ICPC Templates

Leachim

May 23, 2021

Contents

1	图论		4
	1.1	最小生成树 Kruskal	4
	1.2	最小生成树 Prim	5
	1.3	最短路 Djikstra	6
	1.4	最短路 SPFA	8
	1.5	最近公共祖先 LCA_Doubling	9
	1.6	最近公共祖先 LCA_Tarjan	11
	1.7	判断负环 SPFA_Negtive_Cycle	12
	1.8	拓扑排序 Topological_Sort_Khan	14
2	多项	式	16
	2.1	FFT 字符串匹配 String_Match_FFT	16
	2.2	FFT 递归 Fast_Fourier_Transform_Cooley-Tukey_Recursion	17
	2.3	FFT 递推 Fast_Fourier_Transform_Cooley-Tukey_Iteration	18
	2.4	NTT 递推 Number_Theoretic_Transforms	20
	2.5	多项式求逆 Polynomial_Inverse	21
3	字符	串	24
	3.1	字符串哈希 String_Hash	24
	3.2	马拉车 Manacher	24
	3.3	字符串匹配 KMP	25
	3.4	AC 自动机 AC-Automaton	26
	3.5	后缀数组 Suffix_Array	27
	3.6	后缀自动机 Suffix-Automaton	28
	3.7	广义后缀自动机 General_Suffix-Automaton	30
4	数据	结构	33
	4.1	并查集 Disjoin_Set_Union	33
	4.2	可撤销并查集 Disjoin_Set_Union_Withdrawable	33
	4.3	分块 Block_1	34
	4.4	分块 Block_2	35
	4.5	分块 Block_4	36
	4.6	树状数组 Binary_Indexed_Tree	38
	4.7	二维树状数组 2D_Binary_Indexed_Tree	39
	4.8	线段树 Segment_Tree	40
	4.9	线段树 Segment_Tree_Multiply	41
	4.10	扫描线 Scanline	43

Xidian University CONTENTS

	4.11	zkw 线段树 ZKW Segment Tree	45
	4.12	李超线段树 Li-Chao_Segment_Tree	46
		可并堆左偏树 Leftist_Tree	48
		Splay 树 Splay_Tree	50
		Splay 树 Splay_Tree_Flip	52
		Splay 树 Splay_Tree_Dye&Flip	54
5	数论		59
	5.1	乘法逆元 Multiplicative_Inverse_Modulo	59
	5.2	数论分块 Block_Division	60
	5.3	贝祖引理 Bezout_Lemma	60
	5.4	卢卡斯 Lucas	60
	5.5	拓展欧几里得 Exgcd	61
	5.6	拓展欧拉定理 Ex_Euler_Theorem-Automaton	62
	5.7	中国剩余定理 Chinese_Remainder_Theorem	63
	5.8	拓展中国剩余定理 Ex_Chinese_Remainder_Theorem	64
	5.9	欧拉筛 Eular_Sieve	65
	5.10	杜教筛 Dujiao_Sieve	66
	5.11	求原根 Get_Primitive_Root	67
	5.12	素数测试 Miller_Rabin	68
	5.13	大数分解 Pollard_Rho	69
6	组合		72
	6.1	康托展开 Cantor	72
	6.2	波利亚 Pólya	73
	6.3	卡特兰数 Catalan	74
	-	卡特兰数 Catalan	74 75
	6.3	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数	74 75 75
	6.3	卡特兰数 Catalan	74 75 75 75
	6.3	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.3	74 75 75
	6.3	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化	74 75 75 75 75 76
	6.3	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.3	74 75 75 75 75 76
7	6.3 6.4 6.5	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution	74 75 75 75 75 76 76
7	6.3 6.4 6.5 网络	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution	74 75 75 75 76 76 77
7	6.3 6.4 6.5 网络 7.1	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp	74 75 75 75 76 76 77
7	6.3 6.4 6.5 网络 7.1 7.2	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 . 6.4.2 第二类斯特林数 . 6.4.3 上升幂与普通幂的相互转化 . 6.4.4 下降幂与普通幂的相互转化 . 范德蒙德卷积 Vandermonde_Convolution . 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp . 最大流 Maximum_Flow_Edmonds-Karp .	74 75 75 75 76 76 77 77
7	6.3 6.4 6.5 网络 7.1 7.2 7.3	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic	74 75 75 75 76 76 77 78 80
7	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic	74 75 75 75 76 76 77 78 80 82
7	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4 7.5	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hungarian	74 75 75 75 76 76 77 78 80 82 84
7	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic	74 75 75 75 76 76 77 78 80 82
	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4 7.5 7.6	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hungarian 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hopcroft-Karp	74 75 75 75 76 76 77 78 80 82 84 85
7	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4 7.5	卡特兰数 Catalan	74 75 75 75 76 76 77 78 80 82 84 85
	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4 7.5 7.6	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hungarian 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hopcroft-Karp	74 75 75 75 76 76 77 78 80 82 84 85
	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4 7.5 7.6	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hungarian 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hopcroft-Karp 几何 计算几何 Computational_Geometry	74 75 75 75 76 76 77 78 80 82 84 85
8	6.3 6.4 6.5 网络 7.1 7.2 7.3 7.4 7.5 7.6 计算	卡特兰数 Catalan 斯特林数 Stirling 6.4.1 第一类斯特林数 6.4.2 第二类斯特林数 6.4.3 上升幂与普通幂的相互转化 6.4.4 下降幂与普通幂的相互转化 范德蒙德卷积 Vandermonde_Convolution 流 最大费用流 Minimum-Cost_Flow_Edmonds-Karp 最大流 Maximum_Flow_Edmonds-Karp 最大流 Maximum_Flow_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hungarian 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hopcroft-Karp 几何 计算几何 Computational_Geometry	74 75 75 75 76 76 77 78 80 82 84 85 87

Xidian University CONTENTS

10	离线算法	93
	10.1 莫队算法 Mo	93
	10.2 线段树分治 Segment_Tree_Partition	94
11	杂项	97
	11.1 快读快写 Fast_Read&Write	97
	11.2 快速幂 Fast_Power	97
	11.3 矩阵快速幂 Matrix_Fast_Power	98
	11.4 矩阵加速 Matrix_Acceleration	99
	11.5 最长公共子序列 Longest_Increasing_Subsequence	100
	11.6 模拟退火 Simulated_Annealing	101
	11.7 快速沃尔什变换 Fast_Walsh_Transform	102
	11.8 快速莫比乌斯变换 Fast_Mobius_Transform	103
	11.9 快速子集变换 Fast_Subset_Transform	105
	11.1024 点 24_Point	106

1 图论

1.1 最小生成树 Kruskal

```
1
    #include <cstdio>
    #include <algorithm>
 3
    #define MAXN 5005
 4
    #define MAXM 200005
 6
    #define _for(i,a,b) for(int i=(a);i<=(b);i++)
 7
 8
    using namespace std;
 9
10
    int read(){
11
       int ng=0,x=0;
12
        char ch=getchar();
13
       for(;ch<'0' || ch>'9';ch=getchar()) ng|=ch=='-';
14
       for(;ch>='0' && ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
       return ng?-x:x;
15
16
    }
17
18
    struct road
19
20
       int f,g,w;
21
    }r[MAXM];
22
23
    struct cmpf
24
25
       bool operator() (const road& a, const road& b) const {
26
           return a.w<b.w;</pre>
27
       }
28
    };
29
30
    int n,m,ans=0,fa[MAXN];
31
32
    int find(int x){
33
        return fa[x] == x?x:fa[x] = find(fa[x]);
    }
34
35
    void kruskal(){
36
37
       int rx,ry;
38
39
        sort(r+1, r+m+1, cmpf());
40
        _for(i,1,m){
41
           rx=find(r[i].f);
42
           ry=find(r[i].g);
43
           if(rx==ry)
44
               continue;
45
           fa[rx]=ry;
46
           ans+=r[i].w;
       }
47
    }
48
49
```

```
50
    int main(){
       n=read();m=read();
51
52
       _for(i,1,m){
53
           r[i].f=read();
54
           r[i].g=read();
55
           r[i].w=read();
56
       }
57
       _for(i,1,n)
58
           fa[i]=i;
59
       kruskal();
60
       _for(i,2,n){
           if(find(i)!=find(i-1)){
61
62
              puts("orz");
63
               return 0;
           }
64
65
       }
66
       printf("%d", ans);
    }
67
```

1.2 最小生成树 Prim

```
#include <cstdio>
 2
    #include <cstdlib>
    #include <queue>
 4
    #define MAXN 5005
 5
 6
    #define MAXM 200005
 7
 8
    using namespace std;
10
    struct edge
11
    {
12
       int v,to,next;
    }e[MAXM<<1];</pre>
13
14
15
    int n,m,f,g,w,tot=0,head[MAXN],ans=0,flag[MAXN];
16
    void add(int x, int y, int z){
17
18
       e[++tot].v=z;
19
        e[tot].to=y;
20
        e[tot].next=head[x];
21
       head[x]=tot;
22
23
24
   struct HeapNode
25
26
        int v,u;
        bool operator <(const HeapNode& a) const{</pre>
27
28
           return v > a.v;
29
        }
30
   };
31
```

```
32
    priority_queue<HeapNode> Q;
33
34
    void prim(){
35
        for(int i=1;i<=n;i++)</pre>
36
           flag[i]=0;
        flag[1]=1;
37
38
        for(int p=head[1];p;p=e[p].next)
39
            Q.push((HeapNode){e[p].v,e[p].to});
        for(int i=1,u;i<n;i++){</pre>
40
41
            while(flag[Q.top().u]){
42
               Q.pop();
43
               if(Q.empty()){
44
                   puts("orz");
                   exit(0);
45
               }
46
47
           }
48
           ans+=Q.top().v;
49
           u=Q.top().u;
50
            Q.pop();
51
           flag[u]=1;
52
            for(int p=head[u];p;p=e[p].next)
53
               if(!flag[e[p].to])
                   Q.push((HeapNode){e[p].v,e[p].to});
54
55
        }
56
    }
57
58
    int main(){
59
        scanf("%d %d", &n, &m);
60
        for(int i=1;i<=n;i++)</pre>
61
           head[i]=0;
        for(int i=1;i<=m;i++){</pre>
62
63
            scanf("%d %d %d",&f,&g,&w);
64
            add(f,g,w);
65
            add(g,f,w);
66
        }
67
        prim();
68
        printf("%d",ans);
69
        return 0;
70
```

1.3 最短路 Djikstra

```
#include <bits/stdc++.h>
2
   #define LL long long
3
   using namespace std;
    const int inf=0x3f3f3f3f;
4
   const LL INF=0x3f3f3f3f3f3f3f3f3f;
   const int MOD=998244353;
7
    const int MAXN=2000005;
8
9
   struct edge {
10
       int to,next,w;
```

```
}e[MAXN<<1];</pre>
11
12
13
    int tot,head[MAXN];
14
15
    void add(int x,int y,int z) {
16
        tot++;
17
        e[tot].to=y;
18
        e[tot].w=z;
19
        e[tot].next=head[x];
20
        head[x]=tot;
21
    }
22
23
    struct node {
24
       int u;
25
        LL dis;
26
        bool operator<(const node& y) const{</pre>
27
           return dis>y.dis;
28
        }
    };
29
30
    LL dist[MAXN];
31
32
    bool flag[MAXN];
33
    priority_queue<node> Q;
34
35
    void dij(int n,int s) {
36
        memset(flag+1,0,n*sizeof(flag[0]));
37
        memset(dist+1,0x3f,n*sizeof(dist[0]));
38
        dist[s]=0;
39
        Q.push({s,OLL});
40
        while(!Q.empty()) {
           while(!Q.empty() && flag[Q.top().u]) Q.pop();
41
42
           if(Q.empty()) break;
43
           int u=Q.top().u;
44
           Q.pop();
45
           flag[u]=1;
46
           for(int p=head[u];p;p=e[p].next) {
47
               int v=e[p].to,w=e[p].w;
48
               if(flag[v]) continue;
               if(dist[u]+w<dist[v]) {</pre>
49
50
                   dist[v]=dist[u]+w;
51
                   Q.push({v,dist[v]});
52
               }
53
           }
54
        }
55
    }
56
57
    void solve() {
58
        int n,m,s;
59
        scanf("%d %d %d", &n, &m, &s);
60
        tot=0;
61
        memset(head+1,0,n*sizeof(head[0]));
62
       for(int i=1;i<=m;i++) {</pre>
63
           int f,g,w;
```

```
64
            scanf("%d %d %d", &f, &g, &w);
65
            add(f,g,w);
66
        }
67
        dij(n,s);
68
        for(int i=1;i<=n;i++)</pre>
           printf("\%lld\%c", \ dist[i], \ " \ \"[i==n]);
69
70
    }
71
72
    int main() {
73
        int T=1,cas=1;(void)(cas);
74
        // scanf("%d", &T);
75
        while(T--) {
76
            // printf("Case #%d: ", cas++);
77
           solve();
78
        }
79
        return 0;
80
    }
```

1.4 最短路 SPFA

```
#include <cstdio>
    #include <cstring>
 3
    #include <queue>
 5
    #define MAXN 100005
    #define MAXM 500005
 6
    const int inf=0x3f3f3f3f;
 8
9
    using namespace std;
10
11
    struct edge{
12
       int v,to,next;
   }e[MAXM];
13
14
    int n,m,p,tot,head[MAXN],dist[MAXN];
15
16
    bool flag[MAXN];
17
    void add(int x,int y,int z){
18
19
       tot++;
20
       e[tot].v=z;
21
       e[tot].to=y;
22
       e[tot].next=head[x];
23
       head[x]=tot;
24
   }
25
26
    void spfa(int x){
27
       queue <int> Q;
28
       memset(dist+1,inf,n*sizeof(dist[0]));
29
       memset(flag+1,0,n*sizeof(flag[0]));
30
31
       Q.push(x);
32
       flag[x]=true;
```

```
33
        dist[x]=0;
34
        while(!Q.empty()){
35
            int u=Q.front();
36
           Q.pop();
37
           flag[u]=false;
           for(int q=head[u];q;q=e[q].next){
38
39
               int v=e[q].to;
40
               if(dist[u]+e[q].v<dist[v]){</pre>
                   dist[v]=dist[u]+e[q].v;
41
42
                   if(!flag[v]){
43
                       Q.push(v);
44
                       flag[v]=true;
                   }
45
46
               }
47
            }
48
        }
49
50
51
    int main(){
52
        scanf("%d %d %d",&n,&m,&p);
53
        tot=0;
        memset(head+1,0,n*sizeof(head[0]));
54
        for(int i=1;i<=m;i++){</pre>
55
56
            int f,g,w;
57
            scanf("%d %d %d", &f, &g, &w);
58
            add(f,g,w);
59
60
        spfa(p);
61
        for(int i=1;i<=n;i++)</pre>
62
           printf("%d ", dist[i]==inf?2147483647:dist[i]);
63
        return 0;
64
    }
```

1.5 最近公共祖先 LCA_Doubling

```
#include <cstdio>
    #include <cstring>
3
    #include <algorithm>
    #define MAXN 500005
 4
    #define MAXM 500005
 6
    #define MAXLN 25
 7
    using namespace std;
8
9
    struct edge{
10
       int to,next;
11
    }e[MAXM<<1];</pre>
12
13
    int tot,head[MAXN];
14
    void add(int x,int y){
15
16
       tot++;
       e[tot].to=y;
17
```

```
18
        e[tot].next=head[x];
19
        head[x]=tot;
20
    }
21
22
    int dep[MAXN],st[MAXN][MAXLN];
23
24
    void dfs(int cur,int fa){
25
        dep[cur]=dep[fa]+1;
26
        st[cur][0]=fa;
27
        for(int l=1;(1<<1)<=dep[cur];l++)</pre>
28
            st[cur][l]=st[st[cur][l-1]][l-1];
29
30
        for(int p=head[cur];p;p=e[p].next){
31
            if(e[p].to==fa) continue;
            dfs(e[p].to,cur);
32
33
        }
34
35
36
    int lca(int x,int y){
37
        if(dep[x] < dep[y]) swap(x,y);</pre>
38
        for(int i=0;dep[x]-dep[y];i++)
39
            if((dep[x]-dep[y])&(1<<i)) x=st[x][i];</pre>
40
        if(x==y) return x;
41
        int 1;
42
43
        for(l=1;(1<<1)<=dep[x];1++);</pre>
44
        for(int i=1;i>=0;i--)
45
            if(st[x][i]!=st[y][i])
46
               x=st[x][i], y=st[y][i];
47
        return st[x][0];
    }
48
49
50
    int n,m,s;
51
52
    int main(){
53
        scanf("%d %d %d", &n, &m, &s);
54
        memset(head+1,0,n*sizeof(head[0]));
55
56
        for(int i=1;i<n;i++){</pre>
57
           int f,g;
            scanf("%d %d", &f, &g);
58
59
            add(f,g);
60
            add(g,f);
61
        }
62
        dep[0]=0;
63
        dfs(s,0);
64
        for(int i=1;i<=m;i++){</pre>
65
            int f,g;
66
            scanf("%d %d", &f, &g);
67
            printf("%d\n", lca(f,g));
68
        }
69
        return 0;
70
    }
```

1.6 最近公共祖先 LCA_Tarjan

```
#include <cstdio>
 2
    #define MAXN 500005
    #define MAXM 500005
 3
 4
 5
    struct edge{
 6
       int to,next;
    }e[MAXM<<1],eq[MAXM<<1];</pre>
 8
 9
    int n,m,s,tot,totq,head[MAXN],headq[MAXN],fa[MAXN],ans[MAXM];
10
11
    void add(int x, int y){
12
        tot++;
13
        e[tot].to=y;
14
        e[tot].next=head[x];
15
        head[x]=tot;
    }
16
17
18
    void addq(int x, int y){
19
        tot++;
20
        eq[tot].to=y;
21
        eq[tot].next=headq[x];
22
        headq[x]=tot;
23
    }
24
    int find(int x){
25
26
       if(fa[x]==x)
27
           return x;
28
        return fa[x]=find(fa[x]);
29
    }
30
31
    void tarjan(int x){
32
       fa[x]=x;
33
        for(int p=head[x];p;p=e[p].next){
34
           int u=e[p].to;
           if(!fa[u]){
35
               tarjan(u);
36
37
               fa[u]=x;
           }
38
39
       }
40
       for(int p=headq[x];p;p=eq[p].next){
           int u=eq[p].to;
41
42
           if(fa[u]){
43
               ans[(p+1)>>1]=find(u);
44
           }
       }
45
    }
46
47
    int main(){
48
49
        scanf("%d %d %d", &n, &m, &s);
50
        for(int i=1;i<=n;i++){</pre>
51
           head[i]=0;
```

```
52
            headq[i]=0;
53
        }
54
        tot=0;
55
        for(int i=1;i<n;i++){</pre>
56
            int f,g;
            scanf("%d %d",&f,&g);
57
58
            add(f,g);
59
            add(g,f);
60
        }
61
        tot=0;
62
        for(int i=1;i<=m;i++){</pre>
63
            int f,g;
64
            scanf("%d %d",&f,&g);
65
            addq(f,g);
66
            addq(g,f);
67
        }
68
        for(int i=1;i<=n;i++){</pre>
69
            fa[i]=0;
70
        }
71
        tarjan(s);
72
        for(int i=1;i<=m;i++)</pre>
73
            printf("%d\n", ans[i]);
74
        return 0;
    }
75
```

1.7 判断负环 SPFA_Negtive_Cycle

```
#include <cstdio>
 2
    #include <cstring>
 3
    #include <queue>
 4
 5
    #define MAXN 100005
6
    #define MAXM 500005
    const int inf=0x3f3f3f3f;
8
9
    using namespace std;
10
11
    struct edge{
12
       int v,to,next;
13
    }e[MAXM];
14
    int n,m,tot,head[MAXN];
15
16
    int dist[MAXN],cnt[MAXN];
17
    bool flag[MAXN];
18
19
    void add(int x,int y,int z){
20
       tot++;
21
       e[tot].v=z;
22
       e[tot].to=y;
       e[tot].next=head[x];
23
       head[x]=tot;
24
25 }
```

```
26
27
    bool spfa(int x){//负环return false
28
        queue <int> Q;
29
        memset(dist+1,inf,n*sizeof(dist[0]));
30
        memset(flag+1,0,n*sizeof(flag[0]));
31
        memset(cnt+1,0,n*sizeof(cnt[0]));
32
33
        Q.push(x);
34
        flag[x]=true;
35
        dist[x]=0;
36
        while(!Q.empty()){
37
           int u=Q.front();
38
           Q.pop();
39
           flag[u]=false;
40
           for(int q=head[u];q;q=e[q].next){
               int v=e[q].to;
41
42
               if(dist[u]+e[q].v<dist[v]){</pre>
                   dist[v]=dist[u]+e[q].v;
43
                   if(!flag[v]) {
44
45
                      Q.push(v);
46
                      flag[v]=true;
47
                      if (++cnt[v]>=n){
48
                          return false;
49
50
                   }
51
               }
52
           }
53
        }
54
        return true;
55
56
57
    void solve() {
58
        scanf("%d %d",&n,&m);
59
        tot=0;
60
        memset(head+1,0,n*sizeof(head[0]));
        for(int i=1;i<=m;i++){</pre>
61
62
           int f,g,w;
63
           scanf("%d %d %d", &f, &g, &w);
64
           add(f,g,w);
65
           if(w>=0) add(g,f,w);
66
67
        if(spfa(1)) printf("NO\n");
68
        else printf("YES\n");
69
    }
70
71
    int main(){
72
        int T=1;
73
        scanf("%d", &T);
74
        while(T--) {
75
           solve();
76
       }
77
        return 0;
    }
78
```

1.8 拓扑排序 Topological_Sort_Khan

```
#include <cstdio>
 2
    #include <cstring>
    #include <stack>
 3
    #define MAXN 100005
 5
    #define MAXM 200005
    using namespace std;
 8
 9
    struct edge{
10
        int to,next;
    }e[MAXM];
11
12
13
    int n,m,tot,head[MAXN],indgr[MAXN],list[MAXN];
14
    bool flag[MAXN];
15
16
    void add(int x,int y){
17
        tot++;
18
        e[tot].to=y;
19
        e[tot].next=head[x];
20
        head[x]=tot;
21
    }
22
23
    void khan(){
24
        stack<int> s;
25
        int cnt=0;
26
        memset(flag+1,0,n*sizeof(flag[0]));
27
        for(int i=1;i<=n;i++){</pre>
28
            if(!flag[i] && indgr[i]==0){
29
               s.push(i);
30
               flag[i]=true;
31
               while(!s.empty()){
32
                   int u=s.top();s.pop();
33
                  list[++cnt]=u;
34
                   flag[u]=true;
                   for(int p=head[u];p;p=e[p].next){
35
                      int v=e[p].to;
36
37
                      indgr[v]--;
38
                      if(indgr[v]==0)
39
                          s.push(v);
40
                   }
               }
41
           }
42
43
        }
44
    }
45
46
    int main(){
47
        scanf("%d %d",&n,&m);
        memset(head+1,0,n*sizeof(head[0]));
48
49
        memset(indgr+1,0,n*sizeof(indgr[0]));
50
        tot=0;
51
        for(int i=1;i<=m;i++){</pre>
```

```
52
           int f,g;
           scanf("%d %d", &f, &g);
53
54
           add(f,g);
55
           indgr[g]++;
       }
56
57
       khan();
58
       for(int i=1;i<=n;i++)</pre>
           printf("%d ", list[i]);
59
60
       return 0;
61
   }
```

2 多项式

2.1 FFT 字符串匹配 String_Match_FFT

```
1
    #include <cstdio>
    #include <cstring>
    #include <cmath>
 4
    #include <algorithm>
 5
    #include <complex>
    #define MAXN 300005
 6
 7
    #define MAXL 550005
 8
 9
    using namespace std;
10
11
    const double PI=acos(-1);
12
    complex<double> omg[MAXL],iomg[MAXL];
13
14
    void init(int n){
15
        for(int i=0;i<n;i++){</pre>
16
            omg[i]=polar(1.0,2.0*PI*i/n);
17
            iomg[i]=conj(omg[i]);
18
        }
    }
19
20
21
    void FFT(int n,complex<double>* P,complex<double>* w){
22
        for(int i=0,j=0;i<n;i++){</pre>
23
            if(i<j) swap(P[i],P[j]);</pre>
24
            for(int l=n>>1;(j^=1)<1;l>>=1);
25
        }
26
27
        for(int i=2,1;i<=n;i<<=1){</pre>
28
            l=i>>1;
29
            complex<double> t;
30
            for(int j=0;j<n;j+=i){</pre>
31
               for(int k=0;k<1;k++){</pre>
32
                   t=P[j+l+k]*w[n/i*k];
33
                   P[j+l+k]=P[j+k]-t;
34
                   P[j+k]=P[j+k]+t;
35
                }
36
            }
37
        }
38
    }
39
40
    int n,m,lim;
41
    char s1[MAXN],s2[MAXN];
42
    complex<double> A[MAXL],B[MAXL],tA[MAXL],tB[MAXL],ans[MAXL];
43
44
    int main(){
        scanf("%d %d", &m, &n);
45
        scanf("%s %s",s1,s2);
46
47
        for(int i=0;i<m;i++) A[m-i-1]=(s1[i]=='*'?0:s1[i]-'a'+1);</pre>
        for(int i=0;i<n;i++) B[i]=(s2[i]=='*'?0:s2[i]-'a'+1);</pre>
48
        for(lim=1;lim<n-1;lim<<=1);</pre>
49
```

```
50
        init(lim);
51
        fill(ans,ans+lim,complex<double>(0.0,0.0));
52
53
        for(int i=0;i<m;i++) tA[i]=A[i]*A[i]*A[i];</pre>
54
        for(int i=0;i<n;i++) tB[i]=B[i];</pre>
55
        fill(tA+m,tA+lim,complex<double>(0.0,0.0));
56
        fill(tB+n,tB+lim,complex<double>(0.0,0.0));
57
        FFT(lim,tA,omg);
58
        FFT(lim,tB,omg);
        for(int i=0;i<lim;i++) ans[i]+=tA[i]*tB[i];</pre>
59
60
61
        for(int i=0;i<m;i++) tA[i]=A[i];</pre>
62
        for(int i=0;i<n;i++) tB[i]=B[i]*B[i]*B[i];</pre>
63
        fill(tA+m,tA+lim,complex<double>(0.0,0.0));
64
        fill(tB+n,tB+lim,complex<double>(0.0,0.0));
65
        FFT(lim,tA,omg);
66
        FFT(lim,tB,omg);
67
        for(int i=0;i<lim;i++) ans[i]+=tA[i]*tB[i];</pre>
68
69
        for(int i=0;i<m;i++) tA[i]=A[i]*A[i];</pre>
70
        for(int i=0;i<n;i++) tB[i]=B[i]*B[i];</pre>
71
        fill(tA+m,tA+lim,complex<double>(0.0,0.0));
72
        fill(tB+n,tB+lim,complex<double>(0.0,0.0));
73
        FFT(lim,tA,omg);
74
        FFT(lim,tB,omg);
75
        for(int i=0;i<lim;i++) ans[i]-=complex<double>(2.0,0)*tA[i]*tB[i];
76
77
        FFT(lim,ans,iomg);
78
79
        int cnt=0;
80
        for(int i=m-1;i<n;i++)</pre>
81
           if((int)(ans[i].real()/lim+0.5)==0) cnt++;
        printf("%d\n", cnt);
82
83
        for(int i=m-1;i<n;i++)</pre>
84
            if((int)(ans[i].real()/lim+0.5)==0) printf("%d ", i-m+2);
85
        return 0;
   }
```

2.2 FFT 递归 Fast_Fourier_Transform_Cooley-Tukey_Recursion

```
#include <cstdio>
    #include <algorithm>
    #include <complex>
 4
    #define MAXN 4000005
5
 6
    using namespace std;
8
    complex<double> omg[MAXN],iomg[MAXN],temp[MAXN];
 9
10
    void init(int n){
11
       double PI=acos(-1);
12
       for(int i=0;i<n;i++){</pre>
```

```
13
            omg[i]=polar(1.0,2.0*PI*i/n);
14
            iomg[i]=conj(omg[i]);
15
        }
16
    }
17
18
    void FFT(int n,complex<double>* buffer,int offset,int step,complex<double>* omg){
19
        if(n==1) return;
20
        int m=n>>1;
21
        FFT(m,buffer,offset,step<<1,omg);</pre>
22
        FFT(m,buffer,offset+step,step<<1,omg);</pre>
23
        for(int i=0;i<m;i++){</pre>
24
            int pos=2*i*step;
            temp[i]=buffer[offset+pos]+omg[i*step]*buffer[offset+step+pos];
25
            temp[i+m]=buffer[offset+pos]-omg[i*step]*buffer[offset+step+pos];
26
27
28
        for(int i=0;i<n;i++)</pre>
29
            buffer[offset+i*step]=temp[i];
30
    }
31
32
    int n,m,lim;
33
    complex<double> A[MAXN],B[MAXN];
34
35
    int main(){
36
        scanf("%d %d", &n, &m);
        for(lim=1;lim<=n+m;lim<<=1);</pre>
37
38
        fill(A,A+lim,complex<double>(0.0,0.0));
39
        fill(B,B+lim,complex<double>(0.0,0.0));
40
        for(int i=0,t;i<n+1;i++){</pre>
            scanf("%d", &t);
41
42
            A[i]+=t;
43
        }
44
        for(int i=0,t;i<m+1;i++){</pre>
            scanf("%d", &t);
45
            B[i]+=t;
46
        }
47
48
        init(lim);
49
        FFT(lim,A,0,1,omg);
50
        FFT(lim,B,0,1,omg);
51
        for(int i=0;i<lim;i++)</pre>
52
            A[i]=A[i]*B[i];
53
        FFT(lim,A,0,1,iomg);
54
        for(int i=0;i<n+m+1;i++)</pre>
55
            printf("%d ", (int)(A[i].real()/lim+0.5));
56
        return 0;
57
```

2.3 FFT 递推 Fast_Fourier_Transform_Cooley-Tukey_Iteration

```
#include <bits/stdc++.h>
#define MAXN 2100005

using namespace std;
```

```
5
 6
    const double PI=acos(-1);
 7
 8
    struct Complex{
 9
        double real,image;
10
        Complex operator+(Complex y)const{
11
            return {real+y.real,image+y.image};
12
13
        Complex operator-(Complex y)const{
14
            return {real-y.real,image-y.image};
15
        }
16
        Complex operator*(Complex y)const{
17
           return {real*y.real-image*y.image,real*y.image+image*y.real};
18
        }
19
    };
20
21
    void FFT(int n,Complex* P,int f){
22
        for(int i=0,j=0;i<n;i++){</pre>
23
            if(i<j) swap(P[i],P[j]);</pre>
            for(int l=n>>1;(j^=1)<1;l>>=1);
24
        }
25
26
        for(int i=2,1;i<=n;i<<=1){</pre>
27
28
            l=i>>1;
29
           Complex wn={cos(2*PI/i),f*sin(2*PI/i)};
30
           for(int j=0;j<n;j+=i){</pre>
31
               Complex w={1,0};
32
               for(int k=0;k<1;k++,w=w*wn){</pre>
33
                   Complex t=P[j+l+k]*w;
34
                   P[j+l+k]=P[j+k]-t;
35
                   P[j+k]=P[j+k]+t;
36
               }
37
            }
38
        }
    }
39
40
41
    int n,m,lim;
42
    Complex A[MAXN],B[MAXN];
43
44
    int main(){
        scanf("%d %d", &n, &m);
45
46
        for(lim=1;lim<=n+m;lim<<=1);</pre>
47
        memset(A,0,lim*sizeof(A[0]));
48
        memset(B,0,lim*sizeof(B[0]));
49
        for(int i=0,t;i<n+1;i++){</pre>
50
            scanf("%d", &t);
51
            A[i] = \{1.0*t,0\};
52
        }
53
        for(int i=0,t;i<m+1;i++){</pre>
            scanf("%d", &t);
54
55
           B[i]={1.0*t,0};
56
        FFT(lim,A,1);
```

```
58     FFT(lim,B,1);
59     for(int i=0;i<lim;i++)
60          A[i]=A[i]*B[i];
61     FFT(lim,A,-1);
62     for(int i=0;i<n+m+1;i++)
63          printf("%d ", (int)(A[i].real/lim+0.5));
64     return 0;
65 }</pre>
```

2.4 NTT 递推 Number_Theoretic_Transforms

```
#include <cstdio>
    #include <algorithm>
 3
    using namespace std;
 4
    #define LL long long
    const int MAXN=2100005
    const int MOD=998244353
    const int RT=3;
 9
    LL binpow(LL x,LL y,LL mod){
10
        LL r=1%mod;
11
        while(y){
12
           if(y&1) r=(r*x)%mod;
13
           x=(x*x) \mod;
14
           y>>=1;
15
        }
16
        return r;
17
    }
18
19
    void NTT(int n,int* P,int f){
        for(int i=0,j=0;i<n;i++){</pre>
20
21
            if(i<j) swap(P[i],P[j]);</pre>
22
            for(int l=n>>1;(j^=1)<1;l>>=1);
23
24
25
        for(int i=2,1;i<=n;i<<=1){</pre>
26
           l=i>>1;
27
           int wn=binpow(RT,(MOD-1)/i,MOD);
28
           if(f==-1) wn=binpow(wn,MOD-2,MOD);
29
           for(int j=0;j<n;j+=i){</pre>
30
               int w=1;
31
               for(int k=0;k<1;k++,w=1LL*w*wn%MOD){</pre>
32
                   int t=1LL*P[j+l+k]*w%MOD;
33
                   P[j+l+k]=1LL*(P[j+k]-t+MOD)%MOD;
34
                   P[j+k]=1LL*(P[j+k]+t)%MOD;
35
            }
36
37
        }
38
39
40
    int A[MAXN],B[MAXN];
41
```

```
42
    int main(){
43
        int n,m;
        scanf("%d %d", &n, &m);
44
45
        int lim:
46
        for(lim=1;lim<=n+m;lim<<=1);</pre>
        for(int i=0;i<n+1;i++){</pre>
47
48
            scanf("%d", &A[i]);
49
50
        for(int i=0;i<m+1;i++){</pre>
51
            scanf("%d", &B[i]);
52
        }
        NTT(lim,A,1);
53
54
        NTT(lim,B,1);
55
        for(int i=0;i<lim;i++)</pre>
            A[i]=1LL*A[i]*B[i]%MOD;
56
57
        NTT(lim,A,-1);
58
        int invn=binpow(lim,MOD-2,MOD);
        for(int i=0;i<n+m+1;i++)</pre>
59
60
            printf("%lld ", 1LL*A[i]*invn%MOD);
61
        return 0;
```

2.5 多项式求逆 Polynomial_Inverse

```
#include <cstdio>
 2
    #include <algorithm>
    #define LL long long
    #define MAXN 270005
 5
    #define MOD 998244353
    #define RT 3
 8
    using namespace std;
 9
    LL omg[MAXN],iomg[MAXN];
10
11
    LL binpow(LL x,LL y,LL mod){
12
13
        LL r=1%mod;
        while(y){
14
15
           if(y&1) r=(r*x)%mod;
16
           x=(x*x)\mbox{mod};
17
           y>>=1;
        }
18
19
        return r;
20
    }
21
22
    void init(int n){
        omg[0]=iomg[0]=1;
23
24
        omg[1]=binpow(RT,(MOD-1)/n,MOD);
25
        iomg[1]=binpow(omg[1],MOD-2,MOD);
       for(int i=2;i<n;i++){</pre>
26
27
           omg[i]=omg[i-1]*omg[1]%MOD;
           iomg[i]=iomg[i-1]*iomg[1]%MOD;
```

```
29
        }
30
    }
31
    void NTT(int n,LL* P,LL* w){
32
33
        for(int i=0, j=0; i<n; i++){</pre>
            if(i<j) swap(P[i],P[j]);</pre>
34
35
            for(int l=n>>1;(j^=1)<1;1>>=1);
36
        }
37
38
        for(int i=2,1;i<=n;i<<=1){</pre>
39
            l=i>>1;
40
            for(int j=0;j<n;j+=i){</pre>
41
               for(int k=0;k<1;k++){</pre>
42
                   LL t=P[j+l+k]*w[n/i*k]%MOD;
43
                   P[j+l+k]=(P[j+k]-t+MOD)%MOD;
44
                   P[j+k] = (P[j+k]+t)\%MOD;
45
               }
            }
46
        }
47
    }
48
49
50
    void poly_inv(int dgr,LL* X,LL* Y){
        if(dgr==1){
51
52
            Y[0]=binpow(X[0],MOD-2,MOD);
53
        }
54
        else{
55
            poly_inv((dgr+1)>>1,X,Y);
56
57
            static LL Z[MAXN];
58
            int lim;
            for(lim=1;lim<(dgr<<1);lim<<=1);</pre>
59
60
            copy(X,X+dgr,Z);
61
            fill(Z+dgr,Z+lim,0);
62
            init(lim);
63
64
            NTT(lim,Z,omg);
65
            NTT(lim,Y,omg);
66
            for(int i=0;i<lim;i++)</pre>
67
                Y[i] = (2-Z[i] *Y[i] %MOD+MOD) *Y[i] %MOD;
68
            NTT(lim,Y,iomg);
69
            LL invlim=binpow(lim,MOD-2,MOD);
70
            for(int i=0;i<dgr;i++)</pre>
71
                Y[i]=Y[i]*invlim%MOD;
72
            fill(Y+dgr,Y+lim,0);
73
        }
74
    }
75
76
   int n;
   LL A[MAXN],B[MAXN];
77
79
    int main(){
80
        scanf("%d", &n);
        for(int i=0;i<n;i++)</pre>
```

3 字符串

3.1 字符串哈希 String_Hash

```
#include <cstdio>
    #include <string>
3
    #define BASE 307
4
    #define MOD 5555567
 6
7
    int hsh(string x){
8
       int h=0,len=x.length();
9
       for(int i=0;i<len;i++){</pre>
10
           h=(h*BASE+x[i])%MOD;
11
12
       return h;
    }
13
14
15
    int main(){
16
       return 0;
17
    }
```

3.2 马拉车 Manacher

```
#include <cstdio>
 2
    #include <cstring>
    #include <algorithm>
    #define MAXN 11000005
    using namespace std;
 6
 7
    int r[MAXN<<1],mx;</pre>
 8
    char st[MAXN<<1];</pre>
 9
10
    void manacher(char *s){
11
        int len=strlen(s);
12
        st[0]='$';
        for(int i=0;i<len;i++){</pre>
13
14
            st[i<<1|1]='#';
15
            st[(i+1)<<1]=s[i];
        }
16
17
        len=len<<1|1;
18
        st[len]='#';
19
        st[len+1]='*';
20
        r[1]=1;
21
        mx=0;
22
        for(int i=2,mid=1;i<=len;i++){</pre>
23
           r[i]=min(mid+r[mid]-i,r[2*mid-i]);
            for(;st[i-r[i]]==st[i+r[i]];r[i]++);
24
25
            if(i+r[i]>mid+r[mid]) mid=i;
26
           mx=max(mx,r[i]-1);
27
        }
28 }
```

```
29
    char s[MAXN];
30
31
32
    int main(){
33
       scanf("%s",s);
34
       manacher(s);
35
       printf("%d\n", mx);
36
       return 0;
37
    }
```

3.3 字符串匹配 KMP

```
#include <bits/stdc++.h>
 2
    using namespace std;
 3
    #define MAXN 1000005
 4
    int kmp(char *s1, char *s2, int *nxt){
 5
       int n=strlen(s1+1),m=strlen(s2+1);
 6
 7
 8
       nxt[0]=-1;
       for(int i=1,k=-1;i<=m;i++){</pre>
9
           //k初始值为-1. nxt数组可以查询boarder的boarder.
10
11
           while(~k && s2[k+1]!=s2[i])
              k=nxt[k];
12
13
           nxt[i]=++k;
14
       }
15
16
       int cnt=0;
17
       for(int i=1,k=0;i<=n;i++){</pre>
           //匹配串前缀与模式串后缀比,上一位前缀的boarder的boarder也能匹配。
18
           while(~k && s2[k+1]!=s1[i])
19
20
              k=nxt[k];
21
           if(m==++k){
22
              cnt++;
23
              printf("%d\n", i-m+1);
24
           }
25
       }
26
       return cnt;
27
28
29
    char s1[MAXN],s2[MAXN];
30
    int nxt[MAXN];
31
32
    int main(){
33
       scanf("%s %s", s1+1, s2+1);
34
       kmp(s1,s2,nxt);
35
       int len=strlen(s2+1);
36
       for(int i=1;i<=len;i++){</pre>
           printf("%d ", nxt[i]);
37
38
       }
39
       return 0;
    }
40
```

3.4 AC 自动机 AC-Automaton

```
#include <cstdio>
    #include <cstring>
 2
 3
    #include <map>
    #include <queue>
 4
 5
    #define MAXN 1000006
    using namespace std;
 7
 8
    struct trie{
 9
        int fail,mark,ch[26];
10
    }tt[MAXN];
11
12
    int tot;
13
14
    void insert(char *s){
15
        int len=strlen(s+1), cur=0;
16
        for(int i=1;i<=len;i++){</pre>
17
           int& next=tt[cur].ch[s[i]-'a'];
18
           if(!next){
19
               next=++tot;
20
               tt[tot].mark=0;
21
           }
22
           cur=next;
23
        }
24
        tt[cur].mark++;
25
    }
26
27
    void getfail(){
28
        queue<int> Q;
        tt[0].fail=0;
29
30
        tt[0].mark=0;
31
        for(int i=0;i<26;i++)</pre>
32
           if(tt[0].ch[i]) tt[tt[0].ch[i]].fail=0, Q.push(tt[0].ch[i]);
33
        while(!Q.empty()){
34
           int u=Q.front(); Q.pop();
35
           for(int i=0;i<26;i++){</pre>
               if(!tt[u].ch[i]) continue;
36
               int k=tt[u].fail;
37
38
               while(k && !tt[k].ch[i])
39
                  k=tt[k].fail;
               tt[tt[u].ch[i]].fail=tt[k].ch[i];
40
41
               // tt[tt[u].ch[i]].mark+=tt[tt[k].ch[i]].mark;//如果需要重复统计, fail累加标记
42
               Q.push(tt[u].ch[i]);
43
           }
44
        }
45
    }
46
47
    int query(char *s){
        int len=strlen(s+1),ans=0;
48
49
        for(int i=1,k=0;i<=len;i++){</pre>
50
           while(k && !tt[k].ch[s[i]-'a'])
               k=tt[k].fail;
51
```

```
52
           k=tt[k].ch[s[i]-'a'];
53
           ans+=tt[k].mark;
54
           tt[k].mark=0;//清除该字符串的标记(只求
55
56
       }
57
       return ans;
58
    }
59
60
    int n;
61
    char s[MAXN];
62
    int main(){
63
64
       scanf("%d", &n);
65
       tot=0;
66
       memset(tt,0,sizeof(tt));
67
       for(int i=1;i<=n;i++){</pre>
           scanf("%s", s+1);
68
69
           insert(s);
       }
70
71
       scanf("%s", s+1);
72
        getfail();
73
       printf("%d\n", query(s));
74
       return 0;
75
    }
```

3.5 后缀数组 Suffix_Array

```
#include <cstdio>
 2
    #include <cstring>
    #include <algorithm>
 4
    #define MAXN 1000005
 5
    using namespace std;
 6
   //sa:排名对应的前缀, rk:前缀的排名, tp:第二关键字排名对应的前缀, tax:排名对应的个数
 8
   //height:排名i与i-1后缀的LCP(最长公共前缀)
   int sa[MAXN],r1[MAXN],r2[MAXN],tax[MAXN],height[MAXN];
9
10
    int *rk=r1,*tp=r2;
11
    char s[MAXN];
12
13
   void rsort(int n,int m){
       memset(tax,0,(m+1)*sizeof(tax[0]));
14
15
       for(int i=1;i<=n;i++) tax[rk[i]]++;//当前排名装桶
16
       for(int i=1;i<=m;i++) tax[i]+=tax[i-1];//计算桶的名次
17
       for(int i=n;i>=1;i--) sa[tax[rk[tp[i]]]--]=tp[i];//按照第二关键字降序,分配排名。
18
   }
19
20
   void get_sa(char* s){
21
       //O(nlogn)
22
       int n=strlen(s+1), m=0;
23
       for(int i=1;i<=n;i++)</pre>
24
          m=max(m,rk[i]=s[i]),tp[i]=i;
25
       rsort(n,m);
```

```
26
        for(int k=1,p=0;p<n;k<<=1,m=p){</pre>
27
           p=0;
           //重制第二关键字
28
29
           for(int i=n-k+1;i<=n;i++) tp[++p]=i; //后续为空, 排前面
30
           for(int i=1;i<=n;i++) if(sa[i]>k) tp[++p]=sa[i]-k; //按照第一关键字排第二关键字
31
32
           rsort(n,m);
33
34
           swap(tp,rk);
35
           rk[sa[1]]=p=1;
36
           for(int i=2;i<=n;i++){</pre>
37
               \label{eq:rksa[i]} $$ rk[sa[i]] = tp[sa[i-1]]  \&\&  tp[sa[i]+k] = tp[sa[i-1]+k])?p:++p; 
           }
38
39
       }
40
       //利用height[rk[i+1]]>=height[rk[i]]-1
41
42
       for(int i=1,k=0;i<=n;i++){</pre>
43
44
           if(k) k--;
           while(rk[i]>1 && s[i+k]==s[sa[rk[i]-1]+k]) k++;
45
46
           height[rk[i]]=k;
        }
47
48
    }
49
    int main(){
50
51
       scanf("%s",s+1);
52
        get_sa(s);
53
       int len=strlen(s+1);
       for(int i=1;i<=len;i++)</pre>
54
55
           printf("%d ", sa[i]);
56
        return 0;
57
    }
```

3.6 后缀自动机 Suffix-Automaton

```
#include <bits/stdc++.h>
    #define MAXN 1000005
    #define LL long long
3
4
   using namespace std;
5
6
   struct SAM {
7
       int len,link,cnt;
8
       int ch[26];
9
   }sam[MAXN<<1];
10
   int sz,last;
11
12
13
   void sam_init() {
       sam[0].len=0;
14
15
       sam[0].link=-1;
16
       sam[0].cnt=0;
       memset(sam[0].ch,0,sizeof(sam[0].ch));
17
```

```
18
        sz=0;
19
        last=0;
20
    }
21
22
    void sam_extend(int c) {
23
        int cur=++sz;
24
        sam[cur].len=sam[last].len+1;
25
        memset(sam[cur].ch,0,sizeof(sam[cur].ch));
26
        int p=last;
27
28
        for(;~p && !sam[p].ch[c];p=sam[p].link)
29
           sam[p].ch[c]=cur;
30
31
        if(!~p) {
32
           sam[cur].link=0;
33
        } else {
34
           int q=sam[p].ch[c];
           if(sam[p].len+1==sam[q].len) {
35
36
               sam[cur].link=q;
37
           } else {
38
               int clone=++sz;
39
               sam[clone] = sam[q];
40
               sam[clone].len=sam[p].len+1;
41
               sam[clone].cnt=0;
42
               sam[q].link=sam[cur].link=clone;
43
               for(;~p && sam[p].ch[c]==q;p=sam[p].link)
44
                   sam[p].ch[c]=clone;
45
           }
46
       }
47
        last=cur;
48
49
        sam[cur].cnt=1;
50
    }
51
52
    struct edge{
53
        int to,next;
54
    }e[MAXN<<1];</pre>
55
56
    int tot,head[MAXN<<1];</pre>
57
58
    void add(int x,int y) {
59
        tot++;
60
        e[tot].to=y;
61
        e[tot].next=head[x];
62
        head[x]=tot;
63
    }
64
65
    char s[MAXN];
66
    LL ans;
67
68
    void dfs(int x) {
69
       for(int p=head[x];p;p=e[p].next) {
           int u=e[p].to;
70
```

```
71
            dfs(u);
72
            sam[x].cnt+=sam[u].cnt;
73
        }
74
        if(sam[x].cnt!=1) ans=max(ans,1LL*sam[x].len*sam[x].cnt);
75
76
77
     void solve() {
78
        scanf("%s", s);
79
        int len=strlen(s);
80
        sam_init();
81
        for(int i=0;i<len;i++)</pre>
82
            sam_extend(s[i]-'a');
83
        tot=0;
84
        memset(head,0,(sz+1)*sizeof(head[0]));
85
        for(int i=1;i<=sz;i++)</pre>
86
            add(sam[i].link,i);
87
        ans=0;
88
        dfs(0);
        printf("%lld\n", ans);
89
90
    }
91
92
     int main() {
93
        int T=1,cas=1;
94
        // scanf("%d", &T);
        while(T--) {
95
96
            // printf("Case #%d: ", cas++);
97
            solve();
98
        }
99
        return 0;
100
```

3.7 广义后缀自动机 General_Suffix-Automaton

```
#include <bits/stdc++.h>
    #define MAXN 1000005
    #define LL long long
3
    using namespace std;
5
    // const int inf=0x3f3f3f3f;
6
    struct SAM {
       int len,link,cnt;
8
9
       int ch[26];
10
    }sam[MAXN<<1];</pre>
11
12
    int sz,last;
13
    void sam_init() {
14
15
       sam[0].len=0;
16
       sam[0].link=-1;
17
       sam[0].cnt=0;
18
       memset(sam[0].ch,0,sizeof(sam[0].ch));
19
       sz=0;
```

```
20
        last=0;
21
    }
22
23
    void sam_extend(int c) {
24
        if(sam[last].ch[c] && sam[last].len+1==sam[sam[last].ch[c]].len) {
25
           last=sam[last].ch[c];
26
           sam[last].cnt++;
27
           return;
        }
28
29
30
        int cur=++sz;
        sam[cur].len=sam[last].len+1;
31
        memset(sam[cur].ch,0,sizeof(sam[cur].ch));
32
33
34
        int p=last;
35
        for(;~p && !sam[p].ch[c];p=sam[p].link)
36
           sam[p].ch[c]=cur;
37
38
        if(!~p) {
39
           sam[cur].link=0;
40
        } else {
41
           int q=sam[p].ch[c];
           if(sam[p].len+1==sam[q].len) {
42
43
               sam[cur].link=q;
           } else {
44
45
               int clone;
46
               if(p==last) {
47
                   clone=cur;
               } else {
48
49
                   clone=++sz;
50
                   sam[cur].link=clone;
51
               }
52
53
               sam[clone] = sam[q];
               sam[clone].len=sam[p].len+1;
54
55
               sam[q].link=clone;
56
               sam[clone].cnt=0;
57
               for(;~p && sam[p].ch[c]==q;p=sam[p].link)
58
                   sam[p].ch[c]=clone;
59
           }
       }
60
61
62
        last=cur;
63
        sam[cur].cnt=1;
64
    }
65
    char s[MAXN];
66
67
    void solve() {
68
69
        int n;
70
        scanf("%d", &n);
71
       sam_init();
        for(int i=1;i<=n;i++) {</pre>
```

```
73
           scanf("%s", s);
74
           int len=strlen(s);
75
           last=0;
76
           for(int j=0;j<len;j++) {
77
              sam_extend(s[j]-'a');
78
           }
79
       }
80
81
       LL ans=0;
82
       for(int i=1;i<=sz;i++) {</pre>
           ans+=sam[i].len-sam[sam[i].link].len;
83
84
85
86
       printf("%lld\n", ans);
    }
87
88
89
   int main() {
90
       int T=1,cas=1;
91
       // scanf("%d", &T);
92
       while(T--) {
           // printf("Case #%d: ", cas++);
93
94
           solve();
95
       }
96
       return 0;
97
   }
```

4 数据结构

4.1 并查集 Disjoin_Set_Union

```
#include <cstdio>
    #define maxn 10005
 3
 4
    int n,m,a,b,c,fa[maxn];
 5
 6
    void ini(){
 7
       for(int i=1;i<=n;i++){</pre>
 8
           fa[i]=i;
 9
       }
10
    }
11
12
    int find(int x){
       if(fa[x] == x)
13
14
           return x;
15
       return fa[x]=find(fa[x]);
    }
16
17
18
    void join(int x, int y){
       fa[find(x)]=find(y);
19
20
    }
21
22
    int main(){
23
       scanf("%d %d", &n, &m);
24
        ini();
        for(int i=1; i<=m; i++){</pre>
25
           scanf("%d %d %d", &a, &b, &c);
26
27
           if(a==1)
28
               join(b,c);
           else if(find(b)==find(c))
29
30
               puts("Y");
31
           else puts("N");
32
       }
33
       return 0;
34
```

4.2 可撤销并查集 Disjoin_Set_Union_Withdrawable

```
struct DSU{
 2
       int fa[MAXN],rk[MAXN];
3
       vector<pair<int*,int>> stk;
       void init(int n) {
 4
 5
           stk.clear();
 6
           for(int i=1;i<=n;i++) fa[i]=i,rk[i]=1;</pre>
8
       int find(int x) {
9
           if(x==fa[x]) return x;
10
           return find(fa[x]);
11
       }
```

```
12
       bool join(int x,int y) {
13
           int rx=find(x),ry=find(y);
           if(rx==ry) return false;
14
15
16
           if(rk[rx]>rk[ry]) swap(rx,ry);
17
           stk.emplace_back(fa+rx,rx);
18
           fa[rx]=ry;
19
           stk.emplace_back(rk+ry,rk[ry]);
           rk[ry]+=rk[rx];
20
21
           return true;
22
       }
23
       void withdraw() {
           *stk.back().first=stk.back().second;
24
25
           stk.pop_back();
26
           *stk.back().first=stk.back().second;
27
           stk.pop_back();
       }
28
29
    }dsu;
```

4.3 分块 Block_1

```
#include <cstdio>
 2
    #include <cstring>
    #include <cmath>
    #include <algorithm>
 4
    #define MAXN 50005
 5
 6
 7
    using namespace std;
 8
 9
    int n,blo,v[MAXN],bl[MAXN],atag[MAXN];
10
11
    void add(int l,int r,int x){
12
        if(bl[l]==bl[r]){
13
            for(int i=1;i<=r;i++)</pre>
14
               v[i]+=x;
15
        }
16
        else{
            for(int i=1;i<=bl[1]*blo;i++)</pre>
17
18
               v[i]+=x;
19
            for(int i=(bl[r]-1)*blo+1;i<=r;i++)</pre>
20
               v[i]+=x;
        }
21
22
        for(int i=bl[l]+1;i<=bl[r]-1;i++)</pre>
23
            atag[i]+=x;
24
    }
25
    int main(){
26
27
        scanf("%d", &n);blo=sqrt(n);
28
        for(int i=1;i<=n;i++)</pre>
29
            scanf("%d", &v[i]);
        for(int i=1;i<=n;i++)</pre>
30
            bl[i]=(i-1)/blo+1;
31
```

```
32
        memset(atag+1,0,bl[n]*sizeof(atag[0]));
33
        for(int i=1;i<=n;i++){</pre>
34
           int opt,1,r,c;
35
           scanf("%d %d %d %d", &opt, &l, &r, &c);
36
           if(opt==0){
               add(1,r,c);
37
38
           }
39
           else printf("%d\n", v[r]+atag[bl[r]]);
40
41
        return 0;
42
```

4.4 分块 Block_2

```
1
    #include <cstdio>
    #include <cstring>
 3
    #include <cmath>
    #include <algorithm>
    #include <vector>
    #define MAXN 50005
 6
    #define MAXB 505
 8
 9
    using namespace std;
10
11
    int n,blo,v[MAXN],bl[MAXN],atag[MAXB];
12
    vector<int> ve[MAXB];
13
14
    void reset(int x){
15
        ve[x].clear();
16
        for(int i=(x-1)*blo+1;i<=min(x*blo,n);i++){</pre>
17
            ve[x].push_back(v[i]);
        }
18
        sort(ve[x].begin(),ve[x].end());
19
    }
20
21
22
    void add(int 1,int r,int x){
23
        if(bl[1]==bl[r]){
            for(int i=1;i<=r;i++)</pre>
24
25
               v[i]+=x;
26
           reset(bl[1]);
27
        }
28
        else{
29
           for(int i=1;i<=bl[1]*blo;i++)</pre>
30
               v[i] +=x;
31
           reset(bl[1]);
32
           for(int i=(bl[r]-1)*blo+1;i<=r;i++)</pre>
33
               v[i] +=x;
34
           reset(bl[r]);
35
            for(int i=bl[l]+1;i<=bl[r]-1;i++)</pre>
36
            atag[i]+=x;
        }
37
38 }
```

```
39
40
     int query(int 1,int r,int x){
41
        int cnt=0;
42
        if(bl[l]==bl[r]){
43
            for(int i=1;i<=r;i++)</pre>
44
                if(v[i]+atag[bl[i]]<x) cnt++;</pre>
45
        }
46
        else{
            for(int i=1;i<=bl[l]*blo;i++)</pre>
47
                if(v[i]+atag[bl[i]]<x) cnt++;</pre>
48
49
            for(int i=(bl[r]-1)*blo+1;i<=r;i++)</pre>
50
                if(v[i]+atag[bl[i]]<x) cnt++;</pre>
51
            for(int i=bl[1]+1;i<=bl[r]-1;i++)</pre>
52
                cnt+=lower_bound(ve[i].begin(),ve[i].end(),x-atag[i])-ve[i].begin();
53
54
        return cnt;
55
    }
56
57
    int main(){
58
        scanf("%d", &n);blo=sqrt(n);
59
        for(int i=1;i<=n;i++)</pre>
60
            scanf("%d", &v[i]);
61
        for(int i=1;i<=n;i++){</pre>
62
            bl[i]=(i-1)/blo+1;
63
            ve[bl[i]].push_back(v[i]);
64
65
        memset(atag+1,0,bl[n]*sizeof(atag[0]));
66
        for(int i=1;i<=bl[n];i++)</pre>
67
            sort(ve[i].begin(),ve[i].end());
68
69
        for(int i=1;i<=n;i++){</pre>
70
            int opt,1,r,c;
71
            scanf("%d %d %d %d", &opt, &l, &r, &c);
72
            if(opt==0){
73
                add(1,r,c);
74
            }
75
            else{
76
                printf("%d\n", query(1,r,c*c));
77
            }
78
        }
79
        return 0;
80
    }
```

4.5 分块 Block_4

```
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define LL long long
#define MAXN 50005
#define MAXB 505
```

```
8
 9
    using namespace std;
10
11
    int n,blo;
12
    LL v[MAXN],bl[MAXN],atag[MAXB],sum[MAXB];
13
14
    void add(int 1,int r,int x){
15
        if(bl[1]==bl[r]){
16
            for(int i=1;i<=r;i++)</pre>
17
                v[i]+=x,sum[bl[i]]+=x;
18
        }
19
        else{
20
            for(int i=1;i<=b1[1]*blo;i++)</pre>
21
                v[i]+=x,sum[bl[i]]+=x;
            for(int i=(bl[r]-1)*blo+1;i<=r;i++)</pre>
22
23
                v[i]+=x,sum[bl[i]]+=x;
24
            for(int i=bl[l]+1;i<=bl[r]-1;i++)</pre>
25
                atag[i]+=x;
26
        }
27
    }
28
    LL query(int 1,int r){
29
30
        LL ans=0;
31
        if(bl[l]==bl[r]){
32
            for(int i=1;i<=r;i++)</pre>
33
                ans+=v[i]+atag[bl[i]];
34
        }
35
        else{
36
            for(int i=1;i<=b1[1]*blo;i++)</pre>
37
                ans+=v[i]+atag[bl[i]];
            for(int i=(bl[r]-1)*blo+1;i<=r;i++)</pre>
38
39
                ans+=v[i]+atag[bl[i]];
40
            for(int i=bl[l]+1;i<=bl[r]-1;i++)</pre>
41
                ans+=sum[i]+atag[i]*blo;
        }
42
43
        return ans;
44
    }
45
46
    int main(){
47
        scanf("%d", &n);blo=sqrt(n);
48
        for(int i=1;i<=n;i++)</pre>
49
            bl[i]=(i-1)/blo+1;
50
        memset(atag+1,0,bl[n]*sizeof(atag[0]));
51
        memset(sum+1,0,bl[n]*sizeof(sum[0]));
52
        for(int i=1;i<=n;i++){</pre>
53
            scanf("%lld", &v[i]);
54
            sum[bl[i]]+=v[i];
55
        }
        for(int i=1;i<=n;i++){</pre>
56
57
            int opt,1,r,c;
            \verb|scanf("%d %d %d %d", &opt, &l, &r, &c);|\\
58
59
            if(opt==0){
60
                add(1,r,c);
```

4.6 树状数组 Binary_Indexed_Tree

```
#include <bits/stdc++.h>
 2
    #define LL long long
 3
    using namespace std;
    const int MAXN=2000005;
 5
 6
    struct BIT {
        int n,b[MAXN];
 8
 9
        int lowbit(int x){
10
           return x&(-x);
11
12
13
        void change(int x,int y){
           for(;x<=n;x+=lowbit(x))</pre>
14
15
               b[x] += y;
16
        }
17
18
        int sum(int x){
19
           int s=0;
20
           for(;x>0;x-=lowbit(x))
21
               s+=b[x];
22
           return s;
23
        }
24
25
        void build(int len,int *a) {
26
           n=len;
27
           for(int i=1;i<=n;i++)</pre>
28
               b[i]=a[i];
29
           for(int x=1;x<<1<=n;x<<=1)</pre>
30
               for(int i=x;i+x<=n;i+=x<<1)</pre>
31
                   b[i+x]+=b[i];
32
        }
33
    }bit;
34
35
    int a[MAXN];
36
37
    void solve() {
38
        int n,m;
        scanf("%d %d", &n, &m);
39
40
        for(int i=1;i<=n;i++)</pre>
41
           scanf("%d", &a[i]);
42
        bit.build(n,a);
        for(int i=1;i<=m;i++) {</pre>
43
44
           int opt,x,y;
```

```
45
           scanf("%d %d %d", &opt, &x, &y);
46
           if(opt==1) {
               bit.change(x,y);
47
48
           } else {
49
              printf("%d\n", bit.sum(y)-bit.sum(x-1));
           }
50
51
       }
52
    }
53
54
    int main() {
55
       int T=1,cas=1;(void)(cas);
       // scanf("%d", &T);
56
       while(T--) {
57
           // printf("Case #%d: ", cas++);
58
59
           solve();
       }
60
61
       return 0;
    }
62
```

4.7 二维树状数组 2D_Binary_Indexed_Tree

```
#include <bits/stdc++.h>
 2
    const int MAXN=2005;
    struct BIT {
 4
 5
        int n,m;
 6
        int a[MAXN][MAXN];
 8
        int lowbit(int x){
 9
           return x&(-x);
10
11
12
        void change(int x,int y,int k){
13
           for(int i=x;i<=n;i+=lowbit(i)){</pre>
               for(int j=y;j<=m;j+=lowbit(j)){</pre>
14
15
                   a[i][j]+=k;
16
17
           }
        }
18
19
20
        int sum(int x,int y){
21
           int s=0;
22
           for(int i=x;i>0;i-=lowbit(i)){
23
               for(int j=y;j>0;j-=lowbit(j)){
24
                   s+=a[i][j];
25
               }
           }
26
27
           return s;
28
29
    }bit;
30
    int main(){
```

```
32
        int n,m,H;
33
        scanf("%d %d %d",&n, &m, &H);
34
        bit.n=n;
35
        bit.m=m;
36
        for(int i=1;i<=n;i++)</pre>
37
            for(int j=1;j<=m;j++)</pre>
38
                bit.a[i][j]=0;
39
        for(int i=1;i<=H;i++) {</pre>
            int x,y;
40
41
            scanf("%d %d", &x, &y);
42
            bit.change(1,1,1);
43
            bit.change(x+1,1,-1);
44
            bit.change(1,y+1,-1);
45
            bit.change(x+1,y+1,1);//1-2+1
46
47
        for(int i=1;i<=n;i++)</pre>
48
            for(int j=1;j<=m;j++)</pre>
49
                printf("%d\n", bit.sum(i,j));
50
    }
```

4.8 线段树 Segment_Tree

```
#include <cstdio>
    #include <algorithm>
 3
    #define LL long long
 4
    #define MAXN 100005
 5
    using namespace std;
 6
 7
    struct SGT{
 8
       LL sum[MAXN<<2],tag[MAXN<<2];</pre>
 9
10
       void pushup(int x) {sum[x]=sum[x<<1]+sum[x<<1|1];}</pre>
11
       void pushdown(int x,int l,int r) {
12
           int m=(l+r)>>1;
13
           sum[x<<1]+=tag[x]*(m-l+1);
14
           tag[x<<1]+=tag[x];
15
           sum[x<<1|1]+=tag[x]*(r-m);
16
           tag[x<<1|1]+=tag[x];
17
           tag[x]=0;
18
       }
19
       void build(int x,int l,int r,LL *a) {
20
21
           tag[x]=0;
22
           if(l==r) sum[x]=a[1];
23
           else {
24
               int m=(1+r)>>1;
               build(x<<1,1,m,a);
25
26
               build(x<<1|1,m+1,r,a);
27
               pushup(x);
28
           }
29
       }
30
```

```
31
        void modify(int x,int l,int r,int ql,int qr,LL delta) {
32
            if(ql<=1 && r<=qr) {</pre>
33
               sum[x]+=delta*(r-l+1);
34
               tag[x]+=delta;
35
               return;
           }
36
37
            if(tag[x]) pushdown(x,1,r);
38
            int m=(1+r)>>1;
39
            if(ql<=m) modify(x<<1,1,m,ql,qr,delta);</pre>
40
            if(m<qr) modify(x<<1|1,m+1,r,ql,qr,delta);</pre>
41
            // sum[x]=tag[x]*(r-l+1)+sum[x<<1]+sum[x<<1|1];
42
           pushup(x);
43
        }
44
45
        LL query(int x,int l,int r,int ql,int qr){
46
            if(q1<=1 && r<=qr) return sum[x];</pre>
47
48
            if(tag[x]) pushdown(x,1,r);
            int m=(1+r)>>1;
49
           LL res=0;
50
51
            if(ql<=m) res+=query(x<<1,1,m,ql,qr);</pre>
52
            if(m<qr) res+=query(x<<1|1,m+1,r,ql,qr);</pre>
53
            // res+=tag[x]*(min(qr,r)-max(ql,l)+1);
54
           return res;
        }
55
56
    }sgt;
57
58
    LL a[MAXN];
59
60
    int main(){
61
        int n,m;
62
        scanf("%d %d",&n,&m);
63
        for(int i=1;i<=n;i++) scanf("%lld", &a[i]);</pre>
64
        sgt.build(1,1,n,a);
65
        for(int i=1;i<=m;i++){</pre>
66
            int op,1,r;
67
            scanf("%d", &op);
68
            if(op==1){
               LL k;
69
70
               scanf("%d %d %lld",&l,&r,&k);
71
               sgt.modify(1,1,n,l,r,k);
           }
72
73
            else{
74
               scanf("%d %d",&l,&r);
75
               printf("\%lld\n", sgt.query(1,1,n,l,r));
76
            }
77
        }
78
        return 0;
79
    }
```

4.9 线段树 Segment_Tree_Multiply

```
#include <bits/stdc++.h>
   #define LL long long
 3
   using namespace std;
 4
    const int MAXN=100005;
    const int MOD=571373;
 6
 7
    struct SGT{
 8
        LL sum [MAXN<<2], ts [MAXN<<2], tm [MAXN<<2];
 9
10
        void pushup(int x) {sum[x]=(sum[x<<1]+sum[x<<1|1])%MOD;}</pre>
11
        void pushdown(int x,int l,int r) {
12
           int m=(1+r)>>1;
13
           sum[x<<1]=(sum[x<<1]*tm[x]%MOD + ts[x]*(m-1+1)%MOD)%MOD;
14
           sum[x<<1|1]=(sum[x<<1|1]*tm[x]%MOD + ts[x]*(r-m)%MOD)%MOD;
15
           tm[x<<1]=tm[x<<1]*tm[x]%MOD;
16
           tm[x<<1|1]=tm[x<<1|1]*tm[x]%MOD;
17
           ts[x<<1]=(ts[x<<1]*tm[x]%MOD+ts[x])%MOD;
18
           ts[x<<1|1]=(ts[x<<1|1]*tm[x]%MOD+ts[x])%MOD;
19
           tm[x]=1;
20
           ts[x]=0;
        }
21
22
        void build(int x,int 1,int r,LL* a) {
23
24
           ts[x]=0,tm[x]=1;
25
           if(l==r) sum[x]=a[1];
26
           else {
27
               int m=(1+r)>>1;
28
               build(x<<1,1,m,a);
29
               build(x<<1|1,m+1,r,a);
30
               pushup(x);
31
           }
32
        }
33
34
        void plus(int x,int l,int r,int ql,int qr,LL d) {
35
           if(ql<=l && r<=qr) {</pre>
36
               sum[x] = (sum[x]+d*(r-l+1)%MOD)%MOD;
37
               ts[x]=(ts[x]+d)%MOD;
38
               return;
           }
39
40
41
           pushdown(x,1,r);
42
           int m=(1+r)>>1;
43
           if(q1<=m) plus(x<<1,1,m,q1,qr,d);</pre>
44
           if(m<qr) plus(x<<1|1,m+1,r,ql,qr,d);</pre>
45
           pushup(x);
46
        }
47
48
        void multi(int x,int l,int r,int ql,int qr,LL d) {
49
           if(ql<=1 && r<=qr) {</pre>
50
               sum[x]=(sum[x]*d)%MOD;
51
               ts[x]=(ts[x]*d)%MOD;
52
               tm[x]=(tm[x]*d)%MOD;
53
               return;
```

```
54
            }
55
56
            pushdown(x,1,r);
57
            int m=(1+r)>>1;
58
            if(ql<=m) multi(x<<1,1,m,ql,qr,d);</pre>
59
            if(m<qr) multi(x<<1|1,m+1,r,ql,qr,d);</pre>
60
            pushup(x);
61
        }
62
63
        LL query(int x,int l,int r,int ql,int qr) {
64
            if(ql<=1 && r<=qr) {</pre>
65
                return sum[x];
66
            }
67
68
            pushdown(x,1,r);
69
            int m=(1+r)>>1;
70
            LL res=0;
            if(q1<=m) res=(res+query(x<<1,1,m,q1,qr))%MOD;</pre>
71
72
            if(m<qr) res=(res+query(x<<1|1,m+1,r,q1,qr))%MOD;</pre>
73
            return res;
74
75
     }sgt;
76
77
     LL a[MAXN];
78
79
     int main(){
80
         int n,m,p;
81
        scanf("%d %d %d", &n, &m, &p);
82
        for(int i=1;i<=n;i++) scanf("%lld", &a[i]);</pre>
83
        sgt.build(1,1,n,a);
        for(int i=1;i<=m;i++){</pre>
84
85
            int op,1,r;
86
            scanf("%d", &op);
87
            if(op==1){
88
                LL k;
89
                scanf("%d %d %lld", &l, &r, &k);
90
                sgt.multi(1,1,n,l,r,k);
91
            } else if(op==2) {
92
                LL k;
93
                scanf("%d %d %lld", &l, &r, &k);
94
                sgt.plus(1,1,n,1,r,k);
95
            } else {
96
                scanf("%d %d",&l,&r);
97
                printf("%lld\n", sgt.query(1,1,n,1,r));
98
            }
99
100
        return 0;
101
     }
```

4.10 扫描线 Scanline

```
1 #include <cstdio>
```

```
#include <algorithm>
    #define LL long long
    #define MAXN 100005
 4
 5
    using namespace std;
 6
 7
    struct line{
 8
        int x,y1,y2,sign;
 9
        bool operator<(line b)const{</pre>
10
            if(x!=b.x) return x<b.x;</pre>
11
            else return sign>b.sign;
12
        }
    }li[MAXN<<1];</pre>
13
14
    struct node{
15
16
        int le,ri;
17
        int cnt,len;
    }sgt[MAXN<<3];</pre>
18
19
20
    int dy[MAXN<<1];</pre>
21
22
    void pushup(int cur){
23
        if(sgt[cur].cnt)
            sgt[cur].len=dy[sgt[cur].ri]-dy[sgt[cur].le];
24
25
        else if(sgt[cur].le<sgt[cur].ri-1)</pre>
26
            sgt[cur].len=sgt[cur<<1].len+sgt[cur<<1|1].len;</pre>
27
        else sgt[cur].len=0;
28
29
30
    void build(int cur,int l,int r){
31
        sgt[cur].le=1, sgt[cur].ri=r;
        sgt[cur].cnt=sgt[cur].len=0;
32
33
        if(1<r-1){
34
            build(cur<<1,1,(1+r)>>1);
35
            build(cur<<1|1,(1+r)>>1,r);
36
        }
37
    }
38
39
    void modify(int cur,int l,int r,int sign){
40
        if(l<=sgt[cur].le && sgt[cur].ri<=r){</pre>
41
            sgt[cur].cnt+=sign;
        }
42
43
        else{
44
            int mid=(sgt[cur].le+sgt[cur].ri)>>1;
45
            if(l<mid) modify(cur<<1,l,r,sign);</pre>
46
            if(r>mid) modify(cur<<1|1,1,r,sign);</pre>
47
48
        pushup(cur);
49
    }
50
51
52
    int main(){
53
        int n,cnt;
        scanf("%d", &n);
```

```
55
       cnt=0;
56
        for(int i=1;i<=n;i++){</pre>
57
           int x1,y1,x2,y2;
58
           scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
59
           li[(i<<1)-1].x=x1, li[i<<1].x=x2;
60
           li[(i<<1)-1].y1=li[i<<1].y1=y1;
61
           li[(i<<1)-1].y2=li[i<<1].y2=y2;
62
           li[(i<<1)-1].sign=1, li[i<<1].sign=-1;
63
           dy[++cnt]=y1, dy[++cnt]=y2;
64
       }
65
       sort(dy+1,dy+cnt+1);
66
        cnt=unique(dy+1,dy+cnt+1)-dy-1;
       for(int i=1;i<=(n<<1);i++){</pre>
67
68
           li[i].y1=lower_bound(dy+1,dy+cnt+1,li[i].y1)-dy;
69
           li[i].y2=lower_bound(dy+1,dy+cnt+1,li[i].y2)-dy;
70
       }
71
       sort(li+1,li+(n<<1)+1);
72
       build(1,1,cnt);
73
       LL sum=0;
74
       for(int i=1;i<(n<<1);i++){</pre>
75
           modify(1,li[i].y1,li[i].y2,li[i].sign);
76
           sum+=1LL*sgt[1].len*(li[i+1].x-li[i].x);
77
       }
78
       printf("%lld\n", sum);
79
       return 0;
80
    }
```

4.11 zkw 线段树 ZKW_Segment_Tree

```
#include <cstdio>
    #include <cstring>
    #define LL long long
 3
    #define MAXN 100005
 4
 6
    struct node{
 7
        LL sum, tag;
 8
    }sgt[MAXN<<2];</pre>
 9
10
    int M;
11
12
    int a[MAXN];
13
14
    void built(int n){
15
        for (M=1; M<n+2; M<<=1);</pre>
16
        memset(sgt+M,0,M*sizeof(sgt[0]));
        for(int i=1;i<=n;i++)</pre>
17
18
            sgt[M+i].sum=a[i];
19
        for(int i=M-1;i;i--)
            sgt[i].sum=sgt[i<<1].sum+sgt[i<<1|1].sum;
20
21
    }
22
   void modify(int l,int r,LL del){
```

```
24
        LL len=1,lc=0,rc=0;
25
        for(l=l+M-1,r=r+M+1;l^r^1;l>>=1,r>>=1,len<<=1){</pre>
26
            if(~l&1) sgt[l+1].tag+=del, lc+=len;
27
           if(r&1) sgt[r-1].tag+=del, rc+=len;
28
            sgt[1>>1].sum+=del*lc;
            sgt[r>>1].sum+=del*rc;
29
30
        }
31
        for(lc+=rc,l>>=1;l;l>>=1)
32
            sgt[1].sum+=del*lc;
33
    }
34
    LL query(int l,int r){
35
36
        LL res=0,len=1,lc=0,rc=0;
        for(l=1+M-1,r=r+M+1;l^r^1;l>>=1,r>>=1,len<<=1){</pre>
37
38
            if(~l&1) res+=sgt[l+1].sum+sgt[l+1].tag*len, lc+=len;
39
           if(r&1) res+=sgt[r-1].sum+sgt[r-1].tag*len, rc+=len;
40
           res+=sgt[l>>1].tag*lc;
41
           res+=sgt[r>>1].tag*rc;
42
        }
43
        for(lc+=rc,l>>=1;l;l>>=1)
44
           res+=sgt[1].tag*lc;
45
        return res;
46
    }
47
48
    int main(){
49
        int n,m;
50
        scanf("%d %d", &n, &m);
51
        for(int i=1;i<=n;i++)</pre>
52
           scanf("%d", &a[i]);
53
        built(n);
        for(int i=1;i<=m;i++){</pre>
54
55
           int opt,x,y;
           scanf("%d %d %d", &opt, &x, &y);
56
57
           if(opt==1){
58
               int k;
59
               scanf("%d", &k);
60
               modify(x,y,k);
           }
61
           else{
62
63
               printf("\%lld\n", query(x,y));
           }
64
65
        }
66
        return 0;
67
    }
```

4.12 李超线段树 Li-Chao_Segment_Tree

```
#include <cstdio>
#include <algorithm>
#define N 39989
#define MAXN 40005
#define MAXT 160005
```

```
const double eps=1e-12;
    const double inf=1e9;
 9
    using namespace std;
10
    struct line{
11
12
        int 1,r;
13
        double k,b;
        int id;
14
15
    }sgt[MAXT];
16
17
    double calc(line l,int x){return l.k*x+l.b;}
18
    void modify(int cur,int 1,int r,line li){
19
20
        if(li.1<=1 && r<=li.r){</pre>
21
            if(calc(li,1)-calc(sgt[cur],1)>eps && calc(li,r)-calc(sgt[cur],r)>eps)
22
               sgt[cur]=li;
23
           else if(calc(li,1)-calc(sgt[cur],1)>eps || calc(li,r)-calc(sgt[cur],r)>eps){
24
               int mid=(1+r)>>1;
25
               if(calc(li,mid)-calc(sgt[cur],mid)>eps)
26
                   swap(li,sgt[cur]);
27
               if(calc(li,1)-calc(sgt[cur],1)>eps)
28
                   modify(cur<<1,1,mid,li);</pre>
29
               else modify(cur<<1|1,mid+1,r,li);</pre>
30
           }
31
        }
32
        else{
33
           int mid=(l+r)>>1;
34
           if(li.l<=mid) modify(cur<<1,1,mid,li);</pre>
35
            if(li.r>mid) modify(cur<<1|1,mid+1,r,li);</pre>
36
        }
37
    }
38
39
    line query(int cur,int l,int r,int x){
40
        if(l==r) return sgt[cur];
41
        else{
42
           int mid=(1+r)>>1;
43
           line t;
44
           if(x<=mid) t=query(cur<<1,1,mid,x);</pre>
45
           else t=query(cur<<1|1,mid+1,r,x);</pre>
46
           if(!t.id || calc(sgt[cur],x)-calc(t,x)>eps) return sgt[cur];
47
            else return t;
48
        }
49
    }
50
51
    void built(int cur,int l,int r){
52
        sgt[cur].k=sgt[cur].b=0;
53
        sgt[cur].l=1; sgt[cur].r=N;
54
        sgt[cur].id=0;
        if(l<r){
55
           int mid=(1+r)>>1;
56
57
           built(cur<<1,1,mid);</pre>
           built(cur<<1|1,mid+1,r);
```

```
59
        }
60
    }
61
62
    int n;
63
    int main(){
64
65
        scanf("%d", &n);
66
        built(1,1,N);
67
        int last=0,id=0;
68
       for(int i=1;i<=n;i++){</pre>
69
           int opt;
           scanf("%d", &opt);
70
71
           if(opt==0){
72
               int x;
73
               scanf("%d", &x);
74
               x=(x+last-1)%N+1;
75
               printf("%d\n", last=query(1,1,N,x).id);
           }
76
77
           else{
78
               int x0,x1,y0,y1;
               scanf("%d %d %d %d", &x0,&y0,&x1,&y1);
79
               x0=(x0+last-1)%N+1;
80
               x1=(x1+last-1)%N+1;
81
82
               y0=(y0+last-1)%100000000+1;
               y1=(y1+last-1)%1000000000+1;
83
84
               line t;
85
               t.id=++id;
86
               t.l=min(x0,x1); t.r=max(x0,x1);
87
               t.k=x1==x0?0:(double)(y1-y0)/(x1-x0);
88
               t.b=x1==x0?max(y0,y1):y0-t.k*x0;
               modify(1,1,N,t);
89
90
           }
91
92
        return 0;
93
    }
```

4.13 可并堆左偏树 Leftist_Tree

```
#include <cstdio>
   #include <algorithm>
   #define MAXN 100005
4
5
    using namespace std;
6
7
   int n,m;
8
9
   struct node{
10
       int rt,lc,rc,dis,v;
11
   }lt[MAXN];
12
   int find(int x){
13
       if(lt[x].rt==x)
14
```

```
15
           return x;
16
       return lt[x].rt=find(lt[x].rt);
17
    }
18
19
    int merge(int x,int y){
20
       if(!x || !y) return x+y;
21
       if(lt[x].v>lt[y].v || (lt[x].v==lt[y].v && x>y)) swap(x,y);//后一个条件蜜汁优化?
22
       lt[x].rc=merge(lt[x].rc,y);
23
       lt[lt[x].rc].rt=x;
24
       if(lt[lt[x].lc].dis<lt[lt[x].rc].dis) swap(lt[x].lc,lt[x].rc);</pre>
25
       lt[x].dis=lt[lt[x].rc].dis+1;
26
       return x;
27
   }
28
    void pop(int x){
29
       lt[x].v=-1;
30
       lt[lt[x].lc].rt=lt[x].lc;
31
32
       lt[lt[x].rc].rt=lt[x].rc;
33
       lt[x].rt=merge(lt[x].lc,lt[x].rc);
34
   |}
35
36
    int main(){
       scanf("%d %d", &n, &m);
37
38
       for(int i=1;i<=n;i++){</pre>
39
           scanf("%d", &lt[i].v);
40
           lt[i].rt=i;
41
           lt[i].lc=lt[i].rc=0;
           lt[i].dis=0;
42
43
       }
44
       lt[0].dis=0;
       for(int i=1;i<=m;i++){</pre>
45
46
           int opt;
47
           scanf("%d",&opt);
48
           if(opt==1){
49
               int x,y;
50
               scanf("%d %d", &x, &y);
51
               int rx=find(x),ry=find(y);
52
               if(lt[x].v==-1||lt[y].v==-1||rx==ry)
53
                  continue;
54
              merge(rx,ry);
           }
55
56
           else{
57
               int x;
58
               scanf("%d", &x);
59
               if(lt[x].v==-1)
60
                  printf("-1\n");
61
               else{
62
                  int rx=find(x);
                  printf("%d\n", lt[rx].v);
63
64
                  pop(rx);
65
              }
66
           }
       }
```

```
68 return 0;
69 }
```

4.14 Splay 树 Splay_Tree

```
#include <cstdio>
 2
    #define MAXN 100005
 3
    const int inf=0x3f3f3f3f;
 4
5
   int root,len;
 6
    struct node{
 8
       int v,fa,ch[2],size,cnt;
 9
    }sp[MAXN];
10
    int getch(int x) {return sp[sp[x].fa].ch[1]==x;}
11
12
    void pushup(int x) {sp[x].size=sp[x].cnt+sp[sp[x].ch[0]].size+sp[sp[x].ch[1]].size;}
13
14
    void rotate(int x){
15
       int f=sp[x].fa, ff=sp[f].fa;
16
       int k=getch(x);
       sp[ff].ch[getch(f)]=x; sp[x].fa=ff;
17
18
       sp[sp[x].ch[k^1]].fa=f; sp[f].ch[k]=sp[x].ch[k^1];
19
       sp[x].ch[k^1]=f; sp[f].fa=x;
20
       pushup(f); pushup(x);
21
    }
22
23
    void splay(int x,int goal=0){
24
       for(int f;(f=sp[x].fa)!=goal;rotate(x)){
25
           if(sp[f].fa!=goal)
26
               rotate(getch(x)==getch(f)?f:x);
27
       }
28
       if(!goal) root=x;
29
    }
30
    void insert(int x){
31
32
        int cur=root,f=0;
33
       while(cur&&sp[cur].v!=x){
34
           f=cur;
35
           cur=sp[cur].ch[x>sp[cur].v];
36
       }
37
       if(cur)
38
           sp[cur].cnt++;
39
       else{
40
           cur=++len;
           sp[f].ch[x>sp[f].v]=cur;
41
           sp[cur].ch[0]=sp[cur].ch[1]=0;
42
43
           sp[cur].fa=f;
44
           sp[cur].v=x;
45
           sp[cur].cnt=sp[cur].size=1;
46
47
       splay(cur);
```

```
48
    }
49
    void find(int x){
50
51
        int cur=root;
52
        while(x!=sp[cur].v && sp[cur].ch[x>sp[cur].v])
            cur=sp[cur].ch[x>sp[cur].v];
53
54
        splay(cur);
55
    }
56
57
     int kth(int x){
58
        if(sp[root].size<x) return 0;</pre>
        int cur=root;
59
        while(1){
60
            if(x<=sp[sp[cur].ch[0]].size)</pre>
61
62
                cur=sp[cur].ch[0];
63
            else if(x>sp[sp[cur].ch[0]].size+sp[cur].cnt){
               x-=sp[sp[cur].ch[0]].size+sp[cur].cnt;
64
65
                cur=sp[cur].ch[1];
            }
66
67
            else return sp[cur].v;
68
        }
69
    }
70
71
     int pre(int x){
72
        find(x);
73
        if(x>sp[root].v) return root;
74
        int cur=sp[root].ch[0];
75
        while(sp[cur].ch[1])
76
            cur=sp[cur].ch[1];
77
        return cur;
    }
78
79
80
     int succ(int x){
81
        find(x);
82
        if(x<sp[root].v) return root;</pre>
83
        int cur=sp[root].ch[1];
84
        while(sp[cur].ch[0])
85
            cur=sp[cur].ch[0];
86
        return cur;
87
    }
88
89
     void erase(int x){
90
        int last=pre(x),next=succ(x),del;
91
        splay(last);splay(next,last);
92
        del=sp[next].ch[0];
93
        if(sp[del].cnt>1){
94
            sp[del].cnt--;
95
            splay(del);
96
        }
97
        else{
98
            sp[next].ch[0]=0;
99
            sp[del].fa=0;
100
            sp[del]=sp[len];
```

```
101
            int f=sp[del].fa;
102
            sp[f].ch[(sp[f].ch[1]==len)]=del;
103
            sp[sp[del].ch[0]].fa=del;
104
            sp[sp[del].ch[1]].fa=del;
105
            if(root==len) root=del;
106
            len--;
107
108
        }
109
     }
110
111
112
     int n;
113
     int main(){
114
        scanf("%d", &n);
115
        root=0;len=0;
116
        insert(-inf);insert(inf);
117
        sp[0].size=0;
        for(int i=1;i<=n;i++){</pre>
118
            int opt,x;
119
120
            scanf("%d %d", &opt, &x);
121
            if(opt==1){
122
                insert(x);
123
124
            else if(opt==2){
125
                erase(x);
126
            }
127
            else if(opt==3){
128
                find(x);
129
                printf("%d\n", sp[sp[root].ch[0]].size);
130
            else if(opt==4){
131
132
                printf("%d\n", kth(x+1));
133
            }
134
            else if(opt==5){
135
                printf("%d\n", sp[pre(x)].v);
136
            }
137
            else{
138
                printf("%d\n", sp[succ(x)].v);
139
            }
140
        }
141
        return 0;
142
```

4.15 Splay 树 Splay_Tree_Flip

```
#include <cstdio>
#include <algorithm>
#define MAXN 100005
const int inf=0x3f3f3f3f;

using namespace std;
```

```
8
    int root,len,a[MAXN];
9
10
    struct node{
11
        int v,fa,ch[2],size,cnt,tag;
12
    }sp[MAXN];
13
14
    int getch(int x) {return sp[sp[x].fa].ch[1]==x;}
15
    void pushup(int x) {sp[x].size=sp[x].cnt+sp[sp[x].ch[0]].size+sp[sp[x].ch[1]].size;}
16
17
    void pushdown(int x){
18
        if(sp[x].tag){
           sp[sp[x].ch[0]].tag^=1;
19
           sp[sp[x].ch[1]].tag^=1;
20
           swap(sp[x].ch[0],sp[x].ch[1]);
21
22
           sp[x].tag=0;
23
       }
24
25
26
    void rotate(int x){
27
       int f=sp[x].fa, ff=sp[f].fa;
28
       int k=getch(x);
29
       sp[ff].ch[getch(f)]=x; sp[x].fa=ff;
30
       sp[sp[x].ch[k^1]].fa=f; sp[f].ch[k]=sp[x].ch[k^1];
31
       sp[x].ch[k^1]=f; sp[f].fa=x;
       pushup(f); pushup(x);
32
33
    }
34
35
    void splay(int x,int goal=0){
36
       for(int f;(f=sp[x].fa)!=goal;rotate(x)){
37
           if(sp[f].fa!=goal)
               rotate(getch(x)==getch(f)?f:x);
38
39
       }
40
        if(!goal) root=x;
41
    }
42
43
    int find(int x){
44
       int cur=root;
45
       while(1){
46
           pushdown(cur);
47
           if(x<=sp[sp[cur].ch[0]].size)</pre>
48
               cur=sp[cur].ch[0];
49
           else if(x>sp[sp[cur].ch[0]].size+sp[cur].cnt){
50
               x-=sp[sp[cur].ch[0]].size+sp[cur].cnt;
51
               cur=sp[cur].ch[1];
           }
52
53
           else return cur;
       }
54
55
    }
56
57
    int built(int f,int l,int r){
58
       if(1>r) return 0;
59
       int mid=(l+r)>>1, cur=++len;
60
        sp[cur].fa=f;
```

```
61
        sp[cur].cnt=1;
62
        sp[cur].v=a[mid];
63
        sp[cur].tag=0;
64
        sp[cur].ch[0]=built(cur,1,mid-1);
65
        sp[cur].ch[1]=built(cur,mid+1,r);
66
        pushup(cur);
67
        return cur;
68
    }
69
70
    void flip(int l,int r){
        int last=find(l-1),next=find(r+1);
71
        splay(last); splay(next, last);
72
        sp[sp[sp[root].ch[1]].ch[0]].tag^=1;
73
74
    }
75
    void dfs(int cur){
76
77
       pushdown(cur);
        if(sp[cur].ch[0]) dfs(sp[cur].ch[0]);
78
79
        if(sp[cur].v!=-inf && sp[cur].v!=inf) printf("%d ", sp[cur].v);
        if(sp[cur].ch[1]) dfs(sp[cur].ch[1]);
80
81
82
83
    int n,m;
84
    int main(){
85
86
        scanf("%d %d", &n, &m);
87
        for(int i=1;i<=n;i++) a[i+1]=i;</pre>
88
        a[1]=-inf;a[n+2]=inf;
89
        len=0;
90
        root=built(0,1,n+2);
        sp[0].size=0;
91
92
        for(int i=1;i<=m;i++){</pre>
93
           int 1,r;
94
           scanf("%d %d", &l, &r);
95
           flip(l+1,r+1);
96
        }
97
        dfs(root);
98
        return 0;
99
```

4.16 Splay 树 Splay_Tree_Dye&Flip

```
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 500005
const int inf=0x3f3f3f3f;
using namespace std;

struct node{
int v,fa,ch[2],cnt;//basic
int size,sum,lm,rm,mm;//pushup
```

```
11
        int flip,color;//pushdown
12
    }sp[MAXN];
13
14
    int a[MAXN],len,root,recy[MAXN],rlen;
15
16
    int getch(int x){return sp[sp[x].fa].ch[1]==x;}
17
18
    void pushup(int x){
19
        int lc=sp[x].ch[0],rc=sp[x].ch[1];
20
        sp[x].size=sp[lc].size+sp[rc].size+sp[x].cnt;
21
        sp[x].sum=sp[lc].sum+sp[rc].sum+sp[x].v;
22
        sp[x].lm=max(sp[lc].lm, sp[lc].sum+sp[x].v+sp[rc].lm);
23
        sp[x].rm=max(sp[rc].rm, sp[rc].sum+sp[x].v+sp[lc].rm);
24
        sp[x].mm=max(max(sp[lc].mm,sp[rc].mm),sp[lc].rm+sp[x].v+sp[rc].lm);
25
26
27
    void pushdown(int x){
28
        int lc=sp[x].ch[0],rc=sp[x].ch[1];
29
        if(sp[x].color!=inf){
30
           if(lc){
31
               sp[lc].v=sp[lc].color=sp[x].color;
32
               sp[lc].sum=sp[lc].size*sp[x].color;
           }
33
34
           if(rc){
               sp[rc].v=sp[rc].color=sp[x].color;
35
36
               sp[rc].sum=sp[rc].size*sp[x].color;
37
           }
38
           if(sp[x].color>0){
39
               if(lc) sp[lc].lm=sp[lc].rm=sp[lc].mm=sp[lc].sum;
40
               if(rc) sp[rc].lm=sp[rc].rm=sp[rc].mm=sp[rc].sum;
           }
41
42
           else{
               if(lc) {sp[lc].lm=sp[lc].rm=0; sp[lc].mm=sp[lc].v;}
43
44
               if(rc) {sp[rc].lm=sp[rc].rm=0; sp[rc].mm=sp[rc].v;}
           }
45
46
           sp[x].color=inf;
47
           sp[x].flip=0;
48
49
       else if(sp[x].flip){
50
           if(lc){
51
               sp[lc].flip^=1;
52
               swap(sp[lc].ch[0],sp[lc].ch[1]);
53
               swap(sp[lc].lm,sp[lc].rm);
54
           }
55
           if(rc){
56
               sp[rc].flip^=1;
57
               swap(sp[rc].ch[0],sp[rc].ch[1]);
58
               swap(sp[rc].lm,sp[rc].rm);
59
60
           sp[x].flip=0;
61
       }
62
    }
63
```

```
void rotate(int x){
 65
        int f=sp[x].fa, ff=sp[f].fa;
 66
         int k=getch(x);
 67
         sp[ff].ch[getch(f)]=x; sp[x].fa=ff;
 68
         sp[sp[x].ch[k^1]].fa=f; sp[f].ch[k]=sp[x].ch[k^1];
 69
        sp[x].ch[k^1]=f; sp[f].fa=x;
 70
        pushup(f); pushup(x);
 71
     }
 72
 73
     void splay(int x,int goal=0){
 74
        for(int f;(f=sp[x].fa)!=goal;rotate(x)){
 75
            if(sp[f].fa!=goal)
                rotate(getch(x)==getch(f)?f:x);
 76
        }
 77
 78
         if(!goal) root=x;
 79
     }
 80
     int find(int x){
 81
        int cur=root;
 82
 83
        while(1){
 84
            pushdown(cur);
            if(x<=sp[sp[cur].ch[0]].size)</pre>
 85
 86
                cur=sp[cur].ch[0];
 87
            else if(x>sp[sp[cur].ch[0]].size+sp[cur].cnt){
                x-=sp[sp[cur].ch[0]].size+sp[cur].cnt;
 88
 89
                cur=sp[cur].ch[1];
 90
            }
 91
            else return cur;
92
        }
 93
     }
94
95
     int built(int f,int l,int r){
 96
         if(l>r) return 0;
97
         int mid=(l+r)>>1, cur=rlen?recy[rlen--]:++len;
98
        sp[cur].v=a[mid];
99
        sp[cur].fa=f;
100
        sp[cur].cnt=1;
101
        sp[cur].flip=0;
102
        sp[cur].color=inf;
103
         sp[cur].ch[0]=built(cur,1,mid-1);
104
        sp[cur].ch[1]=built(cur,mid+1,r);
105
        pushup(cur);
106
        return cur;
107
     }
108
109
     void insert(int pos,int tot){
110
         int l=find(pos),r=find(pos+1);
111
        splay(1);splay(r,1);
112
        sp[r].ch[0]=built(r,1,tot);
113
        pushup(r); pushup(1);
114
     }
115
    void recycle(int x){
```

```
117
        if(!x) return;
118
        recycle(sp[x].ch[0]);
119
        recycle(sp[x].ch[1]);
120
        sp[sp[x].fa].ch[getch(x)]=0;
121
        recy[++rlen]=x;
122
     }
123
124
     void erase(int pos,int tot){
125
        int l=find(pos-1),r=find(pos+tot);
126
        splay(1);splay(r,1);
127
        recycle(sp[r].ch[0]);
128
        pushup(r); pushup(1);
129
     }
130
131
     void dye(int pos,int tot,int c){
132
        int l=find(pos-1),r=find(pos+tot);
133
        splay(1);splay(r,1);
134
        int x=sp[r].ch[0];
135
        sp[x].color=c;
136
        sp[x].v=c;
        sp[x].sum=sp[x].size*c;
137
138
        if(c>0)
139
            sp[x].lm=sp[x].rm=sp[x].mm=sp[x].sum;
140
        else{
141
            sp[x].lm=sp[x].rm=0;
142
            sp[x].mm=sp[x].v;
143
144
        pushup(r); pushup(1);
145
     }
146
147
     void reverse(int pos,int tot){
148
        int l=find(pos-1),r=find(pos+tot);
149
        splay(1);splay(r,1);
150
        int x=sp[r].ch[0];
151
        sp[x].flip^=1;
152
        swap(sp[x].ch[0],sp[x].ch[1]);
153
        swap(sp[x].lm,sp[x].rm);
154
        pushup(r); pushup(1);
155
     }
156
157
     int getsum(int pos,int tot){
158
        int l=find(pos-1),r=find(pos+tot);
159
        splay(1);splay(r,1);
160
        return sp[sp[r].ch[0]].sum;
161
     }
162
163
    int n,m;
164
165
     int main(){
        scanf("%d %d", &n, &m);
166
167
        for(int i=1;i<=n;i++){</pre>
168
            scanf("%d", &a[i+1]);
169
```

```
170
        memset(sp,0,sizeof(sp[0]));
171
        sp[0].mm=a[1]=a[n+2]=-inf;
172
        rlen=0;
173
        len=0;
174
        root=built(0,1,n+2);
175
        for(int i=1;i<=m;i++){</pre>
176
            char opt[10];
177
            scanf("%s", opt);
178
            if(opt[0]=='I'){//Insert
179
                int pos,tot;
180
                scanf("%d %d", &pos, &tot);
181
                for(int i=1;i<=tot;i++)</pre>
182
                    scanf("%d", &a[i]);
183
                insert(pos+1,tot);
            }
184
185
            else if(opt[0]=='D'){//Delete
186
                int pos,tot;
                scanf("%d %d", &pos, &tot);
187
188
                erase(pos+1,tot);
189
            else if(opt[2]=='K'){//Make-Same
190
191
                int pos,tot,c;
192
                scanf("%d %d %d", &pos, &tot, &c);
193
                dye(pos+1,tot,c);
            }
194
195
            else if(opt[0] == 'R'){//Reverse
196
                int pos,tot;
197
                scanf("%d %d", &pos, &tot);
198
                reverse(pos+1,tot);
199
200
            else if(opt[0] == 'G'){//Get-Sum
201
                int pos,tot;
202
                scanf("%d %d", &pos, &tot);
203
                printf("%d\n", getsum(pos+1,tot));
204
            }
205
            else if(opt[0] == 'M'){//Max-Sum
206
                printf("%d\n", sp[root].mm);
207
            }
208
209
        return 0;
210
     }
```

5 数论

5.1 乘法逆元 Multiplicative_Inverse_Modulo

```
1
 2
        Coded with Leachim's ACM Template.
 3
        No errors. No warnings. ~~
 4
    */
 5
    #include <bits/stdc++.h>
 6
    #pragma GCC diagnostic ignored "-Wunused-const-variable"
 7
    #pragma GCC diagnostic ignored "-Wsign-conversion"
    #pragma GCC diagnostic ignored "-Wsign-compare"
    #define LL long long
 9
10
    using namespace std;
11
    const int inf=0x3f3f3f3f;
12
    const LL INF=0x3f3f3f3f3f3f3f3f3f3f;
13
    const double eps=1e-7;
14
    const int dx[4]=\{1,-1,0,0\};
15
    const int dy[4]=\{0,0,1,-1\};
16
    const int RT=3;
17
    const int MOD=998244353;
18
    const int MAXN=20000005;
19
20
   int inv[MAXN],f[MAXN],fi[MAXN];
21
22
    void pre_inv(int n,int p) {
23
        inv[1]=1;
24
        f[0]=fi[0]=f[1]=fi[1]=1;
25
        for(int i=2;i<=n;i++) {</pre>
26
           inv[i]=1LL*(p-p/i)*inv[p%i]%p;
27
           f[i]=1LL*f[i-1]*i%p;
28
           fi[i]=1LL*fi[i-1]*inv[i]%p;
        }
29
    }
30
31
32
    void solve() {
33
       int n,p;
34
        scanf("%d %d", &n, &p);
35
        pre_inv(n,p);
36
        for(int i=1;i<=n;i++)</pre>
37
           printf("%d\n", inv[i]);
38
    }
39
40
    int main() {
41
        int T=1, cas=1; (void)(cas);
        // scanf("%d", &T);
42
43
        while(T--) {
           // printf("Case #%d: ", cas++);
44
45
           solve();
46
47
        return 0;
48
    }
```

5.2 数论分块 Block_Division

```
#include <cstdio>
 2
    #define LL long long
3
4
    LL n;
5
    int main(){
       scanf("%lld", &n);
8
       LL ans=0;
9
       for(LL i=1;i<=n;i++){</pre>
10
           LL t=n/i,j=n/t;
11
           ans+=(j-i+1)*t;
12
           i=j;
13
14
       printf("%lld\n", ans);
15
       return 0;
16
    }
```

5.3 贝祖引理 Bezout_Lemma

```
1
    #include <cstdio>
 2
    int gcd(int x,int y){
 4
       if(!x || !y) return x+y;
 5
       return gcd(y,x%y);
 6
    }
 7
8
    int n;
10
    int main(){
11
        scanf("%d", &n);
12
       int g;
13
       scanf("%d", &g);
14
       if(g<0)g=-g;
15
       for(int i=2;i<=n;i++){</pre>
16
           int t;
           scanf("%d", &t);
17
18
           if(t<0) t=-t;</pre>
19
           g=gcd(g,t);
20
21
       printf("%d\n", g);
22
        return 0;
23
```

5.4 卢卡斯 Lucas

```
#include <cstdio>
#define LL long long
#define MAXP 100005
```

```
int f[MAXP],fi[MAXP];
    LL binpow(LL x,LL y,LL m){
 8
       LL r=1\%m;
 9
        for(;y;y>>=1,x=x*x%m)
10
           if(y&1) r=r*x%m;
11
        return r;
12
    }
13
14
    void pre(LL p){
15
       f[0]=1;
       for(int i=1;i<=p-1;i++)</pre>
16
           f[i]=1LL*f[i-1]*i%p;
17
       fi[p-1]=binpow(f[p-1],p-2,p);
18
19
        for(int i=p-1;i;i--)
20
           fi[i-1]=1LL*fi[i]*i%p;
21
    }
22
    LL C(LL x,LL y,LL p) {
23
       if(x<y) return 0;</pre>
24
25
        return 1LL*f[x]*fi[y]%p*fi[x-y]%p;
26
    }
27
28
    LL lucas(LL x,LL y,LL p){
29
       if(!y) return 1;
30
        return C(x\%p,y\%p,p)*lucas(x/p,y/p,p)\%p;
31
32
33
   int main(){
34
       int T;
        scanf("%d", &T);
35
36
        while(T--){
37
           LL n,m,p;
38
           scanf("%11d %11d %11d", &n, &m, &p);
39
           pre(p);
40
           printf("%lld\n", lucas(n+m,m,p));
       }
41
42
        return 0;
43
```

5.5 拓展欧几里得 Exgcd

```
#include <cstdio>
    #include <cmath>
 2
3
    #define LL long long
 4
5
    LL exgcd(LL a, LL b, LL &x, LL &y){
 6
       if(!b || !a){
 7
           x=(a!=0);y=(b!=0);
8
           return a+b;
9
       }
       LL g=exgcd(b,a%b,y,x);
10
```

```
11
      y=y-(a/b)*x;
12
      return g;
13
   }
14
15
   int main(){
16
      int T;
17
      scanf("%d", &T);
18
      while(T--){
19
         LL a,b,c,x,y,g;
20
         scanf("%11d %11d %11d", &a, &b, &c);
21
         g=exgcd(a,b,x,y);
22
         if(c%g){
23
            printf("-1\n");
24
            continue;
         }
25
26
         a/=g;b/=g;c/=g;x*=c;y*=c;
27
         LL kl=ceil((double)(-x+1)/b),kr=floor((double)(y-1)/a);
28
         if(kr<kl){</pre>
29
            printf("%lld %lld\n",(x+kl*b),(y-kr*a));
30
         }
31
         else{
32
            }
33
34
      }
35
      return 0;
36
   }
```

5.6 拓展欧拉定理 Ex_Euler_Theorem-Automaton

```
#include <bits/stdc++.h>
 2
    using namespace std;
 3
    #define LL long long
    #define MAXN 10000005
 5
    LL binpow(LL x,LL y,LL m){
 6
       int r=1%m;
 8
       x\%=m;
9
       while(y){
10
           if(y&1) r=1LL*r*x%m;
           x=1LL*x*x%m;
11
12
           y>>=1;
13
14
       return r;
15
    }
16
    void solve() {
17
18
       int a,m;
19
       scanf("%d %d", &a, &m);
20
       int mm=m,phi=m;
       for(int i=2;i*i<=m;i++) {</pre>
21
           if(mm\%i==0){
22
```

```
23
               while(mm%i==0) mm/=i;
24
               phi=phi/i*(i-1);
25
           }
26
       }
27
       if(mm>1) phi=phi/mm*(mm-1);
28
       char c;
29
       while(!isdigit(c=getchar()));
30
       int b=c-'0';
31
       bool flag=0;
32
       while(isdigit(c=getchar())){
33
           b=10*b+c-'0';
           if(b>=phi) b%=phi, flag=1;
34
35
       }
36
       if(flag) b+=phi;
       printf("%lld\n", binpow(a,b,m));
37
38
39
    }
40
41
    int main() {
42
       int T=1;
       // scanf("%d", &T);
43
       while(T--) {
44
45
           solve();
46
       }
47
       return 0;
48
    }
```

5.7 中国剩余定理 Chinese_Remainder_Theorem

```
/*
 1
 2
       中国剩余定理
 3
       x%ai=bi;
       sigma(ai*PI/ai*inv(PI/ai,ai))%PI;
 4
 5
 6
    #include <bits/stdc++.h>
 7
    #define LL long long
    using namespace std;
9
    const int MAXN=2000005;
10
    LL exgcd(LL a,LL b,LL &x,LL &y){
11
12
       if(!b || !a){
           x=(a!=0);y=(b!=0);
13
14
           return a+b;
15
       }
16
       LL g=exgcd(b,a%b,y,x);
       y=y-(a/b)*x;
17
18
       return g;
    }
19
20
21
    LL inv(LL a,LL m) {
22
       LL x,y;
23
       exgcd(a,m,x,y);
```

```
24
        return (x%m+m)%m;
25
    }
26
27
    int a[MAXN],b[MAXN];
28
29
    void solve() {
30
        int n;
31
        scanf("%d", &n);
32
        LL sum=1;
33
        for(int i=1;i<=n;i++) {//x%a==b</pre>
34
            scanf("%d %d", &a[i], &b[i]);
            sum=sum*a[i];
35
36
        }
37
        LL ans=0;
38
        for(int i=1;i<=n;i++) {</pre>
39
            ans = (ans + (\_int128)b[i] * (sum/a[i]) % sum * inv(sum/a[i],a[i]) % sum) % sum;
40
41
        printf("%lld\n", ans);
42
    }
```

5.8 拓展中国剩余定理 Ex_Chinese_Remainder_Theorem

```
/*
 1
 2
       拓展中国剩余定理
 3
       x%ai=bi;
    */
 4
 5
    #include <bits/stdc++.h>
 6
    #define LL long long
 7
    using namespace std;
    const int MAXN=2000005;
 9
10
    LL exgcd(LL a, LL b, LL &x, LL &y){
11
       if(!b || !a){
           x=(a!=0);y=(b!=0);
12
13
           return a+b;
14
15
       LL g=exgcd(b,a%b,y,x);
16
       y=y-(a/b)*x;
17
       return g;
18
    }
19
   LL inv(LL a,LL m) {
20
21
       LL x,y;
22
       exgcd(a,m,x,y);
23
       return (x%m+m)%m;
24
    }
25
26
   LL a[MAXN],b[MAXN];
27
28
    void solve() {
29
       int n;
       scanf("%d", &n);
30
```

```
31
        for(int i=1;i<=n;i++) {//x%a==b</pre>
32
           scanf("%1ld %1ld", &a[i], &b[i]);
33
       }
34
35
       LL M=a[1],R=b[1];//通解 R+C*M, 特解 R
        for(int i=2;i<=n;i++) {</pre>
36
37
           LL x,y;
38
           LL g=exgcd(M,a[i],x,y);//R' = R+M*x=y*a[i]+b
39
           if(abs(b[i]-R)%g) {
40
               printf("-1\n");
41
               return;
           }
42
43
           x=((\_int128)(b[i]-R)/g*x\%(a[i]/g)+a[i]/g)\%(a[i]/g);
44
           R=R+M*x;
           M=M/g*a[i];
45
46
        }
47
        printf("%lld\n", R);
    }
48
```

5.9 欧拉筛 Eular_Sieve

```
1
    #include <cstdio>
 2
    #include <cstring>
    #define MAXN 2000005
 4
    int cnt,p[MAXN];
 5
    bool inp[MAXN];
 7
    int phi[MAXN],mu[MAXN];
 8
 9
    void eular_sieve(int n){
10
        cnt=0;
11
        memset(inp,0,(n+1)*sizeof(inp[0]));
12
        inp[0]=inp[1]=1;
13
        phi[1]=1;
14
       mu[1]=1;
15
        for(int i=2;i<=n;i++){</pre>
            if(!inp[i]) p[++cnt]=i, phi[i]=i-1, mu[i]=-1;
16
17
           for(int j=1;j<=cnt && i*p[j]<=n;j++){</pre>
18
               inp[i*p[j]]=1;
19
               if(i%p[j]){
20
                   phi[i*p[j]]=phi[i]*(p[j]-1);
21
                  mu[i*p[j]]=-mu[i];
22
               }
23
               else{
24
                   phi[i*p[j]]=phi[i]*p[j];
25
                   mu[i*p[j]]=0;
26
                   break;
27
               }
28
           }
29
        }
30
    }
31
```

```
32
    int main(){
33
        int n,m;
34
        scanf("%d %d", &n, &m);
35
        eular_sieve(n);
36
        for(int i=1;i<=m;i++){</pre>
37
            int k;
38
            scanf("%d",&k);
39
            printf("%d\n", p[k]);
40
        }
41
```

5.10 杜教筛 Dujiao_Sieve

```
#include <cstdio>
 2
    #include <cstring>
 3
    #define LL long long
 4
    #define MAXR R+5
    #define R 2000000//r=n^(2/3)
 5
 7
    int n,r,p[MAXR],cnt;
 8
    bool inp[MAXR];
 9
10
    LL phi[MAXR], sphi[MAXR], sphir[MAXR], mu[MAXR], smu[MAXR], smur[MAXR];
11
12
    void pre(){
13
        memset(inp+1,0,r*sizeof(inp[0]));
14
        inp[0]=inp[1]=1;
15
        cnt=0;
16
        sphi[1]=phi[1]=1;
17
        smu[1]=mu[1]=1;
        for(int i=2;i<=r;i++){</pre>
18
19
            if(!inp[i]) p[++cnt]=i, phi[i]=i-1, mu[i]=-1;
20
           for(int j=1;j<=cnt&&i*p[j]<=r;j++){</pre>
21
               inp[i*p[j]]=1;
22
               if(i%p[j]){
23
                   phi[i*p[j]]=phi[i]*(p[j]-1);
24
                   mu[i*p[j]]=-mu[i];
               }
25
26
               else{
27
                   phi[i*p[j]]=phi[i]*p[j];
28
                   mu[i*p[j]]=0;
29
                   break;
30
31
           }
32
           sphi[i]=sphi[i-1]+phi[i];
33
            smu[i]=smu[i-1]+mu[i];
34
        }
    }
35
36
37
    LL sumphi(LL x){
38
        if(x<=r) return sphi[x];</pre>
        else if(sphir[n/x]) return sphir[n/x];
39
```

```
40
        LL &sx=sphir[n/x];
41
        sx=x*(x+1)/2;
42
        for(LL i=2;i<=x;i++){</pre>
43
           LL t=x/i, j=x/t;
44
           sx=(j-i+1)*sumphi(t);
45
46
        }
47
        return sx;
48
    }
49
50
    LL summu(LL x){
        if(x<=r) return smu[x];</pre>
51
52
        else if(smur[n/x]) return smur[n/x];
53
        LL &sx=smur[n/x];
54
        sx=1;
        for(LL i=2;i<=x;i++){</pre>
55
56
           LL t=x/i, j=x/t;
           sx=(j-i+1)*summu(t);
57
58
           i=j;
59
        }
60
        return sx;
61
    }
62
63
    int main(){
64
        int T;
65
        scanf("%d", &T);
66
        r=R;
67
        pre();
        while(T--){
68
69
           scanf("%d", &n);
70
           memset(sphir+1,0,(n/r)*sizeof(sphir[0]));
71
           memset(smur+1,0,(n/r)*sizeof(smur[0]));
72
           printf("%11d %11d\n", sumphi(n), summu(n));
73
        }
74
        return 0;
75
    }
```

5.11 求原根 Get_Primitive_Root

```
#include <bits/stdc++.h>
 2
    using namespace std;
3
 4
    int binpow(int x,int y,int m){
 5
       int r=1%m;
6
       while(y){
 7
           if(y&1) r=1LL*r*x%m;
           x=1LL*x*x%m;
 8
9
           y>>=1;
10
11
       return r;
12
    }
13
```

```
int Primitive_Root(int p){//只能求素数
15
       static vector<int> v;
16
       v.clear();
17
       int x=p-1;
18
       for(int i=2;i*i<=x;i++) {</pre>
           if(x\%i==0){
19
20
               v.push_back(i);
21
               while (x\%i==0) x/=i;
22
           }
23
       }
24
       if(x>1) v.push_back(x);
25
       for(int g=2;g<p;g++) {//原根一般很小
26
           bool flag=true;
27
           for(auto x:v) {
28
               if(binpow(g,(p-1)/x,p)==1){
29
                  flag=false;
30
                  break;
               }
31
           }
32
33
           if(flag) return g;
34
35
       return 0;
36
    }
```

5.12 素数测试 Miller_Rabin

```
#include <bits/stdc++.h>
    #define LL long long
 3
    using namespace std;
 4
    const int MAXN=2000005;
    LL binpow(LL x,LL y,LL m) {
 6
 7
       LL r=1\%m;
 8
       while(y) {
9
           if(y&1) r=(__int128)r*x%m;
           x=(__int128)x*x%m;
10
11
           y >> = 1;
12
       }
13
       return r;
14
    }
15
    bool Miller_Rabin(LL x) {
16
17
       if(x==1) return false;
18
19
       const int p[9]={2,3,5,7,11,13,17,19,23};
20
       for(int i=0;i<9;i++) {</pre>
           if(x==p[i]) return true;
21
22
23
           LL t=x-1;
           while(!(t&1)) t>>=1;
24
25
           LL a=binpow(p[i],t,x),lst;
26
           while(t!=x-1) {
```

```
27
              lst=a;
28
              a=(__int128)a*a%x;
29
               t<<=1;
30
               if(a==1 && lst!=x-1 && lst!=1) return false;
31
           }
32
           if(a!=1) return false;
33
       }
34
       return true;
35
    }
```

5.13 大数分解 Pollard_Rho

```
1
 2
       Pollard_Rho分解因数,要保证放入的为合数。
 3
       期望复杂度O(n^(1/4)),要随机化。
 4
    */
 5
    #include <bits/stdc++.h>
    #define LL long long
    using namespace std;
 8
9
    LL gcd(LL x,LL y) {
10
       if(!x || !y) return x+y;
11
       return gcd(y,x%y);
12
13
14
    LL binpow(LL x,LL y,LL m) {
15
       LL r=1\%m;
16
       while(y) {
17
           if(y&1) r=(__int128)r*x%m;
18
           x=(__int128)x*x%m;
19
           y >> = 1;
20
       }
21
       return r;
    }
22
23
24
    bool Miller_Rabin(LL x) {
25
       if(x==1) return false;
26
27
       const int p[9]={2,3,5,7,11,13,17,19,23};
28
       for(int i=0;i<9;i++) {</pre>
           if(x==p[i]) return true;
29
30
31
           LL t=x-1;
32
           while(!(t&1)) t>>=1;
33
           LL a=binpow(p[i],t,x),lst;
34
           while(t!=x-1) {
35
              lst=a;
36
              a=(__int128)a*a%x;
37
              t<<=1;
38
              if(a==1 && lst!=x-1 && lst!=1) return false;
           }
39
40
           if(a!=1) return false;
```

```
41
        }
42
        return true;
    }
43
44
45
    LL f(LL x,LL c,LL m) {return ((__int128)x*x+c)\m;}
46
47
    LL Pollard_Rho(LL x) {
48
        if(x==1) return x;
49
50
       LL c=rand()%(x-1)+1;
51
       LL s=0,t=0,val=1;
        for(int goal=1;;goal<<=1,s=t,val=1) {</pre>
52
53
           for(int step=1;step<=goal;step++) {</pre>
54
               t=f(t,c,x);
55
               val=(_int128)val*abs(t-s)%x;
56
               if(step%127==0) {
57
                  LL g=gcd(val,x);
58
                   if(g>1) return g;
               }
59
60
           }
61
           LL g=gcd(val,x);
62
           if(g>1) return g;
63
       }
64
    }
65
66
    LL max_factor(LL x) {
67
        if(x==1 || Miller_Rabin(x)) {
68
           return x;
        } else {
69
70
           LL g=Pollard_Rho(x);
           while (x\%g==0) x/=g;
71
72
           return max(max_factor(x),max_factor(g));
73
        }
74
    }
75
76
    void solve() {
77
       LL n;
78
        scanf("%11d", &n);
79
       if(Miller_Rabin(n)) {
80
           printf("Prime\n");
81
       } else {
82
           printf("%lld\n", max_factor(n));
83
        }
84
    }
85
86
    int main() {
87
        srand(time(0));
88
        int T=1,cas=1;(void)(cas);
        scanf("%d", &T);
89
        while(T--) {
90
91
           // printf("Case #%d: ", cas++);
92
           solve();
93
        }
```

```
94 | return 0;
95 |}
```

Xidian University 6 组合数学

6 组合数学

6.1 康托展开 Cantor

```
1
 2
        康托 (Cantor) 展开: 求全排列是第几个。
 3
 4
    #include <bits/stdc++.h>
 5
    #define LL long long
    using namespace std;
 6
 7
    const int MAXN=2000005;
 8
    const int MOD=998244353;
 9
10
    struct BIT {
       int n,b[MAXN];
11
12
13
       int lowbit(int x){
14
           return x&(-x);
15
16
17
       void change(int x,int y){
18
           for(;x<=n;x+=lowbit(x))</pre>
19
               b[x] += y;
20
       }
21
22
       int sum(int x){
23
           int s=0;
24
           for(;x>0;x-=lowbit(x))
25
               s+=b[x];
26
           return s;
27
28
    }bit;
29
30
   int a[MAXN],f[MAXN];
31
32
    void solve() {
33
       int n;
        scanf("%d", &n);
34
35
        for(int i=1;i<=n;i++)</pre>
           scanf("%d", &a[i]);
36
37
38
       f[0]=1;
39
        for(int i=1;i<=n;i++)</pre>
40
           f[i]=1LL*f[i-1]*i%MOD;
41
42
       bit.n=n;
43
       int ans=1;
44
45
       for(int i=1;i<n;i++) {</pre>
46
           bit.change(a[i],1);
47
           ans=(ans+1LL*f[n-i]*(a[i]-bit.sum(a[i]))%MOD)%MOD;
48
       printf("%d\n", ans);
49
```

Xidian University 6 组合数学

```
50
   }
51
52
    int main() {
53
       int T=1,cas=1;(void)(cas);
54
       // scanf("%d", &T);
55
       while(T--) {
56
           // printf("Case #%d: ", cas++);
57
           solve();
58
       }
59
       return 0;
60
```

6.2 波利亚 Pólya

```
/*
 1
 2
       Polya定理
 3
       本质不同个数=sigma(颜色个数~等价置换的划分个数)/(等价置换总个数)
 4
 5
       例题: n条个点围成一圈, m种颜色。求染色旋转本质不同个数。
 6
       ans = sigma(m^{cd}(n,i))/n
 7
          = sigma(m<sup>d</sup> * phi(n/d))/n ----- 莫比乌斯反演
8
   */
9
   #include <bits/stdc++.h>
10
   #define LL long long
11
   using namespace std;
12
    const int MOD=1e9+7;
13
   const int MAXN=2000005;
14
15
   int binpow(int x,int y,int m) {
16
      int r=1%m;
       while(y) {
17
18
          if(y&1) r=1LL*r*x%m;
19
          x=1LL*x*x%m;
20
          y>>=1;
21
       }
22
       return r;
23
   }
24
   int phi(int x) {
25
26
       int r=x;
       for(int i=2;i*i<=x;i++) {</pre>
27
          if(x%i==0) {
28
29
             r=r/i*(i-1);
30
             while(x\%i==0) x/=i;
31
          }
32
       if(x>1) r=r/x*(x-1);
33
34
       return r;
35
36
   void solve() {
37
       int n,m; //n个点, m种颜色。
```

Xidian University 6 组合数学

```
39
        scanf("%d", &n);
40
        m=n;
41
        int ans=0;
42
        for(int i=1;i*i<=n;i++) {</pre>
43
           if(n%i==0) {
44
               ans=(ans+1LL*binpow(m,i,MOD)*phi(n/i)%MOD)%MOD;
               if(i*i!=n) {
45
46
                   ans=(ans+1LL*binpow(m,n/i,MOD)*phi(i)%MOD)%MOD;
47
           }
48
49
50
        ans=1LL*ans*binpow(n,MOD-2,MOD)%MOD;
        printf("%d\n", ans);
51
52
    }
53
54
   int main() {
55
       int T=1,cas=1;(void)(cas);
56
        scanf("%d", &T);
        while(T--) {
57
58
           // printf("Case #%d: ", cas++);
59
           solve();
60
        }
61
        return 0;
    }
```

6.3 卡特兰数 Catalan

- 1. 有 2n 个人排成一行进入剧场。人场费 5 元。其中只有 n 个人有一张 5 元钞票,另外 n 人只有 10 元钞票,剧院无其它钞票,问有多少中方法使得只要有 10 元的人买票,售票处就有 5 元的钞票找零?
- 2. 一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果他从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
- 3. 在圆上选择 2n 个点,将这些点成对连接起来使得所得到的 n 条线段不相交的方法数?
- 4. 对角线不相交的情况下,将一个凸多边形区域分成三角形区域的方法数?
- 5. 一个栈(无穷大)的进栈序列为 $1,2,3,\cdots,n$ 有多少个不同的出栈序列?
- 6. n 个结点可构造多少个不同的二叉树?
- 7. n 个不同的数依次进栈, 求不同的出栈结果的种数?
- 8. $n \uparrow +1$ 和 $n \uparrow -1$ 构成 $2n \bar{y}$ a_1, a_2, \cdots, a_{2n} , 其部分和满足 $a_1 + a_2 + \cdots + a_k \geq 0 (k = 1, 2, 3, \cdots, 2n)$ 对与 n 该数列为?

Н0	H1	H2	НЗ	H4	H5	Н6
1	1	2	5	14	42	132

关于 Catalan 数的常见公式:

$$H_n = \begin{cases} \sum_{i=1}^n H_{i-1} H_{n-i} & n \ge 2, n \in \mathbb{N}_+ \\ 1 & n = 0, 1 \end{cases}$$

Xidian University 6 组合数学

$$H_n = \frac{H_{n-1}(4n-2)}{n+1}$$

$$H_n = {2n \choose n} - {2n \choose n-1}$$

$$H_n = \frac{{2n \choose n}}{n+1} (n \ge 2, n \in \mathbf{N}_+)$$

6.4 斯特林数 Stirling

6.4.1 第一类斯特林数

(斯特林轮换数)

表示将 n 个两两不同的元素,划分为 k 个非空圆排列的方案数。 递推式

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

边界是
$$\begin{bmatrix} n \\ 0 \end{bmatrix} = [n=0]$$
 。

6.4.2 第二类斯特林数

(斯特林子集数)

 ${n \brace k}$ 表示将 n 个两两不同的元素,划分为 k 个非空子集的方案数。

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brace k}$$

边界是
$$\begin{Bmatrix} n \\ 0 \end{Bmatrix} = [n=0]$$
 。

6.4.3 上升幂与普通幂的相互转化

我们记上升阶乘幂 $x^{\overline{n}} = \prod_{k=0}^{n-1} (x+k)$ 。 则可以利用下面的恒等式将上升幂转化为普通幂:

$$x^{\overline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

如果将普通幂转化为上升幂,则有下面的恒等式:

$$x^{n} = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{\overline{k}}$$

Xidian University 6 组合数学

6.4.4 下降幂与普通幂的相互转化

我们记下降阶乘幂 $x^n=\frac{x!}{(x-n)!}=\prod_{k=0}^{n-1}(x-k)$ 。 则可以利用下面的恒等式将普通幂转化为下降幂:

$$x^n = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}$$

如果将下降幂转化为普通幂,则有下面的恒等式:

$$x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$$

6.5 范德蒙德卷积 Vandermonde_Convolution

$$\sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}$$

从数量分别为 n 和 m 的石堆中总共选取 k 个石子。

7 网络流

7.1 最大费用流 Minimum-Cost_Flow_Edmonds-Karp

```
#include <cstdio>
    #include <cstring>
 3
    #include <queue>
 4
    #include <algorithm>
    #define MAXN 5005
 6
    #define MAXM 50005
 7
 8
    const int inf = 0x3f3f3f3f;
9
10
    using namespace std;
11
12
    int n,m,s,t,tot,head[MAXN],dis[MAXN],maxflow,mincost;
    bool inque[MAXN];
13
14
15
    struct edge{//残量网络 residual network
        int to,cf,next,dis;//Cf:residual capacity
16
17
    }e[(MAXM<<1)+1];</pre>
18
19
    struct node{
20
       int fr,edge;
21
    }pre[MAXN];
22
23
    void add(int x,int y,int f,int d){
24
       tot++;
       e[tot].cf=f;
25
26
       e[tot].dis=d;
27
       e[tot].to=y;
28
       e[tot].next=head[x];
       head[x]=tot;
29
   }
30
31
32
    bool spfa(){//SPFA
       memset(dis+1,inf,n*sizeof(dis[0]));
33
34
       memset(inque+1,0,n*sizeof(inque[0]));
35
       pre[t].fr=0;
36
       queue<int> q;
37
       dis[s]=0;
38
       q.push(s);
39
        inque[s]=1;
40
       while(!q.empty()){
41
           int u=q.front();q.pop();
42
           inque[u]=0;
43
           for(int p=head[u];p;p=e[p].next){
44
               int v=e[p].to;
               if(e[p].cf && dis[v]>dis[u]+e[p].dis){
45
                  dis[v]=dis[u]+e[p].dis;
46
47
                  pre[v].fr=u;
48
                  pre[v].edge=p;
49
                  if(!inque[v]){
```

```
50
                      q.push(v);
51
                      inque[v]=1;
52
                   }
53
               }
54
           }
       }
55
56
        return pre[t].fr!=0;
57
58
59
    int min_flow(){
60
        int mn=inf;
61
        for(int u=t;u!=s;u=pre[u].fr){
           mn=min(mn,e[pre[u].edge].cf);
62
63
       }
        for(int u=t;u!=s;u=pre[u].fr){
64
65
            e[pre[u].edge].cf-=mn;
66
            e[pre[u].edge^1].cf+=mn;
       }
67
68
        return mn;
69
    }
70
71
    void edmonds_karp(){
72
       maxflow=0,mincost=0;
73
        while(spfa()){
74
            int flow=min_flow();
75
           maxflow+=flow;
76
           mincost+=flow*dis[t];
77
        }
78
    }
79
80
    int main(){
81
        scanf("%d %d %d %d", &n, &m, &s, &t);
82
        tot=1;
83
        memset(head+1,0,n*sizeof(head[0]));
        for(int i=1;i<=m;i++){</pre>
84
85
           int f,g,w,d;
86
           scanf("%d %d %d %d",&f,&g,&w,&d);
87
            add(f,g,w,d);
88
            add(g,f,0,-d);
89
        }
90
        edmonds_karp();
91
        printf("%d %d\n",maxflow,mincost);
92
        return 0;
93
    }
```

7.2 最大流 Maximum_Flow_Edmonds-Karp

```
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define MAXN 10005
```

```
#define MAXM 100005
 8
    using namespace std;
 9
10
    const int inf = 0x3f3f3f3f;
11
12
    int n,m,s,t,tot,head[MAXN],vis[MAXN];
13
14
    struct edge{
15
        int to,cf,next;
16
    }e[MAXM<<1];</pre>
17
    struct node{
18
19
       int fr,edge;
    }pre[MAXN];
20
21
22
    void add(int x,int y,int z){
23
        tot++;
24
        e[tot].cf=z;
25
        e[tot].to=y;
26
        e[tot].next=head[x];
27
        head[x]=tot;
28
    }
29
30
    bool find_augment(){
31
       memset(pre+1,0,n*sizeof(pre[0]));
32
        memset(vis+1,0,n*sizeof(vis[0]));
33
        queue<int> q;
34
        vis[s]=1;
35
        q.push(s);
        while(!q.empty()){
36
37
           int u=q.front();q.pop();
38
           for(int p=head[u];p;p=e[p].next){
39
               int v=e[p].to;
40
               if(!vis[v] && e[p].cf){
41
                  pre[v].fr=u;
42
                  pre[v].edge=p;
43
                  vis[v]=1;
44
                   q.push(v);
45
                   if(v==t) return true;
               }
46
           }
47
48
        }
49
        return false;
50
    }
51
52
    int min_flow(){
53
        int mn=inf;
        for(int u=t;u!=s;u=pre[u].fr){
54
55
           mn=min(mn,e[pre[u].edge].cf);
56
       }
57
        for(int u=t;u!=s;u=pre[u].fr){
           e[pre[u].edge].cf-=mn;
```

```
59
           e[pre[u].edge^1].cf+=mn;
60
61
        return mn;
62
    }
63
64
    int edmonds_karp(){
65
       int flow=0;
66
        while(find_augment()){
67
           flow+=min_flow();
68
       }
69
        return flow;
    }
70
71
72
    int main(){
73
        scanf("%d %d %d %d", &n, &m, &s, &t);
74
75
       memset(head+1,0,n*sizeof(head[0]));
76
       for(int i=1;i<=m;i++){</pre>
77
           int f,g,w;
           scanf("%d %d %d",&f,&g,&w);
78
79
           add(f,g,w);
80
           add(g,f,0);
81
       }
        printf("%d\n", edmonds_karp());
        return 0;
83
84
    }
```

7.3 最大流 Maximum_Flow_Dinic

```
#include <cstdio>
    #include <cstring>
    #include <queue>
3
    #include <algorithm>
4
    #define MAXN 10005
 6
    #define MAXM 100005
 7
8
    const int inf = 0x3f3f3f3f;
9
10
    using namespace std;
11
    int n,m,s,t,tot,head[MAXN],lb[MAXN],cur[MAXN];
12
13
14
    struct edge{//残量网络 residual network
15
       int to,cf,next;//Cf:residual capacity
    }e[(MAXM<<1)+1];</pre>
16
17
18
    void add(int x,int y,int z){
19
       tot++;
20
       e[tot].cf=z;
21
       e[tot].to=y;
22
       e[tot].next=head[x];
       head[x]=tot;
23
```

```
24
    }
25
26
    bool label_vertex(){//BFS
27
       memset(lb+1,0,n*sizeof(lb[0]));
28
       queue<int> q;
29
       lb[s]=1;
30
       q.push(s);
31
       while(!q.empty()){
32
           int u=q.front();q.pop();
33
           for(int p=head[u];p;p=e[p].next){
34
               int v=e[p].to;
               if(e[p].cf && !lb[v]){
35
                  lb[v]=lb[u]+1;
36
37
                  q.push(v);
38
                  if(v==t) return true;
39
              }
40
           }
       }
41
42
       return false;
43
    }
44
    int multi_augment(int u,int lim){//DFS 多路增广
45
       if(u == t) return lim;
46
47
       int used=0;
48
49
       for(int& p=cur[u];p;p=e[p].next){
50
           int v=e[p].to;
51
           if(e[p].cf && lb[v]==lb[u]+1){
52
               int rest=multi_augment(v,min(lim-used,e[p].cf));
53
              used+=rest;
54
               e[p].cf-=rest;
55
               e[p^1].cf+=rest;
56
               if(used==lim) break;
57
           }
       }
58
59
       return used;
60
    }
61
62
    int dinic(){
63
       int flow=0;
64
       while(label_vertex()){//BFS 标记
65
           for(int i=1;i<=n;i++) cur[i]=head[i];//当前弧优化
66
           flow+=multi_augment(s,inf);//DFS 顺着标记找增广路
67
       }
68
       return flow;
69
    }
70
71
    int main(){
       scanf("%d %d %d %d", &n, &m, &s, &t);
72
73
74
       memset(head+1,0,n*sizeof(head[0]));
75
       for(int i=1;i<=m;i++){</pre>
76
           int f,g,w;
```

```
77 | scanf("%d %d %d",&f,&g,&w);
78 | add(f,g,w);
79 | add(g,f,0);
80 | }
81 | printf("%d\n", dinic());
82 | return 0;
83 |
```

7.4 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Dinic

```
#include <cstdio>
 2
    #include <cstring>
 3
    #include <queue>
 4
    #define MAXN 2005
 5
    #define MAXM 1000005
 6
 7
    using namespace std;
 8
 9
    const int inf=0x3f3f3f3f;
10
11
    struct edge{
12
        int to,cf,next;
13
    }e[MAXM<<1];</pre>
14
15
    int n,n1,n2,m,s,t;
16
    int tot,head[MAXN],cur[MAXN],lbl[MAXN];
17
    void add(int x,int y,int z){
18
19
        tot++;
20
        e[tot].to=y;
21
        e[tot].cf=z;
22
        e[tot].next=head[x];
23
        head[x]=tot;
    }
24
25
    bool bfs(){
26
27
        memset(lbl+1,0,n*sizeof(lbl[0]));
        lbl[t]=1;
28
29
        queue<int> q;
30
        q.push(t);
        while(!q.empty()){
31
32
           int u=q.front();q.pop();
33
           for(int p=head[u];p;p=e[p].next){
34
               int v=e[p].to;
35
               if(e[p^1].cf && !lbl[v]){
36
                   lbl[v]=lbl[u]+1;
37
                   q.push(v);
38
                   if(v==s) return true;
39
               }
40
           }
       }
41
42
        return lbl[s]!=0;
```

```
43
    }
44
    int dfs(int u,int lim){
45
        if(u==t)return lim;
46
47
48
        int used=0;
49
        for(int& p=cur[u];p;p=e[p].next){
50
           int v=e[p].to;
51
            if(e[p].cf && lbl[v]==lbl[u]-1){
52
               int rest=dfs(v,min(lim-used,e[p].cf));
53
               used+=rest;
               e[p].cf-=rest;
54
55
               e[p^1].cf+=rest;
56
               if(used==lim) break;
57
           }
58
        }
59
        return used;
    }
60
61
62
    int dinic(){
63
        int flow=0;
64
        while(bfs()){
65
           for(int i=1;i<=n;i++)</pre>
66
               cur[i]=head[i];
67
           flow+=dfs(s,inf);
        }
68
69
        return flow;
70
    }
71
72
    int main(){
73
        scanf("%d %d %d", &n1, &n2, &m);
74
        n=n1+n2+2;//n个点
75
        s=n-1;t=n;
76
77
        memset(head+1,0,n*sizeof(head[0]));
78
        for(int i=1;i<=m;i++){</pre>
79
           int f,g;
80
           scanf("%d %d",&f,&g);
81
           if(f>n1 || g>n2) continue;
82
           add(f,n1+g,1);
83
           add(n1+g,f,0);
84
        }
85
        for(int i=1;i<=n1;i++){</pre>
86
           add(s,i,1);
87
            add(i,s,0);
88
89
        for(int i=n1+1;i<=n1+n2;i++){</pre>
90
           add(i,t,1);
91
            add(t,i,0);
92
93
        printf("%d\n", dinic());
94
        return 0;
    }
95
```

7.5 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hungarian

```
#include <cstdio>
 2
    #include <cstring>
    #define MAXN 1005
 3
    #define MAXM 1000005
 4
 5
 6
    struct node{
 7
        int to,next;
 8
    }e[MAXM];
 9
10
    int n1,n2,m,head[MAXN],tot,dfn[MAXN],mat[MAXN];
11
12
    void add(int x,int y){
13
        tot++;
14
        e[tot].to=y;
15
        e[tot].next=head[x];
16
        head[x]=tot;
17
    }
18
19
    bool augment(int x,int stamp){
20
        for(int p=head[x];p;p=e[p].next){
21
           int u=e[p].to;
22
           if(dfn[u] == stamp) continue;
           dfn[u]=stamp;
23
24
           if(!mat[u] || augment(mat[u],stamp)){
25
               mat[u]=x;
26
               return true;
           }
27
28
        }
29
        return false;
30
    }
31
32
    int match(){
33
       memset(mat+1,0,n2*sizeof(mat[0]));
34
        memset(dfn+1,0,n2*sizeof(dfn[0]));
35
        int cnt=0;
        for(int i=1;i<=n1;i++){</pre>
36
37
           if(augment(i,i))
38
               cnt++;
39
       }
40
        return cnt;
41
    }
42
43
    int main(){
44
        scanf("%d %d %d", &n1,&n2,&m);
        tot=0;
45
46
        memset(head+1,0,n1*sizeof(head[0]));
47
        for(int i=1;i<=m;i++){</pre>
48
           int f,g;
49
           scanf("%d %d", &f, &g);
50
           if(f>n1 || g>n2)
51
               continue;
```

```
52     add(f,g);
53     }
54     printf("%d\n", match());
55     return 0;
56 }
```

7.6 二分图最大匹配 Bipartite_Graph_Maximum_Matching_Hopcroft-Karp

```
1
    #include <cstdio>
    #include <cstring>
    #include <queue>
 4
    #define MAXN 2005
 5
    #define MAXM 1000005
    const int inf=0x3f3f3f3f;
 8
 9
    using namespace std;
10
11
    int n1,n2,n,m,tot,head[MAXN];
12
    int mat[MAXN],lb[MAXN],dfn[MAXN];
13
14
    struct edge{
15
        int to,next;
16
    }e[MAXM];
17
18
    void add(int x,int y){
19
        tot++;
20
        e[tot].to=y;
21
        e[tot].next=head[x];
22
        head[x]=tot;
23
   }
24
25
    bool bfs(){
26
        memset(lb+1,0,n*sizeof(lb[0]));
27
        queue<int> q;
28
        for(int i=1;i<=n1;i++){</pre>
29
           if(!mat[i]){
30
               q.push(i);
31
               lb[i]=1;
           }
32
       }
33
        int dis=inf;
34
35
        while(!q.empty()){
36
           int u=q.front();q.pop();
           for(int p=head[u];p;p=e[p].next){
37
38
               int v=e[p].to;
39
               if(!lb[v]){
40
                  lb[v]=lb[u]+1;
41
                   if(!mat[v]) dis=lb[v];
42
                   else if(lb[v]<dis){</pre>
43
                      lb[mat[v]]=lb[v]+1;
```

```
44
                      q.push(mat[v]);
                   }
45
46
               }
47
           }
48
        }
49
        return dis!=inf;
50
    }
51
52
    bool dfs(int u,int stamp){
53
        for(int p=head[u];p;p=e[p].next){
54
           int v=e[p].to;
            if(dfn[v]!=stamp && lb[v]==lb[u]+1){
55
56
               dfn[v]=stamp;
               if(!mat[v] || (lb[mat[v]]==lb[v]+1 && dfs(mat[v],stamp))){
57
58
                   mat[v]=u;
59
                   mat[u]=v;
60
                   return true;
               }
61
           }
62
63
        }
64
        return false;
65
    }
66
67
    int hopcroft_karp(){
68
        int cnt=0,stamp=0;
69
        memset(dfn+1,0,n*sizeof(dfn[0]));
70
        memset(mat+1,0,n*sizeof(mat[0]));
71
        while(bfs()){
72
           stamp++;
73
           for(int i=1;i<=n1;i++){</pre>
74
               if(!mat[i] && dfs(i,stamp)){
75
                   cnt++;
76
               }
77
           }
78
        }
79
        return cnt;
80
    }
81
82
    int main(){
83
        scanf("%d %d %d", &n1, &n2, &m);
84
        n=n1+n2;
85
        memset(head+1,0,n*sizeof(head[0]));
86
        tot=0;
87
        for(int i=1;i<=m;i++){</pre>
88
           int f,g;
89
           scanf("%d %d",&f,&g);
90
           if(f>n1 || g>n2) continue;
           add(f,n1+g);
91
92
93
        printf("%d\n", hopcroft_karp());
94
        return 0;
95
    }
```

Xidian University 8 计算几何

8 计算几何

8.1 计算几何 Computational_Geometry

```
#include <bits/stdc++.h>
    #define MAXN 2000005
 3
    #define LL long long
 4
    using namespace std;
    const double PI=acos(-1.0);
 6
    const double inf=1e100;
 7
    const double eps=1e-7;
 8
 9
    int sgn(double d) {
10
        if(abs(d)<eps) return 0;</pre>
11
        if(d>0) return 1;
12
        return -1;
13
    }
14
15
    int dcmp(double x,double y) {
16
        if(abs(x-y)<eps) return 0;</pre>
17
        if(x>y) return 1;
18
        return -1;
19
    }
20
21
    struct Point{
22
        double x,y;
23
        Point(double x=0, double y=0):x(x),y(y){}
24
25
        Point operator + (const Point& B) const{
26
           return Point(x+B.x,y+B.y);
27
        }
28
        Point operator - (const Point& B) const{
29
           return Point(x-B.x,y-B.y);
30
31
        Point operator * (const double k) const{
32
           return Point(x*k,y*k);
33
        Point operator / (const double k) const{
34
35
           return Point(x/k,y/k);
36
        }
37
        bool operator < (const Point B) {</pre>
38
           if(dcmp(x,B.x)==0)
39
               return dcmp(y,B.y)<0;</pre>
40
           else return dcmp(x,B.x)<0;</pre>
41
        }
42
43
        double operator * (const Point& B) const{//点积
44
           return x*B.x+y*B.y;
        }
45
        double operator \hat{\ } (const Point& B) const \{//\mathbb{Z}
46
47
           return x*B.y-y*B.x;
48
        }
49 };
```

Xidian University 8 计算几何

```
50
51
    typedef Point Vector;
52
53
    double Length(Vector A) {
54
        return sqrt(A*A);
55
    }
56
57
    double Angle(Vector A, Vector B) {//弧度
58
        return acos(A*B/Length(A)/Length(B));
59
    }
60
    double Area2(Vector A, Vector B){//求平行四边形面积
61
62
        return A^B;
63
    }
64
65
    Vector Rotate(Vector A, double rad) {//逆时针
66
       return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
67
    }
68
    Vector Normal(Vector A) {//逆时针转90度,单位法向量
69
70
        double L=Length(A);
71
        return Vector(-A.y/L, A.x/L);
72
    }
73
    bool ToLeftTest(Vector A, Vector B) {//B是不是在A左边
74
75
        return sgn(A^B)>0;
76
77
78
    struct Line {//点向式+两点。既可以line也可以seg
79
       Point p1,p2;//p1->p2
80
        Vector v;
81
       Line(Point p1, Point p2):p1(p1),p2(p2),v((p2-p1)/Length(p2-p1)){}
        Point point(double t) {//给t求点
82
83
           return p1+v*t;
84
        }
85
    };
86
    typedef Line Segment;
87
88
    bool OnLine(Point P, Line 1) {//判断点P是否在直线L上
89
        return sgn((P-1.p1)^l.v);
90
    |}
91
92
    Point GetIntersection(Line 11, Line 12) {//求直线交点
        double t = (12.v^(11.p1-12.p1))/(11.v^12.v);
93
94
        return 11.point(t);
95
    }
96
97
    double DistanceToLine(Point P, Line 1) {//点到直线距离
98
        return abs(1.v^(P-1.p1));
99
    }
100
101
    Point GetProjection(Point P, Line 1) {//求投影点
102
        return 1.point((P-1.p1)*1.v);
```

Xidian University 8 计算几何

```
103
    }
104
105
     bool OnSegment(Point P, Segment s) {
106
        return (OnLine(P,s) && sgn((s.p1-P)*(s.p2-P))<0);</pre>
107
    }
108
109
     bool InSegmentIntersection(Segment s1, Segment s2) {//不允许端点相交
        double c1=(s1.p2-s1.p1)^(s2.p1-s1.p1), c2=(s1.p2-s1.p1)^(s2.p2-s1.p1);
110
111
        double c3=(s2.p2-s2.p1)^(s1.p1-s2.p1), c4=(s2.p2-s2.p1)^(s1.p2-s2.p1);
112
        return (sgn(c1)*sgn(c2)<0 && sgn(c3)*sgn(c4)<0);</pre>
113
    }
114
115
    void solve() {
116
117
     }
118
119
    int main() {
120
        int T=1,cas=1;
121
        // scanf("%d", &T);
122
        while(T--) {
123
            // printf("Case #%d: ", cas++);
124
            solve();
125
        }
126
        return 0;
127
    }
```

Xidian University 9 优化算法

9 优化算法

9.1 wqs 二分 + 决策单调性 dp

```
1
 2
        决策单调性 + WQS二分
 3
 4
        给定数列{a}。设立k个关键点。
 5
        让sigma min|a_i-b_k| 最小 (每个a_i到最近的关键点距离之和)
 6
    */
 7
   #include <bits/stdc++.h>
 8
    #define LL long long
    using namespace std;
10
   const int MAXN=2000005;
11
12
    LL a[MAXN],f[MAXN];
    int cnt[MAXN],1b[MAXN],rb[MAXN],p[MAXN];
13
14
15
    LL w(int x,int y){
        return a[y]+a[x]-a[(x+y+1)>>1]-a[(x+y)>>1];
16
17
    }
18
19
    int k,n;
20
21
    int calc(LL d) {
22
       int h,t;
23
       h=t=1;
       lb[t]=1,rb[t]=n,p[t]=0;
24
25
       f[0]=cnt[0]=0;
26
       for(int i=1;i<=n;i++) {</pre>
           f[i]=f[p[h]]+w(p[h],i)+d;
27
28
           cnt[i]=cnt[p[h]]+1;
29
           while(rb[h]<=i) h++;</pre>
30
31
           if(h<=t && lb[h]<=i) lb[h]=i+1;</pre>
32
           if(h<=t && f[i]+w(i,n)>f[p[t]]+w(p[t],n)) continue;
33
34
           while (h \le t \&\& f[i] + w(i, lb[t]) \le f[p[t]] + w(p[t], lb[t])) t --;
35
           if(h<=t) {
36
               int l=lb[t],r=rb[t]+1;
37
               while(l<r) {</pre>
                  int mid=(l+r)>>1;
38
                   if(f[i]+w(i,mid)<=f[p[t]]+w(p[t],mid)) r=mid;</pre>
39
40
                   else l=mid+1;
41
               }
42
               rb[t]=l-1;
43
               ++t;
               lb[t]=1,rb[t]=n,p[t]=i;
44
45
           } else {
46
               ++t;
47
               lb[t]=i,rb[t]=n,p[t]=i;
           }
48
49
        }
```

Xidian University 9 优化算法

```
50
        return cnt[n];
51
    }
52
53
    void solve() {
54
        scanf("%d %d", &n, &k);
55
        a[0]=0;
56
       for(int i=1;i<=n;i++) {</pre>
57
           scanf("%lld", &a[i]);
58
           a[i]+=a[i-1];
59
       }
60
       LL l=0,r=a[n];
61
62
        while(l<r) {</pre>
63
           LL mid=(l+r+1)>>1;
           if(calc(mid)>=k) l=mid;
64
65
           else r=mid-1;
66
       }
67
        calc(1);
68
69
       printf("\%lld\n", f[n]-1LL*k*l);\\
    }
70
71
72
   int main() {
73
       int T=1,cas=1;(void)(cas);
74
        // scanf("%d", &T);
75
        while(T--) {
76
           // printf("Case #%d: ", cas++);
77
           solve();
78
       }
79
       return 0;
80
    }
```

9.2 斜率优化 Slope_Optimization

```
#include <bits/stdc++.h>
    #define LL long long
    using namespace std;
4
    const int MAXN=2000005;
5
   //似乎会爆LL
    LL c[MAXN],dp[MAXN];
   LL X[MAXN],Y[MAXN];
8
9
10
    void solve() {
11
       int n,L;
12
       scanf("%d %d", &n, &L);
13
       L++;
14
       c[0]=0;
15
       for(int i=1;i<=n;i++) {</pre>
16
           scanf("%lld", &c[i]);
17
           c[i]+=c[i-1]+1;//c[i] = sum(c[j])+i;
18
       }
```

Xidian University 9 优化算法

```
19
        int h,t;
20
        h=t=1;
21
        dp[0]=0;
22
        X[t]=c[0];
        Y[t]=dp[0]+c[0]*c[0];
23
        for(int i=1;i<=n;i++) {</pre>
24
25
            \label{eq:while(h<t && Y[h+1]-Y[h]<=2*(X[h+1]-X[h])*(c[i]-L)) h++;} \\
            dp[i]=Y[h]-2*(c[i]-L)*X[h]+(c[i]-L)*(c[i]-L);
26
27
            LL x=c[i],y=dp[i]+c[i]*c[i];
28
            \label{eq:while} \mbox{while} (\mbox{h<t \&\& (y-Y[t])*(X[t]-X[t-1])<=(Y[t]-Y[t-1])*(x-X[t])) t--;}
29
            t++;
30
            X[t]=x,Y[t]=y;
31
        }
32
        printf("%lld\n", dp[n]);
33
    }
34
35
   int main() {
36
        int T=1,cas=1;(void)(cas);
37
        // scanf("%d", &T);
38
        while(T--) {
            // printf("Case #%d: ", cas++);
39
40
            solve();
41
        }
42
        return 0;
43
   }
```

10 离线算法

10.1 莫队算法 Mo

```
1
 2
       Coded with Leachim's ACM Template.
 3
       No errors. No warnings. ~~
 4
    */
 5
    #include <bits/stdc++.h>
 6
    #pragma GCC diagnostic ignored "-Wunused-const-variable"
 7
    #pragma GCC diagnostic ignored "-Wsign-conversion"
    #pragma GCC diagnostic ignored "-Wsign-compare"
9
    #define LL long long
10
    using namespace std;
    const int inf=0x3f3f3f3f;
11
12
    const LL INF=0x3f3f3f3f3f3f3f3f3f;
   const double eps=1e-7;
13
14
    const int dx[4]=\{1,-1,0,0\};
15
    const int dy[4]=\{0,0,1,-1\};
    const int MOD=998244353;
16
17
    const int MAXN=2000005;
18
19
    LL gcd(LL x,LL y) {
20
       if(!x || !y) return x+y;
21
       return gcd(y,x%y);
22
    }
23
24
25
        莫队:
26
       sqrt(m)个块
27
        块大小n/sqrt(m);
28
        卡常大小n/sqrt(m*2/3);
29
    */
30
31
    struct query {
32
       int 1,r,id;
33
    }q[MAXN];
34
35
    int a[MAXN],cnt[MAXN];
36
   int block,bl[MAXN];
37
    LL ans1[MAXN],ans2[MAXN],sum;
38
39
    bool cmp(const query &x, const query &y) {
40
       if(bl[x.1]!=bl[y.1])
41
           return bl[x.1] < bl[y.1];</pre>
       else if(bl[x.1]&1)
42
43
           return x.r<y.r;</pre>
44
       else return x.r>y.r;
    }
45
46
47
    void modify(int x,int f) {
       sum-=cnt[a[x]]*cnt[a[x]];
48
49
       cnt[a[x]]+=f;
```

```
50
        sum+=cnt[a[x]]*cnt[a[x]];
51
    }
52
53
    void solve() {
54
        int n,m;
        scanf("%d %d", &n, &m);
55
56
        block=n/sqrt(m*2/3);
57
        for(int i=1;i<=n;i++) {</pre>
            scanf("%d", &a[i]);
58
59
           bl[i]=(i-1)/block+1;
60
61
        for(int i=1;i<=m;i++) {</pre>
62
            scanf("%d %d", &q[i].1, &q[i].r);
63
            q[i].id=i;
64
65
        sort(q+1,q+1+m,cmp);
66
        memset(cnt+1,0,n*sizeof(cnt[0]));
67
        sum=0;
68
        for(int i=1,l=1,r=0;i<=m;i++) {</pre>
69
           for(;r<q[i].r;r++) modify(r+1,1);</pre>
70
           for(;r>q[i].r;r--) modify(r,-1);
71
           for(;l<q[i].1;l++) modify(1,-1);</pre>
72
           for(;l>q[i].1;l--) modify(l-1,1);
73
           ans1[q[i].id]=sum-(r-l+1);
74
            ans2[q[i].id]=1LL*(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
75
        }
76
        for(int i=1;i<=m;i++) {</pre>
77
           LL g=gcd(ans1[i],ans2[i]);
78
            if(!g) printf("0/1\n");
79
            else printf("%lld/%lld\n", ans1[i]/g, ans2[i]/g);
80
        }
    }
81
82
83
    int main() {
84
        int T=1,cas=1;(void)(cas);
85
        // scanf("%d", &T);
86
        while(T--) {
            // printf("Case #%d: ", cas++);
87
88
            solve();
89
        }
90
        return 0;
91
```

10.2 线段树分治 Segment_Tree_Partition

```
      1
      /*

      2
      可撤销并查集+线段树分治

      3
      离线操作:增边,删边,询问图是否联通

      4
      */

      5
      #include <bits/stdc++.h>

      6
      #define LL long long

      7
      using namespace std;
```

```
const int MAXN=5005;
 9
    const int MAXM=500005;
10
11
    struct DSU{
12
        int fa[MAXN],rk[MAXN];
13
        vector<pair<int*,int>> stk;
14
        void init(int n) {
15
           stk.clear();
16
           for(int i=1;i<=n;i++) fa[i]=i,rk[i]=1;
17
       }
18
        int find(int x) {
19
           if(x==fa[x]) return x;
20
           return find(fa[x]);
21
       }
22
        bool join(int x,int y) {
23
           int rx=find(x),ry=find(y);
24
           if(rx==ry) return false;
25
26
           if(rk[rx]>rk[ry]) swap(rx,ry);
27
           stk.emplace_back(fa+rx,rx);
28
           fa[rx]=ry;
29
           stk.emplace_back(rk+ry,rk[ry]);
30
           rk[ry]+=rk[rx];
31
           return true;
32
       }
33
        void withdraw() {
34
           *stk.back().first=stk.back().second;
35
           stk.pop_back();
36
           *stk.back().first=stk.back().second;
37
           stk.pop_back();
        }
38
39
    }dsu;
40
41
    int qf[MAXM],qg[MAXM];
42
43
    struct SGT{
44
        vector<pair<int,int>> eg[MAXM<<2];</pre>
45
46
        void modify(int x,int l,int r,int ql,int qr,int f,int g) {
47
           if(ql<=1 && r<=qr) {</pre>
48
               eg[x].emplace_back(f,g);
49
               return;
           }
50
51
           int m=(1+r)>>1;
52
           if(ql<=m) modify(x<<1,1,m,ql,qr,f,g);</pre>
53
           if(m<qr) modify(x<<1|1,m+1,r,ql,qr,f,g);</pre>
54
55
56
        void dfs(int x,int l,int r) {
57
           int cnt=0;
58
           for(auto pr:eg[x])
59
               if(dsu.join(pr.first,pr.second))
60
                   cnt++;
```

```
61
            if(l==r) {
                if(qf[l]) \ printf("%c\n", "NY"[dsu.find(qf[l])==dsu.find(qg[l])]);\\
 62
63
            } else {
64
                int m=(1+r)>>1;
 65
                dfs(x<<1,1,m);
                dfs(x<<1|1,m+1,r);
 66
67
 68
            while(cnt--) dsu.withdraw();
 69
 70
     }sgt;
 71
 72
     int mp[MAXN][MAXN];
 73
 74
     void solve() {
 75
         int n,m;
 76
        scanf("%d %d", &n, &m);
 77
        memset(qf+1,0,m*sizeof(qf[0]));
 78
        memset(qg+1,0,m*sizeof(qg[0]));
        for(int i=1;i<=m;i++) {</pre>
 79
 80
            int op,f,g;
            scanf("%d %d %d", &op, &f, &g);
 81
 82
            if(op==0) {
 83
                mp[f][g]=mp[g][f]=i;
 84
            } else if(op==1) {
                sgt.modify(1,1,m+1,mp[f][g],i,f,g);
 85
 86
                mp[f][g]=mp[g][f]=0;
 87
            } else qf[i]=f,qg[i]=g;
 88
        }
 89
90
        for(int f=1;f<n;f++) {</pre>
91
            for(int g=f+1;g<=n;g++) {</pre>
92
                if(mp[f][g]) {
93
                    sgt.modify(1,1,m+1,mp[f][g],m+1,f,g);
94
                   mp[f][g]=mp[g][f]=0;
95
                }
96
            }
97
        }
98
99
        dsu.init(n);
100
         sgt.dfs(1,1,m+1);
101
     }
102
103
     int main() {
104
        int T=1,cas=1;(void)(cas);
105
        // scanf("%d", &T);
106
        while(T--) {
107
            // printf("Case #%d: ", cas++);
108
            solve();
109
        }
110
        return 0;
111
     }
```

11 杂项

11.1 快读快写 Fast_Read&Write

```
1
    #include <cstdio>
 2
3
    int read(){
 4
       int ng=0,x=0;
 5
       char ch=getchar();
 6
       for(;ch<'0' || ch>'9';ch=getchar()) ng|=ch=='-';
 7
       for(;ch>='0' && ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
 8
       return ng?-x:x;
9
    }
10
11
    int write(){
12
13
   }
14
   int main(){
15
16
       return 0;
17
```

11.2 快速幂 Fast_Power

```
#include <cstdio>
 2
3
    #define LL long long
 4
 5
    LL a,b,n;
 7
    #include <cstdio>
8
9
    #define LL long long
10
11
    LL a,b,n;
12
    LL binpow(LL x,LL y,LL m){
13
14
       LL r=1\%m;
15
       for(;y;y>>=1,x=x*x%m)
16
           if(y&1) r=r*x%m;
17
       return r;
    }
18
19
20
    int main(){
21
       scanf("%lld %lld %lld",&a,&b,&n);
22
       printf("%11d^%11d mod %11d=%11d\n",a,b,n,binpow(a,b,n));
23
       return 0;
24
    }
25
26
27
    int main(){
       scanf("%lld %lld %lld",&a,&b,&n);
```

```
29     printf("%lld^%lld mod %lld=%lld\n",a,b,n,binpow(a,b,n));
30     return 0;
31 }
```

11.3 矩阵快速幂 Matrix_Fast_Power

```
#include <cstdio>
    #include <cstring>
    #define LL long long
    #define MAXN 105
 4
    #define MOD 1000000007
 7
    LL n,k;
 8
 9
    struct Matrix{
10
        LL num[MAXN][MAXN];
11
        Matrix(int opt){
12
13
           memset(num,0,sizeof(num));
14
           if (opt==1)
15
               for(int i=1;i<=n;i++)</pre>
16
                   num[i][i]=1;
17
        }
18
19
        Matrix operator*(const Matrix &y) const{
20
           Matrix x=*this,ans(0);
21
           for(int i=1;i<=n;i++){</pre>
22
               for(int j=1;j<=n;j++){</pre>
23
                   for(int k=1;k<=n;k++){</pre>
24
                       ans.num[i][j]=(ans.num[i][j]+x.num[i][k]*y.num[k][j]%MOD)%MOD;
25
                   }
26
               }
27
           }
28
           return ans;
29
        }
30
    };
32
    Matrix binpow(Matrix x,LL y){
33
        Matrix r(1);
34
        while(y){
35
           if(y&1) r=r*x;
36
           x=x*x;
37
           y>>=1;
38
        }
39
        return r;
40
    }
41
42
    int main(){
        scanf("%11d %11d", &n, &k);
43
44
        Matrix A(0);
        for(int i=1;i<=n;i++){</pre>
45
           for(int j=1;j<=n;j++){</pre>
46
```

```
47
                scanf("%lld", &A.num[i][j]);
            }
48
49
        }
50
        A=binpow(A,k);
51
        for(int i=1;i<=n;i++){</pre>
            for(int j=1;j<=n;j++){</pre>
52
53
                printf("%lld ", A.num[i][j]);
54
            }
55
            puts("");
56
        }
        return 0;
57
    }
58
```

11.4 矩阵加速 Matrix_Acceleration

```
1
    #include <cstdio>
 2
    #include <cstring>
    #define LL long long
 3
    #define MAXN 5
 4
    #define MOD 100000007
 5
 6
 7
    struct Matrix{
 8
        int num[MAXN][MAXN];
 9
        int n,m;
10
11
        Matrix(int nn,int mm){
12
           n=nn; m=mm;
13
           memset(num,0,sizeof(num));
14
        }
15
        Matrix(int nn){
16
17
           memset(num,0,sizeof(num));
18
           for(int i=1;i<=nn;i++) num[i][i]=1;</pre>
19
        }
20
21
        Matrix operator*(const Matrix &y) const{
22
           Matrix x=*this,ans(x.n,y.m);
23
           if(x.m!=y.n) return ans;
24
           for(int i=1;i<=x.n;i++){</pre>
25
               for(int j=1;j<=y.m;j++){</pre>
26
                   for(int k=1;k<=x.m;k++){</pre>
                       ans.num[i][j]=(ans.num[i][j]+1LL*x.num[i][k]*y.num[k][j]%MOD)%MOD;
27
28
                   }
29
               }
30
           }
31
           return ans;
32
        }
33
    };
34
35
    Matrix binpow(Matrix x,LL y){
36
        Matrix r(x.n);
        while(y){
37
```

```
38
            if(y&1) r=r*x;
39
           x=x*x;
40
            y>>=1;
41
        }
42
        return r;
43
    }
44
45
    int main(){
46
        int T;
47
        scanf("%d", &T);
48
        while(T--){
49
            int n;
50
           scanf("%d", &n);
           if(n<=3) printf("1\n");</pre>
51
52
53
               Matrix x(3,3);
               x.num[1][1]=x.num[2][1]=x.num[1][3]=x.num[3][2]=1;
54
55
               x=binpow(x,n-3);
56
               Matrix y(3,1);
57
               for(int i=1;i<=3;i++) y.num[i][1]=1;</pre>
58
               printf("%d\n", (x*y).num[1][1]);
           }
59
60
        }
61
        return 0;
62
    }
```

11.5 最长公共子序列 Longest_Increasing_Subsequence

```
#include <cstdio>
    #include <functional>
 3
    #include <algorithm>
 4
    #include <map>
 5
    #include <utility>
    #define MAXN 100005
 6
 7
8
    using namespace std;
 9
    int n,a[MAXN],len;
10
11
    map <int,int> mp,rmp;
12
13
    int main(){
        scanf("%d", &n);
14
15
        for(int i=1,t;i<=n;i++){</pre>
16
           scanf("%d", &t);
17
           mp.insert(make_pair(t,i));
18
        a[len=0]=0;
19
20
        map <int,int>::iterator ite;
        for(int i=1,t,v;i<=n;i++){</pre>
21
22
           scanf("%d",&t);
23
           ite=mp.find(t);
           v=ite->second;
24
```

```
25
           if(v>a[len])
26
               a[++len]=v;
27
           else{
28
               int *p=upper_bound(a+1,a+len+1,v,less<int>());
29
               *p=v;
           }
30
31
       }
32
       printf("%d\n",len);
33
       return 0;
34
```

11.6 模拟退火 Simulated_Annealing

```
#include <bits/stdc++.h>
 2
    #define MAXN 1005
 3
 4
    int n;
 5
 6
    double ansx,ansy;
 7
 8
    struct point{
 9
        double x,y,w;
10
    }p[MAXN];
11
12
    double f(double x,double y){
13
        double sum=0.0;
14
        for(int i=1;i<=n;i++){</pre>
15
           double dx=x-p[i].x,dy=y-p[i].y;
16
            sum+=sqrt(dx*dx+dy*dy)*p[i].w;
17
18
        return sum;
19
20
21
    void SA(){
22
       double T=3000,d=0.999,tt=1e-15;
23
        while(T>tt){
24
           double newx=ansx+(2*rand()-RAND_MAX)*T;
           double newy=ansy+(2*rand()-RAND_MAX)*T;
25
26
           double delta=f(newx,newy)-f(ansx,ansy);
27
           if(delta<0 || exp(-delta/T)*RAND_MAX>rand()){
28
               ansx=newx;
29
               ansy=newy;
30
           }
31
           T*=d;
       }
32
33
    }
34
35
    int main(){
36
        srand(time(0));
37
        scanf("%d", &n);
        for(int i=1;i<=n;i++){</pre>
38
           scanf("%lf %lf %lf", &p[i].x, &p[i].y, &p[i].w);
39
```

```
40
41
        ansx=ansy=0.0;
        for(int i=1;i<=n;i++){</pre>
42
43
            ansx+=p[i].x;
44
            ansy+=p[i].y;
45
        }
46
        ansx/=n;
47
        ansy/=n;
        SA();
48
49
        printf("%.31f %.31f\n", ansx, ansy);
50
        return 0;
51
    }
```

11.7 快速沃尔什变换 Fast_Walsh_Transform

```
1
 2
        Coded with Leachim's ACM Template.
 3
        No errors. No warnings. ~~
    */
 4
 5
    #include <bits/stdc++.h>
    #pragma GCC diagnostic ignored "-Wunused-const-variable"
    #pragma GCC diagnostic ignored "-Wsign-conversion"
    #pragma GCC diagnostic ignored "-Wsign-compare"
 8
    #define LL long long
    using namespace std;
10
    const int inf=0x3f3f3f3f;
11
12
    const double eps=1e-7;
    const int dx[4]=\{1,-1,0,0\};
13
    const int dy[4]={0,0,1,-1};
14
15
    const int MAXN=2000005;
16
    const int MOD=998244353;
17
18
    void FWTor(int n,int* P,int f) {
19
        for (int l=1;(1<<1)<=n;1<<=1)</pre>
20
           for(int i=0;i<n;i+=(1<<1))</pre>
21
               for(int j=0;j<1;j++)</pre>
22
                   P[i+j+1] = ((P[i+j+1]+P[i+j]*f)%MOD+MOD)%MOD;
23
    }
24
25
    void FWTand(int n,int* P,int f) {
        for (int l=1;(1<<1)<=n;1<<=1)</pre>
26
27
           for(int i=0;i<n;i+=(1<<1))</pre>
28
               for(int j=0;j<1;j++)</pre>
29
                   P[i+j]=((P[i+j]+P[i+j+1]*f)MOD+MOD)MOD;
30
    }
31
    void FWTxor(int n,int* P,int f) {
32
33
        for (int l=1;(1<<1)<=n;1<<=1)</pre>
34
           for(int i=0;i<n;i+=(1<<1))</pre>
35
               for(int j=0;j<1;j++) {</pre>
36
                   int t=P[i+j];
37
                   P[i+j]=(1LL*f*(t+P[i+j+l])%MOD+MOD)%MOD;
```

```
38
                   P[i+j+1]=(1LL*f*(t-P[i+j+1])%MOD+MOD)%MOD;
39
               }
40
    }
41
42
    int A[MAXN],B[MAXN],C[MAXN];
43
    void solve() {
44
45
        int n;
        scanf("%d", &n);
46
47
        int lim=1<<n;</pre>
        for(int i=0;i<lim;i++) scanf("%d", &A[i]);</pre>
48
49
        for(int i=0;i<lim;i++) scanf("%d", &B[i]);</pre>
50
51
        FWTor(lim,A,1);FWTor(lim,B,1);
52
        for(int i=0;i<lim;i++) C[i]=1LL*A[i]*B[i]%MOD;</pre>
53
        FWTor(lim,A,-1);FWTor(lim,B,-1);FWTor(lim,C,-1);
54
        for(int i=0;i<lim;i++) printf("%d ", C[i]);</pre>
55
        puts("");
56
57
        FWTand(lim,A,1);FWTand(lim,B,1);
58
        for(int i=0;i<lim;i++) C[i]=1LL*A[i]*B[i]%MOD;</pre>
59
        FWTand(lim,A,-1);FWTand(lim,B,-1);FWTand(lim,C,-1);
60
        for(int i=0;i<lim;i++) printf("%d ", C[i]);</pre>
61
        puts("");
62
63
        FWTxor(lim,A,1);FWTxor(lim,B,1);
        for(int i=0;i<lim;i++) C[i]=1LL*A[i]*B[i]%MOD;</pre>
64
65
        FWTxor(lim,A,(MOD+1)/2);FWTxor(lim,B,(MOD+1)/2);FWTxor(lim,C,(MOD+1)/2);
66
        for(int i=0;i<lim;i++) printf("%d ", C[i]);</pre>
67
        puts("");
68
    }
69
70
    int main() {
71
        int T=1, cas=1; (void) (cas);
        // scanf("%d", &T);
72.
73
        while(T--) {
74
            // printf("Case #%d: ", cas++);
75
            solve();
76
        }
77
        return 0;
78
    }
```

11.8 快速莫比乌斯变换 Fast_Mobius_Transform

```
/*
Coded with Leachim's ACM Template.
No errors. No warnings. ~~

*/

#include <bits/stdc++.h>
#pragma GCC diagnostic ignored "-Wunused-const-variable"
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wsign-compare"
```

```
9
    #define LL long long
10
    using namespace std;
    const int inf=0x3f3f3f3f;
11
12
    const LL INF=0x3f3f3f3f3f3f3f3f3f3f;
13
    const double eps=1e-7;
14
    const int dx[4]=\{1,-1,0,0\};
    const int dy[4]=\{0,0,1,-1\};
15
16
    const int MOD=998244353;
    const int MAXN=2000005;
17
18
19
    void FMTor(int n,int* P,int f) {
        for (int i=1;i<n;i<<=1)</pre>
20
21
            for(int j=0;j<n;j++)</pre>
22
                if(i&j) P[j]=((P[j]+f*P[i^j])%MOD+MOD)%MOD;
23
24
25
    void FMTand(int n,int* P,int f) {
26
        for (int i=1;i<n;i<<=1)</pre>
27
            for(int j=0;j<n;j++)</pre>
28
               if(i&~j) P[j]=((P[j]+f*P[i|j])%MOD+MOD)%MOD;
29
30
    void FWTxor(int n,int* P,int f) {
31
32
        for (int l=1;(1<<1)<=n;1<<=1)</pre>
            for(int i=0;i<n;i+=(1<<1))</pre>
33
34
               for(int j=0;j<1;j++) {</pre>
35
                   int t=P[i+j];
36
                   P[i+j]=(1LL*f*(t+P[i+j+1])MOD+MOD)MOD;
37
                   P[i+j+1]=(1LL*f*(t-P[i+j+1])%MOD+MOD)%MOD;
38
               }
39
    }
40
    int A[MAXN],B[MAXN],C[MAXN];
41
42
43
    void solve() {
44
        int n:
45
        scanf("%d", &n);
46
        int lim=1<<n;</pre>
47
        for(int i=0;i<lim;i++) scanf("%d", &A[i]);</pre>
48
        for(int i=0;i<lim;i++) scanf("%d", &B[i]);</pre>
49
50
        FMTor(lim,A,1);FMTor(lim,B,1);
51
        for(int i=0;i<lim;i++) C[i]=1LL*A[i]*B[i]%MOD;</pre>
52
        FMTor(lim,A,-1);FMTor(lim,B,-1);FMTor(lim,C,-1);
53
        for(int i=0;i<lim;i++) printf("%d ", C[i]);</pre>
54
        puts("");
55
56
        FMTand(lim,A,1);FMTand(lim,B,1);
57
        for(int i=0;i<lim;i++) C[i]=1LL*A[i]*B[i]%MOD;</pre>
58
        FMTand(lim,A,-1);FMTand(lim,B,-1);FMTand(lim,C,-1);
59
        for(int i=0;i<lim;i++) printf("%d ", C[i]);</pre>
60
        puts("");
61
```

```
62
        FWTxor(lim,A,1);FWTxor(lim,B,1);
63
        for(int i=0;i<lim;i++) C[i]=1LL*A[i]*B[i]%MOD;</pre>
64
        FWTxor(lim,A,(MOD+1)/2);FWTxor(lim,B,(MOD+1)/2);FWTxor(lim,C,(MOD+1)/2);
65
        for(int i=0;i<lim;i++) printf("%d ", C[i]);</pre>
66
        puts("");
67
    }
68
69
    int main() {
70
        int T=1,cas=1;(void)(cas);
71
        // scanf("%d", &T);
72
        while(T--) {
73
           // printf("Case #%d: ", cas++);
74
           solve();
       }
75
76
        return 0;
77
```

11.9 快速子集变换 Fast_Subset_Transform

```
1
 2
        Coded with Leachim's ACM Template.
 3
        No errors. No warnings. ~~
 4
 5
    #include <bits/stdc++.h>
    #pragma GCC diagnostic ignored "-Wunused-const-variable"
 6
 7
    #pragma GCC diagnostic ignored "-Wsign-conversion"
    #pragma GCC diagnostic ignored "-Wsign-compare"
   #define LL long long
10
   using namespace std;
11
    const int inf=0x3f3f3f3f;
12
    const LL INF=0x3f3f3f3f3f3f3f3f3f3f;
13
    const double eps=1e-7;
14
   const int dx[4]=\{1,-1,0,0\};
15
    const int dy[4]=\{0,0,1,-1\};
    const int MOD=1e9+9;
16
17
    const int MAXN=2000005;
18
19
    void FWTor(int n,int* P,int f) {
20
        for (int l=1;(1<<1)<=n;1<<=1)</pre>
21
           for(int i=0;i<n;i+=(1<<1))</pre>
22
               for(int j=0;j<1;j++)</pre>
23
                   P[i+j+1] = ((P[i+j+1]+P[i+j]*f)%MOD+MOD)%MOD;
24
25
   int A[21][MAXN],B[21][MAXN],C[21][MAXN];
26
27
28
   void solve() {
29
        int n;
30
        scanf("%d", &n);
31
        int lim=1<<n;</pre>
32
        for(int i=0;i<=n;i++) {</pre>
33
           memset(A[i],0,lim*sizeof(A[i][0]));
```

```
memset(B[i],0,lim*sizeof(B[i][0]));
34
35
            memset(C[i],0,lim*sizeof(C[i][0]));
36
        }
37
        for(int i=0;i<lim;i++)</pre>
38
            scanf("%d", &A[__builtin_popcount(i)][i]);
39
        for(int i=0;i<lim;i++)</pre>
40
            scanf("%d", &B[__builtin_popcount(i)][i]);
41
42
        for(int i=0;i<=n;i++) {</pre>
43
            FWTor(lim,A[i],1);
44
            FWTor(lim,B[i],1);
45
        }
46
        for(int i=0;i<=n;i++) {</pre>
47
48
            for(int j=0;j<=i;j++) {</pre>
49
                for(int s=0;s<lim;s++) {</pre>
50
                   C[i][s]=(C[i][s]+1LL*A[j][s]*B[i-j][s]%MOD)%MOD;
51
            }
52
53
            FWTor(lim,C[i],-1);
54
        }
55
56
        for(int i=0;i<lim;i++) printf("%d ", C[__builtin_popcount(i)][i]);</pre>
57
        puts("");
58
    }
59
60
    int main() {
61
        int T=1, cas=1; (void) (cas);
62
        // scanf("%d", &T);
63
        while(T--) {
64
            // printf("Case #%d: ", cas++);
65
            solve();
        }
66
67
        return 0;
68
    }
```

11.10 24 点 24_Point

```
1
2
       Coded with Leachim's ACM Template.
3
       No errors. No warnings. ~~
4
   */
    #include <bits/stdc++.h>
5
   #pragma GCC diagnostic ignored "-Wunused-const-variable"
7
   #pragma GCC diagnostic ignored "-Wsign-conversion"
   #pragma GCC diagnostic ignored "-Wsign-compare"
9
   #define LL long long
10
   using namespace std;
   const int inf=0x3f3f3f3f;
11
12 const LL INF=0x3f3f3f3f3f3f3f3f3f3f;
13 | const double eps=1e-7;
14 | const int dx[4]=\{1,-1,0,0\};
```

```
const int dy[4]=\{0,0,1,-1\};
15
16
    const int MOD=998244353;
    const int MAXN=2000005;
17
18
19
    int a[5],p[5];
20
21
    set<pair<double,string>> dfs(int 1, int r) {
22
        set<pair<double,string>> s;
23
        if(l==r) {
24
            s.emplace(a[p[1]],to_string(a[p[1]]));
25
        for(int i=1;i<r;i++) {</pre>
26
27
           auto s1=dfs(l,i);
28
           auto s2=dfs(i+1,r);
29
           for(auto p1:s1) {
               for(auto p2:s2) {
30
                   s.emplace(p1.first+p2.first,"("+p1.second+"+"+p2.second+")");
31
                   s.emplace(p1.first-p2.first,"("+p1.second+"-"+p2.second+")");
32
                   s.emplace(p1.first*p2.first,"("+p1.second+"*"+p2.second+")");
33
34
                   if(abs(p2.first)>eps) s.emplace(p1.first/p2.first,"("+p1.second+"/"+p2.
                       second+")");
35
               }
36
           }
37
        }
38
        return s;
39
    }
40
41
    void solve() {
42
        for(int i=1;i<=4;i++) {</pre>
43
           scanf("%d", &a[i]);
44
           p[i]=i;
45
       }
46
        do {
47
           auto s=dfs(1,4);
           for(auto p:s) {
48
49
               if(abs(p.first-24) < eps) {</pre>
50
                   cout<<p.second.substr(1,p.second.size()-2)<<end1;</pre>
51
                   return;
52
               }
53
           }
54
        }while(next_permutation(p+1,p+5));
55
56
        printf("-1\n");
57
    }
58
59
    int main() {
60
        int T=1,cas=1;(void)(cas);
61
        // scanf("%d", &T);
        while(T--) {
62
            // printf("Case #%d: ", cas++);
63
64
           solve();
65
        }
        return 0;
```

67 |}