Gene expression clustering for single-cell RNA sequencing data

C. Réda supervised by G. Ilsley & N. Luscombe

OIST, Genomics and Regulatory Systems Unit, Japan

March, 1st - July, 31st

- 1 My internship
 - Hosting institution & research team
 - Motivation
- 2 My work
 - General context
 - Objectives
- 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model

- 1 My internship
 - Hosting institution & research team
 - Motivation
- 2 My work
 - General context.
 - Objectives
- 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
- 4 Outlook

My internship

Hosting institution & research team

My internship from March, 1st to July, 31st

Figure: from Google Maps & OIST website

Okinawa Institute of Science and Technology (OIST)

My internship from March, 1st to July, 31st

Figure: from Google Maps & OIST website

Okinawa Institute of Science and Technology (OIST)

Genomics and Regulatory Systems (Luscombe Unit)

My internship

Motivation

Projects in the Luscombe Unit

■ Study of Ciona intestinalis.

Figure: Ciona (Wikipédia) & Oikopleura (OikoBase) & Yeast (NPR)

Projects in the Luscombe Unit

- Study of *Ciona intestinalis*.
- Culture of Oikopleura dioica.

Figure: Ciona (Wikipédia) & Oikopleura (OikoBase) & Yeast (NPR)

Projects in the Luscombe Unit

- Study of Ciona intestinalis.
- Culture of Oikopleura dioica.
- Research on the fly and the yeast, etc.

Figure: Ciona (Wikipédia) & Oikopleura (OikoBase) & Yeast (NPR)

- 1 My internship
 - Hosting institution & research team
 - Motivation
- 2 My work
 - General context
 - Objectives
- 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
- 4 Outlook

- ∟My work
 - General context
 - 1 My internship
 - Hosting institution & research team
 - Motivation
 - 2 My work
 - General context
 - Objectives
 - 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
 - 4 Outlook

RiboNucleic Acid (RNA)

Definition

DNA-like molecule that allows **gene expression**, and helps **producing proteins**.

└My work

General context

RNA sequencing

Single-Cell RNA Sequencing (scRNAseq)

Gets the 4-letter (A, G, U, C) code that controls protein production in a given cell.

RNA sequencing

Single-Cell RNA Sequencing (scRNAseq)

Gets the 4-letter (A, G, U, C) code that controls protein production in a given cell.

Gene expression level

In given sample and gene g, count of the **reads** which match with the coding sequence of g.

Gene expression matrix

Gene expression matrix

For a given set of samples, matrix that contains the gene expression profiles (for all genes) for each sample \sim cell.

	1_P0_1	2_P0_1	4_P0_1	5_P0_1	6_P0_1	1_AB_2
aap.1	45	0	13	0	0	0
aat.1	21	98	0	0	8	0
aat.2	112	144	260	8	1	258
aat.3	0	0	0	0	0	0
aat.4	0	0	0	0	0	0
aat.5	0	0	0	0	0	0
aat.6	0	0	0	0	0	0
aat.7	0	0	0	0	0	0
aat.8	66	12	20	0	0	20
aat.9	0	0	0	0	0	0
abf.1	0	0	0	0	0	0

Main focus

Gene expression pattern

Gene expression profile specific to a given cell type \sim cell functional family.

a given **gene expression pattern** on a set of **important genes** ≡ a cell function

Why are gene expression profiles studied?

■ To find cell sub-populations in a tumor [Patel et al., 2014].

Figure: Mouse cell clustering (grouping) from [Treutlein et al., 2014]

Why are gene expression profiles studied?

- To find cell sub-populations in a tumor [Patel et al., 2014].
- To study of the developmental stages of an organism [Treutlein et al., 2014].

Figure: Mouse cell clustering (grouping) from [Treutlein et al., 2014]

Why are gene expression profiles studied?

- To find cell sub-populations in a tumor [Patel et al., 2014].
- To study of the developmental stages of an organism [Treutlein et al., 2014].
- To discover new cell types [Usoskin et al., 2015], etc.

Figure: Mouse cell clustering (grouping) from [Treutlein et al., 2014]

- ∟My work
 - Objectives
 - 1 My internship
 - Hosting institution & research team
 - Motivation
 - 2 My work
 - General context
 - Objectives
 - 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
 - 4 Outlook

└My work

Objectives

Motivation

My contributions

1 To design a visualization tool for gene expression profiles.

Motivation

My contributions

- 1 To design a visualization tool for gene expression profiles.
- 2 To perform a benchmark on different cell clustering algorithms.

Motivation

My contributions

- 1 To design a visualization tool for gene expression profiles.
- 2 To perform a benchmark on different cell clustering algorithms.
- 3 To design a model for single-cell gene expression.

- 1 My internship
 - Hosting institution & research team
 - Motivation
- 2 My work
 - General context
 - Objectives
- 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
- 4 Outlook

- My contribution
 - └Visualization of single-cell RNA sequencing data
 - 1 My internship
 - Hosting institution & research team
 - Motivation
 - 2 My work
 - General context
 - Objectives
 - 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
 - 4 Outlook

My contribution

└Visualization of single-cell RNA sequencing data

Demonstration

Figure: Screenshot of the application

- My contribution
 - Benchmark on clustering algorithms
 - 1 My internship
 - Hosting institution & research team
 - Motivation
 - 2 My work
 - General context
 - Objectives
 - 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
 - 4 Outlook

Benchmark method (1/2)

Each algorithm has been iterated 100 times on each dataset, with the best parameter values.

Accuracy measure:

Adjusted Rand Index

Compares a resulting clustering $\mathscr C$ to a reference labelling of points $\mathscr R.$

1 If $ARI(\mathscr{C},\mathscr{R})=1$, then \mathscr{C} and \mathscr{R} are similar.

Benchmark method (1/2)

Each algorithm has been iterated 100 times on each dataset, with the best parameter values.

Accuracy measure:

Adjusted Rand Index

Compares a resulting clustering $\mathscr C$ to a reference labelling of points $\mathscr R.$

- If $ARI(\mathscr{C},\mathscr{R}) = 1$, then \mathscr{C} and \mathscr{R} are similar.
- 2 If $ARI(\mathscr{C},\mathscr{R}) = 0$, then the algorithm is not better than the random strategy.

Benchmark method (1/2)

Each algorithm has been iterated 100 times on each dataset, with the best parameter values.

Accuracy measure:

Adjusted Rand Index

Compares a resulting clustering $\mathscr C$ to a reference labelling of points $\mathscr R.$

- I If $ARI(\mathscr{C},\mathscr{R}) = 1$, then \mathscr{C} and \mathscr{R} are similar.
- 2 If $ARI(\mathscr{C},\mathscr{R}) = 0$, then the algorithm is not better than the random strategy.
- If $ARI(\mathscr{C},\mathscr{R}) < 0$, then the two clusterings totally differ.

My contribution

Benchmark on clustering algorithms

Examples for the ARI measure (1/2)

Examples for the ARI measure (2/2)

Benchmark method (2/2)

Each algorithm has been iterated 100 times on each dataset, with the best parameter values.

- Time complexity: depending on the number of cells and number of genes.
- **Stability**: study of the ARI index variation across all 100 iterations.

Benchmark results (1/3)

Benchmark results (2/3)

☐ My contribution

Benchmark on clustering algorithms

Benchmark results (3/3)

- ☐ My contribution
 - Gene expression model
 - 1 My internship
 - Hosting institution & research team
 - Motivation
 - 2 My work
 - General context
 - Objectives
 - 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
 - 4 Outlook

Lots of dropout events [Lun et al., 2016].

- 1 Lots of dropout events [Lun et al., 2016].
- 2 High cell-to-cell variability [Martinez et al., 2017].

- 1 Lots of dropout events [Lun et al., 2016].
- 2 High cell-to-cell variability [Martinez et al., 2017].
- 3 Log-"normal" model for gene expression [Finak et al., 2015].

- 1 Lots of dropout events [Lun et al., 2016].
- 2 High cell-to-cell variability [Martinez et al., 2017].
- 3 Log-"normal" model for gene expression [Finak et al., 2015].
- 4 Bimodal gene expression distribution [McDavid et al., 2014], etc.

Goal

Design a model to pseudo-randomly generate *single cell gene* expression data from a small sample.

Goal

Design a model to pseudo-randomly generate *single cell gene* expression data from a small sample.

Core idea

Gene correlation.

Goal

Design a model to pseudo-randomly generate *single cell gene* expression data from a small sample.

- Gene correlation.
- A model for single gene expression is known.

Goal

Design a model to pseudo-randomly generate *single cell gene* expression data from a small sample.

- Gene correlation.
- A model for single gene expression is known.
- The whole gene regulation system is not known.

Goal

Design a model to pseudo-randomly generate *single cell gene* expression data from a small sample.

- Gene correlation.
- A model for single gene expression is known.
- The whole gene regulation system is not known.

Goal

Design a model to pseudo-randomly generate *single cell gene* expression data from a small sample.

- Gene correlation.
- A model for single gene expression is known.
- The whole gene regulation system is not known.
- ⇒ Idea: design separately single gene expression and single cell gene expression.

How to link gene-level expression and gene regulation?

Copula (Sklar, 1959)

A multivariate joint CDF $\mathscr C$ which margins follow standard uniform distributions.

How to link gene-level expression and gene regulation?

Copula (Sklar, 1959)

A multivariate joint CDF $\mathscr C$ which margins follow standard uniform distributions.

Let
$$U_1, U_2, U_3, ..., U_p \sim \mathcal{U}_{0,1}$$
 r. v.:

$$\forall 0 \leq x_1 \leq 1, ..., 0 \leq x_p \leq 1,$$

$$\mathscr{C}: x \to \mathbb{P}(U_1 \leq x_1 \wedge ... \wedge U_p \leq x_p)$$

Use of copula in modelling

- $(X_i)_{i \in \{1,2,...,p\}}$ is a set of \mathbb{R} -valued r. v. with CDF $(\mathscr{F}_i)_{i \in \{1,2,...,p\}}$.
- \mathscr{F} is a joint CDF of $(X_i)_{i \in \{1,2,\ldots,p\}}$, i.e.:

$$\forall x \in \mathbb{R}^p, \mathcal{F}(x_1,...,x_p) = \mathbb{P}(X_1 \leq x_1,...,X_p \leq x_p)$$

Use of copula in modelling

- $(X_i)_{i \in \{1,2,...,p\}}$ is a set of \mathbb{R} -valued r. v. with CDF $(\mathscr{F}_i)_{i \in \{1,2,...,p\}}$.
- \mathscr{F} is a joint CDF of $(X_i)_{i \in \{1,2,\ldots,p\}}$, i.e.:

$$\forall x \in \mathbb{R}^p, \mathcal{F}(x_1,...,x_p) = \mathbb{P}(X_1 \leq x_1,...,X_p \leq x_p)$$

Theorem [Sklar, 1959]

Then there is a copula $\mathscr C$ such as: $\forall x \in \mathbb R$, $\mathscr F(x_1, x_2, ..., x_p) = \mathscr C(\mathscr F_1(x_1), \mathscr F_2(x_2), ..., \mathscr F_p(x_p))$.

Use of copula in modelling

- $(X_i)_{i \in \{1,2,...,p\}}$ is a set of \mathbb{R} -valued r. v. with CDF $(\mathscr{F}_i)_{i \in \{1,2,...,p\}}$.
- \mathscr{F} is a joint CDF of $(X_i)_{i \in \{1,2,\ldots,p\}}$, i.e.:

$$\forall x \in \mathbb{R}^p, \mathscr{F}(x_1,...,x_p) = \mathbb{P}(X_1 \leq x_1,...,X_p \leq x_p)$$

Theorem [Sklar, 1959]

- **1** Then there is a copula $\mathscr C$ such as: $\forall x \in \mathbb R$, $\mathscr F(x_1, x_2, ..., x_p) = \mathscr C(\mathscr F_1(x_1), \mathscr F_2(x_2), ..., \mathscr F_p(x_p))$.
- 2 Given a copula \mathscr{D} , $\mathscr{H}: (\mathbb{R}^+)^p \to [0,1]$, $x \to \mathscr{D}(\mathscr{F}_1(x_1),...,\mathscr{F}_p(x_p))$ is a CDF.

Which distributions should be chosen? (1/4)

Histogram of gene expression values of gene alh.2 in Tintori dataset

Figure: Dataset from [Tintori et al., 2016]

Which distributions should be chosen? (2/4)

Histogram of gene expression values in cell P0 (embryo 2) in Tintori

Figure: Dataset from [Tintori et al., 2016]

Which distributions should be chosen? (3/4)

Figure: Dataset from [Tintori et al., 2016] (all genes)

Which distributions should be chosen? (4/4)

Figure: [Tintori et al., 2016] (informative genes: thres=0.75)

My contribution

Gene expression model

Model for single-cell gene expression

After **feature selection** and computation of the **two modes** for each cell:

After **feature selection** and computation of the **two modes** for each cell:

For a given cell j and p genes (log-normalized values)

■ $\mathscr{C}_{j\mu_{1j},\mu_{2j},\alpha_{j},\Sigma}$ is a bimodal Gaussian copula of means: μ_{1j} , μ_{2j} , covariance: Σ , rate: α_{j} .

After **feature selection** and computation of the **two modes** for each cell:

For a given cell j and p genes (log-normalized values)

- $\mathscr{C}_{j\mu_{1j},\mu_{2j},\alpha_{j},\Sigma}$ is a bimodal Gaussian copula of means: μ_{1j} , μ_{2j} , covariance: Σ , rate: α_{j} .
- $\forall i \leq p, X_{i,j}$ is the r.v. associated with expression of gene i.
- $X_j = (X_{1,j}, ..., X_{p,j})$ is the r.v. associated with expression in cell j.

After **feature selection** and computation of the **two modes** for each cell:

For a given cell j and p genes (log-normalized values)

- $\mathscr{C}_{j\mu_{1j},\mu_{2j},\alpha_{j},\Sigma}$ is a bimodal Gaussian copula of means: μ_{1j} , μ_{2j} , covariance: Σ , rate: α_{j} .
- $\forall i \leq p, X_{i,j}$ is the r.v. associated with expression of gene i.
- $X_j = (X_{1,j}, ..., X_{p,j})$ is the r.v. associated with expression in cell j.
- For all $i \le p$, $\mathscr{F}_{X_{i,j}}$ (CDF of $X_{i,j}$) is the known model for single gene i expression.

After **feature selection** and computation of the **two modes** for each cell:

For a given cell j and p genes (log-normalized values)

- $\mathscr{C}_{j\mu_{1j},\mu_{2j},\alpha_{j},\Sigma}$ is a bimodal Gaussian copula of means: μ_{1j} , μ_{2j} , covariance: Σ , rate: α_{j} .
- $\forall i \leq p, X_{i,j}$ is the r.v. associated with expression of gene i.
- $X_j = (X_{1,j}, ..., X_{p,j})$ is the r.v. associated with expression in cell j.
- For all $i \le p$, $\mathscr{F}_{X_{i,j}}$ (CDF of $X_{i,j}$) is the known model for single gene i expression.

$$\mathsf{P}(X_j \leq q) = \mathscr{C}_{j\mu_{1j},\mu_{2j},\alpha_j,\Sigma}(\phi^{-1} \circ \mathscr{F}_{X_{1,j}}(q_1),...,\phi^{-1} \circ \mathscr{F}_{X_{p,j}}(q_p))$$

Results (1/2): values from dataset [Tintori et al.]

Histogram of gene expression values in cell AB embryo 3

Results (2/2): generation from the model

Histogram of gene expression values in cell AB embryo 3

Outlook

- 1 My internship
 - Hosting institution & research team
 - Motivation
- 2 My work
 - General context.
 - Objectives
- 3 My contribution
 - Visualization of single-cell RNA sequencing data
 - Benchmark on clustering algorithms
 - Gene expression model
- 4 Outlook

Conclusion

Contribution

1 An online application for data analysis.

Conclusion

Contribution

- 1 An online application for data analysis.
- 2 A benchmark performed on clustering algorithms.

Conclusion

Contribution

- 1 An online application for data analysis.
- A benchmark performed on clustering algorithms.
- 3 A model for *single-cell* gene expression, that needs improvement.