## BitTorrent: An Extensible Heterogeneous Model

Alix L.H. Chow, Leana Golubchik, Vishal Misra

Appeared in INFOCOM'09

#### **Outline**

- BT Model
  - Basic Model
  - More Realistic Model
- Model Validation Using Simulation
  - Experiment 1: Two Leecher Classes
  - Experiment 2: Three Leecher Classes
  - Experiment 3: Free-Riders
  - Experiment 4: Peer Set Size

- Basic Model:
  - Assumptions
    - Perfect Clustering
    - Unbiased Optimistic Unchokes
  - Sources of download rates
    - Regular Unchokes
    - Optimistic Unchokes
    - Seed Unchokes
  - Free-Riders' download rates

Basic Model

Regular Unchokes: 
$$d_{reg}^i = \frac{N_l^i u^i \frac{x_r}{x}}{N_l^i} = u^i \frac{x_r}{x}$$
.

Optimistic Unchokes: 
$$d_{opt}^i = \frac{\sum_{j=1}^h N_l^j u^j \frac{x_o}{x}}{N_l}$$
.

Seed Unchokes: 
$$d_{seed}^i = \frac{\sum_{j=1}^n N_s^j u^j}{N_l}.$$

#### Basic Model

Class i node's download rate:

$$\begin{split} d^i &= d^i_{reg} + d^i_{opt} + d^i_{seed} \\ \\ d^i &= u^i \frac{x_r}{x} + \frac{\sum_{j=1}^h N^j_l u^j \frac{x_o}{x}}{N_l} + \frac{\sum_{j=1}^h N^j_s u^j}{N_l} \end{split}$$

With Little's Results, we obtain:

$$\begin{split} N^i &= \lambda^i T^i, N^i_l = \lambda^i T^i_l, \\ N^i_s &= N^i - N^i_l = \lambda^i (T^i - T^i_l) = \lambda^i T^i_s. \end{split}$$

And 
$$T_l^i=rac{m}{d^i}$$
 ,  $\lambda^i=p^i\lambda_i$ 

Basic Model

We get the equations for class i's node download rate:

$$d^{i} = u^{i} \frac{x_{r}}{x} + \frac{\sum_{j=1}^{h} p^{j} \lambda \frac{m}{d^{j}} u^{j} \frac{x_{o}}{x}}{\sum_{j=1}^{h} p^{j} \lambda \frac{m}{d^{j}}} + \frac{\sum_{j=1}^{h} p^{j} \lambda T_{s}^{j} u^{j}}{\sum_{j=1}^{h} p^{j} \lambda \frac{m}{d^{j}}}$$

$$= u^{i} \frac{x_{r}}{x} + \frac{\sum_{j=1}^{h} \frac{p^{j} u^{j} x_{o}}{d^{j} x}}{\sum_{j=1}^{h} \frac{p^{j}}{d^{j}}} + \frac{\sum_{j=1}^{h} p^{j} T_{s}^{j} u^{j}}{\sum_{j=1}^{h} \frac{p^{j} m}{d^{j}}}.$$

Basic Model

Free-Rider's download rate:

The download rate for free-riders is:

$$d^{h} = \frac{\sum_{j=1}^{h} \frac{p^{j} u^{j} x_{o}}{d^{j} x}}{\sum_{j=1}^{h} \frac{p^{j}}{d^{j}}} + \frac{\sum_{j=1}^{h} p^{j} T_{s}^{j} u^{j}}{\sum_{j=1}^{h} \frac{p^{j} m}{d^{j}}}$$

- More Realistic Model:
  - Characteristics of real BT systems
    - Imperfect clustering
    - Biased Optimistic Unchoking
  - The download rate
  - Determining Imperfect Clustering Fraction and Unbiased Optimistic Unchoking Fraction

More Realistic Model:

#### Characteristics of real BT systems:

- Imperfect clustering:
  - A fraction of regular unchokes will go to nodes in other classes. Define q<sub>i,j</sub> to be the fraction of regular unchokes from class i that will go to class j.
- Biased Optimistic Unchoking:
  - Optimistic unchokes of a node are not distributed evenly to all leechers. Define o<sub>i,j</sub> to be the fraction of optimistic unchokes from class i that will go to class j.

- More Realistic Model:
  - Given these adjustments, the download rate a class i node receives from regular unchokes from all nodes is:

$$d_{reg}^{i'} = \frac{\sum_{j=1}^{h} q_{j,i} N_l^j u^j \frac{x_r}{x}}{N_l^i}.$$

Download rate received from optimistic unchokes is:

$$d_{opt}^{i'} = \frac{\sum_{j=1}^{h} o_{j,i} N_l^j u^j \frac{x_o}{x}}{N_l^i}.$$

- More Realistic Model:
  - We get the total download rate of a class i node,

$$d^{i'} = d^{i'}_{reg} + d^{i'}_{opt} + d^{i}_{seed}$$

$$\begin{split} d^{i'} &= \frac{\sum_{j=1}^{h} q_{j,i} N_l^j u^j \frac{x_r}{x}}{N_l^i} + \frac{\sum_{j=1}^{h} o_{j,i} N_l^j u^j \frac{x_o}{x}}{N_l^i} \\ &+ \frac{\sum_{j=1}^{h} N_s^j u^j}{N_l} \\ &= \frac{d^{i'}}{p^i} \sum_{j=1}^{h} \frac{(q_{j,i} x_r + o_{j,i} x_o) p^j u^j}{d^{j'} x} + \frac{\sum_{j=1}^{h} p^j T_s^j u^j}{\sum_{j=1}^{h} \frac{p^j m}{d^{j'}}} \end{split}$$

#### More Realistic Model:

- Determine q<sub>i,j</sub>
  - When a fast node optimistically unchokes a slow node, the slow node reciprocates with a regular unchoke.
  - First focus on a two class scenario: fast nodes are perfectly clustered (q<sub>fast, fast</sub> = 1, q<sub>fast,slow</sub> =0). Imperfect clustering of slow nodes is determined by the timing of regular and optimistic unchokes
  - As a fast node realizes that it unchoked a slow node, it discards the slow node, then the slow node stops the regular unchoke of the fast node.

- More Realistic Model:
  - Determine q<sub>i,j</sub>

the fraction of the regular unchoking capacity of a slow node that is spent on a fast node due to a fast node's optimistic unchoke is:

$$\begin{split} f_{opt} &= \frac{\frac{1}{2} \left( (t_{opt} - t_{reg} + t_{win}) + (t_{opt} + t_{win}) \right)}{x_r t_{opt}}. \\ &q_{slow,fast} = min \left( g_{opt} f_{opt}, 1 \right) \\ &g_{opt} = s \frac{N_l^{fast}}{N_l} x_o o_{fast,slow} \frac{1}{s \frac{N_l^{slow}}{N_l}} = \frac{N_l^{fast}}{N_l^{slow}} x_o o_{fast,slow} \end{split}$$

g<sub>opt</sub> is the average number of optimistic unchokes that a slow node is receiving from fast nodes.

- More Realistic Model:
  - Determine q<sub>i,j</sub>

Extend this to more than two classes. Assume the class indices are in descending order of their uploading capacities

$$q_{i,j} = min(min(g_{i,j}f_{opt}, 1), 1 - \sum_{k=1}^{j-1} q_{i,k})$$

$$g_{i,j} = s \frac{N_l^j}{N_l} x_o o_{j,i} \frac{1}{s \frac{N_l^i}{N_l}} = \frac{N_l^j}{N_l^i} x_o o_{j,i}$$

- More Realistic Model:
  - Determine o<sub>i,j</sub>
     optimistic unchokes are in fact biased in the real world due to the reason that optimistic unchokes are only performed on peers that are not currently unchoked through regular unchokes:

$$o_{i,j} = \frac{s \frac{N_i^j}{N_i} - x_r q_{i,j}}{\sum_{k=1}^h \left(s \frac{N_i^k}{N_i} - x_r q_{i,k}\right)}.$$

s is one node's peer list size.

#### **Experiment settings:**

| Filesize (m)                                 | 500 MB (2000 Chunks, 256 KB each)                   |
|----------------------------------------------|-----------------------------------------------------|
| Avg node inter-arrival $(\frac{1}{\lambda})$ | 1 min                                               |
| Peer Set Size (s)                            | 80                                                  |
| # Leecher Unchokes                           | $4 \text{ Reg. } (x_t) + 2 \text{ Opt. } (x_o)$     |
| # Seed Unchokes                              | 6                                                   |
| Unchoke Re-eval. Interval                    | Reg. $(t_{reg})$ : 5 sec; Opt. $(t_{opt})$ : 30 sec |
| Re-eval. History $(t_{win})$                 | 20 sec                                              |

**Experiment 1: Two Leecher Classes** 

Fast: download: 5000kbps, upload: 512kbps;

Slow: download: 5000kbps, upload: 128kbps.

No seeding time





#### **Experiment 2: three Leecher Classes**

Superfast: download: 5000kbps, upload: 1000kbps; Fast: download: 5000kbps, upload: 512kbps; Slow: download: 5000kbps, upload: 128kbps.

No seeding time





#### **Experiment 3: Free-Riders**

Contributing: download: 5000kbps, upload: 512kbps; Free-Riders: download: 5000kbps, upload: 0kbps.



#### Experiment 4: Peer set Size

Contributing: download: 5000kbps, upload: 512kbps; Free-Riders: download: 5000kbps, upload: 0kbps.



# Thank You!