

From local to global: Edge profiles to camera motion in blurred images Subeesh Vasu and A.N. Rajagopalan, Indian Institute of Technology Madras, INDIA

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Goal

 Camera motion estimation from a single motion blurred image using edge-profiles

Edge Profile:

- ullet Edge profile: Alpha matte over a line along edge orientation heta
- 1D projection of blur kernel (along θ + Π /2) is equal to differential of the edge profile

Edge Profile to Camera Motion

$$dE_{\theta,\mathbf{x}}(\rho) = \sum_{p=1}^{N_T} w(p)\delta(\rho - (H_x^p\mathbf{x} - x)\cos\theta - (H_y^p\mathbf{x} - y)\sin\theta)$$
 Edge profile Motion vector θ : Edge orientation
$$\hat{w} = \arg\min_{w} ||dE - Mw||_2 + \lambda ||w||_1$$
 Motion matrix

Challenges

- Alignment of edge profiles obtained from a blurred image
- Computational complexity M is of large size

Key observations

- Edge profiles can be aligned by enforcing centroid consistency
- Centroid-alignment will retain the validity of camera motion
- Absolute value of differential of edge profile is equivalent to the normalized absolute gradient of a blurred image

Our approach

• Decompose the motion blurred image onto a prediction image I_p and an edge profile image I_p

Proposed edge profile constraint

- $dE = Mw \longrightarrow I_{ep} = T_w(I_p)$
- Efficient filter-flow can be used to reduce computational complexity
- **EpAlone** Direct camera motion estimation $\hat{w} = \arg\min_{w} ||T_w(\tilde{I_p}) \tilde{I_{ep}}||_2 + \lambda ||w||_1$
- Edge profile constraint can improve performance of existing methods
- Xu + Ep Image prior from Xu 2013 [1] + Edge profile constraint

Reference

[1] L. Xu, S. Zheng, and J. Jia. Unnatural lo sparse representation for natural image deblurring. In CVPR, 2013.

We thank Google for the conference travel grant.

