

MEETUP PYDATA - 2019

MANAUS/AM

O QUE É DEEP LEARNING?

VAMOS IMAGINAR

Você tem poucos dados

- Você tem poucos dados
- Não tem um supercomputador

- Você tem poucos dados
- Não tem um supercomputador
- Nem dinheiro pra nuvem

- Você tem poucos dados
- Não tem um supercomputador
- Nem dinheiro pra nuvem

MAS COMO?

MAS COMO?

MAS QUAL?

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	99 MB	0.749	0.921	25,636,712	168
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV	/2 215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-

MAS QUAL?

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	99 MR	0.749	0 921	25,636,712	168
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNet\	/2 215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-

E POR QUE???

Novo classificador

FAZ PREVISÃO

ATUALIZA OS PESOS

FAZ PREVISÃO

CAMADAS CONGELADAS

ATUALIZA OS PESOS

E OS DADOS??

E OS DADOS??

COM LICENÇA SERÁ QUE POR ACASO VOCÊ DATASET DE FOTOS GOM UM/AS 100 MIL FOTOS DE GADA CLASSE O EM PASTAS ROM OS MOMES CLASSESP

E OS DADOS??

25 imagens de cada classe

OK VAMOS AO CÓDIGO

REDE NEURAL

HORA DE CORTAR O MODELO(RN)

```
1 comp_base_model = iv3.InceptionV3(weights='imagenet', include_top=False)

1 x = comp_base_model.output
2 x = GlobalAveragePooling2D()(x)
3 x = Dense(64, activation='relu')(x)
4 predictions = Dense(2, activation='softmax')(x)
5 comp_model = Model(inputs=comp_base_model.input, outputs=predictions)

1 for layer in comp_base_model.layers:
2     layer.trainable = False

1 comp_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
```


AGORA VAMOS TREINAR(RN)

```
1 %%time
2 comp model.fit(X train, raw y train, epochs=30)
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
Epoch 30/30
Wall time: 7min 52s
<keras.callbacks.History at 0x23c334e16d8>
```


AGORA VAMOS TREINAR(RN)

```
1 %%time
2 comp model.fit(X train, raw y train, epochs=30)
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
Epoch 30/30
Wall time: 7min 52s
<keras.callbacks.History at 0x23c334e16d8>
```

7 minutos e 52 segundos de treino

DEEP KNN

HORA DE CORTAR O MODELO(DEEPKNN)

```
base_model = iv3.InceptionV3(weights='imagenet')
```


AGORA VAMOS TREINAR(DEEPKNN)

```
2 features = deep_featuring_model.predict(X_train)
Wall time: 26.9 s

1 %%time
2 clf = KNeighborsClassifier(5)
3 clf.fit(features, y train)
```


1 %%time

Wall time: 0 ns

AGORA VAMOS TREINAR(DEEPKNN)

```
2 features = deep_featuring_model.predict(X_train)
Wall time: 26.9 s

1 %%time
2 clf = KNeighborsClassifier(5)
3 clf.fit(features, y train)
```

27 segundos de treino

1 %%time

Wall time: 0 ns

HORA DOS RESULTADOS

HORA DOS RESULTADOS

400 imagens de cada classe

QUEM SOU EU?

LUCAS FROTA
DESENVOLVEDOR
ANDROID

Email: lucv.frota@gmail.com

Linkedin: bit.ly/LucasFrotaLinkedin

Github: @Lucasfrota Twitter: @LuscasFrota

Link do projeto: http://bit.ly/deepKnn

