hec-5

i) Two-Point Boundary value Problem (BVP) consider y''(x) = f(x, y, y')on a < x < b $y(a) = \alpha$ $y(b) = \beta$ Many application i) spring mass mul+ Yu'+ Ku= f(+) ii) vibration of a Elastic string 4 B.C yw)=0, y(4)=0.5 LINEAR EXAMPLES NON- LINEAR $-(y')^{2}-2b(n)y+2y.y''=0$ $y(0)=1 \quad y(1)=2$ SHOOTING METHOD INP W/one IC as parameter adjust to reach the talyet y(b)=B LINEAR SUDOTING: General Problem y" = u(n) + v(n) y + w(n) y', y(a) = x (b) y(b) = B Let g be:

y" = 4+ vy + wy", y(4) = K y'(a) = 0 Стубе: g"= 4+ vg + wg1, y(a) = x g'(a) = 1,

sohe III) to obtain y(n), y(m) on a sx sb Let you = λ y on + (- λ) y (n) - 31

where λ : TBD 3.t ysolve I check DE (2)X1+ (3)X(1-1) =) > 11+ > vy+ > wy + 1+ vy+wy - > 1 = > 1 $\left[\lambda \dot{y} + (1-\lambda) \dot{y}\right]^{1} = \frac{15+\nu \dot{y}+\omega \dot{y}'}{1+\nu \dot{y}'} + \frac{1}{\nu \dot{y}'}$ $\left[\lambda \dot{y}'' - \frac{1}{\nu \dot{y}'}\right]^{1} - \frac{1}{\nu \dot{y}'}$ Bounday and. $y(a) = \lambda \cdot \overline{y}(a) + (1-\lambda)\overline{y}(a)$ $y(b) = \sqrt{\lambda y(b)} + (1-\lambda)y(b) = \beta$ Sohre this for 1 >(g (b) - g (b)) = 3 - g (b) >= B-9(b) - 8 A 4 (b) - q (b) PRACTICOL N1= 9 N2= 91 N3= 9 N4= 91 21,10) = X 21 = x2, x2 = ur Vx1 + wx2 d24) = 0 $a_3(a) = \alpha$ Ny(a) =1 74= 4+ VX3 + WX4

NON LINEAR SHOOTING
~ much
y"= +(x,y,y') a < 2 < b.
B.C., $y(9) = x$ $y(b) = \beta$
J: non- Linear func into y any!
Let g'' be some $(VP, g', g', g', g', g', g', g', g', g', g'$
$\vec{g}'' = f(x) \vec{g} \cdot \vec{g}'$ $\vec{g}(a) = \alpha$
$y(a) = \alpha$
g"(a) Z
Goal: Find Z S.t gb)= \$
The second secon
A combe solved) y (b) :
the state of the s
Obs. Q(b) debends on Z
Obs. $\ddot{g}(b)$ depends on Z . Let $\ddot{y}(b) = \phi(Z)$. e non Lineau func.
GOAL: Charge of of (Z) - B = 0
GOAL: Change $z = 1$. $\phi(z) - \beta = 0$ Chan z_1, z_2 Sohe A . $\phi_1 = \phi(z_1)$ $\phi_2 = \phi(z_2)$
FINITE DIFF METHOD
-> Two-point BUP.
2nd older Lineau ODE
$y''(n) = u(n) + v(n)y + w(n)y' a \neq a < b$
BCs y(a) = 2 y(b)= & Diochlet
A STATE OF THE STA

DISCRETIZATION: Uniform grad h = b-a, n = a+ih. i=0,1...nSeek yi = yini) Finite diff approx for derivatives

Central F:D $y'(\pi_i) \cong y(\pi_{i-1}) - y(\pi_{i+1}) \approx y_{i-1} - y_{i+1}$ $\pi_{i-1} - \pi_{i+1} \qquad -2h$ y"(xr) ≈ yi-, -2yi+ yi+1 Plug in DE at 12 Notata · Ui = U(xi), Vi = V(xu), Wi = W(xi) Ji-1 = 24: + Yi+) = 4i+ Viye + wey = lit Vigit Wi x giti Ji-1 yi-1 - 2yi+ yi+1 = h ui+ h ui yi+ hwi gi+1 -yi-1 y: 1 (1+hwi) - y: (2+h2vi) + yi+1 (1- hwi) = h. 4: acyin + digi + ciyin = heur i= 1,2...,n-1 (n-1) egs.

BCs:
$$y_{0} = y(a) = \alpha$$
 $y_{n} = y(b) = \beta$,

wherewere $y_{1}, \dots y_{2}, \dots y_{n-1}$
 $z_{1} = y_{0} + d_{1}y_{1} + c_{1}y_{2} = h^{2}u_{1}$
 $z_{1} + c_{1}y_{2} = h^{2}u_{1} - a_{1}x$
 $z_{1} = n-1$
 $z_{1} + c_{1}y_{2} = h^{2}u_{1} - a_{1}x$
 $z_{2} = h^{2}u_{1} - a_{1}x$
 $z_{2} = h^{2}u_{1} - a_{1}x$
 $z_{2} = h^{2}u_{1} - a_{1}x$
 $z_{3} = h^{2}u_{1} - c_{n-1}\beta$

The matrical Vector $z_{3} = h^{2}u_{1} - c_{n-1}\beta$
 $z_{4} = z_{1}$
 $z_{2} = z_{2}$
 $z_{3} = z_{2}$
 $z_{3} = z_{3}$
 $z_{4} = z_{2}$
 $z_{4} = z_{4}$
 $z_{4} =$

+ 4 15 dragional dominana

Eg.

$$y''(m) = -4(y-\pi)$$
 $y(0)=1$, $y(1)=2$

Ans: Uniform good

 $\pi'' = ih$, $h = 1$
 $h^2(y_{i-1} - 2y_i + y_{i+1}) = -4y_i + 4\pi e$
 $y'' = y'' = y''$

$$y'(1) = 3$$
 discredity it
 $y_n - y_{n-1} = 30 3 = 3$. $-y_{n-1} + y_n = 3h$