Guía 10: Modelo matemático del valor de verdad de una fórmula

El valor de un término en una estructura

- Sea $\mathbf{A} = (A, i)$ una estructura de tipo τ . Una asignación de \mathbf{A} será un elemento de $A^N = \{\text{infinituplas de elementos de } A\}$.
- Si $\vec{a} = (a_1, a_2, ...)$ es una asignación, entonces diremos que a_j es el **valor** que \vec{a} le asigna a la variable x_j .
- Dada una estructura **A** de tipo τ , un término $t \in T^{\tau}$ y una asignación $\vec{a} = (a_1, a_2, \dots) \in A^N$ definamos recursivamente $t^{\mathbf{A}}[\vec{a}]$ de la siguiente manera:
 - 1. Si $t = x_i \in Var$, entonces $t^{\mathbf{A}}[\vec{a}] = a_i$
 - 2. Si $t = c \in \mathcal{C}$, entonces $t^{\mathbf{A}}[\vec{a}] = i(c)$
 - 3. Si $t = f(t_1, \dots, t_n)$, con $f \in \mathcal{F}_n$, $n \geq 1$, $t_1, \dots, t_n \in T^{\tau}$, entonces $t^{\mathbf{A}}[\vec{a}] = i(f)(t_1^{\mathbf{A}}[\vec{a}], \dots, t_n^{\mathbf{A}}[\vec{a}])$
- El elemento $t^{\mathbf{A}}[\vec{a}]$ será llamado el valor de t en la estructura \mathbf{A} para la asignación \vec{a} .
- Dada una asignación $\vec{a} \in A^N$ y $a \in A$, con $\downarrow_i^a (\vec{a})$ denotaremos la asignación que resulta de reemplazar en \vec{a} el *i*-ésimo elemento por a.
- $\bullet \ \ Propiedades:$
 - Sea **A** una estructura de tipo τ y sea $t \in T^{\tau}$. Supongamos que \vec{a}, \vec{b} son asignaciones tales que $a_i = b_i$, cada vez que x_i ocurra en t. Entonces $t^{\mathbf{A}}[\vec{b}] = t^{\mathbf{A}}[\vec{b}]$
 - Sea τ un tipo, $t \in T^{\tau}$ y t' el resultado de reemplazar toda ocurrencia de x_i en t por x_l , la cual no ocurre en t. Entonces para cualquier estructura \mathbf{A} , cualquier asignación $\vec{a} \in A^N$ y cualquier $a \in A$, se tiene que $t'A[\downarrow_l^a(\vec{a})] = t^{\mathbf{A}}[\downarrow_i^a(\vec{a})]$

La relación \models

- Definiremos recursivamente la relación $\mathbf{A} \models \varphi[\vec{a}]$, donde \mathbf{A} es una estructura de tipo τ , \vec{a} es una asignación y $\varphi \in F^{\tau}$. Escribiremos $\mathbf{A} \not\models \varphi[\vec{a}]$ para expresar que no se da $\mathbf{A} \models \varphi[\vec{a}]$.
 - 1. Si $\varphi = (t \equiv s)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff t^{\mathbf{A}}[\vec{a}] = s^{\mathbf{A}}[\vec{a}]$
 - 2. Si $\varphi = r(t_1, \dots, t_m)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff (t_1^{\mathbf{A}}[\vec{a}], \dots, t_m^{\mathbf{A}}[\vec{a}]) \in i(r)$
 - 3. Si $\varphi = (\varphi_1 \wedge \varphi_2)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi_1[\vec{a}] \ y \ \mathbf{A} \models \varphi_2[\vec{a}]$
 - 4. Si $\varphi = (\varphi_1 \vee \varphi_2)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi_1[\vec{a}] \ \mathbf{y} \ \mathbf{A} \models \varphi_2[\vec{a}]$
 - 5. Si $\varphi = (\varphi_1 \to \varphi_2)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \not\models \varphi_1[\vec{a}] \text{ y } \mathbf{A} \models \varphi_2[\vec{a}]$
 - 6. Si $\varphi = (\varphi_1 \leftrightarrow \varphi_2)$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff$ ya sea se dan $\mathbf{A} \models \varphi_1[\vec{a}]$ y $\mathbf{A} \models \varphi_2[\vec{a}]$ o se dan $\mathbf{A} \not\models \varphi_1[\vec{a}]$ y $\mathbf{A} \not\models \varphi_2[\vec{a}]$
 - 7. Si $\varphi = \neg \varphi_1$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \not\models \varphi_1[\vec{a}]$
 - 8. Si $\varphi = \forall x_i \varphi_1$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \text{para cada } a \in A \text{ se da que } \mathbf{A} \models \varphi_1[\downarrow_i^a(\vec{a})]$
 - 9. Si $\varphi = \exists x_i \varphi_1$, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \text{hay un } a \in A \text{ tal que } \mathbf{A} \models \varphi_1[\downarrow_i^a(\vec{a})]$
- Cuando se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} satisface φ en la asignación \vec{a} y en tal caso diremos que φ es verdadera en \mathbf{A} para la asignación \vec{a} . Cuando no se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} no satisface φ en la asignación \vec{a} y en tal caso diremos que φ es falsa en \mathbf{A} para la asignación \vec{a} .
 - También hablaremos del **valor de verdad** de φ en **A** para la asignación \vec{a} el cual será igual a 1 si se da $\mathbf{A} \models \varphi[\vec{a}]$ y 0 en caso contrario.
- Propiedades:
 - Sea **A** una estructura de tipo τ , \vec{a} una asignación y $\varphi \in F^{\tau}$. Entonces no puede suceder que $\mathbf{A} \models \varphi[\vec{a}]$ y $\mathbf{A} \models \neg \varphi[\vec{a}]$.
 - * En particular, esto nos dice que $\mathbf{A} \not\models (\varphi \land \neg \varphi)[\vec{a}]$ y que se da ya sea $\mathbf{A} \models \varphi[\vec{a}]$ o $\mathbf{A} \models \neg \varphi[\vec{a}]$
 - Supongamos que \vec{a}, \vec{b} son asignaciones tales que si $x_i \in Li(\varphi)$, entonces $a_i = b_i$. Entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi[\vec{b}]$

- Si φ es una sentencia, entonces $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \varphi[\vec{b}]$, cualesquiera sean las asignaciones
 - * En base a esto, el valor de verdad de una sentencia φ en una estructura dada ${\bf A}$ para una asignación \vec{a} no depende de \vec{a} . Es decir, tiene el mismo valor para todas las asignaciones.
 - * En estos casos podemos definir que φ es **verdadera** en **A** (y escribiremos $\mathbf{A} \models \varphi$), o que φ es falsa en A (y escribiremos $A \not\models \varphi$)
 - * Una sentencia de tipo τ será llamada **universalmente válida** si es verdadera en cada modelo de tipo τ .
- Sean φ, ϕ, ψ sentencias de tipo τ , las siguientes son universalmente válidas:
 - 1. $\forall x_1 \exists x_2 (x_1 \equiv x_2)$
 - 2. $(\varphi \to (\psi \to \varphi))$
 - 3. $(((\varphi \to \psi) \land (\varphi \to (\psi \to \phi))) \to (\varphi \to \phi))$
 - 4. Strong responsibility property: $(((\varphi \land \psi) \to \phi)) \to ((\varphi \to \phi) \lor (\psi \to \phi))$

Equivalencia de fórmulas

- Dadas $\varphi, \psi \in F^{\tau}$ diremos que φ y ψ son **equivalentes** cuando se de la siguiente condición: $\mathbf{A} \models \varphi[\vec{a}] \iff \mathbf{A} \models \psi[\vec{a}]$ para cada modelo de tipo τ, \mathbf{A} y cada $\vec{a} \in A^N$
 - Escribiremos $\varphi \sim \psi$ cuando φ y ψ sean equivalentes
 - Nótese que $\{(\varphi, \psi) \in F^{\tau} \times F^{\tau} : \varphi \sim \psi\}$ es una relación de equivalencia sobre F^{τ}
- Propiedades:
 - Si $Li(\phi) \cup Li(\psi) \subseteq \{x_{i_1}, \dots, x_{i_n}\}$, entonces $\phi \sim \psi \iff$ la sentencia $\forall x_{i_1} \dots \forall x_{i_n} (\phi \leftrightarrow \psi)$ es universalmente válida.
 - Si $\phi_i \sim \psi_i$, i = 1, 2, entonces $\neg \phi_1 \sim \neg \psi_1$, $(\phi_1 \eta \phi_2) \sim (\psi_1 \eta \psi_2)$ y $Qv\phi_1 \sim Qv\psi_1$
 - Si $\phi \sim \psi$ y α' es el resultado de reemplazar en una fórmula α algunas (posiblemente 0) ocurrencias de ϕ por ψ , entonces $\alpha \sim \alpha'$.
 - Sea τ un tipo. Para $\varphi \in F^{\tau}$, si φ' = resultado de reemplazar en φ toda ocurrencia de $\forall x_1 \forall x_2 \exists \text{ por } \forall x_2 \forall x_1 \exists, \text{ entonces } \varphi' \sim \varphi$
 - Sea τ un tipo. Sea $\alpha \in F^{\tau}$, si α' es el resultado de remover de α una ocurrencia de la palabra $\neg \neg$ entonces α' es equivalente a α .

Homomorfismos

- Dado un modelo de tipo τ , $\mathbf{A} = (A, i), \forall s \in \mathcal{C} \cup \mathcal{F} \cup \mathcal{R}$, usaremos $s^{\mathbf{A}}$ para denotar a i(s)
- Sean A y B modelos de tipo τ , una función $F: A \to B$ será un homomorfismo de A en B si se cumplen las siguientes:
 - 1. $F(c^{\mathbf{A}}) = c^{\mathbf{B}} \ \forall c \in \mathcal{C}$

 - 2. $F(f^{\mathbf{A}}(a_1,\ldots,a_n)) = f^{\mathbf{B}}(F(a_1),\ldots,F(a_n)) \ \forall f \in \mathcal{F}_n, \ a_1,\ldots,a_n \in A$ 3. $(a_1,\ldots,a_n) \in r^{\mathbf{A}}$ implica $(F(a_1),\ldots,F(a_n)) \in r^{\mathbf{B}}, \ \forall r \in \mathcal{R}_n, \ a_1,\ldots,a_n \in A$
- \bullet Un isomorfismo de A en B es un homomorfismo de A en B si es biyectivo y su inversa es un homomorfismo de \mathbf{B} en \mathbf{A} .
 - Diremos que $F: \mathbf{A} \to \mathbf{B}$ es un homomorfismo para expresar que F es un homomorfismo de \mathbf{A} en \mathbf{B}
 - Diremos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo para expresar que F es un isomorfismo de A en
 - Diremos que los modelos \mathbf{A}, \mathbf{B} son isomorfos ($\mathbf{A} \cong \mathbf{B}$) cuando haya un isomorfismo F de \mathbf{A} en \mathbf{B}
- Propiedades:
 - Supongamos $\mathcal{R} = \emptyset$. Sea $F : \mathbf{A} \to \mathbf{B}$ un homomorfismo biyectivo. Entonces F es un isomorfismo.
 - Sea $F: \mathbf{A} \to \mathbf{B}$ un homomorfismo. Entonces $F(t^{\mathbf{A}}[(a_1, a_2, \dots)] = t^{\mathbf{B}}[(F(a_1), F(a_2), \dots)])$ para cada $t \in T^{\tau}$, $(a_1, a_2, \dots) \in A^N$

– Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$, entonces $A \models \varphi[(a_1, a_2, \dots)] \iff \mathbf{B} \models \varphi[(F(a_1), F(a_2), \dots)]$ para cada $(a_1, a_2, \dots) \in A^N$. * En particular \mathbf{A} y \mathbf{B} satisfacen las mismas sentencias de tipo τ .