Indução

Princípios Equivalências

Demonstraçõ indução

Erros Variantes

Mais varian

PIF pra frentetrás

Definições recursiva

Semana 5

1 Indução

Princípios

Equivalências

Demonstrações por indução

Erros

Variantes

Mais variantes

PIF pra frente-pra trás

Definições recursivas

иСТВ019-1

J Donadelli

PBO

Indução

Equivalências Demonstrações po

indução Erros

Mais variante

trás

Definições recursivas

Todo $A \subset \mathbb{N}$ não-vazio tem um menor elemento

ınduçad

Princípios

Demonstrações po

indução Erros

Variantes Mais variante

PIF pra frentetrás

tras Definições recursiv

Teorema (Princípio da Indução finita (PIF))

Seja $X \subseteq \mathbb{N}$. Se

- **1** 0 ∈ X **e**
- 2 para todo $k \in \mathbb{N}$, $k \in X \rightarrow k+1 \in X$, então $X = \mathbb{N}$.

Delevioles

Princípios

Demonstrações poindução

Varian Mais v

Mais variantes
PIF pra frente-

trás

Definições rec

Teorema (Princípio da Indução finita (PIF))

Seja $X \subseteq \mathbb{N}$. Se

- **1** 0 ∈ X *e*
- 2 para todo $k \in \mathbb{N}$, $k \in X \rightarrow k+1 \in X$, então $X = \mathbb{N}$.

Corolário (Princípio da Indução finita (PIF))

Seja P(n) uma propriedade de números naturais. Se

- 1 P(0) é verdadeiro e
- 2) para todo $k \ge 0$, se P(k) é verdadeiro então P(k+1) é verdadeiro,

então P(n) é verdadeiro para todo natural n.

Inducão

Princípios

Demonstrações po indução

Variantes Mais varia

PIF pra frente-

Teorema (Princípio da Indução finita completo (PIFc))

Seja $X \subseteq \mathbb{N}$. Se

- **1** 0 ∈ X *e*
- 2 para todo $k \in \mathbb{N}$, $\{0,1,\ldots,k\} \subset X \to k+1 \in X$, então $X = \mathbb{N}$.

Corolário (Princípio da Indução finita completo (PIFc))

Seja P(n) uma propriedade de números naturais. Se

- 1 P(0) é verdadeiro e
- 2 para todo $k \ge 0$, se P(0) e P(1) e ... e P(k) verdadeiro então P(k+1) é verdadeiro,

então P(n) é verdadeiro para todo natural n.

иСТВ019-1

J Donadelli

ndunão

Princípios

Equivalências

Demonstrações p indução

Erros

Mais variante

PIF pra frente

Definições recursivas

Equivalências

Vimos

$$\mathtt{PBO} \Longrightarrow \mathtt{PIF} \Longrightarrow \mathtt{PIFc}$$

MCTB019-1

J Donadelli

. ~

Princípios

Equivalências

Demonstrações p indução

Erros

Mais variante

PIF pra frente

Definições recursivas

Equivalências

Vimos

Veremos

 $PBO \Longrightarrow PIF \Longrightarrow PIFc \Longrightarrow PBO$

MC1B019-1

J Donadelli

nducão

Princípios

Equivalências

Demonstrações prindução

Variantes

Mais variante

PIF pra frente

Deliliigoes recursive

Equivalências

Vimos

Veremos

 $PBO \Longrightarrow PIF \Longrightarrow PIFc \Longrightarrow PBO$

Os 3 princípios são logicamente equivalentes.

 $PIFc \Rightarrow PBO$

Equivalências

indução

Definições recursivas

Tome A t.q. $\emptyset \neq A \subset \mathbb{N}$. A prova é por contradição.

 $PIFc \Rightarrow PBO$

Indução

Princípios Equivalências

Demonstrações pri indução

indução Erros

Mais variantes PIF pra frente-

PIF pra frentetrás

Definições recursiva

Tome A t.q. $\varnothing \neq A \subset \mathbb{N}$. A prova é por contradição.

Supõe A não tem $\min(A)$ e defina

$$X=\overline{A}=\{n\in\mathbb{N}:n\not\in A\}.$$

Indução

Princípios Equivalências

Demonstrações po indução Erros

Mais variantes
PIF pra frente-

trás Definições recursiv Tome A t.q. $\emptyset \neq A \subset \mathbb{N}$. A prova é por contradição.

Supõe A não tem min(A) e defina

$$X = \overline{A} = \{n \in \mathbb{N} : n \not\in A\}.$$

Se $0 \notin X$ então $0 \in A$, portanto $0 = \min(A)$, contradição. Logo $0 \in X$.

Mais variantes PIF pra frentetrás Tome A t.q. $\emptyset \neq A \subset \mathbb{N}$. A prova é por contradição.

Supõe A não tem min(A) e defina

$$X = \overline{A} = \{n \in \mathbb{N} : n \not\in A\}.$$

Se $0 \not\in X$ então $0 \in A$, portanto $0 = \min(A)$, contradição. Logo $\underline{0 \in X}$.

Tome $k \ge 0$ arbitrário e assuma $\{0, \dots, k\} \subset X$.

Tome A t.q. $\emptyset \neq A \subset \mathbb{N}$. A prova é por contradição.

Supõe A não tem min(A) e defina

$$X = \overline{A} = \{n \in \mathbb{N} : n \not\in A\}.$$

Se $0 \notin X$ então $0 \in A$, portanto $0 = \min(A)$, contradição. Logo $0 \in X$.

Tome $k \ge 0$ arbitrário e assuma $\{0, \dots, k\} \subset X$.

 $k+1 \notin X$ implica $k+1 \in A$ implica $k+1 = \min(A)$, contradição. Então $k + 1 \in X$.

Equivalências

Tome A t.g. $\emptyset \neq A \subset \mathbb{N}$. A prova é por contradição.

Supõe A não tem min(A) e defina

$$X = \overline{A} = \{n \in \mathbb{N} : n \not\in A\}.$$

Se $0 \notin X$ então $0 \in A$, portanto $0 = \min(A)$, contradição. Logo $0 \in X$.

Tome $k \ge 0$ arbitrário e assuma $\{0, \dots, k\} \subset X$.

 $k+1 \notin X$ implica $k+1 \in A$ implica $k+1 = \min(A)$, contradição. Então $k + 1 \in X$.

Pelo PIFc $X = \mathbb{N}$, ou seia $A = \emptyset$, uma contradição.

Demonstrações por

indução

PIF, PIFc

$$\frac{P(0)}{\forall k(P(k) \to P(k+1))}$$

$$\therefore \forall n, P(n)$$

$$\begin{array}{c} P(0) \\ \forall k (P(0) \ e \ \cdots \ e \ P(k) \rightarrow P(k+1)) \\ \hline \\ \therefore \forall n, \ P(n) \end{array}$$

/ICTB019-

J Donadelli

Princípios

Equivalências

Demonstrações por indução

Variantes Mais variantes

trás

Definições recursivas

Exemplo

Para todo $n \in \mathbb{N}$, $0 + 1 + \cdots + n = n(n + 1)/2$.

Princípios

Equivalências Demonstraçõe

Demonstrações por indução

Erros Variantes

PIF pra frente

Definições recursivas

Exemplo

Para todo $n \in \mathbb{N}$, $0+1+\cdots+n=n(n+1)/2$.

Vamos provar usando indução em $\mathfrak{n}.$

Demonstrações por indução

Para todo $n \in \mathbb{N}$, $0 + 1 + \cdots + n = n(n + 1)/2$.

Vamos provar usando indução em n.

base: Para n = 0, 0 = 0(0 + 1)/2.

Demonstrações por indução

Para todo $n \in \mathbb{N}$, $0+1+\cdots+n=n(n+1)/2$.

Vamos provar usando indução em n.

base: Para n = 0, 0 = 0(0 + 1)/2.

passo: Seja $k \ge 0$ um natural arbitrário,

Demonstrações por indução

Para todo $n \in \mathbb{N}$, $0+1+\cdots+n=n(n+1)/2$.

Vamos provar usando indução em n.

base: Para n = 0, 0 = 0(0 + 1)/2.

passo: Seja $k \ge 0$ um natural arbitrário,

Assuma que $0 + 1 + \cdots + k = k(k + 1)/2$

Demonstrações por indução

Vamos provar usando indução em n.

base: Para n = 0, 0 = 0(0 + 1)/2.

passo: Seja $k \ge 0$ um natural arbitrário,

Para todo $n \in \mathbb{N}$, $0 + 1 + \cdots + n = n(n + 1)/2$.

Assuma que $0 + 1 + \cdots + k = k(k + 1)/2$

Vamos provar que $0+1+\cdots+k+(k+1)=(k+1)(k+2)/2$.

Para todo $n \in \mathbb{N}$, $0 + 1 + \cdots + n = n(n + 1)/2$.

Vamos provar usando indução em n.

base: Para n = 0, 0 = 0(0 + 1)/2.

passo: Seja $k \ge 0$ um natural arbitrário,

Assuma que $0 + 1 + \cdots + k = k(k + 1)/2$

Vamos provar que $0+1+\cdots+k+(k+1)=(k+1)(k+2)/2$.

(uma dedução vai aqui)

```
J Donadelli
Indução
Principios
Equivalências
Demonstrações por indução
Erros
Variantes
Mais variantes
PIF pra frente-pra trâs
Definições recursiva
```

Para todo $n \in \mathbb{N}$, $0 + 1 + \cdots + n = n(n + 1)/2$.

Vamos provar usando indução em $\mathfrak n$.

base: Para n = 0, 0 = 0(0 + 1)/2.

passo: Seja $k \ge 0$ um natural arbitrário,

Assuma que $0 + 1 + \cdots + k = k(k+1)/2$

Vamos provar que $0+1+\cdots+k+(k+1)=(k+1)(k+2)/2$.

(uma dedução vai aqui)

Portanto $0 + 1 + \cdots + k + (k + 1) = (k + 1)(k + 2)/2$.

Portanto, pelo PIF $0 + 1 + \cdots + n = n(n+1)/2$ para todo $n \in \mathbb{N}$.

иСТВ019-

J Donadelli

Princípios

Equivalências

Demonstrações por indução

Erros

Mais variant

PIF pra frente trás

Definições recursivas

Exemplo

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1+h)^n \geqslant 1+nh$.

MCTB019-1

J Donadelli

Princípios Equivalência

Equivalências

Demonstrações por indução

indução Erros

Mais variantes

Definições recursiva

Exemplo

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1+h)^n \geqslant 1+nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em n.

.I Donadelli

Demonstrações por

indução

Exemplo

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1+h)^n \ge 1 + nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em n.

base: Se n = 0 então $(1 + h)^n \ge 1 + nh$ vale.

Princípios Equivalências

Equivalências Demonstrações por indução

indução Erros

Mais variantes
PIF pra frentetrás

Definições recursi-

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1 + h)^n \ge 1 + nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em \mathfrak{n} .

base: Se n = 0 então $(1 + h)^n \geqslant 1 + nh$ vale.

passo: Seja k um natural arbitrário

Princípios Equivalências

Demonstrações por indução

Variantes
Mais variantes
PIF pra frente-

trás

Definições rec

Exemplo

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1 + h)^n \ge 1 + nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em $\mathfrak{n}.$

base: Se n = 0 então $(1 + h)^n \geqslant 1 + nh$ vale.

passo: Seja k um natural arbitrário

Assuma suponha que $(1+h)^k \ge 1+kh$.

Demonstrações por

indução

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1 + h)^n \ge 1 + nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em n.

base: Se n = 0 então $(1 + h)^n \ge 1 + nh$ vale.

passo: Seja k um natural arbitrário

Assuma suponha que $(1+h)^k \ge 1+kh$.

Vamos provar que $(1+h)^{k+1} \ge 1 + (k+1)h$.

Demonstrações por

indução

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1 + h)^n \ge 1 + nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em n.

base: Se n = 0 então $(1 + h)^n \ge 1 + nh$ vale.

passo: Seja k um natural arbitrário

Assuma suponha que $(1+h)^k \ge 1 + kh$.

Vamos provar que $(1+h)^{k+1} \ge 1 + (k+1)h$.

(uma dedução vai aqui)

Princípios Equivalências Demonstrações por indução

Erros Variantes Mais variantes

PIF pra frente trás Definições rec Exemplo

Para todo $n \in \mathbb{N}$ e todo h > -1, vale $(1 + h)^n \ge 1 + nh$.

Seja h > -1 um real arbitrário.

Vamos provar a desigualdade por indução em $\mathfrak{n}.$

base: Se n = 0 então $(1 + h)^n \geqslant 1 + nh$ vale.

passo: Seja k um natural arbitrário

Assuma suponha que $(1+h)^k \ge 1+kh$.

Vamos provar que $(1+h)^{k+1} \geqslant 1 + (k+1)h$.

:

(uma dedução vai aqui)

.

Portanto $(1+h)^{k+1} \ge 1 + (k+1)h$.

Portanto, pelo PIF $(1+h)^n\geqslant 1+nh$ para todo $n\in\mathbb{N}.$

Demonstrações por indução

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

//CTB019-

J Donadelli

Indução
Princípios
Equivalências

Demonstrações por indução

Erros Variantes Mais variantes PIF pra frente-p trás

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n \acute{e} primo ou Pra facilitar escrita

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n é primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow$$

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n é primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,\mathfrak{n}\in\mathbb{N}\colon\mathsf{P}(\mathfrak{n}+2)\,\}$$

Definições recursiv

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n \acute{e} primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,n\in\mathbb{N}\colon\mathsf{P}(n+2)\,\}$$

base: para n = 2, n é primo.

Exemplo

Para todo natural n > 2, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n é primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,n\in\mathbb{N}\colon\mathsf{P}(n+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Indução
Princípios
Equipalâncias

Demonstrações por indução Erros

Variantes
Mais variantes
PIF pra frente-p

Definições recursiv

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n \acute{e} primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,n\in\mathbb{N}\colon\mathsf{P}(n+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Indução
Princípios
Equivalências

Demonstrações por indução Erros

Variantes
Mais variantes
PIF pra frente-p
trás

Definições recursi-

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n \acute{e} primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,n\in\mathbb{N}\colon\mathsf{P}(n+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Vamos provar que P(k+1) vale em dois casos.

Indução
Princípios
Equivalências

Demonstrações por indução

Erros Variantes Mais variantes

tras Definições recursiv Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n \acute{e} primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,n\in\mathbb{N}\colon\mathsf{P}(n+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Vamos provar que P(k+1) vale em dois casos.

<u>Caso 1:</u> se k + 1 é primo então P(k + 1).

Indução
Princípios
Equivalências

Demonstrações por indução

Variantes
Mais variantes
PIF pra frente-p
trás

trás Definições recursiv

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n \acute{e} primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant \mathbf{2???}\longrightarrow \mathsf{PIF}\;\mathsf{em}\,\{\,\mathfrak{n}\in\mathbb{N}\colon\mathsf{P}(\mathfrak{n}+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Vamos provar que P(k+1) vale em dois casos.

<u>Caso 1:</u> se k + 1 é primo então P(k + 1).

<u>Caso 2</u>: se k + 1 não é primo então k + 1 = α b com

 $2 \leq a, b \leq k$.

.I Donadelli

Indução
Princípios
Foujvalências

Demonstrações por indução

Variantes
Mais variantes
PIF pra frente-p
trás

trás Definições recursi

Exemplo

Para todo natural $n \ge 2$, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença n é primo ou Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2\ref{2.2}} \longrightarrow \mathsf{PIF}\;\mathsf{em}\,\{\,\mathfrak{n}\in\mathbb{N}\colon\mathsf{P}(\mathfrak{n}+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Vamos provar que P(k + 1) vale em dois casos.

Caso 1: se k + 1 é primo então P(k + 1).

<u>Caso 2:</u> se k + 1 não é primo então k + 1 = ab com

 $2 \le a, b \le k$.

Pela hipótese valem P(a) e P(b)

.I Donadelli

Demonstrações por indução

Para todo natural n > 2, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença $n \in primo ou$ Pra facilitar escrita

Exemplo

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\,\{\,n\in\mathbb{N}\colon\mathsf{P}(n+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Vamos provar que P(k + 1) vale em dois casos.

Caso 1: se k + 1 é primo então P(k + 1).

Caso 2: se k + 1 não é primo então k + 1 = ab com

2 < a, b < k.

Pela hipótese valem P(a) e P(b)

Portanto ab é um produto de primos, portanto vale P(k+1).

indução

Demonstrações por

Para todo natural n > 2, n é primo ou pode ser escrito como produto de primos.

Seja P(n) a sentença $n \in primo ou$ Pra facilitar escrita

$$\mathbf{n}\geqslant\mathbf{2???}\longrightarrow\mathsf{PIF}\;\mathsf{em}\;\{\,\mathfrak{n}\in\mathbb{N}\colon\mathsf{P}(\mathfrak{n}+2)\,\}$$

base: para n = 2, n é primo.

passo: Seja $k \ge 2$ um natural arbitrário

Assuma P(2) e P(3) e \cdots e P(k).

Vamos provar que P(k + 1) vale em dois casos.

Caso 1: se k + 1 é primo então P(k + 1).

Caso 2: se k + 1 não é primo então k + 1 = ab com

 $2 \le a, b \le k$.

Pela hipótese valem P(a) e P(b)

Portanto ab é um produto de primos, portanto vale P(k+1).

Pelo PIFc, P(n) para todo n > 2.

Equivalências

Demonstrações por

indução

Definições recursivas

Exemplo

Para todo inteiro $n \ge 5$, $2^n > n^2$.

Princípios Equivalências Demonstrações por

Demonstrações p indução Erros

Mais variantes PIF pra frentetrás

Definições recursivas

Para todo inteiro $n \geqslant 5$, $2^n > n^2$.

Vamos provar usando indução em $\mathfrak{n}.$

Para todo inteiro $n \ge 5$, $2^n > n^2$.

Vamos provar usando indução em n.

base: Para $n = 5, 2^5 > 5^2$ vale.

Princípios Equivalências Demonstrações por

indução Erros

Mais variantes

Definições recursi

Para todo inteiro $n \geqslant 5$, $2^n > n^2$.

Vamos provar usando indução em $\mathfrak{n}.$

base: Para n = 5, $2^5 > 5^2$ vale.

passo: Seja $k \geqslant 5$ um natural arbitrário

Indução Princípios Equivalências Demonstrações por

Demonstrações | indução Erros

Mais variantes

trás

Definições recursi

Para todo inteiro $n \geqslant 5$, $2^n > n^2$.

Vamos provar usando indução em $\mathfrak{n}.$

base: Para n = 5, $2^5 > 5^2$ vale.

passo: Seja $k \geqslant 5$ um natural arbitrário

Assuma $2^k > k^2$.

Exemplo

Princípios Equivalências Demonstrações por

indução Erros

Mais variante

trás

Definições recursi

Para todo inteiro $n \geqslant 5$, $2^n > n^2$.

Vamos provar usando indução em $\mathfrak{n}.$

base: Para n = 5, $2^5 > 5^2$ vale.

passo: Seja $k \geqslant 5$ um natural arbitrário

Assuma $2^k > k^2$.

Vamos provar que $2^{k+1} > (k+1)^2$.

Principios Equivalências Demonstrações por

Demonstrações p indução Erros

Variantes
Mais variantes

PIF pra frentetrás

Definições recurs

Para todo inteiro $n \geqslant 5$, $2^n > n^2$.

Vamos provar usando indução em $\mathfrak{n}.$

base: Para n = 5, $2^5 > 5^2$ vale.

passo: Seja $k \geqslant 5$ um natural arbitrário

Assuma $2^k > k^2$.

Vamos provar que $2^{k+1} > (k+1)^2$.

:

(uma dedução vai aqui)

Para todo inteiro $n \ge 5$, $2^n > n^2$.

Vamos provar usando indução em n.

base: Para n = 5. $2^5 > 5^2$ vale.

passo: Seja $k \ge 5$ um natural arbitrário

Assuma $2^k > k^2$

Vamos provar que $2^{k+1} > (k+1)^2$.

(uma dedução vai aqui)

Portanto, pelo PIF $2^n > n^2$ para todo $n \ge 5$.

иСТВ019-1

.I Donadelli

Indução

Princípios Equivalências

Demonstrações por indução

Variantes Mais variantes

PIF pra frente trás

Delinições recursiv

Exemplo

Se em 2ⁿ moedas 1 é falsa, mais leve, então é possível descobrir a moeda falsa em n pesagens numa balança de comparação com 2 pratos.

MCTB019-1

J Donadelli

Indução

Princípios Equivalências

indução

Erros Variant

variantes Mais variantes PIF pra frente–pra

Definições recursivas

A base é importante

 $\mathfrak{n}(\mathfrak{n}+1)$ é ímpar para todo $\mathfrak{n}\geqslant 1$

MC1B019-1

.I Donadelli

Indução

Princípios Equivalências Demonstrações po

Demonstrações | indução Erros

Variantes
Mais variantes
PIF pra frente-pra
trás
Definições recursis

A base é importante

$$\mathfrak{n}(\mathfrak{n}+1)$$
 é ímpar para todo $\mathfrak{n}\geqslant 1$

Vamos provar que vale

para todo
$$n \geqslant 1$$
, $n(n+1)$ ímpar $\rightarrow (n+1)(n+2)$ ímpar.

indução Frros

Variantes
Mais variantes
PIF pra frente-pra
trás
Definições recurs

A base é importante

$$\mathfrak{n}(\mathfrak{n}+1)$$
 é ímpar para todo $\mathfrak{n}\geqslant 1$

Vamos provar que vale

para todo
$$n \geqslant 1$$
, $n(n+1)$ ímpar $\rightarrow (n+1)(n+2)$ ímpar.

Seja $t\geqslant 1$ um natural arbitrário e suponha que t(t+1) é ímpar. Então

$$(t+1)(t+2) = (t+1)t + (t+1)2$$

que é da forma "ímpar + par", portanto ímpar.

MCTB019-1

J Donadelli

Indução

Delastrias

Equivalências

Demonstrações p indução

Erros

Variante

Mais variantes

tras

Definições recursivas

O passo é importante

para todo n natural, 6n = 0.

indução

Erros

Definições recursivas

O passo é importante

para todo n natural, 6n = 0.

Vamos provar por indução em n.

MCTB019-1

J Donadelli

Indução

Equivalências Demonstrações po

indução Erros

Mais variantes
PIF pra frente-

Definições recursiva

O passo é importante

para todo n natural, 6n = 0.

Vamos provar por indução em n.

Para n=0 a sentença é, claramente, verdadeira.

MCTB019-1

J Donadelli

Indução Princípios

Equivalências Demonstrações po

Erros

Mais variantes
PIF pra frente-p
trás

PIF pra frente-pra trás Definições recursi

O passo é importante

para todo n natural, 6n = 0.

Vamos provar por indução em n.

Para n=0 a sentença é, claramente, verdadeira.

Seja t um natural arbitrário.

Assuma que a sentença vale para 0, ..., tVamos provar que vale para t + 1. para todo n natural, 6n = 0.

Vamos provar por indução em n.

Para n = 0 a sentença é, claramente, verdadeira.

Seja t um natural arbitrário.

Assuma que a sentença vale para $0, \dots, t$ Vamos provar que vale para t + 1.

$$6(t+1) = 6 \cdot t + 6 \cdot 1$$

= 0 + 0
= 0

Pelo PIFc, P(n) vale para todo n.

ИСТВ019-1

J Donadelli

Indução

Princípios

Equivalências

Demonstrações por

Variantes

Mais variantes PIF pra frente-pra trás

Definições recursiva

Consequência do PBO

todo $A \subset \mathbb{Z}$ não vazio e limitado inferiormente tem um menor elemento.

Teorema (PIF generalizado (PIFg))

Sejam P(n) um predicado de números inteiros e $n_0 \in \mathbb{Z}$. Se

- $\mathbf{1}$ P(n₀) é verdadeiro e
- 2 para todo inteiro $z \ge n_0$, P(z) implica P(z+1),

então P(n) é verdadeiro para todo inteiro $n \ge n_0$.

Teorema (PIF completo generalizado (PIFcg))

Sejam P(n) um predicado de números inteiros e $n_0 \in \mathbb{Z}$. Se

- (1) P(n_0) é verdadeiro, e
- 2 para todo inteiro $z \ge n_0$, $P(n_0)$ e $P(n_0 + 1)$ e ... e P(z)implica P(z+1).

então P(n) para todo inteiro $n \ge n_0$.

иство19-1

J Donadelli

Indução

Equivalências

Demonstrações por indução

Variantes

Mais variantes
PIF pra frente-pra
trás
Definições recursivas

PIF generalizado

As demonstrações são análogas

Princípios
Equivalências
Demonstrações poindução

Mais variantes

PIF pra frente-

tras Definições recursiva Seja P(n) um predicado a respeito de $n \in \mathbb{N}$. Se

- $oldsymbol{1}$ P(0) e P(1) e ... e P(k-1) é verdadeiro e
- 2 para todo $n \in \mathbb{N}$, $P(n) e P(n+1) e \dots e P(n+k-1) \text{ implica } P(n+k)$ então P(n) para todo $n \in \mathbb{N}$.

indução

Mais variantes

Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

Indução Princípios Equivalências Demonstrações prindução

Variantes

Mais variantes

PIF pra frente-pra trás Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

 $P(n): F_n \text{ existe \'e unicamente determinado por } n$

Indução Princípios Equivalências Demonstrações p indução

Variantes
Mais variantes

PIF pra frente-pra trás Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

 $P(n): F_n \text{ existe \'e unicamente determinado por } n$

• P(0) e P(1)

Indução Princípios Equivalências Demonstrações p indução

Variantes
Mais variantes

PIF pra frente-pra trás Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

 $P(n): F_n \text{ existe \'e unicamente determinado por } n$

• P(0) e P(1)

Indução Princípios Equivalências Demonstrações prindução

Erros Variantes Mais variantes

PIF pra frente-pra trás Definições recursiva Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

P(n) : F_n existe é unicamente determinado por n

- P(0) e P(1) ✓
- $\forall k \in \mathbb{N}, (P(k) e P(k+1) \rightarrow P(k+2))$

Indução Princípios Equivalências Demonstrações prindução

Erros Variantes Mais variantes

PIF pra frente-pra trás Definições recursiva Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

P(n) : F_n existe é unicamente determinado por n

- P(0) e P(1) ✓
- $\forall k \in \mathbb{N}, (P(k) e P(k+1) \rightarrow P(k+2))$

Indução Princípios Equivalências Demonstrações p indução

Erros Variantes Mais variantes

PIF pra frente-p trás Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

P(n): F_n existe é unicamente determinado por n

- P(0) e P(1) ✓
- $\forall k \in \mathbb{N}, (P(k) e P(k+1) \rightarrow P(k+2)) \checkmark$

Sequência de Fibonacci (F_n) dada for

$$F_0=0,\,F_1=1\;\text{e}\;F_{n+2}=F_{n+1}+F_n\;\text{para todo}\;n.$$

Está bem definida:

P(n) : F_n existe é unicamente determinado por n

- P(0) e P(1) ✓
- $\forall k \in \mathbb{N}, (P(k) e P(k+1) \rightarrow P(k+2)) \checkmark$

Portanto $\forall n, P(n)$

/ICTB019-

J Donadelli

Indução

Princípios

Equivalências

Demonstrações po

Variantes

Mais variantes

DIF ---- foreste

Definições recursivas

PIF passo k

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Princípios Equivalências

Demonstrações po indução Erros

Mais variantes

Mais variantes

Definições recursiva

$$F_n = \frac{1}{\sqrt{5}} \Biggl(\Biggl(\frac{1+\sqrt{5}}{2} \Biggr)^n - \Biggl(\frac{1-\sqrt{5}}{2} \Biggr)^n \Biggr)$$

base: Se n = 0 ou se n = 1 vale

$$0 = F_0 = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^0 - \left(\frac{1 - \sqrt{5}}{2} \right)^0 \right).$$

$$1 = F_1 = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^1 - \left(\frac{1 - \sqrt{5}}{2} \right)^1 \right).$$

Mais variantes

passo: Seja k um natural arbitrário e suponha que

$$F_k = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right)$$

е

$$F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right).$$

Precisamos provar que

$$F_{k+2} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+2} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+2} \right).$$

.I Donadelli

Mais variantes

Por definição $F_{k+2} = F_{k+1} + F_k$, pela hipótese

$$\begin{split} \mathbf{F}_{k+1} + \mathbf{F}_{k} &= \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right) + \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k} - \left(\frac{1-\sqrt{5}}{2} \right)^{k} \right) \\ &= \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k} \left(\frac{1+\sqrt{5}}{2} + 1 \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{k} \left(\frac{1-\sqrt{5}}{2} + 1 \right) \right) \\ &= \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k} \left(\frac{1+\sqrt{5}}{2} \right)^{2} - \left(\frac{1-\sqrt{5}}{2} \right)^{k} \left(\frac{1-\sqrt{5}}{2} \right)^{2} \right) \\ &= \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+2} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+2} \right). \end{split}$$

.I Donadelli

PIF pra frente-pra

PIF pra frente-pra trás

Teorema (Indução pra frente-pra trás)

Seja (a_i) uma seguência crescente de números naturais. Seia P(n) um predicado a respeito dos números naturais. Se

- **1** $P(a_i)$ é verdadeiro para todo índice $i \in \mathbb{N}$ e
- 2 P(k+1) implica P(k), para todo natural k então P(n) é verdadeiro para todo natural n.

ИСТВ019-1

J Donadelli

Indução

Equivalências
Demonstrações poindução
Erros

Mais variantes
PIF pra frente-pra

Definições recursiva

Aplicação de PIF pra frente-pra trás

$$x_1, x_2, \dots, x_n \in \mathbb{R}^+$$

média aritmética:
$$A(x_1, x_2, ..., x_n) = \frac{x_1 + x_2 + ... + x_n}{n}$$

$$\underline{\text{m\'edia geom\'etrica}} \colon G(x_1, x_2, \dots, x_n) = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}$$

Teorema (MA-MG)

$$A(x_1, x_2, \ldots, x_n) \geqslant G(x_1, x_2, \ldots, x_n)$$

com igualdade se, e só se, $x_1 = x_2 = \cdots = x_n$.

Não faremos aqui, veja notas de aula

J Donadelli

Indução

D : . . .

Princípios

Demonstrações

indução

Variantes

PIF pra frente

PIF pra frentetrás

Definições recursivas

fatorial
$$0! = 1 e (n+1)! = (n+1) \cdot n!;$$

J Donadelli

Princípios

Demonstrações p indução

Erros Variantes

Mais variantes
PIF pra frente-

Definições recursivas

fatorial
$$0! = 1$$
 e $(n + 1)! = (n + 1) \cdot n!$;

somatório
$$\sum_{i=0}^0 x_i = x_0$$
 e $\sum_{i=0}^{n+1} x_i = x_{n+1} + \sum_{i=0}^n x_i;$

J Donadelli

Indução Princípios Equivalências Demonstrações p

Erros Variantes

Mais variantes PIF pra frentetrás

Definições recursivas

fatorial
$$0! = 1$$
 e $(n + 1)! = (n + 1) \cdot n!$;
somatório $\sum_{i=0}^{0} x_i = x_0$ e $\sum_{i=0}^{n+1} x_i = x_{n+1} + \sum_{i=0}^{n} x_i$;
produtório $\prod_{i=0}^{0} x_i = x_0$ e $\prod_{i=0}^{n+1} x_i = x_{n+1} \cdot \prod_{i=0}^{n} x_i$;

J Donadelli

Indução Princípios Equivalências Demonstrações p

indução Erros Variantes

Mais variantes
PIF pra frentetrás

Definições recursivas

fatorial
$$0! = 1$$
 e $(n + 1)! = (n + 1) \cdot n!$;
somatório $\sum_{i=0}^{0} x_i = x_0$ e $\sum_{i=0}^{n+1} x_i = x_{n+1} + \sum_{i=0}^{n} x_i$;
produtório $\prod_{i=0}^{0} x_i = x_0$ e $\prod_{i=0}^{n+1} x_i = x_{n+1} \cdot \prod_{i=0}^{n} x_i$;
união $\bigcup_{i=0}^{0} A_i = A_0$ e $\bigcup_{i=0}^{n+1} A_i = A_{n+1} \cup (\bigcup_{i=0}^{n} A_i)$;

J Donadelli

Indução Princípios Equivalências

Demonstrações indução Erros

Mais variantes
PIF pra frente-

Definições recursivas

fatorial
$$0! = 1$$
 e $(n + 1)! = (n + 1) \cdot n!$;
somatório $\sum_{i=0}^{0} x_i = x_0$ e $\sum_{i=0}^{n+1} x_i = x_{n+1} + \sum_{i=0}^{n} x_i$;
produtório $\prod_{i=0}^{0} x_i = x_0$ e $\prod_{i=0}^{n+1} x_i = x_{n+1} \cdot \prod_{i=0}^{n} x_i$;
união $\bigcup_{i=0}^{0} A_i = A_0$ e $\bigcup_{i=0}^{n+1} A_i = A_{n+1} \cup (\bigcup_{i=0}^{n} A_i)$;
interseção $\bigcap_{i=0}^{0} A_i = A_0$ e $\bigcap_{i=0}^{n+1} A_i = A_{n+1} \cap (\bigcap_{i=0}^{n} A_i)$;

J Donadelli

Indução Princípios

Equivalências

Demonstrações p
indução

Erros

Mais variantes
PIF pra frente-

Definições recursivas

$$\begin{split} & \text{fatorial } 0! = 1 \text{ e } (n+1)! = (n+1) \cdot n!; \\ & \text{somat\'orio } \sum_{i=0}^{0} x_i = x_0 \text{ e } \sum_{i=0}^{n+1} x_i = x_{n+1} + \sum_{i=0}^{n} x_i; \\ & \text{produt\'orio } \prod_{i=0}^{0} x_i = x_0 \text{ e } \prod_{i=0}^{n+1} x_i = x_{n+1} \cdot \prod_{i=0}^{n} x_i; \\ & \text{uni\~ao } \bigcup_{i=0}^{0} A_i = A_0 \text{ e } \bigcup_{i=0}^{n+1} A_i = A_{n+1} \cup (\bigcup_{i=0}^{n} A_i); \\ & \text{interse\~c\~ao } \bigcap_{i=0}^{0} A_i = A_0 \text{ e } \bigcap_{i=0}^{n+1} A_i = A_{n+1} \cap (\bigcap_{i=0}^{n} A_i); \\ & \text{exponencial } \alpha^0 = 1 \text{ e } \alpha^{n+1} = \alpha^n \cdot \alpha; \end{split}$$

/ICTB019-1

J Donadelli

Indução

Principios Equivalências Demonstrações poindução Erros Variantes Mais variantes PIF pra frente-pra trás

Definições recursivas

Equações de recorrência

função $f \colon \mathbb{N} \to A$ ou sequência (f_n)

- especificamos o valor da função f em 0,..., k
- damos uma regra para encontrar o valor de f(n), $n \geqslant k$, em função de seus valores no inteiros menores, $f(n-1), f(n-2), \ldots, f(n-k-1)$

Exemplos:
$$f(0) = 0$$
, $f(n + 1) = f(n) + \sqrt{n}$
 $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$

Definições recursivas

Exemplo (juro composto)

Se começamos uma poupança com um capital de C unidades monetárias, após n meses o montante poupado supondo $i \in (0,1)$ fixo como a taxa de juros mensal é

$$M_0 = C$$
, $M_{n+1} = M_n + iM_n$

Se poupamos D_n unidades monetárias no mês n ($D_0 = C$) e o aplicamos nessa poupança

$$M_0 = C$$
, $M_{n+1} = (1+i)M_n + D_{n+1}$.

Indução Princípios Equivalências Demonstrações indução

Variantes
Mais variantes
PIF pra frente-p
trás

Definições recursivas

Exemplo (mapa logístico)

O mapa logístico é uma equação de recorrência frequentemente dada como um exemplo de como o comportamento complexo e caótico pode surgir a partir de equações não lineares muito simples

$$x_{n+1} = rx_n(1 - x_n)$$

onde r é uma constante e x_0 um valor inicial dado.

Indução

Princípios
Equivalências
Demonstrações por indução
Erros
Variantes

PIF pra frente-pra trás Definições recursivas

Exemplo (progressão aritmética)

Uma progressão aritmética que começa em $\alpha\in\mathbb{R}$ e tem razão $r\in\mathbb{R}$ é uma sequência (α_n) tal que

$$a_0 = a$$
 e $a_{n+1} = a_n + r$

para todo $n \in \mathbb{N}$.

Exemplo (progressão geométrica)

Uma progressão geométrica que começa em $\alpha\in\mathbb{R}$ e tem razão $r\in\mathbb{R}$ é uma sequência (α_n) tal que

$$\alpha_0 = \alpha$$
 e $\alpha_{n+1} = \alpha_n \cdot r$

para todo $n \in \mathbb{N}$.

Indução Princípios Equivalências Demonstrações pindução

Variantes
Mais variantes
PIF pra frente-p

Definições recursivas

Exemplo (Newton-Raphson)

O método de Newton–Raphson para achar zero de função real, quando aplicado a $(x^2-\alpha)$ computa, aproximadamente, a raiz quadrada de α . A partir de $x_0=1$ podemos computar $\sqrt{2}$ usando

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$$

J Donadelli

Indução
Princípios
Equivalências
Demonstrações
indução
Erros
Variantes

trás

Definições recursivas

Delinições recursiv

Equação de recorrência

Uma função ϕ é **solução** de uma recorrência para $(\mathfrak{a}_{\mathfrak{n}})$ se

para todo natural
$$\mathfrak{n},\,\phi(\mathfrak{n})=\mathfrak{a}_\mathfrak{n}.$$

No geral, queremos uma solução que seja dada por expressão matemática que pode ser avaliada com um número "pequeno" de operações.

Tal **solução** é chamada **forma fechada**.

ИСТВ019-1

J Donadelli

Indução

Princípios Equivalências Demonstrações por indução

Mais variantes
PIF pra frente

Definições recursivas

Solução para Fibonacci

$$\varphi(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

A prova de que é solução é feita por indução, como já vimos.

J Donadelli

. . . .

Princípios
Equivalências
Demonstrações poindução

Variantes
Mais variantes

Definições recursivas

Solução para juro composto

sem depósito mensal

$$M(n) = (1+\mathfrak{i})^n C$$

com depósito mensal

$$M(n) = (1+i)^n C + \sum_{k=0}^{n-1} (1+i)^k D(i)$$

J Donadelli

Equivalências

indução

Definições recursivas

Solução para mapa logístico

J Donadelli

Solução para progressões

Indução
Princípios
Equivalências
Demonstrações poindução
Erros
Variantes

Definições recursivas

PA:

$$\alpha(n)=nr+\alpha$$

PG:

$$a(n) = ar^n$$

J Donadelli

Definições recursivas

Solução para Newton-Raphson

$$x(n) = \begin{cases} 1 & \text{se } n = 0 \\ \sqrt{2} & \text{c.c.} \end{cases}$$

ICTB019-1

J Donadelli

Indução
Principios
Equivalências
Demonstrações poindução
Erros
Variantes
Mais variantes

Definições recursivas

Definição recursiva de conjuntos

- especificamos uma coleção inicial de naturais
- damos uma regra para "adicionar" novos elementos e para "não adicionar" outros elementos.

J Donadelli

Indução
Princípios
Equivalências
Demonstrações prindução
Erros
Variantes
Mais variantes
PIF pra frente-pra

Definições recursivas

Definição recursiva de conjuntos

- especificamos uma coleção inicial de naturais
- damos uma regra para "adicionar" novos elementos e para "não adicionar" outros elementos.

Assumimos a convenção de que os elementos dos conjuntos definidos recursivamente são só aqueles dados pelas regras dadas.

иСТВ019-1

J Donadelli

Indução
Princípios
Equivalências
Demonstrações p

Variantes Mais variantes

trás Definições recursivas

Exemplo

Vamos definir recursivamente o conjunto I dos números naturais ímpares

- **1** 1 ∈ I;
- 2 para todo $\alpha \in \mathbb{N}$, se $\alpha \in I$ então $\alpha + 2 \in I$;

Exercício: I é o subconjunto dos naturais ímpares.