Grafica A.A.2015/16

Superfici nella Computer Graphics

Superfici Parametriche

- Definiamo uno spazio parametrico
 - 2D (per superfici)
- Definiamo un mapping fra lo spazio dei parametri e lo spazio 2D o 3D
 - una funzione che prende valori parametrici (coppie (u,v)) e restituisce punti 2D/3D
- Il risultato è una superficie in forma parametrica (funzione vettoriale)

Superfici Parametriche

- Le superfici parametriche che andiamo a definire hanno una topologia rettangolare (dominio rettangolare)
- In CG, le superfici parametriche sono a volte chiamate patches, curved surfaces, o solo surfaces
- In CG ci sono anche superfici non-parametriche (implicite o algebriche), ma sono molto meno usate

Motivazioni

 Nella CG le mesh poligonali servono per rappresentare gli oggetti 3D; le curve e superfici in forma parametrica sono uno strumento utile per progettare oggetti e definire mesh poligonali di miglior qualità.

Le mesh poligonali hanno tanti parametri quanti vertici

- Le curve e superfici sono definite da pochi parametri e questo rende semplice progettarle e/o modificarle
- Le normali possono essere definite correttamente in ogni punto
- Le curve e superfici parametriche sono più facili da animare che le mesh poligonali

G. Casciola

Superfici Parametriche

Definiamo punti di una superficie in termini di due parametri.

Il caso più semplice è la superficie bilineare ottenuta per interpolazione

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} P_{i,j} B_{i,1}(u) B_{j,1}(v)$$
 Superficie prodotto tensoriale

Superficie Prodotto Tensoriale

- Viene definita su un dominio rettangolare
 - I parametri variano all'interno della regione rettangolare: $0 \le u \le 1$, $0 \le v \le 1$
- Per definire una superficie si usa una griglia rettangolare di punti di controllo
 - 4 punti nel caso bi-lineare (come nella slide precedente), molti di più negli altri casi
- La superficie ha la seguente forma:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} B_{i,n}(u) B_{j,m}(v)$$

per certe funzioni $B_{i,n}(u)$ and $B_{j,m}(v)$

Patch di Bézier

I patch di Bézier sono una estensione delle curve di Bézier

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} B_{i,n}(u) B_{j,m}(v)$$

- Come per le curve di Bézier, \mathbf{p}_0 $\mathbf{B}_{i,n}(\mathbf{u})$ e $\mathbf{B}_{j,m}(\mathbf{v})$ sono i polinomi di Bernestein rispettivamente di grado n ed m
- Il caso più frequente è n=m=3: cubic Bezier patch
 - In questo caso servono 4x4=16 punti di controllo, P_{i,j}

Patch di Bézier

- Ogni riga di 4 punti di controllo definisce una curve di Bézier in u
- Valutare ciascuna di queste curve in uno stesso valore parametrico u fornisce 4 punti di controllo virtuali
- I punti di controllo virtuali definiscono una curva di Bézier in v
- Valutare questa curva in v dà il punto S(u,v) della superficie

Valutazione

Quanto descritto definisce una superficie, ma è anche un algoritmo efficiente di valutazione della superficie prodotto tensoriale in genere, e di un patch di Bézier in particolare

- •Le curve di bordo della superficie sono curve 3D di Bézier
- •Le curve della superficie con u o v costanti sono curve 3D di Bézier

G. Casciola

G. Casciola

G. Casciola

G. Casciola

G.Casciola

G. Casciola

Proprietà dei Patch di Bézier

- I patch di Bézier interpolano alcuni punti di controllo?
 Quali? Perché?
- Che cosa si può dire sui piani tangenti al patch nei 4 vertici d'angolo?
- Il patch sta nel guscio convesso dei suoi punti di controllo?

Proprietà dei Patch di Bézier

- Il patch interpola i suoi 4 punti di controllo d'angolo
 - Questo deriva dalla proprietà di interpolazione delle curve di Bézier
- Il piano tangente in ogni vertice d'angolo passa per il punto di controllo d'angolo e per i due segmenti della griglia di controllo adiacenti al punto di controllo d'angolo
 - Il piano tangente alla superficie in un punto è il piano che è perpendicolare al vettore normale alla superficie in quel punto
 - La proprietà del piano tangente deriva dalle proprietà della tangente alla curva e da come si calcola il vettore normale
- Il patch sta nel guscio convesso dei suoi punti di controllo
 - Le funzioni base sono a somma 1 e sono non negativa (combinazione convessa)

Calcolo dei Vettori Normali

- La derivata parziale nella direzione u è un vettore tangente
- La derivata parziale nella direzione v è un altro
- Si consideri il loro prodotto vettoriale, lo si normalizzi, e si ottiene il vettore normale alla superficie

$$\frac{\partial S}{\partial u}\Big|_{\overline{u},\overline{v}} = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} \frac{dB_{i,n}(u)}{du}\Big|_{\overline{u}} B_{j,m}(\overline{v})$$

$$\frac{\partial S}{\partial v}\Big|_{\overline{u},\overline{v}} = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{P}_{i,j} B_{i,n}(\overline{u}) \frac{dB_{j,m}(v)}{dv}\Big|_{\overline{v}}$$

$$\mathbf{n} = \frac{\partial S}{\partial u}\Big|_{\overline{u},\overline{v}} \times \frac{\partial S}{\partial v}\Big|_{\overline{u},\overline{v}}$$

$$\hat{\mathbf{n}} = \frac{\mathbf{n}}{\|\mathbf{n}\|}$$

$$\mathbf{n} = \mathbf{n}$$

G. Casciola

Superfici Spline

Sia data una griglia (N+n+1)x(M+m+1) di punti di controllo, si definisca una partizioni nodale estesa in u ed una in v; scelta una direzione, per esempio u, si definiscano gli M+m+1 punti di controllo virtuali relativi a \overline{u}

$$C_{j}(\overline{u}) = \sum_{i=1}^{N+n+1} P_{i,j} B_{i,n}(\overline{u})$$
 per $j = 1,...M + m + 1$

Si definisca quindi la curva

$$S(\overline{u},v) = \sum_{i=1}^{M+m+1} C_j(\overline{u})B_{j,m}(v)$$

Questo procedimento al variare di u e v definisce i punti della superficie

$$S(u,v) = \sum_{i=1}^{N+n+1} \sum_{j=1}^{M+m+1} P_{i,j} B_{i,n}(u) B_{j,m}(v)$$

Nel caso bicubico (n=m=3), ogni 4x4 punti di controllo resta definito un patch spline

G. Casciola

Valutazione Patch Spline via raffinamento

Sia dato un patch spline bicubico (n=m=3); dopo il primo raffinamento il rettangolo nodale $[u_k, v_l]$, viene diviso in 2x2, per cui la griglia necessaria per la valutazione è (n+2)x(m+2), dopo il secondo raffinamento il rettangolo resta diviso in 4x4, e la griglia è (n+4)x(m+4), ecc.

La regola è molto semplice; ricordiamo che uno spazio spline ha dimensione N+n+1 con N nodi interni.

Intervalli: 1, 2, 4, 8, 16, ...

nodi negli intervalli: 0, 1, 3, 7, 15, ...

numero di CP (n = 3): 4, 5, 7, 11, 19, ...

in generale: n+1, n+2, n+4, n+8, n+16,...

e il patch $(n+1)x (n+1), (n+2)x (n+2), ecc. 0 u_{k+1} u_k$

G. Casciola

Grafica 15/16

Valutazione approssimata via raffinamento

Valutazione approssimata via raffinamento

Valutazione Esatta

Valutazione Esatta a valori parametrici (u,v) arbitrari

Valutazione approssimata via raffinamenti successivi

G. Casciola

Tassellazione

- La Tassellazione è il processo di considerare una superficie complessa (come un patch bicubico) e approssimarla con un insieme di superfici più semplici (come i triangoli)
- Vogliamo tassellare patch di Bézier, e intere superfici spline/nurbs mediante Valutazione Esatta

Tassellazione Uniforme

- Il modo più diretto di tassellare una superficie in forma parametrica è quello uniforme
- Con questo metodo, si definisce una risoluzione in u e in v, quindi si divide uniformemente il dominio in una griglia, infine si determina una griglia di punti della superficie per Valutazione Esatta
- Questo metodo è molto efficiente, in quanto il costo di valutazione della superficie ha approssimativamente lo stesso costo della valutazione di una curva
- Comunque, poiché la mesh generata è uniforme, può avere più triangoli del necessario in zone piatte e meno del necessario in zone altamente curve

Tassellazione Adattiva

- Molto spesso, l'obiettivo di una tassellazione è quello di determinare il minor numero di triangoli necessari per rappresentare accuratamente la superficie originale
- Per una superficie curva, questo significa che si vogliono più triangoli in certe zone dove la curvatura è alta e meno triangoli in zone dove la curvatura è bassa
- Si vogliono anche più triangoli in zone che sono più vicine alla camera e meno in zone lontane
- La Tassellazione Adattiva è definita per venire in contro a queste esigenze

Tassellazione Mista

- Certi software o librerie di rendering usano uno schema di Tassellazione Mista
- Prima, la superficie originale viene suddivisa adattivamente in numerosi sotto-patch, ciascuno approssimativamente della stessa dimensione (circa 10 pixel di lato)
- Poi, ciascuno dei sotto-patch (di tipo rettangolare in u,v) viene tassellato in modo uniforme ad una certa risoluzione (per esempio 10 x 10)
- Il risultato è che la superficie viene tassellata in triangoli approssimatvamente della dimensione di un singolo pixel
- Il maggior costo dell'algoritmo è nella tassellazione uniforme, che può essere implementata in una maniera molto efficiente.

Toro: superficie di Rotazione

Si definisce una curva sezione 2D spline o NURBS; allora la superficie ottenuta ruotando la curva intorno ad un asse può essere rappresentata mediante una superficie NURBS

