Practice Problems 19: Area between two curves, Polar coordinates

1. Find the area of the region enclosed by $y = \cos x$, $y = \sin x$ $x = \frac{\pi}{2}$ and x = 0.

2. Consider the curves $y = x^3 - 9x$ and $y = 9 - x^2$.

(a) Show that the curves intersect at (-3,0), (-1,8) and (3,0).

(b) Find the area of the region bounded by the curves.

3. Sketch the graphs of the following polar equations:

(a) $r = \cos \theta$

(b) $r = -\cos\theta$

(c) $r = \sin \theta$

(d) $r = -\sin\theta$.

4. Sketch the limacons (convex or oval limacons, limacons with dimples, cardiods and limacons with inner loops).

5. Sketch the roses:

(a) $r = \sin 2\theta$

(b) $r = \sin 3\theta$

(c) $r = \sin 4\theta$

(d) $r = \sin 5\theta$

(e) $r = \cos 2\theta$

(f) $r = \cos 3\theta$

(g) $r = \cos 4\theta$

(h) $r = \cos 5\theta$

6. Consider the equations $r = 2 + \sin \theta$ and $r = -2 + \sin \theta$.

(a) Show that both the equations describe the same curve.

(b) Sketch the curve.

7. Consider the equations $r = \sin \frac{\theta}{2}$ and $r = \cos \frac{\theta}{2}$.

(a) Show that if (r,θ) satisfies the equation $r=\sin\frac{\theta}{2}$ then its one of the other representations $(-r, \theta + \pi)$ satisfies the equation $r = \cos \frac{\theta}{2}$.

(b) Show that both the equations describe the same curve and sketch the curve.

(c) Observe from the graph that the curve is symmetric with respect to both x-axis and y-axis.

8. Sketch the following curves:

(a) $r = 2 + \sin(2\theta)$ (b) $r^2 = -\sin\theta$ (c) $r = \theta, \ \theta \ge 0$

(d) $r = \theta, \theta < 0$

(e) $r = \theta$

(f) $r = -\theta$

9. Consider the equation $r = \theta + 2\pi$.

(a) Observe that the equation changes if (r, θ) is replaced by $(r, \pi - \theta)$ or $(-r, -\theta)$.

(b) Show that the equation given above and $r = \theta$ describe the same curve (Spiral of Archimedes).

(c) Show that the curve obtained is symmetric with respect to the y-axis.

- 10. Sketch the regions described by the following sets.
 - (a) $\{(r,\theta): 1 \le r \le 1 2\cos\theta, \ \frac{\pi}{2} \le \theta \le 3\frac{\pi}{2}\}$
 - (b) $\{(r,\theta): 1+\cos\theta \le r \le 3\cos\theta, \frac{-\pi}{3} \le \theta \le 0\}$
- 11. Replace the equation $x^2 + y^2 4y = 0$ by equivalent polar equation.
- 12. Replace the equation $r = 6\cos\theta + 8\sin\theta$ by equivalent Cartesian equation and show that the equation describe a circle.

Practice Problems 19: Hints/Solutions

- 1. Solving $\sin x = \cos x$ implies that $x = \frac{\pi}{4} \in [0, \frac{\pi}{2}]$ (see Figure 1). Therefore the required area is $\int_0^{\frac{\pi}{4}} (\cos x \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin x \cos x) dx = 2\sqrt{2} 2$.
- 2. (a) Note that $x^3 9x 9 + x^2 = (x+3)(x+1)(x-3)$.
 - (b) Area = $\int_{-3}^{1} [(x^3 9x) (9 x^2)] dx + \int_{-1}^{3} [(9 x^2) (x^3 9x)] dx$ (see Figure 2).
- 3. See Figure 3.
- 4. See Figure 4 for the graphs of the equations given in (a)-(d),

Observe that the graphs of the equations given in (e)-(h) are obtained by rotating the curves described by the equations given in (a)-(d) counterclockwise by π . For example, $r = 3 - \cos \theta = 3 + \cos(\theta - \pi)$.

Similarly, the graphs of the equations given in (i)-(p) are obtained by rotating the curves described by the equations given in (a)-(h) counterclockwise by $\frac{\pi}{2}$. For example, $r = 3 + \sin \theta = 3 + \cos(\theta - \frac{\pi}{2})$.

- 5. See Figure 5.
- 6. (a) Observe that both the curves are symmetric with respect to the y-axis. Moreover, if (r, θ) satisfies the equation $r = 2 + \sin \theta$ then $(-r, -\theta)$ satisfies the equation $r = -2 + \sin \theta$ and vice versa. Therefore both the equations describe the same curve.
 - (b) Refer Figure 6 for the graph.
- 7. (a) Easy to verify.
 - (b) From (a), it follows that both the equations describe the same curve. Refer Figure 7 for the graph.
 - (c) The symmetry is shown in the figure.
- 8. See Figure 8
- 9. It is easy to verify.
- 10. See Figure 10.
- 11. Substituting $x = r \cos \theta$ and $y = r \sin \theta$ in the given equation leads to the equation $r(r 4 \sin \theta) = 0$. The equation r = 0 represents the origin which is included in the curve described by the equation $r = 4 \sin \theta$. The required equation is $r = 4 \sin \theta$.
- 12. The given equation can be written as $r^2 6r\cos\theta 8r\sin\theta = 0$. The substitutions, $x = r\cos\theta$, $y = r\sin\theta$ and $r^2 = x^2 + y^2$ lead to the equation $(x 3)^2 + (y 4)^2 = 25$.