Lớp: 12A7 Họ tên: Tạ Chí Thành Danh

ÔN TẬP CHƯƠNG LƯỢNG TỬ ÁNH SÁNG

- 1. Lượng tử năng lượng là lượng năng lượng mỗi lần nguyên tử hấp thụ hay phát xạ $\varepsilon = hf = \frac{hc}{\lambda} \text{ với } h = 6,625 \cdot 10^{-34} \text{ J s}$
- $\varepsilon = hf = \frac{1}{\lambda} \text{ Voi } h = 6,625 \cdot 10^{-37} \text{ J s}$ **2. Diều kiện có hiện tượng quang điện:** $\lambda \leqslant \lambda_0; \varepsilon \geqslant A; f \geqslant f_0$

Trong đó A là **công thoát**, λ_0 là **giới hạn quang điện** với $\lambda_0 = \frac{hc}{A}$

Các công thức quang điện:

- Cường độ dòng quang điện $I = n_e \cdot e$ $(n_e: \text{electrons}/s)$
- Công suất chiếu sáng $P = n_p \cdot \varepsilon = n_p \cdot hf = n_p \cdot \frac{hc}{\lambda}$ (n_e : photons/s)
- Hiệu suất quang điện $H = \frac{n_e}{n_p}$
- 3. So sánh hiện tượng quang điện trong và ngoài
 - Giống nhau: muốn xảy ra thì $\lambda \leqslant \lambda_0$
 - Khác nhau:

Quang điện ngoài Quang điện trong - Xảy ra với **kim loại** - Xảy ra với **chất bán** - ánh sáng thích hợp dẫn làm bật e ra khỏi - ánh sáng thích hợp tấm **kim loai** giải phóng e khỏi - λ_0 nằm trong vùng liên kết cộng hóa trị tử ngoại (riệng kim nhưng e vẫn nằm loại kiềm thì nằm trong khối chất vùng ánh sáng **nhìn** bán dẫn - λ_0 nằm trong vùng thấy) hồng ngoại

- 4. Hiện tượng quang dẫn: giảm điện trở của bán dẫn khi chiếu ánh sáng thích hợp
- 5. Quang điện trở và pin quang điện hoạt động dựa trên hiện tượng quang điện trong
- 6. Thuyết lượng tử ánh sáng (thuyết photon):
 - Ánh sáng là tạo bởi các hạt photon (lượng tử ánh sáng)
 - Với mỗi as đơn sắc , các photon đều mang năng lượng, mỗi photon mang năng lượng $\varepsilon = hf$
 - Mỗi lần phân tử, nguyên tử phát xạ hay hấp thụ ánh sáng là phát xạ hay hấp thụ

photon

 Các photon bay dọc theo tia sáng với tốc độ ánh sáng.

Lưu ý: Photon chỉ tồn tại trong trạng thái **chuyển động**, không có photon đứng yên

 Tính chất của sóng ánh sáng: lưỡng tính sóng-hạt

Bước sóng càng dài, tính chất **sóng** thể hiện càng rõ: **giao thoa**, **nhiễu xạ**, **khúc xạ**, **tán sắc**

Bước sóng càng ngắn, tính chất hạt thể hiện càng rõ: quang điện, phát quang, ion hóa, khả năng đâm xuyên

8. Mẫu nguyên tử Bo

- Tiên đề về các trạng thái dừng: Nguyên tử chỉ tồn tại ở một số trạng thái có năng lượng xác định E_m, gọi là trạng thái dừng. Khi ở trạng thái dừng, nguyên tử không bức xạ.

n	1	2	3	4	5	6
Tên quỹ đạ	o K	L	M	N	Ο	Р
Trạng thái	Cơ bản	KT1	KT2	КТ3	KT4	KT5

Với Hidro, bán kính quỹ đạo dừng $r_n = n^2 \cdot r_0$ với $r_0 = 5, 3 \cdot 10^{-11} \text{ m}$

- Tiên đề về bức xạ và hấp thụ năng lượng:

$$\begin{split} \varepsilon &= hf = \frac{hc}{\lambda} = E_{ncao} - E_{mthp} \\ \text{số vạch max} &= \frac{n(n-1)}{2} \\ F &= \frac{ke^2}{r^2} = ma_{ht} = \frac{mv^2}{r} \\ \text{Tia X: } \frac{hc}{\lambda_{min}} &= hf_{max} = eU_{AK} = W_{dA} \end{split}$$

- 9. Quang phát quang
 - Hấp thụ ánh sáng λ , phát ra ánh sáng $\lambda' > \lambda$
 - Huỳnh quang: ánh sáng phát quang **tắt ngay** sau khi tắt ánh sáng kích thích, thường xảy ra với **chất lỏng, khí**
 - Lân quang: ánh sáng phát quang còn kéo dài sau khi tắt ánh sáng kích thích, thường xảy ra với chất rắn

10. Laser

- Khuếch đại ánh sáng bằng **phát xạ cảm**
- Đặc điểm của Laser:
 - + Tính đơn sắc rất cao: các photon có
 - + Tính **kết hợp** cao: các photon cùng tần số, cùng pha.
 - + Tính định hướng cao (là các chùm sáng song song): các photon bay theo cùng một phương.
 - + Có **cường đô** lớn.

ÔN TẬP CHƯƠNG VẬT LÝ HAT NHÂN

- 1. Lưc hat nhân: là lưc tương tác manh, liên kết các nucleon trong hat nhân, bán kính tác dụng cõ **kích thước hạt nhân** $(\text{khoảng } 10^{-15} \text{ m})$
- 2. Hệ thức Einstein, độ hụt khối, năng lương liên kết
 - Hệ thức Einstein giữa khối lượng và năng luong: $E = mc^2$

 - Năng lượng toàn phần = $E_{nghi}+W_d$ Khối lượng động $m=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}$
 - Đơn vị khối lượng của nguyên tử $1u = \frac{1}{12}m$ nguyên tử $_{6}^{12}C = 931,5 \text{ MeV}/c^{2}$
 - Độ hụt khối của hạt nhân ${}_Z^AX$: $\Delta m = Z.m_p + (A - Z).m_n - m_X$
 - Năng lượng liên kết $W_{lk} = \Delta m.c^2$
 - Năng lượng liên kết riêng $W_{lkR} = \frac{\Delta mc^2}{\Lambda}$

Năng lượng liên kết riêng càng lớn thì hạt nhân càng **bền**. Hạt nhân bền nhất có 50 < A < 80

3. Phóng xạ

- Quá trình phóng xạ: tự phát, ngẫu nhiên, không điều khiển được, không phụ thuộc yếu tố bên ngoài.
- Là phản ứng **tỏa năng lượng**.
- 4. Các tia phóng xa
 - Tia α : bản chất là hạt nhân ${}_{2}^{4}He$
 - Tia β : β^+ là positron $_{+1}^{0}e$, β^- là $electron _{-1}^{0}e$
 - Tia γ: bản chất là sóng điện từ với bước sóng rất ngắn, khả năng đâm **rất lớn** so với α , β . (Tia γ **đi kèm** với phát xạ α , β)

Lưu ý: $Tia \alpha, \beta$ **lệch** trong điện trường và từ trường, còn tia γ thì **không lệch**

- 5. Định luật phóng xạ
- Số hạt phóng xạ (còn lại) ở thời điểm t: $N = N_0 \cdot 2^{\frac{-t}{T}} = N_0 \cdot e^{-\lambda t}$
- Số hạt bị phân rã sau t: $\Delta N = N_0 \cdot (1-2^{\frac{-t}{T}})$
- Khối lượng chất phóng xạ (còn lại) ở thời $\text{di\'{e}m } t: m = m_0 \cdot 2^{\frac{-t}{T}}$
- Khối lượng chất phóng xạ bị phân rã sau thời gian t: $\Delta m = m_0 \cdot (1 - 2^{\frac{-t}{T}})$
- Liên hệ khối lượng m và số hạt N: $m = \frac{N}{N_A} \cdot A$ $X \rightarrow Y + tia \ ph\'{o}ng \ xa$ thì

$$\frac{N_Y}{N_X} = \frac{\Delta N}{N} = \frac{1 - 2^{\frac{-t}{T}}}{2^{\frac{-t}{T}}}$$

$$\frac{m_Y}{m_X} = \frac{N_Y}{N_X} \cdot \frac{A_Y}{A_X} = \frac{\Delta N}{N} \cdot \frac{A_Y}{A_X}$$
 T: chu kỳ bán rã

Hằng số phóng xạ $\lambda = \frac{\ln 2}{T}$, λ càng **lớn** thì phân rã càng **nhanh**.

T và λ **không phu thuộc** yếu tố bên ngoài, chỉ phụ thuộc **bản chất** của chất phóng xạ

- 6. Bốn định luật bảo toàn trong phản ứng hat nhân
 - Bảo toàn **số nucleon A**
 - Bảo toàn **điện tích Z**
 - Bảo toàn **động lượng**
 - Bảo toàn **năng lương toàn phần**

Năng lượng phản ứng:

$$\Delta E = (m_0 - m) \cdot c^2 = W'_d - W_d$$
$$= (\Delta m_0 - \Delta m) \cdot c^2$$

 $\Delta E > 0$: Phản ứng **tỏa** năng lượng

 $\Delta E < 0$: Phản ứng **thu** năng lượng

Liên hệ động năng và động lượng:

$$W_d = \frac{mv^2}{2} = \frac{p^2}{2m}$$

- 7. Phản ứng phân hạch: Hạt nhân nặng võ thành hai mảnh nhẹ hơn. Ví du: $^{235}_{92}$ U, $^{239}_{94}$ Pu
- 8. Phản ứng phân hach dây chuyền Gọi k là hệ số nhân neutron
 - * Điều kiện có phản ứng dây chuyền: $k\geqslant 1$ $v\grave{a}$ $m\geqslant m_{t\acute{\sigma}i\ han}$
- 9. Phản ứng nhiệt hạch: tổng họp hai hạt nhân nhẹ thành hạt nhân nặng hơn.
 - ⇒ Đây là nguồn gốc năng lượng của mặt trời và các sao. Ví dụ: ${}_{1}^{1}H, {}_{1}^{2}D, {}_{1}^{3}T$