Name	Roman	MAKSIMONICH	LA(\)
------	-------	-------------	-------

B. Results and data analysis (64 pts)

Table 1: Constant total mass (32 pts)

Paste the linear speed vs. time graph here.

Trial	M ₁ (kg)	M ₂ (kg)	a_{exp} (m/s^2)	F _{net} (N)	$M_1 + M_2$ (kg)	a_{theory} (m/s^2)	Percent error*
Run#1	0.105	0.155	1.60	0.491	6.260	0.887	15.2%
Run#2	0.115	0.145	088.0	0.294	0.260	1.13	22.1%
Run#3	0.125	0.135	0.168	0.098	0.260	0.377	74.0%

- Calculate the net force $F_{net} = g(M_2 M_1)$.
- Calculate the theoretical acceleration $a_{theory} = g \left(\frac{M_2 M_1}{M_1 + M_2} \right)$.

*** **NOTE:** Use $g = 9.81 \text{m/s}^2$ for all the calculations in this laboratory course. ***

* Percent error =
$$\frac{\left|a_{exp} - a_{theory}\right|}{a_{theory}} \times 100\%$$

Table 2: Constant net force (32 pts)

Paste the linear speed vs. time graph here.

Trial	M ₁ (kg)	M_2 (kg)	a_{exp} (m/s^2)	F _{net} (N)	$M_1 + M_2$ (kg)	a theory (m/s ²)	Percent error
Run#1	0.105	011.0	0.500	0.0491	0.215	0.228	12.3%
Run#2	0.115	0.120	0.175	0.0431	0.235	0.209	16.240
Run#3	0.125	0.130	0.172	0.0481	0.255	0.192	10.6%

• Calculate the net force $F_{net} = g(M_2 - M_1)$.

• Calculate the theoretical acceleration $a_{theory} = g \left(\frac{M_2 - M_1}{M_1 + M_2} \right)$.

TA signature:

M1-9/10 Z (+A/V)

C. Answer the following questions after the experiment (7 pts each)

2.	Compare the values of the percent error between the measured value of the acceleration and the theoretical value, as shown in Tables 1 and 2. What are the main sources of error in this experiment?	
3.	Why is a better result obtained when you use a very large net force?	
4.	In the calculation of the acceleration a, we have assumed that the pulley is frictionless. Can you find a simple way in the experiment to test whether this is true? If so, how to correct for it?	