Proposition 1

1)
$$\forall \theta, \alpha \in \mathbb{R}, e^{i(\theta+\alpha)} = e^{i\theta} e^{i\alpha}$$

Entropy (the second

2)
$$\forall n \in \mathbb{N}, \forall \theta \in \mathbb{R}, \left(e^{i\theta}\right)^n = e^{in\theta}$$

3)
$$\forall \, \theta \in \mathbb{R}, \left(e^{i\theta}\right)^{-1} = e^{-i\theta}$$

4)
$$\forall n \in \mathbb{Z}, \forall \theta \in \mathbb{R}, \left(e^{i\theta}\right)^n = e^{in\theta}$$

Exercice 6

Démontrer la proposition 1

Exercice 7

On pose:
$$z_1 = 2\sqrt{6} (1 + i)$$
 et $z_2 = \sqrt{2} (1 + i\sqrt{3})$.

- 1) Déterminer les formes trigonométriques et les formes exponentielles de z_1 et z_2
- 2) Déterminer la forme algébrique de $z = \frac{z_1}{z_2}$
- 3) Déterminer les formes trigonométrique et exponentielle de z
- 4) En déduire la valeur de $\cos \frac{\pi}{12}$ et de $\sin \frac{\pi}{12}$

Exercice 8

Soit z un nombre complexe de module 1 différent de 1.

- 1) Démontrer que $Z = i \frac{1+z}{1-z}$ est réel
- 2) Déterminer Z en fonction de la valeur θ de l'argument de z comprise entre 0 et 2π

Exercice 9

- 1) θ étant un nombre réel compris entre 0 et 2π , déterminer le module et l'argument du nombre complexe, $\alpha=1+\cos\theta+i\sin\theta$
- 2) Déterminer les éléments z de \mathbb{C}^* tels que z, 1+z, $\frac{1}{z}$ aient le même module.

Exercice 10

Soit $n \in \mathbb{N}^*$, $x \in \mathbb{R}$. Calculer

$$S_n = \sum_{k=0}^n \cos(kx) \text{ et } T_n = \sum_{k=0}^n \sin(kx)$$