Nearest neighbor search using the Hierarchical Navigable Small World (HNSW) algorithm

Sebastian Björkqvist

Lead AI Developer, IPRally

May 12, 2023

Outline

- 1 Theoretical foundations
 - Voronoi diagram
 - Delaunay graph
 - Greedy search using Delaunay graph
- 2 HNSW algorithm
 - Idea behind algorithm
 - Construction of search index
 - Nearest neighbor search using index
- 3 Performance
 - Search accuracy
 - Build time

└Voronoi diagram

Voronoi diagram for a set of points

└─Voronoi diagram

Voronoi diagram for a set of points

L Delaunay graph

Voronoi diagram to Delaunay graph

L Delaunay graph

Voronoi diagram to Delaunay graph

- L Theoretical foundations
 - L Delaunay graph

Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search start - Query and entry point

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search done!

Asymmetric distance functions

Why?

- Can help us the direction of the prior art
- User might be interested also in finding infringing patents
- Currently we can't model this asymmetry

LIdea behind algorithm

Asymmetric distance functions

How?

- We can learn a distribution for a document instead of just a single vector
- Model prior art relation as KL divergence of distributions

LIdea behind algorithm

Distance functions for metadata

Why?

- We can do soft filtering (by country, patent class etc.)
- Can be useful if match is not found by strict filters

LIdea behind algorithm

Learning multiple distance functions - naive way

LIdea behind algorithm

Learning multiple distance functions - naive way

Learning multiple distance functions - naive way

- LHNSW algorithm
 - LIdea behind algorithm

Learning multiple distance functions - naive way

Drawback: multiple embeddings of same document must be indexed!

LIdea behind algorithm

Learning multiple distance functions - efficient way

Learning multiple distance functions - efficient way

$$d_{n}(q, x) = v_{q}^{n} \cdot v_{x}$$

$$v_{q}^{n} \qquad v_{x}$$

$$\uparrow \qquad \qquad \uparrow$$

$$q \quad d_{n} \qquad x$$

Only one meta-embedding per document is indexed!

Construction of search index

Forward thinking

Construction of search index

Forward thinking

Why?

- We can train deeper models but keep batch size the same
- Training of deep models can take less wall clock time

Construction of search index

Forward thinking - paper

Forward Thinking: Building and Training Neural Networks One Layer at a Time (Hettinger et al.) https://arxiv.org/abs/1706.02480

Search accuracy

Search accuracy

Search accuracy

Search accuracy

Current method - using gradients

Nodes with highest gradient are considered most important

Drawbacks with using gradients

- Compute-intensive, since we need to do backwards pass
- Quality of explanations is not the best
 - Evaluating Recurrent Neural Network Explanations (Arras et al.) https://arxiv.org/abs/1904.11829

L Search accuracy

Comparing node embeddings

1 Embed graphs using model

- 1 Embed graphs using model
- Compare each pair of node embeddings

- 1 Embed graphs using model
- Compare each pair of node embeddings
- 3 Highlight most similar nodes

Why?

- Faster than using gradients (no backprop step needed)
- Might give more relevant explanations
- Can be useful for finding missing features

Summary

- We can give model more relevant data by using the citations and metadata more efficiently
- Learning distributions instead of just embeddings enables modelling asymmetry of prior art relations
- Might be possible to get better explanations by comparing node embeddings