Basics of Probability

Angshuman Paul

Assistant Professor

Department of Computer Science & Engineering

- My statement: *Real world is full of uncertainties*
 - Is it?
 - What about a coin tossing (is it deterministic)
 - Can we deterministically model it?

- My statement: *Real world is full of uncertainties*
 - Is it?
 - What about a coin tossing (is it deterministic)
 - Can we deterministically model it?
 - If we know all the physics
 - But it is very hard to model everything

- My statement: *Real world is full of uncertainties*
 - Is it?
 - What about a coin tossing (is it deterministic)
 - Can we deterministically model it?
 - If we know all the physics
 - But it is very hard to model everything
- At the quantum label, the world is probabilistic
- So, it is really a philosophical question whether the world is deterministic or probabilistic

- However, even in the coin tossing example, we usually don't model all the physics
 - Difficulty in modeling

- In practice, we often don't model the exact system
 - We use some abstractions
 - That results in the probabilistic nature of our experiments
 - And use probability to model the system

Probability

Experiments

- Deterministic
 - Outcome is known
 - If you release an object from the roof of your house, it will always move in the downward direction (and not in the upward direction)
- Random
 - Outcome is not known beforehand
 - Rolling a dice

Sample Space

- The set of possible outcomes
- Rolling a dice
 - Sample space $S = \{1, 2, 3, 4, 5, 6\}$
 - Each element of sample space: sample point
- Sample space can be
 - Finite (above example)
 - Infinite (Amount of rainfall at Jodhpur in July)

Event

Any subset of the sample space

- Example: In the context of rolling a dice
 - The outcome is a number < 3
 - Event $A = \{1, 2\}$

Random Variables

- In logic, we have symbols
- In probability, we have random variables (rv)
 - A numerical description of the outcomes of a random experiment
 - A function that assigns numerical values (real or Boolean) to each sample point
 - Usually indicated using capital letters (e.g., X)
 - Discrete: takes only a countable number of discrete values
 - Sample space for weather condition: {sunny, rainy, cloudy}
 - Continuous: takes uncountably infinite number of possible values
 - Sample space for temperature at Jodhpur: [6.7°, 46.2°]

- Consider an event A
- Probability of event A

•
$$P(A) = \frac{Number\ of\ elements\ in\ set\ A}{Number\ of\ elements\ in\ the\ sample\ space\ S}$$

•
$$P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$$

- Example: In the context of rolling a dice
 - Event A: The outcome is an odd number
 - Event $A = \{...\}$

- Probability of event A
 - $P(A) = \frac{Number\ of\ elements\ in\ set\ A}{Number\ of\ elements\ in\ the\ sample\ space\ S}$
 - $P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$
- Example: In the context of rolling a dice
 - Event A: The outcome is an odd number
 - Event $A = \{1, 3, 5\}$

- Probability of event A
 - $P(A) = \frac{Number\ of\ elements\ in\ set\ A}{Number\ of\ elements\ in\ the\ sample\ space\ S}$
 - $P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$
- Example: In the context of rolling a dice
 - Event *A*: The outcome is an odd number
 - Event $A = \{1, 3, 5\}$
 - $P(A) = \frac{3}{6} = 0.5$

Probability of event A

•
$$P(A) = \frac{Number\ of\ elements\ in\ set\ A}{Number\ of\ elements\ in\ the\ sample\ space\ S}$$

•
$$P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$$

- Example: In the context of rolling a dice
 - Event A: The outcome is an odd number
 - Event $A = \{1, 3, 5\}$
 - $P(A) = \frac{3}{6} = 0.5$

What is the problem with this definition?

In an experiment with finite sample space and equally likely outcomes,
 Probability of event A

•
$$P(A) = \frac{Number\ of\ elements\ in\ set\ A}{Number\ of\ elements\ in\ the\ sample\ space\ S}$$

•
$$P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$$

- Example: In the context of rolling a dice
 - Event A: The outcome is an odd number
 - Event $A = \{1, 3, 5\}$

•
$$P(A) = \frac{3}{6} = 0.5$$

In an experiment with finite sample space and equally likely outcomes,
 Probability of event A

•
$$P(A) = \frac{Number\ of\ elements\ in\ set\ A}{Number\ of\ elements\ in\ the\ sample\ space\ S}$$

•
$$P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$$

- Example: In the context of rolling a dice
 - Event A: The outcome is an odd number
 - Event $A = \{1, 3, 5\}$
 - $P(A) = \frac{3}{6} = 0.5$

What if this condition does not hold?

Frequentist Approach of Probability

- Suppose we do an experiment n number of times
- Out of these, event A occurs n(A) number of times

- Relative frequency of *A* is $f_r(A) = \frac{n(A)}{n}$
- Probability of *A* is P(A) =

Frequentist Approach of Probability

- Suppose we do an experiment n number of times
- Out of these, event A occurs n(A) number of times

- Relative frequency of *A* is $f_r(A) = \frac{n(A)}{n}$
- Probability of *A* is $P(A) = \lim_{n \to \infty} f_r(A) = \lim_{n \to \infty} \frac{n(A)}{n}$

Probability

- A probability measure or probability function $P(\cdot)$ assigns a probability to an event
 - P(A) is the chance that event A occurs

• P(A) must be a positive number between 0 and 1 inclusive $(0 \le P(A) \le 1)$

- If Φ is the null event (indicating no outcome from an experiment), $P(\Phi) = 0$
 - It is impossible that an experiment has no outcome

- If *S* is the sample space, P(S) = 1
 - Probability that something happens is always 1

- If $A_1, A_2, ..., A_n$ are a countable sequence of disjoint events, then
 - $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$

 Disjoint/ Mutually exclusive: Two events are disjoint or mutually exclusive, if they can't occur simultaneously

- $P(2 \cup 4 \cup 5) = P(2) + P(4) + P(5)$
 - We say it like this: *If we roll a dice, the probability of getting a 2 or a 4 or a 5 is the sum of the probability of getting a 2, probability of getting a 4, and probability of getting a 5*

- If $A_1, A_2, ..., A_n$ are a countable sequence of disjoint events, then
 - $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$
- Disjoint/ Mutually exclusive: Two events are disjoint or mutually exclusive, if they can't occur simultaneously
- Example: In case of rolling of dice

- If $A_1, A_2, ..., A_n$ are a countable sequence of disjoint events, then
 - $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$
- Disjoint/ Mutually exclusive: Two events are disjoint or mutually exclusive, if they can't occur simultaneously
- Example: Rolling of dice

Venn Diagram

- $S = A \cup A^c$
- $P(S) = 1 = P(A \cup A^c) =$

- $S = A \cup A^c$
- $P(S) = 1 = P(A \cup A^c) = P(A) + P(A^c)$
- $P(A) = 1 P(A^c)$

Probability: Addition Rule

Probability: Addition Rule

• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Revisiting Random Variables

- X is a discrete rv with k possible values $x_1, x_2, ..., x_k$
- $P(X = x_j) = P_j$
- Then $\sum_{i=1}^k P_i = 1$

• Probability distribution: A list containing $P_1, P_2, ..., P_k$

Often represented as histogram

Revisiting Random Variables

- If X is a continuous rv
 - The probabilities of the value of X are represented by a curve f(v)
 - $f(v) \ge 0$ at all points
 - Area under the curve is 1

•
$$P(a < X \le b) = \int_a^b f(v) dv$$

•
$$\int_{-\infty}^{\infty} f(v) dv = 1$$

- In a box, there are 40 Samsung phones and 20 MI phones
- Out of these, 10 Samsung phones and 2 MI phones are not working.
- You pick up a phone and find that the phone is not working.

• What is the probability that the phone you picked up is a Samsung phone?

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

•
$$P(SP|NW) = \frac{\# Samsung \ phones \ that \ are \ not \ working}{\# Phones \ that \ are \ not \ working}$$

$$= \frac{10}{12}$$

$$= \frac{\frac{10}{40} \times \frac{40}{60}}{\frac{12}{60}}$$

- $\frac{10}{40}$: Given an SP, probability that it is NW (P(NW|SP))
- $\frac{40}{60}$: Probability of SP in the box P(SP)
- $\frac{12}{60}$: Probability of finding a NW phone in the box P(NW)

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

•
$$P(SP|NW) = \frac{\# Samsung \ phones \ that \ are \ not \ working}{\# Phones \ that \ are \ not \ working}$$

$$= \frac{10}{12}$$

$$= \frac{\frac{10}{40} \times \frac{40}{60}}{\frac{12}{60}}$$

- $\frac{10}{40}$: Given an SP, probability that it is NW (P(NW|SP))
- $\frac{40}{60}$: Probability of SP in the box P(SP)
- $\frac{12}{60}$: Probability of finding a NW phone in the box P(NW)

•
$$P(SP|NW) = \frac{P(NW|SP) P(SP)}{P(NW)}$$

- In a box, there are 40 Samsung phones (SP) and 20 MI phones (MIP)
- Out of these, 10 Samsung phones and 2 MI phones are not working (NW).
- You pick up a phone and find that the phone is not working.
- What is the probability that the phone you picked up is a Samsung phone?
- Find P(SP|NW)

- $P(SP|NW) = \frac{\# Samsung \ phones \ that \ are \ not \ working}{\# Phones \ that \ are \ not \ working}$
- $P(SP|NW) = \frac{\# Samsung \ phones \ that \ are \ not \ working/60}{\# Phones \ that \ are \ not \ working/60}$
- $P(SP|NW) = \frac{P(SP \cap NW)}{P(NW)}$
- We have already seen that

$$P(SP|NW) = \frac{P(NW|SP) P(SP)}{P(NW)}$$

•
$$P(SP|NW) = \frac{P(SP \cap NW)}{P(NW)} = \frac{P(NW|SP) P(SP)}{P(NW)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

Indicates my belief about the occurrence of *A*

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$
Likelihood

Indicates the chance of *B* to occur given that *A* has occurred

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

Probability that *B* occurs Evidence

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

Posterior/ Conditional probability

Conditioned on the evidence that we have seen

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

Bayes' Theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$

Bayes' Theorem

$$P(Cause|Effect) = \frac{P(Effect|Cause) P(Cause)}{P(Effect)}$$

• Consider a system with causes c1, and c2, and effects e1, e2 and e3

Suppose we want to find the probabilities of different causes given effect e2

$$P(Cause|Effect) = \frac{P(Effect|Cause) P(Cause)}{P(Effect)}$$

Consider a system with causes c1, and c2, and effects e1, e2 and e3

Suppose we want to find the probabilities of different causes given effect e1

$$P(Cause|Effect) = \frac{P(Effect|Cause) P(Cause)}{P(Effect)}$$

$$P(c1|e1) = \frac{P(e1|c1) P(c1)}{P(e1)}$$

$$P(c2|e1) = \frac{P(e1|c2) P(c2)}{P(e1)}$$

• Consider a system with causes c1, and c2, and effects e1, e2 and e3

- Suppose we want to find the probabilities of different causes given effect e1
- Since e1 may be caused either by c1 or by c2

•
$$P(c1|e1) + P(c2|e1) = 1$$

$$P(c1|e1) = \frac{P(e1|c1) P(c1)}{P(e1)}$$
 $P(c2|e1) = \frac{P(e1|c2) P(c2)}{P(e1)}$

Since e1 may be caused either by c1 or by c2

•
$$P(c1|e1) + P(c2|e1) = 1$$
 (1)

- For both P(c1|e1) and P(c2|e1), the denominator is same
 - Consider $\frac{1}{P(e1)} = \alpha$
 - Then, even if we don't calculate P(e1) explicitly, we can find P(c1|e1) and P(c2|e1) using (1)

$$P(c1|e1) = \frac{P(e1|c1) P(c1)}{P(e1)}$$
 $P(c2|e1) = \frac{P(e1|c2) P(c2)}{P(e1)}$

$$P(c1|e1) = \alpha P(e1|c1)P(c1)$$

$$P(c2|e1) = \alpha P(e1|c2)P(c2)$$

$$P(c1|e1) \propto P(e1|c1)P(c1)$$

$$P(c2|e1) \propto P(e1|c2)P(c2)$$

- So
 - Posterior \propto (likelihood \times prior)

- Two events A and B are said to be independent if
 - P(A|B) = P(A) (1)
- We already have

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$
 (2)

- From (1) and (2), we get
 - P(B|A) = P(B)
 - $P(A \cap B) = P(A)P(B)$

Consider two random variables

- X corresponding to weather {sunny, rainy, cloudy}
 - $P(X) = \{0.6, 0.1, 0.3\}$
- Y corresponding to power cut {power cut, no power cut}
 - $P(Y) = \{0.15, 0.85\}$
- A joint probability distribution of *X* and *Y*
 - Probability distribution on all possible pairs of outputs

- X corresponding to weather {sunny, rainy, cloudy}
 - $P(X) = \{0.6, 0.1, 0.3\}$
- Y corresponding to power cut {power cut, no power cut}
 - $P(Y) = \{0.15, 0.85\}$
- A joint probability distribution of *X* and *Y*
 - Probability distribution on all possible pairs of outputs
- A 3 \times 2 matrix of values

- X corresponding to weather {sunny, rainy, cloudy}
 - $P(X) = \{0.6, 0.1, 0.3\}$
- Y corresponding to power cut {power cut, no power cut}
 - $P(Y) = \{0.15, 0.85\}$
- A joint probability distribution of *X* and *Y*
 - Probability distribution on all possible pairs of outputs
- A 3×2 matrix of values

	Power cut	No power cut
Sunny	0.01	0.4
Rainy	0.2	0.1
Cloudy	0.09	0.2

- Sample space corresponding to *X* is $S_X = \{s, r, c\}$
- Sample space corresponding to *Y* is $S_Y = \{pc, npc\}$
- Sample space corresponding to the joint distribution is

	Power cut (pc)	No power cut (npc)
Sunny (s)	0.01 $P(s \cap pc)$	0.4 $P(s \cap npc)$
Rainy (r)	0.2 $P(r \cap pc)$	0.1 $P(r \cap npc)$
Cloudy (c)	0.09 $P(c \cap pc)$	0.2 $P(r \cap npc)$

- Sample space corresponding to *X* is $S_X = \{s, r, c\}$
- Sample space corresponding to Y is $S_Y = \{pc, npc\}$
- Sample space corresponding to the joint distribution is $S_I = \{(s,pc), (s,npc), (r,pc), (r,npc), (c,pc), (c,npc)\}$

	Power cut (pc)	No power cut (npc)
Sunny (s)	0.01 $P(s \cap pc)$	0.4 $P(s \cap npc)$
Rainy (r)	0.2 $P(r \cap pc)$	0.1 $P(r \cap npc)$
Cloudy (c)	0.09 $P(c \cap pc)$	0.2 $P(r \cap npc)$

Chain Rule

• If A_1, A_2, \dots, A_n are n events, then

•
$$P(A_n \cap A_{n-1} \cap \dots \cap A_1) = P(A_n | A_{n-1} \cap \dots \cap A_1) P(A_{n-1} \cap \dots \cap A_1)$$
 (1)

Similarly,

•
$$P(A_{n-1} \cap A_{n-2} \cap \dots \cap A_1) = P(A_{n-1} | A_{n-2} \cap \dots \cap A_1) P(A_{n-2} \cap \dots \cap A_1)$$
 (2)

Extending this for the subsequent events and putting in (1), we get,

•
$$P(A_n \cap A_{n-1} \cap \dots \cap A_1)$$

= $P(A_n | A_{n-1} \cap \dots \cap A_1) P(A_{n-1} | A_{n-2} \cap \dots \cap A_1) P(A_{n-2} | A_{n-3} \cap \dots \cap A_1) \dots P(A_1)$

Chain Rule

- If A_1 , A_2 , A_3 are 3 events, then we use
 - $P(A_n \cap A_{n-1} \cap \dots \cap A_1)$ = $P(A_n | A_{n-1} \cap \dots \cap A_1) P(A_{n-1} | A_{n-2} \cap \dots \cap A_1) P(A_{n-2} | A_{n-3} \cap \dots \cap A_1) \dots P(A_1)$
- We get
 - $P(A_4 \cap A_3 \cap A_2 \cap A_1)$ = $P(A_4 | A_3 \cap A_2 \cap A_1) P(A_3 | A_2 \cap A_1) P(A_2 | A_1) P(A_1)$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

• P(fever) =

	fever		¬ fever	
	cough ¬ cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• P(fever) = 0.21 + 0.10 + 0.11 + 0.07 = 0.49

	fever		¬ fever	
	cough ¬ cough cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• $P(fever \ \ \ \) =$

	fever		¬ fever	
	cough ¬ cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• $P(fever \ \ \ \ \ \ \ \ \ \ \ \) = 0.21 + 0.10 + 0.11 + 0.07 + 0.11 + 0.08 = 0.68$

	fever		¬ fever	
	cough ¬ cough cough		cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

• $P(\neg covid | \neg fever) =$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

•
$$P(\neg covid | \neg fever) = \frac{P(\neg covid \cap \neg fever)}{P(\neg fever)} = \frac{0.09 + 0.23}{P(\neg fever)}$$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

For any proposition, add all the boxes where the proposition is true

•
$$P(\neg covid | \neg fever) = \frac{P(\neg covid \cap \neg fever)}{P(\neg fever)} = \frac{0.09 + 0.23}{0.11 + 0.08 + 0.09 + 0.23} \approx 0.627$$

	fever		¬ fever	
	cough	¬ cough	cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

- If we have the complete joint distribution, I can answer any related queries
- But, what is the problem with this approach?

	fever cough		¬ fever	
			cough	¬ cough
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

- But, what is the problem with this approach?
 - For a system with many causes and effects, we have to maintain a large set of values and operate on those

- Two events A and B are said to be independent if
 - P(A|B) = P(A) (1)
- We already have

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) P(A)}{P(B)}$$
 (2)

- From (1) and (2), we get
 - P(B|A) = P(B)
 - $P(A \cap B) = P(A)P(B)$

Suppose I want to deal with Fever, Cough, Covid, and Internet Speed (I_Sp)

We intuitively know that internet speed does not depend on the other three

- So, if we want to find out the joint distribution
 - P(Fever, Cough, Covid, I_Sp)
- We can write

```
P(Fever, Cough, Covid, I\_Sp) = P(Fever, Cough, Covid) P(I\_Sp)
```

• Suppose the sample space for Internet Speed (I_Sp) is {slow, medium, fast, very fast}

- So, if we want to find out the joint distribution
 - P(Fever, Cough, Covid, I_Sp)

		fever		¬ fever	
		cough	¬ cough	cough	¬ cough
	slow	a1	a2	a3	a4
covid	medium	a5	a6	a7	a8
Covid	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
	slow	a17	a18	a19	a20
 ¬ covid	medium	a21	a22	a23	a24
¬ coviu	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

		fever		¬ fever	
		cough ¬ cough		cough	¬ cough
	slow	a1	a2	a3	a4
covid	medium	a5	a6	a7	a8
Covid	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
	slow	a17	a18	a19	a20
 ¬ covid	medium	a21	a22	a23	a24
¬ covia	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

• How many variables do I need to store this table?

		fever		¬ fever	
			¬ cough	cough	¬ cough
	slow	a1	a2	a3	a4
covid	medium	a5	a6	a7	a8
covia	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
	slow	a17	a18	a19	a20
 ¬ covid	medium	a21	a22	a23	a24
¬ coviu	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

• How many entries do I need to store this table? **32 (31 parameters)**

Total entries: 32 (31 parameters)

Now I know that

 $P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$

- Now I know that
 - To store the above table, I need to store
 P(Fever, Cough, Covid) and P(I_Sp)

- Total entries: 32 (31 parameters)
- Now I know that

 $P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$

- Now I know that
 - To store the above table, I need to store P(Fever, Cough, Covid) and P(I_Sp)

	fever		¬ fever	
	cough	¬ cough	cough	
covid	0.21	0.10	0.11	0.08
¬ covid	0.11	0.07	0.09	0.23

- Table for *P*(*Fever*, *Cough*, *Covid*)
- How many entries: 8 (7 parameters)

slow	medium	fast	very fast
0.2	0.4	0.25	0.15

- Table for $P(I_Sp)$
- How many entries? 4 (3 parameters)

		fever		¬ fever	
		cough	¬ cough	cough	¬ cough
	slow	a1	a2	a3	a4
aavid	medium	a5	a6	a7	a8
covid	fast	a9	a10	a11	a12
	very fast	a13	a14	a15	a16
	slow	a17	a18	a19	a20
	medium	a21	a22	a23	a24
¬ covia	fast	a25	a26	a27	a28
	very fast	a29	a30	a31	a32

- Total entries required was: 32 (31 parameters)
- After performing factorization $P(Fever, Cough, Covid, I_Sp) = P(Fever, Cough, Covid) P(I_Sp)$
 - Total entries required: 8+4= 12 (7+3=10 parameters)