UNIVERSIDADE ESTADUAL DA PARAÍBA CAMPINA GRANDE, 16 DE JULHO DE 2021 DEPARTAMENTO DE COMPUTAÇÃO - CCT DISCIPLINA - CÁLCULO NUMÉRICO PROFESSOR - PAULO CÉSAR OLIVEIRA BRITO

1º Lista de Cálculo Numérico

1. Qual o objetivo do Cálculo Numérico?

O *Cálculo Numérico* tem como objetivo estudar e proporcionar procedimentos que possibilitem a obtenção da solução de um problema matemático com uma aproximação exata e satisfatória.

2. Apresente aplicações nas quais se torna necessário (ou útil) a produção de resultados numéricos.

Em aplicações como a resolução de integrais, diferenciais, sistemas de equações lineares, computação numérica ou Interpolação e ajustamento de curvas, se faz necessário a produção de resultados numéricos.

3. Sabendo que os métodos numéricos buscam soluções <u>aproximadas</u> para as formulações matemáticas, qual o problema inerente das soluções obtidas através da utilização destes métodos?

Como os métodos numéricos nos permitem obter valores aproximados, a obtenção de valores numéricos exatos não se faz presente, o que acaba sendo uma consequência

inerente ao método numérico, que, consequentemente, pode trazer uma margem de erro aos resultados que influenciam negativamente no que está sendo buscado.

4. Quais os passos necessários para a obtenção de uma solução numérica utilizando o computador?

Modelagem, Simplificação, Uso de Resultados de Ciências Afins e de Medições, Escolha dos Métodos, Escolha de Parâmetros, Truncamento das Iterações.

- 1º **Modelagem:** Ocorre a transfiguração de um problema a um modelo matemático, possibilitando assim a interpretação do mesmo e, consequentemente, a solução do problema.
- **2º Simplificação:** O modelo matemático obtido na *Modelagem* é simplificado a partir de aproximações das expressões, por exemplo.
- **3º Uso de Resultados de Ciências Afins e de Medições:** Os coeficientes já obtidos anteriormente pela ciência (Termodinâmica, Física, Ecologia, etc) ou processos de medição (Temperatura, área, volume, peso, etc) são utilizados. Ao final dessa etapa é esperado que já se tenham as equações necessárias para o processamento computacional.
- **4º Escola de Métodos:** Nessa etapa, é levado em consideração a quantidade de recursos computacionais disponíveis e os fatores custo-benefício referentes ao processo. Após essa análise, são decididos os métodos numéricos que serão utilizados para obter a solução aproximada mais satisfatória possível ao problema.
- **5º Escolha de Parâmetros:** São decididos os parâmetros que serão analisados no processo computacional, como por exemplo um intervalo de tempo a ser tratado no problema.
- **6° Truncamento da Iterações:** Nessa etapa será decidido um critério de parada, já que a grande maioria dos problemas não tem uma solução precisa.

5. Ilustre aplicações do Cálculo Numérico no âmbito do seu curso.

Cálculo da derivada de $f(x) = x^2$ no ponto x = 1.

Análise:

$$\frac{df}{dx} = \lim_{j \to 0} \frac{f(x+j) - f(x)}{j} = \lim_{j \to 0} \frac{(x+j)^2 - x^2}{j} = 2x$$

• Para x = 1:

$$2x = 2$$

• Método Numérico:

Escolhemos um valor para h (ex: j = 0.01) e assim substituímos na mesma derivada o x = 1 e o j = 0.01:

$$\frac{df}{dx} \approx \frac{(1+0.01)^2-1^2}{0.01} = 2.01$$

Fazendo a análise dos resultados acima, nota-se que houve uma diferença de 0,01 entre os resultados obtidos no metodo analitico e no metodo munemrico devido à determinação numérica de j=0,01, diferentemente do que é adotado no metodo analitico, que é $j\to 0$. Porém isso já era algo esperado, já que o método numérico nos limita a resultados aproximados, porém que satisfaçam as necessidades em pauta.