MTH 201 -- Calculus Module 7B: The Second Derivative Test and Concavity

October 21-22, 2020

Agenda for today

- Polling activity over Daily Preparation + Q&A time
- Activity: Finding critical numbers and applying the First Derivative Test
- Q/A + Feedback time

Suppose g'(1)=0 and g''(1)=10. Then...

g has a local maximum at x = 1

g has a local minimum at x = 1

g has an inflection point at x = 1

None of the above

Here's the graph of a function. Click on the inflection points of the function.

Practice at Jamboard

Here is the graph of g'', the second derivative of a function g. What are the x-coordinates of its inflection points? Select all that apply.

x = -1	
x = 0	
x = 1	
x = 2	
None of these	

Here is the graph of $g^{\prime\prime}$, the second derivative of a function g. On which of these intervals is g concave up?

Here is the graph of g'', the second derivative of a function g. Suppose you are given that g'(-1.6)=0. From this, we can conclude that...

None of these

g has a local minimum at this point

g has a local maximum at this point

q has neither a local minimum nor a local maximum at this point

