Parallel identical processor scheduling with weighted completion time A column generation approach

Simone Cavana 219833{at}studenti.unimore.it

15 febbraio 2021

$P||\sum w_j C_j$ Introduzione

M = set di m macchine identiche

J = set di n job

 $p_j = \text{tempo d'esecuzione di un job}$

 $w_j = \text{peso di un job}$

 C_j = tempo di completamento di un job in una schedula

- Ogni macchina è disponibile dall'istante 0 e può elaborare al più un job per istante
- Non è ammessa preemption
- I job devono essere eseguiti in modo contiguo (no idle)

$P||\sum w_j C_j$

Esempio

job	Wj	p_{j}
1	1	<i>p_j</i> 8
2	4	7
3	7	8
4	5	5
5	5	5
6	6	4
7	7	4
8	7	3
9	9	3

- $\blacktriangleright H_{min} = (\sum_{j \in J} p_j (m-1)p_{max})/m$
- $ightharpoonup H_{max} = (\sum_{j \in J} p_j + (m-1)p_{max})/m$

Set-covering formulation

- ▶ Definiamo **schedula** $s \in S$, un insieme di job ammissibili assegnabile ad una qualsiasi macchina m
- L'ordinamento di Smith ci indica di effettuare un ordinamento in ordine decrescente sulla base del rapporto w_j/p_j per avere la condizione di ottimalità

$$a_{js} = \begin{cases} 1 & \text{se il job j è assegnato alla schedula s,} \\ 0 & \text{altrimenti} \end{cases}$$

$$C_j(s) = \sum_{k=1}^j a_{ks} p_k$$

$$c_s = \sum_{j \in J} w_j a_{js} C_j(s) = \sum_{j \in J} w_j a_{js} \left[\sum_{k=1}^j a_{ks} p_k \right]$$

$$x_s = \begin{cases} 1 & \text{se la schedula s è selezionata,} \\ 0 & \text{altrimenti} \end{cases}$$

Set-covering model

min
$$\sum_{s \in S} c_s x_s$$

s.t. $\sum_{s \in S} x_s = m$ (1)

$$\sum_{s \in S} a_{js} x_s = 1, \quad j \in J \tag{2}$$

$$x_s \in \{0,1\}, \qquad s \in S \tag{3}$$

Costi ridotti (si ricavano dal duale):

$$ar{c_s} = c_s - \sum_{j \in J} a_{js} \lambda_j = \sum_{j \in J} \left[w_j \left(\sum_{k=1}^j a_{ks} p_k \right) - \lambda_j \right] a_{js}$$

Column Generation Approach

- Rilasso set-covering $\Rightarrow x_s \ge 0$
- ► Risolvo RLP su \$\bar{S}\$
- Ricavo le variabili duali:
 - \triangleright λ_0 è costante, relativa ad (1)
 - $\triangleright \lambda_i$ relative a (2)
- ▶ **se** F^* < 0 ⇒ aggiungo le n schedule con costi ridotti più negativi tramite backtracing su $F_i(t)$

Pricing algorithm

Programmazione dinamica

$$P(j) = \sum_{k=1}^{j} p_k$$

Inizializzazione:

$$F_j(t) = egin{cases} -\lambda_0 & ext{se } j=0, \ ext{e} \ t=0, \ \infty & ext{altrimenti} \end{cases}$$

per i successivi step $j = 1, ..., n, t = 0, ..., \min\{P(j), H_{max}\}$:

$$F_j(t) = \begin{cases} \min\{F_{j-1}(t), F_{j-1}(t-p_j) + w_j t - \lambda_j\} & \text{se } r_j + p_j \le t \le d_j \\ F_{j-1}(t) & \text{altrimenti} \end{cases}$$

$$F^* = \min_{H_{min} \le t \le H_{max}} F_n(t)$$

► $F_j(t)$ rappresenta i costi ridotti minimi dati dalla schedula composta dai job $\leq j$ che termina in t

- La strategia per risalire alla schedula dato il costo ridotto $F_i(t)$ è di ripercorrere a ritroso la matrice dove:
 - ▶ salgo in verticale se $F_j(t) == F_{j-1}(t)$ e non inserisco j in \bar{S}
 - salgo al job precedente e mi sposto nel tempo tanto quanto p_j , in modo da inserire j in \bar{S}

- $ightharpoonup ar{S}
 ightarrow ext{schedule iniziali}$
- ► $2000 \le N \le 5000$
- ightharpoonup Estrazione basata su c_s
- ► NS migliorativo finale

Algorithm 1: Heuristic

Input: n, m, w, p, N **Output:** \bar{S}

S c / O

- 1 $S, s \leftarrow \{\}$
- 2 $jobs \leftarrow smith_order(n, w, p)$
- 3 $n_iter \leftarrow 0$
- 4 while $n_iter < N$ do

$$5 \qquad s \leftarrow \mathsf{create_rand_sched}(jobs)$$

- $\mathbf{6} \quad \bar{S} \leftarrow \bar{S} \cup s$
- 7 $n_{iter} + +$
- 8 $\bar{S} \leftarrow \text{extract_best}(\bar{S}, 10)$
- 9 **return** neighborhood_search(\bar{S})

Randomized List Heuristic

Neighborhood Search

- Insert: spostare un job da una macchina ad un altra
- ▶ Swap: scambiare due job schedulati su macchine differenti
 - ▶ Insert move: move one "object" to another "position"

▶ SWAP move: exchange two "objects"

Integralità della soluzione

Branch & Bound

- Caso speciale frazionario che rispetta Teorema 1
- ▶ Bound dato da x*, soluzione ottima di RLP
- 1. Branching sugli intervalli d'esecuzione

 - ightharpoons
- 2. Branching sull'immediato successore

Benchmark

- ▶ 15 istanze "semplici" **fornite** da Barnes & Brennan
- Istanze generate random con:
 - m estratto da [3,4,5]
 - n da [20, 30, 40, 50]
 - tempi d'esecuzione e pesi:
 - 1. p_j ricavati da [1, 10], w_j da [10, 100]
 - 2. sia p_j che w_j estratti da una distribuzione normale fra [1, 100]
 - 3. sia p_j che w_j estratti da una distribuzione normale fra [1, 20]

Risultati

Barnes & Brennan benchmark

Risultati

Random benchmark

Conclusioni

Bibliografia

- Marjan van den Akker, Han Hoogeveen, and Steef van de Velde. Parallel machine scheduling by column generation. Operations Research, 47(6):862–872, 1999.
- Marjan van den Akker, Han Hoogeveen, and Steef van de Velde. Applying Column Generation to Machine Scheduling, pages 303–330. Springer US, Boston, MA, 2005.
- ▶ J. Wesley Barnes and J. J. Brennan. An improved algorithm for scheduling jobs on identical machines. AIIE Transactions, 9(1):25–31, 1977.