A Class of PL-Homeomorphism Groups with Irrational Slopes

Jason Brown, Lawrence Reeves The University of Melbourne

Piecewise-linear homeomorphism groups

Definition (\mathcal{F}_{α})

Given $\alpha \in \mathbb{R}^+$, we define \mathcal{F}_{α} to be the set of homeomorphisms $f:[0,1] \to [0,1]$ satsifying:

- 1. *f* is piecewise linear
- 2. The gradient of f on each linear segment is a power of α
- 3. f has finitely many singularities , which all lie in the ring $\mathbb{Z}[\alpha,\alpha^{-1}]$

Some Examples

 \mathcal{F}_1

The trivial group

 \mathcal{F}_2

Thompson's Group F. This group can equivalently be defined as:

- 1. The group of associative laws on binary operations [GG06].
- 2. The automorphism group of elements in the free monoidal category generated by a single object A and an isomorphism $A \otimes A \rightarrow A$ [FL10].
- 3. The group of order preserving automorphisms of the free Jónsson-Tarski algebra on one generator.

 \mathcal{F}_n for $n \in \mathbb{Z}_{>2}$

These groups share many properties with \mathcal{F}_2 [Ste92].

Thompson's group

Properties of \mathcal{F}_2

- Torsion-free
- Finitely presented
- Infinite cohomological dimension
- Simple commutator subgroup
- Dense in Aut([0, 1])

- FP∞
- Not elementary amenable
- Does not contain the free group of rank 2
- Solvable word problem
- QFA [LAS14]

Many of these properties hold for \mathcal{F}_n for $n \in \mathbb{Z}_{>1}$.

General \mathcal{F}_{α}

Properties of \mathcal{F}_{α} for all $\alpha \in \mathbb{R}^+ \setminus \{1\}$

- Torsion-free √
- Finitely presented × [BS85]
- Infinite cohomological dimension ?
- Simple commutator subgroup ?
- Dense in Aut([0,1]) ✓

- FP_∞ ×
- Not elementary amenable ?
- Does not contain the free group of rank 2 √ [BS85]
- Solvable word problem ?
- QFA ×
- \checkmark : True for all $\alpha \neq 1$ \times : Not true for some $\alpha \neq 1$? : unclear

Some known results

Let au denote the unique positive solution to $x^2+x=1$: $\frac{-1+\sqrt{5}}{2}\approx 0.61803$

Properties of $\mathcal{F}_{ au}$

- Torsion-free √
- Finitely presented ✓ [Cle00]
- Infinite cohomological dimension √
 [BNR18]
- Simple commutator subgroup √ [BNR18]
- Dense in Aut([0, 1]) ✓

- *FP*_∞ [Cle00] ✓
- Not elementary amenable √ [BNR18]
- Does not contain the free group of rank 2 √
- Solvable word problem √
 [BNR18]
- QFA ?

5

Definition (τ_k)

For $k \in \mathbb{Z}_{>0}$ we let τ_k denote the positive solution to the quadratic equation: $x^2 + kx = 1$ which is given by:

$$\tau_k := -\frac{k}{2} + \sqrt{\left(\frac{k}{2}\right)^2 + 1}$$

 \mathcal{F}_{τ_k} is the group of piecewise-linear homeomorphisms of [0,1] with slopes powers of τ_k and singularities in $\mathbb{Z}[\tau_k,\tau_k^{-1}]$.

A combinatorial approach

Breakpoint sets

Pairs of subsets of $\mathbb{Z}[au_k]$ —/ woheadrightarrow $\mathcal{F}_{ au_k}$

Breakpoint sets

k-partitions

Recall that $\tau_k^2 + k\tau_k = 1$.

Figure 3: The four 3-partitions of the unit interval

k-subdivisions

Definition (k-subdivision)

A *k*-subdivision is either:

- 1. [0, 1]
- 2. A collection of intervals obtained by replacing an interval in a *k*-subdivision with a *k*-partition of that interval (of any type)

Figure 4: A 2-subdivision obtained by three 2-partitions

k-trees

0

(a)

Figure 6: A 2-subdivision obtained by three 2-partitions

k-trees

Figure 6: A 2-subdivision obtained by three 2-partitions

Figure 6: A 2-subdivision obtained by three 2-partitions

Figure 6: A 2-subdivision obtained by three 2-partitions

The connection to $\mathcal{F}_{ au_k}$

Theorem

For any two k-subdivisions P, Q with the same number of breakpoints the interpolation of P and Q is an element of \mathcal{F}_{τ_k} . Moreover, every element of \mathcal{F}_{τ_k} can be obtained in this way.

From k-trees to \mathcal{F}_{τ_k}

Equivalent *k*-trees

Figure 9: Three distinct 2-trees representing the same 2-subdivision

Node types

Definition (Node type)

For a non-leaf node, the number of children to the left of the long child.

Figure 11: All node types for k = 2

Spines

Definition (Spine)

A k-tree where all but the right-most child of each node are leaves. All nodes are of type 0.

Elementary *k*-trees

Definition (Elementary tree)

Obtained from a spine by type 0 or 1 expansion a single node which is not the right-most node. Written as $[{\rm type}]_{\#{\rm node}}.$

Regular *k*-trees

Definition (Regular *k*-tree)

Obtained from a spine by a sequence of type 0 or 1 expansions of nodes other than the right-most node.

Tree Pairs

Theorem

Every element of \mathcal{F}_{τ_k} is representable by a pair of regular k-trees.

Common expansion leaves the element of \mathcal{F}_{τ_k} unchanged:

An example

Spine Pair

Definition (Spine pair)

Given a k-tree T, we construct its *spine pair* by pairing it with a spine of the appropriate size on the right. Denoted $\operatorname{sp}(T)$.

A simple case

Spine Pair Factorisation

Lemma

 $(T_1, T_2) = \operatorname{sp}(T_1) \circ \operatorname{sp}(T_2)^{-1}$ for k-trees T_1 , T_2 with the same number of leaves.

Products of Tree pairs

Figure 21: $\mathrm{sp} \big([0]_0 \big) \circ \mathrm{sp} \big([1]_1 \big) = \mathrm{sp} \big([0]_0 [1]_1 \big)$

A Generating Set

Theorem

For w and w' words over $\{[n]_i | n \in \{0,1\}, i \in \mathbb{Z}_{\geq 0}\}$, $\operatorname{sp}(w) \circ \operatorname{sp}(w') = \operatorname{sp}(ww')$.

Let a_i denote $sp([0]_i)$ and let b_i denote $sp([1]_i)$.

Corollary

 \mathcal{F}_{τ_k} is generated by $\{a_i, b_i \mid i \in \mathbb{Z}_{\geq 0}\}.$

Relations of the first kind

Relations of the second kind

An infinite presentation for $\mathcal{F}_{ au_k}$

Theorem

The relations

$$a_i a_{i+1} = b_i^2 \qquad i \in \mathbb{Z}_{\geq 0}$$

$$x_j y_i = y_i x_{j+k} \qquad i < j, \ x, y \in \{a, b\}$$

over $\{a_i, b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ define a presentation for \mathcal{F}_{τ_k} .

Redundant generators

$$x_j y_i = y_i x_{j+k} \implies y_i^{-1} x_j y_i = x_{j+k}$$

A finite presentation for $\mathcal{F}_{ au_k}$

Theorem

The relations

$$a_{i}a_{i+1} = b_{i}^{2} \qquad 0 \le i < k$$

$$a_{k}a_{0}^{-1}a_{1}a_{0} = b_{k}^{2} \qquad 0 \le i < k$$

$$x_{i}^{-1}y_{j}x_{i} = a_{0}^{-1}y_{j}a_{0} \qquad 0 \le i < j \le k, \ x, y \in \{a, b\}$$

$$x_{i}^{-1}a_{0}^{-s}y_{j}a_{0}^{s}x_{i} = a_{0}^{-s-1}y_{j}a_{0}^{s+1} \qquad 0 \le i, j \le k, \ x, y \in \{a, b\}, \ s \in \{1, 2, 3\}$$

over $\{a_i,b_i\,|\,0\leq i\leq k\}$ define a (finite) presentation for \mathcal{F}_{τ_k} .

k-tree generators

Abelianisation

Theorem

The abelianisation of \mathcal{F}_{τ_k} is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}^{k+1}$

Corollary

$$\mathcal{F}_{\tau_n} \ncong \mathcal{F}_{\tau_m}$$
 for $n \neq m$

Theorem

The abelianisation of \mathcal{F}_n for $n \in \mathbb{Z}_{>2}$ is torsion free

Corollary

$$\mathcal{F}_{\tau_n}
ot \cong \mathcal{F}_m \text{ for } n, m \in \mathbb{Z}_{\geq 1}$$

Theorem

The commutator subgroup of \mathcal{F}_{τ_k} is simple.

A normal form for \mathcal{F}_{τ_k}

Definition (Normal form)

We will say that a word w over Φ and symbolic inverses $\overline{\Phi}$ is in *normal form* if it can written as $w \equiv uv^{-1}$ where:

- 1. u and v are both monotone words over Φ
- 2. If a type *b* generator occurs in *u*, the following generator in *u* must have level greater than that of the type *b* generator.
- 3. All the generators in v are of type a
- 4. If w contains a subword of the form $a_i u a_i^{-1}$ for some word u, then $\mathcal{L}(u) \leq i + k$.
- 5. If w contains a subword of the form $a_ib_ia_{i+k+1}ua_{i+1}^{-1}a_i^{-1}$ then $\mathcal{L}(u) \leq i+2k$

Theorem

Every element of \mathcal{F}_{τ_k} has a unique representation as a normal form word over $\Phi \cup \overline{\Phi}$.

A normal form for $\mathcal{F}_{ au u}$

Theorem

If n-1 divides k then there exists a map from the generators of \mathcal{F}_n to the generators of \mathcal{F}_{τ_k} that preserves normal forms and induces a group homomorphism.

Connections to Thompson's group

Corollary

If n divides k then \mathcal{F}_{τ_k} contains a subgroup isomorphic to \mathcal{F}_{n+1} .

Corollary

Each group \mathcal{F}_{τ_k} contains a subgroup isomorphic to Thompson's group \mathcal{F}_2 .

Corollary

Each group \mathcal{F}_{τ_k} is not elementary amenable.

Corollary

If \mathcal{F}_{τ_k} is amenable for any $k \in \mathbb{Z}_{\geq 1}$, then so is \mathcal{F}_2 .

Corollary

 $\mathcal{F}_{ au_k}$ has infinite cohomological dimension.

Further Investigation

Unanswered Questions

- 1. Is \mathcal{F}_{τ_n} embeddable in \mathcal{F}_{τ_m} for $n \neq m$?
- 2. Is \mathcal{F}_{τ_k} embeddable in \mathcal{F}_n for any $k, n \in \mathbb{Z}_{>1}$?
- 3. What about \mathcal{F}_{α} where α is some other algebraic integer? For example, solutions to the equations:

$$x^n + kx = 1, \qquad nx^2 + kx = 1$$

Thank you

References

José Burillo, Brita Nucinkis, and Lawrence Reeves. "An Irrational-slope Thompson's Group". In: arXiv preprint arXiv:1806.00108 (2018).

Matthew G Brin and Craig C Squier. "Groups of piecewise linear homeomorphisms of the real line". In: *Inventiones mathematicae* 79.3 (1985), pp. 485–498.

Sean Cleary. "Regular subdivision in $Z\left(\frac{1+\sqrt{5}}{2}\right)$ ". In: Illinois Journal of Mathematics 44.3 (2000), pp. 453–464.

Marcelo Fiore and Tom Leinster. "An abstract characterization of Thompsons group F". In: Semigroup Forum. Vol. 80. 2. Springer. 2010, pp. 325–340.

Ross Geoghegan and Fernando Guzmán. "Associativity and Thompson's group". In: Contemporary Mathematics 394 (2006), pp. 113–136.

CLMENT LASSERRE. "R.J. THOMPSON'S GROUPS F AND T ARE BI-INTERPRETABLE WITH THE RING OF THE INTEGERS". In: *The Journal of Symbolic Logic* 79.3 (2014), pp. 693–711. ISSN: 00224812, 19435886. URL: http://www.jstor.org/stable/43303756.

Melanie Stein. "Groups of Piecewise Linear Homeomorphisms". In: Transactions of the American Mathematical Society 332 (1992).