GeekBand 极客班

互联网人才 + 油站!

GeekBand 极客班

www.geekband.com

系统设计中七剑客

大纲

同网数分性估面案分性估面案

- 社交网站信息流
- 日志统计
- 网络爬虫
- 电商产品页面

Introduction

System design:

1-3 rounds in interviews

For new-grad: not required/simple

For experienced: important to show your knowledge and thoughtful ideas

Knowledge, Design, Communication!

Concurrency

Thread vs. Process
Consumer and Producer
Blockingqueue

Tracking:

Synchronized, Asynchronized

Network

The Seven Layers of OSI

Visit URL

What happens after you typed a URL in your browser and pressed return key?

Database

Relational DB vs. KV Store Sharding vs. Clustering

TinyURL:

Store the mapping from shortlink code to full URL. The record/document:

code: varchar(8)

url: varchar(1000)

created_at: timestamp

We also need to store the reverse mapping from URL back to code.

Distribute System

How to scale Tiny URL service?

Stateless frontend servers behind a load balancer

Sharded/replicated database (on shortlink code)

Memcached to scale read traffic

Spread write load

Locally buffered event tracking + async flush to high-throughput message queue

Use a distributed unique ID generator (64-bit)

Performance

Numbers Everyone Should Know

	L1 cache reference	0.	.5 ns
	Branch mispredict	5	ns
Cache is KEY!	L2 cache reference	7	ns
	Mutex lock/unlock	25	ns
	Main memory reference	100	ns
	Compress 1K bytes with Zippy	3,000	ns
	Send 2K bytes over 1 Gbps network	20,000	ns
	Read 1 MB sequentially from memory	250,000	ns
	Round trip within same datacenter	500,000	ns
	Disk seek	10,000,000	ns
	Read 1 MB sequentially from disk	20,000,000	ns
	Send packet CA->Netherlands->CA	150,000,000	ns

Estimation

How many piano tuners are there in the entire world?

Tiny URL: How much is total storage?

URL Length 10 - 1000 chars.

Total accumulated URL number 100 M

New URL registrations are on the order 100,000/day (1/sec)

Redirect requests are on the order of 100M/day (1000/sec)

Design Pattern

23 patterns:

MVC

Singleton

Factory

Iterator

Decorator

Facade

案例

News Feeds

Stats Server

Web Crawler

Amazon Product Page

News feed

Define feed

Organize
aggregate
dedup
sort

Level 1.0

Database Schema:

User

Friendship

News

Get Newsfeed:

merge news

Newsfeed vs News

Userld	Name	Age
1	Jason	25
2	Michael	26

Friendshipld	Sourceld	TargetId
1	1	2
2	2	1

NewsId	Authorld	Content
1	2	"Hehe"
2	1	"Lala"

Why bad?

```
100+ friends
         1 Query --> Get friends list
         1 Query -->
   SELECT news
   WHERE timestamp>xxx
   AND sourceid IN friend list
   LIMIT 1000
IN is slow
 Either Sequential scan or 100+ index queries
```

Level 2.0

Pull vs Push

Pull: Get news from each friend, merge them together.

(NewsFeed generated when user request)

Push: NewsFeed generated when news generated. (we have another table to store newsfeed, may cause duplicate news)

Push:

1 Query to select latest 1000 newsfeed.

100+ insert queries (Async)

Disadvantage: News Delay.

Level 3.0

```
Popular star (Justin Bieber)
Flowers 13M +
Async Push may cause over 30 minutes (13M+ insertions, delay too long)
Push + Pull
for popular star, don't push news to flowers
for every newsfeed request, merge non-popular user
newsfeed (push) and popular users newsfeed (pull)
```

Level 4.0

```
Push disadvantage:
     Realtime
     Storage (Duplicate)
     Edit
Go back to PULL:
     Cache users' latest (14 days) news
     Broadcast multiple request to multiple servers (Shard by userId).
     Merge & sort newsfeed
     Cache newsfeeds for this user with timestamp
```

Click Stats Server

How are click stats stored?

A poor candidate will suggest write-back to a data store on every click

A good candidate will suggest some form of aggregation tier that accepts clickstream data, aggregates it, and writes back a persistent data store periodically

A great candidate will suggest a low-latency messaging system to buffer the click data and transfer it to the aggregation tier.

If daily, storing in hdfs and running map/reduce jobs to compute stats is a reasonable approach

If near real-time, the aggregation logic should compute stats

Cache Requirement

- [a] When a request comes look it up in the cache and if it hits then return the response from here and do not pass the request to the system
- [b] If the request is not found in the cache then pass it on to the system [c] Since cache can only store the last n requests, Insert the n+1th request in the cache and delete one of the older requests from the cache
- [d]Design one cache such that all operations can be done in O(1) lookup, delete and insert.

Web Crawler

Amazon Product Page

The product page includes information such as

- a) product information
- b) user information
- c) recommended products (what do other customers buy after viewing this item, recommendations for you like this product, etc)

Reference

http://highscalability.com/

The Log: What every software engineer should know about real-time data's unifying abstraction

Job Interviews: How should I prepare system design questions for Google/Facebook Interview?

HOW TO ACE A SYSTEMS DESIGN INTERVIEW

<Design Pattern>

<Design Patterns For Dummies.pdf>

http://www.hiredintech.com/app