

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

Tercera Prueba Parcial

BAIN 037 Cálculo para Ingeniería 09 de marzo de 2011

NOMBRE:	
CARRERA:	

Instrucciones

- Conteste en forma ordenada identificando la pregunta e item que corresponde.
- Cada respuesta debe ser acompañada de las respectivas justificaciones.
- Cada solución debe llevar desarrollo y respuesta.
- No se permite el uso de calculadora y celulares.
- Tiempo: 90 minutos.

- 1.- (0.8)
- 2.- (1.2)
- 3.- (2.0)
- 4.- (2.0)

- 1. Calcule $\int \frac{dx}{x \cdot ln^2(x)}$.
- 2. Dada $I = \int \frac{2x^3 + 4x^2 + x + 3}{x^3 + x} dx$
 - a) Determine los valores de A, B y $C \in \mathbb{R}$ de modo que $\frac{4x^2 x + 3}{x^3 + x} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x}$.
 - **b)** Determine $J = \int \frac{x}{x^2 + 1} dx$
 - c) Con los resultados anteriores, calcule I.
- 3. Encuentre el valor del área encerrada por la gráfica de las curvas $f(x) = x^3 + x^2 2x$ y g(x) = 4x. Grafique la situación.
- 4. Un grupo de Ingenieros deben construir un puente. Uno de los problemas a resolver es determinar el largo total del cable que se indica en la figura (cable 1+cable 2+cable 3). Para facilitar los cálculos han determinado que la longitud del cable 1 es igual a la longitud del cable 3 y cada uno estos a su vez, corresponden a la mitad de la longitud del cable 2. Han resuelto que una buena aproximación a la longitud cable 2 está dado por $f(x) = \frac{2}{6}|x|^{3/2}$.

Según los datos anteriores y sabiendo que el centro del sistema coordenado está sobre el cable, determine la longitud del cable total (No considere los anclajes u otras variables).

Solución:

1. Sea $u = \ln(x)$, entonces $du = \frac{dx}{x}$. Luego:

$$\int \frac{dx}{x \cdot \ln^2(x)} dx = \int \frac{du}{u^2}$$

$$= -u^{-1} + C \quad (C \in \mathbb{R})$$

$$= -(\ln(x))^{-1} + C$$

$$= -\frac{1}{\ln(x)} + C$$

2. **a**)

$$\begin{array}{rcl} \frac{4x^2-x+3}{x^3+x} & = & \frac{Ax+B}{x^2+1} + \frac{C}{x} \\ \\ \frac{4x^2-x+3}{x^3+x} & = & \frac{(Ax+B)\cdot x + (x^2+1)\cdot C}{x\cdot (x^2+1))} \\ \\ \frac{4x^2-x+3}{x^3+x} & = & \frac{(A+C)x^2+Bx+C}{x\cdot (x^2+1)} \end{array}$$

De donde resulta $C=3,\,B=-1$ y A=1, por lo tanto:

$$\frac{4x^2 - x + 3}{x^3 + x} = \frac{x - 1}{x^2 + 1} + \frac{3}{x}$$

b) Sea $u = x^2 + 1$, entonces $du = 2x \cdot dx$, así

$$J = \frac{x}{x^2 + 1} dx$$

$$J = \frac{1}{2} \cdot \int \frac{du}{u}$$

$$J = \frac{1}{2} \cdot \ln|u| + T \quad (T \in \mathbb{R})$$

$$J = \frac{\ln|x^2 + 1|}{2} + T$$

c)

$$I = \int 2 + \frac{4x^2 - x + 3}{x^3 + x} dx$$

$$I = \int 2 dx + \int \frac{x - 1}{x^2 + 1} dx + \int \frac{3}{x} dx$$

$$I = \int 2 dx + \int \frac{x}{x^2 + 1} dx - \int \frac{1}{x^2 + 1} dx + 3 \int \frac{1}{x} dx$$

$$I = 2x + \frac{\ln(x^2 + 1)}{2} - \arctan(x) + 3\ln(x) + K \quad (K \in \mathbb{R})$$

3. Primero debemos determinar la región, para lo cual debemos entontrar las intersecciones entre ambas curvas, resultando

$$f(x) = g(x)$$

$$x^{3} + x^{2} - 2x = 4x$$

$$x^{3} + x^{2} - 6x = 0$$

$$x \cdot (x^{2} + x - 6) = 0$$

$$x \cdot (x + 3) \cdot (x - 2) = 0$$

De lo anterior, las curvas de intersectan en los puntos de abscisa $x=-3,\,x=0$ y x=2. Graficamente nos queda:

El valor del área viene dado por

$$A = \int_{-3}^{0} (f(x) - g(x)) dx + \int_{0}^{2} (g(x) - f(x)) dx$$

$$A = \int_{-3}^{0} ((x^{3} + x^{2} - 2x) - 4x) dx + \int_{0}^{2} (4x - (x^{3} + x^{2} - 2x)) dx$$

$$A = \int_{-3}^{0} (x^{3} + x^{2} - 6x) dx + \int_{0} (-x^{3} - x^{2} + 6x) dx$$

$$A = \frac{63}{4} + \frac{16}{3}$$

$$A = \frac{253}{12} [u^{2}]$$

4. Calculemos la longitud de la mitad del cable 2. Nos queda:

$$L = \int_{0}^{100} \sqrt{1 + (f'(x))^{2}} dx$$

$$L = \int_{0}^{100} \sqrt{1 + \left(\frac{d}{dx}\left(\frac{2}{9} \cdot |x|^{\frac{3}{2}}\right)\right)^{2}} dx$$

$$L = \int_{0}^{100} \sqrt{1 + \left(\frac{x^{\frac{1}{2}}}{3}\right)^{2}} dx$$

$$L = \int_{0}^{100} \sqrt{1 + \frac{x}{9}} dx$$

$$L = \int_{0}^{100} \frac{\sqrt{9 + x}}{3} dx$$

$$L = \frac{1}{3} \cdot \int_{0}^{100} \sqrt{9 + x} dx$$

$$L = \frac{1}{3} \cdot \frac{(9 + x)^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{0}^{100}$$

$$L = \frac{2}{9} \cdot (9 + x)^{\frac{3}{2}} \Big|_{0}^{100}$$

$$L = \frac{2}{9} \cdot \left(109^{\frac{3}{2}} - 9^{\frac{3}{2}}\right)$$

$$L = \frac{2}{9} \cdot \left(109\sqrt{109} - 27\right) [u]$$

Luego la longitud del cable total es:

$$4L = 4 \cdot \left(\frac{2}{9} \cdot \left(109\sqrt{109} - 27\right)\right) [u]$$

$$4L = \frac{8}{9} \cdot \left(109\sqrt{109} - 27\right) [u]$$