Results Screenshots:


```
### Missing values (-) in the dataset
     print('Missing values in the dataset:\n')
     for each_column in dataset.columns:
         print('Column: {} - {}'.format(each_column, list(dataset[each_column]).count('-')))
Missing values in the dataset:
    Column: ID - 0
    Column: Price - 0
    Column: Levy - 5819
    Column: Manufacturer - 0
    Column: Model - 0
    Column: Prod. year - 0
    Column: Category - 0
Column: Leather interior - 0
    Column: Fuel type - 0
    Column: Engine volume - 0
    Column: Mileage - 0
    Column: Cylinders - 0
    Column: Gear box type - 0
    Column: Drive wheels - 0
     Column: Doors - 0
    Column: Wheel - 0
    Column: Color - 0
    Column: Airbags - 0
From the above dataset, we can see that there are missing values in the column - Levy.
```


[69]	dataset	.iloc[outl	iers_to	_drop, :															
		ID	Price	Levy	Manufacturer	Model	Prod. year	Category	Leather interior	Fuel type	Engine volume	Mileage	Cylinders	Gear box type	Drive wheels	Doors	Wheel	Color	Air
	90	45807330		1604.0	MERCEDES- BENZ	GL 63 AMG	2014	Jeep	Yes	Petrol	5.5	433811.0	8.0	Automatic	4x4	04- May	Left wheel	Black	
	211	45156280	72130	1885.0	PORSCHE	Panamera	2010	Hatchback	Yes	Petrol	4.8	196800.0	8.0	Tiptronic	4x4	04- May	Left wheel	White	
	420	45763904	81539	1935.0	LEXUS	GX 460	2016	Jeep	Yes	Petrol	4.6	155976.0	8.0	Automatic	4x4	04- May	Left wheel	White	
	483	45761340	69935	1646.0	LEXUS	GX 470	2015	Jeep	Yes	Petrol	4.6	273493.0	8.0	Automatic	4x4	04- May	Left wheel	Silver	
	573		119172	1301.0	BMW	М6	2014	Coupe	Yes	Petrol	4.4	33500.0	8.0	Tiptronic	Rear	04- May	Left wheel	White	
	7272	45416515	35438	NaN	BMW		2009	Jeep	Yes	Petrol	4.4	960000.0	8.0	Tiptronic	4x4	04- May	Left wheel	Silver	
	9114	45813297	31988	3015.0	FERRARI	F50	2017	Coupe	Yes	Petrol	6.3	419200.0	12.0	Automatic	Rear	02- Mar	Left wheel	Silver	
	10973	45416515	35438	NaN	BMW		2009	Jeep	Yes	Petrol	4.4	960000.0	8.0	Tiptronic	4x4	04- May	Left wheel	Silver	
	13850	45796827	1000	NaN	MERCEDES- BENZ	GLS 63 AMG	2014	Sedan	Yes	Petrol	6.3	748742.0	1.0	Manual	Front	02- Mar	Left wheel	Black	
	15665	45806588	706	1086.0	DODGE	Avenger	2012	Sedan	Yes	Petrol	3.6	667058.0	6.0	Automatic	Front	04- May	Left wheel	Blue	В
	270 rows	× 18 colum	ns																Ľ

```
print("Before: {} rows".format(len(dataset)))
dataset = dataset.drop(outliers_to_drop, axis = 0).reset_index(drop = True)
print("After: {} rows".format(len(dataset)))

Before: 19237 rows
After: 18967 rows
```

(71)	### Let	s look at	the new	v datase	t														
	dataset																		
		ID	Price	Levy	Manufacturer	Model	Prod. year	Category	Leather interior	Fuel type	Engine volume	Mileage	Cylinders	Gear box type	Drive wheels	Doors	Whee1	Color	Airba
		45654403	13328	1399.0	LEXUS	RX 450	2010	Jeep	Yes	Hybrid		186005.0	6.0	Automatic	4x4	04- May	Left wheel	Silver	
		44731507	16621	1018.0	CHEVROLET	Equinox	2011	Jeep	No	Petrol	3.0	192000.0	6.0	Tiptronic	4x4		Left wheel	Black	
		45774419	8467	NaN	HONDA		2006	Hatchback	No	Petrol	1.3	200000.0	4.0	Variator	Front	04- May	Right- hand drive	Black	
		45769185	3607	862.0	FORD	Escape	2011	Jeep	Yes	Hybrid	2.5	168966.0	4.0	Automatic	4x4	04- May	Left wheel	White	
		45809263	11726	446.0	HONDA		2014	Hatchback	Yes	Petrol	1.3	91901.0	4.0	Automatic	Front	04- May	Left wheel	Silver	
	18962	45798355	8467	NaN	MERCEDES- BENZ	CLK 200	1999	Coupe	Yes	CNG		300000.0	4.0	Manual	Rear	02- Mar	Left wheel	Silver	
	18963	45778856	15681	831.0	HYUNDAI	Sonata	2011	Sedan	Yes	Petrol	2.4	161600.0	4.0	Tiptronic	Front	04- May	Left wheel	Red	
	18964	45804997	26108	836.0	HYUNDAI	Tucson	2010	Jeep	Yes	Diesel		116365.0	4.0	Automatic	Front	04- May	Left wheel	Grey	
	18965	45793526	5331	1288.0	CHEVROLET	Captiva	2007	Jeep	Yes	Diesel	2.0	51258.0	4.0	Automatic	Front	04- May	Left wheel	Black	
	18966	45813273	470	753.0	HYUNDAI	Sonata	2012	Sedan	Yes	Hybrid	2.4	186923.0	4.0	Automatic	Front	04-	Left	White	В

```
fuel_type_data = dataset['Fuel type']
new_fuel_type_data = []

for value in fuel_type_data:
    if value in {'Hybrid', 'Hydrogen', 'Plug-in Hybrid'}:
        new_fuel_type_data.append('Other')
    else:
        new_fuel_type_data.append(value)

set(new_fuel_type_data)

{'CNG', 'Diesel', 'LPG', 'Other', 'Petrol'}

/[88] ### Modifying the Fuel Type column
dataset['Fuel type'] = new_fuel_type_data
```

(### Loc	king at	the mo	dified datas	et								
	dataset												
C →		Price	Levy	Prod. year	Category	Fuel type	Engine volume	Mileage	Cylinders	Gear box type	Doors	Wheel	Airbags
	0	13328	1399.0	2010		Other	3.5	186005.0	6.0	Automatic	04-May	Left wheel	12
		16621	1018.0	2011		Petrol	3.0	192000.0	6.0	Tiptronic	04-May	Left wheel	
	2	8467	781.0	2006		Petrol	1.3	200000.0	4.0	Variator	04-May	Right-hand drive	
	3	3607	862.0	2011		Other	2.5	168966.0	4.0	Automatic	04-May	Left wheel	
	4	11726	446.0	2014		Petrol	1.3	91901.0	4.0	Automatic	04-May	Left wheel	
	18962	8467	781.0	1999		CNG	2.0	300000.0	4.0	Manual	02-Mar	Left wheel	
	18963	15681	831.0	2011		Petrol	2.4	161600.0	4.0	Tiptronic	04-May	Left wheel	
	18964	26108	836.0	2010		Diesel	2.0	116365.0	4.0	Automatic	04-May	Left wheel	
	18965	5331	1288.0	2007		Diesel	2.0	51258.0	4.0	Automatic	04-May	Left wheel	
	18966	470	753.0	2012		Other	2.4	186923.0	4.0	Automatic	04-May	Left wheel	12
	18967 rd	ws × 12	columns										

```
[90] ### Seperating the categories into class 1 and 2

gear_box_data = dataset['Gear box type']
new_gear_box_data = []

for value in gear_box_data:
    if value in {'Automatic', 'Variator'}:
        new_gear_box_data.append(1)
    else:
        new_gear_box_data.append(2)

set(new_gear_box_data)

{1, 2}

/ [91] ### Modifying the Gear box type column
dataset['Gear box type'] = new_gear_box_data
```

dataset												
	Price	Levy	Prod. year	Category	Fuel type	Engine volume	Mileage	Cylinders	Gear box type	Doors	Wheel	Airbags
0	13328	1399.0	2010		Other	3.5	186005.0	6.0		04-May	Left wheel	12
	16621	1018.0	2011		Petrol	3.0	192000.0	6.0		04-May	Left wheel	
2	8467	781.0	2006		Petrol	1.3	200000.0	4.0		04-May	Right-hand drive	
3	3607	862.0	2011		Other	2.5	168966.0	4.0		04-May	Left wheel	
4	11726	446.0	2014		Petrol	1.3	91901.0	4.0		04-May	Left wheel	
18962	8467	781.0	1999		CNG	2.0	300000.0	4.0		02-Mar	Left wheel	
18963	15681	831.0	2011		Petrol	2.4	161600.0	4.0		04-May	Left wheel	
18964	26108	836.0	2010		Diesel	2.0	116365.0	4.0		04-May	Left wheel	
18965	5331	1288.0	2007		Diesel	2.0	51258.0	4.0		04-May	Left wheel	
18966	470	753.0	2012		Other	2.4	186923.0	4.0		04-May	Left wheel	12

```
[94] ### Creating the new Doors data

doors_data = dataset['Doors']
  new_doors_data = []

for value in doors_data:
    if value == '04-May':
        new_doors_data.append('4-5')
    elif value == '02-Mar':
        new_doors_data.append('2-3')
    else:
        new_doors_data.append(value)

set(new_doors_data)

[> {'2-3', '4-5', '>5'}

[95] ### Modifying the Doors column

dataset['Doors'] = new_doors_data
```

Price Levy Prod. year Category Fuel type Engine volume Mileage Cylinders Gear box type Doors Wheel Airbags 0 13328 1399.0 2010 2 Other 3.8 186095.0 6.0 - 1 4.5 Left wheel 12 1 16621 1018.0 2011 2 Petrol - 3.0000.0 6.0 - 4.5 Left wheel 8 2 8467 781.0 2001 1 Petrol 1.3 20000.0 4.0 - 1 4.5 Right-hand drive 2 3 3607 862.0 2011 1 Petrol - 1.8 4.0 - 1 4.5 Left wheel 0 4 11726 446.0 2014 1 Petrol 1 - - - - - - - - - - - - - - -		dataset												
1 16621 1018.0 2011 2 Petrol 3.0 192000.0 6.0 2 4-5 Left wheel 8 2 8467 781.0 2006 1 Petrol 1.3 200000.0 4.0 1 4-5 Right-hand drive 2 3 3607 862.0 2011 2 Other 2.5 168966.0 4.0 1 4-5 Left wheel 0 4 11726 446.0 2014 1 Petrol 1.3 91901.0 4.0 1 4-5 Left wheel 4 <th>₽</th> <th></th> <th>Price</th> <th>Levy</th> <th>Prod. year</th> <th>Category</th> <th>Fuel type</th> <th>Engine volume</th> <th>Mileage</th> <th>Cylinders</th> <th>Gear box type</th> <th>Doors</th> <th>Wheel</th> <th>Airbags</th>	₽		Price	Levy	Prod. year	Category	Fuel type	Engine volume	Mileage	Cylinders	Gear box type	Doors	Wheel	Airbags
2 8467 781.0 2006 1 Petrol 1.3 200000.0 4.0 1 4-5 Right-hand drive 2 3 3607 862.0 2011 2 Other 2.5 168966.0 4.0 1 4-5 Left wheel 0 4 11726 446.0 2014 1 Petrol 1.3 91901.0 4.0 1 4-5 Left wheel 4 .		0	13328	1399.0	2010		Other	3.5	186005.0	6.0		4-5	Left wheel	
3 3607 862.0 2011 2 Other 2.5 168966.0 4.0 1 4-5 Left wheel 0 4 11726 446.0 2014 1 Petrol 1.3 91901.0 4.0 1 4-5 Left wheel 4			16621	1018.0	2011		Petrol	3.0	192000.0	6.0		4-5	Left wheel	
4 11726 446.0 2014 1 Petrol 1.3 91901.0 4.0 1 4-5 Left wheel 4		2	8467	781.0	2006		Petrol	1.3	200000.0	4.0		4-5	Right-hand drive	
IN INSTALL CONTRACT CONTRA		3	3607	862.0	2011		Other	2.5	168966.0	4.0		4-5	Left wheel	
18962 8467 781.0 1999 2 CNG 2.0 300000.0 4.0 2 2-3 Left wheel 5 18963 15681 831.0 2011 1 Petrol 2.4 161600.0 4.0 2 4-5 Left wheel 8 18964 26108 836.0 2010 2 Diesel 2.0 116365.0 4.0 1 4-5 Left wheel 4 18965 5331 1288.0 2007 2 Diesel 2.0 51258.0 4.0 1 4-5 Left wheel 4		4	11726	446.0	2014		Petrol	1.3	91901.0	4.0		4-5	Left wheel	
18963 15681 831.0 2011 1 Petrol 2.4 161600.0 4.0 2 4-5 Left wheel 8 18964 26108 836.0 2010 2 Diesel 2.0 116365.0 4.0 1 4-5 Left wheel 4 18965 5331 1288.0 2007 2 Diesel 2.0 51258.0 4.0 1 4-5 Left wheel 4														
18964 26108 836.0 2010 2 Diesel 2.0 116365.0 4.0 1 4-5 Left wheel 4 18965 5331 1288.0 2007 2 Diesel 2.0 51258.0 4.0 1 4-5 Left wheel 4		18962	8467	781.0	1999		CNG	2.0	300000.0	4.0		2-3	Left wheel	
18965 5331 1288.0 2007 2 Diesel 2.0 51258.0 4.0 1 4-5 Left wheel 4		18963	15681	831.0	2011		Petrol	2.4	161600.0	4.0		4-5	Left wheel	
		18964	26108	836.0	2010		Diesel	2.0	116365.0	4.0		4-5	Left wheel	
18966 470 753.0 2012 1 Other 2.4 186923.0 4.0 1 4-5 Left wheel 12		18965	5331	1288.0	2007		Diesel	2.0	51258.0	4.0		4-5	Left wheel	
		18966	470	753.0	2012		Other	2.4	186923.0	4.0		4-5	Left wheel	12

```
+ Code
[97] ### Creating the Age data
      year_data = dataset['Prod. year']
      age_data = []
      for value in year_data:
          age_data.append(2022 - value)
      len(set(age_data))
[98] ### Creating the Age column
      dataset['Age'] = age_data
[99] ### Removing the Prod. year column
      dataset.drop(['Prod. year'], axis = 1, inplace = True)
▶ ### Looking at the modified dataset
   dataset
        Price Levy Category Fuel type Engine volume Mileage Cylinders Gear box type Doors
                                                                               Wheel Airbags Age
                                                                               Left wheel
                                          1.3 200000.0
                                                                        4-5 Right-hand drive
```

2.5 168966.0

2.0 300000 0

Diesel

Other

18962 8467 781.0 **18963** 15681 831.0

18967 rows × 12 columns

18966

Left wheel

Left wheel

Left wheel

Left wheel

One Hot Encoding the columns - Category, Fuel type, Gear box type, Doors, Minel of the dataset encoded_dataset = pd.get_dummics(data = dataset, columns = ['Category', 'Fuel type', 'Gear box type', 'Doors', 'Mheel'])

| Price | Levy | Engine | Mileage | Cylinders | Airbags | Age | Category | Category | Category | Category | Engine | Type_LPG | Type_LPG | Type_Other | Type_Petrol | Type_Pe

[114] ### Create the column - Target using Price
 target_data = encoded_dataset['Price']
 encoded_dataset['Target'] = target_data
 ### Dropping the column - Price

encoded_dataset.drop(['Price'], axis = 1, inplace = True)
encoded_dataset

	Levy	Engine volume	Mileage	Cylinders	Airbags	Age	Category_1	Category_2	Fuel type_CNG	Fuel type_Diesel	Fuel type_Other	Fuel type_Petrol	Gear box type_1	Gear box type_2	Doo
	0.629677	0.658421	0.179513	0.333333	0.7500	0.479728									
	0.566695	0.628821	0.180635	0.333333	0.5000	0.456381									
	0.512535	0.469937	0.182087	0.200000	0.1250	0.556958									
	0.532881	0.593937	0.176152	0.200000	0.0000	0.456381									
	0.392874	0.469937	0.156094	0.200000	0.2500	0.370976									
18962	0.512535	0.551429	0.197086	0.200000	0.3125	0.654463									
18963	0.525355	0.586145	0.174611	0.200000	0.5000	0.456381									
18964	0.526589	0.551429	0.163619	0.200000	0.2500	0.479728									-1
18965	0.613505	0.551429	0.138741	0.200000	0.2500	0.539627									
18966	0.504954	0.586145	0.179686	0.200000	0.7500	0.430812									
18967 r	ows × 21 col	umns													В

```
### Plotting the correlation between various columns of the filter_dataset
      plt.figure(figsize = (6, 6))
      heatmap = sns.heatmap(filter_dataset.corr(), vmin = -1, vmax = 1, annot = True)
heatmap.set_title('Correlation Heatmap', fontdict = {'fontsize' : 12}, pad = 12)
Text(0.5, 1.0, 'Correlation Heatmap')
                                   Correlation Heatmap
                                                                               - 1.00
                Levy - 1
                                       0.00061
                                                                               - 0.75
       Engine volume -
                                  1
                                                  0.7
                                                                               - 0.50
                                                                               - 0.25
             Mileage -0.00061 0.075
                                           1
                                                                               - 0.00
            Cylinders
                                 0.7
                                                   1
                                                                               - -0.25
                                                           1
              Airbags -
                                                                               -0.50
                                                                                 -0.75
                                                          -0.22
                                                                    1
                 Age
                                                                                -1.00
                                          Mileage
                                                           Airbags .
                         Levy
                                                                   Age
                                                  Cylinders
                                  Engine volume
```

```
[120] ### Splitting the dataset to the matrices X and Y
         X = encoded_dataset.iloc[:, : -1].values
         Y = encoded_dataset.iloc[:, -1].values
 [121] ### Looking at the new training data - X
         array([[0.62967695, 0.65842071, 0.17951255, ..., 0.
                   0.
                  [0.56669518, 0.62882066, 0.18063451, ..., 0.
                  0.
                  [0.51253544, 0.46993749, 0.18208737, ..., 0.
                                                                                  , 0.
                  [0.52658936, 0.55142852, 0.16361879, ..., 0.
                  [0.61350496, 0.55142852, 0.1387409 , ..., 0.
                  0.
                  [0.50495351, 0.58614549, 0.17968628, ..., 0.
0. ]])
                                                                                , 1.
[122] ### Looking at the new test data - Y
         Υ
         array([49.47443883, 52.93047067, 43.0231844, ..., 60.71683673,
                  37.25317749, 16.83787204])
 [123] ### Dividing the dataset into train and test in the ratio of 80 : 20
     X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 27, shuffle = True)
                                                   + Code + Text
 X train
          [0.51253544, 0.55142852, 0.16212153, ..., 0.
          [0.54507973, 0.62882066, 0.18728915, ..., 0.
          0. ],
[0.51253544, 0.53142795, 0.15057149, ..., 0.
0. ]])
[125] X_test
          ..., [, [, [, 5,9987646, 0.58614549, 0. , ..., 0. ], [0.44311923, 0.48390293, 0.15367126, ..., 0. ],
          [0.50824049, 0.55142852, 0.16160244, ..., 0.
          0. ],
[0.61212663, 0.4969244 , 0.05441558, ..., 0.
0. ]])
  [126] Y_train
          array([55.24763947, 36.04751909, 16.83787204, ..., 50.00365691, 29.6349931 , 55.79245286])
/ [127] Y_test
          array([57.8565661 , 53.97325547, 62.08268892, ..., 20.04504146, 45.774181 , 11.16801217])
```

```
    5.2.1 Applying Multi Linear Regression

  [130] ### Training the Multi Linear Regression model on the Training set
        linear regressor = LinearRegression()
        linear_regressor.fit(X_train, Y_train)
        LinearRegression()
  [131] ### Predicting the Test set results
        Y_pred = linear_regressor.predict(X_test)
  [132] ### Calculating RMSE and Adjusted R-squared for the model
        mse = round(mean_squared_error(Y_test, Y_pred), 3)
        rmse = round(sqrt(mse), 3)
        r2_value = round(r2_score(Y_test, Y_pred), 3)
        model_rmse['Multi Linear Regression'] = rmse
        model_r2['Multi Linear Regression'] = r2_value
        print('Root Mean Squared Error of the model is : {}'.format(rmse))
        print('R-squared value of the model is : {}'.format(r2_value))
        Root Mean Squared Error of the model is : 15.269
        R-squared value of the model is: 0.216
5.2.2 Applying Lasso Regression
[133] ### Training the Lasso Regression model on the Training set
     lasso = Lasso()
     parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1, 5, 10, 20, 30, 35, 40, 45, 50, 55, 100]}
     lasso_regressor = GridSearchCV(lasso, parameters, scoring = 'neg_mean_squared_error', cv = 5)
     lasso_regressor.fit(X_train, Y_train)
     GridSearchCV(cv=5, estimator=Lasso(),
                param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.001, 0.01, 1, 5, 10,
                20, 30, 35, 40, 45, 50, 55, 100]}, scoring='neg_mean_squared_error')
[134] # Finding out negative mean squared error in Lasso Regression
```

print(lasso_regressor.best_params_)
print(lasso_regressor.best_score_)

[135] ### Predicting the Test set results

Y_pred = lasso_regressor.predict(X_test)

{'alpha': 0.001} -250.45196068544993

```
[136] ### Calculating RMSE and Adjusted R-squared for the model

mse = round(mean_squared_error(Y_test, Y_pred), 3)

rmse = round(sqrt(mse), 3)

r2_value = round(r2_score(Y_test, Y_pred), 3)

model_rmse['Lasso Regression'] = rmse
model_r2['Lasso Regression'] = r2_value

print('Root Mean Squared Error of the model is : {}'.format(rmse))
print('R-squared value of the model is : {}'.format(r2_value))

Root Mean Squared Error of the model is : 15.269
R-squared value of the model is : 0.216
```

5.2.4 Applying Support Vector Regression [137] ### Training the Support Vector Regression model on the Training set support_vector_regressor = SVR(kernel = 'rbf') support vector regressor.fit(X train, Y train) SVR() [138] ### Predicting the Test set results Y_pred = support_vector_regressor.predict(X_test) [139] ### Calculating RMSE and Adjusted R-squared for the model mse = round(mean_squared_error(Y_test, Y_pred), 3) rmse = round(sqrt(mse), 3) r2_value = round(r2_score(Y_test, Y_pred), 3) model_rmse['Support Vector Regression'] = rmse model_r2['Support Vector Regression'] = r2_value print('Root Mean Squared Error of the model is : {}'.format(rmse)) print('R-squared value of the model is : {}'.format(r2_value)) Root Mean Squared Error of the model is : 14.105 R-squared value of the model is: 0.331

```
    5.2.6 Applying Random Forest Regression (10 trees)

 [140] ### Training the Random Forest Regression model on the Training set
       random_forest_regressor = RandomForestRegressor(n_estimators = 10, random_state = 27)
       random_forest_regressor.fit(X_train, Y_train)
       RandomForestRegressor(n_estimators=10, random_state=27)
 [141] ### Predicting the Test set results
       Y_pred = random_forest_regressor.predict(X_test)
 [142] ### Calculating RMSE and Adjusted R-squared for the model
       mse = round(mean_squared_error(Y_test, Y_pred), 3)
       rmse = round(sqrt(mse), 3)
       r2_value = round(r2_score(Y_test, Y_pred), 3)
       model_rmse['Random Forest Regression (10 trees)'] = rmse
       model_r2['Random Forest Regression (10 trees)'] = r2_value
       print('Root Mean Squared Error of the model is : {}'.format(rmse))
       print('R-squared value of the model is : {}'.format(r2_value))
       Root Mean Squared Error of the model is : 10.62
       R-squared value of the model is: 0.621
```

```
    5.2.7 Applying Random Forest Regression (25 trees)

[143] ### Training the Random Forest Regression model on the Training set
       random_forest_regressor = RandomForestRegressor(n_estimators = 25, random_state = 27)
       random_forest_regressor.fit(X_train, Y_train)
       RandomForestRegressor(n_estimators=25, random_state=27)
 [144] ### Predicting the Test set results
       Y_pred = random_forest_regressor.predict(X_test)
 [145] ### Calculating RMSE and Adjusted R-squared for the model
       mse = round(mean_squared_error(Y_test, Y_pred), 3)
       rmse = round(sqrt(mse), 3)
       r2_value = round(r2_score(Y_test, Y_pred), 3)
       model_rmse['Random Forest Regression (25 trees)'] = rmse
       model_r2['Random Forest Regression (25 trees)'] = r2_value
       print('Root Mean Squared Error of the model is : {}'.format(rmse))
       print('R-squared value of the model is : {}'.format(r2_value))
       Root Mean Squared Error of the model is : 10.324
       R-squared value of the model is: 0.642
```

```
    5.2.8 Applying Random Forest Regression (50 trees)

^{\prime}[\,
m I\!\!I\!\!I}] ### Training the Random Forest Regression model on the Training set
       random_forest_regressor = RandomForestRegressor(n_estimators = 50, random_state = 27)
       random_forest_regressor.fit(X_train, Y_train)
   RandomForestRegressor(n_estimators=50, random_state=27)
                                                                          + Code | + Text
 [147] ### Predicting the Test set results
       Y_pred = random_forest_regressor.predict(X_test)
 [148] ### Calculating RMSE and Adjusted R-squared for the model
       mse = round(mean_squared_error(Y_test, Y_pred), 3)
       rmse = round(sqrt(mse), 3)
       r2_value = round(r2_score(Y_test, Y_pred), 3)
       model_rmse['Random Forest Regression (50 trees)'] = rmse
       model_r2['Random Forest Regression (50 trees)'] = r2_value
       print('Root Mean Squared Error of the model is : {}'.format(rmse))
       print('R-squared value of the model is : {}'.format(r2_value))
       Root Mean Squared Error of the model is : 10.149
       R-squared value of the model is: 0.654
```

5.2.9 Applying Random Forest Regression (100 trees) [149] ### Training the Random Forest Regression model on the Training set random_forest_regressor = RandomForestRegressor(n_estimators = 100, random_state = 27) random_forest_regressor.fit(X_train, Y_train) RandomForestRegressor(random_state=27) [150] ### Predicting the Test set results Y_pred = random_forest_regressor.predict(X_test) [151] ### Calculating RMSE and Adjusted R-squared for the model mse = round(mean_squared_error(Y_test, Y_pred), 3) rmse = round(sqrt(mse), 3) r2_value = round(r2_score(Y_test, Y_pred), 3) model_rmse['Random Forest Regression (100 trees)'] = rmse model_r2['Random Forest Regression (100 trees)'] = r2_value print('Root Mean Squared Error of the model is : {}'.format(rmse)) print('R-squared value of the model is : {}'.format(r2_value)) Root Mean Squared Error of the model is : 10.091

R-squared value of the model is: 0.658

5.2.10 Applying Random Forest Regression (1000 trees) [152] ### Training the Random Forest Regression model on the Training set random_forest_regressor = RandomForestRegressor(n_estimators = 1000, random_state = 27) random forest regressor.fit(X train, Y train) RandomForestRegressor(n_estimators=1000, random_state=27) [153] ### Predicting the Test set results Y_pred = random_forest_regressor.predict(X_test) [154] ### Calculating RMSE and Adjusted R-squared for the model mse = round(mean_squared_error(Y_test, Y_pred), 3) rmse = round(sqrt(mse), 3) r2_value = round(r2_score(Y_test, Y_pred), 3) model_rmse['Random Forest Regression (1000 trees)'] = rmse model_r2['Random Forest Regression (1000 trees)'] = r2_value print('Root Mean Squared Error of the model is : {}'.format(rmse)) print('R-squared value of the model is : {}'.format(r2_value)) Root Mean Squared Error of the model is : 10.04 R-squared value of the model is: 0.661 5.3.1 RMSE, R-squared of the models Now we will tabulate all the models along with their rmse, r-squared. This data is stored in the model_performance dictionary. We will use the tabulate package for tabulating the results. [155] ### Looking at the model rmse dictionary model rmse (Lasso Regression , 15.209), ('Support Vector Regression', 14.105), ('Random Forest Regression (10 trees)', 10.62), ('Random Forest Regression (25 trees)', 10.324), ('Random Forest Regression (50 trees)', 10.149), ('Random Forest Regression (1000 trees)', 10.091), ('Random Forest Regression (1000 trees)', 10.04)]) [156] ### Looking at the model r-squared dictionary model r2 OrderedDict([('Multi Linear Regression', 0.216), [('Multi Linear Regression', 0.216), ('Lasso Regression', 0.216), ('Support Vector Regression', 0.331), ('Random Forest Regression (10 trees)', 0.621), ('Random Forest Regression (25 trees)', 0.642), ('Random Forest Regression (50 trees)', 0.654), ('Random Forest Regression (100 trees)', 0.658), ('Random Forest Regression (1000 trees)', 0.661)])

```
### Tabulating the results
    table.append(['S.No.', 'Classification Model', 'Root Mean Squared Error', 'R-squared'])
    for model in model_rmse:
    row = [count, model, model_rmse[model], model_r2[model]]
        table.append(row)
    print(tabulate(table, headers = 'firstrow', tablefmt = 'fancy_grid'))
        S.No. Classification Model
           1 Multi Linear Regression
                                                                          15.269
                                                                                       0.216
           2 Lasso Regression
           3 Support Vector Regression
          4 Random Forest Regression (10 trees)
           5 Random Forest Regression (25 trees)
           6 Random Forest Regression (50 trees)
            7 Random Forest Regression (100 trees)
            8 Random Forest Regression (1000 trees)
From the above table, we can see that the model Random Forest Regression (1000 trees) has the least Root Mean Squared Error of 10.043 and
```

Random forest model prediction

```
[158] X test[0]
    ,
])
 [159] random_forest_regressor.predict(X_test[0].reshape(1,-1))
     array([32.88202831])

    6. Conclusion
```

Hence, for this problem, we will use Random Forest regressor to predict the Sales Price.