Data Science Introduction

Stéphane Marchand-Maillet

Department of Computer Science

Data Science: Introduction

Master en Sciences Informatiques - Autumn semester

What is the Data Science course about?

- * Study the modelling of phenomenons into digital (numerical, quantitative) data
- * Understand the geometrical and statistical properties of this data
- * Understand the geometrical and statistical properties of the spaces this data lives into
- * Analyse the data and develop tools for this analysis
- * Understand the assumptions made in the design of these tools
- * Work out the theory (in depth)
- ⇒ involved in linear algebra, probability and statistics

Course content

Introduction

Part I: Data Analysis (SMM)

- * High-dimensional representation spaces
- ⋆ Component analysis: PCA
- ⋆ Component analysis: FCA
- * Component analysis: LDA
- ⋆ Density estimation: k-Means
- * Density estimation: Gaussian Mixture Models and the EM algorithm
- * Temporal Data Analysis: Autoregressive models
- * Temporal Data Analysis: Markov models

Part II: Information Processing (Prof. S. Voloshynovskiy)

Relationship to Machine Learning

- * Data Science and Machine Learning are synonyms
- ⋆ Data Science is the study of representation spaces within which Machine Learning acts

* ..

Required Background (BSc)

Linear Algebra

- * Vector space, inner product, matrix computation
- * Projection, eigensystems, SVD, properties
- * Optimisation, Gradient Descent, Lagragian multipliers
- * Hyperplane representation, homogenisation of coordinates
- ***** ...

Statistics and probabilities

- * Random variables, expectation, variance
- * Probability density function, CDF, entropy
- ★ Joint and conditional probabilities, Bayes theorem
- *

Notation

These notations should be consistent throughout the slides:

```
★ △ : critical, ② : redo this computation/proof
```

```
* ":=" definition, \llbracket N \rrbracket = \{1, \dots, N\}
```

- * x scalar, x vector, X matrix, \mathcal{X} set, X random variable
- * x(i) component i of vector x
- * F family, # subspace
- * 1_N 1 vector/matrix full of 1's, Id_N identity
- * $\mathbf{x}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}}$ transpose (dual), $\mathbf{A}^{\mathsf{+}}$ Moore-Penrose inverse
- * $\mathbb{P}(X = x)$ probability, $\mathbb{E}X$ expectation, Var(X) variance
- $\star \langle x, y \rangle$ inner product
- * $\|\cdot\|$ norm (default = L_2), $d(\cdot,\cdot)$ distance function (default=Euclidean)

References I

- [1] Sheldon Axler. Linear Algebra Done Right. Springer, 2015.
- [2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. (available online).
- [3] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science. Cambridge University Press, 2020. (available online).
- [4] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley, New York, 2 edition, 2001.
- [5] Jonathan S. Golan. The Linear Algebra a Beginning Graduate Student Ought to Know. Springer, 2004.
- [6] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Copyright Cambridge University Press, 2003. (available online).
- [7] Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT Press, Cambridge, Mass., 2013.
- [8] Gilbert Strang. Linear Algebra and Its Applications. Brooks/Cole, 4th edition edition, 2005.
- [9] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004.