

Rank

Leaderboard

All Competitions > Week of Code 35 > Triple Recursion

Triple Recursion

Problem

Submissions

Leaderboard

Discussions

Your submission will run against only preliminary test cases. Full test cases will run at the end of the day.

You are filling a matrix by following a set of rules. Given a square matrix of size $n \times n$, where (0,0) is its upper-left cell and (n-1,n-1) is its bottom-right cell, fill all the cells according to the following rules:

Value of a[i][j] is defined recursively as follows:

- if i=0 and j=0 then a[i][j]=m
- ullet else if i=j then a[i][j]=a[i-1][j-1]+k
- else if i > j then a[i][j] = a[i-1][j] 1
- ullet else, if i < j, then a[i][j] = a[i][j-1]-1

In other words, given integers m and k, the matrix is filled by putting m in the upper-left cell, and then every other cell (i, i) on the main diagonal of the matrix is filled with the value a[i-1][j-1]+k. Remaining cells of the matrix are filled according to the two other recursive rules defined above.

For example, for n=4, m=3, k=1, the matrix will be:-

3 2 1 0

2 4 3 2

1 3 5 4

0 2 4 6

The task is to print the matrix after all its cells are filled with values.

Input Format

In the first and only line of the input, there are $\bf 3$ space-separated integers $\bf n$, $\bf m$, and $\bf k$, where $\bf n$ is the size of the matrix and both $\bf m$ and $\bf k$ denote values used in the recursive definition in the statement.

Constraints

- $4 \le n \le 100$
- $5 \le m \le 100$
- $2 \le k \le 50$

Output Format

Output the matrix with exactly n lines. In the i^{th} line, print n space-separated integers denoting the i^{th} row of the matrix with all cells filled with appropriate values.

Sample Input 0

5 10 7

Sample Output 0

```
10 9 8 7 6
9 17 16 15 14
8 16 24 23 22
7 15 23 31 30
6 14 22 30 38
```

Explanation 0

See the color-coded illustration below for the right answer:

Sample Input 1

6 5 2

Sample Output 1

```
5 4 3 2 1 0
4 7 6 5 4 3
3 6 9 8 7 6
2 5 8 11 10 9
1 4 7 10 13 12
0 3 6 9 12 15
```

Explanation 1

See the color-coded illustration below for the right answer for the 6×6 matrix:

f in

Contest ends in 4 days

Submissions: 6099

Max Score: 18

Difficulty: Easy

Rate This Challenge:

☆☆☆☆☆

```
Current Buffer (saved locally, editable)  

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
class Solution {

static void tripleRecursion(int n, int m, int k) {

// Complete this function
```

Run Code

Submit Code

1 Upload Code as File

Test against custom input

```
9
10
        static void Main(String[] args) {
11 ▼
12
            string[] tokens_n = Console.ReadLine().Split(' ');
            int n = Convert.ToInt32(tokens_n[0]);
13 ▼
            int m = Convert.ToInt32(tokens_n[1]);
14 ▼
            int k = Convert.ToInt32(tokens_n[2]);
15 ▼
16
            tripleRecursion(n, m, k);
17
        }
18
   }
19
                                                                                                                 Line: 1 Col: 1
```

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature