Dig-In:

The sine integral

Here we will use facts about calculus to investigate a "slippary" function, one that is hard to get our hands on.

Definition 1. The sine integral is most commonly defined as

$$\operatorname{Si}(x) = \int_0^x \frac{\sin(t)}{t} \, dt.$$

What does the graph look like?

We'll use all of our curve sketching techniques to try to understand this function on the interval $[-2\pi, 2\pi]$, as gesture of friendship, we'll tell you that $\mathrm{Si}(x)$ is continuous on $[-2\pi, 2\pi]$. The first thing we should do is compute the first derivative of $\mathrm{Si}(x)$.

Example 1. Compute:

$$\frac{d}{dx}\operatorname{Si}(x)$$

Explanation. By the First Fundamental Theorem of Calculus,

$$\frac{d}{dx}\operatorname{Si}(x) = \frac{d}{dx} \int_0^x \frac{\sin(t)}{t} dt$$
$$= \frac{\sin(x)}{x}.$$

Now we'll compute the second derivative of Si(x).

Example 2. Compute:

$$\frac{d^2}{dx^2}\operatorname{Si}(x)$$

Explanation. By our previous work and the quotient rule we see

$$\frac{d^2}{dx^2}\operatorname{Si}(x) = \frac{d}{dx}\frac{\sin(x)}{x}$$
$$= \frac{x\cos(x) - \sin(x)}{x^2}.$$

Learning outcomes:

Now we should find the y-intercept.

Example 3. Compute Si(0).

Explanation. Here Si(0) = 0, as Si is an accumulation function, and at x = 0, no area has been accumulated.

Now we'll look for critical points, where the derivative is zero or undefined.

Example 4. Find the critical points of Si(x).

Explanation. The critical points are where Si'(x) = 0 or it does not exist. Since

$$\operatorname{Si}'(x) = \frac{\sin(x)}{x}.$$

We see that this derivative does not exist at x=0, and for $x \neq 0$, $\operatorname{Si}'(x)=0$ precisely when $\sin(x)$ is zero. Since $\sin(x)$ is zero at $x=-2\pi, -\pi, \pi, 2\pi$, we see that the critical points are where

$$x = -2\pi, -\pi, 0, \pi, 2\pi.$$

We'll identify which of these are maximums and minimums.

Example 5. Find the local extrema of Si(x) on the interval $[-2\pi, 2\pi]$.

Explanation. The critical points are at

$$x = -2\pi, -\pi, 0, \pi, 2\pi.$$

We will use the first derivative test to identify which of these are local extrema.

Inflection points are harder. Let's try our hand.

Example 6. Find the inflection points of Si(x).

Explanation. We start by looking at the second derivative of Si(x),

$$\operatorname{Si}''(x) = \frac{x \cos(x) - \sin(x)}{x^2}.$$

The first candidate for an infection point is x = 0, since the second derivative does not exist. To find other inflection points on $[-2\pi, 2\pi]$, we need to find when

$$x\cos(x) - \sin(x) = 0.$$

This is zero when x = 0, anywhere else?