INTRODUCTION

The KS0035 is a general purpose LCD driving IC, and designed to be available for electronic frequency tuning display applications or microcomputer application systems.

FEATURES

- . Maximum 53 segment output for static display.
- . Drive system : 1/1 duty \rightarrow 53 segments $1/2 \text{ duty } \rightarrow 104 \text{ segments.}$
- . 3 input pins for serial data transfer (\mbox{CE} , \mbox{CK} , \mbox{DI})
- . 2 pins for 5 level AD converter (ARI , ALI)
- . 2 display pins for direct displaying (DSP1, DSP2)
 . INH pin for blinking out display.

BLOCK DIAGRAM

- S44 (DSP2)
- S46 (DSP1)
- S48 (DSPOUT)
- S49 ~ S53 (ARLO1 ~ ARLO5)

PAD DIAGRAM

Das ist der Chip - der schwarze Punkt hinten drauf

^{*} There is mark of KS0035 on the center in chip.

PAD LOCATION

 $\text{UNIT}(\mu\text{m})$

PAD	PAD	COORI	DINATE	PAD	PAD	COORD	INATE
NUMBER	NAME	Х	Y	NUMBER	NAME	Х	Y
1	S48	-960	-1265	33	S17	885	1265
2	S49	-835	-1265	34	S18	760	1265
3	S50	-710	-1265	35	S19	635	1265
4	S51	-585	-1265	36	S20	510	1265
5	S52	-460	-1265	37	S21	385	1265
6	S53	-335	-1265	38	S22	260	1265
7	osc	-140	-1265	39	S23	135	1265
8	V_{DD}	-15	-1265	40	S24	10	1265
9	/INH	110	-1265	41	S25	-115	1265
10	V _{LCD}	235	-1265	42	S26	-240	1265
11	V _{SS}	360	-1265	43	S27	-365	1265
12	CE	485	-1265	44	S28	-490	1265
13	СК	610	-1265	45	S29	-615	1265
14	DI	735	-1265	46	S30	-740	1265
15	COM2	860	-1265	47	S31	-865	1265
16	COM1	985	-1265	48	S32	-965	940
17	S1	965	-970	49	S33	-965	815
18	S2	965	-845	50	S34	-965	690
19	S3	965	-720	51	S35	-965	565
20	S4	965	-595	52	S36	-965	440
21	S5	965	-470	53	S37	-965	315
22	S6	965	-345	54	S38	-965	190
23	S7	965	-220	55	S39	-965	65
24	S8	965	-95	56	S40	-965	-60
25	S9	965	30	57	S41	-965	-185
26	S10	965	155	58	S42	-965	-310
27	S11	965	280	59	S43	-965	-435
28	S12	965	405	60	S44	-965	-560
29	S13	965	530	61	S45	-965	-685
30	S14	965	655	62	S46	-965	-810
31	S15	965	780	63	S47	-965	-935
32	S16	965	905				

Das ist dann wohl auch für den Chip

PAD DESCRIPTION

PAD	INPUT/OUTPUT	NAME	DESCRIPTION	INTERFACE	
V_{DD}		Operating Voltage	For logic circuit (2.7V~6.5V)		
V _{SS}	Power		0V (GND)	Power Supply	
V _{LCD}		Driver Supply Voltage Power supply for driving LCD]	
COM1, COM2	Output	Common output	- 1/1duty: Only COM1 is used, COM2 open	LCD	
			- 1/2duty: Both COM1 and COM2 are used.		
S1~S43	Output	Segment output	Segment output for driving LCD	LCD	
S46(DSP1)	Output	Segment output	Segment output for driving LCD	LCD	
S44(DSP2)	Input	DSP input	(Display input pins)	Display input	
S47(ARI)	Output	Segment output	Segment output for driving LCD	LCD	
S45(ALI)	Input	Analog input	(Analog input pins)	Analog input	
S48	Output	Segment output	Segment output for driving LCD	LCD	
(DSPOUT)		DSP output	(DSP output pins)		
S49~S53	Output	Segment output	Segment output for driving LCD	LCD	
(ARLO1~5)		Analog output	(Analog output pins)		
OSC	Input	Oscillator	Input for clock generator	Resistor, Capacitor	
CE	Input	Chip Enable	CE = High P Chip Enable status	Controller	
CK	Input	Data Shift Clock	Clock pulse input for the 1bit serial		
			shift register. The data is shifted to 56 bit shift register at the rising edge of the clock.	Controller	
DI	Input	Data Input	Display data input	Controller	
INH Input		Display blinking	Display blinking input (INH = LOW)	Controller	

3,3V oder 5V gehen

MAXIMUM ABSOLUTE LIMIT(Ta=25 °C, VSS=0V)

Characteristic	Symbol	Value	Applicable pin	Unit
Maximum Supply Voltage	V_{DDmax}	-0.3 ~ +7.0	V_{DD}	V
	V _{LCD max}	-0.3 ~ V _{DD} +0.3	V _{LCD}	V
Input Voltage	V _{IN1}	-0.3 ~ V _{DD} +0.3	CE, CK, DI, INH	V
	V _{IN2}	-0.3 ~ V _{DD} +0.3	S44 ~ S47	V
			Output off(Used as ARI, ALI	
			DSP1, DSP2)	
	V _{IN3}	-0.3 ~ V _{DD} +0.3	OSC, output off	V
Output Voltage	Vo	-0.3 ~ V _{DD} +0.3	OSC, output off	V
Output Current	I _{O1}	100	S1 ~ S53	μΑ
	I _{O2}	1.0	COM1, COM2	mA
Allowable Power Dissipation	P _{Dmax}	100	Ta=85°C	mW
Operating Temperature	T _{OPR}	-30 ~ +85	-	°C
Storage Temperature	T _{STG}	-40 ~ +125	-	°C

ELECTRICAL CHARACTERISTICS

DC Characteristics (V_{DD} =2.7V ~ 6,5V, V_{SS} =0V, V_{LCD} =2.7V ~ V_{DD} , T_a = - 30 ~ + 85 °C)

Characteristics	Symbol	Test Co	nditions	Min	Тур	Max	Unit
Operating Voltage	V_{DD}		-	2.7	-	6.5	
Driver Supply Voltage	V _{LCD}		-	2.7	-	V_{DD}	
Input ¡HIGH¡± Volt age	V _{IH1}	CE, CK, DI, INH		0.8V _{DD}	-	V_{DD}	V
Input ¡LOW¡ Voltage 1	V _{IL1}			0	-	0.2V _{DD}	
Input ¡HIGH¡ Voltage 2	V_{IH2}	S44, S46		0.8V _{DD}	-	V_{DD}	
Input ¡LOW¡ Voltage 2	V_{IL2}	Output off(Used input p	oin DSP1, DSP2)	0	-	0.2V _{DD}	
Input ¡HIGH; Current 1	I _{IH1}	CE, CK, DI, INH(V _I =V _D	_D)	-	-	5.0	
Input ¡LOW¡ Current 1	I _{IL1}	CE, CK, DI, INH(V _I =0V	")	-	-	5.0	μΑ
Input ¡HIGH¡ Current 2	I _{IH2}	S44, S45, S46, S47(V ₁	=V _{DD})	-	-	10.0	
Input ¡LOW ¡ Current 2	I _{IL2}	S44, S45, S46, S47(V ₁	=0V)	-	-	10.0	
Output ¡HIGH¡ Voltage 1	V _{OH1}	S1 ~ S53(V _{LCD} =3V, I _O =	-10μA)	V _{LCD} -0.5	-	-	
Output ¡LOW; Voltage 1	V _{OL1}	S1 ~ S53(V _{LCD} =3V, I _O =	:+10 μA)	-	-	0.5	
Output ¡HIGH¡ Voltage 2	V _{OH2}	COM1, COM2(V _{LCD} =3)	/, I _O =-100 μA)	V _{LCD} -0.6	-	-	
Output ¡LOW¡ Voltage 2	V _{OL2}	COM1, COM2(V _{LCD} =3)	$I_{O} = +100 \mu\text{A}$	-	-	0.6	
Medium Voltage	V _{M1}	COM1, COM2(V _{LCD} =6.	5V, I _O = <u>+</u> 100 μA)	2.65	3.25	3.85	
	V _{M2}	COM1, COM2(V _{LCD} =3.	0V, I _O = <u>+</u> 100 μA)	0.9	1.5	2.1	
First Step Lighting Voltage	V _{A1}	S45, S47		0.07V _{DD}	0.1V _{DD}	$0.13V_{DD}$	V
Second Step Lighting Voltage	V _{A2}	S45, S47		0.17V _{DD}	0.2V _{DD}	$0.23V_{DD}$	
Third Step Lighting Voltage	V _{A3}	S45, S47		0.27V _{DD}	0.3V _{DD}	$0.33V_{DD}$	
Fourth Step Lighting Voltage	V_{A4}	S45, S47		0.37V _{DD}	0.4V _{DD}	$0.43V_{DD}$	
Fifth Step Lighting Voltage	V _{A5}	S45, S47		0.47V _{DD}	0.5V _{DD}	$0.53V_{DD}$	
Step Voltage Difference	V _{STEP}	S45, S47 (refer to Fig.	. 2)	0.09V _{DD}	0.1V _{DD}	$0.11V_{DD}$	
Oscillation Frequency	fosc	OSC(R=51KΩ, C=680	pF)	40	50	60	KHz
Operating Current	I _{DD1}	V _{DD} =3V	f _{CK} =2MHz	-	0.2	0.4	
	I _{DD2}	V _{DD} =6.5V	R=51KΩ	-	0.4	0.8	mA
Driving Current	I _{LCD1}	V _{LCD} =3V	C=680pF	-	0.6	1	
	I _{LCD2}	V _{LCD} =6.5V		-	1.2	2	

Widerstand?

AC CHARACTERISTICS (V_{SS} =0V, V_{DD} =2.7V~ 6.5V, V_{LCD} =2.7V ~ V_{DD} , Ta= - 30 ~ + 85 °C)

Chara	ecteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Clock Pulse Width		t _{wckh}	V _{DD} =5.0V	0.25	-	-	
		t _{wckl}	V _{DD} =5.0V	0.25	-	-	
Data Set-up Ti	me	t _{SU}	V _{DD} =5.0V	0.25	-	-	
Data Hold Time		t _{DH}	V _{DD} =5.0V	0.25	-	-	μs
	1/1 duty	t ₁	V _{DD} =5.0V, at CE rising				
CE-DI Time	1/2 duty	t ₁₁	V _{DD} =5.0V, at CE rising	1.0	-	-	
		t ₁₂	V _{DD} =5.0V, at DI falling				
	1/1 duty	t ₂	V _{DD} =5.0V, at CK rising				
CE-CK Time	1/2 duty	t ₂₁	V _{DD} =5.0V, at CK rising	1.25	-	-	
		t ₂₂	V _{DD} =5.0V, at CK rising				
CE Disable Time	1/2 duty	t ₃	V _{DD} =5.0V, at CE falling	4.0	-	-	

TIMING CHARACTERISTICS

kein Maximum gegeben.

-. 1/1 duty(56 bits)

-. 1/2 duty(112 bits)

Fig. 1. AC Characteristics

OUTPUT WAVEFORM

BLOCK FUNCTION

CLOCK GENERATOR

The oscillator is operated by connecting external resistor and capacitor. The clock of oscillator block is used as signal of common and segment driver.

FUNCTION DECODER

Function decoder generates, using chip enable (CE), data (DI), clock (CK) from controller, a signal which controls the function and mode of chip. for example AD / DSP function , drive mode, latch clock select and so forth.

DP : Drive mode select bit $\;\rightarrow 1$ / 1 duty at " 0" , 1 / 2 duty at " 1"

DQ : AD / DSP function select bit \rightarrow Segment output at "0". AD / DSP function at "1" DQ should be 0

DR : Latch clock select bit → latch1 clock at "0", latch 2 clock at "1"

ARI&ALI = S47 &S45 DSP1&DSP2 = S46 &S44

NOTE) If AD / DSP function selected are not in use, ARI, ALI, DSP1, DSP2 pins are connected to VDD or VSS in order to protect floating.

SHIFT REGISTER

Shift register consists of 53 data bits for display and 3 bits for function / mode select.

Data transfer mode

. 1 / 1 duty

Data transfer (56 bits)

D1 D2 D3 D4 D5 D6 D7 D8 D47 D48 D49 D50 D51 D52 D53 DP DQ DR

. 1 / 2 duty

* D53, D106 : Dummy bit (do not care)
* X : don't care

```
- . D1 ~ D53 : Display data ( 1 / 1 duty ) \,\to lighted at " 1 " - . D1 ~ D106 : Display data ( 1 / 2 duty) \,\to Unlighted at " 0 "
```

NOTE) If AD / DSP functions are selected

- . 1 / 1 duty : D46 ~ D53 $\,\rightarrow$ Dummy bit (don 't care)
- . 1 / 2 duty : D88 ~ D106 \rightarrow Dummy bit (don 't care)

The example of data transfer

.Under 52 segments at 1 / 2 duty

.Over 52 segments at 1 / 2 duty

.Under 52 segments at 1 / 2 duty , Data can not be transferred as below figure.

D54	D55	D56	D105	D106	Х	Х	1

ADC (ANALOG TO DIGITAL CONVERTER)

ADC consists of two analog inputs (ARI , ALI) and two ADCs for level meter, and converts a analog input to 5 - level digital data in order to drive level meter.

Fig. 2. Step voltage difference input voltage on S45 (ALI) , S47(ARI)

COMMON DRIVER

LATCH AND SEGMENT DRIVER

- . Latch has two signal, latch 1 clock latches D1 to D52 in 1/1 duty mode or 1/2 duty mode. latch 2 clock latches D54 to D105 in 1 / 2 duty mode D53 and D106 mean dummy bits ($Don_i t\ care$) at 1 / 2 duty mode
- . If AD / DSP function is selected, S44 to S47 are input pins, S48 to S53 are output pins.

CORRESPONDENCE BETWEEN TRANSFER (EXTERNAL INPUT) DATA **AND OUTPUT PIN**

NOTE: In the case of 1 / 1duty, only COM1 is used.

DP		0	1			
DQ	0	1	0	1	COM1	COM2
DUTPUT	1/1 duty		1/2 duty	1		
S1	D1	D1	D1	D1	i	
			D2	D2		i
S2	D2	D2	D3	D3	i	
			D4	D4		i
S3	D3	D3	D5	D5	i	
			D6	D6		i
				,		
S26	D26	D26	D51	D51	i	
			D52	D52		i
S27	D27	D27	D54	D54	i	
			D55	D55	·	i
S28	D28	D28	D56	D56	i	•
			D57	D57	•	i
	-				·	
S43	D43	D43	D86	D86	i	
			D87	D87	'	i
S44	D44	D44	D88	*DSP2	i	•
			D89		•	i
S45	D45	D45	D90	*ALI	i	•
			D91		•	i
S46	D46	*DSP1	D92	*DSP1	i	'
			D93		•	
S47	D47	*ARI	D94	*ARI	i	'
.		,	D95	,		
S48	D48	*DSPO1	D96	*DSPO1		•
3 .0	2.0	20.0.	D97	*DSPO2	•	,
S49	D49	*ARO1	D98	*ARO1		•
0.0	5.0	7	D99	*ALO1	•	
S50	D50	*ARO2	D100	*ARO2	i	'
	200	/	D101	*ALO2	1	,
S51	D51	*ARO3	D102	*ARO3		
001	501	/11100	D102	*ALO3	1	
S52	D52	*ARO4	D103	*ARO4		+ +
002	002	ANO4	D104	*ALO4	1	
S53	D53	*ARO5	ALWAYS LIGHTING	*ARO5		
333	D33	ANOS	ALWAYS LIGHTING	*ALO5		<u> </u>

*NOTE: DSP1, DSP2: External display input data DSPO1, DSPO2: External display output data ARI, ALI: AD converter input data ARO1 to 5, ALO1 to 5: AD converter output data.

APPLICATION CIRCUIT

Application circuit 1

Das sollte es sein -Wir haben 5 Inputs

Application circuit 2

