GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Cameron R. Wolfe*1, Jingkang Yang*2, Arindam Chowdhury3, Chen Dun1, Artun Bayer3, Santiago Segarra3, and Anastasios Kyrillidis1

¹Department of Computer Science, Rice University, Houston, TX, USA.
²School of Computer Science and Engineering, Nanyang Technology University, Singapore.
³Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.

Main Idea: We propose graph independent subnetwork training (GIST), a model-agnostic distributed training framework, to pioneer the training of ultra-wide graph convolutional network (GCN) models and reduce wall-clock time of GCN experimentation at arbitrarily large scales. GIST operates by dividing a global GCN model into several, disjoint subnetworks, training them independently, then combining their individual updates back into the global model.

Background: What is a GCN?

- Deep learning works well for Euclidean data but not all data fits this representation
 - Many applications to rely on graph-structured data (e.g., social networks, chemical molecules, etc.)
- Several deep learning techniques have been extended into the graph domain, the most popular of which is the graph convolutional network (GCN)
 - GCN is a multi-layer architecture that implements a generalization of the convolution operation on graphs
 - GCN works very well for node/graph-level classification tasks
- The GCN forward pass:

Input features: each row is a node feature vector

Takeaway: GCNs are just MLPs with intermediate "aggregation" steps between neighboring nodes

Aggregate neighboring node representations

$$\overline{H_{\ell+1}} = \sigma\left(\bar{A}H_{\ell}\Theta_{\ell}\right); \text{ where } H_0 = X \text{ and } \bar{A} = D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}}$$

Non-linearity (e.g., ReLU)

Resembles and MLP by "mixing" node representations at each layer

Normalized adjacency matrix with added self-loops

Background: General

- GCNs are the most popular algorithm for deep learning in the graph domain, but their training
 is notoriously inefficient and scales poorly with graph/model size
 - The "receptive field" of a GCN expands exponentially with the depth (most GCNs have few layers for this reason and because of "over smoothing")
 - Mini-batches (i.e., subsets of nodes in a graph) are not independent
- How do we currently tackle this inefficiency? Partition the graph into multiple sub-graphs that can be used as "mini-batches" during training
 - Neighborhood sampling: sample a subset of neighboring nodes at each GCN layer
 - E.g., FastGCN, LADIES, GraphSAGE
 - Graph partitioning: divide the graph into smaller sub-graphs for use during training
 - E.g., ClusterGCN, GraphSAINT
- The scale of GCN experimentation still lags behind that of deep learning!
 - Models are small (need more width!) and graph size is limited -- we want to fix this

Our proposal

 GIST is a novel distributed training methodology that can be used for any GCN architecture and is compatible with neighborhood/graph sampling approaches

Methodology:

- Randomly decompose global GCN into disjoint, narrow sub-GCNs of equal depth
 - Randomly sample the feature space, each sub-GCNs has the same width
- Train sub-GCNs independently and in parallel (on separate GPUs)
- Copy sub-GCN parameters into the global model (disjoint partition prevents collisions)
- Repeat until convergence
- GIST can be (optionally) combined with node partitioning to handle arbitrarily-large graphs
- Benefits: works for any GCN model, improved communication efficiency, improved training efficiency, lower wall-clock time from parallel training, ability to train "ultra-wide" models

Our proposal

Algorithm 1 GIST Algorithm

Parameters: T synchronization iterations, m sub-GCNs, ζ local iterations, c clusters, \mathcal{G} training graph.

```
\begin{split} &\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}) \leftarrow \text{randomly initialize GCN} \\ &\{\mathcal{G}_{(j)}\}_{j=1}^{c} \leftarrow \text{Cluster}(\mathcal{G},c) \\ &\textbf{for } t=0,\ldots,T-1 \textbf{ do} \\ &\left\{\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}^{(i)})\right\}_{i=1}^{m} \leftarrow \text{subGCNs}(\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}),m) \\ &\text{Distribute each } \Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}^{(i)}) \text{ to a different worker for } i=1,\ldots,m \textbf{ do} \\ &\textbf{ for } z=1,\ldots,\zeta \textbf{ do} \\ &\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}^{(i)}) \leftarrow \text{subTrain}(\boldsymbol{\Theta}^{(i)},\{\mathcal{G}_{(j)}\}_{j=1}^{c}) \\ &\textbf{ end for} \\ &\textbf{ end for} \\ &\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}) \leftarrow \text{subAgg}(\{\boldsymbol{\Theta}^{(i)}\}_{i=1}^{m}) \\ &\textbf{ end for} \end{split}
```


Small-Scale Experiments

- **Datasets:** Cora, Pubmed, Citeseer, OGBN-Arxiv
- Experimental Settings: 3-layer GCN, width 256, 400 epochs, Adam optimizer
- Baseline: identical model trained with standard, single-GPU methodology
- **Findings:** all features except the input can be split, performance is relatively robust to larger numbers of local iterations, performance is relatively robust as the number of sub-GCNs is increased, models trained with GIST often outperform single-GPU baseline models

# Sub-GCNs	d_0	d_1	d_2	Cora	Citeseer	Pubmed	OGBN-Arxiv
Baseline				81.52 ± 0.005	75.02 ± 0.018	75.90 ± 0.003	70.85 ± 0.089
2	1	1	1	80.00 ± 0.010	75.95 ± 0.007	76.68 ± 0.011	65.65 ± 0.700
	1	1	011	78.30 ± 0.011	69.34 ± 0.018	75.78 ± 0.015	65.33 ± 0.347
		~	✓	80.82 ± 0.010	75.82 ± 0.008	78.02 ± 0.007	$\textbf{70.10} \pm 0.224$
4	1	√	1	76.78 ± 0.017	70.66 ± 0.011	65.67 ± 0.044	54.21 ± 1.360
	1	1		66.56 ± 0.061	68.38 ± 0.018	68.44 ± 0.014	52.64 ± 1.988
		~	V	81.18 ± 0.007	76.21 ± 0.017	76.99 ± 0.006	68.69 ± 0.579
8	1	V	1	48.32 ± 0.087	45.42 ± 0.092	54.29 ± 0.029	40.26 ± 1.960
	1	1		53.60 ± 0.020	54.68 ± 0.030	51.44 ± 0.002	26.84 ± 7.226
		1	1	79.58 ± 0.006	75.39 ± 0.016	76.99 ± 0.006	65.81 ± 0.378

Large-Scale Experiments

- Datasets: Reddit, Amazon2M
- Experimental Settings:
 - Reddit: GraphSage and GAT architectures, width 256, 2-4 layers, 500 local iterations, partition graph into 15,000 sub-graphs (METIS), batch size 10, Adam optimizer, 80 epochs, 2-8 sub-GCNs
 - Amazon2M: GraphSAGE architecture, width 400 or 4096, 5K local iterations, partition graph into 15,000 sub-graphs (METIS), batch size of 10, Adam optimizer, 400 epochs, 2-8 sub-GCNs
- Baseline: identical model trained with standard, single-GPU methodology
- Metrics: performance is measured as (i) wall-clock time and (ii) F1 classification score

Large-Scale Experiments

• **Findings on Reddit:** GIST significantly accelerates GCN training and sometimes improves accuracy, more sub-GCNs slightly degrades accuracy but improves wall-clock time, speedup from GIST is more significant for models/datasets with larger compute requirements (e.g., GAT vs. GraphSAGE, Amazon2M vs. Reddit).

L	# Sub-GCNs	(GraphSAGI	Ξ	GAT			
		F1 Score	Time	Speedup	Fl Score	Time	Speedup	
2	Baseline	96.09	105.78s	1.00×	89.57	4289.80s	1.00×	
	2	96.40	70.29s	$1.50 \times$	90.28	2097.16s	$2.05 \times$	
	4	96.16	68.88s	$1.54 \times$	90.02	1112.33s	$3.86 \times$	
	8	95.46	76.68s	$1.38 \times$	89.01	640.44s	$6.70 \times$	
3	Baseline	96.32	118.37s	1.00×	89.25	7241.23s	1.00×	
	2	96.36	80.46s	$1.47 \times$	89.63	3432.80s	$2.11 \times$	
	4	95.76	78.74s	$1.50 \times$	88.82	1727.73s	$4.19 \times$	
	8	94.39	88.54s	$1.34 \times$	70.38	944.21s	$7.67 \times$	
4	Baseline	96.32	120.74s	1.00×	88.36	9969.13s	1.00×	
	2	96.01	91.75s	$1.32 \times$	87.97	4723.55s	$2.11 \times$	
	4	95.21	78.74s	$1.53 \times$	78.42	2376.21s	$4.21 \times$	
	8	92.75	88.71s	$1.36 \times$	66.30	1262.28s	$7.90 \times$	

Large-Scale Experiments

• **Findings on Amazon2M:** narrow models perform worse than the baseline but train much faster, a more significant speedup is observed for wide models (up to >9X), GIST performs better (relative to baseline) with wider models, baseline models take longer to achieve comparable F1 score in comparison to models trained with GIST (e.g., for L=2 and m=8, standard training takes 2.5X longer to achieve F1 score of 88.86)

L	# Sub-GCNs		$d_i = 400$		$d_i = 4096$			
		F1 Score	Time	Speedup	F1 Score	Time	Speedup	
2	Baseline	89.90	1.81hr	1.00×	91.25	5.17hr	1.00×	
	2	88.36	1.25hr	$1.45 \times$	90.70	1.70hr	$3.05 \times$	
	4	86.33	1.11hr	$1.63 \times$	89.49	1.13hr	$4.57 \times$	
	8	84.73	1.13hr	$1.61 \times$	88.86	1.11hr	$4.65 \times$	
3	Baseline	90.36	2.32hr	1.00×	91.51	9.52hr	1.00×	
	2	88.59	1.56hr	$1.49 \times$	91.12	2.12hr	$4.49 \times$	
	4	86.46	1.37hr	$1.70 \times$	89.21	1.42hr	$6.72 \times$	
	8	84.76	1.37hr	$1.69 \times$	86.97	1.34hr	$7.12 \times$	
4	Baseline	90.40	3.00hr	1.00×	91.61	14.20hr	1.00×	
	2	88.56	1.79hr	$1.68 \times$	91.02	2.77hr	$5.13 \times$	
	4	87.53	1.58hr	$1.90 \times$	89.07	1.65hr	$8.58 \times$	
	8	85.32	1.56hr	$1.93 \times$	87.53	1.55hr	$9.13 \times$	

Ultra-Wide GCN Models on Amazon2M

• **Ultra-Wide GCN findings:** GIST can train models to SOTA performance with width up to 32K (exceeds capacity of single GPU by ~8X), best performance (91.09 F1 score) is achieved by model with width 16K, standard training methodologies are very limited in model width, more sub-GCNs provide massive speedups as model width increases (e.g., 18X speedup with 2 vs. 8 sub-GCNs with 32K width when L=2), single-GPU models take longer to train cannot match F1 score of ultra-wide models trained with GIST.

L	# Sub-GCNs	F1 Score (Time)							
		$d_i = 400$	$d_i = 4096$	$d_i = 8192$	$d_i = 16384$	$d_i = 32768$			
2	Baseline	89.38 (1.81hr)	90.58 (5.17hr)	OOM	OOM	OOM			
	2	87.48 (1.25hr)	90.09 (1.70hr)	90.87 (2.76hr)	90.94 (9.31hr)	90.91 (32.31hr)			
	4	84.82 (1.11hr)	88.79 (1.13hr)	89.76 (1.49hr)	90.10 (2.24hr)	90.17 (5.16hr)			
	8	82.56 (1.13hr)	87.16 (1.11hr)	88.31 (1.20hr)	88.89 (1.39hr)	89.46 (1.76hr)			
3	Baseline	89.73 (2.32hr)	90.99 (9.52hr)	OOM	OOM	OOM			
	2	87.79 (1.56hr)	90.40 (2.12hr)	90.91 (4.87hr)	91.05 (17.7hr)	OOM			
	4	85.30 (1.37hr)	88.51 (1.42hr)	89.75 (2.07hr)	90.15 (3.44hr)	OOM			
	8	82.84 (1.37hr)	86.12 (1.34hr)	88.38 (1.37hr)	88.67 (1.88hr)	88.66 (2.56hr)			
4	Baseline	89.77 (3.00hr)	91.02 (14.20hr)	OOM	OOM	OOM			
	2	87.75 (1.79hr)	90.36 (2.77hr)	91.08 (6.92hr)	91.09 (26.44hr)	OOM			
	4	85.32 (1.58hr)	88.50 (1.65hr)	89.76 (2.36hr)	90.05 (4.93hr)	OOM			
	8	83.45 (1.56hr)	86.60 (1.55hr)	88.13 (1.61hr)	88.44 (2.30hr)	OOM			

Conclusions

- GIST is a distributed training approach for GCNs that enables exploration of larger models and datasets while minimizing the wall-clock time of experiments
 - Compatible with any GCN architecture
 - Can be easily combined with existing sampling approaches for efficient GCN training
- GIST uses a feature-wise partition of a global GCN into several sub-GCNs, which are trained independently and in parallel before having their updates aggregated
- GIST achieves remarkable speed-ups on large-scale GCN experiments and enables the training of ultra-wide GCNs that cannot be handled with standard training methodology
- GIST is a step towards exploring experimental scales comparable to deep learning within the graph ML community