

Dynamic B.E.S.T. Optimization

Jyotsna Shenoy (60001150051): 1jyotsna1@gmail.com Jaineel Nandu (60001150029): Jaineel.nandu02@gmail.com

Guided by: Prof. Mayur Parulekar

Abstract

In a densely populated city like Mumbai where urban transportation systems are always hanging by a thread, the mass transportation system can only be relied on, if the service is reliable, timely and caters to all class of people. The core objective is to design a dynamic system model of BEST network which will provide the users with a robust & highly inter-connectable, independent & reliable mass transportation system which ensures minimum waiting time for passengers, profitability for the service provider & reduced network congestion in the city which helps us work towards a smart & planned city even with all the current constraints.

Problems with current system

The current system implemented encompasses the complete coverage of the city, it has still witnessed a shortfall of passengers on a Year-on-Year basis. The reasons for the problem can be attributed to:

(a) Erratic Bus Timings: Passengers have no **Estimated Time of Arrival** of busses, thereby giving

the passengers impression

of unreliability.

Multiple buses are

deployed on the same

route, some of them

(b) Mismanagement of Bus Routes & Frequency:

get full and the rest are empty, this makes busses not available on required routes.

(c) Interconnectivity:

Two stops that are not connected by any route must have an intermediate stop to transfer. However, due to the unreliability, passengers avoid buss hopping.

A Dynamic Schedule can be implemented to improve how the buses are deployed. This solution does not require major infrastructural changes or heavy investments. A simple and calculated deployment method can yield significant improvements in quality of Public Transportation as well as significant increase in Revenue.

Approach

Model Network:

Time Slots	2	T0, T1
Routes	4	R1,R2,R3,R4
Nodes	4	N1,N2,N3,N4

Table 1. Model Network

algorithm, we created a model network, which is divided to two time instants of 5 minute durations. The model has 4 Bus stops (Nodes), out of which two are Depots (N1 & N2). The model Network has 4 Routes that connect the nodes in a particular order.

Here, for the analysis of the scheduling

Route Matrix:

A matrix that gives us information about the routes connecting the nodes in a particular order. The Rows Represent the Routes and the column represents nodes. The number in the corresponding cell represents that the route has the corresponding node in that order.

	D	D		
Nodes Route	N1	N2	N3	N4
R1	3	1	2	0
R2	3	1	0	2
R3	1	3	2	0
R4	1	3	0	2

Table 2. Route Matrix.

Demand Matrix: For each time instant we represent the node to node demand in a matrix form, here the columns of the matrix represent sources and the rows represent destinations

Demand for T0			ource		1	Total Demand in the	Demand for T1	Source					Total Demand in the
	Node	N1	N2	N3	N4	entire network		Node	N1	N2	N3	N4	entire network
	N1	0	1	4	3	between this time slot		N1	0	2	2	1	between this time slot
Destination	N2	2	0	1	1		Destination	N2	3	0	5	0	
	N3	4	3	0	0			N3	2	1	0	0	
	N4	2	2	0	0	23		N4	0	1	0	0	17

Table 3 & 4. Node to Node Demand in the Network for corresponding time intervals.

Travel Time Matrix: Similar to Demand Matrix. it shows the time it takes to travel Node to Node.

Travel Time for T0		s	ource			Travel Time for T0	Source							
	Node	N1	N2	N3	N4		Node	N1	N2	N3	N4			
	N1	0	2	3	5	Destination	N1	0	1	2	4			
Destination	N2	4	0	6	1		N2	3	0	5	1			
	N3	2	3	0	0		N3	1	2	0	0			
	N4	1	2	0	0		N4	1	1	0	0			

Table 5 & 6. Node to Node Travel Time for corresponding time intervals.

Genetic Algorithm: A class of algorithms that are used for optimization problems. The design of which is based on theory of evolution.

Figure 4. Block diagram of implemented genetic algorithm

Schedule Representation as a Binary Genome:

Every schedule is represented as a binary value. The MSB to LSB Arrangement is done depot wise. And each route under a depot is considered. Binary value 1 represents that the bus is set to schedule at that instant. Binary value 0 represents that the bus is not to schedule at that instant. Here, R1 is set to schedule, R2 is not set to schedule, R3 & R4 are set to schedule. For the model network there are 16 possible schedules

Figure 5		D	1	D	2	
Figure 5. Representation of a	MSB	1	0	1	1	LSB
schedule.		R1	R2	R3	R4	

Objective Function: It is an indicator of how well the schedule is considering different parameters. Higher function values indicate that the schedule performs better than the other schedules.

$$f = 1 * \frac{Revenue}{Cost \ to \ BEST} + 1 * \frac{Served \ Demand}{Expected \ Demand + Approximation}$$

Evaluation of a schedule:

In the graphical representation of the evaluation, we have time on x axis with 1 minute divisions, on the y axis we have the schedule. As we move across the time axis we clear corresponding demand and calculate revenue and cost.

Sr. No	Combination	Routes	Tag		11-17	2 (minutes)				12-13[minute	es)		Revenue	Cost to	рест
or, NO	Combination	noutes	ray	0	1	2	3	4	5	6	7	8	9	Hevenide		DE31
			Bus					1						Total	No of	
			Stop Code	N2			N3			N1				Revenvue	Minutes Run	6
	1	R1	PAX Count	4			5			0				generated	Cost of	
			PAXUp	4			4			0				by running this bus	running this	53
			PAX Down	0			3			5				(riis bus	bus to	- 33
			Revenue	40	40	40	80	80	80	80	80	80	80	80	BEST	
			Bus					2						Total	No of	
			Stop Code	N2	0	N4	0	0	0	0	N1	0	0	Revenvue	Minutes Run	
	0	R2	PAX Count											generated	Cost of	5
			PAXUp											by running this bus	bus to	
			PAX Down											this bus		
40			Revenue	0	0	0	0	0	0	0	0	0	0	0	BEST	
10			Bus					3						Total	No of	
			Stop Code	N1	0	N3	0	0	0	0	0	N2	0	Revenvue	Minutes Run	8
	1	R3	PAX Count	6		3							0	generated	Cost of	
			PAXUp	6		1							0	by running this bus	running this	69
			PAX Down	0		4							3	triis bus	bus to	03
			Revenue	60	60	70	70	70	70	70	70	70	70	70	BEST	
			Bus					4							No of	
			Stop Code	N1	N4	N2	0	0	0	0	0	0	0	Total Revenvue	Minutes Run	
	0	R4	PAX Count											generated by running	Cost of	
			PAXUp											this bus	running this	5
			PAX Down											(1115 003	bus to	3
			Revenue	0	0	0	0	0	0	0	0	0	0	0	BEST	
gur	e 6. E	valuati	on of	the	fitnes	s of	a	Т	otal Re	evenue of C	ombir	nation		150	Total Cost to BEST	132

Results

For the model network schedule 9 is the best schedule. If we select 4 from the 16 at random as the initial population, there can be 1820 possibilities. Testing the algorithm with all possible combinations, the algorithm produces the optimum solution with accuracy of 95%.

schedule.

Evaluation Table:

-										
-	Fitness	Total Demand	Unsatisfie	Cos	Revenu	tic	ina	mb	Ö	Sr. No.
	1.5139	40	35	36	50	1	0	0	0	1
Table	1.0083	40	33	84	70	0	1	0	0	2
	1.25	40	30	100	100	1	1	0	0	3
Objec	0.9395	40	34	76	60	0	0	1	0	4
/Fitne	1.4707	40	29	92	110	1	0	1	0	5
functi	1.2536	40	27	140	130	0	1	1	0	6
value	1.4256	40	24	156	160	1	1	1	0	7
	1.3765	40	32	68	80	0	0	0	1	8
every	1.8726	40	27	84	130	1	0	0	1	9
possil sched	1.5114	40	25	132	150	0	1	0	1	10
sched	1.6412	40	23	148	180	1	1	0	1	11
Schoo	1.3734	40	27	124	130	0	0	1	1	12
	1.7107	40	23	140	180	1	0	1	1	13
	1.5638	40	20	188	200	0	1	1	1	14
	1.7025	40	17	##	230	1	1	1	1	15
<u> </u>				·						

le 7. ective ess es of

Accuracy Test:

Figure 7. Results of test cases indicating accuracy 95%

Conclusions

The implemented algorithm can find the best schedule which is economically and socially responsible. The algorithm is able to find the best schedule with the accuracy of 95%

References

- Goldberg, D. (1989). Genetic Algorithm in Search, Optimization and Machine Learning.
- 2. Dr. V. Ramesh & Parulekar, M. (2016). *BEST R*: Buses for Enhanced State Transport-Roadmap to Urban Transport Modelling.
- En.wikipedia.org (2018). Brihanmumbai Electric Supply and Transport. [online] [Accessed 26 Oct 2018] Available at: https://en.wikipedia.org/wiki/Brihanmumbai_Electric Supply and Transport

For further information

Please visit the link in this QR Code. The link contains relevant codes and project files. For any further doubts you may contact the above given e-mail id.

Dated: 11th April 2019