# Sprawozdanie Krzywa ładowania pojemności Elementy RLC w obwodach prądu zmiennego

## Skład zespołu:

- Maciejak Adam
- Maciejewski Mateusz
- Mikołajczak Adam

## Krzywa ładowania pojemności

#### 1. Cel zadania:

Celem zadania jest empiryczne wyznaczenie krzywej ładowania pojemności. W tym celu wykorzystanie zostanie stoper i woltomierz.

## 2. Schemat badanego układu:



- E źródło napięcia stałego o wartości 10V
- R opornik o oporze 1M
- Przełącznik
- R opornik o oporze 1k
- C kondensator o pojemności 4.7uF
- V podłączony równolegie woltomierz w celu pomiaru napięcia

## 3. Analiza danych pomiarowych

W celu dokonania pomiarów zmontowana powyższy układ na płytce prototypowej i wykorzystano dostępne w laboratorium urządzenia, generator do dostarczenia napięcia ii multimetr do badania napięcia na kondensatorze. Dane zostały przedstawione na poniższym wykresie.

Eksperyment rozpoczęto od rozładowania kondensatora i włączenia stopera wraz z rozpoczęciem ładowania. Pomiar trwał 120s z zapisywaniem wartości napięcia co 10s.

| Przebiegi czasowe procesu |       |                 |       |                  |
|---------------------------|-------|-----------------|-------|------------------|
| ładowania pojemności [s]  | [V]   | [V-analityczne] | [uA]  | [uA-analityczny] |
| 10                        | 3,700 | 1,917           | 6,300 | 8,083            |
| 20                        | 5,900 | 3,465           | 4,100 | 6,535            |
| 30                        | 7,200 | 4,718           | 2,800 | 5,282            |
| 40                        | 8,000 | 5,73            | 2,000 | 4,270            |
| 50                        | 8,500 | 6,548           | 1,500 | 3,452            |
| 60                        | 8,750 | 7,21            | 1,250 | 2,790            |
| 70                        | 8,930 | 7,744           | 1,070 | 2,256            |
| 80                        | 9,020 | 8,177           | 0,980 | 1,823            |
| 90                        | 9,075 | 8,526           | 0,925 | 1,474            |
| 100                       | 9,108 | 8,808           | 0,892 | 1,192            |
| 110                       | 9,127 | 9,037           | 0,873 | 0,963            |
| 120                       | 9,141 | 9,221           | 0,859 | 0,779            |

Do obliczenia V analitycznego użyliśmy wzoru:

$$u_C(t) = E(1 - e^{\frac{-t}{RC}})$$



$$i_C(t) = C \frac{du_C(t)}{dt}$$



#### 4. Wnioski

Napięcie na kondensatorze w pierwszych kilkudziesięciu sekundach ładowania bardzo szybko rosło, jednakże im bardziej napięcie zbliżało się do napięcia granicznego tym bardziej przyrost zwalniał. Wykres ma kształt logarytmiczny osiągając swoje napięcie graniczne w nieskończoności

#### 5. Obliczenia

Rc = 
$$1/(2\pi * 13000Hz * 10^{-9}F) = 1/0,00081 = 1234,567 \Omega$$
  
 $Z = \sqrt{1000^2 + 1234,567^2} = \sqrt{2524155,67} = 1588,75$   
 $I = 5/1588,75 = 0,0031A$   
 $UR = I * R = 0,0031 * 1000 = 3,1V$   
 $UL = I * Rc = 0,0031 * 1234,567 = 3,9V$ 

#### **Układ RC**

#### 1. Cel zadania

Empiryczne zbadanie reaktancji pojemnościowej układu RC a także jej zależności z częstotliwością pobudzenia i wartością napięcia

#### 2. Schemat badanego układu



- V źródło napięcia przemiennego o wartości 5V
- C kondensator o wartość 10nF
- R opornik o oporze 1k

## 3. Analiza danych

W celu dokonania pomiarów zamontowano powyższy schemat przy użyciu płytki prototypowej. Do pomiarów użyto przyrządów generator do dostarczenia napięcia i zmiany jako częstotliwości, oscyloskop do badania napięcia. Dane przedstawione na poniższym wykresie.

Eksperyment rozpoczęto od częstotliwości 2kHZ dochodząc do 20kHz z pomiarem co 2kHz.

| rezystor |           |       |      |           |
|----------|-----------|-------|------|-----------|
| [kHz]    | ω         | [Uc]  | [Ur] | Ur/R=[Ic] |
| 2        | 12566,37  | 0,195 | 1,82 | 0,00182   |
| 4        | 25132,74  | 0,382 | 1,96 | 0,00196   |
| 6        | 37699,11  | 0,682 | 2,28 | 0,00228   |
| 8        | 50265,48  | 0,895 | 2,34 | 0,00234   |
| 10       | 62831,85  | 1,1   | 2,29 | 0,00229   |
| 12       | 75398,22  | 1,24  | 2,27 | 0,00227   |
| 14       | 87964,59  | 1,37  | 2,27 | 0,00227   |
| 16       | 100530,96 | 1,51  | 2,31 | 0,00231   |
| 18       | 113097,34 | 1,6   | 2,24 | 0,00224   |
| 20       | 125663,71 | 1,69  | 2,29 | 0,00229   |

[Uc]





 $\omega = 2 \pi * f$ 

Ic = Ur / R= Ur / 1000

## 4. Wnioski

Napięcie rośnie wraz ze wzrostem częstotliwości. Reaktancja pojemnościowa układu spada wraz ze wzrostem częstotliwości pobudzenia.

Wyliczone przesunięcie fazowe wynosi .

|∆x|: 11us |1/∆x| : 89,3 kHz

 $11us/74us*2\pi = 0.29\pi = 53.34^{\circ}$ 

Można powiedzieć że wraz ze wzrostem częstotliwości kondensator zyskuje coraz więcej właściwości przewodzenia prądu.

#### **Układ RL**

#### 1. Cel zadania

Empiryczne zbadanie reaktancji indukcyjnej układu i jej zależności od częstotliwości pobudzenia i wartości napięcia

## 2. Schemat badanego ukladu:



- L cewka o indukcyjności 33mH
- V źródło prądu zmiennego o wartości napięcia 5V
- R opornik o oporze 1k

## 3. Analiza danych

W celu dokonania pomiarów zamontowano powyższy schemat przy użyciu płytki prototypowej. Do pomiarów użyto przyrządów generator do dostarczenia napięcia i zmiany jako częstotliwości, oscyloskop do badania napięcia. Dane przedstawione na poniższym wykresie.

Eksperyment rozpoczęto od częstotliwości 2kHZ dochodząc do 20kHz z pomiarem co 2kHz.

| cewka |          |      |      |         |
|-------|----------|------|------|---------|
| [kHz] | ω        | [UL] | [UR] | [IL]    |
| 2     | 12566,37 | 5,34 | 4,84 | 0,00484 |
| 4     | 12566,37 | 5,4  | 4,09 | 0,00409 |
| 6     | 18849,56 | 5,4  | 3,6  | 0,0036  |
| 8     | 25132,74 | 5,5  | 2,7  | 0,0027  |
| 10    | 31415,93 | 5,5  | 2,3  | 0,0023  |
| 12    | 37699,11 | 5,5  | 2    | 0,002   |
| 14    | 43982,30 | 5,5  | 1,76 | 0,00176 |
| 16    | 50265,48 | 5,5  | 1,5  | 0,0015  |
| 18    | 56548,67 | 5,5  | 1,4  | 0,0014  |
| 20    | 62831,85 | 5,5  | 1,27 | 0,00127 |
|       |          |      |      |         |





## 4. Wnioski

Napięcie maleje wraz ze wzrostem częstotliwości. Reaktancja indukcyjna układu spada wraz ze wzrostem częstotliwości pobudzenia.

Wyliczone przesunięcie fazowe wynosi .

|∆x|: 17us |1/∆x| : 58,8 kHz

 $17us/78us*2\pi = 0,42\pi = 75,6^{\circ}$ 

Można powiedzieć że wraz ze wzrostem częstotliwości cewka traci swoje zdolności do przewodzenia prądu i staje się "dziurą" w układzie

## 5. Obliczenia

R L = 
$$1/(2\pi * 13000Hz * 0,033H) = 2694 \Omega$$
  
 $Z = \sqrt{1000^2 + 2694^2} = 2873$   
 $I = 5/2873 = 0,0017A$   
 $U = I * R = 1,7V$   
 $U = I * Rl = 4,7V$