pycse - Python3 Computations in Science and Engineering

John Kitchin jkitchin@andrew.cmu.edu https://kitchingroup.cheme.cmu.edu Twitter: @johnkitchin https://github.com/jkitchin/pycse

September 22, 2021

python pycse - Python3 computations in science and engineering

Contents

1	Ove	rview	7
2	Basi	ic python usage	8
	2.1	Basic math	8
	2.2	Advanced mathematical operators	8
		2.2.1 Exponential and logarithmic functions	9
	2.3	Creating your own functions	9
	2.4	Defining functions in python	9
	2.5	Advanced function creation	
	2.6	Lambda Lambda	
		2.6.1 Applications of lambda functions	
		2.6.2 Summary	
	2.7	Creating arrays in python	
	2.8	Functions on arrays of values	
	$\frac{2.0}{2.9}$	· ·	
	2.9	Some basic data structures in python	
		2.9.1 the list	
		2.9.2 tuples	
		2.9.3 struct	
		2.9.4 dictionaries	
		2.9.5 Summary	21
	2.10	Indexing vectors and arrays in Python	21
		2.10.1 2d arrays	22
		2.10.2 Using indexing to assign values to rows and columns	22
		2.10.3 3D arrays	23
		·	23

		Controlling the format of printed variables
	2.12	Advanced string formatting
3	Mat	$^{ m h}$
	3.1	Numeric derivatives by differences
	3.2	Vectorized numeric derivatives
	3.3	2-point vs. 4-point numerical derivatives
	3.4	Derivatives by polynomial fitting
	3.5	Derivatives by fitting a function and taking the analytical derivative
	3.6	Derivatives by FFT
	3.7	v
	3.1	A novel way to numerically estimate the derivative of a function - complex-step
	0.0	derivative approximation
	3.8	Vectorized piecewise functions
	3.9	Smooth transitions between discontinuous functions
		3.9.1 Summary
		Smooth transitions between two constants
	3.11	On the quad or trapz'd in ChemE heaven
		3.11.1 Numerical data integration
		3.11.2 Combining numerical data with quad
		3.11.3 Summary
	3.12	Polynomials in python
		3.12.1 Summary
	3.13	Wilkinson's polynomial
		The trapezoidal method of integration
		Numerical Simpsons rule
		Integrating functions in python
	0.10	3.16.1 double integrals
		3.16.2 Summary
	9 17	v
		Function integration by the Romberg method
	3.19	Symbolic math in python
		3.19.1 Solve the quadratic equation
		3.19.2 differentiation
		3.19.3 integration
		3.19.4 Analytically solve a simple ODE
	3.20	Is your ice cream float bigger than mine
4	Line	ear algebra 58
•	4.1	Potential gotchas in linear algebra in numpy
	4.1	Solving linear equations
	$\frac{4.2}{4.3}$	•
	4.3	<u>.</u>
		4.3.1 The transpose in Python
		4.3.2 Rule 1
		4.3.3 Rule 2
		4.3.4 Rule 3
		4.3.5 Rule 4
		4.3.6 Summary
	4.4	Sums products and linear algebra notation - avoiding loops where possible 62

		4.4.1 Old-fashioned way with a loop
		4.4.2 The numpy approach
		4.4.3 Matrix algebra approach
		4.4.4 Another example
		4.4.5 Last example
		4.4.6 Summary
	4.5	Determining linear independence of a set of vectors
		4.5.1 another example
		4.5.2 Near deficient rank
		4.5.3 Application to independent chemical reactions
	4.6	Reduced row echelon form
	4.7	Computing determinants from matrix decompositions
	4.8	Calling lapack directly from scipy
5	Nor	nlinear algebra 70
	5.1	Know your tolerance
	5.2	Solving integral equations with fsolve
		5.2.1 Summary notes
	5.3	Method of continuity for nonlinear equation solving
	5.4	Method of continuity for solving nonlinear equations - Part II
	5.5	Counting roots
		5.5.1 Use roots for this polynomial
		5.5.2 method 1
		5.5.3 Method 2
	5.6	Finding the nth root of a periodic function
	5.7	Coupled nonlinear equations
_	~	
6		tistics 83
	6.1	Introduction to statistical data analysis
	6.2	Basic statistics
	6.3	Confidence interval on an average
	6.4	Are averages different
		6.4.1 The hypothesis
		6.4.2 Compute the t-score for our data
		6.4.3 Interpretation
	6.5	Model selection
	6.6	Numerical propagation of errors
		6.6.1 Addition and subtraction
		6.6.2 Multiplication
		6.6.3 Division
		6.6.4 exponents
		6.6.5 the chain rule in error propagation
		6.6.6 Summary
	6.7	Another approach to error propagation
		6.7.1 Summary
	6.8	Random thoughts
		6.8.1 Summary 102

7	Data	a analysis	102
	7.1	Fit a line to numerical data	. 102
	7.2	Linear least squares fitting with linear algebra	. 103
	7.3	Linear regression with confidence intervals (updated)	. 104
	7.4	Linear regression with confidence intervals	. 105
	7.5	Nonlinear curve fitting	. 106
	7.6	Nonlinear curve fitting by direct least squares minimization	. 108
	7.7	Parameter estimation by directly minimizing summed squared errors	. 108
	7.8	Nonlinear curve fitting with parameter confidence intervals	. 112
	7.9	Nonlinear curve fitting with confidence intervals	. 114
	7.10	Graphical methods to help get initial guesses for multivariate nonlinear regression	. 115
	7.11	Fitting a numerical ODE solution to data	. 119
	7.12	Reading in delimited text files	. 120
8	Inte	rpolation	121
	8.1	Better interpolate than never	. 121
		8.1.1 Estimate the value of f at $t=2$. 121
		8.1.2 improved interpolation?	. 122
		8.1.3 The inverse question	. 123
		8.1.4 A harder problem	. 124
		8.1.5 Discussion	. 125
	8.2	Interpolation of data	. 126
	8.3	Interpolation with splines	. 127
9	Ont	imization	127
9	9.1	Constrained optimization	
	9.1	Finding the maximum power of a photovoltaic device	
	9.2	Using Lagrange multipliers in optimization	
	5.5	9.3.1 Construct the Lagrange multiplier augmented function	
		9.3.2 Finding the partial derivatives	
		9.3.3 Now we solve for the zeros in the partial derivatives	
		9.3.4 Summary	
	9.4	Linear programming example with inequality constraints	
	9.4 9.5	Find the minimum distance from a point to a curve	
	9.0	rind the minimum distance from a point to a curve	. 100
10	Diff	erential equations	136
	10.1	Ordinary differential equations	. 137
		10.1.1 Numerical solution to a simple ode	. 137
		10.1.2 Plotting ODE solutions in cylindrical coordinates	. 138
		10.1.3 ODEs with discontinuous forcing functions	
		10.1.4 Simulating the events feature of Matlab's ode solvers	. 141
		10.1.5 Mimicking ode events in python	. 143
		10.1.6 Solving an ode for a specific solution value	
		10.1.7 A simple first order ode evaluated at specific points	
		10.1.8 Stopping the integration of an ODE at some condition	
		10.1.9 Finding minima and maxima in ODE solutions with events	
		10.1.10 Error tolerance in numerical solutions to ODEs	
		10.1.11 Solving parameterized ODEs over and over conveniently	

	10.1.12 Yet another way to parameterize an ODE	. 155
	10.1.13 Another way to parameterize an ODE - nested function	. 157
	10.1.14 Solving a second order ode	. 158
	10.1.15 Solving Bessel's Equation numerically	
	10.1.16 Phase portraits of a system of ODEs	
	10.1.17 Linear algebra approaches to solving systems of constant coefficient ODEs .	
10.2	Delay Differential Equations	
	Differential algebraic systems of equations	
	Boundary value equations	
10.4	10.4.1 Plane Poiseuille flow - BVP solve by shooting method	
	10.4.2 Plane poiseuelle flow solved by finite difference	
	10.4.4 BVP in pycse	
	10.4.5 A nonlinear BVP	
	10.4.6 Another look at nonlinear BVPs	
	10.4.7 Solving the Blasius equation	
10.5	Partial differential equations	
	10.5.1 Modeling a transient plug flow reactor	
	10.5.2 Transient heat conduction - partial differential equations	
	10.5.3 Transient diffusion - partial differential equations	. 192
 D1 /		105
	ting	195
11.1	Plot customizations - Modifying line, text and figure properties	
	11.1.1 setting all the text properties in a figure	
11.2	Plotting two datasets with very different scales	
	11.2.1 Make two plots!	
	11.2.2 Scaling the results	
	11.2.3 Double-y axis plot	
	11.2.4 Subplots	
11.3	Customizing plots after the fact	. 205
11.4	Fancy, built-in colors in Python	. 209
11.5	Picasso's short lived blue period with Python	. 209
11.6	Interactive plotting	. 211
	11.6.1 Basic mouse clicks	. 211
11.7	key events not working on Mac/org-mode	. 214
	11.7.1 Mouse movement	. 215
	11.7.2 key press events	. 216
	11.7.3 Picking lines	
	11.7.4 Picking data points	
11.8	Peak annotation in matplotlib	
	gramming	220
12.1	Some of this, sum of that	
	12.1.1 Nested lists	. 221
12.2	Sorting in python	. 221
	Unique entries in a vector	
	Lather, rinse and repeat	
	12.4.1 Conclusions	

	12.5	Brief intro to regular expressions	224
		Working with lists	
		Making word files in python	
		Interacting with Excel in python	
		12.8.1 Writing Excel workbooks	
		12.8.2 Updating an existing Excel workbook	
		12.8.3 Summary	
	12.9	Using Excel in Python	
		ORunning Aspen via Python	
		1Using an external solver with Aspen	
		2Redirecting the print function	
		3Getting a dictionary of counts	
		4About your python	
	12.16	5Automatic, temporary directory changing	230
13	Mis	cellaneous	23 8
		Mail merge with python	
	10.1	morgo with python	200
14	Wor	rked examples	23 9
	14.1	Peak finding in Raman spectroscopy	239
		14.1.1 Summary notes	2 43
	14.2	Curve fitting to get overlapping peak areas	
		14.2.1 Notable differences from Matlab	
	14.3	Estimating the boiling point of water	
		14.3.1 Summary	
	14.4	Gibbs energy minimization and the NIST webbook	
		14.4.1 Compute mole fractions and partial pressures	
		14.4.2 Computing equilibrium constants	
	14.5	Finding equilibrium composition by direct minimization of Gibbs free energy on mole	
	11.0	numbers	253
		14.5.1 The Gibbs energy of a mixture	
		14.5.2 Linear equality constraints for atomic mass conservation	
		14.5.3 Equilibrium constant based on mole numbers	
		14.5.4 Summary	
	14.6	The Gibbs free energy of a reacting mixture and the equilibrium composition	
	14.0	14.6.1 Summary	
	147	Water gas shift equilibria via the NIST Webbook	
	14.1	14.7.1 hydrogen	
		14.7.2 H {2}O	
		14.7.3 CO	
		14.7.4 CO_{2}	
		14.7.5 Standard state heat of reaction	
		14.7.7 Plot how the ΔG varies with temperature	
		14.7.8 Equilibrium constant calculation	
		14.7.9 Equilibrium yield of WGS	
		14.7.10 Compute gas phase pressures of each species	
		14.7.11 Compare the equilibrium constants	264

	14.7.12 Summary	. 264
	14.8 Constrained minimization to find equilibrium compositions	. 264
	14.8.1 summary	. 267
	14.9 Using constrained optimization to find the amount of each phase present	. 268
	14.10Conservation of mass in chemical reactions	
	14.11Numerically calculating an effectiveness factor for a porous catalyst bead	. 270
	14.12Computing a pipe diameter	
	14.13Reading parameter database text files in python	
	14.14Calculating a bubble point pressure of a mixture	
	14.15The equal area method for the van der Waals equation	
	14.15.1 Compute areas	
	14.16Time dependent concentration in a first order reversible reaction in a batch reactor	
	14.17Finding equilibrium conversion	
	14.18Integrating a batch reactor design equation	
	14.19Uncertainty in an integral equation	
	14.20Integrating the batch reactor mole balance	
	14.21Plug flow reactor with a pressure drop	
	14.22Solving CSTR design equations	
	14.23Meet the steam tables	
	14.23.1 Starting point in the Rankine cycle in condenser	
	14.23.2 Isentropic compression of liquid to point 2	. 289
	14.23.3 Isobaric heating to T3 in boiler where we make steam	
	14.23.4 Isentropic expansion through turbine to point 4	
	14.23.5 To get from point 4 to point 1	. 290
	14.23.6 Efficiency	. 290
	14.23.7 Entropy-temperature chart	. 290
	14.23.8 Summary	. 292
	14.24What region is a point in	. 292
15	Units	2 98
	15.1 Using units in python	
	15.1.1 scimath	
	15.2 Handling units with the quantities module	
	15.3 Units in ODEs	. 303
	15.4 Handling units with dimensionless equations	. 307
16	GNU Free Documentation License	309
17	Additional References	318
т	1.	016
ıno	dex	319

1 Overview

This is a collection of examples of using python in the kinds of scientific and engineering computations I have used in classes and research. They are organized by topics.

I recommend the Continuum IO Anaconda python distribution (https://www.continuum.io). This distribution is free for academic use, and cheap otherwise. It is pretty complete in terms of