SEQUENCE LISTING

```
<110> Magna, Holly
      Schaffer, Paul
      Lawton, Michael
      Yocum, Sue
      Mitchell, Peter
      Hutchinson, Nancy
      Murry, Lynn E.
<120> HUMAN NUCLEOTIDE PYROPHOSPHOHYDROLASE-2
<130> PF-0420 US
<140> 08/996,083
<141> 1997-12-22
<160> 3
<170> FastSEQ for Windows Version 3.0
<210> 1
<211> 1156
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
```

<223> Incyte Clone No.: 1388013

<300>

<400> 1 Met Ala Ser Leu Leu Pro Leu Leu Cys Leu Cys Val Val Ala Ala His 5 1 Leu Ala Gly Ala Arg Asp Ala Thr Pro Thr Glu Glu Pro Met Ala Thr 25 Ala Leu Gly Leu Glu Arg Arg Ser Val Tyr Thr Gly Gln Pro Ser Pro 40 45 35 Ala Leu Glu Asp Trp Glu Glu Ala Ser Glu Trp Thr Ser Trp Phe Asn 55 60 Val Asp His Pro Gly Gly Asp Gly Asp Phe Glu Ser Leu Ala Ala Ile 75 70 Arg Phe Tyr Tyr Gly Pro Ala Arg Val Cys Pro Arg Pro Leu Ala Leu 90 95 85 Glu Ala Arg Thr Thr Asp Trp Ala Leu Pro Ser Ala Val Gly Glu Arg 110 100 105 Val His Leu Asn Pro Thr Arg Gly Phe Trp Cys Leu Asn Arg Glu Gln 120 125 115 Pro Arg Gly Arg Arg Cys Ser Asn Tyr His Val Arg Phe Arg Cys Pro 135 140 Leu Glu Ala Ser Trp Gly Ala Trp Gly Pro Trp Gly Pro Cys Ser Gly 150 155 Ser Cys Gly Pro Gly Arg Arg Leu Arg Arg Arg His Cys Pro Ser Pro 170 175 Ala Gly Asp Ala Cys Pro Gly Arg Pro Leu Glu Ala Gln Lys Cys Val 185 1.80 Arg Pro Arg Cys Pro Gly Cys Ser Leu Asp Thr Cys Glu Cys Pro Asp 200 205 His Ile Leu Leu Gly Ser Val Val Thr Pro Ser Gly Gln Pro Leu Leu

	210					215					220				
Gly	Ala	Arg	Val	Ser	Leu .	Arg	Asp	Gln	Pro	Gly	Thr	Val	Ala	Thr	Ser 240
225					230 Phe				Gly	233					2 - 0
				2/15	Gln			Gly	2.DU					200	
			260		Ser		Ser	2 n n					2,0		
		275			Leu	Val	280					203			
	200				Thr	745					200				
305 Pro	Lys	Lys	Tyr	Ser	310 Trp	Phe	His	Asn	Gly 330		Leu	Leu	Asp	Arg 335	_
Ala	His	Gly		325 Gly	Ala	His	Leu	Glu 345	Leu	Arg	Gly	Leu	Arg 350		Asp
Gln	Ala		340 Ile	Tyr	His	Cys	Lys 360	Ala	Trp	Asn	Glu	Ala 365		Ala	Val
Arg		355 Gly	Thr	Ala	Arg	Leu 375	Thr	Val	Leu	Ala	Pro 380		Gln	Pro	Ala
205					Arg 390	Glu				395					400
	Gln			4.05	Gly				410					110	
			120	Pro	Ser			425					450		
		125	Arg	Cys	Cys		440					443			
	150	Pro	Gly		Val	455					400				
	Gln	Lys			Pro 470					4 / :)					400
Ala	Ala			105					490	,					
			500	1				วบว					210		Glu
		515					520					525			Ser
	53(`				535					540				Gly
	-				~ ~ ~ ~ ~					つつ:)				560
				565	•				5/()				5,5	
			5.87)				585)				350	,	Arg
		50	ς				600)				00.	,		Thr Asp
	61	^				61 5	,				021)			Asp
60	_				630)				כס:	3				Tyr 640
				6 A '	Γ				6.5	U				0.5	
			66	Λ				66	>				0,	•	s Met u Thr
		67	5				68	U				00.	,		u Thr r Gly
Gl	y Le 69		p Gl	u Gl	u GII	3 Sei 69!	5 5	y Pil	e ar	y AL	70	0	, 50	_ 55.	r Gly

Pro Arg Val Arg Arg Glu Glu Arg Val Phe Leu Val Gly Asn Val Glu 715 710 Ile Arg Glu Arg Arg Leu Phe Asn Leu Asp Val Pro Glu Arg Arg Arg 725 730 Cys Phe Val Lys Val Arg Ala Tyr Ala Asn Asp Lys Phe Thr Pro Ser 745 740 Glu Gln Val Glu Gly Val Val Thr Leu Val Asn Leu Glu Pro Ala 760 Pro Gly Phe Ser Ala Asn Pro Arg Ala Trp Gly Arg Phe Asp Ser Ala 775 780 Val Thr Gly Pro Asn Gly Ala Cys Leu Pro Ala Phe Cys Asp Ala Asp 790 795 Arg Pro Asp Ala Tyr Thr Ala Leu Val Thr Ala Thr Leu Gly Gly Glu 805 810 815 Glu Leu Glu Pro Ala Pro Ser Leu Pro Arg Pro Leu Pro Ala Thr Val 825 820 Gly Val Thr Gln Pro Tyr Leu Asp Arg Leu Gly Tyr Arg Arg Thr Asp 840 845 His Asp Asp Pro Ala Phe Lys Arg Asn Gly Phe Arg Ile Asn Leu Ala 855 860 Lys Pro Arg Pro Gly Asp Pro Ala Glu Ala Asn Gly Pro Val Tyr Pro 870 875 Trp Arg Ser Leu Arg Glu Cys Gln Gly Ala Pro Val Thr Ala Ser His 885 890 Phe Arg Phe Ala Arg Val Glu Ala Asp Lys Tyr Glu Tyr Asn Val Val 900 905 Pro Phe Arg Glu Gly Thr Pro Ala Ser Trp Thr Gly Asp Leu Leu Ala 920 Trp Trp Pro Asn Pro Gln Glu Phe Arg Ala Cys Phe Leu Lys Val Lys 935 940 Ile Gln Gly Pro Gln Glu Tyr Met Val Arg Ser His Asn Ala Gly Gly 950 955 Ser His Pro Arg Thr Arg Gly Gln Leu Tyr Gly Leu Arg Asp Ala Arg 970 Ser Val Arg Asp Pro Glu Arg Pro Gly Thr Ser Ala Ala Cys Val Glu 980 985 990 Phe Lys Cys Ser Gly Met Leu Phe Asp Gln Arg Gln Val Asp Arg Thr 1000 1005 Leu Val Thr Ile Met Pro Gln Gly Ser Cys Arg Arg Val Ala Val Asn 1020 1015 Gly Leu Leu Arg Asp Tyr Leu Thr Arg His Pro Pro Pro Val Pro Ala 1035 1030 Glu Asp Pro Ala Ala Phe Ser Met Leu Ala Pro Leu Asp Pro Leu Gly 1045 1050 1055 His Asn Tyr Gly Val Tyr Thr Val Thr Asp Gln Ser Pro Arg Leu Ala 1060 1065 Lys Glu Ile Ala Ile Gly Arg Cys Phe Asp Gly Ser Ser Asp Gly Phe 1080 1085 1075 Ser Arg Glu Met Lys Ala Asp Ala Gly Thr Ala Val Thr Phe Gln Cys 1095 1100 Arg Glu Pro Pro Ala Gly Arg Pro Ser Leu Phe Gln Arg Leu Leu Glu 1110 1115 Ser Pro Ala Thr Ala Leu Gly Asp Ile Arg Arg Glu Met Ser Glu Ala 1130 1135 1125 Ala Gln Ala Gln Ala Arg Ala Ser Gly Pro Leu Arg Thr Arg Arg Gly 1145 1140 Arg Val Arg Gln 1155

PF-0420 US

<211> 4183 <212> DNA

<220>

<213> Homo sapiens

<221> misc_feature

<223> Incyte Clone No.: 1388013

```
<400> 2
gcccgagcac gccgcggagc ccggacctcc ctcggacgct ctgccccggc catggcgtcg
                                                                         60
                                                                        120
ctgctgccac tgctctgtct ctgtgtcgtc gctgcgcacc tggcgggggc ccgagacgcc
                                                                        180
acccccaccg aggagccaat ggcgactgca ctgggcctgg aaagacggtc cgtgtacacc
                                                                        240
ggccagccct caccagccct ggaggactgg gaagaggcca gcgagtggac gtcctggttc
                                                                        300
aacgtggacc accccggagg cgacggcgac ttcgagagcc tggctgccat ccgcttctac
                                                                        360
tacgggccag cgcgcgtgtg cccgcgaccg ctggcgctgg aggcgcgcac cacggactgg
                                                                        420
gccctgccgt ccgccgtcgg cgagcgcgtg cacttgaacc ccacgcgcgg cttctggtgc
                                                                        480
ctcaaccgcg agcaaccgcg tggccgccgc tgctccaact accacgtgcg cttccgctgc
ccactagaag cctcgtgggg cgcgtggggc ccgtggggtc cctgctcggg gagctgtggg
                                                                        540
ccaggccgtc gcttgcgccg ccgccactgc ccaagccccg ctggggatgc gtgtcccggg
                                                                        600
                                                                        660
cqtcctctqg aqgcgcagaa gtgcgtgcgg cctcggtgtc cagggtgcag ccttgacacc
                                                                        720
tgtgaatgcc cggaccacat cctcctgggc tcggtggtca ccccatctgg gcaaccactg
                                                                        780
ctaggagcca gggtctccct gcgagaccag cctggcactg tggccaccag cgatgctcac
                                                                        840
ggaacettee gggtgeetgg tgtetgtget gaeageegeg ceaacateag ggeeeagatg
                                                                        900
gatggettet etgeagggga ggeeeaggee eaggeeaaeg gateeatete tgtggteaee
                                                                        960
atcatccttg ataagttgga gaagccgtac ctggtgaaac accctgagtc ccgagtgcga
                                                                       1020
gaggetggee agaatgtgae tttetgetge aaageeteeg ggaceeceat geecaagaaa
                                                                       1080
tactcctggt tccacaatgg gaccctgctg gacaggcgag ctcatgggta cggggcccac
                                                                       1140
ctggagctsc ggggactgcg cccagaccag gctggcatct accactgcaa ggcatggaat
                                                                       1200
gaggegggtg cegtgegete gggeaetgee eggeteaetg taettgeeee aggeeageea
                                                                       1260
gcctgcgacc cccggccccg agagtacctg atcaagctcc ctgaggactg tggtcagcca
ggtagtggcc ctgcctacct ggatgtgggc ctctgtcccg acacccgctg ccccagcctg
                                                                       1320
                                                                       1380
gcaggctcca gcccccgctg cggggacgcc agctcccgct gctgctctgt gcgccgtctg
gagagaaggg agattcactg ccctggctac gtcctcccag tgaaggtggt ggcagagtgt
                                                                       1440
                                                                       1500
ggctgccaga agtgtctgcc ccctcggggg ctggtccggg gccgtgttgt ggctgctgac
                                                                       1560
teeggggage egetaegett egeeaggatt etgetgggee aggageeeat eggetteaee
gcctaccagg gcgactttac cattgaggtg ccgcctcca cccagcggct ggtggtgact
                                                                       1620
                                                                       1680
tttgtggacc ccagcggtga gttcatggac gctgtccggg tcttgccttt tgatcctcga
                                                                       1740
ggtgccggcg tgtaccacga ggtcaaggcc atgcggaaga aagccccggt cattttaCat
accagccaga gcaacacgat ccccctgggc gagctggaag atgaggcgcc cctgggcgag
                                                                       1800
                                                                       1860
ctggtcctgc cttctggcgc tttccgcaga gccgacggca aaccctactc ggggcctgtg
                                                                       1920
gaggeeeggg tgaegttegt ggaeeeeega gaeeteaeet eggeggegte tgeeeeeagt
                                                                       1980
gacctgcgct tcgtggacag cgacggcgag ctggctccac tgcgcaccta cggcatgttc
                                                                       2040
teegtggace teegtgegee eggeteegeg gageagetge aggtggggee ggtggeegtg
cgggtggccg ccagccagat ccacatgcca ggccacgtgg aggccctcaa gctgtggtcg
                                                                       2100
                                                                       2160
ctgaaccccg agaccggctt gtgggaggag gagagcggct tccggcgcga ggggtcctcg
                                                                       2220
ggcccccggg tgcgccggga ggagcgcgtc ttcctggtgg gcaacgtgga gatccgggag
cggcgcctgt tcaatctgga cgtgcctgag cgccgccgct gcttcgtgaa ggtgcgcgcc
                                                                       2280
                                                                       2340
tacgccaacg acaagttcac ccccagcgag caggtggagg gcgtggtggt cacgctggtc
                                                                       2400
aatctggage cegeceeegg etteteegee aaceeeegtg eetggggeeg etttgaeage
geggteaceg geeceaatgg egeetgeete eeegeettet gegaegeega eaggeeagae
                                                                       2460
                                                                       2520
gcctacaccg ccctggtcac cgccaccctg ggcggcgagg agctggagcc ggccccttcc
                                                                       2580
ttgccccgcc cactcccggc caccgtgggc gtcacccagc cctacctgga caggctgggg
taccgtcgga cggaccacga cgatcccgcc ttcaagcgta acggcttccg catcaacctc
                                                                       2640
gccaagcca ggccaggtga cccgccgag gccaatgggc ctgtgtaccc gtggcgcagc ctgcgggaat gccagggggc cccggtgact gccagccact tccgcttcgc cagggtggag
                                                                       2700
                                                                       2760
                                                                       2820
gcggacaagt acgagtacaa cgtggtcccc ttccgagagg gcacacctgc ctcctggact
ggcgatctcc tggcctggtg gcccaacccg caggagttcc gggcctgctt cctcaaggtg
                                                                       2880
                                                                       2940
aagatccagg gtccccagga gtatatggtc cgctcccaca acgcaggggg cagccaccca
                                                                       3000
cgcacccgcg gccagctcta cggacttcgg gatgcccgga gtgtgcgaga ccccgagcgt
```

```
ccgggcacct cggcagcctg cgtggagttc aagtgcagcg ggatgctgtt cgaccagcgg
                                                                      3120
caggtggaca ggacgctggt gaccattatg ccccagggca gctgccggcg cgtggccgtc
aacggactcc ttcgggatta cctgacccgg cacccccac cggtgcccgc ggaggaccca
                                                                      3180
gctgccttct ccatgctggc cccctagac cctctgggcc acaactatgg cgtctacact
                                                                      3240
gtcactgacc agagcccacg cttggccaag gagatcgcca ttggccgctg ctttgatggt
                                                                      3300
                                                                      3360
tcctctgacg gyttctccag agagatgaag gctgatgccg gcacagccgt caccttccag
tgccgggagc caccggccgg acgacccagc ctcttccaga ggctgctgga gtccccggcg
                                                                      3420
acagcacttg gtgacatccg cagggagatg agcgaggcgg cgcaggcaca ggcccgggcc
                                                                      3480
teaggteece teegcaeceg eeggggtagg gteeggeagt gaeetgggea ggggeetege
                                                                      3540
tttcccacct ccctccagac tcctttgacc ccaggaagtt ttgcccctcc ttcttctcca
                                                                      3600
gacageeeee teeccaggtg tetgggteee ettteeegee eettteeaga aeteagagte
                                                                      3660
                                                                      3720
agacaagaac ccagagcatc cgatggtaga aacaccagga agacaattgt tgctgtgtgg
tatggaatgg agtttgcggt gactctgggg ccagcaccca ggggacgacg ttcaacccta
                                                                      3780
                                                                      3840
gcctgaaggg acccgctccc agctcagaag ccgtctctga cttctcgtgc gtattttgac
                                                                      3900
cctgatttca atcttctacc cttgggagtt ctggcgtttg gcacaaagtc ccctctgcct
gtttggaget cagtgetaga ccaggteece tgeecegage tttgtttttg gggttattta
                                                                      3960
ttgaaacaaa gtgtggggag ctggttgtgg gtgtgagtgg gggtgtgggg tccaggctgg
                                                                      4020
                                                                      4080
gcccagtgaa aaggaggaag gggttcccat gcgggggagg ctctggggct gaggggaaca
atteteacgt gtttggtgct tagagacetg ceeggggcgt tgggeaggee eteeggggge
                                                                      4140
tgaattaaaa atgctttatt tccaaaaaaa aaaaaaaaan aaa
                                                                      4183
```

<210> 3 <211> 1184 <212> PRT <213> Homo sapiens <220> <221>misc_feature <223>Incyte Clone No.: 422069

<300>

<400> 3

Met Val Gly Thr Lys Ala Trp Val Phe Ser Phe Leu Val Leu Glu Val 10 Thr Ser Val Leu Gly Arg Gln Thr Met Leu Thr Gln Ser Val Arg Arg 25 Val Gln Pro Gly Lys Lys Asn Pro Ser Ile Phe Ala Lys Pro Ala Asp 40 Thr Leu Glu Ser Pro Gly Glu Trp Thr Thr Trp Phe Asn Ile Asp Tyr 55 60 Pro Gly Gly Lys Gly Asp Tyr Glu Arg Leu Asp Ala Ile Arg Phe Tyr Tyr Gly Asp Arg Val Cys Ala Arg Pro Leu Arg Leu Glu Ala Arg Thr 90 85 Thr Asp Trp Thr Pro Ala Gly Ser Thr Gly Gln Val Val His Gly Ser 100 105 Pro Arg Glu Gly Phe Trp Cys Leu Asn Arg Glu Gln Arg Pro Gly Gln 115 120 Asn Cys Ser Asn Tyr Thr Val Arg Phe Leu Cys Pro Pro Gly Ser Leu 130 1.35 140 Arg Arg Asp Thr Glu Arg Ile Trp Ser Pro Trp Ser Pro Trp Ser Lys 150 155 160 Cys Ser Ala Ala Cys Gly Gln Thr Gly Val Gln Thr Arg Thr Arg Ile 170 Cys Leu Ala Glu Met Val Ser Leu Cys Ser Glu Ala Ser Glu Glu Gly 185 190 180 Gln His Cys Met Gly Gln Asp Cys Thr Ala Cys Asp Leu Thr Cys Pro 195 200 205 Met Gly Gln Val Asn Ala Asp Cys Asp Ala Cys Met Cys Gln Asp Phe 210 215 220

PF-0420 US

Met	T.011	Нie	Glv	Δla	Val	Ser	Ī.011	Pro	Glv	Glv	Δla	Pro	Ala	Ser	Glv
225					230					235					240
Ala	Ala	Ile	Tyr	Leu 245	Leu	Thr	Lys	Thr	Pro 250	Lys	Leu	Leu	Thr	Gln 255	Thr
_			260		Phe			265					270		
		275			Thr		280					285			
	290	_			Leu	295					300				
305					Tyr 310					315					320
				325	Val				330					335	
			340		Phe			345					350		
		355	_		Glu		360					365			
	370				Tyr	375					380				
385					Ala 390					395					400
				405	Pro				410					415	
			420		Thr			425					430		
		435			Ala		440					445			
	450				Cys	455					460				
465					Tyr 470					475					480
				485	Thr				490					495	
			500		Gly			505					510		
_		515			Ser		520					525			
	530				Thr	535					540				
545					Asn 550					555					560
_				565	His				570					575	
			580		Met			585					590		
		595			Met		600					605			
	610				Glu	615					620				
625					Arg 630					635					640
_				645	Asn				650					655	
			660		Val			665					670		
		675			Val		680					685			
Met	Pro 690	Glu	His	Ile	Ser	Thr 695	Val	Lys	Leu	Trp	Ser 700	Leu	Asn	Pro	Asp

PF-0420 US

Thr 705	Gly	Leu	Trp	Glu	Glu 710	Glu	Gly	Asp	Phe	Lys 715	Phe	Glu	Asn	Gln	Arg 720
Arg	Asn	Lys	Arg	Glu 725	Asp	Arg	Thr	Phe	Leu 730	Val	Gly	Asn	Leu	Glu 735	Ile
Arg	Glu	Arg	Arg 740	Leu	Phe	Asn	Leu	Asp 745	Val	Pro	G1u	Ser	Arg 750	Arg	Cys
Phe	Val	Lys 755		Arg	Ala	Tyr	Arg 760		Glu	Arg	Phe	Leu 765		Ser	Glu
Gln	Ile 770		Gly	Val	Val	Ile 775		Val	Ile	Asn	Leu 780		Pro	Arg	Thr
Gly 785		Leu	Ser	Asn	Pro 790		Ala	Trp	Gly	Arg 795		Asp	Ser	Val	Ile 800
-	Gly	Pro	Asn	Gly 805		Cys	Val	Pro	Ala 810		Cys	Asp	Asp	Gln 815	
Pro	Asp	Ala	Tyr 820	Ser	Ala	Tyr	Val	Leu 825		Ser	Leu	Ala	Gly 830		Glu
Leu	Gln	Ala 835		Glu	Ser	Ser	Pro 840		Phe	Asn	Pro	Asn 845	Ala	Ile	Gly
Val	Pro 850	Gln	Pro	Tyr	Leu	Asn 855	Lys	Leu	Asn	Tyr	Arg 860	Arg	Thr	Asp	His
Glu 865	Asp	Pro	Arg	Val	Lys 870	Lys	Thr	Ala	Phe	Gln 875	Ile	Ser	Met	Ala	Lys 880
Pro	Arg	Pro	Asn	Ser 885	Ala	Glu	Glu	Ser	Asn 890	Gly	Pro	Ile	Tyr	Ala 895	Phe
Glu	Asn	Leu	Arg 900	Ala	Cys	Glu	Glu	Ala 905	Pro	Pro	Ser	Ala	Ala 910	His	Phe
Arg	Phe	Tyr 915	Gln	Ile	Glu	Gly	Asp 920	Arg	Tyr	Asp	Tyr	Asn 925	Thr	Val	Pro
Phe	Asn 930	Glu	Asp	Asp	Pro	Met 935	Ser	Trp	Thr	Glu	Asp 940	Tyr	Leu	Ala	Trp
Trp 945	Pro	Lys	Pro	Met	Glu 950	Phe	Arg	Ala	Cys	Tyr 955	Ile	Lys	Val	Lys	Ile 960
Val	Gly	Pro	Leu	Glu 965	Val	Asn	Val	Arg	Ser 970	Arg	Asn	Met	Gly	Gly 975	Thr
His	Arg	Arg	Thr 980	Val	Gly	Lys	Leu	Tyr 985	Gly	Ile	Arg	Asp	Val 990	Arg	Ser
Thr	Arg	Asp 995	Arg	Asp	Gln	Pro	Asn 1000		Ser	Ala	Ala	Cys 1005		Glu	Phe
Lys	Cys 1010		Gly	Met	Leu	Tyr 1015		Gln	Asp	Arg	Val 1020		Arg	Thr	Leu
Val 1025		Val	Ile	Pro	Gln 1030		Ser	Cys	Arg	Arg 1035		Ser	Val	Asn	Pro 1040
				Tyr 1045	<u>, </u>				1050)				1055	5
			1060					1065	5				1070)	
		1075	5	Tyr			1080)				1085	5		
	1090)		Gly		1095	;				1100)			
1105	5			Ser	1110)				1115	5				1120
				Gly 1125	,				1130)				1135	5
			1140					1145	5				1150)	
		1155	5	Arg			1160)				1165	5		
Val	Ala 1170		Leu	Arg	Phe	Pro 1175		Val	Ala	Gln	Gln 1180		Leu	Ile	Asn