

2022~2023 学年春季学期《大学物理实验》报告

得 分	评阅人		

题 目:	实验四 磁滞回线
NV 15-4-	AL. VIII. ALVI VAIA VAR. 1904
学 院:	先进制造学院
专业班级:	智能制造工程 221 班
学生姓名:	朱紫华
学 号:	5908122030
指导老师:	全祖赐老师

二〇二三年六月制

一、 实验目的:

- 1、掌握用磁滞回线测试仪测绘磁滞回线的方法。
- 2、了解铁磁材料的磁化规律,用示波器法观察磁滞回线比较两种典型铁磁物质的动态磁化特性。
 - 3、测定样品的磁化特性曲线(B-H曲线),并作 $\mu-H$ 曲线。
- 4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关 H_C 、 B_R 、 B_M 、H、B的等参量。

二、 实验仪器:

TH-MHC 型智能磁滞回线测试仪、示波器。

三、 实验原理:

1. 铁磁材料的磁滞特性

铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特性是在外磁场作用下能被强烈磁化,即磁导率 μ 很高。另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度 H 与磁感应强度 B 之间关系的特性。即磁场作用停止后,铁磁物质仍保留磁化状态,图 1 为铁磁物质的磁感应强度 B 与磁场强度 H 之间的关系曲线。

图中的原点 O 表示磁化之前铁磁物质处于磁中性状态,即 B=H=O,当磁场强度 H 从零开始增加时,磁感应强度 B 随之从零缓慢上升,如曲线 Oa,继之 B 随 H 迅速增长,如曲线 ab 所示,其后 B 的增长又趋缓慢,并当 H 增至 H_S 时,B 达到饱和值 B_S 这个过程的 OabS 曲线称为起始磁化曲线。如果在达到饱和状态之后使磁场强度 H 减小,这时磁感应强度 B 的值也要减小。图 1 表明,当磁场从 H_S 逐渐减小至零,磁感应强度 B 并不沿起始磁化曲线恢复到"O"点,而是沿另一条新的曲线 SR 下降,对应的 B 值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。比较线段 OS 和 SR 可知,H 减小 B 相应也减小,但 B 的变化滞后于 B 的变化,这种现象称为磁滞。磁滞的明显特征是当 B 中 B 时,磁感应强度 B 值并不等于 B ,而是保留一定大小的剩磁 B0。

当磁场反向从0逐渐变至 $-H_D$,磁感应强度B消失,说明要消除剩磁,可以施加反向磁场。 H_D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,曲线RD称为退磁曲线。

图 1 还表明,当磁场按 $H_S \rightarrow O \rightarrow H_C \rightarrow -H_S \rightarrow O \rightarrow H_D' \rightarrow H_S$ 次序变化,相应的磁感应强度 B 则沿闭合曲线SRDS'R'D'S变化,可以看出磁感应强度 B 值的变化总是滞后于磁场强度 H 的变化,这条闭合曲线称为磁滞回线。当铁磁材料

处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。磁滞是铁磁材料的重要特性之一,研究铁磁材料的磁性就必须知道它的磁滞回线。各种不同铁磁材料有不同的磁滞回线,主要是磁滞回线的宽、窄不同和矫顽力大小不同。

当铁磁材料在交变磁场作用下反复磁化时将会发热,要消耗额外的能量,因为反复磁化时磁体内分子的状态不断改变,所以分子振动加剧,温度升高。使分子振动加剧的能量是产生磁场的交流电源供给的,并以热的形式从铁磁材料中释放,这种在反复磁化过程中能量的损耗称为磁滞损耗,理论和实践证明,磁滞损耗与磁滞回线所围面积成正比。

当初始状态为 *H=B=O* 的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图 2 所示,这些磁滞回线顶点的连线称为铁磁材料的基本磁化曲线。

可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据,图 3 为常见的两种典型的磁滞回线,其中软磁材料的

磁滞回线狭长、矫顽力小(<102A/m)、 剩磁和磁滞损耗均较小,磁滞特性不显著, 可以近似地用它的起始磁化曲线来表示 其磁化特性,这种材料容易磁化,也容易 退磁,是制造变压器、继电器、电机、交 流磁铁和各种高频电磁元件的主要材料。 而硬磁材料的磁滞回线较宽,矫顽力大 (>102A/m),剩磁强,磁滞回线所包围 的面积肥大,磁滞特性显著,因此硬磁材 料经磁化后仍能保留很强的剩磁,并且这 种剩磁不易消除,可用来制造永磁体。

图 3 不同铁磁材料的磁滞回线

2. 测绘磁滞回线原理

观察和测量磁滞回线和基本磁化曲线的线路如图 4 所示。

待测样品为 EI 型矽钢片,N 为励磁绕组,n 为用来测量磁感应强度 B 而设置的绕组。 R_I 为励磁电流取样电阻,设通过 N 的交流励磁电流为 i,根据安培环路定律,样品的磁场强度:

图 4 磁滞回线实验线路

因为
$$i = \frac{U_1}{R_1}$$
 所以 $H = \frac{N \times U_1}{L \times R_1}$ (1)

式(1)中的N、L、 R_1 均为已知常数,磁场强度H与示波器X输入 U_1 成正比,所以由 U_1 可确定H。

在交变磁场下,样品的磁感应强度瞬时值 B 是由测量绕组 n 和 R_2C_2 电路确定的。根据法拉第电磁感应定律,由于样品中的磁通 φ 的变化,在测量线圈中产生的感应电动势的大小为

$$\varepsilon_{2} = n \frac{d\phi}{dt} \qquad (2)$$

$$\phi = \frac{1}{n} \int \varepsilon_{2} dt$$

$$B = \frac{\varphi}{S} = \frac{1}{nS} \int \varepsilon_{2} dt$$

式中 S 为样品的横截面积。考虑到测量绕组 n 较小,如果忽略自感电动势和电路损耗,则回路方程为: $\varepsilon_2 = i_2 r_2 + U_2$

式中 i_2 为感生电流, U_2 为积分电容 C_2 两端电压。设在 Δt 时间内, i_2 向电容 C_2 的充电电量为 O,则

$$U_2 = \frac{Q}{C_2}$$

所以
$$\varepsilon_2 = i_2 R_2 + \frac{Q}{C_2}$$

如果选取足够大的 R_2 和 C_2 ,使得 $i_2R_2>>Q/_{C_2}$,则上式*可以*近似改写为

$$\varepsilon_2 = i_2 R_2$$

因为
$$i_2 = \frac{dQ}{dt} = C_2 \frac{dU_2}{dt}$$

所以
$$\varepsilon_2 = C_2 R_2 \cdot \frac{dU_2}{dt}$$
 (3)

将(3)式两边对时间t积分,代入(2)式可得

$$B = \frac{C_2 R_2}{n_S} \cdot U_2 \quad (4)$$

式中 C_2 、 R_2 、n和s均为已知常数。磁场强度 B 与示波器 Y 输入 U_2 成正比,所以由 U_2 可确定 B。在交流磁化电流变化的一个周期内,示波器的光点将描绘出一条完整的磁滞回线,并在以后每个周期都重复此过程,这样在示波器的荧光屏上可以看到稳定的磁滞回线。综上所述,将图 5 中的 U_1 和 U_2 分别加到示波器的"X 输入"和"Y 输入"便可观察样品的 B-H 曲线,如将 U_1 和 U_2 加到测试仪的信号输入端可测定样品的饱和磁感应强度 B_S 、剩磁 Rr、矫顽力 H_D 、磁滞损耗 BH 以及*磁导率* μ 等参数。

四、 实验内容:

(1)电路连接:选样品 1 按实验仪上所给的电路图连接线路,并令 $R_1 = 2.5\Omega$, "U 选择"置于 O 位。 U_H 和 U_B (即 U_1 和 U_2)分别接示波器的"X 输入"和"Y 输入",插孔上为公共端:

Н

图 5 退磁示意图

图 6 U2 和 B 的相位差等因素引起的畸变

- (2) 样品退磁: 开启实验仪电源,对试样进行退磁,即顺时针方向转动"U选择"旋钮,令U从0增至3V,然后逆时针方向转动旋钮,将U从最大值降为O,其目的是消除剩磁,确保样品处于磁中性状态,即B=H=0,如图5所示;
- (3)观察磁滞回线: 开启示波器电源,调节示波器,令光点位于荧光屏坐标网格中心,令 U=2.2V,并分别调节示波器 x 和 y 轴的灵敏度,使荧光屏上出现图形大小合适的磁滞回线(若图形顶部出现编织状的小环,如图 6 所示,这时可降低励磁电压 U 予以消除)。记录下 $\pm H_s$, $\pm B_s$, $\pm H_c$, $\pm B_r$ 各点坐标值,用 div 表示。(磁滞回线居中);

注意: 磁滞回线应尽量大些,以减小荧光屏读数相对误差。

- (4) 观察基本磁化曲线,按步骤 2 对样品进行退磁,从 U=0 开始,逐档提高励磁电压,将在荧光屏上得到面积由小到大一个套一个的一簇磁滞回线。这些磁滞回线顶点的连线就是样品的基本磁化曲线,记录下各电压下相应 $^{+H_S}$, $^{+B_S}$ 的坐标值,用 div 表示。注意:实验过程中不能改变示波器 x 和 y 轴的灵敏度。
- (5) 换样品 2, 重复上述步骤, 并观察、比较样品 1 和样品 2 磁化性能的不同。

五、 实验数据及数据分析处理:

(1) µ-H曲线及磁化特性曲线

 $R = 2.5\Omega$

U/V	U_H/mV	$H/10^4 A \cdot m^{-1}$	U_B/mV	$B/10^2T$	$\mu(=B/H)/(H/m)$				
0.5	250	83.333	12	0.2	0.0024				
1.0	390	130.000	24	0.4	0.003				
1.2	610	203.333	32	0.533	0.00262				
1.5	820	273.333	40	0.667	0.00244				
1.8	1100	366.667	48	0.8	0.00218				
2.0	1250	416.667	52	0.867	0.00208				
2.2	1450	483.333	54	0.9	0.00186				
2.5	1700	566.667	56	0.933	0.00164				
2.8	1920	640	58	0.967	0.00151				
3.0	2080	693.333	60	1	0.00144				

(2) 磁滯回线 (U = 2.5V、 $R = 2.5\Omega$)

序号	U_H/mV	U_B/mV	序号	U_H/mV	U_B/mV
1	2080	60	9	-2100	-60
2	1000	50	10	-1000	-50
3	500	45	11	-500	-45
4	0	38	12	0	-38
5	-250	20	13	250	-19
6	-450	0	14	450	0
7	-650	-20	15	650	20
8	-1000	-40	16	1000	41

六、 误差分析

- 1.样品退磁不够彻底,没有完全消除磁滞现象,无法得出正确的曲线。
- 2.在读点时没有把磁滞回线移至关于原点对称,导致读数出现误差。
- 3.取点时,没有取尽特殊点,取的点不多,分布不均匀,都有可能导致无法绘制出磁滞回线。

七、 实验小结与思考

本次实验耗时最久的就是电路的连接,我们需要搞懂,串联他该怎么接,并联该怎么接,接完电路后,就是按照步骤来了,实验结果可以很快得出。在这次实验中,我知道了 X,Y 坐标怎么读取,其次就是该怎么取点,因为后续绘图需要,所以我们最好按一定方向按顺序取点,而不是乱取导致后续绘图困难,然后,根据得出的结果,可以知道磁滞回线是关于原点对称的,在读图时可以通过调节通道一、通道二的 Y 轴的偏转因子,来使磁滞回线在视野内,且呈现出较好的样子。

八. 附上原始数据:

