Университет ИТМО

Практическая работа №2

по дисциплине «Визуализация и моделирование»

Автор: Никулина Ксения Григорьевна

Поток: ВИМ 1.1 Группа: К3221 Факультет: ИКТ

Преподаватель: Чернышева А.В.

1 Heart Failure Prediction

Сердечно-сосудистые заболевания являются причиной смерти номер 1 во всем мире, забирая в среднем 17.9 миллионов жизней в год, что составляет 31% от всех смертей по всему миру. Остановка сердца - результат сердечно-сосудистых заболеваний и данный датасет содержит 12 показателей, которые можно использовать для предсказания смертности от остановки сердца.

Название столбца	Описание данных	Тип данных	Шкала
Возраст	Возраст пациента	Integer	Интерв
Анемия	Снижение гемоглобина	Binary	Номин
Креатинкиназа	Уровень фермента	Integer	Относит
Диабет	Наличие диабета	Binary	Номин
Фракция выброса	% крови при сокращении	Integer	Относит
Высокое кровяное давление	Гипертония	Binary	Номин
Тромбоциты	Тромбоциты в крови	Float	Номин
Креатинин	Уровень креатинина в крови	Float	Номин
Натрий	Уровень натрия в крови	Integer	Относит
Пол	Пол пациента	Binary	Номин
Курение	Курит ли пациент	Binary	Номин
Время	Кол-во дней наблюдения	Integer	Относит
Смерть	Умер ли пациент	Binary	Номин

1. Визуализируем график распределения количества осматриваемых по каждому возрасту. Можем заметить, что минимальный возраст осматриваемого пациента равен 40 годам, а максимальный возраст - 95 лет. Наибольшее количество осматтриваемых людей было в возрасте 60 лет

Рис. 1 график распределения

2. Визуализируем в виде графика количество исследуемых женщин и мужчин в сравнении с общим количеством осматриваемых пациентов. Можно заметить что мужчин и женщин примерно одинаковое количество. Из этого можно сделать вывод, что исследование не было направлено на какой то определенный пол.

Рис. 2 график распределения

3. Подтверждаю то, что написала выше при помощи диаграммы. То, что женщин меньше можно объяснить недостатком данных и при большем датасете их количество бы сравнялось

Рис. 3 диаграмма распределения

4. Визуализируем в виде даиграммы количество людей, попадавших в больницу с анемией и без нее. Анемия — это патологическое состояние, которое характеризуется пониженным уровнем эритроцитов и/или гемоглобина в крови, из-за чего ухудшается передача кислорода в ткани и возникает гипоксия, т. е. кислородное голодание тканей. Можно сделать вывод, что люди с анемией попадаю в больницу с сердечной недостаточностью реже, чем без нее

Рис. 4 диаграмма распределения

5. Посмотрим соотношение живых и мертвых пациентов. Из данной диаграммы можно сделать вывод, что большинство пациентов все таки выживают после определенного периода наблюдения за ними

Рис. 5 график распределения

6. Визуализируем в виде солбчатой диаграммы количество живых и умерших мужчин в зависимости о возраста. Можно заметить, что после 70 при попадании в больницу шанс на выживания 50 на 50, а до 70 лет при попадании в больницу выжили большее количесво пациентов

Рис. 6 диаграмма распределения

7. Визуализируем в виде солбчатой диаграммы количество живых и умерших женщин в зависимости о возраста. Можно заметить, что после 70 при попадании в больницу шанс на выживания 50 на 50, а до 70 лет при попадании в больницу выжили большее количесво пациенток

Рис. 7 диаграмма распределения

- 8. Данная столбчатая диаграмма содержит 4 временных промежутка.
 - 1 среднее количество дней, проведенных под наблюдением
 - 2 4 максимльное количество проведенных дней под наблюдением, разделенные на три части

Благодаря первому столбцу можно сделать вывод, что шанс попасть под наблюдение в больницу у курящих людей с анемией примерно такой же, как и у некурящих без анемии. В остальные промежутки можно увидеть, что под дольшим наблюдением остаются мужчины без вредных привычек и без анемии. Скорее всего другие умирают.

Рис. 8 даиграмма распределения

9. В виде солбчатой диаграммы можно наглядно увидеть количество женщин, которые курили/не курили и у которых есть/нет анемия с тем количеством дней, сколько они были под наблюдением и со средним количеством дней, проведенные в больнице. Как можно заметить курящие женщины с анемией не задерживаются в больнице, так как скорее всего умерли. Однако на более коротком временном промежутке шанс попасть под наблюдение выше у некурящих женщин без анемии.

Рис. 9 даиграмма распределения

- 10. Визуализировали связь между количеством дней наблюдения, курящими/не курящими женщинами и с их выживаемостью.
 - 1 Шанс попасть под наблюдение у не курящих женщин выше, чем у курящих. Однако их выживаемость примерно одинакова.
 - 2 В основном курящие женщины находятся под наблюдением до 95 дней. ИХ шанс на выживание очень мал по сравнению с женщинами без вредных привычек. Некоторые из них проводят под наблюдением 190+ дней, однако в каждый временной промежуток их шанс на выживание равен 50 на 50

Рис. 10 даиграмма распределения

- 11. Визуализировали связь между количеством дней наблюдения, курящими/не курящими мужчинами и с их выживаемостью.
 - 1 На стандартный период наблюдение попасть у каждого мужчины шанс примерно одинаковый, однако выживших курящих мужчин нет совсем, поэтому можно сделать вывод, что шанс на смерть выше (вне зависимости от наличия вредной привычки).
 - 2 При длительном наблюдении шанс на выживание (как ни странно) выше у курящих мужчин. У не курящих шанс на выживание 50 на 50 при любом временном промежутке.

Рис. 11 даиграмма распределения