Требования к программам

1. Программа работает с деревом с переменным числом ветвей объектов типа student:

```
class student
  {
 private:
    char * name;
           value;
    int
 public:
  };
class tree_node : public student
 private:
    tree_node * down;
    tree_node * level;
 public:
    friend class tree;
  };
class tree
 private:
    tree_node * root;
 public:
    int read (const char * filename);
    void print (int r);
  };
```

Все функции в задании являются членами класса "дерево".

- 2. Программа должна получать все параметры в качестве аргументов командной строки. Аргументы командной строки:
 - 1) r количество выводимых уровней в дереве,
 - 2) filename имя файла, откуда надо прочитать дерево,
 - 3) k параметр задачи.

Например, запуск

```
./a.out 4 a.txt 10
```

означает, что дерево надо прочитать из файла a.txt, выводить не более 4-х уровней дерева, k=10

3. Класс "дерево" должен содержать функцию ввода дерева из указанного файла.

4. Ввод дерева из файла. В указанном файле находится дерево в формате:

```
Слово-1 Целое-число-1
Слово-2 Целое-число-2
... ...
Слово-п Целое-число-п
```

где слово – последовательность алфавитно-цифровых символов без пробелов. Длина слова неизвестна, память под него выделяется динамически. При заполнении первый объект типа student попадает в корень дерева, каждый новый объект типа student добавляется в поддерево, являющееся:

- первым элементом списка потомков, если он меньше текущего узла относительно операции cpaвнения tree_node::operator<,
- последним элементом списка потомков, если он больше текущего узла,
- одним из "средних" элементов списка потомков, если он равен текущему узлу, при этом может оказаться, что у текущего узла нет потомков, которые его меньше или(и) больше, и этот "средний" элемент будет первым или последним; таких "средних" элементов списка потомков может быть несколько, если к текущему узлу многократно добавляется равный ему элемент.

Никакие другие функции, кроме функции ввода дерева, не используют указанную выше упорядоченность дерева. Концом ввода считается конец файла. Программа должна выводить сообщение об ошибке, если указанный файл не может быть прочитан или содержит данные неверного формата.

- 5. Решение задачи должно быть оформлено в виде подпрограммы, находящейся в отдельном файле. Получать в этой подпрограмме дополнительную информацию извне через глобальные переменные, включаемые файлы и т.п. запрещается.
- 6. Вывод результата работы функции в функции main должен производиться по формату:

где

- argv[0] первый аргумент командной строки (имя образа программы),
- task номер задачи (1-5),
- res результат работы функции, реализующей решение этой задачи,
- t время работы функции, реализующей решение этой задачи.

Вывод должен производиться в точности в таком формате, чтобы можно было автоматизировать обработку запуска многих тестов.

- 7. Класс "дерево" должен содержать подпрограмму вывода на экран не более чем r уровней дерева. Эта подпрограмма используется для вывода исходного дерева после его инициализации, а также для вывода на экран результата. Подпрограмма выводит на экран не более, чем r уровенй дерева, где r параметр этой подпрограммы (аргумент командной строки). Каждый элемент дерева должен печататься на новой строке и так, чтобы структура дерева была понятна.
- 8. Программа должна выводить на экран время, затраченное на решение.

9. Поскольку дерево не изменяется функциями из задач, то для всех задач надо сделать одну функцию main, в которой прочитать дерево, вывести указанное число уровней на экран, и вызвать все функции задач, выводя результаты и время их работы. Другими словами, после компиляции должен получиться один исполняемый файл a.out, а не несколько.

Задачи

- 1. Написать подпрограмму член класса "дерево" с переменным числом ветвей, получающую в качестве аргумента целое число k, и возвращающую целое значение, равное количеству элементов в узлах, имеющих ровно k потомков.
- 2. Написать подпрограмму член класса "дерево" с переменным числом ветвей, получающую в качестве аргумента целое число k, и возвращающую целое значение, равное количеству элементов в поддеревьях, имеющих не более k вершин.
- 3. Написать подпрограмму член класса "дерево" с переменным числом ветвей, получающую в качестве аргумента целое число k, и возвращающую целое значение, равное количеству элементов типа в поддеревьях, имеющих не более k уровней.
- 4. Написать подпрограмму член класса "дерево" с переменным числом ветвей, получающую в качестве аргумента целое число k, и возвращающую целое значение, равное количеству элементов типа в поддеревьях, имеющих не более k узлов в любом уровне.
- 5. Написать подпрограмму член класса "дерево" с переменным числом ветвей, получающую в качестве аргумента целое число k, и возвращающую целое значение, равное количеству элементов в его k-м уровне.
- 6. Написать подпрограмму член класса "дерево" с переменным числом ветвей, получающую в качестве аргумента целое число k, и возвращающую целое значение, равное количеству элементов во всех ветвях длины не менее k, начиная с корня.