10 класс

Задача 1. Платформа

На платформе с прямоугольным выступом высотой h лежит небольшое тело массой m. К нему прикреплён один конец невесомой нерастяжимой нити, перекинутой через идеальный блок, установленный на высту-

пе платформы (рис. 9). Второй конец нити закреплён на вертикальной стене так, что участок нити между блоком и стеной горизонтален.

Платформу перемещают от стены с постоянной скоростью v. С какой силой F нужно тянуть платформу в тот момент, когда участок нити над платформой составляет угол α с горизонтом? Сила F горизонтальна и лежит в плоскости рисунка. Коэффициент трения между телом и платформой μ , между платформой и полом трения нет. Считайте, что во время движения груз от платформы, а платформа от пола не отрываются.

Задача 2. Вращающаяся трубка

Замкнутая стеклянная трубка с отводом, погружённым в открытый сверху сосуд со ртутью, в верхней своей части содержит столбик воздуха. Его границы со ртутью находятся на расстоянии R от оси симметрии системы (рис. 10). Определите, с какой угловой скоростью нужно вращать систему вокруг этой оси, чтобы давление воздуха изменилось в n раз. Начальное давление воздуха p_0 , плотность ртути ρ , её уровень в сосуде можно считать неизменным.

Задача 3. Монотонный процесс

Один моль идеального газа переводят из состояния с известным давлением p_1 и известным объёмом V_1 в состояние с давлением $0.75p_1$ и объёмом $V_2 > V_1$. Зависимость p(V) в этом процессе является линейной функцией (рис. 11).

При каких значениях конечного объёма V_2 температура в данном процессе изменяется монотонно?

Задача 4. Разлёт трёх заряженных частиц

Три частицы с одинаковыми зарядами в начальный момент удерживают в вершинах треугольника со сторонами R_1 , R_2 и R_3 (рис. 12). Частицы одновременно отпускают, и они разлетаются так, что отрезки, соединяющие любую пару частиц остаются параллельными исходным. Каково отношение масс этих частиц $m_1:m_2:m_3$? Гравитационным притяжением пренебречь.

Задача 5. Нелинейный элемент

К электрической цепи (рис. 13), составленной из одинаковых резисторов R=1 Ом, нелинейного элемента с неизвестной вольт-амперной характеристикой и идеального амперметра, подключён источник, напряжение которого можно изменять. Зависимость показаний амперметра от напряжения источника задана (рис. 14). Положительное направление тока указано на рис. 13. Восстановите по этим данным вольт-амперную характеристику нелинейного элемента (зависимость силы тока через элемент от напряжения на нём).

