EchoPulse – Chronological Table of Contents (v1.0)
🔷 Foundation & Overview
1. `0Echo.Overview.Final.docx`→ Project summary, conceptual goals, high-level structure
2. `0.0EchoPulse_README_and_Cargo.docx`→ Technical setup, Rust module structure, usage instructions
3. `0.2EchoPulse.LegalClaimer.KEM.Blueprint.docx`→ Legal disclaimer and blueprint licensing constraints
4. `1.0EchoPulse_Cover_Letter_Zenodo.docx`→ Zenodo submission letter
5. `1EchoPulse.PrePrint.docx`→ Formal preprint with abstract and complete dossier scope
ớ KEM Core Design & Cryptographic Logic
6. `1Pulse.Vektor.docx`→ Test vectors for validation of SK/r → K process
7. `2.Echo.StateGraph.Design.docx`

$ ightarrow$ Symbolic state graph `G(V,E)`, transition function δ
8. `2Pulse.Hash.Input.docx`
ightarrow Hash input examples and full key derivation chains
9. `3.1Echo.Critical.Improvements.docx`
ightarrow Security enhancements: entropy model, mutation locking, HMAC
10. `3Echo.Key.Derivation.docx`
→ Formal key generation model `K = SHA3(v_enc r)`
🖸 Mutation, Symbolics & Structural Behavior
11. `3Pulse.Failure.CaseHandling.docx`
→ Failure recovery paths, deterministic fallback logic
12. `4.1Pulse.Key.Derivation.Path.docx`
→ Mermaid-based visual path diagram
13. `4.2Pulse.TestVecotr.ExportTable.docx`
→ Test vector export table with SK/r/K flows
14. `4.3Pulse.Golden.TestVector.docx`

ightarrow Golden vector for full E2E reproduction

15. `4Echo.Path.Structure.docx`
→ Public/private key path mechanics in graph space
16. `4Pulse.Hash.Function.docx`
→ Details on SHA3 usage and constant-time hashing interface

🔗 Testing, Mutation, and Threat Modeling
17. `5Echo.Mutation.Framework.docx`
\rightarrow Graph mutation model ` μ (G)`, three mutation types
18. `5Pulse.Struct.rs.docx`
→ Core Rust struct definition for EchoGraph, SK, PK
19. `6.1Echo.Critical.Enhancements.docx`
→ Patch 6.2: Forward secrecy, HMAC locking, mutation fallback
20. `6Echo.Formal.KEM.Definition.docx`
) W5146
→ KEM formal operations: KeyGen, Encaps, Decaps
21. `6Pulse.Keygen.rs.docx`
→ Rust-based key generation implementation
22. `7Echo.Resource.Modeling.docx`

 \rightarrow RAM/ROM profiling and device class recommendations

🔟 Encapsulation, Benchmarks & Protocol Framing
23. `7Pulse.encaps.rs.docx` → Rust-based encapsulation logic
24. `8Echo.Symbol.Mapping.docx` → Formal symbolic alphabet Σ and transition behavior
25. `8Pulse.decaps.rs.docx` → Rust-based decapsulation code
26. `9.1Pulse.EchoTest.golde.rs.docx` → Golden test implementation in Rust
27. `9.2Echo.Protocool.Enhancements.docx` → Protocol patching: CBOR, session drift, resilience layers
28. `9Echo.Threat.Modelling.docx` → Symbolic threat model, attack surface analysis

🖺 Security, Comparison & Finalization

29. `10Echo.Security.Analysis.docx`
ightarrow IND-CCA analysis (ROM), entropy, mutation unpredictability
30. `10Pulse.Benchmark.Profile.docx`
→ Full benchmark profile (Encaps, Decaps, Mutation)
31. `11Echo.Protocoll.ComparisonTable.docx`
→ Comparison vs Kyber512 and FrodoKEM640
32. `11Pulse.Benchmark.csv.docx`
→ CSV-based cycle-level benchmark data
Advanced Features, Strategic Optimizations
33. `12.4.Echo.Strategic.Enhancments.docx`
→ SPOR, MIV, constant-time transition planning
34. `12Echo.Implementation.Notes.docx`
→ Developer notes for practical integration
35. `12Pulse.Ram.Usage.docx`
→ RAM breakdown per function/module
36. `13Pulse.Mutation.Overhead.docx`
\rightarrow Timing & memory cost of mutations (µs per op)

37. `14.1Pulse.Benchmark.Enhancments.docx`
\rightarrow Performance distribution analysis (SHA3 vs δ vs $\mu)$
38. `14Pulse.Benchmark.Script.py.docx`
→ Python benchmark simulation + plot generation
Strategic Evaluation, Compatibility & Gemini Enhancements
39. `15EchoPulse.vs.NIST.PQC.KEMS.Perfoamance.docx`
→ EchoPulse vs NIST-KEMs in size, speed, resistance
40 '16Faha Protocall Structura dagy'
40. `16Echo.Protocoll.Structure.docx`→ Formal protocol struct, ideal for external reviewers
7 Formal protocol struct, ideal for external reviewers
41. `17EchoPulse.Hardware.Mapping.Concepts.docx`
→ Mapping to M0+/RISC-V/FPGAs, hardware paths
42. `18_EchoPulse_Security_Considerations_Verification.docx`
→ Open verification roadmap, review methodology
43. `19EchoPulse.TargetAssumption.docx`
→ SGPU security assumption + IND-CCA ROM sketch
44. `20EchoPulse.SHA3.Bottleneck.docx`

- ightarrow Bottleneck mitigation via BLAKE2s or prehashing
- 45. `21EchoPulseNIST.Compatible.docx`
 - ightarrow Hybrid-KEM, TLS entropy integration, algebraic bridge concepts
