Natural Language Processing

Сириус, "Алгоритмы и анализ данных" 2024

Алексеев Илья

Ключевые слова: embedding, recurrent neural network, transformer

Outline

- Основы NLP
- Основы многомерной геометрии
- Обучение эмбедингов слов
- Добавление контекста с помощью RNN
- Механизм внимания в RNN
- Мезанизм самовнимания в Transformer

Основы NLP

- векторизация текстов
- токенизация
- bag of words
- недостатки

Векторизация текста

DataFrame

[Припев: Big Baby Tape]

Свет мой, зеркало, скажи, покажи мне, кто тут G

Кто был на районе, поставлял барыгам кирпичи?

Передайте мне ключи, передайте мне ключи

Mirror, mirror on the wall, крадусь на них — я вор в ночи

miro

Что такое текст?

Обучающая коллекция документов (текстов):

$$D = \{d_1, d_2 \dots d_N\}$$

Документ:

$$d_i=(w_1,w_2,\dots w_n),$$

где w_i — токен (слово) из вокабулярия (словаря) V.

Токенизация — разделение текста на токены, элементарные единицы текста

В большинстве случае токен --- это слово*

Можно использовать специальные токенизаторы, например из

библиотеки nltk

Word Tokenizer

```
from nltk.tokenize import word_tokenize
example = 'Но не каждый хочет что-то исправлять:('
word_tokenize(example, language='russian')
```

```
['Но', 'не', 'каждый', 'хочет', 'что-то', 'исправлять', ':(']
```

Sentence Tokenizer

```
from nltk.tokenize import sent_tokenize
sent = 'Hey! Is Mr. Bing waiting for you?'
nltk.tokenize.sent_tokenize(sent)
```

```
['Hey!', 'Is Mr. Bing waiting for you?']
```

Bag of Words (Count Vectorizer)

Предположим:

- Порядок токенов в тексте не важен
- ullet Важно лишь сколько раз токен w входит в текст d

Term-frequency, число вхождений слова в текст: $\operatorname{tf}(w,d)$

Векторизация:

$$v(d) = (\operatorname{tf}(w_i,d))_{i=1}^{|V|}$$

Bag of Words (Count Vectorizer)

Конечный словарь со всеми возможными словами:

• V = [пес, кот, сел, на, пень, ель]

Пример векторизации:

sentence	BoW					
пес сел на пень	[1,0,1,1,1,0]					
кот сел на ель	[0,1,1,1,0,1]					

Bag of Words (Count Vectorizer)

```
from sklearn.feature_extraction.text import CountVectorizer

s = [
    'my name is Joe',
    'your name are Joe',
    'my father is Joe'
]
vectorizer = CountVectorizer()
vectorizer.fit_transform(s).toarray()
```

```
array([[0, 0, 1, 1, 1, 1, 0],

[1, 0, 0, 1, 0, 1, 1],

[0, 1, 1, 1, 1, 0, 0]])
```

Недостатки

- Нет учёта контекста и порядка слов
- Огромное признаковое пространство (равное размеру словаря)

Основы многомерной геометрии

- векторы
- функции метрик
- гипотеза компактности в ML

Векторизация слов

- зачем нужна
- дистрибутивная гипотеза
- матрица совстречаемостей

Мотивация

Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Text (your input)

Дистрибутивная гипотеза

Упрощенная формулировка:

Похожие слова встречаются в похожих контекстах

Example: Co-Occurrence with Fixed Window of n=1:

Document 1: "all that glitters is not gold"

Document 2: "all is well that ends well"

*	<start></start>	all	that	glitters	is	not	gold	well	ends	<end></end>
<start></start>	0	2	0	0	0	0	0	0	0	0
all	2	0	1	0	1	0	0	0	0	0
that	0	1	0	1	0	0	0	1	1	0
glitters	0	0	1	0	1	0	0	0	0	0
is	0	1	0	1	0	1	0	1	0	0
not	0	0	0	0	1	0	1	0	0	0
gold	0	0	0	0	0	1	0	0	0	1
well	0	0	1	0	1	0	0	0	1	1
ends	0	0	1	0	0	0	0	1	0	0
<end></end>	0	0	0	0	0	0	1	1	0	0

Строка, соответствующая слову является его признаковым описанием (векторизацией)

Обучение эмбедингов слов

- контрастивная функция потерь
- классификация
- интерпретация и визуализация
- минусы (нет контекста)

Матрица эмбедингов

Для каждого из n слов в словаре инициализируем случайный эмбединг размера d. Получим матрицу $E \in \operatorname{Mat}(n imes d)$.

Справа пример для d=4:

A 4-dimensional embedding

•••

Representation Learning

Давайте напрямую обучать метрическую близость между словами:

 $\begin{array}{l} \text{maximize } \cos(x, y) \\ \text{minimize } \cos(x, z) \end{array}$

Контрастивная функция потерь

Давайте напрямую обучать метрическую близость между словами:

$$\mathcal{L}_i = -\log rac{\exp(\cos(x_i,y_i))}{\sum_j \exp(\cos(x_i,z_j))}.$$

Семантическая близость слов

Семантическая близость слов

Spain

Italy Madrid

Rome
Berlin

Turkey Ankara

Russia Moscow

Canada Ottawa

Japan Tokyo

Vietnam Hanoi
China Beijing

Male-Female

Verb tense

Country-Capital

Семантическая близость слов

https://lena-

voita.github.io/nlp_course/word_embeddings.html#analysis_interpretability

Рекуррентные нейронные сети (RNN)

- эмбединг всего текста
- transfer learning для эмбедингов слов
- проблема отсутствия контекста
- добавление рекуррентной связи
- задачи NLP
- стекинг слоев RNN

Трансформеры

- механизм самовнимания
- BERT
- GPT

Применение к другим доменам

- Audio
- CV
- Genetics

Transformers in Audio

Transformers in Computer Vision

Transformers in Genetics

