Linguagens Formais e Autômatos

Aula 26 - O problema da parada da Máquina de Turing

> Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 9 Seção 9.2
- Introdução à teoria da computação / Michael Sipser; tradução técnica
 Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira. -São Paulo: Thomson Learning, 2007 (Título original: Introduction to the
 theory of computation. "Tradução da segunda edição norte-americana" ISBN 978-85-221-0499-4)
 - Capítulo 4 Seção 4.2

Um problema indecidível que é RE

- Agora iremos refinar a estrutura das linguagens RE (ou Turing-reconhecíveis)
- Dividiremos em duas classes:
 - Algoritmos: problemas para os quais existe uma MT que reconhece a linguagem, mas também reconhece (decide) as cadeias que não pertencem à linguagem.
 - São as MTs que sempre param, independente do fato de alcançar ou não um estado de aceitação
 - Linguagens RE que não são aceitas por nenhuma máquina de Turing com garantia de parada
 - Inconvenientes: se a entrada estiver na linguagem, saberemos disso mas, se a entrada não estiver na linguagem, a MT poderá continuar funcionando para sempre, e nunca teremos certeza de que a entrada não será aceita mais tarde

Hierarquia de linguagens

Existe uma MT que sempre para (decisor) Não existe MT Não-recursivamente enumeráveis Existe uma MT, mas ela pode entrar em loop (reconhecedor) Turing-reconhecíveis ou recursivamente Ld enumeráveis Decidíveis ou recursivas Sensíveis ao Ld contexto está Livres de aqui! contexto Regulares Agora veremos um exemplo de uma linguagem aqui

Linguagens recursivas

- Uma linguagem L é recursiva se L = L(M) para alguma máquina de Turing M tal que:
 - Se w está em L, então M aceita (e portanto para)
 - Se w não está em L, então M para eventualmente, embora nunca entre em um estado de aceitação
- Uma MT desse tipo corresponde à nossa noção informal de um "algoritmo"
 - Nesse caso, L é um "problema" decidível, ou seja, existe um algoritmo que o resolve
- Na prática, a divisão entre recursiva/não-recursiva é mais importante do que a divisão RE/não-RE

- Existem alguns teoremas bastante simples de se provar, úteis nas demonstrações a seguir:
- Teorema: Se L é uma linguagem recursiva, L também o é.

Prova:

- Se L é recursiva, existe uma MT que sempre para, aceitando ou não a entrada
- Basta modificar MT, de forma a inverter aceitação/não-aceitação, e iremos obter uma MT' que também sempre para (a modificação não altera esse fato)
- MT' irá aceitar quando MT rejeita, e rejeitar quando MT aceita, reconhecendo exatamente o complemento de L
- Ou seja, ~L é recursiva, pois existe um decisor

- Teorema: Se L e seu complemento são ambas RE, então L é recursiva (assim como seu complemento, pelo teorema anterior)
- Prova:
 - Se L é RE, existe uma MT1 que sempre para aceitando quando a entrada é um w que pertence a L (embora possa não parar nunca caso não pertença)
 - Se ~L é RE, existe uma MT2 que sempre para aceitando quando a entrada é um w que não pertence a L (embora possa não parar nunca caso pertença)
 - Basta construir uma MT' que simula MT1 e MT2, aceitando quando MT1 aceitar (e parar), e rejeite quando MT2 aceitar (e parar)
 - Dessa forma, MT' sempre para, aceitando ou rejeitando, portanto L é recursiva.

- Ou seja, existem apenas quatro possibilidades:
 - L e L são ambas recursivas
 - 。Nem L nem ⁻L é RE
 - L é RE mas não-recursiva, e L não é RE
 - L é RE mas não recursiva, e L não é RE
- Todas as outras possibilidades são excluídas pelos teoremas anteriores
- Exemplo: L_d não é RE, e portanto [~]L_d não pode ser recursiva
 - Ou seja, pode até existir uma MT para L_d, mas não há garantia de que ela vá parar sempre

- Esses resultados são intuitivos
 - Suponha que exista um problema indecidível (como o PCP)
 - Suponha que eu conseguisse resolver a versão "negada" do PCP
 - Ou seja, encontrar as instâncias do PCP para as quais não existe solução
 - Bastaria inverter a resposta, e pronto, resolvi um problema insolúvel!
 - Mas isso é impossível, já que o PCP é indecidível!

- Vimos anteriormente que uma MT pode simular um computador, executando um programa armazenado
 - Utilizando várias fitas, que armazenam o programa, os dados, rascunho, etc...
- E se esse programa armazenado for uma máquina de Turing?
 - Mais especificamente, a codificação binária que vimos em aula anterior?
 - É possível construir uma máquina de Turing que executa máquinas de Turing codificadas?

Máquina de Turing universal

Máquina de Turing universal

- M_{...} opera da seguinte forma:
 - Examina a entrada para ter certeza que é um código válido
 - Inicializa a segunda fita para conter a entrada w
 - Insere 0 (estado inicial de M) na terceira fita e move a cabeça da segunda fita de M_u para a primeira célula simulada
 - M_u procura na primeira fita uma transição 0ⁱ10^j10^k10^l10^m, olhando:
 - Na fita 3 em busca de i
 - Na fita 2 em busca de j

Máquina de Turing universal

- M_{...} opera da seguinte forma:
 - Encontrando a transição 0ⁱ10^j10^k10^l10^m:
 - i. Muda o conteúdo da fita 3 para 0^k
 - ii. Substitui 0^j na fita 2 por 0^l (usando o rascunho para fazer o deslocamento e administrar o espaço)
 - iii. Move a cabeça na fita 2 para a posição do próximo 1 à esquerda ou direita, dependendo de m (m=1 → esquerda, m=2 → direita)
 - Se M não tem nenhuma transição, M_{II} para
 - Se M entrar em estado de aceitação, M aceita

- A entrada da MT universal é um par (M,w), onde M é uma MT codificada em binário e w é uma string binária
- Em alguns casos, M aceita w, em outros, M não aceita w
- O conjunto de todos os pares (M,w), tal que M aceita w é conhecido como linguagem universal, ou L,

- Qual é o "problema" descrito pela linguagem universal?
 - Dada uma máquina de Turing M e uma cadeia qualquer w, determinar se M aceita w
- Pensando em termos mais práticos:
 - Dado um programa de computador, e as possíveis entradas e saídas, esse "problema" consiste em verificar, automaticamente (algoritmicamente), se o programa funciona conforme o esperado
 - Se for possível resolver esse problema, eliminaríamos a necessidade de testes de software!!!
 - Bastaria construir um algoritmo (ou MT, ou programa) que fosse um verificador automático

- Se a linguagem universal fosse decidível:
 - Não teríamos catástrofes como a do foguete Ariane-5
 - A NASA não perderia 125 milhões de dólares com o Mars Climate Orbiter
 - O Windows não teria bugs
 - Nossa vida de programadores seria muito mais fácil
- Mas.... (como você já deve ter adivinhado)
 - L, é indecidível!
 - É RE! Mas não recursiva!!
 - Ou seja, não existe decisor
 - Não existe algoritmo
 - Precisamos testar nossos programas
 - Teremos muitos e muitos bugs pela frente

Indecidibilidade da linguagem universal

- Teorema: L_{..} é RE mas não é recursiva
- A prova de que L_{||} é RE já foi feita
 - M_{II} existe (mostramos anteriormente)
 - Portanto L_{II} é Turing-reconhecível
 - Portanto L_{II} é RE
- Continuando
 - Vamos supor que L_u fosse recursiva (buscaremos uma contradição)
 - Então, ~L_{II} (o complemento de L_{II}) também deve ser recursiva
 - Ou seja, existe uma MT M_{nu} que aceita [~]L_u

Indecidibilidade da linguagem universal

- Vamos supor que exista M_{nu}, tal que L(M_{nu}) = ⁻L_u
 - Ou seja, dada uma entrada (M,w), M_{nu} aceita se M rejeita w, e M_{nu} rejeita se M aceita w
- E se eu aplicar, como entrada para M_{nu}, a entrada w11w? Ou melhor, um par (w,w)?
 - Ou melhor: um par (M,M)
 - Ou seja, w é um determinado w_i, da nossa enumeração de M_i's anterior
 - Ou seja, w codifica uma MT qualquer

Indecidibilidade da linguagem universal

- Vemos então que M_{nu} é uma máquina bastante poderosa!!!
 - O que significa M_{nu} aceitar w111w?
 - Significa que a máquina M rejeita a si mesma como entrada
 - O que significa M_{nii} rejeitar w111w?
 - Significa que a máquina M aceita a si mesma como entrada
- Peraí: essa é a linguagem L_d!!
 - Quer dizer que M_{nu} decide a linguagem L_d?
 - Mas L_d é indecidível!!
 - Exatamente: aí está a contradição!!
 - o Mnu não pode existir!
 - Ou seja, L_{II} é não-RE!
 - Ou seja, L, não é recursiva!!

O problema da parada

- Semelhante à L_{...}, mas mais genérico
 - Seja H(M) o conjunto de entradas w tais que uma MT
 M para em w (aceitando ou não)
 - O problema da parada da MT é:
 - Dado um par (M,w), decidir se M para em w ou não
- É o mesmo problema
 - Também é RE, mas não recursivo
 - Ou seja, indecidível

Fim

Aula 26 - O problema da parada da Máquina de Turing