a) Exercise 3.1.1

- a) True (A is a set of integers that are a multiple of 3, and 27 is a multiple of 3 (27%3=0))
- b) False (B is a set of integers that are perfect squares, and there is no integer y, such that $27 = y^2$ (there $y = \sqrt{27}$, which is not an integer))
- c) True (B is a set of integers that are perfect squares, and 100 is a perfect square, since there is an integer y, such that $100 = y^2$ (there y = 10))
- d) False $(E \nsubseteq C, \text{ because } 3 \notin C, \text{ and } 6 \notin C. C \nsubseteq E, \text{ because } 4 \notin E, 5 \notin E, \text{ and } 10 \notin E)$
- e) True (A is a set of integers that are a multiple of 3, and 3, 6, and 9 are all multiples of 3 (3%3=0, 6%3=0, 9%3=0))
- f) False (For $A \subseteq E$, every element in set A would also have to be an element of set E, and it's not true, since E consists of 3,6,9 only, and A is a set of integers that are a multiple of 3)
- g) False (" $E \in A$ " suggests that E is an element, and it's not, it's a set; additionally, there is no element E in set A, since set A is a set of integers that are a multiple of 3)

b) Exercise 3.1.2

- a) False ("15 \subset A" suggests that 15 is a set, and it's not)
- b) True (A is a set of integers that are a multiple of 3, and 15 is a multiple of 3 (15%3=0))
- c) True (since $\emptyset \subseteq C$, and there are elements that of C that aren't elements of \emptyset , the \emptyset is a subset of C)
- d) True (Every element in D is also an element in D)
- e) False (" $\emptyset \in B$ " suggests that \emptyset is an element of B, and it's not, \emptyset it's a set, and B consists of elements that are integers and perfect squares)

c) Exercise 3.1.5

- b) $A = \{x \in \mathbb{Z}^+ : x \text{ is an integer multiple of 3} \}$ Answer: Set A is infinite.
- d) $A = \{x \in \mathbb{Z} : x \text{ is an integer multiple of } 10 \text{ and } 0 \le x \le 1000\}$ |A| = 101

Answer: Set A is finite.

d) Exercise 3.2.1

- a) True (2 is an element of set X)
- b) True (every element of set {2}, is also an element of set X)
- c) False (set {2} isn't an element of set X)
- d) False (there is no element 3 in set X, there is only set {3})
- e) True (set $\{1,2\}$ is an element of set X)
- f) True (every element of set $\{1,2\}$ is an element of set X)
- g) True (every element of set $\{2,4\}$ is an element of set X)
- h) False (there is no set $\{2,4\}$ in set X)
- i) False (not every element of set {2,3} is an element of set X 3 $\notin X$)
- j) False (set $\{2,3\}$ is not an element of set X)
- k) False (|X| = 6)

1. Exercise 3.2.4

b)
$$A = \{1, 2, 3\}$$

$$P(A) = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

 $\{X \in P(A) : 2 \in X\}$ means that X is an element of set P(A) that includes an element 2, therefore:

$$X = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$$

- a) Exercise 3.3.1
 - c) $A \cap C = \{-3, 1, 17\}$
 - d) $A \cup (B \cap C)$ $(B \cap C) = \{-5, 1\}$ $A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$
 - e) $A \cap B \cap C$ $A \cap B = \{1, 4\}$ $A \cap B \cap C = \{1\}$
- b) Exercise 3.3.3
 - a) $\bigcap_{i=2}^5 A_i$

$$\bigcap_{i=2}^5 A_i = A_2 \cap A_3 \cap A_4 \cap A_5$$

$$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

$$A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$$

$$\bigcap_{i=2}^{5} A_i = \{1, 2, 4\} \cap \{1, 3, 9\} \cap \{1, 4, 16\} \cap \{1, 5, 25\} = \{1\}$$

b) $\bigcup_{i=2}^5 A_i$

$$\bigcup_{i=2}^5 A_i = A_2 \cup A_3 \cup A_4 \cup A_5$$

$$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

$$A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$$

$$\bigcup_{i=2}^{5} A_i = \{1, 2, 4\} \cup \{1, 3, 9\} \cup \{1, 4, 16\} \cup \{1, 5, 25\} = \{1, 2, 3, 4, 5, 9, 16, 25\}$$

e) $\bigcap_{i=1}^{100} C_i$

Since we know that $C_i = \{x \in \mathbb{R} : -\frac{1}{i} \le x \le \frac{1}{i}\}$, we can calculate C_1 and C_{100}

$$C_1 = \{x \in \mathbb{R} : -\frac{1}{1} \le x \le \frac{1}{1}\} = \{x \in \mathbb{R} : -1 \le x \le 1\}$$

$$C_{100} = \{ x \in \mathbb{R} : -\frac{1}{100} \le x \le \frac{1}{100} \}$$

We can see that function C is a decreasing function, therefore, if $j \geq i$, then every element of C_j is also an element of C_i .

Thus, our intersection, in which every next set is a subset of the previous set, is equal to the set with the highest i, in our case i = 100. Therefore:

$$\bigcap_{i=1}^{100} = C_{100} = \left\{ x \in \mathbb{R} : -\frac{1}{100} \le x \le \frac{1}{100} \right\}$$

f) $_{i=1}^{100}C_{i}$

We already know that function C is a decreasing function (therefore, if $j \geq i$, then every element of C_j is also an element of C_i), and:

$$C_1 = \{x \in \mathbb{R} : -\frac{1}{1} \le x \le \frac{1}{1}\} = \{x \in \mathbb{R} : -1 \le x \le 1\}$$

 $C_{100} = \{x \in \mathbb{R} : -\frac{1}{100} \le x \le \frac{1}{100}\}$

Thus, our union, in which every next set is a subset of the previous set, is equal to the set with the lowest i, in our case i = 1. Therefore:

$$\bigcup_{i=1}^{100} = C_1 = \{ x \in \mathbb{R} : -1 \le x \le 1 \}$$

Exercise 3.3.4

b)
$$A \cup B = \{a, b, c\}$$

 $P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

d)
$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

 $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$
 $P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\$

- a) Exercise 3.5.1
 - b) For example: (foam, tall, non-fat)
 - c) $B \times C = \{ (\text{foam, non-fat}), (\text{foam, whole}), (\text{no-foam, non-fat}), (\text{no-foam, whole}) \}$
- b) Exercise 3.5.3
 - b) True (Since the set of all integers \mathbb{Z} is a subset of set of all real numbers \mathbb{R} (because every integer is also a real number), so $\mathbb{Z} \subseteq \mathbb{R}$, then $\mathbb{Z}^2 \subseteq \mathbb{R}^2$)
 - c) True (Set \mathbb{Z}^2 consists of ordered pairs, while the set \mathbb{Z}^3 consists of ordered triples, therefore, they don't share any elements)
 - e) True (Since $A \times C$ means that $a \in A$, and $c \in C$, and $B \times C$ means that $b \in B$, and $c \in C$, and we know that $A \subseteq B$ (so a is also an element of B), then $(a, c) \in A \times C$ and $(a, c) \in B \times C$. Therefore, $A \times B \subseteq A \times C$)
- c) Exercise 3.5.6

d)
$$X = \{0,00\}$$

 $Y = \{1,11\}$
 $xy = \{01,011,001,0011\}$

e)
$$X = \{aa, ab\}$$

 $Y = \{a, aa\}$
 $xy = \{aaa, aaaa, aba, abaa\}$

d) Exercise 3.5.7

c)
$$A \times B = \{ab, ac\}$$

 $A \times C = \{aa, ab, ad\}$
 $(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$

f)
$$A \times B = \{ab, ac\}$$

 $P(A \times B) = \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}$

g)
$$P(A) = \{\emptyset, \{a\}\}\$$

 $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$
 $P(A) \times P(B) =$
 $= \{(\emptyset, \emptyset), (\emptyset, \{b\}), (\emptyset, \{c\}), (\emptyset, \{b, c\}), (\{a\}, \emptyset), (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, c\})\}\$

- a) Exercise 3.6.2
 - b) $(B \cup A) \cap (\overline{B} \cup A)$ $(A \cup B) \cap (A \cup \overline{B})$ (Commutative law) $A \cup (B \cap \overline{B})$ (Distributive law) $A \cup \emptyset$ (Complement law) A (Identity law)
 - c) $\overline{A \cap \overline{B}}$ $\overline{A} \cup \overline{\overline{B}}$ (De Morgan's law) $\overline{A} \cup B$ (Doule complement law)
- b) Exercise 3.6.3
 - b) If $A = \{1, 2\}$, and $B = \{1\}$, then $(B \cap A) = \{1\}$, and then $A (B \cap A) = \{2\}$. Since $A - (B \cap A) = \{2\}$ and not $\{1, 2\}$, it's false that $A - (B \cap A) = A$
 - d) If $A = \{1, 2\}$, and $B = \{1, 3\}$, then $(B-A) = \{3\}$, and then $(B-A) \cup A = \{1, 2, 3\}$. Since $(B-A) \cup A = \{1, 2, 3\}$ and not $\{1, 2\}$, it's false that $(B-A) \cup A = A$
- c) Exercise 3.6.4
 - b) $A \cap (B A)$

 $A \cap (B \cap \overline{A})$ (Set subtraction law)

 $A \cap (\overline{A} \cap B)$ (Commutative law)

 $(A \cap \overline{A}) \cap B$ (Associative law)

 $\emptyset \cap B$ (Complement law)

 $B \cap \emptyset$ (Commutative law)

 \emptyset (Domination law)

c) $A \cup (B - A) = A \cup B$

 $A \cup (B \cap \overline{A})$ (Set subtraction law)

 $(A \cup B) \cap (A \cup \overline{A})$ (Distributive law)

 $(A \cup B) \cap U$ (Complement law)

 $(A \cup B)$ (Identity law)