Please solve the star (\star) marked problems first and discuss the rest if time permits.

1. \star Calculate the flux of the vector $\vec{F} = x\hat{x} + y\hat{y} + z\hat{z}$ over the surface of a right circular cylinder of radius R bounded by the surfaces z=0 and z=h with the centre of the base of the cylinder situated at origin. Calculate it directly as well as by use of the divergence theorem.

Solution:

Let the base of the cylinder be at z=0 and the top at z=h. The origin is at the centre of the base (x,y,z)=(0,0,0). The cylinder has three surfaces. For the bottom surface (S_1) , located at z=0, the direction of the normal is along $-\hat{z}$. The surface integral for this surface is $\int_{S_1} \vec{F} \cdot d\vec{a} = \int_{S_1} F_z (-\hat{z}) dx dy = \int_{S_1} (-z) dx dy = 0$.

For the top surface (S_2) , located at z = h, the normal is along \hat{z} . The surface integral is $\int_{S_2} \vec{F} . d\vec{a} = \int_{S_2} F_z \ (\hat{z}) dx dy = \int_{S_2} (z) dx dy = h\pi R^2$. For the curved surface S_3 , the direction of the normal is radially outward. Hence the unit normal to S_3 is given by $\hat{n} = \frac{\vec{\nabla}(x^2 + y^2)}{|\vec{\nabla}(x^2 + y^2)|} = \frac{x\hat{x} + y\hat{y}}{R}$.

Now for the cylindrical surface (S_3) , we can project the elementary area either on y-z plane or x-z plane. Choosing the projection on the x-z plane, the surface integral is (please discuss all the steps in details in the tutorial, you may take a look at the lecture

slides in moodle)

$$\int_{S_3} \vec{F} \cdot \hat{n} da = \int_{S_3} \vec{F} \cdot \hat{n} \frac{dx dz}{|\hat{n} \cdot \hat{y}|}
= \int_{z=0}^h \int_{x=-R}^R (x \hat{x} + y \hat{y} + z \hat{z}) \cdot \frac{x \hat{x} + y \hat{y}}{R} \frac{dx dz}{|\frac{x \hat{x} + y \hat{y}}{R} \cdot \hat{y}|}
= \frac{1}{R} \int_{z=0}^h \int_{x=-R}^R (x^2 + y^2) \frac{dx dz}{|\frac{y}{R}|} = \int_{z=0}^h \int_{x=-R}^R \frac{(x^2 + y^2)}{|y|} dx dz
= h \int_{x=-R}^R \frac{(x^2 + y^2)}{y} dx + h \int_{x=-R}^R \frac{(x^2 + y^2)}{y} dx$$

Now, $y = \pm \sqrt{R^2 - x^2}$ for y > 0 and y < 0 respectively. Therefore,

$$\int_{\mathcal{S}_3} \vec{F} \cdot \hat{n} da = 2h \int_{x=-R}^R \left(\frac{x^2}{\sqrt{R^2 - x^2}} + \sqrt{R^2 - x^2} \right) dx = 2\pi R^2 h$$

Thus the total flux (contribution from all the three surfaces) is $3\pi R^2 h$. This can also be seen by the divergence theorem: $\vec{\nabla}.\vec{F}=3$. The volume integral is: $\int_{\mathcal{V}}(\vec{\nabla}.\vec{F})dxdydz=\int_{\mathcal{V}}3dxdydz=\int_{z=0}^h\int_{x=-R}^R\int_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}}3dxdydz=3\pi R^2 h$.

2. \star Let $\vec{F} = 2xz\hat{x} - x\hat{y} + y^2\hat{z}$. Evaluate $\int_{\mathcal{V}} \vec{F} d\tau$ where \mathcal{V} is the region bounded by the surfaces $x = 0, y = 0, y = 6, z = x^2, z = 4$, as pictured in Figure 1.

Figure 1: Volume element

Solution:

The region \mathcal{V} is obtained by (i) keeping x,y fixed, and integrating from $z=x^2\to z=4$ (base to top of column PQ), (ii) then by keeping x fixed and then integrating between $y=0\to y=6$ (R to S in the slab), (iii) finally integrating from $x=0\to x=2$ (where $z=x^2$ meets z=4). Then the required integral is

$$\int_{\mathcal{V}} \vec{F} d\tau = \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} (2xz\hat{x} - x\hat{y} + y^{2}\hat{z}) dz dy dx
= \hat{x} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} 2xz dz dy dx - \hat{y} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} x dz dy dx
+ \hat{z} \int_{x=0}^{2} \int_{y=0}^{6} \int_{z=x^{2}}^{4} y^{2} dz dy dx
= 128\hat{x} - 24\hat{y} + 384\hat{z}$$

3. Check the fundamental theorem for gradients using $T = x^2 + 4xy + 2yz^3$ joining the points a = (0; 0; 0), b = (1; 1; 1) following three different paths as shown in Figure 2.

Figure 2: Three different paths

- (a) $(0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1)$
- (b) $(0,0,0) \to (0,0,1) \to (0,1,1) \to (1,1,1)$
- (c) The parabolic path $z = x^2, x = y$.

Solution:

Fundamental theorem of gradients: $\int_a^b \vec{\nabla} T.d\vec{r} = T(b) - T(a)$. Note, T(b) = 1 + 4 + 2 = 7 and T(a) = 0. Hence, T(b) - T(a) = 7. Now the gradient: $\vec{\nabla} T = (2x + 4y)\hat{x} + (4x + 2z^3)\hat{y} + 6yz^2\hat{z}$. Hence, $\vec{\nabla} T.d\vec{r} = (2x + 4y)dx + (4x + 2z^3)dy + 6yz^2dz$.

(a) On $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$:

Along segment $(0,0,0) \to (1,0,0)$: $x:0 \to 1, y=z=0, dy=dz=0$. Hence, $\int \vec{\nabla} T. d\vec{r} = \int_{x=0}^{1} 2x dx = 1$.

Along segment $(1,0,0) \to (1,1,0)$: $y:0 \to 1, x=1, z=0, dx=dz=0$. Hence, $\int \vec{\nabla} T. d\vec{r} = \int_{y=0}^{1} 4 dy = 4$.

Along segment $(1,1,0) \to (1,1,1)$: $z:0 \to 1, x=y=1, dx=dy=0$. Hence, $\int \vec{\nabla} T. d\vec{r} = \int_{z=0}^{1} 6z^2 dz = 2$.

Combining all the contributions, we get: $\int \vec{\nabla} T . d\vec{r} = 7$.

(b) On $(0,0,0) \to (0,0,1) \to (0,1,1) \to (1,1,1)$:

Along segment $(0,0,0) \to (0,0,1)$: $z:0 \to 1$, y=x=0, dy=dx=0. Hence, $\int \vec{\nabla} T. d\vec{r} = \int_{z=0}^{1} 0 dz = 0$.

Along segment $(0,0,1) \to (0,1,1)$: $y:0 \to 1, x=0, z=1, dx=dz=0$. Hence, $\int \vec{\nabla} T. d\vec{r} = \int_{y=0}^{1} 2dy = 2$.

Along segment $(0,1,1) \to (1,1,1)$: $x:0 \to 1$, z=y=1, dz=dy=0. Hence, $\int \vec{\nabla} T. d\vec{r} = \int_{x=0}^{1} (2x+4) dx = 5$.

Combining all the contributions, we get: $\int \vec{\nabla} T \cdot d\vec{r} = 7$.

- (c) The parabolic path: $z=x^2; x=y$: $x:0\to 1, y=x, z=x^2$. Hence, dy=dx, dz=2xdx. Therefore, $\int \vec{\nabla} T.d\vec{r}=\int_{x=0}^1[(2x+4x)dx+(4x+2x^6)dx+(6xx^4)2xdx]=7$. Hence checked.
- 4. \star (a) Using Stoke's theorem calculate the line integral of $\vec{F} = 2z\hat{x} + x\hat{y} + y\hat{z}$ over a circle of radius R in the xy plane centered at the origin. Take the open surface to be a hemisphere in z > 0 (Fig. 3).
 - (b) Calculate the same using Divergence theorem imagining the hemispherical surface as well as the disc on the x-y plane to form a closed surface.

Figure 3: Hemisphere

Solution:

(a) Stoke's theorem states: $\int_{\mathcal{S}} (\vec{\nabla} \times \vec{F}) . d\vec{a} = \oint_{C} \vec{F} . d\vec{r}$. The curl is given by: $\vec{\nabla} \times \vec{F} = \hat{x} + 2\hat{y} + \hat{z}$. The unit normal on the surface of the hemisphere in the radially outward direction is given by $\hat{n} = \frac{\vec{\nabla}(x^2 + y^2 + z^2)}{|\vec{\nabla}(x^2 + y^2 + z^2)|} = \frac{x\hat{x} + y\hat{y} + z\hat{z}}{R}$. Now for the hemispherical surface (\mathcal{S}) we can project it on x - y plane. Thus we need to calculate the surface integral

$$\int_{\mathcal{S}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da = \int_{\mathcal{S}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} \frac{dx dy}{|\hat{n}.\hat{z}|}
= \int_{x=-R}^{R} \int_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} (\hat{x} + 2\hat{y} + \hat{z}) \cdot \frac{x\hat{x} + y\hat{y} + z\hat{z}}{R} \frac{dx dy}{|\frac{x\hat{x} + y\hat{y} + z\hat{z}}{R}.\hat{z}|}
= \frac{1}{R} \int_{x=-R}^{R} \int_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} (x + 2y + z) \frac{dx dy}{|\frac{z}{R}|}
= \int_{x=-R}^{R} \int_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} (x + 2y + \sqrt{R^2-x^2} - y^2) \frac{dx dy}{\sqrt{R^2-x^2-y^2}}
= I_1 + I_2 + I_3$$

Note here, that as the hemisphere is already in z > 0 region, |z| = z, with z > 0, unlike problem 1. The hemisphere being symmetrical with respect to x and y coordinates, the first two integrals, I_1, I_2 vanish and we are left with $I_3 = \int_{x=-R}^{R} \int_{y=-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} dx dy = \int_{x=-R}^{R} 2\sqrt{R^2-x^2} dx = \pi R^2$. The line integral can be calculated as follows:

$$\oint_C \vec{F} \cdot d\vec{r} = \oint_C (2zdx + xdy + ydz)$$

Since the boundary of the open surface (hemisphere) is the circle on the x-y plane, the first and the third terms in the integral give zero as z=0 on C. We are left with $\oint_C x dy$ which can be parameterized in polar coordinates with $x=R\cos\theta, y=R\sin\theta$ so that we get: $\oint_C x dy = \int_{\theta=0}^{2\pi} R^2 \cos^2\theta d\theta = \pi R^2$. Thus, Stokes theorem is verified.

(b) Using divergence theorem,

$$\int_{\mathcal{V}} (\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F})) d\tau = \oint_{\mathcal{S}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da = 0,$$

as, $(\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F})) = 0$. Therefore,

$$\oint_{\mathcal{S}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da = \int_{\mathcal{S}_{1}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da + \int_{\mathcal{S}_{2}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da = 0.$$

$$\therefore \int_{\mathcal{S}_{1}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da = -\int_{\mathcal{S}_{2}} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da$$

In the above expressions S_1 is the hemispherical surface and S_2 is the surface of the disc situated on the x-y plane. Hence

$$\int_{\mathcal{S}_1} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da = -\int_{\mathcal{S}_2} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} da$$

$$= -\int_{\mathcal{S}_2} (\hat{x} + 2\hat{y} + \hat{z}) \cdot (-\hat{z}) dx dy$$

$$= \int_{\mathcal{S}_2} dx dy = \pi R^2$$

Hence verified.

5. * Prove that the cylindrical coordinate system is orthogonal and express velocity and acceleration of a particle in cylindrical polar coordinates.

Solution:

The position vector in cylindrical coordinate is $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z} = s\cos\phi\hat{x} + s\sin\phi\hat{y} + z\hat{z}$. The tangent vectors to s, ϕ, z curves are given by $\frac{\partial \vec{r}}{\partial s}, \frac{\partial \vec{r}}{\partial \phi}, \frac{\partial \vec{r}}{\partial z}$ respectively. Recall s curve

is the curve on which ϕ, z are constants.

$$\frac{\partial \vec{r}}{\partial s} = \cos \phi \hat{x} + \sin \phi \hat{y}, \ \frac{\partial \vec{r}}{\partial \phi} = -s \sin \phi \hat{x} + s \cos \phi \hat{y}, \ \frac{\partial \vec{r}}{\partial z} = \hat{z}.$$

Hence the unit vectors in these directions are

$$\hat{s} = \frac{\frac{\partial \vec{r}}{\partial s}}{\left|\frac{\partial \vec{r}}{\partial s}\right|} = \cos\phi \hat{x} + \sin\phi \hat{y},$$

$$\hat{\phi} = \frac{\frac{\partial \vec{r}}{\partial \phi}}{\left|\frac{\partial \vec{r}}{\partial \phi}\right|} = -\sin\phi \hat{x} + \cos\phi \hat{y},$$

$$\hat{z} = \frac{\frac{\partial \vec{r}}{\partial z}}{\left|\frac{\partial \vec{r}}{\partial z}\right|} = \hat{z}.$$

Hence,

$$\hat{s}.\hat{\phi} = (\cos\phi\hat{x} + \sin\phi\hat{y}).(-\sin\phi\hat{x} + \cos\phi\hat{y}) = 0,$$

$$\hat{s}.\hat{z} = (\cos\phi\hat{x} + \sin\phi\hat{y}).\hat{z} = 0,$$

$$\hat{z}.\hat{\phi} = \hat{z}.(-\sin\phi\hat{x} + \cos\phi\hat{y}) = 0.$$

Therefore the unit vectors are mutually perpendicular and the coordinate system is orthogonal.

In Cartesian coordinates position vector is $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$. Hence velocity and acceleration vectors are $\vec{v} = \frac{d\vec{r}}{dt} = \dot{x}\hat{x} + \dot{y}\hat{y} + \dot{z}\hat{z}$, $\vec{a} = \frac{d\vec{v}}{dt} = \ddot{x}\hat{x} + \ddot{y}\hat{y} + \ddot{z}\hat{z}$. Using above results, we can recast the unit vectors in Cartesian coordinates in terms of unit vectors of Cylindrical Polar coordinates as follows

$$\hat{x} = \cos \phi \hat{s} - \sin \phi \hat{\phi},$$

$$\hat{y} = \sin \phi \hat{s} + \cos \phi \hat{\phi},$$

$$\hat{z} = \hat{z}.$$

Hence, the position vector in Cylindrical Polar coordinates is given by

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z} = s\cos\phi(\cos\phi\hat{s} - \sin\phi\hat{\phi}) + s\sin\phi(\sin\phi\hat{s} + \cos\phi\hat{\phi}) + z\hat{z}$$
$$= s\hat{s} + z\hat{z}.$$

Therefore, the velocity vector in Cylindrical Polar coordinates,

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{ds}{dt}\hat{s} + s\frac{d\hat{s}}{dt} + \frac{dz}{dt}\hat{z}$$
$$= \dot{s}\hat{s} + s\dot{\phi}\hat{\phi} + \dot{z}\hat{z}.$$

where, we have used $\frac{d\hat{s}}{dt} = -\sin\phi\dot{\phi}\hat{x} + \cos\phi\dot{\phi}\hat{y} = \dot{\phi}\hat{\phi}$. Proceeding in the similar manner,

the acceleration can be found to be

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(\dot{s}\hat{s} + s\dot{\phi}\hat{\phi} + \dot{z}\hat{z})$$
$$= (\ddot{s} - s\dot{\phi}^2)\hat{s} + (\ddot{s}\ddot{\phi} + 2\dot{s}\dot{\phi})\hat{\phi} + \ddot{z}\hat{z}.$$

6. In PH 101 you encountered the momentum operator in quantum mechanics. Recall that the momentum operator had the form $p = \frac{\hbar}{i} \frac{d}{dx}$ in one dimension. Now that we have discussed everything in general in three dimensions, $\vec{p} = \frac{\hbar}{i} \vec{\nabla}$. Hence the angular momentum operator $\vec{L} = \vec{r} \times \vec{p} = \frac{\hbar}{i} (\vec{r} \times \vec{\nabla})$. Show that the angular momentum operator in spherical polar coordinate is of the form

$$\vec{L} = \frac{\hbar}{i} \left(-\hat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} + \hat{\phi} \frac{\partial}{\partial \theta} \right)$$

Solution:

The gradient operator in the spherical polar coordinates as discussed in the class

$$\vec{\nabla} = \hat{r} \frac{\partial}{\partial r} + \hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}.$$

Now, $\vec{r} = r\hat{r}$. Hence,

$$\vec{L} = \frac{\hbar}{i} \left[r(\hat{r} \times \hat{r}) \frac{\partial}{\partial r} + (\hat{r} \times \hat{\theta}) \frac{\partial}{\partial \theta} + (\hat{r} \times \hat{\phi}) \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \right]$$

Now, $\hat{r} \times \hat{r} = 0$, $\hat{r} \times \hat{\theta} = \hat{\phi}$, $\hat{r} \times \hat{\phi} = -\hat{\theta}$. Hence,

$$\vec{L} = \frac{\hbar}{i} \left(-\hat{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} + \hat{\phi} \frac{\partial}{\partial \theta} \right)$$