FAST & SMALL Subspace Embeddings

N. Chepurko K. Clarkson Praneeth Kacham D. Woodruff MIT IBM CMO CMO

Subspace Embeddings

• Embed a d dimensional subspace V of \mathbb{R}^n into \mathbb{R}^m , $m \ll n$

$$X \rightarrow E(X)$$

A useful property to preserve is that

for all
$$x \in V$$
, $||E(x)||_2 = (1 \pm \varepsilon)||x||_2$

- Ideally, we also want E(x) to be linear : E(x) = Fx for some F
- Can think of it as an analogue of JL Transform for subspaces
- Typically, we are given a matrix $A \in \mathbb{R}^{n \times d}$ and V is defined as

$$V := \{Ax \mid x \in \mathbb{R}^d\}$$

• Consider the least squares regression problem:

• Consider the least squares regression problem:

• Consider the least squares regression problem:

• Consider the least squares regression problem:

$$\min_{x} \|Ax - b\|_{2}^{2} = \sum_{i=1}^{n} (\langle \alpha_{i}, x \rangle - b_{i})^{2}$$

• F is a subspace embedding for colspan([Ab]) \Longrightarrow

for all
$$x$$
, $||F(Ax - b)||_2 = (1 \pm \varepsilon)||Ax - b||_2$

- Solution to $\min_{x} \|FAx Fb\|_{2}^{2}$ is a $1 + O(\varepsilon)$ approximation
- FA is much smaller than A ⇒ solution can be computed quickly

Desirable Properties

We want *F* to simultaneously have the following properties:

- F itself must be easy to compute
- Should be able to compute FA quickly
- F should have very few rows
- Oblivious

Our transform has all these properties!

Our Result

Theorem

There is a distribution S over $m \times n$ matrices, $m = d \cdot \text{poly}(\log \log d)$, such that given an arbitrary $n \times d$ matrix A, the random matrix $S \sim S$ satisifies the following property with probability $\geq 9/10$:

for all x, $||Ax||_2 \le ||\mathbf{S}Ax||_2 \le \exp(\text{poly}(\log \log d))||Ax||_2$.

The matrix **S**A can be computed in time $O(\gamma^{-1}nnz(A) + d^{2+\gamma+o(1)})$ for any constant $\gamma > 0$.

Gaussian Embedding

- Net argument: There is a collection $\mathcal{N} \subseteq V$ of unit vectors, $|\mathcal{N}| = 2^{O(d)}$, such that if **G** preserves norms of $x \in \mathcal{N}$, then **G** preserves norms of all $x \in V$.
- JL Lemma: If **G** is $m \times n$ matrix with i.i.d. Gaussian entries, then for arbitrary $x \in \mathbb{R}^n$, with probability $\geq 1 \delta$,

$$\|\mathbf{G}x\|_2 = (1 \pm \varepsilon)\|x\|_2$$

if
$$m = O(\varepsilon^{-2} \log(1/\delta))$$

• Can preserve norms of arbitrary $2^{O(d)}$ unit vectors with $m = O(\varepsilon^{-2}d)$

Properties of a Gaussian Subspace Embedding

- Easy to compute
- Should be able to compute FA quickly $O(\text{nnz}(A) \cdot d\varepsilon^{-2})$
- Should have few rows
- Oblivious Don't have to know A

Other Constructions

	# of rows	Time to apply
SRHT	$d\log(d)\varepsilon^{-2}$	nd log(n)
CountSketch	$d^2 arepsilon^{-2}$	nnz(A)
OSNAP	$d^{1+\gamma}\log(d)\varepsilon^{-2}$	$\frac{1}{\gamma \varepsilon} \operatorname{nnz}(A)$
Leverage Score	$d\log(d)\varepsilon^{-2}$	nnz(A) + poly(d)

- None of these constructions have o(d log(d)) rows for constant ε.
- Composing OSNAP with Gaussian O(d) rows $O(\gamma^{-1} \text{nnz}(A) + d^{2+\gamma+o(1)} + d^{\omega} \log(d))$ time.

$$\begin{array}{ccc}
n & \underset{\text{DSNAP} \ d}{\Longrightarrow} d^{1+\gamma} \log(d) & \underset{\text{DSNAP} \ d = \frac{1}{\log d}}{\Longrightarrow} d \\
0(d^{-1} \operatorname{anz}(A)) & \underset{\text{O}(d^{2+\gamma} \log^2 d)}{\longleftrightarrow} & 0(d^{\omega} \log d)
\end{array}$$

Applications to Other Problems

Using our construction of subspace embeddings and a few other ideas, we obtain near-optimal running times for other problems

Application	Running time (up to constant factors)
arepsilon Subspace Embeddings	$nnz(A) + \varepsilon^{-3} d^{2.1+o(1)} + d^{\omega} poly(log log(d))$
arepsilon approximate linear regression	$nnz(A) + \varepsilon^{-3}d^{2.1+o(1)} + d^{\omega} poly(log log(d))$
Linearly Independent Rows	$nnz(A) + k^{\omega} poly(log log(k)) + k^{2+o(1)}$
0.01 Rank k Approximation	$nnz(A) + (n+d)k^{\omega-1}$

What are we trying to construct?

A random matrix **S** such that:

- **S** has $o(d \log(d))$ rows
- For any matrix A, the matrix SA can be computed in time $O(\text{nnz}(A) + d^c)$ for some $c < \omega$
- With probability $\geq 9/10$, for all vectors x,

$$||Ax||_2 \le ||\mathbf{S}Ax||_2 \le \alpha ||Ax||_2$$

with small α

Our Approach

- We go back to Gaussians and see how sparse we can make the Gaussian matrix
- For some special subspaces, we can set many entries of the Gaussian matrix to be 0
- Sparse Matrix → Fast Multiplication!
- Applying some embeddings, we can assume without loss of generality that A is a d log d x d matrix

Idea

- Suppose S is a matrix that randomly samples d coordinates of d log(d) dimensional vector x. How large is ||Sx||₂?
 - **1** If $x = e_i$: With probability $1 1/\log(d)$, $||\mathbf{S}x||_2 = 0$:
 - **2** If $x = 1/\sqrt{d \log(d)}$: With probability 1, $\|\mathbf{S}x\|_2 = 1/\sqrt{\log(d)}$:)
- Having a "large" number of "large" coordinates helps in making the sketching matrix **S** sparse
- Unit vectors x that are "sketchable" by sparse matrices have $||x||_1 = \Omega(\sqrt{d})$

Contraction

• Consider a unit vector $x \in \mathbb{R}^{d \log(d)}$ with the property that

#*i* such that
$$|x_i| \ge \tilde{\Omega}(1/\sqrt{d})$$
 is at least *cd*

- Consider a random matrix M with each entry 0 with probability 1 p and ± 1 with probability p/2 each
- We want to show $||Mx||_2 \ge \tilde{O}(1)$ with **very high** probability
- If $p = \Theta(1/d)$, what's the probability that the 1st row hits a heavy coordinate of x?

Contraction

• Consider a unit vector $x \in \mathbb{R}^{d \log(d)}$ with the property that

#*i* such that
$$|x_i| \ge \tilde{\Omega}(1/\sqrt{d})$$
 is at least *cd*

- Consider a random matrix M with each entry 0 with probability 1 p and ± 1 with probability p/2 each
- We want to show $||Mx||_2 \ge \tilde{O}(1)$ with **very high** probability
- If $p = \Theta(1/d)$, what's the probability that the 1st row hits a heavy coordinate of x? $\Theta(1)$

Contraction

• Consider a unit vector $x \in \mathbb{R}^{d \log(d)}$ with the property that

#*i* such that
$$|x_i| \ge \tilde{\Omega}(1/\sqrt{d})$$
 is at least *cd*

- Consider a random matrix M with each entry 0 with probability 1 p and ± 1 with probability p/2 each
- We want to show $||Mx||_2 \ge \tilde{O}(1)$ with **very high** probability
- If $p = \Theta(1/d)$, what's the probability that the 1st row hits a heavy coordinate of x? $\Theta(1)$
- Given that 1st row hits x, how large will $|M_{1*}x|^2$ be?

Contraction - Continued

Consider the random sum

$${\bf r}_1 {\bf x}_1 + {\bf r}_2 {\bf x}_2 + \ldots + {\bf r}_n {\bf x}_n$$

where $\mathbf{r}_i = \pm 1$ with probability 1/2 each independently. Also assume that $|x_n| \ge |x_i|$.

- Fix a value for \mathbf{r}_n . With 1/2 probability over $\mathbf{r}_1, \dots, \mathbf{r}_{n-1}$, $\mathbf{r}_1 x_1 + \mathbf{r}_2 x_2 + \dots + \mathbf{r}_{n-1} x_{n-1}$ has the same sign as $\mathbf{r}_n x_n$.
- So $|\mathbf{r}_1 x_1 + \ldots + \mathbf{r}_n x_n| \ge |\mathbf{r}_n x_n| \ge |x_n|$ with probability 1/2
- Under the event that the first row hits a heavy coordinate of x, it contributes $\tilde{\Omega}(1/\sqrt{d})$ with probability 1/2!
- So, with constant probability,

$$|M_{1*}x|^2 \geq \tilde{\Omega}(1/d)$$

Contraction - Continued

- Let row *i* be **large** if $|M_{i*}x|^2 \geq \tilde{\Omega}(1/d)$
- So, we have $Pr[i \text{ is } large] = \Theta(1)$ from the previous argument
- If m = Cd: Chernoff bound \implies with prob. $1 \exp(-\Theta(d))$, there are $\Theta(d)$ large rows
- $\Theta(d)$ large rows $\implies \|Mx\|_2^2 \ge \tilde{\Theta}(1)$

Dilation

- We also want to show that $\|Mx\|_2^2 \le \tilde{\Theta}(1)$
- This is easy as row sums and column sums of M are $\tilde{O}(1)$ with high probability

What did we learn?

• If each unit vector of the subspace is *flat*, then the subspace can be embedded using a Sparse Sign matrix i.e.,

for all
$$x \in V$$
: $||x||_2 = 1 \implies ||x||_1 = \tilde{\Omega}(\sqrt{d})$

- How do we transform any given subspace into one that has this property?
- We use a transformation in a paper of Indyk and prove new properties

New Theorem

Theorem

For any arbitrary n, let $m = n^{1+o(1)}$. Let B_1, \ldots, B_b be a partition of m with $b \approx \sqrt{n}$. Then there is a mapping $F : \mathbb{R}^n \to \mathbb{R}^m$ that has the following properties:

- **1** For any x, Fx can be computed in $n^{1+o(1)}$ time
- 2 For any vector x,

$$(1 - \frac{1}{100 \log \log n}) \frac{1}{b} ||x||_2^2 \le ||Fx||_2^2 \le \frac{1}{b} ||x||_2^2$$
 (1)

3 For any vector x,

$$(1 - \frac{1}{100 \log \log n}) \|x\|_2 \le \sum_{i=1}^b \|(Fx)_{B_i}\|_2 \le \|x\|_2$$
 (2)

Indyk Embedding

Wrap-up

- Recursively apply the previous transform for $\Theta(\log \log n)$ times
- We end up with a transformation $\mathcal{F}: \mathbb{R}^n \to \mathbb{R}^m$, $m = n^{1+o(1)}$, such that for any unit vector x,

$$\|\mathcal{F}x\|_1 \ge \sqrt{n/4}$$
$$1/2 \le \|\mathcal{F}x\|_2^2 \le 1$$

- This means *cn* coordinates of $\mathcal{F}x$ have a value at least $1/n^{o(1)}$ if $\|\mathcal{F}x\|_2 = 1$
- Not as good as the property we assumed but this is enough for the construction of subspace embeddings