# **ECOLES PRIVEES ERRAJA**



## مدارس الرجاء الحرة

| 7/11/2013 |
|-----------|
| •         |

Présentation et rédaction : 2 points

#### **EXERCICE 1 (6 POINTS)**

Pour chacune des propositions suivantes, une seule des réponses proposées est correcte.

|   | Proposition                                                                                                               | A /                                | В                                           | С                                                     | D                                 |
|---|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------------------------|-----------------------------------|
| 1 | Si $Z = \frac{2+i}{2-i}$ , alors                                                                                          | $\overline{Z} = \frac{1}{Z}$       | $Z = \overline{Z}$                          | Zest un imaginaire pur.                               | Z = 1 - 2i                        |
| 2 | Si $Z = 2\sqrt{3} + 2i$ , alors                                                                                           | $\arg Z^2 = -\frac{\pi}{3}$        | $\arg \overline{Z} = \frac{\pi}{6}$         | Z³ est un imaginaire pur.                             | $ \mathbf{Z}  = 2\sqrt{2}$        |
| 3 | Si $Z = \frac{-2}{3}(1-i)e^{i\frac{\pi}{6}}$ , alors                                                                      | $ Z  = \frac{-2}{3}$               | $ \mathbf{Z}  = \frac{2\sqrt{2}}{3}$        | $\left \mathbf{Z}\right  = \frac{2}{3}(1-\mathrm{i})$ | $ \mathbf{Z}  = \frac{2}{3}$      |
| 4 | $Si \overline{z} +  z  = 6 + 2i$ , alors:                                                                                 | $z = \frac{1}{3} - 5i$             | $z = -\frac{8}{3} + 2i$                     | $z = \frac{8}{3} + 2i$                                | $z = \frac{8}{3} - 2i$            |
| 5 | Si $\frac{z_A - z_B}{z_A - z_C} = \frac{\sqrt{3}}{2}i$ , alors le triangle<br>ABC est:                                    | isocèle et non<br>rectangle        | Equilatéral                                 | rectangle et isocèle                                  | rectangle et<br>non isocèle       |
| 6 | L'ensemble des points $M$ d'affixe $z$ tels que $\left  \frac{z-1-2i}{1+2i} \right  = \sqrt{5}$ est :                     | un cercle de<br>rayon 5            | la médiatrice<br>d'un segment               | une droite privée<br>d'un point                       | un cercle privé<br>de deux points |
| 7 | Si $Z = \frac{1}{3}(1+i)e^{i\frac{\pi}{3}}$ , alors:                                                                      | $\arg Z = \frac{\pi}{3}$           | $\arg Z = \frac{1}{3} \times \frac{\pi}{3}$ | $\arg Z = \frac{5\pi}{12}$                            | $\arg Z = \frac{7\pi}{12}$        |
| 8 | Soit $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}^*$ . La forme algébrique du nombre $\left(e^{i\theta}\right)^n$ est : | $\cos(\theta^n) + i\sin(\theta^n)$ | $\cos(n\theta) + i\sin(n\theta)$            | $\mathrm{e}^{\mathrm{i} \mathrm{n} \theta}$           | $n\cos\theta + in\sin\theta$      |

Recopie sur la feuille de réponse et complète le tableau suivant en choisissant la bonne réponse. <u>Justifier votre réponse.</u>

| Question n° | 1 / | $\searrow 2$ | 3 | 4 | 5 | 6 |
|-------------|-----|--------------|---|---|---|---|
| Réponse     |     |              |   |   |   |   |

### **EXERCICE 2 (6 POINTS)**

- 1) Résoudre dans l'ensemble des nombres complexes  $\mathbb{C}$  l'équation (E) :  $z^2 2z + 4 = 0$ .
- 2) Résoudre dans l'ensemble des nombres complexes  $\mathbb C$  l'équation (E') :  $z^2 2z\sqrt{2} + 4 = 0$ .
- 3.a) Excripe sous forme trigonométrique chacun des nombres  $u = 1 i\sqrt{3}$ ,  $v = \sqrt{2} + i\sqrt{2}$  et  $w = \frac{\sqrt{2} + i\sqrt{2}}{1 i\sqrt{3}}$ .
- b) Ecrire w sous forme algébrique.
- c) En déduire les valeurs exactes de  $\cos \frac{7\pi}{12}$  et  $\cos \frac{7\pi}{12}$ .
- 4) Justifier les affirmations suivantes :
- a) Le nombre (w)<sup>12</sup> est un réel négatif.
- b) Le nombre (v)<sup>2014</sup> est imaginaire pur.

| ED EDDAIA   | 7D | DEVOIR DE MATHS | DUREE 3H | 17/11/2013 | Homma Ould Hamoud |
|-------------|----|-----------------|----------|------------|-------------------|
| E.I. EMMAJA | /υ | DEVOIR DE MAINS | DUKEE 3H | 1//11/2013 | Horma Ould Hamoud |

## **EXERCICE 3 (6 POINTS)**

Le plan complexe est rapporté à un repère orthonormé  $(O; \vec{u}, \vec{v})$ .

Pour tout nombre complexe z tel que  $z \ne 2+i$  on pose :  $f(z) = \frac{z-3+i}{z-2-i}$ .

- 1) Calculer le nombre  $\alpha = f(1+i)$  puis l'écrire sous formes algébrique et trigonométrique.
- 2) Résoudre l'équation  $f(z) = \frac{3-3i}{2-i}$
- 3) On considère les deux points A et B d'affixes respectives  $z_A = 3-i$ ,  $z_B = 2+i$  et  $z_C = 2-i$ .
- a) Placer les points A, B et C dans le repère.
- b) Calculer le nombre  $\beta$  =  $f(z_c)$  . En déduire la nature du triangle ABC.
- c) Déterminer et représenter dans le même repere les ensembles  $\Gamma_k$  des points M du plan d'affixe z dans chacun des cas suivants :
  - a)  $\Gamma_1$  tel que |f(z)| = 1.
  - b)  $\Gamma_2$  tel que f(z) soit imaginaire pur.
  - c)  $\Gamma_3$  tel que f(z) soit réel.
- d)  $\Gamma_4$  tel que  $|f(z)-1|=\sqrt{5}$ .
- 4) Déterminer l'affixe du point D tel que le quadrilatère ABCD soit un parallélogramme. Placer D.

**Bonus: DM 3points** 

Fin.

