Technical Feasibility Analysis (기술적 타당성 분석)

1. 필요 기술 식별

1.1 하드웨어 및 장비 관련 기술

기술 분류	세부 기술	난이도	비고
환경 인식 및 자율 경 로 탐색	LiDAR/Depth Camera 기반 3D 시각 생성		대체 가능성 추가 고 려 중.
	IMU, 센서 데이터 수집	**	지질에 따른 데이터 부족
	객체 감지 (YOLO)		Edge에서의 경량 모 델 필요
	경로 탐색 및 회피 (A*, Dijkstra 등)		

1.2 제어 시스템 기술

기술 분류	세부 기술	난이도	비고
보행 가이드 제공	진동 모터 제어 (Arduino, PWM)		
	음성 안내 출력 (TTS, 오디오 파일)	☆	Python 오픈소스 라이 브러리 활용 가능

1.3 모드 전환 및 동적 처리 기술

기술 분류	세부 기술	난이도	비고
모드 전환	센서데이터 분석	***	데이터 처리 추가 학 습 필요
	모터 드라이버 제어 (PWM, 속도/방향)	***	

1.4 네트워킹 및 데이터 처리 기술

기술 분류	세부 기술	난이도	비고
군중 밀집 회피	카메라 기반 군중 탐 지		Edge에서의 처리 시 리소 스 부담가능성 고려 필요
	군중 밀집도 계산법 예측	*****	데이터 획득 모델 학습 난이 도 높음

1.5 엣지-클라우드 시스템 기술

기술 분류	세부 기술	난이도	비고
엣지-클라우드 하이 브리드	Edge ↔ Cloud 데이 터 전송 (MQTT, REST API)	***	네트워크 환경 의존
	DB 저장 및 분석		
	모델 업데이트 (MLOps 기초)		자동화된 수준 업데이 트로 단순화 필요

1.6 대시보드 및 관리 시스템

기술 분류	세부 기술	난이도	비고
대시보드 및 관리	Flask/FastAPI 기반 서 버	**	팀 경험 보유
	React.js 기반 시각화		프론트엔드 경험 보유 Grafana 기반 활용 예 정

2. 기술 확보 진단

2.1 팀 보유 기술 현황

- 상 (4-5☆):
- **중상 (3☆)**: 객체 감지, 보행 패턴 분석, 모터 제어, 클라우드 통신, 관리시스템 구현
- 중 (2☆): 센서 데이터 처리, 경로 탐색, 하드웨어 제어, 서버/DB

하 (1☆): 음성 출력 시스템

2.2 기술 확보 방안

단기 확보

- 객체 탐지 최적화: 기존 YOLO 모델을 Edge 환경에 최적화
- 기본 경로 탐색: A* 알고리즘 구현

중장기 확보

- 고급 센서 융합: LiDAR + 카메라 데이터 통합 처리
- 실시간 군중 밀집도 분석: 머신러닝 모델 학습 및 최적화
- 모바일 앱 개발: React Native 기반 사용자 인터페이스

2.3 주요 해결 방안

기술적 문제점 및 해결책

- 1. Edge 컴퓨팅 성능 한계
 - 해결방안: 경량화된 모델 사용 (YOLO-tiny, MobileNet 등)
 - 엣지-클라우드 하이브리드 처리로 복잡한 연산 분산

2. 실시간 처리 지연 문제

- 해결방안: 멀티스레딩을 통한 센서 데이터 병렬 처리
- 우선순위 기반 작업 스케줄링 적용

3. 하드웨어 통합 복잡성

- 해결방안: 단계적 프로토타입 개발 (센서별 개별 테스트 후 통합)
- Arduino/Raspberry Pi 기반 모듈화 설계

4. 군중 밀집도 데이터 부족

- 해결방안: 시뮬레이션 데이터 생성 및 공개 데이터셋 활용
- 단순화된 밀집도 계산법 우선 적용