

A Variance Deconvolution Approach to Uncertainty Quantification for Monte Carlo Radiation Transport – Selected Results

Kayla Clements^a, Gianluca Geraci^b, Aaron Olson^b

Center for Exascale Monte-Carlo Neutron Transport (CEMeNT), ^aOregon State University, ^bSandia National Lab

Objective

Compare new variance deconvolution method for Monte Carlo radiation transport solvers, EVADE, with existing EVADE_{old,[1]} method.

Theory

- Deconvolve parametric uncertainty ξ from MC transport solver uncertainty η in code response
- Law of total variance:

$$\mathbb{V}ar_{\xi}[\tilde{T}(\xi,\eta)] = \mathbb{V}ar_{\xi}\left[\mathbb{E}_{\eta}[\tilde{T}(\xi,\eta)]\right] + \mathbb{E}_{\xi}\left[\mathbb{V}ar_{\eta}[\tilde{T}(\xi,\eta)]\right]$$

Simplified_[2]:

$$\mathbb{V}ar_{\xi}[T] = \mathbb{V}ar_{\xi}[\tilde{T}(\xi,\eta)] - \frac{1}{N_{\eta}}\mathbb{E}_{\xi}[\sigma_{\eta}^{2}]$$

1D Attenuation Problem

$$\mu \frac{\partial \psi(x,\mu)}{\partial x} + \Sigma_t(x)\psi(x,\mu) = 0$$

	m = 1	m = 2	m = 3
x_R	2.0	5.0	6.0
$\bar{\Sigma}_{t,m}$	0.90	0.15	0.60
$\Sigma_{t,m}^{\Delta}$	0.70	0.12	0.50

Table 1: 1D attenuation problem parameters

Algorithm Comparison

EVADE

EVADE_{old}

Differences

- Same number of histories to calculate all variances vs. one history for total variance, two histories for MC solver variance
- EVADE_{old}: MC variance averaged over one history used for total variance

Conclusion

New method has lower variance in estimate of parametric variance.

Results

- EVADE has tighter distribution around analytic solution than EVADE_{old}
- EVADE has lower variance in estimates of $\mathbb{V}ar_{\xi}[T]$ over 25,000 repetitions

References

- A. J. Olson, "Calculation of parametric variance using variance deconvolution," Transactions of ANS, vol. 120, 2019.
- 2. A. J. Olson and G. Geraci, "Impact of sampling strategies in the polynomial chaos surrogate construction for Monte Carlo transport applications," 2021.

Acknowledgements

This work was supported by the Center for Exascale Monte-Carlo Neutron Transport (CEMeNT) a PSAAP-III project funded by the Department of Energy, grant number DE-NA003967.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.