Compressed sensing off-the-grid: The Fisher metric, support stability and optimal sampling bounds

Clarice Poon University of Bath

Joint work with:

Nicolas Keriven and Gabriel Peyré École Normale Supérieure

February 6, 2019

Outline

- Compressed sensing off-the-grid
- 2 The Fisher metric and the minimum separation condition
- 3 Support stability for the subsampled problem
- 4 Ideas behind the proofs Dual certificates
- 3 Removal of random signs assumption

Compressed sensing [Candès, Romberg & Tao '06; Donoho '06]

Task: Recover $a \in \mathbb{C}^N$ from $y = \Phi a$ where $\Phi \in \mathbb{C}^{m \times N}$ with $m \ll N$ and a is s-sparse.

Typical compressed sensing statement:

For certain random matrices $\Phi \in \mathbb{C}^{m \times N}$, with high probability, a can be uniquely recovered from $m = \mathcal{O}\left(s\log\left(N\right)\right)$ measurements by solving

$$\min_{z\in\mathbb{C}^N}\|z\|_1 \ \text{subject to} \ \Phi z=y$$

or in the noisy case of $y = \Phi a + w$, the minimizer \hat{a} of

$$\min_{z \in \mathbb{C}^N} \lambda \|z\|_1 + \frac{1}{2} \|\Phi z - y\|_2^2$$

with $\lambda \sim \delta/\sqrt{s}$ and $||w|| \leq \delta$ satisfies $||a - \hat{a}||_1 \lesssim \sigma_s(x)_1 + \sqrt{s}\delta$.

Compressed sensing [Candès, Romberg & Tao '06; Donoho '06]

Task: Recover $a \in \mathbb{C}^N$ from $y = \Phi a$ where $\Phi \in \mathbb{C}^{m \times N}$ with $m \ll N$ and a is s-sparse.

Typical compressed sensing statement:

For certain random matrices $\Phi \in \mathbb{C}^{m \times N}$, with high probability, a can be uniquely recovered from $m = \mathcal{O}(s \log(N))$ measurements by solving

$$\min_{z\in\mathbb{C}^N}\|z\|_1 \ \text{subject to} \ \Phi z=y$$

or in the noisy case of $y = \Phi a + w$, the minimizer \hat{a} of

$$\min_{z \in \mathbb{C}^N} \lambda \|z\|_1 + \frac{1}{2} \|\Phi z - y\|_2^2$$

with $\lambda \sim \delta/\sqrt{s}$ and $||w|| \leq \delta$ satisfies $||a - \hat{a}||_1 \lesssim \sigma_s(x)_1 + \sqrt{s\delta}$.

In the case where U is unitary, the above statement holds with $\Phi = P_{\Omega}U$ where Ω are

$$m = \mathcal{O}(N \cdot \mu(U)^2 \cdot s \cdot \log(N))$$

uniformly drawn indices, $\mu(U) = \max_{i,j} |U_{ij}|$ is the so called *coherence*.

In the case of U being the DFT, we have $\mu(U)^2 = 1/N$.

Compressed sensing off the grid

Aim: Recover $\mu_0 \in \mathcal{M}(\mathcal{X}), \ \mathcal{X} \subseteq \mathbb{R}^d$, from m observations, $y = \Phi \mu_0 + w$

- Let (Ω, Λ) be a probability space. For $\omega \in \Omega$, we have random features $\varphi_{\omega} \in \mathcal{C}(\mathcal{X})$.
- For k = 1, ..., m, let $\omega_k \stackrel{iid}{\sim} \Lambda$. The measurement operator is

$$\Phi: \mathcal{M}(\mathcal{X}) \to \mathbb{C}^m, \qquad \Phi \mu \stackrel{\text{def.}}{=} \frac{1}{\sqrt{m}} \left(\int \varphi_{\omega_k}(x) d\mu(x) \right)_{k=1}^m$$

Typically, the measure of interest is $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ where $a\delta_x$ denotes the Dirac at $x \in \mathcal{X}$ with amplitude $a \in \mathbb{C}$ (also called a "spike").

Imaging

Sampling the Fourier transform (e.g. astronomy)

Recover $\mu \in \mathcal{M}(\mathbb{T}^d)$ from $(\mathcal{F}\mu(\omega_k))_{k=1}^m$ where \mathcal{F} is the Fourier transform and ω_k are drawn iid from $(\llbracket -f_c, f_c \rrbracket^d, \text{Unif})$.

Here, $\varphi_{\omega}(x) = \exp\left(-i2\pi x^{\top}\omega\right)$ and

$$\Phi \mu_0 = \frac{1}{\sqrt{m}} \left(\sum_{j=1}^s a_j \exp\left(-i2\pi x_j^\top \omega_k\right) \right)_{k=1}^m$$

Sampling the Laplace transform (e.g. fluorescence microscopy)

Recover $\mu \in \mathcal{M}(\mathbb{R}^d_+)$ from $(\mathcal{L}\mu(\omega_k))_{k=1}^m$ where \mathcal{L} is the Laplace transform and ω_k are drawn iid from $(\mathbb{R}^d_+, \Lambda_\alpha)$ where $\Lambda_\alpha(\omega) \propto \exp\left(-2\alpha^\top \omega\right)$.

Here, $\varphi_{\omega}(x) = \exp(-x^{\top}\omega)$ and

$$\Phi \mu_0 = \frac{1}{\sqrt{m}} \left(\sum_{j=1}^s a_j \exp\left(-x_j^\top \omega_k\right) \right)_{k=1}^m$$

Two layer neural network [Bach, 2015]

Let $\Omega \subseteq \mathbb{R}^d$, and $\omega_1, \ldots, \omega_m$ are the training samples drawn from (Ω, Λ) , with corresponding values $y_1, \ldots, y_m \in \mathbb{R}$. Find a function of the form

$$f(\omega) = \sum_{j=1}^{s} a_j \max(\langle x_j, \omega \rangle, 0)$$

where $a_j \in \mathbb{R}$ and $x_j \in \mathbb{R}^d$ such that $f(\omega_j) \approx y_j$ for $j = 1, \ldots, m$. We can then use the function f to predict y given $\omega \in \Omega$.

Two layer neural network [Bach, 2015]

Let $\Omega \subseteq \mathbb{R}^d$, and $\omega_1, \ldots, \omega_m$ are the training samples drawn from (Ω, Λ) , with corresponding values $y_1, \ldots, y_m \in \mathbb{R}$. Find a function of the form

$$f(\omega) = \sum_{j=1}^{s} a_j \max(\langle x_j, \omega \rangle, 0)$$

where $a_j \in \mathbb{R}$ and $x_j \in \mathbb{R}^d$ such that $f(\omega_j) \approx y_j$ for j = 1, ..., m. We can then use the function f to predict g given $\omega \in \Omega$.

This is precisely our sparse spikes problem where we let $\varphi_{\omega}(x) = \max(\langle x, \omega \rangle, 0)$ and

$$\Phi\mu_0 = \left(\sum_{j=1}^s a_j \max\left(\langle x_j, \, \omega_k \rangle, 0\right)\right)_{k=1}^m$$

where $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$.

Density estimation

Task: Given data on \mathcal{T} , estimate parameters $(a_i) \in \mathbb{R}^N_+$ and $(x_i)_{i=1}^s \in \mathcal{X}^s$ of a mixture

$$\xi(t) = \sum_{j=1}^{s} a_j \xi_{x_j}(t) = \int_{\mathcal{X}} \xi_x(t) d\mu_0(x)$$

where $\mu_0 = \sum_j a_j \delta_{x_j}$ where $(\xi_x)_{x \in \mathcal{X}}$ is a family of template distributions. E.g. $x = (m, \sigma) \in \mathcal{X} = \mathbb{R} \times \mathbb{R}_+$ and $\xi_x = \mathcal{N}(m, \sigma^2)$.

Density estimation

Task: Given data on \mathcal{T} , estimate parameters $(a_i) \in \mathbb{R}^N_+$ and $(x_i)_{i=1}^s \in \mathcal{X}^s$ of a mixture

$$\xi(t) = \sum_{j=1}^{s} a_j \xi_{x_j}(t) = \int_{\mathcal{X}} \xi_x(t) d\mu_0(x)$$

where $\mu_0 = \sum_j a_j \delta_{x_j}$ where $(\xi_x)_{x \in \mathcal{X}}$ is a family of template distributions. E.g. $x = (m, \sigma) \in \mathcal{X} = \mathbb{R} \times \mathbb{R}_+$ and $\xi_x = \mathcal{N}(m, \sigma^2)$.

Sketching [Gribonval, Blanchard, Keriven & Traonmilin, 2017]

- No direct access to ξ but n iid samples $(t_1, \ldots, t_n) \in \mathcal{T}^n$ drawn from ξ .
- You do not record this (possibly huge) set of data, but compute online a small set $y \in \mathbb{C}^m$ of m sketches against sketching functions $\theta_{\omega}(t)$:

$$y_k \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{j=1}^n \theta_{\omega_k}(t_j) \approx \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi(t) dt = \int_{\mathcal{X}} \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi_x(t) dt d\mu_0(x).$$

• So, $\varphi_{\omega}(x) \stackrel{\text{def.}}{=} \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi_x(t) dt$. E.g. $\theta_{\omega}(t) = e^{\mathrm{i}\langle \omega, t \rangle}$ and $\varphi_{\cdot}(x)$ is the characterisatic function of ξ_x .

The Beurling LASSO

The BLASSO was initially proposed by [De Castro & Gamboa, 2012] and [Bredies & Pikkarainnen, 2013]. Solve

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \|\Phi \mu - y\|^2 + \lambda |\mu| (\mathcal{X})$$
 $(\hat{\mathcal{P}}_{\lambda}(y))$

where $|\mu|(\mathcal{X}) \stackrel{\text{def.}}{=} \sup \{ \operatorname{Re}(\langle f, \mu \rangle) ; f \in \mathcal{C}(\mathcal{X}), \|f\|_{\infty} \leq 1 \}.$

Noiseless problem: for $y_0 = \Phi \mu_0$,

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu| (\mathcal{X}) \text{ subject to } \Phi \mu = y_0 \qquad (\hat{\mathcal{P}}_0(y_0))$$

NB: If
$$\mu = \sum_{j} a_{j} \delta_{x_{j}}$$
, then $|\mu|(\mathcal{X}) = ||a||_{1}$.

The Beurling LASSO

The BLASSO was initially proposed by [De Castro & Gamboa, 2012] and [Bredies & Pikkarainnen, 2013]. Solve

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \|\Phi \mu - y\|^2 + \lambda |\mu| (\mathcal{X}) \qquad (\hat{\mathcal{P}}_{\lambda}(y))$$

where $|\mu|(\mathcal{X}) \stackrel{\text{def.}}{=} \sup \{ \operatorname{Re}(\langle f, \mu \rangle) ; f \in \mathcal{C}(\mathcal{X}), \|f\|_{\infty} \leq 1 \}.$

Noiseless problem: for $y_0 = \Phi \mu_0$,

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu| (\mathcal{X}) \text{ subject to } \Phi \mu = y_0 \qquad (\hat{\mathcal{P}}_0(y_0))$$

NB: If $\mu = \sum_{j} a_{j} \delta_{x_{j}}$, then $|\mu|(\mathcal{X}) = ||a||_{1}$.

Goal: A CS-type theory.

Under what conditions can we recover $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ exactly (stably) from

$$m = \mathcal{O}(s \times \log \text{ factors})$$

(noisy) randomised linear measurements?

Remarks

- Other approaches include **Prony-type methods** (1795): MUSIC [Schmidt, 1986], ESPRIT [Roy, 1987], Finite Rate of Innovation [Vetterli, 2002] ...
 - Nonvariational approaches which encodes the spikes positions as the zeros of some polynomial, whose coefficients are derived from the measurements.
 - ▶ Generally restricted to Fourier type measurements.
 - Extension to multivariate setting is nontrivial.
- There are efficient algorithms for solving this infinite dimensional problem, e.g. **SDP** approaches [Candès & Fernandez-Granda, 2012; De Castro, Gamboa, Henrion & Lasserre 2015] and **Frank-Wolfe approaches** [Bredies & Pikkarainnen 2013; Boyd, Schiebinger & Recht '15; Denoyelle, Duval & Peyré '18] .

Recovery of spikes of arbitrary signs require a minimum separation condition:

- [Candès & Fernandez-Granda '12]: Given $\{\mathcal{F}\mu_0(k) \; ; \; k \in \mathbb{Z}^d, \; ||k||_{\infty} \leqslant f_c\}, \; \mu_0 \text{ can be recovered uniquely if } \Delta = \min_{i \neq j} ||x_i x_j||_{\infty} \geqslant \frac{C_d}{f_c}.$
- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad hoc metrics [Bendory et al '15, Tang '15].

Recovery of spikes of arbitrary signs require a minimum separation condition:

- [Candès & Fernandez-Granda '12]: Given $\{\mathcal{F}\mu_0(k) \; ; \; k \in \mathbb{Z}^d, \; ||k||_{\infty} \leqslant f_c\}, \; \mu_0 \text{ can be recovered uniquely if } \Delta = \min_{i \neq j} ||x_i x_j||_{\infty} \geqslant \frac{C_d}{f_c}.$
- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad hoc metrics [Bendory et al '15, Tang '15].

Stability for the recovered measure $\hat{\mu}$:

- Integral type stability estimates [Candès & Fernandez-Granda '13]: $||K_{hi} \star (\hat{\mu} \mu_0)||_{L_1}$.
- Support concentration [Fernandez-Granda '13; Asaïs, De Castro & Gamboa '12]: Bounds on $\left|\hat{\mu}(\mathcal{X}_{j}^{\text{near}}) a_{j}\right|$ and $\left|\hat{\mu}\right|(\mathcal{X}^{\text{far}})$.
- Support stability [Duval and Peyré '15]: in the small noise regime where ||w|| and λ are sufficiently small, $\hat{\mu}$ consists of exactly s spikes, and the recovered amplitudes and positions vary continuously with respect to λ and w.

Recovery of spikes of arbitrary signs require a minimum separation condition:

- [Candès & Fernandez-Granda '12]: Given $\{\mathcal{F}\mu_0(k) \; ; \; k \in \mathbb{Z}^d, \; ||k||_{\infty} \leqslant f_c\}$, μ_0 can be recovered uniquely if $\Delta = \min_{i \neq j} ||x_i x_j||_{\infty} \geqslant \frac{C_d}{f_c}$.
- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad hoc metrics [Bendory et al '15, Tang '15].

Stability for the recovered measure $\hat{\mu}$:

- Integral type stability estimates [Candès & Fernandez-Granda '13]: $||K_{hi} \star (\hat{\mu} \mu_0)||_{L_1}$.
- Support concentration [Fernandez-Granda '13; Asaïs, De Castro & Gamboa '12]: Bounds on $\left|\hat{\mu}(\mathcal{X}_{j}^{\mathrm{near}}) a_{j}\right|$ and $\left|\hat{\mu}\right|(\mathcal{X}^{\mathrm{far}})$.
- Support stability [Duval and Peyré '15]: in the small noise regime where ||w|| and λ are sufficiently small, $\hat{\mu}$ consists of exactly s spikes, and the recovered amplitudes and positions vary continuously with respect to λ and w.

- [Tang et al '13]: If $\operatorname{sign}(a_j)_{j=1}^s$ is a Steinhaus sequence and $\Delta \geqslant \frac{C}{f_c}$, then exact recovery is guaranteed with $\mathcal{O}(s\log(f_c)\log(s))$ number of noiseless random Fourier coefficients.
- Extended to two dimensional setting by [Chi & Chen '15]. So far, removal of the random signs assumption results in $\mathcal{O}(s^2)$ measurements [Li & Chi '17].

Recovery of spikes of arbitrary signs require a minimum separation cond.:

- [Candès & Fernandez-Granda '12]: Given $\{\mathcal{F}\mu_0(k) \; ; \; k \in \mathbb{Z}^d, \; ||k||_{\infty} \leqslant f_c\}$, μ_0 can be recovered uniquely if $\Delta = \min_{i \neq j} ||x_i x_j||_{\infty} \geqslant \frac{C_d}{f_c}$.
- Many extensions to other measurement operators, minimum separation is *fundamental* (for BLASSO) and often imposed via ad-hoc metrics [Bendory et al '15, Tang '15].

Stability for the recovered measure $\hat{\mu}$:

- Integral type stability estimates [Candès & Fernandez-Granda '13]: $||K_{hi} \star (\hat{\mu} \mu_0)||_{L_1}$.
- Support concentration [Fernandez-Granda '13; Asaïs, De Castro & Gamboa '12]: Bounds on $\left|\hat{\mu}(\mathcal{X}_{j}^{\mathrm{near}}) a_{j}\right|$ and $\left|\hat{\mu}\right|(\mathcal{X}^{\mathrm{far}})$.
- Support stability [Duval and Peyré '15]: in the small noise regime where ||w|| and λ are sufficiently small, $\hat{\mu}$ consists of exactly s spikes, and the recovered amplitudes and positions vary continuously with respect to λ and w.

- [Tang et al '13]: If $\operatorname{sign}(a_j)_{j=1}^s$ is a Steinhaus sequence and $\Delta \geqslant \frac{C}{f_c}$, then exact recovery is guaranteed with $\mathcal{O}(s\log(f_c)\log(s))$ number of noiseless random Fourier coefficients.
- Extended to two dimensional setting by [Chi & Chen '15]. So far, removal of the random signs assumption results in $\mathcal{O}(s^2)$ measurements [Li & Chi '17].

Recovery of spikes of arbitrary signs require a minimum separation cond.:

- [Candès & Fernandez-Granda '12]: Given $\{\mathcal{F}\mu_0(k) \; ; \; k \in \mathbb{Z}^d, \; \|k\|_{\infty} \leqslant f_c\}, \; \mu_0 \text{ can be recovered uniquely if } \Delta = \min_{i \neq j} \|x_i x_j\|_{\infty} \geqslant \frac{C_d}{f_c}.$
- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad-hoc metrics [Bendory et al '15, Tang '15].

Stability for the recovered measure $\hat{\mu}$:

- Integral type stability estimates [Candès & Fernandez-Granda '13]: $\|K_{\text{hi}}\star(\hat{\mu}-\mu_0)\|_{L_1}$.
- Support concentration [Fernandez-Granda '13; Asaïs, De Castro & Gamboa '12]: Bounds on $\left|\hat{\mu}(\mathcal{X}_{j}^{\mathrm{near}}) a_{j}\right|$ and $\left|\hat{\mu}\right|(\mathcal{X}^{\mathrm{far}})$.
- Support stability [Duval and Peyré '15]: in the small noise regime where ||w|| and λ are sufficiently small, $\hat{\mu}$ consists of exactly s spikes, and the recovered amplitudes and positions vary continuously with respect to λ and w.

- [Tang et al '13]: If $\operatorname{sign}(a_j)_{j=1}^s$ is a Steinhaus sequence and $\Delta \geqslant \frac{C}{f_c}$, then exact recovery is guaranteed with $\mathcal{O}(s\log(f_c)\log(s))$ number of **noiseless** random Fourier coefficients.
- Extended to two dimensional setting by [Chi & Chen '15]. So far, removal of the random signs assumption results in $\mathcal{O}(s^2)$ measurements [Li & Chi '17].

Recovery of spikes of arbitrary signs require a minimum separation cond.:

- [Candès & Fernandez-Granda '12]: Given $\{\mathcal{F}\mu_0(k) \; ; \; k \in \mathbb{Z}^d, \; ||k||_{\infty} \leqslant f_c\}$, μ_0 can be recovered uniquely if $\Delta = \min_{i \neq j} ||x_i x_j||_{\infty} \geqslant \frac{C_d}{f_c}$.
- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad-hoc metrics [Bendory et al '15, Tang '15].

Stability for the recovered measure $\hat{\mu}$:

- Integral type stability estimates [Candès & Fernandez-Granda '13]: $\|K_{\text{hi}} \star (\hat{\mu} \mu_0)\|_{L_1}$.
- Support concentration [Fernandez-Granda '13; Asaïs, De Castro & Gamboa '12]: Bounds on $\left|\hat{\mu}(\mathcal{X}_{j}^{\text{near}}) a_{j}\right|$ and $\left|\hat{\mu}\right|(\mathcal{X}^{\text{far}})$.
- Support stability [Duval and Peyré '15]: in the small noise regime where ||w|| and λ are sufficiently small, $\hat{\mu}$ consists of exactly s spikes, and the recovered amplitudes and positions vary continuously with respect to λ and w.

- [Tang et al '13]: If $\operatorname{sign}(a_j)_{j=1}^s$ is a **Steinhaus sequence** and $\Delta \geqslant \frac{C}{f_c}$, then exact recovery is guaranteed with $\mathcal{O}(s \log(f_c) \log(s))$ number of **noiseless** random Fourier coefficients.
- Extended to two dimensional setting by [Chi & Chen '15]. So far, removal of the random signs assumption results in $\mathcal{O}(s^2)$ measurements [Li & Chi '17].

Outline

- 1 Compressed sensing off-the-grid
- 2 The Fisher metric and the minimum separation condition
- 3 Support stability for the subsampled problem
- 4 Ideas behind the proofs Dual certificates
- 5 Removal of random signs assumption

The covariance kernel

The covariance kernel

Define the covariance kernel: $\hat{K}(x,x') \stackrel{\text{def.}}{=} \frac{1}{m} \sum_{k=1}^{m} \overline{\varphi_{\omega_k}(x)} \varphi_{\omega_k}(x')$, and the limit covariance kernel as $K(x,x') \stackrel{\text{def.}}{=} \mathbb{E}[\hat{K}(x,x')] = \int \overline{\varphi_{\omega}(x)} \varphi_{\omega}(x') d\Lambda(\omega)$.

Denote
$$\hat{f} \stackrel{\text{def.}}{=} \Phi^* y = \int \hat{K}(x, x') d\mu_0(x') + \Phi^* w \in \mathcal{C}(\mathcal{X})$$
. The BLASSO can be rewritten as
$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \int \hat{K}(x, x') d\overline{\mu}(x) d\mu(x') - \text{Re}\langle \hat{f}, \mu \rangle + \lambda |\mu| (\mathcal{X}) \qquad (\hat{\mathcal{P}}_{\lambda}(y))$$

and

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu|(\mathcal{X}) \text{ subject to } \int \hat{K}(x, x') d\overline{(\mu - \mu_0)}(x) d(\mu - \mu_0)(x') = 0.$$
 ($\hat{\mathcal{P}}_0(y_0)$)

The covariance kernel

The covariance kernel

Define the covariance kernel: $\hat{K}(x,x') \stackrel{\text{def.}}{=} \frac{1}{m} \sum_{k=1}^{m} \overline{\varphi_{\omega_k}(x)} \varphi_{\omega_k}(x')$, and the limit covariance kernel as $K(x,x') \stackrel{\text{def.}}{=} \mathbb{E}[\hat{K}(x,x')] = \int \overline{\varphi_{\omega}(x)} \varphi_{\omega}(x') d\Lambda(\omega)$.

Denote
$$\hat{f} \stackrel{\text{def.}}{=} \Phi^* y = \int \hat{K}(x, x') d\mu_0(x') + \Phi^* w \in \mathcal{C}(\mathcal{X})$$
. The BLASSO can be rewritten as
$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \int \hat{K}(x, x') d\overline{\mu}(x) d\mu(x') - \text{Re}\langle \hat{f}, \mu \rangle + \lambda |\mu| (\mathcal{X}) \qquad (\hat{\mathcal{P}}_{\lambda}(y))$$

and

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu|(\mathcal{X}) \text{ subject to } \int \hat{K}(x, x') d\overline{(\mu - \mu_0)}(x) d(\mu - \mu_0)(x') = 0.$$
 (\hat{\mathcal{P}}_0(y_0))

Before discussing the role of subsampling, let's look at the limit problem associated to K.

What separation conditions should we impose to guarantee recovery of $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$?

The covariance kernel

The covariance kernel

Define the covariance kernel: $\hat{K}(x,x') \stackrel{\text{def.}}{=} \frac{1}{m} \sum_{k=1}^{m} \overline{\varphi_{\omega_k}(x)} \varphi_{\omega_k}(x')$, and the limit covariance kernel as $K(x,x') \stackrel{\text{def.}}{=} \mathbb{E}[\hat{K}(x,x')] = \int \overline{\varphi_{\omega}(x)} \varphi_{\omega}(x') d\Lambda(\omega)$.

Denote
$$f \stackrel{\text{def.}}{=} \int K(x, x') d\mu_0(x') + \varepsilon \in \mathcal{C}(\mathcal{X})$$
. The BLASSO can be rewritten as
$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \int K(x, x') d\overline{\mu}(x) d\mu(x') - \text{Re}\langle f, \mu \rangle + \lambda |\mu| (\mathcal{X}) \qquad (\mathcal{P}_{\lambda}(f))$$

and

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu|(\mathcal{X}) \text{ subject to } \int K(x, x') d\overline{(\mu - \mu_0)}(x) d(\mu - \mu_0)(x') = 0. \tag{$\mathcal{P}_0(f_0)$}$$

Before discussing the role of subsampling, let's look at the limit problem associated to K.

What separation conditions should we impose to guarantee recovery of $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$?

Assume that for all $x \in \mathcal{X}$, $\mathbb{E}_{\omega}[|\varphi_{\omega}(x)|^2] = 1$. Let $\mathbf{H}_x \stackrel{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d}$ and assume that \mathbf{H}_x is positive definite for all $x \in \mathcal{X}$.

Assume that for all $x \in \mathcal{X}$, $\mathbb{E}_{\omega}[|\varphi_{\omega}(x)|^2] = 1$. Let $\mathbf{H}_x \stackrel{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d}$ and assume that \mathbf{H}_x is positive definite for all $x \in \mathcal{X}$.

• $f(x,\omega) \stackrel{\text{de}}{=} |\varphi_{\omega}(x)|^2$ can be interpreted as a probability density function for the random variable ω conditional on parameter $x \in \mathcal{X}$ and its Fisher information matrix is:

$$\int \nabla \left(\log f(x,\omega)\right) \nabla \left(\log f(x,\omega)\right)^{\top} f(x,\omega) \mathrm{d} \Lambda(\omega) = 4 \mathbf{H}_x.$$

Assume that for all $x \in \mathcal{X}$, $\mathbb{E}_{\omega}[|\varphi_{\omega}(x)|^2] = 1$. Let $\mathbf{H}_x \stackrel{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d}$ and assume that \mathbf{H}_x is positive definite for all $x \in \mathcal{X}$.

• $f(x,\omega) \stackrel{\text{def}}{=} |\varphi_{\omega}(x)|^2$ can be interpreted as a probability density function for the random variable ω conditional on parameter $x \in \mathcal{X}$ and its Fisher information matrix is:

$$\int \nabla (\log f(x,\omega)) \nabla (\log f(x,\omega))^{\top} f(x,\omega) d\Lambda(\omega) = 4\mathbf{H}_x.$$

• **H** naturally induces a distance between points on \mathcal{X} . Given a curve $\gamma:[0,1]\to\mathcal{X}$, $\ell_{\mathbf{H}}[\gamma]\stackrel{\text{def.}}{=} \int_0^1 \sqrt{\langle \mathbf{H}_{\gamma(t)}\gamma'(t), \gamma'(t)\rangle} \mathrm{d}t$ and given $x, x'\in\mathcal{X}$,

$$d_{\mathbf{H}}(x, x') \stackrel{\text{def.}}{=} \inf \left\{ \ell_{\mathbf{H}}[\gamma] ; \ \gamma : [0, 1] \to \mathcal{X}, \gamma(0) = x, \gamma(1) = x' \right\}.$$

Also called the "Fisher-Rao" geodesic distance, this is used extensively in information geometry for estimation and learning problems on parametric families of distributions (Amari and Nagaoka, 2007).

Assume that for all $x \in \mathcal{X}$, $\mathbb{E}_{\omega}[|\varphi_{\omega}(x)|^2] = 1$. Let $\mathbf{H}_x \stackrel{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d}$ and assume that \mathbf{H}_x is positive definite for all $x \in \mathcal{X}$.

• $f(x,\omega) \stackrel{\text{def}}{=} |\varphi_{\omega}(x)|^2$ can be interpreted as a probability density function for the random variable ω conditional on parameter $x \in \mathcal{X}$ and its Fisher information matrix is:

$$\int \nabla (\log f(x,\omega)) \nabla (\log f(x,\omega))^{\top} f(x,\omega) d\Lambda(\omega) = 4\mathbf{H}_x.$$

• **H** naturally induces a distance between points on \mathcal{X} . Given a curve $\gamma:[0,1]\to\mathcal{X}$, $\ell_{\mathbf{H}}[\gamma]\stackrel{\text{def.}}{=} \int_0^1 \sqrt{\langle \mathbf{H}_{\gamma(t)}\gamma'(t), \gamma'(t)\rangle} \mathrm{d}t$ and given $x, x'\in\mathcal{X}$,

$$d_{\mathbf{H}}(x, x') \stackrel{\text{def.}}{=} \inf \left\{ \ell_{\mathbf{H}}[\gamma] \; ; \; \gamma : [0, 1] \to \mathcal{X}, \gamma(0) = x, \gamma(1) = x' \right\}.$$

Also called the "Fisher-Rao" geodesic distance, this is used extensively in information geometry for estimation and learning problems on parametric families of distributions (Amari and Nagaoka, 2007).

Theorem

Under some generic conditions on K and Δ , if $\min_{j\neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$, then μ_0 can be exactly (stably) recovered as a solution to $\mathcal{P}_0(f)$ (to $\mathcal{P}_{\lambda}(f)$).

Notation for derivatives

We can interpret the r^{th} derivative as a multilinear map $\nabla^r f: (\mathbb{C}^d)^r \to \mathbb{C}$, given $Q = \{q_\ell\}_{\ell=1}^r \in (\mathbb{C}^d)^r$,

$$\nabla^r f[Q] = \sum_{i_1, \dots, i_r} \partial_{i_1} \cdots \partial_{i_r} f(x) q_{i_1} \cdots q_{i_r}.$$

The normalised r^{th} derivative is

$$D_r[f](x)[Q] = \nabla^r f(x)[\{\mathbf{H}_x^{-\frac{1}{2}} q_i\}_{i=1}^r].$$

and $K^{ij}(x,x'):(\mathbb{C}^d)^i\times(\mathbb{C}^d)^j\to\mathbb{C}$ is defined by

$$K^{(ij)}[Q,V] \stackrel{\text{def.}}{=} \mathbb{E}\left(\overline{\mathrm{D}_i[\varphi_\omega][Q]}\cdot\mathrm{D}_j[\varphi_\omega][V]\right).$$

A kernel K will be said admissible with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

^{*}For simplicity, assume that K is real-valued.

A kernel K will be said admissible with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Sufficient peak:

- For $d_{\mathbf{H}}(x, x') \geqslant r_{\text{near}}, |K(x, x')| \leqslant 1 \varepsilon_0.$
- For $d_{\mathbf{H}}(x, x') \leqslant r_{\text{near}}, K^{(02)}(x, x') \preccurlyeq -\varepsilon_2 \text{Id}$

A kernel K will be said admissible with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Sufficient peak:

- For $d_{\mathbf{H}}(x, x') \geqslant r_{\text{near}}, |K(x, x')| \leqslant 1 \varepsilon_0.$
- For $d_{\mathbf{H}}(x, x') \leqslant r_{\text{near}}, K^{(02)}(x, x') \preccurlyeq -\varepsilon_2 \text{Id}$

Sufficient decay:

• For $d_{\mathbf{H}}(x,x') \geqslant \Delta/4$, $\|K^{(ij)}(x,x')\| \leqslant \frac{h}{s_{\max}}$, where $i,j \in \{0,\ldots,2\}$ with $i+j \leqslant 3$, $h \stackrel{\text{def.}}{=} \min_{i \in \{0,2\}} \left(\frac{\varepsilon_i}{32B_{1i}+32}\right)$.

A kernel K will be said admissible with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Sufficient peak:

- For $d_{\mathbf{H}}(x, x') \geqslant r_{\text{near}}, |K(x, x')| \leqslant 1 \varepsilon_0$.
- For $d_{\mathbf{H}}(x, x') \leqslant r_{\text{near}}, K^{(02)}(x, x') \preccurlyeq -\varepsilon_2 \text{Id}$

Sufficient decay:

• For $d_{\mathbf{H}}(x,x') \ge \Delta/4$, $\|K^{(ij)}(x,x')\| \le \frac{h}{s_{\max}}$, where $i,j \in \{0,\ldots,2\}$ with $i+j \le 3$, $h \stackrel{\text{def.}}{=} \min_{i \in \{0,2\}} \left(\frac{\varepsilon_i}{32B_{1i}+32}\right)$.

Uniform bounds: $\sup_{x,x'\in\mathcal{X}} \|K^{(ij)}(x,x')\| \leq B_{ij} \text{ for } i,j\in\{0,1,2\}.$

Additionally, for $d_{\mathbf{H}}(x, x') \leqslant r_{\text{near}}$: $\left\| \operatorname{Id} - \mathbf{H}_{x'}^{-\frac{1}{2}} \mathbf{H}_{x}^{\frac{1}{2}} \right\| \leqslant C_{\mathbf{H}} d_{\mathbf{H}}(x, x')$.

A kernel K will be said admissible with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Theorem

Suppose that K is admissible, and $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ with $\min_{j \neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$. Then, μ_0 can be exactly (stably) recovered as a solution to $\mathcal{P}_0(f)$ (to $\mathcal{P}_{\lambda}(f)$).

NB: in general, ε_i , $r_{\rm near}$, B_{ij} , $C_{\rm H}$ are just constants (possibly dependent on d), but independent of problem parameters.

Examples

Discrete Fourier	Continuous Fourier	Microscopy (Laplace trans.)	
Random features			
$\varphi_{\omega}(x) = e^{i2\pi\omega^{\top}x}$ $\Lambda \propto \prod_{i} g(\omega_{i}) \text{ on } \llbracket -f_{c}, f_{c} \rrbracket^{d}$	$\varphi_{\omega}(x) = e^{i\omega^{\top}x}$ $\Lambda = \mathcal{N}(0, \Sigma) \text{ on } \mathbb{R}^d$	$\varphi_{\omega}(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^{\top} x}$ $\Lambda \propto e^{-\alpha^{\top} \omega} \text{ on } \mathbb{R}^d_{\perp}$	
$K \propto \prod_j g(\omega_j)$ on $[-j_c, j_c]$	Kernel	1 X & OII M+	
Т1 П . (/)	Gaussian $\dagger e^{-\ x-x'\ _{\Sigma}}$	П (п 1 г п/ 1 г)	
Jackson $\prod_i \kappa(x_i - x_i')$	Gaussian ' e " " " E	$\prod_{i} \kappa(x_i + \alpha_i, x_i' + \alpha_i),$	
10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴	2 1 0 -1 -2 -3-3 -2 -1 6 1 2	09 08 08 07 08 08 08 08 08 08 08 08 08 08 08 08 08	
		$\kappa(x, x') = \frac{\sqrt{4xx'}}{x^{\perp}x'}$	
Metric and separation			
$\mathbf{H}_x = C_{fc} \mathrm{Id}^{\ \ddagger}$	$\mathbf{H}_x = \Sigma$	$\mathbf{H}_x = \operatorname{diag}\left(\frac{1}{4(x_i + \alpha_i)^2}\right)$	
$d_{\mathbf{H}}(x, x') = C_{f_c}^{\frac{1}{2}} \ x - x'\ _2$	$d_{\mathbf{H}}(x, x') = x - x' _{\Sigma}$	$d_{\mathbf{H}}(x, x') = \sqrt{\sum_{i} \left \log \left(\frac{x_{i} + \alpha_{i}}{x'_{i} + \alpha_{i}} \right) \right ^{2}}$	
$\Delta = \sqrt{d\sqrt{s}}$	$\Delta = \sqrt{\log(s)}$	$\Delta = d + \log(ds)$	
$^{\ddagger}C_{f_c} = \frac{\pi^2}{3} f_c(f_c + 4) \sim f_c^2$			

16 / 36

Examples

and in proc				
Discrete Fourier	Continuous Fourier	Microscopy (Laplace trans.)		
	Random features			
$\varphi_{\omega}(x) = e^{i2\pi\omega^{\top}x}$ $\Lambda \propto \prod_{j} g(\omega_{j}) \text{ on } \llbracket -f_{c}, f_{c} \rrbracket^{d}$	$\varphi_{\omega}(x) = e^{i\omega^{\top}x}$ $\Lambda = \mathcal{N}(0, \Sigma) \text{ on } \mathbb{R}^d$	$\varphi_{\omega}(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^{\top} x}$ $\Lambda \propto e^{-\alpha^{\top} \omega} \text{ on } \mathbb{R}^d_{+}$		
$\Pi \propto \prod_j g(\omega_j)$ on $[\![J_c, J_c]\!]$	Kernel	11 00 011 110+		
Jackson $\prod_i \kappa(x_i - x_i')$	Gaussian † $e^{-\ x-x'\ _{\Sigma}}$	$\prod_{i} \kappa(x_i + \alpha_i, x_i' + \alpha_i),$		
10 ⁻¹ - 10 ⁻¹ - 10 ⁻¹ - 10 ⁻¹ - 20 ⁻¹ 1- -0.4 -0.2 0.0 0.2 0.4	2 1 0 -1 -2 -3-3 -2 -1 0 1 2	02		
		$\kappa(x, x') = \frac{\sqrt{4xx'}}{x+x'}$		
Metric and separation				
$\mathbf{H}_x = C_{fc} \operatorname{Id}^{\ddagger}$	$\mathbf{H}_x = \Sigma$	$\mathbf{H}_x = \operatorname{diag}\left(\frac{1}{4(x_i + \alpha_i)^2}\right)$		
$d_{\mathbf{H}}(x, x') = C_{fc}^{\frac{1}{2}} \left\ x - x' \right\ _{2}$	$d_{\mathbf{H}}(x, x') = \ x - x'\ _{\Sigma}$	$ d_{\mathbf{H}}(x, x') = \sqrt{\sum_{i} \left \log \left(\frac{x_{i} + \alpha_{i}}{x'_{i} + \alpha_{i}} \right) \right ^{2} } $		
$\Delta = \sqrt{d\sqrt{s}}$	$\Delta = \sqrt{\log(s)}$	$\Delta = d + \log(ds)$		
Our results $\ - \ > \sqrt{d} \sqrt[4]{s}$ Conditions for Fermander Connection $\ - \ > C_d$				

Our result: $||x_i - x_j|| \gtrsim \frac{\sqrt{d} \sqrt[4]{s}}{f_c}$, Candès & Fernandez-Granda: $||x_i - x_j|| \gtrsim \frac{C_d}{f_c}$

Examples

Discrete Fourier	Continuous Fourier	Microscopy (Laplace trans.)		
	Random features			
$\varphi_{\omega}(x) = e^{i2\pi\omega^{\top}x}$ $\Lambda \propto \prod_{j} g(\omega_{j}) \text{ on } \llbracket -f_{c}, f_{c} \rrbracket^{d}$	$\varphi_{\omega}(x) = e^{i\omega^{\top} x}$ $\Lambda = \mathcal{N}(0, \Sigma) \text{ on } \mathbb{R}^d$	$\varphi_{\omega}(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^{\top} x}$ $\Lambda \propto e^{-\alpha^{\top} \omega} \text{ on } \mathbb{R}^d_+$		
Kernel				
Jackson $\prod_i \kappa(x_i - x_i')$	Gaussian $e^{-\ x-x'\ _{\Sigma}}$	$\prod_{i} \kappa(x_i + \alpha_i, x_i' + \alpha_i),$		
10 ⁻¹ 10 ⁻² 10 ⁻¹	2 1 0 -1 -2 -3-3 -2 -1 0 1 2	03		
		$\kappa(x, x') = \frac{\sqrt{4xx'}}{x+x'}$		
Metric and separation				
$\mathbf{H}_x = C_{fc} \operatorname{Id}^{\ddagger}$	$\mathbf{H}_x = \Sigma$	$\mathbf{H}_x = \operatorname{diag}\left(\frac{1}{4(x_i + \alpha_i)^2}\right)$		
$d_{\mathbf{H}}(x, x') = C_{f_c}^{\frac{1}{2}} \ x - x'\ _2$	$d_{\mathbf{H}}(x, x') = \left\ x - x' \right\ _{\Sigma}$	$d_{\mathbf{H}}(x, x') = \sqrt{\sum_{i} \left \log \left(\frac{x_{i} + \alpha_{i}}{x'_{i} + \alpha_{i}} \right) \right ^{2}}$		
$\Delta = \sqrt{d\sqrt{s}}$	$\Delta = \sqrt{\log(s)}$	$\Delta = d + \log(ds)$		

 $^{^{\}dagger }\left\Vert x\right\Vert _{\Sigma }=\left\langle \Sigma x,\,x\right\rangle$

Outline

- 1 Compressed sensing off-the-grid
- 2 The Fisher metric and the minimum separation condition
- 3 Support stability for the subsampled problem
- 4 Ideas behind the proofs Dual certificates
- 5 Removal of random signs assumption

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ with $\min_{j \neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$.
- \mathcal{X} is a compact domain wth $R_{\mathcal{X}} \stackrel{\text{def.}}{=} \sup_{x,x' \in \mathcal{X}} d_{\mathbf{H}}(x,x')$,

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ with $\min_{j \neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$.
- \mathcal{X} is a compact domain wth $R_{\mathcal{X}} \stackrel{\text{def.}}{=} \sup_{x,x' \in \mathcal{X}} d_{\mathbf{H}}(x,x')$,

To analyse the subsampled case, we need to control the deviation of \hat{K} from K.

Ideally,
$$L_r(\omega) = \sup_{x \in \mathcal{X}} \| D_r[\varphi_\omega](x) \|$$
 are uniformly bounded. But...
$$\varphi_\omega(x) = \exp(i\omega^\top x) \implies \| D_r[\varphi_\omega](x) \| \propto \|\omega\|_{\Sigma^{-1}}^r,$$

on the other hand $\mathbb{P}(\|\omega\|_{\Sigma^{-1}} > x) \leqslant 2^{d/2}e^{-x/4}$.

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ with $\min_{j \neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$.
- \mathcal{X} is a compact domain wth $R_{\mathcal{X}} \stackrel{\text{def.}}{=} \sup_{x,x' \in \mathcal{X}} d_{\mathbf{H}}(x,x')$,

Let $L_r(\omega) \stackrel{\text{def.}}{=} \sup_{x \in \mathcal{X}} \| D_r[\varphi_\omega](x) \|$

Assumption 2

With high probability, $L_r(\omega_k) \leq \bar{L}_r$ for r=0,1,2,3 and $k=1,\ldots,m$. and either one of the following hold:

- $\operatorname{sign}(a)$ is a Steinhaus sequence and $m \gtrsim C \cdot s \cdot \log\left(\frac{N^d}{\rho}\right) \log\left(\frac{s}{\rho}\right)$,
- $\operatorname{sign}(a)$ is an arbitrary sign sequence and $m \gtrsim C \cdot s^{3/2} \cdot \log \left(\frac{N^d}{\rho} \right)$,

where
$$C \stackrel{\text{def.}}{=} \varepsilon^{-2} (\mathbb{L}_2^2 B_{11} + \mathbb{L}_1^2 B_{22} + \mathbb{L}_1^2 B)$$
, $N \stackrel{\text{def.}}{=} \frac{d \cdot R_{\mathcal{X}} \cdot \mathbb{L}_3}{r_{\text{near}} \varepsilon}$.

$$B = B_{00} + B_{02} + B_{10} + B_{12}, \ \varepsilon = \min\{\varepsilon_0, \varepsilon_2\}, \ \mathbb{L}_r = \max_{i \leq r} \bar{L}_i$$

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ with $\min_{j \neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$.
- \mathcal{X} is a compact domain wth $R_{\mathcal{X}} \stackrel{\text{def.}}{=} \sup_{x,x' \in \mathcal{X}} d_{\mathbf{H}}(x,x')$,

Let $L_r(\omega) \stackrel{\text{def.}}{=} \sup_{x \in \mathcal{X}} \|D_r[\varphi_\omega](x)\|$ and let F_r be such that $\mathbb{P}_\omega(L_r(\omega) > t) \leqslant F_r(t)$.

Assumption 2

For $\rho > 0$ (probability of failure) choose $m \in \mathbb{N}$ (number of measurements), and $\{\bar{L}_i\}_{i=0}^3$ such that

$$\sum_{j=0}^3 F_j(\bar{L}_j) \leqslant \frac{\rho}{m} \quad \text{and} \quad \bar{L}_j^2 \sum_{i=0}^3 F_i(\bar{L}_i) + 2 \int_{\bar{L}_j}^\infty t F_j(t) \mathrm{d}t \leqslant \frac{\varepsilon}{m}.$$

and either one of the following hold:

- $\operatorname{sign}(a)$ is a Steinhaus sequence and $m \gtrsim C \cdot s \cdot \log\left(\frac{N^d}{\rho}\right) \log\left(\frac{s}{\rho}\right)$,
- $\operatorname{sign}(a)$ is an arbitrary sign sequence and $m \gtrsim C \cdot s^{3/2} \cdot \log\left(\frac{N^d}{\rho}\right)$,

where
$$C \stackrel{\text{def.}}{=} \varepsilon^{-2} (\mathbb{L}_2^2 B_{11} + \mathbb{L}_1^2 B_{22} + \mathbb{L}_1^2 B)$$
, $N \stackrel{\text{def.}}{=} \frac{d \cdot R_{\mathcal{X}} \cdot \mathbb{L}_3}{r_{\text{near}} \varepsilon}$.

$$B = B_{00} + B_{02} + B_{10} + B_{12}, \ \varepsilon = \min\{\varepsilon_0, \varepsilon_2\}, \ \mathbb{L}_r = \max_{i \leqslant r} \bar{L}_i$$

Support stability statement

Theorem

Let
$$\mathcal{D}_{\lambda_0,c_0} \stackrel{\text{def.}}{=} \left\{ (\lambda,w) \in \mathbb{R}_+ \times \mathbb{C}^m \; ; \; \lambda \leqslant \frac{D}{s}, \; \|w\| \leqslant \frac{c_0 \lambda}{s} \right\} \; where$$

$$D \sim \underline{a} \min \left(r_{\text{near}} \sqrt{s}, \ \frac{\varepsilon \sqrt{s}}{\mathbb{L}_2^2 \|a\|}, \ \frac{\varepsilon}{C_{\mathbf{H}}(B + \mathbb{L}_2^2)} \right) \quad and \quad c_0 \sim \min \left(\frac{\varepsilon_0}{L_0}, \ \frac{\varepsilon_2}{L_2} \right)$$
(3.1)

and $\underline{a} = \min\{|a_i|, |a_i|^{-1}\}.$

Then, with probability at least $1 - \rho$,

- (i) for all $v \stackrel{\text{def.}}{=} (\lambda, w) \in \mathcal{D}_{\lambda_0, c_0}$, $(\hat{P}_{\lambda}(y))$ has a unique solution which consists of exactly s spikes.
- (ii) The mapping $v \in \mathcal{D}_{\lambda_0,c_0} \mapsto (\hat{a}^v, \{\hat{x}^v_j\}_{j=1}^s)$ is continuously differentiable and we have the error bound

$$\|\hat{a}^v - a\| + \sqrt{\sum_{j} d_{\mathbf{H}}^2(\hat{x}_j^v, x_{0,j})} \leqslant \frac{\sqrt{s(\lambda + \|w\|)}}{\min_{i} |a_i|}$$
(3.2)

Examples

Discrete Fourier	Continuous Fourier	Laplace transform	
Random features			
$\varphi_{\omega}(x) = e^{\mathrm{i}2\pi\omega^{\top}x}$	$\varphi_{\omega}(x) = e^{\mathrm{i}\omega^{\top}x}$	$\varphi_{\omega}(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^{\top} x}$ $\Lambda \propto e^{-\alpha^{\top} \omega}$	
$\Lambda \propto \prod_{j=1}^d g_j(\omega_j)$	$\Lambda = \mathcal{N}(0, \Sigma)$	$\Lambda \propto e^{-\alpha^{\top}\omega}$	
No. samples (up to log factors), $p = 1$ for random signs, $p = 3/2$ in general			
D 1 (2)	2 (12)	D 1 (0/17)	
Rand. sgn.: $\mathcal{O}(sd^3)$	Rand. sgn.: $\mathcal{O}(sd^3)$	Rand. sgn.: $\mathcal{O}(sd^7)$	
General: $\mathcal{O}(s^{3/2}d^3)$	General: $\mathcal{O}(s^{3/2}d^3)$	General: $\mathcal{O}(s^{3/2}d^7)$	
Stability regions			
$\lambda = \mathcal{O}(s^{-1}d^{-2})$	$\lambda = \mathcal{O}(s^{-1}d^{-2})$	$\lambda = \mathcal{O}(s^{-1}d^{-3})$	
$ w = \mathcal{O}(s^{-1}d^{-3})$	$ w = \mathcal{O}(s^{-1}d^{-3})$	$ w = \mathcal{O}(s^{-1}d^{-5})$	

Examples

Discrete Fourier	Continuous Fourier	Laplace transform	
Random features			
$\varphi_{\omega}(x) = e^{\mathrm{i}2\pi\omega^{\top}x}$	$\varphi_{\omega}(x) = e^{\mathrm{i}\omega^{\top}x}$	$\varphi_{\omega}(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^{\top} x}$ $\Lambda \propto e^{-\alpha^{\top} \omega}$	
$\Lambda \propto \prod_{j=1}^d g_j(\omega_j)$	$\Lambda = \mathcal{N}(0, \Sigma)$	$\Lambda \propto e^{-\alpha^{\top}\omega}$	
No. samples (up to log factors), $p = 1$ for random signs, $p = 3/2$ in general			
Rand. sgn.: $\mathcal{O}(sd^3)$ General: $\mathcal{O}(s^{3/2}d^3)$	Rand. sgn.: $\mathcal{O}(sd^3)$ General: $\mathcal{O}(s^{3/2}d^3)$	Rand. sgn.: $\mathcal{O}(sd^7)$ General: $\mathcal{O}(s^{3/2}d^7)$	
Stability regions			
$\lambda = \mathcal{O}(s^{-1}d^{-2})$	$\lambda = \mathcal{O}(s^{-1}d^{-2})$	$\lambda = \mathcal{O}(s^{-1}d^{-3})$	
$ w = \mathcal{O}(s^{-1}d^{-3})$	$ w = \mathcal{O}(s^{-1}d^{-3})$	$ w = \mathcal{O}(s^{-1}d^{-5})$	

- Linear in sparsity when we have random signs.
- Improvement from s^2 to $s^{3/2}$ in the arbitrary signs case.
- ullet Dependency on d is still in progress.

Gaussian mixture estimation (1D)

Task: Suppose we have data $\{t_1, \ldots, t_n\}$ drawn from

$$\xi = \sum_{j=1}^{s} a_j \mathcal{N}(\mathfrak{m}_j, \mathfrak{s}_j^2), \text{ where } a_j > 0 \text{ and } \sum_j a_j = 1$$

Find
$$a_j \in \mathbb{R}_+$$
, $x_j \stackrel{\text{def.}}{=} (\mathfrak{m}_j, \mathfrak{s}_j) \in \mathbb{R} \times \mathbb{R}_+$, $j = 1, \dots, s$.

Gaussian mixture estimation (1D)

Task: Suppose we have data $\{t_1, \ldots, t_n\}$ drawn from

$$\xi = \sum_{j=1}^{s} a_j \mathcal{N}(\mathfrak{m}_j, \mathfrak{s}_j^2), \text{ where } a_j > 0 \text{ and } \sum_j a_j = 1$$

Find $a_j \in \mathbb{R}_+$, $x_j \stackrel{\text{def.}}{=} (\mathfrak{m}_j, \mathfrak{s}_j) \in \mathbb{R} \times \mathbb{R}_+$, $j = 1, \dots, s$.

Observe: $y \in \mathbb{C}^m$ of m sketches against sketching functions $\theta_{\omega}(t)$:

$$y_k \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{j=1}^n \theta_{\omega_k}(t_j) \approx \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi(t) dt = \int_{\mathcal{X}} \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi_x(t) dt d\mu_0(x),$$

where $\xi_x = \mathcal{N}(\mathfrak{m}, \mathfrak{s}^2)$.

i.e. our sparse spikes problem with $\mu_0 \stackrel{\text{def.}}{=} \sum_{i=1}^s a_i \delta_{(\mathfrak{m}_i,\mathfrak{s}_i)}$ and $\varphi_\omega(x) \stackrel{\text{def.}}{=} \int_{\mathcal{T}} \theta_\omega(t) \xi_x(t) \mathrm{d}t$.

Gaussian mixture estimation (1D)

Task: Suppose we have data $\{t_1, \ldots, t_n\}$ drawn from

$$\xi = \sum_{j=1}^{s} a_j \mathcal{N}(\mathfrak{m}_j, \mathfrak{s}_j^2), \text{ where } a_j > 0 \text{ and } \sum_j a_j = 1$$

Find $a_j \in \mathbb{R}_+$, $x_j \stackrel{\text{def.}}{=} (\mathfrak{m}_j, \mathfrak{s}_j) \in \mathbb{R} \times \mathbb{R}_+$, $j = 1, \dots, s$.

Observe: $y \in \mathbb{C}^m$ of m sketches against sketching functions $\theta_{\omega}(t)$:

$$y_k \stackrel{\text{def.}}{=} \frac{1}{n} \sum_{j=1}^n \theta_{\omega_k}(t_j) \approx \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi(t) dt = \int_{\mathcal{X}} \int_{\mathcal{T}} \theta_{\omega_k}(t) \xi_x(t) dt d\mu_0(x),$$

where $\xi_x = \mathcal{N}(\mathfrak{m}, \mathfrak{s}^2)$.

i.e. our sparse spikes problem with $\mu_0 \stackrel{\text{def.}}{=} \sum_{i=1}^s a_i \delta_{(\mathfrak{m}_i,\mathfrak{s}_i)}$ and $\varphi_\omega(x) \stackrel{\text{def.}}{=} \int_{\mathcal{T}} \theta_\omega(t) \xi_x(t) \mathrm{d}t$.

Fourier sketching

Suppose that $\theta_{\omega_k}(t) = \exp(-i\omega_k t)$, where $\omega_k \sim \mathcal{N}(0, \sigma^2)$. Then,

• Random features:
$$\varphi_{\omega}(\mathfrak{m},\mathfrak{s}) = \sqrt[4]{2\mathfrak{s}^2\sigma^2 + 1} \exp\left(-i\mathfrak{m}\omega - \frac{(\mathfrak{s}\omega)^2}{2}\right)$$

• Noise:
$$\|w\|_2 = \mathcal{O}\left(\sqrt{\frac{\log(\rho^{-1})}{n}}\right)$$
 w.p. $1 - \rho$.

Support stability for Gaussian mixture estimation (1D)

Kernel	$K((\mathfrak{m},\mathfrak{s}),(\mathfrak{n},\mathfrak{t})) = \sqrt{\frac{2\mathfrak{s}_{\sigma}\mathfrak{t}_{\sigma}}{\mathfrak{s}_{\sigma}^{2}+\mathfrak{t}_{\sigma}^{2}}} \exp\left(-\frac{(\mathfrak{m}-\mathfrak{n})^{2}}{2(\mathfrak{s}_{\sigma}^{2}+\mathfrak{t}_{\sigma}^{2})}\right)$ where $\mathfrak{s}_{\sigma}^{2} = \frac{1}{2\sigma^{2}} + \mathfrak{s}^{2}$
	where $\mathfrak{s}_{\sigma}^2 = \frac{1}{2\sigma^2} + \mathfrak{s}^2$
Metric and separation	$\mathbf{H}_{(\mathfrak{m},\mathfrak{s})} = \begin{pmatrix} 1/(2\mathfrak{s}_{\sigma}^2) & 0\\ 0 & 1/(2\mathfrak{s}_{\sigma}^2) \end{pmatrix}$
	$d_{\mathbf{H}}((\mathfrak{m},\mathfrak{s}),(\mathfrak{n},\mathfrak{t})) = 2 \operatorname{arcsinh}\left(\frac{1}{2}\sqrt{\frac{(\mathfrak{m}-\mathfrak{n})^2 + (\mathfrak{s}_{\sigma} - \mathfrak{t}_{\sigma})^2}{\mathfrak{s}\mathfrak{t}}}\right)$
	$\Delta = \mathcal{O}(\log(s_{\max})).$
No. samples	Suppose $\mathcal{X} \subset \mathbb{R} \times (0, A]$ and $\sigma \propto \frac{1}{A\sqrt{\log(m/\rho)+1}}$.
	$m = \mathcal{O}(s^{3/2})$ (up to log factors)
Stability region	$\lambda = \mathcal{O}(\min a_i / (\sqrt{s} a _2)), \ n = \mathcal{O}(s^2 / \min_i a_i ^2)$

Support stability for Gaussian mixture estimation (1D)

Kernel	$K((\mathfrak{m},\mathfrak{s}),(\mathfrak{n},\mathfrak{t})) = \sqrt{\frac{2\mathfrak{s}_{\sigma}\mathfrak{t}_{\sigma}}{\mathfrak{s}_{\sigma}^2 + \mathfrak{t}_{\sigma}^2}} \exp\left(-\frac{(\mathfrak{m}-\mathfrak{n})^2}{2(\mathfrak{s}_{\sigma}^2 + \mathfrak{t}_{\sigma}^2)}\right)$
	where $\mathfrak{s}_{\sigma}^2 = \frac{1}{2\sigma^2} + \mathfrak{s}^2$
Metric and separation	$K((\mathfrak{m},\mathfrak{s}),(\mathfrak{n},\mathfrak{t})) = \sqrt{\frac{2\mathfrak{s}_{\sigma}\mathfrak{t}_{\sigma}}{\mathfrak{s}_{\sigma}^{2}+\mathfrak{t}_{\sigma}^{2}}} \exp\left(-\frac{(\mathfrak{m}-\mathfrak{n})^{2}}{2(\mathfrak{s}_{\sigma}^{2}+\mathfrak{t}_{\sigma}^{2})}\right)$ where $\mathfrak{s}_{\sigma}^{2} = \frac{1}{2\sigma^{2}} + \mathfrak{s}^{2}$ $\mathbf{H}_{(\mathfrak{m},\mathfrak{s})} = \begin{pmatrix} 1/(2\mathfrak{s}_{\sigma}^{2}) & 0\\ 0 & 1/(2\mathfrak{s}_{\sigma}^{2}) \end{pmatrix}$
	$d_{\mathbf{H}}((\mathfrak{m},\mathfrak{s}),(\mathfrak{n},\mathfrak{t})) = 2 \operatorname{arcsinh} \left(\frac{1}{2} \sqrt{\frac{(\mathfrak{m}-\mathfrak{n})^2 + (\mathfrak{s}_{\sigma} - \mathfrak{t}_{\sigma})^2}{\mathfrak{s}\mathfrak{t}}} \right)$ $\Delta = \mathcal{O}(\log(s_{\max})).$
	$\Delta = \mathcal{O}(\log(s_{\max})).$
No. samples	Suppose $\mathcal{X} \subset \mathbb{R} \times (0, A]$ and $\sigma \propto \frac{1}{A\sqrt{\log(m/\rho)+1}}$. $m = \mathcal{O}(s^{3/2})$ (up to log factors)
	$m = O(s^{3/2})$ (up to log factors)
Stability region	$\lambda = \mathcal{O}(\min a_i / (\sqrt{s} a _2)), n = \mathcal{O}(s^2 / \min_i a_i ^2)$

- No closed form expression for $d_{\mathbf{H}}$ in higher dimensions.
- If $\mu_0 = \sum_i a_i \mathcal{N}(x_{0,i}, \Sigma)$ and $\Sigma \in \mathbb{R}^{d \times d}$ is known, then $\omega_k \sim \mathcal{N}(0, \Sigma^{-1}/d)$ implies the associated kernel is $\exp\left(-\|x x'\|_{\Sigma^{-1}/(2+d)}\right)$, support stability guaranteed if
 - $\|x_j x_\ell\|_{\Sigma^{-1}} \gtrsim \sqrt{d \log(s)}$
 - $m = \mathcal{O}(s^{3/2}d^3), \ n = \mathcal{O}(s^2d^6/\min_i|a_i|^2) \text{ and } \lambda = \mathcal{O}(\min|a_i|/(\sqrt{s}d^2||a||_2)).$

Outline

- 1 Compressed sensing off-the-grid
- 2 The Fisher metric and the minimum separation condition
- 3 Support stability for the subsampled problem
- 4 Ideas behind the proofs Dual certificates
- 5 Removal of random signs assumption

Fenchel Duals

The Fenchel dual of $\mathcal{P}_{\lambda}(y)$ is

$$\sup_{p \in \mathbb{C}^m, \|\Phi^* p\|_{\infty} \leq 1} \operatorname{Re}\langle p, y \rangle - \lambda \|p\|_2^2 \tag{4.1}$$

Note that for $\lambda>0$, there is a unique dual solution p_λ , since this is equivalent to $\min_{\|\Phi^*p\|_\infty \leqslant 1} \|p-y/\lambda\|$ which a projection of y/λ onto a closed convex set.

Fenchel Duals

The Fenchel dual of $\mathcal{P}_{\lambda}(y)$ is

$$\sup_{p \in \mathbb{C}^m, \|\Phi^* p\|_{\infty} \leq 1} \operatorname{Re}\langle p, y \rangle - \lambda \|p\|_2^2 \tag{4.1}$$

Note that for $\lambda > 0$, there is a unique dual solution p_{λ} , since this is equivalent to $\min_{\|\Phi^*p\|_{\infty} \leqslant 1} \|p - y/\lambda\|$ which a projection of y/λ onto a closed convex set.

Primal dual relations: The dual solution p_{λ} is related to any primal solution μ_{λ} by

$$\Phi^* p_{\lambda} \in \partial |\mu_{\lambda}|$$
 and $p_{\lambda} = \frac{1}{\lambda} (y - \Phi \mu_{\lambda})$

and for $\lambda = 0$, $\Phi^* p_0 \in \partial |\mu_0|$ and $y = \Phi \mu_0$.

Fenchel Duals

The Fenchel dual of $\mathcal{P}_{\lambda}(y)$ is

$$\sup_{p \in \mathbb{C}^m, \|\Phi^* p\|_{\infty} \leq 1} \operatorname{Re}\langle p, y \rangle - \lambda \|p\|_2^2 \tag{4.1}$$

Note that for $\lambda > 0$, there is a unique dual solution p_{λ} , since this is equivalent to $\min_{\|\Phi^*p\|_{\infty} \le 1} \|p - y/\lambda\|$ which a projection of y/λ onto a closed convex set.

Primal dual relations: The dual solution p_{λ} is related to any primal solution μ_{λ} by

$$\Phi^* p_{\lambda} \in \partial |\mu_{\lambda}|$$
 and $p_{\lambda} = \frac{1}{\lambda} (y - \Phi \mu_{\lambda})$

and for $\lambda = 0$, $\Phi^* p_0 \in \partial |\mu_0|$ and $y = \Phi \mu_0$.

We have
$$\partial |\mu| = \{ f \in \mathcal{C}(\mathcal{X}) ; \|f\|_{\infty} \leq 1, \langle f, \mu \rangle = |\mu|(\mathcal{X}) \}, \text{ and}$$

$$\operatorname{Supp}(\mu_{\lambda}) \subseteq \{ x ; |\eta_{\lambda}(x)| = 1 \}, \text{ where } \eta_{\lambda} = \Phi^* p_{\lambda}.$$

 η_{λ} are often called dual certificates.

Dual certificate guarantees for sparse measures

Let
$$\mu_0 = \sum_j a_j \delta_{x_j}$$
. Then $\partial |\mu_0| = \{ f \in \mathcal{C}(\mathcal{X}) ; \|f\|_{\infty} \leqslant 1, f(x_j) = \text{sign}(a_j) \}$

Uniqueness: μ_0 is the unique solution if

- $\exists \eta$ such that $\eta(x_j) = \text{sign}(a_j), |\eta(x)| < 1 \text{ for all } x \notin X$
- $\Phi_X : b \in \mathbb{C}^s \to \sum_j b_j \varphi(x_j)$ is injective.

Dual certificate guarantees for sparse measures

Let
$$\mu_0 = \sum_j a_j \delta_{x_j}$$
. Then $\partial |\mu_0| = \{ f \in \mathcal{C}(\mathcal{X}) ; \|f\|_{\infty} \leqslant 1, f(x_j) = \text{sign}(a_j) \}$

Uniqueness: μ_0 is the unique solution if

- $\exists \eta \text{ such that } \eta(x_j) = \text{sign}(a_j), \ |\eta(x)| < 1 \text{ for all } x \notin X$
- $\Phi_X: b \in \mathbb{C}^s \to \sum_j b_j \varphi(x_j)$ is injective.

Stability is guaranteed if η is nondegenerate:

$$\forall j \text{ sign}(a_j) \nabla^2 \eta(x_j) \prec 0 \text{ and } \forall x \notin \{x_j\}_{j=1}^s, |\eta(x)| < 1$$

Stability

Clustering stability [Candès & Fernandez-Granda '14 and Azäis, De Castro & Gamboa '13] Suppose η is nondegenerate with $\varepsilon_0, \varepsilon_2 > 0$, $\mathcal{X}_j^{\text{near}} \ni x_j$ such that

- $|\eta(x)| \leq 1 \varepsilon_0$ for all $x \in \mathcal{X}^{\text{far}}$ where $\mathcal{X}^{\text{far}} \stackrel{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^s \mathcal{X}_j^{\text{near}}$,
- $\forall i, \forall x \in \mathcal{X}_i^{\text{near}}, |\eta(x)| \leq 1 \varepsilon_2 d_{\mathbf{H}}(x, x_i)^2$.

Then, for $\lambda \sim \delta/||p||$,

$$\varepsilon_0 |\hat{\mu}| (\mathcal{X}^{\text{far}}) + \varepsilon_2 \sum_{j=1}^s \int_{\mathcal{X}_i^{\text{near}}} d_{\mathbf{H}}(x, x_i)^2 d|\hat{\mu}| (x) \lesssim \delta(1 + ||p||).$$

Stability

Clustering stability [Candès & Fernandez-Granda '14 and Azäis, De Castro & Gamboa '13] Suppose η is nondegenerate with $\varepsilon_0, \varepsilon_2 > 0$, $\mathcal{X}_j^{\text{near}} \ni x_j$ such that

- $|\eta(x)| \leq 1 \varepsilon_0$ for all $x \in \mathcal{X}^{\text{far}}$ where $\mathcal{X}^{\text{far}} \stackrel{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^s \mathcal{X}_j^{\text{near}}$,
- $\forall i, \forall x \in \mathcal{X}_i^{\text{near}}, |\eta(x)| \leq 1 \varepsilon_2 d_{\mathbf{H}}(x, x_i)^2$.

Then, for $\lambda \sim \delta/\|p\|$, defining $P_X(|\hat{\mu}|) \stackrel{\text{def.}}{=} \sum_{j=1}^s |\hat{\mu}| (\mathcal{X}_j^{\text{near}}) \delta_{x_j}$, we have

$$\mathcal{T}_{\mathbf{H}}^{2}(|\hat{\mu}|, P_{X}(|\hat{\mu}|)) \lesssim \frac{\delta \|p\|}{\min\{\varepsilon_{0}, \varepsilon_{2}\}}.$$

where $\mathcal{T}_{\mathbf{H}}^{2} \stackrel{\text{def.}}{=} \inf_{\mu,\nu} W_{\mathbf{H}}^{2}(\hat{\mu},\hat{\nu}) + |\mu - \hat{\mu}|(\mathcal{X}) + |\nu - \hat{\nu}|(\mathcal{X}).$

Stability

Clustering stability [Candès & Fernandez-Granda '14 and Azäis, De Castro & Gamboa '13] Suppose η is nondegenerate with $\varepsilon_0, \varepsilon_2 > 0$, $\mathcal{X}_j^{\text{near}} \ni x_j$ such that

- $|\eta(x)| \leq 1 \varepsilon_0$ for all $x \in \mathcal{X}^{\text{far}}$ where $\mathcal{X}^{\text{far}} \stackrel{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^s \mathcal{X}_j^{\text{near}}$,
- $\forall i, \forall x \in \mathcal{X}_i^{\text{near}}, |\eta(x)| \leq 1 \varepsilon_2 d_{\mathbf{H}}(x, x_i)^2$.

Then, for $\lambda \sim \delta/\|p\|$, defining $P_X(|\hat{\mu}|) \stackrel{\text{def.}}{=} \sum_{j=1}^s |\hat{\mu}| (\mathcal{X}_j^{\text{near}}) \delta_{x_j}$, we have

$$\mathcal{T}_{\mathbf{H}}^{2}(|\hat{\mu}|, P_{X}(|\hat{\mu}|)) \lesssim \frac{\delta \|p\|}{\min\{\varepsilon_{0}, \varepsilon_{2}\}}.$$

where $\mathcal{T}_{\mathbf{H}}^2 \stackrel{\text{def.}}{=} \inf_{\mu,\nu} W_{\mathbf{H}}^2(\hat{\mu},\hat{\nu}) + |\mu - \hat{\mu}| (\mathcal{X}) + |\nu - \hat{\nu}| (\mathcal{X}).$

Support stability [Duval & Peyré '15] We have $p_{\lambda} \rightarrow p_0$ where

$$p_0 \stackrel{\text{def.}}{=} \operatorname{argmin} \{ ||p|| ; \Phi^* p \in \operatorname{argmax}(\mathcal{D}_0(y)) \}$$

If the **minimal norm certificate** $\eta_0 \stackrel{\text{def.}}{=} \Phi^* p_0$ is nondegenerate and μ_0 is identifiable, then for λ and $\frac{\|w\|}{\lambda}$ sufficiently small, $\mathcal{P}_{\lambda}(\Phi \mu_0 + w)$ has unique solution $\mu_{\lambda,w}$ which consists of exactly s spikes and the recovered positions and amplitudes follow a \mathcal{C}^1 path as λ and w converge to 0.

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi] = \mathrm{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T).$$

By definition, $v_T = sign(a_T)$.

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi] = \text{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré '15]

In our case, for $\alpha \in \mathbb{C}^s$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m$ by

$$\Gamma_X \binom{\alpha}{\beta} = \Phi_X \alpha + \Phi_X^{(1)} \beta, \quad \text{where} \quad \Phi_X \alpha = \sum_j \alpha_j \varphi(x_j), \ \Phi_X^{(1)} \beta = \sum_{j=1}^s \beta_j^{\top} \nabla \varphi(x_j)$$

Consider

$$\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} {\operatorname{sign}(a) \choose 0_{sd}}$$

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi] = \text{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré '15]

In our case, for $\alpha \in \mathbb{C}^s$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m$ by

$$\Gamma_X {\alpha \choose \beta} = \Phi_X \alpha + \Phi_X^{(1)} \beta, \text{ where } \Phi_X \alpha = \sum_j \alpha_j \varphi(x_j), \ \Phi_X^{(1)} \beta = \sum_{j=1}^s \beta_j^\top \nabla \varphi(x_j)$$

Consider

$$\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} {\operatorname{sign}(a) \choose 0_{sd}}$$

• by definition $\eta_V(x_j) = \text{sign}(a_j)$ and $\nabla \eta_V(x_j) = 0$.

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi]=\mathrm{Id},$ the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré '15]

In our case, for $\alpha \in \mathbb{C}^s$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m$ by

$$\Gamma_X {\alpha \choose \beta} = \Phi_X \alpha + \Phi_X^{(1)} \beta, \text{ where } \Phi_X \alpha = \sum_j \alpha_j \varphi(x_j), \ \Phi_X^{(1)} \beta = \sum_{j=1}^s \beta_j^\top \nabla \varphi(x_j)$$

Consider

$$\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} {\operatorname{sign}(a) \choose 0_{sd}}$$

- by definition $\eta_V(x_j) = \operatorname{sign}(a_j)$ and $\nabla \eta_V(x_j) = 0$.
- In fact, $\eta_V = \Phi^* p_V$ where

$$p_V = \operatorname{argmin} \{ \|p\|_2 ; (\Phi^* p)(x_j) = \operatorname{sign}(a_j), \nabla(\Phi^* p)(x_j) = 0 \}.$$

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi] = \mathrm{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré '15]

In our case, for $\alpha \in \mathbb{C}^s$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m$ by

$$\Gamma_X {\alpha \choose \beta} = \Phi_X \alpha + \Phi_X^{(1)} \beta, \text{ where } \Phi_X \alpha = \sum_j \alpha_j \varphi(x_j), \ \Phi_X^{(1)} \beta = \sum_{j=1}^s \beta_j^\top \nabla \varphi(x_j)$$

Consider

$$\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} {\operatorname{sign}(a) \choose 0_{sd}}$$

- by definition $\eta_V(x_j) = \operatorname{sign}(a_j)$ and $\nabla \eta_V(x_j) = 0$.
- In fact, $\eta_V = \Phi^* p_V$ where

$$p_V = \operatorname{argmin} \{ \|p\|_2 \; ; \; (\Phi^* p)(x_j) = \operatorname{sign}(a_j), \, \nabla(\Phi^* p)(x_j) = 0 \}.$$

• If $\|\eta_V\|_{\infty} \leq 1$, then we have $\eta_V = \eta_0$, and nondegeneracy guarantees support stability.

We can also write

$$\eta_{V}(x) = \sum_{i=1}^{N} \alpha_{i} K(x_{i}, x) + \sum_{i=1}^{N} \beta_{i} K^{(10)}(x_{i}, x), \qquad {\alpha \choose \beta} = D_{K, X}^{-1} {\operatorname{sign}(a) \choose 0_{N}}$$
 with covariance kernel $K(x, x') = \langle \varphi(x), \varphi(x') \rangle, \ D_{K, X} \stackrel{\text{def.}}{=} {M_{0}, \quad M_{1} \choose M_{1}^{T} \quad M_{2}},$ where $M_{0} = (K(x_{i}, x_{j}))_{i, j}, \quad M_{1} = (K^{(01)}(x_{i}, x_{j}))_{i, j}, \quad M_{2} = (K^{(11)}(x_{i}, x_{j}))_{i, j}.$

We can also write

$$\eta_V(x) = \sum_{i=1}^N \alpha_i K(x_i, x) + \sum_{i=1}^N \beta_i K^{(10)}(x_i, x), \qquad {\alpha \choose \beta} = D_{K, X}^{-1} {\text{sign}(a) \choose 0_N}$$

with covariance kernel
$$K(x, x') = \langle \varphi(x), \varphi(x') \rangle$$
, $D_{K,X} \stackrel{\text{def.}}{=} \begin{pmatrix} M_0, & M_1 \\ M_1^T & M_2 \end{pmatrix}$,

where
$$M_0 = (K(x_i, x_j))_{i,j}$$
, $M_1 = (K^{(01)}(x_i, x_j))_{i,j}$, $M_2 = (K^{(11)}(x_i, x_j))_{i,j}$.

The idea of the proof is

• η_V associated to the limit kernel $K = \mathbb{E}[\hat{K}]$ is nondegenerate.

We can also write

$$\eta_V(x) = \sum_{i=1}^N \alpha_i K(x_i, x) + \sum_{i=1}^N \beta_i K^{(10)}(x_i, x), \qquad {\alpha \choose \beta} = D_{K, X}^{-1} {\operatorname{sign}(a) \choose 0_N}$$

with covariance kernel
$$K(x, x') = \langle \varphi(x), \varphi(x') \rangle$$
, $D_{K,X} \stackrel{\text{def.}}{=} \begin{pmatrix} M_0, & M_1 \\ M_1^T & M_2 \end{pmatrix}$,

where
$$M_0 = (K(x_i, x_j))_{i,j}$$
, $M_1 = (K^{(01)}(x_i, x_j))_{i,j}$, $M_2 = (K^{(11)}(x_i, x_j))_{i,j}$.

The idea of the proof is

- η_V associated to the limit kernel $K = \mathbb{E}[\hat{K}]$ is nondegenerate.
- We therefore simply need to show that $\hat{\eta}_V$ associated to \hat{K} is close to η_V :
 - On \mathcal{X}^{far} $\hat{\eta}_V \approx \eta_V$ is bounded away from 1 in absolute value.
 - ▶ On $\mathcal{X}_j^{\text{near}}$, $\operatorname{sign}(a_j)\nabla^2\hat{\eta}_V \approx \operatorname{sign}(a_j)\nabla^2\eta_V$ is negative definite.

We can also write

$$\eta_V(x) = \sum_{i=1}^N \alpha_i K(x_i, x) + \sum_{i=1}^N \beta_i K^{(10)}(x_i, x), \qquad {\alpha \choose \beta} = D_{K, X}^{-1} {\text{sign}(a) \choose 0_N}$$

with covariance kernel
$$K(x, x') = \langle \varphi(x), \varphi(x') \rangle$$
, $D_{K,X} \stackrel{\text{def.}}{=} \begin{pmatrix} M_0, & M_1 \\ M_1^T & M_2 \end{pmatrix}$,

where
$$M_0 = (K(x_i, x_j))_{i,j}$$
, $M_1 = (K^{(01)}(x_i, x_j))_{i,j}$, $M_2 = (K^{(11)}(x_i, x_j))_{i,j}$.

The idea of the proof is

- η_V associated to the limit kernel $K = \mathbb{E}[\hat{K}]$ is nondegenerate.
- We therefore simply need to show that $\hat{\eta}_V$ associated to \hat{K} is close to η_V :
 - ▶ On \mathcal{X}^{far} $\hat{\eta}_V \approx \eta_V$ is bounded away from 1 in absolute value.
 - ▶ On $\mathcal{X}_j^{\text{near}}$, $\operatorname{sign}(a_j)\nabla^2\hat{\eta}_V \approx \operatorname{sign}(a_j)\nabla^2\eta_V$ is negative definite.
- Our proof still requires random signs and is a direct extension of the work of Tang et al (to the higher dimensional and general operator setting), key difference is incorporation of the Fisher metric.

Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T) = (\langle \operatorname{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi_T^* \Phi_T)^{-1} \Phi_T^* \Phi_{\{j\}}$, and we need to show $|v_j| < 1$ for $j \notin T$:

Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T) = (\langle \operatorname{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi_T^* \Phi_T)^{-1} \Phi_T^* \Phi_{\{j\}}$, and we need to show $|v_j| < 1$ for $j \notin T$:

• Naively, $|v_j| \leq \sqrt{s} \|u_j\|_2$, so we need for $j \notin T$, $\|\Phi_T^* \Phi_{\{j\}}\|_2 \lesssim \frac{1}{\sqrt{s}}$ which forces $m \gtrsim s^2$ measurements.

Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T) = (\langle \operatorname{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi_T^* \Phi_T)^{-1} \Phi_T^* \Phi_{\{j\}}$, and we need to show $|v_j| < 1$ for $j \notin T$:

- Naively, $|v_j| \leqslant \sqrt{s} \|u_j\|_2$, so we need for $j \notin T$, $\|\Phi_T^* \Phi_{\{j\}}\|_2 \lesssim \frac{1}{\sqrt{s}}$ which forces $m \gtrsim s^2$ measurements.
- If $\operatorname{sign}(a_T)$ is made of random signs, then by Hoeffding's inequality, with high probability, $|v_j| = |\langle u_j, \operatorname{sign}(a_T) \rangle| \lesssim ||u_j||_2$ which yields $m \gtrsim s$ (up to log).

Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \operatorname{sign}(a_T) = (\langle \operatorname{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi_T^* \Phi_T)^{-1} \Phi_T^* \Phi_{\{j\}}$, and we need to show $|v_j| < 1$ for $j \notin T$:

- Naively, $|v_j| \leqslant \sqrt{s} \|u_j\|_2$, so we need for $j \notin T$, $\|\Phi_T^* \Phi_{\{j\}}\|_2 \lesssim \frac{1}{\sqrt{s}}$ which forces $m \gtrsim s^2$ measurements.
- If $\operatorname{sign}(a_T)$ is made of random signs, then by Hoeffding's inequality, with high probability, $|v_j| = |\langle u_j, \operatorname{sign}(a_T) \rangle| \lesssim ||u_j||_2$ which yields $m \gtrsim s$ (up to log).
- But we can also write

$$v_j = \langle ((\Phi_T^* \Phi_T)^{-1} - \operatorname{Id}) \Phi_T^* \Phi_{\{j\}}, \operatorname{sign}(a_T) \rangle + \langle \Phi_T^* \Phi_{\{j\}}, \operatorname{sign}(a_T) \rangle$$

So, we simply need to ensure that $\|\Phi_T^*\Phi_T - \mathrm{Id}_T\|_{2\to 2} \lesssim s^{-1/4}$ and $\|\Phi_T^*\Phi_{\{j\}}\|_2 \lesssim s^{-1/4}$ which is true w.h.p. when $m \gtrsim s^{1.5}$ (up to log factor).

Outline

- 1 Compressed sensing off-the-grid
- 2 The Fisher metric and the minimum separation condition
- 3 Support stability for the subsampled problem
- 4 Ideas behind the proofs Dual certificates
- 5 Removal of random signs assumption

Ideas from (finite dimensional) compressed sensing

Instead of requiring that $v_j = \text{sign}(a_j)$, it is enough that this holds approximately.

Ideas from (finite dimensional) compressed sensing

Instead of requiring that $v_j = \text{sign}(a_j)$, it is enough that this holds approximately.

Theorem (Gross (2011); Candès and Plan (2011))

Let T index the largest s entries of |a|. Suppose that there exists $v = \Phi^*p$ such that

$$\|v_T - \text{sign}(a_T)\|_2 \leqslant \frac{1}{4}$$
 and $\|v_{T^c}\|_{\infty} \leqslant \frac{1}{4}$

and

$$\left\|(\Phi_T^*\Phi_T)^{-1}\right\|_{2\to 2}\leqslant 2\quad and\quad \max_{i\in T^c}\left\|\Phi_T^*\Phi_{\{i\}}\right\|_2\leqslant 1,$$

then one can guarantee that $\|\hat{a} - a\|_2 \lesssim \|p\|_2 \delta + \sigma_1(a)_s$ provided that $\lambda \sim \delta$.

Alternative proof: \exists inexact certificate $\implies \exists$ dual certificate

Theorem (Gross (2011); Candès and Plan (2011))

Let T index the largest s entries of |a|. Suppose that there exists $v = \Phi^*p$ such that

$$\left\|v_T - \mathrm{sign}(a_T)\right\|_2 \leqslant \frac{1}{4} \quad and \quad \left\|v_{T^c}\right\|_\infty \leqslant \frac{1}{4}$$

and

$$\left\| \left(\Phi_T^* \Phi_T \right)^{-1} \right\|_{2 \to 2} \leqslant 2 \quad and \quad \max_{i \in T^c} \left\| \Phi_T^* \Phi_{\{i\}} \right\|_2 \leqslant 1,$$

then one can guarantee that $\|\hat{a} - a\|_2 \lesssim (1 + \|p\|_2)\delta + \sigma_1(x^0)_s$ provided that $\lambda \sim \delta/\|p\|$.

Proof:

- **1** Define $u \stackrel{\text{def.}}{=} v + \tilde{v}$ where $\tilde{v} \stackrel{\text{def.}}{=} \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} e$ and $e = \text{sign}(a_T) v_T$.
- ② By definition, $u_T = v_T + e_T = \text{sign}(a_T)$.
- 3 Note that

$$\|\tilde{v}_{T^c}\|_{\infty} \leqslant \|\Phi_{T^c}^* \Phi_T\|_{2 \to \infty} \|(\Phi_T^* \Phi_T)^{-1}\|_{2 \to 2} \|e\|_2 \leqslant \frac{1}{2},$$

so
$$||u_{T^c}||_{\infty} \le ||v_{T^c}||_{\infty} + ||\tilde{v}_{T^c}||_{\infty} \le \frac{3}{4}$$
.

- Apply the golfing scheme [Gross '09, Candès & Plan '11] to construct $\tilde{\eta} \in \text{Im}(\Phi^*)$ which is approximately nondegenerate on a finite grid:
 - ► The vector $V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s$ satisfies $\|V {\text{sign}(a) \choose 0}_{od} \| \leq \delta$,
 - ► For all $x \in \mathcal{X}_{\mathrm{grid},j}^{\mathrm{near}}$, $\mathrm{sign}(a_j) \cdot \mathrm{D}_2[\tilde{\eta}](x) \prec -\varepsilon_2$.
 - For all $x \in \mathcal{X}_{grid}^{far}$, $|\tilde{\eta}(x)| < 1 \varepsilon_0$.

- Apply the golfing scheme [Gross '09, Candès & Plan '11] to construct $\tilde{\eta} \in \text{Im}(\Phi^*)$ which is approximately nondegenerate on a finite grid:
 - ► The vector $V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s$ satisfies $\|V {\text{sign}(a) \choose 0 \text{ od}}\| \leq \delta$,
 - ► For all $x \in \mathcal{X}_{\mathrm{grid},j}^{\mathrm{near}}$, $\mathrm{sign}(a_j) \cdot \mathrm{D}_2[\tilde{\eta}](x) \prec -\varepsilon_2$.
 - For all $x \in \mathcal{X}_{\mathrm{grid}}^{\mathrm{far}}$, $|\tilde{\eta}(x)| < 1 \varepsilon_0$.
- Show that provided that grid is sufficiently dense, this holds on the entire domain \mathcal{X} (depends on L_1 and L_3).

- Apply the golfing scheme [Gross '09, Candès & Plan '11] to construct $\tilde{\eta} \in \text{Im}(\Phi^*)$ which is approximately nondegenerate on a finite grid:
 - ► The vector $V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s$ satisfies $\|V {\text{sign}(a) \choose 0 \text{ od}}\| \leq \delta$,
 - ▶ For all $x \in \mathcal{X}_{\text{grid},j}^{\text{near}}$, $\operatorname{sign}(a_j) \cdot \operatorname{D}_2[\tilde{\eta}](x) \prec -\varepsilon_2$.
 - For all $x \in \mathcal{X}_{\mathrm{grid}}^{\mathrm{far}}$, $|\tilde{\eta}(x)| < 1 \varepsilon_0$.
- Show that provided that grid is sufficiently dense, this holds on the entire domain \mathcal{X} (depends on L_1 and L_3).
- Add a small perturbation to $\tilde{\eta}$ to obtain a true certificate.

- Apply the golfing scheme [Gross '09, Candès & Plan '11] to construct $\tilde{\eta} \in \text{Im}(\Phi^*)$ which is approximately nondegenerate on a finite grid:
 - ► The vector $V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s$ satisfies $\left\|V {\text{sign}(a) \choose 0 \text{ sd}}\right\| \leqslant \delta$,
 - ▶ For all $x \in \mathcal{X}_{\mathrm{grid},j}^{\mathrm{near}}$, $\mathrm{sign}(a_j) \cdot \mathrm{D}_2[\tilde{\eta}](x) \prec -\varepsilon_2$.
 - For all $x \in \mathcal{X}_{grid}^{far}$, $|\tilde{\eta}(x)| < 1 \varepsilon_0$.
- Show that provided that grid is sufficiently dense, this holds on the entire domain \mathcal{X} (depends on L_1 and L_3).
- Add a small perturbation to $\tilde{\eta}$ to obtain a true certificate.

We still construct a dual certificate, but it is *not* of minimal norm.

The subsampled setting

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ with $\min_{j \neq k} d_{\mathbf{H}}(x_j, x_k) \geqslant \Delta$ and $s \leqslant s_{\max}$.
- \mathcal{X} is a compact domain wth $R_{\mathcal{X}} \stackrel{\text{def.}}{=} \sup_{x,x' \in \mathcal{X}} d_{\mathbf{H}}(x,x')$,

Let $L_r(\omega) \stackrel{\text{def.}}{=} \sup_{x \in \mathcal{X}} \|\mathcal{D}_r[\varphi_\omega](x)\|$ and let F_r be such that $\mathbb{P}_\omega(L_r(\omega) > t) \leqslant F_r(t)$.

Assumption 2

For $\rho > 0$ (probability of failure) choose $m \in \mathbb{N}$ (number of measurements), and $\{\bar{L}_i\}_{i=0}^3$ such that

$$\sum_{j=0}^3 F_j(\bar{L}_j) \leqslant \frac{\rho}{m} \quad \text{and} \quad \bar{L}_j^2 \sum_{i=0}^3 F_i(\bar{L}_i) + 2 \int_{\bar{L}_j}^\infty t F_j(t) \mathrm{d}t \leqslant \frac{\varepsilon}{m}.$$

and $m \gtrsim C \cdot s \cdot (\log^2(s) + \log(N^d))$ where

$$N \stackrel{\text{def.}}{=} \frac{1}{\varepsilon} \mathbb{L}_3 R_{\mathcal{X}} d\sqrt{s} \quad \text{and} \quad C \stackrel{\text{def.}}{=} \frac{1}{\varepsilon^2} \left(\frac{\log\left(\frac{\mathbb{L}_2}{\varepsilon\rho}\right)}{\log(s)} + 1 \right) \left(\mathbb{L}_1^2 B + \mathbb{L}_2^2 \right),$$

$$B = B_{00} + B_{02} + B_{10} + B_{12}, \ \varepsilon = \min\{\varepsilon_0, \varepsilon_2\}, \mathbb{L}_r = \max_{i \leqslant r} \bar{L}_i$$

Stability without the random signs assumption

Theorem

Let

$$\mathcal{X}_{j}^{near} \stackrel{\text{def.}}{=} \{x \in \mathcal{X} ; d_{\mathbf{H}}(x, x_{j}) \leqslant r_{\text{near}}\} \quad and \quad \mathcal{X}^{far} \stackrel{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^{s} \mathcal{X}_{j}^{near}.$$
(5.1)

Suppose that $\|w\| \leqslant \delta$ and $\lambda \sim \delta/\sqrt{s}$ (ignoring log factors), then any solution $\hat{\mu}$ to $\mathcal{P}_{\lambda}(y)$ is approximately s-sparse: by defining the "projection" of $|\hat{\mu}|$ onto $X \stackrel{\text{def.}}{=} \{x_j\}$ by $P_X(|\hat{\mu}|) \stackrel{\text{def.}}{=} \sum_{j=1}^s |\hat{\mu}| (\mathcal{X}_j^{\text{near}}) \delta_{x_j}$ we have

$$\mathcal{T}_{\mathbf{H}}^2(|\hat{\mu}|, P_X(|\hat{\mu}|)) \lesssim \frac{\delta\sqrt{s}}{\varepsilon}.$$

where $\mathcal{T}_{\mathbf{H}}^2 \stackrel{\text{def.}}{=} \inf_{\mu,\nu} W_{\mathbf{H}}^2(\hat{\mu},\hat{\nu}) + |\mu - \hat{\mu}| (\mathcal{X}) + |\nu - \hat{\nu}| (\mathcal{X}).$

Stability without the random signs assumption

Theorem

Let

$$\mathcal{X}_{j}^{near} \stackrel{\text{def.}}{=} \{x \in \mathcal{X} ; d_{\mathbf{H}}(x, x_{j}) \leqslant r_{\text{near}}\} \quad and \quad \mathcal{X}^{far} \stackrel{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^{s} \mathcal{X}_{j}^{near}. \tag{5.1}$$

Suppose that $\|w\| \leqslant \delta$ and $\lambda \sim \delta/\sqrt{s}$ (ignoring log factors), then any solution $\hat{\mu}$ to $\mathcal{P}_{\lambda}(y)$ is approximately s-sparse: by defining the "projection" of $|\hat{\mu}|$ onto $X \stackrel{\text{def.}}{=} \{x_j\}$ by $P_X(|\hat{\mu}|) \stackrel{\text{def.}}{=} \sum_{j=1}^s |\hat{\mu}| (\mathcal{X}_j^{\text{near}}) \delta_{x_j}$ we have

$$\mathcal{T}_{\mathbf{H}}^2(|\hat{\mu}|, P_X(|\hat{\mu}|)) \lesssim \frac{\delta\sqrt{s}}{\varepsilon}.$$

where $\mathcal{T}_{\mathbf{H}}^{2} \stackrel{\text{def.}}{=} \inf_{\mu,\nu} W_{\mathbf{H}}^{2}(\hat{\mu},\hat{\nu}) + \left|\mu - \hat{\mu}\right|(\mathcal{X}) + \left|\nu - \hat{\nu}\right|(\mathcal{X}).$ Moreover, we have

$$\sum_{j} \left| a_{j} - \hat{\mu}(\mathcal{X}_{j}^{\text{near}}) \right|^{2} \lesssim \frac{\mathbb{L}_{1}}{\varepsilon} (1 + \left| \mu_{0} \right| (\mathcal{X})) \left(\delta \sqrt{s} \right)$$

Stability without the random signs assumption

Theorem

Let

$$\mathcal{X}_{j}^{near} \stackrel{\text{def.}}{=} \{ x \in \mathcal{X} : d_{\mathbf{H}}(x, x_{j}) \leqslant r_{\text{near}} \} \quad and \quad \mathcal{X}^{far} \stackrel{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^{s} \mathcal{X}_{j}^{near}.$$
 (5.1)

Suppose $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j} + \nu_0$ where $\nu_0 \perp \sum_j a_j \delta_{x_j}$. Suppose that $||w|| \leq \delta$ and $\lambda \sim \delta/\sqrt{s}$ (ignoring log factors), then any solution $\hat{\mu}$ to $\mathcal{P}_{\lambda}(y)$ is approximately s-sparse: by defining the "projection" of $|\hat{\mu}|$ onto $X \stackrel{\text{def.}}{=} \{x_j\}$ by $P_X(|\hat{\mu}|) \stackrel{\text{def.}}{=} \sum_{j=1}^s |\hat{\mu}| (\mathcal{X}_i^{\text{near}}) \delta_{x_j}$ we have

$$\mathcal{T}_{\mathbf{H}}^{2}(|\hat{\mu}|, P_{X}(|\hat{\mu}|)) \lesssim \frac{\delta\sqrt{s} + |\nu_{0}|(\mathcal{X})}{\varepsilon}.$$

where
$$\mathcal{T}_{\mathbf{H}}^{2} \stackrel{\text{def.}}{=} \inf_{\mu,\nu} W_{\mathbf{H}}^{2}(\hat{\mu},\hat{\nu}) + |\mu - \hat{\mu}|(\mathcal{X}) + |\nu - \hat{\nu}|(\mathcal{X}).$$

Summary

Papers:

- Support Localization and the Fisher Metric for off-the-grid Sparse Regularization, arXiv 1810.03340, AISTATS 2019.
- A Dual Certificates Analysis of Compressive Off-the-Grid Recovery, arXiv 1802.08464

Summary: Extended existing results to general measurement operators and the multivariate setting.

- Introduction of the Fisher metric, which offers a natural way of imposing the separation condition and allows a unified way of approaching nontranslational invariant problems.
- Quantitative support stability under a random signs assumption.
- Removal of the random signs condition (with support concentration guarantees).

Outlook:

- Algorithmic implications of the Fisher metric/natural gradient?
- Our results are optimal wrt s, but what about d?
- How should we quantify noise stability in general?

Summary

Papers:

- Support Localization and the Fisher Metric for off-the-grid Sparse Regularization, arXiv 1810.03340, AISTATS 2019.
- A Dual Certificates Analysis of Compressive Off-the-Grid Recovery, arXiv 1802.08464

Summary: Extended existing results to general measurement operators and the multivariate setting.

- Introduction of the Fisher metric, which offers a natural way of imposing the separation condition and allows a unified way of approaching nontranslational invariant problems.
- Quantitative support stability under a random signs assumption.
- Removal of the random signs condition (with support concentration guarantees).

Outlook:

- Algorithmic implications of the Fisher metric/natural gradient?
- Our results are optimal wrt s, but what about d?
- How should we quantify noise stability in general?

Thanks for listening!