Supervised learning – Classification (Demo)

Linear classifiers, Fisher's LDA, on > 2 classes

STAT 32950-24620

Spring 2023 (4/27)

Classification — a type of supervised learning

Classifier: $R^p o \{1,2,\cdots,g\}$, g the number of classes.

The numerical values of the classes often are not meaningful.

library(MASS) # to use lda function

2/36

Example (iris)

1/36

Example: classical iris data

```
data(iris)
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.
## $ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.
## $ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.
## $ Species : Factor w/ 3 levels "setosa", "versicological columns (iris) = c("SL", "SW", "PL", "PW", "Species")
```

Data summary

Classification data and objectives

summary(iris)

##	S	SL	S	SW	F	L	F	PW
##	Min.	:4.30	Min.	:2.00	Min.	:1.00	Min.	:0.
##	1st Qu.	:5.10	1st Qu.	:2.80	1st Qu.	:1.60	1st Qu.	:0.
##	Median	:5.80	Median	:3.00	Median	:4.35	Median	:1.
##	Mean	:5.84	Mean	:3.06	Mean	:3.76	Mean	:1.
##	3rd Qu.	:6.40	3rd Qu.	:3.30	3rd Qu.	:5.10	3rd Qu.	:1.
##	Max.	:7.90	Max.	:4.40	Max.	:6.90	Max.	:2.

Note: Variables are of comparable magnitude and spread; therefore can be used without scaling (normalizing).

Choose feature variables

Choose feature variables to be used as predictors in classification.

```
attach(iris)
X=iris[,1:4] #Feature var's, used for classification
```

$$\implies p = 4, g = 3$$

Classifier: $R^4 \rightarrow \{1, 2, 3\}$

5/36

7/36

Sample covariance matrices

```
levels(Species)=c(1:3)
S1=cov(iris[Species==1,1:4])
# S1=cov(subset(iris[,1:4], Species==1)) # same
S2=cov(iris[Species==2,1:4])
S3=cov(iris[Species==3,1:4])
```

 S_k — Sample covariance matrix of sub-population k

$$Sp=(50-1)*(S1+S2+S3)/(150-3)$$

Under equal subpopulation covariance assumption,

$$S_{pooled} = \frac{1}{n-g} [(n_1-1)S_1 + \cdots (n_g-1)S_g]$$

where

$$n = n_1 + \cdots + n_{\sigma}$$

Data pairwise plots

My Title

Class covariance matrices S_1 , S_2 , S_3

```
round(S1,2); round(S2,2); round(S3,2)
```

```
SL
                PL
## SL 0.12 0.10 0.02 0.01
## SW 0.10 0.14 0.01 0.01
## PL 0.02 0.01 0.03 0.01
## PW 0.01 0.01 0.01 0.01
            SW PL
## SL 0.27 0.09 0.18 0.06
## SW 0.09 0.10 0.08 0.04
## PL 0.18 0.08 0.22 0.07
## PW 0.06 0.04 0.07 0.04
        SL
            SW
                 PL
                     PW
## SL 0.40 0.09 0.30 0.05
## SW 0.09 0.10 0.07 0.05
## PL 0.30 0.07 0.30 0.05
## PW 0.05 0.05 0.05 0.08
```

Pooled covariance matrix

```
Pooled covariance matrix S_{pooled} and its inverse S_{pooled}^{-1} round (Sp, 2)
```

```
## SL SW PL PW

## SL 0.27 0.09 0.17 0.04

## SW 0.09 0.12 0.06 0.03

## PL 0.17 0.06 0.19 0.04

## PW 0.04 0.03 0.04 0.04

round(solve(Sp),2)
```

```
## SL SW PL PW
## SL 10.84 -5.38 -8.99 3.42
## SW -5.38 14.23 2.67 -8.91
## PL -8.99 2.67 14.79 -8.91
## PW 3.42 -8.91 -8.91 36.77
```

Discussion: Computational cost of inverse matrix.

9 / 36

11/36

Fisher's linear discriminants

Goal: Find maximum separation directions for the three classes.

By-product: Form classification regions for 3 classes (by LDA).

Assumption: Equal variance-covariance structure for all classes. (normality not required)

The directions are given by eigenvectors e_i ,

$$W^{-1}Be_i = \lambda_i e_i$$

scaled by $e'_i S_{pool} e_i = 1$ in R (1da).

10/36

lda in R

Try out the function $lda\ in\ R$

First, use all observations as training data.

```
fit = lda(X,Species) #lda(Species~X[,1]+X[,2]+X[,3]+X[,4]);
attributes(fit) # prior, counts, means, scaling, lev, svd, N
```

```
## $names
## [1] "prior" "counts" "means" "scaling" "lev" ":
## [8] "call"
##
## $class
## [1] "lda"
```

Predicted class membership in (LD1, LD2)

Project to the 1st discriminant line

13 / 36

Linear discriminant properties and normalization

$$Y_i = a_i'X$$
, $var(Y_i) = a_i'S_{pool}a_i = 1$

fit\$scaling # matrix [a_1 a_2]

LD1 LD2 ## SL 0.8294 0.0241 ## SW 1.5345 2.1645 ## PL -2.2012 -0.9319 ## PW -2.8105 2.8392

t(fit\$scaling)%*%Sp%*%fit\$scaling # normalization a'S a

LD1 LD2 ## LD1 1.000e+00 -7.216e-16 ## LD2 -8.327e-16 1.000e+00

14/36

Posterior probability of membership

$$p(\pi_i|x_o) = \frac{p_i\hat{f}_i(x_o)}{p_1\hat{f}_1(x_o) + \dots + p_g\hat{f}_g(x_o)}$$

postprob = round(predict(fit,X)\$posterior,3)
attributes(predict(fit,X))

\$names
[1] "class" "posterior" "x"
attributes(postprob)\$dim

[1] 150 3

Classification (and misclassification) by LDA

par(mfrow=c(1,1))
plot(1:150,predict(fit,X)\$class, cex=.5) #err case 71,84,...

Misclassification case details

			Posterior	Posterior	Posterior
	True	Assigned	$P(\pi_1:$	$P(\pi_2:$	$P(\pi_3:$
Misclassificatipecies		species	given x)	given x)	given x)
Item 71	2	3	0	0.253	0.747
Item 84	2	3	0	0.143	0.857
Item 134	3	2	0	0.729	0.271

data for the above table cbind(postprob[c(71,84,134),],Species[c(71,84,134)])

```
[1,] 0 0.253 0.747 2
   [2,] 0 0.143 0.857 2
## [3,] 0 0.729 0.271 3
```

17 / 36

Posterior probability for class 2

Posterior probability for class 1

Posterior probability for all

21/36

Training error — Apparent Error Rate (APER)

Table of misclassification counts based on training data

```
#ct <- table(Species, predict(fit,X)$class)
ct

##
## Species 1 2 3
## 1 50 0 0
## 2 0 48 2
## 3 0 1 49</pre>
```

Apparent Error Rate (APER) = Error rate within the training data

$$\frac{n_{1m} + n_{2m} + n_{3m}}{n_1 + n_2 + n_3} = 0.02$$

where n_{im} = misclassified members of class i

Classification proportions

Percentage of classification within each species

```
ct=table(Species, predict(fit,X)$class) #cross-count table
prop.table(ct, 1) # (., 1) row %; (., 2) col %

##
## Species 1 2 3
## 1 1.00 0.00 0.00
## 2 0.00 0.96 0.04
## 3 0.00 0.02 0.98

diag(prop.table(ct, 1)) #correct classification by species

## 1 2 3
## 1.00 0.96 0.98

sum(diag(prop.table(ct))) #total % of correct assignments

## [1] 0.98
```

Expected Actual Error Rate E(AER)

The Expected Actual Error Rate E(AER) can be estimated by

Holdout-one cross validation

```
fitCV = lda(X,Species, CV=T)
# or lda(Species~X[,1]+X[,2]+X[,3]+X[,4], CV=T)
```

Misclassification Table by holdout-one method:

```
table(Species, fitCV$class)
```

```
## ## Species 1 2 3 ## 1 50 0 0 ## 2 0 48 2 ## 3 0 1 49
```

Estimated E(AER) by corss validation

Expected actual error rate can be estimated

by holdout-one cross validation:

$$\hat{E}(AER) = \frac{0+2+1}{50+50+50} = 0.02$$

This is the same as APER! Well, it happens.

Most time, test or valication error > training err.

25 / 36

Validation error rate, two predictors

Use holdout-one cross validation (two variables)

```
fitCV12 = lda(Species~X[,1]+X[,2], CV=T)
table(Species, fitCV12$class)
```

##

Species 1 2 3 ## 1 49 1 0

2 0 35 15

3 0 15 35

Estimated Expected Actual Error Rate E(AER)

$$\hat{E}(AER) = \frac{30}{150} = 0.20$$

Now this is more common and realistic:

$$\hat{E}(AER) > APER$$

Use only two variables as predictors?

 $fit12 = Ida(Species \sim X[,1] + X[,2])$

Table of classification and misclassification

table(Species, predict(fit12,X[,1:2])\$class)

##

Species 1 2 3

1 49 1 0 ## 2 0 36 14

3 0 15 35

Apparent error rate (training error)

$$APER = \frac{14 + 15}{50 + 50 + 50} = \frac{29}{150} = 0.19$$

26 / 36

Use one variable as the predictor?

```
#fit4 = lda(Species~X[,4])
fitCV4 = lda(Species~X[,4], CV=T)
#table(Species, predict(fit4,X[,4])$class)
table(Species, fitCV4$class)
```

##

Species 1 2 3

1 50 0 0

2 0 48 2

3 0 4 46

Estimated expected actual error rate

$$\hat{E}(AER) = \frac{6}{150} = 0.04$$

(Some variables are better classifiers than others)

Normal Populations (classification by min ECM)

For $N(\mu_i, \Sigma_i)$:

Classification region $R_k = \{x : d_k(x) \ge d_i(x), \forall i \ne k\}$

The estimated linear discriminant scores

(equal-covariance, equal-cost, minimize ECM)

$$\hat{d}_k(x) = \bar{x}_k' S_{pool}^{-1} x - \frac{1}{2} \bar{x}_k' S_{pool}^{-1} \bar{x}_k + \ln(p_k), \qquad k = 1, \cdots, g.$$

29 / 36

Find the linear discriminant functions

Get
$$\bar{x}_k$$
, $k = 1, \cdots, g$ $(g = 3)$

X34mean

[,1] [,2] ## setosa 1.462 0.246 ## versicolor 4.260 1.326 ## virginica 5.552 2.026

Example: Three normal sub-populations

Example: p = 2, g = 3. Classifier: $R^2 \rightarrow \{1, 2, 3\}$

Using two petal variables as predictors

fit34=lda(Species~X[,3]+X[,4])

Obtain S_{pool} (2 predictors)

```
s1=cov(iris[Species==1,3:4]);
s2=cov(iris[Species==2,3:4])
s3=cov(iris[Species==3,3:4]);
Sp2=(50-1)*(s1+s2+s3)/(150-3);
Sp2
```

PL PW ## PL 0.18519 0.04267 ## PW 0.04267 0.04188

30 / 36

Find the discriminant functions (cont.)

Get $\bar{x}_k' S_{pool}^{-1}$ in

$$\hat{d}_k(x) = \bar{x}_k' S_{pool}^{-1} x - \frac{1}{2} \bar{x}_k' S_{pool}^{-1} \bar{x}_k + \ln(p_k)$$

slp = as.matrix((X34mean)%*%solve(Sp2))
slp

```
## PL PW
## setosa 8.548 -2.834
## versicolor 20.527 10.749
## virginica 24.612 23.302
```

Find the discriminant functions (cont.)

Get
$$\frac{1}{2}\bar{x}_k'S_{pool}^{-1}\bar{x}_k$$

```
itc = diag((X34mean)%*%solve(Sp2)%*%t(X34mean))/2
itc
```

setosa versicolor virginica
5.90 50.85 91.93

Obtain
$$\hat{d}_k(x) = \bar{x}_k' S_{pool}^{-1} x - \frac{1}{2} \bar{x}_k' S_{pool}^{-1} \bar{x}_k + \ln(p_k),$$

$$\hat{d}_1 = 8.5x - 2.8y - 5.9 + \log(1/3)$$

$$\hat{d}_2 = 20.5x + 10.7y - 50.9 + \log(1/3)$$

$$\hat{d}_3 = 24.6x + 23.3y - 91.9 + \log(1/3)$$

33 / 36

Intersections of discriminant functions

Set
$$\hat{d}_1 = \hat{d}_2$$
, $\hat{d}_2 = \hat{d}_3$, $\hat{d}_3 = \hat{d}_1$

Solve for the intercepts and slopes of the intersection lines.

setosa versicolor virginica ## -44.95 -41.08 86.03

34 / 36

Plot the classification borders (code)

```
# Plot the classification borders
plot(iris[,3], iris[,4],col=rep(1:3,each=50))
abline(45/13.6, -12/13.6) # set d1=d2
abline(41/12.55, -4/12.55) # set d2=d3
abline(86/26,-16/26,lty=2) # set d1=d3 (redundant)
```

Plot the classification borders (plot)

->

_<

36 / 36