

51,52Mn - Motivation

- Emerging medical radionuclides
 - 51 Mn ($t_{1/2}$ = 46 min, 97% β ⁺) short-lived PET tracer for metabolic studies
 - ^{52g}Mn (t_{1/2} = 5.6 d, 29% β ⁺) long-lived PET tracer for neuron tracking, immune studies

Preparation and in vivo characterization of 51MnCl₂ as PET tracer of Ca²⁺ channel-mediated transport

Stephen A. Graves¹, Reinier Hernandez¹, Hector F. Valdovinos¹, Paul A. Ellison¹, Jonathan W. Engle¹* Todd E. Barnhart¹, Weibo Cai^{1,2,3}, Robert J. Nickles¹*

Manganese has well-established biochemistry and uptake via DOTA-

based chelation

Almost no Fe(p,x) XS measurements exist – can use these to probe spin physics in the A≈50 region

Methodology

Two overlapping stacks: $E_p = 55 \rightarrow 21 \text{ MeV}, 25 \rightarrow 11 \text{ MeV}$ • 25 μm-thin ^{nat}Fe, ^{nat}Cu, ^{nat}Ti foils in 0.1" Al frames

 Dosimetry: IAEA charged particle beam monitor reactions:

- $^{\text{nat}}\text{Ti}(p,x)^{48}\text{V}$
- $^{\text{nat}}$ Cu(p,x) 62,63,65 Zn

nds.iaea.org/medical/monitor_reactions.html

Results consistent with R≈1 at high energy.

At low energy, results are ambiguous due to energy straggling.

Measurements @ LANL - Nb(p,x)

• nat Nb(p,4n) 90 Mo is a high-priority objective as a new proton beam dosimetry standard for $E_p \approx 50-100$ MeV

Measurements @ LANL – Nb(p,x)

Measurements @ LANL – Nb(p,x)

LBNL: 5 – 55 MeV / A, LANL: 45 – 100 MeV p⁺

 Complementary measurements explore reaction dynamics in different energy regimes, overlap region of 45-55 MeV builds confidence and consistency in results.

Measurements @ LANL – Nb(p,x)

Summary

Demonstrated ability to measure $R_{\text{spin-cut}}$ in excitation function studies for emerging medical radioisotopes

- Already completed: Fe(p,x), Zr(d,x), Nb(p,x)
- Upcoming targets: ⁸⁶Sr(p,x)⁸⁶Y, La(p,x)^{134,135}Ce, ¹⁷⁷Hf(n,p)¹⁷⁷Lu
 - ⁷Li(p,n) quasi-monoenergetic neutron source development
- Possible future candidates: Access targets previously fielded by β^+ -Oslo in the A \approx 50,90, rare earth regions via (p,xn), (α ,xn)

