DEKODER ZA INFRARDEČE DALINJCE

Avtor: Gašper Čulk

Datum: 19. 6. 2024

Contents

Uvod	2
Priprava	
RC-6	4
Delovanje	∠
Vzorčenje signala	
Obdelava signala	5
Izpis	
Problemi	
PORT	е
Protokol	
Delay	6
Povzetek	£

Uvod

To poročilo opisuje nalogo pri predmet OR. V nalogi je bilo zahtevano, da se s pomočjo STM32H750 dekodira infrardeč signal, ki pride iz TV daljinca. Signal sprejema TSOP sprejemnik.

Priprava

V nalogi so bile uporabljene naslednje komponente:

- STM32H750 + FAN OUT expansion board
- TSOP38238
- Breadboard
- 3 žičke
- Philips daljinec

(vir: $\frac{https://community.st.com/t5/stm32-mcus-boards-and-hardware/need-help-with-determining-pinout-of-stmod-ext-board-on/td-p/669218$)

Na H7 sistem prikličimo razširitev. Na razširitvi, povežemo naslednje:

- 1. GND (razširitev) -> GND (TSOP)
- 2. 3.3 V (razširitev) -> Vs (TSOP)
- 3. GPIO PH10 -> Out (TSOP)

Vishay Semiconductors

IR Receiver Modules for Remote Control Systems

LINKS TO ADDITIONAL RESOURCES

- · Very low supply current
- · Photo detector and preamplifier in one package
- Internal filter for PCM frequency
- Supply voltage: 2.5 V to 5.5 V
- · Improved immunity against ambient light
- · Insensitive to supply voltage ripple and noise
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

HALOGEN FREE GREEN (5-2008)

MECHANICAL DATA

Pinning for TSOP382.., TSOP384..:

 $1 = OUT, 2 = GND, 3 = V_S$

ORDERING CODE

TSOP38... - 1500 pieces in bags

(vir: https://download.mikroe.com/documents/datasheets/TSOP38238_datasheet.pdf)

(lastni vir)

Preden začetkom, nastavimo še:

- GPIO PH10 → GPIO_Input
- TIM2 → Internal clock
- USART3 → Asynchronic

RC-6

Daljinec, uporabljen pri nalogi, uporablja RC-6 protokol. Je novejša različica RC-5 protokola, ampak z očitnimi razlikami. Sestava signala je razvidna iz slike:

(vir: https://www.pcbheaven.com/userpages/The Philips RC6 Protocol/)

(lastni vir, invertiran primer RC-6 signala)

Delovanje

Delovanje lahko razdelimo na 3 faze:

- 1. Vzorčenje signala
- 2. Obdelava signala
- 3. Izpis

VZORČENJE SIGNALA

Signal v mirovnem stanje je v visoki napetosti. Ko pride do pritiska gumba, se najprej pošlje 3 periode nizke napetosti in 1 perioda visoke napetosti. Prvo spremembo ulovimo z enostavnim pogojem. GPIO 10 mora imeti logično vrednost 0. Ko je to izpolnjeno skočimo v funkcijo za dekodiranje

V funkciji najprej preskočimo začetni signal, da pridemo do bitov, ki nas zanimajo. V zanki vzorčimo stanje GPIO 10 pina vsakih 880 nanosekund. To je trajanje ene periode. Stanja si beležimo v tabeli.

Vzorčimo z kar se da malo ukazi, da ne pokvarimo zamikov oz. položaja vzorčenja. Če bi imeli preveč ukazov med dvema vzorčenjema, bi lahko to pomenilo napako pri končnih vzorčenjih.

OBDELAVA SIGNALA

V naslednjem koraku pogledamo bite od 0 do n v tabeli. Če je bit na i-tem mestu enak 0, na i-tem mestu spremenljivke &signal prižgemo bit (logična 1). To naredimo zato, ker je signal invertiran in na ta način ga invertiramo nazaj na nam razumljiv način za branje.

Funkcija vrne spremenljivko &signal.

IZPIS

Vrnjen &signal v zankah obdelamo bit po bit.

- 0 do 4 → start biti
- 4 do 6 → toggle bita
- 6 do 14 → naslovni biti
- 14 do 22 → ukazni biti

Izpis programa za 3x power on/off gumb, kanal 1, 2, 3, 4, 5, 6

```
Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00001100 Message -> start bits: 1000 toggle: 01 address: 00000000 command: 00001100 Message -> start bits: 1000 toggle: 01 address: 00000000 command: 00001100 Message -> start bits: 1000 toggle: 10 address: 00000000 command: 0000001 Message -> start bits: 1000 toggle: 01 address: 00000000 command: 00000010 Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00000011 Message -> start bits: 1000 toggle: 01 address: 00000000 command: 00000100 Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00000101 Message -> start bits: 1000 toggle: 01 address: 00000000 command: 00000110
```

Izpis programa, če držiš power on/off gumb:

```
Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00001100 Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00001100 Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00001100 Message -> start bits: 1000 toggle: 10 address: 00000000 command: 00001100
```

Problemi

PORT

Pri izbiri GPIO pina je potrebno biti pozoren na Px. Ko bereš iz pina morata biti GPIOx enak x iz Px. Do tega hitro pride pri kopiranju kode iz starih projektov ali podobnih situacija, kjer nisi več pozoren ta takšne malenkosti.

PROTOKOL

Najbolj razširjen protokol za Philips daljince je RC-5. Koda je prvotno bazirala na tem protokolu. Šele pod osciloskopom je bilo razvidno, da signal ne ustreza protokolu. Izkazalo se je, da se uporablja RC-6, ki ima drugačne začetne bite. Iz meritev je bilo tudi najbolj zanesljivo izmeriti čas ene periode. Izmerjen čas ni ustrezal času iz internetnih virov.

DELAY

Za vzorčenje enkrat na periodo je bila prvotno uporabljena fukcija "HAL_Delay(n)". Parameter "n" predstavlja število milisekund zamika, vendar minimalno naredi 1 ms zamika. Ne vrne napake ča vstaviš manj, deluje pa tudi ne tako kot je predvideno. Rešitev tega je lastna funkcija, ki z uporabo TIM2 počaka "n" nanasekund.

Povzetek

Poročilo opisuje dekodiranje infrardečega signala iz TV daljinca s pomočjo STM32H750 in TSOP sprejemnika, pri čemer je bil uporabljen RC-6 protokol. Proces je vključeval pripravo strojne opreme, vzorčenje signala, obdelavo in izpis dekodiranih podatkov. Pri tem so se pojavile težave z izbiro pravilnega GPIO pina, prepoznavanjem protokola in natančnostjo zamikov, kar je bilo rešeno z lastno funkcijo za natančne časovne zamike.