

F241 Microprocessors & Interfacing Project Report

Group 7
Batch Weighing Machine

Group Members:

ID	Name
2019A7PS0043G	Nishant Vikas Sarangdhar
2019A7PS0086G	Shubham Rajnish Gandhi
2019AAPS0315G	Suhaas Mahajan
2019A3PS0373G	Saksham Shivshankar Kamath
2019AAPS0489G	Rishabh Garg
2019A8PS0509G	Shivang Thalpiyal

Project done under the guidance of Dr. K.R. Anupama at Birla Institute of Technology & Sciences, Goa

TABLE OF CONTENTS

TABLE OF CONTENTS	3
PROBLEM STATEMENT	4
USER REQUIREMENTS AND TECHNICAL SPECIFICATIONS	5
ASSUMPTIONS AND JUSTIFICATIONS	5
Assumptions	5
Justification	5
COMPONENTS USED WITH JUSTIFICATION WHEREVER REQUIRED	6
ADDRESS MAP	8
Memory Map	8
I/O Map	8
DESIGN	9
FLOWCHARTS	10
Main Program	10
WEIGH_ISR	11
ADC_ISR	12
OFFA_ISR	13
VARIATIONS IN PROTEUS IMPLEMENTATION WITH JUSTIFICATION	14
CODE ACCORDING TO ON-PAPER DESIGN	15
LIST OF ATTACHMENTS	26

PROBLEM STATEMENT

A microprocessor based system is to be designed as a batch weighing machine.

- The system is interfaced to three load cells by means of an 8 bit A/D converter.
- The conditioned output of the load cells is given by the equation:
 - Vout = 0.025 x weight (kg)
- The system monitors the output of the load cells and finds out the total weight by taking the average of the three values that are sensed by each load cell.
- This value is displayed on a seven-segment display.
- When this value exceeds 99 kgs, an output port, which is connected to a relay, is switched on to sound an alarm.
- Once the objects are placed on the load cell user presses a switch labelled weigh,
 this starts the weighing process
- There is also an alarm off switch to turn off the alarm

USER REQUIREMENTS AND TECHNICAL SPECIFICATIONS

A microprocessor based system is to be designed as a batch weighing machine.

- The system is interfaced to three load cells by means of an 8 bit A/D converter.
- The conditioned output of the load cells is given by the equation: Vout = 0.025 x weight (Kgs.)
- The system monitors the output of the load cells and finds out the total weight by taking the average of the three values that are sensed by each load cell.
- This value is displayed on a seven-segment display.
- When this value exceeds 99 kgs, an output port, which is connected to a relay, is switched on to sound an alarm.
- Once the objects are placed on the load cell user presses a switch labelled weigh.

ASSUMPTIONS AND JUSTIFICATIONS

Assumptions

- 1. User always presses the alarm off switch, before moving on to the next measurement, if the alarm is ringing due to previous measurements
- 2. If the weight exceeds 99kgs, **99** is displayed on the 7-segment display & buzzer goes off.
- 3. At a time only data from one load cell is being processed
- 4. It can measure with a least count of 1kg.

Justification

- 1. We display 99 as it is the maximum possible weight as per the problem statement
- 2. The ADC can process one analog input at a time and convert it into digital output one at a time only. Our design is an optimum design. Thus, we have used only 1 ADC.
- 3. We are making use of BSR functionality of port C, hence we are able to accommodate the Input output devices in 1 8255.

COMPONENTS USED WITH JUSTIFICATION WHEREVER REQUIRED

DEVICE	NOS.	USE
8255 - PPI	1	Used for interfacing with I/O devices like load cell and 7-segment display
8259 -Interrupt Controller	1	Used for managing the control of various interrupts
6116 - RAM	2	Used for external storage
2716 - ROM	4	Stores the code, IVT
8284- Clock generator	1	Used for generating the clock pulse taking the input from 15MHz Crystal
8086	1	Microprocessor used to perform calculations (average of 3 weights)
8254- Programmable Interval Timer	1	Used to generate 1MHz clock pulse using 5MHz pulse. (reason :- ADC requires 1MHz input)
ADC-0808N	1	Converts analog input of load sensor to digital output processed by 8086.
74LS138- 3x8 Decoder.	2	For memory and I/O decoding.
74LS373- Latch	3	To latch the address given on the AD bus.
74LS245- Buffer	2	To boost up the bus signals.
TIP120- Darlington configuration	1	To amplify the current from 8255 port. Amplified current is required by relay.
G2RG- Relay	1	To connect or disconnect the buzzer from the rest of the circuit.

12V Buzzer	1	It rings when the average weight exceeds 99kg.
74LS47 decoder	2	BCD to seven segment decoder.
TDSG 5150- 7 segment display	2	The average weight is displayed on it if it's less than 99 kg.
M74HC32- Quad 2 input OR gates	3	Used for generating various chip select and control signals.
Load Sensors	3	Vout = 0.025 x weight(kg)
LS244- octal buffer	1	Used for generating control signals.

ADDRESS MAP

Memory Map

DEVICE	START ADDR.	END ADDR.
ROM - 1	00000 h	00FFF h
RAM	01000 h	01FFF h
ROM - 2	FF000 h	FFFFF h

I/O Map

DEVICE	START ADDR.	END ADDR.
8255 - PPI	00 h	06 h
8254 - Interval Timer	20 h	26 h
8259 - Interrupt Controller	30 h	32 h

DESIGN

Complete design shown with proper labelling (ON-PAPER DESIGN attached as both PPT and PDF files. Please check zip folder)

FLOWCHARTS

Main Program

WEIGH_ISR

ADC_ISR

OFFA_ISR

VARIATIONS IN PROTEUS IMPLEMENTATION WITH JUSTIFICATION

- 8284 and 8254 are not available. The clock of 8086 is directly provided as 5 MHz.
- Instead of 8254, 8253 is used, the input clock fed in is 2.5MHz. This generates 500KHz, instead of 1MHz which is fed into ADC.
- We are using two 8255's in Proteus as 8259 is not available. The first: 8255A is used for taking in the values from ADC. The second: 8255B has connections to 7 segment displays. WEIGH_SWITCH gets connected to NMI of 8086. PC0 has EOC of ADC.
- Load sensors are not available, hence variable DC voltage sources are used in place of load cells.
- 2716 is not available in proteus hence we used 2732.

CODE ACCORDING TO ON-PAPER DESIGN

```
#make bin#
; set loading address, .bin file will be loaded to
 this address:
#LOAD SEGMENT=0000h#
#LOAD OFFSET=0000h#
; set entry point:
#CS=0000h# ; same as loading segment
#IP=0000h# ; same as loading offset
; set segment registers
#DS=0000h# ; same as loading segment
#ES=0000h# ; same as loading segment
; set stack
#SS=0000h# ; same as loading segment
#SP=FFFEh# ; set to top of loading segment
; set general registers
#AX=0000h#
#BX=0000h#
#CX=0000h#
#DX=0000h#
#SI=0000h#
#DT=0000h#
#BP=0000h#
```

```
;Jump to start of code
       JMP ST
       NOP
;NOP is added so that we get proper intervals of 4
       DW 114 DUP (0) ; int 01h to 39h unused //
;Interrupt for off alarm at vector 40h
       DW OFFA ISR
       DW 0000H
; Interrupt for weigh switch at vector 41h
       DW WEIGH ISR
        DW 0000H
;Interrupt for eoc at vector 42h keeping cs as 0000
       DW ADC ISR
       DW 0000H
```

```
int 43h to FFh are unused
; FFH-43H+1H = BDH = 189D, 189D * 2D = 378D
       DW 378 DUP (0)
;Defining some Labels
       PORTA1 EQU 00H
       PORTB1 EQU 02H
       PORTC1 EQU 04H
       CREG1 EQU 06H
       CNT3 EQU 20H
       CREG3 EQU 26H
       A82591 EQU 30H
       A82592 EQU 32H
;Main Program
ST:
;Intialize ds, es,ss to start of RAM
                AX, 1000H
       MOV
                 DS, AX
       MOV
       MOV
                 ES, AX
```

```
MOV
              SS, AX
     MOV
              SI, AX ; used for storing weights
     MOV AL, 10010010B ;8255
     OUT CREG1, AL
     MOV AL,00110110B
     OUT CREG3, AL
     MOV AL, 05H
     OUT CNT3, AL
to counter0 of 8254
     MOV AL, OOH
     OUT CNT3, AL
     MOV AL, 00010011B ;8259 ICW1
     OUT A82591, AL
     MOV AL, 01000000B ;8259 ICW2, starting
```

```
OUT A82592, AL
      MOV AL, 00000001B ;8259 ICW4, since we
      OUT A82592, AL
      MOV AL, 11111000B ;8259 OCW1 only
      OUT A82592, AL
      MOV AL, 10010010B ;8255
      OUT CREG1, AL
      MOV AL, 00H ; display 00 by default
      OUT PORTA1, AL
      STI ; Set interrupt flag to enable receiving
WEIGH ISR:
      STI
; Taking inputs from adc using 8255
```

```
MOV CX,0003H
       MOV DH, 00H
       MOV DI,0000H
; Ports need to be reconfigured
wloop: MOV AL, DH
       OUT PORTC1, AL
; Making ale 1 from BSR mode
       MOV AL, 00001011B
       OUT CREG1, AL
        NOP
       MOV AL, 00001001B
        OUT CREG1, AL
; Make ale 0 using bsr mode, since ALE must be
       MOV AL, 00001010B
        OUT CREG1, AL
        NOP
; Make soc 0 using bsr mode, since SOC must be
       MOV AL, 00001000B
```

```
OUT CREG1, AL
;Wait for EOC to be received from the ADC
        HLT
 from load cell
        INC DI
        LOOP wloop
; Average calculation
        MOV SI,0000H
        CLD
        MOV AH,00H
        MOV BX,0000H
        MOV CX,0003H
LLOOP: LODSB
        ADD BX, AX
        LOOP LLOOP
        MOV AX, BX
        MOV BL, 3
```

```
; Compare with 99
       CMP AL, 99
       JBE VALI
;Setting 8255 to i/o mode
       MOV AL, 10010010B ;8255
       OUT CREG1, AL
       MOV AL, 99H ; If weight exceeds 99kgs,
       OUT PORTA1, AL
       MOV AL,00001111B
       OUT CREG1, AL
       JMP INVALI
```

```
BL,AL
VALI: MOV
              AL,0
       MOV
               AL,01
HTB:
      ADD
       DAA
       DEC
               \mathsf{BL}
       JNZ
              HTB
; Setting 8255 to input/output mode
       MOV AL, 10010010B ;8255
       OUT CREG1, AL
; display bcd
       OUT PORTA1, AL
INVALI:
       MOV AL, 00100000b
       OUT A82591, AL
       IRET
OFFA ISR:
; Making alarm off using bsr
```

```
MOV AL,00001110B
        OUT CREG1, AL
        MOV AL, 00100000b
        OUT A82591, AL
        IRET
ADC ISR:
; Making OE 1 using bsr for 8255
        MOV AL,00001101B
        OUT CREG1, AL
; Taking Inputs from Port B
        MOV AL, 10010010B ;8255
        OUT CREG1, AL
        IN AL, PORTB1
        MOV [DI], AL
        MOV AL,00001100B; Making OE low again
        OUT CREG1, AL
```

MOV AL, 00100000b
OUT A82591,AL

IRET

LIST OF ATTACHMENTS

- 1. Complete Hardware Design
- 2. Manuals (all manual texts are clickable links)
 - a. <u>74LS47</u>
 - b. <u>74LS373</u>
 - c. <u>8086</u>
 - d. <u>8255A</u>
 - e. <u>8259A</u>
 - f. <u>8284b</u>
 - g. ADC0808
 - h. Buzzer
 - i. Quad 2 input OR Gate
 - j. Relay G2RG
- 3. Proteus File -
- 4. EMU8086 ASM files -
- 5. Binary file after assembly -