Web Science

19 February 2019 Christina Lioma c.lioma@di.ku.dk

Lecture plan

- Collective Intelligence II
 - Crowdsourcing evaluation
 - Indirect collective intelligence

• Collective intelligence: definition and characteristics

- Collective intelligence: definition and characteristics
- Crowdsourcing
 - Aggregate correct answers from high number of error-prone and disagreeing workers
 - Choose tasks and workers according to performance

- Collective intelligence: definition and characteristics
- Crowdsourcing
 - Aggregate correct answers from high number of error-prone and disagreeing workers
- Choose tasks and workers according to performance
 Today's lecture:
- Evaluation of crowdsourced tasks

Indirect collective intelligence

- Collective intelligence: definition and characteristics
- Crowdsourcing
 - Aggregate correct answers from high number of error-prone and disagreeing workers
 - Choose tasks and workers according to performance

Today's lecture:

- Evaluation of crowdsourced tasks
 - 1. Worker consistency
 - 2. Reproducibility
 - 3. Error rate
- Indirect collective intelligence

- (1) Measure how consistently workers perform throughout the task
- not in terms of their answers, but in terms of their modus operandi

- (1) Measure how consistently workers perform throughout the task
- not in terms of their answers, but in terms of their modus operandi

Goal: capture diversity without very extreme outliers

- (1) Measure how consistently workers perform throughout the task
- not in terms of their answers, but in terms of their modus operandi

Goal: capture diversity without very extreme outliers

Common practice:

- Mean task completion time (measured in milliseconds)
- Per-worker <u>standard deviation</u> in task completion times

Problem:

- mean & standard deviation are affected by *very* extreme outliers
- very extreme outliers are rare in general, but not so rare in crowdsourced data

Problem:

- mean & standard deviation are affected by *very* extreme outliers
- very extreme outliers are rare in general, but not so rare in crowdsourced data

Common example:

- worker spends 1.5 seconds on trivial task A
- same worker spends >2 minutes on trivial task B (distracted by external event in the middle of the experiment)

Input: 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4 (no extreme outlier)

Input: 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4 (no extreme outlier)

Mean: ?

Standard deviation: ?

Input: 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4 (no extreme outlier)

Mean: 2.45

Standard deviation: 1.04

Input: 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 400 (with extreme outlier)

Mean: ?

Standard deviation: ?

Input: 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4 (no extreme outlier)

Mean: 2.45

Standard deviation: 1.04

Input: 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 400 (with extreme outlier)

Mean: 35.58

Standard deviation: 114.77

Solution:

- First, detect and remove *very* extreme outliers
- Then, compute mean and standard deviation in task completion time

Solution:

- First, detect and remove *very* extreme outliers
- Then, compute mean and standard deviation in task completion time

Detect very extreme outliers based on (either):

- log-transformed per-worker mean time
- log-transformed per-worker maximum time

Two common ways

Compute mean & standard deviation

- Compute mean & standard deviation
- Data that is more than two standard deviations from the mean → *very* extreme outliers

Figure 3 The normal curve.

Figure 4 The normal curve (with darker areas at either extreme from the median).

- Compute mean & standard deviation
- Data that is more than two standard deviations from the mean → *very* extreme outliers
- Remove extreme outliers and re-compute mean & standard deviation

Figure 3 The normal curve.

Figure 4 The normal curve (with darker areas at either extreme from the median).

- Compute mean & standard deviation
- Data that is more than two standard deviations from the mean → *very* extreme outliers
- Remove extreme outliers and re-compute mean & standard deviation

Assumption: data is normally distributed

Figure 3 The normal curve.

Figure 4 The normal curve (with darker areas at either extreme from the median).

- Compute mean & standard deviation
- Data that is more than two standard deviations from the mean → *very* extreme outliers
- Remove extreme outliers and re-compute mean & standard deviation

Assumption: data is normally distributed

Problem:

- *Very* extreme outliers bias mean & standard deviation
- Not robust

- Sort input data
- Divide sorted data into 4 equal parts

- Sort input data
- Divide sorted data into 4 equal parts

- Sort input data
- Divide sorted data into 4 equal parts
- IQR = Q3 Q1

- Sort input data
- Divide sorted data into 4 equal parts
- IQR = Q3 Q1

Extreme outlier:

- 3 x IQR more than Q3
- 3 x IQR less than Q1

- Sort input data
- Divide sorted data into 4 equal parts
- IQR = Q3 Q1

Extreme outlier:

- 3 x IQR more than Q3
- 3 x IQR less than Q1

Will this remove more or less outliers than method 1?

Method 1: 2 standard deviations from mean

Method 2: 3 x IQR from Q1 and Q3

Method 1: 2 standard deviations from mean

$$\mu = 5.25$$
, $\sigma = 2.96$

Extreme outliers: less than -0.67 and more than 11.17

Method 2: 3 x IQR from Q1 and Q3

Method 1: 2 standard deviations from mean

$$\mu = 5.25$$
, $\sigma = 2.96$

Extreme outliers: less than -0.67 and more than 11.17

Method 2: 3 x IQR from Q1 and Q3

$$Q1 = 3.5$$
, $Q3 = 6.5$, $IQR = 6.5 - 3.5 = 3$

Extreme outliers: less than -5.5 and more than 15.5

Method 1: 2 standard deviations from mean

$$\mu = 5.25$$
, $\sigma = 2.96$

Extreme outliers: less than -0.67 and more than 11.17

Removes 4.6% of the data

Method 2: 3 x IQR from Q1 and Q3

$$Q1 = 3.5$$
, $Q3 = 6.5$, $IQR = 6.5 - 3.5 = 3$

Extreme outliers: less than -5.5 and more than 15.5

Removes 0.0002% of the data (legitimate diversity kept)

Evaluation of crowdsourced tasks

- 1. Worker consistency
- 2. Reproducibility
- 3. Error rate

Reproducibility: can the same conclusions be drawn if the study is repeated?

Reproducibility: can the same conclusions be drawn if the study is repeated?

Large variation of worker population over different times of the day → significant impact on performance

Reproducibility: can the same conclusions be drawn if the study is repeated?

Large variation of worker population over different times of the day → significant impact on performance

	Weekday 11am	Weekday 7pm
Female	74%	57%
Median age	43	32
Use mouse	63%	86%
Use touchpad	27%	14%

Reproducibility: can the same conclusions be drawn if the study is repeated?

Large variation of worker population over different times of the day → significant impact on performance

	Weekday 11am	Weekday 7pm
Female	74%	57%
Median age	43	32
Use mouse	63%	86%
Use touchpad	27%	14%

Lab versus crowdsourcing: no significant difference except for age group 45 – 65 (underrepresented in lab)

Evaluation of crowdsourced tasks

- 1. Worker consistency
- 2. Reproducibility
- 3. Error rate

"Error rate" in crowdsourcing

E.g. label pictures showing cats (labels: cat, not-cat)

E.g. label pictures showing cats (labels: cat, not-cat)

- How many cats were found out of all cats?
- How many non-cat pictures were mislabelled as cats?
- How many pictures were correctly labelled out of all pictures?

		Ground truth	
		true	false
Worker answer	true	true positive (TP)	false positive (FP)
	false	false negative (FN)	true negative (TN)

		Ground truth	
		true	false
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	false negative (FN)	true negative (TN)

How many non-cat pictures were mislabelled as cats?

		Ground truth	
		true	false
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	false negative (FN) Type II error	true negative (TN)

How many cat pictures were mislabelled as not-cats?

		Ground truth	
		true	false
Worker answer	true	true positive (TP)	false positive (FP) Type I error
	false	false negative (FN) Type II error	true negative (TN)

Precision = TP / (TP + FP)

		Ground truth	
		true	false
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	false negative (FN) Type II error	true negative (TN)

Precision = TP / (TP + FP)

		Ground truth	
		true	false
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	false negative (FN) Type II error	true negative (TN)

		Ground truth	
		true	false
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	talse negative (FN) Type II error	true negative (TN)

		Ground truth	
		true	false
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	talse negative (FN) Type II error	true negative (TN)

Precision = TP / (TP + FP) Specificity =
Recall = TP / (TP + FN) TN / (TN+FP)
(Sensitivity)

		true	truth
Worker	true	true positive (TP)	false positive (FP) Type I error
	false	talse negative (FN) Type II error	true negative (TN)

Precision = TP / (TP + FP) Specificity =
Recall = TP / (TP + FN) TN / (TN+FP)
(Sensitivity)

Accuracy: (TP+TN) / (TP+TN+FP+FN)

		Ground truth	
		true (5)	false (95)
Worker	true	true positive	false positive
answer	false	false negative	true negative

Accuracy: (TP+TN) / (TP+TN+FP+FN) Imbalanced dataset (95 false and 5 true labels) classifying all as false

		Ground truth	
		true (5)	false (95)
Worker	true	true positive	false positive
	(0)	(0)	(0)
answer	false	false negative	true negative
	(100)	(5)	(95)

Accuracy: (TP+TN) / (TP+TN+FP+FN) Imbalanced dataset (95 false and 5 true labels) → classifying all as false **gives 0.95 accuracy**

			Ground truth	
			true (5)	false (95)
	Worker	true (0)	true positive (0)	false positive (0)
	answer	false (100)	false negative (5)	true negative (95)

Accuracy: (TP+TN) / (TP+TN+FP+FN) Imbalanced dataset (95 false and 5 true labels) → classifying all as false gives 0.95 accuracy

		Ground truth	
		true (5)	false (95)
Worker	true	true positive	false positive
	(0)	(0)	(0)
answer	false	false negative	true negative
	(100)	(5)	(95)

Balanced accuracy = (recall + specificity)/2

$$= (0/5 + 95/95)/2 = 47.5$$

Quick quiz

- Go to: https://b.socrative.com/login/student/
- Enter as room name: LIOMA
- Enter a fake name for yourself
- Take the quiz

Lecture plan

- Collective Intelligence II
 - Crowdsourcing evaluation
 - Indirect collective intelligence

Collective intelligence

• Direct: explicit information mining from users

Collective intelligence

- Direct: explicit information mining from users
- Indirect: implicit information mining from users

Collective intelligence

- Direct: explicit information mining from users
- Indirect: implicit information mining from users
 Famous case "find best webpages on the web"
 - "Best" approximated as "most popular"
 - "Popular" approximated as "hyperlinked"
 - Mine hyperlinks given to webpages by large crowds → detect best webpages

1921: George Polya, Prof. Mathematics

1921: George Polya, Prof. Mathematics

1921: George Polya, Prof. Mathematics

"I did not foresee that he and his fiancee would also set out for a stroll in the woods, and then suddenly I met them there. And then I met them the same morning repeatedly. I don't remember how many times, but certainly much too often and I felt embarrassed: It looked as if I was snooping around which was, I assure you, not the case"

1921: George Polya, Prof. Mathematics

"I did not foresee that he and his fiancee would also set out for a stroll in the woods, and then suddenly I met them there. And then I met them the same morning repeatedly. I don't remember how many times, but certainly much too often and I felt embarrassed: It looked as if I was snooping around which was, I assure you,

1996: Two CS students, University of Stanford

- Network: 518 million nodes (=webpages)
- Computer simulates Polya's walk (100s of times)

1996: Two CS students, University of Stanford

- Network: 518 million nodes (=webpages)
- Computer simulates Polya's walk (100s of times)
- Finding: most popular webpages
- PageRank algorithm

2019: Sergey Brin, Larry Page, Google Founders

Google:

150 trillion webpages in 2017

3.5 billion searches per day (world population:

7 billion)

Indirect collective intelligence of hyperlinks

https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378

PAGE IN OUT

Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?

PAGE IN OUT

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 (i) How many inlinks (IN) does A have?

PAGE IN OUT

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 (i) How many inlinks (IN) does A have?
 1, from C.

PAGE IN OUT

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 (i) How many inlinks (IN) does A have?
 - 1, from C. For each IN:
 - (ii) How many outlinks (OUT) does C have?
 - (iii) What is C's StartScore?

PAGE IN OUT A 1 2 B 2 1

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 (i) How many inlinks (IN) does A have?
 - 1, from C. For each IN:
 - (ii) How many outlinks (OUT) does C have? 2
 - (iii) What is C's StartScore? 0.5

PAGE IN OUTA 1 2 B 2 1

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 - (i) How many inlinks (IN) does A have?
 - 1, from C. For each IN:
 - (ii) How many outlinks (OUT) does C have? 2
 - (iii) What is C's StartScore? 0.5

EndScore (A) = Σ (A's IN) (StartScore of IN / # OUT of IN)

PAGE IN OUT A 1 2 B 2 1

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 - (i) How many inlinks (IN) does A have?
 - 1, from C. For each IN:
 - (ii) How many outlinks (OUT) does C have? 2
 - (iii) What is C's StartScore? 0.5

EndScore (A) = Σ (A's IN) (StartScore of IN / # OUT of IN)

EndScore(A) = 0.5 / 2 = 0.25

PAGE IN OUT A 1 2 B 2 1

- Assume all pages are equally good.
 StartScore = 0.5. Aim: EndScore = ?
- Take a random page, e.g. A, and ask:
 - (i) How many inlinks (IN) does A have?
 - 1, from C. For each IN:
 - (ii) How many outlinks (OUT) does C have? 2
 - (iii) What is C's StartScore? 0.5

EndScore (A) = Σ (A's IN) (StartScore of IN / # OUT of IN)

- EndScore(A) = 0.5 / 2 = 0.25
- PageRank(A) = (1 d) + d x EndScore(A)
 d: probability that user jumps between pages (d = 0-1)

PAGE IN OUT A 1 2 B 2 1

EndScore (A) = $\Sigma_{A's IN}$ (StartScore of IN / # OUT of IN) PageRank(A) = $(1 - d) + d \times EndScore(A)$ (let d = 0.85)

PAGE IN OUT

A 1 2 B 2 1 C 2 2 EndScore (A) = $\Sigma_{(A's IN)}$ (StartScore of IN / # OUT of IN) PageRank(A) = $(1 - d) + d \times EndScore(A)$ (let d = 0.85)

PageRank(A) = $(1 - 0.85) + 0.85 \times 0.25 = 0.3625$

PAGE IN OUT
A 1 2
B 2 1

EndScore (A) = $\Sigma_{A's}$ IN) (StartScore of IN / # OUT of IN) PageRank(A) = $(1 - d) + d \times EndScore(A)$ (let d = 0.85)

PageRank(A) = $(1 - 0.85) + 0.85 \times 0.25 = 0.3625$
PageRank(B) = $(1 - 0.85) + 0.85 \times 0.5 = 0.575$
PageRank(C) = $(1 - 0.85) + 0.85 \times 0.75 = 0.7875$

PAGE IN OUT A 1 2 B 2 1 C 2 2

EndScore (A) =

Σ_(A's IN) (StartScore of IN / # OUT of IN)

 $PageRank(A) = (1 - d) + d \times EndScore(A)$

(let d = 0.85)

PageRank(A) =
$$(1 - 0.85) + 0.85 \times 0.25 = 0.3625$$

PageRank(B) =
$$(1 - 0.85) + 0.85 \times 0.5 = 0.575$$

PageRank(C) =
$$(1 - 0.85) + 0.85 \times 0.75 = 0.7875$$

PAGE IN OUT

A 1 2

B 2 1

C 2 2

EndScore (A) =

Σ (A's IN) (StartScore of IN / # OUT of IN)

 $PageRank(A) = (1 - d) + d \times EndScore(A)$

(let d = 0.85)

PageRank(A) =
$$(1 - 0.85) + 0.85 \times 0.25 = 0.3625$$

PageRank(B) =
$$(1 - 0.85) + 0.85 \times 0.5 = 0.575$$

PageRank(C) =
$$(1 - 0.85) + 0.85 \times 0.75 = 0.7875$$

PAGE IN OUT Δ 1 2

B

B 2 1

Α

C 2 2

2nd iteration: repeat using the PageRank scores of the 1st iteration as StartScores

EndScore (A) =

Σ_(A's IN) (StartScore of IN / # OUT of IN)

PageRank(A) = $(1 - d) + d \times EndScore(A)$

$$(let d = 0.85)$$

PageRank(A) =
$$(1 - 0.85) + 0.85 \times 0.25 = 0.3625$$

PageRank(B) =
$$(1 - 0.85) + 0.85 \times 0.5 = 0.575$$

PageRank(C) =
$$(1 - 0.85) + 0.85 \times 0.75 = 0.7875$$

2nd iteration: repeat using the PageRank scores of the 1st

iteration as StartScores

PageRank(A) =
$$(1 - 0.85) + 0.85 \times (0.7875/2) \approx 0.5$$

PageRank(B) =
$$(1 - 0.85) + 0.85 \times (0.3625/2 + 0.7875/2) \approx 0.6$$

PageRank(C) =
$$(1 - 0.85) + 0.85 \times (0.3625/2 + 0.575/1) \approx 0.8$$

```
EndScore (A) =
```

$$PageRank(A) = (1 - d) + d \times EndScore(A)$$

$$(let d = 0.85)$$

PageRank(A) =
$$(1 - 0.85) + 0.85 \times 0.25 = 0.3625$$

PageRank(B) =
$$(1 - 0.85) + 0.85 \times 0.5 = 0.575$$

PageRank(C) =
$$(1 - 0.85) + 0.85 \times 0.75 = 0.7875$$

2nd iteration: repeat using the PageRank scores of the 1st

iteration as StartScores

PageRank(A) =
$$(1 - 0.85) + 0.85 \times (0.7875/2) \approx 0.5$$

PageRank(B) =
$$(1 - 0.85) + 0.85 \times (0.3625/2 + 0.7875/2) \approx 0.6$$

PageRank(C) =
$$(1 - 0.85) + 0.85 \times (0.3625/2 + 0.575/1) \approx 0.8$$

3rd iteration: repeat using the PageRank scores of the 2nd

iteration as StartScores

$$PR(p_i) = rac{1-d}{N} + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$

 $PR(p_x)$: pagerank score of webpage p_x

d: damping factor

N: total number of webpages

M(p_i): set of p_i's inlinks

L(p_i): cardinality of the set of p_i's outlinks

$$PR(p_i) = rac{1-d}{N} + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$

 $PR(p_x)$: pagerank score of webpage p_x

d: damping factor

N: total number of webpages

M(p_i): set of p_i's inlinks

L(p_i): cardinality of the set of p_i's outlinks

After 100s iterations, score of webpage quality:

- How many webpages point to it
- How good those webpages are themselves

Recap today's lecture

- (1) Evaluation of crowdsourced tasks:
- Worker consistency w.r.t. task completion time
- Reproducibility
- "Error rate": precision, recall, accuracy, sensitivity, specificity
- (2) Indirect Collective Intelligence: PageRank

Komarov, et al. 2013. "Crowdsourcing Performance Evaluations of User Interfaces." In proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, April 27-May 2, 2013.

Page et al. 1999. "The PageRank Citation Ranking: Bringing Order to the Web." Technical report, Stanford Infolab