Complex Numbers

AI24BTECH11033-Tanishq Rajiv Bhujbale

- I. MCQs with One or More than One Correct
- 1) If ω is an imaginary cube root of unity, then $(1+\omega-\omega^2)^7$ equals (1998-2 Marks)
 - (a) 128ω
 - (b) 128ω
 - (c) $128\omega^2$
 - $(d 128\omega^2)$
- 2) The value of the sum

$$\sum_{n=1}^{13} \left(i^n + i^{n+1} \right),$$

where $i = \sqrt{-1}$, equals:

(1998 - 2 Marks)

- (a) *i*
- (b) i 1 (c) -i
- (d) 0

3) If

$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy,$$

then

(1998 - 2 Marks)

- (a) x=3,y=4
- (b) x=1,y=3
- (c) x=0,y=4
- (d) x=0,y=0
- 4) Let z_1 and z_2 be two distinct complex numbers and let $z = (1-t)z_1 + tz_2$ for some real number t with 0 < t < 1. If Arg(w) denotes the principal argument of a non-zero complex number w, then:

(2010)

- (a) $|z z_1| + |z z_2| = |z_1 z_2|$
- (b) $Arg(z z_1) = Arg(z z_2)$
- (c)

$$\begin{vmatrix} z - z_1 & \overline{z} - \overline{z_1} \\ z_2 - z_1 & \overline{z_2} - \overline{z_1} \end{vmatrix}$$

- (d) $Arg(z z_1) = Arg(z_2 z_1)$
- 5) Let $w = \frac{\sqrt{3}+i}{2}$ and $P = \{w^n : n = 1, 2, 3, ...\}$.

$$H_1 = \left\{ z \in \mathbb{C} \mid \text{Re}(z) > \frac{1}{2} \right\}$$

and

$$H_2 = \left\{ z \in \mathbb{C} \mid \operatorname{Re}(z) < -\frac{1}{2} \right\},\,$$

where \mathbb{C} is the set of all complex numbers. If $z_1 \in H_1$, $z_2 \in H_2$, and O represents the origin, then the angle $\angle z_1Oz_2$ is:

(JEE Adv. 2013)

- (a) $\frac{p}{2}$ (b) $\frac{p}{6}$ (c) $\frac{2p}{2}$ (d) $\frac{5p}{6}$
- 6) Let $a, b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$. Suppose

$$S = \left\{ z \in \mathbb{C} \mid z = \frac{1}{a + ibt}, \ t \neq 0 \right\},\,$$

where $i = \sqrt{-1}$. If z = x + iy and $z \in S$, then (x, y) lies on:

(JEE Adv. 2016)

- (a) the circle with radius $\frac{1}{2a}$ and center $\left(\frac{1}{2a},0\right)$ for $a > 0, b \ne 0$.
- (b) the circle with radius $\frac{1}{2a}$ and center $\left(\frac{-1}{2a},0\right)$ for $a < 0, b \ne 0$.
- (c) the x-axis for $a \neq 0$, b = 0.
- (d) the y-axis for a = 0, $b \ne 0$.
- 7) Let a, b, x, and y be real numbers such that a - b = 1 and $y \ne 0$. If the complex number z = x + iy satisfies

$$\operatorname{Im}\left(\frac{az+b}{z+1}\right) = y,$$

then which of the following is (are) possible value(s) of x?

- (a) $-1 + \sqrt{1 y^2}$
- (b) $-1 \sqrt{1 y^2}$ (c) $1 + \sqrt{1 + y^2}$ (d) $1 \sqrt{1 + y^2}$

- 8) For a non-zero complex number z, let arg(z) denote the principal argument with $-\pi < \arg(z) \le$ π . Then, which of the following statement(s) is (are) FALSE?

(JEE Adv. 2018)

(a)
$$\arg(-1 - i) = \frac{\pi}{4}, where i = \sqrt{-1}$$

- (b) The function $f: \mathbb{R} \to (-\pi, \pi)$, defined by $f(t) = \arg(-1+it)$ for all $t \in \mathbb{R}$, is continuous at all points of \mathbb{R} , where $i = \sqrt{-1}$
- (c) For any two complex numbers z_1 and z_2 , $arg(\frac{z_1}{z_2}) - arg(z_1) + arg(z_2)$ is an integer multiple of 2π
- (d) For any three given distinct complex numbers z_1, z_2 and z_3 , the locus of the point z satisfying the condition $\arg\left(\frac{(z-z_1)(z-z_2)}{(z-z_3)(z-z_1)}\right) = \pi$, lies on a straight line
- 9) Let s, t, r be non-zero complex numbers and L be the set of solutions z = x + iy $(x, y, \in \mathbb{R}, i = \sqrt{-1})$ of the equation $sz + t\overline{z} + r =$ $\dot{0}$, where $\bar{z} = x - iy$. Then, which of the following statements(s) is (are) TRUE?

(JEE Adv. 2018)

- (a) Let L has exactly one element, then $|s| \neq |t|$
- (b) If |s| = |t|, then L has infinitely many elements
- (c) The number of elements in $L \cap \{z : |z - 1 + i| = 5\}$ is at most 2
- (d) If L has more than one element, then L has infinitely many elements

II. Subjective Problems

- 1) Express $\frac{1}{1-\cos\theta+2i\sin\theta}$ in the formx+iy. (1978)
- 2) If x = a + b, $y = a\gamma + b\beta$ and $z = a\beta + b\gamma$ where γ and β are the complex cube roots of unity, show that $xyz = a^3 + b^3$

- 3) If $x + iy = \sqrt{\frac{a+ib}{c+id}}$, prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$
- 4) Find real values of x and y for which the following equation is satisfied $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ (1980)
- 5) Let the complex numbers z_1, z_2 and z_3 be the vertices of an equilateral triangle. Let z_0 be the circumcentre of the triangle. Then prove that $z_1^2 + z_2^2 + z_3^2 = 3z_0^2.$

(1981 - 4 Marks)

6) Prove that the complex numbers z_1, z_2 and the origin form an equilateral triangle only if z_1^2 + $z_2^2 - z_1 z_2 = 0.$

(1983 - 3 Marks)