

Licenciatura em Engenharia Electrotécnica e de Computadores (LEEC)

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

CONTROLO 3º ano – 1º semestre – 2004/2005

Transparências de apoio às aulas teóricas

Cap. 6 – Parte II Projecto apoiado no Root Locus

> Maria Isabel Ribeiro António Pascoal Eduardo Morgado

Novembro de 2001 Revistas em Outubro de 2003 e Outubro de 2004

Todos os direitos reservados

Estas notas não podem ser usadas para fins distintos daqueles para que foram elaboradas (leccionação no Instituto Superior Técnico) sem autorização dos autores

"Root Locus" - Exemplo de Projecto

Massa que se desloca sem atrito ao longo da coordenada y (inércia pura).

$$f = u = \frac{d^2(y)}{dt^2} \Rightarrow \frac{Y(s)}{U(s)} = \frac{1}{s^2}$$

Sistema instável em malha aberta

Objectivo: projectar um sistema de controlo em malha fechada para <u>estabilização em posição</u>.

Tentativa #1 – Ganho Proporcional

Traçado do "Root-Locus"

Verificação:

$$\frac{1}{s^2} \xrightarrow{m=0} n=2 \text{ ramos}$$

$$n=2 \text{ n-m=2 assimptotas}$$

Centro das assímptotas

$$\sigma_a = \frac{\sum p_{i-} \sum z_j}{n-m} = 0$$

Ângulos das assímptotas

$$\phi_k = \frac{(2k+1)}{n-m}\pi = 0; k = 0,1$$
 \rightarrow 90°,-90°

Não existem porções do diagrama no eixo Real (excepto o ponto 0, quando k=0)

Tentativa #2 – Acção Proporcional e Derivativa

Acção derivativa

Acção proporcional

(inclusão de um zero em s=-1 rad/s, no semi-plano complexo esquerdo, para "atrair" o diagrama para a zona de "estabilidade") — esquecer por enquanto o facto de que o controlador não é causal.

Traçado das Assímptotas

$$\frac{(s+1)}{s^2} \longrightarrow n=2 \text{ ramos}$$

$$n-m=1 \text{ assímptota}$$

$$(1 \text{ zero em infinito})$$

Centro das assímptotas

$$\sigma_a = \frac{\sum p_{i-} \sum z_j}{n-m} = 0 + 0 - (-1) = +1$$

<u>Ângulos das assímptotas</u>

$$\phi_k = \frac{(2k+1)}{n-m}\pi = 0; k = 0$$
 180°

Comportamento geral do diagrama:

Quando k tende para 0, polos em malha fechada→ polos em malha aberta

Quando k tende para infinito, polos em malha fechada → zeros em malha aberta, incluindo os zeros em infinito.

O zero exerce um efeito atractor e "encurva" o diagrama para a esquerda

Pormenores

A – ângulos de saída dos polos

Condição de argumento -

$$\arg((s+1)/s^{2}) = \alpha_{3} - \alpha_{2} - \alpha_{1} = (2k+1)\pi; k \in \mathbb{Z}$$
Quando $s_{0} \to 0$, $\alpha_{3} \cong 0$

$$\to -2\alpha_{1} = (2k+1)\pi; k \in \mathbb{Z} \to \alpha_{1} = \pm \pi/2$$

O diagrama sai dos polos na "vertical".

Confirmação de que o não diagrama não cruza o eixo imaginário (excepto no ponto 0).

Polinómio característico: $1 + k \frac{s+1}{s^2} = 0$

$$\rightarrow s^2 + ks + k = 0$$

Seja ω : $j\omega$ é uma raíz no eixo imaginário

$$\rightarrow -\omega^2 + jk\omega + k = 0$$

 $\rightarrow \omega = k = 0$ (não existem intersecções não triviais com o eixo imaginário)

Ponto de entrada no eixo real ("Breakin")

$$k \frac{s+1}{s^2} = -1 \to k = -\frac{s^2}{s+1}$$

 $\frac{dk}{ds} = -\frac{2s(s+1) - s^2}{(s+1)^2} = 0 \quad \to s(s+2) = 0$

Raízes possíveis: 0 (trivial), -2

Interpretação física do efeito estabilizador da acção derivativa

(sistemas equivalentes sob o ponto de vista de estabilidade)

Retroacção local de velocidade (termo dissipativo artificial, semelhante ao efeito de um amortecedor)

Nos dois casos, o denominador de Y(s)/R(s) é

$$s^2 + ks + k = 0$$

Termo estabilizante, fruto da retroacção local de velocidade

Mas ... existe uma constrição prática. Não é possível realizar diferenciadores puros!

Estratégia: substituir o termo (s+1) por

$$(s+1) \boxed{\frac{p}{s+p}}; \quad p >> 1$$

Sistema causal, passa-baixo,com largura de banda "muito superior" a 1 rad/s.

Para valores possíveis de p, ver o exercício a seguir

Exemplo de projecto mais realista

Objectivos: dado o sistema a controlar $P(s) = \frac{1}{s^2}$ Projectar um controlador K(s) tal que:

- a. O sistema em malha fechada é estável
- b. O sistema em malha fechada exibe
 comportamento (dominante) de segunda ordem
 com
 - b.1. Sobreelevação $S \ge 20.5\%$
 - b.2. Tempo de estabelecimento $t_s(5\%) \le 0.75s$

Resolução:

b.1
$$S = \exp(-\xi \pi / \sqrt{1 - \xi^2}) \le 20.5\% \implies \xi \ge 0.45$$

b.2

$$t_s(5\%) = \frac{\ln |0.05|}{\xi \omega_n} \cong \frac{3}{\xi \omega_n} \le 0.75 \implies \xi \omega_n \ge 4$$

Exemplo de projecto mais realista

Zona desejada para os polos dominantes em malha fechada

$$\xi \omega_n \ge 4$$
; $\xi \ge 0.45 \implies \omega_n = 8.89 \text{ rads}^{-1}$
 $\Rightarrow \omega_n \sqrt{1 - \xi^2} = 7.94 \text{ rads}^{-1} \approx 8 \text{ rads}^{-1}$

Localização possível dos polos: -4+j8, -4-j8

Tipo de controlador:
$$K(s) = \frac{s+z}{s+p}$$

Tentativa: fazer z=4 rad/s e determinar p tal quese cumpram (caso seja possível!) as especificações.

Utilizando a condição do argumento:

$$\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 = \pm (2k+1)180^\circ$$

$$\alpha_1 = 90^\circ ; \alpha_2 = \alpha_3 = 180^\circ - \tan^{-1}(2) \approx 117^\circ$$

$$\alpha_{\Lambda} = 36^{\circ}$$

$$\tan^{-1}(\frac{8}{7}) = 36^{\circ}$$

$$tan^{-1}(\frac{8}{z}) = 36^{\circ}$$

$$\Rightarrow z \approx 11^{\circ}; \quad p = 11 + 4 = 15 \quad rads^{-1}$$

$$1 + K(s)G(s)_{|s=-4+j8} = 0$$

$$\Rightarrow k \left[\frac{|s+4|}{|s+15|} \cdot \frac{1}{|s|^2} \right]_{|s=-4+j8} = 1$$

$$\Rightarrow k = \left[\frac{|s+15||s|^2}{|s+4|} \right]_{|s=-4+j8}$$

$$\Rightarrow k = \frac{M_4 M_3 M_2}{M_1} = 136.$$

$$\frac{Y(s)}{R(s)} = \frac{K(s+z)}{(s+p)s^2 + K(s+z)} = \dots = \frac{136s + 544}{s^3 + 15s^2 + 136s + 544}$$

Sobreelevação ≈45 % !! >> 20% desejada

Root locus:

f. t malha aberta:
$$K \frac{(s+4)}{s^2(s+15)}$$

Mapa polos-zeros da malha fechada para K = 136:

zeros: s = -4

polos: $s_{1,2} \approx -4 \pm j 8$ $s_3 \approx -7$

- ! Efeitos de polos e zeros adicionais (além dos projectados $s_{1,2} = -4 \pm j \ 8$)!
 - ! Polos projectados não são dominantes !

Considerações adicionais

Para diminuir S → "fechar" mais os ramos principais do root-locus ⇒ deslocar o polo do controlador para a esquerda ou/e deslocar o zero do controlador para a direita Variação consistente do ganho (polos da malha fechada deslocam~se sobre o root-locus)

Tentativas ...
$$\rightarrow$$
 :

$$z = 3$$

$$p = 25$$

$$K = 250$$

$$\frac{Y(s)}{R(s)} = \frac{K(s+z)}{(s+p)s^2 + K(s+z)} = \dots = \frac{250s + 750}{s^3 + 25s^2 + 250s + 750}$$

Sobreelevação ≈ 25 %

Tempo de estabelecimento (5%) $\approx 0.75 \text{ s}$

Root locus:

f. t malha aberta:
$$K \frac{(s+3)}{s^2(s+25)}$$

Mapa polos-zeros da malha fechada para K = 250:

zeros:
$$s = -3$$

polos:
$$s_{1,2} \approx -10 \pm j7$$

$$s_3 \approx -5$$

Haverá, *com este controlador*, um conjunto de valores de parâmetros mais conveniente ? (tente ...)

Se o resultado não satisfaz → ensaiar outro controlador (com diferente estrutura)

Compromisso entre desempenho, complexidade, robustez, ...

Dimensionamento por via puramente algébrica

IV)- Dimensionamento do Controlador por via algébrica (alternativa a II)

Equação característica:
$$1 + K \frac{(s+4)}{(s+p)} \cdot \frac{1}{s^2} = 0$$
 \Rightarrow $s^3 + p.s^2 + K.s + 4K = 0$

Polinómio característico como função dos parâmetros do controlador:

$$s^3 + p.s^2 + K.s + 4K$$

Polinómio característico desejado:
$$[s-(-4-j8)][s-(-4+j8)](s+x) = \dots = s^3 + s^2(8+x) + s(80+8x) + 80x$$

(o polinómio característico é do 3º grau \rightarrow além dos polos projectados de 2ª ordem existe um terceiro polo da malha fechada em s = -x)

por identificação dos polinómios característicos assim formados, obtém-se:

$$\begin{cases} 8 + x = p \\ 80 + 8x = K \end{cases} \longrightarrow \dots \begin{cases} K = 133,33 \\ x = 6,66 \\ p = 14,66 \end{cases}$$

Este procedimento, aplicável a casos simples, não dispensa a etapa posterior de ajuste de parâmetros, guiada pelo root-locus!

Dados:

Função de transferência do sistema G(s) (e dos sensores H(s))
Especificações de regime permanente → tipo
Especificações dinâmicas → polos desejados da malha fechada (polos de 2ª ordem supostos dominantes)

