Pregunta corta

Control 2 PyE

1 Enunciado

Consideramos la siguiente sucesión de variables aleatorias X_n definida sobre el espacio de probabilidad $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mathcal{P})$, donde P es sigue una distribución exponencial de parámetro $\lambda = 1$.

$$X_n(\omega) = \begin{cases} n & \text{si } 0 \le x \le \omega \\ 0 & \text{en otro caso} \end{cases}$$

¿Tal sucesión converge? De hacerlo, ¿a qué variable aleatoria?

2 Solución

Nótese que la pregunta simplemente hace referencia a si la sucesión converge o no, no al tipo de convergencia; luego no es necesario estudiar todos los tipos de convergencia (confirmado por Montenegro).

Veamos qué función de distribución tienen las X_n para estudiar la convergencia débil, pues es el caso más sencillo. Para ello, comencemos por hallar la probabilidad de un conjunto en $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P)$ al usar la función de densidad de P:

$$P \sim \varepsilon(1)$$
 luego tenemos $f_P(\omega) = \begin{cases} e^{-\omega} & \text{si } \omega > 0 \\ 0 & \text{si } \omega \leq 0 \end{cases}$

Estudiemos ahora el comportamiento de las X_n según P al integrar los conjuntos de $\Omega = \mathbb{R}$ correspondientes:

$$P(X_n \le x) = P(\omega \in \mathbb{R} : X_n(\omega) \le x)$$

$$F_{X_n}(x) = \begin{cases} P(\emptyset) & \text{si } x < 0 \\ P((-\infty, 0) \cup (n, +\infty)) & \text{si } 0 \le x < n \\ P(\mathbb{R}) & \text{si } x \ge n \end{cases}$$

Por los axiomas de probabilidad sabemos que $P(\emptyset) = 0$ y que $P(\mathbb{R}) = P(\Omega) = 1$, queda ver $P((-\infty, 0) \cup (n, +\infty))$. Este es el conjunto a integrar, pues los ω de este conjunto son tales que $X_n(\omega) = 0 \in [0, n)$.

Como $(-\infty,0) \cup (n,+\infty) = \mathbb{R} \setminus [0,n]$, pordemos aplicar las propiedades del complementario de la probabilidad:

$$P([0,n]) = \int_0^n f_P(t)dt = \int_0^n e^{-t}dt = [-e^{-t}]_0^n = e^0 - e^{-n} = 1 - e^{-n}$$

Así,
$$P((-\infty,0) \cup (n,+\infty)) = 1 - P([0,n]) = 1 - (1 - e^{-n}) = e^{-n}$$

Volviendo a la función de distribución:

$$F_{X_n}(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{-n} & \text{si } 0 \le x < n \\ 1 & \text{si } x \ge n \end{cases}$$

Por la propiedad arquimediana, $\lim_{n\to\infty} F_{X_n}(x) = 0 \ \forall x\in\mathbb{R}$, luego converge a la función nula. Al ser continua en \mathbb{R} , no la podemos "arreglar" para que converga débilmente. Como el resto de convergencias implican la convergencia en distribución, $(X_n)_{n\in\mathbb{N}}$ no converge a ninguna variable aleatoria.