Tutorial 7: Supervised Learning

1 The Perceptron Algorithm

A set of labeled samples $\{x_i, y_i\}_{i=1}^n$ is given, where $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, 1\}$.

Goal: Find a linear classifier $f: \mathbb{R}^m \to \{-1, 1\}$ which satisfies

$$f(x_i) = sign(w^T x_i) = y_i,$$

where $w \in \mathbb{R}^m$ is a vector of weights.

The Algorithm

- Initialization set initial weight vector w_0 .
- For t = 1, 2, ...
 - 1. Pick a sample $\{x_t, y_t\}$ from the training set
 - 2. Compute

$$\hat{y}_t = sign(w_t^T x)$$

3. Update the weight vector

$$w_{t+1} = w_t + \frac{1}{2}(y_t - \hat{y}_t)x_t$$

The algorithm converge in finite number of iterations if the problem is linear separable. In the linear non-separable case, there is no guarantee for convergence.

Question 1

In this exercise we aim to prove the convergence of perceptron algorithm when the set of examples is linear separable. Under this assumption, there exists a weight vector w^* for which

$$y_i \langle w^*, x_i \rangle \ge 1, \ i = 1, 2, ..., n.$$

Consider the following version of the perceptron algorithm

- Input: $\{x_i, y_i\}_{i=1}^n, x_i \in \mathbb{R}^m, y_i \in \{-1, 1\}.$
- Initialization: $w_1 = (0, ..., 0)$.
- For t = 1, 2, ...

If $\exists i$ such that $y_i \langle w_t, x_i \rangle \leq 0$

$$w_{t+1} = w_t + y_i x_i.$$

Else, return w_t and finish.

(a) Prove that $\langle w^*, w_{T+1} \rangle \geq T$. Hint: Use a telescoping series for all iterations up to T.

1

(b) Define $R = \max_{i} ||x_i||_2^2$. Prove that $||w_{t+1}||_2^2 \le ||w_t||_2^2 + R^2$.

- (c) Show that $||w_{T+1}||_2^2 \leq TR^2$.
- (d) We want to show that the algorithm converges to w^* , i.e.,

$$\cos \theta_{T+1} = \frac{\langle w^*, w_{T+1} \rangle}{||w^*||_2 ||w_{T+1}||_2} \xrightarrow[T \to \infty]{} 1.$$

Explain the geometric meaning of this condition.

- (e) Define $B = \min\{||w|| : y_i \langle w, x_i \rangle \ge 1 \ \forall i \in [1, n]\}$ and let w^* be the vector which achieves this minimum. Use the previous parts to obtain a lower bound on $\cos \theta_{T+1}$. What is a trivial upper bound on $\cos \theta_{T+1}$?
- (f) Use the bounds you found to prove the convergence of the algorithm. Find an upper bound on the number of iteration required until convergence.

Solution

(a) First notice that

$$\langle w^*, w_{t+1} \rangle - \langle w^*, w_t \rangle = \langle w^*, w_{t+1} - w_t \rangle = \langle w^*, y_i x_i \rangle = y_i \langle w^*, x_i \rangle \ge 1.$$

Hence,

$$\langle w^*, w_{T+1} \rangle = \sum_{t=1}^{T} \left(\langle w^*, w_{t+1} \rangle - \langle w^*, w_t \rangle \right) \ge \sum_{t=1}^{T} 1 = T.$$

(b) It holds that

$$y_{i}\langle w_{t}, x_{i} \rangle > 0 \Rightarrow ||w_{t+1}||_{2}^{2} = ||w_{t}||_{2}^{2},$$

$$y_{i}\langle w_{t}, x_{i} \rangle \leq 0 \Rightarrow ||w_{t+1}||_{2}^{2} = ||w_{t} + y_{i}x_{i}||_{2}^{2} = ||w_{t}||_{2}^{2} + \underbrace{2\langle w_{t}, y_{i}x_{i} \rangle}_{<0} + ||x_{i}||_{2}^{2} \leq ||w_{t}||_{2}^{2} + R^{2}.$$

(c) Using that $w_0 = (0, ..., 0)$ and the previous part we have

$$||w_{T+1}||_2^2 \le \sum_{t=1}^T R^2 = TR^2.$$

- (d) In the limit $T \to \infty$, the vectors w_{T+1} and w^* have the same direction, therefore, they will classify the examples in the same manner with respect to their sign.
- (e) A trivial upper bound for $\cos \theta_{T+1}$ is $\cos \theta_{T+1} \leq 1$. A lower bounds can be achieved using the previous parts

$$\cos \theta_{T+1} = \frac{\langle w^*, w_{T+1} \rangle}{||w^*||_2 ||w_{T+1}||_2} \ge \frac{T}{B\sqrt{TR^2}} = \frac{\sqrt{T}}{BR}.$$

Hence,

$$\frac{\sqrt{T}}{BR} \le \cos \theta_{T+1} \le 1.$$

(f) Notice that for $T = B^2 R^2$ we get that

$$\cos \theta_{T+1} \ge \frac{\sqrt{T}}{BR} = \frac{\sqrt{B^2 R^2}}{BR} = 1 \rightarrow \theta_{T+1} = 0,$$

which implies that w_{T+1} and w^* are aligned and the algorithm converged. Thus, an upper bound on the number of iteration is given by $(BR)^2$.

2

Naive Bayes Classifier

Notation

 Ω - Output space : a finite set of classes $\omega_i \in \Omega$, i = 1, 2, ..., N.

X - Input space : $x \in X$.

f - A classifier $f: X \to \Omega$ which maps $x \in X$ to $\omega \in \Omega$.

Optimal Bayes Classifier

$$f(x) = \underset{i=1,2,...,N}{\operatorname{arg max}} p(x|\omega_i)p(\omega_i).$$

Empirical Bayes classifier

A training set of labeled examples $\{x_k, y_k\}_{k=1}^m$ is given, where $x_k \in X$ and $y_k \in \Omega$.

- 1. Estimate the distributions $p(x|\omega)$ and p(w) from the training set $\{x_k, y_k\}_{k=1}^m$.
- 2. Use the estimated distributions to compute the optimal Bayes classifier.

Naive Bayes classifier

When the dimension n of the input space is high, estimating p(x|w) is complicated and in most cases not practical. One possible approach for dealing with this problem is to assume independence between the coordinates of the input $x = (x_1, x_2, ..., x_n)^T$, that is we make the naive assumption (hence the name) that

$$p(x|\omega) \approx \prod_{i=1}^{d} p(x_i|\omega).$$

Then, estimate the marginal one-dimensional distributions $\{p(x_i|\omega)\}_{i=1}^d$ using the training set.

Question 2

Consider the input vector to be $x = (x_1, x_2, ..., x_n)^T$ where $x_i \in \{0, 1\}$ and the output targets are a single binary-value $y \in \{0, 1\}$. Our model is then parameterized by

$$p_1 = p(y = 1),$$

 $q_i = p(x_i = 1|y = 0), i = 1, 2, ..., n$
 $h_i = p(x_i = 1|y = 1), i = 1, 2, ..., n.$

- (a) Model the distibutions p(y), p(x|y=0) and p(x|y=1) using $p_1, q_1, ..., q_n, h_1, ..., h_n$.
- (b) A labeled training set $\{x^{(k)}, y^{(k)}\}_{k=1}^m$ is given. Find the joint likelihood function $\ell(\theta) = \log \prod_{k=1}^m p(x^{(k)}, y^{(k)}; \theta)$ where θ represents the entire set of parameters $\theta = \{p_1, q_1, ..., q_n.h_1, ..., h_n\}$.
- (c) Find the parameters which maximize the likelihood function.
- (d) Consider making a prediction on some new data point x using the most likely class estimate generated by the naive Bayes algorithm. Show that the naive Bayes classifier is a linear classifier, i.e., if p(y=0|x) and p(y=1|x) are the class probabilities returned by naive Bayes, show that there exists some $u \in \mathbb{R}^{n+1}$ such that

$$p(y=1|x) \ge p(y=0|x) \iff u^T \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0.$$

3

Solution

(a) We model the distributions as follows

$$p(y) = p_1^y (1 - p_1)^{(1-y)},$$

$$p(x|y=0) = \prod_{i=1}^n p(x_i|y=0) = \prod_{i=1}^n q_i^{x_i} (1 - q_i)^{1-x_i},$$

$$p(x|y=1) = \prod_{i=1}^n p(x_i|y=1) = \prod_{i=1}^n h_i^{x_i} (1 - h_i)^{1-x_i}.$$

(b) The joint likelihood function is given by

$$\begin{split} \ell(\theta) &= \log \prod_{k=1}^{m} p(x^{(k)}, y^{(k)}; \theta) \\ &= \log \prod_{k=1}^{m} p(x^{(k)}|y^{(k)}; \theta) p(y^{(k)}; \theta) \\ &= \log \prod_{k=1}^{m} \left(\prod_{i=1}^{n} p(x_{i}^{(k)}|y^{(k)}; \theta) \right) p(y^{(k)}; \theta) \\ &= \sum_{k=1}^{m} \left(\sum_{i=1}^{n} \log p(x_{i}^{(k)}|y^{(k)}; \theta) + \log p(y^{(k)}; \theta) \right) \\ &= \sum_{k=1}^{m} \left(\log \left(p_{1}^{y^{(k)}} (1 - p_{1})^{(1 - y^{(k)})} \right) + \sum_{i=1}^{n} y^{(k)} \log \left(h_{i}^{x_{i}^{(k)}} (1 - h_{i})^{1 - x_{i}^{(k)}} \right) \right) \\ &+ \sum_{i=1}^{n} (1 - y^{(k)}) \log \left(q_{i}^{x_{i}^{(k)}} (1 - q_{i})^{1 - x_{i}^{(k)}} \right) \right) \\ &= \sum_{k=1}^{m} \left(y^{(k)} \log p_{1} + (1 - y^{(k)}) \log (1 - p_{1}) + \sum_{i=1}^{n} y^{(k)} \left(x_{i}^{(k)} \log h_{i} + (1 - x_{i}^{(k)}) \log (1 - h_{i}) \right) + \sum_{i=1}^{n} (1 - y^{(k)}) \left(x_{i}^{(k)} \log q_{i} + (1 - x_{i}^{(k)}) \log (1 - q_{i}) \right) \right) \end{split}$$

(c) To find the parameters we set the gradient of $\ell(\theta)$ to zero -

$$\frac{\partial \ell}{\partial p_1} = \sum_{k=1}^m y^{(k)} \frac{1}{p_1} - (1 - y^{(k)}) \frac{1}{(1 - p_1)} = 0$$

$$\Leftrightarrow \sum_{k=1}^m y^{(k)} (1 - p_1) - (1 - y^{(k)}) p_1 = 0$$

$$\Leftrightarrow \sum_{k=1}^m y^{(k)} = \sum_{k=1}^m p_1$$

$$\Leftrightarrow p_1 = \frac{1}{m} \sum_{k=1}^m y^{(k)} = \frac{1}{m} \sum_{k=1}^m 1\{y^{(k)} = 1\}$$

$$\begin{split} \frac{\partial \ell}{\partial h_i} &= \sum_{k=1}^m y^{(k)} \left(x_i^{(k)} \frac{1}{h_1} - (1 - x_i^{(k)}) \frac{1}{1 - h_1} \right) = 0 \\ \Leftrightarrow \sum_{k=1}^m y^{(k)} \left(x_i^{(k)} (1 - h_1) - (1 - x_i^{(k)}) h_1 \right) = 0 \\ \Leftrightarrow \sum_{k=1}^m y^{(k)} x_i^{(k)} &= \sum_{k=1}^m y^{(k)} h_i \\ \Leftrightarrow h_i &= \frac{\sum_{k=1}^m y^{(k)} x_i^{(k)}}{\sum_{k=1}^m y^{(k)}} = \frac{\sum_{k=1}^m 1\{y^k = 1 \cap x_i^{(k)} = 1\}}{\sum_{k=1}^m 1\{y^k = 1\}} \end{split}$$

The solution for q_i proceeds in the identical manner:

$$q_i = \frac{\sum_{k=1}^{m} (1 - y^{(k)}) x_i^{(k)}}{\sum_{k=1}^{m} (1 - y^{(k)})} = \frac{\sum_{k=1}^{m} 1\{y^k = 0 \cap x_i^{(k)} = 1\}}{\sum_{k=1}^{m} 1\{y^k = 0\}}$$

(d) We will classify y = 1 if

$$\begin{aligned} &p(y=1|x) \geq p(y=0|x) \\ \Leftrightarrow & \frac{p(y=1|x)}{p(y=0|x)} \geq 1 \\ \Leftrightarrow & \frac{\prod_{i=1}^{n} p(x_i|y=1)p(y=1)}{\prod_{i=1}^{n} p(x_i|y=0)p(y=0)} \geq 1 \\ \Leftrightarrow & \log \frac{p(y=1)}{p(y=0)} + \sum_{i=1}^{n} \log \frac{p(x_i|y=1)}{p(x_i|y=0)} \geq 0 \\ \Leftrightarrow & \log \frac{p_1}{1-p_1} + \sum_{i=1}^{n} x_i \log \frac{h_i}{q_i} + (1-x_i) \log \frac{1-h_i}{1-q_i} \geq 0 \\ \Leftrightarrow & \log \frac{p_1}{1-p_1} + \sum_{i=1}^{n} \log \frac{1-h_i}{1-q_i} + \sum_{i=1}^{n} x_i \log \frac{h_i(1-h_i)}{q_i(1-q_i)} \geq 0 \\ \Leftrightarrow & u^T \begin{bmatrix} 1 \\ x \end{bmatrix} \geq 0 \end{aligned}$$

where

$$u_0 = \log \frac{p_1}{1 - p_1} + \sum_{i=1}^n \log \frac{1 - h_i}{1 - q_i}$$
$$u_i = x_i \log \frac{h_i (1 - h_i)}{q_i (1 - q_i)}, \ i = 1, 2, ..., n.$$