Facultat d'Informàtica de Barcelona

Xarxes de Computadors

Lab 1:

Comandos básicos para la configuración del nivel IP con UNIX

José Suárez-Varela

jsuarezv@ac.upc.edu

Prácticas

7 sesiones + examen final:

- Práctica 1 → Configuración de interfaces, routing estático y tablas de encaminamiento (LINUX)
- Práctica 2 → Configuración de interfaces, routing estático y tablas de encaminamiento en routers CISCO (IOS)
- Práctica 3 → Routing dinámico: RIPv1 y RIPv2 con IOS
- Práctica 4 → Listas de acceso (ACL) y traducción de direcciones (NAT) con IOS
- Práctica 5 → Configuración de switches Ethernet con IOS
- Práctica 6 → Transmission Control Protocol (TCP)
- Práctica 7 → Domain Name System (DNS)
- Examen final de laboratorio

Organización clases

Sesiones 2-7 (sesiones presenciales de 1 hora):

- 1) Resolución de dudas de la práctica anterior
- 2) Minicontrol de la práctica anterior (la última práctica no tendrá minicontrol)
- 3) Explicación de la práctica (a realizar en casa; se pueden hacer por grupos)

Organización clases

Sesiones 2-7 (sesiones presenciales de 1 hora):

- Tomar nota del sitio y sentarse siempre en el mismo lugar
- Se debe leer la práctica antes de asistir a clase
- El informe previo no es obligatorio, aunque es recomendable realizarlo y preguntar dudas en clase
- No hay que entregar nada sobre la realización práctica en casa

Evaluación

http://studies.ac.upc.edu/FIB/grau/XC/

$$Nota\ final = 0.3 * NL + 0.7 * NT$$

$$NL = 0.5 * CL + 0.5 * EL$$

Nota media en minicontroles

(6 minicontroles)

Nota examen final labs

Herramientas

- Cuaderno de prácticas:
 - "Entorn de laboratori"
 - "Eines per repassar les pràctiques"
- Maquina Virtual (MV) Linux de VirtualBox:

http://studies.ac.upc.edu/FIB/grau/XC/slitaz50-xarxes.ova

Simulador Cisco IOS (Packet Tracer)

https://www.netacad.com/about-networking-academy/packet-tracer/

Conceptos básicos

Objetivo > Familiarizarse con el módulo IP de redes de Linux

Asignación de IPs →

(IP + máscara)

Tabla de encaminamiento →

Destino	Máscara de subred	Dirección IP del próximo salto	Interfaz de salida
130.100.0.0	255.255.0.0	130.100.2.2	130.100.2.2
192.168.100.0	255.255.255.0	192.168.100.2	192.168.100.2
10.0.0.0	255.0.0.0	130.100.1.1	130.100.2.2
40.0.0.0	255.0.0.0	192.168.100.1	192.168.100.2

Conceptos básicos

Destino	Máscara de subred	Dirección IP del próximo salto	Interfaz de salida
130.100.0.0	255.255.0.0	130.100.2.2	130.100.2.2
192.168.100.0	255.255.255.0	192.168.100.2	192.168.100.2
10.0.0.0	255.0.0.0	130,100,1,1	130.100.2.2
40.0.0.0	255.0.0.0	192.168.100.1	192.168.100.2

• Comprobación de entradas de routing:

IP + máscara

e.g., host: $10.0.0.100 + \text{mask: } 255.0.0.0 \rightarrow 10.0.0.0$

Facultat d'Informàtica de Barcelona

Conceptos básicos

Destino	Máscara de subred	Dirección IP del próximo salto	Interfaz de salida
130.100.0.0	255.255.0.0	130.100.2.2	130.100.2.2
192.168.100.0	255.255.255.0	192.168.100.2	192.168.100.2
10.0.0.0	255.0.0.0	130.100.1.1	130.100.2.2
40.0.0.0	255.0.0.0	192.168.100.1	192.168.100.2

- Direcciones especiales (no asignar a hosts!)
 - Red \rightarrow x.y.z.0
 - Broadcast → x.y.z.255
- Direcciones válidas hosts → x.y.z.<1-254>

Comandos y Recursos

Comandos básicos de configuración:

```
# ifconfig [-a] → Ver config interfaces
# ifconfig <if_name> <IP> netmask <mask> [broadcast <IP_br>] → Configurar IP interfaz (añadir mascara!)
# ifconfig <if_name> up → Importante! Activar interfaz

# route add -net <IP_dst> netmask <IP_mask> gw <IP_gw> → Añadir entrada estática de routing
# route add default gw <IP> → Entrada de routing por defecto
# route -n → Consultar tabla encaminamiento

# tcpdump -ni <if_name> → Captutar paquetes en una interfaz

Scrolling en la terminal → Ctrl + shift + up/ down
```

Comandos para comprobar conectividad:

```
# Ping <IP_dst> (ICMP echo + reply)
# Traceroute <IP_dst> → Determina la ruta a una IP destino (3 paquetes UDP con TTL incremental)
```

Descargar Cisco Packet Tracer para la próxima sesión (requiere registrarse)

https://www.netacad.com/courses/packet-tracer/introduction-packet-tracer

Pasos a seguir

- 1) Instalar MV
- 2) Clonar varias máquinas
 - Generar nuevas direcciones MAC para todas las tarjetas de red!
 - Clonación enlazada (más eficiente)
- 3) Conectarlas entre sí (menú "red" VirtualBox)
- 4) Encender maquinas:
 - Configuración de IPs y routing estático (comandos UNIX)

- Conectar dos PCs directamente (en la misma red)
- # route -n
- # arp
- Activar broadcast → # sysctl –w net.ipv4.icmp_echo_ignore_broadcasts=0

- Los PCs directamente conectados tienen conexión por defecto
- Conexión PC1 a PC2 → Configurar en PC1 entrada con PCR como "gateway" (igual en PC2)

- Los gateways tienen que indicar IPs cuya interfaz esté directamente conectada al equipo (e.g., PC1 No puede tener como gateway PCR-e2)
- Ruta por defecto -> Todo lo que no tenga una ruta específica se envía según esta entrada
- **Comprobar routing** → *traceroute* y *tcpdump*

- 3 redes diferentes (10.0.<PC1>.0/24; 10.0.<PCR1>.0/24; 10.0.<PC2>.0/24)
- **Ejemplo:** conexión entre PC1 y PC2 (equivalente en sentido contrario)
 - PC1 → IP dest: 10.0.<PC2>.0/24 (red PC2); gw: 10.0.<PC1>.1 (PCR-e1)
 - **PCR1** → IP dest: 10.0 .<PC2>.0/24 (red PC2); gw: 10.0.<PCR1>.2 (PCR2-e1)

Dudas / preguntas?

Contacto:

José Suárez-Varela

jsuarezv@ac.upc.edu