Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені І. Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт з лабораторної роботи № 4 «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 2

Виконав студент: ІП-13 Бабашев Олексій Дмитрович

Перевірив: Вечерковська Анастасія Сергіївна

Лабораторна робота 4 Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 2

Задача. Дано натуральне число n. Обчислити $\sum_{k=1}^{n} \frac{1}{k(2k+1)^2}$.

1) **Постановка задачі:** Знайти значення суми ряду. Перевіримо значення введеного числа (якщо n <= 0, то вивести «введено неправильне значення n»). Якщо введене значення n є натуральним, то рахуємо суму за допомогою арифметичного циклу.

2) Побудова математичної моделі:

2) Hooygoba marcmarn-more modesm.					
Змінна	Тип	Назва	Призначення		
Дане натуральне число n	Цілий	n	Вхідне дане		
Лічильний k	Цілий	k	Проміжне значення		
Результат, сума ряду	Дійсний	sum	Вихідне дане, результат		
Піднесення числа до степеня	Дійсний	pow	Функція		

Математичне формулювання задачі зводиться до знаходження значення суми ряду sum за формулою $\sum_{k=1}^n \frac{1}{k(2k+1)^2}$. Де n- натуральне число. Функція pow(x,y) підносить число x до степеня y. Таким чином матимемо формулу вигляду: sum = 1/(k*pow(2k+1,2)) + ... + 1/(n*pow(2n+1,2)) Розв'язання:

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо перевірку правильності введеного значення числа п.

Крок 3. Деталізуємо знаходження суми ряду sum.

```
3) Псевдокод:
Крок 1
     Початок
          Введення п
          Перевірка правильності введеного значення числа п
          Обчислення суми ряду sum
          Виведення sum
     Кінець
Крок 2
     Початок
          Введення п
           якщо (n<=0)
           T0
                Виведення «неправильне значення n»
           інакше
                Обчислення суми ряду sum
                Виведення sum
           все якщо
     Кінець
Крок 3
     Початок
          Введення п
          якщо (n<=0)
            T0
                Виведення «неправильне значення n»
            інакше
                sum = 0
                повторити для k від k до n, з кроком +1
                      sum += 1/(k*pow(2k+1, 2))
                все повторити
                Виведення sum
           все якщо
     Кінець
```

4) Блок-схема:

Крок 1

п Перевірка правильності введеного значення п Обчислення суми ряду sum

Крок 2

5) Випробування алгоритму:

Блок	Дія 1	Дія 2				
	Початок					
1	Вводимо n = 2	Вводимо n = -1				
2	n>0	n<=0				
3	$sum = \frac{1}{9} + 0.02 = 0.131$	Вивід «Введено неправильне значення n»				
4	Вивід sum = 0.131					
	Кінець					

6) Висновок: Дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій.