Physics 580: Quantum Mechanics I

Summary of σ Matrices

In the eigen-basis of σ_z :

$$\sigma_1 \equiv \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 \equiv \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 \equiv \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- 1. $\sigma_j \sigma_k = \delta_{jk} I + i \, \epsilon_{jk\ell} \sigma_\ell$, where I is the 2×2 identity matrix and the repeated index ℓ is summed (Einstein summation convention).
- 2. For any $\vec{a}, \vec{b} \in \mathbb{R}^3$,

$$(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) = (\vec{a} \cdot \vec{b})I + i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}.$$

- 3. $[\sigma_j, \sigma_k] = 2 i \epsilon_{jk\ell} \sigma_{\ell}$.
- 4. $\{\sigma_j, \sigma_k\} = 2 \delta_{jk} I$, where I is the 2×2 identity matrix.
- 5. For any unit vector $\hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, we have $(\hat{n} \cdot \sigma)^2 = I$. Hence, the eigenvalues of $\hat{n} \cdot \sigma$ are ± 1 . The corresponding eigenvectors are:

$$\psi_{+} = \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \end{pmatrix}, \quad \psi_{-} = \begin{pmatrix} \sin \frac{\theta}{2} \\ -e^{i\phi} \cos \frac{\theta}{2} \end{pmatrix}.$$

6. Eigenvectors of σ_x :

$$\psi_{x,\pm} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1\\ \pm 1 \end{array} \right)$$

7. Eigenvectors of σ_y :

$$\psi_{y,\pm} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1\\ \pm i \end{array} \right)$$

8. For any unit vector $\hat{n} \in \mathbb{R}^3$ and $\theta \in \mathbb{R}$,

$$e^{i(\hat{n}\cdot\vec{\sigma})\theta/2} = \cos\frac{\theta}{2} I + i(\hat{n}\cdot\vec{\sigma})\sin\frac{\theta}{2}.$$

In particular, if we set $\hat{n} = (\hat{x} + \hat{z})/\sqrt{2}$ and $\theta = \pi$, then

$$e^{i(\hat{n}\cdot\vec{\sigma})\pi/2} = iH$$
, where $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

1

H is called the Hadamard matrix and plays an important role in building quantum circuits. In this course, you will learn that iH is the fundamental representation of rotating spin- $\frac{1}{2}$ fermions around $(\hat{x}+\hat{z})/\sqrt{2}$ by angle π . You will also learn about the surprising fact that rotation by 2π yields $(iH)^2 = -I$ not I.

9. For any $\vec{x} \in \mathbb{R}^3$, unit vector $\hat{n} \in \mathbb{R}^3$, and $\theta \in \mathbb{R}$,

$$e^{-i(\hat{n}\cdot\vec{\sigma})\theta/2}(\vec{x}\cdot\vec{\sigma})e^{i(\hat{n}\cdot\vec{\sigma})\theta/2} = (\vec{x}\cdot\vec{\sigma})\cos\theta - \vec{x}\cdot(\hat{n}\times\vec{\sigma})\sin\theta + (\vec{x}\cdot\hat{n})(\hat{n}\cdot\vec{\sigma})(1-\cos\theta).$$

In particular,

$$(-iH)\sigma_r(iH) = H\sigma_r H = \sigma_z.$$

In this course, you will learn that this is the quantum analog of rotating \hat{x} around the diagonal $\hat{n} = (\hat{x} + \hat{z})/\sqrt{2}$ by angle π .

10. A linear map $T: \mathbb{C}^n \to \mathbb{C}^n$ is called an involution if $T^2 = I_n$, where I_n is the identify matrix.

Exercise: Show that the eigenvalues of an involution are either 1 or -1.

Exercise: Show that an involution is Hermitian iff it is unitary.

 σ_x , σ_y , σ_z and H are Hermitian involutions and, thus, are also unitary. Their eigenvalues are +1 and -1.