

- ① (x,d) s.t. $\begin{cases} d(x,y) = d(y,x). \\ d(x,y) = 0 \Leftarrow 7 \times = y \\ d(x,y) \leq d(x,z) + d(z,y) \\ d(x,y) > 0. \end{cases}$
- ② open, close sets; limit points; neighborhood; open cover; compact sets connected set (only clopen are $U&\phi$); cauchy sequence; complete space; dense subsets;
- 3) Every bounded, infinite subset of IR" has a limit point.
- (4) (1) Compactness \Rightarrow Bounded and closed.

 In \mathbb{R}^n , the inverse is also true.

 (2) { K_n } compact & $K_{n+1} \subseteq K_n \Rightarrow \bigcap K_n$ is nonempty.
- (5) (1) Continuous functions map compact sets to compact sets.
 - 12) It also preserves connectedness.
 - (3) Continuous function on compact set is uniformly continuous, i.e., \$\frac{1}{2} \delta \text{Corr} \delta \text{V} \text{V} \text{V} \text{S} \delta \delta \delta \delta \text{L}(x), f(y)) < \text{E}.
- 6 $f: X \to X & (1) \times is complete & f is strict contraction or (2) X is compact & f is contraction <math>\implies \exists x \text{ s.t. } f(x) = X.$

- The complex conjugate f is in F, then F is a self-adjoint algebra.

 Restricting to only real-valued f, and $c \in \mathbb{R}$, then F is a real algebra.

 Property F is a real algebra.

 The complex conjugate f is in F, then F is a real algebra.

 Restricting to only real-valued f, and f is a real algebra.

 The complex conjugate f is in f in f is a real algebra.

 The complex conjugate f is in f in f in f in f in f is a real algebra.

 The complex conjugate f is in f in
- Weierstrass: Let C(X) be continuous, complex-valued functions on X. Let X = [a,b], then the set of polynomials is dense in C(X).
 - Stone-Weierstrass: If Y separates points in X and does not vanish anywhere, then if Y is self-adjoint algebra, it must be dense in C(X); 12) if Y is real algebra, it is dense in T(X).
- (9) convergence; cauchy sequence; monotonic sequence
- (b) (1) If x is compact, then $\{x_n\}$ admits $\{x_n\}$ that is convergent. (Consider (3))
 (2) Bounded seq in \mathbb{R} or \mathbb{C} admits convergent subseq.
 - (3) Bounded, monotonic seq in IR converges.
 - (4) Convergent \Rightarrow cauchy. In R/C, cauchy \Rightarrow convergent.

- 11) For a sequence $\{a_n\}$, the series is $S_n = \sum_{k=1}^{n} a_k$.
- (D) (1) Integral test: If $a_n = f(n)$ and f is decreasing on $x \in [0, \infty)$, then $S_n = \sum_{k=0}^{n} f(k)$ converges, i.e., $S = \sum_{k=0}^{\infty} f(k)$ exists iff $\int_{0}^{\infty} f(x) dx$ exists.
 - (2) Ratio test: consider $\lfloor \frac{a_{n+1}}{a_n} \rfloor$. If $L = \lim_{n \to \infty} \lfloor \frac{a_{n+1}}{a_n} \rfloor$ exists and L > 1, then S_n diverges, if L < 1, then S_n converges. If $L = \lim_{n \to \infty} \lfloor \frac{a_{n+1}}{a_n} \rfloor$ exists and R < 1, then S_n converges absolutely; if $L = \lim_{n \to \infty} \inf \lfloor \frac{a_{n+1}}{a_n} \rfloor > 1$, then S_n diverges; if $\lfloor \frac{a_{n+1}}{a_n} \rfloor > 1$ for all $n \ge N$, then S_n diverges.
 - 13) Root test: let $\alpha = \frac{1}{100} \ln \ln n$. If $\alpha < 1$, then so converges; if $\alpha > 1$, then so diverges.
 - (4) Leibnitz rule: Let {an} be positive & decreasing monotonically to 0. Then $\sum_{n=0}^{\infty} (-1)^n$ an converges to s and $(s-s_n) \leq |a_{n+1}|$.
 - (5) Comparison test: if lanl son for big enough n, then

 O if Ian diverges, then Ibn diverges

 E if Ibn converges, then Ian converges.
- (3) $\{f_n\}$ converges to f_s pointwise if $\forall x$, $f_n(x) \rightarrow f(x)$ uniformly if $\forall \xi \neq 0$, $\exists N \text{ s.t. if } n > N \text{ then } |f_n(x) - f(x)| < \xi \text{ for any } x$.
- Weierstrass M-test: if $|f_n(x)| \leq M_n$ for all x, in all n, then if $\sum M_n$ converges, then $\sum f_n$ converges absolutely and uniformly.

(equicontinuous: For {fn}, for any £70. = £70 s.t. if dix,y><8 then fn(x) = -fn(y) < E for any n) Arzela-Ascoli: Let (X,d) be compact. Suppose {fn} is equicontinuous & pointwise bounded, then {fn} is uniformly bounded and admits uniformly convergent subsequence. I an short, if Etny is uniformly bounded & (equicontinuous, then I {fn } uniformly convergent) (uniformly bounded: IM s.t. |fax) | SM &n,x) Ly cor. 1: if Ifn} are continuous and uniformly converging to f, then f is continuous. Ly cor. 2: if {fn} are integrable, and uniformly convergenting to f, then (domain [a,b]) $\lim_{n\to\infty}\int_{a}^{b}f_{n}(x)dx = \int_{a}^{b}f_{1}(x)dx$ Lo cor. 3: if {fn} are differentiable and at xo, {fn (xo)} is convergent, then if {fn'} are uniformly convergent) => {fn'y uniformly converges to f and {fing to f'. (fn on [a,b])

16) Let f be periodic with period L on R. Then, the Fourier coefficients of f are $\hat{f}(n) = f_n = \frac{1}{2} \int_{x=-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) e^{-inx \cdot (\frac{n\pi}{2})} dx$

and $f \sim \sum_{n=-\infty}^{\infty} f_n \cdot e^{in \times \cdot (\frac{2\pi}{L})} da$ not equal. necessarily

- (17) (1) Fourier coefficients are unique. (All $0 \rightarrow f \equiv 0$; All 0 except $\hat{f}(0) \rightarrow f \equiv C$)
 - 12) If f is integrable, then $f_n \to 0$ as $|n| \to \infty$. (integrable in L', that is $\int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) e^{inx(\frac{2L}{2})} dx \to 0.$ (i.e., fif the integrable in L')
 - 13) Parseval: If f,g are square integrable, complex-valued, on IR, with period 211,

and
$$f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(n)e^{inx}$$
, $g(x) = \sum_{n=-\infty}^{\infty} \hat{g}(n)e^{inx}$, then $\sum_{n=-\infty}^{\infty} \frac{1}{n} \hat{f}(n)\hat{g}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)g(x) dx$.

If $f=g=\int_{n=-\infty}^{\infty} |\hat{f}(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$.

- (4) Let f be integrable & real-valued, then $\hat{f}(-n) = \overline{\hat{f}(n)}$ and if $\hat{f} \in C^1$, $\hat{f}'(n) = in\hat{f}(n)$.
- (5) Dirichlet Jordan: If f is periodic (w/211) with bounded variation, then its Fouries series converges to $\frac{1}{2}[f(x^+) + f(x^-)]$ on each x.

If f is also continuous on some [a,b] then the convergence is uniform.

on [a,b].