

Requirements Engineering & Management

Core Activities – Elicitation II

Prof. Dr. Klaus Pohl

Requirements Engineering Framework

Offen im Denken

Agenda

Offen im Denken

- Kano Classification of Requirements
- 2. Overview of Common Elicitation Techniques
- 3. Interviews
- 4. Workshops
- Assistance Techniques for Elicitation

1. Kano Classification of Requirements

Kano Classification of Requirements

Principle

- According to Kano, <u>requirements and system features</u> should be <u>classified</u> based on their effect on <u>customer satisfaction</u>.
- This classification can be used during requirements elicitation
 - to <u>decide which requirements</u> should be <u>elaborated next</u>.
 - to focus the elicitation activities on one class of customer satisfaction.
 - to establish a good balance of requirements (or system features)
 between the different classes of customer satisfaction.

Offen im Denken

Requirements Categories according to Kano

Requirements artefacts are <u>classified</u> according to their influence on customer satisfaction into:

- <u>Dissatisfier</u> (a must-be requirement)
 - The system <u>must realize</u> this requirement to enable market entry.
 - · Missing one dissatisfier leads to dissatisfaction of the customer.
 - A high degree of fulfilment of requirements classified as dissatisfiers does not guarantee high customer satisfaction.
- <u>Satisfier</u> (a one-dimensional customer requirement)
 - The customer consciously demands the realization in the system.
 - Satisfiers positively influence the degree of customer satisfaction.
 - Not fulfilling a satisfier reduces customer satisfaction (but to a much lower degree than missing a dissatisfier).
- <u>Delighter</u> (an attractive requirement)
 - Customers are not aware of this requirement or do not expect its realization.
 - Customer <u>satisfaction increases disproportionately</u>, if the system realizes delighter.

based on [Kano et al. 1984]

Offen im Denken

Effect of Categories on Customer Satisfaction

based on [Kano et al. 1984]

Offen im Denken

Evolution over Time

based on [Kano et al. 1984, Walden 1993]

Offen im Denken

Evolution over Time – Antilock Braking System

based on [Kano et al. 1984, Walden 1993]

Offen im Denken

Classification Process

- Step 1: Identify a set of requirements to be classified.
- Step 2: Create a questionnaire to determine for each requirement/feature how a potential customer would feel if
 - the requirement is <u>realized</u> in the system
 - the requirement is **not realized** in the system
- Step 3: Analyse the answers and calculate the average values.
- Step 4: <u>Classify</u> each requirement accordingly.

Hints for Elicitation

- Don't miss a dissatisfier!
- Collect a <u>decent set of satisfiers</u> (no problem if you miss a few).
- Make sure to <u>include</u> <u>some delighters!</u>

2. Overview of Common Elicitation Techniques

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

Elicitation Techniques and Assistance Techniques

- Elicitation techniques support
 - the elicitation of existing requirements.
 - the creation of <u>innovative requirements</u>.
 - to <u>elicit requirements sources</u>.

Assistance techniques support the different elicitation techniques, e.g., by developing new ideas or experiencing feature of the future system.

Offen im Denken

Six Common Requirements Elicitation Techniques

Interview

Elicitation of requirements and context information from a stakeholder or a group of stakeholders.

Workshop

A group of stakeholders develops requirements for a system.

Focus Groups

A group of stakeholders focus on a specific item to identify the requirements regarding this item.

Observation

An observer elicits requirements by observing stakeholders or existing systems.

Questionnaire

A stakeholder writes down his requirements by answering predefined questions.

Perspective-based Reading

A stakeholder reads a document from a previously defined perspective, e.g., from the perspective of a user or from the perspective of a tester.

Common Elicitation Techniques

Rough Classification

Offen im Denken

	Effort	Suitable for		
Technique		Identifying requirement sources	Eliciting existing requirements	Developing innovative requirements
Interview	Medium to high	X	X	(X)
Workshop	High to very high	X	X	X
Focus groups	Medium to high		X	X
Observation	High to very high		X	
Questionnaire	Low to medium	X	X	
Perspective-based reading	Medium to high		X	

Offen im Denken

Template for Descripting Elicitation Techniques

Application

- 1. Preparation (common/specific)
 - Necessary actions for preparing the execution of the technique.
- 2. Execution
 - Essentials of performing the technique.
- 3. Follow-Up
 - Necessary actions to be executed after having performed the technique.
- 4. Critical success factors

Key characteristics

- 5. **Benefits** for the requirements engineering activity.
- 6. **Effort** as rough estimation for the application of the technique.

3. Interviews

SSE, Prof. Dr. Klaus Pok

Common Elicitation Techniques

Interview

<u>Goal</u>: Elicit requirements and context information for the system to be developed from <u>a</u> <u>stakeholder</u> or <u>a group of stakeholders</u>.

Three kinds of interviews:

Standardized interview

- The interviewer strictly follows the prepared questions. No additional questions no adjustments of questions during the interview.
- Collect opinions from many stakeholders concerning the same issue; results are easier to compare due to standardized question.

Exploratory interview

- The interviewer might deviate from the prepared questions, e.g., for a further enquiry regarding some answers of the interviewee.
- Results from different exploratory interviews are difficult to compare.

Unstructured interview

- Typically no detailed questions are prepared.
- The interviewer freely asks broad questions.
- The interviewee should lead the conversation.
- Results are very difficult, if not impossible, to compare.
 Well suited for exploratory settings.

Offen im Denken

Interview – Preparation (1)

1. Define the goal of the interview

 Explicitly define the goal of the interview including the type(s) of requirements to be elicited.

2. Select and invite participants

- Choose the participants based on the goal of the interview considering all perspectives on the requirements engineering context.
- Invite participants in due time.
- <u>Communicate the goal</u> and rationale of the interview <u>to the</u> <u>participants</u> in the invitation.

3. Choose the interview location

- Choose a location providing an <u>undisturbed environment</u>.
- For group interviews, the location should offer sufficient space.

Offen im Denken

Interview – Preparation (2)

4. Define the interview questions

- <u>Closed questions</u>: For each question, different response options are provided. The interviewee can choose one or multiple responses.
- Open questions: There are no prepared responses. The interviewee freely answers to the questions.
- Use open as well as closed interview questions.
- Put the questions into a context as concrete as possible.
- Avoid leading questions suggesting an answer of the interviewees.

5. Prepare for the interviews

- Get familiar with the interview partners, e.g., personal characteristics, their role in the organization, their knowledge and responsibilities.
- Understand the <u>terminology of the interview partners</u>.
- For group interviews, establish a <u>common understanding</u> of the <u>interview</u> <u>questions</u> among the participants.

Offen im Denken

Interview – Execution (1)

1. Introduction

- At the beginning, summarize the goal and rationale of the interview.
- Provide additional information beyond the one provided in the invitation (if possible).
- Start the interview with an <u>introductory question</u>.

2. Main activities

- Provide a summary of the collected information to validate the information with the interviewee. Clarifying unclear issues.
- In <u>exploratory</u> and unstructured interviews, <u>create models and/or scenarios</u> during the interview in order to <u>validate and consolidate</u> the elicited information with the interviewee.
- Pay attention to the <u>non-verbal communication</u>.
- Take <u>regular breaks</u> (approximately every 45min).
- Do not wander off the topic.

Offen im Denken

Interview – Execution (2)

2. Main activities (cont.)

- Document the results of the interview appropriately. Use an additional minute-taker, especially for important interviews.
- Avoid the groupthink effect, i.e. avoid that less dominant participants due (prematurely) agree with more dominant participants' suggestions.

3. Wrap-up

- Sum up the elicited knowledge and check again if you understood the interviewees statements correctly.
- <u>Value the contributions of the interviewee</u> and express your gratitude. Among others, this increases their contribution to further enquiries and the likelihood of their availability.

Interview - Follow-up

- Finalize the interview minutes.
- <u>Document</u> the interview results and the <u>elicited requirements</u> according to the <u>documentation guidelines</u>.
- If required, revise the created models and scenarios.
- Organize open issues in a to-do list.
- Distribute the results to the interviewees.
- Ask the <u>interviewees</u> to check and <u>confirm the results</u>.
- Identify and document conflicts in the interview results.

Offen im Denken

Interview – Critical Success Factors (1)

- Communication skills of interviewer
 - Experiences requirements engineers and those trained in communication are generally able to elicit more information.
- Avoidance leading questions
 - The interviewer should pose the question without suggesting the interviewee's answers.
- Clearly <u>defined goals and expected results</u>
 - The goal and expected results of the interview must be communicated to the interviewees.

24

Offen im Denken

Interview – Critical Success Factors (2)

Common Terminology

- The interviewer should be familiar with the terminology of the interviewee.
- Ambiguities or conflicts in terminology should be immediately identified and resolved during the interview.
- Getting to know the interview partners
- Avoidance of groupthink effect in group interviews
 - Consider interviewing the less dominant stakeholders separately from the more dominant stakeholders.

D_EU_EI_ES_EB_NU R G

Offen im Denken

Interview – Benefits

Eliciting existing requirements

- Interviews are well suited to elicited requirements of a (larger) group of stakeholder, especially if their views differ or if conflicts between stakeholders exists. In such cases, performing interviews before running an elicitation workshops, has proven useful.
- During interviews, goals and scenarios may be collectively developed and solutionoriented requirements might be derived from the goals and scenarios.

Identification of requirements sources

Requirements sources can be elicited in addition to requirements by using a checklist or appropriated questions.

Developing innovative requirements

- <u>Interviews are not</u> primarily <u>intended</u> for developing innovative requirements. However, by using skilful (open) questions and by confronting the interviewee with early solution ideas innovative requirements can surface as well.
- During group interviews, innovative requirements may result from discussions between the participants.

Interview – Effort

Offen im Denken

- Overall: Medium to high
- Depending on
 - number of interviewees (group size)
 - question style (open/closed)
 - way of taking minutes
 - Effort required for follow-up activity depends on
 - the type of interview and
 - the way of in which the minutes are taken

4. Workshops

Offen im Denken

Workshop

Goal: Elicit and develop requirements with <u>a group of</u> <u>stakeholders</u>.

- In workshops requirements are jointly developed, validated, detailed and prioritized by a group of stakeholders.
- There is <u>no standardized procedure</u> for conducting a workshop session. Each workshop session is <u>designed according to its</u> <u>purpose</u>
- A Workshop is typically <u>supported using assistant techniques</u>.
- A well prepared and well conducted workshop is a very successful technique for eliciting existing and developing innovative requirements.

Offen im Denken

Workshop - Preparation (1)

1. Define the workshop goal

Explicitly define the goal of the workshop.

2. Define work results and a work procedure

- Define the intended types of results explicitly.
- Define the workshop procedure. Choose appropriate assistance techniques.
- Briefly sketch the workshop procedure in the agenda.
- Reserve time for <u>regular breaks</u>.

3. Choose participants, invite participants, and agree on the goal

- Select <u>5-15 participants</u> based on the workshop goal.
- Ensure a representative selection of participants from all <u>relevant perspectives on the</u> requirements engineering context.
- Send out the invitation approximately 4 6 weeks before the workshop.
- Provide <u>sufficient background material</u>.
- Inform the participants about the <u>status</u> and the rationale of the <u>development of the system</u> as well as the <u>intended use of</u> the workshop <u>results.</u>

Offen im Denken

Workshop - Preparation (2)

4. Choose a workshop location

- Chose an adequate room which accommodates all participants and provides an <u>undisturbed</u> <u>working environment</u>.
- Ensure the availability of <u>appropriate technical equipment</u> (whiteboard, projector, flipchart, etc.)

5. Appoint a moderator

- The moderator
 - shall be able <u>detect conflicts</u> between the participants' views and support the participants in resolving these conflicts.
 - should ensure that the <u>activities</u> executed <u>contribute to</u> attaining the workshop <u>goal</u>.
 - should be accepted by all participants as an authority.
 - should be neutral.
- Conflicts and contradictions that surface in a workshop should be regarded as opportunities for developing innovative ideas and solutions.
- Invite an external moderator, if possible.

6. Appoint a minute-taker

Appoint an external minute-taker (preferably someone with the necessary expert knowledge), if possible.

Offen im Denken

Workshop – Execution (1)

1. Introduction

- Present the workshop goal, the expected results and the agenda at the beginning of the workshop.
- Allow for a <u>discussion of</u> the workshop <u>goal</u>, the <u>expected results</u> and the agenda.
- Explain the assistance techniques to be applied during the workshop.
- Define and present the conversation rules for the workshop.
- Let the participants vote on each rule.

2. Main activities

- The moderator should ensure that the
 - participants <u>adhere to the agenda</u>.
 - participants <u>follow the conversation rules</u>.
- The minute-taker is responsible for documenting all intermediate and final results.
- Pay attention to <u>documenting conflicts</u> identified during the workshop.
- If possible, try to <u>resolve conflicts using negotiation techniques</u> (e.g. Win-Win approach).
- Document decision explicitly.

Offen im Denken

Workshop – Execution (2)

3. Wrap-up

- Ensure that all <u>open issues are documented</u>.
- Define, if possible, a <u>procedure</u> for <u>resolving</u> each <u>open issue</u>.
- <u>Collect feedback</u> of the participants about the workshop (positive, negative, improvements).
- Thank all participants for their contributions and commitments.

Offen im Denken

Workshop - Follow-up

- Consolidate the results of the workshop.
- Organize open issues in a to-do list.
- Organize <u>detected conflicts</u> and arguments in a conflict lists.
 Initiate actions to resolve the conflicts.
- <u>Distribute</u> the original <u>workshop results</u> (including intermediate results) together with the consolidated results to the participants.
- Ask each <u>participant</u> to <u>approve</u>
 - the original workshop results.
 - the **consolidated** work **results**.

Offen im Denken

Workshop – Critical Success Factors (1)

An excellent moderator is key for a successful workshop.

- Recognition of strength and weaknesses of individual participants.
- Skilfully involving the participants.
- Detection and mediation of conflicts.

Avoid the groupthink effect.

Undisturbed and creative workshop location

- Interruptions should be excluded as far as possible, e.g., choose a location outside the participants' workplace.
- The location should support the participants' creativity.
- The right equipment e.g. flipcharts or whiteboards is essential.

Offen im Denken

Workshop - Critical Success Factors (2)

Inviting the "right" participants:

Expertise

Participants must possess the right expertise with respect to the workshop goal.

Context coverage

A stakeholder relevant from each perspective on the requirements engineering context should participate.

Motivation

Participants should be motivated to contribute to the workshop goals.

Decision-making authority

The participants should have the decision-making power to decided about the requirements for the desired system.

Soft skills

The participants should have good social skills. Social skills have an impact on the workshop results.

D_U_I_S_B_U R G

Offen im Denken

Workshop – Benefits

- Workshops typically produce substantial results in terms of
 - Development of innovative requirements, e.g. using brainstorming, 100-dollar-tests, etc.
 - Identification of requirements sources, e.g. using brainstorming
 - Elicited existing requirements, e.g., using iterative goal-scenario refinement in sub-groups.
 - Alignment and understanding of different expectations about the system.
 - Contribution to <u>team-building</u>.
 - Detection of <u>conflicts</u>.
 - Consensus reached.
- Splitting up in **smaller sub-group increases the effectivity** and facilitates the parallel development of different viewpoints or alternatives.

Offen im Denken

Workshop – Effort

High to very high

- Man-hours spend during the workshop (duration of workshop multiplied by number of participants).
- Additional preparation and follow-up effort.
- External moderator; dedicated minute-taker.
- The high effort is often justified by
 - substantial results,
 - contribution to <u>team-building</u>,
 - consensus reached
 - alignment and <u>understanding of expectations</u> about the system of different stakeholders.

38

5. Assistance Techniques for Elicitation

Assistance Techniques for Requirements Elicitation

Offen im Denken

Brainstorming

Creativity technique performed with a group of stakeholders to generate a large number of potentially new/innovative ideas/requirements.

Prototyping

Prototypes allow the stakeholders to experience how the future system would look like, i.e. the experience a potential realization of their requirements.

KJ method

Supports a group of stakeholder in developing new/innovative ideas by sketching ideas on file cards and grouping the cards.

Mind mapping

Allows a easy to comprehend, structured presentation of information in graphical and textual form.

Elicitation checklists

Document relevant items for a given purpose as questions or statements to support the stakeholders (e.g., requirements source checklists, Osborn checklist to support creativity).

Offen im Denken

Assistance Techniques for Requirements Elicitation

Technique	Effort	Suited for		
		Identifying requirement sources	Eliciting existing requirements	Developing innovative requirements
Brainstorming	Very low	X		X
Prototyping	Depending on realization technology		X	X
KJ method	Very low	X	X	(X)
Mind mapping	Very low	X	X	X
Checklists for elicitation	Very low	X	X	Χ□

Offen im Denken

Brainstorming

Goal: Generate a large number of potential new/innovative ideas and requirements

- Brainstorming is a **creativity technique**.
- Brainstorming is performed with <u>a group of stakeholders</u> (e.g., during a workshop).

Offen im Denken

Brainstorming – Preparation

- **<u>Define</u>** the <u>**subject</u></u> or problem.</u>**
- <u>Select</u> the <u>stakeholders</u> according to the brainstorming goal or subject – consider <u>all perspectives of the requirements engineering</u> context.
 - If appropriate, <u>focus</u> the brainstorming on <u>one perspective</u> of the requirements engineering context at a time to reduce complexity.
- Reserve a suitable room.
- Invite the participants.
- Provide visualization media.
- Appoint a moderator (not contributing to the brainstorming itself).
- Appoint a <u>minute-taker</u> to immediately record the results during the brainstorming.
- To <u>facilitate synergy</u> effects the <u>results</u> should be <u>visible to all</u> participants immediately.

ESSEN

Offen im Denken

Brainstorming – Preparation

- The moderator should <u>explain</u> the <u>goal</u> of the session.
- Make the goal of the session <u>clearly visible in the room</u>.
- Present and explain the brainstorming rules to the stakeholders:
 - 1. **Quantity** over quality.
 - 2. Free association and visionary thinking are explicitly desired.
 - 3. Taking on and combining expressed ideas is allowed and desired.
 - 4. <u>Criticizing</u> other participants' ideas <u>is forbidden</u> even if an idea seems to be absurd.
 - 5. Questions for clarification are allowed.
 - 6. Don't stop the session if there is a long-lasting deadlocks (30-60 seconds). Stimulate the participants and <u>overcome at least two long-lasting deadlocks</u>.
 - 7. Wait until the brainstorming comes to a natural end.
- Let the stakeholders vote on the rules.
- If during the brainstorming a participant breaks a rule, the moderator should remind [Osborn 1948] [2] the participants of the brainstorming rules.

Offen im Denken

Brainstorming – Follow-up

- Go through the collected ideas and <u>allow clarification questions</u> (no discussions).
- The group <u>categorizes</u> the <u>collected ideas</u>:
 - Usable ideas.
 - Not-decided category, i.e. ideas which need to be worked on to decide if useable or not.
 - **Unusable** ideas.
- Discard unusable ideas.
- Define how to proceed with the usable and not-yet decided ideas.
- Create the <u>minutes</u> to <u>document the ideas</u> and the <u>procedures for further processing</u> of the ideas.
- **<u>Distribute</u>** the <u>minutes</u> to the participants.
- Collect their <u>feedback</u> to the minutes.

Offen im Denken

Brainstorming – Critical Success Factors

- Adherence to the <u>brainstorming rules</u>.
- Focus on ONE subject in each brainstorming session
- Contributions from shy people.
- Number of participant (small groups of approximately 5-8 participants)
- Succinct description of ideas
 - Facilitates the creation of ideas by reducing the time for listening (and thus blocks the long-term memory and stimulates creativity).

Brainstorming – Benefits

- Simple, <u>cheap and effective</u> creativity technique.
- <u>Stimulates the generation</u> of new/innovative ideas and requirements.
- Well suited for <u>identifying</u> potentially relevant <u>requirements</u> <u>sources</u>.
- Not well suited for eliciting existing requirements.
- Broad brainstorming subject creates <u>leeway for creativity</u>, i.e. supports the identification of potential relevant goals.
- Narrow subjects support generation of solution ideas.
- The brainstorming can focus on one specific perspective of the requirements engineering context or on one specific type of requirements source.

Brainstorming – Effort

- Very low
 - No substantial activities for the preparation or follow-up.
 - Little time required for execution.

100 2110 N N N 2110 D

Summary

Offen im Denken

- The Kano classification categorizes requirements based on the impact on user satisfaction. Requirements differ in their impact on user satisfaction!
- Common elicitation techniques are used to elicit existing requirements and to develop innovative requirements. They are supported by specific assistance techniques.
- Interviews (standardized, exploratory or unstructured) are well suited to elicit requirements and context information for the system to be developed from a stakeholder or a group of stakeholders.
- A workshop is an appropriate technique for eliciting existing and developing innovative requirements.
 - There is no standardized procedure for conducting a workshop session. Each workshop session is designed according to its purpose.
- Assistance techniques, such as brainstorming, are used to support elicitation techniques.
- Brainstorming is a creativity technique, performed with a group of stakeholders (e.g., during a workshop) to generate a large number of potential new ideas/requirements.

Prof. Dr. K. Pohl

Literature

Offen im Denken

[Go	ttesd	liener	2002]

E. Gottesdiener: Requirements by Collaboration – Workshop for Defining Needs. Addison-Wesley, Reading, 2002.

[Kano et al. 1984]

N. Kano, S. Tsuji, N. Seraku, F. Takahashi: Attractive Quality and Must-Be Quality (in Japanese). Journal of the Japanese Society for Quality Control, Vol. 14, No. 2, 1984, pp. 147-156.

[Kawakita 1975]

J. Kawakita: The KJ Method – A Scientific Approach to Problem Solving. Technical Report, Kawakita Research Institute, Tokyo, 1975.

[Leffingwell and Widrig 2000]

D. Leffingwell, D. Widrig: Managing Software Requirements – A Unified Approach. Addison- Wesley, Reading, 2000.

[Maiden et al. 1995]

N. A. M. Maidden, P. Mistry, A. G. Sutcliffe: How People Categorise Requirements for Reuse: a Natural Approach. In: Proceedings of the 2nd IEEE Symposium on Requirements Engineering, IEEE Computer Society, Los Alamitos, 1995, pp. 148-155.

[Maiden 2009]

N. Maiden: Card Sorts to Acquire Requirements. IEEE Software, Vol.2 6, No. 3, 2009, pp. 85-86.

[Oppenheim 1999]

A. N. Oppenheim: Questionnaire Design, Interviewing and Attitude Measurement. 2nd edition, Leicester University Press, 2000.

[Osborn 1948]

A. F. Osborn: Your Creative Power – How to use Imagination. Charles Scribner's Sons, New York, 1948.

[Walden 1993]

D. Walden (Ed.): Kano's Methods for Understanding Customer-defined Quality. Center for Quality Management Journal, Special Issue, Vol. 2, No. 4, 1993.

Literature for Further Reading

Offen im Denken

[Buzan and Buzan 2006]	T. Buzan, B. Buzan: The Mind Map Book – Full Illustrated Edition. BBC
	Active, 2006.

[Hammersley and Atkinson 2007] M. Hammersley, P. Atkinson: Ethnography – Principles in Practice. 3rd edition, Routledge, London, 2007.

[Kuniavsky 2003] M. Kuniavsky: Observing the User Experience – A Practitioner's Guide to User Research, Morgan Kaufmann, San Francisco, 2003.

[Maiden and Robertson 2005] N. Maiden, S. Robertson: Integrating Creativity into Requirement Processes - Experiences with an Air Traffic Management System. In: Proceedings of the 13th IEEE International Conference on Requirements Engineering (RE'05), IEEE Computer Society Press, Los Alamitos, 2005, pp. 105 - 116.

[Marakas 2002] G.M. Marakas: Decision Support Systems in the 21st Century. 2nd edition, Prentice Hall, New Jersey, 2002.

[Sharp et al. 2007] H. Sharp, Y. Rogers, J. Preece: Interaction Design: Beyond Human-Computer Interaction. 2nd edition, John Wiley & Sons, West Sussex, 2007.

[Zowghi and Coulin 2005] D. Zowghi, C. Coulin: Requirements Elicitation – A Survey of Techniwues, Approaches and Tools. In: A. Aurum, C. Wohlin (Eds.): Engineering and Managing Software Requirements. Springer, Berlin, Heidelberg, New York, 2005, pp. 19-46.

Image References

Offen im Denken

- [1] Licensed by http://www.iconshock.com/
- [2] Provided by Microsoft Office

Legend

D Definition

E Example

Requirements Engineering & Management

Vielen Dank für Ihre Aufmerksamkeit

