

www.uneatlantico.es

MATEMÁTICAS

Sistemas de Ecuaciones Lineales

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Solucionar Sistemas de Ecuaciones Lineales mediante Métodos Matriciales

- Sistemas de Ecuaciones Lineales
- Método de Gauss
- Método de Gauss-Jordan
- Sistemas con Múltiples Soluciones o Sin Solución
- Sistemas Homogéneos

Sistemas de Ecuaciones Lineales

www.uneatlantico.es

$$E_1: a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

 $E_2: a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$
:

 $E_n: a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n.$

En este sistema nos proporcionan las constantes a_{ij} , para cada i, j = 1, 2, ..., n, y b_i , para cada i = 1, 2, ..., n y necesitamos determinar las incógnitas $x_1, ..., x_n$.

$$5i_1 + 5i_2 = V,$$

$$i_3 - i_4 - i_5 = 0,$$

$$2i_4 - 3i_5 = 0,$$

$$i_1 - i_2 - i_3 = 0,$$

$$5i_2 - 7i_3 - 2i_4 = 0.$$

Sistemas de Ecuaciones Lineales

www.uneatlantico.es

Método de Reducción – Método de Eliminación Gaussiana

- La ecuación E_i puede multiplicarse por cualquier constante λ diferente de cero y la ecuación resultante puede usarse en lugar de E_i. Esta operación se denota como (λE_i) → (E_i).
- 2. La ecuación E_j puede multiplicarse por cualquier constante λ diferente de cero y sumarse con la ecuación E_i y la ecuación resultante puede usarse en lugar de E_i . Esta operación se denota como $(E_i + \lambda E_j) \rightarrow (E_i)$.
- 3. El orden de las ecuaciones E_i y E_j puede intercambiarse. Esta operación se denota $(E_i) \leftrightarrow (E_j)$.

Sistemas de Ecuaciones Lineales

www.uneatlantico.es

Ejemplo:

Dado el siguiente sistema de ecuaciones, aplique eliminación gaussiana para su solución.

$$E_1: x_1 + x_2 + 3x_4 = 4,$$

$$E_2: 2x_1 + x_2 - x_3 + x_4 = 1,$$

$$E_3: 3x_1 - x_2 - x_3 + 2x_4 = -3,$$

$$E_4: -x_1 + 2x_2 + 3x_3 - x_4 = 4,$$

$$E_1: x_1+x_2 + 3x_4 = 4,$$

$$E_2: -x_2-x_3-5x_4=-7,$$

$$E_3$$
: $3x_3 + 13x_4 = 13$,

$$E_4$$
: $-13x_4 = -13$.

Matrices y Vectores

Una matriz $n \times m$ (n por m) es un arreglo rectangular de elementos con n filas y m columnas en las que no sólo se encuentra el valor de un elemento importante, sino también su posición en el arreglo.

La notación para una matriz $n \times m$ será una mayúscula, como A, para la matriz y minúsculas con subíndices dobles, como a_{ij} , para referirse a la entrada en la intersección de la i-ésima fila y la j-ésima columna; es decir

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

Ejemplo:

Determine el tamaño y las entradas respectivas de la matriz.

$$A = \left[\begin{array}{ccc} 2 & -1 & 7 \\ 3 & 1 & 0 \end{array} \right].$$

Matrices y Vectores

La matriz 1 = n

$$A = [a_{11} \ a_{12} \ \cdots \ a_{1n}]$$

recibe el nombre de vector fila *n*-dimensional y una matriz $n \times 1$

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}$$

recibe el nombre de **vector columna** *n*-**dimensional**. Normalmente, para los vectores se omiten los subíndices y se utilizan letras minúsculas negritas para denotarlos. Por lo tanto,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{y} = [y_1 \ y_2 \dots \ y_n]$$

www.uneatlantico.es

Representación Matricial de S.E.L.

Una matriz $n \times (n + 1)$ se puede usar para representar el sistema lineal

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n,$$

al construir primero

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$[A, \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & \vdots & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & \vdots & b_2 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & \vdots & b_n \end{bmatrix},$$

donde la línea punteada vertical se usa para separar los valores de los coeficientes de las incógnitas con los del lado derecho de las ecuaciones. El arreglo $[A, \mathbf{b}]$ recibe el nombre de **matriz aumentada**.

Solución de S.E.L. (Método de Gauss)

www.uneatlantico.es

Siempre y cuando $a_{11} \neq 0$, realizamos las operaciones correspondientes para

$$(E_j - (a_{j1}/a_{11})E_1) \to (E_j)$$
 para cada $j = 2, 3, ..., n$

para eliminar el coeficiente de x_1 en cada una de estas filas. A pesar de que se espera que cambien las entradas en las filas $2, 3, \ldots, n$, para facilidad de notación, nuevamente denotamos la entrada en la *i*-ésima fila y la *j*-ésima columna mediante a_{ij} . Con esto en mente, seguimos el procedimiento secuencial para $i = 2, 3, \ldots, n-1$ y realizamos la operación

$$(E_j - (a_{ji}/a_{ii})E_i) \rightarrow (E_j)$$
 para cada $j = i + 1, i + 2, \dots, n$,

siempre y cuando $a_{ii} \neq 0$. Esto elimina (cambia el coeficiente a cero) x_i en cada fila debajo del *i*-ésimo para todos los valores de i = 1, 2, ..., n - 1. La matriz resultante tiene la forma

$$\tilde{\tilde{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & \vdots & a_{1,n+1} \\ 0 & a_{22} & \cdots & a_{2n} & \vdots & a_{2,n+1} \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots \\$$

donde, excepto en la primera columna, no se espera que los valores de a_{ij} concuerden con los de la matriz original \tilde{A} . La matriz $\tilde{\tilde{A}}$ representa un sistema lineal con la misma solución establecida como el sistema original.

Solución de S.E.L. (Método de Gauss)

www.uneatlantico.es

El sistema lineal nuevo es triangular,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = a_{1,n+1},$$

 $a_{22}x_2 + \dots + a_{2n}x_n = a_{2,n+1},$
 \vdots \vdots
 $a_{nn}x_n = a_{n,n+1},$

Ahora, la matriz final se puede transformar en su sistema lineal correspondiente y es posible obtener soluciones para x_1 , x_2 , x_3 y x_4 . Este procedimiento recibe el nombre de eliminación gaussiana con sustitución hacia atrás.

Solución de S.E.L. (Método de Gauss)

www.uneatlantico.es

Ejemplo:

Dado el siguiente sistema lineal, represéntelo como una matriz aumentada y utilice la eliminación gaussiana para encontrar su solución.

$$E_1: x_1 - x_2 + 2x_3 - x_4 = -8,$$

$$E_2: 2x_1 - 2x_2 + 3x_3 - 3x_4 = -20,$$

$$E_3: x_1 + x_2 + x_3 = -2,$$

$$E_4: x_1 - x_2 + 4x_3 + 3x_4 = 4,$$

Solución de S.E.L. (Método de Gauss-Jordan)

www.uneatlantico.es

El método de Gauss-Jordan es una modificación del método de Gauss. Busca transformar la matriz aumentada del sistema de ecuaciones original en una **matriz diagonal**. Ahora, la matriz resultante ofrece directamente las soluciones al sistema de ecuaciones.

$$\tilde{\tilde{A}} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \vdots & a_{1,n+1} \\ 0 & a_{22} & \ddots & \vdots & \vdots & a_{2,n+1} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots \\ 0 & \cdots & \vdots & \vdots \\ 0 & \cdots & \vdots \\ 0 & \cdots$$

Solución de S.E.L. (Método de Gauss-Jordan)

www.uneatlantico.es

Ejemplo:

Dado el siguiente sistema lineal, represéntelo como una matriz aumentada y utilice el Método de Gauss-Jordan para encontrar su solución.

$$E_1: x_1 - x_2 + 2x_3 - x_4 = -8,$$

$$E_2: 2x_1 - 2x_2 + 3x_3 - 3x_4 = -20,$$

$$E_3: x_1 + x_2 + x_3 = -2,$$

$$E_4: x_1 - x_2 + 4x_3 + 3x_4 = 4,$$

Sistemas con Múltiples Soluciones o Sin Solución

www.uneatlantico.es

A la hora de resolver un sistema de ecuaciones lineales nos podemos encontrar 3 tipos de soluciones:

- Sistemas con solución única (Sistema Compatible Determinado)
- Sistemas con múltiples soluciones (Sistema Compatible Indeterminado)
- Sistemas sin solución (Sistema Incompatible).

Teorema de Rouché-Frobenius:

Un sistema de ecuaciones lineales tiene solución (Sistema Compatible) si el rango de la matriz aumentada es igual al rango de la matriz de los coeficientes.

- Si Rg(A) = n, entonces existe solución única
- De otro modo existen infinitas posibles soluciones

Si el rango de la matriz aumentada difiere del rango de la matriz de coeficientes, el sistema no tiene solución (Sistema Incompatible)

Sistemas con Múltiples Soluciones o Sin Solución

www.uneatlantico.es

El rango de una matriz Rg(A) es el número de elementos distintos de cero en la diagonal principal (si la matriz es cuadrada) o en la pseudodiagonal si la matriz es rectangular.

Si la matriz tiene forma de escalera, el Rg(A) es el número de pivotes situados en los peldaños.

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 3 & 0 & -2 \\ 0 & 0 & 3 & 2 & 2 \\ 0 & 0 & 0 & -2 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & -4 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Sistemas con Múltiples Soluciones o Sin Solución

Ejemplo:

Discuta los siguientes sistemas:

$$x_1 + x_2 + x_3 = 4,$$
 $x_1 + x_2 + x_3 = 4,$
 $2x_1 + 2x_2 + x_3 = 6,$ y $2x_1 + 2x_2 + x_3 = 4,$
 $x_1 + x_2 + 2x_3 = 6,$ $x_1 + x_2 + 2x_3 = 6.$

www.uneatlantico.es

Sistemas Homogéneos

Un sistema de ecuaciones homogéneo es aquel donde todas sus ecuaciones están igualadas a 0.

Todos los sistemas de ecuaciones homogéneos son compatibles, ya que admiten, al menos, la solución trivial.

$$E_1: a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$E_n: a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0$$

www.uneatlantico.es