

## **ML Event Studies**

**Fabrice Riva** 

fabrice.riva@dauphine.psl.eu



### **Objective**

The objective is to analyze the ability of various return-generating models to predict reliable event-date returns for single securities (not portfolios)

- Model:
  - Linear models
  - Regularized linear models (Ridge, LASSO, Elastic Net)
  - Regression trees
  - Random forest regression
- Features
  - Standard features
    - Market portfolio returns
    - Fama-French 3 factors
    - Fama-French 5 factors
  - Non standard features
    - Stock's peers
    - Stock's nearest neighbors



#### **Data**

- Set of 256 stocks from the CRSP universe
  - Randomly selected stocks
  - Randomly selected "event" date between January 9, 2017 and March 29, 2018

|   | PERMNO | date     | SICCD  | RET       | vwretd    | SICCD_peers | RET_peers | date_rel | RET_neigh | Mkt_RF  | SMB     | HML     | RMW     | CMA     | RF      |
|---|--------|----------|--------|-----------|-----------|-------------|-----------|----------|-----------|---------|---------|---------|---------|---------|---------|
| 0 | 10032  | 20170227 | 3670.0 | -0.003292 | 0.001999  | 3670.0      | 0.007154  | -250     | -0.002337 | 0.0022  | 0.0085  | -0.0033 | -0.0038 | -0.0015 | 0.00002 |
| 1 | 10032  | 20170228 | 3670.0 | -0.025209 | -0.004651 | 3670.0      | -0.022114 | -249     | -0.008818 | -0.0042 | -0.0136 | 0.0016  | -0.0001 | -0.0020 | 0.00002 |
| 2 | 10032  | 20170301 | 3670.0 | 0.022650  | 0.013383  | 3670.0      | 0.021281  | -248     | 0.024245  | 0.0147  | 0.0052  | 0.0077  | -0.0054 | 0.0054  | 0.00001 |
| 3 | 10032  | 20170302 | 3670.0 | -0.007848 | -0.006866 | 3670.0      | -0.008909 | -247     | -0.009514 | -0.0070 | -0.0054 | -0.0090 | 0.0063  | -0.0043 | 0.00001 |
| 4 | 10032  | 20170303 | 3670.0 | -0.005273 | 0.000944  | 3670.0      | -0.001480 | -246     | -0.000025 | 0.0009  | -0.0018 | 0.0014  | -0.0006 | -0.0010 | 0.00001 |

- PERMNO: stock unique identifier
- date (yyyymmdd)
- SICCD: stock's SIC code (industrial classification)
- **RET**: daily return
- wwretd: market portfolio daily return

- SICCD\_peers: peers' SICCD
- RET\_peers: daily return of peers' equally-weighted portfolio
- date\_rel: date relative to event (date 0)
- RET\_neigh: daily return of peers' equally-weighted portfolio

- Mkt\_RF: daily excess return of market portfolio
- SMB: daily return of SMB factor
- **HML**: daily return of HML factor
- **RMW**: daily return of RMW factor
- CMA: daily return of CMA factor
- RF: daily risk-free rate



#### **Models**

Linear models

$$R_{i,t} = \theta_{0,i} + \theta_{1,i} \mathbf{x}_{i,t} + \epsilon_{i,t}$$

where x is one of the following single feature / set of features:

- vwretd
- [vwretd, RET\_peers]
- [vwretd, RET\_neigh]
- [vwretd, SMB, HML]
- [vwretd, SMB, HML, RMW, CMA]
- Penalized linear models, decision tree and random forest models. For these models, x = [vwretd, RET\_peers, RET\_neigh, SMB, HML, RMW, CMA]

### Model test procedure

- For each model and each stock, training is performed on the estimation window running from relative date -250 to relative date -1
- Specification and power of the models are evaluated as follows:
  - A shock of size  $\delta$  is artificially added to date 0's return
  - For the specification test, the value of  $\delta$  is 0
  - For the power test, different shock values are used: -10%, -5%, -2%, -1%, +1%, +2%, +5%, +10%
- Assuming returns are normally distributed, conducting either the specification or the power test can be made as follows:
  - For each stock *i*, compute z-score  $z_i = (AR_{i,0} + \delta)/\hat{\sigma}(\epsilon_i)$
  - For a  $\alpha\%$  test, compare  $z_i$  with  $z_{\alpha/2}$
  - Reject the null hypothesis  $AR_{i,0} + \delta = 0$  if  $|z_i| \ge z_{\alpha/2}$
  - Iterate over stocks and compute the empirical rejection frequency of the null. Compare with the theoretical rejection frequency  $\alpha$



## Regularized linear models

### Regularization and model complexity

- Complex models overfit the data
- Regularization aims at reducing model complexity by putting constraints on how large the parameters of a model can be ⇒ parameters are shrunk towards 0
- Why is it interesting to get small parameter values?
  - Encouraging the loss minimization procedure to target small parameter values encourages the model to focus on the most important features (higher explanatory power)
  - As a result the obtained model displays lower complexity and is less prone to overfitting the data
- Putting constraints on the parameters implies that those are not unbiased anymore
- Bias-variance tradeoff: accept some bias to achieve lower variance



### Ridge regularization

Definition:

$$L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta})_{\text{Ridge}} = L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta}) + \lambda \sum_{j=1}^p \theta_j^2$$

- Comments:
  - $-L_n(\mathbf{X},\mathbf{y},\boldsymbol{\theta})$  is a baseline loss function, e.g. squared error loss for regression
  - Ridge adds a penalty term that is proportional to the sum of the squared  $\theta_i$  parameters
  - Bias  $\theta_0$  does not enter the penalty
  - The intensity of the penalty is controlled by (positive) hyperparameter  $\lambda$
  - The penalized loss reduces to the baseline loss if  $\lambda = 0$

### Ridge regularization: constrained optimization program

 Ridge penalty can also be expressed as a constrained optimization program

$$\begin{cases} \min_{\boldsymbol{\theta}} L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta}) \\ \text{s.t.} \sum_{j=1}^{p} \theta_j^2 \le t \end{cases}$$

Graphical representation



### LASSO regularization

Definition:

$$L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta})_{\text{Lasso}} = L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta}) + \lambda \sum_{j=1}^p |\theta_j|$$

- Comments:
  - LASSO stands for Least Absolute Shrinkage and Selection Operator
  - Differs from Ridge by the fact that the penalty term is the sum of the **absolute value** of the  $\theta_i$  parameters
  - Similar to Ridge, LASSO encourages small parameter values but goes one step further as, potentially, some parameter values can bet set to exactly 0 ⇒ LASSO promotes sparse models

### LASSO regularization: constrained optimization program

 LASSO penalty can also be expressed as a constrained optimization program

$$\begin{cases} \min_{\boldsymbol{\theta}} L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta}) \\ \text{s.t. } \sum_{j=1}^{p} |\theta_j| \le t \end{cases}$$

Graphical representation



#### **Elactic Net**

Definition:

$$L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta})_{\text{EN}} = L_n(\mathbf{X}, \mathbf{y}, \boldsymbol{\theta}) + \lambda \left| \alpha \sum_{j=1}^p |\theta_j| + (1 - \alpha) \sum_{j=1}^p \theta_j^2 \right|$$

- Comments:
  - Linear combination of Ridge and LASSO, where hyperparameter  $\alpha$  controls the balance between both types of penalties and  $\lambda$  controls the overall intensity of the combined penalties
  - Aims at combining the strengths and weaknesses of Ridge and LASSO
    - LASSO: sparse models but difficulty in selecting correlated features
    - Ridge: no issue with correlated features but no sparsity
  - Shortcoming: requires the tuning of an additional hyperparameter

## Decision tree regression

### Example with one feature

Data

| X | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| У | 1.0 | 1.2 | 1.4 | 1.1 | 1.0 | 5.5 | 6.1 | 6.7 | 6.4 | 6.0 | 6.0 | 3.0 | 3.2 | 3.1 |

Graphical representation



### Growing the tree - I

- Let denote  $x_1, x_2, ..., x_n$  the sorted values of feature x. Corresponding labels are  $y_1, y_2, ..., y_n$
- Average the first two x values to get threshold  $t_1 = (x_1 + x_2)/2$ . Denote:
  - $y_{t_1}^{\text{left}}$ : labels of examples such that  $x_i < t_1$
  - $y_{t_1}^{\text{right}}$ : labels of examples such that  $x_i > t_1$
- Next compute:
  - $y_{t_1}^{\text{left}}$ : average label of examples such that  $x_i < t_1$
  - $y_{t_1}^{\text{right}}$ : average label of examples such that  $x_i > t_1$
- Finally, compute MSE for  $t_1$ :

$$MSE_{t_1} = \sum_{x_i < t_1} \left( y_i - \overline{y_{t_1}^{\text{left}}} \right)^2 + \sum_{x_i > t_1} \left( y_i - \overline{y_{t_1}^{\text{right}}} \right)^2$$



### Growing the tree - II

- Repeat the process with thresholds  $t_2, t_3, ..., t_{n-1}$
- Choose threshold  $t_k$  that achieves the lowest MSE
- In the above example, the threshold that minimizes the MSE is x = 5.5
- The root of the tree is thus x = 5.5
- Next nodes are built by recursively applying the above steps until a given stopping criterion is hit (e.g. max depth)

```
import numpy as np
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
from matplotlib import pyplot as plt

X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).reshape(-1,1)
y = np.array([1.0, 1.2, 1.4, 1.1, 1.0, 5.5, 6.1, 6.7, 6.4, 6.0, 6.0, 3.0, 3.2, 3.1]).reshape(-1,1)

regTree = DecisionTreeRegressor()
reg = regTree.fit(X, y)

plt.rcParams["figure.figsize"] = (22, 16)
tree.plot_tree(reg)
plt.show()
```

### **Tree representation - I**



### **Tree representation - II**



regTree = DecisionTreeRegressor(max\_depth=2)







### Multiple features

- Proceed as per previous steps for each feature
- Select the (feature, threshold) combination that minimizes the MSE
- Example:



# Random forest regression

### **Principle**

- A random forest (RF) is an ensemble of decision trees (DT) that are generally trained via bagging (random sampling with replacement)
- Compared with standard bagging, RF introduce an extra layer of randomness when growing trees
- Instead of splitting the examples by finding the best feature among all available ones it determines the best feature among a randomly selected subset of the features
- This extra randomness increases the independence and the diversity across trees, which should result in better ensemble learning
- The final prediction of a random forest prediction is often the mean of the predictions from all individual trees



### Example

```
from sklearn.ensemble import RandomForestRegressor
regRF = RandomForestRegressor(max_depth=2)
reg3 = regRF.fit(X, y)
reg3.predict(X)
```



