COMP3630/6363 Practice Exam 1, 2020

The Australian National University

June 15, 2020

1 General (3 credits each)

For each of the statements below, determine whether it is true or false, and justify your answer in at most two sentences.

- 1. For regular expressions r and s, we have that $L((r|s)^*)$ \leftarrow $L((r^*s^*)^*)$. A SSIGNMENT PROJECT EXAM HELD.

 2. Let S be an NFA, and let S be the NFA that arises from S by swapping accepting and non-accepting states. Then the language of S is the complement of the language of S.
 - 3. If a regular expression does not contain the symbol 'Ø' then the language of this regular expression is never empty.
 - 4. The Wrigance of the tegular expression (%)*sis empty.
 - 5. The language $L = \{ww \mid w \in \{a\}^*\}$ is regular.
 - 6. The language $L = \{ww \mid w \in \{a\}^*\}$ is context free.
 - 7. If L is a language, and L^* is context free, then L is context free, too.
 - 8. Let Σ be an alphabet with $* \in \Sigma$ and let STAR be the problem of determining whether a TM M ever writes * onto the tape on input w. Then STAR is deciable.
 - 9. Every language that is not recursive is infinite.
 - 10. The problem 3CNFTAUT given a boolean formula in 3-CNF, does it valuate to true for *all* truth value assignments is in P.

2 Finite Automata and Regular Languages (15 credits)

If L is a language, let D(L) be the set of strings that differ from a string in L at at most one position. Show that D(L) is regular if L is regular.

3 Context Free Languages and Pushdown Automata (15 credits)

Show that the language consisting of all odd-length strings $w \in \{a, b\}^*$ where the first, middle, and last character are the same, is context free.

4 Turing Machines and Recursive Languages (20 credits)

Accele that we write 14 for the coding of t Turing markine 4 has a string. As this coding never contains 111 as a substring, we use 111 as a separator.

Let $L = \{\langle M_1 \rangle 111 \langle M_2 \rangle \mid L(M_1) \cap L(M_2) \neq \emptyset$. Show that L is recursively enumerable.

Let L' Let L' also recursively enumerable? Justify your answer.

5 Competithat: costytorcs

For a DFA A, let $\langle A \rangle$ be a coding of the DFA as a string, analogously to the encoding of a Turing machine.

Show that $\{\langle A \rangle \mid L(A) = \Sigma^*\} \in P$, that is, the set of DFAs that accept all strings in the language is polytime decidable.