Random Assignment and Experiments

POST 8000 – Foundations of Social Science Research for Public Policy

Steven V. Miller

Department of Political Science

Goal for Today
Elaborate on the 'gold standard' for causal inference research, with its benefits and limitations.

Observational vs. Experimental Research

Observational research: involves a comparison of units subjected to different treatments.

• More common, more flexible. But difficult to isolate causal effects.

Experimental research: units under study are randomly assigned to treatments.

satisfies key questions about observational research design

Experiments

Experiments are more effective at addressing causality.

- Want to explain social phenomena like medical researchers testing therapeutic care.
- Satisfies insights from Rubin's potential outcomes framework
- Researcher control over conditions isolates confounding systematic factors.
- Random assignment isolates systematic differences from random differences.

Random Assignment and Causal Inference

Random assignment (e.g. coin-flipping) means each unit has same chance to be in particular group (e.g. control or treatment).

- All groups are equal in expectation, beyond treatment(s).
- Control group behaves as treatment group(s) without treatment, as counterfactual.
- Various tests (e.g. t-test) can assess differences between control and treatment(s).

The Utility of Experiments (Roth, 1995)

- 1. "Speaking with theorists": provides an experimental test for a theoretical model.
- 2. "Searching for facts": generates new data to explore aspects of previous experiments.
- 3. "Whispering in the ears of princes": isolates causal effects, certainly of interest to policymakers.

Types of Experiments

There are numerous ways of assessing causal effects. One typology:

- 1. "Between subjects": units randomly assigned to distinct treatment/control groups.
- 2. "Within subjects": units observed before and after receiving a treatment.

Validity Concerns

Experiments ideally maximize internal validity, if (possibly) at the expense of external validity.

Internal Validity

Internal validity: stimulus faithly administered, as implemented in the design. Concerns:

- Noncompliance
- Attrition

External Validity

External validity: results generalizable from the "lab" to the "real world." Concerns:

- Convenience sampling (esp. college students)
- Hawthorne effect

Types of Experiments

Experiments are super-flexible. Some types you'll encounter:

- Lab experiments
 - Maximize internal validity, prioritized over external validity
 - Typically prone to convenience sampling.

2. Survey experiments

- Balance internal/external validity concerns
- Typically higher *n* with more representativeness
- Concerns: spillover, less agency over treatment

3. Field experiment

- Same pros/cons as survey experiments, but with typically less control over treatment administration.
- Cons (spillover, treatments) even more pronounced

4. Natural experiment

- i.e. an exogenous shock to a panel design
- 5. Quasi-experiment
 - Treatments/controls with no randomization, or control over the treatment.

Discussion

- 1. What's more important: internal or external validity?
- 2. Think of your research: what type of experiment is feasible for you? What would it look like?

Table of Contents

Random Assignment and Experiments

Introduction

Observational vs. Experimental Research

Validity Concerns

Types of Experiments

Discussion