Ayudante: Román Contreras

Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.

Profesor: Rolando Gómez

 Justifica todas tus respuestas y afirmaciones. Redacta tus argumentos de la manera más clara posible, no es necesario que utilices símbolos lógicos.

Pregunta	1	2	3	4	5	6	7	8	9	10	11	Total
Puntos	0	0	0	0	0	0	0	0	0	0	0	0
Puntaje												

Nombre:María José Sánchez Ávila

Considera la cuádrica que consiste de todos los puntos (x, y) cuyas coordenadas cumplen la igualdad:

$$\frac{11X^2}{12} + \frac{\sqrt{3}XY}{6} + X\left(-\frac{2}{3} + 2\sqrt{3}\right) + \frac{3Y^2}{4} + Y\left(\frac{2\sqrt{3}}{3} + 2\right) + \frac{11}{3} = 0$$

El objetivo es simplificar la expresión anterior y deducir que tipo de curva es la cuádrica, es decir, una hipérbola, elipse, parabola, etc.

- 1. Escribe la forma cuadrática de la expresión anterior
- 2. Escribe la matríz simétrica correspondiente a la forma cuadrática
- 3. Calcula la traza y el determinante de la matríz anterior
- 4. Encuentra el polinomio característico de la matriz
- 5. Calcula los valores propios de la matriz (las raices del polinomio característico)
- 6. Encuentra dos vectores ortonormales, mismos que generan los nuevos ejes en los que la forma cuadrática no tiene término cruzado
- 7. ¿Qué ángulo forman estos nuevos ejes con respecto a los originales?
- 8. Realiza la rotación (o cambio de variables) de los nuevos ejes a los viejos y escribe la ecuación de la cuádrica en los nuevos ejes.
- 9. Encuentra una traslación apropiada en la que la ecuación de la cuádrica no tiene términos lineales. (Completa los cuadrados)
- 10. ¿Qué tipo de curva es la cuádrica? Encuentra los focos.
- 11. Dibuja la cuádrica en los viejos y nuevos ejes.