous functions defined on the interval [a, b], with respect to the following addition and scalar multiplication: (f+g)(t) := f(t) + g(t)and $(\lambda \cdot f)(t) := \lambda f(t)$ for $f, g \in C[a, b], t \in [a, b], \lambda \in \mathbb{R}$.
- (e) The set of all positive real numbers over \mathbb{R} , with respect to the following addition and scalar multiplication: x + y := xy and $\lambda \cdot x := x^{\lambda}$ for $x, y \in \mathbb{R}, \lambda \in \mathbb{R}$.
- (f) The set P_n of all real polynomials of order less than or, equal to n, with respect to usual addition and scalar multiplication.
- (2) Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$.

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

- (3) Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers.
 - (a) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}$
 - (b) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 7a_2 + a_3 = 0\}$
 - (c) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 3a_3 = 1\}$ (d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 5a_1^2 3a_2^2 + 6a_3^2 = 0\}$
- (4) Describe the smallest subspace of the space $M_2(\mathbb{R})$ containing $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Justify your answer.
- (5) Determine whether or not the set $\{f \in C[0,1]: \int_0^1 f(x)dx = 0\}$ is a subspace of C[0,1].
- (6) Show that the subspaces of \mathbb{R}^3 are precisely $\{0\}$, \mathbb{R}^3 , all lines in \mathbb{R}^3 through the origin, and all planes in \mathbb{R}^3 through the origin.
- (7) If U_1, U_2 are two subspaces of a vector space V then $U_1 + U_2$ is the direct sum $U_1 \oplus U_2$ of U_1, U_2 if every element u of $U_1 + U_2$ can be uniquely written as $u = u_1 + u_2$ where $u_1 \in U_1$ and $u_2 \in U_2$. 1

- (a) Prove or give a counterexample: if U_1, U_2, W are subspaces of a vector space V such that $V = U_1 \oplus W = U_2 \oplus W$ then $U_1 = U_2$.
- (b) Let U_e denote the set of real-valued even functions on \mathbb{R} and let U_o denote the set of real-valued odd functions on \mathbb{R} . Show that $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$, where $\mathbb{R}^{\mathbb{R}}$ denotes the space of all functions from \mathbb{R} to \mathbb{R} .
- (8) For each of the following lists of vectors in \mathbb{R}^3 , determine whether the first vector can be expressed as a linear combination of the other two.
 - (a) (-2,0,3),(1,3,0),(2,4,-1)
 - (b) (3,4,1), (1,-2,1), (-2,-1,1)
 - (c) (5,1,-5), (1,-2,-3), (-2,3,-4)
- (9) Determine whether the vectors $v_1 = (1, -1, 4), v_2 = (-2, 1, 3)$ and $v_3 = (4, -3, 5)$ span \mathbb{R}^3 .
- $(10) \text{ Verify that } A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \text{ and } A_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ span } M_2(\mathbb{R}).$
- (11) Show that if

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \text{and} \quad M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

then the span of $\{M_1, M_2, M_3\}$ is the set of all 2×2 symmetric matrices.

(12) Determine whether the following sets are linearly dependent or linearly independent.

(a)
$$\left\{ \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & -8 \\ -9 & 10 \end{pmatrix} \right\}$$
 in $M_{2\times 2}(\mathbb{R})$.
(b) $\left\{ x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1 \right\}$ in $P_3(\mathbb{R})$.

- (13) Determine the subspace of the vector space P_2 spanned by $p_1(x) = 1 + 3x$, $p_2(x) = x + x^2$, and decide whether $\{p_1, p_2\}$ is a spanning set for P_2 .
- (14) Show that the set of solutions to the systems of linear equations

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_1 - 3x_2 + x_3 = 0$$

is a subspace of \mathbb{R}^3 . Find a basis for this subspace.

- (15) Determine whether the given set of vectors in \mathbb{R}^n is linearly dependent or linearly independent:
 - (a) $\{(1,2,3),(1,0,1),(1,-1,5)\}$
 - (b) $\{(1,-1,3,-1), (1,-1,4,2), (1,-1,5,7)\}$
- (16) Let V be a vector space over F. A subset \mathcal{B} of V is called a basis if it is linearly independent and it spans V over \mathbb{F} . Prove that a set $\{v_1, v_2, \ldots, v_n\}$ of vectors in a vector space V is a basis if and only if every $v \in V$ can be written uniquely as $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ where $c_i \in \mathbb{F}$ for all i.
- (17) Determine a basis for the subspace of \mathbb{R}^n spanned by the given set of vectors:

(a)
$$\{(1,3,3),(-3,-9,-9),(1,5,-1),(2,7,4),(1,4,1)\}$$

(b)
$$\{(1,1,-1,2),(2,1,3,-4),(1,2,-6,10)\}$$

- (18) Show that the set vectors $\{f_1, f_2, f_3\}$ is linearly independent where $f_1(x) = 2x 3$, $f_2(x) = x^2 + 1$, $f_3(x) = 2x^2 x$. Complete the set to form a basis for P_3 , the set of all polynomials of degree no more than 3.
- (19) (a) Find a basis and the dimension of the subspace $W = \{(a+b+2c, 2a+2b+4c+d, b+c+d, 3a+3c+d) : a, b, c, d \in \mathbb{R}\}.$
 - (b) Let u, v, and w be distinct vectors of a vector space V. Show that if $\{u, v, w\}$ is a basis of V, then $\{u + v + w, v + w, w\}$ is also a basis of V.
 - (c) Find a basis of the space $U = \{ p \in P_4(\mathbb{R}) : p(6) = 0 \}.$
- (20) Prove that the real vector space of all continuous real-valued functions on the interval [0, 1] is infinite-dimensional.

ANSWERS

- (1) (a) No (b) Yes (c) No (d) Yes (e) Yes
- (2) No
- (3) (a) Yes (b) Yes (c) No (d) No
- $(4) \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}$
- (5) Yes
- (6)
- (7) (a) $V = \mathbb{R}^2, W = \{(x,0) : x \in \mathbb{R}\}, U_1 = \{(0,y) : y \in \mathbb{R}\}, U_2 = \{(x,y) \in \mathbb{R}^2 : x = y\}$ then $V = U_1 \oplus W = U_2 \oplus W$ but $U_1 \neq U_2$.
- (8) (a) Yes (b) No (c) No
- (9) No
- (10) Yes
- (11)
- (12) (a) Linearly dependent (b) Linearly independent
- (13) Not same
- $(14) \{(1,1,1)\}$
- (15) (a) Linearly dependent (b) Linearly independent
- (16)
- (17) (a) $\{(1,3,3),(1,5,-1)\}$ (answers may vary)
 - (b) $\{(1,1,-1,2),(2,1,3,-4)\}$ (answers may vary)
- (18) $\{f_1, f_2, f_3, f_4\}$ where $f_4(x) = x^3$ (answers may vary)
- (19) (a) $\{(1,2,0,3),(1,2,1,0),(0,1,1,1)\}$ and dimension is 3
 - (c) $\{(x-6), x(x-6), x^2(x-6), x^3(x-6)\}.$
- (20)