

REGULARIZED SPATIOTEMPORAL DECONVOLUTION OF fMRI DATA USING GRAY-MATTER CONSTRAINED TOTAL VARIATION

Younes Farouj, F. Işık Karahanoğlu and Dimitri Van De Ville

IEEE International Symposium on Biomedical Imaging Melbourne, April 20, 2017

In just one slide

fMRI time series (indirect measures of neuronal activity)

The observed signal \mathbf{y} (3D+t) is a noisy version of the BOLD response $\mathbf{x}(t)$ (activity related signal):

$$\mathbf{y} = \mathbf{x} + \varepsilon$$
.

Random noise and nuisance components (fluctuations, signal drift, residual errors from motion correction, etc \cdots) \Longrightarrow Very low signal-to-noise ratio.

In just one slide

fMRI time series (indirect measures of neuronal activity)

The observed signal \mathbf{y} (3D+t) is a noisy version of the BOLD response $\mathbf{x}(t)$ (activity related signal):

$$\mathbf{y} = \mathbf{x} + \boldsymbol{\varepsilon}$$
.

Random noise and nuisance components (fluctuations, signal drift, residual errors from motion correction, etc \cdots) \Longrightarrow Very low signal-to-noise ratio.

Aim: Uncover the underlying activity from corrupted observations (preprocessing).

In just one slide

fMRI time series (indirect measures of neuronal activity)

The observed signal \mathbf{y} (3D+t) is a noisy version of the BOLD response $\mathbf{x}(t)$ (activity related signal):

$$\mathbf{y} = \mathbf{x} + \boldsymbol{\varepsilon}$$
.

Random noise and nuisance components (fluctuations, signal drift, residual errors from motion correction, etc \cdots) \Longrightarrow Very low signal-to-noise ratio.

Aim: Uncover the underlying activity from corrupted observations (preprocessing).

→ Without knowledge about timing, duration or position of neuronal events (spontaneous and resting-state activity).

BOLD modeling

Temporal modeling:

 \mathcal{H} : Linear Translation Invariant system describing the response of the neuronal system (hemodynamic response function).

BOLD modeling

Temporal modeling:

 \mathcal{H} : Linear Translation Invariant system describing the response of the neuronal system (hemodynamic response function).

 Spatial modeling: Neurons are not activated individually; clustered localized regions are evoked

BOLD modeling

Temporal modeling:

 \mathcal{H} : Linear Translation Invariant system describing the response of the neuronal system (hemodynamic response function).

 Spatial modeling: Neurons are not activated individually; clustered localized regions are evoked

→ Use of an adapted total variation.

• Generalized Linear Models (most commonly used) .

- Generalized Linear Models (most commonly used) .
- Deconvolution techniques (for exploring spontaneous activity / resting-state networks) [Gaudes-Caballero et al. 2011].

- Generalized Linear Models (most commonly used) .
- Deconvolution techniques (for exploring spontaneous activity / resting-state networks) [Gaudes-Caballero et al. 2011].
- ullet Spatio-temporal deconvolution (More robust: Takes into account spatial and temporal properties) \longrightarrow total activation (TA) of [Karahanoğlu et al. 2013].

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \mathcal{R}_{\mathcal{T}}(\mathbf{x}) + \mathcal{R}_{\mathcal{S}}(\mathbf{x}) \right\}.$$

 \mathcal{R}_T : Generalized total variation.

 \mathcal{R}_S : ℓ_2 -smoothness within regions predefined by an atlas.

- Generalized Linear Models (most commonly used) .
- Deconvolution techniques (for exploring spontaneous activity / resting-state networks) [Gaudes-Caballero et al. 2011].
- ullet Spatio-temporal deconvolution (More robust: Takes into account spatial and temporal properties) \longrightarrow total activation (TA) of [Karahanoğlu et al. 2013].

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \mathcal{R}_{\mathcal{T}}(\mathbf{x}) + \mathcal{R}_{\mathcal{S}}(\mathbf{x}) \right\}.$$

 $\mathcal{R}_{\mathcal{T}}$: Generalized total variation.

 \mathcal{R}_{S} : ℓ_{2} -smoothness within regions predefined by an atlas.

Our proposal: Construct a method that is not biased by atlas-based partitioning of the brain (extension of TA).

Proposed framework

• Temporal regularization \mathcal{R}_T :

 Δ_t : Temporal finite difference operator.

The activity-inducing signal **s** is block-type $\Longrightarrow \Delta_t\{\mathbf{s}\}$ is a sparse (innovation) signal.

This suggests using $TV\{\mathbf{s}\} = ||\Delta_t\{\mathbf{s}\}||_1$ as a regularizer.

Proposed framework

• Temporal regularization \mathcal{R}_T :

 Δ_t : Temporal finite difference operator.

The activity-inducing signal **s** is block-type $\Longrightarrow \Delta_t\{\mathbf{s}\}$ is a sparse (innovation) signal.

This suggests using $TV\{s\} = ||\Delta_t\{s\}||_1$ as a regularizer.

The BOLD signal ${\bf x}$ is given as ${\bf s}$ under the action of ${\cal H}$

 \Longrightarrow Sparsify **x**: $\Delta_L\{\mathbf{x}\}$, with $\Delta_L = \Delta_t \mathcal{H}^{-1}$.

Proposed framework

• Temporal regularization \mathcal{R}_T :

 Δ_t : Temporal finite difference operator.

The activity-inducing signal \mathbf{s} is block-type $\Longrightarrow \Delta_t\{\mathbf{s}\}$ is a sparse (innovation) signal.

This suggests using $TV\{s\} = ||\Delta_t\{s\}||_1$ as a regularizer.

The BOLD signal ${\bf x}$ is given as ${\bf s}$ under the action of ${\cal H}$

 \Longrightarrow Sparsify **x**: Δ_L {**x**}, with $\Delta_L = \Delta_t \mathcal{H}^{-1}$.

 \implies Generalized TV (GTV) of [Karahanoğlu et al. 2011]

$$\mathcal{H} = \frac{D - \gamma I}{\prod_{i=1}^4 (D - \alpha_i I)},$$
 D : Temporal derivative.

$$\mathcal{H} = \frac{D - \gamma I}{\prod_{i=1}^4 (D - \alpha_i I)},$$
 D : Temporal derivative.

 \implies Impulse response h characterized by 4 poles and 1 zeros:

$$\widehat{h} = \frac{j\omega - \gamma}{\prod_{i=1}^{4} (j\omega - \alpha_i)}$$

$$\mathcal{H} = \frac{D - \gamma I}{\prod_{i=1}^4 (D - \alpha_i I)},$$
 D : Temporal derivative.

 \implies Impulse response h characterized by 4 poles and 1 zeros:

$$\widehat{h} = \frac{j\omega - \gamma}{\prod_{i=1}^{4} (j\omega - \alpha_i)}$$

 \longrightarrow To compute $\Delta_L = \Delta_t \mathcal{H}^{-1}$, add a zero at the origin.

$$\Delta_L = \frac{D \prod_{i=1}^4 (D - \alpha_i I)}{D - \gamma I}$$

$$\mathcal{H} = \frac{D - \gamma I}{\prod_{i=1}^4 (D - \alpha_i I)},$$
 D : Temporal derivative.

 \implies Impulse response h characterized by 4 poles and 1 zeros:

$$\widehat{h} = \frac{j\omega - \gamma}{\prod_{i=1}^{4} (j\omega - \alpha_i)}$$

 \longrightarrow To compute $\Delta_L = \Delta_t \mathcal{H}^{-1}$, add a zero at the origin.

$$\Delta_L = \frac{D \prod_{i=1}^4 (D - \alpha_i I)}{D - \gamma I}$$

• Remember this regularization should be applied for all voxel:

$$\mathcal{R}_{T}(\mathbf{x}) = \sum_{v=1}^{N_{x}} \lambda_{T}(v) ||\Delta_{L}\{\mathbf{x}\}[v]||_{1},$$

 N_x : number of voxels and $\lambda_T(v)$ temporal regularization parameter for voxel v.

• Spatial regularization \mathcal{R}_S :

We expect that the activation takes place in localized clusters of the brain (gray-matter) with possibly sharp variations between them.

 \implies We restrict a 3D conventional TV-regularization on the gray-matter.

Conceptual 2D-view on gray-matter grid that is derived from the anatomical segmentation.

• Spatial regularization \mathcal{R}_S :

We expect that the activation takes place in localized clusters of the brain (gray-matter) with possibly sharp variations between them.

 \implies We restrict a 3D conventional TV-regularization on the gray-matter.

Conceptual 2D-view on gray-matter grid that is derived from the anatomical segmentation.

• At a time-point
$$t$$
: $TV^{GM}\{\mathbf{x}\}[t] = \sum_{v=1}^{N_{\mathbf{x}}} \left(\sum_{u \in \mathcal{N}_{v}} \left(\mathbf{x}[v,t] - \mathbf{x}[u,t]\right)^{2}\right)^{1/2}$, where \mathcal{N}_{v} denotes the set of neighbor voxels around v .

• Spatial regularization \mathcal{R}_S :

We expect that the activation takes place in localized clusters of the brain (gray-matter) with possibly sharp variations between them.

 \implies We restrict a 3D conventional TV-regularization on the gray-matter.

Conceptual 2D-view on gray-matter grid that is derived from the anatomical segmentation.

• At a time-point
$$t$$
: $TV^{GM}\{\mathbf{x}\}[t] = \sum_{v=1}^{N_{\mathbf{x}}} \left(\sum_{u \in \mathcal{N}_{v}} \left(\mathbf{x}[v,t] - \mathbf{x}[u,t]\right)^{2}\right)^{1/2}$, where \mathcal{N}_{v} denotes the set of neighbor voxels around v .

• Here again, the regularization should be applied for all time-points:

$$\mathcal{R}_{S}(\mathbf{x}) = \sum_{t=1}^{N_{t}} \lambda_{S}(t) \ TV^{GM}\{\mathbf{x}\}[t], \quad N_{t} : \text{number of time-points}$$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \sum_{t=1}^{N_t} \lambda_{\mathcal{S}}(t) \ TV^{GM}\{\mathbf{x}\}[t] + \sum_{v=1}^{N_x} \lambda_{\mathcal{T}}(v) ||\Delta_L\{\mathbf{x}\}[v]||_1 \right\}.$$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \underbrace{\sum_{t=1}^{N_t} \lambda_{\mathcal{S}}(t) \ TV^{GM}\{\mathbf{x}\}[t] + \sum_{v=1}^{N_x} \lambda_{\mathcal{T}}(v) \, ||\Delta_L\{\mathbf{x}\}[v]||_1}_{4D \ \text{Structured TV}} \right\}.$$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \underbrace{\sum_{t=1}^{N_t} \lambda_S(t) \ TV^{GM}\{\mathbf{x}\}[t]}_{4D \ \text{Structured TV}} + \sum_{v=1}^{N_x} \lambda_T(v) \, ||\Delta_L\{\mathbf{x}\}[v]||_1 \right\}.$$

Different operators on $\mathcal{R}_{\mathcal{S}}$ and $\mathcal{R}_{\mathcal{T}}$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{\frac{1}{2}||\mathbf{y} - \mathbf{x}||_2^2 + \underbrace{\sum_{t=1}^{N_t} \lambda_S(t) \ TV^{GM}\{\mathbf{x}\}[t] + \sum_{v=1}^{N_x} \lambda_T(v) \ ||\Delta_L\{\mathbf{x}\}[v]||_1}_{4D \ \text{Structured TV}} \right\}.$$

Different operators on $\mathcal{R}_{\mathcal{S}}$ and $\mathcal{R}_{\mathcal{T}} \Longrightarrow$ Generalized forward-backward [Raguet et al. 2013]

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \underbrace{\sum_{t=1}^{N_t} \lambda_{S}(t) \ TV^{GM}\{\mathbf{x}\}[t]}_{4D \ \text{Structured TV}} + \underbrace{\sum_{v=1}^{N_\tau} \lambda_{T}(v) ||\Delta_L\{\mathbf{x}\}[v]||_1}_{4D \ \text{Structured TV}} \right\}.$$

Different operators on $\mathcal{R}_{\mathcal{S}}$ and $\mathcal{R}_{\mathcal{T}} \Longrightarrow$ Generalized forward-backward [Raguet et al. 2013] Algorithm:

Input: Corrupted data
$$\mathbf{y}$$
, $(\omega_t, \omega_s) \in [0, 1]^2$ with $\omega_s + \omega_t = 1$
Output: Estimate $\widetilde{\mathbf{x}}$
for $k = 1 : k_{max}$ do
$$1: \ \mathbf{x}_t^k = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \mathcal{R}_T(\mathbf{x}) \right\},$$

$$2: \ \mathbf{x}_s^k = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \mathcal{R}_S(\mathbf{x}) \right\},$$

$$3: \ \mathbf{x}^k = \omega_t \mathbf{x}_t^k + \omega_s \mathbf{x}_s^k$$
end for

$$\widetilde{\mathbf{x}} = \mathbf{x}^{k_{max}}$$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \left\{ \frac{\frac{1}{2}||\mathbf{y} - \mathbf{x}||_2^2 + \underbrace{\sum_{t=1}^{N_t} \lambda_{\mathcal{S}}(t) \ TV^{GM}\{\mathbf{x}\}[t]}_{\text{4D Structured TV}} + \underbrace{\sum_{v=1}^{N_x} \lambda_{\mathcal{T}}(v) ||\Delta_{L}\{\mathbf{x}\}[v]||_1}_{\text{4D Structured TV}} \right\}.$$

Different operators on \mathcal{R}_{S} and $\mathcal{R}_{T} \Longrightarrow$ Generalized forward-backward [Raguet et al. 2013] Algorithm:

Input: Corrupted data
$$\mathbf{y}$$
, $(\omega_t, \omega_s) \in [0,1]^2$ with $\omega_s + \omega_t = 1$ Output: Estimate $\widetilde{\mathbf{x}}$ for $k=1:k_{max}$ do
$$1: \ \mathbf{x}_t^k = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \mathcal{R}_T(\mathbf{x}) \right\},$$

$$2: \ \mathbf{x}_s^k = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2} ||\mathbf{y} - \mathbf{x}||_2^2 + \mathcal{R}_S(\mathbf{x}) \right\},$$

$$3: \ \mathbf{x}^k = \omega_t \mathbf{x}_t^k + \omega_s \mathbf{x}_s^k$$
 end for
$$\widetilde{\mathbf{x}} = \mathbf{x}^{k_{max}}$$

Solve steps 1 and 2 with a forward-backward algorithm (Fast Iterative Soft-Thresholding). λ_t : Estimated from wavelet coefficients.

• FSL's simulation tool POSSUM

FSL's simulation tool POSSUM

 $\Longrightarrow \varepsilon \sim \mathcal{N}(\text{0,1})\text{, PSNR}{=}8.49\text{ dB}.$

FSL's simulation tool POSSUM

 $\Longrightarrow \varepsilon \sim \mathcal{N}(0,1)$, PSNR=8.49 dB.

Reconstructed activity-related signal x

FSL's simulation tool POSSUM

 $\Longrightarrow \varepsilon \sim \mathcal{N}(0,1)$, PSNR=8.49 dB.

Reconstructed activity-related signal x

Less artifacts outside the activation regions ⇒ Better PSNR.

FSL's simulation tool POSSUM

 $\Longrightarrow \varepsilon \sim \mathcal{N}(0,1)$, PSNR=8.49 dB.

Reconstructed activity-related signal x

- Considerable gain in running time (5*h*53*min* vs 4*h*30*min*)

• Visual stimuli:

Flickering checkerboard.

Visual stimuli:

Flickering checkerboard.

Visual cortex.

Visual stimuli:

Flickering checkerboard.

Visual cortex.

 \longrightarrow Rest periods disturbed by 9 visual stimuli of 1s at random time points.

Visual stimuli:

Flickering checkerboard.

Visual cortex.

Rest periods disturbed by 9 visual stimuli of 1s at random time points.

Recovered activity: (left) at a time point during the 2^{nd} activation, (right) within an activated area.

Visual stimuli:

Flickering checkerboard.

Visual cortex.

Rest periods disturbed by 9 visual stimuli of 1s at random time points.

→ Richness of the activity during rest (networks).

Concluding remarks

- → What I didn't talk about:
- ullet Evoked regions have high activity in the center that is vanishing towards white matter \Longrightarrow drive the process by a probability map.

Concluding remarks

- → What I didn't talk about:
- Evoked regions have high activity in the center that is vanishing towards white matter \implies drive the process by a probability map.
- → Main perspectives:
- Applying the method to large datasets of resting-state fMRI to obtain innovation-driven co-activation patterns [Karahanoğlu & Van de Ville 2015].

Concluding remarks

- → What I didn't talk about:
- Evoked regions have high activity in the center that is vanishing towards white matter

 drive the process by a probability map.
- → Main perspectives:
- ullet Applying the method to large datasets of resting-state fMRI to obtain innovation-driven co-activation patterns [Karahanoğlu & Van de Ville 2015].

• Semi-blind deconvolution: Estimating the time-to-peak and dispersion of the hemodynamic function from data.

Thanks for your attention!

Any Questions?