Spring 2023

Lecture 1: Database and DBMS

Instructor: Alex Dekhtyar Ishaan Sathaye

Introduction

Definition of a database and DBMS in Professor Notes.

Spring 2023

Lecture 2: Relational Data Model

Instructor: Alex Dekhtyar

Ishaan Sathaye

Relational Data Model

Definition 1 Relational data model is an approach to organizing collections of data

- Relation
 - Relational Table \longrightarrow Name + Schema
 - * Schema: List of attribute name + attribute type pairs
- ullet Relational Database \longrightarrow Collection of Relations tables
- Table Instance: set of records with instantiated values of the attributes
 - Finite
 - Records, rows, tuples

One unit of data is called a datum.

Object, entity, event: description of one object, entity, event

- Records consist of attributes or fields (rows in the table).
- Attributes is a named container for a value of a specific type.

Database Table Constraint

Definition 2 Limitations of table instances

- Candidate Key: set or lists of attributes that uniquely define a record in a table, minimal such set of attributes, made up of multiple attributes sometimes.
 - Every attribute is necessary.

Examples

CSC 365 Example

Course Object:

 \bullet Prefix: CSC \longrightarrow **String**

• Course #: $365 \longrightarrow Integer$

 \bullet Name: Introduction to Database Systems \longrightarrow String

• Description: Basic Principles, ... \longrightarrow **String**

• Units: $4 \longrightarrow \mathbf{Integer}$

Department Object:

• Name: Computer Science and Software Engineering

• Abbreviation: CSSE

• Building: 14

• Room: 245

• College: CENG

Stringing these objects together based on relationship would make a **network model**.

Schema Example

Course(Prefix String, Course# Integer, Name String, Description String, Units Integer)

Prefix	Course#	Name	Description	Units
CSC	365	Introduction to Database Systems	Basic Principles,	4
CSC	357	Systems Programming		4

Department (Name, College, Building, Room): Department would also have a table as well.

 $\mathbf{Spring}\ \mathbf{2023}$

Lecture 3: RDM Cont.

Instructor: Alex Dekhtyar Ishaan Sathaye

Relational Data Model

What makes a record unique?

• Superkey: any set of attributes that uniquely defines a record in a table

• Primary Key: candidate key chosen by you

Spring 2023

Lecture 4: SQL DDL and DML

Instructor: Alex Dekhtyar Ishaan Sathaye

MySQL Access

- 1. Server Address = host: mysql.labthreesixfive.com
- 2. Port: 3306
- 3. username
- 4. password

MySQL Database

- Namespace
- Collection of Tables
- Set of Permissions

Case Sensitivity

Case Sensitive

- Table Names
- Database Names

Not Case Sensitive

- Attribute Names
- SQL Keywords

Types

- Numeric Types
 - Integer Types
 - * TINYINT
 - * SMALLINT
 - * MEDIUMINT

- * **INT**
- * BIGINT
- Floating Point Types
 - * FLOAT
 - * DOUBLE(P, D)
 - * **DECIMAL**
- String Types
 - Character Types
 - * CHAR(N) \longrightarrow Fixed Length
 - * VARCHAR(N) \longrightarrow Variable Length
 - * TINYTEXT
 - * $\mathbf{TEXT} \longrightarrow$ for storing large amounts of text
 - * MEDIUMTEXT
 - * LONGTEXT
- Date and Time Types
 - Date Types
 - * DATE
 - * DATETIME
 - * TIMESTAMP
 - * TIME
 - * YEAR

Data Definition Language (DDL)

Commands from DDL act upon the schema

- CREATE TABLE
- DROP TABLE
- ALTER TABLE

Define a Relational Table

Aspects needed to define a table:

- Table Name
- Attributes: Name + Type
- Constraints

Data Manipulation Language (DML)

Commands from DML act upon the instance.

- INSERT
- DELETE
- UPDATE

Inserting Data

```
INSERT INTO <table_name>(<attribute_name>, ...)
   VALUES (<value>, ...);
```

Supply values in order of attribute declarations in CREATE TABLE statement. Can omit the attribute names if values supplied are in the same order. If need to omit a value then omit that attribute name as well.

More on Constraints

- [NOT] NULL attribute cannot be null
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- **DEFAULT** <**exp**> default value for attribute
- AUTO_INCREMENT means that the attribute is an integer and is automatically incremented

Lab 2

MySQL Server

• LabThreeSixFive.com

- mysql command line client
- IDE (DatGrip)
- mysql connectivity from Python

Lab 2 uses Create Table, Drop Table, and Insert.

Code from Lab

```
show tables
CREATE TABLE Departments (
    DeptId INT PRIMARY KEY,
    Abbr VARCHAR(20) UNIQUE, -- UNIQUE makes candidate key
    Name VARCHAR(128) UNIQUE,
    College CHAR(10),
    Building INT,
    Room CHAR(6),
    \operatorname{\mathsf{--}} set multiple candidate keys at the bottom
    UNIQUE(Building, Room),
    -- foreign key always a separate line statement:
    -- FOREIGN KEY(College) REFERENCES colleges(abbr)
);
describe colleges;
SELECT * FROM colleges;
show CREATE TABLE colleges;
show CREATE TABLE Departments;
INSERT INTO Departments
    VALUES(1, 'CSSE', 'Computer Science and Software Engineering', 'CENG', 14, '245');
INSERT INTO Departments(DeptId, Abbr, Name, College, Building, Room)
    VALUES(1, 'CSSE', 'Computer Science and Software Engineering', 'CENG', 14, '245');
```

Spring 2023

Lecture 5: DDL and DML Continued

Instructor: Alex Dekhtyar

 $Is haan\ Sathaye$

DML

Updating Data

```
UPDATE <table_name>
    SET <attribute_name> = <value>
    WHERE <condition>;
```

Example

```
UPDATE colleges
   SET abbr = 'COSAM'
WHERE abbr = 'COASM'
```

WHERE clause is a filter that determines which rows are updated.

Deleting Data

```
DELETE FROM <table_name> -- just this is a valid command to delete all rows
   WHERE <condition>;
```

DDL

Altering Tables

Commands

- ADD add a column/attribute/key
- DROP
- MODIFY
- RENAME

Parameters

- \bullet COLUMN
- CONSTRAINT
- FOREIGN KEY
- PRIMARY KEY
- UNIQUE

Adding an attribute, dropping/adding a constraint, renaming a table, disable/enabling keys, and modifying attributes examples are in this professor notes: 4-SQLDDLDML.pdf

Spring 2023

Lecture 6: DML/DDL Cont., WHERE Clause., and MySQL Conn.

Instructor: Alex Dekhtyar Ishaan Sathaye

Announcements

Running Scripts for Lab 2

Can run from command line using mysql command or using mysql client. For running using mysql command need to specify the database if not using default database.

```
source script.sql
```

DML/DDL

Data Manipulation works on instance and Data Definition works on schema.

Altering a Table

Modifying the schema. ALTER examples in class.

For CREATE TABLE, you can name constraints:

```
CREATE TABLE Example (
    Id int PRIMARY KEY,
    X INT,
    Y INT,
    CONSTRAINT Point UNIQUE (X, Y)
);
```

Updating and Deleting from Table: WHERE Clause

```
Ex. Deleting in Table
```

```
DELETE FROM test02
WHERE b > c
```

This deletes rows where b is greater than c.

Ex. Deleting with Scope

```
DELETE FROM test02
```

```
FOR EACH ROW in test01
DO
DELETE FROM test02 -- delete(row, condition)
WHERE b > c
```

SQL Boolean Expressions

- 0, 1
- Builtin: $IN(...) \longrightarrow returns bool$
- \bullet < Expression > < op1 > < op2 > // can also use IN or LIKE
- ullet < Expression > AND < Expression >
- ullet < Expression > OR < Expression >
- ullet NOT < Expression >

MySQL Connectivity

Breifly went over the Python examples on Course webpage that connect to MySQL server.

Spring 2023

Lecture 7: Python Connectivity and Relational Algebra

Instructor: Alex Dekhtyar Ishaan Sathaye

Python MySQL Connectivity

Relational Database is sitting on a server. It is listening for connections, and our program is a client that connects to the server via the port. Essentially, there is a pipe and a exchange of messages that is happening. Generates a connection object that stores info about how to properly access the database.

Package

import mysql.connector

Connection

5 Things Needed: Host, Port, Username, Password, Database (sometimes not necessarily)

These get passed to mysql.connector.connect() function. This returns a connection object. is_connected() returns a cursor object.

Cursor object that is returned from the connection object. Cursor object is used to execute queries.

Relational Algebra

Relational \longrightarrow Database Model \longrightarrow Relational Model. Algebra: set of elements & operations on elements Relational Algebra is operations on relational tables.

Boolean Algebra introduces operations on truth values

- T, F
- \bullet $\tilde{}$, \wedge , \vee , \rightarrow , \leftrightarrow

Notation

Upper case letters like R, S, T, R_1 , S_7 , ... are relational table names. Letters from first half of alphabet like A, B, C, ... are attributes names. $R(A_1,...,A_n)$ are to represent schema. t, s, $r \in R$ are tuples. a_1 , a_2 , ... are values. Ex. $t = (a_1,...,a_n)$ and it could be referred to as $t.A_1 = a_1$.

Operations

Binary

Unary

Selection Operation

- $\sigma_{\langle selection condition \rangle}(R)$ returns rows that satisfy condition
- ullet Selection Condition denoted by C
- Ex. C = $A_2 =' Riley' \wedge A_3 =' Hicks'$
- Formal Notation: $\sigma_C(R) = \{t \in R | tsatisfiesC\}$

Projection Operation

- $\pi_{\langle attributelist \rangle}(R)$ returns columns that are in attribute list
- F is the projection list which is a list of attributes
- Ex. F = $(B_1, ..., B_m)$ where $B_i \in A_1, ..., A_n$
- Formal Notation: $\pi_F(R) = \{t' | \exists, t \in R, s.t. \forall B \in F, t'.B = t.B\}$
- Projection squeezes out duplicates