MATH 355: HOMEWORK 3

ALEXANDER LEE

Exercise 1 (2.2.1). Example: consider the sequence (x_n) , where $x_n = (-1)^n$. The sequence verconges to 1 if we set $\epsilon = 3$. This sequence is also divergent. Since this sequence also verconges to -1 if we set $\epsilon = 3$, a sequence can verconge to two different values. This strange definition describes that a sequence is bounded since we have that $x - \epsilon < x_n < x + \epsilon$.

Exercise 2 (2.2.2). (a) Let $\epsilon>0$ be arbitrary. Choose $N\in\mathbb{N}$ such that $N>\frac{3}{25\epsilon}-\frac{4}{5}.$ Let $n\geq N.$ Then,

$$\begin{vmatrix} a_n - \frac{2}{5} \end{vmatrix} = \begin{vmatrix} \frac{2n+1}{5n+4} - \frac{2}{5} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{5(2n+1) - 2(5n+4)}{25n+20} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{10n+5-10n-8}{25n+20} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{-3}{25n+20} \end{vmatrix}$$

$$= \frac{3}{25n+20}$$

$$\leq \frac{3}{25n+20}$$

$$\leq \frac{3}{25(\frac{3}{25\epsilon} - \frac{4}{5}) + 20}$$

$$= \frac{3}{\frac{3}{\epsilon} - 20 + 20}$$

$$= \epsilon$$

Hence, $\left|a_n - \frac{2}{5}\right| < \epsilon$.

(b) Let $\epsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $N > \frac{2}{\epsilon}$. Let $n \geq N$. Then,

$$|a_n - 0| = \left| \frac{2n^2}{n^3 + 3} \right|$$

$$= \frac{2n^2}{n^3 + 3}$$

$$< \frac{2n^2}{n^3}$$

$$= \frac{2}{n}$$

$$\leq \frac{2}{N}$$

$$< \frac{2}{\frac{2}{\epsilon}}$$

$$= \epsilon.$$

Hence, $|a_n - 0| < \epsilon$.

(c) Let $\epsilon>0$ be arbitrary. Choose $N\in\mathbb{N}$ such that $N>\frac{1}{\epsilon^3}$. Let $n\geq N$. Then,

$$|a_n - 0| = \left| \frac{\sin(n^2)}{\sqrt[3]{n}} \right|$$

$$\leq \frac{1}{\sqrt[3]{n}}$$

$$\leq \frac{1}{\sqrt[3]{N}}$$

$$< \frac{1}{\sqrt[3]{\frac{1}{\epsilon^3}}}$$

$$\equiv \epsilon$$

Hence, $|a_n - 0| < \epsilon$.

Exercise 3 (2.2.4). (a) Consider the sequence (a_n) , where $a_n = (-1)^n$. (a_n) has an infinite number of ones, but does not converge to one since it diverges.

- (b) Impossible. Suppose towards a contradiction that our sequence $(a_n) \to a \neq 1$. Let $\epsilon = \frac{1}{2}|a-1|$. Then, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|a_n a| < \epsilon$. Since we have $a_n \in V_{\epsilon}(a)$ and $1 \notin V_{\epsilon}(a)$. Thus, at most N terms in (a_n) are not in $V_{\epsilon}(a)$. However, this is a contradiction since we assumed that we have an infinite number of ones, which are not in $V_{\epsilon}(a)$.
- (c) Consider the divergent sequence $(a_n) = (-1, 1, -1, 1, 1, -1, 1, 1, 1, \dots)$. For every $n \in \mathbb{N}$ it is possible to find n consecutive ones somewhere in the sequence.

Exercise 4 (2.2.5). (a) Let $a_n = [[5/n]]$. We claim that $\lim a_n = 0$. Let $\epsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that N = 6. Let $n \geq N$. Then,

$$|a_n - 0| = |[[5/n]]|$$

= $[[5/n]]$
= 0 (since for $n \ge 6$, $0 < 5/n < 1$)
 $< \epsilon$.

Hence, $|a_n - 0| < \epsilon$.

(b) Let $a_n = [[(12+4n)/3n]]$. We claim that $\lim a_n = 1$. Let $\epsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that N = 7. Let $n \geq N$. Then,

$$\begin{aligned} |a_n-1| &= |[[(12+4n)/3n]]-1| \\ &= [[(12+4n/3n)]]-1 \text{ (since } (12+4n)/3n = 12/3n+4/3>1) \\ &= 1-1 \text{ (since for } n \geq 7, \ 1 < (12+4n)/3n < 2) \\ &= 0 \\ &< \epsilon. \end{aligned}$$

Hence, $|a_n - 1| < \epsilon$.

Exercise 5 (2.2.7). (a) The sequence $(-1)^n$ is frequently in the set $\{1\}$.

- (b) The definition of eventually is stronger than that of frequently, since eventually implies frequently.
- (c) A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, (a_n) is eventually in the set $V_{\epsilon}(a)$. Eventually is the term we want.
- (d) (x_n) is not necessarily eventually in the interval (1.9, 2.1). For instance, consider the sequence $(1, 2, 1, 2, \ldots)$. However, (x_n) is frequently in (1.9, 2.1).