AD-A256 260

NAVSWC TR 91-446

A COMPARISON OF ULTRASONIC AND MECHANICAL TEST VALUES OF THE PRINCIPAL YOUNG'S MODULUS OF UNIDIRECTIONAL METAL MATRIX COMPOSITES

BY JOHN V. FOLTZ AND ALBERT L. BERTRAM

RESEARCH AND TECHNOLOGY DEPARTMENT

5 AUGUST 1991

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000 e Silver Spring, Maryland 20903-5000

A COMPARISON OF ULTRASONIC AND MECHANICAL TEST VALUES OF THE PRINCIPAL YOUNG'S MODULUS OF UNIDIRECTIONAL METAL MATRIX COMPOSITES

BY JOHN V. FOLTZ AND ALBERT L. BERTRAM RESEARCH AND TECHNOLOGY DEPARTMENT

5 AUGUST 1991

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000 • Silver Spring, Maryland 20903-5000

FOREWORD

Guided ultrasonic waves can be used to characterize materials. However, there sometimes exists skepticism among engineers as to whether the elastic constants determined by the ultrasonic method agree with the values measured by quasi-static mechanical testing. The work herein is a data summary comparing results of the two test methods for Young's modulus in the fiber direction of several unidirectional metal matrix composite materials.

Funding was provided by the Spacecraft and Strategic Missile Materials Block program.

Approved by:

C.E. MUELLER, Head Materials Division

Accession For

NTIS GRA&I

DTIC TAB

Unannounced

Justification

By

Distribution/

Availability Codes

Aveil and/or

Dist

Special

ABSTRACT

A method of determining the fiber direction elastic modulus of a thin-ply unidirectional fiber reinforced metal matrix composite using ultrasonic plate waves is described. The results obtained by the ultrasonic technique are compared to values of Young's modulus from mechanical tests on the same materials. The agreement shows that the ultrasonic method is a reliable and essentially nondestructive way of determining Young's moduli in thin unidirectionally reinforced metal matrix composites.

CONTENTS

	Page
INTRODUCTION	 1
APPROACH	 3
TEST RESULTS	 5
ANALYSIS	 13
CONCLUSIONS	 15
APPENDIX	 A-1

ILLUSTRATIONS

<u>Figure</u>		Page
1	NOMINAL GEOMETRY PARAMETERS FOR P55/6061 STRUCTURAL ELEMENTS	10
2	PLATE WAVE AND MECHANICAL TEST VALUES OF YOUNG'S MODULUS FOR UNIDIRECTIONAL MMCS	14

TABLES

<u>l'able</u>		Page
1	ION-PLATED GRAL TEST RESULTS	6
2	FP/ALTEST RESULTS	7
3	DESCRIPTION OF UNIDIRECTIONAL MMC PANELS AND TEST RESULTS	8
4	GR/AL CIRCULAR SECTION TEST RESULTS p = 2.40 gm/cm ³	11
5	GR/AL C-SECTION TEST RESULTS $p = 2.40 \text{ gm/cm}^3 \dots$	11
6	GR/ALL-SECTION TEST RESULTS $p = 2.40 \text{ gm/cm}^3 \dots$	12

INTRODUCTION

Metal Matrix Composites (MMCs) are under development for a number of applications. A principal member of the composite family is the lamina with long fibers aligned parallel to one another -- the so-called unidirectional or uniaxial ply. A lamina with this type of fiber layup serves as the basic building block from which the designer develops a more complicated structural laminate. In the case of MMCs, the unidirectional configuration can also be employed as a structural element without cross-plying. Due to the general relevance of the unidirectional ply, a means of nondestructively characterizing its performance features in the fiber direction is of value. Previously, a method was described for determining the elastic constants of MMCs by ultrasonic plate waves. The present work utilizes a similar procedure to obtain Young's modulus in the fiber direction for a number of unidirectional MMCs. The results are compared to the values of Young's modulus obtained from mechanical tension or compression tests on the same materials.

APPROACH

An extensional plate wave which propagates in the fundamental symmetric Lamb mode is introduced into a thin piece of composite material via an ultrasonic transducer in contact with one edge of the material. The transducer used in this work produces a broadband spectrum centered on a frequency of 1/2 MHz, generating waves which roughly satisfy the condition L/h >> 1, where

L = wavelength of the ultrasonic wave,

h = thickness of the material,

When L/h >> 1 configurational dispersion caused by the plate free surfaces has a minor effect on the ultrasonic wave speed.² Consequently, the Young's modulus of the material can be calculated from Equation (1)

$$E_{11} = p(V_{11})^2 R \tag{1}$$

where

E = Young's modulus,

v = wave velocity,

p = density,

11 = subscript to indicate fiber direction,

R = parameter dependent upon Poisson's ratio.

The parameter R is typically in the range of 0.94 to 0.99 for most unidirectional MMCs. R is discussed in the Appendix.

The form of the MMC specimens was either flat plate, strips of panels, or simple structural elements such as tubes, C-sections, or L-sections. In all cases the specimens were much thinner than the wavelength of the ultrasonic wave and were oriented so that the wave propagated in the fiber direction. The speed of the wave was measured using a through-transmission approach with a delay block of either PMMA or Al. A fiducial mark was obtained on an oscilloscope screen by sending an ultrasonic pulse through the delay block and into a receiving transducer that was identical to the transmitting transducer. A similar procedure was followed with the specimen in place on the delay block and the temporal displacement of the oscilloscope signal, which corresponded to the transit time of the pulse through the specimen, was read directly from the face of the screen. The plate wave velocity was calculated from the specimen length and the transit time. This information, together with a value for density obtained from specimen weight and geometry and an estimated value of R, permitted E₁₁ to be calculated via Equation (1).

TEST RESULTS

Fifteen specimens of graphite fiber reinforced aluminum (Gr/Al) were fabricated at the Naval Surface Warfare Center using precursor material obtained from the Celanese Corporation, Summit, New Jersey. The precursor material was a flexible tow of 12,000 graphite filaments which were coated with Al by an ion-plating process. The fiber, sans Al, has the trade name Besfight HT-7-12000, a diameter of 0.28 mil and a Young's modulus of 30 MSI. The Al-coated tow was consolidated in a hot-press into rectangular strips of panel 107 to 115 mm long (the length is the fiber direction), approximately 18 mm wide and 1 mm thick. The strips had a nominal fiber fraction of 40 percent by volume. As part of the fabrication study, consolidation time in the press was deliberately varied over the specimen set with the result that some specimens were not fully densified. The plate wave velocity was determined in the fiber direction for each sample and is given in Table 1; in general, it is seen to be slightly more than 7 mm/µsec. Using this value and the equation

$$V = fL \tag{2}$$

where f=1/2 MHz, the wavelength L is calculated to be 14 mm. The ratio of wavelength to panel thickness in these strips is therefore on the order of 14 to 1, i.e., L/h=18. The ultrasonic Young's modulus was calculated using Equation (1) with an estimated value of R=0.98. Each strip was then subjected to a tension test in an Instron Universal Testing Machine to determine the mechanical value of Young's modulus.³ All data pertaining to this set of specimens are presented in Table 1.

Three 1/2-inch wide by 6-inch long by 1/10-inch thick stips of aluminum oxide fiber reinforced aluminum (known as FP/Al) were available as residual samples from another project. Ultrasonic and tensile test modulus determinations were conducted on a one-to-one basis and the data are given in Table 2. R was calculated from Equation (A-8). For these samples L/h=6.7.

Several unidirectional fiber panels of Gr/Al, graphite fiber reinforced magnesium (Gr/Mg), graphite fiber reinforced copper (Gr/Cu), boron filament reinforced aluminum (B/Al), and silicon carbide reinforced aliminum (SCS/Al) were also evaluated. The panels were dedicated to other experiments as well as the present one and therefore could not be consumed entirely in this work. Ultrasonic wave speeds were determined in a manner thought to provide a representative value for a given panel. Subsequently, tensile tests were conducted on strips cut from the same panel. Panel descriptions and test results are summarized in Table 3. Each tensile test value listed is the average of at least two tests. The panel thicknesses ranged from 25 mil to approximately 100 mil. The value of R in Table 3 was calculated from Equation (A-5).

The ultrasonic approach to modulus determination was also evaluated for three types of simple structural elements (strut-type members) made of unidirection Gr/Al.

TABLE 1. ION-PLATED GR/AL TEST RESULTS

	1	TENSIONS AT TEST			E 11 (M	ISI)
SPECIMEN NUMBER	WIDTH* (INCH)	THICKNESS* (INCH)	DENSITY* GM /CC	V (AX) (mm/μsec)	PLATE WAVE VALUE	TENSILE TEST*
1	0.508	0.042	1.996	7.172	14.48	16.39
2	0.442	0.031	2.366	7.154	17.00	14.42
3	0.517	0.037	2.046	7.111	14.56	15.45
4	0.561	0.041	1.872	7.255	13.86	12.85
5	0.554	0.036	2.042	7.240	15.09	15.36
6	0.563	0.036	2.100	7.222	15.40	15.46
7	0.558	0.035	2.053	7.181	14.87	17.55
8	0.578	0.040	2.127	7.254	15.73	16.09
9	0.580	0.033	2.180	7.214	15.91	15.26
10	0.617	0.032	2.161	7.198	15.71	16.57
11	0.612	0.032	2.208	7.260	16.37	18.24
12	0.625	0.030	2.335	7.194	16.87	15.99
13	0.590	0.033	2.127	7.187	15.41	14.76
14	0.560	0.037	2.075	7.242	15.22	15.59
15	0.589	0.042	2.128	7.189	15.76	17.61
AVERAGE					15.48	15.84

^{*} DATA FROM REF (3)

TABLE 2. FP/AL TEST RESULTS

				E ₁₁	(MSI)
SPECIMEN NUMBER	V _F (AX) (mm/μsec)	V _F (TR) (mm/μsec)	R	PLATE WAVE VALUE	TENSILE TEST VALUE
7795-104-69	8.65	6.38	0.95	33.4	32,4
7795-104-70	8.55	6.48	0.95	32.6	31.2
7795-104-76	8.55	6.69	0.94	32.3	31.6
AVERAGE				32.8	31.7

COMPOSITE VENDOR: DUPONT

FAB. PROCESS: VACUUM METAL INFILTRATION

FIBER TYPE: Al ₂O₃

MATRIX ALLOY: Al -2Ll

DENSITY: 3.24 Gm/cm³

TABLE 3. DESCRIPTION OF UNIDIRECTIONAL MMC PANELS AND TEST RESULTS

MMC PANEL LNO. TYPE MMC FRAB. DWA G5198 GR/AL A P DWA G4509 GR/AL A P DWA G4509 GR/AL A P DWA G4584 GR/AL A P MCI PBR10 GR/MG B P AVCO 81-257A B/AL C 5 AVCO 81-457 SIC/AL D 5 DWA G5100 GR/AL A C								E (MSI)	
G4509 GR/AL A F G4509 GR/AL A F G4584 GR/AL A F G5313 GR/MG B F G5313 GR/MG A F G5313 GR/MG A F G5100 GR/AL A G5100 GR/AL A	FIBER	MATRIX	DENSITY (gm/cm³)	THICKNESS (mm)	VF (AXIAL) (mm/µsec)	VF (TR) (mm/µsec)	œ	PLATE WAVE VALUE	TENSILE TEST VALUE
G4509 GR/AL A F G4584 GR/AL A F G5313 GR/MG B F G5313 GR/MG A F G5313 GR/MG A F G5310 GR/AL D G5100 GR/AL A	PSS	6061	2.39	2.18	8.78	3.58	0.98	26.1	27.5
G4584 GR/AL A PBR10 GR/MG B I G5313 GR/MG A PBR1-257A B/AL C G81-457 SIC/AL D G8/AL A	P55	A201	2.49	1.22	8.07	3.76	96.0	23.0	25.4
PBR10 GR/MG B G5313 GR/MG A 81-257A B/AL C 81-457 SIC/AL D G5100 GR/AL A	P100	6061	2.41	1.07	11.3	3.06	0.99	43.9	41.8
G5313 GR/MG A G81-257A B/AL C G G81-457 SIC/AL D G8/AL A	P55	AZ91C	1.87 (b)	1.19	8.01	3.68	0.98	17.1	17.1
81-257A B/AL C 81-457 SIC/AL D G5100 GR/AL A	P100	AZ91C	1.88 (a)	0.61	12.2	3.59	0.99	40.2	41.5
81-457 SIC/AL D GS100 GR/AL A	5.6 mil B/W	6061	2.54	0.76	9.71	7.50	0.95	33.0	31.7
G5100 GR/AL A	SCS-2	6061	2.82	0.81	8.84	6.80	0.95	30.3	29.2
	GY70	A201	2.52	99.0	8.84	3.88	0.98	28.0	28.0
DWA G5232 GR/CU A F	P55	113	4.95 (b)	1.45	6.26	2.38	0.99	27.8	25.2

4 5 0 6

LIQUID METAL INFILTRATION + DIFFUSION BONDING LIQUID METAL INFILTRATION + HOT ROLLING

DIFFUSION BONDING PLASMA SPRAYED + CONSOLIDATED

The fiber reinforcement is a pitch-based type known as P55 with a nominal diameter of 10 micron and nominal modulus of 55 MSl. Hardware fabrication was performed by Fiber Materials, Inc. (formerly Material Concepts, Inc.), of Columbus, Ohio, using a pultrusion process. Cross-sectional views of the three shapes are shown in Figure 1. Wave speeds in the fiber direction were determined over the full specimen length. The value R = 0.98 was used. The struts were subsequently tested to failure in axial compression with the ends fully restrained against rotation. Testing was performed by Measurements Technology, Inc., Roswell, Georgia. Eighteen specimens were tested overall. From the slenderness ratio (length/radius of gyration) all struts were classified as short columns, thus indicating that plastic failure would precede stability failure. Tables 4, 5, and 6 give the density and test results for the structural members.

FIGURE 1. NOMINAL GEOMETRY PARAMETERS FOR P55/6061 STRUCTURAL ELEMENTS

TABLE 4. GR/AL CIRCULAR SECTION TEST RESULTS $p = 2.40 \ \text{gm/cm}^{3}$

		E ₁	1 (MSI)
SPECIMEN NUMBER	V _F (AX) (mm/μsec)	PLATE WAVE	COMPRESSION TEST
336-8A	8.70	25.8	23.1
336-15	8.56	25.0	25.5
336-9	8.62	25.3	23.5
100-43	8.66	25.6	24.9
336-8B	8.85	26.7	23.6
AVERAGE		25.7	24.1

TABLE 5. GR/AL C-SECTION TEST RESULTS $p = 2.41 \; \text{gm/cm}^{3}$

		E ₁	1 (MSI)
SPECIMEN NUMBER	V _F (AX) (mm/μsec)	PLATE WAVE	COMPRESSION TEST
593B	8.64	25.6	24.8
592A	8.54	25.0	22.6
590	8.68	25.8	23.9
588	8.71	26.0	23.6
591	8.80	26.5	24.3
592	_	-	29.7
AVERAGE		25.6	24.8

TABLE 6. GR/AL L-SECTION TEST RESULTS $p = 2.41 \; \text{gm/cm}^{3}$

		E ₁	1 (MSI)
SPECIMEN NUMBER	V _F (AX) (mm/μsec)	PLATE WAVE	COMPRESSION TEST
584-6	8.61	25.4	26.8
584-5	8.60	25.0	25.1
583-7	8.55	25.0	32.2
584-4	8.55	25.3	24.8
585-1	8.66	25.7	23.4
585-5	8.68	25.8	22.7
AVERAGE		25.4	25.8

ANALYSIS

In Figure 2 the ultrasonic values for Young's modulus are plotted against the mechanical test values for all experiments conducted. The points shown are the average moduli of Tables 1, 2, 4, 5, and 6 and all the moduli of Table 3. Perfect agreement would be exhibited by the points lying on a straight line through the origin inclined at 45° to the axes. A straight line

$$\mathbf{E}_{11\mathrm{U}} = \mathbf{A} + \mathbf{B}\,\mathbf{E}_{11\mathrm{M}} \tag{3}$$

where E_{11U} is the ultrasonic test modulus and E_{11M} the mechanical test modulus, was fit to this data by the method of least-square-errors as applied to a Gaussian distribution. All statistical methods used in this report are described by Bevington.⁴ A and B are constants to be determined from the curve fitting procedure. For perfect agreement between the test results:

$$A = 0 MSI, B = 1 MSI^{-1}.$$

The analysis yields:

$$A = (-0.4 \pm 1.6) MSI.$$

$$B = (1.03 \pm 0.06) MSI^{-1}$$

(the uncertainty is one standard deviation). The agreement is within the uncertainty of the experiments.

The linear-correlation coefficient, r, was used to further investigate this agreement. This coefficient is a statistical parameter which provides a measure of the degree of linear correspondence that exists between two observed quantities. The absolute value of r ranges from 0, when there is no correlation, to 1, when there is one hundred percent correlation. The r for the data set of Figure 2 was calculated as r=0.98, indicating that a high correlation between the two test methods exists.

The probable error, P.E., is a quantity calculated from a data set which gives an estimate of the uncertainty in the dependent variable over the data set as a whole. For the data set of Figure 2, the P.E. = 0.98 MSI. That is, an ultrasonic determination of Young's modulus should lie within approximately one MSI of the mechanical test value for any material tested.

FIGURE 2. PLATE WAVE AND MECHANICAL TEST VALUES OF YOUNG'S MODULUS FOR UNIDIRECTIONAL MMCS

CONCLUSIONS

The ultrasonic values of Young's moduli correlated well with the mechanical test results for a variety of unidirectional MMCs. The discrepancy between the moduli determined by the two methods is approximately one MSI. Therefore, the ultrasonic method is deemed reliable for determining Young's moduli in these unidirectionally reinforced MMCs.

REFERENCES

- 1. Foltz, J.V., Bertram, A.L., and Anderson,, C.W., A Method to Determine Dynamic Elastic Constants of Thin Shell Composites by Guided Ultrasonic Waves, NSWC TR 85-186.
- 2. Kolsky, H., Stress Waves in Solids, New York, Dover, 1963, p. 83.
- 3. Karmarkar, S.D. and Divecha, A.P., Characterization of Ion-Plated Graphite Aluminum Composites, NSWC TR 82-220.
- 4. Bevington, Philip R., Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, 1969.

APPENDIX

The parameter R is given by the expression A-1

$$R = 1 \cdot v_{12} v_{21} \tag{A-1}$$

where the v_{12} and v_{21} are the major and minor Poisson ratios of the unidirectional lamina. A $\,^{1}$

$$\mathbf{v}_{21} = \mathbf{v}_{12} \,\mathbf{E}_{22}/\mathbf{E}_{11}$$
 (A-2)

 E_{11} and E_{22} are the lamina moduli in the fiber and transverse directions, respectively. The ratio of moduli may be determined if the ultrasonic wave speeds are known in both the fiber and transverse directions, $^{\Lambda}$ ²

$$E_{22}/E_{11} = (V_{22}/V_{11})^2$$
 (A-3)

Then Equation (A-1) becomes

$$R = 1 - (v_{12} V_{22} / V_{11})^2$$
 (A-4)

The second term on the right-hand side of Equation (A-4) is much smaller than the first. A reasonable estimate of v_{12} for the present MMCs is 0.3. Then

$$R = 1/(0.09) (V_{22}/V_{11})^2$$
 (A-5)

REFERENCES

- A-1. Ashton, J. E., Halpin, J. C. and Petit, P. H., Primer on Composite Materials: Analysis, Published by Technomic, 1969, Chapter 2.
- A-2. Foltz, J. V., Bertram, A. L. and Anderson, C. W., A Method to Determine Dynamic Elastic Constants of Thin Shell Composites by Guided Ultrastonic Waves, NSWC TR 85-186.

DISTRIBUTION

<u>Co</u>	<u>pies</u>		Copies
Office of Director of Defense Research and Engineering Attn: J. Persh Staff Specialist for Materials and Structures	1	Commander Naval Ocean Systems Center Attn: P. D. Burke, Code 9322 San Diego, CA 91252-5000	1
Room 3D1089, The Pentagon Washington, DC 20301 Office of Chief of Naval Research Attn: W. Messick, ONT Code 225 800 N. Quincy Street Arlington, VA 22217-5000	1	Commander Naval Air Development Center Attn: T. E. Hess, Code 6043 G. London, Code 606D I. Shaffer, Code 60C Warminister, PA 18974	1 1 1
Advanced Submarine Technology Office Attn: J. Kelly 1515 Wilson Blvd. Arlington, VA 22209	1	Naval Research Laboratory Attn: S. C. Sanday, Code 6370 I. Wolock, Code 6383 II. Chaskelis, Code 5834 4555 Overlook Avenue Washington, DC 20375	1 1 1
Department of the Navy Strategic Systems Project Office Attn: B. W. Hannah, SP272 Crystal Mall No. 3 Washington, DC 20362	1	Commanding Officer Naval Underwater Systems Center Attn: B. Sandman, Code 3636 Newport, RI 02840	1
Office of Chief of Naval Research Attn: R. Pohanka, OCNR Code 1131 Y. Rajapakse, OCNR Code 1132SM 800 N. Quincy Street	1 1	Naval Intelligence Support Center Attn: M. E. Andrasco 4301 Suitland Road Washington, DC 20390	1
Arlington, VA 22217-5000 Commander David Taylor Research Center	•	NAVPRO, Sunnyvale Attn: B. Galligan, SPL 312 Lockhed Bldg. 181 Sunnyvale, CA 94086	1
Attn: J. Gudas, Code 2814 A. G. S. Morton, Code 2813 Annapolis, MD 21402	1	Metal Matrix Composites Information Analysis Center Kaman Tempo Attn: W. McNamara 816 State Street P.O. Drawer QQ Santa Barbara, CA 93102-1479	2

	Copies		Copies
		D. H. A. M D. C.	
Defense Technical Information		Ballistic Missile Defense	
Center		Materials Program Office U.S. Army Materials Technology	
Cameron Station	2	- -	
Alexandria, VA 22314	Z	Laboratory Attn: J. Dignam	1
Comment Defense Later Andrew		Attn: J. Dignam Watertown, MA 02172-0001	1
Strategic Defense Initiative		watertown, MA 02172-0001	
Organization	,	Ballistic Missile Defense Office	
Attn: M. Obal	1	BMD-ATC	
SDIO/T/KT		Attn: M. L. Whitfield	1
Washington, DC 20301-7100		P.O. Box 1500	
A. C. A. L. Donnerski			
Defense Advanced Research		Huntsville, AL 35807	
Projects Agency	•	A many Dunging Colombo and	
Attn: B. Wilcox	1	Army Foreign Science and	
Materials Sciences Division		Technology Center Attn: J. F. Crider,	
1400 Wilson Blvd.		Attn: J. F. Crider, FSTC/DRXST-MTI	1
Arlington, VA 22209		220 7th Street	1
With the control of the character			
Wright Research and Development		Charlottesville, VA 22901	
Center WPDC/MIIN	,	NACA Handamatawa/DPM	
Attn: J. Gunderson, WRDC/MLD	l 1	NASA Headquarters/RTM Attn: S. Venneri	1
J. R. Williamson, WRDC/MLB	1 1	600 Independence Avenue, SW	
S. Schwenker, WRDC/MLLS	1	Washington, DC 20546	
D. E. Beeler, WRDC/MLTN	1	washington, DC 20040	
V. Johnson, WRDC/FIBAA	1	NASA/Landay Day ayrah Cantar	
I. Kelly, WRDC/FIBAA	1	NASA/Langley Research Center Attn: D. Tenney, Code MS188M	1
D. Roselius	ı	S. Tompkins, Code 191	1
Wright Patterson AFB, OH 45433 6523		- · · · · · · · · · · · · · · · · · · ·	
All Danie Control Communi		Hampton, VA 23665-5225	
Air Force Systems Command		NASA/Lewis Research Center	
Attn: F. D. Boensch, AFSC/NAC	1	Attn: D. L. McDanels	1
T. M. F. Ronald, AFSC/NAT	1		•
Wright-Patterson AFB, OH 45433-6503		21000 Brookpark Road Cleveland, OH 44135	
Department of the Army		Cleverand, Off 44133	
U.S. Army Materials Technology		NASA/Johnson Space Center	
Laboratory		Attn: L. Leger, Code ES 53	1
Attn: A. Levitt, SLCMT-MCD-E	1	Houston, TXC 77058	•
P. Smoot, SLKCMT-MCD-E	i	Houston, TAC 17000	
Watertown, MA 02172-0001		Marshall Space Flight Center	
Watertown, MA 02172-0001		Attn: E. Engler, Mail Stop EP13	1
11 C. Army Mobility Payinment		Huntsville, Al. 35812	•
U.S. Army Mobility Equipment Research and Development Command		Huntsville, Att 30012	
· · · · · · · · · · · · · · · · · · ·			
Attn: G. D. Farmer, Jr., DRDME-VM	1		
Fort Belvoir, VA 22060	1		
E DIE DELYON, VA 44000			

		Copies		Copies
	rospace Corporation		American Cyanamid Company	
Attn:	G. Steckel, MS M2/321	1	Attn: D. A. Foster	1
	II. Katzman, MS M2/242	1	1937 West Main Street	
	G. Hawkins, MS M2/250	1	P.O. Box 60	
	W. Kao, MS M2/242	1	Stamford, CT 06904-0060	
	L. Rubin, MS M2/250	1	0	
вов	M. Aswani, MS M4/920	1	Research Opportunities, Inc.	
P.O. Bo			Attn: W. C. Riley	1
Los Ang	geles, CA 90009-2957		2200 Amapola Court	
Johns II	Indian University		Torrance, CA 90501	
	lopkins University Physics Laboratory		M 4 1 1 S 1 S 2	
	lopkins Road		Materials Sciences Corporation	_
Laurel,	•	,	Attn: B. W. Rosen	1
maurer,	144.17	1	Gwynedd Plaza II, Bethlehem Pike P.O. Box 206	
Jet Pro	oulsion Laboratory			
Atln:	R. H. Smoak,		Spring House, PA 19477	
770011.	Mail Stop 67-201	1	The Charles Stark Draper	
4800 Oa	ak Grove Drive	1	Laboratory	
	na, CA 91103		Attn: J. Gubbay, MS37	1
	,		555 Technology Square	1
Sandia	National Laboratories		Cambridge, MA 02139	
Λttn;	B. C. Odegard,		Cambridge, MA 02135	
	Division 8316	1	Atlantic Research Corporation	
Livermo	ore, CA 94550	-	Attn: J. Baetz	1
	•		5390 Cherokee Avenue	•
Amerco	m, Inc.		Alexandria, VA 22314	
Attn:	J. M. Shoemaker	1		
8928 Fu	llbright Aenue		Fiber Materials, Inc.	
Chatswe	orth, CA 91311		Attn: R. I. Pepper, Director	
			Research & Development	1
DWA C	omposite Specialities, Inc.		Biddeford Industrial Park	_
Λttn;	J. Dolowy	1	Biddeford, ME 04005	
21119 S	uperior Street		,	
Chatswo	orth, CA 91311-4393		United Technologies Research Center	
Advance	ed Composite Materials		Attn: K. M. Prewo	1
Corpo	oration		R. W. Reed, MS86	1
Attn:	P. E. Hood	1	East Hartford, CT 06108	_
1525 S. I	Buncombe Road		•	
Greer, S	C 29651-9208		Pratt & Whitney	
			Attn: A. Adair	1
	aterials, Inc.		P.O. Box 109600	
Attn:	J. Jacox	1	West Palm Beach, FL 33410-9600	
	th Hague Avenue		·	
Columbi	us, OH 43204			

		Copies		Copies
Lockheed Missiles & Space			Vought Corporation	
Comp	pany, Inc		Advanced Technology Center	
Attn:	A. A. Woods, D50-43/B590	1	Attn: R. C. Van Sielen	1
	W. W. Sable, D62-17/B104	1	P.O. Box 225907	
	R. Dotson, D62-18/B104	1	Dallas, TX 75265	
	J. H. Fyten, D62-92/B564	1		
	J. T. McGrath, D81-32/B157	1	Hughes Aircraft Company	
	K. Benner, D59-60/B556	1	Attn. R W Seibold	1
	B. K. Min, D59-60/B556	1	Bldg. E-1, Mail Station F150	
	R D Torczyner,	_	P.O. Box 902	
	D59 60/B556	1	El Segundo, CA 90245 0902	
P.O. Bo			••	
Sunnyv	ale, CA-94088-3504		Boeing Aerospace	
			Attn: T. S. Luhman, MS 73 09	1
	ed R&D Palo Alto		P. Rimbos, MS 82-97	1
	arch Laboratory		P.O. Box 3999	
Attn:	F. W. Crossman	_	Seattle, WA 98124-2499	
	D93 10/B204	1	D 1 10	
	anover Street		Boeing Vertol Company	
Palo Ali	to, CA 94304		Attn: R. L. Pinckney,	•
	10.10		Mail Stop P32-12	1
	ed California Company		G. B. Wadsworth,	,
Attn:	D. Chellman, D76-31/B63	!	Mail Stop P38-21	1
D () D	M. A. Steinberg, D03-10/B61	1	P.O. Box 16858	
P.O. Bo			Philadephia, PA 19142	
Burban	k, CA 91520		CD Astan Carry Division	
(P) (NIA / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	1		GE Astro Space Division	1
	lectronics and Defense	•	Attn: C. Zweben	1
Attn:	R. Claridge, 01/2220]	Bldg. 100, Rm M4018	
Δ C.	J. Bohn, 01/2210	1	P.O. Box 8555	
	ace Park		Philadephia, PA 19101	
Redond	o Beach, CA 90278		M.Dammall Daviday Composition	
W. din	about Defense and		McDonnell Douglas Corporation Attn: B. Leonard	1
	ghouse Defense and		L. Cohen	1
	tronics Center oment & Operations			
Divis	•		5301 Bolsa Avenue Huntington Beach, CA 92647	
Attn:	J. D. Gardner	1	Truntington neach, CA 32041	
	x 746-MS 369	,	Hughes Aircraft Company	
	ore, MD 21203		Space and Communication s	
Daiting	ore, MID 21203		Attn: D. E. Nelson, S33/C339	1
1 TV A.	erospace and Defense Company		Los Angeles, CA 90009	,
	Missiles and Advanced		nos migeres, Ch. autos	
	rams Division			
- rrog - Attn:	C. M Standard, M/S TH83	1		
	ox 225907	•		
	TX 75265			
Danas,	175 10400			

	Copies		Copies
General Dynamics Fort Worth Division Attn: A. Chaput, MZ5969 P.O. Box 748 Fort Worth, TX 76101	1	Aluminum Company of America Alcoa Laboratories Alcoa Technical Center Attn: T.B. Gurganus Alcoa Center, PA 15069	1
McDonnell Douglas Corporation Attn: B. A. Cramer, Bldg. 106/L2/MS22 D. Chong, Bldg. 467/HQ/MS329	1 1 1	Amoco Performance Products, Inc. Attn: L. Matthews 38C Grove Street Ridgefield, CT 06877	1
N. Newman P.O. Box 516 St. Louis, MO 63166 Martin Marietta Orlando Aerospace Attn: W. Meyerer, MP 150	1	E. I. DuPont Denemours & Company Central Research and Development Department Attn: A. K. Dhingra Room D-6005 Wilmington, DE 19898	1
P.O. Box 5837 Orlando, FL 32855 Rockwell International Corporation North American Aircraft Operations Attn: B. A. Burroughs	ì	Ketema Attı: W. E. Davis 3611 South Harbor Blvd. Suite 225 Santa Ana, CA 92704	1
201 North Douglas Street El Segundo, CA 90245 Rockwell International Corporation North American Aircraft Operations Attn: A. Bakalyar	1	Gould, Inc. Attn: E. Thellman Ocean Systems Division 18901 Euclid Avenue Cleveland, OH 44117	1
2770 East Carson Street Lakewood, CA 90712 Rockwell International Corporation Rocketdyne Division		Textron Specialty Materials Attn: P. R. Hoffman Two Industrial Avenue Lowell, MA 01851	1
Attn: N. Payton 6633 Canaoga Avenue Canoga Park, CA 91304 Ball Aerospace Systems Division	1	ARTECH Corporation Attn: II. Hahn 2901 Telstar Court Falls Church, VA 22042	1
Attn: D. Lemon H. W. Davis P.O. Box 1062 Boulder, CO 80306	1	The Marquardt Company Attn: M. Katcher P. O. Box 201 Van Nuys, CA 91409	1

	Copies		Copies
General Motors Corporation		Internal Distribution	
Detroit Diesel-Allison		E231	2
Attn: P. S. O'Connell	1	E232	3
P.O. Box 420		R30 (C. Mueller	1
Indianapolis, IN 46206-00420		R32 (P. Hesse)	1
Speed Code T9		R32 (J. Foltz)	5
•		R32 (A. Bertram)	5
Sparta, Inc.		R32 (J. Tydings)	1
Attn: H. Rediess	1	R32 (R. Garrett)	1
23041 de la Carlota, Suite 210		R32 (J. Clark)	1
Laguna Hills, CA 92653-1507		R34 (C. Anderson)	1
		R34 (J. Liu)	1
Sparta, Inc.		R34 (R. Lee)	1
Attn: J. Glatz	1	R35 (C. Blackmon)	1
4520 Executive Dr., Suite 210		R35 (R. Lowry)	1
San Diego, CA 92121		K205 (W. Messick)	1
•		K22 (E. Becker)	1
Southern Research Institute		C72W (R. Johnson)	1
Attn: H. S. Starrett	1		
P.O. Box 55303			
Birmingham, AL 35255			
Center for Naval Analyses			
4402 Fort Avenue			
P.O. Box 16268			
Alexandria, VA 22303-0268	1		
Advanced Materials Laboratory			
110 Hillcrest Road			
Concord, MA 01742	1		
Nevada Engineering & Tech.			
Corporation			
Attn: R. G. Sherman	1		
592 Dryad Road			
Santa Monica, CA 90402			

REPORT DOCUMENTATION PAGE

Form Approved OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 refferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank	k) 2. REPORT DATE 3. REPORT		TYPE AND DATES COVERED				
	5 August 1991						
A CUMPANASHPOTE Itrasonic Young's Modulus of Unidire	5. FUNDING NUMBERS						
6. AUTHOR(S)							
John V. Foltz and Albert L							
7. PERFORMING ORGANIZATION	IAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER				
Naval Surface Warfare Center 10901 New Hampshire Avenue Silver Spring, MD 20903-5000				NAVSWC TR 91-446			
9. SPUNSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)	10. SPONSO AGENCY	RING/MONITORING REPORT NUMBER			
11. SUPPLEMENTARY NOTES							
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE				
Approved for public release	distribution is unlimited						
13. ABSTRACT (Maximum 200 wor	ds)						
A method of determining the fiber direction elastic modulus of a thin-ply unidirectional fiber reinforced metal matrix composite using ultrasonic plate waves is described. The results obtained by the ultrasonic technique are compared to values of Young's modulus from mechanical tests on the same materials. The agreement shows that the ultrasonic method is a reliable and essentially nondestructive way of determining Young's moduli in thin unidirectionally reinforced metal matrix composites.							
14. SUBJECT TERMS ultrasonic characterization		15. NUMBER OF PAGES 31					
graphite/copper, boron alun evaluation	mum, metai matrix compo	sites, nondestruc	uve	16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLAS OF ABSTRACT		20. LIMITATION OF ABSTRACT			
	CHUMBORERM	UNCLASSIFIE	117	D/111			

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and its title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- **Block 3.** Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 -30 Jun 88).
- Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

- Contract

PR - Project

Grant PE -

TA - Task

Program Element

WU - Work Unit Accession No.

- BLOCK 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.
- **Block 8.** Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
- Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- Block 10. Sponsoring/Monitoring Agency Report Number. (If Known)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD

See DoDD 5230.24, "Distribution

Statements on Technical Documents."

DOE -See authorities.

NASA - See Handbook NHB 2200.2

NTIS · Leave blank

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for **Unclassified Scientific and Technical**

Reports.

NASA - Leave blank.

NTIS - Leave blank.

- Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
- **Block 14.** Subject Terms. Keywords or phrases identifying major subjects in the report.
- **Block 15.** Number of Pages. Enter the total number of pages.
- **Block 16.** Price Code. Enter appropriate price code (NTIS only)
- Blocks 17.-19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.