2.5
LINES and PLANES
in \mathbb{R}^3

Planes

A plane can be uniquely determined by any of the following:

- √ three non-collinear points
- ✓ a line and a point not on the line
- ✓ two lines with one point of intersection
- √ two parallel lines

Planes

If N is a given non-zero vector and P_0 is a point, then the set of all points P for which P_0P and N are orthogonal is a **PLANE** through P_0 and having N as a normal vector.

Equation of a plane in 3D

Point on the plane:

$$P_{0}(x_{0},y_{0},z_{0})$$

Normal vector to the plane:

$$N = \langle a, b, c \rangle$$

Standard equation of the plane:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

Equation of a plane in 3D

General equation of a plane:

$$ax + by + cz + d = \mathbf{0}$$

if a, b and c are not all zero, $\langle a, b, c \rangle$ is a normal vector to the plane

Remark

Two planes are parallel if their normal vectors are parallel,

Two planes are perpendicular if their normal vectors are orthogonal,

Remark

Parallel planes

normal vectors are scalar multiples of each other

Perpendicular planes

dot product of normal vectors is zero

Example. Determine the equation of the given plane.

1. plane Ω through the point (4,-2,-3) and perpendicular to the vector $\langle 2,1,3\rangle$

Solution:

$$P_0(4,-2,-3)$$

$$N = \langle 2, 1, 3 \rangle$$

Solution (continued)

$$P_0(4,-2,-3)$$
 $N = \langle 2,1,3 \rangle$

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

$$\Rightarrow$$
 2(x-4)+1(y+2)+3(z+3)=0

$$\Rightarrow 2x + y + 3z + 3 = 0$$

Example. Determine the equation of the given plane.

2. plane K through the point (-1,7,4) and parallel to the plane M:2x-y+3z-5=0

Solution:

$$P_{0}(-1,7,4)$$

$$N_{K}=N_{M}=\langle 2,-1,3 \rangle$$

Solution (continued)

$$P_0(-1,7,4) \ N_K = \langle 2,-1,3 \rangle$$

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

$$\Rightarrow$$
 2(x+1)-1(y-7)+3(z-4)=0

$$\Rightarrow 2x - y + 3z - 3 = 0$$

Graph

$$2x-y+3z-3=0$$

$$x$$
-intercept: $\frac{3}{2}$
 $y = 0; z = 0$

$$P_1\left(\frac{3}{2},0,0\right)$$

y-intercept:
$$-3$$
 $x = 0$; $z = 0$

$$P_{2}(0,-3,0)$$

z-intercept: 1
$$x = 0; y = 0$$

$$P_{3}(0,0,1)$$

Example. Determine the equation of the given plane.

3. plane Γ containing the points $P(\mathbf{2},\mathbf{3},\mathbf{0})$, $Q(\mathbf{0},\mathbf{5},-\mathbf{1})$ and $R(\mathbf{1},\mathbf{0},\mathbf{3})$

Solution:

normal vector ???

Solution (continued)

N is a vector perpendicular to $\stackrel{\rightarrow}{PQ}$, $\stackrel{\rightarrow}{PR}$ and $\stackrel{\rightarrow}{QR}$

$$P(2,3,0) Q(0,5,-1) R(1,0,3)$$

$$\overrightarrow{PQ} = \langle -2,2,-1 \rangle \overrightarrow{PR} = \langle -1,-3,3 \rangle$$

$$N = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ -2 & 2 & -1 \\ -1 & -3 & 3 \end{vmatrix} = \langle 3,7,8 \rangle$$

Equation of a plane in 3D

Point on the plane:

$$P_0(x_0, y_0, z_0)$$

Normal vector to the plane:

$$N = \langle a, b, c \rangle$$

Standard equation of the plane:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

Lines in 2D

Point-slope form $y-y_1 = m(x-x_1)$

Slope-intercept form y = mx + b

Intercept form $\frac{x}{a} + \frac{y}{b} = 1$

General equation Ax + By + C = 0

Lines in 3D

If R is a given non-zero vector and P_0 is a point, then the set of all points P for which P_0P is parallel to R is a LINE through P_0 and parallel to R.

Lines in 3D

Let L be a line that contains the point $P_0(x_0,y_0,z_0)$ and is parallel to the vector $R = \langle a,b,c \rangle$.

Using t as a parameter,

PARAMETRIC EQUATIONS of L

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

Lines in 3D

Let L be a line that contains the point $P_0(x_0,y_0,z_0)$ and is parallel to the vector $R = \langle a,b,c \rangle$.

SYMMETRIC EQUATIONS of L

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Example. Determine the parametric and symmetric equations of the given line.

1. line L through the point (1,-2,3) and is parallel to the vector $\langle -2,4,5 \rangle$

Solution:

$$P_0(1,-2,3)$$
 $R = \langle -2,4,5 \rangle$

Solution (continued)

$$P_0(1,-2,3)$$
 $R = \langle -2,4,5 \rangle$

PARAMETRIC EQUATIONS of L

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

$$x = 1 - 2t$$
 $y = -2 + 4t$ $z = 3 + 5t$

Solution (continued)

$$P_0(1,-2,3)$$
 $R = \langle -2,4,5 \rangle$

SYMMETRIC EQUATIONS of L

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

$$\frac{x-1}{-2} = \frac{y+2}{4} = \frac{z-3}{5}$$

Graph

Using parametric equations

$$x = 1 - 2t$$
 $y = -2 + 4t$ $z = 3 + 5t$

At
$$t = 0$$
, $x = 1$ $y = -2$ $z = 3 (1,-2,3)$

At
$$t = 2$$
, $x = -3$ $y = 6$ $z = 13(-3,6,13)$

At
$$t = -1$$
, $x = 3$ $y = -6$ $z = -2$ $(3, -6, -2)$

At
$$t = \frac{1}{2}$$
, $x = -1$ $y = 0$ $z = \frac{11}{2} \left(-1.0, \frac{11}{2} \right)$

Example. Determine the parametric and symmetric equations of the given line.

2. line M through the points P(2,3,0) and Q(4,5,-1)

Solution:

M is parallel to vector \overrightarrow{PQ} .

$$\overrightarrow{PQ} = \langle 2, 2, -1 \rangle$$

Solution (continued)

$$Q(4,5,-1)$$
 $\overrightarrow{PQ} = \langle 2,2,-1 \rangle$

PARAMETRIC EQUATIONS of M

$$x = 4 + 2t$$
 $y = 5 + 2t$ $z = -1 - 1t$

SYMMETRIC EQUATIONS of M

$$\frac{x-4}{2} = \frac{y-5}{2} = \frac{z+1}{-1}$$

Graph

