Deep methods for interpretable analysis of gene interactions

Clayton W. Seitz

February 23, 2022

Outline

Graph convolutional networks

References

The logic of generative modeling

Say we have a set of variables $\mathbf{x} = (x_1, x_2, ..., x_n)$ which might have some statistical dependence

The variable x might be an amino acid sequence, gene expression data, microscopy image, etc.

- ▶ Often we are handed a batch of empirical samples $\{x_i\}_{i=1}^N$
- ▶ We want to know the generating distribution $p(\mathbf{x})$

In supervised generative learning, we try to explicity learn the joint distribution $p(\mathbf{x}) = \prod_{i=1}^{N-1} p(x_i|x_{i+1:N})p(x_N)$, which is generally more difficult than discriminative learning.

Generative modeling with feedback

Perks of generative modeling

- Fitting complete multivariate distributions $p(\mathbf{x})$ goes beyond correlation-based or clustering approaches
- Correlations cannot discover partial correlation in the context of other neighbors
- Fitting p(x) permits sampling based inference

Gene interactions are naturally represented as graphs

Assume stationarity of image statistics and locality of pixel dependencies

Defining Graph Convolution

Can be viewed as a generalization of convolutional neural networks to graph structured data

$$y = mx + b$$

Learning Bayesian network structure

Directed graph convolution on Bayesian networks

References I