Chapter 7

Systematic uncertainties

Several sources of systematic uncertainties need to be considered in the following. As laid out in chapter 3, they enter the likelihood as nuisance parameters and can be interpreted as a loss of information on the signal strength parameter. In the following, they are separated into experimental uncertainties, arising e.g. from finite detector resolution, and theoretical uncertainties due to modelling of the physics processes during simulation.

7.1 Experimental uncertainties

Experimental uncertainties arise from the methods used to reconstruct, identify and calibrate the physics objects used in the 1ℓ search. They are evaluated using up and down variations provided either as variational weights in the case of efficiency uncertainties, or as additional variational samples derived by re-executing the entire object reconstruction pipeline with varied parameters.

7.1.1 Pile-up reweighting and luminosity

The MC simulated events used in the 1ℓ search were largely already generated before the full Run 2 dataset was recorded, and therefore before the full pile-up profile in data was known. For this reason, the number of average interactions $\langle \mu \rangle$ per bunch crossing in MC is in general not identical to that in data, necessitating a reweighting procedure in MC. In order to account for differences in the measured inelastic pp cross section [239] and the one obtained from MC simulation, a scale factor of 1.03 is applied before the reweighting procedure. As MC samples are generated with integer values of $\langle \mu \rangle$ only, the scale factor is applied to data instead. The uncertainty on the pileup reweighting is evaluated by varying the data scale factor by ± 0.04 and deriving variational pileup weights.

As detailed in section 2.1.2, the total integrated luminosity relies on the measurement of the bunch luminosity which, in turn, needs precise measurements of the visible inelastic cross section $\sigma_{\rm vis}$, as well as the visible pile-up parameter $\mu_{\rm vis}$. Uncertainties on the measurement of the total recorded cross section are dominated by the uncertainties on $\sigma_{\rm vis}$ that is measured during special vdM scans. For the full Run 2 dataset, an overall luminosity uncertainty of $\pm 1.7\%$, is

considered for all MC processes not normalised to data using a CR, derived using the methods described in Ref. [100].

7.1.2 Triggers

As all selections considered in the analysis apply a minimum requirement of $E_{\rm T}^{\rm miss} > 240\,{\rm GeV}$, thus targeting a region where the $E_{\rm T}^{\rm miss}$ triggers are fully efficient (see section 4.7). For this reason, no trigger scale factors and associated uncertainties are needed. Instead, only a 2% normalisation uncertainty correlated over all bins is considered in order to cover differences between the trigger plateaus due to MC statistical uncertainties.

7.1.3 Leptons

A large number of uncertainties on electrons arise from energy scale and resolution measurements [208, 210]. They are assumed to be fully correlated in η and are summed in quadrature, resulting in one nuisance parameter for the energy scale and one for the resolution. Uncertainties on muons arise from calibrations of the muon momentum scale and resolution, and are evaluated using variations in the smearing of the ID and MS tracks as well as the momentum scale, resulting in a total of five Gaussian-constrained nuisance parameters entering the likelihood [211]. Additional lepton-related uncertainties considered in the following originate from measurements of the reconstruction, identification and isolation efficiencies. Two more uncertainties arising from track-to-vertex association and bad muon identification efficiencies are considered in the case of muons.

7.1.4 Jets

The calibration of the jets to the absolute JES is subject to uncertainties arising e.g. from the in situ measurements, pile-up effects or flavour-dependence [216], encoded in a large set of 125 parameters. The full detail contained in the complete set of uncertainty components offers far greater statistical precision than needed for the 1ℓ search. As the majority of the parameters (a total of 98) stems from in situ measurements, an eigenvector decomposition is performed on the covariance matrix of these components [240], allowing to determine the 15 principal orthogonal components (including a residual term adding the remaining terms in quadrature), with minimal loss in bin-by-bin correlation information. Five additional parameters evaluating uncertainties arising from in situ η -intercalibrations of forward jets with respect to central jets are kept separate due to their two-dimensional dependence on $p_{\rm T}$ and η [216]. Effects from pile-up are described by four additional nuisance parameters. Uncertainties arising from differing detector responses to gluon- and quark-initiated jets as well as flavour-related differences are accounted for by two more nuisance parameters. Uncertainties from jets that are not contained in the calorimeters and punch-through into the MS are evaluated with an additional parameter. A last parameter encodes the uncertainty arising from the calibration of MC samples reconstructed using ATLFAST-II instead of the full detector simulation.

Systematic uncertainties on the JER arise from measured differences between data and MC simulation, noise from pile-up, and in situ measurements of the jet $p_{\rm T}$ imbalance. A similar eigenvector decomposition as for part of the JES uncertainties is used, reducing the set of

nuisance parameters considered in the following to 13 [216]. Finally, uncertainties related to the efficiency of jet vertex tagging are evaluated using a weight systematic.

7.1.5 Flavour tagging

Uncertainties on the flavour tagging efficiency originate from e.g. modelling uncertainties, as well as uncertainties on the reconstruction of physics objects. Similar to the JER and JES uncertainties, the full set of nuisance parameters that would in principle need to be included in order to consider the full bin-by-bin correlations and $p_{\rm T}$ and η dependence of the flavour-tagging uncertainties, is reduced to a more manageable size using an eigenvector decomposition. This leads to a total of five nuisance parameters encoding uncertainties on the b-tagging efficiency, c-jet and light-jet mis-tagging rate as well as the extrapolation to high- $p_{\rm T}$ jets [222, 223].

7.1.6 Missing transverse energy

The uncertainties on $E_{\rm T}^{\rm miss}$ are evaluated using the systematic variations of all calibrated objects as inputs to the $E_{\rm T}^{\rm miss}$ calculation. Additional uncertainties arise from the calculation of the track soft term. In the following, uncertainties on the soft term scale and resolution are considered, resulting in one nuisance parameter for the soft term scale and two nuisance parameters—corresponding to the perpendicular and parallel components—for the soft term resolution uncertainty. All track soft term uncertainties are derived by comparing MC simulation to $Z \to \mu\mu$ events [224].

7.2 Theoretical uncertainties

As discussed in section 2.2.8, due to finite order calculations, the different steps of the MC simulation generally introduces a certain number of unphysical scales and parameters. In order to quantify the uncertainties arising from the ad-hoc values of these, the MC simulation generally needs to be re-run with systematically varied parameter values. Since varied MC simulation parameters affect the event kinematics even before reconstruction and calibration, it is computationally very expensive to produce a full set of variations for each MC simulated dataset used in the nominal analysis.

In the following, different approaches are used to derive the theory uncertainties. For some of the variational MC datasets, the full MC simulation chain was run with reduced statistics. For others, different MC datasets produced with a different set of MC generators and tunes were available. For still others, variations were already processed during the initial MC simulation of the nominal sample and subsequently stored as variational weights. Finally, some of the variational MC datasets were simulated at MC truth-level, i.e. without detector simulation. The latter approach was used especially in the case of SUSY signal samples, where the impact of the full detector simulation compared to truth-level comparisons is expected to be small in the context of theory uncertainties. Additionally, a full simulation of MC datasets for all parameter variations and all signal points considered, would be computationally unfeasible.

For background processes that are normalised to data in a dedicated CR, the theory uncertainties are evaluated on the transfer factors. For a process p, a control region CR_i , and a destination

region R_i , the transfer factor reads

$$f_p(\operatorname{CR}_i \to \operatorname{R}_j) = \frac{N_p^{\operatorname{MC}}(\operatorname{R}_j)}{N_p^{\operatorname{MC}}(\operatorname{CR}_i)},$$
 (7.1)

where $N_p^{\text{MC}}(\mathbf{R}_j)$ and $N_p^{\text{MC}}(\mathbf{C}\mathbf{R}_i)$ are the expected event rates for the process p in $\mathbf{C}\mathbf{R}_i$ and \mathbf{R}_j , respectively. The systematic uncertainty on the transfer factor is then given by

$$\Delta f_p^{\text{syst}} = \frac{f_p^{\text{variation}}}{f_p^{\text{nominal}}} - 1, \tag{7.2}$$

with $f_p^{\text{variation}}$ and f_p^{nominal} the transfer factors from the variational and nominal samples, respectively. If the MC datasets used for deriving the variational and nominal transfer factors are statistically independent, a statistical component of the uncertainty is derived using the individual statistical uncertainties on the background estimate,

$$\Delta f_p^{\text{stat}} = (\Delta f_p^{\text{syst}} + 1) \sqrt{\sum_{n \in \mathbb{N}} (\frac{\sigma_n}{n})^2}, \tag{7.3}$$

where n runs over the set of expected event rates and σ_n is the absolute MC statistical uncertainty associated to each expected event rate n. In the following, the control region used to evaluate the uncertainties on the transfer factors is taken to be the sum of all CRs introduced in section 6.2. This approach not only significantly improves the statistics in the region used for normalisation, but also results in a consistent treatment across all theoretical uncertainties on all relevant processes.

For backgrounds directly estimated from MC simulation, the systematic uncertainty on the expected event rate in each region R_i is given by

$$\Delta n_p^{\text{syst}}(\mathbf{R}_i) = \frac{n_p^{\text{syst}}(\mathbf{R}_i) n_p^{\text{nominal}}(\mathbf{P})}{n_p^{\text{nominal}}(\mathbf{R}_i) n_p^{\text{syst}}(\mathbf{P})} - 1, \tag{7.4}$$

where the region P is a so-called *loose preselection* with minimal analysis selection criteria, used for normalisation of the event rates to be compared. If not otherwise indicated, the loose preselection used for normalisation requires exactly one isolated lepton, 2–3 jets of which at least one is b-tagged, $E_{\rm T}^{\rm miss} > 220\,{\rm GeV}$ and $m_{\rm T} > 50\,{\rm GeV}$.

Apart from the hard scattering and parton showering uncertainties on top processes, all other theoretical uncertainties enter the likelihood as asymmetric correlated shape uncertainties. The hard scattering and parton showering uncertainties on top processes described below are estimated using MC generator comparisons and thus need to be symmetrised. The shape information is however still kept, i.e. the uncertainties are not one-sided.

7.2.1 Background

$t\bar{t}$ and single top

Theory uncertainties on the estimate of $t\bar{t}$ and single top processes arise for example from the simulation of the hard scattering between the interacting partons. These are evaluated by comparing the estimates from the nominal MC datasets generated using POWHEG and PYTHIA8 with those from alternative datasets generated using MADGRAPH_AMC@NLO and PYTHIA8. An uncertainty resulting from the hadronisation and fragmentation scheme chosen in PYTHIA8 is estimated by comparison to a MC dataset generated using POWHEG and HERWIG++ [241]. Uncertainties arising from ISR are evaluated at full reconstruction level by varying up and down by a factor of two the unphysical renormalisation $\mu_{\rm R}$ and factorisation $\mu_{\rm F}$ scales as well as the parameters controlling the showering and ME+PS matching [242]. Likewise, uncertainties arising from simulation of FSR are estimated by varying the effective coupling $\alpha_s^{\rm FSR}$ [242].

Uncertainties also originate from the PDF set used during generation of the nominal MC dataset. As detailed in table 4.1, the NNPDF3.0NLO is used for the simulation of both $t\bar{t}$ and single top processes. An envelope around the variational expected event rates obtained from the NNPDF3.0NLO uncertainties are used to compute an uncertainty on the transfer factor.

Beyond LO single top production diagrams, interference appears between Wt and $t\bar{t}$ production. Two approaches are commonly used to try and isolate the Wt channel: diagram removal (DR) and diagram subtraction (DS) [243]. While the former removes all diagrams in the NLO Wt amplitude that are doubly resonant (meaning that they involve an intermediate top quark that can be on-shell), the latter introduces subtraction terms in the NLO Wt cross section cancelling the $t\bar{t}$ contribution [243]. As the DR scheme is used for estimating the event rate of the Wt channel in the analysis, a comparison with an estimation using the DS scheme allows to derive an uncertainty associated to the interference.

W/Z + jets

For W/Z + jets processes, simulated using SHERPA 2.2.1, four different unphysical scales can be varied in order to evaluate uncertainties on the modelling. The renormalisation $\mu_{\rm R}$ and factorisation $\mu_{\rm F}$ scales are both independently and together varied up and down by a factor of two, resulting in a total of seven combined variations. Three envelopes are determined from varying only $\mu_{\rm R}$, only $\mu_{\rm F}$ or $\mu_{\rm R}$ and $\mu_{\rm F}$ together, allowing to determine three separate uncertainties. The CKKW ME+PS matching scheme also uses an unphysical scale for determining the overlap between jets from the ME and the PS. The nominal value of 20 GeV for the merging scale is varied to 30 GeV and 15 GeV for the up and down systematic variations, respectively. Finally, the scale used for resummation of soft gluon emission, $\mu_{\rm QSF}$, is varied up and down by a factor of two, and the effect on the expected event rates are determined.

An additional uncertainty arises from the choice of PDF set used for simulating W/Z + jets. It is evaluated by propagating the PDF error set (containing slightly different parameterisations of the PDF) to the analysis observables. Uncertainties due to the choice of the strong coupling constant $\alpha_s(m_Z) = 0.118$ for fitting the PDFs are estimated by comparing with variations using $\alpha_s(m_Z) = 0.119$ and $\alpha_s(m_Z) = 0.117$, and added in quadrature to the PDF uncertainty.

As Z + jets is not normalised to data in a dedicated CR but to its nominal SM cross section, an additional normalisation uncertainty corresponding to the theoretical uncertainty on the cross section is considered.

Other backgrounds

For diboson, multiboson and $t\bar{t}+V$ processes, uncertainties arising from the unphysical scales $\mu_{\rm F}$, $\mu_{\rm R}$ as well as $\mu_{\rm QSF}$ and the CKKW ME+PS matching scale are considered using the same prescription described above for W/Z + jets. For these three processes as well as for the other minor backgrounds V+h and $t\bar{t}+h$, an additional uncertainty on the SM cross section used for normalisation is taken into account.

7.2.2 Signal

Theoretical uncertainties on the SUSY signal processes arise from the unphysical factorisation, renormalisation and CKKW-L ME+PS merging scales. These are evaluated using a similar procedure as for background processes, varying the different scales up and down by a factor of two and comparing the expected signal rates. An additional uncertainty on PS originating from the chosen PYTHIA8 tune is estimated by varying up and down the chosen value for $\alpha_s^{\rm ISR}$.

As detailed in section 4.3.1, the cross section of electroweakino pair production is calculated using Resummino. A theoretical uncertainty on the cross section is considered in the following, but does not enter the statistical fit procedure as nuisance parameter. Instead, in addition to the set of observed CL_s values using the nominal cross section, two additional variational sets are derived using signal cross sections fixed at their $\pm 1\sigma$ variations. This allows to draw a cross section uncertainty band on the observed exclusion contour.

Due to the large number of MC samples, all theory uncertainties on SUSY signal processes are evaluated at MC truth-level only. As the VRs typically have relatively low signal contamination and thus low signal MC statistics available for evaluating theory uncertainties, requirements on observables with negligible impact on the shapes of the theoretical uncertainties are loosened. In the on-peak VRs, the requirements loosened are $m_{\rm T}>60\,{\rm GeV}$ and $E_{\rm T}^{\rm miss}>140\,{\rm GeV}$. The same loosened selection is applied in SRs in cases where the MC statistical uncertainty is too high for a reliable estimation of the theoretical uncertainties. In the off-peak VRs, the requirements loosened are $m_{\rm T}>60\,{\rm GeV}$ and $E_{\rm T}^{\rm miss}>60\,{\rm GeV}$ and $m_{\rm CT}>60\,{\rm GeV}$. Overall, the theoretical uncertainties on the expected signal rate range from about 10% in phase space regions with large mass splitting between $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ to about 25% in regions with small mass splittings.

7.3 Impact on signal regions

Table 7.1 shows a breakdown of the dominant systematic uncertainties on the background prediction in the SRs, obtained after a background-only fit in the CRs with subsequent extrapolation to the SRs. The total uncertainty in the SRs amounts to 15% in SR-LM and increases to 25% in SR-MM and 34% in SR-HM. Theoretical uncertainties have the largest contribution to the total uncertainty. For SR-LM, the largest uncertainty, amounting to 10% of the total background estimate, originates from the $t\bar{t}$ parton shower uncertainty. For SR-MM

Table 7.1: Breakdown of the dominant systematic uncertainties on background estimates in the various exclusion signal regions ($m_{\rm CT}$ bins summed up). As the individual uncertainties can be correlated, they do not necessarily add up in quadrature to the total background uncertainty. The percentages show the size of the uncertainty relative to the total expected background. Table adapted from Ref. [170].

Signal Region	SR-LM	SR-MM	SR-HM			
Total background expectation	27	8.6	8.1			
Total uncertainty	±4 [15%]	$\pm 2.2 [25\%]$	$\pm 2.7 \ [34\%]$			
Theoretical systematic uncertainties						
$t\bar{t}$ Single top $W+jets$ Other backgrounds	$\pm 2.6 [10\%]$ $\pm 0.8 [2.7\%]$ $\pm 0.23 [0.9\%]$ $\pm 0.13 [0.5\%]$		±0.33 [4%] ±1.9 [23%] ±0.19 [2.3%] ±0.08 [1.0%]			
MC statistical uncertainties						
MC statistics	±1.7 [6%]	$\pm 1.1 [13\%]$	$\pm 1.2 [14\%]$			
Uncertainties in the background normalisation						
Normalisation of dominant backgrounds	$\pm 1.3 [5\%]$	±1.6 [18%]	±1.3 [16%]			
Experimental systematic uncertainties						
$E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{JVT/pile}$ -up/trigger Jet energy resolution b-tagging Jet energy scale Lepton uncertainties	$\pm 1.8 [7\%]$ $\pm 1.6 [6\%]$ $\pm 1.1 [4\%]$ $\pm 0.9 [3.2\%]$ $\pm 0.32 [1.2\%]$	$\begin{array}{c} \pm 0.4 \ [4\%] \\ \pm 0.5 \ [6\%] \\ \pm 0.29 \ [3.4\%] \\ \pm 0.9 \ [10\%] \\ \pm 0.09 \ [1.0\%] \end{array}$	$\begin{array}{l} \pm 0.4 \ [5\%] \\ \pm 0.4 \ [5\%] \\ \pm 0.13 \ [1.5\%] \\ \pm 0.29 \ [4\%] \\ \pm 0.19 \ [2.3\%] \end{array}$			

(SR-HM), the single top generator uncertainties are the largest ones with 10% (21%) of the total background estimate. Theoretical uncertainties on W + jets and other minor backgrounds have only small to negligible effects. The experimental uncertainties in general have less impact on the total uncertainty than the theoretical ones, with the largest experimental uncertainties contributing only 5–10% depending on the SR. The dominant experimental uncertainties arise from the JES and JER as well as $E_{\rm T}^{\rm miss}$ modelling and pile-up effects. The MC statistical uncertainties contribute 5–18%, depending on the SR.

- [1] I. C. Brock and T. Schorner-Sadenius, *Physics at the terascale*. Wiley, Weinheim, 2011. https://cds.cern.ch/record/1354959.
- [2] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory. Addison-Wesley, Reading, USA, 1995. http://www.slac.stanford.edu/~mpeskin/QFT.html.
- [3] S. P. Martin, "A Supersymmetry primer," arXiv:hep-ph/9709356 [hep-ph]. [Adv. Ser. Direct. High Energy Phys.18,1(1998)].
- [4] M. Bustamante, L. Cieri, and J. Ellis, "Beyond the Standard Model for Montaneros," in 5th CERN Latin American School of High-Energy Physics. 11, 2009. arXiv:0911.4409 [hep-ph].
- [5] L. Brown, *The Birth of particle physics*. Cambridge University Press, Cambridge Cambridgeshire New York, 1986.
- [6] P. J. Mohr, D. B. Newell, and B. N. Taylor, "CODATA Recommended Values of the Fundamental Physical Constants: 2014," Rev. Mod. Phys. 88 no. 3, (2016) 035009, arXiv:1507.07956 [physics.atom-ph].
- [7] P. D. Group, "Review of Particle Physics," Progress of Theoretical and Experimental Physics 2020 no. 8, (08, 2020), https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf. https://doi.org/10.1093/ptep/ptaa104.083C01.
- [8] **Super-Kamiokande** Collaboration, Y. Fukuda *et al.*, "Evidence for oscillation of atmospheric neutrinos," *Phys. Rev. Lett.* **81** (1998) 1562–1567, arXiv:hep-ex/9807003 [hep-ex].
- [9] Z. Maki, M. Nakagawa, and S. Sakata, "Remarks on the unified model of elementary particles," *Prog. Theor. Phys.* **28** (1962) 870–880. [,34(1962)].
- [10] N. Cabibbo, "Unitary symmetry and leptonic decays," *Phys. Rev. Lett.* **10** (Jun, 1963) 531–533. https://link.aps.org/doi/10.1103/PhysRevLett.10.531.
- [11] M. Kobayashi and T. Maskawa, "CP Violation in the Renormalizable Theory of Weak Interaction," *Prog. Theor. Phys.* **49** (1973) 652–657.
- [12] E. Noether and M. A. Tavel, "Invariant variation problems," arXiv:physics/0503066.
- [13] J. C. Ward, "An identity in quantum electrodynamics," *Phys. Rev.* **78** (Apr, 1950) 182–182. https://link.aps.org/doi/10.1103/PhysRev.78.182.

[14] Y. Takahashi, "On the generalized ward identity," Il Nuovo Cimento (1955-1965) 6 no. 2, (Aug, 1957) 371–375. https://doi.org/10.1007/BF02832514.

- [15] G. 'tHooft, "Renormalization of massless yang-mills fields," *Nuclear Physics B* **33** no. 1, (1971) 173 199. http://www.sciencedirect.com/science/article/pii/0550321371903956.
- [16] J. Taylor, "Ward identities and charge renormalization of the yang-mills field," *Nuclear Physics B* **33** no. 2, (1971) 436 444. http://www.sciencedirect.com/science/article/pii/0550321371902975.
- [17] A. A. Slavnov, "Ward identities in gauge theories," *Theoretical and Mathematical Physics* **10** no. 2, (Feb, 1972) 99–104. https://doi.org/10.1007/BF01090719.
- [18] C. N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Phys. Rev.* **96** (Oct, 1954) 191–195. https://link.aps.org/doi/10.1103/PhysRev.96.191.
- [19] K. G. Wilson, "Confinement of quarks," Phys. Rev. D 10 (Oct, 1974) 2445–2459. https://link.aps.org/doi/10.1103/PhysRevD.10.2445.
- [20] T. DeGrand and C. DeTar, Lattice Methods for Quantum Chromodynamics. World Scientific, Singapore, 2006. https://cds.cern.ch/record/1055545.
- [21] S. L. Glashow, "Partial-symmetries of weak interactions," *Nuclear Physics* **22** no. 4, (1961) 579 588. http://www.sciencedirect.com/science/article/pii/0029558261904692.
- [22] S. Weinberg, "A model of leptons," *Phys. Rev. Lett.* **19** (Nov, 1967) 1264–1266. https://link.aps.org/doi/10.1103/PhysRevLett.19.1264.
- [23] A. Salam and J. C. Ward, "Weak and electromagnetic interactions," *Il Nuovo Cimento* (1955-1965) 11 no. 4, (Feb, 1959) 568–577. https://doi.org/10.1007/BF02726525.
- [24] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, "Experimental test of parity conservation in beta decay," *Phys. Rev.* **105** (Feb, 1957) 1413–1415. https://link.aps.org/doi/10.1103/PhysRev.105.1413.
- [25] M. Gell-Mann, "The interpretation of the new particles as displaced charge multiplets," Il Nuovo Cimento (1955-1965) 4 no. 2, (Apr, 1956) 848–866. https://doi.org/10.1007/BF02748000.
- [26] K. Nishijima, "Charge Independence Theory of V Particles*," Progress of Theoretical Physics 13 no. 3, (03, 1955) 285-304, https://academic.oup.com/ptp/article-pdf/13/3/285/5425869/13-3-285.pdf. https://doi.org/10.1143/PTP.13.285.
- [27] T. Nakano and K. Nishijima, "Charge Independence for V-particles*," Progress of Theoretical Physics 10 no. 5, (11, 1953) 581-582, https://academic.oup.com/ptp/article-pdf/10/5/581/5364926/10-5-581.pdf. https://doi.org/10.1143/PTP.10.581.
- [28] F. Englert and R. Brout, "Broken symmetry and the mass of gauge vector mesons," *Phys. Rev. Lett.* **13** (Aug, 1964) 321–323. https://link.aps.org/doi/10.1103/PhysRevLett.13.321.
- [29] P. W. Higgs, "Broken symmetries and the masses of gauge bosons," *Phys. Rev. Lett.* **13** (Oct, 1964) 508–509. https://link.aps.org/doi/10.1103/PhysRevLett.13.508.

[30] P. W. Higgs, "Spontaneous symmetry breakdown without massless bosons," *Phys. Rev.* **145** (May, 1966) 1156–1163. https://link.aps.org/doi/10.1103/PhysRev.145.1156.

- [31] Y. Nambu, "Quasiparticles and Gauge Invariance in the Theory of Superconductivity," *Phys. Rev.* **117** (1960) 648–663. [,132(1960)].
- [32] J. Goldstone, "Field Theories with Superconductor Solutions," *Nuovo Cim.* **19** (1961) 154–164.
- [33] V. Brdar, A. J. Helmboldt, S. Iwamoto, and K. Schmitz, "Type-I Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale," *Phys. Rev. D* **100** (2019) 075029, arXiv:1905.12634 [hep-ph].
- [34] G. 't Hooft and M. Veltman, "Regularization and renormalization of gauge fields," Nuclear Physics B 44 no. 1, (1972) 189 213. http://www.sciencedirect.com/science/article/pii/0550321372902799.
- [35] F. Zwicky, "Die Rotverschiebung von extragalaktischen Nebeln," *Helv. Phys. Acta* 6 (1933) 110–127. https://cds.cern.ch/record/437297.
- [36] V. C. Rubin and W. K. Ford, Jr., "Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions," *Astrophys. J.* **159** (1970) 379–403.
- [37] G. Bertone, D. Hooper, and J. Silk, "Particle dark matter: Evidence, candidates and constraints," *Phys. Rept.* **405** (2005) 279–390, arXiv:hep-ph/0404175.
- [38] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, "A direct empirical proof of the existence of dark matter," *Astrophys. J.* **648** (2006) L109–L113, arXiv:astro-ph/0608407 [astro-ph].
- [39] A. Taylor, S. Dye, T. J. Broadhurst, N. Benitez, and E. van Kampen, "Gravitational lens magnification and the mass of abell 1689," Astrophys. J. 501 (1998) 539, arXiv:astro-ph/9801158.
- [40] C. Bennett *et al.*, "Four year COBE DMR cosmic microwave background observations: Maps and basic results," *Astrophys. J. Lett.* **464** (1996) L1–L4, arXiv:astro-ph/9601067.
- [41] G. F. Smoot *et al.*, "Structure in the COBE Differential Microwave Radiometer First-Year Maps," ApJS **396** (September, 1992) L1.
- [42] **WMAP** Collaboration, "Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results," *ApJS* **208** no. 2, (October, 2013) 20, arXiv:1212.5225 [astro-ph.CO].
- [43] **WMAP** Collaboration, "Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results," *ApJS* **208** no. 2, (October, 2013) 19, arXiv:1212.5226 [astro-ph.CO].
- [44] **Planck** Collaboration, "Planck 2018 results. I. Overview and the cosmological legacy of Planck," *Astron. Astrophys.* **641** (2020) A1, arXiv:1807.06205 [astro-ph.CO].
- [45] A. Liddle, An introduction to modern cosmology; 3rd ed. Wiley, Chichester, Mar, 2015. https://cds.cern.ch/record/1976476.
- [46] **Planck** Collaboration, "Planck 2018 results. VI. Cosmological parameters," *Astron. Astrophys.* **641** (2020) A6, arXiv:1807.06209 [astro-ph.CO].

[47] H. Georgi and S. L. Glashow, "Unity of all elementary-particle forces," *Phys. Rev. Lett.* **32** (Feb, 1974) 438–441. https://link.aps.org/doi/10.1103/PhysRevLett.32.438.

- [48] I. Aitchison, Supersymmetry in Particle Physics. An Elementary Introduction. Cambridge University Press, Cambridge, 2007.
- [49] Muon g-2 Collaboration, G. Bennett *et al.*, "Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL," *Phys. Rev. D* 73 (2006) 072003, arXiv:hep-ex/0602035.
- [50] H. Baer and X. Tata, Weak Scale Supersymmetry: From Superfields to Scattering Events. Cambridge University Press, 2006.
- [51] A. Czarnecki and W. J. Marciano, "The Muon anomalous magnetic moment: A Harbinger for 'new physics'," *Phys. Rev. D* **64** (2001) 013014, arXiv:hep-ph/0102122.
- [52] J. L. Feng and K. T. Matchev, "Supersymmetry and the anomalous magnetic moment of the muon," *Phys. Rev. Lett.* **86** (2001) 3480–3483, arXiv:hep-ph/0102146.
- [53] S. Coleman and J. Mandula, "All possible symmetries of the s matrix," *Phys. Rev.* **159** (Jul, 1967) 1251–1256. https://link.aps.org/doi/10.1103/PhysRev.159.1251.
- [54] R. Haag, J. T. Lopuszanski, and M. Sohnius, "All Possible Generators of Supersymmetries of the s Matrix," *Nucl. Phys.* **B88** (1975) 257. [,257(1974)].
- [55] J. Wess and B. Zumino, "Supergauge transformations in four dimensions," *Nuclear Physics B* **70** no. 1, (1974) 39 50. http://www.sciencedirect.com/science/article/pii/0550321374903551.
- [56] H. Georgi and S. L. Glashow, "Gauge theories without anomalies," *Phys. Rev. D* **6** (Jul, 1972) 429–431. https://link.aps.org/doi/10.1103/PhysRevD.6.429.
- [57] S. Dimopoulos and D. W. Sutter, "The Supersymmetric flavor problem," *Nucl. Phys. B* **452** (1995) 496–512, arXiv:hep-ph/9504415.
- [58] MEG Collaboration, T. Mori, "Final Results of the MEG Experiment," Nuovo Cim. C 39 no. 4, (2017) 325, arXiv:1606.08168 [hep-ex].
- [59] H. P. Nilles, "Supersymmetry, Supergravity and Particle Physics," *Phys. Rept.* **110** (1984) 1–162.
- [60] A. Lahanas and D. Nanopoulos, "The road to no-scale supergravity," Physics Reports 145 no. 1, (1987) 1 – 139. http://www.sciencedirect.com/science/article/pii/0370157387900342.
- [61] J. L. Feng, A. Rajaraman, and F. Takayama, "Superweakly interacting massive particles," *Phys. Rev. Lett.* **91** (2003) 011302, arXiv:hep-ph/0302215.
- [62] Super-Kamiokande Collaboration, K. Abe et al., "Search for proton decay via $p \to e^+\pi^0$ and $p \to \mu^+\pi^0$ in 0.31 megaton-years exposure of the Super-Kamiokande water Cherenkov detector," *Phys. Rev.* **D95** no. 1, (2017) 012004, arXiv:1610.03597 [hep-ex].
- [63] J. R. Ellis, "Beyond the standard model for hill walkers," in 1998 European School of High-Energy Physics, pp. 133–196. 8, 1998. arXiv:hep-ph/9812235.

[64] J. R. Ellis, J. Hagelin, D. V. Nanopoulos, K. A. Olive, and M. Srednicki, "Supersymmetric Relics from the Big Bang," *Nucl. Phys. B* **238** (1984) 453–476.

- [65] D. O. Caldwell, R. M. Eisberg, D. M. Grumm, M. S. Witherell, B. Sadoulet, F. S. Goulding, and A. R. Smith, "Laboratory limits on galactic cold dark matter," *Phys. Rev. Lett.* 61 (Aug, 1988) 510–513. https://link.aps.org/doi/10.1103/PhysRevLett.61.510.
- [66] M. Mori, M. M. Nojiri, K. S. Hirata, K. Kihara, Y. Oyama, A. Suzuki, K. Takahashi, M. Yamada, H. Takei, M. Koga, K. Miyano, H. Miyata, Y. Fukuda, T. Hayakawa, K. Inoue, T. Ishida, T. Kajita, Y. Koshio, M. Nakahata, K. Nakamura, A. Sakai, N. Sato, M. Shiozawa, J. Suzuki, Y. Suzuki, Y. Totsuka, M. Koshiba, K. Nishijima, T. Kajimura, T. Suda, A. T. Suzuki, T. Hara, Y. Nagashima, M. Takita, H. Yokoyama, A. Yoshimoto, K. Kaneyuki, Y. Takeuchi, T. Tanimori, S. Tasaka, and K. Nishikawa, "Search for neutralino dark matter heavier than the w boson at kamiokande," Phys. Rev. D 48 (Dec, 1993) 5505–5518. https://link.aps.org/doi/10.1103/PhysRevD.48.5505.
- [67] **CDMS** Collaboration, D. S. Akerib *et al.*, "Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory," *Phys. Rev. D* **72** (2005) 052009, arXiv:astro-ph/0507190.
- [68] A. Djouadi, J.-L. Kneur, and G. Moultaka, "SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM," *Comput. Phys. Commun.* **176** (2007) 426–455, arXiv:hep-ph/0211331.
- [69] C. F. Berger, J. S. Gainer, J. L. Hewett, and T. G. Rizzo, "Supersymmetry without prejudice," *Journal of High Energy Physics* 2009 no. 02, (Feb, 2009) 023–023. http://dx.doi.org/10.1088/1126-6708/2009/02/023.
- [70] J. Alwall, P. Schuster, and N. Toro, "Simplified Models for a First Characterization of New Physics at the LHC," *Phys. Rev.* **D79** (2009) 075020, arXiv:0810.3921 [hep-ph].
- [71] LHC New Physics Working Group Collaboration, D. Alves, "Simplified Models for LHC New Physics Searches," J. Phys. G39 (2012) 105005, arXiv:1105.2838 [hep-ph].
- [72] D. S. Alves, E. Izaguirre, and J. G. Wacker, "Where the Sidewalk Ends: Jets and Missing Energy Search Strategies for the 7 TeV LHC," *JHEP* 10 (2011) 012, arXiv:1102.5338 [hep-ph].
- [73] F. Ambrogi, S. Kraml, S. Kulkarni, U. Laa, A. Lessa, and W. Waltenberger, "On the coverage of the pMSSM by simplified model results," *Eur. Phys. J. C* 78 no. 3, (2018) 215, arXiv:1707.09036 [hep-ph].
- [74] O. Buchmueller and J. Marrouche, "Universal mass limits on gluino and third-generation squarks in the context of Natural-like SUSY spectra," *Int. J. Mod. Phys. A* **29** no. 06, (2014) 1450032, arXiv:1304.2185 [hep-ph].
- [75] **ATLAS** Collaboration, M. Aaboud *et al.*, "Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in $\sqrt{s} = 8$ TeV proton-proton collisions," *JHEP* **09** (2016) 175, arXiv:1608.00872 [hep-ex].
- [76] **ATLAS** Collaboration, "Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 interpreted in the phenomenological MSSM," *JHEP* **10** (2015) 134, arXiv:1508.06608 [hep-ex].

[77] ATLAS Collaboration, "Mass reach of the atlas searches for supersymmetry." https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-020/fig_23.png, 2020.

- [78] CMS Collaboration, "Summary plot moriond 2017." https://twiki.cern.ch/twiki/pub/CMSPublic/SUSYSummary2017/Moriond2017_BarPlot.pdf, 2017.
- [79] L. S. W. Group, "Notes lepsusywg/02-04.1 and lepsusywg/01-03.1." http://lepsusy.web.cern.ch/lepsusy/, 2004. Accessed: 2021-02-11.
- [80] **ATLAS** Collaboration, G. Aad *et al.*, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC," *Phys. Lett. B* **716** (2012) 1–29, arXiv:1207.7214 [hep-ex].
- [81] **CMS** Collaboration, S. Chatrchyan *et al.*, "Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC," *Phys. Lett. B* **716** (2012) 30–61, arXiv:1207.7235 [hep-ex].
- [82] CERN, "About cern." https://home.cern/about. Accessed: 2021-01-21.
- [83] CERN, "CERN Annual report 2019," tech. rep., CERN, Geneva, 2020. https://cds.cern.ch/record/2723123.
- [84] O. S. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock, LHC Design Report. CERN Yellow Reports: Monographs. CERN, Geneva, 2004. https://cds.cern.ch/record/782076.
- [85] M. Blewett and N. Vogt-Nilsen, "Proceedings of the 8th international conference on high-energy accelerators, cern 1971. conference held at geneva, 20–24 september 1971.," tech. rep., 1971, 1971.
- [86] L. R. Evans and P. Bryant, "LHC Machine," JINST 3 (2008) S08001. 164 p. http://cds.cern.ch/record/1129806. This report is an abridged version of the LHC Design Report (CERN-2004-003).
- [87] R. Scrivens, M. Kronberger, D. Küchler, J. Lettry, C. Mastrostefano, O. Midttun, M. O'Neil, H. Pereira, and C. Schmitzer, "Overview of the status and developments on primary ion sources at CERN*,". https://cds.cern.ch/record/1382102.
- [88] M. Vretenar, J. Vollaire, R. Scrivens, C. Rossi, F. Roncarolo, S. Ramberger, U. Raich, B. Puccio, D. Nisbet, R. Mompo, S. Mathot, C. Martin, L. A. Lopez-Hernandez, A. Lombardi, J. Lettry, J. B. Lallement, I. Kozsar, J. Hansen, F. Gerigk, A. Funken, J. F. Fuchs, N. Dos Santos, M. Calviani, M. Buzio, O. Brunner, Y. Body, P. Baudrenghien, J. Bauche, and T. Zickler, *Linac4 design report*, vol. 6 of *CERN Yellow Reports: Monographs*. CERN, Geneva, 2020. https://cds.cern.ch/record/2736208.
- [89] E. Mobs, "The CERN accelerator complex 2019. Complexe des accélérateurs du CERN 2019,". https://cds.cern.ch/record/2684277. General Photo.
- [90] ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," JINST 3 (2008) S08003.
- [91] **CMS** Collaboration, S. Chatrchyan *et al.*, "The CMS Experiment at the CERN LHC," *JINST* **3** (2008) S08004.

[92] **ALICE** Collaboration, K. Aamodt *et al.*, "The ALICE experiment at the CERN LHC," *JINST* **3** (2008) S08002.

- [93] LHCb Collaboration, J. Alves, A.Augusto et al., "The LHCb Detector at the LHC," JINST 3 (2008) S08005.
- [94] **TOTEM** Collaboration, G. Anelli *et al.*, "The TOTEM experiment at the CERN Large Hadron Collider," *JINST* **3** (2008) S08007.
- [95] **LHCf** Collaboration, O. Adriani *et al.*, "Technical design report of the LHCf experiment: Measurement of photons and neutral pions in the very forward region of LHC,".
- [96] **MoEDAL** Collaboration, J. Pinfold *et al.*, "Technical Design Report of the MoEDAL Experiment,".
- [97] ATLAS Collaboration, "ATLAS Public Results Luminosity Public Results Run 2,". https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2. Accessed: 2021-01-17.
- [98] ATLAS Collaboration, Z. Marshall, "Simulation of Pile-up in the ATLAS Experiment," J. Phys. Conf. Ser. 513 (2014) 022024.
- [99] "First beam in the LHC accelerating science,". https://home.cern/news/news/accelerators/record-luminosity-well-done-lhc. Accessed: 2021-01-10.
- [100] **ATLAS Collaboration** Collaboration, "Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC," Tech. Rep. ATLAS-CONF-2019-021, CERN, Geneva, Jun, 2019. https://cds.cern.ch/record/2677054.
- [101] **ATLAS** Collaboration, M. Aaboud *et al.*, "Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC," *Eur. Phys. J. C* **76** no. 12, (2016) 653, arXiv:1608.03953 [hep-ex].
- [102] G. Avoni, M. Bruschi, G. Cabras, D. Caforio, N. Dehghanian, A. Floderus, B. Giacobbe, F. Giannuzzi, F. Giorgi, P. Grafström, V. Hedberg, F. L. Manghi, S. Meneghini, J. Pinfold, E. Richards, C. Sbarra, N. S. Cesari, A. Sbrizzi, R. Soluk, G. Ucchielli, S. Valentinetti, O. Viazlo, M. Villa, C. Vittori, R. Vuillermet, and A. Zoccoli, "The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS," Journal of Instrumentation 13 no. 07, (Jul, 2018) P07017–P07017. https://doi.org/10.1088/1748-0221/13/07/p07017.
- [103] S. van der Meer, "Calibration of the effective beam height in the ISR," Tech. Rep. CERN-ISR-PO-68-31. ISR-PO-68-31, CERN, Geneva, 1968. https://cds.cern.ch/record/296752.
- [104] P. Grafström and W. Kozanecki, "Luminosity determination at proton colliders," Progress in Particle and Nuclear Physics 81 (2015) 97 – 148. http://www.sciencedirect.com/science/article/pii/S0146641014000878.
- [105] "New schedule for CERN's accelerators and experiments,". https://home.cern/news/press-release/cern/first-beam-lhc-accelerating-science. Accessed: 2021-01-10.

[106] **ATLAS** Collaboration, G. Aad *et al.*, "Luminosity Determination in *pp* Collisions at $\sqrt{s} = 7$ TeV Using the ATLAS Detector at the LHC," *Eur. Phys. J. C* **71** (2011) 1630, arXiv:1101.2185 [hep-ex].

- [107] ATLAS Collaboration Collaboration, G. Aad et al., "Improved luminosity determination in pp collisions at $\sqrt{s}=7$ TeV using the ATLAS detector at the LHC. Improved luminosity determination in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC," Eur. Phys. J. C 73 no. CERN-PH-EP-2013-026. CERN-PH-EP-2013-026, (Feb, 2013) 2518. 27 p. https://cds.cern.ch/record/1517411. Comments: 26 pages plus author list (39 pages total), 17 figures, 9 tables, submitted to EPJC, All figures are available at <a href=.
- [108] "Record luminosity: well done LHC," https://home.cern/news/news/accelerators/new-schedule-cerns-accelerators-and-experiments. Accessed: 2021-01-10.
- [109] A. G., B. A. I., B. O., F. P., L. M., R. L., and T. L., *High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1.* CERN Yellow Reports: Monographs. CERN, Geneva, 2017. https://cds.cern.ch/record/2284929.
- [110] J. Pequenao, "Computer generated image of the whole ATLAS detector." Mar, 2008.
- [111] **ATLAS** Collaboration, "ATLAS: Detector and physics performance technical design report. Volume 1,".
- [112] J. Pequenao, "Computer generated image of the ATLAS inner detector." Mar, 2008.
- [113] ATLAS Collaboration Collaboration, K. Potamianos, "The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider," Tech. Rep. ATL-PHYS-PROC-2016-104, CERN, Geneva, Aug, 2016. https://cds.cern.ch/record/2209070. 15 pages, EPS-HEP 2015 Proceedings.
- [114] **ATLAS IBL** Collaboration, B. Abbott *et al.*, "Production and Integration of the ATLAS Insertable B-Layer," *JINST* 13 no. 05, (2018) T05008, arXiv:1803.00844 [physics.ins-det].
- [115] **ATLAS** Collaboration, "ATLAS Insertable B-Layer Technical Design Report," Tech. Rep. CERN-LHCC-2010-013. ATLAS-TDR-19, Sep, 2010. http://cds.cern.ch/record/1291633.
- [116] **ATLAS** Collaboration, G. Aad *et al.*, "ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s}=13$ TeV," *Eur. Phys. J. C* **79** no. 11, (2019) 970, arXiv:1907.05120 [hep-ex].
- [117] ATLAS Collaboration, "Particle Identification Performance of the ATLAS Transition Radiation Tracker." ATLAS-CONF-2011-128, 2011. https://cds.cern.ch/record/1383793.
- [118] J. Pequenao, "Computer Generated image of the ATLAS calorimeter." Mar, 2008.
- [119] J. Pequenao, "Computer generated image of the ATLAS Muons subsystem." Mar, 2008.
- [120] S. Lee, M. Livan, and R. Wigmans, "Dual-Readout Calorimetry," *Rev. Mod. Phys.* **90** no. arXiv:1712.05494. 2, (Dec, 2017) 025002. 40 p. https://cds.cern.ch/record/2637852. 44 pages, 53 figures, accepted for publication in Review of Modern Physics.

[121] M. Leite, "Performance of the ATLAS Zero Degree Calorimeter," Tech. Rep. ATL-FWD-PROC-2013-001, CERN, Geneva, Nov, 2013. https://cds.cern.ch/record/1628749.

- [122] S. Abdel Khalek *et al.*, "The ALFA Roman Pot Detectors of ATLAS," *JINST* 11 no. 11, (2016) P11013, arXiv:1609.00249 [physics.ins-det].
- [123] U. Amaldi, G. Cocconi, A. Diddens, R. Dobinson, J. Dorenbosch, W. Duinker, D. Gustavson, J. Meyer, K. Potter, A. Wetherell, A. Baroncelli, and C. Bosio, "The real part of the forward proton proton scattering amplitude measured at the cern intersecting storage rings," *Physics Letters B* **66** no. 4, (1977) 390 394. http://www.sciencedirect.com/science/article/pii/0370269377900223.
- [124] L. Adamczyk, E. Banaś, A. Brandt, M. Bruschi, S. Grinstein, J. Lange, M. Rijssenbeek, P. Sicho, R. Staszewski, T. Sykora, M. Trzebiński, J. Chwastowski, and K. Korcyl, "Technical Design Report for the ATLAS Forward Proton Detector," Tech. Rep. CERN-LHCC-2015-009. ATLAS-TDR-024, May, 2015. https://cds.cern.ch/record/2017378.
- [125] **ATLAS** Collaboration, A. R. Martínez, "The Run-2 ATLAS Trigger System," *J. Phys. Conf. Ser.* **762** no. 1, (2016) 012003.
- [126] **ATLAS Collaboration** Collaboration, *ATLAS level-1 trigger: Technical Design Report*. Technical Design Report ATLAS. CERN, Geneva, 1998. https://cds.cern.ch/record/381429.
- [127] **ATLAS** Collaboration, G. Aad *et al.*, "Operation of the ATLAS trigger system in Run 2," *JINST* **15** no. 10, (2020) P10004, arXiv:2007.12539 [physics.ins-det].
- [128] ATLAS Collaboration Collaboration, P. Jenni, M. Nessi, M. Nordberg, and K. Smith, ATLAS high-level trigger, data-acquisition and controls: Technical Design Report. Technical Design Report ATLAS. CERN, Geneva, 2003. https://cds.cern.ch/record/616089.
- [129] ATLAS Collaboration, G. Aad et al., "The ATLAS Simulation Infrastructure," Eur. Phys. J. C 70 (2010) 823-874, arXiv:1005.4568 [physics.ins-det].
- [130] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter, "Event generation with SHERPA 1.1," *JHEP* 02 (2009) 007, arXiv:0811.4622 [hep-ph].
- [131] A. Buckley et al., "General-purpose event generators for LHC physics," Phys. Rept. 504 (2011) 145–233, arXiv:1101.2599 [hep-ph].
- [132] V. N. Gribov and L. N. Lipatov, "Deep inelastic e p scattering in perturbation theory," Sov. J. Nucl. Phys. 15 (1972) 438–450.
- [133] J. Blumlein, T. Doyle, F. Hautmann, M. Klein, and A. Vogt, "Structure functions in deep inelastic scattering at HERA," in Workshop on Future Physics at HERA (To be followed by meetings 7-9 Feb and 30-31 May 1996 at DESY). 9, 1996. arXiv:hep-ph/9609425.
- [134] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and G. Watt, "LHAPDF6: parton density access in the LHC precision era," *Eur. Phys. J.* C 75 (2015) 132, arXiv:1412.7420 [hep-ph].

[135] M. Bengtsson and T. Sjostrand, "Coherent Parton Showers Versus Matrix Elements: Implications of PETRA - PEP Data," *Phys. Lett. B* **185** (1987) 435.

- [136] S. Catani, F. Krauss, R. Kuhn, and B. R. Webber, "QCD matrix elements + parton showers," *JHEP* 11 (2001) 063, arXiv:hep-ph/0109231.
- [137] L. Lonnblad, "Correcting the color dipole cascade model with fixed order matrix elements," *JHEP* **05** (2002) 046, arXiv:hep-ph/0112284.
- [138] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, "Parton Fragmentation and String Dynamics," *Phys. Rept.* **97** (1983) 31–145.
- [139] B. Andersson, *The Lund Model*. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 1998.
- [140] D. Amati and G. Veneziano, "Preconfinement as a Property of Perturbative QCD," *Phys. Lett. B* **83** (1979) 87–92.
- [141] D. Yennie, S. Frautschi, and H. Suura, "The infrared divergence phenomena and high-energy processes," *Annals of Physics* **13** no. 3, (1961) 379–452. https://www.sciencedirect.com/science/article/pii/0003491661901518.
- [142] M. Dobbs and J. B. Hansen, "The HepMC C++ Monte Carlo event record for High Energy Physics," *Comput. Phys. Commun.* **134** (2001) 41–46.
- [143] **GEANT4** Collaboration, S. Agostinelli *et al.*, "GEANT4: A Simulation toolkit," *Nucl. Instrum. Meth.* **A506** (2003) 250–303.
- [144] **ATLAS Collaboration** Collaboration, "The new Fast Calorimeter Simulation in ATLAS," Tech. Rep. ATL-SOFT-PUB-2018-002, CERN, Geneva, Jul, 2018. https://cds.cern.ch/record/2630434.
- [145] K. Cranmer, "Practical Statistics for the LHC," in 2011 European School of High-Energy Physics, pp. 267–308. 2014. arXiv:1503.07622 [physics.data-an].
- [146] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics," *Eur. Phys. J.* C71 (2011) 1554, arXiv:1007.1727 [physics.data-an]. [Erratum: Eur. Phys. J.C73,2501(2013)].
- [147] ATLAS Collaboration, "Reproduction searches for new physics with the ATLAS experiment through publication of full statistical likelihoods." ATL-PHYS-PUB-2019-029, 2019. https://cds.cern.ch/record/2684863.
- [148] **ROOT Collaboration** Collaboration, K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, "HistFactory: A tool for creating statistical models for use with RooFit and RooStats," Tech. Rep. CERN-OPEN-2012-016, New York U., New York, Jan, 2012. https://cds.cern.ch/record/1456844.
- [149] W. Verkerke and D. P. Kirkby, "The RooFit toolkit for data modeling," eConf C0303241 (2003) MOLT007, arXiv:physics/0306116 [physics]. [,186(2003)].
- [150] L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, D. Piparo, G. Schott, W. Verkerke, and M. Wolf, "The RooStats Project," PoS ACAT2010 (2010) 057, arXiv:1009.1003 [physics.data-an].

[151] F. James and M. Roos, "MINUIT: a system for function minimization and analysis of the parameter errors and corrections," *Comput. Phys. Commun.* **10** no. CERN-DD-75-20, (Jul, 1975) 343–367. 38 p. https://cds.cern.ch/record/310399.

- [152] R. Brun and F. Rademakers, "ROOT: An object oriented data analysis framework," Nucl. Instrum. Meth. A389 (1997) 81–86.
- [153] I. Antcheva et al., "Root a c++ framework for petabyte data storage, statistical analysis and visualization," Computer Physics Communications 182 no. 6, (2011) 1384 1385. http://www.sciencedirect.com/science/article/pii/S0010465511000701.
- [154] M. Baak, G. J. Besjes, D. Côte, A. Koutsman, J. Lorenz, and D. Short, "HistFitter software framework for statistical data analysis," *Eur. Phys. J.* C75 (2015) 153, arXiv:1410.1280 [hep-ex].
- [155] L. Heinrich, M. Feickert, G. Stark, and K. Cranmer, "pyhf: pure-python implementation of histfactory statistical models," *Journal of Open Source Software* 6 no. 58, (2021) 2823. https://doi.org/10.21105/joss.02823.
- [156] L. Heinrich, M. Feickert, and G. Stark, "pyhf: v0.6.0." https://github.com/scikit-hep/pyhf.
- [157] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R'10, M. Wiebe, P. Peterson, P. G'erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, "Array programming with NumPy," Nature 585 no. 7825, (Sept., 2020) 357–362. https://doi.org/10.1038/s41586-020-2649-2.
- [158] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds., pp. 8024–8035. Curran Associates, Inc., 2019. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
- [159] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous systems," 2015. https://www.tensorflow.org/. Software available from tensorflow.org.
- [160] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and S. Wanderman-Milne, "JAX: composable transformations of Python+NumPy programs," 2018. http://github.com/google/jax.
- [161] S. S. Wilks, "The large-sample distribution of the likelihood ratio for testing composite hypotheses," *Ann. Math. Statist.* **9** no. 1, (03, 1938) 60–62. https://doi.org/10.1214/aoms/1177732360.

[162] A. Wald, "Tests of statistical hypotheses concerning several parameters when the number of observations is large," *Transactions of the American Mathematical Society* **54** no. 3, (1943) 426–482. https://doi.org/10.1090/S0002-9947-1943-0012401-3.

- [163] G. Cowan, "Statistics for Searches at the LHC," in 69th Scottish Universities Summer School in Physics: LHC Physics, pp. 321–355. 7, 2013. arXiv:1307.2487 [hep-ex].
- [164] A. L. Read, "Presentation of search results: the CL_S technique," J. Phys. G 28 (2002) 2693.
- [165] R. D. Cousins, J. T. Linnemann, and J. Tucker, "Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process," *Nucl. Instrum. Meth. A* 595 no. 2, (2008) 480, arXiv:physics/0702156 [physics.data-an].
- [166] K. CRANMER, "Statistical challenges for searches for new physics at the lhc," *Statistical Problems in Particle Physics, Astrophysics and Cosmology* (May, 2006) . http://dx.doi.org/10.1142/9781860948985_0026.
- [167] ATLAS Collaboration, "Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in $\sqrt{s} = 8 \text{ TeV } pp$ collisions with the ATLAS detector," Eur. Phys. J. C 75 (2015) 208, arXiv:1501.07110 [hep-ex].
- [168] ATLAS Collaboration, "Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector," *Phys. Rev. D* **100** (2019) 012006, arXiv:1812.09432 [hep-ex].
- [169] CMS Collaboration, "Search for electroweak production of charginos and neutralinos in WH events in proton–proton collisions at $\sqrt{s} = 13 \,\text{TeV}$," $JHEP \, 11 \, (2017) \, 029$, arXiv:1706.09933 [hep-ex].
- [170] ATLAS Collaboration, "Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at $\sqrt{s} = 13 \,\text{TeV}$ with the ATLAS detector," Eur. Phys. J. C 80 (2020) 691, arXiv:1909.09226 [hep-ex].
- [171] ATLAS Collaboration, "Improvements in $t\bar{t}$ modelling using NLO+PS Monte Carlo generators for Run 2." ATL-PHYS-PUB-2018-009, 2018. https://cds.cern.ch/record/2630327.
- [172] ATLAS Collaboration, "Modelling of the $t\bar{t}H$ and $t\bar{t}V(V=W,Z)$ processes for $\sqrt{s}=13$ TeV ATLAS analyses." ATL-PHYS-PUB-2016-005, 2016. https://cds.cern.ch/record/2120826.
- [173] ATLAS Collaboration, "ATLAS simulation of boson plus jets processes in Run 2." ATL-PHYS-PUB-2017-006, 2017. https://cds.cern.ch/record/2261937.
- [174] ATLAS Collaboration, "Multi-Boson Simulation for 13 TeV ATLAS Analyses." ATL-PHYS-PUB-2017-005, 2017. https://cds.cern.ch/record/2261933.
- [175] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations," *JHEP* 07 (2014) 079, arXiv:1405.0301 [hep-ph].

[176] R. Frederix and S. Frixione, "Merging meets matching in MC@NLO," *JHEP* 12 (2012) 061, arXiv:1209.6215 [hep-ph].

- [177] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, "An Introduction to PYTHIA 8.2," *Comput. Phys. Commun.* **191** (2015) 159–177, arXiv:1410.3012 [hep-ph].
- [178] L. Lönnblad and S. Prestel, "Matching tree-level matrix elements with interleaved showers," *JHEP* **03** (2012) 019, arXiv:1109.4829 [hep-ph].
- [179] R. D. Ball *et al.*, "Parton distributions with LHC data," *Nucl. Phys. B* **867** (2013) 244, arXiv:1207.1303 [hep-ph].
- [180] ATLAS Collaboration, "ATLAS Pythia 8 tunes to 7 TeV data." ATL-PHYS-PUB-2014-021, 2014. https://cds.cern.ch/record/1966419.
- [181] D. J. Lange, "The EvtGen particle decay simulation package," *Nucl. Instrum. Meth. A* **462** (2001) 152.
- [182] ATLAS Collaboration, "The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model." ATL-PHYS-PUB-2016-017, 2016. https://cds.cern.ch/record/2206965.
- [183] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, "Precision predictions for electroweak superpartner production at hadron colliders with RESUMMINO," *Eur. Phys. J.* C 73 (2013) 2480, arXiv:1304.0790 [hep-ph].
- [184] J. Fiaschi and M. Klasen, "Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II," *Phys. Rev. D* **98** no. 5, (2018) 055014, arXiv:1805.11322 [hep-ph].
- [185] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, "Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV," *JHEP* **10** (2012) 081, arXiv:1207.2159 [hep-ph].
- [186] S. Alioli, P. Nason, C. Oleari, and E. Re, "A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX," *JHEP* **06** (2010) 043, arXiv:1002.2581 [hep-ph].
- [187] S. Frixione, P. Nason, and G. Ridolfi, "A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction," *JHEP* **09** (2007) 126, arXiv:0707.3088 [hep-ph].
- [188] P. Nason, "A New method for combining NLO QCD with shower Monte Carlo algorithms," *JHEP* 11 (2004) 040, arXiv:hep-ph/0409146.
- [189] E. Bothmann *et al.*, "Event generation with Sherpa 2.2," *SciPost Phys.* 7 no. 3, (2019) 034, arXiv:1905.09127 [hep-ph].
- [190] S. Höche, F. Krauss, S. Schumann, and F. Siegert, "QCD matrix elements and truncated showers," *JHEP* **05** (2009) 053, arXiv:0903.1219 [hep-ph].
- [191] S. Höche, F. Krauss, M. Schönherr, and F. Siegert, "QCD matrix elements + parton showers. The NLO case," *JHEP* **04** (2013) 027, arXiv:1207.5030 [hep-ph].
- [192] **NNPDF** Collaboration, R. D. Ball *et al.*, "Parton distributions for the LHC run II," *JHEP* **04** (2015) 040, arXiv:1410.8849 [hep-ph].

[193] ATLAS Collaboration, "Example ATLAS tunes of PYTHIA8, PYTHIA6 and POWHEG to an observable sensitive to Z boson transverse momentum." ATL-PHYS-PUB-2013-017, 2013. https://cds.cern.ch/record/1629317.

- [194] M. Czakon and A. Mitov, "Top++: A program for the calculation of the top-pair cross-section at hadron colliders," *Comput. Phys. Commun.* **185** (2014) 2930, arXiv:1112.5675 [hep-ph].
- [195] M. Cacciari, M. Czakon, M. Mangano, A. Mitov, and P. Nason, "Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation," *Phys. Lett. B* **710** (2012) 612–622, arXiv:1111.5869 [hep-ph].
- [196] P. Kant, O. M. Kind, T. Kintscher, T. Lohse, T. Martini, S. Mölbitz, P. Rieck, and P. Uwer, "HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions," *Comput. Phys. Commun.* 191 (2015) 74–89, arXiv:1406.4403 [hep-ph].
- [197] N. Kidonakis, "Two-loop soft anomalous dimensions for single top quark associated production with a W^- or H^- ," Phys. Rev. D 82 (2010) 054018, arXiv:1005.4451 [hep-ph].
- [198] J. M. Campbell and R. K. Ellis, " $t\bar{t}W^{+-}$ production and decay at NLO," *JHEP* **07** (2012) 052, arXiv:1204.5678 [hep-ph].
- [199] A. Lazopoulos, T. McElmurry, K. Melnikov, and F. Petriello, "Next-to-leading order QCD corrections to $t\bar{t}Z$ production at the LHC," *Phys. Lett. B* **666** (2008) 62–65, arXiv:0804.2220 [hep-ph].
- [200] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, "FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order," arXiv:1011.3540 [hep-ph].
- [201] LHC Higgs Cross Section Working Group Collaboration, D. de Florian *et al.*, "Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector," arXiv:1610.07922 [hep-ph].
- [202] ATLAS Collaboration, "Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2," *Eur. Phys. J. C* 77 (2017) 673, arXiv:1704.07983 [hep-ex].
- [203] R. Frühwirth, "Application of Kalman filtering to track and vertex fitting," Nucl. Instrum. Methods Phys. Res., A 262 no. HEPHY-PUB-503, (Jun, 1987) 444. 19 p. https://cds.cern.ch/record/178627.
- [204] T. Cornelissen, M. Elsing, I. Gavrilenko, W. Liebig, E. Moyse, and A. Salzburger, "The new ATLAS track reconstruction (NEWT)," *J. Phys.: Conf. Ser.* **119** (2008) 032014. https://cds.cern.ch/record/1176900.
- [205] ATLAS Collaboration, "Vertex Reconstruction Performance of the ATLAS Detector at $\sqrt{s} = 13$ TeV." ATL-PHYS-PUB-2015-026, 2015. https://cds.cern.ch/record/2037717.
- [206] ATLAS Collaboration, "Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC," *Eur. Phys. J. C* 77 (2017) 332, arXiv:1611.10235 [hep-ex].

[207] ATLAS Collaboration, "Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1," *Eur. Phys. J. C* 77 (2017) 490, arXiv:1603.02934 [hep-ex].

- [208] ATLAS Collaboration, "Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data," JINST 14 (2019) P12006, arXiv:1908.00005 [hep-ex].
- [209] ATLAS Collaboration, "Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016," *Eur. Phys. J. C* **79** (2019) 205, arXiv:1810.05087 [hep-ex].
- [210] ATLAS Collaboration, "Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at $\sqrt{s} = 13 \,\text{TeV}$," Eur. Phys. J. C 79 (2019) 639, arXiv:1902.04655 [hep-ex].
- [211] ATLAS Collaboration, "Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s}=13\,\mathrm{TeV}$," Eur. Phys. J. C **76** (2016) 292, arXiv:1603.05598 [hep-ex].
- [212] **ATLAS** Collaboration, "Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV," arXiv:2012.00578 [hep-ex].
- [213] M. Cacciari, G. P. Salam, and G. Soyez, "The anti- k_t jet clustering algorithm," *JHEP* **04** (2008) 063, arXiv:0802.1189 [hep-ph].
- [214] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual," *Eur. Phys. J. C* 72 (2012) 1896, arXiv:1111.6097 [hep-ph].
- [215] M. Cacciari, "FastJet: A Code for fast k_t clustering, and more," in *Deep inelastic* scattering. Proceedings, 14th International Workshop, DIS 2006, Tsukuba, Japan, April 20-24, 2006, pp. 487–490. 2006. arXiv:hep-ph/0607071 [hep-ph]. [,125(2006)].
- [216] **ATLAS** Collaboration, G. Aad *et al.*, "Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector," arXiv:2007.02645 [hep-ex].
- [217] M. Cacciari and G. P. Salam, "Pileup subtraction using jet areas," *Phys. Lett. B* **659** (2008) 119–126, arXiv:0707.1378 [hep-ph].
- [218] ATLAS Collaboration, "Jet energy measurement with the ATLAS detector in proton–proton collisions at $\sqrt{s}=7\,\mathrm{TeV}$," Eur. Phys. J. C 73 (2013) 2304, arXiv:1112.6426 [hep-ex].
- [219] ATLAS Collaboration, "Determination of jet calibration and energy resolution in proton–proton collisions at $\sqrt{s}=8\,\text{TeV}$ using the ATLAS detector," arXiv:1910.04482 [hep-ex].
- [220] ATLAS Collaboration, "Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s}=8\,\text{TeV}$ using the ATLAS detector," Eur. Phys. J. C **76** (2016) 581, arXiv:1510.03823 [hep-ex].
- [221] ATLAS Collaboration, "Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run." ATL-PHYS-PUB-2017-013, 2017. https://cds.cern.ch/record/2273281.

[222] ATLAS Collaboration, "ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s}=13\,\text{TeV}$," Eur. Phys. J. C 79 (2019) 970, arXiv:1907.05120 [hep-ex].

- [223] ATLAS Collaboration, "Measurements of b-jet tagging efficiency with the ATLAS detector using $t\bar{t}$ events at $\sqrt{s}=13\,\mathrm{TeV}$," JHEP **08** (2018) 089, arXiv:1805.01845 [hep-ex].
- [224] ATLAS Collaboration, "Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13 \,\text{TeV}$," Eur. Phys. J. C 78 (2018) 903, arXiv:1802.08168 [hep-ex].
- [225] ATLAS Collaboration Collaboration, " $E_{\rm T}^{\rm miss}$ performance in the ATLAS detector using 2015-2016 LHC p-p collisions," Tech. Rep. ATLAS-CONF-2018-023, CERN, Geneva, Jun, 2018. http://cds.cern.ch/record/2625233.
- [226] D. Adams *et al.*, "Recommendations of the Physics Objects and Analysis Harmonisation Study Groups 2014," Tech. Rep. ATL-PHYS-INT-2014-018, CERN, Geneva, Jul, 2014. https://cds.cern.ch/record/1743654.
- [227] M. Cacciari, G. P. Salam, and G. Soyez, "The Catchment Area of Jets," *JHEP* **04** (2008) 005, arXiv:0802.1188 [hep-ph].
- [228] **UA1** Collaboration, G. Arnison *et al.*, "Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at $\sqrt{s} = 540$ GeV," *Phys. Lett. B* **122** (1983) 103–116.
- [229] Aachen-Annecy-Birmingham-CERN-Helsinki-London(QMC)-Paris(CdF)-Riverside-Rome-Rutherford-Saclay(CEN)-Vienna Collaboration, G. Arnison et al., "Further evidence for charged intermediate vector bosons at the SPS collider," Phys. Lett. B 129 no. CERN-EP-83-111, (Jun, 1985) 273–282. 17 p. https://cds.cern.ch/record/163856.
- [230] D. R. Tovey, "On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders," *JHEP* **04** (2008) 034, arXiv:0802.2879 [hep-ph].
- [231] G. Polesello and D. R. Tovey, "Supersymmetric particle mass measurement with the boost-corrected contransverse mass," *JHEP* **03** (2010) 030, arXiv:0910.0174 [hep-ph].
- [232] **ATLAS** Collaboration, G. Aad *et al.*, "Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking," *JHEP* **08** (2020) 080, arXiv:2005.09554 [hep-ex].
- [233] **ATLAS** Collaboration, G. Aad *et al.*, "Performance of algorithms that reconstruct missing transverse momentum in $\sqrt{s} = 8$ TeV proton-proton collisions in the ATLAS detector," *Eur. Phys. J. C* 77 no. 4, (2017) 241, arXiv:1609.09324 [hep-ex].
- [234] ATLAS Collaboration, "ATLAS data quality operations and performance for 2015–2018 data-taking," *JINST* **15** (2020) P04003, arXiv:1911.04632 [physics.ins-det].
- [235] ATLAS Collaboration, "Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector." ATLAS-CONF-2015-029, 2015. https://cds.cern.ch/record/2037702.
- [236] N. Hartmann, "ahoi." https://gitlab.com/nikoladze/ahoi, 2018.

[237] ATLAS Collaboration, "Object-based missing transverse momentum significance in the ATLAS detector," Tech. Rep. ATLAS-CONF-2018-038, CERN, Geneva, Jul, 2018. https://cds.cern.ch/record/2630948.

- [238] A. Roodman, "Blind analysis in particle physics," eConf C030908 (2003) TUIT001, arXiv:physics/0312102.
- [239] ATLAS Collaboration, "Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS Detector at the LHC," *Phys. Rev. Lett.* **117** (2016) 182002, arXiv:1606.02625 [hep-ex].
- [240] ATLAS Collaboration, "A method for the construction of strongly reduced representations of ATLAS experimental uncertainties and the application thereof to the jet energy scale." ATL-PHYS-PUB-2015-014, 2015. https://cds.cern.ch/record/2037436.
- [241] J. Bellm et al., "Herwig 7.0/Herwig++ 3.0 release note," Eur. Phys. J. C76 no. 4, (2016) 196, arXiv:1512.01178 [hep-ph].
- [242] ATLAS Collaboration, "Simulation of top-quark production for the ATLAS experiment at $\sqrt{s} = 13$ TeV." ATL-PHYS-PUB-2016-004, 2016. https://cds.cern.ch/record/2120417.
- [243] S. Frixione, E. Laenen, P. Motylinski, C. White, and B. R. Webber, "Single-top hadroproduction in association with a W boson," *JHEP* **07** (2008) 029, arXiv:0805.3067 [hep-ph].
- [244] ATLAS Collaboration Collaboration, "SUSY July 2020 Summary Plot Update," Tech. Rep. ATL-PHYS-PUB-2020-020, CERN, Geneva, Jul, 2020. http://cds.cern.ch/record/2725258.
- [245] G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, and L. Rossi, *High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report*. CERN Yellow Reports: Monographs. CERN, Geneva, 2015. https://cds.cern.ch/record/2116337.
- [246] **LHC Reinterpretation Forum** Collaboration, W. Abdallah *et al.*, "Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2," *SciPost Phys.* **9** no. 2, (2020) 022, arXiv:2003.07868 [hep-ph].
- [247] ATLAS Collaboration, "RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two *b*-quarks." ATL-PHYS-PUB-2019-032, 2019. https://cds.cern.ch/record/2686290.
- [248] K. Cranmer and I. Yavin, "RECAST: Extending the Impact of Existing Analyses," *JHEP* **04** (2011) 038, arXiv:1010.2506 [hep-ex].
- [249] S. Ovyn, X. Rouby, and V. Lemaitre, "DELPHES, a framework for fast simulation of a generic collider experiment," arXiv:0903.2225 [hep-ph].
- [250] A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lonnblad, J. Monk, H. Schulz, and F. Siegert, "Rivet user manual," *Comput. Phys. Commun.* **184** (2013) 2803–2819, arXiv:1003.0694 [hep-ph].
- [251] A. Buckley, D. Kar, and K. Nordström, "Fast simulation of detector effects in Rivet," SciPost Phys. 8 (2020) 025, arXiv:1910.01637 [hep-ph].
- [252] D. Dercks, N. Desai, J. S. Kim, K. Rolbiecki, J. Tattersall, and T. Weber, "CheckMATE 2: From the model to the limit," *Comput. Phys. Commun.* 221 (2017) 383–418, arXiv:1611.09856 [hep-ph].