Física Quântica II

Soluções

Exercício 29: Potencial delta de Dirac em 3d - aproximação de Born

Consideramos o potencial central $V(r)=\frac{\hbar^2}{2ma}\delta(r-a)$, ou seja a partícula quântica sente apenas o seu efeito quando se encontra à superfície de uma esfera de raio a em torno da origem, sendo a energia da partícula incidente dada por $E=\frac{\hbar^2k^2}{2m}$ e em que k é o módulo do momento incidente, suposto alinhado com o eixo dos z.

a) A transformada de Fourier deste potencial é dada por

$$V(q) = \frac{\hbar^2}{2ma} \int d^3r \, e^{-i\mathbf{q}\cdot\mathbf{r}} \, \delta(r-a)$$

$$= \frac{\hbar^2}{2ma} \int_0^\infty dr \, r^2 \, \delta(r-a) \int_0^\pi d\theta \, \sin\theta \, \int_0^{2\pi} d\varphi \, e^{-iqr\cos\theta}$$

$$= \frac{\hbar^2\pi a}{m} \int_{-1}^1 d\mu \, e^{-iqa\mu}$$

$$= \frac{2\pi\hbar^2}{mq} \sin(qa), \tag{143}$$

e em que $q = 2k\sin(\theta/2)$, sendo θ o ângulo de deflexão da partícula.

Assim, temos, substituindo na expressão (93)

$$\frac{d\sigma}{d\Omega} = \frac{\sin^2(qa)}{q^2}. (144)$$

b) Integrando esta expressão sobre o ângulo sólido, obtemos para a seção eficaz total a expressão

$$\sigma = \int d\Omega \frac{d\sigma}{d\Omega} = \int_0^{\pi} d\theta \sin\theta \int_0^{2\pi} d\varphi \frac{\sin^2[2ka\sin(\theta/2)]}{4k^2\sin^2(\theta/2)}$$

$$= 2\pi \int_0^{\pi} d\theta \sin\theta \frac{\sin^2[2ka\sin(\theta/2)]}{4k^2\sin^2(\theta/2)}$$

$$= \frac{\pi}{k^2} \int_0^{\pi/2} dy \sin(2u) \frac{\sin^2(2ka\sin y)}{\sin^2 y}$$

$$= \frac{2\pi}{k^2} \int_0^{\pi/2} dy \cos y \frac{\sin^2(2ka\sin y)}{\sin y}$$

$$= \frac{2\pi}{k^2} \int_0^1 dv \frac{\sin^2(2kav)}{v}$$

$$= \frac{2\pi}{k^2} \int_0^{ka} du \frac{\sin^2(2u)}{u}, \qquad (145)$$

logo $\sigma=\pi a^2 f(ka)$, em que $f(x)=\frac{2}{x^2}\int_0^x du\,\frac{\sin^2(2u)}{u}$. Note que fizemos a substituição de variável, $y=\theta/2$ ao passar da segunda para a terceira linha de (145), a substituição $v=\sin y$ ao passar da quarta para a quinta linha desta equação, e finalmente a substituição u=kav, ao passar da quinta para a sexta linha.

Consideramos agora esta expressão no limite de altas energias, $ka\gg 1$. Pela regra de l'Hopital

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\frac{2\sin^2(2x)}{x}}{2x} = \lim_{x \to \infty} \frac{\sin^2(2x)}{x^2} = 0,$$
 (146)

 $\log \sigma \to 0$ a altas energias, como seria de esperar.

Exercício 30: Potencial delta de Dirac em 3d - tratamento por ondas parciais

Consideramos de novo o potencial central $V(r) = \frac{\hbar^2}{2ma}\delta(r-a)$. Separando a equação de Schrödinger em termos de ondas parciais, obtemos para a função radial $R_l(r)$, com momento angular l, a equação

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR_l}{dr}\right) - \frac{l(l+1)}{r^2}R_l(r) - \frac{1}{a}\delta(r-a)R_l(r) + k^2R_l(r) = 0,\tag{147}$$

em que $k^2 = \frac{2mE}{\hbar^2}$, onde E > 0 é a energia da partícula quântica.

a) Introduzindo a função $u_l(r) = rR_l(r)$, temos $\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d(u_l(r)/r)}{dr} \right) = \frac{1}{r} \frac{d^2 u_l}{dr^2}$, pelo que substituindo estes resultados na equação (147), obtemos

$$\frac{d^2u_l}{dr^2} - \frac{l(l+1)}{r^2}u_l(r) - \frac{1}{a}\delta(r-a)u_l(r) + k^2u_l(r) = 0.$$
 (148)

b) Consideramos agora a onda s, com l = 0. A equação (148) reduz-se a

$$\frac{d^2u_0}{dr^2} - \frac{1}{a}\delta(r-a)u_0(r) + k^2u_0(r) = 0.$$
 (149)

Para $r \neq a$ as soluções desta equação podem escrever-se como uma combinação linear de senos e cossenos. Dado que a função $R_0(r)$ tem que ser finita em r=0, e que $R_0(r)=u_0(r)/r$, $u_0(0)=0$, necessariamente. A continuidade da função de onda obriga igualmente a que $u_0(a^-)=u_0(a^+)$. Integrando a equação (149) entre a^- e a^+ e utilizando a continuidade de $u_0(r)$ em r=a, obtemos

$$u_0'(a^+) - u_0'(a^-) = \frac{u_0(a)}{a}. (150)$$

c) Escrevendo, à semelhança do poço de potencial considerado na aula teórica, a solução desta equação como $u_0(r) = Ce^{i\delta_0}\sin(kr)$ para r < a (a exigência de que $u_0(0) = 0$, exclui a contribuição do cosseno na expressão de $u_0(r)$ para $r \leq a$), $u_0(r) = e^{i\delta_0}\sin(kr + \delta_0)$, para $r \geq a$, que tem o comportamento assintótico adequado para $r \to \infty$, temos, da condição de continuidade para $u_0(r)$ em r = a, a relação

$$C = \frac{\sin(ka + \delta_0)}{\sin(ka)}. (151)$$

Substituindo as duas soluções acima na equação (150), obtemos a relação

$$\cos(ka + \delta_0) - \frac{\sin(ka + \delta_0)}{\sin(ka)}\cos(ka) = \frac{\sin(ka + \delta_0)}{ka},$$
(152)

onde utilizamos a expressão para C dada na equação (151). A equação (152) pode ainda escrever-se como $\sin \delta_0 = -\frac{\sin(ka+\delta_0)\sin(ka)}{ka}$, o que, após a expansão de $\sin(ka+\delta_0)$, pode ser ainda escrito como $\tan \delta_0 = -\frac{2\sin(ka)}{2ka+\sin(2ka)}$.

d) Considerando apenas a contribuição da onda s para a seção eficaz total $\sigma = \frac{4\pi}{k^2} \sin^2 \delta_0$, válida para baixas energias, e utilizando a identidade trignométrica $\sin^2 \delta_0 = \frac{\tan^2 \delta_0}{1+\tan^2 \delta_0}$, obtemos $\sigma = \pi a^2 g(ka)$, em que

$$g(ka) = \frac{4\sin^4(ka)}{(ka)^2[(ka)^2 + ka\sin(2ka) + \sin^2(ka)]}.$$

No limite de baixas energias, $ka \ll 1$, $\sin^4(ka) \approx (ka)^4$, $\sin(2ka) \approx 2ka$, $\sin^2(ka) \approx (ka)^2$, pelo que obtemos $\lim_{ka\to 0} g(ka) = 1$, e $\sigma \to \pi a^2$ neste limite.

Exercício 31: Função de onda de dois fermiões

Consideramos o átomo 4_2 He. Se ignorarmos a repulsão de Coulomb entre os dois eletrões (que pode ser tratada posteriormente como uma perturbação), pode-se construir a função de onda eletrónica como um produto de funções de onda de um único eletrão (incluindo o spin). No entanto, é preciso tomar em conta que tal função de onda deve mudar de sinal se permutarmos (r_1, σ^1) com (r_2, σ^2) , onde $r_{1,2}$ é a posição do primeiro (respectivamente, segundo) eletrão e $\sigma^{1,2}$ é a projeção do spin do primeiro (respectivamente, segundo) eletrão ao longo do eixo z.

a) Como os dois eletrões compartilham a mesma função de onda orbital $\varphi_{1s}(\boldsymbol{r}_{1,2})$, os seus spins são antiparalelos, de modo a obedecer ao princípio de exclusão de Pauli. Construímos a função de onda (não simétrica) como $\varphi_{1s}(\boldsymbol{r}_1)\,\varphi_{1s}(\boldsymbol{r}_2)\,|+\rangle_1\otimes|-\rangle_2$, onde os subscritos 1 e 2 se referem à primeira e segunda partícula, respectivamente. O operador que aplicado a este estado, produz o o estado normalizado e antissimétrico apropriado é $\sqrt{2}\,\mathcal{P}_F$, onde $\mathcal{P}_F=\frac{1}{2}(\mathbbm{1}-P_{12})$ com P_{12} sendo o operador que permuta as coordenadas e o spin dos dois eletrões

$$|\Psi_{A}^{1}\rangle = \sqrt{2} \mathcal{P}_{F} \varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{1s}(\boldsymbol{r}_{2}) | + \rangle_{1} \otimes | - \rangle_{2}$$

$$= \frac{1}{\sqrt{2}} (\varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{1s}(\boldsymbol{r}_{2}) | + \rangle_{1} \otimes | - \rangle_{2} - \varphi_{1s}(\boldsymbol{r}_{2}) \varphi_{1s}(\boldsymbol{r}_{1}) | + \rangle_{2} \otimes | - \rangle_{1})$$

$$= \frac{\varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{1s}(\boldsymbol{r}_{2})}{\sqrt{2}} (| + - \rangle_{-} | - + \rangle)$$

$$= \varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{1s}(\boldsymbol{r}_{2}) | S = 0 M_{S} = 0 \rangle,$$

onde $|S=0M_S=0\rangle=\frac{1}{\sqrt{2}}\left(|+-\rangle-|-+\rangle\right)$ é o estado singleto de dois spins 1/2.

b) Neste caso, o estado que deve ser antisimetrizado é dado explicitamente, ou seja, é o estado em que o primeiro eletrão ocupa o orbital 1s e cujo a projeção do spin ao longo do eixo z é igual a +1 (em unidades de $\hbar/2$) e em que o segundo eletrão ocupa a orbital 2s, a

projeção de seu spin ao longo do eixo z sendo igual a -1. Este estado pode ser escrito como $\varphi_{1s}(\mathbf{r}_1) \varphi_{2s}(\mathbf{r}_2) \mid + \rangle_1 \otimes \mid - \rangle_2$. Após a anti-simetrização, obtém-se o estado

$$|\Psi_{A}^{2}\rangle = \sqrt{2} \mathcal{P}_{F} \varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{2s}(\boldsymbol{r}_{2}) |+\rangle_{1} \otimes |-\rangle_{2}$$

$$= \frac{1}{\sqrt{2}} (\varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{2s}(\boldsymbol{r}_{2}) |+\rangle_{1} \otimes |-\rangle_{2} - \varphi_{1s}(\boldsymbol{r}_{2}) \varphi_{2s}(\boldsymbol{r}_{1}) |+\rangle_{2} \otimes |-\rangle_{1})$$

$$= \frac{1}{\sqrt{2}} (\varphi_{1s}(\boldsymbol{r}_{1}) \varphi_{2s}(\boldsymbol{r}_{2}) |+-\rangle - \varphi_{1s}(\boldsymbol{r}_{2}) \varphi_{2s}(\boldsymbol{r}_{1}) |-+\rangle).$$

Agora, pode-se expressar os estados $|+-\rangle$ e $|-+\rangle$ em termos do estado singleto e do estado tripleto com $M_S=0$ da seguinte forma (ver exercício 7)

$$|+-\rangle = \frac{1}{\sqrt{2}} (|S = 1 M_S = 0\rangle + |S = 0 M_S = 0\rangle),$$

 $|-+\rangle = \frac{1}{\sqrt{2}} (|S = 1 M_S = 0\rangle - |S = 0 M_S = 0\rangle).$

Substituindo este resultado na equação anterior, obtém-se para $|\Psi_A^2\rangle$, o resultado

$$\mid \Psi_A^2 \rangle = \frac{1}{\sqrt{2}} \left(\varphi_S(\boldsymbol{r}_1, \boldsymbol{r}_2) \mid S = 0 M_S = 0 \right) + \varphi_A(\boldsymbol{r}_1, \boldsymbol{r}_2) \mid S = 1 M_S = 0 \right),$$

onde as funções de onda orbital simétrica e anti-simétrica $\varphi_S(\boldsymbol{r}_1,\boldsymbol{r}_2), \varphi_A(\boldsymbol{r}_1,\boldsymbol{r}_2)$ são dadas por

$$egin{array}{lll} arphi_S(oldsymbol{r}_1,oldsymbol{r}_2) &=& rac{1}{\sqrt{2}} \left(\, arphi_{1s}(oldsymbol{r}_1) \, arphi_{2s}(oldsymbol{r}_2) + arphi_{1s}(oldsymbol{r}_2) \, arphi_{2s}(oldsymbol{r}_1) \,
ight) \ arphi_A(oldsymbol{r}_1,oldsymbol{r}_2) &=& rac{1}{\sqrt{2}} \left(\, arphi_{1s}(oldsymbol{r}_1) \, arphi_{2s}(oldsymbol{r}_2) - arphi_{1s}(oldsymbol{r}_2) \, arphi_{2s}(oldsymbol{r}_1) \,
ight). \end{array}$$

Observe que uma função de onda orbital simétrica multiplica uma função de onda de spin antisimétrica e uma função de onda orbital anti-simétrica multiplica uma função de onda de spin simétrica na expressão para $|\Psi_A^2\rangle$, tal que a função de onda global é anti-simétrica no intercâmbio de ambas as coordenadas espaciais e de spin das duas partículas. Além disso, como as funções de onda $\varphi_{1s}(\boldsymbol{r})$ e $\varphi_{2s}(\boldsymbol{r})$ são normalizados e ortogonais entre si, as duas funções de onda $\varphi_S(\boldsymbol{r}_1,\boldsymbol{r}_2)$ e $\varphi_A(\boldsymbol{r}_1,\boldsymbol{r}_2)$ também são normalizados e ortogonais entre si, como pode ser facilmente constatar calculando as integrais relevantes. Portanto, tem-se da expressão para $|\Psi_A^2\rangle$ que a densidade de probabilidade de encontrar os dois partículas nas posições \boldsymbol{r}_1 e \boldsymbol{r}_2 e com um spin total igual a 0 é dado por $|\varphi_S(\boldsymbol{r}_1,\boldsymbol{r}_2)|^2/2$. A probabilidade de encontrar as duas partículas no estado singleto, independentemente da sua posição é simplesmente a integral desta quantidade, que, dado que $\varphi_S(\boldsymbol{r}_1,\boldsymbol{r}_2)$ é normalizado, é igual a 1/2.