CS420

Introduction to the Theory of Computation

Lecture 10: PDA ← CFG

Tiago Cogumbreiro

Today we will learn...

- Exercises on designing a PDA
- Convert a PDA into a CFG
- Convert a CFG into a PDA

Section 2.2 Supplementary material: Professor David Chiang's lecture notes [1] [2]; Professor Siu On Chan slides

Exercise 1

- 1. aa is a palindrome
- 2. aba is a palindrome
- 3. bbb is a palindrome
- 4. ϵ is a palindrome
- 5. a is a palindrome

Give a PDA that recognizes palindromes and show it accepts aba and rejects abb

Exercise palindrome

Accepts aba

Accepts aba

Rejects abb

Rejects abb

Exercise 2

$$L_2 = \{a^n b^{2n} \mid n \ge 0\}$$

Give a PDA that recognizes L_2 and show it rejects aba and accepts abb

Exercise 2 solution

$oldsymbol{L_2}$ does not contain aba

$oldsymbol{L_2}$ does not contain aba

L_2 contains abb

$oldsymbol{L_2}$ contains abb

Main result

Context free languages

Theorem: Language L has a context free grammar if, and only if, L is recognized by some pushdown automaton.

Next

- 1. We show that from a CFG we can build an equivalent[†] PDA
- 2. We show that from a PDA we can build an equivalent[†] CFG

 $^{^\}dagger$ Equivalence with respect to recognized languages. Let P be a PDA and C a CFG we say that P is equivalent to C (and vice versa) if, and only if, L(P)=L(C)

Converting a CFG into a PDA

Converting a CFG into a PDA

- (1) Initial state pushes S to the stack
- In a loop:
 - \circ (2) Every rule S o w corresponds to poping S and pushing w (in reverse)
 - (3) Pop terminals from stack
 - (4) Empty stack means recognized

Example
$$L_3=\{a^nb^n\mid n\geq 0\}$$

$$S o aSb \mid \epsilon$$

PDA operation	Output	Accept?
	\$	aabb
(1) $\epsilon,\$ o S$	S\$	
(2) $\epsilon,S o aSb$	aSb\$	
(3) $\epsilon, a ightarrow \epsilon$	Sb\$	а
(2) $\epsilon,S o aSb$	aSbb\$	а
(3) $\epsilon, a ightarrow \epsilon$	Sbb\$	aa
(2) $\epsilon,S o\epsilon$	bb\$	aa
(3) $\epsilon, b o \epsilon$	b\$	aab
(3) $\epsilon, b o \epsilon$	\$	aabb

Overview

- 1. **Initial variable:** From the initial state q_1 push the initial variable onto the stack via ϵ and move to the loop state (q_2)
- 2. **Productions:** For each rule ($S \to aSb$), perform a multi-push edge via ϵ from q_2 back to q_2 , by popping popping the variable of the rule S and performing a multi-push of the body aSb.
- 3. **Alphabet:** For each letter a of the grammar draw a self loop to q_2 that reads a and pops a from the stack
- 4. **Final transition:** Once the stack is empty transition to the final state q_3 via ϵ

aabb is in $L_3 = \{a^nb^n \mid n \geq 0\}$, show acceptance

aabb is in $L_3 = \{a^nb^n \mid n \geq 0\}$, show acceptance

Overview

- 1. The states q_1 , q_2 , and q_3 are always in the converted PDA
- 2. The edge between q_1 and q_2 always pushes the initial variable
- 3. The edge between q_2 and q_3 is always $\epsilon,\$ o \epsilon$
- 4. There is always a self loop for each letter in the alphabet of $a,a
 ightarrow\epsilon$
- 5. The only difficulty is **generating the substitution rules**

How to encode S o aSb? (multi push)

Encoding multi-push productions

By example X o aYb

- 1. reverse the production, example: X o aYb yields bYa.
- 2. Create one state R_i for each variable/terminal in the reversed string, each transition pushes a variable/terminal of the **reversed** string

Note: In the book (and in my diagrams) I merge the first two transitions. This is equivalent to the above method; you can use either, as long as you do it correctly.

Exercise 3

Convert the following grammar into a PDA

$$egin{aligned} A
ightarrow 0A1 \mid B \ B
ightarrow 1B \mid \epsilon \end{aligned}$$

Exercise 3

Convert the following grammar into a PDA

$$egin{aligned} A
ightarrow 0A1 \mid B \ B
ightarrow 1B \mid \epsilon \end{aligned}$$

Converting a PDA into a CFG

Converting a PDA into a CFG

- 1. modify the PDA into a **simplified** PDA:
 - has a single accepting state
 - empties the stack before accepting
 - every transition is in one of these forms:
 - skips popping and pushes one symbol onto the stack: $\epsilon
 ightarrow c$
 - ullet pops one symbol off the stack and skips pushing: $c
 ightarrow \epsilon$

Converting a PDA into a CFG

- 1. modify the PDA into a **simplified** PDA:
 - has a single accepting state
 - empties the stack before accepting
 - every transition is in one of these forms:
 - ullet skips popping and pushes one symbol onto the stack: $\epsilon
 ightarrow c$
 - ullet pops one symbol off the stack and skips pushing: $c
 ightarrow \epsilon$
- 2. given a simplified PDA build a CFG

$$\circ\:A_{qq} o\epsilon$$
 if $q\in Q$

$$egin{array}{l} \circ \ A_{pq}
ightarrow A_{pr} A_{rq} \ ext{if} \ p,q \in Q \end{array}$$

$$\circ \ A_{\underline{pq}} o \mathtt{a} A_{rs} \mathtt{b} \, \mathsf{if} \, (r,\mathtt{u}) \in \delta(\underline{p},\mathtt{a},\epsilon) \, \mathsf{and} \, (\underline{q},\epsilon) \in \delta(s,\mathtt{b},\mathtt{u})$$

Simplifying a PDA

Simplifying a PDA

Transformation 1: Has a single accepting state

Transformation 2: Empties the stack before accepting

 $^{^\}dagger$ Notation $orall a \in \Sigma$ means that there will be one edge $a, a o \epsilon$ per $a \in \Sigma$

Simplifying a PDA

Transformation 3

Every transition is in one of these forms:

- skips popping and pushes one symbol onto the stack: $\epsilon
 ightarrow c$
- ullet pops one symbol off the stack and skips pushing: $c
 ightarrow \epsilon$

Case 1

Case 2

Simplified PDA

- single accepting state
- empties the stack before accepting
- every transition is in one of these forms:

$$\circ$$
 $\epsilon
ightarrow c$

$$\circ$$
 $c
ightarrow \epsilon$

Is it simplified?

Simplified PDA

- single accepting state
- empties the stack before accepting
- every transition is in one of these forms:

$$\circ$$
 $\epsilon
ightarrow c$

$$\circ$$
 $c
ightarrow \epsilon$

Is it simplified?

No!

UMASS BOSTON

Not Simplified

Simplified

Not Simplified

Simplified

Simplified PDA to CFG

Simplified PDA to CFG

Given a simplified PDA build a CFG

1.
$$A_{qq}
ightarrow \epsilon$$
 if $q \in Q$

2.
$$A_{pq}
ightarrow A_{pr} A_{rq}$$
 if $p,r,q \in Q$

3.
$$A_{\underline{pq}} o \mathtt{a} A_{rs} \mathtt{b} \ \mathsf{if} \ (r, \mathbf{u}) \in \delta(\underline{p}, \mathtt{a}, \epsilon) \ \mathsf{and} \ (\underline{q}, \epsilon) \in \delta(s, \mathtt{b}, \mathbf{u})$$


```
for p-[a, x → u]→r in transitions: # for every transition
  if x is epsilon:
    for s-[b, _u → x]→q in transitions: # for every transition
    if _u = u and x is epsilon:
        yield A_pq → a A_rs b
```


Balanced parenthesis that are wrapped inside an outermost parenthesis.

Is this PDA simplified?

Balanced parenthesis that are wrapped inside an outermost parenthesis.

Is this PDA simplified?

Yes!

Step 1: $A_{qq}
ightarrow \epsilon$ if $q \in Q$

Step 2: $A_{pq} o A_{pr} A_{rq}$ if $p,r,q \in Q$

$$A_{11}
ightarrow \epsilon$$

$$A_{22}
ightarrow \epsilon$$

$$A_{33}
ightarrow \epsilon$$

$$A_{44}
ightarrow \epsilon$$

$$A_{1,2} o A_{1,3} A_{3,2}$$

$$A_{1,2}
ightarrow A_{1,4}A_{4,2}$$

$$A_{1,3}
ightarrow A_{1,2} A_{2,3}$$

$$A_{1,3}
ightarrow A_{1,4} A_{4,3}$$

$$A_{1,4} o A_{1,2} A_{2,4}$$

$$A_{1,4}
ightarrow A_{1,3}A_{3,4}$$

$$A_{2,1}
ightarrow A_{2,3}A_{3,1}$$

$$A_{2,1}
ightarrow A_{2,4}A_{4,1}$$

$$A_{2,3} o A_{2,1} A_{1,3}$$

$$A_{2,3}
ightarrow A_{2,4}A_{4,3}$$

$$A_{2,4} o A_{2,1} A_{1,4}$$

$$A_{2,4}
ightarrow A_{2,3}A_{3,4}$$

$$A_{3,1}
ightarrow A_{3,2}A_{2,1}$$

$$A_{3,1}
ightarrow A_{3,2}A_{2,1}$$

$$A_{3,2}
ightarrow A_{3,1}A_{1,2}$$

$$A_{3,2}
ightarrow A_{3,4}A_{4,2}$$

$$A_{3,4} o A_{3,1} A_{1,4}$$

$$A_{3,4}
ightarrow A_{3,2}A_{2,4}$$

$$A_{4,1}
ightarrow A_{4,2}A_{2,1}$$

$$A_{4,1}
ightarrow A_{4,3}A_{3,1}$$

Step 1:
$$A_{qq}
ightarrow \epsilon$$
 if $q \in Q$

Step 2:
$$A_{pq} o A_{pr} A_{rq}$$
 if $p,r,q \in Q$

$$A_{4,2}
ightarrow A_{4,1}A_{1,2}$$

$$A_{4,2}
ightarrow A_{4,3}A_{3,2}$$

$$A_{4,3}
ightarrow A_{4,1}A_{1,3}$$

$$A_{4,3}
ightarrow A_{4,2}A_{2,3}$$

Step 3: $A_{pq} o \mathtt{a} A_{rs}\mathtt{b}$ if $(r, \mathtt{u}) \in \delta(\underline{p}, \mathtt{a}, \epsilon)$ and $(\underline{q}, \epsilon) \in \delta(s, \mathtt{b}, \mathtt{u})$

Stack o

Push	Рор
q1, read o, q2	
q2, read o, q2	
	q2, read c, q2
	q2, read c, q3

New rules:

$$egin{aligned} A_{1,2} &
ightarrow oA_{22}c \ A_{1,3} &
ightarrow oA_{22}c \ A_{2,2} &
ightarrow oA_{22}c \ A_{2,3} &
ightarrow oA_{22}c \end{aligned}$$

Intuition

- Create a table for each letter being pushed/poped.
- Pair each push with each pop.

Exercise 6

Simplify the PDA below

Exercise 6

Solution

