加速度计校准的基本原理

Richard Bono The Modal Shop

PCB Seminar

校准概述

→什么是校准?

- 检验使用范围内的幅值响应和系统线性
- 解释电子信号的物理意义
- 典型的 OEM 校准包括:
 - 标准参考加速度计灵敏度
 - 频率响应
 - 输出偏压值或供电电压
 - 横向灵敏度
 - 共振频率检测
 - 时间常数

校准概述

令为什么要校准?

- 确保传感器工作符合其技术指标
- 通常是ISO质量体系的要求或是合同方面的原因

令为什么要重复校准?

- 校准是一种良好的测量习惯,有助于确保结果的准确性以及检查传感器仍否正常。
- 风险vs.收益-"传感器什么时候失灵?"

校准概述:标准

❤️校准标准是什么?

- ISO 9001 质量管理体系
- ISO 17025 校准实验质量体系
 - 明确合格的校准实验的一般要求
 - 认证机构包括: 美国实验室认可协会,ACLASS认证,NVLAP认证等
- ISO 16063 振动和冲击传感器校准方法
 - 16063第11部分. 用激光干涉法进行基准振动校准
 - 16063第13部分. 用激光干涉法进行基准冲击校准
 - 16063第21部分. 用对比法进行振动校准
 - 16063第22部分. 用对比法进行冲击校准

测量误差

- 不确定测量误差的校准数据是没有意义的
- 测量误差经常被误述了
 - 可能没有包含标准参考加速度计带来的误差
 - 可能与相关标准不一致
 - 比如说,被忽视的激振器横向扰动或飘移
 - 可能没有使用覆盖因数k=2
- **介**系统误差
 - 一般来说 测量的准确度
- **随机误差**
 - 一般来说 测量的精确度

系统误差实例

- 标准参考传感器和信号适调器误差
- ҈冷激振器的横向扰动
- 令标准参考传感器灵敏度的"飘移"
- **冷**测量通道的不准确

随机误差实例

❤ 安装及电缆连接

- 安装力矩不同
- 电线应力消除
- 加速度计基座的安装应力灵敏度
- 被校加速度计和标准参考加速度计的相对运动
- **→**操作技术
- **●电子干扰**
- **学**实验室环境
 - 温度
 - 湿度
 - 压力

随机误差报告

→ 摘自The Modal Shop出版的ISO 17025美国实验室认可协会认证的误差报告

误差组成	误差值						
	10 Hz to 99 Hz	100 Hz	101 Hz to 920 Hz	921 Hz to 5000 Hz	5001 Hz to 10,000 Hz	10k Hz to 15k Hz	15k Hz to 20k Hz
基准标准校准	0.25	0.10	0.25	0.35	0.75	0.75	1.00
基准标准稳定性	0.06	0.06	0.06	0.06	0.06	0.06	0.06
误差比率	0.31	0.29	0.29	0.29	0.29	0.29	0.29
激振器横向扰动 396C11	0.08	0.08	0.08	0.17	0.17	0.17	0.33
随机误差(Type A)	0.15	0.12	0.12	0.14	0.17	0.30	0.37
综合标准误差比(%) u _c -396C11	0.42	0.33	0.40	0.50	0.84	0.87	1.15
延伸误差(%) U (k=2) – 396C11	0.85	0.67	0.81	1.00	1.67	1.74	2.30
最终误差(%) U (k=2)	1.15	0.75	1.00	1.35	1.85	3.30	4.30

校准

校准方法

%绝对法

- 使用已知、准确、可靠的性质来测试传感器
 - 重力倒置测试
 - 重力场坠落测试
 - 激光干涉测试

校准: 倒置测试

- ❤️传感器在重力下旋转180度,加速度变化2g(-1g到+1g)
 - 需要长放电时间常数或直流响应来得到准确结果
 - 信号适调器和读出设备必须有直流响应

初状态:-1重力加

速度

末状态:+1重力加

速度

校准: 倒置测试

校准:坠落实验

→ 全球范围内重力加速度大约存在+/-0.25%的偏差,加速度计可以做以重力为加速度的自由落地运动。

重力加速度 (9.80665 m/s²)

0 纬度: 9.789 m/s² 90 纬度: 9.832 m/s²

海拔修正量: -3 mm/s²海拔每

1000 m

校准: 坠落实验

❤️输出电压(mV)除以重力加速度(1 g)等于加速度计的灵敏度

校准方法

%比较方法

- 对传感器和校准标准传感器施加相等的加速度进行测试。输出比率即为校准因数。
 - 背靠背比较

校准: 对比法

◆ 被校传感器和标准参考传感器以背靠背方式安装,标准 参考器需经过基准方法或经认证的实验室校准。

标准参考加 速度计

$$\frac{V_a}{S_a} = \frac{V_{ref}}{S_{ref}}$$
$$S_a = S_{ref} = \frac{V_a}{S_a}$$

 $A_a = A_{ref}$

$$S_a = S_{ref} \frac{V_a}{V_{ref}}$$

校准:对比法

- ◆ ISO 16063 第21部分 对比标准参考传感器的振动校准
- 是所有校准系统中最常用的一种,通常用于生产和计量实验
- 标准参考传感器可以置于激振器内部或者外部
- (*) 误差,包括系统误差和随机误差:

• 1 to 20 Hz: +/-3%

• 20 to 5000 Hz: +/-1.5%

• 5000 to 10000 Hz: +/-3%

• >10000 Hz: +/-4.5%

关于参考价速度计

- ◆参考加速度计通常是系统误差报告中最主要的组成部分
- 可以考虑直接使用激光来代替加速度计以减少误差
- 一百英压电材料自然、稳定性
- (*)ICP技术提供了低噪音敏感度,特别是在低频率的条件下

关于激振器

- ၳ激振器横向扰动导致了明显的测量误差
- → 符合ISO 16063标准的校准用空气轴承激振器可以明显改善这个缺陷

关于激振器

→ 由于忽略了横向扰动,误差值常常被低估了,大约在3-5%左右

冲击校准:对比法

→被校传感器和标准参考传感器以背靠背方式安在铁砧上,使用空气弹头来弹射。

校准: 冲击

- **♦ ISO 16063** 第22部分对比标准参考传感器的冲击校准
- →测量瞬间冲击加速度达到了10,000g来测试灵敏度
- 验证加速度线性和传感器 延伸测试的性能

加速度峰值

对比峰值可以得到灵敏度

自由落体时间由指状结构高度决定

校准:共振频率

→ 背靠背校准- 共振频率检测

- 对比被校传感器和标准参考传感器共振频率的阶跃正弦FRF测量图像,检验元件的共振频率
- 令检验共振频率给传感器 完整性提供了双重保障

校准:手持检测

→手持式校准仪

- 方便、快捷,通过连接分析设备可以 校准整个系统
- 通过内部装置提供了大小固定为1g的 振动
- 使用电池更加便捷,通过直流电接头可以进行扩展使用
- 手持激振器校准依靠内置了标准参考加速度计

校准:实地测量

●便携式振动校准仪

- 方便、快捷,通过连接分析设备可以 校准整个系统
- 提供10Hz到10kHz可选择的幅度和频 率设置
- 标准参考加速度计为对比法提供了依据
- 提供加速度、速度和位移传感器校准

校准机构

今实验室认证

- OEM (原始设备制造商)
 - 选择OEM的优势
 - OEM能检测仪器所有的性能
 - OEM掌握最信的技术
 - 一站式OEM能根据客户需求进行更新并且提供校准服务
 - 根据QS-9000, OEM提供对本厂出产的仪器校准服务不需得到认证
- 认证实验室
 - 由A2LA, NVLAP或者其他 ISO Guide 25、ANSI Z540 或ISO 17025 授权的组织
 - 根据QS-9000, 非OEM实验必须由以上标准授权

校准机构

沙溯源性

- 一个标准或设备不断地被更高级的机构认可或校准,并且最终回到了国家标准。
- 根据美国国家标准试验国际会议 (1996年五月七号): "美国商业部下属的美国国家标准技术研究院(NIST)发布的测试报告数字仅能用于行政方面.虽然常被用于唯一证明文件溯源性,但测试报告号码不能用于证明测量的合理性和溯源性。

校准机构

答客户须知

- 确认实验室能提供合格的校准测量
- 确认质量体系通过了审核-亲临或书信确认
- 如果有特殊需要,请告知实验室来确定特殊需求能否被满足

