1	2	3	\sum
/7	/7	/6	/20

Korrigiert am:

Aufgabe 10.1 (Punkte: /7)

(a)

- $conf(s_1) = \{(w_3(x), r_2(x)), (w_2(y), w_3(y)), (w_3(y), r_2(y)), (w_3(z), w_2(z))\}$
- $conf(s_2) = \{(r_3(x), w_1(x)), (r_2(y), w_3(y)), (r_2(y), w_1(y)), (w_3(y), w_2(y)), (w_3(y), w_1(y)), (w_2(y), w_1(y)), (r_2(z), w_3(z)), (r_2(z), w_1(z)), (r_3(z), w_2(z)), (r_3(z), w_1(z)), (w_3(z), w_2(z)), (w_3(z), w_1(z)), (w_2(z), w_1(z))\}$

(b)

- $commit(s_1) = \{t_2, t_3\}$. Somit besitzt der Konfliktgraph G_1 die Knoten t_2 und t_3 . Da $(w_3(x), r_2(x)) \in conf(s_1)$ und $(w_2(y), w_3(y)) \in conf(s_1)$, existiert in G_1 eine Kante von t_2 zu t_3 und umgekehrt. Da somit G_1 einen Kreis besitzt, ist s_1 nicht konfliktserialisierbar.
- $commit(s_2) = \{t_1, t_2, t_3\}$. Somit besitzt der Konfliktgraph G_2 die Knoten t_1, t_2 und t_3 . Da $(r_2(y), w_3(y)) \in conf(s_2)$ und $(w_3(y), w_2(y)) \in conf(s_2)$, existiert in G_2 eine Kante von t_2 zu t_3 und umgekehrt. Da somit G_2 einen Kreis enthält, ist s_2 nicht konfliktserialisierbar.

Aufgabe 10.2 (Punkte: /7)

- (a)
- (b)
- (c)
- (d)

Aufgabe 10.3 (Punkte: /6)

- (a)
- (b)
- (c)