

Circuit Design and Architecture Exploration of FPGAs

1

Topics

- Circuit Design for FPGAs
- Logic Block Architecture Study
- Routing Architecture Study

Lookup Table Circuitry

- 2 options for bit-selection
 - □ decoder or multiplexer?

3

Bit-Selection in Conventional RAM/ROM

■ RAM/ROM typically uses decoder for bit-selection

4

Bit-Selection for LUT

■ FPGA's LUT uses a multiplexer for bit-selection.

- Multiplexer presents smaller load to memory cells.
 - □ Allows smaller memory cells

5

Multiplexers in FPGA

■ Muxes used inside LUTs and for routing (intrablock and inter-block).

A logic block and its periphery

Multiplexer Design

7

Multiplexer Design

- Pass transistor multiplexer uses fewer transistors than fully complementary gates.
- Pass transistor is somewhat faster than complementary switch:
 - □ Equal-strength p-type is 2.5X n-type width.
 - \square Total resistance is 0.5X, total capacitance is 3.5X.
 - \square RC delay is 0.5 x 3.5 = 1.75 times n-type switch.

Performance of Static Gate MUX

- Delay through n-input NAND is (n+2)/3 using logical effort computation.
- For *b*-bit mux
 - \square Lg b + 1 inputs at first level, so delay is $(\lg b + 3)/3$.
 - \square Delay at second level is (b+2)/3.
- Delay grows as b.

9

Performance of Tree-based Pass Transistor MUX

- Delay proportional to square of path length.
- Delay grows as $(\lg b)^2$.

Encoded MUX vs Decoded MUX

■ Tradeoff between transistor count and delay

11

Leakage in MUX-based Routing Switch

lacktriangle Level restoring buffer to avoid leakage at MP2 due to a weak V_{INT}

a) Routing switch (abstract)

b) 4-input routing switch (transistor-level view)

MUX-based Routing Switch Design

■ Optimize: transistor count, delay, leakage

13

Architectural Issues

- Granularity of logic elements in the FPGA?
- LE structure:
 - □ What functions?
 - ☐ How many inputs?
 - □ Dedicated logic?
- What types of interconnect?
 - ☐ How much of each type?
- How long should interconnect segments be?
- How should we vary interconnect?
 - □ Uniform or non-uniform over chip?

FPGA Architecture Evaluation Methodology

■ Empirical approach to explore different architectures is typical

15

Logic Block Structure

- How large should the LUT size (K) be?
- Effects on area & speed
 - □Area
 - As K increases, fewer logic blocks are needed for a design but area per block increases (LUT's SRAM bits is 2^K)
 - □Speed
 - As *K* increases, each critical path contains fewer blocks but delay per block increases

Effect of LUT Size on Area

- \blacksquare As LUT size (K) increases
 - □ Total FPGA area first decreases and then increases

blocks required & area per block for different LUT sizes

Total FPGA area for different LUT₁sizes

Effect of LUT Size on Speed

■ As *K* increases, each critical path contains fewer blocks but delay per block increases

#LUTs on a critical path & delay per LUT for different LUT sizes

19

Innovative Idea – Adaptive Logic Module

■ Altera Stratix ALM (adaptive logic module)

Flexibility of Adaptive Logic Module

■ Fracturable into two

Output 1	Output 2	Shared inputs (min)		
6-LUT	-	-		
5-LUT	5-LUT	2		
5-LUT	4-LUT	1		
5-LUT	3-LUT	0		
4-LUT	4-LUT	0		
4-LUT	3-LUT	0		
3-LUT	3-LUT	0		

21

Adaptive Logic Module

■ *Observation*: Functions generated by synthesis have different input sizes.

- ALM-based architecture vs traditional 4-LUT-based architecture
 - □ Improved area efficiency
 - □ Improved timing performance

Logic Block Clustering

■ Logic block made up of a cluster of LUTs and FFs

Logic Cluster Study

- How many cluster input pins (I) are needed?
 - □BLEs in a cluster often share many input signals
 - □ Empirically, # input pins *I* needed to fully utilize a cluster of *N K*-LUT is
 - $\blacksquare I = K(N+1)/2$

Area Efficiency of Different Cluster Sizes

■ Clusters in size 1-8 are area-efficient.

Transistors per BLE vs. cluster size (includes overhead circuits)

Effect of Cluster Size and LUT Size on Speed

- As LUT and cluster size increase, critical path delay monotonically decreases with diminishing returns
- Significant returns to increase LUT size up to 6 and cluster size up to 3 or 4

Critical path delay for different LUT and cluster sizes

27

Programmable Routing

■ Programmable switches connect fixed metal wires

Routing Architecture

29

Some Parameters of Routing Architecture

- Input connection block flexibility $F_{c,in}$
 - ☐ Fraction of wire segments in a channel connected to an input pin of a block
- Output connection block flexibility $F_{c,out}$
 - ☐ Fraction of wire segments in a channel connected to an output pin of a block
- Switch block flexibility F_s
 - □ No. of possible connections a wire segment can make to other wire segments

2 Types of Routing Switches

■ Typically, mix pass transistor switches & tristate buffer switches (*why*?)

31

Pass Transistor Routing Switch

- Small area
- Resistive switch
- Faster for short paths
- Delay grows as the square of no. of switches

Tri-state Buffer Routing Switch

- Larger area
- Regenerative driver
- Faster for long paths passing through many switches
- Delay grows linearly as no. of switches

33

Other Routing Architecture Factors and Parameters

	Speed,	Area	and	Power	also	depend	on
--	--------	------	-----	-------	------	--------	----

- □ Channel segmentation
- □ Transistor size
- □Buffer size
- □ Ratio of pass transistor switches & tri-state buffer switches
- □ Metal width
- □ Wire spacing
- $\square \dots$

Connectivity

- What is the # hops required to get from one logic block to another?
- Fewer hops → better performance
- More predictable pattern → easier CAD tool optimization

Stratix FPGA series connectivity

35

Clock Nets

■ Must drive all LEs.

- Clock driver tree.
- Determine optimal buffer sizes.

Track Distribution

- Is wiring concentrated near the center of the FPGA?
 - □No.
- Is wiring directional (horizontal/vertical)? □ No.
- Make channels to I/O pins about 25% larger improves routability.

- How many pins?
 - □ Limited by technology.
 - ☐ Too much logic, not enough pins means we can't get signals off-chip.
 - ☐ Too many pins means logic won't be fully utilized.

Rent's Rule

- Developed by E. F. Rent (IBM) in 1960.
 - □ Experimentally derived from sample designs.
- Number of pins vs. number of components is a line on a log-log plot:

$$\square \ N_p = K_p \ N_s{}^\beta$$

- Parameters may vary based on technology:
 - \square Rent measured $\beta = 0.6$, $K_p = 2.5$.
 - \square Modern microprocessor has $\beta = 0.455$, $K_p = 0.82$.

- Chip capacity is growing faster than package pinout.
- Harder to use logic in a multi-FPGA design
 - □ must try to fit a large function with a small interface into the FPGA
 - □ may use time-division multiplexing for I/Os

References

- "Leakage Control in FPGA Routing Fabric", in *ASP-DAC'05*.
- "The Effect of LUT and Cluster Size on Deep-Submicron FPGA Performance and Density", in *FPGA'00*.
- "Improving FPGA Performance and Area Using an Adaptive Logic Module", in *FPL'04*.
- "Flexibility of interconnection structures for field programmable gate arrays", *IEEE J. Solid-State Circuits*, vol. 26(3), 1991.
- "Mixing Buffers and Pass Transistors in FPGA Routing Architectures", in *FPGA* '01.
- "FPGA Architecture: Survey and Challenges", Foundations and Trends in Electronic Design Automation, vol.2(2), 2007.
- "VPR 5.0: FPGA CAD and Architecture Exploration Tools with Single-Driver Routing, Heterogeneity and Process Scaling", in FPGA'09.