Data Analysis and Visualisation in Python

In this project, we used Python to extract and analyse specific data from the 'GDP (Nominal) per Capita.csv' dataset. Our first step was to load the data from the CSV file into a DataFrame named "df" using Colab notebook. To quickly explore the dataset, we printed the first 10 rows and the last 5 rows, providing a snapshot of the data. Additionally, we identified the country with the highest UN_Estimate value and examined essential columns, including 'Country/Territory' and 'UN_Region', which helped us better understand the data's structure and attributes.

Throughout the project, we made use of various Python functionalities. For instance, quotes in Python (single, double, or triple quotes) were used to define string values, while escape characters were used to handle special characters within strings. We used print() commands to display output, with display() being useful for a more formatted output in Colab, while print() and show() provided simpler forms of output to the console.

We also explored important positional arguments to define the order of parameters in functions, which helped streamline our functions. Furthermore, we utilised algorithms and arithmetic operators for data manipulation and analysis, along with shortcut operators for efficient coding. Conditional statements allowed us to perform operations based on specific conditions, such as filtering countries with MF_Estimate values below the average.

To assist with the visual analysis of the data, we employed several visualisation techniques, including bar plots, scatter plots, and box plots. These visualisations were instrumental in uncovering patterns, distributions, and relationships within the data, allowing us to gain deeper insights.

Additionally, we used Python's correlation function to explore the relationships between the estimates provided by the World Bank, UN, and IMF. By analysing these correlations, we were able to understand how the estimates from these organisations align or differ, providing valuable context for the dataset.

Please download the 'GDP (nominal) per Capita.csv' dataset here.

Read and save the 'GDP (nominal) per Capita' data to a data frame called "df" in Colab notebook.

df = pd.read_csv('GDP (nominal) per Capita.csv')
df.to_csv('GDP (nominal) per Capita.csv', index=False)

#Print the first 10 rows df.head(10)

₹	ı	Unnamed:	Country/Territory	UN_Region	IMF_Estimate	IMF_Year	WorldBank_Estimate	WorldBank_Year	UN_Est
	0	1	Monaco	Europe	0	0	234316	2021	2
	1	2	Liechtenstein	Europe	0	0	157755	2020	1
	2	3	Luxembourg	Europe	132372	2023	133590	2021	1
	3	4	Ireland	Europe	114581	2023	100172	2021	1
	4	5	Bermuda	Americas	0	0	114090	2021	1
4	5	6	Norway	Europe	101103	2023	89154	2021	
	6	7	Switzerland	Europe	98767	2023	91992	2021	
	7	8	Singapore	Asia	91100	2023	72794	2021	
	8	9	Isle of Man	Europe	0	0	87158	2019	
	9	10	Cayman Islands	Americas	0	0	86569	2021	
	step	os: Gener	rate code with df	→ View recor	nmended plots	New inte	ractive sheet		+

#Print the last 5 rows df.tail()

		Unnamed:	Country/Territory	UN_Region	IMF_Estimate	IMF_Year	WorldBank_Estimate	WorldBank_Year	UN_E
	218	219	Malawi	Africa	496	2023	635	2021	
	219	220	South Sudan	Africa	467	2023	1072	2015	
	220	221	Sierra Leone	Africa	415	2023	480	2021	
	221	222	Afghanistan	Asia	611	2020	369	2021	
	222	223	Burundi	Africa	249	2023	222	2021	
	4								+

#Country has highest UN_Estimate
gdp=df[df["UN_Estimate"]==df["UN_Estimate"].max()]
gdp['Country/Territory']


```
#Country has highest Worlbank Estimate
gdp=df[df["WorldBank_Estimate"]==df["WorldBank_Estimate"].max()]
gdp['Country/Territory']
```


#Country has highest IMF Estimate
gdp=df[df["IMF_Estimate"]==df["IMF_Estimate"].max()]
gdp['Country/Territory']

Calculate the average of 'Worldbank_Estimate' and 'UN_Estimate' columns avg_worldbank_UN = df[['WorldBank_Estimate', 'UN_Estimate']].mean() avg_worldbank_UN

WorldBank_Estimate 18927.417040
UN_Estimate 17767.304933

Minimum and maximum of 'Worldbank_Estimate' df["WorldBank_Estimate"].agg(["min","max"])

Print 'Country/Territory' and 'UN_Region' columns df[['Country/Territory', 'UN_Region']]

223 rows x 2 columns

Countries below average by IMF_Estimate gdp=df[df["IMF_Estimate"]<df["IMF_Estimate"].mean()] gdp.iloc[:,1:4]

159 rows × 3 columns

#Histogram df.hist(figsize=(10,8)) plt.show()

df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].hist(figsize=(12,9)) plt.show()

df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].hist(bins=5, figsize=(12,9)) plt.show()

df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].hist(bins=3,
figsize=(12,9))
plt.show()

Correlation

df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].corr()

•	₹	_
=	•	Ŧ
۰		_

	IMF_Estimate	UN_Estimate	WorldBank_Estimate
IMF_Estimate	1.000000	0.626513	0.587988
UN_Estimate	0.626513	1.000000	0.930331
WorldBank_Estimate	0.587988	0.930331	1.000000

corr = df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].corr()
plt.figure(figsize=(9,6))
sns.heatmap(corr)

corr = df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].corr()
plt.figure(figsize=(9,6))
sns.heatmap(corr, annot=True)
plt.show()

corr = df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].corr()
plt.figure(figsize=(9,6))
sns.heatmap(corr, annot=True, fmt=".2f", cmap = 'GnBu', annot_kws={"size": 12})
plt.show()

corr = df[["IMF_Estimate", "UN_Estimate", "WorldBank_Estimate"]].corr()
plt.figure(figsize=(9,6))
sns.heatmap(corr, annot=True, cmap = 'Purples')
plt.title("Correlation Map")
plt.show()

corr = df.select_dtypes(include=[int, float]).corr()
plt.figure(figsize=(9,6))
sns.heatmap(corr, annot=True, cmap = 'Purples')
plt.show()

#Print the first 5 rows df.head()

₹		Country/Territory	UN_Region	IMF_Estimate	IMF_Year	WorldBank_Estimate	WorldBank_Year	UN_Estimate	UN_
	1	Monaco	Europe	0	0	234316	2021	234317	
	2	Liechtenstein	Europe	0	0	157755	2020	169260	
	3	Luxembourg	Europe	132372	2023	133590	2021	133745	
	4	Ireland	Europe	114581	2023	100172	2021	101109	
	5	Bermuda	Americas	0	0	114090	2021	112653	

sns.barplot(x="UN_Region", y="WorldBank_Estimate", data=df, errorbar=None) plt.show()

sns.barplot(x="WorldBank_Estimate", y="UN_Region", data=df, errorbar=None) plt.show()


```
fig = plt.figure(figsize = (8,5))
ax = sns.barplot(x = "IMF_Estimate", y = "UN_Region",
data = df, errorbar = None)
ax.bar_label(ax.containers[0])
plt.show()
```


#Boxplot sns.boxplot(x=df["UN_Estimate"])

df[df["UN_Estimate"]>50000].head()

	Country/Territory	UN_Region	IMF_Estimate	IMF_Year	WorldBank_Estimate	WorldBank_Year	UN_Estimate	UN_
1	Monaco	Europe	0	0	234316	2021	234317	
2	Liechtenstein	Europe	0	0	157755	2020	169260	
3	Luxembourg	Europe	132372	2023	133590	2021	133745	
4	Ireland	Europe	114581	2023	100172	2021	101109	
5	Bermuda	Americas	0	0	114090	2021	112653	

sns.boxplot(x=df["WorldBank_Estimate"]) plt.show()

sns.boxplot(x=df["IMF_Estimate"]) plt.show()

df[df["UN_Estimate"]>100000]

₹		Country/Territory	UN_Region	IMF_Estimate	IMF_Year	WorldBank_Estimate	WorldBank_Year	UN_Estimate	UN_
	1	Monaco	Europe	0	0	234316	2021	234317	
	2	Liechtenstein	Europe	0	0	157755	2020	169260	
	3	Luxembourg	Europe	132372	2023	133590	2021	133745	
	4	Ireland	Europe	114581	2023	100172	2021	101109	
	5	Bermuda	Americas	0	0	114090	2021	112653	

#Create another dataframe called data excluding 5 countries with highest UN estimate

data = df[-(df["UN_Estimate"] > 100000)]
data.head()

	Country/Territory	UN_Region	<pre>IMF_Estimate</pre>	IMF_Year	${\tt WorldBank_Estimate}$	WorldBank_Year	UN_Estimate	UN
6	Norway	Europe	101103	2023	89154	2021	89242	
7	Switzerland	Europe	98767	2023	91992	2021	93525	
8	Singapore	Asia	91100	2023	72794	2021	66822	
9	Isle of Man	Europe	0	0	87158	2019	0	
10	Cayman Islands	Americas	0	0	86569	2021	85250	

Removing outliers

```
lower_q = df["UN_Estimate"].quantile(0.25)
lower_q

2039.0

[100] higher_q = df["UN_Estimate"].quantile(0.75)
higher_q

20740.0

[101] iqr = higher_q - lower_q
iqr

18701.0

[102] upper_boundary = higher_q + 1.5 * iqr
upper_boundary

48791.5

[103] lower_boundary = lower_q - 1.5 * iqr
lower_boundary

-26012.5
```

df_filtered = df[(df["UN_Estimate"] < upper_boundary) & (df["UN_Estimate"] >
lower_boundary)]
df_filtered.head()

	Country/Territory	UN_Region	IMF_Estimate	IMF_Year	WorldBank_Estimate	WorldBank_Year	UN_Estimate	UN
9	Isle of Man	Europe	0	0	87158	2019	0	
14	Channel Islands	Europe	0	0	75153	2007	0	
15	Faroe Islands	Europe	0	0	69010	2021	0	
29	Macau	Asia	50571	2023	43874	2021	43555	
30	United Arab Emirates	Asia	49451	2023	44316	2021	43295	