Hardness in water

In water, hardness is that characteristics, which prevents lathering of soap,

This happens due to presence of Ca²⁺ and Mg²⁺ salts

Reaction of soap molecules with hardness causing salts

Hardness is due to the presence of bicarbonates, chlorides, sulfates of calcium and magnesium

$$2C_{17}H_{35}COONa \\ Sodium stearate \\ (sodium soap) \\ + Ca(HCO_3)_2 \\ - Hardness causing \\ salt \\ or Mg(HCO_3)_2 \\ - (C_{17}H_{35}COO)_2Ca \downarrow + 2NaCl \\ Insoluble Ca-stearate \\ (C_{17}H_{35}COO)_2Mg \\ - (C_{17}H_{35}COO)_2Mg \\ - (C_{17}H_{35}COO)_2Mg \\ - (C_{17}H_{35}COO)_2Mg \downarrow + 2Na_2SO_4 \\ - Sodium stearate \\ (sodium soap) \\ - (Insoluble) \\ - ($$

1

Temporary Hardness

- Temporary Hardness is caused by the presence of dissolved bicarbonate of calcium and magnesium.

It is mostly destroyed by more boiling of water, when bicarbonates are decomposed yielding insoluble carbonates.

- Calcium/Magnesium Carbonates thus formed being almost insoluble, are deposited as a scale at the bottom of vessel, while carbon dioxide escapes out.

Permanent Hardness

-Hardness which is due to the presence of dissolved sulfate or chloride of calcium and magnesium which cannot be removed by boiling is known as permanent hardness.

CaCO₃ equivalent hardness

Problem 1

Calculate the calcium carbonate equivalent hardness of a water sample containing 204mg of CaSO₄ per litre

Note: Mol. Weight of
$$CaCO_3 = 100$$

Mol. Weight of $CaSO_4 = 136$

Solution:

Calcium carbonate equivalent hardness =
$$\frac{100 \times 204}{136}$$
 = 150 mg of CaCO₃/L = 150 ppm

Degree Of Clark (°cl):

°cl is number of grains (1/7000 lb) of CaCo₃ equivalent hardness per gallon (10 lb) of water.

(or)

It is defined as the number of parts of CaCo₃ equivalent hardness per 70,000 parts of water.

 \therefore 1°cl = 1 grain of CaCo₃ eq. hardness per gallon of water.

(or)

1°cl = 1 part of CaCo₃ eq. hardness per 70,000 parts of water

$$\therefore$$
 1 ppm = 0.07°cl

<u>Degree Of French</u> (°Fr):

°Fr is the number of parts of CaCo₃ equivalent hardness per 10⁵ parts of water.

1°Fr = 1 part of CaCo₃ equivalent hardness per 10⁵ parts of water

$$\therefore 0.1^{\circ} \text{ Fr} = 1 \text{ ppm}$$

Note: The hardness of water can be converted into all the four units by making use of the following interconversion formula

1 ppm =
$$1 \text{mg/L} = 0.07^{\circ} \text{cl} = 0.1^{\circ} \text{Fr}$$

 $1^{\circ} \text{cl} = 1.43^{\circ} \text{Fr} = 14.3 \text{ ppm} = 14.3 \text{ mg/L}$

Q 2. PROBLEM:

(1) A sample of water gives an analysis 13.6 mg/L of $CaSO_4$. 7.3 mg/L of $Mg(HCO_3)_2$. Calculate the total hardness and permanent hardness.

Sol:

Salt	Quantity Present (mg/L)	M.Wt	Eq. of CaCo ₃
CaSO ₄	13.6	136	$\frac{13.6 \times 100}{136} = 10$
Mg(HCo ₃) ₂	7.3	146	$\frac{7.3 \times 100}{146} = 5$

The Total hardness of
$$H_2O$$
 = Temporary hardness + Permanent Hardness = $5 + 10 = 15$ mg/L

Permanent hardness = 10 ppm (or) 10 mg/L

PROBLEM

Q 3. A Sample of hard water contains the following dissolved salts per litre.

 $CaCl_2=111\ mgs,\ CaSO_4=1.36\ mgs,\ Ca(HCO_3)_2=16.2\ mgs,\\ Mg(HCO_3)_2=14.6\ mgs,\ Silica=40\ gms,\ Turbidity=10\ mgs.$ Calculate the temporary, permanent and total hardness of water in ppm, $^Ocl\ \&\ ^OFr$

Sol:

Salt	Quantity Present (mg/L)	M.Wt	Eq. of CaCo ₃
CaCl ₂	111 mg/L	111	111×100 =100 111
CaSO ₄	1.36 mg/L	136	$\frac{1.36 \times 100}{136} = 1$
Ca(HCO ₃) ₂	16.2 mg/L	162	$\frac{16.2 \times 100}{162} = 10$
Mg(HCO ₃) ₂	14.6 mg/L	146	$\frac{14.6 \times 100}{146} = 10$

Total hardness of H_2O = Hardness of $Ca(HCO_3)_2 + Mg(HCO_3)_2$ interms of $CaCO_3$ equivalents

$$= 10 + 10 = 20 \text{ mg/L}$$

Permanent hardness = Hardness of CaCl₂+ CaSO₄ interms of CaCO₃ equivalents

$$= 100 + 1 = 101 \text{ mg/L}$$

Conversion of hardness:

$$1 \text{ ppm} = 1 \text{mg/L} = 0.07^{\circ} \text{cl} = 0.1^{\circ} \text{ Fr}$$
 Total hardness of the sample of water = 121 ppm = 121 mg/L
$$= 121 \times 0.07 = 8.47^{\circ} \text{cl and}$$

$$= 121 \times 0.1 = 12.1^{\circ} \text{ F}$$

Permanent hardness = 101 mg/L, 101 ppm, 7.07°cl, 10.1° Fr Total hardness = 20 mg/L, 20 ppm, 1.4°cl and 2° Fr

Water Softening methods: lime-soda process

1. Lime soda process

It is a process in which Lime $(Ca(OH)_2)$ and soda (Na_2CO_3) are added to the hard water to convert the soluble calcium and magnesium salts to insoluble compounds by a chemical reaction. The $CaCO_3$ and $Mg(OH)_2$ so precipitated are filtered off and removed easily.

Calculation of lime and soda required for the softening of hard water by the lime soda process

Hardness producing substance	Chemical reaction with lime and soda	Need
Permanent Hardness Ca Salts	$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 2NaCl$ $CaSO_4 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 2NaSO_4$ $CaCl_2$ and $CaSO_4$ do not react with $Ca(OH)_2$	S
Mg salts	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L+S
	$MgCl_2 + Na_2CO_3 \longrightarrow MgCO_3 + 2NaCl$ $MgCO_3 + Ca(OH)_2 \longrightarrow CaCO_3 + Mg(OH)_2 \downarrow$	S+ L
Temp. Hardness Ca(HCO ₃) ₂ Mg(HCO ₃) ₂	$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$ $Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH)_2 + 2H_2O$	L 2L

100 parts by mass of CaCO₃ are equivalent to

- (i) 74 parts by mass of Ca(OH)₂
- (ii) 106 parts by mass of Na₂CO₃

Molecular weight of lime = 74

Molecular weight of soda = 106

Molecular weight of $CaCO_3 = 100$

Therefore, Lime requirement for softenening

=
$$\frac{74}{100}$$
 T.H of Ca²⁺+ 2 x T.H of Mg²⁺ + P.H of Mg²⁺ X Vol .of water in litre

T.H = temporary hardness

P.H = Permanent Hardness

Soda requirement for softenening

$$= \frac{106}{100} \left[P.H \text{ of } (Ca^{2+} + Mg^{2+}) \right] \text{ X Vol .of water in litre}$$

Problem 1

Calculate the amount of lime required for softening 5,000 litres of hard water containing 72 ppm of MgSO₄ (mol wt = 120) Ans = 222g

Solution

Step 1 List out the given data

Given data: Hardness 72 ppm due to $MgSO_4$; water qty = 5000 litres; mol. wt. MgSO4 = 120

Step 2 calculate the CaCO₃ equivalent

Hardness producing substance	Quantity (ppm)	Multiplication factor	CaCO ₃ equivalent hardness (ppm or mg/L)
MgSO ₄	72	100/120	72 X (100/120) = 60

Step 3 calculation of lime requirement

Lime required = 74/100 (hardness due to MgSO4) x vol. of water

 $= 74/100 (60 \text{ mg/L}) \times 5000 \text{ L}$

= 222,000 mg

= 222 g

Problem 2

Calculate the amount of lime and soda required for softening 50,000 litres of hard water containing: $Mg(HCO_3)_2 = 144 \text{ ppm}$, $Ca(HCO_3^-)_2 = 81 \text{ ppm}$, $MgCl_2 = 95 \text{ppm}$, $CaCl_2 = 111 \text{ppm}$, $Fe_2O_3 = 25 \text{ppm}$ and $Na_2SO_4 = 15 \text{ppm}$

Solution

Step 1 List out the given data

Given data : $MgCO_3 = 146$ ppm, $CaCO_3 = 25$ ppm, $MgCl_2 = 95$ ppm, $CaCl_2 = 111$ ppm, $Fe_2O_3 = 25$ ppm $Ca(HCO_3)_2 = 81$ ppm and $Na_2SO_4 = 15$ ppm

Step 2 calculate the CaCO₃ equivalent

Hardness producing substance	Quantity (ppm)	Multiplication factor	CaCO ₃ equivalent hardness (ppm or mg/L)
$Mg(HCO_3)_2$	146	100/84	146 x (100/146) x 2 = 200
$MgCl_2$	95	100/95	95 x (100/95) = 100.0
$CaCl_2$	111	100/111	111 x (100/111) = 100.0
$Ca(HCO_3)_2$	81	100/162	81 x (100/162) = 25.0

Step 3 calculation of lime requirement

Lime required = 74/100 ($\{2 \times MgHCO_3\} + Ca(HCO_3)_2 + MgCl_2$ in terms of $CaCO_3$ eq) x vol. of water

 $= 74/100 (2 \times 100.0 + 100.0 + 25.0) \text{ mg/L} \times 50,000 \text{ L}$

= 74/100 (325) mg x 50,000

= 16, 25,000 mg

Answer = 16.25 kg

Step 4 calculation of soda requirement

soda required = 106/100 (CaCl₂ + MgCl₂ in terms of CaCO₃ eq) x vol. of water

 $= 106/100 (100/111 \times 111 + 100/95 \times 95) \text{ mg/L} \times 50,000 \text{ L}$

= 106/100 (200) mg x 50,000

= 10, 6,00,000 mg

Answer = 10.6 kg