Theorem (3.2.16). If f is a function such that f(x) is $\mathcal{O}(x)$, then f(x) is $\mathcal{O}(x^2)$.

Proof. If f(x) is $\mathcal{O}(x)$, then there exists constant witnesses C and k such that $|f(x)| \leq C|x|$, for all x > k. Clearly, $C|x| \leq C|x^2|$. Thus, $|f(x)| \leq C|x^2|$, for all x > k. It follows that f(x) is $\mathcal{O}(x^2)$.