Regularization

Lecture 4 - DAMLF | ML1

Regression Analysis

Univariate Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Multiple Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

where $x_0 = 1$

Polynomial Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 \cdots + \theta_n x^n$$

Basis Function Regression

Basis Function Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 z_1 + \theta_2 z_2 \cdots + \theta_n z_n$$

where z_1, z_2, \ldots, z_n are built from a single input x:

$$f_i(x) = z_i, \text{ for } i = 1, 2, ..., n$$

The $f_i(\cdot)$ are called **basis functions**.

Basis Function Regression

Basis Function Regression:

$$h(x; \theta) = \theta_0 + \theta_1 z_1 + \theta_2 z_2 \cdots + \theta_n z_n$$

where z_1, z_2, \dots, z_n are built from a single input x:

$$f_i(x) = z_i$$
, for $i = 1, 2, ..., n$

The $f_i(\cdot)$ are called **basis functions**.

 $h(x; \theta)$ is still a linear model: the coefficients θ_i never divide or multiply each other.

Polynomial Regression

Polynomial Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 \cdots + \theta_n x^n$$

where the basis function is $f_i(x) = x^i$, for i = 1, 2, ..., n

Overfitting

Overfitting occurs when there are **too many features/adjustable parameters**.

Although the learned hypothesis $h(x; \theta)$ fits the **training set** very well, that is:

$$J(\theta) \approx 0$$

The model fails to give **accurate predictions** for new (out of sample) examples.

Underfitting

Underfitting occurs when there are too few features.

Although the learned hypothesis $h(x; \theta)$ is very **simple** and generalizable, the model introduces a **bias** that **skews predictions** for new examples.

Generalization

Fitting is easy. Predicting is hard.

The main challenge in machine learning is for a model to perform well on new, previously unseen inputs.

The ability to perform well on new, previously unobserved inputs is called **generalization**.

Model Capacity

Informally, a learning algorithm's **capacity** is its ability to fit a wide range of functions.

- Low capacity models are prone to underfitting.
- High capacity models are prone to overfitting.

The trick is is to match a model's capacity to the complexity of the task.

How to Address Overfitting

There are basically two options:

1. Reduce the number of Features

How to Address Overfitting

There are basically two options:

- 1. Reduce the number of Features
 - · Manually pick out which features to keep and which to discard
 - Model selection algorithms (BIC, AIC, etc.)
 used less frequently in deep learning era

How to Address Overfitting

There are basically two options:

- 1. Reduce the number of Features
 - · Manually pick out which features to keep and which to discard
 - Model selection algorithms (BIC, AIC, etc.) used less frequently in deep learning era

2. Regularization

· Keep all features, but reduce the magnitude of parameters θ_j

Regularization

The **idea** behind regularization is to **discount** the role that multiple features play in a hypothesis $h(x; \theta)$.

Regularization

The **idea** behind regularization is to **discount** the role that multiple features play in a hypothesis $h(x; \theta)$.

How: Make θ_i very small, close to zero.

Suppose we made θ_3 and θ_4 **very small**.

How:

Suppose we made θ_3 and θ_4 **very small**.

How:
$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}^{(i)} - y^{(i)})^2$$

Suppose we made θ_3 and θ_4 **very small**.

How:
$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^2 + 1000 \cdot \theta_3^2 + 1000 \cdot \theta_4^2$$

Instead of picking some θ_j s (θ_3 , θ_4) to discount while leaving other θ_j s (θ_1 , θ_2) at full strength, **regularization** discounts **all** θ_i s.

Example

Features: $x_1, x_2, ..., x_{1000}$

Parameters: $\theta_0\theta_1,\theta_2,\dots,\theta_{1000}$

Example

Features: $x_1, x_2, ..., x_{1000}$

Parameters: $\theta_0\theta_1, \theta_2, \dots, \theta_{1000}$

Unlike the previous example, where θ_3 and θ_4 were picked out for discounting, it is likely to be difficult to know in advance which of the 1001 parameters ought to be discounted.

Example

Features: $x_1, x_2, ..., x_{1000}$

Parameters: $\theta_0\theta_1, \theta_2, \dots, \theta_{1000}$

Idea: Modify the **cost function** $J(\theta)$ to **discount** every $\theta_i \in \theta$.

Ridge Regularization

Regularized Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} \theta_j^2$$

Ridge Regularization

Regularized Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2$$

Note: By convention, θ_0 is **not** discounted. Thus, since the regularization parameter λ applies to

$$\theta_1\theta_2,\dots\theta_n,$$

the summation $\sum_{i=1}^{n}$ is indexed from 1 to n

Ridge Regularized Cost Function

Regularized Cost Function:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

Regularization term: $\lambda \sum_{i=1}^{n} \theta_j^2$

Regularization parameter: λ

Fitting term: $\frac{1}{2m}\sum_{i=1}^{m}(h(x^{(i)};\theta)-y^{(i)})^2$

The optimization objective is to choose θ to minimize the regularized cost function:

$$J(\theta) = \frac{1}{2m} \left(\sum_{i=1}^{m} \left(h(x^{(i)}; \theta) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

The optimization objective is to choose θ to minimize the regularized cost function:

$$J(\theta) = \frac{1}{2m} \left(\sum_{i=1}^{m} \left(h(x^{(i)}; \theta) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

Question: What happens if we pick an extremely large λ ?

$$J(\theta) = \frac{1}{2m} \left(\sum_{i=1}^{m} (h(x; \theta) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right)$$

$$J(\theta) = \frac{1}{2m} \left(\sum_{i=1}^{m} (h(x; \theta) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right)$$

Suppose $\lambda = 10^9$ Then, $h(x; \theta) \approx \theta_0$ and **underfits** the data.

Gradient Descent

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\begin{split} \theta_0 &:= \theta_0 - \alpha \, \tfrac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &:= \theta_j - \alpha \, \tfrac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)} \\ & (j = 1, 2, \dots, n) \\ simultaneous update \, \theta_0, \, \theta_j s \end{split}$$

Stop at convergence

» Exit loop

Remarks:

The **first step** is to rewrite the basic cost function to separate θ_0 , which will not be discounted, from θ_1 to θ_n , which will be discounted.

Gradient Descent for Regularized Linear Regression

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\begin{aligned} \theta_0 &:= \theta_0 - \alpha \, \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &:= \theta_j - \alpha \, \left(\frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right) \\ & (j = 1, 2, \dots, n) \\ simultaneous update \, \theta_0, \, \theta_j s \end{aligned}$$

Stop at convergence

» Exit loop

Remarks:

Then, add the **regularization term**.

Gradient Descent for Regularized Linear Regression

Algorithm:

Regularized Gradient Descent

» Enter loop Repeat:

$$\begin{split} \theta_0 &:= \theta_0 - \alpha \, \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &:= \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \, \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)} \\ & (j = 1, 2, \dots, n) \\ simultaneous update \, \theta_0, \, \theta_j s \end{split}$$

Stop at convergence

» Exit loop

Remarks:

Finally, rearrange terms.

Algorithm:

Regularized Gradient Descent

» Enter loop Repeat:

$$\begin{split} \theta_0 &:= \theta_0 - \ \alpha \ \tfrac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &:= \theta_j (\mathbf{1} - \boldsymbol{\alpha} \tfrac{\lambda}{m}) - \ \alpha \ \tfrac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)} \\ (j &= 1, 2, \dots, n) \\ simultaneous update \ \theta_0, \ \theta_j s \end{split}$$

Stop at convergence

» Exit loop

Note: The term
$$0 \ll (1-\alpha \frac{\lambda}{m}) < 1$$
 and $1-\alpha \frac{\lambda}{m} \approx 1$

$$h(x; \theta) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 \theta_2^2 + \theta_5 x_1^2 x_2^3 + \cdots)$$

Cost Function:

$$J(\theta) = -\left(\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log h(x^{(i)};\theta) + (1-y^{(i)})\log\left(1-h_{\theta}(x^{(i)})\right)\right)$$

$$h(x; \theta) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 \theta_2^2 + \theta_5 x_1^2 x_2^3 + \cdots)$$

Cost Function:

$$J(\theta) = -\left(\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log h(x^{(i)};\theta) + (1-y^{(i)})\log\left(1-h_{\theta}(x^{(i)})\right)\right)$$

$$h(x; \theta) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2^2 + \theta_4 x_1^2 \theta_2^2 + \theta_5 x_1^2 x_2^3 + \cdots)$$

Cost Function:

$$J(\theta) = -\left(\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log h(x^{(i)};\theta) + (1-y^{(i)})\log\left(1-h_{\theta}(x^{(i)})\right) + \frac{\lambda}{2m}\sum_{j=1}^{n}\theta_{j}^{2}\right)$$

Algorithm:

Regularized Gradient Descent

» Enter loop Repeat:

$$\begin{split} \theta_0 &:= \theta_0 - \alpha \, \, \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_0^{(i)} \\ \theta_j &:= \theta_j (\boldsymbol{1} - \boldsymbol{\alpha} \frac{\lambda}{m}) - \alpha \, \, \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)} \\ (j &= 1, 2, \dots, n) \\ simultaneous update \, \theta_0, \theta_j s \end{split}$$

Stop at convergence

» Exit loop

Note:
$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$

L1 vs L2 Regularization

Ridge (L2) Regularization

$$\lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

L2 norm:

- sum of squared θ_i 's
- unique
- not robust to outliers
- all features used

Lasso (L1) Regularization

$$\lambda \sum_{j=1}^{n} |\theta_j|$$

L1 norm:

- sum of absolute values of θ_i 's
- not unique
- robust to outliers
- most features not used

References