CONTINUUM

WORKSHOP-2
Introduction to OpAmps

WHAT IS DIODE?

Electronic devices created by bringing together a *p*-type and *n*-type region within the same semiconductor lattice. Used for rectifiers, LED etc. It is represented by symbol

Biasing of Diode

Forward Bias : Connect positive of the Diode to positive **Of** supply...negative of Diode to negative of supply

Reverse Bias: Connect positive of the Diode to negative of supply...negative of diode to positive of supply.

I-V characteristics of Ideal diode

Characteristics of Ideal Diode

Conducts in one direction.

Conduct current when "Forward Biased" (Zero resistance/Short circuit)

» Do not conduct when "Reverse Biased" (Infinite resistance/Open circuit)

I-V characteristics of a practical diode $i_D = \begin{cases} I_0 \left(e^{\frac{v_D}{nVr}} - 1\right) & v_D \geq 0 \\ 0 & v_D < 0 \end{cases}$

I-V Characteristics

Half-wave Rectification

- » Simplest process used to convert ac to dc.
- » A diode is used to clip the input signal excursions of one polarity to zero.

Operational Amplifiers

Operational Amplifiers

- Usually Called Op Amps
- An amplifier is a device that accepts a varying input signal and produces a similar output signal with a larger amplitude.
- Usually connected so part of the output is fed back to the input. (Feedback Loop)
- Most Op Amps behave like voltage amplifiers. They take an input voltage and output a scaled version.
- The name "operational amplifier" comes from the fact that they were originally used to perform mathematical operations such as integration and differentiation..

Operational Amplifiers

- Op amps can perform operations of:-
- ☐ Adding signals
- ☐ Subtracting signals
- ☐ Integrating signals
- ☐ Differentiating signals

The applications of operational amplifiers (shortened to op amp) have grown beyond those listed above.

For example: Temperature sensor, Audio amplifiers, Active filters

Pin Diagram of LM 741

Operational Amplifiers

A model of the op amp, with respect to the symbol

$$V_o = AV_d$$

Working circuit diagram of op amp.

Open Circuit Output Voltage

		Voltage Range	Output Voltage
\rightarrow	Positive Saturation	$\mathbf{A} \mathbf{v_d} > \mathbf{V}^+$	$\mathbf{v_o} \sim \mathbf{V}^+$
<u>_</u>	Linear Region	$\mathbf{V}^{\text{-}} < \mathbf{A} \ \mathbf{v_d} < \mathbf{V}^{\text{+}}$	$\mathbf{v_o} = \mathbf{A} \mathbf{v_d}$
<u>_</u>	Negative Saturation	$\mathbf{A} \mathbf{v_d} < \mathbf{V}$	$\mathbf{v_o} \sim \mathbf{V}^-$

The voltage produced by the dependent voltage source inside the op amp is limited by the voltage applied to the positive and negative rails.

Electronic Response

Ideal Op Amp

FEEDBACK IN CIRCUITS

Why Negative Feedback?

- Gain of op amp (open loop gain) is of the order of 10^6 which is enough to drive the op amp into saturation.
- We want the operation of op amp to be in the linear region for proper amplification purpose.
- So to reduce gain we apply negative feedback.

Why positive feedback?

- When we want the amplifier to work in saturation only then we use positive feedback.
- >> It decreases the bandwidth and increases the overall amplification.
- $G_{\rm pf} = A/(1-AB)$

Negative Feedback Equation

We see that the effect of the negative feedback is to reduce the gain by the factor of: $1 + \beta G$. This factor is called the "feedback factor" or "amount of feedback" and is often specified in decibels (dB) by the relationship of 20 log (1+ β G).

System Gain,
$$G = \frac{V_{out}}{V_{in}}$$
 $G = open loop voltage gain$

$$\mathbf{G} \times \mathbf{V}_{in} = \mathbf{V}_{out}$$

$$-G(V_{in} - \beta V_{out}) = V_{out}$$

$$G.V_{in} - \beta.G.V_{out} = V_{out}$$

$$G.V_{in} = V_{out}(1 + \beta G)$$

$$\beta G =$$
the loop gain

$$1+\beta G$$
 = the feedback factor

$$\frac{V_{\text{out}}}{V_{\text{in}}} = GV = \frac{G}{1 + \beta G} GV = \text{closed loop voltage gain}$$

Applications of Negative Feedback:-

- Inverting Amplifier
- Non-Inverting Amplifier
- Adder , Subtractor
- Log , Antilog
- Integrator, Differentiator
- Temperature sensor
- Instrumentation amplifier
- Active Filters

Virtual Short Circuit in Ideal OpAmp

$$V_0 = A(V_2 - V_1) \ \Longrightarrow V_0 = A(V_2 - eta V_0) \ \Longrightarrow V_0(1 + Aeta) = AV_2 \ \Longrightarrow V_0 = rac{AV_2}{1 + Aeta} \ as \ A o \infty, V_0 = rac{V_2}{eta} \ \Longrightarrow V_1 = eta V_0 = V_2$$

Writing a nodal equation at (a) gives;

With
$$V_i = 0$$
 we have;

$$i=rac{V_{
m in}-V_i}{R_1}=rac{V_i-V_0}{R_2}$$

$$V_0 = \frac{-R_2}{R_1} V_{in}$$

Non-inverting Amplifier

Closed-loop voltage gain
$$A_F = \frac{v_o}{v_i}$$

$$v_i = v_+ = v_- = \frac{R_1}{R_1 + R_2} v_-$$

$$A_F = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1}$$

$$\frac{\boldsymbol{V}_1}{\boldsymbol{R}_1} + \frac{\boldsymbol{V}_2}{\boldsymbol{R}_2} = \frac{-\boldsymbol{V}_0}{\boldsymbol{R}_{fb}}$$

$$V_0 = -\left[\left(\frac{R_{fb}}{R_1} \right) V_1 + \left(\frac{R_{fb}}{R_2} \right) V_2 \right]$$

If $R_1 = R_2 = R_{fb}$ then,

$$V_0 = -[V_1 + V_2]$$

Therefore, we can add signals with an o mp.

Logarithmic Amplifier

• Logarithmic amplifier gives the output proportional to the logarithm of input signal.

Questions

.. For the Op-Amp circuit shown in the gure. Vo is

Questions

ng the op-amp to be ideal, the voltage gain of the amplifier shown below is

$$-\frac{1}{2} \left[\frac{1}{2} = \frac{1}{1+1} + \frac{1}{2} = \frac{(v_1 + v_2)}{1/c_3} \right]$$

 $V_{0}(s) = -(V_{1}V_{2}) (V_{2})$ $= -(V_{1}V_{2}) (V_{2}) (V_{2})$ $= -(V_{1}V_{2}) (V_{2}) (V_{2})$ $= -(V_{1}V_{2}) (V_{2}) (V_{2})$

b.

triangular wave

A smu t

Assume that the op-amp of the figure is ideal. If V_i is a triangular wave, then V_0 will

d.

sine wave

Alternate proof for virtual short circuit in Ideal OpAmp

In ideal OpAmp, $R_i=\infty\Omega$ (approx), and currents in input terminals are zero, then potential difference between the terminals $V_d=0V$, hence

Thank You!

 \odot

Contact us:

Mohit Shringi: 6377566533

Rishabh Borad: 9450336209

P. Shyam Prasad: 9494146711