Conditional gradient methods

Task 1

 $\nabla f(X_k)$ - ?

$$f(X) = (1/2)||X - Y||_F^2$$

then
$$f(X) = (1/2)\sum_{i=1}^n \sum_{j=1}^n X_{ij}^2$$
, $\nabla f(X) = X - Y$

Решение задачи LMO

Линейная задача минимизации (LMO):

$$\min \mathbb{V} f(X_k)$$
, $S \mathbb{W}_{S \in B_n} = \min \mathbb{W} X_k - Y$, $S \mathbb{W}_{S \in B_n} = \min tr((X_k - Y)^T S)_{S \in B_n}$

Задача сводится к:

min tr(
$$(X_k^T-Y^T)S)_{S \in B_n}$$

Минимизация $\operatorname{tr}((X_k^T - Y^T)S)$ при $S \in B_n - \operatorname{это}$ задача линейного назначения (linear assignment problem).

Task 2

See implementation in solvation.ipynb

Task 3

See test code in solvation.ipynb

Subgradient method

Task 4

See test code in solvation.ipynb

Set loss function: $f(x) = \|A^{1/2}(x-y)\|_2 - 1 + \|\Sigma x\|_{\infty} - 1$

Gradient of loss function: $\nabla f(x) = 2(A^{1/2})^T A^{1/2}(x - y) + \nabla \|\Sigma x\|_{\infty}$

Where $\nabla f(x) = [0 \dots \sigma_{max} \dots]^T$

Proximal gradient method

Subgradient Method

For a non-smooth convex function f(W), the subgradient update at step k is:

 $W_{k+1} = W_k - \alpha_k g_k$

where:

- $\alpha_k > 0$ is the step size
- $g_k \in \partial f(W_k)$ is any subgradient of f at W_k

Where: $\nabla \|W\|_1 = sign(W)$

 $(\nabla W)_{ij} = sign(W)_{ij} = \{ +1 \text{ if } W_{ij} > 0, -1 \text{ if } W_{ij} < 0, \text{ any value} \in [-1, 1] \text{ if } W_{ij} = 0 \text{ (typically 0)} \}$

Proximal Gradient Method

For a composite function f(W) = g(W) + h(W), where g is convex and differentiable, and h is convex but non-smooth, the update is:

 $W_{k+1} = \operatorname{prox}_{\alpha_k h}(W_k - \alpha_k \nabla g(W_k))$

where

- $\alpha_k > 0$ is the step size
- $prox_{\alpha h}(V) = argmin_W(h(W) + (1/2\alpha)||W-V||_2^2)$ is the proximal operator of h

See code in solvation.ipynb

Stochastic gradient methods

Общий вывод: На сильно выпуклых функциях (MSE c L2):

- 1. SAG и SVRG сходятся линейно, обгоняя SGD
- 2. SVRG предпочтительнее из-за экономии памяти

На выпуклых, но не сильно выпуклых (LogLoss без регуляризации):

- 1. SAG может быть нестабилен (если µ≈0)
- 2. SVRG всё ещё хорош, но требует аккуратного выбора частоты обновления полного градиента
- 3. SGD сходится, но медленно и с большим разбросом

Neural network training

See code && report in solvation.ipynb

Big Models

Setup	# of parameters	GPU peak memory (MB)	Final eval loss	Batch Size	Time to run 5 epochs (s)	Generation example	Comment
Baseline (GPT2)	124M	10101	2.126	8	377.29	A long time ago in a galaxy	
facebook/opt- 125m	125M	6753	1.825	8	365.27	A long time ago in a galaxy	
facebook/opt- 125m	125M	4233	1.745	4	341.27	A long time ago in a galaxy	

See code in solvation.ipynb