ISOLDE (Isotope Separator On-line DEvice)

ISOLDE (Isotope Separator On-line)

• Установка ISOLDE – одна из ведущих лабораторий мира по производству и исследованию радиоактивных ядер. ISOLDE входит в состав комплекса ЦЕРН, расположенного на границе между Швейцарией и Францией. Установка работает с момента ее запуска в 1967 году и в настоящее время получает пучки протонов от протонного синхротронного ускорителя (PSB CERN)

Технические характеристики

- Энергии протонов в диапазоне 1-1.4 ГэВ
- Физические исследования проводятся в диапазоне энергий от 10-6 эВ до 3 МэВ на нуклон
- Обеспечивает до 700 изотопически чистых пучков с интенсивностью от 1 до более чем 10¹⁰ ионов/с
- Получено более 1000 изотопов 74 элементов в диапазоне Z от 2 до 89

Принцип работы

• В ISOLDE радиоактивные нуклиды образуются в результате реакций расщепления, деления или фрагментации в толстой мишени, облученной пучком протонов от PSB с энергией 1,4 ГэВ и интенсивностью до 2 мкА. Летучие продукты ядерной реакции выбрасываются из высокотемпературной мишени в ионный источник посредством химически селективных процессов и извлекаются в виде пучка радиоактивных ионов. Наконец, полученные ионы попадают в один из двух масссепараторов, которые на выходе дают крайне интенсивные пучки с высокой изотопной и часто изобарной чистотой

Принцип работы

- Пучок протонов от PSB поступает в зону мишеней
- В ISOLDE используются три различных типа ионных источников: поверхностные, плазменные и лазерные
- ISOLDE имеет два оперативных сепаратора изотопов: сепаратор общего назначения (GPS) и высокого разрешения (HRS)

• Источник поверхностных ионов это простейшая установка для ионизации атомов, образующихся в мишени. Ионизатор состоит только из металлической трубки («линии»), например, из тантала или вольфрама. В зависимости от материала линии она может нагреваться вплоть до 2400°С. Источники поверхностных ионов использовались в сочетании с большинством различных материалов мишеней.

• Источник ионов плазмы используется для ионизации элементов, которые не могут подвергаться поверхностной ионизации. Плазма создается газовой смесью (обычно Ar и Хе), которая ионизируется электронами, ускоряемыми между передающей линией и экстракционным электродом путем подачи анодного напряжения около 130В.

• Для получения изотопов благородных газов установка на ионах плазмы была модифицирована таким образом, что линия передачи между мишенью и газовой плазмой охлаждалась непрерывным потоком воды, чтобы подавить перенос менее летучих элементов и уменьшить с помощью этого механизма изобарическое загрязнение в ионные пучки.

• Лазерный источник ионов под названием RILIS создает ионы внутри мишени поверхностного источника с горячей полостью.

Масс-сепараторы

• Сепаратор общего назначения (GPS) имеет один изгибающий магнит и электростатическое распределительное устройство, позволяющее одновременно извлекать три пучка, разделенных по массе.

Масс-сепараторы

• Сепаратор высокого разрешения (HRS) состоит из двух поворотных магнитов со сложной ионно-оптической системой для коррекции более высокого порядка. Его разрешающая способность по массе превышает 5000.

Постоянные эксперименты:

- COLLAPS
- ISOLTRAP
- IDS
- CRIS
- EC-SLI
- ISS
- LUCRECIA
- MINIBALL
- MIRACLS
- WISArD
- и другие..

COLLAPS (COLlinear LAser SPectroscopy). Его цель исследование свойств основного состояния, таких как спины, электромагнитные моменты и зарядовые радиусы экзотических короткоживущих ядер. Полученные с помощью этого детектора данные дают ценную информацию о связи между нуклонами, о симметрии ядерных волновых функций и, следовательно, о симметрии самого ядерного взаимодействия

• Прецизионные измерения массы выполняются на масс-спектрометре ISOLTRAP с относительной неопределенностью массы, обычно достигающей 10-8. Здесь изучались нуклиды с периодом полураспада менее 100 мс и частотой получения менее 1000 ионов в секунду. Исследуемые нуклиды варьируются от легких систем, таких как ¹⁷Ne, до тяжелых, таких как ²³³Fr

• Аппарат многоионного отражения для коллинеарной лазерной спектроскопии (MIRACLS) предназначен для измерения свойств основного состояния ядер, таких как размер, форма и электромагнитные моменты редких радиоактивных изотопов. Эти свойства извлекаются из измерений сверхтонкой структуры изотопов с помощью лазерной спектроскопии

• Матрица германиевых детекторов высокого разрешения Miniball эксплуатируется в REX-ISOLDE в ЦЕРНе более 10 лет. Эта матрица состоит из 24 шестигранных сужающихся кристаллов германия высокой чистоты в металлической оболочке и была специально разработана для экспериментов с пучками радиоактивных ионов низкой интенсивности (RIB).

- Расширение ядерной карты
- Измерение масс ядер
- Остров инверсии
- ullet Спектроскопия $^{223}_{87}Fr$
- ullet Исследования изменения формы лёгких изотопов Hg
- Кластерная эмиссия
- Структура гало

• Первые систематические исследования структурной эволюции длинных цепочек изотопов благородных газов, щелочных элементов и ртути были выполнены на ISOLDE уже в первые годы работы. С тех пор идет непрерывное техническое развитие комбинаций мишень-ионисточник, дающих доступ к широким областям ядерной карты.

- Высокоточные измерения масс радиоактивных ионов были впервые применены в ISOLDE в эксперименте ISOLTRAP
- Результатом на конец 1980-х годов было более 400 новых или уточненных значений масс радиоактивных изотопов
- Кроме того, успешно измерены изотопы с периодом полураспада до 60 мс

• Эксперименты в CERN, PS, проведенные в семидесятых годах, дали первые признаки структурных изменений в регионе около 31Na (так называемом «острове инверсии»). Многие лаборатории участвуют в продолжающемся выяснении степени структурных изменений. Для изотопов 30-33 Mg, простирающихся далеко за пределы острова внутрь острова, эксперименты в ISOLDE позволили измерить массы, спины, магнитные моменты, скорости Е0-перехода, времени жизни уровней, изучить кулоновское возбуждение, реакции переноса ИТД

Проекты дальнейшего развития

- HIE-ISOLDE (в 2015 запущена первая очередь, в 2018 вторая). Цель: достичь энергии 10 МэВ/нуклон. С предстоящим обновлением HIE-ISOLDE с высокой энергией и интенсивностью возможности для экспериментов с экзотическими ядрами будут еще больше
- RILIS Upgrade увеличение энергии и интенсивности лазера и применение в большем кол-ве экспериментов

Программа экспериментов

Code	Proposal	Title	Spokesperson	Contact person	Status	Code	Proposal	Title	Spokesperson	Contact person	Status
1169	1169	Molecular beams of neutron-rich cerium isotopes for Coulomb-excitation experiments	L. Gaffney	T. Stora	Preparation	IS663	P555	Rotational and Hyperfine Structure of RaF Molecules	Garcia Ruiz, R.F. / Wilkins, S.G.	Wilkins, S.G.	Preparation
1170	1170	Laser spectroscopy measurements on neutron-rich 77–83 Ge isotopes across N = 50 and establishing shape coexistence in 81 Ge via laser spectroscopy (COLLAPS)	X. Yang / M. Bissell	M. Bissell	Preparation	IS690	P597	Reaction studies with neutron-rich light nuclei at the upgraded SEC Device	Borge, M.J.G. / Cederkall, J.	Olaizola, B.	Preparation (HIE-ISOLDE)
						IS670	P564	Development of new rare-earth-free hard magnetic materials	Zyabkin, D. / Schaaf, P.	Schell, J. / Johnston, K.	Preparation
1171	1171	Towards laser spectroscopy of exotic fluorine isotopes	R.F. Garcia Ruiz	R.F. Garcia Ruiz	Preparation	IS691	P598	Collection of 129m,131m,133mXe for the gamma-MRI project	Kowalska, M.	Kulesz, K.	Preparation
1173	1173	Octupole collectivity in 229Pa to guide searches for physics beyond the Standard Model: Extraction rate and beam	G. de Angelis	K. Johnston	Preparation	IS669	P563	Beta decay along the rp-process path for accurate stellar weak-decay rates: 685e and 70Se	Nácher, E. / Algora, A. / Briz, J.A.	Lica, R.	Preparation
1196	1196	composition of 229Pa and 228Th Laser Cooling of Ra ions for Atomic Parity	Willmann, L.	Willmann, L.	Preparation	IS692	P572	Spectroscopy of 8Be: Search for Rotational Bands Above 16 MeV	Gai, M. / Smith, R.	Olaizola, B. / Stora, T.	Preparation (HIE-ISOLDE)
1197	1197	Violation Benchmarking of a Multi Ion Reflection Apparatus for Collinear Laser	Malbrunot-	Malbrunot-	Preparation	l217	1217	Development of neutron-rich Tb beams for a systematic study approaching the doubly mid-shell in Rare-Earth nuclei	Olaizola, B. / Illana, A	Rothe, S. / Mougeot, M.	Preparation
		Spectroscopy of radionuclides	Ettenauer, S.	Ettenauer, S.				Total absorption spectroscopy of neutron-	lkowska, A. / Rubio, B. / Fallot, M. / Fraile, L.	Lica, R.	Preparation
1207	1207	An inelastic excitation study of multiple shape coexistence in 80Zr /	Nara Singh, B.S./ Wadsworth, R.	Gaffney, L.	Preparation	IS693	P559	rich indium isotopes beyond N=82			

Программа экспериментов

На момент декабря 2021 года запланировано или уже проводится около 100 экспериментов совершенно разной направленности:

- Измерение масс изотопов или ионов
- Лазерная спектроскопия ядер и атомов
- Нейтронная эмиссия
- а, β-распад, спонтанное деление тяжелых ионов
- Получение избранных ионов для использования в экспериментах сотрудничающих коллабораций
- И другие

Nuclear moments of germanium isotopes near N = 40

A. Kanellakopoulos , ¹ X. F. Yang , ^{2,1,*} M. L. Bissell, ³ M. L. Reitsma , ⁴ S. W. Bai, ² J. Billowes, ³ K. Blaum , ⁵ A. Borschevsky , ⁴ B. Cheal, ⁶ C. S. Devlin , ⁶ R. F. Garcia Ruiz, ^{7,†} H. Heylen, ⁷ S. Kaufmann, ^{8,9} K. König , ^{8,‡} Á. Koszorús, ^{1,§} S. Lechner , ^{7,10} S. Malbrunot-Ettenauer, ⁷ R. Neugart, ^{5,9} G. Neyens , ^{1,7} W. Nörtershäuser , ⁸ T. Ratajczyk, ⁸ L. V. Rodríguez , ^{5,11,||} S. Sels, ^{7,¶} S. J. Wang, ² L. Xie, ³ Z. Y. Xu, ^{1,#} and D. T. Yordanov , ¹¹

PHYSICAL REVIEW C 100, 014304 (2019)

Mass measurements of neutron-rich isotopes near N = 20 by in-trap decay with the ISOLTRAP spectrometer

P. Ascher, ^{1,*} N. Althubiti, ^{2,3} D. Atanasov, ^{4,†} K. Blaum, ⁴ R. B. Cakirli, ⁵ S. Grévy, ¹ F. Herfurth, ⁶ S. Kreim, ⁴ D. Lunney, ⁷ V. Manea, ^{8,†} D. Neidherr, ⁶ M. Rosenbusch, ⁹ L. Schweikhard, ¹⁰ A. Welker, ¹¹ F. Wienholtz, ¹⁰ R. N. Wolf, ^{4,‡} and K. Zuber ¹¹

Isotope	Half-life (ms)	$r = v_c^{\text{ref}} / v_c^{\text{ion}}$	$ME_{ISOLTRAP}(keV)$	$ME_{AME16}(keV)$	$\Delta_{AME-ISOLTRAP}(keV)$
³³ Mg	90.5(1.6)	0.84707669(19)	4966.2(6.8)	4962.3(2.9)	3.9(7.4)
³⁴ Mg ³⁴ Si	44.9(0.4)	0.87283446(19)	8323.2(6.9)	8323(29)	0.2(29.8)
³⁴ Si	2770(200)	0.872054302(22)	-19991.7(0.8)	-19957(14)	34.7(14.0)
³⁴ Al	56.3(0.5)	0.87252260(8)	-2995.4(2.9)	-3000(3)	4.6(4.2)

Пример измерения масс изотопов в области острова инверсии на эксперименте ISOLTRAP с применением ловушек Пеннинга

Спасибо за внимание