MA 101 (Mathematics - I) Tutorial Problems 4: (Differentiability 1, 2)

- 1. Give an example of a continuous function on \mathbb{R} which is not differentiable exactly at (i) 1, (ii) 1,2,3, (iii) every integer.
- 2. Let r > 0 be a rational number, and $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^r \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0. Determine those values of r for which f is differentiable.
- 3. If $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $c \in \mathbb{R}$, show that $f'(c) = \lim_{n \to \infty} \left(n \left(f(c + \frac{1}{n}) f(c) \right) \right)$. Show by an example that the existence of the limit of this sequence does not imply the existence of f'(c).
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Let $n \in \mathbb{N}$, $a \in \mathbb{R}$. Find the limit $\lim_{x \to a} \frac{a^n f(x) x^n f(a)}{x a}$.
- 5. Let $f: I \to \mathbb{R}$ be differentiable at $c \in (a, b)$, and $x_n < c < y_n$ in I such that $y_n x_n \to 0$. Find $\lim_{n \to \infty} \frac{f(y_n) f(x_n)}{y_n x_n}$, if it exists.
- 6. Suppose $f:[a,b]\to\mathbb{R}$ is differentiable on (a,b) and $\lim_{x\to a+}f'(x)=\ell$. Show that f is differentiable at a and $f'(a)=\ell$ if and only if f is continuous at a.
- 7. Let $f:[a,b] \to [a,b]$ be differentiable. Assume that $f'(x) \neq 1$ for $x \in [a,b]$. Prove that f has a unique fixed point in [a,b].
- 8. Let $f:[a,b]\to\mathbb{R}$ be differentiable. Assume that there exists no $x\in[a,b]$ such that f(x)=0=f'(x). Prove that the number of zeroes of f in [a,b] is finite.
- 9. Show that $\frac{\sin x}{x}$ is strictly increasing on $(0, \pi/2)$.
- 10. Consider the function $h: \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^3 + 2x + 1$. Show that h is a bijection, and therefore has an inverse h^{-1} on \mathbb{R} . Find $(h^{-1})'(y)$ at the points y corresponding to x = 0, 1, -1.
- 11. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0 and f'(0) > 0, f'(1) > 0. Show that there are distinct $c_1, c_2 \in (0, 1)$ such that $f'(c_1) = f'(c_2) = 0$.