

planetmath.org

Math for the people, by the people.

quadratic Lie algebra

Canonical name QuadraticLieAlgebra
Date of creation 2013-03-22 15:30:44
Last modified on 2013-03-22 15:30:44
Owner benjaminfjones (879)
Last modified by benjaminfjones (879)

Numerical id 6

Author benjaminfjones (879)

Entry type Definition
Classification msc 17B10
Classification msc 17B01

Related topic quadraticAlgebra
Defines quadratic Lie algebra

A Lie algebra \mathfrak{g} is said to be *quadratic* if \mathfrak{g} as a representation (under the adjoint action) admits a non-degenerate, invariant scalar product $(\cdot \mid \cdot)$.

 ${\mathfrak g}$ being quadratic implies that the adjoint and co-adjoint representations of ${\mathfrak g}$ are isomorphic.

Indeed, the non-degeneracy of $(\cdot \mid \cdot)$ implies that the induced map $\phi \colon \mathfrak{g} \to \mathfrak{g}^*$ given by $\phi(X)(Z) = (X \mid Z)$ is an isomorphism of vector spaces. Invariance of the scalar product means that $([X,Y] \mid Z) = -(Y \mid [X,Z]) = (Y \mid [Z,X])$. This implies that ϕ is a map of representations:

$$\phi(ad_X(Y))(Z) = \phi([X,Y])(Z) = ([X,Y] \mid Z) = (Y \mid [Z,X]) = ad_X^*(\phi(Y)(Z))$$