Module 2.2 Statistical Estimation Basic Concepts

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, OK, 73071 USA

A Simple Estimation Problem: Gaussian Distribution

- Let $p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] = N(\mu, \sigma^2).$
- Assume μ and/or σ^2 are <u>not</u> known.
- We have access to a generator for p(x), from which we can draw **IID** samples $x_1, x_2, ... x_n$.
- Goal is to estimate the unknowns from the random samples.

CASE 1: μ is not known, σ^2 is known

- An <u>estimator</u> \hat{x} of μ is a function of the known observations: $\hat{x}(n) = \phi(x_1, x_2, \dots, x_n)$
- A natural choice for ϕ is the numerical average: $\hat{x}(n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Since $\phi(x_1, x_2, \dots, x_n)$ is a function of the random numbers x_1, x_2, \dots, x_n , clearly $\hat{x}(n)$ is also a **random variable**.

Sampling Distribution

- The probability distribution of $\hat{x}(n)$ is called the sampling distribution and it depends on the choice of the function ϕ and the distribution of x_i
- The behavior of the mean and the variance of the sampling distribution as the number of samples $n \to \infty$, characterize the properties and quality of the estimate $\hat{x}(n)$ see Problem at the end of the module

Mean of the Sampling Distribution - Unbiased Estimate

- An estimate is said to be <u>unbiased</u>, if the mean of the sampling distribution coincides with the true mean.
- $\mathbf{E}(\hat{x}(n)) = \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}(x_{i}) = \mu.$
- Hence, the estimate $\hat{x}(n)$ is an unbiased estimate of the unknown, μ called the population mean.

Consistency of Estimates

• The estimate $\hat{x}(n)$ is said to be consistent if

Prob
$$(|\hat{x}(n) - \mu| > \delta) \to 0$$
 as $n \to \infty$ for $\delta > 0$ (1)

• That is, the probability measure defined by the sampling distribution tends to concentrate on an arbitrarily small interval around the true mean μ as $n \to \infty$.

Chebyshev Inequality

Recall:

$$\mathbf{E}(x^2) = \int_{-\infty}^{\infty} x^2 p(x) dx \ge \int_{|x| > \sigma} p(x) dx = \sigma^2 \operatorname{Prob}[|x| > \sigma]$$
(2)

• **Prob**[$|x| > \sigma$] $\leq \frac{\mathbf{E}(x^2)}{\sigma^2}$ - Chebyshev inequality

$\hat{x}(n)$ is consistent

•

 $Var(\hat{x}(n)) = \mathbf{E}(\hat{x}(n) - \mu)^{2} = \mathbf{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) - \mu\right]^{2}$ $= \mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}(x_{i} - \mu)\right]^{2} = \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbf{E}(x_{i} - \mu)^{2} = \frac{\sigma^{2}}{n}$

By Chebyshev inequality:

$$\begin{aligned} \mathbf{Prob}\left[|\hat{x}(n) - \mu| > \sigma\right] & \leq \frac{\mathbf{E}\left(\hat{x}(n) - \mu\right)^2}{\sigma^2} = \frac{\mathbf{Var}\left(\hat{x}(n)\right)}{\sigma^2} \\ & = \frac{\sigma^2}{n\sigma^2} \to 0 \text{ as } n \to \infty \end{aligned}$$

 $\hat{x}(n)$ is consistent

Relative Efficiency

- Let $\hat{x}^{(1)}$ and $\hat{x}^{(2)}$ be the two estimates of the unknown.
- Say that $\hat{x}^{(1)}$ is relatively more efficient than $\hat{x}^{(2)}$ if

$$\operatorname{Var}(\hat{x}^{(1)}) < \operatorname{Var}(\hat{x}^{(2)}) \tag{3}$$

• Clearly, for $n_1 > n_2$, $\hat{x}(n_1)$ is more efficient than $\hat{x}(n_2)$ since

$$\operatorname{Var}(\hat{x}(n_1)) = \frac{\sigma^2}{n_1} \le \frac{\sigma^2}{n_2} = \operatorname{Var}(\hat{x}(n_2)) \tag{4}$$

• That is the relative efficiency of $\hat{x}(n)$ increases as $n \to \infty$.

Standard Error (SE) of $\hat{x}(n)$

 The standard error (SE) of an estimate is the square root of its variance

•

SE for
$$\hat{x}(n) = \frac{\sigma}{\sqrt{n}} = \mathbf{O}\left(\frac{1}{\sqrt{n}}\right)$$
 (5)

Central Limit Theorem for $\hat{x}(n)$

- Recall: $\mathbf{E}[\hat{x}(n)] = \mu$, $\mathbf{Var}[\hat{x}(n)] = \frac{\sigma^2}{n}$
- Claim: The distribution of the centered and normalized random variable $\frac{\hat{x}(n)-\mu}{(\sigma/\sqrt{n})} \to N(0,1)$, the standard normal distribution as $n \to \infty$, called the <u>Central limit theorem</u> (CLT)

Consequence of CLT

• For large n:

$$\mathsf{Prob}\left[-2 \le \frac{\sqrt{n}(\hat{x}(n) - \mu)}{\sigma} \le 2\right] = 0.95 \tag{6}$$

 That is, with 0.95 probability, the centered and normalized estimate will lie in the interval [−2, 2].

CASE 2: μ is known, σ^2 not known

- Let $\hat{\sigma}^2$ be an estimate for σ^2
- A natural choice is

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \tag{7}$$

- $\mathbf{E}(\hat{\sigma}^2) = \frac{1}{n} \sum_{i=1}^n \mathbf{E}(x_i \mu)^2 = \frac{n\sigma^2}{n} = \sigma^2$
- That is, $\hat{\sigma}^2$ is unbiased

Variance of $\hat{\sigma}^2$

- $Var(\hat{\sigma}^2) = E \left[\hat{\sigma}^2 \sigma^2\right]^2$
- Let $y_i = x_i \mu$, $\mathbf{E}(y_i) = 0$, $\mathbf{E}(y_i^2) = \sigma^2$
- $Var(\hat{\sigma}^2) = E\left[\left(\frac{1}{n}\sum_{i=1}^n y_i^2\right) \sigma^2\right]^2 = E\left[\frac{1}{n}\sum_{i=1}^n (y_i^2 \sigma^2)\right]^2$
- Recall: $(a_1 + a_2 + \cdots + a_n)^2 = \sum_{i=1}^n a_i^2 + 2 \sum_{i < j}^n a_i a_j$

Variance of $\hat{\sigma}^2$ - continued

•

$$\begin{aligned} \mathbf{Var}(\hat{\sigma}^2) &= \frac{1}{n^2} \mathbf{E} \left\{ \sum_{i=1}^n (y_i^2 - \sigma^2)^2 + 2 \sum_{i < j} (y_i^2 - \sigma^2) (y_j^2 - \sigma^2) \right\} \\ &= \frac{1}{n^2} \sum_{i=1}^n \mathbf{E}(y_i^2 - \sigma^2)^2 + \frac{2}{n^2} \sum_{i < j} \mathbf{E}(y_i^2 - \sigma^2) \mathbf{E}(y_j^2 - \sigma^2) \\ &= \frac{1}{n^2} \sum_{i=1}^n \mathbf{E}(y_i^2 - \sigma^2)^2 \operatorname{since} y_i \text{ are IID and } \mathbf{E}(y_i^2 - \sigma^2) = 0 \end{aligned}$$

Variance of $\hat{\sigma}^2$ - continued

•
$$\mathbf{E}(y_i^2 - \sigma^2)^2 = \mathbf{E}(y_i^4) - 2\mathbf{E}(y_i^2)\sigma^2 + \sigma^4$$

- Recall: $y_i \sim N(0, \sigma^2)$ $\therefore \mathbf{E}(y_i^3) = 0$ - skewness $\mathbf{E}(y_i^4) = 3\sigma^4$ - kurtosis
- Substituting : $\mathbf{E}(y_i^2 \sigma^2)^2 = 3\sigma^4 2\sigma^4 + \sigma^4 = 2\sigma^4$

Variance of $\hat{\sigma}^2$ - continued

- $Var(\hat{\sigma}^2) = \frac{2}{n^2} \sum_{i=1}^n \sigma^4 = \frac{2\sigma^4}{n}$
- The standard error is the estimate $\hat{\sigma}^2$ of the variance σ^2 is $\mathbf{O}\left(\frac{1}{\sqrt{n}}\right)$
- This estimate $\hat{\sigma}^2$ is an unbiased and asymptotically consistent estimate of σ^2

χ^2 - (Chi-Squared) Distribution

• A nonnegative random variable z is said to be $\chi^2(k)$ distributed with degree of freedom $k(\geq 1)$ if its density function is given by

$$p(z) = \frac{1}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} z^{\frac{k}{2} - 1} \exp\left(-\frac{z}{2}\right) \text{ for } z > 0$$
 (8)

- $\Gamma(r)$ is the standard Gamma function
 - $\Gamma(1) = 1$
 - $\Gamma(1/2) = \sqrt{\pi}$
 - $\Gamma(r+1) = r\Gamma(r)$ if r is a positive integer.

Mean/Variance of $\chi^2(k)$ - (Chi-Squared) Distribution

- Let $z \sim \chi^2(k)$
- Then E(z) = k, Var(z) = 2k
- Verify these claims Home Work

Relation between Normal and χ^2 - (Chi-Squared) Distribution

- Let $x_1, x_2, \dots, x_n \sim \text{IID}N(0, 1)$, the standard normal
- Let $z = \sum_{i=1}^{n} x_i^2 \sim \chi^2(n)$
- Then E(z) = n, Var(z) = 2n
- If $z_1\sim \chi^2(n_1),$ $z_2\sim \chi^2(n_2)$ and z_1,z_2 are independent, then $z=z_1+z_2\sim \chi^2(n_1+n_2)$

$Var(\hat{\sigma}^2)$ - An Alternative Method

- Recall $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2$
- Consider

$$\left(\frac{n}{\sigma^2}\right)\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n \left(\frac{x_i - \mu}{(\sigma/\sqrt{n})}\right)^2 = \frac{1}{n}\sum_{i=1}^n z_i^2, z_i \sim \text{IIDN}(0, 1)$$

- Hence $\left(\frac{n}{\sigma^2}\right)\hat{\sigma}^2 = \eta \sim \chi^2(n)$
- $\mathbf{E}(\eta) = n$ and $\mathbf{Var}(\eta) = 2n$
- $\mathbf{E}(\hat{\sigma}^2) = \mathbf{E}\left[\frac{\sigma^2}{n}\eta\right] = \frac{\sigma^2}{n}\mathbf{E}(\eta) = \sigma^2$
- $\operatorname{Var}(\hat{\sigma}^2) = \operatorname{Var}(\frac{\sigma^2}{n}\eta) = \frac{\sigma^4}{n^2} 2n = \frac{2\sigma^4}{n}$

CASE 3: Both μ and σ^2 are <u>not</u> known

Let

$$\hat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{x})^2,$$
(9)

be the estimates of μ , and σ^2 respectively

• Recall: \hat{x} is an unbiased estimate of μ

s² is unbiased

• Consider with $\hat{x} = \hat{x}(n)$:

$$\mathbf{E} \left[\sum_{i=1}^{n} (x_{i} - \hat{x})^{2} \right] \\
= \mathbf{E} \left[\sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\hat{x} + \hat{x}^{2}) \right] \\
= \mathbf{E} \left[\sum_{i=1}^{n} x_{i}^{2} - 2\hat{x} \sum_{i=1}^{n} x_{i} + \sum_{i=1}^{n} \hat{x}^{2} \right] \\
= \mathbf{E} \left[\sum_{i=1}^{n} x_{i}^{2} - n\hat{x}^{2} \right] \left(\text{since } \sum_{i=1}^{n} x_{i} = n\hat{x} \right) \\
= \sum_{i=1}^{n} \mathbf{E}(x_{i}^{2}) - n\mathbf{E}(\hat{x}^{2}) \right]$$
(10)

Unbiasedness of s^2

By definition:

$$\mathbf{E}(x_i^2) = \mathbf{Var}(x_i) + (\mathbf{E}(x_i))^2 = \sigma^2 + \mu^2$$

$$\therefore \sum_{i=1}^n \mathbf{E}(x_i^2) = n(\sigma^2 + \mu^2)$$
(11)

Unbiasedness of s^2 - continued

• $n \mathbf{E}(\hat{x}^2)$

$$n \mathbf{E} \left[\frac{1}{n} \sum_{i=1}^{n} x_i \right]^2$$

$$= \frac{1}{n} \mathbf{E} \left[\sum_{i=1}^{n} x_i \right]^2 (\because x_i \text{ are IID})$$

$$= \frac{1}{n} \mathbf{E} \left[\sum_{i=1}^{n} (x_i^2) + 2 \sum_{i < j} \mathbf{E}(x_i) \mathbf{E}(x_j) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}(x_i^2) + \frac{2}{n} \binom{n}{2} \mu^2$$

$$= (\sigma^2 + \mu^2) + (n-1)\mu^2 = \sigma^2 + n\mu^2$$

$$(12)$$

Unbiasedness of s^2 - continued

 Taking expectations on both sides of (9), substituting (10)–(12) and simplifying

$$\mathbf{E}(s^2) = \frac{1}{n-1} \left[\sum_{i=1}^n \mathbf{E}(x_i)^2 - n \mathbf{E}(\hat{x}^2) \right]$$
$$= \frac{1}{n-1} \left[n \left(\sigma^2 + \mu^2 \right) - \sigma^2 - n \mu^2 \right]$$
$$= \sigma^2$$

 $\therefore s^2$ is unbiased

$Var(s^2)$

Recall

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Hence

$$\left(\frac{n-1}{\sigma^2}\right)s^2=\eta=\sum_{i=1}^n\left(\frac{x_i-\overline{x}}{\sigma}\right)^2\sim\chi^2(n-1)$$

$Var(s^2)$

- Recall $\mathbf{E}(\eta) = (n-1)$ and $\mathbf{Var}(\eta) = 2(n-1)$
- $\mathbf{E}(s^2) = \mathbf{E}\left[\frac{\sigma^2}{n-1}\eta\right] = \sigma^2$ $\mathbf{Var}(s^2) = \mathbf{Var}\left[\frac{\sigma^2}{n-1}\eta\right] = \frac{2(n-1)\sigma^4}{(n-1)^2} = \frac{2\sigma^4}{(n-1)}$
- Hence, standard error in s^2 is $\mathbf{O}\left(\frac{1}{\sqrt{n-1}}\right)$ and s^2 is a consistent estimate

Problem

- Set $n=10^2$ and generate $N=10^4$ different sets of n **IID** random variables x_1, x_2, \ldots, x_n from the standard normal distribution
 - (a) Compute N different values of $\hat{x}(n)$ and plot them on a real line
 - (b) Compute the histogram, mean and variance of the sampling distribution