SJT-RoboClub: Componentes del Proyecto #2

N°	COMPONENTE	DESCRIPCIÓN	CANTIDAD	LINK /PRECIO	MODIFICACIONES	FUNCIÓN DENTRO DEL PROYECTO
1.	Batería recargable de 7,2 ~ 8,4 V (batería de litio de 7,4 V)	Tomado de un: Kit de coche robot inteligente ELEGOO UNO R3 V4 para Arduino, módulo de seguimiento de línea, sensor ultrasónico, juguetes STEM	1	https://a.co/d/0ii0RyXF Comprado, para proyectos escolares en el colegio en años anteriores	FIFGO	Proporciona la alimentación eléctrica al Controlador de motor L298N Con botón de encendido y apagado. Recortamos el conector para insertar cables al Controlador de motor L298N

Servomotor: kit: Tomado de Servomotor #1: Controla la OSOYOO Robot Rc dirección del Smart Car DIY Kit automóvil este dispositivo va a para construir para transmitir la adultos dirección del conductor al eje de adolescentes con https://a.co/d/01EcK15g 2 dirección, servo motor de moverá las ruedas delanteras hacia la dirección asistida izquierda y hacia la derecha. Servomotor #2: controla dirección del sensor Configuración drivers, librería ultrasónico. **CHASIS PARA AUTO** Tomado de kit: Base superior para montar OSOYOO Robot Rc componentes del Smart Car DIY Kit auto, con dirección 2 asistida y ruedas, para construir para Placas, Recortado, barras, adultos pegar en la parte los inferior. adolescentes con tornillos, Perforado para los piezas motor de servo https://a.co/d/01EcK15g tornillos de la base para del lidar. dirección asistida dirección conectad os al servomot or las 4 llantas.

6.	Controlador de motor L298P	Comprado Para el proyecto	1	https://store.arduino.cc/products/arduino-motor-shield-rev3	Configuración drivers, librería	Placa de protección del motor Arduino Rev3: Este dispositivo controla el Motor de eje pasante, los servomotores, el sensor ultrasónico.
7.						
8.	Arduino UNO	Comprado Para el proyecto	1	https://a.co/d/02fK2kZ	Programación	Este es el controlador principal al cual se conectarán todos los demás componentes.

9.	Cables dupont hembra-macho, hembra-hembra y macho-macho Cables Cables MALE TO FEMALE Cables FEMALE TO FEMALE	Comprado	50	De uso en el laboratorio de robótica	Cables para la conexión	Utilizados para conectar componentes
10.	Sensor Ultrasonido HC-SR04	COMPRADO	1	De uso en el laboratorio de robótica	CONEXIÓN	Evitará choque con obstáculos.

Pseudocódigo

INICIO Configurar pines de conexión para: - Sensor ultrasónico - Motor DC - Servos (ultrasónico y dirección) Inicializar componentes (servo, sensor ultrasónico, etc.) Mientras el auto esté en funcionamiento: Medir distancia con el sensor ultrasónico SI la distancia es menor a 30 cm: Llamar a la función `buscarMejorRuta()` SINO: Llamar a la función `avanzarRecto()` SI se han dado 3 vueltas: Llamar a la función `estacionar()` **Esperar 10 segundos Detener el programa** FIN **FUNCION** avanzarRecto(): Configurar dirección del motor hacia adelante Ajustar velocidad del motor a 200 Configurar el servo de dirección a 90 grados (recto) **FUNCION** buscarMejorRuta(): Inicializar la mejor distancia y posición Para cada posición del servo ultrasónico (0 a 180 grados): Girar el servo ultrasónico a la posición actual Medir la distancia en esa posición SI la distancia medida es mayor que la mejor distancia encontrada: Actualizar la mejor distancia y posición Ajustar el servo de dirección a la mejor posición encontrada Reducir velocidad del motor a 100 para esquivar Esperar un breve período de tiempo (500 ms) Restaurar velocidad del motor a 200 **FUNCION** estacionar(): **Activar freno del motor Esperar 10 segundos**

Diagrama Gráfico de Conexión

Arduino Uno						
++						
1	1	Motor Shield Rev3				
1	1	++				
1	1	1 1				
5V	+	> 5V				
GND	+	> GND				
1	1	1				
D7	+	> Trig (Sensor)				
D8	+	> Echo (Sensor)				
D5	+	> Servo Ultrasónico				
D6	+	> Servo Dirección				
D12	+	> Motor Dir Pin				
D3	+	> Motor PWM Pin				
D9	+	> Motor Brake Pin				
1	1	T 1				
++		++				
		A+ Motor				
		A- Motor				
		B+ Motor (No usado)				
		B- Motor (No usado)				
		++				

Diagrama de Conexión (Resumido)

1. Motor DC:

o Conectar el motor DC a los pines A+ y A- en la Motor Shield (Canal A).

2. Sensor Ultrasónico:

- o Trig a D7
- o Echo a D8
- o VCC a 5V
- o GND a GND

3. Servo Motor para Sensor Ultrasónico:

- o Señal a D5
- o VCC a 5V
- o GND a GND

4. Servo Motor para Dirección Asistida:

- o Señal a D6
- o VCC a 5V
- o GND a GND

5. Alimentación:

- o Conectar la batería al jack de alimentación del Arduino Uno.
- o La Motor Shield tomará la energía del Arduino Uno para alimentar los motores y servos.

Cambiamos el lidar ya que se nos complicó la comunicación con la placa en la lectura, pero seguimos trabajando es ello.