Fondamenti di Meccanica del Volo Atmosferico

Sezioni: **A – E, E – P, P – Z**

Docenti: A. Croce, C.E.D. Riboldi, S. Cacciola

AA 2021-2022

PROVA D'ESAME 8 luglio 2022

Cognome:	Nome:	Codice persona:
Firma:		

- Rispondere a ogni domanda utilizzando solo lo spazio assegnato sotto alla domanda stessa (per 6 e 7 scrivere solo i risultati).
- Apporre il proprio nome, cognome, codice persona e firma su tutte i fogli (tre) del compito.
- È concesso l'uso della calcolatrice non programmabile ma è severamente vietato l'uso di smartphone o altri apparecchi elettronici.

COMPITO A

Definizione delle variabili	Settima cifra del codice persone: $X_7 = 0$.
dipendenti dal codice persona:	Ottava cifra del codice persona: $X_8 = 0$.

1) Definire analiticamente, attraverso il valore di opportune variabili, una condizione di volo a) in virata positiva (right turn); b) in affondata (dive); c) in salita stazionaria.

Compito A Pagina 1/6

2)	Definire la manovra di virata corretta e da questa definizione estrarre le equazioni che descrivono la condizione di equilibrio. Mostrare quindi analiticamente come calcolare la spinta, i coefficienti di resistenza e di portanza, l'angolo di rollio, il raggio di virata, il fattore di carico e il tempo di virata, noti che siano la polare, la superficie alare, il peso, la quota, la velocità e il rateo di virata.		

Cognome:	Nome:	Codice persona:
Firma:		

3) Enunciare il criterio di stabilità statica laterale. Lo si dimostri poi analiticamente evidenziando attraverso grafici e/o equazioni come si manifesta.

4)	Disegnare il diagramma di inviluppo di volo in quota e velocità EAS per un velivolo a elica semplificato evidenziando accuratamente e motivando alcune caratteristiche sempre presenti.

Cognome:	Nome:	Codice persona:
Firma:		

5) Per un velivolo C27J Spartan in configurazione di atterraggio di emergenza si rende necessario il calcolo della velocità di avvicinamento, pari al 120% della sua velocità minima in volo orizzontale. Si riporti la procedura analitica per il calcolo di tale velocità a quota e carico alare noti e sapendo che la polare con carrello estratto e flap estesi al 80% è esprimibile come $C_D = C_{D_0} + k_1 C_L + k_2 C_L^2$, con C_{D_0} , k_1 e k_2 noti, e spinta disponibile $T = T_0 + T_V V_{EAS}^2$, con T_0 funzione della sola quota e T_V costante.

6) Un'ala volante monoprofilo è caratterizzata da corda media aerodinamica $c_{MAC}=2.5$ m e carico alare $W/S=2500~{\rm N/m^2}$. L'asse longitudinale ha verso positivo in avanti e origine nel bordo d'attacco. Il verso positivo per i momenti in beccheggio è a cabrare. In questo sistema di riferimento il centro aerodinamico si trova al $x_{AC}=-0.575~{\rm m}$ (pari al 23% della corda media aerodinamica) e Il legame costituivo aerodinamico del velivolo, rispetto all'angolo di incidenza geometrico α e alla deflessione dell'equilibratore $\delta_{\rm E}$, è il seguente:

$$\begin{cases} C_L = 4.70 \ \alpha + (2.1 - 0.05 \ X_7) \delta_{\rm E} \\ C_{M_{\rm AC}} = -(0.35 + 0.02 \ X_7) \ \delta_{\rm E} \end{cases}$$

dove $C_{M_{AC}}$ rappresenta il coefficiente di momento rispetto centro aerodinamico (non rispetto al baricentro).

Si calcoli quanto segue (X7=0, X8=0).

- a) Il margine di stabilità per la posizione dimensionale del baricentro $x_{CG} = -(0.35 + 0.01 X_8) \text{ m. s.} = 9.00 \text{ [%MAC]}$
- b) La posizione dimensionale del punto di controllo $x_{\rm C}$ e il valore del parametro di stabilità alla Borri ε , per la stessa posizione del baricentro del punto a).

$$x_{\rm C} =$$
 -0.992m [m] $\varepsilon =$ 0.54

c) <u>La pendenza della curva di portanza trimmata, per la stessa posizione del baricentro del punto a).</u>

$$C_{L_{\alpha}}^{*} =$$
 3.052 [1/rad]

d) Motivando la risposta, indicare che tipo di profilo utilizzato (concavo, simmetrico, reflex, altro).

e) Sempre per la stessa posizione del baricentro indicata al punto a), l'angolo di incidenza $\bar{\alpha}$ e la

7) Un velivolo a getto ideale è caratterizzato da peso W=400~kN, superficie alare $S=95~m^2$, polare $C_D=(0.02+0.001~X_7)+(0.035+0.002~X_8)C_L^2$ e consumo specifico rispetto alla spinta (thrust specific fuel consumption TSFC) $c_T=0.85~N/(N~h)$. Ad una quota con densità pari a $\rho_{\overline{h}}=0.75~{\rm kg/m^3}$, esegue una crociera a quota e assetto costante per un raggio $\mathcal{R}=(2000+300~X_8)~{\rm km}$ in condizioni di massima autonomia chilometrica.

Si calcoli quanto segue (X7=0, X8=0).

a) Il peso del combustibile consumato $W_{
m F}$ durante la crociera.

b) Il coefficiente di portanza $C_{L_{\rm IN}}$ e la velocità $V_{\rm IN}$ a inizio crociera.

 111			
$C_{L_{\text{IN}}} =$	$= C_{LmaxG} = 0.4364$	$V_{\rm IN} =$	160 [m/s]

c) Il coefficiente di portanza $C_{L_{\rm FI}}$ e la velocità $V_{\rm FI}$ e la velocità a fine crociera

	. <u> </u>	1 1	
$C_{L_{\mathrm{FI}}} =$	= C _{LmaxG} = 0.4364	$V_{\rm FI} =$	146 [m/s]