Probabilistic inference for data science 2 Examination 21.5.2021

- 1. Consider simple linear regression with predictor x and response y. The data can be found in the file "xy_reg.csv". In R the model can be fitted and estimates extracted using
 - > # Read data
 > xy_reg <- read.table("xy_reg.csv", sep=";", header=T)
 > # Fit the model on observed data xy_reg
 > m <- lm(y~x, data=xy_reg)
 > # Extract estimator of the beta-coefficients
 > coef(m)

You find variance-covariance matrix of the estimators of β -coefficients with command

> vcov(m)

and based on this you can get the correlation matrix of estimator of β 's with commands

```
> s.dev <- as.matrix(sqrt(1/diag(vcov(m))))
> vcov(m)*s.dev %*% t(s.dev)
```

This is how you get the correlation of estimators $\hat{\beta}_0$ (intercept) and $\hat{\beta}_1$ (slope) based on the model m fitted on the data.

Using bootstrap and 5000 resamples evaluate the correlation of $\hat{\beta}_0$ and $\hat{\beta}_1$. Result should of course be similar to the correlation evaluated based on the model m.

- 2. Let $X_i = X(u_i)$ be random variable X at spatial locations u_1 , u_2 and u_3 . Let X_i be normally distributed with $\mathbb{E}(X_i) = \mu$ and $Var(X_i) = 8$ for i = 1, 2, 3 (i.e. μ is unknown). The corration between X_i, X_j is defined as $Cor(X_i, X_j) = exp^{-||u_i-u_j||/2}$, where $||u_i-u_j||$ is distance between locations u_i and u_j . Consider locations $u_1 = (1,0), u_2 = (0,0)$ and $u_3 = (0,3)$.
 - (a) Present the distribution of

$$X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

(b) Present the likelihood in the case that we have observed

$$X = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

(c) Find the maximum likelihood estimate of μ when assuming that

$$X = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

has been observed. A numerical approximation is sufficient.

- 3. Let X be i.i.d. random sample of size n=50 from distribution with expectation $\mu=10$ and variance $\sigma^2=20$. Consider the probability $\mathbb{P}(-1.5 \leq \bar{X}_n \mu \leq 1.5)$ i.e. the probability that the sample mean \bar{X}_n will not differ from the expectation μ more than 1.5 units.
 - (a) Use central limit theorem to approximate probability $\mathbb{P}(-1.5 \leq \bar{X}_n \mu \leq 1.5)$.
 - (b) Use Chebyshev's inequality to approximate the lower bound for the same probability and compare the results.