Guide: Setting Up a Conda Environment with Jupyter Notebook and Essential Libraries

Marco Fronzi

Important Resources for the Course

All codes used in the lectures, labs, and quizzes are available at:

https://github.com/fronzi/ComputationalPhysicsPython

In this repository, you'll also find the file environment.yml, which you can use to automatically replicate the full virtual environment needed for the course.

1. Installing Miniconda (Recommended)

Miniconda is a lightweight Python distribution that includes the bare minimum to manage environments and packages with Conda. It works on all platforms.

Step-by-step installation

1. Visit the download page:

https://docs.conda.io/en/latest/miniconda.html

- 2. Choose the installer for your system:
 - Windows: Download the .exe file for your system (64-bit recommended).
 - macOS: Choose the Intel or Apple Silicon version depending on your hardware.
 - Linux: Download the .sh script.

3. Run the installer:

• On Windows: Double-click the downloaded file and follow the on-screen instructions.

• On macOS/Linux: Open a terminal, navigate to the folder where the file is located and run:

```
bash Miniconda3-latest-MacOSX-x86_64.sh
```

• Follow the prompts. Accept the license, choose the install location, and allow it to initialize Conda.

Check the installation

Once done, close and reopen the terminal or Anaconda Prompt and run:

```
conda --version
```

You should see something like conda 24.1.2 (or similar).

2. (Alternative) Installing Anaconda

Anaconda is a full-featured Python distribution that comes preloaded with hundreds of packages. Its much larger in size but simpler for those who want everything included.

- Download from: https://www.anaconda.com/products/distribution
- Choose the version for your OS and run the installer.
- After installation, open the Anaconda Prompt (Windows) or terminal (macOS/Linux).

3. Clone the Course Repository

Clone the GitHub repository that contains all course material and the environment.yml file:

```
\label{lem:computational} git \ clone \ https://github.com/fronzi/ComputationalPhysicsPython.git \ cd \ ComputationalPhysicsPython
```

If you don't have Git, you can also download the ZIP file from the GitHub page and extract it.

4. Create the Virtual Environment Using the environment.yml File

This will set up all required packages exactly as intended for the course.

Step-by-step

conda env create -f environment.yml

This will create a new environment, typically with a name like CompPhys. To activate it, run:

conda activate CompPhys

You can verify everything was installed with:

conda list

5. Start Jupyter Notebook

While the environment is activated, launch Jupyter Notebook with:

jupyter notebook

A browser window will open where you can create or open notebooks. Make sure the selected kernel is CompPhys.

6. Optional: Add the Environment to Jupyter Manually

If for some reason the environment is not appearing in the Jupyter kernel list, you can add it manually:

python -m ipykernel install --user --name=CompPhys

Now youll see CompPhys as an option when selecting a kernel in your notebooks.

7. Recreate Environment Anywhere

If a student wants to replicate the setup on another machine, they only need:

- The environment.yml file
- To run:

```
conda env create -f environment.yml
conda activate CompPhys
jupyter notebook
```

Troubleshooting Tips

- If you get an error like "conda not found", try closing and reopening your terminal.
- \bullet On macOS/Linux, you may need to run: source $\,$ /.bashrc or source $\,$ /.zshrc
- Always activate your environment before running any notebooks.
- Use conda info --envs to list all environments on your system.

For any issues, feel free to contact me at marco.fronzi@sydney.edu.au or your teaching assistant