REPUBLIQUE TUNISIENNE

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2012

MINISTERE DE L'EDUCATION

Epreuve : Algorithmique et Programmation

Durée: 3h

Coefficient: 2,25

SECTION: Sciences de l'Informatique

SESSION PRINCIPALE

Exercice 1 (3,5 points)

Soient les tableaux de déclarations des types et des objets suivants :

Types

Jours = (Lundi, Mardi, Mercredi, Jeudi, Vendredi, Samedi, Dimanche)

Enreg = Enregistrement

Jrs: Jours

CodeArt : Chaîne [10] QteVendue : Réel

Fin Enreg

Article = Fichier de Enreg Fiche = Fichier d'Entier

Vect = Tableau [Lundi .. Dimanche] de Enreg

Objet	Nature/Type Rôle					
Va	Vect	Vecteur d'articles vendus				
Fa	Article	Fichier d'articles vendus				
Fe	Fiche	Fichier d'entiers				
Avend	Enreg	Les données d'un article vendu				
Test	Booléen	Variable booléenne				
R	Réel	Variable réelle				
Cj	Jours	Compteur				
Ft	Texte	Fichier contenant les noms des articles				

Recopier le tableau suivant sur votre feuille de copie puis le compléter en mettant dans la 2^{ème} colonne la lettre "V" si l'instruction donnée dans la 1^{ère} colonne est valide ou par "F" dans le cas contraire, tout en justifiant la réponse si l'instruction est non valide.

Instruction	Validité de l'instruction	Justification (Si Faux)
Pour Cj de Mardi à Samedi Faire Va[Cj].Jrs ← Cj Fin Pour		
Ecrire (Fa, Avend.CodeArt)		
Lire (Avend.Jrs)		
Test ← Fin_Fichier(Ft) = Faux		
Ecrire (Fe, R)		
Test ← Va[Lundi] > Va[Jeudi]		

Exercice 2 (3,5 points)

Soient l'algorithme et le tableau de déclaration de nouveaux types suivants :

0) Def Proc Inconnue (N: Entier; Var M: Mat)

1) Pour L de 1 à N Faire

Pour C de 1 à L Faire $M[L, C] \leftarrow 1$ Pour P de C-1 à 1 Faire (pas -1) $M[L, P] \leftarrow M[L, P] + M[L, P-1]$

Fin Pour

Fin Pour

Fin Pour

2) Fin Inconnue

Tableau de déclaration des nouveaux types

Tableau de declaration des nouveaux types								
Туре								
Mat = Tableau de 10 x 10 d'entiers								

Questions:

- a) Dresser le tableau de déclaration des objets locaux de la procédure Inconnue.
- b) Quel est le résultat retourné par cette procédure pour N = 4?
- c) En déduire le rôle de cette procédure.

Exercice 3 (4 points)

Soit la formule suivante qui permet de déterminer une valeur approchée de Cos(x):

$$Cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Ecrire un algorithme d'un programme intitulé Calcul Cos qui permet de :

- saisir un réel x appartenant à l'intervalle [-1, 1],
- calculer et afficher une valeur approchée de Cos(x) en utilisant la formule donnée ci-dessus. Le calcul s'arrête lorsque la différence entre deux termes consécutifs devient inférieure à 10^{-4} .

Problème (9 points)

Louis Braille, est l'inventeur du système d'écriture tactile à points saillants, à l'usage des personnes aveugles ou fortement malvoyantes.

En Braille standard:

- Un caractère est représenté par six points numérotés de 1 à 6 et disposés comme le montre la **Figure 1**.
- Un point peut être saillant (en relief) ou non, comme le montre la **Figure 2**.
- Le nombre et la disposition des points en relief définissent un caractère.

Figure 1

Figure 2

Dans la suite, on s'intéressera à la représentation des 26 lettres majuscules de l'alphabet français. Le tableau suivant, donne cette représentation.

A	9 0 2 5 3 6	В	0 0 9 0 3 6	C	0 9 2 5 3 6	D	9 9 2 9 3 6	E	0 0 2 6 3 6	F	9 9 9 0 3 6	G	0 9 9 9 3 6	Н	0 0 0 0 0 0
I	0 6	J	0 6 8 9 6 9 6	K	0 0 2 S 6 6	L	0 0 0 0 0 0	М	9 9 2 S 9 6	N	0 0 2 0 0 0	C	9 (9 2 (8 9 (6)	P	0 9 9 9 9 6
Q	9 9 9 6	R	9 6 9 6	S	0 6	T	0 0	U	0 0 2 S 8 6	V	9 9 9 9	W	0 9 9 8 3 9	X	0 6 2 5 8 6
Y	9 9 2 9 9 9	Z	0 0 0 0 0 0					2	8	" » »	×				

N. B Chaque point noir représente un point saillant.

Etant donné un fichier d'enregistrements intitulé "Codes_Braille.dat", où chaque enregistrement est composé de deux champs :

- un champ Lettre contenant une lettre majuscule de l'alphabet français,
- un champ Codage contenant une chaîne de 6 caractères représentant l'équivalent en braille de la lettre.

En utilisant le fichier "Codes_Braille.dat", on se propose de convertir le fichier texte intitulé "Braille.txt" contenant une représentation Braille d'un texte en son équivalent en alphabet français puis d'afficher le résultat obtenu.

Sachant que:

- Chaque ligne du fichier "Braille.txt" contient la représentation d'un seul mot.
- La représentation d'un mot est une concaténation de blocs de six caractères.
- Chaque bloc de six caractères représente une lettre du mot.
- Un caractère peut être un astérisque ("*") représentant un point saillant, ou un trait d'union ("-") représentant un point non saillant.
- Les caractères "*" et "-" sont disposés selon l'ordre des numéros des points qu'ils représentent. Par exemple, la lettre "H" sera représentée par le bloc de six caractères suivant :

Exemple:

Etant donné le contenu du fichier "Codes_Braille.dat" dont une partie est représentée comme suit :

Si le contenu du fichier "Braille.txt" est le suivant :

Le programme affichera la chaîne : "EXAMEN DU BAC"

En effet:

- "EXAMEN" est l'équivalent en alphabet français de la première ligne du fichier "Braille.txt".

- "DU" est l'équivalent en alphabet français de la deuxième ligne du fichier "Braille.txt".
- "BAC" est l'équivalent en alphabet français de la troisième ligne du fichier "Braille.txt".

N. B Le candidat n'est pas appelé à remplir les deux fichiers "Codes Braille.dat" et "Braille.txt".

Travail demandé:

- 1. Analyser le problème en le décomposant en modules.
- 2. Analyser chacun des modules envisagés.