Algebre Lineaire | CM: 5

Par Lorenzo

07 février 2025

1 Espaces vectoriels

1.1 Espace vectoriel

Définition 1.1. Étant donné deux ensembles E et \mathbb{K} , toute application de $\mathbb{K} \times E$ dans E s'appelle loi de composition externe sur E (à domaine opérateur \mathbb{K}).

Définition 1.2. On dit qu'un ensemble E est un espace vectoriel sur un corps \mathbb{K} s'il est muni d'une loi interne notée + et d'une loi externe notée \bullet de $\mathbb{K} \times E$ dans E.

 $(\lambda, u) \mapsto \lambda \cdot u \text{ telles que:}$

- 1. (E, +) est un groupe commutatif.
- 2. $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall (u, v) \in E^2, \text{ on } a$:
 - (a) $(\lambda + \mu) \bullet u = \lambda \bullet u + \mu u$
 - (b) $\lambda \bullet (u+v) = \lambda \bullet u + \lambda \bullet v$
 - (c) $\lambda \bullet (\mu \bullet u) = (\lambda \mu) \bullet u$
 - (d) $1 \bullet u = u \ (1 \in \mathbb{K})$

Les éléments de E sont appelés vecteurs et les éléments de $\mathbb K$ sont appelés scalaires. E est $\mathbb K$ -espace vectoriel.

Définition 1.3. 1. La commutativé de (E,+) découle des autres axiomes d'espace vectoriel.

2. L'espace vectoriel nul est $E = \{0_e\}$.