PROJECT WEEK 3 DATA ANALYST IRONHACK Edwin Pitono

Web Scraping Yahoo Finance

The idea here is to scrap financial data from Yahoo Finance website (I chose page the most active stocks) and try to answer a question

```
Entrée [3]: # first things first. I found out that the website uses API POST. S
import requests as r
import time
import pandas as pd
```

Entrée [4]: link='https://query1.finance.yahoo.com/v1/finance/screener?crumb=00

```
Entrée [5]: # The pagination is located at the payload. I put time sleep 3 seco
            datas=pd.DataFrame()
            for i in range(0,9125,25):
                headers="""accept: */*
            accept-encoding: gzip, deflate, br
            accept-language: en-GB,en-US;q=0.9,en;q=0.8,fr;q=0.7
            cache-control: no-cache
            content-length: 566
            content-type: application/ison
            cookie: APID=UPd136432b-66b5-11eb-8c62-0291f2e222b6; B=1rmigl5g0u7k
            origin: https://finance.yahoo.com
            pragma: no-cache
            referer: https://finance.yahoo.com/most-active?count=25&offset=25
            sec-fetch-dest: empty
            sec-fetch-mode: cors
            sec-fetch-site: same-site
            user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_1) AppleWeb
                payload="""{"offset":"""+str(i)+""","size":25,"sortField":"dayv
                headers= dict(i.split(': ') for i in headers.split('\n'))
                resp=r.post(link, headers=headers, data=payload)
                data=resp.json()['finance']['result'][0]['quotes']
                pd.DataFrame(data)
                print(i," datas are scrapped")
                datas=datas.append(data)
                print("data appended")
                time.sleep(3)
            print("Done!")
            uata appenaca
            8900 datas are scrapped
            data appended
            8925 datas are scrapped
            data appended
            8950 datas are scrapped
            data appended
            8975 datas are scrapped
            data appended
            9000 datas are scrapped
            data appended
            9025 datas are scrapped
            data appended
            9050 datas are scrapped
            data appended
            9075 datas are scrapped
            data appended
            9100 datas are scrapped
            data appended
            Done!
```

```
Entrée [72]: datas[datas['symbol']=='MRO'].iloc[:,0:20]
    Out [72]:
              TwoWeekRange fiftyDayAverageChange averageDailyVolume3Month firstTradeDateMilliseconds
                              {'raw': 1.2718182, 'fmt':
                    3.02 - 9.8
                                                                                     138600000.0
                                                                28389240
                                           '1.27'}
Entrée [19]: datas[datas['symbol']=='SABR']
    Out [19]:
              ıguage earningsTimestampEnd regularMarketDayRange epsForward regularMarketDayHigh
                          {'raw': 1620649800,
                                            {'raw': '13.08 - 14.805',
                                                                              {'raw': 14.805, 'fmt':
                                                                {'raw': 0.22,
               en-US
                          'fmt': '2021-05-10',
                                              'fmt': '13.08 - 14.81'}
                                                                'fmt': '0.22'}
                                                                                       '14.81'}
                                   'long...
 Entrée [ ]: #Since we find that many columns has 'raw' and 'fmt', we want to ke
               subset = datas['trailingAnnualDividendYield'].copy()
               mask = subset.isna()
               subset.loc[~mask] = subset.loc[~mask].apply(lambda x: x.get('raw'))
               datas['trailingAnnualDividendYield'] = subse
Entrée [55]: columns, I select some columns that would be useful for the research
               'displayName', 'market', 'regularMarketPrice', 'regularMarketDayRange'
```

project Edwin - Jupyter Notebook 22/02/2021 13:59

Entrée [80]: newdata

Out[80]:

									52 W
	Symbol	Stock Name	Country	Market Price	Day Price Range	PE Ratio	marketCap	Dividend Yield	P Ra Cha
0	SNDL	Sundial Growers	us_market	1.530	1.22 - 1.71	NaN	2388865536	NaN	10.086
1	RMM.L	NaN	gb_market	0.340	0.305 - 0.3485	NaN	36326280	0.0222222	0.691
2	VAST.L	NaN	gb_market	0.116	0.1113 - 0.1198	NaN	24708580	NaN	0.183
3	002002.SZ	NaN	cn_market	3.510	3.34 - 3.57	12.4468	9627473920	0.0178042	0.285
4	UJO.L	NaN	gb_market	0.160	0.155 - 0.1687	NaN	31705438	NaN	1.138
21	CMS.DE	NaN	de_market	18.900	18.9 - 18.9	8.76217	2331598336	0.0253968	0.861
22	6RS.SG	NaN	dr_market	27.400	27.4 - 27.4	20.3415	2119129600	NaN	0.256
23	TZ6.SG	NaN	dr_market	11.200	11.2 - 11.2	NaN	6680766464	NaN	0.866
24	KSD.F	NaN	dr_market	11.666	11.666 - 11.666	NaN	2517662976	NaN	0.143
0	DPR.F	NaN	dr_market	16.500	16.5 - 16.5	71.1207	2796106240	0.0059375	0.571

9101 rows × 13 columns

```
Entrée [82]: newdata.Country.unique()
```

Out[82]: array(['us_market', 'gb_market', 'cn_market', 'jp_market', 'de_mar ket', 'fr_market', 'dr_market'], dtype=object)

Entrée [79]: | #Then I changed the column names so that they become more comprehen newdata = newdata.rename(columns={'regularMarketPrice': 'Market Pri

Transfering to Mysql

so I created a new database called yahoo_finance in dbeaver