Name:

UID:

Problem 1.(10 = 5 + 3 + 2 points.)

1a. If X and Y are conditionally independent, then P(X,Y|Z) = P(X|Z)P(Y|Z). Show that it is equivalent to P(Y|X,Z) = P(Y|Z). Hint use product rule of probability conditioned on Z. By product rule of probability P(X,Y|Z) = P(X|Z) P(Y|X,Z) - (1)

comparing (i) and (ii) gives P(41x,2) = P(4/2)

1b What is the support of Beta distribution and Dirichlet distribution in dimension D.

Beta distribution has support in Lo

1c If in Gaussian discriminant analysis the covarince matrix Σ_c for a class c is digonal then is it equivalent to what classifier?

Maire Bayes

Problem 2.(10 points.) Let scalar $x \sim \mathcal{N}(\mu, \sigma^2)$. If we have N, I.I.D samples, then compute the MLE estimate of μ .

Let $D = \{(x_i)\}_{i=1}^N$ be the $N \in \mathcal{L}$ -D samples \mathcal{L} arg max $\log P(D) = \arg \max \log P(x_i)$ assumptions

= argmax \(\frac{1}{2}\log P(\ti)\)
= argmax \(\frac{1}{2}\log \frac{1}{2}\l = arg max $-\frac{1}{2}$ $\leq \frac{(x_i - \mu)^2}{6^2}$ = arg min $= \frac{1}{2}$ $\leq \frac{x_i - \mu}{6^2}$ $= \frac{1}{2}$ $= \frac{1}{2}$ $= \frac{1}{2}$ $= \frac{1}{2}$ $= \frac{1}{2}$

equating to Zero $\frac{1}{5(2-2)}$ (xi-M)(-1)=0