

TSD305-1C55

DIGITAL TEMPERATURE SENSOR

Product Description

The TSD is a contactless temperature measurement system located in a TO5 package. The TSD includes an infrared sensor (thermopile) and a sensor signal conditioner.

The TSD can be interfaced to any microcontroller by an I^2C interface. This microcontroller has to calculate the temperature results based on the ADC values and the calibration parameters

Features

- 0°C ... +100°C measurement range
- Small size
- Up to ±1°C accuracy
- I²C Interface
- Low current consumption
- Operating Temperature Range: -10°C ... +85°C

Applications

- Contactless temperature measurement
- Climate control
- Industrial process control
- Household applications

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limiting values of permitted operation and should never be exceeded under the worst possible conditions either initially or consequently. If exceeded by even the smallest amount, instantaneous catastrophic failure can occur. Even if the device continues to operate satisfactorily, its life may be considerably shortened.

Parameter	Symbol	Symbol Condition		Тур	Max	Unit
Supply voltage	V_{DD}		-0.3		+3.63	V
Storage temperature	T _{stor}	dry	-20		+85	°C
Voltage at supply and IO pins	$V_{DD} V_{IO}$		-0.5		V _{DD} +0.5	V
Current into supply and IO pins	I _{IN}		-100		100	mA
ESD rating		Human Body Model	-2		+2	kV
Humidity	Hum		No	on conden	sing	

OPERATING CONDITIONS

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Symbol Condition		Тур	Max	Unit
Operating supply voltage	V_{DD}	stabilized, 100nF	1.68		3.6	V
VDD rise time	t _{VDD}				200	μs
Operating temperature	Тор		-20		+85	°C
Object temperature range	Товл		0		+100	°C
Resolution	RES				0.1	°C
Supply Current		Active state, average		1050	1500	μΑ
Supply Current	I _{VDD}	Sleep state, idle current		20	25	nA
Serial data clock I2C	F _{SCL}				3.4	MHz
Self heating	SH	1 sample/s, still air, 60s			+0.2	°C
VDD capacitor	C_{VDD}	C _{VDD} Place close to the sensor		100		nF

THERMOPILE COMPONENT

If not otherwise noted, 3.3V supply voltage is applied.

Parameter	Symbol	Symbol Condition		Тур	Max	Unit
Absorber area	А			0.8 x 0.8		mm
Field of view	FOV	At 50% of maximum signal		88		deg
Filter transmission range	LWP	Long wave pass		>5.5		μm

ANALOGUE TO DIGITAL CONVERTER

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Resolution	ADC _{RES}			16		bit
Conversion time	t _{CONV}			44.8	59.2	ms
Rise time	t ₆₃	Including rise time of sensor element			44.8	ms
Resolution internal temperature sensor	ITS _{RES}			0.003		K/LSB

TOLERANCES

If not otherwise noted, 3.3V supply voltage is applied.

 T_{sen} = sensor temperature, T_{obj} = object temperature

Parameter	Symbol	Sensor Temo	Object Temp	Max	Unit
Accuracy Standard Temp 1)	ACCs	+15°C < T _{sen} < +35°C	+40°C < T _{obj} < +80°C	±1	°C
Accuracy Extended Temp. 1 2)	ACC	Complete range	$+40^{\circ}\text{C} < \text{T}_{\text{obj}} < +80^{\circ}\text{C}$	+2	°C
Accuracy Extended Temp. 1 -7	ACC _{E1}	+15°C < T _{sen} < +35°C	Complete range	IZ	10
Accuracy Extended Temp. 2 2)	ACC _{E3}	Complete range	Complete range	±3	°C

Other temperature ranges and accuracies are available on request.

²⁾ Proved by design

Typical accuracy performance

¹⁾ Proved while production

POWER & RESET

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Start up time	t _{STA1}	V _{DD} ramp up to interface communication			1	ms
Court up unit	t _{STA2}	V _{DD} ramp to first ADC measurement			2.5	ms
Wake up time	t _{WUP1}	Sleep to active state interface communication			0.5	ms
	t _{WUP2}	Sleep to first ADC measurement			2	ms
Power down time for reset	t _{RESET}	VDD _{low}	3			μs
VDD low level	VDD _{low}		0		0.2	V
VDD rising slope	SR _{VDD}	/DD				V/ms

DIMENSIONS

If not specified, all tolerances according DIN ISO 2768-m.

PIN FUNCTION TABLE

Pin	Name	Туре	Function
1	SCL	DI	I ² C Clock
2	SDA	DIO	I ² C Data
3	V_{DD}	Р	Supply Voltage
4	V _{SS}	Р	Ground

I²C INTERFACE

An I²C communication message starts with a start condition and it is ended by a stop condition.

Most commands consist of two bytes: the address byte and command byte.

I²C ADRESS

The standard I^2C address is 0x00 (0b0000000X).

X = 0: I²C Write
 X = 1: I²C Read

STATUS BYTE

Each return starts with a status byte followed by the requested data word.

Bit	7	6	5	4	3	2	1	0
Meaning			Busy			Memory Error		

Busy: 1 = Sensor is busy. The requested data is not available yet.

Memory Error: 1 = Memory integrity check failed. Memory was changed after factory calibration.

COMMANDS

Note: Each return starts with a status byte followed by the requested data word.

Command	Return	Description
0x00 0x39	16 bit EEPROM data	Read data from EEPROM address (0x00 0x39) matching the command
0xAF	24 bit object temperature ADC, 24 bit sensor temperature ADC	Measure object temperature and sensor temperature ADC 16 times and calculates mean value. Store data in output buffer.

Read EEPROM

Write Command:

Read EEPROM Data:

Perform Measurement and Read ADC Data

Write Command:

Read ADC Data:

EEPROM CONTENT

Adress / hex	Adress / dec	Description	Name	Format	Exa	ample
Auress / nex	Adress / dec	Description	Name	Format	Content	Value
0x00	0	Lot Nr.		UINT16	15001	YY WWW
0x01	1	Serial Number		UINT16	12345	Number
0x02 0x19	2 25	Factory Calibration Data				
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C
0x1C	28	Min. Object Temp. / °C	T_{ObiMin}	SINT16	0x0000	0°C
0x1D	29	Max. Object Temp. / °C	T _{ObjMax}	SINT16	0x0064	100°C
0x1E	30		•	IEEE 754 H-Word	0xBB96	0.0040
0x1F	31	Temperature Coefficient	TC	IEEE 754 L-Word	0xBB99	-0.0046
0x20	32	D-f T	_	IEEE 754 H-Word	0x41D7	00.00
0x21	33	Reference Temperature	T_{REF}	IEEE 754 L-Word	0x70A4	26.93
0x22	34	Compensation	1.4	IEEE 754 H-Word	0x3A07	E 404E 04
0x23	35	Coefficient k4	k4 _{comp}	IEEE 754 L-Word	0x4C8C	5.161E-04
0x24	36	Compensation	1.0	IEEE 754 H-Word	0x3F10	5 000E 04
0x25	37	Coefficient k3	k3 _{comp}	IEEE 754 L-Word	0x5CEC	5.639E-01
0x26	38	Compensation	1.0	IEEE 754 H-Word	0x4367	0.0115 00
0x27	39	Coefficient k2	k2 _{comp}	IEEE 754 L-Word	0x0D1F	2.311E+02
0x28	40	Compensation	1.4	IEEE 754 H-Word	0x4724	4 0075 04
0x29	41	Coefficient k1	k1 _{comp}	IEEE 754 L-Word	0x5A6F	4.207E+04
0x2A	42	Compensation	1.0	IEEE 754 H-Word	0xC9A0	4 0 4 0 5 0 0
0x2B	43	Coefficient k0	$k0_{comp}$	IEEE 754 L-Word	0x254D	-1.312E+06
0x2C	44					
0x2D	45	Not used				
0x2E	46	ADC → T		IEEE 754 H-Word	0x944B	
0x2F	47	Coefficient k4	k4 _{Obj}	IEEE 754 L-Word	0xD24F	-1.029E-26
0x30	48	ADC → T	1.0	IEEE 754 H-Word	0x2052	. ====
0x31	49	Coefficient k3	k3 _{Obj}	IEEE 754 L-Word	0xF1C2	1.787E-19
0x32	50	ADC → T	1.0	IEEE 754 H-Word	0xABE5	4 0045 40
0x33	51	Coefficient k2	k2 _{Obj}	IEEE 754 L-Word	0x991B	-1.631E-12
0x34	52	ADC → T	1.4	IEEE 754 H-Word	0x3797	4 0005 05
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.802E-05
0x36	54	ADC → T		IEEE 754 H-Word	0x41D7	
0x37	55	Coefficient k0	$k0_{Obj}$	IEEE 754 L-Word	0x6DBA	2.693E+01
0x38	56	Status		UINT16	TBD	

NUMBER FORMAT

UINT16

Description: Unsigned integer

• Bits 16

Min (dec/hec/bin)
 Max (dec/hec/bin)
 0 / 0x0000 / 0b0000 0000 0000 0000
 Max (dec/hec/bin)
 65,535 / 0xFFFF / 0b1111 1111 1111 1111

SINT16

Description: Signed integer

• Bits 16

Min (dec/hec/bin) - 32,768 / 0x8000 / 0b1000 0000 0000 0000
 Max (dec/hec/bin) 32,767 / 0x7FFF / 0b0111 1111 1111

FLOAT IEEE 754

Description: FloatBits 32

Example: H-Word 0x3DCC L-Word 0xCCCD

→ 0b0011 1101 1100 1100 1100 1100 1101

 \rightarrow 0.1

FLOAT IEEE 754 Conversions

The two integer words can easily be converted to a floating-point number by using a union consisting of an integer array and a float.

TEMPERATURE CALCULATION

SENSOR TEMPERATURE

The sensor temperature T_{Sen} is calculated from the corresponding 24 bit ADC value ADC_{sen}.

Name	Description	Format	Rai	nge
			Min Max	
ADC _{sen}	ADC Sensor Temperature	INT24	0	16,777,216

ADC_{sen} is scaled to cover the complete sensor temperature range from T_{SenMin} to T_{SenMax}.

Adress / hex	Adress / dec Description Name Fo		Format	Exa	mple	
		•			Value	Max
0x1A	26	Min. Sensor Temp. / °C	T _{SenMin}	SINT16	0xFFEC	-20°C
0x1B	27	Max. Sensor Temp. / °C	T _{SenMax}	SINT16	0x0055	+85°C

Formula:

$$T_{sen} = ADC_{sen} / 2^{24} \times (T_{SenMax} - T_{SenMin}) + T_{SenMin}$$

Example:

$$ADC_{sen} = 6,364,157$$

$$T_{sen} = 6,364,157 / 224 \times [+85^{\circ}C - (-20^{\circ}C)] + (-20^{\circ}C) = \underline{19.83^{\circ}C}$$

OBJECT TEMPERATURE

The object temperature Tobj is calculated in dependence of the sensor temperature Tsen and ADCobj.

ADC_{obj} is shifted by 2²³ in order to provide unsigned integer values for positive and negative measurement values.

Name	Description	Format	Range	
			Min	Max
ADC _{obj}	ADC Object Temperature Shifted by 2 ²³ (0 is represented by 8,388,608)	INT24	0	16,777,216

The process consists of three successive steps.

TC Correction Factor

Adress / hex	Adress / dec	Description	Name	Format	Example	
, naroso , nox	7,41,555,455				Content	Value
0x1E	30	T	ТС	IEEE 754 H-Word	0xBB96	-0.0046
0x1F	31	Temperature Coefficient		IEEE 754 L-Word	0xBB99	
0x20	32	Defenses Temporalism	_	IEEE 754 H-Word	0x41D7	00.00
0x21	33	Reference Temperature	T_{REF}	IEEE 754 L-Word	0x70A4	+26.93

$$T_{sen} = +19.83$$
°C

$$T_{ref} = +26.93^{\circ}C$$

Temperature Compensation

Adress / hex	Adress / dec	Description	Name	Format	Example	
				Content	Value	
0x22	34	Compensation	k4 _{comp}	IEEE 754 H-Word	0x3A07	5.161E-04
0x23	35	Coefficient k4		IEEE 754 L-Word	0x4C8C	
0x24	36	Compensation	k3 _{comp}	IEEE 754 H-Word	0x3F10	5.639E-01
0x25	37	Coefficient k3		IEEE 754 L-Word	0x5CEC	
0x26	38	Compensation	k2 _{comp}	IEEE 754 H-Word	0x4367	2.311E+02
0x27	39	Coefficient k2		IEEE 754 L-Word	0x0D1F	
0x28	40	Compensation	k1 _{comp}	IEEE 754 H-Word	0x4724	4.207E+04
0x29	41	Coefficient k1		IEEE 754 L-Word	0x5A6F	
0x2A		Compensation	k0 _{comp}	IEEE 754 H-Word	0xC9A0	-1.312E+06
0x2B		Coefficient k0		IEEE 754 L-Word	0x254D	

Formula:		Example:	
		$T_{\text{sen}} =$	+19.83°C
		k4 _{comp} k0 _{comp}	See table above
Offset =	k4 _{comp} × Tsen ⁴ + k3 _{comp} × Tsen ³ + k2 _{comp} × Tsen ² + k1 _{comp} × Tsen + k0 _{comp}	Offset =	$= 5.161 \cdot 10^{-4} \times 19.83^{4}$ $+ 5.639 \cdot 10^{-1} \times 19.83^{3}$ $+ 2.311 \cdot 10^{2} \times 19.83^{2}$ $+ 4.207 \cdot 10^{4} \times 19.83$ $+ -1.312 \cdot 10^{6}$
			= -382,399
Offset _{TC} =	Offset × TCF	$Offset_{TC} =$	= -382,399 × 1.0327
			= -394,904

Object Temperature Determination

Adress / hex	Adress / dec	Description	Name	Format	Example	
, idea of the second				Content	Value	
0x2E	46	ADC → T	k4 _{Obj}	IEEE 754 H-Word	0x944B	-1.029E-26
0x2F	47	Coefficient k4		IEEE 754 L-Word	0xD24F	
0x30	48	ADC → T	k3 _{Obj}	IEEE 754 H-Word	0x2052	1.787E-19
0x31	49	Coefficient k3		IEEE 754 L-Word	0xF1C2	
0x32	50	ADC → T	k2 _{Obj}	IEEE 754 H-Word	0xABE5	-1.631E-12
0x33	51	Coefficient k2		IEEE 754 L-Word	0x991B	
0x34	52	ADC → T	L-1	IEEE 754 H-Word	0x3797	1.802E-05
0x35	53	Coefficient k1	k1 _{Obj}	IEEE 754 L-Word	0x2BBF	1.002E-05
0x36	54	ADC → T	ko	IEEE 754 H-Word	0x41D7	2.693E+01
0x37	55	Coefficient k0	k0 _{Obj}	IEEE 754 L-Word	0x6DBA	2.033E+01

Formula:		Example:	
		ADC _{Obj} = k4 _{Obj} k0 _{Obj}	10,738,758 See table above
ADC _{Comp} =	Offset _{TC} + ADC _{Obj} - 2 ²³	ADC _{comp} =	= -394,904 + 10,738,758 - 8,388,608 = 1,955,246
ADC _{CompTC} =	ADC _{Comp} / TCF	ADCcompTC =	= 1,955,246 / 1.0327 = 1,893,334
T _{Obj} =	K4Obj × ADCcompTC ⁴ + K3Obj × ADCcompTC ³ + K2Obj × ADCcompTC ² + K1Obj × ADCcompTC + K0Obj	$T_{Obj} =$	= -1.029·10 ⁻²⁶ × 1,893,334 ⁴ + 1.787·10 ⁻¹⁹ × 1,893,334 ³ + -1.631·10 ⁻¹² × 1,893,334 ² + 1.802·10 ⁻⁵ × 1,893,334 + 2.693·10
			= <u>56.28°C</u>

ORDER INFORMATION

Further customer specific adaptations are available on request. Please refer to the table below for part name, description and order information.

Part Number	Part Desription	Comment
G-TPMO-101	IO-101 TSD305-1C55 Digital Thermopile Sensor TO5, I ² C Interface, 0°C	

EMC

Due to the use of these modules for OEM application no CE declaration is done. Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the module due to the small board area and low price feature. There is no protection circuit against reverse polarity or over voltage implemented. The module will be designed using capacitors for blocking and ground plane areas in order to prevent wireless coupled disturbances as good as possible.

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 1711 139th Lane NW Andover, MN 55304 Tel: +1 763 689 4870 Fax: +1 763 689 5033

customercare.ando@te.com

EUROPE

TE Connectivity Sensors Germany GmbH

Hauert 13

44227 Dortmund Germany Tel: +49-231-9740-0 Fax: +49-231-9740-20

CustomerCare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 368 Wulian 1st Road Gongxing Town Shuangliu, Chengdu Sichuan, 610200 China Tel: +86 (0) 28 8573 9088

Fax: +86 (0) 28 8573 9070

customercare.chdu@te.com

ASIA

Measurement a TE Connection No. 26, Langsh High-tech Park Nanshan Distri China

Tel: +86-755-3 Fax: +86-755-3 CustomerCare

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, MEAS, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.