Metody Monte Carlo dla procesów z częściowym resetowaniem

Krzysztof Jankowski Promotor: prof. dr hab. Zbigniew Palmowski

Plan prezentacji

- Wstęp
 - Całkowite stochastyczne resetowanie (TSR)
 - Częściowe stochastyczne resetowanie (PSR)
- Definicje
- Symulacje procesów
 - Implementacja PSR
 - Symulacje Ruchu Browna
 - Symulacje dwuwymiarowego Ruchu Browna
- Podsumowanie

Czym są TSR i PSR

Rys.: Trajektoria Ruchu Browna (niebieski) kolejno (od lewej do prawej) bez mechanizmów SR, z TSR oraz PSR oraz punkt, na prostej (czerwony) w horyzoncie czasowym równym 10.

Definicje

Definicja (Ruch Browna) [1]

Niech $\{B(t)\colon t\geqslant 0\}$ jest procesem stochastycznym zdefiniowanym na kompletnej i przefiltrowanej przestrzeni probabilistycznej $\left(\Omega,\mathcal{F},\left\{\mathcal{F}_t\right\}_{\{t\geqslant 0\}},\mathbb{P}\right)$ spełniającej zwykłe warunki. Proces taki nazywamy Ruchem Browna, jeśli ma ciągłe trajektorie oraz spełnia następujące założenia

$$1^{\circ} B(0) = 0,$$

2º
$$B_{t_2}-B_{t_1},\ldots,B_{t_n}-B_{t_{n-1}}$$
 niezależne dla każdego $0\leqslant t_1\leqslant t_2\leqslant t_3\ldots\leqslant t_{n-1}\leqslant t_n,$

3°
$$B(t+s) - B(t) \sim \mathcal{N}(\mu = 0, \sigma^2 = s)$$
 dla każdych $t, s > 0$.

DEFINICJA (Jednorodny Proces Poissona)[2]

Niech $\{N_t \colon t \geqslant 0\}$ jest procesem stochastycznym zdefiniowanym na kompletnej przestrzeni probabilistycznej z filtracją $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{\{t\geqslant 0\}}, \mathbb{P})$ spełniającej zwykłe warunki. Proces ten nazywamy Jednorodnym Procesem Poissona (JPP), jeśli ma trajektorie *cádlág* i ponad to spełnia warunki

$$1^{\circ} N(0) = 0,$$

2º
$$N_{t_2} - N_{t_1}, \dots, N_{t_n} - N_{t_{n-1}}$$
 niezależne dla każdego $0 \le t_1 \le t_2 \le t_3 \dots \le t_{n-1} \le t_n$,

$$3^{\circ} N(t+s) - N(t) \stackrel{d}{=} N(s),$$

$$4^{\circ} N(t) \sim \text{Poiss}(\lambda t), \ \lambda > 0$$
 dla każdego $t, s > 0$.

[1] Patrick Billingsley. Probability and measure. 3. ed. A @Wiley-Interscience publication. Literaturverz. S. 581 - 583. New York, NY [u.a.]: Wiley, 1995. 593 pp. isbn: 9780471007104.

[2] Sheldon M. Ross. Simulation. 4th ed. Statistical Modeling and Decision Science Ser. Description based on publisher supplied metadata and other sources. San Diego: Elsevier Science & Technology, 2006. 1313 pp. isbn: 9780080517223.

Definicje

Definicja (Proces Lévy'ego z częściowym resetowaniem)^[3]

Niech $\mathbf{Y} = \{Y_t : t \ge 0\}$ jest d-wymiarowym procesem Lévy'ego oraz $\mathbf{N} = \{N_t : t \ge 0\}$ jest niezależnym od \mathbf{Y} JPP z intensywnością λ_r . \mathbf{Y} oraz \mathbf{N} są zdefiniowane na kompletnej, przefiltrowanej przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{\{t \ge 0\}}, \mathbb{P})$ spełniającej zwykłe warun-

ki. Oznaczmy za pomocą $T_j\colon j\in\mathbb{N}$ momenty wystąpienia skoków JPP. Dla $c\in(0,1)$ definiujemy proces Lévy'ego z częściowym resetowaniem następująco

$$X_t = \begin{cases} Y_t, & \text{gdy} \quad t < T_1, \\ cX_{T_n^-} + Y_t - Y_{T_n} & \text{dla} \quad t \in [T_n, T_{n+1}), \end{cases}$$

gdzie $n \in \mathbb{N}$, a $X_{T_n^-} = \lim_{t \to T_n^-} X_t$.

[3] T. Grzywny, Z. Palmowski, K. Szczypkowski, B. Trojan (2023) Stationary states for stable processes with partial resetting. Złożone do publikacji.

Algorytmy generowania wybranych procesów

```
apply_PSR <- function(xs, c, lbd, t, dt){</pre>
#Set PSR moments
steps <- HPP(t, lbd);</pre>
#Attract to the nearest points on a lattice
mask <- unique(floor(steps / dt) + 1);</pre>
ends <- c(mask -1, length(xs))[-1];
if(mask[1] != 1){
    begs <- c(1, mask);
    ends <- c(begs[2] -1, ends);}
else{
    begs <- mask;}</pre>
sr_proc <- c();</pre>
for(i in 1:length(ends)){
    sr_proc <- c(sr_proc, cumsum(xs[begs[i]:ends[i]]));</pre>
    xs[ends[i] + 1] \leftarrow xs[ends[i] + 1] + c * sr_proc[length(sr_proc)];
return(sr_proc)
```

Ruch Browna

Rys.: Wykresy 100 trajektorii Ruchu Browna (od lewej do prawej) bez SR, z mechanizmem PSR $c=0.9,\ c=0.5,\ c=0.1,$ z mechanizmem TSR.

Ruch Browna: rozkład dla T = 10

С				KS
0.0	1.004	5.979	0.0000	0.1059
0.1	0.993	5.828	0.0000	0.5360
0.5	1.359	4.851	0.0000	0.1155
0.9	4.417	3.319	0.0001	0.0003
0.95	6.539	2.974	0.9138	0.0000

Tabela: Zestawienie wariancji (Var(X)) kurtozy(κ), skośności (β) oraz p-wartości dla testu Shapiro-Wilka (SW) i Kołmogorowa-Smirnova (KS) dla różnych parametrów c oraz $\lambda_r = 1$.

Ruch Browna: rozkład dla T = 10

$\lambda_{ m r}$				KS		
c = 0.9						
0.5	6.412	3.109	0.5663	0.0131		
1	4.417	3.319	0.0001	0.0003		
2	2.637	3.241	0.0368	0.0010		
5	1.089	3.319	0.0183	0.0004		
c = 0.5						
0.5	2.540	4.637	0.0000	0.0190		
1	1.359	4.851	0.0000	0.1155		
2	0.676	4.879	0.0000	0.5556		
5	0.267	4.417	0.0000	0.3906		
c = 0						
0.5	1.926	5.812	0.0000	0.1659		
1	1.004	5.979	0.0000	0.1059		
2	0.512	6.553	0.0000	0.5805		
5	0.203	6.033	0.0000	0.0797		

Tabela: Zestawienie wariancji (Var(X)) kurtozy(κ), skośności (β) oraz p-wartości dla testu Shapiro-Wilka (SW) i Kołmogorowa-Smirnova (KS) dla różnych parametrów λ_r i ustalonych c.

Ruch Browna w przestrzeni dwuwymiarowej

Rys.: Wykresy 100 trajektorii Ruchu Browna (od lewej do prawej) bez SR, z mechanizmem PSR c = 0.9, c = 0.5, c = 0.1, z mechanizmem TSR.

Ruch Browna w przestrzeni dwuwymiarowej: rozkład w chwili T=10

Ruch Browna w przestrzeni dwuwymiarowej

Rys.: Wykresy map cieplnych (pierwsza kolumna), wykresy powierzchniowe (druga kolumna) kolejno dla (od góry do dołu): brak SR, PSR $c=0.9,\ c=0.5,\ c=0.1,\ z$ mechanizmem TSR.

Podsumowanie Wnioski: ☐ Wpływ *c* na rozkład ergodyczny \square Wpływ λ_r

Bibliografia

[1] Patrick Billingsley. Probability and measure. 3. ed. A @Wiley-Interscience publication. Literaturverz. S. 581 - 583. New York, NY [u.a.]: *Wiley*, 1995. 593 pp. *isbn:* 9780471007104.

[2] Sheldon M. Ross. Simulation. 4th ed. Statistical Modeling and Decision Science Ser. Description based on publisher supplied metadata and other sources. San Diego: Elsevier Science & Technology, 2006. 1313 pp. *isbn: 9780080517223.*

[3] T. Grzywny, Z. Palmowski, K. Szczypkowski, B. Trojan (2023) Stationary states for stable processes with partial resetting. Złożone do publikacji.

Dziękuję za uwagę!

