Lecture 20: Exam Wrap Up

- · Rest of Today: Poincare Stability analysis of limit
 - · On Deck:
 - · Zero Moment Point and the Contact Wrench Cone
 - · Planning with the LIP Model

Stability of an Orbit: Poincare Section

· Define a surface S transversal to the orbit

• If
$$x \in \mathbb{R}^n$$
 the 3 can be defined by
$$S = \{x \mid g(x) = 0\}$$
 $g: \mathbb{R}^n \to \mathbb{R}$

$$P(x):S \rightarrow S$$

$$\Rightarrow P(x^*) = x^*$$

• The orbit O is stable/(asy stable)/(exp stable)

if and only if x* is a stable/(asy stable)/(exp stable) equilibrium of XKH = P(XK)

1) If $\frac{\partial P}{\partial x}|_{X^{\bullet}}$ has eigenvalues in the unit circle then the (n-1 eigenvalues)

orbit is exponentially stable (2) Let $\chi(0) = I$ $\dot{\chi} = \left[\frac{\partial \chi}{\partial \chi}\right]_{\chi(t, \chi^*)} \cdot \chi$ $\chi \in \mathbb{R}^{n \times n}$

X is called the monodromy matrix. Same as Forward Sensitivity analysis

 $\delta x_{\tau} = \chi(T) \delta x_{\circ}$

Stability of Orbits: 1) IF $\frac{\partial P}{\partial x}|_{X^{\bullet}}$ has eigenvalues in the unit circle then the orbit is exponentially stable (n-1 eigenvalues) (2) Let $\chi(0) = I$ $\dot{\chi} = \left[\frac{\partial f}{\partial \chi} \Big|_{\chi(t, x^*)}\right] \cdot \chi$ $\chi \in \mathbb{R}^{n \times n}$ X is called the monodramy matrix. Same as Forward sensitivity analysis > X has an eignal of 1 (perturbations along the orbit persist) > If the remaining eignals are in the unit circle > exponentially stable