Progetto d'Esame per Mining II

Predict Students' Dropout and Academic Success

Link al dataset:

https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success

Link al notebook:

https://github.com/PaoloCarlevero/mining_II_project_work

Alessandra Barillaro Paolo Carlevero Cristiano Degrandis

Data: 09/07/2024

Data Exploration e Data preprocessing

	0.1		D.L.
#	Column	Non-Null Count	Dtype
	Marital Status	4424 pop pull	int64
0		4424 non-null 4424 non-null	int64
1	Application mode	4424 non-null 4424 non-null	int64
2	Application order	4424 non-null	int64
3	Course		int64
4	Daytime/evening attendance	4424 non-null	
5	Previous qualification	4424 non-null	int64 float64
6	Previous qualification (grade)	4424 non-null	int64
7	Nacionality	4424 non-null	
8	Mother's qualification	4424 non-null	int64
9	Father's qualification	4424 non-null	int64
10	Mother's occupation	4424 non-null	int64
11	Father's occupation	4424 non-null	int64
12	Admission grade	4424 non-null	float64
13	Displaced	4424 non-null	int64
14	Educational special needs	4424 non-null	int64
15	Debtor	4424 non-null	int64
16	Tuition fees up to date	4424 non-null	int64
17	Gender	4424 non-null	int64
18	Scholarship holder	4424 non-null	int64
19	Age at enrollment	4424 non-null	int64
20	International	4424 non-null	int64
21	Curricular units 1st sem (credited)	4424 non-null	int64
22	Curricular units 1st sem (enrolled)	4424 non-null	int64
23	Curricular units 1st sem (evaluations)	4424 non-null	int64
24	Curricular units 1st sem (approved)	4424 non-null	int64
25	Curricular units 1st sem (grade)	4424 non-null	float64
26	Curricular units 1st sem (without evaluations)		int64
27	Curricular units 2nd sem (credited)	4424 non-null	int64
28	Curricular units 2nd sem (enrolled)	4424 non-null	int64
29	Curricular units 2nd sem (evaluations)	4424 non-null	int64
30	Curricular units 2nd sem (approved)	4424 non-null	int64
31	Curricular units 2nd sem (grade)	4424 non-null	float64
32	Curricular units 2nd sem (without evaluations)	4424 non-null	int64
33	Unemployment rate	4424 non-null	float64
34	Inflation rate	4424 non-null	float64
35	GDP	4424 non-null	float64

- Data ingestion attraverso API
- X_df= 36 variabili con 4424 record
- y_df= Graduate/Enrolled/Droput

Target	
Graduate	0.499322
Dropout	0.321203
Enrolled	0.179476

- Dropout e Enrolled vengono ricodificate come "Not graduate"
- Alcune variabili devono essere decodificate per essere analizzate meglio

Data Exploration e Data preprocessing

- Viene creata una funzione <u>'def get_column_encoding(column_name: str,</u> variables=variables)' che restituisce un dizionario con coppie chiave-valore corrispondenti alla codifica della colonna specificata.
- Vengono iterate e decodificate attraverso un ciclo '<u>for col in colms_to_decode:</u>
 <u>cols_decode[col] = get_column_encoding(col)</u>'
- Vengono eliminate le colonne in ecesso per evitare di creare ridondanza e viene diminuita la cardinalità di determiante variabili per ridurre il numero di categorie uniche in una feature categorica e per prevenire overfitting
- Il 'column preprocessing' permette di separare le colonne in due gruppi, categoriche (per il 'One-Hot Encoding') e ordinali. Si usa un Column Tranformer che applica un 'Encoder' alle colonne categoriche e un'altro ('Ordinal Encoder') alle trasformando il dataframe X e preparandolo per l'uso dei modelli di classificazione successivi.

CLASSIFICAZIONE

ROC CURVE

DECISION TREE

MODELLO DI DEFAULT

	precision	recall	f1-score	support
Graduate	0.76	0.75	0.75	418
Not graduate	0.78	0.79	0.78	467
accuracy			0.77	885
macro avg	0.77	0.77	0.77	885
weighted avg	0.77	0.77	0.77	885

L'argoritmo struttura un albero in cui ogni nodo interno rappresenta un test su un carattere/attributo che attraverso Gini o Entropy migliora la divisione in classi.

RISULTATI DECISION TREE CLASSIFIER:

- PRECISION= 0,786
- RECALL= 0,85
- F1 score passa da 0,75 e 0,78 del modello di default a 0,82 nel modello fatto con greedsearchcv.
- ACCURACY aumenta da 0,77 a 0,82

BEST MODEL CON METODO GRIDSEARCHCV

	precision	recall	f1-score	support
Graduate	0.79	0.85	0.82	418
Not graduate	0.86	0.79	0.82	467
accuracy			0.82	885
macro avg	0.82	0.82	0.82	885
weighted avg	0.82	0.82	0.82	885

RANDOM FOREST

MODELLO DI DEFAULT

	precision	recall	f1-score	support
Graduate	0.79	0.89	0.84	418
Not graduate	0.89	0.79	0.84	467
accuracy			0.84	885
macro avg	0.84	0.84	0.84	885
weighted avg	0.84	0.84	0.84	885

Durante la classificazione vengono combinati diversi alberi decisionali tra di loro riducendo il rischio di overfitting, RF si basa sul concetto di enseble learning

RISULTATI RANDOM FOREST CLASSIFIER:

- PRECISION= 0,796
- RECALL= 0,868
- F1 SCORE e ACCURACY diminuiscono da 0,84 a 0,83 passando dal modello di default al miglior modello, perciò le performance sembrano anche se di poco peggiorare

BEST MODEL CON METODO GRIDSEARCHCV

	precision	recall	f1-score	support
Graduate	0.80	0.87	0.83	418
Not graduate	0.87	0.80	0.83	467
22212221			0.03	005
accuracy			0.83	885
macro avg	0.83	0.83	0.83	885
weighted avg	0.84	0.83	0.83	885

K-NEAREST NEIGHBORS

MODELLO DI DEFAULT

Modello di partenza:							
	precision	recall	f1-score	support			
Graduate	0.68	0.78	0.73	418		•	
Not graduate	0.77	0.67	0.72	467			eg
accuracy			0.72	885			
macro avg	0.73	0.73	0.72	885			
weighted avg	0.73	0.72	0.72	885			

KNN definisce un parametro K, iperparametro che considera i punti vicini durante la classificazione. Calcola la distanza tra il punto di partenza e gli altri nel set.

RISULTATI KNN:

- PRECISION= 0,693
- RECALL= 0,823
- F1 SCORE aumenta di poco passando dal modello di dafault al modello con greedsearchev da 0,73 e 0,72 a 0,75 e 0,74.
- ACCURACY aumenta da 0,72 a 0,74

BEST MODEL CON METODO GRIDSEARCHCV

Risultati del miglior modello: precision recall f1-score suppor						
	precision	Lecarr	T1-Score	support		
Graduate	0.69	0.82	0.75	418		
Not graduate	0.81	0.67	0.74	467		
accuracy			0.74	885		
macro avg	0.75	0.75	0.74	885		
weighted avg	0.75	0.74	0.74	885		

SUPPORT VECTOR CLASSIFIER

MODELLO DI DEFAULT

Risultati				
	precision	recall	f1-score	support
Graduate	0.78	0.87	0.82	418
Not graduate	0.78 0.87	0.87	0.82	467
6				
accuracy			0.82	885
macro avg	0.82	0.82	0.82	885
weighted avg	0.82	0.82	0.82	885

SVC cerca il margine migliore per separare le classi, in questo caso per margine si intende la distanza tra l'iperpiano e i punti di addestramento più vicini.

RISULTATI SUPPORT VECTOR CLASSIFIER:

Passando dal modello di default a quello post 'tuning' le performance non sono migliorate, anzi l'opposto, i casi potrebbero essere dettati ad esempio da overfitting o un inefficiente tuning del modello.

BEST MODEL CON METODO RANDOMSEARCHCV

Risultati con			_	
	precision	recall	f1-score	support
Graduate	0.78	0.84	0.81	418
Not graduate	0.85	0.78	0.81	467
accuracy			0.81	885
macro avg	0.81	0.81	0.81	885
weighted avg	0.81	0.81	0.81	885

CLUSTERING

K-MEANS

RISULTATI:

Considerazioni Finali e Sviluppi Futuri

- Dataset si presta ad utilizzare maggiormente modelli di classificazione.
- Riduzione variabili: provare a fare analisi componenti principali, durante la fase di data cleaning.
- Per migliorare la classificazione: eliminare features meno importanti.
- Utilizzare e implementare l'algoritmo della Regressione Logistica, data la natura delle variabili.
- Provare ad implementare una soluzione di clustering come k-modes o k-prototype, quindi invece di convertire i dati categoriali in numerici provare a fare lo scaling.