

Université Sultan Moulay Slimane Faculté polydisciplinaire de Khouribga

Filière: SMI-SMA-S4

2021-2022

Contrôle de rattrapage - Analyse numérique (Durée 1h00)

Les documents et téléphones portables ne sont pas autorisés. On attachera une grande importance à la rédaction

Exercice 1: On considère une fonction f de classe $C^3(\mathbb{R})$. Soient $x_0 = 0, x_1 = h$ et $x_2 = 2h$ avec h > 0.

- 1. Calculer le polynôme d'interpolation de Lagrange P_f associé à f aux points x_0, x_1 et x_2 .
- 2. Montrer que $|f(x) P_f(x)| \le \frac{h^3}{9\sqrt{3}} \sup |f^{(3)}(\xi)|$ avec $\xi \in [x_0, x_2]$.
- '3. Donner le polynôme d'interpolation de Newton P_f associé à f aux points x_0, x_1 et x_2 (sans expliciter les différences divisées).
- 4. On note par $\mathcal{D}_f(x) = P_f''(x)$, déduire que $\mathcal{D}_f(x) = 2f[x_0, x_1, x_2]$.
- 5. Psosons $g(x) = f(x_0) + \frac{\Delta_h^1 f(x_0)}{h} (x x_0) + \frac{\Delta_h^2 f(x_0)}{2h^2} (x x_0) (x x_1)$, avec $\Delta_h^1 f(x_0) = f(x_0 + h) f(x_0)$ et $\Delta_h^2 f(x_0) = f(x_0 + 2h) 2f(x_0 + h) + f(x_0)$. Montrer que g interpole f aux points x_0, x_1 et x_2 .

Exercice 2: On se propose de résoudre numériquement l'équation (E): $f(x) = -\frac{x^3}{4} + 3x + 4 = 0$.

- 1. Montrer que l'équation (E) admet une solution unique $\alpha \in [2, +\infty]$.
- 2. En utilisant la méthode de la dichotomie sur l'intervalle [2, 5], estimer le nombre d'itérations nécessaires pour calculer le zéro α de la fonction f avec une tolérance $\varepsilon = 10^{-3}$.
- Pour $0 > \lambda > -\frac{2}{15}$ posons $g_1(x) = \frac{1}{1+3\lambda} \left(-4\lambda + \frac{\lambda x^3}{4} + x \right)$. Soit [a, b] tel que $g_1 : [a, b] \longrightarrow [a, b]$ de classe C^1 . Montrer que $\alpha = 4$ est un point fixe pour g_1 dans [a, b].
- 4. Posons $g_2(x) = \sqrt[3]{12x + 16}$. Montrer que la méthode du point fixe définie par g_2 converge pour tout choix $x_0 \in [0, 5]$. Calculer l'ordre de convergence.
- 5. Posons $g_3(x) = \frac{1}{18} (-x^3 + 30x + 16)$ et soit [a, b] tel que $g_3 : [a, b] \longrightarrow [a, b]$ de classe \mathcal{C}^1 . Montrer que $\alpha = 4$ est un point fixe pour g_3 . Etudier dans ce cas, la convergence de la méthode du point fixe $x_{k+1} = g_3(x_k)$, pour la recherche de $\alpha = 4$ et déterminer l'ordre de convergence le cas échéant.
- 6. Ecrire (calculez) la suite $(x_k)_{k\geq 0}$ obtenue à partir de la méthode de Newton. Faites les deux premières itérations à partir de $x_0 = 5$.
- 7. Posons $x_0 = 5$. Après calcul on a $E_6 = |x_6 x_5| = 3.53 \times 10^{-37}$ et $E_5 = |x_5 x_4| = 1.03 \times 10^{-18}$. Calculez l'ordre numrique de la suite $(u_k)_{k \ge 1}$. Commenter le résultat!