Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

наименование института

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 по дисциплине:

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

«Построение математической модели задачи линейного программирования»

Выполнил	АСУб-20-2		Арбакова А.В.
	шифр группы	подпись	Фамилия И.О.
Проверил			
			Китаева О.И.
-	должность	подпись	Фамилия И.О.

1. Постановка задачи.

Цель работы: Приобретение навыков построения математических моделей задач линейного программирования, получение навыков решения задач в MS Excel.

Задание: Построить математическую модель для задачи индивидуального варианта, решить задачу графическим методом, симплексметодом и с использованием надстройки Поиск решения MS Excel, сравнить полученные результаты и дать их экономическую интерпретацию.

Задача 2

С железнодорожной станции ежедневно отправляются скорые и пассажирские поезда. Известны наличный парк вагонов, из которых можно формировать поезда и количество пассажиров, вмещающихся в каждый из вагонов. Определить оптимальное число скорых и пассажирских поездов из условия максимального числа перевозимых пассажиров, исходя из того. Что пропускная способность дороги — не более шести пассажирских поездов в день. В табл.2 приведены исходные данные задачи.

Вагоны купейные плацкартные мягкие Скорый поезд 5 8 Пассажирский поезд 6 1 Число пассажиров 58 40 32 30 Парк вагонов 88

Таблица 2

2. Математическая модель задачи.

Обозначим переменные:

 x_1 – количество скорых поездов

 x_2 – количество пассажирских поездов

Число перевозимых пассажиров:

$$z = a_1 \times x_1 + a_2 \times x_2$$

где a_1 и a_2 – вместимость скорого и пассажирского поездов

По условию задачи получим:

$$a_1 = 5 \times 58 + 4 \times 40 + 3 \times 32 = 546$$

 $a_2 = 8 \times 58 + 6 \times 40 + 32 = 736$

Целью задачи является определение среди всех допустимых значений x_1 и x_2 таких, которые максимизируют число перевозимых пассажиров, т. е. целевую функцию:

$$z = 546 \times x_1 + 736 \times x_2 \rightarrow max$$

Перейдем к ограничениям, которые налагаются на x_1 и x_2 :

1. Количество поездов не может быть отрицательным, следовательно:

$$x_1 \ge 0$$
 и $x_2 \ge 0$

2. Ограничение по парку плацкартных вагонов:

$$5 \times x_1 + 8 \times x_2 \le 88$$

3. Ограничение по парку купейных вагонов:

$$4 \times x_1 + 6 \times x_2 \le 72$$

4. Ограничение по парку мягких вагонов:

$$3 \times x_1 + x_2 \le 30$$

5. Ограничение на пропускную способность дороги – не более шести пассажирских поездов в день:

$$x_2 \le 6$$

Таким образом, математическая модель данной задачи имеет следующий вид:

$$z = 546 \times x_1 + 736 \times x_2 \to max$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \le 88 \\ 4 \times x_1 + 6 \times x_2 \le 72 \\ 3 \times x_1 + x_2 \le 30 \end{cases}$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 \le 6$$

3. Результаты решения задачи графическим методом.

Для того чтобы решить задачу графически методом, построим область допустимых решений, т.е. решим графически систему неравенств.

Построим каждую прямую и определим полуплоскости, заданные неравенствами:

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \le 88 \\ 4 \times x_1 + 6 \times x_2 \le 72 \\ 3 \times x_1 + x_2 \le 30 \end{cases}$$
$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 \le 6$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \leq 88 \\ 3 \times x_1 + x_2 \leq 30 \end{cases}$$
 Помножим $3 \times x_1 + x_2 \leq 30$ на 8 :
$$\begin{cases} 5 \times x_1 + 8 \times x_2 \leq 88 \\ 24 \times x_1 + 8 \times x_2 \leq 240 \\ -19x_1 = -152 \end{cases}$$

$$x_1 = 8$$

$$x_2 = 6$$

Следовательно, целевая функция будет равна:

$$z = 546 \times 8 + 736 \times 6 = 8784$$

Результат решения задачи, полученный с помощью графического метода:

$$z = 8784$$

 $x_1 = 8$
 $x_2 = 6$

4. Результаты решения задачи с использованием симплексметода.

$$z = 546 \times x_1 + 736 \times x_2 \to max$$

$$\begin{cases} 5 \times x_1 + 8 \times x_2 \le 88 \\ 4 \times x_1 + 6 \times x_2 \le 72 \\ 3 \times x_1 + x_2 \le 30 \end{cases}$$

$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_2 \le 6$$

Запишем расширенную форму задачи:

$$546 \times x_{1} + 736 \times x_{2} + 0 \times x_{3} + 0 \times x_{4} + 0 \times x_{5} + 0 \times x_{6} \rightarrow max$$

$$\begin{cases} 5 \times x_{1} + 8 \times x_{2} + x_{3} + 0 \times x_{4} + 0 \times x_{5} + 0 \times x_{6} &\leq 88 \\ 4 \times x_{1} + 6 \times x_{2} + 0 \times x_{3} + x_{4} + 0 \times x_{5} + 0 \times x_{6} &\leq 72 \\ 3 \times x_{1} + x_{2} + 0 \times x_{3} + 0 \times x_{4} + x_{5} + 0 \times x_{6} &\leq 30 \\ x_{2} + 0 \times x_{3} + 0 \times x_{4} + 0 \times x_{5} + x_{6} &\leq 6 \end{cases}$$

$$x_{1} \geq 0 \quad x_{2} \geq 0$$

Условие задачи запишем в виде таблицы:

A1	A2	A3	A4	A5	A6	A0
5	8	1	0	0	0	88
4	6	0	1	0	0	72
3	1	0	0	1	0	30
0	1	0	0	0	1	6

Выбрав в качестве начального базиса {А3, А4, А5, А6} находим первое допустимое базисное решение:

$$A_3 x_3^* + A_4 x_4^* + A_5 x_5^* + A_6 x_6^* = A_0$$

Это выражение соответствует системе уравнений:

$$x_3^* + 0 \times x_4^* + 0 \times x_5^* + 0 \times x_6^* = 88$$

$$0 \times x_3^* + x_4^* + 0 \times x_5^* + 0 \times x_6^* = 72$$

$$0 \times x_3^* + 0 \times x_4^* + x_5^* + 0 \times x_6^* = 30$$

$$0 \times x_3^* + 0 \times x_4^* + 0 \times x_5^* + x_6^* = 6$$

Откуда:
$$x_3^* = 88$$
 $x_4^* = 72$ $x_5^* = 30$ $x_6^* = 6$

Представим каждый из векторов A1, A2 в виде линейной комбинации базисных векторов {A3, A4, A5, A6}:

$$A_3 x_{31} + A_4 x_{41} + A_5 x_{51} + A_6 x_{61} = A_1$$

$$A_3 x_{32} + A_4 x_{42} + A_5 x_{52} + A_6 x_{62} = A_2$$

Решая эти уравнения получим:

$$x_{31} = 5$$
 $x_{41} = 4$ $x_{51} = 3$ $x_{61} = 0$
 $x_{32} = 8$ $x_{42} = 6$ $x_{52} = 1$ $x_{62} = 1$

Находим симплекс-разности соответственно для переменных x1 и x2, используя формулу:

$$c_r-c_1x_{1r}-c_2x_{2r}-\cdots-c_mx_{mr}$$
 – симплекс-разность для хг.

Получаем следующие значения:

$$c_1 - c_3 x_{31} - c_4 x_{41} - c_5 x_{51} - c_6 x_{61} = 546$$

$$c_2 - c_3 x_{32} - c_4 x_{42} - c_5 x_{52} - c_6 x_{62} = 736$$

Так как 736>546, то вводим переменную x2 в базисное решение, а вектор A2 в базис.

Определим, какая переменная выводится из базиса, используя условие:

$$x_{max} = min\left\{\frac{x_i^*}{x_{ir}}\right\}$$
 для всех і, для которых хіг>0.

$$maxx_1 = min\left\{\frac{88}{8}; \frac{72}{6}; \frac{30}{1}; \frac{6}{1}\right\} = 6$$

Выводим из базисного решения переменную хі, соответствующую $min\left\{\frac{x_i^*}{x_{ir}}\right\}$, а из базиса соответствующий вектор.

Вводим в базис переменную x^2 со значением $x_2^* = 6$, а переменная x^6 выводится из базисного решения, а вектор A6 из базиса.

Новые значения переменных находим:

$$x_3 = x_3^* - x_2 x_{32} = 88 - 6 \times 8 = 40$$

 $x_4 = x_4^* - x_2 x_{42} = 72 - 6 \times 6 = 36$
 $x_5 = x_5^* - x_2 x_{52} = 30 - 6 = 24$

Новый базис {А3, А4, А5, А2}

Соответствующее базисное решение

$$x_3^* = 40 \quad x_4^* = 36 \quad x_5^* = 24 \quad x_2^* = 6$$

Представим каждый из векторов A1 и A6 не вошедших в базис в виде линейной комбинации векторов A3 A4 A5 A2. Так как вектор A6 был выведен из базиса рассмотрим только A1.

$$A_1 = A_3 x_{31} + A_4 x_{41} + A_5 x_{51} + A_2 x_{21}$$

Так как 546>-736, то вводим переменную x1 в базисное решение, а вектор A1 в базис.

Определим, какая переменная выводится из базиса, используя условие:

 $x_{max} = min\left\{\frac{x_i^*}{x_{ir}}\right\}$ для всех i, для которых xir>0.

$$maxx_1 = min\left\{\frac{40}{5}; \frac{36}{4}; \frac{24}{3}; -\right\} = 8$$

Выводим из базисного решения переменную хі, соответствующую $min\left\{\frac{x_i^*}{x_{ir}}\right\}$, а из базиса соответствующий вектор.

Вводим в базис переменную x3 со значением $x_3^* = 8$, а переменная x6 выводится из базисного решения, а вектор A3 из базиса.

Новые значения переменных находим:

$$x_4 = x_4^* - x_2 x_{42} = 36 - 8 \times 4 = 4$$

 $x_5 = x_5^* - x_2 x_{52} = 24 - 8 \times 3 = 0$

Новый базис: {А1, А4, А6, А2}

Соответствующее базисное решение:

$$x_1^* = 8$$
 $x_4^* = 4$ $x_6^* = 0$ $x_2^* = 6$

Так как вектор А5 был выведен из базиса рассмотрим только А3.

$$A_3 = A_3 x_{13} + A_4 x_{43} + A_5 x_{63} + A_2 x_{23}$$

Решая эти уравнения получим:

$$x_{13} = 8/19$$
 $x_{43} = -2/19$ $x_{63} = 5/19$ $x_{23} = -5/19$

Находим их симплекс-разность для х3:

$$c_3 - c_1 x_{13} - c_4 x_{43} - c_6 x_{63} - c_2 x_{23} = \times \frac{8}{19} + 736 \times -\frac{5}{19} = -36.21 < 0$$

Поскольку симплекс-разность отрицательна, данное решение оптимально.

$$x_1^* = 8$$
 $x_2^* = 6$

Значение целевой функции:

$$z = 546 \times x_1^* + 736 \times x_2^* = 8784$$

Оптимальный план можно записать так:

$$x_1 = 8$$
 $x_2 = 6$
 $z = 546 \times 8 + 736 \times 6 = 8784$

5. Результаты решения задачи с помощью Excel-таблиц.

На рабочем листе введем числовые данные задачи.

Обозначим переменные:

 x_1 – количество скорых поездов

 x_2 – количество пассажирских поездов

x1	x2	

Число перевозимых пассажиров:

$$z = a_1 \times x_1 + a_2 \times x_2$$

где a_1 и a_2 – вместимость скорого и пассажирского поездов.

По условию задачи получим:

$$a_1 = 5 \times 58 + 4 \times 40 + 3 \times 32 = 546$$
 $a_2 = 8 \times 58 + 6 \times 40 + 32 = 736$

a1

a2

546

736

Перейдем к ограничениям, которые налагаются на x_1 и x_2 .

	Условия					
5*x1+8*x2		<=	88			
4*x1+6*x2		<=	72			
3*x1+x2		<=	30			
x2		<=	6			
x1		>=	0			
x2		>=	0			

Поскольку целевая функция:

$$z = 546 \times x_1 + 736 \times x_2 \rightarrow max$$

То в ячейке целевой функции применим формулу:

=СУММПРОИЗВ(В18:С18;В21:С21)

Поскольку ячейки оптимального решения не содержат данных, значение целевой функции пока 0.

Выбираем команду «Поиск решения» и в появившееся диалоговое окно вводим данные.

Получаем результат вычислений задачи:

			Условия			
x1	x2		5*x1+8*x2	88	<=	88
8	6		4*x1+6*x2	68	<=	72
			3*x1+x2	30	<=	30
a1	a2		x2	6	<=	6
546	736		x1	8	>=	0
			x2	6	>=	0
Целевая	функция					
878	34					

Результат решения задачи, полученный с помощью Excel-таблиц:

$$z = 8784$$

$$x_1 = 8$$

$$x_2 = 6$$

6. Экономическая интерпретация полученных результатов.

По результатам, полученными различными методами решения задачи, т.е. с помощью графического метода, симплекс-метода и Excel-таблиц, можно определить, что оптимальное число скорых и пассажирских поездов, из условий максимального числа перевозимых пассажиров, будет равно 8 скорым поездам и 6 пассажирским поездам, что и требовалось найти по условию задачи. С определенными условиями выявлено, что оптимальным решением будет 88 плацкартных, 68 купейных и 30 мягких вагонов. Все условия соблюдены со значением целевой функции — 8784.