Группа G всегда конечна; представления — комплексные.

- 1. Найти таблицу характеров группы D_4 . Описать с ее помощью все нормальные подгруппы D_4 .
- 2. Найти таблицу характеров группы A_4 . Описать с ее помощью все нормальные подгруппы A_4 .
- 3. Доказать, что неприводимое представление G одномерно тогда и только тогда, когда его ядро содержит коммутант [G,G]
- 4. Пусть $e_i = \frac{d_i}{|G|} \sum_g \chi_i(g) g^{-1}$ это центральный идемпотент, отвечающий i-ому неприводимому характеру, а V какой-то модуль над $\mathbb{C}[G]$. Доказать, что $e_i V$ это представление группы G, которое раскладывается в прямую сумму нескольких экземпляров i-го неприводимого представления.
- 5. Группа G действует на множестве M дважды транзитивно, т.е., для любых элементов $m_1 \neq m_2 \in M$ и $m_3 \neq m_4 \in M$ существует такой $g \in G$, что $g(m_1) = m_3$ и $g(m_2) = m_4$
 - Доказать, что перестановочное представление G, соответствующее этому действию, раскладывается в прямую сумму тривиального и неприводимого.
- 6. Вычислите разложение в сумму неприводимых симметрического и внешнего квадрата, и тензорного куба неприводимого двухмерного представления группы D_4 .
- 7. Вычислите разложение в сумму неприводимых симметрического и внешнего квадрата естественного (или другого неприводимого трехмерного) представления группы S_4 .
- 8. Вычислите разложение в сумму неприводимых всех представлений группы S_4 , индуцированных с неприводимых представлений группы группы S_3 .
- 9. Пусть A, B подгруппы G; обозначим через 1_A и 1_B тривиальные представления этих групп. Докажите, что скалярное произведение $\langle Ind_A^G1_A, Ind_B^G1_B \rangle$ равно количеству орбит для очевидного действия A на левых смежных классах G по B.