Simulações do Modelo de Ising 2D

Obtendo as propriedades termodinâmicas

• Devemos determinar a função de partição

$$Z = \sum_{\{\sigma\}} e^{-\beta E_{\sigma}} = \sum_{E} \Omega(E) e^{-\beta E}$$

Médias termodinâmicas:

$$\langle A(E) \rangle = \frac{\sum_{E} A(E) \Omega(E) e^{-\beta E}}{Z}$$

• Precisamos obter $\Omega(E)$

- No processo de enumeração exata todos os estados acessíveis ao sistema são gerados
- Desvantagens
 - Tempo computacional cresce exponencialmente
 - Apenas sistemas muito pequenos podem ser estudados
- Vantagens
 - Resultados exatos

- Primeira proposta
 - Usar representação binária para o estado do sistema
 - Calcular a energia de cada estado
 - Contar quantas configurações existem com cada valor de energia
 - Desvantagem mais de um spin é flipado ao mudar a configuração. O "custo" de calcular a energia é alto

- Segunda proposta Grey code
 - Usar representação Grey
 - Calcular a diferença de energia entre os estados devido ao flip
 - Contar quantas configurações existem com cada valor de energia

```
Rotina gray_flip

Entrada \{t_0, t_1, ..., t_N\}

k \leftarrow t_0
Se (k>N) Saia

t_{k-1} \leftarrow t_k
t_k \leftarrow k
Se (k \neq 1) t_0 \leftarrow 1
Saida k, \{t_0, t_1, ..., t_N\}
```

Inicialmente devemos ter $\{t_0, t_1, ..., t_N\} = \{0, ..., N\}$.

```
\{\sigma_1,\ldots,\sigma_4\}
```

Tempo de simulação

Da ordem de 10⁶³ segundos para um sistema com N=16x16 spins!

Muito maior que a idade estimada do universo ~10¹⁷ segundos

Enumeração exata

Em altas temperaturas tende a ln(2)=0.693. Isto está relacionado ao fato de existirem 2^N estados acessíveis ao sistema. A entropia é proporcional ao logaritmo do número de estados acessíveis.

Métodos de Monte Carlo

O Algoritmo de Wang-Landau (2001)

Uma nova abordagem:

$$\langle Q \rangle = \frac{\sum_{\{\sigma\}} Q_{\sigma} \exp(-\beta E_{\sigma})}{Z} = \frac{\sum_{E} \overline{Q}(E)g(E) \exp(-\beta E)}{Z},$$

Onde g(E) é a densidade de estados (número de estados com uma dada energia,

$$\overline{Q}(E) = \frac{\sum_{\{\sigma\}} Q_{\sigma} \delta(E - E_{\sigma})}{\sum_{\{\sigma\}} \delta(E - E_{\sigma})},$$

$$Z = \sum_{E} g(E) \exp(-\beta E).$$

Se conhecemos g(E) e \overline{Q} , temos $\langle Q \rangle$ para qualquer temperatura.

Métodos de Monte Carlo

O Algoritmo de Wang-Landau (2001)

A ideia

- ✓ Ao escolher estados aleatoriamente, a chance de se escolher um estado com energia E é proporcional a g(E)
 - ✓ Um histograma das energias visitadas fornece uma estimativa de g(E)
 - ✓ Impraticável
- ✓ Se escolhermos estados com uma probabilidade inversamente proporcional a g(E), o que obtemos?
 - ✓ O viés por estados com maior g(E) é anulada
 - ✓ Num histograma de energias, todos estados seriam visitados igualmente!
 - ✓ Mas não conhecemos g(E)

- Solução: "Chutar" um valor para g(E) e ir melhorando este chute através de um parâmetro multiplicativo até atingir uma dada acurácia
- ✓ Parâmetro de controle: Histograma "flat"
- ✓ Taxas de transição:

$$W_{E_1 \to E_2} = \min \left(\frac{g(E_1)}{g(E_2)}, 1 \right)$$

- 1. Faça g(E) = 1 para todas as energias (chute inicial)
- 2. Escolha uma configuração aleatória
- 3. Proponha uma modificação na configuração (flipe um spin)
- 4. Escolha um número aleatório, r, entre 0 e 1
 - a. se $r < g(E_1)/g(E_2)$ aceite o novo estado e faça, $g(E_2) = fg(E_2)$ e $H(E_2) = H(E_2) + 1$
 - b. se $r > g(E_1)/g(E_2)$ permaneça no estado 1 e faça, $g(E_1) = fg(E_1)$ e $H(E_1) = H(E_1) + 1$
- 5. Repita até que H(E) esteja "flat"
- 6. Reduza o fator multiplicativo, *f*, zere o histograma e repita o procedimento
- 7. Quando f=1 o valor de g(E) é exato, a menos de um fator multiplicativo.

- ✓ Aplicação ao modelo de Ising 2D
- √ Comparação com resultados exatos
- ✓ Cada vez que o histograma fica flat ln(f) é reduzido

Alguns detalhes

- ✓ g(E) é determinado a menos de uma constante multiplicativa. O valor exato pode ser obtido se conhecemos o valor de g(E) em algum estado específico, ou se conhecemos o número de estados acessíveis ao sistema.
- ✓ Consideramos que o histograma é "flat" se $H(E_i) > x \langle H \rangle \ \forall \ E$
 - ✓ Uma escolha razoável é x = 0.8 (80%)
- ✓ O erro contido em g(E) é proporcional a ln(f)
 - ✓ Em geral paramos a simulação quando $f = \exp(10^{-8}) \approx 1,000$ 000 01
- ✓ g(E) atinge valores muito altos na simulação, portanto, é mais conveniente usar ln (g(E)) e ln (f), atualizando o valor da seguinte forma: ln g(E) = ln g(E) + ln(f)

Alguns detalhes

- ✓ Pode-se utilizar qualquer valor inicial de ln(f) maior que 0
 - ✓ Em geral utilizamos ln(f)=1
- ✓ O valor de f deve ser reduzido monotonicamente
 - \checkmark Em geral utilizamos $f = \sqrt{f}$
- ✓ A condição de balanço detalhado não é satisfeita, rigorosamente, neste algoritmo.
- ✓ Mesmo não obtendo o valor exato de g(E), podemos calcular médias, uma vez que o termo multiplicativo se cancela

$$\langle Q \rangle = \frac{\sum_{E} \overline{Q}(E)g(E)\exp(-\beta E)}{Z},$$

 \sqrt{Q} pode ser estimado através de uma média aritmética simples usando as configurações geradas durante a simulação

Desvantagem

- √ Lento
- √ Aplicável apenas a sistemas pequenos

Desvantagem

- ✓ Lento
- √ Aplicável apenas a sistemas pequenos

Solução

Replica Exchange Wang-Landau (REWL) (2013)

- Dividir o intervalo de energia em janelas superpostas
- · Vários WL rodando em cada janela
- Trocar configurações em janelas vizinhas com probabilidade:

$$P_{ac} = \min\left(1, \frac{g_i^{\mu} g_j^{\nu}}{g_j^{\mu} g_i^{\nu}}\right)$$

Tempo de simulação

- Escolhe estados de acordo com a distribuição de Boltzmann-Gibbs
- Desvantagens
 - Processo de termalização
 - Critical slowing down
 - Uma simulação distinta para cada temperatura
- Vantagens
 - Relativamente rápido e eficiente.
 - Fácil de prever o tempo computacional

Tempo de simulação

Metropolis - 10⁶ passos

Estudo de transições de fase

- Precisamos descobrir o comportamento no limite termodinâmico
 - Teoria de escala de tamanho finito
 - Teoria que permite tomar o limite de L tendendo a infinito
- Conveniente olhar o comportamento de várias grandezas
- Simulações longas para reduzir erros