Geometric algebra

August 20, 2015

Outline

1 Vectors

Matrices

Vectors and spatential interpretation

Properties of a vector

There are 3 properties of a vector \overrightarrow{x} :

- magnitude
- direction
- startpoint

with respect to a referention vector $\overrightarrow{0}$

Multiplication scalar and vector

r ϵ \mathbb{R} (r ϵ \mathbb{C} is possible, but hasn't a fysical representation)

- |r| < 1: shorten
- |r| > 1: increase
- r < 0: reverse the direction

Addition of vectors

Parallellogramrule:

vectorspace

First condition

A vectorspace V over a body L (set of operators) is a set of vectors that satisfy:

1. A vectorsum is defined: $VxV \rightarrow V : (\overrightarrow{x}, \overrightarrow{y}) \rightarrow \overrightarrow{x} + \overrightarrow{y}$

$$\overrightarrow{x}$$
, \overrightarrow{y} , \overrightarrow{z} ϵ V

a)
$$\overrightarrow{x} + \overrightarrow{y} \in V$$

b)
$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$

c)
$$\exists ! \overrightarrow{0} : \overrightarrow{x} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{x} = \overrightarrow{x}$$

d)
$$\forall \overrightarrow{x}, \exists (-\overrightarrow{x}) : \overrightarrow{x} + (-\overrightarrow{x}) = (-\overrightarrow{x}) + \overrightarrow{x} = 0$$

e)
$$\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$

vectorspace

Second condition

2. A outside law is defined: $LxV \rightarrow V: (a, \overrightarrow{x}) \rightarrow a\overrightarrow{x}$

$$\overrightarrow{x}$$
, $\overrightarrow{y} \in V$

a,b ϵ L

a)
$$1\overrightarrow{x} = \overrightarrow{x}$$

b)
$$a(b\overrightarrow{x}) = (ab)\overrightarrow{x}$$

c)
$$(a+b)\overrightarrow{x} = a\overrightarrow{x} + b\overrightarrow{x}$$

d)
$$a(\overrightarrow{x} + \overrightarrow{y}) = a\overrightarrow{x} + a\overrightarrow{y}$$

Numberspaces of n-couples

Defenition

This set together with the operator set \mathbb{R} or \mathbb{C} is a vectorspace.

Subspaces

Defenition

 V_1 is a supspace of vectorspace V if:

- \bullet $V_1 \subset V$
- ② With the same in- and outside law as V, is V_1 a vectorspace

Properties

- $0 \overrightarrow{0} \epsilon$ every subspace
- The intersection of two spaces is always a subspace
- **③** Given: p vectors $x_1, x_2, ..., x_p \in V$. The set vectors $a_1x_1 + a_2x_2 + ... + a_nx_n$ with $a_i \in \mathbb{R}$ is a subspace of V.

Defenition independance

Given: p vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p} \in V$.

Construct the nullvector as a linear combination of those vectors (i.e. search the operators (numbers) $a_1, a_2, ..., a_p$ to form $a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + ... + a_n\overrightarrow{x_p} = \overrightarrow{0}$).

If the nullvector only can created by $a_1 = a_2 = ... = a_p = 0$, then are the vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ linear independant.

Properties

- If the vectors $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, ..., $\overrightarrow{x_p}$ are linear independent, then can't none of them be writed as a linear combination of the other p-1 vectors.
- ② If the nullvector is one of the p vectors, then is the set $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ linear dependant (if $\overrightarrow{x_1} = 0$ then is $a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + ... + a_n\overrightarrow{x_n} = 0$ with $a_1 \neq 0$ and $a_2, a_3, ... a_p = 0$).
- 3 Basis and dimension: p linear independant vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ generate a vectrospace V^p . Every vector in V^p can be writed **in only one way** as a linear combination of the p linear independant vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ using operators $a_1, a_2, ..., a_p$.

Basis, dimension

Given: $\overrightarrow{v} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2} + ... + a_p \overrightarrow{x_p}$.

The set operators $a_1, a_2, ..., a_p$ are called the **coordinates** of the vector \overrightarrow{V} relative to the set vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$. This set vectors is a **basis** of vectorspace V^p , with **dimension** p.

Example

Given:
$$\overrightarrow{x_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \overrightarrow{x_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \overrightarrow{x_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The set $\{\overrightarrow{x_1}, \overrightarrow{x_2}, \overrightarrow{x_3}\}$ is a linear independant combination. There doesn't exist numbers $a_1 \neq 0$, $a_2 \neq 0$, $a_3 \neq 0$ such that $\overrightarrow{a_1}\overrightarrow{x_1} + a_2\overrightarrow{x_2} + a_n\overrightarrow{x_3} = 0$. The set of all vectors $\overrightarrow{y} = a_1\overrightarrow{x_1} + a_2\overrightarrow{x_2} + a_n\overrightarrow{x_3}$ is the three dimensional vectrospace V^3 .

If $\overrightarrow{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. Then is $3\overrightarrow{x_1} + 2\overrightarrow{x_2} + \overrightarrow{x_3}$ the only way to write \overrightarrow{y} as a

linear combination of $\overrightarrow{x_1}$, $\overrightarrow{x_2}$, $\overrightarrow{x_3}$.

Example

The set of vectors $\overrightarrow{y} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2}$ is a **two dimensional** subspace V^2 .

The vectors in this subspace are:

$$\overrightarrow{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix}.$$

Important difference

- All vectors of V^2 have **3** coordinates.
- The dimension of the subspace V^2 is 2.

Convention of notation

Given: a n-dimensional vectorspace V^n .

The elements of this vectorspace are the elements: \overrightarrow{x} , \overrightarrow{y} ,... If we choose $\overrightarrow{e_1}$, $\overrightarrow{e_2}$,..., $\overrightarrow{e_n}$ as a basis of V^n . Then we can write every vector of V^n as a linear combination of those basis vectors in only one way: $\overrightarrow{x} = x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + ... + x_n \overrightarrow{e_n}$. The numbers x_i are the coordinates of vector \overrightarrow{x} relative to the basis $\overrightarrow{e_1}$, $\overrightarrow{e_2}$,..., $\overrightarrow{e_n}$.

Between the vectorspace of dimension n and the number space of dimension n exists a isomorphism.

Vectorspace V^p

Given: a p-dimensional vectorspace V^p where the vectors are n-couples (with $n \ge p$).

- In V^p you can choose a basis with p linear independent vectors.
- 2 Every vector $\overrightarrow{x} \in V^p$ can be writed in only one way as a linear combination of the p basis vectors using coordinates.

Example 1

Given: n=5, p=2,
$$\overrightarrow{x_1} = \begin{bmatrix} 1\\0\\-1\\2\\5 \end{bmatrix}$$
, $\overrightarrow{x_2} = \begin{bmatrix} 2\\-3\\1\\0\\0 \end{bmatrix}$.

Example 1

The vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$ are linear independant, so they span a two dimensional subspace: $\overrightarrow{y} = a_1 \overrightarrow{x_1} + a_2 \overrightarrow{x_2}$ with $a_1, a_2 \in \mathbb{R}$.

The coordinates of the vector $y_1 = \begin{bmatrix} 5 \\ -6 \\ 1 \\ 2 \\ 5 \end{bmatrix}$, relative to the basis $\{\overrightarrow{x_1},\overrightarrow{x_2}\}$, are $a_1=1$ and $a_2=2$.

Example 1

The vector $\overrightarrow{y_2} = \begin{bmatrix} 5 \\ -7 \\ 1 \\ 2 \\ 5 \end{bmatrix}$ can't be writen as a linear combination of

the vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$. So y_2 doesn't belong to the subspace spanned by $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$.

This implies that $\overrightarrow{y_2}$ is linear independant of $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$. Thus the subspace spanned by $\overrightarrow{y_2}$, $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$ is a 3 dimensional subspace.

In general

When the set vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$ is linear independant, then lays $\overrightarrow{x_i}$ not totally in the subspace spanned by the vectors $\overrightarrow{x_1}, ..., \overrightarrow{x}_{i-1}, \overrightarrow{x}_{i+1}, ..., \overrightarrow{x_p}$.

The vector $\overrightarrow{x_i}$ can be writen as a sum of 2 components: $\overrightarrow{x}_{i\alpha}$ and $\overrightarrow{x}_{i\beta}$.

- $\bullet \overrightarrow{x}_{i\alpha} \ \epsilon \text{ subspace spanned by } \overrightarrow{x_1},...,\overrightarrow{x}_{i-1},\overrightarrow{x}_{i+1},...,\overrightarrow{x_p}.$
- $\overrightarrow{x}_{i\beta} \perp \text{ subspace spanned by } \overrightarrow{x_1}, ..., \overrightarrow{x}_{i-1}, \overrightarrow{x}_{i+1}, ..., \overrightarrow{x_p}.$

Defenition

The inproduct of two vectors \overrightarrow{x} and \overrightarrow{y} ϵ E^n (n-couples) is defined as the image: $E^n \times E^n \to \mathbb{R} : \{\overrightarrow{x}, \overrightarrow{y}\} \to \overrightarrow{x}. \overrightarrow{y} \in \mathbb{R}$. This image is:

Bilinear:

$$(\overrightarrow{x} + \overrightarrow{v}).\overrightarrow{y} = \overrightarrow{x}.\overrightarrow{y} + \overrightarrow{v}.\overrightarrow{y}$$

$$\overrightarrow{x} + (\overrightarrow{v}).\overrightarrow{y}) = \overrightarrow{x}.\overrightarrow{v} + \overrightarrow{x}.\overrightarrow{y}$$

$$(\overrightarrow{a}\overrightarrow{x})\overrightarrow{y} = \overrightarrow{a}(\overrightarrow{x}.\overrightarrow{y})$$

$$\overrightarrow{x}(\overrightarrow{a}\overrightarrow{y}) = \overrightarrow{a}(\overrightarrow{x}.\overrightarrow{y})$$

2 Symetric:

$$\overrightarrow{x}.\overrightarrow{y} = \overrightarrow{y}.\overrightarrow{x}$$

Positive definite:

$$\forall \overrightarrow{x} \neq \overrightarrow{0} : \overrightarrow{x} . \overrightarrow{x} > 0$$

Matricial notation

The inproduct is a **scalar**. If \overrightarrow{x} , \overrightarrow{y} and the basis ϵ E^n then can the inproduct be noted matricial:

$$\overrightarrow{x}.\overrightarrow{y} = y^t A x = x^t A y = (x_1...x_n) A \begin{pmatrix} y_1 \\ ... \\ y_n \end{pmatrix}$$

with A positive definite and symetric $(A = A^t)$.

Norm of a vector

 $\|\overrightarrow{x}\|^2 = \overrightarrow{x}.\overrightarrow{x}$ and because $\overrightarrow{x}.\overrightarrow{x} > 0$ applies:

 $\|\overrightarrow{x}\| = \sqrt{\overrightarrow{x}.\overrightarrow{x}}$ where $\|\overrightarrow{x}\|$ is called the norm of \overrightarrow{x} .

Normalizing is dividing a vector by its norm. The result is a vector

$$\begin{array}{l} \text{with norm} = \underline{1}. \\ \|\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\| = \sqrt{\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}} = \sqrt{\frac{\|\overrightarrow{x}\|^2}{\|\overrightarrow{x}\|\|\overrightarrow{x}\|}} = 1. \end{array}$$

CauchySchwarz inequality

$$\begin{array}{l} |\overrightarrow{x}.\overrightarrow{y}| \leq \|\overrightarrow{x}\| \|\overrightarrow{y}\| \text{ or } \\ -\|\overrightarrow{x}\| \|\overrightarrow{y}\| \leq \overrightarrow{x}.\overrightarrow{y} \leq \|\overrightarrow{x}\| \|\overrightarrow{y}\| \text{ from wich follows: } \\ -1 \leq \frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|} \leq 1 \end{array}$$

By defenition follows:

$$\cos(\theta) = \cos(\angle(\overrightarrow{x}, \overrightarrow{y})) = \frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|}$$

Therefor: the angle between the vectors \overrightarrow{x} and \overrightarrow{y} =

Bgcos(inproduct of $\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$ and $\frac{\overrightarrow{y}}{\|\overrightarrow{y}\|}$).

Orthogonality

$$\overrightarrow{x}$$
 and \overrightarrow{y} are orthogonal \Leftrightarrow $\theta = \angle(\overrightarrow{x}, \overrightarrow{y}) = 90^{\circ} = \frac{\Pi}{2} rad \Leftrightarrow cos(\theta) = 0 \Leftrightarrow \overrightarrow{x} \cdot \overrightarrow{y} = 0$

Hence, if
$$\overrightarrow{x}$$
, $\overrightarrow{y} \neq 0$: $\overrightarrow{x} \perp \overrightarrow{y} \Leftrightarrow \overrightarrow{x} \cdot \overrightarrow{y} = 0$.

Parallellism

$$\overrightarrow{x}\parallel\overrightarrow{y}\Leftrightarrow\theta=0^{\circ}\text{ or }180^{\circ}\Leftrightarrow\cos(\theta)=\pm1\Leftrightarrow|\overrightarrow{x}\overrightarrow{y}|=\|\overrightarrow{x}\|\|\overrightarrow{y}\|$$

Distance between two vectors

Distance
$$= \|\overrightarrow{x} - \overrightarrow{y}\| = \|\overrightarrow{z}\|$$
 with $\overrightarrow{z} = \overrightarrow{x} - \overrightarrow{y}$. $\|\overrightarrow{x} - \overrightarrow{y}\|^2 = (\overrightarrow{x} - \overrightarrow{y})(\overrightarrow{x} - \overrightarrow{y})$ $= \overrightarrow{x} \overrightarrow{x} - \overrightarrow{x} \overrightarrow{y} - \overrightarrow{y} \overrightarrow{x} + \overrightarrow{y} \overrightarrow{y}$ $= \overrightarrow{x} \overrightarrow{x} + \overrightarrow{y} \overrightarrow{y} - 2\overrightarrow{x} \overrightarrow{y}$ $= \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2 - 2\|\overrightarrow{x}\|\|\overrightarrow{y}\|\cos(\theta)$ with θ the angle between \overrightarrow{x} and \overrightarrow{y} .

Pythagorean theorem

If $\overrightarrow{x} \perp \overrightarrow{y}$ then $cos(\theta) = 0$ and thus: $\|\overrightarrow{x} - \overrightarrow{y}\|^2 = \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2$.

The 'simple' inproduct

If in the definition $\overrightarrow{x}.\overrightarrow{y} = y^tAx = x^tAy$ (with A positive definite and symetric) A=I, then the inproduct becomes the simple

inproduct:
$$\overrightarrow{x}.\overrightarrow{y} = y^t I x = x^t I y = (x_1...x_n) \begin{pmatrix} y_1 \\ ... \\ y_n \end{pmatrix} = \sum_{i=1}^n x_i y_i.$$

This simple inproduct can always be found by a basis transformation: x=Rx' and y=Ry', then $\overrightarrow{x}.\overrightarrow{y}=y'^t(R^tAR)x'$. Now, R must be taken such that $R^tAR=I$. This can be done by converting A to its normal form by a congruent transformation (e.g. the method of kwadratic forms).

In what follows we mean by 'inproduct' always 'simple inproduct'.

Making two independent vectors orthogonal

Geometric derivation:

Figure 1: decomposition of vector \overrightarrow{y} in a component parallel $(\overrightarrow{y_1})$ and a component orthogonal $(\overrightarrow{y_2})$ to \overrightarrow{x} .

Making two indepentent vectors orthogonal

- Project \overrightarrow{y} orthogonal on \overrightarrow{x} , this generates the vector $\overrightarrow{y_1}$, the component parallel with $\overrightarrow{\chi}$.
- 2 Subtract \overrightarrow{y} by $\overrightarrow{y_1}$, the result is $\overrightarrow{y_2}$ wich is orthogonal to \overrightarrow{x} .

 $\overrightarrow{y_1}$ is a specific multiple of the normilised vector \overrightarrow{x} : $\overrightarrow{y_1} = \alpha \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$. $\overrightarrow{y_1}\parallel\overrightarrow{x}\colon\overrightarrow{y_1}\overrightarrow{x}=\pm\|\overrightarrow{y_1}\|\|\overrightarrow{x}\|$ (+ if $heta\leq 90^\circ$ and - if $heta>90^\circ$).

From fig. 1: $\|\overrightarrow{y_1}\| = cos(\theta) \|\overrightarrow{y}\|$. From the inproduct: $cos(\theta) = \frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|}$. So

$$\overrightarrow{y_1}\overrightarrow{x} = \alpha \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|} \overrightarrow{x} = \alpha \|\overrightarrow{x}\| = \|\overrightarrow{y_1}\| \|\overrightarrow{x}\| = \cos(\theta) \|\overrightarrow{y}\| \|\overrightarrow{x}\| = \overrightarrow{x} \overrightarrow{y}.$$

So we get: $\alpha = \frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\|}$.

Conclusion

$$\overrightarrow{y_1} = \alpha \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|} = (\frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\|^2}) \overrightarrow{x}$$
 with $\frac{\overrightarrow{x} \overrightarrow{y}}{\|\overrightarrow{x}\|^2}$ a scalar.

And
$$\overrightarrow{y_2} = \overrightarrow{y} - \overrightarrow{y_1} = \overrightarrow{y} - (\overrightarrow{x} \overrightarrow{y})\overrightarrow{x}$$
.

Hence:

The vector \overrightarrow{y} gets orthogonalised on the vector \overrightarrow{x} by subtract \overrightarrow{y} by the component of \overrightarrow{y} parallel with \overrightarrow{x} .

Control of $\overrightarrow{y_2} \perp \overrightarrow{x}$:

$$\overrightarrow{y_2}\overrightarrow{x} = (\overrightarrow{y} - (\frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\|^2})\overrightarrow{x})\overrightarrow{x} = \overrightarrow{y}\overrightarrow{x} - (\frac{\overrightarrow{x}\overrightarrow{y}}{\|\overrightarrow{x}\|^2})\|\overrightarrow{x}\|^2 = 0.$$

Generalization to multiple vectors

Given: 3 vectors: 2 orthogonal unit vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$

 $(\|\overrightarrow{x_1}\| = 1 = \|\overrightarrow{x_2}\|, \overrightarrow{x_1}\overrightarrow{x_2} = 0)$ and a vector \overrightarrow{y} .

Asked: orthogonilise \overrightarrow{y} on $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$.

Solution:

We first search the component of \overrightarrow{y} parallel with $\overrightarrow{x_1}$ and subtract \overrightarrow{y} by this component. This gives $\overrightarrow{y_1}$.

 $\overrightarrow{y_1} = \overrightarrow{y} - (\frac{\overrightarrow{x_1} \overrightarrow{y}}{\|\overrightarrow{x_1}\|^2}) \overrightarrow{x_1} = \overrightarrow{y} - (\overrightarrow{x_1} \overrightarrow{y}) \overrightarrow{x_1} (\|\overrightarrow{x_1}\|^2 = 1)$

 $\overrightarrow{y_1} \perp \overrightarrow{x_1}$.

Generalization to multiple vectors

Next, we subtract $\overrightarrow{y_1}$ by the component of $\overrightarrow{y_1}$ that is parallel with $\overrightarrow{x_2}$, to get \overrightarrow{z} (wich is perpendicular to both $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$). $\overrightarrow{z} = \overrightarrow{y_1} - \overrightarrow{x_2}(\overrightarrow{y_1}\overrightarrow{x_2})$. We can write \overrightarrow{z} in another way: $\overrightarrow{z} = \overrightarrow{y_1} - \overrightarrow{x_2}(\overrightarrow{y_1}\overrightarrow{x_2}) = \overrightarrow{y} - (\overrightarrow{x_1}\overrightarrow{y})\overrightarrow{x_1} - \overrightarrow{x_2}([\overrightarrow{y} - (\overrightarrow{x_1}\overrightarrow{y})\overrightarrow{x_1}]\overrightarrow{x_2})$ $\overrightarrow{z} = \overrightarrow{v} - \overrightarrow{x_1}(\overrightarrow{x_1}\overrightarrow{v}) - \overrightarrow{x_2}(\overrightarrow{x_2}\overrightarrow{v})$

Conclusion

The vector \overrightarrow{y} becomes orthogonilised on two orthogonal unit vectors $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$ by subtracting \overrightarrow{y} by the components of \overrightarrow{y} parallel with $\overrightarrow{x_1}$ and $\overrightarrow{x_2}$.

Complementary subspace

Defenition

Given: a n dimensional vector space V^n , with p < n linear independent vectors $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_p}$. This vectors create a p dimensional subspace V^p and can be orthogonilised via the Gram schidt method to a orthonormal basis $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_p}$ with $\overrightarrow{e_i} \cdot \overrightarrow{e_j} = \delta_{ij}$ (with $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$).

This p vectors can be complemented by n-p linear independent vectors $\overrightarrow{f_1}$, $\overrightarrow{f_2}$, ..., $\overrightarrow{f_{n-p}}$ that are linear independent with $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_p}$ and orthonormal.

These vectors $\overrightarrow{f_1}$, $\overrightarrow{f_2}$,..., $\overrightarrow{f_{n-p}}$ generate the orthogonal complement of the subspace created by $\overrightarrow{e_1}$, $\overrightarrow{e_2}$,..., $\overrightarrow{e_p}$.

The orthogonal complement of the p-dimensional subspace V^p of V^n (p < n), has dimension n - p.

Complementary subspace

Example

Given:
$$n = 5, p = 3, \overrightarrow{e_1} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \overrightarrow{e_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 4 \\ 0 \end{bmatrix}, \overrightarrow{e_3} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Asked: The orthogonal complement

Solution: The orthogonal complement has dimension n-p=5-3=2 and consists of the set vectors that are perpendicular to the vectors $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_p}$.

$$\begin{cases} \overrightarrow{e_1} \overrightarrow{x} = 0 \\ \overrightarrow{e_2} \overrightarrow{x} = 0 \\ \overrightarrow{e_3} \overrightarrow{x} = 0 \end{cases}$$

Complementary subspace

Example

$$\begin{cases}
 \begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 \begin{bmatrix}
 1 & 0 & 0 & 4 & 0
\end{bmatrix} \overrightarrow{x} = 0 \\
 \begin{bmatrix}
 1 & 3 & 1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix}
 2 & 0 & -1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix}
 2 & 0 & 0 & 4 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix}
 3 & 1 & 0 & 0
\end{bmatrix} \overrightarrow{x} = 0$$

This is a homogenous system of equetions. The solution of this system is the orthogonal complement.

Outline

Vectors

2 Matrices

Row- and column vectors

Example

The rows of a mxn matrix A can be considered as m row vectors with n components.

$$A^{m \times n} = \begin{bmatrix} \overrightarrow{r_1} \\ \overrightarrow{r_2} \\ \dots \\ \overrightarrow{r_m} \end{bmatrix}$$

The columns of a mxn matrix A can be considered as n column vectors with m components.

$$A^{m\times n} = \begin{bmatrix} \overrightarrow{r_1} & \overrightarrow{r_2} & \dots & \overrightarrow{r_m} \end{bmatrix}$$

Column space

We consider the columns of A^{mxn} as vectors with m components and difine the vectors \overrightarrow{x} as every possible linear combination of the column vectors $\overrightarrow{k_i}$: $\overrightarrow{x} = a_1 \overrightarrow{k_1} + a_2 \overrightarrow{k_2} + ... + a_n \overrightarrow{k_n}$ with $a_i \in \mathbb{R}$ and i means the i^{th}

column of A.

The set of all the vectors \overrightarrow{x} is called the column space of A. The column space = all possible linear combinations of columns of Α.

Column space

if only r of the n vectors are linear independent, that means

- None of this r vectors can be written as a linear combination of the other r-1 vectors
- all others n r column vectors can be written as linear combinations of the r linear independant vectors

then r is called:

- 1 the rank of (column) matrix A
- 2 the dimension of the column space of matrix A

Row space

The concept row space and row rank can be derived in the same way as the column space is derived.

Rank

It is a fundamental matrix property that:

row rank A = column rank A

That means: the number linear independant columns in a matrix is equal to the number linear independant rows. Thus:

rank A = row rank A = column rank A

= dimension row space A = dimension column space A

Example

$$A^{4\times3} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ 2 & 4 & -2 \end{bmatrix} = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

We determine the rank of A by converting it to his echlon form by elementary row operations (explaned in the appendix).

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ 2 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Canonical form: the first element of every row is 1. Above and below this ones is every number 0.

Conclusion

Rank = the number of rows that differs from zero. So the rank is 2. In other words: there are only 2 linear independent rows and columns in A.

Hence:

The column space of A is a 2 dimensional subspace of the 4 dimensional vectorspace.

The row space is a 2 dimensional subspace of the 3 dimensional space.

Link between determinant and rank by square matrices

Determinant-rank

If all the columns of a square matrix are linear dependent, then the determinant is 0. If $A^{m \times m}$:

det $A=0 \Leftrightarrow rank \ A=0 \Leftrightarrow columns \ dependent.$

If det $A \neq 0$ then rank A = m and A is of **full rank**.