Classification Transfer Learning

Benjamin Rothenhäusler b.rothenhaeusler@gmail.com

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2073-4441%2F12%2F1%2F96%2Fpdf&psig=AOvVaw2DI7TKy0TLcxOukZesXu5W&ust=1638877503315000&source=images&cd=vfe&ved=2ahUKEwjF98vMjM 0AhXQhv0HHVQ2AsAQjhx6BAgAEA

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2073-4441%2F12%2F1%2F96%2Fpdf&psig=AOvVaw2DI7TKy0TLcxOukZesXu5W&ust=1638877503315000&source=images&cd=vfe&ved=2ahUKEwjF98vMjM 0AhXQhv0HHVQ2AsAQjhx6BAgAEA

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F2073-4441%2F12%2F1%2F96%2Fpdf&psig=AOvVaw2DI7TKy0TLcxOukZesXu5W&ust=1638877503315000&source=images&cd=vfe&ved=2ahUKEwjF98vMjM 0AhXQhv0HHVQ2AsAQjhx6BAgAEA

Multiclass Classification

https://mlcheatsheet.readthedocs.io/en/latest/ images/logistic regressio
n sigmoid w threshold.png

https://towardsdatascience.com/breaking-down-the-support-vector-machine-svm-algorithm-d2c030d58d42

https://www.tibco.com/sites/tibco/files/media entity/2021-05/random-forest-diagram.svg

Multiclass Classification

https://www.jeremyjordan.me/content/images/2017/07/Screen-Shot-2017-07-26-at-1.44.58-PM.png

Transfer Learning: Rationale

- Computational cost
- Time cost
- CS Domain Knowledge
- Few shot learning

Transfer Learning: my case

Imagenet: ILSVRC training data

- 1000 classes
- Mostly objects and animals
- 1,281,167 training images
- 50,000 validation images

Transfer Learning: my case

https://upload.wikimedia.org/wikipedia/commons/d/d2/

Donald Trump August 19%2C 2015 %28cropped%29.jp

https://img.welt.de/img/iconist/service/mobile23575392

4/4022501367-ci102l-w1024/Graduate-Together-

America-Honors-the-High-School-Class-of-2020.jpg

https://image.stern.de/31553988/t/1F/v4/w960/r1 .7778/-/joe-biden-ukraine-russland.jpg

Dataset

Curated Google Image search

	Trump	Obama	Biden
N	80	65	70

	Percent
Train	70
Evaluation	15
Test	15

Transfer Network: VGG-16

https://commons.wikimedia.org/wiki/File:VGG16.png

ImageNet Accuracies:

Top-1: 74%

Top-5: 91.9%

Transfer Network: VGG-16

https://commons.wikimedia.org/wiki/File:VGG16.png

ImageNet Accuracies:

Top-1: 74%

Top-5: 91.9%

Transfer Network: ResNet-50

 $\frac{https://www.researchgate.net/figure/ResNet-50-architecture-26-shown-with-the-residual-units-the-size-of-the-filters-and\ fig1\ 338603223$

ImageNet Accuracies:

 \mathbf{x}

Top-1: 83.2%

Top-5: 96.5%

Transfer Network: Inception V3

https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

ImageNet Accuracies:

Top-1: 78.9%

Top-5: 94.49%

Transfer Network: Inception V3

https://production-media.paperswithcode.com/methods/GoogleNet-structure-and-auxiliary-classifier-units CM5xsxk.png

https://towardsdatascience.com/a-simpleguide-to-the-versions-of-the-inceptionnetwork-7fc52b863202

ImageNet Accuracies:

Top-1: 78.9%

Top-5: 94.49%

Results: Logistic Regression

Network	Test Accuracy
VGG-16	.6875
VGG-16 (block4pool)	.625
InceptionV3	.594
ResNet50	.75

Results: SVC

Network	Test Accuracy
VGG-16	.75
VGG-16 (block4pool)	.594
InceptionV3	.545
ResNet50	.75

[gross overfitting]

Results: Convolutional Neural Network

Network	Test Accuracy
VGG-16	.50
VGG-16 (block4pool)	.62
InceptionV3	.5625
ResNet50	.437

Layer (type)	Output	Shape	Param #
conv2d_31 (Conv2D)	(None,	148, 148, 32)	896
max_pooling2d_31 (MaxPooling	(None,	74, 74, 32)	0
conv2d_32 (Conv2D)	(None,	72, 72, 128)	36992
max_pooling2d_32 (MaxPooling	(None,	36, 36, 128)	0
global_average_pooling2d_19	(None,	128)	0
dropout_20 (Dropout)	(None,	128)	0
dense_44 (Dense)	(None,	64)	8256
dense_45 (Dense)	(None,	3)	195
Total params: 46,339 Trainable params: 46,339 Non-trainable params: 0	Secretary Secretary		

Results: Fully Connected Neural Network

Network	Test Accuracy
VGG-16	.843
VGG-16 (block4pool)	.781
InceptionV3	.406
ResNet50	.875

Layer (type)	Output Sh	паре	Param #
global_average_pooling2d_20	(None, 20		0
dropout_21 (Dropout)	(None, 20	948)	0
dense_46 (Dense)	(None, 10	90)	204900
dense_47 (Dense)	(None, 3)		303
Total params: 205,203 Trainable params: 205,203 Non-trainable params: 0			

Questions

Sources

ResNet

https://arxiv.org/abs/1512.03385v1

VGG-16

https://arxiv.org/abs/1409.1556v6

InceptionV3

https://arxiv.org/abs/1512.00567v3

Libraries:

https://keras.io/

https://scikit-learn.org/stable/

Specific implementations:

https://appliedmachinelearning.blog/2019/07/29/transfer-learning-using-feature-extraction-from-trained-models-food-images-classification/

https://www.datatechnotes.com/2020/07/classification-example-with-linearsvm-in-python.html