

Page 1 of 9

PROJECT: MSS54

MODULE: DIFFERENTIAL SUCTION SYSTEM

AUTHORIZATION

AUTHOR (EE-221)	DATE
APPROVED (ZS-M-57)	DATE
APPROVED (EA-E2)	DATE

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 2 of 9

Changes:

version	Date	comment
1.0	20.09.2003 First	version

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 3 of 9

Table of contents

CHANGES	2	
1 FUNCTIONAL DESCRIPTION	4	
1.1 CONDITIONS OF THE DISA		4
1.2 INITIALIZATION	4	
1.3 SWITCHING THE DISA	5	
1.3.1 Switching on	5	
1.3.2 Switching off	5	
1.4 REVERSAL OF DIRECTION		
1.5 FUNCTIONAL CIRCUIT DIAGRAMS		
2 DISA DATA	9	

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 4 of 9

1 FUNCTIONAL DESCRIPTION

The DISA causes a switch between long (torque position, DISA on) and short (power position, DISA off) intake path.

In the switching DISA used in EVT, the switching point is determined by a lower speed limit K_DISA_N_ON, an upper speed limit K_DISA_N_OFF and by the full load condition B_VL.

The DISA is in the on state if the full load condition is valid and the speed is in the range $K_DISA_N_ON < n < K_DISA_N_OFF$, otherwise the DISA is off.

The DISA is adjusted via an electric motor which is controlled by a PWM.

1.1 CONDITIONS OF THE DISA

The DISA has four different states:

disa state state	
0	DISA from (service provision)
1	Adjust DISA from Off to On
2	DISA on (torque position)
3	Adjust DISA from On to Off

In the idle states 0 and 2, the DISA is controlled via a 20% PWM signal from the corresponding polarity to prevent the DISA from being adjusted automatically by vibrations.

During the switching processes (disa_state 1 and 3), a control dependent on a characteristic curve (KL_DISA_TV) takes place with a PWM signal between 100% and 20%.

1.2 INITIALIZATION

The initialization takes place in the function disa_init.

After initialization, the DISA is controlled with a 20% PWM signal in the off direction, disa_state is set to zero.

The DISA is then in the Off state.

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 5 of 9

1.3 SWITCHING THE DISA

The DISA is switched in the function disa_10ms.

The DISA only switches over as long as the engine running condition (B_ML) is true.

1.3.1 TURN ON

After initialization, the DISA is in power state, ie disa_state = 0.

A switchover occurs when the following conditions are met:

- DISA in performance position: disa_state = 0
- Speed greater than K_DISA_N_EIN: n > K_DISA_N_EIN
- Speed less than K_DISA_N_AUS: n < K_DISA_N_AUS
- Engine at full load:

 $B_VL = 1$

If all four conditions are true, disa_state = 1 is set.

As long as disa_state = 1, the function disa_ein() is called (10ms clock).

The function disa_ein() outputs the corresponding direction bit for the correct polarity and a PWM signal.

The PWM duty cycle is determined by the applicable characteristic curve KL_DISA_TV, the input variable of the characteristic curve is the counter variable disa_cnt.

disa_cnt is incremented with each call of disa_ein(), thus the characteristic curve is traversed.

First, a 100% duty cycle is output, which is then reduced to 20% to avoid jamming at the stop of the On position.

The last output duty cycle of 20% and the direction remain set until the next switching operation.

If disa_cnt exceeds the value K_DISA_CNT_ENDE, the switching process is complete, disa_cnt is set to 0, disa_state to 2, the DISA is now in torque position.

1.3.2 TURN OFF

The DISA is disabled when the following conditions are met:

- DISA in torque position: disa_state = 2
- one of the following three conditions:

on > K_DISA_N_AUS + K_DISA_HYST on < K_DISA_N_EIN + K_DISA_HYST o Condition full load B_VL is false

An applicable hysteresis K_DISA_HYST is added to the speed limits to avoid constant switching at the speed limits.

If the first and one of the following three conditions are true, disa_state is set to 3. As long as disa_state = 3, the function disa_aus() is called.

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 6 of 9

The direction bit is set in the opposite direction, the duty cycle is again calculated from the characteristic curve KL_DISA_TV.

As soon as disa_cnt has exceeded the value K_DISA_CNT_ENDE and the characteristic curve has been passed, disa_cnt and disa_state are set to zero, ie the DISA is now in the power position and the switching process is complete.

1.4 REVERSAL OF DIRECTION

The constant K_DISA_DIR can be used to reverse the switching direction of the DISA.

Since the direction bit of the hardware driver is only set during a switchover, a switchover must be triggered after changing the constant K_DISA_DIR in order to to take effect.

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 7 of 9

1.5 FUNCTIONAL CIRCUIT DIAGRAMS

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 8 of 9

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc

Page 9 of 9

2 DATA FROM DISA

The function is calculated in the 10ms task.

Description of the variables:

disa_state	DISA operating state	ub

Description of the application data:

K_DISA_DIR	direction reversal DISA	ub
K_DISA_N_EIN	lower speed limit upper	ub
K_DISA_N_AUS	speed limit	ub
K_DISA_HYST	hysteresis value speed	ub
KL_DISA_TV	characteristic curve for duty cycle	ub / ub

	Department	Date	name	file name
author	ZS-M-57	20.09.03	Frank	Disa.doc