

지진파 데이터에 대한 응답 스펙트럼 및 가속도 데이터를 시각화하는 프로그램입니다.

☑ 시작 전 준비하기

초기 데이터 입력

- · config.json
 - 。 건물의 최대주기 및 최소주기를 설정합니다.
 - T_min: 건물의 최소 주기
 - T_max: 건물의 최대 주기
 - 최대 주기는 1.5, 최소 주기는 0.2가 곱해져 응답 스펙트럼 그래프에 표시됩니다.

```
"T_min": 2.8849,
"T_max": 2.8849,
"ratio_tmin": 40,
"ratio_second_half": {
    "1": 50,
    "2": 60,
```

config.json

- waves.xlsx
 - 목표 응답스펙트럼 및 지진파 데이터 원본을 입력하는 excel 파일 입니다.
 - 。 총 **4**개의 Sheet로 구성됩니다
 - DBE: 목표 건물의 지반에 해당하는 목표 응답 스펙트럼(현재 S4)
 - S1DBE: S1 지반에 해당하는 목표 응답 스펙트럼
 - data: 분석 대상 지진파
 - acc: 분석 대상 지진파의 x방향과 y방향에 해당하는 시간-가속도
 - DBE
 - T, DBE 열에 주기와 목표 응답 스펙트럼 값을 입력합니다.

■ MCE, 1.3*MCE*0.8, 1.3*MCE*0.9 열은 **자동으로 계산됩니다.**

	Α	В		(0	D		Е	
1	T	DBI	E	M	CE	1.3*MC	E*0.8	1.3*MCE	*0.9
2	0	0.1	995	0.29	9250	0.3	11220	0.3501	225
3	0.1	0.	459	0.68	8500	0.7	16040	0.805	545
4	0.1153	0.4	987	0.74	8050	0.7	77972	0.8752	2185
5	0.2	0.4	987	0.74	8050	0.7	77972	0.8752	2185
6	0.3	0.4	987	0.74	8050	0.7	77972	0.8752	2185
7	0.4	0.4	987	0.74	8050	0.7	77972	0.8752	2185
8	0.5	0.4	987	0.74	8050	0.7	77972	0.8752	2185
9	0.5765	0.4	987	0.74	8050	0.7	77972	0.8752	2185
10	0.6	0.4791		0.718650		0.747396		0.8408	3205
4		DBE	S1	DBE	data	acc	(4	Ð	

waves.xlsx(DBE)

• S1DBE

- T, DBE(S1) 열에 주기와 목표 응답 스펙트럼 값을 입력합니다.
- MCE(S1), 1.3*MCE*0.8(S1) 열은 **자동으로 계산됩니다.**

1	Т	DBE(S1)	MCE(S1)	1.3*MCE*0.8(S1
2	0	0.1643	0.246450	0.256308
3	0.06	0.4107	0.616050	0.640692
4	0.12	0.4107	0.616050	0.640692
5	0.18	0.4107	0.616050	0.640692
6	0.24	0.4107	0.616050	0.640692
7	0.3	0.4107	0.616050	0.640692
8	0.36	0.3422	0.513300	0.533832
9	0.42	0.2933	0.439950	0.457548
10	0.48	0.2567	0.385050	0.400452
4	▶ DB	F S1DBF	data acc	(+)

waves.xlsx(S1DBE)

o data(수동 입력시)

- 지진파 스펙트럼 데이터를 입력합니다.
- **T** 열에 주기를 입력합니다.
- 1x, 1y, ..., nx, ny (n<100) 열에 지진파 데이터를 입력합니다.

• 기존 파일에 해당 열이 없을 경우 직접 작성합니다.

waves.xlsx(data)

- 。 acc(수동 입력시)
 - 지진파 가속도 데이터를 입력합니다.
 - nxT, nyT 열에 n번째 지진파에 대한 시간-가속도 그래프의 x축, y축 주기를 입력합니다.
 - nxAcc, nyAcc 열에 n번째 지진파에 대한 시간-가속도 그래프의 x축, y축 가속도를 입력합니다.

프로그램 실행하기

- 1. waveGraphMaker.exe 파일을 실행합니다.
- 2. 아래와 같은 창이 뜨면 정상적으로 실행된 것을 확인할 수 있습니다.

GRAPH MAKER

입력하세요. 렴 선택

- 주요 커맨드
 - ㅇ 1, 2, 3 ... 선택
 - o back 뒤로가기
 - 。 exit 프로그램 종료

0. 지진파 랜덤 선택하기

해당 기능 수행 시 초기 데이터 입력 의 waves.xlsx의 'data', 'acc' 시트의 값은 초기화됩니 다.

- 1. 메인 화면에서 '0' 커맨드를 입력하면 지진파를 랜덤으로 선택하기 위한 메뉴에 진입합 니다.
- 2. /step0/input/_SearchResults.csv에서 랜덤으로 데이터 7개를 추출합니다.
 - a. /step0/input/(번호) 폴더에 .AT2 파일이 있어야 가속도 데이터를 정상적으로 불 러올 수 있습니다.
 - i. 폴더 번호는 탐색과 무관하며, AT2 파일 이름이 csv 파일과 일치해야 합니다.

_SearchResults	0	2025-05-01 오후 9:34	Microsoft Excel	533KB
<u>19</u>	0	2025-04-28 오후 11:44	파일 폴더	
18	∅	2025-04-28 오후 11:44	파일 폴더	
<u>17</u>	0	2025-04-28 오후 11:44	파일 폴더	
<u>16</u>	0	2025-04-28 오후 11:44	파일 폴더	
<u>15</u>	⊘	2025-04-28 오후 11:44	파일 폴더	

/Step1/input

3. 데이터를 폴더에 저장하였으면 1 커맨드를 눌러 데이터를 불러옵니다.

```
Command > 0
>>> Step 0
Step 0
1. 데이터 랜덤 선택하기(7개 지진파)
(back) 뒤로 가기
```

1. 선택된 7개의 지진파가 waves.xlsx에 저장됩니다.

Step 1

1. 메인 화면에서 '1' 커맨드를 입력하면 Step 1으로 진입합니다.

```
수행할 단계를 입력하세요.
(1) Step1
(2) Step2
(3) Step3
(4) Step4

Command > 1
>>> Step 1
Step 1
1. 목표 응답 스펙트럼 그래프 그리기
```

- 2. Step 1으로 진입 후 1 커맨드를 입력하면 waves.xlsx에서 입력한 목표 응답 스펙트럼 그래프를 작성합니다.
 - a. 목표 응답 스펙트럼 종류(S1, S2, S3, S4...)를 입력합니다.

```
Step1> 1
목표 응답 스펙트럼 종류를 입력해주세요 >> 54
목표 응답 스펙트럼: 54 (Y/n)Y
목표 응답스펙트럼 그래프 생성이 완료되었습니다.
```

- 3. 결과물이 Step1/ 폴더에 생성됩니다.
- 4. back 커맨드를 입력하면 메인 화면으로 돌아갑니다.

```
      Step 1

      1. 목표 응답 스펙트럼 그래프 그리기

      Step1> 1

      목표 응답스펙트럼 그래프 생성이 완료되었습니다.

      >>> output: /Step1
```


- 1. 메인 화면에서 2 커맨드를 입력하여 Step 2로 진입합니다.
- 2. 진입 후 1 커맨드를 입력하여 각 지진파에 대한 Scale up Factor를 구합니다.
 - a. waves.xlsx의 data 시트에 지진파 정보를 입력하였는지 확인하고, y를 입력합니다.

```
Command > 2
Step 2
(1) Scale up Factor 구하기
(2) 응답 스펙트럼 그래프 그리기
(3) 시간-가속도 그래프 그리기
(back) 뒤로 가기
Step2 > 1
>>> input: waves.xlsx의 data Sheet에 응답 스펙트럼 데이터를 입력하였습니까? (y/N)y
Best scale: [3.5703567844903894, 0.7749053356447824, 1.2688899340714772, 1.0256798952933055,
07898277543, 1.607670431878227]
>>> 현재 Scale up Factor: [3.5703567844903894, 0.7749053356447824, 1.2688899340714772, 1.02
3293214, 4.597507898277543, 1.607670431878227]
```

- 3. Scale up Factor를 구한 후, 2 커맨드를 입력하여 응답 스펙트럼 그래프를 작성합니다.
- 4. 3 커맨드를 입력하여 시간-가속도 그래프를 작성합니다.
- 5. Step2/ 폴더에서 작성된 그래프를 확인합니다.
 - a. SRSS/: 지진파에 대한 SRSS 그래프
 - b. SRSS_scale/: Scale up Factor가 적용된 SRSS 그래프 및 엑셀 데이터
 - C. Acceleration/ : Scale up Factor가 적용된 시간-가속도 그래프 및 엑셀 데이터

```
Step2 > 2
>>> output: Step2/SRSS, Step2/SRSS_scale
Step2 > 3
Step2.py:249: RuntimeWarning: More than 20 figures have been opened. Figures created th
lotlib.pyplot.figure`) are retained until explicitly closed and may consume too much me
ee the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
   plt.figure(figsize=(11, 6))
>>> output: Step2/Acceleration
Step2 >
```

6. back 커맨드를 입력하여 메인 메뉴로 돌아갑니다.

🔽 Step 3

- 1. 메인 화면에서 3 커맨드를 입력하여 Step 3으로 진입합니다.
- 2. 진입 후 1 커맨드를 입력하여 각 지진파의 가속도 데이터에 대한 eq 파일을 작성합니다.
 - a. Step3/output/eq 폴더에서 eq 파일을 확인합니다.

```
수행할 단계를 입력하세요.
(1) Step1
(2) Step2
(3) Step3
(4) Step4

Command > 3

Step 3
(1) 측정한 지진파에 대한 .eq 파일 생성하기
(2) 응답 스펙트럼 그래프 그리기
(3) 시간-가속도 그래프 그리기
(back) 뒤로 가기

Step3 > 1

>>> input: waves.xlsx의 data Sheet에 응답 스펙트럼 데이터를 입력하였습니까? (y/N)y
>>> output: Step3/output/eq
```

- 3. **Shake_M** 프로그램을 사용해 증폭된 가속도 데이터를 생성하고, 마이다스의 **SGS** 프로그램을 사용하여 응답 스펙트럼 데이터를 생성합니다.
- 4. 생성한 데이터를 `Step3/input` 폴더에 넣습니다.

- 1. SGS_result/ .sgs 응답스펙트럼 데이터
 - a. 파일명은 1x.sgs, 1y.sgs, ... ,nx.sgs, ny.sgs 로 사용합니다.

```
*SGSw
*TITLE, Earthquake Response Spectrum
*TITLE, User EQ: 1x
*X-AXIS, Period Tn (sec)
*Y-AXIS, Pseudo Acceleration (g)
*UNIT&TYPE, GRAV, ACCEL
*FLAGS, 0, 1
*DATA
*DAMPING, 0.05
1.00000E-010
               , 1.08358E-001
5.00000E-002
                , 5.65704E-002
1.00000E-001
                , 6.59893E-002
1.50000E-001 , 8.99580E-002
```

Step3/SGS_result 파일 형식

- 2. Shake_M_result/ .txt 가속도 데이터
 - a. 파일명은 1x.txt, 1y.txt, ... ,nx.txt, ny.txt 로 사용합니다.

```
      0.0000000e+00
      3.1127700e-05
      6.2255400e-05
      -1.1287552e-04

      5.0000000e-03
      2.8962000e-05
      5.7924000e-05
      -1.3204148e-04

      1.0000000e-02
      2.7021900e-05
      5.4043800e-05
      -1.0790101e-04

      1.5000000e-02
      1.6970900e-05
      3.3941800e-05
      -1.2240797e-04

      2.0000000e-02
      8.3760800e-06
      1.6752160e-05
      -1.4132789e-04

      2.5000000e-02
      4.9518500e-08
      9.9037000e-08
      -2.2145059e-04

      3.0000000e-02
      -9.1360000e-06
      -1.8272000e-05
      -2.0906527e-04

      3.5000000e-02
      -1.9653200e-05
      -3.9306400e-05
      -1.5569223e-04

      4.0000000e-02
      -1.8153600e-05
      -3.6307200e-05
      -4.6714467e-05
```

Step3/Shake_M_result 파일 형식

- 5. 2, 3 커맨드를 입력하여 응답 스펙트럼 그래프와 시간-가속도 그래프를 생성합니다.
 - a. Step3/input/SGS_result, Step3/input/Shake_M_result 폴더에 알맞은 데이터 를 저장하였는지 확인 후 y 커맨드를 입력합니다.

```
Step3 > 2
>>> input: Step3/input/SGS_result에 응답 스펙트럼 데이터를 입력하였습니까
>>> output: Step3/output/SRSS, Step3/output/SRSS_scale
Step3 > 3
>>> input: Step3/input/Shake_M_result에 시간-가속도 스펙트럼 데이터를 입력
Step2.py:249: RuntimeWarning: More than 20 figures have been opened. Figulotlib.pyplot.figure`) are retained until explicitly closed and may consulee the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.figure(figsize=(11, 6))
>>> output: Step3/output/Acceleration
```

- 6. Step3/output 폴더에서 작성된 그래프를 확인합니다.
 - a. SRSS/: 지진파에 대한 SRSS 그래프
 - b. SRSS_scale/: Scale up Factor가 적용된 SRSS 그래프 및 엑셀 데이터
 - c. Acceleration/ : Scale up Factor가 적용된 시간-가속도 그래프 및 엑셀 데이터
- 7. back 커맨드를 입력하여 메인 메뉴로 돌아갑니다.

Step 4

- 1. Step 3에서 Shake_M을 사용해 작성한 가속도 데이터를 RSP Match 프로그램을 사용하여 데이터를 보충합니다.
- 2. RSP Match 로 얻은 가속도 데이터를 마이다스의 SGS 프로그램을 사용하여 응답 스펙트럼 데이터를 생성합니다.
- 3. 생성한 데이터를 `Step4/input` 폴더에 넣습니다.

- 1. SGS_result/ .sgs 응답스펙트럼 데이터
 - a. 파일명은 1x.sgs, 1y.sgs, ... ,nx.sgs, ny.sgs 로 사용합니다.

```
*SGSw
*TITLE, Earthquake Response Spectrum
*TITLE. User EQ: 1x
*X-AXIS, Period Tn (sec)
*Y-AXIS, Pseudo Acceleration (g)
*UNIT&TYPE, GRAV, ACCEL
*FLAGS, 0, 1
*DATA
*DAMPING, 0.05
1.00000E-010
                , 1.08358E-001
5.00000E-002
                , 5.65704E-002
1.00000E-001
                , 6.59893E-002
1.50000E-001
                , 8.99580E-002
```

Step4/SGS_result 파일 형식

- 2. RSP_match_result/ .txt 가속도 데이터
 - a. 파일명은 1x.txt, 1y.txt, ... ,nx.txt, ny.txt 로 사용합니다.
 - b. Step3의 가속도 데이터와 다르게 1,2 행에 메타데이터가 있음에 주의

```
time history matched to spectrum:Input Files\( \)cms_T0.2_horiz.tgt 31988 0.0050 0 0.0000000e+00 3.1127700e-05 6.2255400e-05 -1.1287552e-04 5.0000000e-03 2.8962000e-05 5.7924000e-05 -1.3204148e-04 1.0000000e-02 2.7021900e-05 5.4043800e-05 -1.0790101e-04 1.5000000e-02 1.6970900e-05 3.3941800e-05 -1.2240797e-04 2.0000000e-02 8.3760800e-06 1.6752160e-05 -1.4132789e-04
```

Step4/RSP_match_result 파일 형식

- 4. Step 4에 진입하고, 1 커맨드를 입력해 Scale up Factor를 다시 생성합니다.
 - a. Step4/input/SGS_result에 응답 스펙트럼 데이터를 입력하였는지 확인합니다.

```
Command > 4
Step 4
(1) Scale up Factor 구하기
(2) 응답 스펙트럼 그래프 그리기
(3) 시간-가속도 그래프 그리기
(back) 뒤로 가기
Step4 > 1
>>> input: Step4/input/SGS_result에 응답 스펙트럼 데이터를 입력하였습니까? (y/N)y
Best scale: [3.972507472027305, 0.8822736627846172, 1.4687074338501804, 1.375871238198729, 0.32708018604771255, 4.821842
253668239, 0.6070078170960715]
>>> 현제 Scale up Factor: [3.972507472027305, 0.8822736627846172, 1.4687074338501804, 1.375871238198729, 0.327080186047
71255, 4.821842253668239, 0.6070078170960715]
```

- 5. 2 , 3 커맨드를 입력하여 응답 스펙트럼 그래프와 시간-가속도 그래프를 생성합니다.
 - a. Step4/input/SGS_result, Step4/input/RSP_match_result 폴더에 알맞은 데 이터를 저장하였는지 확인 후 y 커맨드를 입력합니다.

```
Step4 > 2
>>> output: Step4/output/SRSS, Step4/output/SRSS_scale
Step4 > 3
>>> input: Step4/input/RSP_match_result에 시간-가속도 스펙트럼 데이터를 입력하였습니까? (y/N)y
>>> output: Step4/output/Acceleration
```

- 6. Step4/output 폴더에서 작성된 그래프를 확인합니다.
 - a. SRSS/: 지진파에 대한 SRSS 그래프
 - b. SRSS_scale/: Scale up Factor가 적용된 SRSS 그래프 및 엑셀 데이터
 - i. SRSS.png : 모든 SRSS 그래프와 그 평균값을 나타내며, 평균값과 너무 멀거나 0.2T~1.5T 구간에서 1.3 *MCE* 0.9 그래프보다 작은 값이 있을때 붉은색으로 표시됩니다..

- c. Acceleration/ : Scale up Factor가 적용된 시간-가속도 그래프 및 엑셀 데이터 i. 1000년, 2400년 주기의 가속도 데이터가 작성됩니다.
- 7. back 커맨드를 입력하여 메인 메뉴로 돌아갑니다.

주의사항

- waveGraphMaker.exe 나 데이터 입력 파일들의 위치를 임의로 바꾸면 동작하지 않습니다.
- 파일명 혹은 경로가 정확하지 않을 시 동작하지 않습니다.
- 파일 형식이 다를 시 부정확한 데이터가 생성될 수 있습니다.