人工智能基础 重点知识点

人工智能的概念

用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。

人工智能研究的基本内容

- 1. 知识表示
- 2. 机器感知
- 3. 机器思维
- 4. 机器学习
- 5. 机器行为

人工智能三大学派及其代表工作

1. 符号主义学派: 启发式搜索、知识表示和知识推理

2. 联结主义学派:神经网络

3. 行为主义学派:智能体 (Agent) 、多智能体系统

状态空间和启发式搜索的概念

状态空间: 利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组:

 (S, O, S_0, G)

S: 状态集合。

O: 操作算子的集合。

 S_0 : 包含问题的初始状态,是S的非空子集。

G: 若干具体状态或满足某些性质的路径信息描述。

启发式搜索:考虑特定问题领域可应用的知识,动态地确定调用操作算子的步骤,优先选择较适合的操作算子,尽量减少不必要的搜索,以求尽快地到达结束状态。

A算法、A*算法的求解过程

见习题一

A算法满足A*算法的条件

一阶谓词逻辑 (三段论)

见习题二

产生式表示法

基本形式: IF P THEN Q

见习题三

知识图谱

概念:知识图谱,又称科学知识图谱,用各种不同的图形等可视化技术描述知识资源及其载体,挖掘、

分析、构建、绘制和显示知识及它们之间的相互联系。

三要素:实体、关系、属性 **应用**:搜索引擎、维基百科

专家系统的概念

是一种智能的计算机程序,它运用知识和推理来解决只有专家才能解决的复杂问题。

专家系统产生的标志性事件

第5届IJCAI (1977年)上,费根鲍姆系统性地提出了专家系统的概念。

机器学习、知识发现和数据挖掘的概念

机器学习: 使计算机能模拟人的学习行为, 自动地通过学习来获取知识和技能, 不断改善性能, 实现自

我完善。

知识发现:从数据库中发现知识(KDD)。

数据挖掘: 从数据库中挖掘知识 (DM) 。

BP神经网络前向计算/后向计算

见习题四

卷积的计算 (不翻转)

见习题五

卷积神经网络解决了经典人工神经网络中的什么问题

- 1. 权重矩阵的参数非常多
- 2. 全连接前馈网络很难提取局部不变性特征

卷积神经网络的特性

- 1. 局部连接
- 2. 权重共享
- 3. 空间或时间上的次采样 (池化)
- 4. 多卷积核

遗传算法的概念

一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,非常适用于处理传统搜索方法难以解决的复杂和非线性优化问题。

遗传算法的一般步骤

见习题六

遗传算法轮盘赌的选择算法

见习题七

智能体的概念

智能体(Agent)可以看做是一个程序或者一个实体,它嵌入在环境中,通过传感器(sensors)感知环境,通过效应器(effectors)自治地作用于环境并满足设计要求。

多智能体系统的概念

一个系统中包含多个智能体,这些智能体不仅具备自身的问题求解能力和行为目标,而且能够相互协 作,达到共同的整体目标。

反应式Agent的设计

见习题八

多智能体系统的四要素

- 1. 通信
- 2. 协调
- 3. 协作
- 4. 协商

A*搜索算法及其特性分析

- □ 如果某一问题有解,那么利用*A**搜索算法对该问题 进行搜索则一定能搜索到解,并且一定能搜索到最 优的解而结束。
- □ 满足条件 $h(n) <= h^*(n)$, $h^*(n)$ 为状态n到目的状态的最优路径代价。
- □ 上例中的八数码A搜索树中满足上述条件,因此也 是A*搜索树,所得的解路为最优解路。

4

习题二、谓词公式

■ 所有的人都是会死的, $\forall x (Human(x) \rightarrow Die(x))$

■ 因为诸葛亮是人, Human (Zhugeliang)

■ 所以诸葛亮是会死的。 Die (Zhugeliang)

• $\{1\}$ $\forall x(Human(x) \rightarrow Die(x))$ **P**规则

■ {2} Human (Zhugeliang) P规则

■ {1,2} Die (Zhugeliang) T规则

习题三、产生式系统——动物识别系统

■ 例如:动物识别系统——识别虎、金钱豹、斑马、长颈 鹿、鸵鸟、企鹅、信天翁等七种动物的产生式系统。

B

6

□ 规则库:

- r₁: IF 该动物有毛发 THEN 该动物是哺乳动物
- r_2 : IF 该动物有奶 THEN 该动物是哺乳动物
- r₃: IF 该动物有羽毛 THEN 该动物是鸟
- r_4 : IF 该动物会飞 AND 会下蛋 THEN 该动物是鸟
- rs: IF 该动物吃肉 THEN 该动物是食肉动物
- r₆: IF 该动物有犬齿 AND 有爪 AND 眼盯前方

THEN 该动物是食肉动物

 r_7 : IF 该动物是哺乳动物 AND 有蹄

THEN 该动物是有蹄类动物

rs: IF 该动物是哺乳动物 AND 是反刍动物

THEN 该动物是有蹄类动物

1

- r₉: IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有暗斑点 THEN 该动物是金钱豹
- r₁₀: IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是虎
- r₁₁: IF 该动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿
- r₁₂: IF 该动物有蹄类动物 AND 身上有黑色条纹 THEN 该动物是斑马
- r₁₃: IF 该动物是鸟 AND 有长脖子 AND 有长腿 AND 不会飞 AND 有黑白二色 THEN 该动物是鸵鸟
- r14:IF 该动物是鸟 AND 会游泳 AND 不会飞AND 有黑白二色THEN 该动物是企鹅
- r₁₅: IF 该动物是鸟 AND 善飞 THEN 该动物是信天翁

19

8

- □ 设已知初始事实存放在综合数据库中: 该动物身上有:暗斑点,长脖子,长腿,奶,蹄
- □ 推理机构的工作过程:
 - (1) 从规则库中取出 r_1 ,检查其前提是否可与综合数据库中的已知事实匹配。匹配失败则 r_1 不能被用于推理。然后取 r_2 进行同样的工作。匹配成功则 r_2 被执行。
- 综合数据库:

该动物身上有:暗斑点,长脖子,长腿,奶,蹄,哺乳动物

■ 推理机构的工作过程:

- (2) 分别用 r_3 , r_4 , r_5 , r_6 综合数据库中的已知事实进行匹配,均不成功。 r_7 匹配成功,执行 r_7 。
- 综合数据库:

该动物身上有:暗斑点,长脖子,长腿,奶,蹄,哺乳动物,有蹄类动物

(3) r_{11} 匹配成功,并推出"该动物是长颈鹿"。

习题四、BP神经网络1

验证下面神经网络描述了与逻辑关系,如图所示,其中

$$y = \begin{cases} 1, & x > \theta \\ 0, & x \le \theta \end{cases}, \quad \theta = 0.5$$

XI	(X2)	Y
0	0	0
0		0
1	0	0
1	1	1

$$y_1=0.2*0+0.4*0=0<0.5, y_1=0$$

 $y_2=0.2*0+0.4*1=0.4<0.5, y_2=0$
 $y_3=0.2*1+0.4*0=0.2<0.5, y_3=0$
 $y_4=0.2*1+0.4*1=0.6>0.5, y_4=1$

BP神经网络2

给定样本X=[1,0],标签为Y=1,选学习率 ε =1,BP神经网络的初始权值矩阵选为 W_1 = $\begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix}$, W_2 = $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 隐层和输出层的神经元的输入与输出的非线性函数取为 f(x)= $\begin{Bmatrix} x, & x \geq 1 \\ 1, & x < 1 \end{Bmatrix}$,试用BP算法计算权值的调整过程。

• 正向训练

$$u_1^2 = w_{11}^1 x_1 + w_{12}^1 x_2 = 0 \times 1 + 2 \times 0 = 0, \quad y_1^2 = f(u_1^2) = 1$$

$$u_2^2 = w_{21}^1 x_1 + w_{22}^1 x_2 = 0 \times 1 + 1 \times 0 = 0, \quad y_2^2 = f(u_2^2) = 1$$

$$u_1^3 = w_{11}^2 y_1^2 + w_{12}^2 y_2^2 = (-1) \times 1 + (-3 \times 1), \quad y_1^3 = f(u_1^3) = 1$$

$$J = \frac{1}{2} (y_1^3 - y)^2 = 0$$

D

回 习题六、设计遗传算法求解下面一个Rastrigin函数的最小值。 $f(x_1,x_2) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2) \\ -5 \le x_i \le 5 \qquad i = 1,2$

习题七、选择操作

- 1. 个体选择概率分配方法
- (1) 适应度比例方法(fitness proportional model) 或蒙特卡罗法 (Monte Carlo)
- 各个个体被选择的概率和其适应度值成比例。
- 个体 *i* 被选择的概率为:

$$p_{si} = \frac{f_i}{\sum_{i=1}^{M} f_i}$$

20

2. 选择个体方法

(1) 转盘赌选择

- > 按个体的选择概率产生一个轮 盘,轮盘每个区的角度与个体的 选择概率成比例。
- >产生一个随机数,它落入转盘 的哪个区域就选择相应的个体交 叉。

2. 选择个体方法

(1) 转盘赌选择

个体	1	2	3	4	5	6	7	8	9	10	11
适应度	2.0	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.2	ابور
选择概率 累积概率	0.18	016	0.15	0.13	0.11	0.09	0.07	0.06	0.03	0.02	0.0
累积概率	0.18	(0.34)	0.49	0.62	0.73	0.82	0.89	0.95	0.98	1.00	1.00

第1轮产生一个随机数: 0.81

第2轮产生一个随机数: 0.32

22

习题八、反应式Agent的设计

□ 问题

- 火星探测器在火星上 收集岩石样本并把样 本运回基地
- ■岩石的位置未知
- 探测器可以接受到基 地发出的无线电信号

□ 解决方案

- **1.** 如果发现障碍物,则 改变方向
- 2. 如果处于基地并且携带着样本,那么放下样本
- **3.** 如果携带着样本且不在基地,则往无线电信号增强的方向移动
- **4.** 如果检测到样本,则 采集样本
- 5. 随机移动 (if true)