

- Aprendizado não supervisionado
- 2. Clusterização
- 3. K-means
- 4. Referências

Mapa completo: https://storage.ning.com/topology/rest/1.0/file/get/135091853?profile=original

No aprendizado **supervisionado**, os dados de treinamento **possuem rótulos**.

Exemplo:

- Classificação: [0.50, 0.78, 0.32, 0.89, 0.41] ["Bom"]
- Regressão: [0.34, 0.76, 0.48, 0.12, 0.43] [257]

Em muitas situações reais temos que lidar com dados **não supervisionados**, ou seja que **não possuem rótulos**

Por que os dados não possuem rótulos?

- Rotular um grande conjunto de dados pode custar muito tempo, esforço e dinheiro
- Em muitas situações podemos querer descobrir as similaridades ou diferenças entre os padrões existentes nos dados.

Exemplos:

- Seguro: identificar grupo de clientes que acionam sinistros com alta frequência;
- Classificação de documentos;
- Planejamento urbano: identificar grupos de casas conforme valor, tipo e localização;
- Organizar produtos em lojas;
- Detecção de fraudes.

Criando grupos de dados

Clusterização é o **agrupamento** em conjuntos de dados, utilizando **similaridade** baseadas nas **características**.

Clusterização é o **agrupamento** em conjuntos de dados, utilizando **similaridade** baseadas nas **características**.

Clusterização é o **agrupamento** em conjuntos de dados, utilizando **similaridade** baseadas nas **características**.

Clusterização é o **agrupamento** em conjuntos de dados, utilizando **similaridade** baseadas nas **características**.

3. K-means

Algoritmo de clusterização

1. INICIALIZAÇÃO

A primeira etapa consiste em escolher randomicamente K pontos para representar os centróides iniciais.

Uma boa maneira para inicializar os centróides, é utilizar as próprias amostras para criar pontos próximos ao conjunto de dados e esparsos entre si.

2. ATRIBUIÇÃO AOS CLUSTERS

Na segunda etapa, cada dado será atribuído a um cluster, que será o centróide mais próximo de acordo com uma função de distância.

3. ATUALIZAR OS CENTRÓIDES

Após a atribuição dos dados aos clusters, a etapa de atualização consiste em calcular novos centróides. O novo valor de cada centróide será a média de todos os dados pertencentes ao cluster.

4. FINALIZAÇÃO

O algoritmo repete os passos 2 e 3 até não haver mais mudança na atualização dos centróides.

Exemplo

Fonte: http://shabal.in/visuals/kmeans/6.html

Número de clusters

Como escolher o valor de K?

A princípio o algoritmo do K-means parece ser um pouco ingênuo, pois ele divide os dados em K clusters, mesmo que não existam K clusters. Alguns métodos podem ajudar na escolha do valor de K.

Exemplo:

- Método do cotovelo
- Dendrograma

Método do cotovelo

Executar o algoritmo K-means para um intervalo de valores de K (1 ≤ K ≤ 20, por exemplo), para cada valor de K é calculado a soma dos quadrados das distâncias dos dados para o centróide do cluster.

A ideia é analisar a variação intra-cluster para diferentes valores de K, buscando o número ideal da quantidade de clusters.

Colocar a mão na massa!

Regras:

- Codificação Individual
- Pode pesquisar na internet a vontade

Pontuação:

•	Inicializar os centróides	(1 ponto))
•	Função de distância (1 ponto)	

- Calcular o centróide mais próximo ----- (1 ponto)
- Centróide mais próximo para todos os dados -- (1 ponto)
- Métrica de avaliação ----- (1 ponto)
- Atualizar os clusters ----- (1 ponto)
- Algoritmo completo ----- (2 pontos)
- Método do cotovelo ----- (2 pontos)

REFERÊNCIAS

- Doutorando Lucas Cambuim UFPE
 http://www.cin.ufpe.br/~lfsc/cursos/introducaoainteligenciaartificial/IA-Aula12-Clusterizacao.pdf
- Mestrando Felipe Zschornack R. Saraiva UFC
 https://docs.google.com/presentation/d/10SnrYrevdnGF2JoYkles2oBFa-Ttz7cZkgq czH3AzI/edit#slide=id.g1726f0

 5f0e 0 66
- Professor Edirlei Soares de Lima UERJ
 http://edirlei.3dgb.com.br/aulas/ia 2011 2/IA Aula 18 Aprendizado Nao Supervisionado.pdf
- Scikit-Learn Machine Learning in Python https://scikit-learn.org/stable/modules/clustering.html

OBRIGADO!

Dúvidas?

Você pode me encontrar em

- carlos@insightlab.ufc.br
- ► Telegram: @CarlosJun