Diagramme de Bode★

C2-02

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante :

$$F_2(p) = \frac{10}{(1+10p)(10+p)}$$
. Tracer asymptotique

$$F_2(p) = \frac{1}{(1+10p)\left(1+\frac{p}{10}\right)}$$

	$\omega \to 0$ $\omega_1 = \frac{1}{1}$		$\frac{1}{0}$ rad/s	$\omega_2 = 1$	0 rad/s	$\omega o \infty$
$H_1(p) = \frac{1}{1 + 10p}$	0 dB/décade		−20 dB/décade		−20 dB/décade	
	0°		−90°		−90°	
$H_2(p) = \frac{1}{1 + \frac{p}{10}}$	0 dB/décade		0 dB/décade		−20 dB/décade	
	0°		0°		−90°	
$F_2(p)$	0 dB/décade		−20 dB/décade		−40 dB/décade	
	0°		−90°		−180°	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 1 = 0$ dB.

Question 2 Le système est sollicité par une entrée sinusoïdale de période 6 s et d'amplitude 10. Quel est le signal de sortie? Pour une période de 60 s, la pulsation est de $\frac{2\pi}{T}$ soit $\omega=0.1\,\mathrm{rad\,s^{-1}}$. Pour cette pulsation le gain est de $-5\,\mathrm{dB}$ et le déphasage de $-\frac{\pi}{4}$.

On a donc $20 \log(S/E) = -5$ soit $S = E \times 10^{-5/20} = 10 \times 0$, 56 = 5, 6. Le signal d'entrée est donc $e(t) = 10 \sin(0, 1t)$ et le signal de sortie s(t) = 5, $6 \sin\left(0, 1t - \frac{\pi}{4}\right)$.

