II-2 DELIGNE-LUSTIG

Recall that $O(w) \subseteq B_XB$ is a G-orbit of dimension $l(w)_+$ dim B

def: Given
$$w \in W$$
, the Deligne-Lusztig variety $X(w)$
is $X(w) := \int (B_1, B_2) \in O(w) | B_2 = F(B_1)$
 $= O(w) \cap F \leftarrow graph of F in BxB$

Through the first projection
$$B \times B \rightarrow B$$
 we get $X(w) = \{B \in B \mid B \xrightarrow{w} F(B)\}$

$$E_{\times}$$
: a) Recall that $O(1) = \Delta B$
 $\longrightarrow X(1) = \Delta B^{\mathsf{f}} = B^{\mathsf{f}}$ finite set $= (G/B)^{\mathsf{f}} = G^{\mathsf{f}}/B^{\mathsf{f}}$

b) For G = SL, we have two Deligne-Lusztig varieties
$$X(1) = B^{F} = P_{1}(F_{q})$$

$$X(s) = B \setminus B^{F} = P_{1} \setminus P_{1}(F_{q})$$

Since If is transace to 6(w) me deduce:

Prop: X(w) is a smooth quasi-projective variety
of dimension L(w)

Rmk: X(w) is conjectured to be affine (proved for q > Coxeter number by Deligne-Lusztig)

The action of G on O(w) induces an action of the finite reductive group GF on X(w).

Alternative description

Fix $T \subseteq B$ both F-stable Then $G(w) = G(B, B) \circ f(gB, g'B) \mid g'g' \in BwB$

In this description GFacts by left multiplication on 9B (this does not change g'F(g)) Recall that $O(w) = \bigsqcup_{v \in W} O(v)$ By tansversality of 17 with any G-orbit on BxB he get $X(w) = \coprod_{v \leq w} X(v)$ and X(w_o) · B Note that X(w) is smooth whenever O(w) is Prop: If w does not lie in an F-stable parabolic subgroup of W then X(w) is irreducible For the general case, assume that $T \subseteq S$ is an F-stable set of simple reflections. We can form: · W_ the paublic subgroup of W_I · P_ = BW_B the parabolic subgroup of G · L_ = P_ n P_ the standard Levi subgroup of G ~> LI is connected reductive with Weyl group WI

Levi de composition

and P_ = L_ KU_ with U_ = R_ (P_I)

Let $w \in W_{I}$ and $X_{L_{I}}(w)$ the DL variety in L_{I} . The action of L_{I}^{F} on it can be inflated to an action of P_{I}^{F} (with U_{I}^{F} acting trivially) and the map

$$G^{\mathsf{F}}_{\mathsf{X}_{\mathsf{L}_{\mathbf{I}}}}(\mathsf{w}) \longrightarrow \mathsf{X}_{\mathsf{G}}(\mathsf{w})$$

$$(9, \ell(\mathsf{BnL}_{\mathbf{I}})) \longmapsto 9^{\ell} \mathsf{B}$$

is a GF-equivariant isomorphism of varieties.

In all the irreducible components of X(w) have dim l(w)

2) The variety $\widetilde{X}(w)$

Let
$$U = R_u(B)$$
 (so that $B = T_XU$)
We replace $B = G/B$ by $U = G/U$ and define

$$\tilde{X}(w) = \{g \cup EG/U \mid g^{-1}F(g) \in UwU\}$$

read to choose a

representative in $N_G(T)$

Again $\tilde{X}(w)$ is smooth of pure dimension L(w)

GFacts on $\widetilde{X}(w)$ on the left and T^{WF} on the right.

indeed, if $t \in T^{wF}$ then F(t) = w'twso that $q^{-1}F(q) \in UwU$ => (gt)-'F(gt) = t-'g-'F(g)F(t) \(\int \text{t-'UwUw-'tw} = \text{UwU} (since Thormalizes U) Prop: The projection G/U -> G/B induces

To GF- equivariant isomorphism of varieties $\chi_{(w)} \longrightarrow \chi_{(w)}$

 $\underline{\mathsf{Exercise}}: \mathsf{G=Sl_2} \supseteq \mathsf{B=}\left\{\binom{\lambda}{\lambda^{-1}}\right\} \supseteq \mathsf{T=}\left\{\binom{\lambda}{\lambda^{-1}}\right\}$

1) Show that the maps

induce G-equivariant isomorphisms $G/ \stackrel{\sim}{\rightarrow} \mathbb{A}^2 \setminus \{(0,0)\}$ and $G/_{\mathbb{R}} \stackrel{\sim}{\rightarrow} \mathbb{P}_1$

2) Let
$$s = \begin{pmatrix} \cdot & 1 \\ -1 & \cdot \end{pmatrix}$$
. Describe explicitely UsU and BsB

3) Deduce that
$$\widetilde{X}(s) = \left\{ (x,y) \in A_2 \mid \{(0,0)\} \mid xy^9 - yx^9 = 1 \right\}$$

with the natural map $\widetilde{X}(s) \longrightarrow X(s)$.

4) Show that
$$\widehat{X}(s) \longrightarrow A$$
,
 $(n,y) \longmapsto xy^{q^2} - yn^{q^2}$

induces an isomorphism $S_{\downarrow}(q) \setminus \widetilde{X}(s) \xrightarrow{\sim} A_1$

