Итоговая работа. Часть 2

«Разработка программы для определения параметров основных элементов земного эллипсоида и декартовых координат точки его поверхности в среде Excel»

Целью лабораторной работы является ознакомление с реальными значениями параметров основных элементов различных земных эллипсоидов, применяемых в России: Красовского, WGS - 84 и Π 3 - 90.

Дано:

1.Значения исходных параметров элементов эллипсоида:

		Красовского	WGS-84	ПЗ –90
Полуось	"a"	6 378 245 м	6 378 137 м	6 378 136 м
Сжатие	"α"	1:298,3	1:298,25	1:298,257839
	(0,003 352 330	0,003 352 891	0,003 352 804)

2. Криволинейные координаты (геодезические) точки поверхности эллипсоида по вариантам n, где n – номер студента по списку в журнале учебной группы:

широта
$$B = 55^{\circ} 10' 00,000" + 10" n;$$
 долгота $L = 37^{\circ} 30' 00,000".$

Определить:

- 1. **Значения параметров** основных элементов эллипсоида Красовского, WGS 84 и ПЗ- 90:
 - 1) значение малой полуоси $b = a(1 \alpha)$ определить до 10^{-4} метра.
 - 2) квадрат значения первого эксцентриситета: $e^2 = \alpha(2 \alpha)$;
- 3) квадрат значения второго эксцентриситета: $(e^1)^2 = e^2/(1-e^2)$; значения эксцентриситетов определять до 10^{-10} знака.
 - 4) значение полярного радиуса кривизны: $c = a^2/b$ (до 10^{-4} метра).

Контроли:
$$b^2 = a^2(1-e^2)$$
, $b = a^2/c$, $e^2 = (a^2-b^2)/a^2$, $(e^1)^2 = (a^2-b^2)/b^2$, $\alpha = (a-b)/a = \alpha = 1 - \sqrt{1-e^2}$ $a-b=a$ α ; $c=a/(1-\alpha)$.

2. Значения основных (1-й и 2-й) сфероидических функций (W и V) геодезической широты В:

$$W_i^2 = (1 - e^2 \sin^2 B_i); V_i^2 = (1 + (e^1)^2 \cos^2 B_i).$$
 Контроль: $aW = bV$.

3. Значения главных радиусов кривизны главных нормальных сечений и среднего радиуса кривизны: меридиана - M, первого вертикала – N, радиуса кривизны - R_{cp} :

$$M=c$$
 / V^3 ; $N=c$ / $V=a$ / $W=a$ / $(1-e^2 \sin^2\!B)^{1/2}$; $R_{cp.}=\sqrt{M}N$, удерживая 10^{-4} м. Контроль: $N/M=V^2$.

4. Значения декартовых координат заданной точки поверхности эллипсоида, используя параметрические уравнения поверхности эллипсоида:

где U — приведенная широта: $tg\ U = (1-e^2)^{1/2}\ tgB$.

Координаты вычислять до 0,001 м.

Kонтроль:
$$x = N cosBcosL,$$
 $y = N cosBsinL,$ $z = N(1 - e^2)sin B.$

Пример выполнения в Excel

Дано	Эллипсоид Красовского	Эллипсоид WGS-84	Эллипсоид ПЗ-90
Полуось 'а'	6378245	6378137	6378136
Полуось 'α'	0,00335233	0,003352891	0,003352804
Номер варианта:	Широта В	Долгота L	
20	58,500000	37,5	

Формулы	Эллипсоид Красовского	Эллипсоид WGS-84	Эллипсоид ПЗ-90
b=a(1-α)	6356863,018	6356751,802	6356751,360
$e^2=\alpha(2-\alpha)$	0,006693422	0,006694540	0,006694367
$(e^1)^2=e^2/(1-e^2)$	0,006738526	0,006739659	0,006739483
c=a²/b	6399698,903	6399594,142	6399592,580
	Контроль		
b ² =a ² (1-e ²)	40409707428842,400	40408293470398,600	40408287854217,800
D -a (1-e)	40409707428842,400	40408293470398,600	40408287854217,800
b=a²/c	6356863,018	6356751,802	6356751,360
D−a /C	6356863,018	6356751,802	6356751,360
e²=(a²-b²)/a²	0,006693422	0,006694540	0,006694367
e -(a -b)/a	0,006693422	0,006694540	0,006694367
$(e^1)^2 = (a^2 - b^2)/b^2$	0,006738526	0,006739659	0,006739483
(e) -(a -b)/b	0,006738526	0,006739659	0,006739483
$\alpha = (a-b)/a = \alpha = 1 - \sqrt{1 - e^2}$	0,003352330	0,003352891	0,003352804
α-(a-b)/a-α-1-v1-e	0,003352330	0,003352891	0,003352804
a-b=a*α	21381,982	21385,198	21384,640
a-ν-d·α	21381,982	21385,198	21384,640
c=2//1 a)	6399698,903	6399594,142	6399592,580
c=a/(1-α)	6399698,903	6399594,142	6399592,580

Формулы	Эллипсоид Красовского	Эллипсоид WGS-84	Эллипсоид ПЗ-90	
Wi ² =(1-e ² sin ² Bi)	0,995133914	0,995133101	0,995133227	
$Vi^2 = (1 + (e^1)^2 \cos^2 Bi)$	1,001839650	1,001839959	1,001839911	
Контроль				
aW=bV	6362707,531	6362597,195	6362596,601	
avv-Dv	6362707,531	6362597,195	6362596,601	

Формулы	Эллипсоид Красовского	Эллипсоид WGS-84	Эллипсоид ПЗ-90	
M=c/V ³	6382079,621	6381972,192	6381971,093	
	6393820,411	6393714,759	6393713,351	
$N=c / V=a / W=a/V(1-e^2sin^2B)$	6393820,411	6393714,759	6393713,351	
	6393820,411	6393714,759	6393713,351	
Rcp.=√MN	6387947,318	6387840,777	6387839,524	
Контроль				
N/M=V ²	1,00183965	1,001839959	1,001839911	
14/1VI=V-	1,00183965	1,001839959	1,001839911	

Формулы	Эллипсоид Красовского	Эллипсоид WGS-84	Эллипсоид ПЗ-90	
tgU=V(1-e²)*tgB	1,626381182	1,626380266	1,626380408	
x=a*cosUcosL	2650404,682	2650360,886	2650360,303	
y=a*cosUsinL	2033727,042	2033693,436	2033692,988	
z=b*sinU	5415138,039	5415042,463	5415042,216	
Контроль				
x=NcosBcosL	2650404,682	2650360,886	2650360,303	
y=NcosBsinL	2033727,042	2033693,436	2033692,988	
z=N(1-e²)sinB	5415138,039	5415042,463	5415042,216	