Locally Convex Topological Vector Spaces

BY S.A.C VIA PERPLEXITY

Definition 1. [Seminorm] Let X be a vector space over \mathbb{K} (either \mathbb{R} or \mathbb{C}). A seminorm is a function $p: X \to [0, \infty)$ satisfying:

- 1. $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$ (subadditivity)
- 2. $p(\alpha x) = |\alpha| p(x)$ for all $x \in X$, $\alpha \in \mathbb{K}$ (homogeneity)

Definition 2. [Locally Convex Topological Vector Space] A locally convex topological vector space (LCTVS) is a pair (X, P) where:

- X is a vector space over \mathbb{K}
- $P = \{p_{\alpha} : \alpha \in A\}$ is a family of seminorms where A is an arbitrary index set
- For any $x \neq 0$, there exists $\alpha \in A$ such that $p_{\alpha}(x) \neq 0$ (separation condition)

The topology τ on X is generated by the base of neighborhoods of 0 of the form:

$$V(\alpha_1, \ldots, \alpha_n; \varepsilon) = \{x \in X : p_{\alpha_i}(x) < \varepsilon \text{ for } i = 1, \ldots, n\}$$

where $\varepsilon > 0$, $n \in \mathbb{N}$, and $\alpha_1, \ldots, \alpha_n \in A$

Example 3. [Continuous Functions] Let C[a,b] be the space of continuous functions on [a,b]. We define three families of seminorms:

- 1. $p_1(f) = \max\{|f(x)|: x \in [a, b]\}$
- 2. $p_2(f) = \int_a^b |f(x)| dx$
- 3. $p_t(f) = |f(t)| \forall t \in [a, b]$

with seminorms:

For p_1 :

• Subadditivity:

$$p_1(f+g) = \max |f+g| \le \max (|f|+|g|) \le \max |f| + \max |g| = p_1(f) + p_1(g)$$
(1)

• Homogeneity:

$$p_1(\alpha f) = \max |\alpha f| = |\alpha| \max |f| = |\alpha| p_1(f)$$
(2)

For p_2 :

1. Subadditivity:

$$p_{2}(f+g) = \int |f+g| \le \int (|f|+|g|)$$

$$= \int |f| + \int |g| = p_{2}(f) + p_{2}(g)$$
(3)

2. Homogeneity:

$$p_2(\alpha f) = \int |\alpha f| = |\alpha| \int |f| = |\alpha| p_2(f)$$

$$\tag{4}$$

For p_t :

- Subadditivity: $p_t(f+g) = |f(t) + g(t)| \le |f(t)| + |g(t)| = p_t(f) + p_t(g)$
- Homogeneity: $p_t(\alpha f) = |\alpha f(t)| = |\alpha||f(t)| = |\alpha| p_t(f)$

The separation condition is satisfied: if $f \neq 0$, then $p_1(f) > 0$

Example 4. [Smooth Functions] Let $C^{\infty}(\mathbb{R})$ be the space of smooth functions. Define:

$$p_{k,n}(f) = \sup\{|f^{(n)}(x)| : x \in [-k, k]\}$$
(5)

for $k, n \in \mathbb{N}$.

Proposition 5. These are seminorms:

1. Subadditivity:

$$p_{k,n}(f+g) = \sup |f^{(n)} + g^{(n)}| \leq \sup |f^{(n)}| + \sup |g^{(n)}| = p_{k,n}(f) + p_{k,n}(g)$$
(6)

2. Homogeneity:

$$p_{k,n}(\alpha f) = \sup |\alpha f^{(n)}| = |\alpha| \sup |f^{(n)}| = |\alpha| p_{k,n}(f)$$
 (7)

The separation condition is satisfied: if $f \neq 0$, some derivative must be nonzero at some point, so some $p_{k,n}(f) > 0$.

Example 6. [Sequence Space] Let $\mathbb{C}^{\mathbb{N}}$ be the space of complex sequences. Define:

- 1. $p_k(x) = |x_k|$ for each $k \in \mathbb{N}$
- 2. $q_n(x) = \max\{|x_k|: 1 \le k \le n\}$

These are seminorms:

For p_k :

• Subadditivity:

$$p_k(x+y) = |x_k + y_k| \le |x_k| + |y_k| = p_k(x) + p_k(y) \tag{8}$$

• Homogeneity:

$$q_n(x+y) = \max |x_k + y_k| \le \max (|x_k| + |y_k|)$$
 (9)

For q_n :

• Subadditivity:

$$q_{n}(x+y) = \max |x_{k} + y_{k}| \le \max (|x_{k}| + |y_{k}|) \le \max |x_{k}| + \max |y_{k}| = q_{n}(x) + q_{n}(y)$$
(10)

• Homogeneity:

$$q_n(\alpha x) = \max |\alpha x_k| = |\alpha| \max |x_k| = |\alpha| q_n(x)$$
(11)

The separation condition is satisfied: if $x \neq 0$, then some $x_k \neq 0$, so $p_k(x) > 0$

In each example, the topology generated by these seminorms makes the space into a LCTVS(locally convex topological vector space) because:

- 1. Addition is continuous (which follows from subadditivity)
- 2. Scalar multiplication is continuous (which follows from homogeneity)
- 3. The separation condition ensures the topology is Hausdorff

Axiom 7. The separation condition ensures our LCTVS is a Hausdorff space, also called a T_2 space or a separated space - these are all synonymous terms. A topological space is Hausdorff/ T_2 /separated if:

$$\forall x, y \in X, x \neq y \Longrightarrow \exists open \ sets \ U, V with \ x \in U, y \in V, U \cap V = \emptyset$$
 (12)

In an LCTVS, this follows from the separation condition:

- Given $x \neq y$, let $z = x y \neq 0$
- By separation condition, $\exists \alpha \text{ with } p_{\alpha}(z) > 0$
- *Let*

$$U = \{u: p_{\alpha}(u - x) < \varepsilon\}$$
(13)

and

$$V = \{v: p_{\alpha}(v - y) < \varepsilon\}$$
(14)

where

$$\varepsilon = \frac{p_{\alpha}(z)}{2} \tag{15}$$

• Then these open sets separate $x \in U$ and $y \in V$ such that $U \cap V = \emptyset$

Note: While T_2 , Hausdorff, and separated are synonymous, they are stronger than T_1 (which only requires points to be closed) and weaker than T_3 (regular) spaces.

Proposition 8. (The Separation Condition) The condition "for any $x \neq 0$, there exists $\alpha \in A$ such that $p_{\alpha}(x) \neq 0$ " is called the separation condition because:

- 1. It separates points from zero: Any nonzero point can be separated from zero by at least one seminorm
- 2. It ensures the topology is Hausdorff: Any two distinct points can be separated by disjoint neighborhoods

To see (2): Let $x \neq y$ be distinct points. Then $z = x - y \neq 0$. By the separation condition, there exists α with $p_{\alpha}(z) > 0$. Let $\varepsilon = p_{\alpha}(z)/2$. Then:

- $U = \{u: p_{\alpha}(u x) < \varepsilon\}$ is a neighborhood of x
- $V = \{v: p_{\alpha}(v y) < \varepsilon\}$ is a neighborhood of y

Moreover, $U \cap V = \emptyset$, because if $w \in U \cap V$:

$$p_{\alpha}(z) = p_{\alpha}(x - y) \le p_{\alpha}(w - y) + p_{\alpha}(x - w) < \varepsilon + \varepsilon = p_{\alpha}(z)$$

which is a contradiction.