以下での (*) とは、次のもの: X :: integral noetherian separated (over \mathbb{Z}) scheme which is regular in codimension one.

Ex6.1 If X Satisfies (*), $Cl(X \times \mathbb{P}^n) \cong Cl(X) \times \mathbb{Z}$.

 $X' = X \times_{\mathbb{Z}} \mathbb{P}_{\mathbb{Z}}^n = \mathbb{P}_X^n$ とおく、また、 $S = \mathbb{Z}[x_0, \dots, x_n]$ とし、 $\mathbb{P}^n = \operatorname{Proj} S$ とみなす、

- ■X':: integral noetherian separated. X の affine open cover を $\{\operatorname{Spec} A_i\}_{i=0}^r$ とすると, A_i :: integral noetherian \mathbb{Z} -algebra. \mathbb{P}^n の affine open cover は $\{\operatorname{Spec} S_{(x_j)}\}_{j=0}^n$ で与えられる. $S_{(x_j)}$ も integral noetherian \mathbb{Z} -algebra. したがって $R_{ij} = A_i \otimes_{\mathbb{Z}} S_{(x_j)}$ とおくと,X' は $\operatorname{Spec} R_{ij}$ の張り合わせ であり(Thm3.3), R_{ij} :: integral noetherian \mathbb{Z} -algebra. 任意の (i,j),(i',j') について $R_{ij},R_{i'j'}$ が交 わることから,X' 全体でも irreducible. よって X':: integral noetherian scheme. being separated:: stable under base extension より,X':: separated.
- ■X':: regular in codimension one. $x=\tilde{\mathfrak{p}}\in\operatorname{Spec} R_{ij}$ とする. $A_i\otimes\mathbb{Z}[x_0,\ldots,x_n]_{(x_j)}\cong A_i[x_0,\ldots,x_n]_{(x_j)}$ を,簡単のため j=0 とし, $R_0:=A[\{x_j\}_{j=0}^n]$ とおく.Ati-Mac Prop3.1 より, $\tilde{\mathfrak{p}}\subset(R_0)_{(x_0)}$ に対応する height =1 の素イデアル $\mathfrak{p}\subset R_0$ がただひとつ存在し, $\tilde{\mathfrak{p}}=\mathfrak{p}_{(x_0)}$ となる.これを使って計算すると,以下のようになる.

$$\mathcal{O}_{X',x} = ((R_0)_{(x_0)})_{\mathfrak{p}} = \left\{ \left. \frac{a/x_0^d}{b/x_0^e} \, \right| \, d, e \ge 0, a \in (R_0)_d, b \in (R_0 - \mathfrak{p})_e \, \right\} \cong A[\{x_j\}_{j=1}^n]_{\mathfrak{p}'} =: R_1.$$

最後の同型は次のように与えられる.

$$(R_0)_{(x_0)} = A[\{x_j\}_{j=0}^n]_{(x_0)} \to R_1 = A[\{x_j\}_{j=1}^n]$$

$$f(x_0, x_1, \dots, x_n) \mapsto f(1, x_1, \dots, x_n)$$

$$g(x_1/x_0, \dots, x_n/x_0) \longleftrightarrow g(x_1, \dots, x_n)$$

 \mathfrak{p}' はこの写像による \mathfrak{p} の像である. R_1 は A と同様に integral noetherian ring. $\mathfrak{q} = \mathfrak{p}' \cap A$ とおく. $A \subset R_1$ は flat extension だから,going-down theorem が成立し,height $\mathfrak{q} \leq \operatorname{height} \mathfrak{p}' = 1$. また,計算すると

$$(R_1)_{\mathfrak{p}'} \cong (A_{\mathfrak{q}}[\{x_i\}_{i=1}^n])_{\mathfrak{p}''}.$$

ただし $\mathfrak{p}''=\mathfrak{p}'A_{\mathfrak{q}}$. height $\mathfrak{q}=1$ の時,仮定から $A_{\mathfrak{q}}=\mathcal{O}_{X,\mathfrak{q}}$:: regular local ring. よって $(R_1)_{\mathfrak{p}'}$ は D.V.R. height $\mathfrak{q}=0$ すなわち $\mathfrak{q}=0$ の時,同様に $(R_1)_{\mathfrak{p}'}$ は体 $A_{(0)}$ 上の多項式環の \mathfrak{p} における局所化 だから D.V.R.

- ■Another Proof: X':: regular in codimension one. \mathbb{P}^n は n+1 個の \mathbb{A}^n で被覆出来るから, $X \times \mathbb{P}^n$ は n+1 個の $X \times \mathbb{A}^n$ で被覆できる. $X \times \mathbb{A}^n$ は Prop6.6 のとおり (*) を満たすから,(*) のうち local な性質はすべて満たす. global な性質は noetherian と irreducible のみであるが,これらはそれぞれ R_{ij} が noetherian であること,任意の (i,j),(i',j') について $\operatorname{Spec} R_{ij} \cap \operatorname{Spec} R_{i'j'} \neq \emptyset$ であることからわかる.よって $X \times \mathbb{P}^n$ も (*) を満たす.
- ■Definition of $\operatorname{pr}_1,\operatorname{pr}_2,\pi$. $X\times\mathbb{P}^n$ から X,\mathbb{P}^n への projection をそれぞれ $\operatorname{pr}_1,\operatorname{pr}_2$ とする. また $X\times\mathbb{A}^n\to X$ の projection を π とする. Prop6.6 の証明から $\pi^*:\operatorname{Cl}(X)\to\operatorname{Cl}(X\times\mathbb{A}^n)$ は全単射.

■Exact Sequence in Prop6.5. $\mathfrak{p}=(x_0)\in\mathbb{Z}[x_0,\ldots,x_n]=S$ とする. $Z=\mathrm{pr}_2^{-1}(V(\mathfrak{p}))$ とおくと,Z :: irreducible closed subset of codim = 1 in $X\times\mathbb{P}^{n-\dagger 1}$. $U=Z^c=\mathrm{pr}_2^{-1}(V(\mathfrak{p})^c)\cong X\times\mathbb{A}^n$ だから,Ex3.9a と Prop6.6 より, $\mathrm{Cl}(U)\cong\mathrm{Cl}(X)$. したがって Prop6.5 の完全列は以下のようになる.

$$\mathbb{Z} \xrightarrow{i} \operatorname{Cl}(X \times \mathbb{P}^n) \xrightarrow{j} \operatorname{Cl}(X) \longrightarrow 0$$

 $\operatorname{Cl}(X \times \mathbb{P}^n) \cong \operatorname{Cl}(X) \times \mathbb{Z}$ を示すには、 $i: 1 \mapsto 1 \cdot Z$ が単射であること、および $j: Y \mapsto (\pi^*)^{-1}(Y \cap U)$ が split することを示せば十分である.後者はすぐに分かる. $\pi^*: \operatorname{Cl}(X) \to \operatorname{Cl}(U)$ は全単射だから、 $W \in \operatorname{Cl}(X)$ について、

$$j(\operatorname{pr}_1^*(W)) = (\pi^*)^{-1}(\operatorname{pr}_1^*(W) \cap U) = (\pi^*)^{-1}(\operatorname{pr}_1|_U)^{-1}W = (\pi^*)^{-1}\pi^{-1}W = (\pi^*)^{-1}\pi^*W = W.$$

$$(\operatorname{pr}_1^*W) \cap U = (\operatorname{pr}_1^{-1}W) \cap U = (\operatorname{pr}_1|_U)^{-1}W$$
 を用いた.

■i:: injective. $X' = X \times \mathbb{P}^n, K$:: function field of X' とし, $d \in \mathbb{Z} - \{0\}$ をとる.示すべきことは,dZ = (f) を満たす $f \in K^{\times}$ が存在しないこと.正次数の斉次元 $t \in A[x_0, \dots, x_n]$ をとり, $V = \operatorname{Spec} A[x_0, \dots, x_n]_{(t)} = D_+(t) \subset X'$ において f が regular (pole を持たない) だとしよう. $D_+(t)$ は基本開集合を成すから,このようにすることは可能である.また, $V \cap Z \neq \emptyset$,したがって $t \notin (x_0)$ とする.この時, $f \in A[x_0, \dots, x_n]_{(t)}, V \cap Z = V((x_0))$. $V \cap Z$ の generic point $\mathfrak{e} \eta = x_0 \cdot A[x_0, \dots, x_n]_{(t)}$ とおくと, η に対応する valuation は $v_{V \cap Z}(f) = \sup\{d \mid f \in \eta^d - \eta^{d+1}\}$ で定まる.なので v(f) = d ならば,f は次のようになる.

$$f = \left(\frac{x_0^m}{t}\right)^d \frac{g}{t^e}$$
 where $m := \deg t$, $e \ge 0$, $g \in A[x_0, \dots, x_n]_{em}$, $t, x_0^m \not\setminus g$

 $d \neq 0$ と仮定する. $e = \deg g = 0$ の時,t の既約因数によって定まる prime divisor T 上で $v_T(f) < 0$ となる. e > 0 の時,g の既約因数によって定まる prime divisor G 上で $v_G(f) > 0$ となる.以上から,dZ = (f) となるならば d = 0. よって i :: injective.

Ex6.2 Varieties in Projective Space.

Ex6.3 Cones.

Ex6.4
$$A = k[x_1, \dots, x_n, z]/(z^2 - f)$$
 :: integrally closed.

char $k \neq 2$ とする. x_1, \ldots, x_n を \vec{x} と略す. $f \in k[\vec{x}]$:: square-free とし, $A = k[\vec{x}, z]/(z^2 - f)$ とおく. また, $\bar{z} = z + (z^2 - f)$ とする. $(\bar{z} = \sqrt{f}, A = k[\vec{x}, \sqrt{f}]$ と考えて良い。) f :: square-free より $z^2 - f$:: irreducible, A :: integral domain.

■K の同定. この時, $K = \mathrm{Quot}(A)$ は $k(\vec{x})[z]/(z^2 - f)$ である.実際,K の元は $g,h \in A$ の元に よって g/h と表されるが, $z^2 = f$ なので,g/h は分母の「有理化」によって $k(\vec{x})[z]/(z^2 - f)$ に属すことが分かる.したがって $k(\vec{x})[z]/(z^2 - f) \subseteq K$ であり,逆の包含関係は明らか.

$$Z \cap U_{ij} = (\operatorname{pr}_2|_{U_{ij}})^{-1}(V(\mathfrak{p})) = V(1 \otimes \mathfrak{p}) = V((1 \otimes x_0)) \subset \operatorname{Spec} A_i \otimes S_{(x_i)}$$

^{†1} Spec $A_i\subseteq X, U_{ij}=\operatorname{Spec} A_i\otimes S_{(x_j)}, j\neq 0$ とする. $\operatorname{pr}_2|_{U_{ij}}$ は $s\mapsto 1\otimes s$ から誘導されるから,

 $^{1\}otimes x_0$ は非単元かつ不定元だから、Krulls Hauptidealsatz より、 $(1\otimes x_0)\subset A_i\otimes S_{(x_j)}$ が高さ 1 の素イデアルであることは明らか.よって $\operatorname{codim}(Z\cap U_{ij},U_{ij})=1,\operatorname{codim}(Z,X')=1$.

 $^{^{\}dagger 2}$ pr_1 は埋め込み写像 $A \to A \otimes \mathbb{Z}[x_0,\dots,x_n]_{(t)}$ で誘導されるから, $Z = \operatorname{pr}_1^{-1} V((x_0)) = V((x_0 \otimes 1))$. $x_0 \otimes 1$ は $A \otimes \mathbb{Z}[x_0,\dots,x_n]_{(t)} \cong A[x_0,\dots,x_n]_{(t)}$ の同型写像で x_0 へ写る.

- $\blacksquare K/k(\vec{x})$. K は $k(\vec{x})$ 上の 2 次式 \bar{z}^2-f の最小分解体だから, $K/k(\vec{x})$ は 2 次のガロア拡大である。 $\mathrm{Gal}(K/k(\vec{x}))$ は, $\sigma: \bar{z} \mapsto -\bar{z}$ で生成される位数 2 の群.
- $\blacksquare A$:: integral closure of $k[\vec{x}]$ in K. $\alpha \in K$ をとると,これは $g,h \in k(\vec{x})$ を用いて $g+h\bar{z}$ と書ける. α の最小多項式は,

$$(X - \alpha)(X - \sigma(\alpha)) = X^2 - 2gX + (g^2 - h^2 f).$$

この多項式の各係数が $k[\vec{x}]$ に属しているとしよう。すると,まず明らかに $g \in k[\vec{x}]$ である。また f :: square-free より, $h \not\in k[\vec{x}]$ ならば h^2 の分母は f の因子で打ち消されず, $h^2f, g^2 - h^2f \not\in k[\vec{x}]$ となる。よって α :: integral $/k[\vec{x}]$ ならば $\alpha \in k[\vec{x}]$. 逆に $\alpha \in k[\vec{x}]$ ならば $g, h \in k[\vec{x}]$ だから α の最小多項式は $k[\vec{x}]$ 係数多項式になる。以上をまとめて A :: integrally closed が分かる。

■系. 以上から, $z^2 - f = 0$ で定まる hypersurface は affine variety として normal である. 特に, $f(x) \in k[x]$ が重根を持たない 3 次多項式であるとき,楕円曲線 $y^2 = f(x)$ は normal curve である.

Ex6.5 Quadric Hypersurfaces.

 $k :: \text{ field, char } k \neq 2 \geq \mathcal{U},$

$$f = x_0^2 + \dots + x_r^2 \in k[x_0, \dots, x_n], \quad A(X) = k[x_0, \dots, x_n]/(f), \quad X = \operatorname{Spec} A(X)$$

とおく. ch I, Ex3.12 より、 \mathbb{A}^{n+1} の任意の r 変数 quadric hypersurfaces は X と同型である.

(a) X :: normal if $r \geq 2$.

 $f=x_0^2-(-x_1^2-\cdots-x_n^2)$ なので、Ex6.4 より A(X) :: integrally closed. よって任意の点における A(X) の局所化も integrally closed である。すなわち X :: normal

Ex6.6 Consider
$$X = \mathcal{Z}_p(y^2z - x^3 + xz^2)$$
.

Ex6.7 For
$$X = \mathcal{Z}_p(y^2z - x^3 - x^2z)$$
, $CaCl^0(X) \cong \mathbf{G}_m$.

k:: algebraically closed field, char $k \neq 2$ とし、 \mathbb{P}^2_k 内の曲線を考えていく、 $f = y^2z - x^3 - x^2z, X = \operatorname{Proj} k[x,y,z]/(f) \subset \mathbb{P}^2_k$ とする。S(X) = k[x,y,z]/(f) と書く、X の codimension 1 の点は、 $\dim X = 1$ より、closed point に他ならない、X は Z = (0:0:1) に node をもつ。

- ■ $\operatorname{CaCl}^0(X) \cong \operatorname{Cl}(X-Z)$. X の singular point は Z しかない. これは ch I, Ex5.8 をつかって確認できる。 $X = \operatorname{Proj} S(X)$ が noetherian scheme であることから,Thm4.9 より X-Z:: nonsingular & separated & finite type. 明らかに integral であることと合わせれば,X-Z が (*) を満たすことが分かる。 X 全体でも integral だから, \mathcal{K}_X :: sheaf of total quotient rings of \mathcal{O}_X は function field K である。 $P \in X-Z$ に対する Cartier Divisor D_P の定め方, $\operatorname{CaCl}^0(X)$ の任意の元に対して,それが D_P と線形同値になる closed point X-Z が存在することの議論は Example 6.11.4 と全く同様である.
- $\blacksquare X Z \cong \mathbb{A}^1 \{0\}.$ $(s:t:0) \in V(z) \cong \mathbb{P}^1$ をとり、(s:t:0) と Z = (0:0:1) を結ぶ直線 sy tx = 0 と X の交点を計算する.すると $\mathbb{P}^1 \to X$ の写像が得られる.

$$(s:t) \mapsto (x:y:z) = (s(t^2 - s^2):t(t^2 - s^2):s^3)$$

(1:1), (1:-1) はこの写像で Z へうつる. そこで以下のように置くと, isomorphism になる.

$$\mathbb{P}^{1} - \{(1:1), (1:-1)\} \to X - Z$$

$$(s:t) \mapsto (s(t^{2} - s^{2}) : t(t^{2} - s^{2}) : s^{3})$$

$$(x:y) \longleftrightarrow (x:y:z)$$

 $\mathbb{P}^1-\{(1:1),(1:-1)\}$ は $(s:t)\mapsto \frac{-s+t}{s+t}=u\mapsto (1-u:1+u)$ によって $\mathbb{A}^1-\{0\}$ と同型である. したがって,結局次の同型が出来る.

$$\phi: \quad \mathbb{A}^{1} - \{0\} \quad \rightarrow \qquad \qquad X - Z$$

$$t \quad \mapsto \quad (4(1-t)t : 4(1+t)t : (1-t)^{3})$$

$$\frac{-x+y}{x+y} \quad \longleftrightarrow \quad (x:y:z)$$

- ■Cl(X) の特徴. $\phi(1)=P_1=(0:1:0)$ とおく、計算すると $(x:y:z)\in X$ について $P_1,(x:y:z),(x:-y:z)$ が一直線上にある。つまり, $P_1,(x:y:z),(x:-y:z)$ を零点に持つ一次式 l が存在する。よって $P_1+(x:y:z)+(x:-y:z)\sim 0$ が得られる。(TODO: Example 6.10.2 の $P+Q+R\sim 3P_1$ は更に $3P_1=(z)\sim 0$ ということで良いのか?)
- ■ $CaCl^0(X) \cong Cl(X-Z) \cong \mathbf{G}_m$. $\phi(1) = P_1$ に注意する. 計算すると, $\phi(t)$, $\phi(u)$ と $\phi(tu)$ の y 成分 の符号を反転させたものが一直線上にある.

$$\phi(t) + \phi(u) - (\phi(tu) + P_1) \sim 0.$$

変形して,

$$\phi(t) + \phi(u) - (\phi(tu) + P_1) \sim 0$$

$$\phi(t) + \phi(u) - P_1 \sim \phi(tu)$$

$$(\phi(s) - P_1) + (\phi(t) - P_1) \sim \phi(st) - P_1.$$

よって、 P_1 を単位元とすれば、 $CaCl^0(X) \cong Cl(X-Z) \cong \mathbf{G}_m$.

Ex6.8 Morphism of Schemes Induces Homomorphism of Pic / Cl.

Ex6.9 (Culating the Picard Groups of) Singular Curves.

X:: projective curve /k, \tilde{X} :: normalization of X (Ex3.8), $\pi: \tilde{X} \to X$:: projection, $\tilde{\mathcal{O}}_P$:: integral closure of \mathcal{O}_P ($P \in X$) とする. p.136 にある curve /k の定義から、X:: integral, separated, finite type/k. このことと Ex3.8 より、 π :: finite mmorphism.

(a) Show there is an exact sequence.

次の完全列を示す.

$$0 \longrightarrow \bigoplus_{P \subseteq X} \tilde{\mathcal{O}}_P^* / \mathcal{O}_P^* \longrightarrow \operatorname{Pic} X \xrightarrow{\pi^*} \operatorname{Pic} \tilde{X} \longrightarrow 0.$$

Prop6.15 から、Pic X, $Pic \tilde{X}$ はそれぞれ CaCl X, $CaCl \tilde{X}$ と同型である。次の写像を考える。

$$\phi: \quad (\pi_* \mathcal{O}_{\tilde{X}})^* / \mathcal{O}_X^* \quad \to \quad \mathcal{K}^* / \mathcal{O}_X^*$$

$$\phi_U \quad s + \mathcal{O}_X(U)^* \quad \mapsto \quad s/1 + \mathcal{O}_X(U)^*$$

単元を単元に写す写像だから、これは単射、したがって次の完全列が得られる.

$$0 \longrightarrow (\pi_* \mathcal{O}_{\tilde{X}})^* / \mathcal{O}_X^* \longrightarrow \mathcal{K}^* / \mathcal{O}_X^* \longrightarrow \mathcal{K}^* / (\pi_* \mathcal{O}_{\tilde{X}})^* \longrightarrow 0$$

(これは $0 \to \ker \to M \to N \to \operatorname{coker} \to 0$ という形の完全列である。) (TODO: global section をとる? \mathcal{K}^* :: quasi-coherent かどうか怪しい。)

Ex6.10 The Grothendieck Group K(X).

TODO

Ex6.11 The Grothendieck Group of a Nonsingular Curve.

k:: algebraically closed field, X:: nonsingular curve / k とする. $K(X) \cong \operatorname{Pic} X \oplus \mathbb{Z}$ を示そう.

Ex6.12 The Degree of Coherent Sheaf.

Ex6.11 の続きと言える. X:: complete nonsingular curve とする. Ex6.11 より $K(X) \cong \operatorname{Pic} X \oplus \mathbb{Z}$. また nonsingular \Longrightarrow regular \Longrightarrow locally factorial なので $\operatorname{Cor6.16}$ より $\operatorname{Pic} X \cong \operatorname{Cl} X$. そこで、 $\mathcal F$:: coherent sheaf on X に対する $\operatorname{deg} \mathcal F$ を、

$$\gamma(\mathcal{F}) \in K(X) \xrightarrow{\cong} \operatorname{Pic} X \oplus \mathbb{Z} \to \operatorname{Pic} X \xrightarrow{\cong} \operatorname{Cl} X \xrightarrow{\operatorname{deg}} \mathbb{Z}$$

で定める. 右端の deg は degree of Weil divisor である. D :: Weil divisor に対し、 $\gamma(\mathcal{L}(D))$ は上の写像で D へ写る. なので、The Grothendieck Group の定義と合わせて、以下が成立する.

- (1) If D :: divisor, $\deg \mathcal{L}(D) = \deg D$.
- (2) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$:: exact sequence, then $\deg \mathcal{F} = \deg \mathcal{F}' + \deg \mathcal{F}''$.

次を示す: If \mathcal{T} is a torsion sheaf, then $\deg \mathcal{T} = \sum_{P \in X} \operatorname{length} \mathcal{T}_P$.

 $U=\operatorname{Spec} A\subseteq X$ を任意にとり、T:: torsion A-module について $T|_U\cong \tilde{T}$ であるとする。 $\mathfrak{p}\in U$ に対し、 $T_{\mathfrak{p}}$ は $A-\mathfrak{p}$ が $\mathfrak{a}=\operatorname{Ann}(T)$ の元を含む時 0 になる。したがって $\mathfrak{a}\subseteq\mathfrak{p}$ の時のみ $T_{\mathfrak{p}}\neq 0$. そこで $V=V(\mathfrak{a})$ とする。 $\mathfrak{a}\neq (0)$ かつ X は 1 次元だから、V は有限個の点のみからなる.

 $\tilde{T} \in K(U)$ に対応する $D_T \in \operatorname{Cl} U$ を考える. Ex6.11a の構成によると, D_T の the structure sheaf of the associated subscheme が \tilde{T} である. したがって D_T は以下のようになる.

$$D_T = \sum_{P \in V} v_P(f_P) \{P\}.$$

ただし $f_P \in A$ は $V(f_P) = \{P\} \subseteq U$ を満たす. したがって $v_P(f_P) = \operatorname{length} T_P$ を示せば十分.