Ataki na systemy komputerowe

cz. 1. Sieci komputerowe

Czyli na co?

- Urządzenia końcowe PC, urządzenia mobilne, urządzenia IoT
- Serwery DNS (serwery nazw domen), bazy danych
- Pozostałe urządzenia infrastruktury sieciowej rutery, centrale, przełączniki itp.,
- Systemy SCADA (sieci przemysłowe), systemy krytyczne (zarządzające infrastrukturą krytyczną)

LAN – Local Area Network Wi-Fi - Wireless Fidelity

LAN – Local Area Network

Model OSI

Aplikacji					Aplikacji
Prezentacji					Prezentacji
Sesji					Sesji
Transportowa			Nagłówek segmentu	Dane	Transportowa
Sieciowa		Nagłówek sieciowy	Nagłówek segmentu	Dane	Sieciowa
Łącza danych	Nagłówek ramki	Nagłówek sieciowy	Nagłówek segmentu	Dane	Łącza danych
Fizyczna	0001011110101010110000111010				Fizyczna

LAN:

- huby
- switche

Switche w trybie podstawowym nie wypuszczają ruchu na inne porty gałęzi

Stosowane metody zabezpieczeń zgodne ze standardem 802.11:

- uwierzytelnianie identyfikacja i weryfikacja autentyczności informacji przesyłanych przez użytkownika, który łączy się z siecią (IEEE 802.1X)
- protokół <u>WEP</u> (<u>ang.</u> Wired Equivalent Privacy) działa na zasadzie współdzielonego klucza szyfrującego o długości 40 do 104 bitów i 24-bitowym wektorze inicjującym. WEP jest aktualnie bardzo złym zabezpieczeniem, które nie chroni nas przed włamaniami z zewnątrz. W średnio obciążonej sieci klucze WEP można złamać w 90% przypadków, poniżej 1 godziny pasywnego nasłuchiwania pakietów.
- protokoły <u>WPA/WPA2</u> nowe, dużo bardziej bezpieczne mechanizmy szyfrowania przesyłanych danych
- autoryzacja zgoda lub brak zgody na żądaną usługę przez uwierzytelnionego użytkownika. Zabezpieczenie to jest wykonane przez <u>punkt dostępu</u> lub serwer dostępu.
- rejestracja raportów rejestr akcji użytkownika związanych z dostępem do sieci. Kontrola raportów pozwala na szybką reakcję administratorów na niepokojące zdarzenia w sieci.

WAN

[https://ccnacomplete course.blog spot.com/2019/09/basic-initial-cisco-router.html]

WAN

[https://www.ques10.com/p/18473/what-is-osi-model-give-functions-and-services-of-1/?]

Protokoły

Protocol Wrapper Dependencies and Network Layers

Components and means of communication within the Local Area Network: An analytical study Yaser Mohammed Mohammed Al Sawy

Protokoły sieciowe

ARP
IP
TCP
UDP
ICMP
DNS
FTP
Telnet(22)
SSH (23)
HTTP(80)
HTTPS(443)
SSL/TLS
IPSec

Bold – protokoły zabezpieczone/zabezpieczające

DNS

https://www.geeksforgeeks.org/working-of-domain-name-system-dns-server/

DNS

Jest też urządzeniem, które może blokować serwisy!!!

https://www.geeksforgeeks.org/working-of-domain-name-system-dns-server/

DNS (MITM)

[https://www.grandmetric.com/pl/bezpieczenstwo-sieci-lan/]

DNS

- DNS over TLS (DoT): Jest to sposób na enkapsulację komunikacji DNS w warstwie transportowej TLS (Transport Layer Security), co zapewnia poufność i integralność danych. DoT używa standardowego portu TCP 853.
- DNS over HTTPS (DoH): Jest to alternatywny sposób na przekazywanie zapytań DNS przez protokół HTTP w celu wykorzystania jego szyfrowania za pośrednictwem warstwy aplikacji. DoH używa standardowego portu TCP 443, czyli portu HTTPS.

DNS - komunikacja

Firewall

Podstawowe zadania firewalla obejmują:

- Filtrowanie ruchu sieciowego: Firewall może analizować ruch sieciowy na podstawie określonych reguł i decydować, czy przepuścić czy zablokować pakiety na podstawie różnych kryteriów, takich jak adres IP, port, protokół, itp.
- Ochrona przed atakami z zewnątrz: Firewall może blokować próby nieautoryzowanego dostępu do sieci, takie jak ataki
 typu brute-force na porty usług, próby wykorzystania luk w zabezpieczeniach, itp.
- Kontrola dostępu: Firewall może kontrolować, które aplikacje i usługi sieciowe mogą uzyskać dostęp do sieci oraz które zasoby sieciowe mogą być dostępne z zewnątrz.
- Monitorowanie ruchu sieciowego: Firewall może rejestrować ruch sieciowy w celu analizy zdarzeń, wykrywania anomalii oraz zapewnienia zgodności z politykami bezpieczeństwa.
- Przekierowywanie ruchu sieciowego: Firewall może przekierowywać ruch sieciowy na podstawie określonych reguł, np. przekierowywanie ruchu na serwery wewnętrzne.
- Szyfrowanie i deszyfrowanie ruchu: Niektóre zaawansowane firewalle mogą obsługiwać funkcje szyfrowania i deszyfrowania ruchu, np. w przypadku protokołu SSL/TLS, w celu analizy ruchu zaszyfrowanego.
- Zdalne połączenia bezpieczne: Niektóre firewalle umożliwiają tworzenie tuneli VPN (Virtual Private Network), zapewniając bezpieczne i prywatne połączenia zdalne do sieci firmowej.

Proxy serwer/Web proxy

Communication without proxy server

Communication with proxy server

[https://www.javatpoint.com/what-is-a-proxy-server-and-how-does-it-work]

VPN – rozwiązanie dla korpo

Web VPN

[https://www.cyberyodha.org/2023/02/what-is-virtual-private-networkvpn.html]

Deep Web i Dark Web

[https://surfshark.com/pl/blog/deep-web-vs-dark-web] Deep web, czyli "głęboka sieć", obejmuje wszystkie strony internetowe, które nie są indeksowane przez wyszukiwarki (czyli przez Google), i które są zazwyczaj używane jako zaplecze techniczne. Dark web, czyli "ciemna sieć", to specjalnie ukryta część deep webu, do której możesz się dostać tylko ze specjalnej przeglądarki

Dark Web

https://privacysavvy.com/security/safe-browsing/best-dark-web-sites/

https://bezpiecznyblog.pl/tor-podstawy/

Dark Web

KONIEC