

SHORT NOTE ON THE CONVOLUTION OF BINOMIAL COEFFICIENTS

RUI DUARTE AND ANTÓNIO GUEDES DE OLIVEIRA

ABSTRACT. We know [1] that, for every non-negative integer numbers n, i, j and for every real number ℓ ,

$$(1) \quad \sum_{i+j=n} \binom{2i-\ell}{i} \binom{2j+\ell}{j} = \sum_{i+j=n} \binom{2i}{i} \binom{2j}{j},$$

which is well-known to be 4^n . We extend this result by proving that, indeed,

$$(2) \quad \sum_{i+j=n} \binom{ai+k-\ell}{i} \binom{aj+\ell}{j} = \sum_{i+j=n} \binom{ai+k}{i} \binom{aj}{j}$$

for every integer a and for every real k , and present new expressions for this value.

We consider the sequence $\{\binom{an}{n}\}_{n=0}^{\infty}$, where a is any integer number, negative, zero or positive, and take the convolution of this sequence with itself, defined by $P_a(n) = \sum_{i+j=n} \binom{ai}{i} \binom{aj}{j}$.

When $a = 2$, the former is sequence A000984 of [2], the central binomial coefficients, and the latter is sequence A000302 of [2], the powers of 4. In fact (cf. [1]), this can be proved directly using (1), and then the inclusion-exclusion principle. Note that

$$(3) \quad 2P_2(n) = 2^{2n+1} = \sum_{i=0}^{2n+1} \binom{2n+1}{i} = 2 \sum_{i=0}^n \binom{2n+1}{i}.$$

For another identity, define as usual $[n] = \{1, \dots, n\}$ for any natural number n , and consider the collection of the subsets of $[2n]$ with more than n elements with the same $(n+1)$ -th element, say p . Note that $p = n+1+i$ for some $i = 0, \dots, n-1$ and that there are $\binom{n+i}{n}$ 2^{n-i-1} subsets in the collection. It follows that the number of all subsets of $[2n]$ is

$$(4) \quad P_2(n) = 2^{2n} = 2 \sum_{i=0}^{n-1} 2^{n-i-1} \binom{n+i}{i} + \binom{2n}{n} = \sum_{i=0}^n 2^{n-i} \binom{n+i}{i}.$$

We generalize these identities, namely (1), (3) and (4). When $a = 3$ and $a = 4$, we have sequences A006256 and A078995 of [2], and no such simple formulas for $P_3(n)$ and $P_4(n)$ are known as in case $a = 2$. For these sequences, we obtain, for every real ℓ ,

$$\begin{aligned} \sum_{i+j=n} \binom{3i}{i} \binom{3j}{j} &= \sum_{i+j=n} 2^i \binom{3n+1}{j} = \sum_{i+j=n} 3^i \binom{2n+j}{j} = \sum_{i+j=n} \binom{3i-\ell}{i} \binom{3j+\ell}{j} \\ \sum_{i+j=n} \binom{4i}{i} \binom{4j}{j} &= \sum_{i+j=n} 3^i \binom{4n+1}{j} = \sum_{i+j=n} 4^i \binom{3n+j}{j} = \sum_{i+j=n} \binom{4i-\ell}{i} \binom{4j+\ell}{j} \end{aligned}$$

More generally we obtain the following theorem.

Date: February 11, 2013.

Theorem 1. For every non-negative integer numbers i , j and n , and for every real numbers k and ℓ ,

$$\begin{aligned} \sum_{i+j=n} \binom{ai+k-\ell}{i} \binom{aj+\ell}{j} &= \sum_{i+j=n} \binom{ai+k}{i} \binom{aj}{j} \\ (5) \quad &= \sum_{i=0}^n (a-1)^{n-i} \binom{an+k+1}{i} \end{aligned}$$

$$(6) \quad = \sum_{i=0}^n a^{n-i} \binom{(a-1)n+k+i}{i}$$

where we take $0^0 = 1$.

For the proof of this theorem we need some technical results.

Lemma 2. Let, for any real ℓ and integers a and n such that $n \geq 0$,

$$S_{a,\ell}(n) = \sum_{i=0}^n (-1)^i \binom{\ell - (a-1)i}{i} \binom{\ell - ai}{n-i}$$

Then

$$\sum_{i=0}^n \binom{n}{p} S_{a,\ell}(p) = S_{a+1,\ell+n}(n).$$

Proof.

$$\begin{aligned} \sum_{i=0}^n \binom{n}{p} S_{a,\ell}(p) &= \sum_{i=0}^n \left[(-1)^i \binom{\ell - (a-1)i}{i} \sum_{p=i}^n \binom{\ell - ai}{p-i} \binom{n}{p} \right] \\ &= \sum_{i=0}^n \left[(-1)^i \binom{\ell - (a-1)i}{i} \sum_{p=i}^n \binom{\ell - ai}{\ell - (a-1)i - p} \binom{n}{p} \right] \\ &= \sum_{i=0}^n (-1)^i \binom{\ell - (a-1)i}{i} \binom{\ell + n - ai}{\ell - (a-1)i} \\ &= \sum_{i=0}^n (-1)^i \binom{(\ell + n) - ai}{i, n-i, \ell - ai} \\ &= \sum_{i=0}^n (-1)^i \binom{(\ell + n) - ai}{i} \binom{(\ell + n) - (a+1)i}{n-i} \end{aligned}$$

where we use Vandermonde's convolution in the third equality. \square

Lemma 3. With the notation of the previous lemma,

$$S_{a,\ell}(n) = (a-1)^n.$$

Proof. First note that we may assume that ℓ is a natural number, since $S_{a,\ell}(n)$ is a polynomial in ℓ , and thus is constant. Now, suppose that $S_{a,\ell}(p) = x^p$ for some numbers a , ℓ , p and x . Then, from Lemma 2 it follows that $S_{a+1,\ell+n}(n) = (1+x)^n$. Hence, all we must prove is that $S_{a,\ell}(n) = 0$ when $a = 1$ and $\ell \in \mathbb{N}$.

For this purpose, define $\mathcal{A} = \mathcal{A}_\emptyset$ as the set of n -subsets of the set $[\ell] = \{1, 2, \dots, \ell\}$ and, for every non-empty subset T of $[\ell]$, $\mathcal{A}_T = \{A \in \mathcal{A} \mid A \cap T = \emptyset\}$. Now, the result follows immediately from the inclusion-exclusion principle applied to this family. \square

Lemma 4. Let s and t be positive integers. Then

$$\binom{s+t+1}{j} = \sum_{i=0}^j \binom{s-i}{s-j} \binom{t+i}{i}.$$

Proof. Given a subset S of $[n]$ with k elements and $p \in [n] \setminus S$, let $\text{Bef}_p(S) = S \cap [p-1]$ and $\text{Aft}_p(S) = \{t \in [n-p] \mid t+p \in S\}$.

Now, let A be a subset of $[s+t+1]$ with j elements and $p(A)$ be the $s-j+1$ smallest element of $[s+t+1]$ which is not in A . In other words, $\#\{x \in A \mid x < p(A)\} = j-i$ and $\#\{x \in A \mid x > p(A)\} = i$. One can easily see that the mapping

$$\begin{aligned} \varphi : \quad \mathcal{P}_j([s+t+1]) &\rightarrow \bigcup_{0 \leq i \leq j} \mathcal{P}_{j-i}([s-i]) \times \mathcal{P}_i([t+i]) \\ A &\mapsto (\text{Bef}_{p(A)}(A), \text{Aft}_{p(A)}(A)) \end{aligned}$$

is a bijection, with inverse given by $\psi(B, C) = B \cup \{c + \#C \mid c \in C\}$, and the union is disjoint. \square

Proof of Theorem 1. Let $\mathfrak{S} = \sum_{i+j=n} \binom{a i+k-\ell}{i} \binom{a j+\ell}{j} = \sum_{i+j=n} (-1)^i \binom{\ell-k'-(a-1)i}{i} \binom{a n+\ell-a i}{j}$, with $k' = k+1$. Then, by Vandermonde's convolution,

$$\begin{aligned} \mathfrak{S} &= \sum_{i+j=n} \left[(-1)^i \binom{\ell-k'-(a-1)i}{i} \sum_{p+m=j} \binom{a n+k'}{p} \binom{\ell-k'-a i}{m} \right] \\ &= \sum_{p=0}^n \left[\binom{a n+k'}{p} \sum_{i+m=n-p} (-1)^i \binom{\ell-k'-(a-1)i}{i} \binom{\ell-k'-a i}{m} \right] \end{aligned}$$

Now, (5) follows immediately from Lemma 3 and (6) from Lemma 4. \square

We end this article with a new result that, when we represent by $\binom{n}{k}$ the number $\binom{n+k-1}{k}$ of k -multisets of elements of an n -set, can be formulated in the following elegant terms.

Theorem 5. For every real ℓ and integers a, n, i, j such that $n, i, j \geq 0$,

$$\sum_{i+j=n} (-1)^i \binom{\ell-a i}{i} \binom{\ell-a i}{j} = a(a-1)^{n-1}.$$

Proof. By Pascal's rule,

$$\begin{aligned} \sum_{i+j=n} (-1)^i \binom{\ell-1-(a-1)i}{i} \binom{\ell-a i}{j} &= \sum_{i=0}^n (-1)^i \binom{\ell-(a-1)i}{i} \binom{\ell-a i}{n-i} \\ &\quad - \sum_{i=1}^n (-1)^i \binom{\ell-(a-1)i-1}{i-1} \binom{\ell-a i}{n-i} \\ &= S_{a,\ell}(n) + S_{a,\ell-a}(n-1) \end{aligned}$$

\square

Problem 6. Give a full combinatorial proof of Theorem 5.

Acknowledgments. The work of both authors was supported in part by the European Regional Development Fund through the program COMPETE –Operational Programme Factors of Competitiveness (“Programa Operacional Factores de Competitividade”) - and by the Portuguese Government through FCT – Fundação para a Ciência e a Tecnologia, under the projects PEst-C/MAT/UI0144/2011 and PEst-C/MAT/UI4106/2011.

REFERENCES

- [1] Rui Duarte and António Guedes de Oliveira, New developments of an old identity, manuscript [arXiv:1203.5424](https://arxiv.org/abs/1203.5424), submitted.
- [2] N.J.A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, published electronically at <http://oeis.org>, 2011.
- [3] Richard Stanley, *Enumerative Combinatorics*, Vol. 1, Cambridge Studies in Advanced Mathematics **49** Cambridge University Press, Cambridge, 1997.

CENTER FOR RESEARCH AND DEVELOPMENT IN MATHEMATICS AND APPLICATIONS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AVEIRO

E-mail address: rduarte@ua.pt

CMUP AND MATHEMATICS DEPARTMENT, FACULTY OF SCIENCES, UNIVERSITY OF PORTO

E-mail address: agoliv@fc.up.pt