Упражнение 3 - Погрешности

- 1. Оценить погрешность в определении корней уравнения $ay^3+d=0$, если величины a=1 и d=8 заданы с точностью $\Delta(a)=10^{-3}$ и $\Delta(d)=10^{-3}$.
- 2. Определить оптимальный шаг численного дифференцирования $h_{
 m opt}$ при использовании для вычисления производной приближенной формулы

$$u'(x) pprox rac{u(x-2h) - 8u(x-h) + 8u(x+h) - u(x+2h)}{12h}, = oldsymbol{arphi}^{\{t\}}$$

Какой порядок аппроксимации имеет эта формула? Известно, что, $|u^{(5)}(t)| \leq M_5$, а значения функций вычисляются с точностью Δu .

Упражнение 4 - Погрешность определения корня уравнения

С каким числом верных знаков (или относительной погрешностью) должен быть известен свободный член в уравнении $x^2 - 2x + 0.999993751 = 0$, чтобы корни имели четыре верных знака?

Упражнение 5 - Рост погрешности в последовательности

Ини У дик го погрешной уменьшоется

Пусть задана последовательность чисел $x_n, n=0,1,2,\ldots$, причем $5x_{n+1}-x_n=4$, а x_0 известно с относительной погрешностью 10^{-6} . При каких значениях x_0 относительная погрешность при вычислении x_n будет быстро возрастать с ростом n?