Clases de complejidad aleatorizadas

IIC3810

Un ejemplo: equivalencia de polinomios

Consideramos polinomios en varias variables en Q

Un monomio es una expresión de la forma $cx_1^{\ell_1}\cdots x_n^{\ell_n}$, donde $c\in\mathbb{Q}$ y cada $\ell_i\in\mathbb{N}$.

Un monomio $cx_1^{\ell_1}\cdots x_n^{\ell_n}$ es nulo si c=0

No es nulo si $c \neq 0$

El grado de un monomio $cx_1^{\ell_1}\cdots x_n^{\ell_n}$ no nulo es $\ell_1+\cdots+\ell_n$.

Polinomios en varias variables

Un polinomio es una expresión de la forma:

$$p(x_1,...,x_n) = \sum_{i=1}^{\ell} \prod_{j=1}^{m_i} \left(\sum_{k=1}^n a_{i,j,k} x_k + a_{i,j,n+1} \right)$$

donde cada $a_{i,j,k} \in \mathbb{Q}$ y cada $a_{i,j,n+1} \in \mathbb{Q}$

Polinomios en varias variables

La forma canónica de un polinomio $p(x_1,...,x_n)$ es única, y es igual a 0 o a una suma de monomios que satisface las siguiente propiedades:

- $lackbox{ cada monomio en la forma canónica es de la forma } cx_1^{\ell_1}\cdots x_n^{\ell_n}$ con c
 eq 0
- ▶ si $cx_1^{\ell_1} \cdots x_n^{\ell_n}$ y $dx_1^{m_1} \cdots x_n^{m_n}$ son dos monomios distintos en la forma canónica, entonces $\ell_i \neq m_i$ para algún $i \in \{1, \ldots, n\}$

Un polinomio $p(x_1, ..., x_n)$ es nulo si su forma canónica es 0

El grado de un polinomio $p(x_1,...,x_n)$ no nulo es el mayor grado de los monomios en su forma canónica.

Dos polinomios $p(x_1, \ldots, x_n)$ y $q(x_1, \ldots, x_n)$ son idénticos si para cada secuencia $a_1, \ldots, a_n \in \mathbb{Q}$ se tiene que:

$$p(a_1,\ldots,a_n) = q(a_1,\ldots,a_n)$$

Dos polinomios $p(x_1, ..., x_n)$ y $q(x_1, ..., x_n)$ son idénticos si para cada secuencia $a_1, ..., a_n \in \mathbb{Q}$ se tiene que:

$$p(a_1,\ldots,a_n) = q(a_1,\ldots,a_n)$$

Queremos verificar si dos polinomios son idénticos, para lo cual definimos el siguiente lenguaje:

EQUIV-POL =
$$\{(p(x_1, ..., x_n), q(x_1, ..., x_n)) \mid p(x_1, ..., x_n) \text{ y } q(x_1, ..., x_n) \text{ son polinomios idénticos}\}$$

 $\cite{Podemos resolver EQUIV-POL en tiempo polinomial?}$

¿Podemos resolver EQUIV-POL en tiempo polinomial?

Tenemos un problema: calcular la forma canónica de un polinomio toma tiempo exponencial

¿Podemos resolver EQUIV-POL en tiempo polinomial?

Tenemos un problema: calcular la forma canónica de un polinomio toma tiempo exponencial

Vamos a construir un algoritmo aleatorizado para EQUIV-POL

▶ El ingrediente principal del algoritmo es el lema de Schwartz-Zippel

El ingrediente principal

Lema de Schwartz-Zippel

Sea $p(x_1, \ldots, x_n)$ un polinomio no nulo de grado k, y sea A un subconjunto finito y no vacío de \mathbb{Q} . Si a_1, \ldots, a_n son elegidos de manera uniforme e independiente desde A, entonces

$$\Pr(p(a_1,\ldots,a_n)=0) \leq \frac{k}{|A|}$$

1 LP 2

El ingrediente principal

Lema de Schwartz-Zippel

Sea $p(x_1,\ldots,x_n)$ un polinomio no nulo de grado k, y sea A un subconjunto finito y no vacío de \mathbb{Q} . Si a_1,\ldots,a_n son elegidos de manera uniforme e independiente desde A, entonces

$$\Pr(p(a_1,\ldots,a_n)=0) \leq \frac{k}{|A|}$$

Ejercicio

Demuestre el lema de Schwartz-Zippel por inducción en n

Un algoritmo aleatorizado para EQUIV-POL

Vamos a dar un algoritmo aleatorizado para el problema de verificar si dos polinomios en varias variables son equivalentes.

Un algoritmo aleatorizado para EQUIV-POL

Vamos a dar un algoritmo aleatorizado para el problema de verificar si dos polinomios en varias variables son equivalentes.

Suponga que la entrada del algoritmo está dada por los siguientes polinomios:

$$p(x_1,...,x_n) = \sum_{i=1}^{\ell} \prod_{j=1}^{m_i} \left(\sum_{k=1}^n a_{i,j,k} x_k + a_{i,j,n+1} \right)$$

$$q(x_1,...,x_n) = \sum_{i=1}^r \prod_{j=1}^{s_i} \left(\sum_{k=1}^n b_{i,j,k} x_k + b_{i,j,n+1} \right)$$

Un algoritmo aleatorizado para EQUIV-POL

```
\begin{aligned} & \textbf{EquivPolAleatorizado}(p(x_1,\ldots,x_n),\ q(x_1,\ldots,x_n))\\ & k:=1+\max\{m_1,\ldots,m_\ell,s_1,\ldots,s_r\}\\ & A:=\{1,\ldots,100\cdot k\}\\ & \text{sea } a_1,\ldots,a_n \text{ una secuencia de números elegidos de }\\ & & \text{manera uniforme e independiente desde } A\\ & \textbf{if } p(a_1,\ldots,a_n)=q(a_1,\ldots,a_n) \text{ then return si}\\ & \textbf{else return } \text{no} \end{aligned}
```

Vamos a calcular la probabilidad de error del algoritmo.

Vamos a calcular la probabilidad de error del algoritmo.

Si los polinomios $p(x_1, \ldots, x_n)$ y $q(x_1, \ldots, x_n)$ son equivalentes, entonces el algoritmo responde **sí** sin cometer error

Vamos a calcular la probabilidad de error del algoritmo.

- Si los polinomios $p(x_1, \ldots, x_n)$ y $q(x_1, \ldots, x_n)$ son equivalentes, entonces el algoritmo responde **sí** sin cometer error
- Si los polinomios $p(x_1,...,x_n)$ y $q(x_1,...,x_n)$ no son equivalentes, el algoritmo puede responder sí al escoger una secuencia de números $a_1,...,a_n$ desde A tales que $p(a_1,...,a_n)=q(a_1,...,a_n)$
 - ▶ Donde $A = \{1, ..., 100 \cdot k\}$

Vamos a calcular la probabilidad de error del algoritmo.

- Si los polinomios $p(x_1, \ldots, x_n)$ y $q(x_1, \ldots, x_n)$ son equivalentes, entonces el algoritmo responde **sí** sin cometer error
- Si los polinomios $p(x_1,...,x_n)$ y $q(x_1,...,x_n)$ no son equivalentes, el algoritmo puede responder sí al escoger una secuencia de números $a_1,...,a_n$ desde A tales que $p(a_1,...,a_n)=q(a_1,...,a_n)$
 - ▶ Donde $A = \{1, ..., 100 \cdot k\}$

Esto significa que $(a_1, ..., a_n)$ es una raíz del polinomio $r(x_1, ..., x_n) = p(x_1, ..., x_n) - q(x_1, ..., x_n)$

 $r(x_1, \ldots, x_n)$ no es el polinomio nulo y es de grado t con t < k

lacksquare Dado que $k=1+\max\left\{m_1,\ldots,m_\ell,s_1,\ldots,s_r
ight\}$

 $r(x_1, \ldots, x_n)$ no es el polinomio nulo y es de grado t con t < k

▶ Dado que $k = 1 + \max\{m_1, \ldots, m_\ell, s_1, \ldots, s_r\}$

Utilizando el lema de Schwartz-Zippel obtenemos:

$$\Pr(r(a_1,\ldots,a_n)=0) \le \frac{t}{|A|} \le \frac{k}{|A|} = \frac{k}{100 \cdot k} = \frac{1}{100}$$

11

 $r(x_1, \ldots, x_n)$ no es el polinomio nulo y es de grado t con t < k

ightharpoonup Dado que $k=1+\max\{m_1,\ldots,m_\ell,s_1,\ldots,s_r\}$

Utilizando el lema de Schwartz-Zippel obtenemos:

$$\Pr(r(a_1,\ldots,a_n)=0) \leq \frac{t}{|A|} \leq \frac{k}{|A|} = \frac{k}{100 \cdot k} = \frac{1}{100}$$

La probabilidad de error del algoritmo está entonces acotada por $\frac{1}{100}$

1000

1

Un mejor algoritmo aleatorizado para el problema general

Ejercicio

De un algoritmo aleatorizado que resuelva el problema de equivalencia de polinomios en varias variables.

- La probabilidad de error del algoritmo debe estar acotada por $\frac{1}{100^{10}}$
- Debe existir una constante k tal que el algoritmo en el peor caso es $O(m^k)$, donde m es el tamaño de la entrada
 - Si consideramos $p(x_1,...,x_n)$ y $q(x_1,...,x_n)$ como palabras sobre un cierto alfabeto, entonces $m=|p(x_1,...,x_n)|+|q(x_1,...,x_n)|$

Una solución para el ejercicio

```
\begin{aligned} & \textbf{EquivPolAleatorizado}(p(x_1,\ldots,x_n),\ q(x_1,\ldots,x_n))\\ & k:=1+\max\{m_1,\ldots,m_\ell,s_1,\ldots,s_r\}\\ & A:=\{1,\ldots,100\cdot k\}\\ & \textbf{for } i:=1\ \textbf{to}\ 10\ \textbf{do}\\ & \text{sea } a_1,\ldots,a_n\ \text{una secuencia de números elegidos de}\\ & \text{manera uniforme e independiente desde } A\\ & \textbf{if } p(a_1,\ldots,a_n)\neq q(a_1,\ldots,a_n)\ \textbf{then return } \textbf{no}\\ & \textbf{else return } \textbf{s} \textbf{i} \end{aligned}
```

Algoritmos probabilísticos y Máquinas de Turing

¿Cómo podemos formalizar la idea de un algoritmo probabilístico utilizando la noción de MT?

¿Podemos definir clases de complejidad basados en los algoritmos probabilísticos?

Algoritmos probabilísticos y Máquinas de Turing

¿Cómo podemos formalizar la idea de un algoritmo probabilístico utilizando la noción de MT?

¿Podemos definir clases de complejidad basados en los algoritmos probabilísticos?

Vamos a responder a esta preguntas en las siguientes transparencias.

MT probabilística

Definición

Una MT probabilística es una tupla $M = (Q, \Sigma, \Gamma, q_0, \delta, F)$ tal que:

- Q es un conjunto finito de estados
- ▶ Σ es un alfabeto finito tal que \vdash , $B \notin \Sigma$
- $ightharpoonup \Gamma$ es un alfabeto finito tal que $\Sigma \cup \{\vdash, B\} \subseteq \Gamma$
- $ightharpoonup q_0 \in Q$ es el estado inicial
- $ightharpoonup F \subseteq Q$ es un conjunto de estados finales
- \blacktriangleright δ es una función parcial:

$$\delta : Q \times \Gamma \times \{0,1\} \to Q \times \Gamma \times \{\leftarrow, \square, \to\}$$

MT probabilística: Funcionamiento

La entrada de una MT probabilística M consiste de un string $w \in \Sigma^*$ y un string $s \in \{0,1\}^\omega$

- w es el input que se quiere aceptar o rechazar
- ▶ s es un string infinito de símbolos 0 y 1, el cual es considerado como un string de bits aleatorios

En el estado inicial:

- ▶ M tiene en la primera cinta $\vdash wB \cdots$ y en la segunda cinta $\vdash s$
- ► M está en el estado q₀
- Las cabezas lectoras de ambas cintas están en la posición 1

MT probabilística: Funcionamiento

En cada instante la máquina se encuentra en un estado q y sus cabezas lectoras están en posiciones p_1 y p_2

- Si el símbolo en la posición p_i (i = 1, 2) es a_i y $\delta(q, a_1, a_2) = (q', b, X)$, entonces:
 - La máquina escribe el símbolo b en la posición p₁ de la primera cinta
 - Cambia de estado desde q a q'
 - Mueve la cabeza lectora de la primera cinta a la posición p_1-1 si X es \leftarrow , y a la posición p_1+1 si X es \rightarrow . Si X es \Box , entonces esta cabeza lectora permanece en la posición p_1

MT probabilística: Funcionamiento

En cada instante la máquina se encuentra en un estado q y sus cabezas lectoras están en posiciones p_1 y p_2

- Si el símbolo en la posición p_i (i = 1, 2) es a_i y $\delta(q, a_1, a_2) = (q', b, X)$, entonces:
 - La máquina escribe el símbolo *b* en la posición *p*₁ de la primera cinta
 - Cambia de estado desde q a q'
 - Mueve la cabeza lectora de la primera cinta a la posición p_1-1 si X es \leftarrow , y a la posición p_1+1 si X es \rightarrow . Si X es \Box , entonces esta cabeza lectora permanece en la posición p_1
 - Mueve la cabeza lectora de la segunda cinta a la posición p₂ + 1

La entrada de una MT probabilística M con alfabeto Σ consiste de dos strings $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$

- \blacktriangleright Utilizamos la notación M(w,s) para indicar las entradas de M
- ▶ Decimos que M(w, s) acepta si M con entrada (w, s) se detiene en un estado final
 - El caso en que M(w,s) rechaza se define de forma similar

La entrada de una MT probabilística M con alfabeto Σ consiste de dos strings $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$

- lacktriangle Utilizamos la notación M(w,s) para indicar las entradas de M
- Decimos que M(w, s) acepta si M con entrada (w, s) se detiene en un estado final
 - ightharpoonup El caso en que M(w,s) rechaza se define de forma similar

Primer supuesto

Consideramos una MT probabilística M que se detiene en todas sus entradas (w, s)

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Definimos $tiempo_M(w, s)$ como el número de pasos ejecutados por M con entrada (w, s)

Un paso de una MT probabilística *M* consiste en ejecutar una instrucción de la función de transición

Definimos tiempo_M(w, s) como el número de pasos ejecutados por M con entrada (w, s)

Segundo supuesto

Existe una función $f: \Sigma^* \to \mathbb{N}$ tal que para cada $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$: $\underbrace{tiempo_M(w,s)} \leq f(w)$

Un paso de una MT probabilística M consiste en ejecutar una instrucción de la función de transición

Definimos $tiempo_M(w,s)$ como el número de pasos ejecutados por M con entrada (w,s)

Segundo supuesto

Existe una función
$$f: \Sigma^* \to \mathbb{N}$$
 tal que para cada $w \in \Sigma^*$ y $s \in \{0,1\}^\omega$:
$$\frac{tiempo_M(w,s)}{s} \leq f(w)$$

Vale decir, hay una cantidad máxima de bits aleatorios que deben ser utilizados con entrada w, la cual sólo depende de w

Para estudiar el peor caso necesitamos la siguiente definición:

$$tiempo_M(w) = máx\{tiempo_M(w,s) \mid s \in \{0,1\}^{\omega}\}$$

El tiempo de ejecución de una MT probabilística

Para estudiar el peor caso necesitamos la siguiente definición:

$$tiempo_M(w) = máx\{tiempo_M(w,s) \mid s \in \{0,1\}^{\omega}\}$$

Con esto tenemos que el tiempo de funcionamiento de M en el peor caso es definido por la función t_M :

$$t_M(n) = \max\{tiempo_M(w) \mid w \in \Sigma^* \text{ y } |w| = n\}$$

La probabilidad de aceptar en una MT probabilística

Tercer supuesto

Si para una MT probabilística M con alfabeto Σ se tiene que $t_M(n) \leq g(n)$ para todo $n \in \mathbb{N}$, entonces suponemos que las entradas de M son de la forma (w,s) con $w \in \Sigma^*$, $s \in \{0,1\}^*$ y |s| = g(n).

Dado el tiempo de ejecución de M no podemos usar más de g(n) bits aleatorios para una entrada w de largo n.

La probabilidad de aceptar en una MT probabilística

Sea M una MT probabilística con alfabeto Σ y tal que $t_M(n) \leq g(n)$ para todo $n \in \mathbb{N}$.

La probabilidad de aceptar en una MT probabilística

Sea M una MT probabilística con alfabeto Σ y tal que $t_M(n) \leq g(n)$ para todo $n \in \mathbb{N}$.

Definición

Para cada $w \in \Sigma^*$ tal que |w| = n, la probabilidad de que M acepte w es definida de la siguiente forma:

$$\mathbf{Pr}_s(\textit{M acepte } w) \ = \ \frac{|\{s \in \{0,1\}^* \mid |s| = g(n) \ \textit{y M}(w,s) \ \textit{acepta}\}|}{2^{g(n)}}$$

Clases de complejidad probabilísticas

Vamos a definir una primera clase de complejidad considerando los algoritmos probabilísticos

 Esto nos va a permitir decir cuando un lenguaje es aceptado por una MT probabilística

Clases de complejidad probabilísticas

Vamos a definir una primera clase de complejidad considerando los algoritmos probabilísticos

 Esto nos va a permitir decir cuando un lenguaje es aceptado por una MT probabilística

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en RP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge \frac{3}{4}$
- ► Si $w \notin L$, entonces Pr(M acepte w) = 0

Clases de complejidad probabilísticas

Vamos a definir una primera clase de complejidad considerando los algoritmos probabilísticos

 Esto nos va a permitir decir cuando un lenguaje es aceptado por una MT probabilística

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en RP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge \frac{3}{4}$
- ► Si $w \notin L$, entonces Pr(M acepte w) = 0

Vale decir, para los lenguaje en RP tenemos algoritmos probabilísticos que pueden cometer errores sólo para los elementos que están en L

La clase RP: un ejemplo

Ejercicio

 $\mathsf{Muestre}\ \mathsf{que}\ \overline{\mathsf{EQUIV}\text{-}\mathsf{POL}} \in \mathsf{RP}$

¿Por qué utilizamos la probabilidad $\frac{3}{4}$?

El valor $\frac{3}{4}$ es arbitrario

▶ Podemos utilizar valores arbitrariamente más pequeños

¿Por qué utilizamos la probabilidad $\frac{3}{4}$?

El valor $\frac{3}{4}$ es arbitrario

▶ Podemos utilizar valores arbitrariamente más pequeños

Lema de amplificación

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathbb{RP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $\Pr(M \text{ acepte } w) \ge 1 \frac{1}{4^{\ell}}$
- ▶ Si $w \notin L$, entonces Pr(M acepte w) = 0

¿Por qué utilizamos la probabilidad $\frac{3}{4}$?

El valor $\frac{3}{4}$ es arbitrario

▶ Podemos utilizar valores arbitrariamente más pequeños

Lema de amplificación

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathbb{RP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge 1 \frac{1}{4^{\ell}}$
- ▶ Si $w \notin L$, entonces Pr(M acepte w) = 0

Ejercicio

Demuestre el lema de amplificación

Teorema

 $P \subseteq RP \subseteq NP$

Teorema

 $P \subseteq RP \subseteq NP$

Ejercicio

Demuestre el teorema.

Teorema

 $P \subseteq RP \subseteq NP$

Ejercicio

Demuestre el teorema.

Corolario

 $P \subseteq co$ - $RP \subseteq co$ -NP

¿Qué sabemos sobre RP y co-RP?

Son problemas abiertos si P = RP o RP = co-RP

¿Qué sabemos sobre RP y co-RP?

Son problemas abiertos si P = RP o RP = co-RP

Pero se cree que P = RP

- Puesto que si $L \in RP$, entonces hay un algoritmo para resolver L puede ser usado en la *práctica* como un algoritmo de tiempo polinomial
- ▶ De esto se concluiría que RP = co-RP = P

¿Qué sabemos sobre RP y co-RP?

Son problemas abiertos si P = RP o RP = co-RP

Pero se cree que P = RP

- Puesto que si $L \in RP$, entonces hay un algoritmo para resolver L puede ser usado en la *práctica* como un algoritmo de tiempo polinomial
- De esto se concluiría que RP = co-RP = P

EQUIV-POL es un ejemplo de un problema que está en RP y para el cual no se sabe si está en P.

¿Qué sabemos sobre RP \cap co-RP?

Tenemos que $P \subseteq RP \cap co-RP$

 $\ensuremath{\text{\i}} Podemos \ demostrar \ que \ P = RP \cap co\text{-}RP?$

¿Qué sabemos sobre RP \cap co-RP?

Tenemos que $P \subseteq RP \cap co-RP$

¿Podemos demostrar que $P = RP \cap co-RP$?

Este es un problema abierto

¿Qué sabemos sobre RP \cap co-RP?

Tenemos que $P \subseteq RP \cap co\text{-}RP$

¿Podemos demostrar que $P = RP \cap co-RP$?

Este es un problema abierto

Pero podemos demostrar que para cada problema en RP \cap co-RP existe un algoritmo que lo decide en tiempo polinomial *esperado*.

Sea $L \in \mathsf{RP} \cap \mathsf{co}\text{-}\mathsf{RP}$ con alfabeto Σ

Sea $L \in \mathsf{RP} \cap \mathsf{co}\text{-}\mathsf{RP}$ con alfabeto Σ

Entonces existen MTs probabilísticas M_1 y M_2 tales que:

- ▶ $t_{M_1}(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:
 - ▶ Si $w \in L$, entonces $Pr(M_1 \text{ acepte } w) \ge \frac{3}{4}$
 - ▶ Si $w \notin L$, entonces $Pr(M_1 \text{ acepte } w) = 0$
- ▶ $t_{M_2}(n)$ es $O(n^{\ell})$ y para cada $w \in \Sigma^*$:
 - ▶ Si $w \in \overline{L}$, entonces $Pr(M_2 \text{ acepte } w) \ge \frac{3}{4}$
 - ► Si $w \notin \overline{L}$, entonces $Pr(M_2 \text{ acepte } w) = 0$

Sea
$$g(n) = máx\{t_{M_1}(n), t_{M_2}(n)\}$$

Sea
$$g(n) = máx\{t_{M_1}(n), t_{M_2}(n)\}$$

Considere el siguiente algoritmo para decidir si $w \in L$:

- 1. Escoja al azar y con distribución uniforme un string $s \in \{0,1\}^*$ tal que |s| = g(|w|)
- 2. Verifique si $M_1(w, s)$ acepta. Si es así retorne **sí**, sino vaya al paso 3
- 3. Verifique si $M_2(w, s)$ acepta. Si es así retorne **no**, sino vaya al paso 1

El algoritmo anterior puede no detenerse.

► Si se detiene entrega el resultado correcto

El algoritmo anterior puede no detenerse.

► Si se detiene entrega el resultado correcto

¿Cuál es el tiempo esperado de funcionamiento del algoritmo?

El algoritmo anterior puede no detenerse.

► Si se detiene entrega el resultado correcto

¿Cuál es el tiempo esperado de funcionamiento del algoritmo?

Calcular el número esperado de veces que se ejecuta la secuencia de pasos 1 al 3 se reduce a calcular la esperanza de una variable aleatoria con distribución geométrica de parámetro $\frac{3}{4}$

El algoritmo anterior puede no detenerse.

► Si se detiene entrega el resultado correcto

¿Cuál es el tiempo esperado de funcionamiento del algoritmo?

Calcular el número esperado de veces que se ejecuta la secuencia de pasos 1 al 3 se reduce a calcular la esperanza de una variable aleatoria con distribución geométrica de parámetro $\frac{3}{4}$

Concluimos que el algoritmo funciona en tiempo polinomial esperado.

Una clase de complejidad probabilística más general

Una clase de complejidad probabilística más general

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en BPP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ► Si $w \in L$, entonces $Pr(M \text{ acepte } w) \ge \frac{3}{4}$
- ► Si $w \notin L$, entonces $Pr(M \text{ acepte } w) \leq \frac{1}{4}$

Teorema

BPP = co-BPP

Teorema

BPP = co-BPP

Ejercicio

Demuestre el teorema.

Teorema

BPP = co-BPP

Ejercicio

Demuestre el teorema.

Corolario

 $RP \subseteq BPP \ y \ co-RP \subseteq BPP$

Es un problema abierto si $\mathsf{P} = \mathsf{BPP}$

Es un problema abierto si P = BPP

▶ De esto se concluiría que BPP = RP = co-RP = P

Es un problema abierto si P = BPP

▶ De esto se concluiría que BPP = RP = co-RP = P

Vamos a demostrar que BPP está contenida en la jerarquía polinomial.

 En esta demostración vamos a considerar una versión equivalente pero más simple de la definición de BPP

Simplificando la definición de BPP

Sea M una MT probabilística con alfabeto de entrada Σ

Simplificando la definición de BPP

Sea M una MT probabilística con alfabeto de entrada Σ

Dado $w \in \Sigma^*$ y $s \in \{0,1\}^*$ tal que $t_M(|w|) \le |s|$, decimos que M(w,s) es incorrecto si:

$$w \in L$$
 y $M(w, s)$ rechaza o $w \notin L$ y $M(w, s)$ acepta

Simplificando la definición de BPP

Sea M una MT probabilística con alfabeto de entrada Σ

Dado $w \in \Sigma^*$ y $s \in \{0,1\}^*$ tal que $t_M(|w|) \le |s|$, decimos que M(w,s) es incorrecto si:

$$w \in L$$
 y $M(w,s)$ rechaza o $w \not\in L$ y $M(w,s)$ acepta

Vamos a utilizar esta noción para dar una definición más simple de BPP

Una definición equivalente de BPP

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en BPP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \leq \frac{1}{4}$$

Un lema de amplificación para BPP

Al igual que para el caso de RP, el valor $\frac{1}{4}$ en la definición de BPP pueden ser reemplazado por un valor arbitrariamente más pequeño.

Un lema de amplificación para BPP

Al igual que para el caso de RP, el valor $\frac{1}{4}$ en la definición de BPP pueden ser reemplazado por un valor arbitrariamente más pequeño.

Lema de amplificación para BPP

Sea L un lenguaje sobre un alfabeto Σ . Si $L \in \mathsf{BPP}$, entonces para cada $\ell \in \mathbb{N}$, existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \leq \left(\frac{3}{4}\right)^{\ell}$$

Como $L \in \mathsf{BPP}$, existe una MT probabilística M_1 tal que $t_{M_1}(n)$ es $O(n^{k_1})$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M_1(w,s) \text{ es incorrecto}) \leq \frac{1}{4}$$

Como $L \in \mathsf{BPP}$, existe una MT probabilística M_1 tal que $t_{M_1}(n)$ es $O(n^{k_1})$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M_1(w,s) \text{ es incorrecto}) \leq \frac{1}{4}$$

Utilizamos la MT M_1 para construir la MT M mencionada en el enunciado del lema de amplificación.

Considere el siguiente algoritmo que recibe como entrada $w \in \Sigma^*$:

- 1. Escoja al azar con distribución uniforme y de manera independiente strings s_1 , s_2 , ... $s_{2\ell+1}$ en $\{0,1\}^*$ y tales que $|s_1| = |s_2| = \cdots = |s_{2\ell+1}| = t_{M_1}(|w|)$
- 2. Construya el conjunto $A = \{i \in \{1, \dots, 2\ell+1\} \mid M_1(w, s_i) \text{ acepta}\}$
- 3. Si $|A| \ge \ell + 1$, entonces retorne sí, sino retorne no

Considere el siguiente algoritmo que recibe como entrada $w \in \Sigma^*$:

- 1. Escoja al azar con distribución uniforme y de manera independiente strings $s_1, s_2, \ldots s_{2\ell+1}$ en $\{0,1\}^*$ y tales que $|s_1| = |s_2| = \cdots = |s_{2\ell+1}| = t_{M_1}(|w|)$
- 2. Construya el conjunto $A = \{i \in \{1, \dots, 2\ell + 1\} \mid M_1(w, s_i) \text{ acepta}\}$
- 3. Si $|A| \ge \ell + 1$, entonces retorne **sí**, sino retorne **no**

Suponga que M es una MT probabilística que implementa este algoritmo

Considere el siguiente algoritmo que recibe como entrada $w \in \Sigma^*$:

- 1. Escoja al azar con distribución uniforme y de manera independiente strings s_1 , s_2 , ... $s_{2\ell+1}$ en $\{0,1\}^*$ y tales que $|s_1| = |s_2| = \cdots = |s_{2\ell+1}| = t_{M_1}(|w|)$
- 2. Construya el conjunto $A=\{i\in\{1,\ldots,2\ell+1\}\mid M_1(w,s_i) \text{ acepta}\}$
- 3. Si $|A| \ge \ell + 1$, entonces retorne sí, sino retorne no

Suponga que M es una MT probabilística que implementa este algoritmo

Se tiene que $t_M(n)$ es $O(n^k)$ para una constante k ya que $t_{M_1}(n)$ es $O(n^{k_1})$ para una constante k_1

Considere el siguiente algoritmo que recibe como entrada $w \in \Sigma^*$:

- 1. Escoja al azar con distribución uniforme y de manera independiente strings $s_1, s_2, \ldots s_{2\ell+1}$ en $\{0,1\}^*$ y tales que $|s_1| = |s_2| = \cdots = |s_{2\ell+1}| = t_{M_1}(|w|)$
- 2. Construya el conjunto $A = \{i \in \{1, \dots, 2\ell + 1\} \mid M_1(w, s_i) \text{ acepta}\}$
- 3. Si $|A| \ge \ell + 1$, entonces retorne **sí**, sino retorne **no**

Suponga que M es una MT probabilística que implementa este algoritmo

Se tiene que $t_M(n)$ es $O(n^k)$ para una constante k ya que $t_{M_1}(n)$ es $O(n^{k_1})$ para una constante k_1

Vamos a demostrar que M satisface la condición del lema

Dado $w \in \Sigma^*$, tenemos que:

$$\mathsf{Pr}_{s}(M_{1}(w,s) ext{ es incorrecto}) = q \ ext{con } q \leq rac{1}{4}$$

Dado $w \in \Sigma^*$, tenemos que:

con $q \leq \frac{1}{4}$

$$Pr_s(M_1(w,s) \text{ es incorrecto}) = q$$

Además suponemos que 0 < q

Si q = 0 entonces $\Pr_s(M(w, s))$ es incorrecto) $= 0 \le (\frac{3}{4})^{\ell}$. ¿Por qué?

Dado $w \in \Sigma^*$, tenemos que:

$$\mathsf{Pr}_s(M_1(w,s) ext{ es incorrecto}) = q \ ext{con } q \leq rac{1}{4}$$

Además suponemos que 0 < q

Si
$$q = 0$$
 entonces $\Pr_s(M(w, s) \text{ es incorrecto}) = 0 \le (\frac{3}{4})^{\ell}$. ¿Por qué?

Tenemos entonces que:

$$\mathbf{Pr}_s(M(w,s) \text{ es incorrecto}) = \sum_{i=0}^{\ell} {2\ell+1 \choose i} (1-q)^i q^{2\ell+1-i}$$

Como 0 $< q \le rac{1}{4}$, tenemos que $1 \le rac{1-q}{q}$

Entonces para $i \in \{0, \dots, \ell\}$ tenemos que:

$$(1-q)^i q^{2\ell+1-i} \le (1-q)^i q^{2\ell+1-i} \left(rac{1-q}{q}
ight)^{\ell-i}
onumber \ = (1-q)^\ell q^{\ell+1}$$

Por lo tanto:

$$\begin{split} \sum_{i=0}^{\ell} \binom{2\ell+1}{i} (1-q)^i q^{2\ell+1-i} & \leq & \sum_{i=0}^{\ell} \binom{2\ell+1}{i} (1-q)^{\ell} q^{\ell+1} \\ & = & (1-q)^{\ell} q^{\ell+1} \sum_{i=0}^{\ell} \binom{2\ell+1}{i} \\ & \leq & (1-q)^{\ell} q^{\ell+1} 2^{2\ell+1} \end{split}$$

Por lo tanto:

$$\sum_{i=0}^{\ell} {2\ell+1 \choose i} (1-q)^i q^{2\ell+1-i} \leq \sum_{i=0}^{\ell} {2\ell+1 \choose i} (1-q)^{\ell} q^{\ell+1}
= (1-q)^{\ell} q^{\ell+1} \sum_{i=0}^{\ell} {2\ell+1 \choose i}
\leq (1-q)^{\ell} q^{\ell+1} 2^{2\ell+1}$$

El mayor valor de la función f(x) = x(1-x) en el intervalo $(0, \frac{1}{4}]$ se alcanza en $x = \frac{1}{4}$

Por lo tanto:

$$\sum_{i=0}^{\ell} {2\ell+1 \choose i} (1-q)^i q^{2\ell+1-i} \leq \sum_{i=0}^{\ell} {2\ell+1 \choose i} (1-q)^{\ell} q^{\ell+1}
= (1-q)^{\ell} q^{\ell+1} \sum_{i=0}^{\ell} {2\ell+1 \choose i}
\leq (1-q)^{\ell} q^{\ell+1} 2^{2\ell+1}$$

El mayor valor de la función f(x) = x(1-x) en el intervalo $(0, \frac{1}{4}]$ se alcanza en $x = \frac{1}{4}$

► Concluimos que $(1-q)q \le \frac{3}{4} \cdot \frac{1}{4}$

Concluimos que:

$$\sum_{i=0}^{\ell} \binom{2\ell+1}{i} (1-q)^{i} q^{2\ell+1-i} \leq (1-q)^{\ell} q^{\ell+1} 2^{2\ell+1}$$

$$= ((1-q)q)^{\ell} q 2^{2\ell+1}$$

$$\leq \left(\frac{3}{4} \cdot \frac{1}{4}\right)^{\ell} \cdot \frac{1}{4} 2^{2\ell+1}$$

$$= \frac{3^{\ell}}{4^{2\ell+1}} 2^{2\ell+1}$$

$$= 2\frac{3^{\ell}}{4^{2\ell+1}} 4^{\ell}$$

$$= \frac{1}{2} \cdot \frac{3^{\ell}}{4^{\ell}}$$

$$< \left(\frac{3}{4}\right)^{\ell}$$

Poniendo todo junto concluimos que:

$$\mathsf{Pr}_s(M(w,s) \text{ es incorrecto}) = \sum_{i=0}^{\ell} \binom{2\ell+1}{i} (1-q)^i q^{2\ell+1-i}$$

$$\leq \left(\frac{3}{4}\right)^{\ell}$$

< d>→ 3

BPP está en la jerarquía polinomial

Teorema (Gács-Sipser-Lautemann)

 $\textit{BPP} \subseteq \Sigma_2^\textit{P} \cap \Pi_2^\textit{P}$

BPP está en la jerarquía polinomial

Teorema (Gács-Sipser-Lautemann)

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Como sabemos que BPP = co-BPP, nos basta demostrar que BPP $\subseteq \Sigma_2^P$

BPP está en la jerarquía polinomial

Teorema (Gács-Sipser-Lautemann)

$$BPP \subseteq \Sigma_2^P \cap \Pi_2^P$$

Como sabemos que BPP = co-BPP, nos basta demostrar que BPP $\subseteq \Sigma_2^P$

 Antes de realizar esta demostración vamos a ver dos ingredientes necesarios para ella

Una generalización de la noción de lenguaje

Sea Σ un alfabeto.

Un lenguaje L puede tener como elementos pares de strings sobre Σ

▶ Tenemos entonces que $L \subseteq \Sigma^* \times \Sigma^*$

L es un lenguaje como los que habíamos definido antes puesto que un par de strings también es un string

Podemos representar (x, y) como un string x # y donde # es un símbolo nuevo

Una generalización de la noción de lenguaje

Sea Σ un alfabeto.

Un lenguaje L puede tener como elementos pares de strings sobre Σ

▶ Tenemos entonces que $L \subseteq \Sigma^* \times \Sigma^*$

L es un lenguaje como los que habíamos definido antes puesto que un par de strings también es un string

Podemos representar (x, y) como un string x # y donde # es un símbolo nuevo

En las siguientes transparencias vamos a considerar lenguajes que consisten de pares o tuplas de strings.

Una caracterización de NP

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en NP si y sólo si existe un lenguaje $A \subseteq \Sigma^* \times \Sigma^*$ y un polinomio p(n) tales que $A \in P$ y para todo $u \in \Sigma^*$:

$$u \in L$$
 si y sólo si $(\exists v \in \Sigma^*, |v| = p(|u|)) : (u, v) \in A$

Una caracterización de NP

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en NP si y sólo si existe un lenguaje $A \subseteq \Sigma^* \times \Sigma^*$ y un polinomio p(n) tales que $A \in P$ y para todo $u \in \Sigma^*$:

$$u \in L$$
 si y sólo si $(\exists v \in \Sigma^*, |v| = p(|u|)) : (u, v) \in A$

Ejercicio

Demuestre la proposición.

Primer ingrediente: una caracterización de Σ_2^P

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en Σ_2^P si y sólo si existe un lenguaje $B \subseteq \Sigma^* \times \Sigma^* \times \Sigma^*$ y un polinomio q(n) tales que $B \in P$ y para todo $u \in \Sigma^*$:

$$u \in L$$
 si y sólo si $(\exists v_1 \in \Sigma^*, |v_1| = q(|u|))(\forall v_2 \in \Sigma^*, |v_2| = q(|u|)) : (u, v_1, v_2) \in B$

Primer ingrediente: una caracterización de Σ_2^P

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en Σ_2^P si y sólo si existe un lenguaje $B \subseteq \Sigma^* \times \Sigma^* \times \Sigma^*$ y un polinomio q(n) tales que $B \in P$ y para todo $u \in \Sigma^*$:

$$u \in L$$
 si y sólo si $(\exists v_1 \in \Sigma^*, |v_1| = q(|u|))(\forall v_2 \in \Sigma^*, |v_2| = q(|u|)) : (u, v_1, v_2) \in B$

Ejercicio

Demuestre la dirección (⇐) de la proposición.

Esta es la dirección que vamos a utilizar para demostrar que BPP $\subseteq \Sigma_2^P$

Segundo ingrediente: una versión más fuerte del lema de amplificación

Proposition

Sea L un lenguaje sobre un alfabeto Σ . Si L \in BPP, entonces existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$Pr_s(M(w,s) \text{ es incorrecto}) \leq \frac{1}{3t_M(|w|)}$$

Como $L \in \mathsf{BPP}$, sabemos que existe una MT probabilística M_1 tal que $t_{M_1}(n)$ es $O(n^{k_1})$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M_1(w,s) \text{ es incorrecto}) \leq \frac{1}{4}$$

Suponemos que $t_{M_1}(n)$ es $\Omega(n)$ y $t_{M_1}(n) \geq 2$ para todo $n \in \mathbb{N}$

▶ ¿Por qué podemos suponer esto?

Sea
$$a = \frac{4}{3}$$

Como en la demostración del lema de amplificación, defina una MT probabilística M que con entrada $w \in \Sigma^*$ realiza los siguientes pasos:

- 1. realiza $(2\ell+1)$ ejecuciones de la MT probabilística M_1 , donde $\ell=2\lceil\log_a(t_{M_1}(|w|))\rceil$
- 2. retorna ${\bf s}{\bf i}$ si al menos $(\ell+1)$ de las ejecuciones dieron respuesta ${\bf s}{\bf i}$, y ${\bf n}{\bf o}$ en caso contrario

Como en la demostración del lema de amplificación, obtenemos que:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \leq \left(\frac{3}{4}\right)^{\ell}$$

Vamos a utilizar esta relación y la definición de ℓ para demostrar la versión más fuerte del lema de amplificación

Sea
$$k(n) = 2\lceil \log_a(t_{M_1}(n)) \rceil$$

Tenemos que:

$$3(2k(n)+1)t_{M_1}(n) = 3(4\lceil \log_a(t_{M_1}(n))\rceil + 1)t_{M_1}(n)$$

$$\leq 15\lceil \log_a(t_{M_1}(n))\rceil t_{M_1}(n)$$

puesto que $t_{M_1}(n) \geq 2$ para todo $n \in \mathbb{N}$.

Además, existe una constante n_0 tal que para todo $n \ge n_0$:

$$15\lceil \log_a(t_{M_1}(n))\rceil t_{M_1}(n) \leq t_{M_1}(n)^2$$

puesto que $t_{M_1}(n)$ es $\Omega(n)$.

Por lo tanto para todo $n \ge n_0$:

$$3(2k(n)+1)t_{M_1}(n) \leq t_{M_1}(n)^2$$

$$= a^{\log_a(t_{M_1}(n)^2)}$$

$$= a^{2\log_a(t_{M_1}(n))}$$

$$\leq a^{2\lceil \log_a(t_{M_1}(n)) \rceil}$$

$$= a^{k(n)}$$

Dado que $a = \frac{4}{3}$, concluimos que para todo $n \ge n_0$:

$$3(2k(n)+1)t_{M_1}(n) \leq \left(\frac{4}{3}\right)^{k(n)}$$

Suponga que $|w| \ge n_0$

▶ Vamos a consider el caso $|w| < n_0$ por separado

De la conclusión en la transparencia anterior obtenemos lo siguiente considerando que $\ell=k(|w|)$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \left(\frac{3}{4}\right)^{\ell}$$
 $\le \frac{1}{3(2\ell+1)t_{M_1}(|w|)}$

Dado que $t_M(|w|) = (2\ell + 1)t_{M_1}(|w|)$, tenemos que:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Dado que $t_M(|w|) = (2\ell + 1)t_{M_1}(|w|)$, tenemos que:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Para concluir la demostración necesitamos considerar el caso $|w| < n_0$

Dado que $t_M(|w|) = (2\ell + 1)t_{M_1}(|w|)$, tenemos que:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Para concluir la demostración necesitamos considerar el caso $|w| < n_0$

En este caso podemos modificar M para que satisfaga la condición:

$$Pr_s(M(w,s) \text{ es incorrecto}) = 0 < \frac{1}{3t_M(|w|)}$$

¿Por qué podemos hacer esto?

Sea L un lenguaje sobre un alfabeto Σ , y suponga que $L \in \mathsf{BPP}$

Sea L un lenguaje sobre un alfabeto Σ , y suponga que $L \in \mathsf{BPP}$

Por lema de amplificación existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Sea L un lenguaje sobre un alfabeto Σ , y suponga que $L \in \mathsf{BPP}$

Por lema de amplificación existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

$$\Pr_s(M(w,s) \text{ es incorrecto}) \le \frac{1}{3t_M(|w|)}$$

Además podemos suponer que $t_M(n)>0$ para cada $n\in\mathbb{N}$

► ¿Por qué?

Notación

Usamos $s \in \{0,1\}^m$ para indicar que $s \in \{0,1\}^*$ y |s|=m

Dados a y b en $\{0,1\}$, la operación $a \oplus b$ es definida como (a+b) mod 2

► Vale decir, ⊕ es el o exclusivo

Dados $x, y \in \{0, 1\}^m$ con $x = a_1 a_2 \cdots a_m$ e $y = b_1 b_2 \cdots b_m$, la operación $x \oplus y$ da como resultado el siguiente string en $\{0, 1\}^m$:

$$(a_1 \oplus b_1)(a_2 \oplus b_2) \cdots (a_m \oplus b_m)$$

Defina el lenguaje A de la siguiente forma:

```
A = \{(w, y_1, \dots, y_m, z) \mid w \in \Sigma^*, m = t_M(|w|), \\ y_i \in \{0, 1\}^m \text{ para cada } i \in \{1, \dots, m\}, z \in \{0, 1\}^m \\ y \ M(w, y_i \oplus z) \text{ acepta para algún } j \in \{1, \dots, m\} \}
```

Defina el lenguaje A de la siguiente forma:

```
A = \{(w, y_1, \dots, y_m, z) \mid w \in \Sigma^*, m = t_M(|w|),
y_i \in \{0, 1\}^m \text{ para cada } i \in \{1, \dots, m\}, z \in \{0, 1\}^m
y \ M(w, y_i \oplus z) \text{ acepta para algún } j \in \{1, \dots, m\} \ \}
```

Ejercicio

Demuestre que $A \in P$

Dada la caracterización de Σ_2^P en las transparencias anteriores, para demostrar que $L \in \Sigma_2^P$ basta demostrar la siguiente condición:

Para cada $w \in \Sigma^*$ tal que $t_M(|w|) = m$:

$$w \in L$$
 si y sólo si

$$\exists y_1 \in \{0,1\}^m \cdots \exists y_m \in \{0,1\}^m \forall z \in \{0,1\}^m (w,y_1,\ldots,y_m,z) \in A$$

Dada la caracterización de Σ_2^P en las transparencias anteriores, para demostrar que $L \in \Sigma_2^P$ basta demostrar la siguiente condición:

Para cada
$$w \in \Sigma^*$$
 tal que $t_M(|w|) = m$:

$$w \in L$$
 si y sólo si
$$\exists y_1 \in \{0,1\}^m \cdots \exists y_m \in \{0,1\}^m \, \forall z \in \{0,1\}^m \, (w,y_1,\ldots,y_m,z) \in A$$

Para hacer esta demostración vamos a utilizar el método probabilístico.

Para demostrar que un objeto con ciertas propiedades existe, en lugar de construirlo demostramos que la probabilidad de que exista es mayor que 0

Suponga que $w \in L$ y $t_M(|w|) = m$

Suponga que $w \in L$ y $t_M(|w|) = m$

Tenemos que:

$$\begin{split} \mathbf{Pr}_{y_1,...,y_m} \bigg(\exists z \in \{0,1\}^m \bigwedge_{i=1}^m M(w,y_i \oplus z) \; \text{rechaza} \bigg) \; \leq \\ & \sum_{z \in \{0,1\}^m} \mathbf{Pr}_{y_1,...,y_m} \bigg(\bigwedge_{i=1}^m M(w,y_i \oplus z) \; \text{rechaza} \bigg) \; = \\ & \sum_{z \in \{0,1\}^m} \prod_{i=1}^m \mathbf{Pr}_{y_i} \bigg(M(w,y_i \oplus z) \; \text{rechaza} \bigg) \end{split}$$

Dado $a \in \{0,1\}^m$, la función $f: \{0,1\}^m \to \{0,1\}^m$ definida como $f(x) = x \oplus a$ es inyectiva

Dado $a \in \{0,1\}^m$, la función $f: \{0,1\}^m \to \{0,1\}^m$ definida como $f(x) = x \oplus a$ es inyectiva

Por lo tanto dado que $w \in L$, concluimos que:

$$\Pr_{y_i}\left(M(w,y_i\oplus z) \text{ rechaza}\right) \leq \frac{1}{3m}$$

Dado que m > 0 concluimos que:

$$\begin{aligned} \mathbf{Pr}_{y_1,...,y_m} \bigg(\exists z \in \{0,1\}^m \bigwedge_{i=1}^m M(w,y_i \oplus z) \; \text{rechaza} \bigg) &\leq \\ &\sum_{z \in \{0,1\}^m} \prod_{i=1}^m \mathbf{Pr}_{y_i} \bigg(M(w,y_i \oplus z) \; \text{rechaza} \bigg) &\leq \\ &\sum_{z \in \{0,1\}^m} \prod_{i=1}^m \frac{1}{3m} &= \\ &\sum_{z \in \{0,1\}^m} \frac{1}{(3m)^m} &= \\ &\frac{2^m}{(3m)^m} &< 1 \end{aligned}$$

Por lo tanto existen $y_1 \in \{0,1\}^m, \ldots, y_m \in \{0,1\}^m$ tales que la siguiente condición es cierta:

$$\forall z \in \{0,1\}^m \bigvee_{i=1}^m M(w,y_i \oplus z)$$
 acepta

Por lo tanto existen $y_1 \in \{0,1\}^m, \ldots, y_m \in \{0,1\}^m$ tales que la siguiente condición es cierta:

$$orall z \in \{0,1\}^m igvee_{i=1}^m M(w,y_i \oplus z)$$
 acepta

Concluimos que:

$$\exists y_1 \in \{0,1\}^m \cdots \exists y_m \in \{0,1\}^m \, \forall z \in \{0,1\}^m \, (w,y_1,\ldots,y_m,z) \in A$$

¿Es necesario el uso de z para esta dirección de la demostración?

¿Es necesario el uso de z para esta dirección de la demostración?

Dado que $w \in L$ y m > 0 tenemos que:

$$\mathbf{Pr}_{y_1,...,y_m} \left(\bigwedge_{i=1}^m M(w,y_i) \text{ rechaza} \right) = \prod_{i=1}^m \mathbf{Pr}_{y_i} \left(M(w,y_i) \text{ rechaza} \right) \\
\leq \prod_{i=1}^m \frac{1}{3m} = \\
= \frac{1}{(3m)^m} < 1$$

¿Es necesario el uso de z para esta dirección de la demostración?

Dado que $w \in L$ y m > 0 tenemos que:

$$\mathbf{Pr}_{y_1,...,y_m} \left(\bigwedge_{i=1}^m M(w, y_i) \text{ rechaza} \right) = \prod_{i=1}^m \mathbf{Pr}_{y_i} \left(M(w, y_i) \text{ rechaza} \right) \\
\leq \prod_{i=1}^m \frac{1}{3m} = \\
= \frac{1}{(3m)^m} < 1$$

Por lo que el uso de z no es estrictamente necesario para esta parte de la demostración.

Pero sí es necesario para la otra dirección

Suponga que $w \notin L$ y $t_M(|w|) = m$

▶ Para demostrar la dirección (⇐) consideramos el contrapositivo

Suponga que $w \notin L$ y $t_M(|w|) = m$

▶ Para demostrar la dirección (⇐) consideramos el contrapositivo

Además, suponga que $y_1 \in \{0,1\}^m$, ..., $y_m \in \{0,1\}^m$

Suponga que $w \notin L$ y $t_M(|w|) = m$

▶ Para demostrar la dirección (⇐) consideramos el contrapositivo

Además, suponga que $y_1 \in \{0,1\}^m$, ..., $y_m \in \{0,1\}^m$

Dado que $w \notin L$ y m > 0 tenemos que:

$$\Pr_{z}\left(\bigvee_{i=1}^{m}M(w,y_{i}\oplus z)\text{ acepta}\right) \leq \sum_{i=1}^{m}\Pr_{z}\left(M(w,y_{i}\oplus z)\text{ acepta}\right)$$

$$\leq \sum_{i=1}^{m}\frac{1}{3m}$$

$$= \frac{m}{3m}$$

$$= \frac{1}{3}$$

Se concluye que:

$$\mathbf{Pr}_zigg(igwedge_{i=1}^m M(w,y_i\oplus z) \ \mathrm{rechaza}igg) = 1 - \mathbf{Pr}_zigg(igvee_{i=1}^m M(w,y_i\oplus z) \ \mathrm{acepta}igg)$$

$$\geq 1 - \frac{1}{3}$$

$$= \frac{2}{3}$$

Se concluye que:

$$\operatorname{\mathsf{Pr}}_{z}igg(\bigwedge_{i=1}^{m} M(w,y_{i}\oplus z) \operatorname{\mathsf{rechaza}}igg) = 1 - \operatorname{\mathsf{Pr}}_{z}igg(\bigvee_{i=1}^{m} M(w,y_{i}\oplus z) \operatorname{\mathsf{acepta}}igg)$$

$$\geq 1 - \frac{1}{3}$$

$$= \frac{2}{3}$$

Por lo tanto tenemos que existe $z \in \{0,1\}^m$ tal que $M(w,y_i \oplus z)$ rechaza para cada $i \in \{1,\ldots,m\}$

Dado que y_1, \ldots, y_m son elementos arbitrarios en el conjunto $\{0,1\}^m$, tenemos finalmente que:

$$\forall y_1 \in \{0,1\}^m \cdots \forall y_m \in \{0,1\}^m \exists z \in \{0,1\}^m (w,y_1,\ldots,y_m,z) \notin A$$

En esta dirección de la demostración si es necesario el uso de z

En esta dirección de la demostración si es necesario el uso de z

Si existe $y \in \{0,1\}^m$ tal que M(w,y) acepta, entonces existen $y_1 \in \{0,1\}^m$, ..., $y_m \in \{0,1\}^m$ tales que la siguiente condición es falsa:

$$\bigwedge_{i=1}^m M(w,y_i) \text{ rechaza}$$

En esta dirección de la demostración si es necesario el uso de z

Si existe $y \in \{0,1\}^m$ tal que M(w,y) acepta, entonces existen $y_1 \in \{0,1\}^m$, ..., $y_m \in \{0,1\}^m$ tales que la siguiente condición es falsa:

$$\bigwedge_{i=1}^m M(w,y_i) \text{ rechaza}$$

Concluimos que la idea de la demostración no funciona sin la utilización de z para m elementos arbitrarios y_1, \ldots, y_m del conjunto $\{0,1\}^m$

Las clases de complejidad probabilísticas en una figura

