

D. Make Them Meet

Problem Name	makethemmeet
Time Limit	9 seconds
Memory Limit	1 gigabyte

Мила и Лаура давно дружат по переписке, но никогда ещё не встречались в реальной жизни. Сейчас они обе участвуют в одном и том же мероприятии, а значит, обязательно встретятся. Однако отель, в котором они остановились, очень большой и запутанный. Поэтому спустя несколько дней они так и не смогли встретиться друг с другом.

Отель состоит из N номеров. В каждом номере есть лампа, которая может менять цвет. Вы нашли комнату, в которой есть переключатели, позволяющие менять цвета ламп в любой комнате. Ваша цель — провести Милу и Лауру с помощью ламп, чтобы они наконец встретились.

Отель можно представить в виде графа с N вершинами (номерами) и M ребрами (коридорами, соединяющими номера). Мила и Лаура изначально заселяются в два разных номера, но вы не знаете, в какие именно. Вы можете сделать несколько ходов. Каждый ход заключается в том, что вы печатаете N целых чисел, $c_0, c_1, ..., c_{N-1}$, означающих, что цвет лампы в комнате i становится c_i для каждого i=0,1,...,N-1. Затем Мила и Лаура смотрят на цвет лампы в комнате, в которой они находятся в данный момент, и пойдут в соседнюю комнату, в которой лампа имеет тот же цвет. Если такой соседней комнаты нет, они останутся на месте. Если таких соседних комнат несколько, они выбирают одну из них произвольно.

Если Мила и Лаура одновременно находятся в одной комнате или проходят по одному коридору, значит, вам удалось организовать их встречу. Вы можете сделать не более $20\,000$ ходов, но вы получите больше баллов, если используете меньше ходов.

Обратите внимание, что вы не знаете, в каких комнатах Мила и Лаура начинают, а также, как они ходят, если у них есть несколько комнат одного цвета на выбор. Ваше решение должно быть правильным независимо от того, в каких комнатах они начинают свой путь или как они ходят.

Input

Первая строка содержит два целых числа, N и M — количество номеров и количество коридоров в отеле соответственно.

Следующие M строк содержат по два целых числа, u_i и v_i , что означает, что номера u_i и v_i соединены коридором.

Output

Выведите одну строку с целым числом K — количеством ходов.

В каждой из следующих K строк выведите N целых чисел, $c_0, c_1, ..., c_{N-1}$, таких, что $0 \le c_i \le N$ для всех i.

Constraints and Scoring

- $2 \le N \le 100$.
- $N-1 \leq M \leq \frac{N(N-1)}{2}$.
- $0 \le u_i, v_i \le N-1$, и $u_i \ne v_i$.
- Из каждой комнаты можно добраться до любой другой комнаты. Кроме того, нет коридоров, ведущих из комнаты в саму себя, и между каждой парой комнат сущетсвует не более одного коридора.
- Вы можете использовать не более $20\,000$ ходов (то есть $K \leq 20\,000$)...

Ваше решение будет проверено на нескольких подзадачах, каждая из которых имеет определенное количество баллов. Каждая подзадача содержит набор тестов. Чтобы получить баллы за подзадачу, ваше решение должно пройти **все тесты** в ней.

Подзадача	Максимальный балл	Ограничения
1	10	M=N-1, и корридоры $(0,1),(0,2),(0,3),,(0,N-1).$ Другими словами граф является звездой.
2	13	$M=rac{N(N-1)}{2}$, то есть существует корридор между каждой парой номеров. Другими словами, это полный граф.
3	11	M=N-1, и корридоры $(0,1),(1,2),(2,3),,(N-2,N-1).$ Другими словами, граф является путём.
4	36	M=N-1. Другими словами, граф является деревом.
5	30	Без дополнительных ограничений.

За каждую подзадачу, которую ваша программа решает правильно, вы получите баллы по следующей формуле:

$$ext{score} = \left| S_g \cdot \min\left(1, rac{2000}{K_g + 1900} + rac{1}{5}
ight)
ight|,$$

где S_g — максимальный балл для подзадачи, а K_g — максимальное количество ходов, которое ваше решение использовало для любого теста в подзадаче. Это означает, что для получения полного балла вам нужно использовать не более 600 ходов во всех тестах. На графике ниже показано количество очков в зависимости от K_g .

Example

Пример — путь длиной 3, поэтому он может относиться к подзадаче 3, 4 или 5. Если комнаты раскрашены в соответствии с выводом из примера, то Мила и Лора всегда смогут встретиться.

Например, предположим, что Мила начинает с комнаты 0, а Лора — с комнаты 1:

- Первый ход: Мила должна пройти в комнату 1. Если Лора пойдет в комнату 0, то они встретятся на ребре между 0 и 1. Предположим, что вместо этого Лора идет в комнату 2.
- Второй ход: Мила возвращается в комнату 0, а Лора остается в комнате 2.
- Третий ход: Мила снова идет в комнату 1, а Лора остается в комнате 2.
- Четвертый ход: Мила переходит в комнату 2, а Лора переходит в комнату 1. Таким образом, они встретятся в коридоре между комнатами 1 и 2.
- Пятый ход: Мила и Лаура меняются местами и встречаются снова. (но это не имеет значения, так как они уже встретились).

Обратите внимание, что это касается только случая, когда Мила и Лора начинают в комнатах 0 и 1. Можно убедиться, что одна и та же последовательность ходов гарантирует, что они встретятся, независимо от того, где они стартуют и как ходят.

Input	Output
3 2	5
0 1	2 2 2
1 2	2 2 3
	2 2 3
	1 2 2
	1 2 2