Summaries of Various Papers Summary by Ari Feiglin (ari.feiglin@gmail.com)

\cap	n	1	Ω	n	1	C

1	Forcing	1
	1.1 Set Theory 292B: Model-Theoretic Forcing and Its Applications	1

In this document I will summarize various interesting papers I have read, in no particular order. Enjoy!

1 Forcing

1.1 Set Theory 292B: Model-Theoretic Forcing and Its Applications

Ting Zhang, ting@cs.stanford.edu

In this paper Professor Ting Zhang discusses forcing and its applications to model theory.

In this paper, our logical signature consists of \land , \lor , \neg , \exists , all other logical symbols are considered abbreviations. The diagram of a structure A is denoted $\Delta[A]$. A basic sentence is an atomic sentence or a negated atomic sentence (a "literal sentence").

1.1.1 Definition (Forcing Condition)

Let T be an \mathcal{L} -theory, a forcing condition P is a set of basic sentences. of $\mathcal{L}[A]$ where A is a set of constant symbols, such that $T \cup P$ is consistent. For $\varphi \in \mathcal{L}[A]$, we define the forcing relation $P \Vdash \varphi$ on the recursive structure of φ as follows:

- (1) if φ is atomic, then $P \Vdash \varphi \iff \varphi \in P$.
- (2) $P \Vdash \varphi \lor \psi \text{ iff } P \Vdash \varphi \text{ or } P \Vdash \psi.$
- (3) $P \Vdash \varphi \land \psi \text{ iff } P \Vdash \varphi \text{ and } P \Vdash \psi.$
- (4) $P \Vdash \neg \varphi$ iff there exists no forcing condition $Q \supseteq P$ such that $Q \Vdash \varphi$.
- (5) $P \Vdash \exists x \varphi$ iff there exists a closed term t of $\mathcal{L}[A]$ such that $P \Vdash \varphi(t)$.

If $P \Vdash \varphi$, we say P forces φ . We also define the **weak forcing relation**, where $P \Vdash^w \varphi \iff P \Vdash \neg \neg \varphi$.

Note that

$$P \Vdash^{w} \varphi \iff P \Vdash \neg \neg \varphi \iff (\forall Q \supseteq P)(Q \nVdash \neg \varphi) \iff (\forall Q \supseteq P)(\exists Q' \supseteq Q)(Q' \Vdash \varphi) \tag{1}$$

Note the following:

- (1) P cannot force both φ and $\neg \varphi$, $P \Vdash \neg \varphi$ requires that for all $Q \supseteq P$ (including P), $Q \nvDash \varphi$.
- (2) If $P \Vdash \varphi$ then $Q \Vdash \varphi$ for $Q \supseteq \varphi$ (proven by induction on φ).
- (3) If $P \Vdash \varphi$ then $P \Vdash^w \varphi$, which is direct from equivalence (1) and point (2) by taking Q' = Q.
- (4) If $P \Vdash^w \neg \varphi$ then $P \Vdash \neg \varphi$, since if $P \Vdash^w \neg \varphi$ then $(\forall Q \supseteq P)(\exists Q' \supseteq Q)(\forall Q'' \supseteq Q')(Q'' \not\Vdash \varphi)$. Now suppose P didn't force $\neg \varphi$, then that would mean there exists a $Q \supseteq P$ which forces φ . But this obviously contradicts the assumption.
- (5) $P \Vdash^w \neg \neg \varphi \iff P \Vdash^w \varphi$. This can be seen quite easily by looking at equivalence (1).
- If $P \Vdash \varphi$ and φ is a literal, then $P \cup \{\varphi\}$ is a forcing condition for T. The only interesting case is with $\neg \varphi$ where φ is an atomic sentence. Since $P \Vdash \neg \varphi$, $P \cup \{\varphi\}$ cannot be a forcing condition and so it is not consistent with T. Since $T \cup P$ is consistent, this means that $T \cup P \cup \{\neg \varphi\}$ is consistent.

1.1.2 Definition

Let P be a forcing condition on T, then we denote T[P] the set of all \mathcal{L} -sentences forced by P. Similarly $T^f[P]$ is the set of all sentences weakly forced by P. Denote $T^f=T^f[\varnothing]$ and call it the forcing companion of T. If $T \equiv T^f$, then T is considered forcing complete.

Write $P \Vdash_A \varphi$ if P forces φ in $\mathcal{L}[A]$. Furthermore write $P = P(\bar{a})$ and $\varphi = \varphi(\bar{a})$ to mean that P is a forcing condition in $\mathcal{L}[A]$ and φ is a $\mathcal{L}[A]$ -sentence, where \bar{a} denotes all the constants not in \mathcal{L} but occur in either P or φ .

1.1.3 Lemma

Let $P = P(\bar{a})$ be a condition of T in $\mathcal{L}[A]$ and $\varphi = \varphi(\bar{a})$ be a sentence of $\mathcal{L}[A]$ weakly forced by P (\bar{a} are constants not in \mathcal{L}). Then for any closed terms \bar{t} , if $P(\bar{t})$ is a condition for T, then $P(\bar{t}) \Vdash^w \varphi(\bar{t})$.

1.1.4 Lemma

Let φ be an \mathcal{L} -sentence, then $T^f[P] \models \varphi$ implies $\varphi \in T^f[P]$. In particular, both $T^f[P]$ and T[P] are consistent.

Proof: by completeness, it is sufficient to prove this for $T^f[P] \vdash \varphi$. We induct on the length of the proof that if $T^f[P] \vdash \varphi(\bar{x})$ then $\varphi(\bar{t}) \in T^f[P]$ for all sequence of closed terms of $\mathcal{L}[A]$. Let us skip the proof for logical axioms, as these are routine and tedious.

Now consider modus ponens, so $T^f[P] \vdash \varphi(\bar{x}) \to \psi(\bar{x}), \varphi(\bar{x})$ and so $\varphi(\bar{t}) \to \psi(\bar{t}), \varphi(\bar{t}) \in T^f[P]$ (we can assume the same sequence of closed terms since we can extend the set of variables to be shared). Thus we have

$$(\forall Q \supseteq P)(\exists Q' \supseteq Q) \ (Q' \Vdash \neg \varphi(\bar{t}) \text{ or } Q' \Vdash \psi(\bar{t}))$$
$$(\forall Q \supseteq P)(\exists Q' \supseteq Q) \ (Q' \Vdash \varphi(\bar{t}))$$

We claim that $P \Vdash^w \psi(\bar{t})$, so let us suppose otherwise. Let $Q \supseteq P$ then by the first equivalence there exist $Q' \supseteq P$ such that $Q' \Vdash \neg \varphi(\overline{t})$, but then by the second equivalence there exists a $Q'' \supseteq Q'$ such that $Q'' \Vdash \varphi(\overline{t})$. By monotonocity, we also have $Q'' \Vdash \neg \varphi(\bar{t})$ in contradiction.

Now consider generalization, so $\varphi(\bar{t}) \in T^f[P]$ and suppose $P \nvDash^w \forall \bar{x} \varphi(\bar{x}) = \neg \exists \bar{x} \neg \varphi(\bar{x})$. By definition, we get that

$$(\exists Q \supseteq P)(\exists \bar{t})(\forall Q' \supseteq Q)(Q' \nVdash \varphi(\bar{t}))$$

and since $P \Vdash^w \varphi(\bar{t})$, we get

$$(\forall \bar{t})(\forall Q \supseteq P)(\exists Q' \supseteq Q)(Q' \Vdash \varphi(\bar{t}))$$

and these obviously form a contradiction.

Recall that for a structure \mathcal{A} , the following are equivalent:

- (1) $\Delta[A] \cup T$ is consistent,
- (2) \mathcal{A} can be embedded into a T-model,
- (3) Every finite $P \subseteq \Delta[A]$ is a condition for T.
- $(1) \iff (3)$ is trivial.

1.1.5 Lemma

Let \mathcal{A} be a structure such that $\Delta[\mathcal{A}] \cup T$ is consistent, then for all existential formulas $\varphi(\bar{x})$ and closed terms \bar{t} of $\mathcal{L}[\mathcal{A}]$,

$$\mathcal{A} \vDash \varphi(\bar{t}) \iff P \Vdash \varphi(\bar{t}) \text{ for some finite } P \subseteq \Delta[\mathcal{A}]$$

By existential formula, we mean a formula in the form

$$\exists \bar{x}\varphi$$

where φ is a CNF (or DNF).

Proof: only \implies is shown. We prove this by induction on the structure of φ :

- (1) For $\varphi(\bar{x})$ literal, we let $P = {\varphi(\bar{t})}$ (since $A \models \varphi(\bar{t}), P \subseteq \Delta[A]$ and by definition $P \Vdash \varphi(\bar{t})$).
- (2) For $\varphi(\bar{t}) = \varphi_1(\bar{t}) \vee \varphi_2(\bar{t})$, wlog $A \vDash \varphi_1(\bar{t})$ and so $P \Vdash \varphi_1(\bar{t})$ and thus $P \Vdash \varphi(\bar{t})$.
- (3) For $\varphi(\bar{t}) = \varphi_1(\bar{t}) \wedge \varphi_2(\bar{t})$, we have $\mathcal{A} \models \varphi_1(\bar{t}), \varphi_2(\bar{t})$. Thus there exists finite $P, Q \subseteq \Delta[\mathcal{A}]$ such that $P \Vdash \varphi_1(\bar{t})$ and $Q \Vdash \varphi_2(\bar{t})$. Then $P \cup Q \subseteq \Delta[A]$ is also finite and by monotonicity, $P \cup Q \Vdash \varphi_1(\bar{t}), \varphi_2(\bar{t})$ and so $P \cup Q \Vdash \varphi(\bar{t})$.
- (4) For $\varphi(\bar{t}) = \exists \bar{x} \psi(\bar{x}, \bar{t})$, then $A \vDash \psi(\bar{s}, \bar{t})$ for some closed terms \bar{s} of $\mathcal{L}[A]$. Thus $P \Vdash \psi(\bar{s}, \bar{t})$ for some finite $P \subseteq \Delta[\mathcal{A}]$, and so $P \Vdash \exists \bar{x} \psi(\bar{x}, \bar{t})$.

1.1.6 Lemma

Let φ be a universal sentence of $\mathcal{L}[\mathcal{A}]$, then for all conditions $P, P \Vdash \varphi$ if and only if $T \cup P \vDash \varphi$.

Proof: φ is universal iff it is of the form $\varphi = \neg \psi$ for ψ existential. So it is sufficient to show that $P \Vdash \neg \varphi$ iff $T \cup P \vDash \neg \varphi$ for φ existential. Let \mathcal{A} model $T \cup P$ and so surely $P \subseteq \Delta[\mathcal{A}]$. If $P \Vdash \neg \varphi$, for every $Q \supseteq P$ we have $Q \nvDash \varphi$ and in particular for every $Q \subseteq \Delta[A]$ it cannot be that $Q \Vdash \varphi$ (as then $Q \cup P \Vdash \varphi$). So by the above lemma, we have that $\mathcal{A} \nvDash \varphi$ so $\mathcal{A} \vDash \neg \varphi$, meaning $T \cup P \vDash \varphi$ as required. And if $\mathcal{A} \vDash \neg \varphi$ then $\mathcal{A} \nvDash \varphi$, so for any finite $Q \subseteq \Delta[\mathcal{A}]$, $Q \nvDash \varphi$. In particular for every $Q \supseteq P$, $Q \nvDash \varphi$ and so $P \Vdash \neg \varphi$.

Let T be a theory, its universal part denoted T_{\forall} is all universal sentences consequent of T.

1.1.7 Lemma

Let P be a finite set of basic sentences of $\mathcal{L}[A]$. P is a forcing condition for T iff P is a forcing condition for T_{\forall} . And for all $\mathcal{L}[\mathcal{A}]$ -sentences φ , $P \Vdash \varphi$ in T if and only if $P \Vdash \varphi$ in T_{\forall} . That is, $T[P] = T_{\forall}[P]$ and moreso $T^f[P] = T_{\forall}^f[P]$.

Proof: if P is consistent with T, it must be consistent with T_{\forall} . So suppose P is consistent with T_{\forall} , and suppose it is not consistent with T. Let $\varphi(\bar{a}) = \bigwedge P$ where \bar{a} are constants not in \mathcal{L} , then $T \vDash \neg \varphi(\bar{a})$ and since \bar{a} doesn't occur in $T, T \vDash \forall \bar{x} \neg \varphi(\bar{x})$. Thus $\forall \bar{x} \neg \varphi(\bar{x}) \in T_{\forall}$ so $T_{\forall} \vDash \neg \varphi(\bar{a})$ which contradicts T_{\forall} being consistent with P. Since the forcing relation is totally determined by the forcing conditions, the rest follows immediately.

1.1.8 Lemma

Let $P(\bar{a})$ be a finite forcing condition in $\mathcal{L}[\mathcal{A}]$, and $\varphi(\bar{a})$ a sentence of $\mathcal{L}[\mathcal{A}]$ (where \bar{a} lists constants not in \mathcal{L}). Let $P(\bar{x}), \varphi(\bar{x})$ be the results of substituting \bar{a} with the variables \bar{x} . If $P(\bar{a}) \Vdash \varphi(\bar{a})$, then

$$\forall \bar{x} \Big(\bigwedge P(\bar{x}) \to \varphi(\bar{x}) \Big) \in T^f$$

Proof: we need to show that

$$\varnothing \Vdash^w \neg \exists \bar{x} \neg \Big(\neg \bigwedge P(\bar{x}) \lor \varphi(\bar{x}) \Big)$$

Since $P \Vdash \neg \varphi \iff P \Vdash^w \neg \varphi$, we shall show this for \Vdash in place of \Vdash^w . Suppose not, then there exists a condition Q and a set of closed terms \bar{t} such that

$$Q \Vdash \neg \left(\neg \bigwedge P(\bar{t}) \lor \varphi(\bar{t})\right)$$

This means that for all $Q' \supseteq Q$:

$$Q' \nVdash \neg \bigwedge P(\bar{t})$$
 and $Q' \nVdash \varphi(\bar{t})$

This means there exists a $Q'' \supseteq Q'$ such that $Q'' \Vdash \bigwedge P(\bar{t})$. Since $\bigwedge P(\bar{t})$ is universal (as it is quantifier-free), by a previous lemma this means $T \cup Q'' \models \bigwedge P(\bar{t})$. In particular $P(\bar{t}) \cup Q''$ is a condition for T. Since $P(\bar{a}) \Vdash \varphi(\bar{a})$ we have $P(\bar{t}) \Vdash \varphi(\bar{t})$ by a previous lemma (this seems like a mistake, it should be \Vdash^w , but the proof requires normal forcing...). Thus $Q \subseteq P(\bar{t}) \cup Q'' \Vdash \varphi(\bar{t})$, which is a contradiction.

1.1.9 Definition

Let $\mathcal{L}[A]$ be a countable language, T a \mathcal{L} -theory, and $\mathbb{P} = \{P_i\}_{i < \omega}$ a sequence of finite forcing conditions on T. \mathbb{P} is called T-generic if

- (1) for any atomic sentence φ , exactly one of φ , $\neg \varphi$ is in $\bigcup \mathbb{P}$,
- (2) for any $\mathcal{L}[\mathcal{A}]$ -sentence φ , exactly one of φ , $\neg \varphi$ is forced by some $P \in \mathbb{P}$.

1.1.10 Theorem

If $\mathcal{L}[A]$ is countable, then for every consistent \mathcal{L} -theory T there exists a T-generic sequence \mathbb{P} .

Proof: since $\mathcal{L}[A]$ is countable, we can enumerate its sentences by $\varphi_0, \varphi_1, \ldots$ Let $P_0 = \emptyset$ and assuming P_i is constructed we define P_i as follows: if $P_i \Vdash \neg \varphi_i$, then define

$$P_{i+1} = \begin{cases} P_i \cup \{\neg \varphi_i\} & \text{if } \varphi_i \text{ is atomic} \\ P_i & \text{else} \end{cases}$$

Otherwise $P_i \nVdash \neg \varphi_i$ so there exists a $Q \supseteq P_i$ such that $Q \vDash \varphi_i$, so set $P_{i+1} = Q$. Then let $\mathbb{P} = \{P_i\}_{i < \omega}$, this is an increasing sequence of conditions and so it is T-generic (since if $P_i \Vdash \varphi$ and $P_j \Vdash \neg \varphi$ then since \mathbb{P} is increasing, one is contained in the other, so one forces both φ and $\neg \varphi$ in contradiction).

1.1.11 Definition

Let \mathcal{A} be a \mathcal{L} -structure, then \mathcal{A} is T-generic if the following two conditions hold:

- (1) $T \cup \Delta[A]$ is consistent,
- (2) For every $\mathcal{L}[\mathcal{A}]$ -sentence φ , $\mathcal{A} \vDash \varphi$ iff there exists a finite $P \subseteq \Delta[\mathcal{A}]$ which forces φ .

1.1.12 Theorem

Let \mathcal{L} be countable, then for every T-generic sequence \mathbb{P} , there exists a countable T-generic structure \mathcal{A} such that $\Delta[\mathcal{A}] = \bigcup \mathbb{P}$.

Proof: let \mathcal{A} be the canonical term model over $\bigcup \mathbb{P}$, then we have that $\Delta[\mathcal{A}] = \bigcup \mathbb{P}$. Now, $T \cup \Delta[\mathcal{A}]$ is consistent because every finite $P \subseteq \Delta[\mathcal{A}]$ is a subset of some $P' \in \mathbb{P}$ and $T \cup P'$ is consistent. Furthermore to show that $\mathcal{A} \vDash \varphi \iff P \Vdash \varphi$ for some finite $P \subseteq \Delta[\mathcal{A}]$ it is sufficient to take some $P_i \in \mathbb{P}$. We prove this by induction.

- (1) For basic sentences φ , $\mathcal{A} \vDash \varphi$ iff $\varphi \in \Delta[\mathcal{A}] = \bigcup \mathbb{P}$ iff there exists some $P_i \in \mathbb{P}$ which contains, and thus forces, φ .
- (2) For \vee , \wedge the step is trivial.
- (3) $\mathcal{A} \vDash \exists \bar{x} \varphi(\bar{x}, \bar{a})$ if and only if there exists closed $\mathcal{L}[A]$ -terms \bar{t} such that $\mathcal{A} \vDash \varphi(\bar{t}, \bar{a})$ which by induction means $P_i \vDash \varphi(\bar{t}, \bar{a})$ for some $P_i \in \mathbb{P}$ and then $P_i \vDash \exists \bar{x} \varphi(\bar{x}, \bar{a})$.
- (4) $A \vDash \neg \varphi$ iff $A \nvDash \varphi$ iff $P_i \nvDash \varphi$ for all $P_i \in \mathbb{P}$ iff $P_i \Vdash \neg \varphi$ for some $P_i \in \mathbb{P}$ (since \mathbb{P} is generic).

Conversely, if \mathcal{A} is a countable T-generic structure, then the set of finite subsets of $\Delta[\mathcal{A}]$ is a T-generic sequence. The following is immediate from the previous proof and this comment:

1.1.13 Corollary

A countable \mathcal{L} -structure \mathcal{A} is T-generic iff there exists a T-generic sequence \mathbb{P} such that $\Delta[\mathcal{A}] = \bigcup \mathbb{P}$.

1.1.14 Lemma

Any T-generic structure is a model of the forcing companion of T, T^f .

Proof: suppose $\varphi \in T^f$, then $\varnothing \Vdash \neg \neg \varphi$, and $\varnothing \subseteq \Delta[\mathcal{A}]$ is finite, so $\mathcal{A} \vDash \varphi$.

1.1.15 Definition

A first-order theory T is **model-complete** if every embedding betwee T-models is elementary.

1.1.16 Theorem

T is model-complete iff every formula is equivalent to an existential formula modulo T.

1.1.17 Lemma

T is model-complete iff for any T-model \mathcal{A} , $T \cup \Delta[\mathcal{A}]$ is complete in $\mathcal{L}[\mathcal{A}]$.

Proof: if T is model complete, let $A \models T$. Now suppose $B \models T \cup \Delta[A]$, so B is a T-model which A is embeddable in, meaning $\mathcal{A} \equiv \mathcal{B}$ in $\mathcal{L}[\mathcal{A}]$. Thus all models of $T \cup \Delta[\mathcal{A}]$ are elementarily equivalent, meaning $T \cup \Delta[\mathcal{A}]$ is complete. And conversely if $T \cup \Delta[\mathcal{A}]$ is complete, suppose \mathcal{A} is embeddable into a T-model \mathcal{B} , so $\mathcal{B} \models T \cup \Delta[\mathcal{A}]$, then $\mathcal{A} \equiv \mathcal{B}$ in $\mathcal{L}[\mathcal{A}]$. And this means that the embedding from \mathcal{A} to \mathcal{B} is elementary.

1.1.18 Definition

Let T, T^* be two \mathcal{L} -theories with $T \subseteq T^*$. We say that T^* is the model completion of T if for any T-model \mathcal{A} , $T^* \cup \Delta[\mathcal{A}]$ is complete in $\mathcal{L}[\mathcal{A}]$.

Note the following:

- (1) If T^* is the model completion of T, then any model of T can be embedded into a model of T^* . This is because $T^* \cup \Delta[\mathcal{A}]$ is consistent, and thus there is a T^* -model in which \mathcal{A} is embeddable.
- (2) If T^* is the model completion of T, T^* is model-complete. This is because a model of T^* is a model of T (since $T \subseteq T^*$) and so $T^* \cup \Delta[A]$ is complete.
- (3) If T is model complete, then T is its own model completion. This is direct from the previous lemma.
- (4) If T_1^*, T_2^* are two model completions of T then they are logically equivalent. This will be proven in more depth later.

1.1.19 Theorem

A T^f -model \mathcal{A} is T-generic iff $T^f \cup \Delta[\mathcal{A}]$ is complete.

Proof: (\Longrightarrow) suppose $\mathcal{A} \models T^f$ is T-generic. Then let $\mathcal{A} \models \varphi$ for $\varphi \in \mathcal{L}[\mathcal{A}]$, then by definition there exists a finite $P \subseteq \Delta[\mathcal{A}]$ such that $P \Vdash \varphi$. Let $P = P(\bar{a})$ and $\varphi = \varphi(\bar{a})$ where \bar{a} lists constants not in \mathcal{L} , then by lemma 1.1.8 we have that $\forall \bar{x} (\bigwedge P(\bar{x}) \to \varphi(\bar{x}))$ is in T^f . Thus $T^f \models \bigwedge P(\bar{a}) \to \varphi(\bar{a})$. Since $\Delta[\mathcal{A}] \models \bigwedge P(\bar{a})$, we have $T^f \cup \Delta[\mathcal{A}] \models \varphi(\bar{a})$, so it is complete (since every φ is either satisfied or its negation is by \mathcal{A}).

 (\Leftarrow) suppose that $T^f \cup \Delta[\mathcal{A}]$ is complete, then we must show the following:

- (1) $T \cup \Delta[A]$ is consistent: this will be proven in more generality later.
- (2) $A \vDash \varphi$ iff $P \Vdash \varphi$ for some finite $P \subseteq \Delta[A]$. Since we have already proven this for existential φ by induction, it is sufficient to induct on the case that φ is negated: $\varphi = \neg \psi$. Suppose $\mathcal{A} \vDash \neg \psi$, then by completeness $T^f \cup \Delta[\mathcal{A}] \models \neg \psi$. Then by compactness there exists a finite $P \subseteq \Delta[\mathcal{A}]$ such that $T^f \cup P \vDash \neg \psi$, we claim that $P \Vdash \neg \psi$. Otherwise, there exists a $Q \supseteq P$ such that $Q \Vdash \psi$, and so

$$T^f \vDash \forall \bar{x} \Big(\bigwedge Q(\bar{x}) \to \psi(\bar{x}) \Big)$$

Then

$$T^f[Q] \vDash \forall \bar{x} \Big(\bigwedge Q(\bar{x}) \to \psi(\bar{x}) \Big)$$

and since $T^f[Q] \models \bigwedge Q(\bar{a})$, we have that $T^f[Q] \models \psi(\bar{a})$. But $T^f \cup P \subseteq T^f[P] \subseteq T^f[Q]$ and so by completeness, $T^f \cup P \models \psi(\bar{a})$, in contradiction.

Now conversely, suppose $P \Vdash \varphi$ for some finite $P \subseteq \Delta[\mathcal{A}]$, then for any $Q \supseteq P$, $Q \nvDash \psi$. We then claim there is no $Q \subseteq \Delta[\mathcal{A}]$ which forces ψ . As otherwise by montonocity $P \cup Q$ would force ψ . So by induction $\mathcal{A} \nvDash \psi$, meaning $\mathcal{A} \vDash \neg \psi$ as required.

An immediate consequence of this theorem is

1.1.20 Corollary

 T^f is model-complete iff every one of its models is T-generic.

1.1.21 Definition

Call a class of structures K inductive if it is closed under union of chains.

1.1.22 Theorem

The class of T-generic structures is inductive.

Proof: let $\{\mathcal{A}_{\alpha}\}_{\alpha<\lambda}$ be an increasing chain of T-generic structures, where λ is a limit ordinal. We know that every T-generic structure is a model of T^f , and so $T^f \cup \Delta[\mathcal{A}_{\alpha}]$ is complete in $\mathcal{L}[\mathcal{A}_{\alpha}]$. Since $\mathcal{A}_{\alpha+1} \models T^f \cup \Delta[\mathcal{A}_{\alpha}]$ as $\mathcal{A}_{\alpha} \subseteq \mathcal{A}_{\alpha+1}$, we have that $\mathcal{A}_{\alpha} \equiv \mathcal{A}_{\alpha+1}$ in $\mathcal{L}[\mathcal{A}_{\alpha}]$, meaning $\mathcal{A}_{\alpha} \preceq \mathcal{A}_{\alpha+1}$. By Tarski's elementary chain lemma, this means that $\mathcal{A}_{\alpha} \preceq \bigcup_{\alpha<\lambda} \mathcal{A}_{\alpha} = \mathcal{A}$. Since every finite subset of $\Delta[\mathcal{A}]$ contains symbols entirely from some \mathcal{A}_{α} , $T \cup \Delta[\mathcal{A}]$ is consistent (take a finite subset, it is contained in $T \cup \Delta[\mathcal{A}_{\alpha}]$ which is consistent). Let φ be a sentence of $\mathcal{L}[\mathcal{A}]$, then since there are only finitely many constant symbols in φ , it is a sentence of some $\mathcal{L}[\mathcal{A}_{\alpha}]$. Then

$$\mathcal{A} \vDash \varphi \iff \mathcal{A}_{\alpha} \vDash \varphi \iff P \Vdash \varphi \text{ for some finite } P \subseteq \Delta[\mathcal{A}_{\alpha}]$$

now, $P \subseteq \Delta[\mathcal{A}]$ as well. And if such a P exists, then it has only finitely many symbols in \mathcal{A} , so it is in $\Delta[\mathcal{A}_{\alpha}]$.

1.1.23 Definition

Let T_1, T_2 be first-order theories. T_1 is **model-consistent** with T_2 if every T_2 -model can be embedded into a T_1 -model. If T_1 is model-consistent with T_2 and T_2 is model-consistent with T_1 , then T_1 and T_2 are **mutually model-consistent**.

1.1.24 Lemma

 T_1 is model-consistent with T_2 iff $(T_1)_{\forall} \subseteq (T_2)_{\forall}$. In particular they are mutually model-consistent if $(T_1)_{\forall} = (T_2)_{\forall}$.

Proof: recall that $\mathcal{A} \models T_{\forall}$ iff \mathcal{A} can be embedded into a T-model. Thus T_1 is model-consistent with T_2 if $\mathcal{A} \models T_2 \implies \mathcal{A} \models (T_1)_{\forall}$, which is equivalent to $T_2 \models (T_1)_{\forall}$. In turn this is equivalent to $T_2 \models (T_2)_{\forall}$, as required.

1.1.25 Lemma

 T^f is model-consistent with T for any theory.

Proof: let $\varphi \in (T^f)_{\forall}$, by lemma 1.1.4, we have that $\varphi \in T^f$, i.e. $\varnothing \Vdash \varphi$, and by lemma 1.1.6 $T \vDash \varphi$ and so $\varphi \in T_{\forall}$ as required.

1.1.26 Lemma

For any theory T, $T_{\forall \exists} \subseteq T^f$, in particular $T_{\forall} \subseteq (T^f)_{\forall}$.

Proof: let $\varphi \in T_{\forall \exists}$, so $\varphi = \neg \exists \bar{x} \neg \psi(\bar{x})$ where $\psi(\bar{x})$ is existential. Now suppose $\varphi \notin T^f$, meaning $\varnothing \nvDash \varphi$ so there exists a condition $P \Vdash \exists \bar{x} \neg \psi(\bar{x})$. So there are closed $\mathcal{L}[A]$ -terms \bar{t} such that $P \Vdash \neg \psi(\bar{t})$. Since $\neg \psi(\bar{t})$ is universal, by lemma 1.1.6, $T \cup P \vDash \neg \psi(\bar{t})$. But this contradicts $T \vDash \forall \bar{x} \psi(\bar{x})$.

Note that a \forall -formula is a $\forall \exists$ -formula, so $T_{\forall} \subseteq T^f$ and thus $T_{\forall} \subseteq (T^f)_{\forall}$.

As a direct consequence of the previous lemma:

1.1.27 Corollary

If T is a $\forall \exists$ -theory, then $T \subseteq T^f$ (so T^f is the forcing completion of T).

And as a direct consequence of the previous two lemmas, we have

1.1.28 Theorem

T and T^f are mutually model-consistent.

1.1.29 Corollary

Let T_1, T_2 be two first-order theories. Then they are mutually model-consistent if and only if $T_1^f = T_2^f$.

Proof: (\Longrightarrow) if T_1 and T_2 are mutually model-consistent then $(T_1)_{\forall} = (T_2)_{\forall}$. By lemma 1.1.7 $T_{\forall}^f = T^f$ so

$$T_1^f = ((T_1)_{\forall})^f = ((T_2)_{\forall})^f = T_2^f$$

as required. (\Leftarrow) by the above theorem we have $T_{\forall} = (T^f)_{\forall}$. So

$$(T_1)_{\forall} = (T_1^f)_{\forall} = (T_2^f)_{\forall} = (T_2)_{\forall}$$

as required.

1.1.30 Corollary

Let T_1 and T_2 be two mutually model-consistent theories. Then a structure \mathcal{A} is T_1 -generic iff it is T_2 generic.

Proof: by lemma 1.1.7, a condition for T is a condition for T_{\forall} . So P is a condition for T_1 iff it is a condition for $(T_1)_{\forall} = (T_2)_{\forall}$ iff it is a condition for T_2 . So $\Delta[\mathcal{A}]$ is consistent with T_1 (i.e. a condition) iff it is consistent with T_2 , this proves the first condition. And for any condition $P, P \Vdash \varphi$ for T_1 iff $P \Vdash \varphi$ for $(T_1)_{\forall} = (T_2)_{\forall}$ iff $P \Vdash \varphi$ for T_2 . So if \mathcal{A} is T_1 -generic then $\mathcal{A} \vDash \varphi$ iff $P \Vdash \varphi$ for T_1 for some finite $P \subseteq \Delta[\mathcal{A}]$ iff $P \Vdash \varphi$ for T_2 . Meaning A is T_2 -generic.

1.1.31 Definition

If T is an \mathcal{L} -theory, a \mathcal{L} -theory T' is T's model companion if

- (1) T and T' are mutually model-consistent.
- (2) T' is model complete.

Recall that if T^* is the model completion of T, then it is model complete and every model of T can be embedded into a model of T^* . Since T^* is an extension of T, every model of T^* is a model of T and thus can be trivially embedded into itself. So T and T^* are mutually model-consistent. Thus a model completion is a model companion.

1.1.32 Theorem

If T_1, T_2 are model companions of T then they are logically equivalent. In particular two model completions of T are logically equivalent.

Proof: we will show that a model of T_1 is a model of T_2 . Let $A_0 \models T_1$ be a T_1 -model. Then since T_1, T_2 ar mutually model-consistent, it can be embedded into a T_2 -model, which can be embedded into a T_1 -model, and so on. So we get a chain

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$$

where $A_{2i} \models T_1$ and $A_{2i+1} \models T_2$. Since T_1 and T_2 are both model complete,

$$A_0 \subseteq A_2 \subseteq A_4 \subseteq \cdots, \qquad A_1 \subseteq A_3 \subseteq A_5 \subseteq \cdots$$

are both elementary chains, and so

$$\mathcal{A} = \bigcup_{i < \omega} \mathcal{A}_i = \bigcup_{2i < \omega} \mathcal{A}_{2i} = \bigcup_{2i+1 < \omega} \mathcal{A}_{2i+1}$$

is an elementary extension of A_i by the Tarski chain theorem. So $A \models T_2$ since $A_1 \models T_2$, and since $A_0 \equiv A$, we have $A_0 \models T_2$ as required.

1.1.33 Corollary

If a theory T has a model companion T', then T' and T^f are logically equivalent.

Proof: since T' is model-complete, by theorem 1.1.16 it is equivalent to a set of existential sentences. Thus it is a $\forall \exists$ -theory, and so $T' \subseteq (T')^f$ by corollary 1.1.27. Since T and T' are by definition mutually model-consistent, $(T')^f = T^f$, so $T' \subseteq T^f$. Since T^f is a superset of a model-complete theory, it too is therefore model-complete. Thus T and T^f are mutually model-complete and T^f is model-complete, so T^f is T's model companion. By the previous theorem, T' and T^f are therefore logically equivalent.

1.1.34 Theorem

A theory T is model-complete iff every model of T is T-generic.

Proof: (\Longrightarrow) if T is model-complete it is its own model companion. So T and T^f are logically equivalent, so by corollary 1.1.20 every model of T is T-generic.

(\Leftarrow) if every T-model is T-generic, then every model of T models T^f by lemma 1.1.14. So by theorem 1.1.19 for every T-model \mathcal{A} , it is a T^f -model and so $T^f \cup \Delta[\mathcal{A}]$ and thus $T \cup \Delta[\mathcal{A}]$ is complete. Thus T is model-complete.

1.1.35 Corollary

Every model-complete theory is forcing-complete.

Proof: this is because every T-model is T-generic, and so every model of T models T^f . Thus $T \models T^f$, meaning $T^f \subseteq T$. Since T is a $\forall \exists$ -theory, we showed that $T \subseteq T^f$. So $T = T^f$, and T is forcing-complete.