METHODS

1st Named Inventor: Corey Gee Express Mail No.: EV323392793

Sheet: 1 of 9



FIGURE 1

Blakely, Sokoloff, Taylor & Zafman LLP

Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND

**METHODS** 

1st Named Inventor: Corey Gee Express Mail No.: EV323392793

Sheet: 2 of 9

Docket No.: 42P14357

× 200

## Instruction Description

## **PADD**

Syntax: PADD [-C] [-M] RZ, RX, RY

PADD -1 [-C] [-M] RZ, RX, <UI8: immediate>

PADD -N [-C] [-M] RZ, RX, RY, <UI5 : start>, <UI5 : stop> PADD -N-I [-C] [-M] RZ, RX, <UI8: immediate>, <UI5: start>

RX, RY are the source data registers

RZ is the destination register

<UI8: immediate> specifies the value of an immediate operand

<UI5: start> specifies start of bit field to be modified

<U15: stop> specifies end of the bit field to be modified

-C indicates addition with carry in

-M indicates addition modulo 2ª - 1

-N indicates that addition affects only a bit field

-I indicates that second operand is supplied as an immediate value

FIGURE 2A



| Option Used                                                           | Operation                                                                                                                             |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| PADD RZ, RX, RY                                                       | RZ = RX + RY                                                                                                                          |
| PADD -C RZ, RX, RY                                                    | RZ = RX + RY + Cin                                                                                                                    |
| PADD -I RZ, RX, <ui8: immediate=""></ui8:>                            | RZ = RX + <immediate></immediate>                                                                                                     |
| PADD -N RZ, RX, RY, <ui5: start="">, <ui5: stop=""></ui5:></ui5:>     | RZ = {RX[31:stop], (RX[stop:start] + RY[length] + RX[start: 0]) modulo 2 <sup>length</sup> } Where length = stop - start + 1          |
| PADD -M RZ, RX, RY                                                    | $RZ = (RX + RY) \text{ modulo } 2^n - 1$                                                                                              |
| PADD -N -I RZ, RX, <ui8: immediate="">, <ui5: start=""></ui5:></ui8:> | RZ = {(RX[31:start] + immediate[31-start: 0]) modulo 2 <sup>31-aard</sup> +1, RX[start: 0]} In this case, a stop is assumed to be 31. |

Blakely, Sokoloff, Taylor & Zafman LLP

Title: DATA PACKET ARITHMETIC LOGIC DEVICES AND

**METHODS** 

1st Named Inventor: Corey Gee Express Mail No.: EV323392793

Sheet: 3 of 9

Docket No.: 42P14357

**SMAD** 

Syntax: SMAD [-A] [-M] RZ, RX, RY, <UI2: Length>, <UI2: Num Ops>

RZ is the destination register

RX and RY are source data registers

-A option is used to accumulate results where RZ is used as the accumulator

-M option results in a modulo 2<sup>n</sup> - 1 addition

<UI2: Length> indicates the data widths

0: 8 bit operands, where each register is assumed to contain 4 8-bit operands

1: 16 bit operands, where each register is assumed to contain 2 16-bit operands

2: 32 bit operands

3: unused

<UI2: Num Ops> indicates the number of operands to be used in the addition

0: 2 source operands RX and RY

1: 3 source operands RX, RX+1 and RY

2: 3 source operands RX, RY and RY+1 >

3: 4 source operands RX, RY, RX+1 and RY+1

FIGURE 3A



| Option Used                   | Operation                                                                                    |  |
|-------------------------------|----------------------------------------------------------------------------------------------|--|
| SMAD RZ, RX, RY, 2, 0         |                                                                                              |  |
| SMAD -A RZ, RX, RY, 2, 0      | RZ = RZ + RX + RY                                                                            |  |
| SMAD RZ, RX, RY, 2, 3         | RZ = RX + RY + (RX+1) + (RY+1)                                                               |  |
| SMAD RZ, RX, RY, 0, 0         | RZ = RX[7:0] + RX[15:8] + RX[23:16] + RX[31:24] + RY[7:0] + RY[15:8] + RY[23:16] + RY[31:24] |  |
| SMAD -M RZ, RX, RY, 2, 0      | $RZ = (RX + RY) \text{ modulo } 2^{a} - 1$                                                   |  |
| SMAD - A - M RZ, RX, RY, 2, 0 | $RZ = (RZ + RX + RY) \text{ modulo } 2^n - 1$                                                |  |

FIGURE 3B

**METHODS** 

1st Named Inventor: Corey Gee Express Mail No.: EV323392793

Sheet: 4 of 9

Docket No.: 42P14357



FIGURE 500 if C<sub>in</sub> =1 shift in '1's otherwise shift '0's Y[31:0]  $\tilde{m}$  mask (m+n) X[31:0] 502 550 504 552 11...11 00...00 508 00...00 11...11 11...11 32b + 554 XX..XX 1 512 556 510 ,558 (w...co 0000...0000 -514 bitwise OR <del>1</del>32 z Z[31:0]

FIGURE 5

1st Named Inventor: Corey Gee Express Mail No.: EV323392793 Sheet: 5 of 9

| <u>m + n</u>                     | mask (32b)                       | <u>mask (32b)</u>                |
|----------------------------------|----------------------------------|----------------------------------|
| 0: 00000<br>1: 00001<br>2: 00010 | 11111110<br>11111100<br>11111000 | 00000001<br>00000011<br>00000111 |
| 30: 1_1110<br>31: 1_1111         | 10000000<br>00000000             | 01111111<br>11111111             |

Fig. 6

**METHODS** 

1st Named Inventor: Corey Gee Express Mail No.: EV323392793



FIGURE 7

METHODS

1st Named Inventor: Corey Gee Express Mail No.: EV323392793

Sheet: 7 of 9



METHODS
1st Named Inventor: Corey Gee
Express Mail No.: EV323392793

Sheet: 8 of 9



1st Named Inventor: Corey Gee Express Mail No.: EV323392793 Sheet: 9 of 9

Docket No.: 42P14357

| Carry bits of special consideration in "32-b CSA" |             |          |                                                   |  |
|---------------------------------------------------|-------------|----------|---------------------------------------------------|--|
| carry bit                                         | output from | input to | not propagated for modulo $2^n$ addition, $n = ?$ |  |
| c[8]                                              | 702-7       | 704-8    | 8                                                 |  |
| co_8                                              | 702-7       | 702-8    | 8                                                 |  |
| c[16]                                             | 702-15      | 704-0    | 8, 16                                             |  |
| co_16                                             | 702-15      | 702-16   | 8, 16                                             |  |
| c[24]                                             | 702-23      | 704-8    | 8                                                 |  |
| co_24                                             | 702-23      | 702-24   | 8                                                 |  |
| c[32]                                             | 702-31      | 708      | 8, 16, 32                                         |  |
| co_32                                             | 702-31      | 702-0    | 8, 16, 32                                         |  |

FIGURE 11

| Carry bits of special consideration in "16-b CSA" |             |          |                                                                                     |
|---------------------------------------------------|-------------|----------|-------------------------------------------------------------------------------------|
| carry bit                                         | output from | input to | not propagated for modulo $2^n$ addition, $n = ?$ $(n = 32 \text{ not applicable})$ |
| c1[8]                                             | 704-7       | 706-0    | 8                                                                                   |
| co1_8                                             | 704-7       | 704-8    | 8                                                                                   |
| c1[16]                                            | 704-15      | 704-0    | 8, 16                                                                               |
| col_16                                            | 704-15      | 704-0    | 8, 16                                                                               |

FIGURE 12

| Carry bits of special consideration in "8-b CSA" |             |          |                                                                                         |
|--------------------------------------------------|-------------|----------|-----------------------------------------------------------------------------------------|
| carry bit                                        | output from | input to | not propagated for modulo $2^n$ addition, $n = ?$ $(n = 32, 16 \text{ not applicable})$ |
| c2[8]                                            | 706-7       | 706-0    | 8                                                                                       |
| co2_8                                            | 706-7       | 706-0    | 8                                                                                       |

FIGURE 13