Molecular Orbitals and Charge Decomposition Analysis

Shirong Wang

Kuang Yaming Honors School

November 29, 2019

Contents

Molecular Orbitals

Charge Decomposition Analysis

Expand each MO with N AOs (basis)

$$\phi_i = \sum_{k}^{N} C_{ki} \chi_k \tag{1.1}$$

	math variable	subscript	number	number example
MO	φ	i	N	420
AO	χ	k	Ν	420
occupied MO			occ	52
virtual MO			vir	368

N is determined by user, e.g. def2TZVP . occ = K/2, where *K* is the number of electrons (In restricted case).

But How Can I Count ...

Check the .fchk file!

Title Card Required SP RPBE1PBE Number of atoms	I	def2TZVP			
Full Title Title Card Required	С	N= 2			
Route	С	N= 8			
<pre>#p pbe1pbe/def2TZVP geom=allcheck scrf=(smd,solvent=benzene)</pre>					
nosymm pop=full IOp(3/33=1,3/32=2)					
Charge	I	0			
Multiplicity	I	1			
Number of electrons	I	104			
Number of alpha electrons	I	52			
Number of beta electrons	I	52			
Number of basis functions	I	420			
Number of independent functions	I	420			

or .log file

```
Standard basis: def2TZVP (5D, 7F)

Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.

There are 466 symmetry adapted cartesian basis functions of A symmetry.

There are 420 symmetry adapted basis functions of A symmetry.

420 basis functions, 679 primitive gaussians, 466 cartesian basis functions
52 alpha electrons 52 beta electrons
...

NBasis= 420 RedAO= T EigKep= 6.59D-04 NBF= 420
NBsUse= 420 1.00D-06 EigRej= -1.00D+00 NBFU= 420
```

MO Coefficient and Overlap Matrix

$$K/2 = \sum_{i}^{occ} \langle \phi_i | \phi_i \rangle = \sum_{i}^{occ} \sum_{k}^{N} \sum_{l}^{N} C_{ki}^* C_{li} \langle \chi_k | \chi_l \rangle$$
 (1.2)

or

$$K = \sum_{i}^{N} \eta_{i} \langle \phi_{i} | \phi_{i} \rangle = \sum_{i}^{N} \eta_{i} \sum_{k}^{N} \sum_{l}^{N} C_{ki}^{*} C_{li} \langle \chi_{k} | \chi_{l} \rangle$$
 (1.3)

where

$$\eta_i = \begin{cases} 2 & i \in occ \\ 0 & i \in vir \end{cases}$$
(1.4)

Moreover, define

$$P_{k\ell} = \sum_{i}^{N} \eta_{i} C_{ki}^{*} C_{\ell i}$$

(1.5)

Overlap Matrix

$$S_{k\ell} = \langle \chi_k \, | \, \chi_\ell \rangle \tag{1.6}$$

thus

$$K = \sum_{k=0}^{N} \sum_{\ell=0}^{N} P_{k\ell} S_{k\ell} \tag{1.7}$$

Charge Decomposition Analysis

Charge Decomposition Analysis was proposed by S. Dapprich and G. Frenking, to analyze charge transfer.

Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352-9362

Common approaches for analyzing charge transfer

- 1. Atomic charges
- 2. Density difference
- 3. Charge decomposition analysis

Fragment Orbitals

Recall that

$$\langle \phi_i | \phi_i \rangle = \sum_{k}^{N} \sum_{\ell}^{N} C_{ki}^* C_{\ell i} S_{kl}$$
 (2.1)

where N is the number of AOs, and S is the overlap matrix between AOs. Do SCF calculation for two fragments at same geometry separately, we get two set of MOs of fragments. They are called fragment orbitals, with a total number N.

Expand total MO with FOs instead, we get

$$\eta_i \langle \phi_i | \phi_i \rangle = \eta_i \sum_{m=1}^{N} \sum_{n=1}^{N} C_{mi}^* C_{ni} S_{mn}$$
 (2.2)

where

$$S_{mn} = \langle \phi_m \, | \, \phi_n \rangle \tag{2.3}$$

Define

$$d_i = \sum_{m \in A}^{occ} \sum_{n \in B}^{vir} \eta_i C_{mi}^* C_{ni} S_{mn}$$
 (2.4)

$$b_i = \sum_{m \in A}^{vir} \sum_{n \in B}^{occ} \eta_i C_{mi}^* C_{ni} S_{mn}$$
 (2.5)

$$r_i = \sum_{m=A}^{occ} \sum_{n=B}^{occ} \eta_i C_{mi}^* C_{ni} S_{mn}$$
 (2.6)

$$r_{i} = \sum_{m \in A}^{occ} \sum_{n \in B}^{occ} \eta_{i} C_{mi}^{*} C_{ni} S_{mn}$$

$$d = \sum_{i} d_{i} \qquad b = \sum_{i} b_{i} \qquad r = \sum_{i} r_{i}$$

$$(2.6)$$

thus

d is the charge transfer from A to B, b is the charge transfer from B to A. d-b is the net charge transfer from A to B.