Lecture 1: Introduction and Peak Finding

Lecture Overview

- Administrivia
- Course Overview
- "Peak finding" problem 1D and 2D versions

Course Overview

This course covers:

- Efficient procedures for solving problems on large inputs (Ex: U.S. Highway Map, Human Genome)
- Scalability
- Classic data structures and elementary algorithms (CLRS text)
- Real implementations in Python
- Fun problem sets!

The course is divided into 8 modules — each of which has a motivating problem and problem set(s) (except for the last module). Tentative module topics and motivating problems are as described below:

- 1. Algorithmic Thinking: Peak Finding
- 2. Sorting & Trees: Event Simulation
- 3. Hashing: Genome Comparison
- 4. Numerics: RSA Encryption
- 5. Graphs: Rubik's Cube
- 6. Shortest Paths: Caltech \rightarrow MIT
- 7. Dynamic Programming: Image Compression
- 8. Advanced Topics

Peak Finder

One-dimensional Version

Position 2 is a peak if and only if $b \ge a$ and $b \ge c$. Position 9 is a peak if $i \ge h$.

Figure 1: a-i are numbers

Problem: Find a peak if it exists (Does it always exist?)

Straightforward Algorithm

Start from left

Figure 2: Look at n/2 elements on average, could look at n elements in the worst case

What if we start in the middle? For the configuration below, we would look at n/2 elements. Would we have to ever look at more than n/2 elements if we start in the middle, and choose a direction based on which neighboring element is larger than the middle element?

Can we do better?

code[]

Figure 3: Divide & Conquer

- If a[n/2] < a[n/2-1] then only look at left half $1 \dots n/2 - 1$ to look for peak
- Else if a[n/2] < a[n/2+1] then only look at right half $n/2+1 \dots n$ to look for peak
- Else n/2 position is a peak: WHY?

$$a[n/2] \geq a[n/2-1]$$

$$a[n/2] \geq a[n/2+1]$$

What is the complexity?

$$T(n) = T(n/2) + \underbrace{\Theta(1)}_{\text{to compare a}[n/2] \text{ to neighbors}} = \Theta(1) + \ldots + \Theta(1) \ (\log_2(n) \ times) = \Theta(\log_2(n))$$

In order to sum up the $\Theta(i)$'s as we do here, we need to find a constant that works for all. If $n = 1000000, \Theta(n)$ also needs 13 sec in python. If also is $\Theta(\log n)$ we only need 0.001 sec. Argue that the algorithm is correct.

Two-dimensional Version

Figure 4: Greedy Ascent Algorithm: $\Theta(nm)$ complexity, $\Theta(n^2)$ algorithm if m=n a is a 2D-peak iff $a\geq b, a\geq d, a\geq c, a\geq e$

Figure 5: Circled value is peak.

Attempt # 1: Extend 1D Divide and Conquer to 2D

- Pick middle column j = m/2.
- Find a 1D-peak at i, j.
- Use (i, j) as a start point on row i to find 1D-peak on row i.

Attempt #1 fails

Problem: 2D-peak may not exist on row i

		10		
14	13	12		
15	9	11		
16	17	19	20	>

End up with 14 which is not a 2D-peak.

Attempt # 2

- Pick middle column j = m/2
- Find global maximum on column j at (i, j)
- Compare (i, j 1), (i, j), (i, j + 1)
- Pick left columns of (i, j 1) > (i, j)
- Similarly for right
- (i, j) is a 2D-peak if neither condition holds \leftarrow WHY?
- Solve the new problem with half the number of columns.
- When you have a single column, find global maximum and you're done.

Example of Attempt #2

Complexity of Attempt #2

If T(n,m) denotes work required to solve problem with n rows and m columns

$$T(n,m) = T(n,m/2) + \Theta(n)$$
 (to find global maximum on a column — (n rows))
 $T(n,m) = \underbrace{\Theta(n) + \ldots + \Theta(n)}_{\log m}$
 $= \Theta(n \log m) = \Theta(n \log n)$ if m = n

Question: What if we replaced global maximum with 1D-peak in Attempt #2? Would that work?

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.